INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/31, 15/63, 15/67, 15/70, 15/74, 15/80, 15/82, 15/85, 15/11, 9/90, 1/19, 1/21, 5/10, C07K 14/37, A01K 67/027

(11) International Publication Number:

WO 00/32785

(43) International Publication Date:

8 June 2000 (08.06.00)

(21) International Application Number:

PCT/IT99/00391

A1

(22) International Filing Date:

29 November 1999 (29.11.99)

(30) Priority Data:

RM98A000730

30 November 1998 (30.11.98) IT

(71) Applicant (for all designated States except US): UNIVERSITA' DEGLI STUDI DI ROMA "LA SAPIENZA" [IT/IT]; Piazzale Aldo Moro, 5, I-00185 Roma (IT).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MACINO, Giuseppe [IT/IT]; Policlinico Umberto I, Università Degli Studi Di Roma "La Sapienza", Dipartimento Biotecnologie Cellulari ed Ematologia, Viale Regina Elena, 324, I-00161 Roma (IT). COGONI, Carlo [IT/IT]; Policlinico Umberto I, Università Degli Studi Di Roma "La Sapienza", Dipartimento Biotecnologie Cellulari ed Ematologia, Viale Regina Elena, 324, I-00161 Roma (IT).
- (74) Agents: BANCHETTI, Marina et al.; Ing. Barzanò & Zanardo Roma S.p.A., Via Piemonte, 26, I-00187 Roma (IT).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ISOLATION AND CHARACTERIZATION OF A N. CRASSA SILENCING GENE AND USES THEREOF

(57) Abstract

A nucleotide sequence encoding for a protein characterized in that it has a silencing activity and comprises a recQ helicase domain is disclosed; furthermore expression vectors suitable for the expression of said sequence in bacteria, plants, animals and fungi are disclosed; the invention refers also to organisms transformed by such vectors.

A B C
5.5Kb
3.1Kb

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
					- •		
					•		

Isolation and characterization of a N. CRASSA silencing gene and uses thereof

The present invention relates to the isolation and characterization of a Neurospora crassa gene encoding for an essential activity in the co-suppression process and to uses and applications thereof in vegetal, animal and fungine fields.

10

15

20

30

The production of transgenic organisms is of large utility both in basic and applied biological research. The transgenic DNA is usually integrated in the genome and transferred as a Mendelian character. However, in various instances, the transgene introduction induces gene silencing phenomena (Flavell, R.B. 1994), i.e. the repression of the expression of the transgene itself and/or of one or more endogenous homologous genes.

The gene silencing can act at two levels: transcriptional (trans-inactivation) where transgenes homologous contain sequences to the silenced promoter (Vaucheret, 1993); and post-transcriptional (cosuppression) which requires homologies between coding regions (Flavell, 1994; Stam et al., 1997; Baulcombe, 1996).

Generally the silencing induced by a transgene requires an almost complete sequence homology (from 70% to 100%) between transgene and silenced gene sequences (Elkind, 1990).

In the Neurospora crassa filamentous fungus, during the vegetative phase, the presence of transgenes induces a post-transcriptional gene silencing phenomenon, named "quelling" (Cogoni et al., 1996).

By using the al-1 gene (albino 1) (Schmidhauser et al., 1990) as silencing visual marker, many features of the phenomenon have been discovered (Cogoni et al., Particularly the al-1 "quelling" 1996). gene Neurospora is characterized in that: 1) the silencing is reversible further to the loss of transgene copies; 2) the reduction of mRNA basal level results from a post-transcriptional effect; 3) transgenes containing at least a region of 132 base pairs which is identical to the region encoding for the target gene are sufficient to induce the "quelling"; 4) the duplication of promoter sequences is ineffective to induce the silencing; 5) the "quelling" exhibits a dominant behavior in eterocarions containing both transgenic and untransformed nuclei, indicating the involvement of a molecule which is acts "in trans" among the nuclei; 6) the expression of an aberrant RNA transcribed by the transgenic locus strictly correlated to silencing, suggesting that the "quelling" can be induced and/or mediated by a transgenic RNA molecule.

5

10

15

20

25

30

Therefore homologies between *Neurospora* silencing and plant co-suppression can be pointed out. The gene silencing in *Neurospora* is reversible, as result of transgenic copies instability during mitotic phase; in plants also the co-suppression reversion is associated with the reduction of transgene copy number, resulting from intra-chromosomal recombination during mitosis or meiosis (Mittelstein Scheid et al., 1994; Stam et al., 1998). Thus both in plants and in *Neurospora* the transgene presence is required to maintain the silencing. As in *Neurospora*, a decrease of the mRNA basal level of the silenced gene results from a post-transcriptional

mechanism (Dehio and Schell 1994; van Blokand et al., 1994; de Carvalho et al., 1995). Furthermore to induce the "quelling", transgenes must contain a portion of the silencing target gene coding sequence, being the promoter region ineffective. In plants coding regions with no promoter sequences can induce silencing (van Blokand et al., 1994) and, as in the "quelling", promoters or functionally active gene products are not required for the co-suppression.

5

10

15

20

25

30

One of the similarities between "quelling" and coplants suppression in is that both mechanisms diffusion mediated by factors. In Neurospora eterokaryotic strains, nuclei wherein the albino-1 gene is silenced are able to induce the al-1 gene silencing of the other not transformed nuclei, all sharing the same cytoplasmic environment (Cogoni et al., 1996). In plants the presence of a diffusion factor results from the fact that the co-suppression is effective in inhibiting the replication of Tobacco Etch Virus (TEV), a RNA virus with exclusively cytoplasmic cycle. The occurrence of highly diffusible factors, which are effective to mediate the co-suppression, has been demonstrated using grafting technique in tobacco (Palaqui et al., 1997), showing that silenced tobacco plants are able to transfer the silencing to non-silenced plants through grafting.

The fact that "quelling" and co-suppression share all these features suggests that mechanisms involved in post-transcriptional gene silencing in plants and in fungi can be evolved by an ancestral common mechanism.

Recently gene inactivation phenomena resulting from transgene introduction have been disclosed in animals. In Drosophila melanogaster the location of a transgene close

heterochromatic centers results in a variegate to expression (Wallrath and Elgin, 1995; Pirrotta, V., 1997). Similar expression profiles have been observed when the reference transgene is within tandem arrayed transposons, indicating that tandem repeats are effective chromatin induce the condensation. (Dorer and to Henikoff, 1994). Again in Drosophila Pal-Bhadra et al. (1997) have observed that the transgene introduction can lead to gene inactivation phenomena, similar to the cosuppression.

5

10

15

20

25

30

Gene silencing phenomena resulting from transegene sequence repeats have been disclosed recently in mammalians.

Garrick et al. (1998) produced mouse transgenic lines wherein 100 transgenic copies are present only in a locus and are directly tandem arrayed. The transgene has been disclosed be expression to inversely number of to the occurring copies, proportional indicating that silencing phenomena dependent on repeat copies are present also in mammalians.

Therefore the identification of *Neurospora* genes which are involved in the silencing is the first step to modulate the same process in plants, animals and fungi. The silencing modulation is of great relevance when transgenic organisms able to express the desired phenotype are produced.

The authors of the present invention have already isolated Neurospora crassa strains having mutations essential functions for gene silencing regarding mechanism (Cogoni and Macino, 1997); 15 independent isolated mutants define three complementation groups, thus identifying the qde-1, qde-2 and qde-3 genes (qde stands for "quelling"-deficient), whose products are essential to the silencing machinery. qde genes are essential to the *Neurospora* silencing, as suggested by the fact that silencing of three independent genes (al-1, al-2 and qa-2) is impaired by qde mutations (Cogoni and Macino, 1997).

5

10

15

20

25

30

The authors of the invention have identified and cloned now one out of *Neurospora qde* genes, thus identifying one of required factors for silencing. By considering the similarity between "quelling" and cosuppression, genes orthologous to the isolated gene are involved in co-suppression and more generally in gene silencing in other organisms, like plants, fungi and animals.

The present invention can be applied with reference to two general scope: 1) silencing potentiation as a tool for inactivating more effectively and durably a desired gene, and 2) silencing suppression to obtain a better expression of the introduced transgenes.

silencing potentiation, the to the genes more controlling expression of one or phenomenon can lead to higher efficiency and/or stability thereof. Therefore the introduction of qde-3 gene or of homologous genes thereof in microorganisms can constitute a tool to repress more effectively gene functions. Particularly this approach is specially useful in plants wherein the co-suppression is usually used for the "knock-out" of gene functions. In plants again the gene silencing potentiation can be used to obtain lines resistant to pathogen virus, by introducing transgenes encoding for viral sequences, in order to achieve the

expression inhibition of the virus itself (Flavell et al., 1994).

Analogous applications are suitable for animals, wherein some indications suggest that silencing can inhibit the suitable expression of introduced transgenes (Garrick et al., 1998).

5

10

15

20

25

30

On the contrary, there are instances wherein it is desirable not to have or to reduce the gene silencing, i.e. where a transgene is to be over-expressed. It is known that the co-suppression is strictly correlated both with the presence of an high copy number transgene, and with a transgene high expression. correlation can hamper the production of transgenic organisms which express a transgene at high levels, because more high is the expression and/or the copy number, more probable is to evoke silencing responses. As analogous mechanisms of mentioned, above inactivation, dependent on a high copy number, have been disclosed in animals. In these circumstances plant or lines, totally or partially ineffective silencing, constitute an ideal recipient wherein the desired gene can be over-expressed. The invention can be applied within this scope using different approaches:

A) Identification and production of mutant lines in genes homologous to qde-3 gene, in plants, animals and fungi.

The knowledge of Neurospora qde-3 gene, essential for silencing mechanism, can allow the isolation of organisms, mutant lines in other mutated in genes gde-3. example means homologous to For by amplifications using degenerated primers, designed from the most conserved regions of qde-3 gene, mutant lines in

homologous genes can be identified, by analysis of insertion mutant gene banks, already available for many plant species. Both in fungi and animals such mutants can be obtained, following the identification of the homologous gene, by means of "gene disruption" techniques using homologous recombination.

B) Reduction of qde-3 gene expression

5

10

15

20

2.5

30

Other strategies for the production of silencing-deficient lines comprise the use of Neurospora qde-3 gene or homologous genes thereof. qde-3 or homologous genes can be introduced into suitable expression vectors to express them in an anti-sense orientation in order to inhibit the expression of resident endogenous genes. Alternatively portions of qde-3 or of homologous genes can be over-expressed, in order to obtain a negative dominant effect and thus blocking the function of qde-3 endogenous genes.

The authors of the present invention have cloned and characterised the Neurospora crassa qde-3 gene. The sequence analysis showed that qde-3 gene belongs to a highly conserved gene family, from E. coli to humans, named recQ. Genes belonging to this family encode for DNA helicase, as demonstrated by in vitro assays (Gray et al., 1997). The recQ helicase family is involved in recombinant processes. Mutations of these genes produce iper-recombinant phenotypes as, for example, the S. cerevisiae Sgs-1 gene involved both in meiotic and mitotic recombination.

The authors of the invention for the first time have demonstrated that a gene encoding for a recQ DNA-helicase is involved in gene silencing induced by transgenes. Therefore for the first time it is disclosed

that a gene belonging to the recQ family, other than acts during recombination, is also an essential component of the inactivation of repeat sequences.

Therefore it is an object of the invention a nucleotide sequence encoding for a protein characterized in having a silencing activity and comprising a recQ helicase domain, wherein the domain is at least 30% homologous with the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1. More preferably said homology is of at least of 60%. Most preferably the recQ helicase domain comprises the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1. According to a particular embodiment the nucleotide sequence encodes for a protein having the amino acid sequence of SEQ ID No. 1, or functional portions thereof. Even more preferably the nucleotide sequence of the invention is the sequence of SEO ID No. 1 or its complementary sequence.

A further object of the invention is an expression vector comprising, under the control of a promoter that is expressed in bacteria, the nucleotide sequence of the invention. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the protein of the invention in bacteria can be used and is within the scope of the invention.

A further object of the invention is an expression vector comprising, under the control of a promoter which is expressed in plants or in specific plant organs, the nucleotide sequence of the invention, both in a sense and anti-sense orientation. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the protein of the invention in

plants or in specific plant organs can be used and is within the scope of the invention.

A further object of the invention is an expression vector comprising, under the control of a promoter which is expressed in fungi or in portions thereof, the nucleotide sequence of the invention, both in a sense and anti-sense orientation. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the protein of the invention in fungi or in portions thereof can be used and is within the scope of the invention.

5

10

15

20

25

30

A further object of the invention is an expression vector comprising, under the control of a promoter that is expressed in animals, the nucleotide sequence of the invention both in a sense and anti-sense orientation. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the protein of the invention in animals can be used and is within the scope of the invention.

A further object of the invention is a prokaryotic organism transformed by using the expression vector active in bacteria of the invention.

A further object of the invention is a plant or a specific plant organ transformed by using the expression vector active in plants of the invention.

A further object of the invention is a plant mutated at the nucleotide sequence of the invention and having a reduced or inhibited silencing activity.

A further object of the invention is a fungus transformed with the expression vector of the invention active in fungi.

A further object of the invention is a fungus mutated at the nucleotide sequence of the invention and having a reduced or inhibited silencing activity.

A further object of the invention is a non-human animal transformed with the expression vector of the invention active in animals.

5

10

15

20

25

30

A further object of the invention is a non-human animal mutated at the nucleotide sequence of the invention and having a reduced or inhibited silencing activity.

A further object of the invention refers to a protein characterized in having a silencing activity and in comprising a recQ helicase domain, wherein the domain is at least 30% homologous to the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1. Preferably the recQ helicase domain is at least 40% homologous with the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1. More preferably the recQ helicase domain is at least 60% homologous with the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1. Most preferably the recQ helicase domain comprises the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1. According to a particular embodiment the protein comprises the amino acid sequence of SEQ ID. No.1 or functional portions thereof.

It is within the scope of the invention the use of the nucleotide sequence of the invention to modulate gene silencing in plants, animals and fungi.

It is within the scope of the invention the use of the nucleotide sequence of the invention to potentiate the antiviral-response in a plant. The present invention now will be disclosed by way of non limiting examples with reference to the following figures:

Figure 1: Southern blot analysis of genomic DNA extracted from (A): untransformed wild type strain, (B): 6xw recipient strain and (C): untransformed wild type strain, SmaI and HindIII digested, blotted and al-1 gene probe hybridized. The 3.1-Kb band corresponds to the endogenous al-1 gene, while the 5.5-Kb band corresponds to tandem arrayed al-1 transgenes. The larger band represents undigested methylated DNA.

5

10

15

20

25

30

Figure 2: Linear map of the pMXY2 plasmid. Plasmid genes are shown as box. bmI: beta-tubulin allele which is responsible for benilate resistance; Amp: ampicillin resistance; qa-2 P: qa-2 gene promoter; TrpC T: trpC gene terminator. SphI and BglII are restriction sites used for the plasmid recovery from the 627 mutant chromosomal DNA.

Figure 3: Schematic representation of pQD6 and pQ35 plasmids. Restriction sites (BglII for pQD6 and SphI for pQ35) used for the recovery of the chromosomal DNA of the 627 strain are reported. Chromosomal sequences, flanking the integration site, are represented as segments. Restriction sites used to isolate DNA fragments used for probing the gene library are also represented.

Figure 4: Nucleotide sequence of the 6.9-Kb fragment containing the qde-3 gene and sequences. The amino acid sequence is shown above the nucleotide sequence. The bold sequences represent two introns of 98 and 68 nt. In these regions the underlined nucleotides identify consensus sequences of the donor site, the acceptor site and the internal sequence or lariat. Ιt is also represented the pMXY2 plasmid insertion site, in the 627 mutant, used for insertional mutagenesis. The portion encoding for the helicase domain is underlined.

Figure 5: Nucleotide sequence (SEQ ID No. 1) of the encoding portion reported in Figure 4 and deduced amino acid sequence. Amino acids from 897 to 1330, which define the recQ DNA-helicase domain, are underlined.

