Probability a gentle introduction

The goal of this class

- We all have intuitions about probabilities.
 - But sometime these intuitions are wrong!
- In order to arrive at the correct answer we need more than intuition we need a well defined system of definitions and axioms.
- The common system for reasoning under uncertainty is probability theory, which is a branch of mathematics.
 - Other systems exist, such as Fuzzy Logic, but we will not cover them in this course.
- Moving from intuitive thinking to formal thinking is hard!!
- Today we will introduce some central concepts from probability theory in an intuitive way.
 - We'll also show how intuition alone can lead us astray.
 - In later classes we will give more formal definitions.
- The concepts are:
 - Outcomes
 - Expected value / fair price.
 - Events
 - Event trees.
 - Probabilities / probability distribution.
 - Conditional Probability.

Bets between two people

- John: I bet the chargers will win their next game.
- Kathy: I bet they will lose. Do you want to put money on it?
- John, sure. In fact, <u>I am so sure they will win</u> that if they lose I'll pay you 90\$, if they win, you pay me just 10\$.
- Kathy: You are on!
- The odds are: 9 to 1
- Equivalent to john thinking that the probability the chargers will win is at least 90%
- Why? Because 0.9*10-0.1*90=0

What does it mean that john is right?

- Suppose John is right = the probability that the chargers win is at least 90%
- What does this mean?
- If we focus on just one bet, john either wins or lose. The probability has very little meaning.
- If John and Kathy bet before each game of the chargers, and john always gives the same odds, then on the long run, John will not lose money to Kathy.

Bets against the house.

- People that want to bet sometimes cannot find each other.
- The bookie acts as an intermediary: instead of pairs betting, everybody bets against the house.
- To bet: put money down on a particular outcome
- After result is known: each person gets paid according to the odds.

Fair odds: in words

- In the betting games we will talk about, the probability of each <u>outcome</u> is known.
- The bet is <u>fair if:</u>
 - The long term average of gains/losses is zero.
 - In other words: the expected value is zero.

Fair odds: in symbols

n: number of outcomes

Probabilities of outcomes $p_1, p_2, \frac{1}{4}, p_n$

money gained for each outcome: $g_1, g_2, \frac{1}{4}, g_n$

price of ticket: T

At each iteration, player pays T and gains one of $g_1, g_2, \frac{1}{4}, g_n$

The expected gain of the player is $\bigotimes_{i=1}^{n} p_i g_i - T$

The game is fair if $\bigotimes_{i=1}^{n} p_i g_i - T = 0$

Equivalently: the price is fair if $T = \mathop{\stackrel{\circ}{a}}_{i=1} p_i g_i$

Fair Price=Expected value ≈long term average

- From the previous slide : $T = \sum_{i=1}^{n} p_i g_i$
- This quantity is also called the **expected value** and denoted as $E[g] \doteq \sum_{i=1}^{n} p_i g_i$
- The long-term-average converges to the expected value.

First Example

- House flips an unbiased coin.
 - "heads": house pays player \$1
 - "tails": house pays player \$2
- Outcomes: "heads","tails"
- What is the fair ticket price?
 - **-** \$1.5
 - Why? Because 0.5*1 + 0.5*2 = 1.5

Second example

- The house flips the coin three times in a row.
- Eight outcomes: HHH,HHT,HTH,HTT, THH,TTTH,TTT
- Each outcome has probability 1/8
- Each outcome consists of three coin flips.
- You win \$1 if there is exactly one T, 0\$ otherwise,
 what is the fair price of the ticket?

Event Trees

- It sometimes helps our understanding to consider each coin flip separately, one by one.
- The result of considering all the possibilities is called the event tree.

The 3 coin flips event tree

What is an "Event"?

- An event is a set of outcomes.
- Each node of an event tree defines an event
- The event of each node is a subset of the event of the parent.
 - The event "the first coin flip is H". Corresponds to the set: {HHH,HHT,HTH,HTT}
 - The event "the first coin flip is T". Corresponds to the set: {THH,THT,TTH,TTT}
 - The event "the first 2 coin flips are HH". Corresponds to the set: {HHH,HHT}
 - The event "the first 2 coin flips are HT". Corresponds to the set: {HTH,HTT}
 - ...
 - The event "the three coin flips are HHH" corresponds to the set: {HHH}
- The probability of an event is the number of outcomes in the set, divided by 8.
- The event that contains all possible outcomes is called the "outcome space" and is denoted by Ω
- The probability of the whole outcome space is always 1:

$$Prob(\Omega)=8/8=1$$

Calculating probabilities of events

- The probability of an event (in the second example) is the number of outcomes in the set, divided by 8.
- The probability of an event is the number of outcomes in the event divided by the total number of outcomes in Ω (which is 8 in our case).
- Prob({HHH})=Prob({HHT})=1/8

The size of sets

- The number of elements in a set is also called the size, or cardinality, of the set.
- The size of the event A is denoted |A|
- The probability of the event A is $P(A) = \frac{|A|}{|\Omega|}$
- The fine print: This is true for the special case of "uniform distribution over a finite sample space". Which will occupy us for the first 2 weeks or so.

Slightly more complex events

- P({The sequence contains no T})=P({HHH})=1/8
- P({The sequence contains one T})=
 P({HHT,HTH,THH}) = 3/8
- While HHH,HHT,HTH,.... All have the same probability, the event defined by "one T" has three times the probability of "no T".
- The main task is to count the number of outcomes in the event. This is done using "combinatorics"

Ticket prices

- Suppose that the house pays you \$1 if a specified event happens, zero otherwise.
 What is the fair price?
- T(E) = 1* P(E) = P(E)
 - In this special case, probability and expectation are the same.
- T({HHH})=T({HHT})=T({no T})=1/8=¢12.5
- T({one T})=\$3/8= ¢37.5

Do we really need all this?

- Maybe you think:
 "Calculating the probabilities and expected values for what we have seen so far can be done intuitively, do we really need 'events' and 'event trees'?"
- Here is an example which challenges the intuition.

The three card problem

- There are three cards in a hat. Each side of each card is colored red
 R or black B.
- The colors of the cards are RR, RB, BB
- I pick one of the cards at random and put it on a random side.
- I say: if the color of the other side is the same, you give me \$1, if it is different, I give you \$1.
- My reasoning why this is fair:
 - Suppose that the side we see is R,
 - then two cards are possible: RR or RB.
 - Therefor there are equal probabilities that the opposite side would be R or B.
 - Similar argument can be made if the side we see is B.
- Is this argument correct? Is the expected gain equal zero?

Event tree for three cards

Conditional probability

- The probability that the seen color is R (B) is $\frac{1}{2}$.
- The probability that the other side is R (B) given that the seen color is R(B) is 2/3.

For thu.

- Read Chapter 2.
- Finish Week1 homework on webwork.

- Thu: Basic combinatorics.
- If there is time, we'll do some of next class now, and redo it on Thursday.