Lab Report

ECPE 170 – Computer Systems and Networks – Spring 2022

Name:	Thomas Lau
Lab Topic:	Performance Optimization (Lab #: 5)
Question #1	:
What is the t	otal physical RAM installed in the system? (In MB)
Answer:	
8000 MB	
Question #2	: :
	ications running (beyond the web browser with this page), how much RAM e native operating system? (e.g. Windows)
Answer:	
8196MB	
Question #3):
With no applies available?	ications running (beyond the web browser with this page), how much RAM

Answer:

7804 MB

Question #4:

Check the virtual machine configuration. How much RAM is currently allocated to Linux in your virtual machine?

Answer:

6000 MB

Question #5:

Try to increase your virtual machine memory allocation, if possible, to the maximum allowed based on your free RAM. Leave ~256MB free for the virtual machine program itself. Now how much RAM is allocated to Linux in your virtual machine?

Answer:

7000 MB

Question #6:

Boot Linux. With no applications running in Linux, how much RAM is available inside the virtual machine? The "System Monitor" program should report that information. This is the space that is actually available for our test application.

Answer:

6771.1 MB

Question #7:

What is the code doing? (Describe the algorithm in a paragraph, focusing on the combine1() function.)

Answer:

The code here for combine1() sets the dest pointer to IDENT and then proceeds to enter for loop that runs for the duration of the user inputed vector size. Within this for loop, the combiner function creates a value type data_t, gets the vector element at the address of said value, and then adds or multiplies that onto the value at dest pointer. The purpose of the code is to get the product or sum of all the elements in the vector and we can simply make a change in the config.h file to PROD or SUM to make all combine functions to do that operation.

Question #8:

What is the largest number of elements that the vector can hold WITHOUT using swap storage (virtual memory), and how much memory does it take? Be sure to leave enough memory for Firefox and LibreOffice, since you'll need those when running this lab as well.

Answer:

Around 11000000 element

Question #9:

What vector size are you using for all experiments in this lab?

Answer:

11000000

Question #10:

How much time does the compiler take to finish with (a) no optimization, (b) with -O1 optimization, (c) with -O2 optimization, and (d) with -O3 optimization? Report the Real time, which is the "wall clock" time. Create both a table and a graph in LibreOffice Calc.

Answer:

Time (s)	Optimization Level
0.093	0
0.119	1
0.134	2
0.136	3

Question #11:

How much time does the program take to finish with (a) no optimization, (b) with -O1 optimization, (c) with -O2 optimization, and (d) with -O3 optimization? Report the Real time, which is the "wall clock" time. Create both a table and a graph in LibreOffice Calc.

Answer:

Time (s)	Optimization Level
9.5211	0
5.591	1
5.411	2
5.317	3

Question #12:

After implementing each function, benchmark it for a variety of data types and mathematical operations. Fill in the table below as you write each function.

Answer:

Configurat ion	Vector Size (elements)	Vector Size (MB)	Time for Integer Add (s)	Time for Integer Multiply (s)	Time for FP (float) Add	Time for FP (float) Multiply
combine1	11000000 00	4196.17	3.638	3.458	3.177	2.821
combine2	11000000 00	4196.17	1.845	1.890	2.615	2.601
combine3	11000000 00	4196.17	1.647	2.208	2.515	2.513
combine4	11000000 00	4196.17	0.738	0.956	1.189	1.193
combine5 x2()	11000000 00	4196.17	0.507	0.951	1.165	1.178
combine5	11000000	4196.17	0.494	0.939	1.161	1.171

x3()	00					
combine6	11000000 00	4196.17	0.467	0.611	0.730	0.764

Question #13:

Using LibreOffice Calc, make two graphs:

Graph 1: Create a single graph that shows the data in the table created, specifically the four time columns. You don't need to plot vector size.

Graph 2: For FP (float) multiply only, plot a line graph that shows the speed-up of combine2(), combine3(), combine4(), combine5x2(), combine5x3(), and combine6() over combine1() for the vector size tested in Question 12. Plot speed-up on the y axis and function names on the x-axis. Note that the speed-up of program A over program B is defined as (TB/TA) where TB is the execution time for program B and TA is the execution time for program A.

Note: No credit will be given for sloppy graphs that lack X and Y axis labels, a legend (for graph 1), and a title.

Α	n	0		ω	r	
$\boldsymbol{-}$			vv			_

Optimization Time

Question #14:

As a reminder, you should track your code, and ensure that the final code is checked in along with your report PDF. You need to add your code to the report.

Answer:

Combine.c:


```
| Second | S
```

Makefile:

Vec.c:

```
//Return address of beginning vector
data_t *get_vec_start(vec_ptr v){
   return v->data;
}
```