Parameters, Point Estimates, & Standard Errors Table

Population Parameter	Point Estimate		SE for Confidence Intervals	SE for Hypothesis Tests	
μ	\overline{x}	$\frac{\sigma}{\sqrt{n}}$	$\frac{s}{\sqrt{l}}$	1	
$\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$\sqrt{\frac{s_1^2}{n_1}}$ +	$\frac{s_2^2}{n_2}$ 2	
$\mu_{ extit{diff}}$	\overline{x}_{diff}	$\frac{\sigma_{diff}}{\sqrt{n}}$	Sdif √I	<u>f</u>	
р	p	$\sqrt{\frac{p(1-p)}{n}}$	$\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$	$\sqrt{\frac{p_0(1-p_0)}{n}}$ 3	
$p_1 - p_2$	$\widehat{p}_1 - \widehat{p}_2$	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_1}}$	$\sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}}$	$\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n_1} + \frac{\widehat{p}(1-\widehat{p})}{n_2}} 4$	

²When using t-test, if you think the population SD's are similar, can use pooled SD estimate $s_{pooled}^2 = \frac{s_1^2 \times (n_1-1) + s_2^2 \times (n_2-1)}{n_1+n_2-2}$ in place of s_1^2 and s_2^2

 $^{^{3}}p_{0}$ is the null value from $H_{0}: p = p_{0}$

 $^{^4\}widehat{\rho}$ is the pooled estimate $\frac{\widehat{\rho}_1n_1+\widehat{\rho}_2n_2}{n_1+n_2}=\frac{\text{total }\#\text{ of successes in both groups}}{n_1+n_2},$ since under $H_0:\rho_1=\rho_2$

Second decimal place of Z										
0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	Z
0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	-3.4
0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	-3.3
0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007	-3.2
0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010	-3.1
0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013	-3.0
0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019	-2.9
0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026	-2.8
0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	-2.7
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0043	0.0044	0.0045	0.0047	-2.6
0.0048	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	-2.5
0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082	-2.4
0.0084	0.0087	0.0089	0.0091	0.0094	0.0096	0.0099	0.0102	0.0104	0.0107	-2.3
0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139	-2.2
0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179	-2.1
0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228	-2.0
0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287	-1.9
0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359	-1.8
0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446	-1.7
0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548	-1.6
0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668	-1.5
0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	-1.4
0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3
0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2
0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357	-1.1
0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	-1.0
0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841	-0.9
0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119	-0.8
0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420	-0.7
0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743	-0.6
0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085	-0.5
0.3121	0.3156	0.3192	0.3228	0.3264	0.3300	0.3336	0.3372	0.3409	0.3446	-0.4
0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	0.3783	0.3821	-0.3
0.3859	0.3897	0.3936	0.3974	0.4013	0.4052	0.4090	0.4129	0.4168	0.4207	-0.2
0.4247	0.4286	0.4325	0.4364	0.4404	0.4443	0.4483	0.4522	0.4562	0.4602	-0.1
0.4641 *For 7	0.4681	0.4721	0.4761	0.4801	0.4840	0.4880	0.4920	0.4960	0.5000	-0.0

*For $Z \leq -3.50$, the probability is less than or equal to 0.0002.

				Seco	nd decim	nal place	of Z			
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

*For $Z \ge 3.50$, the probability is greater than or equal to 0.9998.

B.2 t Distribution Table

Figure B.1: Three t distributions.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	one tail	0.100	0.050	0.025	0.010	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	two tails	0.200	0.100	0.050	0.020	0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	df 1		6.31			63.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.89			6.96	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1.64	2.35	3.18	4.54	5.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.53	2.13	2.78	3.75	4.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.48				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1.44	1.94	2.45		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.89			3.50
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	1.40	1.86			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1.38	1.83	2.26	2.82	3.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	1.36	1.80	2.20	2.72	3.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1.36	1.78	2.18	2.68	3.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1.35	1.77	2.16	2.65	3.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1.35	1.76	2.14	2.62	2.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	1.34	1.75	2.13	2.60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	1.34	1.75	2.12	2.58	2.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	1.33	1.74	2.11	2.57	2.90
$\begin{array}{ c cccccccccccccccccccccccccccccccccc$	18	1.33	1.73	2.10	2.55	2.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1.33	1.73	2.09	2.54	2.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1.33	1.72	2.09	2.53	2.85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	1.32	1.72	2.08	2.52	2.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	1.32	1.72	2.07	2.51	2.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	1.32	1.71	2.07	2.50	2.81
26 1.31 1.71 2.06 2.48 2.78 27 1.31 1.70 2.05 2.47 2.77 28 1.31 1.70 2.05 2.47 2.76 29 1.31 1.70 2.05 2.46 2.76	24	1.32	1.71	2.06	2.49	2.80
27 1.31 1.70 2.05 2.47 2.77 28 1.31 1.70 2.05 2.47 2.76 29 1.31 1.70 2.05 2.46 2.76	25	1.32		2.06	2.49	2.79
28 1.31	26	1.31	1.71	2.06	2.48	2.78
29 1.31 1.70 2.05 2.46 2.76	27	1.31	1.70	2.05	2.47	2.77
	28	1.31	1.70	2.05	2.47	2.76
30 1.31 1.70 2.04 2.46 2.75	29	1.31	1.70	2.05	2.46	2.76
	30	1.31	1.70	2.04	2.46	2.75

