2018-2019 学年第一学期期末考试 A 卷参考答案

·西西村本庭、米: (1)(2) 的复语计: (2)(2) 的正) 和《红诗》

一、选择题(12分)

1.【正解】1-p

【学解】 $P(\overline{AB}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB) = P(AB)$,因此P(A) = P(B) = 1,则有P(B) = 1 - P(A) = 1 - p.

【考点延伸】《概率论宝典》第一章 随机事件与概率 1.2、事件的关系与运算 1.4、概率的基本式

2. 【正解】 $\frac{2}{3}$

【学解】设此射手每次射击命中的概率为p,而至少命中一次的对立事件为射击四次全都没有命由题意可知一射手对同一目标独立地射击四次全都没有命中的概率为 $1-\frac{80}{81}=\frac{1}{81}$,则(1-p)

$$\frac{1}{818}$$
 \Rightarrow $p=\frac{2}{8181}$ $10.0=$ $= 0.016$. 则从正态分布 $N(\mu,\sigma^2)$,接规定其た意不得超过 $\sigma^2=0.016$. 则从人工态分布 $N(\mu,\sigma^2)$,

【考点延伸】《概率论宝典》第一章 随机事件与概率。1.4、概率的基本公式 到分其量 医乳毒素

3.【正解】ln2

【学解】依题意概率密度函数为 $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$,显然a > 0,因此P(X > a) = P(X < a)

得
$$\int_a^{+\infty} e^{-x} dx = \int_0^a e^{-x} dx \Rightarrow e^{-a} = 1 - e^{-a} \Rightarrow a = \ln 2$$
.

【考点延伸】《概率论宝典》第二章 一维随机变量及分布 2.3、连续型随机变量及分布 4.【正解】3

【学解】
$$X\sim P(\lambda) \Rightarrow P(X=0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda} = e^{-3} \Rightarrow \lambda = 3$$

【考点延伸】《概率论宝典》第二章 一维随机变量及分布 2.2、离散型随机变量及分布 5.【正解】0.9772

【学解】由于 X, Y 相互独立,则有 $X - Y \sim N(-1,4)$,则

30 让学习更简单

$$P(X-Y \le 3) = \Phi\left(\frac{3-(-1)}{2}\right) = \Phi(2)$$
 則用附表数据得到 $\Phi(2) = 0.9772$.

【考点延伸】《概率论宝典》第三章 二维随机变量及分布 3.6、二维随机变量函数的分布

$$\overrightarrow{m} P(X=0) = \frac{1^{0}e^{-1}}{0!} = e^{-1}, P(Y=0) = \frac{2^{0}e^{-2}}{0!} = e^{-2}, P(\max(X,Y)=0) = P\{X=0\}P\{Y=0\} = e^{-1}\}$$

$$\frac{1^{0}e^{-1}}{0!} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\max(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\max(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\max(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\max(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\max(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\max(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq 0\right) = 1 - e^{-3};$$

$$\frac{1^{0}e^{-1}}{(1-n)} \cdot \frac{2^{0}e^{-2}}{(1-n)} = e^{-3}, \quad \text{MP}\left(\min(X,Y) \neq$$

$$P(\min(X,Y)\neq 0) = [1-P\{X=0\}][1-P\{Y=0\}] = (1-e^{-1})(1-e^{-2}).$$

【考点延伸】《概率论宝典》第三章 二维随机变量及分布 3.6、二维随机变量函数的分布 7.【正解】4

【学解】令Z = X - Y,则 $Z \sim N(0,4)$, $DZ = EZ^2 - (EZ)^2$,而DZ = 4,EZ = 0,则

$$\alpha = P\left\{ |\bar{X}| > \frac{1.96}{3} |H_0| = P\left[\frac{1.96}{3} |H_0| = \frac{1.96}{3$$

【考点延伸】《概率论宝典》第四章 随机变量的数字特征 4.1、数学期望

8.【正解】0.0228

【学解】设第i次掷出的点数为 X_i ,则其分布列为

X_i	1 ,		id ,30 €3			$u \wedge v$
于	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	<u> </u>	1 1 2 1 6 4 6	1

