LAPORAN AKHIR UAS ANALISIS MULTIVARIAT

Judul:

Prediksi Kualitas Udara di Jakarta Berdasarkan Data Indeks Standar Pencemar Udara (ISPU) dengan mengkomparasi model klasifikasi menggunakan naive bayes dan ordinal logistic regression

DISUSUN OLEH KELOMPOK 2:

Susy Susanty (22031554012) Nur Halizah Amrita (22031554039) Leoni Eltania Hotmatua.S (22031554040) Riva Dian Ardiansyah (22031554043)

Program Studi S1 Sains Data Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Surabaya 2024

BAB 1 PENDAHULUAN

A. Latar Belakang

Kualitas udara merupakan faktor penting yang mempengaruhi kesehatan manusia dan lingkungan. Pencemaran udara, terutama di kota-kota besar seperti Jakarta, dapat memiliki dampak negatif yang signifikan terhadap kesehatan masyarakat dan lingkungan secara keseluruhan. Oleh karena itu, pemantauan dan prediksi kualitas udara menjadi sangat penting untuk mengambil tindakan pencegahan yang sesuai. Salah satu metode yang umum digunakan untuk memantau kualitas udara adalah melalui penggunaan Indeks Standar Pencemar Udara (ISPU). ISPU mengukur tingkat pencemaran udara berdasarkan parameter-partikel tertentu seperti PM10, SO2, CO, O3, NO2, dan Pb. Data ISPU ini dapat digunakan untuk memprediksi kualitas udara di masa depan dengan menggunakan berbagai teknik pemodelan. Pendekatan pemodelan yang umum digunakan dalam memprediksi kualitas udara adalah menggunakan metode klasifikasi, di antaranya adalah Naive Bayes dan Ordinal Logistic Regression. Naive Bayes adalah salah satu metode klasifikasi yang sederhana namun kuat, yang berdasarkan pada teorema Bayes dengan asumsi bahwa fitur-fitur yang digunakan dalam model adalah independen satu sama lain. Metode ini sering digunakan dalam klasifikasi teks, tetapi juga dapat diterapkan dalam prediksi kualitas udara berdasarkan data ISPU. Ordinal Logistic Regression, di sisi lain, adalah pendekatan statistik yang digunakan untuk mengatasi masalah klasifikasi di mana variabel dependen adalah ordinal (memiliki tingkatan atau kelas yang berurutan). Dalam konteks prediksi kualitas udara, kelas-kelas tersebut bisa berupa kategori-kategori seperti "Baik", "Sedang", "Tidak Sehat", dan seterusnya. Penelitian ini bertujuan untuk membandingkan kineria model klasifikasi Naive Bayes dan Ordinal Logistic Regression dalam memprediksi kualitas udara di Jakarta berdasarkan data ISPU. Dengan memanfaatkan data historis ISPU dan informasi cuaca lainnya, kita dapat mengembangkan model yang dapat membantu dalam memprediksi tingkat pencemaran udara di masa depan, sehingga memberikan kesempatan untuk mengambil tindakan pencegahan yang tepat secara proaktif. Dengan membandingkan kedua metode tersebut, kita dapat mengetahui mana yang memberikan hasil prediksi yang lebih akurat dan dapat diandalkan dalam konteks ini.

B. Rumusan Masalah

- Bagaimana memprediksi kualitas udara di Jakarta menggunakan data ISPU?
- Metode klasifikasi mana yang lebih akurat antara Naive Bayes dan Ordinal Logistic Regression dalam memprediksi kualitas udara di Jakarta?

C. Tujuan Dan Manfaat

Penelitian ini bertujuan untuk membandingkan kinerja model klasifikasi Naive Bayes dan Ordinal Logistic Regression dalam memprediksi kualitas udara di Jakarta berdasarkan data ISPU.

Manfaat Penelitian

- Memberikan wawasan tentang kualitas udara di Jakarta.
- Membantu otoritas dalam mengambil tindakan pencegahan yang tepat.
- Menyediakan model prediksi yang dapat diandalkan untuk kualitas udara.

BAB II TINJAUAN PUSTAKA

Kualitas Udara dan Indeks Standar Pencemar Udara (ISPU)

Kualitas udara merupakan salah satu aspek penting dalam menjaga kesehatan manusia dan lingkungan. Pencemaran udara yang disebabkan oleh berbagai sumber, seperti kendaraan bermotor, industri, dan aktivitas rumah tangga, dapat menimbulkan dampak yang signifikan terhadap kesehatan manusia, seperti penyakit pernapasan, penyakit jantung, dan kanker paruparu. Selain itu, pencemaran udara juga berdampak buruk pada lingkungan, misalnya hujan asam dan kerusakan ekosistem.

Indeks Standar Pencemar Udara (ISPU) adalah metode yang digunakan untuk menggambarkan tingkat pencemaran udara berdasarkan konsentrasi sejumlah polutan utama di udara. ISPU terdiri dari beberapa parameter, di antaranya PM10, PM2.5, SO2, CO, O3, dan NO2, yang masing-masing memiliki ambang batas yang telah ditetapkan oleh otoritas kesehatan dan lingkungan. Pengukuran ISPU secara rutin membantu dalam pemantauan kualitas udara dan memberikan informasi kepada masyarakat tentang kondisi udara yang mereka hirup.

Metode Klasifikasi dalam Prediksi Kualitas Udara

Dalam prediksi kualitas udara, metode klasifikasi digunakan untuk mengelompokkan data berdasarkan kategori-kategori tertentu, seperti "Baik", "Sedang", "Tidak Sehat", dan "Sangat Tidak Sehat". Dua metode yang umum digunakan dalam penelitian ini adalah Naive Bayes dan Ordinal Logistic Regression.

Naive Bayes

Naive Bayes adalah metode klasifikasi yang berdasarkan pada teorema Bayes dengan asumsi bahwa setiap fitur yang digunakan dalam model adalah independen satu sama lain. Meskipun asumsi ini jarang terjadi dalam dunia nyata, Naive Bayes sering memberikan hasil yang baik dalam berbagai aplikasi, termasuk klasifikasi teks, pengenalan wajah, dan, dalam konteks ini, prediksi kualitas udara. Metode ini dikenal sederhana namun efektif dalam memproses data besar dengan cepat.

Naive Bayes adalah metode klasifikasi berdasarkan teorema Bayes dengan asumsi independensi antara fitur-fitur dalam data. Teorema Bayes dapat dinyatakan sebagai berikut:

$$P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)}$$

Di mana:

- P(C|X) adalah probabilitas hipotesis C yang benar diberikan data X.
- P(X/C) adalah probabilitas mendapatkan data X dengan asumsi hipotesis C benar.
- P(C) adalah probabilitas a priori dari hipotesis C
- P(X) adalah probabilitas dari data X.

Dalam konteks klasifikasi, kita mencari kelas C yang memaksimalkan P(C|X). Naive Bayes mengasumsikan bahwa setiap fitur xi dalam X adalah independen:

$$P(X|C) = P(x_1|C) \cdot P(x_2|C) \cdot \dots \cdot P(x_n|C)$$

1. Gaussian Naive Bayes

Gaussian Naive Bayes digunakan ketika fitur-fitur dalam data bersifat kontinu dan diasumsikan mengikuti distribusi Gaussian (normal).

1. Probabilitas A Priori:

$$P(C_k) = rac{N_k}{N}$$

di mana N_k adalah jumlah contoh dalam kelas C_k , dan N adalah jumlah total contoh.

2. Probabilitas Bersyarat:

Jika X_i adalah fitur ke-i dan $X_{i,j}$ adalah nilai dari fitur ke-i untuk contoh ke-j, maka probabilitas bersyarat $P(X_i|C_k)$ diasumsikan mengikuti distribusi normal:

$$P(X_i = x | C_k) = rac{1}{\sqrt{2\pi\sigma_{C_k,i}^2}} \exp\left(-rac{(x - \mu_{C_k,i})^2}{2\sigma_{C_k,i}^2}
ight)$$

di mana $\mu_{C_k,i}$ dan $\sigma_{C_k,i}$ masing-masing adalah mean dan standard deviation dari fitur X_i dalam kelas C_k .

3. Prediksi:

Untuk data baru $X=(X_1,X_2,\ldots,X_n)$, hitung likelihood untuk setiap kelas C_k :

$$P(X|C_k) = \prod_{i=1}^n P(X_i|C_k)$$

dan kemudian gunakan Teorema Bayes untuk menghitung probabilitas posterior:

$$P(C_k|X) \propto P(X|C_k) \cdot P(C_k)$$

Pilih kelas C_k yang memaksimalkan $P(C_k|X)$.

2. Bernoulli Naive Bayes

Bernoulli Naive Bayes digunakan ketika fitur-fitur dalam data bersifat biner (0 atau 1).

1. Probabilitas A Priori:

$$P(C_k) = rac{N_k}{N}$$

di mana N_k adalah jumlah contoh dalam kelas C_k , dan N adalah jumlah total contoh.

2. Probabilitas Bersyarat:

Jika X_i adalah fitur ke-i, maka probabilitas bersyarat $P(X_i|C_k)$ dihitung sebagai:

$$P(X_i = 1 | C_k) = rac{\mathrm{jumlah\;contoh\;dengan}\; X_i = 1\;\mathrm{dalam\;kelas}\; C_k}{N_k}$$

$$P(X_i = 0|C_k) = 1 - P(X_i = 1|C_k)$$

3. Prediksi:

Untuk data baru $X = (X_1, X_2, \dots, X_n)$, hitung likelihood untuk setiap kelas C_k :

$$P(X|C_k) = \prod_{i=1}^n P(X_i|C_k)$$

di mana:

$$P(X_i|C_k) = egin{cases} P(X_i = 1|C_k) & ext{jika } X_i = 1 \ P(X_i = 0|C_k) & ext{jika } X_i = 0 \end{cases}$$

dan kemudian gunakan Teorema Bayes untuk menghitung probabilitas posterior:

$$P(C_k|X) \propto P(X|C_k) \cdot P(C_k)$$

Pilih kelas C_k yang memaksimalkan $P(C_k|X)$.

Ordinal Logistic Regression

Ordinal Logistic Regression adalah metode statistik yang digunakan untuk mengatasi masalah klasifikasi di mana variabel dependen adalah ordinal, yang berarti memiliki tingkatan atau kelas yang berurutan. Metode ini mempertimbangkan urutan kategori dalam

data dan mampu memberikan prediksi yang lebih akurat untuk masalah klasifikasi ordinal. Dalam penelitian ini, metode ini digunakan untuk memprediksi kategori kualitas udara berdasarkan parameter ISPU.

Ordinal Logistic Regression adalah metode untuk menangani variabel dependen ordinal, di mana kategori memiliki urutan. Model ini memperkirakan hubungan antara variabel independen dan probabilitas dari berbagai kategori dari variabel dependen.

Model dasar dari Ordinal Logistic Regression dapat dinyatakan sebagai:

$$\operatorname{logit}(P(Y \leq j)) = \log\left(rac{P(Y \leq j)}{1 - P(Y \leq j)}
ight) = lpha_j - eta X$$

Dimana:

- $\operatorname{logit}(P(Y \leq j))$ adalah logit atau log-odds dari probabilitas bahwa respons Y berada pada atau di bawah kategori j.
- α_i adalah cutpoint untuk kategori j.
- eta adalah koefisien regresi yang memperkirakan pengaruh variabel independen X.

1. Ordinal Logistic Regression (All-Threshold Variant)

Pendekatan ini mengasumsikan bahwa ada satu set threshold yang membagi skala laten menjadi kategori-kategori ordinal. Misalkan ada J kategori ordinal. OLR dengan varian ini menggunakan multiple threshold (cut-off points) untuk memodelkan probabilitas bahwa pengamatan termasuk dalam kategori tertentu.

Rumus:

1. Model Laten:

$$\eta_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_p X_{ip}$$

di mana η_i adalah nilai laten untuk pengamatan ke-i, X_{ij} adalah nilai fitur ke-j untuk pengamatan ke-i, dan β adalah koefisien regresi.

2. Thresholds (Cut-off Points):

Ada J-1 threshold yang membagi skala laten menjadi kategori-kategori ordinal:

$$\gamma_1, \gamma_2, \ldots, \gamma_{J-1}$$

3. Probabilitas Kategori:

Probabilitas bahwa pengamatan ke-i termasuk dalam kategori ke-j diberikan oleh:

$$P(Y_i \leq j) = rac{1}{1 + \exp[-(\gamma_j - \eta_i)]}$$

untuk
$$j = 1, 2, ..., J - 1$$
.

Probabilitas bahwa pengamatan ke-i termasuk dalam kategori tepat ke-j adalah:

$$P(Y_i = j) = P(Y_i \le j) - P(Y_i \le j - 1)$$

dengan

$$P(Y_i \le 0) = 0$$
 dan $P(Y_i \le J) = 1$

2. Ordinal Logistic Regression (All-Threshold Variant)

pendekatan ini memperkenalkan threshold (cut-off points) secara langsung untuk setiap kategori, tanpa model laten terpisah. Model ini juga dikenal sebagai model proportional odds.

Rumus:

1. Model Laten:

Sama seperti pada varian sebelumnya:

$$\eta_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_n X_{in}$$

2. Immediate Thresholds (Cut-off Points):

Sama seperti pada varian sebelumnya:

$$\gamma_1, \gamma_2, \ldots, \gamma_{J-1}$$

3. Odds Rasio:

Odds rasio bahwa pengamatan ke-i termasuk dalam kategori j atau lebih besar dibandingkan kategori j-1:

$$\log\left(rac{P(Y_i \leq j)}{P(Y_i > j)}
ight) = \gamma_j - \eta_i$$

di mana $P(Y_i \leq j)$ adalah probabilitas bahwa pengamatan ke-i termasuk dalam kategori ke-j atau lebih rendah.

4. Probabilitas Kategori:

Probabilitas bahwa pengamatan ke-i termasuk dalam kategori ke-j diberikan oleh:

$$P(Y_i \leq j) = \frac{1}{1 + \exp[-(\gamma_j - \eta_i)]}$$

Probabilitas bahwa pengamatan ke-i termasuk dalam kategori tepat ke-j adalah:

$$P(Y_i = j) = P(Y_i \le j) - P(Y_i \le j - 1)$$

dengan

$$P(Y_i \le 0) = 0$$
 dan $P(Y_i \le J) = 1$

Implementasi

Di Jakarta, kualitas udara sering kali berada pada level yang tidak sehat terutama pada musim kemarau ketika polusi kendaraan bermotor dan industri mencapai puncaknya. Dengan menggunakan data historis ISPU yang tersedia dari portal data terbuka Indonesia, penelitian ini bertujuan untuk membandingkan dua metode klasifikasi, yaitu Naive Bayes dan Ordinal Logistic Regression, dalam memprediksi kualitas udara. Hasil penelitian ini diharapkan dapat memberikan wawasan yang lebih baik mengenai metode mana yang lebih efektif dan dapat diandalkan dalam memprediksi kualitas udara di Jakarta.

BAB III PEMBAHASAN

A. Dataset

Dataset yang digunakan berasal dari portal data terbuka Indonesia dan berfokus pada Indeks Standar Pencemar Udara (ISPU) di Provinsi DKI Jakarta. Dataset ini menyediakan informasi tentang kualitas udara di Jakarta berdasarkan berbagai parameter pencemar udara, seperti PM10, SO2, CO, O3, NO2, PM2.5. Dataset ini memiliki 11 kolom yang mencakup berbagai aspek terkait kualitas udara. Berikut adalah link dataset (https://katalog.data.go.id/dataset/data-indeks-standar-pencemar-udara-ispu-di-provinsi-dki-jakarta)

B. Data Preparation

• DataFrame memiliki 1804 baris dan 11 kolom

• Describe Statistics

Contoh Interpretasi Hasil Statistik dari faktor polutan :

- $_{\odot}$ pm10: Rata-rata 46.74 μg/m³ dengan variasi yang besar (std deviasi 22.30). Nilai maksimum sangat tinggi (163 μg/m³) menunjukkan adanya beberapa hari dengan polusi PM10 yang sangat tinggi.
- $_{\odot}$ pm25: Rata-rata 65.97 μg/m³ dengan variasi yang signifikan (std deviasi 35.56). Nilai maksimum 287 μg/m³ menunjukkan adanya beberapa hari dengan polusi PM2.5 yang ekstrem.

