

11) Publication number:

0 174 028 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication of patent specification: 17.07.91 (51) Int. Cl.5: H03M 7/24
- (21) Application number: 85111249.0
- 2 Date of filing: 05.09.85
- Apparatus for processing floating-point data having exponents of variable length.
- ③ Priority: 05.09.84 JP 184625/84
- Date of publication of application:12.03.86 Bulletin 86/11
- Publication of the grant of the patent: 17.07.91 Bulletin 91/29
- Designated Contracting States:
 DE FR GB
- 56 References cited: **US-A- 3 742 198**

PATENT ABSTRACTS OF JAPAN, vol. 8, no. 101 (P-273)[1538], 12th May 1984 & JP-A-59-11 444

- Proprietor: HITACHI, LTD.6, Kanda Surugadai 4-chome Chiyoda-ku, Tokyo 100(JP)
- Inventor: Ooyama, Mitsuo 625-23, Nagafusa-cho Hachioji-shi Tokyo(JP) Inventor: Hamada, Hozumi 2-63-7, Kikunodai Chofu-shi Tokyo(JP) Inventor: Ando, Kimiaki 2039-5, Shinmachi Ohme-shi Tokyo(JP)
- Representative: Strehl, Schübel-Hopf, Groening
 Maximilianstrasse 54 Postfach 22 14 55
 W-8000 München 22(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

BACKGROUND OF THE INVENTION

The present invention relates to an apparatus for processing floating-point data having exponents of variable length.

The format of the floating-point data having exponents of varying length to be used in the present invention is known in Japanese Patent Laid-Open No. JP-A-59-11444 or U.S. Patent US-A- 4 671 641 In order to process those floating-point data, it is necessary to separate the exponents and the mantissa from the data before processing and to generate floating-point data having the exponents of variable length by combining the exponent and mantissa data both of fixed length obtained as a result of the processing.

In the above-specified Patent Application, however, the separating and combining processes are executed in the bit-serial manner which results in a slower processing rate.

5 SUMMARY OF THE INVENTION

An object of the present invention is to provide an apparatus which can separate or integrate floating-point data having exponent parts of variable length in a bit-parallel manner.

According to a feature of the present invention, there is provided a floating-point data processing apparatus for generating exponent data of fixed length from floating-point data which is composed of: a sign bit indicating the sign of a mantissa; a first exponent part which has a bit length determined in dependence upon a significant bit length necessary for binarily expressing an exponent and which has all its bits determined at 1 or 0 in dependence upon said mantissa sign and the sign of said exponent; a second exponent part which has its bit length determined in dependence upon the bit length of said first exponent part, which has a predetermined relationship determined in dependence upon the sign of said exponent and said mantissa sign with the significant bit part when said exponent is binarily expressed, and the leading bit of which has a value different from the value of one bit of said first exponent part; and a mantissa part which has a plurality of bits having a bit length determined in dependence upon the value of said exponent, said exponent data of fixed length being composed of: a sign bit part having a plurality of bits having values indicating the sign of said exponent; and a significant bit part having a plurality of bits indicating the values of said exponent. The apparatus comprises: detect means for receiving in parallel a plurality of bits other than said sign bit of said floating-point data and for detecting the position of a bit, which has a value different from the value of one bit of said first exponent part and which is the closest to said first exponent part, as the position of the leading bit of said second exponent part; shift means for receiving in parallel at least the bits other than said sign bit of said floating-point data and responsive to the position detected by said detect means, for shifting said floating-point data such that said second part comes to a predetermined position; signal means for generating a bit pattern indicating such a bit position of said shifted floating-point data as has its value to be transformed in dependence upon said sign bit of said floating-point data, the leading bit of said first exponent part and said detected position; and output means for receiving in parallel the respective bits of said floating-point data shifted by said shift means and said generated bit patterns and for generating said exponent data.

According to another feature of the present invention, there is provided a floating-point data processing apparatus for generating floating-point data having an exponent part of a varying length from both exponent data of fixed length, and mantissa data of fixed length, said exponent data being composed of a sign bit part having a plurality of bits of values determined by an exponent sign and a significant bit part having a plurality of bits indicating the value of said exponent, and said mantissa data of fixed length being composed of a mantissa sign bit part, an inverted bit part inverted from said mantissa bit part, and a mantissa significant bit part, said floating-point data being composed of: a sign bit indicating a mantissa sign; a first exponent part having a bit length determined in dependence upon a significant bit length necessary for binarily expressing an exponent and which has all its bits determined at 1 or 0 in dependence upon said mantissa sign and the sign of said exponent; a second exponent part which has its bit length determined in dependence upon the bit length of said first exponent part, which has a predetermined relationship determined in dependence upon the sign of said exponent and said mantissa sign with the significant bit part when said exponent is binarily expressed, and the leading bit of which has a value different from the value of one bit of said first exponent part, and a mantissa part which has a plurality of bits having values determined in dependence upon the value of said exponent. The apparatus comprises: detect means for receiving in parallel a plurality of bits of said exponent data and for detecting the position of a bit, which has a value different from the value of one bit of said sign bit part and which is the closest to

said sign bit part, as the position of the leading bit of said significant bit part; first shift means for receiving in parallel a plurality of bits of said exponent data and for shifting said exponent data in dependence upon said detected position such that the leading bit of said exponent data is positioned next to the first exponent part of said floating-point data to be generated; second shift means for receiving in parallel a plurality of said mantissa data for shifting said mantissa data in dependence upon said detected position such that the leading bit of said mantissa data comes next to the significant bit part of the exponent data after shifted; signal means for generating both a first bit pattern which indicates the bit position of a bit, which has its value to be transformed, of the exponent data, which are shifted by said first shift means, in dependence upon one of the sign bit part of said exponent data, the sign bit of said mantissa bit and said detected position and for generating a second bit pattern which indicates the position other than the mantissa significant bit part of the mantissa data

shifted by said second shift means, in dependence upon said detected position; and output means for receiving in parallel both the respective bits of said exponent data and said mantissa data, after shifted respectively by said first and second shift means, and the respective bits of said first and second bit patterns and for generating said floating-point data.

BRIEF DESCRIPTION OF THE DRAWINGS

20

30

40

Fig. 1 is a diagram showing the format of the floating-point data having exponent parts of varying length, which are to be used in the present invention;

Fig. 2 is a diagram showing the data of a number |100|₁₀ according to the expression of Fig. 1;

Fig. 3 is a block diagram showing the floating-point data processing apparatus according to one embodiment of the present invention;

Fig. 4 is a block diagram showing a boundary recognition circuit (20) of Fig. 3;

Fig. 5 is a diagram showing the input and output relationship of a partial bit train check circuit (34-i) of Fig. 4;

Fig. 6 is a diagram showing the input and output relationship of a priority encoder (35) of Fig. 4;

Fig. 7 is a block diagram showing the circuit construction of Fig. 4 for k = 2 and the specific data flow therein:

Fig. 8 is a diagram showing an example of the boundary recognition result of Fig. 4;

Figs. 9A and 9B are diagrams showing the exponent part data after having been shifted to the right and left, respectively, by a shift circuit (22) of Fig. 3;

Fig. 9C is a diagram showing the general format of the output of an exclusive OR circuit (23) of Fig. 3;

Figs. 10A to 10H are diagrams for explaining the output bit patterns of a bit pattern generator (21);

Fig. 11A is a diagram showing the format of the mantissa part data after having been shifted by a shift circuit (24) of Fig. 3;

Figs. 11B and 11C are diagrams showing different examples of the output of a bit insertion circuit (25) of Fig. 3, respectively;

Fig. 12A is a diagram showing the format of the exponent data output (100') of a processing unit (26) of Fig. 3:

Figs. 12B and 12C are diagrams showing the different output formats of a shift circuit (29) of Fig. 3;

Figs. 12D and 12E are diagrams showing output formats of an exclusive OR circuit (30) of Fig. 3;

Fig. 13 is a block diagram showing a circuit for detecting the boundary between the sign bit part and significant bit part of the exponent part of Fig. 3;

Fig. 14 is a block diagram showing a specific embodiment of Fig. 13 and the internal data of the same; Figs. 15A to 15H are diagrams for explaining the output bit patterns (112) of a bit pattern generator (28) of Fig. 3;

Fig. 16A is a diagram showing the format of the output mantissa data (110) of the processing unit (26) of Fig. 3;

Fig. 16B is a diagram showing the output format of a shift circuit (31);

Fig. 16C is a diagram showing the output format of an AND circuit (32) of Fig. 3; and

Fig. 16D is a diagram showing the format of another output bit pattern (113) of the bit pattern generator (28) of Fig. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Before entering into the specific description of the floating-point processing apparatus according to the present invention, a cursory review will be made in the following as to the system for expressing the

floating-point data having the exponent part of variable length (which system will be shortly referred to as the "present expression" or the "present expression method") which is to be used in the processing apparatus of the present invention.

The essence of the present expression method resides in that the length of an exponent part is determined in dependence upon the preceding "0" train or "1" train thereof. The present expression method will be described specifically in the following.

