

Concours d'entrée 2017 - 2018 La distribution des notes est sur 50 Mathématiques (Bac Libanais)

Durée: 3 heures 8 Juillet 2017

Exercice 1 (7 points)

Le plan complexe est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

- A- Soit A le point d'affixe 10 et (γ) le cercle de diamètre [OA].
 - 1- Montrer que les points B et C d'affixes respectives b=1+3i et c=8-4i appartiennent à (γ) .
 - 2- Soit D le point d'affixe d = 2 + 2i.

Calculer $\frac{b-d}{b-c}$ et $\frac{d}{b-c}$. En déduire que D est le projeté orthogonal de O sur (BC).

Tracer (γ) et placer les points A, B, C et D.

- **B-** A tout point M du plan d'affixe z, distinct de O, on associe le point M' d'affixe z' tel que $z' = \frac{20}{\overline{z}}$.
 - 1- Montrer que les points O, M et M' sont alignés.
 - 2- On suppose dans cette partie que le point M appartient à la droite (Δ) d'équation x = 2.
 - a) Vérifier que $z + \overline{z} = 4$ et montrer que $5(z' + \overline{z'}) = z'\overline{z'}$. En déduire que M' appartient à (γ) .
 - b) Considérer un point M sur (Δ) et placer le point M 'associé à M .

Exercice 2 (7 points)

30% des élèves d'un lycée sont membres du " club des activités parascolaires " (CAP). On sait que le quart des filles et le tiers des garçons du lycée sont membres du CAP.

A- Un élève du lycée est choisi au hasard. On considère les deux évènements:

F: «l'élève choisi est une fille » et A: «l'élève choisi est membre du CAP ».

- 1- a) Montrer que la probabilité de l'évènement F est égale à $\frac{2}{5}$.
 - b) Calculer la probabilité que l'élève choisi soit un garçon qui n'est pas membre du CAP.
- 2- On choisit un élève du CAP. Quelle est la probabilité que cet élève soit une fille?
- **B-** Pour financer la cérémonie scolaire pour la journée nationale, le CAP organise une loterie.

Chaque jour , un élève du lycée est choisi au hasard et de manière indépendante pour tenir la loterie .

- 1- Déterminer la probabilité que , parmi les élèves choisis dans une semaine de 5 jours , il y a exactement deux membres du CAP .
- 2- Pour tout entier naturel non nul n, on note p_n la probabilité que, dans n semaines consécutives,

il y a au moins un membre du CAP choisi . Montrer que $p_n = 1 - \left(\frac{7}{10}\right)^{5n}$.

3- Déterminer le nombre minimal de semaines pour que $p_n > 0.999$.

Exercice 3 (7 points)

1- On considère les fonctions f et h définies sur l'intervalle K = [1; 2] par :

 $f(x) = 1 + 2\ell n(x+1) - \ell n(x^2+1)$ et h(x) = f(x) - x.

- a) Montrer que les deux fonctions f et h sont strictement décroissantes sur K.
- b) Montrer que si $x \in K$, alors $f(x) \in K$.
- c) Montrer que l'équation f(x) = x admet une unique solution α .
- 2- On considère la suite (U_n) de premier terme $U_0 = \frac{1}{5}$ telle que, pour tout entier naturel n, $U_{n+1} = f(U_n)$.
 - a) Montrer que, pour tout $n \ge 1$, $1 \le U_n \le 2$.
 - b) On admet que, pour tout $x \in K$, $|f'(x)| \le \frac{1}{4}$.

Sachant que , par tout $x \in K$, on a $|f(x) - \alpha| \le \frac{1}{4} |x - \alpha|$, montrer que , pour tout $n \ge 1$, $\left| U_{n+1} - \alpha \right| \le \frac{1}{4} \left| U_n - \alpha \right| \; .$

c) Montrer par récurrence que , pour tout entier naturel n , $\left|U_n - \alpha\right| \le \left(\frac{1}{4}\right)^{n-1}$. En déduire la limite de la suite (U_n) .

Exercice 4 (9 points)

Le plan est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$.

On considère l'ellipse (γ) d'équation $\frac{x^2}{4} + (y+1)^2 = 1$.

- 1- Tracer (γ) . (*Unité graphique* : 2 cm)
- 2- Calculer l'aire du domaine intérieur à (γ) . En déduire $\int_{0}^{2} \sqrt{4-x^2} dx$.
- 3- Soit F_1 et F_2 les deux foyers de (γ) (F_1 est celui d'abscisse positive), (d_1) la directrice associée à F_1 , et $M(\alpha; \beta)$ avec $\beta \neq -1$, un point de (γ) .
 - a) La tangente (δ) à l'ellipse (γ) en M coupe (d_1) en L. Montrer que l'angle $L\hat{F}_1M$ est droit .
 - b) Placer le point M sur (γ) et décrire une construction géométrique de la tangente (δ) .

- 4- Soit θ la mesure en radians de l'angle $F_1 \hat{M} F_2$.
 - a) Calculer MF_1 en fonction de α et déduire MF_2 .
 - b) Montrer que $\cos\theta = \frac{3\alpha^2 8}{16 3\alpha^2}$ et déterminer θ lorsque M est l'un des sommets de (γ) qui sont sur l'axe non focal.
 - c) Déterminer l'abscisse des points de (γ) qui sont aussi sur le cercle de diamètre $[F_1F_2]$.

Exercice 5 (9 points)

Dans un plan orienté on considère un triangle équilatéral \overrightarrow{ABC} tel que $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{3}$ (2 π).

Soit H le milieu de [AC] et K le projeté orthogonal de H sur [AB].

- 1- Soit *S* la similitude de centre *A* qui transforme *K* en *H* et *S* ' la similitude qui transforme *B* en *H* et *H* en *K*.

 Déterminer le rapport et un angle de chacune des similitudes *S* et *S* '.
- 2- On considère la transformation $T = S \circ S'$.
 - a) Déterminer T(H) et préciser la nature et les éléments de T.
 - b) Déterminer T(C). En déduire que S'(C) = A.
- 3- Soit I le milieu de [AB].
 - a) Justifier que K est le milieu de [AI]. En déduire que S'(A) = I.
 - b) Déterminer le point J = S'(I).
- 4- On considère la transformation $f = S' \circ S' \circ S'$.
 - a) Déterminer la nature et les éléments de f.
 - b) Montrer que f(C) = J. En déduire le centre L de S'.
- 5- Le plan est rapporté au repère orthonormé direct $(A; \vec{u}; \vec{v})$ où $\vec{u} = \frac{1}{4} \overrightarrow{AB}$.
 - a) Déterminer la relation complexe de S'.
 - b) En déduire l'affixe de J et celle du centre L de S'.

Exercice 6 (11 points)

Le plan est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$.

