LARGE SCALE DATA MANAGEMENT COURSE

Lamprakis Panagiotis (03003142)

PhD Candidate – AILS

Contents

Introduction	3
Work	6
Query 1	6
Query 2	8
Query 3	8
Query 4	9
Annendix	10

Introduction

In scope of the Large-Scale Data Management course, I have set up a mini cluster of two nodes using VirtualBox^[1]. I have created a master and a worker node and installed Spark and Hadoop on them. The images (1 & 2) below verify the successful installation of Spart and Hadoop on both instances. Also, in the images below, it's noticeable that passwordless ssh between master & worker has been established.

The code for this homework can be found in PanosLam/DSML-NTUA-Big-Data GitHub repo.

```
Hadoop 3.3.6
Source code repository https://github.com/apache/hadoop.git -r 1be78238728da9266a4f88195058f08fd012bf9c
Compiled by ubuntu on 2023-06-18T08:22Z
Compiled on platform linux-x86_64
 Compiled with protoc 3.7.1
rom source with checksum 5652179ad55f76cb287d9c633bb53bbd
This command was run using /home/osboxes/hadoop-3.3.6/share/hadoop/common/hadoop-common-3.3.6.jarosboxes@master:~$ spark-submit --version
 Velcome to
                                          version 3.5.1
Using Scala version 2.12.18, OpenJDK 64-Bit Server VM, 1.8.0_402
Branch HEAD
 Compiled by user heartsavior on 2024-02-15T11:24:58Z
 Revision fd86f85e181fc2dc0f50a096855acf83a6cc5d9c
Nurl https://github.com/apache/spark
Type --help for more information.
osboxes@master:~$ ssh-slave
Welcome to Ubuntu 22.04 LTS (GNU/Linux 5.15.0-25-generic x86_64)
 * Documentation: https://help.ubuntu.com
                          https://landscape.canonical.com
https://ubuntu.com/advantage
   Management:
  System information as of Sun Jun 2 05:25:44 PM UTC 2024
                         1.47265625
  System load:
                                                    Processes:
  Usage of /home: 1.4% of 249.65GB
                                                    Users logged in:
  Memory usage: 10%
                                                    IPv4 address for enp0s3: 192.168.1.20
  Swap usage:
                         0%

    Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroK8s
just raised the bar for easy, resilient and secure K8s cluster deployment.

    https://ubuntu.com/engage/secure-kubernetes-at-the-edge
199 updates can be applied immediately.
104 of these updates are standard security updates.
To see these additional updates run: apt list --upgradable
Last login: Sun Jun 2 17:23:55 2024 from 192.168.1.236
               ker:~$ hadoop version
Source code repository https://github.com/apache/hadoop.git -r 1be78238728da9266a4f88195058f08fd012bf9c
Compiled by ubuntu on 2023-06-18T08:22Z
Compiled on platform linux-x86_64
Compiled with protoc 3.7.1
From source with checksum 5652179ad55f76cb287d9c633bb53bbd
 his command was run using /home/osboxes/hadoop-3.3.6/share/hadoop/common/hadoop-common-3.3.6.jar
```

Image 1 Hadoop & Spark versions in Master Node

Master's private IP is 192.168.1.236 (verified via *ifconfig* command), while worker's private IP is 192.168.1.20.

```
his command was run using /home/osboxes/hadoop-3.3.6/share/hadoop/common/hadoop-common-3.3.6.jar
 sboxes@master:~$ spark-submit --version
Welcome to
                                   version 3.5.1
Using Scala version 2.12.18, OpenJDK 64-Bit Server VM, 1.8.0_402
Branch HEAD
Compiled by user heartsavior on 2024-02-15T11:24:58Z
Revision fd86f85e181fc2dc0f50a096855acf83a6cc5d9c
Url https://github.com/apache/spark
Type --help for more information.
   oxes@master:~$ ssh-slave
Welcome to Ubuntu 22.04 LTS (GNU/Linux 5.15.0-25-generic x86 64)
* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage
  System information as of Sun Jun 2 05:25:44 PM UTC 2024
  System load:
                    1.47265625
                                           Processes:
  Usage of /home: 1.4% of 249.65GB
                                         Users logged in:
  Memory usage:
                    10%
                                          IPv4 address for enp0s3: 192.168.1.20
  Swap usage:
 * Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroK8s
   just raised the bar for easy, resilient and secure K8s cluster deployment.
   https://ubuntu.com/engage/secure-kubernetes-at-the-edge
199 updates can be applied immediately.
104 of these updates are standard security updates.
To see these additional updates run: apt list --upgradable
Last login: Sun Jun 2 17:23:55 2024 from 192.168.1.236
         worker:~$ hadoop version
Hadoop 3.3.6
Source code repository https://github.com/apache/hadoop.git -r 1be78238728da9266a4f88195058f08fd012bf9c
Compiled by ubuntu on 2023-06-18T08:22Z
Compiled on platform linux-x86_64
Compiled with protoc 3.7.1
rom source with checksum 5652179ad55f76cb287d9c633bb53bbd
This command was run using /home/osboxes/hadoop-3.3.6/share/hadoop/common/hadoop-common-3.3.6.jar
 sboxes@worker:~$ spark-submit --version
Welcome to
                                   version 3.5.1
Using Scala version 2.12.18, OpenJDK 64-Bit Server VM, 1.8.0_402
Compiled by user heartsavior on 2024-02-15T11:24:58Z
Revision fd86f85e181fc2dc0f50a096855acf83a6cc5d9c
Url https://github.com/apache/spark
Type --help for more information.
  boxes@worker:~$ _
```

