Introdução aos Problemas de Otimização Condições de Otimalidade

Departamento de Matemática Universidade do Minho

1 / 34

DMAT-UM

Outline

- Introdução à Otimização
- Exemplos de problemas de otimização
- 3 Diferentes tipos de problemas de otimização
- Propriedade do Gradiente
- 5 Condições de otimalidade

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶ ■ めぐぐ

Otimização - processo para encontrar a melhor solução para um problema, de um conjunto de soluções alternativas.

Os problemas de otimização surgem em diversas áreas:

- ciências,
- engenharias
- finanças
- medicina
- economia
- big-data
- machine learning
- entre outas

Problema de otimização

Os problemas de programação matemática podem ser escritos, na sua forma mais geral, na seguinte forma:

minimizar
$$F(w)$$

sujeito a $c_n(w) = 0, \quad n = 1, ..., j$
 $c_n(w) \ge 0, \quad n = j + 1, ..., N$ (1)

- $w = (w_1, w_2, \dots, w_d)^T$ é o vetor das variáveis de decisão
- $F: \mathbb{R}^d \to \mathbb{R}$ é a função objetivo (escalar) de w que se pretende minimizar.
- ullet $c_n:\mathbb{R}^d o \mathbb{R}$ são as funções de restrição de igualdade e desigualdade
- ▶ Um ponto que verifique todas as restrições, chama-se ponto admissível do problema.
- ➢ Ao conjunto de todos os pontos admissíveis, chama-se conjunto admissível:

$$\mathcal{D} = \{ w \in \mathbb{R}^d : c_n(w) = 0, \ n = 1, ..., j; \ c_n(w) \ge 0, \ n = j + 1, ..., N \}$$

DMAT-UM Introdução à Otimização 4 / 34

Maximização verus minimização

• Qualquer problema de maximização pode ser reformulado como um problema de minimização pois $\max F(w)$ é igual a $-\min -F(w)$.

 \triangleright o ponto w^* onde F atinge o seu máximo $F(w^*)$ é o mesmo onde -F atinge o seu mínimo.

Encontrar boas (ou melhores) ações

- w representa alguma ação, por exemplo:
 - alocação de recursos
 - trajeto escolhido para uma viagem
 - compra de ações
- restrições limitam ações ou impõem condições ao resultado
- quanto menor for a função objetiva, melhor é
 - custo total (ou lucro)
 - desvio do resultado desejado ao alvo
 - uso do combustível
 - o tempo da viagem
 - risco em finanças

Engenharia de design

- w representa um projeto (de um circuito, dispositivo, estrutura, ...)
- restrições limitam ações ou impõem condições ao resultado
- restrições vêm de
 - processo de manufatura
 - requisitos de desempenho
- a função objetiva F(w) é a combinação de custo, peso, potência,...

Engenharia de design

Exemplo:

- Está em estudo a construção uma cúpula de vidro esférica para cobrir um átrio central do edifício.
- A cúpula é composta por uma grelha triangular de perfis de suporte e painéis de vidro.
- Pretende-se otimizar o posicionamento dos nós da estrutura para reduzir o número de perfis de suporte metálicos e painéis de vidro diferentes para facilitar o processo de fabrico e reduzir os custos de construção sem sacrificar o desempenho estrutural da estrutura.

Encontrar bons modelos

- w representa os parâmetros de um modelo
- as restrições impõem requisitos aos parâmetros do modelo (por exemplo, a não negatividade)
- a função objetiva F(w) é o erro de previsão com alguns dados observados

Exemplo: Dados N pares de pontos (x^n, y^n) , o vetor dos parâmetros $w \in \mathbb{R}^d$ que ajustam melhor uma função (modelo) $\phi(w; x)$ aos dados, é dado por:

$$\underset{w \in \mathbb{R}^d}{\operatorname{minimizar}} F(w) := \sum_{n=1}^{N} (\underbrace{\phi(w; x^n) - y^n})^2$$

onde

- $\Phi(w; x^n)$ é o valor previsto pelo modelo;
- y^n é o valor conhecido associado a x^n ;

