Model Theory: An Introduction

David Marker

May 28, 2020

Contents

1	Stru	ctures and Theories	3
	1.1	Languages and Structures	3
	1.2	Theories	5
	1.3	Definable Sets and Interpretability	7
	1.4	Answers to Exercises	12
2	Basi	c Techniques	12
	2.1	The Compactness Theorem	12
		2.1.1 Henkin Constructions	13
	2.2	Complete Theories	17
	2.3	Up and Down	20
3	Reference		21
4 Index			21
			22

1 Structures and Theories

1.1 Languages and Structures

Definition 1.1. A language \mathcal{L} is given by specifying the following data

- 1. A set of function symbols \mathcal{F} and positive integers n_f for each $f \in \mathcal{F}$
- 2. a set of relation symbols \mathcal{R} and positive integers n_R for each $R \in \mathcal{R}$
- 3. a set of constant symbols C

Definition 1.2. An \mathcal{L} -structure \mathcal{M} is given by the following data

- 1. a nonempty set M called the **universe**, **domain** or **underlying set** of \mathcal{M}
- 2. a function $f^{\mathcal{M}}: M^{n_f} \to M$ for each $f \in \mathcal{F}$
- 3. a set $R^{\mathcal{M}} \subseteq M^{n_R}$ for each $R \in \mathcal{R}$
- 4. an element $c^{\mathcal{M}} \in M$ for each $c \in \mathcal{C}$

We refer to $f^{\mathcal{M}}$, $R^{\mathcal{M}}$, $c^{\mathcal{M}}$ as the **interpretations** of the symbols f, R and c. We often write the structure as $\mathcal{M} = (M, f^{\mathcal{M}}, R^{\mathcal{M}}, c^{\mathcal{M}} : f \in \mathcal{F}, R \in \mathcal{R}, c \in \mathcal{C})$

Definition 1.3. Suppose that \mathcal{M} and \mathcal{N} are \mathcal{L} -structures with universes M and N respectively. An \mathcal{L} -embedding $\eta: \mathcal{M} \to \mathcal{N}$ is a one-to-one map $\eta: M \to N$ that

- 1. $\eta(f^{\mathcal{M}}(a_1,\ldots,a_{n_f})) = f^{\mathcal{N}}(\eta(a_1),\ldots,\eta(a_{n_f}))$ for all $f \in \mathcal{F}$ and $a_1,\ldots,a_{n_f} \in \mathcal{M}$
- 2. $(a_1, \ldots, a_{m_R}) \in R^{\mathcal{M}}$ if and only if $(\eta(a_1), \ldots, \eta(a_{m_R})) \in R^{\mathcal{N}}$ for all $R \in \mathcal{R}$ and $a_1, \ldots, a_{m_R} \in M$
- 3. $\eta(c^{\mathcal{M}}) = c^{\mathcal{N}} \text{ for } c \in \mathcal{C}$

A bijective \mathcal{L} -embedding is called an \mathcal{L} -isomorphism. If $M \subseteq N$ and the inclusion map is an \mathcal{L} -embedding, we say either \mathcal{M} is a **substrcture** of \mathcal{N} or that \mathcal{N} is an **extension** of \mathcal{M}

The **cardinality** of \mathcal{M} is |M|, the cardinality of the universe of \mathcal{M}

Definition 1.4. The set of \mathcal{L} -terms is the smallest set \mathcal{T} s.t.

- 1. $c \in \mathcal{T}$ for each constant symbol $c \in \mathcal{C}$
- 2. each variable symbol $v_i \in \mathcal{T}$ for i = 1, 2, ...
- 3. if $t_1, \ldots, t_{n_f} \in \mathcal{T}$ and $f \in \mathcal{F}$ then $f(t_1, \ldots, t_{n_f}) \in \mathcal{T}$

Suppose that \mathcal{M} is an \mathcal{L} -structure and that t is a term built using variables from $\bar{v}=(v_{i_1},\ldots,v_{i_m})$. We want to interpret t as a function $t^{\mathcal{M}}:M^m\to M$. For s a subterm of t and $\bar{a}=(a_{i_1},\ldots,a_{i_m})\in M$, we inductively define $s^{\mathcal{M}}(\bar{a})$ as follows.

- 1. If s is a constant symbol c, then $s^{\mathcal{M}}(\bar{a}) = c^{\mathcal{M}}$
- 2. If s is the variable v_{i_i} , then $s^{\mathcal{M}}(\bar{a}) = a_{i_i}$
- 3. If s is the term $f(t_1, \ldots, t_{n_f})$, where f is a function symbol of \mathcal{L} and t_1, \ldots, t_{n_f} are terms, then $s^{\mathcal{M}}(\bar{a}) = f^{\mathcal{M}}(t_1^{\mathcal{M}}(\bar{a}), \ldots, t_{n_f}^{\mathcal{M}}(\bar{a}))$

The function $t^{\mathcal{M}}$ is defined by $\bar{a} \mapsto t^{\mathcal{M}}(\bar{a})$

Definition 1.5. ϕ is an **atomic** \mathcal{L} **-formula** if ϕ is either

- 1. $t_1 = t_2$ where t_1 and t_2 are terms
- 2. $R(t_1, \ldots, t_{n_R})$

The set of $\mathcal{L}\text{-}\text{formulas}$ is the smallest set \mathcal{W} containing the atomic formulas s.t.

- 1. if $\phi \in \mathcal{W}$, then $\neg \phi \in \mathcal{W}$
- 2. if $\phi, \psi \in \mathcal{W}$, then $(\phi \land \psi), (\phi \lor \psi) \in \mathcal{W}$
- 3. if $\phi \in \mathcal{W}$, then $\exists v_i \phi, \forall v_i \phi \in \mathcal{W}$

We say a variable v occurs freely in a formula ϕ if it is not inside a $\exists v$ or $\forall v$ quantifier; otherwise we say that it's **bound**. We call a formula a **sentence** if it has no free variables. We often write $\phi(v_1, \ldots, v_n)$ to make explicit the free variables in ϕ

Definition 1.6. Let ϕ be a formula with free variables from $\bar{v} = (v_{i_1,...,v_{i_m}})$ and let $\bar{a} = (a_{i_1},...,a_{i_m}) \in M^m$. We inductively define $\mathcal{M} \models \phi \bar{a}$ as follows

- 1. If ϕ is $t_1 = t_2$, then $\mathcal{M} \models \phi(\bar{a})$ if $t_1^{\mathcal{M}}(\bar{a}) = t_2^{\mathcal{M}}(\bar{a})$
- 2. If ϕ is $R(t_1, \ldots, t_{m_R})$ then $\mathcal{M} \models \phi(\bar{a})$ if $(t_1^{\mathcal{M}}(\bar{a}), \ldots, t_{m_R}^{\mathcal{M}}(\bar{a})) \in R^{\mathcal{M}}$
- 3. If ϕ is $\neg \psi$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \not\models \psi(\bar{a})$
- 4. If ϕ is $(\psi \wedge \theta)$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \models \psi(\bar{a})$ and $\mathcal{M} \models \theta(\bar{a})$
- 5. If ϕ is $(\psi \vee \theta)$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \models \psi(\bar{a})$ or $\mathcal{M} \models \theta(\bar{a})$
- 6. If ϕ is $\exists v_i \psi(\bar{v}, v_i)$ then $\mathcal{M} \models \phi(\bar{a})$ if there is $b \in M$ s.t. $\mathcal{M} \models \psi(\bar{a}, b)$
- 7. If ϕ is $\forall v_i \psi(\bar{v}, v_i)$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \models \psi(\bar{a}, b)$ for all $b \in M$

