The Intergenerational Elasticity of Earnings: Exploring the Mechanisms

Uta Bolt, Eric French, Jamie Hentall Maccuish, and Cormac O'Dea

UCL, IFS, Cambridge, and Yale

August 2021

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

What we do in this paper:

- ⇒ We quantify the importance of these explanations
- ⇒ We analyse how these different explanations are related

What we do in this paper:

- ⇒ We quantify the importance of these explanations
- ⇒ We analyse how these different explanations are related

- 1 Potential mechanisms
 - Schooling: Carneiro & Heckman (2002), Caucutt & Lochner (2020)
 - Cognition: Dahl & Lochner (2012), Agostinelli & Sorrenti (2018)
 - Parental Investments: Cunha & Heckman (2008), Cunha et al. (2010), Attanasio et al. (2020), Dearden et. al (2002)
 - Family background: Meghir & Palme (2005), Heckman & Karapakula (2019), Bhalotra & Clarke (2020)
- 2. Decomposition: Blanden, Gregg, Macmillan (2007)
- 3. Dynamic lifecycle models: Gayle, Golan, Soytas (2018), Lee & Seshadri (2019), Daruich (2020), Bolt et al. (2021)

- 1. Potential mechanisms:
 - Schooling: Carneiro & Heckman (2002), Caucutt & Lochner (2020)
 - Cognition: Dahl & Lochner (2012), Agostinelli & Sorrenti (2018)
 - Parental Investments: Cunha & Heckman (2008), Cunha et al. (2010), Attanasio et al. (2020), Dearden et. al (2002)
 - Family background: Meghir & Palme (2005), Heckman & Karapakula (2019), Bhalotra & Clarke (2020)
- 2. Decomposition: Blanden, Gregg, Macmillan (2007)
- 3. Dynamic lifecycle models: Gayle, Golan, Soytas (2018), Lee & Seshadri (2019), Daruich (2020), Bolt et al. (2021)

- 1. Potential mechanisms:
 - Schooling: Carneiro & Heckman (2002), Caucutt & Lochner (2020)
 - Cognition: Dahl & Lochner (2012), Agostinelli & Sorrenti (2018)
 - Parental Investments: Cunha & Heckman (2008), Cunha et al. (2010), Attanasio et al. (2020), Dearden et. al (2002)
 - Family background: Meghir & Palme (2005), Heckman & Karapakula (2019), Bhalotra & Clarke (2020)
- 2. Decomposition: Blanden, Gregg, Macmillan (2007)
- 3. Dynamic lifecycle models: Gayle, Golan, Soytas (2018), Lee & Seshadri (2019), Daruich (2020), Bolt et al. (2021)

- 1. Potential mechanisms:
 - Schooling: Carneiro & Heckman (2002), Caucutt & Lochner (2020)
 - Cognition: Dahl & Lochner (2012), Agostinelli & Sorrenti (2018)
 - Parental Investments: Cunha & Heckman (2008), Cunha et al. (2010), Attanasio et al. (2020), Dearden et. al (2002)
 - Family background: Meghir & Palme (2005), Heckman & Karapakula (2019), Bhalotra & Clarke (2020)
- 2. Decomposition: Blanden, Gregg, Macmillan (2007)
- 3. Dynamic lifecycle models: Gayle, Golan, Soytas (2018), Lee & Seshadri (2019), Daruich (2020), Bolt et al. (2021)

- Understand how these channels operate and interact
- Mediation analysis Large number of direct and indirect effects of each channel on lifetime income:

```
School quality \rightarrow lifetime income
School quality \rightarrow schooling \rightarrow lifetime income
School quality \rightarrow cognition \rightarrow schooling \rightarrow lifetime income
```

- Solving this would be very difficult with a structural model (just think of the no. of states you'd have to keep track of....)
- Use of data that links early life circumstances to outcomes across the lifecycle for the same sample of individuals

- Understand how these channels operate and interact
- Mediation analysis Large number of direct and indirect effects of each channel on lifetime income:

```
School quality \rightarrow lifetime income
School quality \rightarrow schooling \rightarrow lifetime income
School quality \rightarrow cognition \rightarrow schooling \rightarrow lifetime income
```

- Solving this would be very difficult with a structural model (just think of the no. of states you'd have to keep track of....)
- Use of data that links early life circumstances to outcomes across the lifecycle for the same sample of individuals

- Understand how these channels operate and interact
- Mediation analysis Large number of direct and indirect effects of each channel on lifetime income:

```
School quality \rightarrow lifetime income
School quality \rightarrow schooling \rightarrow lifetime income
School quality \rightarrow cognition \rightarrow schooling \rightarrow lifetime income
```

- Solving this would be very difficult with a structural model (just think of the no. of states you'd have to keep track of....)
- Use of data that links early life circumstances to outcomes across the lifecycle for the same sample of individuals

- Understand how these channels operate and interact
- Mediation analysis Large number of direct and indirect effects of each channel on lifetime income:

```
School quality \rightarrow lifetime income
School quality \rightarrow schooling \rightarrow lifetime income
School quality \rightarrow cognition \rightarrow schooling \rightarrow lifetime income
```

- Solving this would be very difficult with a structural model (just think of the no. of states you'd have to keep track of....)
- Use of data that links early life circumstances to outcomes across the lifecycle for the same sample of individuals

- Understand how these channels operate and interact
- Mediation analysis Large number of direct and indirect effects of each channel on lifetime income:

```
School quality \rightarrow lifetime income
School quality \rightarrow schooling \rightarrow lifetime income
School quality \rightarrow cognition \rightarrow schooling \rightarrow lifetime income
```

