# Math 4317 (Prof. Swiech, S'18): HW #1

### Peter Williams

## 1/25/2018

#### Section 1

F. Show that the symmetric difference D, defined in the preceding exercise is also given by  $D = (A \cup B) \setminus (A \cap B)$ Show  $D = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ :

First,  $x \in (A \setminus B) \cup (B \setminus A) \implies x \in (A \setminus B)$  or  $x \in (B \setminus A) \implies$ , x is in A but not B, or, x is in B but not  $A \implies x$  is in A or B but not in A and  $B \implies x \in (A \cup B) \setminus (A \cap B)$ .

In the other direction,  $x \in (A \cup B) \setminus (A \cap B) \implies x \in (A \cup B)$  but not in  $(A \cap B) \implies x$  is in A but not B, or, x is in B but not  $A \implies x \in (A \setminus B)$  or  $x \in (B \setminus A) \implies x \in (A \setminus B) \cup (B \setminus A) \implies (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ 

I. If  $\{A_1, A_2, ..., A_n\}$  is a collection of sets, and if E is any set, show that:

(i) 
$$E \cap \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n (E \cap A_i)$$
, and (ii),  $E \cup \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n (E \cup A_i)$ 

- (i)  $x \in E \cap \bigcup_{j=1}^n A_j \implies x \in E \text{ and } x \in \{A_1 \text{ or } A_2 \dots \text{ or } A_n\} \implies x \in E \text{ and that there exists for some } j=1,2,...,n \text{ an } A_j \text{ such that } x \in A_j \text{ and } x \in E \implies (x \in E \text{ and } A_1) \text{ or } (x \in E \text{ and } A_2) \dots \text{ or } (x \in E \text{ and } A_n) \implies x \in \bigcup_{j=1}^n (E \cap A_j).$  In the other direction,  $x \in \bigcup_{j=1}^n (E \cap A_j) \Leftrightarrow x \in (E \cap A_1) \cup (E \cap A_2) \dots \cup (E \cap A_n) \implies x \in E \text{ and } A_1 \text{ or } E \text{ and } A_2 \dots \implies \text{ there exists a } j=1,...,n \text{ such that } x \in (E \cap A_j) \implies x \in E \text{ and } x \in A_1 \text{ or } A_2, \dots, \text{ or } A_n \implies x \in E \text{ and } \bigcup_{j=1}^n A_j \implies x \in E \cap \bigcup_{j=1}^n A_j.$
- (ii)  $x \in E \cup \bigcup_{j=1}^{n} A_j \implies x \in E$  or  $x \in A_1$  or  $A_2 \dots$  or  $A_n \implies$  for some j = 1, ..., n that  $x \in E \cup A_j \implies x \in E \cup A_1$  or  $x \in E \cup A_2 \dots$  or  $x \in E \cup A_n \implies x \in \bigcup_{j=1}^{n} (E \cup A_j)$ . In the other direction,  $x \in \bigcup_{j=1}^{n} (E \cup A_j) \Leftrightarrow x \in E \cup A_1$  or  $x \in E \cup A_2 \dots$  or  $x \in E \cup A_n \implies$  there exists some j = 1, ..., n such that  $x \in E \cup A_j \implies (x \in E \text{ or } x \in A_1)$  or  $(x \in E \text{ or } x \in A_2) \dots$  or  $(x \in E \text{ or } x \in A_n) \implies x \in E$  or  $x \in \bigcup_{j=1}^{n} A_j \implies x \in E \cup \bigcup_{j=1}^{n} A_j$ .
- J. If  $\{A_1, A_2, ..., A_n\}$  is a collection of sets, and if E is any set, show that:

(i) 
$$E \cap \bigcap_{j=1}^{n} A_j = \bigcap_{j=1}^{n} (E \cap A_j)$$
, and (ii),  $E \cup \bigcap_{j=1}^{n} A_j = \bigcap_{j=1}^{n} (E \cup A_j)$ 

