Evaluations for Examples

Kristyn Pantoja

9/29/2019

1 Dimension

Example 1

Example 2

Example 2.1 (Better than Example 2)

Example 3

Example 4

Example 4.1

Example 5

Summary

- In these slides, I look at different pairs of sharp hypotheses for generating MED, and how they evaluate based on
 - E[P(H₁|Y, D)|β_T]
 MSE(β_n|Y, D, H₁, β_T)
- And we try to find an example where the quadratic D-Optimal design isn't best for the $E[P(H_1|Y,D)|\beta_T]$ evaluations. (Example 4.1, but also 1 & 5)
- ▶ This time, $\beta_T \sim N(\mu_1, V_1)$ (whereas last time, $\beta_T = \mu_1$)
- Things to consider:
 - For posterior evaluations, when $\beta_T = \mu_T$, it might not make sense to compare the D-optimal designs
 - We want to pay attention to cases of $\beta_T \neq \mu_T$ where D-optimal designs are expected to do worse than MEDs
 - ► And find cases where space-filling design does worse than MEDs

Observations from Last Time (Example 1: Estimating Linear Term's Coefficient)

In last slides, we saw what happens when $\beta_T = \mu_T$.

- ▶ In Example 1, where the MED concentrates at -1 and 1, we saw that:
 - for the linear term's coefficient, $MSE(\beta_{n,1}|Y,D,H_1,\beta_T)$ was smaller (i.e. better) for the MED than for space-filling design, but
 - for the intercept and quadratic term's coefficients, $MSE(\beta_{n,0}|Y,D,H_1,\beta_T)$ and $MSE(\beta_{n,2}|Y,D,H_1,\beta_T)$ were larger (i.e. worse) for MED compared to the space-filling design except at smaller values of the prior variance on β .
 - ▶ This makes me think that, like the linear D-optimal design suggests, concentrating at -1 and 1 is best for estimating the linear term however, it is not best for estimating the intercept and quadratic term.

Observations from Last Time (Example 2: Estimating Intercept and Quadratic Term's Coefficient)

- ► In Example 2, where MED concentrates at -1, 1, and 0 (but mostly at 0), we saw that:
 - ▶ For $E[P(H_1|Y,D)|\beta_T]$, MED seems to be a compromise between the quadratic D-optimal design and the space-filling design (yay!)
 - For $MSE(\beta_n|Y, D, H_1, \beta_T)$,
 - ► $MSE(\beta_{n,0}|Y,D,H_1,\beta_T)$: MED is better than space-filling design
 - ► $MSE(\beta_{n,1}|Y,D,H_1,\beta_T)$: MED, surprisingly, is worse than space-filling design (perhaps it focuses too much in the middle than at the edges)
 - ▶ $MSE(\beta_{n,2}|Y,D,H_1,\beta_T)$: MED and space-filling are comparable. . MED with $\alpha=1$ does better than space-filling design, but MED with $\alpha=2p$ does worse than space-filling design

Observations from Last Time (Example 3: Estimating Intercept well)

- ▶ In Example 3, MEDs concentrate at 0
 - For $E[P(H_1|Y,D)|\beta_T]$, the space-filling design does worse than the MED with $\alpha=1$, but a lot better than the MED $\alpha=2p$, which was disturbing.
 - ▶ For $MSE(\beta_n|Y, D, H_1, \beta_T)$,
 - ► $MSE(\beta_{n,0}|Y,D,H_1,\beta_T)$: As expected, given what we saw in Example 2, MEDs did better than the space-filling design, since they concentrate more points at 0
 - ► For $MSE(\beta_{n,1}|Y, D, H_1, \beta_T)$ and $MSE(\beta_{n,2}|Y, D, H_1, \beta_T)$, though, MED did worse than the space-filling design.

