#### K nearest neighbor

LING 572

Fei Xia

Week 2: 1/14/2010

#### Outline

Demo

• kNN

#### Demo

 ML algorithms: Naïve Bayes, Decision stump, boosting, bagging, SVM, etc.

 Task: A binary classification problem with only two features.

http://www.cs.technion.ac.il/~rani/LocBoost/

### The term "weight" in ML

Some Xs are more important than others given everything else in the system

Weights of features

Weights of instances

Weights of classifiers

### The term "binary" in ML

- Classification problem
  - Binary: the number of classes is 2
  - Multi-class: the number is classes is > 2
- Features
  - Binary: the number of possible feature values is 2.
  - Real-valued: the feature values are real numbers
- File format:
  - Binary: human un-readable
  - Text: human readable

#### kNN

## Instance-based (IB) learning

- No training: store all training instances.
  - → "Lazy learning"
- Examples:
  - kNN
  - Locally weighted regression
  - Radial basis functions
  - Case-based reasoning
  - **–** ...
- The most well-known IB method: kNN

# kNN



#### kNN

- For a new instance d,
  - find k training instances that are closest to d.
  - perform majority voting or weighted voting.

#### Properties:

- A "lazy" classifier. No training.
- Feature selection and distance measure are crucial.

#### The algorithm

- Determine parameter K
- Calculate the distance between queryinstance and all the training instances
- Sort the distances and determine K nearest neighbors
- Gather the labels of the K nearest neighbors
- Use simple majority voting or weighted voting.

### Picking K

- Use the validation data: pick the one that minimizes cross validation error.
  - Training data: true training data and validation data
  - Dev data
  - Test data

N-fold cross validation:

#### Normalizing attribute values

- Distance could be dominated by some attributes with large numbers:
  - Ex: features: age, income
  - Original data:  $x_1=(35, 76K), x_2=(36, 80K), x_3=(70, 79K)$
  - Assume: age ∈ [0,100], income ∈ [0, 200K]
  - After normalization:  $x_1$ =(0.35, 0.38),  $x_2$ =(0.36, 0.40),  $x_3$  = (0.70, 0.395).

#### The Choice of Features

 Imagine there are 100 features, and only 2 of them are relevant to the target label.

 kNN is easily misled in high-dimensional space.

→ Feature weighting or feature selection (It will be covered in Week #4)

## Feature weighting

Stretch j-th axis by weight w<sub>i</sub>

 Use cross-validation to automatically choose weights w<sub>1</sub>, ..., w<sub>n</sub>

 Setting w<sub>j</sub> to zero eliminates this dimension altogether.

# Some similarity measures

Euclidean distance:

$$dist(d_i, d_j) = \sqrt{\sum_k (a_{i,k} - a_{j,k})^2}$$

Weighted Euclidean distance:

$$dist(d_i, d_j) = \sqrt{\sum_k w_k (a_{i,k} - a_{j,k})^2}$$

Cosine

$$cos(d_i, d_j) = \frac{\sum_k a_{i,k} a_{j,k}}{\sqrt{\sum_k a_{i,k}^2} \sqrt{\sum_k a_{j,k}^2}}_{15}$$

#### Voting by k-nearest neighbors

- Suppose we have found the k-nearest neighbors.
- Let f<sub>i</sub> (x) be the class label for the i-th neighbor of x.

 $\delta(c, f_i(x))$  is the identity function; that is, it is 1 if  $f_i(x) = c$ , and is 0 otherwise.

Let  $g(c) = \sum_{i} \delta(c, f_i(x))$ ; that is, g(c) is the number of neighbors with label c.

# Voting

- Majority voting:
  c\* = arg max<sub>c</sub> g(c)
- Weighted voting: weighting is on each neighbor  $c^* = arg \max_c \sum_i w_i \delta(c, f_i(x))$
- Weighted voting allows us to use more training examples:

e.g., 
$$w_i = 1/dist(x, x_i)$$

→ We can use all the training examples.

### Summary of kNN algorithm

Decide k, feature weights, and similarity measure

- Given a test instance x
  - Calculate the distances between x and all the training data
  - Choose the k nearest neighbors
  - Let the neighbors vote

#### Strengths:

- Simplicity (conceptual)
- Efficiency at training: no training
- Handling multi-class
- Stability and robustness: averaging k neighbors
- Predication accuracy: when the training data is large

#### Weakness:

- Efficiency at testing time: need to calc all distances
- Theoretical validity
- It is not clear which types of distance measure and features to use.
- => Extension: e.g., Rocchio algorithm