Data Structures in R: Arrays and Factors

Stat 133 with Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Data Types & Vectors recap

Data Types (primitives)

```
# integer
2.5  # double (real)
TRUE  # logical
"hello"  # character
1 + 3i  # complex
```

Fundamental concepts

Atomic structures

Coercion

Subsetting or Bracket Notation [index]

Vectorization

Recycling

Matrices and Arrays

single data type

You can transform a vector in an n-dimensional array by giving it a **dimensions** attribute

$$x < -1:8$$

$$\dim(x) < -c(2, 4)$$

The dimensions attribute is a numeric vector with as many elements as desired dimensions

$$x < -1:8$$

$$dim(x) < -c(2, 2, 2)$$

In practice, we don't really create matrices and arrays via dim()

To have more control about how a matrix is filled, we use the function matrix()

$$A \leftarrow matrix(a, nrow = 2, ncol = 4)$$

About R matrices

R stores matrices as vectors.

Which means that matrices are also atomic.

Matrices in R are stored **column-major** (i.e. by columns).

This is like Fortran, Matlab, and Julia, but not like C or Python (e.g. numpy).

If you want to fill a matrix by rows use byrow = TRUE

So far

Vectors, matrices, and arrays are atomic structures (they can only store one type of data)

Many operations in R need atomic structures to make sure all values are of the same mode

In real life, however, many datasets contain multiple types of information

R provides other data structures for this purpose

Factors

R factors

Another data structure in R are factors

A factor is designed to handle categorical data

The name "factor" comes from "Analysis of Variance" (ANOVA) terminology

R factors

To create a factor, typically you pass a vector to the function factor()

```
size <- c("sm", "md", "lg", "md")
size <- factor(size)</pre>
```

About R factors

Factors are excellent for working with categorical data, especially data with an "ordinal" scale

Factors are internally stored as vectors of integers

Factors behave a lot like vectors

But factors have their own special properties

Codification issues

Codification

It is very common that we (humans) codify information (e.g. data, variables) in many interesting ways

It can make completely sense to us

But not necessarily to the computer

Binary scale variable

Example	R mode
TRUE, FALSE	logical
0, 1	numeric
"yes", "no"	character
yes, no	factor

Nominal scale variable

Example	R mode
1, 2, 3	numeric
"blue", "white", "red"	character
blue, white, red	factor

Odinal scale variable

Example	R mode
1, 2, 3	numeric
"small", "medium", "large"	character
small, medium, large	factor

Interval / Ratio scale variables in R

Example	R mode
1.1, -2.5, 100	numeric
1/4, pi, exp(1)	numeric

Missing Values

Example	R mode
NA	logical
-999	numeric
-99999	numeric
"?"	character
11 11	character
"na"	character

Gaston Sanchez

Next

single data type Vector 1D Matrix dimensions 2D Array nD

multiple data types

non-atomic structures