(NATURAL SCIENCE)

주체104(2015)년 제61권 제12호

Vol. 61 No. 12 JUCHE104(2015).

리만다양체에서 반대칭사영접속의 공액대칭조건

허달윤, 김방철

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《과학연구부문에서 최첨단돌파전을 힘있게 벌려 경제발전과 국방력강화, 인민생활향상에 이바지하는 가치있는 연구성과들을 많이 내놓아야 합니다.》

론문에서는 반대칭사영접속의 공액대칭조건에 대하여 연구한다.

선행연구[1]에서는 반대칭비계량접속의 한 형태인 π —반대칭비계량접속의 공액대칭조건이 연구되였으며 선행연구[2]에서는 대칭접속들사이의 등곡률성조건이 곡률텐소르의성질과 관련된다는 사실을 밝혔다. 선행연구[3]에서는 비계량대칭접속의 특수한 형태인아마리—첸쪼브접속에 대하여 접속과 쌍대접속사이의 등곡률성조건이 공액대칭조건으로 새롭게 정식화되고 연구되였으며 선행연구[4]에서는 반대칭접속의 호상접속에 대한 물리적모형이 새롭게 제시되였다.

선행연구들의 결과에 기초하여 론문에서는 반대칭비계량접속의 한가지 새로운 형태 인 반대칭사영접속의 공액대칭조건들을 밝힌다.

공액대칭조건은 곡선자리표망구성과 질점의 운동자리길결정에서 중요한 역할을 한다. 리만다양체 (M, g)에서 반대칭사영접속 ∇ 의 접속곁수는

$$\Gamma_{ij}^{k} = \{_{ij}^{k}\} + \psi_{i} \delta_{j}^{k} + (\psi_{j} + \varphi_{j}) \delta_{i}^{k} - g_{ij} \varphi^{k}$$

$$\tag{1}$$

이고 곡률텐소르는

$$R_{ijk}^{\ l} = K_{ijk}^{\ l} + \delta_i^l \alpha_{ik} - \delta_i^l \alpha_{ik} + g_{ik} \beta_i^l - g_{ik} \beta_i^l + \delta_k^l \psi_{ii}$$
 (2)

이다. 여기서 $\{^k_{ij}\}$ 는 레비-찌비따접속 $\overset{\circ}{\nabla}$ 의 접속곁수이고 $\psi_j,\; \varphi_j$ 는 1-형식 ψ 와 π 의 성분이며 $K_{ijk}^{\ \ l}$ 는 레비-찌비따접속 $\overset{\circ}{\nabla}$ 에 관한 곡률텐소르이다. 그리고

$$\alpha_{ik} = \overset{\circ}{\nabla}_{i}(\psi_{k} + \varphi_{k}) - (\psi_{i} + \varphi_{i})(\psi_{k} + \varphi_{k}) - g_{ik}(\psi_{p} + \varphi_{p})\varphi^{p}, \quad \beta_{ik} = \overset{\circ}{\nabla}_{i}\varphi_{k} - \varphi_{i}\varphi_{k}, \quad \psi_{ij} = \overset{\circ}{\nabla}_{i}\psi_{j} - \overset{\circ}{\nabla}_{j}\psi_{i}.$$
(3)

반대칭사영접속 ∇ 의 쌍대접속 $\overset{*}{\nabla}$ 의 접속곁수는 $\Gamma^k_{ij} = \{^k_{ij}\} - \psi_i \delta^k_j + \varphi_j \delta^k_i - g_{ij} (\psi^k + \varphi^k)$ 이고 곡률텐소르는 다음과 같다.

$$R_{ijk}^{\ \ l} = K_{ijk}^{\ \ l} + \delta_j^l \beta_{ik} - \delta_i^l \beta_{jk} + g_{ik} \alpha_j^l - g_{jk} \alpha_i^l - \delta_k^l \psi_{ij}$$
 (4)

리만다양체 $(M,\ g)$ 에서 접속 abla의 쌍대접속 abla에 대하여 $R_{ijk}^{\ \ l}=R_{ijk}^{\ \ l}$ 이면 그것을 공

액대칭, $R_{jk}=R_{jk}$ 이면 공액릿찌대칭, $P_{ij}=P_{ij}$ 이면 공액체적대칭이라고 한다. 여기서 R_{jk} 는 릿찌텐소르, P_{ij} 는 체적곡률텐소르이다.