1. In the present expression, the number 0 and the infinity can be expressed, as follows:

```
0: "0 0 0, - - -, 0"; and Infinity: "1 0 0, - - -, 0"
```

Next, the numbers other than the above two will be described in the following:

2. A number to be expressed is designated at x and is expressed by a multiple of two numbers e and f, as follows:

```
x = 2^{e} x f - - - - - (1).
```

Here, in order to make the value univalent, the numbers e and f are conditioned, as follows: The first consideration is limited to the case of x > 0:

```
e: Integer - - - - - (2);
and
1 ≤ f ≤ 2 - - - - - (3).
```

Next, the following three data are placed as the expression method in the specified order.

- (i) sign bit (1 bit expressing the sign of the number x);
- (ii) Exponent Part; and
- (iii) Mantissa Part.

10

15

20

25

30

35

40

50

The binary expression of the value of the mantissa f is made, as follows:

$$f = 1. f_1 f_2 f_3 - - - - - - (4).$$

At this time, the term $f_1f_2f_3$ is assumed to be the bit pattern of the mantissa part. Aiming at making the exponent part variable, there the following method is used to give the self-describing ability to the length of the variable length data field. The following expression is to be used because the double exponent expression will frequently be used:

$$2^n \to \exp(n) - - - - - - - (5).$$

For e > 0, the range in which the number e can be expressed just by a binary m (> 0) bits is as follows:

If the range of the number f of Equation (3) is incorporated, Equation (6) is expressed in terms of the range of the number x, as follows:

$$\exp(2^{m-1}) \le x \le \exp(2^m) - - - - (7).$$

For E < 0, considering the symmetry with Equation (7), following another expression is obtained:

$$\exp (-2^m) < x < \exp (-2^{m-1}) - - - (8).$$

If this expression is returned to the range of the number e, the following expression is obtained:

55
$$-2^m \le e < -2^{m-1} - 1 - - - - - (9)$$
.

From Equation (9), it is rational that the expression of the number e is an expression in 2's complement. Therefore, the following expression of the mantissa f is rational for x < 0:

$$-2 \le f < -1$$
 - - - - - (3').

Equations (6) and (9) do not contain the cases of e = 0 and - 1. This is interpreted as m = 0. Including these, the internal expression of the integer e in case this number e can be expressed just by the m bits, as follows:

for
$$e \ge 0$$
: $0, ---, 0 \cdot 1 \cdot e_{m-1}, ---, e_2 \cdot e_1$;

and

15

20

25

30

35

40

45

From the values e_{m-1} , - - -, e_2 e_1 and m, the exponent part is prepared by arranging the "1" or "0" train of (m + 1) figures in accordance with the code of the exponent e, by arranging the "0" or "1" train after the former train, and by subsequently arranging the value em-1, - - -, e_2 e_1 , as follows for $x \ge 0$:

for e > 0:
$$1, ---, 1$$
 $0, e_{m-1}, ---, e_2 e_1;$

and

for e < 0: 0, - - -, 0, 1,
$$e_{m-1}$$
, -- -, e_2 e_1 - - - - - - (11).

The length of the exponent part is expressed by (2m + 1) and is characterized by increasing as the magnitude of the exponent increases. The length of the exponent part is also characterized by the fact that it can be detected easily by detecting the length m + 1 of the "1" or "0" train positioned at the leading part.

The order of the magnitude of the part except the leading "1" or "0" train of Equation (11) is coincident with the magnitude order of the value e even if the mantissa part is included in consideration.

For x < 0 like the case of x > 0, Equation (7) is replaced by the following equation:

$$-\exp(2^m) \le x < -\exp(2^{m-1}) - - - - (7');$$

and Equation (8) is replaced by the following equation:

$$-\exp(2^{m-1}) \le x < -\exp(2^m) - - - - -(8').$$

For x < 0, the order of Equation (11) may be reversed by considering that the order of the value x and the order of the value e are reversed, and this reversal can be made by taking the complementary number of 1. Hence, Equations (11) are replaced by the following equations:

for
$$e \ge 0$$
: $0, ---, 0$ $1 = \frac{m}{e_{m-1} \cdot \cdot \cdot \cdot e_2} = 1$

and

5

10

15

for e < 0: 1, ---, 1
$$0 = \overline{e_{m-1} ... e_2} = \overline{e_1}$$

In dependence upon the sign of the exponent e, the sequence of (m + 1) number of "0" or "1", followed by the "1" or "0" sequence and then by the respective inverted bits

$$\overline{e_{m-1}}$$
, - - -, $\overline{e_1}$

of the bits e_{m-1} , - - -, e_1 . This expression also has the characteristics described in connection with Equation 20 (11).

Fig. 1 shows the general format of the numbers according to the present expression. Indicated at numeral 1 is the sign bit of a mantissa which takes the value "0" or "1" in accordance with the positive or negative of the number x. Indicated at numeral 5 is an exponent part which is expressed by Equation (11) or (11'). An L field 2 is a part of the "1" sequence or "0" sequence of (m + 1) bits, and a E field 3 is a significant bit part of composed of m bits and expressing the magnitude of the exponent. A F field 4 is a mantissa part which is composed of an |l - (2m + 2)| bits if the total bit number of the expression of Fig. 1 is designated by l.

Since the number $[100]_{10}$ is expressed by Equation (1), as follows:

30 2⁶ X (25/16),

35

45

50

the mantissa f is expressed by Equation (4), as follows:

$$f = [1. 1 0 0 1 0 - - -]_2.$$

Since e = 6, moreover, m = 3 so that the exponent part is expressed by Equation (11), as follows:

$$\underbrace{\left(\widehat{1} \ 1 \ 1 \ 0 \ 1 \ 0\right)}_{2}.$$

Hence, the number $[100]_{10}$ is expressed, as shown in Fig. 2, according to the present expression, as follows;

$$x_{100} = \underbrace{0}_{S} \underbrace{1111}_{L} \underbrace{010}_{E} \underbrace{10010}_{F} - - -.$$

In order to conduct floating-point processing of the numerical data which are expressed by using the exponent part 5 of variable length shown in Fig. 1, as is apparent from the description thus far made, it is necessary to separate the exponent part data having the exponent part of fixed length of the prior art and the remaining mantissa part data. For this necessity, it is necessary to separate the exponent part 5 and the mantissa part 4, which have the expression of Fig. 1. For this necessity, it is sufficient to detect the length m + 1 of the L field 2. As is apparent from Equation (11) or (11'), the leading bit of the E field takes the value reversed from the value "1" or "0" constructing the bit sequence of the L field 2. By making use of these characteristics, it is possible to detect the length m + 1 of the L field 2 and to / judge the boundary

between the E field 3 and the F field 4 on the basis of the length m + 1 detected. As is apparent from Equation (11), in case the sign bit S is 0, the E field 3 expresses the exponent as it is, when the L field 2 is a bit sequence of "1", and the reversed E field 3 expresses the exponent when the sign bit S is "1".

In the practical processing apparatus, there is a limit to the total length of the data of Fig. 1. At this time, the bit in the allowable data length is selected to the exponentially expressed data of variable length from the S field 1 of the data of Fig. 1. As a result, when the exponent is large, the data may not contain the mantissa part 4 or a part of the E field 3. However, this case raises no problem in the present expression.

Fig. 3 is a block diagram showing one embodiment of the present invention. In Fig. 3: reference numeral 20 indicates a boundary detection circuit for detecting the boundary between the length description part 2 and the significant bit part 3 of the exponent part; numerals 21 and 28 bit pattern generators; numerals 22, 24, 29, and 31 shift circuits for shifting input bits in parallel; numerals 23 and 30 exclusive OR circuits; numeral 25 a bit insertion circuit; numeral 26 an arithmetic logic unit for processing floating-point data having an exponent part of fixed length; numeral 27 a boundary detection circuit for detecting the boundary between the exponent sign bit part and the significant bit part; numeral 32 an AND circuit; and numeral 33 indicates an OR circuit.

In Fig. 3, the arithmetic of the data 100 of the exponent of variable length according to the present expression is conducted, as follows:

- (1) Detection of the boundary between the length description part 2 and the significant bit part 3 of the exponent part 5;
- (2) Separation of the exponent part 5 and the mantissa part 4;

20

25

30

35

40

45

50

55

- (3) Arithmetic operation on the separated exponent part and mantissa part to provide a resultant floating-point data with an exponent part of a fixed length and a normalized mantissa part;
- (4) detection of the boundary between the sign bit part and the significant bit part of the exponent of the resultant floating-point data; and
- (5) integration of the exponent part and the mantissa part of the resultant floating-point data to provide a floating-point data with an exponent part of a variable length. The processing itemized above will be described in detail in the following.
- (1) Detection of the boundary between the length designation part 2 and the value designation part 3 of the exponent part:

In Fig. 3, the data 100 according to the present expression method are input to the boundary detection circuit 20.

