Isabelle/UTP: Mechanised Theory Engineering for Unifying Theories of Programming

Simon Foster, Frank Zeyda, Yakoub Nemouchi, Pedro Ribeiro, and Burkhart Wolff
November 6, 2019

Abstract

Isabelle/UTP is a mechanised theory engineering toolkit based on Hoare and He's Unifying Theories of Programming (UTP). UTP enables the creation of denotational, algebraic, and operational semantics for different programming languages using an alphabetised relational calculus. We provide a semantic embedding of the alphabetised relational calculus in Isabelle/HOL, including new type definitions, relational constructors, automated proof tactics, and accompanying algebraic laws. Isabelle/UTP can be used to both capture laws of programming for different languages, and put these fundamental theorems to work in the creation of associated verification tools, using calculi like Hoare logics. This document describes the relational core of the UTP in Isabelle/HOL.

Contents

1	Intr	roduction	7			
2	UT	TP Variables				
	2.1	Initial syntax setup	8			
	2.2	Variable foundations				
	2.3	Variable lens properties	6			
	2.4	Lens simplifications	11			
	2.5	Syntax translations	12			
3	UT	P Expressions	14			
	3.1	Expression type	14			
	3.2	Core expression constructs				
	3.3	Type class instantiations	16			
	3.4	Syntax translations	17			
	3.5	Evaluation laws for expressions	18			
	3.6	Misc laws	19			
	3.7	Literalise tactics				
4	Exp	Expression Type Class Instantiations				
	4.1	Expression construction from HOL terms	2^{2}			
	4.2	Lifting set collectors				
	4.3	Lifting limits	25			

^{*}Department of Computer Science, University of York. simon.foster@york.ac.uk

5	Unrestriction 26						
	5.1 5.2	Definitions and Core Syntax					
6	Use						
7		P Tactics 3	ๆ				
7	7.1	Theorem Attributes					
	$7.1 \\ 7.2$	Generic Methods					
	7.3	Transfer Tactics					
	1.5	7.3.1 Robust Transfer					
		7.3.2 Faster Transfer					
	7.4	Interpretation					
	7.5	User Tactics					
8	Lifti	ng Parser and Pretty Printer 3	8				
	8.1	Parser					
	8.2	Examples	1				
	8.3	Linking Parser to Constants					
9	Sub	stitution 4	3				
	9.1	Substitution definitions	3				
	9.2	Syntax translations	5				
	9.3	Substitution Application Laws	6				
	9.4	Substitution laws	0				
	9.5	Ordering substitutions	1				
	9.6	Unrestriction laws	2				
	9.7	Conditional Substitution Laws	2				
	9.8	Parallel Substitution Laws	2				
	9.9	Power Substitutions	3				
10	Met	a-level Substitution 5	3				
11	Alp	nabetised Predicates 5	4				
	11.1	Predicate type and syntax	5				
	11.2	Predicate operators	6				
	11.3	Unrestriction Laws	1				
	11.4	Used-by laws	3				
	11.5	Substitution Laws	3				
	11.6	Sandbox for conjectures	5				
12	_	nabet Manipulation 6					
		Preliminaries					
		Alphabet Extrusion					
		Expression Alphabet Restriction					
		Predicate Alphabet Restriction					
		Alphabet Lens Laws					
		Substitution Alphabet Extension					
	-12.7	Substitution Alphabet Restriction 7	٠)				

13	Lifting Expressions	72
	13.1 Lifting definitions	72
	13.2 Lifting Laws	. 73
	13.3 Substitution Laws	. 73
	13.4 Unrestriction laws	73
14	Predicate Calculus Laws	7 4
	14.1 Propositional Logic	. 74
	14.2 Lattice laws	. 77
	14.3 Equality laws	83
	14.4 HOL Variable Quantifiers	
	14.5 Case Splitting	85
	14.6 UTP Quantifiers	85
	14.7 Variable Restriction	. 88
	14.8 Conditional laws	. 88
	14.9 Additional Expression Laws	90
	14.10Refinement By Observation	90
	14.11Cylindric Algebra	91
15	Healthiness Conditions	92
	15.1 Main Definitions	92
	15.2 Properties of Healthiness Conditions	93
	15.3 Pretty Printer	97
16	Alphabetised Relations	101
	16.1 Relational Alphabets	101
	16.2 Relational Types and Operators	102
	16.3 Syntax Translations	106
	16.4 Relation Properties	107
	16.5 Introduction laws	
	16.6 Unrestriction Laws	
	16.7 Substitution laws	
	16.8 Alphabet laws	
	16.9 Relational unrestriction	
17	Fixed-points and Recursion	115
	17.1 Fixed-point Laws	115
	17.2 Obtaining Unique Fixed-points	
	17.3 Noetherian Induction Instantiation	
18	Sequent Calculus	119
19	Relational Calculus Laws	119
10	19.1 Conditional Laws	
	19.2 Precondition and Postcondition Laws	
	19.3 Sequential Composition Laws	
	19.4 Iterated Sequential Composition Laws	
	19.5 Quantale Laws	
	19.6 Skip Laws	
	19.7 Assignment Laws	

	19.8 Non-deterministic Assignment Laws		127
	19.9 Converse Laws		127
	19.10Assertion and Assumption Laws		128
	19.11Frame and Antiframe Laws		128
	19.12While Loop Laws		131
	19.13Algebraic Properties		
	19.14Kleene Star		134
	19.15Kleene Plus		134
	19.16Omega		134
	19.17Relation Algebra Laws		
	19.18Kleene Algebra Laws		
	19.19Omega Algebra Laws		
	19.20Refinement Laws		
	19.21Preain and Postge Laws		
20	UTP Theories		138
	20.1 Complete lattice of predicates		138
	20.2 UTP theories hierarchy		139
	20.3 UTP theory hierarchy		139
	20.4 Theory of relations		147
	20.5 Theory links		147
21	Relational Hoare calculus		148
	21.1 Hoare Triple Definitions and Tactics		
	21.2 Basic Laws		
	21.3 Sequence Laws		
	21.4 Assignment Laws		
	21.5 Conditional Laws		
	21.6 Recursion Laws		
	21.7 Iteration Rules		
	21.8 Frame Rules		154
22	Weakest Liberal Precondition Calculus		154
23	Weakest Precondition Calculus		156
24	Dynamic Logic		158
4 4	24.1 Definitions		
	24.2 Box Laws		
	24.3 Diamond Laws		
	24.4 Sequent Laws		
	24.4 Sequent Laws	•	100
25	Blocks (Abstract Local Variables)		160
	25.1 Extending and Contracting Substitutions		160
	25.2 Generic Blocks		
26	State Variable Declaration Parser		162
	26.1 Variable Block Syntax		
	26.2 Examples		164
27	Relational Operational Semantics		164

28	Symbolic Evaluation of Relational Programs	166
2 9	Strongest Postcondition Calculus	167
30	Concurrent Programming	168
	30.1 Variable Renamings	. 169
	30.2 Merge Predicates	. 169
	30.3 Separating Simulations	. 170
	30.4 Associative Merges	. 171
	30.5 Parallel Operators	. 172
	30.6 Unrestriction Laws	
	30.7 Substitution laws	
	30.8 Parallel-by-merge laws	
	30.9 Example: Simple State-Space Division	
31	Collections	177
	31.1 Partial Lens Definedness	. 177
	31.2 Indexed Lenses	. 177
	31.3 Overloaded Collection Lens	. 177
	31.4 Syntax for Collection Lens	
32	Meta-theory for the Standard Core	178
33	Overloaded Expression Constructs	179
	33.1 Overloadable Constants	. 179
	33.2 Syntax Translations	
	33.3 Simplifications	
	33.4 Indexed Assignment	
34	Meta-theory for the Standard Core with Overloaded Constructs	181

1 Introduction

This document contains the description of our mechanisation of Hoare and He's Unifying Theories of Programming [22, 7] (UTP) in Isabelle/HOL. UTP uses the "programs-as-predicates" approach, pioneered by Hehner [20, 18, 19], to encode denotational semantics and facilitate reasoning about programs. It uses the alphabetised relational calculus, which combines predicate calculus and relation algebra, to denote programs as relations between initial variables (x) and their subsequent values (x'). Isabelle/UTP¹ [16, 28, 15] semantically embeds this relational calculus into Isabelle/HOL, which enables application of the latter's proof facilities to program verification. For an introduction to UTP, we recommend two tutorials [6, 7], and also the UTP book [22].

The Isabelle/UTP core mechanises most of definitions and theorems from chapters 1, 2, 4, and 7 of [22], and some material contained in chapters 5 and 10. This essentially amounts to alphabetised predicate calculus, its core laws, the UTP theory infrastructure, and also parallel-by-merge [22, chapter 5], which adds concurrency primitives. The Isabelle/UTP core does not contain the theory of designs [6] and CSP [7], which are both represented in their own theory developments.

A large part of the mechanisation, however, is foundations that enable these core UTP theories. In particular, Isabelle/UTP builds on our implementation of lenses [16, 14], which gives a formal semantics to state spaces and variables. This, in turn, builds on a previous version of Isabelle/UTP [9, 10], which provided a shallow embedding of UTP by using Isabelle record types to represent alphabets. We follow this approach and, additionally, use the lens laws [11, 16] to characterise well-behaved variables. We also add meta-logical infrastructure for dealing with free variables and substitution. All this, we believe, adds an additional layer rigour to the UTP. The alphabets-as-types approach does impose a number of theoretical limitations. For example, alphabets can only be extended when an injection into a larger state-space type can be exhibited. It is therefore not possible to arbitrarily augment an alphabet with additional variables, but new types must be created to do this. This is largely because as in previous work [9, 10], we actually encode state spaces rather than alphabets, the latter being implicit. Namely, a relation is typed by the state space type that it manipulates, and the alphabet is represented by collection of lenses into this state space. This aspect of our mechanisation is actually much closer to the relational program model in Back's refinement calculus [3].

The pay-off is that the Isabelle/HOL type checker can be directly applied to relational constructions, which makes proof much more automated and efficient. Moreover, our use of lenses mitigates the limitations by providing meta-logical style operators, such as equality on variables, and alphabet membership [16]. Isabelle/UTP can therefore directly harness proof automation from Isabelle/HOL, which allows its use in building efficient verification tools [13, 12]. For a detailed discussion of semantic embedding approaches, please see [28].

In addition to formalising variables, we also make a number of generalisations to UTP laws. Notably, our lens-based representation of state leads us to adopt Back's approach to both assignment and local variables [3]. Assignment becomes a point-free operator that acts on state-space update functions, which provides a rich set of algebraic theorems. Local variables are represented using stacks, unlike in the UTP book where they utilise alphabet extension.

¹Isabelle/UTP website: https://www.cs.york.ac.uk/circus/isabelle-utp/

We give a summary of the main contributions within the Isabelle/UTP core, which can all be seen in the table of contents.

- 1. Formalisation of variables and state-spaces using lenses [16];
- 2. an expression model, together with lifted operators from HOL;
- 3. the meta-logical operators of unrestriction, used-by, substitution, alphabet extrusion, and alphabet restriction;
- 4. the alphabetised predicate calculus and associated algebraic laws;
- 5. the alphabetised relational calculus and associated algebraic laws;
- 6. proof tactics for the above based on interpretation [23];
- 7. a formalisation of UTP theories using locales [4] and building on HOL-Algebra [5];
- 8. Hoare logic [21] and dynamic logic [17];
- 9. weakest precondition and strongest postcondition calculi [8];
- 10. concurrent programming with parallel-by-merge;
- 11. relational operational semantics.

2 UTP Variables

```
\begin{array}{c} \textbf{theory} \ utp\text{-}var\\ \textbf{imports}\\ UTP-Toolkit.utp\text{-}toolkit\\ utp\text{-}parser\text{-}utils\\ \textbf{begin} \end{array}
```

In this first UTP theory we set up variables, which are are built on lenses [11, 16]. A large part of this theory is setting up the parser for UTP variable syntax.

2.1 Initial syntax setup

We will overload the square order relation with refinement and also the lattice operators so we will turn off these notations.

```
purge-notation
```

```
Order.le (infixl \sqsubseteq1 50) and
Lattice.sup (\bigsqcup1- [90] 90) and
Lattice.inf (\bigcap1- [90] 90) and
Lattice.join (infixl \bigsqcup1 65) and
Lattice.meet (infixl \bigcap1 70) and
Set.member (op:) and
Set.member ((-/:-) [51, 51] 50) and
disj (infixr | 30) and
conj (infixr & 35)

declare fst-vwb-lens [simp]
declare snd-vwb-lens [simp]
declare comp-vwb-lens [simp]
```

```
declare lens-inv-bij [simp]
declare id-bij-lens [simp]
declare lens-indep-left-ext [simp]
declare lens-indep-right-ext [simp]
declare lens-comp-quotient [simp]
declare plus-lens-distr [THEN sym, simp]
declare lens-comp-assoc [simp]
```

2.2 Variable foundations

This theory describes the foundational structure of UTP variables, upon which the rest of our model rests. We start by defining alphabets, which following [9, 10] in this shallow model are simply represented as types ' α , though by convention usually a record type where each field corresponds to a variable. UTP variables in this frame are simply modelled as lenses ' $a \Longrightarrow '\alpha$, where the view type 'a is the variable type, and the source type ' α is the alphabet or state-space type.

We define some lifting functions for variables to create input and output variables. These simply lift the alphabet to a tuple type since relations will ultimately be defined by a tuple alphabet.

```
definition in\text{-}var :: ('a \Longrightarrow '\alpha) \Rightarrow ('a \Longrightarrow '\alpha \times '\beta) where [lens\text{-}defs]: in\text{-}var \ x = x \ ;_L \ fst_L
definition out\text{-}var :: ('a \Longrightarrow '\beta) \Rightarrow ('a \Longrightarrow '\alpha \times '\beta) where [lens\text{-}defs]: out\text{-}var \ x = x \ ;_L \ snd_L
```

Variables can also be used to effectively define sets of variables. Here we define the universal alphabet (Σ) to be the bijective lens \mathcal{I}_L . This characterises the whole of the source type, and thus is effectively the set of all alphabet variables.

```
abbreviation (input) univ-alpha :: ('\alpha \Longrightarrow '\alpha) (\Sigma) where univ-alpha \equiv 1_L
```

The next construct is vacuous and simply exists to help the parser distinguish predicate variables from input and output variables.

```
definition pr\text{-}var :: ('a \Longrightarrow '\beta) \Rightarrow ('a \Longrightarrow '\beta) where [lens\text{-}defs]: pr\text{-}var \ x = x
```

2.3 Variable lens properties

We can now easily show that our UTP variable construction are various classes of well-behaved lens .

```
lemma in-var-weak-lens [simp]:
   weak-lens x \Longrightarrow weak-lens (in-var x)
   by (simp add: comp-weak-lens in-var-def)

lemma in-var-semi-uvar [simp]:
   mwb-lens x \Longrightarrow mwb-lens (in-var x)
   by (simp add: comp-mwb-lens in-var-def)

lemma pr-var-weak-lens [simp]:
   weak-lens x \Longrightarrow weak-lens (pr-var x)
   by (simp add: pr-var-def)

lemma pr-var-mwb-lens [simp]:
```

```
mwb-lens x \Longrightarrow mwb-lens (pr-var x)
 by (simp add: pr-var-def)
lemma pr-var-vwb-lens [simp]:
  vwb-lens x \implies vwb-lens (pr-var x)
 by (simp add: pr-var-def)
lemma in-var-uvar [simp]:
  vwb-lens x \implies vwb-lens (in-var x)
 by (simp add: in-var-def)
lemma out-var-weak-lens [simp]:
  weak-lens x \Longrightarrow weak-lens (out-var x)
 by (simp add: comp-weak-lens out-var-def)
lemma out-var-semi-uvar [simp]:
 mwb-lens x \Longrightarrow mwb-lens (out-var x)
 by (simp add: comp-mwb-lens out-var-def)
lemma out-var-uvar [simp]:
  vwb-lens x \Longrightarrow vwb-lens (out-var x)
 by (simp add: out-var-def)
Moreover, we can show that input and output variables are independent, since they refer to
different sections of the alphabet.
lemma in-out-indep [simp]:
 in\text{-}var \ x \bowtie out\text{-}var \ y
 by (simp add: lens-indep-def in-var-def out-var-def fst-lens-def snd-lens-def lens-comp-def)
lemma out-in-indep [simp]:
  out\text{-}var \ x \bowtie in\text{-}var \ y
 by (simp add: lens-indep-def in-var-def out-var-def fst-lens-def snd-lens-def lens-comp-def)
lemma in-var-indep [simp]:
 x \bowtie y \Longrightarrow in\text{-}var \ x \bowtie in\text{-}var \ y
 by (simp add: in-var-def out-var-def)
lemma out-var-indep [simp]:
 x\bowtie y\Longrightarrow \mathit{out\text{-}var}\;x\bowtie \mathit{out\text{-}var}\;y
 by (simp add: out-var-def)
lemma pr-var-indeps [simp]:
 x \bowtie y \Longrightarrow pr\text{-}var \ x \bowtie y
 x\bowtie y\Longrightarrow x\bowtie pr\text{-}var\ y
 by (simp-all add: pr-var-def)
lemma prod-lens-indep-in-var [simp]:
  a\bowtie x\Longrightarrow a\times_L b\bowtie in\text{-}var\ x
 by (metis in-var-def in-var-indep out-in-indep out-var-def plus-pres-lens-indep prod-as-plus)
lemma prod-lens-indep-out-var [simp]:
  b\bowtie x\Longrightarrow a\times_Lb\bowtie out\text{-}var\ x
 by (metis in-out-indep in-var-def out-var-def out-var-indep plus-pres-lens-indep prod-as-plus)
lemma in-var-pr-var [simp]:
```

```
in\text{-}var (pr\text{-}var x) = in\text{-}var x
 by (simp add: pr-var-def)
lemma out-var-pr-var [simp]:
  out\text{-}var (pr\text{-}var x) = out\text{-}var x
  by (simp add: pr-var-def)
lemma pr-var-idem [simp]:
  pr\text{-}var (pr\text{-}var x) = pr\text{-}var x
 by (simp add: pr-var-def)
lemma pr-var-lens-plus [simp]:
  pr\text{-}var (x +_L y) = (x +_L y)
 by (simp add: pr-var-def)
lemma pr-var-lens-comp-1 [simp]:
 pr\text{-}var \ x \ ;_L \ y = pr\text{-}var \ (x \ ;_L \ y)
 by (simp add: pr-var-def)
lemma pr-var-lens-comp-2 [simp]:
  (x;_L pr\text{-}var y) = pr\text{-}var (x;_L y)
  by (simp-all add: pr-var-def)
lemma pr-var-len-quotient-1 [simp]:
 pr\text{-}var \ x \ /_L \ y = pr\text{-}var \ (x \ /_L \ y)
 by (simp add: pr-var-def)
lemma pr-var-len-quotient-2 [simp]:
  x /_L pr\text{-}var y = pr\text{-}var (x /_L y)
 by (simp add: pr-var-def)
lemma in-var-plus [simp]: in-var (x +_L y) = in\text{-var } x +_L in\text{-var } y
  by (simp add: in-var-def)
lemma out-var-plus [simp]: out-var (x +_L y) = out-var x +_L out-var y
 by (simp add: out-var-def)
Similar properties follow for sublens
lemma in-var-sublens [simp]:
  y \subseteq_L x \Longrightarrow in\text{-}var \ y \subseteq_L in\text{-}var \ x
 by (metis (no-types, hide-lams) in-var-def lens-comp-assoc sublens-def)
lemma out-var-sublens [simp]:
  y \subseteq_L x \Longrightarrow out\text{-}var \ y \subseteq_L out\text{-}var \ x
 by (metis (no-types, hide-lams) out-var-def lens-comp-assoc sublens-def)
lemma pr-var-sublens-l [simp]: a \subseteq_L b \Longrightarrow pr\text{-var}(a) \subseteq_L b
 by (simp add: pr-var-def)
lemma pr-var-sublens-r [simp]: a \subseteq_L b \Longrightarrow a \subseteq_L pr-var (b)
 by (simp add: pr-var-def)
```

2.4 Lens simplifications

We also define some lookup abstraction simplifications.

```
lemma var-lookup-in [simp]: lens-get (in\text{-}var\ x)\ (A,\ A') = lens\text{-}get\ x\ A by (simp\ add:\ in\text{-}var\text{-}def\ fst\text{-}lens\text{-}def\ lens\text{-}comp\text{-}def)

lemma var-lookup-out [simp]: lens-get (out\text{-}var\ x)\ (A,\ A') = lens\text{-}get\ x\ A' by (simp\ add:\ out\text{-}var\text{-}def\ snd\text{-}lens\text{-}def\ lens\text{-}comp\text{-}def)

lemma var-update-in [simp]: lens-put (in\text{-}var\ x)\ (A,\ A')\ v = (lens\text{-}put\ x\ A\ v,\ A') by (simp\ add:\ in\text{-}var\text{-}def\ fst\text{-}lens\text{-}def\ lens\text{-}comp\text{-}def)

lemma var-update-out [simp]: lens-put (out\text{-}var\ x)\ (A,\ A')\ v = (A,\ lens\text{-}put\ x\ A'\ v) by (simp\ add:\ out\text{-}var\text{-}def\ snd\text{-}lens\text{-}def\ lens\text{-}comp\text{-}def)

lemma var-update va
```

2.5 Syntax translations

In order to support nice syntax for variables, we here set up some translations. The first step is to introduce a collection of non-terminals.

nonterminal svid and svids and svar and svars and salpha

These non-terminals correspond to the following syntactic entities. Non-terminal *svid* is an atomic variable identifier, and *svids* is a list of identifier. *svar* is a decorated variable, such as an input or output variable, and *svars* is a list of decorated variables. *salpha* is an alphabet or set of variables. Such sets can be constructed only through lens composition due to typing restrictions. Next we introduce some syntax constructors.

```
syntax — Identifiers
```

```
-svid :: id-position \Rightarrow svid (- [999] 999)

-svlongid :: longid-position \Rightarrow svid (- [999] 999)

-svid-unit :: svid \Rightarrow svids (-)

-svid-list :: svid \Rightarrow svids \Rightarrow svids (-,/ -)

-svid-alpha :: svid \Rightarrow svid \Rightarrow svid (-:- [999,998] 998)

-svid-res :: svid \Rightarrow svid \Rightarrow svid (-|- [999,998] 998)

-mk-svid-list :: svids \Rightarrow logic — Helper function for summing a list of identifiers

-svid-view :: logic \Rightarrow svid (\mathcal{V}[-]) — View of a symmetric lens

-svid-coview :: logic \Rightarrow svid (\mathcal{V}[-]) — Coview of a symmetric lens
```

A variable identifier can either be a HOL identifier, the complete set of variables in the alphabet \mathbf{v} , or a composite identifier separated by colons, which corresponds to a sort of qualification. The final option is effectively a lens composition.

```
\begin{array}{ll} \mathbf{syntax} & - \text{ Decorations} \\ -spvar & :: svid \Rightarrow svar \left(\& - [990] \ 990\right) \end{array}
```

-sinvar :: $svid \Rightarrow svar (\$-[990] 990)$ -soutvar :: $svid \Rightarrow svar (\$-[990] 990)$

A variable can be decorated with an ampersand, to indicate it is a predicate variable, with a dollar to indicate its an unprimed relational variable, or a dollar and "acute" symbol to indicate its a primed relational variable. Isabelle's parser is extensible so additional decorations can be and are added later.

```
syntax — Variable sets

-salphaid :: svid \Rightarrow salpha \ (-[990] \ 990)

-salphavar :: svar \Rightarrow salpha \ (-[990] \ 990)
```

```
-salphaparen :: salpha \Rightarrow salpha ('(-'))

-salphacomp :: salpha \Rightarrow salpha \Rightarrow salpha (infixr; 75)

-salphaprod :: salpha \Rightarrow salpha (infixr \times 85)

-salpha-all :: salpha (\Sigma)

-salpha-none :: salpha (\emptyset)

-svar-nil :: svar \Rightarrow svars (-)

-svar-cons :: svar \Rightarrow svars \Rightarrow svars (-,/ -)

-salphaset :: svars \Rightarrow salpha ({-})

-salphamk :: logic \Rightarrow salpha
```

The terminals of an alphabet are either HOL identifiers or UTP variable identifiers. We support two ways of constructing alphabets; by composition of smaller alphabets using a semi-colon or by a set-style construction $\{a, b, c\}$ with a list of UTP variables.

```
syntax — Quotations

-ualpha-set :: svars \Rightarrow logic (\{-\}_{\alpha})

-svar :: svar \Rightarrow logic ('(-')_v)
```

For various reasons, the syntax constructors above all yield specific grammar categories and will not parser at the HOL top level (basically this is to do with us wanting to reuse the syntax for expressions). As a result we provide some quotation constructors above.

Next we need to construct the syntax translations rules. Finally, we set up the translations rules.

translations

```
    Identifiers

-svid \ x \rightharpoonup x
-svlongid x \rightharpoonup x
-svid-alpha \rightleftharpoons \Sigma
-svid\text{-}dot \ x \ y \rightharpoonup y \ ;_L \ x
-svid-res x \ y \rightharpoonup x /_L \ y
-mk-svid-list (-svid-unit x) \rightarrow x
-mk-svid-list (-svid-list x xs) 
ightharpoonup x +_L -mk-svid-list xs
-svid-view\ a => V_a
-svid-coview a => C_a
— Decorations
-spvar \Sigma \leftarrow CONST \ pr-var \ CONST \ id-lens
-sinvar \Sigma \leftarrow CONST in-var 1_L
-soutvar \Sigma \leftarrow CONST out-var 1_L
-spvar (-svid-dot \ x \ y) \leftarrow CONST \ pr-var (CONST \ lens-comp \ y \ x)
-sinvar (-svid-dot \ x \ y) \leftarrow CONST \ in-var (CONST \ lens-comp \ y \ x)
-soutvar (-svid-dot \ x \ y) \leftarrow CONST \ out\ var \ (CONST \ lens\ -comp \ y \ x)
-svid-dot x (-svid-dot y z) \leftarrow -svid-dot x (CONST lens-comp z y)
-spvar (-svid-res \ x \ y) \leftarrow CONST \ pr-var (CONST \ lens-quotient \ x \ y)
-sinvar (-svid-res \ x \ y) \leftarrow CONST \ in-var (CONST \ lens-quotient \ x \ y)
-soutvar (-svid-res \ x \ y) \leftarrow CONST \ out-var \ (CONST \ lens-quotient \ x \ y)
-spvar \ x \rightleftharpoons CONST \ pr-var \ x
-sinvar x \rightleftharpoons CONST in-var x
-soutvar x \rightleftharpoons CONST out\text{-}var x
— Alphabets
-salphaparen \ a \rightharpoonup a
-salphaid x \rightharpoonup x
```

```
 \begin{array}{l} -salphacomp \ x \ y \rightharpoonup x +_L \ y \\ -salphaprod \ a \ b \rightleftharpoons a \times_L \ b \\ -salphavar \ x \rightharpoonup x \\ -svar-nil \ x \rightharpoonup x \\ -svar-cons \ x \ xs \rightharpoonup x +_L \ xs \\ -salphaset \ A \rightharpoonup A \\ (-svar-cons \ x \ (-salphamk \ y)) \longleftarrow -salphamk \ (x +_L \ y) \\ x \longleftarrow -salphamk \ x \\ -salpha-all \rightleftharpoons 1_L \\ -salpha-none \rightleftharpoons 0_L \\ \hline \qquad \text{Quotations} \\ -ualpha-set \ A \rightharpoonup A \\ -svar \ x \rightharpoonup x \\ \end{array}
```

The translation rules mainly convert syntax into lens constructions, using a mixture of lens operators and the bespoke variable definitions. Notably, a colon variable identifier qualification becomes a lens composition, and variable sets are constructed using len sum. The translation rules are carefully crafted to ensure both parsing and pretty printing.

Finally we create the following useful utility translation function that allows us to construct a UTP variable (lens) type given a return and alphabet type.

```
syntax
```

end

```
-uvar-ty :: type \Rightarrow type

parse-translation (
let

fun uvar-ty-tr [ty] = Syntax.const @{type-syntax lens} $ ty $ Syntax.const @{type-syntax dummy} | uvar-ty-tr ts = raise TERM (uvar-ty-tr, ts);

in [(@{syntax-const -uvar-ty}, K uvar-ty-tr)] end
}
```

3 UTP Expressions

```
theory utp-expr
imports
utp-var
begin
```

3.1 Expression type

```
purge-notation BNF-Def.convol (\langle (-,/-) \rangle)
```

Before building the predicate model, we will build a model of expressions that generalise alphabetised predicates. Expressions are represented semantically as mapping from the alphabet ' α to the expression's type 'a. This general model will allow us to unify all constructions under one type. The majority definitions in the file are given using the *lifting* package [23], which allows us to reuse much of the existing library of HOL functions.

```
typedef ('t, '\alpha) uexpr = UNIV :: ('\alpha \Rightarrow 't) set ...
```

setup-lifting type-definition-uexpr

```
notation Rep\text{-}uexpr (\llbracket - \rrbracket_e) notation Abs\text{-}uexpr (mk_e)
```

nonterminal uexp and uexprs

```
lemma uexpr-eq-iff:

e = f \longleftrightarrow (\forall b. [e]_e b = [f]_e b)

using Rep-uexpr-inject[of e f, THEN sym] by (auto)
```

The term $[e]_e$ b effectively refers to the semantic interpretation of the expression under the state-space valuation (or variables binding) b. It can be used, in concert with the lifting package, to interpret UTP constructs to their HOL equivalents. We create some theorem sets to store such transfer theorems.

named-theorems uexpr-defs and ueval and lit-simps and lit-norm

3.2 Core expression constructs

A variable expression corresponds to the lens *get* function associated with a variable. Specifically, given a lens the expression always returns that portion of the state-space referred to by the lens.

```
lift-definition var :: ('t \Longrightarrow '\alpha) \Rightarrow ('t, '\alpha) \ uexpr \ \textbf{is} \ lens-get \ \textbf{.}
```

A literal is simply a constant function expression, always returning the same value for any binding.

```
lift-definition lit :: t \Rightarrow (t, \alpha) \ uexpr (\ll-\gg) is \lambda \ v \ b. \ v.
```

The following operator is the general function application for expressions.

```
lift-definition uexpr-appl :: ('a \Rightarrow 'b, 's) \ uexpr \Rightarrow ('a, 's) \ uexpr \Rightarrow ('b, 's) \ uexpr \ (infixl |> 85) is \lambda f x s. f s \ (x s).
```

We define lifting for unary, binary, ternary, and quaternary expression constructs, that simply take a HOL function with correct number of arguments and apply it function to all possible results of the expressions.

```
abbreviation uop :: ('a \Rightarrow 'b) \Rightarrow ('a, '\alpha) \ uexpr \Rightarrow ('b, '\alpha) \ uexpr where uop \ f \ e \equiv \langle f \rangle \ | > \ e
```

 $declare [[coercion-map \ uop]] - uop$ is useful as a coercion map

```
abbreviation bop ::
```

```
('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow ('a, '\alpha) \ uexpr \Rightarrow ('b, '\alpha) \ uexpr \Rightarrow ('c, '\alpha) \ uexpr
where bop \ f \ u \ v \equiv \langle f \rangle \ |> \ u \ |> \ v
```

 ${f abbreviation}\ trop::$

```
('a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd) \Rightarrow ('a, '\alpha) \ uexpr \Rightarrow ('b, '\alpha) \ uexpr \Rightarrow ('c, '\alpha) \ uexpr \Rightarrow ('d, '\alpha) \ uexpr \Rightarrow ('d, '\alpha) \ uexpr \Rightarrow ('d, 'a) \ uexpr \Rightarrow ('d, 'a)
```

abbreviation qtop ::

```
('a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd \Rightarrow 'e) \Rightarrow

('a, '\alpha) \ uexpr \Rightarrow ('b, '\alpha) \ uexpr \Rightarrow ('c, '\alpha) \ uexpr \Rightarrow ('d, '\alpha) \ uexpr \Rightarrow

('e, '\alpha) \ uexpr

where qtop \ fu \ v \ w \ x \equiv \langle f \rangle \ |> u \ |> v \ |> w \ |> x
```

We also define a UTP expression version of function (λ) abstraction, that takes a function producing an expression and produces an expression producing a function.

```
lift-definition uabs :: ('a \Rightarrow ('b, '\alpha) \ uexpr) \Rightarrow ('a \Rightarrow 'b, '\alpha) \ uexpr is \lambda \ f \ A \ x. \ f \ x \ A.
```

We set up syntax for the conditional. This is effectively an infix version of if-then-else where the condition is in the middle.

```
definition uIf :: bool \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \text{ where} [uexpr-defs]: uIf = If

abbreviation cond ::
('a,'\alpha) \ uexpr \Rightarrow (bool, '\alpha) \ uexpr \Rightarrow ('a,'\alpha) \
```

UTP expression is equality is simply HOL equality lifted using the *bop* binary expression constructor.

```
abbreviation (input) eq-upred :: ('a, '\alpha) uexpr \Rightarrow ('a, '\alpha) uexpr \Rightarrow (bool, '\alpha) uexpr (infixl =u 50) where eq-upred x \ y \equiv bop \ HOL.eq \ x \ y
```

A literal is the expression $\ll v \gg$, where v is any HOL term. Actually, the literal construct is very versatile and also allows us to refer to HOL variables within UTP expressions, and has a variety of other uses. It can therefore also be considered as a kind of quotation mechanism. We also set up syntax for UTP variable expressions.

```
syntax
```

```
-uuvar :: svar \Rightarrow logic (-)

translations
-uuvar x == CONST var x
```

Since we already have a parser for variables, we can directly reuse it and simply apply the *var* expression construct to lift the resulting variable to an expression.

3.3 Type class instantiations

Isabelle/HOL of course provides a large hierarchy of type classes that provide constructs such as numerals and the arithmetic operators. Fortunately we can directly make use of these for UTP expressions, and thus we now perform a long list of appropriate instantiations. We first lift the core arithmetic constants and operators using a mixture of literals, unary, and binary expression constructors.

```
instantiation uexpr :: (zero, type) zero
begin
  definition zero-uexpr-def [uexpr-defs]: 0 = lit 0
instance ..
end

instantiation uexpr :: (one, type) one
begin
  definition one-uexpr-def [uexpr-defs]: 1 = lit 1
instance ..
end
instantiation uexpr :: (plus, type) plus
```

```
begin definition plus-uexpr-def [uexpr-defs]: u + v = bop \ (+) \ u \ v instance .. end instance uexpr :: (semigroup-add, type) semigroup-add by (intro-classes) (simp add: plus-uexpr-def zero-uexpr-def, transfer, simp add: add.assoc)+
```

The following instantiation sets up numerals. This will allow us to have Isabelle number representations (i.e. 3,7,42,198 etc.) to UTP expressions directly.

```
instance uexpr :: (numeral, type) numeral
by (intro-classes, simp add: plus-uexpr-def, transfer, simp add: add.assoc)
```

We can also define the order relation on expressions. Now, unlike the previous group and ring constructs, the order relations (\leq) and (\leq) return a *bool* type. This order is not therefore the lifted order which allows us to compare the valuation of two expressions, but rather the order on expressions themselves. Notably, this instantiation will later allow us to talk about predicate refinements and complete lattices.

```
instantiation uexpr :: (ord, type) \ ord begin lift-definition less-eq\text{-}uexpr :: ('a, 'b) \ uexpr \Rightarrow ('a, 'b) \ uexpr \Rightarrow bool is \lambda \ P \ Q. \ (\forall \ A. \ P \ A \leq Q \ A). definition less\text{-}uexpr :: ('a, 'b) \ uexpr \Rightarrow ('a, 'b) \ uexpr \Rightarrow bool where [uexpr\text{-}defs]: less\text{-}uexpr \ P \ Q = (P \leq Q \land \neg \ Q \leq P) instance .. end
```

UTP expressions whose return type is a partial ordered type, are also partially ordered as the following instantiation demonstrates.

```
instance uexpr :: (order, type) order proof

fix x \ y \ z :: ('a, 'b) uexpr

show (x < y) = (x \le y \land \neg y \le x) by (simp add: less-uexpr-def)

show x \le x by (transfer, auto)

show x \le y \Longrightarrow y \le z \Longrightarrow x \le z

by (transfer, blast intro:order.trans)

show x \le y \Longrightarrow y \le x \Longrightarrow x = y

by (transfer, rule ext, simp add: eq-iff)

qed
```

3.4 Syntax translations

The follows a large number of translations that lift HOL functions to UTP expressions using the various expression constructors defined above. Much of the time we try to keep the HOL syntax but add a "u" subscript.

```
abbreviation (input) ulens-override x f g \equiv lens-override f g x
```

This operator allows us to get the characteristic set of a type. Essentially this is *UNIV*, but it retains the type syntactically for pretty printing.

```
definition set-of :: 'a itself \Rightarrow 'a set where [uexpr-defs]: set-of t = UNIV
```

We add new non-terminals for UTP tuples and maplets.

nonterminal utuple-args and umaplet and umaplets

```
syntax — Core expression constructs
  -ucoerce :: logic \Rightarrow type \Rightarrow logic (infix :<sub>u</sub> 50)
          :: pttrn \Rightarrow logic \Rightarrow logic (\lambda - \cdot - [0, 10] 10)
  -ulens-ovrd :: logic \Rightarrow logic \Rightarrow salpha \Rightarrow logic (- \oplus - on - [85, 0, 86] 86)
  -ulens-get :: logic \Rightarrow svar \Rightarrow logic (-:- [900,901] 901)
translations
  \lambda x \cdot p = CONST \ uabs \ (\lambda x. p)
  x :_u 'a == x :: ('a, -) uexpr
  -ulens-ovrd f g \ a => CONST \ bop \ (CONST \ ulens-override \ a) \ f \ g
  -ulens-over f g a \le CONST bop (\lambda x y. CONST lens-over ide x1 y1 a) f g
  -ulens-get \ x \ y == CONST \ uop \ (CONST \ lens-get \ y) \ x
abbreviation (input) umem (infix \in_u 50) where (x \in_u A) \equiv bop \ (\in) \ x \ A
abbreviation (input) uNone (None<sub>u</sub>) where None<sub>u</sub> \equiv «None»
abbreviation (input) uSome (Some<sub>u</sub>'(-')) where Some<sub>u</sub>(e) \equiv uop Some e
abbreviation (input) uthe (the<sub>u</sub>'(-')) where the<sub>u</sub>(e) \equiv uop the e
syntax — Tuples
  -utuple :: ('a, '\alpha) uexpr \Rightarrow utuple-args \Rightarrow ('a * 'b, '\alpha) uexpr ((1'(-,/-')_u))
  -utuple-arg :: ('a, '\alpha) uexpr \Rightarrow utuple-args (-)
  -utuple-args :: ('a, '\alpha) \ uexpr => utuple-args \Rightarrow utuple-args
                                                                             (-,/ -)
translations
  (x, y)_u = CONST \ bop \ (CONST \ Pair) \ x \ y
  -utuple \ x \ (-utuple-args \ y \ z) == -utuple \ x \ (-utuple-arg \ (-utuple \ y \ z))
abbreviation (input) uunit ('(')<sub>u</sub>) where ()<sub>u</sub> \equiv \ll()\gg
abbreviation (input) ufst (\pi_1'(-')) where \pi_1(x) \equiv uop \ fst \ x
abbreviation (input) usnd (\pi_2'(-')) where \pi_2(x) \equiv uop \ snd \ x
— Orders
abbreviation (input) uless (infix <_u 50) where x <_u y \equiv bop (<) x y
abbreviation (input) ugreat (infix >_u 50) where x >_u y \equiv y <_u x
abbreviation (input) uleq (infix \leq_u 50) where x \leq_u y \equiv bop (\leq) x y
abbreviation (input) ugeq (infix \geq_u 50) where x \geq_u y \equiv y \leq_u x
```

3.5 Evaluation laws for expressions

The following laws show how to evaluate the core expressions constructs in terms of which the above definitions are defined. Thus, using these theorems together, we can convert any UTP expression into a pure HOL expression. All these theorems are marked as *ueval* theorems which can be used for evaluation.

```
lemma lit-ueval [ueval]: [\![ \langle x \rangle ]\!]_e b = x
by (transfer, simp)
lemma var-ueval [ueval]: [\![ var \ x ]\!]_e b = get_x b
by (transfer, simp)
lemma appl-ueval [ueval]: [\![ f \ | > x ]\!]_e b = [\![ f ]\!]_e b ([\![ x ]\!]_e b)
by (transfer, simp)
```

3.6 Misc laws

We also prove a few useful algebraic and expansion laws for expressions.

```
lemma uop-const [simp]: uop id u = u
by (transfer, simp)
lemma bop-const-1 [simp]: bop (\lambda x \ y. \ y) u \ v = v
by (transfer, simp)
lemma bop-const-2 [simp]: bop (\lambda x \ y. \ x) u \ v = u
by (transfer, simp)
lemma uexpr-fst [simp]: \pi_1((e, f)_u) = e
by (transfer, simp)
lemma uexpr-snd [simp]: \pi_2((e, f)_u) = f
by (transfer, simp)
```

3.7 Literalise tactics

The following tactic converts literal HOL expressions to UTP expressions and vice-versa via a collection of simplification rules. The two tactics are called "literalise", which converts UTP to expressions to HOL expressions – i.e. it pushes them into literals – and unliteralise that reverses this. We collect the equations in a theorem attribute called "lit_simps".

```
lemma lit-fun-simps [lit-simps]:

«i \ x \ y \ z \ u \gg = qtop \ i \ «x \gg «y \gg «z \gg «u \gg h \ x \ y \ z \gg = trop \ h \ «x \gg «y \gg «z \gg uop \ g \ «x \gg «y \gg uop \ f \ x \gg = uop \ f \ «x \gg uop \ f \ x \gg uop \ u
```

The following two theorems also set up interpretation of numerals, meaning a UTP numeral can always be converted to a HOL numeral.

```
lemma numeral-uexpr-rep-eq [ueval]: [[numeral x]]_e b = numeral x apply (induct x) apply (simp add: lit.rep-eq one-uexpr-def) apply (simp add: ueval numeral-Bit0 plus-uexpr-def) apply (simp add: ueval numeral-Bit1 plus-uexpr-def one-uexpr-def) done lemma numeral-uexpr-simp: numeral x = «numeral x > by (simp add: uexpr-eq-iff numeral-uexpr-rep-eq lit.rep-eq) lemma lit-zero [lit-simps]: «0» = 0 by (simp add:uexpr-defs) lemma lit-one [lit-simps]: «1» = 1 by (simp add: uexpr-defs) lemma lit-plus [lit-simps]: «x + y > = «x > + «y > by (simp add: uexpr-defs, transfer, simp) lemma lit-numeral [lit-simps]: «numeral n >  = numeral n > by (simp add: numeral-uexpr-simp)
```

In general unliteralising converts function applications to corresponding expression liftings. Since some operators, like + and *, have specific operators we also have to use uIf = If

```
0 = \langle 0 :: ?'a \rangle
1 = \langle 1 :: ?'a \rangle
?u + ?v = bop (+) ?u ?v
```

```
(?P < ?Q) = (?P \le ?Q \land \neg ?Q \le ?P)
```

set-of ?t = UNIV in reverse to correctly interpret these. Moreover, numerals must be handled separately by first simplifying them and then converting them into UTP expression numerals; hence the following two simplification rules.

```
lemma lit-numeral-1: uop numeral x = Abs-uexpr (\lambda b. \ numeral \ (\llbracket x \rrbracket_e \ b))
by (simp \ add: \ uexpr-appl-def \ lit.rep-eq)

lemma lit-numeral-2: Abs-uexpr (\lambda \ b. \ numeral \ v) = numeral \ v
by (metis \ lit.abs-eq lit-numeral)

method literalise = (unfold \ lit-simps [THEN \ sym])
method unliteralise = (unfold \ lit-simps uexpr-defs [THEN \ sym];
(unfold \ lit-numeral-1; (unfold \ uexpr-defs ueval); (unfold \ lit-numeral-2))?)+
```

The following tactic can be used to evaluate literal expressions. It first literalises UTP expressions, that is pushes as many operators into literals as possible. Then it tries to simplify, and final unliteralises at the end.

method uexpr-simp uses simps = ((literalise)?, simp add: lit-norm simps, (unliteralise)?)

```
lemma (1::(int, '\alpha) uexpr) + \ll2> = 4 \longleftrightarrow \ll3> = 4 apply (literalise) apply (uexpr-simp) oops
```

end

4 Expression Type Class Instantiations

```
theory utp-expr-insts
imports utp-expr
begin
```

It should be noted that instantiating the unary minus class, *uminus*, will also provide negation UTP predicates later.

```
instantiation uexpr :: (uminus, type) \ uminus
begin
   definition uminus - uexpr - def \ [uexpr - defs] : - u = uop \ uminus \ u
instance ..
end

instantiation uexpr :: (minus, type) \ minus
begin
   definition minus - uexpr - def \ [uexpr - defs] : u - v = bop \ (-) \ u \ v
instance ..
end

instantiation uexpr :: (times, type) \ times
begin
   definition times - uexpr - def \ [uexpr - defs] : u * v = bop \ times \ u \ v
instance ..
end
```

```
instance uexpr :: (Rings.dvd, type) Rings.dvd..
instantiation uexpr :: (divide, type) divide
begin
 definition divide-uexpr :: ('a, 'b) uexpr \Rightarrow ('a, 'b) uexpr \Rightarrow ('a, 'b) uexpr where
 [uexpr-defs]: divide-uexpr\ u\ v=bop\ divide\ u\ v
end
instantiation uexpr :: (inverse, type) inverse
 definition inverse-uexpr :: ('a, 'b) uexpr \Rightarrow ('a, 'b) uexpr
 where [uexpr-defs]: inverse-uexpr\ u = uop\ inverse\ u
instance ..
end
instantiation uexpr :: (modulo, type) modulo
 definition mod\text{-}uexpr\text{-}def [uexpr\text{-}defs]: u mod v = bop (mod) u v
instance ...
end
instantiation uexpr :: (sgn, type) \ sgn
 definition sgn\text{-}uexpr\text{-}def [uexpr\text{-}defs]: sgn\ u = uop\ sgn\ u
instance ..
end
instantiation uexpr :: (abs, type) abs
 definition abs-uexpr-def [uexpr-defs]: abs u = uop abs u
instance ..
end
Once we've set up all the core constructs for arithmetic, we can also instantiate the type classes
for various algebras, including groups and rings. The proofs are done by definitional expansion,
the transfer tactic, and then finally the theorems of the underlying HOL operators. This is
mainly routine, so we don't comment further.
instance uexpr :: (semigroup-mult, type) semigroup-mult
 by (intro-classes) (simp add: times-uexpr-def one-uexpr-def, transfer, simp add: mult.assoc)+
instance uexpr :: (monoid-mult, type) monoid-mult
 by (intro-classes) (simp add: times-uexpr-def one-uexpr-def, transfer, simp)+
instance uexpr :: (monoid-add, type) monoid-add
 by (intro-classes) (simp add: plus-uexpr-def zero-uexpr-def, transfer, simp)+
instance uexpr :: (ab-semigroup-add, type) ab-semigroup-add
 by (intro-classes) (simp add: plus-uexpr-def, transfer, simp add: add.commute)+
instance uexpr :: (cancel-semigroup-add, type) cancel-semigroup-add
 by (intro-classes) (simp add: plus-uexpr-def, transfer, simp add: fun-eq-iff)+
instance\ uexpr::(cancel-ab-semigroup-add,\ type)\ cancel-ab-semigroup-add
```

by (intro-classes, (simp add: plus-uexpr-def minus-uexpr-def, transfer, simp add: fun-eq-iff add.commute

```
cancel-ab-semigroup-add-class.diff-diff-add)+)
instance \ uexpr :: (group-add, \ type) \ group-add
   by (intro-classes)
        (simp add: plus-uexpr-def uminus-uexpr-def minus-uexpr-def zero-uexpr-def, transfer, simp)+
instance\ uexpr::(ab	ext{-}group	ext{-}add,\ type)\ ab	ext{-}group	ext{-}add
   by (intro-classes)
        (simp add: plus-uexpr-def uminus-uexpr-def minus-uexpr-def zero-uexpr-def, transfer, simp)+
instance uexpr :: (semiring, type) semiring
  by (intro-classes) (simp add: plus-uexpr-def times-uexpr-def, transfer, simp add: fun-eq-iff add.commute
semiring-class.distrib-right\ semiring-class.distrib-left)+
instance uexpr :: (ring-1, type) ring-1
  by (intro-classes) (simp add: plus-uexpr-def uminus-uexpr-def minus-uexpr-def times-uexpr-def zero-uexpr-def
one-uexpr-def, transfer, simp add: fun-eq-iff)+
We also lift the properties from certain ordered groups.
instance uexpr :: (ordered-ab-group-add, type) ordered-ab-group-add
   by (intro-classes) (simp add: plus-uexpr-def, transfer, simp)
instance\ uexpr::(ordered-ab-group-add-abs,\ type)\ ordered-ab-group-add-abs
   apply (intro-classes)
            apply (simp add: abs-uexpr-def zero-uexpr-def plus-uexpr-def uminus-uexpr-def, transfer, simp
add: abs-ge-self abs-le-iff abs-triangle-ineq)+
  {\bf apply} \ (met is\ ab\hbox{-} group\hbox{-} add\hbox{-} class.\ ab\hbox{-} diff\hbox{-} conv\hbox{-} add\hbox{-} uminus\ ab\hbox{-} ge\hbox{-} minus\hbox{-} self\ ab\hbox{-} ge\hbox{-} self\ add\hbox{-} mono\hbox{-} thm\hbox{-} linor dered\hbox{-} semiri\ ab\hbox{-} ge\hbox{-} minus\hbox{-} self\ ab\hbox{-} ge\hbox{-} self\ add\hbox{-} mono\hbox{-} thm\hbox{-} linor dered\hbox{-} semiri\ ab\hbox{-} ge\hbox{-} minus\hbox{-} self\ ab\hbox{-} ge\hbox{-} self\ add\hbox{-} mono\hbox{-} thm\hbox{-} linor dered\hbox{-} semiri\ ab\hbox{-} ge\hbox{-} minus\hbox{-} self\ ab\hbox{-} ge\hbox{-} self\ add\hbox{-} mono\hbox{-} thm\hbox{-} linor dered\hbox{-} semiri\ ab\hbox{-} ge\hbox{-} minus\hbox{-} self\ ab\hbox{-} ge\hbox{-} self\ add\hbox{-} mono\hbox{-} thm\hbox{-} self\ ab\hbox{-} ge\hbox{-} self\ ad\hbox{-} mono\hbox{-} thm\hbox{-} self\ ab\hbox{-} self\ ab\hbox{-
   done
The next theorem lifts powers.
lemma power-rep-eq [ueval]: [P \ \hat{} n]_e = (\lambda \ b. \ [P]_e \ b \ \hat{} n)
   by (induct n, simp-all add: lit.rep-eq one-uexpr-def times-uexpr-def fun-eq-iff uexpr-appl.rep-eq)
lemma of-nat-uexpr-rep-eq [ueval]: \llbracket of\text{-nat }x \rrbracket_e \ b = of\text{-nat }x
   by (induct x, simp-all add: uexpr-defs ueval)
lemma lit-uminus [lit-simps]: \ll - x \gg = - \ll x \gg by (simp add: uexpr-defs, transfer, simp)
lemma lit-minus [lit-simps]: \ll x - y \gg = \ll x \gg - \ll y \gg by (simp add: uexpr-defs, transfer, simp)
lemma lit-times [lit-simps]: \langle x * y \rangle = \langle x \rangle * \langle y \rangle by (simp add: uexpr-defs, transfer, simp)
lemma lit-divide [lit-simps]: \ll x / y \gg = \ll x \gg / \ll y \gg by (simp add: uexpr-defs, transfer, simp)
lemma lit-div [lit-simps]: \ll x div y \gg = \ll x \gg div \ll y \gg by (simp add: uexpr-defs, transfer, simp)
lemma lit-power [lit-simps]: \langle x \cap n \rangle = \langle x \rangle \cap n by (simp add: lit.rep-eq power-rep-eq uexpr-eq-iff)
4.1
              Expression construction from HOL terms
Sometimes it is convenient to cast HOL terms to UTP expressions, and these simplifications
automate this process.
named-theorems mkuexpr
lemma mkuexpr-lens-get [mkuexpr]: mk_e get_x = \&x
   by (transfer, simp add: pr-var-def)
```

lemma mkuexpr-zero [mkuexpr]: mk_e $(\lambda \ s. \ \theta) = \theta$ **by** $(simp\ add:\ zero-uexpr-def,\ transfer,\ simp)$

```
lemma mkuexpr-one [mkuexpr]: mk_e (\lambda s. 1) = 1
 by (simp add: one-uexpr-def, transfer, simp)
lemma mkuexpr-numeral [mkuexpr]: mk_e (\lambda s. numeral n) = numeral n
  using lit-numeral-2 by blast
lemma mkuexpr-lit [mkuexpr]: mk_e (\lambda \ s. \ k) = \ll k \gg
 by (transfer, simp)
lemma mkuexpr-pair [mkuexpr]: mk_e (\lambda s. (f s, g s)) = (mk_e f, mk_e g)_u
 by (transfer, simp)
lemma mkuexpr-plus [mkuexpr]: mk_e (\lambda s. f s + g s) = mk_e f + mk_e g
 by (simp add: plus-uexpr-def, transfer, simp)
lemma mkuexpr-uminus [mkuexpr]: mk_e (\lambda s. - f s) = -mk_e f
 by (simp add: uminus-uexpr-def, transfer, simp)
lemma mkuexpr-minus [mkuexpr]: mk_e (\lambda s. fs - gs) = mk_e f - mk_e g
 by (simp add: minus-uexpr-def, transfer, simp)
lemma mkuexpr-times [mkuexpr]: mk_e (\lambda s. fs * gs) = mk_e f * mk_e g
 by (simp add: times-uexpr-def, transfer, simp)
lemma mkuexpr-divide [mkuexpr]: mk_e (\lambda s. fs / gs) = mk_e f / mk_e g
 by (simp add: divide-uexpr-def, transfer, simp)
end
theory utp-expr-funcs
 imports utp-expr-insts
begin
— Polymorphic constructs
abbreviation (input) uceil ([-]_u) where [x]_u \equiv uop \ ceiling \ x
abbreviation (input) ufloor (\lfloor - \rfloor_u) where \lfloor x \rfloor_u \equiv uop \ floor \ x
abbreviation (input) umin (min_u'(-, -')) where min_u(x, y) \equiv bop \ min \ x \ y
abbreviation (input) umax (max_u'(-,-')) where max_u(x, y) \equiv bop \ max \ x \ y
abbreviation (input) ugcd (gcd_u'(-,-')) where gcd_u(x,y) \equiv bop \ gcd \ x \ y

    Lists / Sequences

abbreviation (input) ucons
                                   (infixr \#_u 65) where x \#_u xs \equiv bop (\#) x xs
abbreviation (input) unil
                                  (\langle \rangle) where \langle \rangle \equiv \ll [] \gg
abbreviation (input) unppend (infixr \hat{u} 80) where x \hat{u} y \equiv bop (@) x y
abbreviation (input) udconcat (infixr ^{\frown}u 90) where x \stackrel{\frown}{}_u y \equiv bop \ (^{\frown}) \ x \ y
                                  (last_u'(-')) where last_u(x) \equiv uop \ last \ x
abbreviation (input) ulast
abbreviation (input) ufront
                                  (front_u'(-)) where front_u(x) \equiv uop\ butlast\ x
                                   (head_u'(-')) where head_u(x) \equiv uop \ hd \ x
abbreviation (input) uhead
abbreviation (input) utail
                                  (tail_u'(-')) where tail_u(x) \equiv uop \ tl \ x
abbreviation (input) utake
                                   (take_u'(-,/-')) where take_u(n, xs) \equiv bop \ take \ n \ xs
                                   (drop_u'(-,/-')) where drop_u(n, xs) \equiv bop \ drop \ n \ xs
abbreviation (input) udrop
abbreviation (input) ufilter (infixl \upharpoonright_u 75) where xs \upharpoonright_u A \equiv bop seq-filter xs A
abbreviation (input) uextract (infixl \uparrow_u 75) where xs \uparrow_u A \equiv bop (\uparrow_l) A xs
```

```
abbreviation (input) uelems
                                        (elems_u'(-')) where elems_u(xs) \equiv uop \ set \ xs
                                        (sorted_u'(-')) where sorted_u(xs) \equiv uop \ sorted \ xs
abbreviation (input) usorted
abbreviation (input) udistinct (distinct<sub>u</sub>'(-')) where distinct<sub>u</sub>(xs) \equiv uop set xs
abbreviation (input) uupto
                                        (\langle -...- \rangle) where \langle n..k \rangle \equiv bop \ upto \ n \ k
                                        (\langle -.. < - \rangle) where \langle n.. < k \rangle \equiv bop \ upt \ n \ k
abbreviation (input) uupt
abbreviation (input) umap
                                         (map_u) where map_u \equiv bop \ map
                                        (zip_u) where zip_u \equiv bop \ zip
abbreviation (input) uzip
syntax
              :: args = ('a \ list, '\alpha) \ uexpr
  -ulist
translations
  \langle x, xs \rangle == x \#_u \langle xs \rangle
           ==x \#_u \ll [] \gg
abbreviation (input) ufinite (finite<sub>u</sub>'(-')) where finite<sub>u</sub>(x) \equiv uop finite x
abbreviation (input) uempset (\{\}_u) where \{\}_u \equiv \{\}
abbreviation (input) union (infixl \cup_u 65) where A \cup_u B \equiv bop (\cup) A B
abbreviation (input) uinter (infixl \cap_u 70) where A \cap_u B \equiv bop (\cap) A B
abbreviation (input) uimage (-(|-|)<sub>u</sub> [10,0] 10) where f(|A|)_u \equiv bop \ image \ f \ A
abbreviation (input) uinsert (insert<sub>u</sub>) where insert<sub>u</sub> x xs \equiv bop insert x xs
abbreviation (input) usubset (infix \subset_u 50) where A \subset_u B \equiv bop (\subset) A B
abbreviation (input) usubseteq (infix \subseteq_u 50) where A \subseteq_u B \equiv bop (\subseteq) A B
abbreviation (input) uconverse ((-\(^{\sigma}\)) [1000] 999) where P^{\sim} \equiv uop \ converse \ P
syntax — Sets
              :: args => ('a \ set, '\alpha) \ uexpr (\{(-)\}_u)
  -uset
  -ucarrier :: type \Rightarrow logic ([-]<sub>T</sub>)
              :: type \Rightarrow logic (id[-])
  -uproduct :: logic \Rightarrow logic \Rightarrow logic (infixr \times_u 80)
  -urelcomp :: logic \Rightarrow logic \Rightarrow logic (infixr;_u 75)
translations
  \{x, xs\}_u = insert_u \ x \ \{xs\}_u
  \{x\}_u
           =>insert_u \ x \ {<\{\}} \gg
            == \ll CONST \ set-of \ TYPE('a) \gg
  ['a]_T
           == \ll CONST \ Id\text{-}on \ (CONST \ set\text{-}of \ TYPE('a)) \gg
  A \times_{u} B = CONST \ bop \ CONST \ Product-Type. Times \ A \ B
  A :_{u} B = CONST \ bop \ CONST \ relcomp \ A \ B
— Sum types
abbreviation uinl\ (inl_u'(-')) where inl_u(x) \equiv uop\ Inl\ x
abbreviation uinr (inr_u'(-')) where inr_u(x) \equiv uop \ Inr \ x
```

4.2 Lifting set collectors

We provide syntax for various types of set collectors, including intervals and the Z-style set comprehension which is purpose built as a new lifted definition.

syntax

```
-uset-atLeastAtMost :: ('a, '\alpha) uexpr \(\Rightarrow ('a, '\alpha) uexpr \(\Rightarrow ('a set, '\alpha) uexpr ((1{-..-}u)) -uset-atLeastLessThan :: ('a, '\alpha) uexpr \(\Rightarrow ('a, '\alpha) uexpr \(\Rightarrow ('a set, '\alpha) uexpr ((1{-..<-}u)) -uset-compr :: pttrn \(\Rightarrow logic \(\pi\) logic \(\Rightarrow\) logic ((1{-:/-|/-\diff(--/-\diff)})) -uset-compr-nset :: pttrn \(\Rightarrow\) logic \(\Rightarrow\) logic \(\Rightarrow\) logic ((1{-:/-|/-\diff(--/-\diff)}))
```

```
-uset-compr-nset-nfun :: pttrn \Rightarrow logic \Rightarrow logic ((1 \{- |/ - \}))
  -uset\text{-}compr\text{-}nvar :: logic \Rightarrow logic \Rightarrow logic ((1\{-\cdot/-\}))
\textbf{lift-definition} \ \textit{ZedSetCompr} ::
  ('a\ set,\ '\alpha)\ uexpr \Rightarrow ('a \Rightarrow (bool \times 'b,\ '\alpha)\ uexpr) \Rightarrow ('b\ set,\ '\alpha)\ uexpr
is \lambda \ A \ PF \ b. { snd \ (PF \ x \ b) \mid x. \ x \in A \ b \land fst \ (PF \ x \ b)}.
abbreviation ZedImage ::
  (bool \times 'b, '\alpha) \ uexpr \Rightarrow ('b \ set, '\alpha) \ uexpr \ where
ZedImage\ PF \equiv ZedSetCompr \ll UNIV \gg (\lambda\ x::unit.\ PF)
translations
  \{x..y\}_u = CONST \ bop \ CONST \ atLeastAtMost \ x \ y
  \{x..< y\}_u = CONST \ bop \ CONST \ at Least Less Than \ x \ y
  \{x \mid P \cdot F\} == CONST \ ZedSetCompr \ (CONST \ lit \ CONST \ UNIV) \ (\lambda \ x. \ (P, F)_u)
  \{x: A \mid P \cdot F\} == CONST \ ZedSetCompr \ A \ (\lambda \ x. \ (P, F)_u)
  \{x : A \mid P\} => \{x : A \mid P \cdot \ll x \gg \}
  \{x \mid P\} == \{x : \ll CONST\ UNIV \gg \mid P\}
  \{P \cdot F\} == CONST \ ZedImage \ (P, F)_u
4.3
        Lifting limits
We also lift the following functions on topological spaces for taking function limits, and describ-
ing continuity.
definition ulim-left:: 'a::order-topology \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'b::t2-space where
[uexpr-defs]: ulim-left = (\lambda \ p \ f. \ Lim \ (at-left \ p) \ f)
definition ulim-right :: 'a::order-topology \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'b::t2-space where
[uexpr-defs]: ulim-right = (\lambda \ p \ f. \ Lim \ (at-right p) \ f)
definition ucont\text{-}on :: ('a::topological\text{-}space) \Rightarrow 'b::topological\text{-}space) \Rightarrow 'a \ set \Rightarrow bool \ \mathbf{where}
[uexpr-defs]: ucont-on = (\lambda f A. continuous-on A f)
syntax
  -ulim-left :: id \Rightarrow logic \Rightarrow logic \Rightarrow logic (lim_u'(- \rightarrow -')'(-'))
  -ulim-right :: id \Rightarrow logic \Rightarrow logic \Rightarrow logic (lim_u'(- \rightarrow -+')'(-'))
  -ucont-on :: logic \Rightarrow logic \Rightarrow logic (infix cont-on_u 90)
translations
  \lim_{u}(x \to p^{-})(e) == CONST \ bop \ CONST \ ulim-left \ p \ (\lambda \ x \cdot e)
  \lim_{u}(x \to p^{+})(e) == CONST \ bop \ CONST \ ulim-right \ p \ (\lambda \ x \cdot e)
 f cont-on_u A
                      == CONST bop CONST continuous-on A f
lemma uset-minus-empty [simp]: x - \{\}_u = x
 by (simp add: uexpr-defs, transfer, simp)
lemma uinter-empty-1 [simp]: x \cap_u \{\}_u = \{\}_u
 by (transfer, simp)
lemma uinter-empty-2 [simp]: \{\}_u \cap_u x = \{\}_u
  by (transfer, simp)
lemma uunion-empty-1 [simp]: \{\}_u \cup_u x = x
  by (transfer, simp)
```

```
lemma uunion-insert [simp]: (bop insert x A) \cup_u B = bop insert x (A \cup_u B) by (transfer, simp)

lemma ulist-filter-empty [simp]: x \upharpoonright_u \{\}_u = \langle \rangle by (transfer, simp)

lemma tail-cons [simp]: tail_u(\langle x \rangle \ \hat{\ }_u \ xs) = xs by (transfer, simp)

lemma uconcat-units [simp]: \langle \rangle \ \hat{\ }_u \ xs = xs \ xs \ \hat{\ }_u \ \langle \rangle = xs by (transfer, simp)+
```

5 Unrestriction

theory utp-unrest imports utp-expr-insts begin

5.1 Definitions and Core Syntax

Unrestriction is an encoding of semantic freshness that allows us to reason about the presence of variables in predicates without being concerned with abstract syntax trees. An expression p is unrestricted by lens x, written $x \not\equiv p$, if altering the value of x has no effect on the valuation of p. This is a sufficient notion to prove many laws that would ordinarily rely on an fv function.