- A- Soit T la transformation qui , à tout point M(x;y) , associe le point N(x';y') tel que x'=-x et y'=-2x+y .
 - 1- a) Montrer que \overrightarrow{MN} est colinéaire à $\overrightarrow{i} + \overrightarrow{j}$ et que le milieu P de [MN] appartient à l'axe des ordonnées .
 - b) Décrire une construction géométrique de l'image N d'un point quelconque M du plan .
 - 2- a) Vérifier que tout point de l'axe des ordonnées est invariant par T.
 - b) Soit (d) une droite de coefficient directeur a. Montrer que l'image de (d) par T est une droite (d') et que les droites (d) et (d') se coupent sur l'axe des ordonnées.
- **B-** 1- a) Dresser le tableau de variations de la fonction g définie sur $]-\infty$; 0] par $g(x) = x-1+2e^x$.
 - b) Dresser le tableau de variations de la fonction h définie sur $[0; +\infty[$ par $h(x) = x-1+2e^{-x}$.
 - 2- Soit (C_1) et (C_2) les courbes représentatives de g et h respectivement (On ne demande pas de les tracer).
 - a) Montrer que (C_2) est l'image de (C_1) par T.
 - b) Montrer que la droite (δ) d'équation y = x 1 est asymptote à (C_1) et à (C_2) .
 - c) Déterminer la position de chacune des courbes (C_1) et (C_2) par rapport à (δ) .
 - 3- On considère la fonction f définie sur IR par $f(x) = x 1 + 2e^{-|x|}$. Soit (C) sa courbe représentative.
 - a) Montrer que (C) est la réunion de (C_1) et (C_2) .
 - b) Préciser les demi-tangentes à (C) au point A d'abscisse 0.
 - c) Tracer (C) ($Unité\ graphique : 2 cm$).
 - 4- Soit (Δ) la droite d'équation y = x 1 + 2m où $m \in]0; 1[$.
 - a) Montrer que, pour tout $m \in]0; 1[, (\Delta) \text{ coupe } (C) \text{ en deux points } : E \text{ sur } (C_1) \text{ et } F \text{ sur } (C_2).$
 - b) Vérifier que F = T(E) (T est la transformation définie dans la partie A).
 - 5- Soit (t_1) la tangente en E à (C_1) et (t_2) la tangente en F à (C_2) .

 Sachant que (t_1) et (t_2) se coupent sur l'axe des ordonnées, déduire que (t_2) est l'image de (t_1) par T.

Entrance Exam 2017 - 2018

Mathematics (SOLUTION)

July 08, 2017

(Program: Lebanese bac)

Exercise 1 (7 points)

A- (γ) is the circle of diameter [OA] of center the point I with affix 5, the mid point of [OA], and radius 5.

1-
$$IB = |b-5| = |-4+3i| = 5$$
 then, B belongs to (γ) .
 $IC = |c-5| = |3-4i| = 5$ then C belongs to (γ) .

2- D is the point of affix d = 2 + 2i;

$$\frac{b-d}{b-c} = \frac{-1+i}{-7+7i} = \frac{1}{7} \text{ and}$$

$$\frac{d}{b-c} = \frac{2+2i}{-7+7i} = \frac{2i(1-i)}{-7(1-i)} = -\frac{2}{7}i.$$

 $\frac{b-d}{b-c}$ is real then, $D \in (BC)$;

 $\frac{d}{b-c}$ is pure imaginary then , (OD) is perpendicular to (BC) .

Therefore (OD) is perpendicular to (BC) at D; that is D is the orthogonal projection of O on (BC).

Drawing a figure showing (γ) , A, B and C.

- **B-** 1- $\frac{z'}{z} = \frac{20}{z\bar{z}}$ then, $\frac{z'}{z}$ is a pure positive real number; therefore $(\overrightarrow{OM}; \overrightarrow{OM'}) = 0$ (2π) and the points
 - O, M and M' are collinear.
 - 2- (Δ) is the straight line of equation x = 2 and M a point of (Δ) then, z = 2 + yi with $y \in \mathbb{R}$.
 - a) $z + \bar{z} = 2 + yi + 2 yi = 4$.

$$z' + \overline{z'} = \frac{20}{\overline{z}} + \frac{20}{z} = \frac{20(z + \overline{z})}{z\overline{z}} = \frac{80}{z\overline{z}} ; \quad 5(z' + \overline{z'}) = \frac{400}{z\overline{z}} = \frac{20}{\overline{z}} \times \frac{20}{z} = z'\overline{z'} .$$

 $IM^{2} = (z'-5)(\overline{z'-5}) = z'\overline{z'} - 5(z'+\overline{z'}) + 25 = 25 \text{ then }, IM' = 5 \text{ and } M' \in (\gamma)$.

Therefore, M' is the point of intersection of (OM) and (γ) .

b) Plotting M' on the figure as the point where (OM) cuts (γ) .

Exercise 2 (7 points)

- A- It is given that $p(A) = \frac{3}{10}$, $p(A/G) = \frac{1}{4}$ and $p(A/\overline{G}) = \frac{1}{3}$.
 - 1- a) Let x = p(G). By the law of total probability,

$$P(A) = p(A \cap G) + p(A \cap \overline{G}) = p(G) \times p(A/G) + p(\overline{G}) \times p(A/\overline{G}) \text{ , then } \frac{3}{10} = x \times \frac{1}{4} + (1-x) \times \frac{1}{3}.$$

Therefore, $\frac{1}{12}x = \frac{1}{30}$, then $x = \frac{2}{5}$; that is $p(G) = \frac{2}{5}$.

- b) The required probability is $p(\overline{G} \cap \overline{A}) = p(\overline{G}) \times P(\overline{A}/\overline{G}) = p(\overline{G}) \times (1 P(A/\overline{G})) = \frac{3}{5} \times \frac{2}{3} = \frac{2}{5}$.
- 2- The required probability is $p(G/A) = \frac{p(G \cap A)}{p(A)} = \frac{p(G) \times p(A/G)}{p(A)} = \frac{2}{5} \times \frac{1}{4} \div \frac{3}{10} = \frac{1}{3}$.
- **B-** 1- The 2 days of choosing a member of the EAC can be selected in ${}_{5}C_{2} = 10$ ways;

in addition $p(A) = \frac{3}{10}$ and $p(\overline{A}) = \frac{7}{10}$; therefore, the required probability is

$$p = 10 \times \left(\frac{3}{10}\right)^2 \times \left(\frac{7}{10}\right)^3 = \frac{30870}{100000} = 0.3087.$$

2- In n weeks there are 5n days. Consider the event:

E: " no student is a member of the EAC "; $p(E) = \left(\frac{7}{10}\right)^{5n}$.

The required probability is $p_n = p(\overline{E}) = 1 - \left(\frac{7}{10}\right)^{5n}$

3- We have to solve the inequality $1 - \left(\frac{7}{10}\right)^{5n} > 0.999$ which is equivalent to $\ln\left((0.7)^{5n}\right) < \ln\left(0.001\right)$;

that is $5n \ln(0.7) < \ln(0.001)$; $n > \frac{\ln(0.001)}{5 \ln(0.7)} \approx 3.87$.

Therefore we need at least 4 weeks for having $p_n > 0.999$.

Exercise 3 (7 points)

1-a)
$$f'(x) = \frac{2}{x+1} - \frac{2x}{x^2+1} = \frac{2(1-x)}{(x+1)(x^2+1)}$$
.

