Optimal Load Balancing Policies for Heterogeneous Server Farms

VARUN GUPTA Carnegie Mellon University

With:

Mor Harchol-Balter (CMU)

Q: What is the optimal load balancing policy?

A: Join-the-Shortest-Queue

Q: Why?

A: JSQ = **M**inimize **E**xpected **R**esponse time of arrival

This Talk

Q: What is the optimal load balancing policy?

MER = Minimum Expected Response time

Smart-JSQ = Join-Shortest-Queue (with smart tie breaks)

Q: Which is the better policy?

Q: What is the optimal policy?

Outline

Many-servers limit: $K \to \infty$

Light-traffic regime

$$\frac{\lambda}{\text{capacity}} \to \text{constant}$$

⇒ Partial characterization of the optimal policy

Heavy-traffic regime

capacity $-\lambda \to \text{constant}$

- ⇒ Complete characterization of optimal policies
- ⇒ First asymptotic approximations

Simulation Results

- Effect of K
- Effect of arrival rate (λ)
- Effect of degree of heterogeneity

 $K_1 = \alpha_1 K$

Poisson(λ)

$$\begin{array}{ccc} K & \to & \infty \\ \frac{\lambda}{K} & \to & \beta \\ \alpha_1, \alpha_2, \beta & \to & \text{constant} \end{array}$$

 $K_1 = K/3$

Poisson(λ)

$$K_2 = 2K/3$$

$$\begin{array}{ccc} K & \to & \infty \\ \frac{\lambda}{K} & \to & \beta \\ \alpha_1, \alpha_2, \beta & \to & \text{constant} \end{array}$$

Q: Performance of MER

Case 1: $\lambda < 4K/3$

- Fast can handle λ
- Arrivals find at least one fast idle
- $\bullet \Rightarrow \mathbf{E}[T] = 1/4$

Case 2: $\lambda > 4K/3$

- Fast can not handle λ
- Can not use slow until each fast has 3 jobs!

 $K_1 = K/3$

Poisson(λ)

 $K_2 = 2K/3$

$$\begin{array}{ccc} K & \to & \infty \\ \frac{\lambda}{K} & \to & \beta \\ \alpha_1, \alpha_2, \beta & \to & \text{constant} \end{array}$$

Q: Performance of Smart-JSQ

Case 1: $\lambda < 4K/3$

- Fast can handle λ
- Arrivals find at least one fast idle

$$\bullet \Rightarrow \mathbf{E}[T] = 1/4$$

Case 2: $\lambda > 4K/3$

Use slow as soon as each fast has 1 job!

Poisson(λ)

 $K_1 = K/3$

$$K_2 = 2K/3$$

$$\begin{array}{ccc} K & \to & \infty \\ \frac{\lambda}{K} & \to & \beta \\ \alpha_1, \alpha_2, \beta & \to & \text{constant} \end{array}$$

Smart-JSQ better than MER!

...but any policy which sends to slow when all fast are busy is identical in light-traffic

MER μ=1

HYBRID (smart-JSQ+MER)

smart-JSQ when some server idle

MER when all busy

Smart-JSQ

Light-traffic ⇒ **HYBRID** = **Smart-JSQ**

Outline

Many-servers limit: $K \to \infty$

Light-traffic regime

$$\frac{\lambda}{\text{capacity}} \to \text{constant}$$

⇒ Partial characterization of the optimal policy

Heavy-traffic regime

capacity $-\lambda \to \text{constant}$

- ⇒ Complete characterization of optimal policies
- ⇒ First asymptotic approximations

Simulation Results

- Effect of K
- Effect of arrival rate (λ)
- Effect of degree of heterogeneity

Many-servers heavy-traffic limit

Poisson(λ)

Analysis of JSQ for homogeneous server

GOAL

Analysis of policies for heterogeneous servers

Many-servers heavy-traffic limit

 $K_1 = \alpha_1 K$

 $K \rightarrow \infty$

$$(4 \cdot \alpha_1 + 1 \cdot \alpha_2)K - \lambda \rightarrow \theta$$

$$\alpha_1, \alpha_2, \theta \rightarrow \text{const}$$

Poisson(λ)

$$K_2 = \alpha_2 K$$

Analysis of JSQ for homogeneous server

GOAL

Analysis of policies for heterogeneous servers

Many-servers heavy-traffic analysis for homogenous JSQ

$$\begin{array}{ccc} K & \to & \infty \\ K - \lambda & \to & \theta \\ \theta & \to & \text{const} \end{array}$$

Analysis technique: Markov chain for total jobs in system

= mean departure rate **given** 3K/2 jobs

Many-servers heavy-traffic analysis for homogenous JSQ

$$\begin{array}{ccc} K & \to & \infty \\ K - \lambda & \to & \theta \\ \theta & \to & \text{const} \end{array}$$

Analysis technique: Markov chain for total jobs in system

Many-servers heavy-traffic limit

Poisson(λ)

$$K_1 = \alpha_1 K$$

$$K \rightarrow \infty$$

$$(4 \cdot \alpha_1 + 1 \cdot \alpha_2)K - \lambda \rightarrow \theta$$

$$\alpha_1, \alpha_2, \theta \rightarrow \text{const}$$

$$K_2 = \alpha_2 K$$

Analysis of JSQ for homogeneous server

GOAL

Analysis of policies for heterogeneous servers

Many-servers heavy-traffic limit

OPT policy ⇒ maximize departure rate for each N
 ⇒ (preemptively) send jobs to slow servers even when they have 1 job and all fast servers have > 1

Smart-JSQ is optimal in many-servers

Outline

Many-servers limit: $K \to \infty$

Light-traffic regime

$$\frac{\lambda}{\text{capacity}} \to \text{constant}$$

⇒ Partial characterization of the optimal policy

Heavy-traffic regime

capacity $-\lambda \to \text{constant}$

- ⇒ Complete characterization of optimal policies
- ⇒ First asymptotic approximations

Simulation Results

- Effect of K
- Effect of arrival rate (λ)
- Effect of degree of heterogeneity

$$\mu_1$$
=4, μ_2 =1, K_1 =100, K_2 =200

$$\mu_1$$
=4, μ_2 =1, K_1 =100, K_2 =200

$$\mu_1$$
=4, μ_2 =1, K_1 =100, K_2 =200

Many-servers heavy-traffic

$$\mu_1$$
=4, μ_2 =1, K_1 =100, K_2 =200

$$\mu_1$$
=4, μ_2 =1, α_1 =1/3, α_2 =2/3

$$\mu_1$$
=4, μ_2 =1, α_1 =1/3, α_2 =2/3

$$\mu_1$$
=4, μ_2 =1, α_1 =1/3, α_2 =2/3

Conclusions

 A new many-servers heavy-traffic scaling to analyze load balancing policies

 First closed-form approx of load balancing heuristics

- Choosing the right load balancer
 - Few servers, Small load, High heterogeneity ⇒ HYBRID
 - Many servers, High load, Low heterogeneity ⇒ smart-JSQ

$$\mu_1$$
=8, μ_2 =1, K_1 =100, K_2 =400

Many-servers heavy-traffic

$$\mu_1$$
=8, μ_2 =1, K_1 =100, K_2 =400

$$\mu_1$$
=8, μ_2 =1, α_1 =1/5, α_2 =4/5

