Data Science Term project Final Presentation

최준헌 김지현 양희림

Contents

1 Objective Setting

2 Data Curation

3 Data Inspection

4 Data Preprocessing

5 Data Analysis

(6) Data Evaluation

7 Conclusion

Objective Setting

Data Curation

< ban	k.csv (8	97.42 KB)							⊥ ⊞ :	3
Detail	Compact	Column						10 of 17	7 columns	,
# age	=	<u>A</u> job	=	A marital	=	A education	=	✓ default	=	#
18	95	management blue-collar Other (6652)	23% 17% 60%	married single Other (1293)	57% 32% 12%	secondary tertiary Other (1997)	49% 33% 18%		true 0 0% false 0 0%	- 6
31		technician		single		tertiary		no		76
35		management		divorced		tertiary		no		38
32		blue-collar		single		primary		no		61
49		services		married		secondary		no		-{
41		admin.		married		secondary		no		55
49		admin.		divorced		secondary		no		16
28		admin.		divorced		secondary		no		78
43		management		single		tertiary		no		2€
43		management		divorced		tertiary		no		38
43		blue-collar		married		primary		no		-1

Head data

```
marital education
                                           ... pdays
                                                      previous poutcome deposit
   age
  38.0
           management
                       married
                                 tertiary
                                                                unknown
                                                                              no
  50.0
          blue-collar
                        single
                                  primary
                                                                 unknown
                                                                              no
  40.0
        self-employed
                        single
                                 tertiary ...
                                                                 unknown
                                                                             yes
                                secondary
  38.0
           technician
                       married
                                                                 unknown
                                                                             yes
  55.0
          blue-collar
                       married secondary ...
                                                                 unknown
                                                                             yes
[5 rows x 17 columns]
```

Numerical column Info

[8 rows x 7 columns]

	age	balance	 pdays	previous
count	11109.000000	11043.000000	 11162.000000	11162.000000
mean	44.260059	1530.081409	 51.330407	0.832557
std	76.330654	3233.456493	 108.758282	2.292007
min	-1000.000000	-6847.000000	 -1.000000	0.000000
25%	32.000000	122.000000	 -1.000000	0.000000
50%	39.000000	551.000000	 -1.000000	0.000000
75%	49.000000	1711.000000	 20.750000	1.000000
max	2000.000000	81204.000000	 854.000000	58.000000
	l			

Column & Data type

```
feature names & data types
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11162 entries, 0 to 11161
Data columns (total 17 columns):
    Column
               Non-Null Count Dtype
     age
               11109 non-null float64
    job
               11162 non-null object
               11097 non-null object
     marital
               11101 non-null
    education
                               object
    default
               11162 non-null object
    balance
               11043 non-null float64
    housing
               11162 non-null object
               11162 non-null
    loan
                               object
               11101 non-null object
     contact
     day
               11162 non-null int64
               11162 non-null object
    month
     duration
               11110 non-null float64
    campaign
               11162 non-null int64
    pdays
               11162 non-null int64
    previous
               11162 non-null int64
    poutcome
               11162 non-null object
               11162 non-null object
    deposit
dtypes: float64(3), int64(4), object(10)
memory usage: 1.4+ MB
```

Percentage of target value

target value count

no 5873

yes 5289

Name: deposit, dtype: int64

target value percentage

Percentage of "No": 52.616%

Percentage of "Yes": 47.384%

Missing data

age	~	job 🔻	marital	educat 🔻	default 🔻	balanc∈▼	housin	loan	v	contac	day 🔻	month 💌	duratic 🕶	campai 🔻
	56	services	married	primary	no	486	no	yes		cEllULAr	21	jul	1877	1
	41	blue-colla	divorced	primary	no	285	yes	no		cellular	20	apr	1272	2
	45	admin.	married	secondary	no	236	no	no		cellular	20	aug	703	2
	48	manager	nent	AAA	no		10	yes			8	jul	-10	1
	59	managem	married	unknown	no	3534	no	no		cellular	21	nov	216	4
	39	managem	married	tertiary	no	22	yes	no		unknown	2	jun	493	1
	44	managem	married	tertiary	no	70	no	no		cellular	20	aug	165	3
	48	unemploy	divorced	secondary	no	201	no	no		cellular	11	aug	140	1
	48	self-empl	married	secondary	no	1559	no	no		cellular	4	feb	130	2
20	000	blue-colla	single	secondary	no	953	yes	no		cellular	14	may	479	1
	42	techniciar	single	secondary	no	49	no	no		cellular	9	feb	7	10
	56	blue-colla	married	secondary	no	1210	no	no		unknown	11	jun	935	1
	95	retired	divorced	primary	no	2282	no	no		telephone	21	apr	207	17
	34	blue-colla	married	secondary	no	577	no	no		unknown	14	may	337	1
	60	entrepre	divorced	secondary	no	80	yes	no		unknown	15	may	397	1
	59	housemai	d	econdary	no	1040	no	no		cellular	5	aug	123	2
	39	unemploy	single	tertiary	no	7	yes	no		cellular	20	nov	931	4
	48	managem	single	tertiary	no	86	no	no		cellular	28	jun	281	3