Figure 6: Multiple alignment, at the conserved domains, among qde-3 and other proteins belonging to recQ family. arab recQ: A. thaliana isologous; E. coli recQ; S. pombe hus-2; S. cerevisiae sgs-1; human wrn: Werner syndrome; human blm: Bloom syndrome. Identical amino acids are shown in bold.

MATERIALS AND METHODS

15 E. coli strains

5

10

30

E. coli strain HB101 (F, hsdS20(rb, mb), supE44,
recA13, ara14, proA2, rspL20(str, xyl-5) was used for
cloning.

Neurospora crassa strains and growing conditions

- Neurospora crassa following strains, supplied by Fungal Genetic Stock Center (FGSC, Dpt. Of Microbiology, University of Kansas Medical Ctr. Kansas City, KA) were used:
 - Wild type (FGSC 987);
- 25 ga-2/aro9 (FGSC 3957A), (FGSC 3958a).

The 6XW strain (Cogoni et al., 1996) was obtained upon transformation of the FGCS 3958a strain with pX16 (Cogoni et al., 1996). This plasmid contains the qa-2 gene used as selective marker and the al-1 coding sequence.

The mutated strains M7, M20 (qde-1); M10, M11 (qde-2); M17, M18 (qde-3) are described in Cogoni and Macino, 1997.

The qde mutants were obtained by UV mutagenesis. As recipient the transforming strain (6xw) silenced at the albino-1 gene was used. qde mutants were selected for their ability to recover a wild type unsilenced phenotype and then classified in three different complementation groups. By analyzing the al-2 gene quelling frequency all of qde used mutants are defective for the general silencing mechanism.

Complementation assays with not forced heterocaryons were carried out according to Davis and DeSerres, 1970.

15 Plasmids and libraries

5

10

20

25

The plasmid pMXY2, disclosed in Campbell et al., used for insertional mutagenesis was obtained from FGSC. The plasmid contains the Bm1 gene (allele responsible of the benilate drug resistance), that was used as selective marker after transformation. The genomic DNA containing the qde-2 gene was isolated from a N. Crassa gene library in cosmids. (Cabibbo et al., 1991).

N. crassa transformation

Spheroplasts were prepared according to the Akins and Lambowitz (1985) protocol.

Southern Blot Analysis

Chromosomal DNA was prepared as disclosed by Irelan et al., 1993. 5 μg of genomic DNA were digested and blotted as reported in Maniatis et al.

30 DNA probes were: a) as to the al-1 gene the probe is represented by a XbaI-ClaI restriction fragment of

pX16 (Cogoni et al., 1996); b) as to the BmI gene the probe is represented by the 2.6Kb SalI fragment of pMXY2. Northern Blot Analysis

N. crassa total RNA was extracted according to the protocol described by Cogoni et al., 1996. The mycelium was grown for two days at 30°C, then powdered in liquid nitrogen before RNA extraction. For Northern analysis 10 µg of RNA were formaldehyde denatured, electrophoresed on a 1% agarose, 7% formaldehyde gel, and blotted over Hybond N (Amersham) membranes. Hybridization was carried out in 50% formamide in the presence of ³²P labeled DNA probe 1.5x10⁶ cpm/ml.

RESULTS

5

10

15

20

25

30

Isolation of silencing mutant by insertional mutagenesis

Neurospora strain (6XW) wherein the albino-1 resident gene was steadily silenced was UV mutagenised, and qde ("quelling" deficient) mutants were isolated (Cogoni and Mancino 1997). The 6XW strain shows an albino phenotype due to the lack of carotenoid biosynthesis, as results by the silencing of the albino 1 gene expression (Schmidhauser et al., 1990). A mutation interfering with the silencing machinery is easily detectable by producing a wild type phenotype (bright orange) of the carotenoid biosynthesis. By means of complementation assays it was possible to establish that qde mutants belong to three complementation groups, indicating the presence of three genetic loci involved in the Neurospora silencing order to mechanism. In isolate the qde genes insertional mutagenesis was carried out with the 6XW strain, previously used for UV mutagenesis. The insertional mutagenesis was carried out by transforming the 6XW strain with a plasmid, taking advantage of the

fact that, after the transformation, plasmids randomly inserted in the Neurospora crassa genome. The mutagenesis was carried out transforming the 6XW silenced strain with pMXY2 (see Materials and Methods) which contains the benilate resistance as selective marker. 5 Transformed strains able to grow in the presence of benilate containing medium and showing a wild type phenotype for the carotenoid biosynthesis were selected. Out of 50.000 isolated independent transformed strains, a 10 benilate resistant strain (627) was isolated, which showed the bright orange phenotype expected for a qde gene mutation. In order to verify that the silencing release was effectively due to a qde gene mutation and not to the loss of al-1, the genomic DNA of the strain 15 627 was extracted and digested with SmaI and HindIII restriction enzymes. After blotting, DNA was hybridized with a probe corresponding to the coding sequence of al-The SmaI site is present only once in the al-1transgene containing plasmid and the digestion by using said enzyme produces a 5.5Kb fragment corresponding to 20 tandem arrayed al-1 transgenes, while a 3.1Kb fragment is expected from the resident al-1 locus. Figure 1 shows that the number of al-1 transgenic copies present in the 627 strain is comparable to that present in the silenced 25 6XW strain.

The 627 strain includes a mutated qde3 gene

30

The 627 strain was assayed in a heterokaryon assay with a wild type strain and with M7, M20 (qde-1) M10, M11 (qde-2) mutants (Cogoni and Macino, 1997). As shown in Table 1 the al-1 gene silencing is restored producing an albino phenotype in all of heterocaryons but M17 and M18.

This behavior is consistent with the presence of a qde-3 gene recessive mutation in the 627 strain.

Table 1

5 Reciprocal heterokaryons among 627 mutant and previously characterized qde mutants.

	627	М7	M20	M10	M11	M17	M18
627	WT	AL	AL	AL	AL	WT	WT
м7		WT	WT	AL	AL	AL	AL ·
M20			WT	AL	AL	AL	AL
м10				WT	WT	AL	AL
M11					WT	AL	AL
м17						WT	WT
м18							WT
4		E .	ľ				

WT = heterokaryon with a wild type phenotype for carotenoid;

AL = heterokaryon with an albino phenotype wherein the al-1 gene silencing is restored.

15

20

Recovery of sequences flanking the pMXY2 plasmid integration site

In order to recover sequences flanking the integration site or sites the following methodology was carried out. The 627 strain genomic DNA was restricted with SphI and BglII enzymes. As shown in the map of Figure 2 the enzymes digest respectively upstream and downstream to the region containing both the ampicillin resistance gene and the origin of replication present in pMXY2. Subsequently the genomic DNA was ligated and the product used to transform *E. coli* cells. The screening was performed in an ampicillin-containing medium. pQD6 and pQ35 plasmids were recovered from BglII and SphI

restricted chromosomal DNA, respectively (see Figure 3). Two DNA fragments containing sequences flanking the integration site were isolated by using, respectively, BglII and SalI enzymes for pQD6, and SphI and HindIII enzymes for pQ35 (Figure 3).

Isolation of genomic clones, their subcloning and complementation of the qde-3 mutant

The two fragments from pQD6 and pQ35 plasmids were used to probe a Neurospora crassa genomic library in cosmids. Cosmids 6E8 and 54D7, both containing about 30 Kb genomic DNA inserts, were isolated. Both the probes recognize the same cosmids, thus indicating that the two flanking sequences are contiguous. Cosmids 6E8 and 54D7 were used in transformation experiments with M17 and M18 mutants. Both of cosmids are able to restore the al-1 gene silencing in the two mutants, determining an albino phenotype. Furthermore the introduction of same cosmids into the M10 (qde-2) or the M20 mutant (qde-1) is not effective to restore the silencing.

20 The 6E8 cosmid was used to subclone a 9 Kb SphI-SphI fragment. This subclone was used for transformation experiments and resulted to be able to complement the qde-3 phenotype, indicating that a qde-3 functional gene is present in this plasmid.

25 <u>Isolation and sequence of the qde-3 cDNA</u>

5

10 .

15

30

The SphI-SphI region was sequenced, like the corresponding cDNA, by using RT-PCR. The latter sequence was used to deduce the qde-3 amino acid sequence and map the introns therein. The qde-3 gene encodes for a 1900 aa. putative protein (200 KDa). The genomic clone contains two introns of 98 nt. and 68 nt., respectively. Intron acceptor and donor sequences were identified and

correspond to described consensus sequences (Figure 4). Furthermore the pMXY2 plasmid insertion site within the gene in the 627 transforming strain is indicated. The insertion site was deduced by analysis of pQD6 and pQ35 plasmid sequences.

The cDNA sequence is shown in Figure 5 (SEQ ID No. 1), wherein the helicase domain containing 434 amino acids from 897 aa to 1330 aa is underlined.

The qde-3 gene is belonging to recQ helicase DNA family

The 1900 aa sequence was used to search in database of amino acid sequences, by using the BLASTP algorithm. Significant homologies were identified with 6 genes belonging to the reQ family, belonging to the helicase group containing the DEAH consensus sequence. Figure 6 shows the homologous region sequence alignment of helicase domains, as defined in Figure 5, among qde-3 and genes belonging to recQ helicase family. qde-3 shows the highest homology with hus-2 (55% amino acid identity) and the lowest homology with Wrn (40% identity).

20 Plant expression vector

5

10

15

25

30

The qde-3 gene was inserted, in a sense orientation, into a vector containing a plant expression "cassette", including the 35S promoter and the PI-II "terminator" sequences. The vector also includes the Streptomyces hygroscopicus bar gene, which confers the phosphinotricine herbicide resistance to transformed plants. In an analogous vector, qde-3 was inserted in an anti-sense orientation with respect to the 35S promoter.

The obtained vectors can be utilized to overexpress the qde-3 gene in plants, or to repress the gene expression of resident genes, which are homologous to qde-3, respectively.

Fungus expression vector

5

10

15

20

The qde-3 gene was inserted in a vector containing a fungal specific expression "cassette", comprising the A. nidulans trpC gene promoter and terminator, both in a sense and an anti-sense orientation. In addition the vector contains the bacterial hph gene, which confers the hygromicine drug resistance. The sense plasmid can be used to over express the qde-3 gene, whereas the anti-sense plasmid is used to repress the expression of qde-3 homologous genes in various fungine species.

Mammalian expression vector

The qde-3 gene was inserted in a vector containing a mammalian specific expression "cassette", including the cytomegalovirus (CMV) promoter and SV40 termination and polyadenylation sequences both in a sense and anti-sense orientation. The vector includes also the neomicine phototransferase gene, as marker for mammalian cell selection. The sense plasmid can be used to over express the qde-3 gene, whereas the anti-sense plasmid can be used to repress the expression of qde-3 homologous genes in various mammalian species.

Bibliography

- Akins, R.A. and Lambowitz A.M. (1985) Mol. Cell. Biol. 5:2272-2278
- 25 Baulcombe, D.C. (1996) Plant Mol. Biol. 32, 79-88.
 - Cogoni, C. et al. (1996) EMBO J. 15, 3153-3163
 - Cogoni, C. and Macino, G. (1997) Proc. Natl. Acad. Sci. U.S.A. 94: 10223-10238.
- Cabibbo, A. et al. (1991) Fungal Genetic Newsl., 38: 30 68-70.
 - Davis, R.H. and De Serres, F.J. (1970) methods Enzymol. 17: 79-143.

- de Carvalho Niebel, F. et al. (1995), Plant Cell: 347-358.
- Dehio, C., and Schell, J. (1994). Proc. Natl. Acad. Sci. U.S.A. 91: 5538-5542.
- 5 Dorer, D.R. and Henikoff, S. (1994). Cell, 993-1002.
 - Elkind, Y. Et al. (19990) Proc. Natl. Acad. Sci. U.S.A. 87: 9057-9061.
 - Ellis, N.A. et al. (1995) Cell 83:655-666.
- Flavell, R.B. (1994) Proc. Natl. Acad. Sci. U.S.A. 91: 3490-3496.
 - Garrick D., et al. (1998) Nature Genetics 18, 56-59.
 - Gray, M.D. et al. (1997) Nature Genetics 17, 100-103.
 - Irelan, J. et al. (1993) Fungal Genetics Newsl. 40: 24.
- 15 Lindbo, J.A. et al. (1993) Plant Cell 5: 1749-1759.
 - Maniatis, S.T. et al. (1982) Molecular Cloning A
 Laboratory Manual, Cold Spring Harbor, New York: Cold
 Spring Harbor Laboratory Press.
- Mittelstein Scheid, O. Et al. (1994) Mol. Gen. Genet. 20 244: 325-330.
 - Orbach, M.J. et al. (1986) Mol. Cell. Biol., 6, 2452-2461.
 - Pal-Bhadra, M., et al., (1997). Cell 90, 479-490.
 - Palauqui, J.C. et al., (1997) EMBO J. 16: 4738-4745.
- 25 Pirrotta, V. (1997). TIG 13, 314-318.
 - Schmidhauser, T.J. et al., Mol. Cell. Biol. 10: 5064-5070
 - Stam, M. et al. (1997) Annals of Botany 79:3-12
 - Stewart, E. et al., (1997) EMBO J. 10:2682-2692
- 30 van Blokland, R. et al. (1994), Plant, 6, 861-887.

- Vaucheret, H. (1993), C.R. Acad. Sci. Paris, Sciences de la vie/Life sciences 316, 1471-1483.
- Wallrath, L.L. and Elgin, S.C.R. (1995). Genes & Development 9, 1263-1277.
- 5 Watt, P.M. et al. (1995). Cell, 81: 253-260.
 - Watt, P.M. et al., (1996). Genetics 144: 935-945.
 - Yu, C.E. et al. (1996). Science 272: 258-262.

Claims

1. Nucleotide sequence encoding for a protein characterized in having a silencing activity and in comprising a recQ helicase domain, wherein the domain is at least 30% homologous with the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1.

5

10

- 2. Nucleotide sequence encoding for a protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 1, wherein the domain is at least 40% homologous with the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1.
- 3. Nucleotide sequence encoding for a protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 2, wherein the domain is at least 60% homologous with the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1.
- 4. Nucleotide sequence encoding for a protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 3, wherein the recQ helicase domain is the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1.
- 5. Nucleotide sequence encoding for a protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 4, wherein said nucleotide sequence encodes for a protein having the amino acid sequence of SEQ ID No. 1, or functional portions thereof.
 - 6. Nucleotide sequence encoding for a protein characterized in having a silencing activity and

comprising a recQ helicase domain according to claim 5, wherein said nucleotide sequence is the sequence of SEQ ID No. 1 or its complementary sequence.

7. Expression vector comprising, under the control of a promoter that is expressed in bacteria, the nucleotide sequence according to any one of claims 1-6.

5

10

15

25

- 8. Expression vector comprising, under the control of a promoter that is expressed in plants or in specific plant organs, the nucleotide sequence according to any one of claims 1-6, both in a sense and anti-sense orientation.
- 9. Expression vector comprising, under the control of a promoter that is expressed in fungi, the nucleotide sequence according to any one of claims 1-6 both in a sense and anti-sense orientation.
- 10. Expression vector comprising, under the control of a promoter that is expressed in animals, the nucleotide sequence according to any one of claims 1-6 both in a sense and anti-sense orientation.
- 20 11. Prokaryotic organism transformed by using the expression vector active in bacteria according to claim 7.
 - 12. Plants or a specific plant organ transformed by using the expression vector active in plants according to claim 8.
 - 13. Plant mutated at the nucleotide sequence according to any one of claims 1-6 having a reduced or inhibited silencing activity.
- 14. Fungus transformed by using the expression30 vector active in fungi according to claim 9.

- 15. Fungus mutated at the nucleotide sequence according to any one of claims 1-6 having a reduced or inhibited silencing activity.
- 16. Non-human animal transformed by using the expression vector active in animals according to claim 10.

