How to formally reason about strategic behaviour

Sasha Rubin

University of Naples "Federico II", Italy

February 7, 2019, University of Sydney

AI is about building agents to do tasks we think require intelligence

What is an agent?

- An agent is something that acts, based on sensing the world.
- An agent is rational if it acts to achieve the best (expected)
 outcome.
 Russell, Norvig

What is an agent?

- An agent is something that acts, based on sensing the world.
- An agent is rational if it acts to achieve the best (expected)
 outcome.
 Russell, Norvig

... Multi-agent systems are everywhere!

Many real and imagined systems consist of multiple agents:

- 1. **distributed**, i.e., agents have their own view of the world.
- 2. **goal-directed**, i.e., agents strategise to achieve their own goals.

- E.g. multiplayer games (winning tasks)
 - robot assisted search-and-rescue (co-ordination tasks)
 - autonomous transport vehicles (safety tasks)
 - voting and auction protocols (fairness tasks)
 - rational distributed computing (secret-sharing tasks)

Research Challenge

How to understand, predict and control agent behaviour?

Lots of disciplines involved

- 1. Humanities: How do we want agents to behave?
- 2. Computer engineering: How to engineer such agents?
- 3. Computer science: How to make sure agents behave as we want?
 - 3.1 Theoretical foundations
 - 3.2 Academic tools
 - 3.3 Industrial applications

Research Challenge

How to understand, predict and control agent behaviour?

- Methodology

Model agent tasks in logic (for understanding), and devise algorithms (for prediction/control).

- Difficulty

Agents are distributed and goal directed.

Methodology

Formal Methods 101

 $^{^{1}}$ If formula φ talks about strategies, model-checking can usually be adapted to do control (not just prediction).

Formal Methods 101

Classical model-checking can't handle the complexities of multi-agent systems.

 $^{^{1}}$ If formula φ talks about strategies, model-checking can usually be adapted to do control (not just prediction).

My current research goals

- 1. Devise models that capture essential aspects of multi-agent systems.
- 2. Devise logics that can specify complex agent/system goals.
- Devise algorithms for model-checking, or prove that none exists.

Note. Steps 1 and 2 are useful in themselves! (Knowledge Representation philosophy)

Models

 $M = \langle S, \operatorname{tr}, (Obs_a)_{a \in Ag} \rangle$ is a transition system modeling dynamics

$$S$$
 set of states $tr: S \times Act \rightarrow S$ transition function $Obs_{a}: S \rightarrow \Omega$ observation function

Special case: $Obs_a(s) = s$ Full observation

Models

$$M = \langle S, \operatorname{tr}, (Obs_a)_{a \in Ag} \rangle$$
 is a transition system modeling dynamics

$$S$$
 set of states transition function $Obs_{\alpha}: S \rightarrow \Omega$ observation function

Special case: $Obs_a(s) = s$

Full observation

- Strategy tells an agent how to act based on its observations
- Strategy for each agent determines a path in M

New logic: Strategy Logic for agents with partial observation

$$\overbrace{p \mid \neg \varphi \mid \varphi_1 \vee \varphi_2}^{\mathsf{Boolean}} \mid \overbrace{\mathsf{X} \; \varphi \mid \varphi_1 \; \mathsf{U} \; \varphi_2}^{\mathsf{Temporal}} \mid \overbrace{(\exists \, \mathsf{S}) \, \varphi \mid (a_i \mapsto \mathsf{S}) \, \varphi}^{\mathsf{Strategic}}$$

New logic: Strategy Logic for agents with partial observation

Boolean	Temporal	Strategic
$p \mid not \varphi \mid \varphi_1 or \varphi_2 \mid$	$\overbrace{\operatorname{next} \varphi \mid \varphi_1 \operatorname{until} \varphi_2} \mid$	$\overbrace{(\text{exists s})\varphi\mid(\text{a uses s})\varphi}$

Boolean part expresses state properties:

- Crashed(a_1), not Crashed(a_1), InRoom(a_1, r_2), ...

Temporal part expresses agent goals:

- eventually $InRoom(a_1, r_2)$, $never\ Crashed(a_1)$, ...

$$\overbrace{p\mid not\,\varphi\mid\varphi_1\,or\,\varphi_2}^{\mathsf{Boolean}}\mid \overbrace{next\,\varphi\mid\varphi_1\,until\,\varphi_2}^{\mathsf{Temporal}}\mid \overbrace{(\mathit{exists\,s})\,\varphi\mid(\mathit{a\,\,uses\,\,s})\,\varphi}^{\mathsf{Strategic}}$$

Strategic part expresses game-theoretic properties:

- $(exists s_1)(a_1 uses s_1) goal_1$
- "I have a strategy to win" (solitaire)
- (exists s_i)_i (a_i uses s_i)_i goal
 - "We have strategies that win" (coordination)
- $(exists s_1) (forall s_2) (a_i uses s_i)_i goal_1$ "I have a strategy that beats any of yours" (tic-tac-toe)
- $(\exists s_i)_i (a_i \mapsto s_i)_i \&_i \neg [\neg goal_i \land (\exists s')(a_i \mapsto s')goal_i]$ "We can play NE" (rational secret sharing, fair division, poker)

Natural, and very expressive

It can express

- state properties,
- (Boolean) agent goals,
- game-theoretic properties (NE, SPE, ESS, Pareto optimality, ...).

Algorithms for $M \models \varphi$

- Multi-player games in TCS (70s)

undecidable

- Distributed synthesis in FM (90s)

undecidable

- Finite horizon DEC-POMDPs in AI (oos)

NEXP-complete

Insight. The source of these difficulties is the ability of agents, each with their own observations of the world, to communicate privately with each other.

What can be done?

- 1. Restrict observability
- 2. Restrict private communication

What can be done? Restrict observability
How? Hierarchical observation/information

What can be done? Restrict observability
How? Hierarchical observation/information

- Peterson, Reif ('79)
- Pnueli, Rosner ('90)
- Kupferman, Vardi ('01)
- Finkbeiner, Schewe ('05)
- vdMeyden, Wilke ('05)
- Berwanger, Mathew, vdBogaard ('16)
- Berthon, Maubert, Murano, R., Vardi (LICS '17)

Observation. Mathematically elegant, but none of the examples mentioned have hierarchical observation

What can be done? Restrict private communication How? Broadcast-communication/public-actions

What can be done? Restrict private communication How? Broadcast-communication/public-actions

- Lomuscio, vdMeyden, Ryan, Wilke ('00, '05) Broadcasting
- vDitmarsch, vdHoek ... Public Announcements Logic (DEL)
- Kominis, Geffner ('15,'17) Public Actions (Planning)
- Belardinelli, Lomuscio, Murano, R. (AAMAS '17, IJCAI '17)

Models

Model: Public action transition system M — the last action of each agent is observable to all agents.

E.g.,

- community-card games (bridge, poker)
- broadcasting distributed systems (secret-sharing protocols)
- epistemic puzzles (muddy children)
- auctions (open-outcry)

Many examples

Algorithms for $M \models \varphi$

Theorem. $M \models \varphi$ is decidable if M is a public-action transition system.

Complexity?

- In (k+2)-exptime in the model and the formula, and (k-1)-expspace-hard in the formula, where k= quantifier-block depth of formula.

In fact. Computational complexity is similar to fully-observable transition systems!

Middle ground.

Fully observable TS < Public Action TS < Unrestricted TS

Proofs

- Q. How did you come up with the algorithms?
- A. We used the automata-theoretic approach to model-checking.²
- Q. But what do the algorithms actually look like?
- A. Operations on automata that run on trees.
- Q. ??
- A. Think of it like manipulating **regular expressions** that match trees instead of strings!

²for which Vardi and Wolper won the Gödel prize for outstanding papers in TCS.

Summary

- Current research goal

Devise models, logics and algorithms for understanding, predicting, and controlling behaviour of agents in multi-agent systems.

- Challenge

Combination of partial observability and private communication.

- Solutions

Impose hierarchical observation, or restrict private communication, and use automata.

Capture quantitative aspects

Capture quantitative aspects

- 1. Agents: Probabilistic (instead of just deterministic)
- 2. Tasks: Optimisation (instead of just Boolean)

Context. Many protocols rely on coin-flips.

Project. Develop *Probabilistic Strategy Logic* for reasoning about stochastic multi-agent transition systems.

Methodology. Study restrictions on memory of probabilistic agents and reduce to reasoning about polynomial inequalities.³

 $^{^3}$ Formally, reduce $M \models \varphi$ to the first-order theory of real arithmetic, which is solvable in EXPSPACE by work of Tarski/Seidenberg.

Future research goals (speculative)

Context. MDPs, POMDPs, DEC-POMDPs are important models.

Challenge. Agent goal is to optimise expected-reward, which is a very "low-level" specification.

Project. Unify reward- and declarative-specifications.

Methodology. ???

Formal methods ...

...for strategising agents with qualitative temporal goals

AAMAS'16/'17/'18, IJCAI'17, LICS'17

Formal methods ...

...for strategising agents with quantitative temporal goals

IJCAI'17, CSL'18

Formal methods ...

...when the number of agents is not known apriori

CONCUR'14,VMCAI'14,ICALP'15,M&C'15 (book), IJCAR'16, VMCAI'18

Formal methods ...

...when the environment is partially-known

PRIMA'15 (best-paper), AAMAS'15/'16, IJCAI'16/'17

What sort of researcher am I?

- I'm part of a growing group bringing insights from formal methods to bear on problems in Al.
- I'm rooted in Formal Methods and Knowledge Representation philosophies.
- My focus has broadened over time:
 - 1. Automata for reasoning about mathematical structures
 - 2. Logic/automata in Formal Methods
 - 3. Formal Methods and Artificial Intelligence

What sort of researcher am I?

- I'm part of a growing group bringing insights from formal methods to bear on problems in Al.
- I'm rooted in Formal Methods and Knowledge Representation philosophies.
- My focus has broadened over time:
 - 1. Automata for reasoning about mathematical structures
 - 2. Logic/automata in Formal Methods
 - 3. Formal Methods and Artificial Intelligence

Academic Tools

Context. Existing tools for multi-agent systems (MCK vdMeyden et. al.; Eve Wooldridge et. al.; MCMAS Lomuscio et. al.) can't handle logics and models above.

Challenge. High computational complexity, complex constructions.

Project. Engineer practical algorithms by translating to optimised tools, such as planners.⁴

Methodology. Give new semantics for logics based on finite paths of M.

De Giacomo, Vardi IJCAI '13/'15/'16

McIlraith,... AAMAS/IJCAI/KR '18

⁴Planning in AI is a form of synthesis.