The Inorganic That You Don't Need to Know

Redox:

- Equation balanced
 - Calculate the oxidation number of each elements and ions
 - Calculate the number of electron transfer based on the change in oxidizing number and use this as the ratio for the calculation
 - Then balanced all the rest of equation number
 - For disproportion noticed that there must be a pair of change to increase must be balanced by decrease in oxidizing number
- Reaction of Halide with conc. H₂SO₄

Reaction	Formula	Observation
Cl ⁻	H ₂ SO ₄ + NaCl -> NaHSO ₄ + HCl	Steamy
		fumes(HCI)
Br ⁻	H ₂ SO ₄ + NaBr -> NaHSO ₄ + HBr	Steamy
	$HBr + H_2SO_4 -> Br_2+SO_2+H_2O$	fumes(HBr)
		Orange Brown
		Vapor(Br ₂)
Ī	H ₂ SO ₄ + Nal -> NaHSO ₄ + HI	Purple vapor(I2)
	AND	Foul smell(H ₂ S)
	8HI + H ₂ SO ₄ ->4I ₂ + H ₂ S +4H ₂ O	Yellow solid(S)
	OR	
	6HI + H ₂ SO ₄ -> 3I ₂ + S+4H ₂ O	

This is because X- are strong reducing agent and they have the ability to reduced others (S in this case)

This power increases down the group, therefore the S gets more and more reduced (from +6 -> +4 -> -2/0)

This could happen also because H_2SO_4 is a strong oxidizing agent, and that was not possible with non-oxidizing acid like H_3PO_4

The overall formula can be produced by adding the separate formula with equilibrium balanced

Period 3/Precocity:

- Physical properties
 - Atomic radius/lonic radius

- ◆ Factor affecting atomic radius
 - 1. The number of shells of electron
 - 2. The effective nuclear charge cause by the shielding effect of the inner electron shell
 - 3. The attraction because of the nucleus charge

You can answer by the form of argument like this:

the increase attraction of the nucleus charge out weight the increase of distance between the nucleus and electron, since the shielding effect from the nucleus is constant so the atomic radius decrease

- Factor affecting ionic radius
 - 1. The charge of the ions(+/-)
 - 2. The effective nucleus charge
 - 3. The number of electron gain/loss

If the electron loss electron, then the more it loss, the stronger the effective nucleus charge is and thus results in the smaller ionic radius

If the electron gain electron, then the more it gain, the stronger the repusion between the electron it will be, and thus results in the larger ionic radius

First ionization energy

- Factor affecting the first ionization energy:
 - 1. Charge of the nucleus
 - 2. Distance between nucleus and the electron
 - 3. Shielding effect from the inner shell of electron
 - 4. Spin-pair repulsion[if applicable]

You can answer by the form of argument like this:

- the increase of the nucleus charge is out weight the increase in the distance between nucleus and electron, and the electron shells is constant, so the first ionization energy increase
- for the decrease at p orbit: the electron shell increase from s to p therefore have higher shielding effect and distance, slightly reduce the first ionization energy

- for the decrease at p³⁻⁴: the 3p orbital are all occupied by single electron at p3, and the addition of electron results in an electron pair which leads to the Spain pair repulsion and decrease the first ionization energy
- M.P./B.P.

◆ The m.p. and b.p. are strongly related into the structure of elements

Elements	structure	Details of	Bond	IMF
		structure		
Na	Gigantic	Lattice	Metallic	Ionic
	metallic			
Mg	Gigantic	Lattice	Metallic	lonic
	metallic			
Al	Gigantic	Lattice	Metallic	lonic
	metallic			
Si	Gigantic	lattice	Covalent	Covalent
	covalent			
Р	Simple	Red	Covalent	Van der
	molecule	P ₄ (tetratomic)		Waals'
S	Simple	Yellow	Covalent	Van der
	molecule	S ₈ (Octaineatomic)		Waals'
CI	Simple	Green	Covalent	Van der
	molecule	Cl ₂ (diatomic)		Waals'
Ar	Simple	Ar(noble gas)	-	Van der
	molecule			Waals'

- ◆ The increase in m.p. in metallic is related
 - 1. Higher charge density
 - 2. More electron

