

Theorem: An undirected growth is a have iff there is a unique simple path between any two of its vooties.

[Rooted Tree] A rooted tree is a tree in which one Vertex has been designated as the root and every edge is directed away from the root.

Example

- Plavent of e is b

The children of g' and

h, i, i to ancestors of e are

c, b & a

The descendants of bare

c, d & e*.

The internal restices

are a, b, e, g, h, i

The leaves are d, e, f

i, K, l, m

The subtree rooted at g

2 notes 11

1) [Saturated Hydrocarbons & Trees]	All the second of the second
moloryles	
1857 Cayley discovered toess of	espired to enumerate
the isomers of compounds of the food	w Guffonts
(2) Reprenty organization Product	(sate hydrocorban)
	, ·
PLO Morries	
pto Mantey	
Discher Aver	PUP
(3) [Computer Sile systems]	
my yeur	7mf
ben stool	· · · · · · · · · · · · · · · · · · ·
Properties of Trees	sur a sent
	m 1 odars
Theorem: A tree with n vertices has	11/1 283
By Indudion;	
Base N=1 A free with one vertex	has a eggis
", Ferre for N=1"	Liter out I
I.H. Suppose Every Lace with K	rerodices has Krl
edges (K > 0 integer)	
Suppose a Love T has ket to	estates and
Hote and a look of T	
Suppose Thes K+1 vextices.	
These K revolues so it with one edges edges in T will have (K-1)+1	se hare N-1
one and	_ 1 _ 1 = 1
L 7	= K Edder
lear	477
	V/A
(1) note 11	

Theorem: A full m-any tree with i internal veretices contains n=mi+1 vertices

D Every vertex, except the root, is the child of an internal vertex. Now each of the i internal vertex has m children >> there are mi restices in the tree other than root. : the tree combos N = mi + 1 vertices.

Theorem: A full mony thee with

(i) n vertices has $i = \frac{(n-1)}{m}$ interned vertices and l = ((m-1) n + 1)/m leaves

(ii) i internel vestices has n = mit 1 vertices and l = (m-1)i+1 leaves.

(iii) I leaves how n = (m1-1) (m-1) vertices and $\lambda = (l+1)/(m-1)$ internal vertices.

- Root a is at level o

- Vertices by of Kare at

- Vertices e,e, fe large at

- Verstres d, 8, 1, m & n are at lend 3

- vestex h is at level 4

- ! the largest level farry vestex is 4 the tree

has keighty,

- A rooted tree of height h is balanced if all leaves are at leads har h-1.

3 noty11

[Corollary] of an many tree of height h has I leaves then h > Thogas T. of the many true is full and balanced then h = Thogas T.

FIN & Way & to minkey