Image 2 Hadoop & Spark versions in Worker Node

Hadoop web interface can be accessed via: http://192.168.1.236:9870/dfshealth.html#tab-datanode hyperlink [2].

Spark web UI for Master node can be accessed via: http://192.168.1.236:8080/ hyperlink, and via http://192.168.1.20:8081/ for the Worker Node.

In order to verify the code, I have setup Spark locally in my PC and run the experiments over a small but representative amount of data. The final results come by executing the code in the cluster.

Creating a folder on HDFS.

Copying the files from local (PC) into the Cloud (VirtualBox – Master instance)

In case the DataNode is not up and running we need to perform the following steps:

- 1. Run stop-dfs.sh
- 2. Run *mv /home/osboxes/hdfsdata /home/osboxes/hdfsdata_backup* (remove DataNode directories and backup them)
- 3. Run start-dfs.sh

Make a directory in HDFS and upload a file from Master local file system into HDFS.

```
osboxes@master:~/local-datasets$ hadoop fs -mkdir /files
osboxes@master:~/local-datasets$ hadoop fs -put query-4-data.csv /files/
osboxes@master:~/local-datasets$ hadoop fs -ls /files/
Found 1 items
-rw-r--r-- 2 osboxes supergroup 1387 2024-06-02 21:17 /files/query-4-data.csv
osboxes@master:~/local-datasets$
```

The image below shows that all necessary datasets have been uploaded from local PC to Master FS.

```
| Διαχειριση-Δεδομενων-Μεγαλης-Κλιμακας/Εργασια$
| Διαχειριση-Δεδομενων-Μεγαλης-Κλιμακας/Εργασια/Μεσίαn-household-income-2015/
| Διαχειριση-Δεδομενων-Μεγαλης-Κλιμακας/Εργασια/Median-household-income-2015/
| Διαχειριση-Δεδομενων-Μεγαλης-Κλιμακας/Εργασια/median-house
```

The following image shows the datasets in Master FS.

Finally, the image below verifies that datasets have been uploaded successfully to HDFS.

```
osboxes@master:~/local-datasets$ hadoop fs -put Crime_Data_from_2010_to_2019.csv /files/
osboxes@master:~/local-datasets$ hadoop fs -put LA_income_2015.csv /files/
osboxes@master:~/local-datasets$ hadoop fs -put LA_income_2015.csv /files/
osboxes@master:~/local-datasets$ hadoop fs -put revgecoding.csv /files/
osboxes@master:~/local-datasets$ hadoop fs -ls /files/
Found 5 items
-rw-r--r-- 2 osboxes supergroup 537190637 2024-06-02 21:31 /files/Crime_Data_from_2010_to_2019.csv
-rw-r--r-- 2 osboxes supergroup 12859 2024-06-02 21:31 /files/LA_income_2015.csv
-rw-r--r-- 2 osboxes supergroup 1387 2024-06-02 21:31 /files/La_income_2015.csv
-rw-r--r-- 2 osboxes supergroup 1387 2024-06-02 21:31 /files/query-4-data.csv
soboxes@master:~/local-datasets$
```

