(a) Theoretical Error Rate for Classification(a) 理论分类错误率

The theoretical error rate in a classification problem can be expressed as the probability of misclassifying a sample. The optimal classification decision is made by selecting the class ω_i that maximizes the posterior probability $p(\omega_i|\mathbf{x})$, according to **Bayes' Theorem**:

分类问题中的理论错误率可以表示为错误分类样本的概率。通过选择类别来做出最佳分类决策 ω_i 最 大化后验概率 $p(\omega_i|\mathbf{x})$, 根据**贝叶斯定理**:

 $p(\omega_i|\mathbf{x}) = rac{p(\mathbf{x}|\omega_i)p(\omega_i)}{p(\mathbf{x})}$

概率最高的那个。

后验概率决定。

where:

则基于分子:

or equivalently,或同等地,

theoretical error rate.

度地减少了理论错误率。

か 日 占 牙 ℃ ∨

using training samples:

each class:

频率来估计:

where:

posterior probability across all classes.

Here:

- $p(\mathbf{x}|\omega_i)$ 是类的类条件概率密度函数 ω_i , • $p(\mathbf{x})$ is the total probability of observing \mathbf{x} , and $p(\mathbf{x})$ 是观察到的总概率 \mathbf{x} , 和
- $p(\omega_i|\mathbf{x})$ is the posterior probability of class ω_i given the input sample \mathbf{x} . $p(\omega_i|\mathbf{x})$ 是类别的后验概率 ω_i 给定输入样本 \mathbf{x} 。
- posterior probability. 为了计算**理论错误率**,我们首先定义决策规则:我们对输入样本进行分类 \mathbf{x} 进入课堂 ω_i 如果 $p(\omega_i|\mathbf{x})$ 是所有班级中最高的。错误发生时 \mathbf{x} 被分类到错误的类别,即,当真正的类别 \mathbf{x} 不是后验

Let's define the **theoretical error rate** P_e as the probability of misclassification. The error occurs when the input sample x is assigned to a class ω_i where $j \neq i$, and the true class is ω_i . The error rate is thus given by: 让我们定义**理论错误率** P_e 作为错误分类的概率。当输入样本时出现错误 \mathbf{x} 被分配到一个班级 ω_i 在 哪里 $j \neq i$,真实的类别是 ω_i 。因此,错误率由下式给出:

 $P_e = 1 - \int_{\mathbf{x}} \max_i \left(p(\omega_i | \mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}$ This expression captures the idea that the theoretical error rate is the complement of the probability of making the correct classification, which is determined by the maximum

该表达式体现了这样的思想:理论错误率是正确分类概率的补充,而正确分类概率由所有类别的最大

(b) Decision Rule that Minimizes the Theoretical Error Rate (b) 最小化理论错误率的决策规则

为了最小化理论错误率,我们需要基于**贝叶斯决策理论**推导决策规则。这是通过对输入样本进行分类

Answer the question (b)回答问题 (b)

使用**贝叶斯定理**,后验概率 $p(\omega_i|\mathbf{x})$ 可以写成: $p(\omega_i|\mathbf{x}) = rac{p(\mathbf{x}|\omega_i)p(\omega_i)}{p(\mathbf{x})}$

• $p(\omega_i)$ is the prior probability of class $\omega_i, p(\omega_i)$ 是类别的先验概率 ω_i ,

• $p(\mathbf{x}|\omega_i)$ is the class-conditional probability density function for class ω_i ,

Using **Bayes' Theorem**, the posterior probability $p(\omega_i|\mathbf{x})$ can be written as:

• $p(\mathbf{x}) = \sum_{i=1}^{c} p(\mathbf{x}|\omega_i) p(\omega_i)$ is the total probability of observing \mathbf{x} . $p(\mathbf{x}) = \sum_{i=1}^{c} p(\mathbf{x}|\omega_i) p(\omega_i)$ 是观察到的总概率 \mathbf{x} 。

$$\hat{\omega}(\mathbf{x}) = rg \max_i \left(p(\mathbf{x}|\omega_i) p(\omega_i)
ight)$$
 rule assigns the sample \mathbf{x} to the class ω_i that maximizes the produ

In summary, the decision rule is:综上,决策规则为:

该规则分配样本 ${\bf x}$ 到班级 ω_i 最大化先验概率的乘积 $p(\omega_i)$ 和类条件概率密度 $p({\bf x}|\omega_i)$ 。这最大限

Answer the question (c)回答问题(c)

This is known as the Bayes decision rule or Maximum a Posteriori (MAP) rule.

Nearest Neighbor (k-NN) approach.