- (i)  $x \in \cap \cap_{j=1}^n A_j \implies x \in E$  and  $x \in \cap_{j=1}^n A_j \implies x \in E$  and  $x \in A_j$  for all  $j=1,...,n \implies x \in E$  and  $[x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n] \implies [x \in E \text{ and } A_1] \text{ and } \dots \text{ and } [x \in E \text{ and } A_n] \implies x \in \bigcap_{j=1}^n (E \cap A_j)$ . In the other direction,  $x \in \cap_{j=1}^n (E \cap A_j) \implies x \in (E \cap A_1)$  and  $a \in (E \cap A_2) \dots$  and  $x \in (E \cap A_n) \implies x \in (E \cap A_j)$  for all  $j=1,...,n \implies x \in E$  and  $x \in A_1$  and  $x \in A_2 \dots$  and  $x \in A_n \implies x \in E$  and  $x \in \cap_{j=1}^{nA_j} \implies x \in E \cap \cap_{j=1}^{nA_j}$ .
- (ii)  $x \in E \cup \cap_{j=1}^n A_j \implies x \in E \text{ or } x \in \cap_{j=1}^n A_j \implies x \in E \text{ or } [x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n] \implies x \in E \text{ or } A_1 \text{ and } x \in E \text{ or } A_2 \dots \text{ and } x \in E \text{ or } A_n \implies x \in \cap_{j=1}^n (E \cup A_j).$  In the other direction,  $x \in \cap_{j=1}^n (E \cup A_j) \implies x \in (E \text{ or } A_1) \text{ and } x \in (E \text{ or } A_2) \dots \text{ and } x \in (E \text{ or } A_n) \implies \text{that for all } j = 1, \dots, n \text{ , } x \in (E \text{ or } A_j) \implies x \in E \text{ or } (x \in A_1 \text{ and } x \in A_2 \dots \text{ and } x \in A_n) \implies x \in \cap_{j=1}^n A_j \text{ or } x \in E \implies x \in E \cup \cap_{j=1}^n A_j.$
- K. Let E be a set and  $\{A_1, A_2, ..., A_n\}$  be a collection of sets. Establish the De Morgan laws:

(i) 
$$E \setminus \bigcap_{i=1}^n A_i = \bigcup_{j=1}^n (E \setminus A_j)$$
, and, (ii)  $E \setminus \bigcup_{i=1}^n A_i = \bigcap_{j=1}^n (E \setminus A_j)$ 

(i)  $x \in E \setminus \bigcap_{j=1}^n A_j \implies x \in E$  but not  $(A_1 \text{ and } A_2 \dots \text{ and } A_n) \implies \text{there exists a } j = 1, ..., n$  such that  $x \in E$  but not  $A_j \implies x \in E$  but not  $A_1$ , or  $x \in E$  but not  $A_2, \ldots, \text{or } x \in E$  but not

- $A_n \implies x \in E \setminus A_1 \text{ or } x \in E \setminus A_2 \dots \text{ or } x \in E \setminus A_n \implies x \in \bigcup_{j=1}^n (E \setminus A_j).$  In the other direction,  $x \in \bigcup_{j=1}^n (E \setminus A_j) \implies x \in (E \text{ but not } A_1) \text{ or } (E \text{ but not } A_2) \text{ or } (E \text{ but not } A_n) \implies \text{there exists } j = 1, ..., n, \ x \in E \text{ but not } A_j \implies x \in E \text{ but not } (A_1 \text{ and } A_2 \dots \text{ and } A_n) \implies x \in E \setminus \bigcap_{j=1}^n A_j.$
- (ii)  $x \in E \setminus \bigcup_{j=1}^n \implies x \in E$  but  $A_1$  or  $A_2 \dots$  or  $A_n \implies x \in E$  and  $x \notin A_j$  for all  $j=1,...,n \implies x \in E$  but not  $A_1$ , and  $x \in E$  but not  $A_2, \dots$ , and  $x \in E$  but not  $A_n \implies x \in (E \setminus A_1)$  and  $x \in (E \setminus A_2) \dots$  and  $x \in (E \setminus A_n) \implies x \in \bigcap_{j=1}^n (E \setminus A_j)$ . In the other direction,  $x \in \bigcap_{j=1}^n (E \setminus A_j) \implies x \in (E \setminus A_1 \text{ and } E \setminus A_2 \dots \text{ and } E \setminus A_n) \implies x \in E \text{ but not } A_j \text{ for all } j = 1,...,n \implies x \in E \text{ but } A_1 \text{ or } A_2 \dots \text{ or } A_n \implies x \in E \text{ but not } \bigcup_{j=1}^n A_j \implies x \in E \setminus \bigcup_{j=1}^n A_j$

