EXPERIMENT 5

Measurement of Self Inductance by Maxwell Bridge

<u>AIM</u>

To determine the self-inductance of an unknown coil.

Theory

This bridge circuit measures an inductance by comparison with variable standard self-inductance. The connections for balance condition is shown in Fig. 1.

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

Let, L_1 = Unknown Self-Inductance of resistance R_1 ,

 L_2 = variable inductance of fixed resistance r_2 ,

R₂= variable resistance connected in series with inductor L₂,

R₃,R₄= known non inductive resistances,

At balance condition,

$$(R_1+j\omega L_1)*R_4=(R_2+r_2+j\omega L_2)*R_3\dots(1)$$

Equating both the real and imaginary parts in eq. (1) and separating them,

$$L_1=(rac{R_3}{R_4})L_2\ldots(2)$$

$$R_1 = (rac{R_3}{R_4})*(R_2 + r_2)\dots(3)$$

Resistors R_3 and R_4 are normally a selection of values from 10, 100, 1000 and 10,000 Ω . r_2 is a decade resistance box.

PROCEDURE

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

- 1. Apply Supply voltage from the signal generator with arbitrary frequency. (V = 3v). Also set the unknown Inductance value from 'Set Inductor Value' tab.
- 2. Then switch on the supply to get millivoltmeter deflection.
- 3. Choose the values of L_2 , r_2 , R_2 , R_3 and R_4 from the inductance and resistance box. Vary the values to some particular values to achieve "NULL".
- 4. Observe the millivoltmeter pointer to achieve "NULL".
- 5. If "NULL" is achieved, switch to 'Measure Inductor Value' tab and click on 'Simulate'. Observe the calculated values of unknown inductance (L₁) and it's internal resistance (R₁) of the inductor.
- 6. Also observe the Dissipation factor of the unknown inductor which is defined as

$$rac{\omega L}{R} \ Where, \omega = 2\pi f$$

SIMULATION

CASE 2 :AIR CORE

CASE 2 : IRON CORE

RESULT

Thus, the unknown inductance is found using maxwell bridge.