

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/895,402	07/02/2001	Junichi Nishiyama	011350-279	9965
7590	03/17/2008		EXAMINER	
Platon N. Mandros BURNS, DOANE, SWECKER & MATHIS, L.L.P. P.O. Box 1404 Alexandria, VA 22313-1404			THOMPSON, JAMES A	
			ART UNIT	PAPER NUMBER
			2625	
			MAIL DATE	DELIVERY MODE
			03/17/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 09/895,402	Applicant(s) NISHIYAMA, JUNICHI
	Examiner JAMES A. THOMPSON	Art Unit 2625

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(o).

Status

- 1) Responsive to communication(s) filed on 03 December 2007 and 31 October 2007.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-21 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-21 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 02 July 2001 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/CC)
 Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
- 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION***Continued Examination Under 37 CFR 1.114***

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 03 December 2007 has been entered.

Response to Arguments

2. Applicant's arguments filed 31 October 2007 have been fully considered but they are not persuasive. Firstly, the prior art teaches the presently amended limitations, as set forth in detail in the prior art rejections below. Further, Examiner did provide motivation to combine the references Dellert (USPN 6,154,755) and Shiota (USPN 6,625,334 B1) such that the location/destination data is printed. Specifically, Examiner wrote that the "motivation for doing so would have been to facilitate the order of reprints and make the reprinting process more efficient (column 6, lines 35-44 of Shiota)." Increasing the efficiency of a task for an end-user is certainly a desirable result, and is thus adequate motivation to combine the references.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. **Claims 1-2, 8, 10, 12 and 17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Dellert (US Patent 6,154,755) in view of Shiota (US Patent 6,625,334 B1) and Wang (US Patent 6,069,715).**

Regarding claims 1, 12 and 17: Dellert discloses an image processing device (figure 1 of Dellert) comprising:

- an image reader (figure 1(10) of Dellert) for reading developed photographic film data (column 2, lines 30-33 of Dellert) and generating an image data thereof (column 2, lines 47-51 of Dellert), wherein a file of the image data is given a file name and is registered with a location (array location for each image, which also corresponds to storage location of floppy disc) in a recording media (column 2, lines 38-47 and lines 54-58 of Dellert).
 - a detector (figure 1(14)(portion) of Dellert) for detecting a reading condition in reading the developed photographic film image (column 3, lines 12-22 and column 4, lines 25-34 of Dellert), wherein the reading condition includes a location data identifying the location of the file in the recording media (column 3, lines 12-22 of Dellert). The list of file names of the collection of scanned images is detected (column 4, lines 25-27 of Dellert), the file names given and stored based on the image array order (column 3, lines 12-22 of Dellert). Further, a list of the scanned images that have been rotated, along with the corresponding rotation values, are detected in the file "ROTATION.DAT" if said file is detected (column 4, lines 27-34 of Dellert).
 - an extractor (figure 1(14)(portion) of Dellert) for extracting a specific image data from the image data (column 4, lines 46-50 of Dellert). In order to perform operations, such as the rotation of one or more images, said images have to be selected from out of the set of images (column 4, lines 46-50 of Dellert). Said selected image(s) are therefore extracted from said set of images in order for the rotation and other processing to occur.
 - a generator (figure 1(14)(portion) of Dellert) for generating an index data including the specific image data (column 5, lines 8-13 of Dellert) and a reading condition data (column 5, lines 23-37; and column 6, lines 30-37 of Dellert), wherein the reading condition data includes the location data (column 5, lines 31-37 of Dellert). The reading condition data generated by the apparatus of Dellert are the image objects listed in the image object list (column 5, lines 28-32 of Dellert), location data (such as the file names, which are used in saving the thumbnail and high resolution images in the \THUMB and \IMAGES directories, respectfully) (column 5, lines 31-37 of Dellert), the image titles (column 6, line 32 of Dellert), and the image timestamp (column 6, lines 32-33 of Dellert).
- A computer (figure 1(14) of Dellert) performs the overall image processing after the image data has been scanned in (column 2, lines 36-42 of Dellert). The detector, extractor, and generator correspond to the elements of the computer, along with the corresponding embodied software, that perform the operations of said detector, said extractor, and said generator.

