

Introduction & Problem Statement

- The Challenge: develop a model capable of accurately identifying different types of chocolates from images.
- Objective: achieve high classification accuracy on a diverse dataset of chocolate images, participating in the 'Deep Learning' Kaggle challenge.
- Constraints: Max 12M parameters, No pre-trained models No external data
- Dataset
 - 270 images (90 training images + 180 augmented images)
 - 180 testing
 - 7 background types
 - 13 types of chocolates

Input Image

Prediction

Model Architecture & Design Decisions

Technical Architecture

AttentionUNet

- Attention Gates: Focus on chocolates, suppress background
- Skip Connections: Preserve spatial details
- BCEDiceLoss: Handle class imbalance

Watershed Algorithm

- Separate touching chocolates
- Tuned parameters (min_distance=10, min_size=300)

FeatureExtractor

- 5-block CNN backbone
- Skip connection (block 3→5)
- Global avg pooling + FC head
- LabelSmoothingLoss

EPFL

Pipeline in Action

Stage 1: Segmentation (Binary mask + Watershed separation)

Stage 2: Classification (Individual chocolate recognition)

Region 2:

Comtesse: 0.82

Jelly White: 0.07

Region 1:

Passion au lait: 0.93

Region 3:

Tentation noir: 0.77

Triangolo: 0.07

Region 4:

Tentation noir: 0.91

Triangolo: 0.02

Final Counts (13 chocolates detected "almost" perfectly)

Main Results

- Segmentation Dice Score: 98%
- Classification Accuracy: 97%
- Total Parameters:

Strengths & Performance

- Robust Segmentation
 - Handles complex backgrounds
 - Separates touching chocolates
- Accurate Counting
 - Very good detection in validation set

Passion au lait

Arabia

Stracciatella

Stracciatella

Passion au lait

Arabia

Strengths &

Tentation noir

Comtesse

Passion au lait

Watershed Mask

Conclusion & Future Work

- Implemented a two-stage pipeline for chocolate image recognition:
 - Stage 1: Segmentation with AttentionUNet + watershed for accurate detection.
 - Stage 2: Classification using a custom CNN with regularization and skip connections.
- Achieved high segmentation accuracy and robust classification under a 12M parameter limit.
- Design effectively handles small objects, occlusions, and varied backgrounds.

Improvements:

- Data augmentation (Copy-paste, on specific types)
- Watershed improvement for Amandina

Image Analysis and Pattern Recognition

Detailed Model Architectures

- Objective: Improve U-Net's ability to identify diverse chocolate regions & maintain image-mask alignment.
- Method:
 - Geometric (Paired):
 - Random Horizontal/Vertical Flips
 - Random Rotation
 - Photometric (Image Only):
 - Color Jitter (Brightness, Contrast, Saturation)
 - Sizing & Final (Paired):
 - Aspect-Ratio Preserving Resize (smaller dim to 224px)
 - ToTensor, Normalize (Image only)
- Impact: Enhanced U-Net invariance to view/lighting; consistent ground truth.

Stage 2: Classification (FeatureExtractor Training on Crops)

- Objective: Make classifier robust to crop variations from Stage 1 & diverse chocolate appearances.
- Method: Initial Sizing: Aspect-Ratio Preserving Resize
 - Geometric:
 - Random Rotation
 - Random Resized Crop
 - Random Horizontal/Vertical Flips
 - Photometric:
 - Color Jitter
 - Random Grayscale
 - Random Gaussian Blur
 - Final: ToTensor, Normalize
- Impact: Classifier generalizes better from varied/imperfect crops; learns core features

Image Analysis and Pattern Recognition

Future Consideration: Copy-Paste Augmentation (for Stage 1 U-Net)

Future Consideration: Copy-Paste Augmentation (for Stage 1 U-Net)

- Concept (Ghiasi et al., 2021): Randomly paste reference chocolates (with masks) onto training images.
- Potential Benefits:
 - Increase instance density & variety.
 - Improve occlusion handling.
 - Better balance class contexts.
- **Implementation**: Modify AugmentedChocolateBinarySegmentationDat aset to composite reference stamps before other augmentations.