Strong lensing with upcoming wide-field radio surveys

Samuel McCarty (Univ. of Washington, CfA grad student in the fall) Advised by Liam Connor (CfA)

VLA from public.nrao.edu

Why do strong lensing science in the radio?

Extremely high angular resolution with VLBI

Radio sources observable to high redshift

Polarization (Stokes IQUV is preserved)

Clean - deflector galaxy is often radio quiet

No dust, no atmosphere (seeing)

Complementary information to other wavelengths!

0.25% error in recovered lens parameters with 3 mas resolution from VLBI!

 $\langle z_{\rm source} \rangle \approx 2$ For DSA-2000

Strong lens studies in the radio have been limited in past decades by the less than ~100 known radio lenses. How will this change with next generation radio telescopes?

DSA-2000

The next generation radio survey

Unprecedented survey speed and sensitivity

2" resolution at top of 0.7-2 GHz radio band

Superresolution with the DSA-2000 for lens finding

Superresolution down to 1" for DSA-2000 enables discovery of more galaxy scale lenses

Not *necessary* for lens finding, but *possible* with modern computer vision and deterministic PSF in the radio

Our work

Forecasting expected lensing yields in DSA-2000, SKA-mid, and VLA all sky surveys, using up to date expected performances

Modeling galaxy, galaxy group, and galaxy cluster lenses

 $\Delta\theta$ > **3** x PSF FWHM (conservative) or $\Delta\theta$ > PSF FWHM (optimistic)

Our work

Forecasting expected lensing yields in DSA-2000, SKA-mid, and VLA all sky surveys, using up to date expected performances

Modeling galaxy, galaxy group, and galaxy cluster lenses

 $\Delta\theta$ > **3** x PSF FWHM (conservative) or $\Delta\theta$ > PSF FWHM (optimistic)

SKA-mid AA*

VLASS

Our work

Forecasting expected lensing yields in DSA-2000, SKA-mid, and VLA all sky surveys, using up to date expected performances

Modeling galaxy, galaxy group, and galaxy cluster lenses

 $\Delta\theta$ > **3** x PSF FWHM (conservative) or $\Delta\theta$ > PSF FWHM (optimistic)

Applications

Dark Matter (Sub)structure Increase sample size by OOMs High res ngVLA

Time-delay Cosmography 100s of lensed time-variable sources

High cadence multiwavelength follow-up

High-redshift Universe Thousands of lenses at $z_{source} > 5$

follow-up

Magnetic fields at cosmological distances and more

Significant Survey Overlap 30,000 deg² footprint

DSA-2000 is a **discovery engine**

Vegetti et al. 2023, Mao et al. 2017, deepsynoptic.org

× 2000