# EECS 203 Exam 1 Review

Day 1

# Today's Review Topics

- Propositional Logic
- Predicates and Quantifiers

**Propositional Logic** 

# **Cheat Sheet Suggestions**

TABLE 1 The Truth Table for the Negation of a Proposition.

| p | $\neg p$ |
|---|----------|
| Т | F        |
| F | Т        |

TABLE 2 The Truth Table for the Conjunction of Two Propositions.

| p | q | $p \wedge q$ |
|---|---|--------------|
| T | T | T            |
| T | F | F            |
| F | T | F            |
| F | F | F            |

TABLE 3 The Truth Table for the Disjunction of Two Propositions.

| p | q | $p \lor q$ |
|---|---|------------|
| T | T | T          |
| T | F | T          |
| F | T | T          |
| F | F | F          |

**TABLE 2** De Morgan's Laws.

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.

| 1 Topositions. |   |              |
|----------------|---|--------------|
| p              | q | $p \oplus q$ |
| T              | T | F            |
| T              | F | T            |
| F              | T | T            |
| F              | F | F            |

**TABLE 5** The Truth Table for the Conditional Statement  $p \rightarrow q$ .

| p | q | $p \rightarrow q$ |
|---|---|-------------------|
| T | T | Т                 |
| T | F | F                 |
| F | T | T                 |
| F | F | T                 |

# Cheat Sheet Suggestions

"if p, then q"

"if p, q"

"p is sufficient for q"

"q if p"

"q when p"

"a necessary condition for p is q"

"q unless  $\neg p$ "

"p implies q"

"p only if q"

"a sufficient condition for q is p"

"q whenever p"

"q is necessary for p"

"q follows from p"

| Compound Proposition | Expression in English       |  |
|----------------------|-----------------------------|--|
| ¬p                   | "It is not the case that p" |  |
| p∧q                  | "Both p and q"              |  |
| p <mark>v</mark> q   | "p or q (or both)"          |  |
| p⊕q                  | "p or q (but not both)"     |  |
| p→q                  | "if p then q" "p implies q" |  |
| p↔q                  | "p if and only if q"        |  |

# **Quick Recap**

- Proposition declarative statement that is either true or false
- $\bullet$  p  $\rightarrow$  q
  - Logically equivalent to ¬p ∨ q
  - $\circ$  Converse:  $q \rightarrow p$
  - Contrapositive: ¬q → ¬p
  - o Inverse:  $\neg p \rightarrow \neg q$
  - The original implication and the contrapositive have the same truth value, while the converse and inverse have the same truth values.
- Tautology compound proposition that is always true
- Contradiction compound proposition that is always false
- Satisfiable/Consistent some assignment of truth values that make the compound proposition true
- How many propositions does a truth table with 256 rows have?

# **Truth Tables**

If we have 2 propositions, how many rows will there be in the truth table?

If we have 5 propositions, how many rows will be in the truth table?

If we have n propositions, how many rows will be in the truth table?

Which of the following expressions is a contradiction?

(a) 
$$(p \land q) \leftrightarrow (p \land r)$$

(b) 
$$(p \land q) \land T \land (\neg q \lor \neg p)$$

(c) 
$$(r \to q) \to (p \land \neg p)$$

(d) 
$$F \lor ((\neg \neg p \to q) \leftrightarrow \neg r)$$

(e) 
$$(q \land \neg q) \leftrightarrow (r \land \neg r)$$

Given:

• c: school is canceled

 $\bullet$  s: it snows two feet

 $\bullet$  t: the temperature is -40 degrees

Which of the following is a propositional logic translation of the sentence:

"School will be canceled whenever the temperature is -40 degrees or it snowed two feet."

(a)  $(s \wedge t) \rightarrow c$ 

(b)  $(s \lor t) \to c$ 

(c)  $\neg c \leftrightarrow \neg (s \lor t)$ 

(d)  $c \to (s \land t)$ 

(e)  $c \to (s \lor t)$ 

"if p, then q"

"if p, q"

"p is sufficient for q"

"q if p"
"q when p"

"a necessary condition for p is q"

"q unless  $\neg p$ "

"p implies q"

"p only if q"

"a sufficient condition for q is p"
"" and a supply ""

"q whenever p"

"q is necessary for p"

"q follows from p"

Suppose we have the following premises:

(i) If you are in Ann Arbor and it is not winter, then it is not snowing  $[(a \land \neg w) \to \neg s]$ 

(ii) If you are not in Ann Arbor, then you are on vacation  $[\neg a \rightarrow v]$ 

(iii) It is snowing [s]

(iv) If you are not enrolled in school then it is not the case that either you are on vacation or it is winter  $[\neg e \rightarrow \neg (v \lor w)]$ 

Which is **NOT** a valid conclusion?

- (A) You are on vacation or it is winter  $[v \lor w]$
- (B) You are not in Ann Arbor and it is winter  $[\neg a \land w]$
- (C) You are not in Ann Arbor or it is winter  $[\neg a \lor w]$
- (D) You are enrolled in school [e]

Show that  $(p \land q) \to r$  is **not** logically equivalent to  $(p \to r) \land (q \to r)$ .

| TABLE 2 The Truth Table for the Conjunction of Two Propositions. |   |              |
|------------------------------------------------------------------|---|--------------|
| p                                                                | q | $p \wedge q$ |
| T                                                                | Т | T            |
| T                                                                | F | F            |
| F                                                                | T | F            |
| F                                                                | F | F            |

| <b>TABLE 5</b> The Truth Table for the Conditional Statement $p \rightarrow q$ . |   |                   |
|----------------------------------------------------------------------------------|---|-------------------|
| p                                                                                | q | $p \rightarrow q$ |
| Т                                                                                | T | T                 |
| Т                                                                                | F | F                 |
| F                                                                                | T | Т                 |
| F                                                                                | F | T                 |

Show that  $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$  is a tautology. You can use truth tables or logical equivalences.

| TABLE 2 The Truth Table for<br>the Conjunction of Two<br>Propositions. |   |              |
|------------------------------------------------------------------------|---|--------------|
| p                                                                      | q | $p \wedge q$ |
| T                                                                      | T | Т            |
| T                                                                      | F | F            |
| F                                                                      | T | F            |
| F                                                                      | F | F            |

| TABLE 3 The Truth Table for the Disjunction of Two Propositions. |                  |            |
|------------------------------------------------------------------|------------------|------------|
| p                                                                | $\boldsymbol{q}$ | $p \lor q$ |
| T                                                                | T                | T          |
| T                                                                | F                | T          |
| F                                                                | T                | Т          |
| F                                                                | F                | F          |

| TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$ . |   |                   |
|---------------------------------------------------------------------------|---|-------------------|
| p                                                                         | q | $p \rightarrow q$ |
| Т                                                                         | T | T                 |
| T                                                                         | F | F                 |
| F                                                                         | T | T                 |
| F                                                                         | F | T                 |

# 5 Minute Break

https://paveldogreat.github.io/WebGL-Fluid-Simulation/



**Predicates and Quantifiers** 

# **Cheat Sheet Suggestions**

| TABLE 1 Quantifiers.              |                                                                           |                                                                            |
|-----------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Statement                         | When True?                                                                | When False?                                                                |
| $\forall x P(x)$ $\exists x P(x)$ | P(x) is true for every $x$ .<br>There is an $x$ for which $P(x)$ is true. | There is an $x$ for which $P(x)$ is false. $P(x)$ is false for every $x$ . |

| TABLE 2 De Morgan's Laws for Quantifiers. |                       |                                            |                                           |  |
|-------------------------------------------|-----------------------|--------------------------------------------|-------------------------------------------|--|
| Negation                                  | Equivalent Statement  | When Is Negation True?                     | When False?                               |  |
| $\neg \exists x P(x)$                     | $\forall x \neg P(x)$ | For every $x$ , $P(x)$ is false.           | There is an $x$ for which $P(x)$ is true. |  |
| $\neg \forall x P(x)$                     | $\exists x \neg P(x)$ | There is an $x$ for which $P(x)$ is false. | P(x) is true for every $x$ .              |  |

# Cheat Sheet Suggestions

| TABLE 1 Quantifications of Two Variables.                 |                                                             |                                                              |  |
|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--|
| Statement                                                 | When True?                                                  | When False?                                                  |  |
| $\forall x \forall y P(x, y) \forall y \forall x P(x, y)$ | P(x, y) is true for every pair $x, y$ .                     | There is a pair $x$ , $y$ for which $P(x, y)$ is false.      |  |
| $\forall x \exists y P(x, y)$                             | For every $x$ there is a $y$ for which $P(x, y)$ is true.   | There is an $x$ such that $P(x, y)$ is false for every $y$ . |  |
| $\exists x \forall y P(x, y)$                             | There is an $x$ for which $P(x, y)$ is true for every $y$ . | For every $x$ there is a $y$ for which $P(x, y)$ is false.   |  |
| $\exists x \exists y P(x, y) \exists y \exists x P(x, y)$ | There is a pair $x$ , $y$ for which $P(x, y)$ is true.      | P(x, y) is false for every pair $x, y$ .                     |  |

