midterm_project

Ningze Zu, Jiahao Xu, Andrew Zhang, Albert Ding

```
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(knitr)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:readr':
##
##
       col_factor
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
baseball <- read.csv("baseball_weather.csv", header = T) %>% filter(X.1 != "@")
basketball <- read.csv("basketball_weather.csv", header = T)</pre>
baseball11 <- read.csv("baseball_weather.csv", header = T) %% filter(X.1 != "@")
baseball <- select(baseball, Gm., Year, DATE, X, Tm, Opp, W.L, Win, Loss, Save, Time, D.N, Attendance,
write.csv(baseball, file = "baseball00.csv")
# There appears to be a weak but slightly positive relationship between average temperature and attend
ggplot(baseball, mapping = aes(x = TAVG, y = Attendance)) +
  geom_point(mapping = aes(color = Year)) +
  geom_smooth() +
  ggtitle("Average Temperature vs. Attendance (2012 - 2017)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Average Temperature on Game Day (Degrees F)") +
  ylab("Attendance")
## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'
## Warning: Removed 81 rows containing non-finite values (stat_smooth).
```

Warning: Removed 81 rows containing missing values (geom_point).

Average Temperature vs. Attendance (2012 – 2017)

Average Temperature on Game Day (Degrees F)

```
# 2017 Season
baseball_2017 <- baseball %>% filter(Year == 2017)
# Relationship between average temperature with attendance of season 2017
ggplot(baseball_2017, aes(TAVG, Attendance)) +
   geom_point(color = "blue") +
   geom_smooth(method = "lm", color = "red") +
   ggtitle("Average Temperature vs. Attendance (2017)") +
   theme(axis.title.x = element_text(size = 14)) +
   theme(axis.title.y = element_text(size = 14)) +
   theme(plot.title = element_text(hjust = 0.5, size = 16)) +
   xlab("Average Temperature on Game Day (Degrees F)") +
   ylab("Attendance")
```

Average Temperature vs. Attendance (2017)

Average Temperature on Game Day (Degrees F)

```
# 2016 Season
baseball_2016 <- baseball %>% filter(Year == 2016)
# Relationship between average temperature with attendance of season 2016
ggplot(baseball_2016, aes(TAVG, Attendance)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Average Temperature vs. Attendance (2016)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Average Temperature on Game Day (Degrees F)") +
  ylab("Attendance")
```

Average Temperature vs. Attendance (2016)

Average Temperature on Game Day (Degrees F)

```
# 2015 Season
baseball_2015 <- baseball %>% filter(Year == 2015)
# Relationship between average temperature with attendance of season 2015
ggplot(baseball_2015, aes(TAVG, Attendance)) +
   geom_point(color = "blue") +
   geom_smooth(method = "lm", color = "red") +
   ggtitle("Average Temperature vs. Attendance (2015)") +
   theme(axis.title.x = element_text(size = 14)) +
   theme(axis.title.y = element_text(size = 14)) +
   theme(plot.title = element_text(hjust = 0.5, size = 16)) +
   xlab("Average Temperature on Game Day (Degrees F)") +
   ylab("Attendance")
```

Average Temperature vs. Attendance (2015)

Average Temperature on Game Day (Degrees F)

```
# 2014 Season
baseball_2014 <- baseball %>% filter(Year == 2014)
# Relationship between average temperature with attendance of season 2014
ggplot(baseball_2014, aes(TAVG, Attendance)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Average Temperature vs. Attendance (2014)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Average Temperature on Game Day (Degrees F)") +
  ylab("Attendance")
```

Average Temperature vs. Attendance (2014)


```
# 2013 Season
baseball_2013 <- baseball %>% filter(Year == 2013)
# Relationship between average temperature with attendance of season 2013
ggplot(baseball_2013, aes(TAVG, Attendance)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Average Temperature vs. Attendance (2013)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Average Temperature on Game Day (Degrees F)") +
  ylab("Attendance")
```

Average Temperature vs. Attendance (2013)