Wrong data

age	~	job 🔻	marital 🔻	educat 🔻	default 🕶	balanc∈▼	housin	loan	~	contac 🔻	day 🔻	month 🔻	duratic ▼	campa 🔻
	56	services	married	primary	no	486	no	yes		cEllULAr	21	jul	1877	1
	41	blue-colla	divorced	primary	no	285	yes	no		cellular	20	apr	1272	2
	45	admin.	married	secondary	no	236	no	no		cellular	20	aug	703	2
	48	managem	nent	AAA	10		no	yes			8	jul	-10	1
	59	managem	married •	unknown	no	3534	no	no		cellular	21	nov	216	4
	39	managem	married	tertiary	no	22	yes	no		unknown	2	jun	493	1
	44	managem	married	tertiary	no	70	no	no		cellular	20	aug	165	3
	48	unemploy	divorced	secondary	no	201	no	no		cellular	11	aug	140	1
	18	elf-empl	married	secondary	no	1559	no	no		cellular	4	feb	130	2
2	000	blue-colla	single	secondary	no	953	yes	no		cellular	14	may	479	1
	42	technicia	single	secondary	no	49	no	no		cellular	9	feb	7	10
	56	blue-colla	married	secondary	no	1210	no	no		unknown	11	jun	935	1
	95	retired	divorced	primary	no	2282	no	no		telephone	21	apr	207	17
	34	blue-colla	married	secondary	no	577	no	no		unknown	14	may	337	1
	60	entreprer	divorced	secondary	no	80	yes	no		unknown	15	may	397	1
	59	housemai	id	secondary	no	1040	no	no		cellular	5	aug	123	2
	39	unemploy	single	tertiary	no	7	yes	no		cellular	20	nov	931	4
	48	managem	single	tertiary	no	86	no	no		cellular	28	jun	281	3

Wrong data, But Usable Data

age	~	job 🔻	marital 🔻	educat 🕶	default 🕶	balanc∈▼	housin	loan	¥	contac∵▼	day 🔻	month 🔻	duratic 🕶	campai 🔻
	56	services	married	primary	no	486	no	yes		cEllULAr	21	jul	1877	1
	41	blue-colla	divorced	primary	no	285	yes	no		ceiiuiar	20	apr	1272	2
	45	admin.	married	secondary	no	236	no	no		cellular	20	aug	703	2
	48	managem	ent	AAA	no		no	yes			8	jul	-10	1
	59	managem	married	unknown	no	3534	no	no		cellular	21	nov	216	4
	39	managem	married	tertiary	no	22	yes	no		unknown	2	jun	493	1
	44	managem	married	tertiary	no	70	no	no		cellular	20	aug	165	3
	48	unemploy	divorced	secondary	no	201	no	no		cellular	11	aug	140	1
	48	self-empl	married	secondary	no	1559	no	no		cellular	4	feb	130	2
20	000	blue-colla	single	secondary	no	953	yes	no		cellular	14	may	479	1
	42	technician	single	secondary	no	49	no	no		cellular	9	feb	7	10
	56	blue-colla	married	secondary	no	1210	no	no		unknown	11	jun	935	1
	95	retired	divorced	primary	no	2282	no	no		telephone	21	apr	207	17
	34	blue-colla	married	secondary	no	577	no	no		unknown	14	may	337	1
	60	entrepren	divorced	secondary	no	80	yes	no		unknown	15	may	397	1
	59	housemai	d	secondary	no	1040	no	no		cellular	5	aug	123	2
	39	unemploy	single	tertiary	no	7	yes	no		cellular	20	nov	931	4
	48	managem	single	tertiary	no	86	no	no		cellular	28	jun	281	3

Distribution graph of Categorical column

What we preprocess?

Missing data

Wrong data

Wrong data, But Usable Data

Unusable Data

Outlier Data

How preprocessing?

Drop

Fill

Replace

1 By target feature value,

Numeric — Median Categorical Mode

2 By related feature value

Numeric — Linear Regression / Median Categorical — Mode

Change uppercase to lowercase

age	~	job 🔻	marital 🔻	educati(-
	39	blue-collar	sInGlE	tertiary
	19	student	single	prlMaRy
	30	manageme	dIVOrced	tertiary

age 🔻	job 🔽	marita 🗸	educati
39	blue-collar	single	tertiary
19	student	single	primary
30	manageme	divorced	tertiary

Replace wrong data to NA

age 🔻	job 🔽	marita 🗸	educati	contac 🔻
-100	manageme	mmm	aaa	ссс
64	retired	SSS	secondary	cellular
48	manageme	ent	aaa	
55	services		bbb	
-100	blue-collar			ссс
36	manageme	maried	tertiary	cellular
43	blue-collar	SSS	secondary	unknown
35	technician	ddd	secondary	unknown
36	blue-collar	married	secondary	ссс
34	manageme	single	bbb	cellular
53	manageme	divorced	tertiary	ttt
60	retired	married	bbb	cellular
	housemaid	mmm	primary	ttt
-1	manageme	ent		ttt
-100	blue-collar			ttt
	manageme	sss		cellular

age 🔻	job 🔻	marita 🗸	educati	contac 🕶
	manageme	ent		
64	retired		secondary	cellular
48	manageme	ent		
55	services			
	blue-collar			
36	manageme	ent	tertiary	cellular
43	blue-collar		secondary	unknown
35	technician		secondary	unknown
36	blue-collar	married	secondary	
34	manageme	single		cellular
53	manageme	divorced	tertiary	
60	retired	married		cellular
	housemaid	ł	primary	
	manageme	ent		
	blue-collar			
	manageme	ent		cellular

Percentage of that is missing: 0.34%

Missing value existence status

age	True
job	False
marital	True
education	True
default	False
balance	True
housing	False
loan	False
contact	True
day	False
month	False
duration	True
campaign	False
pdays	False
previous	False
poutcome	False
deposit	False
dtype: bool	

How many missing value?

age	118
job	0
marital	103
education	95
default	0
balance	119
housing	0
loan	0
contact	103
day	0
month	0
duration	119
campaign	0
pdays	0
previous	0
poutcome	0
deposit	0
dtype: int64	

Percentage of missing value

age	1.057158
job	0.000000
marital	0.922774
education	0.851102
default	0.000000
balance	1.066117
housing	0.000000
loan	0.000000
contact	0.922774
day	0.000000
month	0.000000
duration	1.066117
campaign	0.000000
pdays	0.000000
previous	0.000000
poutcome	0.000000
deposit	0.000000
dtype: float	64
I	

Delete row with more than 5 missing values

1 By target feature value,

Median Mode

Fill missing data to specific values [Numeric]

age 🗊	job 🔻	marita 🔽	educatic	deposi -
38	manageme			yes
38	blue-colla	single	secondary	yes
39	managem	married	primary	no
38	blue-colla			yes
38	blue-colla	single	secondary	yes
38	unemploye			yes
39	manageme	married	tertiary	no
39	managem	married	tertiary	no
39	manageme	married	tertiary	no
39	services			no
38	retired	divorced	secondary	yes
38	manageme	married	tertiary	yes

If deposit value is "Yes"

Fill age to 38

If deposit value is "No"

Fill age to 39

1 By target feature value,

Numeric Median
Categorical Mode

Fill missing data to specific values [Numeric]

1)

By target feature value,

Numeric

Median

Categorical

Mode

Fill missing data to specific values [Categorical]

age 🔻	job 🔻	marita 🔻	educati 🕝	deposi -
	manageme	married		yes
64	retired	married	secondary	yes
48	manageme	married		no
59	housemaid	married	secondary	no
55	services	married		no
	blue-colla	married		yes
36	manageme	married	tertiary	no
	unemploy	married		yes
60	retired	married	secondary	no
43	blue-colla	married	secondary	yes
35	technician	married	secondary	yes
	services	married		no
	housemaid	married	primary	no
	managem	married		no

