# 习题讲解

Hw4 – Hw6, Quiz 2

王彤 wangt\_@zju.edu.cn

# 触发器

- SR锁存器:或非门/与非门S<sub>D</sub>=R<sub>D</sub>=1
- 触发器:

• SR: 
$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$

• JK: 
$$Q^* = JQ' + K'Q$$

• T: 
$$Q^* = TQ' + T'Q$$

• D: 
$$Q^* = D$$

• 触发方式: 电平触发、边沿触发、脉冲触发:

# 触发器

- SR锁存器:或非门/与非门S<sub>D</sub>=R<sub>D</sub>=1
- 触发器: SR、JK、T、D特性方程
- 触发方式:
  - 电平触发:
- $\begin{array}{c|c}
  D \longrightarrow ID & Q \\
  CLK \longrightarrow CI & Q'
  \end{array}$



• 边沿触发:



• 脉冲触发:



• 脉冲触发JK触发器: CLK=1期间只可能翻转一次(P223)

5.2 画出图P5.2由或非门组成的SR锁存器输出端Q、Q'的电压波形,输入端S<sub>D</sub>、 $R_D$ 的电压波形如图中所示。





5.3 图P5.3所示为一个防抖动输出的开关电路。当拨动开关S时,由于开关触点接通瞬间发生振颤, $S_{D}$ '和 $R_{D}$ '的电压波形如图中所示,试画出Q、Q'端对应的电

压波形。





5.4 在图P5.4所示电路中,若CLK、S、R的电压波形如图中所示,试画出Q和Q'端与之对应的电压波形。假定触发器的初始状态为Q=0。



电平触发SR触发器



5.7 已知边沿触发器输入端D和时钟信号CLK的电压波形如图P5.7中所示,试画出Q和Q'端对应的电压波形。假定触发器的初始状态为Q=0。





5.8 已知边沿触发D触发器各输入端的电压波形如图P5.8中所示,试画出Q和Q'

端对应的电压波形。





5.10 若脉冲触发SR触发器各输入端的电压波形如图P5.10中所给出,试画出Q、Q′端对应的电压波形。设触发器的初始状态为Q=0。





5.16 在脉冲触发T触发器中,已知T、CLK端的电压波形如图P5.16中所示,试画出Q、Q′端对应的电压波形。设触发器的初始状态为Q=0。





5.20 试画出图P5.20电路在图中所示CLK、RD'信号作用下Q1、Q2、Q3的输出电压波形,并说明Q1、Q2、Q3输出信号的频率与CLK信号频率之间的关系。



- 时序逻辑电路设计
  - 驱动方程、特性方程、输出方程
  - 状态转换表、状态转换图、状态机流程图、时序图
  - 电路设计(课本6.4节)
    - 利用触发器设计电路
    - 任意进制计数器(LD/R<sub>D</sub>)
    - 序列信号发生器
    - 顺序脉冲发生器
  - 自启动问题

1. 如图所示的时序电路, A为输入, Y为输出。写出其驱动方程、状态方程和输出方程, 以真值表的形式列出状态转换表, 画出电路的状态转移图。

首先由电路可写出驱动方程:

$$\begin{cases} J_1 = K_1 = 1 \\ J_2 = K_2 = A \oplus Q_1 \end{cases}$$

将上述驱动方程带入JK触发器的特性

方程(Q\* = JQ'+K'Q),得到状态方程:

$$\begin{cases}
Q_1^* = Q_1' \\
Q_2^* = A \oplus Q_1 \oplus Q_2
\end{cases}$$

由电路图化简,得到输出方程:

$$\mathbf{Y} = A\mathbf{Q}_1\mathbf{Q}_2 + A'\mathbf{Q}_1'\mathbf{Q}_2'$$



误: 
$$\mathbf{Q}_2^* = \mathbf{A} \oplus \mathbf{Q_1} \cdot \mathbf{Q_1}' + (\mathbf{A} \oplus \mathbf{Q_1})' \cdot \mathbf{Q_1}$$

