THE FILE CLA

AFWAL-TR-88-1033

LABORATORY CHARACTERIZATION OF TWO RADC 160X244 PLATINUM SILICIDE SENSORS

Brian Yasuda Electro-Optics Branch Mission Avionics Division

April 1987

Final Report for Period 2-11 December 1986

Approved for public release; distribution unlimited.

AVIONICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE OHIO 45433-6543

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

BRIAN J YASUDA, Project Engineer

EO Techniques Group Electro-Optics Branch DONALD L. TOMLINSON, Acting Chief,

AARI-2/EO Techniques Group Electro-Optics Branch

FOR THE COMMANDER

GALE D. URBAN, Chief, AARI Electro-Optics Branch

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/AARI-2, Wright-Patterson AFB, OH 45433-6503 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE										
18 REPORT SECURITY CLASSIFICATION	 	16. RESTRICTIVE M.	ARKINGS							
UNCLASSIFIED										
28. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	VAILABILITY	F REPORT						
			r public r	elease; dis	tribution					
2b. DECLASSIFICATION/DOWNGRADING SCHED	DOCE	unlimited.								
4 PERFORMING ORGANIZATION REPORT NUM	BEA(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)								
AFWAL-TR-88-1033		<u> </u>								
64. NAME OF PERFORMING ORGANIZATION	66. OFFICE SYMBOL	7a. NAME OF MONIT	TORING ORGAN	IZATION						
AFWAL Avionic Laboratory	(If applicable)	ł								
Electro-Optics Branch	AFWAL/AARI	<u> </u>								
6c ADDRESS (City, State and ZIP Code)		76. ADDRESS (City, S	State and ZIP Co	de)						
,		ł								
Wright-Patterson AFB OH 454	33-6543									
Se. NAME OF FUNDING/SPONSORING	86. OFFICE SYMBOL	9. PROCUREMENT	NSTRUMENT IC	ENTIFICATION N	UMBER					
ORGANIZATION	(If applicable)	1								
HQ Air Force System Command	HQ AFSC/DLWA									
Bc. ADDRESS (City, State and 21P Code)		10. SOURCE OF FUN	IDING NOS.							
		PROGRAM ELEMENT NO.	PROJECT	TASK NO.	WORK UNIT					
Andrews AFB MD 20334-5000		ELEMENT NO.	NO.	NO.	1					
	make my Chause]					
11 TITLE (Include Security Classification) Laboraterization of two RADC 160x2 Silicide Sensors (U)	44 Plat Indhac-	63208F	665A	01	93					
12 PERSONAL AUTHOR(S)		032001	oosa	<u> </u>	1 /3					
Yasuda, Brian Jyun										
13a. TYPE OF REPORT 13b. TIME C		14. DATE OF REPOR	IT (Yr. Mo, Day		OUNT					
. 4.0.										
16. SUPPLEMENTARY NOTATION										
Prepared in cooperation with	the Rome Air De	evelopment Con	tar							
17. COSATI CODES	18. SUBJECT TERMS (C									
FIELD GROUP SUB. GR.		lcide (PtSi) S		ity by block numbe	''					
	Forward Lock	lng Infrared S	en so r s							
	3-50m Staring	Array (F)		· · · · · · · · · · · · · · · · · · ·						
19. ABSTRACT (Continue on reverse if necessary and	lidentify by block number	7,	المثلث	· · · · · · · · · · · · · · · · · · ·	+ 1					
Between 2 Dec and 11 Dec 86,										
on two Rome Air Development										
cameras were tested using the					lposts					
were not available for both or Processor 160x244 was tested	with both 100	ϵ fig. 3 λ_{-4}	2 ine KA	OC/NV Digita	ar image					
4.3dm germanium lenses. The	RADC/AFGL Silic	ide Infrared	Imaging Ra	diameter was	s tested					
with a specially baffled (for	r reduced intern	al reflection) 1000m f	1.8 germanii	ım lens.					
Tests were conducted as part	of a comparativ	e evaluation	of PtSi ve	rsus Mercur	y-					
Codmium-Telluride (NgCdTe) to				•						
					ĺ					
					ĺ					
					1					
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC	it	21. ABSTRACT SECU	RITY CLASSIFI	CATION						
					[
UNCLASSIFIED/UNLIMITED 🛣 SAME AS RPT.	DTIC USERS L	UNCLASSIFIED								
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE NU (Include Area Cod		22c OFFICE SYM	BOL					
ROBERT H. FETNER		513/255-96	15	AFWAL/A	RI-2					

FOREWORD

This report was prepared by the Electro-Optical Techniques Group, Mission Avionics Division, AF Wright Aeronautical Laboratories' Avionics Laboratory, Wright-Patterson AFB OH.

The following personnel contributed to the design, implementation, and analysis of this test:

- 1. Brian Yasuda, AFWAL/AARI-2,
- 2. Lt Robert Fetner, AFWAL/AARI-2,
- 3. Ron Wiensch, AFWAL/AARI-2,
- 4. Dick Taylor, RADC,
- 5. Jim Murrin, RADC,
- 6. Steve DiSalvo, RADC.

This report was submitted by Mr Yasuda in April 1987.

Acces	ssion For		·-	
DTIC Unanz	GRARI TAB nounced ification	X D		
By	ribution/			7907 1037 1037 1037
Ava	ilability	Codes	ŀ	`A
Dist A-1	Avail an Specia			

TABLE OF CONTENTS

CTION	AGE
I INTRODUCTION	.1
II PHOTOS OF TEST SETUP	. 2
III BLOCK DIAGRAM OF TEST SETUP	. 4
IV FIELD OF VIEW (FOV)	. 5
V MINIMUM RESOLVABLE TEMPERATURE (MRT)	. 6
VI MODULATION TRANSFER FUNCTION (MTF)	10
/II SIGNAL AND NOISE	13
VIDEO SPECTRAL RESPONSE	31
IX UNIFORMITY	36
X BLOOMING	47
PENDIX A	
DEFINITIONS OF TERMS	1-1

SECTION 1 INTRODUCTION

Between 2 December and 11 December 1986, AFWAL/AARI-2 conducted laboratory imaging performance tests on two Rome Air Development Center (RADC) 160x244 Platinum Silicide (PtSi) Sensors. Both cameras were tested using their RS-170 analog composite video outputs. Digital ports were not available for both cameras during the test period. In this memo the RADC/NU Digital Image Processor 160x244 will be referred to as the white camera while the RADC/AFGL Silicide Infrared Imaging Radiometer will be referred to as the black camera. The white camera was tested with both 100mm, fl.8, 3.4-4.2um and 299mm, f2.35, 3.4-4.3um germanium lenses. The black camera was tested with a specially baffled (for reduced internal reflection) 100mm fl.8 germanium lens. Tests were conducted as part of a comparative evaluation of PtSi vs Mercury-Cadmium-Telluride (Hg Cd Te) technology for imaging applications.

The following measurements are presented in this report:

- 1. Field of View (FOV)
- Minimum Resolvable Temperature (MRT)
- Modulation Transfer Function (MTF)
- 4. Signal and Noise
- 5. Spectral Response
- 6. Uniformity
- 7. Blooming

SECTION 11 Test Setup Photographs

Photo #1. White Camera Electronics

Photo #2. White Camera Receiver

Photo #3. Black Camera Electronics

Photo #4. Black Camera Receiver

SECTION IV FIELD OF VIEW (FOV)

1. OBJECTIVE

To determine the horizontal and vertical imagery extents.

2. TEST METHODOLOGY AND PROCEDURES

The sensors were operated in the following mode: White camera - Correct function, Gain = 1, Fine gain = Max, Offset = 30% of saturation; Black camera - 3 run, Attenuation = 20 db, offset = 30% of saturation.

A slit pattern was positioned at the collimator focal plane. The FLIR was mounted on a calibrated two-axis rotational translator. The rotational translator was used to angulary slew the FLIR so that the slit image was moved from one edge of the FOV to the other. The angular difference between the two positions was determined to be the FLIR's FOV. An experimenter using a TV monitor determined when the "edge" of the format was reached. This procedure was accomplished for both horizontal and vertical dimensions.

3. RESULTS TABLE 1. HORIZONTAL AND VERTICAL FOV

		White Camera	Black Camera
100mm,	HFOV	7.46°	7.44°
100mm,	VFOV	5.55°	5.55°
299mm,	HFOV	2.56°	
299mm,	VFÓV	1.91°	

SECTION V MINIMUM RESOLVABLE TEMPERATURE (MRT)

1. OBJECTIVE

To determine the FLIR delta temperature sensitivity with respect to angular resolution.

2. TEST METHODOLOGY AND PROCEDURES

The sensors were operated as follows: White camera - Correct function, Gain = 8. Fine gain = Max, Offset = 50% of saturation; Black camera - 3 Run, Attenuation = 0 dbv, Offset = 50% of saturation.