If $\mathcal{M} \models \phi(\bar{a})$ we say that \mathcal{M} satisfies $\phi(\bar{a})$ or $\phi(\bar{a})$ is true in \mathcal{M}

Proposition 1.7. Suppose that \mathcal{M} is a substrcture of \mathcal{N} , $\bar{a} \in M$ and $\phi(\bar{v})$ is a quantifier-free formula. Then $\mathcal{M} \models \phi(\bar{a})$ if and only if $\mathcal{N} \models \psi(\bar{a})$

Proof. Claim If $t(\bar{v})$ is a term and $\bar{b} \in M$ then $t^{\mathcal{M}}(\bar{b}) = t^{\mathcal{N}}(\bar{b})$.

Definition 1.8. We say that two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are **elementarily equivalent** and write $\mathcal{M} \equiv \mathcal{N}$ if

$$\mathcal{M} \models \phi$$
 if and only if $\mathcal{N} \models \phi$

for all \mathcal{L} -sentences ϕ

We let $\mathrm{Th}(\mathcal{M})$, the **full theory** of \mathcal{M} be the set of \mathcal{L} -sentences ϕ s.t. $\mathcal{M} \models \phi$

Theorem 1.9. Suppose that $j: \mathcal{M} \to \mathcal{N}$ is an isomorphism. Then $\mathcal{M} \equiv \mathcal{N}$

Proof. Show by induction on formulas that $\mathcal{M} \models \phi(a_1, ..., a_n)$ if and only if $\mathcal{N} \models \phi(j(a_1), ..., j(a_n))$ for all formulas ϕ

1.2 Theories

Let \mathcal{L} be a language. An \mathcal{L} -theory T is a set of \mathcal{L} -sentences. We say that \mathcal{M} is a **model** of T and write $\mathcal{M} \models T$ if $\mathcal{M} \models \phi$ for all sentences $\phi \in T$. A theory is **satisfiable** if it has a model.

A class of \mathcal{L} -structures \mathcal{K} is an **elementary class** if there is an \mathcal{L} -theory T s.t. $\mathcal{K} = \{\mathcal{M} : \mathcal{M} \models T\}$

Example 1.1 (Groups). Let $\mathcal{L} = \{\cdot, e\}$ where \cdot is a binary function symbol and e is a constant symbol. The class of groups is axiomatized by

$$\forall x \ e \cdot x = x \cdot e = x$$

$$\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$\forall x \exists y \ x \cdot y = y \cdot x = e$$

Example 1.2 (Left *R*-modules). Let *R* be a ring with multiplicative identity 1. Let $\mathcal{L} = \{+,0\} \cup \{r : r \in R\}$ where + is a binary function symbol, 0 is a constant, and r is a unary function symbol for $r \in R$. In an *R*-module, we will interpret r as scalar multiplication by R. The axioms for R-modules are

$$\forall x \ r(x+y) = r(x) + r(y) \text{ for each } r \in R$$

 $\forall x \ (r+s)(x) = r(x) + s(x) \text{ for each } r, s \in R$
 $\forall x \ r(s(x)) = rs(x) \text{ for } r, s \in R$
 $\forall x \ 1(x) = x$

Example 1.3 (Rings and Fields). Let \mathcal{L}_r be the language of rings $\{+, -, \cdot, 0, 1\}$, where +, - and \cdot are binary function symbols and 0 and 1 are constants.

The axioms for rings are given by

$$\forall x \forall y \forall z \ (x - y = z \leftrightarrow x = y + z)$$

$$\forall x \ x \cdot 0 = 0$$

$$\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$\forall x \ x \cdot 1 = 1 \cdot x = x$$

$$\forall x \forall y \forall z \ x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

$$\forall x \forall y \forall z \ (x + y) \cdot z = (x \cdot z) + (y \cdot z)$$

We axiomatize the class of fields by adding

$$\forall x \forall y \ x \cdot y = y \cdot x$$

 $\forall x \ (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$

We axiomatize the class of algebraically closed fields by adding to the field axioms the sentences

$$\forall a_0 \dots \forall a_{n-1} \exists x \ x^n + \sum_{i=1}^{n-1} a_i x^i = 0$$

for n = 1, 2, ... Let ACF be the axioms for algebraically closed fields.

Let ψ_p be the \mathcal{L}_r -sentence $\forall x$ $\underbrace{x + \cdots + x}_{p\text{-times}} = 0$, which asserts that a

field has characteristic p. For p>0 a prime, let $ACF_p=ACF\cup\{\psi_p\}$ and $ACF_0=ACF\cup\{\neg\psi_p:p>0\}$ be the theories of algebraically closed fields of characteristic p and zero respectively

Definition 1.10. Let T be an \mathcal{L} -theory and ϕ an \mathcal{L} -sentence. We say that ϕ is a **logical consequence** of T and write $T \models \phi$ if $\mathcal{M} \models \phi$ whenever $\mathcal{M} \models T$

Proposition 1.11. 1. Let $\mathcal{L} = \{+, <, 0\}$ and let T be the theory of ordered abelian groups. Then $\forall x (x \neq 0 \rightarrow x + x \neq 0)$ is a logical consequence of T

2. Let T be the theory of groups where every element has order 2. Then $T \not\models \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2 \land x_2 \neq x_3 \land x_1 \neq x_3)$

Proof. 1.
$$\mathbb{Z}/2\mathbb{Z} \models T \land \neg \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2 \land x_2 \neq x_3 \land x_1 \neq x_3)$$

1.3 Definable Sets and Interpretability

Definition 1.12. Let $\mathcal{M} = (M, ...)$ be an \mathcal{L} -structure. We say that $X \subseteq M^n$ is **definable** if and only if there is an \mathcal{L} -formula $\phi(v_1, ..., v_n, w_1, ..., w_m)$ and $\bar{b} \in M^b$ s.t. $X = \{\bar{a} \in M^n : \mathcal{M} \models \phi(\bar{a}, \bar{b})\}$. We say that $\phi(\bar{v}, \bar{b})$ **defines** X. We say that X is A-definable or definable over X if there is a formula $Y(\bar{v}, w_1, ..., w_l)$ and $\bar{b} \in A^l$ s.t. $Y(\bar{v}, \bar{b})$ defines X

