T Génération d'une suite

a. D Activité 1 : Suite fonctionnelle

- 1. Qu'est-ce qu'une suite?
- 2. Représenter avec la calculatrice une représentation graphique des termes des suites suivantes :
- a) $u_n = n^2 n + 1$

e) $y_n = e^n$

b) $v_n = \frac{1}{n}$

- c) $w_n = \sqrt{n+\pi}$ d) $x_n = \sin(2n) + \cos(2n)$
- f) $z_n = \ln(n)$
- 3. Dans chaque cas à l'aide de la calculatrice ou de l'ordinateur calculer les 10 premiers termes de suites et compléter le tableau suivant :

n	0	1	2	3	4	5	6	7	8	9
u_n										
v_n										
W_n										
x_n										
y_n										
\boldsymbol{z}_n										

4. Au regard de vos résultats conjecturer la limite de chaque suite.

b. 12 Activité 2 : Suites récurrentes

On considère la suite (u_n) définie pour tout entiers naturel de $\mathbb N$ par :

$$\begin{cases} u_{n+1} = 2u_n + 1 \\ u_0 = 1 \end{cases}.$$

- 1. Représenter graphiquement les termes de la suite (u_n) .
- 2. Donner les 10 premiers termes de la suite (u_n) .
- 3. Conjecturer la limite de cette suite.
 - c. 12 Activité 3 : Suite de Fibonacci

On considère la suite de terme : 1;1;2;3;5;8;13;21;...

- 1. Continuer cette suite de terme en donnant les 5 termes suivants.
- 2. Formaliser une expression algébrique de cette suite.
- 3. \square Programme un algorithme à l'ordinateur ou à calculatrice permettant de renvoyer le (les) terme(s) de (jusqu'au) rang n de la suite de Fibonacci.

Et donner le terme de rang 15 (u_{15}) . Que constatez-vous ?

4. \square Optimiser cet algorithme en utilisant une fonction récursive.

Suites arithmétiques et géométriques II.

- a. Suites arithmétiques
 - i. 🔁 Activité

On souhaite acheter un Smartphone à 800 €, on possède 140 € d'économie, et on peut économiser 50 € par mois. Dans combien de mois pourra-t-on acheter ce téléphone?

1. Programmer un algorithme permettant de répondre à la problématique.

2. Formaliser le problème de manière mathématique afin de répondre à la question.

(on pourra prendre n le numéro du mois et u_n la somme totale économisée au mois n)

ii. Exercices

Exercice 1. Monsieur Dupont désire creuser un puits, au fond de son jardin. Une réserve naturelle d'eau souterraine se situe à 12 mètre de profondeur. Il choisit le devis suivant pour le forage : Forfait prise en charge, visite sur le terrain : 40 € TTC ; Prix forfaitaire du mètre foré : 150 € TTC.

On note p_n le prix, en euros, pour un forage de n mètres $(n \in \mathbb{N}^*)$.

- **1**. Calculer p_1 .
- **2.** Déterminer la nature de la suite (p_n) et en déduire l'expression de p_n en fonction de n.
- 3. Déterminer le prix à payer pour faire creuser ce puits.
- Exprimer u_n en fonction de n sachant que la suite u est arithmétique de raison r:

1.
$$u_0 = 4$$
 et $r = -2$

3.
$$u_1 = -3$$
 et $r = 4$

2.
$$u_5 = 5$$
 et $r = 2$

4.
$$u_0 = 0$$
 et $r = -1$

Exercice 3. Les suites suivantes sont-elles des suites arithmétiques ? Si oui, donner leur raison.