Why look at different BetaT

▶ $MSE(\beta_n|Y,D,H_1,\beta_T)$ evaluations: we want to show examples where the D-optimal design doesn't do well. Since D-optimal designs specify a general model, it seems that it would require specific models to show that it's not "optimal" in certain senses.

1 Dimension

Non-MED Designs

Example 1

Example 1 Parameters

- ► The idea here is a model with no assumptions about the value for the quadratic term. The result is a more spread-out version of the linear D-optimal design.
- ► Idea: Should we instead apply this to model comparison with no assumptions about the value for the linear term? i.e.

```
\mu_0 = (0) and \mu_1 = (0,0)?
```

In any case. . .

```
# Priors
sigmasq01 = 0.01
mu0 = c(0,1)
V0 = diag(rep(sigmasq01,length(mu0)))
mu1 = c(0,1,0)
V1 = diag(rep(sigmasq01,length(mu1)))
sigmasq = 1
betaT = c(-5, 1, 5)
```

Example 1 Plots

Example 1 MEDs

► The original MED (with $\alpha=1$) has a more space-filling tendency than the adjusted MED (with no power on $f_D(\cdot, \cdot) = \text{Wasserstein}(\cdot, \cdot)$, i.e. $\alpha=2p$).

Example 1, Different BetaT

Now we generate different values of $\beta_T \sim N((0,1,0)^T, V_1)$ using sigmasq01 = 0.25. (should sigmasq01 be larger for more variety?)

MSEs, BT = mu1

MSEs, BT(1)

betaTs[,1]

MSEs, BT(2)

betaTs[,2]

MSEs, BT(3)

betaTs[,3]

MSEs, BT(4)

betaTs[,4]

Example 1 E[P(H1|Y,D, betaT=mu1)]

Example 1 E[P(H1|Y,D, betaT)]

Example 2

Example 2 Parameters

```
# Priors
sigmasq01 = 0.01
mu0 = c(0, 0)
V0 = diag(rep(sigmasq01,length(mu0)))
mu1 = c(-0.2, 0, 0.4)
V1 = diag(rep(sigmasq01,length(mu1)))
sigmasq = 1
betaT = mu1
```

Example 2 Plots

0.5

1.0

Example 2 MEDs

Example 2, Different BetaT

Now we generate different values of $\beta_T \sim N((-0.2, 0, 0.4)^T, V_1)$ using sigmasq01 = 0.25

MSEs, BT = mu1

MSEs, BT(1)

betaTs[,1]

MSEs, BT(2)

betaTs[,2]

MSEs, BT(3)

betaTs[,3]

MSEs, BT(4)

betaTs[,4]

Example 2 E[P(H1|Y,D, betaT=mu1)]

Example 2 E[P(H1|Y,D)]

Example 2.1 (Better than Example 2)

Example 2.1 Parameters

```
# Priors
sigmasq01 = 0.01
mu0 = c(0, 0)
V0 = diag(rep(sigmasq01,length(mu0)))
mu1 = c(-0.2, 0, 0.5)
V1 = diag(rep(sigmasq01,length(mu1)))
sigmasq = 1
betaT = mu1
```

Example 2.1 Plots

Example 2.1 MEDs

Example 2.1, Different BetaT

Now we generate different values of $\beta_T \sim N((-0.2, 0, 0.5)^T, V_1)$ using sigmasq01 = 0.25

MSEs, BT = mu1

MSEs, BT(1)

betaTs[,1]

MSEs, BT(2)

betaTs[,2]

MSEs, BT(3)

betaTs[,3]

MSEs, BT(4)

betaTs[,4]

Example 2.1 E[P(H1|Y,D, betaT=mu1)]

Example 2.1 E[P(H1|Y,D)]

Example 3

Example 3 Parameters

```
# Priors
sigmasq01 = 0.01
mu0 = c(0, 0, 0)
V0 = diag(rep(sigmasq01,length(mu0)))
mu1 = c(2, 0, -1, 0, -1)
V1 = diag(rep(sigmasq01,length(mu1)))
sigmasq = 1
betaT = mu1
```