This boundary detection circuit 20 examines the first inverted bit position with reference to the first bit of the length description part (i.e., the L field 2 (as shown in Fig. 1)) of the exponent to output the examined position as the result. This means the output of the position of the first bit of the E field 3 in the general format of the present expression method shown in Fig. 1. From this result, the length of the L field in Fig. 1 is determined so that the last bit position of the E field of the exponent part can be determined from Equations (11) and (11'). Next, the operations of the boundary detection circuit 20 will be described in detail with reference to Fig. 4. Fig. 4 is a block diagram showing the boundary detection circuit 20 of Fig. 3. In Fig. 4: reference numeral 34-1,- --, and 34-k indicate inverted bit position check circuits, respectively; numeral 35 a priority encoder; numeral 36 a multiplexer; and numerals 37 and 38 OR circuits. The data according to the present expression method are divided for use into: a sign bit 119 of the mantissa part; a first bit 120 of the length description part 2 of the succeeding exponent part 5; and succeeding partial bit trains 121-1, - - -, and 121-k. The bits of the data 100 other than the bits 119 and 120 are cut away in the order from the tail of the data 100 and are used as the bit trains 121-1, - - -, and 121-k. The first bit is input commonly and then partial bit trains 121-k, - - -, and 121-1 to the left terminal of each of the inverted bit position check circuits 34-1, - - -, and 34-k. Each of the inverted bit position check circuits 34-i (i = 1 to k) examines the presence of the bit at a value different from that of the bit 120 in the partial bit train 121-i with reference to the bit 120 sets a flag 122-i (i = 1 to k) indicating the presence of inversion at "1", if the inverted bit is present, to output the position (which is counted from the last bit in each partial bit train) of the inverted bit closest to the left end of each partial bit train 121-i as the bit serial number 123-i (i = 1 to k) of that particular bit. Without inversion, the flag 122-i is set at "0", whereupon the bit serial number 123-i has no meaning. Each partial bit train can be modified so as to have an arbitrary length, but in order to use the hardware efficiently, therefore, the length of each partial bit train may be 2N, whereupon the number of total input bits to the inverted bit position check circuit 34-i is $2^N + 1$ as a result that the bit 120 is added thereto. When the length of the bit of the data 100 except the bits 119 and 120 is not k times as large as 2N so that the total number of input bits to the partial bit train 121-k is smaller than 2N bits, the bit 120 is further input, with a multitude equal to the difference, to the inverted bit position check circuit 34-k. Thus, all the inverted bit position

5

10

15

20

25

30

35

40

45

50

55

check circuits 34-1 to 34-k can be constructed of an identical circuit. The outputs of the inverted bit position check circuits 34-k, - - -, and 34-1 for N = 2, i.e., when the input bit number is 5 bits are shown in Fig. 5. In Fig. 5, the bit number of the partial bit train 121-i is set such that the right end bit number of each partial bit train 121-i takes "0" and successively 1, 2 and 3 in the leftward direction. Moreover, a symbol "X" indicates assumption of a value either "0" or "1". The inverted bit position check circuit 34-i can be realized by an ROM (i.e., Read Only Memory), which uses the input bit train as its address input and in which the output data shown in Fig. 5 are written in the corresponding location. That circuit 34-i can also be realized easily by using a PLA (i.e., Programmable Logic Array) or a logic gate element.

The flag 122-i output from each inverted bit position check circuit 34-i is input to the priority encoder 35. At this time, the flag 122-k is connected with the input having the highest priority whereas the flag 122-1 is connected with the input having the lowest priority, so that the priority encoder 35 detects the inverted bit position check circuit (e.g., 34-j),to which the partial bit train containing the first inverted bit with reference to the first bit of the length description part 2 of the exponent part 5 is input, to output the number (j) of the check circuit as a detection result 124. The inverted bit position 123-i output from each inverted bit position check circuit 34-j is input to the multiplexer 36. This multiplexer 36 selects and outputs the inverted bit number (123-j), which is output from the inverted bit position check circuit (34-j) from the inverted bit position check circuit number j indicated by the output 124 of the priority encoder 35.

In the present expression, no bit inversion is present on and after the first bit of the length description part 2 of the exponent part when the data 100 correspond to numbers 0 and ∞. Since all the flags 122-1, - - -, and 122-k take "0" at this time, this state is detected by the priority encoder 35 to set a flag 125 at "1" so that all the plural bits composing the inverted bit position check number 124 output from the priority encoder 35 and an inverted bit number 126 output from the multiplexer 35 are set at 1.

The input and output relationships of the priority encoder 35 for k=2 in Fig. 4, i.e., in the case of the two inverted bit position check circuits are shown in Fig. 6. The inverted bit position check circuit number 124 sets the number of the circuit 34-2 at "1" and the number of the circuit 34-1 at "0". The priority encoder 35 can be realized by the ROM which uses the plural flag inputs 123-1 and 123-2 as its address inputs and in which the output data shown in Fig. 9 are written in the corresponding locations. The priority encoder 35 can also be realized easily by a PLA or by logic gates. This modification can also be applied in an absolutely identical manner to the case in which the number k is more than 2.

The OR gates have their outputs 127 and 128 are output as the boundary detection result 101 together with the sign bit of the mantissa part and the leading bit 120 of the exponent length description part 2.

Fig. 7 shows the circuit construction of the boundary detection circuit 20 for k=2 in Fig. 4 and when the input of the partial bit train check circuit is 5 bits and the flow of the data when the 8-bit data "0 0 1 0 0 1 0 1" according to the present expression are to be detected. The parenthesized values indicate the data on the signal lines. Incidentally, since the partial bit train input 121-2 to the inverted bit position check circuit 34-2 is 2 bits, the lefthand 3 bits are bits each identical to the first bit 120 of the exponent length description portion. As a result, the inverted bit position check circuits 34-1 and 34-2 can be made to have an identical construction.

Fig. 8 shows the boundary detection result obtained by the circuit of Fig. 4 for the various 8-bit data 100 according to the present expression. Symbol "X" indicates which value may be taken "0" or "1".

As has been described hereinbefore, the outputs 101 express the first inverted bit position with respect to the first bit 120 of the length description part 2 of the exponent part in terms of the serial number of the inverted bit position check circuit, to which the first inverted partial bit train is input, and the inverted bit position in said partial bit train. In other words, the outputs 101 indicate the bit serial number n, which is counted from the trailing bit of the data 100 to a bit having a value inverted from that of the leading bit 120 of the E part.

If the length of the data 100 is designated at ℓ , then the length (m + 1) of the L part 2 can be derived easily from the relationship of m + 1 = ℓ - (n + 1). The length of the exponent part 5 according to the present expression is expressed by (2m + 1) from Equations (11) and (11') if the length of the length description part 2 of the exponent part is assumed to be (m + 1). Since the value m is determined from the aforementioned value n, the boundary between the exponent part and the mantissa part can be easily detected from the output of the present circuit. The outputs 101 of the present circuit further contain the sign bit 119 of the mantissa part and the first bit 120 of the length description part 2 of the exponent part and can discriminate a special number such as 0 or ∞ , because the case in which no inversion of the bit after the first bit of the length description part 2 of the exponent part is present is detected, as has been described hereinbefore.

- (2) Separation of the exponent part and the mantissa part:
 - (i) Separation of the exponent part:

If the data have a short exponent part, they contain the exponent part and the mantissa part. If the exponent part is long, conversely, neither the mantissa part nor lowest bit or bits of the exponent part is contained in the data 100. In order to separate the exponent part from the mantissa part, different processings are required in dependence upon which of the two above cases the data 100 belong to.

More specifically, the shift circuit 22 is shifted rightward by the length of the mantissa part in accordance with the output of the boundary detection circuit 20, in case the mantissa part is present, but leftward to give the exponent part a desired length, in case the mantissa part is absent, so that the final bit of the exponent part may be arranged at the righthand end of the data. For this purpose, the shift circuit 22 has a circuit (although not shown) for determining the direction and stroke of the shift in the following manner.

If the length description part 2 of the exponent part has the length of (m + 1) (which is equal to ℓ - (n + 1), as has been described above), the length to be owned by the part (i.e., the E field) indicating the size of the exponent part 5 takes the value m, as has been described hereinbefore. If the following inequality holds in case the data according to the present expression have the length of ℓ bits:

```
l > 2m + 2,
i.e., 2n + 2 > l,
```

then the data 100 contain all the m bits of that size designation part 3 so that the mantissa part is present in the data 100. In this case, the shifting direction is righthand, and the shifting stroke is ℓ - 2m - 2, i.e., 2n + 2 - ℓ bits, which are necessary for shifting out the mantissa part 4. At this time, the value "0" is shifted into the leading part of the data. Fig. 9A shows an example of the data 103 after shifted. If the following inequality holds:

```
l \le 2m + 2,
i.e., 2n + 2 \le l,
```

the bit length of the size designating part 3 of the exponent part in the data 100 is ℓ - m - 2, which is equal to or smaller than m, then if becomes necessary to compensate the value "0" of the bit number ($(2m + 2 - \ell)$ bits), which becomes short for reproducing the exponent part of the expression of fixed length. Therefore, a leftward shift is conducted by $(2m - 2) - \ell$, i.e., ℓ -2n - 2.

At this time, the value "0" is shifted in. The results 103 of the leftward shift are shown in Fig. 9B. Reference numeral 2' appearing in Fig. 9B indicates that it is composed of data L' after the length description part 2 of the exponent part is partially shifted out. The exponent part 3 is composed of a part 3' of the original exponent part E and a "0" train 3".

The mantissa sign bit 119 output from the boundary detection circuit 20 and the first bit 120 of the exponent length description part 2 have no relationship with the above-specified determinations of the shifting direction and stroke.