1.
$$u_n = n + 3$$

4.
$$u_n = \frac{n+1}{n}$$

7.
$$\begin{cases} u_{n+1} = u_n + 2n - 2 \\ u_n = 2 \end{cases}$$

2.
$$u_n = 5n + 4$$

3. $u_n = n^2 + 2$

5.
$$u_n = -3n + 7$$

5.
$$u_n = -3n + 7$$

6.
$$\begin{cases} u_n = u_{n-1} + 3 \\ u_1 = 4 \end{cases}$$

- Exercice 4. La suite (u_n) est la suite arithmétique de premier terme $u_0 = -2$ et de raison $\frac{1}{2}$.
 - 1. Représenter graphiquement dans le plan les dix premiers termes de cette suite.
 - 2. Sur quelle courbe sont situés ces points?
- Exercice 5. Les graphiques ci-dessous représentent des suites arithmétiques. Pour chacune, donner son premier terme, sa raison, l'expression de u_n en fonction de n et l'expression de u_{n+1} en fonction de u_n .

1.

2.

3.

- Exercice 6.
- Un coureur de fond est habitué à courir sur une distance de 10 000 m. Pour s'entraîner pour un marathon, il décide d'augmenter chaque semaine sa distance d'entraînement de 1 500 m. On note d_n la distance en mètres, parcourue à l'entraînement la n-ième semaine. On pose $d_0 = 10\,000.$
 - 1. Exprimer d_{n+1} en fonction d_n . Que peut-on en déduire pour le suite (d_n) ?
 - 2. En déduire d_n en fonction de n.

- 3. Au bout de combien de semaines aura-t-il atteint ou dépassé les 42,195 km d'un marathon.
- b. Suites géométriques
 - i. Activités (prise d'initiative travail de groupe)

On possède 40 000€, on les place sur un compte à 4% d'intérêt par ans.

Dans combien de temps pourrais-je me payer un appartement d'une valeur de 100 000 €?

ii. Exercices

Exercice 1. La suite (u_n) est géométrique de raison q. Exprimer u_n en fonction de n et calculer u_{30} .

1. $u_1 = 1$ et q = 2

- 3. $u_{40} = 1024$ et q = -2
- 5. $u_7 = 1024$ et $q = \sqrt{2}$

2. $u_5 = 2$ et q = -1

4. $u_{15} = 1$ et q = 3

6. $u_4 = 2$ et q = 0.5

Exercice 2. La suite (v_n) est-elle géométrique ? Si oui, donner sa raison.

1. $u_n = 2^{n+1}$

3. $u_n = 2 \times 3^{n+1}$

5. $u_n = 2^{2n}$

2. $u_n = n^2$

4. $u_n = -4^{n+2}$

- 6. $u_n = (-1)^{n+2}$
- **Exercice 3.** En 2013 un article coûte 120 \mathfrak{C} . Il augmente chaque année de 5 %. On note p_n le prix de l'article à l'année 2013 + n.
 - 1. Donner p_0 . Calculer p_1 et p_2 .
 - 2. Exprimer p_{n+1} en fonction de p_n . Qu'en déduit-on sur la suite (p_n) ?
 - 3. Exprimer p_n en fonction de n puis calculer son prix en 2025.
- **Exercice 4.** Un capital de 7 000 \in est bloqué pour 15 ans sur un compte rapportant un intérêt annuel de 4 %. Cet intérêt est versé sur le compte à la fin de chaque année. On appelle C_0 le capital de départ et pour $n \ge 1$, le montant figurant sur le compte au bout de la n-ième année.
 - 1. Exprimer C_{n+1} en fonction de C_n pour $n \ge 0$.
 - 2. Quel sera le capital au bout de 5 ans?
 - 3. Faire afficher la liste des premier termes de la suite (C_n) et lire la nombre d'années nécessaire pour que le capital ait augmenté de 50 %.
- Exercice 5. L'accès internet chez les particuliers ce fait majoritairement aujourd'hui en ADSL.