1. 如图所示的时序电路, A为输入, Y为输出。写出其驱动方程、状态方程和输出方程, 以真值表的形式列出状态转换表, 画出电路的状态转移图。

首先由电路可写出驱动方程:

$$\begin{cases} J_1 = K_1 = 1 \\ J_2 = K_2 = A \oplus Q_1 \end{cases}$$

将上述驱动方程带入JK触发器的特性

方程(Q\* = JQ'+K'Q),得到状态方程:

$$\begin{cases}
Q_1^* = Q_1' \\
Q_2^* = A \oplus Q_1 \oplus Q_2
\end{cases}$$

由电路图化简,得到输出方程:

$$\mathbf{Y} = A\mathbf{Q}_1\mathbf{Q}_2 + A'\mathbf{Q}_1'\mathbf{Q}_2'$$





2. 4位双向移位寄存器74LS194A如左图所示,其功能表如右表所示。使用两片74LS194A设计一个8位双向移位寄存器。



| R' <sub>D</sub> | S <sub>1</sub> | S <sub>0</sub> | 工作状态 |
|-----------------|----------------|----------------|------|
| 0               | Χ              | Χ              | 置零   |
| 1               | 0              | 0              | 保持   |
| 1               | 0              | 1              | 右移   |
| 1               | 1              | 0              | 左移   |
| 1               | 1              | 1              | 并行输入 |

2.

解:只需将其中一片的 $Q_3$ 接至另一片的 $D_{IR}$ 端,将另一片的 $Q_0$ 接至这一片的 $D_{IL}$ ,同时把两片的 $S_1$ 、 $S_2$ 、CLK和 $R_D'$ 分别并联就可以了。



3. 试分析左图的计数器在M=0和M=1时各为几进制。74160功能表如右所示。



| CLK | $R_D'$ | LD' | EF | P ET | 工作状态     |
|-----|--------|-----|----|------|----------|
| X   | 0      | Χ   | X  | Χ    | 置 0 (异步) |
| J   | 1      | 0   | X  | Χ    | 预置数(同步)  |
| X   | 1      | 1   | 0  | 1    | 保持(包括C)  |
| Χ   | 1      | 1   | X  | 0    | 保持(C=0)  |
| JL  | 1      | 1   | 1  | 1    | 计数       |

3. 试分析左图的计数器在M=0和M=1时各为几进制。74160功能表如右所示。



解:

M=1时,当电路进入 $Q_3Q_2Q_1Q_0$ =1001以后, LD′=0。下一个 CLK 到 达 时将  $D_3D_2D_1D_0$ =0100置入电路中,再从0100继续做加法计数。因此,电路在0100和1001这六个状态间循环,构成六进制计数器。

同理,在M=0的情况下,电路计到1001 后置入0010,形成八进制计数器。

误: M = 1: 八进制, M = 0: 六进制

☆ │ 由高到低: D₃D₂D₁D₀

4. 试用4位同步二进制计数器74LS161接成十二进制计数器,可以附加必要的 门电路。74LS161元件及其功能表如下所示。标明元件端口和输入输出端。



| ( | CLK | $R_D'$ | LD' | EP ET |   | 工作状态     |
|---|-----|--------|-----|-------|---|----------|
|   | Χ   | 0      | X   | X     | X | 置 0 (异步) |
|   | J   | 1      | 0   | X     | Χ | 预置数(同步)  |
|   | Χ   | 1      | 1   | 0     | 1 | 保持(包括C)  |
|   | Χ   | 1      | 1   | Х     | 0 | 保持(C=0)  |
|   | JL  | 1      | 1   | 1     | 1 | 计数       |

4. 试用4位同步二进制计数器74LS161接成十二进制计数器,可以附加必要的 门电路。74LS161元件及其功能表如下所示。标明元件端口和输入输出端。



#### 解:

此题有多种解法,例如可采用同步置数法,在电路计成 $Q_3Q_2Q_1Q_0=1011$ (十一)后译出LD'=0的信号,并在下一个CLK信号到达时置入0000就得到了十二进制计数器。

5. 试用两片同步十进制计数器74160设计一个同步三十一进制计数器。可以附加必要的门电路。74160功能表如下所示。标明元件端口和输入输出端。



#### 一、组合逻辑电路

设计一组合电路,输入为一个3位二进制数 $\mathbf{x} = \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$ ,输出 $\mathbf{y} = \mathbf{y}_2 \mathbf{y}_1 \mathbf{y}_0$ 的值为 $3\mathbf{x}$ 对8取模。

- 1. 用3线-8线译码器及门电路实现此电路。写出设计过程,画出电路图。
- 2. 用3线-8线译码器及适当的编码器实现此电路,要求不能外加其他器件,画出电路图。