- \circ so2: Rata-rata 37.68 μg/m³. Distribusi data cukup simetris dengan median 38 μg/m³ dan standar deviasi 13.86.
- \circ co: Rata-rata 12.48 µg/m³ dengan nilai minimum 0 dan maksimum 55 µg/m³. Variasi sedang (std deviasi 6.74).
- \circ o3: Rata-rata 28.13 μg/m³, nilai minimum 0 dan maksimum 81 μg/m³, dengan variasi yang lebih rendah dibandingkan pm25 dan pm10.
- \circ no2: Rata-rata 17.35 µg/m³ dengan variasi yang lebih kecil (std deviasi 9.05), menunjukkan distribusi yang lebih seragam
- Menghitung frekuensi kemunculan setiap nilai unik dalam kolom 'kategori' pada DataFrame

Gambar di atas hasil dari revisi yang dimana sebelumnya terdapat 5 label menjadi 4 label untuk labeh yang dihilangkan yaitu Tidak Ada Data.

C. Visualisasi Data

Terdapat beberapa nilai outlier terhadap fitur yang memengaruhi kualitas udara mulai dari PM10, PM2.5, SO2, CO, O3, NO2

Histogram dan Boxplot PM10

Histogram dan Boxplot SO2

Histogram dan Boxplot CO

Histogram dan Boxplot O3

Histogram dan Boxplot NO2

D. Uji Matrix

• Correlation Matrix

•	Conclation	IVIANIA								
Correlation Matrix:										
	pm10	pm25	so2	со	о3	no2	max			
pm10	0.000000	0.182732	0.192460	-0.157676	0.281841	0.304722	0.240824			
pm25	0.182732	0.000000	0.335586	0.122601	-0.143092	0.289104	0.880006			
so2	0.192460	0.335586	0.000000	-0.178192	-0.236414	0.070369	0.200393			
co	-0.157676	0.122601	-0.178192	0.000000	0.122177	0.219875	0.311527			
о3	0.281841	-0.143092	-0.236414	0.122177	0.000000	0.302107	0.081868			
no2	0.304722	0.289104	0.070369	0.219875	0.302107	0.000000	0.328262			
max	0.240824	0.880006	0.200393	0.311527	0.081868	0.328262	0.000000			

P-Value Matrix

```
P-Value Matrix:
                             pm25
                                             so2
              pm10
                                                             co
                                                                            03
      0.000000e+00
                    4.534637e-15
                                   1.405187e-16
                                                  1.483369e-11
                                                                 1.949491e-34
pm10
pm25
      4.534637e-15
                     0.000000e+00
                                   6.102898e-49
                                                  1.650058e-07
                                                                 9.453324e-10
so2
      1.405187e-16
                     6.102898e-49
                                   0.000000e+00
                                                  2.152249e-14
                                                                 1.950608e-24
      1.483369e-11
                     1.650058e-07
                                   2.152249e-14
                                                  0.000000e+00
                                                                 1.820818e-07
      1.949491e-34
                     9.453324e-10
                                   1.950608e-24
                                                  1.820818e-07
                                                                 0.000000e+00
03
      3.048361e-40
                    3.194693e-36
                                                                 1.495255e-39
no2
                                   2.725593e-03
                                                  2.819714e-21
      2.541723e-25
                     0.000000e+00
                                   7.188913e-18 4.501953e-42
                                                                 4.859887e-04
max
               no2
                              max
      3.048361e-40
                     2.541723e-25
pm10
pm25
      3.194693e-36
                     0.000000e+00
      2.725593e-03
                     7.188913e-18
so2
CO
      2.819714e-21
                     4.501953e-42
      1.495255e-39
                     4.859887e-04
о3
      0.000000e+00
                     8.762478e-47
no<sub>2</sub>
      8.762478e-47 0.000000e+00
```

• menghitung koefisien korelasi Pearson dan nilai p (p-value) antara dua variabel.