> Exemplos de ajuste:

$$\phi(w; x) = w_1 + w_2 x + w_3 x^2 + w_4 x^3$$

Análise do pior caso

- w variáveis são acções ou parâmetros fora do nosso controlo (e possivelmente sob o controlo de um adversário)
- restrições limitam os valores possíveis dos parâmetros ou ações
- minimizar -F(w) estamos a encontrar os piores parâmetros/ ações
- Se o pior cenário possível é tolerável, então é bom saber que o pior cenário possível pode ocorrer

Modelos baseados em otimização

- modelam uma entidade realizando ações que permite resolver um problema de otimização
 - um organismo age para maximizar seu sucesso reprodutivo
 - as taxas de reação em uma célula maximizam o crescimento
 - correntes em um circuito elétrico minimizam a potência total

Exemplo de um problema académico de otimização

Minimizar o raio de uma circunferência centrada em (2,1) sujeita às restrições $w_1^2 - w_2 \le 0$ e $w_1 + w_2 \le 2$.

Podemos escrever o problema na forma (1) definindo

$$F(w) = (w_1 - 2)^2 + (w_2 - 1)^2, \quad w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$c_1(x) = -w_1^2 + w_2 \ge 0$$

$$c_2(x) = -w_1 - w_2 + 2 \ge 0.$$

Diferentes tipos de problemas de otimização

• Alguns problemas têm restrições e outros não.

- Pode se ter uma única variável ou um conjunto de variáveis.
- As variáveis podem ser discretas (p.e. $x_i \in \mathbb{Z}, x_i \in 0, 1$) ou continuas.

- os problemas podem ser determinísticos ou estocásticos
 - nos problemas determinísticos os modelos são conhecidos.
 - quando alguns dos parâmetros do modelo determinístico são incertos e este modelo apresenta-se sensível a alterações destes parâmetros, então é apropriado considerar programação estocástica para solução desse problema.

O problema determinístico permite calcular a solução ótima para cada um dos cenários separadamente, enquanto que o problema estocástico considera o conjunto de todos os cenários simultaneamente, cada um com uma probabilidade de ocorrência associada.

Casos particulares de programação matemática

Definição 1

O problema de otimização (1) é **linear** se as funções F e c_n são lineares para todo $n \in \{1, ..., N\}$ em relação a w.

Nota: O problema (1) é um problema de programação não linear se pelo menos uma das restrições C_n ou a função objetivo F é não linear.

Definição 2

O problema de otimização (1) é **convexo** se a função F é convexa, c_n é lineares para todo $n \in \{1, \ldots, j\}$ e c_n é côncava para todo $n \in \{j+1, \ldots, N\}$ em relação a w.

Recordar: A funções linear $F(w) = a^T w$, $a \in \mathbb{R}^d$ é convexa e côncava. A função $F(w) = w^T Q w + a^T w + b$ com Q uma matriz simétrica $d \times d$ é convexa se e só se Q é semi-definida positiva;

Propriedade do Gradiente

Teorema 3

Seja $F : \mathbb{R}^d \to \mathbb{R}$ diferenciável em w^* . Então, se $\nabla F(w^*) \neq (0,0)$, $\nabla F(w^*)$ é um vetor perpendicular à curva de nível em $F(w^*)$.

Teorema 4

Se uma função $F: \mathbb{R}^d \to \mathbb{R}$ é diferenciável em w^* , então existe derivada de F no ponto w^* , segundo qualquer direção de $v \in \mathbb{R}^d$ e tem-se

$$D_{\nu}F(w^{*}) = \nabla F(w^{*})^{T}v = \|\nabla F(w^{*})\|\|v\|\cos\alpha,$$

onde α é o ângulo formado por v e por $\nabla F(w^*)$.

