Expanders via Local Edge Flips

Zeyuan Allen-Zhu Princeton University Aditya Bhaskara Google Silvio Lattanzi Google Vahab Mirrokni Google

Lorenzo Orecchia Boston Univesity

Outline

- How can we construct an expander locally?
 Problem motivation and related works
- A simple distributed protocol The switch and the flip protocols
- A new analysis for the two protocols
 Obstacles in the analysis and new approach for the problem
- Conclusions and future directions
 Open problems

How can we construct an expander locally?

Why is it interesting?

Distributed system

P2P networks

Sensor networks

Asynchronous system

Benefits

Efficient

Robust

New challenges

Important to construct quickly good network structure
Only local communication

Local graph algorithms

Local algorithms

Algorithms based on *local* message passing among nodes

Local graph algorithms

Local algorithms

Algorithms based on *local* message passing among nodes

Advantages

Applicable to large scale graphs

Fast, easy to implement in parallel (MapReduce, Hadoop, Pregel...)

Problem

Starting from any connected graph is it possible to construct an expander locally?

Previous work

SKIP+: A Self-Stabilizing Skip Graph.

R. Jacob, A. W. Richa, C. Scheideler, S. Schmid and H. Täubig.

J. ACM 61(6): 36:1-36:26 (2014)

In the Local model it is possible to build an expander locally in $O(\log^2 n)$

Previous work

SKIP+: A Self-Stabilizing Skip Graph.

R. Jacob, A. W. Richa, C. Scheideler, S. Schmid and H. Täubig.

J. ACM 61(6): 36:1-36:26 (2014)

In the Local model it is possible to build an expander locally in $O(\log^2 n)$

Previous work

SKIP+: A Self-Stabilizing Skip Graph.

R. Jacob, A. W. Richa, C. Scheideler, S. Schmid and H. Täubig.

J. ACM 61(6): 36:1-36:26 (2014)

In the Local model it is possible to build an expander locally in $O(\log^2 n)$

Limitations:

- Using this technique it is not possible to obtain an algebraic expander
- In any round nodes can exchange arbitrary large messages
- Memory needed by a single node in any round is not bounded
- Synchronous model, complex algorithm

Problem

Starting from any connected graph is it possible to define a simple rule to construct an expander locally?

A simple distributed protocol

[McKay, Congressus Numerantium 1981]

A simple protocol:

Pick two edges at random and invert their endpoints

[McKay, Congressus Numerantium 1981]

A simple protocol:

Pick two edges at random and invert their endpoints

[McKay, Congressus Numerantium 1981]

A simple protocol:

Pick two edges at random and invert their endpoints

[McKay, Congressus Numerantium 1981]

A simple protocol:

Pick two edges at random and invert their endpoints Creation of parallel edges/self-loops is allowed

[McKay, Congressus Numerantium 1981]

A simple protocol:

Pick two edges at random and invert their endpoints Creation of parallel edges/self-loops is allowed

Limitation
It is not local
It may disconnect the graph

[Mahlmann and Schindelhauer, SPAA 2005]

Pick a random length 3 path and invert its endpoints

[Mahlmann and Schindelhauer, SPAA 2005]

Pick a random length 3 path and invert its endpoints

[Mahlmann and Schindelhauer, SPAA 2005]

Pick a random length 3 path and invert its endpoints

[Mahlmann and Schindelhauer, SPAA 2005]

Pick a random length 3 path and invert its endpoints Creation of parallel edges/self-loops is allowed

[Mahlmann and Schindelhauer, SPAA 2005]

Pick a random length 3 path and invert its endpoints Creation of parallel edges/self-loops is allowed

Experimentally it seems to be really fast

What is known about them?

[Cooper, Dyer and Greenhill, SODA 2005]

For d-regular graph the switch protocol converges to the configuration model in $\tilde{O}\left(n^8d^{15}\right)$ steps.

[Greenhill, SODA 2015]

For non regular graph with max degree in $O\left(\sqrt{m}\right)$ the switch protocol converges to the configuration model in $\tilde{O}\left(m^{10}d_{max}^{14}\right)$ steps.

What is known about them?

[Cooper, Dyer and Greenhill, SODA 2005]

For d-regular graph the switch protocol converges to the configuration model in $\tilde{O}\left(n^8d^{15}\right)$ steps.

[Greenhill, SODA 2015]

For non regular graph with max degree in $O\left(\sqrt{m}\right)$ the switch protocol converges to the configuration model in $\tilde{O}\left(m^{10}d_{max}^{14}\right)$ steps.

[Mahlmann and Schindelhauer, SPAA 2005]

For d-regular graph the flip protocol converges to the configuration model.

[Feder, Guetz, Mihail, and Saberi, FOCS 2006]

For d-regular graph the flip protocol converges to the configuration model in $\tilde{O}\left(d^{34}n^{36}\right)$ steps.

[Cooper and Dyer, PODC 2009]

For d-regular graph the flip protocol converges to the configuration model in $\tilde{O}(d^{23}n^{17})$ steps.

