Bilevel Learning of the Group Lasso Structure

Jordan Frecon¹, Saverio Salzo¹, Massimiliano Pontil^{1,2}

CSML - Istituto Italiano di Tecnologia
 Dept of Computer Science - University College London

Thirty-second Conference on Neural Information Processing Systems, Montreal, Canada

Linear Regression and Group Sparsity

Problem: Predict $y \in \mathbb{R}^N$ from $X \in \mathbb{R}^{N \times P}$

Linear Regression: Find $w \in \mathbb{R}^P$ such that

In many applications, few groups are relevant to predict $y \Rightarrow \text{Group Sparse } w$

- Predict psychiatric disorder from activities in regions of the brain
- Predict protein functions from their molecular composition

Group Lasso

Given $\lambda > 0$ and a group-structure $\{\mathcal{G}_1, \dots, \mathcal{G}_L\}$, find

$$\hat{w} \in \operatorname*{argmin}_{w \in \mathbb{R}^P} \frac{1}{2} \|y - Xw\|^2 + \lambda \sum_{l=1}^L \|w_{\mathcal{G}_l}\|_2,$$

Group-sparse solution \hat{w}

Limitation: The group-structure $\{\mathcal{G}_1,\ldots,\mathcal{G}_L\}$ may be unknown

Setting

Setting: T Group Lasso problems with shared group-structure

Goal: Estimation of the optimal group-structure θ^*

A Bilevel Programming Approach

Upper-level Problem:

Lower-level Problem: (T Group Lasso problems)

$$\underset{\mathbf{w} \in \mathbb{R}^{P \times T}}{\text{minimize}} \ \mathcal{L}(w, \theta) := \sum_{t=1}^{T} \left(\frac{1}{2} \|y_t - X_t w_t\|^2 + \lambda \sum_{l=1}^{L} \|\theta_l \odot w_t\|_2 \right)$$

Difficulties:

- $\hat{w}(\theta)$ not available in closed form
- $\theta \mapsto \hat{\mathbf{w}}(\theta)$ is nonsmooth $[\Rightarrow \mathcal{U}$ is nonsmooth]

Approximate Bilevel Problem

Upper-level Problem:

$$egin{aligned} & \min_{[heta_1 \cdots heta_L] \in \Theta} \mathcal{U}_{\mathcal{K}}(heta) := \sum_{t=1}^T \; \mathcal{E}_t(extit{w}_t^{(\mathcal{K})}(heta)) \ & ext{where} \; extit{w}_t^{(\mathcal{K})}(heta)
ightarrow \hat{w}_t^{(\mathcal{K})}(heta)
ightarrow \hat{w}_t(heta) \end{aligned}$$

Dual Algorithm:

$$\begin{split} \mathbf{u}^{(0)}(\theta) & \text{ chosen arbitrarily} \\ \text{for } k = 0, 1, \dots, K-1 \\ \big\lfloor \mathbf{u}^{(k+1)}(\theta) = \mathcal{A}(\mathbf{u}^{(k)}(\theta), \theta) \\ \big\lceil \mathbf{w}_1^{(K)}(\theta) \cdots \mathbf{w}_T^{(K)}(\theta) \big\rceil &= \mathcal{B}(\mathbf{u}^{(K)}(\theta), \theta) \end{split}$$

dual update

primal dual relationship

Goals:

- Find \mathcal{A} and \mathcal{B} smooth $[\Rightarrow w^{(K)}$ is smooth $\Rightarrow \mathcal{U}_K$ is smooth]
- Prove that the approximate bilevel scheme converges

Contributions

- Bilevel Framework for Estimating the Group Lasso Structure
- Design of a Dual Forward-Backward Algorithm with Bregman Distances such that
 - **1** \mathcal{A} and \mathcal{B} are smooth $\Rightarrow \mathcal{U}_{\mathcal{K}}$ is smooth

$$\text{@} \begin{cases} \min \, \mathcal{U}_K \to \min \, \mathcal{U} \\ \operatorname{argmin} \, \mathcal{U}_K \to \operatorname{argmin} \, \mathcal{U} \end{cases}$$

Implementation of proxSAGA algorithm: nonconvex stochastic variant of

$$\theta^{(q+1)} = \mathcal{P}_{\Theta}(\theta^{(q)} - \gamma \nabla \mathcal{U}_{K}(\theta^{(q)}))$$

Numerical Experiment

Setting: T=500 tasks, N=25 noisy observations, P=50 features. Estimate and group the features into, at most, L=10 groups.

Conclusion

Thank You

Our poster AB #92 will be presented in Room 210 & 230 at 5pm