If deposit value is "Yes"

Fill to 'married'

If deposit value is "No"

By target feature value,

Numeric Median

Categorical Mode

Fill missing data to specific values [Categorical]

By related feature value

Linear Regression / Median
Mode

Look correlation heatmap and find relational column

By related feature value

Numeric Linear Regression / Median
Categorical Mode

Look correlation heatmap and find relational column

Fill missing data to specific values [Numeric]

If marital value is "divorced"
Fill age to '46'

If marital value is "married"
Fill age to '43'

If marital value is "single"
Fill age to '31'

Fill missing data to specific values [Numeric]

Linear Regression

$$Y = 29.679 * X + 302.99$$

If age value is "20"

'29.679*20 + 302.99'

By related feature value

Numeric Linear Regression / Median
Categorical Mode

Fill missing data to specific values [Numeric]

If deposit value is "Yes"

→ Fill duration to '163'

If deposit value is "No"

→ Fill duration to '426'

Fill missing data to specific values [Categorical]

By related feature value Numeric — Linear Regression / Median Categorical Mode

Fill missing data to specific values [Categorical]

By related feature value

Numeric Linear Regression / Median

Categorical Mode

Fill missing data to specific values [Categorical]

If contact is "success"

Fill contact to 'cellular'

If contact is "failure"

Fill contact to 'cellular'

Outlier Data

Percentage of -1 of 'pdays' column: 74.5%

day	month	duration	campaign	pdays	orevious	poutcome	deposit
9	jul	426	3	-1	0	unknown	yes
3	jun	406	2	-1	0	unknown	yes
29	sep	316	1	119	1	other	yes
30	apr	121	1	63	2	failure	no
7	jul	480	1	-1	0	unknown	no
18	nov	66	1	-1	0	unknown	no
22	aug	1123	4	-1	0	unknown	yes
2	jul	217	3	-1	0	unknown	yes
3	nov	412	1	-1	0	unknown	yes
29	may	814	2	-1	0	unknown	yes
22	oct	554	3	-1	0	unknown	yes
18	feb	386	1	-1	0	unknown	yes
12	aug	768	2	-1	0	unknown	yes
18	feb	332	2	-1	0	unknown	yes
28	aug	195	6	-1	0	unknown	no
18	aug	194	2	-1	0	unknown	yes
20	jun	42	7	-1	0	unknown	no
7	may	28	2	289	5	failure	no
28	jan	111	1	-1	0	unknown	no
30	oct	373	3	-1	0	unknown	yes
21	nov	135	2	-1	0	unknown	no
16	may	38	3	-1	0	unknown	no
8	sep	261	1	98	1	success	yes

Handle outlier data

Percentage of -1 of 'pdays' column: 74.5%

Before remove -1

After remove -1

Drop 'pdays' feature

Handle outlier data

Encoding

age	job	marital	education	default	balance	housing
38	manageme	married	tertiary	10	2278	yes
5(blue-collar	single	primary	10	1743	yes
4(self-emplo	single	tertiary	10	1616	no
38	technician	married	secondary	10	205	no
55	blue-collar	married	secondary	10	49	yes
33	technician	married	secondary	10	806	no
36	technician	married	secondary	10	4613	no
3(blue-collar	single	secondary	10	155	yes
32	admin.	married	secondary	10	995	no
29	manageme	single	tertiary	10	0	yes
46	blue-collar	married	secondary	10	1723	no
26	blue-collar	single	primary	10	-887	yes
36	manageme	married	secondary	10	565	no
56	technician	married	secondary	10	147	no
26	blue-collar	single	secondary	10	-46	yes
39	blue-collar	married	primary	10	-50	yes
5'	manageme	married	tertiary	10	-321	no

age	job	marital	education	default	balance	housing
38	4	1	2	0	2278	1
50	1	2	0	0	1743	1
40	6	2	2	0	1616	0
38	9	1	1	0	205	0
55	1	1	1	0	49	1
33	9	1	1	0	806	0
36	9	1	1	0	4613	0
30	1	2	1	0	155	1
32	0	1	1	0	995	0
29	4	2	2	0	0	1
46	1	1	1	0	1723	0
26	1	2	0	0	-887	1
36	4	1	1	0	565	0
5€	9	1	1	0	147	0
26	1	2	1	0	-46	1
39	1	1	0	0	-50	1
51	4	1	2	0	-321	0

Complete cleaning!