Verify HDFS uri as created in python code to be used for saving parquet files in HDFS.

```
osboxes@master:~/local-datasets$ hdfs dfs -ls hdfs://192.168.1.236:9000/files

Found 5 items
-rw-r--r-- 2 osboxes supergroup 537190637 2024-06-02 21:31 hdfs://192.168.1.236:9000/files/Crime_Data_from_2010_to_2019.csv
-rw-r--r-- 2 osboxes supergroup 241051722 2024-06-02 21:31 hdfs://192.168.1.236:9000/files/Crime_Data_from_2020_to_Present.csv
-rw-r--r-- 2 osboxes supergroup 12859 2024-06-02 21:31 hdfs://192.168.1.236:9000/files/La_income_2015.csv
-rw-r--r-- 2 osboxes supergroup 1387 2024-06-02 21:31 hdfs://192.168.1.236:9000/files/query-4-data.csv
-rw-r--r-- 2 osboxes supergroup 897062 2024-06-02 21:31 hdfs://192.168.1.236:9000/files/revgecoding.csv
```

Work

Query 1

We implement the first query in using both SQL API & DataFrame and we read the data from the CSV file and the parquet file. The table below shows the total execution times for all possible combinations.

	CSV	PARQUET
SQL API	55.259 sec	26.472 sec
DATAFRAME	54.378 sec	25.521 sec

We observe that in general, using the parquet format results in 52-53% execution time cut compared to the CSV cases. This happens for the following reasons:

- 1. Parquet file formats tend to give better read times because of their columnar storage and their included schema information as opposed to CSV files which are row-based storage and need schema inference. This means that when Spark needs to read specific columns, it's faster for parquet cases compared to csv, in which Spark needs to read whole rows.
- 2. Parquet files are compressed, leading to smaller data sizes being transmitted over the network compared to the csv case. This gives an improvement on the network I/O latency.

3. Computations held over parquet data are more efficient, since batches of data can be processed in parallel (vectorized processing).

It is evident that a parquet file format ends up with more benefits.

+		+
CRIME_YEAR CRIM	E_MONTH count coun	ter
+		
2010	3 17595	1
2010	7 17520	2
2010	5 17338	3
2011	8 17139	1
2011	5 17050	2
2011	3 16951	3
2012	8 17696	1
2012	10 17477	2
2012	5 17391	3
2013	8 17329	1
2013	7 16714	2
2013	5 16671	3
2014	7 17456	1
2014	10 17300	2
2014	12 17076	3
2015	8 19134	1
2015	10 19065	2
2015	7 18755	3
2016	8 19834	1
2016	10 19678	2
2016	7 19343	3
2017	10 20436	1
2017	8 20127	2
2017	7 20034	3
2018	5 20277	1
2018	7 19998	2
2018	10 19851	3
2019	7 19349	1
2019	8 19094	2
2019	3 18967	3
2020	1 18512	1
2020	2 17443	2
2020	7 17257	3
2021	10 19191	1
2021	7 18954	2
2021	11 18666	3
2022	5 20784	1
2022	8 20585	2
2022	6 20418	3
2023	10 20350	1
2023	8 20345	2
2023	1 20257	3
2024	1 20015	1
2024	2 18009	2
2024	3 17186	3
+	+	+

year		e_total raı 	nking +
2010	-		
2010	71	17595 17520	1 2
2010	7 I 5 I	17338	3
2010	8	17330	1
2011	5 l	17139	21
2011	31	16951	3
2011	8	17696	11
2012	10	17477	21
2012	5	17391	3
2013	8	17329	11
2013	71	16714	21
2013	5	16671	3
2014	7	17456	1
2014	10	17300	21
2014	12	17076	31
2015	8	19134	11
2015	10	19065	21
2015	7	18755	3
2016	81	19834	11
2016	10	19678	21
2016	7	19343	31
2017	10	20436	11
2017	8	20127	21
2017	71	20034	3
2018	5	20277	11
2018	7	19998	21
2018	10	19851	3 I
2019	7	19349	11
2019	81	19094	21
2019	3	18967	 3
[2020]	1	18512	11
2020	2	17443	21
2020	71	17257	31
2021	10	19191	1
2021		18954	2
2021		18666	3
2022		20784	1
2022	8	20585	2
[2022]		20418	3
2023		20350	11
2023		20345	21
2023		20257	3
2024		20015	11
	2	18009	21
2024		17186	3
			+

Image 3 DataFrame results

Image 4 SQL API results

Query 2

Image 5 DataFrame results

```
('midnight (21:00-04:59)', 243374)
('night (17:00-20:59)', 191792)
('afternoon (12:00-16:59)', 151564)
('morning (05:00-11:59)', 126611)
```

Image 6 RDD results

	RDD	DATAFRAME
EXECUTION TIME (SEC)	74.997	45.779

It is easy to observe that using DataFrames over RDDs we achieve an improvement of almost 40% (reduction) in execution time. This is because RDDs offer a low-level API to interact with the data and it doesn't come with optimizations, compared to DataFrames which use the Spark Catalyst optimizer. Moreover, RDDs store the data in Java objects, which can be inefficient, while DataFrames store the data in binary format, which reduces serialization/deserialization costs, thus improving the execution time.