则有
$$EX_i = (1+2+3+4+5+6) \cdot \frac{1}{6} = \frac{7}{2}$$
, $DX_i = \frac{1+2^2+3^2+4^2+5^2+6^2}{6} - \frac{49}{4} = \frac{35}{12}$,

在Ha不成立下, X-N(1,1), 则犯第二类错误的概率为

字解 北京理工大学 字解 《概率与数理统计》真题

$$P\left\{\sum_{i=1}^{420} X_{i} > 1540\right\} = P\left\{\frac{\sum_{i=1}^{420} X_{i} - 420 \times \frac{7}{2}}{\sqrt{420 \cdot \frac{35}{12}}} > \frac{1540 - 420 \times \frac{7}{2}}{\sqrt{420 \cdot \frac{35}{12}}}\right\} = 1 - P\left\{\frac{\sum_{i=1}^{420} X_{i} - 420 \times \frac{7}{2}}{\sqrt{420 \cdot \frac{35}{12}}}\right\}$$

 $pprox 1-\Phi(2)=1-0.9772\pm0.0228$,正年介化从用意用问题。 等于第三共享第三年工作

【考点延伸】《概率论宝典》第五章 大数定律与中心极限定理 5.3、中心极限定理

9. 【正解】
$$\left(S\sqrt{\frac{(n-1)}{\chi_{\frac{\alpha}{2}}^2(n-1)}}, S\sqrt{\frac{(n-1)}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}}\right)$$
 (0 = ((月,) xem) $Q = 1 = (0 = ((H) \times \mathbb{R})) Q$]

【学解】枢轴变量
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,则 $P\left\{\chi^2_{1-\frac{\alpha}{2}}(n-1) < \chi^2 < \chi^2_{\frac{\alpha}{2}}(n-1)\right\} = 1-\alpha$,

$$P\left\{\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right\} = 1 - \alpha, \quad \text{则 \sigma} 的置信区间为 } \left(S\sqrt{\frac{(n-1)}{\chi_{\frac{\alpha}{2}}^2(n-1)}}, S\sqrt{\frac{(n-1)}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}}\right)$$

【考点延伸】《概率论宝典》第八章 区间估计 8.2、置信区间

10.【正解】0.025; 0.1492

【学解】在 H_0 成立下, $X\sim N(0,1)$,则犯第一类错误的概率为

$$\alpha = P\left\{\left|\bar{X}\right| \ge \frac{1.96}{3}\left|H_0\right\} = P\left\{\frac{\left|\bar{X}\right| - 0}{1}\sqrt{9} \ge \frac{\frac{1.96}{3} - 0}{1}\sqrt{9}\right\} = 1 - \Phi(1.96) = 1 - 0.975 = 0.025$$

在 H_0 不成立下, $X\sim N(1,1)$,则犯第二类错误的概率为

$$\beta = P\left\{ \left| \frac{\overline{X} - \mu}{\sigma \sqrt{n}} \right| < U_{\omega/2} | H_1 \right\} = \Phi(-1.04) - \Phi(-4.96) = \Phi(4.96) - \Phi(1.04) = 1 - 0.8508 = 0$$

【考点延伸】《概率论宝典》第九章 假设检验 9.1、基本概念

二、(10 分)【学解】1.取第i次后,口袋中的黑球个数为i+1,袋中球的总数为i+2,设事件"取到第n次,试验没有结束",则有

$$P(A) = \frac{1}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{n}{n+1} = \frac{1}{n+1}.$$

2.设事件B= "取到第n次,试验恰好结束",即前n-1次取到黑球,第n次取到白球,则

210.0228

$$P(B) = \frac{1}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{1}{n+1} = \frac{1}{n(n+1)}.$$

