"Theory of Computation"

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

Ong wi

$$x = 2$$

Program memory output memory

CPU

compute X * X

compute $x^2 * x$

temporary memory

$$f(x) = x^3$$

$$z \neq 2*2 = 4$$

$$f(x) = z*2 = 8$$

CPU

X * X

input memory

$$x = 2$$

Program memory

$$f(x) = 8$$

120608

output memory

compute $x^2 * x$

compute

= 1812MJoujge/wemond

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Turing Machines: random access memory

Finite Automaton temporary memory input memory Finite Automaton output memory

Example: Vending Machines - annowner (small computing power) - medianal

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Less power

Solve more

computational problems