PERANCANGAN DAN IMPLEMENTASI SMART AQUARIUM FOR AQUASCAPER BERBASIS IOT

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Tingkat

oleh:

MUHAMMAD RIFKI IKHWAL 6705184071

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Aquascape adalah seni untuk menata atau mengatur tanaman air, batu, batu karang, koral, dan kayu apung agar terlihat indah secara alami di dalam aquarium sehingga memberikan efek seperti alam sungguhan di bawah air. Pada umumnya *aquascape* memiliki keunikan tersendiri dalam menciptakan ekosistem dari tumbuhan hidup dan ikan-ikan kecil dalam sebuah aquarium.

Tujuan dari *aquascape* adalah untuk menciptakan sebuah gambaran bawah air, sehingga dapat memberikan kesan alam di dalam aquarium. Ada beberapa hal yang harus di perhatikan dalam membuat sebuah *aquascape* yaitu harus memperhatikan kualitas dalam air seperti suhu, pH, kekeruhan air, CO2, dan pencahayaan. Tidak banyak orang hanya mengganti air pada *aquarium* ketika air sudah terlihat keruh tanpa memperhatikan kualitas air yang baik pada *aquascape*. Nilai suhu idealnya untuk aquascape adalah 20 – 28 derajat celcius, Nilai pH yang baik pada aquascape adalah 6,0 – 8,0, untuk nilai kekeruhan yang baik pada aquascape adalah 5 - 25 NTU (*Nephelometric Turbidity Unit*), dan nilai pada CO2 yang baik untuk aquascape adalah 20-40 ppm (*Part Per Million*), sedangkan pencahayaan untuk proses fotosintesis idealnya 7-8 jam perhari.

Seiring perkembangan zaman, teknologi *Internet of things* (IoT) yang saat ini terus meningkat memberikan kemudahan bagi para penggunannya untuk mempermudah pekerjaan serta mempercepat waktu agar lebih efisien dan nyaman. Tugas akhir ini dirancang sebuah sistem untuk bisa melakukan monitoring pada aquascape yang akan dipasang sensorsensor yang berfungsi sebagai alat untuk mengukur kualitas air pada aquascape yang akan dijadikan proses pada system dengan menggunakan *fuzzy logic*. Fuzzy logic memiliki nilai 0 dan 1, sehingga *fuzzy logic* mampu untuk menentukan nilai yang bersifat tidak pasti atau masih samar. Berdasarkan uraian yang diatas, maka penulis membuat suatu alat yang dapat melihat kualitas air untuk terjadinya fotosintesis pada *aquascape*. Maka penulis memilih judul "Perancangan dan Implementasi Smart Aquarium For Aquascaper Berbasis Iot" yang dapat dimonitoring melalui *smartphone* untuk memudahkan para pemilik *aquascape* mengontrol kualitas air pada *aquarium* dan dapat menjaga kesehatan *flora* dan *fauna* pada *aquarium* tersebut.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Perancangan Sistem Otomatisasi pada Aquascape Berbasis Mikrokontroller Arduino Nano [1]	2020	Dalam penelitian ini penulis membuat sistem otomatis pada <i>aquascape</i> dengan menggunakan Arduino nano ATmega 328. Penulis menggunakan <i>software</i> Arduino IDE untuk komunikasi antara perangkat dan pengguna melalui tombol pada box elektronika yang sudah dirancang dan hasilnya akan ditampilkan melalui LCD.
2.	Implementasi dan Analisis Pengurasan Otomatis Aquascape Berdasarkan Kualitas Air Menggunakan Fuzzy Logic [2]	2019	Dalam penelitian ini penulis membuat pengurasan otomatis untuk aquascape dengan menggunakan <i>fuzzy logic</i> . Komponen utama perangkat yang digunakan adalah Arduino UNO R3. Kemudian nilai-nilai yang dibaca oleh sensor diproses dengan menggunakan <i>fuzzy logic</i> oleh Arduino. Apabila nilai tidak sesuai dengan parameter penilaian akan terkuras otomatis.
3.	Alat Penyiram Tanaman Aquascape Otomatis Berbasis Arduino Uno Dan Monitoring Berbasis Mobile [3]	2019	Dalam penelitian ini penulis membuat suatu alat penyiraman otomatis untuk tanaman <i>aquascape</i> dengan menggunakan sensor kelembaban tanah dan

4.	SMART AKUARIUM BERBASIS IoT MENGGUNAKAN RASPBERRY PI 3 [4]	2019	Arduino uno. Penulis menggunakan modul GSM untuk memonitoringnya melalui mobile. Pada penelitian ini penulis membuat <i>smart aquarium</i> dengan menggunakan <i>raspberry pi</i> 3. Dengan memasukkan alamat 192.168.5.2/index.php, penulis dapat memonitoringnya melalui browser.
5.	Pengukur Tingkat Kekeruhan Keasaman Dan Suhu Air Menggunakan Mikrokontroler Atmega328p Berbasis Android [5]	2018	Pada penelitian ini penulis membuat alat pengukur tingkat kekeruhan keasaman dan suhu air menggunakan Atmega328p. Pada penelitian ini penulis menggunakan <i>Bluetooth</i> untuk menghubungkan antara perangkat dengan pengguna.
6.	Model Sistem Monitoring pH dan Kekeruhan pada Akuarium Air Tawar berbasis Internet of Things [6]	2019	Pada penelitian ini penulis membuat sistem monitoring ph dan kekeruhan air pada aquarium. Penulis menggunakan NodeMCU ESP8266 12E sebagai kontroler utama, untuk hasil pembacaan sensor akan ditampilkan melalui aplikasi <i>Blynk</i> dan LCD

