Computational challenges in genome wide association studies: data processing, variant annotation and epistasis

Pablo Cingolani

PhD.

School of Computer Science

McGill University Montreal, Quebec, Canada July 2015

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy

© Pablo Cingolani 2015

Chapter 1

Conclusions

1.1 Contributions

In this thesis I contributed to three steps involved in the analysis of human sequencing data and identifying the links between genetic variants and disease. Each step is characterized by very different types of problems:

i) The first step is to reduce large amounts of information generated by high throughput experiments into a manageable summary. In our case, it involves reducing the raw sequencing information to a variant call set, but it could be any other features to be analysed (RNA expression, transcript structure, enrichment peaks, genome reference assembly, etc.). This is mainly done by mapping reads to a reference genome and then using variant call algorithms. This step is characterized by requiring fast parallel algorithms and usually, due to the amount of data involved, I/O can be one of the bottlenecks. Algorithms that work on "chunks of data" instead of the whole dataset are preferred, and in many cases exist, because working on disjoint data makes the problem easier to parallelize. Usually several stages of these highly specialized algorithms are combined into a "data analysis pipeline". Programming data analysis pipelines is not trivial since it requires process coordination, robustness, scalability

and flexibility (data processing pipelines, particularly in research environments, tend to change often). Although data pipeline solutions are often available in the form of libraries, these libraries tend to make pipeline programming cumbersome or create new programming paradigms and thus introduce a steep learning curve. In Chapter ??, we address problems related to pipeline programming in a novel way by creating a new programming language, BDS, that simplifies the creation of robust, scalable and flexible data pipelines. Although the main rationale behind the development of BDS was managing our sequencing data pipelines, it is a flexible programming language that can be applied to many large data pipelines.

- ii) The second step in our data analysis consists of functional annotation, prioritization and filtering of genetic variants. The main concern in the annotation step is performing an adequate filtering of what should be considered relevant variants for our experiment. Until not long ago there were no publicly available packages for functional annotation of genomic variants, in chapter ?? we introduced SnpEff & SnpSift, two variant annotation solutions that quickly became widely adopted by the research community.
- iii) Finally, in Chapter ??, we analyse the problem of finding genetic links to complex disease. This is known to be a difficult problem affected by several hidden co-factors that bias the results (e.g. population structure). Furthermore there are limitations, evidenced by missing heritability, implying that genomic links to complex disease may not be found using traditional GWAS methodologies. We show that alternative models that combine higher level information, may help to boost statistical significance.
 - iii.a) We proposed a new methodology for addressing a difficult problem: the detection of interacting genomic loci (epistasis) that affect disease risk. Our models combine genotype information and co-evolutionary evidence. We show that efficient algorithms make these studies computationally feasible, albeit using relatively large

computational resources.

iii.b) We were involved in a major project on GWAS of type II diabetes using a cohort of multi-ethnic unrelated individuals which uncovered new genes linked to diabetes. We applied our epistatic GWAS models to data form this type II diabetes sequencing study of over 13,000 individuals finding suggestive evidence of interaction.

These three chapters (three steps) complete our journey from "raw data" to "biological insight" trying to find the genetic causes of complex disease.

1.2 Future work

Here we propose several improvements, extensions and future directions of work for each of the topics discussed in this thesis.

BigDataScript We are adding native support for new clusters and frameworks, such as LSF [5], Mesos [4], Kubertes [3] as well as a "Generic cluster" API which allows the user to customize BigDataScript for any cluster or framework by encapsulating task management via user defined scripts. On the language specification side, we are exploring ways to add functional constructs such as map, apply, filter as well as support for map/reduce and scatter/gather which are convenient ways to define some problems in data pipeline programming. Finally we, will incorporate user-defined data structures or a basic class mechanism (BDS currently supports maps and list).

Variant annotations In an effort coordinated with the developers of other annotations tools (such as ANNOVAR [12], ENSEMBLs Variant effect predictor -VEP- [9], JAnnovar [6], etc.) we are creating new annotation standard for VCF files. We are actively collaborating with the "Global Alliance for Genomics and Health" (GA4GH) to create a new variant

annotation specification & API definitions. We plan to extend SnpEff's variant annotation capabilities to *haplotype-based* annotations, which means taking into account phasing information to calculate compound variant effects (e.g. phased SNPs affecting the same codon or compensating frame shifts within the same DNA strand). Finally, we are using information-theoretic analysis of splice sites from several species in order to improve splicing effect predictions.

GWAS Epistasis As future work, we'd like to evaluate the possibility of incorporating contextual information, such as protein domain, in order to build more specific coevolutionary models. Other improvements include further optimization of logistic regression and Bayes factor algorithms since any improvement greatly reduces computational times. We also plan to use our methods on even larger type II diabetes cohorts that are currently being sequenced. Finally, we are evaluating the possibility of incorporating higher order interactions by clustering genes from our variant-pairs analysis and then evaluate them in a joint analysis.

1.3 Perspectives

Genomic research for complex disease is trending towards larger and larger cohorts in order to improve statistical power. Some years ago, projects involving hundreds to a thousand individuals were common. To put this in perspective, that is the population of a village, or a small town. Nowadays, projects like the those lead by the T2D consortia sequence in the order of 20,000 people (i.e. the population of a large town). Projects are being drafted for sequencing over 100,000 individuals [10] (i.e. the population of a small city) and some institutions are foreseeing sequencing up to 1,000,000 samples per year within the next few years [11].