- a printer (figure 1(16) and column 2, lines 41-44 of Dellert) that prints an image in accordance with the index data (figure 2; and column 6, lines 22-24 and lines 30-33 of Dellert).

Dellert does not disclose expressly that said image reader reads in a *document* image; and that the index data includes the location data.

Shiota discloses printing index data on an index printer, wherein the index data includes the location data (column 6, lines 28-35 of Shiota – *file name of the image is the location of the image data*).

Dellert and Shiota are combinable because they are from the same field of endeavor, namely digital image data printing and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include location data in the printed index data, as taught by Shiota. The motivation for doing so would have been to facilitate the order of reprints and make the reprinting process more efficient (column 6, lines 35-44 of Shiota). Therefore, it would have been obvious to combine Shiota with Dellert.

Dellert in view of Shiota does not disclose expressly that said image reader reads in a *document* image.

Wang discloses an image reader (figure 4 of Wang) for reading a document image (column 4, lines 1-4 of Wang).

Dellert in view of Shiota is combinable with Wang because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to scan in document image data, as taught by Wang, instead of developed photographic data, as taught by Dellert. The suggestion for doing so would have been that document sheets are another form of image data which can be scanned (column 2, lines 33-35 of Wang). Therefore, it would have been obvious to combine Wang with Dellert in view of Shiota to obtain the invention as specified in claims 1, 12 and 17.

Further regarding claims 12 and 17: The apparatus of claim 1 performs the steps of the program of claim 12 and the method of claim 17.

Regarding claim 2: Dellert discloses that said specific image data is image data of a specified page of the document (column 4, lines 46-50 of Dellert). The image or images selected are part of a set of images that are scanned in (column 2, lines 36-39 of Dellert), and thus one or more from the plurality of pages of the document taught by Wang (column 3, lines 60-65 of Wang).

Regarding claim 8: Dellert discloses an image handling system (figure 1 of Dellert) comprising an image input device (figure 1(10,14) of Dellert) and a printing device (figure 1(16) and column 2, lines 41-44 of Dellert). Since the computer (figure 1(14) of Dellert) and scanner (figure 1(10) of Dellert) are

electrically connected, as can clearly be seen in figure 1 of Dellert, and said computer performs the overall image processing operations (column 2, lines 36-42 of Dellert), said scanner and said computer can be considered a single device.

Said image input device comprises:

- an image reader (figure 1(10) of Dellert) for reading developed photographic film data (column 2, lines 30-33 of Dellert) and generating an image data thereof (column 2, lines 47-51 of Dellert), wherein a file of the image data is given a file name and is registered with a location (array location for each image, which also corresponds to storage location of floppy disc) in a recording media (column 2, lines 38-47 and lines 54-58 of Dellert).
- a detector (figure 1(14)(portion)) of Dellert) for detecting a reading condition in reading the developed photographic film image (column 3, lines 12-22 and column 4, lines 25-34 of Dellert), wherein the reading condition includes location data identifying the location of the file in the recording media (column 3, lines 12-22 of Dellert). The list of file names of the collection of scanned images is detected (column 4, lines 25-27 of Dellert), the file names given and stored based on the image array order (column 3, lines 12-22 of Dellert). Further, a list of the scanned images that have been rotated, along with the corresponding rotation values, are detected in the file “ROTATION.DAT” if said file is detected (column 4, lines 27-34 of Dellert).
- an extractor (figure 1(14)(portion)) of Dellert) for extracting a specific image data from the image data (column 4, lines 46-50 of Dellert). In order to perform operations, such as the rotation of one or more images, said images have to be selected from out of the set of images (column 4, lines 46-50 of Dellert). Said selected image(s) are therefore extracted from said set of images in order for the rotation and other processing to occur.
- a generator (figure 1(14)(portion)) of Dellert) for generating an index data including the specific image data (column 5, lines 8-13 of Dellert) and a reading condition data (column 5, lines 23-25 and lines 28-32; and column 6, lines 30-33 of Dellert), wherein the reading condition data includes the location data (column 5, lines 31-37 of Dellert). The reading condition data generated by the apparatus of Dellert are the image objects listed in the image object list (column 5, lines 28-32 of Dellert), data related to the destination (such as the file names, which are used in saving the thumbnail and high resolution images in the \THUMB and \IMAGES directories, respectfully) (column 5, lines 31-37 of Dellert), the image titles (column 6, line 32 of Dellert), and the image timestamp (column 6, lines 32-33 of Dellert).