Query 3

Due to limited time, I was not able to experiment with the different join implementations offered by Spark API. However, I will attempt to guess the best join implementation based on the nature of the different Spark implementations and the dataset under analysis.

The **broadcast** join broadcasts the small dataset to the worker node(s) and the join is performed locally on each node. This join type is effective when merging a small with a large dataset.

The **merge** join sorts both data sets by key and then merges them. This join type is efficient for large datasets that are already sorted or can be sorted efficiently.

The **shuffle hash** join shuffles the data to the worker node(s) and performs the join on the shuffled data. This join type is a good option when the join keys fit into memory and the dataset is evenly distributed.

The **shuffle and replicate NL** join takes each row of one dataset and compares it to every row in the other dataset to perform the join.

Given the above, I believe that **broadcast** join would be the most appropriate one, since we do have a small data set (produced by merging revgeocoding over the zip codes) which is joined with a large one (2015 crime dataset). Also, the **shuffle hash** join would work too, since the keys can fit into worker node memory.

I would expect Merge & shuffle and replicate NL joins to end up with worse execution times compared to the other two strategies.

+	+
Victim_Descent_Detailed Total	Victims
+	+
Hispanic/Latin/Me	1526
Black	1098
White	700
Other	390
Other Asian	101
Unknown	65
Hawaiian	32
American Indian/A	25
Korean	12
Chinese	6
Japanese	5
Pacific Islander	5
Asian Indian	4
Filipino	3
Guamanian	3
Vietnamese	3
Laotian	1
Samoan	1
+	+

Image 7 DataFrame results

Query 4

No time to implement the broadcast & repartition join algorithms. However, below there are the results by leveraging the join strategy selected by Catalyst Optimizer for both DataFrame and RDD implementations.

+		+	+
DIVISION	incidents to	tal AVERAGE_	DISTANCE
+			
77TH STREET	17	7019	2.688
SOUTHEAST	12	2942	2.105
NEWTON		846	2.019
SOUTHWEST		3912 	2.7
HOLLENBECK		202	2.652
HARBOR		621	4.082
RAMPART		5115	1.575
MISSION		1504	4.715
OLYMPIC		424	1.822
NORTHEAST		5920 	3.905
FOOTHILL		774	3.803
HOLLYWOOD		641	1.46
CENTRAL		614	1.138
WILSHIRE		5525	2.314
NORTH HOLLYWOOD		3466	2.719
WEST VALLEY		2902	3.53
VAN NUYS		2733	2.222
PACIFIC		708	3.729
DEVONSHIRE		2471	4.01
TOPANGA		2283	3.486
WEST LOS ANGELES		1541	4.243
+		+	+

Image 8 DataFrame results

+division average_distance incide	+ nts_total
	+
77TH STREET 45747.717000000106	17019
SOUTHEAST 27247.2299999984	12942
NEWTON 19877.97700000083	9846
SOUTHWEST 24058.91200000001	8912
HOLLENBECK 16449.319000000047	6202
HARBOR 22943.546000000042	5621
RAMPART 8058.242999999956	5115
MISSION 21238.392000000113	4504
OLYMPIC 8059.666000000035	4424
NORTHEAST 15305.70199999948	3920
F00THILL 14353.190000000053	3774
HOLLYWOOD 5315.0450000000255	3641
CENTRAL 4113.179000000007	3614
WILSHIRE 8156.621999999998	3525
NORTH HOLLYWOOD 9423.159000000007	3466
WEST VALLEY 10243.582999999982	2902
VAN NUYS 6071.758000000035	2733
PACIFIC 10097.389000000021	2708
DEVONSHIRE 9909.019999999997	2471
TOPANGA 7958.548000000008	2283
WEST LOS ANGELES 6539.0819999999985	1541
	+

Image 9 RDD results

What differs between the results of the two implementations here is the numbers in the average distance (not rounded for the case of RDD). I must have done a mistake and I may have confused the longitude and latitude coordinations for the RDD case. However, due to time limitations I'm not in position of fixing it right now.

Appendix

^[1] Using the instructions provided in **01_lab1-virtualbox** & **0_Preparatory_lab_virtual-box**.

^[2] I have faced lots of problems by setting up the cluster in VirtualBox. The private IPs of main and worker nodes were constantly changing everytime I was powering off the machines. Additionally, out of nowhere, Hadoop starting prompting me an error about mismatched cluster ids.