How do they perform in practice?

[Mahlmann and Schindelhauer, SPAA 2005]

Experimentally switch and flips protocol transform any graph in an expander very quickly.

Conjectures:

Switch converges on d-regular graph in O(nd) steps.

Flip converges on d-regular graph in $O(nd \log n)$ steps.

A new analysis for the two protocols

Results

Starting from any d-regular graph, with $d \in \Omega(\log n)$,

the switch protocol transforms the graph in an algebraic expander in $O\left(nd\right)$ steps.

the flip protocol transforms the graph in an algebraic expander in $O\left(n^2d^2\sqrt{\log n}\right)$ steps.

Results

Starting from any d-regular graph, with $d \in \Omega(\log n)$,

the switch protocol transforms the graph in an algebraic expander in $O\left(nd\right)$ steps.

the flip protocol transforms the graph in an algebraic expander in $O\left(n^2d^2\sqrt{\log n}\right)$ steps.

Obstacles

Dependencies.

Small cuts may first become smaller and only later increase.

Obstacles

Dependencies.

Small cuts may first become smaller and only later increase.

Pick a random edge.

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

The other endpoint picks a random neighbor(if in common, picks a new one).

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

The other endpoint picks a random neighbor(if in common, picks a new one).

Flip definition

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

The other endpoint picks a random neighbor(if in common, picks a new one).

Perform swap.

Expected change of laplacian

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

The other endpoint picks a random neighbor(if in common, picks a new one).

Perform swap.

Let
$$\Delta^{(t)} = L\left(G^{(t+1)}\right) - L\left(G^{(t)}\right)$$

$$E\left[\Delta^{(t)}|G^{(t)}\right] = \frac{4}{d^2n} \left((d+1)L^{(t)} - \left(L^{(t)}\right)^2 \right)$$

Expected change of laplacian

Pick a random edge.

One of the endpoints picks a neighbor at random(if in common, abort).

The other endpoint picks a random neighbor(if in common, picks a new one).

Perform swap.

Let
$$\Delta^{(t)} = L\left(G^{(t+1)}\right) - L\left(G^{(t)}\right)$$

$$E\left[\Delta^{(t)}|G^{(t)}\right] = \frac{4}{d^2n} \left((d+1)L^{(t)} - \left(L^{(t)}\right)^2 \right)$$

Nice term. $G^{(t)}$ has better expansion.

Unfortunately we cannot argue directly on the expectation of the matrix after t step.

$$E\left[\Delta^{(t)}|G^{(t)}\right] = \frac{4}{d^2n} \left((d+1)L^{(t)} - \left(L^{(t)}\right)^2 \right)$$

Unfortunately we cannot argue directly on the expectation of the matrix after t step.

$$E\left[\Delta^{(t)}|G^{(t)}\right] = \frac{4}{d^2n} \left((d+1)L^{(t)} - \left(L^{(t)}\right)^2 \right)$$

We use a classic potential used for matrix concentration:

$$\Phi^{(t)} = \hat{tr} \left(e^{-\frac{20\log n}{d} L^{(t)}} \right)$$

where
$$\hat{tr}(e^A) = e^{\lambda_1} + e^{\lambda_2} + \dots$$

Unfortunately we cannot argue directly on the expectation of the matrix after t step.

$$E\left[\Delta^{(t)}|G^{(t)}\right] = \frac{4}{d^2n} \left((d+1)L^{(t)} - \left(L^{(t)}\right)^2 \right)$$

We use a classic potential used for matrix concentration:

$$\Phi^{(t)} = \hat{tr} \left(e^{-\frac{20\log n}{d} L^{(t)}} \right)$$

where
$$\hat{tr}(e^A) = e^{\lambda_1} + e^{\lambda_2} + \dots$$

Note that in order to have $\Phi^{(t)}$ very small all the eigenvalues need to be large.

We want to show that the potential decreases

$$\Phi^{(t+1)} = \hat{tr} \left(e^{-\frac{20 \log n}{d} (L^{(t)} + \Delta^{(t)})} \right)$$

We want to show that the potential decreases

$$\Phi^{(t+1)} = \hat{tr} \left(e^{-\frac{20 \log n}{d} (L^{(t)} + \Delta^{(t)})} \right)$$

$$= \hat{tr} \left(e^{-\frac{20 \log n}{d} L^{(t)}} e^{-\frac{20 \log n}{d} \Delta^{(t)}} \right)$$

We want to show that the potential decreases

$$\Phi^{(t+1)} = \hat{tr} \left(e^{-\frac{20 \log n}{d} (L^{(t)} + \Delta^{(t)})} \right)$$

$$= \hat{tr} \left(e^{-\frac{20\log n}{d} L^{(t)}} e^{-\frac{20\log n}{d} \Delta^{(t)}} \right)$$

$$by e^{-A} = I - A + A^2$$

$$= \hat{tr} \left(e^{-\frac{20\log n}{d}L^{(t)}} \left(I - \frac{20\log n}{d} \Delta^{(t)} + \left(\frac{20\log n}{d} \Delta^{(t)} \right)^2 \right) \right)$$