5

15

20

30

- 17. Non-human animal mutated at the nucleotide sequence according to any one of claims 1-6 having a reduced or inhibited silencing activity.
- 18. Protein characterized in having a silencing activity and comprising a recQ helicase domain wherein the domain is at least 30% homologous to the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1.
 - 19. Protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 18 wherein the domain is at least 40% homologous to the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1.
 - 20. Protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 19 wherein the domain is at least 60% homologous to the amino acid sequence from aa. 897 to aa. 1330 of SEO ID No.1.
- 21. Protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 20 wherein the domain is the amino acid sequence from aa. 897 to aa. 1330 of SEQ ID No.1.
 - 22. Protein characterized in having a silencing activity and comprising a recQ helicase domain according to claim 21 comprising the amino acid sequence of SEQ ID.

 No.1 or functional portions thereof.

- 23. Use of the nucleotide sequence according to any one of claims 1-6 to modulate the gene silencing in plants, animals and fungi.
- 24. Use of the nucleotide sequence according to any one of claims 1-6 to potentiate the antiviral-response in a plant.

FIG. 1

FIG. 2

FIG. 3

27 ACC CCA AAC CCA ACC TCG ACC TCA ACC TCA ACC TCA ACC CTT GCG ACC TCG AGA TAC ACA AAC ACA TCC TCG ACA AAT GAC GCC CGA CCC GCT ACA CGC CAA CAG ATT GCC CCC GAG GTA GGA GCA TCG ACG CAT CAG GAT TCA GTT GGA CTT GGA GAA GGA GGA GGA GGA ATG GCG s v K N N L PRPH AAG CTC TCA GTC AAG AAC AAC CTG CCA CGG CCG CAC TTG GTC TCC TTG TCG TCA ACG 270 T G S G S G S A S R S A S A K H G S A G ACA GGC TCT GGG TCT GGG TCT AGG TCA GCT TCT GCT AAG CAC GGA AGT GCC GGT 321 330 312 339 H E H Q H Q TCC AGT ACC TTT GAT CAT GAA CAA CAT CAA CAA CAA CAA CAA CAA CAA AAG CGC 372 381 390 399 CAG CGG TCG CAA TCA GAA GCA CGA CAA CAG CAG CAG CAA CAG CAA CAG CAA CAG H н н Y CAA CAA CAA CAA CAA CAA GCA CAG CAC CAT GCA CAT TCT ACA TAT GCA CAA AGA CCC CAA R P P Q N L CCC ACC CCC CAA CAA CGA CCA CCC CAA AAC CTA CTG ACA CCT GCT TCA ACC ACT GGT GCC S V G P L Q R A Y S V S L A A R Q S P S AGC GTC GGC CCC CAA CGC GCA TAC TCG GTT TCA TTA GCT GCG AGA CAG TCC CCC TCG 621 630 639 P K D S ACA AAC TTG GTC CGT CCA AAG ACC GAC TCG CCA GCT CCC CAC ACT TTA CAC CTC AAG AAC 663 672 681 690 699 AAG AAG CTC CGT CAC CCC GCC CCC ACG CCC GAC AGT CCG ATC GTA GAC GAC GAT ATT D H D H D E E L TTC TCC GAC GCC GTC GAT CTT ACC GAA GAA CTC GAT CAT GAC CAT GAT CTC AAC GGC AAA N D N S S GAC AAA GAC AAC ACC GAC AAC GAC AAC ACA GTC GCT TCC AGT TCG CTA ATA GGG TTC GGC R D Ε GAT GAC AAG TTA CTG TGG CGA GAG GAC TTT GCT GAG CGT GCA GAG CCC GAA CAT GAA AGA 912 921 930 K K R K I GGT GGG AGC AGG CCT CGC CAG GTC AAG AAA CGG AAG ATA TCG AAT GAC TAC ATT ATG AAG 981 990 999 D E D V S L F D D D G E E D E F M D GAT GAG GAT GTC TCG CTT TTT GAT GAT GGC GAG GAG GAC GAG TTT ATG GAT ATC AAT 1050 1032 1041 1059

FIG. 4/1

K P к а т GAG CTA GTT CAG GGG GAT CGG GAA AGT ACT CCG AAG CCA AAG GCT ACA TCG AGG TCT GTC 1092 1101 1110 1119 1083 S T R L P P T V S L Q R G R S P K R K E TCG ACG AGG CTG CCT ACA GTA TCG CTG CAA CGG GGT CGG TCT CCT AAG AGG AAG GAG 1161 1170 1179 A S V E K R T T E N Q Q Q A D R E D E P GCT TCA GTT GAA AAG CGC ACA ACG GAA AAC CAG CAA CAG GCT GAC AGA GAA GAC GAA CCG 1221 1230 P D V D N S R K R K S S G S TCG TTT ATG TCA AGT CCA GAT GTC GAC AAC TCC CGC AAG CGA AAG TCT TCT GGA TCG CCC T G L T T P R P Q Q K Q T E E V P G T T ACA GGT TTA ACG ACG CCA AGA CCC CAG CAG AAG CAA ACG GAA GAG GTC CCA GGT ACG ACC 1350 1359 1332 1341 E V M D SEDE ACC GCC AAG AAG CCA CGG CGC AGT GAA GTG ATG GAC TCG GAG GAC GAG GCA TTC ACT CCT 1428 1401 1410 1419 L P E F F R S G G S A CTT TCT GCT GGG TCG CTG CCT GGG AGT GCG GAG TTC TTC AGA AGC GGT GGG ACC ACC ACA 1461 1470 1479 1452 RELGLDEDTVMDTPSRPP CGG GAA TTG GGT TTG GAC GAA GAC ACG GTT ATG GAC ACG CCT AGT AGG CCA CCG GTC GAG 1521 1530 L E S V E S R P P TCC ACT TTG CCA ACT CTC GAG TCT GTG GAA AGT CGA CCA CCC CCC CTG CCG CCC ATG GAT 1581 1590 L P S Q R K P L E P L N T P R N Q L CTA CCA TCA CAG CGA AAA CCG CTA GAG CCG TTG AAC ACT CCG CGC AAC CAG CTG CTT GAG 1641 1650 1659 TQQPSVG P S TCG GTC GAA AGG CCA ACA CAG CAG CCG TCG GTG GGG CCG AGT TTT GCA CAG AGT AGC ACA 1701 1710 1719 L P E D P S M P P P CTC GCC GAA AGC TCC CTG CCG CCG TCA ATG CCG CCG CCA AGT GAA GAC CCC CTC AAC ACC 1761 1770 1779 1752 RENSNLEEFDYKLYKPLL AGG GAG AAC AGC AAC CTT GAG GAG TTC GAC TAC AAG CTT TAC AAA CCC CTG CTA GAT CTT 1821 1830 LERELS TTC GTC AAC GCA CCC GCA ATC TTG GAA AGA GAA CTG AGC GCC GTT AAT GAC GAG CTT CAG 1872 1881 ENMIKLRDCLRLPREERD GAG AAC ATG ATC AAG CTG CGG GAC TGT CTG CGC CTG CCC AGG GAA GAA AGA GAC AGG GCA 1941 1950 K E K E M L K R R D CGC GAA GAG GTG AAG AAG GAA AAG GAA ATG CTC AAG CGA CGG GAC ATT GCG CTC AGA GCC 2010 2001 DEHKLYVKKRKEHN CTC CAG GAC GAA CAC AAG TTG TAC GTC AAG AAA CGC AAA GAG CAT AAT TTG ATC AAC GAG 2079 2070 2061 E I V R A Y A E E D D E Y E D Q L M A Q GAA ATC GTT CGC GCT TAT GCT GAA GAA GAC GAT GAG TAC GAG GAT CAG TTA ATG GCG CAG 2103 2112 2121 2130 2139 2148

D D E V E A I V K L KSLTR CTG GAC AAG TTG GAT GAG GTT GAG GCT ATC GTA AAG AGT CTG ACA AGG CTT ATT GTG 2172 2181 2190 2199 T E K S F D L K K E E E E E GCG GCG GGG ATC ACG GAG AAG AGC TTT GAC CTA AAG AAG GAG GAG GAA GAG GAG GAG 2232 2241 2250 2259 2301 2310 2319 T T E Y H N S Q Q V I L Q T Q H P A A Q ACG ACC GAG TAT CAT AAT TCC CAG CAG GTC ATA TTG CAG ACT CAA CAT CCT GCT GCG CAG 2352 2361 2370 Q V S H R V P P P T P S F Q T CAG GTT TCT CAC CGG GTG CCA CCA CCT CCG ACA CCG AGT TTT CAA ACG GCG CGC CAG ACT 2421 2430 2439 YQSRPTNNSFPD CCG GTG TCA TAT CAG AGC AGA CCG ACC AAC AAC TCC TTT CCT GAT ATC TCG GCG GAA GAA 2472 2481 2490 A M M F D K E D P F M E Q Q H A P A S A GCC ATG ATG TTC GAT AAA GAA GAC CCC TTC ATG GAA CAA CAG CAC GCC CCG GCC TCT GCT 2541 2550 2559 2592 2601 2610 2619 D Y F D D E D D D A D GTC CAC GGC CAC GAT TAC TIT GAC GAT GAA GAC GAC GAT GCC GAC CTC CTG GCA GCA GTA 2652 2661 2670 ETYTSTAAT т т TNNNN 2721 2730 · LRSQSVMSTSTATT K P R TTA CGA TCA CAA TCG GTG ATG TCA ACA TCC ACG GCG ACC ACG ATC AAA CCG AGG AAA CGC 2781 2790 2799 N E N A N A K K P K S V H A K L S M P P AAC GAA AAT GCC AAT GCC AAG CCC AAG TCC GTA CAT GCA AAG TTA TCG ATG CCC CCC 2841 2850 2859 E K M K Y A W S N D V R K A L K D R F R GAA AAG ATG AAG TAT GCG TGG TCG AAT GAT GTG AGG AAG GCT CTC AAG GAT AGG TTT CGG 2883 2892 2901 2910 2919 QNQLEAINATLG F R ATG TCG GGG TTC AGA CAG AAT CAG TTG GAG GCT ATT AAT GCT ACT TTG GGT GGT AAG GTG 2952 2961 2970 <u>agt</u> tot ctg tcc ttt acc tat ctg gga gag acc aag aag gag aga gag aga gag agg 3021 3030 D A F V GGA AGA CGA AAA TGG ACT TTG CTG ACT CTA GAAAG GAT GCC TTT GTG TTG ATG CCG ACT GGT 3074 3083 3092 3101 C Y L Q L P A _ **v v** R S G K GGT GGA AAG TCT CTG TGC TAT CAG TTG CCG GCT GTA GTC AGG AGC GGC AAG ACG CGT GGT 3134 3143 3152 3161 I T V V I S P L L S L M L D Q V N H L A
ATC ACA GTC GTC ATC TCC CCT CTG CTA AGT CTG ATG CTG GAT CAA GTC AAC CAT TTG GCA 3185 3194 3203 3212 3221 3230

FIG 4/4

T L G K L C D ILMGKR CAG CAG CCC ATC ACG CTG GGC AAG CTG TGC GAC ATC CTG ATG GGC AAG AGA AAG AAC GAG 4343 4352 4361 H G G V C H F G I A K G S T Q R E L Q R CAC GGT GGC GTG TGT CAC TTT GGT ATC GCC AAG GGG AGC ACG CAG AGG GAG CTG CAG AGG 4394 4403 4412 4421 LNFHKALGEDN ATC GTG CTG CAG CTG AAT TTC CAC AAG GCG CTG GGC GAG GAC AAT ATC ATG AAT GGG GCG 4463 4472 GMPITYYI GGG ATG CCT ATT ACC TAC TAT ATT GTG AGT GCT GTC CCG GTT GGT CTT GCA TAT CTG GCT 4532 /INSERZIONE T G P E A G A Y TTG TTG CTT TGC TAA CAC AGC AGC TCG TAC AG ACC GGC CCT GAA GCT GGT GCT TAC CTC 4573 4582 4591 4600 L P V s n L M KSVEP TAC AAT GGC AAG CGG TTG ATG CTG CCA GTT CCC TCA AAC AAG TCC GTC GAA CCC CCG TCT 4633 4642 4651 S K Q R S R R V D E D M D E Q E L S CGG TCT AAG CAG CGG AGC CGT CGA GTC GAT GAG GAT ATG GAT GAG CAA GAA CTT TCC ACC 4702 4711 S P V R A T K K R S T N V S CTG CAA CGA CCG CCA ACA TCA ACA AAT GTC TCT TCA CCC GTT CGA GCC ACC AAG AAA CGA 4753 4762 4771 4780 L D AGT TCC AAA AAG GCT TTA CCG ACC CTC ATC GCC GAC TAC GAA GAG CCC AGC TCC GAC GGT 4813 4822 4831 4840 4873 4882 4891 4900 EEEEDA F E P GTT GAA CCC GAA GAG GAA GAA GAT GCC TTC GAA CCT GTC CGC CCC TCG CGC CGC GGC CCA 4933 4942 4951 4960 TRPQHRQTTLYDTL TCT TCT CGC GCT ACC CGC CCT CAA CAC CGC CAG ACC ACC CTT TAT GAC ACC CTC TCC CAC 5002 5011 S Q T V S Q H L A T L G P P ACC CAA CAA TCC CAA ACC GTC TCC CAA CAC CTC GCC ACT TTG GGT CCG CCC ATC GAC GCC 5062 5071 5080 R T M H N P R Y A Q L D E V H Q D I V D CGC ACC ATG CAT AAC CCC CGC TAC GCC CAG CTT GAC GAG GTC CAC CAG GAT ATT GTC GAT 5131 5113 5122 5140 E V K F E E D F R N N R GCC TTT GTT GAA GAA GTC AAG GTC TTC GAG GAG GAC TTT CGC AAC AGG AAC CAC ATG CGC 5173 5182 5191 5200 T Q Y R EMAIRWTRS AAA CCC ATC TTT ACC GAG ACG CAG TAC CGT GAG ATG GCA ATC CGG TGG ACG CGG TCG TTA 5242 5251 A M R A I P D I N Q D K V D R Y G A GAC GCG ATG CGC GCG ATC CCG GAT ATC AAC CAG GAT AAA GTA GAT CGG TAT GGT GCC AAA 5302 LVERFWGNYQEM M G TTC ATC CCA CTT GTG GAG CGG TTC TGG GGG AAT TAT CAG GAG ATG ATG GGG GGA GGG TAT 5353 5371 5362 5380 5389 5344