A series of seven-to-one aspect ratio (bar height to bar width) four-bar patterns were used as targets for these MRT tests. The patterns were oriented vertically for the horizontal resolution tests and oriented horizontally for the vertical resolution tests. The patterns were positioned at the center of format. Display contrast and brightness controls were used to adjust for best viewing. One observer was used for these MRT measurements. The test procedures were as follows: frequency 4-bar pattern was inserted at the collimator focal plane. The delta temperature was initially adjusted to zero so that the pattern could not be detected by the observer. The delta temperature was slowly incremented upward (hot bars with respect to background) until the 4-bar pattern was just recognizable by the observer. This delta temperature was recorded. The delta temperature was returned to zero degrees and slowly incremented downward (cold bars with respect to background) until the 4-bar pattern was again just recognizable by the observer. An average of the positive and negative delta temperatures was used as the uncorrected MRT. This procedures was repeated for all patterns and orientations. A sourcecollimator correction factor of 0.94 was used to adjust this MRT data for final results.

HMRT = Horizontal MRT
VMRT = Vertical MRT

3. RESULTS

TABLE 2. HORIZOHTAL AND VERTICAL MRT RESULTS

Angular Resolution cy/mr	299mm White Camera HMRT °C	299mm White Camera VMRT °C	100mm White Camera HMRT °C	100mm White Camera VMRT °C	100mm Black Camera HMAT °C	100mm Black Camera VMRT °C
0.25	0.02	0.02	0.02	0.02	E0.0	0 .03
0.50	0.03	0.03	0.07	0.04	0.05	0.05
0.75	0.04	0.03	-	0.05	-	0.09
1.0	0.05	0.04	_	0.06	_	0.14
1.5	0.07	0.04	_	-	-	-
2.0	0.18	0.08		_		- 1
2.5	-	0.09	_	_	_	-
3.0	_	0.15	_	_		-
3.5	_	0.20	_	-	- ,	-
4.0	_	0.20	_	_	-	-
4.5	-	-	_	_	-	-
5						

Using the horizontal FOV data and 160 detectors per line, a design resolution of 1.79 cy/mr for the 299mm lens and 0.61 cy/mr for the 100mm lens can be calculated. These results are reasonably close to the measured horizontal MRT results in Table 2. The vertical design resolution for 244 detectors per vertical FOV is 3.66 cy/mr and 1.26 cy/mr respectively for the 299mm and 100mm lenses. These results also reasonably match the measured vertical MRT cutoff results.

The vertical MRTs are already better than the horizontal MRTs for all except the lowest angular resolution. At the lower resolutions the horizontal and vertical MRTs were about equal, but as resolution increases the larger number of vertical detectors results in a better vertical MRT performance.

The white camera has a clearly superior vertical MRT over the black camera. The horizontal MRT comparisons are inconclusive since they cross over and only two data points are available for each camera. This cross-over is supported by the MRT and signal-to-noise data. The signal-to-noise for low frequencies is much better for the white camera than the black camera. The MTF, however, appears to be better for the black camera. This combination could explain the cross-over experienced in the horizontal MRT data.

SECTION VI HORIZONTAL MODULATION TRANSFER FUNCTION

1. OBJECTIVE

To determine the normalized amplitude modulation response of the FLIR with respect angular resolution. Normally, a slit response will give the system MTF in the scanner direction, however, these cameras use staring arrays with less than 100% fill factors. This results in a better MTF than expected because the fill factor is not taken into account. In the future, square wave response measurements will be used to replace the slit method for staring arrays.

2. TEST METHODOLOGY AND PROCEDURES

The sensors were operated as follows: White camera - Correct functions, Gain = 1, Fine gain = Max, Offset = 30% of saturation; Black camera - 3 Run, Attenuation = 0 db, Offset = 30% of saturation.

A vertical slit pattern of 15.75 microradians in width for the 299mm lens and 66.25 microradians in width for the 100mm lens was positioned at the collimator focal plane and centered both in the imager's format and on a vertical array of detectors. The delta temperature of the slit was set so that a strong video signal was observed on the digitizer. A digitally averaged sample of a horizontal video line through the slit was taken and stored on magnetic tape. The delta temperature was incremented downward and another video sample taken and stored. This procedure was repeated until zero delta temperature was reached.

A plot of the peak to peak slit video signal vs. the delta temperature gives an indication of the linear operating range of the sensor with this particular test setup. The maximum peak to peak slit video signal within the linear operating range is selected as the representative sensor line spread function.

The zero delta temperature signal is used as the "background" and is subtracted from the selected video line spread function to remove fixed pattern non-uniformities. A Fourier Transform is performed on the resultant line spread function and the final MTF plotted.

3. RESULTS

To determine the MTF in cy/mr, the active line time (52.6 microseconds) and the horizontal FOVs (44.7 and 130 milliradians) were measured.

The black camera has a significantly better "MTF" than the white camera. Since the detectors are essentially indentical,

the difference is probably due primarily to optics and electronics.

SECTION VII SIGNAL AND NOISE

1. OBJECTIVE

To determine FLIR video signal and noise characteristics as a function of temperature and radiance inputs.

2. TEST METHODOLOGY AND PROCEDURES

The imagers were set up in the following mode: White camera - Correct function, Gain = 1,2,4,8, Fine gain = Max, Offset = 40% of saturation; Black Camera - 3 Run, Attenuation = 0,10,20, and 30 db, Offset = 40% of saturation.

We inserted 12.0 (for 100mm) and 4.0 (for 299mm) milliradian square aperture patterns at the collimator focal plane and centered in the imager's FOV. The source/pattern delta temperature was set to a selected negative temperature normally determined by the clipping of the signal at the video black level. A video line through the center of the pattern was sampled and stored for later data reduction. Average signal and noise (standard deviation) on a pixel by pixel basis were recorded. The delta temperature was incremented upward to another selected setting and another video sample digitized and stored. This procedure was repeated until the signal began clipping at the high end of the video range. This procedure was repeated for all gain modes.

Room ambient temperature ranged between 22°C and 25°C during these tests.

3. RESULTS

The white camera has a Noise Equivalent Delta Temperature (NEDT) about twice as good as the black camera. Most of this advantage is due to lower white camera noise. The NEDT of the white camera with 299mm lens is about 0.08°C vs 0.05 to 0.06°C for the white camera with 100mm lens. The NEDT variation for the white camera is due to the transmission differences between the lenses.

White Camera - 299mm Lens Bkgnd Noise NEDT 0.6 5 Dec 86 Gain = 8Bkgnd Noise Equivalent Delta Gain= 4 0.5 Gain= 0.4 0.3 0.2 0.1 0.0 -20.0 -10.0 0.0 10.0 20.0

Delta Temp - Degrees C Plot #4

Bkgnd Noise NEDT

-20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0

Delta Temp - Degrees C

BLACK CAMERA - 100mm Lens

Bkgnd Noise NEDT

Signal Transfer Function

-20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 Delta Temp - Degrees C

Plot #9

5 Dec 86 Room Temp = 22.7 Deg C

BASIC DATA

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	12 22	22.70	20 55	35 03	2.88	19.77	-111.85	-16.30
2	13.33 18.00	22.70	30.55 33.17	35.93 35.93	3.27	20.68	- 83.60	-13.24
						20.00	_	-12.48
3	19.88	22.70	34.26	35.93	3.89		- 65.07	
4	20.44	22.70	34.59	35.93	5.02	20.00	- 53.13	-13.34
5	21.00	22.70	34.92	35.93	6.19	20.36	- 33.82	-10.29
6	21.29	22.70	35.09	35.93	7.21	20.67	- 29.48	- 10.28
7	21.57	22.70	35.26	35.93	9.11	20.00	- 21.40	- 9.75
8	21.85	22.70	35.43	35.93	9.50	20.70	-16.67	-7. 65
9	22.13	22.70	35.59	35.93	16.03	19.76	- 8.53	- 6.92
10	22.41	22.70	35.76	35.93	19.06	21.43	- 3.79	- 3.38
11	22.98	22.70	36.10	35.93	18.04	20.10	4.11	3.69
12	23.26	22.70	36.28	35.93	18.58	20.77	7.26	6.50
13	23.54	22.70	36.45	35.93	14.53	20.06	12.94	9.37
14	23.82	22.70	36.62	35.93	11.68	20.11	20,61	11.98
15	24.11	22.70	36.79	35.93	7.07	19.05	33.45	12.42
16	24.39	22.70	36.96	35.93	6.29	20.72	44.81	13.60
17	24.95	22.70	37.31	35.93	5.21	20.71	58.13	14.63
18	25.52	22.70	37.66	35.93	3.93	19.58	73.55	14.75
19	27.40	22.70	38.84	35.93	3.37	20.42	107.18	17.70
20	32.12	22.70	41.90	35.93	3.27	20.21	107.25	17.34