- Solving this would be very difficult with a structural model (just think of the no. of states you'd have to keep track of....)
- Use of data that links early life circumstances to outcomes across the lifecycle for the same sample of individuals

Outline

Data & Key Facts

Data - National Child Development Study (NCDS)

- Population born in one week in Britain in 1958
- Followed at ages 0, 7, 11, 16, 23, 26, 33, 37, 42, 49, 55, (60)
- Data on:
 - Parental income
 - Individual's earnings over the lifecycle
 - Potential drivers of the Intergenerational Elasticity of Earnings (IGE)

Data - National Child Development Study (NCDS)

- Population born in one week in Britain in 1958
- Followed at ages 0, 7, 11, 16, 23, 26, 33, 37, 42, 49, 55, (60)
- Data on:
 - Parental income
 - Individual's earnings over the lifecycle
 - Potential drivers of the Intergenerational Elasticity of Earnings (IGE)

Key Facts: Children from high income families ...

- 1. ... grow up in a different family environment: Details
 - More educated parents, less siblings
- 2. ... receive more investments: Details
 - At home: reading to child, outings with child, interest in child's education
 - At school: student-teacher ratios, PTA, fraction that continues education
- 3. ... have better outcomes: Details
 - Cognitive skills at age 16: reading score, maths score, teacher-assessed ability
 - Attain more years of schooling

Key Facts: Children from high income families ...

- 1. ... grow up in a different family environment: Details
 - More educated parents, less siblings
- 2. ... receive more investments: Details
 - At home: reading to child, outings with child, interest in child's education
 - At school: student-teacher ratios, PTA, fraction that continues education
- 3. ... have better outcomes: Details
 - Cognitive skills at age 16: reading score, maths score, teacher-assessed ability
 - Attain more years of schooling

Key Facts: Children from high income families ...

- 1. ... grow up in a different family environment: Details
 - More educated parents, less siblings
- 2. ... receive more investments: Details
 - At home: reading to child, outings with child, interest in child's education
 - At school: student-teacher ratios, PTA, fraction that continues education
- 3. ... have better outcomes: Details
 - Cognitive skills at age 16: reading score, maths score, teacher-assessed ability
 - Attain more years of schooling

Key Fact 3: Child outcomes differ by parental income

	Parental Income Tertile			P-value:	
	Bottom	Middle	Тор	Bottom vs Top	
Cognition					
Reading at age 16	-0.11	0.01	0.10		
Math at age 16		-0.02	0.10		
Education					
Age left education	17.9	17.9	18.1	0.02	

Key Fact 3: Child outcomes differ by parental income

	Parental Income Tertile			P-value:	
	Bottom	Middle	Тор	Bottom vs Top	
Cognition					
Reading at age 16	-0.11	0.01	0.10	0.00	
Math at age 16	-0.08	-0.02	0.10	0.00	
Education					
Age left education	17.9	17.9	18.1	0.02	

Key Fact 3: Child outcomes differ by parental income

	Parental Income Tertile			P-value:	
	Bottom	Middle	Тор	Bottom vs Top	
Cognition					
Reading at age 16	-0.11	0.01	0.10	0.00	
Math at age 16	-0.08	-0.02	0.10	0.00	
Education					
Age left education	17.9	17.9	18.1	0.02	

Outline

Introduction

Data & Key Facts

Approach

Results

Summary of our approach

- 1. Predict latent factor scores for cognition, time investments and school quality
- 2. Estimate the IGE
- 3. Decompose IGE into multiple channels, allowing for increasing degrees of mediation

Latent Factors and Measurement Error

- We do not directly observe cognition, time investments, and school quality
- Instead: Multiple noisy measures for each $\omega = C$, inv_t , sq_t

$$Z_{\omega,m} = \lambda_{\omega,m} \underbrace{\omega}_{\text{Latent}} + \underbrace{\epsilon_{\omega,m}}_{\text{Measuremen}}$$

Latent Factors and Measurement Error

- We do not directly observe cognition, time investments, and school quality
- Instead: Multiple noisy measures for each $\omega = C, inv_t, sq_t$

$$Z_{\omega,m} = \lambda_{\omega,m} \underbrace{\omega}_{\text{Latent}} + \underbrace{\epsilon_{\omega,m}}_{\text{Measurement}}$$

Latent Factors and Measurement Error - Details

$$Z_{\omega,m} = \lambda_{\omega,m} \underbrace{\omega}_{\text{Ladent}} + \epsilon_{\omega,m}$$
Measure

Dading Latent factor f

- Key estimation steps :
 - 1. Estimate measurement system parameters $(\lambda_{\omega,m}, Var(\epsilon_{\omega,m}))$ More Details 1
 - 2. Create weighted avg of measures—noisy measure of the latent factor More Details 2).
 - Correct for measurement error using errors-in-variables correction:
 - Read appendix of Heckman et al. 2013.
 - Recall OLS measurement error bias.
 - Key trick: We know the variance of measurement error can be used to correct for measurement error.

Latent Factors and Measurement Error - Details

$$Z_{\omega,m} = \lambda_{\omega,m} \underbrace{\omega}_{\text{Ladent}} + \underbrace{\epsilon_{\omega,m}}_{\text{Measurement}}$$

- Key estimation steps :
 - 1. Estimate measurement system parameters $(\lambda_{\omega,m}, Var(\epsilon_{\omega,m}))$ More Details 1 .
 - Create weighted avg of measures—noisy measure of the latent factor More Details 2.
 - Correct for measurement error using errors-in-variables correction:
 - Read appendix of Heckman et al. 2013.
 - Recall OLS measurement error bias.
 - Key trick: We know the variance of measurement error can be used to correct for measurement error.