Conclusion: There appears to be a weak but slightly positive relationship between average temperature and attendance over the past six seasons.

```
# 2017
# Summary of attendance in seanson 2017 with different opponent.
# Group by different opponents and arrange the attendance from high to low
baseball_opp17 <- baseball_2017 %>% group_by(0pp) %>% summarise(avg_attendance = round(mean(Attendance))
baseball_opp17 <- arrange(baseball_opp17, desc(avg_attendance))

ggplot(baseball_opp17, aes(0pp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2017") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2017

kable(baseball_opp17)

Opp	avg_{-}	_attendance
STL		37263
CLE		37242
MIN		37227
CHW		36984
PHI		36949
CHC		36915
KCR		36904
LAA		36792
DET		36491
SEA		36413
NYY		36185
TBR		36142
OAK		35397
HOU		35271
BAL		35147
PIT		35044
TOR		34998
TEX		34781

```
# 2016
# Summary of attendance in seanson 2016 with different opponent.
# Group by different opponents and arrange the attendance from high to low
baseball_opp16 <- baseball_2016 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance))
```

```
baseball_opp16 <- arrange(baseball_opp16, desc(avg_attendance))

ggplot(baseball_opp16, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2016") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```


kable(baseball_opp16)

Opp	$avg_attendance$
SFG	38142
DET	37900
KCR	37801
NYY	37359
ARI	37350
MIN	37243
CHW	37010
CLE	36876
LAA	36823
SEA	36767
TEX	36464

Opp	avg_attendance
TOR	36462
COL	36238
BAL	35983
TBR	35981
HOU	35324
OAK	33559
ATL	32806

```
# 2015
# Summary of attendance in seanson 2016 with different opponent.
# Group by different opponents and arrange the attendance from high to low
baseball_opp15 <- baseball_2015 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance))
baseball_opp15 <- arrange(baseball_opp15, desc(avg_attendance))

ggplot(baseball_opp15, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2015") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2015

kable(baseball_opp15)

Opp	$avg_attendance$
LAA	37209
CHW	37196
HOU	37007
MIA	36936
DET	36829
SEA	36322
OAK	36179
BAL	36060
NYY	36023
KCR	35987
TEX	35750
WSN	35318
TOR	35051
ATL	35050
PHI	34972
TBR	34666
MIN	32808
CLE	32358

```
# 2014
# Summary of attendance in seanson 2016 with different opponent.
# Group by different opponents and arrange the attendance from high to low
baseball_opp14 <- baseball_2014 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance))
baseball_opp14 <- arrange(baseball_opp14, desc(avg_attendance))

ggplot(baseball_opp14, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2014") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2014

kable(baseball_opp14)

Opp	avg_{-}	_attendance
KCR		37687
HOU		37362
NYY		37351
CHC		37206
CLE		37015
TOR		37011
SEA		36787
DET		36613
CIN		36538
MIN		36339
ATL		36240
BAL		36183
MIL		36138
CHW		36056
OAK		35847
TBR		35818
LAA		35484
TEX		34523

```
# 2013
# Summary of attendance in seanson 2013 with different opponent.
# Group by different opponents and arrange the attendance from high to low
baseball_opp13 <- baseball_2013 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance))
```

```
baseball_opp13 <- arrange(baseball_opp13, desc(avg_attendance))

ggplot(baseball_opp13, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2013")+
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2013

kable(baseball_opp13)

avg_attendance
37737
37735
37005
36826
36348
36024
35720
35459
35174
35036
34119

Opp	avg_attendance
DET	33993
TEX	33561
PHI	33545
KCR	33302
HOU	32664
MIN	30794
OAK	29069

```
# Summary of attendance in 6 seansons with different opponent.
# Group by different opponents and arrange the attendance from high to low
baseball_opp <- baseball %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance),digits
baseball_opp <- arrange(baseball_opp, desc(avg_attendance))

ggplot(baseball_opp, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") + ggtitle("Average Attendance vs. Opponents in Six Seasons") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```


kable(baseball_opp)

