Diesel fuel

Patent number:

DE3140382

Publication date:

1983-04-21

Inventor:

BRUDERRECK HARTMUT DIPL CHEM D (DE); DEININGER GUENTER DIPL PHYS DR (DE);

GOTTLIEB KLAUS DIPL PHYS DR (DE);

HASELHORST MANFRED DIPL CHEM D (DE); PREUSS AUGUST-WILHELM DIPL CHE (DE); WEHMEIER FRIEDEL-HEINRICH DIPL (DE)

Applicant:

VEBA OEL AG (DE)

Ciassification:

- international:

(IPC1-7): C10L1/08; C10L1/18

- european:

C10L1/02D

Application number: DE19813140382 19811010
Priority number(s): DE19813140382 19811010

Also published as:

EP0077027 (A2) JP58074789 (A) F1823426 (A) ES8307886 (A) EP0077027 (A3)

more >>

Report a data error here

Abstract not available for DE3140382 Abstract of corresponding document: **EP0077027**

1. Diesel fuel composed of hydrocarbons and optionally containing alcohols, characterized in that it contains one or more ethers of the general formula R1 -O-C(CH3)2 -R2, wherein R1 and R2 are amethyl, ethyl, 1-propyl, 2-propyl, 1-butyl or 2-butyl group.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK ® Offenlegungsschrift _® DE 3140382 A1

6) Int. Cl. 3: C 10 L 1/08

C 10 L 1/18

DEUTSCHLAND

DEUTSCHES

PATENTAMT

Aktenzeichen:

Anmeldetag:

Offenlegungstag:

P 31 40 382.4-44 10. 10. 81 21. 4.83

(1) Anmelder:

Veba Oel AG, 4660 Gelsenkirchen-Buer, DE

(12) Erfinder:

Bruderreck, Hartmut, Dipl.-Chem. Dr., 4660 Gelsenkirchen-Buer, DE; Deininger, Günter, Dipl.-Phys. Dr., 4270 Dorsten, DE; Gottlieb, Klaus, Dipl.-Phys. Dr., 5804 Herdecke, DE; Haselhorst, Manfred, Dipl.-Chem. Dr.; Preuss, August-Wilhelm, Dipl.-Chem. Dr., 4270 Dorsten, DE; Wehmeier, Friedel-Heinrich, Dipl.-Chem. Dr., 4250 Bottrop, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

M Dieselkraftstoff

Dieselkraftstoff enthält einen oder mehrere Äther der allgemeinen Formel R_1 -O-C(CH_3)₂- R_2 , wobei R_1 und R_2 jeweils aliphatische Kohlenwasserstoffreste mlt 1-4 Kohlenstoffatomen, R2 auch Wasserstoff bedeutet. Der Zusatz beträgt atomen, H₂ auch wasserston bedeutet. Der Zusatz betragt insbesondere 2–50 Vol.%, vorzugsweise 5–25 Vol.% zweier oder mehrerer folgender Äther: Methyl-tert.-butyläther, Methyl-tert.-amyläther, isopropyl-tert.-butyläther, sec.-Butyl-tert.-Butyl-äther, Methyl-tert.-2,3-dimethylbutyläther und Methyl-tert.-2-methylpentyläther. Der Dieselkraftstoff kann nurätzlich 2–40 Vol. 20 vorzugsweise 5–25 Vol. 20 vol. zusätzlich 2-40 Vol.%, vorzugsweise 5-25 Vol.% an Alkoholen mit 1-4 Kohlenstoffatomen im Molekül enthalten.

(31 40 382)

Patentansprüche

- 1. Gegebenenfalls Alkohole enthaltender Dieselkraftstoff, dadurch gekennzeichnet, daß er einen oder mehrere Ather der allgemeinen Formel R_1 -O-C(CH₃)₂- R_2 enthält, wobei R_1 und R_2 jeweils einen Methyl-, Athyl-, 1-Propyl-, 2-Propyl-, 1-Butyl- oder 2-Butylrest, R_2 auch Wasserstoff bedeutet.
- Dieselkraftstoff nach Anspruch 1, dadurch gekennzeichnet,
 daß er 2 50 Vol.% eines Zusatzes enthält, der aus

10

15

30

- 0 90 Vol.% Methyl-tert.-butyläther
- 0 90 Vol.% Methyl-tert.-amyläther
- 0 90 Vol.% Isopropyl-tert.-butyläther
- 0 90 Vol.% sec.-Butyl-tert.-Butyläther
- 0 90 Vol.% Methyl-tert.-2,3-dimethylbutyläther
- 0 90 Vol.% Methyl-tert.-2-methylpentyläther

besteht.

