Eficiencia gs1Set, set y unordered_set

La medición de tiempos que se ha usado es:

```
clock_t start, end;
...
start = clock();
//llamada a la funcion de insercion/busqueda/borrado
end= clock();
double dif = end-start;
cout<< dif/(double) (CLOCKS_PER_SEC * 1000.0) << endl;</pre>
```

Inserción

Para insertar elementos hemos utilizado:

```
template <typename T>
void load(T & contenedor, const string & s) {
ifstream fe;
string cadena;
cout << "Abrimos "<< s << endl;
fe.open(s.c_str(), ifstream::in);
if (fe.fail())
  cerr << "Error al abrir el fichero " << s << endl;
} else {
  while ( !fe.eof() )
    { getline(fe,cadena,'\n');
       if (!fe.eof()) {
       // cout << "leo:: "<< cadena << endl;
         contenedor.insert(cadena);
      }
   }
  } // else
 fe.close();
```

Resultados obtenidos:

Num. elementos	gs1Set	set	unordered_set
10	0	0	0
100	0	0	0
1000	3e-05	0	0
10000	0,00038	4e-05	2e-05
100000	0,00417	0,00044	0,00027
1000000	0,03767	0,00367	0,00155

Aarón Rodríguez Bueno Bryan Moreno Picamán

Eficiencia inserción gs1Set: O(n) Eficiencia inserción set: O(log(n))

Eficiencia inserción unordered_set: O(log(n))

Gráfico eficiencia:

Búsqueda

Para buscar elementos hemos utilizado:

```
//Una vez insertado el árbol correspondiente
template <typename T>
void busc(T & contenedor, const string & s) {
ifstream fe;
string cadena;
//cout << "Abrimos "<< s << endl;
fe.open(s.c_str(), ifstream::in);
if (fe.fail())
 cerr << "Error al abrir el fichero " << s << endl;
} else {
  while ( !fe.eof() )
    { getline(fe,cadena,'\n');
       if (!fe.eof()) {
       // cout << "leo:: "<< cadena << endl;
        contenedor.find(cadena);
   }
  } // else
 fe.close();
```

Resultados obtenidos:

Num. elementos	gs1Set	set	unordered_set
10	0	0	0
100	0	0	0
1000	0	1e-05	0
10000	7e-05	3e-05	0
100000	0.00078	0.00034	8e-05
1000000	0.00749	0.00353	0.00112

Aarón Rodríguez Bueno Bryan Moreno Picamán

Eficiencia inserción gs1Set: O(n) Eficiencia inserción set: O(log(n))
Eficiencia inserción unordered_set: O(log(n))

Gráfica eficiencia:

Borrado

Para eliminar elementos hemos utilizado:

```
//Una vez insertado el árbol correspondiente
template <typename T>
void borrar(T & contenedor, const string & s) {
ifstream fe;
string cadena;
//cout << "Abrimos "<< s << endl;
fe.open(s.c_str(), ifstream::in);
if (fe.fail())
 cerr << "Error al abrir el fichero " << s << endl;
} else {
  while ( !fe.eof() )
    { getline(fe,cadena,'\n');
       if (!fe.eof()) {
       // cout << "leo:: "<< cadena << endl;
        contenedor.erase(cadena);
   }
  } // else
 fe.close();
```

Resultados obtenidos:

Num. elementos	gs1Set	set	unordered_set
10	0	0	0
100	0	0	0
1000	1e-05	0	0
10000	8e-05	3e-05	2e-05
100000	0.0008	0.00047	0,00013
1000000	0.00779	0.00088	0.00058

Aarón Rodríguez Bueno Bryan Moreno Picamán

Eficiencia inserción gs1Set: O(n)

Eficiencia inserción set: O(log(size())+count(k))

Eficiencia inserción unordered_set: O(log(size())+count(k))

No sabemos hacer en gnuplot $O(\log(\text{size}())+\text{count}(k))$, así que dejamos la línea con $f(x)=a*\log(n)$, por lo que diferirá mucho de los puntos.

Gráfica eficiencia:

