"And where a mathematical reasoning can be had, it is as great a folly to make use of any other, as to grope for a thing in the dark, when you have a candle standing by you" – John Arbuthnot, On The Laws of Chance

Definition 3.1: A diagnostic problem P is a 4-tuple $\langle D, M, C, M^+ \rangle$ where $D = \{d_1, d_2, \ldots, d_n\}$ is a finite, non-empty set of objects, called disorders, $M = \{m_1, m_2, \ldots, m_n\}$ is a finite, non-empty set of objects called manifestations, and $C \subseteq D \times M$ is a relation with domain(C) = D and range(C) = M, called causation, and $M^+ \subseteq M$ is a distinguished subset of M which is said to be **present**.

Definition 3.2: For any element $d_i \in D$ and $m_j \in M$ in a diagnostic problem $\langle D, M, C, M^+ \rangle$, $effects(d_i) = \{m_j \mid \langle d_i, m_j \rangle \in C\}$, the set of objects directly caused by d_i , and $causes(m_j) = \{d_i \mid \langle d_i, m_j \rangle \in C\}$, the set of objects which can directly cause m_j

Definition 3.3: For any $D_I \subseteq D$ and $M_J \subseteq M$ in a diagnostic problem $\langle D, M, C, M^+ \rangle$, $effects(D_I) = \bigcup_{d_i \in D_I} effects(d_i)$, and $causes(M_J) = \bigcup_{m_j \in M_J} causes(m_j)$

Thus, for example, the effects of a set of disorders are just the union ("sum") of effects of individual disorders in the set.

Definition 3.4: The set $D_I \subseteq D$ is said to be a *cover* of $M_J \subseteq M$ if $M_J \subseteq effects(D_I)$

Definition 3.5: A set $E \subseteq D$ is said to be an *explanation* of M^+ for a problem $P = \langle D, M, C, M^+ \rangle$ if E covers M^+ and E satisfies a given parsimony condition.

Definition 3.6:

- 1. A cover, D_I of M_J is said to be *minimum* if its cardinality is smallest among all covers of M_J .
- 2. A cover, D_I of M_J is said to be *irredundant* if none of its proper subsets is also a cover of M_J . It is said to be *redundant* otherwise.
- 3. A cover, D_I of M^+ is said to be *relevant* if it is a subset of $causes(M^+)$; it is *irrelevant* otherwise.

Definition 3.7: The *solution* to a diagnostic problem $P = \langle D, M, C, M^+ \rangle$ designated Sol(P) is the set of all explanations of M^+ .

Lemma 3.1: TBD

Lemma 3.2: TBD

Lemma 3.3: TBD

Thereom 3.4: TBD

Lemma 3.5: TBD

Lemma 3.6: TBD

Lemma 3.7: TBD

Thereom 3.8: TBD

Lemma 3.9: TBD

Lemma 3.10: TBD

Definition 3.8: TBD

Definition 3.9: TBD

Definition 3.10: Let $G_I = (g_1, g_2, \dots, g_n)$ be a generator and let $H_1 \subseteq D$ where $H_1 \neq \theta$.

Then $Q=\{Q_k|Q_k \text{ is a generator }\}$ is a division of G_I by H_1 if for all k, $1< k< n,\ Q_k=(q_{k1},q_{k2},\ldots,q_{kn})$ where

$$\begin{cases} g_j - H_1, & \text{if } j < k, \\ g_j \cap H_1, & \text{if } j = k, \\ g_j & \text{if } j > k \end{cases}$$

Definition 3.11:

Lemma 3.11:

Definition 3.12:

Lemma 3.12:

Definition 3.13:

Lemma 3.13:

Definition 3.14:

Lemma 3.14:

Definition 3.15:

Lemma 3.15:
Lemma 3.16:
Lemma 3.17:
Lemma 3.18:
Thereom 3.19:
Definition 3.16:
Lemma 3.20:
Definition 3.17:
Lemma 3.21:
Definition 3.18:
Lemma 3.22:
Thereom 3.23:
Definition 3.19:
Definition 3.20:

Thereom 3.25: