Machine Learning, Bias, and Hype

Noah Smith

Professor of Computer Science & Engineering, University of Washington & Senior Research Manager, Allen Institute for Artificial Intelligence nasmith@cs.washington.edu noah@allenai.org @nlpnoah

Outline

- 1. Basic introduction to machine learning
- 2. Bias in machine learning
- 3. Inoculation against AI hype

output

Classifier

input

shape

"blicket" or "forg"

label

Supervised Learner

labeled examples

Some Secrets about Supervised Learning

- The data matter a lot
- How we represent the data as an "input" matters a lot
- Sources of error in generalizing to new (non-training) examples:
 - Flaws in our representation of the problem ("irreducible")
 - Assumptions made by a learning algorithm ("bias")
 - Randomness/noise in the data ("variance")
- There is a **tradeoff** between bias and variance!

On Bias

- Bias is prejudice or preference held prior to exposure to evidence (held by a human or a program)
- Learners cannot generalize without (inductive) bias!
- Put another way: if you eliminate all bias, your model will be extremely *flexible* and will tend to be extremely sensitive to the particular training instances.
 - Result: higher variance, unless there's "enough" data

Examples of Bias

Input	Output	Result
image of tank	American or Russian?	clear/blurry
tweet	abusive?	AAVE
speech stream	sequence of words	only worked for men
details about person convicted of a crime	sentence length	longer sentences for minorities
two English sentences	semantic relationship (entailment, contradiction,)	"cat" → contradiction
product reviews	sentiment of author	fails on political speech

Where does bias come from?

- 1. The real-world process that produced the labels, or the data sample, might be biased.
 - Just because something comes from data, that doesn't mean it's "fair" or "unbiased"!
- 2. The design/definition of the task might encode bias.
- 3. The design of the program itself might encode bias.
- 4. Deployed systems that affect their own future inputs can create feedback loops and exacerbate their own biases.

Disparate Impact

- US law (hiring and housing): 80% rule
 Informally: your rate of hiring women (for instance) must be at least 80% of your rate of hiring men.
- Can we just hide the sex attribute from the learner?

No!

- There are many alternative definitions of fairness.
- Open question: can we guarantee high accuracy and still be unbiased?

We aren't aware of all the biases!

- Typically we measure the **accuracy** of learned programs: what proportion of inputs do they correctly label, in a held out test set?
 - Sometimes we look at accuracy for particular subcategories.
- We don't always know which biases to look for!

A translation problem

cognitive ...
understanding ...
neural ...
attention ...
intelligence ...
learning ...

Tips

- ✓ "Human level performance" has a very narrow meaning
- √ "95% accuracy" was measured only on a specific type of input
- ✓ Ask about the data and computation requirements (i.e., cost)
- ✓ Researchers' benchmarks are not real-world systems
- ✓ Do not trust anthropomorphic descriptions of systems

Learn More

- A Course in Machine Learning, by Hal Daumé III. http://ciml.info
- CSE 416 or 446