Horse Racing **Data Analysis**

• 22.10.2022

Team Leo! Ishita PES1UG20CS648, Hita PES1UG20CS645

Line Up

- An Introduction
- EDA
- Clustering
- Modelling
- Results
- Next Up

Ever seen a horse race? Have a look now

https://www.youtube.com/wat ch?v=wIYD42DV3Ro&

Introduction

- America's most prestigious and oldest horse races are held annually at Aqueduct, Belmont, Saratoga.
- Each horse is tracked every 0.25 seconds using trakus index (real-time tracking system that determines the exact geographical location of the horse.

Some nuggets ****

- 1. Purse
- 2. Drafting Strategy
- 3. Maiden Races
- 4. Stakes
- 5. Allowance Races
- 6. Claiming Races
- 7. Odds
- 8. Jockey
- 9. Race Course Types Hurdle Surfaces, Turf and Dirt
- 10. Track Conditions Muddy, Sloppy, Firm, Yielding

EDA

T - Turf

I - Inner Turf

O - Outer Turf

FT - Fast Track

SY - Sloppy

M - Muddy

GD - Good

CLM - Claiming MSW - Maiden Special Weight STK - Stakes

Scatterplots of the racing track at the 3 locations, Aqueduct(AQU), Belmont(BEL) and Saratoga(SAR)

Correlation heat map of chosen relevant attributes.

- 0.8

0.6

- 0.4

Attributes that show high degree of coreelation: course_type and run_up_distance = 0.43 purse and race_type = 0.42

Unsupervised Learning - Clustering

The aim is to find any patterns/understand the racing data more.

K means clustering followed by agglomerative clustering(hierarchical clustering) is implemented.

Elbow plot for K means Clustering.

Optimum value, K=6

The graph is a oscillating a bit until 5 clusters.

3D Overview of clusters formed of data points. (with respect to race_type and program_number(unique identifier of a horse))

Preprocessing

Before Preprocessing

	track_id	race_date	race_number	program_number	trakus_index	latitude	longitude	distance_id	course_type	track_condition	run_up_distance	race_type	purse	post_time	weight_carried	i j
2219883	BEL	2019-05- 27	7	5	137	40.717588	-73.724629	800	D	FT	52	STK	200000	446	118	B Luis
1023590	AQU	2019-04- 17	5	6	115	40.674912	-73.827343	600	D	FT	48	CLM	48000	336	120) Ira
544667	AQU	2019-12- 31	4	6	238	40.673371	-73.831117	650	D	SY	50	CLM	46000	203	122	!
2894583	BEL	2019-10- 10	2	4	270	40.715658	-73.727350	850	I	FM	45	MCL	41000	149	120)
2098440	AQU	2019-12- 14	6	6	173	40.674227	-73.827094	800	D	SY	54	STR	55000	251	123	B AI
595662	BEL	2019-10- 02	2	5	436	40.713284	-73.720821	900	1	FM	234	MCL	41000	149	120)
2554824	AQU	2019-02- 10	5	5	329	40.673045	-73.831247	800	D	FT	54	MCL	46000	300	116	S M
98589	BEL	2019-10- 06	4	12	137	40.716947	-73.723449	800	Т	FM	76	AOC	70000	225	122	lra
3130949	BEL	2019-07- 06	9	5	253	40.716876	-73.724482	1000	1	FM	38	STK	1000000	545	122	Ga
2041476	AQU	2019-01- 05	4	4	135	40.674808	-73.827267	650	D	SY	32	MSW	60000	158	121	l j

Preprocessing

After Preprocessing -

Removed unnecessary columns such as race_id, trackus_index, latitude, longitude, distance_id and duplicate rows. Performed data scaling and standardisation - MinMaxScaler for categorical data and StandardScaler for continuous data.

] modeling_	_data.samp]	.e(10)											
	track_id	race_number	program_number	course_type	track_condition	run_up_distance	race_type	purse	post_time	weight_carried	jockey	odds	
3526025	0.5	0.750000	0.885714	1.00	0.333333	0.626613	1.000000	-0.373417	0.365775	0.153722	0.785311	-0.343734	
2387002	0.0	0.416667	0.914286	0.00	0.333333	-0.401470	0.272727	-0.425871	-0.565106	0.436405	0.237288	-0.487177	
3688499	0.0	0.250000	0.857143	0.75	0.333333	-0.509690	0.363636	-0.119889	-0.693377	-0.411644	0.435028	-0.415455	
2582742	1.0	0.083333	0.914286	1.00	0.000000	-1.213116	0.181818	-0.277251	-1.133164	-0.128961	0.672316	1.751568	
4367312	0.5	0.500000	0.742857	1.00	0.000000	1.113601	0.363636	-0.076177	-0.000714	-0.411644	0.785311	0.050736	
2644227	0.5	0.583333	0.057143	0.25	0.000000	-0.022703	0.818182	-0.251024	0.109233	-0.694327	0.429379	-0.031231	
5037433	0.0	0.166667	0.714286	1.00	0.333333	0.518394	0.727273	0.142382	-0.667723	-0.694327	0.672316	-0.625498	
3212750	0.5	0.166667	0.828571	0.00	0.166667	-0.563799	0.000000	-0.058692	-0.026368	-0.128961	0.372881	-0.410332	
1536606	1.0	0.500000	0.514286	0.25	0.000000	0.680723	0.090909	-0.006238	0.105568	0.436405	0.598870	1.559456	
282806	0.0	0.166667	0.028571	0.00	0.333333	-0.590854	0.000000	-0.119889	-0.631074	0.436405	0.542373	-0.666482	

PCA

Performed PCA on the modeling_dataset -

Principal component analysis, or PCA, is a dimensionality-reduction method that is
often used to reduce the dimensionality of large data sets, by transforming a large set
of variables into a smaller one that still contains most of the information in the large
set.

 Smaller data sets are easier to explore and visualize and make analyzing data much easier and faster for machine learning algorithms without extraneous variables to

process.

```
from sklearn import decomposition
pca = decomposition.PCA(0.90)
print("Shape of X before PCA -", X.shape)
X = pca.fit_transform(X)
print("Shape of X after PCA -", X.shape)
```

```
Shape of X before PCA - (15081, 12)
Shape of X after PCA - (15081, 5)
```

Modeling and Inference

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

print(X_train.shape[0], 'rows for training.')
print(X_test.shape[0], 'rows for validation.')

19744 rows for training.
6582 rows for validation.
```

Split the modeling dataset into training (19744 rows) and test(6582 rows)

Trained models such as KNN, XGBClassifier, Linear_SVM and Random Forest on the training dataset.
RandomForestClassifier, etc. computes the accuracy of the model on the testing data (accuracy is #correct_preds / #all_preds) after being trained on the training data.
From this table, it is evident that all performed well and KNN performed best amongst the given models.

	name	score
0	KNN	0.993163
2	XGBClassifier	0.989213
1	Linear_SVM	0.988453
3	Random Forest	0.978122

Confusion Matrix

Given below is the confusion matrix between the actual and predicted odds by our classifier.

Preprocessing

Next Steps

- 1. Analysis Of Models
- 2. Conclusion

Thank You!