$avg_attendance$
38142
37542
37263
37012
37005
36936
36843
36817
36538
36466
36407
36386
36313
36138
36104
35927
35804
35622
35534
35464
35417
35318
35227
35044
34977
34699
34241

Conclusion: Based on the bar plots, different opponents obviously affect the average attendance of the baseball game.

```
# How the rain/snowy/windy days will affect the attendance of Red Sox, since base game is hypaethral.
baseball_SpecialWeather<- baseball11 %>% select(Gm., Year, DATE, Tm, Time, Attendance, SNOW, PRCP)%>% filt
# The rain influences on Red Sox attendence
plot1<-ggplot(baseball_SpecialWeather, aes(PRCP, Attendance)) +</pre>
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Precipitation vs. Attendance (2013-2017)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Precipitation on Game Day (mm)") +
  ylab("Total Attendance")
# The snow influences on Red Sox attendence
plot2<-ggplot(baseball_SpecialWeather, aes(SNOW, Attendance)) +</pre>
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Snow vs. Attendance (2013-2017)") +
  theme(axis.title.x = element text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
```

```
theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Whether snow on Game Day ") +
    ylab("Total Attendance")

plot1
```

Precipitation vs. Attendance (2013–2017)

plot2

Snow vs. Attendance (2013–2017)

Conclusion: Rain has little influcences on Red Sox attendence. But snow has obvious influcences on attendence ,because most baseball games occur before the winter.

```
baseball_SpecialWeather17 <- baseball_SpecialWeather %% filter(Year == 2017)
baseball_SpecialWeather16 <- baseball_SpecialWeather "%" filter(Year == 2016)
baseball_SpecialWeather15 <- baseball_SpecialWeather %% filter(Year == 2015)
baseball_SpecialWeather14 <- baseball_SpecialWeather "%" filter(Year == 2014)
baseball_SpecialWeather13 <- baseball_SpecialWeather "%" filter(Year == 2013)
# Rain influences on Red Sox attendence in 2017:
plot17<-ggplot(baseball_SpecialWeather17, aes(PRCP, Attendance)) +</pre>
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Precipitation vs. Attendance (2017)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element text(hjust = 0.5, size = 16)) +
  xlab("Precipitation on Game Day (mm)") +
  ylab("Total Attendance")
# The rain influences on Red Sox attendence in 2016:
plot16<-ggplot(baseball_SpecialWeather16, aes(PRCP, Attendance)) +</pre>
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Precipitation vs. Attendance (2016)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
```

```
theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Precipitation on Game Day (mm)") +
  ylab("Total Attendance")
# The rain influences on Red Sox attendence in 2015:
plot15<-ggplot(baseball_SpecialWeather15, aes(PRCP, Attendance)) +</pre>
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Precipitation vs. Attendance (2015)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Precipitation on Game Day (mm)") +
  ylab("Total Attendance")
# The rain influences on Red Sox attendence in 2014:
plot14<-ggplot(baseball_SpecialWeather14, aes(PRCP, Attendance)) +</pre>
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Precipitation vs. Attendance (2014)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Precipitation on Game Day (mm)") +
  ylab("Total Attendance")
# The rain influences on Red Sox attendence in 2013:
plot13<-ggplot(baseball_SpecialWeather13, aes(PRCP, Attendance)) +</pre>
  geom_point(color = "blue") +
  geom_smooth(method = "lm", color = "red") +
  ggtitle("Precipitation vs. Attendance (2013)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Precipitation on Game Day (mm)") +
  ylab("Total Attendance")
plot17
```

Precipitation vs. Attendance (2017)

Precipitation vs. Attendance (2016)

Precipitation vs. Attendance (2015)

Precipitation vs. Attendance (2013)

