Deep Learning for Natural Language Processing

Yufeng Ma

CS 6604 - Digital Libraries

Virginia Polytechnic Institute and State University, Blacksburg, VA

Professor Edward Fox

March 21, 2017

Overview

- What's Deep Learning?
- Neural Networks Recap
 - Demystifying Neural Networks
 - Forward/Backward Propagation
 - Gradient Descent & Chain Rule
- 3 Lego Blocks for Building NLP Deep Nets
 - Word Embedding word2vec
 - Recurrent Neural Network LSTM & Bidirectional
 - Recursive Neural Network
 - Convolutional Neural Network
- Advanced Models
 - Attention Model
 - Seq2seq/End-to-end Learning

Overview

- What's Deep Learning?
- Neural Networks Recap
 - Demystifying Neural Networks
 - Forward/Backward Propagation
 - Gradient Descent & Chain Rule
- 3 Lego Blocks for Building NLP Deep Nets
 - Word Embedding word2vec
 - Recurrent Neural Network LSTM & Bidirectional
 - Recursive Neural Network
 - Convolutional Neural Network
- Advanced Models
 - Attention Model
 - Seq2seq/End-to-end Learning

What's Deep Learning?

What's Deep Learning?

Neural nets try to mimic how humans process information.

Deep vs. Traditional Machine Learning

Deep vs. Traditional Machine Learning

Representation Learning \Longrightarrow Classifier Training

1. Hierarchical Compositionality

- Cascade of non-linear transformations
- Multiple layers of representations

1. Hierarchical Compositionality

- Cascade of non-linear transformations
- Multiple layers of representations

2. Distributed Representations

- No single neuron "encodes" everything
- Groups of neurons work together

1. Hierarchical Compositionality

- Cascade of non-linear transformations
- Multiple layers of representations

2. Distributed Representations

- No single neuron "encodes" everything
- Groups of neurons work together

3. End-to-end Learning

- Learning (goal-driven) representations
- Feature extraction learning

Overview

- What's Deep Learning?
- Neural Networks Recap
 - Demystifying Neural Networks
 - Forward/Backward Propagation
 - Gradient Descent & Chain Rule
- 3 Lego Blocks for Building NLP Deep Nets
 - Word Embedding word2vec
 - Recurrent Neural Network LSTM & Bidirectional
 - Recursive Neural Network
 - Convolutional Neural Network
- Advanced Models
 - Attention Model
 - Seq2seq/End-to-end Learning

Logistic Regression

Logistic Regression

$$x = [x_1, x_2, x_3]$$

$$h_{w,b}(x) = \sigma(w^T x + b)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression

 $x = [x_1, x_2, x_3]$ $h_{w,b}(x) = \sigma(w^T x + b)$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

Neural Networks

Logistic Regression

Neural Networks

$$x = [x_1, x_2, x_3]$$

$$h_{w,b}(x) = \sigma(w^T x + b)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$x = [x_1, x_2, x_3]$$

$$z = W^T x + B$$

$$a = \sigma(z)$$

$$= [\sigma(z_1), \sigma(z_2), \sigma(z_3)]$$

Logistic Regression

Neural Networks

$$x = [x_1, x_2, x_3]$$

$$h_{w,b}(x) = \sigma(w^T x + b)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$x = [x_1, x_2, x_3]$$

$$z = W^T x + B$$

$$a = \sigma(z)$$

$$= [\sigma(z_1), \sigma(z_2), \sigma(z_3)]$$

Multiple Logistic Regressions

Forward/Backward Propagation

Forward/Backward Propagation

Given input, compute output:

Forward/Backward Propagation

Given input, compute output:

Given ground truth, backpropagate feedbacks:

Loss function - measure of error

$$L(w) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)}|x^{(i)}; w), \text{ Cross Entropy}$$

Loss function - measure of error

$$L(w) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)}|x^{(i)}; w), \text{ Cross Entropy}$$

Optimization strategy

Schematic of gradient descent.

Loss function - measure of error

$$L(w) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)}|x^{(i)}; w), \text{ Cross Entropy}$$

Optimization strategy

Schematic of gradient descent.

$$w = w - \eta \cdot \frac{dL}{dw}, \ \eta$$
 - step size

How to get the gradients of all the parameters?