These leads to stronger metallic bond

- ◆ The strongest m.p. in Si is related
 - 1. Strong covalent bond in giant structure
 - 2. Must break all if need to melt
- The variation in the rest is related to IMF

IMF is related to the number of electron and the size of molecules, which is directly related to the structure of the molecules

■ Electroconductivity

- Electroconductivity is depends on the structure of the elements:
 - Na/Mg/Al are metallic ions with 'seas' of electron therefore have delocalized electron and is the strong conductor
 - Si is the gigantic covalent therefore be the semiconductor (although not strong as graphite)
 - All the rest are simple molecule and are insulator

Chemical properties

■ Reaction with oxygen

Element	Observation	Formula
Na	Orange-yellow flame	4Na + O ₂ -> 2Na ₂ O
	White product	(sodium oxide)
		2Na + O ₂ -> Na ₂ O ₂
		(sodium peroxide)
Mg	Bright white flame	2Mg + O ₂ -> 2MgO
	White product	
Al	White flame	4AI + 3O ₂ -> 2AI ₂ O ₃
	White product/smoke	
Si	Slowly burns when heat	$Si + O_2 -> SiO_2$
	strongly	
	White flame	
Р	Yellow flame	$P_4 + 3O_2 -> P_4O_6$
	White smoke	$P_4 + 5O_2 -> P_4O_{10}$ (in
		excess oxygen)
S	Blue flame	$S + O_2 -> SO_2$
	Colorless gas	
Cl	Does not react directly	-

■ Reaction with chlorine

Element	Observation	Formula
Na	Bright orange flame	2Na + Cl ₂ -> 2NaCl
	White product	
Mg	Bright white flame	Mg + Cl ₂ -> MgCl ₂
	White product	
Al	yellow flame	4AI + 3Cl ₂ -> 2Al ₂ Cl ₃
	pale yellow product	(Sublime)
Si	Slowly react when passed	$Si + 2Cl_2 -> SiCl_4$
	with chlorine gas	
	Colorless liquid	
Р	Yellow flame	$P_4 + 6Cl_2 -> 4PCl_3$
	Mixtures of chlorides	$P_4 + 10Cl_2 -> PCl_5$
S [Does not include in	Slowly react when passed	2S + Cl ₂ -> S ₂ Cl ₂
syllabus]	with chlorine gas	
	Orange liquid	
Cl	No reaction	-

Reaction with water

◆ Sodium

 $Na + H_2O -> NaOH + H_2$

◆ Magnesium

In cold water: $Mg + 2H_2O -> Mg(OH)_2 + H_2$ (Slowly) In steam: $Mg + H_2O -> MgO + H_2$ (Vigrously)

■ Reaction of oxides with water

Element	Oxidation number	Structure	Observation	рН	Formula
Na	+1	Ionic	Dissolve	14	Na2O + H2O ->
			exothermically		2NaOH
Mg	+2	Ionic	Slight reaction	9	MgO + 2H ₂ O ->
					$Mg(OH)_2 + H_2$
Al	+3	Giant Ionic with	No reaction	-	-
		covalent			
Si	+4	Giant covalent	No reaction	-	-
Р	+3	Simple molecules	P ₄ O ₆ reacts with	1-2	$P_4O_6 + 6H_2O -> 4H_3PO_3$
	+5		cold water	(phosp	$P_4O_{10} + 6H_2O ->$
			P ₄ O ₁₀ reacts	horic	4H₃PO₄
			violently	acid)	
S	+4	Simple molecules	SO ₂ dissolve	1	$SO_2 + H_2O -> H_2SO_3$
	+6		readily	0	$SO_3 + H_2O \rightarrow H_2SO_4$
			SO₃ dissolve		
			violently		
CI	+1	-	Does not react	_	-
	+4		with water		
	+7				

- ◆ Amphoteric nature of Al₂O₃
 - It is a giant ionic with covalent characters so both basic and acidic behavior can be observed
 - With Acid: $Al_2O_3 + 6HCI -> 2AICI_3 + 3H_2O$
 - With Alkaline: $Al_2O_3 + 2NaOH + 3H_2O -> NaAl(OH)_4 / (Na^+ + Al(OH)_4^-)$
- Reaction of chloride

