Lab Report No: 04

Lab Report Name: Introduction to Python.

Name: ANIKA JAHIN

ID: IT_17056

Theory:

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.

Setup of Python Environment

STEP 1: Open Eclipse and setup a correct access to Internet (This is required only in RMIT network). In order to set up Manual Proxy follow the instructions (see also figure 1):

- a. Go to Windows > Preferences > General > Network Connections.
- b. Change Active Provider to Manual.
- c. Input proxy details, including username/password if required.
- Host: proxy.rmit.edu.au
- 2 Port: 8080
- Username/password: No required
- d. Clear SOCKS proxy.
- e. Restart Eclipse.

STEP 2: Installing python environment using Eclipse Graphical Interface1.

a. To install PyDev and PyDev Extensions using the Eclipse Update Manager, you need to use the **Help > Install New Software...** menu (note that in older versions, this would be the 'Find and Install' menu) as shown in the following figure:

In the next screen, add the update site(s) you want to work with (see the figure below). The available update sites are :

http://pydev.org/updates

And finally, read the license agreement and if you accept, select the accept radio button and click 'Finish'

STEP 2: Checking the installation: You can verify if it is correctly installed going to the menu 'window' preferences' and checking if there is a **PyDev** item under that (see Figure 7). After that eclipse will display the graphical interface for python perspective, the main components are (see Figure 8):

- 2 Project space is the section where all your python projects are visualized,
- 2 Project Editor is the section where python scripts can be edited,
- Console allows the visualization of results father running a python script,

Exercises

Section 4.1: Basics of python and programing

Exercise 4.1.1: Create a python project.

Answer:

Create a python script, click in **File > New > PyDev Module.** Select the folder source name. Then, provide a name for the project (Hello_world), then select empty module or main module as shown below:

Project created successfully.

Exercise: 4.1.2: Write a Hello World Program.

```
P test 

10

10

11

2 Created on Aug. 21, 2020

3

4 Qauthor: anika jahin

5

print(('Hello_World!'))

Console 

Console 

<terminated> test.py [C:\Users\anika jahin\AppData\Local\I Hello_World!]
```

Exercise 4.1.3: Compute 1+1

Exercise 4.1.4: Type in program text

```
P) test
          P 1plus1
                       🖻 formulas_shapes 🛭
  19 ...
  2 Created on Aug 21, 2020
  3
    @author: anika jahin
  4
  5
  6 h = 5.0 # height
  7 r = 1.5 # radius
  8 pi = 3.1416
 9 if __name__ == '__main__':
             area_parallelogram = h*r
 10
             print ('The area of the parallelogram is %.3f' % area parallelogram)
 11
 12
             area_square = h**2
             print ('The area of the square is %g' % area_square)
 13
             area circle = pi*r**2
 14
             print ('The area of the circle is %.3f' % area_circle)
 15
             volume_cone = 1.0/3*pi*r**2*h
 16
             print ('The volume of the cone is %.3f' % volume cone)
 17
■ Console ※
<terminated> formulas_shapes.py [C:\Users\anika jahin\AppData\Local\Programs\Python\Python38-32\pytho
The area of the parallelogram is 7.500
The area of the square is 25
The area of the circle is 7.069
The volume of the cone is 11.781
```

Section 4.1: Create and run basic example.

```
P) test
          P 1plus1
                      p formulas_shapes
                                         19 '''
  2 Created on Aug 21, 2020
  4 @author: anika jahin
  5
  6 a = int(input())
  7
     b = int(input())
  8
  9 print(a+b) #addition
 10 print(a-b) #minus
 11 print(a*b) #multiply
 12 print(a**b) #power
 13 print(a/b) #divide
 14 print(a//b) #floor
 15 print(a%b) #modulo
 16 print(a<<b) #left shift
 17 print(a>>b) #right shift
 18 print(a&b) #bitwise and
 19 print(a|b) #bitwise or
 20 print(a^b) #bitwise xor
 21 print(a<b) #less than
 22 print(a>b) #greater than
 23 print(a<=b)
 24 print(a>=b)
 25 print(a==b)
 26 print(a!=b)
■ Console 
<terminated> sample.py [C:\Users\
6
11
-1
30
15625
0.8333333333333334
0
5
320
0
4
7
3
True
False
True
False
False
True
```

Exercise 4.2.2: The if statement:

```
P *if ⋈
  19 '''
  2 Created on Aug 21, 2020
  3
  4 @author: anika jahin
  5
  6 a = 35
  7 b = int(input())
  8 if(a==b):
        print("Equal")
  9
 10 else:
 print("Wrong")
 <
■ Console 
<terminated> if.py [C:\Users\anika jahin\AppData\Local
Equal
```

Exercise 4.2.3: The while Statement

```
P if
        19 '''
  2 Created on Aug 21, 2020
  3
  4 @author: anika jahin
  5
  6 a = 10
  7 while(a>1):
         print(a)
  8
  9
         a = a-1
■ Console XX
<terminated> while.py [C:\Users\anika jah
9
8
7
6
5
4
3
2
```

Exercise 4.2.4: The for Statement

