Úvod do informatiky

přednáška sedmá

Miroslav Kolařík

Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Tísla a číselné obory

Princip indukce

Tísla a číselné obory

2 Princip indukce

Přirozená čísla

Jsou to čísla 1,2,3,4,5,6,... Množinu všech přirozených čísel označujeme \mathbb{N} .

Celá čísla

Jsou to čísla $0,1,-1,2,-2,3,-3,4,-4,5,-5,\ldots$ Množinu všech celých čísel značíme \mathbb{Z} .

Racionální čísla

Jsou to čísla, která lze vyjádřit ve tvaru zlomku $\frac{m}{n}$, kde m je celé číslo a n je přirozené číslo. Množinu všech racionálních čísel označujeme \mathbb{Q} . Racionální čísla jsou tedy např. $\frac{1}{3}$, $\frac{-2}{5}$, $\frac{21}{37}$, $\frac{-6}{12}$ atd. Poznamenejme, že $\frac{1}{3}$, $\frac{2}{6}$, $\frac{6}{18}$ jsou různé zápisy téhož racionálního čísla. Racionální čísla zapisujeme také pomocí tzv. desetinného rozvoje. Např. číslo $\frac{3}{2}$ zapisujeme jako 1,5. Číslo $\frac{1}{3}$ má tzv. nekonečný desetinný rozvoj a je jím 0,3333..., což také zapisujeme jako $0,\overline{3}$.

Reálná čísla

Jsou to všechna čísla, která se nacházejí na číselné ose. Kromě racionálních čísel zahrnují reálná čísla i tzv. **čísla iracionální**. To jsou čísla, která nelze vyjádřit ve tvaru zlomku. Příkladem iracionálních čísel jsou $\sqrt{2}, \sqrt{3}, \pi, e$. Množinu všech reálných čísel označujeme $\mathbb R$.

Komplexní čísla

Množinu všech uspořádaných dvojic reálných čísel $\langle a,b \rangle$ zapisovaných obvykle ve tvaru a+bi, kde symbolem i označujeme tzv. imaginární jednotku, pro niž platí $i^2=-1$, nazýváme komplexní čísla; značíme $\mathbb C$. Zásluhou K.F. Gausse se od roku 1831 znázorňují komplexní čísla v rovině. Každé komplexní číslo z=a+bi můžeme vyjádřit i v tzv. goniometrickém tvaru $z=r(\cos\varphi+i\sin\varphi)$, kde číslo $r=\sqrt{a^2+b^2}$ je tzv. absolutní hodnota a úhel φ argument komplexního čísla.

Čísla a číselné obory

Princip indukce

Princip (matematické) indukce

Princip indukce umožňuje dokazovat tvrzení tvaru "pro každé přirozené číslo n platí V(n)", kde V(n) je nějaké tvrzení, které závisí na n (např. $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$).

Věta (princip indukce)

Nechť je pro každé $n \in \mathbb{N}$ dáno tvrzení V(n). Předpokládejme, že platí

- V(1) ... indukční předpoklad (1. krok)
- $\forall n \in \mathbb{N}$: z V(n) plyne V(n+1) ... indukční krok.

Pak V(n) platí pro každé $n \in \mathbb{N}$.

Princip dobrého uspořádání:

Dále budeme předpokládat, že každá neprázdná podmnožina $K \subseteq \mathbb{N}$ má nejmenší prvek (což je pravdivý a intuitivně jasný předpoklad).

Důkaz:

Princip indukce dokážeme sporem. Předpokládejme, že princip indukce neplatí, tj. existují tvrzení $V(n), n \in \mathbb{N}$, která splňují oba předpoklady principu indukce, ale pro nějaké $n' \in \mathbb{N}$ tvrzení V(n') neplatí. Označme $K = \{m \in \mathbb{N} \mid V(m) \text{ neplatí}\}$ množinu všech takových n'. K je tedy neprázdná, neboť $n' \in K$. Množina K má tedy nejmenší prvek k (dle principu dobrého uspořádání) a ten je různý od 1 (dle indukčního předpokladu $1 \notin K$). Pak tedy $k-1 \notin K$, tedy V(k-1) platí. Z indukčního kroku plyne, že platí i V(k), tedy $k \notin K$, což je spor s $k \in K$.

Příklad

Dokažme výše uvedený vztah $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$. Podle principu indukce stačí ověřit indukční předpoklad a indukční krok.

Indukční předpoklad: V(1) je tvrzení $1^2 = \frac{1 \cdot 2 \cdot 3}{6}$, a to platí.

Indukční krok: Předpokládejme, že platí V(n) a dokažme V(n+1).

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2} =$$

$$= \frac{(n+1)(2n^{2} + 7n + 6)}{6} = \frac{(n+1)(n+2)(2(n+1) + 1)}{6},$$

což je právě tvrzení V(n+1). Podle principu indukce je tedy tvrzení dokázané.

Příklad

Dokažte, že počet úhlopříček pravidelného n-úhelníka ($n \ge 3$) je $\frac{n(n-3)}{2}$.

Řešení: viz přednáška.