Next, the data 103 output from the shift circuit 22 and containing the exponent part of variable length separated are transformed into the exponent part data of fixed length. This processing (which will be shortly referred to as the "restoration of the exponent part") will be described in the following. The restoration of the exponent part is conducted by generating the bit pattern from the bit pattern generator 21 in accordance with the output of the boundary detection circuit 20 and by transforming the (1 - m) bits other than the exponent part 3 (as shown in Figs. 9A or 9B) of the output 101 of the shift circuit 22 into an exponent sign bit Se by the use of the exclusive OR circuit (i.e., EOR circuit) 23. Fig. 9C shows the general format of the data which are output as the restored exponent part to the FOR 30. As has been described hereinbefore, the length of the exponent part 3 of the output 101 of the shift circuit 22 can be determined from the output of the boundary detection cirucuit 20, and it is also possible to determine which pattern of Figs. 9A and 9B the output 101 belongs to. It is further possible to know the exponent part sign bit (S) 1 from the sign bit 119 of the mantissa part, which is contained in the output 110 of the boundary detection circuit 20, and the value of each bit of the L part 2 (Fig. 9A) or 2' (Fig. 9B) from the first bit 120 of the length description part of the exponent part. It is further possible to determine the sign bit Se of the exponent part from Equations (11) and (11') on the basis of the sign bit 119 of the mantissa part and the first bit 120 of the L part. Thus, it is possible to determine the bit pattern to be generated for the restoration of the exponent part from the output

5

10

15

30

35

25

40

45

55

103 of the shift circuit 22 by the use of the EOR circuit 23.

10

15

20

25

30

35

40

45

50

55

Figs. 10A to 10D show the output 103 of the shift circuit 22, the output 102 of the bit pattern generator 21, and the output 105 of the EOR circuit 23 in case the output 103 of the shift circuit 22 takes the format shown in Fig. 9A.

Fig. 10A shows the case in which the mantissa part and the exponent part of the data 100 are positive. In other words, the sign bit 119 (shown in Fig. 4) of the mantissa part is at "0", whereas the leading bit 120 (shown in Fig. 4) of the length designation part of the exponent part is at "1". At this time, the output 105 of the EOR circuit 23 to be output as the exponent after the restoration should be that shown in Fig. 10A, as is understood from the first equation of Equation (10). Of the outputs of the shift circuit 22, therefore, the leading bit of the exponent part 3 and all the bits of the length designation part 2 have to be inverted. For this necessity, the bit pattern generator 21 outputs the output 102 which has the value "1" only in the position corresponding to those bits, as shown in Fig. 10A. The position in which the value "1" is to be generated is the m-th bit counted from the lowest bit of the data 103 to the (2m + 1)th bit, as viewed from the Drawing, i.e., from (l - n - 2)th bit to the (2l -2n - 3)th bit, as expressed with respect to the inverted bit position n output from the boundary detection circuit 20. Fig. 10B shows the case in which the exponent of the data 100 is positive whereas the mantissa of the same is negative, i.e., in case the sign bit 119 of the mantissa part is at "0" whereas the leading bit 120 of the length designation part of the exponent part is at "0". At this time, the output 103 of the shift circuit 22 should take the value shown in Fig. 10B, as is apparent from the second equation of Equation (11), and the output 105 of the EOR circuit 23 should take the value shown in Fig. 10B, as is apparent from the second equation of Equation (10). It follows that the output 102 of the bit pattern generator 21 should have all its leading (l - m + 1) bits taking the value "1", as is shown in Fig. 10B.

Likewise, Fig. 10C shows the output 102 of the bit pattern generator 21 in case the mantissa and exponent of the data 100 are negative, and Fig. 10D shows the output 102 in case both the mantissa and exponent of the data 100 are negative.

Figs. 10E to 10H show the output 103 of the shift circuit 22 and the output 102 (i.e., the output of the EOR circuit 23) of the bit pattern generator 21 in case the output 103 of the shift circuit 22 takes the format of Fig. 9B.

Figs. 10E to 10H are similar to Figs. 10A to 10D, respectively, in connection with the sign bits of the mantissa and exponent of the data 100. In the case of Fig. 10E, for example, as is apparent from the first equation of Equation (11), the output 103 of the shift circuit 22 has its lower (2m + 2 - l) bits at "0", and its upper (l - m - 2) bits at the significant bit parts 0, e_{m-1} and $-e_1$, and its far upper (l - m) bits at "1" so that the output 105 of the EOR circuit 23 takes the format shown in Fig. 10E, as is apparent from the first equation of Equation (10). As a result, the output 101 of the bit pattern generator 21 has to have its leading (l - m + 1) bit taking the value "1", as shown in Fig. 10E.

As is apparent from the description thus far made, the bit pattern generator 21 can make outputs having the value "1" in a predetermined positions in accordance with the output of the boundary detection circuit 20 thereby to generate the exponent data 105 expressed to have the fixed length from the output of the shift circuit 22 by the EOR circuit 23.

The bit pattern generator 21 can be realized easily by using the ROM which is made receptive of the output of the boundary detection circuit 20 as its address input and which is written with the bit patterns shown in Figs. 10A to 10H in the corresponding locations. The bit pattern generator 21 can also be realized easily by using a PLA or a logic circuit.

(ii) Separation of the mantissa part:

The shift circuit 24 shifts the data 100 according to the present expression leftward in accordance with the output of the boundary detection circuit 21, while maintaining the sign bit of the mantissa part, such that the boundary between the exponent part and the mantissa part is located between the second and third bits from the left end. If the length of the length description part of the exponent part of the data 100 is set at (m + 1), the length of the exponent part is expressed by (2m + 1) so that the shifting stroke is 2m bits. The shift circuit 24 is equipped with a circuit (not shown) for detecting that shifting stroke 2m in response to the output of the boundary detection circuit 20. In accordance with the shifting operation, the value "0" is shifted in at the lower bits of the data. The shift result is shown in Fig. 11A. In Fig. 11A, reference numeral 1 indicates the sign bit of the mantissa part, and the succeeding bits are the lowest bits of the exponent part. Next, the bits at the lefthand of the point of the mantissa part omitted as the redundant bits are inserted by the bit insertion circuit 25. This bit insertion is conducted by inverting the sign bit of the mantissa part and by replacing one bit succeeding the sign bit of the mantissa by the inverted sign bit. In other words, the one bit

succeeding the sign bit of the mantissa is set at "0" for the sign bit "1" and at "1" for the sign bit "0". The results of the respective cases are shown in Figs. 11B and 11C. The decimal point is located at a point 8.

(3) Arithmetic:

5

10

15

20

25

30

35

40

45

50

55

The exponent part 105 and the mantissa part 106 separated are processed in the arithmetic unit 26 between the exponent part 107 and the mantissa part 108 of another number separated by similar means (not shown), and the exponent part of the processed result normalized to locate the mantissa within the range of Equations (3) and (3') is output to 100' whereas the mantissa part of the same is output to 110. (4) Detection between the sign bit part and the significant bit part of the exponent part:

The data format of the exponent part data 100' is shown in Fig. 12A. Reference numeral 7 indicates the exponent sign bit part (Se) which is composed of the "0" train or "1" train in dependence upon which the exponent is positive or negative, and numeral 3 indicates the part composed of the significant bits (E) of the exponent. In case this exponent is expressed by the m bits, the significant bit part 3 is composed of the m bits and has its leading bit at a value different from that of the sign bit Se so that it is expressed by the expression made by Equation (10). In order to know the length of the significant bit part 3, i.e., the number of the significant bits, it is sufficient to examine the bit inversion consecutively in the rightward direction with reference to the sign bit 7 and to detect the bit position in which the bit is inverted at first. Since this bit is the leading bit of the significant bit part 3, the length of the succeeding bits including it is the length of the significant exponent part.

Fig. 13 is a block diagram showing the boundary detection circuit 27 for detecting the boundary between the sign bit part and the significant bit part. Reference numerals 34'-1 to 34'-k indicate respective bit position check circuits; numeral 35' a priority encoder; numeral 36' a multiplexer; and numerals 37' and 38' logic OR circuits.

In Fig. 13, the exponent part 100' is used as the sign bit 120' and the partial bit trains 121'-1, - - -, and 121'-k succeeding the former and separated. The respective inverted bit position check circuits 34'-1, - - -, and 34-k are made receptive at their left terminals commonly of the sign bit 120' and respectively of the partial bit trains 131-1, - - -, and 139-k. Each inverted bit position check circuit 34'-i (i = 1 to k) examines the presence of the bit inversion with respect to the sign bit 120' and sets the flag 122'-1, which indicates the presence of inversion, at "1" if the inversion is present, to output the position of the bit inverted at first, as viewed from the sign bit 120', as the number 123'-i of that bit. In the absence of the inversion, the flag 122'-i is set at "0", whereupon the bit number 123'-i has no meaning. The construction of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely the same as that of the inverted bit position check circuit 34'-i is absolutely t

On the other hand, Fig. 14 shows the construction of the boundary detecting circuit 27, for k=2 in Fig. 13 and when the inverted bit position check circuit 34'-i has a 5-bit input, and the flow of the data when the exponent 1 1 1 1 0 1 1 0 is detected. The parenthesized values designate the data on the signal lines. The circuit construction itself is completely the same as that of Fig. 7 except the signal line 119, and the circuits or the signal lines of Fig. 14 correspond to the circuits or signal lines of Fig. 7 having the reference numerals from which the primes are eliminated.

As has been apparent from the description thus far described, the relationship between the input 100' and the output 101' of the boundary detection circuit 27 is obtained by priming the reference numerals of Fig. 8 except the output 119. As a result, the output 101' is constructed such that its significant exponent part 3 has its leading bit position composed of the signals 127 and 128, which are indicated by n' counted from the trailing bit of the data 100' and the part 120' indicating the exponent sign bit. If the total bit length of the data 100' is indicated by ℓ , the significant bit part 3 has a length equal to n'.