- a transmitting device (figure 1(14)(portion)) of Dellert) for transmitting the index data to said printing device (column 6, lines 26-36 of Dellert).
→ A computer (figure 1(14) of Dellert) performs the overall image processing after the image data has been scanned in (column 2, lines 36-42 of Dellert). The detector, extract-or, generator and transmitting device correspond to the elements of the computer, along with the corresponding embodied software, that perform the operations of said detector, said extractor, said generator, and said transmitting device.

Said printing device comprises:

- a printer (figure 1(16) of Dellert) that prints an image in accordance with the received index data (figure 2 and column 6, lines 22-24 and lines 30-33 of Dellert).
- a receiving device for receiving the index data is inherent in said printing device since, if said index data is not received, it is not possible for said printing device to print said index data.

Dellert does not disclose expressly that said image reader reads in a *document* image; and that the index data includes the location data.

Shiota discloses printing index data on an index printer, wherein the index data includes the location data (column 6, lines 28-35 of Shiota – *file name of the image is the location of the image data*).

Dellert and Shiota are combinable because they are from the same field of endeavor, namely digital image data printing and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include location data in the printed index data, as taught by Shiota. The motivation for doing so would have been to facilitate the order of reprints and make the reprinting process more efficient (column 6, lines 35-44 of Shiota). Therefore, it would have been obvious to combine Shiota with Dellert.

Dellert in view of Shiota does not disclose expressly that said image reader reads in a *document* image.

Wang discloses an image reader (figure 4 of Wang) for reading a document image (column 4, lines 1-4 of Wang).

Dellert in view of Shiota is combinable with Wang because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to scan in document image data, as taught by Wang, instead of developed photographic data, as taught by Dellert. The suggestion for doing so would have been that document sheets are another form of image data which can be scanned (column 2, lines 33-35 of

Wang). Therefore, it would have been obvious to combine Wang with Dellert in view of Shiota to obtain the invention as specified in claim 8.

Regarding claim 10: Dellert discloses an image data handling system (figure 1 of Dellert) comprising an image input device (figure 1(10,14(portions),16) of Dellert) and a data processing device (figure 1(14(portions)) of Dellert). The computer (figure 1(14) of Dellert), scanner (figure 1(10) of Dellert), and printer (figure 1(16) and column 2, lines 41-44 of Dellert) are electrically connected, as can clearly be seen in figure 1 of Dellert, and interact with one another as a single overall system, as clearly demonstrated by the interconnected functions described in column 2, lines 30-43 of Dellert. Said computer performs the overall image processing operations (column 2, lines 36-42 of Dellert). The image input device can therefore be considered as said scanner, said printer, and the portions of said computer, along with the corresponding embodied software, that receive, detect, and transmit the image data. The data processing device can be considered as the portions of said computer, along with the corresponding embodied software, that perform the various data processing operations.

Said image input device comprises:

- an image reader (figure 1(10) of Dellert) for reading developed photographic film data (column 2, lines 30-33 of Dellert) and generating an image data thereof (column 2, lines 47-51 of Dellert), wherein a file of the image data is given a file name and is registered with a location (array location for each image, which also corresponds to storage location of floppy disc) in a recording media (column 2, lines 38-47 and lines 54-58 of Dellert).
- a detector (figure 1(14(portion)) of Dellert) for detecting a reading condition in reading the developed photographic film image (column 3, lines 12-22 and column 4, lines 25-34 of Dellert), wherein the reading condition includes a location data identifying the location of the file in the recording media (column 3, lines 12-22 of Dellert). The list of file names of the collection of scanned images is detected (column 4, lines 25-27 of Dellert), the file names given and stored based on the image array order (column 3, lines 12-22 of Dellert). Further, a list of the scanned images that have been rotated, along with the corresponding rotation values, are detected in the file "ROTATION.DAT" if said file is detected (column 4, lines 27-34 of Dellert).
- a transmitting device (figure 1(14(portion)) of Dellert) for transmitting the read image data and a reading condition to said printing device (column 6, lines 26-36 of Dellert), wherein the reading condition data includes the data related to the location (column 5, lines 31-37 of Dellert). The reading condition data generated by the apparatus of Dellert are the image objects listed in the image object list (column 5, lines 28-32 of Dellert), data related to the location (such as the file

