IV.4. REPREZENTAREA INTERNĂ A NUMERELOR

IV.4.1. SCRIEREA POZIŢIONALĂ

Scrierea pozițională

- Este tot o reprezentare!
 - 72018 nu este un număr, ci reprezentarea unui număr
- Inventată de arabi/indieni
 - Scrierea romană nu permite algoritmi eficienți de calcul
- Factor implicit ataşat fiecărei poziții din reprezentare
- Esențială în arhitectura calculatoarelor
 - Exemplu: sumatorul serial din sumatoare complete

Baze de numerație

- Orice număr natural d>1
 - Cu un singur simbol nu se pot folosi factori impliciți, ci juxtapunere + numărare
- Mulțimea cifrelor în baza d: {0,1,...,d-1}
- Calculatorul lucrează în baza d=2
 - Estimări analitice și probabiliste: bazele în care se pot face cel mai rapid calcule sunt 2 și 3
 - Tehnic: 2 cifre cel mai ușor de realizat
 - Teoretic: baza 2 se poate "scufunda" în logica booleană
 - ca simboli şi ca operaţii

Limite

Dacă s-ar reprezenta numerele în baza 2 fără semn (pozitive), atunci:

- Numărul maxim reprezentabil pe un octet ar fi $255 = 2^8-1$
- Numărul maxim reprezentabil pe doi octeți ar fi $65535 = 2^{16}-1$
- Numărul maxim reprezentabil pe patru octeți ar fi $4294967295 = 2^{32}-1$

Scrierea pozițională

• Baza d, $d \in N^* - \{1\}$:

pentru
$$a_i \in \{0,1,...,d-1\}, i=-m,...,n-1$$

$$\pm (a_{n-1}a_{n-2}....a_1a_0,a_{-1}....a_{-m})_{(d)} =$$

$$\pm \sum_{i=-m}^{n-1} (a_i \times d^i)_{(10)}$$

- a_i = valoarea celei de-a i+1^a cifre de la stânga virgulei » i=0..n-1
- a_{-j} = valoarea celei de-a j^a cifre de la dreapta virgulei (j>0) » j=1..m
- di este factorul implicit pentru poziția i
 - Se ridică la puterea i
 - d⁺¹ pentru partea întreagă
 - d⁻¹ pentru partea fracționară

Baza d \rightarrow baza 10

- Formula de mai sus este şi formula trecerii din baza d în baza 10
- Partea întreagă de n-1 cifre
- Partea fracționară de m cifre

Un exemplu

• FA2,B₍₁₆₎=
$$15\times16^{2}+10\times16^{1}+2\times16^{0}+11\times16^{-1}$$

$$=3840+60+2+11/16=$$

$$4002,6875_{(10)}$$

Baza 10 → baza d

• $813,65_{(10)} = 1100101101,10(1001)_{(2)}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. U <i>j</i>	·	(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/	813 / 2 = 406 + 1 / 2		$1 (LSB_i)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	406 / 2 = 203 + 0 / 2		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>>	203 / 2 = 101 + 1 / 2		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	101/2 = 50 + 1/2		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	50/2 = 25 + 0/2		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	25/2 = 12 + 1/2		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	12/2 = 6+0/2		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	6/2 = 3 + 0/2		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	3/2 = 1 + 1/2		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	1/2 = 0 + 1/2		$1 (MSB_i)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	$0,65 / 2^{-1} = 1 + 0,3$		$1 (MSB_f)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>>	$0.3 / 2^{-1} = 0 + 0.6$		0
$0.4 / 2^{-1} = 0 + 0.8 $ $0.8 / 2^{-1} = 1 + 0.6 $ 1 (LSF)	>>	$0.6 / 2^{-1} = 1 + 0.2$		1
$0.8 / 2^{-1} = 1 + 0.6$ 1 (LSF)	>>	$0.2 / 2^{-1} = 0 + 0.4$		0
,	>>	$0.4 / 2^{-1} = 0 + 0.8$		0
» (perioadă)	>>>	,		$1 (LSB_f)$
" ···· (periousu)	>>	(perioadă)		· · ·

Aproximarea reprezentării

- Dacă numărul are mai multe cifre la partea fracționară decât admite codificarea, atunci există o aproximare
 - de cel mult 2^{-k}, dacă m=k
 - dacă există la partea întreagă mai multe cifre decât se pot reprezenta, atunci se produce depăşire