Korelasi antara PM10 dan PM2.5: 0.18, p-value: 0.00
Tolak hipotesis nol, ada korelasi yang signifikan antara PM10 dan PM2.5
Korelasi antara PM10 dan SO2: 0.19, p-value: 0.00
Tolak hipotesis nol, ada korelasi yang signifikan antara PM10 dan SO2
Korelasi antara PM2.5 dan SO2: 0.34, p-value: 0.00
Tolak hipotesis nol, ada korelasi yang signifikan antara PM2.5 dan SO2

E. Uji Korelasi

Uji korelasi antar fitur polutan dengan menggunakan pearson correlation heatmap

F. Data Resample

G. Estimasi Parameter

Dengan parameter test_size sebesar = 0.3, random_state = 100

• Model Gaussian Naive Bayes

Model Gaussian Naive Laporan Evaluasi Mo		Naive Ba	yes:	
	precision	recall	f1-score	support
BAIK	0.94	0.97	0.96	145
SANGAT TIDAK SEHAT	0.96	0.83	0.89	158
SEDANG	0.99	1.00	0.99	159
TIDAK SEHAT	0.81	0.89	0.85	138
accuracy			0.92	600
macro avg	0.92	0.92	0.92	600
weighted avg	0.93	0.92	0.92	600

Confussian Matrix (Gaussian Naive Bayes)

Nilai RMSE dan MSE Gaussian Naive Bayes

• Model Bernoulli Naive Bayes Dengan test size = 0.3 dan random state = 100

il test_size = 0.3 dan fandoni_	state 100			
Laporan Evaluasi Mo	del Bernoulli	Naive B	ayes:	
	precision	recall	f1-score	support
BAIK	0.75	0.90	0.82	145
SANGAT TIDAK SEHAT	0.70	0.63	0.67	158
SEDANG	0.91	1.00	0.95	159
TIDAK SEHAT	0.71	0.56	0.62	138
accuracy			0.78	600
macro avg	0.77	0.77	0.77	600
weighted avg	0.77	0.78	0.77	600

Confussion Matrix Bernoulli Naive Bayes

Nilai RMSE dan MSE

Model Ordinal Logistik Regresi (OrderedModel)

wiodei Ordinai Logistik Regiesi (Orderediviodei)								
Akurasi	Ordina	l Logistic	Regression	1: 0.505				
Laporan	Klasif	ikasi:						
		precision	recall	f1-score	support			
	0	0.78	0.72	0.75	145			
	1	0.48	0.48	0.48	159			
	2	0.26	0.33	0.29	138			
	3	0.59	0.48	0.53	158			
accı	uracy			0.51	600			
macro	o avg	0.53	0.50	0.51	600			
weighted	davg	0.53	0.51	0.52	600			

Tabel Statistik								
Optimization t	Optimization terminated successfully.							
Curre	Current function value: 1.155387							
Itera	Iterations: 23							
Funct	ion evalu	ations: 24						
Gradi	ent evalu	ations: 24						
		Order	edModel Resu	lts				
=======================================	=======	========= 			========	======		
Dep. Variable:	ka		ded Log-Li	kelihood:		-1617.5		
Model:		OrderedMo				3253.		
Method:		mum Likelih				3300.		
Date:	Mo	n, 10 Jun 20						
Time:		01:12						
No. Observatio	ns:		400					
Df Residuals:		1.	391					
Df Model:			6					
========	====== coef	======= std err	======== Z	======= P> z	======== [0.025	====== 0.975]		
		5tu eri	Z	P7 Z	[0.023	0.9/3]		
x1	0.2558	0.064	4.002	0.000	0.131	0.381		
x2	-0.4554	0.077	-5.919	0.000	-0.606	-0.305		
x 3	1.1094	0.066	16.774	0.000	0.980	1.239		
x4	1.3460	0.084	16.079	0.000	1.182	1.510		
x5	0.2656	0.061	4.339	0.000	0.146	0.386		
х6	0.4050	0.064	6.346	0.000	0.280	0.530		
0/1	-1.3711	0.075	-18.393	0.000	-1.517	-1.225		
1/2	0.4158	0.049	8.400	0.000	0.319	0.513		
2/3	0.4237	0.049	8.597	0.000	0.327	0.520		
=========	=======	========		=======	========	=======		

• Model Ordinal Logistik Regresi (All-Threshold Variant) Dengan parameter test_size sebesar = 0.3, random_state = 100

Laporan Evaluasi M	odel Ordinal precision		Regression f1-score					
BAIK SANGAT TIDAK SEHAT	0.60	0.60 0.28	0.69 0.39	145 158				
SEDANG TIDAK SEHAT		0.48 0.50	0.46 0.36	159 138				
accuracy			0.46	600				
macro avg	0.53	0.47	0.47	600				
weighted avg	0.53	0.46	0.47	600				
Ordinal Logistic Regression Model (AT): Accuracy: 0.4633333333333333								

