

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO

RELATÓRIO DA 1º EXPERIÊNCIA SIMULAÇÃO DE TANQUES ACOPLADOS

TURMA 01 GRUPO G6T120212

JHONAT HEBERSON AVELINO DE SOUZA: 20200000680

MARCOS FELIPE FERNANDES TEIXEIRA: 20200150220

JOÃO VITOR MACHADO PINHEIRO: 20200001041

FRANCISCO DE SOUSA CUNHA: 20170155425

ELIAS GURGEL DE OLIVEIRA: 20200001005

Natal-RN 2021

JHONAT HEBERSON AVELINO DE SOUZA: 20200000680

MARCOS FELIPE FERNANDES TEIXEIRA: 20200150220

JOÃO VITOR MACHADO PINHEIRO: 20200001041

FRANCISCO DE SOUSA CUNHA: 20170155425

ELIAS GURGEL DE OLIVEIRA: 20200001005

SIMULAÇÃO DE UM SISTEMA DE TANQUES ACOPLADOS

Primeiro Relatório Parcial apresentado à disciplina de Laboratório de Sistemas de Controle, correspondente à avaliação da 1º unidade do semestre 2021.2 do 7º período do curso de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte, sob orientação do **Prof. Fábio Meneghetti Ugulino de Araújo.**

Professor: Fábio Meneghetti Ugulino de Araújo.

Natal-RN 2021

RESUMO

Neste trabalho será modelado um sistema de tanques acoplados, onde a fonte de entrada é uma representação da água sendo bombeada para o sistema de tanques. No sistema o líquido presente no primeiro tanque passa para o segundo através de um orifício, sofrendo a influência da gravidade exercida sobre ele. Em seguida o segundo tanque o recebe e devolve-o para o reservatório através de um orifício semelhante àquele localizado no primeiro. O experimento foi feito completamente no simulador *Simulink*, subdividido em duas etapas. A primeira etapa é representada por uma fonte de tensão de entrada constante, onde foi observado que quando o sistema se estabiliza no regime permanente, os níveis dos dois tanques ficam iguais. Na segunda etapa foi utilizada uma fonte de tensão senoidal, sendo observado que o tanque 1 (o qual recebe a água diretamente da bomba) tem uma oscilação com amplitude maior em relação ao tanque 2 (o qual recebe a água do tanque 1 pelo orifício). Também foi observada na primeira e na terceira simulação senoidal uma defasagem da oscilação do tanque 2 em relação ao tanque 1.

Palavras-chave: Simulink, sistema, tanque, modelagem, controle.

LISTA DE SÍMBOLOS

A₁ Área da base do tanque 1

A₂ Área da base do tanque 2

a₁ Área do orifício de saída do tanque 1 em cm²

a₂ Área do orifício de saída do tanque 2 em cm²

F1_{in} Vazão de entrada do tanque 1

F1_{out} Vazão de saída do tanque 1

F2_{in} Vazão de entrada do tanque 2

F2_{out} Vazão de saída do tanque 2

g Aceleração da gravidade em cm/s²

Km Constante da bomba

L₁ Taxa de variação do nível do tanque 1

L₁ Nível de água no tanque 1 em cm

L₂ Taxa de variação do nível do tanque 2

L₂ Nível de água no tanque 2 em cm

V Taxa de variação volumétrica

V_{out} Velocidade com que o líquido escoa pelo tanque 1

LISTA DE ABREVIATURAS E SIGLAS

OUT1	Conexão hidráulica	do tipo	fechada 1
OUT2	Conexão hidráulica	do tipo	fechada 2

Lista de Figuras

I	Equivalencia entre sistemas fluidicos e sistemas eletricos	10
2	Sistema com 1 tanque	11
3	Circuito equivalente para sistema com 1 tanque	11
4	Sistema com 2 tanques	12
5	Circuito equivalente para sistema com 2 tanques	12
6	Configuração 1	14
7	Configuração 2	15
8	Modelagem do sistema em blocos	17
9	Modelo interno do bloco principal	18
10	Sinal gerado após inserir no sistema uma tensão com valor constante	20
11	Sinal observado após inserido no sistema uma entrada senoidal com frequência de 0,2	
	rad/s	20
12	Sinal observado após inserido no sistema uma entrada senoidal com frequência de 1,0	
	rad/s	21
13	Sinal observado após inserido no sistema uma entrada senoidal com frequência de	
	0,08 rad/s	21