【考点延伸】《概率论宝典》第一章 随机事件与概率 1.4、概率的基本公式

三、(10 分)【学解】1.
$$P\{X=0\}=C_3^0\left(\frac{1}{2}\right)^0\left(\frac{1}{2}\right)^3=\frac{1}{8}$$
, $P\{X=1\}=C_3^1\left(\frac{1}{2}\right)^1\left(\frac{1}{2}\right)^2=\frac{3}{8}$,

$$P\{X=2\}=C_3^2\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^1=\frac{3}{8}$$
, $P\{X=3\}=C_3^3\left(\frac{1}{2}\right)^3\left(\frac{1}{2}\right)^0=\frac{1}{8}$, 因此

X	$= \sum_{i=1}^{k} \frac{0}{i!}$	$(x,y)dxdy = \int_{0}^{1} dy.$	$ \sum_{z \in \mathcal{Z}} \frac{z}{2} dz $	$\frac{191}{500}$
$Y = (X-1)^{\frac{2}{3}}$	$\frac{1}{8} - = \sqrt{1} e^{\frac{\pi}{2}} = \sqrt{2}$	$(x,y) \exp(i\mathbf{r} 0 = 1 - \int_{0}^{1} dx$	1 11 1	.191> 4 ≥1 <u>2</u> 08
P	$z = \frac{\sqrt{8}}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Y TR.	0 0 0	(*) 1	4
P : (q	$-1)q = (1 - \frac{8}{3} \times 3) + (0 = x)$	$\begin{cases} \mathbf{Q} = \{\mathbf{I} = \mathbf{X}_{\underline{1}}, \mathbf{Q} = \mathbf{X}\} \mathbf{Q} \\ \mathbf{X} = \mathbf{P} \mathbf{I}, \mathbf{Z} = \mathbf{R} \end{cases}$	2.(1) $P(X = \frac{1}{8}, Z = 0) =$

2.(1)显然当 $x \le 0$ 时,有F(x) = 0,当x > 0有, $F(x) = \int_0^x te^{-\frac{t^2}{2}} dt = -\int_0^x e^{-\frac{t^2}{2}} d\left(-\frac{t^2}{2}\right) = 1 - e^{-\frac{x^2}{2}}$, 则X的分布函数为

$$F(x) = \begin{cases} 1 - \frac{x^2}{2}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

$$(2)P\{X>2\}=1-P\{X\leq 2\}=1-\int_{-\infty}^{2}f(x)dx=1-\int_{0}^{2}xe^{-\frac{x^{2}}{2}}dx=1-\left[1-e^{-\frac{x^{2}}{2}}\right]\Big|_{0}^{2}=e^{-2}.$$

【考点延伸】《概率论宝典》第二章 一维随机变量及分布 2.2、离散型随机变量及分布 2.3、连续 型随机变量及分布

四、(16 分)【学解】1.(1)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \int_0^x 3x dy = 3x^2, & 0 < x < 1 \\ 0, &$$
其它

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{0}^{1} 3x dx = \frac{3}{2} (1 - y^{2}), & 0 < y < 1 \\ 0, & \text{ } \sharp \text{ } \Xi \end{cases}$$

$$(2)F(z) = P\{Z \le z\} = P\{X + Y \le z\} = \iint_{x+y \le z} f(x,y) dx dy,$$

②当
$$0 < z < 1$$
时,有 $F(z) = \iint_{x+y \le z} f(x,y) dx dy = \int_0^{\frac{z}{2}} dy \int_y^{z-y} 3x dx = \frac{3}{8} z^3;$

③当1
$$\leq z < 2$$
时,有 $F(z) = \iint_{x+y \leq z} f(x,y) dx dy = 1 - \int_{\frac{z}{2}}^{1} dx \int_{z-x}^{x} 3x dy = -\frac{z^3}{8} + \frac{3}{2}z - 1;$

①当
$$z \ge 2$$
时,有 $F(z) = 1$;因此 $Z = X + Y$ 的概率密度 $f_Z(z) = \begin{cases} \frac{9}{8}z^2 & , \ 0 < z < 1 \\ -\frac{3}{8}z^2 + \frac{3}{2} & , \ 1 \le z < 2 \end{cases}$,其它