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan smart aquarium for aquascaper yang berbasis IoT menggunakan metode *fuzzy logic* dengan komponen utama menggunakan wemos D1 R2 WIFI UNO ESP8266. Pada perancangan ini pengguna dapat memonitoring kualitas air seperti CO2, suhu, kekeruhan, dan pH pada aquascape dengan menggunakan aplikasi andrioid melalui *smartphone*, serta dapat mengatur kipas *aquarium*, lampu UV dan solenoid CO2 secara otomatis atau manual agar proses fotosintesis pada tumbuhan dapat bekerja secara maksimal serta CO2 dapat diatur sesuai dengan kebutuhan. Adapun perancangan yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Perancangan Sistem Smart Aquarium For Aquascaper

Sensor CO2, suhu, pH, dan kekeruhan masuk ke wemos D1 R2 ESP8266 untuk dipantau agar pengguna dapat melihat nilai-nilai sensor tersebut melalui aplikasi android pada *smartphone*, selanjutnya smartphone masuk ke wemos D1 R2 ESP8266 untuk mengatur kipas *aquarium*, lampu UV dan solenoid CO2 sesuai dengan kebutuhan

Referensi

- [1] Y. Triawan and J. Sardi, "Perancangan Sistem Otomatisasi pada Aquascape," *Jurnal Teknik Elektro Indonesia*, vol. 1, no. 2, pp. 76-82, 2020.
- [2] Y. D. Tadeus, A. Khasnan and A. Didik, "Model Sistem Monitoring pH dan Kekeruhan pada Akuarium Air Tawar," *Media Komunikasi Rekayasa Proses dan Teknologi Tepat Guna,* vol. XV, no. 2, pp. 49-56, 2019.
- [3] E. ,. H. Putra, M. Jamil and S. Lutfi, "SMART AKUARIUM BERBASIS IOT MENGGUNAKAN RASPBERRY PI 3," *Jurnal Informatika dan Komputer*, vol. II, no. 2, pp. 60-65, 2019.
- [4] A. Razo and H. Aprilianto, "Alat Penyiram Tanaman Aquascape Otomatis Berbasis," *Jurnal Ilmiah Komputer*, vol. XV, no. 2, pp. 83-87, 2019.
- [5] P. A. A. Syah, S. K. Salamah and E. Ihsanto, "Sistem Pemberi Pakan Otomatis, Ph Regulator Dan," *Jurnal Teknologi Elektro, Universitas Mercu Buana*, vol. XV, no. 3, pp. 194-200, 2019.
- [6] M. Syukur, A. G. Putrada and N. A. Suwastika, "Implementasi dan Analisis Pengurasan Otomatis Aquascape Berdasarkan Kualitas Air," *e-Proceeding of Engineering*, vol. XI, no. 1, pp. 1-8, 2019.

Form Kesediaan Membimbing Proyek Tingkat

PROYEK TINGKAT SEMESTER GANJIL|GENAP* TA 2020/2021

Tanggal	: 09 Desembe	r 2020
Kami yar	ng bertanda tar	gan dibawah in i:
CALON P	EMBIMBING 1	
Kode	: RMT	
Nama	: ROHMAT TU	JLLOH, S.T., M.T.
CALON P	EMBIMBING 2	
Kode	: IDI	
Nama	: Dr. INDRARI	NI DYAH IRAWATI, S.T., M.T
Menyatal	kan bersedia m	nenjadi dosen p embimbing Proyek Tingkat bagi mahasiswa berikut,
NIM		: 6705184071
Nama		: Muhammad Rifki Ikhwal
Prodi / Po	eminatan	: TT / (contoh: MI / SDV)
Calon Judul PA		: PERANCANGAN DAN IMPLEMENTASI SMART AQUARIUM FOR AQUASCAPER BERBASIS IOT

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Rohmat Tulldh, S.T., M.T.) NIP: 06830002 Calon Pembimbing 2

(Dr. Indrarini Dyah Irawati, S.T., M.T) NIP: 07780053

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk HPT / HASANAH PUTRI Bosen Wali : 6705184071 Program Studi : D3 Teknologi Telekomunikasi

Nama : MUHAMMAD RIFKI IKHWAL

2018/2019 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С	
DUH1A2	LITERASI TIK	ICT LITERACY	2	AB	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ	
	Jumlah SKS				
	IPS		2.88		

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	А	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	АВ	
	21				
	3.1				

1 of 4

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	С	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	АВ	
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	АВ	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	ВС	
	21				
	IPS	3.1			

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS		0		
	IPS		0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	АВ	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	АВ	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	В	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	АВ	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС	
	Jumlah SKS				
	IPS		3.26		

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN	PROFESSIONAL	2	А	

2 of 4 11/12/2020, 10:26

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	PROFESIONALISME	DEVELOPMENT			
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	Α	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	В	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	АВ	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ	
	Jumlah SKS				
	IPS		3.52		

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS		0		
	IPS		0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2		
UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2		
UWI3E1	HEI	HEI	1		
VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3		
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2		
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3		
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3		
	16				
	0				

2020/2021 - GENAP

3 of 4 11/12/2020, 10:26

Kode Mata K	uliah	Mata Kuliah	Nama Mata Kulia Inggris	h B.	SKS	Nilai	Status
Jumlah SKS					0		
		IPS			0		
Tingkat I	: 41 Sk	KS Belui	m Lulus	IPK : 2.99			
Tingkat II	: 81 Sk	KS Belui	m Lulus	IPK: 3.19			
Tingkat III	: 81 Sk	KS Belui	m Lulus	IPK: 3.19			
Jumlah SKS	: 81 Sk	(S		IPK: 3.19			

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 11 Desember 2020 10:26:03 oleh MUHAMMAD RIFKI IKHWAL

4 of 4 11/12/2020, 10:26