OUR LADY OF AFRICA S.S NAMILYANGO (OLAN)

A LEVEL APPLIED MATHEMATICS SEMINAR SOLUTIONS 2023

L	(a)

х	f	xf	χ^2	x^2f
0	Р	0	0	0
1	q	q	1	q
sum	P+q	q		q

(i) Mean=
$$\frac{q}{p+q}$$

(ii) S.D=
$$\sqrt{\frac{q}{p+q} - (\frac{q}{p+q})^2} = \frac{\sqrt{pq}}{p+q}$$

(b) (i)

Χ	f	Xf	X ² f
2	1	2	4
3	1	3	9
6	1	6	36
9	1	9	81
sum	4	20	130

$$Mean = \frac{20}{4} = 5$$

$$S.D = \sqrt{\frac{130}{4} - 5^2} = 2.73861 (4 dps)$$

(ii) old mean=5

new mean =6 (since the mean was increased by one)

old Var(x)=7.5

new Var(x)=10 (since it was increased by 2.5)

$$6 = \frac{20 + a + b}{6}$$

$$a + b = 16 \dots \dots \dots \dots \dots \dots (i)$$

$$10 = \frac{a^2 + b^2 + 130}{6} - 6^2$$

$$a^2 + b^2 = 146 \dots \dots \dots \dots \dots \dots (ii)$$

Solving (i) and (ii)

$$a = 16 - b$$

$$(16 - b)^{2} + b^{2} = 146$$

$$2b^{2} - 23b - 110 = 0$$

$$b = \frac{32 \pm \sqrt{32^{2} - 4x2x110}}{4}$$

$$b = 5 \text{ or } 11$$

$$\leftrightarrow a = 11 \text{ or } 5$$

 \therefore the values of a and b are either 11 or 5

(c)				
	R_H	R_m	d	d^2
	1	2	-1	1
	2	1	1	1
	3	4	-1	1
	4	3	1	1
	5	7	-2	4
	6	5	1	1

$$\rho = 1 - \frac{6x10}{7(7^2 - 1)} = 0.8214$$

	Marks	Freq. density	Class	f	x	xf	x^2f	F
			interval					
	0-10	0.3	10	3	5	15	75	3
	10-20	0.6	10	4	15	90	1350	9
	20-30	0.9	10	9	25	225	5625	18
	30-40	1.0	10	10	35	350	12250	28
	40-50	1.2	10	12	45	540	24300	40
	50-60	1.8	10	18	55	990	54450	58
	60-70	1.4	10	14	65	910	59150	72
	70-80	1.1	10	11	75	825	61875	83
	80-90	0.7	10	7	85	595	50575	90
	sum			90		4540	247780	
1								

Mean
$$=\frac{4540}{90} = 50.4444$$
 standard deviation $=\sqrt{\frac{247780}{90} - \left(\frac{4540}{90}\right)^2} = 14.4385$

Height	f	x	xf	x^2f	F
120-130	7	125	875	109375	7
130-135	8	132.5	1060	140450	15
135-145	36	140	5040	705600	51
145-155	39	150	5850	877500	90
155-170	17	162.5	2762.5	448906.25	107
170-175	3	172.5	517.5	89268.75	110
175-190	5	182.5	912.5	166531.25	115
sum			17017.5	2537631.25	

(i) median=135 +
$$\left(\frac{57.5-51}{36}\right)x10 = 136.80556$$

(ii) height 145 150 155 F 51 y 90

$$\frac{x-51}{150-145} = \frac{90-51}{155-145}$$
$$X = 70.5 \approx 71$$

 \therefore The number less than the height of 150 = 71

(b) Mean
$$=\frac{17017.5}{115} = 147.97826$$

standard deviation=
$$\sqrt{\frac{2537631.25}{115} - \left(\frac{17017.5}{115}\right)^2} = 12.9920$$

4	ļ	

Weight	f	Χ	Xf	X ² f	F	Interval	Freq.density
0-0.10	2	0.05	0.1	0.005	2	0.1	20
0.10-0.25	3	0.175	0.525	0.091875	5	0.15	20
0.25-035	5	0.3	1.5	0.45	10	0.1	50
0.35-0.50	9	0.425	3.825	1.625625	19	0.15	60
0.50-0.60	3	0.55	1.65	0.9075	22	0.1	30
0.60-0.65	2	0.625	1.25	0.78125	24	0.05	40
0.65-0.80	3	0.725	2.175	1.576875	27	0.15	20
sum			11.025	5.438125			

(a) i) S.D=
$$\sqrt{\frac{5.438125}{27} - \left(\frac{11.025}{27}\right)^2} = 0.1862 (4 dps)$$

(ii)

Weight	0.50	0.57	0.60
F	19	Χ	22

$$\frac{x-19}{0.57-0.50} = \frac{22-19}{0.6-0.5}$$

$$x = 21.1$$

 $\frac{x-19}{0.57-0.50} = \frac{22-19}{0.6-0.5} \qquad x = 21.1$ $\therefore Number\ of\ seedling\ that\ weigh\ more\ 0.57g = 27-21 = 6\ seedling$

5	
_	

Weight	f	Х	Xf	interval	Freq. density	F
0-19	30	9.5	285	20	1.5	30
20-29	16	24.5	392	10	1.6	46
30-39	24	34.5	828	10	2.4	70
40-44	32	42	1344	5	6.4	102
45-59	28	52	1456	15	1.867	130
60-64	12	62	744	5	2.4	142
65-79	8	72	576	15	0.5333	150

a)

$$Mean = \frac{5625}{150} = 37.5$$

$$Modal\ weight = 39.5 + \left(\frac{4}{4 + 4.533}\right)x5 = 41.8438$$

b)

$$\frac{5}{12} + P(B) - \frac{1}{6} = q$$
$$P(B) = \frac{1}{4}(4q - 1)$$

(ii)
$$P(A/B) = \frac{P(AnB)}{P(B)} = \frac{1/6}{\frac{1}{4}(4q-1)} = \frac{2}{3(4q-1)}$$

(iii)
$$P(A/B) = P(A)$$

$$\frac{2}{3(4q-1)} = \frac{5}{12}$$
$$q = \frac{13}{20}$$

$$c \int_{-1}^{0} (x+2)dx + 2c \int_{0}^{1} (1-x)dx + -2c \int_{1}^{2} (1-x)dx = 1$$

$$c \left[\frac{x^{2}}{2} + 2x \right]_{-1}^{0} + 2c \left[x - \frac{x^{2}}{2} \right]_{0}^{1} + -2c \left[x - \frac{x^{2}}{2} \right]_{1}^{2} = 1$$

$$\frac{3c}{2} + 2cx \frac{1}{2} + 2cx \frac{1}{2} = 1$$

$$c = \frac{2}{7}$$

Or

(ii)

Using the area under the curve

$$\frac{1}{2}x \, 1(c+2c) + \frac{1}{2}x1(2c) + \frac{1}{2}(2c) = 1$$

$$\frac{3c}{2} + 2c = 1$$

$$c = \frac{2}{7}$$

$$P(|x-1| < 0.5) = P(-0.5 < x - 1 < 0.5)$$

$$= P(0.5 < x < 1.5)$$

$$= 2c \int_{0.5}^{1} (1 - x) dx + -2c \int_{1}^{1.5} (1 - x) dx$$

$$= 2c \left[x - \frac{x^{2}}{2}\right] \frac{1}{0.5} + -2c \left[x - \frac{x^{2}}{2}\right] \frac{1.5}{1}$$

$$= 2cx \frac{1}{8} - 2c \left(-\frac{1}{8}\right)$$

$$= \frac{c}{2} = \frac{1}{2}$$

8 (i)

P(P) = P(FnP) + P(MnP) = $\frac{45}{110}x^{\frac{20}{45}} + \frac{65}{110}x^{\frac{15}{65}} = \frac{7}{22}$ OR $P(P) = \frac{n(E)}{n(S)} = \frac{20 + 15}{110} = \frac{7}{22}$

$$\bar{x} + Z \frac{\delta}{2} \frac{\delta}{\sqrt{n}} = 179.18$$

$$\bar{x} + 0.196\delta = 179.18....(2)$$

Solving (1) and (2)

$$\delta = 5$$
 and $\bar{x} = 178.2$ cm

10		1	2	3	4
	1	2	3	4	5
	2	3	4	5	6
	3	4	5	6	7
	4	5	6	7	8

S	2	3	4	5	6	7	8	
P(S=s)	1	2	3	4	3	2	1	
	16	16	16	16	16	16	16	
S P(S=s)	2	6	11	20	18	14	8	5
,	16	16	$\overline{16}$	16	16	16	16	

$$f(s) = P(S = s) = \begin{cases} \frac{s-1}{16}; 2,3,4\\ \frac{9-s}{16}; 5,6,7,8\\ 0; elsewhere \end{cases}$$

(ii) sketch

b)
$$P(H) = \frac{2}{3}$$
 $P(T) = \frac{1}{3}$

exception
$$E(x) = \sum S P(S = s) = 5$$

b) $P(H) = \frac{2}{3}$ $P(T) = \frac{1}{3}$ $X \sim B(3, \frac{1}{3}); P(X = x) = \binom{n}{x} p^x q^{n-x}$
 $P(X = 0) = \binom{3}{0} (\frac{1}{3})^0 (\frac{2}{3})^3) = \frac{8}{27}$
 $P(X = 1) = \binom{3}{1} (\frac{1}{3})^1 (\frac{2}{3})^2) = \frac{4}{9}$
 $P(X = 2) = \binom{3}{2} (\frac{1}{3})^2 (\frac{2}{3})^1) = \frac{2}{9}$
 $P(X = 3) = \binom{3}{2} (\frac{1}{3})^3 (\frac{2}{3})^0) = \frac{1}{37}$

Х	0	1	2	3
P(X=x)	8	4	2	1
,	$\overline{27}$	9	- 9	27
S	1000	3000	6000	10000

$$\sum S P(X = s) = \left(1000x \frac{8}{27}\right) + \left(3000x \frac{4}{9}\right) + \left(6000 x \frac{2}{9}\right) + \left(10000x \frac{1}{27}\right) = 4391.5344$$

$$E(12s) = 4391.5344x12 = 52698.4128$$

$$Loss = (12x5000) - 52698.4128 = 7301.5872 ugx$$

11

$$xy = 12y = \frac{12}{x}$$
with $d = \frac{4-1}{6} = \frac{1}{2}$

		6 2
X	<i>y</i> :	$=\frac{12}{x}$
1.0	12	
1.5		8
2.0		6
2.5		4.8
3.0		4
3.5		3.428571
4.0	3	
sum	15	26.22857

$$\int_{1}^{4} \frac{12}{x} dx \approx 0.5x0.5(15 + 2(26.2287))$$
$$\approx 16.86435$$

- (b) the exact value of $\int_1^4 \frac{12}{x} dx = 12 \ln x \Big|_1^4 = 12 (\ln 4 \ln 1) = 16.63553$ (c) the percentage error $= \frac{|16.63553 16.86435|}{16.63553} x 100\% = 1.3755\%$

The error can be reduced by increasing the number of ordinates

12

length	530	540	550
No. of components	15	Χ	39

Let x be the No. of components with life length of 540

$$\frac{x-15}{540-530} = \frac{39-15}{550-530}$$
$$x = 27$$

Let y be the No. of components with life length of 580

length	570	580	600
No. of components	72	У	93

Let y be the No. of components with life length of 580

$$\frac{y-72}{580-570} = \frac{93-72}{600-570} \quad ; \quad y = 79$$
$$prob = \frac{79-27}{100} = 0.52$$

(b)

(~)					
duration	27	30	36		
No. of calls	37	N	57		

Let N be the number of calls exceeds 30 minutes

$$\frac{N-37}{30-27} = \frac{57-37}{36-27}$$

$$N = 43.6666 \approx 44$$

$$prob = \frac{60-44}{60} = \frac{4}{15} = 0.2\overline{6}$$

13 (a)

value	error	Max value	Min value	
A=3.3366	± 0.00005	3.33665	3.33655	
B=0.559	±0.0005	0.5595	0.5585	

Since A is greater than B, then the bigger the negative the minimum it is and the smaller the negative the maximum it is.

$$\begin{aligned} \min value &= (\frac{B-A}{AB})_{max} = \frac{B_{max} - A_{min}}{A_{min}.B_{min}} = \frac{0.5595 - 3.33655}{3.33655x0.5585} = -1.49026\\ \max value &= (\frac{B-A}{AB})_{min} = \frac{B_{min} - A_{max}}{A_{max}.B_{max}} = \frac{0.5585 - 3.33665}{3.33665x0.5595} = -1.4881\\ Interval &= [-1.490, -1.488] \end{aligned}$$

(b) $T = 2\pi \sqrt{\frac{l}{g}}$ let the error in T be ∂T and error in l be ∂l

$$T^{2} = 4\pi^{2} \frac{l}{g}$$

$$(T + \partial T)^{2} = 4\pi^{2} \frac{l + \partial l}{g}$$

$$T^{2} + 2T\partial T + \partial T^{2} = 4\pi^{2} \frac{l + \partial l}{g}$$

$$2T\partial T + \partial T^{2} = \frac{4\pi^{2}l}{g} + \frac{4\pi^{2}\partial l}{g} - T^{2}$$

Assuming that $\partial T \ll T$, $\partial T^2 \approx 0$

$$2T\partial T = \frac{4\pi^2\partial l}{g}$$

Divide through by T²

$$\frac{\partial T}{T} = \frac{1}{2} \frac{\partial l}{l}$$

multiplying through by 100

$\frac{\partial T}{T} x 100 = \frac{1}{2} \frac{\partial l}{l} x 100$
$\frac{\partial T}{T}x100 = \frac{1}{2}x4\%$
=2%

14

Х	0	1	2	3	4
Y=2x-5	-5	-3	-1	1	3
$y = xe^{-x}$	0	0.368	0.271	0.149	0.07

Let
$$f(x) = xe^{-x} - 2x + 5$$

 $f(x_n) = x_n e^{-x_n} - 2x_n + 5$

Let
$$f(x) = xe^{-x} - 2x + 5$$
 $f'(x) = e^{-x} - xe^{-x} - 2$
 $f(x_n) = x_n e^{-x_n} - 2x_n + 5$ $f'(x_n) = e^{-x_n} - x_n e^{-x_n} - 2 = e^{-x_n} (1 - x_n) - 2$

From
$$x_{n+1} = x_n - \frac{x_n e^{-x_n} - 2x_n + 5}{e^{-x_n}(1 - x_n) - 2} = \frac{x_n [e^{-x}(1 - x_n) - 2] - x_n e^{-x_n} - 2x_n + 5}{e^{-x_n}(1 - x_n) - 2} = \frac{x_n^2 e^{-x_n} - 5}{e^{-x_n}(1 - x_n) - 2}$$

From the graph

Using $x_0 = 2.5$, tol=0.005

$$x_1 = \frac{2.5^2 e^{-2.5} - 5}{e^{-2.5}(1 - 2.5) - 2} = 2.1134$$

$$Error = |2.1134 - 2.5| = 0.3866 > 0.005$$

$$x_2 = \frac{2.1134^2 e^{-2.1134} - 5}{e^{-2.1134}(1 - 2.1134) - 2} = 2.0896$$

$$Error = |2.0896 - 2.1134| = 0.0238 > 0.005$$

$$x_2 = \frac{2.0896^2 e^{-2.0896} - 5}{e^{-2.0896}(1 - 2.0896) - 2} = 2.0890$$

$$Error = |2.0890 - 2.0896| = 0.0006 < 0.0006$$

Hence the root is 2.09 (2 dps)

a) Let length be l=1.25km , and the error in l be ∂l 15 Width be w = 0.44km and the error in w be ∂w