정리 1 리만다양체 (M, g)에서 반대칭사영접속 ∇ 가 공액대칭이기 위해서는 그것이 공액릿찌대칭일것이 필요하고 충분하다.

증명 식 (2), (4)로부터

$$R_{ijk}^{\ \ l} = R_{ijk}^{\ \ l} + \delta_i^l b_{ik} - \delta_i^l b_{ik} + g_{ik} b_i^l - g_{ik} b_i^l - 2 \delta_k^l \psi_{ii}, \quad b_{ik} = \alpha_{ik} - \beta_{ik}. \tag{5}$$

식 (3)으로부터 $\psi_{ik} = b_{ik} - b_{ki}$ 이며 이 식을 i, l에 관하여 축약하면

$$R_{jk} = R_{jk} + nb_{jk} - g_{jk}b_i^i + 2\psi_{jk}.$$
(6)

식 (6)을 j, k에 관하여 빗대칭화하고 ψ_{ik} 를 구하면 다음과 같다.

$$\psi_{jk} = \frac{1}{n+4} \left[\left(R_{jk}^* - R_{kj}^* \right) - (R_{jk} - R_{kj}) \right]$$
 (7)

식 (7)을 식 (6)에 넣고 b_{ik} 를 구하면

$$b_{jk} = \frac{1}{n} \left\{ R_{jk}^* - R_{jk} + g_{jk} b_i^i - \frac{2}{n+4} \left[\left(R_{jk}^* - R_{kj}^* \right) - \left(R_{jk} - R_{kj} \right) \right] \right\}.$$
 (8)

식 (7)과 (8)을 식 (5)에 넣고 정돈하면서

$$V_{ijk}^{l} = R_{ijk}^{l} - \frac{1}{n} (\delta_{i}^{l} R_{jk} - \delta_{j}^{l} R_{ik} + g_{ik} R_{j}^{l} - g_{jk} R_{i}^{l}) + \frac{1}{n(n+4)} [\delta_{i}^{l} (R_{jk} - R_{kj}) - \delta_{i}^{l} (R_{ik} - R_{ki}) + g_{jk} (R_{i}^{l} - R_{i}^{l}) - g_{jk} (R_{i}^{l} - R_{i}^{l}) + n \delta_{k}^{l} (R_{ii} - R_{ii})],$$

$$(9)$$

$$V_{ijk}^{*l} = R_{ijk}^{*l} - \frac{1}{n} \left(\delta_{i}^{l} R_{jk}^{*} - \delta_{j}^{l} R_{ik}^{*} + g_{ik} R_{j}^{l} - g_{jk} R_{i}^{l} \right) + \frac{1}{n(n+4)} \left[\delta_{i}^{l} \left(R_{jk}^{*} - R_{kj}^{*} \right) - \delta_{j}^{l} \left(R_{ik}^{*} - R_{ki}^{*} \right) + g_{ik} \left(R_{j}^{l} - R_{i}^{l} \right) - g_{jk} \left(R_{i}^{l} - R_{i}^{l} \right) + n \delta_{k}^{l} \left(R_{ij}^{*} - R_{ji}^{*} \right) \right]$$

$$(10)$$

라고 하면

$$V_{ijk}^{\ l} = V_{ijk}^{\ l}. \tag{11}$$

 $R_{ijk}^{\ \ l}=R_{ijk}^{\ \ l}$ 이면 자명하게 $R_{jk}=R_{jk}^{\ \ k}$ 이다. 거꾸로 $R_{jk}=R_{jk}^{\ \ k}$ 이면 식 (9)-(11)로부터 $R_{ijk}^{\ \ l}=R_{ijk}^{\ \ l}$ 이다.(증명끝)

abla의 호상접속 abla의 접속결수는 $abla_{ij}^{l} = \{_{ij}^{k}\} + (\psi_{i} + \varphi_{i})\delta_{j}^{k} + \psi_{j}\delta_{i}^{k} - g_{ij}\varphi^{k}$ 이고 곡률텐소르는 $abla_{iik}^{l} = K_{iik}^{l} + \delta_{i}^{l}\overline{\alpha}_{ik} - \delta_{i}^{l}\overline{\alpha}_{ik} + g_{ik}\overline{\beta}_{i}^{l} - g_{ik}\overline{\beta}_{i}^{l} + \delta_{k}^{l}\gamma_{ii}$ (12)