Conversii între baze care sunt puteri ale aceluiași număr

```
• d_1 = 8 = 2^3; d_2 = 16 = 2^4

• 703,102_{(8)} =

= 111\ 000\ 011, 001\ 000\ 010_{(2)} =

= 0001\ 1100\ 0011, 0010\ 0001\ 0000_{(2)} =

= 1C3,21_{(16)}
```

IV.4.2. REPREZENTĂRILE BCD ŞI ÎN EXCES

- Coduri poziționale
 - Sisteme de numerație bazate pe scrierea pozițională
 - de exemplu, codul BCD
- Coduri non-poziționale
 - De exemplu, codul Excess-k
 - \gg k=3 etc.
 - \rightarrow in general, k=2p-1
- Pentru aplicații tip business, numerele se pot reprezenta ca șiruri de cifre în baza 10, fiecare cifră fiind reprezentată pe 4 biți
 - BCD, Excess

Codurile BCD și Excess-3

 Zecimal 	BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
•••	•••	•••
7	0111	1010
8	1000	1011
9	1001	1100

• $1413_{(10)} = 0001\ 0100\ 0001\ 0011_{(BCD)}$

Adunarea BCD

$$5 = 0101 +$$
 $3 = 0011$
 $8 = 1000$
 $13(10) = 1101$
 $8(10) = 1000 = 8_{(BCD)}$
 $3 = 0011$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$
 $4 = 1000$

 Problemele apar atunci când suma cifrelor depăşeşte 9

Adunarea BCD

Soluție: se adună 6 (0110) atunci când suma depăşeşte 9.

Temă: De ce?

$$5 = 0101 +$$
 $9 = 1001 +$
 $8 = 1000$
 $7 = 0111$
 1101
 $16_{(10)} = 10000$
 $(2) \neq 16_{(BCD)}$
 $6 = 0110 +$
 $10011 = 13_{(BCD)}$
 $10110 = 16_{(BCD)}$

Sumator BCD

Se adună 0110 la sumă dacă ea depăşeşte 1001 (11XX sau 1X1X)

IV.4.3.

Reprezentarea numerelor întregi:

aritmetica în virgulă fixă

- Omogenitate
 - Nu se reprezintă semne speciale ("+", "-", ".", ",")
- Semnul este dat de un bit
 - nu de codificarea pe mai mulți biți a unui caracter special (+ sau -)
 - 0 pentru plus
 - 1 pentru minus
 - excepție: reprezentarea "cu exces"
- Pentru virgulă se știe **poziția**
 - dar nu se reprezintă caracterul
 - aceeași poziție a virgulei pentru toate numerele: **virgulă fixă** ("aritmetică întreagă")
 - poziție diferită de la număr la număr: **virgulă mobilă** ("aritmetică flotantă")
- Esențial pentru portabilitate: standardizarea aritmeticii (atât întreagă, cât și flotantă)
 - În toate implementările
 - » Funcțiile elementare definite și calculate la fel
 - » Cazurile de excepție tratate la fel

Codificări în virgulă fixă

- $d = 2 \rightarrow a_i \in B = \{0,1\}$
- Obiectiv: eficiența calculului
- Codificare / decodificare facilă (omogenitate)
- Algoritmi eficienți
 - În particular, un singur algoritm pentru adunare și scădere
- Codificările în virgulă fixă se fac pe **n+m** biți
 - m ≥0; m=0 numere întregi
 - $n \ge 1$; n = 1 numere subunitare
- Codificări în virgulă fixă
 - Cantitate și semn
 - Complement față de 1
 - » în general, față de cifra maximă
 - Complement față de 2
 - » în general, față de bază

Codificări redundante

- Reprezentarea numerelor pozitive coincide la cele trei codificări.
- O codificare se numeşte *redundantă* dacă există numere care au două reprezentări diferite.
- În codificările în virgulă fixă folosite, singurul număr ce poate avea două reprezentări este 0.

IV.4.4.

