The Category of Categories is Cartesian Closed

Maarten M Fokkinga CWI, Amsterdam, and University of Twente, Enschede

Version of Feb 5, 1991

The category of categories is cartesian closed. This means amongst others that $curry(\dagger)$ is well defined for any bi-functor \dagger , having the properties that we expect it to have. The *sectioning* notation $x\dagger$ may be used to denote "x subject to $curry(\dagger)$ " (for object or morphism x); it follows that $f\dagger$ is a natural transformation from $A\dagger$ to $B\dagger$, whenever $f:A\to B$.

Introduction

The category of categories, C, has all (small?) categories as objects and all functors as morphisms. Cartesian closedness of C means

- there exists a category 1 that is final in C,
- for any two categories **A** and **B** there exists a category $\mathbf{A} \times \mathbf{B}$ and suitable projection functors that together constitute a *product* in \mathcal{C} , and
- for any two categories A and B there exists a category $A \rightarrow B$ and functor $@_{A,B} : A \times (A \rightarrow B) \rightarrow B$ and, for any functor $\dagger : A \times B \rightarrow C$, a functor $\dagger : A \rightarrow (B \rightarrow C)$ that together constitute an *exponent* in C.

Once the formal requirements are laid down, most of the definitions are straightforward and present no surprises if the point-wise construction of the final object, the products, and the exponents within **Set** are known. Also, the verification that the required typing and equations are fullfilled is a matter of routine. The "only" difference with **Set** is this: in **Set** a morphism is just a single function, whereas in \mathcal{C} a morphism is a functor and therefore both a function from objects to objects and a function from morphisms to morphisms.

Let us consider the construction for exponents in some more detail. We shall use the following notation and naming convention, unless stated explicitly otherwise.

```
A, B, \ldots vary over categories (i.e. A \in \text{Obj}(\mathcal{C}));

F, G, \ldots vary over functors, typically F : A \to B (i.e., F \in Hom_{\mathcal{C}}(A, B));

x.F denotes "x subject to F", and x.(F; G) = (x.F).G;
```

 $\dagger : \mathbf{A} \times \mathbf{B} \to \mathbf{C}$ in \mathcal{C} and $x \dagger y = (x, y). \dagger$; A, A', \dots vary over objects of \mathbf{A} (i.e., $A \in \mathrm{Obj}(\mathbf{A})$) and so on; f, g, \dots vary over morphisms, typically $f : A \to A'$ in \mathbf{A} (i.e., $f \in Hom_{\mathbf{A}}(A, A')$) and $g : B \to B'$ in \mathbf{B} ; composition of morphisms in \mathbf{A} and so on is denoted f; f'.

Exponents

Exponent, currying Given categories **A** and **B** we define the category $\mathbf{A} \rightarrow \mathbf{B}$ to be the well-known category of functors from **A** to **B** whose morphisms are natural transformations. Given a (bi-) functor $\dagger : \mathbf{A} \times \mathbf{B} \rightarrow \mathbf{C}$ we define the (mono-)functor $\dagger : \mathbf{A} \rightarrow (\mathbf{B} \rightarrow \mathbf{C})$ as follows.

$$A.\dagger^{\hat{}} = \text{ the functor from } \mathbf{B} \text{ to } \mathbf{C} \text{ given by}$$

$$B.(A.\dagger^{\hat{}}) = A \dagger B$$

$$g.(A.\dagger^{\hat{}}) = id_A \dagger g : B.(A.\dagger^{\hat{}}) \to B'.(A.\dagger^{\hat{}})$$

$$f.\dagger^{\hat{}} = \text{ the natural transformation from } A.\dagger^{\hat{}} \text{ to } A'.\dagger^{\hat{}} \text{ given by}$$

$$B.(f.\dagger^{\hat{}}) = f \dagger id_B : A \dagger B \to A' \dagger B \text{ in } \mathbf{C} :$$

The requirements for $A.\dagger$ to be a functor, and for $f.\dagger$ to be a natural transformation, are easily verified. We can extend the above definition of $f.\dagger$ (as a mapping from objects to morphisms) with a mapping from morphisms to morphisms as follows. (Here $g \bullet \varphi$ denotes "g subject to φ ".)

(2)
$$g \bullet (f.\dagger) = f \dagger g$$
$$= (id_A \dagger g); (f \dagger id_{B'})$$
$$= g.(A\dagger); B'.(f\dagger)$$
$$= B.(f\dagger); g.(A'\dagger);$$

This is no surprise since we can do so in general for any natural transformation $\varphi : \mathsf{F} \to \mathsf{G}$ in $\mathbf{B} \to \mathbf{C}$ (with $\mathsf{F}, \mathsf{G} : \mathbf{B} \to \mathbf{C}$ in \mathcal{C}):

$$(3) g.F; \varphi_{B'} = \varphi_B; g.G =: g \bullet \varphi$$

for any $g: B \to B'$ in **B**.

Sectioning We may use the notation x^{\dagger} for $x.^{\dagger}$. It has been defined above for both objects x and morphisms x, and we have seen that A^{\dagger} is a functor and f^{\dagger} is a natural transformation.

When object A in \mathbf{A} is also used to denote the identity morphism $id_A : A \to A$ and the constant functor $A^{\bullet} : \mathbf{X} \to \mathbf{A}$ (mapping an object to A and a morphism to id_A), then we can summarize all four definitions of \dagger by

$$(4) y. (x\dagger) = x \dagger y \text{ in } \mathbf{C}$$

for any object and morphism x in \mathbf{A} and any object and morphism y in \mathbf{B} . (Notice that there is a syntactic ambiguity in $f; A.\mathsf{F}$ and $(A.\mathsf{F}); \mathsf{F}'$ but no semantic ambiguity, since $id_A.\mathsf{F} = id_{A.\mathsf{F}}$.)

Evaluation We also need to define for any two objects **A** and **B** in \mathcal{C} an evaluation functor $@_{\mathbf{A},\mathbf{B}}: \mathbf{A} \times (\mathbf{A} \rightarrow \mathbf{B}) \rightarrow \mathbf{B}$. As a mapping on objects its definition suggests itself; as a mapping on morphisms it might be a very little bit surprising.

$$\begin{array}{llll} (5) & & (A,\mathsf{F}).@ &=& A.\mathsf{F} & \text{in } \mathbf{B} \\ & & (f,\varphi).@ &=& f \bullet \varphi & : & A.\mathsf{F} \to A'.\mathsf{F} & & (=f.\mathsf{F};\varphi=\varphi;f.\mathsf{G}) \,; \end{array}$$

for $f:A\to A'$ in ${\bf A}$ and $\varphi:{\sf F}\to {\sf G}$ in ${\bf A}\to {\bf B}$. In order to fully complete the proof that these constructions do constitute an exponent, the following equivalence has to be satisfied:

(6)
$$F = \uparrow^{\hat{}} \equiv F \times I_{\mathbf{B} \to \mathbf{C}}; @_{\mathbf{B}, \mathbf{C}} = \uparrow$$

for all $F: A \to B$ in C. Since @ is defined pointwise one can easily check the equivalence by extensionality.

Acknowledgement I have had an instructive discussion with Lambert Meertens and Jaap van der Woude on this topic.