Diode as Rectifiers

Rectification

- Ac signals have zero average or dc value.
- To create dc level, rectification is necessary.

 Rectifiers are of two types, half wave and full wave rectifiers

Half wave rectification

Figure 2.43 Half-wave rectifier.

Figure 2.44 Conduction region $(0 \rightarrow T/2)$.

HWR (continue..)

Figure 2.45 Nonconduction region $(T/2 \rightarrow T)$.

Figure 2.46 Half-wave rectified signal.

HWR (continue..)

Figure 2.47 Effect of V_T on half-wave rectified signal.

Dc output

Average or dc value of a signal is-

$$V_{dc} = \frac{1}{T} \int_0^T V_m \sin t dt$$

• For half wave rectifier,

$$V_{dc} = \frac{1}{T} \left[\int_0^{T/2} V_m \sin t dt + \int_{T/2}^T 0 \ dt \right] = \frac{V_m}{\pi} = 0.318 V_m$$

For practical diode,

$$V_{dc} \approx 0.318(V_m - V_T)$$

PRV/PRV of Diode

PIV rating
$$\geq V_m$$
 half-wave rectifier (2.9)

Figure 2.51 Determining the required PIV rating for the halfwave rectifier.

Full Wave Bridge Rectifier

Figure 2.54 Conduction path for the positive region of v_t.

FWBR (continue..)

Figure 2.55 Conduction path for the negative region of v_t .

Figure 2.56 Input and output waveforms for a full-wave rectifier.

Dc Output

• Twice as that of a half wave rectifier.

$$V_{dc} = 2(\text{Eq. } 2.7) = 2(0.318 V_m)$$

 $V_{dc} = 0.636 V_m$ full-wave (2.10)

- Needs 4 diodes and a resistor.
- Transformer is necessary to step down the input voltage for direct line voltage rectification using ordinary diodes.
- PIV equals Vm, same as half wave rectifier.

FWBR using practical diodes

Applying KVL

$$v_t - V_T - v_o - V_T = 0$$
$$v_o = v_t - 2V_T$$

and

The peak value of the output voltage v_o is therefore

$$V_{o_{max}} = V_m - 2V_T$$

For situations where $V_m \gg 2 V_T$, Eq. (2.11) can be applied for the average value with a relatively high level of accuracy.

$$V_{dc} \approx 0.636(V_m - 2V_T)$$
 (2.11)

Figure 2.57 Determining $V_{o_{max}}$ for silicon diodes in the bridge configuration.

Then again, if V_m is sufficiently greater than $2V_T$, then Eq. (2.10) is often applied as a first approximation for V_{dc} .

Center-tap Transformer Rectifier

Figure 2.59 Center-tapped transformer full-wave rectifier.

Figure 2.60 Network conditions for the positive region of v_i .

CTTR (continue..)

Figure 2.61 Network conditions for the negative region of v_i .

PIV of Diodes

$$PIV = V_{secondary} + V_R$$

= $V_m + V_m$

 $PIV \ge 2V_m$

CT transformer, full-wave rectifier

Figure 2.62 Determining the PIV level for the diodes of the CT transformer full-wave rectifier.

Oscilloscope display

HWR with capacitor filter

$$V_b = V_R + V_C$$
$$V_b = IR + \frac{Q}{C}$$

As charging progresses,

$$V_b = IR + \frac{Q}{C}$$

current decreases and charge increases.

FWR with capacitor filter

Comparison

	HWR	FWBR	FWCTTR
Available dc	0.318Vm	0.636Vm	0.636Vm
Ripple with filter capacitor	More	Less	Less
PIV of diode	≥Vm	≥Vm	≥2Vm
No of diodes	1	4	2
Conversion efficiency	Less	More	More

Efficiency (Half-Wave and Full-Wave Rectifiers)

Efficiency (n) =
$$\frac{DC \text{ Output Power}}{AC \text{ Input Power}}$$

DC Output Power of Half Wave Rectifier = V₀. I₀ = (I₀)². R_L

AC Input Power of Half Wave Rectifier = Vor. Ior = (Ior)2. RL

Efficiency
$$(\eta) = \frac{V_0. I_0}{V_{or. Ior}} = \frac{(I_0)^2. R_L}{(I_{or})^2. R_L}$$

Assuming Diode used in this circuit is ideal means its forward resistance (RF) is 0.

Efficiency (n) =
$$\frac{(Vm/\pi)^2}{(Vm/2)^2}$$
 = $\frac{4}{\pi^2}$ = 40.5%

Ripple factor

The ripple factor for a half-wave rectifier is 1.21.

This value indicates the degree of AC ripple present in the rectified output, with a higher value suggesting a greater AC content.

The ripple factor of a full-wave rectifier is 0.48.

This value is a measure of the amount of AC ripple or fluctuations present in the DC output of a rectifier circuit.

A lower ripple factor indicates a cleaner, more stable DC output.

Block diagram of ac to dc conversion

Home work

- Solve problems at the end of Chapter 2
- Problem no 22, 23, 25, 26, 27, 29 and 31.

Thank You