- 20 3. Dieselkraftstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß er 5 bis 25 Vol.% des Äthergemisches enthält.
- Dieselkraftstoff nach einem der Ansprüche 1 bis 3,
 dadurch gekennzeichnet, daß der Zusatz zu 5 bis 50 Vol.%
 aus Methyl-tert.-butyläther besteht.
 - 5. Dieselkraftstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Zusatz zu 5 bis 50 Vol.% aus Methyl-tert.-amyläther besteht.
 - 6. Dieselkraftstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Zusatz zu 5 bis 50 Vol.% aus Isopropyl-tert.-butyläther besteht.

- 20
- 7. Dieselkraftstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Zusatz zu 5 bis 50 Vol.% aus sec.-Butyl-tert.-butyläther besteht.
- 5 8. Dieselkraftstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Zusatz zu 5 bis 50 Vol.% aus Methyl-tert.-2,3-dimethylbutyläther besteht.
- 9. Dieselkraftstoff nach einem der Ansprüche 1 bis 8, dadurch 10 gekennzeichnet, daß der Zusatz zu 5 bis 50 Vol.% aus Methyl-tert.-2-methylpentyläther besteht.
 - 10. Dieselkraftstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Zusatz Methyl-tert.-butyläther,
- 15 Isopropyl-tert.-butyläther und sec.-Butyl-tert.-butyläther etwa im Volumenverhältnis 1 : 1 : 1 enthält.
- 11. Dieselkraftstoff nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß er 2 bis 40 Vol.% an Alkoholen
 20 mit 1 bis 4 Kohlenstoffatomen im Molekül enthält.
 - 12. Dieselkraftstoff nach Anspruch 11, dadurch gekennzeichnet, daß er 5 bis 25 Vol. an Alkohol enthält.

VEBA OEL AKTIENGESELLSCHAFT

Dieselkraftstoff

Zur Verminderung der Rauch- bzw. Rußbildung in Dieselmotoren ist es bekannt, dem Dieselkraftstoff Äther, insbesondere in Mischung mit Salzen organischer Säuren von Metallen der II. Hauptgruppe des Periodensystems, insbesondere des Bariums zuzusetzen. Als Äther werden vor allem Mono- und Di-Alkyläther von Glykolen, insbesondere Mono- und Dimethyläther von Äthylenglykol vorgeschlagen. Diese Zusätze haben den Nachteil, daß ihre Herstellung sehr aufwendig und ihre Wirkungsweise als rußminderndes und abgasrezudierendes

10 Additiv nur gering ist. Zudem ist die Belastung der Umwelt durch die Emission von Cadmium, Barium, Strontium zu befürchten.

Weiterhin ist es bekannt, Dieselmotoren mit Mischungen von
Alkoholen und Äthern zu betreiben. Als Alkohole werden
Methanol, Äthanol, n-Propanol und n-Butanol vorgeschlagen;
bevorzugt werden Mischungen von Dimethyläther und Methanol.
Bei diesen Gemischen hat es sich als notwendig erwiesen, die
beiden Bestandteile dem Zylinder getrennt zuzuführen, z. B.

20 über die Ansaugluft und durch die üblichen Einspritzpumpen.
Zudem ist der Heizwert bezogen auf die Grundkomponente Dieselkraftstoff um mehr als die Hälfte geringer und die solchen
Mischungen eigene Cetanzahl als Maß für die Zündwilligkeit
stark vermindert, wenn nicht unzureichend für den runden Lauf
eines handelsüblichen Dieselmotors.

