3. táblás gyakorlat – visszavezetés

6/b. Határozzuk meg két pozitív egész szám legnagyobb közös osztóját. Vezessük vissza feltételes maximumkeresésre.

$$A = (a : \mathbb{N}^+, b : \mathbb{N}^+, o : \mathbb{N}^+, l : \mathbb{L})$$

$$ef = (a = a' \land b = b')$$

$$uf = \begin{pmatrix} ef \land (l, o) = \frac{\text{MAX}_{1,2} & i}{i = 1} \\ i | a \land i | b \end{pmatrix}$$

Visszavezetés (feltételes maximumkeresés):

```
\begin{array}{lll} H & \sim & \mathbb{N}^+ \\ [m..n] & \sim & [1..min(a,b)] \\ max & \sim & o \\ f(i) & \sim & i \\ \beta(i) & \sim & i|a \ \acute{e}s \ i|b \\ ind & & elhagytuk \\ \end{array}
```

Struktogram:

$l:=\downarrow$				
	$i := 1\min(a,b)$			<i>i</i> : ℕ
¬(i a∧i b)	i a∧i b∧ <i>l</i>		i a∧i b∧¬ <i>l</i>	
SKIP	i > 0		$l, o, := \uparrow, i$	
	$o \coloneqq i$	SKIP		

A pirossal megjelölt kifejezés nem megengedett, se a specifikációban se a stukiban, ezért definiáljuk:

$$min: \mathbb{N}^+ \times \mathbb{N}^+ \to \mathbb{N}^+$$
, úgy hogy:
$$\min(a,b) = \begin{cases} a, ha \ a \leq b \\ b, k \ddot{u} \ddot{l} \ddot{o} n b e n \end{cases}$$

Innentől a specifikáció már teljesen korrekt, de a struktogram még mindig nem. A gond az, hogy én tételekkel és transzformációkkal mindig nem megengedett utasításokat tudok helyettesíteni, min(a,b) pedig nem egy *utasítás*, hanem egy *kifejezés*.

Alakítsuk hát át a programot, a *függvény helyettesítése változóval* transzformáció segítségével:

	$l:=\downarrow$				
	$sv \coloneqq \min(a, b)$				$sv:\mathbb{N}^+$
i := 1sv					i : \mathbb{N}
	¬(i a ∧ i b)	i a∧i b∧ <i>l</i>		$i a \wedge i b \wedge \neg l$	
	SKIP	i > 0		$l, o, :=\uparrow, i$	
		$o \coloneqq i$	SKIP		

Ezzel a nem megengedett kifejezést elcseréltük egy nem megengedett értékadásra, amit már az esetszétválasztással definiált függvény kibontása tétellel könnyedén el tudunk tüntetni:

$l:=\downarrow$					
$a \leq b$					
$sv \coloneqq a$			รข	$y \coloneqq b$	$sv:\mathbb{N}^+$
	i	:= 1sv			<i>i</i> : ℕ
¬(i a∧i b)	i	$a \wedge i b \wedge l$		$i a \wedge i b \wedge \neg l$	
SKIP	i > o		$l, o, := \uparrow, i$		
	$o \coloneqq i$	SKIP			

Bár erről csak egy későbbi órán lesz részletesebben szó, de ezt a problémát kissé eltérő módon is lehet kezelni. Képzeljük el azt, hogy a transzformációkkal létrehozott új kódrészlet nagyon bonyolult, esetleg a struktogramban több helyen is megjelenik ugyanaz. Ekkor célszerűbb inkább egy függvényt¹ írni rá, és ezt a függvényt meghívni, hiszen úgy sokkal átláthatóbb, és bár több egység lesz, de egy egység rövidebb, érthetőbb lesz. Valamint a kódismétlést és az abból fakadó hibalehetőségeket is elkerültük így. A kódolás során már eddig is sokszor csináltunk ilyesmit, de a struktogram szintjén is szabad!

$l := \downarrow$					
$sv \coloneqq \min(a, b)$					$sv:\mathbb{N}^+$
i := 1sv					<i>i</i> : ℕ
	¬(i a∧i b)	$i a \wedge i b \wedge l$		$i a \wedge i b \wedge \neg l$	
	SKIP	i > o		$l, o, :=\uparrow, i$	
		o ≔ i	SKIP		

És definiálunk a nem megengedett értékadáshoz is egy azt megoldó alprogramot:

	$m := \min(a, b)$	b)	
$a \leq b$			
$m \coloneqq a$		$sv \coloneqq b$	

Tehát ez a kis alprogram annyit tesz, hogy a paraméterül kapott a és b (formális paraméterek) közül visszaadja a return értékként kezelt m nevű változóba a kisebbet.

Ezt a főprogramban meghívtuk a és b aktuális paraméterekkel, amelyek nevei véletlen egybeesnek a formálisakéval, de ez nem kötelező, és mivel az sv-nek adjuk értékül, ezért az alprogramban m-mel jelölt formális kimenő változó, a hívás helyén az sv változó lesz. Azaz sv-be bekerül a kisebb szám értéke, épp úgy, mintha ezt az elágazást "beégettem" volna az eredeti stuktogramba.

 $^{^{1}}$ most nem specifikációs értelemben, mint a fenti esetszétválasztásos függvény, hanem "alprogram" értelemben, mint egy C++-os függvény… ami persze nem lesz más, mint a specifikációban megadott függvény mint feladat megoldása.