(Draft)

Quang-Vinh Dinh Ph.D. in Computer Science

Outline

- > Introduction to Numpy
- > Numpy Array Indexing
- > Numpy Array Operations
- > Broadcasting
- Data Processing

Data Normalization

(convert to 0-mean and 1-deviation)

$$\bar{X} = \frac{X - \mu}{\sigma}$$

$$\mu = \frac{1}{n} \sum_{i} X_{i}$$

$$\sigma = \sqrt{\frac{1}{n} \sum_{i} (X_i - \mu)^2}$$

(3x3) Convolution padding='same' stride=1 + ReLU

(2x2) max pooling

Flatten

Dense Layer-10 + Softmax

Dense Layer-512 + ReLU

Aim to reduce this gap

3

Model Generalization

* Trick 1: 'Learn hard, ' – randomly add noise to training data

In Keras if tf.random.uniform(()) > 0.5:

```
noise = tf.random.normal((32, 32, 3))/100.0
image = image+noise
return image, label
```


val_accuracy increases from ~80.2% to ~80.9%

* Trick 2: Batch normalization

mini-batch 2

$$(\mu_1, \sigma_1) \neq (\mu_2, \sigma_2)$$
very
likely

Add noise to the output of BN layers

Input data for a node in batch normalization layer

$$X = \{X_1, \dots, X_m\}$$

m is mini-batch size

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_i = \frac{X_i - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

 ϵ is a very small value

Scale and shift \hat{X}_i

$$Y_i = \gamma \hat{X}_i + \beta$$

 γ and β are two learning parameters

* Trick 2: Batch normalization

Trick 3: Dropout

Apply dropout 50% to layer *i*

~50% nodes randomly selected in the i^{th} layer are set to zeros (kind of noise adding)

* Trick 4: Kernel regularization

$$L = crossentropy + \lambda_1 ||W|| + \lambda_2 ||W||^2$$
 L_1 regularization L_2 regularization

Prevent network from focusing on specific features

Smaller weights

→ simpler models

In keras

Trick 5: Data augmentation

Image

Data distribution

Testing data

Training data

A perfect case: Have unlimited training

Image

Training data cover the whole distribution

But, impractical!!!

Trick 5: Data augmentation

Increase data by altering the training data

Trick 5: Data augmentation

Horizontal flip

val_accuracy reaches to ~90.7%

Horizontal flip + **crop-and-resize**

val_accuracy reaches to ~91.2%

Trick 6: Instance normalization

"applying IN which does not only reduce the difference caused by domain changes, but also the illumination variation in single spectral images"

AFD-Net Aggregated Feature Difference Learning for Cross-Spectral Image Patch Matching (ICCV, 2019)

https://arxiv.org/pdf/1803.08494.pdf

***** Trick 6: Instance normalization

val_accuracy reaches to ~91.6%

Summary

Horizontal flip + **crop-and-resize**

val_accuracy reaches to ~91.6%

train_accuracy reaches to ~93.7%

Batch normalization

Dropout

Kernel regularization

Data augmentation

Idea: try to increase train_accuracy, expect val_accuracy increases too

→ Increase model capacity

! Increase model capacity

val_accuracy reaches to ~93.6% train_accuracy reaches to ~97.9%

Summary