WHITE CAMERA--299mm LENS TABLE 3. GAIN = 8

5 Dec 86 Room Temp = 22.7 Deg C

BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-9.40	- 322.25	-2.65	324.38	0.08	0.58	34.28	-22.82
2	-4.70	-273.76	17.00	295.53	0.06	0.36	58.25	-18.49
3	- 2.82	-252.97	38.36	296.11	0.04	0.23	89.71	-17.33
4	- 2.26	- 266.85	57.09	328.72	0.04	0.17	118.28	- 18.30
5	-1.69	- 209.53	71.54	285.85	0.05	0.16	123.84	- 13.92
6	-1.41	- 212.45	94.61	311.85	0.05	0.14	150.68	-13.73
7	-1.1 3	-194.96	117.13	316.87	0.05	0.12	172.83	- 12.54
8	0.85	- 158.32	131.66	294.77	0.05	0.11	187.14	- 9.83
9	0.56	-136.74	191.55	333.07	0.07	0.08	242.45	- 7.60
10	0.28	- 72.33	224.98	302.09	0.07	0.08	256.50	- 3.57
11	0.28	74.12	406.40	337.06	0.07	0.08	262.84	3.88
12	0.56	134.93	426.29	296.14	0.08	0.09	239.24	6.85
13	0.85	187.96	504.13	320.95	0.07	0.09	222.18	10.73
14	1.13	240.87	531.10	295.01	0.05	0.09	213.53	14.65
15	1.41	236.58	574.57	342.77	0.04	0.11	167.79	16.46
16	1.69	281.67	583.02	306.12	0.04	0.12	166.47	18.40
17	2.26	302.99	610.05	311.84	0.04	0.15	134.30	20.06
18	2.82	288.86	631.00	346.92	0.04	0.19	102.43	20.45
19	4.70	361.44	662.94	306.28	0.04	0.27	76.90	24.70
20	9.40	350.55	686.68	340.91	0.09	0.54	37.29	24.21

TABLE 3. CONTINUATION

5 Dec 86 Room Temp = 22.8 Deg C

BASIC DATA

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	8.72	22.75	28.10	35.96	3.27 3.20	10.70 11.23	-88.57 -89.57	-27.10 -25.53
2	13.38	22.75	30.58	35.96	3.43	11.42	- 72.54	-21.81
3	17.12	22.75	32.66	35.96		10.94	- 73.07	-20.87
4	18.24	22.75	33.31	35.96	3.12		- 58.36	-20.76
5	18.80	22.75	33.63	35.96	3.92	11.01		-20.77
6	19.37	22.75	33.96	35.96	4.13	11.09	- 55.81	-18.14
7	19.93	22.75	34.29	35.96	4.67	11.20	- 43.55	
8	. 20.49	22.75	34.62	35.96	4.67	11.09	-38.34	-16.1 6
9	21.05	22.75	34.95	35.96	5.46	10.73	-29.16	-14.8 5
10	21.62	22.75	35.29	35.96	7.69	11.24	- 17.53	-11.99
11	22.18	22.75	35.62	35.96	9.65	11.05	-8.01	-7.00
12	23.31	22.75	36.31	35.96	10.34	10.93	7.06	6.68
13	23.87	22.75	36.65	35.96	9.54	10.84	15.22	13.40
14	24.44	22.75	37.00	35.96	7.36	11.10	26.60	17.64
15	25.00	22.75	37.34	35.96	5.88	11.42	41.67	21.44
16	25.57	22.75	37.69	35.96	5.24	10.74	53.18	25.94
17	26.13	22.75	38.05	35.96	4.35	10.74	68.09	27.56
18	26.70	22.75	38.40	35.96	3.84	11.30	77.38	26.27
19	27.26	22.75	38.76	35.96	3.65	11.42	83.88	26.82
		22.75	39.48	35.96	3.47	11.27	97.94	30.17
20	28.40	22.75	41.94	35.96	3.18	11.40	120.73	33.64
21	32.17			35.96	3.21	10.55	116.67	35.53
22	36.90	22.75	45 • 15	37.20	٠ - ٠ .			

WHITE CAMERA--299mm LENS TABLE 4. GAIN = 4 5 Dec 86 Room Temp = 22.8 Deg C BASIC DATA

DATA	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
SETS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	-14.10 -9.40 -5.64 -4.51 -3.95 -3.38 -2.82 -2.26 -1.69 -1.13 -0.56 0.56 1.13 1.69 2.82 3.38 3.95 4.51 5.64 9.40	-289.96 -286.70 -249.14 -228.28 -228.57 -230.39 -203.45 -179.17 -159.37 -134.87 -77.35 73.02 145.27 195.84 244.90 278.61 296.14 296.94 306.34 339.93 383.36 375.00	6.56 19.69 38.20 47.89 57.99 74.77 86.44 100.21 124.46 166.41 222.34 369.52 451.52 518.85 544.30 568.26 588.99 605.32 617.15 633.19 669.22 693.35	295.48 305.35 286.30 275.13 285.51 304.12 288.85 278.34 282.79 300.24 298.65 295.47 305.21 321.96 298.37 288.62 291.81 307.33 309.78 292.22 284.82 307.31	0.16 0.10 0.08 0.06 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.07 0.08 0.07 0.05 0.05 0.05 0.05 0.05	0.52 0.37 0.26 0.22 0.19 0.16 0.14 0.11 0.09 0.08 0.08 0.08 0.10 0.11 0.11 0.12 0.15 0.17 0.19 0.28 0.40	20.56 30.50 44.17 50.59 57.89 68.08 72.15 79.42 94.19 119.56 137.14 129.46 128.78 115.75 108.55 98.80 87.51 75.21 67.89 60.27 40.78 26.60	-36.65 -34.73 -29.54 -28.37 -27.66 -27.53 -23.70 -21.05 -18.72 -14.00 -7.46 6.86 14.23 20.80 26.96 32.97 36.13 35.18 36.13 40.78 45.83 48.07
22	14.10	3().00						

TABLE 4. CONTINUATION

5 Dec 86 Room Temp = 22.8 Deg C

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	4.13	22.80	25.79	35.99	3.15	6.46	- 77.96	- 38.02
2	8.77	22.80	28.13	35.99	3.30	6.62	- 71.19	- 35.52
3	11.56	22.80	29.60	35.99	3.16	6.15	-73.47	-37.74
4	13.80	22.80	30.81	35.99	3.40	6.67	-66.21	- 33.75
5	16.04	22.80	32.06	35.99	3.48	6.81	- 54.85	- 28.05
6	17.17	22.80	32.69	35.99	3.76	6.39	-48.41	- 28.53
7	18.29	22.80	33.34	35.99	3.93	6.31	- 44.05	- 27.43
8	19.42	22.80	33.99	35.99	3.98	6.35	- 38.63	-24.22
9	20.54	22.80	34.65	35.99	4.29	6.48	- 27.70	- 18.35
10	21.67	22.80	35.32	35.99	5.44	6.40	-13.87	-11.79
11	23.92	22.80	36.68	35.99	6.11	6.22	12.24	12.02
12	25.05	22.80	37.37	35.99	5.76	6.42	25.46	22.81
13	26.18	22.80	38.08	35.99	4.94	6.31	42.71	33.42
14	27.31	22.80	38.79	35.99	4.16	6.51	60.79	38.88
15	28.45	22.80	39.51	35.99	3.56	6.52	75.59	41.36
16	29.58	22.80	40.24	35.99	3.51	6.40	85.58	46.99
17	31.84	22.80	41.72	35.99	3.30	6.81	99.33	48.17
18	34.11	22.80	43.24	35.99	3.21	6.39	103.50	51.98
19	36.95	22.80	45.18	35.99	3.22	6.37	110.46	55.79
20	41.70	22.80	48.54	35.99	3.09	6.25	122.07	60.41

WHITE CAMERA--299mm LENS TABLE 5. GAIN = 2

5 Dec 86 Room Temp = 22.8 Deg C

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-18.80	-245.40	24.75	269.18	0.24	0.49	13.05	-48.32
2	-14.10	-235.20	33.16	267.39	0.20	0.40	16.68	- 44.95
3	-11.28	-232.21	43.79	275.04	0.15	0.30	20.59	-47.47
4	-9.02	-224.96	56.73	280.72	0.14	0.27	24.93	- 42.52
5	-6.77	-191.12	71.85	262.00	0.12	0.24	28.24	- 35.32
6	- 5.64	-182.17	86.78	267.98	0.12	0.20	32.30	- 34.76
7	-4.51	-173.00	106.44	278.47	0.10	0.16	38.34	- 32.93
8	- 3.38	-153.82	129.40	282.25	0.09	0.14	45.45	- 29.02
9	- 2.26	-118.92	150.29	268.25	0.08	0.12	52.71	-21.64
10	-1.13	-75.45	193.15	267.63	0.08	0.10	66.89	-12.70
11	1.13	74.76	373.10	297.36	0.09	0.09	66.28	12.13
12	2.26	146.51	432.27	284.80	0.09	0.10	64.94	24.03
13	3.38	210.86	492.67	280.84	0.08	0.10	62.31	37.22
14	4.51	253.14	540.23	286.12	0.07	0.12	56.10	46.32
15	5.64	269.48	574.58	304.12	0.07	0.14	47.78	51.31
16	6.77	300.54	590.48	283.97	0.08	0.14	44.41	58.25
17	9.02	328.26	618.92	289.69	0.09	0.19	36.38	61.30
18	11.28	332.19	638.87	305.71	0.11	0.22	29.45	65.69
19	14.10	355.18	655.66	299.51	0.13	0.25	25.19	70.42
20	18.80	377.29	674.79	296.53	0.15	0.31	20.07	76.57