FIG 4/5

A G D E D D E G P GAT AAT CCT GCT GTG GCT GGC GAT GAG GAT GAT GAG GGC CCC AGG AGG ACA GGA AAT 5422 5431 5440 G K G G N K K G G G G G N E V V 5473 5482 5491 I S S D E D E P P A R A P S R N A G R G ATT AGT AGT GAT GAG GAT GAA CCT CCG GCT CGT GCA CCA TCG CGG AAT GCG GGG CGA GGA 5542 5533 5551 5560 TRGG Q I Q D K G AAG GCA CAG TCG ACA CGT GGG GGA CAA ATC CAA GAT AAA GGC CGA GCA GTC AAC CGC CGC 5602 5611 5620 5593 A E E D E E D Y G L S GGA GAA CCC ATC GCC GAA GAA GAC GAA GAA GAC TAC GGG CTA AGC GAC CCC GAT ATC GAC 5662 5671 5680 D A I T A S D N S GCC ATC GAT CCA GAC GCC ATC ACC GCC TCC GAC AAC TCC GAC GAA GAA GAT GAT GAT 5722 5731 5773 5782 5791 5800 5809 A R R E Q AAA GCC GTG CAG GAT GCT CGA CTC CGT GAA CAA CTT TCC ATG TAC GCC TCC GGC GGC AGC 5833 5842 5851 5860 Y G S G R A S G G S S TCT TCG AAA GGT AGC TAC GGC TCA GGG CGC GCA TCA GGA GGA TCT TCG TCG AGA GCG TCG 5893 5902 5911 5920 W R G G G A G G K K Y Y R K K GGA TCA GGA TGG AGA GGT GGA GGA GCA GGT GGG AAG AAA TAC TAC AGG AAG AAG AGG GCT 5953 5962 5971 5980 A A G G G G G G GGT TCT TCG GCT GCT GGT GGT GGT GCA GGA GGG GGA GTT ACA AAA CGG AAG GCG 6022 6031 S G S G A K T A R K R G A S T A P K T T AGT GGG AGT GGG AGG AAG ACG AGG AAG AGG GGT GCA TCT ACT GCG CCG AAG ACA ACG 6082 6091 6100 G S G A RGGG ACG AGA GGG GGA GGA TCT GGA GCT GGG TCT AGA GGA GGC GGT GCT GGT GGT GGT GGT 6133 6142 6151 6160 K R G G G G G AGAGGG 6193 6202 6211 6220 I S V M P H GGA GGG ATA AGT GTT ATG CCT CAT TAG CTA TTT TAT AGC ATA TCG CAT TTA TAC AGT GTC 6253 6262 6271 6280 TTA TGG AAG GGA GGA GAA GAA GAA GGA TAA GCT GGC ATA AGC TTG AAC CGG CCA GGC 6313 6322 6331 CAA AAT GGC CAG AGA GCT CAC CGG GCA ATC GAG CTT GAA ATG AGC TTG ACA TAT TAG GTA 6382 6391 6400 TTC CCG AGA ATA TAG CGG GAT TAC AAG GCA CTT ACT TTA CCA AGT CGA AAG GGA CGA GCC 6433 6442 6451 6460 AAA TCT ATG GTA CTC GCC AGT TGC GCA ACG TTG AGT TTT ATC ATT CGT GGA GTT TTC ATC

FIG. 4/6

GTG	GAG TTT 6544	TTA	TTA TCA 6553	ACT	ATT CGT 6562	TGT	ATA GTT 6571	TTC	GTT GTA 6580	GAT	GTT AGT 6589	TCC	GGA
CGA	TCA AAA 6604	GGG	GAA GTG 6613	TGG	AAC AGA 6622	GAA	GTC GAA 6631	AGG	ACA AGC 6640	CAA	AAT GAC 6649	ATG	GCA
GTG	TCC AGT 6664	CAG	ATA CCC 6673	TCC	AGA CAA 6682	AAC	CAG ACA 6691	CCA	ATA ACA 6700	AAC	CCT TCA 6709	ACC	ATA
ACA	CCA GCA 6724	AAG	CCA ATC 6733	CTT	AGG TAC 6742	CTA	CCT AGG 6751	GTA	GGG TAG 6760	GTC	CAG GAA 6769	TGT	CTT
ccc	CAA AGG 6784	TAC	CTC TAC 6793	TTA	TTC ATG 6802	TTA	CGC TCC 6811	ATC	AGT CCC 6820	ATC	GCT TAG 6829	CAT	CGC
TGC	CCG GTT 6844	ACC	TAT CTC 6853	TAC	CTC TAC 6862	CTC	TAC CTC 6871	TAC	CTC TAC 6880	CTC	TAC CTC 6889	TAC	CTC
TAT	CTC TAC 6904	CTC	TAC CTC 6913	TAC									

FIG. 4/7

SEQ ID No.1

M A K L S V K N N L P R P H L V S ATG GCG AAG CTC TCA GTC AAG AAC AAC CTG CCA CGG CCG CAC TTG GTC TCC TTG 18 27 36 S S S T T G S G S G S A S R S TCG TCG TCA ACG ACA GGC TCT GGG TCT GGT TCT GCG TCT AGG TCA GCT TCT GCT AAG CAC 81 90 TFDHEQH О н о GGA AGT GCC GGT TCC AGT ACC TTT GAT CAT GAA CAA CAT CAA CAA CAA CAA CAA 132 141 KR R S S E Α RQQQQ CAA CAA AAG CGC CAG CGG TCG CAA TCA GAA GCA CGA CAA CAG CAG CAA CAG CAA CAG 192 201 219 QQ АОНН CAA CAG CAA CAG CAA CAA CAA CAA CAA GCA CAG CAC CAT GCA CAT TCT ACA TAT GCA 270 279 QQRPPQN T P 321 330 339 V G P LQRAY S L ACC ACT GGT GCC AGC GTC GGC CTC CAA CGC GCA TAC TCG GTT TCA TTA GCT GCG AGA 381 390 N L V R P K T P Α CAG TCC CCC TCG ACA AAC TTG GTC CGT CCA AAG ACC GAC TCG CCA GCT CCC CAC ACT TTA 432 441 450 459 KNLRHP A P T P D CAC CTC AAG AAC AAG AAG AAC CTC CGT CAC CCC GCC CCC ACG CCC GAC AGT CCG ATC GTA 492 501 510 519 528 D Α V D T E L ELDH GAC GAC GAT ATT TTC TCC GAC GCC GTC GAT CTT ACC GAA GAA CTC GAT CAT GAC CAT GAT 543 552 561 570 579 K D $N \cdot T D$ NDNTVASS CTC AAC GGC AAA GAC AAC ACC GAC AAC GAC ACA GTC GCT TCC AGT TCG CTA 603 621 630 639 648 D K L L W REDFAERAE ATA GGG TTC GGC GAT GAC AAG TTA CTG TGG CGA GAG GAC TTT GCT GAG CGT GCA GAG CCC 672 681 690 699 708 E R G S R P R Q V K K R K I G GAA CAT GAA AGA GGT GGG AGC AGG CCT CGC CAG GTC AAG AAA CGG AAG ATA TCG AAT GAC 723 732 741 750 759 $\begin{smallmatrix} M & & K & & D & & E & & D & & V & & S & & L & & F & & D & & D \\ \end{smallmatrix}$ G E E TAC ATT ATG AAG GAT GAG GAT GTC TCG CTT TTT GAT GAT GAT GGC GAG GAG GAC GAG TTT 783 801 810 819 I N E L V Q G D R E S T Р К ATG GAT ATC AAT GAG CTA GTT CAG GGG GAT CGG GAA AGT ACT CCG AAG CCA AAG GCT ACA 843 852 861 870 879

FIG. 5/1

R L P P T V S L Q R TCG AGG TCT GTC TCG ACG AGG CTG CCG CCT ACA GTA TCG CTG CAA CGG GGT CGG TCT CCT 903 912 921 930 939 K E A S V E K R T T E N Q Q AAG AGG AAG GAG GCT TCA GTT GAA AAG CGC ACA ACG GAA AAC CAG CAA CAG GCT GAC AGA 972 981 990 999 E P S F M S S P D V D N S R GAA GAC GAA CCG TCG TTT ATG TCA AGT CCA GAT GTC GAC AAC TCC CGC AAG CGA AAG TCT 1032 1041 1050 TTPRPQ S P T. G L KQTEE Q TCT GGA TCG CCC ACA GGT TTA ACG ACG CCA AGA CCC CAG CAG AAG CAA ACG GAA GAG GTC 1101 1110 1119 T A K K P R R S E V M D CCA GGT ACG ACC ACC GCC AAG AAG CCA CGG CGC AGT GAA GTG ATG GAC TCG GAG GAC GAG 1152 1161 1170 1179 L S A GSLPGSAEF GCA TTC ACT CCT CTT TCT GCT GGG TCG CTG CCT GGG AGT GCG GAG TTC TTC AGA AGC GGT 1212 1221 . 1230 1239 R E L G L D E D T V M D GGG ACC ACC ACA CGG GAA TTG GGT TTG GAC GAA GAC ACG GTT ATG GAC ACG CCT AGT AGG 1272 1281 1290 1299 V E S T L P T L E S V E S RPPP CCA CCG GTC GAG TCC ACT TTG CCA ACT CTC GAG TCT GTG GAA AGT CGA CCC CCC CTG 1332 1341 1350 D L P S Q R K P L E LNTPR CCG CCC ATG GAT CTA CCA TCA CAG CGA AAA CCG CTA GAG CCG TTG AAC ACT CCG CGC AAC 1392 1401 1410 1419 LESVERPTQQ P V G P S CAG CTG CTT GAG TCG GTC GAA AGG CCA ACA CAG CAG CCG TCG GTG GGG CCG AGT TTT GCA 1443 1452 1461 .1470 1479 L A E S S L P S M P P P S E P CAG AGT AGC ACA CTC GCC GAA AGC TCC CTG CCG CCG TCA ATG CCG CCG CCA AGT GAA GAC 1503 1512 1521 1530 1539 S R E NN L EEFDYKLYK CCC CTC AAC ACC AGG GAG AAC AGC AAC CTT GAG GAG TTC GAC TAC AAG CTT TAC AAA CCC 1563 1572 1581 1590 1599 V N APAILERELSA CTG CTA GAT CTT TTC GTC AAC GCA CCC GCA ATC TTG GAA AGA GAA CTG AGC GCC GTT AAT 1632 1641 1650 1659 1668 E N M IKLRDCLRLPRE GAC GAG CTT CAG GAG AAC ATG ATC AAG CTG CGG GAC TGT CTG CGC CTG CCC AGG GAA GAA 1683 1692 1701 1710 1719 REEVKKEKEMLKR_E AGA GAC AGG GCA CGC GAA GAG GTG AAG AAG GAA AAG GAA ATG CTC AAG CGA CGG GAC ATT 1743 1761 1770 1779 R A L Q D E H K L Y V K K R K E H GCG CTC AGA GCC CTC CAG GAC GAA CAC AAG TTG TAC GTC AAG AAA CGC AAA GAG CAT AAT 1812 1821 1830 1839 1848

FIG. 5/2

2763

2772

INEEIVRAYAEEDDEYEDO TTG ATC AAC GAG GAA ATC GTT CGC GCT TAT GCT GAA GAA GAC GAT GAG TAC GAG GAT CAG 1872 1881 1890 1899 LDKLDDEVEAIV Q K S TTA ATG GCG CAG CTG GAC AAG TTG GAT GAT GAG GTT GAG GCT ATC GTA AAG AGT CTG ACA 1932 . 1941 1950 1959 VAAGI T E K S F D L K AGG CTT ATT GTG GCG GGG ATC ACG GAG AAG AGC TTT GAC CTA AAG AAG GAG GAA 1992 2001 2010 2019 E K P I I I A T P T P S T GAG GAG GAG AAG CCG ATC ATC ATA GCG ACT CCG ACA CCT TCG ACG AGG ACC GAG GCC 2052 2061 2070 2079 EYHNSQQVIL P T T CCG GTT CTG CCG ACG ACC GAG TAT CAT AAT TCC CAG CAG GTC ATA TTG CAG ACT CAA CAT 2112 2121 2130 SHRVPP A A v PTP CCT GCT GCG CAG CAG GTT TCT CAC CGG GTG CCA CCT CCG ACA CCG AGT TTT CAA ACG 2172 2181 2190 V S Y Q S RPTNNS GCG CGC CAG ACT CCG GTG TCA TAT CAG AGC AGA CCG ACC AAC AAC TCC TTT CCT GAT ATC 2232 , 2241 2250 2259 F D K E D P F M E Q Q A M M TCG GCG GAA GAA GCC ATG ATG TTC GAT AAA GAA GAC CCC TTC ATG GAA CAA CAG CAC GCC 2301 2310 2319 P F Q A T L P Q R N S P F CCG GCC TCT GCT CCC TTC CAG GCC ACC CTT CCC CAG CGC AAC AGC CCT TTC AAA ACC GCC 2352 2361 2370 2379 V H G H D Y F D D E D D D A D L CCG TTC AAG CCA GTC CAC GGC CAC GAT TAC TTT GAC GAT GAA GAC GAT GCC GAC CTC 2412 2421 2430 ETYTST D S A А А Т TTT CTG GCA GCA GTA GAC AGC GCC GAG ACG TAT ACT TCT ACG GCC GCC ACC ACC ACC ACC 2463 2472 2481 2490 2499 L R S Q S V M S T S T A T T I AAC AAC AAT CAC TTA CGA TCA CAA TCG GTG ATG TCA ACA TCC ACG GCG ACC ACG ATC AAA 2532 2541 2550 2559 N E N A N A K K P K S V H A K CCG AGG AAA CGC AAC GAA AAT GCC AAT GCC AAG AAG CCC AAG TCC GTA CAT GCA AAG TTA 2592 2601 2610 2619 E K M K Y A W S N D V R K A TCG ATG CCG CCC GAA AAG ATG AAG TAT GCG TGG TCG AAT GAT GTG AGG AAG GCT CTC AAG 2643 2652 2661 2670 2679 2688 M S G F R Q N Q L E A I N GAT AGG TTT CGG ATG TCG GGG TTC AGA CAG AAT CAG TTG GAG GCT ATT AAT GCT ACT TTG 2703 2712 2721 2730 2739 2748 G G K D A F V L M P T G G G K S L C Y Q GGT GGT AAG GAT GCC TTT GTG TTG ATG CCG ACT GGT GGA AAG TCT CTG TGC TAT CAG

FIG. 5/3

2799

2808

2781 2790

L P A V V R S G K T R G I T V V I S P L
TTG CCG GCT GTA GTC AGG AGC GGC AAG ACG CGT GGT ATC ACA GTC GTC ATC TCC CCT CTG 2823 2832 2841 2850 2859 L S L M L D Q V N H L A N L M I Q A Y A CTA AGT CTG ATG CTG GAT CAA GTC AAC CAT TTG GCA AAC CTG ATG ATC CAA GCT TAC GCT 2883 2892 2901 2910 M N S EMRRMV TTC AAC GGA GAC ATG AAC TCA GAA ATG CGC CGA ATG GTG TTT CAG AAG CTT GAT GCT GAG 2952 2961 2970 2979 E L Q L L Y V T P E M V CAT CCT GAG CAT GAG CTC CAA CTG CTC TAT GTC ACC CCG GAG ATG GTG AGC AAG AAC CAG 3012 3021 3030 3039 V N K M M D L Y R R K K ACA TTC GTC AAC AAG ATG ATG GAC CTC TAC CGG AGG AAA AAG CTG GCT AGA ATT GTT ATC 3072 3081 3090 3099 D E A H C V S Q W G H D F R P D Y K A I GAC GAG GCT CAC TGC GTC AGT CAA TGG GGC CAT GAC TTC CGA CCC GAT TAC AAA GCT ATA 3132 3123 3141 3150 G V P M A GGA GAG TTT CGT AAG AGG TTT CCC GGA GTT CCG GTC ATG GCT TTG ACA GCG ACG GCA ACA 3183 3192 3201 3210 3219 Q N V I L D V K H N L A M E D C Q T F S CAG AAC GTC AAC GTC AAG CAT AAC CTG GCA ATG GAG GAC TGC CAG ACT TTC TCC 3252 3261 3270 Y Y E V R MKEQN CAG AGC TTT AAT CGG CCG AAC CTC TAC TAT GAG GTC AGG ATG AAG GAG CAG AAT CTG ATT 3303 3321 3330 3339 K E K Y D G Q T G I I Y GCC CGC ATC GCA GAG TTG ATC AAG GAG AAG TAT GAC GGC CAG ACG GGT ATC ATC TAC ACA 3372 3381 3390 3399 3408 I A K N L Q E K H R N TTA TCA AGA AAG AGT GCC GAG AAC ATC GCC AAA AAT CTC CAG GAA AAA CAC CGC ATC AAA 3423 3432 3441 3450 3459 3468 I T T D E K I S V GCA AAG CAC TAC CAT GCC TCC ATC ACC ACC GAC GAA AAG ATC AGC GTT CAA CAT GAA TGG 3483 3492 3501 3510 3519 3528 Q T G R V K V V V A T I A F G M G I D K CAA ACC GGC CGA GTC AAA GTC GTG GTA GCC ACC ATT GCC TTC GGC ATG GGC ATC GAC AAG 3543 3552 3561 3570 3579 P D V R F V I H Q H I P K S L E G Y Y Q CCT GAC GTC CGC TTT GTT ATC CAC CAG CAC ATC CCC AAG TCG CTC GAA GGT TAC TAT CAA 3603 3612 3621 3630 3639 3648 E T G R A G R D G K P S D C Y L Y F A Y GAA ACC GGC GGC GGA CGT GAC GGC AAG CCA TCG GAC TGC TAC TTG TAC TTT GCC TAT 3663 3672 3681 3690 3699 SLRRMIADGEGDYA GGC GAC ATT CAA TCC CTA CGT CGT ATG ATC GCC GAC GGC GAA GGT GAC TAC GCG CAA AAG 3732 3741 3750 3759 3768

