Attacking on proactive defense methods on Deepfake

Group 3: Ting-Chih Chen and Xiao Guo

Recap

Target paper: Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems

Task#1 Break down Defender - Transferability

- Author's defense scheme needs to utilize the image translation model that the attacker choose to conduct either PGD/FGSM attack.
- However, which model to use is not decided by the defenders (authors)

Target Image

Method-1 fewshot-face-translation-GAN

Adaptive instance normalization(FC-AdaIN)

- The AdaIN residual block is a residual block using the AdaIN as the normalization layer
- AdalN normalizes the activations of a sample in each channel to have a zero mean and unit variance
- Then, it scales the activations using a learned affine transformation consisting of a set of scalars and biases
- The affine transformation can be used to obtain global appearance info
- Ex:
 - Latent representation(object appearance) -> Decoder with AdalN -> obtain the content image(locations of eyes)

Spatially-adaptive normalization(SPADE)

• SPADE is a layer for synthesizing photorealistic images given an input semantic layout

Results

Method-2 GHOST

- Identity encoder is a pre-trained ArcFace model that extracts the features from the source images
- Attribute encoder is a model with a U-Net architecture that extracts attributes from the target images
 - U-Net is fully convolutional network. Authors think this can yield more precise segmentations
- AAD generator is a model to mix attributes and the identities. Then, it will generate
 new face with source identity and target attribute features

Architecture

Results

Method-3 StyleGAN-NADA

 CLIP-Guided Domain Adaptation of Image Generators

 StyleGAN-NADA converts a pre-trained generator to new domains using only a textual prompt and no training data

Fig 1. Examples of text-driven, out-of-domain generator adaptations induced by our method[1]

Method-3 StyleGAN-NADA

Fig 1. Model Concept[1]

Fig 2. The adaptive layer-freezing mechanism has two phases[1]

Method-3 Results

Evaluation

MSE

- the most widely used and also the simplest full reference metric which is calculated by the squared intensity differences of distorted and reference image pixels
- SSIM(structural similarity index measure)
 - gives normalized mean value of structural similarity between the two images, considers luminance, contrast, structure
- **PSNR**(peak signal-to-noise ratio)
 - the ratio between the maximum possible signal power and the power of the distorting noise which affects the quality of its representation

Evaluation

	MSE	SSIM	PSNR
Ghost	0.737	0.998	50.396
Fewshot	57.684	0.951	32.295
StyleGAN-NADA	247.152	0.777	25.259
StyleGAN-Baseline	226.91	0.799	26.611

Task 2 - Removing Perturbations

- Initial Idea: using a denoising autoencoder to denoise the perturbed images
- Model:
- Input: Perturbed images(from CelebA, perturbed using StarGAN)
- Target: Original image(from CelebA)
- 500 Epochs, 64 batch_size, time constraints
- Denoising example:

Layer (type)	Output Shape	Param #
input_6 (InputLayer)	[(None, 256, 256, 3)]	0
conv2d_15 (Conv2D)	(None, 256, 256, 32)	896
max_pooling2d_10 (MaxPoolin g2D)	(None, 128, 128, 32)	
conv2d_16 (Conv2D)	(None, 128, 128, 32)	9248
max_pooling2d_11 (MaxPoolin g2D)	(None, 64, 64, 32)	
conv2d_transpose_10 (Conv2D Transpose)	(None, 128, 128, 32)	9248
conv2d_transpose_11 (Conv2D Transpose)	(None, 256, 256, 32)	9248
conv2d_17 (Conv2D)	(None, 256, 256, 3)	867
otal params: 29,507 rainable params: 29,507 on-trainable params: 0		

Future work

- 1. Formalize Task 1 result, polish the conclusion
- 2. Try image translation network(pix2pix) with paired labeled image examples