High Power Infrared Emitter (850 nm)

IR-Lumineszenzdiode (850 nm) mit hoher Ausgangsleistung

Version 1.1

SFH 4550

Features:

- · High Power Infrared LED
- Narrow emission angle ± 3°
- Very high radiant intensity
- · Short switching times
- · UL version available

Applications

- · Infrared Illumination for cameras
- · Data transmission
- Sensor technology
- · Smoke detectors

Notes

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 and IEC 62471.

Besondere Merkmale:

- Infrarot LED mit hoher Ausgangsleistung
- Enger Abstrahlwinkel ± 3°
- Sehr hohe Strahlstärke
- Kurze Schaltzeiten
- UL Version erhältlich

Anwendungen

- · Infrarotbeleuchtung für Kameras
- Datenübertragung
- Sensorik
- Bauchmelder

Hinweise

Je nach Betriebsart emittieren diese Bauteile hochkonzentrierte, nicht sichtbare Infrarot-Strahlung, die gefährlich für das menschliche Auge sein kann. Produkte, die diese Bauteile enthalten, müssen gemäß den Sicherheitsrichtlinien der IEC-Normen 60825-1 und 62471 behandelt werden.

Ordering Information Bestellinformation

Туре:	Radiant Intensity	Ordering Code
Тур:	Strahlstärke	Bestellnummer
	I _F = 100 mA, t _p = 20 ms	
	I _e [mW/sr]	
SFH 4550	1100 (≥ 630)	Q65110A1772
SFH 4550 E9548 (UL)	1100 (≥ 630)	Q65110A8097

Note: Measured at a solid angle of Ω = 0.001 sr Anm.: Gemessen bei einem Raumwinkel Ω = 0.001 sr

Maximum Ratings $(T_A = 25 \, ^{\circ}C)$ Grenzwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Operation and storage temperature range Betriebs- und Lagertemperatur	T _{op} ; T _{stg}	-40 100	°C
Reverse voltage Sperrspannung	V _R	5	V
Forward current Durchlassstrom	I _F	100	mA
Surge current Stoßstrom $(t_p \le 100 \ \mu s, D = 0)$	I _{FSM}	1	А
Total power dissipation Verlustleistung	P _{tot}	180	mW
ESD withstand voltage ESD Festigkeit (acc. to ANSI/ ESDA/ JEDEC JS-001 - HBM)	V _{ESD}	2	kV
Thermal resistance junction - ambient 1) page 11 Wärmewiderstand Sperrschicht - Umgebung 1) Seite 11	R _{thJA}	450	K/W

Characteristics $(T_A = 25 \, ^{\circ}C)$ Kennwerte

Parameter		Symbol	Values	Unit
Bezeichnung		Symbol	Werte	Einheit
Peak wavelength Emissionswellenlänge $(I_F = 100 \text{ mA}, t_p = 20 \text{ ms})$	(typ)	λ_{peak}	860	nm
Centroid Wavelength Schwerpunktwellenlänge $(I_F = 100 \text{ mA}, t_p = 20 \text{ ms})$	(typ)	$\lambda_{centroid}$	850	nm
Spectral bandwidth at 50% of I_{max} Spektrale Bandbreite bei 50% von I_{max} ($I_F = 100$ mA, $I_p = 20$ ms)	(typ)	Δλ	30	nm
Half angle Halbwinkel	(typ)	φ	± 3	0
Dimensions of active chip area Abmessungen der aktiven Chipfläche	(typ)	LxW	0.3 x 0.3	mm x mm
Rise and fall time of I_e (10% and 90% of $I_{e max}$) Schaltzeit von I_e (10% und 90% von $I_{e max}$) ($I_F = 100$ mA, $R_L = 50$ Ω)	(typ)	t _r , t _f	12	ns
Forward voltage Durchlassspannung $(I_F = 100 \text{ mA}, t_p = 20 \text{ ms})$	(typ (max))	V _F	1.5 (≤ 1.8)	V
Forward voltage Durchlassspannung $(I_F = 1 \text{ A}, t_p = 100 \mu\text{s})$	(typ (max))	V _F	2.4 (≤ 3)	V
Reverse current Sperrstrom (V _R = 5 V)	(typ (max))	I _R	not designed for reverse operation	μΑ
Total radiant flux Gesamtstrahlungsfluss (I _F = 100 mA, t _p = 20 ms)	(typ)	Фе	70	mW

Parameter		Symbol	Values	Unit
Bezeichnung		Symbol	Werte	Einheit
Temperature coefficient of I_e or Φ_e Temperaturkoeffizient von I_e bzw. Φ_e ($I_F = 100$ mA, $I_p = 20$ ms)	(typ)	TC ₁	-0.5	% / K
Temperature coefficient of V_F Temperaturkoeffizient von V_F ($I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$)	(typ)	TC _v	-0.7	mV/K
Temperature coefficient of wavelength Temperaturkoeffizient der Wellenlänge (I _F = 100 mA, t _p = 20 ms)	(typ)	TC _λ	0.3	nm / K

Grouping ($T_A = 25$ °C) Gruppierung

Group	Min Radiant Intensity	Max Radiant Intensity	Typ Radiant Intensity
Gruppe	Min Strahlstärke	Max Strahlstärke	Typ Strahlstärke
	I _F = 100 mA, t _p = 20 ms	I _F = 100 mA, t _p = 20 ms	$I_F = 1 A, t_p = 25 \mu s$
	I _{e, min} [mW / sr]	I _{e, max} [mW / sr]	I _{e, typ} [mW / sr]
SFH 4550-EW	630	1250	7500
SFH 4550-FW	1000	2000	12000
SFH 4550-GW	1600	3200	19000

Note: Measured at a solid angle of $\Omega = 0.001 \text{ sr}$

Only one group in one packing unit (variation lower 2:1).