For all x in]1; 2[, f'(x) < 0 then f is strictly decreasing in K.

h'(x) = f'(x) - 1 where $f'(x) \le 0$ then, for all x in K, h'(x) < 0 and h is strictly decreasing in K.

- b) f is continuous and strictly decreasing in K then, for all x in K, f(2) < f(x) < f(1) where $f(1) = 1 + \ell n \cdot 2 < 2$ and $f(2) = 1 + \ell n \cdot 9 \ell n \cdot 5 > 1$ then, $f(x) \in K$.
- c) h is continuous and strictly decreasing in K then , h(K) = [h(2); h(1)] where $h(1) = \ln 2 \approx 0.693$ and $h(2) = -1 + \ln 9 \ln 5 \approx -0.412$.

h is a bijection of K into the interval h(K) that contains 0 then, the equation h(x) = 0 which is equivalent to f(x) = x has a unique solution α in K.

2-a)
$$U_1 = f(U_0) = 1 + \ell n \frac{18}{13} \approx 1.325$$
 then, $U_1 \in K$.

If , for a certain all $n \ge 1$, $U_n \in K$ then , $f(U_n) \in K$ (proved in 1-b); that is $U_{n+1} \in K$. Therefore , for all $n \ge 1$, $U_n \in K$.

b)
$$\left|U_{n+1} - \alpha\right| = \left|f(U_n) - \alpha\right|$$
 where $U_n \in K$ then, $\left|U_{n+1} - \alpha\right| \le \frac{1}{4} \left|U_n - \alpha\right|$.

c) Proof by induction:

$$1 < \alpha < 2$$
 and $1 < U_1 < 2$ then $1 < C_1 - \alpha < 1$ and $|U_1 - \alpha| < 1 = \left(\frac{1}{4}\right)^{1-1}$.

If, for a certain all $n \ge 1$, $|U_n - \alpha| \le \left(\frac{1}{4}\right)^{n-1}$,

$$\left|U_{n+1} - \alpha\right| = \left|f(U_n) - \alpha\right| \le \frac{1}{4} \left|U_n - \alpha\right| \le \frac{1}{4} \times \left(\frac{1}{4}\right)^{n-1} = \left(\frac{1}{4}\right)^n$$

Therefore, for all $n \ge 1$, $|U_n - \alpha| \le \left(\frac{1}{4}\right)^{n-1}$.

$$\lim_{n \to +\infty} \left(\frac{1}{4}\right)^{n-1} = 0 \text{ then }, \quad \lim_{n \to +\infty} \left| U_n - \alpha \right| = 0 ; \quad \lim_{n \to +\infty} U_n = \alpha \text{ . Consequently }, \quad (U_n) \text{ converges to } \alpha \text{ .}$$

Exercise 4 (9 points)

Consider the ellipse (γ) of equation $\frac{x^2}{4} + (y+1)^2 = 1$.

- 1- For the ellipse (γ) , the center is I(0; -1) and the focal axis is the straight line (Δ) of equation y = -1. a = 2, b = 1 then, the vertices of (γ) are: (2; -1), (-2; -1), (0; 0), (0; -2). Drawing (γ) .
- 2- The area of the domain interior to (γ) is $S = \pi ab = 2\pi$ units of area.

The equation $\frac{x^2}{4} + (y+1)^2 = 1$ can be written as $y = -1 \pm \frac{\sqrt{4-x^2}}{2}$ where $x \in [-2; 2]$ then,

$$\frac{S}{4} = \int_{0}^{2} \left(\frac{\sqrt{4 - x^2}}{2} \right) dx \quad units \ of \ area \ .$$

(8) cuts the directrix (d_1) of equation $x = \frac{4}{\sqrt{3}}$ at $L(\frac{4}{\sqrt{3}}; \frac{\sqrt{3} - \alpha}{\sqrt{3}(\beta + 1)} - 1)$.

$$\overrightarrow{F_1M}(\alpha - \sqrt{3}; \beta + 1)$$
 and $\overrightarrow{F_1L}(\frac{1}{\sqrt{3}}; \frac{\sqrt{3} - \alpha}{\sqrt{3}(\beta + 1)})$ then $\overrightarrow{F_1M} \cdot \overrightarrow{F_1L} = 0$ and the angle $L\widehat{F}M$ is right.

b) M being given on (γ) , the perpendicular to (F_1M) at F_1 cuts (d_1) at a point L such that (ML) is the tangent to (γ) at M.

4- a)
$$d(M;(d_1)) = \left|\alpha - \frac{4}{\sqrt{3}}\right| = \frac{4}{\sqrt{3}} - \alpha$$
 then, $MF_1 = ed(M;(d_1)) = \frac{\sqrt{3}}{2}(\frac{4}{\sqrt{3}} - \alpha) = 2 - \frac{\sqrt{3}}{2}\alpha$ and $MF_2 = 2a - MF_1 = 2 + \frac{\sqrt{3}}{2}\alpha$.

b) $\overrightarrow{MF_1}(\sqrt{3} - \alpha; -1 - \beta)$ and $\overrightarrow{MF_2}(-\sqrt{3} - \alpha; -1 - \beta)$ then,

$$\cos\theta = \cos(\overrightarrow{MF_1}; \overrightarrow{MF_2}) = \frac{\overrightarrow{MF_1} \cdot \overrightarrow{MF_2}}{MF_1 \times MF_2} = \frac{\alpha^2 - 3 + (\beta + 1)^2}{\left(2 - \frac{\sqrt{3}}{2}\alpha\right)\left(2 - \frac{\sqrt{3}}{2}\alpha\right)} = \frac{\alpha^2 - 3 + 1 - \frac{\alpha^2}{4}}{4 - 3\frac{\alpha^2}{4}} = \frac{3\alpha^2 - 8}{16 - 3\alpha^2}.$$

If M is one of the vertices on the non focal axis of (γ) then, $\alpha = 0$ and $\cos \theta = -\frac{1}{2}$; therefore $\theta = \frac{2\pi}{3}$ radians.

c) The points of (γ) of ordinate -1 do not belong to the circle of diameter $[F_1F_2]$. The points of (γ) that belong to the circle of diameter $[F_1F_2]$ are the points $M(\alpha; \beta)$ where $\beta \neq -1$ such that $F_1\hat{M}F_2$ is right; they are the points $M(\alpha; \beta)$ such that $\cos\theta = \frac{3\alpha^2 - 8}{16 - 3\alpha^2} = 0$; $3\alpha^2 - 8 = 0$;

$$\alpha = -2\sqrt{\frac{2}{3}}$$
 or $\alpha = 2\sqrt{\frac{2}{3}}$.

Therefore, the points of (γ) that are on the circle of diameter $[F_1F_2]$ are the 2 points of abscissas $-2\sqrt{\frac{2}{3}}$ and the 2 points of abscissas $2\sqrt{\frac{2}{3}}$.

Exercise 5 (9 points)

1- The similar S of center A transforms K into H.

