Linear Combinations

• Given vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \cdots, c_p ,

$$c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p$$

is called a **linear combination** of v_1, \dots, v_p with weights or coefficients c_1, \dots, c_p .

 The weights in a linear combination can be any real numbers, including zero.

From Matrix Equation to Vector Equation

Recall the matrix equation of a linear system:

Person ID Weight Height Is_smoking Life-span						[60	5.5	1]	$\lceil x_1 \rceil$		[66]	
1	60kg	5.5ft	Yes (=1)	66		60 65 55	5.0	0	$ x_2 $	=	74	
2	65kg	5.0ft	No (=0)	74		L55	6.0	1	$[x_3]$		[78]	
3	55kg	6.0ft	Yes (=1)	78			1		X	_	h	
							$\boldsymbol{\Lambda}$		Λ		U	

• A matrix equation can be converted into a vector equation:

$$\begin{array}{c}
\bullet \quad \begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix} \\
\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}
\end{array}$$

Existence of Solution for Ax = b

Consider its vector equation:

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

• When does the solution exist for $A\mathbf{x} = \mathbf{b}$?

Span

- **Definition**: Given a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$, Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is defined as the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$.
- That is, Span $\{v_1, \dots, v_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 \cdots + c_p\mathbf{v}_p$$

with arbitrary scalars c_1, \dots, c_p .

• Span $\{v_1, \dots, v_p\}$ is also called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by v_1, \dots, v_p .