A number of examples using \mathcal{L}_r , the language of rings

• Let $\mathcal{M} = (R, +, -, \cdot, 0, 1)$ be a ring. Let $p(X) \in R[X]$. Then $Y = \{x \in R : p(x) = 0\}$ is definable. Suppose that $p(X) = \sum_{i=0}^{m} a_i X^i$. Let $\phi(v, w_0, \dots, w_n)$ be the formula

$$w_n \cdot \underbrace{v \cdots v}_{n\text{-times}} + \cdots + w_1 \cdot v + w_0 = 0$$

Then $\phi(v, a_0, ..., a_n)$ defines Y. Indeed, Y is A-definable for any $A \supseteq \{a_0, ..., a_n\}$

• Let $\mathcal{M} = (\mathbb{R}, +, -, \cdot, 0, 1)$ be the field of real numbers. Let $\phi(x, y)$ be the formula

$$\exists z (z \neq 0 \land y = x + z^2)$$

Because a < b if and only if $\mathcal{M} \models \phi(a, b)$, the ordering is \emptyset -definable

• Consider the natural numbers \mathbb{N} as an $\mathcal{L} = \{+, \cdot, 0, 1\}$ structure. There is an \mathcal{L} -formula T(e, x, s) s.t. $\mathbb{N} \models T(e, x, s)$ if and only if the Turing machine with program coded by e halts on input x in at most s steops. Thus the Turing machine with program e halts on input x if and only if

 $\mathbb{N} \models \exists s \ T(e, x, s)$. So the halting computations is definable

Proposition 1.13. Let \mathcal{M} be an \mathcal{L} -structure. Suppose that D_n is a collection of subsets of M^n for all $n \geq 1$ and $\mathcal{D} = (D_n : n \geq 1)$ is the smallest collection s.t.

- 1. $M^n \in D_n$
- 2. for all n-ary function symbols f of \mathcal{L} , the graph of $f^{\mathcal{M}}$ is in D_{n+1}
- 3. for all n-ary relation symbols R of \mathcal{L} , $R^{\mathcal{M}} \in D_n$
- 4. for all $i, j \le n$, $\{(x_1, ..., x_n) \in M^n : x_i = x_j\} \in D_n$
- 5. if $X \in D_n$, then $M \times X \in D_{n+1}$
- 6. each D_n is cloed under complement, union and intersection
- 7. if $X \in D_{n+1}$ and $\pi : M^{n+1} \to M^n$ is the projection $(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, x_n)$, then $\pi(X) \in D_n$
- 8. if $X \in D_{n+m}$ and $b \in M^m$, then $\{a \in M^n : (a,b) \in X\} \in D_n$

Thus $X \subseteq M^n$ is definable if and only if $X \in D_n$

Proposition 1.14. Let \mathcal{M} be an \mathcal{L} -structure. If $X \subset M^n$ is A-definable, then every \mathcal{L} -automorphism of \mathcal{M} that fixes A pointwise fixes X setwise(that is, if σ is an automorphism of M and $\sigma(a) = a$ for all $a \in A$, then $\sigma(X) = X$)

Proof.

$$\mathcal{M} \models \psi(\bar{v}, \bar{a}) \leftrightarrow \mathcal{M} \models \psi(\sigma(\bar{v}), \sigma(\bar{a})) \leftrightarrow \mathcal{M} \models \psi(\sigma(\bar{v}), \bar{a})$$

In other words, $\bar{b} \in X$ if and only if $\sigma(\bar{b}) \in X$

Definition 1.15. A subset S of a field L is **algebraically independent** over a subfield K if the elements of S do not satisfy any non-trivial polynomial equation with coefficients in K

Corollary 1.16. The set of real numbers is not definable in the field of complex numbers

Proof. If \mathbb{R} where definable, then it would be definable over a finite $A \subset \mathbb{C}$. Let $r, s \in \mathbb{C}$ be algebraically independent over A with $r \in \mathbb{R}$ and $s \notin \mathbb{R}$. There is an automorphism σ of \mathbb{C} s.t. $\sigma|A$ is the identity and $\sigma(r) = s$. Thus $\sigma(\mathbb{R}) \neq \mathbb{R}$ and \mathbb{R} is not definable over A

We say that an \mathcal{L}_0 -structure \mathcal{N} is **definably interpreted** in an \mathcal{L} -structure \mathcal{M} if and only if we can find a definable $X \subseteq M^n$ for some n and we can interpret the symbols of \mathcal{L}_0 as definable subsets and functions on X so that the resulting \mathcal{L}_0 -structure is isomorphic to \mathcal{M}

For example, let K be a field and G be $GL_2(K)$, the group of invertible 2×2 matrices over K. Let $X = \{(a, b, c, d) \in K^4 : ad - bc \neq 0\}$. Let $f: X^2 \to X$ by

$$f((a_1, b_1, c_1, d_1), (a_2, b_2, c_2, d_2)) = (a_1a_2 + b_1c_2, a_1b_2 + b_1d_2, c_1a_2 + d_1c_2, c_1b_2 + d_1d_2)$$

X and f are definable in $(K, +, \cdot)$, and the set X with operation f is isomorphic to $GL_2(K)$, where the identity element of X is (1, 0, 0, 1)

Clearly, $(GL_n(K), \cdot, e)$ is definably interpreted in $(K, +, \cdot, 0, 1)$. A **linear algebraic group** over K is a subgroup of $GL_n(K)$ defined by polynomial equations over K. Any linear algebraic group over K is definably interpreted in K

Let *F* be an infinite field and let *G* be the group of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

where $a, b \in F, a \neq 0$. This group is isomorphic to the group of affine transformations $x \mapsto ax + b$, where $a, b \in F$ and $a \neq 0$

We will show that F is definably interpreted in the group G. Let

$$\alpha = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} \tau & 0 \\ 0 & 1 \end{pmatrix}$

where $\tau \neq 0$. Let

$$A = \{g \in G : g\alpha = \alpha g\} = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in F \}$$

$$B = \{g \in G : g\beta = \beta g\} = \{ \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} : x \neq 0 \}$$

Clearly A, B are definable using parameters α and β B acts on A by conjugation

$$\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{y}{x} \\ 0 & 1 \end{pmatrix}$$

We can define the map $i: A \setminus \{1\} \to B$ by i(a) = b if and only if $b^{-1}ab = \alpha$, that is

$$i \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$$

Define an operation * on A by

$$a * b = \begin{cases} i(b)a(i(b))^{-1} & \text{if } b \neq I \\ 1 & \text{if } b = I \end{cases}$$

where *I* is the identity matrix. Now $(F, +, \cdot, 0, 1) \cong (A, \cdot, *, 1, \alpha)$

Very complicated structures can often be interpreted in seemingly simpler ones. For example, any structure in a countable language can be interpreted in a graph. Let (A, <) be a linear order. For each $a \in A$, G_A will have vertices a, x_1^a, x_2^a, x_3^a and contain the subgraph

If a < b, then G_A will have vertices $y_1^{a,b}, y_2^{a,b}, y_3^{a,b}$ and contain the subgraph

Let $V_A = A \cup \{x_1^a, x_2^a, x_3^a : a \in A\} \cup \{y_1^{a,b}, y_2^{a,b}, y_3^{a,b} : a, b \in A \text{ and } a < b\}$, and let R_A be the smallest symmetric relation containing all edges drawn above.