TABLE 5. CONTINUATION

5 Dec 86 Room Temp = 23.0 Deg C

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	4.33	23.00	25.89	36.12	3.36	4.68	-66.42	-47.68
2	6.19	23.00	26.81	36.12	3.26	4.28	-68.79	-52.43
3	8.04	23.00	27.75	36.12	3.11	4.86	- 67.37	- 43.12
4	9.90	23.00	28.72	36.12	3.48	4.48	- 56 . 13	- 43.54
5	11.76	23.00	29.71	36.12	3.13	4.88	- 60.62	- 38.87
6	13.63	23.00	30.72	36.12	3.67	4.36	-49.91	-42.08
7	15.50	23.00	31.75	36.12	3.31	4.62	- 48.75	-34.88
8	17.37	23.00	32.81	36.12	3.47	4.59	- 39.72	-30.06
9	19.24	23.00	33.89	36.12	3.91	4.77	- 28.67	- 23.53
10	21.12	23.00	34.99	36.12	4.54	4.39	-14.31	-14.81
11	24.88	23.00	37.27	36.12	4.19	4.67	14.86	13.33
12	26.76	23.00	38.44	36.12	4.20	4.38	30.65	29.35
13	28.65	23.00	39.64	36.12	4.07	4.57	45.95	40.99
14	30.53	23.00	40.86	36.12	3.52	4.62	67.97	51.84
15	32.42	23.00	42.10	36.12	3.48	4.35	75.91	60.73
16	34.31	23.00	43.37	36.12	3.42	4.81	81.61	57.95
17	36.21	23.00	44.66	36.12	3.15	4.68	96.61	65.15
18	38.10	23.00	45.98	36.12	3.14	4.39	101.90	72.87
19	40.00	23.00	47.32	36.12	2.93	4.42	111.40	73.88
20	41.89	23.00	48.69	36.12	3.23	4.79	101.21	68.23

WHITE CAMERA--299mm LENS TABLE 6. GAIN = 1

5 Dec 86 Room Temp = 23.0 Deg C

BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-18.80	-223.31	65.32	288.45	0.28	0.39	11.88	-54.77
2	- 16.92	-224.47	73.74	298.05	0.25	0.32	13.27	- 58.97
3	-15.04	-209.48	78.72	288.03	0.22	0.35	13.93	- 51.36
4	-13.16	-195.09	85.10	280.02	0.23	0.30	14.82	-48.65
5	-11.28	-189.84	97.93	287.59	0.19	0.29	16.83	-46.28
6	-9.40	-183.33	114.57	297.72	0.19	0.22	19.50	-45.50
7	- 7.52	-161.17	127.01	288.01	0.15	0.22	21.43	-40.12
8	- 5.64	-137.99	143.96	281.78	0.14	0.19	24.47	- 33.90
9	- 3.76	-112.22	177.93	289.99	0.13	0.16	29.85	- 25.73
10	-1.88	- 65.03	230.84	295.69	0.13	0.13	34.59	-14.55
11	1.88	62.33	348.10	285.60	0.13	0.14	33.15	14.04
12	3.76	128.57	423.17	294.43	0.12	0.13	34.19	29.97
13	5.64	187.16	489.09	301.75	0.12	0.14	33.19	43.26
14	7.52	239.50	525.93	286.26	0.11	0.15	31.85	58.29
15	9.40	264.08	562.46	298.21	0.12	0.15	28.09	67.06
16	11.28	278.94	586.29	307.18	0.14	0.19	24.73	66.82
17	13.16	304.77	600.93	295.99	0.14	0.20	23.16	76.39
18	15.04	319.86	615.59	295.56	0.15	0.21	21.27	83.83
19	16.92	326.53	627.15	300.44	0.15	0.23	19.30	87.07
20	18.80	326.97	637.08	309.94	0.19	0.28	17.39	80.01

TABLE 6. CONTINUATION

2 Dec 86 Room Temp = 23.7 Deg C

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	20.88	23.70	34.85	36.54	3.49	22.52	-90.49	-14.03
2	21.16	23.70	35.01	36.54	3.63	21.91	- 75.56	-12.53
3	21,44	23.70	35.18	36.54	3.52	23.51	- 82.55	-12.37
4	21.72	23.70	35.35	36.54	4.07	23.05	- 73.55	-12.97
5	22.00	23.70	35.52	36.54	4.16	21.06	-58.84	-11.61
6	22.29	23.70	35.69	36.54	5.01	21.52	- 57.43	-13.37
7	22.57	23.70	35.86	36.54	5.73	21.70	-37.84	-9.98
8	22.85	23.70	36.03	36.54	7.87	21.75	- 27.79	-10.06
9	23.13	23.70	36.20	36.54	12.59	30.89	- 15.60	- 6.36
10	23.41	23.70	36.37	36.54	12.53	20.19	- 8.06	- 5.00
11	23.98	23.70	36.71	36.54	20.02	22.30	5.56	4.99
12	24.26	23.70	36.89	36.54	16.36	21.48	13.61	10.36
13	24.54	23.70	37.06	36.54	9.68	20.22	26.89	12.88
14	24.82	23.70	37.23	36.54	9.12	19.39	39.81	18.73
15	25.11	23.70	37.41	36.54	5.92	22.70	61.56	16.06
16	25.39	23.70	37.58	36.54	4.95	21.99	77.50	17.46
17	25.67	23.70	37.76	36.54	4.43	17.59	99.48	25.07
18	25.95	23.70	37.93	36.54	3.96	20.27	99.87	19.52
19	26.24	23.70	38.11	36.54	3.81	17.85	120.89	25.78
20	26.52	23.70	38.29	36.54	3.80	17.63	122.68	26.44

WHITE CAMERA--100mm LENS TABLE 7. GAIN = 8

2 Dec 86 Room Temp = 23.7 Deg C

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	- 2.82	- 315.97	20.99	335.73	0.03	0.20	112.05	-19.61
2	-2.54	-274.56	22.52	295.85	0.03	0.20	108.18	-17.49
3	-2.26	-290.87	28.79	318.43	0.03	0.18	128.93	-17.30
4	-1.97	- 299.10	35.66	333.53	0.03	0.15	151.52	-18.07
5	-1.69	-244.52	39.94	283.23	0.03	0.15	144.51	-16.11
6	-1.41	-287.71	57.27	343.75	0.02	0.11	204.05	-18.41
7	-1.13	-216.71	63.10	278.58	0.03	0.11	192.11	-13.65
8	-0.85	-218.70	96.77	314.25	0.03	0.08	258.51	-13.37
9	-0.56	-196.38	134.28	329.42	0.04	0.09	348.19	- 8.33
10	- 0,28	-100.99	157.37	257.13	0.03	0.06	358.13	-6.01
11	0.28	111.34	372.16	259.59	0.05	0.06	394.84	5.25
12	0.56	222.65	481.19	257.30	0.04	0.05	394.77	11.66
13	0.85	260.33	558.82	297.26	0.03	0.07	307.72	16.42
14	1.13	363.13	569.56	205.21	0.03	0.06	321.92	23.97
15	1.41	364.58	604.49	238.68	0.02	0.09	258.57	21.98
16	1.69	383.92	620.15	235.00	0.02	0.10	226.90	24.08
17	1.97	441.04	630.62	188.35	0.02	0.08	223.42	34.38
18	2,26	395.78	646.08	249.06	0.02	0.12	175.44	27.09
19	2.54	460.10	651.21	189.87	0.02	0.10	181.29	35.65
20	2.82	466.11	660.35	193.01	0.02	0.11	165.29	36.55

TABLE 7. CONTINUATION

2 Dec 86 Room Temp = 23.6 Deg C BASIC DATA

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	12.36	23.60	30.03	36.48	3.48	6.60	-88.34	- 46.54
2	13.48	23.60	30.64	36.48	3.27	6.42	-97.48	- 49.63
3	14.60	23.60	31.25	36.48	3.42	6.90	-84.18	-41.75
ے 4	15.72	23.60	31.88	36.48	3.66	6.84	- 79.39	-42.44
	16.84	23.60	32.51	36.48	3.37	7.55	-84.17	- 37 •57
5	17.97	23.60	33.15	36.48	3.68	6.90	-69.49	-37.03
6	19.09	23.60	33.80	36.48	3.55	6.67	- 72.03	-38.29
7	-	23.60	34.46	36.48	3.84	6.56	-54.60	-31.98
8	20.21	23.60	35.12	36.48	4.65	6.91	-38.86	-26.14
9	21.34	23.60	35.80	36.48	6.35	7.16	-18.28	-16.23
10	22.47	23.60	36.14	36.48	6.31	6.56	- 8.85	-8.52
11	23.03	23.60	36.82	36.48	6.68	7.21	8.69	8.05
12	24.16	23.60	37.17	36.48	6.10	7.08	19.27	16.60
13	24.72		37.87	36.48	4.79	6.69	41.40	29.64
14	25.85	23.60	38.58	36.48	4.20	6.70	63.22	39.57
15	26.98	23.60		36.48	3.77	7.54	73.79	36.93
16	28.11	23.60	39.30	36.48	3.48	7.39	85.43	40.23
17	29.24	23.60	40.02	36.48	3.64	7.00	88.26	45.82
18	30.38	23.60	40.76	36.48	3.25	6.73	96.31	46.48
19	31.51	23.60	41.50		3.52	6.95	98.35	49.82
20	32.64	23.60	42.25	36.48	3.57	6.82	95.14	49.89
21	33.78	23.60	43.01	36.48	3.32	7.26	101.99	46.62
22	34.91	23.60	43.78	36.48	3.34	1.20		