Die vorliegende Erfindung vermeidet die Schwierigkeiten und Nachteile der bekannten, Äther enthaltenden Dieselkraftstoffe und zeichnet sich durch ein gegenüber üblichen Dieselkraftstoffen verbessertes Verbrennungsverhalten und damit eine erhöhte Nutzleistung und einen verringerten Schadstoffausstoß der damit betriebenen Motore aus.

Erreicht werden diese und weitere, sich aus der folgenden Beschreibung ergebende Vorteile erfindungsgemäß durch den Zusatz eines oder mehrerer Äther der allgemeinen Formel $R_1-O-C(CH_3)_2-R_2$ zum Dieselkraftstoff, wobei R_1 und R_2 jeweils einen Methyl-, Ethyl-, n-Propyl-, 2-Propyl-, 1-Butyloder 2-Butylrest, R_2 auch Wasserstoff bedeuten. R_1 und R_2 können gleich oder verschieden sein. Besonders brauchbar sind Methyl-tert.-butyläther (2-Methoxy-2-methylpropan), Methyl-tert.-amyläther (2-Methoxy-2-methylbutan), Isopropyltert.-butyläther (2-(2'-Propoxy)-2-methylpropan), sec.-Butyl-tert.-butyläther (2-(2'-Butoxy)-2-methylpropan), Methyl-tert.-2,3-dimethylbutyläther (2-Methoxy-2,3-dimethylbutan) und Methyl-tert.-2-methylpentyläther (2-Methoxy-2methylpentan). Bevorzugt werden Athergemische, die bis zu 90 Vol.% eines der genannten Äther enthalten. Insbesondere beträgt der Gehalt des Zusatzes an Methyl-tert.-butyläther 5 - 50 Vol.%, an Methyl-tert.-amylather 5 - 50 Vol.%, an Isopropyl-tert.-butyläther 5 - 50 Vol.%, an sec.-Butyltert.-butyläther 5 - 50 Vol.%, an Methyl-tert.-2,3-dimethylbutylather 5 - 50 Vol.% und an Methyl-tert.-2-methylpentyläther 5 - 50 Vol.%.

Es ist zwar bekannt, vorstehend genannte Äther, insbesondere Methyl-tert.-butyläther Vergaserkraftstoffen zuzusetzen. Hieraus konnte jedoch nicht auf die Eignung der Äther als Zusatzstoffe für Dieselkraftstoffe geschlossen werden. Zum einen ist die Klopffestigkeit des Kraftstoffes bei Dieselmotoren nicht wesentlich; zum anderen ist ein bestimmtes Selbstzündungsvermögen und eine gewisse Verdampfungsgeschwindigkeit bei guten Lösungseigenschaften für Dieselkraftstoff notwendig.

Die günstigen Wirkungen treten bereits bei relativ geringen Zusatzmengen von 2, vorzugsweise 5 Vol. des Äthergemisches zu Dieselkraftstoff auf. Die erfindungsgemäß dem Dieselkraftstoff zuzufügenden Äther können durch einfache Verfahren aus den bei der Erdölgewinnung und -verarbeitung anfallenden,

unter Normalbedingungen gasförmigen oder leicht flüchtigen Kohlenwasserstoffen hergestellt und in großen Mengen zur Verfügung gestellt werden. Es ist daher durchaus möglich, Dieselkraftstoff mit den erfindungsgemäßen Zusätzen herzustellen, der bis zu 40, vorzugsweise bis zu 25 Vol.% aus dem Äthergemisch besteht.

Ublicher Dieselkraftstoff enthält Cycloparaffine und mehrkernige Aromaten, die bei der Verbrennung zur Bildung von Rußpartikeln neigen. Die Einhaltung einer vorgeschriebenen Rauchbildungszahl (Rußzahl, Smoke-unit) erfordert gegenüber dem stöchiometrischen Verhältnis Kraftstoff/Luft einen Luftüberschuß und vermindert damit die maximal freisetzbare Energie pro verbrauchter Masse Dieselkraftstoff. Durch den erfindungsgemäßen Ätherzusatz wird die Rußbildungszahl stark erniedrigt, wodurch die Herabsetzung des Luftüberschusses möglich ist. Dies führt zu einer Erhöhung des Wirkungsgrades und damit der Nutzleistung des Motors durch höheren Mitteldruck. Zugleich wird die absolute Abgasmenge 20 verringert und der Schadstoffausstoß, insbesondere die NO,-Emission reduziert. Außerdem zeichnet sich der in verringerter Konzentration emittierte Ruß dadurch aus, daß die extrahlerbaren karzinogenen Anteile polyzyklischer Aromaten ganz wesentlich vermindert sind.