Unrestriction was first defined in the work of Marcel Oliveira [27, 26] in his UTP mechanisation in *ProofPowerZ*. Our definition modifies his in that our variables are semantically characterised as lenses, and supported by the lens laws, rather than named syntactic entities. We effectively fuse the ideas from both Feliachi [9] and Oliveira's [26] mechanisations of the UTP, the former being also purely semantic in nature.

We first set up overloaded syntax for unrestriction, as several concepts will have this defined.

```
consts
```

```
unrest :: 'a \Rightarrow 'b \Rightarrow bool

syntax
-unrest :: salpha \Rightarrow logic \Rightarrow logic \Rightarrow logic (infix $\sharp$ 20)

translations
-unrest \ x \ p == CONST \ unrest \ x \ p
-unrest \ (-salphaset \ (-salphamk \ (x +_L \ y))) \ P <= -unrest \ (x +_L \ y) \ P
```

Our syntax translations support both variables and variable sets such that we can write down predicates like &x \sharp P and also {&x, &y, &z} \sharp P.

We set up a simple tactic for discharging unrestriction conjectures using a simplification set.

```
named-theorems unrest
method unrest-tac = (simp add: unrest)?
```

Unrestriction for expressions is defined as a lifted construct using the underlying lens operations. It states that lens x is unrestricted by expression e provided that, for any state-space binding e and variable valuation e, the value which the expression evaluates to is unaltered if we set e to e in e. In other words, we cannot effect the behaviour of e by changing e. Thus e does not

observe the portion of state-space characterised by x. We add this definition to our overloaded constant.

```
lift-definition unrest-uexpr :: ('a \Longrightarrow '\alpha) \Rightarrow ('b, '\alpha) \ uexpr \Rightarrow bool is \lambda \ x \ e. \ \forall \ b \ v. \ e \ (put_x \ b \ v) = e \ b.

adhoc-overloading unrest unrest-uexpr

lemma unrest-expr-alt-def: weak-lens x \Longrightarrow (x \ \sharp \ P) = (\forall \ b \ b'. \ \llbracket P \rrbracket_e \ (b \oplus_L \ b' \ on \ x) = \llbracket P \rrbracket_e \ b) by (transfer, metis lens-override-def weak-lens.put-get)
```

5.2 Unrestriction laws

We now prove unrestriction laws for the key constructs of our expression model. Many of these depend on lens properties and so variously employ the assumptions mwb-lens and vwb-lens, depending on the number of assumptions from the lenses theory is required.

Firstly, we prove a general property – if x and y are both unrestricted in P, then their composition is also unrestricted in P. One can interpret the composition here as a union – if the two sets of variables x and y are unrestricted, then so is their union.

```
lemma unrest-var-comp [unrest]:
[\![ x \sharp P; y \sharp P ]\!] \Longrightarrow x;y \sharp P
by (transfer, simp add: lens-defs)

lemma unrest-svar [unrest]: (\&x \sharp P) \longleftrightarrow (x \sharp P)
by (transfer, simp add: lens-defs)

lemma unrest-lens-comp [unrest]: x \sharp e \Longrightarrow x:y \sharp e
by (simp add: lens-comp-def unrest-uexpr.rep-eq)
```

No lens is restricted by a literal, since it returns the same value for any state binding.

```
lemma unrest-lit [unrest]: x \sharp \ll v \gg
by (transfer, simp)
```

If one lens is smaller than another, then any unrestriction on the larger lens implies unrestriction on the smaller.

```
lemma unrest-sublens:

fixes P :: ('a, '\alpha) \ uexpr

assumes x \not\parallel P y \subseteq_L x

shows y \not\parallel P

using assms

by (transfer, metis (no-types, lifting) lens.select-convs(2) lens-comp-def sublens-def)
```

If two lenses are equivalent, and thus they characterise the same state-space regions, then clearly unrestrictions over them are equivalent.

```
lemma unrest-equiv:

fixes P :: ('a, '\alpha) \ uexpr

assumes mwb-lens y \ x \approx_L y \ x \ \sharp \ P

shows y \ \sharp \ P

by (metis assms lens-equiv-def sublens-pres-mwb sublens-put-put unrest-uexpr.rep-eq)
```

If we can show that an expression is unrestricted on a bijective lens, then is unrestricted on the entire state-space.

```
\mathbf{lemma}\ \mathit{bij-lens-unrest-all}\colon
 fixes P :: ('a, '\alpha) \ uexpr
 assumes bij-lens X X \sharp P
 shows \Sigma \sharp P
 using assms bij-lens-equiv-id lens-equiv-def unrest-sublens by blast
lemma bij-lens-unrest-all-eq:
 fixes P :: ('a, '\alpha) \ uexpr
 assumes bij-lens X
 shows (\Sigma \sharp P) \longleftrightarrow (X \sharp P)
 by (meson assms bij-lens-equiv-id lens-equiv-def unrest-sublens)
If an expression is unrestricted by all variables, then it is unrestricted by any variable
{f lemma}\ unrest-all-var:
 fixes e :: ('a, '\alpha) \ uexpr
 assumes \Sigma \sharp e
 shows x \sharp e
 by (metis assms id-lens-def lens.simps(2) unrest-uexpr.rep-eq)
We can split an unrestriction composed by lens plus
{f lemma} unrest	ext{-}plus	ext{-}split:
 fixes P :: ('a, '\alpha) \ uexpr
 assumes x \bowtie y vwb-lens x vwb-lens y
 shows unrest (x +_L y) P \longleftrightarrow (x \sharp P) \land (y \sharp P)
 using assms
 by (meson lens-plus-right-sublens lens-plus-ub sublens-refl unrest-sublens unrest-var-comp vwb-lens-wb)
The following laws demonstrate the primary motivation for lens independence: a variable ex-
pression is unrestricted by another variable only when the two variables are independent. Lens
independence thus effectively allows us to semantically characterise when two variables, or sets
of variables, are different.
lemma unrest-var [unrest]: \llbracket mwb-lens x; x \bowtie y \rrbracket \implies y \sharp var x
 by (transfer, auto)
lemma unrest-iuvar [unrest]: \llbracket mwb-lens x; x \bowtie y \rrbracket \Longrightarrow \$y \sharp \$x
 by (simp add: unrest-var)
lemma unrest-ouvar [unrest]: \llbracket mwb-lens x; x \bowtie y \rrbracket \Longrightarrow \$y' \sharp \$x'
 by (simp add: unrest-var)
The following laws follow automatically from independence of input and output variables.
lemma unrest-iuvar-ouvar [unrest]:
 fixes x :: ('a \Longrightarrow '\alpha)
 assumes mwb-lens y
 shows \$x \sharp \$y
 by (metis prod.collapse unrest-uexpr.rep-eq var.rep-eq var-lookup-out var-update-in)
lemma unrest-ouvar-iuvar [unrest]:
 fixes x :: ('a \Longrightarrow '\alpha)
 assumes mwb-lens y
 shows x' \sharp y
 by (metis prod.collapse unrest-uexpr.rep-eq var.rep-eq var-lookup-in var-update-out)
```

Unrestriction distributes through the various function lifting expression constructs; this allows us to prove unrestrictions for the majority of the expression language.

```
lemma unrest-appl [unrest]: [\![x \sharp f; x \sharp v]\!] \Longrightarrow x \sharp f > v
 by (transfer, simp)
lemma unrest-uop [unrest]: x \sharp e \Longrightarrow x \sharp uop f e
 by (simp add: unrest)
lemma unrest-bop [unrest]: [x \sharp u; x \sharp v] \implies x \sharp bop f u v
 by (simp add: unrest)
lemma unrest-trop [unrest]: [x \sharp u; x \sharp v; x \sharp w] \Longrightarrow x \sharp trop f u v w
 by (simp add: unrest)
\mathbf{lemma} \ unrest\text{-}qtop \ [unrest] \colon \llbracket \ x \ \sharp \ u; \ x \ \sharp \ v; \ x \ \sharp \ w; \ x \ \sharp \ y \ \rrbracket \Longrightarrow x \ \sharp \ qtop \ f \ u \ v \ w \ y
 by (simp add: unrest)
For convenience, we also prove unrestriction rules for the bespoke operators on equality, num-
bers, arithmetic etc.
lemma unrest-zero [unrest]: x \sharp \theta
 by (simp add: unrest-lit zero-uexpr-def)
lemma unrest-one [unrest]: x \sharp 1
  by (simp add: one-uexpr-def unrest-lit)
lemma unrest-numeral [unrest]: x \sharp (numeral \ n)
 by (simp add: numeral-uexpr-simp unrest-lit)
lemma unrest-sgn [unrest]: x \sharp u \Longrightarrow x \sharp sgn u
  by (simp add: sgn-uexpr-def unrest-uop)
lemma unrest-abs [unrest]: x \sharp u \Longrightarrow x \sharp abs u
 by (simp add: abs-uexpr-def unrest-uop)
lemma unrest-plus [unrest]: [x \sharp u; x \sharp v] \implies x \sharp u + v
  by (simp add: plus-uexpr-def unrest)
lemma unrest-uninus [unrest]: x \sharp u \Longrightarrow x \sharp - u
  by (simp add: uminus-uexpr-def unrest)
lemma unrest-minus [unrest]: [\![ x \sharp u; x \sharp v ]\!] \Longrightarrow x \sharp u - v
 by (simp add: minus-uexpr-def unrest)
lemma unrest-times [unrest]: [x \sharp u; x \sharp v] \Longrightarrow x \sharp u * v
  by (simp add: times-uexpr-def unrest)
lemma unrest-divide [unrest]: [x \sharp u; x \sharp v] \implies x \sharp u / v
 by (simp add: divide-uexpr-def unrest)
lemma unrest-case-prod [unrest]: \llbracket \bigwedge i j. x \sharp P i j \rrbracket \implies x \sharp case-prod P v
  by (simp add: prod.split-sel-asm)
For a \lambda-term we need to show that the characteristic function expression does not restrict v for
any input value x.
lemma unrest-ulam [unrest]:
  \llbracket \bigwedge x. \ v \sharp F x \rrbracket \Longrightarrow v \sharp (\lambda \ x \cdot F x)
 by (transfer, simp)
```

6 Used-by

```
theory utp-usedby imports utp-unrest begin
```

The used-by predicate is the dual of unrestriction. It states that the given lens is an upper-bound on the size of state space the given expression depends on. It is similar to stating that the lens is a valid alphabet for the predicate. For convenience, and because the predicate uses a similar form, we will reuse much of unrestriction's infrastructure.

```
consts
 usedBy :: 'a \Rightarrow 'b \Rightarrow bool
syntax
 -usedBy :: salpha \Rightarrow logic \Rightarrow logic \Rightarrow logic  (infix \ 20)
translations
 -usedBy \ x \ p == CONST \ usedBy \ x \ p
 \textit{-usedBy (-salphaset (-salphamk (x +_L y))) P <= \textit{-usedBy (x +_L y) P}}
lift-definition usedBy\text{-}uexpr :: ('b \Longrightarrow '\alpha) \Rightarrow ('a, '\alpha) \ uexpr \Rightarrow bool
is \lambda \ x \ e. (\forall \ b \ b'. e \ (b' \oplus_L \ b \ on \ x) = e \ b).
adhoc-overloading usedBy-uexpr
by (transfer, simp)
lemma usedBy-sublens:
 fixes P :: ('a, '\alpha) \ uexpr
 using assms
 by (transfer, auto, metis Lens-Order.lens-override-idem lens-override-def sublens-obs-get vwb-lens-mwb)
by (transfer, simp add: lens-defs)
by (transfer, simp add: lens-defs)
lemma usedBy-lens-plus-2 [unrest]: [x \bowtie y; y \natural P] \implies x;y \natural P
 by (transfer, auto simp add: lens-defs lens-indep-comm)
Linking used-by to unrestriction: if x is used-by P, and x is independent of y, then P cannot
depend on any variable in y.
lemma usedBy-indep-uses:
 fixes P :: ('a, '\alpha) \ uexpr
 shows y \sharp P
 using assms by (transfer, auto, metis lens-indep-get lens-override-def)
```

```
Linking used-by and unrestriction via symmetric lenses.
lemma psym-lens-unrest: \llbracket psym-lens \ a; \ \mathcal{C}[a] \ \natural \ e \ \rrbracket \Longrightarrow \mathcal{V}[a] \ \sharp \ e
 by (transfer, simp add: lens-defs, metis lens-indep-def psym-lens-def)
lemma sym-lens-unrest: \llbracket sym\text{-lens } a \rrbracket \Longrightarrow (\mathcal{V}[a] \sharp e) \longleftrightarrow (\mathcal{C}[a] \sharp e)
 by (auto simp add: psym-lens-unrest) (transfer, simp add: lens-defs, metis sym-lens.put-region-coregion-cover)
lemma sym-lens-unrest': \llbracket sym\text{-lens } a \rrbracket \Longrightarrow (\mathcal{V}[a] \natural e) \longleftrightarrow (\mathcal{C}[a] \sharp e)
 using sym-lens-compl sym-lens-unrest by fastforce
lemma usedBy-var [unrest]:
 assumes vwb-lens x \ y \subseteq_L x
 using assms
 by (transfer, simp add: uexpr-defs pr-var-def)
   (metis lens-override-def sublens-obs-get vwb-lens-def wb-lens.get-put)
by (transfer, simp)
by (transfer, simp)
by (transfer, simp)
\mathbf{lemma}\ \mathit{usedBy\text{-}trop}\ [\mathit{unrest}] \colon [\![\ x\ \natural\ u;\ x\ \natural\ v;\ x\ \natural\ w\ ]\!] \Longrightarrow x\ \natural\ \mathit{trop}\ f\ u\ v\ w
 by (transfer, simp)
by (transfer, simp)
For convenience, we also prove used-by rules for the bespoke operators on equality, numbers,
arithmetic etc.
by (simp add: usedBy-lit zero-uexpr-def)
by (simp add: one-uexpr-def usedBy-lit)
lemma usedBy-numeral [unrest]: x 

<math>
\downarrow
 (numeral \ n)
 by (simp add: numeral-uexpr-simp usedBy-lit)
by (simp add: sgn-uexpr-def usedBy-uop)
by (simp add: abs-uexpr-def usedBy-uop)
by (simp add: plus-uexpr-def unrest)
lemma usedBy\text{-}uminus [unrest]: x \ \ u \implies x \ \ \ - u
 by (simp add: uminus-uexpr-def unrest)
```

```
lemma usedBy\text{-}minus\ [unrest]: [\![x \natural u; x \natural v]\!] \Longrightarrow x \natural u - v by (simp\ add:\ minus\text{-}uexpr\text{-}def\ unrest)

lemma usedBy\text{-}times\ [unrest]: [\![x \natural u; x \natural v]\!] \Longrightarrow x \natural u * v by (simp\ add:\ times\text{-}uexpr\text{-}def\ unrest)

lemma usedBy\text{-}divide\ [unrest]: [\![x \natural u; x \natural v]\!] \Longrightarrow x \natural u / v by (simp\ add:\ divide\text{-}uexpr\text{-}def\ unrest)

lemma usedBy\text{-}uabs\ [unrest]: [\![\wedge x.\ v \natural Fx]\!] \Longrightarrow v \natural (\lambda x \cdot Fx) by (transfer,\ simp)

lemma unrest\text{-}var\text{-}sep\ [unrest]: vwb\text{-}lens\ x \Longrightarrow x \natural \&x:y by (transfer,\ simp\ add:\ lens\text{-}defs)
```

 \mathbf{end}

7 UTP Tactics

declare image-comp [simp]

```
theory utp-tactics
imports
utp-expr utp-unrest utp-usedby
keywords update-uexpr-rep-eq-thms :: thy-decl
begin
```

In this theory, we define several automatic proof tactics that use transfer techniques to reinterpret proof goals about UTP predicates and relations in terms of pure HOL conjectures. The fundamental tactics to achieve this are *pred-simp* and *rel-simp*; a more detailed explanation of their behaviour is given below. The tactics can be given optional arguments to fine-tune their behaviour. By default, they use a weaker but faster form of transfer using rewriting; the option *robust*, however, forces them to use the slower but more powerful transfer of Isabelle's lifting package. A second option *no-interp* suppresses the re-interpretation of state spaces in order to

In addition to *pred-simp* and *rel-simp*, we also provide the tactics *pred-auto* and *rel-auto*, as well as *pred-blast* and *rel-blast*; they, in essence, sequence the simplification tactics with the methods *auto* and *blast*, respectively.

7.1 Theorem Attributes

The following named attributes have to be introduced already here since our tactics must be able to see them. Note that we do not want to import the theories *utp-pred* and *utp-rel* here, so that both can potentially already make use of the tactics we define in this theory.

```
named-theorems upred-defs upred definitional theorems named-theorems urel-defs urel definitional theorems
```

eradicate record for tuple types prior to automatic proof.

7.2 Generic Methods

We set up several automatic tactics that recast theorems on UTP predicates into equivalent HOL predicates, eliminating artefacts of the mechanisation as much as this is possible. Our approach is first to unfold all relevant definition of the UTP predicate model, then perform a transfer, and finally simplify by using lens and variable definitions, the split laws of alphabet records, and interpretation laws to convert record-based state spaces into products. The definition of the respective methods is facilitated by the Eisbach tool: we define generic methods that are parametrised by the tactics used for transfer, interpretation and subsequent automatic proof. Note that the tactics only apply to the head goal.

Generic Predicate Tactics

```
method gen-pred-tac methods transfer-tac interp-tac prove-tac = (
    ((unfold upred-defs) [1])?;
    (transfer-tac),
    (simp add: fun-eq-iff
        lens-defs upred-defs alpha-splits Product-Type.split-beta)?,
    (interp-tac)?);
    (prove-tac)
```

Generic Relational Tactics

```
method gen-rel-tac methods transfer-tac interp-tac prove-tac = (
    ((unfold upred-defs urel-defs) [1])?;
    (transfer-tac),
    (simp add: fun-eq-iff relcomp-unfold OO-def
    lens-defs upred-defs alpha-splits Product-Type.split-beta)?,
    (interp-tac)?);
    (prove-tac)
```

7.3 Transfer Tactics

Next, we define the component tactics used for transfer.

7.3.1 Robust Transfer

Robust transfer uses the transfer method of the lifting package.

```
method slow-uexpr-transfer = (transfer)
```

7.3.2 Faster Transfer

Fast transfer side-steps the use of the (transfer) method in favour of plain rewriting with the underlying rep-eq-... laws of lifted definitions. For moderately complex terms, surprisingly, the transfer step turned out to be a bottle-neck in some proofs; we observed that faster transfer resulted in a speed-up of approximately 30% when building the UTP theory heaps. On the downside, tactics using faster transfer do not always work but merely in about 95% of the cases. The approach typically works well when proving predicate equalities and refinements conjectures.

A known limitation is that the faster tactic, unlike lifting transfer, does not turn free variables into meta-quantified ones. This can, in some cases, interfere with the interpretation step and cause subsequent application of automatic proof tactics to fail. A fix is in progress [TODO].

Attribute Setup We first configure a dynamic attribute *uexpr-rep-eq-thms* to automatically collect all *rep-eq-* laws of lifted definitions on the *uexpr* type.

```
ML-file uexpr-rep-eq.ML

setup (
Global-Theory.add-thms-dynamic (@{binding uexpr-rep-eq-thms}),
uexpr-rep-eq.get-uexpr-rep-eq-thms o Context.theory-of)
```

We next configure a command **update-uexpr-rep-eq-thms** in order to update the content of the *uexpr-rep-eq-thms* attribute. Although the relevant theorems are collected automatically, for efficiency reasons, the user has to manually trigger the update process. The command must hence be executed whenever new lifted definitions for type *uexpr* are created. The updating mechanism uses **find-theorems** under the hood.

```
ML (
Outer-Syntax.command @{command-keyword update-uexpr-rep-eq-thms})
reread and update content of the uexpr-rep-eq-thms attribute
(Scan.succeed (Toplevel.theory uexpr-rep-eq.read-uexpr-rep-eq-thms));
)
```

update-uexpr-rep-eq-thms — Read *uexpr-rep-eq-thms* here.

Lastly, we require several named-theorem attributes to record the manual transfer laws and extra simplifications, so that the user can dynamically extend them in child theories.

named-theorems uexpr-transfer-laws uexpr transfer laws

```
declare uexpr-eq-iff [uexpr-transfer-laws]
named-theorems uexpr-transfer-extra extra simplifications for uexpr transfer
declare unrest-uexpr.rep-eq [uexpr-transfer-extra]
```

```
usedBy-uexpr.rep-eq [uexpr-transfer-extra]
utp-expr.numeral-uexpr-rep-eq [uexpr-transfer-extra]
utp-expr.less-eq-uexpr.rep-eq [uexpr-transfer-extra]
Abs-uexpr-inverse [simplified, uexpr-transfer-extra]
Rep-uexpr-inverse [uexpr-transfer-extra]
```

Tactic Definition We have all ingredients now to define the fast transfer tactic as a single simplification step.

```
method fast-uexpr-transfer = (simp add: uexpr-transfer-laws uexpr-rep-eq-thms uexpr-transfer-extra)
```

7.4 Interpretation

The interpretation of record state spaces as products is done using the laws provided by the utility theory *Interp*. Note that this step can be suppressed by using the *no-interp* option.

```
method uexpr-interp-tac = (simp \ add: lens-interp-laws)?
```

7.5 User Tactics

In this section, we finally set-up the six user tactics: *pred-simp*, *rel-simp*, *pred-auto*, *rel-auto*, *pred-blast* and *rel-blast*. For this, we first define the proof strategies that are to be applied *after* the transfer steps.

```
method utp-simp-tac = (clarsimp)?
method utp-auto-tac = ((clarsimp)?; auto)
method utp-blast-tac = ((clarsimp)?; blast)
```

The ML file below provides ML constructor functions for tactics that process arguments suitable and invoke the generic methods *gen-pred-tac* and *gen-rel-tac* with suitable arguments.

```
ML-file utp-tactics.ML
```

Finally, we execute the relevant outer commands for method setup. Sadly, this cannot be done at the level of Eisbach since the latter does not provide a convenient mechanism to process symbolic flags as arguments. It may be worth to put in a feature request with the developers of the Eisbach tool.

```
 \begin{array}{l} \textbf{method-setup} \ pred\text{-}simp = \langle \\ (Scan.lift \ UTP\text{-}Tactics.scan\text{-}args) >> \\ (fn \ args => fn \ ctxt => \\ let \ val \ prove\text{-}tac = Basic\text{-}Tactics.utp\text{-}simp\text{-}tac \ in} \\ (UTP\text{-}Tactics.inst\text{-}gen\text{-}pred\text{-}tac \ args \ prove\text{-}tac \ ctxt}) \\ end) \end{array}
```

```
(Scan.lift\ UTP\text{-}Tactics.scan\text{-}args) >>
   (fn \ args => fn \ ctxt =>
     let \ val \ prove-tac = Basic-Tactics.utp-simp-tac \ in
       (UTP-Tactics.inst-gen-rel-tac args prove-tac ctxt)
     end)
>
method-setup pred-auto = \langle
  (Scan.lift\ UTP\text{-}Tactics.scan-args) >>
   (fn \ args => fn \ ctxt =>
     let\ val\ prove-tac = Basic-Tactics.utp-auto-tac\ in
      (UTP-Tactics.inst-gen-pred-tac args prove-tac ctxt)
     end)
method-setup \ rel-auto = \langle
  (Scan.lift\ UTP\text{-}Tactics.scan-args) >>
   (fn \ args => fn \ ctxt =>
     let\ val\ prove-tac\ =\ Basic-Tactics.utp-auto-tac\ in
       (UTP-Tactics.inst-gen-rel-tac args prove-tac ctxt)
     end)
>
method-setup pred-blast = \langle
  (Scan.lift\ UTP\text{-}Tactics.scan\text{-}args) >>
   (fn \ args => fn \ ctxt =>
     let\ val\ prove-tac = Basic-Tactics.utp-blast-tac\ in
       (UTP-Tactics.inst-gen-pred-tac args prove-tac ctxt)
     end)
method-setup \ rel-blast = \langle
  (Scan.lift\ UTP\text{-}Tactics.scan\text{-}args) >>
   (fn \ args => fn \ ctxt =>
     let \ val \ prove-tac = Basic-Tactics.utp-blast-tac \ in
       (UTP-Tactics.inst-gen-rel-tac args prove-tac ctxt)
     end)
\rangle
Simpler, one-shot versions of the above tactics, but without the possibility of dynamic argu-
ments.
method rel-simp'
  uses simp
   = (simp add: uexpr-transfer-laws upred-defs urel-defs alpha-splits; simp add: upred-defs urel-defs
lens-defs prod.case-eq-if relcomp-unfold uexpr-transfer-extra uexpr-rep-eq-thms simp)
method rel-auto'
  uses simp intro elim dest
  = (simp-all add: uexpr-transfer-laws upred-defs urel-defs alpha-splits, (auto intro: intro elim: elim
dest: dest simp add: upred-defs urel-defs lens-defs relcomp-unfold uexpr-transfer-laws uexpr-transfer-extra
uexpr-rep-eq-thms simp)?)
```

method-setup rel- $simp = \langle$

method rel-blast'

 $\mathbf{uses}\ simp\ intro\ elim\ dest$

= (rel-simp' simp: simp, blast intro: intro elim: elim dest: dest)

Lifting Parser and Pretty Printer 8

```
theory utp-lift-parser
                       imports utp-expr-insts
               \mathbf{keywords}\ no\text{-}utp\text{-}lift:: thy\text{-}decl\text{-}block\ \mathbf{and}\ utp\text{-}lit\text{-}vars:: thy\text{-}decl\text{-}block\ \mathbf{and}\ utp\text{-}expr\text{-}vars:: thy\text{-}decl\text{-}block\ \mathbf{and}\ utp\text{-}vars:: thy\text{-}decl\text{-}block\ \mathbf{and}\ utp\text{-}expr\text{-}vars:: thy\text{-}decl\text{-}block\ \mathbf{and}\ utp\text{-}expr\text{-
and utp-lift-notation :: thy-decl-block
begin
```

8.1 Parser

Here, we derive a parser for UTP expressions that mimicks (and indeed reuses) the syntax of HOL expressions. It has two main features: (1) it lifts HOL functions into UTP expressions using the (|>) construct; and (2) it recognises when a free variable is a declared lens and treats it as a UTP variable, whilst lifting HOL variables. The parser therefore allows free mixing of HOL operators and lenses.

Sometimes it is necessary that operators are handled in a special way however. We, therefore, first create a mutable data structure to store the names of constants that should not be lifted, and arguments of those constants that should not be further processed.

```
ML
structure\ VarOption = Theory-Data
     (type T = bool
       val\ empty = false
       val\ extend = I
       val\ merge = (fn\ (x,\ y) => x\ orelse\ y));
structure\ NoLiftUTP =\ Theory	ext{-}Data
     (type \ T = int \ list \ Symtab.table
       val\ empty = Symtab.empty
       val\ extend = I
       val\ merge = Symtab.merge\ (K\ true));
val - =
     let fun nolift-const thy (n, opt) =
                 let\ val\ Const\ (c, \cdot) = Proof\ Context.\ read\ const\ \{proper = true,\ strict = false\}\ (Proof\ Context.\ init\ -global\ const\ (c, \cdot) = Proof\ Context.\ read\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = false)\ (Proof\ Context.\ init\ -global\ const\ (proper = true,\ strict = true,\ strict = false)\ (proof\ Context.\ init\ -global\ const\ (proper =
thy) n
                        in NoLiftUTP.map (Symtab.update (c, (map Value.parse-int opt))) thy end
     in
     Outer-Syntax.command @{command-keyword no-utp-lift} declare that certain constants should not be
        --| Parse.$$$))) [])
            >> (fn \ ns =>
                      Toplevel.theory
                      (fn \ thy => Library.foldl \ (fn \ (thy, n) => nolift-const \ thy \ n) \ (thy, ns))))
     end;
     Outer-Syntax.command @{command-keyword utp-lit-vars} parse free variables as literals in UTP ex-
```

(Scan.succeed (Toplevel.theory (VarOption.put false)));

 $Outer-Syntax.command \ @\{command-keyword\ utp-expr-vars\}\ parse\ free\ variables\ as\ expressions\ in\ UTP\ expressions$

```
(Scan. succeed\ (\textit{Toplevel.theory}\ (\textit{VarOption.put}\ true)));
```

The core UTP operators should not be lifted. Certain operators have arguments that also should not be processed further by expression lifting. For example, in a substitution update $\sigma(x \mapsto v)$, the lens x (i.e. the second argument) should not be lifted as its target is not an expression. Consequently, constants names in the command **no-utp-lift** can be accompanied by a list of numbers stating the arguments that should be not be further processed.

no-utp-lift

```
uexpr-appl uop (0) bop (0) trop (0) qtop (0) lit (0)
Groups.zero Groups.one plus uminus minus times divide
var (0) in-var (0) out-var (0) cond numeral (0)
```

Add a quotation device for expressions that explicitly stops the lifting parser.

```
abbreviation (input) quote-uexpr :: ('a, 's) uexpr \Rightarrow ('a, 's) uexpr (@(-) [999] 999) where quote-uexpr p \equiv p
```

```
no-utp-lift quote-uexpr (0)
```

The following function takes a parser, but not-yet type-checked term, and wherever it encounters an application, it inserts a UTP expression operator. Any operators that have been marked in the above structure will not be lifted. In addition, when it encounters a constant or free variable it will use the type system to determine whether is has a lens type. If it does, then it constructs a UTP variable expression; otherwise it constructs a literal.

FIXME: Actually, this test is a little too coarse for some situations. For example, when the lens is bound by a λ -abstraction the type data is not available, and so it will not necessarily be recognised as a lens. This could either be fixed by adding proper syntactic procedure for determining lenses, or else by using type inference wrt. the bound lambda term.

\mathbf{ML} (

```
val\ list-appl = Library.foldl\ (fn\ (f,\ x) => Const\ (@\{const-name\ uexpr-appl\},\ dummyT)\ \$\ f\ \$\ x);
   fun\ utp-lift-aux\ ctx\ (Const\ (n',\ t),\ args) =
       let val n = (if \ (Lexicon.is-marked \ n') \ then \ Lexicon.unmark-const \ n' \ else \ n') \ in
       — If the leading constructor is an already lifted UTP variable...
       if ((n = @\{const-name\ var\})\ and also\ (length\ args > 0))
       — ... then we take the first argument as the variable contents, and apply the remaining arguments
       then list-appl (Const (n, t) $ hd args, map (utp-lift ctx) (tl args))
       — Otherwise, if the name of the given constant is in the "no lifting" list...
       else if (member\ (op =)\ (Symtab.keys\ (NoLiftUTP.get\ (Proof-Context.theory-of\ ctx)))\ n)
             — ... then do not lift it, and also do not process any arguments in the given list of integers.
            then\ let\ val\ (SOME\ aopt) = Symtab.lookup\ (NoLiftUTP.get\ (Proof-Context.theory-of\ ctx))\ n\ in
                       Term.list-comb (Const (n, t), map-index (fn (i, t) = if (member (op =) appt i) then t else
utp-lift ctx t) args) end
              — If the name is not in the "no lifting" list...
            else
                list-appl
                (case (Type-Infer-Context.const-type ctx n) of
                     — ... and it's a lens, then lift it as a UTP variable...
                      SOME\ (Type\ (type-name\ (lens-ext),\ -)) => Const\ (@\{const-name\ var\},\ dummyT)\ $\ (Const-name\ var),\ (Const-name\ var),
(@\{const-name\ pr-var\},\ dummyT) \ Const\ (n',\ t)) \
```

```
— ... or, if it's a UTP expression already, then leave it alone...
        SOME\ (Type\ (type-name\ (uexpr),\ -)) => Const\ (n,\ t)
        — ...otherwise, lift it to a HOL literal.
        - = > Const (@\{const-name \ lit\}, \ dummyT) \$ Const (n, t)
       , map (utp-lift ctx) args)
   end
  — Free variables are handled similarly to constants; that they are usually lifted. The exception is
when the free variable actually refers to a constant, which can occur if lifting is applied during syntax
translation. In this case, we convert it to a constant first and then apply lifting to it.
 utp-lift-aux \ ctx \ (Free \ (n, \ t), \ args) =
     - We first extract the constant table from the context.
   let \ val \ consts = (Proof-Context.consts-of \ ctx)
      val \{const-space, ...\} = Consts.dest consts
      — The name must be internalised in case it needs qualifying.
      val\ c = Consts.intern\ consts\ n\ in
       — If the name refers to a declared constant, then we lift it as a constant.
      if (Name-Space.declared const-space c) then
        utp-lift-aux ctx (Const (c, t), args)
       — Otherwise, we simply apply normal lifting.
       else
        list-appl
        (case\ (Syntax.check-term\ ctx\ (Free\ (n,\ t)))\ of
          Free (-, Type\ (type-name\ (lens-ext), -)) => Const\ (@\{const-name\ var\},\ dummyT)\ $ (Const-name\ var).
(@\{const-name\ pr-var\},\ dummyT) $ Free (n,\ t)) |
          Free (-, Type\ (type-name\ (uexpr), -)) => Free\ (n, t)
       -=>if (VarOption.get (Proof-Context.theory-of ctx)) then Free (n, t) else Const (@\{const-name\}\}
lit, dummyT) $ Free (n, t)
        (* if (Symbol.is-ascii-upper (hd (Symbol.explode n))) then Free (n, t) else Const (@{const-name
lit, dummyT) $ Free (n, t) *
        , map (utp-lift ctx) args)
   end
 — Bound variables are always lifted as well
  utp-lift-aux ctx (Bound n, args) = list-appl (Const (@\{const-name lit\}, dummyT) $Bound n, map
(utp-lift ctx o Term-Position.strip-positions) args)
 utp-lift-aux - (t, args) = raise\ TERM\ (-utp-lift-aux,\ t :: args)
 and
 (* FIXME: Think more about abstractions; at the moment they are essentially passed over. *)
(* utp-lift ctx (Abs (x, ty, tm)) = Abs (x, ty, utp-lift ctx tm) | *)
 utp-lift ctx (Const (syntax-const (-constrain), k) \ t \ ty) = (utp-lift ctx t) |
 utp-lift\ ctx\ (Abs\ (x,\ ty,\ tm)) = Const\ (@\{const-name\ uabs\},\ dummyT)\ \$\ Abs\ (x,\ ty,\ utp-lift\ ctx\ tm)\ |
 utp-lift - (Bound n) = (Const (@\{const-name lit\}, dummyT) \$ Bound n) |
 utp-lift ctx\ t = utp-lift-aux\ ctx\ (Term.strip-comb\ t);
 — Apply the Isabelle term parser, strip type constraints, perform lifting, and finally type check the
resulting lifted term.
 fun\ utp-tr\ ctx\ content\ args =
   let fun \ err \ () = raise \ TERM \ (utp-tr, \ args) \ in
     (case args of
      [(Const\ (syntax-const \leftarrow constrain), -)) \ \ Free\ (s, -) \ \ p] =>
        (case Term-Position.decode-position p of
```

```
SOME\ (pos, -) => (utp-lift\ ctx\ (Type.strip-constraints\ (Syntax.parse-term\ ctx\ (content\ (s,
pos)))))
         | NONE = > err ())
     |-=>err()
    end;
Set up Cartouche syntax using the above.
syntax -utp :: \langle cartouche-position \Rightarrow string \rangle (UTP-)
\mathbf{syntax} \ \textit{-utp} :: \langle \textit{cartouche-position} \Rightarrow \textit{string} \rangle \ \ (\textit{\textbf{U}-})
parse-translation (
  [(syntax-const \langle -utp \rangle,
   (fn\ ctx => utp-tr\ ctx\ (Symbol-Pos.implode\ o\ Symbol-Pos.cartouche-content\ o\ Symbol-Pos.explode)))]
Cartouche parser for UTP expressions. We can either surround the whole of a UTP relation
with a the cartouche, or alternatively just the program text.
syntax - uexpr-cartouche :: \langle cartouche-position \Rightarrow uexp \rangle (-)
translations
  -uexpr-cartouche\ e => -utp\ e
A more conventional parse translation version of the above
syntax
  -UTP :: logic \Rightarrow logic (U'(-'))
  -UTP :: logic \Rightarrow logic (U'(-'))
parse-translation (
 [(@\{syntax-const-UTP\},fn\ ctx=>fn\ term=>\ utp-lift\ ctx\ (\textit{Term-Position.strip-positions}\ (hd\ term)))]
8.2
        Examples
A couple of examples
term U(x @ y)
utp-expr-vars — Change behaviour so free variables are translated as expressions
term U(x @ y)
utp-lit-vars
\mathbf{term}\ UTP\langle f|x\rangle
term U(f|x)
term UTP \langle (xs @ ys) ! i \rangle
term UTP \langle mm \ i \rangle
term UTP \langle \exists x. fx \rangle
```

```
term UTP\langle xs \mid (x+y)\rangle
term UTP\langle xs \mid i \rangle
term UTP\langle A \cup B \rangle
term UTP \langle \exists x. x \leq xs ! i \rangle
term UTP \langle (x \leq \theta) \rangle
term UTP \langle (length \ xs + 1 + n \leq \theta) \rangle
term UTP \langle (length \ xs + 1 + n \leq 0) \lor true \rangle
term UTP \subseteq n. (length xs + 1 + n \leq 0) \lor true \land
term UTP(\{x + y \mid x. \ 1 < x\})
term UTP\langle \lambda | x. | x + y \rangle
term UTP \langle \$x + 1 \leq \$y' \rangle
\mathbf{term}\ \mathit{UTP} \langle \$x' = \$x + 1 \, \wedge \, \$y' = \$y \rangle
locale test =
  fixes x :: nat \Longrightarrow 's and xs :: int \ list \Longrightarrow 's
begin
  abbreviation (input) z \equiv x
The lens x and HOL variable y are automatically distinguished
  term U(x + y)
  \mathbf{term}\ UTP \langle \$f\ v \rangle
  term UTP \langle \{2 < ... \} \rangle
\mathbf{end}
\mathbf{term} \ll x \gg + \$y
\mathbf{term} \ll x \gg + \$y
term U(\&v < \theta)
term U(\$y = 5)
term U(\$y' = 1 + \$y)
term U(\$x + \$y + \$z + \$u / \$f')
term U(\$f x)
term U(\$f \$v')
```

```
term e \oplus f on A  \text{term } U(\$x = v)   \text{term } U(\$tr' = \$tr \ @ \ [a] \land \$ref \subseteq \$i:ref' \cup \$j:ref' \land \$x' = \$x+1)   \text{utp-expr-vars}
```

8.3 Linking Parser to Constants

```
\mathbf{ML} \land fun \ utp-lift-notation thy (n, args) =
let\ val\ Const\ (c, -) = Proof-Context.read-const\ \{proper = true, strict = false\}\ (Proof-Context.init-global)
thy) n in
 (Lexicon.mark-const\ c,
 fn \ ctx => fn \ ts =>
  let val ts' = map-index (fn (i, t) = sif (member (op = t)) (map Value parse-int args) i) then utp-lift
ctx (Term-Position.strip-positions t) else t) ts
  in if (ts = ts') then raise Match else Term.list-comb (Const (c, dummyT), ts') end)
  end;
  Outer-Syntax.command @{command-keyword utp-lift-notation} insert UTP parser quotes into existing
   (Scan.repeat1\ (Parse.term\ --\ Scan.optional\ (Parse.\$\$\$\ (\ |--\ Parse.!!!\ (Scan.repeat1\ Parse.number))))
--| Parse.\$\$\$ ))) [])
    >> (fn \ ns =>
        Toplevel.theory
        (fn\ thy => Sign.parse-translation\ (map\ (utp-lift-notation\ thy)\ ns)\ thy)));
>
```

end

9 Substitution

```
theory utp-subst
imports
utp-expr
utp-unrest
utp-tactics
utp-lift-parser
begin
```

9.1 Substitution definitions

Variable substitution, like unrestriction, will be characterised semantically using lenses and state-spaces. Effectively a substitution σ is simply a function on the state-space which can be applied to an expression e using the syntax $\sigma \dagger e$. We introduce a polymorphic constant that will be used to represent application of a substitution, and also a set of theorems to represent laws.

```
consts usubst :: 's \Rightarrow 'a \Rightarrow 'b \text{ (infixr } \dagger 80)
```

named-theorems usubst

A substitution is simply a transformation on the alphabet; it shows how variables should be mapped to different values. Most of the time these will be homogeneous functions but for flexibility we also allow some operations to be heterogeneous.

```
type-synonym ('\alpha,'\beta) psubst = ('\beta, '\alpha) uexpr
type-synonym '\alpha usubst = ('\alpha, '\alpha) uexpr
```

Application of a substitution simply applies the function σ to the state binding b before it is handed to e as an input. This effectively ensures all variables are updated in e.

```
lift-definition subst :: ('\alpha, '\beta) psubst \Rightarrow ('a, '\beta) uexpr \Rightarrow ('a, '\alpha) uexpr is \lambda \ \sigma \ e \ b. \ e \ (\sigma \ b).
```

adhoc-overloading

 $usubst\ subst$

Substitutions can be updated by associating variables with expressions. We thus create an additional polymorphic constant to represent updating the value of a variable to an expression in a substitution, where the variable is modelled by type 'v. This again allows us to support different notions of variables, such as deep variables, later.

We can also represent an arbitrary substitution as below.

```
lift-definition subst-nil :: ('\alpha, '\beta) psubst (nil_s) is \lambda s. undefined.
```

```
lift-definition subst-id :: '\alpha \ usubst \ (id_s) is \lambda s. \ s.
```

```
lift-definition subst-comp :: ('\beta, '\gamma) psubst \Rightarrow ('\alpha, '\beta) psubst \Rightarrow ('\alpha, '\gamma) psubst (infixl \circ_s 55) is (\circ).
```

```
\begin{array}{l} \textbf{lift-definition} \ inv\text{-}subst :: ('\alpha, '\beta) \ psubst \Rightarrow ('\beta, '\alpha) \ psubst \ (inv_s) \ \textbf{is} \ inv \ \textbf{.} \\ \textbf{lift-definition} \ inj\text{-}subst :: ('\alpha, '\beta) \ psubst \Rightarrow bool \ (inj_s) \ \textbf{is} \ inj \ \textbf{.} \\ \textbf{lift-definition} \ bij\text{-}subst :: ('\alpha, '\beta) \ psubst \Rightarrow bool \ (bij_s) \ \textbf{is} \ bij \ \textbf{.} \end{array}
```

```
declare inj-subst-def [uexpr-transfer-extra] declare bij-subst-def [uexpr-transfer-extra]
```

The following function takes a substitution form state-space α to β , a lens with source β and view "a", and an expression over α and returning a value of type "a, and produces an updated substitution. It does this by constructing a substitution function that takes state binding b, and updates the state first by applying the original substitution σ , and then updating the part of the state associated with lens x with expression evaluated in the context of b. This effectively means that x is now associated with expression v. We add this definition to our overloaded constant.

```
lift-definition subst-upd :: ('\alpha,'\beta) \ psubst \Rightarrow ('a \Longrightarrow '\beta) \Rightarrow ('a, '\alpha) \ uexpr \Rightarrow ('\alpha,'\beta) \ psubst is \lambda \ \sigma \ x \ v \ s. \ put_x \ (\sigma \ s) \ (v \ s).
```

The next function looks up the expression associated with a variable in a substitution by use of the get lens function.

```
lift-definition usubst-lookup :: ('\alpha, '\beta) psubst \Rightarrow ('a \Longrightarrow '\beta) \Rightarrow ('a, '\alpha) uexpr (\langle -\rangle_s) is \lambda \sigma x b. get<sub>x</sub> (\sigma b).
```

Substitutions also exhibit a natural notion of unrestriction which states that σ does not restrict x if application of σ to an arbitrary state ρ will not effect the valuation of x. Put another way, it requires that put and the substitution commute.

```
lift-definition unrest\text{-}usubst :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ usubst \Rightarrow bool
is \lambda \ x \ \sigma. (\forall \ \varrho \ v. \ \sigma \ (put_x \ \varrho \ v) = put_x \ (\sigma \ \varrho) \ v).
syntax
   -unrest-usubst :: salpha \Rightarrow logic \Rightarrow logic \Rightarrow logic (infix \sharp_s 20)
translations
   -unrest-usubst x p == CONST unrest-usubst x p
   \textit{-unrest-usubst} \ (\textit{-salphaset} \ (\textit{-salphamk} \ (x \ +_L \ y))) \ P \ <= \ \textit{-unrest-usubst} \ (x \ +_L \ y) \ P
```

Parallel substitutions allow us to divide the state space into three segments using two lens, A and B. They correspond to the part of the state that should be updated by the respective substitution. The two lenses should be independent. If any part of the state is not covered by either lenses then this area is left unchanged (framed).

```
lift-definition par-subst :: '\alpha usubst \Rightarrow ('a \Longrightarrow '\alpha) \Rightarrow ('b \Longrightarrow '\alpha) \Rightarrow '\alpha usubst \Rightarrow '\alpha usubst is
\lambda \ \sigma_1 \ A \ B \ \sigma_2. \ (\lambda \ s. \ (s \oplus_L \ (\sigma_1 \ s) \ on \ A) \oplus_L \ (\sigma_2 \ s) \ on \ B).
```

no-utp-lift subst-upd (1) subst usubst

9.2Syntax translations

We support two kinds of syntax for substitutions, one where we construct a substitution using a maplet-style syntax, with variables mapping to expressions. Such a constructed substitution can be applied to an expression. Alternatively, we support the more traditional notation, P[v/x], which also support multiple simultaneous substitutions. We have to use double square brackets as the single ones are already well used.

We set up non-terminals to represent a single substitution maplet, a sequence of maplets, a list of expressions, and a list of alphabets. The parser effectively uses subst-upd to construct substitutions from multiple variables.

nonterminal smaplet and smaplets and salphas

```
syntax
```

```
(-/\mapsto_s/-)
-smaplet :: [salpha, uexp] => smaplet
         :: smaplet => smaplets
-SMaplets :: [smaplet, smaplets] => smaplets (-,/-)
-SubstUpd :: ['m usubst, smaplets] => 'm usubst (-/'(-') [900,0] 900)
-Subst :: smaplets => logic
                                             ((1[-]))
-PSubst :: smaplets => logic
                                              ((1(|-|)))
-psubst :: [logic, svars, uexprs] \Rightarrow logic
          :: logic \Rightarrow uexprs \Rightarrow salphas \Rightarrow logic ((-\llbracket -'/-\rrbracket) [990,0,0] 991)
-uexp-l :: logic \Rightarrow uexp (- [64] 64)
-uexprs :: [uexp, uexprs] => uexprs (-,/-)
         :: uexp => uexprs (-)
-salphas :: [salpha, salphas] => salphas (-,/-)
         :: salpha => salphas (-)
-par-subst:: logic \Rightarrow salpha \Rightarrow salpha \Rightarrow logic \Rightarrow logic (-[-]-]_s - [100,0,0,101] \ 101)
```

translations

```
-SubstUpd \ m \ (-SMaplets \ xy \ ms)
                                   == -SubstUpd (-SubstUpd m xy) ms
-SubstUpd \ m \ (-smaplet \ x \ y)
                                 => CONST subst-upd m x U(y)
-SubstUpd \ m \ (-smaplet \ x \ y)
                                 <= CONST subst-upd m x y
                             == -SubstUpd id_s ms
-Subst ms
-Subst (-SMaplets ms1 ms2)
                                  <= -SubstUpd (-Subst ms1) ms2
```

```
 -PSubst \ ms = -Subst Upd \ nil_s \ ms \\ -PSubst \ (-SMaplets \ ms1 \ ms2) < = -Subst Upd \ (-PSubst \ ms1) \ ms2 \\ -SMaplets \ ms1 \ (-SMaplets \ ms2 \ ms3) < = -SMaplets \ (-SMaplets \ ms1 \ ms2) \ ms3 \\ -subst \ P \ es \ vs => CONST \ subst \ (-psubst \ id_s \ vs \ es) \ P \\ -psubst \ m \ (-salphas \ x \ xs) \ (-uexprs \ v \ vs) => -psubst \ (-psubst \ m \ x \ v) \ xs \ vs \\ -psubst \ m \ x \ v => CONST \ subst-upd \ m \ x \ v \\ -subst \ P \ v \ x <= CONST \ usubst \ (CONST \ subst-upd \ id_s \ x \ v) \ P \\ -subst \ P \ v \ x <= -subst \ P \ (-spvar \ x) \ v \\ -par-subst \ \sigma_1 \ A \ B \ \sigma_2 = CONST \ par-subst \ \sigma_1 \ A \ B \ \sigma_2 \\ -uexp-l \ e => e
```

Thus we can write things like $\sigma(x \mapsto_s v)$ to update a variable x in σ with expression v, $[x \mapsto_s e, y \mapsto_s f]$ to construct a substitution with two variables, and finally P[v/x], the traditional syntax.

We can now express deletion of a substitution maplet.

```
definition subst-del :: '\alpha usubst \Rightarrow ('a \Longrightarrow '\alpha) \Rightarrow '\alpha usubst (infix -_s 85) where subst-del \sigma x = \sigma(x \mapsto_s \& x)
```

9.3 Substitution Application Laws

We set up a simple substitution tactic that applies substitution and unrestriction laws

```
method subst-tac = (simp \ add: \ usubst \ unrest)?
```

assumes weak-lens x

Evaluation of a substitution expression involves application of the substitution to different variables. Thus we first prove laws for these cases. The simplest substitution, id, when applied to any variable x simply returns the variable expression, since id has no effect.

```
lemma usubst-lookup-id [usubst]: \langle id_s \rangle_s \ x = var \ x
 by (transfer, simp)
lemma subst-id-var: id_s = \&\mathbf{v}
 by (transfer, auto simp add: lens-defs)
lemma subst-upd-id-lam [usubst]: subst-upd &\mathbf{v} x v = subst-upd id_s x v
 by (simp add: subst-id-var)
lemma subst-id [simp]: id_s \circ_s \sigma = \sigma \sigma \circ_s id_s = \sigma
 by (transfer, auto)+
lemma subst-upd-alt-def: subst-upd \sigma x v = bop (put_x) \sigma v
 by (transfer, simp)
lemma subst-apply-one-lens [usubst]: \langle \sigma \rangle_s (&v)<sub>v</sub> = \sigma
 by (transfer, simp add: lens-defs)
A substitution update naturally yields the given expression.
lemma usubst-lookup-upd [usubst]:
 assumes weak-lens x
 shows \langle \sigma(x \mapsto_s v) \rangle_s \ x = v
 using assms
 by (simp add: subst-upd-def, transfer) (simp)
lemma usubst-lookup-upd-pr-var [usubst]:
```

```
shows \langle \sigma(x \mapsto_s v) \rangle_s (pr\text{-}var x) = v
  using assms
  by (simp add: subst-upd-def pr-var-def, transfer) (simp)
Substitution update is idempotent.
lemma usubst-upd-idem [usubst]:
  assumes mwb-lens x
 shows \sigma(x \mapsto_s u, x \mapsto_s v) = \sigma(x \mapsto_s v)
  using assms
  by (simp add: subst-upd-def comp-def, transfer, simp)
lemma usubst-upd-idem-sub [usubst]:
 assumes x \subseteq_L y \ mwb\text{-}lens \ y
 shows \sigma(x \mapsto_s u, y \mapsto_s v) = \sigma(y \mapsto_s v)
  using assms
  by (simp add: subst-upd-def assms, transfer, simp add: fun-eq-iff sublens-put-put)
Substitution updates commute when the lenses are independent.
lemma usubst-upd-comm:
  assumes x \bowtie y
 shows \sigma(x \mapsto_s u, y \mapsto_s v) = \sigma(y \mapsto_s v, x \mapsto_s u)
  using assms unfolding subst-upd-def
  by (transfer, auto simp add: subst-upd-def assms comp-def lens-indep-comm)
lemma usubst-upd-comm2:
  assumes z \bowtie y
  shows \sigma(x \mapsto_s u, y \mapsto_s v, z \mapsto_s s) = \sigma(x \mapsto_s u, z \mapsto_s s, y \mapsto_s v)
  using assms
  using assms unfolding subst-upd-def
  by (transfer, auto simp add: subst-upd-def assms comp-def lens-indep-comm)
lemma subst-upd-pr-var: s(\&x \mapsto_s v) = s(x \mapsto_s v)
  by (simp add: pr-var-def)
A substitution which swaps two independent variables is an injective function.
lemma swap-usubst-inj:
 fixes x y :: ('a \Longrightarrow '\alpha)
  assumes vwb-lens x vwb-lens y x \bowtie y
 shows inj_s [x \mapsto_s \& y, y \mapsto_s \& x]
proof (simp add: inj-subst-def, rule injI)
  fix b_1 :: '\alpha and b_2 :: '\alpha
  assume \llbracket [x \mapsto_s \& y, y \mapsto_s \& x] \rrbracket_e \ b_1 = \llbracket [x \mapsto_s \& y, y \mapsto_s \& x] \rrbracket_e \ b_2
  hence a: put_y (put_x \ b_1 ([\![\&y]\!]_e \ b_1)) ([\![\&x]\!]_e \ b_1) = put_y (put_x \ b_2 ([\![\&y]\!]_e \ b_2)) ([\![\&x]\!]_e \ b_2)
   by (transfer, simp)
  then have (\forall a \ b \ c. \ put_x \ (put_y \ a \ b) \ c = put_y \ (put_x \ a \ c) \ b) \land
            (\forall a \ b. \ get_x \ (put_y \ a \ b) = get_x \ a) \land (\forall a \ b. \ get_y \ (put_x \ a \ b) = get_y \ a)
   \mathbf{by}\ (simp\ add:\ assms(3)\ lens-indep.lens-put-irr2\ lens-indep-comm)
  then show b_1 = b_2
     by (metis a assms(1) assms(2) pr-var-def var.rep-eq vwb-lens.source-determination vwb-lens-def
wb-lens-def weak-lens.put-get)
qed
lemma usubst-upd-var-id [usubst]:
  vwb-lens x \Longrightarrow [x \mapsto_s var x] = id_s
  apply (simp add: subst-upd-def subst-id-def id-lens-def)
```

```
apply (transfer)
 apply (rule ext)
  apply (auto)
  done
lemma usubst-upd-pr-var-id [usubst]:
  vwb-lens x \Longrightarrow [x \mapsto_s var (pr-var x)] = id_s
  apply (simp add: subst-upd-def pr-var-def subst-id-def id-lens-def)
 apply (transfer)
 apply (rule ext)
 apply (auto)
  done
lemma subst-sublens-var [usubst]:
  \llbracket vwb\text{-}lens\ a;\ x\subseteq_L a\ \rrbracket \Longrightarrow \langle \sigma(a\mapsto_s var\ b)\rangle_s\ x=var\ ((x\ /_L\ a)\ ;_L\ b)
  by (transfer, auto simp add: fun-eq-iff lens-defs)
lemma subst-nil-comp [usubst]: nil_s \circ_s \sigma = nil_s
  by (simp add: subst-nil-def comp-def, transfer, simp add: comp-def)
lemma subst-nil-apply: [nil_s]_e x = undefined
 by (simp add: subst-nil.rep-eq)
lemma usubst-upd-comm-dash [usubst]:
  fixes x :: ('a \Longrightarrow '\alpha)
  shows \sigma(\$x' \mapsto_s v, \$x \mapsto_s u) = \sigma(\$x \mapsto_s u, \$x' \mapsto_s v)
  using out-in-indep usubst-upd-comm by blast
lemma subst-upd-lens-plus [usubst]:
  subst-upd \ \sigma \ (x +_L \ y) \ «(u,v)» = \sigma(y \mapsto_s «v», \ x \mapsto_s «u»)
  by (simp add: lens-defs uexpr-defs subst-upd-def, transfer, auto)
lemma subst-upd-in-lens-plus [usubst]:
  subst-upd \sigma (in-var (x +_L y)) \ll (u,v) \gg = \sigma(\$y \mapsto_s \ll v \gg, \$x \mapsto_s \ll u \gg)
  by (simp add: lens-defs uexpr-defs subst-upd-def, transfer, auto simp add: prod.case-eq-if)
lemma subst-upd-out-lens-plus [usubst]:
  subst-upd\ \sigma\ (out\text{-}var\ (x\ +_L\ y))\ «(u,v)» = \sigma(\$y'\mapsto_s «v»,\ \$x'\mapsto_s «u»)
 by (simp add: lens-defs uexpr-defs subst-upd-def, transfer, auto simp add: prod.case-eq-if)
lemma usubst-lookup-upd-indep [usubst]:
  assumes mwb-lens x x \bowtie y
 shows \langle \sigma(y \mapsto_s v) \rangle_s \ x = \langle \sigma \rangle_s \ x
  using assms
  by (simp add: subst-upd-def, transfer, simp)
lemma subst-upd-plus [usubst]:
 x \bowtie y \Longrightarrow subst-upd\ s\ (x +_L y)\ e = s(x \mapsto_s fst(e),\ y \mapsto_s snd(e))
 by (simp add: subst-upd-def lens-defs, transfer, auto simp add: fun-eq-iff prod.case-eq-if lens-indep-comm)
If a variable is unrestricted in a substitution then it's application has no effect.
lemma usubst-apply-unrest [usubst]:
  \llbracket vwb\text{-}lens\ x;\ x\ \sharp_s\ \sigma\ \rrbracket \Longrightarrow \langle\sigma\rangle_s\ x = var\ x
  by (transfer, auto simp add: fun-eq-iff)
    (metis mwb-lens-weak vwb-lens-mwb vwb-lens-wb wb-lens.qet-put weak-lens.view-determination)
```

```
There follows various laws about deleting variables from a substitution.
```

```
lemma subst-del-id [usubst]:
  vwb-lens x \Longrightarrow id_s -_s x = id_s
  by (simp add: subst-del-def subst-upd-def pr-var-def subst-id-def id-lens-def, transfer, auto)
lemma subst-del-upd-same [usubst]:
  mwb-lens x \Longrightarrow \sigma(x \mapsto_s v) -_s x = \sigma -_s x
  by (simp add: subst-del-def subst-upd-def, transfer, simp)
lemma subst-del-upd-diff [usubst]:
  x \bowtie y \Longrightarrow \sigma(y \mapsto_s v) -_s x = (\sigma -_s x)(y \mapsto_s v)
 by (simp add: subst-del-def subst-upd-def, transfer, simp add: lens-indep-comm)
If a variable is unrestricted in an expression, then any substitution of that variable has no effect
on the expression.
lemma subst-unrest [usubst]: x \sharp P \Longrightarrow \sigma(x \mapsto_s v) \dagger P = \sigma \dagger P
  by (simp add: subst-upd-def, transfer, auto)
lemma subst-unrest-sublens [usubst]: [a \sharp P; x \subseteq_L a] \implies \sigma(x \mapsto_s v) \dagger P = \sigma \dagger P
  by (simp add: subst-upd-def, transfer, auto simp add: fun-eq-iff,
      metis (no-types, lifting) lens.select-convs(2) lens-comp-def sublens-def)
lemma subst-unrest-2 [usubst]:
  fixes P :: ('a, '\alpha) \ uexpr
  assumes x \sharp P x \bowtie y
  shows \sigma(x \mapsto_s u, y \mapsto_s v) \dagger P = \sigma(y \mapsto_s v) \dagger P
  using assms
  by (simp add: subst-upd-def, transfer, auto, metis lens-indep.lens-put-comm)
lemma subst-unrest-3 [usubst]:
 fixes P :: ('a, '\alpha) \ uexpr
  assumes x \sharp P x \bowtie y x \bowtie z
  shows \sigma(x \mapsto_s u, y \mapsto_s v, z \mapsto_s w) \dagger P = \sigma(y \mapsto_s v, z \mapsto_s w) \dagger P
  using assms
  by (simp add: subst-upd-def, transfer, auto, metis (no-types, hide-lams) lens-indep-comm)
lemma subst-unrest-4 [usubst]:
  fixes P :: ('a, '\alpha) \ uexpr
  assumes x \sharp P x \bowtie y x \bowtie z x \bowtie u
  shows \sigma(x \mapsto_s e, y \mapsto_s f, z \mapsto_s g, u \mapsto_s h) \dagger P = \sigma(y \mapsto_s f, z \mapsto_s g, u \mapsto_s h) \dagger P
  using assms
  by (simp add: subst-upd-def, transfer, auto, metis (no-types, hide-lams) lens-indep-comm)
lemma subst-unrest-5 [usubst]:
  fixes P :: ('a, '\alpha) \ uexpr
  assumes x \sharp P x \bowtie y x \bowtie z x \bowtie u x \bowtie v
 \mathbf{shows}\ \sigma(x \mapsto_s e,\ y \mapsto_s f,\ z \mapsto_s g,\ u \mapsto_s h,\ v \mapsto_s i) \dagger P = \sigma(y \mapsto_s f,\ z \mapsto_s g,\ u \mapsto_s h,\ v \mapsto_s i) \dagger P
  using assms
  by (simp add: subst-upd-def, transfer, auto, metis (no-types, hide-lams) lens-indep-comm)
lemma subst-compose-upd [usubst]: x \sharp_s \sigma \Longrightarrow \sigma \circ_s \varrho(x \mapsto_s v) = (\sigma \circ_s \varrho)(x \mapsto_s v)
  by (simp add: subst-upd-def, transfer, auto simp add: comp-def)
Any substitution is a monotonic function.
```

lemma subst-mono: mono (subst σ)

9.4 Substitution laws

We now prove the key laws that show how a substitution should be performed for every expression operator, including the core function operators, literals, variables, and the arithmetic operators. They are all added to the *usubst* theorem attribute so that we can apply them using the substitution tactic.

```
 \begin{array}{l} \textbf{lemma} \ id\text{-}subst \ [usubst] \colon id_s \dagger \ v = v \\ \textbf{unfolding} \ subst\text{-}id\text{-}def \ lens\text{-}defs \ \textbf{by} \ (transfer, simp) \\ \\ \textbf{lemma} \ subst\text{-}lit \ [usubst] \colon \sigma \dagger \ll v \gg = \ll v \gg \\ \textbf{by} \ (transfer, simp) \\ \\ \textbf{lemma} \ subst\text{-}var \ [usubst] \colon \sigma \dagger \ var \ x = \langle \sigma \rangle_s \ x \\ \textbf{by} \ (transfer, simp) \\ \\ \textbf{lemma} \ usubst\text{-}uabs \ [usubst] \colon \sigma \dagger \ (\lambda \ x \cdot P(x)) = (\lambda \ x \cdot \sigma \dagger P(x)) \\ \textbf{by} \ (transfer, simp) \\ \\ \textbf{lemma} \ unrest\text{-}usubst\text{-}del \ [unrest] \colon \llbracket \ vwb\text{-}lens \ x; \ x \ \sharp \ (\langle \sigma \rangle_s \ x); \ x \ \sharp_s \ \sigma \ -_s \ x \ \rrbracket \implies x \ \sharp \ (\sigma \dagger P) \\ \textbf{by} \ (simp \ add: \ subst\text{-}del\text{-}def \ subst\text{-}upd\text{-}def \ unrest\text{-}uexpr\text{-}def \ unrest\text{-}usubst\text{-}def \ pr\text{-}var\text{-}def, \ transfer, \ auto)} \\ \ (metis \ vwb\text{-}lens. \ source\text{-}determination) \\ \end{array}
```

We add the symmetric definition of input and output variables to substitution laws so that the variables are correctly normalised after substitution.

```
lemma subst-appl [usubst]: \sigma \dagger f > v = (\sigma \dagger f) > (\sigma \dagger v)
  by (transfer, simp)
lemma subst-uop [usubst]: \sigma \dagger uop f v = uop f (\sigma \dagger v)
  by (transfer, simp)
lemma subst-bop [usubst]: \sigma \dagger bop f u v = bop f (\sigma \dagger u) (\sigma \dagger v)
  by (transfer, simp)
lemma subst-trop [usubst]: \sigma \dagger trop f u v w = trop f (\sigma \dagger u) (\sigma \dagger v) (\sigma \dagger w)
  by (transfer, simp)
lemma subst-qtop [usubst]: \sigma \dagger q top f u v w x = q top f (\sigma \dagger u) (\sigma \dagger v) (\sigma \dagger w) (\sigma \dagger x)
  by (transfer, simp)
lemma subst-case-prod [usubst]:
  fixes P :: 'i \Rightarrow 'j \Rightarrow ('a, '\alpha) \ uexpr
  shows \sigma \dagger case-prod (\lambda x y. P x y) v = case-prod (\lambda x y. <math>\sigma \dagger P x y) v
  by (simp add: case-prod-beta')
lemma subst-plus [usubst]: \sigma \dagger (x + y) = \sigma \dagger x + \sigma \dagger y
  by (simp add: plus-uexpr-def subst-bop)
lemma subst-times [usubst]: \sigma \dagger (x * y) = \sigma \dagger x * \sigma \dagger y
  by (simp add: times-uexpr-def subst-bop)
lemma subst-power [usubst]: \sigma † (e ^ n) = (\sigma † e) ^ n
  by (simp add: power-rep-eq subst.rep-eq uexpr-eq-iff)
```

```
lemma subst-mod [usubst]: \sigma \dagger (x \mod y) = \sigma \dagger x \mod \sigma \dagger y
 by (simp add: mod-uexpr-def usubst)
lemma subst-div [usubst]: \sigma \dagger (x \ div \ y) = \sigma \dagger x \ div \ \sigma \dagger y
 by (simp add: divide-uexpr-def usubst)
lemma subst-minus [usubst]: \sigma \dagger (x - y) = \sigma \dagger x - \sigma \dagger y
 by (simp add: minus-uexpr-def subst-bop)
lemma subst-uminus [usubst]: \sigma \dagger (-x) = -(\sigma \dagger x)
  by (simp add: uminus-uexpr-def subst-uop)
lemma usubst-sgn [usubst]: \sigma \dagger sgn \ x = sgn \ (\sigma \dagger x)
 by (simp add: sqn-uexpr-def subst-uop)
lemma usubst-abs [usubst]: \sigma \dagger abs \ x = abs \ (\sigma \dagger x)
 by (simp add: abs-uexpr-def subst-uop)
lemma subst-zero [usubst]: \sigma \dagger \theta = \theta
  by (simp add: zero-uexpr-def subst-lit)
lemma subst-one [usubst]: \sigma \dagger 1 = 1
 by (simp add: one-uexpr-def subst-lit)
lemma subst-numeral [usubst]: \sigma † numeral n = numeral n
  by (simp add: numeral-uexpr-simp subst-lit)
```

This laws shows the effect of applying one substitution after another – we simply use function composition to compose them.

```
lemma subst-subst [usubst]: \sigma \dagger \varrho \dagger e = (\varrho \circ_s \sigma) \dagger e
by (transfer, simp)
```

The next law is similar, but shows how such a substitution is to be applied to every updated variable additionally.

```
lemma subst-upd-comp [usubst]:
fixes x :: ('a \Longrightarrow '\alpha)
shows \varrho(x \mapsto_s v) \circ_s \sigma = (\varrho \circ_s \sigma)(x \mapsto_s \sigma \dagger v)
unfolding subst-upd-def by (transfer, auto)

lemma subst-singleton:
fixes x :: ('a \Longrightarrow '\alpha)
assumes x \sharp_s \sigma
shows \sigma(x \mapsto_s v) \dagger P = (\sigma \dagger P) \llbracket v/x \rrbracket
using assms by (simp \ add: usubst)
```

 $\mathbf{lemmas}\ subst-to\text{-}singleton\ =\ subst-singleton\ id\text{-}subst$

9.5 Ordering substitutions

A simplification procedure to reorder substitutions maplets lexicographically by variable syntax

```
simproc-setup subst-order (subst-upd (subst-upd \sigma x u) y v) = \langle (fn - = > fn \ ctx = > fn \ ct = > case \ (Thm.term-of \ ct) \ of
```

```
Const \ (utp\text{-}subst\text{-}subst\text{-}upd, \ -) \ \$ \ (Const \ (utp\text{-}subst\text{-}supd, \ -) \ \$ \ \$ \ x \ \$ \ u) \ \$ \ y \ \$ \ v => if \ (YXML.content\text{-}of \ (Syntax.string\text{-}of\text{-}term \ ctx \ x) > YXML.content\text{-}of \ (Syntax.string\text{-}of\text{-}term \ ctx \ y)) then \ SOME \ (mk\text{-}meta\text{-}eq \ @\{thm \ usubst\text{-}upd\text{-}comm\}) else \ NONE \ |  -=> NONE)
```

9.6 Unrestriction laws

These are the key unrestriction theorems for substitutions and expressions involving substitutions.

```
lemma unrest-usubst-single [unrest]:
  \llbracket mwb\text{-}lens\ x;\ x\ \sharp\ v\ \rrbracket \Longrightarrow x\ \sharp\ P\llbracket v/x\rrbracket
  unfolding subst-upd-def by (transfer, auto)
lemma unrest-usubst-id [unrest]:
  mwb-lens x \Longrightarrow x \sharp_s id_s
  by (transfer, simp)
lemma unrest-usubst-upd [unrest]:
  \llbracket x \bowtie y; x \sharp_s \sigma; x \sharp v \rrbracket \Longrightarrow x \sharp_s \sigma(y \mapsto_s v)
  by (transfer, simp add: lens-indep-comm)
lemma unrest-subst [unrest]:
  \llbracket x \sharp P; x \sharp_s \sigma \rrbracket \Longrightarrow x \sharp (\sigma \dagger P)
  by (transfer, simp add: unrest-usubst-def)
9.7
           Conditional Substitution Laws
lemma usubst-cond-upd-1 [usubst]:
  \sigma(x \mapsto_s u) \triangleleft b \triangleright \varrho(x \mapsto_s v) = (\sigma \triangleleft b \triangleright \varrho)(x \mapsto_s (u \triangleleft b \triangleright v))
```

```
lemma usubst-cond-upd-1 [usubst]: \sigma(x \mapsto_s u) \triangleleft b \triangleright \varrho(x \mapsto_s v) = (\sigma \triangleleft b \triangleright \varrho)(x \mapsto_s (u \triangleleft b \triangleright v)) by (simp\ add:\ subst-upd-def\ uexpr-defs,\ transfer,\ auto)
lemma usubst-cond-upd-2 [usubst]: [\![vwb-lens\ x;\ x \not\models_s \varrho\ ]\!] \Longrightarrow \sigma(x \mapsto_s u) \triangleleft b \triangleright \varrho = (\sigma \triangleleft b \triangleright \varrho)(x \mapsto_s (u \triangleleft b \triangleright \&x)) by (simp\ add:\ subst-upd-def\ unrest-usubst-def\ uexpr-defs\ pr-var-def\ ,\ transfer\ ,\ auto\ simp\ add:\ fun-eq-iff) (metis\ lens-override-def\ lens-override-idem)
lemma usubst-cond-upd-3 [usubst]: [\![vwb-lens\ x;\ x \not\models_s \sigma\ ]\!] \Longrightarrow \sigma \triangleleft b \triangleright \varrho(x \mapsto_s v) = (\sigma \triangleleft b \triangleright \varrho)(x \mapsto_s (\&x \triangleleft b \triangleright v)) by (simp\ add:\ subst-upd-def\ unrest-usubst-def\ uexpr-defs\ pr-var-def\ ,\ transfer\ ,\ auto\ simp\ add:\ fun-eq-iff) (metis\ lens-override-def\ lens-override-idem)
```

9.8 Parallel Substitution Laws

```
lemma par-subst-id [usubst]:

[ vwb-lens A; vwb-lens B ] \Longrightarrow id<sub>s</sub> [A|B]<sub>s</sub> id<sub>s</sub> = id<sub>s</sub>
by (transfer, simp)

lemma par-subst-left-empty [usubst]:

[ vwb-lens A ] \Longrightarrow \sigma [\emptyset|A]<sub>s</sub> \varrho = id<sub>s</sub> [\emptyset|A]<sub>s</sub> \varrho
by (simp add: par-subst-def pr-var-def)

lemma par-subst-right-empty [usubst]:
```

```
\llbracket vwb\text{-}lens\ A\ \rrbracket \Longrightarrow \sigma\ [A|\emptyset]_s\ \varrho = \sigma\ [A|\emptyset]_s\ id_s
  by (simp add: par-subst-def pr-var-def)
lemma par-subst-comm:
  \llbracket A \bowtie B \rrbracket \Longrightarrow \sigma \ [A|B]_s \ \varrho = \varrho \ [B|A]_s \ \sigma
  by (simp add: par-subst-def lens-override-def lens-indep-comm)
lemma par-subst-upd-left-in [usubst]:
  \llbracket vwb\text{-}lens\ A;\ A\bowtie B;\ x\subseteq_L A\ \rrbracket \Longrightarrow \sigma(x\mapsto_s v)\ [A|B]_s\ \varrho=(\sigma\ [A|B]_s\ \varrho)(x\mapsto_s v)
 by (transfer, simp add: lens-override-put-right-in, simp add: lens-indep-comm lens-override-def sublens-pres-indep)
lemma par-subst-upd-left-out [usubst]:
  \llbracket vwb\text{-lens } A; x \bowtie A \rrbracket \Longrightarrow \sigma(x \mapsto_s v) [A|B]_s \varrho = (\sigma [A|B]_s \varrho)
  by (transfer, simp add: par-subst-def subst-upd-def lens-override-put-right-out)
lemma par-subst-upd-right-in [usubst]:
  \llbracket vwb\text{-lens } B; A \bowtie B; x \subseteq_L B \rrbracket \Longrightarrow \sigma [A|B]_s \ \varrho(x \mapsto_s v) = (\sigma [A|B]_s \ \varrho)(x \mapsto_s v)
  using lens-indep-sym par-subst-comm par-subst-upd-left-in by fastforce
\mathbf{lemma}\ par\text{-}subst\text{-}upd\text{-}right\text{-}out\ [usubst]:
  \llbracket vwb\text{-lens } B; A \bowtie B; x \bowtie B \rrbracket \Longrightarrow \sigma [A|B]_s \varrho(x \mapsto_s v) = (\sigma [A|B]_s \varrho)
```

9.9 Power Substitutions

interpretation subst-monoid: monoid-mult subst-id subst-comp by (unfold-locales, transfer, auto)

by (simp add: par-subst-comm par-subst-upd-left-out)

notation subst-monoid.power (infixr \(^s\) 80)

lemma subst-power-rep-eq: $\llbracket \sigma \ \hat{}_s \ n \rrbracket_e = \llbracket \sigma \rrbracket_e \ \hat{}_s \ n$ **by** (induct n, simp-all add: subst-id.rep-eq subst-comp.rep-eq)

update-uexpr-rep-eq-thms

end

10 Meta-level Substitution

theory utp-meta-subst imports utp-subst utp-tactics begin

Meta substitution substitutes a HOL variable in a UTP expression for another UTP expression. It is analogous to UTP substitution, but acts on functions.

```
lift-definition msubst :: ('b \Rightarrow ('a, '\alpha) \ uexpr) \Rightarrow ('b, '\alpha) \ uexpr \Rightarrow ('a, '\alpha) \ uexpr is \lambda \ F \ v \ b. F \ (v \ b) \ b.
```

update-uexpr-rep-eq-thms — Reread *rep-eq* theorems.

```
syntax
```

```
-msubst :: logic \Rightarrow pttrn \Rightarrow logic \Rightarrow logic ((-\llbracket - \rightarrow -\rrbracket) [990, 0, 0] 991)
```

translations

```
-msubst\ P\ x\ v == CONST\ msubst\ (\lambda\ x.\ P)\ v
```

```
lemma msubst-lit [usubst]: \ll x \gg \llbracket x \rightarrow v \rrbracket = v
  by (pred-auto)
lemma msubst\text{-}const\ [usubst]:\ P[\![x\rightarrow v]\!] = P
  by (pred-auto)
lemma msubst-pair [usubst]: (P \times y) \llbracket (x, y) \to (e, f)_u \rrbracket = (P \times y) \llbracket x \to e \rrbracket \llbracket y \to f \rrbracket
  by (rel-auto)
lemma msubst-lit-2-1 [usubst]: \ll x \gg [(x,y) \rightarrow (u,v)_u] = u
  by (pred-auto)
lemma msubst-lit-2-2 [usubst]: \ll y \gg \llbracket (x,y) \rightarrow (u,v)_u \rrbracket = v
  by (pred-auto)
lemma msubst-lit' [usubst]: \ll y \gg [x \rightarrow v] = \ll y \gg
  by (pred-auto)
lemma msubst-lit'-2 [usubst]: \ll z \gg \llbracket (x,y) \rightarrow v \rrbracket = \ll z \gg \Vert (x,y) \rightarrow v \Vert
  by (pred-auto)
lemma msubst-uop [usubst]: (uop f (v x))[x \rightarrow u] = uop f ((v x)[x \rightarrow u])
  by (rel-auto)
\mathbf{lemma} \ \mathit{msubst-uop-2} \ [\mathit{usubst}] \colon (\mathit{uop} \ f \ (v \ x \ y)) \llbracket (x,y) \rightarrow u \rrbracket = \mathit{uop} \ f \ ((v \ x \ y) \llbracket (x,y) \rightarrow u \rrbracket)
  by (pred-simp, pred-simp)
lemma msubst-bop [usubst]: (bop f (v x) (w x))[x \rightarrow u] = bop f ((v x)[x \rightarrow u]) ((w x)[x \rightarrow u])
  by (rel-auto)
lemma msubst-bop-2 [usubst]: (bop f (v x y) (w x y))[(x,y) \to u] = bop f ((v x y)[(x,y) \to u]) ((w x y) + (v x y))[(x,y) \to u]
y)\llbracket (x,y) \rightarrow u \rrbracket )
  by (pred-simp, pred-simp)
lemma msubst-var [usubst]:
  (utp\text{-}expr.var\ x)[y\rightarrow u] = utp\text{-}expr.var\ x
  by (pred-simp)
lemma msubst-var-2 [usubst]:
  (utp\text{-}expr.var\ x) \llbracket (y,z) \rightarrow u \rrbracket = utp\text{-}expr.var\ x
  by (pred\text{-}simp)+
lemma msubst-unrest [unrest]: \llbracket \bigwedge v. \ x \ \sharp \ P(v); \ x \ \sharp \ k \ \rrbracket \Longrightarrow x \ \sharp \ P(v) \llbracket v \to k \rrbracket
  by (pred-auto)
end
```

11 Alphabetised Predicates

```
theory utp-pred
imports
utp-expr-funcs
utp-subst
utp-meta-subst
```

```
utp-tactics
utp-lift-parser
begin
```

In this theory we begin to create an Isabelle version of the alphabetised predicate calculus that is described in Chapter 1 of the UTP book [22].

11.1 Predicate type and syntax

An alphabetised predicate is a simply a boolean valued expression.

```
type-synonym '\alpha upred = (bool, '\alpha) uexpr
```

translations

purge-notation

```
(type)'\alpha upred \le (type) (bool, '\alpha) uexpr
```

We want to remain as close as possible to the mathematical UTP syntax, but also want to be conservative with HOL. For this reason we chose not to steal syntax from HOL, but where possible use polymorphism to allow selection of the appropriate operator (UTP vs. HOL). Thus we will first remove the standard syntax for conjunction, disjunction, and negation, and replace these with adhoc overloaded definitions. We similarly use polymorphic constants for the other predicate calculus operators.

```
conj (infixr \land 35) and disj (infixr \lor 30) and Not (\neg - [40] 40)
```

```
utrue :: 'a (true)

ufalse :: 'a (false)

uconj :: 'a \Rightarrow 'a \Rightarrow 'a (infixr \wedge 35)

udisj :: 'a \Rightarrow 'a \Rightarrow 'a (infixr \wedge 30)

uimpl :: 'a \Rightarrow 'a \Rightarrow 'a (infixr \Rightarrow 25)

uiff :: 'a \Rightarrow 'a \Rightarrow 'a (infixr \Rightarrow 25)

unot :: 'a \Rightarrow 'a (\sigma - [40] 40)

uex :: ('a \Rightarrow '\alpha) \Rightarrow 'p \Rightarrow 'p

uall :: ('a \Rightarrow '\alpha) \Rightarrow 'p \Rightarrow 'p
```

adhoc-overloading

```
uconj conj and
udisj disj and
unot Not
```

```
abbreviation shEx :: ['\beta \Rightarrow' \alpha \ upred] \Rightarrow '\alpha \ upred where shEx \ P \equiv *Ex* \mid > uabs \ P
```

```
abbreviation shAll :: ['\beta \Rightarrow '\alpha \ upred] \Rightarrow '\alpha \ upred where shAll \ P \equiv \ll All \gg |> uabs \ P
```

We set up two versions of each of the quantifiers: uex / uall and shEx / shAll. The former pair allows quantification of UTP variables, whilst the latter allows quantification of HOL variables in concert with the literal expression constructor $\ll x \gg$. Both varieties will be needed at various points. Syntactically they are distinguished by a boldface quantifier for the HOL versions (achieved by the "bold" escape in Isabelle).

${f nonterminal}$ idt-list

```
syntax
  -idt-el :: idt \Rightarrow idt-list (-)
  -idt-list :: idt \Rightarrow idt-list \Rightarrow idt-list ((-,/-) [0, 1])
             :: salpha \Rightarrow logic \Rightarrow logic (\exists - \cdot - [0, 10] 10)
             :: salpha \Rightarrow logic \Rightarrow logic (\forall - \cdot - [0, 10] 10)
  -shEx :: pttrn \Rightarrow logic \Rightarrow logic (\exists - \cdot - [0, 10] \ 10)
  -shAll :: pttrn \Rightarrow logic \Rightarrow logic \quad (\forall - \cdot - [0, 10] \ 10)
  -shBEx :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \quad (\exists - \in -\cdot - [0, 0, 10] \ 10)
  -shBAll :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \quad (\forall - \in - \cdot - [0, 0, 10] \ 10)
  -shGAll :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \quad (\forall - | - \cdot - [0, 0, 10] \ 10)
  -shGtAll :: idt \Rightarrow logic \Rightarrow logic \Rightarrow logic (\forall -> -\cdot - [0, 0, 10] 10)
  -shLtAll :: idt \Rightarrow logic \Rightarrow logic \Rightarrow logic \ (\forall -<-\cdot - [0, 0, 10] \ 10)
  -uvar-res :: logic \Rightarrow salpha \Rightarrow logic (infixl \uparrow_v 90)
translations
                                     == CONST uex x P
  -uex x P
  -uex (-salphaset (-salphamk (x +_L y))) P \le -uex (x +_L y) P
  -uall\ x\ P
                                    == CONST \ uall \ x \ P
  -uall (-salphaset (-salphamk (x +_L y))) P \le -uall (x +_L y) P
  -shEx \ x \ P
                                    == CONST shEx (\lambda x. P)
  \exists x \in A \cdot P
                                        =>\exists x\cdot \ll x\gg \in_u A\wedge P
  -shAll \ x \ P
                                    == CONST shAll (\lambda x. P)
  \forall x \in A \cdot P
                                        => \forall x \cdot \ll x \gg \in_u A \Rightarrow P
  \forall x \mid P \cdot Q
                                       => \forall x \cdot P \Rightarrow Q
  \forall x > y \cdot P
                                        => \forall x \cdot \ll x \gg >_u y \Rightarrow P
  \forall x < y \cdot P
                                        => \forall x \cdot \ll x \gg <_u y \Rightarrow P
```

11.2 Predicate operators

We chose to maximally reuse definitions and laws built into HOL. For this reason, when introducing the core operators we proceed by lifting operators from the polymorphic algebraic hierarchy of HOL. Thus the initial definitions take place in the context of type class instantiations. We first introduce our own class called *refine* that will add the refinement operator syntax to the HOL partial order class.

```
class refine = order  \begin{array}{l} \textbf{abbreviation} \ refineBy :: \ 'a :: refine \Rightarrow \ 'a \Rightarrow bool \ \ (\textbf{infix} \sqsubseteq 50) \ \textbf{where} \\ P \sqsubseteq Q \equiv less-eq \ Q \ P \end{array}
```

Since, on the whole, lattices in UTP are the opposite way up to the standard definitions in HOL, we syntactically invert the lattice operators. This is the one exception where we do steal HOL syntax, but I think it makes sense for UTP. Indeed we make this inversion for all of the lattice operators.

```
purge-notation Lattices.inf (infixl \Box 70) notation Lattices.inf (infixl \Box 70) purge-notation Lattices.sup (infixl \Box 65) notation Lattices.sup (infixl \Box 65) purge-notation Inf (\Box - [900] 900) notation Inf (\Box - [900] 900) purge-notation Sup (\Box - [900] 900) notation Sup (\Box - [900] 900)
```

```
purge-notation Orderings.bot (\perp)
notation Orderings.bot (\top)
purge-notation Orderings.top (\top)
notation Orderings.top (\bot)
purge-syntax
              :: pttrns \Rightarrow 'b \Rightarrow 'b
  -INF1
                                          ((3 \square -./ -) [0, 10] 10)
              :: pttrn \Rightarrow 'a \ set \Rightarrow 'b \Rightarrow 'b \ ((3 \square - \in -./ -) [0, 0, 10] \ 10)
  -INF
              :: pttrns \Rightarrow 'b \Rightarrow 'b \qquad ((3 \square -./ -) [0, 10] 10)
  -SUP1
              :: pttrn \Rightarrow 'a \ set \Rightarrow 'b \Rightarrow 'b \ ((3 \bigsqcup \neg \in \neg ./ \neg) \ [\theta, \ \theta, \ 10] \ 10)
  -SUP
syntax
              :: pttrns \Rightarrow 'b \Rightarrow 'b
                                                ((3 \sqcup -./ -) [0, 10] 10)
  -INF1
              :: pttrn \Rightarrow 'a \ set \Rightarrow 'b \Rightarrow 'b \ ((3 \coprod - \in \text{-./ -}) \ [0, \ 0, \ 10] \ 10)
  -INF
  -SUP1
              :: pttrns \Rightarrow 'b \Rightarrow 'b \qquad ((3 \square -./ -) [0, 10] 10)
              :: pttrn \Rightarrow 'a \ set \Rightarrow 'b \Rightarrow 'b \ ((3 \square - \in -./ -) [0, 0, 10] \ 10)
  -SUP
We trivially instantiate our refinement class
instance uexpr :: (order, type) refine ..
— Configure transfer law for refinement for the fast relational tactics.
theorem upred-ref-iff [uexpr-transfer-laws]:
(P \sqsubseteq Q) = (\forall b. \ \llbracket Q \rrbracket_e \ b \longrightarrow \llbracket P \rrbracket_e \ b)
 apply (transfer)
 apply (clarsimp)
 done
Next we introduce the lattice operators, which is again done by lifting.
instantiation uexpr :: (lattice, type) lattice
begin
 lift-definition sup-uexpr :: ('a, 'b) uexpr \Rightarrow ('a, 'b) uexpr \Rightarrow ('a, 'b) uexpr
 is \lambda P Q A. Lattices. sup (P A) (Q A).
 lift-definition inf-uexpr :: ('a, 'b) uexpr \Rightarrow ('a, 'b) uexpr \Rightarrow ('a, 'b) uexpr
 is \lambda P \ Q \ A. Lattices.inf (P \ A) \ (Q \ A).
instance
 by (intro-classes) (transfer, auto)+
end
instantiation \ uexpr::(bounded-lattice, \ type) \ bounded-lattice
 lift-definition bot-uexpr :: ('a, 'b) uexpr is \lambda A. Orderings.bot.
 lift-definition top-uexpr :: ('a, 'b) uexpr is \lambda A. Orderings.top.
instance
 by (intro-classes) (transfer, auto)+
end
lemma top-uexpr-rep-eq [simp]:
  [Orderings.bot]_e b = False
 by (transfer, auto)
lemma bot-uexpr-rep-eq [simp]:
  [Orderings.top]_e b = True
  by (transfer, auto)
```

```
instance uexpr :: (distrib-lattice, type) distrib-lattice
by (intro-classes) (transfer, rule ext, auto simp add: sup-inf-distrib1)
```

Finally we show that predicates form a Boolean algebra (under the lattice operators), a complete lattice, a completely distribute lattice, and a complete boolean algebra. This equip us with a very complete theory for basic logical propositions.

```
instance uexpr :: (boolean-algebra, type) boolean-algebra
 apply (intro-classes, unfold uexpr-defs; transfer, rule ext)
   apply (simp-all add: sup-inf-distrib1 diff-eq)
 done
instantiation uexpr :: (complete-lattice, type) complete-lattice
begin
 lift-definition Inf-uexpr :: ('a, 'b) uexpr set \Rightarrow ('a, 'b) uexpr
 is \lambda PS A. INF P:PS. P(A).
 lift-definition Sup-uexpr :: ('a, 'b) uexpr set \Rightarrow ('a, 'b) uexpr
 is \lambda PS A. SUP P:PS. P(A).
instance
 by (intro-classes)
    (transfer, auto intro: INF-lower SUP-upper simp add: INF-greatest SUP-least)+
\mathbf{end}
instance uexpr::(complete-distrib-lattice, type) complete-distrib-lattice
 by (intro-classes; transfer; auto simp add: INF-SUP-set)
```

 $\mathbf{instance}\ uexpr\ ::\ (complete\ -boolean\ -algebra,\ type)\ complete\ -boolean\ -algebra\ \dots$

From the complete lattice, we can also define and give syntax for the fixed-point operators. Like the lattice operators, these are reversed in UTP.

syntax

```
-mu :: pttrn \Rightarrow logic \Rightarrow logic \ (\mu - \cdot - [0, 10] \ 10)

-nu :: pttrn \Rightarrow logic \Rightarrow logic \ (\nu - \cdot - [0, 10] \ 10)

notation gfp \ (\mu)

notation lfp \ (\nu)
```

translations

```
\nu \ X \cdot P == CONST \ lfp \ (\lambda \ X. \ P)

\mu \ X \cdot P == CONST \ gfp \ (\lambda \ X. \ P)
```

With the lattice operators defined, we can proceed to give definitions for the standard predicate operators in terms of them.

```
definition true-upred = (Orderings.top :: '\alpha upred) definition false-upred = (Orderings.bot :: '\alpha upred) definition conj-upred = (Lattices.inf :: '\alpha upred <math>\Rightarrow '\alpha upred \Rightarrow '\alpha upred) definition disj-upred = (Lattices.sup :: '\alpha upred <math>\Rightarrow '\alpha upred) definition not-upred = (uminus :: '\alpha upred <math>\Rightarrow '\alpha upred) definition diff-upred = (minus :: '\alpha upred <math>\Rightarrow '\alpha upred) definition Conj-upred :: '\alpha upred set <math>\Rightarrow '\alpha upred (\lambda - [900] 900) where A \equiv \coprod A abbreviation Disj-upred :: '\alpha upred set <math>\Rightarrow '\alpha upred (\lambda - [900] 900) where
```

```
\bigvee A \equiv \prod A
```

notation

```
conj-upred (infixr \wedge_p 35) and disj-upred (infixr \vee_p 30)
```

Perhaps slightly confusingly, the UTP infimum is the HOL supremum and vice-versa. This is because, again, in UTP the lattice is inverted due to the definition of refinement and a desire to have miracle at the top, and abort at the bottom.

```
lift-definition UINF :: ('a \Rightarrow '\alpha \ upred) \Rightarrow ('a \Rightarrow ('b::complete-lattice, '\alpha) \ uexpr) \Rightarrow ('b, '\alpha) \ uexpr is \lambda \ P \ F \ b. Sup \{ \llbracket F \ x \rrbracket_e \ b \mid x . \llbracket P \ x \rrbracket_e \ b \}.
```

lift-definition $USUP :: ('a \Rightarrow '\alpha \ upred) \Rightarrow ('a \Rightarrow ('b::complete-lattice, '\alpha) \ uexpr) \Rightarrow ('b, '\alpha) \ uexpr$ is $\lambda \ P \ F \ b$. Inf $\{ \llbracket F \ x \rrbracket_e b \mid x . \ \llbracket P \ x \rrbracket_e b \}$.

syntax

```
(\bigwedge - \cdot \cdot - [0, 10] \ 10)
(\bigsqcup - \cdot \cdot - [0, 10] \ 10)
-USup
               :: pttrn \Rightarrow logic \Rightarrow logic
               :: pttrn \Rightarrow logic \Rightarrow logic
-USup-mem :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic (\bigwedge - \in - \cdot - [0, 10] \ 10)
-USup-mem :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic (\bigsqcup - \in - \cdot - [0, 10] \ 10)
                :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \quad (\land - \mid - \cdot - [0, 0, 10] \ 10)
-USUP
                (\bigvee - \cdot - [0, 10] \ 10)
-UInf
              :: pttrn \Rightarrow logic \Rightarrow logic
              :: pttrn \Rightarrow logic \Rightarrow logic
                                                                  -UInf-mem :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \quad (\bigvee - \in - \cdot - [0, 10] \ 10)
-UInf-mem :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic (\bigcap - \in - \cdot - [0, 10] 10)
-UINF
               :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \quad (\bigvee - | - \cdot - [0, 10] \ 10)
-UINF
```

translations

```
\begin{array}{lll} & \exists x \mid P \cdot F => CONST\ UINF\ (\lambda\ x.\ P)\ (\lambda\ x.\ F) \\ & \exists x \cdot F & == \prod x \mid true \cdot F \\ & \exists x \cdot F & == \prod x \mid true \cdot F \\ & \exists x \in A \cdot F => \prod x \mid \ll x \gg \in_u \ll A \gg \cdot F \\ & \exists x \in A \cdot F <= \prod x \mid \ll y \gg \in_u \ll A \gg \cdot F \\ & \exists x \mid P \cdot F <= CONST\ UINF\ (\lambda\ y.\ P)\ (\lambda\ x.\ F) \\ & \exists x \mid P \cdot F(x) <= CONST\ UINF\ (\lambda\ x.\ P)\ F \\ & \exists x \mid P \cdot F => CONST\ USUP\ (\lambda\ x.\ P)\ (\lambda\ x.\ F) \\ & \exists x \in A \cdot F => \coprod x \mid \ll x \gg \in_u \ll A \gg \cdot F \\ & \coprod x \in A \cdot F <= \coprod x \mid \ll y \gg \in_u \ll A \gg \cdot F \\ & \coprod x \mid P \cdot F <= CONST\ USUP\ (\lambda\ y.\ P)\ (\lambda\ x.\ F) \\ & \coprod x \mid P \cdot F <= CONST\ USUP\ (\lambda\ y.\ P)\ (\lambda\ x.\ F) \\ & \coprod x \mid P \cdot F(x) <= CONST\ USUP\ (\lambda\ x.\ P)\ F \end{array}
```

We also define the other predicate operators

lift-definition $impl::'\alpha \ upred \Rightarrow '\alpha \ upred \Rightarrow '\alpha \ upred$ is $\lambda \ P \ Q \ A. \ P \ A \longrightarrow Q \ A$.

lift-definition iff-upred ::' α upred \Rightarrow ' α upred \Rightarrow ' α upred is λ P Q A. P $A \longleftrightarrow Q$ A.

lift-definition $ex :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ upred \Rightarrow '\alpha \ upred$ is $\lambda \ x \ P \ b. \ (\exists \ v. \ P(put_x \ b \ v))$.

lift-definition all :: $('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ upred \Rightarrow '\alpha \ upred$ is

```
\lambda \ x \ P \ b. \ (\forall \ v. \ P(put_x \ b \ v)).
```

```
lift-definition scex :: 's \ scene \Rightarrow 's \ upred \Rightarrow 's \ upred is \lambda \ a \ P \ b . \ \exists \ b'. \ P(b \oplus_S \ b' \ on \ a).
```

```
lift-definition scall :: 's \ scene \Rightarrow 's \ upred \Rightarrow 's \ upred is \lambda \ a \ P \ b. \ \forall \ b'. \ P(b \oplus_S \ b' \ on \ a).
```

We define the following operator which is dual of existential quantification. It hides the valuation of variables other than x through existential quantification.

```
lift-definition var-res :: '\alpha upred \Rightarrow ('a \Longrightarrow '\alpha) \Rightarrow '\alpha upred is \lambda P x b. \exists b'. P (b' \oplus_L b on x).
```

translations

```
-uvar-res P a \rightleftharpoons CONST var-res P a
```

We have to add a u subscript to the closure operator as I don't want to override the syntax for HOL lists (we'll be using them later).

```
lift-definition closure::'\alpha upred \Rightarrow '\beta upred ([-]_u) is \lambda P A. \forall A'. P A'.
```

```
lift-definition taut::'\alpha\ upred \Rightarrow bool\ (`-`) is \lambda\ P.\ \forall\ A.\ P\ A .
```

declare taut-def [uexpr-transfer-laws]

The following function extracts the characteristic set of a predicate

```
lift-definition upred-set :: 'a upred \Rightarrow 'a set (\llbracket - \rrbracket_p) is \lambda P. Collect P .
```

Configuration for UTP tactics

update-uexpr-rep-eq-thms — Reread *rep-eq* theorems.

declare utp-pred.taut.rep-eq [upred-defs]

adhoc-overloading

```
utrue true-upred and
ufalse false-upred and
unot not-upred and
uconj conj-upred and
udisj disj-upred and
uimpl impl and
uiff iff-upred and
uex ex and
uall all
```

syntax

```
-uneq :: logic \Rightarrow logic \Rightarrow logic \text{ (infixl } \neq_u 50)
-unmem :: ('a, '\alpha) \ uexpr \Rightarrow ('a \ set, '\alpha) \ uexpr \Rightarrow (bool, '\alpha) \ uexpr \text{ (infix } \notin_u 50)
```

translations

```
x \neq_u y == CONST \ unot \ (x =_u y)
x \notin_u A == CONST \ unot \ (CONST \ bop \ (\in) \ x \ A)
```

```
declare true-upred-def [upred-defs]
declare false-upred-def [upred-defs]
declare conj-upred-def [upred-defs]
declare disj-upred-def [upred-defs]
declare not-upred-def [upred-defs]
declare diff-upred-def [upred-defs]
declare par-subst-def [upred-defs]
declare subst-del-def [upred-defs]
declare unrest-usubst-def [upred-defs]
declare uexpr-defs [upred-defs]
lemma true-alt-def: true = «True»
  by (pred-auto)
lemma false-alt-def: false = «False»
  \mathbf{by} \ (pred-auto)
declare true-alt-def[THEN sym,simp]
declare false-alt-def [THEN sym,simp]
lemma upred-set-eqI: [p]_p = [q]_p \Longrightarrow p = q
  by (metis eq-iff mem-Collect-eq upred-ref-iff upred-set.rep-eq)
11.3
          Unrestriction Laws
\mathbf{lemma}\ \mathit{unrest-all}E \colon
  \llbracket \Sigma \sharp P; P = true \Longrightarrow Q; P = false \Longrightarrow Q \rrbracket \Longrightarrow Q
  by (pred-auto)
lemma unrest-true [unrest]: x \sharp true
  by (pred-auto)
lemma unrest-false [unrest]: x \sharp false
  by (pred-auto)
lemma unrest-conj [unrest]: \llbracket x \sharp (P :: '\alpha \ upred); x \sharp Q \rrbracket \Longrightarrow x \sharp P \land Q
  by (pred-auto)
lemma unrest-disj [unrest]: [x \sharp (P :: '\alpha \ upred); x \sharp Q] \implies x \sharp P \lor Q
  by (pred-auto)
lemma unrest-UINF [unrest]:
  \llbracket (\bigwedge i. \ x \ \sharp \ P(i)); (\bigwedge i. \ x \ \sharp \ Q(i)) \rrbracket \Longrightarrow x \ \sharp (\bigcap i \mid P(i) \cdot Q(i))
  by (pred-auto)
lemma unrest-USUP [unrest]:
  \llbracket (\bigwedge i. \ x \ \sharp \ P(i)); (\bigwedge i. \ x \ \sharp \ Q(i)) \ \rrbracket \Longrightarrow x \ \sharp (\bigsqcup i \ | \ P(i) \cdot Q(i))
  by (pred-auto)
lemma unrest-UINF-mem [unrest]:
  \llbracket (\bigwedge i. \ i \in A \Longrightarrow x \sharp P(i)) \rrbracket \Longrightarrow x \sharp (\bigcap i \in A \cdot P(i))
  by (pred-simp, metis)
lemma unrest-USUP-mem [unrest]:
  \llbracket (\bigwedge i. \ i \in A \Longrightarrow x \sharp P(i)) \ \rrbracket \Longrightarrow x \sharp (\bigsqcup i \in A \cdot P(i))
  by (pred-simp, metis)
```

```
lemma unrest-impl [unrest]: [\![ x \sharp P; x \sharp Q ]\!] \Longrightarrow x \sharp P \Rightarrow Q
 by (pred-auto)
lemma unrest-iff [unrest]: [x \sharp P; x \sharp Q] \implies x \sharp P \Leftrightarrow Q
 by (pred-auto)
lemma unrest-not [unrest]: x \sharp (P :: '\alpha \ upred) \Longrightarrow x \sharp (\neg P)
 by (pred-auto)
The sublens proviso can be thought of as membership below.
lemma unrest-ex-in [unrest]:
  \llbracket mwb\text{-}lens \ y; \ x \subseteq_L \ y \ \rrbracket \Longrightarrow x \ \sharp \ (\exists \ y \cdot P)
 \mathbf{by} \ (pred-auto)
declare sublens-refl [simp]
declare lens-plus-ub [simp]
declare lens-plus-right-sublens [simp]
declare comp-wb-lens [simp]
declare comp-mwb-lens [simp]
declare plus-mwb-lens [simp]
lemma unrest-ex-diff [unrest]:
 assumes x \bowtie y y \sharp P
 shows y \sharp (\exists x \cdot P)
 using assms\ lens-indep-comm
 by (rel-auto, fastforce+)
lemma unrest-all-in [unrest]:
  \llbracket mwb\text{-}lens\ y;\ x\subseteq_L\ y\ \rrbracket \Longrightarrow x\ \sharp\ (\forall\ y\cdot P)
  by (pred-auto)
lemma unrest-all-diff [unrest]:
 assumes x \bowtie y y \sharp P
 shows y \sharp (\forall x \cdot P)
 using assms
 by (pred-simp, simp-all add: lens-indep-comm)
lemma unrest-var-res-diff [unrest]:
 assumes x \bowtie y
 shows y \sharp (P \upharpoonright_v x)
 using assms by (pred-auto)
lemma unrest-var-res-in [unrest]:
  assumes mwb-lens x y \subseteq_L x y \sharp P
 shows y \sharp (P \upharpoonright_v x)
  using assms
 \mathbf{apply}\ (\mathit{pred-auto})
  apply fastforce
 apply (metis (no-types, lifting) mwb-lens-weak weak-lens.put-get)
 done
lemma unrest-shEx [unrest]:
 assumes \bigwedge y. x \sharp P(y)
 shows x \sharp (\exists y \cdot P(y))
```

```
using assms by (pred-auto)
```

```
lemma unrest-shAll [unrest]:
assumes \bigwedge y. x \not\equiv P(y)
shows x \not\equiv (\forall y \cdot P(y))
using assms by (pred-auto)
```

lemma unrest-closure [unrest]:
$$x \sharp [P]_u$$
 by $(pred-auto)$

11.4 Used-by laws

lemma
$$usedBy-not [unrest]$$
:
 $[\![x \natural P]\!] \Longrightarrow x \natural (\neg P)$
by $(pred-simp)$

lemma
$$usedBy\text{-}conj \ [unrest]$$
:
 $\llbracket x \natural P; x \natural Q \rrbracket \Longrightarrow x \natural (P \land Q)$
by $(pred\text{-}simp)$

lemma
$$usedBy\text{-}disj$$
 [$unrest$]:
 $\llbracket x \natural P; x \natural Q \rrbracket \Longrightarrow x \natural (P \lor Q)$
by $(pred\text{-}simp)$

lemma
$$usedBy\text{-}impl\ [unrest]$$
:
 $[\![x \natural P; x \natural Q]\!] \Longrightarrow x \natural (P \Rightarrow Q)$
by $(pred\text{-}simp)$

lemma
$$usedBy$$
-iff $[unrest]$:
 $[\![x \natural P; x \natural Q]\!] \Longrightarrow x \natural (P \Leftrightarrow Q)$
by $(pred\text{-}simp)$

11.5 Substitution Laws

Substitution is monotone

lemma subst-mono:
$$P \sqsubseteq Q \Longrightarrow (\sigma \dagger P) \sqsubseteq (\sigma \dagger Q)$$
 by $(pred\text{-}auto)$

lemma
$$subst-true$$
 [$usubst$]: $\sigma \dagger true = true$ **by** ($pred-auto$)

lemma
$$subst-false$$
 $[usubst]$: σ † $false = false$ **by** $(pred-auto)$

lemma
$$subst-not$$
 $[usubst]$: $\sigma \dagger (\neg P) = (\neg \sigma \dagger P)$ **by** $(pred-auto)$

lemma subst-impl [usubst]:
$$\sigma \dagger (P \Rightarrow Q) = (\sigma \dagger P \Rightarrow \sigma \dagger Q)$$
 by (pred-auto)

lemma subst-iff [usubst]:
$$\sigma \dagger (P \Leftrightarrow Q) = (\sigma \dagger P \Leftrightarrow \sigma \dagger Q)$$
 by (pred-auto)

lemma subst-disj [usubst]:
$$\sigma \dagger (P \lor Q) = (\sigma \dagger P \lor \sigma \dagger Q)$$

```
by (pred-auto)
lemma subst-conj [usubst]: \sigma \dagger (P \land Q) = (\sigma \dagger P \land \sigma \dagger Q)
  by (pred-auto)
lemma subst-sup [usubst]: \sigma \dagger (P \sqcap Q) = (\sigma \dagger P \sqcap \sigma \dagger Q)
  by (pred-auto)
lemma subst-inf [usubst]: \sigma \dagger (P \sqcup Q) = (\sigma \dagger P \sqcup \sigma \dagger Q)
  by (pred-auto)
by (pred-auto)
lemma subst-USUP [usubst]: \sigma \dagger (| \mid i \mid P(i) \cdot Q(i)) = (| \mid i \mid (\sigma \dagger P(i)) \cdot (\sigma \dagger Q(i)))
  by (pred-auto)
lemma subst-closure [usubst]: \sigma \dagger [P]_u = [P]_u
  by (pred-auto)
lemma subst-shEx [usubst]: \sigma \dagger (\exists x \cdot P(x)) = (\exists x \cdot \sigma \dagger P(x))
  by (pred-auto)
lemma subst-shAll [usubst]: \sigma \dagger (\forall x \cdot P(x)) = (\forall x \cdot \sigma \dagger P(x))
  by (pred-auto)
TODO: Generalise the quantifier substitution laws to n-ary substitutions
lemma subst-ex-same [usubst]:
  mwb-lens x \Longrightarrow \sigma(x \mapsto_s v) \dagger (\exists x \cdot P) = \sigma \dagger (\exists x \cdot P)
  by (pred-auto)
lemma subst-ex-same' [usubst]:
  mwb-lens x \Longrightarrow \sigma(x \mapsto_s v) \dagger (\exists \& x \cdot P) = \sigma \dagger (\exists \& x \cdot P)
  by (pred-auto)
lemma subst-ex-indep [usubst]:
  assumes x \bowtie y y \sharp v
  shows (\exists y \cdot P)[v/x] = (\exists y \cdot P[v/x])
  using assms
  apply (pred-auto)
  \mathbf{using}\ \mathit{lens-indep-comm}\ \mathbf{apply}\ \mathit{fastforce} +
  done
lemma subst-ex-unrest [usubst]:
  x \sharp_s \sigma \Longrightarrow \sigma \dagger (\exists x \cdot P) = (\exists x \cdot \sigma \dagger P)
  by (pred-auto)
lemma subst-all-same [usubst]:
  mwb-lens x \Longrightarrow \sigma(x \mapsto_s v) \dagger (\forall x \cdot P) = \sigma \dagger (\forall x \cdot P)
  by (simp add: id-subst subst-unrest unrest-all-in)
lemma subst-all-indep [usubst]:
  assumes x \bowtie y y \sharp v
  shows (\forall y \cdot P) \llbracket v/x \rrbracket = (\forall y \cdot P \llbracket v/x \rrbracket)
  using assms
```

```
by (pred-simp, simp-all add: lens-indep-comm)
lemma msubst-true [usubst]: true[x 	o v] = true
  by (pred-auto)
lemma msubst-false [usubst]: false [x \rightarrow v] = false
  by (pred-auto)
lemma msubst-not [usubst]: (\neg P(x))[x \rightarrow v] = (\neg ((P x)[x \rightarrow v]))
  by (pred-auto)
lemma msubst-not-2 [usubst]: (\neg P x y) \llbracket (x,y) \rightarrow v \rrbracket = (\neg ((P x y) \llbracket (x,y) \rightarrow v \rrbracket))
  by (pred-auto)+
lemma msubst-disj [usubst]: (P(x) \lor Q(x))[x \to v] = ((P(x))[x \to v]) \lor (Q(x))[x \to v]
  by (pred-auto)
\mathbf{lemma} \ msubst-disj-2 \ [usubst]: (P \ x \ y \lor Q \ x \ y) \llbracket (x,y) \to v \rrbracket = ((P \ x \ y) \llbracket (x,y) \to v \rrbracket \lor (Q \ x \ y) \llbracket (x,y) \to v \rrbracket
  by (pred-auto)+
lemma msubst-conj [usubst]: (P(x) \land Q(x))[x \rightarrow v] = ((P(x))[x \rightarrow v] \land (Q(x))[x \rightarrow v])
  by (pred-auto)
\mathbf{lemma} \ \textit{msubst-conj-2} \ [\textit{usubst}]: (P \ x \ y \land Q \ x \ y) \llbracket (x,y) \rightarrow v \rrbracket = ((P \ x \ y) \llbracket (x,y) \rightarrow v \rrbracket \land (Q \ x \ y) \llbracket (x,y) \rightarrow v \rrbracket)
  by (pred-auto)+
lemma msubst-implies [usubst]:
  (P x \Rightarrow Q x)\llbracket x \rightarrow v \rrbracket = ((P x)\llbracket x \rightarrow v \rrbracket \Rightarrow (Q x)\llbracket x \rightarrow v \rrbracket)
  by (pred-auto)
lemma msubst-implies-2 [usubst]:
  (P \ x \ y \Rightarrow Q \ x \ y)\llbracket(x,y) \rightarrow v\rrbracket = ((P \ x \ y)\llbracket(x,y) \rightarrow v\rrbracket \Rightarrow (Q \ x \ y)\llbracket(x,y) \rightarrow v\rrbracket)
  by (pred-auto)+
lemma msubst-shAll [usubst]:
  (\forall x \cdot P x y)[y \rightarrow v] = (\forall x \cdot (P x y)[y \rightarrow v])
  by (pred-auto)
lemma msubst-shAll-2 [usubst]:
  (\forall x \cdot P \ x \ y \ z) \llbracket (y,z) \rightarrow v \rrbracket = (\forall x \cdot (P \ x \ y \ z) \llbracket (y,z) \rightarrow v \rrbracket)
  by (pred-auto)+
11.6
            Sandbox for conjectures
definition utp-sandbox :: '\alpha upred \Rightarrow bool (TRY'(-')) where
TRY(P) = (P = undefined)
translations
  P <= CONST \ utp\mbox{-}sandbox \ P
no-utp-lift shEx shAll unot uconj udisj uimpl uiff utrue ufalse UINF USUP refineBy
```

end

12 Alphabet Manipulation

```
theory utp-alphabet
imports
utp-pred utp-usedby
begin
```

12.1 Preliminaries

Alphabets are simply types that characterise the state-space of an expression. Thus the Isabelle type system ensures that predicates cannot refer to variables not in the alphabet as this would be a type error. Often one would like to add or remove additional variables, for example if we wish to have a predicate which ranges only a smaller state-space, and then lift it into a predicate over a larger one. This is useful, for example, when dealing with relations which refer only to undashed variables (conditions) since we can use the type system to ensure well-formedness.

In this theory we will set up operators for extending and contracting and alphabet. We first set up a theorem attribute for alphabet laws and a tactic.

named-theorems alpha

```
method alpha-tac = (simp \ add: \ alpha \ unrest)?
```

12.2 Alphabet Extrusion

Alter an alphabet by application of a lens that demonstrates how the smaller alphabet (β) injects into the larger alphabet (α) . This changes the type of the expression so it is parametrised over the large alphabet. We do this by using the lens get function to extract the smaller state binding, and then apply this to the expression.

We call this "extrusion" rather than "extension" because if the extension lens is bijective then it does not extend the alphabet. Nevertheless, it does have an effect because the type will be different which can be useful when converting predicates with equivalent alphabets.

```
lift-definition aext:: ('a, '\beta) \ uexpr \Rightarrow ('\beta \Longrightarrow '\alpha) \Rightarrow ('a, '\alpha) \ uexpr \ (infixr \oplus_p \ 95) is \lambda \ P \ x \ b. \ P \ (get_x \ b).
```

update-uexpr-rep-eq-thms

no-utp-lift aext (1)

Next we prove some of the key laws. Extending an alphabet twice is equivalent to extending by the composition of the two lenses.

```
lemma aext-twice: (P \oplus_p a) \oplus_p b = P \oplus_p (a;_L b)
by (pred-auto)
```

The bijective Σ lens identifies the source and view types. Thus an alphabet extension using this has no effect.

```
lemma aext-id [simp]: P \oplus_p 1_L = P by (pred-auto)
```

Literals do not depend on any variables, and thus applying an alphabet extension only alters the predicate's type, and not its valuation.

```
lemma aext-lit [simp]: \ll v \gg \oplus_p \ a = \ll v \gg by (pred-auto)
```

```
lemma aext-zero [simp]: \theta \oplus_p a = \theta
 by (pred-auto)
lemma aext-one [simp]: 1 \oplus_p a = 1
  by (pred-auto)
lemma aext-numeral [simp]: numeral n \oplus_p a = numeral n
 by (pred-auto)
lemma aext-true [simp]: true \oplus_p a = true
  \mathbf{by} \ (pred-auto)
lemma aext-false [simp]: false \bigoplus_{p} a = false
 by (pred-auto)
lemma aext-not [alpha]: (\neg P) \oplus_p x = (\neg (P \oplus_p x))
 by (pred-auto)
lemma aext-and [alpha]: (P \land Q) \oplus_p x = (P \oplus_p x \land Q \oplus_p x)
  by (pred-auto)
lemma aext-or [alpha]: (P \lor Q) \oplus_p x = (P \oplus_p x \lor Q \oplus_p x)
 by (pred-auto)
lemma aext-imp [alpha]: (P \Rightarrow Q) \oplus_p x = (P \oplus_p x \Rightarrow Q \oplus_p x)
  by (pred-auto)
lemma aext-iff [alpha]: (P \Leftrightarrow Q) \oplus_{p} x = (P \oplus_{p} x \Leftrightarrow Q \oplus_{p} x)
  by (pred-auto)
lemma aext-shEx [alpha]: (\exists x \cdot P x) \oplus_p a = (\exists x \cdot P x \oplus_p a)
 by (rel-auto)
lemma aext-shAll [alpha]: (\forall x \cdot P(x)) \oplus_p a = (\forall x \cdot P(x) \oplus_p a)
  by (pred-auto)
lemma aext-UINF-ind [alpha]: ( \bigcap x \cdot P x) \oplus_p a = ( \bigcap x \cdot (P x \oplus_p a) )
 by (pred-auto)
lemma aext-UINF-ind-2 [alpha]: ([ (i, j) \cdot P \ i \ j) \oplus_p a = ([ (i, j) \cdot P \ i \ j \oplus_p a)
  by (rel-auto)
lemma aext-UINF-mem [alpha]: (\bigcap x \in A \cdot P x) \oplus_p a = (\bigcap x \in A \cdot (P x \oplus_p a))
  by (pred-auto)
Alphabet extension distributes through the function liftings.
lemma aext-uop [alpha]: uop f u \oplus_p a = uop f (u \oplus_p a)
 by (pred-auto)
lemma aext-bop [alpha]: bop f u v \oplus_p a = bop f (u \oplus_p a) (v \oplus_p a)
 by (pred-auto)
lemma aext-trop [alpha]: trop f u v w \oplus_p a = trop f (u \oplus_p a) (v \oplus_p a) (w \oplus_p a)
  by (pred-auto)
```

```
lemma aext-qtop [alpha]: qtop f u v w x \oplus_p a = qtop f (u \oplus_p a) (v \oplus_p a) (w \oplus_p a) (x \oplus_p a)
 by (pred-auto)
lemma aext-plus [alpha]:
  (x + y) \oplus_{p} a = (x \oplus_{p} a) + (y \oplus_{p} a)
 by (pred-auto)
lemma aext-minus [alpha]:
  (x-y) \oplus_p a = (x \oplus_p a) - (y \oplus_p a)
 by (pred-auto)
lemma aext-uminus [simp]:
  (-x) \oplus_p a = -(x \oplus_p a)
 by (pred-auto)
lemma aext-times [alpha]:
  (x * y) \oplus_p a = (x \oplus_p a) * (y \oplus_p a)
 by (pred-auto)
lemma aext-divide [alpha]:
  (x / y) \oplus_p a = (x \oplus_p a) / (y \oplus_p a)
 by (pred-auto)
```

Extending a variable expression over x is equivalent to composing x with the alphabet, thus effectively yielding a variable whose source is the large alphabet.

```
lemma aext\text{-}var\ [alpha]:
var\ x\ \oplus_p\ a = var\ (x\ ;_L\ a)
by (pred\text{-}auto)

lemma aext\text{-}ulambda\ [alpha]: ((\lambda\ x\ \cdot\ P(x))\ \oplus_p\ a) = (\lambda\ x\ \cdot\ P(x)\ \oplus_p\ a)
by (pred\text{-}auto)

Alphabet extension is monotonic and continuous.

lemma aext\text{-}mono: P\sqsubseteq Q\Longrightarrow P\oplus_p\ a\sqsubseteq Q\oplus_p\ a
by (pred\text{-}auto)
```

lemma aext-cont [alpha]: vwb-lens $a \Longrightarrow (\bigcap A) \oplus_p a = (\bigcap P \in A. P \oplus_p a)$

If a variable is unrestricted in a predicate, then the extended variable is unrestricted in the predicate with an alphabet extension.

```
lemma unrest-aext [unrest]:

\llbracket mwb\text{-lens } a; x \sharp p \rrbracket \implies unrest (x ;_L a) (p \oplus_p a)
by (transfer, simp add: lens-comp-def)
```

If a given variable (or alphabet) b is independent of the extension lens a, that is, it is outside the original state-space of p, then it follows that once p is extended by a then b cannot be restricted.

```
lemma unrest-aext-indep [unrest]: a \bowtie b \Longrightarrow b \sharp (p \oplus_p a) by pred-auto
```

by (pred-simp)

12.3 Expression Alphabet Restriction

Restrict an alphabet by application of a lens that demonstrates how the smaller alphabet (β) injects into the larger alphabet (α) . Unlike extension, this operation can lose information if the expressions refers to variables in the larger alphabet.

```
lift-definition arestr :: ('a, '\alpha) \ uexpr \Rightarrow ('\beta \Longrightarrow '\alpha) \Rightarrow ('a, '\beta) \ uexpr \ (infixr \upharpoonright_e 90)
is \lambda P x b. P (create_x b).
no-utp-lift arestr (1)
update-uexpr-rep-eq-thms
lemma arestr-id [simp]: P \upharpoonright_e 1_L = P
 by (pred-auto)
lemma arestr-aext [simp]: mwb-lens a \Longrightarrow (P \oplus_p a) \upharpoonright_e a = P
 by (pred-auto)
If an expression's alphabet can be divided into two disjoint sections and the expression does
not depend on the second half then restricting the expression to the first half is loss-less.
lemma aext-arestr [alpha]:
 assumes mwb-lens a bij-lens (a +_L b) a \bowtie b b \sharp P
 shows (P \upharpoonright_e a) \oplus_p a = P
proof -
  from assms(2) have 1_L \subseteq_L a +_L b
   by (simp add: bij-lens-equiv-id lens-equiv-def)
 with assms(1,3,4) show ?thesis
   apply (auto simp add: id-lens-def lens-plus-def sublens-def lens-comp-def prod.case-eq-if)
   apply (pred-simp)
   apply (metis lens-indep-comm mwb-lens-weak weak-lens.put-get)
   done
qed
lemma aext-arestr-symlens [alpha]:
 assumes sym-lens a unrest C_a P
 shows (P \upharpoonright_e \mathcal{V}_a) \oplus_p \mathcal{V}_a = P
 using assms
 by (rel-auto', metis (no-types, lifting) lens-indep-def sym-lens.indep-region-coregion sym-lens.put-region-coregion-cover)
Alternative formulation of the above law using used-by instead of unrestriction.
lemma aext-arestr' [alpha]:
 assumes a 
i P
 shows (P \upharpoonright_e a) \oplus_p a = P
 by (rel-simp, metis assms lens-override-def usedBy-uexpr.rep-eq)
lemma arestr-lit [simp]: \ll v \gg \upharpoonright_e a = \ll v \gg
 by (pred-auto)
lemma arestr-zero [simp]: \theta \upharpoonright_e a = \theta
 by (pred-auto)
lemma arestr-one [simp]: 1 \upharpoonright_e a = 1
 by (pred-auto)
lemma arestr-numeral [simp]: numeral n \upharpoonright_e a = numeral n
```

```
by (pred-auto)
lemma arestr-var [simp]:
  var x \upharpoonright_e a = var (x /_L a)
  by (pred-auto)
lemma arestr-true [simp]: true \upharpoonright_e a = true
  by (pred-auto)
lemma arestr-false [simp]: false \upharpoonright_e a = false
  by (pred-auto)
lemma arestr-not [alpha]: (\neg P) \upharpoonright_e a = (\neg (P \upharpoonright_e a))
  by (pred-auto)
lemma arestr-and [alpha]: (P \wedge Q) \upharpoonright_e x = (P \upharpoonright_e x \wedge Q \upharpoonright_e x)
  by (pred-auto)
lemma arestr-or [alpha]: (P \lor Q) \upharpoonright_e x = (P \upharpoonright_e x \lor Q \upharpoonright_e x)
  by (pred-auto)
lemma arestr-imp [alpha]: (P \Rightarrow Q) \upharpoonright_e x = (P \upharpoonright_e x \Rightarrow Q \upharpoonright_e x)
  by (pred-auto)
lemma arestr-eq [alpha]: (P =_u Q) \upharpoonright_e x = (P \upharpoonright_e x =_u Q \upharpoonright_e x)
  by (pred-auto)
lemma ares-UINF-ind [alpha]: (\bigcap \ i \cdot P \ i) \restriction_e \ a = (\bigcap \ i \cdot P \ i \ \restriction_e \ a)
  by (rel-auto)
lemma ares-UINF-ind-2 [alpha]: (\bigcap (i, j) \cdot P \ i \ j) \upharpoonright_e a = (\bigcap (i, j) \cdot P \ i \ j \upharpoonright_e a)
  by (rel-auto)
```

12.4 Predicate Alphabet Restriction

In order to restrict the variables of a predicate, we also need to existentially quantify away the other variables. We can't do this at the level of expressions, as quantifiers are not applicable here. Consequently, we need a specialised version of alphabet restriction for predicates. It both restricts the variables using quantification and then removes them from the alphabet type using expression restriction.

```
definition upred-ares :: '\alpha upred \Rightarrow ('\beta \Longrightarrow '\alpha) \Rightarrow '\beta upred where [upred-defs]: upred-ares P a = (P \upharpoonright_v a) \upharpoonright_e a

no-utp-lift upred-ares (1)

syntax

-upred-ares :: logic \Rightarrow salpha \Rightarrow logic (infixl \upharpoonright_p 90)

translations

-upred-ares P a == CONST upred-ares P a

lemma upred-aext-ares [alpha]:

vwb-lens a \Longrightarrow P \oplus_p a \upharpoonright_p a = P

by (pred-auto)
```

```
lemma upred-ares-aext [alpha]:
  by (pred-auto)
lemma upred-arestr-lit [simp]: \ll v \gg \upharpoonright_p a = \ll v \gg
 by (pred-auto)
lemma upred-arestr-true [simp]: true \upharpoonright_p a = true
 by (pred-auto)
lemma upred-arestr-false [simp]: false \upharpoonright_p a = false
 by (pred-auto)
lemma upred-arestr-or [alpha]: (P \lor Q) \upharpoonright_{p} x = (P \upharpoonright_{p} x \lor Q \upharpoonright_{p} x)
 by (pred-auto)
12.5
         Alphabet Lens Laws
lemma alpha-in-var [alpha]: x ;_L fst_L = in-var x
 by (simp add: in-var-def)
lemma alpha-out-var [alpha]: x ;_L snd_L = out-var x
 by (simp add: out-var-def)
lemma in-var-prod-lens [alpha]:
  wb-lens Y \Longrightarrow in-var x ;_L (X \times_L Y) = in-var (x ;_L X)
 by (simp add: in-var-def prod-as-plus fst-lens-plus lens-comp-assoc[THEN sym] del: lens-comp-assoc)
lemma out-var-prod-lens [alpha]:
  wb-lens X \Longrightarrow out\text{-}var\ x\ ;_L\ (X\times_L\ Y) = out\text{-}var\ (x\ ;_L\ Y)
 apply (simp add: out-var-def prod-as-plus lens-comp-assoc [THEN sym] del: lens-comp-assoc)
 apply (subst snd-lens-plus)
 using comp-wb-lens fst-vwb-lens vwb-lens-wb apply blast
  apply (simp add: alpha-in-var alpha-out-var)
 apply (simp)
 done
12.6
         Substitution Alphabet Extension
This allows us to extend the alphabet of a substitution, in a similar way to expressions.
lift-definition subst-aext :: '\alpha usubst \Rightarrow ('\alpha \Longrightarrow '\beta) \Rightarrow '\beta usubst (infix \oplus_s 65)
is \lambda \sigma x. (\lambda s. put_x s (\sigma (get_x s))).
no-utp-lift subst-aext (1)
update-uexpr-rep-eq-thms
lemma id-subst-ext [usubst]:
  wb-lens x \Longrightarrow id_s \oplus_s x = id_s
 by pred-auto
lemma upd-subst-ext [alpha]:
  vwb-lens x \Longrightarrow \sigma(y \mapsto_s v) \oplus_s x = (\sigma \oplus_s x)(\&x:y \mapsto_s v \oplus_p x)
 by pred-auto
```

```
lemma apply-subst-ext [alpha]:
  vwb-lens x \Longrightarrow (\sigma \dagger e) \oplus_{p} x = (\sigma \oplus_{s} x) \dagger (e \oplus_{p} x)
  by (pred-auto)
lemma aext-upred-eq [alpha]:
  ((e =_u f) \oplus_p a) = ((e \oplus_p a) =_u (f \oplus_p a))
  by (pred-auto)
lemma subst-aext-comp [usubst]:
  vwb-lens a \Longrightarrow (\sigma \oplus_s a) \circ_s (\varrho \oplus_s a) = (\sigma \circ_s \varrho) \oplus_s a
  by pred-auto
lemma subst-arestr [usubst]: vwb-lens a \Longrightarrow \sigma \dagger (P \upharpoonright_e a) = (((\sigma \oplus_s a) \dagger P) \upharpoonright_e a)
  by (pred-auto)
            Substitution Alphabet Restriction
```

12.7

This allows us to reduce the alphabet of a substitution, in a similar way to expressions.

```
lift-definition subst-ares :: '\alpha usubst \Rightarrow ('\beta \Longrightarrow '\alpha) \Rightarrow '\beta usubst (infix \uparrow_s 65)
is \lambda \sigma x. (\lambda s. get_x (\sigma (create_x s))).
no-utp-lift subst-ares (1)
update-uexpr-rep-eq-thms
lemma id-subst-res [usubst]:
  mwb-lens x \implies id_s \upharpoonright_s x = id_s
  by pred-auto
```

```
lemma upd-subst-res [alpha]:
  mwb-lens x \Longrightarrow \sigma(\&x:y \mapsto_s v) \upharpoonright_s x = (\sigma \upharpoonright_s x)(\&y \mapsto_s v \upharpoonright_e x)
  by (pred-auto)
lemma subst-ext-res [usubst]:
```

```
by (pred-auto)
lemma unrest-subst-alpha-ext [unrest]:
  x \bowtie y \Longrightarrow x \sharp_s (\sigma \oplus_s y)
 by (pred-simp robust, metis lens-indep-def)
end
```

Lifting Expressions 13

mwb-lens $x \Longrightarrow (\sigma \oplus_s x) \upharpoonright_s x = \sigma$

```
theory utp-lift
 imports
   utp-alphabet
begin
```

Lifting definitions 13.1

We define operators for converting an expression to and from a relational state space with the help of alphabet extrusion and restriction. In general throughout Isabelle/UTP we adopt the

notation $\lceil P \rceil$ with some subscript to denote lifting an expression into a larger alphabet, and $\lfloor P \rfloor$ for dropping into a smaller alphabet.