Signal-to-Noise Ratios

$$Z_{\omega,m} = \lambda_{\omega,m}\omega + \epsilon_{\omega,m}$$

$$s_{\omega,m} = rac{(\lambda_{\omega,m}^2) extit{Var}(\omega)}{(\lambda_{\omega,m}^2) extit{Var}(\omega) + extit{Var}(\epsilon_{\omega,m})}$$

Cognition at 16		Time Inv 16		School Quality 16	
Reading Score	0.56	P:Supportive	0.32	School Type	0.08
Math Score	0.62	M:Interest in ed	0.90	%Cnt School	0.35
Teacher: Math	0.80	F: Interest in ed	0.75	%FT degree	0.82
Teacher: English	0.72			%Passed A-levels	0.93
				%Studying towards A-levels	0.45
				Teacher Student Ratio	0.20

Estimating the IGE

$$\ln Y_i = \rho \ln Y_{Parent,i} + u_i$$

where:

- Y is (demeaned) lifetime earnings
- Y_{Parent,i} (demeaned) lifetime income of parent
- \bullet ρ is the Intergenerational Elasticity of Earnings (IGE)

Baseline - Decomposition of IGE

$$\begin{split} \ln Y_i &= \alpha_{\mathcal{S}} S_i + \alpha_{\mathcal{C}} C_i + \alpha_{\mathcal{I}} \textbf{I}_i + \alpha_{\mathcal{F}} \textbf{F}_i + \alpha_{Y_{\mathcal{P}}} \ln Y_{\textit{Parent},i} + u_i^{\textit{Y}} \\ \textbf{I} &= [\textit{inv}_7, \textit{inv}_{11}, \textit{inv}_{16}, \textit{sq}_7, \textit{sq}_{11}, \textit{sq}_{16}] \\ \textbf{F} &= [\textit{ed}_m, \textit{ed}_f, \textit{sib}] \end{split}$$

- \Rightarrow Can test restrictions, e.g. $\alpha_{sq_7} = \alpha_{sq_{11}} = \alpha_{sq_{16}} = 0$
- 2. Association between parental income and covariates:

$$C_i = \kappa_C \ln Y_{Parent,i} + v_i^C$$

- 3. Share of IGE explained by age 16 cognition: $\frac{\alpha_C \kappa_C}{\rho}$
- ⇒ Only considers direct effect of cognition on lifetime earnings

$$\begin{split} \ln Y_i &= \alpha_{\mathcal{S}} S_i + \alpha_{\mathcal{C}} C_i + \alpha_{\mathcal{I}} \textbf{I}_i + \alpha_{\mathcal{F}} \textbf{F}_i + \alpha_{\mathcal{Y}_{\mathcal{P}}} \ln Y_{\textit{Parent},i} + u_i^{\textit{Y}} \\ \textbf{\textit{I}} &= [\textit{inv}_7, \textit{inv}_{11}, \textit{inv}_{16}, \textit{sq}_7, \textit{sq}_{11}, \textit{sq}_{16}] \\ \textbf{\textit{F}} &= [\textit{ed}_m, \textit{ed}_f, \textit{sib}] \end{split}$$

- \Rightarrow Can test restrictions, e.g. $\alpha_{sq_7}=\alpha_{sq_{11}}=\alpha_{sq_{16}}=0$
- 2. Association between parental income and covariates:

$$C_i = \kappa_C \ln Y_{Parent,i} + v_i^C$$

- 3. Share of IGE explained by age 16 cognition: $\frac{\alpha_C \kappa_C}{\rho}$
- ⇒ Only considers direct effect of cognition on lifetime earnings

$$\begin{split} \ln Y_i &= \alpha_{\mathcal{S}} S_i + \alpha_{\mathcal{C}} C_i + \alpha_{\mathcal{I}} \textbf{I}_i + \alpha_{\mathcal{F}} \textbf{F}_i + \alpha_{\mathcal{Y}_{\mathcal{P}}} \ln Y_{\textit{Parent},i} + u_i^{\textit{Y}} \\ \textbf{\textit{I}} &= [\textit{inv}_7, \textit{inv}_{11}, \textit{inv}_{16}, \textit{sq}_7, \textit{sq}_{11}, \textit{sq}_{16}] \\ \textbf{\textit{F}} &= [\textit{ed}_m, \textit{ed}_f, \textit{sib}] \end{split}$$

- \Rightarrow Can test restrictions, e.g. $\alpha_{sq_7}=\alpha_{sq_{11}}=\alpha_{sq_{16}}=0$
- 2. Association between parental income and covariates:

$$C_i = \kappa_C \ln Y_{Parent,i} + v_i^C$$

- 3. Share of IGE explained by age 16 cognition: $\frac{\alpha_C \kappa_C}{\rho}$
- ⇒ Only considers direct effect of cognition on lifetime earnings

$$\begin{split} \ln Y_i &= \alpha_{\mathcal{S}} S_i + \alpha_{\mathcal{C}} C_i + \alpha_{\mathcal{I}} \textbf{I}_i + \alpha_{\mathcal{F}} \textbf{F}_i + \alpha_{\mathcal{Y}_{\mathcal{P}}} \ln Y_{\textit{Parent},i} + u_i^{\textit{Y}} \\ \textbf{\textit{I}} &= [\textit{inv}_7, \textit{inv}_{11}, \textit{inv}_{16}, \textit{sq}_7, \textit{sq}_{11}, \textit{sq}_{16}] \\ \textbf{\textit{F}} &= [\textit{ed}_m, \textit{ed}_f, \textit{sib}] \end{split}$$

