Fall 2016: COT3210–Computability and Automata Answers to Supplementary Exercises I

1. What is the language generated by the grammar given below?

$$S \rightarrow abB$$

$$A \rightarrow aaBb$$

$$B \to bbAa$$

$$A \to \varepsilon$$

We examine several productions and describe the language from the pattern that evolves: For instance:

- i. $S \Rightarrow abB \Rightarrow ab \ bb \ A \ a \Rightarrow ab \ bb \ a$
- ii. $S \Rightarrow abB \Rightarrow ab\ bb\ A\ a \Rightarrow ab\ bb\ aa\ B\ b\ a \Rightarrow ab\ bbaa\ bb\ A\ aba \Rightarrow ab\ (bbaa)\ bb\ (ab)\ a$

The strings we obtained were $ab\ bb\ a$, $ab\ (bbaa)\ bb\ (ab)\ a$, and $ab\ (bbaa)^2\ bb\ (ab)^2\ a$. We conclude the language generated by this grammar is $\{w|w=ab(bbaa)^nbb(ab)^na\}$.

2. Show the parse tree for the string abbbaabbaba for the grammar given above.

3. Transform the grammar given below into Chomsky normal form:

$$S \rightarrow aSaaA \mid A$$

$$A \rightarrow abA \mid bb$$

After adding a new start variable S_0 , the grammar becomes:

$$S_0 \to S$$

$$S \rightarrow aSaaA \mid A$$

$$A \rightarrow abA \mid bb$$

There are no ε -rules. Thus, we eliminate unit rules $S \to A$ and $S_0 \to S$. We obtain:

$$S_0 \rightarrow aSaaA \mid abA \mid bb$$

$$S \rightarrow aSaaA \mid abA \mid bb$$

$$A \rightarrow abA \mid bb$$

Now, we introduce new variables and new rules. Let $P \to a$, $Q \to b$.

Since aSaaA now becomes PSPPA, let $S_0 \to PB$, $B \to SC$, $C \to PD$, and $D \to PA$.

Since abA becomes PQA, let $S \to PE$ and $E \to QA$. The grammar is now written in the form:

$$S_0 \rightarrow PB \mid PE \mid QQ$$

$$S \rightarrow PB \mid PE \mid QQ$$

$$A \rightarrow PE \mid QQ$$

$$B \to SC$$

$$C \to PD$$

$$D \to PA$$

$$E \to QA$$

$$P \rightarrow a$$

$$Q \to b$$

4. Transform the grammar given below into Chomsky normal form:

$$S \to AB \mid aB$$
$$A \to abb \mid \varepsilon$$
$$B \to bbA$$

After adding a new start variable S_0 , the grammar becomes:

$$S_0 \to S$$

$$S \to AB \mid aB$$

$$A \to abb \mid \varepsilon$$

$$B \to bbA$$

Removing $A \to \varepsilon$ yields:

$$S_0 \to S$$

 $S \to AB \mid aB \mid B$
 $A \to abb$
 $B \to bbA \mid bb$

Next, we remove the unit rules $S \to B$ and $S_0 \to S$ to obtain:

$$S_0 \rightarrow AB \mid aB \mid bbA \mid bb$$

 $S \rightarrow AB \mid aB \mid bbA \mid bb$
 $A \rightarrow abb$
 $B \rightarrow bbA \mid bb$

Now, we introduce new variables and new rules. Let $P \to a$, $Q \to b$.

Note that the rules for S_0 and S are the same and S does not appear on the right side.

Thus, we can drop the rule for S_0 .

Since abb now becomes PQQ, bbA becomes QQA, we let $C \to QQ$. The grammar becomes:

$$S \to AB \mid PB \mid CA \mid QQ$$

$$A \to PC$$

$$B \to CA \mid QQ$$

$$C \to QQ$$

$$P \to a$$

$$Q \to b$$