Element	structure	Oxidation	Observation	рН	Formula
		number			
Na	Giant Ionic	+1	Dissolve	7	NaCl -> Na ⁺ + Cl ⁻
Mg	Giant Ionic	+2	Dissolve	6.5	MgCl -> Mg ⁺ + Cl ⁻
	with				
	covalent				
Al	Simple	+3	Hydrolyses	3	AICl ₃ + 6H ₂ O ->
	molecule		In droplet steamy		$[AI(H_2O)_6(OH)]^{2+} + H^+ +$
	with ionic		fume might		3CI ⁻
			appeared		
Si	Simple	+4	Hydrolyses	1-2	$SiCl_4 + 2H_2O \rightarrow SiO_2 +$
	molecule				4HCl
Р	Simple	+3	Hydrolyses	1-2	PCl ₃ + 3H ₂ O -> H ₃ PO ₄ +
	molecule	+5			HCI
S [Not demand	Simple	+1	Hydrolyses	1-2	$S_2Cl_2 + H_2O -> SO_2$
in syllabus]	molecule	+2			+4HCI + 3S
		+4			
Cl	-	-	No reaction	-	-

- ◆ An ionic chloride dissolve in H2O
 - The pH depends on the polarizing effect when if form complex in water
- ◆ Covalent Chlorides + H2O -> Acidic(steamy fume) hydrolysis to produce HCl
 - Consider adding water to each side of the molecules and break them down(add Chlorine with H and other side with OH)
 - Then go for the most stable compound(SiO2, H₃PO₄)
 - Finally balanced the equation

Group 2(Alkaline Earth Metal):

- Physical Properties:
 - Atomic Radius: increase from up to down

the atomic radius increase could be explain by following factor:

- 1. The number of shells of electron
- 2. The effective nuclear charge cause by the shielding effect of the inner electron shell
- 3. The attraction because of the nucleus charge

You can answer by the form of argument like this:

the increase attraction of the nucleus charge is out weight by the increase of shielding effect from the inner shell of electron, thus leading to the decrease of effective nuclear

charge, and because the increase in the distance between nucleus and electron, so the atomic radius increase

	Ве	Mg	Ca	Sr	Ва
Atomic	0.111	0.160	0.197	0.215	0.217
radius/nm					

■ Ionization Energy: decrease from up to down

The decrease of ionization energy could be explain by the following factor:

- 1. Charge of the nucleus
- 2. Distance between nucleus and the electron
- 3. Shielding effect from the inner shell of electron

You can answer by the form of argument like this:

the increase of the nucleus charge is out weight by the increase of shielding effect from the inner shell of electron and the increase in the distance between nucleus and electron, so the first ionization energy decrease

	Ве	Mg	Ca	Sr	Ва
1 st ionization	900	738	590	550	503
energy/					
KJmol ⁻¹					

■ Electronegativity: decrease from up to down

Electronegativity is the ability for an atom to attract the electron.

Electronegativity is explain by the following factor:

- 1. The size of the atom(atomic radius)
- 2. The attraction from the nucleus because

You can answer by the form of argument like this:

As the atomic radius increase the bonding pair is further away from the electron so the attraction for it is weaker, therefore the electronegativity decrease

	Ве	Mg	Ca	Sr	Ва
Electronegativity	1.57	1.31	1.00	0.95	0.89

Melting Point: decrease from up to down[Except for Mg which has an unusual low m.p.]

	Ве	Mg	Ca	Sr	Ва
Melting	1278	649	839	769	729

Chemical Properties

- General properties
 - Reactive metals
 - ◆ Outer shell electron configuration ns²
 - ◆ Only one oxidation state of +2
 - ♦ Strong reducing agent

■ Reaction with oxygen

Element	Observation	Formula	acidity
Be	Reluctant to burn,	2Be + O2 ->2BeO	amphoteric
	white flame		
Mg	Burns easily with a	2Mg+O2 ->2MgO	Basic
	bright white flame		
Ca	Difficult to ignite,	2Ca + O2 ->2CaO	Basic
	flame tinged red		
Sr	Difficult to ignite,	2Sr + O2 ->2SrO	Basic
	flame tinged red	Sr + O2 ->SrO ₂	
		Notice Peroxide	
		also formed	
Ва	Difficult to ignied,	2Ba + O2 ->	Basic
	flame tinged green	2BaO	
		Ba + O2 ->BaO ₂	
		Notice Peroxide	
		also formed	