names, which are used in saving the thumbnail and high resolution images in the \THUMB and \IMAGES directories, respectfully) (column 5, lines 31-37 of Dellert), the image titles (column 6, line 32 of Dellert), and the image timestamp (column 6, lines 32-33 of Dellert).

- A computer (figure 1(14) of Dellert) performs the overall image processing operations (column 2, lines 36-42 of Dellert). The detector and transmitting device correspond to the elements of the computer, along with the corresponding embodied software, that perform the operations of said detector and said transmitting device.
- a printer (figure 1(16) of Dellert) that prints an image in accordance with the read image data and the reading condition data (figure 2 and column 6, lines 22-37 of Dellert).

Said data processing device comprises:

- a receiving device (figure 1(14)(portion) of Dellert) for receiving the image data and the reading condition data (column 2, lines 36-44 and lines 53-58 of Dellert).
- an extractor (figure 1(14)(portion)) of Dellert) for extracting a specific image data from the image data (column 4, lines 46-50 of Dellert). In order to perform operations, such as the rotation of one or more images, said images have to be selected from out of the set of images (column 4, lines 46-50 of Dellert). Said selected image(s) are therefore extracted from said set of images in order for the rotation and other processing to occur.
- a generator (figure 1(14)(portion)) of Dellert) for generating an index data including the specific image data (column 5, lines 8-13 of Dellert) and the reading condition data (column 5, lines 23-25 and lines 28-32; and column 6, lines 30-33 of Dellert).
- a transmitting device (figure 1(14)(portion)) of Dellert) for transmitting the index data to said printing device (column 6, lines 26-36 of Dellert).

Dellert does not disclose expressly that said image reader reads in a *document* image; and that the index data includes the data related to the location.

Shiota discloses printing index data on an index printer, wherein the index data includes the data related to the location (column 6, lines 28-35 of Shiota – *file name of the image is the location of the image data*).

Dellert and Shiota are combinable because they are from the same field of endeavor, namely digital image data printing and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include data related to the image data location in the printed index data, as taught by Shiota. The motivation for doing so would have been to facilitate the order of reprints

Art Unit: 2625

and make the reprinting process more efficient (column 6, lines 35-44 of Shiota). Therefore, it would have been obvious to combine Shiota with Dellert.

Dellert in view of Shiota does not disclose expressly that said image reader reads in a *document* image.

Wang discloses an image reader (figure 4 of Wang) for reading a document image (column 4, lines 1-4 of Wang).

Dellert and Wang are combinable because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to scan in document image data, as taught by Wang, instead of developed photographic data, as taught by Dellert. The suggestion for doing so would have been that document sheets are another form of image data which can be scanned (column 2, lines 33-35 of Wang). Therefore, it would have been obvious to combine Wang with Dellert to obtain the invention as specified in claim 10.

5. Claims 3-4, 6, 9, 11 and 13-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Dellert (US Patent 6,154,755) in view of Shiota (US Patent 6,625,334 B1), Wang (US Patent 6,069,715), and Takayanagi (US Patent 5,680,226).

Regarding claims 3 and 13: Dellert in view of Shiota and Wang does not disclose expressly that said reading condition data includes at least one of the items of document size, number of pages, reading mode, resolution, and image quality data.