(5) Combination of the exponent part and the mantissa part:

The exponent part 101' is shifted by the shift circuit 29. At this time, the shifting direction and stroke are so determined that the significant bit part 3 comes to the position to be taken by the leading bit of the significant bit 3 of the exponent part 100' when the exponent part 100' and the mantissa part 110 are combined and transformed into the present expression type. The shifting direction and stroke can be determined specifically in the following manner. If the total length of the exponent is assumed at \$\mathbb{L}\$ bits whereas the length of the significant bit part 3 is assumed at m bits, as shown in Fig. 12A, then the length of the exponent length description part when transformed into the present expression type has (m

+ 1) bits from Equations (11) and (11') so that the first bit of the significant bit part in Fig. 12A has to be located at the (m + 3)th bit when transformed into the present expression type. Hence, if the following inequality holds:

$$\ell - m + 1 > m + 3$$
,
i.e., $\ell - 2m - 2 > 0$,

the shifting direction is leftward, and the shifting stroke is (l - 2m - 2) bits. In the leftward shift, the value "0" is shifted at the right end. The output 114 after this leftward shift is shown in Fig. 12B. If the following inequality holds:

$$l - 2m - 2 \le 0$$
,

10

15

20

the shifting direction is righthand, and the shifting stroke is $(2m - \ell + 2)$ bits. In the rightward shift, the sign bit Se is shifted in at the right end. The result of this rightward shift is shown in Fig. 12C. As has been described hereinbefore, the output of the boundary detection circuit 27 indicates the position of the leading bit of the significant bit part 3, which is counted from the right end of the exponent part 100', i.e., the significant bit number m of the exponent. The shift circuit 27 includes a circuit (although not shown) for determining the shifting direction and a shift bit number on the basis of that number m in connection with a predetermined value ℓ from the above-specified computing equation.

Next, the procedures for generating the exponent pare of the present expression type from the shift result will be described in the following. The exponent part according to the present expression method is generated by generating the bit pattern 112 from the output 101' of the exponent boundary detection circuit and the sign bit of the mantissa by the bit pattern generator 28 and by transforming the sign bit part 3 and the significant bit part 3 of Figs. 12B and 12C by the use of the EOR circuit 30 in accordance with Equations (11) and (11'). The position and length of the exponent significant bit part 3 and the sign bit part of the exponent of Figs. 12B and 12C are determined from the output 101' of the exponent part boundary detection circuit 27. Based upon the sign bit of the mantissa 110, it is possible to generate the bit pattern necessary for generating the exponent part of variable length according to the present expression.

Fig. 12D shows the general format of the result of the exponent part (i.e.the output 116 of the EOR circuit 30) generated for the shift output 114 in the cause of Fig.12B, and Fig. 12E shows the general format of the result (i.e.,the output 116 of the EOR circuit 30) of the exponent part generated for the shift output 114 in the case of Fig. 12C. In either case, the left end bit of the output is set at "0", and the OR circuit 33 is used so that the sign bit of the mantissa data 110 can be inserted.

Figs. 15A to 15D show the various outputs 112 of the bit pattern generator 28 in case the output of the shift circuit 29 takes the format of Fig. 12B.

Fig. 15A shows the pattern in case both the mantissa part 110 and the exponent part 100' are positive. Whether the mantissa 110 is positive or not can be judged in dependence upon whether its leading bit is at "0" or not, and whether the exponent part 100' is positive or not can be judged in view of the exponent sign bit (i.e., 120' of Fig. 13) in the output 101' of the boundary detection circuit 27. At this time, the output 114 of the shift circuit 29 has significant bits at the m bits on and after the (m + 3)th bit from the leading bit, as shown in Fig. 15A. As is apparent from the first equation of Equation (11), on the other hand, the signal 116 to be output as the data for the exponent data 114 according to the present expression from the EOR circuit 30 takes the value "1" from the second bit to the (m + 2)th bit, the value "0" at the next (m + 3)th bit, and the significant bit part of (m - 1) bits and a train of "0" of $(\ell - 2m - 2)$ bits at the subsequent bits. This last part is that to which the mantissa is to be added. Therefore, the output 112 of the bit pattern generator 28 has to be the pattern which takes the value "1" for the (m + 1) bits 10 from the second bit to the (m + 3)th bits, as shown in Fig. 15A.

Fig. 15B shows the case in which the mantissa is positive whereas the exponent is negative; Fig. 15C shows the case in which the mantissa is negative whereas the exponent is positive; and Fig. 15D shows the case in which both the mantissa and the exponent are negative. The description of these cases are omitted here because they are apparent from Equations (11) and (11').

Figs. 15E to 15H correspond to the case in which the output 114 of the shift circuit 29 is shown in Fig. 12C, and the values of the sign bits of the mantissa and exponent correspond to Figs. 15A to 15D, respectively.

The bit pattern generator 28 can be realized easily by the use of the ROM which is made receptive of the output 101' of the boundary detection circuit 27 and the sign bit of the mantissa 110 as its address inputs and which is written with the bit pattern shown in Figs. 15A to 15H in its corresponding locations. The

bit pattern generator 28 can also be realized easily by the use of a PLA OR logic gates. Incidentally, the bit pattern generator 28 outputs another bit pattern 113, which will be described hereinafter.

The mantissa 110 is shifted rightward up to a predetermined position of the mantissa of the present expression type, while expanding the sign bit Se rightward, by the shift circuit 1 in accordance with the outputs 127' and 128' in the output 101' of the boundary detection circuit 27.

The shifting stroke is 2m bits when the length of the exponent part is (2m + 1) bits. Fig. 16A shows the normalized mantissa part data 110 before they are shifted. Reference numeral 1 indicates the mantissa sign bit, and numeral 11 is identical to the inversion of the mantissa sign bit in accordance with Equation (3) and its definition. The decimal point is located at 8. Fig. 16B shows the result of the output which is shifted rightward by 2m bits. Numeral 12 indicates a 2m number of mantissa sign bits, and the decimal point is at 6, which provides the boundary between the exponent part and the mantissa part according to the present expression. Next, in order to set the region stored with the exponent part at "0", the bit pattern 113 is generated by the bit pattern generator 28, and a logical product is taken between the bit pattern 113 and the output 115 of the shift circuit 31 by the AND circuit 32. The result output 117 is shown in Fig. 16C. The pattern 113 generated by the bit pattern generator 28 is made, as shown in Fig. 16D, such that all (2m + 1) bits corresponding to 12 and 11 in Fig. 16B are at "0" whereas all the bits corresponding to the other parts are at "1". Therefore, the bit pattern generator 28 is constructed to generate bit pattern 113 separately of the bit pattern 112 in accordance with the value m which is expressed by the output 101' of the boundary detection circuit.

The result 118 transformed into the present expression is attained if the logical sum of the exponent part 116 output from the EOR circuit 30 and the mantissa part 117 output from the AND circuit 32 is taken by the use of the OR circuit 33. This result output 118 is equal to the output 116 of the EOR circuit 30 in case the output 116 of the EOR circuit 30 is shown in Figs. 15E to 15H. The same result is obtained as the output 101 of the circuit 20 even if, in place of the left end input bit 120 of the check circuits 34-(k-1), - - -, and 34-1, the right end bit of the lefthand partial bit train is input. Similar processing applies to the circuits 34'-1 to 34'-k of Fig. 13.

As has been described hereinbefore, according to the present invention, the separation of the exponent part and the mantissa part from the data according to the floating-point expression having the exponent part of variable length, and the combination of the exponent part of fixed length and the mantissa part after the arithmetic operation into a floating-point data with an exponent part of a variable length are conducted in bit-parallel so that a high-speed floating-point data processing apparatus can be realized.

Claims

40

45

50

55

20

- 35 1. An apparatus for converting floating-point input data of variable-length exponent and mantissa to floating-point output data of fixed-length exponent and mantissa, wherein said input data (100) are composed of
 - (a) a sign bit (S) indicating the mantissa sign,
 - (b) a first exponent part (L) including an indication of the exponent sign,
 - (c) a second exponent part (E), and
 - (d) a mantissa part (F) which has a plurality of bits having a bit length determined in dependence upon the value of the exponent,
 - and wherein said output data are composed of
 - (e) an exponent part (105) including a sign bit part having a plurality of bits of values determined by the exponent sign, and a significant bit part (E) having a plurality of bits indicating the value of the exponent, and
 - (f) a mantissa part (106) including a sign bit part (1) indicating the mantissa sign, an inverted bit part inverted from said sign bit part, and a significant bit part (4) indicating the magnitude of the mantissa data.

characterized in

that said first exponent part (L) has a bit length determined in dependence upon a significant bit length necessary for the binary expression of the exponent with all its bits determined as 1 or 0 in dependence upon the mantissa sign and the exponent sign, and said second exponent part (E) has its bit length determined in dependence upon the bit length of said first exponent part and a predetermined relationship, determined in dependence upon the exponent sign and mantissa sign, with the significant bit part when said exponent is expressed in binary form, the leading bit of said second exponent part (E) having a value different from the value of one bit of said first exponent part (L), and

that said apparatus includes

5

10

15

20

30

35

40

45

50

55

detection means (20) for receiving in parallel a plurality of bits other than said sign bit (S) of said input data (100) for detecting the position of a bit, which has a value different from the value of one bit of said first exponent part (L) and which is the closest to said first exponent part (L), as the position of the leading bit of said second exponent part (E),

first shift means (22) for receiving in parallel at least bits other than said sign bit (S) of said input data (100) and responsive to the position detected by said detecting means (20) for shifting said input data (100) such that said second exponent part (E) comes to a predetermined position,

signal means (21) for generating a bit pattern signal (102) comprised of bits indicating a bit position of said shifted input data (103), said bit position being determined in dependence upon said sign bit (S) of said input data (100), the leading bit of said first exponent part (L) and the position detected by said detecting means (20),

first output means (23) for receiving in parallel the respective bits of said shifted input data (103) and responsive to said bit pattern signal (102) for generating said exponent part (105) by transforming values of bits in said shifted input data (102) which bits are indicated by said generated bit pattern signal (103),

second shift means (24) for receiving in parallel a plurality of bits of said input data (100) and shifting the bits other than said sign bit (S) of said input data (100) in accordance with the position detected by said detection means (20) such that the leading bit of said mantissa part (F) comes to a position which is next but one to said sign bit (S), and

second output means (25) for inserting the inverted bit of said sign bit (S) into the position next to said sign bit of the data output from said second shift means (24) to output the inserted data as said mantissa part (106).

