Resumo de IA - pt IV

Busca e resolução de problemas

Resolução de problemas por meio de busca?

- Os agentes inteligentes devem maximizar sua medida de desempenho
- Agentes reativos em objetivos podem tomar suas decisões quando tem o objetivo bem definido
 - o Problema: longo prazo
- Existe um tipo de agente baseado em objetivos chamado agente de resolução de problemas,.
 - Utilizam representações atomicas (esatdos do mundo) para tentar encontrar uma solução

Resolução de problemas como busca num espaço de estados?

- Necessário formular obetivos com base na situação atual e em uma medida de desempenho do agente
- Formulação do problema -> processo de escolher, dado um objetivo, quais estados e quais ações devem ser considerados.
- Construir um sistema de resolução de problemas:
 - 1- Definir o problema em detalhes (incluindo os estados)
 - 2 Analisar o problema

- o 3 Identificar e representar o conhecimento especifico a tarefa para resolver o problema
- o 5 Aplicar tecnicas para resolução de problemas mais adequadas para o problema em particular.
- Exemplo (Jogo da velha):

Estado inicial

Um estado final que não é um estado-objetivo

0	X	<u>X</u>
X	0	0
x	0	X

Um estado final que também é um estado-objetivo

X	0	0
X	0	0
X	X	X

- •
- O objetivo é sempre chegar a um estado final que seja também um estado objetivo
- Representar a solução de problemas como um sequência de estados
 - · Leva do estado inicial até um estado final
 - o Cada estado é gerado pelo anterior por meio de uma ação
 - Troca de dados admissível
- •
- Para encontrar a solução de um problema, por meio de busca, é necessário a Descrição formal do problema:, de seguinte modo:
 - o Espaço de estados que contem todas as possíveis configurações das entidades relevantes
 - Especificar o conjunto de estados iniciais

- Especificar o conjunto de estados finais que são estados objetivos
- o Regras de ambiente e das ações

Busca

Busca?

- Técnica de exploração do espaço de estados que leve de um estado inicial a um estado objetivo
- Busca se da construindo(e podando) uma árvore de busca
 - Cada nó é um elemento do espaço de estados
 - Cada ramo contém uma sequência de estados
- Representa uma possível solução para o problema
- Se poder atingir o mesmo estado por caminhos diferentes, então a arvore é um grafo
- Mudanças de estados pode ser caracterizada pela aplicação de uma regra de produção
- Resolução de Problemas = descrição formal de problemas + uso de uma estratégia de controle da busca, que leve de um estado inicial a um estado-objetivo.
- A busca, é um mecanismo geral, um metodo fraco
 - Sem conhecimento envolvido
- Seu foco é:
 - Partindo de um estado inicial
 - Aplicar uma sequencia de operadores para
 - o construir um ramo que leve ao estado objetivo

- 2 tipos de busca que não são baseadas em conhecimento:
 - Largura
 - Profundidade

Busca em largura?

- Explora todos os nós do mesmo nível antes de ir para os níveis abaixo
 - Escolha um estado inicial
 - o Gere todos os seus descendentes e repita o processo para cada descendente
 - o Até que encontre um estado objetivo

•

0	X	x
0		X
		0

0	X	X
0	X	X
		0

0	X	X
0		X
X		0

0	X	X
0		X
	X	0

•

•

Busca em Profundidade?

- Algorítimo explora um ramo a partir do estado incial até um estado objetivo ou final
- Mecanismo de backtrack
 - Caso a exploração leve a um beco sem saída (estado que não é objetivo e nem final), ela retorna por meio de backtracking a um estado que permite a exploração de outro ramo da árvore que pode levar a um estado-objetivo.
- Executa as ações:
 - Escolha um estado inicial para ir até a raiz
 - Para cada nó:
 - Gere um descendente deste nó, aplicando somente uma das regras/
 - o Caso chegue a um beco sem saída
 - Backtrack

aigoritmo a partir dai.

A figura abaixo mostra um exemplo de exploração em profundidade de um conjunto de estados em um jogo da velha.

A figura abaixo mostra um exemplo do mecanismo de backtracking.

Vantagem em Busca em Largura?

- Se existe uma solução ela encontra tal solução
- Essa solução vai ser o mais curta possivel
- Não usa bracktrack

Desvantagem em Busca em Largura?

• Sempre vai construir a maior parte da arvore de busca

Vantagem em Busca em Profundidade?

- Muito menos memória
- Pode acontecer da solução ser encontrada muito rapida

Desvantagem em Busca em Profundidade?

- Usa bracktrack
- Perde longo tempo explorando um ramo profundo

Esse tipo de busca não tem nenhum conhecimento e o custo computacional é alto Porém sempre vai achar uma solução ótima