

Multi-Task Learning for Recognizing Customer Characteristics

DongHwan Lee

2023. 10. 26. Seminar

Contents

Research Objective

Method – People Counting

Experiment & Results

O4. Conclusion

Research Objective

Customer Characteristics Analysis

- My final goal is to build an integrated system for analyzing customer characteristics.
- This semester, I plan to implement each module. (Baseline construction and experimentation)

Age/Gender/Expression ··· Recognition

System Utilization Examples

- Sales can be improved by providing a shopping experience that can increase satisfaction.
- Store can be managed efficiently.

Method – People Counting

System Overview

- Detector is used to find specific objects in an image.
- Tracker is used for object tracking in a series of images.

Detector

 RetinaFace is robust on pose estimation under expression variations, illumination changes and occlusions. (The model uses the real-world dataset, WIDER FACE)

Tracker

• The Fast Discriminant Scale Space Tracker (=fDSST) is based on a correlation filter that handles scale changes in complex image sequences.

Data Association (1/2)

- Centroid algorithm
 - The center of bounding box

Data Association (2/2)

- ID Matching
 - T: Now frame objects, T-1: Previous frame objects

① Generate the cost matrix(=C)

T/T-1	* *	* *	
*	5	20	8
*	20	2	21
**	8	21	7

2 Find the minimum value index Row: [1, 0, 2], Column: [1, 0, 2]

	* *	* *	**
*	5	20	8
*	20	2	21
***	8	21	7

3 ID assignment

(Max_distance = 10) C[1,1] < 10? Yes, ID 1 C[0,0] < 10? Yes, ID 0 C[2,2] < 10? Yes, ID 2

Counting

- After crossing the line, the count increases.
 - Vertical line: using X coordinate, Horizontal line: using Y coordinate

Experiment & Result

Demonstration

- Real-time test results using pictures.
 - · It is necessary to consider distinguishing between photographs and human faces.

Experiments on Multiple Faces Dataset

- Experiments were conducted using public datasets.
- Missing ID and overlapping problem.

Method	DB (SPEVI)	Resolution (resize)	Total frames	Counting results (GT)
RetinaFace +	Montinas_fast	500×500	487	5 (3)
fDSST	Montinas_frontal	500×500	1276	27 (4)
	Montinas_turning	500×500	1006	20 (4)

Limitations (1/2)

- · Example of missing and duplicating.
- Red box: detection result, Green box: tracking result

Limitations (2/2)

- ID Matching (Occlusion)
 - T: Now frame objects, T-1: Previous frame objects

① Generate the cost matrix(=C)

T/T-1	* *	* *	***
*	8	20	7
*	20	2	21
**	6	21	5

2 Find the minimum value index Row: [1, 2, 0], Column: [1, 2, 2]

	* *	* *	
*	8	20	7
**	20	2	21
*	6	21	5

3 ID assignment

Improvement Method

- The previous method calculates the cost only by the distance between the two centroids.
 - Using diverse values for calculating costs.

Conclusion

Summary & Future Works

[Summary]

- My goal is to create an all-in-one system for analyzing customer characteristics.
- This semester, I plan to implement each module.
 - 1. People Counting Module (V)
 - 2. Age/Gender/Expression ··· Recognition Module

[Future Works]

Implement MTL module

Reference

[5page]

• 작가 macrovector 출처 Freepik

[8page]

• J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, "RetinaFace: Single-shot multi-level face localisation in the wild," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, pp. 5203-5212, Jun. 2020.

[9page]

- M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, "Accurate scale estimation for robust visual tracking," in Proc. Brit. Mach. Vis. Conf. (BMVC), Nottingham, UK, pp. 1-11, Sept. 2014.
- S. Liu, D. Liu, G. Srivastava, D. Połap, and M. Woźniak, "Overview and methods of correlation filter algorithms in object tracking," Complex & Intelligent Systems, vol. 7, no. 4, pp. 1895-1917, Jun. 2021.

[10page]

• J. C. Nascimento, A. J. Abrantes, and J. S. Marques, "An algorithm for centroid-based tracking of moving objects," in Proc. ICASSP99, Phoenix, AZ, USA, pp. 3305-3308, Mar. 1999.

[15page]

• E. Maggio, E. Piccardo, C. Regazzoni, and A. Cavallaro, "Particle PHD Filtering for Multi-Target Visual Tracking," in Proc. ICASSP07, Honolulu, HI, USA, pp. I-1101-I-1104, Apr. 2007.

Thank you