

计算机组成与系统结构

第三章 多层次的存储器 (1)

吕昕晨

lvxinchen@bupt.edu.cn

网络空间安全学院

模型机—章节概述 (1)

第三章 内存→多层次的存储器(内存、硬盘、.....)

模型机—章节概述 (2)

第三章 内存→多层次的存储器(内存、硬盘、.....)

*注:该模型机中的"存储器" 即指主存(内存)

• 基本概念

- 存储器如何分类(硬件)?
- 为什么要多层次存储器?
- 存储器性能指标?
- 常见存储器技术/设计方法
 - DRAM(内存条如何组织)
 - SRAM (多层次存储器如何协同)
 - 计算机整体存储结构.....

多层次的存储器

基本概念

第三章 多层次的存储器

- 存储器技术指标
- 存储器分类
- 层次缓存结构
- 其他分层结构

- 存储容量
 - 存储容量指一个存储器中可存储的信息比特数,常用比特数(b)或字节数(B)来表示,也可使用KB、MB、GB、TB等单位
 - $1KB=2^{10}B$, $1MB=2^{20}B$, $1GB=2^{30}B$, $1TB=2^{40}B$
 - 存储容量也可表示为
 - 存储字数(存储单元数)×存储字长(每单元的比特数)
 - 1Mb容量的存储器可以组织成 1M X 1 bit, 也可组织成 128K X 8 bit或者 512K X 2 bit。

- 存取时间
 - 存储器访问时间
 - 是从存储器接收到读/写命令开始到信息被读出或写入 完成所需的时间
- 存储周期(存取周期)
 - 存储器连续读写过程中一次完整的存取操作所需的时间
 - CPU连续两次访问存储器的最小间隔时间
 - 通常,存储周期略大于存取时间
- 存储器带宽 (数据传送速率,频宽)
 - 单位时间里存储器所存取的信息量,通常以位/秒或字节/秒做度量单位
 - 若系统的总线宽度为W位,则带宽=W/存取周期(b/s)?

小明用大小为4GB的U盘去存储大小为3.8GB的文件,是否能正确存储?

能

4,001,333,248 字节 ≈ 3.72×1024³ B

B

不能

= 3.72 GB

在32位CPU与操作系统的主机中,装入了4GB大小的内存,此时访存最大字节数为?

- 内部存储器 (1024=210)
 - 内存GB=1024³B
- 外部存储器容量
 - 硬盘/U盘GB=1000³B

CPU主频为3GHz,对应的具体频率为(Hz)?

- 数据传输率、时钟频率
 - 以太网Mbps: 1000²bps
 - CPU主频GHz: 1000³Hz
 - SATA-2Gbps: 1000³bps

第三章 多层次的存储器

- 存储器技术指标
- 存储器分类
- 层次缓存结构
- 其他分层结构

存储器类别分类

半导体存储器—SRAM与DRAM

- 主存(内部存储器)是半导体存储器
- 根据信息存储的机理不同可以分为两类:
 - 静态读写存储器(SRAM)
 - 存取速度快,容量小
 - Cache
 - 动态读写存储器 (DRAM)
 - 存取速度较慢,存储容量较大
 - 内存

SRAM基本存储单元

- 双稳态触发器
 - 保存输入数据,可选择输出
 - 电路组成: 6个MOS管
 - VDD为电源端,保证M1-M4的MOS管保持稳定
 - BL与BL信号 (R、S) 为信号写入与读出端
 - WL信号为写入读出控制信号

DRAM基本存储单元

- 电容: 充放电能力
 - 行列选择信号
 - 关闭,电容保存电荷
 - 写入过程
 - 数据输入线置0/1
 - 对电容进行充放电
 - 读出过程
 - 电容存储电荷驱动输出线
 - 刷新过程
 - 电容漏电效应,信息丢失
 - 刷新:保证数据正确性

DRAM基本存储单元

(b) 写 0 到存储位元

(c) 从存储位元读出 1

(d) 刷新存储位元的 1

SRAM与DRAM对比

SRAM

- 结构复杂(6个MOS管)
- 集成度低、成本高
- 不需刷新,读写速度快

DRAM

- 结构简单(电容),成本较低
- 定期刷新,读写速度慢

只读存储器ROM

- 只读存储器 (Read-Only Memory, ROM)
 - 只能读出,不能写入(不能随意写入)
 - 存储的原始数据,必须在它工作以前写入
 - 工作可靠,保密性强,在计算机系统中得到广泛的应用
- 主要有两类
 - 掩模ROM
 - 掩模ROM实际上是一个存储内容固定的ROM,由生 产厂家提供产品
 - 可编程ROM:用户后写入内容,有些可以多次写入
 - 一次性编程的PROM
 - 多次编程的EPROM和E²PROM