- \Rightarrow Can test restrictions, e.g. $\alpha_{sq_7}=\alpha_{sq_{11}}=\alpha_{sq_{16}}=0$
- 2. Association between parental income and covariates:

$$C_i = \kappa_C \ln Y_{Parent,i} + v_i^C$$

- 3. Share of IGE explained by age 16 cognition: $\frac{\alpha_C \kappa_C}{\rho}$
- ⇒ Only considers direct effect of cognition on lifetime earnings

$$\begin{split} \ln Y_i &= \alpha_{\mathcal{S}} \mathcal{S}_i + \alpha_{\mathcal{C}} \mathcal{C}_i + \alpha_{\mathcal{I}} \mathcal{I}_i + \alpha_{\mathcal{F}} \mathcal{F}_i + \alpha_{\mathcal{Y}_{\mathcal{P}}} \ln Y_{\textit{Parent},i} + u_i^{\mathcal{Y}} \\ \mathcal{I} &= [\textit{inv}_7, \textit{inv}_{11}, \textit{inv}_{16}, \textit{sq}_7, \textit{sq}_{11}, \textit{sq}_{16}] \\ \mathcal{F} &= [\textit{ed}_m, \textit{ed}_f, \textit{sib}] \end{split}$$

- \Rightarrow Can test restrictions, e.g. $\alpha_{\it sq_7} = \alpha_{\it sq_{11}} = \alpha_{\it sq_{16}} = 0$
- 2. Association between parental income and covariates:

$$C_i = \kappa_C \ln Y_{Parent,i} + v_i^C$$

- 3. Share of IGE explained by age 16 cognition: $\frac{\alpha_{C}\kappa_{C}}{\rho}$
- ⇒ Only considers direct effect of cognition on lifetime earnings

Level 2 - Indirect effects via years of schooling

Results

Level 2 - Indirect effects via years of schooling

Determinants of years of schooling:

$$S_i = \beta_C C_i + \beta_I I_i + \beta_F F_i + \beta_{Y_P} \ln Y_{Parent,i} + u_i^S$$

Share of the IGE explained by age 16 cognition:

$$(\underline{\alpha_C \cdot \kappa_C} + \underline{\alpha_S \cdot \beta_C \cdot \kappa_C})/\rho.$$
Direct Effect Indirect Effect via schooling

Results

Level 2 - Indirect effects via years of schooling

Determinants of years of schooling:

$$S_i = \beta_C C_i + \beta_I I_i + \beta_F F_i + \beta_{Y_P} \ln Y_{Parent,i} + u_i^S$$

Share of the IGE explained by age 16 cognition:

$$(\underline{\alpha_C \cdot \kappa_C} + \underline{\alpha_S \cdot \beta_C \cdot \kappa_C})/\rho.$$
Direct Effect Indirect Effect via schooling

Level 3 - Indirect effects via years of schooling

Level 4- Indirect effects via years of schooling

Introduction

Data & Key Facts

Approach

Results

IGE Estimates

with and without measurement error corrections

$$\ln Y_i = \rho \ln Y_{Parent,i} + u_i$$

where $\rho =$ Intergenerational Elasticity of Earnings (IGE)

Table: IGE estimates

	Male	Female	Male	Female
	iviale	i emale	uncorrected	uncorrected
IGE	0.317	0.236	0.155	0.115
	(0.097)	(0.105)	(0.045)	(0.050)
Ν	1350	1347	1350	1347

- ⇒ 54% of IGE is explained by our channels
- ⇒ Cognitive skills and schooling significantly affect IGE

⇒ Effect of schooling is completely mediated by cognitive skills

 \Rightarrow Most differences in cognition are explained by differences in time investments and school quality

- ⇒ Family background-related differences explain 19% of IGE.
- ⇒ Even if we control for family background, the income gradient in investments persists

-20%

■ Years of Schooling

Cognition

Results: Mediation Analysis - Females

Females 100% + Indirect effects via + Indirect effects via + Indirect effects via 90% Direct effects only vears of schooling cognition investments 80% 70% 62% **15%** 1% 20% 60% 14% 50% 35% 40% 43% -10% 40% 21% -5% 30% 20% 11% 2% 0% 4% 10% 2% 0% 2% -10%

■ Time Investments

School Quality

■ Family Background

- Years of schooling and cognition explain the large shares of the IGE
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- \Rightarrow Differences in investments between rich and poor families really matter for the IGE...
 - ... and not all of them can be explained by family background

- Years of schooling and cognition explain the large shares of the IGF
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- \Rightarrow Differences in investments between rich and poor families really matter for the IGE...
 - ... and not all of them can be explained by family background

- Years of schooling and cognition explain the large shares of the IGF
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- ⇒ Differences in investments between rich and poor families really matter for the IGE...
 - ... and not all of them can be explained by family background

- Years of schooling and cognition explain the large shares of the IGF
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- ⇒ Differences in investments between rich and poor families really matter for the IGE...
 - ... and not all of them can be explained by family background

- Years of schooling and cognition explain the large shares of the IGF
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- ⇒ Differences in investments between rich and poor families really matter for the IGE...
 - ... and not all of them can be explained by family background

Testing Restrictions

Do time investments, school quality, and family background have direct effects on lifetime earnings?

	Lifetime Earnings		Years o	f Schooling	Cognition	
	Males	Females	Males	Females	Males	Females
P-values for joint si	gnificanc	e:				
Time Investments	0.708	0.842	0.490	0.315	0.096	0.031
School Quality	0.501	0.285	0.424	0.183	0.017	0.009
Family Background	0.291	0.276	0.218	0.408	0.012	0.020
N	1350	1347	1350	1347	1350	1347

[⇒] Only jointly significant for explaining cognition!

Testing Restrictions

Do time investments, school quality, and family background have direct effects on lifetime earnings?