For example, if A is the three-element linear order a < b < c, then G_A is the graph

Let $\mathcal{L} = \{R\}$ where R is a binary relation. Let $\phi(x, u, v, w)$ be the formula asserting that x, u, v, w are distinct, there are edges (x, u), (u, v), (v, w), (u, w) and these are the only edges involving u, v, w. $G_A \models \phi(a, x_1^a, x_2^a, x_3^a)$ for all $a \in A$.

 $\psi(x, y, u, v, w)$ asserts that x, y, u, v, w are distinct. (x, u), (u, v), (u, w), (v, y)

Define $\theta_i(z)$ as follows:

$$\theta_{0}(z) := \exists u \exists v \exists w \ \phi(z, u, v, w)$$

$$\theta_{1}(z) := \exists x \exists v \exists w \ \phi(x, z, v, w)$$

$$\theta_{2}(z) := \exists u \exists u \exists w \ \phi(x, u, z, w)$$

$$\theta_{3}(z) := \exists x \exists y \exists v \exists w \ \psi(x, y, z, v, w)$$

$$\theta_{4}(z) := \exists x \exists y \exists u \exists w \ \psi(x, y, u, z, w)$$

$$\theta_{5}(z) := \exists x \exists y \exists u \exists v \ \psi(x, y, u, v, z)$$

If $a, b \in A$ and a < b, then

$$G_A \models \theta_0(a) \land \theta_1(x_1^a) \land \theta_2(x_2^a) \land \theta_2(x_3^a)$$

and

$$G_A \models \theta_3(y_1^{a,b}) \land \theta_4(y_2^{a,b}) \land \theta_5(y_3^{a,b})$$

Lemma 1.17. If (A, <) is a linear order, then for all vertices x in G, there is a unique $i \le 5$ s.t. $G_A \models \theta_i(x)$

Let T be the \mathcal{L} -theory with the following axioms

- 1. *R* is symmetric and irreflexive
- 2. for all x, exactly one θ_i holds
- 3. if $\theta_0(x)$ and $\theta_0(y)$ then $\neg R(x, y)$
- 4. if $\exists u \exists v \exists w \ \psi(x, y, u, v, w)$ then $\forall u_1 \forall v_1 \forall w_1 \neg \psi(y, x, u_1, v_1, w_1)$
- 5. if $\exists u \exists v \exists w \ \psi(x, y, u, v, w)$ and $\exists u \exists v \exists w \ \psi(y, z, u, v, w)$ then $\exists u \exists v \exists w \ \psi(x, z, u, v, w)$
- 6. if $\theta_0(x)$ and $\theta_0(y)$, then either x = y or $\exists u \exists v \exists w \ \psi(x, y, u, v, w)$ or $\exists u \exists v \exists w \ \psi(y, x, u, v, w)$
- 7. if $\phi(x, u, v, w) \land \phi(x, u', v', w')$, then u = u', v = v', w = w'
- 8. if $\psi(x, y, u, v, w) \land \psi(x, y, u', v', w')$, then u' = u, v = v', w = w'If (A, <) is a linear order, then $G_A \models T$ Suppose $G \models T$. Let $X_G = \{x \in G : G \models \theta_0(x)\}$

Lemma 1.18. If (A, <) is a linear order, then $(X_{G_A}, <_{G_A}) \cong (A, <)$. Moreover, $G_{X_G} \cong G$ for all $G \models T$

Definition 1.19. An \mathcal{L}_0 -structure \mathcal{N} is **interpretable** in an \mathcal{L} -structure M if there is a definable $X \subseteq M^n$, a definable equivalence relation E on X, and for each symbol of \mathcal{L}_0 we can find definable E-invariant sets on X s.t. X/E with the induced structure is isomorphic to \mathcal{N}

1.4 Answers to Exercises

Exercise 1.4.1. 1. transform ψ to CNF

2. prenex normal form

$$\begin{array}{ccc} s & rs \\ \bullet & \bullet \\ e & r \end{array}$$

Exercise 1.4.2.

2. enumerate \mathcal{M}' s functions, relations and constants

Exercise 1.4.3. ¹ Note that every \mathcal{L} -structure \mathcal{M} of size κ is isomorphic to an \mathcal{L} -structure with domain κ . For each relation symbols, we have 2^{κ} options. If the language has size λ , this is at most $(2^{\kappa})^{\lambda} = 2^{\kappa \cdot \lambda} = 2^{\max(\lambda, \kappa)}$

Exercise 1.4.4.

$$T \models \phi \Leftrightarrow \forall \mathcal{M} \ \mathcal{M} \models T \to \mathcal{M} \models \phi$$
$$\Leftrightarrow \forall \mathcal{M} \ \mathcal{M} \models T' \to \mathcal{M} \models \phi$$
$$\Leftrightarrow T' \models \phi$$

Exercise 1.4.5. Follow the definition

Exercise 1.4.6. Since there is no model \mathcal{M} s.t. $\mathcal{M} \models T$. It's true that $T \models \phi$

Exercise 1.4.7. 1. Suppose $\mathcal{M} \models \phi$, then $E^{\mathcal{M}}$ is an equivalent relation and each equivalence class's cardinality is 2

- 2. follows from number theory
- 3. [?]

Exercise 1.4.8. TBD

Exercise 1.4.9.
$$G(f) = \{(\bar{x}, \bar{y}) \in M^{n+m} \mid \phi(\bar{x}, \bar{y})\}$$
 and $G(g) = \{(\bar{y}, \bar{z}) \in M^{m+l} \mid \psi(\bar{y}, \bar{z})\}$. Hence $G(g \circ f) = \{(\bar{x}, \bar{z}) \in M^{n+l} \mid \phi(\bar{x}, \bar{y}) \land \psi(\bar{y}, \bar{z})\}$

Exercise 1.4.10. $\phi(\bar{a}, b)$ really defines a function and since $\phi(\bar{a}, y) \rightarrow y = b$

2 Basic Techniques

2.1 The Compactness Theorem

Some points of proofs

- Proofs are finite
- (Soundness) If $T \vdash \phi$, then $T \models \phi$

¹stackexchange

• If T is a finite set of sentences, then there is an algorithm that, when given a sequence of \mathcal{L} -formulas σ and an \mathcal{L} -sentence ϕ , will decide whether σ is a proof of ϕ from T

A language $\mathcal L$ is **recursive** if there is an algorithm that decides whether a sequence of symbols is an $\mathcal L$ -formula. An $\mathcal L$ -theory T is **recursive** if there is an algorithm that when given an $\mathcal L$ -sentence ϕ as input, decides whether $\phi \in T$

Proposition 2.1. *If* \mathcal{L} *is a recursive language and* T *is a recursive* \mathcal{L} -theory, then $\{\phi: T \vdash \phi\}$ *is recursively enumerable; that is, there is an algorithm that when given* ϕ *as input will halt accepting if* $T \vdash \phi$ *and not halt if* $T \not\vdash \phi$

Proof. There is $\sigma_0, \sigma_1, \ldots$ a computable listing of all finite sequence of \mathcal{L} -formulas. At stage i, we check to see whether σ_i is a proof of ψ from T. If it is, then halt.