The triangle AKH is semi equilateral then, the ratio of S is $\frac{AH}{AK} = 2$ and an angle of S is $\frac{\pi}{3}$.

The similation S 'transforms B into H and H into K where

$$\frac{HK}{BH} = \sin\frac{\pi}{6} = \frac{1}{2} \text{ and } (\overrightarrow{BH}; \overrightarrow{HK}) = (\overrightarrow{BH}; \overrightarrow{HA}) + (\overrightarrow{HA}; \overrightarrow{HK}) = \frac{\pi}{2} + \frac{\pi}{6} = \frac{2\pi}{3} (2\pi) \text{ then, the ratio}$$
 of S' is $\frac{1}{2}$ and an angle of S' is $\frac{2\pi}{3}$.

2- a)
$$T(H) = S \circ S'(H) = S(S'(H)) = S(K) = H$$
.

 $T = S \circ S'$ where S and S' are two similitudes of ratios 2 and $\frac{1}{2}$ of product 1 and angles $\frac{\pi}{3}$ and

 $\frac{2\pi}{3}$ of sum π then T is a similar of ratio 1, angle π that keeps H invariant.

Therefore, T is the central symmetry of center H.

b) T(C) = A then S(S'(C)) = A; that is S(S'(C)) = S(A) and S'(C) = A.

3- a) $AK = \frac{1}{2}AH = \frac{1}{4}AC$ then, $\overrightarrow{AK} = \frac{1}{4}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AI}$ then, K is the mid point of [AI]. S'(C) = A, S'(H) = K and A is the symmetric of C with respect to H then, S'(A) is the symmetric of S'(C) = A with respect to S'(H) = K; therefore S'(A) = I.

b) S'(A) = I, S'(B) = H and I is the mid point of [AB] then, S'(I) = J, the mid point of [IH].

4- a) S' is a similitude of ratio $\frac{1}{2}$ and angle $\frac{2\pi}{3}$ and $f = S' \circ S' \circ S'$ then, f is a similitude of ratio

 $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$ and angle $\frac{2\pi}{3} \times 3 = 2\pi$; therefore f is a dilation of ratio $\frac{1}{8}$ having same center as S'.

b)
$$f(C) = S' \circ S' \circ S'(C) = S' \circ S'(A) = S'(I) = J$$
.

f is a dilation of ratio $\frac{1}{8}$ such that f(C) = J then,

its center is the point L such that $\overrightarrow{LJ} = \frac{1}{8}\overrightarrow{LC}$.

S' and f have the same center then, L is the center of S'.

5- The plane is referred to the direct orthonormal system

$$(A; \overrightarrow{u}; \overrightarrow{v})$$
 where $\overrightarrow{u} = \frac{1}{4} \overrightarrow{AB}$.

and angle $\frac{2\pi}{3}$ is of the form $z' = \frac{1}{2}e^{i\frac{2\pi}{3}}z + b$.

$$A(0;0)$$
, $I(2;0)$ and $S'(A) = I$ then $2 = b$; therefore $z' = \frac{-1 + \sqrt{3}i}{4}z + 2$.

b)
$$J = S'(I)$$
 then, the affix of J is $z_J = \frac{-1 + \sqrt{3}i}{4} \times 2 + 2 = \frac{3 + \sqrt{3}i}{2}$.

The affix of the center L of S' is such that $z_L = \frac{-1 + \sqrt{3}i}{4}z_L + 2$ then ,

$$z_L = \frac{8}{5 - \sqrt{3}i} = \frac{10 + 2\sqrt{3}i}{7}.$$

Exercise 6 (11 points)

A- 1- a) $\overrightarrow{MN} = (x'-x)\overrightarrow{i} + (y'-y)\overrightarrow{j} = -2x\overrightarrow{i} - 2x\overrightarrow{j} = -2x(\overrightarrow{i} + \overrightarrow{j})$ then, \overrightarrow{MN} is collinear to $\overrightarrow{i} + \overrightarrow{j}$.

The abscissa of the mid point P of [MN] is $\frac{x'+x}{2} = 0$ then, P belongs to the axis of ordinates.

b) Let (d) be the straight line of equation y = x having $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$ as a direction vector. M being any point of plane, the parallel to (d) drawn through M cuts the axis of ordinates at

point P; the symmetric of M with respect to P is the image N of M by T.

- 2- a) Let M(0; y) be any point of the axis of ordinates; the coordinates of the image of M by T are x'=0 and y'=y then, M'=M and M is invariant by T.
 - b) Let (d) be a straight line of director coefficient a; an equation of (d) is of the form y = ax + b where $b \in IR$. An equation of the image of (d) by T is -2x + y = ax + b; y = (a+2)x + b; therefore, the image of (d) by T is a straight line (d') of equation y = (a+2)x + b.

The straight lines (d) and (d') intersect at the point (0; b) which is on the axis of ordinates.

B- 1- a) g is defined on $]-\infty$; 0] by $g(x) = x - 1 + 2e^x$.

$\ell im \ e^x = 0$	then, ℓim	$g(x) = -\infty$.
$x \rightarrow -\infty$	$x \rightarrow -\infty$	o

 $g'(x) = 1 + 2e^x.$

Table of variations of g.

b) *h* is defined on $[0; +\infty[$ by $h(x) = x - 1 + 2e^{-x}$.

$$\lim_{x \to +\infty} e^{-x} = 0$$
 then, $\lim_{x \to +\infty} h(x) = +\infty$.

 $h'(x) = 1 - 2e^{-x}$.

Table of variations of h.

x	$-\infty$	0
g'(x)	+	2
g(x)		1

- 2- a) The relations x' = -x and y' = -2x + y are equivalent to x = -x' and y = y' 2x'. M(x; y) belongs to (C_1) if and only if $y = x 1 + 2e^x$; that is $y' 2x' = -x' 1 + 2e^{-x'}$; $y' = x' 1 + 2e^{-x'}$; therefore an equation of the image of (C_1) by T is $y = x 1 + 2e^{-x}$. Therefore, (C_2) is the image of (C_1) by T.
 - b) $\lim_{x \to -\infty} (g(x) (x-1)) = \lim_{x \to -\infty} e^x = 0$ then, the straight line (δ) is asymptote to (C_1) at $-\infty$;

 $\lim_{x\to +\infty} \left(h(x)-(x-1)\right) = \lim_{x\to +\infty} e^{-x} = 0 \text{ then , the straight line } (\mathcal{S}) \text{ is asymptote to } (C_2) \text{ at } +\infty.$

c) For all $x \in]-\infty$; 0], $g(x)-(x-1)=2e^x>0$ and, for all $x \in [0; +\infty[$,

$$h(x) - (x-1) = 2e^{-x} > 0$$

then, each of (C_1) and (C_2) lies above (δ) .