A derivada de F num dado ponto w^* , segundo a direção do vector v admite:

- Um valor máximo que ocorre quando v tem a direção e sentido do vetor $\nabla f(w^*)$.
- Um valor mínimo que ocorre quando v tem a mesma direção mas sentido contrário ao do vetor $\nabla f(w^*)$.
- O valor 0 quando v é perpendicular ao vetor $\nabla F(w^*)$.

Exercício:

Uma caldeira de um vulcão tem uma forma definida pelo gráfico de

$$F(w_1, w_2) = \frac{1}{5}w_1^2 + \frac{1}{5}w_2^2 - 400$$

- a) Representa a superfície $z = F(w_1, w_2)$.
- b) Representa as curvas de nível de F.
- c) Mostre que o ponto A = (30, 30, -40) pertence ao gráfico de F.
- d) Se um explorador está no ponto A, que direção é que ele deve tomar para descer pela parte mais íngrema da caldeira.
- e) Se o explorador está no ponto A e se mover na direção do vetor v = (4,3), ele está a subir ou a descer?
- f) Se um explorador está no ponto A, em que direção é que ele se deve mover para percorrer um caminho plano?

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 夕 Q ○

Definição 5

Considere o problema de otimização (1), e $w^* \in \mathcal{D}$.

• w* é um minimizante global e a sua imagem é um mínimo global se

$$F(w^*) \leq F(w), \ \forall w \in \mathcal{D};$$

 w* é um minimizante global estrito e a sua imagem é um mínimo global estrito se

$$F(w^*) < F(w), \ \forall w \in \mathcal{D}, \ w \neq w^*;$$

• w* é um minimizante local e a sua imagem é um mínimo local se

$$F(w^*) \le F(w), \ \forall w \in B(w^*, \varepsilon) \cap \mathcal{D}$$

 w*é um minimizante local estrito e a sua imagem é um mínimo local estrito se

$$F(w^*) < F(w), \ \forall w \in B(w^*, \varepsilon) \cap \mathcal{D}, \ w \neq w^*;$$

19 / 34

Exercício: Considere a função $F:[1,10[\subseteq \mathbb{R} \longrightarrow \mathbb{R} \text{ tal que}]$

$$F(w) = \begin{cases} (w-3)^2 + 3 & \text{se } w \in [1,3[\\ 4 & \text{se } w \in [3,4[\\ 2w-4 & \text{se } w \in [4,5[\\ 2(6-w)^3 + 4 & \text{se } w \in [5,7[\\ 9-w & \text{se } w \in [7,8[\\ (w-8)^3 + 1 & \text{se } w \in [8,10[. \end{cases}) \end{cases}$$

- (a) Indique os minimizantes globais de f.
- (b) Indique o mínimo global de f.
- (c) Indique os minimizantes globais estrito de f.
- (d) Indique o mínimo global estrito de f.
- (e) Indique os minimizantes locais de f.
- (f) Indique os mínimos locais de f.
- (g) Indique os minimizantes locais estrito de f.
- (h) Indique os mínimos locais estrito de f.

Condições para a existência de solução

Condições para a existência de solução garantem que o problema tem pelo menos uma solução.

Teorema 6

Teorema de Weierstrass Uma função $F: \mathbb{R}^d \longrightarrow \mathbb{R}$, contínua definida num conjunto não vazio, limitado e fechado (compacto) tem máximo e mínimo nesse conjunto.

Condições Necessárias de Otimalidade

As condições necessárias de otimalidade identificam um conjunto de candidatos a minimizantes. Os minimizantes, caso existem, estão neste conjunto. Poderão também estar elementos que não são minimizantes.

As condições necessárias de otimalidade são do tipo: Se w^* é um minimizante. Então w^* satisfaz as seguintes condições

Exemplo: Condições necessárias de otimalidade de 1º ordem Se w^* é um minimizante. Então $F'(w^*) = 0$.

4 ≣ ► ■ •9 Q @

24 / 34

Condições Necessárias de Otimalidade

Quais são pontos que satisfazem condições necessárias de otimalidade de 1° ordem?