### It's true that:

$$- \quad \forall x [P(x) \land Q(x)] \equiv [\forall x P(x)] \land [\forall x Q(x)]$$

But it's not true that:

$$- \quad \forall x [P(x) \lor Q(x)] \equiv [\forall x P(x)] \lor [\forall x Q(x)]$$

Likewise, it's true that:

$$- \exists x [P(x) \lor Q(x)] \equiv [\exists x P(x)] \lor [\exists x Q(x)]$$

But it's not true that:

$$- \exists x [P(x) \land Q(x)] \equiv [\exists x P(x)] \land [\exists x Q(x)]$$

# Problem 6. (4 points)

Let S(x,y) be the statement that "person x is shorter than person y". If Atreya is taller than Nouman but shorter than twins Eric and Paul (who are the same height), which of the following is true?

- (a) S(Atreya, Nouman)
- (b) S(Eric, Eric)
- (c) S(Eric, Paul)
- (d) S(Nouman, Eric)
- (e) S(Paul, Nouman)

## Small note on translations

When we translate a sentence such as "Someone in this class is going to ace the exam" to proposition logic, we use  $\exists x(C(x) \land A(x))$ , where C(x) is x is in this class and A(x) is x is going to ace the exam. We do not want to use the  $\rightarrow$  here, because for a person that isn't a student, the implication would be true, which is not what we want.

When we translate a sentence such as "Everyone in this class is going to ace the exam" to proposition logic, we use  $\forall x(C(x) \rightarrow A(x))$ , where C(x) is x is in this class and A(x) is x is going to ace the exam. We do not want to use the  $\land$  here, because the translation would give us false for those not in the class, even though those people do not matter.

Let H(x,t) be the statement that "person x is happy at time t". Translate the following sentence:

"All the time someone is happy, but no one is happy all the time."

a) 
$$\forall t \exists x H(x,t) \land \neg \exists x \forall t H(x,t)$$

b) 
$$\forall t \exists x H(x,t) \to \neg \exists x \forall t H(x,t)$$

c) 
$$\exists x \forall t H(x,t) \land \neg \forall t \exists x H(x,t)$$

d) 
$$\exists x \forall t H(x,t) \rightarrow \neg \forall t \exists x H(x,t)$$

Let L(x, y), C(x, y), and R(x, y) be the statements "x eats lunch with y", "x has a class with y", and "x is roommates with y" respectively. The domain for x and y is students at the University of Michigan.

Translate the following expressions of quantifiers, logical connectives, and predicates into English in the clearest way possible.

- (a)  $\forall x \forall y ((C(x,y) \land R(x,y)) \rightarrow L(x,y))$
- (b)  $\exists x \forall y (((x \neq y) \land C(x, y)) \rightarrow \neg L(x, y))$
- (c)  $\forall x \exists y ((x \neq y) \land (C(x,y) \lor R(x,y)) \land \neg L(x,y))$

13. Rewrite each of the following statements so that the negation appears before the predicates

(a) 
$$\neg \forall x (\exists y \forall z P(x, y, z) \land \exists z \forall y P(x, y, z))$$

(b) 
$$\neg(\exists x \exists y \neg P(x, y) \land \forall x \forall y Q(x, y))$$

Choose the true statements from the following if the domain of discourse is  $\mathbb{R}$ .

(a) 
$$\forall x \forall y \exists z (x^2 + y^2 = z^2)$$

for all predicates P(x,y)

(b) 
$$\forall x[(x > 4) \to |x - 4| \ge 1]$$

(c)  $\forall x \exists y P(x,y) \rightarrow \exists y \forall x P(x,y)$ 

(b) 
$$\forall x[(x > 4) \to |x - 4| \ge 1]$$

(d) 
$$\exists u \forall x P(x, u) \rightarrow \forall x \exists u P(x, u)$$
 for all predicates  $P(x, u)$ 

(d) 
$$\exists y \forall x P(x,y) \rightarrow \forall x \exists y P(x,y)$$
 for all predicates  $P(x,y)$ 

Good luck studying!