Sumário

1	INT	RODUÇAO	8
2	REF	FERENCIAL TEÓRICO	9
	2.1	SOFTWARE DE SIMULAÇÃO	9
		2.1.1 MATLAB	9
		2.1.2 Simulink	9
	2.2	PLANTA DE CONTROLE	9
		2.2.1 Quanser	9
	2.3	Sistema de Tanques	9
	2.4	MODELAGEM DE SISTEMAS DINÂMICOS	10
	2.5	MODELAGEM DE SISTEMAS FLUÍDOS	10
		2.5.1 Circuito Elétrico Análogo	10
	2.6	RESPOSTAS PARA SISTEMAS	11
		2.6.1 Regime Transitório	11
		2.6.2 Regime Permanente	12
3	ME'	TODOLOGIA	14
	3.1	Apresentação do sistema de tanques acoplados	14
		3.1.1 Configuração 1	14
		3.1.2 Configuração 2	15
	3.2	Parâmetros utilizados na modelagem do sistema	17
	3.3	O modelo implementado	17
4	RES	SULTADOS	19
	4.1	Com o sinal de entrada constante ativado	19
	4.2	Com sinal de entrada senoidal ativado	20
5	CO	NCLUSÃO	22
		Referências bibliográficas23	

1 INTRODUÇÃO

A partir do problema de controle, definido por Antônio C. Faleiros e Takashi Yoneyama como sendo a necessidade de se determinar uma forma de afetar um dado sistema físico de maneira que seu comportamento atenda a um conjunto de exigências pré-estabelecidas [1], surge a necessidade de se modelar sistemas dinâmicos e praticar simulações a partir dos mesmos, visando realizar uma grande variedade de testes sem colocar em risco o sistema real.

Assim, como ponto de partida no estudo da representação matemática da dinâmica de sistemas, será apresentada neste relatório a modelagem de um sistema de tanques acoplados, sendo um exemplo clássico e de extrema importância na compreensão do problema de controle e na simulação de sistemas dinâmicos no geral.

O sistema de tanques acoplados será simulado utilizando uma aplicação implementada no *Simulink*, software de modelagem, simulação e análise de sistemas dinâmicos desenvolvido pela empresa MathWorks e será constituído basicamente por 2 tanques, 1 reservatório, uma mini bomba d'água e tubos flexíveis para conexão, sendo possível a utilização de 3 diferentes configurações para o sistema proposto.

Diante disso, algumas simulações serão realizadas a partir do modelo do sistema de tanques apresentado, monitorando a estabilização dos níveis dos tanques e a amplitude das oscilações dos mesmos diante de diferentes entradas. Com base no referencial teórico, os resultados obtidos serão comentados e analisados no final deste relatório.

2 REFERENCIAL TEÓRICO

Trata-se da apresentação do embasamento teórico sobre o qual se fundamentará o trabalho, ou seja, são os pressupostos que darão suporte à abordagem do trabalho. Lembrar de sempre que utilizar texto de outros lugares, utilizar citação da fonte, como por exemplo, (??).

2.1 SOFTWARE DE SIMULAÇÃO

2.1.1 MATLAB

O MATLAB é um software de alta performance voltado para cálculo numérico. O MATLAB pode ser usado para análise numérica, cálculo com matrizes, processamento de sinais e construção de gráficos. A primeira versão foi escrita no final da década de 70 nas universidades do Novo México e Stanford visando fornecer suporte a cursos de teoria matricial, álgebra linear e análise numérica. O MATLAB é um sistema que permite resolução de problemas numéricos em apenas uma fração de tempo ao se comprar com programas semelhantes escritos em C, Fortran por exemplo. O elemento básico de informação usando no MATLAB é uma matriz que não requer dimensionamento. Além disso as soluções desses problemas são expressas como são escritas matematicamente

2.1.2 Simulink

Desenvolvida pela mesma companhia que o MATLAB, o Simulink é uma ferramenta de modelagem, simulação e análise de sistemas dinâmicos. É um software de diagramação gráfica por blocos. Simulink é usando em teoria de controle e processamento digital de sinais.

2.2 PLANTA DE CONTROLE

2.2.1 Quanser

A Quanser é uma empresa especializada em projetar e fabricar sistemas de tempo real de alta performance para o estudo e pesquisa nas áreas da controle, robótica e mecatrônica.

