UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

1 (a) same proton number/atomic number different mass number/nucleon number

(1) (1) [2]

(b)
$$A_r = (32 \times 95.00) + (33 \times 0.77) + (34 \times 4.23)$$

(') [2

(1)

$$= \frac{3040 + 25.41 + 143.82}{100} = \frac{3209.23}{100}$$

which gives $A_r = 32.09$

(1) [2]

(c)

	number of				
isotopes	protons	neutrons	electrons		
²¹³ Po	84	129	84		
²³² Th	90	142	90		

allow **one mark** for each correct column if there are no 'column' marks, allow **maximum one mark** for a correct row

 (3×1) [3]

(d) (i) nucleon no. is 228 proton no. is 88

(1) (1)

(ii) Ra not radium

(1) [3]

[Total: 10]

2 (a) (i) mass of C = $\frac{12 \times 1.32}{44}$ = 0.36g

(1)

$$n(C) = \frac{0.36}{12} = 0.03$$

(1)

(ii) mass of H = $\frac{2 \times 0.54}{18}$ = 0.06 g

(1)

$$n(H) = \frac{0.06}{1} = 0.06$$

(1)

(iii) yes because 0.03 mol of C are combined with 0.06 mol of H or C: H ratio is 1:2 or empirical formula is CH₂

(1) [5]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

(b) (i) C: H: O =
$$\frac{64.86}{12}$$
: $\frac{13.50}{1}$: $\frac{21.64}{16}$ (1)

= 5.41: 13.50 : 1.35

= 4:10:1

gives
$$C_4H_{10}O$$
 (1)

(ii)

(iii)

	H	ОН
CH ₃ CH ₂ CH ₂ CH ₂ OH	CH₃CCH₂OH	CH₃CCH₃
	ĊH₃	ĊH₃
(1)	(1)	(1)

[Total: 12]

[7]

3 (a) C(g) → C⁺(g) + e⁻ correct equation correct state symbols

(1) (1) [2]

(b) (i) Na and Mg

Mg has greater nuclear charge/more protons than Na

(1)

in both atoms, the 3s electrons are in the same orbital/same energy level/same shell

(1)

(ii) Mg and Al

in Al outermost electron is in 3p rather than 3s

(1)

3p electron is at higher energy **or**

is further away/is more shielded from nucleus

(1)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

(iii) He and Ne

both He and Ne have the highest nuclear charges in their Period

(1)

(iv) He, Ne, and Ar

going down the group,

valence/outer shell electrons are farther from the nucleus

(1)

there is greater shielding

(1)

attraction between valence electrons and nucleus is less or effective nuclear charge is less

(1) [8]

(c) (i) from Na to CI

increased nuclear charge/nuclear attraction

(1)

(ii) cation has fewer electrons than atom or cation has lost outer electrons or cation has fewer shells

(1)

but cation has same nuclear charge as atom or proton number is the same

(1) [3]

3 (d) ignore any state symbols

MgO(s)	+	NaOH(aq)			\rightarrow	NO REACTION	(1)	
MgO(s)	+	2 HC <i>l</i> (aq)			\rightarrow	$MgCl_2 + H_2O$	(1)	
$Al_2O_3(s)$	+	2NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 NaA <i>l</i> (OH) ₄ or		
$Al_2O_3(s)$	+	2NaOH(aq)	+	$H_2O(I)$	\rightarrow	2 NaA <i>l</i> O ₂ + 2H ₂ O or	(1)	
$Al_2O_3(s)$	+	6NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 Na₃A <i>l</i> (OH) ₆		
$Al_2O_3(s)$	+	6 HC <i>l</i> (aq)			\rightarrow	2 A <i>l</i> C <i>l</i> ₃ + 3 H ₂ O or	(1)	
$Al_2O_3(s)$	+	6 HC <i>l</i> (aq)			\rightarrow	Al ₂ Cl ₆ + 3 H ₂ O	(1)	
SO ₂ (g)	+	NaOH(aq)			\rightarrow	NaHSO ₃ or	(4)	
SO ₂ (g)	+	2NaOH(aq)			\rightarrow	Na ₂ SO ₃ + H ₂ O	(1)	
SO ₂ (g)	+	HC <i>l</i> (aq)			\rightarrow	NO REACTION	(1)	

[6]

[Total: 19]

(a) (i) C_2H_5O

(1)

(ii)

(1) [2]

	GCE A	AS/A LEVEL – October/November 2011	9701	23	
(b) (i)	functional grou or structural is			(1)	
	do not allow 'f	unctional isomerism' or positional isomerism	1		
(ii)					
	compound	type of isomerism			
	Р	cis-trans or geometrical			
	Т	optical			
				(1 + 1)	[3]
(c) (i)	dehydration/el	limination		(1)	
(ii)	conc. H ₂ SO ₄ /	P_4O_{10} / Al_2O_3 / H_3PO_4 / pumice		(1)	
(iii)	CH ₂ =CHCH=C	CH ₂			
	allow CH ₂ =C=	CHCH ₃		(1)	[3]
(d) (i)	CH ₃ CH ₂ CH(O	H)CH ₂ CH ₃		(1)	
(ii)	steam conc. H ₂ SO ₄	with H₃PO₄ catalyst or then water		(1 + 1)	
	only allow con	dition mark if reagent mark has been given			
(iii)	$\text{Cr}_2\text{O}_7^{2-}/\text{H}^+$ or $\text{MnO}_4^-/\text{H}^+$			(1)	[4]
		[Total:	: 12]		
(a) V is	s HCHO			(1)	[1]
(-,				()	
(b) (i)	ester			(1)	
(ii)	W is HCO₂CH	3		(1)	[2]
(c) (i)	X is HOCH ₂ CH	H_2CO_2H		(1)	
(ii)	Y is HO ₂ CCH ₂	2CO₂H		(1)	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 5

5

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

(d) (i) **Z** is

$$CH_2$$
— CH_2 — C
 CH_2 — CH_2
 $CH_$

(ii) esterification or dehydration or elimination or condensation

(1) [2]

[Total: 7]