RNASeq basics: From reads to differential expression

Belinda Phipson

Stem cells & Development

24 March 2016

Genes and transcripts

RNA-seq

Raw data (fastq files)

Short sequence reads

Quality scores

50 bp sequence

RNA-seq analysis steps

Mapping reads to the genome

- Where do the millions of short sequences come from in the genome?
- Sequencing transcripts, not the genome

Lots of good aligners handle splice junctions well

Aligned reads (bam files)

A row for each sequence Millions of rows....

RNA-seq analysis steps

Counting over exons vs counting over genes

Exon 1 = 8 reads Exon 2 = 10 reads

Counting over whole gene (Exon1 + Exon2) = 15

Summarization turns mapped reads into a table of counts

Tag ID	A1	A2	B1	B2
ENSG00000124208	478	619	4830	7165
ENSG00000182463	27	20	48	55
ENSG00000125835	132	200	560	408
ENSG00000125834	42	60	131	99
ENSG00000197818	21	29	52	44
ENSG00000125831	0	0	0	0
ENSG00000215443	4	4	9	7
ENSG00000222008	30	23	0	0
ENSG00000101444	46	63	54	53
ENSG00000101333	2256	2793	2702	2976
	tens of thousands more tags			

** very high dimensional data **

RNA-seq analysis steps

Assessing differential expression

- For each gene in each sample we have a measure of abundance
 - Number of reads mapping across gene
- We want to know whether there is a statistically significant difference in abundance between treatments/groups/genotypes

Is this gene differentially expressed?

Is this gene differentially expressed?

Replication is really important!

Quality control – check your data!

MDS plot coloured by population

After sorting out sample mix-ups

MDS plot coloured by cell population

Things to think about before statistical testing

- Filtering out lowly expressed genes
 - Need to make decisions about cut-offs
 - Can be an iterative process

Things to think about before statistical testing

- Normalisation
 - Library size (sequencing depth)
 - Include as offset in GLM
 - Scaling normalisation (size factors)
 - Composition bias (TMM)
 - Batch effects (RUVSeq)

Statistical testing for DE

 For EACH GENE, is the mean expression level for the gene under one condition significantly different from the mean expression level under a different condition?

Tag ID	A1	A2	B1	B2
ENSG00000124208	478	619	4830	7165
ENSG00000182463	27	20	48	55
ENSG00000125835	132	200	560	408
ENSG00000125834	42	60	131	99
	tens of thousands more tags			

Many different statistical methods

- Model the counts directly
 - Negative binomial modelling is best because it captures biological as well as technical variability
 - Most popular packages in R
 - edgeR
 - DESeq/DESeq2
 - Lots of others exist (baySeq, NBPSeq,...)
- Transform the counts and used normal based methods
 - Voom + limma

Statistical testing gives each gene a p-value for evidence of DE

Tag ID	A1	A2	B1	B2
ENSG00000124208	478	619	4830	7165
ENSG00000182463	27	20	48	55
ENSG00000125835	132	200	560	408
ENSG00000125834	42	60	131	99
ENSG00000197818	21	29	52	44
ENSG00000125831	0	0	0	0
ENSG00000215443	4	4	9	7
ENSG00000222008	30	23	0	0
ENSG00000101444	46	63	54	53
ENSG00000101333	2256	2793	2702	2976
	tens of thousands more tags			

Tag ID	P-value
ENSG00000124208	0.0002
ENSG00000182463	0.12
ENSG00000125835	0.034
ENSG00000125834	0.08
ENSG00000197818	0.64
ENSG00000125831	1
ENSG00000215443	1
ENSG00000222008	0.06
ENSG00000101444	0.73
ENSG00000101333	0.22
	ten:

RNA-seq analysis steps

Summary

- Analysis methodology is critical and still developing for specific purposes
- Quality control is essential! Sometimes detective work is necessary.
- Each step of the analysis requires decisions that impact down-stream analysis
- Life gets harder when there's no genome or poor quality genomes or cancer
 - (another talk on it's own)

Acknowledgements

Slides:

- Alicia Oshlack
- Anthony Hawkins
- Gordon Smyth
- Davis McCarthy

Data:

- Andrew Elefanty and Elizabeth Ng
- Shireen Lamande