- A+S
- $Val_{A+S}^{n,m} (a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_m) =$

$$\begin{cases} a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}, & \text{dacă } a_{n-1} = 0 \\ - (a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}), & \text{dacă } a_{n-1} = 1 \end{cases}$$

- Coincide cu scrierea în baza 2
 - dar semnul este un bit și virgula implicită

- Pe n+m biți există 2^{n+m} reprezentări diferite (șiruri diferite de biți)
- Ele corespund la 2^{n+m} -1 numere diferite
 - Redundantă, căci $0 = \text{val}_{A+S}^{n,m} (00...0) = \text{val}_{A+S}^{n,m} (10...0)$
- Cel mai mic număr reprezentabil este $\min_{A+S}^{n,m} = \operatorname{val}_{A+S}^{n,m} (11...1) = -(2^{n-1}-2^{-m})$
- Cel mai mare număr reprezentabil este $\operatorname{Max}_{A+S}^{n,m} = \operatorname{val}_{A+S}^{n,m} (01...1) = 2^{n-1} 2^{-m}$
- Intervalul pe care se află numerele reprezentabile este [- (2ⁿ⁻¹-2^{-m}); + (2ⁿ⁻¹-2^{-m})]

- Numerele reprezentabile **exact** sunt cele începând cu min = $-(2^{n-1}-2^{-m})$, cu pasul 2^{-m}
- Celelalte numere din interval se reprezintă aproximativ, cu eroare de cel mult 2^{-m}
- Precizia reprezentării este 2^{-m}
 - pentru numere întregi, precizia este 1
- Pentru n+m fixat
 - creșterea magnitudinii duce la aproximare mai slabă
 - precizie mai bună duce la magnitudine scăzută

Exemple

- $Val_{A+S}^{8,0}(00110011) = 51$ $00110011 \rightarrow +(2^0 + 2^1 + 2^4 + 2^5) = 51$
- $Val_{A+S}^{6,2}(00110011) = 12,75 = 51:2^2$ $00110011 \rightarrow +(2^{-2}+2^{-1}+2^2+2^3) = 12,75$
- $Val_{A+S}^{4,4}(00110011) = 3,1875 = 51:2^4$ $00110011 \rightarrow +(2^{-4}+2^{-3}+2^0+2^1) = 3,1875$

Exemple

- $Val_{A+S}^{8,0} (10110011) = -51$ $10110011 \rightarrow -(2^0 + 2^1 + 2^4 + 2^5) = -51$
- $\min_{A+S} {}^{8,0} = \operatorname{val}_{A+S} {}^{8,0} (1111111111) = -(2^7-2^0) = -(128-1) = -127$
- $\max_{A+S} {}^{8,0} = \operatorname{val}_{A+S} {}^{8,0}(0111111111) = 2^7 2^0 = 128 1 = 127$
- $[-127; 127] \rightarrow 255$ numere, din 1 în 1
- $Val_{A+S}^{4,4}(10110011) = -3,1875$ $10110011 \rightarrow -(2^{-4} + 2^{-3} + 2^0 + 2^1) = -3,1875$
- $\max_{A+S} {}^{4,4} = \operatorname{val}_{A+S} {}^{4,4}(0111111111) = 2^3 2^{-4} = 8 0,0625 = 7,9375$
- $[-7,9375; 7,9375] \rightarrow 255$ numere din 0,0625 în 0,0625

Operații A+S

- Algoritmi de complexitate relativ mare
 - Adunare / scădere
 - Stabilirea semnului rezultatului (comparație lexicografică)
 - Implementarea algoritmilor uzuali de adunare / scădere manuală
 - Incluzând "împrumuturi" etc.
 - Înmulțirea / împărțirea analog celor manuale

- Complement față de 1: C₁
- $Val_{C1}^{n,m} (a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_{-m}) =$ $\begin{cases} a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}, & \text{dacă } a_{n-1} = 0 \\ \\ (a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}) (2^{n-1} 2^{-m}), & \text{dacă } a_{n-1} = 1 \end{cases}$
- Temă: negativ pentru $a_{n-1}=1$
 - Deci a_{n-1} reprezintă semnul

- Cele 2^{n+m} reprezentări diferite (șiruri diferite de biți) corespund la 2^{n+m}-1 numere diferite
 - Redundantă: 0 poate fi reprezentat și ca număr negativ
- Cel mai mic număr reprezentabil este $\min_{C_1}^{n,m} = \operatorname{val}_{C_1}^{n,m} (10...0) = -(2^{n-1} 2^{-m})$
- Cel mai mare număr reprezentabil este $\operatorname{Max}_{C1}^{n,m} = \operatorname{val}_{C1}^{n,m} (01...1) = 2^{n-1} 2^{-m}$
- Intervalul pe care se află numerele reprezentabile este deci [-(2ⁿ⁻¹-2^{-m}); + (2ⁿ⁻¹-2^{-m})]