WHITE CAMERA--100mm LENS TABLE 8. GAIN = 2

2 Dec 86 Room Temp = 23.6 Deg C

BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-11.28	-307.23	25.81	331.85	0.13	0.24	27.24	- 58.23
2	-10.15	-318.76	31.03	348.60	0.10	0.20	31.40	-62.54
3	-9.02	-288.14	33.27	320.23	0.11	0.22	31.93	- 52.90
4	-7.90	-290.31	40.71	329.84	0.10	0.19	36.77	- 52.93
5	-6.77	-283.59	49.61	332.02	0.08	0.18	41.90	-48.52
6	-5.64	-255.49	58.90	313.21	0.08	0.15	45.30	-46.22
7	-4.51	-255.46	81.59	335.86	0.06	0.12	56.62	-47.81
8	-3.38	-209.90	101.62	310.34	0.06	0.11	62.03	- 39.03
9	-2.26	-180.75	142.25	321.82	0.06	0.09	80.12	- 30.67
10	-1.13	-116.10	212.58	327.51	0.06	0.07	102.93	-17.16
11	-0.56	-55.89	253.76	308.46	0.06	0.07	99.09	-8.68
12	0.56	58.08	376.84	317.58	0.06	0.07	102.98	8.35
13	1.13	117.59	436.95	318.18	0.06	0.07	104.25	17.78
14	2.26	198.29	530.16	330.69	0.05	0.08	87.90	34.00
15	3.38	265.30	572.39	305.90	0.05	0.09	78.40	47.43
16	4.51	278.32	604.61	325.11	0.06	0.12	61.69	46.70
17	5.64	297.20	623.57	325.19	0.07	0.14	52.69	51.48
18	6.77	320.84	638,50	316.48	0.08	0.15	47.41	57.51
19	7.90	312.83	650.59	336.58	0.08	0.17	39.62	59.20
20	9.02	346.11	660.26	312.97	0.09	0.18	38.35	62.85
21	10.15	340.09	669.54	328.27	0.11	0.20	33.50	62.49
22	11.28	338.38	675.48	335.92	0.11	0.24	30.00	59.96

TABLE 8. CONTINUATION

2 Dec 86 Room Temp = 23.6 Deg C BASIC DATA

	ABS TGT	ABS BKG	ABS TGT	ABS BKG	TARGET	BKGND		
DATA	TEMP	TEMP	8-12 RAD	8-12 RAD	NOISE	NOISE	DS/TN	DS/BN
SETS	DEG C	DEG C	W/M2SR	W/M2SR	<u> </u>	<u></u>	RATIO	RATIO
1	4.93	23.60	26.19	36.48	3.64	5.35	-80.44	-54.75
2	6.79	23,60	27.11	36.48	3.58	4.87	-80.42	- 59.16
3	8.64	23.60	28.06	36.48	3.36	5.18	-81.81	-53.11
4	10.50	23.60	29.03	36.48	3.61	4.75	-77.09	-58.51
5	12.36	23.60	30.03	36.48	3.72	5.38	-69.19	-47.86
6	14.23	23.60	31.05	36.48	3.51	4.95	- 70.32	-49.77
7	16.09	23.60	32.09	36.48	3.63	5.64	-64.84	-41.80
8	17.97	23.60	33.15	36.48	4.04	5.24	- 50 . 96	-39.25
9	19.84	23.60	34.24	36.48	4.35	5.66	-40.50	- 31.09
10	21.72	23.60	35.35	36.48	4.77	5.05	- 22.85	-21.57
11	25.48	23.60	37.64	36.48	4.71	4.94	21.08	20.10
12	27.36	23.60	38.82	36.48	4.34	5.16	41.93	35.30
13	29.24	23.60	40.04	36.48	3.77	5.12	64.97	47.82
14	31.13	23.60	41.25	36.48	3.42	5.06	77.83	52.56
15	33.02	23.60	42.50	36.48	3.54	5.08	81.09	56.54
16	34.91	23.60	43.78	36.48	3.35	5.07	92.61	61.21
17	36.81	23.60	45.08	36.48	3.27	5.18	94.03	59.45
18	38.70	23.60	46.40	36.48	3.50	5.12	94.18	64.40
19	40.60	23.60	47.75	36.48	3.56	4.97	94.42	67.55
20	42.49	23.60	49.12	36.48	3.34	4.93	98.89	66.99

WHITE CAMERA--100mm LENS TABLE 9. GAIN = 1

2 Dec 86 Room Temp = 23.6 Deg C

BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-18.80	- 292.81	38.79	330.87	0.23	0.34	15.57	-64.01
2	-16.92	-287.90	43.15	330.31	0.21	0.29	17.02	- 67.39
3	-15.04	-274.97	47.05	321.29	0.18	0.28	18.28	- 63.00
4	- 13.16	- 278.14	55.70	333.11	0.17	0.22	21.14	- 65.91
5	-11.28	- 257.29	63.04	319.60	0.16	0.24	22.81	- 55.66
6	- 9.40	-246.47	76.99	322.73	0.13	0.19	26.22	- 57.45
7	- 7.52	- 235.60	97.38	332.25	0.12	0.18	31.33	- 49.68
8	-5.64	-205.83	119.67	324.77	0.11	0.14	36.49	- 43.90
9	-3.7 6	-176.11	154.33	329.71	0.09	0.12	46.84	-34.88
10	-1.88	-108.90	207.46	315.63	0.08	0.09	57.93	- 22.18
11	1.88	99.29	425.97	325.96	0.09	0.09	52.81	20.57
12	3.76	182.13	512.61	329.76	0.09	0.11	48.44	38.19
13	5.64	244.97	560.33	314.63	0.09	0.12	43.43	54.47
14	7.52	266.10	596.33	329.50	0.10	0.14	35.39	61.60
15	9.40	287.05	616.88	329.11	0.12	0.17	30.54	65.59
16	11.28	310.30	633.10	322.07	0.12	0.18	27.51	72.21
17	13.16	307.85	646.84	338.25	0.14	0.22	23.39	71.06
18	15.04	329.69	656.74	326.32	0.16	0.23	21.92	75.18
19	16.92	335.79	667.18	330.67	0.18	0.25	19.85	77.69
20	18.80	330.39	674.58	343.46	0.19	0.28	17.57	78.44

TABLE 9. CONTINUATION

10 Dec 86 BASIC DATA Room Temp = 22.6 Deg C

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	20.72	22.60	34.75	35.87	1.84	39.47	-177.41	-8.28
2	21.19	22.60	35.03	35.87	3.29	40.32	- 98.86	-8.07
3	21.47	22.60	35.20	35.87	12.46	39.09	-25.41	-8.10
4	21.75	22.60	35.37	35.87	33.09	39.27	-8.36	- 7.04
5	22.03	22.60	35.53	35.87	36.15	38.90	- 5.03	-4.67
6	22.31	22.60	35.70	35.87	37.99	39.45	- 2.60	- 2.50
7	22.88	22.60	36.04	35.87	36.66	40.44	2.75	2.49
8	23.16	22.60	36.21	35.87	31.10	39.88	5.66	4.42
9	23.44	22.60	36.39	35.87	22.63	37.44	10.47	6.33
10	23.72	22.60	36.56	35.87	16.28	41.01	19.34	7.68
11	24.01	22.60	36.73	35.87	10.25	38.17	31.36	8.42
12	24.48	22.60	37.02	35.87	6.81	41.10	53.57	8.88
13	24.95	22.60	37.31	35.87	5.08	38.79	76.01	9.95
14	25.42	22.60	37.60	35.87	4.37	40.36	91.97	9.95
15	26.36	22.60	38.19	35.87	3.06	39.45	136.56	10.59
16	28.25	22.60	39.38	35.87	2.67	39.01	184.93	12.64

