Kruskal (minimális feszítőfa): igazán különleges részfa - Feladatlap

Leírás

Adott egy irányítatlan súlyozott összefüggő gráf, keresd meg benne az igazán különleges részfát. Az igazán különleges részfa egy olyan részgráf, amely a gráf összes csúcsát tartalmazza és:

- csak egy út van egy csúcstól az összes többi csúcsig,
- a részgráf minimális súlyú (az összes él összege) az összes ilyen részgráf között,
- nem tartalmaz kört

Az igazán különleges részfa létrehozásához mindig a legkisebb súlyú élt válaszd ki. Határozd meg, hogy az él hozzávétele létrehoz-e kört. Ha igen, akkor hagyd figyelmen kívül az élt. Ha egyenlő súlyú élek közül választhatsz:

- válaszd ki azt az élt, amely minimalizálja az u + v + wt összeget, ahol u és v csúcsok és wt az élsúly;
- ha továbbra is ütközés esete áll fenn, válaszd ezek közül bármelyiket.

Írasd ki a szabályok alapján kialakított fa teljes súlyát.

Például adottak a következő élek:

```
u v wt
1 2 2
2 3 3
3 1 5
```

Először válasszuk az (1, 2) élt 2 súllyal. Majd válasszuk a (2, 3) élt 3 súllyal. Mind csúcsot tartalmaz a részgráf, és nem tartalmaz kört, a teljes súly pedig 2+3=5.

Függvény leírása

Írdd meg a kruskals függvényt az alábbiak szerint.

A kruskals a következő bemeneti paraméterekkel rendelkezik:

- g_nodes : egy egész szám, amely a fa csúcsainak számát jelenti
- g_from: egész számok tömbje, amelyek az egyes élek egyik csúcsait jelentik
- g_to: egész számok tömbje, amelyek az egyes élek másik csúcsait jelentik
- g_weight : egész számok tömbje, amelyek az egyes élek súlyát jelentik

Visszatérési értéke

• egy egész szám, a kialakított részfa teljes súlya

Bemenet formátuma

Az első sorban két, szóközzel elválasztott egész szám g_nodes és g_edges van, melyek rendre a csúcsok és az élek száma a gráfban. A következő g_edges sor három, szóközzel elválasztott egész számból áll: g_from, g_to, és g_weight, ahol g_from és g_to az él által összeköttt két csúcs, g_weight pedig az él súlya.

Megkötések

```
2 <= g_nodes <= 300</li>
1 <= g_edges <= N*(N-1)/2</li>
1 <= g_from, g_to <= N</li>
0 <= g_weight <= 10^5</li>
```

ahol N>=g_nodes.

Megjegyzés: Ha ugyanazon csúcspár között vannak különböző súlyú élek, akkor azokat többszörös élnek kell tekinteni.

Kimenet formátuma

Írasd ki az igazán különleges részfa teljes súlyát (egész szám).

Minta bemenet 1


```
4 6
1 2 5
1 3 3
4 1 6
2 4 7
3 2 4
3 4 5
```

Minta kimenet 1

12

Minta 1 magyarázat

Vegyük a fentebb adott gráfot. Alkalmazzuk Kruskal algoritmusát, rendezzük az éleket súlyuk szerint növekvő sorrendbe. A rendezést követően a következő élek közül válaszhatunk:

$$1-3(w=3), 2-3(w=4), 1-2(w=4), 3-2(w=5), 1-2(w=6), és 2-24(w=7).$$

Kiválasztjuk az 1-3(w=3) élt, mivel annak van a legkisebb súlya és hozzávétele az eddigi élekhez nem okoz kört. Ezután hozzávesszük a 2-3(w=4) élt, mivel annak van a legkisebb súlya a maradék élek közül, és annak az élnek a hozzávétele sem okoz kört. Az 1-2(w=4) él hozzávétele kört eredményezne, így nem foglalkozunk vele tovább. Kiválasztjuk a 3-24(w=5) élt, és így megkapjuk a minimális feszítőfát, melynek teljes súlya 3+4+5=12.

Minta bemenet 2

5 7

1 2 20

1 3 50

1 4 70

1 5 90

2 3 30

```
3 4 40
4 5 60
```

Minta kimenet 2

150

Minta 2 magyarázat

Adott a fentebbi gráf, kiválasztjuk az 1->2, 2->3, 3->4, 4->5 éleket, ezek súlya összesen 20+30+40+60=150.

Forrás

HackerRank - Kruskal (MST): Really Special Subtree