■ Reaction with water

Element	Observation	Formula	acidity
Ве	No reaction	-	-
Mg	Reacts vigorously	Mg+2H ₂ O	Weak alkaline

	with steam but very	->Mg(OH) ₂ + H ₂	рН 9-11
	slowly with water		
Ca	Reacts moderately	Ca+2H₂O	Weak alkaline
	forming the	->Ca(OH) ₂ + H ₂	pH = 11
	hydroxide		
Sr	Reacts rapidly	Sr+2H₂O	Alkaline
	forming the	->Sr(OH) ₂ + H ₂	pH =13
	hydroxide		
Ва	React vigorously	Ba+2H₂O	Strong alkaline
	forming the	$-> Ba(OH)_2 + H_2$	pH = 14
	hydroxide		

■ Reaction with dilute acid

Element	Observation	Formula	acidity
Be	Reacts rapidly	Be+2HCl ->BeCl ₂	neutral
		+ H ₂	
Mg	Reacts vigorously	Mg+2HCl	neutral
		->MgCl ₂ + H ₂	
Ca	Reacts vigorously	Ca+2HCl ->CaCl ₂	neutral
		+ H ₂	
Sr	Reacts violently	Sr+2HCl ->SrCl ₂ +	neutral
		H ₂	
Ва	React violently	Ba+2HCl ->BaCl ₂	neutral
		+ H ₂	

- ◆ All group 2 metal reacts with dilute HCl or HNO₃, and it gets more vigorous down the group
- ◆ If H₂SO₄ is used, the reaction still happened, but since sulphate solubility decrease down the group, you will get white precipitate starting from Ca/Sr/Ba
- ◆ If the concentration of HNO₃ increase, then in moderate level it tends to give nitrogen oxide, and in concentrated level it tends to give nitrogen dioxide

Reaction of oxides

Compound	Reaction with water	Reaction with dilute acids
BeO	No reaction	BeO+2HCl ->BeCl ₂ + 2H ₂ O
MgO	Apparently no change of the	Mg(OH) ₂ +2HCl ->MgCl ₂ +
	solid, pH of mixture is 9	2H₂O
CaO	Exothermic reaction,	CaO+2HCl ->CaCl ₂ + 2H ₂ O
	produce slightly soluble	
	slaked lime, pH of the	
	mixture is 12	
SrO	Produce a colorless solution	SrO+2HCl ->SrCl ₂ + 2H ₂ O
	of pH 14	
BaO	Produce a colorless solution	BaO+2HCl ->BaCl ₂ + 2H ₂ O
	of pH 14	

- ♦ All group 2 oxides react with water in the general formula to give hydroxides $MO + H_2O -> M(OH)_2$
- ◆ For the reaction with HCl and HNO₃ all compound can react to form salts and water, but for H₂SO₄ the situation is complex as SrSO₄ and BaSO₄ are insoluble white percipitate

Reaction of hydroxides

Compound	Reaction with dilute acids
Be(OH) ₂	Be(OH) ₂ +2HCl ->BeCl ₂ + 2H ₂ O
Mg(OH) ₂	Mg(OH) ₂ +2HCl ->MgCl ₂ + 2H ₂ O
Ca(OH)₂	Ca(OH) ₂ +2HCl ->CaCl ₂ + 2H ₂ O
Sr(OH) ₂	Sr(OH) ₂ +2HCl ->SrCl ₂ + 2H ₂ O
Ba(OH) ₂	Ba(OH) ₂ +2HCl ->BaCl ₂ + 2H ₂ O

◆ This is the typical reaction of acid – base reaction

■ Reaction of carbonates

Compound	Reaction with water	Reaction with dilute acids
BeCO₃	Insoluble in water	BeCO ₃ +2HCl ->BeCl ₂ +
		CO ₂ + H ₂ O
MgCO₃	Insoluble in water	MgCO ₃ +2HCl ->MgCl ₂ +
		CO ₂ + H ₂ O
CaCO₃	Insoluble in water	CaCO ₃ +2HCl ->CaCl ₂ +
		CO ₂ + H ₂ O
SrCO₃	Insoluble in water	SrCO ₃ +2HCl ->SrCl ₂ + CO ₂
		+ H ₂ O
BaCO₃	Insoluble in water	BaCO ₃ +2HCl ->BaCl ₂ +
		CO ₂ + H ₂ O