Example 3 Plots

Example 3 MEDs

Example 3, Different BetaT

Now we generate different values of $\beta_T \sim N((0,1,0)^T, V_1)$ using sigmasq01 = 0.25

MSEs, BT = mu1

MSEs, BT(1)

betaTs[,1]

MSEs, BT(2)

betaTs[,2]

MSEs, BT(3)

betaTs[,3]

MSEs, BT(4)

betaTs[,4]

Example 3 E[P(H1|Y,D, betaT=mu1)]

Example 3 E[P(H1|Y,D)]

Example 4

Example 4 Parameters

```
# Priors
sigmasq01 = 0.01
mu0 = c(1, 1)
V0 = diag(rep(sigmasq01,length(mu0)))
mu1 = c(1, 0, -1)
V1 = diag(rep(sigmasq01,length(mu1)))
sigmasq = 1
betaT = mu1
```

Example 4 Plots

Example 4 MEDs

Example 4, Different BetaT

MSEs, BT = mu1

MSEs, BT(1)

betaTs[,1]

MSEs, BT(2)

betaTs[,2]

MSEs, BT(3)

betaTs[,3]

MSEs, BT(4)

betaTs[,4]

Example 4 E[P(H1|Y,D, betaT=mu1)]

Example 4 E[P(H1|Y,D)]

Example 4.1

Example 4.1 Parameters

```
# Priors
sigmasq01 = 0.01
mu0 = c(0.2, 0.2)
V0 = diag(rep(sigmasq01,length(mu0)))
mu1 = c(0.2, 0, -0.2)
V1 = diag(rep(sigmasq01,length(mu1)))
sigmasq = 1
betaT = mu1
```

Example 4.1 Plots

Example 4.1 MEDs

Example 4.1, Different BetaT

MSEs, BT = mu1

MSEs, BT(1)

betaTs[,1]

MSEs, BT(2)

betaTs[,2]

MSEs, BT(3)

betaTs[,3]

MSEs, BT(4)

betaTs[,4]

Example 4.1 E[P(H1|Y,D, betaT=mu1)]

Example 4.1 E[P(H1|Y,D)]

Example 5

Example 5 Parameters

```
# Priors
sigmasq01 = 0.01
mu0 = c(0, 0)
V0 = diag(rep(sigmasq01,length(mu0)))
mu1 = c(0, 0.2)
V1 = diag(rep(sigmasq01,length(mu1)))
sigmasq = 1
betaT = mu1
```

Example 5 Plots

Example 5 MEDs

Example 5, Different BetaT

MSEs, BT = mu1

MSEs, BT(1)

betaTs[,1]

BT1=(-0.28,0.085), MSE(B0) 0.013 MED a2p MED_a1 sp fill DOpt1 MSE(B0) DOpt2 0.011 0.009 0.0 0.2 0.4 0.6 0.8 1.0 sigmasq01

MSEs, BT(2)

betaTs[,2]

BT1=(0.779,0.235), MSE(B0) 0.07 MED a2p MED_a1 sp fill 0.05 DOpt1 MSE(B0) DOpt2 0.03 0.01 0.0 0.2 0.4 0.6 0.8 1.0

sigmasq01

MSEs, BT(3)

betaTs[,3]

BT1=(0.065,1.058), MSE(B0) MED_32P MED_31 Sp_fill DOpt1 DOpt1 DOpt2

MSEs, BT(4)

betaTs[,4]

BT1=(0.23,-0.433), MSE(B0) MED a2p MED a1 0.012 sp fill DOpt1 MSE(B0) DOpt2 0.010 0.008 0.0 0.2 0.4 0.6 0.8 1.0

sigmasq01

sigmasq01

Example 5 E[P(H1|Y,D, betaT=mu1)]

Example 5 E[P(H1|Y,D)]