	Lifetime Earnings		Years o	f Schooling	Cog	nition
	Males	Females	Males	Females	Males	Females
P-values for joint si	gnificanc	e:				
Time Investments	0.708	0.842	0.490	0.315	0.096	0.031
School Quality	0.501	0.285	0.424	0.183	0.017	0.009
Family Background	0.291	0.276	0.218	0.408	0.012	0.020
N	1350	1347	1350	1347	1350	1347

[⇒] Only jointly significant for explaining cognition!

- We combine multiple measures and correct for measurement error in predicted factors.
- What happens if we used a single measure instead?

⇒ under-estimate the importance of cognition by up to 35%
⇒ fraction explained by parental investment attenuated by 45%

	Pre	dicted factor	+ ME	correction		Single	Single measure				
	L1	L2	L3	L4	L1	L2	L3	L4			
	Direct	+via years of schooling	+via cognition	+via investments	Direct	+via years of schooling	+via cognition	+via investments			
Years of Schooling	10%	-8%	-8%	-8%							
Cognition	33%	46%	11%	11%							
Investments	14%	19%	47%	33%							
Family Background	-2%	-3%	4%	19%							

- We combine multiple measures and correct for measurement error in predicted factors.
- What happens if we used a single measure instead?
- \Rightarrow under-estimate the importance of cognition by up to 35%
- \Rightarrow fraction explained by parental investment attenuated by 45%

	Pred	dicted factor		Single measure				
	L1	L2	L3	L4	L1	L2	L3	L4
	Direct	+via years of schooling	+via cognition	+via investments	Direct	+via years of schooling	+via cognition	+via investments
Years of Schooling	10%	-8%	-8%	-8%	18%	1%	1%	1%
Cognition	33%	46%	11%	11%	18%	29%	12%	12%
Investments	14%	19%	47%	33%	13%	18%	29%	18%
Family Background	-2%	-3%	4%	19%	2%	3%		19%

- We combine multiple measures and correct for measurement error in predicted factors.
- What happens if we used a single measure instead?
- \Rightarrow under-estimate the importance of cognition by up to 35%
- \Rightarrow fraction explained by parental investment attenuated by 45%

	Pre	dicted factor	+ ME		Single measure				
	L1	L2	L3	L4	L1	L2	L3	L4	
	Direct	+via years of schooling	+via cognition	+via investments	Direct	+via years of schooling	+via cognition	+via investments	
Years of Schooling	10%	-8%	-8%	-8%	18%	1%	1%	1%	
Cognition	33%	46%	11%	11%	18%	29%	12%	12%	
Investments	14%	19%	47%	33%	13%	18%	29%	18%	
Family Background	-2%	-3%	4%	19%	2%	3%	9%	19%	

- We combine multiple measures and correct for measurement error in predicted factors.
- What happens if we used a single measure instead?
- \Rightarrow under-estimate the importance of cognition by up to 35%
- \Rightarrow fraction explained by parental investment attenuated by 45%

	Pre	dicted factor		Single measure				
	L1	L2	L3	L4	L1	L2	L3	L4
	Direct	+via years of schooling	+via cognition	+via investments	Direct	+via years of schooling	+via cognition	+via investments
Years of Schooling	10%	-8%	-8%	-8%	18%	1%	1%	1%
Cognition	33%	46%	11%	11%	18%	29%	12%	12%
Investments	14%	19%	47%	33%	13%	18%	29%	18%
Family Background	-2%	-3%	4%	19%	2%	3%	9%	19%

Robustness

Our results are robust to:

- Accounting for non-cognitive skills see table
- Complementarity between years of schooling and cognition
- Including other common family background variables

Conclusions

- More than half of the intergenerational elasticity in earnings (IGE) is explained by differences in:
 - years of schooling
 - cognition
 - parental investments
 - family circumstances during childhood.
- Main driver of the IGE
 - Parental investments received early in life
 - ..which leads to higher cognitive development and earnings.

Conclusions

- More than half of the intergenerational elasticity in earnings (IGE) is explained by differences in:
 - years of schooling
 - cognition
 - parental investments
 - family circumstances during childhood.
- Main driver of the IGE
 - Parental investments received early in life
 - ..which leads to higher cognitive development and earnings.

Robustness Check 1

Accounting for non-cognitive skills

		М	ales			Fen	nales	
	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Years of Schooling	0.104	-0.078	-0.078	-0.078	0.420	0.039	0.039	0.039
Cognition	[0.031, 0.266]	[-0.274, -0.012]	[-0.274, -0.012]	[-0.274, -0.012]	[0.194, 1.127]	[-0.171, 0.329]	[-0.171, 0.329]	[-0.171, 0.329]
	0.338	0.474	0.107	0.107	0.135	0.394	0.012	0.012
Non-cognitive skills	[0.181, 0.759]	[0.296, 1.007]	[-0.096, 0.378]	[-0.096, 0.378]	[-0.016, 0.400]	[0.161, 1.071]	[-0.297, 0.212]	[-0.297, 0.212]
	-0.004	-0.005	- 0.046	- 0.046	0.000	0.000	- 0.022	-0.022
Investments	[-0.079, 0.042]	[-0.082, 0.043]	[-0.169, 0.007]	[-0.169, 0.007]	[-0.047, 0.039]	[-0.073, 0.061]	[-0.151, 0.022]	[-0.151, 0.022]
	0.123	0.178	0.517	0.354	0.033	0.128	0.444	0.239
Family Background	[-0.133, 0.454]	[-0.063, 0.623]	[0.212, 1.346]	[0.112, 0.974]	[-0.306, 0.351]	[-0.142, 0.525]	[0.158, 1.278]	[-0.038, 0.745]
	-0.008	-0.018	0.051	0.214	-0.006	0.020	0.108	0.314
N	[-0.173, 0.109] 1339	[-0.194, 0.103]	[-0.093, 0.188] 1339	[0.092, 0.558]	[-0.238, 0.215] 1336	[-0.189, 0.303] 1336	[-0.066, 0.504] 1336	[0.089, 0.997]

Notes: 95% Confidence intervals in brackets. Coefficients that are significant at the 5% level are bold.