Theorem 2.2 (Gödel's Completeness Theorem). *Let* T *be an* \mathcal{L} -*theory and* ϕ *an* \mathcal{L} -*sentence, then* $T \models \phi$ *if and only if* $T \vdash \phi$

We say that an \mathcal{L} -theory T is **inconsistent** if $T \vdash (\phi \land \neg \phi)$ for some sentence ϕ .

Corollary 2.3. T is consistent if and only if T is satisfiable

Proof. Supose that T is not satisfiable, then every model of T is a model of $\phi \land \neg \phi$. Thus by the Completeness theorem $T \vdash (\phi \land \neg \phi)$

Theorem 2.4 (Compactness Theorem). T is satisfiable if and only if every finite subset of T is satisfiable

Proof. If T is not satisfiable, then T is inconsistent. Let σ be a proof of a contradiction from T. Because σ is finite, only finitely many assumptions from T are used in the proof. Thus there is a finite $T_0 \subseteq T$ s.t. σ is a proof of a contradiction from T_0

2.1.1 Henkin Constructions

A theory *T* is **finitely satisfiable** if every finite subset of *T* is satisfiable. We will show that every finitely satisfiable theory *T* is satisfiable.

Definition 2.5. We say that an \mathcal{L} -theory T has the **witness property** if whenever $\phi(v)$ is an \mathcal{L} -formula with one free variable v, then there is a constant symbol $c \in \mathcal{L}$ s.t. $T \vdash (\exists v \phi(v)) \rightarrow \phi(c) \in T$

An \mathcal{L} -theory T is **maximal** if for all ϕ either $\phi \in T$ or $\neg \phi \in T$

Lemma 2.6. Suppose T is a maximal and finitely satisfiable \mathcal{L} -theory. If $\Delta \subseteq T$ is finite and $\Delta \models \psi$, then $\psi \in T$

Proof. If $\psi \notin T$, then $\neg \psi \in T$ but $\Delta \cup \{\psi\}$ is unsatisfiable

Lemma 2.7. Suppose that T is a maximal and finitely satisfiable \mathcal{L} -theory with the witness property. Then T has a model. In fact, if κ is a cardinal and \mathcal{L} has at most κ constant symbols, then there is $\mathcal{M} \models T$ with $|\mathcal{M}| \leq \kappa$

Proof. Let C be the set of constant symbols of L. For $c, d \in C$, we say $c \sim d$ if $c = d \in T$

Claim 1 \sim is an equivalence relation.

The universe of our model will be $M=\mathcal{C}/\sim$. Clearly $|M|\leq \kappa$. We let c^* denote the equivalence class of c and interprete c as its equivalence class, that is, $c^{\mathcal{M}}=c^*$

Suppose that R is an n-ary relation symbol of \mathcal{L}

Claim 2 Suppose that $c_1, \ldots, c_n, d_1, \ldots, d_n \in C$ and $c_i \sim d_i$ for $i = 1, \ldots, n$, then $R(\bar{c})$ if and only if $R(\bar{d})$

By Lemma 2.6, if one of $R(\bar{c})$ and $R(\bar{d})$ is in T, then both are in T

$$R^{\mathcal{M}} = \{(c_1^*, \dots, c_n^*) : R(c_1, \dots, c_n) \in T\}$$

Suppose that f is an n-ary function symbol of \mathcal{L} and $c_1, \ldots, c_n \in \mathcal{C}$. Because $\emptyset \models \exists v f(c_1, \ldots, c_n) = v$, and T has the witness property, then there is $c_{n+1} \in \mathcal{C}$ s.t. $f(c_1, \ldots, c_n) = c_{n+1} \in T$. As above, if $d_i \sim c_i$ for $i = 1, \ldots, n+1$, then $f(d_1, \ldots, d_n) = d_{n+1} \in T$. Thus we get a well-defined function $f^{\mathcal{M}}: \mathcal{M}^n \to \mathcal{M}$ by

$$f^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*$$
 if and only if $f(c_1,\ldots,c_n)=d\in T$

Claim 3 Suppose that t is a term using free variables from v_1, \ldots, v_n . If $c_1, \ldots, c_n, d \in \mathcal{C}$, then $t(c_1, \ldots, c_n) = d \in T$ if and only if $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d^*$

(⇒) If t is a constant symbol, then $c = d \in T$ and $c^{\mathcal{M}} = c^* = d^*$ If t is the variable v_i , then $c_i = d \in T$ and $t^{\mathcal{M}}(c_1^*, \dots, c_n^*) = c_i^* = d^*$

Suppose that the claim is true for t_1, \ldots, t_m and t is $f(t_1, \ldots, t_m)$. Using the witness property and Lemma 2.6, we can find $d, d_1, \ldots, d_n \in \mathcal{C}$ s.t. $t_i(c_1, \ldots, c_n) = d_i \in T$ for $i \leq m$ and $f(d_1, \ldots, d_m) = d \in T$. By our induction hypothesis, $t_i^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d_i^*$ and $f^{\mathcal{M}}(d_1^*, \ldots, d_m^*) = d^*$. Thus $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d^*$

 (\Leftarrow) Suppose $t^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*$. By the witness property, there is a $e\in\mathcal{C}$ s.t. $t(c_1,\ldots,c_n)=e\in T$. Using the (\Rightarrow) direction of the proof, $t^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=e^*$. Thus $e^*=d^*$ and $e=d\in T$

Claim 4 For all \mathcal{L} -formulas $\phi(v_1, \ldots, v_n)$ and $c_1, \ldots, c_n \in \mathcal{C}$, $\mathcal{M} \models \phi(\bar{c}^*)$ if and only if $\phi(\bar{c}) \in T$

Suppose that ϕ is $t_1 = t_2$. By Lemma 2.6 and the witness property, we can find d_1 and d_2 s.t. $t_1(\bar{c}) = d_1, t_2(\bar{c}) = d_2 \in T$. By Claim 3, $t_i^{\mathcal{M}}(\bar{c}^*) = d_i^*$. Then

$$\mathcal{M} \models \phi(\bar{c}^*) \Leftrightarrow d_1^* = d_2^*$$
$$\Leftrightarrow d_1 = d_2 \in T$$
$$\Leftrightarrow t_1(\bar{c}) = t_2(\bar{c}) \in T$$

Suppose that ϕ is $R(t_1, \ldots, t_m)$. There are $d_1, \ldots, d_m \in C$ s.t. $t_i(\bar{c}) = d_i \in T$. Thus

$$\mathcal{M} \models \phi(\bar{c}^*) \Leftrightarrow \bar{d}^* \in R^{\mathcal{M}}$$
$$\Leftrightarrow R(\bar{d}) \in T$$
$$\Leftrightarrow \phi(\bar{c}) \in T$$

Suppose that the claim is true for ϕ . If $\mathcal{M} \models \neg \phi(\bar{c}^*)$, then $\mathcal{M} \not\models \phi(\bar{c}^*)$. By the inductive hypothesis, $\phi(\bar{c}) \not\in T$. Thus by maximality, $\neg \phi(\bar{c}) \in T$. On the other hand, if $\neg \phi(\bar{c}) \in T$, then because T is finitely satisfiable, $\phi(\bar{c}) \not\in T$. Thus, by induction, $\mathcal{M} \not\models \phi(\bar{c}^*)$.