Basketball

```
bball12 <- read.csv("attend2012.csv")</pre>
bball13 <- read.csv("attend2013.csv")</pre>
bball14 <- read.csv("attend2014.csv")</pre>
bball15 <- read.csv("attend2015.csv")</pre>
bball16 <- read.csv("attend2016.csv")</pre>
bball <- rbind(bball12, bball13, bball14, bball15, bball16)
bball$Year <- factor(bball$Year)</pre>
colnames(bball)[3] <- "Opp"</pre>
bball$0pp <- factor(bball$0pp)</pre>
write.csv(bball, file = "bball.csv")
#View(bball)
ggplot(bball, mapping = aes(x = TAVG, y = Attendance)) +
  geom_point(mapping = aes(color = Year)) +
  geom_smooth() +
  ggtitle("Average Temperature vs. Attendance (2012 - 2017)") +
  theme(axis.title.x = element_text(size = 14)) +
  theme(axis.title.y = element_text(size = 14)) +
  theme(plot.title = element_text(hjust = 0.5, size = 16)) +
  xlab("Average Temperature on Game Day (°F)") +
  ylab("Attendance")
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

- ## Warning: Removed 36 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 36 rows containing missing values (geom_point).

Average Temperature vs. Attendance (2012 – 2017)

Average Temperature on Game Day (°F)

```
# 2017 Season
bball_2017 <- bball %>% filter(Year == 2017)
# Relationship between average temperature with attendance of season 2017
ggplot(bball_2017, aes(TAVG, Attendance)) +
    geom_point(color = "blue") +
    geom_smooth(method = "lm", color = "red") +
    ggtitle("Average Temperature vs. Attendance (2017)") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Average Temperature on Game Day (°F)") +
    ylab("Attendance")
```

Average Temperature vs. Attendance (2017)


```
# 2016 Season
bball_2016 <- bball %>% filter(Year == 2016)
# Relationship between average temperature with attendance of season 2016
ggplot(bball_2016, aes(TAVG, Attendance)) +
   geom_point(color = "blue") +
   geom_smooth(method = "lm", color = "red") +
   ggtitle("Average Temperature vs. Attendance (2016)") +
   theme(axis.title.x = element_text(size = 14)) +
   theme(axis.title.y = element_text(size = 14)) +
   theme(plot.title = element_text(hjust = 0.5, size = 16)) +
   xlab("Average Temperature on Game Day (°F)") +
   ylab("Attendance")
```

Average Temperature vs. Attendance (2016)


```
# 2015 Season
bball_2015 <- bball %>% filter(Year == 2015)
# Relationship between average temperature with attendance of season 2015
ggplot(bball_2015, aes(TAVG, Attendance)) +
   geom_point(color = "blue") +
   geom_smooth(method = "lm", color = "red") +
   ggtitle("Average Temperature vs. Attendance (2015)") +
   theme(axis.title.x = element_text(size = 14)) +
   theme(axis.title.y = element_text(size = 14)) +
   theme(plot.title = element_text(hjust = 0.5, size = 16)) +
   xlab("Average Temperature on Game Day (°F)") +
   ylab("Attendance")
```

Average Temperature vs. Attendance (2015)


```
# 2014 Season
bball_2014 <- bball %>% filter(Year == 2014)
# Relationship between average temperature with attendance of season 2014
ggplot(bball_2014, aes(TAVG, Attendance)) +
   geom_point(color = "blue") +
   geom_smooth(method = "lm", color = "red") +
   ggtitle("Average Temperature vs. Attendance (2014)") +
   theme(axis.title.x = element_text(size = 14)) +
   theme(axis.title.y = element_text(size = 14)) +
   theme(plot.title = element_text(hjust = 0.5, size = 16)) +
   xlab("Average Temperature on Game Day (°F)") +
   ylab("Attendance")
```

Average Temperature vs. Attendance (2014)

Average Temperature on Game Day (°F)

```
# 2013 Season
bball_2013 <- bball %>% filter(Year == 2013)
# Relationship between average temperature with attendance of season 2013

bball_2013$TAVG <- (bball_2013$TMAX + bball_2013$TMIN)/2
ggplot(bball_2013, aes(TAVG, Attendance)) +
    geom_point(color = "blue") +
    geom_smooth(method = "lm", color = "red") +
    ggtitle("Average Temperature vs. Attendance (2013)") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Average Temperature on Game Day (°F)") +
    ylab("Attendance")</pre>
```

Average Temperature vs. Attendance (2013)

Conclusion: There are no evident relationship between the average temperature and the Celtics attendace of these six seasons game.

