Real Analysis II: Riemann-Stieltjes Integral

Arjun Vardhan

† Created: 10th January 2022 Last updated: 24th February 2022

1 Definition and Existence of the Integral

- Let [a,b] be an interval. A partition of [a,b] is a finite set of points $x_0, x_1, ..., x_n$, where $a = x_0 \le x_1 \le ... \le x_{n-1} \le x_n = b$. Here $\Delta x_i = x_i x_{i-1}$, (i = 1, 2, ..., n).
- $\mathbb{P}(I)$ denotes the set of all partitions of an interval I.
- Let P, Q be partitions. Q is called a refinement of P if $P \subseteq Q$.
- Let f be a bounded real function defined on [a, b]. For each partition P of [a, b], let:
 - 1. $M_i = \sup f(x), (x_{i-1} \le x \le x_i)$
 - 2. $m_i = \inf f(x), (x_{i-1} \le x \le x_i)$
 - 3. $U(P,f) = \sum_{i=1}^{n} M_i \Delta x_i$
 - 4. $L(P,f) = \sum_{i=1}^{n} m_i \Delta x_i$
 - 5. $\overline{\int_a^b} f = \inf \left\{ U(P, f) : P \in \mathbb{P}([a, b]) \right\}$
 - 6. $\int_a^b f = \sup \{ L(P, f) : P \in \mathbb{P}([a, b]) \}$

Here, U(P, f) and L(P, f) are called upper and lower sums respectively. $\overline{\int_a^b} f$ and $\underline{\int_a^b} f$ are called the upper and lower integrals.

- Since f is bounded on [a,b], there exist $M,m \in \mathbb{R}$ such that $m \leq f(x) \leq M$ for all $x \in [a,b]$. Thus $m(b-a) \leq L(P,f) \leq U(P,f) \leq M(b-a)$, for any partition P of [a,b].
- Let $P,Q \in \mathbb{P}(I)$. If Q is a refinement of P, then $L(P,f) \leq L(Q,f)$ and $U(P,f) \geq U(Q,f)$. Proof: Suppose $Q = P \cup \{x^*\}$. Then $x^* \in [x_{i-1},x_i]$ for some $x_i \in P$. Let $w_1 = \inf\{f(x): x \in [x_{i-1},x^*]\}$ and $w_2 = \inf\{f(x): x \in [x^*,x_i]\}$. Since $w_1 \geq m_i$ and $w_2 \geq m_i$, $L(Q,f) \geq L(P,f)$. If Q contains k more points than P, then repeat this reasoning k times. The proof for U(Q,f) is analogous. ■
- For all $P,Q \in \mathbb{P}(I)$, $L(P,f) \leq U(Q,f)$. Proof: $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. Thus $L(P,f) \leq L(P \cup Q,f) \leq U(Q,f)$.
- If $\overline{\int_a^b} f$ and $\underline{\int_a^b} f$ are equal, then we say that f is Riemann integrable on [a, b]. Their common value is denoted by $\int_a^b f$.
- R(I) denotes the set of all Riemann integrable functions on an interval I.
- Riemann Criterion for Integrability: Let f be bounded on interval I. $f \in R(I)$ if and only if for every $\epsilon > 0$ there exists a partition P such that $U(P,f) L(P,f) < \epsilon$. Proof: Suppose that given $\epsilon > 0$, there exists partition P such that $U(P,f) L(P,f) < \epsilon$. Since $U(P,f) \ge \overline{\int} f$ and $-L(P,f) \ge \underline{\int} f$, $\overline{\int} f \underline{\int} f \le U(P,f) L(P,f) < \epsilon$. Thus $\overline{\int} f = \underline{\int} f$ and $f \in R(I)$. Conversely, suppose $f \in R(I)$. Let $\epsilon > 0$. Since $\underline{\int} f = \overline{\int} f$, there exists a partition P_1 such that $U(P_1,f) < \int f + \frac{\epsilon}{2}$ and a partition P_2 such that $L(\overline{P_2},f) > \int f \frac{\epsilon}{2}$. Thus, $U(P_1,f) L(P_2,f) < \epsilon$. Let $P = P_1 \cup P_2$. Then $U(P,f) \le U(P_1,f)$ and $-L(P,f) \le -L(P_2,f)$. So $U(P,f) L(P,f) \le U(P_1,f) L(P,f) \le U(P_1,f) L(P,f) < \epsilon$.

- 2 Properties of the Integral
- 3 Integration and Differentiation
- 4 Integration of Vector-valued Functions
- 5 Rectifiable Curves