#### Section 2

C. Consider the subset of  $\mathbb{R} \times \mathbb{R}$  defined by  $D = \{(x,y) : |x| + |y| = 1\}$ . Describe this set in words. Is it a function?

This set consists of points on the line segments connecting a rotated square in the (x,y) plane with vertices  $(1,0),\ (0,1),\ (-1,0),\$ and (0,-1). If we attempt to define a function, with the elements (x,y) from the set D, i.e.  $y=f(x),f:x\to y$ , we have  $|x|+|y|=1\implies \sqrt{y^2}=1-|x|\implies y=\pm\sqrt{(1-|x|)^2}$ .  $f(x)=y=\pm\sqrt{(1-|x|)^2}$  does not fit the defintion of a function, since, as an example, the set D includes the elements (0,1) and (0,-1), which if, f is a function,  $f:x\to y\implies -1=1$ , which is clearly not true.

E. Prove that if f is an injection from A to B, then  $f^{-1} = \{(b, a) : (a, b) \in f\}$  is a function. Then prove it is an injection.

If f is an injection, and  $(a,b) \in f$ , and  $(a',b) \in f$ , then a=a'.  $f^{-1}=\{(b,a):(a,b) \in f\}$  contains the pair (b,a) and (b,a'), and we know that a=a' from the definition of f, so we can assume that  $f^{-1}$  is a function. Since f is injective, each unique element b=f(a), is mapped to by a unique element a, and by definition  $f^{-1}=\{(b,a):(a,b) \in f\}$  maps the unique element b back to a, meaning  $f^{-1}(b)=a$  and  $f^{-1}(b')=a$  if and only if b=b', thus  $f^{-1}$  is also injective.

H. Let f, g be functions such that

$$g \circ f(x) = x$$
, for all  $x$  in  $D(f)$ 

$$f \circ q(y) = y$$
, for all  $y$  in  $D(q)$ 

Prove that  $g = f^{-1}$ 

For two elements  $x, x' \in D(f)$ , if  $f(x) = f(x') \implies g \circ f(x) = g(f(x)) = g(f(x')) \implies g(f(x)) = x = g(f(x')) = x'$ , that is  $x = x' \implies g \circ f$  is an injection. For two elements  $y, y' \in D(g)$ , if  $g(y) = g(y') \implies f \circ g(y) = f(g(y)) = f(g(y')) \implies f(g(y)) = y = f(g(y')) = y'$ , that is  $y = y' \implies f \circ g$  is an injection, and implies f and g are injections as well.

This implies g can be defined  $g = \{(f(x), x) : (x, f(x)) \in f\}$ , which is the definition for  $f^{-1}$ , implying  $g = f^{-1}$ .

J. Let f be the function on  $\mathbb{R}$  to  $\mathbb{R}$  given by  $f(x) = x^2$ , and let  $E = \{x \in \mathbb{R} - 1 \le x \le 0\}$  and  $F = \{x \in \mathbb{R} : 0 \le x \le 1\}$ . Then  $E \cap F = \{0\}$  and  $f(E \cap F) = \{0\}$  while  $f(E) = f(F) = \{y \in \mathbb{R} : 0 \le y \le 1\}$ . Hence  $f(E \cap F)$  is a proper subset of  $f(E) \cap f(F)$ . Now delete 0 from E and F.