N R V V S Y C E M L GAG CGT CAG CTA CAA ATG CTC AAC CGT GTG GTC AGC TAT TGC GAG TCG CAG CAC ACG TGC 3783 3792 3801 3810 3819 3828 L R Y F G E E F D Y R CGG CGC GAA GAA GTG CTC CGC TAC TTT GGC GAG GAG TTT GAC TAC CGG AAG TGT AGA GAC 3852 3843 3861 3870 3879 G C D N C R N G R I S K S T E M R D F T GGA TGC GAT AAC TGC CGG AAC GGA CGC ATC TCG AAG TCG ACG GAG ATG AGG GAT TTT ACG 3903 3912 3921 3930 3939 I E V V K s QQPI GAA ATC GCC TTC GCC GCG ATC GAG GTG GTG AAG AGC CAG CAG CCC ATC ACG CTG GGC AAG 3963 3972 3981 3990 3999 D I L M G K R K N E H G G V C H F C CTG TGC GAC ATC CTG ATG GGC AAG AGA AAG AAC GAG CAC GGT GGC GTG TGT CAC TTT GGT 4032 4041 4050 KGST Q RELQRIVLQ ATC GCC AAG GGG AGC ACG CAG AGG GAG CTG CAG AGG ATC GTG CTG CAG CTG AAT TTC CAC 4092 4101 4110 LGED NIMNGAGMPI AAG GCG CTG GGC GAG GAC AAT ATC ATG AAT GGG GCG GGG ATG CCT ATT ACC TAC TAT ATT 4161 4170 4179 P E AGAYLYNGKRLM ACC GGC CCT GAA GCT GGT GCT TAC CTC TAC AAT GGC AAG CGG TTG ATG CTG CCA GTT CCC 4212 4221 4230 4239 V E P P S R SKQRSR TCA AAC AAG TCC GTC GAA CCC CCG TCT CGG TCT AAG CAG CGG AGC CGT CGA GTC GAT GAG 4272 4281 4290 4299 QELSTLQRP P T S GAT ATG GAT GAG CAA GAA CTT TCC ACC CTG CAA CGA CCG CCA ACA TCA ACA AAT GTC TCT 4332 4341 4350 4359 A T K K R S S K K A L P TCA CCC GTT CGA GCC ACC AAG AAA CGA AGT TCC AAA AAG GCT TTA CCG ACC CTC ATC GCC 4392 4401 4410 4419 D G P P S S H G P L HANGY GAC TAC GAA GAG CCC AGC TCC GAC GGT CCT CAC GGT CCT CTC CAC GCC AAC GGC TAT GAG 4443 4452 4461 4470 4479 v v s. D N V E P E EEEDAF CGC GAT AAC TTT GTC GTA TCC GAT AAT GTT GAA CCC GAA GAG GAA GAT GCC TTC GAA 4503 4512 4521 4530 4539 P S R R G SRATRPQHR CCT GTC CGC CCC TCG CGC CGC CCA TCT TCT CGC GCT ACC CGC CCT CAA CAC CGC CAG 4563 4572 4581 4590 4599 T L L Y D S H T Q Q S Q T V S Q H ACC ACC CTT TAT GAC ACC CTC TCC CAC ACC CAA CAA TCC CAA ACC GTC TCC CAA CAC CTC 4623 4632 4641 4650 4659 GCC ACT TTG GGT CCG CCC ATC GAC GCC CGC ACC ATG CAT AAC CCC CGC TAC GCC CAG CTT 4683 4692 4701 4710 4719

FIG. 5/5

GAC GAG GTC CAC CAG GAT ATT GTC GAT GCC TTT GTT GAA GAA GTC AAG GTC TTC GAG GAG 4752 4761 4770 4779 NRNHMRKPIFT E GAC TTT CGC AAC AGG AAC CAC ATG CGC AAA CCC ATC TTT ACC GAG ACG CAG TAC CGT GAG 4812 4821 4830 4839 I RWTR SLDAMR A I P ATG GCA ATC CGG TGG ACG CGG TCG TTA GAC GCG ATG CGC GCG ATC CCG GAT ATC AAC CAG 4872 4881 4890 V D R Y G A K F IPLVER GAT AAA GTA GAT CGG TAT GGT GCC AAA TTC ATC CCA CTT GTG GAG CGG TTC TGG GGG AAT 4932 4941 4950 4959 GGGYDNPAVAG M M TAT CAG GAG ATG ATG GGG GGA GGG TAT GAT AAT CCT GCT GTG GCT GGC GAT GAG GAT GAT 5010 4992 5001 5019 R R T G N G K G G N K K G G G5061 5052 5070 5079 E V V D L I S S D E D E P P A 5112 5121 5130 5139 N A G RGKAQS TRGGQI GCA CCA TCG CGG AAT GCG GGG CGA GGA AAG GCA CAG TCG ACA CGT GGG GGA CAA ATC CAA 5172 5181 5190 5199 V N RRGEPIAEEDEE GAT AAA GGC CGA GCA GTC AAC CGC CGC GGA GAA CCC ATC GCC GAA GAA GAC GAA GAA 5232 5241 5250 5259 P D IDAIDPDAITA TAC GGG CTA AGC GAC CCC GAT ATC GAC GCC ATC GAT CCA GAC GCC ATC ACC GCC TCC GAC 5292 5301 5310 5319 E E D D D D D E D L E S S R AAC TCC GAC GAA GAA GAT GAT GAT GAT GAC GAA GAC CTC GAA TCC TCC CGC TAC TTC 5352 5343 5361 5370 5379 5388 G P P V S K A V Q D A R L R E TCC GGC TCA ACA GGC CCG CCC GTC TCC AAA GCC GTG CAG GAT GCT CGA CTC CGT GAA CAA 5403 5412 5421 5430 5439 M Y A S G G S S S K G S Y G SGR CTT TCC ATG TAC GCC TCC GGC GGC AGC TCT TCG AAA GGT AGC TAC GGC TCA GGG CGC GCA 5472 5481 5490 5499 S S R A S G S G W R G G G A G GTCA GGA GGA TCT TCG TCG AGA GCG TCG GGA TCA GGA TGG AGA GGT GGA GGA GGA GGT GGG 5523 5532 5541 5550 5559 K K Y Y R K K R A G SSAAGG 5583 5592 5601 5610 5619 G G G V T K R K A S G S G A K T A R K GGA GGG GGA GTT ACA AAA CGG AAG GCG AGT GGG AGT GGC GCG AAG ACG GCG AGG AAG AGG 5652 5661 5670

5679

FIG. 5/7

SEQUENCE LISTING

```
<110> Università degli studi di Roma La Sapienza
      Macino, Giuseppe
      Cogoni, Carlo
<120> Isolation and characterization of a N. crassa silencing
      gene and uses therof
<130> PC
<140>
<141>
<160> 3
<170> PatentIn Ver. 2.1
<210> 1
<211> 6916
<212> DNA
<213> Neurospora crassa
<400> 1
ccaccaccac caccaccacc acaacaacca actcaacaac gaactcaaca accaacccca 60
aacccaacct cgacctcaac ctcaacctca acccttgcga cctcgagata cacaaacaca 120
tcctcqacaa atgacgcccg acccgctaca cgccaacaga ttgcccccga ggtaggagca 180
tcgacgcatc aggattcagt tggacttgga gaaggaggag gaggaggaat ggcgaagctc 240
tcagtcaaga acaacctgcc acggccgcac ttggtctcct tgtcgtcgtc aacgacaggc 300
totgggtotg gttotgcgto taggtoagot totgctaago acqqaaqtgo cqqttocagt 360
acctttgatc atgaacaaca tcaacaacat caacaacaac aacaacaaa gcgccaqcqq 420
tcgcaatcag aagcacgaca acagcagcag caacagcaac agcaacagca acagcaacaa 480
caacaacaac aagcacagca ccatgcacat tctacatatg cacaaagacc ccaacccacc 540
ccccaacac gaccaccca aaacctactg acacctgctt caaccactgg tgccagcgtc 600
ggcccgctcc aacgcgcata ctcggtttca ttagctgcga gacagtcccc ctcgacaaac 660
ttggtccgtc caaagaccga ctcgccagct ccccacactt tacacctcaa gaacaagaag 720
aacctccgtc accccgccc cacgcccgac agtccgatcg tagacgacga tattttctcc 780
gacgccgtcg atcttaccga agaactcgat catgaccatg atctcaacgg caaagacaaa 840
gacaacaccg acaacgacaa cacagtcgct tccagttcgc taatagggtt cggcgatgac 900
aagttactgt ggcgagagga ctttgctgag cgtgcagagc ccgaacatga aagaggtggg 960
agcaggeete gecaggteaa gaaacggaag atategaatg actacattat gaaggatgag 1020
gatgtctcgc tttttgatga tgatggcgag gaggacgagt ttatggatat caatgagcta 1080
gttcaggggg atcgggaaag tactccgaag ccaaaqgcta catcgaggtc tqtctcqacg 1140
aggetgeege ctacagtate getgeaacgg ggteggtete ctaagaggaa ggaggettea 1200
gttgaaaaqc qcacaacgga aaaccaqcaa caqqctqaca qaqaaqacqa accqtcqttt 1260
atgtcaagtc cagatgtcga caactcccgc aagcgaaagt cttctggatc gcccacaggt 1320
ttaacgacgc caagacccca gcagaagcaa acggaagagg tsscaggtac gaccaccgcc 1380
aagaagecae ggegeagtga agtgatggae teggaggaeg aggeatteae teetetttet 1440
```

```
gctgggtcgc tgcctgggag tgcggagttc ttcagaagcg gtgggaccac cacacgggaa 1500
ttgggtttgg acgaagacac ggttatggac acgcctagta ggccaccggt cgagtccact 1560
ttgccaactc tcgagtctgt ggaaagtcga ccacccccc tgccgcccat ggatctacca 1620
tcacagcgaa aaccgctaga gccgttgaac actccgcgca accagctgct tgagtcggtc 1680
gaaaggccaa cacagcagcc gtcggtgggg ccgagttttg cacagagtag cacactcgcc 1740
gaaageteee tgeegeegte aatgeegeeg ccaagtgaag acceceteaa caccagggag 1800
aacagcaacc ttgaggagtt cgactacaag ctttacaaac ccctgctaga tcttttcgtc 1860
aacgcacccg caatcttgga aagagaactg agcgccgtta atgacgagct tcaggagaac 1920
atgatcaagc tgcgggactg tctgcgcctg cccagggaag aaagagacag ggcacgcgaa 1980
gaggtgaaga aggaaaagga aatgctcaag cgacgggaca ttgcgctcag agccctccag 2040
gacgaacaca agttgtacgt caagaaacgc aaagagcata atttgatcaa cgaggaaatc 2100
gttcgcgctt atgctgaaga agacgatgag tacgaggatc agttaatggc gcagctggac 2160
aagttiggatg atgaggttga ggctatcgta aagagtctga caaggcttat tgtggcggcg 2220
gggatcacgg agaagagctt tgacctaaag aaggaggagg aagaggagga ggagaagccg 2280
atcatcatag cgactccgac accttcgacg aggaccgagg ccccggttct gccgacgacc 2340
gagtateata atteccagea ggteatattg cagacteaae atcetgetge geageaggtt 2400
tctcaccggg tgccaccacc tccgacaccg agttttcaaa cggcgcgcca gactccggtg 2460
tcatatcaga gcagaccgac caacaactcc tttcctgata tctcggcgga agaagccatg 2520
atgttcgata aagaagaccc cttcatggaa caacagcacg ccccggcctc tgctcccttc 2580
caggccaccc ttccccagcg caacagccct ttcaaaaccg ccccgttcaa gccagtccac 2640
ggccacgatt actttgacga tgaagacgac gatgccgacc tcctggcagc agtagacagc 2700
gccgagacgt atacttctac ggccgccacc accaccacca acaacaacaa tcacttacga 2760
tcacaatcgg tgatgtcaac atccacggcg accacgatca aaccgaggaa acgcaacgaa 2820
aatgccaatg ccaagaagcc caagtccgta catgcaaagt tatcgatgcc gcccgaaaag 2880
atgaagtatg cgtggtcgaa tgatgtgagg aaggctctca aggataggtt tcggatgtcg 2940
gggttcagac agaatcagtt ggaggctatt aatgctactt tgggtggtaa ggtgagttct 3000
ctgtccttta cctatctggg agagaccaag aaggagagag agagagagag gaggggaaga 3060
cgaaaatgga ctttgctgac tctagaaagg atgcctttgt gttgatgccg actggtggtg 3120
gaaagtetet gtgetateag ttgeeggetg tagteaggag eggeaagaeg egtggtatea 3180
cagtcgtcat ctcccctctg ctaagtctga tgctggatca agtcaaccat ttggcaaacc 3240
tgatgatcca agcttacgct ttcaacggag acatgaactc agaaatgcgc cgaatggtgt 3300
ttcagaaget tgatgetgag cateetgage atgageteea actgetetat gteaceegg 3360
agatggtgag caagaaccag acattcgtca acaagatgat ggacctctac cggaggaaaa 3420
agctggctag aattgttatc gacgaggctc actgcgtcag tcaatggggc catgacttcc 3480
gacccgatta caaagctata ggagagtttc gtaagaggtt tcccggagtt ccggtcatgg 3540
ctttgacagc gacggcaaca cagaacgtca tcttggatgt caagcataac ctggcaatgg 3600
aggactgcca gactttctcc cagagcttta atcggccgaa cctctactat gaggtcagga 3660
tgaaggagca gaatctgatt gcccgcatcg cagagttgat caaggagaag tatgacggcc 3720
agacgggtat catctacaca ttatcaagaa agagtgccga gaacatcgcc aaaaatctcc 3780
aggaaaaaca ccgcatcaaa gcaaagcact accatgcctc catcaccacc gacgaaaaga 3840
tcagcgttca acatgaatgg caaaccggcc gagtcaaagt cgtggtagcc accattgcct 3900
teggeatggg categaeaag cetgaegtee getttgttat ceaceageae ateceeaagt 3960
cgctcgaagg ttactatcaa gaaaccggcc gcgccggacg tgacggcaag ccatcggact 4020
gctacttgta ctttgcctat ggcgacattc aatccctacg tcgtatgatc gccgacggcg 4080
aaggtgacta cgcgcaaaag gagcgtcagc tacaaatgct caaccgtgtg gtcagctatt 4140
gcgagtcgca gcacacgtgc cggcgcgaag aagtgctccg ctactttggc gaggagtttg 4200
actaccggaa gtgtagagac ggatgcgata actgccggaa cggacgcatc tcgaagtcga 4260
cggagatgag ggattttacg gaaatcgcct tcgccgcgat cgaggtggtg aagagccagc 4320
```

agcccatcac	gctgggcaag	ctgtgcgaca	tcctgatggg	caagagaaag	aacgagcacg	4380
				•	cagaggatcg	
					ggggcgggga	
					ctggctttgt	
					acctctacaa	
					cgtctcggtc	
					ccaccctgca	
					aacgaagttc	
					acggtcctca	
				_	ataatgttga	
					gcccatcttc	
					cccacaccca	
					acgcccgcac	
					tcgatgcctt	
					tgcgcaaacc	
					cgttagacgc	
					ccaaattcat	
					ggtatgataa	
					gaaatggaaa	
					atttgattag	
					gaggaaaggc	
					gccgcggaga	
					tcgacgccat	
					atgatgatga	
					tctccaaagc	
					gcagctcttc	
					cgtcgggatc	
					gggctggttc	
					aggcgagtgg	
					caacgacgag	
					gtggtgctgg	
tgctggtgct	ggtgctggag	gagggaaaag	gggtggtgga	ggtggaggag	gaatgggagg	6240
gataagtgtt	atgcctcatt	agctatttta	tagcatatcg	catttataca	gtgtcttatg	6300
gaagggagga	ggagaagaag	aaggataagc	tggcataagc	ttgaaccggc	caggccaaaa	6360
tggccagaga	gctcaccggg	caatcgagct	tgaaatgagc	ttgacatatt	aggtattccc	6420
gagaatatag	cgggattaca	aggcacttac	tttaccaagt	cgaaagggac	gagccaaatc	6480
tatggtactc	gccagttgcg	caacgttgag	ttttatcatt	cgtggagttt	tcatcgtgga	6540
gtttttatta	tcaactattc	gttgtatagt	tttcgttgta	gatgttagtt	ccggacgatc	6600
aaaaggggaa	gtgtggaaca	gagaagtcga	aaggacaagc	caaaatgaca	tggcagtgtc	6660
cagtcagata	ccctccagac	aaaaccagac	accaataaca	aacccttcaa	ccataacacc	6720
					gtcttcccca	
					atcgctgccc	
				-	acctctatct	
ctacctctac	ctctac					6916

