logic laws (logical equivalences)

equivalence	name
$\begin{array}{l} p \wedge T \equiv p \\ p \vee F \equiv p \end{array}$	identity laws
$p \lor T \equiv T$ $p \land F \equiv F$	domination laws
$ \begin{array}{c} p \lor p \equiv p \\ p \land p \equiv p \end{array} $	idempotent laws
$\neg(\neg p) \equiv p$	double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	associative laws

equivalence	name
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	distributive laws
$ \neg(p \land q) \equiv \neg p \lor \neg q \neg(p \lor q) \equiv \neg p \land \neg q $	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	absorption
$p \vee \neg p \equiv T$	tautology
$p \land \neg p \equiv F$	contradiction
$(p \to q) \equiv (\neg p \lor q)$	implication equivalence

rules of inference

rule	tautology	name
p	$[p \land (p \to q)] \to q$	modus ponens
$p \rightarrow q$	_	
∴ <i>q</i>		
$\neg q$	$[\neg q \land (p \to q)] \to \neg p$	modus tollens
$\frac{p \to q}{\vdots -\infty}$	_	
$rac{\cdot \cdot \neg p}{-}$		
	$[(p \to q) \land (q \to r)] \to (p \to r)$	hypothetical syllogism
$\frac{q \to r}{\therefore p \to r}$	_	
<i>p</i> //		
$p \lor q$	$[(p \lor q) \land \neg p] \to q$	disjunctive syllogism
$\frac{\neg p}{\therefore q}$	_	
p	$p \to (p \lor q)$	addition
$rac{P}{\therefore p \lor q}$	_	
·· · · · · · · · · · · · · · · · · · ·		
$p \wedge q$	$(p \land q) \to p$	simplification
$\frac{p \wedge q}{\therefore p}$	_	
· · I		

rule	${f tautology}$	name
p	$[(p) \land (q)] \to (p \land q)$	conjunction
q		
$\therefore p \land q$		
$\begin{array}{c} p \lor q \\ \neg p \lor r \end{array}$	$[(p \vee q) \wedge (\neg p \vee r)] \to (q \vee r)$	resolution
$\therefore q \vee r$		
	unive	ersal instantiation
$\forall x P(x)$		
P(c)		
	univer	sal generalization
P(c) for an	arbitrary c	
$\therefore \forall x P(x)$		
	exister	ntial instantiation
$\exists x P(x)$		
P(c) for	some c	
	existent	ial generalization
P(c) for so		Ü
$\exists x P(x)$		

fallacies

rule	contingency	name
p o q q	$[(p \to q) \land q] \to p$	affirming the conclusion
p		
$p \to q$ $\neg p$ $\therefore \neg q$	$[(p \to q) \land \neg p] \to \neg q$	denying the hypothesis

rule	contingency	name
	p o p	begging the question
p		
$\therefore p$		

quantifiers

	quarit	111010	
statement	when T (tr	ue)?	when F (false)?
$\forall x P(x)$	P(x) is T for every x		P(x) is F for at least one x
$\exists x P(x)$	P(x) is T for at least	one x	P(x) is F for every x
$\forall x \forall y P(x, y) \\ \forall y \forall x P(x, y)$	P(x,y) is T for every pair x	, y	P(x,y) is F for at least one pair x, y
$\forall x \exists y P(x,y)$	for every x, $P(x, y)$ is T for at least one y		there is at least one x such that $P(x, y)$ is F for every y
$\exists y \forall x P(x,y)$	for at least one x, $P(x,y)$ is T for ex-	ery y	for every x, $P(x, y)$ is F for at least one y
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y)$	P(x,y) is T for at least one	pair x, y	P(x,y) is F for every pair x, y
	types of	proofs	
type			${f description}$
direct		show that if p , then q must follow $(p \to q)$	
contrapositive			show that if $\neg q$, then $\neg p$ must follow $(\neg q \rightarrow \neg p)$
vacuous			show that $\neg p$ always holds, making $p \rightarrow q$ a tautology
trivial			show that q always holds, making $p \to q$ a tautology
contradiction			show that $\neg p$ leads to a contradiction
cases		split the hypothesis into cases and show that $p_i \to q$ for each case	
exhaustive	check a list	check a list of all possible cases, with each case representing a single example	
existence (constructive)		find an element a (called the witness) such that $P(a)$ is tru	
existence (nonconstructive	ve) show $\exists x P(x)$ is true without find	ding a wit	ness (e.g., by showing $\neg \exists x P(x)$ leads to a contradiction)
uniqueness	show that there is exactly one el	ement wit	h a particular property (show existence and uniqueness)
	defini	tions	
term	definition	$_{ m term}$	definition
hypothesis/conclusion in conclusion	$p \rightarrow q, p$ is the hypothesis and q is the	corollar theorem	y a theorem that can be established directly from a n that has been proved
converse	the converse of $p \to q$ is $q \to p$	even number an integer that can be expressed in $n=2k, k\in\mathbb{Z}$	9
contrapositive	the contrapositive of $p \to q$ is $\neg q \to \neg p$		$k\in\mathbb{Z}$

hypothesis/con conclusion	clusion in $p \to q$, p is the hypothesis and q is the	corollary a theorem that can be established directly from a theorem that has been proved	
converse	the converse of $p \to q$ is $q \to p$	even number an integer that can be expressed in the form $n=2k, k\in\mathbb{Z}$	
contrapositive	the contrapositive of $p \to q$ is $\neg q \to \neg p$	odd number an integer than can be expressed in the form	
inverse	the inverse of $p \to q$ is $\neg p \to \neg q$	odd number — an integer than can be expressed in the form $n=2k+1, k\in\mathbb{Z}$	
tautology	a proposition that is always true	prime number an integer that is only divisible by itself and $\forall x((x n) \rightarrow ((x=n) \lor (x=1)))$	
contradiction	a proposition that is always false		
contingency contradiction	a proposition that is neither a tautology nor a	composite number an integer that has an integer divisor other than itself and 1; $\exists x((x n) \land (x \neq n) \land (x \neq 1))$	