As a rule of the thumb, sequence data of a single whole genome requires ~ 800 CPU hours of primary processing (i.e. read mapping and variant calling). For an institution

planning to process 1,000,000 genomes per year will require $\sim 800,000,000$ CPU hours just for primary processing. In order to keep up with sequencing, data analysis should be also performed within the same time-frame, thus requiring $\sim 92,000$ CPUs processing data continuously (an over optimistic estimate that assumes no hardware failures, no software failures and no programmed outages). Having tens to hundreds of thousands of CPUs constantly analysing data in production environments poses infrastructures challenges. Most academic environments currently use their own infrastructure (local clusters), an approach that may not be easy to scale further. For this reason a shift towards a cloud infrastructure is already being considered by some leading institutions (personal communications).

We developed BDS to help processing both the large datasets currently available, and also huge datasets that experts consider likely to become available in the near future. Even though BDS can currently handle typical analyses involving tens of thousands of CPUs, further scaling to hundreds of thousands or even millions of CPUs would require additional abstraction levels. Most notably, the current processing model assumes the existence of a file system which is used for retrieving input files, storing output results and and logging process status. We anticipate that this model can break down on cloud based pipelines running over hundreds of thousands of CPUs. Typically cloud based environments use the concept of object storage (also called buckets) instead of file systems. We think that the two models (file system and object storage) can be abstracted away in a new unified model enabling the user write even more portable pipelines and letting BDS take care of transparently transferring data to and from the object storage system. This approach has the benefit of also enabling users to transparently add data locality optimizations by moving the processes close to the data instead of the traditional approach of moving the data to the process, with various degrees of data locality optimizations ranging from multi-datacenter processing to rack-aware file systems.

The quest for ever bigger sample sizes shows how elusive the genetic causes of complex diseases are. It might be true that huge sample sizes are needed to uncover risk loci, but

perhaps one of the reasons why traditional GWAS studies are have not found as many associations as expected is that we they are looking at the wrong place by not routinely taking into account other types of disease variants (e.g. InDels or CNVs) or models for interacting variants (epistasis).

In the context of large cohort studies, variant annotation improvements would greatly benefit the outcome. Compared to the previous problem of processing large datasets, variant annotation is challenging not because of the computational challenges but rather due to restricted biological knowledge. Advanced variant effects models could be developed with help of systematic studies. For instance, a systematic analysis of loss of function and nonsense mediated decay variants would entail creating all possible stop gained mutations in one or more genes and analysing the protein output in each case (obviously this is an ambitious and challenging project, but so were other projects like 1KG [1], GTeX [8] and ENCODE [2], just to mention a few). Lower impact variants, such as non-synonymous variants, pose even further challenges since there is no consensus on how to measure partial protein gain or loss of function (e.g. in a protein affected by a non-synonymous variant, interaction efficiency with protein X is degraded by 50% whereas interaction with protein Y is improved 20%). Such analyses, which are beyond the current state of technology, could only be feasible by supporting long term technology development projects.

Finally, we should keep in mind that the ultimate goal of complex trait research is to have an impact on human health. This implies that research results should be readily available for translational medicine to effectively use of them. Scientific journals date from 1665 [7] and understandably has some shortcomings in the era of translational medicine. An enormous effort is required to read papers, curate them, and translate their results into meaningful coherent data. In the private sector, companies that embark on this costly curation process regard the resulting curated databases as a competitive advantage and are unwilling to share them, creating the well known silo effect which leads to several fragmented isolated curation projects with various degrees of success and different qualities. On the other hand, there are

few incentives in academic environments to create curated databases or to maintain them after the paper is published and the students leave their labs, resulting on a plethora of outdated databases with different curation standards. A refreshing approach adopted by the ClinGen project attempts to create long term, well curated, high quality, clinically relevant database/s. Obviously it would be better to have researchers contribute directly to these efforts thus significantly reducing the curation burden, but currently there are no incentives for researchers to do so. If we want to make more effective use of research results in clinical environments, research agencies should incentivize (or even require) investigators to publish genomic results in ClinGen and other similar systematic long term efforts that might appear in the future.

References

- [1] 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human genomes. *Nature*, 491(7422):56–65, 2012.
- [2] ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human genome. *Nature*, 489(7414):57–74, 2012.
- [3] Google. Kubernetes: Manage a cluster of linux containers as a single system to accelerate dev and simplify ops. Web page, July 2015. http://kubernetes.io.
- [4] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing in the data center. In *NSDI*, volume 11, pages 22–22, 2011.
- [5] IBM. Lsf: Ibm platform computing. Web page, July 2015. http://www-03.ibm.com/systems/platformcomputing/products/lsf.
- [6] Marten Jäger, Kai Wang, Sebastian Bauer, Damian Smedley, Peter Krawitz, and Peter N Robinson. Jannovar: a java library for exome annotation. *Human mutation*, 35(5):548–555, 2014.
- [7] David A Kronick et al. history of scientific and technical periodicals. 1962.
- [8] John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, et al. The genotypetissue expression (gtex) project. *Nature genetics*, 45(6):580–585, 2013.

- [9] William McLaren, Bethan Pritchard, Daniel Rios, Yuan Chen, Paul Flicek, and Fiona Cunningham. Deriving the consequences of genomic variants with the ensembl api and snp effect predictor. *Bioinformatics*, 26(16):2069–2070, 2010.
- [10] Antonio Regalado. British government picks illumina to sequence 100,000 genomes. PressRelease, July 2014. http://www.technologyreview.com/news/528946/british-government-picks-illumina-to-sequence-100000-genomes.
- [11] Antonio Regalado. U.s. to develop dna study of one million people. PressRelease, January 2015. http://www.technologyreview.com/news/534591/us-to-develop-dna-study-of-one-million-people.
- [12] K. Wang, M. Li, and H. Hakonarson. Annovar: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic acids research*, 38(16):e164–e164, 2010.