```
# 2017
# Summary of attendance in seanson 2017 with different opponent.
# Group by different opponents and arrange the attendance from high to low
bball_opp17 <- bball_2017 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance),,digiball_opp17 <- arrange(bball_opp17, desc(avg_attendance))

ggplot(bball_opp17, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2017") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2017

knitr::kable(bball_opp17)

Opp	avg_	_attendance
Atlanta		18624
Brooklyn		18624
Charlotte		18624
Chicago		18624
Cleveland		18624
Houston		18624
Indiana		18624
LA		18624
Los Angeles		18624
Miami		18624
Milwaukee		18624
Minnesota		18624
New Orleans		18624
New York		18624
Orlando		18624
Philadelphia		18624
Phoenix		18624
Portland		18624
Toronto		18624
Utah		18624
Washington		18624
Detroit		18188

```
# 2016
# Summary of attendance in seanson 2016 with different opponent.
# Group by different opponents and arrange the attendance from high to low
bball_opp16 <- bball_2016 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance),digit
bball_opp16 <- arrange(bball_opp16, desc(avg_attendance))

ggplot(bball_opp16, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2016") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2016

knitr::kable(bball_opp16)

Орр	avg_attendance
Brooklyn	18624
Charlotte	18624
Chicago	18624
Dallas	18624
Golden State	18624
Houston	18624
Indiana	18624

Opp	avg_attendance
Los Angeles	18624
Miami	18624
New Orleans	18624
New York	18624
Oklahoma City	18624
Phoenix	18624
Portland	18624
Sacramento	18624
San Antonio	18624
Toronto	18624
Milwaukee	18390
Memphis	18207
LA	18186
Orlando	18176
Denver	17780
Detroit	17753
Utah	17680

```
# 2015
# Summary of attendance in seanson 2016 with different opponent.
# Group by different opponents and arrange the attendance from high to low
bball_opp15 <- bball_2015 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance),digit
bball_opp15 <- arrange(bball_opp15, desc(avg_attendance))

ggplot(bball_opp15, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2015") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2015

knitr::kable(bball_opp15)

Opp	avg_	_attendance
Sacramento *		18660
Cleveland		18624
Detroit		18624
Golden State		18624
LA		18624
Milwaukee		18624
Minnesota		18624
Orlando		18624
Washington		18624
Brooklyn		18361
Indiana		18252
Miami		17995
Chicago		17971
Dallas		17943
Philadelphia		17772
New York		17762
Toronto		17761
Houston		17675
Charlotte		17672
San Antonio		17461
Memphis		17135
Atlanta		16978
New Orleans		16905
Utah		16354

Opp	avg_attendance
Denver	15126

```
# 2014
# Summary of attendance in seanson 2016 with different opponent.
# Group by different opponents and arrange the attendance from high to low
bball_opp14 <- bball_2014 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance),,digi)
bball_opp14 <- arrange(bball_opp14, desc(avg_attendance))

ggplot(bball_opp14, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2014") +
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2014

knitr::kable(bball_opp14)

Opp	avg_attendance
Charlotte	18624
Cleveland	18624
Los Angeles	18624
Miami	18624
0	18624 18624

O		
Орр	avg_	_attendance
New Orleans		18624
Philadelphia		18624
Sacramento		18624
Brooklyn		18517
Chicago		18414
New York		18306
Golden State		18155
Indiana		17873
Oklahoma City		17834
Houston		17750
Orlando		17694
Phoenix		17675
Washington		17670
Dallas		17650
San Antonio		17522
Toronto		17386
Detroit		17247
Minnesota		17042
Portland		16692
Atlanta		16605