25

Da die als Zusatzstoffe eingesetzten Äther praktisch schwefelfrei sind, verringert sich der absolute Schwefelgehalt im Dieselkraftstoff. Die geringere Rauchneigung und der kleinere SO₂-Gehalt bewirken eine geringere Motorölverschmutzung und damit eine längere Standzeit des Motoröls.

Die erfindungsgemäß dem Dieselkraftstoff zugesetzten Äthergemische können weiterhin als Lösungsvermittler für Alkohole, insbesondere Methanol und Äthanol dienen. Sie ermöglichen es, Alkohole mit 1 bis 4 Kohlenstoffatomen, z. B. Methanol,

Kthanol, Isopropanol, Butanol, sec.-Butanol und tert.-Butanol einzeln oder in Mischung, sogar mit geringen Wassergehalten, dem Dieselkraftstoff zuzusetzen, wobei die Alkoholgehalte des Kraftstoffes 2 bis 40, vorzugsweise 5 bis 25 Vol.% betragen. Hierdurch lassen sich z. B. aus Biomasse gewonnene Alkohole in größeren Mengen als Dieselölzusätze nutzen.

Beim "usatz von Alkoholen neben den erfindungsgemäßen Äthern 10 ist darauf zu achten, daß der Gehalt des Kraftstoffes an Kohlenwasserstoffen mindestens 40, vorzugsweise mehr als 50 Vol.% beträgt.

Es ist zwar bekannt, Dieselkraftstoffen Alkohole unter Verwendung von Lösungsvermittlern zuzumischen. Die bisher hierfür vorgeschlagenen Lösungsvermittler werden jedoch durch
ein aufwendiges Verfahren hergestellt und sind daher nicht
ohne weiteres in den benötigten größeren Mengen verfügbar.
Auch fehlt den bisher als Lösungsvermittler in Betracht gezogenen Substanzen die Eigenschaft, das Verbrennungsverhalten
von Dieselkraftstoffen günstig zu beeinflussen, wie dies bei
den erfindungsgemäßen Äthern der Fall ist.

25

Beispiele

Als Mischungskomponente für die Herstellung der erfindungs-30 gemäßen Kraftstoffe und als Basis für die Vergleichsversuche wurde ein handelsüblicher Dieselkraftstoff mit den in Tabelle 1 aufgeführten Eigenschaften verwendet.

Tabelle 1

Dichte	0,830 g/ml
Flammpunkt	80 °C
Viskosität	$4,46 \text{ mm}^2/\text{s}$
Schwefel	0,23 Gew.%
Heizwert	42,9 MJ/kg
Siedebeginn - Siedeende	199 °C - 353 °C
Destillationsrückstand	1,5 Vol.%
Cetanzahl	56,5

Aus der Grundkomponente und Äther- bzw. Alkoholzusätzen wurden durch Mischung die in Tabelle 2 aufgeführten acht erfindungsgemäßen Dieselkraftstoffe hergestellt, die die dort angegebenen Eigenschaften aufweisen.

Tabelle 2

Bsp.	Kraftstoffzusammensetzung Vol.Z	Dichte g/m1	Schwefel Gew.Z	Viskosität mm²/sec.	Heizwert H MJ/kg	Cetanzahl
1.	50 DK + 50 B	0,793	0,12	1,53	39,87	40*
2	43 DK + 32 B ₁ + 29 M	0,798	0,10	1,69	35,24	·
3	50 DK + 25 B ₁ + 25 E	0,804	0,12	2,05	37,19	45*
4.	90 DK + 10 B ₁	0,821	0,21	3,43	42,46	49,5
5	78,5 DK + 16,5 B ₁ + 5 M	0,815	0,18	2,70	40,91°	41,0
6	81 DK + 14 B ₁ + 5 E	0,817	0,19	2,94	41,11	42,0
7	50 DK + 50 B ₂	0,778	0,11	1,78	40,43	45*
8	90 DK + 10 B ₂	0,822	0,21	3,50	42,38	49,5
		·	9		-	