The sets E and F with 0 deleted are denoted  $E' = \{x \in \mathbb{R} : -1 \le x < 0\}$  and  $F' = \{x \in \mathbb{R} : 0 < x \le 1\}$ , respectively. We still have the equality  $f(E') = f(F') = \{y \in \mathbb{R} : 0 < y \le 1\} = f(E') \cap f(F')$ . We also have  $E' \cap F' = \emptyset$ , and thus  $f(E' \cap F') = \emptyset$ , and  $\emptyset = f(E' \cap F') \subseteq F(E') \cap f(F')$ , since the empty set is a subset of all sets.

#### Section 3

B. Exhibit a one-to-one correspondence between the set O of odd natural numbers and  $\mathbb N$ 

The function  $f(x) = \frac{x+1}{2}, x \in \mathbb{N}$  maps the set of odd natural numbers,  $O = \{2k-1 : k \in \mathbb{N}\} \to \mathbb{N}$ .

D. If A is contained in some initial segment of  $\mathbb{N}$ , use the well-ordering property of  $\mathbb{N}$  to define a bijection of A onto some initial segment of  $\mathbb{N}$ .

If  $A \neq \emptyset$  is a subset of some initial segment  $\mathbb{N}$ , by the well-ordering principle, there exists an  $m \in A$  such that  $m \leq k$  for all  $k \in A$ . A bijection f can be defined by the mapping from set A consisting of elements  $\{a_1, a_2, ..., a_k\}$  to elements of some initial segment  $S_k = \{1, 2, ..., k\}$  as a set of ordered pairs  $\{(a_1, 1), (a_2, 2), ..., (a_k, k)\}$ , such that  $a_1 \leq a_2 \leq ... \leq a_k$  and clearly the corresponding pairs,  $1 \leq 2 \leq ... \leq k$ , where the number of elements in A and  $S_k$  are the same, which has a one-one correspondence  $f: A \to S_k$  and the  $R(f) = S_k$ .

F. Use the fact that every infinite set has a denumerable subset to show that every infinite set can be put into one-one correspondence with a proper subset of itself.

Notes: The fact that every infinite set has denumberable implies there exists a bijective function that maps a proper subset of an infinite set, B, onto  $\mathbb{N}$ . One-one correspondence implies injection from proper subset B solution in back (need to check)

H. Show that if the set A can be put into one-one correspondence with a set B, and if B can be put into one-one correspondence with a set C, then A can be put into one-one correspondence with C.

If A can be put into one-one correspondence with a set  $B \Longrightarrow$  there exists an injective function, f from  $A \to B$ . This means that for  $a, a' \in A$ , and  $b \in B$ ,  $f(a) = f(a') = b \Longrightarrow a = a'$ . Similarly, if B can be put into one-one correspondence with a set  $B \Longrightarrow$  there exists an injective function, g from  $B \to C$ , and with  $b, b' \in A$ ,  $g(b) = g(b') = c \in C \Longrightarrow b = b'$ . By these properties, the composition of these two injective functions,  $g \circ f(a) = g \circ f(a') \Longrightarrow f(a) = f(a') \Longrightarrow a = a'$  putting A and C in one-one correspondence.

I. Using induction on  $n \in \mathbb{N}$ , show that the initial segment determined by n cannot be put into one-one correspondence with the initial segment determined by  $m \in \mathbb{N}$ , if m < n.

Let  $S_n = \{1, 2, 3, ..., n\}$  be the initial segment determined by  $n \in N$  and  $S_m$  be the initial segment determined by  $m \in N, m < n$ . If  $S_n$  can be put into one-one correspondence with  $S_m \implies$  there exists and injection  $f: S_n \to S_m$ . For n=1 we have  $f: \{1\} \to S_m$ , m < 1, but  $S_m$  does not exist by definition for m < 1 implying the function is not valid for the case n=1, m < n. For, the case n=k+1, we again have a map  $f: \{1, 2, ..., k+1\} \to \{1, ..., m\}, m < k+1$  which implies a mapping of k+1 elements to m < k+1 elements m < k+1 where exists at least two elements m < k+1 for which m < k+1 and m < k+1 elements one exist between these sets.

Section 4 (C, F, G, H)

Section 5 (B, C, F, G, K, L)

Section 6 (B, C, G, H, J, K)

Section 7 (F, G, K)