LITERATURE SURVEY

Team ID: PNT2022TMID27240

Team Size: 4

Team Leader: GUNJI CHARAN TEJA

Team member 1: DHARANI VISHAL S P

Team member 2: JERLIN T D

Team member 3: KISHORE R

TITLE	AUTHOR AND YEAR	PROPOSED SOLUTION	PROS AND LIMITATIONS	PROBLEM PROPOSED
Detection of Skin Diseases	Md. Nazmul Hossen, Vijayakumari Panneerselvam/ 2022	An image augmentation strategy was followed to enlarge the dataset and make the model more general.	The CNN-based skin disease classification merged with the federated learning approach is a breathtaking concept to classify human skin diseases while ensuring data security.	It is used to detect the skin cancer diseases.

Melanoma type detection	Patil R, Bellary S/ 2021	CNN approach for Text Processing (SMTP).In this research the result	SMTP loss function causes exceptionally little loss in compared to	This research resulted in the development of two different methods for identifying the stages of melanoma cancer.
A Simplified Approach for Melanoma Skin Disease Identification	G. Glorindal,S. Arun Mozhiselvi,T. Ananth Kumar,K. Kumaran/2021	An image processing approach with an easily driven Application Programmable Interface commonly known as API, has been proposed to diagnose skin diseases at their earlier stages.	preprocessing, segmentation, feature extraction, and classification	This methodology gives a simple approach to detect a skin disease, especially melanoma.

Enhanced Skin Condition Prediction	Tryan Aditya Putra, Syahidah Izza Rufaida/2020	In this study,we propose a dynamic training and testing augmentation capable of increasing performance significantly.	There is still only limited research focused on dynamic data augmentation, even in the fields of machine learning and computer vision.	This method delivers a superior result, and this study also shares the searched augmentation policy utilized, which requires extraordinary resources.
Machine learning approach in melanoma cancer stage detection	Rashmi Patil, Sreepathi Bellary/ 2020	This study utilised two different deep learning algorithms, namely the Lesion Feature Network (LFN) and the Lesion Indexing Network (LIN).	The experiment shows that the suggested (LIN) performs better than existing machine learning algorithms for lesion segmentation and classification.	The major three aims in the field of skin lesion image processing to identify the melanoma cancer.
Skin Lesions Classification into Eight Classes for ISIC	Kassem MA, Hosny KM, Fouad MM./ 2020	This method was used to train the CNN from start to finish.In order to train CNN, a dataset consisting of 129,450 clinical photos is used.	It is necessary to determine which malignancies are the most prevalent, and in the second scenario, it is necessary to determine which skin cancer is the deadliest.	The results of the author's experiment, CNN performed better than all of the specialists who were tested in both tasks.

Melanoma	Ichim L, Popescu D/	The proposed a	This approach	The results in
Detection	2020	variety of	enables the	better
		methodologies	classification	identification
		that can be used	network to extract	accuracy of
		to ensure good	more	melanoma
		training and	representative	detection.
		learning even	and specific	

		with a limited amount of training data to detect the melanoma disease.	features from segmented findings rather of the complete dermoscopy images, hence reducing the quantity of training data that is required to be collected.	
Skin Disease Image Recognition	Ling-Fang Li, Xu Wang, Wei-Jian Hu/2020	The skin disease image recognition method based on deep learning is better than those of dermatologists and other computer-aided treatment methods in skin disease diagnosis	We also analyze the current progress in this field and predict four directions	The traditional and machine learning-based skin disease diagnosis and treatment methods.

Detection of Skin Diseases	Aziz A., Hartono R. and Abdilah R./ 2020	The creation of an expert application of skin disease detection using methods like Naive Bayes, CNN, SVM methods.	The mentioned methods are necessary to help all people who want to know about skin diseases that are being experienced or need information about skin diseases.	The methods is used in this application is used to detect the skin diseases.
An Improved Skin Lesion Matching Scheme	Konstantin Korotkov, Josep Quintana, Ricard Campos, Am´erica Jes´us-Silva, Pablo Iglesias, Susana Puig/ 2019	This method makes optimal use of a trained 19-layer deep CNNs and therefore does not rely on prior	When using cross entropy as the loss function for picture segmentation, which is a normal process, there is a	As a result, an original loss function based on Jaccard distance has also been designed to minimise the
		knowledge of the data.	severe imbalance between both the amount of foreground and background pixels	requirement for sample reweighting.