Robustness Check 2

Complementarity between schools and cognition

		Males			Females	
	EIV	GMM	GMM	EIV	GMM	GMM
Years of Schooling	0.093	0.165	0.162	0.425	0.452	0.487
	[0.019, 0.228]	[0.073, 0.325]	[0.066, 0.310]	[0.158, 1.337]	[0.231, 1.083]	[0.265, 1.206]
Cognition	0.333	0.368	0.365	0.135	0.094	0.078
	[0.193, 0.729]	[0.173, 0.646]	[0.184, 0.625]	[-0.008, 0.502]	[-0.058, 0.268]	[-0.081, 0.229]
Years of Schooling \times Cognition			-0.016			0.003
			[-0.066, 0.017]			[-0.054, 0.070]
Investments	0.163	0.137	0.122	0.057	0.149	0.122
	[-0.060, 0.456]	[-0.112, 0.428]	[-0.119, 0.392]	[-0.266, 0.437]	[-0.140, 0.554]	[-0.124, 0.513]
Family Background	-0.012	-0.055	-0.053	0.022	0.055	0.102
	[-0.150, 0.112]	[-0.232, 0.074]	[-0.215, 0.077]	[-0.233, 0.302]	[-0.164, 0.297]	[-0.136, 0.374]

Notes: 95% Confidence intervals in brackets. Coefficients that are significant at the 5% level are **bold**.

Robustness Check 3

Including other common family background variables

		Ma	ales			Fen	nales	
	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Years of Schooling	0.095	-0.096	-0.096	-0.096	0.423	0.093	0.093	0.093
Cognition	0.323	0.454	0.149	0.149	0.129	0.396	-0.021	-0.021
Investments	0.134	0.187	0.469	0.306	0.049	0.150	0.449	0.277
Time Investments	0.132	0.178	0.388	0.281	-0.093	-0.038	0.116	-0.070
Age 7	0.135	0.156	0.152	0.084	0.149	0.167	0.181	-0.018
Age 11	-0.057	-0.030	0.075	0.066	-0.180	-0.176	-0.133	-0.053
Age 16	0.054	0.052	0.162	0.131	-0.062	-0.028	0.067	0.002
School Quality	0.002	0.010	0.081	0.024	0.142	0.188	0.333	0.347
Age 7	-0.001	-0.001	0.000	0.001	0.047	0.044	0.047	0.062
Age 11	-0.030	-0.028	-0.051	-0.056	0.017	0.019	0.012	0.005
Age 16	0.033	0.038	0.132	0.080	0.078	0.125	0.274	0.280
Family Background	-0.205	-0.197	-0.174	-0.011	-0.264	-0.302	-0.183	-0.012
Mother's education	-0.045	-0.044	-0.021	0.031	-0.027	-0.009	0.043	0.147
Father's education	0.012	0.004	0.032	0.084	0.055	0.066	0.113	0.209
Number of Siblings	0.013	0.012	0.028	0.077	-0.020	-0.021	-0.011	0.004
Stable	-0.145	-0.133	-0.150	-0.103	-0.189	-0.243	-0.178	-0.155
Mum's age	-0.032	-0.028	-0.038	-0.037	-0.099	-0.087	-0.155	-0.213
Dad's age	-0.008	-0.007	-0.025	-0.063	0.017	-0.008	0.004	-0.004
N	1350	1350	1350	1350	1347	1347	1347	1347

Notes: 95% Confidence intervals in brackets. Coefficients that are significant at the 5% level are bold.

Mediation Analysis: Share of IGE Explained

		Ма	ales			Fen	nales	
	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Years of Schooling	0.095	-0.079	-0.079	-0.079	0.425	0.024	0.024	0.024
Cognition	0.327	0.456	0.106	0.106	0.135	0.402	0.002	0.002
Investments	0.135	0.187	0.473	0.325	0.050	0.151	0.463	0.251
Time Investments	0.127	0.173	0.384	0.284	-0.100	-0.046	0.114	0.039
Age 7	0.126	0.147	0.143	0.111	0.143	0.157	0.176	0.105
Age 11	-0.054	-0.027	0.076	0.066	-0.180	-0.175	-0.133	-0.083
Age 16	0.056	0.053	0.166	0.108	-0.062	-0.029	0.070	0.016
School Quality	0.008	0.014	0.089	0.041	0.150	0.198	0.349	0.212
Age 7	-0.001	-0.001	0.000	-0.000	0.047	0.044	0.046	0.032
Age 11	-0.024	-0.023	-0.044	-0.030	0.019	0.022	0.016	-0.010
Age 16	0.033	0.038	0.133	0.072	0.084	0.132	0.287	0.191
Family Background	-0.019	-0.027	0.037	0.185	0.006	0.039	0.128	0.340
Mother's education	-0.051	-0.049	-0.029	0.020	-0.043	-0.024	0.010	0.104
Father's education	0.016	0.008	0.035	0.084	0.068	0.081	0.126	0.227
Number of Siblings	0.016	0.014	0.031	0.081	-0.019	-0.019	-0.008	0.009
Total	0.538	0.538	0.538	0.538	0.616	0.616	0.616	0.616
N	1350	1350	1350	1350	1347	1347	1347	1347