- 25 2. The apparatus of claim 1, wherein said first output means (23) includes a plurality of exclusive OR circuits each connected to receive one bit of said input data (100) and one bit of said bit pattern (102).
 - 3. An apparatus for converting floating-point input data of fixed-length exponent and mantissa to floating-point output data of variable-length exponent and mantissa, wherein said input data are composed of
 - (a) an exponent part (100') including a sign bit part (7) having a plurality of bits with values determined by the exponent sign and a significant bit part (3) having a plurality of bits indicating the value of the exponent, and
 - (b) a mantissa part (110) including a mantissa sign bit part (1) and a mantissa significant bit part (F), and wherein said output data (118) are composed of
 - (c) a sign bit (S) indicating the mantissa sign,
 - (d) a first exponent part (L) including an indication of said exponent sign,
 - (e) a second exponent part (E), and
 - (f) a mantissa part (F) which has a plurality of bits having a bit length determined in dependence upon the value of the exponent,

characterized in

that said first exponent part (L) has a bit length determined in dependence upon a significant bit length necessary for the binary expression of the exponent with all its bits determined as 1 or 0 in dependence upon the mantissa sign and the exponent sign, and said second exponent part (E) has its bit length determined in dependence upon the bit length of said first exponent part and a predetermined relationship, determined in dependence upon the exponent sign and mantissa sign, with the significant bit part when said exponent is expressed in binary form, the leading bit of said second exponent part (E) having a value different from the value of one bit of said first exponent part (L), and

that said apparatus includes

detection means (27) for receiving in parallel a plurality of bits of said exponent part (100') and detecting the position of a bit which has a value different from the value of one bit of said sign bit part (7) and which is the closest to said sign bit part (7), as the position of the leading bit of said significant bit part (3) of said exponent part (100'),

first shift means (29) for receiving in parallel a plurality of bits of said exponent part (100') and shifting said exponent part (100') in dependence upon said detected position such that the leading bit of said exponent part (100') is positioned next to the first exponent part (L) of said output data (118),

second shift means (31) for receiving in parallel a plurality of said mantissa parts (110) and

shifting each mantissa part (110) in dependence upon said detected position such that the leading bit of said mantissa part (110) comes next to the significant bit part of the shifted exponent part (101'),

signal means (28) for generating a first bit pattern (112) which indicates the bit position of a bit whose value is to be transformed in the shifted exponent part (101') in dependence upon the sign bit part (7) of said exponent data (100'), the sign bit of said mantissa sign bit part or said position detected by said detection means (27), and for generating a second bit pattern (113) which indicates the position other than the mantissa significant bit part (F) of the shifted mantissa part (115), and

output means (30, 32, 33) for receiving in parallel both the respective bits of said shifted exponent and mantissa parts (114, 115) and the respective bits of said first and second bit patterns (112, 113) and for generating said output data (118).

- 4. The apparatus of claim 3, wherein said output means includes a plurality of exclusive OR gates (30) each for receiving one bit of said first bit patterns (112) and one bit of said shifted exponent part (114).
- 5. The apparatus of claim 4, characterized in that said output means includes means (32) for masking said shifted mantissa part (115) in accordance with said second bit pattern (113) and on OR circuit (33) for taking the logical sum between the outputs of said plural exclusive OR gates (30) and said masked shifted mantissa part (117) to output the resulting sum as said output data (118).

Revendications

5

10

15

20

25

30

35

40

45

50

55

- 1. Dispositif pour convertir des données d'entrée à virgule flottante possédant un exposant et une mantisse de longueur variable en des données de sortie à virgule flottante possédant un exposant et une mantisse de longueur fixe, et dans lequel lesdites données d'entrée (100) sont constituées par
 - (a) un bit de signe (S) indiguant le signe de la mantisse,
 - (b) une première partie (L) d'exposant, comprenant une indication du signe de l'exposant,
 - (c) une seconde partie (E) d'exposant, et
 - (d) une partie (F) de mantisse, qui possède une pluralité de bits ayant une longueur en bits déterminée en fonction de la valeur de l'exposant, et dans lequel lesdites données de sortie sont constituées par
 - (e) une partie (105) d'exposant, comprenant une partie formée de bits de signe et comprenant une pluralité de bits ayant des valeurs déterminées par le signe de l'exposant, et une partie (E) formée de bits significatifs et comprenant une pluralité de bits indiquant la valeur de l'exposant, et
 - (f) une partie (106) de mantisse, comprenant une partie (1) formée de bits de signe indiquant le signe de la mantisse, une partie inversée formée de bits, qui est inversée par rapport à ladite partie formée de bits de signe, et une partie (4) formée de bits significatifs et indiquant la grandeur des données de la mantisse,

caractérisé en ce

que ladite première partie (L) d'exposant possède une longueur en bits déterminée en fonction d'une longueur en bits significatifs, nécessaire pour l'expression binaire de l'exposant, dont tous les bits sont déterminés comme étant 1 ou 0 en fonction du signe de la mantisse et du signe de l'exposant, et ladite seconde partie (E) d'exposant possède une longueur en bits déterminée en fonction de la longueur en bits de ladite première partie d'exposant et d'une relation prédéterminée, déterminée en fonction du signe de l'exposant et du signe de la mantisse, avec la partie formée de bits significatifs lorsque ledit exposant est exprimé sous forme binaire, le bit de tête de ladite seconde partie (E) d'exposant possède une valeur différente de la valeur d'un bit de ladite première partie (L) d'exposant, et

en ce que ledit dispositif comprend

des moyens de détection (20) pour recevoir en parallèle une pluralité de bits autres que ledit bit de signe (S) desdites données d'entrée (100) pour la détection de la position d'un bit, qui possède une valeur différente de la valeur d'un bit de ladite première partie (L) d'exposant et qui est la plus proche de ladite partie (L) d'exposant, en tant que position du bit de tête de ladite seconde partie (E) d'exposant,

des premiers moyens de décalage (22) pour recevoir en parallèle au moins des bits autres que ledit bit de signe (S) desdites données d'entrée (100) et répondant à la position détectée par lesdits moyens de détection (20) pour décaler lesdites données d'entrée (100) de telle sorte que ladite seconde partie (E) d'exposant vient dans une position prédéterminée,

des moyens (21) de production de signaux servant à produire un signal de profil binaire (102) constitué par des bits indiquant une position binaire desdites données d'entrée décalées (103), ladite position binaire étant déterminée en fonction dudit bit de signe (S) desdites données d'entrée (100), de bit de tête de ladite première partie (L) d'exposant et de la position détectée par lesdits moyens de détection (20),

des premiers moyens de sortie (23) servant à recevoir en parallèle les bits respectifs desdites données d'entrée décalées (103) et répondant audit signal de profil binaire (102) pour produire ladite partie (105) d'exposant au moyen d'une transformation de valeurs de bits dans lesdites données d'entrée décalées (102), lesquels bits sont indiqués par ledit signal de profil binaire (103) produit,

des seconds moyens de décalage (24) servant à recevoir en parallèle une pluralité de bits desdites données d'entrée (100) et décalant les bits autres que ledit bit de signe (S) desdites données d'entrée (100) en fonction de la position détectée par lesdits moyens de détection (20) de sorte que le bit de tête de ladite partie (F) de mantisse vient dans une position qui est décalée d'une position par rapport audit bit de signe (S), et

des seconds moyens de sortie (25) servant à insérer le bit, qui est l'inverse dudit bit de signe (S), dans la position jouxtant ledit bit de signe de la sortie de données desdits seconds moyens de décalage (24) pour délivrer les données insérées en tant que ladite partie (106) de mantisse.