16

Work done = 31 - -1 = 32I

 $0r = \int_{0}^{4} 4t \, dt = 2t^{2} \frac{4}{0} = 32J$

a) let m be the mass of the ladder and the length be 2l

Taking moment at A, $mglcos\theta = 2lR_B sin\theta$

$$mgcos\theta = 2\mu mgsin\theta$$

 $cos\theta = 2\mu sin\theta$
 $\therefore 2\mu tan\theta = 1$

let W be the weight of ladder, f_A and f_B be friction force at A and B respectively

$$\uparrow; R_A + f_B = W , f_B = \mu_B R_B$$

$$\rightarrow; R_B = f_A = \mu_A R_A$$

$$R_A + f_B = W$$

$$R_A + \mu_B R_B = W$$

$$R_A + \mu_B \mu_A R_A = W$$

$$R_A (1 + \mu_B \mu_A) = W$$

Taking moments at A

$$Wx4cos\theta = f_Bx6cos\theta + R_Bx6sin\theta$$

$$\begin{split} R_A(1+\mu_{\rm B}\mu_A)x4cos\theta &= \mu_B R_B x6cos\theta + R_B x6sin\theta \\ R_A(1+\mu_{\rm B}\mu_A)x4cos\theta &= \mu_B \mu_A R_A x6cos\theta + \mu_A R_A x6sin\theta \end{split}$$

$$\left(1 + \frac{1}{3}x\frac{1}{4}\right)x4\cos\theta = \frac{1}{3}x\frac{1}{4}x6\cos\theta + \frac{1}{3}x6\sin\theta$$
$$\frac{13}{3}\cos\theta = \frac{1}{2}\cos\theta + 2\sin\theta$$
$$\frac{23}{6}\cos\theta = 2\sin\theta$$
$$\tan\theta = \frac{23}{12} \text{ as required}$$

19 a) when m is minimum

For B:
$$T = mg$$
.....(i)

For A:
$$T + \mu R = 10 sin\theta$$
(ii) \uparrow ; $R = 10 gco$

Substituting for R&T in (ii)

$$\leftrightarrow mg + 0.5x10gx\frac{3}{5} = 10gx\frac{4}{5}$$

$$m = 5kg$$

When m is maximum

For B:
$$T = mg$$
....(i)

For A:
$$T = 10sin\theta + \mu R$$
(ii)

 \uparrow ; $R = 10gcos\theta$

Substituting for R&T in (ii)

$$\leftrightarrow mg = 10gx \frac{4}{5} + 0.5x10gx \frac{3}{5}$$

$$m = 11kg$$

b) for m=20kg and m=5kg

For B:
$$T - 5g = 5a$$
....(i)

For A:
$$20gsin\theta - (T + \mu R) = 20a$$
(ii)

 \uparrow ; $R = 20gcos\theta$

Substituting for R&T in (ii)

$$\leftrightarrow \qquad 20gx\frac{4}{5} - \left(T + 0.5x20gx\frac{3}{5}\right) = 20a$$

10g - T = 20a....(iii)

Adding (i) and (iii)

$$5g = 25a$$

 $5(9.8) = 25a$

$$a = 1.96ms^{-2}$$

For m=11kg

For B: 11g - T = 11a.....(i) For A: $T - (\mu R + 20gsin\theta) = 20a$ (ii) \uparrow ; $R = 20gcos\theta$ Substituting for R&T in (ii)

$$\leftrightarrow \left(T - 0.5x20gx\frac{3}{5} - 20gx\frac{4}{5}\right) = 20a$$
$$T - 6g - 16g = 20a$$

T - 22g = 20a.....(iii) Adding (i) and (iii)

$$-11g = 31a$$

$$-11(9.8) = 31a$$

$$a = -3.4774ms^{-2}$$

 $\therefore a = 3.4774 ms^{-2}$ in opposite direction

20

a) At B(b,h)

$$h = tan\theta - \frac{gb^2}{2u^2}sec^2\theta \dots \dots \dots \dots \dots \dots (i)$$

At c(3b, h)

Equating (i) and (ii)

$$2btan\theta = \frac{4gb^2}{u^2}sec^2\theta$$

$$tan\theta = \frac{2gb}{u^2}sec^2\theta$$

$$\frac{sin\theta}{cos\theta}xcos^2\theta = \frac{2gb}{u^2}$$

$$sin\theta cos\theta = \frac{2gb}{u^2}$$

$$but sin\theta cos\theta = \frac{1}{2}sin2\theta$$

$$u^2 sin\theta cos\theta = 4gb$$

Horizontal range $R = \frac{u^2 sin2\theta}{g}$

$$= \frac{4gb}{g}$$
$$= 4b \text{ as required}$$

