DEVOIR SURVEILLÉ N°4

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 –

Partie I - Résolution de deux équations différentielles simples

On considère les équations différentielles

$$z'' + 4z = 0 \tag{E_1}$$

$$z'' - 4z = 0 \tag{E_2}$$

- 1. Déterminer les solutions à valeurs réelles de l'équation différentielle (E₁).
- 2. Déterminer les solutions à valeurs réelles de l'équation différentielle (E₂).
- 3. Montrer que l'ensemble des solutions de (E_2) peut en fait s'écrire

$$\left\{t\mapsto \lambda\, ch(2t) + \mu\, sh(2t),\; (\lambda,\mu)\in\mathbb{R}^2\right\}$$

Partie II - Résolution d'une seconde équation différentielle par changement de variable

On considère l'équation différentielle

$$(1 - x^2)y'' - xy' + 4y = 0 (F)$$

- **4.** Soit f une fonction deux fois dérivable sur] -1, 1[. On pose $g = f \circ \cos$. Montrer que g est deux fois dérivable sur l'intervalle]0, π [.
- 5. Montrer que f est solution de (F) sur] -1, 1[si et seulement si g est solution sur]0, π [d'une équation différentielle du second ordre à coefficients constants à déterminer.
- **6.** En déduire que les solutions de (F) sur]-1,1[sont les fonctions

$$x \in]-1, 1[\mapsto \lambda(2x^2-1) + 2\mu x\sqrt{1-x^2}]$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

Partie III - La fonction argument cosinus hyperbolique

- 7. Montrer que la fonction ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. On notera argch la bijection réciproque de cette bijection induite.
- **8.** Montrer que pour tout $x \in [1, +\infty[$, $sh \circ argch(x) = \sqrt{x^2 1}$.
- **9.** Justifier que la fonction argch est dérivable sur $]1, +\infty[$ et déterminer une expression de sa dérivée.
- **10.** Montrer que pour tout $\theta \in \mathbb{R}$, $\operatorname{ch}(2\theta) = 2\operatorname{ch}^2(\theta) 1$ et $\operatorname{sh}(2\theta) = 2\operatorname{ch}(\theta)\operatorname{sh}(\theta)$.
- 11. En déduire pour $x \in [1, +\infty[$ des expressions de $ch(2 \operatorname{argch}(x))$ et $sh(2 \operatorname{argch}(x))$ ne faisant pas intervenir la fonction argch.

Partie IV - Un problème de raccord

12. En considérant cette fois-ci une fonction f deux fois dérivable sur]1, $+\infty$ [et en posant $g = f \circ ch$, montrer que les solutions de l'équation différentielle (F) sur]1, $+\infty$ [sont les fonctions

$$x \in]1, +\infty[\mapsto \lambda(2x^2 - 1) + 2\mu x \sqrt{x^2 - 1}]$$

avec
$$(\lambda, \mu) \in \mathbb{R}^2$$
.

- **13.** En déduire les solutions de l'équation différentielle (F) sur $]-\infty,-1[$.
- **14.** Déterminer les solutions de (F) sur \mathbb{R} .

EXERCICE 1.

On considère sur $\mathbb R$ l'équation différentielle :

(E):
$$(1+x^2)y' - 3xy = 1$$

- 1. Résoudre l'équation homogène (E_H) associée à (E).
- **2.** Rechercher une solution particulière de (E) sous la forme d'une fonction polynomiale de degré 3. En déduire l'ensemble des solutions de (E).
- 3. Montrer que $(1+x^2)^{\frac{3}{2}} = x^3 + \frac{3}{2}x + o(1)$
- **4.** On pose $g: x \mapsto \frac{2}{3}x^3 + x \frac{2}{3}(1+x^2)^{\frac{3}{2}}$. Vérifier que g est l'unique solution de (E) admettant une limite finie en $+\infty$.
- 5. Déterminer les variations de g. On précisera ses limites en $-\infty$ et en $+\infty$.

Exercice 2.

Pour $n\in\mathbb{N},$ on pose $I_n=\int_0^{\frac{\pi}{2}}\cos^nt\,dt$ et $J_n=\int_0^{\frac{\pi}{2}}t^2\cos^nt\,dt.$

- **1.** Calculer I_0, J_0, I_1, J_1 .
- **2.** Montrer que $I_n > 0$ pour tout $n \in \mathbb{N}$.
- 3. Montrer que $I_{n+2} = \frac{n+1}{n+2} I_n$ pour tout $n \in \mathbb{N}$.
- **4. a.** Montrer que pour $t \in \left[0, \frac{\pi}{2}\right], 0 \leqslant t \leqslant \frac{\pi}{2} \sin t$.
 - **b.** En déduire que $0 \leqslant J_n \leqslant \frac{\pi^2}{4}(I_n I_{n+2})$ pour tout $n \in \mathbb{N}$.
 - c. Montrer que la suite de terme général $\frac{J_n}{I_n}$ converge vers 0.
- $\textbf{5.} \quad \textbf{a.} \ \text{Montrer que } I_{n+2} = \frac{1}{2} \left((n+1)(n+2)J_n (n+2)^2 J_{n+2} \right) \text{pour tout } n \in \mathbb{N}.$
 - **b.** En déduire que $\frac{J_n}{I_n} \frac{J_{n+2}}{I_{n+2}} = \frac{2}{(n+2)^2}$ pour tout $n \in \mathbb{N}$.
- $\textbf{6.} \ \ \text{Pour} \ n \in \mathbb{N}^*, \text{ on pose } S_n = \sum_{k=1}^n \frac{1}{k^2}. \ \text{Montrer que la suite de terme général } S_n \ \text{converge vers } \frac{\pi^2}{6}.$