

TA:

School of Electrical Engineering and Computer Science Oregon State University

Goal of this Lab

- Learn how to use the Universal Synchronous/Asynchronous Receiver/Transmitter (USART) module.
- Correctly configure USART-related registers.
- Make two AVR boards communicate with each other.
- Learn how to configure and use the 16-bit Timer/Counter module to generate a delay

Play Rock Paper Scissors between Two Boards

- Communicate through the USARTI modules
- LCD display to print messages.
- Buttons
 - PD7 Start/Ready
 - PD4 Change the current gesture and iterate through the three gestures in order
 - Rock \rightarrow Paper \rightarrow Scissor \rightarrow Rock \rightarrow Paper $\rightarrow ...$
- 4 LEDs
 - PB7:4 Count down indicator
 - 4 × 1.5-sec delay
 - Timer/Counter I Normal mode
 - PB3:0 Leave for LCDDriver

I/O Port Pins

Tekbot Bumper Switch Connection

Board 1

Board I Board 2

PD2 <=> PD3

PD3 <=> PD2

GND <=> GND

Initialization

Frame Format.

Data Frame : 8-bit data

• Stop bit : 2 stop bits

Parity bit : disable

Asynchronous Operation

Baud Rate

2400 bits per second

Control Register

- Frame Format
 - UCSRIA
 - UCSRIB
 - UCSRIC

Baud Rate

- UBRRIH
- UBRRIL

Data Register

UDRI

Serial Data Frame Format

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be high.

USART I/O Data Register

- Transmit
 - STS UDR1, mpr
- Receive
 - LDS mpr, UDR1

USART Control and Status Register

7 6 5 4 3 2 I 0

RXCI TXCI UDREI FEI DORI UPEI U2XI MPC MI

UCSRIA

- Bit 7 RXCn: USART Receive Complete
- Bit 6 TXCn: USART Transmit Complete
- Bit 5 UDREn: USART Data Register Empty
- Bit 4 FEn: Frame Error
- Bit 3 DORn: Data OverRun
- Bit 2 UPEn: Parity Error

Bit 5 – UDREn: USART Data Register Empty

The UDREn flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is one, the buffer is empty, and therefore ready to be written. The UDREn flag can generate a Data Register Empty interrupt (see description of the UDRIEn bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

- Bit I U2Xn: Double the USART Transmission Speed
- Bit 0 MPCMn: Multi-Processor Communication Mode

USART Control and Status Register

UCSRIB

Bit 7 – RXCIEn: RX Complete Interrupt Enable

Bit 6 – TXCIEn: TX Complete Interrupt Enable

Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable

Bit 4 – RXENn: Receiver Enable

Bit 3 – TXENn: Transmitter Enable

Bit 2 – UCSZn2: Character Size

Bit I – RXB8n: Receive Data Bit 8

Bit 0 – TXB8n: Transmit Data Bit 8

USART Control and Status Register

UCSRIC

Bit 7:6 – UMSELn I: USART Mode Select

Bit 5:4 – UPMn I:0: Parity Mode

Bit 3 – USBSn: Stop Bit Select

Bit 2:1 – UCSZn1:0: Character Size

Bit 0 – UCPOLn: Clock Polarity

UMSELI / UPMI

Table 18-7. UMSELn Bit Settings

UMSELn1	UMSELn0	Mode
0	0	Asynchronous USART
0	1	Synchronous USART
1	0	(Reserved)
1	1	Master SPI (MSPIM) ⁽¹⁾

Table 18-8. UPMn Bit Settings

UPMn1	UPMn0	Parity Mode
0	0	Disabled
0	1	Reserved
1	0	Enabled, Even Parity
1	1	Enabled, Odd Parity

USBSI / UCPOLI

Table 18-9. USBS Bit Settings

USBSn	Stop Bit(s)
0	1-bit
1	2-bit

Table 18-11. UCPOLn Bit Settings

	UCPOLn	Transmitted Data Changed (Output of TxDn Pin)	Received Data Sampled (Input on RxDn Pin)
	0	Rising XCKn Edge	Falling XCKn Edge
Ī	1	Falling XCKn Edge	Rising XCKn Edge

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is used. The UCPOLn bit sets the relationship between data output change and data input sample, and the synchronous clock (XCKn).

UCSZI

 Table 80.
 UCSZn Bits Settings

UCSZn2	UCSZn1	UCSZn0	Character Size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	1	8-bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

USART Baud Rate Registers

Bit

	15	14	13	12	11	10	9	8	_
	-	_	-	-		UBRRı	ո[11:8]		UBRRnH
				UBRR	n[7:0]				UBRRnL
•	7	6	5	4	3	2	1	0	•

Bit 15:12 - Reserved Bits

Bit II:0 – UBRRnII:0: USARTn Baud Rate Register

UBRRIH UBRRIL

Table 18-1. Equations for Calculating Baud Rate Register Setting

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRR Value		
Asynchronous Normal mode (U2Xn = 0)	$BAUD = \frac{f_{OSC}}{16(UBRRn + 1)}$	$UBRRn = \frac{f_{OSC}}{16BAUD} - 1$		
Asynchronous Double Speed mode (U2Xn = 1)	$BAUD = \frac{f_{OSC}}{8(UBRRn + 1)}$	$UBRRn = \frac{f_{OSC}}{8BAUD} - 1$		

Grading Criteria

- Implementation 60 pts
 - 10 pts for Correct USART1 configuration
 - 15 pts for PD7 Functionality
 - (5pt) Game Ready/Start
 - (10pt) USART1 communication
 - 15 pts for PD4 Functionality
 - (5pt) Select Gestures and iterate correctly
 - (10pt) USART1 communication
 - 10 pts for PB7-4 Functionality
 - 4 × 1.5-sec delay using T/C1 Normal
 - 5 pts for the Correct result (Win, Loose, or Draw)
 - 5 pts for LCD does not show any garbage data

Announcements

- 2 weeks are given to finish this lab.
- There will be
 - no office hours during Thanksgiving week.
 - o no office hours during the final week (11/30 and 12/2).
 - Instead, we will hold OHs on 11/28 (Mon) − 29 (Tue)
- You need to write a single code for two AVR boards to interact with each other.
- Follow the Frame formats and Baud rate provided in the slides.
- Read Atmega32U4 Datasheet
 - ∘ 188p 213p

Questions?