one tail	0.100	0.050	0.025	0.010	0.005
two tails	0.200	0.100	0.050	0.020	0.010
df 31	1.31	1.70	2.04	2.45	2.74
32	1.31	1.69	2.04	2.45	2.74
33	1.31	1.69	2.03	2.44	2.73
34	1.31	1.69	2.03	2.44	2.73
35	1.31	1.69	2.03	2.44	2.72
36	1.31	1.69	2.03	2.43	2.72
37	1.30	1.69	2.03	2.43	2.72
38	1.30	1.69	2.02	2.43	2.71
39	1.30	1.68	2.02	2.43	2.71
40	1.30	1.68	2.02	2.42	2.70
41	1.30	1.68	2.02	2.42	2.70
42	1.30	1.68	2.02	2.42	2.70
43	1.30	1.68	2.02	2.42	2.70
44	1.30	1.68	2.02	2.41	2.69
45	1.30	1.68	2.01	2.41	2.69
46	1.30	1.68	2.01	2.41	2.69
47	1.30	1.68	2.01	2.41	2.68
48	1.30	1.68	2.01	2.41	2.68
49	1.30	1.68	2.01	2.40	2.68
50	1.30	1.68	2.01	2.40	2.68
60	1.30	1.67	2.00	2.39	2.66
70	1.29	1.67	1.99	2.38	2.65
80	1.29	1.66	1.99	2.37	2.64
90	1.29	1.66	1.99	2.37	2.63
100	1.29	1.66	1.98	2.36	2.63
150	1.29	1.66	1.98	2.35	2.61
200	1.29	1.65	1.97	2.35	2.60
300	1.28	1.65	1.97	2.34	2.59
400	1.28	1.65	1.97	2.34	2.59
500	1.28	1.65	1.96	2.33	2.59
$\overline{}$	1.28	1.65	1.96	2.33	2.58

B.3 Chi-Square Probability Table

Figure B.2: Areas in the chi-square table always refer to the right tail.

Upper tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df 2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52
6	7.23	8.56	10.64	12.59	15.03	16.81	18.55	22.46
7	8.38	9.80	12.02	14.07	16.62	18.48	20.28	24.32
8	9.52	11.03	13.36	15.51	18.17	20.09	21.95	26.12
9	10.66	12.24	14.68	16.92	19.68	21.67	23.59	27.88
10	11.78	13.44	15.99	18.31	21.16	23.21	25.19	29.59
11	12.90	14.63	17.28	19.68	22.62	24.72	26.76	31.26
12	14.01	15.81	18.55	21.03	24.05	26.22	28.30	32.91
13	15.12	16.98	19.81	22.36	25.47	27.69	29.82	34.53
14	16.22	18.15	21.06	23.68	26.87	29.14	31.32	36.12
15	17.32	19.31	22.31	25.00	28.26	30.58	32.80	37.70
16	18.42	20.47	23.54	26.30	29.63	32.00	34.27	39.25
17	19.51	21.61	24.77	27.59	31.00	33.41	35.72	40.79
18	20.60	22.76	25.99	28.87	32.35	34.81	37.16	42.31
19	21.69	23.90	27.20	30.14	33.69	36.19	38.58	43.82
20	22.77	25.04	28.41	31.41	35.02	37.57	40.00	45.31
25	28.17	30.68	34.38	37.65	41.57	44.31	46.93	52.62
30	33.53	36.25	40.26	43.77	47.96	50.89	53.67	59.70
40	44.16	47.27	51.81	55.76	60.44	63.69	66.77	73.40
50	54.72	58.16	63.17	67.50	72.61	76.15	79.49	86.66