More problems on relations

Definition:

A relation from the set A to B is any subset of the Cartesian product $A \times B$.

- If R is a relation from set A to set B and (x, y) is an element of R, we say x is related to y by R (notation: x R y).
- A relation from a set S to itself is called a **relation on** S.

Definition:

A relation R on a set S may have any of the following special properties:

- 1. If for each $x \in S$, x R x is true, then R is called **reflexive**.
- 2. If x R y is true implies y R x is true, then R is called **symmetric**.
- 3. If y R x and x R y are true implies x = y, then R is called **antisymmetric.**
- 4. If x R y and y R z are both true implies x R z is true, then R is called **transitive**.

Examples:

- 1. Suppose $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$ is a relation on $S = \{1, 2, 3\}$. Does this relation satisfy the reflexive, symmetric, antisymmetric, and transitive properties? Why or why not?
- 2. Suppose $R = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$ is a relation on $S = \{1,2,3,4\}$. Does this relation satisfy the reflexive, symmetric, antisymmetric, and transitive properties? Why or why not?
- 3. Suppose $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (3, 1)\}$ is a relation on $S = \{1, 2, 3\}$. Does this relation satisfy the reflexive, symmetric, antisymmetric, and transitive properties? Why or why not?
- 4. Let S be the set of nonempty subsets of $\{1, 2, 3\}$. Define a relation R on S by A R B if $A \subseteq B$. Does this relation satisfy the reflexive, symmetric, antisymmetric, and transitive properties?

5. Let S be the set of nonempty subsets of $\{1,2,3\}$. Define a relation R on S by A R B if $B \subseteq A$. Does this relation satisfy the reflexive, symmetric, antisymmetric, and transitive properties?