The following two functions lift and drop an expression, respectively, whose alphabet is $'\alpha$, into a product alphabet $'\alpha \times '\beta$. This allows us to deal with expressions which refer only to undashed variables, and use the type-system to ensure this.

```
abbreviation lift-pre :: ('a, '\alpha) uexpr \Rightarrow ('a, '\alpha \times '\beta) uexpr ([-]<) where \lceil P \rceil_{<} \equiv P \oplus_{p} fst_{L} notation lift-pre (-\left\ [999] 999)
abbreviation drop-pre :: ('a, '\alpha \times '\beta) uexpr \Rightarrow ('a, '\alpha) uexpr ([-]<) where \lfloor P \rfloor_{<} \equiv P \upharpoonright_{e} fst_{L}
```

The following two functions lift and drop an expression, respectively, whose alphabet is β , into a product alphabet $\alpha \times \beta$. This allows us to deal with expressions which refer only to dashed variables.

```
abbreviation lift-post :: ('a, '\beta) uexpr \Rightarrow ('a, '\alpha \times '\beta) uexpr (\[ \cdot - \] \]) where [P]_> \equiv P \oplus_p snd_L
notation lift-post (-> [999] 999)
abbreviation drop-post :: ('a, '\alpha \times '\beta) uexpr \Rightarrow ('a, '\beta) uexpr (\[ \cdot - \] \]) where [P]_> \equiv P \upharpoonright_e snd_L
```

13.2 Lifting Laws

With the help of our alphabet laws, we can prove some intuitive laws about alphabet lifting. For example, lifting variables yields an unprimed or primed relational variable expression, respectively.

```
lemma lift-pre-var [simp]:

\lceil var \ x \rceil < = \$x

by (alpha-tac)

lemma lift-post-var [simp]:

\lceil var \ x \rceil > = \$x'

by (alpha-tac)
```

13.3 Substitution Laws

```
lemma pre-var-subst [usubst]: \sigma(\$x \mapsto_s \ll v \gg) \uparrow \lceil P \rceil_{<} = \sigma \uparrow \lceil P \llbracket \ll v \gg / \&x \rrbracket \rceil_{<} by (pred-simp)
```

13.4 Unrestriction laws

Crucially, the lifting operators allow us to demonstrate unrestriction properties. For example, we can show that no primed variable is restricted in an expression over only the first element of the state-space product type.

```
lemma unrest-dash-var-pre [unrest]:
fixes x :: ('a \Longrightarrow '\alpha)
shows x' \not\models [p]_{<}
by (pred-auto)
```

end

14 Predicate Calculus Laws

theory utp-pred-laws imports utp-pred begin

14.1 Propositional Logic

lemma taut-shAll-intro-2:

Showing that predicates form a Boolean Algebra (under the predicate operators as opposed to the lattice operators) gives us many useful laws.

```
interpretation boolean-algebra diff-upred not-upred conj-upred (\leq) (<)
  disj-upred false-upred true-upred
  by (unfold-locales; pred-auto)
lemma taut-true [simp]: 'true'
  by (pred-auto)
lemma taut-false [simp]: 'false' = False
  by (pred-auto)
lemma taut-conj: 'A \wedge B' = (A' \wedge B')
  by (rel-auto)
lemma taut-conj-elim [elim!]:
  \llbracket \ 'A \land B'; \llbracket \ 'A'; \ 'B' \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P
  by (rel-auto)
lemma taut-refine-impl: [\![ Q \sqsubseteq P; `P` ]\!] \Longrightarrow `Q`
  by (rel-auto)
lemma taut-shEx-elim:
  \llbracket \ \ `(\exists \ x \cdot P \ x)`; \bigwedge \ x. \ \Sigma \ \sharp \ P \ x; \bigwedge \ x. \ `P \ x` \Longrightarrow \ Q \ \ \rrbracket \Longrightarrow Q
  \mathbf{by} (rel-blast)
Linking refinement and HOL implication
lemma refine-prop-intro:
  assumes \Sigma \ \sharp \ P \ \Sigma \ \sharp \ Q \ `Q` \Longrightarrow `P`
  shows P \sqsubseteq Q
  using assms
  by (pred-auto)
lemma taut-not: \Sigma \sharp P \Longrightarrow (\neg P') = \neg P'
  by (rel-auto)
\mathbf{lemma}\ taut\text{-}shAll\text{-}intro:
  \forall x. \ `P x' \Longrightarrow \ \forall x \cdot P x'
  by (rel-auto)
```

$$\forall x y. `P x y` \Longrightarrow \forall (x, y) \cdot P x y`$$

$$\mathbf{by} (rel-auto)$$

$$\mathbf{lemma} \ taut\text{-}impl\text{-}intro:$$

 $\llbracket \Sigma \sharp P; 'P' \Longrightarrow 'Q' \rrbracket \Longrightarrow 'P \Rightarrow Q'$

lemma upred-eval-taut:

by (rel-auto)

$$P[\langle b \rangle / \& \mathbf{v}] = [P]_e b$$

by $(pred-auto)$

lemma
$$refBy\text{-}order$$
: $P \sqsubseteq Q = `Q \Rightarrow P`$ **by** $(pred\text{-}auto)$

lemma conj-idem [simp]:
$$((P::'\alpha \ upred) \land P) = P$$

by $(pred\text{-}auto)$

lemma disj-idem [simp]:
$$((P::'\alpha \ upred) \lor P) = P$$
 by $(pred\text{-}auto)$

lemma conj-comm:
$$((P::'\alpha \ upred) \land Q) = (Q \land P)$$

by $(pred-auto)$

lemma disj-comm:
$$((P::'\alpha \ upred) \lor Q) = (Q \lor P)$$
 by $(pred-auto)$

lemma conj-subst:
$$P = R \Longrightarrow ((P::'\alpha \ upred) \land Q) = (R \land Q)$$
 by $(pred\text{-}auto)$

lemma disj-subst:
$$P = R \Longrightarrow ((P :: '\alpha \ upred) \lor Q) = (R \lor Q)$$
 by $(pred\text{-}auto)$

lemma conj-assoc:(((
$$P$$
::' α upred) \wedge Q) \wedge S) = ($P \wedge (Q \wedge S)$) **by** (pred-auto)

lemma
$$disj$$
- $assoc$: $(((P::'\alpha upred) \lor Q) \lor S) = (P \lor (Q \lor S))$ **by** $(pred$ - $auto)$

lemma
$$conj$$
- $disj$ - abs : $((P::'\alpha upred) \land (P \lor Q)) = P$ **by** $(pred$ - $auto)$

lemma
$$disj\text{-}conj\text{-}abs:((P::'\alpha \ upred) \lor (P \land Q)) = P$$
 by $(pred\text{-}auto)$

lemma conj-disj-distr:
$$((P::'\alpha \ upred) \land (Q \lor R)) = ((P \land Q) \lor (P \land R))$$
 by $(pred\text{-}auto)$

lemma disj-conj-distr:((P::'
$$\alpha$$
 upred) \vee (Q \wedge R)) = ((P \vee Q) \wedge (P \vee R)) by (pred-auto)

lemma
$$true$$
- $disj$ - $zero$ $[simp]$: $(P \lor true) = true$ $(true \lor P) = true$ **by** $(pred$ - $auto)$ +

lemma true-conj-zero [simp]:

```
(P \land false) = false \ (false \land P) = false
by (pred-auto)+
```

lemma false-sup [simp]: false $\sqcap P = P P \sqcap false = P$ by (pred-auto)+

lemma true-inf [simp]: true $\sqcup P = P P \sqcup true = P$ by (pred-auto)+

lemma imp-vacuous [simp]: (false $\Rightarrow u$) = true **by** (pred-auto)

lemma $imp\text{-}true \ [simp]: (p \Rightarrow true) = true$ **by** (pred-auto)

lemma true-imp [simp]: $(true \Rightarrow p) = p$ **by** (pred-auto)

lemma impl-mp1 [simp]: $(P \land (P \Rightarrow Q)) = (P \land Q)$ by (pred-auto)

lemma impl-mp2 [simp]: $((P \Rightarrow Q) \land P) = (Q \land P)$ by (pred-auto)

lemma impl-adjoin: $((P \Rightarrow Q) \land R) = ((P \land R \Rightarrow Q \land R) \land R)$ by (pred-auto)

 $\mathbf{lemma}\ impl\text{-}refine\text{-}intro:$

$$\llbracket Q_1 \sqsubseteq P_1; P_2 \sqsubseteq (P_1 \land Q_2) \rrbracket \Longrightarrow (P_1 \Rightarrow P_2) \sqsubseteq (Q_1 \Rightarrow Q_2)$$
 by $(pred\text{-}auto)$

lemma spec-refine:

$$Q \sqsubseteq (P \land R) \Longrightarrow (P \Rightarrow Q) \sqsubseteq R$$

by $(rel-auto)$

lemma impl-disjI: $\llbracket \ `P \Rightarrow R'; \ `Q \Rightarrow R' \ \rrbracket \Longrightarrow \ `(P \lor Q) \Rightarrow R'$ by (rel-auto)

lemma conditional-iff:

$$(P \Rightarrow Q) = (P \Rightarrow R) \longleftrightarrow P \Rightarrow (Q \Leftrightarrow R)$$

by $(pred-auto)$

lemma p-and-not-p [simp]: $(P \land \neg P) = false$ **by** (pred-auto)

lemma p-or-not-p [simp]: $(P \lor \neg P) = true$ **by** (pred-auto)

lemma p-imp-p [simp]: $(P \Rightarrow P) = true$ **by** (pred-auto)

lemma p-iff-p [simp]: $(P \Leftrightarrow P) = true$ **by** (pred-auto)

lemma p-imp-false [simp]: $(P \Rightarrow false) = (\neg P)$

```
by (pred-auto)
```

lemma not-conj-deMorgans [simp]: $(\neg ((P::'\alpha \ upred) \land Q)) = ((\neg P) \lor (\neg Q))$ by (pred-auto)

lemma not-disj-deMorgans [simp]: $(\neg ((P::'\alpha \ upred) \lor Q)) = ((\neg P) \land (\neg Q))$ by (pred-auto)

lemma conj-disj-not-abs [simp]: $((P::'\alpha \ upred) \land ((\neg P) \lor Q)) = (P \land Q)$ by (pred-auto)

 $\mathbf{lemma}\ subsumption 1:$

$$P \Rightarrow Q' \Longrightarrow (P \lor Q) = Q$$

by $(pred\text{-}auto)$

lemma subsumption 2:

$$Q \Rightarrow P' \Longrightarrow (P \lor Q) = P$$

by $(pred\text{-}auto)$

lemma neg-conj-cancel1: $(\neg P \land (P \lor Q)) = (\neg P \land Q :: '\alpha \ upred)$ **by** (pred-auto)

lemma neg-conj-cancel2: $(\neg Q \land (P \lor Q)) = (\neg Q \land P :: '\alpha \ upred)$ **by** (pred-auto)

lemma double-negation [simp]: $(\neg \neg (P::'\alpha \ upred)) = P$ **by** (pred-auto)

lemma true-not-false [simp]: true \neq false false \neq true **by** (pred-auto)+

lemma closure-conj-distr: $([P]_u \wedge [Q]_u) = [P \wedge Q]_u$ **by** (pred-auto)

lemma closure-imp-distr: $(P \Rightarrow Q)_u \Rightarrow [P]_u \Rightarrow [Q]_u$ by (pred-auto)

lemma true-iff [simp]: $(P \Leftrightarrow true) = P$ **by** (pred-auto)

 $\mathbf{lemma}\ \mathit{taut\text{-}\mathit{iff}\text{-}\mathit{eq}}\colon$

$$P \Leftrightarrow Q' \longleftrightarrow (P = Q)$$

by (pred-auto)

lemma impl-alt-def: $(P \Rightarrow Q) = (\neg P \lor Q)$ **by** (pred-auto)

14.2 Lattice laws

lemma uinf-or:

fixes
$$P \ Q :: '\alpha \ upred$$

shows $(P \sqcap Q) = (P \lor Q)$
by $(pred\text{-}auto)$

lemma usup-and:

fixes $P Q :: '\alpha \ upred$

```
shows (P \sqcup Q) = (P \land Q)
 by (pred-auto)
lemma UINF-alt-def:
  (\prod i \mid A(i) \cdot P(i)) = (\prod i \cdot A(i) \wedge P(i))
 by (rel-auto)
lemma USUP-true [simp]: ( | P | F(P) \cdot true ) = true 
 by (pred-auto)
lemma UINF-mem-UNIV [simp]: (\bigcap x \in UNIV \cdot P(x)) = (\bigcap x \cdot P(x))
 \mathbf{by} \ (pred-auto)
lemma USUP-mem-UNIV [simp]: (| | x \in UNIV \cdot P(x)) = (| | x \cdot P(x))
 by (pred-auto)
lemma USUP-false [simp]: (| | i \cdot false) = false
 by (pred-simp)
lemma USUP-mem-false [simp]: I \neq \{\} \Longrightarrow (\bigsqcup i \in I \cdot false) = false
 by (rel\text{-}simp)
lemma USUP-where-false [simp]: (\bigcup i \mid false \cdot P(i)) = true
 by (rel-auto)
lemma UINF-true [simp]: (   i \cdot true ) = true
 by (pred\text{-}simp)
lemma UINF-ind-const [simp]:
 (\prod i \cdot P) = P
 by (rel-auto)
lemma UINF-mem-true [simp]: A \neq \{\} \Longrightarrow (\bigcap i \in A \cdot true) = true
 by (pred-auto)
by (pred-auto)
lemma UINF-where-false [simp]: (   | false \cdot P(i) ) = false
 by (rel-auto)
lemma UINF-cong-eq:
  \llbracket \bigwedge x. \ P_1(x) = P_2(x); \bigwedge x. \ `P_1(x) \Rightarrow Q_1(x) =_u Q_2(x)` \ \rrbracket \Longrightarrow
       (   x \mid P_1(x) \cdot Q_1(x) ) = (  x \mid P_2(x) \cdot Q_2(x) )
by (unfold UINF-def, pred-simp, metis)
lemma UINF-as-Sup: (   P \in \mathcal{P} \cdot P ) =   \mathcal{P} 
 apply (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq Sup-uexpr-def)
 apply (pred-simp)
 apply (rule cong[of Sup])
  apply (auto)
 done
lemma UINF-as-Sup-collect: (\bigcap P \in A \cdot f(P)) = (\bigcap P \in A. f(P))
 apply (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq Sup-uexpr-def)
```

```
apply (pred-simp)
 apply (simp add: Setcompr-eq-image)
lemma UINF-as-Sup-collect': (\bigcap P \cdot f(P)) = (\bigcap P \cdot f(P))
 apply (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq Sup-uexpr-def)
 apply (pred-simp)
 apply (simp add: full-SetCompr-eq)
 done
lemma UINF-as-Sup-image: (\bigcap P \mid \ll P \gg \in_u \ll A \gg \cdot f(P)) = \bigcap (f \cdot A)
 apply (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq Sup-uexpr-def)
 apply (pred-simp)
 apply (rule cong[of Sup])
  apply (auto)
 done
lemma USUP-as-Inf: (| | P \in \mathcal{P} \cdot P) = | | \mathcal{P}
 apply (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq Inf-uexpr-def)
 apply (pred-simp)
 apply (rule cong[of Inf])
  apply (auto)
 done
lemma USUP-as-Inf-collect: (| P \in A \cdot f(P)) = (| P \in A \cdot f(P))
 apply (pred-simp)
 apply (simp add: Setcompr-eq-image)
 done
lemma \mathit{USUP}\text{-}\mathit{as}\text{-}\mathit{Inf}\text{-}\mathit{collect'}: (\bigsqcup P \cdot f(P)) = (| \ | P.\ f(P))
 apply (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq Sup-uexpr-def)
 apply (pred-simp)
 apply (simp add: full-SetCompr-eq)
 done
lemma USUP-as-Inf-image: (| | P \in \mathcal{P} \cdot f(P)) = | | (f \cdot \mathcal{P})
 apply (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq Inf-uexpr-def)
 \mathbf{apply} \ (\mathit{pred-simp})
 apply (rule cong[of Inf])
  apply (auto)
 done
lemma USUP-image-eq [simp]: USUP (\lambda i. \ll i \gg \in_u \ll f 'A \gg) g = ( \bigsqcup_i \in A \cdot g(f(i)) )
 by (pred-simp, rule-tac cong[of Inf Inf], auto)
lemma UINF-image-eq [simp]: UINF (\lambda i. \ll i \gg \in_u \ll f \land A \gg) g = ( \bigcap i \in A \cdot g(f(i)) )
 by (pred-simp, rule-tac cong[of Sup Sup], auto)
by (simp add: UINF-as-Sup[THEN sym] usubst setcompr-eq-image)
by (pred-auto)
```

```
by (pred-auto)
lemma not-UINF-ind: (\neg ( [ i \cdot P(i) )) = ( [ i \cdot \neg P(i) ))
 by (pred-auto)
by (pred-auto)
by (pred-auto)
lemma UINF-insert [simp]: (\bigcap i \in insert \ x \ s \cdot P(i)) = (P(x) \cap (\bigcap i \in xs \cdot P(i)))
 apply (pred-simp)
 apply (subst Sup-insert[THEN sym])
 apply (rule-tac cong[of Sup Sup])
  apply (auto)
 done
\mathbf{lemma} \mathit{UINF-atLeast-first}:
 P(n) \sqcap (\prod i \in \{Suc\ n..\} \cdot P(i)) = (\prod i \in \{n..\} \cdot P(i))
proof -
 have insert n {Suc n..} = {n..}
   by (auto)
 thus ?thesis
   by (metis UINF-insert)
qed
\mathbf{lemma}\ \mathit{UINF-atLeast-Suc} \colon
 (   \exists i \in \{Suc\ m..\} \cdot P(i)) = ( \exists i \in \{m..\} \cdot P(Suc\ i))
 by (rel-simp, metis (full-types) Suc-le-D not-less-eq-eq)
lemma USUP-empty [simp]: (\bigcup i \in \{\} \cdot P(i)) = true
 by (pred-auto)
apply (pred-simp)
 apply (subst Inf-insert[THEN sym])
 apply (rule-tac cong[of Inf Inf])
  apply (auto)
 done
\mathbf{lemma}\ \mathit{USUP-atLeast-first}:
 (P(n) \, \wedge \, (\bigsqcup \ i \in \{\mathit{Suc} \ n..\} \, \boldsymbol{\cdot} \, P(i))) = (\bigsqcup \ i \in \{n..\} \, \boldsymbol{\cdot} \, P(i))
proof -
 have insert n {Suc n..} = {n..}
   by (auto)
 thus ?thesis
   by (metis USUP-insert conj-upred-def)
qed
\mathbf{lemma}\ \mathit{USUP-atLeast-Suc} \colon
  (\bigsqcup i \in \{Suc\ m..\} \cdot P(i)) = (\bigsqcup i \in \{m..\} \cdot P(Suc\ i))
 by (rel-simp, metis (full-types) Suc-le-D not-less-eq-eq)
lemma conj-UINF-dist:
```

```
(P \land (\bigcap Q \in S \cdot F(Q))) = (\bigcap Q \in S \cdot P \land F(Q))
 by (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq, pred-auto)
lemma conj-UINF-ind-dist:
  (P \, \wedge \, ( \, \textstyle \bigcap \, \, Q \, \cdot \, F(Q) )) = ( \, \textstyle \bigcap \, \, Q \, \cdot \, P \, \wedge \, F(Q) )
  by pred-auto
\mathbf{lemma}\ disj-UINF-dist:
  S \neq \{\} \Longrightarrow (P \vee (\textstyle \bigcap \ Q \in S \cdot F(Q))) = (\textstyle \bigcap \ Q \in S \cdot P \vee F(Q))
 by (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq, pred-auto)
lemma UINF-conj-UINF [simp]:
  (( \bigcap i \in I \cdot P(i)) \vee ( \bigcap i \in I \cdot Q(i))) = ( \bigcap i \in I \cdot P(i) \vee Q(i))
  by (rel-auto)
\mathbf{lemma} conj-USUP-dist:
  S \neq \{\} \Longrightarrow (P \land (| | Q \in S \cdot F(Q))) = (| | Q \in S \cdot P \land F(Q))
  by (subst uexpr-eq-iff, auto simp add: conj-upred-def USUP.rep-eq inf-uexpr.rep-eq uexpr-appl.rep-eq
lit.rep-eq)
by (simp add: upred-defs uexpr-appl.rep-eq lit.rep-eq, pred-auto)
lemma UINF-all-cong [cong]:
 assumes \bigwedge P. F(P) = G(P)
 shows (\bigcap P \cdot F(P)) = (\bigcap P \cdot G(P))
 by (simp add: UINF-as-Sup-collect assms)
lemma UINF-conq:
  assumes \bigwedge P. P \in A \Longrightarrow F(P) = G(P)
  shows (\bigcap P \in A \cdot F(P)) = (\bigcap P \in A \cdot G(P))
  by (simp add: UINF-as-Sup-collect assms)
\mathbf{lemma}\ \mathit{USUP-all-cong}:
  assumes \bigwedge P. F(P) = G(P)
  shows (   P \cdot F(P) ) = ( | P \cdot G(P) )
 by (simp add: assms)
lemma USUP-cong:
  assumes \bigwedge P. P \in A \Longrightarrow F(P) = G(P)
  by (simp add: USUP-as-Inf-collect assms)
lemma UINF-subset-mono: A \subseteq B \Longrightarrow (\bigcap P \in B \cdot F(P)) \sqsubseteq (\bigcap P \in A \cdot F(P))
  by (simp add: SUP-subset-mono UINF-as-Sup-collect)
lemma USUP-subset-mono: A \subseteq B \Longrightarrow (\bigsqcup P \in A \cdot F(P)) \sqsubseteq (\bigsqcup P \in B \cdot F(P))
  by (simp add: INF-superset-mono USUP-as-Inf-collect)
lemma UINF-impl: (\bigcap P \in A \cdot F(P) \Rightarrow G(P)) = ((\bigcup P \in A \cdot F(P)) \Rightarrow (\bigcap P \in A \cdot G(P)))
  by (pred-auto)
lemma USUP-is-forall: (   x \cdot P(x) ) = ( \forall x \cdot P(x) )
```

by (pred-simp)

```
by (pred-auto)
lemma UINF-is-exists: (   x \cdot P(x) ) = (\exists x \cdot P(x) )
 by (pred\text{-}simp)
lemma UINF-all-nats [simp]:
 fixes P :: nat \Rightarrow '\alpha \ upred
 by (pred-auto)
lemma USUP-all-nats [simp]:
 fixes P :: nat \Rightarrow '\alpha \ upred
 by (pred-auto)
lemma UINF-upto-expand-first:
 m < n \Longrightarrow (\bigcap i \in \{m..< n\} \cdot P(i)) = ((P(m) :: '\alpha \ upred) \lor (\bigcap i \in \{Suc \ m..< n\} \cdot P(i)))
 apply (rel-auto) using Suc-leI le-eq-less-or-eq by auto
lemma UINF-upto-expand-last:
 apply (rel-auto)
 using less-SucE by blast
apply (rel-simp)
 apply (rule cong[of Sup], auto)
 using less-Suc-eq-0-disj by auto
lemma USUP-upto-expand-first:
 (| | i \in \{0.. < Suc(n)\} \cdot P(i)) = (P(0) \land (| | i \in \{1.. < Suc(n)\} \cdot P(i)))
 apply (rel-auto)
 \mathbf{using}\ \mathit{not\text{-}less}\ \mathbf{by}\ \mathit{auto}
lemma USUP-Suc-shift: (| | i \in \{Suc\ 0... < Suc\ n\} \cdot P(i)) = (| | i \in \{0... < n\} \cdot P(Suc\ i))
 apply (rel-simp)
 apply (rule cong[of Inf], auto)
 using less-Suc-eq-0-disj by auto
{f lemma} {\it UINF-list-conv}:
 apply (induct xs)
 apply (rel-auto)
 apply (simp add: UINF-upto-expand-first UINF-Suc-shift)
 done
lemma USUP-list-conv:
 (| \mid i \in \{0.. < length(xs)\} \cdot f (xs \mid i)) = foldr (\land) (map f xs) true
 apply (induct xs)
 apply (rel-auto)
 apply (simp-all add: USUP-upto-expand-first USUP-Suc-shift)
 done
```

```
lemma UINF-refines:
  \llbracket \bigwedge i. \ i \in I \Longrightarrow P \sqsubseteq Q \ i \ \rrbracket \Longrightarrow P \sqsubseteq (\bigcap \ i \in I \cdot Q \ i)
 by (simp add: UINF-as-Sup-collect, metis SUP-least)
lemma UINF-refines':
 using assms
 apply (rel-auto) using Sup-le-iff by fastforce
lemma UINF-pred-ueq [simp]:
  (   x \mid \ll x \gg =_u v \cdot P(x) ) = (P x) \llbracket x \rightarrow v \rrbracket 
 by (pred-auto)
lemma UINF-pred-lit-eq [simp]:
  (   x \mid \ll x = v \gg \cdot P(x) ) = (P v)
 by (pred-auto)
14.3
          Equality laws
lemma eq-upred-refl [simp]: (x =_u x) = true
 by (pred-auto)
lemma eq-upred-sym: (x =_u y) = (y =_u x)
 by (pred-auto)
lemma eq-cong-left:
 assumes vwb-lens x \ \$x \ \sharp \ Q \ \$x' \ \sharp \ Q \ \$x \ \sharp \ R \ \$x' \ \sharp \ R
 shows ((\$x' =_u \$x \land Q) = (\$x' =_u \$x \land R)) \longleftrightarrow (Q = R)
 using assms
 by (pred\text{-}simp, (meson mwb\text{-}lens\text{-}def vwb\text{-}lens\text{-}mwb weak\text{-}lens\text{-}def)+)
lemma conj-eq-in-var-subst:
 fixes x :: ('a \Longrightarrow '\alpha)
 assumes vwb-lens x
 shows (P \land \$x =_u v) = (P[v/\$x] \land \$x =_u v)
  using assms
 by (pred-simp, (metis vwb-lens-wb wb-lens.get-put)+)
lemma conj-eq-out-var-subst:
  fixes x :: ('a \Longrightarrow '\alpha)
 assumes vwb-lens x
 shows (P \land \$x' =_u v) = (P[v/\$x'] \land \$x' =_u v)
  using assms
  by (pred\text{-}simp, (metis\ vwb\text{-}lens\text{-}wb\ wb\text{-}lens.get\text{-}put)+)
lemma conj-pos-var-subst:
  assumes vwb-lens x
 shows (\$x \land Q) = (\$x \land Q[true/\$x])
 using assms
 by (pred-auto, metis (full-types) vwb-lens-wb wb-lens.get-put, metis (full-types) vwb-lens-wb wb-lens.get-put)
lemma conj-neg-var-subst:
  assumes vwb-lens x
  shows (\neg \$x \land Q) = (\neg \$x \land Q[false/\$x])
  using assms
```

```
by (pred-auto, metis (full-types) vwb-lens-wb wb-lens.get-put, metis (full-types) vwb-lens-wb wb-lens.get-put)
lemma upred-eq-true [simp]: (p =_u true) = p
  by (pred-auto)
lemma upred-eq-false [simp]: (p =_u false) = (\neg p)
 by (pred-auto)
lemma upred-true-eq [simp]: (true =_u p) = p
  by (pred-auto)
lemma upred-false-eq [simp]: (false =_u p) = (\neg p)
  by (pred-auto)
lemma conj-var-subst:
 assumes vwb-lens x
 shows (P \wedge var x =_u v) = (P[v/x] \wedge var x =_u v)
 using assms
 by (pred-simp, (metis (full-types) vwb-lens-def wb-lens.get-put)+)
         HOL Variable Quantifiers
14.4
lemma shEx-unbound [simp]: (\exists x \cdot P) = P
 by (pred-auto)
lemma shEx-bool [simp]: shEx P = (P True \lor P False)
  by (pred-simp, metis (full-types))
lemma shEx-commute: (\exists x \cdot \exists y \cdot P x y) = (\exists y \cdot \exists x \cdot P x y)
 \mathbf{by}\ (\mathit{pred-auto})
lemma \mathit{shEx\text{-}cong} \colon \llbracket \ \bigwedge \ x. \ P \ x = \ Q \ x \ \rrbracket \Longrightarrow \mathit{shEx} \ P = \mathit{shEx} \ Q
 by (pred-auto)
lemma shEx-insert: (\exists x \in insert_u \ y \ A \cdot P(x)) = (P(x)[x \rightarrow y] \lor (\exists x \in A \cdot P(x)))
 by (pred-auto)
lemma shEx-one-point: (\exists x \cdot \langle x \rangle =_u v \land P(x)) = P(x)[x \rightarrow v]
 by (rel-auto)
lemma shAll-unbound [simp]: (\forall x \cdot P) = P
 by (pred-auto)
lemma shAll-bool [simp]: shAll P = (P True \land P False)
 by (pred-simp, metis (full-types))
lemma shAll\text{-}cong: \llbracket\bigwedge x.\ P\ x=Q\ x\ \rrbracket\Longrightarrow shAll\ P=shAll\ Q
  by (pred-auto)
Quantifier lifting
named-theorems uquant-lift
lemma shEx-lift-conj-1 [uquant-lift]:
  ((\exists x \cdot P(x)) \land Q) = (\exists x \cdot P(x) \land Q)
 by (pred-auto)
```

```
lemma shEx-lift-conj-2 [uquant-lift]:
  (P \land (\exists x \cdot Q(x))) = (\exists x \cdot P \land Q(x))
 by (pred-auto)
          Case Splitting
14.5
lemma eq-split-subst:
  assumes vwb-lens x
 shows (P = Q) \longleftrightarrow (\forall v. P[\![\ll v \gg /x]\!] = Q[\![\ll v \gg /x]\!])
 using assms
 by (pred-auto, metis vwb-lens-wb wb-lens.source-stability)
lemma eq-split-substI:
  assumes vwb-lens x \wedge v. P[\![\ll v \gg /x]\!] = Q[\![\ll v \gg /x]\!]
 shows P = Q
 using assms(1) assms(2) eq-split-subst by blast
lemma taut-split-subst:
 assumes vwb-lens x
 shows 'P' \longleftrightarrow (\forall v. 'P[\ll v \gg /x]')
  using assms
 by (pred-auto, metis vwb-lens-wb wb-lens.source-stability)
lemma eq-split:
  assumes 'P \Rightarrow Q' 'Q \Rightarrow P'
```

shows P = Q

using assms by (pred-auto)

 $\mathbf{lemma}\ \mathit{bool-eq-splitI}\colon$

```
assumes vwb-lens x P[[true/x]] = Q[[true/x]] P[[false/x]] = Q[[false/x]] shows P = Q by (metis (full-types) assms eq-split-subst false-alt-def true-alt-def)
```

 $\mathbf{lemma}\ \mathit{subst-bool-split}\colon$

```
assumes vwb-lens x shows 'P' = '(P[false/x] \land P[true/x])' proof – from assms have 'P' = (\forall \ v. \ `P[\ll v \gg /x]]') by (subst\ taut\text{-}split\text{-}subst[of\ x],\ auto) also have ... = (`P[\ll True \gg /x]]' \land \ `P[\ll False \gg /x]]') by (metis\ (mono\text{-}tags,\ lifting)) also have ... = '(P[false/x]] \land P[true/x])' by (pred\text{-}auto) finally show ?thesis. qed
```

 $\mathbf{lemma}\ \mathit{subst-eq-replace}\colon$

```
fixes x: ('a \Longrightarrow '\alpha)
shows (p\llbracket u/x \rrbracket \land u =_u v) = (p\llbracket v/x \rrbracket \land u =_u v)
by (pred\text{-}auto)
```

14.6 UTP Quantifiers

```
lemma one-point:
assumes mwb-lens x x \sharp v
```

```
shows (\exists x \cdot P \land var x =_u v) = P[v/x]
  using assms
  by (pred-auto)
lemma exists-twice: mwb-lens x \Longrightarrow (\exists x \cdot \exists x \cdot P) = (\exists x \cdot P)
  by (pred-auto)
lemma all-twice: mwb-lens x \Longrightarrow (\forall x \cdot \forall x \cdot P) = (\forall x \cdot P)
  by (pred-auto)
lemma exists-sub: [ mwb-lens y; x \subseteq_L y ] \Longrightarrow (\exists x \cdot \exists y \cdot P) = (\exists y \cdot P)
  by (pred-auto)
lemma all-sub: \llbracket mwb\text{-lens } y; x \subseteq_L y \rrbracket \Longrightarrow (\forall x \cdot \forall y \cdot P) = (\forall y \cdot P)
  by (pred-auto)
lemma ex-commute:
  assumes x \bowtie y
  shows (\exists x \cdot \exists y \cdot P) = (\exists y \cdot \exists x \cdot P)
  using assms
  apply (pred-auto)
  using lens-indep-comm apply fastforce+
  done
lemma all-commute:
  assumes x \bowtie y
  shows (\forall x \cdot \forall y \cdot P) = (\forall y \cdot \forall x \cdot P)
  using assms
  apply (pred-auto)
  using lens-indep-comm apply fastforce+
  done
lemma ex-equiv:
  assumes x \approx_L y
  shows (\exists x \cdot P) = (\exists y \cdot P)
  using assms
  by (pred-simp, metis (no-types, lifting) lens.select-convs(2))
lemma all-equiv:
  assumes x \approx_L y
  shows (\forall x \cdot P) = (\forall y \cdot P)
  using assms
  \mathbf{by}\ (\mathit{pred-simp},\ \mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{lens.select-convs}(2))
lemma ex-zero:
  (\exists \ \emptyset \cdot P) = P
  by (pred-auto)
lemma all-zero:
  (\forall \ \emptyset \cdot P) = P
  by (pred-auto)
lemma ex-plus:
  (\exists \ y; x \cdot P) = (\exists \ x \cdot \exists \ y \cdot P)
  by (pred-auto)
```

```
lemma all-plus:
  (\forall \ y ; x \cdot P) = (\forall \ x \cdot \forall \ y \cdot P)
  by (pred-auto)
lemma closure-all:
  [P]_u = (\forall \ \Sigma \cdot P)
  by (pred-auto)
lemma unrest-as-exists:
  vwb-lens x \Longrightarrow (x \sharp P) \longleftrightarrow ((\exists x \cdot P) = P)
  by (pred-simp, metis vwb-lens.put-eq)
lemma ex-mono: P \sqsubseteq Q \Longrightarrow (\exists x \cdot P) \sqsubseteq (\exists x \cdot Q)
  by (pred-auto)
lemma ex-weakens: wb-lens x \Longrightarrow (\exists x \cdot P) \sqsubseteq P
  by (pred-simp, metis wb-lens.get-put)
lemma all-mono: P \sqsubseteq Q \Longrightarrow (\forall x \cdot P) \sqsubseteq (\forall x \cdot Q)
  by (pred-auto)
lemma all-strengthens: wb-lens x \Longrightarrow P \sqsubseteq (\forall x \cdot P)
  by (pred-simp, metis wb-lens.get-put)
lemma ex-unrest: x \sharp P \Longrightarrow (\exists x \cdot P) = P
  by (pred-auto)
lemma all-unrest: x \sharp P \Longrightarrow (\forall x \cdot P) = P
  by (pred-auto)
lemma not\text{-}ex\text{-}not: \neg (\exists x \cdot \neg P) = (\forall x \cdot P)
  by (pred-auto)
lemma not-all-not: \neg (\forall x \cdot \neg P) = (\exists x \cdot P)
  by (pred-auto)
lemma ex-conj-contr-left: x \ \sharp \ P \Longrightarrow (\exists \ x \cdot P \land Q) = (P \land (\exists \ x \cdot Q))
  by (pred-auto)
lemma ex-conj-contr-right: x \sharp Q \Longrightarrow (\exists x \cdot P \land Q) = ((\exists x \cdot P) \land Q)
  by (pred-auto)
lemma ex-override-def: weak-lens x \Longrightarrow [\exists x \cdot P]_e \ b = (\exists b', [P]_e \ (b \oplus_L b' \ on \ x))
  by (rel-simp, metis weak-lens.put-get)
lemma ex-scene-def: mwb-lens a \Longrightarrow (\exists a \cdot P) = scex [a]_{\sim} P
  by (simp add: uexpr-eq-iff ex-override-def scex.rep-eq lens-scene-override)
lemma scex-combine:
  assumes idem-scene x idem-scene y x \#\#_S y
  shows (scex \ x \ (scex \ y \ P)) = (scex \ (x \sqcup_S \ y) \ P)
  have \bigwedge b\ b'\ b''. \llbracket P \rrbracket_e\ (b\oplus_S\ b'\ on\ x\oplus_S\ b''\ on\ y) \Longrightarrow \exists\ b'. \llbracket P \rrbracket_e\ (b\oplus_S\ b'\ on\ (x\sqcup_S\ y))
  proof -
```

```
fix b b' b''
    assume a1: [P]_e (b \oplus_S b' on x \oplus_S b'' on y)
    have f2: \forall a. \ a \oplus_S \ a \ on \ x = a
      by (simp \ add: \ assms(1))
    have f3: \forall a. \ a \oplus_S \ a \ on \ y = a
       by (metis\ assms(2)\ scene-override-idem)
    have \forall a \ aa. \ aa \oplus_S a \ on \ y \oplus_S a \ on \ x = aa \oplus_S a \ on \ (y \sqcup_S x)
       by (simp\ add:\ assms(3)\ scene-compat-sym\ scene-override-union)
    then show \exists a. [P]_e (b \oplus_S a \ on \ (x \sqcup_S y))
      using f3 f2 a1 by (metis (no-types) assms(3) scene-override-overshadow-left scene-override-union
scene-union-commute)
  qed
  thus ?thesis
   using assms(3) scene-override-union by (rel-auto, fastforce)
qed
lemma ex-commute-set: \llbracket vwb-lens a; vwb-lens b; a \#\#_L b \rrbracket \Longrightarrow (\exists a \cdot \exists b \cdot P) = (\exists b \cdot \exists a \cdot P)
 by (simp add: lens-defs lens-scene.rep-eq scene-compat.rep-eq scene-union-commute scex-combine ex-scene-def)
14.7
           Variable Restriction
\mathbf{lemma}\ var\text{-}res\text{-}all:
  P \upharpoonright_v \Sigma = P
  by (rel-auto)
lemma var-res-twice:
  mwb-lens x \Longrightarrow P \upharpoonright_v x \upharpoonright_v x = P \upharpoonright_v x
  by (pred-auto)
            Conditional laws
14.8
lemma cond-def:
  (P \triangleleft b \triangleright Q) = ((b \land P) \lor ((\neg b) \land Q))
  by (pred-auto)
lemma cond-idem [simp]:(P \triangleleft b \triangleright P) = P by (pred-auto)
lemma cond-true-false [simp]: true \triangleleft b \triangleright false = b by (pred-auto)
lemma cond-symm:(P \triangleleft b \triangleright Q) = (Q \triangleleft \neg b \triangleright P) by (pred-auto)
lemma cond-assoc: ((P \triangleleft b \triangleright Q) \triangleleft c \triangleright R) = (P \triangleleft b \land c \triangleright (Q \triangleleft c \triangleright R)) by (pred-auto)
lemma cond-distr: (P \triangleleft b \triangleright (Q \triangleleft c \triangleright R)) = ((P \triangleleft b \triangleright Q) \triangleleft c \triangleright (P \triangleleft b \triangleright R)) by (pred-auto)
lemma cond-unit-T [simp]:(P \triangleleft true \triangleright Q) = P by (pred-auto)
lemma cond-unit-F [simp]:(P \triangleleft false \triangleright Q) = Q by (pred-auto)
lemma cond-conj-not: ((P \triangleleft b \triangleright Q) \land (\neg b)) = (Q \land (\neg b))
  by (rel-auto)
lemma cond-and-T-integrate:
  ((P \land b) \lor (Q \triangleleft b \triangleright R)) = ((P \lor Q) \triangleleft b \triangleright R)
  by (pred-auto)
```

```
lemma cond-L6: (P \triangleleft b \triangleright (Q \triangleleft b \triangleright R)) = (P \triangleleft b \triangleright R) by (pred-auto)
lemma cond-L7: (P \triangleleft b \triangleright (P \triangleleft c \triangleright Q)) = (P \triangleleft b \vee c \triangleright Q) by (pred-auto)
lemma cond-and-distr: ((P \land Q) \triangleleft b \triangleright (R \land S)) = ((P \triangleleft b \triangleright R) \land (Q \triangleleft b \triangleright S)) by (pred-auto)
lemma cond-or-distr: ((P \lor Q) \triangleleft b \rhd (R \lor S)) = ((P \triangleleft b \rhd R) \lor (Q \triangleleft b \rhd S)) by (pred-auto)
lemma cond-imp-distr:
((P \Rightarrow Q) \triangleleft b \triangleright (R \Rightarrow S)) = ((P \triangleleft b \triangleright R) \Rightarrow (Q \triangleleft b \triangleright S)) by (pred-auto)
lemma cond-eq-distr:
((P \Leftrightarrow Q) \triangleleft b \triangleright (R \Leftrightarrow S)) = ((P \triangleleft b \triangleright R) \Leftrightarrow (Q \triangleleft b \triangleright S)) by (pred\text{-}auto)
lemma cond-conj-distr:(P \land (Q \triangleleft b \triangleright S)) = ((P \land Q) \triangleleft b \triangleright (P \land S)) by (pred-auto)
lemma cond-disj-distr:(P \lor (Q \triangleleft b \rhd S)) = ((P \lor Q) \triangleleft b \rhd (P \lor S)) by (pred-auto)
lemma cond-neg: \neg (P \triangleleft b \triangleright Q) = ((\neg P) \triangleleft b \triangleright (\neg Q)) by (pred-auto)
lemma cond-conj: P \triangleleft b \land c \triangleright Q = (P \triangleleft c \triangleright Q) \triangleleft b \triangleright Q
  by (pred-auto)
lemma spec-cond-dist: (P \Rightarrow (Q \triangleleft b \triangleright R)) = ((P \Rightarrow Q) \triangleleft b \triangleright (P \Rightarrow R))
  by (pred-auto)
by (pred-auto)
lemma cond-UINF-dist: (\bigcap P \in S \cdot F(P)) \triangleleft b \triangleright (\bigcap P \in S \cdot G(P)) = (\bigcap P \in S \cdot F(P) \triangleleft b \triangleright G(P))
  by (pred-auto)
lemma cond-var-subst-left:
  assumes vwb-lens x
  shows (P[true/x] \triangleleft var x \triangleright Q) = (P \triangleleft var x \triangleright Q)
  using assms by (pred-auto, metis (full-types) vwb-lens-wb wb-lens.get-put)
lemma cond-var-subst-right:
  assumes vwb-lens x
  shows (P \triangleleft var x \triangleright Q \llbracket false/x \rrbracket) = (P \triangleleft var x \triangleright Q)
  using assms by (pred-auto, metis (full-types) vwb-lens.put-eq)
lemma cond-var-split:
  vwb-lens x \Longrightarrow (P[[true/x]] \triangleleft var x \triangleright P[[false/x]]) = P
  by (rel-simp, (metis (full-types) vwb-lens.put-eq)+)
lemma cond-assign-subst:
  vwb-lens x \Longrightarrow (P \triangleleft utp-expr.var \ x =_u v \triangleright Q) = (P \llbracket v/x \rrbracket \triangleleft utp-expr.var \ x =_u v \triangleright Q)
  apply (rel-simp) using vwb-lens.put-eq by force
lemma conj-conds:
  (P1 \triangleleft b \triangleright Q1 \land P2 \triangleleft b \triangleright Q2) = (P1 \land P2) \triangleleft b \triangleright (Q1 \land Q2)
  by pred-auto
```

lemma disj-conds:

```
(P1 \triangleleft b \triangleright Q1 \vee P2 \triangleleft b \triangleright Q2) = (P1 \vee P2) \triangleleft b \triangleright (Q1 \vee Q2) by pred-auto \mathbf{lemma} \ cond\text{-}mono: \llbracket P_1 \sqsubseteq P_2; \ Q_1 \sqsubseteq Q_2 \ \rrbracket \Longrightarrow (P_1 \triangleleft b \triangleright Q_1) \sqsubseteq (P_2 \triangleleft b \triangleright Q_2)
```

lemma cond-monotonic:

by (rel-auto)

```
\llbracket mono\ P; mono\ Q\ \rrbracket \Longrightarrow mono\ (\lambda\ X.\ P\ X \triangleleft b \triangleright Q\ X) by (simp\ add:\ mono-def,\ rel-blast)
```

14.9 Additional Expression Laws

```
lemma le-pred-refl [simp]:
 fixes x :: ('a::preorder, '\alpha) \ uexpr
 shows (x \leq_u x) = true
 by (pred-auto)
lemma uzero-le-laws [simp]:
  (0 :: ('a::\{linordered\text{-}semidom\}, '\alpha) \ uexpr) \leq_u numeral \ x = true
  (1 :: ('a::\{linordered\text{-}semidom\}, '\alpha) \ uexpr) \leq_u numeral \ x = true
  (0 :: ('a::\{linordered\text{-}semidom\}, '\alpha) \ uexpr) \leq_u 1 = true
 by (pred\text{-}simp)+
lemma unumeral-le-1 [simp]:
  assumes (numeral \ i :: 'a::\{numeral, ord\}) \leq numeral \ j
 shows (numeral i :: ('a, '\alpha) \ uexpr) \leq_u numeral j = true
 using assms by (pred-auto)
lemma unumeral-le-2 [simp]:
  assumes (numeral \ i :: 'a::\{numeral, linorder\}) > numeral \ j
 shows (numeral i :: ('a, '\alpha) \ uexpr) \leq_u numeral \ j = false
  using assms by (pred-auto)
lemma uset-laws [simp]:
  x \in_{u} \{\}_{u} = false
 x \in_u \{m..n\}_u = (m \leq_u x \land x \leq_u n)
 by (pred-auto)+
lemma ulit-eq [simp]: x = y \Longrightarrow (\ll x \gg =_u \ll y \gg) = true
 by (rel-auto)
lemma ulit-neq [simp]: x \neq y \Longrightarrow (\ll x \gg =_u \ll y \gg) = false
  by (rel-auto)
lemma uset-mems [simp]:
  x \in_u \{y\}_u = (x =_u y)
 x \in_u A \cup_u B = (x \in_u A \lor x \in_u B)
 x \in_u A \cap_u B = (x \in_u A \land x \in_u B)
 by (rel-auto)+
```

14.10 Refinement By Observation

Function to obtain the set of observations of a predicate **definition** obs-upred :: ' α upred \Rightarrow ' α set ($\llbracket - \rrbracket_o$)

```
where [upred-defs]: [\![P]\!]_o = \{b. \ [\![P]\!]_e b\}
lemma obs-upred-refine-iff:
P \sqsubseteq Q \longleftrightarrow [\![Q]\!]_o \subseteq [\![P]\!]_o
by (pred-auto)
```

A refinement can be demonstrated by considering only the observations of the predicates which are relevant, i.e. not unrestricted, for them. In other words, if the alphabet can be split into two disjoint segments, x and y, and neither predicate refers to y then only x need be considered when checking for observations.

```
lemma refine-by-obs:
  assumes x \bowtie y bij-lens (x +_L y) y \sharp P y \sharp Q \{v. `P[[\ll v \gg /x]]`\} \subseteq \{v. `Q[[\ll v \gg /x]]`\}
  shows Q \sqsubseteq P
  using assms(3-5)
  apply (simp add: obs-upred-refine-iff subset-eq)
 apply (pred-simp)
 apply (rename-tac\ b)
 apply (drule-tac \ x=get_xb \ in \ spec)
 apply (auto simp add: assms)
  apply (metis assms(1) assms(2) bij-lens.axioms(2) bij-lens-axioms-def lens-override-def lens-override-plus)+
  done
14.11
            Cylindric Algebra
lemma C1: (\exists x \cdot false) = false
  by (pred-auto)
lemma C2: wb-lens x \Longrightarrow P \Rightarrow \exists x \cdot P
 by (pred-simp, metis wb-lens.get-put)
lemma C3: mwb-lens x \Longrightarrow (\exists x \cdot (P \land (\exists x \cdot Q))) = ((\exists x \cdot P) \land (\exists x \cdot Q))
  by (pred-auto)
lemma C4a: x \approx_L y \Longrightarrow (\exists x \cdot \exists y \cdot P) = (\exists y \cdot \exists x \cdot P)
  by (pred\text{-}simp, metis (no-types, lifting) lens.select\text{-}convs(2))+
lemma C4b: x \bowtie y \Longrightarrow (\exists x \cdot \exists y \cdot P) = (\exists y \cdot \exists x \cdot P)
  using ex-commute by blast
lemma C5:
 fixes x :: ('a \Longrightarrow '\alpha)
 shows (\&x =_u \&x) = true
 by (pred-auto)
lemma C6:
 assumes wb-lens x x \bowtie y x \bowtie z
 shows (\&y =_u \&z) = (\exists x \cdot \&y =_u \&x \land \&x =_u \&z)
  using assms
  by (pred\text{-}simp, (metis\ lens\text{-}indep\text{-}def)+)
lemma C7:
  assumes weak-lens x \times x \bowtie y
 shows ((\exists x \cdot \&x =_u \&y \land P) \land (\exists x \cdot \&x =_u \&y \land \neg P)) = false
  using assms
  by (pred-simp, simp add: lens-indep-sym)
```

Healthiness Conditions 15

```
theory utp-healthy
  \mathbf{imports}\ \mathit{utp-pred-laws}
begin
```

Main Definitions 15.1

```
We collect closure laws for healthiness conditions in the following theorem attribute.
```

```
named-theorems closure
type-synonym '\alpha health = '\alpha upred \Rightarrow '\alpha upred
A predicate P is healthy, under healthiness function H, if P is a fixed-point of H.
definition Healthy :: '\alpha upred \Rightarrow '\alpha health \Rightarrow bool (infix is 30)
where P is H \equiv (H P = P)
lemma Healthy-def': P is H \longleftrightarrow (H P = P)
 unfolding Healthy-def by auto
lemma Healthy-if: P is H \Longrightarrow (H P = P)
 unfolding Healthy-def by auto
lemma Healthy-intro: H(P) = P \Longrightarrow P is H
 by (simp add: Healthy-def)
declare Healthy-def' [upred-defs]
```

abbreviation Healthy-carrier :: ' α health \Rightarrow ' α upred set ($\llbracket - \rrbracket_H$) where $\llbracket H \rrbracket_H \equiv \{P. \ P \ is \ H\}$

```
{\bf lemma} \ \textit{Healthy-carrier-image} :
```

```
A \subseteq [\![\mathcal{H}]\!]_H \Longrightarrow \mathcal{H} 'A = A
  by (auto simp add: image-def, (metis Healthy-if mem-Collect-eq subsetCE)+)
```

lemma Healthy-carrier-Collect: $A \subseteq \llbracket H \rrbracket_H \Longrightarrow A = \{H(P) \mid P. P \in A\}$ by (simp add: Healthy-carrier-image Setcompr-eq-image)

lemma *Healthy-func*:

```
\llbracket F \in \llbracket \mathcal{H}_1 \rrbracket_H \to \llbracket \mathcal{H}_2 \rrbracket_H; P \text{ is } \mathcal{H}_1 \rrbracket \Longrightarrow \mathcal{H}_2(F(P)) = F(P)
using Healthy-if by blast
```

lemma *Healthy-comp*:

```
\llbracket P \text{ is } \mathcal{H}_1; P \text{ is } \mathcal{H}_2 \rrbracket \Longrightarrow P \text{ is } \mathcal{H}_1 \circ \mathcal{H}_2
by (simp add: Healthy-def)
```

lemma Healthy-apply-closed:

```
assumes F \in [\![H]\!]_H \to [\![H]\!]_H P is H
shows F(P) is H
using assms(1) assms(2) by auto
```

```
lemma Healthy-set-image-member:
  \llbracket P \in F 'A; \bigwedge x. F x \text{ is } H \rrbracket \Longrightarrow P \text{ is } H
 by blast
lemma Healthy-case-prod [closure]:
  \llbracket \bigwedge x y. \ P \ x \ y \ is \ H \rrbracket \implies case-prod \ P \ v \ is \ H
 by (simp add: prod.case-eq-if)
lemma Healthy-SUPREMUM:
  A \subseteq \llbracket H \rrbracket_H \Longrightarrow SUPREMUM \ A \ H = \prod A
  by (drule Healthy-carrier-image, presburger)
lemma Healthy-INFIMUM:
  A \subseteq \llbracket H \rrbracket_H \Longrightarrow INFIMUM \ A \ H = | \ | \ A
 by (drule Healthy-carrier-image, presburger)
lemma Healthy-nu [closure]:
 assumes mono F F \in [id]_H \to [H]_H
 shows \nu F is H
 by (metis (mono-tags) Healthy-def Healthy-func assms eq-id-iff lfp-unfold)
lemma Healthy-mu [closure]:
  assumes mono F F \in [id]_H \to [H]_H
  shows \mu F is H
 by (metis (mono-tags) Healthy-def Healthy-func assms eq-id-iff gfp-unfold)
lemma Healthy-subset-member: [\![A\subseteq [\![H]\!]_H; P\in A]\!] \Longrightarrow H(P)=P
  by (meson Ball-Collect Healthy-if)
lemma is-Healthy-subset-member: A \subseteq H_H; P \in A \implies P is H
 by blast
15.2
          Properties of Healthiness Conditions
definition Idempotent :: '\alpha health \Rightarrow bool where
  Idempotent(H) \longleftrightarrow (\forall P. H(H(P)) = H(P))
abbreviation Monotonic :: '\alpha health \Rightarrow bool where
  Monotonic(H) \equiv mono H
definition IMH :: '\alpha \ health \Rightarrow bool \ where
  IMH(H) \longleftrightarrow Idempotent(H) \land Monotonic(H)
definition Antitone :: '\alpha health \Rightarrow bool where
  Antitone(H) \longleftrightarrow (\forall P Q. Q \sqsubseteq P \longrightarrow (H(P) \sqsubseteq H(Q)))
definition Conjunctive :: '\alpha health \Rightarrow bool where
  Conjunctive(H) \longleftrightarrow (\exists Q. \forall P. H(P) = (P \land Q))
definition Functional Conjunctive :: '\alpha health \Rightarrow bool where
  Functional Conjunctive(H) \longleftrightarrow (\exists F. \forall P. H(P) = (P \land F(P)) \land Monotonic(F))
definition WeakConjunctive :: '\alpha health \Rightarrow bool where
  WeakConjunctive(H) \longleftrightarrow (\forall P. \exists Q. H(P) = (P \land Q))
definition Disjunctuous :: '\alpha health \Rightarrow bool where
```

```
[upred-defs]: Disjunctuous H = (\forall P Q. H(P \sqcap Q) = (H(P) \sqcap H(Q)))
definition Continuous :: '\alpha health \Rightarrow bool where
  [upred-defs]: Continuous H = (\forall A. A \neq \{\} \longrightarrow H (  A) =  (H `A))
lemma Healthy-Idempotent [closure]:
  Idempotent H \Longrightarrow H(P) is H
 by (simp add: Healthy-def Idempotent-def)
lemma Healthy-range: Idempotent H \Longrightarrow range H = [\![H]\!]_H
 by (auto simp add: image-def Healthy-if Healthy-Idempotent, metis Healthy-if)
lemma Idempotent-id [simp]: Idempotent id
 by (simp add: Idempotent-def)
lemma Idempotent-comp [intro]:
  \llbracket Idempotent f; Idempotent g; f \circ g = g \circ f \rrbracket \Longrightarrow Idempotent (f \circ g)
 by (auto simp add: Idempotent-def comp-def, metis)
lemma Idempotent-image: Idempotent f \Longrightarrow f' f' A = f' A
 by (metis (mono-tags, lifting) Idempotent-def image-cong image-image)
lemma Monotonic-id [simp]: Monotonic id
 by (simp add: monoI)
lemma Monotonic-id' [closure]:
 mono (\lambda X. X)
 by (simp add: monoI)
lemma Monotonic-const [closure]:
 Monotonic (\lambda x. c)
 by (simp add: mono-def)
lemma Monotonic-comp [intro]:
  \llbracket Monotonic f; Monotonic g \rrbracket \Longrightarrow Monotonic (f \circ g)
 by (simp add: mono-def)
lemma Monotonic-inf [closure]:
 assumes Monotonic P Monotonic Q
 shows Monotonic (\lambda X. P(X) \sqcap Q(X))
 using assms by (simp add: mono-def, rel-auto)
lemma Monotonic-cond [closure]:
 assumes Monotonic \ P \ Monotonic \ Q
 shows Monotonic (\lambda X. P(X) \triangleleft b \triangleright Q(X))
 by (simp add: assms cond-monotonic)
lemma Conjuctive-Idempotent:
  Conjunctive(H) \Longrightarrow Idempotent(H)
 by (auto simp add: Conjunctive-def Idempotent-def)
lemma Conjunctive-Monotonic:
  Conjunctive(H) \Longrightarrow Monotonic(H)
 unfolding Conjunctive-def mono-def
 using dual-order.trans by fastforce
```

```
lemma Conjunctive-conj:
 assumes Conjunctive(HC)
 shows HC(P \wedge Q) = (HC(P) \wedge Q)
 using assms unfolding Conjunctive-def
 by (metis utp-pred-laws.inf.assoc utp-pred-laws.inf.commute)
lemma Conjunctive-distr-conj:
 assumes Conjunctive(HC)
 shows HC(P \wedge Q) = (HC(P) \wedge HC(Q))
 using assms unfolding Conjunctive-def
 by (metis Conjunctive-conj assms utp-pred-laws.inf.assoc utp-pred-laws.inf-right-idem)
lemma Conjunctive-distr-disj:
 assumes Conjunctive(HC)
 shows HC(P \lor Q) = (HC(P) \lor HC(Q))
 using assms unfolding Conjunctive-def
 using utp-pred-laws.inf-sup-distrib2 by fastforce
lemma Conjunctive-distr-cond:
 assumes Conjunctive(HC)
 shows HC(P \triangleleft b \triangleright Q) = (HC(P) \triangleleft b \triangleright HC(Q))
 using assms unfolding Conjunctive-def
 by (metis cond-conj-distr utp-pred-laws.inf-commute)
lemma Functional Conjunctive-Monotonic:
 FunctionalConjunctive(H) \Longrightarrow Monotonic(H)
 unfolding Functional Conjunctive-def by (metis mono-def utp-pred-laws.inf-mono)
lemma WeakConjunctive-Refinement:
 assumes WeakConjunctive(HC)
 shows P \sqsubseteq HC(P)
 using assms unfolding WeakConjunctive-def by (metis utp-pred-laws.inf.cobounded1)
{\bf lemma}\ \textit{Weak Cojunctive-Healthy-Refinement:}
 assumes WeakConjunctive(HC) and P is HC
 shows HC(P) \sqsubseteq P
 using assms unfolding WeakConjunctive-def Healthy-def by simp
{\bf lemma}\ Weak Conjunctive-implies-Weak Conjunctive:
 Conjunctive(H) \Longrightarrow WeakConjunctive(H)
 unfolding WeakConjunctive-def Conjunctive-def by pred-auto
declare Conjunctive-def [upred-defs]
declare mono-def [upred-defs]
lemma Disjunctuous-Monotonic: Disjunctuous H \Longrightarrow Monotonic \ H
 by (metis Disjunctuous-def mono-def semilattice-sup-class.le-iff-sup)
lemma ContinuousD [dest]: \llbracket Continuous H; A \neq \{\} \rrbracket \Longrightarrow H (\bigcap A) = (\bigcap P \in A. H(P))
 by (simp add: Continuous-def)
lemma Continuous-Disjunctous: Continuous H \Longrightarrow Disjunctuous H
 apply (auto simp add: Continuous-def Disjunctuous-def)
 apply (rename-tac\ P\ Q)
```

```
apply (drule-tac \ x=\{P,Q\} \ in \ spec)
 apply (simp)
 done
lemma Continuous-Monotonic [closure]: Continuous H \Longrightarrow Monotonic H
 by (simp add: Continuous-Disjunctous Disjunctuous-Monotonic)
lemma Continuous-comp [intro]:
  \llbracket Continuous f; Continuous g \rrbracket \Longrightarrow Continuous (f \circ g)
 by (simp add: Continuous-def)
lemma Continuous-const [closure]: Continuous (\lambda X. P)
 by pred-auto
lemma Continuous-cond [closure]:
 assumes Continuous\ F\ Continuous\ G
 shows Continuous (\lambda X. F(X) \triangleleft b \triangleright G(X))
 using assms by (pred-auto)
Closure laws derived from continuity
lemma Sup-Continuous-closed [closure]:
  \llbracket Continuous\ H; \land i.\ i \in A \Longrightarrow P(i)\ is\ H;\ A \neq \{\}\ \rrbracket \Longrightarrow (\bigcap\ i \in A.\ P(i))\ is\ H
  by (drule ContinuousD[of H P 'A], simp add: UINF-mem-UNIV[THEN sym] UINF-as-Sup[THEN
sym])
    (metis (no-types, lifting) Healthy-def' SUP-cong image-image)
lemma UINF-mem-Continuous-closed [closure]:
  \llbracket Continuous\ H; \land i.\ i \in A \Longrightarrow P(i)\ is\ H;\ A \neq \{\}\ \rrbracket \Longrightarrow (\bigcap\ i \in A \cdot P(i))\ is\ H
 by (simp add: Sup-Continuous-closed UINF-as-Sup-collect)
lemma UINF-mem-Continuous-closed-pair [closure]:
 assumes Continuous H \land i j. (i, j) \in A \Longrightarrow P i j \text{ is } H A \neq \{\}
 shows ( (i,j) \in A \cdot P \ i \ j) is H
proof -
 have ( (i,j) \in A \cdot P \ i \ j) = ( (x \in A \cdot P \ (fst \ x) \ (snd \ x))
   by (rel-auto)
 also have ... is H
   by (metis (mono-tags) UINF-mem-Continuous-closed assms(1) assms(2) assms(3) prod.collapse)
 finally show ?thesis.
lemma UINF-mem-Continuous-closed-triple [closure]:
 assumes Continuous H \land i j k. (i, j, k) \in A \Longrightarrow P i j k is H \land A \neq \{\}
 shows ( (i,j,k) \in A \cdot P \ i \ j \ k) is H
proof -
 have (\bigcap (i,j,k) \in A \cdot P \ i \ j \ k) = (\bigcap x \in A \cdot P \ (fst \ x) \ (fst \ (snd \ x)) \ (snd \ (snd \ x)))
   by (rel-auto)
 also have ... is H
   by (metis\ (mono-tags)\ UINF-mem-Continuous-closed\ assms(1)\ assms(2)\ assms(3)\ prod.collapse)
 finally show ?thesis.
lemma UINF-mem-Continuous-closed-quad [closure]:
 assumes Continuous H \land i j k l. (i, j, k, l) \in A \Longrightarrow P i j k l is H \land A \neq \{\}
 shows ( (i,j,k,l) \in A \cdot P \ i \ j \ k \ l) is H
```

```
proof -
  have (\bigcap (i,j,k,l) \in A \cdot P \ i \ j \ k \ l) = (\bigcap x \in A \cdot P \ (fst \ x) \ (fst \ (snd \ x)) \ (fst \ (snd \ (snd \ x))) \ (snd \ (snd \ snd \ x)))
(snd x))))
   by (rel-auto)
 also have ... is H
   by (metis (mono-tags) UINF-mem-Continuous-closed assms(1) assms(2) assms(3) prod.collapse)
 finally show ?thesis.
qed
lemma UINF-mem-Continuous-closed-quint [closure]:
 assumes Continuous H \land i j k l m. (i, j, k, l, m) \in A \Longrightarrow P i j k l m is <math>H A \neq \{\}
 shows ( [ (i,j,k,l,m) \in A \cdot P \ i \ j \ k \ l \ m ) \ is \ H
proof -
 have ( (i,j,k,l,m) \in A \cdot P \ i \ j \ k \ l \ m)
       (snd x)))))
   by (rel-auto)
 also have ... is H
   by (metis (mono-tags) UINF-mem-Continuous-closed assms(1) assms(2) assms(3) prod.collapse)
 finally show ?thesis.
qed
lemma UINF-ind-closed [closure]:
 assumes Continuous H \land i. P i = true \land i. Q i is H
 shows UINF P Q is H
proof -
  from assms(2) have UINF P Q = (   i \cdot Q i )
   by (rel-auto)
 also have ... is H
   using UINF-mem-Continuous-closed[of H UNIV P]
   by (simp add: Sup-Continuous-closed UINF-as-Sup-collect' assms)
 finally show ?thesis.
All continuous functions are also Scott-continuous
lemma sup-continuous-Continuous [closure]: Continuous F \Longrightarrow sup\text{-continuous } F
 by (simp add: Continuous-def sup-continuous-def)
lemma USUP-healthy: A \subseteq \llbracket H \rrbracket_H \Longrightarrow (| \mid P \in A \cdot F(P)) = (| \mid P \in A \cdot F(H(P)))
 by (rule USUP-cong, simp add: Healthy-subset-member)
lemma UINF-healthy: A \subseteq \llbracket H \rrbracket_H \Longrightarrow (\bigcap P \in A \cdot F(P)) = (\bigcap P \in A \cdot F(H(P)))
 by (rule UINF-cong, simp add: Healthy-subset-member)
end
theory utp-lift-pretty
 imports utp-pred utp-lift-parser
 keywords utp-pretty :: thy-decl-block and no-utp-pretty :: thy-decl-block
begin
```

15.3 Pretty Printer

The pretty printer infers when a HOL expression is actually a UTP expression by determing whether it contains operators like *bop*, *lit* etc. If so, it inserts the syntactic UTP quote defined above and then pushes these upwards through the expression syntax as far as possible, removing

expression operators along the way. In this way, lifted HOL expressions are printed exactly as the HOL expression with a quote around.