Anm.: gemessen bei einem Raumwinkel $\Omega = 0.001 \text{ sr}$

Nur eine Gruppe in einer Verpackungseinheit (Streuung kleiner 2:1).

Relative Spectral Emission ^{2) page 11} Relative spektrale Emission ^{2) Seite 11}

$$I_{rel} = f(\lambda), T_A = 25^{\circ}C$$

Radiant Intensity ^{2) page 11} Strahlstärke ^{2) Seite 11}

$$\rm I_{\rm e}$$
 / $\rm I_{\rm e}(100~mA)$ = f(I_F), single pulse, t_p = 25 μs , T_A= 25°C

Max. Permissible Forward Current Max. zulässiger Durchlassstrom

 $I_{F. max} = f(T_A), R_{thJA} = 450 \text{ K} / \text{W}$

Permissible Pulse Handling Capability Zulässige Pulsbelastbarkeit

 $I_F = f(t_p)$, $T_A = 25$ °C, duty cycle D = parameter

Forward Current 2) page 11 Durchlassstrom 2) Seite 11

 $I_F = f(V_F)$, single pulse, $t_D = 100 \mu s$, $T_A = 25^{\circ} C$

Permissible Pulse Handling Capability Zulässige Pulsbelastbarkeit

 $I_F = f(t_p)$, $T_A = 85$ °C, duty cycle D = parameter

Radiation Characteristics ^{2) page 11} Abstrahlcharakteristik ^{2) Seite 11}

 $I_{rel} = f(\phi)$

Package Outline Maßzeichnung

Dimensions in mm (inch). | Maße in mm (inch).

Package

5mm Radial (T 1 ¾), Epoxy

Gehäuse

5mm Radial (T 1 ¾), Harz

Recommended Solder Pad Empfohlenes Lötpaddesign

TTW Soldering / Wellenlöten (TTW)

Dimensions in mm (inch). | Maße in mm (inch).

TTW Soldering Wellenlöten (TTW)

(acc. to IEC 61760-1)

IEC-61760-1 TTW / IEC-61760-1 TTW

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Disclaimer

Bitte beachten!

Lieferbedingungen und Änderungen im Design vorbehalten. Aufgrund technischer Anforderungen können die Bauteile Gefahrstoffe enthalten. Für weitere Informationen zu gewünschten Bauteilen, wenden Sie sich bitte an unseren Vertrieb. Falls Sie dieses Datenblatt ausgedruckt oder heruntergeladen haben, finden Sie die aktuellste Version im Internet.

Verpackung

Benutzen Sie bitte die Ihnen bekannten Recyclingwege. Wenn diese nicht bekannt sein sollten, wenden Sie sich bitte an das nächstgelegene Vertriebsbüro. Wir nehmen das Verpackungsmaterial zurück, falls dies vereinbart wurde und das Material sortiert ist. Sie tragen die Transportkosten. Für Verpackungsmaterial, das unsortiert an uns zurückgeschickt wird oder das wir nicht annehmen müssen, stellen wir Ihnen die anfallenden Kosten in Rechnung.

Bauteile, die in lebenserhaltenden Apparaten und Systemen eingesetzt werden, müssen für diese Zwecke ausdrücklich zugelassen sein!

Kritische Bauteile* dürfen in lebenserhaltenden Apparaten und Systemen** nur dann eingesetzt werden, wenn ein schriftliches Einverständnis von OSRAM OS vorliegt.

- *) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- **) Lebenserhaltende Apparate oder Systeme sind für
- (a) die Implantierung in den menschlichen Körper oder
- (b) für die Lebenserhaltung bestimmt. Falls Sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Version 1.1

Glossary

- Thermal resistance: junction -ambient, mounted on PC-board (FR4), padsize 16 mm² each
- Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.

Glossar

- Wärmewiderstand: Sperrschicht -Umgebung, bei Montage auf FR4 Platine, Padgröße je 16 mm²
- Typische Werte: Wegen der besonderen Prozessbedingungen bei der Herstellung von LED können typische oder abgeleitete technische Parameter nur aufgrund statistischer Werte wiedergegeben werden. Diese stimmen nicht notwendigerweise mit den Werten jedes einzelnen Produktes überein, dessen Werte sich von typischen und abgeleiteten Werten oder typischen Kennlinien unterscheiden können. Falls erforderlich, z.B. aufgrund technischer Verbesserungen, werden diese typischen Werte ohne weitere Ankündigung geändert.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Osram Opto Semiconductor: SFH 4550