- 3- The function f is defined on IR by $f(x) = x 1 + 2e^{-|x|}$.
 - a) $f(x) = \begin{cases} x 1 + 2e^x = g(x) & \text{if } x \in]-\infty ; 0] \\ x 1 + 2e^{-x} = h(x) & \text{if } x \in [0; +\infty[\end{cases}$; therefore (C) is the union of (C_1) and (C_2) .
 - b) The semi tangent to (C) at the point A of abscissa 0 from the left has the slope $g_{\ell}'(0) = 2$ while

the semi tangent to (C) at the point A of abscissa 0 from the right has the slope $h_r'(0) = -1$.

c) Drawing $(C) = (C_1) \cup (C_2)$ (Graph unit 2 cm).

- 4- (Δ) is the straight line of equation y = x 1 + 2m where $m \in [0, 1]$.
 - a) The equation f(x) = x 1 + 2m is equivalent to $e^{-|x|} = m$; that is $-|x| = \ell n(m)$;

$$|x| = -\ell n(m) ;$$

$$x = \ell n(m)$$
 or $x = -\ell n(m)$.

Therefore, (Δ) cuts (C) at two points E and F of abscissas $\ell n(m)$ and $-\ell n(m)$.

For all $m \in]0; 1[, \ell n(m) < 0 \text{ then }, E \in (C_1) \text{ and } -\ell n(m) > 0 \text{ then }, F \in (C_2).$

b) The coordinates of E are $x = \ell n(m)$ and $y = g(\ell n(m)) = \ell n(m) - 1 + 2m$.

The coordinates of F are $x = -\ell n(m)$ and $y = h(-\ell n(m)) = -\ell n(m) - 1 + 2m$.

The coordinates of the image of E by T are $x' = -x = -\ell n(m)$ and

$$y' = -2x + y = -2 \ln(m) + \ln(m) - 1 + 2m = -\ln(m) - 1 + 2m$$
.

Therefore T(E) = F.

- 5- It is given that the tangent (t_1) at E to (C_1) and the tangent (t_2) at F to (C_2) intersect at a point L belonging to the axis of ordinates.
 - (t_1) is the straight line (LE) where T(E) = F and T(L) = L since L is on the axis of ordinates then, the image
 - (t_1) , which is a straight line, is the straight line (LF) which is the straight line (t_2) .

Concours d'entrée 2017 - 2018 La distribution des notes est sur 50 Mathématiques (Programme: Bac Français)

Durée: 3 heures 8 Juillet 2017

Exercice 1 (11 points)

Partie A

1- z est un nombre complexe et $z'=1+z+z^2+z^3+z^4$.

a) Vérifier que si $z \neq 1$, alors $z' = \frac{1 - z^5}{1 - z}$.

b) Que vaut z' si $z = e^{i\frac{2\pi}{5}}$?

En déduire la valeur de $S = 1 + \cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} + \cos \frac{6\pi}{5} + \cos \frac{8\pi}{5}$.

2- Montrer que $\cos \frac{2\pi}{5} + \cos \frac{8\pi}{5} = 4\cos^2 \frac{\pi}{5} - 2$ et que $\cos \frac{4\pi}{5} + \cos \frac{6\pi}{5} = -2\cos \frac{\pi}{5}$.

3- En déduire que $\cos \frac{\pi}{5}$ est solution d'une équation du second degré à déterminer.

4- Résoudre cette équation et montrer que $\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$. En déduire que $\sin \frac{\pi}{5} = \frac{\sqrt{10-2\sqrt{5}}}{4}$.

Partie B

On considère les nombres complexes z_n définis pour tout entier naturel n par :

$$z_0 = 1$$
 et $z_{n+1} = \left(1 + \frac{1}{\sqrt{5}} + i\sqrt{2 - \frac{2}{\sqrt{5}}}\right) z_n$.

On note A_n le point d'affixe z_n dans le repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$.

1- a) Vérifier que $1 + \frac{1}{\sqrt{5}} + i \sqrt{2 - \frac{2}{\sqrt{5}}} = \frac{4}{\sqrt{5}} e^{i\frac{\pi}{5}}$.

b) En déduire z_1 et z_2 sous forme exponentielle.

2- a) Démontrer que, pour tout entier naturel n, $z_n = \left(\frac{4}{\sqrt{5}}\right)^n e^{i\frac{n\pi}{5}}$.

b) Pour quelles valeurs de n, les points O, A_0 et A_n sont-ils alignés ?

Exercice 2 (14 points)

Les deux parties ${\bf A}$ et ${\bf B}$ sont indépendantes .

Soit $(O; \vec{i}, \vec{j}, \vec{k})$ un repère orthonormé de l'espace.

Soient A(-3;4;5) et B(-4;-1;-1) deux points et $\overrightarrow{u}(-2;1;1)$ et $\overrightarrow{v}(-1;1;0)$ deux vecteurs.

Partie A: Perpendiculaire commune à deux droites

On considère la droite (d) passant par A et de vecteur directeur u ainsi que la droite (Δ) passant par B et de vecteur directeur v.

On cherche le point K de (d) et le point L de (Δ) tels que (KL) soit perpendiculaire à (d) et à (Δ) .

- 1- Donner une représentation paramétrique de (d) et une représentation paramétrique de (Δ) .
- 2- Déterminer les coordonnées de K et celles de L.
- 3- Calculer KL
- 4- Soit (R) le plan d'équation cartésienne x+y+z-6=0.
 - a) Montrer que la droite (d) est incluse dans (R) et que (Δ) est parallèle à (R).
 - b) Montrer que la droite (LK) est perpendiculaire en K au plan (R).
 - c) En déduire la distance du point L au plan (R).
- 5- Soit E un point quelconque de (Δ) autre que L.
 - a) Quelle est la distance de E au plan (R)?
 - b) Démontrer que, pour tout point F de (d), EF > LK.

Partie B : Plan médiateur d'un segment

Le plan médiateur d'un segment [IJ] est l'ensemble des points M de l'espace tels que MI = MJ.

- 1- Trouver une équation cartésienne du plan médiateur (P) du segment[AB].
- 2- a) Montrer que le milieu de [AB] appartient à (P).
 - b) Vérifier que \overrightarrow{AB} est un vecteur normal à (P).
- 3- Soit (d_1) la droite de représentation paramétrique $\begin{cases} x = 3\lambda 2 \\ y = \lambda + 4 \\ z = -\lambda \end{cases}, \ \lambda \in R.$

Déterminer les coordonnées du point C de (d_1) qui est équidistant de A et B.

4- Soit (Q) un plan non orthogonal à la droite (AB). Montrer que l'ensemble des points de (Q) qui sont équidistants de A et B est une droite à déterminer.

Exercice 3 (16 points)

La partie C est indépendante des parties A et B.

Partie A

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x} \times e^{-x}$. On note (C) sa courbe représentative dans le plan muni d'un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, unité graphique 10 cm.

1- Etudier la dérivabilité de f en 0. Que peut-on en conclure pour la courbe (C)?

2- Montrer que, pour x > 0, on a $f'(x) = \frac{1-2x}{2\sqrt{x}}e^{-x}$. Etudier le sens de variation de f.

3- Etudier la limite de f en $+\infty$. Que peut-on en conclure pour la courbe (C)?

4- Tracer soigneusement la courbe (C).