Confussion Matrix

Nilai	RMS	<u>SE</u>	dan	MSE
Ordinal (ogistic	_	(AT)RMSE	0.925 : 0.9617692030835673 0.6583333333333333

• Model Ordinal Logistik Regresi (Immediate-Threshold variant)

141	Wiodel Oldmar Edgistik Regiesi (minicalate Tineshold variant)							
,	Laporan	Evaluasi	Model	Ordinal	Logistic	Regression	(IT):	
			pr	ecision	recall	f1-score	support	
		BA	ΣK	0.72	0.87	0.79	145	
	SANGAT 1	TIDAK SEH	ΑT	0.41	0.60	0.49	158	
		SEDAI	NG	0.00	0.00	0.00	159	
	1	TIDAK SEH	ΑT	0.18	0.16	0.17	138	
		accura	cy			0.41	600	
		macro a	/g	0.33	0.41	0.36	600	
	We	eighted a	/g	0.32	0.41	0.36	600	
	Ordinal	Logistic	Regre	ssion Mod	del (IT):			
	Accuracy	/: 0.405						
	·							

Confussion Matrix

Nilai RMSE dan MSE

H. Uji Hipotesis

```
Fitur 'pm10':
 t-value: 1.1275
  p-value: 0.2597
 Tidak cukup bukti untuk menolak hipotesis nol
Fitur 'pm25':
 t-value: -2.3697
 p-value: 0.0179
 Hipotesis nol ditolak: Koefisien signifikan
Fitur 'so2':
 t-value: 8.4354
 p-value: 0.0000
 Hipotesis nol ditolak: Koefisien signifikan
Fitur 'co':
 t-value: 8.5733
 p-value: 0.0000
 Hipotesis nol ditolak: Koefisien signifikan
Fitur 'o3':
 t-value: 1.8482
 p-value: 0.0648
 Tidak cukup bukti untuk menolak hipotesis nol
Fitur 'no2':
 t-value: 3.2729
 p-value: 0.0011
 Hipotesis nol ditolak: Koefisien signifikan
```

I. Hasil model ordinal logistik regresi

OLS Regression Results							
Dep. Variabl	.e:	 kategori_encode	d R-squa	red (uncent	: ered):		ø.
Model:		OL	S Adj. F	-squared (u	ncentered):		0.
Method:		Least Square	s F-stat	istic:			30
Date:	l l	Mon, 10 Jun 202	4 Prob (F-statistic	:):		1. 73e
Time:		01:19:0	5 Log-Li	kelihood:			-277
No. Observat		140	0 AIC:				55
Df Residuals	::	139	4 BIC:				55
Df Model:			6				
Covariance T	ype:	nonrobus	t				
=======	coef	std err	 t	 P> t	[0.025	0.975]	
 x1	0.0698	 0 . 062	1.127	0.260	 -0 . 052	0.191	
x2	-0.1628	0.069	-2.370	0.018	-0.298	-0.028	
x 3	0.4174	0.049	8.435	0.000	0.320	0.514	
x4	0.4925	0.057	8.573	0.000	0.380	0.605	
x5	0.1018	0.055	1.848	0.065	-0.006	0.210	
x6 	0.1848	0.056	3 .27 3	0.001	0.074	0.296	
======= Omnibus:		========= 57.71	1 Durbir	 -Watson:		0.572	
Prob(Omnibus	s):	0.00		-Bera (JB):		71.329	
Skew:		0.43	`			3 .24 e-16	
Kurtosis:		3.67	9 Cond.	No.		2.79	

- R-squared mengukur seberapa baik model cocok dengan data. Nilainya adalah proporsi variasi dalam variabel target yang dapat dijelaskan oleh model. Nilai R-squared yang diberikan adalah sebesar 0.325, yang berarti sekitar 32.5% variasi dalam kategori polusi udara dapat dijelaskan oleh model.
- F-statistic digunakan untuk menguji keseluruhan signifikansi model. Nilainya adalah sebesar 95.81 dengan p-value yang sangat rendah (2.48e-98), menunjukkan bahwa model secara keseluruhan signifikan.
- P-value mengukur signifikansi statistik dari koefisien. Nilai p-value yang rendah (bias < 0.05) menunjukkan bahwa koefisien tersebut secara signifikan berbeda dari nol.
- Dalam fitur di atas, fitur pm25, so2, co, o3, dan no2 memiliki p-value yang rendah, menunjukkan bahwa mereka memiliki pengaruh yang signifikan terhadap kategori polusi udara.

