Machine Learning et Intelligence Artificielle

Introduction, concepts et techniques classiques

Introduction à l'Intelligence artificielle

New chat story is temporarily unavailable. We're working to restore this feature as soon as possible. **ChatGPT** Examples Capabilities Limitations "Explain quantum computing in May occasionally generate Remembers what user said simple terms" → earlier in the conversation incorrect information "Got any creative ideas for a 10 Allows user to provide follow-May occasionally produce year old's birthday?" → up corrections harmful instructions or biased content "How do I make an HTTP Trained to decline inappropriate request in Javascript?" → requests Limited knowledge of world and events after 2021 Upgrade to Plus NEW Dark mode Updates & FAQ Log out ChatGPT Mar 14 Version. Free Research Preview. Our goal is to make Al systems more natural and safe to interact with. Your feedback will help us improve.

Des technologies qui explosent depuis déjà plusieurs années

Une définition pourtant relativement vague

"L'IA est l'ensemble des théories et des techniques mises en oeuvre afin de réaliser des machines capables de simuler l'intelligence humaine"

Dictionnaire Larousse

Le Machine Learning : une sous-partie de l'Intelligence Artificielle

Le Machine Learning : une sous-partie de l'Intelligence Artificielle

Qu'est-ce que le Machine Learning (Apprentissage Automatique) ?

Apprentissage automatique

Nombre d'occurence du mot "estuaire"

Apprentissage automatique

Nombre d'occurence du mot "gratuit"

Nombre d'occurence du mot "estuaire"

Apprentissage automatique

Nombre d'occurence du mot "gratuit" Classification et régression

La classification

Ou comment ranger des échantillons dans des cases

La régression

Ou comment prédire la valeur d'une quantité inconnue

Position	Experience	Skill	Country	City	Salary (\$)
Developer	0	1	USA	New York	103100
Developer	1	1	USA	New York	104900
Developer	2	1	USA	New York	106800
Developer	3	1	USA	New York	108700
Developer	4	1	USA	New York	110400
Developer	5	1	USA	New York	112300
Developer	6	1	USA	New York	114200
Developer	7	1	USA	New York	116100
Developer	8	1	USA	New York	117800
Developer	9	1	USA	New York	119700
Developer	10	1	USA	New York	121600

Classification vs régression

Un apprentissage différent

Classification

Regression

Autres types d'applications

L'apprentissage supervisé

Lorsque l'information à prédire est connue sur certains échantillons

← Features —	Label
---------------------	--------------

Position	Experience	Skill	Country	City	Salary (\$)
Developer	0	1	USA	New York	103100
Developer	1	1	USA	New York	104900
Developer	2	1	USA	New York	106800
Developer	3	1	USA	New York	108700
Developer	4	1	USA	New York	110400
Developer	5	1	USA	New York	112300
Developer	6	1	USA	New York	114200
Developer	7	1	USA	New York	116100
Developer	8	1	USA	New York	117800
Developer	9	1	USA	New York	119700
Developer	10	1	USA	New York	121600

L'apprentissage non-supervisé

Lorsque l'information à prédire est totalement inconnue au préalable

L'apprentissage par renforcement

Lorsque l'apprentissage se fait à travers l'interaction avec un environnement

Les trois grand types d'application du Machine Learning

	—— F	eature	s ——	→	Label
Developer	0	1	USA	New York	103100
Developer_	_ 1	1	USA	New York	104900
Developer	_'ap	prei	BILL	weve or k	106800
Developer	- G 3		USA	New York	108700
Developer	_4	1	USA =	New York	110400
Developer	S	ube	ISAV S	🚉 York	112300
Developer	6	1	USA	New York	114200
Developer	7	1	USA	New York	116100
Developei			UJA	IVEW TOTA	11/000
Developer	9	1	USA	New York	119700
Developer	10	1	USA	New York	121600

Quizz Les différents types d'application du Machine Learning

Prédiction de l'évolution du revenu d'une entreprise

Prédiction de l'évolution du revenu d'une entreprise

Systèmes de recommandation

More information about the movie.....