- $Val_{C1}^{8,0} (00110011) = 51$ $00110011 \rightarrow +(2^0 + 2^1 + 2^4 + 2^5) = 51$
- $Val_{C1}^{6,2} (00110011) = 12,75 = 51 : 2^2$ $00110011 \rightarrow + (2^{-2} + 2^{-1} + 2^2 + 2^3) = 12,75$
- $Val_{C1}^{4,4} (00110011) = 3,1875 = 51:24$ $00110011 \rightarrow +(2^{-4}+2^{-3}+2^0+2^1) = 3,1875$

• $Val_{C1}^{8,0} (10110011) = -76$

10110011
$$\rightarrow$$
 $(2^0 + 2^1 + 2^4 + 2^5) - (2^7 - 2^0) = 51 - 127 = -76$

- $\min_{C_1} {}^{8,0} = \operatorname{val}_{C_1} {}^{8,0} (10000000) = 0 (2^7 2^0) = 0 127 = -127$
- $\max_{C_1} {}^{8,0} = \text{val}_{C_1} {}^{8,0}(011111111) = 2^7 2^0 = 128 1 = 127$
- $[-127; 127] \rightarrow 255$ numere, din 1 în 1.
- $Val_{C1}^{4,4} (10110011) = -4,75 = -76:24$

$$10110011 \rightarrow (2^{-4} + 2^{-3} + 2^{0} + 2^{1}) - (2^{3} - 2^{-4}) = 3,1875 - 7,9375 = -4,75$$

- $\min_{C_1}^{4,4} = \text{val}_{C_1}^{4,4} (10000000) = 0 (2^3 2^{-4}) = -7,9375 = -127 : 2^4$
- $\max_{C1} {}^{4,4} = \text{val}_{C1} {}^{4,4}(011111111) = 2^3 2^{-4} = 8 0,0625 = 7,9375 = 127:2^4$
- $[-7,9375; 7,9375] \rightarrow 255$ numere din 0,0625 în 0,0625

C₁ - complementare

- Dată reprezentarea lui q, se poate afla automat reprezentarea lui –q?
 - Dacă da, atunci scăderea p-q devine adunare, după generarea automată a reprezentării lui –q: p - q = p + (-q)
- Reprezentarea lui –q: complementul față de 1 al reprezentării lui q
- Exemplu: $q = -76 = Val_{C1}^{8,0} (10110011)$ $q = 76 = Val_{C1}^{8,0} (01001100) = 64+8+4$
- Din cauza redundanței și a adunării preciziei (în sumă algebrică, de două ori), algoritmii de calcul în C_1 sunt mai puțin eficienți decât cei în C_2
- De aceea, reprezentarea cvasi-general utilizată este C₂

Complement

- Fie baza d > 1
- Complementul unei cifre:
 - Pentru o cifră $a \in \{0,1,...d-1\}$ $c_d(a) = (d-1) - a$
 - Pentru d = 2 şi b \in {0,1}: $c_2(b) = (2 - 1) - b = 1 - b \rightarrow \overline{b}$
- Dar complementul unui şir de biţi?

Complement față de bază și față de cifra maximă

- Extinderea definiției complementului la un șir de biți se poate face în două moduri:
 - Conform definiției pentru un bit (complement față de cifra maximă)

$$C_1(1011) = 0100$$
 $C_1(0100) = 1011$

 Adaptând definiția pentru şiruri (complement față de bază)

$$C_2(1011) = 0100 + 0001 = 0101$$

 $C_2(0101) = 1010 + 0001 = 1011$

- Cel mai frecvent utilizată
- Adunarea şi scăderea cu acelaşi algoritm / circuit
- Testarea automată a depășirilor

C₂ - definiție

- Complement față de 2: C₂
- $Val_{C2}^{n,m} (a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_m) =$ $\begin{cases}
 a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}, & \text{dacă } a_{n-1} = 0 \\
 (a_{n-2} \times 2^{n-2} + ... + a_{-m} \times 2^{-m}) 2^{n-1}, & \text{dacă } a_{n-1} = 1
 \end{cases}$
- Temă: strict negativ pentru $a_{n-1}=1$
 - Deci a_{n-1} reprezintă semnul

- Cele 2^{n+m} reprezentări diferite (șiruri diferite de biți) corespund la 2^{n+m} numere diferite
 - Neredundantă: $0 = Val_{C2}^{n+m}(00...0)$
 - Temă: 0 nu poate fi reprezentat ca număr negativ
- Cel mai mic număr reprezentabil este $\min_{C2}^{n,m} = \text{val}_{C2}^{n,m}(10...0) = -2^{n-1}$
- Cel mai mare număr reprezentabil este $\max_{C2}{}^{n,m} = val_{C2}{}^{n,m}(01...1) = 2^{n-1} 2^{-m}$
- Intervalul pe care se află numerele reprezentabile este deci [- 2ⁿ⁻¹; + (2ⁿ⁻¹ 2^{-m})]