- ◆ All group 2 carbonates are insoluble in water
- ◆ They all react with dilute acids to give salts, water and carbon dioxide
- ◆ Because the decrease solubility of SrSO₄ and BaSO₄, they will prevent the reaction goes much further when react with H₂SO₄
- Thermal decomposition of nitrates and carbonates
 - ◆ The thermal stability of the compound is related to the ability for the cation to polarize the anion and results in the formation of oxides. The cation up the group is smaller, having a higher charge density, therefore have stronger polarizing effect and less thermal stability (this is not requiring by AS level)

Nitrates

Element	Formula
Be	$2Be(NO_3)_2 -> 2BeO + 4NO_2 + O_2$
Mg	$2Mg(NO_3)_2 -> 2MgO + 4NO_2 + O_2$
Ca	2Ca(NO ₃) ₂ ->2CaO + 4NO ₂ + O ₂
Sr	$2Sr(NO_3)_2 -> 2SrO + 4NO_2 + O_2$
Ва	$2Ba(NO_3)_2 -> 2BaO + 4NO_2 + O_2$

- The thermal stability increases down the group, and the reaction gives out NO₂ as brown gas
- Mg and Ca may form water crystal therefore dissolve into a colorless

solution before decomposing

Carbonates

Element	Formula	
Be	BeCO ₃ ->BeO + CO ₂	
Mg	MgCO ₃ ->MgO + CO ₂	
Ca	CaCO ₃ ->CaO + CO ₂	
Sr	SrCO ₃ ->SrO + CO ₂	
Ва	BaCO ₃ ->BaO + CO ₂	

- The thermal stability increase down the group
- Solubility of hydroxides and sulfates
 - ◆ They only demand the statement without explain because there is no simple explanation for it in AS level
 - ◆ The solubility for hydroxides increase down the group
 - The solubility for sulfates decrease down the group
- Application
 - Ca
 - Conversion between limes

 Lime(calcium carbonate) is used to make concrete by forming quick lime(Calium oxide) and marble(also calcium carbonate) is use as building material

CaCO3 –(heat in rotating lime kilin)->CaO + CO2

 Slacked lime(calcium hydroxide) are used to increase the soil pH by neutralizing the acid(all of the lime can do it)

$$Ca(OH)_2+2HCI -> CaCI_2 + 2H_2O -$$

■ Mg

- ◆ MgO is used to make blast furnace lining because it is thermal insulator and has high mp(it is not acidic)
- ♦ Mg(OH)₂ is used in toothpaste and indigestion tablets as anti-acid Mg(OH)₂ + $2H^+$ -> Mg²⁺ + $2H_2O$

Group 17(Halogen):

Physical Properties

Element	Color	Boiling point/K	Electronegativity
F ₂	Pale-yellow gas	85	4.0(strongest)
Cl ₂	Yellow green gas	238	3.0
Br ₂	Dark red liquid	332	2.8
	Dark gray solid/	457	2.5
	Purple Vapour		

- The color intensity increases down the group
- The volatility decrease down the group
 - 1. Halogen are diatomic simple molecule
 - 2. Main IMF is Van der Vaal's force
- 3. As the atomic size increase and electron number increase, the Van der Waal's force increase
- The electronegativity decrease down the group
 - ◆ As the atomic radius increase the bonding pair is further away from the electron so the attraction for it is weaker, therefore the electronegativity decrease
- Chemical Properties:
 - General properties
 - The reactivity decrease down the group because the electron are further apart from the nucleus, having more shielding effect therefore are less attractive for electrons
 - Halogens diatomic molecules
 - ◆ Halogens elements are strong Oxidizing agent
 - ◆ Outer shell electron configuration = ns₂p₅
 - Elements
 - Reactions with hydrogen

