TEORIA KATEGORII

SERIA 3: (KO)GRANICE

Problem 1. W kategorii Set rozważmy dowolne przekształcenie $f:A\to B$ oraz zanurzenie $i_U:w:U\subseteq B$. Opisać pullback przekształceń f i i.

Problem 2. Pokazać, że strzałka $m: X \to Y$ jest mono wtedy i tylko wtedy, gdy X wraz z parą $id: X \to X, id: X \to X$ jest pullbackiem pary $m: X \to Y, m: X \to Y$. Wywnioskować, że funktor $\mathsf{C}(A,-)$ zachowuje monomorfizmy.

Problem 3. Pokazać, że w dowolnej kategorii dla pullbacku $A' \stackrel{m'}{\leftarrow} M' \to M$ morfizmów $A' \stackrel{f}{\rightarrow} A \stackrel{m}{\leftarrow} M$, jeśli m jest mono, to m' też jest mono.

Problem 4. Pokazać, że jeśli C jest kategorią w której istnieją skończone granice oraz $F: \mathsf{C} \to \mathsf{C}$ jest funktorem to kategoria $\mathsf{Alg}(F)$ ma wszystkie skończone granice.

Problem 5. Pokazać, że jeśli kategoria C ma skończone produkty i pullbacki, to ma ekwalizatory.

Problem 6. Zdualizować definicję pullbacku (nazywając go pushoutem). Opisać pushouty w Set. Pokazać konstrukcję pushoutów za pomocą koproduktów i koekwalizatorów.

Problem 7. Podać definicję kostożka i kogranicy nad diagramem $D: J \to \mathsf{K}$. Pokazać, że kategoria K ma wszystkie skończone kogranice wtedy i tylko, gdy ma wszystkie skończone koprodukty i koekwalizatory (bez używania zasady dualności).

Problem 8. Pokazać, że $C(-,A):C^{op}\to Set$ przekształca koekwalizatory w C na ekwalizatory i obiekt początkowy na obiekt końcowy.

13 listopada 2020