Mediation Analysis: Share of IGE Explained

		Ма	ales			Fen	nales	
	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Years of Schooling	0.095	-0.079	-0.079	-0.079	0.425	0.024	0.024	0.024
Cognition	0.327	0.456	0.106	0.106	0.135	0.402	0.002	0.002
Investments	0.135	0.187	0.473	0.325	0.050	0.151	0.463	0.251
Time Investments	0.127	0.173	0.384	0.284	-0.100	-0.046	0.114	0.039
Age 7	0.126	0.147	0.143	0.111	0.143	0.157	0.176	0.105
Age 11	-0.054	-0.027	0.076	0.066	-0.180	-0.175	-0.133	-0.083
Age 16	0.056	0.053	0.166	0.108	-0.062	-0.029	0.070	0.016
School Quality	0.008	0.014	0.089	0.041	0.150	0.198	0.349	0.212
Age 7	-0.001	-0.001	0.000	-0.000	0.047	0.044	0.046	0.032
Age 11	-0.024	-0.023	-0.044	-0.030	0.019	0.022	0.016	-0.010
Age 16	0.033	0.038	0.133	0.072	0.084	0.132	0.287	0.191
Family Background	-0.019	-0.027	0.037	0.185	0.006	0.039	0.128	0.340
Mother's education	-0.051	-0.049	-0.029	0.020	-0.043	-0.024	0.010	0.104
Father's education	0.016	0.008	0.035	0.084	0.068	0.081	0.126	0.227
Number of Siblings	0.016	0.014	0.031	0.081	-0.019	-0.019	-0.008	0.009
Total	0.538	0.538	0.538	0.538	0.616	0.616	0.616	0.616
N	1350	1350	1350	1350	1347	1347	1347	1347

Mediation Analysis: Share of IGE Explained

	Males			Females				
	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Years of Schooling	0.095	-0.079	-0.079	-0.079	0.425	0.024	0.024	0.024
Cognition	0.327	0.456	0.106	0.106	0.135	0.402	0.002	0.002
Investments	0.135	0.187	0.473	0.325	0.050	0.151	0.463	0.251
Time Investments	0.127	0.173	0.384	0.284	-0.100	-0.046	0.114	0.039
Age 7	0.126	0.147	0.143	0.111	0.143	0.157	0.176	0.105
Age 11	-0.054	-0.027	0.076	0.066	-0.180	-0.175	-0.133	-0.083
Age 16	0.056	0.053	0.166	0.108	-0.062	-0.029	0.070	0.016
School Quality	0.008	0.014	0.089	0.041	0.150	0.198	0.349	0.212
Age 7	-0.001	-0.001	0.000	-0.000	0.047	0.044	0.046	0.032
Age 11	-0.024	-0.023	-0.044	-0.030	0.019	0.022	0.016	-0.010
Age 16	0.033	0.038	0.133	0.072	0.084	0.132	0.287	0.191
Family Background	-0.019	-0.027	0.037	0.185	0.006	0.039	0.128	0.340
Mother's education	-0.051	-0.049	-0.029	0.020	-0.043	-0.024	0.010	0.104
Father's education	0.016	0.008	0.035	0.084	0.068	0.081	0.126	0.227
Number of Siblings	0.016	0.014	0.031	0.081	-0.019	-0.019	-0.008	0.009
Total	0.538	0.538	0.538	0.538	0.616	0.616	0.616	0.616
N	1350	1350	1350	1350	1347	1347	1347	1347

Key Fact 1: Family environment differs by parental income

	Parental Income Tertile:					
	Bottom	Middle	Тор	P-val		
Family Background						
Number of siblings	2.13	1.93	2.05	0.01		
Father's age left school	14.9	14.8	15.2	0.00		
Mother's age left school	15.0	15.1	15.3	0.00		

Key Fact 2: Parental investments differ by parental income

	Parental Income Tertile:			
	Bottom	Middle	Top	P-val
Time investment				
% of fathers go on outings w child 7	65.2	72.5	71.5	
% of parents want child to go to uni 11	81.2	82.8	85.2	
% of mothers very interested at age 16	31.5	32.8	35.6	0.19
School quality				
% whose PTA holds meetings 7	56.8	57.6	58.7	0.71
Student-teacher ratio 11	24.8	24.7	24.3	
% from child's class studying for GCEs 16	44.0	44.4	50.5	

Key Fact 2: Parental investments differ by parental income

	Parental Income Tertile:			
	Bottom	Middle	Top	P-val
Time investment				
% of fathers go on outings w child 7	65.2	72.5	71.5	0.00
% of parents want child to go to uni 11	81.2	82.8	85.2	0.08
% of mothers very interested at age 16	31.5	32.8	35.6	0.19
School quality				
% whose PTA holds meetings 7	56.8	57.6	58.7	0.71
Student-teacher ratio 11	24.8	24.7	24.3	
% from child's class studying for GCEs 16	44.0	44.4	50.5	

Key Fact 2: Parental investments differ by parental income

	Parental Income Tertile:			
	Bottom	Middle	Top	P-val
Time investment				
% of fathers go on outings w child 7	65.2	72.5	71.5	0.00
% of parents want child to go to uni 11	81.2	82.8	85.2	0.08
% of mothers very interested at age 16	31.5	32.8	35.6	0.19
School quality				
% whose PTA holds meetings 7	56.8	57.6	58.7	0.71
Student-teacher ratio 11	24.8	24.7	24.3	0.06
% from child's class studying for GCEs 16	44.0	44.4	50.5	0.00

Level 4 - Indirect effects via investments

Determinants of cognition:

$$inv_{16,i} = \delta_F F_i + \delta_{Y_P} \ln Y_{Parent,i} + u_i^{inv_{16}}$$

Share of the IGE explained by maternal education:

Indirect Effect of *inv*₁₆ via cognit

Indirect effect via inv₁₆

Level 4 - Indirect effects via investments

Determinants of cognition:

$$inv_{16,i} = \delta_F F_i + \delta_{Y_P} \ln Y_{Parent,i} + u_i^{inv_{16}}$$

Share of the IGE explained by maternal education:

$$\left\{ \begin{array}{c} \alpha_{\rm ed_m} \\ \end{array} \right. + \left. \alpha_S \beta_{\rm ed_m} \\ \end{array} + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm ed_m} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm ed_m} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm ed_m} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm ed_m} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm ed_m} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm ed_m} \\ - \left[\alpha_{\rm inv_{16}} \right] \left\{ \alpha_{\rm inv_{16}} \alpha_S + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \right] \delta_{\rm ed_m, inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}} \\ + \left(\alpha_C + \beta_C \alpha_S \right) \gamma_{\rm inv_{16}}$$

Indirect effect via inv₁₆

Level 3- Indirect effects via cognition

Determinants of cognition:

$$C_i = \gamma_I \mathbf{I}_i + \gamma_F \mathbf{F}_i + \gamma_{Y_P} \ln Y_{Parent,i} + u_i^C$$

Share of the IGE explained by age 16 investments:

$$\left[\begin{array}{ccc} \alpha_{inv_{16}} & + & \beta_{inv_{16}}\alpha_S \\ \text{Direct Effect} & \text{Indirect Effect} \\ \text{of } \textit{inv}_{16} \text{ via schooling} \end{array} \right. \\ + \left(\begin{array}{ccc} \alpha_C & + & \beta_C\alpha_S \\ \text{Direct Effect} & \text{Indirect Effect} \\ \text{of cognition on Earnings} \end{array} \right) \gamma_{inv_{16}} \right] \cdot \kappa_{inv_{16}} / \rho$$

ndirect Effect of inv₁₆ via cognition

Level 3- Indirect effects via cognition

Determinants of cognition:

$$C_i = \gamma_I \mathbf{I}_i + \gamma_F \mathbf{F}_i + \gamma_{Y_P} \ln Y_{Parent,i} + u_i^C$$

Share of the IGE explained by age 16 investments:

$$\left[\underbrace{\alpha_{\textit{inv}_{16}}}_{\textit{Direct Effect of }\textit{inv}_{16} \text{ on Earnings}} + \underbrace{\beta_{\textit{inv}_{16}}\alpha_{\textit{S}}}_{\textit{Indirect Effect of }\textit{inv}_{16} \text{ via schooling}} + \left(\underbrace{\alpha_{\textit{C}}}_{\textit{Direct Effect of cognition on Earnings}} + \underbrace{\beta_{\textit{C}}\alpha_{\textit{S}}}_{\textit{Indirect Effect of cognition via schooling}} \right) \gamma_{\textit{inv}_{16}} \right] \cdot \kappa_{\textit{inv}_{16}} / \rho$$

Indirect Effect of inv₁₆ via cognition

1. Family environment differs by parental income

	Parental Income Tertile				
Variable	Bottom	Middle	Тор	P-val	
Family Background					
Number of siblings	2.13	1.93	2.05	0.01	
Father's age left school	14.9	14.8	15.2	0.00	
Mother's age left school	15.0	15.1	15.3	0.00	

Determinants of lifetime earnings

$$\begin{split} \ln Y_i &= \alpha_S S_i + \alpha_C C_i + \alpha_I I_i + \alpha_F F_i + \alpha_{Y_P} \ln Y_{Parent,i} + u_i^Y \\ &I = [\mathit{inv}_7, \mathit{inv}_{11}, \mathit{inv}_{16}, \mathit{sq}_7, \mathit{sq}_{11}, \mathit{sq}_{16}] \\ &F = [\mathit{ed}_m, \mathit{ed}_f, \mathit{sib}] \end{split}$$

Test potentially relevant restrictions:

- time investments, $\alpha_{inv_7} = \alpha_{inv_{11}} = \alpha_{inv_{16}} = 0$
- school quality, $\alpha_{sq_7}=\alpha_{sq_{11}}=\alpha_{sq_{16}}=0$
- family background $\alpha_{\it ed_m} = \alpha_{\it ed_f} = \alpha_{\it sib} = 0$
- parental income $\alpha_{Y_P} = 0$

Identification of measurement parameters

$$Z_{C,i,m} = \lambda_{C,m} C_i + \epsilon_{C,i,m}$$

Scaling parameter λ :

- Take 3 measures at age 16: Reading score, maths score, teacher rated ability
- We normalized Var(C) = 1
- Then: $Cov(Z_{read}, Z_{maths}) = \lambda_{read}\lambda_{maths} Var(C)$ $Cov(Z_{read}, Z_{teacher}) = \lambda_{read}\lambda_{teacher} Var(C)$ $Cov(Z_{teacher}, Z_{maths}) = \lambda_{teacher}\lambda_{maths} Var(C)$
- ⇒ 3 equations in 3 unknowns

Predicting latent factor scores

$$Z_{C,i,m} = \lambda_{C,m} C_i + \epsilon_{C,i,m}$$

- We want to predict latent cognition for each individual in our sample
- Easy method: Bartlett scores (Heckman, Pinto, Savelyev, 2013)
- Basic idea: Run GLS of measures on factor loadings for each individual, where weights are inverse of variance of measurement error.

$$\hat{C}_i = (\lambda' \Omega^{-1} \lambda)^{-1} \lambda \Omega^{-1} Z_i'$$

where Ω is a matrix that has the variances of the measurement errors $Var(\epsilon_{C,i,m})$ on the diagonal