掩模ROM存储结构

- 存储元
 - MOS管
 - 行选线与MOS管栅极是否连通:表示0或1
 - 生产商制造ROM设置
- 阵列结构
 - 单译码结构
 - 16 * 8bit

掩模ROM芯片与逻辑框图

- 掩模ROM芯片
 - 256 * 4bit ROM芯片
 - 控制线E0/E1(与门连接),均为低电平可读出
 - 行列译码电路
 - 参考SRAM/DRAM扩展

可编程EPROM

- EPROM: 光擦除可编程只读 存储器
 - 存储内容可以根据需要写 入,当需要更新时将原存 储内容抹去,再写入新的 内容
- 存储元
 - 浮栅雪崩注入型MOS管
 - 光擦除方式(抹为全1),紫外光照射
 - 可读出,可写0

紫外接收窗

可编程E²PROM

- EEPROM/E²PROM: 电擦除 可编程只读存储器
- 存储元
 - 两个栅极的NMOS管
 - G1是控制栅,它是一个浮栅,无引出线
 - G2是抹去栅,它有引出线
 - 电擦除方式,在G2加20V 正脉冲,存储1 (20ms)
 - 可读出,可写0,抹1

FLASH存储器

- 存储元: 带浮空栅的MOS管, 在EPROM基础发展
 - 存储1, 浮空栅不带电荷
 - 存储0, 浮空栅带负电荷

FLASH存储器

- FLASH存储又称闪存,是高密度非易失性存储器,功耗低、 集成度高、不需后备电源
- 访问时间是磁盘的1%~1%,存在三种基本操作:读、写、擦除
- FLASH存储优点
 - 可编程, 易于可读写; 用途: U盘、SSD

ROM存储器—扩展

Control Gate 浮栅

传统MOS管

带浮栅MOS管

栅极: 电压→导通

• 导通: "1"

• 浮栅:二氧化硅绝缘体包裹

• 长期存储电子

ROM存储器—扩展

读"1"

读"0"

- 不同的浮栅方式代表不同的ROM存储器
- 栅极导线:掩模ROM;紫外光(EPROM)、强电(EEPROM)
- 区别:绝缘层厚度,需要不同的能量

FLASH存储器—扩展

写"0"

写"1"

- 原理: FN隧穿效应
- 固态硬盘:写入次数受限(高压电场影响绝缘层),读取不限

总结: 存储器分类与特性 (1)

- 内容是否易失
 - 非易失
 - 硬盘、BIOS
 - 易失性
 - 内存、Cache
- 可读可写
 - BIOS (一般只读)
 - 内存、硬盘等(可读可写)
- 随机访问/顺序访问
 - 磁带、硬盘
 - 内存 (RAM) 、Cache、BIOS

总结: 存储器分类与特性 (2)

- 主要性能
 - 容量
 - 访问速度
 - 价格
- 现有存储器特性
 - 速度快的存储器价格贵,容量小
 - 价格低的存储器速度慢,容量大
- 在存储器系统设计时,应当在 存储器容量、速度和价格方面 的因素作折中考虑

第三章 多层次的存储器

- 存储器技术指标
- 存储器分类
- 层次缓存结构
- 其他分层结构

		1980	1990	2000	2010	2010:1980
	Name	8080	386	Pentium II	Core i7	1
	Clock rate(MHz)	1	20	600	2,500	2,500
CPU	Cycle time(ns)	1,000	50	1.6	0.4	2,500
	Cores	1	1	1	4	4
	Effective Cycle time(ns)	1,000	50	1.6	0.1	10,000

,	\$/MB	8,000	100	1	0.06	130,000
DRAM	access time(ns)	375	100	60	40	9
	typical size(MB)	0.064	4	64	8,000	125,000

存储器性能影响

- 考虑指令执行过程 ADD R0, [6]
 - 取指:读指令,100时钟周期
 - 译码:1时钟周期
 - 执行: 访存, 100时钟周期
 - 回写: 1时钟周期
- 性能下降100倍以上

		1980	1990	2000	2010	2010:1980
	Name	8080	386	Pentium II	Core i7	1
	Clock rate(MHz)	1	20	600	2,500	2,500
CPU	Cycle time(ns)	1,000	50	1.6	0.4	2,500
	Cores	1	1	1	4	4
	Effective Cycle time(ns)	1,000	50	1.6	0.1	10,000
						3~4倍
SRAM	\$/MB	19,200	320	100	60	320
	access time(ns)	300	35	3	1.5	200
	\$/MB	8,000	100	1	0.06	130,000
DRAM	access time(ns)	375	100	60	40	9
	typical size(MB)	0.064	4	64	8,000	125,000