BLACK CAMERA--100mm LENS TABLE 10. ATTENUATION = Odb

10	De	ec	86					
Roc	m	Τe	amo	=	22.6	Deg	С	

BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-1.88	-326.84	-55.50	275.14	0.01	0.23	173.85	-11.70
2	-1.41	- 325.25	-54.70	274.35	0.01	0.17	230.68	- 11.37
3	- 1.13	- 316.47	- 41.72	278.54	0.04	0.14	280.55	- 10.91
4	- 0.85	- 276.63	29.28	309.71	0.10	0.12	326.98	- 7.62
5	-0.56	-181.77	81.08	266.66	0.11	0.12	322.29	-4.84
6	-0.28	- 98.61	188.47	290.88	0.11	0.11	349.67	-2.55
7	0.28	100.84	377.93	280.89	0.10	0.11	357.58	2.61
8	0.56	176.07	450.24	277.97	0.10	0.13	312.18	4.92
9	0.85	236.92	545.81	312.69	0.08	0.13	280.04	7.66
10	1.13	314.95	583.89	272.75	0.06	0.15	279.21	10.09
11	1.41	321.53	617.20	299.47	0.04	0.17	228.04	11.50
12	1.88	365.04	655.41	294.17	0.04	0.21	194.17	12.39
13	2.35	386.13	675.86	293.52	0.03	0.24	164.31	13.96
14	2.82	401.45	693.71	296.06	0.03	0.28	142.36	13.99
15	3.76	417.75	719.65	305.69	0.03	0.36	111.10	14.93
16	5.64	493.01	755.57	266.36	0.03	0.45	87.41	17.83

TABLE . CONTINUATION

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE	BKGND NOISE MV	DS/TN	DS/BN RATIO
3613	DEG C	DEG C	W/MZSK	N/MZSM/W	<u>MV</u>	MV	RATIO	KATIO
1	19.04	22.80	33.77	35.99	2.32	13.38	-131.39	- 22.82
2	19.98	22.80	34.32	35.99	8.71	12.44	- 32.33	-22.6 3
3	20.54	22.80	34.65	35.99	11.40	12.61	-19.53	-17.66
4	21.10	22.80	34.98	35.99	12.16	12.44	-14.47	-14.14
5	21.67	22.80	35.32	35.99	11.72	12.56	-10.17	- 9.49
6	22.23	22.80	35.65	35.99	12.82	12.63	-4.58	-4.66
7	23.36	22.80	36.34	35.99	11.75	12.92	4.82	4.38
8	23.92	22.80	36.68	35.99	11.81	12.04	9.66	9.48
9	24.49	22.80	37.03	35.99	10.87	13.20	16.34	13.46
10	25.05	22.80	37.37	35.99	10.32	12.91	22.80	18.23
11	25.62	22.80	37.72	35.99	7.52	12.84	36.91	21.60
12	26.56	22.80	38.31	35.99	4.70	12.10	68.39	26.58
13	27.50	22.80	38.91	35.99	3.48	12.61	102.24	28.23
14	28.45	22.80	39.51	35.99	3.15	12.43	122.09	30.95
15	30.33	22.80	40.73	35.99	2.45	12.37	166.47	33.00
16	34.11	22.80	43.24	35.99	2.92	12.18	154.60	37.09

BLACK CAMERA-100mm LENS
TABLE 11. ATTENUATION = 10db

10 Dec 86 Room Temp = 22.8 Deg C BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	- 3.76	-305.37	- 36.39	270.66	0.03	0.16	81.22	-31.79
2	- 2.82	- 281.57	- 5.93	277.32	0.09	0.12	99.85	-26.22
3	- 2.26	-222.61	51.14	275.43	0.12	0.13	98.67	- 18.52
4	-1. 69	-175.90	105.34	282.92	0.12	0.12	103.96	-14.30
5	-1.13	- 119.23	157.43	278.34	0.11	0.12	105.70	-9.81
6	-0.56	- 58.79	208.94	269.41	0.12	0.12	104.24	-4.62
7	0.56	56.60	333.28	278.36	0.12	0.13	100.35	4.58
8	1.13	114.14	395.73	283.27	0.12	0.12	101.18	9.57
9	1.69	177.63	448.30	272.34	0.10	0.13	104.98	14.69
10	2.26	235.31	501.52	267.89	0.10	0.12	104.30	20.14
11	2.82	277.45	551.53	275.76	0.08	0.13	98.39	26.36
12	3.76	321.70	603.10	283.08	0.05	0.14	85.56	35.04
13	4.70	356.06	635.05	280.67	0.05	0.17	75.76	38.48
14	5.64	384.69	655.75	272.74	0.05	0.18	68.21	42.43
15	7.52	408.04	686.33	279.97	0.05	0.23	54.26	45.78
16	11.28	451.87	727.59	277.40	0.07	0.30	40.06	51.01

TABLE 11. CONTINUATION

10 Dec 86 Room Temp = 22.8 Deg C

BASIC DATA

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	8.77	22.80	28.13	35.99	1.46	4.33	-208.38	- 70.29
2	11.56	22.80	29.60	35.99	2.68	4.96	-110.09	- 59.36
3	14.36	22.80	31.12	35.99	3.94	4.81	- 61.83	- 50.64
4	17.17	22.80	32.69	35.99	4.58	4.49	- 37.63	- 38.39
5	19.98	22.80	34.32	35.99	4.08	4.59	- 22.30	-19.81
6	25.62	22.80	37.72	35.99	4.37	4.54	22.30	21.48
7	28.45	22.80	39.51	35.99	3.77	4.41	53.00	45.30
8	31.28	22.80	41.34	35.99	2.25	4.31	127.38	66.51
9	34.11	22.80	43.24	35.99	1.76	4.49	192.81	75.46
10	36.95	22.80	45.18	35.99	1.55	4.30	239.09	86.13
11	41.70	22.80	48.54	35.99	0.93	4.38	436.97	92.57
22	51.20	22.80	55.72	35.99	0.90	4.36	483.69	100.19

BLACK CAMERA--100mm LENS
TABLE 12. ATTENUATION = 20db

10 Dec 86 Room Temp = 22.8 Deg C

BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-14.10	-304.15	- 22.60	282.25	0.07	0.20	21.57	-94.19
2	-11.28	-294., 2	-19.66	275.76	0.10	0.19	26.13	- 73.89
3	-8.46	-243.33	32.94	276.97	0.14	0.17	28.76	- 55.40
4	~ 5.64	-172.48	106.23	279.41	0.15	0.15	30.58	-38.00
5	- 2.82	- 91.02	186.51	278.23	0.13	0.14	32.28	- 20.95
6	2.82	97.55	376.63	279.78	0.13	0.13	34.59	21.88
7	5.64	199.65	482.18	283.24	0.11	0.12	35.40	48.69
8	8.46	286.49	568.41	282.62	0.07	0.13	33.86	83.38
9	11.28	338.66	620.36	282.40	0.06	0.15	30.02	99.37
10	14.10	370.29	652.38	282.80	0.06	0.16	26.26	114.59
11	18.80	405.46	687.44	282.68	0.011	0.20	21.57	128.07
12	28.20	436.34	719.11	283.46	0.06	0.28	15.47	138.75

TABLE 12. CONTINUATION

10 Dec 86 Room Temp = 23.0 Deg C

BASIC DATA

DATA SETS	ABS TGT TEMP DEG C	ABS BKG TEMP DEG C	ABS TGT 8-12 RAD W/M2SR	ABS BKG 8-12 RAD W/M2SR	TARGET NOISE MV	BKGND NOISE MV	DS/TN RATIO	DS/BN RATIO
1	4.33	23.00	25.89	36.12	2.83	2.70	-50.84	- 53 . 23
2	8.97	23.00	28.23	36.12	2.64	2.64	-44.18	-44.20
3	13.63	23.00	30.72	36.12	2.25	2.45	-38.04	- 34.85
4	18.30	23.00	33.34	36.12	2.51	2.51	-18.10	-18.14
5	27.70	23.00	39.03	36.12	2.69	2.62	20.35	20.92
6	32.42	23.00	42.10	36.12	2.61	2.48	44.92	47.43
7	37.15	23.00	45.32	36.12	2.23	2.40	84.48	78.41
8	41.89	23.00	48.69	36.12	1.86	2.54	139.30	101.74
9	51.40	23.00	55.88	36.12	1.61	2.57	199.85	124.97
10	60.94	23.00	63.68	36.12	1.61	2 (197.69	122.42
11	70.50	23.00	72.10	36.12	1.62	2.41	915.73	131.52

BLACK CAMERA--100mm LENS TABLE 13. ATTENUATION = 30db

10 Dec 86 Room Temp = 23.0 Deg C

BASIC DATA

DATA SETS	DELTA T DEG C	DELTA SIGNAL MV	PORCH TARGET MV	PORCH BKGND MV	TARGET NOISE NEDT	BKGND NOISE NEDT	GAIN DES/ DEG C	SNR2 DS/NQ2 RATIO
1	-18.80	-143.73	130.91	277.55	0.37	0.35	7.65	- 51.99
2	-14.10	-116.49	157.74	277.14	0.32	0.32	8.26	-44.19
3	-9.40	-85.49	188.29	276.69	0.25	0.27	9.09	-36.34
4	-4.70	-45.45	230.02	278.38	0.26	0.26	9.67	-18.12
5	4.70	54.84	329.54	277.61	0.23	0.22	11.67	20.63
6	9.40	117.41	392.00	277.50	0.21	0.20	12.49	46.12
7	14.10	188.22	464.05	278.75	0.17	0.18	13.35	81.27
8	18.80	258.48	533.91	278.34	0.13	0.18	13.75	116.19
9	28.20	321.38	596.16	277.69	0.14	0.23	11.40	149.85
10	37.60	318.96	595.69	279.64	0.19	0.31	8.48	147.19
11	47.00	317.17	595.13	280.88	0.24	0.36	6.75	154.38

TABLE 13. CONTINUATION

SECTION VIII VIDEO SPECTRAL RESPONSE

1. OBJECTIVE

To determine the FLIR normalized spectral characteristics.