- 2. Dispositif selon la revendication 1, dans lequel lesdits premiers moyens de sortie (23) comprennent une pluralité de circuits OU-Exclusif, raccordés chacun de manière à recevoir un bit desdites données d'entrée (100) et un bit dudit profil binaire (102).
 - 3. Dispositif pour convertir des données d'entrée à virgule flottante possédant un exposant et une mantisse de longueur fixe en des données de sortie à virgule flottante possédant un exposant et une mantisse de longueur variable, dans lequel lesdites données d'entrée sont constituées par
 - (a) une partie (100') d'exposant comprenant une partie (7) formée de bits de signes comprenant une pluralité de bits possédant des valeurs déterminées par le signe de l'exposant et une partie (3) formée de bits significatifs et comprenant une pluralité de bits indiquant la valeur de l'exposant, et
 - (b) une partie (110) de mantisse comprenant une partie (1) formée d'un bit de signe de la mantisse et une partie (F) formée de bits significatifs de la mantisse, et dans lequel lesdites données de sortie (118) sont constituées par
 - (c) un bit de signe (S) indiquant le signe de la mantisse,
 - (d) une première partie (L) d'exposant, contenant une indication dudit signe de l'exposant,
 - (e) une seconde partie (L) d'exposant, et
 - (f) une partie (F) de mantisse qui possède une pluralité de bits possédant une longueur de bits déterminée en fonction de la valeur de l'exposant,

caractérisé en ce

5

10

15

25

30

35

40

45

50

55

que ladite première partie (L) d'exposant possède une longueur en bits déterminée en fonction d'une longueur en bits significatifs, nécessaire pour l'expression binaire de l'exposant, dont tous les bits sont déterminés comme étant 1 ou 0 en fonction du signe de la mantisse et du signe de l'exposant, et ladite seconde partie (E) d'exposant possède une longueur en bits déterminée en fonction de la longueur en bits de ladite première partie d'exposant et d'une relation prédéterminée, déterminée en fonction du signe de l'exposant et du signe de la mantisse, avec la partie formée de bits significatifs lorsque ledit exposant est exprimé sous forme binaire, le bit de tête de ladite seconde partie (E) d'exposant possède une valeur différente de la valeur d'un bit de ladite première partie (L) d'exposant, et

en ce que ledit dispositif comprend

des moyens de détection (27) servant à recevoir en parallèle une pluralité de bits de ladite partie (100') d'exposant et détecter la position d'un bit qui possède une valeur différente de la valeur d'un bit de ladite partie formant bit de signe (7) et qui est la plus proche de ladite partie formant bit de signe (7), en tant que position du bit de tête de ladite partie (3) formée de bits significatifs de ladite partie (100') d'exposant, des premiers moyens de décalage (29) servant à recevoir en parallèle une pluralité de bits de ladite partie (100') d'exposant et décaler ladite partie (100') d'exposant en fonction de ladite position détectée, de sorte que le bit de tête de ladite partie (100') d'exposant est positionné à la suite de la première partie (L) d'exposant desdites données de sortie (118),

des seconds moyens de décalage (31) servant à recevoir en parallèle une pluralité desdites parties (110) de mantisse et décaler chaque partie (110) de mantisse en fonction de ladite position

détectée de sorte que le bit de tête de ladite partie (110) de mantisse vient se placer à la suite de ladite partie formée de bits significatifs de la partie décalée (101') d'exposant,

des moyens de production de signaux (28) pour produire un premier profil binaire (112) qui indique la position d'un bit dont la valeur doit être transformée en la partie décalée (101') d'exposant en fonction de la partie formant bit de signe (7) desdites données (100') d'exposant, du bit de signe de ladite partie formant bit de signe de la mantisse ou de ladite position détectée par lesdits moyens de détection (27), et servant à produire un second profil binaire (113) qui indique la position autre que la partie (F) formée des bits significatifs de la partie décalée (115) de mantisse, et

des moyens de sortie (30,32,33) servant à recevoir en parallèle les bits respectifs desdites parties décalées (114,115) d'exposant et de mantisse, et les bits respectifs desdits premier et second profils binaires (112,113) et à produire lesdites données de sortie (118).

- 4. Dispositif selon la revendication 3, dans lequel lesdits moyens de sortie comprennent une pluralité de portes OU-Exclusif (30) servant chacune à recevoir un bit desdits premiers profils binaires (112) et un bit de ladite partie décalée (114) d'exposant.
- 5. Dispositif selon la revendication 4, caractérisé en ce que lesdits moyens de sortie comprennent les moyens (32) pour masquer ladite partie décalée (115) de la mantisse en fonction dudit second profil binaire (113) et un circuit OU (33) pour former la somme logique des signaux de sortie de ladite pluralité de portes OU-Exclusif (30) et de ladite partie décalée et masquée (117) de mantisse pour délivrer la somme résultante constituant lesdites données de sortie (118).

Patentansprüche

5

10

15

20

30

35

40

45

50

55

- 25 **1.** Gerät zum Umwandeln von Gleitkomma-Eingangsdaten mit einem Exponent variabler Länge und einer Mantisse in Gleitkomma-Ausgangsdaten mit einem Exponent fester Länge und einer Mantisse, wobei die Eingangsdaten (100) aufgebaut sind aus
 - (a) einem das Vorzeichen der Mantisse abgebenden Vorzeichenbit (S),
 - (b) einem ersten Exponentteil (L), der eine Angabe des Vorzeichens des Exponents enthält,
 - (c) einem zweiten Exponentteil (E) und
 - (d) einem Mantissenteil (F) mit mehreren Bits, wobei die Bitlänge in Abhängigkeit vom Wert des Exponenten bestimmt ist, und wobei die Ausgangsdaten aufgebaut sind aus
 - (e) einem Exponentteil (105) mit einem Vorzeichen-Bitteil, der mehrere Bits mit vom Vorzeichen des Exponenten bestimmten Werten aufweist, und einem signifikanten Bitteil (E), der mehrere den Wert des Exponenten angebende Bits umfaßt, und
 - (f) einem Mantissenteil (106), der einen das Vorzeichen der Mantisse angebenden Vorzeichen-Bitteil (1), einen gegenüber dem Vorzeichenbit-Teil invertierten Bitteil und einen die Größe der Mantissendaten angebenden signifikanten Bitteil (4) umfaßt,

dadurch gekennzeichnet,

daß die Bitlänge des ersten Exponentteils (L) in Abhängigkeit von einer signifikanten Bitlänge bestimmt ist, wie sie für den binären Ausdruck des Exponenten erforderlich ist, wenn alle seine Bits in Abhängigkeit vom Vorzeichen der Mantisse und dem des Exponenten als 1 oder 0 bestimmt sind, und die Bitlänge des zweiten Exponentteils (E) in Abhängigkeit von der Bitlänge des ersten Exponentteils und einer in Abhängigkeit vom Vorzeichen des Exponenten und dem der Mantisse vorgegebenen Beziehung zu dem signifikanten Bitteil bestimmt ist, wenn der Exponent in Binärform ausgedrückt ist, wobei das erste Bit des zweiten Exponentteils (E) einen vom Wert eines Bits des ersten Exponentteils (L) verschiedenen Wert hat, und

daß das Gerät umfaßt

eine Erfassungseinrichtung (20) zur parallelen Aufnahme mehrerer vom Vorzeichenbit (S) verschiedener Bits der Eingangsdaten (100) zur Erfassung der Stelle eines Bits, das einen vom Wert eines Bits des ersten Exponentteils (L) verschiedenen Wert hat und dem ersten Exponentteil (L) am nächsten steht, als Stelle des ersten Bits des zweiten Exponentteils (E),

eine erste Schiebeeinrichtung (22) zur parallelen Aufnahme mindestens von Bits der Eingangsdaten (100), die von dem Vorzeichenbit (S) verschieden sind, und zum Verschieben der Eingangsdaten (100) in Abhängigkeit von der durch die Erfassungseinrichtung (20) erfaßten Stelle derart, daß der zweite Exponentteil (E) an eine vorbestimmte Stelle gelangt,

eine Signaleinrichtung (21) zur Erzeugung eines Bitmustersignals (102), das aus eine Bitstelle der verschobenen Eingangsdaten (103) angebenden Bits besteht, wobei die Bitstelle in Abhängigkeit

vom Vorzeichenbit (S) der Eingangsdaten (100), dem ersten Bit des ersten Exponentteils (L) und der von der Erfassungseinrichtung (20) erfaßten Stelle bestimmt ist,

eine erste Ausgangseinrichtung (23) zur parallelen Aufnahme der jeweiligen Bits der verschobenen Eingangsdaten (103) und zur Erzeugung des Exponentteils (105) in Abhängigkeit von dem Bitmustersignal (102) durch Umwandeln von Werten solcher Bits in den verschobenen Eingangsdaten (102), die von dem erzeugten Bitmustersignal (103) angezeigt sind,

eine zweite Verschiebeeinrichtung (24) zur parallelen Aufnahme mehrerer Bits der Eingangsdaten (100) und zum Verschieben der Bits der Eingangsdaten (100) mit Ausnahme des Vorzeichenbits (S) entsprechend der von der Erfassungseinrichtung (20) erfaßten Stelle derart, daß das erste Bit des Mantissenteils (F) an die bezüglich des Vorzeichenbits (S) übernächste Stelle gelangt, und

eine zweite Ausgangseinrichtung (25) zum Einfügen des zu dem Vorzeichenbit (S) invertierten Bits an die bezüglich des Vorzeichenbits nächste Stelle der Ausgangsdaten von der zweiten Verschiebeeinrichtung (24), um die eingefügten Daten als Mantissenteil (106) auszugeben.