There are two phases to this implementation. Firstly, a collection of print translation functions for each of the combinators for functions, such as *uop* and *bop* insert a UTP quote for each subexpression that is not also headed by such a combinator. This is effectively trying to find "leaf nodes" in an expression. Secondly, a set of translation rules push the UTP quotes upwards, combining where necessary, to the highest possible level, removing the expression operators as they go.

We manifest the pretty printer through two commands that enable and disable it. Disabling allows us to inspect the syntactic structure of a term.

```
\mathbf{ML}
```

 $fun\ utp\text{-}consts\ ctx =$ [@{ $syntax\text{-}const\ -UTP$ },

```
let \ val \ utp-tr-rules = map \ (fn \ (l, \ r) => Syntax.Print-Rule \ ((logic, \ l), \ (logic, \ r)))
    [(U(t), U(U(t))),
    (U(x \vee y), U(x) \vee U(y)),
    (U(x \wedge y), U(x) \wedge U(y)),
    (U(x \Rightarrow y), U(x) \Rightarrow U(y)),
    (U(\neg e), \neg U(e)),
    (U(x+y), U(x) + U(y)),
    (U(x-y), U(x)-U(y)),
    (U(-e), -U(e)),
    (U(x * y), U(x) * U(y)),
    (U(x / y), U(x) / U(y)),
    (U(-ulens-ovrd\ e\ f\ A),\ -ulens-ovrd\ (U(e))\ (U(f))\ A),
    (-UTP \ (-SubstUpd \ m \ (-smaplet \ x \ v)), -SubstUpd \ (-UTP \ m) \ (-smaplet \ x \ (-UTP \ v))),
    (-UTP \ (-Subst \ (-smaplet \ x \ v)), \ -Subst \ (-smaplet \ x \ (-UTP \ v))),
    (U(f x), U(f) \mid > U(x)),
(* (U(f x), f |> U(x)),
    (U(f x), U(f) > x), *)
    (U(\lambda x. f), (\lambda x \cdot U(f))),
    (U(\lambda x. f), (\lambda x. U(f))),
    (U(f x), CONST uop f U(x)),
    (U(f x y), CONST bop f U(x) U(y)),
    (U(f x y z), CONST trop f U(x) U(y) U(z)),
(*
    (U(f x y z), f U(x) U(y) U(z)),
    (U(f x y), f U(x) U(y)),
    (U(f x y z), f x y U(z)),
    (U(f x y z), f x U(y) z),
    (U(f x y z), f U(x) y z),
    (U(f x y), f x U(y)),
    (U(f x y), f U(x) y),
    (U(f x), f U(x)),
    (U(f x), -UTP f x) *)
    (U(f x), -UTP f (-UTP x))]
    val\ utp-terminals = [@\{const-syntax\ zero-class.zero\},\ @\{const-syntax\ one-class.one\},\ @\{const-syntax\ one-class.one\},\ and a superior of the syntax one of the syntax on
numeral, @{const-syntax utrue}, @{const-syntax ufalse}]:
     fun\ utp\text{-}consts\ ctx = @\{syntax\text{-}const\ \text{-}UTP\}\ ::\ filter\ (not\ o\ member\ (op\ =)\ utp\text{-}terminals)\ (map\ property)
Lexicon.mark-const (Symtab.keys (NoLiftUTP.get (Proof-Context.theory-of ctx))));
```

```
@\{const\text{-}syntax\ lit\},
        @\{const\text{-}syntax\ var\},
        @\{const\text{-}syntax\ uop\},
        @\{const\text{-}syntax\ bop\},
        @\{const\text{-}syntax\ trop\},
        @\{const\text{-}syntax\ qtop\},
            @\{const\text{-}syntax\ subst\text{-}upd\}, *)
        @{const-syntax\ plus},
        @\{const\text{-}syntax\ minus\},
        @\{const\text{-syntax times}\},
        @\{const\text{-}syntax\ divide\}];
*)
   fun\ needs-mark\ ctx\ t =
       case t of
          (Const \ (@\{syntax-const -free\}, -) \ \ Free \ (-, Type \ (type-name \ (uexpr), -))) => true \ |
              (Const\ (c\ ,\ -),\ -) => (not\ (member\ (op\ =)\ (utp\text{-}consts\ ctx)\ c))\mid *)
          - => false;
   fun\ utp-mark-term\ ctx\ t =
       if (needs-mark\ ctx\ t) then Const\ (@\{syntax-const\ -UTP\},\ dummyT) $ t\ else\ t;
   fun mark-uexpr-leaf n = (n, fn - =) fn typ =) fn ts =)
       case typ of
         (Type\ (type-name\ (uexpr),\ -)) => Const\ (@\{syntax-const\ -UTP\},\ dummyT)\ \$\ Term.list-comb
(Const\ (n,\ dummyT),\ ts)
         (Type\ (type-name\ (fun),\ [-,\ Type\ (type-name\ (uexpr),\ -)])) => Const\ (@\{syntax-const\ -UTP\},\ -))
dummyT) $ Term.list-comb (Const (n, dummyT), ts) |
       - = > raise Match);
   fun\ insert-U\ ctx\ pre\ ts =
       if (Library.foldl (fn (x, y) => needs-mark ctx y orelse x) (false, ts))
      then Library.foldl1 (op $) (pre @ map (utp-mark-term ctx) ts)
      else raise Match;
   fun uop-insert-U ctx (f :: ts) = insert-U ctx [Const (@\{const-syntax uop\}, dummyT), f] ts
   uop-insert-U - - = raise\ Match;
   fun bop-insert-U ctx (f :: ts) = insert-U ctx [Const (@\{const-syntax bop\}, dummyT), f] ts [Const (g :: ts) = insert-U ctx [Const (g 
   bop-insert-U - - = raise\ Match;
   fun\ trop-insert-U\ ctx\ (f::ts) =
      insert-U\ ctx\ [Const\ (@\{const-syntax\ trop\},\ dummyT),\ f]\ ts\ |
   trop-insert-U - - = raise\ Match;
   fun\ appl-insert-U\ ctx\ ts = insert-U\ ctx\ []\ ts;
   fun disj-insert-U ctx ts = insert-U ctx [Const (\mathbb{Q}{const-syntax udisj}, dummyT)] ts;
    val\ print-tr = [(@\{const-syntax\ var\},\ K\ (fn\ ts => Const\ (@\{syntax-const\ -UTP\},\ dummyT)\ \$
hd(ts)))
                             , (@\{const\text{-}syntax\ lit\}, K (fn ts => Const (@\{syntax\text{-}const\ -UTP\}, dummyT) $hd(ts)))
                             , (@\{const\text{-}syntax\ trop\},\ trop\text{-}insert\text{-}U)
                             , (@\{const\text{-}syntax\ bop\},\ bop\text{-}insert\text{-}U)
                             , (@\{const\text{-}syntax\ uop\},\ uop\text{-}insert\text{-}U)
```

```
, (@\{const\text{-}syntax\ udisj\},\ disj\text{-}insert\text{-}U)
                , (@\{const\text{-}syntax\ uexpr\text{-}appl\},\ appl\text{-}insert\text{-}U)];
 val \ ty\text{-}print\text{-}tr = [mark\text{-}uexpr\text{-}leaf \ @\{const\text{-}syntax \ utrue\},
                   mark-uexpr-leaf @{const-syntax ufalse},
                   mark-uexpr-leaf @{const-syntax zero-class.zero},
                   mark-uexpr-leaf @{const-syntax one-class.one},
                   mark-uexpr-leaf @\{const-syntax numeral\}];
  (* FIXME: We should also mark expressions that are free variables *)
  val\ no\text{-}print\text{-}tr = [\ (@\{syntax\text{-}const\text{-}UTP\},\ K\ (fn\ ts =>\ Term.list\text{-}comb\ (hd\ ts,\ tl\ ts)))\ ];
in Outer-Syntax.command @{command-keyword utp-pretty} enable pretty printing of UTP expressions
   (Scan.succeed (Toplevel.theory (Isar-Cmd.translations utp-tr-rules #>
                                 Sign.typed-print-translation\ ty-print-tr\ \#>
                                 Sign.print-translation print-tr
                                  )));
   (* FIXME: It actually isn't currently possible to disable pretty printing without destroying the term
rewriting *)
  Outer-Syntax.command @{command-keyword no-utp-pretty} disable pretty printing of UTP expressions
     (Scan.succeed (Toplevel.theory (Isar-Cmd.no-translations utp-tr-rules #> Sign.print-translation
no-print-tr)))
end
\mathbf{ML} \langle @\{syntax\text{-}const\text{-}UTP\} \rangle
term U(3 + \&x)
utp-pretty
term U(3 + \&x)
term U(1 + \&x)
\mathbf{term} \ll x \gg + \$y
\mathbf{term} \ll x \gg + \$y
term U(\&v < \theta)
term U(\&v>0)
term U(\$y = 5)
term U(\$y' = 1 + \$y)
term U(\$x + \$y + \$z + \$u / \$f')
term U(\$f x)
term U(\$f \$\mathbf{v}')
term e \oplus f on A
```

```
term U(\$x=v)

term true

term U(P \lor \$x=1 \Rightarrow false)

term U(\$tr'=\$tr @ [a] \land \$ref \subseteq \$i:ref' \cup \$j:ref' \land \$x'=\$x+1)

term U((length\ e)[1+1/\&x])
```

16 Alphabetised Relations

```
theory utp-rel
imports
utp-pred-laws
utp-healthy
utp-lift
utp-tactics
utp-lift-pretty
begin
```

An alphabetised relation is simply a predicate whose state-space is a product type. In this theory we construct the core operators of the relational calculus, and prove a libary of associated theorems, based on Chapters 2 and 5 of the UTP book [22].

16.1 Relational Alphabets

We set up convenient syntax to refer to the input and output parts of the alphabet, as is common in UTP. Since we are in a product space, these are simply the lenses fst_L and snd_L .

```
definition in\alpha :: ('\alpha \Longrightarrow '\alpha \times '\beta) where [lens\text{-}defs]: in\alpha = fst_L

definition out\alpha :: ('\beta \Longrightarrow '\alpha \times '\beta) where [lens\text{-}defs]: out\alpha = snd_L

lemma in\alpha\text{-}uvar [simp]: vwb\text{-}lens in\alpha
by (unfold\text{-}locales, auto simp add: in\alpha\text{-}def)

lemma out\alpha\text{-}uvar [simp]: vwb\text{-}lens out\alpha
by (unfold\text{-}locales, auto simp add: out\alpha\text{-}def)

lemma var\text{-}in\text{-}alpha [simp]: x ;_L in\alpha = in\text{-}var x
by (simp add: fst\text{-}lens\text{-}def in\alpha\text{-}def in\text{-}var\text{-}def)

lemma var\text{-}out\text{-}alpha [simp]: x ;_L out\alpha = out\text{-}var x
by (simp add: out\alpha\text{-}def out\text{-}var\text{-}def snd\text{-}lens\text{-}def)

lemma drop\text{-}pre\text{-}inv [simp]: [[out\alpha \sharp p]] \Longrightarrow [[p] < [var \to p]
by (pred\text{-}simp)
```

```
in\alpha \sharp_s \sigma \Longrightarrow \langle \sigma \rangle_s (in\text{-}var x) = \$x
  by (rel\text{-}simp, metis fstI)
lemma usubst-lookup-out-var-unrest [usubst]:
  out\alpha \sharp_s \sigma \Longrightarrow \langle \sigma \rangle_s (out\text{-}var x) = \$x'
  by (rel\text{-}simp, metis sndI)
lemma out-alpha-in-indep [simp]:
  out\alpha \bowtie in\text{-}var \ x \ in\text{-}var \ x \bowtie out\alpha
  by (simp-all add: in-var-def out \alpha-def lens-indep-def fst-lens-def snd-lens-def lens-comp-def)
lemma in-alpha-out-indep [simp]:
  in\alpha \bowtie out\text{-}var \ x \ out\text{-}var \ x \bowtie in\alpha
  by (simp-all add: in-var-def in\alpha-def lens-indep-def fst-lens-def lens-comp-def)
The following two functions lift a predicate substitution to a relational one.
abbreviation usubst-rel-lift :: '\alpha usubst \Rightarrow ('\alpha \times '\beta) usubst ([-]_s) where
[\sigma]_s \equiv \sigma \oplus_s in\alpha
abbreviation usubst-rel-drop :: ('\alpha \times '\alpha) usubst \Rightarrow '\alpha usubst (|-|_s) where
|\sigma|_s \equiv \sigma \upharpoonright_s in\alpha
no-utp-lift usubst-rel-lift
no-utp-lift usubst-rel-drop
The alphabet of a relation then consists wholly of the input and output portions.
```

16.2 Relational Types and Operators

by (simp add: fst-snd-id-lens in α -def lens-equiv-refl out α -def)

lemma alpha-in-out: $\Sigma \approx_L in\alpha +_L out\alpha$

We create type synonyms for conditions (which are simply predicates) – i.e. relations without dashed variables –, alphabetised relations where the input and output alphabet can be different, and finally homogeneous relations.

```
type-synonym '\alpha cond = '\alpha upred
type-synonym ('\alpha, '\beta) urel = ('\alpha × '\beta) upred
type-synonym '\alpha hrel = ('\alpha × '\alpha) upred
type-synonym ('\alpha, '\alpha) hexpr = ('\alpha, '\alpha × '\alpha) uexpr
translations
```

```
(type) ('\alpha, '\beta) urel \le (type) ('\alpha \times '\beta) upred
```

We set up some overloaded constants for sequential composition and the identity in case we want to overload their definitions later.

```
consts
```

```
useq :: 'a \Rightarrow 'b \Rightarrow 'c (infixr ;; 61)

uassigns :: ('a, 'b) psubst \Rightarrow 'c (\langle -\rangle_a)

uskip :: 'a (II)
```

We define a specialised version of the conditional where the condition can refer only to undashed variables, as is usually the case in programs, but not universally in UTP models. We implement this by lifting the condition predicate into the relational state-space with construction $b^{<}$.

```
definition lift-rcond (\lceil - \rceil_{\leftarrow}) where [upred-defs]: \lceil b \rceil_{\leftarrow} = \lceil b \rceil_{<}
```

abbreviation

```
rcond :: ('\alpha, '\beta) urel \Rightarrow '\alpha cond \Rightarrow ('\alpha, '\beta) urel \Rightarrow ('\alpha, '\beta) urel \Rightarrow ((3- \triangleleft - \triangleright_r/ -) [52,0,53] 52) where (P \triangleleft b \triangleright_r Q) \equiv (P \triangleleft \lceil b \rceil_{\leftarrow} \triangleright Q)
```

Sequential composition is heterogeneous, and simply requires that the output alphabet of the first matches then input alphabet of the second. We define it by lifting HOL's built-in relational composition operator (O). Since this returns a set, the definition states that the state binding b is an element of this set.

```
lift-definition seqr::('\alpha, '\beta) \ urel \Rightarrow ('\beta, '\gamma) \ urel \Rightarrow ('\alpha \times '\gamma) \ upred is \lambda \ P \ Q \ b. \ b \in (\{p. \ P \ p\} \ O \ \{q. \ Q \ q\}).
```

adhoc-overloading

useq seqr

We also set up a homogeneous sequential composition operator, and versions of U(true) and U(false) that are explicitly typed by a homogeneous alphabet.

```
abbreviation seqh:: '\alpha \ hrel \Rightarrow '\alpha \ hrel \Rightarrow '\alpha \ hrel \ (infixr:_{h} \ 61) where seqh \ P \ Q \equiv (P:_{h} \ Q)
```

```
abbreviation truer :: '\alpha \ hrel \ (true_h) where truer \equiv true
```

```
abbreviation falser :: '\alpha \ hrel \ (false_h) where falser \equiv false
```

We define the relational converse operator as an alphabet extrusion on the bijective lens $swap_L$ that swaps the elements of the product state-space.

```
abbreviation conv-r :: ('a, '\alpha \times '\beta) uexpr \Rightarrow ('a, '\beta \times '\alpha) uexpr (- [999] 999) where conv-r e \equiv e \oplus_p swap_L
```

Assignment is defined using substitutions, where latter defines what each variable should map to. This approach, which is originally due to Back [3], permits more general assignment expressions. The definition of the operator identifies the after state binding, b', with the substitution function applied to the before state binding b.

```
lift-definition assigns-r:('\alpha,'\beta) psubst \Rightarrow ('\alpha,'\beta) urel is \lambda \sigma (b, b'). b' = \sigma(b).
```

adhoc-overloading

uassigns assigns-r

Relational identity, or skip, is then simply an assignment with the identity substitution: it simply identifies all variables.

```
definition skip-r :: '\alpha \ hrel \ \mathbf{where} [urel-defs]: skip-r = assigns-r \ id_s
```

adhoc-overloading

 $uskip\ skip\ -r$

Non-deterministic assignment, also known as "choose", assigns an arbitrarily chosen value to the given variable

```
definition nd-assign :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha hrel where [urel-defs]: nd-assign x = (\bigcap v \cdot assigns r [x \mapsto_s \ll v \gg])
```

We set up iterated sequential composition which iterates an indexed predicate over the elements of a list.

```
definition seqr-iter :: 'a list \Rightarrow ('a \Rightarrow 'b hrel) \Rightarrow 'b hrel where [urel-defs]: seqr-iter xs P = foldr (\lambda i Q. P(i) ;; Q) xs II
```

A singleton assignment simply applies a singleton substitution function, and similarly for a double assignment.

```
abbreviation assign-r::('t\Longrightarrow'\alpha)\Rightarrow('t,\ '\alpha)\ uexpr\Rightarrow'\alpha\ hrel where assign-r\ x\ v\equiv\langle[x\mapsto_s\ v]\rangle_a
```

```
abbreviation assign-2-r ::
```

```
('t1 \Longrightarrow '\alpha) \Rightarrow ('t2 \Longrightarrow '\alpha) \Rightarrow ('t1, '\alpha) \ uexpr \Rightarrow ('t2, '\alpha) \ uexpr \Rightarrow '\alpha \ hrel
where assign-2-r x y u v \equiv assigns-r [x \mapsto_s u, y \mapsto_s v]
```

We also define the alphabetised skip operator that identifies all input and output variables in the given alphabet lens. All other variables are unrestricted. We also set up syntax for it.

```
definition skip\text{-}ra :: ('\beta, '\alpha) \ lens \Rightarrow '\alpha \ hrel \ \mathbf{where} [urel\text{-}defs]: skip\text{-}ra \ v = (\$v' =_u \$v)
```

Similarly, we define the alphabetised assignment operator.

```
definition assigns-ra :: '\alpha usubst \Rightarrow ('\beta, '\alpha) lens \Rightarrow '\alpha hrel (\langle - \rangle_-) where \langle \sigma \rangle_a = (\lceil \sigma \rceil_s \dagger skip\text{-ra } a)
```

Assumptions (c^{\top}) and assertions (c_{\perp}) are encoded as conditionals. An assumption behaves like skip if the condition is true, and otherwise behaves like U(false) (miracle). An assertion is the same, but yields U(true), which is an abort. They are the same as tests, as in Kleene Algebra with Tests [24, 1] (KAT), which embeds a Boolean algebra into a Kleene algebra to represent conditions.

```
definition rassume :: '\alpha upred \Rightarrow '\alpha hrel ([-]^{\top}) where [urel-defs]: rassume c = II \triangleleft c \triangleright_r false
```

notation rassume (?[-])

utp-lift-notation rassume (0)

```
definition rassert :: '\alpha upred \Rightarrow '\alpha hrel ({-}_{\perp}) where [urel-defs]: rassert c = II \triangleleft c \triangleright_r true
```

```
utp-lift-notation rassert (\theta)
```

We also encode "naked" guarded commands [8, ?] by composing an assumption with a relation.

```
definition rgcmd :: 'a upred \Rightarrow 'a hrel \Rightarrow 'a hrel (-\longrightarrow_r - [55, 56] 55) where [urel-defs]: rgcmd b P = (rassume b ;; P)
```

```
utp-lift-notation rgcmd (\theta)
```

We define two variants of while loops based on strongest and weakest fixed points. The former is U(false) for an infinite loop, and the latter is U(true).

```
definition while-top :: '\alpha cond \Rightarrow '\alpha hrel \Rightarrow '\alpha hrel (while ^{\top} - do - od) where [urel-defs]: while-top b \ P = (\nu \ X \cdot (P \ ;; \ X) \triangleleft b \triangleright_r II)
```

```
notation while-top (while - do - od)
```

utp-lift-notation while-top (0)

```
definition while-bot :: '\alpha cond \Rightarrow '\alpha hrel \Rightarrow '\alpha hrel (while _{\perp} - do - od) where [urel-defs]: while-bot b P = (\mu \ X \cdot (P \ ;; \ X) \triangleleft b \triangleright_r II)
```

utp-lift-notation while-bot (θ)

While loops with invariant decoration (cf. [1]) – partial correctness.

```
definition while-inv :: '\alpha cond \Rightarrow '\alpha cond \Rightarrow '\alpha hrel \Rightarrow '\alpha hrel (while - invr - do - od) where [urel-defs]: while-inv b p S = while-top b S
```

```
utp-lift-notation while-inv (0\ 1)
```

While loops with invariant decoration – total correctness.

```
definition while-inv-bot :: '\alpha cond \Rightarrow '\alpha cond \Rightarrow '\alpha hrel \Rightarrow '\alpha hrel (while _{\perp} - invr - do - od 71) where [urel-defs]: while-inv-bot b p S = while-bot b S
```

```
utp-lift-notation while-inv-bot (0 1)
```

While loops with invariant and variant decorations – total correctness.

 $\textbf{definition} \ \textit{while-vrt} ::$

```
'\alpha cond \Rightarrow '\alpha cond \Rightarrow (nat, '\alpha) uexpr \Rightarrow '\alpha hrel \Rightarrow '\alpha hrel (while - invr - vrt - do - od) where [urel-defs]: while-vrt b p v S = while-bot b S
```

utp-lift-notation while-vrt (0 1 2)

translations

```
 \begin{split} ?[b] <&= ?[U(b)] \\ \{b\}_\bot <&= \{U(b)\}_\bot \\ while \ b \ do \ P \ od <&= while \ U(b) \ do \ P \ od \end{split}
```

We implement a poor man's version of alphabet restriction that hides a variable within a relation.

```
definition rel-var-res :: '\alpha hrel \Rightarrow ('a \Longrightarrow '\alpha) \Rightarrow '\alpha hrel (infix \upharpoonright_{\alpha} 80) where [urel-defs]: P \upharpoonright_{\alpha} x = (\exists \$x \cdot \exists \$x' \cdot P)
```

Alphabet extension and restriction add additional variables by the given lens in both their primed and unprimed versions.

```
definition rel-aext :: '\beta hrel \Rightarrow ('\beta \Longrightarrow '\alpha) \Rightarrow '\alpha hrel where [upred-defs]: rel-aext P a = P \oplus_p (a \times_L a)
```

```
definition rel-ares :: '\alpha hrel \Rightarrow ('\beta \Longrightarrow '\alpha) \Rightarrow '\beta hrel where [upred-defs]: rel-ares P a = (P \upharpoonright_p (a \times a))
```

We next describe frames and antiframes with the help of lenses. A frame states that P defines how variables in a changed, and all those outside of a remain the same. An antiframe describes the converse: all variables outside a are specified by P, and all those in remain the same. For more information please see [25].

```
definition frame :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ hrel \Rightarrow '\alpha \ hrel \ where [urel-defs]: frame a <math>P = (P \land \$\mathbf{v}' =_u \$\mathbf{v} \oplus \$\mathbf{v}' \ on \ \&a)
```

```
definition antiframe :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ hrel \Rightarrow '\alpha \ hrel where
[urel-defs]: antiframe a P = (P \land \$\mathbf{v}' =_u \$\mathbf{v}' \oplus \$\mathbf{v} \text{ on } \& a)
```

Frame extension combines alphabet extension with the frame operator to both add additional variables and then frame those.

```
definition rel-frext :: ('\beta \Longrightarrow '\alpha) \Rightarrow '\beta \ hrel \Rightarrow '\alpha \ hrel where
[upred-defs]: rel-frext\ a\ P = frame\ a\ (rel-aext\ P\ a)
```

The nameset operator can be used to hide a portion of the after-state that lies outside the lens a. It can be useful to partition a relation's variables in order to conjoin it with another relation.

```
definition nameset :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ hrel \Rightarrow '\alpha \ hrel \ where
[urel-defs]: nameset a P = (P \upharpoonright_v \{\$\mathbf{v},\$a'\})
```

16.3Syntax Translations

```
— Alternative traditional conditional syntax
```

```
abbreviation (input) rifthenelse ((if (-)/ then (-)/ else (-)/ fi))
  where rifthenelse b P Q \equiv P \triangleleft b \triangleright_r Q
abbreviation (input) rifthen ((if (-)/ then (-)/ fi))
  where rifthen b P \equiv rifthenelse b P II
utp-lift-notation rifthenelse (0)
utp-lift-notation rifthen (0)
syntax
  — Iterated sequential composition
  -segr-iter :: pttrn \Rightarrow 'a \ list \Rightarrow '\sigma \ hrel \Rightarrow '\sigma \ hrel \ ((3;; -: -\cdot/ -) \ [0, \ 0, \ 10] \ 10)
   — Single and multiple assignment
                      :: svids \Rightarrow uexprs \Rightarrow '\alpha \ hrel \ ('(-') := '(-'))
  -assignment
                      :: svids \Rightarrow uexprs \Rightarrow '\alpha \ hrel \ (infixr := 62)
  — Non-deterministic assignment
  -nd-assign :: svids \Rightarrow logic (-:=*[62] 62)
  — Substitution constructor
  -mk-usubst
                      :: svids \Rightarrow uexprs \Rightarrow '\alpha \ usubst
  — Alphabetised skip
  -skip-ra
                   :: salpha \Rightarrow logic (II_{-})
  — Frame
  -frame
                    :: salpha \Rightarrow logic \Rightarrow logic (-:[-] [99,0] 100)
  — Antiframe
  -antiframe
                     :: salpha \Rightarrow logic \Rightarrow logic (-: \llbracket - \rrbracket [79,0] 80)
  — Relational Alphabet Extension
  -rel-aext :: logic \Rightarrow salpha \Rightarrow logic (infixl <math>\oplus_r 90)
  — Relational Alphabet Restriction
  -rel-ares :: logic \Rightarrow salpha \Rightarrow logic (infixl \uparrow_r 90)
  — Frame Extension
  -rel-frext :: salpha \Rightarrow logic \Rightarrow logic (-:[-]^+ [99,0] 100)
  — Nameset
                      :: salpha \Rightarrow logic \Rightarrow logic (ns - \cdot - [0.999] 999)
  -name set
```

translations

```
projection : l \cdot P \Rightarrow (CONST \ seqr-iter) \ l \ (\lambda x. \ P)
-mk-usubst \sigma (-svid-unit x) v \rightleftharpoons \sigma(\&x \mapsto_s v)
```

```
-mk-usubst \sigma (-svid-list x xs) (-uexprs v vs) \rightleftharpoons (-mk-usubst (\sigma(\&x \mapsto_s v)) xs vs)
 -assignment xs \ vs => CONST \ uassigns \ (-mk-usubst \ id_s \ xs \ vs)
 -assignment x \ v \le CONST \ uassigns \ (CONST \ subst-upd \ id_s \ x \ v)
 -assignment \ x \ v \le -assignment \ (-spvar \ x) \ v
 -nd-assign x = > CONST \ nd-assign (-mk-svid-list x)
 -nd-assign x \le CONST nd-assign x
 x,y := u,v \le CONST \ uassigns \ (CONST \ subst-upd \ (CONST \ subst-upd \ id_s \ (CONST \ pr-var \ x) \ u)
(CONST \ pr-var \ y) \ v)
 -skip-ra v \rightleftharpoons CONST skip-ra v
 -frame x P => CONST frame x P
 -frame (-salphaset (-salphamk x)) P \le CONST frame x P
 -antiframe x P => CONST antiframe x P
 -antiframe (-salphaset (-salphamk x)) P \le CONST antiframe x P
 -nameset \ x \ P == CONST \ nameset \ x \ P
 -rel-aext\ P\ a == CONST\ rel-aext\ P\ a
 -rel-ares P a == CONST rel-ares P a
 -rel-frext a P == CONST \ rel-frext a P
```

The following code sets up pretty-printing for homogeneous relational expressions. We cannot do this via the "translations" command as we only want the rule to apply when the input and output alphabet types are the same. The code has to deconstruct a $('a, '\alpha)$ uexpr type, determine that it is relational (product alphabet), and then checks if the types alpha and beta are the same. If they are, the type is printed as a hexpr. Otherwise, we have no match. We then set up a regular translation for the hrel type that uses this.

```
print-translation ( let fun tr' ctx [ a , Const (@\{type\text{-syntax prod}\},-) $ alpha $ beta ] = if (alpha = beta) then Syntax.const @\{type\text{-syntax hexpr}\} $ a $ alpha else raise Match; in [(@\{type\text{-syntax uexpr}\},tr')] end } translations (type) '\alpha hrel <= (type) (bool, '\alpha) hexpr
```

16.4 Relation Properties

We describe some properties of relations, including functional and injective relations. We also provide operators for extracting the domain and range of a UTP relation.

```
definition ufunctional :: ('a, 'b) urel \Rightarrow bool where [urel-defs]: ufunctional R \longleftrightarrow II \sqsubseteq R^-;; R definition uinj :: ('a, 'b) urel \Rightarrow bool where [urel-defs]: uinj R \longleftrightarrow II \sqsubseteq R;; R^- definition Pre :: ('\alpha, '\beta) \ urel \Rightarrow '\alpha \ upred where [upred-defs]: Pre P = [\exists \ \mathbf{v}' \cdot P]_{<} definition Post :: ('\alpha, '\beta) \ urel \Rightarrow '\beta \ upred where [upred-defs]: Post P = [\exists \ \mathbf{v} \cdot P]_{>}
```

```
no-utp-lift Pre Post
```

lemma urel-refine-ext:

— Configuration for UTP tactics.

update-uexpr-rep-eq-thms — Reread *rep-eq* theorems.

16.5 Introduction laws

```
\llbracket \ \bigwedge \ s \ s'. \ P \llbracket \ll s \gg, \ll s' \gg /\$ \mathbf{v}, \$ \mathbf{v}' \rrbracket \sqsubseteq \ Q \llbracket \ll s \gg, \ll s' \gg /\$ \mathbf{v}, \$ \mathbf{v}' \rrbracket \ \rrbracket \implies P \sqsubseteq \ Q
  by (rel-auto)
lemma urel-eq-ext:
  [\![ \bigwedge s \ s'. \ P[\![ \ll s \gg, \ll s' \gg / \$\mathbf{v}, \$\mathbf{v}']\!] = Q[\![ \ll s \gg, \ll s' \gg / \$\mathbf{v}, \$\mathbf{v}']\!] ]\!] \Longrightarrow P = Q
  by (rel-auto)
             Unrestriction Laws
16.6
lemma unrest-iuvar [unrest]: out\alpha \sharp \$x
  by (metis fst-snd-lens-indep lift-pre-var out \alpha-def unrest-aext-indep)
lemma unrest-ouvar [unrest]: in\alpha \sharp \$x'
  by (metis in\alpha-def lift-post-var snd-fst-lens-indep unrest-aext-indep)
lemma unrest-semir-undash [unrest]:
  fixes x :: ('a \Longrightarrow '\alpha)
  assumes x \sharp P
  shows x \ \sharp P \ ;; \ Q
  using assms by (rel-auto)
lemma unrest-semir-dash [unrest]:
  fixes x :: ('a \Longrightarrow '\alpha)
  assumes x' \sharp Q
  shows x' \sharp P ;; Q
  \mathbf{using} \ assms \ \mathbf{by} \ (\mathit{rel-auto})
lemma unrest-cond [unrest]:
   [\![ \ x \ \sharp \ P; \ x \ \sharp \ b; \ x \ \sharp \ Q \ ]\!] \Longrightarrow x \ \sharp \ P \vartriangleleft b \, \rhd \, Q
  by (rel-auto)
lemma unrest-lift-roond [unrest]:
  x \sharp \lceil b \rceil < \Longrightarrow x \sharp \lceil b \rceil_{\leftarrow}
  by (simp add: lift-rcond-def)
lemma unrest-in\alpha-var [unrest]:
   \llbracket mwb\text{-}lens \ x; \ in\alpha \ \sharp \ (P :: ('a, ('\alpha \times '\beta)) \ uexpr) \ \rrbracket \Longrightarrow \$x \ \sharp \ P
  by (rel-auto)
lemma unrest-out\alpha-var [unrest]:
   \llbracket mwb\text{-}lens\ x;\ out\alpha\ \sharp\ (P::('a,('\alpha\times'\beta))\ uexpr)\ \rrbracket \Longrightarrow \$x'\ \sharp\ P
  by (rel-auto)
lemma unrest-pre-out\alpha [unrest]: out\alpha \sharp [b]_{<}
  by (transfer, auto simp add: out\alpha-def)
```

lemma unrest-post- $in\alpha$ [unrest]: $in\alpha \sharp [b]$ >

```
by (transfer, auto simp add: in\alpha-def)
lemma unrest-pre-in-var [unrest]:
  x \sharp p1 \Longrightarrow \$x \sharp \lceil p1 \rceil_{<}
  by (transfer, simp)
lemma unrest-post-out-var [unrest]:
  x \sharp p1 \Longrightarrow \$x' \sharp \lceil p1 \rceil_{>}
  by (transfer, simp)
lemma unrest-convr-out\alpha [unrest]:
  in\alpha \sharp p \Longrightarrow out\alpha \sharp p^-
  by (transfer, auto simp add: lens-defs)
lemma unrest-convr-in\alpha [unrest]:
  out\alpha \sharp p \Longrightarrow in\alpha \sharp p^-
  by (transfer, auto simp add: lens-defs)
lemma unrest-in-rel-var-res [unrest]:
  vwb-lens x \Longrightarrow \$x \sharp (P \upharpoonright_{\alpha} x)
  by (simp add: rel-var-res-def unrest)
lemma unrest-out-rel-var-res [unrest]:
  vwb-lens x \Longrightarrow \$x' \sharp (P \upharpoonright_{\alpha} x)
  by (simp add: rel-var-res-def unrest)
lemma unrest-out-alpha-usubst-rel-lift [unrest]:
  out\alpha \sharp_s [\sigma]_s
  by (rel-auto)
lemma unrest-in-rel-aext [unrest]: x \bowtie y \Longrightarrow \$y \sharp P \oplus_r x
  by (simp add: rel-aext-def unrest-aext-indep)
lemma unrest-out-rel-aext [unrest]: x \bowtie y \Longrightarrow \$y' \sharp P \oplus_r x
  by (simp add: rel-aext-def unrest-aext-indep)
lemma rel-aext-false [alpha]:
  false \oplus_r a = false
  by (pred-auto)
lemma rel-aext-seq [alpha]:
  weak-lens a \Longrightarrow (P ;; Q) \oplus_r a = (P \oplus_r a ;; Q \oplus_r a)
  apply (rel-auto)
  apply (rename-tac \ aa \ b \ y)
  apply (rule-tac \ x=create_a \ y \ in \ exI)
  apply (simp)
  done
lemma rel-aext-cond [alpha]:
  (P \triangleleft b \triangleright_r Q) \oplus_r a = (P \oplus_r a \triangleleft b \oplus_p a \triangleright_r Q \oplus_r a)
  by (rel-auto)
16.7
           Substitution laws
```

lemma subst-seq-left [usubst]:
out
$$\alpha \sharp_s \sigma \Longrightarrow \sigma \dagger (P ;; Q) = (\sigma \dagger P) ;; Q$$

```
by (rel-simp, (metis (no-types, lifting) Pair-inject surjective-pairing)+)  \begin{aligned} &\text{lemma subst-seq-right [usubst]:} \\ &in\alpha \ \sharp_s \ \sigma \Longrightarrow \sigma \dagger \ (P \ ;; \ Q) = P \ ;; \ (\sigma \dagger \ Q) \\ &\text{by (rel-simp, (metis (no-types, lifting) Pair-inject surjective-pairing)+)} \end{aligned}  The following laws support substitution in heterogeneous relations for polymorphically typed literal expressions. These cannot be supported more generically due to limitations in HOL's type system. The laws are presented in a slightly strange way so as to be as general as possible.
```

```
lemma bool-segr-laws [usubst]:
  fixes x :: (bool \Longrightarrow '\alpha)
  shows
     \bigwedge P Q \sigma. \sigma(\$x \mapsto_s false) \dagger (P ;; Q) = \sigma \dagger (P \llbracket false/\$x \rrbracket ;; Q)
    \bigwedge P Q \sigma. \sigma(\$x' \mapsto_s true) \dagger (P ;; Q) = \sigma \dagger (P ;; Q[true/\$x'])
    \bigwedge P Q \sigma. \sigma(\$x' \mapsto_s false) \dagger (P ;; Q) = \sigma \dagger (P ;; Q[false/\$x'])
    by (rel-auto)+
lemma zero-one-segr-laws [usubst]:
  fixes x :: (- \Longrightarrow '\alpha)
  shows
    \bigwedge P Q \sigma. \sigma(\$x \mapsto_s \theta) \dagger (P ;; Q) = \sigma \dagger (P \llbracket \theta / \$x \rrbracket ;; Q)
    \bigwedge P Q \sigma. \sigma(\$x \mapsto_s 1) \dagger (P ;; Q) = \sigma \dagger (P \llbracket 1/\$x \rrbracket ;; Q)
    \bigwedge P Q \sigma. \sigma(\$x' \mapsto_s \theta) \dagger (P ;; Q) = \sigma \dagger (P ;; Q[\theta/\$x'])
     \bigwedge P Q \sigma. \sigma(\$x' \mapsto_s 1) \dagger (P ;; Q) = \sigma \dagger (P ;; Q[[1/\$x']])
    by (rel-auto)+
lemma numeral-segr-laws [usubst]:
  fixes x :: (- \Longrightarrow '\alpha)
  shows
    \bigwedge P Q \sigma. \ \sigma(\$x \mapsto_s numeral \ n) \dagger (P ;; \ Q) = \sigma \dagger (P[numeral \ n/\$x] ;; \ Q)
    \bigwedge P Q \sigma. \sigma(\$x' \mapsto_s numeral n) \dagger (P ;; Q) = \sigma \dagger (P ;; Q[numeral n/\$x'])
  by (rel-auto)+
lemma usubst-condr [usubst]:
  \sigma \dagger (P \triangleleft b \triangleright Q) = (\sigma \dagger P \triangleleft \sigma \dagger b \triangleright \sigma \dagger Q)
  by (rel-auto)
lemma subst-skip-r [usubst]:
  out\alpha \sharp_s \sigma \Longrightarrow \sigma \dagger II = \langle |\sigma|_s \rangle_a
  by (rel-simp, (metis (mono-tags, lifting) prod.sel(1) sndI surjective-pairing)+)
lemma subst-pre-skip [usubst]: [\sigma]_s \dagger II = \langle \sigma \rangle_a
  by (rel-auto)
lemma subst-rel-lift-seq [usubst]:
  [\sigma]_s \dagger (P ;; Q) = ([\sigma]_s \dagger P) ;; Q
  by (rel-auto)
lemma subst-rel-lift-comp [usubst]:
  [\sigma]_s \circ_s [\varrho]_s = [\sigma \circ_s \varrho]_s
  by (rel-auto)
lemma usubst-upd-in-comp [usubst]:
  \sigma(\&in\alpha:x\mapsto_s v) = \sigma(\$x\mapsto_s v)
```

```
by (simp add: pr-var-def fst-lens-def in\alpha-def in-var-def)
lemma usubst-upd-out-comp [usubst]:
  \sigma(\&out\alpha:x\mapsto_s v) = \sigma(\$x'\mapsto_s v)
  by (simp add: pr-var-def out\alpha-def out-var-def snd-lens-def)
lemma subst-lift-upd [alpha]:
  fixes x :: ('a \Longrightarrow '\alpha)
  shows [\sigma(x \mapsto_s v)]_s = [\sigma]_s(\$x \mapsto_s [v]_<)
  by (simp add: alpha usubst, simp add: pr-var-def fst-lens-def in\alpha-def in-var-def)
lemma subst-drop-upd [alpha]:
  fixes x :: ('a \Longrightarrow '\alpha)
  shows |\sigma(\$x \mapsto_s v)|_s = |\sigma|_s(x \mapsto_s |v|_<)
  by pred-simp
lemma subst-lift-pre [usubst]: [\sigma]_s \dagger [b]_< = [\sigma \dagger b]_<
  by (metis apply-subst-ext fst-vwb-lens in \alpha-def)
lemma unrest-usubst-lift-in [unrest]:
  x \sharp P \Longrightarrow \$x \sharp \lceil P \rceil_s
  by pred-simp
lemma unrest-usubst-lift-out [unrest]:
  fixes x :: ('a \Longrightarrow '\alpha)
  shows x' \sharp_s \lceil P \rceil_s
  by pred-simp
lemma subst-lift-cond [usubst]: [\sigma]_s \dagger [s]_{\leftarrow} = [\sigma \dagger s]_{\leftarrow}
  by (rel-auto)
\mathbf{lemma} \ \textit{msubst-seq} \ [\textit{usubst}] : (P(x) \ ;; \ Q(x)) [\![x \to \ll v \gg]\!] = ((P(x)) [\![x \to \ll v \gg]\!] \ ;; \ (Q(x)) [\![x \to \ll v \gg]\!])
  by (rel-auto)
16.8
           Alphabet laws
lemma aext-cond [alpha]:
  (P \triangleleft b \triangleright Q) \oplus_p a = ((P \oplus_p a) \triangleleft (b \oplus_p a) \triangleright (Q \oplus_p a))
  by (rel-auto)
lemma aext-seq [alpha]:
  wb-lens a \Longrightarrow ((P ;; Q) \oplus_p (a \times_L a)) = ((P \oplus_p (a \times_L a)) ;; (Q \oplus_p (a \times_L a)))
  by (rel-simp, metis wb-lens-weak weak-lens.put-get)
lemma rcond-lift-true [simp]:
  [true]_{\leftarrow} = true
  by rel-auto
lemma rcond-lift-false [simp]:
  [false]_{\leftarrow} = false
  by rel-auto
lemma rel-ares-aext [alpha]:
  vwb-lens a \Longrightarrow (P \oplus_r a) \upharpoonright_r a = P
  by (rel-auto)
```

```
lemma rel-aext-ares [alpha]:

\{\$a, \$a'\} \natural P \Longrightarrow P \upharpoonright_r a \oplus_r a = P

by (rel-auto)

lemma rel-aext-uses [unrest]:

vwb-lens a \Longrightarrow \{\$a, \$a'\} \natural (P \oplus_r a)

by (rel-auto)
```

16.9 Relational unrestriction

```
Relational unrestriction states that a variable is both unchanged by a relation, and is not "read"
by the relation.
definition RID :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ hrel \Rightarrow '\alpha \ hrel
where RID x P = ((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x)
declare RID-def [urel-defs]
lemma RID1: vwb-lens x \Longrightarrow (\forall v. x := \langle v \rangle ;; P = P ;; x := \langle v \rangle) \Longrightarrow RID(x)(P) = P
 apply (rel-auto)
  apply (metis vwb-lens.put-eq)
  apply (metis vwb-lens-wb wb-lens.get-put wb-lens-weak weak-lens.put-get)
  done
lemma RID2: vwb-lens x \Longrightarrow x := \langle v \rangle;; RID(x)(P) = RID(x)(P);; x := \langle v \rangle
  apply (rel-auto)
  apply (metis mwb-lens.put-put vwb-lens-mwb vwb-lens.wb wb-lens.get-put wb-lens-def weak-lens.put-get)
 apply blast
 done
lemma RID-assign-commute:
  vwb-lens x \Longrightarrow P = RID(x)(P) \longleftrightarrow (\forall v. x := \ll v \gg ;; P = P ;; x := \ll v \gg)
 by (metis RID1 RID2)
lemma RID-idem:
  mwb-lens x \Longrightarrow RID(x)(RID(x)(P)) = RID(x)(P)
 by (rel-auto)
lemma RID-mono:
  P \sqsubseteq Q \Longrightarrow RID(x)(P) \sqsubseteq RID(x)(Q)
 by (rel-auto)
lemma RID-pr-var [simp]:
  RID (pr-var x) = RID x
 by (simp \ add: pr-var-def)
lemma RID-skip-r:
  vwb-lens x \Longrightarrow RID(x)(II) = II
  apply (rel-auto) using vwb-lens.put-eq by fastforce
lemma skip\text{-}r\text{-}RID [closure]: vwb\text{-}lens \ x \Longrightarrow II \ is \ RID(x)
  by (simp add: Healthy-def RID-skip-r)
lemma RID-disj:
  RID(x)(P \lor Q) = (RID(x)(P) \lor RID(x)(Q))
 by (rel-auto)
```

```
lemma disj-RID [closure]: [P \text{ is } RID(x); Q \text{ is } RID(x)] \implies (P \vee Q) \text{ is } RID(x)
  by (simp add: Healthy-def RID-disj)
lemma RID-conj:
  vwb-lens x \Longrightarrow RID(x)(RID(x)(P) \land RID(x)(Q)) = (RID(x)(P) \land RID(x)(Q))
  by (rel-auto)
lemma conj-RID [closure]: \llbracket vwb-lens x; P is RID(x); Q is RID(x) \rrbracket \Longrightarrow (P \land Q) is RID(x)
  by (metis Healthy-if Healthy-intro RID-conj)
\mathbf{lemma}\ RID\text{-}assigns\text{-}r\text{-}diff:
  \llbracket vwb\text{-}lens \ x; \ x \ \sharp_s \ \sigma \ \rrbracket \Longrightarrow RID(x)(\langle \sigma \rangle_a) = \langle \sigma \rangle_a
  apply (rel-auto)
   apply (metis vwb-lens.put-eq)
  apply (metis vwb-lens-wb wb-lens.get-put wb-lens-weak weak-lens.put-get)
  done
lemma assigns-r-RID [closure]: \llbracket vwb-lens x; x \sharp_s \sigma \rrbracket \Longrightarrow \langle \sigma \rangle_a is RID(x)
  by (simp add: Healthy-def RID-assigns-r-diff)
lemma RID-assign-r-same:
  vwb-lens x \Longrightarrow RID(x)(x := v) = II
  apply (rel-auto)
  using vwb-lens.put-eq apply fastforce
  done
lemma RID-seq-left:
  assumes vwb-lens x
  shows RID(x)(RID(x)(P) ;; Q) = (RID(x)(P) ;; RID(x)(Q))
proof -
  have RID(x)(RID(x)(P) ;; Q) = ((\exists \$x \cdot \exists \$x' \cdot ((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x) ;; Q) \land \$x'
    by (simp add: RID-def usubst)
  \textbf{also from} \ \textit{assms} \ \textbf{have} \ \dots = ((((\exists \ \$x \ \cdot \ \exists \ \$x' \ \cdot \ P) \ \wedge \ (\exists \ \$x \ \cdot \ \$x' \ =_u \ \$x)) \ ;; \ (\exists \ \$x' \ \cdot \ Q)) \ \wedge \ \$x' \ =_u \ \$x)) \ ;; \ (\exists \ \$x' \ \cdot \ Q)) \ \wedge \ \$x' \ =_u \ \$x)
\$x)
    by (rel-auto)
  also from assms have ... = (((\exists \$x \cdot \exists \$x' \cdot P) ;; (\exists \$x \cdot \exists \$x' \cdot Q)) \land \$x' =_u \$x)
    \mathbf{apply} \ (\mathit{rel-auto})
     apply (metis vwb-lens.put-eq)
    apply (metis mwb-lens.put-put vwb-lens-mwb)
    done
 also from assms have ... = (((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x) ;; (\exists \$x \cdot \exists \$x' \cdot Q)) \land \$x' =_u \$x)
    by (rel-simp, metis (full-types) mwb-lens.put-put vwb-lens-def wb-lens-weak weak-lens.put-get)
  also have ... = ((((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x) ;; ((\exists \$x \cdot \exists \$x' \cdot Q) \land \$x' =_u \$x)) \land \$x' =_u \$x))
    by (rel-simp, fastforce)
  also have ... = ((((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x) ;; ((\exists \$x \cdot \exists \$x' \cdot Q) \land \$x' =_u \$x)))
    by (rel-auto)
  also have ... = (RID(x)(P) ;; RID(x)(Q))
    by (rel-auto)
  finally show ?thesis.
qed
```

lemma RID-seq-right:

```
assumes vwb-lens x
  shows RID(x)(P ;; RID(x)(Q)) = (RID(x)(P) ;; RID(x)(Q))
  have RID(x)(P ;; RID(x)(Q)) = ((\exists \$x \cdot \exists \$x' \cdot P ;; ((\exists \$x \cdot \exists \$x' \cdot Q) \land \$x' =_u \$x)) \land \$x'
=_u \$x
    by (simp add: RID-def usubst)
  also from assms have ... = (((\exists \$x \cdot P); (\exists \$x \cdot \exists \$x' \cdot Q) \wedge (\exists \$x' \cdot \$x' =_u \$x)) \wedge \$x' =_u
\$x)
    by (rel-auto)
  also from assms have ... = (((\exists \$x \cdot \exists \$x' \cdot P) ;; (\exists \$x \cdot \exists \$x' \cdot Q)) \land \$x' =_u \$x)
    apply (rel-auto)
     apply (metis vwb-lens.put-eq)
    apply (metis mwb-lens.put-put vwb-lens-mwb)
    done
 also from assms have ... = ((((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x) ;; (\exists \$x \cdot \exists \$x' \cdot Q)) \land \$x' =_u \$x)
   by (rel-simp robust, metis (full-types) mwb-lens.put-put vwb-lens-def wb-lens-weak weak-lens.put-get)
  also have ... = ((((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x) ;; ((\exists \$x \cdot \exists \$x' \cdot Q) \land \$x' =_u \$x)) \land \$x' =_u \$x))
    by (rel-simp, fastforce)
  also have ... = ((((\exists \$x \cdot \exists \$x' \cdot P) \land \$x' =_u \$x) ;; ((\exists \$x \cdot \exists \$x' \cdot Q) \land \$x' =_u \$x)))
    by (rel-auto)
  also have ... = (RID(x)(P) ;; RID(x)(Q))
    by (rel-auto)
  finally show ?thesis.
qed
\mathbf{lemma} \ \mathit{seqr-RID-closed} \ [\mathit{closure}] \colon \llbracket \ \mathit{vwb-lens} \ \mathit{x} ; \ \mathit{P} \ \mathit{is} \ \mathit{RID}(\mathit{x}) ; \ \mathit{Q} \ \mathit{is} \ \mathit{RID}(\mathit{x}) \ \rrbracket \Longrightarrow \mathit{P} \ ; ; \ \mathit{Q} \ \mathit{is} \ \mathit{RID}(\mathit{x})
  by (metis Healthy-def RID-seq-right)
definition unrest-relation :: ('a \Longrightarrow '\alpha) \Rightarrow '\alpha \ hrel \Rightarrow bool \ (infix \sharp\sharp \ 20)
where (x \sharp \sharp P) \longleftrightarrow (P \text{ is } RID(x))
declare unrest-relation-def [urel-defs]
\mathbf{lemma}\ runrest\text{-}assign\text{-}commute:
  \llbracket vwb\text{-}lens \ x; \ x \ \sharp\sharp \ P \ \rrbracket \Longrightarrow x := \ll v \gg ;; \ P = P \; ;; \ x := \ll v \gg r
  by (metis RID2 Healthy-def unrest-relation-def)
lemma runrest-ident-var:
  assumes x \sharp \sharp P
  shows (\$x \land P) = (P \land \$x')
proof -
  have P = (\$x' =_u \$x \land P)
   \textbf{by} \ (metis \ RID\text{-}def \ assms \ Healthy\text{-}def \ unrest\text{-}relation\text{-}def \ utp\text{-}pred\text{-}laws.inf.} cobounded 2 \ utp\text{-}pred\text{-}laws.inf\text{-}absorb 2)
  moreover have (\$x' =_u \$x \land (\$x \land P)) = (\$x' =_u \$x \land (P \land \$x'))
    by (rel-auto)
  ultimately show ?thesis
    by (metis utp-pred-laws.inf.assoc utp-pred-laws.inf-left-commute)
qed
lemma skip-r-runrest [unrest]:
  vwb-lens x \Longrightarrow x \sharp\sharp II
  by (simp add: unrest-relation-def closure)
\mathbf{lemma} \ \mathit{assigns-r-runrest} \colon
```

```
\llbracket vwb\text{-}lens \ x; \ x \ \sharp_s \ \sigma \ \rrbracket \Longrightarrow x \ \sharp\sharp \ \langle \sigma \rangle_a
  by (simp add: unrest-relation-def closure)
lemma seq-r-runrest [unrest]:
  assumes vwb-lens x x \sharp \sharp P x \sharp \sharp Q
  shows x \sharp \sharp (P ;; Q)
  using assms by (simp add: unrest-relation-def closure)
lemma false-runrest [unrest]: x \sharp\sharp false
  by (rel-auto)
lemma and-runrest [unrest]: \llbracket vwb\text{-lens } x; x \sharp\sharp P; x \sharp\sharp Q \rrbracket \Longrightarrow x \sharp\sharp (P \land Q)
  by (metis RID-conj Healthy-def unrest-relation-def)
lemma or-runrest [unrest]: [x \sharp \sharp P; x \sharp \sharp Q] \implies x \sharp \sharp (P \vee Q)
  by (simp add: RID-disj Healthy-def unrest-relation-def)
no-utp-lift record ussigns id segr useg uskip record rassume rassert rgcmd while-top while-bot while-inv
while-inv-bot\ while-vrt
end
17
         Fixed-points and Recursion
theory utp-recursion
  imports
    utp	ext{-}pred	ext{-}laws
    utp-rel
begin
17.1
           Fixed-point Laws
lemma \textit{mu-id}: (\mu \ X \cdot X) = \textit{true}
  by (simp add: antisym gfp-upperbound)
lemma mu\text{-}const: (\mu \ X \cdot P) = P
  by (simp add: gfp-const)
lemma nu-id: (\nu X \cdot X) = false
  \mathbf{by}\ (\mathit{meson}\ \mathit{lfp-lowerbound}\ \mathit{utp-pred-laws.bot.extremum-unique})
lemma nu-const: (\nu X \cdot P) = P
  by (simp add: lfp-const)
lemma mu-refine-intro:
  assumes (C \Rightarrow S) \sqsubseteq F(C \Rightarrow S) (C \land \mu F) = (C \land \nu F)
  shows (C \Rightarrow S) \sqsubseteq \mu F
proof -
  from assms have (C \Rightarrow S) \sqsubseteq \nu F
    by (simp add: lfp-lowerbound)
  \mathbf{with} \ \mathit{assms} \ \mathbf{show} \ \mathit{?thesis}
```

by (pred-auto)

qed

17.2 Obtaining Unique Fixed-points

Obtaining termination proofs via approximation chains. Theorems and proofs adapted from Chapter 2, page 63 of the UTP book [22].

```
type-synonym 'a chain = nat \Rightarrow 'a upred
definition chain :: 'a chain \Rightarrow bool where
  chain Y = ((Y \ 0 = false) \land (\forall i. Y \ (Suc \ i) \sqsubseteq Y \ i))
lemma chain0 [simp]: chain Y \Longrightarrow Y 0 = false
 by (simp add:chain-def)
lemma chainI:
 assumes Y \theta = false \land i. Y (Suc i) \sqsubseteq Y i
 shows chain Y
 using assms by (auto simp add: chain-def)
lemma chainE:
 assumes chain Y \land i. \llbracket Y 0 = false; Y (Suc i) \sqsubseteq Y i \rrbracket \Longrightarrow P
 shows P
 using assms by (simp add: chain-def)
lemma L274:
 assumes \forall n. ((E \ n \land_p X) = (E \ n \land Y))
 shows ( ( range E) \land X ) = ( ( range E) \land Y )
 using assms by (pred-auto)
Constructive chains
definition constr:
  ('a \ upred \Rightarrow 'a \ upred) \Rightarrow 'a \ chain \Rightarrow bool \ where
constr \ F \ E \longleftrightarrow chain \ E \land (\forall \ X \ n. \ ((F(X) \land E(n+1)) = (F(X \land E(n)) \land E \ (n+1))))
lemma constrI:
 assumes chain E \wedge X n. ((F(X) \wedge E(n+1)) = (F(X \wedge E(n)) \wedge E(n+1)))
 shows constr \ F \ E
 using assms by (auto simp add: constr-def)
This lemma gives a way of showing that there is a unique fixed-point when the predicate function
can be built using a constructive function F over an approximation chain E
lemma chain-pred-terminates:
 assumes constr \ F \ E \ mono \ F
 shows ( \bigcap (range\ E) \land \mu\ F) = (\bigcap (range\ E) \land \nu\ F)
 from assms have \forall n. (E \ n \land \mu \ F) = (E \ n \land \nu \ F)
 proof (rule-tac allI)
   \mathbf{fix}\ n
   from assms show (E \ n \land \mu \ F) = (E \ n \land \nu \ F)
   proof (induct n)
     case 0 thus ?case by (simp add: constr-def)
   \mathbf{next}
     case (Suc \ n)
     note hyp = this
     thus ?case
```

have $(E (n + 1) \land \mu F) = (E (n + 1) \land F (\mu F))$

proof -

```
using gfp-unfold[OF hyp(3), THEN sym] by (simp add: constr-def)
      also from hyp have ... = (E(n + 1) \land F(E n \land \mu F))
        by (metis conj-comm constr-def)
      also from hyp have ... = (E (n + 1) \land F (E n \land \nu F))
        by simp
      also from hyp have ... = (E (n + 1) \land \nu F)
        by (metis (no-types, lifting) conj-comm constr-def lfp-unfold)
      ultimately show ?thesis
        by simp
    qed
   qed
 qed
 thus ?thesis
   by (auto intro: L274)
qed
theorem constr-fp-uniq:
 assumes constr F E mono F \bigcap (range E) = C
 shows (C \wedge \mu F) = (C \wedge \nu F)
 using assms(1) assms(2) assms(3) chain-pred-terminates by blast
```