Element	Observation	Formula
F	Explode under all	$F_2 + H_2 -> 2HF$
	condition (even at ~50K)	
Cl	Explode under	Cl ₂ + H ₂ -> 2HCl
	sunlight/bright light	
Br	Slow reaction, only	$Br_2 + H_2 \rightarrow 2HBr$
	happen on heating	
	around ~400K	
I	Incomplete reaction	reversible
	under heating around	$I_2 + H_2 \longleftrightarrow 2HI$
	1000K/platinum catalyst	

presents

- Comparison between the reactions:
 - Extent of reaction decrease
 - Enthalpy change increase
 - The decrease in the extent of reaction is because of:
 - 1. The bond length increase down the group in X-X bond, therefore the activation energy decrease (F-F is special case because the distance between atoms is too small and the repulsion in electron is helping to break the bond)
 - 2. H-X bond length decrease down the group, the longer the bond length is the less energy it require to release to form, and this outweigh the energy require to break the bond(it is much more significant compare with the activation energy)

Reaction of Halides

- Except H-F, all of the halides are strong acids and can complete ionized
 - H-F can not complete ionized because of the strong bond energy of it
- Thermal stability
 - the thermal stability decrease down the group: H-F is most stable and HI is least stable
 - This is because the bond energy of H-F is highest and H-I is lowest because H-F has shortest bond length and require more energy to break it, H-I has the longest bond length and require least energy to break it

	F	CI	Br	1
H-X	562	431	366	299
C-X	467	346	290	228
Heating	No reaction	No reaction	Evidence of	Immediately
(putting red-			Brownish	purple vapor
hot glass rod			coloration	
into it)				
Observation				

Test for halides ions

Halide ion	Reaction with acidified	Observation with NH _{3(aq)}
	$AgNO_{3(aq)}$	
CI	White ppt.	Dissolve in dilute
		ammonia
Br	Cream ppt.	Dissolve with
		concentrated ammonia
	Yellow ppt.	Does not dissolve

 When added to NH3, Ag+ will form a complex and it is favor in RHS when NH₃ is conc.

$$2NH_3 + Ag^{^+} \xrightarrow{\textit{reversible}} \left[Ag(NH_3)_2\right]^{^+}{}_{^{(aq)}}$$

However, this depends on the extent to which the AgX is soluble in water,

because AgCl is mostly soluble, AgBr is partly soluble and Agl is insoluble in water, thus there is no complex formed in Agl but both formed in AgCl and AgBr

- Replacement reaction of ions:
 - ◆ The more reactive element will replace the less reactive element's ion in the ionic compound
 - \bullet Cl₂ + 2Br⁻ -> Br₂ + 2Cl⁻
 - ◆ This is actually due to the different oxidizing power of the element:
 - CI ->Br -/|-
 - Br ->l⁻
- Reaction as oxidizing agent/reducing agent
 - ◆ Cl₂/Br₂ can oxidize Fe²⁺to Fe³⁺

$$Cl_2 + 2Fe^{2+} -> 2Fe^{3+} + 2Cl^{-}$$

- Fe³⁺ can oxidize I^{-} back to I_{2} 2Fe³⁺ + 2 I^{-} -> I_{2} + 2Fe²⁺
- Reaction with oxidizing acid [See Redox Section]
- Reaction with non-oxidizing acid
 - ◆ Non-oxidizing Acid(H₃PO₄) will only lead to the protonation of halide ions and seen the steamy fumes coming out of the reaction as HX_(g) without any further oxidization happened
 - \bullet H₃PO₄ + KX -> KH₂PO₄ + HX
- Chlorine react with sodium hydroxide
 - ◆ In cold dilute NaOH:

$$CI_2 + 2OH^- -> CI^- + CIO^- + H_2O$$

CI(0) converted to $CI^-(-1)$

◆ In hot, conc. NaOH:

$$3CI_2 + 6OH^- -> 5CI^- + CIO_3^- + 3H_2O$$

This is called **disproportion** of chlorine because the oxidation number of Cl(0) both increase to Cl(5+) and decrease to Cl(1-) in the reaction

This is because at higher temperature the CIO^- will decompose into $2CI^- + CIO_3^-$, which the chlorine gets disporpotion