How to get the gradients of all the parameters?

How to get the gradients of all the parameters?

Given y(x) and $\frac{dL}{dy}$, what is $\frac{dL}{dx}$?

How to get the gradients of all the parameters?

Given y(x) and $\frac{dL}{dy}$, what is $\frac{dL}{dx}$? $\Longrightarrow \frac{dL}{dx} = \frac{dL}{dy} \cdot \frac{dy}{dx}$

Overview

- What's Deep Learning?
- Neural Networks Recap
 - Demystifying Neural Networks
 - Forward/Backward Propagation
 - Gradient Descent & Chain Rule
- 3 Lego Blocks for Building NLP Deep Nets
 - Word Embedding word2vec
 - Recurrent Neural Network LSTM & Bidirectional
 - Recursive Neural Network
 - Convolutional Neural Network
- Advanced Models
 - Attention Model
 - Seq2seq/End-to-end Learning

"You shall know a word by the company it keeps." (J. R. Firth 1957:11)

"You shall know a word by the company it keeps." (J. R. Firth 1957:11)

Example sentence: "A cat catches a mouse."

"You shall know a word by the company it keeps." (J. R. Firth 1957:11)

Example sentence: "A cat catches a mouse."

Continuous Bag-of-word (CBOW)

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv, 2013

Recurrent Neural Network

$$egin{aligned} \mathbf{a}^t &= \mathbf{W}_{\mathbf{x}}^T \mathbf{x}^t + \mathbf{W}_{\mathbf{h}}^T \mathbf{h}^{t-1} \\ \mathbf{h}^t &= \mathbf{\theta}(\mathbf{a}^t) \\ \mathbf{\theta} &: \sigma, \mathsf{tanh}, \mathsf{ReLU}, \dots \end{aligned}$$

I come from China, I speak fluent

I come from China, I speak fluent **Chinese**.

I come from China, I speak fluent Chinese.

I grew up in China

I come from China, I speak fluent **Chinese**.

I grew up in China I speak fluent

I come from China, I speak fluent **Chinese**.

I grew up in China I speak fluent Chinese.

$$m_{t} = \sigma_{1}(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma_{2}(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$o_{t} = \sigma_{3}(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$\begin{split} m_t &= \sigma_1(W_f \cdot [h_{t-1}, x_t] + b_f) \\ i_t &= \sigma_2(W_i \cdot [h_{t-1}, x_t] + b_i) \\ o_t &= \sigma_3(W_o \cdot [h_{t-1}, x_t] + b_o) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \end{split}$$

$$m_t = \sigma_1(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma_2(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$o_t = \sigma_3(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = m_t \odot C_{t-1} + i_t \odot \tilde{C}_t$$

$$\begin{split} m_t &= \sigma_1(W_f \cdot [h_{t-1}, x_t] + b_f) \\ i_t &= \sigma_2(W_i \cdot [h_{t-1}, x_t] + b_i) \\ o_t &= \sigma_3(W_o \cdot [h_{t-1}, x_t] + b_o) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \\ C_t &= m_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &= o_t \odot \tanh(C_t) \end{split}$$

$$\begin{split} m_t &= \sigma_1 (W_f \cdot [h_{t-1}, x_t] + b_f) \\ i_t &= \sigma_2 (W_i \cdot [h_{t-1}, x_t] + b_i) \\ o_t &= \sigma_3 (W_o \cdot [h_{t-1}, x_t] + b_o) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \\ C_t &= m_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &= o_t \odot \tanh(C_t) \end{split}$$

Ideas behind LSTM

- The cell states on top memorizes long term information
- ullet Update strengths are controlled by gates, i.e., σ function

Bidirectional RNN

Bidirectional RNN

The semantics at some step not only depends on previous words, but also future ones.

Bidirectional RNN

The semantics at some step not only depends on previous words, but also future ones.