数方法,例如 k - 最近邻 (k-NN) 方法。

居的比例 ω_i 用作类条件概率密度的估计:

Leading to the k-Nearest Neighbor Classifier

The prior probability $p(\omega_i)$ represents the likelihood that any random sample belongs to class ω_i . It can be estimated using the **relative frequency** of the training samples for

in each class.这根据每个类别中的样本比例给出了先验概率的简单估计。 2. Estimating $p(\mathbf{x}|\omega_i)$ (Class-Conditional Probability Density): 估计 $p(\mathbf{x}|\omega_i)$ (类条件概率密度):

The class-conditional probability density function $p(\mathbf{x}|\omega_i)$ represents the likelihood of

observing a sample **x** given that it belongs to class ω_i . Estimating $p(\mathbf{x}|\omega_i)$ directly can

parametric models for the data, one can use **non-parametric methods** such as the k-

类条件概率密度函数 $p(\mathbf{x}|\omega_i)$ 表示观察样本的可能性 \mathbf{x} 鉴于它属于类 ω_i 。估计 $p(\mathbf{x}|\omega_i)$ 直接

地可能很困难,特别是在高维特征空间中。在缺乏明确的数据参数模型的情况下,可以使用**非参**

be difficult, especially in high-dimensional feature spaces. In the absence of explicit

3. Estimating $p(\mathbf{x})$ (Total Probability of \mathbf{x}):估计 $p(\mathbf{x})$ (总概率 \mathbf{x}):

the class-conditional probabilities weighted by the prior probabilities:

观察样本的总概率 \mathbf{x} , $p(\mathbf{x})$,可以表示为先验概率加权的类条件概率的总和:

how many of the k nearest samples belong to the class ω_i .

In the k-NN classifier, the probability $p(\mathbf{x}|\omega_i)$ is approximated based on the density of training samples near \mathbf{x} . For a given sample \mathbf{x} , the k-NN method finds the k nearest neighbors in the training data (using a distance metric like Euclidean distance). The fraction of those neighbors that belong to class ω_i is used as an estimate of the classconditional probability density:

在 k -NN分类器,概率 $p(\mathbf{x}|\omega_i)$ 根据附近训练样本的密度进行近似 \mathbf{x} 。对于给定的样本 \mathbf{x} ,

这 k -NN 方法找到 k 训练数据中的最近邻居 (使用欧几里得距离等距离度量)。属于该类的邻

k -最近邻分类器和决策规则 In the k-NN classifier, we classify a new input sample ${\bf x}$ by finding the k closest training

这意味着我们分类 ${f x}$ 进入邻居数量最多的班级 k 最近的样本。这 k -NN方法不需要显式估计概率密 度函数 $p(\mathbf{x}|\omega_i)$ 或者 $p(\mathbf{x})$;相反,它根据特征空间中的局部邻域信息做出决策。

.估计 $p(\mathbf{x}|\omega_i)$: 使用比例 k-属于类的最近邻居 ω_i 。

需要明确的概率密度估计。

决策规则: 分配 \mathbf{x} 到其中出现最频繁的类 k - 最近邻,它可以最大限度地减少理论错误率,而不

The k-NN classifier is a simple yet effective non-parametric approach that indirectly structure of the training data.

• $p(\omega_i)$ is the prior probability of class $\omega_i, p(\omega_i)$ 是类别的先验概率 ω_i , • $p(\mathbf{x}|\omega_i)$ is the class-conditional probability density function for class ω_i ,

To calculate the theoretical error rate, we first define the decision rule: we classify the input sample $\mathbf x$ into class ω_i if $p(\omega_i|\mathbf x)$ is the highest among all classes. The error occurs when $\mathbf x$ is classified into the wrong class, i.e., when the true class of x is not the one with the highest

To minimize the theoretical error rate, we need to derive the decision rule based on Bayes' **decision theory**. This is done by classifying the input sample ${\bf x}$ to the class ω_i that

maximizes the posterior probability $p(\omega_i|\mathbf{x})$.

来完成的 \mathbf{x} 到班级 ω_i 最大化后验概率 $p(\omega_i|\mathbf{x})$ 。

 $p(\mathbf{x}|\omega_i)$ 是类的类条件概率密度函数 ω_i ,

这称为**贝叶斯决策规则**或**最大后验 (MAP) 规则**。

The denominator $p(\mathbf{x})$ is the same for all classes, so it does not affect the decision rule. Thus, the decision rule that minimizes the theoretical error rate is based on the numerator:

分母 $p(\mathbf{x})$ 对于所有类别都是相同的,因此它不会影响决策规则。因此,最小化理论错误率的决策规

Assign **x** to class ω_i if $p(\mathbf{x}|\omega_i)p(\omega_i) > p(\mathbf{x}|\omega_i)p(\omega_i)$ for all $j \neq i$