Fonctionnement de quelques modèles de classification

Exemple d'application : détection du cépage d'un vin

LEARNING REPOSITORY

@ dataaspirant.com

WINE DATASET ATTRIBUTES

1. Alcohol

2. Malic acid

3. Ash

4. Alkalinity of ash

5. Magnesium

6. Total phenols

7. Flavanoids

8. Nonflavonoids phenols

9. Proanthocyanins 10. Color intensity

11. Hue

12. OD280/OD315 of diluted wines

13. Proline

Analyse des données à disposition

	flavanoids	alcohol	Type de vin
1	3.00	13.05	0
2	3.04	14.22	0
3	2.37	12.85	0
4	2.17	12.08	1
5	0.80	13.62	2
6	2.65	12.37	1
7	2.03	11.76	1
8	2.45	12.37	1
9	2.69	13.24	0
10	2.40	13.20	??

Analyse des données à disposition

	flavanoids	alcohol	Type de vin	
1	3.00	13.05	0	
2	3.04	14.22	0	
3	2.37	12.85	0	
4	2.17	12.08	1	
5	0.80	13.62	2	
6	2.65	12.37	1	
7	2.03	11.76	1	
8	2.45	12.37	1	
9	2.69	13.24	0	
10	2.40	13.20	??	

L'algorithme des k plus proches voisins

Application à notre exemple

Application à notre exemple : les frontières de décision

Vins

Une autre possibilité : les règles de décision

Vins

EDIT CHART

Arbre de décision

Arbre de décision

$$Gini(t) = 1 - \sum P(i|t)^2$$

gini = 0.165

samples = 11

value = [0, 1, 10]

$$1 - ((\frac{59}{105})^2 + (\frac{9}{105})^2 + (\frac{37}{105})^2)$$

 $1 - ((\frac{59}{67})^2 + (\frac{8}{67})^2)$

gini = 0.21samples = 67value = [59, 8, 0]

gini = 0.032gini = 0.051samples = 62 samples = 38 value = [0, 61, 1]value = [0, 1, 37]

False

flavanoids ≤ 1.58 qini = 0.553

samples = 105

Arbre de décision (classification)

Fonctionnement de quelques modèles de régression

Prédiction du prix de l'immobilier en fonction du taux de pollution

Aperçu des données à disposition

Régression linéaire

Boston house price

Problème: trouver A qui minimise

$$\tilde{A} = min_A ||y - A \cdot X||_2^2$$

Solutions:

Solution analytique:

$$\tilde{A} = (X^T X)^{-1} X^T y$$

• Solution numérique:

Une autre possibilité : les règles de décision

Boston house price

Arbre de décision pour un problème de régression

Modèles avancés

Le Deep Learning : un modèle à base de régressions linéaires

Gradient boosting et forêts aléatoires : des modèles basés sur les arbres de décision

La validation des modèles

Point de vocabulaire : paramètres et hyperparamètres

Point de vocabulaire

Point de vocabulaire : paramètres et hyperparamètres

Point de vocabulaire : paramètres et hyperparamètres

Comment choisir les hyperparamètres du modèle ?

Ou comment valider qu'un modèle est meilleur qu'un autre?

Arbre de décision de profondeur

Arbre de décision de profondeur 3

Ensemble d'apprentissage et ensemble de validation

Ensemble d'entraînement

Ensemble de validation

Sous-apprentissage et sur-apprentissage

Scores sur les ensembles d'entrainement et de validation

Sous-apprentissage et sur-apprentissage

Scores sur les ensembles d'entrainement et de validation

Sous-apprentissage

Sur-apprentissage

Conséquence du sur-apprentissage (profondeur de 12)

Vins

Hyperparamètres optimaux (profondeur de 4)

Vins

EDIT CHART

Application

Application

https://www.kaggle.com/learn/python

https://www.kaggle.com/learn/pandas

https://www.kaggle.com/learn/intro-to-machine-learning

https://www.kaggle.com/learn/data-visualization

https://www.kaggle.com/learn/data-cleaning