Overview

- What's Deep Learning?
- Neural Networks Recap
 - Demystifying Neural Networks
 - Forward/Backward Propagation
 - Gradient Descent & Chain Rule
- 3 Lego Blocks for Building NLP Deep Nets
 - Word Embedding word2vec
 - Recurrent Neural Network LSTM & Bidirectional
 - Recursive Neural Network
 - Convolutional Neural Network
- Advanced Models
 - Attention Model
 - Seq2seq/End-to-end Learning

Tokens are composed based on output of dependency parser.

Tokens are composed based on output of dependency parser.

Tokens are composed based on output of dependency parser.

$$p = anh(W \left[egin{array}{c} c_1 \ c_2 \end{array}
ight] + b)$$
 $s = U^T p$

Tokens are composed based on output of dependency parser.

$$p = anh(W \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b)$$

 $s = U^T p$

Training objective:

$$s(x_i, y_i) = \sum s$$
 $W, U = arg \max \sum_i s(x_i, y_i)$

Fixed W and U at all nodes

Socher, et al. "Learning continuous phrase representations and syntactic parsing with recursive neural networks." NIPS, 2010.

Overview

- What's Deep Learning?
- Neural Networks Recap
 - Demystifying Neural Networks
 - Forward/Backward Propagation
 - Gradient Descent & Chain Rule
- 3 Lego Blocks for Building NLP Deep Nets
 - Word Embedding word2vec
 - Recurrent Neural Network LSTM & Bidirectional
 - Recursive Neural Network
 - Convolutional Neural Network
- Advanced Models
 - Attention Model
 - Seq2seq/End-to-end Learning

Mathematical Definition

$$(I * K)(\mu) = \int I(t) \cdot K(\mu - t) dt$$

$$(I * K)(\mu) = \sum I(t) \cdot K(\mu - t)$$

Mathematical Definition

$$(I * K)(\mu) = \int I(t) \cdot K(\mu - t) dt$$

$$(I*K)(\mu) = \sum I(t) \cdot K(\mu - t)$$

Mathematical Definition

$$(I * K)(\mu) = \int I(t) \cdot K(\mu - t) dt$$

$$(I * K)(\mu) = \sum I(t) \cdot K(\mu - t)$$

Motivations

Motivations

• Convolution with different size learns n-grams.

Motivations

- Convolution with different size learns n-grams.
- Max-pooling learns the most salient features (phrases).

Kim, Yoon. "Convolutional neural networks for sentence classification." EMNLP, 2014

Overview

- What's Deep Learning?
- 2 Neural Networks Recap
 - Demystifying Neural Networks
 - Forward/Backward Propagation
 - Gradient Descent & Chain Rule
- 3 Lego Blocks for Building NLP Deep Nets
 - Word Embedding word2vec
 - Recurrent Neural Network LSTM & Bidirectional
 - Recursive Neural Network
 - Convolutional Neural Network
- Advanced Models
 - Attention Model
 - Seq2seq/End-to-end Learning

Words at different steps should have different effects.

Words at different steps should have different effects.

Words at different steps should have different effects.

$$h_c = [h_1, \dots, h_7], S = \tanh(Wh_c)$$

 $\alpha = \operatorname{softmax}(w^T S), h = \sum_{i=1}^7 \alpha_i h_i$

Suppose we want to do machine translation.

Suppose we want to do machine translation.

$$\mathsf{E.g.,}\; (x_1,x_2,\ldots,x_4) \longrightarrow (y_1,y_2\ldots,y_4)$$

Suppose we want to do machine translation.

E.g.,
$$(x_1, x_2, \ldots, x_4) \longrightarrow (y_1, y_2, \ldots, y_4)$$

Sutskever, Ilya, et al. "Sequence to sequence learning with neural networks." NIPS, 2014

Questions

Questions?

Activity - Get familiar with neural networks

Activity - Get familiar with neural networks

Go to http://playground.tensorflow.org

- Select dataset and split them into training and test;
- Choose input features you want to feed into the network;
- Determine number of layers and neurons in each layer;
- Tune hyperparameter:
 - Learning rate start with intermediate ones like 0.03;
 - Nonlinear activation function ReLU is recommended;
 - Regularization: L1 or L2 norm, and its strength rate;
- Start training and see how your model fits the data;

Activity - Get familiar with neural networks

