ФГАОУ ВПО «УрФУ имени первого президента России Б.Н.Ельцина» Институт естественных наук и математики Кафедра математической физики

Анализ модели хищник-жертва с учетом конкуренции жертв и конкуренции хищников за отличные от жертв ресурсы

Отчет по учебной практике студента 3 курса группы КН-301 Абрамовой Екатерины Павловны

Научный руководитель Рязанова Татьяна Владимировна

Детерминированный анализ

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - \delta y^2 \end{cases}$$

где
$$\gamma = 1$$
, $\epsilon = 0.01$, $\alpha = 0.4$, $\delta > 0$

Решаем систему и находим точки равновесия: $M_0(0, 0)$, $M_1(100,0)$ и еще одно или три равновесия, зависящих от параметра δ . Появление равновесий и изменение их типа можно увидеть на следующей диаграмме:

Анализ устойчивости показывает, что равновесия M_0 и M_1 при любых значениях параметра δ являются седлом. Изменение типов остальных равновесий показано на следующей бифуркационной диаграмме:

Точки бифуркации:

 δ_1 =0.130881

 δ_2 =0.196565

 δ_3 =0.22

 δ_4 =0.239456

Черным цветом на диаграмме изображено появление цикла, красным – зона неустойчивости равновесий, синим – устойчивости.

Строим фазовые портреты в зонах между точками бифуркации:

 δ = 0.1: кроме M_0 и M_1 есть еще одно равновесие M_2 – неустойчивый фокус, также есть цикл, который обозначен синим цветом.

 $\delta=0.15$: на цикле родился седло-узел, который разорвал цикл на $M_3-\,$ седло и $M_4-\,$ устойчивый узел.

 $\delta = 0.196565$: из петли сепаратрисы, обозначенной красным цветом, рождается цикл.

 $\delta = 0.2$: появился цикл, M_2 и M_3 остаются неустойчивыми, M_4 – устойчивым.

 $\delta = 0.23$: цикл перешел в равновесие M_2 , сделав его устойчивым фокусом.

 $\delta = 0.2395$: седло «схлопнулось» с устойчивым фокусом, и они исчезли. Остались равновесия $M_0,\,M_1$ и $M_4.$

На этом заканчивается детерминированный анализ.

Исследование системы под действием шума

Находим критическую интенсивность случайного возмущения в каждой точке δ:

σ – интенсивность случайного возмущения.

На рисунках видно, что при $\sigma = 0.03$ траектории остаются около одного равновесия — устойчивого фокуса. При увеличении интенсивности до 0.04 траектории притягиваются к другому равновесию — устойчивому узлу.