1 Čísla a číselné obory

Princip indukce

Dělitelnost

Definice

Pro $m,n\in\mathbb{Z}$ říkáme, že m dělí n, píšeme $m\mid n$, právě když $\exists k\in\mathbb{Z}$ tak, že $m\cdot k=n$. Když $m\mid n$, říkáme také, že m je dělitelem n nebo n je dělitelné m.

(Fakt, že m nedělí n zapisujeme $m \nmid n$.)

Věta

Pro $a,b,c\in\mathbb{Z}$ platí

- a) Jestliže $a \mid b$ a $b \mid c$, pak $a \mid c$.
- b) Jestliže $a \mid b$ a $a \mid c$, pak $\forall x, y \in \mathbb{Z}$ platí $a \mid (bx + cy)$.

Důkaz: viz přednáška.

Příklad

Dokažte indukcí, že pro $\forall n \in \mathbb{N}$ platí: $7 \mid (2^{n+2} + 3^{2n+1})$.

Řešení: viz přednáška.

Věta (o jednoznačnosti dělení se zbytkem)

Pro $a,b \in \mathbb{Z}$ existují jednoznačně určená $q,r \in \mathbb{Z}$ tak, že a = bq + r a $0 \le r < b$.

Číslo r se nazývá **zbytek po celočíselném dělení čísla** a **číslem** b. Píšeme také $(a \mod b) = r$.

Definice

Přirozené číslo n se nazývá **prvočíslo**, jestliže $n \neq 1$ a jestliže n je dělitelné jen čísly 1 a n.

Věta

Existuje nekonečně mnoho prvočísel.

Důkaz: Sporem, viz přednáška.

Věta (o jednoznačnosti dělení se zbytkem)

Pro $a,b \in \mathbb{Z}$ existují jednoznačně určená $q,r \in \mathbb{Z}$ tak, že a = bq + r a $0 \le r < b$.

Číslo r se nazývá **zbytek po celočíselném dělení čísla** a **číslem** b. Píšeme také $(a \mod b) = r$.

Definice

Přirozené číslo n se nazývá **prvočíslo**, jestliže $n \neq 1$ a jestliže n je dělitelné jen čísly 1 a n.

Věta

Existuje nekonečně mnoho prvočísel.

Důkaz: Sporem, viz přednáška.

Věta

 $\sqrt{2} \notin \mathbb{Q}$.

Důkaz: Sporem, viz přednáška.

Věta

Množina ℤ je spočetná.

Důkaz: Najdeme bijekci \mathbb{Z} na \mathbb{N} , viz přednáška.

Věta

Množina Q je spočetná.

Důkaz: Najdeme bijekci Q na N, viz přednáška.

Věta

 $\sqrt{2} \notin \mathbb{Q}$.

Důkaz: Sporem, viz přednáška.

Věta

Množina \mathbb{Z} je spočetná.

Důkaz: Najdeme bijekci \mathbb{Z} na \mathbb{N} , viz přednáška.

Věta

Množina ℚ je spočetná.

Důkaz: Najdeme bijekci ℚ na N, viz přednáška.

Věta

Interval $(0,1) \subseteq \mathbb{R}$ je nespočetná množina.

Důkaz: Tzv. Cantorovou diagonální metodou, viz přednáška.

Důsledek

Množina \mathbb{R} je nespočetná.

Důsledek

Množina všech iracionálních čísel je nespočetná.

Základní věta aritmetiky

Každé přirozené číslo větší než jedna lze vyjádřit jednoznačně až na pořadí činitelů jako součin prvočísel.

Věta o jednoznačnosti zápisu přirozeného čísla v soustavě o základu *b*

Nechť b > 1 je přirozené číslo. Pro každé $x \in \mathbb{N}$ existují jednoznačně určená čísla $a_n, a_{n-1} \dots, a_1, a_0$, přičemž $0 \le a_i < b_i$ $a_n \ne 0$ tak, že $x = a_n b^n + a_{n-1} b^{n-1} + \dots + a_1 b + a_0$.

Poznámka: Pro zápis čísel ve dvojkové soustavě (b = 2) používáme symboly 0 a 1. Pro zápis čísel v šestnáctkové soustavě používáme symboly $0, 1, \dots, 9, A, B, C, D, E, F$.

Základní věta aritmetiky

Každé přirozené číslo větší než jedna lze vyjádřit jednoznačně až na pořadí činitelů jako součin prvočísel.

Věta o jednoznačnosti zápisu přirozeného čísla v soustavě o základu *b*

Nechť b>1 je přirozené číslo. Pro každé $x \in \mathbb{N}$ existují jednoznačně určená čísla $a_n, a_{n-1} \dots, a_1, a_0$, přičemž $0 \le a_i < b$, $a_n \ne 0$ tak, že $x = a_n b^n + a_{n-1} b^{n-1} + \dots + a_1 b + a_0$.

Poznámka: Pro zápis čísel ve dvojkové soustavě (b=2) používáme symboly 0 a 1. Pro zápis čísel v šestnáctkové soustavě používáme symboly $0,1,\ldots,9,A,B,C,D,E,F$.