<21	3> No	euro	spor	a cr	assa							-				
<22	0>															
	l> C															
<22	2> (1)	(586	8)												
	0> 2															
atg	gcg	aag	ctc	tca	gtc	aag	aac	aac	ctg	cca	cgg	ccg	cac	ttg	gtc	48
Met	Ala	Lys	Leu	Ser	Val	Lys	Asn	Asn	Leu	Pro	Arg	Pro	His	Leu	Val	
1				5					10					15		
tcc	ttg	tcg	tcg	tca	acg	aca	ggc	tct	ggg	tct	ggt	tct	gcg	tct	agg	96
Ser	Leu	Ser	Ser	Ser	Thr	Thr	Gly	Ser	Gly	Ser	Gly	Ser	Ala	Ser	Arg	
			20					25					30			
tca	gct	tct	gct	aag	cac	gga	agt	gcc	ggt	tcc	agt	acc	ttt	gat	cat	144
Ser	Ala	Ser	Ala	Lys	His	Gly	Ser	Ala	Gly	Ser	Ser	Thr	Phe	Asp	His	
		35					40					45	,			
gaa	caa	cat	caa	caa	cat	caa	caa	caa	caa	caa	caa	aaq	cqc	cag	caa	192
Glu	Gln	His	Gln	Gln	His	Gln	Gln	Gln	Gln	Gln	Gln	Lys	Arq	Gln	Arg	
	50					55				•	60	-	_			
tcg	caa	tca	gaa	gca	cga	caa	cag	cag	cag	caa	cag	caa	cag	caa	cag	240
Ser	Gln	Ser	Glu	Ala	Arg	Gln	Gln	Gln	Gln	Gln	Gln	${\tt Gln}$	Gln	Gln	Gln	
65					70					. 75					80	
caa	cag	caa	caa	caa	caa	caa	caa	gca	cag	cac	cat	gca	cat	tct	aca	288
Gln	Gln	Gln	Gln	Gln	Gln	Gln	Gln	Ala	Gln	His	His	Ala	His	Ser	Thr	
				85					90					95		
tat	gca	caa	aga	ccc	caa	ccc	acc	ccc	caa	caa	cga	cca	ccc	caa	aac	336
Tyr	Ala	${\tt Gln}$	Arg	Pro	Gln	Pro	Thr	Pro	Gln	Gln	Arg	Pro	Pro	Gln	Asn	
			100					105					110			
cta	ctg	aca	cct	gct	tca	acc	act	ggt	gcc	agc	gtc	ggc	ccg	ctc	caa	384
Leu	Leu	Thr	Pro	Ala	Ser	Thr	Thr	Gly	Ala	Ser	Val	Gly	Pro	Leu	Gln	
		115					120					125				
cgc	gca	tac	tcg	gtt	tca	tta	gct	gcg	aga	cag	tcc	ccc	tcg	aca	aac	432
Arg	Ala	Tyr	Ser	Val	Ser	Leu	Ala	Ala	Arg	Gln	Ser	Pro	Ser	Thr	Asn	
	130					135					140					
ttg	gtc	cgt	cca	aag	acc	gac	tcg	cca	gct	ccc	cac	act	tta	cac	ctc	480
Leu	Val	Arg	Pro	Lys	Thr	Asp	Ser	Pro	Ala	Pro	His	Thr	Leu	His	Leu	
145					150					155					160	

<212> DNA

	_		_	_	aac Asn 165		_					_		_	_	•	528
		_	_	_	gat Asp					-	-	-			-	•	576
		-		_	cat His	-			Gly		-		-			•	624
		_			gtc Val	-									_	•	672
					cga Arg										-		720
					agc Ser 245					-	_			-		_	768
					atg Met											7	816
				_	gag Glu		-	-				Leu	-	-		-	864
					ccg Pro										_	-	912
·					aca Thr					Arg							960
					gtt Val 325		_	_	Thr	_	-		_		-	•	1008
			Glu		gaa Glu								Asp				1056

				-								_	acg Thr	cca Pro	1104
			-	_	_	_		_			_		acc Thr	•	1152
					-		_	_			-		gca Ala		1200
											_		ttc Phe 415	-	1248
					_	_	_		-	-	_	-	acg Thr	_	1296
_	-	_		-		_	-				-		act Thr		1344
									_		_	_	cta Leu		1392
										_	-		cag Gln	ctg Leu 480	1440
													ccg Pro 495		1488
													tca Ser		1536
												-	aac Asn		1584
									_		-		ttc Phe	-	1632

	gca Ala		Glu			-		-		1680
	aac Asn						-		agg Arg	1728
	gac Asp 580						_	_	_	1776
	cgg Arg					_	_		_	1824
	aag Lys				_			-		1872
	tat Tyr						_		_	1920
	gac Asp						_	_	-	1968
	ctt Leu 660								-	2016
	gag Glu									2064
	cct Pro									2112
	aat Asn								-	2160
	gtt Val						Pro	_		2208

															aac	2256
GII	ı Thr	Ala	740		Thr	Pro	Val	Ser 745		: Gln	Ser	Arg	750		Asn	
aac	tcc:	ttt	cct	gat	atc	tcg	gcg	gaa	gaa	gcc	atg	atg	ttc	gat	aaa	2304
Asr	Ser	Phe 755	Pro	Asp	Ile	Ser	Ala 760		Glu	Ala	Met	Met 765		Asp	Lys	
gaa	gac	ccc	ttc	atg	gaa	caa	cag	cac	gcc	ccg	gcc	tct	gct	ccc	ttc	2352
Glu	770	Pro	Phe	Met	Glu	Gln 775	Gln	His	Ala	Pro	Ala 780	Ser	Ala	Pro	Phe	
cag	gcc	acc	ctt	ccc	cag	cgc	aac	agc	cct	ttc	aaa	acc	gcc	ccg	ttc	2400
Gln 785	Ala	Thr	Leu	Pro	Gln 790	Arg	Asn	Ser	Pro	Phe 795	Lys	Thr	Ala	Pro	Phe 800	
aag	сса	gtc	cac	ggc	cac	gat	tac	ttt	gac	gat	gaa	gac	gac	gat	gcc	2448
Lys	Pro	Val	His	Gly 805	His	Asp	Tyr	Phe	Asp 810	Asp	Glu	Asp	Asp	Asp 815	Ala	
gac	ctc	ctg	gca	gca	gta	gac	agc	gcc	gag	acg	tat	act	tct	acg	gcc	2496
Asp	Leu	Leu	Ala 820	Ala	Val	Asp	Ser	Ala 825	Glu	Thr	Tyr	Thr	Ser 830	Thr	Ala	
	acċ										_			_		2544
Ala	Thr	Thr 835	Thr	Thr	Asn	Asn	Asn 840	Asn	His	Leu	Arg	Ser 845	Gln	Ser	Val	
	tca									_			-		•	2592
Met	Ser 850	Thr	Ser	Thr	Ala	Thr 855	Thr	Ile	Lys	Pro	Arg 860	Lys	Arg	Asn	Glu	
	gcc															2640
865	Ala	Asn	Ala	Lys	Lys 870	Pro	Lys	Ser	Val	His 875	Ala	Lys	Leu	Ser	Met 880	
	ccc															2688
Pro	Pro	Glu	Lys	Met 885	Lys	Tyr	Ala	Trp	Ser 890	Asn	Asp	Val	Arg	Lys 895	Ala	
	aag															2736
Leu	Lys	Asp	Arg 900	Phe	Arg	Met	Ser	Gly 905	Phe	Arg	Gln	Asn	Gln 910	Leu	Glu	
	att															2784
Ala	Ile	Asn 915	Ala	Thr	Leu		Gly 920	Lys	Asp	Ala	Phe	Val 925	Leu	Met	Pro	•

													-	-	agg	2832
Thr		Gly	Gly	Lys	Ser		Cys	Tyr	Gln	Leu	Pro	Ala	Val	Val	Arg	
	930					935					940					
			acg										_		•	2880
945	GIĀ	гÀг	Thr	Arg		IIe	Thr	Val	Val		Ser	Pro	Leu	Leu	Ser	
343					950					955					960	
cta	atσ	cta	gat	caa	atc	aac	cat	tta	aca	aac	cta	ato	atc	C22	act	2928
			Asp									_			_	
				965				204	970	11311	Beu			975	nia	
tac	gct	ttc	aac	gga	gac	atg	aac	tca	gaa	atg	cgc	cga	atg	gtg	ttt	2976
			Asn							-	_	-	_			
			980					985					990			
cag	aag	ctt	gat	gct	gag	cat	cct	gag	cat	gag	ctc	caa	ctg	ctc	tat	3024
Gln	Lys	Leu	Asp	Ala	Glu	His	Pro	Glu	His	Glu	Leu	Gln	Leu	Leu	Tyr	
		995]	1000				1	1005				
			gag	_			_		_			-		-	-	3072
		Pro	Glu	Met			Lys	Asn	Gln			Val	Asn	Lys	Met	
1	.010				_	1015					1020					
atσ	gac	ctc	tac	caa	адд	aaa	aaα	cta	act	aga	att	att	atc	пас	aaa	3120
			Tyr													3120
1025			-1-	_	1030	-,,-	-,,-			1035				_	1040	
gct	cac	tgc	gtc	agt	caa	tgg	ggc	cat	gac	ttc	cga	ccc	gat	tac	aaa	3168
Ala	His	Cys	Val	Ser	Gln	Trp	Gly	His	Asp	Phe	Arg	Pro	Asp	Tyr	Lys	
			1	045				1	050				1	.055		•
			gag													3216
Ala	Ile		Glu	Phe	Arg	Lys			Pro	Gly	Val			Met	Ala	
		1	.060				1	065				1	.070			
***																2064
			acg Thr									-	_			3264
rea		.075	1111	MIG	1111		080	Val	TTE	Leu	_	085	гÀз	HIS	Asn	
						1	JUU				1	000				
ctq	gca	atg	gag	gac	tac	caq	act	ttc	tcc	cag	agc	ttt	aat	caa	cca	3312
			Glu							_	_				_	
	090			•		095					100			9	- -	
aac	ctc	tac	tat	gag	gtc	agg	atg	aag	gag	cag	aat	ctg	att	gcc	cgc	3360
Asn	Leu	Tyr	Tyr	Glu	Val	Arg	Met	Lys	Glu	Gln	Asn	Leu	Ile	Ala	Arg	
1105				1	110				1	115				1	120	

															atc	3408
Ile	Ala	Glu	. Leu			Glu	Lys	Tyr	Asp	Gly	Gln	Thr	. G1?	/ Ile	e Ile	
				1125			•		1130)				1135	5	
tac	aca	tta	tca	ада	ааσ	aat	acc	. asa	aac	ato	acc		a a t	cto	caq	3456
															Gln	3436
_			1140		- 2 -			1145				-,0	1150		2 GIII	
															acc	3504
Glu				Ile	Lys	Ala	Lys	His	Tyr	His	Ala	Ser	Ile	Thr	Thr	
		1155					1160					1165				
aac	 gaa	aan	atc	acc	att	C22	cat	4 22	+ ~~	a aa	200	~~~			aaa	2550
														_	Lys	3552
	170	-1-		201		1175	1123	0	115		1180	GLY	Ary	Val	rys	
										·						
gtc	gtg	gta	gcc	acc	att	gcc	ttc	ggc	atg	ggc	atc	gac	aag	cct	gac	3600
Val	Val	Val	Ala	Thr	Ile	Ala	Phe	Gly	Met	Gly	Ile	Asp	Lys	Pro	Asp	
1185	5			:	1190				:	1195					1200	
				atc												3648
vai	Arg	Pne		Ile 1205	HIS	GIN	HIS			Lys	Ser	Leu		_	Tyr	
			-	1203				_	1210				•	1215		
tat	caa	gaa	acc	ggc	cgc	gcc	gga	cqt	qac	ggc	aag	cca	tca	σac	tac	3696
				Gly												
			1220					L225					230		_	
				gcc									_	_		3744
Tyr		Tyr 1235	Phe	Ala	Tyr			Ile	Gln	Ser			Arg	Met	Ile	
	,	.233				7	240				1	.245				
gcc	gac	ggc	gaa	ggt	gac	tac	qcq	caa	aaq	gag	cat	cag	cta	caa.	atg	3792
				Gly												0.52
	250					255					260					
				gtc												3840
		Arg	Val	Val		Tyr	Cys	Glu			His	Thr	Cys	Arg	Arg	
1265				1	270				1	.275				1	1280	
~~ a	ma a	ata	ata	~~~	+											
				cgc Arg												3888
-				285	- 1 -		-r y		290	1114	ush	TÄĘ	_	.295	CAR	
			_					-					_	در ہے.		
aga	gac	gga	tgc	gat	aac	tgc	cgg	aac	gga	cgc	atc	tcg	aaq	tcq	acq	3936
				Asp .												
			300					305					310			

