Sprawozdanie

Jakub Kleszcz	Informatyka Techniczna
Lab06	Grupa projektowa nr 2

1. Porównaj naprężenia von Misesa:

• Pierwsza belka b=100mm, h=150mm

• Druga belka b=150mm, h=100mm

Ceownik

Dwuteownik

• Wartości maksymalne naprężenia von Misesa:

	Maksymalne
	naprężenie
Pierwsza belka	2,003e+08
Druga belka	3,002e+08
Ceownik	2,478e+08
Dwuteownik	1,378e+08

2. Zdefiniuj wykres współczynnika bezpieczeństwa w oparciu o max naprężenie zredukowane wg Misesa oraz wytrzymałość graniczną:

• Pierwsza belka b=100mm, h=150mm

• Druga belka b=150mm, h=100mm

Ceownik

Dwuteownik

3. Zweryfikuj bezpieczeństwo projektu. Jako wartość graniczną współczynnika bezpieczeństwa przyjmij 2.5:

	Maksymalne
	naprężenie
Pierwsza belka	1,997
Druga belka	1,333
Ceownik	1,614
Dwuteownik	2,9

Jak możemy zauważyć jedynie dwuteownik osiąga współczynnik bezpieczeństwa **2,9** który jest powyżej naszej granicznej wartości **2,5**.

4. Która z belek ma większą wytrzymałość i od czego ona zależy?

Największą wytrzymałość wśród 4 belek ma **dwuteownik**. Konstrukcja dwuteownika może być bardziej efektywna pod względem rozkładu naprężeń. Wystające płyty boczne mogą przeciwdziałać odkształceniom i zwiększać sztywność belki, co prowadzi do lepszej wytrzymałości.