 高速缓冲存储器简称Cache,它是计算机系统中的 一个高速小容量半导体存储器。

CPU	典型主频	访存周期	DRAM延迟	Cache设计
8088	4.77MHz (210ns)	4 (840ns)	250ns	无需Cache
80286	10MHz (100ns)	2 (200ns)	220ns	无需Cache
80386	25MHz (40ns)	2 (80ns)	190ns	片外Cache
80486	33MHz (30ns)	2 (60ns)	165ns	8KB片内 Cache

多级存储系统 (片外Cache)

片内Cache—Intel Core i7

- 一级Cache:数据与指令分离
 - 4周期, 32KB
- 二级Cache: 统一数据与指令
 - 11周期, 256KB
- 三级Cache: 多核共享
 - 30~40周期, 8MB

CPU Core	CPU Core CPU Core		CPU Core			
32KB I-Cache	32KB I-Cache	32KB I-Cache	32KB I-Cache			
32KB D-Cache	32KB D-Cache	32KB D-Cache	32KB D-Cache			
256KB L2 Cache	256KB L2 Cache	256KB L2 Cache	256KB L2 Cache			
8MB L3 Cache						

存储器分级结构

口 按在计算机中的作用

- 主存储器
- 辅助存储器
- 高速缓冲存储器

存储器分级结构

- 金字塔形
 - 容量大、速度慢(底层)
 - 容量小、速度快(高层)
- 核心关键
 - 调用缓存方法
 - 高效利用多层缓存结构

• 目标: 高速度、大容量、低成本

存储器分层结构

口 两个主要层次

- 缓存——主存层次
 - 主要解决速度匹配和成本问题
- 主存——辅存层次
 - 主要解决速度、容量、成本问题

多层次的存储器—组织结构

第三章 多层次的存储器

- 存储器技术指标
- 存储器分类
- 层次缓存结构
- 其他分层结构(存储/计算…)

共性目标: 高速度、大容量、低成本

CDN v.s. 多层存储: 模式类比

基于CDN技术的内容分发方案

- CDN (ContentDelivery Networks)
 - 内容分发网络
 - 对比:物流网络
 - 案例:
 - 腾讯

腾讯: CDN技术流程

应用场景	场景概述
网站加速	针对门户网站、电商、UGC 社区等业务场景,提供强大的静态内容(如各类型网页样式、图片、小文件)加速分发处理能力,显著提升网页用户的体验。
下载加速	针对游戏安装包获取、手机 ROM 升级、应用程序包下载等业务场景,提供稳定、优质的下载加速。
音视频加速	针对在线音视频播放业务场景,依托腾讯多年在线视频运营经验,支撑高峰期海量并发,有效保证服务的高可用性和媒体传输速度,提供稳定、流畅、丰富的观看体验。
全站加速	全站加速 ECDN 是腾讯云的一款独立产品,适用于纯动态或动、静态资源混合型资源的一站式加速,自动识别动静态资源,同一平台上可实现站内所有类型资源同时加速。
安全加速	安全加速 SCDN 在拥有 CDN 全部加速优势的基础上,提供超强的安全防护能力:防护大流量 DDoS 攻击,抵抗大型 CC 攻击,以及 WAF(网站入侵防护)。可由 CDN 一键接入开启安全防护。

CDN性能测试

MEC v.s. 多层存储: 模式类比

移动边缘计算 (MEC)

- 由于移动设备计算/存储能力受限,需要将复杂移动应用 迁移到云服务提供商处理
- 支持复杂移动应用
 - 自动驾驶、语音识别、增强现实等

边缘计算特点

- 低时延、高可靠的计算服务
 - 缩短用户与云服务资源距离, 避免移动云计算中核心网 (WAN) 传输时延
- 高带宽、低回传开销
 - 在提升网络数据处理能力同时,降低数据回传消耗
- 鲁棒性、安全性
 - 分布式节点进行任务处理, 避免单点故障

移动: 边缘计算应用场景

[
	111		LIVE		
	智能制造	智慧城市	直播游戏	车联网	
低时延	强	一般	强	强	
高带宽	一般	强	强	一般	
安全性	强	强	一般	强	
L					
	本地分流		私有边缘计算服务		

其他类比: 边缘智能

Deep Learning with Edge Computing

Fig. 7. Architectures for deep learning training on the edge. (a) Centralized training. (b) Decentralized training.

总结

- 存储器分类
- 存储器性能指标
- 存储器分层结构
- 类比分层结构
 - 内容分发网络
 - 移动边缘计算
 - 边缘智能