											gcg	-				3984
Glu	Met	Arg	Asp	Phe	Thr			Ala	Phe	Ala	Ala	Ile	Glu	Val	Val	
	1	1315					1320					1325				
aag	agc	cag	cag	ccc	atc	acg	ctg	ggc	aag	ctg	tgc	gac	atc	ctg	atg	4032
Lys	Ser	Gln	Gln	Pro	Ile	Thr	Leu	Gly	Lys	Leu	Cys	Asp	Ile	Leu	Met	
1	L330				:	1335					1340					
ggc	aag	aga	aag	aac	gag	cac	ggt	ggc	gtg	tgt	cac	ttt	ggt	atc	gcc	4080
Gly	Lys	Arg	Lys	Asn	Glu	His	Gly	Gly	Val	Cys	His	Phe	Gly	Ile	Ala	
1345	5			:	1350				:	1355					1360	
aag	ggg	agc	acg	cag	agg	gag	ctg	cag	agg	atc	gtg	ctg	cag	ctg	aat	4128
Lys	Gly	Ser	Thr	Gln	Arg	Glu	Leu	Gln	Arg	Ile	Val	Leu	Gln	Leu	Asn	
			1	1365				1	1370					1375		
•																
ttc	cac	aag	gcg	ctg	ggc	gag	gac	aat	atc	atg	aat	ggg	gcg	ggg	atg	4176
Phe	His	Lys	Ala	Leu	Gly	Glu	Asp	Asn	Ile	Met	Asn	Gly	Ala	Gly	Met	
		1	L380					L385				1	1390			
cct	att	acc	tac	tat	att	acc	ggc	cct	gaa	gct	ggt	gct	tac	ctc	tac	4224
Pro	Ile	Thr	Tyr	Tyr	Ile	Thr	Gly	Pro	Glu	Ala	Gly	Ala	Tyr	Leu	Tyr	
	1	395				3	L400				1	1405				
aat	ggc	aag	cgg	ttg	atg	ctg	cca	gtt	ccc	tca	aac	aag	tcc	gtc	gaa	4272
Asn	Gly	Lys	Arg	Leu	Met	Leú	Pro	Val	Pro	Ser	Asn	Lys	Ser	Val	Glu	
3	1410				1	415				3	L420					
ccc	ccg	tct	cgg	tct	aag	cag	cgg	agc	cgt	cga	gtc	gat	gag	gat	atg	4320
Pro	Pro	Ser	Arg	Ser	Lys	Gln	Arg	Ser	Arg	Arg	Val	Asp	Glu	Asp	Met	
1425	5			1	1430				1	L435				1	440	
gat	gag	caa	gaa	ctt	tcc	acc	ctg	caa	cga	ccg	cca	aca	tca	aca	aat	4368
Asp	Glu	Gln	Glu	Leu	Ser	Thr	Leu	Gln	Arg	Pro	Pro	Thr	Ser	Thr	Asn	
			1	445				1	.450				1	L455		
gtc	tct	tca	ccc	gtt	cga	gcc	acc	aag	aaa	cga	agt	tcc	aaa	aag	gct	4416
Val	Ser	Ser	Pro	Val	Arg	Ala	Thr	Lys	Lys	Arg	Ser	Ser	Lys	Lys	Ala	
		1	460				1	465				1	470			
tta	ccg	acc	ctc	atc	gcc	gac	tac	gaa	gag	ccc	agc	tcc	gac	ggt	cct	4464
Leu	Pro	Thr	Leu	Ile	Ala	Asp	Tyr	Glu	Glu	Pro	Ser	Ser	Asp	Gly	Pro	
											•	AOE				
		475				1	.480				1	.485				
		475				1	.480				1	.485				
cac	1		ctc	cac	gcc			tat	gag	cgċ	gat		ttt	gtc	gta	4512
	ggt	cct				aac	ggc	•		-		aac				4512

															gtc	4560
Ser	Asp	Asn	Val	Glu	Pro	Glu	Glu	Glu	Glu	Asp	Ala	Phe	Glu	Pro	Val	
150	5				1510					1515					1520	
cgc	ccc	tcg	cgg	cgc	ggc	cca	tct	tct	cgc	gct	acc	cgc	cct	caa	cac	4608
						Pro										
•				1525	•				1530			9		1535	1113	
														1333		
cac	сая	acc	acc	ctt	tat	gac	200	ctc	tee	636	300	633				4656
						Asp										4656
111.9	0111		1540	Deu	ıyı	nap			ser	пто	III			Ser	Gin	
		,	1340					1545					1550			
											٠					
						gcc								-	_	4704
Thr			GIn	His	Leu	Ala		Leu	Gly	Pro	Pro	Ile	Asp	Ala	Arg	
		1555					1560					1565				
						tac						_			_	4752
Thr	Met	His	Asn	Pro	Arg	Tyr	Ala	Gln	Leu	Asp	Glu	Val	His	Gln	Asp	
1	1570					1575					1580					
att	gtc	gat	gcc	tťt	gtt	gaa	gaa	gtc	aag	gtc	ttc	gag	gag	qac	ttt	4800
						Glu								_		
1585		_			1590					1595				_	1600	
cgc	aac	agg	aac	cac	atσ	cgc	aaa	ccc	atc	ttt	acc	σασ	асσ	сад	tac	4848
						Arg							_	-		1010
5		5		.605		• 9	_,_		610		****	014		1615	TYL	
			_					-	.010				_	.013		
cat	nan	atσ	пса	atc	caa	tgg	200	caa	tea	++2	a 2a	a0a	2+~			4000
													-	-		4896
arg	GIU		.620	TIE	ALG	Trp			ser	reu	ASD			Arg	Ala	
		1	.620				1	.625				1	.630			
						٠.										
						gat										4944
TTE			He	Asn	GIn	Asp		Val	Asp	Arg			Ala	Lys	Phe	
	1	635				1	640				1	645				
						ttc										4992
Ile	Pro	Leu	Val	Glu	Arg	Phe	Trp	Gly	Asn	Tyr	Gln	Glu	Met	Met	Gly	
1	650				1	655				1	660					
									•							
gga	ggg	tat	gat	aat	cct	gct	gtg	gct	ggc	gat	gag	gat	gat	gat	gag	5040
						Ala										
1665			٠		670					675		-	•	•	680	
														_		
qqc	ccc	aga	ада	aca	ασa	aat	ααа	aaa	aaa	aaa	aat	aaa	aaa	aas	uus	5088
						Asn										5500
		J		685	1		1		690	~~ y	. 1.511	-73		61.y	СТУ	

														-	gag	5136
Gly	Gly				Asn	Glu				Leu	Ile	Ser	Ser	Asp	Glu	
			1700					1705					1710)		
										•						
													-		aag	5184
Asp			Pro	Ala	Arg			Ser	Arg	Asn			Arg	Gly	Lys	
		1715					1720					1725				
													-	gca	_	5232
			Thr	Arg			Gln	Ile	Gln			Gly	Arg	Ala	Val	
•	1730					1735					1740					
220	cac	~~~	<i>aa</i> a	4 22	000	250	~~~	~~~		~~~	~~-					
													-	tac Tyr		5280
1745		ALG	GIĀ		1750	TTE	MIG	GIU		ASP 1755	GIU	GIU	Asp	-	•	
				•	1730				•	1755				•	1760	
cta	agc	gac	ccc	σat	atc	gac	acc	atc	gat	cca	gac	acc	atc	acc	acc.	5328
														Thr	-	3320
		•		1765		•			1770					1775	1124	
tcc	gac	aac	tcc	gac	gaa	gaa	gat	gat	gat	gat	gat	gac	gaa	gac	ctc	5376
														Asp		
			1780				1	1785					1790	_		
gaa	tcc	tcc	cgc	tac	ttc	tcc	ggc	tca	aca	ggc	ccg	ccc	gtc	tcc	aaa	5424
Glu	Ser	Ser	Arg	Tyr	Phe	Ser	Gly	Ser	Thr	Gly	Pro	Pro	Val	Ser	Lys	
	:	1795				1	.800				1	1805				
												-		-	tcc	5472
		Gln	Asp	Ala			Arg	Glu	Gln			Met	Tyr	Ala	Ser	
1	.810]	815				1	1820					
														tca		5520
1825		ser	ser			GTÀ	ser	Tyr			GLY	Arg	Ala	Ser	_	
1023	,				830				1	.835				1	.840	
aaa	tct	tca	tca	aga	aca	tca	aa a	tca	aas	taa	202	aat	~~~	gga	a aa	5568
														Gly		3300
,				845		202	or,		850	110	my	OL y	_	.855	vra	
			_					_					•	.000		
ggt	ggg	aag	aaa	tac	tac	agg	aaq	aaq	agg	gct	gat	tct	tca	gct	act	5616
														Ala	-	
_	-		860	-	-	-		865	-		_		870		_	
ggt	ggt	ggt	ggt	gca	gga	gga	ggg	gga	gtt	aca	aaa	cgg	aag	gcg	agt	5664
														Ala		
		275					990	-				005	-			

	Ser 1890		Ala	Lys	_	Ala 1895	Arg	-			-	Ser			Pro	
	Thr			Arg		Gly			Gly		Gly			Gly	ggc Gly 1920	
			Gly		Gly			Gly							gga Gly	5808
		Arg		Gly			Gly				gga Gly	Gly		Ser	-	5856
	cct Pro		tag													5868
<212 <212	0> 3 l> 19 2> PI 3> Ne	RT	spor	a cra	assa											
<400)> 3															
Met 1	Ala	Lys	Leu	Ser 5	Val	Lys	Asn	Asn	Leu 10	Pro	Arg	Pro	His	Leu 15	Val	
Ser	Leu	Ser	Ser 20	Ser	Thr	Thr	Gly	Ser 25	Gly	Ser	Gly	Ser	Ala 30	Ser	Arg	
Ser	Ala	Ser 35	Ala	Lys	His	Gly	Ser 40	Ala	Gly	Ser	Ser	Thr 45	Phe	Asp	His	
Glu	Gln 50	His	Gln	Gln	His	Gln 55	Gln	Gln	Gln	Gln	Gln 60	Lys	Arg	Gln	Arg	
Ser 65	Gln	Ser	Glu	Ala	Arg 70	Gln	Gln	Gln	Gln	Gln 75	Gln	Gln	Gln	Gln	Gln 80	
Gln	Gln	Gln	Gln	Gln 85	Gln	Gln	Gln	Ala	Gln 90	His	His	Ala	His	Ser 95	Thr	
Tyr	Ala	Gln	Arg 100	Pro	Gln	Pro	Thr	Pro 105	Gln	Gln	Arg	Pro	Pro	Gln	Asn	
Leu	Leu	Thr 115	Pro	Ala	Ser	Thr	Thr 120	Gly	Ala	Ser	Val	Gly 125		Leu	Gln	
Arg	Ala 130		Ser	Val	Ser	Leu 135		Ala	Arg	Gln	Ser 140		Ser	Thr	Asn	
Leu		Ara	Pro	Lvs	Thr		Ser	Pro	Ala	Pro	His	Thr	Len	Hie	I.en	
145		7		_,_	150					155			Lieu	.113	160	
	Asn	Lys	Lys	Asn		Arg	His	Pro	Ala		Thr	Pro	Asp	Ser		

				165	i				170)				175	5
Ile	Val	Asp	Asp	Asp	Ile	Phe	Ser	Asp	Ala	. Val	Asp	Let	Thi	Glu	ı Glu
			180					185					190)	
Leu	Asp	His	Asp	His	Asp	Leu	Asn	Gly	Lys	Asp	Lys	Asp	Asr	Thr	Asp
		195					200					205			
Asn		Asn	Thr	Val	Ala			Ser	Leu	Ile	Gly	Phe	Gly	/ Asp	Asp
	210					215					220				
	Leu	Leu	Trp	Arg		Asp	Phe	Ala	Glu			Glu	Pro	Glu	His
225	_				230					235					240
GLu	Arg	Gly	Gly		Arg	Pro	Arg	Gln			Lys	Arg	Lys	Ile	Ser
	_	_		245	_				250					255	
Asn	Asp	Tyr		Met	Lys	Asp	Glu		Val	Ser	Leu	Phe		_	Asp
C1	C1	C1	260	01	51		_	265	_		_		270		
GIA	GIU	275	Asp	GIu	Phe	Met		He	Asn	Glu	Leu			Gly	Asp
D~~	Glu.		Th-	D===	T	Dwa	280	21-	m	C	7	285		_	
ÀΤΑ	290	Ser	1111	PLO	гуз	295	гÀг	Ala	Thr	ser	Arg	Ser	vai	Ser	Thr
Ara		Pro	Pro	Thr	Wa l		Lou	Cln	7 ~~	C1	300 Arg	C	D	T	_
305	пец	110	110	1111	310	261	reu	GIII	Arg	315	Arg	ser	Pro	гÀг	
	Glu	Ala	Ser	Val		T.ve	Ara	Thr	Thr		Asn	Gla	·C15	Cla	320
_,0			U C1	325	Olu	Буз	ALG	1111	330	Giu	ASII	GIII	GIII	335	Ата
Asp	Ara	Glu	Asp	-	Pro	Ser	Phe	Met		Ser	Pro	Asn	V = 1		Acn
•			340			001		345	DCI	001		nop	350	nsp	USII
Ser	Arg	Lys		Lvs	Ser	Ser	Glv		Pro	Thr	Gly	Len		Thr	Pro
	_	355	_	•			360				,	365			110
Arg	Pro	Gln	Gln	Lys	Gln	Thr		Glu	Val	Pro	Gly		Thr	Thr	Ala
	370					375					380				
Lys	Lys	Pro	Arg	Arg	Ser	Glu	Val	Met	Asp	Ser	Glu	Asp	Glu	Ala	Phe
385					390					395					400
Thr	Pro	Leu	Ser	Ala	Gly	Ser	Leu	Pro	Gly	Ser	Ala	Glu	Phe	Phe	Arg
				405					410					415	
Ser	Gly	Gly	Thr	Thr	Thr	Arg	Glu	Leu	Gly	Leu	Asp	Glu	Asp	Thr	Val
			420					425					430		
Met	Asp		Pro	Ser	Arg	Ьċо	Pro	Val	Glu	Ser	Thr	Leu	Pro	Thr	Leu
	_	435	_				440					445			
Glu		Val	Glu	Ser	Arg		Pro	Pro	Leu	Pro	Pro	Met	Asp	Leu	Pro
_	450	_	_	_		455					460				
	GIn	Arg	Lys	Pro		Glu	Pro	Leu	Asn		Pro	Arg	Asn	Gln	Leu
465	G1	•			470	_				475					480
ren	GIU	Ser			Arg	Pro	Thr	Gln		Pro	Ser	Val	Gly		Ser
Dho	או ה	C1-		485	m.	_		~ `	490	_	_	_		495	
rne	vrg		500	ser	Inr	ren	AIa		Ser	Ser	Leu	Pro		Ser	Met
Dro	Dro			C1	λ	D	T	505	m l.	3	01		510	_	_
FIG		515	ser	GTI	ASP			Asn	Thr	Arg	Glu		Ser	Asn	Leu
Glin			Aer.	ጥ‹ - ~	Tuc		520	T	Des.	T		525	T .= -	D'-	
	530	- 116	Jor	- A.		ւеս 535	ryr	ьys	r10	ren	Leu 540	нѕр	Leu	rne	val
		Pro	Ala	Tle			Ar~	Gl.	Leu	80-	540	Wa 1	A	A ==	Glu
								JLU	سا∵ لل	$\sim c_{T}$	UT I	val	വാധ	ruo U	OLU.