2.3 Sistema de Tanques

Os Sistemas de Tanques Acoplados da Quanser é um processo reconfigurável que permite a realização de experimentos de controle de diversos tipos. Consistindo de uma única bomba com dois tanques, é utilizado para estudos e pesquisas envolvendo experimentos com controle de nível de líquidos. Realizando uma descrição mais detalhada do sistema, temos que o mesmo é composto integralmente por 2 tanques, 1 reservatório, uma mini bomba d'água e tubos flexíveis para conexão. A bomba eleva o líquido, desde o reservatório, até 2 conexões hidráulicas normalmente fechadas, denominadas OUT1 e OUT2. O líquido presente no primeiro tanque passa para o segundo através de um orifício e sofre influência da gravidade que exerce sobre ele, em seguida o segundo recebe e devolve-o para o reservatório através de um orifício semelhante ao que se encontra no primeiro

tanque. As configurações e os tanques presentes nele contam com um sensor de nível tipo elétrico em função da altura da coluna de líquido no respectivo tanque. Esses sensores irão variar de 0 a 4,8 V, cujos sistemas de aquisição de dados receberão sinais de controle entre -12 e 12V para a bomba ser acionada

2.4 MODELAGEM DE SISTEMAS DINÂMICOS

De acordo com Ogata em seu livro Engenharia de Controle Moderno (5ª edição, 2011) : "O modelo matemático de um sistema dinâmico é definido como um conjunto de equações que representam a dinâmica do sistema com precisão ou, pelo menos, razoavelmente bem." [2]. O autor informa, ainda, que há diferentes maneiras de se representar um sistema, o que o torna sujeito a diferentes tipos de modelos matemáticos, segundo a perspectiva adotada.

2.5 MODELAGEM DE SISTEMAS FLUÍDOS

Nesta subseção será mostrada a modelagem de um sistema físico típico em engenharia de controle - o sistema fluídico. A abordagem mostrada é baseada na equivalência existente entre sistemas utilizando o sistema elétrico como base, tendo em vista a maior familiaridade com esse tipo de sistema.

Com posse do modelo e de sua função de transferência é possível realizar a análise tanto no domínio do tempo como no domínio da frequência

2.5.1 Circuito Elétrico Análogo

Aqui destacamos a similaridades entre sistemas fluídicos linearizados e elétricos na Figura 1.

Figura 1: Equivalência entre sistemas fluídicos e sistemas elétricos

Sistema fluídico	Sistema elétrico
Pressão P	Tensão v
Vazão q	Corrente i
Capacitância fluídica C_f	Capacitor C_f
Resistência fluídica linearizada \overline{R}_f	Resistor R_f
Indutância fluídica L_f	Indutor L_f

Fonte: DIGITE AQUI

De acordo com a Figura 1, para um sistema com um tanque como mostrado na Figura 2, o circuito equivalente seria aquele mostrado na Figura 3.

Portanto:

- P: diferença entre a pressão do fundo do reservatório e a pressão atmosférica.
- Caso se queira obter a relação entre a vazão de entrada qi e o nível de líquido no reservatório,
 h, em lugar da pressão P, a partir da Equação de Bernoulli tem-se que: P = ρ * g * h

Figura 2: Sistema com 1 tanque

Fonte:

Figura 3: Circuito equivalente para sistema com 1 tanque

Fonte:

Já para um sistema com 2 tanques, como podemos observar na Figura 4, o circuito equivalente seria o mostrado na Figura 5.

2.6 RESPOSTAS PARA SISTEMAS

2.6.1 Regime Transitório

Ao ser excitado por uma entrada qualquer, um sistema dinâmico reage de acordo com sua natureza antes que a resposta assuma a forma do sinal de entrada. A resposta transitória é, então, representada pela saída do sistema entre o instante inicial e o instante em que é atingido o regime permanente.

Figura 4: Sistema com 2 tanques

Figura 5: Circuito equivalente para sistema com 2 tanques

Fonte:

2.6.2 Regime Permanente

Uma situação na qual as variáveis do sistema são constantes, isto é, não variam com o tempo. Em um circuito elétrico, por exemplo, é a partir do momento em que a carga final dos capacitores e indutores é alcançada. Os erros de regime permanente são indicadores da precisão de um sistema de controle. Indicam a diferença entre o que se quer (sinal de referência) e o que se obtém (saída

controlada).

3 METODOLOGIA

Para este experimento, foi utilizado um modelo desenvolvido no *Simulink* (MATLAB). Este modelo foi disponibilizado pelo professor Fábio Meneghetti Ugulino de Araújo, que ministra a disciplina de Sistemas de Controle (Laboratório) na Universidade Federal do Rio Grande do Norte.

3.1 Apresentação do sistema de tanques acoplados

O sistema possuirá dois tipos de configurações diferentes que serão mais detalhados logo abaixo.