2. TEST METHODOLOGY AND PROCEDURES

The sensors were operated in the following mode: White camera - Correct function, Gain = 1, Fine gain = Max, Offset = 30% of saturation, 100mm lens; Black camera - 3 Run, Attenuation = 30 db, Offset = 2.5% of saturation, 100mm lens.

A high-temperature blackbody source with a circular variable spectral filter (CVSF) was positioned in the collimator focal plane. A slit image of the CVSF was presented to the sensor. A blackbody source temperature was then selected which was within the linear portion of the signal transfer curve and at the same time, provided a sufficiently strong video signal for analysis.

After the blackbody source temperature was selected and set, the CVSF was incremented through its various wavelength settings and a video sample of the slit signal digitized and stored for each wavelength.

Spectral radiance of the blackbody source CVSF collimator combination were calculated for each wavelength to determine the final Normalized Spectral Response values.

Two CVSF filters had to be used to cover the 3-5.5 micrometer range. They overlap between 4.16 and 4.58 micrometers.

3. RESULTS

The Spectral Signal Transfer curves indicate the linearity of the sensors for these tests.

The Spectral Response curves for both the black and white cameras are very similar. The dip in both curves at 4.25 micrometers is due to the atmospheric ${\rm CO}_2$ absorption band.

WHITE CAMERA, 199mm, 3 DEC 86

TABLE 14A RELATIVE SPECTRAL RESPONSE

WAVELENGTH - M	ICRONS SPECT	RAL RESPONSE
***********	*****	*********
3,27	THE USE NAME WHEN A THE TOTAL THE	0,03
3.40	The see that the state of the second control	0.00
W - 53	MAN AND ALL THE SAME FOR THE SAME SAME SAME SAME SAME SAME SAME SAM	0.35
3.66	The title and the says of the last and the title and the says are and the title and the says and	1.00
3,79		0. % 1
3.91	Date the same see and their see and the se	0.78
4.04	Meri meri unga dara dalam te . P kang mana meni dalam mana data puli pagi tan . P Le . dana man	0.63
4,16	Also all the company of the street was all the same and the same and the same age.	0.53
4 - 28	THE LAW COLUMN TO THE WAY TO SEE THE SECOND TO SECOND THE SECOND TO SECOND THE SECOND TH	0.04
4.40	and the gar over an experience of the first over the second of the gar over the contract of	0.23
4.52		0.23
4.58	Man AMP Many case parm par 1 Min many cuts Min Amp Mar 1997 again gas cases rate dan 1987 miles	0.21
4.16		0.46
4 . 2 フ	and the same of th	0 26
4 : 43	The same and consistency of the same and the same and and any other same and	0.74
4.70	The second control of	0.19
4.93	The last special control of the last seed to the last special control of the last seed to t	0.10
5.45	100 miles (100 dec. 100 miles (100 miles (10	O . O f.
5.39	The same particular and the same and the same particular and the same particul	0,10
	4	

TABLE 14B RELATIVE SPECTRAL RESPONSE BLACK CAMERA, 100mm, 9 DEC 86

BLA	CK CAMERA, LUUMA	a, 9 DEC	86
- HAVELENGTU - M	(CRONS	SPECTRA	L RESPONSE
- & ************	****	*****	*****
3.27			0.00
3.40			0.01
3.53.			0.65
3:66	**************************************		1.00
3. 7 9			0,93
3.91		and the transport and the	0.85
4.04		10 dec - 1111 may 2007 1880	0.71
4.16			0 7/1
4.28			0 . (. 4
4 40			0 . 문헌
4.52	The other services and the services are services and the services and the services and the services are services and the services and the services are services are services and the services are services and the services		0:27
4.58			0.25
4.16			0.39
4.27			0.18
4.48		a alan de les papas palen.	0. ମର
4.70		and the same	0.19
4.23			O, ^ ()
5 15			0.00
5 39	**************************************	. 10 4 10 1567 1081	0.00

WHITE CAMERA, 100mm, 3 DEC 86

TABLE 15A

SPECTRAL SIGNAL TRANSFER

DELTA RAD - W.	/M2SR	PELITA	SIGNAL - MV
*****	****	*****	*********
0,00	1500 mass 1000 551 1500 1 11 1000 American 1000 1000 mass 1000 100		n , n)
0.03	The second secon		12.99
0,04			19 60
0.06			25 04
0 . 0 3			34 (0)
0, 11			#B , 20
0.15			67 76
0, 7:0			90,44
0.26			120,00
0. 34			1.62 00
0, 40	The series of th		186.00
0, 45			207.00
0,50	The last to the last to the last to the last the		234,90
0.54			250,00
0.57		/ // AN ANY	266,30
0, 61			287.00
0.66			3(2,00
0, 71			327.00
		•	

TABLE 15B

SPECTUAL SIGNAL TRANSFER

0.00	and the second control of the second control	θ , θ θ
0.15	THE DESCRIPTION WAS ASSESSED. THE CHARLES THE CONTRACT OF THE	40 50
0, 21	### 2177 = 1111 - 14 1111 mile hap and the mile has been perfect that \$150 mile has the mile (2 - 1886)	53.90
0.29		75.00
0.39	may refer that they also your and they may may age that you may get a real or required to	105.00
0.51	The state of the s	132.00
0.64	Make data of the first state of the same o	166 99
0.92		207 00
1.04		263.00
1.33	The same and street as a contract of the same and the Action of the same and the sa	322.00
1.52	Many back Mr. S. Arts	325.00
1.87	the case again the year of the case again the same again that are the case of	323 00
2.24		324.00
2 / 66		324 00

SECTION IX UNIFORMITY

1. OBJECTIVE

To determine the video uniformity of the sensors under various background temperature conditions.

2. TEST METHODOLOGY AND PROCEDURES

The sensors were operated in the following modes: White camera - Gain = 8, Fine gain = Max, 100mm and 299mm lens; Black camera - 3 Run, Attenuation = 0 db, 100mm lens.

A unifrom blackbody source 7 inches square was used to "cap" the camera's lens by placing the source in front of the aperture. Camera focus was kept at infinity. The blackbody source was first set at ambient room temperature. Background subtraction was used for both cameras at this ambient temperature. No background subtraction was used for other blackbody source temperatures. A single horizontal line halfway down the format was digitized and stored as a typical representation of the sensor horizontal uniformity. Vertical uniformity was obtained by sampling one point at the center of each horizontal line for one entire field. This procedure was repeated for all background temperatures.

Room ambient temperatures ranged from about 22 to 23° during these tests.

3. RESULTS

When background subtraction is used, the uniformity is very good; however, without the background subtraction, just the opposite is true. The white camera is very non-uniform, with variations up to 600mv. This equivalent to several degrees celsius variation at the selected gain setting. The non-uniformities were similar for both the 100mm and 299mm lenses. The black camera has much less non-uniformity possibly because of the specially baffled 100mm lens which was designed to reduce flare. An estimate of the non-uniformity as a function of temperature can be made by looking at the signal and noise data and using the temperature gain data to correct voltage to temperature. Plots with temperature non-uniformities were not made because of some non-linearity in the signal transfer data.

UNIFORMITY

Photo #5 - White Camera, 100mm Lens, 22°C Source Temperature, Background Subtraction, Maximum Gain

Photo #6 - White Camera, 100mm Lens, 45°C Source Temperature, No Background Subtraction, Maximum Gain

Photo #7 - White Camera, 100mm Lens, 5°C Source Temperature, No Background Subtraction, Maximum Gain

Photo#8 Black Camera, 100mm Lens, 22°C Source Temperature, No Background Subtraction, Maximum Gain

Photo #9 - Black Camera, 100mm Lens, 45 °C Source Temperature, Background Subtraction, Maximum Gain

Photo #10 - Black Camera, 100mm Lens, 35°C Source Temperature No Background Subtraction, Maximum Gain

Photo #11 - Black Camera, 100mm Lens, 5 °C Source Temperature No Background Subtraction, Maximum Gain

HORIZONTAL VIDEO UNIFORMITY

White Camera, 299mm Lens, Maximum Gain, 5 Dec 86

LINE TIME - MICROSECONDS

VERTICAL VIDEO UNIFORMITY

White Camera, 299mm Lens, Maximum Gain, 5 Dec 86

ONE FIELD - SCAN LINES

HORIZONTAL VIDEO UNIFORMITY

White Camera, 100mm Lens, Maximum Gain, 4 Dec 86

LINE TIME - MICROSECONDS

VERTICAL VIDEO UNIFORMITY

White Camera, 100mm Lens, Maximum Gain, 4 Dec 86

DNE FIELD - SCAN LINES

HORIZONTAL VIDEO UNIFORMITY

Black Camera, 100mm Lens, Maximum Gain, 12 Dec 86

LINE TIME - MICROSECONDS

VERTICAL VIDEO UNIFORMITY

Black Camera, 100mm Lens, Maximum Gain, 12 Dec 86

DNE FIELD - SCAN LINES

SECTION X BLOOMING

1. OBJECTIVE

To determine the amount of image spread from high-temperature targets.