545					550	1				555	•				560
Leu	Gln	Glu	Asn	Met 565		Lys	Leu	Arg	Asp 570		Leu	Arg	Leu	Pro	Arg
Glu	Glu	Arg	Asp	Arg	Ala	Arg	Glu	Glu	Val	Lys	Lys	Glu	Lys		Met
			580					585			_		590		
Leu	Lys	Arg 595		Asp	Ile	Ala	Leu 600	Arg	Ala	Leu	Gln		Glu	His	Lys
ī.e.ı	Tur			Lve	D ~ ~	Luc		uic	λεν	T 0	Tla	605	G1	~ 1	Ile
200	610		ny3	БУЗ	Arg	615		urs	N3!!	rea	620		GIU	GIU	iie
Val			Tvr	Ala	Glu			Asp	Glu	Tyr			Gln	T.011	Mot
625	_		- 3 -		630					635	-		01	Dea	640
Ala	Gln	Leu	Asp	Lys	Leu	Asp	Asp	Glu	Val	Glu	Ala	Ile	Val	Lvs	
				645		_	_		650					655	
Leu	Thr	Arg	Leu	Ile	Val	Ala	Ala	Gly	Ile	Thr	Glu	Lys	Ser	Phe	Asp
			660					665					670		_
Leu	Lys	Lys 675	Glu	Glu	Glu	Glu	Glu 680	Glu	Glu	Lys	Pro	Ile 685	Ile	Ile	Ala
Thr	Pro	Thr	Pro	Ser	Thr	Arg		Glu	Ala	Pro	Val		Pro	Thr	Thr
	690					695					700				
Glu	Tyr	His	Asn	Ser	Gln	Gln	Val	Ile	Leu	Gln	Thr	Gln	His	Pro	Ala
705					710					715					720
Ala	Gln	Gln	Val	Ser	His	Arg	Val	Pro	Pro	Pro	Pro	Thr	Pro	Ser	Phe
				725					730					735	
Gln	Thr	Ala	Arg 740	Gln	Thr	Pro	Val	Ser 745	Tyr	Gln	Ser	Arg	Pro 750	Thr	Asn
Asn	Ser	Phe	Pro	Asp	Ile	Ser	Ala		Glu	Ala	Met	Met		Asp	Lvs
		755					760					765		•	•
Glu	Asp	Pro	Phe	Met	Glu	Gln	Gln	His	Ala	Pro	Ala	Ser	Ala	Pro	Phe
	770					775					780				
Gln	Ala	Thr	Leu	Pro	Gln	Arg	Asn	Ser	Pro	Phe	Lys	Thr	Ala	Pro	Phe
785					790					795					800
Lys	Pro	Val				Asp	Tyr			Asp	Glu	Asp	Asp	Asp	Ala
_	_	_		805					810					815	
Asp	Leu	Leu		Ala	Val	Asp			Glu	Thr	Tyr	Thr		Thr	Ala
71.	mh		820	mb	3	3		825		_	_	_	830	_	
nia	1111	835	Inr	Inr	ASII	ASI	840	ASN	ніѕ	Leu	Arg		GIN	Ser	Vai
Met	Ser		Sar	ሞb ×	Δla	Thr.		Tlo	Tvc	Pro	7~~	845	N	7	C1
	850		Jei	1111	AIG	855	1111	TTE	гуs	FIO	860	гÀ2	Arg	ASII	GIU
Asn		Asn	Ala	Lvs	Lvs		Lvs	Ser	Val	His		Lvs	T.eu	Ser	Met
865				-,-	870		-,-			875		2,0	Deu	001	880
	Pro	Glu	Lys	Met		Tyr	Ala	Trp	Ser	Asn	Asp	Val	Ara	Lvs	
			-	885	-	-		-	890		•		9	895	
Leu	Lys	Asp	Arg	Phe	Arg	Met	Ser	Gly	Phe	Arg	Gln	Asn	Gln	Leu	Glu
			900					905					910		
Ala	Ile	Asn	Ala	Thr	Leu	Gly	Gly	Lys	Asp	Ala	Phe	Val	Leu	Met	Pro
		915					920					925			
Thr	Gly	Gly	Gly	Lys	Ser	Leu	Cys	Tyr	Gln	Leu	Pro	Ala	Val	Val	Arg

	930					935					940				
Ser	Gly	Lys	Thr	Arg	Gly	Ile	Thr	Val	Val	Ile	Ser	Pro	Leu	Leu	Ser
945					950					955					960
Leu	Met	Leu	Asp	Gln	Val	Asn	His	Leu	Ala	Asn	Leu	Met	Ile	Gln	Ala
				965					970					975	
Tyr	Ala	Phe	Asn	Gly	Asp	Met	Asn	Ser	Glu	Met	Arq	Arg	Met	Val	Phe
			980					985			•	,	990		
Gln	Lys	Leu	Asp	Ala	Glu	His	Pro	Glu	His	Glu	Leu	Gln	Leu	Leu	Tvr
		995					1000					1005			- 1 -
Val	Thr	Pro	Glu	Met	Val	Ser	Lys	Asn	Gln	Thr			Asn	Lvs	Met
	1010					1015	_				1020			-,-	
Met	Asp	Leu	Tyr	Arg	Arg	Lys	Lys	Leu	Ala	Arg	Ile	Val	Ile	Asp	Glu
1025					1030	•	-			1035				_	1040
Ala	His	Cys	Val	Ser	Gln	Trp	Gly	His	Asp	Phe	Ara	Pro	Asp		
				1045		-	-		1050		3			1055	_,_
Ala	Ile	Gly	Glu	Phe	Arg	Lys	Arg	Phe	Pro	Gly	Val	Pro			Ala
			1060		_	•		1065		•			1070		
Leu	Thr	Ala	Thr	Ala	Thr	Gln	Asn	Val	Ile	Leu	Asp			His	Asn
		1075					1080					1085	-4-		
Leu	Ala	Met	Glu	Asp	Cys	Gln	Thr	Phe	Ser	Gln	Ser	Phe	Asn	Ara	Pro
	090			_		1095					100			9	
Asn	Leu	Tyr	Tyr	Glu	Val	Arg	Met	Lys	Glu			Leu	Ile	Ala	Ara
1105					1110	-		-		1115					120
Ile	Ala	Glu	Leu	Ile	Lys	Glu	Lys	Tyr			Gln	Thr	Glv		
				1125			-		L130	-				135	
Tyr	Thr	Leu	Ser	Arg	Lys	Ser	Ala	Glu	Asn	Ile	Ala	Lys	Asn	Leu	Gln
			1140					145					150		
Glu	Lys	His	Arg	Ile	Lys	Ala	Lys	His	Tyr	His	Ala	Ser	Ile	Thr	Thr
		155					160					165			
Asp	Glu	Lys	Ile	Ser	Val	Gln	His	Glu	Trp	Gln	Thr	Gly	Arg	Val	Lys
1	170				1	175				1	.180	-			_
Val	Val	Val	Ala	Thr	Ile	Ala	Phe	Gly	Met	Gly	Ile	Asp	Lys	Pro	Asp
1185	,			1	1190				1	195			_	1	200
Val	Arg	Phe	Val	Ile	His	Gln	His	Ile	Pro	Lys	Ser	Leu	Glu	Gly	Tyr
				L205					.210					215	_
Tyr	Gln	Glu	Thr	Gly	Arg	Ala	Gly	Arg	Asp	Gly	Lys	Pro	Ser	Asp	Cys
			220					225					230	-	_
Tyr	Leu	Tyr	Phe	Ala	Tyr	Gly	Asp	Ile	Gln	Ser	Leu	Arg	Arg	Met	Ile
		.235					240					245	_		
Ala	Asp	Gly	Glu	Gly	Asp	Tyr	Ala	Gln	Lys	Glu	Arg	Gln	Leu	Gln	Met
	250					255			-		260				
Leu	Asn	Arg	Val	Val	Ser	Tyr	Cys	Glu	Ser	•		Thr	Cvs	Ara	Ara
1265		_			.270	-	-			.275			•		280
		Val	Leu		Tyr	Phe	Gly	Glu			Asp	Tyr	Ara		
				.285	-		-		290		•	-	_	295	
Arg	Asp	Gly			Asn	Cys	Arg			Ara	Ile	Ser			Thr
-	-		.300	-		_		305	-	و	-		310		
Glu	Met	Arg	Asp	Phe	Thr	Glu			Phe	Ala	Ala			Val	Val

		1315	•				1320	t				1325	,		
			Gln	Pro				Gly	/ Lys	Leu			Ile	Leu	Met
	1330		_	_		1335					1340				
		Arg	Lys				Gly	Gly		Cys		Phe	Gly		
1345		Ser	ጥኮኮ		1350		Leu	Gln		1355 Ile		T Ou	C1-		1360
Dy5	GIY	Ser		1365		Giu	Leu	GIII	1370		Val	reu		. ьеи 1375	
Phe	His	Lys				Glu	Asp	Asn		Met	Asn	Glv			
			1380		_			1385					1390	-	
Pro	Ile	Thr	Tyr	Tyr	Ile	Thr	Gly	Pro	Glu	Ala	Gly				Tyr
		1395					1400					1405			
		Lys	Arg	Leu			Pro	Val	Pro	Ser	Asn	Lys	Ser	Val	Glu
	410	_	_			1415		_	_		1420				
Pro 1425		Ser	Arg			Gln	Arg	Ser		Arg	Val	Asp	Glu	_	
		Gln	Glu		1430 Ser	Thr	Len	Gl n		1435 Pro	Pro	Th.	So. w		1440
тор	014	0111		1445	261	1111	Deu		1450		PIO	THE		1nr 1455	Asn
Val	Ser	Ser			Arg	Ala	Thr			Arg	Ser	Ser			Ala
			1460		_			1465		_			1470		
Leu	Pro	Thr	Leu	Ile	Ala	Asp	Tyr	Glu	Glu	Pro	Ser	Ser	Asp	Gly	Pro
		1475					1480					L485			
		Pro	Leu	His			Gly	Tyr	Glu	Arg		Asn	Phe	Val	Val
	490	N c n	17a 1	C1		L495	C1	C1	C1		1500	Dh -	G1	D	
1505		HOII	vaı		1510	GIU	GIU	GIU		Asp 1515	АТА	Pne	GIU		vaı 1520
		Ser	Arg			Pro	Ser	Ser		Ala	Thr	Ara	Pro		
-				1525	-				1530					1535	
Arg	Gln	Thr	Thr	Leu	Tyr	Asp	Thr	Leu	Ser	His	Thr	Gln	Gln	Ser	Gln
			1540					1545					1550		
Thr			Gln	His	Leu			Leu	Gly	Pro			Asp	Ala	Arg
mb		1555	3	D	7		1560	61	•			.565			_
1111										Asp			His	GIn	Asp
										Val			Glu	Asn	Phe
1585		•			590					1595		J_4	014		1600
Arg	Asn	Arg	Asn	His	Met	Arg	Lys	Pro		Phe	Thr	Glu	Thr		
				1605					1610					615	
Arg	Glu			Ile	Arg	Trp			Ser	Leu	Asp			Arg	Ala
_,	_		1620	_		_		625					630		
11e		Asp .635	He	Asn	GIn			Val	Asp	Arg			Ala	Lys	Phe
Tle			Val	Glu	Ara		.640 Trp	Glv	Λen	Tyr		645	Mot	Mot	Clu
	650			O1u		655	115	Gry	ASII		660	GIU	nec	nec	GIY
		Tyr	Asp	Asn			Val	Ala	Gly	Asp		Asp	Asp	Asp	Glu
1665			-		670					.675		•	•		.680
Gly	Pro	Arg	Arg	Thr	Gly	Asn	Gly	Lys	Gly	Gly	Asn	Lys	Lys	Gly	Gly
				685					690					695	
Gly	Gly	Gly	Gly	Gly	Asn	Glu	Val	Val	Asp	Leu	Ile	Ser	Ser	Asp	Glu

			1700					1705					1710		
Asp	Glu	Pro	Pro	Ala	Arg	Ala	Pro	Ser	Arg	Asn	Ala	Gly	Arg	Gly	Lys
	:	1715					1720					1725			
Ala	Gln	Ser	Thr	Arg	Gly	Gly	Gln	Ile	Gln	Asp	Lys	Gly	Arg	Ala	Val
3	L730					1735					1740				
Asn	Arg	Arg	Gly	Glu	Pro	Ile	Ala	Glu	Glu	Asp	Glu	Glu	Asp	Tyr	Gly
1745	5			:	1750					1755				:	1760
Leu	Ser	Asp	Pro	Asp	Ile	Asp	Ala	Ile	Asp	Pro	Asp	Ala	Ile	Thr	Ala
	•		3	1765				:	1770					1775	
Ser	Asp	Asn	Ser	Asp	Glu	Glu	Asp	Asp	Asp	Asp	Asp	Asp	Glu	Asp	Leu
		1	L780				1	1785					1790		
Glu	Ser	Ser	Arg	Tyr	Phe		Gly	Ser	Thr	Gly	Pro	Pro	Val	Ser	Lys
	1	1795				1	1800				1	1805			
Ala	Val	Gln	Asp	Ala	Arg	Leu	Arg	Glu	Gln	Leu	Ser	Met	Tyr	Ala	Ser
	.810					1815				_	1820				
		Ser	Ser			Gly	Ser	Tyr	Gly	Ser	Gly	Arg	Ala	Ser	Gly
1825	•			1	1830				1	1835				1	L840
Gly	Ser	Ser	Ser	Arg	Ala	Ser	Gly	Ser	Gly	Trp	Arg	Gly	Gly	Gly	Ala
			1	L845				1	1850				1	1855	
Gly	Gly	Lys	Lys	Tyr	Tyr	Arg	Lys	Lys	Arg	Ala	Gly	Ser	Ser	Ala	Ala
			.860					.865					.870		
Gly			Gly	Ala	Gly	Gly	Gly	Gly	Val	Thr	Lys	Arg	Lys	Ala	Ser
		875					1880					.885			
		Gly	Ala	Lys			Arg	Lys	Arg	Gly	Ala	Ser	Thr	Ala	Pro
	890					895					.900				
		Thr	Thr			Gly	Gly	Ser			Gly	Ser	Arg	_	_
1905					910					1915					920
Gly	Ala	Gly			Gly	Gly	Ala			Gly	Ala	Gly	Ala	Gly	Gly
				.925				•	.930					.935	
Gly	Lys			Gly	Gly	Gly	Gly	Gly	Gly	Met	Gly	Gly	Ile	Ser	Val
		1	940				1	945				1	950		
Met	Pro	His													
	1	955						,							

PCT/IT 99/00391 CLASSIFICATION OF SUBJECT MATTER PC 7 C12N15/31 C12N IPC 7 C12N15/63 C12N15/67 C12N15/70 C12N15/74 C12N15/80 C12N15/82 C12N15/85 C12N15/11 C12N9/90 C12N1/19 C12N1/21 C12N5/10 C07K14/37 A01K67/027 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07K AQ1K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 97 17979 A (NEW YORK BLOOD CENTER INC) X 1,2,7, 22 May 1997 (1997-05-22) 10,11, 16, 18, 19 47.2% identity in 439 aa overlap with amino acids 897-1330 of SegIdNo.3 -& DATABASE GENESEQ X 1,2,18, EBI, Hinxton, U.K. 19 Accession Number: W31551, 27 January 1998 (1998-01-27) ELLIS N ET AL: "Bloom's syndrome BLM mutated protein" XP002136373 47.2% identity in 439 aa overlap with amino acids 897-1330 of SeqIdNo.3 abstract -/--X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25 April 2000 11/05/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Lonnoy, 0 Fax: (+31-70) 340-3016

ON DOCUMENTS CONCINEDED TO BE DELEVANT	PC1/11 99/00391
·	Relevant to claim No.
COGONI C ET AL: "Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 94, no. 19, 16 September 1997 (1997-09-16), pages 10233-10238, XPO02136370 cited in the application table 2	1-23
LINDEN H ET AL: "White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa" EMBO JOURNAL., vol. 16, no. 1, 2 January 1997 (1997-01-02), pages 98-109, XP002136371 page 99, column 1, paragraph 3 -page 100, column 1, paragraph 2	1-23
SHERMAN J M ET AL: "An uncertain silence" TRENDS IN GENETICS, NL, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, vol. 13, no. 8, 1 August 1997 (1997-08-01), pages 308-313, XP004084604 ISSN: 0168-9525	
COGONI C ET AL: "Quelling: transgene-induced gene silencing in Neurospora crassa" NATO ADVANCED STUDY INSTITUTE SERIES, SERIES H CELL BIOLOGY, vol. 104, 1998, pages 103-112, XP000906708	
COGONI C AND MACINO G: "Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase" SCIENCE., vol. 286, no. 5448, 17 December 1999 (1999-12-17), pages 2342-2344, XP002136372 the whole document	1-24
	quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 94, no. 19, 16 September 1997 (1997-09-16), pages 10233-10238, XP002136370 cited in the application table 2 LINDEN H ET AL: "White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa" EMBO JOURNAL., vol. 16, no. 1, 2 January 1997 (1997-01-02), pages 98-109, XP002136371 page 99, column 1, paragraph 3 -page 100, column 1, paragraph 2 SHERMAN J M ET AL: "An uncertain silence" TRENDS IN GENETICS,NL,ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, vol. 13, no. 8, 1 August 1997 (1997-08-01), pages 308-313, XP004084604 ISSN: 0168-9525 COGONI C ET AL: "Quelling: transgene-induced gene silencing in Neurospora crassa" NATO ADVANCED STUDY INSTITUTE SERIES, SERIES H CELL BIOLOGY, vol. 104, 1998, pages 103-112, XP000906708 COGONI C AND MACINO G: "Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase" SCIENCE., vol. 286, no. 5448, 17 December 1999 (1999-12-17), pages 2342-2344, XP002136372

Information on patent family members

PCT/IT 99/00391

					337 00331
Patent document cited in search report		Publication date		atent family member(s)	Publication date
WO 9717979	Α	22-05-1997	US	5824501 A	20-10-1998
			CA	2237356 A	22-05-1997
			EP	0862442 A	09-09-1998