Partie B

Le but de cette partie est la résolution de l'équation f(x) = x sur]0; $+\infty[$.

1- On pose $g(x) = 2x + \ell n x$.

a) Montrer que, sur]0; $+\infty[$, les équations f(x) = x et g(x) = 0 sont équivalentes.

b) Etudier les variations de g et montrer que l'équation g(x) = 0 admet une seule solution sur $[0; +\infty[$ que l'on notera α . Montrer que α appartient à l'intervalle [0,4;0,5].

2- En utilisant la courbe (C), donner une interprétation de α et en donner une valeur approchée .

3- Montrer que si $x \in [0,4;0,5]$ alors, $f(x) \in [0,4;0,5]$.

4- On définit la suite u par $u_0 = 0.4$ et, pour tout n de N, $u_{n+1} = f(u_n)$.

a) Monter que, pour tout n de N, $u_n \in [0,4;0,5]$.

b) On admet que, pour tout n de N, $\left|u_{n+1} - \alpha\right| \le \frac{1}{8} \left|u_n - \alpha\right|$.

Montrer par récurrence que , pour tout n de N , $|u_n - \alpha| \le 0.1 \times \frac{1}{8^n}$.

c) En déduire que la suite u est convergente et préciser sa limite .

5- En utilisant la relation établie au 4- b), déterminer le plus petit entier n_0 à partir duquel u_n est une valeur approchée de α à 10^{-6} près.

Partie C

Soit F la fonction définie sur $[0; +\infty[$ par $F(x) = \int_{0}^{x} \sqrt{t} \times e^{-t} dt$. On ne cherchera pas à calculer F(x).

- 1- Préciser le sens de variations de F.
- 2- Montrer que , pour tout $t \ge 0$, $\sqrt{t} \le t + \frac{1}{4}$. En déduire que $F(x) \le \int_{0}^{x} \left(t + \frac{1}{4}\right) e^{-t} dt$.
- 3- Soit h la fonction définie sur $[0; +\infty[$ par $h(t) = \left(t + \frac{1}{4}\right)e^{-t}$ et H la fonction définie sur $[0; +\infty[$ par $H(t) = \left(at + b\right)e^{-t}$. Déterminer a et b pour que H soit une primitive de h sur $[0; +\infty[$.
- 4- Déduire des questions précédentes que , pour tout x de $[0; +\infty[$, $0 \le F(x) \le \frac{5}{4}$.

Exercice 4 (9 points)

Dans un établissement scolaire les oscilloscopes utilisés au laboratoire de physique-chimie ont une durée de vie, en années, modélisée par une variable aléatoire X suivant une loi exponentielle de paramètre λ . On sait que la probabilité qu'un oscilloscope fonctionne plus de 8 ans est égale à 0,383.

- 1- Déterminer le paramètre λ . On arrondira à 10^{-4} . Dans la suite on prendra $\lambda = 0.12$.
- 2- Interpréter et déterminer la probabilité $P(X \ge 3)$.
- 3- Interpréter et déterminer la probabilité $P_{X>2}(X>10)$.
- 4- Donner une estimation de la durée de vie moyenne d'un oscilloscope.

5- Désirant changer son parc de matériel, l'établissement achète 40% d'oscilloscopes auprès du fournisseur « Oscillo » et le reste auprès du magasin « Electro ».

Les deux fabricants ayant des productions différentes, les durées de vie moyenne des oscilloscopes qu'ils fournissent sont de 8 ans pour « Oscillo » et de 5 ans pour « Electro ».

On admet toujours que les durées de vie des oscilloscopes sont modélisées par des variables aléatoires suivant des lois exponentielles.

Un professeur de physique-chimie prend au hasard un oscilloscope. On note :

- E l'événement : « l'appareil provient du fournisseur « Electro » »,
- O l'événement : « l'appareil provient du fournisseur « Oscillo » »,
- D l'événement : l'appareil fonctionne plus de dix ans ».
- a) Quelle est la probabilité que l'oscilloscope choisi fonctionne plus de dix ans sachant qu'il provient du fournisseur « Oscillo » ?
- b) Construire un arbre pondéré illustrant la situation.
- c) Quelle est la probabilité que la durée de vie de l'oscilloscope choisi soit supérieure ou égale à 10 ans ?
- d) Quelle est la probabilité qu'il provi<mark>enne</mark> de l'entreprise « Electro » sachant que sa durée de vie est supérieure ou égale à 10 ans ?

Concours d'entrée 2017-2018

SOLUTION Mathématiques

8 Juillet 2017

(Programme: Bac Français)

Exercise 1 (11 point)

Partie A

1- z est un nombre complexe et $z'=1+z+z^2+z^3+z^4$.

a)
$$(1-z)\times(1+z+z^2+z^3+z^4)=1-z^5$$
 alors si $z\neq 1$, $z'=\frac{1-z^5}{1-z}$.

b) Si
$$z = e^{i\frac{2\pi}{5}}$$
 alors $z^5 = e^{i2\pi} = 1$, donc $z' = 0$.

Par suite
$$S = 1 + \cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} + \cos \frac{6\pi}{5} + \cos \frac{8\pi}{5} = \text{Re}(z') = 0.$$

$$2 - \cos\frac{2\pi}{5} + \cos\frac{8\pi}{5} = \cos\frac{2\pi}{5} + \cos\left(2\pi - \frac{2\pi}{5}\right) = 2\cos\frac{2\pi}{5} = 2\left(2\cos^2\frac{\pi}{5} - 1\right) = 4\cos^2\frac{\pi}{5} - 2.$$

$$\cos\frac{4\pi}{5} + \cos\frac{6\pi}{5} = \cos\left(\pi - \frac{\pi}{5}\right) + \cos\left(\pi + \frac{\pi}{5}\right) = -2\cos\frac{\pi}{5}.$$

$$3- S = 1 + \cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} + \cos\frac{6\pi}{5} + \cos\frac{8\pi}{5} = 0 \text{ donc } 1 + 4\cos^2\frac{\pi}{5} - 2 - 2\cos\frac{\pi}{5} = 0 \text{ ce qui \'equivaut \'a}$$

$$4\cos^2\frac{\pi}{5} - 2\cos\frac{\pi}{5} - 1 = 0$$
. Alors $\cos\frac{\pi}{5}$ est solution de l'équation $4x^2 - 2x - 1 = 0$.