Takayanagi discloses that said reading condition data (column 6, lines 21-22 of Takayanagi) includes at least one of the items of document size (column 6, lines 26-30 of Takayanagi), number of pages (column 6, lines 30-31 of Takayanagi), reading mode (column 6, lines 24-25 of Takayanagi), resolution (column 6, lines 22-23 of Takayanagi), and image quality data (column 6, lines 23-24 and line 31 of Takayanagi).

Dellert in view of Shiota and Wang is combinable with Takayanagi because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include the items of reading condition data taught by Takayanagi. The motivation for doing so would have been so that the document data can be properly printed using said reading condition data (column 6, lines 32-34 of Takayanagi). Therefore, it would have been obvious to combine Takayanagi with Dellert in view of Shiota and Wang to obtain the invention as specified in claims 3 and 13.

Regarding claims 4 and 14: Dellert discloses that the location data is defined by a name of an image data file (column 4, lines 25-29 of Dellert).

Regarding claims 6, 9, 11 and 15: Dellert in view of Shiota and Wang does not disclose expressly a storage device for storing the read image data.

Takayanagi discloses a storage device (figure 2(80) of Takayanagi) for storing the read image data (column 4, lines 29-32 of Takayanagi).

Dellert in view of Shiota and Wang is combinable with Takayanagi because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to store the image data that has been scanned in on a storage medium, as taught by Takayanagi. The motivation for doing so would have been to be able to print multiple copies of a document from a single scanning (column 4, lines 30-32 of Takayanagi). Therefore, it would have been obvious to combine Takayanagi with Dellert in view of Shiota and Wang to obtain the invention as specified in claims 6, 9, 11 and 15.

6. Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Dellert (US Patent 6,154,755) in view of Shiota (US Patent 6,625,334 B1), Wang (US Patent 6,069,715), Takayanagi (US Patent 5,680,226), and Parry (US Patent 6,148,331).

Regarding claim 5: Dellert in view of Wang, Shiota and Takayanagi does not disclose expressly that said location data is defined by URL.

Parry discloses location data that is defined by URL (column 6, lines 45-49 of Parry).

Dellert in view of Shiota, Wang and Takayanagi is combinable with Parry because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use a URL as the location data, as taught by Parry. The motivation for doing so would have been to provide rapid access to a website containing the image information (column 3, lines 45-50 of Parry). Therefore, it would have been obvious to combine Parry with Dellert in view of Shiota, Wang and Takayanagi to obtain the invention as specified in claim 5.

7. Claims 7 and 16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Dellert (US Patent 6,154,755) in view of Shiota (US Patent 6,625,334 B1), Wang (US Patent 6,069,715), and Saukkonen (US Patent 6,011,590).

Regarding claims 7 and 16: Dellert discloses that the computer (figure 1(14) of Dellert) receives the read image data (column 2, lines 36-39 of Dellert). Therefore, it is inherent that some form of transmitting device is included as part of the image processing device (figure 1 of Dellert) since, without some form of transmitting device, it is impossible for said computer to receive the read image data that is to be processed.

Dellert in view of Shiota and Wang does not disclose expressly that said computer includes a storage device connected thereto via a network.

Saukkonen discloses a storage device (figure 1(20) of Saukkonen) connected thereto via a network (column 4, lines 2-6 of Saukkonen).

Dellert in view of Shiota and Wang is combinable with Saukkonen because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to transmit the read image data to said computer, as taught by Dellert, said computer containing the storage device connected thereto via a network, as taught by Saukkonen. The motivation for doing so would have been that a plurality of receivers can access the data (column 4, lines 2-4 of Saukkonen). Therefore, it would have been obvious to combine Saukkonen with Dellert in view of Shiota and Wang to obtain the invention as specified in claims 7 and 16.

8. Claims 18-21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Dellert (US Patent 6,154,755) in view of Shiota (US Patent 6,625,334 B1) and Takayanagi (US Patent 5,680,226).