```
# 2013
# Summary of attendance in seanson 2013 with different opponent.
# Group by different opponents and arrange the attendance from high to low
bball_opp13 <- bball_2013 %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance),digit
bball_opp13 <- arrange(bball_opp13, desc(avg_attendance))

ggplot(bball_opp13, aes(Opp, avg_attendance)) +
    geom_bar(stat = "identity") +
    ggtitle("Average Attendance vs. Opponents in 2013")+
    theme(axis.title.x = element_text(size = 14)) +
    theme(axis.title.y = element_text(size = 14)) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    theme(plot.title = element_text(hjust = 0.5, size = 16)) +
    xlab("Opponent") +
    ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in 2013

knitr::kable(bball_opp13)

Opp	avg_	_attendance
Atlanta		18624
Brooklyn		18624
Chicago		18624
Golden State		18624
Houston		18624
Indiana		18624
Los Angeles		18624
Miami		18624
New Orleans		18624
Orlando		18624
Phoenix		18624
Portland		18624
Sacramento		18624
Toronto		18624
Washington		18396
New York		18242
Cleveland		18191
LA		18106
Charlotte		18093
Memphis		17972
Denver		17944
Detroit		17862
Milwaukee		17636
Utah		17130

Opp	avg_attendance
Minnesota	17071

```
# Summary of attendance in 6 seansons with different opponent.
# Group by different opponents and arrange the attendance from high to low
bball_opp <- bball %>% group_by(Opp) %>% summarise(avg_attendance = round(mean(Attendance),digits = 0))
bball_opp <- arrange(bball_opp, desc(avg_attendance))

ggplot(bball_opp, aes(Opp, avg_attendance)) +
   geom_bar(stat = "identity") + ggtitle("Average Attendance vs. Opponents in Six Seasons") +
   theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
   theme(axis.title.x = element_text(size = 14)) +
   theme(axis.title.y = element_text(size = 14)) +
   theme(plot.title = element_text(hjust = 0.5, size = 16)) +
   xlab("Opponent") +
   ylab("Average Attendance")</pre>
```

Average Attendance vs. Opponents in Six Seasons

knitr::kable(bball_opp)

Opp

Sacramento *
Los Angeles
Sacramento
Brooklyn
Golden State
Miami

```
Chicago
Washington
Milwaukee
Indiana
LA
Orlando
Oklahoma City
Philadelphia
New Orleans
New York
Houston
Phoenix
Portland
Charlotte
Dallas
Toronto
Minnesota
San Antonio
Memphis
Detroit
Utah
Atlanta
Denver
Conclusion: Oppo nents have slight but not very significant influences on Celtics Attendance. Some weak opponents, like
```

```
basketball_WeatherAll<-read.csv("bball.csv")</pre>
basketball_SpecialWeather<- basketball_WeatherAll %>% select(Year,Date, Attendance,AWND,PRCP)
# The snow influences on Celtics attendence
plot1<-ggplot(basketball_SpecialWeather, aes(PRCP, Attendance)) +</pre>
  geom_point(mapping=aes(color = Year)) +
  geom_smooth() +
  ggtitle("Precipitation vs. Attendance (2013-2017)") +
  theme(plot.title = element text(hjust = 0.5)) +
  xlab("Precipitation on Game Day (mm)") +
  ylab("Total Attendance")
# The wind influences on Celtics attendence
plot2<-ggplot(basketball_SpecialWeather, aes(AWND,Attendance)) +</pre>
  geom_point(mapping=aes(color = Year)) +
  geom_smooth() +
  ggtitle("Wind vs. Attendance (2013-2017)") +
  theme(plot.title = element_text(hjust = 0.5)) +
  xlab("Wind on Game Day ") +
  ylab("Total Attendance")
plot1
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

 $\frac{\text{Opp}}{\text{Cleveland}}$

$geom_smooth()` using method = 'loess' and formula 'y ~ x'$

plot2

Conclusion: Rainy and windy weathers almost have no influences on Celtics Attendence. Since NBA games are totally in door.