InfluxDB

陈超 CrazyJvm chenchao@qiniu.com SDCC 2016

Agenda

- basic concept
- how to use
- storage engine
- cluster design
- what we did
- conclusion

Agenda

- basic concept
- how to use
- storage engine
- cluster design
- what we did
- conclusion

TSDB

A time series database (TSDB) is a software system that is optimized for handling time series data, arrays of numbers indexed by time (a datetime or a datetime range). In some fields these time series are called profiles, curves, or traces.

DB-Engines Ranking of Time Series DBMS

	19 systems in ranking, March 2016						2016
	Rank				Score		
Mar 2016	Feb 2016	Mar 2015	DBMS	Database Model	Mar 2016	Feb 2016	Mar 2015
1.	1.	1.	InfluxDB	Time Series DBMS	3.95	+0.32	+2.79
2.	2.		RRDtool	Time Series DBMS	2.60	-0.08	
3.	3.		Graphite	Time Series DBMS	1.57	-0.01	
4.	4.		OpenTSDB	Time Series DBMS	1.39	-0.02	
5.	5.	↓ 2.	Kdb+ €	Multi-model 🔃	1.24	-0.07	+0.42
6.	6.		KairosDB	Time Series DBMS	0.16	-0.01	
7.	1 9.		Druid	Time Series DBMS	0.15	+0.06	
8.	8.		Axibase	Time Series DBMS	0.14	+0.03	
9.	4 7.		Prometheus	Time Series DBMS	0.13	+0.01	
10.	10.		Riak TS	Time Series DBMS	0.03	-0.03	
11.	11.		TempoIQ	Time Series DBMS	0.01	-0.02	
12.	12.		Blueflood	Time Series DBMS	0.00	±0.00	
12.	12.		Cityzen Data	Time Series DBMS	0.00	±0.00	
12.	12.		Hawkular Metrics	Time Series DBMS	0.00	±0.00	
12.	12.		Infiniflux	Time Series DBMS	0.00	±0.00	
12.	12.		Newts	Time Series DBMS	0.00	±0.00	
12.	12.		SiteWhere	Time Series DBMS	0.00	±0.00	
12.	12.		TimeSeries.Guru	Time Series DBMS	0.00	±0.00	
12.			Yanza	Time Series DBMS	0.00		

What TSDB should do?

- query time-related data efficiently
- easy to downsampling
- handle expiring data automatically

Why InfluxDB?

- No external dependencies
- Easy to get started
- Elegant restful api
- Powerful query language
- Horizontally scale
- Written in pure Go:)

measurement

- tag
- tagset
- tags are indexed

series = measurement + tagset

field

timestamp

Continuous queries

Retention policy

- line protocol
- measurement[,tag1,tag2,...] field1[,field2,...] ts
- cpu,host=qn00001 value=0.1 1434055562000000000

Agenda

- basic concept
- * how to use
- storage engine
- cluster design
- what we did
- conclusion

write point

curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary 'cpu_load_short,host=server01,region=us-west value=0.64
1434055562000000000'

create & show retention

CREATE RETENTION POLICY two_hours ON food_data DURATION 2h REPLICATION 1

SHOW RETENTION POLICIES ON food_data

write batch points

```
curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary 'cpu_load_short,host=server02 value=0.67 cpu_load_short,host=server02,region=us-west value=0.55 1422568543702900257 cpu_load_short,direction=in,host=server01,region=us-west value=2.0 1422568543702900257'
```

curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary @cpu_data.txt

query data

curl -G 'http://localhost:8086/query?pretty=true' --data-urlencode "db=mydb" --data-urlencode "q=SELECT value FROM cpu_load_short WHERE region='us-west'"

curl -G 'http://localhost:8086/query?pretty=true' --data-urlencode "db=mydb" --data-urlencode "q=SELECT value FROM cpu_load_short WHERE region='us-west';SELECT count(value) FROM cpu_load_short WHERE region='us-west'"

create continuous queries

CREATE CONTINUOUS QUERY cq_30m ON food_data

BEGIN

SELECT mean(website) AS mean_website,mean(phone) AS mean_phone INTO food_data."default".downsampled_orders FROM orders GROUP BY time(30m) END

query language

SELECT * FROM h2o_feet WHERE time > now() - 7d

SELECT * FROM h2o_feet WHERE location = 'coyote_creek' AND water_level > 8

SELECT MEAN(water_level) FROM h2o_feet GROUP BY location

SELECT MEAN(water_level) FROM h2o_feet GROUP BY time(10m), location

SELECT water_level INTO h2o_feet_copy FROM h2o_feet WHERE location = 'coyote_creek'