Lemma 2.8. Let T be a finitely satisfiable \mathcal{L} -theory. There is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and $T^* \supseteq T$ a finitely satisfiable \mathcal{L}^* -theory s.t. any \mathcal{L}^* -theory extending T^* has the witness property. We can choose \mathcal{L}^* s.t. $|\mathcal{L}^*| = |\mathcal{L}| + \aleph_0$

Proof. We first show that there is a language $\mathcal{L}_1 \supseteq \mathcal{L}$ and a finitely satisfiable \mathcal{L}_1 -theory $\mathcal{L}_1 \supseteq T$ s.t. for any \mathcal{L} -formula $\phi(v)$ there is an \mathcal{L}_1 -constant symbol c s.t. $T_1 \models (\exists v \phi(v)) \to \phi(c)$. For each \mathcal{L} -formula $\phi(v)$, let c_{ϕ} be a new constant symbol and let $\mathcal{L}_1 = \mathcal{L} \cup \{c_{\phi} : \phi(v) \text{ an } \mathcal{L}\text{-formula}\}$. For each \mathcal{L} -formula $\phi(v)$, let Θ_{ϕ} be the \mathcal{L}_1 -sentence $(\exists v \phi(v)) \to \phi(c_{\phi})$. Let $T_1 = T \cup \{\Theta_{\phi} : \phi(v) \text{ an } \mathcal{L}\text{-formula}\}$

Claim T_1 is finitely satisfiable

Suppose that Δ is a finite subset of T_1 . Then $\Delta = \Delta_0 \cup \{\Theta_{\phi_1}, \ldots, \Theta_{\phi_n}\}$ where Δ_0 is a finite subset of T and there is $\mathcal{M} \models \Delta_0$. We will make \mathcal{M} into an $\mathcal{L} \cup \{c_{\phi_1}, \ldots, c_{\phi_n}\}$ -structure \mathcal{M}' . If $\mathcal{M} \models \exists v \phi(v)$, choose a_i some element of M s.t. $\mathcal{M} \models \phi(a_i)$ and let $c_{\phi_i}^{\mathcal{M}'} = a_i$. Otherwise, let $c_{\phi_i}^{\mathcal{M}'}$ be any element of \mathcal{M} . Clearly $\mathcal{M}' \models \Theta_{\phi_i}$ for $i \leq n$. Thus T_1 is finitely satisfiable.

We now iterate the construction above to build a sequence of languages $\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \dots$ and a sequence of finitely satisfiable \mathcal{L}_i -theories $T \subseteq$

 $T_1 \subseteq T_2 \subseteq \ldots$ s.t. if $\phi(v)$ is an \mathcal{L}_i -formula then there is a constant symbol $c \in \mathcal{L}_{i+1}$ s.t. $T_{i+1} \models (\exists v \phi(v)) \rightarrow \phi(c)$

Let $\mathcal{L}^* = \bigcup \mathcal{L}_i$ and $T^* = \bigcup T_i$. If $|\mathcal{L}_i|$ is the number of relation, function and constant symbols in \mathcal{L}_i , then there are at most $|\mathcal{L}_i| + \aleph_0$ formulas in \mathcal{L}_i . Thus by induction, $|\mathcal{L}^*| = |\mathcal{L}| + \aleph_0$

Lemma 2.9. Suppose that T is a finitely satisfiable \mathcal{L} -theory and ϕ is an \mathcal{L} -sentence, then either $T \cup \{\phi\}$ or $T \cup \{\neg\phi\}$ is finitely satisfiable

Corollary 2.10. *If* T *is a finitely satisfiable* \mathcal{L} -theory, then there is a maximal finitely satisfiable \mathcal{L} -theory $T' \supseteq T$

Proof. Let I be the set of all finitely satisfiable \mathcal{L} -theory containing T. We partially order I by inclusion. If $C \subseteq I$ is a chain, let $T_C = \bigcup \{\Sigma : \Sigma \in C\}$. If Δ is a finite subset of T_C , then there is a $\Sigma \in C$ s.t. $\Delta \subseteq \Sigma$, so T_C is finitely satisfiable and $T_C \supseteq \Sigma$ for all $\Sigma \in C$. Thus every chain in I has an upper bound, and we can apply Zorn's lemma to find a $T' \in I$ maximal w.r.t. the partial order.

Theorem 2.11 (strengthening of Compactness Theorem). *If* T *is a finitely satisfiable* \mathcal{L} -theory and κ *is an infinite cardinal with* $\kappa \geq |\mathcal{L}|$, then there is a model of T of cardinality at most κ

Proof. By Lemma 2.8, we can find $\mathcal{L}^* \supseteq \mathcal{L}$ and $T^* \supseteq T$ a finitely satisfiable \mathcal{L}^* -theory s.t. any \mathcal{L}^* -theory extending T^* has the witness property and the cardinality of \mathcal{L}^* is at most κ . By Corollary 2.10, we can find a maximal finitely satisfiable \mathcal{L}^* -theory $T' \supseteq T^*$. Because T' has the witness property, Lemma 2.7 ensures that there is $\mathcal{M} \models T$ with $|\mathcal{M}| \le \kappa$

Proposition 2.12. Let $\mathcal{L} = \{\cdot, +, <, 0, 1\}$ and let $\operatorname{Th}(\mathbb{N})$ be the full \mathcal{L} -theory of the natural numbers. There is $\mathcal{M} \models \operatorname{Th}(\mathbb{N})$ and $a \in M$ s.t. a is larger than every natural number

Proof. Let $\mathcal{L}^* = \mathcal{L} \cup \{c\}$ where c is a new constant symbol and let

$$T = \text{Th}(\mathbb{N}) \cup \{\underbrace{1+1+\cdots+1}_{n\text{-times}} < c : \text{for } n = 1, 2, \dots\}$$

If Δ is a finite subset of T we can make $\mathbb N$ a model of Δ by interpreting c as a suitably large natural number. Thus T is finitely satisfiable and there is $\mathcal M \models T$.

Lemma 2.13. *If* $T \models \phi$, then $\Delta \models T$ for some finite $\Delta \subseteq T$

Proof. Suppose not. Let $\Delta \subseteq T$ be finite. Because $\Delta \not\models \phi$, $\Delta \cup \{\neg \phi\}$ is satisfiable. Thus $T \cup \{\neg \phi\}$ is finitely satisfiable and by the compactness theorem, $T \not\models \phi$

2.2 Complete Theories

Definition 2.14. An \mathcal{L} -theory T is called **complete** if for any \mathcal{L} -sentence ϕ either $T \models \phi$ or $T \models \neg \phi$

For \mathcal{M} an \mathcal{L} -structure, then the full theory

Th(
$$\mathcal{M}$$
) = { ϕ : ϕ is an \mathcal{L} -sentence and $\mathcal{M} \models \phi$ }

is a complete theory.

