Advanced Data Analytics Portfolio Project Report

Project Title: 911 Calls Analysis Using Advanced Data Analytics
Student: Shukurah Omowumi JUNAID

3MTT Python Capstone Project – Advanced Data Analytics

Date: 17th July 2025.

3MTT Oyo State Fellow - Cohort 3
FELLOW ID: FE/25/682447755

Learning Track: Data Analysis and Visualisation

Project Overview

This project focuses on analysing 911 call data using big data technologies and visualisation tools as part of the Advanced Data Analytics training with **3MTT Nigeria**. The goal is to extract meaningful patterns from large datasets to aid emergency response optimisation and resource allocation.

Using Python and Power BI, I explored temporal and spatial patterns in emergency call data, focusing on call reasons, peak periods, and high-frequency locations. The project demonstrates the application of advanced data analytics in supporting decision-making within emergency services.

Research Questions

Based on the dataset provided, the following research questions guided the analysis:

- 1. What are the most common reasons for 911 calls?
- What are the top zip codes and townships with the highest volume of 911 calls?
- 3. How do 911 call volumes vary across days of the week and hours of the day?
- 4. How do 911 call volumes vary across different months?
- 5. What patterns can be observed in the temporal distribution of 911 calls for each reason category (EMS, Fire, Traffic)?

Data Cleaning & Preparation

Using Python:

- Extracted Reason from the title column.
- Converted time Stamp to datetime format and extracted Hour, Month, DayOfWeek, and DayOfWeekName.
- Checked for missing values and duplicates, cleaning where necessary.
- Created a cleaned dataset for Power BI import.

Using Power BI:

- Imported the cleaned CSV dataset.
- Created calculated columns where necessary for time-based analysis.

Data Analysis & Visualizations

Visuals Created:

- Donut Chart: Distribution of 911 Calls by Reason (EMS, Fire, Traffic).
- Bar Charts: Top zip codes and top townships with the highest call volumes.
- Line Charts: Trends of call volumes over time and by Reason.
- Matrix Heatmap: (created using matrix visual plus conditional formatting) Hour of the day vs. Day of the week to identify peak call periods.
- Clustered Bar Charts: Calls by zip code and township, substituting map visuals for location-based analysis.

Insights:

- EMS calls constitute the majority of 911 calls, followed by Traffic and Fire.
- Specific zip codes and townships consistently report higher call volumes, indicating areas requiring more resources.
- Call volumes peak during daytime hours and mid-week, with reduced activity during late-night hours.
- Seasonal variations are evident, with certain months experiencing higher call volumes.
- Temporal patterns vary across Reason categories, providing insights for targeted emergency response planning.

Issues and Solutions in Big Data Analytics

Issues Identified:

- Difficulty handling date and time parsing and sorting issues due to circular dependencies in Power BI.
- Map visuals were disabled due to Power BI tenant security settings, requiring alternative approaches for spatial analysis.
- Managing large datasets for visualization without performance lag.

Solutions Applied:

- Used Python preprocessing to clean and transform data before visualization.
- Substituted map visuals with bar charts for location-based analysis while maintaining clarity.
- Applied best practices in Power BI (custom sort columns, clear filters, and consistent colour coding) to enhance usability and interpretation.

Conclusion

This project successfully demonstrates the application of advanced data analytics using Python and Power BI for real-world emergency call data. Key insights extracted from the dataset can support emergency services in effective decision-making, resource allocation, and pattern recognition.

The project has strengthened skills in:

- Handling large datasets efficiently.
- Extracting and analysing meaningful patterns using advanced tools.

• Presenting insights in a clear, interactive dashboard for stakeholders.

DASHBOARD RESULTS

