NB-IoT

Protocol presentation

Sylvain Dupouy Léo Picou Mohan Selvarak January 2020

INSA Toulouse

Table of contents

1. Physical specs

- 2. Protocols
- 3. Study case
- 4. Battery life estimation

Physical specs

Bands

Based on LTE, use the liscenced spectrum.

In Europe: B3, B8, B20 [1]

- · Advantage : Use the widely implemented cellular network
- · Incovenient : Price of spectrum

Figure 1: NB-IoT Deployment modes [3]

Modulation

Modulation : QPSK or $\frac{\pi}{2}$ -BPSK

Access Method:

· Downlink: OFDMA

Uplink: SC-FDMA¹

Channel size and bandwidth:

· One LTE resource block: 180 kHz

¹Can't use OFDMA in uplink due to high PAPR

Specs

Sensitivity

• NB-IoT: -141 dBm

• LTE-M : Up to \approx -120 dBm

Data rate 2:

· Downlink: 26 kbits/s

· Uplink: 16.9 kbits/s

²Depends heavily on release version (3GPP 13,14,15)

Protocols

Protocol stack

Reuse of LTE protocol stack:

- stripped of unnecessary features
- optimized stacks for user and control data

Figure 2: NB-IoT Protocol stack (taken from [2])

MAC Layer - RACH

Random Access CHannel

- Uplink synchronization between device (UE) and base station (eNodeB)
- Prepare resources for RRC Connection Request (higher layer protocol for LTE-based communication)

Provide a unique uplink synchronization and channel between the the UE and the eNB.

Mobility

No seamless mobility (like LTE handover) :

- No need: short and infrequent transmissions
- Reduced complexity

Device always scan for gateways when it wants to send data.

Gateways can share connection information to allow resuming a connection, preventing a new connection setup phase.

Mobility latency: 1.6 - 10s [2]

Study case

DEPLOYMENTS - ELECTRIC BIKE TRACKING

LOCATION	OPERATOR	DOMAIN	NETWORK SIZE	CUSTOMER
Zenghou, China	China Mobiles	Electric Bike Monitoring	3 Million Bikes	City Administration

PROBLEM

Bike Theft

Cycle Accident

Cycle Fire Accident

TECHNOLOGY

GPS

SAFE & SECURE

Anti-Theft Tracking

SOLUTION

Fire Warning

Battery life estimation

Battery life estimation

BATTERY LIFE CALCULATION				
Total energy consumption / day	0.0675	Wh / day		
Standard battery	28.86	Wh		
BATTERY LIFE	427.555556	days		

mangOH - TRANSMISSION MODE			
Current	0.1 A		
Voltage	3.7 V		
Power	0.5 W		
Duration of transmission/day	400 s		
Energy consumption in a day	0.056Wh/d		

Questions?

References i

3GPP Release 13.

w. ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J.-C. Prévotet. Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and Supported Mobility.

In 2018 25th International Conference on Telecommunications (ICT), 2018 25th International Conference on Telecommunications (ICT), St. Malo, France, June 2018. IEEE.

GSMA.

NB-IoT Deployment Guide.

https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf.