

Introdução à Engenharia Ambiental

Profa. Dra. Lygia Policarpio

Conceito

 Movimento cíclico de elementos químicos entre o meio biológico e o ambiente geológico. Todos os 30 a 40 elementos necessários ao desenvolvimento dos seres vivos circulam na biosfera.

Elemento	Símbolo	Homem	Crosta terrestre	Pé de milho
Oxigênio	0	65,0	49,0	75,0
Carbono	С	18,0	0,09	13,0
Hidrogênio	Н	10,0	0,88	10,0
Nitrogênio	N	3,3	0,03	0,45
Cálcio	Ca	1,5	3,4	0,07
Fósforo	P	1,0	0,12	0,06
Potássio	K	0,35	2,4	0,28
Enxofre	S	0,25	0,05	0,05
Sódio	Na	0,24	2,6	traços
Cloro	C1	0,19	0,19	0,04
Magnésio	Mg	0,05	1,9	0,06
Ferro	Fe	0,005	4,7	0,03
Manganês	Mn	0,0003	0.08	0,01
Silício	Si	traços	25	0.36

Ciclos Biogeoquímicos – Ciclo do Carbono

Inicialmente, o CO2 é fixado por vegetais, algas e bactérias na **fotossíntese**, formando **carboidratos e liberando oxigênio**. Os **carboidratos são degradados pela respiração** e o carbono é **devolvido** ao meio na forma de **CO2**.

Uma fração do CO2 do ar combina-se com a chuva formando ácido carbônico (H2CO3). No solo, este passa a bicarbonato (HCO3) e, posteriormente, a carbonato (CO3). Este reage com os ácidos existentes no solo, liberando CO2 para a atmosfera.

Ciclos Biogeoquímicos – Ciclo do Carbono

Algumas vezes, o ciclo do carbono é interrompido e o retorno do mesmo à atmosfera pode levar milhões de anos. É o caso dos compostos de carbono que não foram atacados pelos decompositores e permanecem armazenados no subsolo sob a forma de carvão fóssil e petróleo, ou nas rochas formadas por conchas e esqueletos de animais.

Ciclos Biogeoquímicos – Ciclo do Carbono

- A queima dos combustíveis fósseis devolve o carbono ao ciclo, na forma de CO, CO2 e diversos hidrocarbonetos.
- 80% da produção fotossintética vem das algas marinhas e de água doce.
- A poluição das águas, com destruição do fitoplâncton, pode desequilibrar todo o ciclo do carbono.

Ciclo do Carbono

Efeitos Estufa

Atmosfera: Aumento das concentrações de gases-estufa

• Reservas de Petróleo conhecidas: 40% exauridas

Figura 1: Ciclo global do carbono. Números representam o fluxo do dióxido de carbono, em gigatoneladas (Fonte: Figura 7.3, IPCC AR4).

Aumento do nível do mar

1º furação observado na América do Sul

Desafios da Engenharia – Redução de emissão de CO₂

• Acompanhar as melhorias dos processos de produção;

Melhoria no projeto e desenvolvimento de produtos;

Ciclos Biogeoquímicos: Ciclo do Oxigênio

Oxigênio

Receptor final de íons hidrogênio (respiração celular).

Liberado a partir da fotólise da H₂O (fotossíntese).

Ciclos Biogeoquímicos: Ciclo do Oxigênio

Oxigênio compõe 20% do ar atmosférico;

Mundo inorgânico:

Constituição dos minerais e das rochas

Mundo Orgânico:

- É essencial à vida, uma vez que entra na composição dos tecidos vivos e é imprescindível para a respiração.
- É através da respiração de animais e microrganismos que o oxigênio é retirado da atmosfera e devolvido na forma de gás carbônico (CO2) e água.
- Executando papéis extremamente importantes para a regulação da vida no planeta, o oxigênio troca átomos entre fontes orgânicas e inorgânicas, permitindo sua utilização e liberação.

Ciclo do Oxigênio

- O oxigênio se distribui em três reservatórios: a atmosfera (os gases que rodeiam a superfície da terra), a biosfera (os organismos vivos e o seu ambiente próximo) e a litosfera (a parte sólida exterior da terra).
- O oxigênio é o elemento mais abundante na crosta terrestre e nos oceanos, e o segundo na atmosfera.
- Na atmosfera encontra-se como oxigênio diatômico/oxigênio molecular (O2), dióxido de carbono (CO2), ozônio (O3), dióxido de nitrogênio (NO2), monóxido de nitrogênio (NO), dióxido de enxofre (SO2), etc.

Ciclos Biogeoquímicos – Ciclo do Oxigênio

 No ar, tanto a H₂O como o CO₂ entram nos seus respectivos ciclos e ambos contém oxigênio, que faz parte do ciclo total.

 O ciclo do oxigênio está intimamente relacionado com os ciclos do carbono e da água.

Ciclos Biogeoquímicos – Ciclo do Oxigênio

Alterações no ciclo do Oxigênio

- O fator mais recente que afeta o ciclo do oxigênio na biosfera e o balanço de oxigênio na terra, é o próprio homem. (Novidade?)
- Além de inalar oxigênio e de exalar dióxido de carbono, o homem contribui para diminuir o nível de oxigênio e aumentar o de dióxido de carbono
 - pela queima de combustíveis;
 - pelo desmatamento e
 - pela pavimentação de terras anteriormente verdes.

