

Probability

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Department of Computer Science and Engineering

Probability

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Topics to be covered...

PES UNIVERSITY ONLINE

- Probability Basics
- Random variables
- Types of Random variables

Why should we learn Probability?

- Nothing in life is certain. In everything we do, we gauge the chances of successful outcomes.
- A probability provides a quantitative description of the chances or likelihoods associated with various outcomes
- It provides a bridge between descriptive and inferential statistics.
- Probability theory foundation for statistical inference

Probability

Probability:

Definition: Probability is a numerical index of the likelihood that a certain

event will occur.

Examples:

What is the probability that Good Friday will come on a Monday? What is the probability that Deepawali will come on a Friday?

Probability

Outcome: The result of a single trial of an experiment.

Ex: Getting Head or Tail is a result when you toss a coin.

Event: A collection of one or more outcomes of an experiment.

(or) A subset of a sample space is called an event.

Ex: Getting a sum as 6 when we roll dice.

 $A = \{(1,5),(2,4),(3,3),(4,2),(5,1)\}$

Sample Space: The set of all possible outcomes of an experiment is called the sample space for the experiment.

Ex : S={1,2,3,4,5,6}

Note: For any sample space, the **empty set** ϕ is an event, as is the **entire sample space**.

What is Probability?

- Probability is the way of expressing knowledge of belief that an event will occur on chance.
- The idea of probability is based on observation.
- Probability describes what happens over many, many trials.

<u>P</u>	robability Formula:
P(A) =	Number of favorable outcomes to A
	Total number of outcomes

Probability

Experiment	Outcomes	Event	Sample Space
Tossing a coin	Head, Tail	Getting a Head or Getting a Tail	S={Head, Tail}
Rolling a Die once	1, 2, 3, 4, 5 or 6	Getting an even number or Getting an odd number	S={1,2,3,4,5,6}
Taking a Test	A, B, C, D, E or F	Passing the Test	S={A,B,C,D,E,F}
Tossing a coin twice	(H,H),(H,T),(T,H),(T,T)	Getting at least one head Getting two tails	S={(H,H),(H,T), (T,H),(T,T)}
Rolling Dice		Dice add to 6	

Types of Probability

Subjective Probability

 Likelihood of a particular event estimated on the basis of individual intuition or some general information or some expert judgement.

Ex.: The probability that Yahoo will buy Google within the next 2 years is 0.1 or 10%.

The probability that RCB wins IPL next time is 0.8 or 80%.

Types of Probability

Objective Probability

The **relative possibility of occurrence** of an event defined as

Ex.: Let A = Getting 5 when you roll a die. P(A) = 1/6

Probability

Event Relations

The intersection of two events, A and B, is the event that both A and B occur when the experiment is performed and denoted by $A \cap B$.

Ex.: Let A= An even number turns up
$$A = \{2,4,6\}$$

$$B = \text{The number that turns up is divisible by 4}$$

$$B = \{4\}$$

$$A \cap B = \{4\}$$

If two events A and B are mutually exclusive, then $P(A \cap B)=0$.

Ex.: Drawing a king or an ace from a deck of cards.

The **complement of an event** A consists of all outcomes of the experiment that do not result in event A and written as A^c.

Probability

The Additive Rule for Unions

For any two events A and B, the probability of their union, P(AUB) is $P(AUB) = P(A) + P(B) - P(A \cap B)$

When two events A and B are mutually exclusive,

$$P(AUB) = P(A) + P(B)$$
 and $P(A \cap B) = 0$

Probability for Complement

For any event A

$$P(A^c) = 1 - P(A)$$

Probability

Independent Events

Two events A and B, said to be **independent** if the occurrence or non-occurrence of one of the events does not change the probability of the occurrence of the other event.

Ex.: Toss a fair coin twice.

Define A: head on first toss

B: head on second toss

P(A) does not change whether B happens or not.

Conditional Probability

Conditional Probability

The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$P(A|B) = P(A \cap B) / P(B)$$
 if $P(B) \neq 0$

Probability

Conditional Probability

Example : In a group of 100 sports car buyers, 40 bought alarm systems, 30 purchased bucket seats, and 20 purchased an alarm system and bucket seats. If a car buyer chosen at random bought an alarm system, what is the probability they also bought bucket seats?

A: Bought bucket seats

B: Bought alarm systems

$$P(A|B) = P(A|B) = P(A \cap B) / P(B) = 0.2 / 0.4 = 0.5 = 50\%$$

The probability that a buyer bought bucket seats, given that they purchased an alarm system, is 50%.

Mutually Exclusive Events

• The events A and B are said to be mutually exclusive if they have no outcomes in common.

Axioms of Probability

- 1. Let S be the sample space. Then P(S)=1
- 2. For any event A, $0 \le P(A) \le 1$.
- 3. If A and B are mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$.

More generally, if A1, A2, . . . are mutually exclusive events, then

$$P(A1 \cup A2 \cup \cdot \cdot \cdot) = P(A1) + P(A2) + \cdot \cdot \cdot$$

Axioms of Probability

• The probability that an event does not occur is 1 minus the probability that it does occur. (also called the complement of A)

Example: What is the probability of not rolling doubles?

$$P(\text{not rolling doubles}) = 1 - P(\text{doubles})$$

$$= 1 - 6/36$$

$$= 30/36$$

Example

PES UNIVERSITY ONLINE

1. Toss a fair coin twice. What is the probability of observing at least one head?

Basic Concepts

- An experiment is the process by which an observation (or measurement) is obtained.
- The set of all possible outcomes of an experiment is called sample space for the experiment.
- A subset of sample space is called an event.

Example:

Experiment: Record an age

A: person is 30 yearsold

B: person is older than 65

Basic Concepts

PES UNIVERSITY ONLINE

Sample space-Example

Example 1:

Tossing a coin.

The sample space is $S = \{H, T\}$. $E = \{H\}$ is an event.

Example 2

Tossing a die.

The sample space is $S = \{1, 2, 3, 4, 5, 6\}$. $E = \{2, 4, 6\}$ is an event, which can be described in words as "the number is even".

Basic Concepts

Event:

- The die toss:
 - -A: an odd number
 - -B: a number > 2

$$A = \{E_1, E_3, E_5\}$$

$$B = \{E_3, E_4, E_5, E_6\}$$

Probability

Do It Yourself!!!!

Example: In the process of tossing two coins.

- What is an experiment?
- What is an outcome?
- What is an event?
- What is a sample space?

Example: In rolling a six-sided die.

- What is an experiment?
- What is an outcome?
- What is an event?
- What is a sample space?

THANK YOU

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Department of Computer Science and Engineering