Percentage of that is missing: 0 %

Missing value existence status

age	False
job	False
marital	False
education	False
default	False
balance	False
housing	False
loan	False
contact	False
day	False
month	False
duration	False
campaign	False
previous	False
poutcome	False
deposit	False
dtype: bool	

How many missing value?

age	0
job	0
marital	0
education	0
default	0
balance	0
housing	0
loan	0
contact	0
day	0
month	0
duration	0
campaign	0
previous	0
poutcome	0
deposit	0
dtype: int64	

Percentage of missing value

age	0.0
job	0.0
marital	0.0
education	0.0
default	0.0
balance	0.0
housing	0.0
loan	0.0
contact	0.0
day	0.0
month	0.0
duration	0.0
campaign	0.0
previous	0.0
poutcome	0.0
deposit	0.0
dtype: float	54

Data Analysis

Data Analysis

Data Scaling

```
before scaling
                                             duration campaign previous
                   marital education ...
                                                                             poutcome
       38.0
                                                244.0
                                                            1.0
                                                                       0.0
                                                 49.0
       50.0
                                                            5.0
                                                                       0.0
       40.0
                                               1009.0
                                                            7.0
                                                                       0.0
       38.0
                                                332.0
                                                            1.0
                                                                       0.0
                                                494.0
       55.0
                                                            4.0
                                                                       0.0
                                                                       . . .
11157
                                                446.0
                                                                       0.0
                                                                                   3
       26.0
                                                            1.0
                                               2420.0
                                                                                   3
11158
       41.0
                                                            3.0
                                                                       0.0
11159
       29.0
                                                963.0
                                                            2.0
                                                                       0.0
                                                295.0
                                                            1.0
                                                                       0.0
11160
       31.0
11161
                                                            2.0
       68.0
                                                318.0
                                                                       0.0
[11112 rows x 15 columns]
```

```
X = processed_df.drop(columns='deposit')
y = processed_df['deposit']
X = scaling(X)
```

```
After scaling
                      job marital ...
                                         campaign previous
                                                             poutcome
             age
                              0.5
      0.259740
                0.363636
                                          0.00000
                                                        0.0
                                                                 1.0
                              1.0
      0.415584
               0.090909
                                          0.12500
                                                                 1.0
                              1.0
      0.285714 0.545455
                                          0.18750
                                                                 1.0
      0.259740
                              0.5
                                          0.00000
                0.818182
                                                                 1.0
               0.090909
      0.480519
                              0.5
                                          0.09375
                                                                 1.0
11157
      0.103896
                0.545455
                                          0.00000
                               1.0
                                                                 1.0
                              1.0
                                          0.06250
      0.298701
                0.818182
                                                                 1.0
                              1.0
      0.142857
                0.363636
                                          0.03125
                                                                 1.0
      0.168831
                0.090909
                              0.5
                                          0.00000
                                                                 1.0
11160
                                                        0.0
11161 0.649351 0.454545
                               0.5
                                          0.03125
                                                        0.0
                                                                 1.0
[11112 rows x 15 columns]
```

Data Analysis

Analysis Algorithm

K-Nearest Neighbors

Decision Tree

XGBoost

```
classifier1 = KNeighborsClassifier()
classifier1.fit(X_train, y_train)
classifier1.predict(X_test)
```

```
classifier1 = DecisionTreeClassifier(criterion='entropy', random_state=0)
classifier1.fit(X_train, y_train)
classifier1.predict(X_test)
```

```
classifier1 = xgb.XGBClassifier()
classifier1.fit(X_train, y_train.squeeze().values)
classifier1.predict(X_test)
```


Algorithm

Hypertuning By GridSearchCV!!

