

Vision - Ambition

To enable:

- Neural safety through explainability.
- Explainability as a support of formal neural verification.
- End-users to communicate and implement inference controls.
- The creation of safe NN-based applications.

Vision - Ambition

End-users to communicate and implement inference controls

Neural safety through explainability

Explainabiltiy as an enabler of formal neural verification.

The creation of safe NN-based applications

WP3 WP1

Vision - Ambition

What it means to look inside the black box

Explainability

Understanding reasoning behind each decision

Source: PwC

Concretely - Safeguards

- Can we ensure that the model does not contradict a medical fact?
- Can we ensure a chatbot is not outputting a racist statement?
- How software developers can program the safeguards into the model?

More Formally

 O1: Develop a novel conceptual/symbolic safeguard mechanism for neuro-symbolic platforms.

EnnCore will pioneer the use of neuro-symbolic architectures and explainability/interpretability mechanisms to support end-users specifying a conceptual safeguard core to neural-based Al systems.

Tasks

 T2.1: Systematic analysis of neural interpretability methods.

• <u>T2.2:</u> Design and implementation of the neurosymbolic safeguard.

• T2.3: Evaluation.

Runs from: M4-M30

Neural safety through explainability

Explainability

Semantic controls

Semantic probing

Semantic finetuning

Architectural controls

Disentangled encodings

Synthetic Datasets

Information Theoretical Asps.

Formal Software Verification

Embeddings visualisation

Safety Reports

Safety Specs

Motivational Scenario

#1: Development of novel semantic probing/fine-tuning mechanisms

Monotonicity: e.g. interpreting negation and generalised quantifiers

		Auxilliary Label
Context	I did not eat any x for breakfast.	
Insertion Pair	(fruit, raspberries)	⊐
		NLI Label
Premise	I did not eat any fruit for breakfast.	Entailment
Hypothesis	I did not eat any raspberries for breakfast.	Ziittiiiitiiit

Probing Context Monotonicity and Relational Knowledge in Neural Natural Language Inference

#1: Development of novel semantic probing/fine-tuning mechanisms

Probing Context Monotonicity and Relational Knowledge in Neural Natural Language Inference

#1: Development of novel semantic probing/fine-tuning mechanisms

		Accuracy at Maximum Selectivity			
		Task:	Lexical Relation Classification	Monotonicity Classification	
Model	Training Data	Portion of Sequence:	XY, concatenated	XY, concatenated	X
Majority Class Baseline	-		0.4050	0.5056	0.5056
Random	-		0.4345	0.5715	0.5715
bert-base	-		0.4605	0.6781	0.7141
bert-large	-		0.4565	0.6766	0.6728
bert-base	SNLI		0.5310	0.7330	0.7281
bert-base	SNLI + HELP		0.5345	0.7455	0.743
facebook/bart-large	MNLI		0.7056	0.7143	0.7513
facebook/bart-large	MNLI + HELP		0.7382	0.7625	0.7643
roberta-large	MNLI		0.8390	0.6771	0.8243
roberta-large	MNLI + HELP		0.7821	0.8742	0.8691

Probing Context Monotonicity and Relational Knowledge in Neural Natural Language Inference

#2: Semantic controls over complex end-to-end neural architectures

Abstraction

Unification

#2: Semantic controls over complex end-to-end neural architectures

Unification-based Reconstruction of Multi-hop Explanations for Science Questions (EACL 2021)

#2: Semantic controls over complex end-to-end neural architectures

#2: Semantic controls over complex end-to-end neural architectures

#	Parameter	Va	Value		
		WT	ARC		
1	Question-Abstract overlap (θ_{qa})	0.10	0.09		
2	Question-Grounding overlap (θ_{qg})	0.98	0.84		
3	Abstract-Abstract overlap (θ_{aa})	0.01	0.11		
4	Grounding-Abstract overlap (θ_{ga})	0.14	0.23		
	Grounding-Grounding overlap (θ_{gg})	-0.99	-0.92		
6	Abstract Relevance (θ_{ar})	0.03	0.09		
7	Grounding Relevance (θ_{gr})	0.36	0.14		
8	Edge weight (θ_{ew})	0.80	0.26		
9	Node weight (θ_{vw})	0.76	0.67		

#3: Development of symbolic disentangled encodings

(a)) M	lode	el a	rch	ite	cture

- 1		Sentence example
	Verb/Object (VO)	is he suspending the computer
1	Gender (G)	is she suspending the user
	Sentiment (S)	is he not suspending the user
4	Tense (T)	was he suspending the user
	Subject Number (SN)	are they suspending the user
(Object Number (ON)	is he suspending the users
1	Question/Answer (QA)	he is suspending the user

(b) Traversal generation

#3: Development of symbolic disentangled encodings

Other aspects

#4: Development of synthetic datasets for textual inference

#5: Connection with feature selection and feature stability

#6: Connection with formal verification

Discussion points / TODOs

- Initial assumption here is delivering an end-to-end solution
- Closing the gap between different modalities
- Which data modalities to target?
- Planning
- First collaboration points
- Start via synthetic datasets