17.3 Noetherian Induction Instantiation

Contribution from Yakoub Nemouchi. The following generalization was used by Tobias Nipkow and Peter Lammich in Refine_Monadic

```
lemma wf-fixp-uinduct-pure-ueq-gen:
  assumes fixp-unfold: fp B = B (fp B)
                         WF: wf R
  and
  and
           \bigwedge f \ st. \ \llbracket \bigwedge st'. \ (st', st) \in R \implies (((pre \land \lceil e \rceil_{<} =_u \ll st' \gg) \Rightarrow post) \sqsubseteq f) \rrbracket
                 \implies fp \ B = f \implies ((pre \land [e]_{<} =_u \ll st \gg) \Rightarrow post) \sqsubseteq (B f)
         shows ((pre \Rightarrow post) \sqsubseteq fp \ B)
proof -
  { fix st
    have ((pre \land \lceil e \rceil_{<} =_{u} \ll st \gg) \Rightarrow post) \sqsubseteq (fp B)
    using WF proof (induction rule: wf-induct-rule)
       case (less x)
       hence (pre \land \lceil e \rceil_{<} =_{u} \ll x \gg \Rightarrow post) \sqsubseteq B \ (fp \ B)
         by (rule induct-step, rel-blast, simp)
       then show ?case
         using fixp-unfold by auto
    qed
  }
  thus ?thesis
  by pred-simp
qed
```

The next lemma shows that using substitution also work. However it is not that generic nor practical for proof automation ...

```
lemma refine-usubst-to-ueq:

vwb\text{-lens }E \Longrightarrow (pre \Rightarrow post) \llbracket \langle st' \rangle / \$E \rrbracket \sqsubseteq f \llbracket \langle st' \rangle / \$E \rrbracket = (((pre \land \$E =_u \langle st' \rangle) \Rightarrow post) \sqsubseteq f)
by (rel\text{-auto}, metis vwb\text{-lens} \cdot wb wb\text{-lens} \cdot get\text{-put})

By instantiation of \llbracket ?fp ?B = ?B (?fp ?B); wf ?R; \land fst. \llbracket \land st'. (st', st) \in ?R \Longrightarrow (?pre \land bop (=) (?e^{<}) U(st') \Rightarrow ?post) \sqsubseteq f; ?fp ?B = f \rrbracket \Longrightarrow (?pre \land bop (=) (?e^{<}) U(st) \Rightarrow ?post)
```

```
\sqsubseteq ?B f \parallel \implies (?pre \Rightarrow ?post) \sqsubseteq ?fp ?B with \mu and lifting of the well-founded relation we have
lemma mu-rec-total-pure-rule:
  \mathbf{assumes}\ \mathit{WF}\colon \mathit{wf}\ \mathit{R}
  and
               M: mono B
  and
               induct-step:
            \bigwedge f st. \ \llbracket (pre \land (\lceil e \rceil_{<}, \ll st \gg)_u \in_u \ll R \gg \Rightarrow post) \sqsubseteq f \rrbracket
                  \implies \mu \ B = f \implies (pre \land \lceil e \rceil_{<} =_{u} \ll st \implies post) \sqsubseteq (B \ f)
         shows (pre \Rightarrow post) \sqsubseteq \mu B
proof (rule wf-fixp-uinduct-pure-ueq-gen[where fp=\mu and pre=pre and B=B and R=R and e=e])
  show \mu B = B (\mu B)
    by (simp add: M def-gfp-unfold)
  show wf R
    by (fact WF)
  \mathbf{show} \  \, \bigwedge \!\! f \  \, st. \  \, (\bigwedge \!\! st'. \  \, (st', \ st) \in R \Longrightarrow (pre \  \, \wedge \  \, \lceil e \rceil_{<} =_{u} \ll \!\! st' \gg \Rightarrow post) \sqsubseteq f) \Longrightarrow
                   \mu B = f \Longrightarrow
                   (pre \land \lceil e \rceil_{<} =_{u} \ll st \gg \Rightarrow post) \sqsubseteq B f
    by (rule induct-step, rel-simp, simp)
qed
lemma nu-rec-total-pure-rule:
  assumes WF: wf R
              M: mono B
  and
  and
               induct-step:
            \bigwedge f st. \ \llbracket (pre \land (\lceil e \rceil_{<}, \ll st \gg)_u \in_u \ll R \gg \Rightarrow post) \sqsubseteq f \rrbracket
                  \implies \nu \ B = f \implies (pre \land \lceil e \rceil_{<} =_u \ll st \implies post) \sqsubseteq (B \ f)
         shows (pre \Rightarrow post) \sqsubseteq \nu B
proof (rule wf-fixp-uinduct-pure-ueq-gen[where fp=\nu and pre=pre and B=B and R=R and e=e])
  \mathbf{show} \ \nu \ B = B \ (\nu \ B)
    by (simp add: M def-lfp-unfold)
  show wf R
    by (fact \ WF)
  show \bigwedge f st. \ (\bigwedge st'. \ (st', st) \in R \Longrightarrow (pre \land \lceil e \rceil_{<} =_{u} \ll st' \gg post) \sqsubseteq f) \Longrightarrow
                   \nu B = f \Longrightarrow
                   (pre \land \lceil e \rceil_{<} =_{u} \ll st \gg post) \sqsubseteq B f
    by (rule induct-step, rel-simp, simp)
qed
Since B (pre \land bop (\in) (E^{\lt}, U(st))<sub>u</sub> U(R) \Rightarrow post) \sqsubseteq B (\mu B) and mono B, thus, \llbracket wf ?R \rbrace
Monotonic ?B; \bigwedge f st. \llbracket (?pre \wedge bop \ (\in) \ (?e^{<}, \ U(st))_u \ U(?R) \Rightarrow ?post) \sqsubseteq f; \mu ?B = f \rrbracket \Longrightarrow
(?pre \land bop (=) (?e^{<}) U(st) \Rightarrow ?post) \sqsubseteq ?Bf \implies (?pre \Rightarrow ?post) \sqsubseteq \mu ?B \text{ can be expressed}
as follows
lemma mu-rec-total-utp-rule:
  assumes WF: wf R
                 M: mono B
    and
    and
                 induct-step:
    \bigwedge st. \ (pre \land \lceil e \rceil_{<} =_u \ll st \gg post) \sqsubseteq (B \ ((pre \land (\lceil e \rceil_{<}, \ll st \gg)_u \in_u \ll R \gg post)))
  shows (pre \Rightarrow post) \sqsubseteq \mu B
proof (rule mu-rec-total-pure-rule [where R=R and e=e], simp-all add: assms)
  show \bigwedge f st. (pre \land (\lceil e \rceil_{<}, \ll st \gg)_u \in_u \ll R \gg \Rightarrow post) \sqsubseteq f \Longrightarrow \mu B = f \Longrightarrow (pre \land \lceil e \rceil_{<} =_u \ll st \gg \Rightarrow st \bowtie f
    by (simp add: M induct-step monoD order-subst2)
qed
```

lemma nu-rec-total-utp-rule:

```
assumes WF: wf R

and M: mono B

and induct\text{-}step:

\bigwedge st. \ (pre \land \lceil e \rceil_{<} =_u \ll st \gg \Rightarrow post) \sqsubseteq (B \ ((pre \land (\lceil e \rceil_{<}, \ll st \gg)_u \in_u \ll R \gg \Rightarrow post)))

shows (pre \Rightarrow post) \sqsubseteq \nu \ B

proof (rule \ nu\text{-}rec\text{-}total\text{-}pure\text{-}rule[\mathbf{where} \ R=R \ \mathbf{and} \ e=e], \ simp\text{-}all \ add: \ assms)

show \bigwedge f \ st. \ (pre \land (\lceil e \rceil_{<}, \ll st \gg)_u \in_u \ll R \gg \Rightarrow post) \sqsubseteq f \implies \nu \ B = f \implies (pre \land \lceil e \rceil_{<} =_u \ll st \gg \Rightarrow post) \sqsubseteq B \ f

by (simp \ add: \ M \ induct\text{-}step \ monoD \ order\text{-}subst2)

qed
```

end

18 Sequent Calculus

```
theory utp-sequent
 imports utp-pred-laws
begin
definition sequent :: '\alpha upred \Rightarrow '\alpha upred \Rightarrow bool (infixr \vdash 15) where
[upred-defs]: sequent P Q = (Q \sqsubseteq P)
abbreviation sequent-triv (\Vdash - [15] 15) where \vdash P \equiv (true \vdash P)
translations
  \Vdash P <= true \Vdash P
Conversion of UTP sequent to Isabelle proposition
lemma sequentI: \llbracket \bigwedge s. \llbracket \Gamma \rrbracket_e s \Longrightarrow \llbracket \varphi \rrbracket_e s \rrbracket \Longrightarrow \Gamma \Vdash \varphi
  by (rel-auto)
lemma sTrue: P \vdash true
  by pred-auto
lemma sAx: P \Vdash P
  by pred-auto
lemma sNotI: \Gamma \wedge P \Vdash false \Longrightarrow \Gamma \Vdash \neg P
  by pred-auto
lemma sConjI: \llbracket \Gamma \Vdash P; \Gamma \vdash Q \rrbracket \Longrightarrow \Gamma \vdash P \land Q
  by pred-auto
lemma sImplI: [ (\Gamma \land P) \vdash Q ] \implies \Gamma \vdash (P \Rightarrow Q)
  by pred-auto
end
```

19 Relational Calculus Laws

```
theory utp-rel-laws
imports
utp-rel
utp-recursion
```

```
utp\text{-}lift\text{-}parser \mathbf{begin}
```

19.1 Conditional Laws

 $\mathbf{lemma}\ comp\text{-}cond\text{-}left\text{-}distr:$

```
((P \triangleleft b \triangleright_r Q) ;; R) = ((P ;; R) \triangleleft b \triangleright_r (Q ;; R))
  by (rel-auto)
lemma cond-seq-left-distr:
  out\alpha \sharp b \Longrightarrow ((P \triangleleft b \triangleright Q) ;; R) = ((P ;; R) \triangleleft b \triangleright (Q ;; R))
  by (rel-auto)
\mathbf{lemma}\ cond\text{-}seq\text{-}right\text{-}distr\text{:}
  in\alpha \ \sharp \ b \Longrightarrow (P \ ;; \ (Q \triangleleft b \triangleright R)) = ((P \ ;; \ Q) \triangleleft b \triangleright (P \ ;; \ R))
  by (rel-auto)
Alternative expression of conditional using assumptions and choice
lemma recond-rassume-expand: P \triangleleft b \triangleright_r Q = ([b]^\top ;; P) \sqcap ([(\neg b)]^\top ;; Q)
  by (rel-auto)
19.2
           Precondition and Postcondition Laws
theorem precond-equiv:
  P = (P ;; true) \longleftrightarrow (out\alpha \sharp P)
  by (rel-auto)
theorem postcond-equiv:
  P = (true :; P) \longleftrightarrow (in\alpha \sharp P)
  by (rel-auto)
lemma precond-right-unit: out \alpha \sharp p \Longrightarrow (p ;; true) = p
  by (metis precond-equiv)
lemma postcond-left-unit: in\alpha \sharp p \Longrightarrow (true ;; p) = p
  by (metis postcond-equiv)
theorem precond-left-zero:
  assumes out\alpha \sharp p p \neq false
  shows (true ;; p) = true
  using assms by (rel-auto)
theorem feasibile-iff-true-right-zero:
  P :: true = true \longleftrightarrow `\exists out\alpha \cdot P`
  by (rel-auto)
```

19.3 Sequential Composition Laws

```
 \begin{split} \mathbf{lemma} \ seqr\text{-}assoc \colon (P \ ;; \ Q) \ ;; \ R = P \ ;; \ (Q \ ;; \ R) \\ \mathbf{by} \ (rel\text{-}auto) \end{split}   \begin{split} \mathbf{lemma} \ seqr\text{-}left\text{-}unit \ [simp] \colon \\ II \ ;; \ P = P \\ \mathbf{by} \ (rel\text{-}auto) \end{split}
```

lemma seqr-right-unit [simp]:

```
P ;; II = P
  by (rel-auto)
lemma segr-left-zero [simp]:
  false :: P = false
  by pred-auto
lemma seqr-right-zero [simp]:
  P ;; false = false
  by pred-auto
\mathbf{lemma} \ \mathit{impl-seqr-mono} \colon \llbracket \ `P \Rightarrow \ Q`; \ `R \Rightarrow S` \ \rrbracket \Longrightarrow `(P \ ;; \ R) \Rightarrow (Q \ ;; \ S) ``
  \mathbf{by}\ (\mathit{pred-blast})
lemma segr-mono:
  \llbracket P_1 \sqsubseteq P_2; \ Q_1 \sqsubseteq Q_2 \ \rrbracket \Longrightarrow (P_1 \ ;; \ Q_1) \sqsubseteq (P_2 \ ;; \ Q_2)
  by (rel-blast)
lemma segr-monotonic:
  \llbracket mono\ P;\ mono\ Q\ \rrbracket \Longrightarrow mono\ (\lambda\ X.\ P\ X\ ;;\ Q\ X)
  by (simp add: mono-def, rel-blast)
lemma Monotonic-seqr-tail [closure]:
  assumes Monotonic F
  shows Monotonic (\lambda X. P :: F(X))
  by (simp add: assms monoD monoI seqr-mono)
lemma seqr-exists-left:
  ((\exists \$x \cdot P) ;; Q) = (\exists \$x \cdot (P ;; Q))
  by (rel-auto)
lemma seqr-exists-right:
  (P ;; (\exists \$x' \cdot Q)) = (\exists \$x' \cdot (P ;; Q))
  by (rel-auto)
\mathbf{lemma} seqr-or-distl:
  ((P \lor Q) ;; R) = ((P ;; R) \lor (Q ;; R))
  by (rel-auto)
\mathbf{lemma}\ seqr\text{-}or\text{-}distr:
  (P ;; (Q \lor R)) = ((P ;; Q) \lor (P ;; R))
  by (rel-auto)
lemma seqr-inf-distl:
  ((P \sqcap Q) ;; R) = ((P ;; R) \sqcap (Q ;; R))
  by (rel-auto)
lemma seqr-inf-distr:
  (P ;; (Q \sqcap R)) = ((P ;; Q) \sqcap (P ;; R))
  by (rel-auto)
lemma seqr-and-distr-ufunc:
  ufunctional P \Longrightarrow (P ;; (Q \land R)) = ((P ;; Q) \land (P ;; R))
```

by (rel-auto)

```
lemma seqr-and-distl-uinj:
  uinj R \Longrightarrow ((P \land Q) ;; R) = ((P ;; R) \land (Q ;; R))
  by (rel-auto)
lemma segr-unfold:
  (P :; Q) = (\exists v \cdot P \llbracket \ll v \gg / \$ \mathbf{v}' \rrbracket \land Q \llbracket \ll v \gg / \$ \mathbf{v} \rrbracket)
 by (rel-auto)
lemma segr-unfold-heterogeneous:
  (P ;; Q) = (\exists v \cdot (Pre(P\llbracket \ll v \gg / \$\mathbf{v}' \rrbracket))^{<} \wedge (Post(Q\llbracket \ll v \gg / \$\mathbf{v} \rrbracket))^{>})
 by (rel-auto)
lemma seqr-middle:
  assumes vwb-lens x
  shows (P ;; Q) = (\exists v \cdot P[\![ \ll v \gg / \$x']\!] ;; Q[\![ \ll v \gg / \$x]\!])
 using assms
 by (rel-auto', metis vwb-lens-wb wb-lens.source-stability)
lemma segr-left-one-point:
  assumes vwb-lens x
 shows ((P \land \$x' =_u \ll v \gg) ;; Q) = (P[\![\ll v \gg / \$x']\!] ;; Q[\![\ll v \gg / \$x]\!])
  by (rel-auto, metis vwb-lens-wb wb-lens.get-put)
lemma seqr-right-one-point:
 assumes vwb-lens x
 shows (P ;; (\$x =_u \ll v \gg \land Q)) = (P[\![\ll v \gg /\$x']\!] ;; Q[\![\ll v \gg /\$x]\!])
  using assms
  by (rel-auto, metis vwb-lens-wb wb-lens.get-put)
lemma seqr-left-one-point-true:
 assumes vwb-lens x
 shows ((P \land \$x') ;; Q) = (P[true/\$x'] ;; Q[true/\$x])
  by (metis assms seqr-left-one-point true-alt-def upred-eq-true)
lemma segr-left-one-point-false:
  assumes vwb-lens x
  shows ((P \land \neg \$x') ;; Q) = (P[false/\$x'] ;; Q[false/\$x])
 by (metis assms false-alt-def seqr-left-one-point upred-eq-false)
lemma segr-right-one-point-true:
  assumes vwb-lens x
 shows (P ;; (\$x \land Q)) = (P[[true/\$x']] ;; Q[[true/\$x]])
 by (metis assms seqr-right-one-point true-alt-def upred-eq-true)
lemma segr-right-one-point-false:
 assumes vwb-lens x
 shows (P :: (\neg \$x \land Q)) = (P[\lceil false/\$x'] :: Q[\lceil false/\$x]])
 by (metis assms false-alt-def segr-right-one-point upred-eq-false)
lemma seqr-insert-ident-left:
  assumes vwb-lens x \ \$x' \ \sharp \ P \ \$x \ \sharp \ Q
  shows ((\$x' =_u \$x \land P) ;; Q) = (P ;; Q)
  using assms
  by (rel-simp, meson vwb-lens-wb wb-lens-weak weak-lens.put-get)
```

```
\mathbf{lemma}\ seqr\text{-}insert\text{-}ident\text{-}right:
  assumes vwb-lens x \ x' \ p \ x \ d
 shows (P ;; (\$x' =_u \$x \land Q)) = (P ;; Q)
  using assms
 by (rel-simp, metis (no-types, hide-lams) vwb-lens-def wb-lens-def weak-lens.put-get)
\mathbf{lemma}\ \mathit{seq\text{-}var\text{-}ident\text{-}lift}\colon
  assumes vwb-lens x \ x' \ p \ x \ d
 shows ((\$x' =_u \$x \land P) ;; (\$x' =_u \$x \land Q)) = (\$x' =_u \$x \land (P ;; Q))
 using assms by (rel-auto', metis (no-types, lifting) vwb-lens-wb wb-lens-weak weak-lens.put-get)
lemma seqr-bool-split:
  assumes vwb-lens x
 shows P :: Q = (P[true/\$x'] :: Q[true/\$x] \lor P[false/\$x'] :: Q[false/\$x])
 using assms
 by (subst\ seqr-middle[of\ x],\ simp-all)
lemma cond-inter-var-split:
  assumes vwb-lens x
  shows (P \triangleleft \$x \hat{\ } \triangleright Q) ;; R = (P[true/\$x \hat{\ }] ;; R[true/\$x] \lor Q[false/\$x \hat{\ }] ;; R[false/\$x])
  have (P \triangleleft \$x' \triangleright Q) ;; R = ((\$x' \land P) ;; R \lor (\neg \$x' \land Q) ;; R)
    by (simp add: cond-def seqr-or-distl)
  also have ... = ((P \land \$x') ;; R \lor (Q \land \neg \$x') ;; R)
   by (rel-auto)
  also have ... = (P[true/\$x'] ;; R[true/\$x] \lor Q[false/\$x'] ;; R[false/\$x])
   by (simp add: seqr-left-one-point-true seqr-left-one-point-false assms)
 finally show ?thesis.
qed
theorem seqr-pre-transfer: in\alpha \sharp q \Longrightarrow ((P \land q) ;; R) = (P ;; (q^- \land R))
 by (rel-auto)
theorem seqr-pre-transfer':
  ((P \wedge \lceil q \rceil_{>}) ;; R) = (P ;; (\lceil q \rceil_{<} \wedge R))
  by (rel-auto)
theorem seqr-post-out: in\alpha \ \sharp \ r \Longrightarrow (P \ ;; \ (Q \land r)) = ((P \ ;; \ Q) \land r)
 by (rel-blast)
lemma seqr-post-var-out:
 \mathbf{fixes}\ x :: (\mathit{bool} \Longrightarrow {}'\!\alpha)
 shows (P ;; (Q \land \$x')) = ((P ;; Q) \land \$x')
 by (rel-auto)
theorem segr-post-transfer: out\alpha \sharp q \Longrightarrow (P ;; (q \land R)) = ((P \land q^{-}) ;; R)
 by (rel-auto)
lemma segr-pre-out: out\alpha \sharp p \Longrightarrow ((p \land Q) ;; R) = (p \land (Q ;; R))
 by (rel-blast)
lemma segr-pre-var-out:
 fixes x :: (bool \implies '\alpha)
 shows ((\$x \land P) ;; Q) = (\$x \land (P ;; Q))
```

```
by (rel-auto)
lemma segr-true-lemma:
 (P = (\neg ((\neg P) ;; true))) = (P = (P ;; true))
 by (rel-auto)
lemma segr-to-conj: \llbracket out\alpha \sharp P; in\alpha \sharp Q \rrbracket \Longrightarrow (P;;Q) = (P \land Q)
 by (metis postcond-left-unit seqr-pre-out utp-pred-laws.inf-top.right-neutral)
lemma shEx-lift-seq-1 [uquant-lift]:
 ((\exists x \cdot P x) ;; Q) = (\exists x \cdot (P x ;; Q))
 by rel-auto
lemma shEx-mem-lift-seq-1 [uquant-lift]:
 assumes out\alpha \ \sharp \ A
 shows ((\exists x \in A \cdot P x) ;; Q) = (\exists x \in A \cdot (P x ;; Q))
 using assms by rel-blast
lemma shEx-lift-seq-2 [uquant-lift]:
 (P ;; (\exists x \cdot Q x)) = (\exists x \cdot (P ;; Q x))
 by rel-auto
lemma shEx-mem-lift-seq-2 [uquant-lift]:
 assumes in\alpha \ \sharp \ A
 shows (P : (\exists x \in A \cdot Q x)) = (\exists x \in A \cdot (P : Q x))
 using assms by rel-blast
        Iterated Sequential Composition Laws
19.4
lemma iter-seqr-nil [simp]: (;; i : [] \cdot P(i)) = II
 by (simp add: seqr-iter-def)
lemma iter-segr-cons [simp]: (;; i : (x \# xs) \cdot P(i)) = P(x) ;; (;; i : xs \cdot P(i))
 by (simp add: seqr-iter-def)
         Quantale Laws
19.5
by (transfer, auto)
by (transfer, auto)
lemma seq-UINF-distl: P :: (\bigcap Q \in A \cdot F(Q)) = (\bigcap Q \in A \cdot P :: F(Q))
 by (simp add: UINF-as-Sup-collect seq-Sup-distl)
lemma seq-UINF-distl': P :: (\bigcap Q \cdot F(Q)) = (\bigcap Q \cdot P :: F(Q))
 by (metis UINF-mem-UNIV seq-UINF-distl)
lemma seq-UINF-distr: (\bigcap P \in A \cdot F(P)) ;; Q = (\bigcap P \in A \cdot F(P) ;; Q)
 by (simp add: UINF-as-Sup-collect seq-Sup-distr)
lemma seq-UINF-distr': (\bigcap P \cdot F(P)) ;; Q = (\bigcap P \cdot F(P) ;; Q)
 by (metis UINF-mem-UNIV seq-UINF-distr)
lemma seq-SUP-distl: P :: (\bigcap i \in A. \ Q(i)) = (\bigcap i \in A. \ P :: Q(i))
```

```
by (metis image-image seq-Sup-distl)
lemma seq-SUP-distr: (\bigcap i \in A. \ P(i)) ;; \ Q = (\bigcap i \in A. \ P(i) ;; \ Q)
  by (simp add: seq-Sup-distr)
19.6
            Skip Laws
lemma cond-skip: out\alpha \sharp b \Longrightarrow (b \land II) = (II \land b^{-})
  by (rel-auto)
lemma pre-skip-post: (\lceil b \rceil < \land II) = (II \land \lceil b \rceil >)
  by (rel-auto)
lemma skip-var:
  fixes x :: (bool \Longrightarrow '\alpha)
  shows (\$x \land II) = (II \land \$x')
  by (rel-auto)
{f lemma} skip-r-unfold:
  vwb-lens x \Longrightarrow II = (\$x' =_u \$x \land II \upharpoonright_{\alpha} x)
  by (rel-simp, metis mwb-lens.put-put vwb-lens-mwb vwb-lens-wb wb-lens.get-put)
lemma skip-r-alpha-eq:
  II = (\$\mathbf{v}' =_u \$\mathbf{v})
  by (rel-auto)
\mathbf{lemma}\ skip\text{-}ra\text{-}unfold:
  II_{x;y} = (\$x' =_u \$x \land II_y)
  by (rel-auto)
\mathbf{lemma}\ skip\text{-}res\text{-}as\text{-}ra:
  \llbracket vwb\text{-}lens\ y;\ x+_L\ y\approx_L 1_L;\ x\bowtie y\ \rrbracket \Longrightarrow II\!\upharpoonright_{\alpha}\!x=II_y
  apply (rel-auto)
   apply (metis (no-types, lifting) lens-indep-def)
  apply (metis vwb-lens.put-eq)
  done
19.7
            Assignment Laws
lemma assigns-subst [usubst]:
  [\sigma]_s \dagger \langle \varrho \rangle_a = \langle \varrho \circ_s \sigma \rangle_a
  by (rel-auto)
lemma assigns-r-comp: (\langle \sigma \rangle_a ;; P) = (\lceil \sigma \rceil_s \dagger P)
  by (rel-auto)
\mathbf{lemma}\ assigns\text{-}r\text{-}feasible\text{:}
  (\langle \sigma \rangle_a ;; true) = true
  by (rel-auto)
lemma assign-subst [usubst]:
  \llbracket mwb\text{-lens } x; mwb\text{-lens } y \rrbracket \Longrightarrow \llbracket \$x \mapsto_s \llbracket u \rrbracket_{\leq} \rrbracket \dagger (y := v) = (x, y) := (u, \llbracket x \mapsto_s u \rrbracket \dagger v)
  by (rel-auto)
lemma assign-vacuous-skip:
```

assumes vwb-lens x

```
shows (x := \&x) = II
using assms by rel-auto
```

The following law shows the case for the above law when x is only mainly-well behaved. We require that the state is one of those in which x is well defined using and assumption.

```
lemma assign-vacuous-assume:
  assumes mwb-lens x
  shows [\&\mathbf{v} \in \mathscr{S}_{x}]^{\top};; (x := \&x) = [\&\mathbf{v} \in \mathscr{S}_{x}]^{\top}
  using assms by rel-auto
lemma assign-simultaneous:
  assumes vwb-lens y x \bowtie y
  shows (x,y) := (e, \& y) = (x := e)
  by (simp add: assms usubst-upd-comm usubst-upd-var-id)
lemma assigns-idem: mwb-lens x \Longrightarrow (x,x) := (u,v) = (x:=v)
  by (simp add: usubst)
lemma assigns-comp: (\langle f \rangle_a ;; \langle g \rangle_a) = \langle g \circ_s f \rangle_a
  by (rel-auto)
lemma assigns-cond: (\langle f \rangle_a \triangleleft b \triangleright_r \langle g \rangle_a) = \langle f \triangleleft b \triangleright g \rangle_a
  by (rel-auto)
lemma assigns-r-conv:
  bij_s f \Longrightarrow \langle f \rangle_a^- = \langle inv_s f \rangle_a
  by (rel-auto, simp-all add: bij-is-inj bij-is-surj surj-f-inv-f)
lemma assign-pred-transfer:
  fixes x :: ('a \Longrightarrow '\alpha)
  assumes x \sharp b \ out \alpha \sharp b
  shows (b \land x := v) = (x := v \land b^{-})
  using assms by (rel-blast)
lemma assign-r-comp: x := u : P = P[[u] < /x]
  by (simp add: assigns-r-comp usubst alpha)
lemma assign-test: nwb-lens x \Longrightarrow (x := \langle u \rangle;; x := \langle v \rangle) = (x := \langle v \rangle)
  by (simp add: assigns-comp usubst)
lemma assign-twice: \llbracket mwb\text{-lens } x; x \sharp f \rrbracket \implies (x := e ;; x := f) = (x := f)
  by (simp add: assigns-comp usubst unrest)
{\bf lemma}\ as sign-commute:
  assumes x \bowtie y x \sharp f y \sharp e
  shows (x := e ;; y := f) = (y := f ;; x := e)
  using assms
  by (rel-simp, simp-all add: lens-indep-comm)
lemma assign-cond:
  fixes x :: ('a \Longrightarrow '\alpha)
  assumes out\alpha \ \sharp \ b
  shows (x := e :; (P \triangleleft b \triangleright Q)) = ((x := e :; P) \triangleleft (b \llbracket [e]_{<} / \$x \rrbracket) \triangleright (x := e :; Q))
  by (rel-auto)
```

```
lemma assign-rcond:
 fixes x :: ('a \Longrightarrow '\alpha)
  shows (x := e ;; (P \triangleleft b \triangleright_r Q)) = ((x := e ;; P) \triangleleft (b[[e/x]]) \triangleright_r (x := e ;; Q))
 by (rel-auto)
lemma assign-r-alt-def:
  fixes x :: ('a \Longrightarrow '\alpha)
 shows x := v = II \llbracket \lceil v \rceil < /\$x \rrbracket
 by (rel-auto)
lemma assigns-r-ufunc: ufunctional \langle f \rangle_a
  by (rel-auto)
lemma assigns-r-uinj: inj_s f \Longrightarrow uinj \langle f \rangle_a
 by (rel-simp, simp add: inj-eq)
lemma assigns-r-swap-uinj:
  \llbracket vwb\text{-}lens\ x;\ vwb\text{-}lens\ y;\ x\bowtie y\ \rrbracket \Longrightarrow uinj\ ((x,y):=(\&y,\&x))
  by (metis assigns-r-uinj pr-var-def swap-usubst-inj)
lemma assign-unfold:
  \textit{vwb-lens } x \Longrightarrow (x := v) = (\$x \, \dot{} =_u \, \lceil v \rceil_< \wedge \textit{II} \, \dot{}_\alpha x)
  apply (rel-auto, auto simp add: comp-def)
 using vwb-lens.put-eq by fastforce
19.8
          Non-deterministic Assignment Laws
lemma nd-assign-comp:
 x \bowtie y \Longrightarrow x := * ;; y := * = x,y := *
 apply (rel-auto) using lens-indep-comm by fastforce+
lemma nd-assign-assign:
  \llbracket vwb\text{-}lens \ x; \ x \ \sharp \ e \ \rrbracket \Longrightarrow x := * \ ;; \ x := e = x := e
 by (rel-auto)
19.9
           Converse Laws
lemma convr-invol [simp]: p^{--} = p
 by pred-auto
lemma lit-convr [simp]: \ll v \gg^- = \ll v \gg
 by pred-auto
lemma uivar\text{-}convr [simp]:
  fixes x :: ('a \Longrightarrow '\alpha)
 shows (\$x)^- = \$x'
 by pred-auto
lemma uovar-convr [simp]:
 fixes x :: ('a \Longrightarrow '\alpha)
 shows (\$x')^- = \$x
 by pred-auto
lemma uop\text{-}convr\ [simp]: (uop\ f\ u)^- = uop\ f\ (u^-)
  by (pred-auto)
```

```
lemma bop-convr [simp]: (bop f u v)^- = bop f (u^-) (v^-)
by (pred-auto)
```

lemma eq-convr
$$[simp]$$
: $(p =_u q)^- = (p^- =_u q^-)$ by $(pred\text{-}auto)$

lemma not-convr [simp]:
$$(\neg p)^- = (\neg p^-)$$

by (pred-auto)

lemma disj-convr [simp]:
$$(p \lor q)^- = (q^- \lor p^-)$$

by $(pred\text{-}auto)$

lemma conj-convr [simp]:
$$(p \land q)^- = (q^- \land p^-)$$

by $(pred-auto)$

lemma seqr-convr [simp]:
$$(p ;; q)^- = (q^- ;; p^-)$$

by $(rel-auto)$

lemma pre-convr
$$[simp]$$
: $\lceil p \rceil_{<}^{-} = \lceil p \rceil_{>}$ **by** $(rel-auto)$

lemma post-convr
$$[simp]$$
: $\lceil p \rceil_{>}^{-} = \lceil p \rceil_{<}$ **by** $(rel-auto)$

19.10 Assertion and Assumption Laws

declare sublens-def [lens-defs del]

lemma assume-false:
$$[false]^{\top} = false$$
 by $(rel-auto)$

lemma assume-true:
$$[true]^{\top} = II$$

by $(rel-auto)$

lemma assume-seq:
$$[b]^{\top}$$
 ;; $[c]^{\top} = [(b \wedge c)]^{\top}$ **by** $(rel-auto)$

lemma assert-false:
$$\{false\}_{\perp} = true$$
 by $(rel-auto)$

lemma assert-true:
$$\{true\}_{\perp} = II$$
 by $(rel-auto)$

lemma assert-seq:
$$\{b\}_{\perp}$$
 ;; $\{c\}_{\perp} = \{(b \land c)\}_{\perp}$ by $(rel\text{-}auto)$

19.11 Frame and Antiframe Laws

 ${f named-theorems}\ frame$

lemma frame-all [frame]:
$$\Sigma$$
:[P] = P by (rel-auto)

lemma frame-none [frame]:
$$\emptyset$$
:[P] = ($P \land II$) **by** (rel-auto)

```
{\bf lemma}\ frame\text{-}commute:
    assumes y \sharp P \mathring{y} \sharp P \mathring{x} \sharp Q \mathring{x}  \sharp Q x \bowtie y
    shows x:[P] ;; y:[Q] = y:[Q] ;; x:[P]
   apply (insert assms)
    apply (rel-auto)
     apply (rename-tac s s' s_0)
     apply (subgoal-tac (s \oplus_L s' on y) \oplus_L s_0 on x = s_0 \oplus_L s' on y)
       apply (metis lens-indep-get lens-indep-sym lens-override-def)
     apply (simp add: lens-indep.lens-put-comm lens-override-def)
    apply (rename-tac s s' s_0)
    apply (subgoal-tac\ put_y\ (put_x\ s\ (get_x\ (put_x\ s_0\ (get_x\ s'))))\ (get_y\ (put_y\ s\ (get_y\ s_0)))
                                          = put_x s_0 (get_x s')
     apply (metis lens-indep-get lens-indep-sym)
    apply (metis lens-indep.lens-put-comm)
    done
lemma frame-contract-RID:
    assumes vwb-lens x P is RID(x) x \bowtie y
   shows (x;y):[P] = y:[P]
proof -
    from assms(1,3) have (x;y):[RID(x)(P)] = y:[RID(x)(P)]
       apply (rel-auto)
         apply (simp add: lens-indep.lens-put-comm)
       apply (metis (no-types) vwb-lens-wb wb-lens.get-put)
       done
    thus ?thesis
       by (simp add: Healthy-if assms)
lemma frame-miracle [simp]:
   x:[false] = false
   by (rel-auto)
lemma frame-skip [simp]:
    vwb-lens x \implies x:[II] = II
   by (rel-auto)
lemma frame-assign-in [frame]:
    \llbracket vwb\text{-}lens \ a; \ x \subseteq_L \ a \ \rrbracket \Longrightarrow a: [x:=v] = x:=v
    by (rel-auto, simp-all add: lens-get-put-quasi-commute lens-put-of-quotient)
lemma frame-conj-true [frame]:
    \llbracket \{\$x,\$x'\} \not\models P; vwb\text{-}lens \ x \rrbracket \Longrightarrow (P \land x:[true]) = x:[P]
    by (rel-auto)
lemma frame-is-assign [frame]:
    vwb-lens x \Longrightarrow x: [\$x' =_u [v]_<] = x := v
    by (rel-auto)
lemma frame-seq [frame]:
    \llbracket \ vwb\text{-}lens \ x; \ \{\$x,\$x'\} \ \natural \ P; \ \{\$x,\$x'\} \ \natural \ Q \ \rrbracket \Longrightarrow x:[P \ ;; \ Q] = x:[P] \ ;; \ x:[Q] = x:[P] \ 
   apply (rel-auto)
     apply (metis mwb-lens.put-put vwb-lens-mwb vwb-lens-wb wb-lens-def weak-lens.put-get)
   apply (metis mwb-lens.put-put vwb-lens-mwb)
```

done

```
lemma frame-to-antiframe [frame]:
  \llbracket \ x\bowtie y; \ x+_L \ y=1_L \ \rrbracket \Longrightarrow x{:}[P]=y{:}\llbracket P\rrbracket
 by (rel-auto, metis lens-indep-def, metis lens-indep-def surj-pair)
lemma rel-frext-miracle [frame]:
  a:[false]^+ = false
 by (rel-auto)
lemma rel-frext-skip [frame]:
  vwb-lens a \Longrightarrow a:[II]^+ = II
 by (rel-auto)
\mathbf{lemma} \ \mathit{rel-frext-seq} \ [\mathit{frame}] :
  vwb-lens a \Longrightarrow a:[P ;; Q]^+ = (a:[P]^+ ;; a:[Q]^+)
  apply (rel-auto)
  apply (rename-tac s s' s_0)
  apply (rule-tac x=put_a \ s \ s_0 \ in \ exI)
  apply (auto)
  apply (metis mwb-lens.put-put vwb-lens-mwb)
  done
lemma rel-frext-assigns [frame]:
  vwb-lens a \Longrightarrow a: [\langle \sigma \rangle_a]^+ = \langle \sigma \oplus_s a \rangle_a
  by (rel-auto)
lemma rel-frext-rcond [frame]:
  a:[P \triangleleft b \triangleright_r Q]^+ = (a:[P]^+ \triangleleft b \oplus_p a \triangleright_r a:[Q]^+)
  by (rel-auto)
lemma rel-frext-commute:
  x \bowtie y \Longrightarrow x:[P]^+ ;; y:[Q]^+ = y:[Q]^+ ;; x:[P]^+
  apply (rel-auto)
  apply (rename-tac \ a \ c \ b)
  apply (subgoal-tac \land b \ a. \ get_{u} \ (put_{x} \ b \ a) = get_{u} \ b)
   apply (metis (no-types, hide-lams) lens-indep-comm lens-indep-qet)
  apply (simp add: lens-indep.lens-put-irr2)
  apply (subgoal-tac \land b \ c. \ get_x \ (put_y \ b \ c) = get_x \ b)
  apply (subgoal-tac \land b \ a. \ get_y \ (put_x \ b \ a) = get_y \ b)
    apply (metis (mono-tags, lifting) lens-indep-comm)
  apply (simp-all add: lens-indep.lens-put-irr2)
  done
lemma antiframe-disj [frame]: (x: [P] \lor x: [Q]) = x: [P \lor Q]
  by (rel-auto)
lemma antiframe-seq [frame]:
  \llbracket vwb\text{-}lens \ x; \$x' \sharp P; \$x \sharp Q \rrbracket \implies (x:\llbracket P \rrbracket \ ;; \ x:\llbracket Q \rrbracket) = x:\llbracket P \ ;; \ Q \rrbracket
  apply (rel-auto)
  apply (metis vwb-lens-wb wb-lens-def weak-lens.put-get)
  apply (metis vwb-lens-wb wb-lens.put-twice wb-lens-def weak-lens.put-get)
  done
lemma nameset-skip: vwb-lens x \Longrightarrow (ns \ x \cdot II) = II_x
```

```
by (rel-auto, meson vwb-lens-wb wb-lens.get-put)
lemma nameset-skip-ra: vwb-lens x \Longrightarrow (ns \ x \cdot II_x) = II_x
  by (rel-auto)
declare sublens-def [lens-defs]
19.12
            While Loop Laws
theorem while-unfold:
  while b do P od = ((P :; while b do P od) \triangleleft b \triangleright_r II)
proof -
  have m:mono (\lambda X. (P::X) \triangleleft b \triangleright_r II)
    by (auto intro: monoI seqr-mono cond-mono)
 have (while\ b\ do\ P\ od) = (\nu\ X\cdot (P\ ;;\ X) \triangleleft b \triangleright_r II)
   by (simp add: while-top-def)
  also have ... = ((P :; (\nu X \cdot (P :; X) \triangleleft b \triangleright_r II)) \triangleleft b \triangleright_r II)
    \mathbf{by} \ (\mathit{subst lfp\text{-}unfold}, \ \mathit{simp\text{-}all add} \colon m)
  also have ... = ((P ;; while b do P od) \triangleleft b \triangleright_r II)
    by (simp add: while-top-def)
 finally show ?thesis.
qed
theorem while-false: while false do P od = II
 by (subst while-unfold, rel-auto)
theorem while-true: while true do P od = false
  apply (simp add: while-top-def alpha)
 apply (rule antisym)
  apply (simp-all)
 apply (rule lfp-lowerbound)
 apply (rel-auto)
  done
theorem while-bot-unfold:
  while_{\perp} \ b \ do \ P \ od = ((P \ ;; \ while_{\perp} \ b \ do \ P \ od) \triangleleft b \triangleright_r II)
  have m:mono (\lambda X. (P : X) \triangleleft b \triangleright_r II)
    by (auto intro: monoI segr-mono cond-mono)
  have (while_{\perp} \ b \ do \ P \ od) = (\mu \ X \cdot (P \ ;; \ X) \triangleleft b \triangleright_r II)
    by (simp add: while-bot-def)
  also have ... = ((P ;; (\mu X \cdot (P ;; X) \triangleleft b \triangleright_r II)) \triangleleft b \triangleright_r II)
    by (subst gfp-unfold, simp-all add: m)
  also have ... = ((P : while_{\perp} b do P od) \triangleleft b \triangleright_r II)
    by (simp add: while-bot-def)
 finally show ?thesis.
qed
theorem while-bot-false: while \bot false do P od = II
 by (simp add: while-bot-def mu-const alpha)
theorem while-bot-true: while \perp true do P od = (\mu \ X \cdot P :; X)
  by (simp add: while-bot-def alpha)
An infinite loop with a feasible body corresponds to a program error (non-termination).
```

theorem while-infinite: P ;; $true_h = true \implies while_{\perp} true do <math>P$ od = true

```
apply (simp add: while-bot-true)
 apply (rule antisym)
  apply (simp)
 apply (rule gfp-upperbound)
 apply (simp)
 done
          Algebraic Properties
19.13
interpretation upred-semiring: semiring-1
 where times = seqr and one = skip - r and zero = false_h and plus = Lattices.sup
 by (unfold\text{-}locales, (rel\text{-}auto)+)
declare upred-semiring.power-Suc [simp del]
We introduce the power syntax derived from semirings
abbreviation upower :: '\alpha hrel \Rightarrow nat \Rightarrow '\alpha hrel (infixr \hat{} 80) where
upower\ P\ n \equiv upred\text{-}semiring.power\ P\ n
translations
 P \hat{i} \le CONST power.power II op ;; P i
 P \hat{i} \le (CONST \ power.power \ II \ op \ ;; \ P) \ i
Set up transfer tactic for powers
lemma upower-rep-eq:
 [P \ \hat{i}]_e = (\lambda \ b. \ b \in (\{p. \ [P]_e \ p\} \ \hat{i}))
proof (induct i arbitrary: P)
 case \theta
 then show ?case
   by (auto, rel-auto)
next
 case (Suc\ i)
 show ?case
   by (simp add: Suc seqr.rep-eq relpow-commute upred-semiring.power-Suc)
qed
lemma upower-rep-eq-alt:
 [power.power \langle id_s \rangle_a (;;) P i]_e = (\lambda b. \ b \in (\{p. [P]_e \ p\} \hat{i}))
 by (metis skip-r-def upower-rep-eq)
update-uexpr-rep-eq-thms
lemma Sup-power-expand:
 fixes P :: nat \Rightarrow 'a :: complete - lattice
 shows P(\theta) \sqcap (\prod i. P(i+1)) = (\prod i. P(i))
proof -
 have UNIV = insert (0::nat) \{1..\}
   by auto
 moreover have (\prod i. P(i)) = \prod (P 'UNIV)
   by (blast)
 moreover have \bigcap (P 'insert 0 {1..}) = P(0) \bigcap SUPREMUM {1..} P
   by (simp)
 moreover have SUPREMUM \{1..\} P = (\prod i. P(i+1))
   by (simp add: atLeast-Suc-greaterThan greaterThan-0)
  ultimately show ?thesis
```

```
by (simp\ only:)
qed
lemma Sup-upto-Suc: (\prod i \in \{0..Suc\ n\}.\ P \hat{i}) = (\prod i \in \{0..n\}.\ P \hat{i}) \sqcap P \hat{i} Suc n
  have (\prod i \in \{0..Suc\ n\}.\ P \hat{\ }i) = (\prod i \in insert\ (Suc\ n)\ \{0..n\}.\ P \hat{\ }i)
   by (simp add: atLeast0-atMost-Suc)
  also have ... = P \hat{\ } Suc \ n \sqcap (\prod i \in \{\theta..n\}. \ P \hat{\ } i)
   by (simp)
 finally show ?thesis
   by (simp add: Lattices.sup-commute)
qed
The following two proofs are adapted from the AFP entry Kleene Algebra. See also [2, 1].
lemma upower-inductl: Q \sqsubseteq ((P ;; Q) \sqcap R) \Longrightarrow Q \sqsubseteq P \hat{\ } n ;; R
proof (induct n)
 case \theta
  then show ?case by (auto)
\mathbf{next}
  case (Suc \ n)
 then show ?case
   by (auto simp add: upred-semiring.power-Suc, metis (no-types, hide-lams) dual-order.trans order-refl
segr-assoc segr-mono)
qed
{f lemma} upower-inductr:
 assumes Q \sqsubseteq R \sqcap (Q ;; P)
 shows Q \sqsubseteq R ;; (P \hat{n})
using assms proof (induct \ n)
  case \theta
  then show ?case by auto
next
  case (Suc\ n)
 have R :: P \hat{\ } Suc \ n = (R :: P \hat{\ } n) :: P
   by (metis seqr-assoc upred-semiring.power-Suc2)
 also have Q :: P \sqsubseteq ...
   by (meson Suc.hyps assms eq-iff seqr-mono)
 also have Q \sqsubseteq ...
   using assms by auto
 finally show ?case.
\mathbf{qed}
{f lemma} SUP-atLeastAtMost-first:
 fixes P :: nat \Rightarrow 'a :: complete - lattice
  assumes m \leq n
 shows (\bigcap i \in \{m..n\}. P(i)) = P(m) \cap (\bigcap i \in \{Suc\ m..n\}. P(i))
 by (metis SUP-insert assms atLeastAtMost-insertL)
lemma upower-seqr-iter: P \cap n = (;; Q : replicate \ n \ P \cdot Q)
  by (induct n, simp-all add: upred-semiring.power-Suc)
lemma assigns-power: \langle f \rangle_a \hat{} n = \langle f \hat{}_s n \rangle_a
 by (induct\ n,\ rel-auto+)
```

19.14 Kleene Star

```
definition ustar :: '\alpha hrel \Rightarrow '\alpha hrel (-* [999] 999) where P^* = (\prod i \in \{0..\} \cdot P^*i)
```

lemma ustar-rep-eq:

```
[\![P^*]\!]_e = (\lambda b.\ b \in (\{p.\ [\![P]\!]_e\ p\}^*))
by (simp add: ustar-def, rel-auto, simp-all add: relpow-imp-rtrancl rtrancl-imp-relpow)
```

update-uexpr-rep-eq-thms

19.15 Kleene Plus

purge-notation trancl ((- $^+$) [1000] 999)

definition uplus :: '
$$\alpha$$
 hrel \Rightarrow ' α hrel (-+ [999] 999) where [upred-defs]: $P^+ = P$;; P^*

lemma uplus-power-def: $P^+ = (\prod i \cdot P \hat{\ } (Suc\ i))$ **by** (simp add: uplus-def ustar-def seq-UINF-distl' UINF-atLeast-Suc upred-semiring.power-Suc)

19.16 Omega

definition
$$uomega:: '\alpha \ hrel \Rightarrow '\alpha \ hrel (-\omega \ [999] \ 999)$$
 where $P^{\omega} = (\mu \ X \cdot P \ ;; \ X)$

19.17 Relation Algebra Laws

theorem RA1:
$$(P ;; (Q ;; R)) = ((P ;; Q) ;; R)$$

by $(simp \ add: \ seqr-assoc)$

theorem RA2:
$$(P :; II) = P (II :; P) = P$$

by $simp-all$

theorem
$$RA3: P^{--} = P$$
 by $simp$

theorem
$$RA4: (P ;; Q)^{-} = (Q^{-} ;; P^{-})$$
 by $simp$

theorem RA5:
$$(P \lor Q)^- = (P^- \lor Q^-)$$

by $(rel\text{-}auto)$

theorem RA6:
$$((P \lor Q) ;; R) = (P;;R \lor Q;;R)$$
 using seqr-or-distl by blast

theorem RA7:
$$((P^- ;; (\neg (P ;; Q))) \lor (\neg Q)) = (\neg Q)$$
 by $(rel\text{-}auto)$

19.18 Kleene Algebra Laws

lemma
$$ustar-alt-def \colon P^* = (\prod i \cdot P \hat{\ } i)$$

by $(simp\ add \colon ustar-def)$

```
theorem ustar-sub-unfoldl: P^* \sqsubseteq II \sqcap (P;;P^*)
by (rel-simp, simp add: rtrancl-into-trancl2 trancl-into-rtrancl)
```

```
theorem ustar-inductl:
 assumes Q \sqsubseteq R \ Q \sqsubseteq P \ ;; \ Q
 shows Q \sqsubseteq P^* ;; R
proof -
  have P^*;; R = (\bigcap i. P \hat{i};; R)
    by (simp add: ustar-def UINF-as-Sup-collect' seq-SUP-distr)
 also have Q \sqsubseteq ...
    by (simp add: SUP-least assms upower-inductl)
 finally show ?thesis.
qed
theorem ustar-inductr:
  assumes Q \sqsubseteq R \ Q \sqsubseteq Q ;; P
 shows Q \sqsubseteq R :: P^*
proof -
 have R :: P^* = (   i. R :: P \hat{i})
    by (simp add: ustar-def UINF-as-Sup-collect' seq-SUP-distl)
 also have Q \sqsubseteq ...
    by (simp add: SUP-least assms upower-inductr)
 finally show ?thesis.
qed
lemma ustar-refines-nu: (\nu \ X \cdot (P \ ;; \ X) \cap II) \sqsubseteq P^*
  by (metis (no-types, lifting) lfp-greatest semilattice-sup-class.le-sup-iff
      semilattice-sup-class.sup-idem upred-semiring.mult-2-right
      upred-semiring.one-add-one ustar-inductl)
lemma ustar-as-nu: P^* = (\nu \ X \cdot (P \ ;; \ X) \cap II)
proof (rule antisym)
 show (\nu \ X \cdot (P \ ;; \ X) \sqcap II) \sqsubseteq P^*
    by (simp add: ustar-refines-nu)
 show P^* \sqsubseteq (\nu \ X \cdot (P \ ;; \ X) \sqcap II)
    by (metis lfp-lowerbound upred-semiring.add-commute ustar-sub-unfoldl)
qed
lemma ustar-unfoldl: P^* = II \sqcap (P;; P^*)
  apply (simp add: ustar-as-nu)
 apply (subst lfp-unfold)
  apply (rule monoI)
  apply (rel-auto)+
  done
While loop can be expressed using Kleene star
lemma while-star-form:
  while b do P od = (P \triangleleft b \triangleright_r II)^*;; [(\neg b)]^\top
proof -
  have 1: Continuous (\lambda X. P ;; X \triangleleft b \triangleright_r II)
    by (rel-auto)
  have while b do P od = (\bigcap i. ((\lambda X. P ;; X \triangleleft b \triangleright_r II) \hat{} i) false)
    by (simp add: 1 false-upred-def sup-continuous-Continuous sup-continuous-lfp while-top-def)
 also have ... = ((\lambda X. P ;; X \triangleleft b \triangleright_r II) \hat{0} false \sqcap ([ ]i. ((\lambda X. P ;; X \triangleleft b \triangleright_r II) \hat{1} false)
   by (subst Sup-power-expand, simp)
  also have ... = (\prod i. ((\lambda X. P ;; X \triangleleft b \triangleright_r II) \hat{} (i+1)) false)
   by (simp)
  also have ... = ( \bigcap i. (P \triangleleft b \triangleright_r II)^i ; (false \triangleleft b \triangleright_r II) )
```

```
proof (rule SUP-cong, simp-all)
    show P :: ((\lambda X. P :: X \triangleleft b \triangleright_r II) \hat{i}) false \triangleleft b \triangleright_r II = (P \triangleleft b \triangleright_r II) \hat{i} :: (false \triangleleft b \triangleright_r II)
    proof (induct i)
       case \theta
       then show ?case by simp
    next
       case (Suc\ i)
       then show ?case
         by (simp add: upred-semiring.power-Suc)
             (metis (no-types, lifting) RA1 comp-cond-left-distr cond-L6 upred-semiring.mult.left-neutral)
    qed
  qed
  also have ... = (\bigcap i \in \{0..\} \cdot (P \triangleleft b \triangleright_r II)^i ;; [(\neg b)]^\top)
    by (rel-auto)
  also have ... = (P \triangleleft b \triangleright_r II)^*;; [(\neg b)]^\top
    by (metis seq-UINF-distr ustar-def)
  finally show ?thesis.
qed
              Omega Algebra Laws
lemma uomega-induct:
  P :: P^{\omega} \sqsubseteq P^{\omega}
  by (simp add: uomega-def, metis eq-refl gfp-unfold monoI seqr-mono)
19.20
              Refinement Laws
lemma skip-r-refine:
  (p \Rightarrow p) \sqsubseteq II
  by pred-blast
lemma conj-refine-left:
  (Q \Rightarrow P) \sqsubseteq R \Longrightarrow P \sqsubseteq (Q \land R)
  by (rel-auto)
lemma pre-weak-rel:
  assumes 'pre \Rightarrow 1'
  and
              (I \Rightarrow post) \sqsubseteq P
  shows (pre \Rightarrow post) \sqsubseteq P
  using assms by (rel-auto)
\mathbf{lemma}\ \mathit{cond-refine-rel}\colon
  assumes S \sqsubseteq (\lceil b \rceil_{<} \land P) \ S \sqsubseteq (\lceil \neg b \rceil_{<} \land Q)
  shows S \sqsubseteq P \triangleleft b \triangleright_r Q
  by (metis aext-not assms(1) assms(2) cond-def lift-recond-def utp-pred-laws.le-sup-iff)
lemma seq-refine-pred:
  assumes (\lceil b \rceil_{<} \Rightarrow \lceil s \rceil_{>}) \sqsubseteq P and (\lceil s \rceil_{<} \Rightarrow \lceil c \rceil_{>}) \sqsubseteq Q
  shows (\lceil b \rceil_{<} \Rightarrow \lceil c \rceil_{>}) \sqsubseteq (P ;; Q)
  using assms by rel-auto
lemma seq-refine-unrest:
  assumes out\alpha \sharp b \ in\alpha \sharp c
  assumes (b \Rightarrow \lceil s \rceil_{>}) \sqsubseteq P and (\lceil s \rceil_{<} \Rightarrow c) \sqsubseteq Q
  shows (b \Rightarrow c) \sqsubseteq (P ;; Q)
```

19.21 Preain and Postge Laws

```
{\bf named\text{-}theorems}\ \mathit{prepost}
```

```
lemma Pre-conv-Post [prepost]:
      Pre(P^{-}) = Post(P)
     by (rel-auto)
lemma Post-conv-Pre [prepost]:
      Post(P^{-}) = Pre(P)
     by (rel-auto)
\mathbf{lemma}\ \mathit{Pre-skip}\ [\mathit{prepost}] :
      Pre(II) = true
     by (rel-auto)
lemma Pre-assigns [prepost]:
      Pre(\langle \sigma \rangle_a) = true
     by (rel-auto)
lemma Pre-miracle [prepost]:
      Pre(false) = false
     by (rel-auto)
lemma Pre-assume [prepost]:
      Pre([b]^{\top}) = b
     \mathbf{by} (rel-auto)
lemma Pre-seq:
      Pre(P ;; Q) = Pre(P ;; [Pre(Q)]^{\top})
     by (rel-auto)
lemma Pre-disj [prepost]:
      Pre(P \lor Q) = (Pre(P) \lor Pre(Q))
     by (rel-auto)
lemma Pre-inf [prepost]:
      Pre(P \sqcap Q) = (Pre(P) \vee Pre(Q))
     by (rel-auto)
lemma Pre-conj-rel-aext [prepost]:
      \llbracket vwb\text{-}lens\ a;\ vwb\text{-}lens\ b;\ a\bowtie b\ \rrbracket \Longrightarrow Pre(P\oplus_r\ a\land Q\oplus_r\ b)=(Pre(P\oplus_r\ a)\land Pre(Q\oplus_r\ b))
      by (rel-auto, metis (no-types, lifting) lens-indep-def mwb-lens-def vwb-lens-mwb weak-lens-def)
If P uses on the variables in a and Q does not refer to the variables of U(\$a') then we can
distribute.
\textbf{lemma} \ \textit{Pre-conj-indep} \ [\textit{prepost}] : \llbracket \ \{\$a,\$a'\} \ \natural \ P; \ \$a' \ \sharp \ Q; \ \textit{vwb-lens} \ a \ \rrbracket \Longrightarrow \textit{Pre}(P \land Q) = (\textit{Pre}(P) \land Q) = (Pre(P) \land Q) 
     by (rel-auto, metis lens-override-def lens-override-idem)
lemma assume-Pre [prepost]:
      [Pre(P)]^{\top} ;; P = P
      by (rel-auto)
```

20 UTP Theories

```
theory utp-theory imports utp-rel-laws begin
```

Here, we mechanise a representation of UTP theories using locales [4]. We also link them to the HOL-Algebra library [5], which allows us to import properties from complete lattices and Galois connections.

