Exercise 1.

(a)(i) We prove that δ is well defined by a contrapositive proof i.e.

if
$$\exists a \in \Sigma \ [xa] \neq [ya]$$
, then $[x] \neq [y]$

Suppose $[xa] \neq [ya]$ for $a \in \Sigma$, then by the definition of the equivalence classes of R_L , $(xa, ya) \notin R_L$.

$$(xa, ya) \notin R_L \Leftrightarrow \exists w \in \Sigma^* \ (xaw \in L \land yaw \notin L \ (\text{or vice versa}))$$

Let z = aw, we now have $xz \in L \land yz \notin L$ (or vice versa).

$$(xz \in L \land yz \notin L) \Leftrightarrow (x,y) \notin R_L \Leftrightarrow [x] \neq [y]$$

Hence, by the contrapositive proof, if [x] = [y], then [xa] = [ya] for all $a \in \Sigma$.

- (ii) We prove a more general statement i.e. $\forall x \in \Sigma^* \ \hat{\delta}([\epsilon], x) = [x]$. This implies $\hat{\delta}([\epsilon], x) \in F$ iff $x \in L$. Since if $x \in L$, then by the definition of F, $[x] = \hat{\delta}([\epsilon], x) \in F$. Conversely, if $\hat{\delta}([\epsilon], x) \in F \Leftrightarrow [x] \in F$, then by the definition of F, $x \in L$. Now we prove the lemma by an induction on |x|.
 - Basis case $x = \epsilon$. $\delta([\epsilon], \epsilon) = [\epsilon]$ by the definition of the transition function.
 - Step case Assume that $\hat{\delta}([\epsilon], x) = [x]$ for |x| < k. We prove for w = xa where $x \in \Sigma^{k-1}, a \in \Sigma$.

$$\begin{split} \hat{\delta}([\epsilon],xa) &= \delta(\hat{\delta}([\epsilon],x),a) & \text{(definition of } \hat{\delta}) \\ &= \delta([x],a) & \text{(IH)} \\ &= [xa] & \text{(definition of } \delta) \end{split}$$

Hence, we have proven the lemma.

(b). Denote the DFA in part (a) as $D = (Q, \Sigma, \delta, q_0, F)$. We prove that any DFA $A = (Q_A, \Sigma, \delta_A, q_{0_A}, F_A)$ with L(A) = L has at least as many states as D, by constructing a surjective function f from Q_A to Q. We adapted the proof from solutions of Tutorial 2. Define $S(q) = \{w \in \Sigma^* \mid \hat{\delta}(q_{0_A}, w) = q\}$, and f

$$f: \{q \in Q_A \mid S(q) \neq \emptyset\} \to \{[x] \mid x \in \Sigma^*\}$$
$$f(q) = [x] \text{ with } S(q) \subseteq [x]$$

We show that f is well defined, i.e.

- $\forall q \in Q_A$ such that $S(q) \neq \emptyset$, $\exists [x] \in Q$ with $S(q) \subseteq [x]$ Proof. For $q \in Q_A$, pick $[x] \in Q$ such that $x \in S(q)$. Now for $\forall u, v \in S(q)$, we proved in the tutorial that $(u, v) \in R_L$. Hence for $\forall u \in S(q), (x, u) \in R_L$. Hence, $u \in [x]$, and $S(q) \subseteq [x]$
- if f(q) = [x] and f(q) = [y] for $x \neq y$, then [x] = [y]Proof. Suppose f(q) = [x] and f(q) = [y], then $S(q) \subseteq [x]$ and $S(q) \subseteq [y]$. Then $u \in S(q) \Rightarrow u \in [x] \Leftrightarrow (x, u) \in R_L$; and $u \in S(q) \Rightarrow u \in [y] \Leftrightarrow (y, u) \in R_L \Leftrightarrow (u, y) \in R_L$. By transitivity, $(x, u) \in R_L \land (u, y) \in R_L \Rightarrow (x, y) \in R_L \Leftrightarrow [x] = [y]$

Now, we show that f is surjective. For $[x] \in Q$, we pick $q = \hat{\delta}(q_{0_A}, x) \in Q_A$. $S(q) \neq \emptyset$ since $x \in S(q)$ by definition. We only need to show $S(q) \subseteq [x]$. By the same argument that $\forall u, v \in S(q), (u, v) \in R_L$. $u \in S(q) \Rightarrow (x, u) \in R_L \Leftrightarrow u \in [x]$.

Since f is surjective, then for every state [x] in DFA D, there are corresponding reachable states in DFA A that are mapped to [x], and the cardinality of Q_A exclusive of unreachable states is at least the cardinality of Q. Hence, any DFA that accepts L would have at least as many states as DFA D. Then D is the minimal DFA.

Exercise 2.

- (a) Pick n=7. We consider $w = a^j c^k a^l b^m \in L$ with $|w| \ge 7$ in two separate cases.
 - $0 \le j \le 5$, $k \ge 2$ and $l \ne m$ Divide w = xyz as $x = a^j c$, y = c, and $z = c^{k-2}a^lb^m$. $|xy| = j + 2 \le 7$ since $0 \le j \le 5$, |y| = 1 > 0, and by pumping y, we get

$$- xy^{0}z = a^{j}cc^{k-2}a^{l}b^{m} = a^{j}c^{k-1}a^{l}b^{m}$$
 if $k = 2$, then $k - 1 = 1$, $l \neq m$ still means $xy^{0}z \in L$ if $k > 2$, then $k - 1 \geq 2$, $l \neq m$ still holds, and $xy^{0}z \in L$
$$- xy^{i}z = a^{j}cc^{i}c^{k-2}a^{l}b^{m} = a^{j}c^{i+k-1}a^{l}b^{m} \text{ for } i > 1$$

$$i + k - 1 > 2 \text{ for } k \geq 2, l \neq m \text{ still holds, so } xy^{i}z \in L \text{ for } i > 1$$

Hence, all w when $k \geq 2$ satisfies the pumping lemma.

- $0 \le j \le 5$, k < 2 and $k, l, m \in \mathbb{N}$ Note that for $w \in L$ such that $|w| \ge 7$, w should have at least one of l and m not being zero.
 - if $l \neq 0$, then we divide w = xyz such that $x = a^{j}c^{k}$, y = a, $z = a^{l-1}b^{m}$. $|xy| = j + k + 1 \leq 7$, |y| = 1 > 0,