이다. 여기서

$$\overline{\alpha}_{ik} = \overset{\circ}{\nabla}_i \psi_k - \psi_i \psi_k + \frac{1}{2} g_{ik} \psi_p \varphi^p \; , \; \; \overline{\beta}_{ik} = \overset{\circ}{\nabla}_i \varphi_k - \varphi_i \varphi_k + \frac{1}{2} g_{ik} \psi_p \varphi^p \; , \; \; \gamma_{ij} = \overset{\circ}{\nabla}_i (\psi_j + \varphi_j) - \overset{\circ}{\nabla}_j (\psi_i + \varphi_i) \; . \label{eq:alpha}$$

그리고 $\overline{\nabla}$ 의 쌍대접속 $\overline{\overline{\nabla}}$ 의 접속곁수는 $\overline{\Gamma}_{ij}^k=\{_{ij}^k\}-(\psi_i+\varphi_i)\delta_j^k+\varphi_j\delta_i^k-g_{ij}\psi^k$ 이고 곡률 텐소르는 다음과 같다.

$$\overline{R}_{ijk}^{l} = K_{ijk}^{l} + \delta_{j}^{l} \overline{\beta}_{ik} - \delta_{i}^{l} \overline{\beta}_{jk} + g_{ik} \overline{\alpha}_{j}^{l} - g_{jk} \overline{\alpha}_{i}^{l} - \delta_{k}^{l} \gamma_{ij}$$
(13)

정리 2 n(n>2)차원리만다양체 (M, g)에서 반대칭사영접속 ∇ 의 호상접속 $\overline{\nabla}$ 가 공액대칭이기 위해서는 그것이 공액릿찌대칭이고 공액체적대칭일것이 필요하고 충분하다. 증명 식 (12)와 (13)으로부터 다음의 식이 성립된다.

$$\overline{R}_{ijk}^{\ \ l} = \overline{R}_{ijk}^{\ \ l} + \delta_i^{\ l} \overline{b}_{ik} - \delta_i^{\ l} \overline{b}_{ik} + g_{ik} \overline{b}_i^{\ l} - g_{ik} \overline{b}_i^{\ l} - 2 \delta_k^{\ l} \psi_{ij}, \quad \overline{b}_{ik} = \overline{\alpha}_{ik} - \overline{\beta}_{ik}$$
(14)

식 (14)를 *i*, *l* 에 관하여 축약하면

$$\overline{R}_{jk}^* = \overline{R}_{jk} + n\overline{b}_{jk} - g_{jk}\overline{b}_i^i + 2\gamma_{jk}$$

$$\tag{15}$$

이고 k, l에 관하여 축약하면

$$\overline{P}_{jk}^* = \overline{P}_{ij} - 2(\overline{b}_{ij} - \overline{b}_{ji}) - 2n\gamma_{ij}.$$
 (16)

식 (15)를 j, k에 관하여 빗대칭화하고 식 (16)과 련립시켜 γ_{ik} 를 구하면

$$\gamma_{jk} = -\frac{1}{2(n^2 - 1)} \left\{ 2 \left[\left(\overline{R}_{jk}^* - \overline{R}_{kj}^* \right) - (\overline{R}_{jk} - \overline{R}_{kj}) \right] + n \left(\overline{P}_{ij}^* - \overline{P}_{ij} \right) \right\}$$

$$(17)$$

이다. 식 (17)을 식 (15)에 넣고 \bar{b}_{ik} 를 구하면

$$\overline{b}_{jk} = \frac{1}{n} \left(\overline{R}_{jk}^* - R_{jk} + g_{jk} b_i^i + \frac{1}{n^2 - 4} \left\{ 2 \left[\left(\overline{R}_{jk}^* - \overline{R}_{kj}^* \right) - (\overline{R}_{jk} - \overline{R}_{kj}) \right] + n \left(\overline{P}_{ij}^* - \overline{P}_{ij} \right) \right\} \right\}$$

