Continuity and Uniqueness

Theorem 1

Let μ be a measure on a σ -algebra \mathcal{F} .

- i. If $\{A_n\}$ is an increasing sequence in \mathcal{F} with $A = \bigcup A_n$ then $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
- ii. If $\{A_n\}$ is a decreasing sequence in \mathcal{F} with $A = \bigcap A_n$ and $\mu(A_k) < \infty$ for some k then $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
- iii. If $\{A_n\}$ is a sequence in \mathcal{F} , then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n) .$$

Proof

Let $B_1 = A_1$, $B_n = A_n - A_{n-1}$, n > 1. Then the B_n 's are disjoint with $\bigcup B_n = \bigcup A_n$. Hence

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i) = \lim_{n \to \infty} \mu(A_n).$$

For (ii), let $B_n = A_k \setminus A_n$, n > k. Then $\{B_n\}_{n > k}$ is an increasing sequence and

$$\mu(A_k) - \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(B_n) = \mu(A_k) - \mu\left(\bigcap_{n=1}^{\infty} A_n\right).$$

For (iii), let $B_n = \bigcup_{i=1}^n A_i$ then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(B_n) \le \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i) = \sum_{n=1}^{\infty} \mu(A_n).$$

Theorem 2

Let Ω be a set. Let \mathcal{I} be a π -system on Ω . Let $\mathcal{F} = \sigma(\mathcal{I})$. Suppose that μ_1 and μ_2 are measures on (Ω, \mathcal{F}) such that $\mu_1(\Omega) = \mu_2(\Omega) < \infty$ and $\mu_1 = \mu_2$ on \mathcal{I} . Then $\mu_1 = \mu_2$ on \mathcal{F} .

Proof

Let

$$G = \{A \in \mathcal{F} : \mu_1(A) = \mu_2(A)\}.$$

Then \mathcal{G} is a d-system containing the π -system containing \mathcal{I} . Hence, $\mathcal{F} = \sigma(\mathcal{I}) \subset \mathcal{G}$.

Corollary

If two probability measures agree on a π -system, then they agree on the σ -algebra generated by that π -system.