

Process-Aware Cyberatacks for Thermal Desalination Plants

ACM ASIACCS 2019

Prashant Rajput, Pankaj Rajput, Marios Sazos, Michail Maniatakos New York University

MSF Desalination Plant Attack Tree Experimental Setup Thank You Introduction Results Discussion

Attacks on Critical Infrastructures

- Stuxnet[1] [Process-Aware attack]
 - Infected Step 7 project files
 - Iran
 - 984 centrifuges
 - Reduced efficiency 30%
 - Indonesia, India, USA, etc
- Ukrainian Power Grid
- Shamoon malware[2] [IT attack]
 - Deleted files on Aramco computers
 - Overwrote master boot record \rightarrow machines unusable
 - 35,000 workstations
- Flame malware

Prashant Rajput

^[1] Falliere, Nicolas, Liam O. Murchu, and Eric Chien. "W32. stuxnet dossier." White paper, Symantec Corp., Security Response 5.6 (2011): 29. [2] Bronk, Christopher, and Eneken Tikk-Ringas. "The cyber attack on Saudi Aramco." Survival 55.2 (2013): 81-96.

Introduction MSF Desalination Plant Attack Tree Experimental Setup Results Thank You Discussion

Process-Aware Attacks

- Assumption: Adversary has prior knowledge
 - Control algorithm
 - Operational range
 - PID controllers, Actuators, Sensors, etc.
- Limitations
 - Cannot generalize to other plants
 - Requires prior knowledge
- Contributions

Prashant Rajput

- First cybersecurity study for desalination plants
- Performance & Mechanical damage analyzed
- Quantified mechanical damage

MSF Desalination Plant Attack Tree Experimental Setup Results Thank You Introduction Discussion

MSF Desalination Process...

- Heats up the recycle brine → Feed brine
- Uses input steam
- Feed brine is then sent to stages
- Same process continues again

Figure 1: A typical Multi-Stage Flash desalination process.

- Feed brine flows inside chambers \rightarrow looses heat
- Recycle brine absorbs latent heat of condensation \rightarrow produces distillate
- Distillate collected on distillate tray

- Input sea water absorbs latent heat of condensation \rightarrow increases temperature
- Mixed with feed brine
- Some part rejected as blow-down \rightarrow to control salinity
- Remaining is sent to next stage as recycle brine

MSF Desalination Plant Experimental Setup Introduction Attack Tree Results Discussion Thank You

Attack Tree

Prashant Rajput

Experimental Setup₁₈₁

- MATLAB Simulink model
- Khubar II MSF plant in Saudi Arabia
- 22 stages → 3 Heat Rejection Sections and 19 Heat Recovery Sections
- 11 sensors, 11 valves and 3 PI Controllers

Figure 3: A MSF desalination Schematic.

Control Loop Example

- Sensor 9 → feed brine temperature
- PI Controller 1 reads this
- Actuator 8 (valve) is opened/closed to maintain the temperature
- In our simulation feed brine temperature was maintained at 93 C

MSF Desalination Plant Attack Tree Experimental Setup Results Discussion Thank You Introduction

Impact of Performance Attacks

- Setpoint: $93C \rightarrow 90C$
- 1.07 ton/min ↓ distillate produced
- Loss of \$3 million

- I: $0.001 \rightarrow 1$
- 0.04 ton/min ↓ distillate produced
- Loss of \$130K

- '-': Financial loss vs. TPR

Figure 5: Change in distillate flow during attack to TPR.

- Sensor 9 measures initial brine temperature
- Temperature: 93C → 94C
- ↓ steam flow to 1000kg/min
- distillate production to 4.57 ton/min
- Remain undetected → spoof sensor data for fixed repeating intervals

Decrease in

Thermal Performance Ratio

Impact of Mechanical Failure Attacks

Increase in Occurrence of Water Hammer

Mechanical Attack Experimental Setup

Figure 8: Schematic of the pipeline with boundary conditions used for finite element analysis.

Inner radius	0.0134 m
Wall Thickness	0.0025 m
Pipe Length	2.5 m
Nodes	540, 883

MSF Desalination Plant Thank You Introduction Attack Tree Experimental Setup Results Discussion

Impact of Mechanical Failure Attacks

Increase in Occurrence of Water Hammer

330 320 von Mises Stress (MPa) 270 260 **FEA Results** 250 cyclic curve fit 240 Time (s)

Displacement (mm) **FEA Results** curve fit 2 Time (s)

Figure 10: Pressure surge in the pipe.

Pressure fluctuations just after water hammer

Maximum Pressure Increase → 5MPa

Figure 11: Von Mises Stress in the pipe.

- Maximum stress → 340MPa
- Yield Strength → 215 MPa

Figure 12: Displacement in the pipe.

- Displacement in the pipe as a result of stresses induced
- Maximum displacement 19.9 mm
- Adversary exploited access to actuators 1, 2, 4 and 10

10

9/28/2019

Prashant Rajput

MSF Desalination Plant Attack Tree Experimental Setup Results Thank You Introduction Discussion

Discussion

- Maximizing Impact
 - TPR: Actuator 8 vs. PI Controller 2
 - Actuator $8 \rightarrow$ steam inflow in the heater
- Remaining Within Operational Limit
 - Optimum product flow rate \rightarrow 19.3 ton/min, Variation \rightarrow 15 to 28 ton/min
- Future Work

Prashant Rajput

- Extend desalination simulation to include mechanical results
- Opensource

Thank You