2.(1)
$$P{X=0, Z=0} = P{X=0, Y=1} = P{X=0}P{Y=1} = p(1-p);$$

 $P{X=0, Z=1} = P{X=0, Y=0} = P{X=0}P{X=0}$

$$P\{X=0, Z=1\} = P\{X=0, Y=0\} = P\{X=0\}P\{Y=0\} = (1-p)^2.$$

$$P\{X=1, Z=0\} = P\{X=1, Y=0\} = P\{X=1\}P\{Y=0\} = (1-p)^2;$$
 $P\{X=1, Z=0\} = P\{X=1, Y=0\} = P\{X=1\}P\{Y=0\} = p(1-p);$

$$P\{X=1, Z=1\} = P\{X=1, Y=1\} = P\{X=1\}P\{Y=1\} = p^2; 则(X, Z)$$
联合分布律为

	$I_{j} = I_{j} \{X_{i} = X_{j} \}$	$=1$ } P { Y = 1}2	田分和公司
Z	0 < 2 3	$=1$ } P { Y = 1} = p^2 ; $\mathbb{M}(X, X)$	· Z)联合分布律为
A	$0^{0} \geq \mathbf{v}_{0}$	$Q = \int_{-\infty}^{\infty} (x)^{-1} dx$	
	Fr	1 Pilling	n
0 0	p(1-p)	$ x_{1}(x)(1-p)^{2} = \{2 \ge 1$	p_i .
越生 江东市公安相如山湖	Grand Ob	$(1-p)^2 = \{2 \ge 1$	1-1-P(X
1	设分军。22、腐型工	变出抽造。	1-p
	p(1-p)	p^2	是分本地。
P. 1 1 > 1 P. 1			等点处理。 自机变异 化 分布
(2) 先求 Z 的分布律: P{Z-1	()	$2p^2 - 2p + 1$	1
ロッツ 小手: Plクー1)	(1)	1. I 550 Acc -

(2)先求Z的分布律: $P\{Z=1\}=2p^2-2p+1$; $P\{Z=0\}=2p-2p^2$, 若X和Z相互独立,则称

 $P\{X=0, Z=0\} = P\{X=0\}P\{Z=0\}$, 则有 $p(1-p)=(1-p)(2p-2p^2) \Rightarrow p=\frac{1}{2}$, 经检验,

当 $p=\frac{1}{2}$ 时,X和Z相互独立。

【考点延伸】《概率论宝典》第三章 二维随机变量及分布 3.1、二维随机变量的联合分布与边缘分布 3.2、二维离散型随机变量及分布 3.3、二维连续型随机变量及分布 3.4、二维

五、(16分)【学解】1.先求 Y的概率密度:由于 X 服从均匀分布U(0,2),则 $Y=|X-1|\sim U(0,1)$;

$$(1)EY = \frac{1}{2}, \quad DY = \frac{1}{12}; (2)E(XY) = \int_0^2 x|x-1| \cdot \frac{1}{2}dx = \frac{1}{2}\left(\int_0^1 x(1-x)dx + \int_1^2 x(x-1)dx\right) = \frac{1}{2};$$

(3)
$$f(EX) = 1$$
, $DX = \frac{1}{3}$, $DX = \frac{1}{3}$, $DX = E(XY) + EX \cdot EY = \frac{1}{2} - \frac{1}{2} = 0$, $Cov(X, Y) = E(XY) + EX \cdot EY = \frac{1}{2} - \frac{1}{2} = 0$, $Cov(X, Y) = E(XY) + EX \cdot EY = \frac{1}{2} - \frac{1}{2} = 0$,

$$\rho_{XY} = \frac{Cov(X, Y)}{\sqrt{DX \cdot DY}} = 0.$$

2.设进货量为 $n(10 \le n \le 30)$,则商店所获得的的利润为

$$g(X) = \begin{cases} 500X - 100(n - X), & X \le n \\ 500n + 300(X - n), & X > n \end{cases}$$

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx = \frac{1}{20} \int_{10}^{30} g(x) dx \qquad (n) \text{ for all } f(x) = 0 \text{ for all }$$

$$=\frac{1}{20}\left[\int_{10}^{n}(600x-100n)dx+\int_{n}^{30}(300x+200n)dx\right]=\frac{-150n^{2}+7000n+105000}{20}, \quad \leq n=\frac{70}{3} \text{ By },$$

取得最大值,因此每周的进货量为 $\frac{70}{3}$ 千克.