As condições necessárias de otimalidade são tanto mais interesantes quanto mais forte, i.e. quando mais reduzido for o conjunto de pontos que as satisfazem.

Exemplo: Condições necessárias de otimalidade de $2^{\mathbf{Q}}$ ordem Se w^* é um minimizante. Então $F'(w^*) = 0$ e $F''(w^*) \geq 0$.

Quais são pontos que satisfazem condições necessárias de otimalidade de 2° ordem?

Identifica o conjunto, mais reduzido, de candidatos

Condições Suficientes de Otimalidade

As condições suficientes de otimalidade são tipo:

Se w^* satisfaz as seguintes condições. Então w^* é minimizante.

Do conjunto de pontos que satisfaz as condições, todos são minimizantes. Poderá haver minimizantes que não satisfazem as condições.

Exemplo: Se w^* satisfaz $F'(w^*) = 0$ e $F''(w^*) > 0$.

Então w^* é um minimizante local.

Quais são pontos que satisfazem condições suficientes de otimalidade?

Problema de otimização sem restrições

Problema de otimização sem restrições:

$$\min_{w \in \mathbb{R}^d} F(w)$$

Exemplo: A procura do vetor dos parâmetros que ajustam melhor um modelo. (Ver exemplos no secção "Encontrar bons modelos")

Nota: Nesta secção, assume-se que F é continuamente diferenciável até à $2^{\underline{a}}$ ordem.

Definição 7

Um ponto w^* que satisfaça a condição $\nabla F(w^*) = 0$ é designado por ponto estacionário de F.

Condições de otimalidade

Teorema 8 (Condição necessária de 1ª ordem)

Se w^* é um minimizante local de F então $\nabla F(w^*) = 0$.

Demonstração.

Considere $z \in \mathbb{R}^d \setminus \{0\}$ arbitrário. Como w^* é um minimizante local, existe $\delta > 0$ tal que

$$F(w^*) \le F(w^* + tz),\tag{2}$$

para todo $t \in (0, \delta)$. Pela expansão de Taylor,

$$F(w^* + \alpha z) = F(w^*) + t \nabla F(w^*)^T z + r(t),$$

com $\lim_{t\to 0} \frac{r(t)}{t} = 0$. Usando (2) e dividindo por t, obtemos

$$\nabla F(w^*)^T z + \frac{r(t)}{t} \ge 0.$$

Demonstração.

Passando o limite quando $t \rightarrow 0$, obtemos

$$\nabla F(w^*)^T z \geq 0.$$

Como z é arbitrário, se $\nabla F(w^*)$ não fosse nulo, poderíamos escolher $z=-\nabla F(w^*)$, resultando $\|\nabla F(w^*)\|^2\leq 0$, o que é uma contradição. Logo, $\nabla F(w^*)=0$.

Exercício: Seja $F: \mathbb{R}^3 \to \mathbb{R}$, dada por

$$F(w_1, w_2, w_3) = \sin(3w_1^2 + w_2^2) + \cos(w_1^2 - w_2^2) + 5w_3.$$

Verifique se F pode ter minimizantes em \mathbb{R}^3 . E no conjunto $B = \{(w_1, w_2.w_3) \in \mathbb{R}^3 : w_1^2 + \frac{w_2^2}{4} + \frac{w_3^2}{9} \le 1\}$ terá minimizante?.

◆ロト ◆母 ト ◆ 草 ト ◆ 草 ・ 夕 Q で

Teorema 9 (Condição necessária de 2ª ordem para minimizante)

Se w^* é um minimizante local de F então $\nabla F(w^*)=0$ e $\nabla^2 F(w^*)$ é semi-definida positiva, isto é

$$z^T \nabla^2 F(w^*) z \geq 0$$
,

para todo $z \in \mathbb{R}^d$.

Demonstração.