이고 이 식과 식 (17)을 식 (14)에 넣고 정돈하면서

$$\overline{V}_{ijk}^{*l} = \overline{R}_{ijk}^{*l} - \frac{1}{n} \left(\delta_{i}^{l} \overline{R}_{jk}^{*} - \delta_{j}^{l} \overline{R}_{ik}^{*} + g_{ik} \overline{R}_{j}^{l} - g_{jk} \overline{R}_{i}^{l} \right) - \frac{1}{n(n^{2} - 4)} \left[\delta_{i}^{l} \left(\overline{R}_{jk}^{*} - \overline{R}_{kj}^{*} \right) - \delta_{j}^{l} \left(\overline{R}_{ik}^{*} - \overline{R}_{ki}^{*} \right) + g_{ik} \left(\overline{R}_{j}^{l} - R_{.j}^{l} \right) - g_{jk} \left(\overline{R}_{i}^{l} - R_{.i}^{l} \right) + n \delta_{k}^{l} \left(\overline{R}_{ij}^{*} - \overline{R}_{ji}^{*} \right) \right] - \frac{1}{n^{2} - 4} \left(\delta_{i}^{l} \overline{P}_{jk}^{*} - \delta_{j}^{l} \overline{P}_{ik}^{*} + g_{ik} \overline{P}_{j}^{l} - g_{jk} \overline{P}_{i}^{l} + n \delta_{k}^{l} \overline{P}_{ij}^{*} \right), \tag{18}$$

$$\overline{V}_{ijk}^{l} = \overline{R}_{ijk}^{l} - \frac{1}{n} \left(\delta_{i}^{l} \overline{R}_{jk} - \delta_{j}^{l} \overline{R}_{ik} + g_{ik} \overline{R}_{j}^{l} - g_{jk} \overline{R}_{i}^{l} \right) - \frac{1}{n(n^{2} - 4)} \left[\delta_{i}^{l} \left(\overline{R}_{jk} - \overline{R}_{kj} \right) - \delta_{j}^{l} \left(\overline{R}_{ik} - \overline{R}_{ki} \right) + g_{ik} \left(\overline{R}_{j}^{l} - R_{\cdot j}^{l} \right) - g_{jk} \left(\overline{R}_{i}^{l} - R_{i}^{l} \right) + n \delta_{k}^{l} \left(\overline{R}_{ij} - \overline{R}_{ji} \right) \right] - \frac{1}{n^{2} - 4} \left(\delta_{i}^{l} \overline{P}_{jk} - \delta_{j}^{l} \overline{P}_{ik} + g_{ik} \overline{P}_{j}^{l} - g_{jk} \overline{P}_{i}^{l} + n \delta_{k}^{l} \overline{P}_{ij} \right) \tag{19}$$

라고 하면

$$\overline{V}_{ijk}^{l} = \overline{V}_{ijk}^{l}. \tag{20}$$

 $\overline{R}_{ijk}^{\ l} = \overline{R}_{ijk}^{\ l}$ 이면 자명하게 $\overline{R}_{jk}^{\ *} = \overline{R}_{jk}^{\ l}$, $\overline{P}_{ij}^{\ *} = \overline{P}_{ij}^{\ }$ 이다.

거꾸로
$$\overline{R}_{jk}^* = \overline{R}_{jk}$$
이고 $\overline{P}_{ij}^* = \overline{P}_{ij}$ 이면 식 $(18) - (20)$ 으로부터 $\overline{R}_{ijk}^* = \overline{R}_{ijk}^{\ \ l}$ 이다.(증명끝)

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 59, 11, 3, 주체102(2013).
- [2] S. B. Edgar; Quantum. Grav., 10, 2545, 1993.
- [3] E. S. Stepanova; Journal of Mathematical Sciences, 147, 1, 1507, 2007.
- [4] I. Schendro; Progress in Physics, 4, 47, 2007.

주체104(2015)년 8월 5일 원고접수

Conjugate Symmetry Condition of a Semi-Symmetric Projective Connection on a Riemannian Manifold

Ho Tal Yun, Kim Pang Chol

We newly discovered the conjugate symmetry conditions of a semi-symmetric projective connection and its mutual connection on a Riemannian manifold. And we studied some properties for a semi-symmetric projective connection.

Key words: semi-symmetric projective connection, conjugate symmetry