UNIVERSIDAD AUTÓNOMA "TOMAS FRÍAS" CARRERA DE INGENIERÍA DE SISTEMAS Materia: Arquitectura de computadoras (SIS-522) Docente: Ing. Gustavo A. Puita Choque Auxiliar: Univ. Aldrin Roger Perez Miranda

16/06/2024 Fecha publicación
23/06/2024 Fecha de entrega

Grupo: 1 Sede Potosí

1) ¿Qué es un UPS y en qué situaciones se utiliza?

Un UPS es un dispositivo denominado en siglas: uninterruptible power supply, o sea un suplidor ininterruptible de energía. Se usa para sitios con una pobre conexión eléctrica y que se tenga pc's o equipo más delicado a los apagados, para que pueda rescatarse del repentino cambio de voltaje.

2) De las siguientes fuentes indique que tipo de modularidad tiene cada una de ellas

3) Explique las etapas del proceso de transformación de la energía eléctrica que va desde energía alterna a continua, que son necesarios para poder alimentar los componentes de forma correcta de la PC

- La primera etapa es la de **transformación**, que hace llevar la corriente continua a una tensión menor a la de entrada, para que pueda ser tratada por la fuente.
- La segunda etapa es la etapa de **rectificación**, donde se busca convertir la corriente alterna con menos tensión, en corriente continua, mediante diodos rectificadores.

- La tercera etapa llamada **filtración** se ocupa de, mediante condensadores, preservar una tensión continua en la corriente para el uso de los circuitos y demás dispositivos.
- La cuarta y última etapa es la regulación, que se ocupa de reducir el rizado y poder entregar la energía necesaria a la computadora con tensión y voltaje adecuado.
- 4) Con los siguientes datos:
 - > Tipo de Placa Base: Servidor
 - > Procesadores: 2: AMD Ryzen 7 5700X
 - ➤ Memorias RAM:
 - o 1: DDR4, Módulo DDR4 8 GB
 - o 2: DDR4, Módulo DDR4 8 GB
 - o 3: DDR4, Módulo DDR4 16 GB
 - o 4: DDR4, Módulo DDR4 16 GB
 - ➤ Tarjetas Gráficas:
 - o 1: NVIDIA, Geforce RTX 3060
 - o 1: ADM, Geforce RX 5500 XT
 - > Almacenamiento:
 - o 4: SSD SATA
 - ➤ Unidades Ópticas:
 - o 1: Disquetera
 - o 3: Lector CD-ROM
 - ➤ Tarjetas PCI Express:
 - o 2: Tarjeta Ethernet de 2 puertos
 - ➤ Tarjetas PCI:
 - o 1: Tarjetas WI-FI
 - > Ratones:
 - o 1: Ratón Gaming
 - ➤ Teclados:
 - o 1: Teclado Gaming
 - > Kit de Refrigeración Líquida:
 - o 1: Kit de 360 mm
 - > Bomba de Refrigeración Líquida:
 - o 1: Bomba con Depósito
 - > Ventiladores:
 - o 4: 140 mm
 - ➤ Otros Dispositivos:
 - o 2: Tira de 30 LEDs

Determinar cuánto consumiría una fuente de alimentación que tendría que suministrar anergia a todos estos componentes. Para esto puede usar calculadores de energía como:

- https://www.geeknetic.es/calculadora-fuente-alimentacion/
- https://latam.msi.com/power-supply-calculator
- https://pc-builds.com/es/power-supply-calculator/
 Mostrar en capturas de pantalla cuantos watts le salió.

de diseno termico (TDP). Representa la cantidad maxima de calor que se espera que genere un componente, como una CPU o una GPU, bajo cargas de trabajo típicas. Se expresa en vatios y sirve como guía para que los fabricantes de sistemas elijan las soluciones de refrigeración y las fuentes de alimentación adecuadas.

#	tipo de componente	Nombre	Potencia	Recuento de elementos	Potencia total
1.	Procesador	AMD Ryzen 7 5700X	65 <u>W</u>	x1	65 <u>W</u>
2.	Carta gráfica	NVIDIA GeForce RTX 3060	170 <u>.W</u> .	x1	170 <u>W</u>
3.	tarjeta madre	Placa base para servidores	95 <u>W</u>	×1	95 <u>W</u>
4.	Memoria de acceso aleatorio	DDR4	6 <u>W</u>	x 4	24 <u>W</u>
5.	Almacenamiento de datos	SSD SATA	3 <u>W</u>	x 4	12 <u>W</u>
6.	Ventiladores de refrigeración	140mm	4 W.	x 4	16 <u>W</u>
7.	Unidades ópticas	Unidad de Blu-Ray	30 <u>W</u>	×1	30 <u>W</u>
8.	Unidades ópticas	Unidad de CD	25 <u>W</u>	×1	25 <u>W</u>
9.	Tarjetas PCI Express	Tarjeta Ethernet	5 <u>W</u>	×1	5 <u>W</u>
10.	Ratón	Ratón para juegos	3 <u>W</u>	×1	3 <u>W</u>
11.	Teclado	Teclado para juegos	4 W.	×1	4 .W.
12.	Otro	tira de luz led	5 <u>W</u>	x 2	10 <u>.W</u>
				Vataje de configuración total	459 <u>W</u>

5) Mencione 4 conectores que se usan de las fuentes de alimentación en la actualidad es decir en 2024 (NO MENCIONAR CONECTORES OBSOLETOS)

Podemos mencionar el más importante: **ATX de 24 pines**, anteriormente se usaba 20, pero hoy en día está en desuso y se usa los 24, para dar poder a toda la placa madre. El conector de **alimentación SATA** es bien usado, anteriormente se las ocupaba en HDD y SSD, pero ya implementando las m.2 y demás tecnología para almacenamiento, se usa solo para las refrigeraciones liquidas y controladoras LED.

El conector **PCle de 6+2 pines**, que se usa principalmente en tarjetas gráficas, donde los 6 pines pueden dar un voltaje de 75W y con los otros 2 pines más seria 150W.

El **conector EPS de 4+4 pines**, usado principalmente para los procesadores y allegados, se implementó en la Intel Pentium IV cuando solo eran 4 pines, los cpus de hoy en día necesitan más energía por lo que se implementó 4 pines mas, sin embargo, puede que se sustituya con otro conector para el consumo en aumento requerido.