3.1.1 Configuração 1

Figura 6: Configuração 1

Fonte: Roteiro

Nessa primeira configuração, o sistema será de primeira ordem cuja a variável de interesse será apenas o nível do primeiro tanque. A vazão de entrada é dada pela seguinte equação:

$$F1_{in} = K_m V_P \left[\text{cm}^3 \right]$$

Onde Km será a constante da bomba e Vp a tensão de alimentação da bomba.

A velocidade com que o líquido sai do primeiro tanque é descrita pela equação de Bernoulli para pequenos orifícios:

$$v_{out} = \sqrt{2gL_1} \left[\frac{\text{cm}}{\text{s}} \right]$$

Onde g é igual a aceleração da gravidade e L1 é o nível do tanque 1.

Portanto, a vazão de saída é dada pela seguinte equação:

$$F1_{out} = a_1 v_{out} = a_1 \sqrt{2gL_1} \text{ cm}^3 / \text{s}$$

Onde a1 = área do orifício de saída do tanque 1.

A taxa de variação do nível do tanque 1 pode ser obtida fazendo a vazão de entrada menos a vazão de saída e depois dividindo o resultado pela área da base do tanque 1.

3.1.2 Configuração 2

Configuração 2

Out 2

Out 1

Medium Orifice

L2

REGULATE L2

PUMP

Medium Orifice

L2

Com os dois tanques, mas com alimentação apenas no tanque 1.

Deseja-se controlar o nível de líquido no tanque 2

Figura 7: Configuração 2

Fonte: Roteiro

Já nessa configuração, o sistema será de segunda ordem e a variável de interesse passará a ser o nível do segundo tanque, que é alimentada pela saída do primeiro tanque.

O cálculo da vazão de entrada do tanque 2 é igual a equação da vazão de saída do tanque 1 utilizada anteriormente:

$$F2_{in} = F1_{out} = a_1 v_{out} = a_1 \sqrt{2gL_1} \left[\text{cm}^3 \right]$$

O cálculo da vazão de saída do tanque 2 é semelhante a vazão de saída do tanque 1:

$$F2_{out} = a_2 \sqrt{2gL_2} \left[\text{cm}^3 \right]$$

Onde a2 = área do orifício de saída do tanque 2 e L2 = nível da água no tanque 2.

3.2 Parâmetros utilizados na modelagem do sistema

O relatório do experimento forneceu os seguintes parâmetros a serem utilizados na simulação:

Tabela 1 – Parâmetros do Modelo

Varável	Valor
Ganho do driver de potência	3,00
Ganho da bomba (K_m)	$K_m = 4,50$
Área da seção transversal dos tanques $(A_1 = A_2)$	$A_1 = A_2 = \pi \left(\frac{4,45}{2}\right)^2$
Área da seção transversal dos tanques $(a_1 = a_2)$	$a_1 = a_2 = \pi \left(\frac{0,48}{2}\right)^2$

Fonte: Roteiro

Também foi adicionado ao sistema um ruído aleatório variando de -0.5 a 0.5 cm nas saídas de cada um dos tanques.

3.3 O modelo implementado

A simulação da representação, tanques acoplados, será realizado a partir de um modelo disponibilizado pelo docente. Esse estudo refere-se ao fluxo de líquido entre dois reservatórios conectados, sendo que o tanque 1 será abastecido pela vazão de entrada do sistema, enquanto o segundo tanque dependerá da ação da gravidade e da área do orifício de saída do tanque 1. Na figura abaixo podemos observar o modelo utilizado no *Simulink* (MATLAB):

Figura 8: Modelagem do sistema em blocos

Fonte: Modelo disponibilizado pelo Professor

O modelo utilizado irá conter 6 blocos, 2 deles para geração do sinal de entrada, o terceiro bloco será uma chave seletora que irá fazer a seleção entre os 2 tipos de sinal de entrada, o quarto

bloco representará o sistema de tanques acoplados, o quinto bloco será um multiplexador e o sexto bloco será um osciloscópio que medirá o nível de cada tanque.

O bloco principal do modelo contém internamente blocos que possuem configurações com outros blocos e dessa forma executam as operações matemáticas e equações diferenciais que possibilitam incorporar os fatores existentes do mundo real ao comportamento do sistema.

Figura 9: Modelo interno do bloco principal

Fonte: Modelo de simulação, no ambiente Simulink (MATLAB), disponibilizado pelo Professor

4 RESULTADOS

4.1 Com o sinal de entrada constante ativado

Com o sinal de entrada constante, podemos observar a variação da média dos níveis dos tanques ao se estabilizarem conforme mudamos a tensão de entrada.