Considere $z \in \mathbb{R}^d \setminus \{0\}$ arbitrário. Pela expansão de Taylor,

$$F(w^* + \alpha z) = F(w^*) + t \nabla F(w^*)^T z + \frac{t^2}{2} z^T \nabla F(w^*)^T z + r(t),$$

com $\lim_{t\to 0} \frac{r(t)}{t^2} = 0$. Como w^* é um minimizante local, pelo Teorema 8 garante que $\nabla F(w^*) = 0$. Portanto, para t suficientemente pequeno,

$$0 \le F(w^* + \alpha z) - F(w^*) = \frac{t^2}{2} z^T \nabla F(w^*)^T z + r(t)$$

Demonstração.

Dividindo por t^2 e passando o limite quando $t \to 0$, obtemos $z^T \nabla F(w^*)^T z \ge 0$.

Exercício: Seja $F: \mathbb{R}^2 \to \mathbb{R}$, dada por

$$F(w_1, w_2) = (w_1 - w_2^2)(w_1 - \frac{1}{2}w_2^2).$$

Verifique que $(w_1^*, w_2^*) = (0, 0)$ satisfaz as condições de otimalidade de segunda ordem, contudo não é um minimizante.

Teorema 10 (Condições suficientes de 2ª ordem)

Se $\nabla F(w^*) = 0$ e $\nabla^2 F(w^*)$ é definida positiva então w^* é um minimizante local de F.

Teorema 11

Se F é convexa, então qualquer minimizante local w* é um minimizante global de F. Mais ainda, se F é diferenciável, então qualquer ponto estacionário é minimizante global de F.

Demonstração.

Suponhamos que w^* é uma minimizante local, mas não global de F. Então podemos encontrar um ponto $z \in \mathbb{R}^d$ com $F(z) < F(w^*)$. Considerando a linha segmento de reta que junto w^* a z, isto é

$$w = tz + (1 - t)w^*$$
, para algum $t \in (0, 1]$.

Por convexidade de F, temos

$$F(w) \le tF(z) + (1-t)F(w^*) < F(w^*).$$

Logo, w* não é um minimizante local.

Demonstração.

Para a segunda parte do Teorema, o resultada é imediato pela Proposição 6 da aula 1, que garante que

$$F(w) \geq F(\bar{w}) + \nabla F(\bar{w})^T (w - \bar{w}).$$

Como $\nabla F(\bar{w}) = 0$, então \bar{w} minimiza F em \mathbb{R}^d . Logo é um minimizante global.

Exercício: Determine, caso existe, o(s) minimizantes das seguintes funções:

- a) $F(w_1, w_2) = w_1^2 + w_1 w_2 + w_2^2 + w_1 w_2 + 1$.
- b) $F(w) = 2w_1^3 3w_1^2 6w_1w_2(w_1 w_2 1)$.
- c) $F(w_1, w_2) = w_1^2 w_2^2 2w_1 w_2$.
- d) $F(w_1, w_2) = \frac{w_1}{w_2} + \frac{8}{w_1} w_2$.
- e) $F(w_1, w_2) = \frac{1}{3}w_1^3 + \frac{1}{2}w_1^2 + 2w_1w_2 + \frac{1}{2}w_2^2 w_2 + 9$.

_

Exercício Calcule os pontos estacionários e verifique se o(s) minimizante(s), caso existem, são minimizantes globais da seguinte função de $F: \mathbb{R}^2 \to \mathbb{R}$:

$$F(w_1, w_2) = 8w_1^2 + 3w_1w_2 + 7w_2^2 - 25w_1 + 31w_2 - 29.$$

Exercício: Deduza as condições de otimalidade para resolver o seguinte problema: $\max_{w \in \mathbb{R}^d} G(w)$.

Os apontamentos foram baseados na seguinte bibliografía: [1] e [2].

J. Nocedal and S. J. Wright.

Numerical optimization. Springer, 1999.

G. Smirnov and V. Bushenkov.

Curso de optimização: programação matemática: cálculo de variações: controlo óptimo.

2005.