Laboratory 4

Thévenin Equivalent Circuits

(Round your calculation and simulation results to 2 decimal places if necessary)

Objectives

- Verify Thévenin Theorem.
- Study and verify the different methods to find V_{Th} and R_{Th} .

Equipment and Components

- A computer/laptop
- Matlab software

Preliminary

- 1. Refer to Chapter 4 of the textbook if necessary.
- 2. Calculate all theoretical solutions in Tables 1, 2, and 3.

Procedure

- 1. Open Matlab.
- 2. Create a Simulink model of the circuit as shown below by following the procedures in Lab
- 3. Measure the voltage across terminals **a** and **b** and then fill in your simulation result in Table 1.

Table 1 Thevenin Equivalent Circuit

	Theoretical Solution	Simulation Result			
V_{Th} (V)					

Is the simulation result consistent with your calculation result?

- 4. Remove the 60 V voltage source and then add a test voltage source across the terminals **a** and **b** in the above circuit. Create a Simulink model of the following circuit.
- 5. Try the different values of the test source as shown in Table 2 below, measure the I_{test} and fill them in Table 2
- 6. Calculate R_{Th} by using $R_{Th} = \frac{V_{test}}{I_{test}}$.

Table 2 Test Voltage Source and Thevenin Resistance

V_{test}		1 V	5 V	10 V	100 V
I_{test}	Theoretical solutions				
	Simulation				
	results				
R_{Th}	Theoretical				
	solutions				
	Simulation				
	results				

Based on your results and observations, do the values of the test source affect the value of R_{Th} ?

- 7. Short the terminals a and b and then Create a Simulink model of the following circuit.
- 8. Measure the current i_{sc} and fill in the simulation results in Table 3.

Table 3 Short Circuit Current and Thevenin Resistance

	Theoretical Solutions	Simulation Results
i_{sc}		
V_{Th} (from Table 1)		
R_{Th}		

Is the value of R_{Th} found in Table 3 consistent with the one found in Table 2? Describe the difference between the two methods to find R_{Th} .

9. Add an 8 Ω resistor to the circuit as shown in the circuit below and create a Simulink model find current in the resistor.

10. Add the 8 Ω resistor to the Thevenin equivalent circuit you found as shown in the circuit below and calculate the current i.

Are the two currents found in Step 9 and Step 10 the same? What is your conclusion about your findings?

Questions and conclusions

• Summarize your findings and explanations in response to the questions posed in this lab.