K-Nearest Neighbors

Hold out method

Cross validation

Bagging

Classfier 1

Decision Tree

Hold out method

Cross validation

Bagging

Classfier 2

XGBoost

Hold out method

Cross validation

Classfier 3

knn_gscv = GridSearchCV(classifier2, param_grid, cv=cv)
knn_gscv.fit(X, y)
hestParams = knn_gscv.hest_params

bestParams = knn_gscv.best_params_

bestEstimator = knn_gscv.best_estimator_

Get best parameter

- 1. Separate from the train set to the training set and the test set by hold-out method
- 2. Perform default parameters without Hyper-parameter tuning.
- 3. Tuning Hyper-parameter Using GridSearchCV
- 4. Using tuned Hyper-parameter, refit and predict
- 5. Compare prediction of holdout method with defaultparameter and with tuned hyper-parameter
- 6. Cross validation with tuned hyper-parameter
 - 7. Use tuned hyper-parameter for bagging algorithm

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
classifier1 = DecisionTreeClassifier(criterion='entropy', random_state=0)
classifier1.fit(X_train, y_train)
# Predicting the best set result
y_pred = classifier1.predict(X_test)
```

- 1. Separate from the train set to the training set and the test set by hold-out method
- 2. Perform default parameters without Hyper-parameter tuning.
- 3. Tuning Hyper-parameter Using GridSearchCV
- 4. Using tuned Hyper-parameter, refit and predict
- 5. Compare prediction of holdout method with defaultparameter and with tuned hyper-parameter
- 6. Cross validation with tuned hyper-parameter
 - 7. Use tuned hyper-parameter for bagging algorithm

```
classifier2 = DecisionTreeClassifier(criterion='entropy', random_state=0)
param_grid = {'max_depth': np.arange(1, 30)}

cv = KFold(n_splits=5, shuffle=True, random_state=1)
dt_gscv = GridSearchCV(classifier2, param_grid, cv=cv)
dt_gscv.fit(X, y)
bestParams = dt_gscv.best_params_
```

- 1. Separate from the train set to the training set and the test set by hold-out method
- 2. Perform default parameters without Hyper-parameter tuning.
- 3. Tuning Hyper-parameter Using GridSearchCV
- 4. Using tuned Hyper-parameter, refit and predict
- 5. Compare prediction of holdout method with defaultparameter and with tuned hyper-parameter
- 6. Cross validation with tuned hyper-parameter
- 7. Use tuned hyper-parameter for bagging algorithm

```
classifier2 = DecisionTreeClassifier(max_depth=bestParams['max_depth'])
classifier2.fit(X_train, y_train)

# Predicting the best set result
y_pred = classifier2.predict(X_test)

# Decision Tree (Best max depth)

# Decision Tree (Best max d
```

- 1. Separate from the train set to the training set and the test set by hold-out method
- 2. Perform default parameters without Hyper-parameter tuning.
- 3. Tuning Hyper-parameter Using GridSearchCV
- 4. Using tuned Hyper-parameter, refit and predict
- 5. Compare prediction of holdout method with defaultparameter and with tuned hyper-parameter
 - 6. Cross validation with tuned hyper-parameter
 - 7. Use tuned hyper-parameter for bagging algorithm

```
cvResults = predictCVResult(X, y, classifier2, 'Decision Tree', cvResults)
```

Result – Parameter tuning

Accuracy increases i with parameter tuning.

```
====== Holdout method(K-Nearest Neighbors) ========
Best Parameter: {'n_neighbors': 3}
                            Model Accuracy
                                             Precision
                                                         Recall F1 Score
  K-Nearest Neighbors (default = 5) 0.706253
                                             0.752174 0.619517 0.679431
       K-Nearest Neighbors (Best k) 0.716149 0.756329 0.641898 0.694431
   ====== Holdout method(Decision Tree) ========
Best Parameter: {'max_depth': 8}
                          Model Accuracy Precision
                                                      Recall F1 Score
  Decision Tree (default = None) 0.796671
                                          0.804209 0.786929 0.795475
  Decision Tree (Best max depth) 0.821413 0.821429 0.823635 0.822530
      ==== Holdout method(XGBoost) =======
Best Parameter: {'max_depth': 6, 'min_child_weight': 1, 'n_estimators': 200}
                     Model Accuracy
                                     Precision
                                                 Recall F1 Score
          XGBoost (default) 0.835358
                                     0.827376 0.849597 0.838339
  XGBoost (best parameters) 0.853351 0.837746 0.878245 0.857517
```

Result – Comparison of preprocessing method

```
Cleaning 1
  ====== Holdout method(K-Nearest Neighbors) ========
Best Parameter: {'n_neighbors': 5}
                             Model Accuracy Precision
                                                         Recall F1 Score
  K-Nearest Neighbors (default = 5) 0.717049 0.745516 0.623243 0.678918
       K-Nearest Neighbors (Best k) 0.717049 0.745516 0.623243 0.678918
    ===== Holdout method(Decision Tree) ========
Best Parameter: {'max depth': 9}
                          Model Accuracy Precision
                                                      Recall F1 Score
  Decision Tree (default = None) 0.776878
                                          0.777994 0.748828 0.763133
  Decision Tree (Best max depth) 0.805668
                                           0.793167 0.805061 0.799070
       === Holdout method(XGBoost) ======
Best Parameter: {'max_depth': 6, 'min_child_weight': 1, 'n_estimators': 100}
                     Model Accuracy Precision
                                                 Recall F1 Score
          XGBoost (default) 0.839856
                                      0.817128 0.858482 0.837294
                                      0.825893 0.866917 0.845908
  XGBoost (best parameters) 0.848403
```

In the second cleaning method, the decision tree and XGBoost accuracy are better.

Cleaning 2

```
====== Holdout method(K-Nearest Neighbors) ========
Best Parameter: {'n_neighbors': 3}
                             Model Accuracy Precision
                                                         Recall F1 Score
  K-Nearest Neighbors (default = 5) 0.706253
                                             0.752174
                                                       0.619517 0.679431
       K-Nearest Neighbors (Best k) 0.716149
                                             0.756329 0.641898 0.694431
  ====== Holdout method(Decision Tree) =======
Best Parameter: {'max_depth': 8}
                          Model Accuracy Precision
                                                      Recall F1 Score
  Decision Tree (default = None)
                                0.796671
                                          0.804209 0.786929 0.795475
  Decision Tree (Best max depth) 0.821413
                                          0.821429 0.823635 0.822530
 ====== Holdout method(XGBoost) =======
Best Parameter: {'max_depth': 6, 'min_child_weight': 1, 'n_estimators': 200}
                     Model Accuracy Precision
                                                 Recall F1 Score
          XGBoost (default) 0.835358
                                      0.827376 0.849597 0.838339
  XGBoost (best parameters) 0.853351
                                      0.837746 0.878245 0.857517
```

Result - Comparison of three algorithms

```
===== Holdout method(Parameter tuning) ========
                                                                             == Bagging Method =======
             Model Accuracy
                            Precision
                                        Recall F1 Score
                                                                                     Model Accuracy Precision
                                                                                                                Recall F1 Score
K-Nearest Neighbors 0.716149
                             0.756329 0.641898 0.694431
                                                                        K-Nearest Neighbors 0.707602 _ 0.745531 0.634736 0.685687
     Decision Tree 0.821413
                             0.821429 0.823635 0.822530
                                                                              Decision Tree 0.827710 1.821930 0.838854 0.830306
           XGBoost 0.853351 0.837746 0.878245 0.857517
  ===== Cross validation ========
                                                                                Majority voting =======
             Model Mean accuracy
                                                                        Accuracy Precision
                                                                                               Recall F1 Score
K-Nearest Neighbors
                        0.717963
                                                                        0.835807
                                                                                   0.838129 0.834378 0.836249
     Decision Tree
                        0.818844
           XGBoost
                        0.858982
```

XGBoost has the highest accuracy!

But did not produce better results in bagging and voting. When using the bagging method, the decision tree rose slightly, but the KNN fell slightly.

Confusion Matrix : K-Nearest Neighbors

Confusion Matrix : Decision Tree

Confusion Matrix : XGBoost

contact, poutcome, duration → important!

High possibility that people who have subscribed in the last campaign will subscribe in this campaign.

The higher the number of contacts in the previous campaign, the higher the average subscription rate.

The longer you keep in touch during the campaign, the more likely you are to subscribe.

On the other hand, too much contact during the campaign leads to a lower subscription rate.

Team Member

최준헌

201533673 chjh121@gmail.com

Data preprocessing
Data Analysis
Data Evalution
Conclusion

김지현 201633310 zizi39028@gmail.com

Proposal ppt
Graph visualization
Data preprocessing
Final presentation

양희림 201735853 yanghl1998@gmail.com

Data preprocessing
Dataset management
Generate invalid data
Final ppt

THANK YOU