

Estruturas de Dados Lineares

Introdução à Análise de Algoritmos (cont.)

Compreensão do "if"

```
Para n < 10, temos o melhor caso com T(n) = 2 \Rightarrow O(1)
Para n >= 10, temos o pior caso com T(n) = 2n + 2 \Rightarrow O(n)
```

Observa-se que o comando "if" poderá alterar a classe de complexidade e, portanto, deve ser definido quais os casos de análise.

Algoritmo Constante O(1)

```
def max(a: int, b: int) -> int:
   return a if a > b else b
                      T(n) = 2 = O(1)
def somar1ate10() -> int:
   soma: int = 0
   for i in range(1, 11):
      soma += i
                                  10
   return soma
                     T(n) = 23 = 0(1)
```

Observa-se que um algoritmo de ordem constante pode-se utilizar de instruções de repetição, como é o caso do segundo algoritmo.

Estamos definindo que o pior caso é quando o elemento está na folha em uma BST cheia, ou seja, quando atingimos 1. Temos:

$$\frac{n}{b^h} = 1 \Longrightarrow n = b^h \Longrightarrow \mathbf{h} = \lfloor \log_b(n) \rfloor + 1$$
 (log é função inversa da exponencial)

Pesquisando o número 7 resultará em 4 acessos, logo: $\lfloor log_b(n) \rfloor + 1 = \lfloor \log_2(15) \rfloor + 1 = 4$ acessos

```
def imprimir pulando(n: int) -> None:
    i: int = 1
    while i < n: log_2(n) + 1
        print(i) log_2(n)
        i *= 2 log_2(n)
                T(n) \approx 3\log_2(n) + 2 = O(\log(n))
```

i	n = 8	n = 10
1	imprime 1 3	imprime 1
2	imprime 2	imprime 2
4	imprime 4	imprime 4
8	sai do for	imprime 8
16		sai do for

	i *= 2	
1	2^0	
2	2^1	
4	2 ²	
8	2 ³	
	2 ^k	
$i \ge n \Rightarrow 2^k \ge n \Rightarrow k = \log_2(n)$		

Observa-se que $log_2(8) = 3$ e $log_2(10) = 3.32$. Portanto, o 3.32 não representa as 4 iterações quando o n = 10. Neste caso, quando o cálculo do log resultar em decimal, devemos utilizar a função teto (ceiling). Ficará $T(n) = 3 \lceil \log_2(n) \rceil + 2$.

i = 8	i /= 2
8	8/20
4	8/21
2	8/2 ²
1	8/23
	n/2 ^k

 $i < 1 \Rightarrow n/2^k < 1 \Rightarrow n = 2^k \Rightarrow k = \log_2(n)$

Princípio da pesquisa binária!

Observa-se que o algoritmo imprime o número em ordem decrescente e, por isso, possui limites diferentes do algoritmo anterior. Neste caso, usaremos a função floor (piso) para arredondar o resultado do logaritmo. Ficará $T(n) = 3 \lfloor \log_2(n) \rfloor + 5$.

Algoritmo Linear O(n)

```
def imprimir_linear_decrescente(a: np.array) -> None:
    for elm in reversed(a): n + 1
        print(elm)
                        T(n) = 2n + 1 = O(n)
def imprimir_pulando(a: np.array) -> None:
    for elm in a[::2]: n / 2 + 1
        print(elm) n / 2
                        T(n) = n + 1 = O(n)
              Metade da função de tempo das anteriores!
             Importante: omitida a função teto em n / 2.
```

```
def imprimir_linearitmico(n: int) -> None:
     for i in range(n):
          j: int = 1
                                              n
          while j < n:
                                              n.(log_2(n) + 1) \Rightarrow nlog_2(n) + n
               print(j, end= ' ') n.log_2(n) \Rightarrow nlog_2(n)
               j *= 2
                                              n.\log_2(n) \Rightarrow n\log_2(n)
          print()
                     T(n) \approx 3n\log_2(n) + 4n + 1 = O(n\log(n))
                      Observar a função teto no logaritmo.
```

Algoritmo Quadrático O(n²)

$$T(n) = 2n^2 + 3n + 1 = O(n^2)$$

Importante: a classe/ordem considera o polinômio de maior grau.
Considera-se o exemplo acima como uma matriz quadrática.

Algoritmo Quadrático O(n²)

$$T(n) = n^2 + 2n + 1 = O(n^2)$$

i	j	print(i)
0	1 iteração	-
1	2 iterações	1
2	3 iterações	22
3	4 iterações	333
4	5 iterações	4444
	$PA=1+2+3++n=\frac{n(n+1)}{2}$	$PA=1+2+3++n-1=\frac{n(n-1)}{2}$

Algoritmo Exponencial O(2ⁿ)

<u>Problema:</u> todos os subconjuntos de um conjunto. <u>Importante:</u> $2^3 \Rightarrow 8$ subconjuntos. Para 4 caracteres, seriam $2^4 \Rightarrow 16$ subconjuntos.

Algoritmo Fatorial O(n!)

Recursion Tree for Permutations of String "ABC"

Problema: permutações (todas combinações) de dígitos.
Cálculo: 3! ⇒ 6 combinações. Para 4 letras, seriam 4!
⇒ 24 combinações.

Outras Classes O(log(n)²) – Polilogaritmo

$$T(n) \approx 3\log_2(n)^2 + 5\log_2(n) + 2 = O(\log(n)^2)$$

Observa-se que a classe não está listada nas classes padrões. Porém, destaca-se que está acima de $O(\log(n))$ e abaixo de O(n). Ainda, observar a função teto no logaritmo.

<u>Importante</u>: cuidar para não confundir a exponenciação de logaritmos, pois o comportamento quadrático é sobre o logaritmo e não sobre o "n".

Outras Classes $O(\sqrt{n})$ – Sublinear

Observa-se que a classe não está listada nas classes padrões. Porém, destaca-se que está acima de $O(\log(n))$ e abaixo de O(n).

Outras Classes $O(\log \log(n))$ – Logaritmo duplo

$$T(n) = 3[log_2[log_2(n)]] + 2 = 0(loglog(n))$$

Observa-se que a classe não está listada nas classes padrões. Porém, destaca-se que está acima de O(1) e abaixo de $O(\log(n))$. Estamos considerando apenas a análise de complexidade do segundo "for", destacado em amarelo.

Resumo

```
for i in range(n): \Rightarrow O(n)
for i in range(0, n, 2): \Rightarrow n / 2 \Rightarrow O(n)
for i in range(0, n, 10): \Rightarrow n / 10 \Rightarrow O(n)
for i in reversed(range(n)): \Rightarrow O(n)
 while i < n: \Rightarrow \log_2(n) \Rightarrow O(\log(n))
     i *= 2
 while i < n: \Rightarrow \log_3(n) \Rightarrow O(\log(n))
     i *= 3
 while i >= 1: \Rightarrow \log_2(n) \Rightarrow O(\log(n))
     i //= 2
                                         b^k = n \to \log_b n = k
                             P.A = 1 + 2 + 3 + \dots + n \rightarrow S_n = \frac{n(n+1)}{2}
                                         [3.5] = 4 e |3.5| = 3
                                     \log^k n = \log(n)^k = (\log(n))^k
```

Referências Bibliográficas

Referências Bibliográficas

Abdul Bari.

https://www.youtube.com/channel/UCZCFT11CWBi3MHNIGf019nw