CS 331: Theory of Computing

Problem Set 10

Iowa State University Computer Science Department April 18, 2013

Due by the midnight of April 25, 2013

Problem 1 (20 points)

Let G be undirected and connected graph. A graph is said to be connected if every pair of vertices in the graph are connected by a path. A path is called an Eulerian path if it starts and ends at a same vertex and all edges in G appear on the path exactly once. The Eulerian path problem is defined as follows.

EULERIAN-PATH = $\{\langle G \rangle \mid G \text{ has an Eulerian path }\}$

Prove that EULERIAN-PATH is in P.

Hint: Prove that G has an Eulerian path if and only if every vertex in G has even number of degree, i.e., every vertex is in touch with an even number of edges. One direction is easy. Use induction to prove the other.

Problem 2 (20 points)

Let G be undirected graph whose every edge is associated with an integer (length). The **Traveling Salesman Problem** is defined as follows.

 $TSP = \{ \langle G, k \rangle \mid G \text{ has a Hamiltonian path of length less than } k \}$

Prove that TSP is *NP*-complete.

Hint: Prove that HAMILTON-PATH \leq_P TSP.

Problem 3 (20 points)

A **disqualifier** for a language \mathscr{L} is DTM D, where

 $\mathcal{L} = \{ w \mid D \text{ accepts } \langle w, e \rangle \text{ for some word } e \}.$

D is **polynomial time disqualifier** if D runs in polynomial time in the length of w. A language \mathcal{L} is **polynomially disqualifiable** if it has a polynomial time disqualifier.

Prove that a language is in *coNP* iff it has a polynomial time disqualifier.

Problem 4 (20 points)

A language \mathscr{L} is coNP-complete if

- $\mathcal{L} \in coNP$, and
- for any language $\mathcal{L}' \in coNP$, $\mathcal{L}' \leq_P \mathcal{L}$.

Prove the following statements.

- (10 points) The class coNP is closed under polynomial-time reductions; that is, if $\mathcal{L}_1 \leq_P \mathcal{L}_2$ and $\mathcal{L}_2 \in coNP$, then $\mathcal{L}_1 \in coNP$.
- (10 points) If a *coNP*-complete language \mathscr{L} is in *NP*, then coNP = NP.

Problem 5 (20 points)

Let $P^{\mathscr{L}}$ be the class of languages recognized by polynomial time oracle Turing machines with an oracle for the language \mathscr{L} . Let C be a class of languages. Define $P^{C} = \bigcup_{\mathscr{L} \in C} P^{\mathscr{L}}$; that is, P^{C} is the class of languages recognized by polynomial time oracle Turing machines that use oracles for languages in C.

Prove the following statements.

- (5 points) For any language class C, P^C is closed under complementation; that is, $\mathcal{L} \in P^C$ iff $\overline{\mathcal{L}} \in P^C$.
- (5 points) For any language class C that is closed under complementation, $C \subseteq coNP$ iff $C \subseteq NP$.
- (5 points) $P^P \subseteq P$.
- (5 points) $NP^P \subseteq NP$.