20.1 Complete lattice of predicates

```
definition upred-lattice :: ('\alpha upred) gorder (\mathcal{P}) where upred-lattice = (| carrier = UNIV, eq = (=), le = (\sqsubseteq) |
```

 \mathcal{P} is the complete lattice of alphabetised predicates. All other theories will be defined relative to it.

```
interpretation upred-lattice: complete-lattice \mathcal{P}
proof (unfold-locales, simp-all add: upred-lattice-def)
 \mathbf{fix} \ A :: '\alpha \ upred \ set
 show \exists s. is-lub (|carrier = UNIV, eq = (=), le = (\sqsubseteq)) s A
   apply (rule-tac \ x= \bigsqcup A \ in \ exI)
   apply (rule least-UpperI)
      apply (auto intro: Inf-greatest simp add: Inf-lower Upper-def)
 show \exists i. is-glb (|carrier = UNIV, eq = (=), le = (\sqsubseteq)) i A
   apply (rule greatest-LowerI)
      apply (auto intro: Sup-least simp add: Sup-upper Lower-def)
   done
qed
lemma upred-weak-complete-lattice [simp]: weak-complete-lattice \mathcal{P}
 by (simp add: upred-lattice.weak.weak-complete-lattice-axioms)
lemma upred-lattice-eq [simp]:
 (.=_{\mathcal{D}}) = (=)
 by (simp add: upred-lattice-def)
lemma upred-lattice-le [simp]:
 le \mathcal{P} P Q = (P \sqsubseteq Q)
 by (simp add: upred-lattice-def)
lemma upred-lattice-carrier [simp]:
  carrier \mathcal{P} = UNIV
 by (simp add: upred-lattice-def)
lemma Healthy-fixed-points [simp]: fps \mathcal{P} H = [\![H]\!]_H
 by (simp add: fps-def upred-lattice-def Healthy-def)
lemma upred-lattice-Idempotent [simp]: Idem_{\mathcal{D}} H = Idempotent H
```

```
using upred-lattice.weak-partial-order-axioms by (auto simp add: idempotent-def Idempotent-def)
```

```
lemma upred-lattice-Monotonic [simp]: Mono_{\mathcal{P}} H = Monotonic H
using upred-lattice.weak-partial-order-axioms by (auto simp add: isotone-def mono-def)
```

20.2 UTP theories hierarchy

```
definition utp-order :: ('\alpha \times '\alpha) health \Rightarrow '\alpha hrel gorder where utp-order H = (| carrier = \{P. P \text{ is } H\}, eq = (=), le = (\sqsubseteq) |)
```

Constant *utp-order* obtains the order structure associated with a UTP theory. Its carrier is the set of healthy predicates, equality is HOL equality, and the order is refinement.

```
lemma utp-order-carrier [simp]:
  carrier\ (utp\text{-}order\ H) = [\![H]\!]_H
 by (simp add: utp-order-def)
lemma utp-order-eq [simp]:
  eq\ (utp\text{-}order\ T) = (=)
 by (simp add: utp-order-def)
lemma utp-order-le [simp]:
  le\ (utp\text{-}order\ T) = (\Box)
 by (simp add: utp-order-def)
lemma utp-partial-order: partial-order (utp-order T)
 by (unfold-locales, simp-all add: utp-order-def)
lemma utp-weak-partial-order: weak-partial-order (utp-order T)
 by (unfold-locales, simp-all add: utp-order-def)
lemma mono-Monotone-utp-order:
  mono\ f \Longrightarrow Monotone\ (utp-order\ T)\ f
 apply (auto simp add: isotone-def)
  apply (metis partial-order-def utp-partial-order)
 apply (metis monoD)
 done
lemma isotone-utp-orderI: Monotonic H \Longrightarrow isotone (utp-order X) (utp-order Y) H
  by (auto simp add: mono-def isotone-def utp-weak-partial-order)
lemma Mono-utp-orderI:
  \llbracket \land P Q. \rrbracket P \sqsubseteq Q; P \text{ is } H; Q \text{ is } H \rrbracket \Longrightarrow F(P) \sqsubseteq F(Q) \rrbracket \Longrightarrow Mono_{utn-order} H F
 by (auto simp add: isotone-def utp-weak-partial-order)
The UTP order can equivalently be characterised as the fixed point lattice, fpl.
lemma utp-order-fpl: utp-order H = fpl \mathcal{P} H
 by (auto simp add: utp-order-def upred-lattice-def fps-def Healthy-def)
```

20.3 UTP theory hierarchy

We next define a hierarchy of locales that characterise different classes of UTP theory. Minimally we require that a UTP theory's healthiness condition is idempotent.

```
locale utp-theory = fixes hcond :: '\alpha \ hrel \Rightarrow '\alpha \ hrel (\mathcal{H})
```

```
assumes HCond-Idem: \mathcal{H}(\mathcal{H}(P)) = \mathcal{H}(P)
begin
 abbreviation thy-order :: '\alpha hrel gorder where
  thy-order \equiv utp-order \mathcal{H}
 lemma HCond-Idempotent [closure,intro]: Idempotent \mathcal{H}
   by (simp add: Idempotent-def HCond-Idem)
 sublocale utp-po: partial-order utp-order \mathcal{H}
   by (unfold-locales, simp-all add: utp-order-def)
We need to remove some transitivity rules to stop them being applied in calculations
 declare utp-po.trans [trans del]
end
locale \ utp-theory-lattice = utp-theory +
 assumes uthy-lattice: complete-lattice (utp-order \mathcal{H})
begin
sublocale complete-lattice utp-order \mathcal{H}
 by (simp add: uthy-lattice)
declare top-closed [simp del]
declare bottom-closed [simp del]
The healthiness conditions of a UTP theory lattice form a complete lattice, and allows us to
make use of complete lattice results from HOL-Algebra [5], such as the Knaster-Tarski theorem.
We can also retrieve lattice operators as below.
abbreviation utp-top (\top)
where utp-top \equiv top (utp-order \mathcal{H})
abbreviation utp-bottom (\bot)
where utp-bottom \equiv bottom (utp-order \mathcal{H})
abbreviation utp-join (infixl \sqcup 65) where
utp-join \equiv join (utp-order \mathcal{H})
abbreviation utp-meet (infixl \sqcap 70) where
utp\text{-}meet \equiv meet \ (utp\text{-}order \ \mathcal{H})
abbreviation utp-sup (\bigsqcup - [90] 90) where
utp\text{-}sup \equiv Lattice.sup (utp\text{-}order \mathcal{H})
abbreviation utp-inf (\square - [90] 90) where
utp-inf \equiv Lattice.inf (utp-order \mathcal{H})
abbreviation utp-gfp(\nu) where
utp-gfp \equiv GREATEST-FP (utp-order \mathcal{H})
abbreviation utp-lfp (\mu) where
utp-lfp \equiv LEAST-FP (utp-order \mathcal{H})
end
```

```
syntax
  -tmu :: logic \Rightarrow pttrn \Rightarrow logic \Rightarrow logic (\mu_1 - \cdot - [0, 10] 10)
  -tnu :: logic \Rightarrow pttrn \Rightarrow logic \Rightarrow logic (\nu_1 - \cdot - [0, 10] 10)
notation qfp(\mu)
notation lfp (\nu)
translations
 \mu_H X \cdot P == CONST \ LEAST-FP \ (CONST \ utp-order \ H) \ (\lambda \ X. \ P)
 \nu_H X \cdot P == CONST \ GREATEST-FP \ (CONST \ utp-order \ H) \ (\lambda \ X. \ P)
lemma upred-lattice-inf:
  Lattice.inf \mathcal{P} A = \prod A
 by (metis Sup-least Sup-upper UNIV-I antisym-conv subsetI upred-lattice.weak.inf-greatest upred-lattice.weak.inf-lower
upred-lattice-carrier upred-lattice-le)
We can then derive a number of properties about these operators, as below.
{\bf context}\ utp\text{-}theory\text{-}lattice
begin
 lemma LFP-healthy-comp: \mu F = \mu (F \circ \mathcal{H})
  proof -
    have \{P. (P \text{ is } \mathcal{H}) \land F P \sqsubseteq P\} = \{P. (P \text{ is } \mathcal{H}) \land F (\mathcal{H} P) \sqsubseteq P\}
      by (auto simp add: Healthy-def)
    thus ?thesis
      by (simp add: LEAST-FP-def)
  qed
 lemma GFP-healthy-comp: \nu F = \nu (F \circ \mathcal{H})
    have \{P. (P \text{ is } \mathcal{H}) \land P \sqsubseteq F P\} = \{P. (P \text{ is } \mathcal{H}) \land P \sqsubseteq F (\mathcal{H} P)\}
      by (auto simp add: Healthy-def)
    thus ?thesis
      by (simp add: GREATEST-FP-def)
  qed
 lemma top-healthy [closure]: \top is \mathcal{H}
    using weak.top-closed by auto
 lemma bottom-healthy [closure]: \perp is \mathcal{H}
    using weak.bottom-closed by auto
  lemma utp-top: P is \mathcal{H} \Longrightarrow P \sqsubset \top
    using weak.top-higher by auto
 lemma utp-bottom: P is \mathcal{H} \Longrightarrow \bot \sqsubseteq P
    using weak.bottom-lower by auto
end
lemma upred-top: \top_{\mathcal{P}} = false
  using ball-UNIV greatest-def by fastforce
```

lemma upred-bottom: $\perp_{\mathcal{D}} = true$

```
by fastforce
```

One way of obtaining a complete lattice is showing that the healthiness conditions are monotone, which the below locale characterises.

```
locale utp-theory-mono = utp-theory +
 assumes HCond-Mono [closure, intro]: Monotonic \mathcal{H}
sublocale utp-theory-mono \subseteq utp-theory-lattice
proof -
 interpret weak-complete-lattice fpl \mathcal{P} \mathcal{H}
   by (rule Knaster-Tarski, auto)
 have complete-lattice (fpl \mathcal{P} \mathcal{H})
   by (unfold-locales, simp add: fps-def sup-exists, (blast intro: sup-exists inf-exists)+)
 hence complete-lattice (utp-order \mathcal{H})
   by (simp add: utp-order-def, simp add: upred-lattice-def)
 thus utp-theory-lattice \mathcal{H}
   by (simp add: utp-theory-axioms utp-theory-lattice.intro utp-theory-lattice-axioms.intro)
qed
In a monotone theory, the top and bottom can always be obtained by applying the healthiness
condition to the predicate top and bottom, respectively.
context utp-theory-mono
begin
lemma healthy-top: T = \mathcal{H}(false)
proof -
 have \top = \top_{fpl \ \mathcal{P} \ \mathcal{H}}
   by (simp add: utp-order-fpl)
 also have ... = \mathcal{H} \top_{\mathcal{P}}
   using Knaster-Tarski-idem-extremes(1)[of \mathcal{P} \mathcal{H}]
   by (simp add: HCond-Idempotent HCond-Mono)
 also have ... = \mathcal{H} false
   by (simp add: upred-top)
 finally show ?thesis.
qed
lemma healthy-bottom: \bot = \mathcal{H}(true)
proof -
 have \perp = \perp_{fpl \mathcal{P} \mathcal{H}}
   by (simp add: utp-order-fpl)
 also have ... = \mathcal{H} \perp_{\mathcal{P}}
   using Knaster-Tarski-idem-extremes(2)[of \mathcal{P} \mathcal{H}]
   by (simp add: HCond-Idempotent HCond-Mono)
 also have ... = \mathcal{H} true
   by (simp add: upred-bottom)
  finally show ?thesis.
qed
lemma healthy-inf:
 assumes A \subseteq [\![\mathcal{H}]\!]_H
 shows \prod A = \mathcal{H} (\prod A)
 using Knaster-Tarski-idem-inf-eq[OF upred-weak-complete-lattice, of \mathcal{H}]
```

 $\textbf{by} \ (simp, metis \ HCond-Idempotent \ HCond-Mono \ assms \ partial-object. simps (3) \ upred-lattice-def \ upred-lattice-inf \ utp-order-def)$

```
end
```

```
locale utp-theory-continuous = utp-theory +
 assumes HCond-Cont [closure,intro]: Continuous H
\mathbf{sublocale}\ \mathit{utp-theory-continuous} \subseteq \mathit{utp-theory-mono}
proof
  show Monotonic \mathcal{H}
   by (simp add: Continuous-Monotonic HCond-Cont)
qed
context utp-theory-continuous
begin
 lemma healthy-inf-cont:
   assumes A \subseteq [\![\mathcal{H}]\!]_H \ A \neq \{\}
   shows \prod A = \prod A
  proof -
   have \prod A = \prod (\mathcal{H}'A)
     using Continuous-def HCond-Cont assms(1) assms(2) healthy-inf by auto
   also have \dots = \prod A
     by (unfold Healthy-carrier-image[OF assms(1)], simp)
   finally show ?thesis.
  qed
  lemma healthy-inf-def:
   assumes A \subseteq [\![\mathcal{H}]\!]_H
   shows \bigcap A = (if (A = \{\}) then \top else (\bigcap A))
   using assms healthy-inf-cont weak.weak-inf-empty by auto
  lemma healthy-meet-cont:
   assumes P is \mathcal{H} Q is \mathcal{H}
   shows P \sqcap Q = P \sqcap Q
   using healthy-inf-cont[of \{P, Q\}] assms
   by (simp add: Healthy-if meet-def)
  lemma meet-is-healthy [closure]:
   assumes P is \mathcal{H} Q is \mathcal{H}
   shows P \sqcap Q is \mathcal{H}
   by (metis Continuous-Disjunctous Disjunctuous-def HCond-Cont Healthy-def' assms(1) assms(2))
  lemma disj-is-healthy [closure]:
   \llbracket P \text{ is } \mathcal{H}; Q \text{ is } \mathcal{H} \rrbracket \Longrightarrow (P \vee Q) \text{ is } \mathcal{H}
   by (simp add: disj-upred-def meet-is-healthy)
 lemma meet-bottom [simp]:
   assumes P is \mathcal{H}
   shows P \sqcap \bot = \bot
     by (simp add: assms semilattice-sup-class.sup-absorb2 utp-bottom)
 lemma meet-top [simp]:
   assumes P is \mathcal{H}
```

```
shows P \sqcap \top = P
by (simp add: assms semilattice-sup-class.sup-absorb1 utp-top)
```

The UTP theory lfp operator can be rewritten to the alphabetised predicate lfp when in a continuous context.

```
theorem utp-lfp-def:
  assumes Monotonic F F \in [\![\mathcal{H}]\!]_H \to [\![\mathcal{H}]\!]_H
  shows \mu F = (\mu X \cdot F(\mathcal{H}(X)))
proof (rule antisym)
  have ne: \{P. (P \text{ is } \mathcal{H}) \land F P \sqsubseteq P\} \neq \{\}
  proof -
    have F \top \sqsubseteq \top
      using assms(2) utp-top weak.top-closed by force
    thus ?thesis
      by (auto, rule-tac x=T in exI, auto simp add: top-healthy)
  qed
  \mathbf{show}\ \boldsymbol{\mu}\ F\sqsubseteq (\mu\ X\boldsymbol{\cdot} F\ (\mathcal{H}\ X))
  proof -
    have \bigcap \{P. (P \text{ is } \mathcal{H}) \land F(P) \sqsubseteq P\} \sqsubseteq \bigcap \{P. F(\mathcal{H}(P)) \sqsubseteq P\}
    proof -
      have 1: \bigwedge P. F(\mathcal{H}(P)) = \mathcal{H}(F(\mathcal{H}(P)))
         by (metis HCond-Idem Healthy-def assms(2) funcset-mem mem-Collect-eq)
      \mathbf{show}~? the sis
      proof (rule Sup-least, auto)
         \mathbf{fix} P
         assume a: F(\mathcal{H} P) \sqsubseteq P
         hence F: (F (\mathcal{H} P)) \sqsubseteq (\mathcal{H} P)
           by (metis 1 HCond-Mono mono-def)
         show \bigcap \{P. (P \text{ is } \mathcal{H}) \land F P \sqsubseteq P\} \sqsubseteq P
         proof (rule Sup-upper2[of F (\mathcal{H} P)])
           show F(\mathcal{H} P) \in \{P. (P \text{ is } \mathcal{H}) \land F P \sqsubseteq P\}
          proof (auto)
             show F(\mathcal{H} P) is \mathcal{H}
               by (metis 1 Healthy-def)
             \mathbf{show}\ F\ (F\ (\mathcal{H}\ P))\sqsubseteq F\ (\mathcal{H}\ P)
               using F mono-def assms(1) by blast
           qed
           show F (\mathcal{H} P) \sqsubseteq P
             \mathbf{by} \ (simp \ add \colon a)
         qed
      qed
    qed
    with ne show ?thesis
      by (simp add: LEAST-FP-def qfp-def, subst healthy-inf-cont, auto simp add: lfp-def)
  from ne show (\mu \ X \cdot F \ (\mathcal{H} \ X)) \sqsubseteq \mu \ F
    apply (simp add: LEAST-FP-def gfp-def, subst healthy-inf-cont, auto simp add: lfp-def)
    apply (rule Sup-least)
    apply (auto simp add: Healthy-def Sup-upper)
    done
qed
lemma UINF-ind-Healthy [closure]:
  assumes \bigwedge i. P(i) is \mathcal{H}
```

```
shows (\prod i \cdot P(i)) is \mathcal{H} by (simp\ add:\ closure\ assms)
```

end

In another direction, we can also characterise UTP theories that are relational. Minimally this requires that the healthiness condition is closed under sequential composition.

```
{f locale}\ utp\mbox{-}theory\mbox{-}rel=
 utp-theory +
 assumes Healthy-Sequence [closure]: [P \text{ is } \mathcal{H}; Q \text{ is } \mathcal{H}] \Longrightarrow (P ;; Q) \text{ is } \mathcal{H}
begin
lemma upower-Suc-Healthy [closure]:
 assumes P is \mathcal{H}
 shows P \hat{\ } Suc\ n is \mathcal H
 by (induct n, simp-all add: closure assms upred-semiring.power-Suc)
end
locale \ utp-theory-cont-rel = utp-theory-rel + utp-theory-continuous
 lemma seq-cont-Sup-distl:
   assumes P is \mathcal{H} A \subseteq [\![\mathcal{H}]\!]_H A \neq \{\}
   have \{P : Q \mid Q \in A \} \subseteq [H]_H
     using Healthy-Sequence assms(1) assms(2) by (auto)
   thus ?thesis
     by (simp add: healthy-inf-cont seq-Sup-distl setcompr-eq-image assms)
 qed
 lemma seq-cont-Sup-distr:
   assumes Q is \mathcal{H} A \subseteq [\![\mathcal{H}]\!]_H A \neq \{\}
   proof -
   have \{P : Q \mid P. P \in A \} \subseteq [H]_H
     using Healthy-Sequence assms(1) assms(2) by (auto)
   thus ?thesis
     by (simp add: healthy-inf-cont seq-Sup-distr setcompr-eq-image assms)
 qed
 lemma uplus-healthy [closure]:
   assumes P is H
   shows P^+ is \mathcal{H}
   by (simp add: uplus-power-def closure assms)
```

end

There also exist UTP theories with units. Not all theories have both a left and a right unit (e.g. H1-H2 designs) and so we split up the locale into two cases.

```
\begin{aligned} & \textbf{locale} \  \, \textit{utp-theory-units} = \\ & \textit{utp-theory-rel} \  \, + \\ & \textbf{fixes} \  \, \textit{utp-unit} \, \, (\mathcal{II}) \\ & \textbf{assumes} \  \, \textit{Healthy-Unit} \, \, [\textit{closure}] \colon \mathcal{II} \, \, \textit{is} \, \, \mathcal{H} \end{aligned}
```

begin

```
We can characterise the theory Kleene star by lifting the relational one.
definition utp-star (-\star [999] 999) where
[upred-defs]: utp-star P = (P^*; \mathcal{II})
We can then characterise tests as refinements of units.
definition utp\text{-}test :: 'a \ hrel \Rightarrow bool \ \mathbf{where}
[upred-defs]: utp\text{-test } b = (\mathcal{I}\mathcal{I} \sqsubseteq b)
end
{\bf locale}\ utp\text{-}theory\text{-}left\text{-}unital=
  utp-theory-units +
 assumes Unit-Left: P is \mathcal{H} \Longrightarrow (\mathcal{II};; P) = P
locale \ utp-theory-right-unital =
  utp-theory-units +
  assumes Unit-Right: P is \mathcal{H} \Longrightarrow (P ;; \mathcal{II}) = P
locale \ utp-theory-unital =
  utp-theory-left-unital + utp-theory-right-unital
begin
lemma Unit-self [simp]:
 II :: II = II
 by (simp add: Healthy-Unit Unit-Right)
lemma utest-intro:
 \mathcal{II} \sqsubseteq P \Longrightarrow utp\text{-}test\ P
 by (simp add: utp-test-def)
lemma utest-Unit [closure]:
  utp-test II
 by (simp add: utp-test-def)
end
locale \ utp-theory-mono-unital = \ utp-theory-unital + \ utp-theory-mono
begin
lemma utest-Top [closure]: utp-test ⊤
 by (simp add: Healthy-Unit utp-test-def utp-top)
end
locale \ utp-theory-cont-unital = utp-theory-cont-rel + utp-theory-unital
\mathbf{sublocale}\ \mathit{utp-theory-cont-unital} \subseteq \mathit{utp-theory-mono-unital}
  by (simp add: utp-theory-mono-axioms utp-theory-mono-unital-def utp-theory-unital-axioms)
locale utp-theory-unital-zerol =
  utp-theory-unital +
  utp-theory-lattice +
```

assumes Top-Left-Zero: P is $\mathcal{H} \Longrightarrow \top$;; $P = \top$

```
locale utp-theory-cont-unital-zerol = utp-theory-cont-unital + utp-theory-unital-zerol begin lemma Top-test-Right-Zero: assumes b is \mathcal{H} utp-test b shows b;; \mathcal{T} = \mathcal{T} proof - have b \sqcap \mathcal{I}\mathcal{I} = \mathcal{I}\mathcal{I} by (meson assms(2) semilattice-sup-class.le-iff-sup utp-test-def) then show ?thesis by (metis (no-types) Top-Left-Zero Unit-Left assms(1) meet-top top-healthy upred-semiring.distrib-right) qed
```

end

20.4 Theory of relations

```
interpretation rel-theory: utp-theory-mono-unital id skip-r
rewrites rel-theory.utp-top = false
and rel-theory.utp-bottom = true
and carrier (utp-order id) = UNIV
and (P is id) = True
proof -
show utp-theory-mono-unital id II
by (unfold-locales, simp-all add: Healthy-def)
then interpret utp-theory-mono-unital id skip-r
by simp
show utp-top = false utp-bottom = true
by (simp-all add: healthy-top healthy-bottom)
show carrier (utp-order id) = UNIV (P is id) = True
by (auto simp add: utp-order-def Healthy-def)
qed
```

thm rel-theory. GFP-unfold

20.5 Theory links

We can also describe links between theories, such a Galois connections and retractions, using the following notation.

```
definition mk\text{-}conn\ (- \Leftarrow \langle -, - \rangle \Rightarrow - [90, 0, 0, 91]\ 91) where H1 \Leftarrow \langle \mathcal{H}_1, \mathcal{H}_2 \rangle \Rightarrow H2 \equiv (| orderA = utp\text{-}order\ H1,\ orderB = utp\text{-}order\ H2,\ lower = \mathcal{H}_2,\ upper = \mathcal{H}_1\ ) lemma mk\text{-}conn\text{-}orderA\ [simp]:\ \mathcal{X}_{H1} \Leftarrow \langle \mathcal{H}_1, \mathcal{H}_2 \rangle \Rightarrow H2 = utp\text{-}order\ H1 by (simp\ add:mk\text{-}conn\text{-}def) lemma mk\text{-}conn\text{-}orderB\ [simp]:\ \mathcal{Y}_{H1} \Leftarrow \langle \mathcal{H}_1, \mathcal{H}_2 \rangle \Rightarrow H2 = utp\text{-}order\ H2 by (simp\ add:mk\text{-}conn\text{-}def) lemma mk\text{-}conn\text{-}lower\ [simp]:\ \pi_*H1 \Leftarrow \langle \mathcal{H}_1, \mathcal{H}_2 \rangle \Rightarrow H2 = \mathcal{H}_1 by (simp\ add:\ mk\text{-}conn\text{-}def) lemma mk\text{-}conn\text{-}upper\ [simp]:\ \pi^*_{H1} \Leftarrow \langle \mathcal{H}_1, \mathcal{H}_2 \rangle \Rightarrow H2 = \mathcal{H}_2
```

```
by (simp \ add: \ mk\text{-}conn\text{-}def)
lemma galois-comp: (H_2 \Leftarrow \langle \mathcal{H}_3, \mathcal{H}_4 \rangle \Rightarrow H_3) \circ_q (H_1 \Leftarrow \langle \mathcal{H}_1, \mathcal{H}_2 \rangle \Rightarrow H_2) = H_1 \Leftarrow \langle \mathcal{H}_1 \circ \mathcal{H}_3, \mathcal{H}_4 \circ \mathcal{H}_2 \rangle \Rightarrow H_3
  by (simp add: comp-galcon-def mk-conn-def)
Example Galois connection / retract: Existential quantification
lemma Idempotent-ex: mwb-lens x \Longrightarrow Idempotent (ex x)
 by (simp add: Idempotent-def exists-twice)
lemma Monotonic-ex: mwb-lens x \Longrightarrow Monotonic (ex x)
  by (simp add: mono-def ex-mono)
lemma ex-closed-unrest:
  vwb-lens x \Longrightarrow \llbracket ex \ x \rrbracket_H = \{P. \ x \ \sharp \ P\}
  by (simp add: Healthy-def unrest-as-exists)
Any theory can be composed with an existential quantification to produce a Galois connection
theorem ex-retract:
 assumes vwb-lens x Idempotent H ex x \circ H = H \circ ex x
 shows retract ((ex\ x\circ H) \Leftarrow \langle ex\ x,\ H\rangle \Rightarrow H)
proof (unfold-locales, simp-all)
 show H \in \llbracket ex \ x \circ H \rrbracket_H \to \llbracket H \rrbracket_H
    using Healthy-Idempotent assms by blast
  from assms(1) assms(3)[THEN sym] show ex \ x \in [\![H]\!]_H \to [\![ex \ x \circ H]\!]_H
    by (simp add: Pi-iff Healthy-def fun-eq-iff exists-twice)
 fix P Q
 assume P is (ex \ x \circ H) Q is H
  thus (H P \sqsubseteq Q) = (P \sqsubseteq (\exists x \cdot Q))
  by (metis (no-types, lifting) Healthy-Idempotent Healthy-if assms comp-apply dual-order.trans ex-weakens
utp-pred-laws.ex-mono vwb-lens-wb)
next
  \mathbf{fix} P
 assume P is (ex x \circ H)
 thus (\exists x \cdot H P) \sqsubseteq P
    by (simp add: Healthy-def)
qed
corollary ex-retract-id:
 assumes vwb-lens x
 shows retract (ex x \Leftarrow \langle ex x, id \rangle \Rightarrow id)
 using assms ex-retract[where H=id] by (auto)
end
         Relational Hoare calculus
21
theory utp-hoare
 imports
    utp-rel-laws
    utp-theory
```

21.1 Hoare Triple Definitions and Tactics

begin

```
definition hoare-r :: '\alpha \ cond \Rightarrow ('\alpha, '\beta) \ urel \Rightarrow '\beta \ cond \Rightarrow bool (\{-\}/ -/ \{-\}_u) where \{p\} Q \{r\}_u = ((\lceil p \rceil_{<} \Rightarrow \lceil r \rceil_{>}) \sqsubseteq Q)
```

```
utp-lift-notation hoare-r (0 2)
declare hoare-r-def [upred-defs]
named-theorems hoare and hoare-safe
method hoare-split uses hr =
  ((simp add: assigns-comp)?, — Combine Assignments where possible
   (auto
    intro: hoare intro!: hoare-safe hr
    simp\ add:\ conj\text{-}comm\ conj\text{-}assoc\ usubst\ unrest))[1]\ --\ \text{Apply\ Hoare\ logic\ laws}
method hoare-auto uses hr = (hoare\text{-split } hr: hr; (rel\text{-simp})?, auto?)
21.2
           Basic Laws
lemma hoare-meaning:
  \{P\}S\{Q\}_u = (\forall s s'. \llbracket P \rrbracket_e s \land \llbracket S \rrbracket_e (s, s') \longrightarrow \llbracket Q \rrbracket_e s')
  by (rel-auto)
lemma hoare-alt-def: \{b\}P\{c\}_u \longleftrightarrow (P ;; ?[c]) \sqsubseteq (?[b] ;; P)
  by (rel-auto)
lemma hoare-assume:  \P \ S \ Q \ _u \implies ?[P] \ ;; \ S = ?[P] \ ;; \ S \ ;; \ ?[Q] 
  by (rel-auto)
lemma hoare-pre-assume-1: \{b \land c\}P\{d\}_u = \{c\}?[b]; P\{d\}_u
  by (rel-auto)
lemma hoare-pre-assume-2: \{b \land c\}P\{d\}_u = \{b\}?[c]; P\{d\}_u
  by (rel-auto)
lemma hoare-test [hoare-safe]: 'p \land b \Rightarrow q' \Longrightarrow \{p\}?[b]\{q\}_u
  by (rel\text{-}simp)
lemma hoare-gcmd [hoare-safe]: \{p \land b\}P\{q\}_u \Longrightarrow \{p\}b \longrightarrow_r P\{q\}_u
  by (rel-auto)
\mathbf{lemma}\ hoare\text{-}r\text{-}conj\ [hoare\text{-}safe]\text{:}\ \llbracket\ \P p \P\ Q \P r \rrbracket_u;\ \P p \P\ Q \P s \rrbracket_u\ \rrbracket \Longrightarrow \P p \P\ Q \P r\ \land\ s \rrbracket_u
  by rel-auto
lemma hoare-r-weaken-pre [hoare]:
  \{p\} Q\{r\}_u \Longrightarrow \{p \land q\} Q\{r\}_u
  \{q\}Q\{r\}_u \Longrightarrow \{p \land q\}Q\{r\}_u
  by rel-auto+
lemma pre-str-hoare-r:
  assumes 'p_1 \Rightarrow p_2' and \{p_2\} C \{q\}_u
  shows \{p_1\} C \{q\}_u
  using assms by rel-auto
lemma post-weak-hoare-r:
  assumes \{p\} C \{q_2\}_u and q_2 \Rightarrow q_1
  shows \{p\} C \{q_1\}_u
```

using assms by rel-auto

```
lemma hoare-r-conseq: [\![ \{p_2\}\!] S \{q_2\}\!]_u; 'p_1 \Rightarrow p_2'; 'q_2 \Rightarrow q_1' [\!] \Longrightarrow \{\![p_1\}\!] S \{\![q_1\}\!]_u by rel-auto
```

21.3 Sequence Laws

```
lemma seq-hoare-r: [\![ \{p\} Q_1 \{s\}_u ; \{s\} Q_2 \{r\}_u ]\!] \Longrightarrow \{p\} Q_1 ;; Q_2 \{r\}_u \} by rel-auto
```

lemma seq-hoare-invariant [hoare-safe]: $[\![\{p\} Q_1 \{p\}_u ; \{p\} Q_2 \{p\}_u]\!] \Longrightarrow \{\![p\} Q_1 ;; Q_2 \{\![p\} \}\!]_u$ by rel-auto

lemma seq-hoare-stronger-pre-1 [hoare-safe]:

 $\mathbf{lemma} \ seq\text{-}hoare\text{-}stronger\text{-}pre\text{-}2 \ [hoare\text{-}safe]:$

lemma seq-hoare-inv-r-2 [hoare]: [
$$\{p\}Q_1\{q\}_u$$
; $\{q\}Q_2\{q\}_u$] $\Longrightarrow \{p\}Q_1$;; $Q_2\{q\}_u$ by rel-auto

lemma seq-hoare-inv-r-3 [hoare]: [
$$\{p\}Q_1\{p\}_u ; \{p\}Q_2\{q\}_u$$
] $\Longrightarrow \{p\}Q_1 ; Q_2\{q\}_u$ by rel-auto

21.4 Assignment Laws

```
lemma assigns-hoare-r [hoare-safe]: 'p \Rightarrow \sigma \dagger q' \Longrightarrow \{p\} \langle \sigma \rangle_a \{q\}_u by rel-auto
```

lemma assigns-backward-hoare-r:

```
\{\sigma \dagger p\}\langle\sigma\rangle_a\{p\}_u
by rel-auto
```

 $\mathbf{lemma}\ as sign-floyd-hoare-r:$

assumes vwb-lens x

shows
$$\{p\}$$
 assign-r x e $\{\exists v : p[\![\ll v \gg /x]\!] \land \&x = e[\![\ll v \gg /x]\!]\}_u$ using assms

by (rel-auto, metis vwb-lens-wb wb-lens.get-put)

lemma assigns-init-hoare [hoare-safe]:

```
\llbracket vwb\text{-}lens\ x;\ x\ \sharp\ p;\ x\ \sharp\ v;\ \{\&x=v\land p\}S\{\!\{q\}\!\}_u\ \rrbracket \Longrightarrow \{\!\{p\}\!\}_x:=v\ ;;\ S\{\!\{q\}\!\}_u by (rel-auto)
```

lemma assigns-init-hoare-general:

```
\llbracket vwb\text{-}lens\ x; \bigwedge x_0.\ \{\&x = v \llbracket \ll x_0 \gg /\&x \rrbracket \land p \llbracket \ll x_0 \gg /\&x \rrbracket \} S \{q\}_u \ \rrbracket \Longrightarrow \{p\}x := v ;; S\{q\}_u by (rule seq-hoare-r, rule assign-floyd-hoare-r, simp, rel-auto)
```

 ${\bf lemma}\ assigns\hbox{-}final\hbox{-}hoare\ [hoare\hbox{-}safe]\hbox{:}$

lemma skip-hoare-r [hoare-safe]: $\{p\}II\{p\}_u$ by rel-auto

```
lemma skip-hoare-impl-r [hoare-safe]: 'p \Rightarrow q' \Longrightarrow \{p\}II\{q\}_u by rel-auto
```

```
21.5
          Conditional Laws
lemma cond-hoare-r [hoare-safe]: [\![ \{b \land p\} S \{q\}_u ; \{\neg b \land p\} T \{q\}_u ]\!] \Longrightarrow \{\![p\} S \triangleleft b \triangleright_r T \{\![q\}_u ]\!]
 by rel-auto
lemma cond-hoare-r-wp:
  assumes \{p'\}S\{q\}_u and \{p''\}T\{q\}_u
 shows \{(b \land p') \lor (\neg b \land p'')\}S \triangleleft b \triangleright_r T\{\{q\}\}_u
  using assms by pred-simp
lemma cond-hoare-r-sp:
  assumes \langle \{b \land p\} S \{q\}_u \rangle and \langle \{\neg b \land p\} T \{s\}_u \rangle
 shows \langle \{p\}\} S \triangleleft b \triangleright_r T \{\{q \vee s\}\}_u \rangle
 using assms by pred-simp
lemma hoare-ndet [hoare-safe]:
  assumes \{pre\}P\{post\}_u \{pre\}Q\{post\}_u
 shows \{pre\}(P \sqcap Q)\{post\}_u
  using assms by (rel-auto)
lemma hoare-disj [hoare-safe]:
  assumes \{pr\}P\{post\}_u \{pr\}Q\{post\}_u
  shows \{pr\}(P \vee Q)\{post\}_u
  using assms by (rel-auto)
lemma hoare-UINF [hoare-safe]:
  assumes \bigwedge i. i \in A \Longrightarrow \{pre\}P(i)\{post\}_u
 shows \{pre\}([ i \in A \cdot P(i))\}\{post\}_u
 using assms by (rel-auto)
21.6
          Recursion Laws
lemma nu-hoare-r-partial:
 assumes induct-step:
    shows \{p\}\nu F \{q\}_u
 by (meson hoare-r-def induct-step lfp-lowerbound order-refl)
lemma mu-hoare-r:
  assumes WF: wf R
 assumes M:mono\ F
 assumes induct-step:
    \bigwedge \ st \ P. \ \{p \ \land \ (e, \ll st \gg) \in \ll R \gg \} P \{q\}_u \Longrightarrow \{p \ \land \ e = \ll st \gg \} F \ P \{q\}_u
 shows \{p\}\mu F \{q\}_u
 unfolding hoare-r-def
proof (rule mu-rec-total-utp-rule[OF WF M , of - e ], goal-cases)
 case (1 st)
 then show ?case
    using induct-step[unfolded hoare-r-def, of (\lceil p \rceil < \land (\lceil e \rceil < , \ll t \gg)_u \in_u \ll R \gg \Rightarrow \lceil q \rceil >) st
    by (simp add: alpha)
qed
lemma mu-hoare-r':
```

21.7 Iteration Rules

```
lemma iter-hoare-r [hoare-safe]: \{P\}S\{P\}_u \Longrightarrow \{P\}S^*\{P\}_u
 by (rel-simp', metis (mono-tags, hide-lams) mem-Collect-eq rtrancl-induct)
lemma while-hoare-r [hoare-safe]:
 assumes \{p \land b\}S\{p\}_u
 shows \{p\} while b do S od \{\neg b \land p\}<sub>u</sub>
 using assms
 by (simp add: while-top-def hoare-r-def, rule-tac lfp-lowerbound) (rel-auto)
lemma while-invr-hoare-r [hoare-safe]:
 assumes \{p \land b\} S \{p\}_u \text{ 'pre} \Rightarrow p' \text{ '}(\neg b \land p) \Rightarrow post'
 shows \{pre\} while b invr p do S od \{post\}_u
 by (metis assms hoare-r-conseq while-hoare-r while-inv-def)
lemma while-r-minimal-partial:
 assumes seq-step: 'p \Rightarrow invar'
 assumes induct-step: \{invar \land b\} C \{invar\}_u
 shows \{p\} while b do C od \{\neg b \land invar\}_n
 using induct-step pre-str-hoare-r seg-step while-hoare-r by blast
lemma approx-chain:
  by (rel-auto)
```

Total correctness law for Hoare logic, based on constructive chains. This is limited to variants that have naturals numbers as their range.

```
lemma while-term-hoare-r: assumes \land z::nat. \ \{p \land b \land v = \lessdot z \gg \} S \{p \land v \lessdot \lessdot z \gg \}_u shows \{p\} \text{ while}_{\perp} b \text{ do } S \text{ od} \{\neg b \land p\}_u proof - have (\lceil p \rceil_{<} \Rightarrow \lceil \neg b \land p \rceil_{>}) \sqsubseteq (\mu \ X \cdot S \ ;; \ X \triangleleft b \triangleright_r II) proof (rule \ mu\text{-refine-intro})

from assms show (\lceil p \rceil_{<} \Rightarrow \lceil \neg b \land p \rceil_{>}) \sqsubseteq S \ ;; (\lceil p \rceil_{<} \Rightarrow \lceil \neg b \land p \rceil_{>}) \triangleleft b \triangleright_r II by (rel\text{-}auto)

let ?E = \lambda \ n. \ \lceil p \land v \lessdot_u \lessdot n \gg \rceil_{<} show (\lceil p \rceil_{<} \land (\mu \ X \cdot S \ ;; \ X \triangleleft b \triangleright_r II)) = (\lceil p \rceil_{<} \land (\nu \ X \cdot S \ ;; \ X \triangleleft b \triangleright_r II)) proof (rule \ constr\text{-}fp\text{-}uniq[\text{where} \ E = ?E])

show (\lceil n. \ ?E(n)) = \lceil p \rceil_{<} by (rel\text{-}auto)

show mono\ (\lambda X. \ S \ ;; \ X \triangleleft b \triangleright_r II) by (simp \ add: \ cond\text{-}mono \ monoI \ seqr\text{-}mono)
```

```
show constr (\lambda X.\ S \ ;; \ X \triangleleft b \triangleright_r II) \ ?E
       proof (rule constrI)
         show chain ?E
         proof (rule chainI)
            show \lceil p \land v <_u \ll \theta \gg \rceil < = false
              by (rel-auto)
            show \bigwedge i. [p \land v <_u \ll Suc \ i \gg]_{\leq} \sqsubseteq [p \land v <_u \ll i \gg]_{\leq}
              by (rel-auto)
         qed
         from assms
         show \bigwedge X \ n. \ (S \ ;; \ X \triangleleft b \triangleright_r II \land \lceil p \land v <_u \ll n + 1 \gg \rceil_{<}) =
                         (S :: (X \land \lceil p \land v <_u \ll n \gg \rceil_{<}) \triangleleft b \rhd_r II \land \lceil p \land v <_u \ll n + 1 \gg \rceil_{<})
            apply (rel-auto)
            using less-antisym less-trans apply blast
            done
       qed
    qed
  qed
  thus ?thesis
    by (simp add: hoare-r-def while-bot-def)
qed
lemma while-vrt-hoare-r [hoare-safe]:
  \mathbf{assumes} \ \bigwedge \ z :: nat. \ \{ p \ \land \ b \ \land \ v = \ll z \gg \} \\ S \{ p \ \land \ v < \ll z \gg \}_u \ \ `pre \ \Rightarrow \ p` \ `(\neg b \ \land \ p) \ \Rightarrow \ post`
  shows \{pre\} while b invr p vrt v do S od \{post\}_u
  apply (rule hoare-r-conseq[OF - assms(2) assms(3)])
  apply (simp add: while-vrt-def)
  apply (rule while-term-hoare-r[where v=v, OF assms(1)])
  done
General total correctness law based on well-founded induction
lemma while-wf-hoare-r:
  assumes WF: wf R
  assumes I0: pre \Rightarrow p
  assumes induct-step: \bigwedge st. \{b \land p \land e = \ll st \gg\} Q\{p \land (e, \ll st \gg) \in \ll R \gg\}_u
  assumes PHI: (\neg b \land p) \Rightarrow post'
  shows \{pre\}while_{\perp} \ b \ invr \ p \ do \ Q \ od \{post\}_u
unfolding hoare-r-def while-inv-bot-def while-bot-def
proof (rule pre-weak-rel[of - \lceil p \rceil_{<}])
  from I0 show '\lceil pre \rceil_{<} \Rightarrow \lceil p \rceil_{<}'
    by rel-auto
  show (\lceil p \rceil_{<} \Rightarrow \lceil post \rceil_{>}) \sqsubseteq (\mu \ X \cdot Q \ ;; \ X \triangleleft b \triangleright_{r} II)
  proof (rule mu-rec-total-utp-rule[where e=e, OF WF])
    show Monotonic (\lambda X.\ Q ;; X \triangleleft b \triangleright_r II)
       by (simp add: closure)
    have induct-step': \bigwedge st. (\lceil b \land p \land e =_u \ll st \gg \rceil < \Rightarrow (\lceil p \land (e, \ll st \gg)_u \in_u \ll R \gg \rceil > )) \sqsubseteq Q
       using induct-step by rel-auto
    with PHI
    show \bigwedge st. (\lceil p \rceil_{<} \land \lceil e \rceil_{<} =_{u} \ll st \gg \Rightarrow \lceil post \rceil_{>}) \sqsubseteq Q ;; (\lceil p \rceil_{<} \land (\lceil e \rceil_{<}, \ll st \gg)_{u} \in_{u} \ll R \gg \Rightarrow \lceil post \rceil_{>})
\triangleleft b \triangleright_r II
       by (rel-auto)
```

```
\begin{array}{c} \operatorname{qed} \\ \operatorname{qed} \end{array}
```

21.8 Frame Rules

Frame rule: If starting S in a state satisfying pestablishesq in the final state, then we can insert an invariant predicate r when S is framed by a, provided that r does not refer to variables in the frame, and q does not refer to variables outside the frame.

```
lemma frame-hoare-r:
 assumes vwb-lens a \ a \ \sharp \ r \ a \ \natural \ q \ \{p\}P\{q\}_u
 shows \{p \wedge r\}a:[P]\{q \wedge r\}_u
 using assms
 by (rel-auto, metis)
lemma frame-strong-hoare-r [hoare-safe]:
 assumes vwb-lens a \ a \ \sharp \ r \ a \ \natural \ q \ \{p \land r\}S\{q\}_u
 shows \{p \land r\} a: [S] \{q \land r\}_u
 using assms by (rel-auto, metis)
lemma frame-hoare-r' [hoare-safe]:
  assumes vwb-lens a \ a \ \sharp \ r \ a \ \natural \ q \ \{r \land p\} S \{q\}_u
  shows \{r \land p\}a:[S]\{r \land q\}_u
  using assms
 by (simp add: frame-strong-hoare-r utp-pred-laws.inf.commute)
lemma antiframe-hoare-r:
  assumes vwb-lens a \ a \ \sharp \ r \ a \ \sharp \ q \ \{p\}P\{q\}_u
 shows \{p \land r\} a: [P] \{q \land r\}_u
  using assms by (rel-auto, metis)
\mathbf{lemma} \ \mathit{antiframe-strong-hoare-r}:
 assumes vwb-lens a \ a \ \sharp \ r \ a \ \sharp \ q \ \{p \land r\}P\{q\}_u
 shows \{p \wedge r\} a: [P] \{q \wedge r\}_u
 using assms by (rel-auto, metis)
```

22 Weakest Liberal Precondition Calculus

```
theory utp-wlp imports utp-hoare begin
```

end

The calculus we here define is termed "weakest precondition" in the UTP book, however it is in reality the liberal version that does not account for termination.

```
named-theorems wp

method wp\text{-}tac = (simp \ add: wp \ usubst \ unrest)

consts

uwlp :: 'a \Rightarrow 'b \Rightarrow 'c

no-utp-lift uwlp
```

```
syntax
  -uwlp :: logic \Rightarrow uexp \Rightarrow logic (infix wlp 60)
translations
  -uwlp P b == CONST uwlp P b
definition wlp-upred :: ('\alpha, '\beta) urel \Rightarrow '\beta cond \Rightarrow '\alpha cond where
wlp-upred Q r = [\neg (Q ;; (\neg [r]_{<})) :: ('\alpha, '\beta) urel]_{<}
adhoc-overloading
 uwlp wlp-upred
declare wlp-upred-def [urel-defs]
lemma wlp-true [wp]: p wlp true = true
 by (rel\text{-}simp)
lemma wlp-conj [wp]: (P \ wlp \ (b \land c)) = ((P \ wlp \ b) \land (P \ wlp \ c))
 by (rel-auto)
theorem wlp-assigns-r [wp]:
  \langle \sigma \rangle_a \ wlp \ r = \sigma \dagger r
 \mathbf{by} rel-auto
lemma wlp-nd-assign [wp]: (x := *) wlp b = (\forall v \cdot b \llbracket \ll v \gg / \&x \rrbracket)
 by (simp add: nd-assign-def wp, rel-auto)
lemma wlp-rel-aext-unrest [wp]: \llbracket vwb-lens a; a \sharp b \rrbracket \implies a:[P]^+ wlp b = ((P wlp false) \oplus_p a \vee b)
 by (rel-simp, metis mwb-lens-def vwb-lens-def weak-lens.put-get)
by (rel-auto, metis mwb-lens-def vwb-lens-mwb weak-lens.put-get)
theorem wlp-skip-r [wp]:
 II \ wlp \ r = r
 by rel-auto
theorem wlp-abort [wp]:
 r \neq true \implies true \ wlp \ r = false
 by rel-auto
theorem wlp\text{-}seq\text{-}r [wp]: (P ;; Q) wlp r = P wlp (Q wlp r)
 by rel-auto
theorem wlp-choice [wp]: (P \sqcap Q) wlp R = (P \text{ wlp } R \land Q \text{ wlp } R)
 by (rel-auto)
theorem wlp\text{-}choice'[wp]: (P \lor Q) \ wlp \ R = (P \ wlp \ R \land Q \ wlp \ R)
 by (rel-auto)
theorem wlp-cond [wp]: (P \triangleleft b \triangleright_r Q) wlp r = ((b \Rightarrow P \ wlp \ r) \land ((\neg b) \Rightarrow Q \ wlp \ r))
 by rel-auto
lemma wlp-UINF-ind [wp]: ( \bigcap i \cdot P(i) ) wlp b = ( \forall i \cdot P(i) \text{ wlp } b )
 by (rel-auto)
```

```
lemma wlp-test [wp]: ?[b] wlp c = (b \Rightarrow c)
by (rel-auto)
lemma wlp-gcmd [wp]: (b \longrightarrow_r P) wlp c = (b \Rightarrow P \ wlp \ c)
by (simp \ add: \ rgcmd-def \ wp)
lemma wlp-USUP-pre [wp]: P \ wlp \ (\bigsqcup i \in \{0..n\} \cdot Q(i)) = (\bigsqcup i \in \{0..n\} \cdot P \ wlp \ Q(i))
by (rel-auto)
theorem wlp-hoare-link:
\{p\} Q\{r\}_u \longleftrightarrow `p \Rightarrow Q \ wlp \ r`
by rel-auto
```

We can use the above theorem as a means to discharge Hoare triples with the following tactic method hoare-wlp-auto uses defs = (simp add: wlp-hoare-link wp unrest usubst defs; rel-auto)

If two programs have the same weakest precondition for any postcondition then the programs are the same.

```
theorem wlp-eq-intro: \llbracket \bigwedge r. \ P \ wlp \ r = Q \ wlp \ r \ \rrbracket \Longrightarrow P = Q by (rel-auto robust, fastforce+)
```

end

23 Weakest Precondition Calculus

```
theory utp-wp imports utp-wlp begin
```

This calculus is like the liberal version, but also accounts for termination. It is equivalent to the relational preimage.

```
consts
uwp :: 'a \Rightarrow 'b \Rightarrow 'c
no-utp-lift \ uwp
utp-lift-notation \ uwp \ (1)
syntax
-uwp :: logic \Rightarrow uexp \Rightarrow logic \ (infix \ wp \ 60)
translations
-uwp \ P \ b == CONST \ uwp \ P \ b
definition \ wp-upred :: ('\alpha, '\beta) \ urel \Rightarrow '\beta \ cond \Rightarrow '\alpha \ cond \ where
[upred-defs]: \ wp-upred \ P \ b = Pre(P \ ;; \ ?[b])
adhoc-overloading
uwp \ wp-upred
theorem \ refine-iff-wp:
fixes \ P \ Q :: ('\alpha, '\beta) \ urel
shows \ P \sqsubseteq Q \longleftrightarrow (\forall \ b. \ 'P \ wp \ b \Rightarrow Q \ wp \ b')
```

```
apply (rel-auto)
 oops
theorem wp-refine-iff: (\forall r. `Q wp r \Rightarrow P wp r') \longleftrightarrow P \sqsubseteq Q
 by (rel-auto robust; fastforce)
theorem wp-refine-intro: (\bigwedge r. `Q wp r \Rightarrow P wp r`) \Longrightarrow P \sqsubseteq Q
  using wp-refine-iff by blast
theorem wp-eq-iff: (\forall r. P wp r = Q wp r) \longrightarrow P = Q
 by (rel-auto robust; fastforce)
theorem wp-eq-intro: (\bigwedge r. P wp r = Q wp r) \Longrightarrow P = Q
 by (simp add: wp-eq-iff)
lemma wp-true: P wp true = Pre(P)
 by (rel-auto)
lemma wp-false [wp]: P wp false = false
 by (rel-auto)
lemma wp-abort [wp]: false wp b = false
 by (rel-auto)
lemma wp\text{-}seq [wp]: (P ;; Q) wp b = P wp (Q wp b)
 by (simp add: wp-upred-def, metis Pre-seq RA1)
lemma wp-disj [wp]: (P \lor Q) wp b = (P wp b \lor Q wp b)
  \mathbf{by} (rel-auto)
lemma wp-ndet [wp]: (P \sqcap Q) wp b = (P wp \ b \lor Q wp \ b)
 by (rel-auto)
lemma wp-cond [wp]: (P \triangleleft b \triangleright_r Q) wp r = ((b \Rightarrow P \text{ wp } r) \land ((\neg b) \Rightarrow Q \text{ wp } r))
 by rel-auto
lemma wp-UINF-mem [wp]: (\bigcap i \in I \cdot P(i)) wp b = (\bigcap i \in I \cdot P(i)) wp b
 by (rel-auto)
lemma wp-UINF-ind [wp]: (\bigcap i \cdot P(i)) wp b = (\bigcap i \cdot P(i) wp b)
 by (rel-auto)
lemma wp-UINF-ind-2 [wp]: ( (i, j) \cdot P \ i \ j) wp b = ( (i, j) \cdot (P \ i \ j) wp b)
 by (rel-auto)
lemma wp-UINF-ind-3 [wp]: ([ (i, j, k) \cdot P \ i \ j \ k) \ wp \ b = ([ (i, j, k) \cdot (P \ i \ j \ k) \ wp \ b)
 by (rel-blast)
lemma wp-test [wp]: ?[b] wp c = (b \land c)
 by (rel-auto)
lemma wp-gcmd [wp]: (b \longrightarrow_r P) wp c = (b \land P \text{ wp } c)
 by (rel-auto)
theorem wp-skip [wp]:
```

```
II \ wp \ r = r
 by rel-auto
lemma wp-assigns [wp]: \langle \sigma \rangle_a wp b = \sigma \dagger b
 by (rel-auto)
lemma wp-nd-assign [wp]: (x := *) wp b = (\exists v \cdot b \llbracket \ll v \gg / \&x \rrbracket)
 by (simp add: nd-assign-def wp, rel-auto)
lemma wp-rel-frext [wp]:
 assumes vwb-lens a \ a \ \sharp \ q
 shows a:[P]^+ wp (p \oplus_p a \wedge q) = ((P wp p) \oplus_p a \wedge q)
 using assms
 by (rel-auto, metis (full-types), metis mwb-lens-def vwb-lens-mwb weak-lens.put-get)
lemma wp-rel-aext-unrest [wp]: \llbracket vwb-lens a; a \sharp b \rrbracket \implies a:[P]^+ wp \ b = (b \land (P \ wp \ true) \oplus_p a)
 by (rel-auto, metis, metis mwb-lens-def vwb-lens-mwb weak-lens.put-get)
lemma wp-rel-aext-usedby [wp]: [ vwb-lens a; a 
otin b ] \Longrightarrow a:[P]^+ wp b = (P \text{ wp } (b 
otin a)) \oplus_{p} a
 by (rel-auto, metis mwb-lens-def vwb-lens-mwb weak-lens.put-get)
lemma wp-wlp-conjugate: P wp b = (\neg P \ wlp \ (\neg b))
 by (rel-auto)
Weakest Precondition and Weakest Liberal Precondition are equivalent for terminating deter-
ministic programs.
lemma wlp-wp-equiv-lem: [(mk_e \ (Pair \ a)) \dagger II]_e \ a
 by (rel-auto)
lemma wlp-wp-equiv-total-det: (\forall b . P wp b = P wlp b) \longleftrightarrow (Pre(P) = true \land ufunctional P)
 apply (rel-auto)
   apply blast
  apply (rename-tac \ a \ b \ y)
 apply (subgoal-tac [(mk_e (Pair a)) \dagger II]_e b)
 apply (simp add: assigns-r.rep-eq skip-r-def subst.rep-eq subst-id.rep-eq Abs-uexpr-inverse)
 using wlp-wp-equiv-lem apply fastforce
 apply blast
 done
lemma total-det-then-wlp-wp-equiv: [Pre(P) = true; ufunctional P] \implies Pwp b = Pwlp b
 using wlp-wp-equiv-total-det by blast
lemma Pre-as-wp: Pre(P) = P wp true
 by (simp add: wp-true)
method wp-calc =
  (rule wp-refine-intro wp-eq-intro, wp-tac)
method wp-auto = (wp-calc, rel-auto)
end
```

24 Dynamic Logic

theory utp-dynlog

```
\begin{array}{ll} \textbf{imports} \ \textit{utp-sequent utp-wp} \\ \textbf{begin} \end{array}
```

24.1 Definitions

```
named-theorems dynlog-simp and dynlog-intro
```

```
definition dBox :: ('\alpha, '\beta) \ urel \Rightarrow '\beta \ upred \Rightarrow '\alpha \ upred \ ([-]-[0,999] \ 999) where [upred-defs]: dBox \ A \ \Phi = A \ wlp \ \Phi
```

definition
$$dDia :: ('\alpha, '\beta) \ urel \Rightarrow '\beta \ upred \Rightarrow '\alpha \ upred \ (<->-[0,999] \ 999)$$
 where [upred-defs]: $dDia \ A \ \Phi = A \ wp \ \Phi$

lemma
$$dDia$$
- $dBox$ - def : $\langle A \rangle \Phi = (\neg [A](\neg \Phi))$
by $(simp\ add:\ dBox$ - $def\ dDia$ - $def\ wp$ - wlp - $conjugate)$

Correspondence between Hoare logic and Dynamic Logic

lemma hoare-as-dynlog:
$$\{p\}Q\{r\}_u = (p \Vdash [Q]r)$$

by $(rel-auto)$

24.2 Box Laws

```
lemma dBox-false [dynlog-simp]: [false]\Phi = true
by (rel-auto)
```

lemma
$$dBox$$
-skip $[dynlog$ -simp]: $[II]\Phi = \Phi$ by $(rel$ -auto)

lemma
$$dBox$$
-assigns $[dynlog$ -simp]: $[\langle \sigma \rangle_a]\Phi = (\sigma \dagger \Phi)$
by $(simp \ add: \ dBox$ -def wlp -assigns- $r)$

lemma dBox-choice [dynlog-simp]:
$$[P \sqcap Q]\Phi = ([P]\Phi \land [Q]\Phi)$$

by $(rel\text{-}auto)$

lemma
$$dBox$$
- seq : $[P :; Q]\Phi = [P][Q]\Phi$
by $(simp \ add: \ dBox$ - $def \ wlp$ - seq - $r)$

lemma dBox-star-unfold:
$$[P^*]\Phi = (\Phi \wedge [P][P^*]\Phi)$$

by (metis dBox-choice dBox-seq dBox-skip ustar-unfoldl)

lemma dBox-star-induct:
$$(\Phi \land [P^*](\Phi \Rightarrow [P]\Phi)) \Rightarrow [P^*]\Phi'$$

by (rel-simp, metis (mono-tags, lifting) mem-Collect-eq rtrancl-induct)

lemma
$$dBox\text{-}test$$
: $[?[p]]\Phi = (p \Rightarrow \Phi)$ by $(rel\text{-}auto)$

24.3 Diamond Laws

lemma
$$dDia$$
-false $[dynlog$ -simp]: $\langle false \rangle \Phi = false$
by $(simp\ add:\ dBox$ -false $dDia$ -dBox-def)

lemma
$$dDia$$
-skip $[dynlog$ -simp]: $\langle II \rangle \Phi = \Phi$
by $(simp\ add:\ dBox$ -skip $dDia$ - $dBox$ - $def)$

lemma dDia-assigns [dynlog-simp]:
$$\langle \langle \sigma \rangle_a \rangle \Phi = (\sigma \dagger \Phi)$$

by (simp add: dBox-assigns dDia-dBox-def subst-not)

```
lemma dDia-choice: \langle P \sqcap Q \rangle \Phi = (\langle P \rangle \Phi \lor \langle Q \rangle \Phi)
  by (simp add: dBox-def dDia-dBox-def wlp-choice)
lemma dDia-seq: \langle P :: Q \rangle \Phi = \langle P \rangle \langle Q \rangle \Phi
  by (simp add: dBox-def dDia-dBox-def wlp-seq-r)
lemma dDia\text{-}test: < ?[p] > \Phi = (p \land \Phi)
  by (rel-auto)
24.4
           Sequent Laws
lemma sBoxSeq \ [dynlog-simp]: \Gamma \vdash [P \ ;; \ Q]\Phi \equiv \Gamma \vdash [P][Q]\Phi
  by (simp\ add:\ dBox-def\ wlp-seq-r)
lemma sBoxTest \ [dynlog-intro]: \Gamma \Vdash (b \Rightarrow \Psi) \Longrightarrow \Gamma \Vdash [?[b]]\Psi
  by (rel-auto)
lemma sBoxAssignFwd [dynlog-intro]:
  assumes vwb-lens x \wedge x_0. ((\Gamma[(\ll x_0 \gg /\&x]) \wedge \&x =_u v[(\ll x_0 \gg /\&x]]) \vdash \Phi)
  shows (\Gamma \Vdash [x := v]\Phi)
proof -
  have \{\!\!\{\Gamma\}\!\!\}\ x := v ; ; II \,\{\!\!\{\Phi\}\!\!\}_u
  \textbf{by} \ (metis \ (no\text{-}types) \ assigns-init-hoare-general \ assms(1) \ assms(2) \ dBox-skip \ hoare-as-dynlog \ utp-pred-laws.inf-commu
  then show ?thesis
    by (simp add: hoare-as-dynlog)
qed
lemma sBoxAssignFwd-simp [dynlog-simp]: \llbracket vwb-lens x; x \sharp v; x \sharp \Gamma \rrbracket \Longrightarrow (\Gamma \vdash \llbracket x := v \rrbracket \Phi) = ((\&x))
=_u v \wedge \Gamma) \vdash \Phi
  by (rel-auto, metis vwb-lens-wb wb-lens.get-put)
lemma sBoxIndStar: \vdash [\Phi \Rightarrow [P]\Phi]_u \Longrightarrow \Phi \vdash [P^*]\Phi
  by (rel-simp, metis (mono-tags, lifting) mem-Collect-eq rtrancl-induct)
end
         Blocks (Abstract Local Variables)
25
theory utp-blocks
 imports utp-rel-laws utp-wp
begin
25.1
           Extending and Contracting Substitutions
definition subst-ext :: ('\alpha \Longrightarrow '\beta) \Rightarrow ('\alpha, '\beta) psubst (ext_s) where
— Extend state space, setting local state to an arbitrary value
[upred-defs]: ext_s \ a = (\& a \mapsto_s \& \mathbf{v})
definition subst-con :: ('\alpha \Longrightarrow '\beta) \Rightarrow ('\beta, '\alpha) psubst (con_s) where
```

— Contract the state space with get

lemma subst-con-alt-def: $con_s \ a = (\mathbf{v} \mapsto_s \& a)$ unfolding subst-con-def by (rel-auto)

[upred-defs]: $con_s \ a = \& a$

```
lemma subst-ext-con [usubst]: mwb-lens a \implies con_s \ a \circ_s \ ext_s \ a = id_s
  by (rel-simp)
lemma subst-apply-con [usubst]: \langle con_s \ a \rangle_s \ x = \&a:x
  by (rel\text{-}simp)
Variables in the global state space will be retained after a state is contracted
lemma subst-con-update-sublens [usubst]:
  \llbracket mwb\text{-}lens\ a;\ x\subseteq_L\ a\ \rrbracket \Longrightarrow con_s\ a\circ_s subst-upd\ \sigma\ x\ v=subst-upd\ (con_s\ a\circ_s\ \sigma)\ (x\ /_L\ a)\ v
  by (simp add: subst-con-def usubst alpha, rel-simp)
Variables in the local state space will be lost after a state is contracted
lemma subst-con-update-indep [usubst]:
  \llbracket mwb\text{-}lens \ x; \ mwb\text{-}lens \ a; \ a\bowtie x \ \rrbracket \implies con_s \ a\circ_s subst\text{-}upd \ \sigma \ x \ v = (con_s \ a\circ_s \ \sigma)
  by (simp add: subst-con-alt-def usubst alpha)
lemma subst-ext-apply [usubst]: \langle ext_s | a \rangle_s | x = \&x \upharpoonright_e a
  \mathbf{apply} \ (\mathit{rel\text{-}simp})
  oops
           Generic Blocks
25.2
We ensure that the initial values of local are arbitrarily chosen using the non-deterministic
choice operator.
definition block-open :: (\langle 'a, 'c \rangle \iff 'b) \Rightarrow ('a, 'b) \ urel \ (open_{-}) where
[upred-defs]: block-open a = \langle ext_s \ \mathcal{V}_a \rangle_a \ ;; \ \mathcal{C}[a] := *
lemma block-open-alt-def:
  sym-lens a \Longrightarrow block-open a = \langle ext_s \ \mathcal{V}_a \rangle_a \ ;; \ (\$\mathcal{V}[a]' =_u \ \$\mathcal{V}[a])
  by (rel-auto, metis lens-indep-vwb-iff sym-lens.put-region-coregion-cover sym-lens-def)
definition block-close :: (\langle 'a, 'c \rangle \iff 'b) \Rightarrow ('b, 'a) \ urel \ (close_{-}) where
[upred-defs]: block-close a = \langle con_s \ \mathcal{V}_a \rangle_a
\mathbf{lemma} \ \textit{wp-open-block} \ [\textit{wp}] : \textit{psym-lens} \ a \implies \textit{open}_a \ \textit{wp} \ b = (\exists \ \textit{v} \cdot (|\&\mathcal{V}[a] \mapsto_s \& \mathbf{v}, \, \&\mathcal{C}[a] \mapsto_s \ll \textit{v} \gg)) \ \dagger
 by (simp add: block-open-def subst-ext-def wp usubst unrest)
lemma wp-close-block [wp]: psym-lens a \Longrightarrow close_a wp b = con_s V_a \dagger b
  by (simp add: block-close-def subst-ext-def wp usubst unrest)
lemma block-open-conv:
  sym-lens a \Longrightarrow open_a^- = close_a
  by (rel-auto, metis lens-indep-def sym-lens.put-region-coregion-cover sym-lens-def)
lemma block-open-close:
  psym-lens a \Longrightarrow open_a;; close_a = II
  by (rel-auto)
```

I needed this property for the assignment open law below.

lemma usubst-prop: $\sigma \oplus_s a = [a \mapsto_s \& a \dagger \sigma]$

by (rel-simp)

```
lemma block-assigns-open:
  psym-lens a \Longrightarrow \langle \sigma \rangle_a ;; open_a = open_a ;; \langle \sigma \oplus_s \mathcal{V}_a \rangle_a
  apply (wp-calc)
  apply (simp add: usubst-prop usubst)
  apply (rel-auto)
  done
lemma block-assign-open:
  psym-lens a \Longrightarrow x := v ;; open_a = open_a ;; \mathcal{V}[a]:x := (v \oplus_p \mathcal{V}_a)
  by (simp add: block-assigns-open, rel-auto)
lemma block-assign-local-close:
  \mathcal{V}_a \bowtie x \Longrightarrow x := v ;; close_a = close_a
  by (rel-auto)
lemma block-assign-global-close:
  \llbracket psym\text{-lens } a; x \subseteq_L \mathcal{V}_a ; \mathcal{V}[a] \not \downarrow v \rrbracket \Longrightarrow (x := v) ; close_a = close_a ; (x \mid \mathcal{V}[a] := (v \mid_e \mathcal{V}_a))
  by (rel-simp)
\mathbf{lemma}\ block\text{-}assign\text{-}global\text{-}close':}
  \llbracket sym\text{-}lens\ a;\ x\subseteq_L \mathcal{V}_a\ ;\ \mathcal{C}[a]\ \sharp\ v\ \rrbracket \Longrightarrow (x:=v)\ ;;\ close_a=close_a\ ;;\ (x\mid \mathcal{V}[a]:=(v\mid_e \mathcal{V}_a))
  by (rule block-assign-global-close, simp-all add: sym-lens-unrest')
lemma hoare-block [hoare-safe]:
  assumes psym-lens a
  shows \{p \oplus_p \mathcal{V}_a\}P\{q \oplus_p \mathcal{V}_a\}_u \Longrightarrow \{p\}open_a :: P :: close_a\{q\}_u
  using assms by (rel-simp)
lemma vwb-lens a \Longrightarrow a:[P]^+ = a:[\langle con_s \ a \rangle_a \ ;; \ P \ ;; \langle ext_s \ a \rangle_a \ ;; (\$a' =_u \$a)]
  by (rel-auto)
end
```

