Singular Value Decomposition

- 1. Let $A \in \mathbb{C}^{n \times n}$ and $\sigma_1, \dots, \sigma_n$ be the singular values of A. Show that $|\det(A)| = \prod_{i=1}^n \sigma_i$.
- 2. Show that if $A \in \mathbb{C}^{n \times n}$ is positive semi-definite then its singular values are the same as its eigenvalues. What is the relationship between the eigenvectors and the singular vectors of A?
- 3. Let $A \in \mathbb{C}^{n \times n}$ be Hermitian. Show that the singular values of A are the absolute values of the eigenvalues of A. Let $A = UDU^*$ be a spectral decomposition of A, where U is unitary and $D := \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $|\lambda_1| \geq \dots \geq |\lambda_n|$. Show that $A = U|D|(U\operatorname{sign}(D))^*$ is a singular value decomposition of A, where |D| and $\operatorname{sign}(D)$ are diagonal matrices with diagonal entries $|\lambda_j|$ and $\operatorname{sign}(\lambda_j)$, respectively.
- 4. Find a 2-by-2 matrix A such that $\sigma_{\max}(A) > \max(|\lambda_1|, |\lambda_2|)$, where λ_1 and λ_2 are eigenvalues of A and $\sigma_{\max}(A)$ is the largest singular value of A.
- 5. Let $\in \mathbb{C}^{m \times n}$ be such that $\operatorname{rank}(A) = n$. Let $\sigma_{\min}(A)$ and $\sigma_{\max}(A)$ denote the smallest and the largest singular values of A, respectively. Then show that the following hold:

$$\begin{split} \|A^*A\|_2 &= \sigma_{\max}(A)^2, & \|(A^*A)^{-1}\|_2 = \sigma_{\min}(A)^{-2}, & \|(A^*A)^{-1}A^*\|_2 = \sigma_{\min}(A)^{-1}, \\ \|A(A^*A)^{-1}\|_2 &= \sigma_{\min}(A)^{-1}, & \|A(A^*A)^{-1}A^*\|_2 = 1. \end{split}$$

- 6. Let $\sigma_1 \geq \ldots \geq \sigma_r > 0$ be nonzero singular values of an m-by-n matrix A. Show that $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sigma_1^2 + \cdots + \sigma_r^2}$. Further, show that $||A||_F \leq \sqrt{\operatorname{rank}(A)} \, ||A||_2$.
- 7. Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$. Let $\sigma_1, \ldots, \sigma_n$ be singular values of A. Show that the singular values of $\begin{bmatrix} I_n \\ A \end{bmatrix}$ are equal to $\sqrt{1 + \sigma_j^2}$ for j = 1 : n.
- 8. Let $A \in \mathbb{C}^{n \times n}$ and $\sigma > 0$. Show that σ is a singular value of $A \iff \begin{bmatrix} A & -\sigma I_n \\ -\sigma I_n & A^* \end{bmatrix}$ is singular.
- 9. Let A = BC where $B \in \mathbb{C}^{m \times n}$ has $\operatorname{rank}(B) = n$ and $C \in \mathbb{C}^{n \times n}$ is nonsingular. Show that $A^+ = C^{-1}B^+$. Deduce that if $\operatorname{rank}(A) = n$ and A = QR is a compact QR factorization then $A^+ = R^{-1}Q^*$, where $Q \in \mathbb{C}^{m \times n}$ is an isometry and $R \in \mathbb{C}^{n \times n}$ is upper triangular.
- 10. Let $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$. Let $x \in \mathbb{C}^n$ be nonzero and set r := b Ax. Define $E := rx^+$. Show that (A + E)x = b and $||E||_2 = \frac{||r||_2}{||x||_2}$.

***********End*******