We want to show that the potential decreases

$$\Phi^{(t+1)} = \hat{tr} \left(e^{-\frac{20 \log n}{d} (L^{(t)} + \Delta^{(t)})} \right)$$

by Golden-Thompson inequality

$$= \hat{tr} \left(e^{-\frac{20\log n}{d} L^{(t)}} e^{-\frac{20\log n}{d} \Delta^{(t)}} \right)$$

$$by e^{-A} = I - A + A^2$$

$$= \hat{tr} \left(e^{-\frac{20\log n}{d}L^{(t)}} \left(I - \frac{20\log n}{d} \Delta^{(t)} + \left(\frac{20\log n}{d} \Delta^{(t)} \right)^2 \right) \right)$$

Taking expectation:

$$E\left[\Phi^{(t+1)}|G^{t}\right] = \Phi^{(t)} - \frac{4\log n}{d^{3}n}\hat{tr}\left(e^{-\frac{20\log n}{d}L^{(t)}}\left(L^{(t)}\left(\frac{d}{2}\hat{I} - L^{(t)}\right)\right)\right)$$

We want to show that the potential decreases

$$\Phi^{(t+1)} = \hat{tr} \left(e^{-\frac{20 \log n}{d} (L^{(t)} + \Delta^{(t)})} \right)$$

by Golden-Thompson inequality

$$= \hat{tr} \left(e^{-\frac{20 \log n}{d} L^{(t)}} e^{-\frac{20 \log n}{d} \Delta^{(t)}} \right)$$

$$by e^{-A} = I - A + A^2$$

$$= \hat{tr} \left(e^{-\frac{20\log n}{d}L^{(t)}} \left(I - \frac{20\log n}{d} \Delta^{(t)} + \left(\frac{20\log n}{d} \Delta^{(t)} \right)^2 \right) \right)$$

Taking expectation:

$$E\left[\Phi^{(t+1)}|G^{t}\right] = \Phi^{(t)} - \frac{4\log n}{d^{3}n} \hat{tr}\left(e^{-\frac{20\log n}{d}L^{(t)}}\left(L^{(t)}\left(\frac{d}{2}\hat{I} - L^{(t)}\right)\right)\right)$$

Using common diagonalization

$$\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)$$

Using common diagonalization

$$\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)$$

Two interesting cases:

$$\forall i: \lambda_i \ge \frac{d}{4}$$

$$\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i) \in O(n^{-3})$$

Using common diagonalization

$$\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)$$

Two interesting cases:

$$\exists i: \lambda_i < \frac{d}{4}$$

We look at:

$$\frac{\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)}{\Phi^{(t)}} = \frac{\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)}{\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i}}$$

Using common diagonalization

$$\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)$$

Two interesting cases:

$$\exists i: \lambda_i < \frac{d}{4}$$

We look at:

$$\frac{\sum_{1 \leq i \leq n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)}{\Phi^{(t)}} = \frac{\sum_{1 \leq i \leq n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)}{\sum_{1 \leq i \leq n} e^{-\frac{20 \log n}{d} \lambda_i}}$$

$$\approx \frac{\sum_{1 \leq i \leq k} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i}{\sum_{1 \leq i \leq k} e^{-\frac{20 \log n}{d} \lambda_i}}$$

Using common diagonalization

$$\sum_{1 \le i \le n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)$$

Two interesting cases:

$$\exists i: \lambda_i < \frac{d}{4}$$

We look at:

$$\frac{\sum_{1 \leq i \leq n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)}{\Phi^{(t)}} = \frac{\sum_{1 \leq i \leq n} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i (d/2 - \lambda_i)}{\sum_{1 \leq i \leq n} e^{-\frac{20 \log n}{d} \lambda_i}}$$

$$\approx \frac{\sum_{1 \leq i \leq k} e^{-\frac{20 \log n}{d} \lambda_i} \lambda_i}{\sum_{1 \leq i \leq k} e^{-\frac{20 \log n}{d} \lambda_i}} \in \Omega\left(\frac{d}{n\sqrt{\log n}}\right)$$

Thus:

$$E\left[\Phi^{(t+1)}|G^{(t)}\right] = \left(1 - \Omega\left(\frac{\sqrt{\log n}}{n^2 d^2}\right)\right)\Phi^{(t)} + O(n^{-3})$$

So in expectation $\Phi^{(t)}$ is in $O(n^{-3})$ after $O(n^2d^2\log n)$ steps, hence using Markov inequality we get the result.

Limit of our analysis

Expected additive improvement in a round can be $O\left(\frac{1}{n^2d^2}\right)$

Conclusions and future directions

Conclusions

New technique to analyze distribute protocol

New convergence time analysis for flip and switch protocol

Future works

Improve analysis of the flip

Study parallelized version of the protocol

Study node addition or deletion

Thanks!