SELECT water_level INTO h2o_feet_copy FROM h2o_feet WHERE location = 'coyote_creek' limit 10

about update

- Do not update old data frequently!
- If so, use redis or MongoDB etc

Agenda

- basic concept
- how to use
- storage engine
- cluster design
- what we did
- conclusion

LSM Tree ===> mmap B+ Tree ===> TSM TreeLevelDB BoltDB tsm

B+ Tree

- appends in the keyspace are efficient
- appends happening in individual time series
- end up looking more like random inserts than append only inserts.

LSM Tree

- used by Cassandra, HBase, LevelDB etc ...
- Log(WAL) & Mem Tables & SSTables

LevelDB (based on LSM)

- high write throughput √
- built in compression √
- do not support hot backups × (RocksDB & HyperLevelDB)
- fail to handle retention × (Delete is expensive in LSM)
- too many open files × (Due to shard design & LevelDB itself)

Shard & Shard Group

mmap B+ Tree & BoltDB

- BoltDB is a pure Golang database heavily inspired by LMDB
- BoltDB used a single file as the database √
- High write & read throughput √
- IOPS spike × (introduce WAL)

■ Just refine LSM!

memory threshhold max memory threshhold

metadata files (load data file when start)

data files: non-overlapping & continuous time ranges

Dive into data files

8 byte 4 byte 8 byte 4 byte data data index data files: magic min series max block 1 block n block timestamp timestamp number count series + fieldName 8 byte 8 byte 4 byte data block: uint 64 uint32 compressed block min length timestamp ID data file 4GB at most 4 byte 4 byte 8 byte 8 byte starting starting index block: ID n... ID position position n...

- compaction
- update
- delete
- compression

8 byte min timestamp	THE RESIDENCE AND ADDRESS OF THE PARTY.	[1-4]byte time length	time bytes	value bytes
----------------------------	---	--------------------------	---------------	----------------

Agenda

- basic concept
- how to use
- storage engine
- cluster design
- what we did
- conclusion

CAP?

- P is required
- CP & AP
- cluster metadata — > CP
- writes -->AP

metadata system—AP

- raft cluster
- Servers in the cluster unique id, hostname, if it's running the cluster metadata service
- Databases, Retention Policies, and continuous queries
- Users and permissions
- Shard Groups start and end time, shards
- Shards unique shard id

metadata system—AP

write — CP write 2 5

consistency level

- Any
- One
- Quorum

Fault tolerance

- hinted handoff (ttl + full queue)
- anti-entropy repair (merkle tree)
- conflict resolution (greater value wins)

Agenda

- basic concept
- how to use
- storage engine
- cluster design
- what we did
- conclusion

Our contributions to InfluxDB

- https://github.com/influxdata/influxdb/pull/4818
- https://github.com/influxdata/influxdb/pull/4815
- https://github.com/influxdata/influxdb/pull/4833
- https://github.com/influxdata/influxdb/pull/4940
- https://github.com/influxdata/influxdb/pull/4817
- https://github.com/influxdata/influxdb/pull/4984
- https://github.com/influxdata/influxdb/pull/5013

just show part of cluster related PRs

Our cluster solution

- design new solutions
- agent(heartbeat, influxd info, disk info etc...)
- scheduler, executor, adapter,
- support more useful functions
- introduce Kafka

Notice!

cluster will not be opensource anymore after 0.11!

Agenda

- basic concept
- how to use
- storage engine
- cluster design
- what we did
- ***** conclusion

very easy to install & use ...

graceful restful API

become more stable (so many bugs before, OMG!)

If you just wanna standalone mode? Perfect!

the best or nothing!

InfluxDB + Spark

Thank you!