- 5 **2.** Gerät nach Anspruch 1, wobei die erste Ausgangseinrichtung (23) mehrere Exklusiv-ODER-Schaltungen aufweist, die so geschaltet sind, daß jede ein Bit der Eingangsdaten (100) und ein Bit des Bitmusters (102) empfängt.
- 3. Gerät zum Umwandeln von Gleitkomma-Eingangsdaten mit einem Exponent fester Länge und einer Mantisse in Gleitkomma-Ausgangsdaten mit einem Exponent variabler Länge und einer Mantisse, wobei die Eingangsdaten aufgebaut sind aus
 - (a) einem Exponentteil (100') mit einem Vorzeichen-Bitteil (7), der mehrere Bits mit vom Vorzeichen des Exponenten bestimmten Werten aufweist, und einem signifikanten Bitteil (3), der mehrere den Wert des Exponenten angebende Bits umfaßt, und
 - (b) einem Mantissenteil (110) mit einem Mantissevorzeichen-Bitteil (1) und einem signifikanten Mantissen-Bitteil (F) und wobei die Ausgangsdaten (118) aufgebaut sind aus
 - (c) einem das Vorzeichen der Mantisse abgebenden Vorzeichenbit (S),
 - (d) einem ersten Exponentteil (L), der eine Angabe des Vorzeichens des Exponents enthält,
 - (e) einem zweiten Exponentteil (E) und
 - (f) einem Mantissenteil (F) mit mehreren Bits, wobei die Bitlänge in Abhängigkeit vom Wert des Exponenten bestimmt ist,

dadurch gekennzeichnet,

5

10

25

30

35

40

45

50

55

daß die Bitlänge des ersten Exponentteils (L) in Abhängigkeit von einer signifikanten Bitlänge bestimmt ist, wie sie für den binären Ausdruck des Exponenten erforderlich ist, wenn alle seine Bits in Abhängigkeit vom Vorzeichen der Mantisse und dem des Exponenten als 1 oder 0 bestimmt sind, und die Bitlänge des zweiten Exponentteils (E) in Abhängigkeit von der Bitlänge des ersten Exponentteils und einer in Abhängigkeit vom Vorzeichen des Exponenten und dem der Mantisse vorgegebenen Beziehung zu dem signifikanten Bitteil bestimmt ist, wenn der Exponent in Binärform ausgedrückt ist, wobei das erste Bit des zweiten Exponentteils (E) einen vom Wert eines Bits des ersten Exponentteils (L) verschiedenen Wert hat, und

daß das Gerät umfaßt

eine Erfassungseinrichtung (27) zur parallelen Aufnahme mehrerer Bits des Exponentteils (100') und zur Erfassung der Stelle eines Bits, das einen vom Wert eines Bits des Vorzeichen-Bitteils (7) verschiedenen Wert hat und dem Vorzeichen-Bitteil (7) am nächsten steht, als Stelle des ersten Bits des signifikanten Bitteil (3) des Exponentteils (100'),

eine erste Schiebeeinrichtung (29) zur parallelen Aufnahme mehrerer Bits des Exponentteils (100') und zum Verschieben des Exponentteils (100') in Abhängigkeit von der erfaßten Stelle derart, daß das erste Bit des Exponentteil (100') dem ersten Exponentteil (L) der Ausgangsdaten (118) benachbart positioniert wird,

eine Signaleinrichtung (28) zur Erzeugung eines ersten Bitmuster (112), das die Bitstelle eines Bits angibt, dessen Wert in dem verschobenen Exponentteil (101') in Abhängigkeit vom Vorzeichen-Bitteil (7) der Exponentdaten (100'), vom Vorzeichenbit des Mantissenvorzeichen-Bitteils oder der von der Erfassungseinrichtung (27) erfaßten Stelle umgewandelt werden soll, und zur Erzeugung eines zweiten Bitmusters (113), das die von dem signifikanten Mantissen-Bitteil (F) verschiedene Stelle des verschobenen Mantissenteils (115) angibt,

eine Ausgangseinrichtung (30, 32, 33) zur parallelen Aufnahme sowohl der jeweiligen Bits der verschobenen Exponent- und Mantissenteile (114, 115) als auch der jeweiligen Bits des ersten und des zweiten Bitmusters (112, 113) und zur Erzeugung der Ausgangsdaten (118).

- 4. Gerät nach Anspruch 3, wobei die Ausgangseinrichtung mehrere Exklusiv-ODER-Glieder (30) aufweist, die jeweils ein Bit des ersten Bitmusters (112) und ein Bit des verschobenen Exponentteils (114) empfängt.
- 5. Gerät nach Anspruch 4, dadurch gekennzeichnet, daß die Ausgangseinrichtung eine Einrichtung (32) zum Maskieren des verschobenen Mantissenteils (115) entsprechend dem zweiten Bitmuster (113) sowie eine ODER-Schaltung (33) umfaßt, die die logische Summe aus den Ausgängen der mehreren Exklusiv-ODER-Glieder (30) und dem maskierten verschobenen Mantissenteil (117) bildet, um die sich ergebende Summe als Ausgangsdaten (118) auszugeben.

FIG. 1

FIG. 2

FIG. 4

F1G. 5

	INP	UTS	OUTPUTS			
REFE- RENCE BIT	PART B	PARTIAL BIT SERIES BIT NUMBER 121-i			FLAG	NUMBER INVERTED BIT
120	13	2	1	0	122-i	123-i
0	0	0	0	0	0	××
0	0	0	0	1	1	0 0
0	0	0	- 1	×	1	0 1
0	0	1	X	×	1	1 0
0	1	X	X	×	1	1 1
1	0	X	X	×	1	1 1
1	1	0	×	×	1	1 0
1	1	1	0	×	1	0 1
1	1	1	1	0	1	0 0
1	1	1	1	1	0	××

FIG. 6

	OUTPUTS			
INPUTS	FLAG	PARTIAL BIT SERIES CHECK CKT NUMBER		
123-2 123-1	125	124		
0 0	1	×		
0 1	0	0		
1 ×	0	1		

FIG. 7

F1G. 8

INPUT DATA								OUTPUTS 101				
100								119	120	127	12	8
0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	Х	0	0	0	0	1
0	0	0	0	0	1	X	X	0	0	0	1	0
0	0	0	0	1	X	X	×	0	0	0	1	1
0	0	0	1	X	X	×	×	0	0	1	0	0
0	0	1	×	×	×	×	×	0	0	1	0	1
0	1	0	×	×	×	×	×	0	1	1	0	1
0	1	1	0	×	X	×	×	0	1	1	0	0
0	1	1	1	0	X	×	×	0	1	0	1	1
0	1	1	1	1	0	X	×	0	1	0	1	0
0	1	1	1	1	1	0	×	0	1	0	0	1
0	1	1	1	1	1	1	0	0	1	0	0	0
0	1	1_	1	1	1_	1	1	0	1	1	1	1
1	0	0	0	0	0	0	0	1	0	1	1	1
1	0	0	0	0	0	0	1	1	0	0	0	0
1	0	0	0	0	0	1	×	1	0	0	0	1
1	0	0	0	0	1	×	X	1	0	0	1	0
1	0	0	0	1	×	×	X	1	0	0	1	1
1	0	0	1	×	×	×	×	1	0	1 1	0	0
1	0	1	×	×	×	×	$\frac{\sim}{\times}$	1	0	1	0	1
1	1	0	×	×	X	×	×	1 1	1 1	1	0	0
1	1	1	0	×	×		-		1 1	0	1	1
	1	1	1	0	×	×	×	1	1	0	1	0
1	1	1	1	1	0	X	×		1	0	0	1
1	1	1	1	1		0	0	1	1	0	1	Ó
	1	1	1	1	1	1	1	1 1	1	1	0	1
1	-1	1	1	1_	1		- 1	<u> </u>		<u> </u>		

FIG. 10E

1 · · · · 1	0	e _{m-1} · · · · e _{2m+3-} 2	0 · · · · 0	- ~103
1 · · · · 1	1	0 · · · · · 0	0 · · · · 0	102
0 · · · · 0	1	e _{m-1} · · · · e _{2m+3-1}	0 · · · 0	-~105
1-m		ℓ -m-2	_2m+2-2	j
	1	<u> </u>		

FIG. 10F

0 · · · · 0 1	e _{m-1} · · · · e _{2m+3-l}	0 · · · 0
1 · · · · 1 1	0 · · · · · 0	$0 \cdot \cdot \cdot \cdot 0$
1 · · · · 1 0	$e_{m-1} \cdot \cdot \cdot \cdot e_{2m+3-\ell}$	0 0

FIG. 10G

0 · · · · 0	1	$\overline{e_{m-1}} \cdot \cdot \cdot \cdot \overline{e_{2m+3-\ell}}$	0 · · · · 0
0 0	0	1 · · · · 1	$0 \cdot \cdot \cdot \cdot 0$
0 0	1	$e_{m-1} \cdot \cdot \cdot \cdot e_{2m+3-\ell}$	$0 \cdot \cdot \cdot \cdot 0$

FIG. 10H

1 · ·		•	1	0	$\overline{e_{m-1}} \cdot \cdot \cdot \cdot \overline{e}$	2m+3-£	0		· 0
0· ·		•	0	0	1	1	0 · ·	•	· 0
1 · ·	•	•	1	0	e _{m-1} ····e	2m+3-£	0 ·		· 0

0 em-1 · · ·

FIG. 16B

FIG. 16C

FIG. 16D