Assign **x** to class ω_i if $p(\mathbf{x}|\omega_i)p(\omega_i)$ is maximum among all classes.

$$\hat{\omega}(\mathbf{x}) = \arg\max_i \left(p(\mathbf{x}|\omega_i)p(\omega_i)\right)$$

This rule assigns the sample \mathbf{x} to the class ω_i that maximizes the product of the prior probability $p(\omega_i)$ and the class-conditional probability density $p(\mathbf{x}|\omega_i)$. This minimizes the

我们如何使用训练样本来估计这些概率: 1. Estimating $p(\omega_i)$ (Class Prior Probability):估计 $p(\omega_i)$ (类别先验概率) :

(c) Using Training Samples to Estimate $p(\omega_i)$, $p(\mathbf{x}|\omega_i)$, and $p(\mathbf{x})$

(c) 使用训练样本进行估计 $p(\omega_i)$, $p(\mathbf{x}|\omega_i)$, 和 $p(\mathbf{x})$ 导致 k -最近邻分类器

In practice, the probabilities $p(\omega_i)$, $p(\mathbf{x}|\omega_i)$, and $p(\mathbf{x})$ are typically not known beforehand

and need to be estimated from training data. Here's how we can estimate these probabilities

在实践中,概率 $p(\omega_i)$, $p(\mathbf{x}|\omega_i)$, 和 $p(\mathbf{x})$ 通常事先不知道,需要根据训练数据进行估计。以下是

先验概率 $p(\omega_i)$ 表示任何随机样本属于该类的可能性 ω_i 。可以使用每个类别的训练样本的**相对**

 $p(\omega_i) = rac{N_i}{N}$

$$ullet$$
 N is the total number of training samples. N 是训练样本的总数。 This gives a simple estimate of the prior probability based on the proportion of samples

• N_i is the number of training samples in class ω_i , N_i 是班级训练样本的数量 ω_i ,

$p(\mathbf{x}|\omega_i) \propto \frac{ ext{Number of neighbors in class } \omega_i}{k}$ Essentially, the k-NN method approximates the probability distribution by considering

本质上, k -NN 方法通过考虑有多少个来近似概率分布 k 最近的样本属于该类 ω_i 。

The total probability of observing the sample \mathbf{x} , $p(\mathbf{x})$, can be expressed as a sum over

samples (neighbors) and assigning x to the class that appears most frequently among those neighbors. This directly corresponds to a non-parametric estimate of the class posterior

k nearest samples. The k-NN method does not require explicit estimation of the probability density functions $p(\mathbf{x}|\omega_i)$ or $p(\mathbf{x})$; instead, it makes decisions based on local neighborhood information in the feature space.

Estimate $p(\omega_i)$: Use the relative frequency of the class in the training set. **估计** $p(\omega_i)$: 使用训练集中类别的相对频率。

Estimate $p(\mathbf{x}|\omega_i)$: Use the proportion of the k-nearest neighbors that belong to class ω_i **Decision Rule:** Assign \mathbf{x} to the class that appears most frequently among its k-nearest neighbors, which minimizes the theoretical error rate without the need for explicit probability density estimates.

 $p(\mathbf{x}) = \sum_{i=1}^{c} p(\mathbf{x}|\omega_i) p(\omega_i)$ However, in the context of classification, we typically don't need to estimate $p(\mathbf{x})$ explicitly because it is the same for all classes and thus cancels out in the decision rule. 然而,在分类的背景下,我们通常不需要估计 $p(\mathbf{x})$ 明确地,因为它对于所有类都是相同的,因 此在决策规则中被取消。

k-Nearest Neighbor Classifier and Decision Rule

probability $p(\omega_i|\mathbf{x})$, which can be written as: 在 k -NN分类器,我们对新的输入样本进行分类 $\mathbf x$ 通过找到 k 最接近的训练样本(邻居)并分配 $\mathbf x$ 到这些邻居中出现最频繁的类别。这直接对应于类后验概率的非参数估计 $p(\omega_i|\mathbf{x})$,可以写成: $p(\omega_i|\mathbf{x}) pprox rac{ ext{Number of neighbors in class }\omega_i}{k}$

The **decision rule** for the k-NN classifier is then:**决策规则**为 k -NN分类器则为: $\hat{\omega}(\mathbf{x}) = rg \max_i \left(rac{ ext{Number of neighbors in class } \omega_i}{k}
ight)$ This means we classify ${f x}$ into the class that has the highest number of neighbors among the

Summary of Estimation and Decision Rule:估计和决策规则总结:

estimates these probabilities and minimizes classification error by relying on the local

这 k -NN分类器是一种简单而有效的非参数方法,它通过依赖训练数据的局部结构来间接估计这些概 率并最小化分类误差。