- Numerele reprezentabile **exact** sunt cele începând cu min = 2ⁿ⁻¹, cu pasul 2^{-m}
- Celelalte numere din interval se reprezintă aproximativ, cu eroare de cel mult 2^{-m}
- Precizia reprezentării este 2^{-m}
 - pentru numere întregi, m=0, deci precizia este 1
- Pentru n+m fixat
 - creșterea magnitudinii duce la aproximare mai slabă
 - precizie mai bună duce la magnitudine scăzută

•
$$Val_{C2}^{8,0}(00110011) = 51$$

 $00110011 \rightarrow +(2^0 + 2^1 + 2^4 + 2^5) = 51$

•
$$Val_{C2}^{6,2}(00110011) = 12,75 = 51:2^2$$

 $00110011 \rightarrow +(2^{-2}+2^{-1}+2^2+2^3) = 12,75$

•
$$Val_{C2}^{4,4}(00110011) = 3,1875 = 51:2^4$$

 $00110011 \rightarrow +(2^{-4}+2^{-3}+2^0+2^1) = 3,1875$

• $Val_{C2}^{8,0}(10110011) = -77$

10110011
$$\rightarrow$$
 $(2^0 + 2^1 + 2^4 + 2^5) - 2^7 = 51 - 128 = -77$

- $\min_{C_2}^{8,0} = \operatorname{val}_{C_2}^{8,0}(10000000) = 0 2^7 = 0 128 = -128$
- $\max_{C2}^{8,0} = \text{val}_{C2}^{8,0}(011111111) = 2^7 2^0 = 128 1 = 127$
- $[-128; 127] \rightarrow 256$ numere, din 1 în 1
- $Val_{C2}^{4,4}(10110011) = -4,8125 = -77:24$
- $10110011 \rightarrow (2^{-4} + 2^{-3} + 2^{0} + 2^{1}) 2^{3} = 3,1875 8 = -4,8125$
- $\min_{C2}^{4,4} = \operatorname{val}_{C2}^{4,4}(10000000) = 0 2^3 = -8 = -128 : 2^4$
- $\max_{C2}^{4,4} = \text{val}_{C2}^{4,4}(011111111) = 2^3 2^{-4} = 8 0,0625 = 7,9375$ = 127 : 24
- $[-8; 7,9375] \rightarrow 256$ numere din 0,0625 în 0,0625

C₂ - complementare

- Dată reprezentarea lui q, se poate afla automat reprezentarea lui -q?
- Dacă da, atunci scăderea p-q devine adunare, după generarea automată a reprezentării lui -q: p - q = p + (-q)
- Reprezentarea lui -q: complementul față de 2 al reprezentării lui q
- Exemplu: $q = -77 = Val_{C2}^{8,0}(10110011)$ $-q = 77 = Val_{C2}^{8,0}(01001100 + 00000001)$ $Val_{C2}^{8,0}(01001101) = 64 + 8 + 4 + 1$

Temă

- Reprezentarea în C_2 pe N biți a numărului întreg negativ q este de fapt reprezentarea pe N biți a numărului $q + 2^N = 2^N |q|$
- $a + \overline{a} = 11....11 \rightarrow -1$, deci $(-a) = \overline{a} + 1$
 - a notează negația bit cu bit a reprezentării numărului a
 - a notează atât numărul, cât şi reprezentarea sa;
 se foloseşte aici implicit faptul că numerele
 pozitive se reprezintă ca în baza 2

Reprezentări în virgulă fixă, ^{4,0}

şirul de biți	A+S	\mathbf{C}_1	C_2	XS-7
0000	+0	+0	0	-7
0001	+1	+1	+1	-6
0010	+2	+2	+2	-5
0011	+3	+3	+3	-4
0100	+4	+4	+4	-3
0101	+5	+5	+5	-2
0110	+6	+6	+6	-1
0111	+7	+7	+7	0
1000	-0	-7	-8	+1
1001	-1	-6	-7	+2
1010	-2	-5	-6	+3
1011	-3	-4	-5	+4
1100	-4	-3	-4	+5
1101	-5	-2	-3	+6
1110	-6	-1	-2	+7
1111	-7	-0	-1	+8