COMP20230: Data Structures & Algorithms Lecture 18: Graphs (3)

Dr Andrew Hines

Office: E3.13 Science East School of Computer Science University College Dublin

Outline

Today

- Minimum Spanning Tree
- Prim's Algorithm
- Kruskal's Algorithm

Take home message

Finding the connected set of edges connecting all vertices can be done using two algorithms: Prim's and Kruskal's

Unweighted, Undirected Graph: Adjacency List

а	a, b, c, d
b	a, c, e, f
С	a, b
d	а
е	b
f	b
g	i, j
h	i, j
i	g, h, j
j	g, h, i

Unweighted, Undirected Graph: Adjacency Matrix

	а	b	С	d	е	f	g	h	i	j
а	2	1	1	1						
b	1		1		1	1				
С	1	1								
d	1									
е		1								
f		1								
g									1	1
h									1	1
i							1	1		1
j							1	1	1	

Weighted, Undirected Graph: Adjacency List

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Weighted, Undirected Graph: Adjacency Matrix

j

1

3

9

15

12

9

Dijkstra's Algorithm

	_
а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Dijkstra's Algorithm

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Minimum Spanning Tree (MST)

Minimum Spanning Tree

Tree spanning a connected, undirected graph. It connects all the vertices together with the **minimal total weighting** for its edges.

MST: Complex

COMPUTER SCIENTISTS FIND NEW SHORTCUTS FOR INFAMOUS TRAVELING SALESMAN PROBLEM

Finding the Minimum Spanning Tree

Algorithms approach same problem in different ways

Prim: Start with a random node

Kruskal: Start with (the smallest) edge

Inputs and outputs

We have a graph: a weighted, undirected graph.

We want to create a tree: A minimum spanning tree (but it is a tree).

- Pick a random vertex from the graph as the tree root node
- From the edges connecting to neighbours (excluding ones already in the tree), find the minimum-weighted edge, and add it into the tree
- Move along the edge to the vertex and mark it as visited
- Repeat from step 2 until all vertices are represented in the tree

a	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

a	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b\}$

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e\}$

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e\}$

a	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e, h\}$

a	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e, h\}$

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e, h, f\}$

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e, h, f\}$

a	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e, h, f, g\}$

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e, h, f, g, i\}$

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Visited = $\{a, j, d, c, b, e, h, f, g, i\}$

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Prim: Minimum Spanning Tree

Visited = $\{a, j, d, c, b, e, h, f, q, i\}$

Prim's Algorithm Pseudocode

```
function Prim:
Input: a connected undirected weighted graph G
Output: T a minimum spanning tree based on G
T \leftarrow \text{tree} with all nodes from G but no edge
\texttt{visited} \leftarrow \{\texttt{random node}\}
while visited does not contain all nodes from G do
    minimum ← random edge (m,n) with m in visited and n not in visited
                                                         and no cycle
    for all node n not in visited reachable from a node m in visited do
        if weight of edge (m, n) < weight of minimum and no cycle
             minimum \leftarrow edge (m, n)
        endif
    endfor
    add n in minimum to visited
    add edge minimum to T
endwhile
return T
```

Inputs and outputs (same as Prim)

We have a graph: a weighted, undirected graph.

We want to create a tree: A minimum spanning tree (but it is a tree).

- Create a set containing all the edges in the graph
- Remove edge with minimum weight from the set
- If the edge connects two different trees (remember a tree can be a single node) then add it to span, but not if it connects back to the its own tree (cycling)
- Repeat from 2 until all all edges are removed and MST is not formed

a	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

а	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

a	b(4), c(6), d(7), e(5), j(1)
b	a(4), e(9), f(8)
С	a(6), d(2)
d	a(7), c(2), j(3)
е	a(5), b(9), f(4), h(3)
f	b(8), e(4), g(7)
g	f(7), i(15)
h	e(3), i(12)
i	g(15), h(12), j(9)
j	a(1), d(3), i(9)

Kruskal: Minimum Spanning Tree

Different Method Same Result
Same MST as Prim

Kruskal's Algorithm Pseudocode

```
function Kruskal:
Input: a connected undirected weighted graph G
Output: T a minimum spanning tree based on G
T \leftarrow \text{tree} with all nodes from G but no edge
while T is not connected do
    chosen \leftarrow random edge from G not in T and not creating cycle
    for each edge e in G do
        if e is not in T and does not create a cycle in T
                                  and weight e < weight chosen then
            chosen ← e
        endif
endfor
    add chosen to T
endwhile
return T
```

Summary

Complexity		
Search Algorithm	Basic	Optimised
Dijkstra	$\mathcal{O}(V ^2)$	$\mathcal{O}(E + V \log V)$
Prim	$\mathcal{O}(V ^2)$	$\mathcal{O}(E + V \log V)$ or $\mathcal{O}(E \log V)$
Kruskal	$\mathcal{O}(E \log E)$	$\mathcal{O}(E a(V))^*$

Weighted, undirected graphs

Can better represent and model some scenarios.

Dijkstra's algorithm is a shortest path algorithm to traverse weighted edges.

Prim and Kruskal are two algorithms to find the minimum spanning tree for a graph

^{*} You don't need to know this but if you are interested: In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. https://en.wikipedia.org/wiki/Ackermann_function

MSTs in the real world

Real Minimum Spanning Trees

Electrical networks / telephone networks – minimise wiring Tour operations – visiting the sites of a city Nanoscale DNA assembly

ScienceMag, 2016:http://dx.doi.org/10.1126/science.aaf4388