Proposition 2.15. Let T be an \mathcal{L} -theory with infinite models. If κ is an infinite cardinal and $\kappa \geq |\mathcal{L}|$, then there is a model of T of cardinality κ

Proof. Let $\mathcal{L}^* = \mathcal{L} \cup \{c_\alpha : \alpha < \kappa\}$, where each c_α is new constant symbol, and let T^* be the \mathcal{L}^* -theory $T \cup \{c_\alpha \neq c_\beta : \alpha, \beta < \kappa, \alpha \neq \beta\}$. Clearly if $\mathcal{M} \models T^*$, then \mathcal{M} is a model of T of cardinality at least κ . Thus by Theorem 2.11, it suffices to show that T^* is finitely satisfiable. But if $\Delta \subseteq T^*$ is finite, then $\Delta \subseteq T \cup \{c_\alpha \neq c_\beta : \alpha \neq \beta, \alpha, \beta \in I\}$, where I is a finite subset of κ . Let \mathcal{M} be an infinite model of T. We can interpret the symbols $\{c_\alpha : \alpha \in I\}$ as |I| distinct elements of M. Because $\mathcal{M} \models \Delta$, T^* is finitely satisfiable. \square

Definition 2.16. Let κ be an infinite cardinal and let T be a theory with models of size κ . We say that T is κ -categorical if any two models of T of cardinality κ are isomorphic.

Let $\mathcal{L} = \{+,0\}$ be the language of additive groups and let T be the \mathcal{L} -theory of torsion-free divisible Abelian groups. The axioms of T are the axioms for Abelian groups together with the axioms

$$\forall x (x \neq 0 \to \underbrace{x + \dots + x}_{n\text{-times}} \neq 0)$$

$$\forall y \exists x \underbrace{x + \dots + x}_{n\text{-times}} = y$$

for n = 1, 2, ...

Proposition 2.17. *The theory of torsion-free divisible Abelian groups is* κ *-categorical for all* $\kappa > \aleph_0$

Proof. We first argue that models of T are essentially vector spaces over the field of rational numbers \mathbb{Q} . If V is any vector space over \mathbb{Q} , then the underlying additive group V is a model of T. Check StackExchange. On the other hand, if $G \models T$, $g \in G$ and $n \in \mathbb{N}$ with g > 0, we can find $h \in G$ s.t. nh = g. If nk = g, then n(h - k) = 0. Because G is torsion-free there is a unique $h \in G$ s.t. nh = g. We call this element g/n. We can view G as a \mathbb{Q} -vector space under the action $\frac{m}{n}g = m(g/n)$

Two \mathbb{Q} -vector spaces are isomorphic if and only if they have the same dimension. Thus the model of T are determined up to isomorphism by their dimension. If G has dimension λ , then $|G| = \lambda + \aleph_0$. If κ is uncountable and G has cardinality κ , then G has dimension κ . Thus for $\kappa > \aleph_0$ any two models of T of cardinality κ are isomorphic

Lemma 2.18. Field of uncountable cardinality κ has transcendence degree κ^2

Proof. We prove the theorem for fields with characteristic p = 0.

Since each characteristic 0 field contains a copy of \mathbb{Q} as its prime field, we can view F as a field extension over \mathbb{Q} . We will show that F has a subset of cardinality κ which is algebraically independent over \mathbb{Q} .

We build the claimed subset of F by transfinite induction and implicit use of the axiom of choice.

Let
$$S_0 = \emptyset$$

Let S_1 be a singleton containing some element of F which is not algebraic over \mathbb{Q} . This is possible since algebraic numbers are countable

Define $S_{\alpha+1}$ to be S_{α} together with an element of F which is not a root of any non-trivial polynomial with coefficients in $\mathbb{Q} \cup S_{\alpha}$ since there are only $|\mathbb{Q} \cup S_{\alpha}| = \aleph_0 + |\alpha| < \kappa$ polynomials

Define
$$S_{\beta} = \bigcup_{\alpha < \beta} S_{\alpha}$$

Let $P(x_1,...,x_n)$ be a non-trivial polynomial with coefficients in \mathbb{Q} and elements $a_1,...,a_n$ in F. W.L.O.G., it is assumed that a_n was added at an ordinal $\alpha+1$ later than the other elements. Then $P(a_1,...,a_{n-1},x_n)$ is a polynomial with coefficients in $\mathbb{Q} \cup S_\alpha$. Hence $P(a_1,...,a_n) \neq 0$.

Proposition 2.19. *ACF*_p *is* κ *-categorical for all uncountable cardinals* κ

Proof. Two algebraically closed fields are isomorphic if and only if they have the same characteristic and transcendence degree. See AdvancedModernAlgebra. org. By Lemma 2.18, an algebraically closed field of transcendence degree λ has cardinality $\lambda + \aleph_0$.

²proofwiki

Theorem 2.20 (Vaught's Test). Let T be a satisfiable theory with no finite models that is κ -categorical for some infinite cardinal $\kappa \geq |\mathcal{L}|$. Then T is complete

Proof. Suppose T is not complete. Then there is a sentence ϕ s.t. $T \not\models \phi$ and $T \not\models \neg \phi$. Because $T \not\models \psi$ if and only if $T \cup \{\neg \psi\}$ is satisfiable, the theories $T_0 = T \cup \{\phi\}$ and $T_1 = T \cup \{\neg \phi\}$ are satisfiable. Because T has no finite models, both T_0 and T_1 have infinite models. By Proposition 2.15 we can find \mathcal{M}_0 and \mathcal{M}_1 of cardinality κ with $\mathcal{M}_i \models T_i$. Because \mathcal{M}_0 and \mathcal{M}_1 disagree about ϕ , they are not elementarily equivalent, and hence by Theorem 1.9, nonisomorphic.

Definition 2.21. We say that an \mathcal{L} -theory T is **decidable** if there is an algorithm that when given an \mathcal{L} -sentence ϕ as input decides whether $T \models \phi$

Lemma 2.22. Let T be a recursive complete satisfiable theory in a recursive language \mathcal{L} . Then T is decidable

Proof. Because T is satisfiable $A = \{\phi : T \models \phi\}$ and $B = \{\phi : T \models \neg \phi\}$ are disjoint. Because T is consistent $A \cup B$ is the set of all \mathcal{L} -sentences. By the Completeness Theorem, $A = \{\phi : T \vdash \phi\}$ and $B = \{\phi : T \vdash \neg \phi\}$. By Proposition 2.1 A and B are recursively enumerable. But any recursively enumerable set with a recursively enumerable complement is recursive. \square

Corollary 2.23. For p = 0 or p prime, ACF_p is decidable. In particular, $Th(\mathbb{C})$, the first-order theory of the field of complex numbers, is decidable

Corollary 2.24. Let ϕ be a sentence in the language of rings. The following are equivalent

- 1. ϕ is true in the complex number
- 2. ϕ is true in every algebraically closed field of characteristic zero
- 3. ϕ is true in some algebraically closed field of characteristic zero
- 4. There are arbitrarily large primes p s.t. ϕ is true in some algebraically closed field of characteristic p
- 5. There is an m s.t. for all p > m, ϕ is true in all algebraically closed fields of characteristic p

Proof. By Lemma ?? and Vaught's Test, ACF p is complete.