Ciclos Biogeoquímicos – Ciclo do Nitrogênio

- O nitrogênio é importante pela sua participação fundamental na composição das proteínas, as quais, por exemplo, representam aproximadamente 16% do corpo humano.
- O N2 encontra-se disponível no ar atmosférico na proporção de 78% mas, apesar dessa abundância, são poucos os organismos que conseguem fixá-lo.
 - Fixação Biológica:
 - Nos solos, é fixado pelas bactérias do gênero Rhizobium e Nitrobacter que vivem em mutualismo (ou simbiose, em que as duas espécies não podem viver separadas).
 - O exemplo clássico são os líquens, em que temos os fungos fazendo o papel de absorção e das algas fazendo o papel de fotossíntese com plantas leguminosas, e,
 - Nas águas, é fixado pelas algas azuis do gênero Nostoc.

Ciclos Biogeoquímicos – Ciclo do Nitrogênio

- Fixação atmosférica e industrial,
 - quando o nitrogênio é transformado em nitrato ou ácido nítrico, que fica no ambiente à disposição dos vegetais.
 - Os vegetais absorvem o nitrogênio fixado, transformando-o em proteínas; a passagem para os animais inicia-se com os herbívoros.
- Plantas e animais mortos, juntamente com as excreções, são transformados, pelos organismos da putrefação (bactérias e fungos), em amônia (NH3) num processo denominado amonificação.

Ecologia – Noções gerais

Ciclos Biogeoquímicos – Ciclo do Nitrogênio

- O nitrogênio fixado que não é absorvido pelos vegetais, pode ser transportado para os mares, indo constituir sedimentos profundos nos oceanos, podendo sair de circulação por milhões de anos, só voltando ao ciclo pelas erupções vulcânicas.
- Não fosse a atividade vulcânica em determinados ambientes, talvez ocorressem problemas devidos à falta de proteínas para a alimentação humana.

Ciclos Biogeoquímicos – Ciclo da Água

- A água representa o constituinte inorgânico mais abundante na matéria viva.
- O homem possui 65% do seu peso constituído de água e alguns animais chegam a ser formados de 99% desse composto.
- parcela de água que se precipita sobre a hidrosfera participa do ciclo curto e a que cai sobre a litosfera compõe o ciclo longo.
- vegetais e animais devolvem água para a atmosfera:
 - os vegetais principalmente pelas folhas;
 - os animais, através da pele e pelos sistemas respiratório, digestivo e urinário.
- A vegetação exerce, por sua vez, função importante com relação à devolução da água de infiltração através da evapotranspiração, acelerando muito os processos de simples evaporação (áreas das folhas X área do solo).

Ciclos Biogeoquímicos – Ciclo da Água

- A cobertura vegetal, é importante na manutenção da umidade atmosférica, regularidade das chuvas e outros fatores ecometereológicos.
- Todos os ciclos biogeoquímicos relacionam-se intimamente com o ciclo da água e o fluxo energético através da biosfera. De uma forma ou de outra, a água constitui o meio principal para a circulação de nutrientes.

- Links para os videos
- https://www.youtube.com/watch?v=JKOJqIHn9ZM
- https://www.youtube.com/watch?v=6Fc3V0-ZA7k
- https://www.youtube.com/watch?v=2JgC4A7L2PE
- https://www.youtube.com/watch?v=9hMXFi8YB4k
- https://www.youtube.com/watch?v=OnKGbiAPRQQ
- https://www.youtube.com/watch?v= d0mo6MK4TE
- https://www.youtube.com/watch?v=-0XsJbmX580
- https://www.youtube.com/watch?v=YpXNXde9cB4

Atividades:

Todas as alternativas expressam fenômenos relacionados com a reposição do oxigênio na atmosfera, EXCETO:

- a) A alta produtividade de comunidades em fase inicial de sucessão autotrófica.
- b) A fotólise de vapor d água por radiação ultravioleta.
- c) A oxidação do ferro nas rochas por intemperismo oxidativo.
- d) As atividades fisiológicas dos organismos do fitoplâncton.
- e) A transformação da camada de ozônio (O_3) em oxigênio (O_2) .

A fotossíntese é o processo biológico predominante para a produção do oxigênio encontrado na atmosfera. Aproximadamente 30% do nosso planeta é constituído por terra, onde se encontram grandes florestas, e 70% por água, onde vive o fitoplâncton. Considerando-se estas informações e o ciclo biogeoquímico do oxigênio, pode-se afirmar que:

- a) as florestas temperadas e a Floresta Amazônica produzem a maior parte do oxigênio da Terra;
- b) a Floresta Amazônica é a principal responsável pelo fornecimento de oxigênio da Terra;
- c) as algas microscópicas são as principais fornecedoras de oxigênio do planeta;
- d) a Mata Atlântica é a maior fonte de oxigênio do Brasil;
- e) os manguezais produzem a maior parte do oxigênio da atmosfera.

O esquema a seguir representa, de forma simplificada, os ciclos do carbono e do oxigênio. Assinale a(s) proposição(ões) CORRETA(s).

- 01. I e II representam, respectivamente, o O_2 e o CO_2 .
- 02. A necessidade de O₂ para a respiração explica o aparecimento dos animais antes dos vegetais na Terra.
 03. Praticamente, todo o oxigênio livre da atmosfera e da hidrosfera tem origem biológica, no processo de fotossíntese.
- 04. O oxigênio se encontra no meio abiótico como integrante do ar atmosférico, ou no meio biótico, como constituinte das moléculas orgânicas dos seres vivos. 05. Alguns fatores, como excessivas combustões sobre a superfície da terra, têm determinado o aumento gradativo de taxa de CO₂ na atmosfera.
- 06. A manutenção das taxas de oxigênio e gás carbônico, no ambiente, depende de dois processos opostos: a fotossíntese e a respiração.