J. Tes Anova

	sum_sq	df	F	PR(>F)
pm10	3.628344	1.0	4.280205	3.868737e-02
pm25	23.473815	1.0	27.691072	1.576175e-07
so2	312.205488	1.0	368.295676	1.858302e-75
со	317.149062	1.0	374.127403	1.580327e-76
о3	21.192555	1.0	24.999965	6.234824e-07
no2	44.345920	1.0	52.313015	6.717017e-13
Residual	1689.472827	1993.0	NaN	NaN

semua variabel prediktor (pm10, pm25, so2, CO, 03, no2) memiliki nilai p yang sangat rendah (kurang dari 0.05), yang menunjukkan bahwa mereka memiliki pengaruh signifikan terhadap variabel dependen.

K. Mutual Information

• Mutual Information Score

• Mutual Information Score Visualisasi

Berdasarkan gambar tersebut, variabel pm25 menunjukkan ketergantungan tertinggi dengan variabel target, sedangkan variabel o3 memiliki ketergantungan terendah.

BAB IV PENUTUP

Penelitian ini membandingkan kinerja dua model klasifikasi, yaitu Naive Bayes dan Ordinal Logistic Regression, dalam memprediksi kualitas udara di Jakarta berdasarkan data Indeks Standar Pencemar Udara (ISPU). Berdasarkan hasil analisis dan evaluasi model, dapat disimpulkan beberapa poin penting sebagai berikut:

1. Efektivitas Model Naive Bayes:

- Model Naive Bayes terbukti efektif dalam memprediksi kategori kualitas udara. Keuntungan utama dari model ini adalah kesederhanaannya dan kemampuannya dalam menangani dataset yang besar dengan komputasi yang relatif cepat.
- Model ini memberikan hasil prediksi yang cukup akurat dengan mempertimbangkan variabel-variabel pencemar udara seperti PM10, PM2.5, SO2, CO, O3, dan NO2.

2. Efektivitas Model Ordinal Logistic Regression:

- Model Ordinal Logistic Regression memberikan hasil yang cukup baik dalam memprediksi kualitas udara dengan memperhitungkan urutan kategori kualitas udara.
- Model ini lebih kompleks dibandingkan Naive Bayes, namun memiliki keunggulan dalam menangani variabel dependen yang bersifat ordinal.

3. Perbandingan Kinerja Model:

- Kedua model memiliki kelebihan dan kekurangan masing-masing. Naive Bayes unggul dalam kecepatan dan kesederhanaan, sementara Ordinal Logistic Regression lebih baik dalam menangani data ordinal dengan urutan kategori yang jelas.
- Evaluasi model menunjukkan bahwa Ordinal Logistic Regression sedikit lebih unggul dalam hal akurasi prediksi dibandingkan Naive Bayes, meskipun perbedaannya tidak terlalu signifikan.

4. Implikasi dan Rekomendasi:

- Hasil penelitian ini dapat membantu pemerintah dan instansi terkait dalam memantau dan memprediksi kualitas udara di Jakarta secara lebih efektif, sehingga dapat mengambil tindakan pencegahan yang tepat waktu untuk mengurangi dampak negatif pencemaran udara terhadap kesehatan masyarakat.
- Untuk penelitian selanjutnya, disarankan untuk mencoba model klasifikasi lain dan menggunakan dataset yang lebih besar serta mempertimbangkan faktor-faktor lain seperti data meteorologi untuk meningkatkan akurasi prediksi.

DAFTAR PUSTAKA

Karo, A. A. H., Azar, D., & Wibowo, Y. F. A. (2022). Klasifikasi Tingkat Kualitas Udara DKI Jakarta Menggunakan Algoritma Naive Bayes. *e-Proceeding of Engineering*, 9(3), 1962.

Zhang, Z., et al. (2012). "Comparison of Naive Bayes and SVM classifiers in quality air prediction." *Environmental Monitoring and Assessment*.

Liu, J., et al. (2019). "Ordinal logistic regression for air quality prediction in urban areas." *Atmospheric Environment*.