26 State Variable Declaration Parser

```
theory utp-state-parser imports utp-blocks begin
```

This theory sets up a parser for state blocks, as an alternative way of providing lenses to a predicate. A program with local variables can be represented by a predicate indexed by a tuple of lenses, where each lens represents a variable. These lenses must then be supplied with respect to a suitable state space. Instead of creating a type to represent this alphabet, we can create a product type for the state space, with an entry for each variable. Then each variable becomes a composition of the fst_L and snd_L lenses to index the correct position in the variable vector. We first creation a vacuous definition that will mark when an indexed predicate denotes a state block.

```
definition state-block :: ('v \Rightarrow 'p) \Rightarrow 'v \Rightarrow 'p where [upred-defs]: state-block f x = f x
```

We declare a number of syntax translations to produce lens and product types, to obtain a type for the overall state space, to construct a tuple that denotes the lens vector parameter, to construct the vector itself, and finally to construct the state declaration.

```
syntax
  -lensT :: type \Rightarrow type \Rightarrow type (LENSTYPE'(-, -'))
  -pairT :: type \Rightarrow type \Rightarrow type (PAIRTYPE'(-, -'))
  -state-type :: pttrn \Rightarrow type
  -state-tuple :: type \Rightarrow pttrn \Rightarrow logic
  -state-lenses :: pttrn \Rightarrow logic \Rightarrow logic
  -state-decl :: pttrn \Rightarrow logic \Rightarrow logic (alpha - \cdot - [0, 10] 10)
  -state-decl-in :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic (alpha - in - \cdot - [0, 0, 10] 10)
translations
  (type) \ PAIRTYPE('a, 'b) => (type) 'a \times 'b
  (type) \ LENSTYPE('a, 'b) => (type) 'a \Longrightarrow -
  -state-type (-constrain x t) => t
  -state-type (CONST \ Pair (-constrain \ x \ t) \ vs) => -pairT \ t \ (-state-type \ vs)
  -state-tuple st (-constrain x t) => -constrain x (-lens T t st)
  -state-tuple st (CONST Pair (-constrain x t) vs) =>
    CONST\ Product-Type.Pair\ (-constrain\ x\ (-lensT\ t\ st))\ (-state-tuple st\ vs)
  -state-decl-in vs loc P =>
    CONST state-block (-abs (-state-tuple (-state-type vs) vs) P) (-state-lenses vs loc)
  -state-decl \ vs \ P =>
    CONST state-block (-abs (-state-tuple (-state-type vs) vs) P) (-state-lenses vs 1<sub>L</sub>)
  -state-decl\ vs\ P <= CONST\ state-block\ (-abs\ vs\ P)\ k
\mathbf{ML} (
parse-translation (
   open HOLogic; open Syntax;
   fun\ lensT\ s\ t = Type\ (@\{type-name\ lens-ext\},\ [s,\ t,\ HOLogic.unitT]);
   fun lens-comp a b c = Const (@\{const-syntax lens-comp\}, lens T a b --> lens T b c --> lens T a
  fun\ fst-lens t = Const\ (@\{const-syntax fst-lens\}, Type\ (@\{type-name lens-ext\}, [t,\ dummyT,\ unitT]));
   val\ snd\text{-}lens = Const\ (@\{const\text{-}syntax\ snd\text{-}lens\},\ dummyT);
   fun\ id\text{-}lens\ t = Const\ (@\{const\text{-}syntax\ id\text{-}lens\}, Type\ (@\{type\text{-}name\ lens\text{-}ext\}, [t,\ dummyT,\ unitT]));
    fun lens-syn-typ t = const \ @\{type-syntax \ lens-ext\} \ $t \ $const \ @\{type-syntax \ dummy\} \ $const
@\{type\text{-}syntax\ unit\};
   fun\ constrain\ t\ ty = const\ @\{syntax-const\ -constrain\}\ \ t\ \ ty;
   (* Construct a tuple of n lenses, whose source type is product of the types in ts, and each lens
      has an element of the type: prod-lens [t0, t1 \dots] 1 : t1 ==> t0 * t1 * \dots *)
   fun prod-lens ts i =
     let open Syntax; open Library; fun lens-compf (x, y) = const @\{const-name \ lens-comp\} \ $x \ $y$ in
     if (length\ ts = 1)
     then Const (@\{const-name\ id-lens\}, lensT (nth\ ts\ i) (nth\ ts\ i))
     else if (length\ ts = i + 1)
     then fold lens-compf (Const (@\{const-name\ snd-lens\},\ lensT\ (nth\ ts\ i)\ dummyT), replicate (i-1)
(const @\{const-name \ snd-lens\}))
     else foldl lens-compf (Const (@\{const-name\ fst-lens\}, lensT (nth\ ts\ i) dummyT), replicate\ i (const
@\{const-name\ snd-lens\}))
```

```
end;
   (* Construct a tuple of lenses for each of the possible locally declared variables *)
   fun \ state-lenses \ ts \ sty \ st =
     foldr1 \ (fn \ (x, y) => pair-const \ dummyT \ dummyT \ \$ \ x \ \$ \ y) \ (map \ (fn \ i => lens-comp \ dummyT \ sty)
dummyT \ prod-lens ts i \ st) (upto (0, length \ ts - 1));
   fun
     (* Add up the number of variable declarations in the tuple *)
     var-decl-num\ (Const\ (@\{const-syntax\ Product-Type.Pair\},-)\ \$-\$\ vs) = var-decl-num\ vs+1
     var-decl-num - = 1;
   fun
      var-decl-typs (Const (@{const-syntax Product-Type.Pair},-) $ (Const (-constrain, -) $ - $ typ) $
vs) = Syntax-Phases.decode-typ typ :: var-decl-typs vs
     var-decl-typs (Const (-constrain, -) $ - $ typ) = [Syntax-Phases.decode-typ typ] |
     var-decl-typs - = [];
   fun \ state-lens \ ctx \ [vs, \ loc] = (state-lenses \ (var-decl-typs \ vs) \ (mk-tupleT \ (var-decl-typs \ vs)) \ loc);
  [(-state-lenses, state-lens)]
  end
          Variable Block Syntax
26.1
definition vblock :: (\langle 'a, 'b \rangle \iff 'c) \Rightarrow ('d \Rightarrow 'c \ hrel) \Rightarrow 'd \Rightarrow 'a \ hrel \ \mathbf{where}
[upred-defs]: vblock \ sl \ f \ x = open_{sl} \ ;; \ f \ x \ ;; \ close_{sl}
syntax
  -var-block-in :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic (var - in - \cdot - [0, 0, 10] 10)
translations
  -var-block-in\ vs\ sl\ P =>\ CONST\ vblock\ sl\ (-abs\ (-state-tuple\ (-state-type\ vs)\ vs)\ P)\ (-state-lenses\ vs)
\mathcal{C}_{sl})
26.2
          Examples
term alpha (x::int, y::real, z::int) \cdot y := &x + &z
lemma alpha p \cdot II = II
```

```
by (rel-auto)
end
```

27 Relational Operational Semantics

```
theory utp-rel-opsem
 imports
   utp-rel-laws
   utp-hoare
begin
```

This theory uses the laws of relational calculus to create a basic operational semantics. It is based on Chapter 10 of the UTP book [22].

```
fun trel :: '\alpha \ usubst \times '\alpha \ hrel \Rightarrow '\alpha \ usubst \times '\alpha \ hrel \Rightarrow bool \ (\mathbf{infix} \rightarrow_u 85) \ \mathbf{where}
(\sigma, P) \to_u (\varrho, Q) \longleftrightarrow (\langle \sigma \rangle_a ;; P) \sqsubseteq (\langle \varrho \rangle_a ;; Q)
lemma trans-trel:
  \llbracket (\sigma, P) \rightarrow_u (\varrho, Q); (\varrho, Q) \rightarrow_u (\varphi, R) \rrbracket \Longrightarrow (\sigma, P) \rightarrow_u (\varphi, R)
  by auto
lemma skip-trel: (\sigma, II) \rightarrow_u (\sigma, II)
  by simp
lemma assigns-trel: (\sigma, \langle \varrho \rangle_a) \to_u (\varrho \circ_s \sigma, II)
  by (simp add: assigns-comp)
lemma assign-trel:
  (\sigma, x := v) \rightarrow_u (\sigma(\&x \mapsto_s \sigma \dagger v), II)
  by (simp add: assigns-comp usubst)
lemma seq-trel:
  assumes (\sigma, P) \rightarrow_u (\varrho, Q)
  shows (\sigma, P ;; R) \rightarrow_u (\varrho, Q ;; R)
  by (metis (no-types, lifting) assms order-refl seqr-assoc seqr-mono trel.simps)
lemma seq-skip-trel:
  (\sigma, II ;; P) \rightarrow_u (\sigma, P)
  by simp
lemma nondet-left-trel:
  (\sigma, P \sqcap Q) \rightarrow_u (\sigma, P)
 by (metis (no-types, hide-lams) disj-comm disj-upred-def semilattice-sup-class.sup.absorb-iff1 semilattice-sup-class.sup.l
seqr-or-distr trel.simps)
lemma nondet-right-trel:
  (\sigma, P \sqcap Q) \rightarrow_u (\sigma, Q)
  by (simp add: seqr-mono)
lemma rcond-true-trel:
  assumes \sigma \dagger b = true
  shows (\sigma, P \triangleleft b \triangleright_r Q) \rightarrow_u (\sigma, P)
  using assms
  by (simp add: assigns-r-comp usubst alpha)
lemma rcond-false-trel:
  assumes \sigma \dagger b = false
  shows (\sigma, P \triangleleft b \triangleright_r Q) \rightarrow_u (\sigma, Q)
  using assms
  by (simp add: assigns-r-comp usubst alpha)
lemma while-true-trel:
  assumes \sigma \dagger b = true
  shows (\sigma, while \ b \ do \ P \ od) \rightarrow_u (\sigma, P \ ;; while \ b \ do \ P \ od)
  by (metis assms rcond-true-trel while-unfold)
lemma while-false-trel:
  assumes \sigma \dagger b = false
```

shows $(\sigma, while b do P od) \rightarrow_u (\sigma, II)$

```
by (metis assms rcond-false-trel while-unfold)
```

Theorem linking Hoare calculus and operational semantics. If we start Q in a state σ_0 satisfying p, and Q reaches final state σ_1 then r holds in this final state.

```
theorem hoare-opsem-link: \{p\} Q \{r\}_u = (\forall \sigma_0 \sigma_1. \ \sigma_0 \dagger p' \land (\sigma_0, Q) \rightarrow_u (\sigma_1, II) \longrightarrow \sigma_1 \dagger r') apply (rel-auto) apply (rename-tac\ a\ b) apply (metis\ (full-types)\ lit.rep-eq) done
```

declare trel.simps [simp del]

end

28 Symbolic Evaluation of Relational Programs

```
theory utp-sym-eval
imports utp-rel-opsem
begin
```

The following operator applies a variable context Γ as an assignment, and composes it with a relation P for the purposes of evaluation.

```
definition utp-sym-eval :: 's usubst \Rightarrow 's hrel \Rightarrow 's hrel (infixr \models 55) where [upred-defs]: utp-sym-eval \Gamma P = (\langle \Gamma \rangle_a ;; P)
```

 ${f named-theorems}\ symeval$

```
lemma seq-symeval [symeval]: \Gamma \models P ;; Q = (\Gamma \models P) ;; Q by (rel-auto)
```

lemma assigns-symeval [symeval]: $\Gamma \models \langle \sigma \rangle_a = (\sigma \circ_s \Gamma) \models II$ by (rel-auto)

```
lemma term-symeval [symeval]: (\Gamma \models II) ;; P = \Gamma \models P by (rel-auto)
```

lemma if-true-symeval [symeval]: $\llbracket \Gamma \dagger b = true \rrbracket \Longrightarrow \Gamma \models (P \triangleleft b \triangleright_r Q) = \Gamma \models P$ **by** (simp add: utp-sym-eval-def usubst assigns-r-comp)

```
lemma if-false-symeval [symeval]: \llbracket \Gamma \dagger b = false \rrbracket \Longrightarrow \Gamma \models (P \triangleleft b \triangleright_r Q) = \Gamma \models Q by (simp add: utp-sym-eval-def usubst assigns-r-comp)
```

lemma while-true-symeval [symeval]: $\llbracket \Gamma \dagger b = true \rrbracket \Longrightarrow \Gamma \models while \ b \ do \ P \ od = \Gamma \models (P \ ;; \ while \ b \ do \ P \ od)$

by (subst while-unfold, simp add: symeval)

lemma while-false-symeval [symeval]: $\llbracket \Gamma \dagger b = \text{false } \rrbracket \implies \Gamma \models \text{while } b \text{ do } P \text{ od } = \Gamma \models II$ **by** (subst while-unfold, simp add: symeval)

lemma while-inv-true-symeval [symeval]: $\llbracket \Gamma \dagger b = true \rrbracket \Longrightarrow \Gamma \models while \ b \ invr \ S \ do \ P \ od = \Gamma \models (P ;; while \ b \ do \ P \ od)$

by (metis while-inv-def while-true-symeval)

```
lemma while-inv-false-symeval [symeval]: \llbracket \Gamma \dagger b = false \rrbracket \implies \Gamma \models while \ b \ invr \ S \ do \ P \ od = \Gamma \models II by (metis while-false-symeval while-inv-def)
```

 $\begin{tabular}{ll} \bf method & \it sym-eval = (\it simp add: \it symeval usubst lit-simps[THEN sym]), (\it simp del: One-nat-def add: One-nat-def [THEN sym])? \\ \end{tabular}$

syntax

```
-terminated :: logic \Rightarrow logic (terminated: - [999] 999)
```

translations

```
terminated: \Gamma == \Gamma \models II
```

Below are some theorems linking symbolic evaluation and Hoare logic.

lemma hoare-symeval-link-1:
$$\{b\}P\{c\}_u = (\forall s_1 s_2. \ `s_1 \dagger b` \land ((s_1 \models P) \sqsubseteq (s_2 \models II)) \longrightarrow `s_2 \dagger c`)$$

by (simp add: utp-sym-eval-def usubst hoare-opsem-link trel.simps)

lemma hoare-symeval-link-2:
$$\{b\}P\{c\}_u \implies `s_1 \dagger b` \land ((s_1 \models P) = (s_2 \models II)) \longrightarrow `s_2 \dagger c`$$
 by $(rel-blast)$

end

29 Strongest Postcondition Calculus

```
theory utp\text{-}sp imports utp\text{-}wp begin

named-theorems sp

method sp\text{-}tac = (simp \ add: sp)

consts
usp :: 'a \Rightarrow 'b \Rightarrow 'c \ (infix \ sp \ 60)

definition sp\text{-}upred :: '\alpha \ cond \Rightarrow ('\alpha, '\beta) \ urel \Rightarrow '\beta \ cond \ \text{where}
sp\text{-}upred \ p \ Q = \lfloor (\lceil p \rceil_> \; ;; \ Q) \; :: ('\alpha, '\beta) \ urel \rfloor_>

no-utp-lift usp

adhoc-overloading
usp \ sp\text{-}upred
```

```
declare sp-upred-def [upred-defs]
```

```
lemma sp-false [sp]: p sp false = false
by (rel-simp)
```

```
lemma sp-true [sp]: q \neq false \implies q sp true = true by (rel-auto)
```

```
lemma sp-assign-r [sp]:
```

```
vwb-lens x \Longrightarrow (p \ sp \ x := e) = (\exists \ v \cdot p[\![\ll v \gg /x]\!] \land \&x =_u e[\![\ll v \gg /x]\!])
by (rel-auto, metis \ vwb-lens-wb \ wb-lens.get-put, metis \ vwb-lens.put-eq)
```

lemma sp-assigns-r [sp]:

```
(p \ sp \ \langle \sigma \rangle_a) = (\exists \ v \cdot [p[\![\ll v \gg / \& \mathbf{v}]\!]]_u \wedge \& \mathbf{v} =_u \sigma[\![\ll v \gg / \& \mathbf{v}]\!])
  by (rel-auto)
lemma sp\text{-}convr\ [sp]: b\ sp\ P^-=P\ wp\ b
  by (rel-auto)
lemma wp\text{-}convr [wp]: P^- wp \ b = b \ sp \ P
  by (rel-auto)
lemma sp-seqr [sp]: b sp (P ;; Q) = (b sp P) sp Q
  by (rel-auto)
\mathbf{lemma}\ \textit{sp-is-post-condition}:
  \{p\} C \{p \ sp \ C\}_u
  by rel-blast
\mathbf{lemma}\ sp\text{-}it\text{-}is\text{-}the\text{-}strongest\text{-}post:
  p \ sp \ C \Rightarrow Q' \Longrightarrow \{p\} C \{Q\}_u
  bv rel-blast
theorem sp-hoare-link:
  \{p\} Q \{r\}_u \longleftrightarrow `p \ sp \ Q \Rightarrow r`
  \mathbf{by} rel-auto
lemma sp-while-r [sp]:
   assumes ('pre \Rightarrow I') and (\{I \land b\} C \{I'\}_u) and ('I' \Rightarrow I')
   shows (pre sp invar I while \bot b do C od) = (\neg b \land I)
   unfolding sp-upred-def
   oops
theorem sp-eq-intro: [\![ \bigwedge r. \ r \ sp \ P = r \ sp \ Q ]\!] \Longrightarrow P = Q
  by (rel-auto robust, fastforce+)
lemma wlp-sp-sym:
  'prog wlp (true sp prog)'
  by rel-auto
lemma it-is-pre-condition: \{C \ wlp \ Q\} C \{Q\}_u
  by rel-blast
end
```

30 Concurrent Programming

```
theory utp-concurrency
imports
utp-hoare
utp-rel
utp-tactics
utp-theory
begin
```

In this theory we describe the UTP scheme for concurrency, parallel-by-merge, which provides a general parallel operator parametrised by a "merge predicate" that explains how to merge the after states of the composed predicates. It can thus be applied to many languages and

concurrency schemes, with this theory providing a number of generic laws. The operator is explained in more detail in Chapter 7 of the UTP book [22].

30.1 Variable Renamings

In parallel-by-merge constructions, a merge predicate defines the behaviour following execution of of parallel processes, $P \parallel Q$, as a relation that merges the output of P and Q. In order to achieve this we need to separate the variable values output from P and Q, and in addition the variable values before execution. The following three constructs do these separations. The initial state-space before execution is ' α , the final state-space after the first parallel process is ' β_0 , and the final state-space for the second is ' β_1 . These three functions lift variables on these three state-spaces, respectively.

```
alphabet ('\alpha, '\beta_0, '\beta_1) \ mrg = mrg\text{-}prior :: '\alpha 
 mrg\text{-}left :: '\beta_0 
 mrg\text{-}right :: '\beta_1
```

We set up syntax for the three variable classes.

syntax

```
-svarprior :: svid (<)
-svarl :: svid (0)
-svarr :: svid (1)
```

translations

```
\begin{array}{lll} -svarprior & == CONST \ mrg\text{-}prior \\ -svarl & == CONST \ mrg\text{-}left \\ -svarr & == CONST \ mrg\text{-}right \end{array}
```

30.2 Merge Predicates

A merge predicate is a relation whose input has three parts: the prior variables, the output variables of the left predicate, and the output of the right predicate.

```
type-synonym '\alpha merge = (('\alpha, '\alpha, '\alpha) mrg, '\alpha) urel
```

skip is the merge predicate which ignores the output of both parallel predicates

```
definition skip_m :: '\alpha \ merge \ \mathbf{where} [upred\text{-}defs]: skip_m = (\$\mathbf{v}' =_u \$ <: \mathbf{v})
```

swap is a predicate that the swaps the left and right indices; it is used to specify commutativity of the parallel operator

```
definition swap_m :: (('\alpha, '\beta, '\beta) \ mrg) \ hrel \ \mathbf{where} [upred\text{-}defs]: swap_m = (\theta:\mathbf{v}, 1:\mathbf{v}) := (\&1:\mathbf{v}, \&\theta:\mathbf{v})
```

A symmetric merge is one for which swapping the order of the merged concurrent predicates has no effect. We represent this by the following healthiness condition that states that $swap_m$ is a left-unit.

```
abbreviation SymMerge :: '\alpha \ merge \Rightarrow '\alpha \ merge \ \mathbf{where} SymMerge(M) \equiv (swap_m \ ; \ M)
```

30.3 Separating Simulations

U0 and U1 are relations modify the variables of the input state-space such that they become indexed with 0 and 1, respectively.

```
definition U0 :: ('\beta_0, ('\alpha, '\beta_0, '\beta_1) \ mrg) \ urel \ where
[upred-defs]: U0 = (\$0:\mathbf{v}' =_u \$\mathbf{v})
definition U1 :: ('\beta_1, ('\alpha, '\beta_0, '\beta_1) mrg) urel where
[upred-defs]: U1 = (\$1:\mathbf{v}' =_u \$\mathbf{v})
lemma U0-swap: (U0 ;; swap_m) = U1
 by (rel-auto)
lemma U1-swap: (U1 ;; swap_m) = U0
 by (rel-auto)
As shown below, separating simulations can also be expressed using the following two alphabet
extrusions
definition U0\alpha where [upred-defs]: U0\alpha = (1_L \times_L mrg\text{-left})
definition U1\alpha where [upred-defs]: U1\alpha = (1_L \times_L mrg\text{-}right)
We then create the following intuitive syntax for separating simulations.
abbreviation U0-alpha-lift ([-]_0) where [P]_0 \equiv P \oplus_p U0\alpha
abbreviation U1-alpha-lift ([-]_1) where [P]_1 \equiv P \oplus_p U1\alpha
[P]_0 is predicate P where all variables are indexed by 0, and [P]_1 is where all variables are
indexed by 1. We can thus equivalently express separating simulations using alphabet extrusion.
lemma U0-as-alpha: (P ;; U0) = \lceil P \rceil_0
 by (rel-auto)
lemma U1-as-alpha: (P ;; U1) = \lceil P \rceil_1
 by (rel-auto)
lemma U0\alpha-vwb-lens [simp]: vwb-lens U0\alpha
 by (simp add: U0\alpha-def id-vwb-lens prod-vwb-lens)
lemma U1\alpha-vwb-lens [simp]: vwb-lens U1\alpha
 by (simp add: U1\alpha-def id-vwb-lens prod-vwb-lens)
lemma U0\alpha-indep-right-uvar [simp]: vwb-lens x \Longrightarrow U0\alpha \bowtie out-var (x;_L mrg-right)
 by (force intro: plus-pres-lens-indep fst-snd-lens-indep lens-indep-left-comp
           simp\ add: U0\alpha-def\ out-var-def\ prod-as-plus)
lemma U1\alpha-indep-left-uvar [simp]: vwb-lens x \Longrightarrow U1\alpha \bowtie out-var (x ;_L mrg-left)
 by (force intro: plus-pres-lens-indep fst-snd-lens-indep lens-indep-left-comp
           simp\ add: U1\alpha-def out-var-def prod-as-plus)
lemma U0-alpha-lift-bool-subst [usubst]:
 \sigma(\$\theta:x'\mapsto_s true) \dagger \lceil P \rceil_0 = \sigma \dagger \lceil P[true/\$x'] \rceil_0
 \sigma(\$\theta:x'\mapsto_s false) \dagger [P]_0 = \sigma \dagger [P[false/\$x']]_0
 by (pred-auto+)
```

```
lemma U1-alpha-lift-bool-subst [usubst]:
  \sigma(\$1:x'\mapsto_s true) \dagger \lceil P \rceil_1 = \sigma \dagger \lceil P \lceil true / \$x' \rceil \rceil_1
  \sigma(\$1{:}x'\mapsto_s \mathit{false}) \dagger \lceil P \rceil_1 = \sigma \dagger \lceil P[\mathit{false}/\$x'] \rceil_1
  by (pred-auto+)
lemma U0-alpha-out-var [alpha]: [\$x']_0 = \$0:x'
  by (rel-auto)
lemma U1-alpha-out-var [alpha]: [\$x']_1 = \$1:x'
  by (rel-auto)
lemma U0-skip [alpha]: [II]_0 = (\$0:\mathbf{v}' =_u \$\mathbf{v})
  by (rel-auto)
lemma U1-skip [alpha]: [II]_1 = (\$1:\mathbf{v}' =_u \$\mathbf{v})
  by (rel-auto)
lemma U0-seqr [alpha]: [P ;; Q]_0 = P ;; [Q]_0
  by (rel-auto)
lemma U1-seq<br/>r [alpha]: \lceil P \ ;; \ Q \rceil_1 = P \ ;; \ \lceil Q \rceil_1
  by (rel-auto)
lemma U0\alpha-comp-in-var [alpha]: (in-var x);<sub>L</sub> U0\alpha = in-var x
  by (simp add: U0\alpha-def alpha-in-var in-var-prod-lens)
lemma U0\alpha-comp-out-var [alpha]: (out-var x) ;<sub>L</sub> U0\alpha = out-var (x ;<sub>L</sub> mrg-left)
  by (simp add: U0\alpha-def alpha-out-var id-wb-lens out-var-prod-lens)
lemma U1\alpha-comp-in-var [alpha]: (in-var x) ;<sub>L</sub> U1\alpha = in-var x
  by (simp add: U1\alpha-def alpha-in-var in-var-prod-lens)
lemma U1\alpha-comp-out-var [alpha]: (out-var x) ; U1\alpha = out-var (x ; mrg-right)
  by (simp add: U1\alpha-def alpha-out-var id-wb-lens out-var-prod-lens)
```

30.4 Associative Merges

Associativity of a merge means that if we construct a three way merge from a two way merge and then rotate the three inputs of the merge to the left, then we get exactly the same three way merge back.

We first construct the operator that constructs the three way merge by effectively wiring up the two way merge in an appropriate way.

```
definition Three WayMerge :: '\alpha merge \Rightarrow (('\alpha, '\alpha, ('\alpha, '\alpha, ('\alpha, '\alpha) mrg) mrg, '\alpha) urel (M3'(-')) where [upred-defs]: Three WayMerge M = ((\$0:\mathbf{v}' =_u \$0:\mathbf{v} \land \$1:\mathbf{v}' =_u \$1:0:\mathbf{v} \land \$<:\mathbf{v}' =_u \$<:\mathbf{v}) ;; M ;; U0 \land \$1:\mathbf{v}' =_u \$1:1:\mathbf{v} \land \$<:\mathbf{v}' =_u \$<:\mathbf{v}) ;; M
```

The next definition rotates the inputs to a three way merge to the left one place.

```
abbreviation rotate_m where rotate_m \equiv (\theta : \mathbf{v}, 1 : \theta : \mathbf{v}, 1 : 1 : \mathbf{v}) := (\&1 : \theta : \mathbf{v}, \&1 : 1 : \mathbf{v}, \&\theta : \mathbf{v})
```

Finally, a merge is associative if rotating the inputs does not effect the output.

```
definition AssocMerge :: '\alpha merge \Rightarrow bool where [upred-defs]: AssocMerge M = (rotate_m ;; \mathbf{M}\beta(M) = \mathbf{M}\beta(M))
```

30.5 Parallel Operators

We implement the following useful abbreviation for separating of two parallel processes and copying of the before variables, all to act as input to the merge predicate.

```
abbreviation par-sep (infixr \parallel_s 85) where P \parallel_s Q \equiv (P ;; U\theta) \land (Q ;; U1) \land \$<' =_u \$v
```

The following implementation of parallel by merge is less general than the book version, in that it does not properly partition the alphabet into two disjoint segments. We could actually achieve this specifying lenses into the larger alphabet, but this would complicate the definition of programs. May reconsider later.

definition

```
\begin{array}{l} par-by\text{-}merge :: ('\alpha, \ '\beta) \ urel \Rightarrow (('\alpha, \ '\beta, \ '\gamma) \ mrg, \ '\delta) \ urel \Rightarrow ('\alpha, \ '\gamma) \ urel \Rightarrow ('\alpha, \ '\delta) \ urel \\ (-\parallel_- - [85, 0, 86] \ 85) \\ \textbf{where} \ [upred\text{-}defs]: \ P \parallel_M \ Q = (P \parallel_s \ Q \ ;; \ M) \end{array}
```

lemma par-by-merge-alt-def: $P \parallel_M Q = (\lceil P \rceil_0 \land \lceil Q \rceil_1 \land \$ < : \mathbf{v'} =_u \$ \mathbf{v}) ;; M$ **by** (simp add: par-by-merge-def U0-as-alpha U1-as-alpha)

```
lemma shEx-pbm-left: ((\exists x \cdot P x) \parallel_M Q) = (\exists x \cdot (P x \parallel_M Q)) by (rel-auto)
```

```
lemma shEx-pbm-right: (P \parallel_M (\exists \ x \cdot Q \ x)) = (\exists \ x \cdot (P \parallel_M Q \ x)) by (rel-auto)
```

30.6 Unrestriction Laws

```
\begin{array}{l} \textbf{lemma} \ unrest\text{-}in\text{-}par\text{-}by\text{-}merge \ [unrest]:} \\ \llbracket \ \$x \ \sharp \ P; \ \${<}{:}x \ \sharp \ M; \ \$x \ \sharp \ Q \ \rrbracket \Longrightarrow \$x \ \sharp \ P \ \rVert_M \ Q \\ \textbf{by} \ (\textit{rel-auto}, \textit{fastforce+}) \end{array}
```

```
\begin{array}{l} \textbf{lemma} \ unrest\text{-}out\text{-}par\text{-}by\text{-}merge \ [unrest]:} \\ \llbracket \ \$x' \ \sharp \ M \ \rrbracket \Longrightarrow \$x' \ \sharp \ P \ \rVert_M \ Q \\ \textbf{by} \ (rel\text{-}auto) \end{array}
```

```
lemma unrest-merge-vars [unrest]: 1:x' \not | P        $<:x' \not | P        $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-x' \not | P       $<-
```

30.7 Substitution laws

Substitution is a little tricky because when we push the expression through the composition operator the alphabet of the expression must also change. Consequently for now we only support literal substitution, though this could be generalised with suitable alphabet coercisions. We need quite a number of variants to support this which are below.

```
 \begin{split} &\mathbf{lemma}\ \ U0\text{-}seq\text{-}subst\text{: } (P\ ;;\ U0)\llbracket \ll v \gg /\$0\text{:}x'\rrbracket = (P\llbracket \ll v \gg /\$x'\rrbracket\ ;;\ U0) \\ &\mathbf{by}\ (rel\text{-}auto) \end{split}   \begin{aligned} &\mathbf{lemma}\ \ U1\text{-}seq\text{-}subst\text{: } (P\ ;;\ U1)\llbracket \ll v \gg /\$1\text{:}x'\rrbracket = (P\llbracket \ll v \gg /\$x'\rrbracket\ ;;\ U1) \\ &\mathbf{by}\ (rel\text{-}auto) \end{aligned}   \begin{aligned} &\mathbf{lemma}\ \ lit\text{-}pbm\text{-}subst\ [usubst]\text{:} \\ &\mathbf{fixes}\ \ x::\ (-\Longrightarrow '\alpha) \\ &\mathbf{shows} \\ &\bigwedge\ P\ Q\ M\ \sigma.\ \sigma(\$x\mapsto_s \ll v \gg)\ \dagger\ (P\ \|_M\ Q) = \sigma\ \dagger\ ((P\llbracket \ll v \gg /\$x\rrbracket))\ \|_{M\llbracket \ll v \gg /\$ <:x\rrbracket}\ (Q\llbracket \ll v \gg /\$x\rrbracket)) \end{aligned}
```

```
\bigwedge\ P\ Q\ M\ \sigma.\ \sigma(\$x'\mapsto_s «v»)\ \dagger\ (P\ \|_M\ Q) = \sigma\ \dagger\ (P\ \|_{M[\![ «v»/\$x']\!]}\ Q)
  by (rel-auto)+
lemma bool-pbm-subst [usubst]:
  fixes x :: (- \Longrightarrow '\alpha)
  shows
     \bigwedge \ P \ Q \ M \ \sigma. \ \sigma(\$x \mapsto_s \mathit{false}) \dagger \ (P \parallel_M Q) = \sigma \dagger \ ((P[\mathit{false}/\$x]]) \parallel_{M[\mathit{false}/\$<:x]} \ (Q[\mathit{false}/\$x]]) 
    \bigwedge P \ Q \ M \ \sigma. \ \sigma(\$x' \mapsto_s \mathit{false}) \dagger \ (P \parallel_M Q) = \sigma \dagger \ (P \parallel_{M \| \mathit{false}/\$x' \|} \ Q)
    by (rel-auto)+
lemma zero-one-pbm-subst [usubst]:
  fixes x :: (-\Longrightarrow '\alpha)
  shows
    \bigwedge P \ Q \ M \ \sigma. \ \sigma(\$x \mapsto_s \theta) \dagger (P \parallel_M Q) = \sigma \dagger ((P \llbracket \theta/\$x \rrbracket) \parallel_{M \llbracket \theta/\$ < :x \rrbracket} (Q \llbracket \theta/\$x \rrbracket))
    \bigwedge P \ Q \ M \ \sigma. \ \sigma(\$x \mapsto_s 1) \dagger (P \parallel_M Q) = \sigma \dagger ((P \llbracket 1/\$x \rrbracket) \parallel_{M \llbracket 1/\$ < :x \rrbracket} (Q \llbracket 1/\$x \rrbracket))
    \bigwedge \ P \ Q \ M \ \sigma. \ \sigma(\$x' \mapsto_s \theta) \ \dagger \ (P \parallel_M Q) = \sigma \ \dagger \ (P \parallel_{M \llbracket \theta / \$x' \rrbracket} \ Q)
    \bigwedge P Q M \sigma. \sigma(\$x' \mapsto_s 1) \dagger (P \parallel_M Q) = \sigma \dagger (P \parallel_{M \llbracket 1/\$x' \rrbracket} Q)
  by (rel-auto)+
lemma numeral-pbm-subst [usubst]:
  fixes x :: (- \Longrightarrow '\alpha)
     (Q[numeral\ n/\$x])
    \bigwedge P Q M \sigma. \sigma(\$x' \mapsto_s numeral n) \dagger (P \parallel_M Q) = \sigma \dagger (P \parallel_{M [numeral n/\$x']} Q)
  by (rel-auto)+
           Parallel-by-merge laws
lemma par-by-merge-false [simp]:
  P \parallel_{false} Q = false
  by (rel-auto)
lemma par-by-merge-left-false [simp]:
  false \parallel_M Q = false
  by (rel-auto)
lemma par-by-merge-right-false [simp]:
  P \parallel_M false = false
  by (rel-auto)
lemma par-by-merge-seq-add: (P \parallel_M Q) ;; R = (P \parallel_M ;; R Q)
  by (simp add: par-by-merge-def seqr-assoc)
A skip parallel-by-merge yields a skip whenever the parallel predicates are both feasible.
lemma par-by-merge-skip:
  assumes P;; true = true Q;; true = true
  shows P \parallel_{skip_m} Q = II
  using assms by (rel-auto)
lemma skip-merge-swap: swap_m;; skip_m = skip_m
  by (rel-auto)
```

```
lemma par-sep-swap: P \parallel_s Q;; swap_m = Q \parallel_s P
  by (rel-auto)
Parallel-by-merge commutes when the merge predicate is unchanged by swap
lemma par-by-merge-commute-swap:
 shows P \parallel_M Q = Q \parallel_{swap_m ;; M} P
proof -
 \mathbf{have}\ Q\parallel_{swap_m\ ;;\ M}P=((((Q\ ;;\ U0)\ \land\ (P\ ;;\ U1)\ \land\ \$<:\mathbf{v'}=_u\ \$\mathbf{v})\ ;;\ swap_m)\ ;;\ M)
    by (simp add: par-by-merge-def seqr-assoc)
  also have ... = (((Q ;; U0 ;; swap_m) \land (P ;; U1 ;; swap_m) \land \$ <: \mathbf{v'} =_u \$ \mathbf{v}) ;; M)
  also have ... = (((Q :; U1) \land (P :; U0) \land \$ < : \mathbf{v'} =_{u} \$ \mathbf{v}) :; M)
    by (simp add: U0-swap U1-swap)
  also have ... = P \parallel_M Q
    by (simp add: par-by-merge-def utp-pred-laws.inf.left-commute)
 finally show ?thesis ..
qed
theorem par-by-merge-commute:
 assumes M is SymMerge
 shows P \parallel_M Q = Q \parallel_M P
  by (metis Healthy-if assms par-by-merge-commute-swap)
lemma par-by-merge-mono-1:
  assumes P_1 \sqsubseteq P_2
  shows P_1 \parallel_M Q \sqsubseteq P_2 \parallel_M Q
  using assms by (rel-auto)
lemma par-by-merge-mono-2:
  assumes Q_1 \sqsubseteq Q_2
  shows (P \parallel_M Q_1) \sqsubseteq (P \parallel_M Q_2)
  using assms by (rel-blast)
lemma par-by-merge-mono:
 assumes P_1 \sqsubseteq P_2 \ Q_1 \sqsubseteq Q_2
 shows P_1 \parallel_M Q_1 \sqsubseteq P_2 \parallel_M Q_2
  by (meson assms dual-order.trans par-by-merge-mono-1 par-by-merge-mono-2)
theorem par-by-merge-assoc:
  assumes M is SymMerge AssocMerge M
  shows (P \parallel_{M} Q) \parallel_{M} R = P \parallel_{M} (Q \parallel_{M} R)
 \mathbf{have} \ (P \parallel_{M} Q) \parallel_{M} R = ((P \ ;; \ U0) \ \land \ (Q \ ;; \ U0 \ ;; \ U1) \ \land \ (R \ ;; \ U1 \ ;; \ U1) \ \land \ \$ < : \mathbf{v'} =_{u} \$ \mathbf{v}) \ ;; \ \mathbf{M} \ \mathcal{J}(M)
    by (rel-blast)
 also have ... = ((P ;; U0) \land (Q ;; U0 ;; U1) \land (R ;; U1 ;; U1) \land \$ < : \mathbf{v}' =_u \$ \mathbf{v}) ;; rotate_m ;; \mathbf{M}3(M)
    using AssocMerge-def \ assms(2) by force
  also have ... = ((Q : U0) \land (R : U0 : U1) \land (P : U1 : U1) \land \$ < : \mathbf{v}' =_u \$ \mathbf{v}) : \mathbf{M} \mathscr{I}(M)
    by (rel-blast)
  also have ... = (Q \parallel_M R) \parallel_M P
   by (rel-blast)
  also have ... = P \parallel_M (Q \parallel_M R)
    by (simp add: assms(1) par-by-merge-commute)
 finally show ?thesis.
qed
```

```
theorem par-by-merge-choice-left: (P \sqcap Q) \parallel_M R = (P \parallel_M R) \sqcap (Q \parallel_M R)
```

theorem par-by-merge-choice-right:

$$P \parallel_M (Q \sqcap R) = (P \parallel_M Q) \sqcap (P \parallel_M R)$$

by $(rel-auto)$

theorem par-by-merge-or-left:

$$(P \lor Q) \parallel_M R = (P \parallel_M R \lor Q \parallel_M R)$$

by $(rel\text{-}auto)$

theorem par-by-merge-or-right:

$$P \parallel_M (Q \vee R) = (P \parallel_M Q \vee P \parallel_M R)$$

by $(rel-auto)$

theorem par-by-merge-USUP-mem-left:

$$\begin{array}{l} (\prod \ i \in I \cdot P(i)) \parallel_M Q = (\prod \ i \in I \cdot P(i) \parallel_M Q) \\ \mathbf{by} \ (\textit{rel-auto}) \end{array}$$

 $\textbf{theorem} \ \textit{par-by-merge-USUP-ind-left}:$

$$(\bigcap i \cdot P(i)) \parallel_M Q = (\bigcap i \cdot P(i) \parallel_M Q)$$
 by $(rel-auto)$

 $\textbf{theorem} \ \textit{par-by-merge-USUP-mem-right}:$

$$P\parallel_{M}(\prod i{\in}I\cdot Q(i))=(\prod i{\in}I\cdot P\parallel_{M}Q(i))$$
 by $(rel\text{-}auto)$

 $\textbf{theorem} \ \textit{par-by-merge-USUP-ind-right}:$

$$P\parallel_{M}(\prod i\cdot Q(i))=(\prod i\cdot P\parallel_{M}Q(i))$$
 by $(rel\text{-}auto)$

30.9 Example: Simple State-Space Division

The following merge predicate divides the state space using a pair of independent lenses.

definition StateMerge ::
$$('a \Longrightarrow '\alpha) \Rightarrow ('b \Longrightarrow '\alpha) \Rightarrow '\alpha \text{ merge } (M[-]-]_{\sigma})$$
 where $[upred\text{-}defs]$: $M[a|b]_{\sigma} = (\$\mathbf{v}' =_u (\$<:\mathbf{v} \oplus \$\theta:\mathbf{v} \text{ on } \&a) \oplus \$1:\mathbf{v} \text{ on } \&b)$

lemma swap-StateMerge: $a \bowtie b \Longrightarrow (swap_m ;; M[a|b]_{\sigma}) = M[b|a]_{\sigma}$ **by** (rel-auto, simp-all add: lens-indep-comm)

abbreviation
$$StateParallel :: '\alpha \ hrel \Rightarrow ('a \Longrightarrow '\alpha) \Rightarrow ('b \Longrightarrow '\alpha) \Rightarrow '\alpha \ hrel \Rightarrow '\alpha \ hrel (-|-|-|_{\sigma} - [85,0,0,86] \ 86)$$
 where $P \ |a|b|_{\sigma} \ Q \equiv P \ \|_{M[a|b]_{\sigma}} \ Q$

lemma StateParallel-commute: $a \bowtie b \Longrightarrow P |a|b|_{\sigma} Q = Q |b|a|_{\sigma} P$ **by** (metis par-by-merge-commute-swap swap-StateMerge)

lemma StateParallel-form:

$$P \mid a \mid b \mid_{\sigma} Q = (\exists (st_0, st_1) \cdot P[\![\ll st_0 \gg /\$\mathbf{v'}]\!] \wedge Q[\![\ll st_1 \gg /\$\mathbf{v'}]\!] \wedge \$\mathbf{v'} =_u (\$\mathbf{v} \oplus \ll st_0 \gg on \& a) \oplus \&st_1 \gg on \& b)$$

 $\mathbf{b}\mathbf{y} \ (rel-auto)$

lemma StateParallel-form':

```
assumes vwb-lens a vwb-lens b a \bowtie b shows P \mid a \mid b \mid_{\sigma} Q = \{\&a,\&b\}: [(P \mid_{v} \{\$v,\$a'\}) \land (Q \mid_{v} \{\$v,\$b'\})] using assms apply (simp\ add:\ StateParallel\text{-}form,\ rel\text{-}auto) apply (metis\ vwb\text{-}lens\text{-}wb\ wb\text{-}lens\text{-}axioms\text{-}def\ wb\text{-}lens\text{-}def) apply (metis\ vwb\text{-}lens\text{-}wb\ wb\text{-}lens\text{-}get\text{-}put) apply (simp\ add:\ lens\text{-}indep\text{-}comm) apply (metis\ (no\text{-}types,\ hide\text{-}lams)\ lens\text{-}indep\text{-}comm\ vwb\text{-}lens\text{-}wb\ wb\text{-}lens\text{-}def\ weak\text{-}lens\text{-}put\text{-}get}) done
```

We can frame all the variables that the parallel operator refers to

```
lemma State Parallel-frame:

assumes vwb-lens a vwb-lens b a \bowtie b

shows \{\&a,\&b\}:[P \mid a \mid b \mid_{\sigma} Q] = P \mid a \mid b \mid_{\sigma} Q

using assms

apply (simp \ add: \ State Parallel-form, rel-auto)

using lens-indep-comm apply fastforce+

done
```

Parallel Hoare logic rule. This employs something similar to separating conjunction in the postcondition, but we explicitly require that the two conjuncts only refer to variables on the left and right of the parallel composition explicitly.

```
theorem StateParallel-hoare [hoare]:
  assumes \{c\}P\{d_1\}_u \{c\}Q\{d_2\}_u \ a \bowtie b \ a \ \natural \ d_1 \ b \ \natural \ d_2\}
  shows \{c\}P |a|b|_{\sigma} Q\{d_1 \wedge d_2\}_u
proof -
      Parallelise the specification
  from assms(4,5)
  have 1:(\lceil c \rceil_{<} \Rightarrow \lceil d_1 \land d_2 \rceil_{>}) \sqsubseteq (\lceil c \rceil_{<} \Rightarrow \lceil d_1 \rceil_{>}) |a|b|_{\sigma} (\lceil c \rceil_{<} \Rightarrow \lceil d_2 \rceil_{>}) \text{ (is } ?lhs \sqsubseteq ?rhs)
    by (simp add: StateParallel-form, rel-auto, metis assms(3) lens-indep-comm)
  — Prove Hoare rule by monotonicity of parallelism
  have 2:?rhs \sqsubseteq P |a|b|_{\sigma} Q
  proof (rule par-by-merge-mono)
    show (\lceil c \rceil_{<} \Rightarrow \lceil d_1 \rceil_{>}) \sqsubseteq P
       using assms(1) hoare-r-def by auto
    show (\lceil c \rceil_{<} \Rightarrow \lceil d_2 \rceil_{>}) \sqsubseteq Q
       using assms(2) hoare-r-def by auto
  show ?thesis
    unfolding hoare-r-def using 1 2 order-trans by auto
qed
```

Specialised version of the above law where an invariant expression referring to variables outside the frame is preserved.

```
theorem StateParallel-frame-hoare [hoare]: assumes vwb-lens a vwb-lens b a \bowtie b a \natural d<sub>1</sub> b \natural d<sub>2</sub> a \sharp c<sub>1</sub> b \sharp c<sub>1</sub> \{c_1 \land c_2\}P\{d_1\}_u \ \{c_1 \land c_2\}Q\{d_2\}_u \  shows \{c_1 \land c_2\}P \ |a|b|_{\sigma} \ Q\{c_1 \land d_1 \land d_2\}_u \  proof — have \{c_1 \land c_2\}\{\&a,\&b\}: [P \ |a|b|_{\sigma} \ Q]\{c_1 \land d_1 \land d_2\}_u \  by (auto intro!: frame-hoare-r' StateParallel-hoare simp add: assms unrest plus-vwb-lens) thus ?thesis by (simp add: StateParallel-frame assms) qed
```

end

31 Collections

theory utp-collection imports utp-lift-parser utp-pred begin

31.1 Partial Lens Definedness

```
definition src\text{-}pred :: ('a \Longrightarrow 's) \Longrightarrow 's \ upred \ (\mathbf{S}'(\text{-}')) \ \mathbf{where} [upred\text{-}defs]: src\text{-}pred \ x = (\&\mathbf{v} \in_u \ll \mathcal{S}_x\gg)
lemma wb\text{-}lens\text{-}src\text{-}true \ [simp]: wb\text{-}lens \ x \Longrightarrow \mathbf{S}(x) = true by (rel\text{-}simp, \ simp \ add: \ wb\text{-}lens.source\text{-}UNIV)
```

31.2 Indexed Lenses

```
definition ind-lens :: ('i \Rightarrow ('a \Rightarrow 's)) \Rightarrow ('i, 's) \ uexpr \Rightarrow ('a \Rightarrow 's) \ where [lens-defs]: ind-lens f \ x = ( lens-get = (\lambda \ s. \ get_{f} \ (\llbracket x \rrbracket_{e} \ s) \ s), \ lens-put = (\lambda \ s. \ v. \ put_{f} \ (\llbracket x \rrbracket_{e} \ s) \ s. v) \ ) lemma ind-lens-mwb [simp]: \llbracket \bigwedge i. \ mwb-lens (Fi); \bigwedge i. \ unrest \ (Fi) \ x \ \rrbracket \Rightarrow mwb-lens (ind-lens Fx) by (unfold-locales, auto \ simp \ add: lens-defs lens-indep.lens-put-irr2 unrest-uexpr.rep-eq) lemma ind-lens-ind ind-lens ind ind-len
```

31.3 Overloaded Collection Lens

```
consts collection-lens :: 'k \Rightarrow ('a \implies 's)

definition [lens-defs]: fun-collection-lens = fun-lens
definition [lens-defs]: ffun-collection-lens = pfun-lens
definition [lens-defs]: ffun-collection-lens = ffun-lens
definition [lens-defs]: list-collection-lens = list-lens

lemma vwb-fun-collection-lens [simp]: vwb-lens (fun-collection-lens k)
by (simp add: fun-collection-lens-def fun-vwb-lens)

lemma mwb-pfun-collection-lens [simp]: mwb-lens (pfun-collection-lens k)
by (simp add: pfun-collection-lens-def)

lemma mwb-ffun-collection-lens [simp]: mwb-lens (ffun-collection-lens k)
by (simp add: ffun-collection-lens-def)

lemma mwb-list-collection-lens [simp]: mwb-lens (list-collection-lens i)
by (simp add: list-collection-lens-def list-mwb-lens)
```

adhoc-overloading

```
collection-lens fun-collection-lens and
collection-lens pfun-collection-lens and
collection-lens ffun-collection-lens and
collection-lens list-collection-lens
```

31.4 Syntax for Collection Lens

```
abbreviation ind-lens-poly f \ x \ i \equiv ind-lens (\lambda \ k. \ f \ k \ ;_L \ x) \ i

utp-lift-notation ind-lens-poly (2)

syntax

-svid-collection :: svid \Rightarrow logic \Rightarrow svid \ (\text{-[-]} \ [999, \ 0] \ 999)

translations

-svid-collection x \ i == CONST \ ind-lens-poly CONST \ collection-lens x \ i

lemma src-list-collection-lens [simp]:

[\![ vwb-lens x; x \ \sharp \ i \ ]\!] \Longrightarrow \mathbf{S}(ind-lens-poly list-collection-lens x \ i = U(i < length(\&x))

apply (simp \ add: \ upred-defs src-ind-lens unrest \ source-list-collection-lens source-lens-comp)

apply (transfer, \ auto \ simp \ add: \ fun-eq-iff lens-defs wb-lens.source-UNIV)

done
```

end

32 Meta-theory for the Standard Core

```
theory utp
imports
  utp-var
  utp-expr
  utp\text{-}expr\text{-}insts
  utp-expr-funcs
  utp-unrest
  utp-usedby
  utp-subst
  utp	ext{-}meta	ext{-}subst
  utp-alphabet
  utp\text{-}\mathit{lift}
  utp-pred
  utp	ext{-}pred	ext{-}laws
  utp-recursion
  utp-dynlog
  utp-rel
  utp-rel-laws
  utp\text{-}sequent
  utp\text{-}state\text{-}parser
  utp-lift-parser
  utp-lift-pretty
  utp\text{-}sym\text{-}eval
  utp\text{-}tactics
  utp-hoare
  utp-wlp
  utp-wp
```

utp-sp

```
utp-theory
utp-concurrency
utp-collection
utp-rel-opsem
utp-blocks
begin recall-syntax end
```

33 Overloaded Expression Constructs

```
theory utp-expr-ovld imports utp begin
```

33.1 Overloadable Constants

For convenience, we often want to utilise the same expression syntax for multiple constructs. This can be achieved using ad-hoc overloading. We create a number of polymorphic constants and then overload their definitions using appropriate implementations. In order for this to work, each collection must have its own unique type. Thus we do not use the HOL map type directly, but rather our own partial function type, for example.

consts

```
Empty elements, for example empty set, nil list, 0...
uempty
— Function application, map application, list application...
             :: 'f \Rightarrow 'k \Rightarrow 'v
uapply
— Overriding
uovrd
            :: 'f \Rightarrow 'f \Rightarrow 'f
— Function update, map update, list update...
            :: 'f \Rightarrow 'k \Rightarrow 'v \Rightarrow 'f
— Domain of maps, lists...
udom
             :: 'f \Rightarrow 'a \ set
— Range of maps, lists...
            :: 'f \Rightarrow 'b \ set
uran
— Domain restriction
udomres :: 'a set \Rightarrow 'f \Rightarrow 'f
— Range restriction
uranres :: 'f \Rightarrow 'b \ set \Rightarrow 'f
   Collection cardinality
ucard
            :: 'f \Rightarrow nat
— Collection summation
usums
             :: 'f \Rightarrow 'a
   Construct a collection from a list of entries
uentries :: 'k \ set \Rightarrow ('k \Rightarrow 'v) \Rightarrow 'f
```

We need a function corresponding to function application in order to overload.

```
definition fun-apply :: ('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'b)
where fun-apply f x = f x
declare fun-apply-def [simp]
definition ffun-entries :: 'k \ set \Rightarrow ('k \Rightarrow 'v) \Rightarrow ('k, \ 'v) \ ffun where ffun-entries d \ f = graph-ffun \ \{(k, f \ k) \mid k. \ k \in d\}
```

We then set up the overloading for a number of useful constructs for various collections.

```
adhoc-overloading
```

```
uempty \ \theta \ \mathbf{and}
uapply rel-apply and uapply fun-apply and uapply nth and uapply pfun-app and uapply ffun-app and
uovrd rel-override and uovrd plus
uupd rel-update and uupd pfun-upd and uupd ffun-upd and uupd list-augment and
udom Domain and udom pdom and udom fdom and udom seq-dom and
uran Range and uran pran and uran fran and uran set and
udomres rel-domres and udomres pdom-res and udomres fdom-res and
uranres pran-res and udomres fran-res and
ucard card and ucard peard and ucard length and
usums list-sum and usums Sum and usums pfun-sum and
uentries pfun-entries and uentries ffun-entries
```

Syntax Translations 33.2

```
syntax
```

```
-uundef
              :: logic (\bot_u)
-umap-empty :: logic ([]_u)
              :: ('a \Rightarrow 'b, '\alpha) \ uexpr \Rightarrow utuple-args \Rightarrow ('b, '\alpha) \ uexpr (-'(-')_a [999,0] 999)
-uapply
              :: logic \Rightarrow logic \Rightarrow logic (infixl \oplus 65)
-uovrd
            :: [logic, logic] => umaplet (-/\mapsto/-)
-umaplet
            :: umaplet => umaplets
-UMaplets :: [umaplet, umaplets] => umaplets (-,/-)
-UMapUpd :: [logic, umaplets] => logic (-/'(-')_u [900,0] 900)
-UMap
               :: umaplets => logic ((1[-]_u))
             :: logic \Rightarrow logic (\#_u'(-'))
-ucard
             :: logic \Rightarrow logic (dom_u'(-'))
-udom
             :: logic \Rightarrow logic (ran_u'(-'))
-uran
              :: logic \Rightarrow logic (sum_u'(-'))
-nsnm
-udom-res :: logic \Rightarrow logic \Rightarrow logic (infixl \triangleleft_u 85)
-uran-res :: logic \Rightarrow logic \Rightarrow logic (infixl \triangleright_u 85)
-uentries :: logic \Rightarrow logic \Rightarrow logic (entr_u'(-,-'))
```

translations

```
    Pretty printing for adhoc-overloaded constructs

        <= CONST \ uapply \ f \ x
f \oplus g \iff CONST \ uovrd \ f \ g
dom_u(f) <= CONST \ udom f
ran_u(f) \le CONST uran f
A \vartriangleleft_u f <= CONST \ udomres \ A f
f \rhd_u A <= CONST \ uran res f A
\#_u(f) \le CONST \ ucard \ f
f(k \mapsto v)_u \le CONST \ uupd \ f \ k \ v
\theta <= CONST \ uempty — We have to do this so we don't see uempty. Is there a better way of printing?
```

— Overloaded construct translations

```
f(x,y,z,u)_a == CONST \ bop \ CONST \ uapply \ f(x,y,z,u)_u
f(x,y,z)_a == CONST \ bop \ CONST \ uapply \ f(x,y,z)_u
f(x,y)_a = CONST \ bop \ CONST \ uapply f \ (x,y)_u
      == CONST \ bop \ CONST \ uapply f x
f \oplus g == CONST \ bop \ CONST \ uovrd \ f \ g
\#_u(xs) = CONST \ uop \ CONST \ ucard \ xs
sum_u(A) == CONST \ uop \ CONST \ usums \ A
dom_u(f) == CONST \ uop \ CONST \ udom f
ran_u(f) == CONST \ uop \ CONST \ uran f
     => \ll CONST\ uempty \gg
```

```
\perp_u == \ll CONST \ undefined \gg
 A \triangleleft_u f == CONST \ bop \ (CONST \ udomres) \ A f
 f \rhd_u A == CONST \ bop \ (CONST \ uran res) f A
 entr_u(d,f) == CONST \ bop \ CONST \ uentries \ d \ \ll f \gg
  -UMapUpd\ m\ (-UMaplets\ xy\ ms) == -UMapUpd\ (-UMapUpd\ m\ xy)\ ms
  -UMapUpd m (-umaplet x y) = CONST trop CONST uupd m x y
                               == -UMap Upd []_u ms
  -UMap ms
  -UMap (-UMaplets ms1 ms2)
                                     <= -UMap Upd (-UMap ms1) ms2
  -UMaplets \ ms1 \ (-UMaplets \ ms2 \ ms3) <= -UMaplets \ (-UMaplets \ ms1 \ ms2) \ ms3
33.3
         Simplifications
lemma ufun-apply-lit [simp]:
  \ll f \gg (\ll x \gg)_a = \ll f(x) \gg
 by (transfer, simp)
lemma lit-plus-appl [lit-norm]: \ll(+)\gg(x)_a(y)_a=x+y by (simp add: uexpr-defs, transfer, simp)
lemma lit-minus-appl [lit-norm]: \ll(-)\gg(x)_a(y)_a=x-y by (simp add: uexpr-defs, transfer, simp)
lemma lit-mult-appl [lit-norm]: \ll times \gg (x)_a(y)_a = x * y by (simp add: uexpr-defs, transfer, simp)
lemma lit-divide-apply [lit-norm]: \ll(/)\gg(x)_a(y)_a=x/y by (simp add: uexpr-defs, transfer, simp)
lemma pfun-entries-apply [simp]:
  (entr_u(d,f) :: (('k, 'v) pfun, '\alpha) uexpr)(i)_a = ((\ll f \gg (i)_a) \triangleleft i \in_u d \rhd \bot_u)
 by (pred-auto)
lemma udom-uupdate-pfun [simp]:
 fixes m :: (('k, 'v) pfun, '\alpha) uexpr
 shows dom_u(m(k \mapsto v)_u) = \{k\}_u \cup_u dom_u(m)
 by (rel-auto)
lemma uapply-uupdate-pfun [simp]:
 fixes m :: (('k, 'v) pfun, '\alpha) uexpr
 shows (m(k \mapsto v)_u)(i)_a = v \triangleleft i =_u k \triangleright m(i)_a
 by (rel-auto)
```

33.4 Indexed Assignment

```
syntax
```

```
— Indexed assignment -assignment-upd :: svid \Rightarrow uexp \Rightarrow logic ((-[-] :=/ -) [63, 0, 0] 62)
```

translations

— Indexed assignment uses the overloaded collection update function uupd. -assignment-upd x k v => x := & $x(k \mapsto v)_u$

end

34 Meta-theory for the Standard Core with Overloaded Constructs

```
theory utp-full imports utp utp-expr-ovld begin end
```

References

- [1] A. Armstrong, V. Gomes, and G. Struth. Building program construction and verification tools from algebraic principles. *Formal Aspects of Computing*, 28(2):265–293, 2015.
- [2] A. Armstrong and G. Struth. Automated reasoning in higher-order regular algebra. In *RAMiCS 2012*, volume 7560 of *LNCS*. Springer, September 2012.
- [3] R.-J. Back and J. Wright. Refinement Calculus: A Systematic Introduction. Springer, 1998.
- [4] C. Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts. In *Proc.* 5th Intl. Conf. on Mathematical Knowledge Management (MKM), volume 4108 of LNCS, pages 31–43. Springer, 2006.
- [5] C. Ballarin et al. The Isabelle/HOL Algebra Library. *Isabelle/HOL*, October 2017. https://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf.
- [6] A. Cavalcanti and J. Woodcock. A tutorial introduction to designs in unifying theories of programming. In Proc. 4th Intl. Conf. on Integrated Formal Methods (IFM), volume 2999 of LNCS, pages 40–66. Springer, 2004.
- [7] A. Cavalcanti and J. Woodcock. A tutorial introduction to CSP in unifying theories of programming. In *Refinement Techniques in Software Engineering*, volume 3167 of *LNCS*, pages 220–268. Springer, 2006.
- [8] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communications of the ACM, 18(8):453–457, 1975.
- [9] A. Feliachi, M.-C. Gaudel, and B. Wolff. Unifying theories in Isabelle/HOL. In *UTP 2010*, volume 6445 of *LNCS*, pages 188–206. Springer, 2010.
- [10] A. Feliachi, M.-C. Gaudel, and B. Wolff. Isabelle/Circus: a process specification and verification environment. In VSTTE 2012, volume 7152 of LNCS, pages 243–260. Springer, 2012.
- [11] J. Foster. Bidirectional programming languages. PhD thesis, University of Pennsylvania, 2009.
- [12] S. Foster, J. Baxter, A. Cavalcanti, A. Miyazawa, and J. Woodcock. Automating verification of state machines with reactive designs and Isabelle/UTP. In *Proc. 15th. Intl. Conf. on Formal Aspects of Component Software*, volume 11222 of *LNCS*. Springer, October 2018.
- [13] S. Foster, K. Ye, A. Cavalcanti, and J. Woodcock. Calculational verification of reactive programs with reactive relations and Kleene algebra. In *Proc. 17th Intl. Conf. on Relational and Algebraic Methods in Computer Science (RAMICS)*, volume 11194 of *LNCS*. Springer, October 2018.
- [14] S. Foster and F. Zeyda. Optics. Archive of Formal Proofs, May 2017. http://isa-afp.org/entries/Optics.html, Formal proof development.
- [15] S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: A mechanised theory engineering framework. In *UTP*, LNCS 8963, pages 21–41. Springer, 2014.

- [16] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with lenses. In Proc. 13th Intl. Conf. on Theoretical Aspects of Computing (ICTAC), volume 9965 of LNCS. Springer, 2016.
- [17] D. Harel. Dynamic logic. In *Handbook of Philosophical Logic*, volume 165 of *SYLI*, pages 497–604. Springer, 1984.
- [18] E. C. R. Hehner. A practical theory of programming. Science of Computer Programming, 14:133–158, 1990.
- [19] E. C. R. Hehner. A Practical Theory of Programming. Springer, 1993.
- [20] E. C. R. Hehner and A. J. Malton. Termination conventions and comparative semantics. *Acta Informatica*, 25, 1988.
- [21] C. A. R. Hoare. An axiomatic basis for computer programming. *Communications of the ACM*, 12(10):576–580, October 1969.
- [22] T. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
- [23] B. Huffman and O. Kunčar. Lifting and transfer: A modular design for quotients in Isabelle/HOL. In *CPP*, volume 8307 of *LNCS*, pages 131–146. Springer, 2013.
- [24] D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems (TOPLAS), 19(3):427–443, 1997.
- [25] C. Morgan. Programming from Specifications. Prentice-Hall, London, UK, 1990.
- [26] M. Oliveira, A. Cavalcanti, and J. Woodcock. Unifying theories in ProofPower-Z. In *UTP* 2006, volume 4010 of *LNCS*, pages 123–140. Springer, 2007.
- [27] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis, Department of Computer Science University of York, UK, 2006. YCST-2006-02.
- [28] F. Zeyda, S. Foster, and L. Freitas. An axiomatic value model for Isabelle/UTP. In UTP, LNCS 10134. Springer, 2016.