4- Les deux racines de l'équation sont
$$\frac{1+\sqrt{5}}{4}$$
 et $\frac{1-\sqrt{5}}{4}$. Or $\cos\frac{\pi}{5} > 0$, alors $\cos\frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$.

$$\sin\frac{\pi}{5} > 0 \text{ alors }, \sin\frac{\pi}{5} = \sqrt{1 - \cos^2\frac{\pi}{5}} = \sqrt{1 - \frac{6 + 2\sqrt{5}}{16}} = \frac{\sqrt{10 - 2\sqrt{5}}}{4}.$$

Partie B

1- a)
$$1 + \frac{1}{\sqrt{5}} + i \sqrt{2 - \frac{2}{\sqrt{5}}} = \frac{4}{\sqrt{5}} \left(\frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{10}{16} - \frac{2\sqrt{5}}{16}} \right) = \frac{4}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{4} + i \frac{\sqrt{10 - 2\sqrt{5}}}{4} \right)$$
$$= \frac{4}{\sqrt{5}} \left(\cos \frac{\pi}{5} + i \sin \frac{\pi}{5} \right) = \frac{4}{\sqrt{5}} e^{i \frac{\pi}{5}}.$$

b)
$$z_{n+1} = \frac{4}{\sqrt{5}}e^{i\frac{\pi}{5}}z_n$$
 alors $z_1 = \frac{4}{\sqrt{5}}e^{i\frac{\pi}{5}}z_0 = \frac{4}{\sqrt{5}}e^{i\frac{\pi}{5}}$ et $z_2 = \frac{4}{\sqrt{5}}e^{i\frac{\pi}{5}}z_1 = \frac{16}{5}e^{i\frac{2\pi}{5}}$.

2- a) Par récurrence :

$$z_0 = 1 = \left(\frac{4}{\sqrt{5}}\right)^0 e^{i\frac{0\pi}{5}}.$$

Si, pour un certain n, $z_n = \left(\frac{4}{\sqrt{5}}\right)^n e^{i\frac{n\pi}{5}}$ alors, $z_{n+1} = \frac{4}{\sqrt{5}} e^{i\frac{\pi}{5}} z_n = \left(\frac{4}{\sqrt{5}}\right)^{n+1} e^{i\frac{(n+1)\pi}{5}}$.

Donc, pour tout entier nature n, $z_n = \left(\frac{4}{\sqrt{5}}\right)^n e^{i\frac{n\pi}{5}}$.

b) Les points O, A_0 appartiennent à l'axe $(O; \overrightarrow{u})$ donc les points O, A_0 et A_n sont alignés si et seulement si A_n appartient à l'axe $(O; \overrightarrow{u})$ ce qui équivaut à $\arg z_n = k\pi$ où $k \in \mathbb{Z}$ ce qui équivaut à $\frac{n\pi}{5} = k\pi$; n = 5k.

n est un entier naturel donc n = 5k où $k \in N$.

Exercise 2 (14 points)

Partie A: Perpendiculaire commune à deux droites

1- Représentation paramétrique de (d) et (Δ) :

L est un point de (Δ) alors, ses coordonnées sont L(-m-4; m-1; -1).

D'où
$$\overrightarrow{KL}(-m+2t-1; m-t-5; -t-6)$$
.

 \overrightarrow{KL} étant orthogonal à $\overrightarrow{u}(-2;1;1)$ et $\overrightarrow{v}(-1;1;0)$ alors, \overrightarrow{KL} . $\overrightarrow{u}=0$ et \overrightarrow{KL} . $\overrightarrow{v}=0$. D'où 3m-6t-9=0 et 2m-3t-4=0.

En résolvant le système, on obtient : t = -2 et m = -1 . D'où K(1; 2; 3) et L(-3; -2; -1).

- 3- $\overrightarrow{KL}(-4; -4; -4)$, donc $KL = 4\sqrt{3}$.
- 4- Soit (R) le plan d'équation cartésienne x+y+z-6=0.
 - a) Pour tout réel t, (-2t-3)+(t+4)+(t+5)-6=0 donc, tout point de (d) appartient au plan (R) alors, (d) est incluse dans (R).

Pour tout réel m, $(-m-4)+(m-1)+(-1)-6=-12\neq 0$ donc, aucun point de (Δ) appartient au plan (R) alors , (Δ) est parallèle à (R).

- b) $\overrightarrow{w}(1;1;1)$ est un vecteur normal au plan (R) et $\overrightarrow{KL} = -4 \overrightarrow{w}$ donc la droite (LK) est perpendiculaire au plan (R) en K qui appartient au plan (R).
- c) La distance du point L au plan (R) est $LK = 4\sqrt{3}$.
- 5- Soit E un point quelconque de (Δ) .
 - a) (Δ) est parallèle à (R) donc tous les points de (Δ) sont à la même distance de(R); la distance de(E) au plan de(R)est $EE' = LK = 4\sqrt{3}$ avec (EE') est perpendiculaire au plan (R) en E'.
 - b) Si Le triangle *EE'K* est rectangle en E' donc EF > EE' ce qui est équivalant à EF > LK.

Figure 2

Partie B : Plan médiateur d'un segment

- 1- Un point M(x; y; z) de l'espace appartient au plan médiateur (P) du segment [AB] si et seulement si MA = MB ce qui équivaut à $(x+3)^2 + (y-4)^2 + (z-5)^2 = (x+4)^2 + (y+1)^2 + (z+1)^2$. Après simplification, on obtient une équation cartésienne du plan (P) médiateur de [AB]: x+5y+6z-16=0.
- 2- a) Soit $I\left(-\frac{7}{2}; \frac{3}{2}; 2\right)$ le milieu de [AB].

Les coordonnées de I vérifient l'équation de (P) donc le milieu de [AB] appartient à (P).

- b) D'après l'équation du plan (P), $\overrightarrow{AB}(-1;-5;-6)$ est un vecteur normal à (P).
- 3- Soit (d_1) la droite de représentation paramétrique $\begin{cases} x = 3\lambda 2 \\ y = \lambda + 4 \\ z = -\lambda \end{cases}$, $\lambda \in R$.

Le point $C(3\lambda-2; \lambda+4; -\lambda)$ de (d_1) est équidistant de A et B si et seulement s'il appartient au plan (P) ce qui équivaut à $3\lambda-2+5(\lambda+4)+6(-\lambda)-16=0$; $\lambda=-1$.

Alors le point C(-5; 3; 1) est le point de (d_1) qui est équidistant de A et B.

4- L'ensemble des points de (Q) qui sont équidistants de A et B est l'ensemble des points de (Q) qui appartiennent au plan (P).

Le plan (Q) est non orthogonal à la droite (AB) alors que (P) est orthogonal à la droite (AB) donc (P) et (Q) se coupent suivant une droite qui est l'ensemble des points de (Q) qui sont équidistants de (AB) et (AB) et

Exercise 3 (16 points)

Partie A

1-
$$\lim_{x\to 0} \frac{f(x) - f(0)}{x} = \lim_{x\to 0} \frac{e^{-x}}{\sqrt{x}} = +\infty$$
.

La courbe (C) admet en O une demi tangente verticale qui est l'axe des ordonnées.

2-
$$f(x) = \sqrt{x} \times e^{-x}$$
 donc si $x \neq 0$, $f'(x) = \frac{1}{2\sqrt{x}} e^{-x} - e^{-x} \sqrt{x} = \frac{1 - 2x}{2\sqrt{x}} e^{-x}$.

f'(x) > 0 pour $0 < x < \frac{1}{2}$, alors f est strictement croissante.

f'(x) < 0 pour $x > \frac{1}{2}$, alors f est strictement décroissante.