Regarding claim 18: Dellert discloses an image data handling device (figure 1 of Dellert) comprising:

- an input device (figure 1(10) of Dellert) for inputting an image data (column 2, lines 30-33 of Dellert), wherein a file of the image data is given a file name and is registered with a location (array location for each image, which also corresponds to storage location of floppy disc) in a recording media (column 2, lines 38-47 and lines 54-58 of Dellert).
- a generating device (figure 1(14) of Dellert) for generating an index data (column 5, lines 8-13 of Dellert) by acquiring a generating condition (column 3, lines 12-22 and column 4, lines 25-34 of Dellert) when the image data is generated (column 5, lines 23-25 and lines 28-32; and column 6,

lines 30-33 of Dellert), wherein the generating condition includes data related to the location (column 3, lines 12-22 of Dellert), generating reduced image data of the image data (column 2, lines 38-42 of Dellert), and combining the generating condition and the reduced image data (column 5, lines 23-25 and lines 28-32; and column 6, lines 30-33 of Dellert). The generating condition data generated by the apparatus of Dellert are the file names given and stored based on the image array order (column 3, lines 12-22 of Dellert), the list of the scanned images that have been rotated, along with the corresponding rotation values, which are detected in the file "ROTATION.DAT" if said file is detected (column 4, lines 27-34 of Dellert), the image objects listed in the image object list (column 5, lines 28-32 of Dellert), the image titles (column 6, line 32 of Dellert), and the image timestamp (column 6, lines 32-33 of Dellert).

- an output device (figure 1(16) of Dellert) for outputting the generated index data (figure 2; and column 6, lines 22-24 and lines 30-33 of Dellert).

Dellert does not disclose expressly a storage device for storing the inputted image data; and that the index data includes the data related to the location.

Shiota discloses printing index data on an index printer, wherein the index data includes the data related to the location (column 6, lines 28-35 of Shiota – *file name of the image is the location of the image data*).

Dellert and Shiota are combinable because they are from the same field of endeavor, namely digital image data printing and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include data related to the image data destination in the printed index data, as taught by Shiota. The motivation for doing so would have been to facilitate the order of reprints and make the reprinting process more efficient (column 6, lines 35-44 of Shiota). Therefore, it would have been obvious to combine Shiota with Dellert.

Dellert in view of Shiota does not disclose expressly a storage device for storing the inputted image data.

Takayanagi discloses a storage device (figure 2(80) of Takayanagi) for storing inputted image data (column 4, lines 29-32 of Takayanagi).

Dellert in view of Shiota is combinable with Takayanagi because they are from the same field of endeavor, namely digital image data processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to store the image data that has been scanned in on a storage medium, as taught by Takayanagi. The motivation for doing so would have been to be able to print multiple copies of a document from a single scanning (column 4, lines 30-32 of Takayanagi). Therefore,

it would have been obvious to combine Takayanagi with Dellert in view of Shiota to obtain the invention as specified in claim 18.

Regarding claim 19: Dellert in view of Shiota does not disclose expressly that said reading condition data includes at least one of the items of document size, number of pages, reading mode, resolution, and image quality data.

Takayanagi discloses that said reading condition data (column 6, lines 21-22 of Takayanagi) includes at least one of the items of document size (column 6, lines 26-30 of Takayanagi), number of pages (column 6, lines 30-31 of Takayanagi), reading mode (column 6, lines 24-25 of Takayanagi), resolution (column 6, lines 22-23 of Takayanagi), and image quality data (column 6, lines 23-24 and line 31 of Takayanagi).

Dellert in view of Shiota is combinable with Takayanagi because they are from the same field of endeavor, namely digital image data scanning and processing. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include the items of reading condition data taught by Takayanagi. The motivation for doing so would have been so that the document data can be properly printed using said reading condition data (column 6, lines 32-34 of Takayanagi). Therefore, it would have been obvious to combine Takayanagi with Dellert in view of Shiota to obtain the invention as specified in claim 19.

Regarding claim 20: Dellert discloses that said input device is a scanner (column 2, lines 30-33 of Dellert).

Regarding claim 21: Dellert discloses that said output device is a printer (column 2, lines 41-44 of Dellert).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to James A. Thompson whose telephone number is (571)272-7441. The examiner can normally be reached on 8:30AM-5:00PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Edward L. Coles can be reached on 571-272-7402. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2625

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/James A Thompson/
Examiner, Art Unit 2625
01 March 2008