- Application & Production
 - Chlorine produced by electrolysis of chloride
 - Bromine and iodine are produced using chlorine gas to oxidize the bromide and iodide ions presents in sea water
 - Pure Florine is hard to make because it will even make reaction with water
 - Chlorine is used in water purification because it has strong oxidizing power which can distrust the bacterial metabolism

In water the following equilibrium happened:

$$Cl_2 + H_2O \xrightarrow{reversible} HCl + HClO$$

$$HCIO + H_2O \xrightarrow{reversible} H_3O^+ + OCI^-$$

Both CI2 and HCIO are oxidizing agent therefore have the ability to kill the bacteria

■ NaOH and CI can be used to make bleach(NaClO) which have cleaning effect and can wash toilets and 'kills' microorganism

$$Cl_2 + OH^{-} \xrightarrow{reversible} Cl^{-} + OCl^{-} + H_2O$$

Pale yellow bleach product is formed when the reaction used Ca(OH)2

- Manufacture of PVC: hard and good thermal stability
- Manufacture of Halogenated hydrocarbons(CFC/PVC)
- AgBr used in photography
- CCIBrF₂ as fire exhausters(inert)
- l₂ as mild antiseptic [solution of iodine in alcohol]

Nitrogen and Sulfur:

- Nitrogen
 - Lack of reactivity
 - ◆ Nitrogen is lack of reactivity because the N≡N bond is a triple covalent bond and have strong bond energy, therefore demanding high activation energy and results in the unreactive nature of Nitrogen
 - Structure and acidity
 - ◆ Ammonia(NH₃)

- Pyramidal because of the lone pair on N
- Bond angle 107°
- Alkaline Gas
- ability to form H-bond because of the strong electronegativity of N
- NH3 + $H^+ \xrightarrow{reversible}$ NH₄⁺ (NH4+ is the conjugate acid to NH3 base)
- ◆ Ammonium(NH₄⁺)

- Tetrahedral because of the dative covalent bond form with H
- Can be displaced by warming with a strong base: NH4⁺ + OH⁻ ->NH₃ + H₂O
- Industrial application
 - Produce fertilizer

```
4NH_3 + 5O_2 -> 4NO + 6H_2O
```

Produce nitric acid

$$2NO + O_2 -> 2NO_2$$

$$2NO_2 -> 2N_2O_4$$

$$3N_2O_4 + 2H_2O -> 4HNO_3$$

OR

$$2NO_2 + H_2O + 1/2O_2 -> 2HNO_3$$

- Environmental consequence
 - Overusing nitrates will enter the water
 - ◆ Leads to Eutrophication (bloom of algae that cause environmental problem)
 - Potential harmful to human body
- Nitrogen oxides
 - ◆ These(NO_x) are produced when nitrogen react with oxygen in internal combustion engine
 - ◆ They have potential harmful effect to the environment by helping the formation of the SO₃ in air

$$SO_2 + NO_2 -> NO + SO_3$$

 Car engine can have catalytic converter (usually use platinum)to reduce these pollutants

$$2CO + 2NO -> 2CO_2 + N_2$$

- Harbor process[removed from syllabus]
 - \bullet N₂ + 3H₂
 - ◆ 200 atm
 - Iron catalyst
 - ◆ 750K
- Sulfur
 - Formation of acid rain
 - 1. When sulfur contain fossil fuel is burnt in internal combustion engine: SO_2 is formed

$$S + O2 -> SO2$$

2. SO_2 reacted with O_2 in the air to produce SO_3 (catalyst by NO_2 – homogenous catalyst)

$$2SO_2 + O_2 -> 2SO_3$$

3. SO₃ then react with water in the clouds to produce H₂SO₄, which formed the acid rain

$$H_2O + SO_3 -> H_2SO_4$$

- Harmful effect of the acid rain:
 - Plants(trees)
 - Rivers, streams, lakes(damage the food chain because the aquatic animals are sensitive to pH, and the reduce of food will lower the number of other number in the food chain)
 - Buildings, statues(marble), metal structures
- Sulfuric Acid made of contact process[disappear from syllabus]
 - \bullet SO₂ + O₂

- ◆ Catalyst V₂O₅
- ◆ 1 atmosphere
- **♦** 450°C