3-
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^{-x}}{\sqrt{x}} = 0 \text{ car } \lim_{x \to +\infty} e^{-x} = 0 \text{ et } \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0.$$

L'axe des abscisses x'x est une asymptote à (C).

4- Tracé de (C)

Partie B

- 1- a) Pour x > 0, l'équation f(x) = x équivaut à $e^{-x} = \sqrt{x}$ ce qui équivaut $-x = \frac{1}{2} \ln x$; g(x) = 0.
 - b) Sur l'intervalle $]0; +\infty[$, $g'(x) = \frac{1}{x} + 2 > 0$, donc g est strictement croissante.

 $\lim_{x\to 0} g(x) = -\infty$ et $\lim_{x\to +\infty} g(x) = +\infty$; g est continue et strictement croissante sur $]0; +\infty[$ alors,

l'intervalle image de]0;+∞[est l'ensemble R des nombres réels.

Comme 0 appartient à l'intervalle image, d'après le théorème de la bijection, il existe α unique dans 0; $+\infty$ [tel que $g(\alpha)=0$.

g(0,4) = -0.116 et g(0,5) = 0.307 donc $\alpha \in [0,4;0,5]$.

- 2- α est solution de l'équation g(x) = 0 ceci équivaut à α est solution de l'équation f(x) = x. Par suite α est l'abscisse du point d'intersection de (C) avec la droite d'équation y = x. $\alpha \in [0,4;0,5]$ donc 0,45 est une valeur approchée de α .
- 3- Comme f est strictement croissante sur [0,4; 0,5] alors , si $x \in [0,4; 0,5]$, $f(x) \in [f(0,4); f(0,5)]$ avec f(0,4) = 0,424 et f(0,5) = 0,428; par suite $f(x) \in [0,4; 0,5]$.
- 4- On définit la suite u par $u_0 = 0.4$ et , pour tout n de N , $u_{n+1} = f(u_n)$.
 - a) Par récurrence :

 $u_0 = 0.4 \text{ donc } u_0 \in [0.4; 0.5]$

Si, pour un certain $n, u_n \in [0,4; 0,5]$, alors $u_{n+1} = f(u_n) \in [0,4; 0,5]$ d'après B.3.

Par suite, pour tout $n, u_n \in [0,4; 0,5]$.

b) Par récurrence :

$$\alpha \in [0,4;0,5] \text{ donc } |u_0 - \alpha| = |\alpha - 0,4| \le 0.1 \times \frac{1}{8^0}.$$

Si
$$|u_n - \alpha| \le 0.1 \times \frac{1}{8^n}$$
 alors $|u_{n+1} - \alpha| \le \frac{1}{8} |u_n - \alpha| \le \frac{1}{8} \times 0.1 \times \frac{1}{8^n}$, donc $|u_{n+1} - \alpha| \le 0.1 \times \frac{1}{8^{n+1}}$.

Par suite, pour tout n, $|u_n - \alpha| \le 0.1 \times \frac{1}{8^n}$.

c) On a $0 < |u_n - \alpha| \le 0.1 \times \frac{1}{8^n}$ et $\lim_{n \to +\infty} \left(\frac{1}{8}\right)^n = 0$ car $-1 < \frac{1}{8} < 1$, d'après le théorème des gendarmes

 $\lim_{n\to+\infty} |u_n-\alpha|=0$. Par suite *u* converge vers α .

5- u_n est une valeur approchée de α à 10^{-6} près si et seulement si $|u_n - \alpha| \le 10^{-6}$.

Pour cela il suffit d'avoir $0.1 \times \frac{1}{8^n} \le 10^{-6}$, ce qui équivaut à $8^n \ge 10^5$, donc $n \ge \frac{5\ell n 10}{\ell n 8} \approx 5.54$.

D'où $n_0 = 6$.

Partie C

- 1- F est une intégrale fonction de sa borne supérieure donc $F'(x) = f(x) \ge 0$ alors, F est strictement croissante sur $[0; +\infty[$.
- 2- $t \sqrt{t} + \frac{1}{4} = \left(\sqrt{t} \frac{1}{2}\right)^2 \ge 0$ donc $\sqrt{t} \le t + \frac{1}{4}$.

Comme $\sqrt{t} \le t + \frac{1}{4}$, alors $\sqrt{t} \times e^{-t} \le \left(t + \frac{1}{4}\right) \times e^{-t}$ car $e^{-t} > 0$.

Or l'intégrale conserve les inégalités sur [0; x], on déduit que $F(x) \le \int_{0}^{x} e^{-t} \left(t + \frac{1}{4}\right) dt$.

3- $H'(t) = e^{-t}(-at+a-b)$.

H est une primitive de *h* sur $[0; +\infty[$ si et seulement si, pout tout $t \in [0; +\infty[$, H'(t)=h(t).

Par identification on trouve a = -1 et $b = -\frac{5}{4}$.

$$4-\int_{0}^{x}e^{-t}\left(t+\frac{1}{4}\right)dt=H(x)-H(0)=e^{-x}\left(-x-\frac{5}{4}\right)+\frac{5}{4}\leq\frac{5}{4} \text{ car } x\geq0.$$

D'autre part, $F(x) \ge 0$ car c'est l'intégrale d'une fonction positive, on déduit que $0 \le F(x) \le \frac{5}{4}$.

Exercise 4 (9 points)

1- $P(X > 8) = e^{-8\lambda} = 0.383$ alors $-8\lambda = \ln(0.383)$ d'où $\lambda = 0.119965 \approx 0.12$ à 10^{-4} près.

2- $P(X \ge 3) = e^{-3\lambda} = 0,698$.

La probabilité qu'un oscilloscope fonctionne plus de 3 ans est égale à 0,698.

3- La probabilité qu'un oscilloscope fonctionne plus de 10 ans sachant qu'il a déjà fonctionné pendant deux ans est égale à la probabilité qu'il fonctionne au moins 8 ans (10- 2 = 8) car la loi exponentielle est sans mémoire.

Alors
$$P_{X \ge 2}(X > 10) = P(X > 8) = e^{-8\lambda} = 0.383$$

4-
$$E(X) = \frac{1}{\lambda} = \frac{1}{0.12} = 8,333$$
.

La durée de vie moyenne d'un oscilloscope est environ 8 ans et 4 mois.

5- Connaissant les durées de vie moyennes relatives aux oscilloscopes produits par chacun des fournisseurs, on peut déduire les valeurs respectives des paramètres :

Pour le fournisseur « Oscillo » :
$$\lambda_1 = \frac{1}{8}$$
.

Pour le fournisseur « Electro » : $\lambda_2 = \frac{1}{5}$.

a)
$$P_O(D) = e^{-10\lambda_1} = e^{-\frac{5}{4}} = 0.286$$
.

- b) On a besoin de $P_E(D) = e^{-10\lambda_2} = e^{-2} = 0.135$. Arbre pondéré.
- c) Les événements O et E sont opposés , d'après la loi des probabilités totales : $P(D) = P(D \cap O) + P(D \cap E) = 0,1954$.

d)
$$P_D(E) = \frac{P(E \cap D)}{P(D)} = 0.414$$
.