【考点延伸】《概率论宝典》第四章 随机变量的数字特征 4.1、数学期望 4.2、方差 4.4、协方差与相关系数

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$
 因此
$$\frac{(X_{n+1} - \mu)^2}{\sigma^2} + \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2$$
 服从自由度为的
$$\chi^2 分布.$$

【考点延伸】《概率论宝典》第六章 样本及抽样分布 【重要题型】 题型 6: 抽样分布统计量的

七、(12 分)【学解】(1)显然 $EX = \frac{3\theta}{2}$,按照矩估计法有 $\frac{3\theta}{2} = \bar{X}$,则 $\hat{\theta} = \frac{2}{3}\bar{X}$;

(2)设
$$x_1, x_2, \dots, x_n$$
 为样本观测值,则有 $f(x_i, \theta) = \begin{cases} \frac{1}{\theta}, & \theta \leq x_i \leq 2\theta \\ 0, & i = 1, 2, \dots, n \end{cases}$

则似然函数
$$L(\theta) = \begin{cases} \frac{1}{\theta^n}, & \theta \leq x_1, x_2, \dots, x_n \leq 2\theta \\ 0, & \text{其它} \end{cases}$$
,当 $\theta \leq x_1, x_2, \dots, x_n \leq 2\theta$ 时,

 $\ln L(\theta) = -n \ln \theta$,而 $\frac{d \ln L(\theta)}{d \theta} = -\frac{n}{\theta} < 0$,因此 $L(\theta)$ 随 θ 的增大而减小,所以 θ 的最大似然估计

$$\hat{\theta} = \frac{1}{2} \max \{X_1, X_2, \cdots, X_n\}.$$

【考点延伸】《概率论宝典》第七章 点估计 7.1、点估计 5进份量为n(10≤n≤30)。则窗店所获得高的利润。

八、 $(14 \, \mathcal{G})$ 【学解】1.设 $\chi^2(n)$ 服从自由度为n的卡方分布,若存在数c满足

$$n \ge X \quad (Y_1 - Y_1) = (Y_1) g$$

$$n \le X \quad (P_1(X_2 - Y_1)) = (Y_1) g$$

则称c为 $\chi^2(n)$ 的上 α 分位点, 并记c为 $\chi^2_a(n)$

2.设 H_0 : $\sigma^2 \leq \sigma_0^2$, H_1 : : $\sigma^2 > \sigma_0^2$, 选取统计量 $\chi^2 = (n-1)\frac{S^2}{\sigma_0^2}$, 若 H_0 成立, $\chi^2 \sim \chi^2 (n-1)$,

于 $\alpha = 0.05$, $\chi_{\alpha}^{2}(n-1) = \chi_{0.05}^{2}(24) = 36.415$,则拒绝区域为 $\chi^{2} \ge \chi_{0.05}^{2}(24) = 36.415$,又有

 $\chi^2 = (n-1)\frac{S^2}{\sigma_0^2} = 24 \times \frac{0.025}{0.016} = 37.5 > 36.415$,在拒绝域中,即拒绝 H_0 ,接受 H_1 ,即认为这

零件不合格.

【考点延伸】《概率论宝典》第九章 假设检验 【重要题型】 题型 3: 卡方检验

 $(X - \overline{X})^2 = \frac{(n-1)S^2}{2} - \chi^2(n-1)$,因此 $\frac{(X - \mu)^2}{\sigma^2} + \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{Y})^2$ 退从自由度为

 $g(X) = \int_{-\infty}^{\infty} g(x) f_X(x) dx = \frac{1}{20} \int_{-\infty}^{10} g(x) dx$