I - Étude de l'équilibre

I.A -

	$C_2H_4(g)$	+	$H_2O_{(g)}$	=	$C_2H_5OH_{(g)}$
$n_{initial}$	$n_{1,i} = 200$		$n_{2,i} = 200$		$n_{3,i} = 0$
n_{final}	$n_{1,f} = 200 - \xi_{eq}$		$n_{2,f} = 200 - \xi_{eq}$		$n_{3,f} = \xi_{eq}$

à $T_1 = 298 \, K$

A.N.
$$\Delta_r H^{\circ}(T_1) = -235.1 - 52.3 + 241.8 = -45.6 \, kJ \cdot mol^{-1}$$

A.N.
$$\Delta_r S^{\circ}(T_1) = 282.7 - 188.7 - 219.5 = -125.5 \ J \cdot K^{-1} \cdot mol^{-1}$$

A.N.
$$\Delta_r G^{\circ}(T_1) = -45.6 * 10^3 - 298 * (-125.5) = -8.20 \, kJ \cdot mol^{-1}$$

I.B -

- $ightharpoonup \sum_{i,gaz} \nu_i = -1 < 0$, donc selon la loi de modération de Le Chatelier, cet équilibre évolue dans le sans direct, qui diminue la quantité totale du gaz.
- ▶ Comme $\Delta_r H^{\circ}(T_1)$ < 0, c'est une réaction exothermique. Selon la loi de modération de Van't Hoff, une élévation de température provoque donc une évolution dans le sens indirect.

Donc pour la synthèse industrielle, on va introduire une pression élevé, mais un compromis pour la température entre la vitesse de réaction et de l'équilibre est nécessaire. On peut donc choissir une température de $300^{\circ}C$, qui n'est pas trop haute ni trop basse pour une réaction industrielle.

II - Évolution de l'équilibre et rendement

II.A -

Par l'approximation d'Ellingham, on a $\Delta_r G^{\circ}(T_2) = \Delta_r G^{\circ}(T_1) - (T_2 - T_1) * \Delta_r S^{\circ}$.

A.N.
$$\Delta_r G^{\circ}(T_2) = -8.2 * 10^3 - 275 * (-125.5) = 2.6 * 10^4 J \cdot mol^{-1}$$

On a donc
$$K^{\circ}(T_2) = \exp\left(-\frac{\Delta_r G^{\circ}(T_2)}{RT_2}\right) = \exp\left(-\left(\frac{2.6*10^4}{8.31*573}\right)\right) = 4.3*10^{-3}$$

Et on a
$$K^{\circ}(T_2) = Q_r = \frac{n_{C_2H_5OH}}{n_{C_2H_4}n_{H_2O}} \frac{nP^{\circ}}{P} = \frac{\xi_{eq}(400 - \xi_{eq})*1}{(200 - \xi_{eq})^2*70}.$$

Finalement, $\xi_{eq} = 24.2 \, mol$

II.B -

Si on ajoute 10,0 mol d'eau au mélange obtenu à l'équilibre, à pression et température constantes, seulement n_{H_2O} et n sont changé : $n'_{H_2O} = 210 - \xi_{eq}$, $n' = 410 - \xi_{eq}$.

On a donc
$$Q = \frac{24.2*(410-24.2)}{(200-24.2)(210-24.2)*70} = 4.1*10^{-3}$$

Comme Q diminue, alors $Q < K^{\circ}(T_2)$, il faut que la réaction évolue dans le sens direct

Et on a
$$\Delta_r G = \Delta_r G^{\circ}(T) + RT \ln(Q) = 2.6 * 10^4 + 8.314 * 573 * \ln(4.1 * 10^{-3}) = -186.2 \, J \cdot mol^{-1}$$

Car $\Delta_r G < 0$, on arrive à le même résultat : l'équilibre evolue dans le sens direct

II.C -

Si on veut augment η , on a besoin d'aumenter ξ_{eq} , c'est-à-dire l'évolution de cette réaction dans le sens direct, sans aumenter $n_{C_2H_4,i}$. Il faut que Q_r diminue. On peut donc

▶ Rajouter plus de $H_2O_{(q)}$: Par la dérivation logarithmique, on a

$$\frac{dQ_r}{Q_r} = \frac{dn}{n} - \frac{dn_{H_2O}}{n_{H_2O}} = dn_{H_2O} \left(1 - \frac{n}{n_{H_2O}} \right)$$

Comme $n_{H_2O} < n$, pour que $dQ_r < 0$, il faut $dn_{H_2O} > 0$

 \blacktriangleright Enlever C_2H_5OH formé : $n_{C_2H_5OH}$ et n sont tous diminue, Q_r diminue aussi.