- (2) \rightarrow (5). Suppose that ACF₀ $\models \phi$. By Lemma 2.13, there is a finite $\Delta \subseteq ACF_0$ s.t. $\Delta \models \phi$. Thus if we choose p large enough, then ACF_p $\models \Delta$.
- (4) \rightarrow (2). Suppose ACF₀ $\not\models \phi$. Because ACF₀ is complete, ACF₀ $\models \neg \phi$.

2.3 Up and Down

Definition 2.25. If \mathcal{M} and \mathcal{N} are \mathcal{L} -structures, then an \mathcal{L} -embedding $j: \mathcal{M} \to \mathcal{N}$ is called an **elementary embedding** if

$$\mathcal{M} \models \phi(a_1, \ldots, a_n) \leftrightarrow \mathcal{N} \models \phi(j(a_1), \ldots, j(a_n))$$

for all \mathcal{L} -formulas $\phi(v_1, \dots, v_n)$ and all $a_1, \dots, a_n \in M$

If \mathcal{M} is a substructure of \mathcal{N} , we say that it is an **elementary substructure** and write $\mathcal{M} \prec \mathcal{N}$ if the inclusion map is elementary. \mathcal{N} is an **elementary extension** of \mathcal{M}

Definition 2.26. \mathcal{M} is an \mathcal{L} -structure. Let \mathcal{L}_M be the language where we add to \mathcal{L} constant symbols m for each element of M. The **atomic diagram** of \mathcal{M} is $\{\phi(m_1,\ldots,m_n): \phi \text{ is either an atomic } \mathcal{L}\text{-formula or the negation of an atomic } \mathcal{L}\text{-formula and } \mathcal{M} \models \phi(m_1,\ldots,m_n)\}$. The **elementary diagram** of \mathcal{M} is

$$\{\phi(m_1,\ldots,m_n): \mathcal{M} \models \phi(m_1,\ldots,m_n), \phi \text{ an } \mathcal{L}\text{-formula}\}$$

We let ${\rm Diag}(\mathcal{M})$ and ${\rm Diag}_{\rm el}(\mathcal{M})$ denote the atomic and elementary diagrams of \mathcal{M}

- **Lemma 2.27.** 1. Suppose that \mathcal{N} is an \mathcal{L}_M -structure and $\mathcal{N} \models \operatorname{Diag}(\mathcal{M})$, then viewing \mathcal{N} as an \mathcal{L} -structure, there is an \mathcal{L} -embedding of \mathcal{M} into \mathcal{N} 2. If $\mathcal{N} \models \operatorname{Diag}_{el}(\mathcal{M})$, then there is an elementary embedding of \mathcal{M} into \mathcal{N}
- *Proof.* 1. Let $j: M \to N$ by $j(m) = m^{\mathcal{N}}$. If $m_1 \neq m_2 \in \operatorname{Diag}(\mathcal{M})$; thus $j(m_1) \neq j(m_2)$ so j is an embedding. If f is a function symbols of \mathcal{L} and $f^{\mathcal{M}}(m_1, \ldots, m_n) = m_{n+1}$, then $f(m_1, \ldots, m_n) = m_{n+1}$ is a formula in $\operatorname{Diag}(\mathcal{M})$ and $f^{\mathcal{N}}(j(m_1), \ldots, j(m_n)) = j(m_{n+1})$. If R is a relation symbol and $\bar{m} \in R^{\mathcal{M}}$, then $R(m_1, \ldots, m_n) \in \operatorname{Diag}(\mathcal{M})$ and $(j(m_1), \ldots, j(m_n)) \in R^{\mathcal{N}}$. Hence j is an \mathcal{L} -embedding

2. *j* is elementary.

Theorem 2.28 (Upward LöwenheimSkolem Theorem). Let \mathcal{M} be an infinite \mathcal{L} -structure and κ be an infinite cardinal $\kappa \geq |\mathcal{M}| + |\mathcal{L}|$. Then, there is \mathcal{N} an \mathcal{L} -structure of cardinality κ and $j: \mathcal{M} \to \mathcal{N}$ is elementary

Proof. Because $\mathcal{M} \models \mathrm{Diag_{el}}(\mathcal{M})$, $\mathrm{Diag_{el}}(\mathcal{M})$ is satisfiable. By Theorem 2.11, there is $\mathcal{N} \models \mathrm{Diag_{el}}(\mathcal{M})$ of cardinality κ . By Lemma 2.27, there is an elementary $j: \mathcal{M} \to \mathcal{N}$

Proposition 2.29 (Tarski-Vaught Test). Suppose that \mathcal{M} is a substructure of \mathcal{N} . Then \mathcal{M} is an elementary substructure if and only if, for any formula $\phi(v, \bar{w})$ and $\bar{a} \in \mathcal{M}$, if there is $b \in \mathcal{N}$ s.t. $\mathcal{N} \models \phi(b, \bar{a})$, then there is $c \in \mathcal{M}$ s.t. $\mathcal{N} \models \phi(c, \bar{a})$

Proof. We need to show that for all $\bar{a} \in M$ and all \mathcal{L} -formulas $\psi(\bar{v})$

$$\mathcal{M} \models \psi(\bar{a}) \Leftrightarrow \mathcal{N} \models \psi(\bar{a})$$

In Proposition 1.7, we showed that if $\phi(\bar{v})$ is quantifier free then $\mathcal{M} \models \phi(\bar{a})$ if and only if $\phi(\bar{a})$

We say that an \mathcal{L} -theory T has **built-in Skolem functions** if for all \mathcal{L} -formulas $\phi(v, w_1, \ldots, w_n)$ there is a function symbol f s.t. $T \models \forall \bar{w}((\exists v \phi(v, \bar{w})) \rightarrow \phi(f(\bar{w}), \bar{w}))$. In other words, there are enough function symbols in the language to witness all existential statements.

Lemma 2.30. Let T be an \mathcal{L} -theory. There are $\mathcal{L}^*\supseteq\mathcal{L}$ and $T^*\supseteq T$ an \mathcal{L}^* -theory s.t. T^* has built-in Skolem functions, and if $\mathcal{M}\models T$, then we can expand \mathcal{M} to $\mathcal{M}^*\models T^*$. We can choose \mathcal{L}^* s.t. $|\mathcal{L}^*|=|\mathcal{L}|+\aleph_0$. We call T^* a **skolemization** of T

3 Reference

References

4 Index

Symbols	F	
\mathcal{L} -embedding3	finitely satisfiable	
ACF	•	
D definable	R recursive	.3
E elementary class 5	S satisfiable	5