 Cette liaison utilise les câbles téléphoniques pour relier le particulier au DSLAM (répartiteur du fournisseur d'accès choisi). La puissance du signal dépend de l'atténuation engendrée par les longueurs de câbles téléphoniques, la puissance du signal diminue de 29,2 % par tronçon de 100 m de câbles.
 - 1. On appelle P_0 la puissance disponible au répartiteur (DSLAM).
 - i. Exprimer la puissance P_1 disponible après un tronçon de 100 m de câble en fonction de P_0 .
 - ii. Vérifier que la proportion de puissance disponible après 2 tronçons de câbles de 100 m est égale à 50,1% (valeur arrondie à 0,1 près).
 - iii. Déterminer la valeur arrondie à 0,1 près de la proportion de puissance disponible après 5 tronçons de câble de 100 m.
 - 2. On note P_n la puissance à la sortie de n tronçons de câbles de 100 m, n étant un entier naturel.
 - i. Quelle est la nature de la suite (P_n) ? Justifier.
 - ii. Pour tout entier naturel n, exprimer P_n en fonction de n et de P_0 .
 - iii. En déduire la proportion de puissance disponible après 15 tronçons de 100 m.
 - 3. On admet que pour tout entier naturel n_i la suite (Pn) est définie par :

$$P_n = P_0 \times 0.708^n$$

i. Quelle est la limite de la suite P_n .

- ii. Justifier qu'il existe un entier naturel N tel que, pour tout entier n supérieur à N, on ait : $0.708^n \le 10^{-7}$.
 - En utilisant un outil informatique, déterminer la plus grand entier n tel que $0.708^n \ge 10^{-7}$.
- iii. (Facultatif) Retrouver la réponse par un calcul algébrique (ou un logiciel de calcul formel.
- iv. La limite d'éligibilité au service ADSL est telle que :

$$\frac{P_S}{P_F} = 1 \times 10^{-7},$$

où P_S désigne la puissance du signal chez le particulier et P_E la puissance fourni par le DSLAM.

Déterminer la distance théorique maximale de câblage entre le particulier et le DSLAM qui permette le fonctionnement de l'ADSL chez le particulier. (On donnera la valeur arrondie au mètre près.)

III. Somme des termes d'une suite

a. 🗗 Activité

On laisse tomber une balle d'une hauteur de 1 mètre. A chaque rebond elle rebondit des 3/4 de la hauteur d'où elle est tombée

1. On note u_n la hauteur atteinte au n $^{\mathrm{i\`{e}me}}$ rebond

Calculer la hauteur atteinte au

- a. 2^{ième} rebond.
- b. $10^{i\grave{e}me}$.
- c. 1000^{ième}.
- b. Somme des termes d'une suite arithmétique
 - i. DActivité

Sommer tous les entiers naturels jusqu'à 50. (de 0 à 50).

- 2. On appelle S_n la distance totale parcourue par la balle.
 - Quelle est dans chaque cas la distance parcourue par la balle?
- 3. A quel rebond la hauteur atteinte est-elle inférieur à 10^{-12} mètre ?

- Exercice 1. On empile des tuyaux comme représenté si contre. On note n le nombre de ligne de tuyau, et on appelle (u_n) le nombre total de tuyau.
 - a. Quel est le nombre total de tuyaux lorsque la hauteur est de 3 lignes de tuyaux.
 - b. Quel est le nombre de tuyaux lorsque la hauteur est de 4 lignes de tuyaux.
 - c. Déterminer pour tout entier naturel n le nombre total de tuyaux u_n .

Exercice 2.

- c. Somme des termes d'une suite géométrique
 - i. DActivité

Activité : On souhaite parcourir Montpellier - Marseille, en parcourant chaque jours la moitié de la distance qui nous sépare de Marseille. Dans combiens de jours arriverons nous à Marseille ?

IV. Limite d'une suite

a. Activités

A l'aide de vos connaissances ou de l'ordinateur ou de la calculatrice, conjecturer la limite des suites suivantes :

a)
$$u_n = 10^n$$

c)
$$w_n = \ln(n^2 - n)$$

d) $x_n = e^{(-n^2 + n)}$

e)
$$y_n = \cos(n)$$

b)
$$v_n = -\frac{1}{10^n}$$

d)
$$x_n = e^{(-n^2+n)}$$

f)
$$z_n = -n^2 + n - 4$$
.

b. Exercices