Tensão de	$L_1 = L_2$
Entrada (V)	(cm)
1,0	2,83
1,5	6,36
2,0	11,32
2,5	17,75
3,0	25,52
3,5	34,72
4,0	45,35

Fonte: Produzida pelo grupo de trabalho, conforme orientações do roteiro

Agora iremos fazer o processo oposto, descobrir quais são as tensões de entrada que farão os tanques atingirem determinados níveis. Para isso, utilizaremos o método de tentativa e erro que foi proposto no relatório deste experimento. Os resultados obtidos encontram-se presentes na tabela abaixo:

Tensão de	$L_1 = L_2$
Entrada (V)	(cm)
1,03	3
1,88	10
2,31	15
2,66	20
2,97	25
3,14	28
3,25	30

Fonte: Produzida pelo grupo de trabalho, conforme orientações do roteiro

Através dos gráficos do sistema, é notório a não-linearidade do modelo de tanques acoplados. O gráfico a seguir demonstra esse comportamento da função que se repete em todos os valores de entrada utilizados no experimento.

Figura 10: Sinal gerado após inserir no sistema uma tensão com valor constante

Fonte: Produzida pelo grupo de trabalho, conforme orientações do roteiro

Aqui podemos observar que o sistema se comporta de maneira não linear

4.2 Com sinal de entrada senoidal ativado

Com a chave seletora ativando a entrada senoidal com a seguinte configuração: Média de 2,0 cm, amplitude de 2,0 cm e a frequência de 0,2 rad/s, obtivemos o seguinte gráfico na simulação:

Figura 11: Sinal observado após inserido no sistema uma entrada senoidal com frequência de 0,2 rad/s

Fonte: Produzida pelo grupo de trabalho, conforme orientações do roteiro

O valor obtido na amplitude de oscilação do tanque 1 foi de 8,48 cm, já no tanque 2 o valor foi de 3,38 cm.

Agora mudando a frequência para 1,0 rad/s podemos perceber uma grande mudança no gráfico:

Figura 12: Sinal observado após inserido no sistema uma entrada senoidal com frequência de 1,0 rad/s

Fonte: Produzida pelo grupo de trabalho, conforme orientações do roteiro

O valor obtido na amplitude de oscilação do tanque 1 com frequência de 1,0 rad/s foi de 2,18 cm, já no tanque 2 o valor foi de 0,61 cm.

Por fim, utilizaremos agora uma frequência de 0,08 rad/s para gerar o seguinte gráfico:

Figura 13: Sinal observado após inserido no sistema uma entrada senoidal com frequência de 0,08 rad/s

Fonte: Produzida pelo grupo de trabalho, conforme orientações do roteiro

Nessa configuração (frequência = 0,08 rad/s) foi medido uma amplitude de oscilação de 15,23 cm para o tanque 1, para o tanque 2 o valor medido foi de 11,09 cm.

5 CONCLUSÃO

O relatório apresentado, consiste em um sistema de taques acoplados baseado em um kit didático da Quanser composto por dois tanques, um reservatório e uma mini bomba d'água. A partir de simulações utilizando o matlab foi possível analisar comportamentos esperados pela teoria se concretizar na prática, além de esclarecer a modelagem de um sistema fluídico de tanques acoplados e da fidelidade do modelo com embasamento científico com o experimental.

O primeiro caso para a chave manual na posição de entrada contante foi verificado um comportamento linear entre a tensão de entrada e o nível de estabilização dos tanques, sempre comprovado nas equações diferenciais que caracterizam o sistema tratado. Aprofundando na prática, foi notado uma relação entre a tensão de entrada e o intervalo de tempo para o sistema atingir o regime permanente, sendo maior com o aumento da tensão.

O segundo caso com a tensão de entrada senoidal, conclui-se que a amplitude das oscilações do primeiro tanque sempre resultará ser maior que a relação ao segundo por quaisquer valores de frequência da entrada senoidal, isso é devido a vazão de entrada do primeiro tanque ser maior que a vazão do segundo. Analisando o experimento, foi observado um comportamento inversamente proporcional entre a frequência do sinal de entrada e a amplitude de oscilação, e uma defasagem entre as oscilações dos tanques, explicada pela conexão em série dos dois com a tensão de entrada, gerando um atraso no tanque 2 causado pela presença do primeiro tanque.

Referências

MAITELLI., A. M. e A. *Modelagem e Análise de Sistemas Dinâmicos*. 2010. UFRN. Material didático.