#### 解:

| x <sub>2</sub> | $\mathbf{x}_1$ | $x_0$ | <b>y</b> <sub>2</sub> | $y_1$ | $y_0$ | <b>x</b> <sub>2</sub> | <b>x</b> <sub>1</sub> | $x_0$ | $y_2$ | $y_1$ | $y_0$ |
|----------------|----------------|-------|-----------------------|-------|-------|-----------------------|-----------------------|-------|-------|-------|-------|
|                | 0              |       |                       |       |       |                       |                       |       |       |       |       |
| 0              | 0              | 1     | 0                     | 1     | 1     | 1                     | 0                     | 1     | 1     | 1     | 1     |
| 0              | 1              | 0     | 1                     | 1     | 0     | 1                     | 1                     | 0     | 0     | 1     | 0     |
| 0              | 1              | 1     | 0                     | 0     | 1     | 1                     | 1                     | 1     | 1     | 0     | 1     |

#### 一、组合逻辑电路

$$y_0 = m_1 + m_3 + m_5 + m_7 = \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_5} \cdot \overline{m_7}$$

$$y_1 = m_1 + m_2 + m_5 + m_6 = \overline{m_1} \cdot \overline{m_2} \cdot \overline{m_5} \cdot \overline{m_6}$$

$$y_2 = m_2 + m_4 + m_5 + m_7 = \overline{m_2} \cdot \overline{m_4} \cdot \overline{m_5} \cdot \overline{m_7}$$



#### 一、组合逻辑电路



#### 二、时序逻辑电路

用两片如图所示的十六进制同步加法计数器74LS161及其他必要的器件设计一个可变模同步二进制计数器。当模式控制M=0时,为60进制计数器; 当M=1时,为100进制计数器,要求输出不能有毛刺。请画出电路图。

74LS161功能表如下表所示,Q3Q2Q1Q0为输出端,D3D2D1D0为置数数据输入端,C为进位输出,在计数至15时输出一个时钟周期的高电平。



| CLK      | R <sub>D</sub> ' | LD' | EP | ET | 工作状态      |
|----------|------------------|-----|----|----|-----------|
| ×        | 0                | ×   | ×  | ×  | 置零        |
| <b>†</b> | 1                | 0   | ×  | ×  | 预置数       |
| ×        | 1                | 1   | 0  | 1  | 保持        |
| ×        | 1                | 1   | ×  | 0  | 保持(但 C=0) |
| <u></u>  | 1                | 1   | 1  | 1  | 计数        |

二、时序逻辑电路

解:

实现任意进制计数器:置零法、置数法

输出没有毛刺:对于有异步置零输入端的计数器,电路一进入SM状态后立即又被置成S0状态,所以SM状态仅在极短的瞬时出现,在稳定的状态循环中不包括SM状态。(课本P295)

M = 0: 60进制, 计数满00111011(十进制59)时置数

M=1: 100进制, 计数满01100011(十进制99)时置数

置数信号  $\overline{LD} = \overline{\overline{M}Q_{21}Q_{20}Q_{13}Q_{11}Q_{10}} \cdot \overline{MQ_{22}Q_{21}Q_{11}Q_{10}}$ 

#### 二、时序逻辑电路

置数信号 
$$\overline{LD} = \overline{\overline{M}Q_{21}Q_{20}Q_{13}Q_{11}Q_{10}} \cdot \overline{MQ_{22}Q_{21}Q_{11}Q_{10}}$$



#### 二、时序逻辑电路

D13D12D11D10 = 0110

D23D22D21D20 = M'M10 = 0110(M = 1) / 1010(M = 0)



# 作业成绩

• 作业成绩:

10分 = 提交基本分(5/6分)+正确率得分

• 作业补交:

期末考试前

只能获得正确率得分部分

• 学在浙大提交:

带批改标记和成绩得分, 拍照上传到学在浙大对应模块

# 组合逻辑

用两个8选1数据选择器74LS151及适当门电路设计一个数值比较器, 比较两个二进制数A(a1a0)和B(b1b0),能分别给出A-B≥2,B-A≥2 和|A-B|<2的输出信号。

要求: 1)写出真值表; 2)给出函数表达式; 3)并画出电路图



# 时序逻辑

有4\*4ROM和计数器构成的逻辑电路图如下图,其功能为序列发生器,请写出其Q[3:0]端循环序列。图中数据DATA为2进制数,假定初始状态为X0=0000。



# 习题讲解

Hw4 – Hw6, Quiz 2

王彤 wangt\_@zju.edu.cn