Stochastic Gradient Descent

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Gradient Descent

- Repeat until convergence:
 - $\bullet \quad \theta := \theta \epsilon \frac{dL(\theta)}{d\theta}$

Gradient Descent

- Repeat until convergence:
 - $\theta_0 := \theta$
 - for $x, y \sim D$:
 - $\theta := \theta \epsilon \frac{d\ell(f(\mathbf{x}, \theta_0), \mathbf{y})}{d\theta_0}$

Stochastic Gradient Descent

- Repeat until convergence:
 - for $x, y \sim D$:

•
$$\theta := \theta - \epsilon \frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta}$$

Terminology

- Repeat until convergence:
 - for $x, y \sim D$:

•
$$\theta := \theta - \epsilon \frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta}$$

Practical SGD

- For n epochs:
 - for $x, y \sim D$:
 - $\theta := \theta \epsilon \frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta}$

Learning curves

The Variance of SGD

$$\frac{d\ell(f(\mathbf{x},\theta),\mathbf{y})}{d\theta} \neq \frac{dL(\theta)}{d\theta}$$

Variance

•
$$\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim D} \left[\left(\frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta} - \frac{dL(\theta)}{d\theta} \right)^{2} \right]$$

$$= \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim D} \left[\left(\frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta} \right)^{2} \right] - \left(\frac{dL(\theta)}{d\theta} \right)^{2}$$