Hierbei bedeuten:

DK: Grundkomponente gemäß Tabelle 1,

B₁: Gemisch aus 90 Vol.% Methyl-tert.-butyläther, Isopropyl-tert.-butyläther, sec.-Butyl-tert.-butyläther (im Volumen-Verhältnis

1:1:1) und 10 Vol.% Methanol, Isopropanol, sec.-Butanol (im Volumen-Verhältnis 1:1:1),

B₂: sec.-Butyl-tert.-butyläther,

M: Methanol,

5 E: Ethanol

10

* Bei der Bestimmung der Cetanzahl wurde den Kraftstoffen gemäß Beispiel 1, 3 und 7 als Zündbeschleuniger 0,5, 3,5 bzw. 2,0 Gew.% (bezogen auf den Kraftstoff) Di-sec.-butyl-para-phenyldiamin zugesetzt.

Die Vergleichsversuche der erfindungsgemäßen Dieselkraftstoffe mit handelsüblichem Kraftstoff wurden mit handelsüblichen Dieselmotoren (Daimler Benz Typ 240 D und VW Typ Golf D) vorgenommen. Zur Vergleichbarkeit der Meßergebnisse

wurde die Leistung bei festen Drehzahlen (4400 bzw. 4800 min⁻¹) bei Verwendung der verschiedenen Mischungen so eingestellt, daß die mit dem Grund-Dieselkraftstoff erzielte Leistung erreicht wurde.

Die Bosch-Zahl (BZ) als Maß der Abgasschwärze und der spezifische Energieverbrauch wurden mit einem Daimler-Benz-Motor Typ 240 D bei 4400 min und einer Leistung von 47,3 kW bestimmt. In Tabelle 3 sind Bosch-Zahl und spezifischer Energieverbrauch des Grund-Dieselkraftstoffes (0) und der Mischungen nach Beispiel 1 bis 8 zusammengestellt.

Tabelle 3

Bsp.	BZ	spezifischer Energieverbrauch MJ/kWh
0	2,1	15,98
1 .	1,2	16,00
2	0,8	15,06
3	0,8	15,22
4	1,3	15,73
5	1,4	15,80
6	1,1	15,30
7	0,9	15,54
8	1,4	15,88

Aus Tabelle 3 wird ersichtlich, daß Verbesserungen der Bosch-Zahl als Maß für die Rußbildung bis zu 62 % gegenüber konventionellem Dieselkraftstoff erzielt werden. Bereits Mischungen, deren Gehalt an den erfindungsgemäßen Komponenten nur 10 Vol.% beträgt, weisen Bosch-Zahlen auf, die bis zu 38 % vermindert sind.

Außerdem zeigt sich, daß der spezifische Energieverbrauch trotz geringerer Heizwerte der erfindungsgemäßen Mischungen 10 ebenso gut oder in den meisten Fällen niedriger ist als bei Verwendung des Grund-Dieselkraftstoffes.

Die NO_X-Werte im Abgas wurden mit einem handelsüblichen VW-Motor Typ Golf D bei einer Leistung von 31,4 kW bei 4800 min⁻¹ ermittelt. Die Ergebnisse sind in Tabelle 4 dargestellt.

Tabelle 4

35

20	Kraftstoff	NO _x (ppm)
•	0	500
	1	370*
	2	440*
25	3	430*
	4	470
	5	410
	6	450
	7	380
30	8	500

^{*} Die Mischungen gemäß Beispiel 1, 2 und 3 enthielten als Zündbeschleuniger 1,0, 2,5 bzw. 1,5 Vol.% (bezogen auf den gesamten Kraftstoff) Di-sec.-butyl-para-phenyldiamin.

Aus Tabelle 4 ist zu entnehmen, daß die erfindungsgemäßen Dieselkraftstoffe im Abgas zu einer Verminderung der Stick-oxid-Konzentration bis zu 26 % (bezogen auf handelsüblichen Dieselkraftstoff) führen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.