2. TEST METHODOLOGY AND PROCEDURES

The sensors were operated in the following modes: White camera - Gain = 8 and 1, Fine gain = Max and Min, 100mm lens; Black camera - 3 Run, Attenuation = 0 db, 100mm lens.

A 1.65 milliradian circular aperture target was placed in the collimator focal plane and centered in the sensor's FOV. The blackbody source temperature was set to 50°C (room temperature was approximately 22°C) and a horizontal scan line through the center of the image digitized and stored. A vertical sample (one field) through the center of the image was also acquired and stored. The source temperature was incremented upward and the procedure repeated.

3. RESULTS

As can be seen in the photos and plots, image spread is quite substantial. According to RADC most of the spread is due to optical flare. Vertical blooming appears somewhat worse than the horizontal blooming for both cameras.

Photo#12 - White Camera 100mm Lens, Minimum Gain, 100°C Source Temperature

Photo #13 - White Camera, 100mm Lens, Minimum Gain, 500°C Source Temperature

Photo #14 - White Camera, 100mm Lens, Minimum Gain, 800 C Source Temperature

Photo #15 - White Camera, 100mm Lens, Maximum Gain, 500°C Source Temperature

Photo #16 - Black Camera, 100mm Lens, Maximum Gain, 50°C Source Temperature

Photo #17 - Black Camera, 100mm Lens, Maximum Gain, 250 Source Temperature

Photo #18 - Black Camera, 100mm Lens, Maximum Gain, 500°C Source Temperature

Photo #19 - Black Camera, 100mm Lens, Maximum Gain, 800°C Source Temperature

HORIZONTAL BLOOMING

White Camera, 199mm Lens, Maximum Gain, 4 Dec 86

LINE TIME - MICROSECONDS

VERTICAL BLOOMING

DNE FIELD - HORIZONTAL LINES
Plot #19

HORIZONTAL BLOOMING

White Camera, 100mm Lens, Minimum Gain, 4 Dec 86

LINE TIME - MICROSECONDS

VERTICAL BLODMING

White Camera, 199mm Lens, Minimum Gain, 4 Dec 86

ONE FIELD - HORIZONTAL LINES

HORIZONTAL BLOOMING

Black Camera, 100mm Lens, Maximum Gain, 12 Dec 86

LINE TIME - MICROSECONDS

VERTICAL BLOOMING

Black Camera, 100mm Lens, Maximum Gain, 12 Dec 86

ONE FIELD - HORIZONTAL LINES

Plot #23

Appendix A

DEFINITION OF TERMS

TARGET NOISE (TN) TARGET DELTA PORCH SIGNAL TARGET BACKGROUND (DS) SIGNAL BACKGROUND NOISE (BN)

HORIZONTAL VIDEO LINE

The signals, temperatures, and radiances for all non-incremental data are always referenced to the background and can thus be considered "cummulative" or "large signal" data. Incremental data are referenced only to adjacent data points and can thus be considered "incremental" or "small signal" data.

BASIC DATA

- Porch Target Signal = PTS
- 2. Porch Background Signal = PBS
- 3. Delta Signal = DS = Δ S PTS-PBS
- 4. Target Noise = TN
- 5. Background Noise = BN
- 6. $NQ1 = (TN^2 + BN^2)^{1/2}$
- 7. $NQ2 = \left(\frac{TN^2 + BN^2}{2}\right)^{1/2}$
- 8. SNRT = $\frac{DS}{TN}$
- 9. SNRB = $\frac{DS}{BN}$
- 10. SNR1 = $\frac{DS}{NQ1}$
- $11. SNR2 = \frac{DS}{NQ2}$
- 12. Target Temperature = TT

BASIC DATA (Cont'd)

- 13. Background Temperature = BT
- 14. Delta Temperature = $\Delta T = TT-BT$
- 15. SNRT Temperature Sensitivity = $DS/TN/\Delta T$
- 16. SNRB Temperature Sensitivity = DS/BN/ΔT
- 17. SNRl Temperature Sensitivity = $DS/NQl/\Delta T$
- 18. SNR2 Temperature Sensitivity = $DS/NQ2/\Delta T$
- 19. Temperature Gain = $DS/\Delta T$

AVERAGED INCREMENTAL DATA

1. Incremental Delta Temperature = $\Delta\Delta T$

$$\Delta \Delta T_{12} = \Delta T_2 - \Delta T_1$$

2. Average Delta Temperature = $A\Delta T$

$$A\Delta T_{12} = \frac{\Delta T_1 + \Delta T_2}{2}$$

3. Incremental SNRT = Δ SNRT

$$\Delta SNRT_{12} = SNRT_2 - SNRT_1$$

4. Incremental SNRB = ΔSNRB

$$\Delta SNRB_{12} = SNRB_2 - SNRB_1$$

5. Incremental SNRl = ΔSNRl

$$\Delta SNR1_{12} = SNR2_2 - SNR1_1$$

Incremental SNR2 = ΔSNR2

$$\Delta SNR2_{12} = SNR2_2 - SNR2_1$$

- Incremental SNRT Temperature Sensitivity = ΔSNRT/ΔΔT
- Incremental SNRB Temperature Sensitivity = ΔSNRB/ΔΔT
- 9. Incremental SNRl Temperature Sensitivity = ΔSNRl/ΔΔT
- Incremental SNR2 Temperature Sensitivity = ΔSNR2/ΔΔT

AVERAGED INCREMENTAL DATA (Cont'd)

11. Incremental Delta Signal = $\Delta\Delta$ S

$$\Delta \Delta s_{12} = \Delta s_2 - \Delta s_1$$

- 12. Incremental Gain = $\Delta\Delta S/\Delta\Delta T$
- 13. Average Porch Target Signal = APTS

$$APTS_{12} = \frac{PTS_1 + PTS_2}{2}$$

SENSOR SPECTRALLY CORRECTED RADIANCE DATA

The purpose of "correcting" radiance values with the sensor's spectral response is to factor out the spectral radiance dependency of the sensor. The sensor's response can be plotted as a function of "neutral" radiance.

The "correction" for the 8-12 micrometer spectral band is accomplished as follows: a hypothetical, spectrally neutral detector has a constant relative spectral response of SR, across the 8-12 micrometer band. The integrated spectral response, ISR, of this detector is given by the equation:

$$ISR_1(\lambda) = \int_{8}^{12} SR_1(\lambda) d\lambda$$
 where λ = wavelength

since SR₁ is wavelength independent

$$ISR_1 = 4SR_1$$
.

The sensor under test has an integrated spectral response, ISR, of

$$ISR_2(\lambda) = \int_8^{12} SR_2(\lambda) d\lambda$$

where $SR_2(\lambda)$ = sensor spectral response.

A correction factor (CF) which normalizes $\ensuremath{\mathsf{ISR}}_2$ with respect to $\ensuremath{\mathsf{ISR}}_1$ is obtained by:

SENSOR SPECTRALLY CORRECTED . . . (Cont'd)

$$CF = \frac{ISR_1}{ISR_2(\lambda)}$$

The sensor normalized spectral response, NSR₂ is obtained as follows: $NSR_2(\lambda) = SR_2(\lambda) * CF \text{ at each wavelength.}$

NSR₂ is, in turn, used to obtain the corrected spectral radiance CSRAD of the blackbody source.

 $CSRAD(\lambda) = SRAD(\lambda) * NSR_2(\lambda)$ at each wavelength

where $SRAD(\lambda)$ = spectral radiance of blackbody source.

The integral of CSRAD across the 8-12 micrometer band results in the sensor spectral $l_{\rm p}$ corrected radiance.

- 1. Porch Target Radiance (Spectrally Weighted) = PTRW
- 2. Porch Background Radiance (Spectrally Weighted) = PBRW
- 3. Delta Radiance = DRAD = PTRW-PBRW
- 4. Average Delta Radiance = ADRAD \

$$ADRAD_{1} = \frac{DRAD_{2} + DRAD_{1}}{2}$$

5. Incremental Delta Radiance = DDRAD

$$DDRAD_1 = DRAD_2 - DRAD_1$$

- 6. Incremental Radiance Gain = DGain DDS/DDRAD
- 7. SNRT Radiance Sensitivity = DS/TN/DRAD
- 8. SNRB Radiance Sensitivity = DS/BN/DRAD
- 9. SNR1 Radiance Sensitivity = DS/NQ1/DRAD
- SNR2 Radiance Sensitivity = DS/NQ2/DRAD