

See powerpoint PDF for background information

Place to get code for activity - run python in jupyter notebook:

https://mybinder.org/v2/gh/jennifer-bio/2021_viralTissueWorkshop/HEAD

Worksheet

- Before you start running code in the jupyter notebook
- 1. Think about the parameter INFECT_PROB, which stands for 'infection probability':
 - a. If **INFECT_PROB** is set to 0, what would happen to the healthy cells next to a Viral Assembly (VA) cell? Or the healthy cells next to a Viral Release (VR) cell?

b. If **INFECT_PROB**is set to 1, what would happen to the healthy cells next to a Viral Assembly (VA) cell? Or the healthy cells next to a Viral Release (VR) cell?

_					
Diin	cimi	lation	200	/1011	121176
Кин	31111	110111111	and	V 1.5 U	anze

imulation and visualize
When you run the below code how many times do you run one_time_step(tissue, infect_prob)? n_time_steps = 30 tissue_frames = t_time_step(n_time_steps, tissue, infect_prob = INFECT_PROB)
Once you have made your first movie, think about the image a. What do the legend colors represent?
 Describe what you see happen over time in the animation: what is the end state and how did it get there
Run the simulation again and change the value of INFECT_PROB a. What happens if INFECT_PROB = 0.05?
b. What happens if INFECT_PROB = 0.95 ?

5.		would happen if you double the value of max_starting_infected? Note that the actual number of starting infected cells is a random number within the range 0 to max_starting_infected. So try running the simulation 3 or more times. How does max_starting_infected influence the number of starting infected
	u.	cells?
	b.	How does the <u>number of starting infected cells change</u> the simulation?
	Before	with immune system over time you run the final cell in this section to generate the simulation, what do you t will happen? How will this be different than the previous simulation?
7.		the simulation and change the n_immune_recruited value What happens when you change n_immune_recruited to 0 ?
	b.	What happens when you change n_immune_recruited to 10 ?

8.	What do you think could be some reasons that different people have different immune response levels?
9.	If you were to simulate the effect of the individual having had a vaccine, how would the immune system behavior change?
	questions . What is one biological feature/behavior that you learned about today, or already knew about, which was not represented in these simulations?
11	. Do you think all viruses would behave the same as in our simulations? Can you think of any which might behave differently?
	have any comments or suggestions for running this workshop in the future please send a chat message to the speaker.

Additional Resources

Download code for future: https://github.com/jennifer-bio/2021_viralTissueWorkshop/

Interesting things to learn and some places to go after conference to continue learning:

Background knowledge related to this activity

Cell biology

Viruses in people

Short article - immune system
 https://www.thepartnershipineducation.com/resources/immune-system

Full course
 https://www.edx.org/course/viruses-how-to-beat-them-cells-immunity-vaccines

Technical skills - shares skills with data science

- Computer coding
 - https://www.codecademy.com/
 - o https://www.dataquest.io
 - o Edx a few course examples I have not looked into
 - https://www.edx.org/course/programming-for-everybody-getting-st arted-with-pyt
 - https://www.edx.org/course/python-basics-for-data-science
 - Partial course available online for introduction to python: https://www.cs.hmc.edu/twiki/bin/view/CS5 and with biology motivated problems: https://www.cs.hmc.edu/twiki/bin/view/CS5Green (textbook completes the information)
- Statistics
 - StatQuest with Josh Stramer: https://www.youtube.com/user/joshstarmer

