kaggle

Q Competitions Datasets Kernels Discussion

Learn


```
In [1]:
## Importing packages
# This R environment comes with all o
f CRAN and many other helpful package
s preinstalled.
# You can see which packages are inst
alled by checking out the kaggle/rsta
ts docker image:
# https://github.com/kaggle/docker-rs
tats
library(tidyverse) # metapackage with
lots of helpful functions
## Running code
# In a notebook, you can run a single
 code cell by clicking in the cell an
d then hitting
# the blue arrow to the left, or by c
licking in the cell and pressing Shif
t+Enter. In a script,
# you can run code by highlighting th
e code you want to run and then click
ing the blue arrow
# at the bottom of this window.
## Reading in files
# You can access files from datasets
you've added to this kernel in the
 "../input/" directory.
# You can see the files added to this
 kernel by running the code below.
list.files(path = "../input")
## Saving data
# If you save any files or images, th
```

ese will be put in the "output" direc

and and the author directory by com

tory. You

```
mitting and running your kernel (usin
g the
# Commit & Run button) and then check
ing out the compiled version of your
kernel.
```

```
— Attaching packages —
        ---- tidyverse
1.2.1 —

✓ ggplot2 3.0.0.9000

✓ purrr 0.2.5

✓ tibble 1.4.2

✓ dplyr 0.7.6

✓ tidyr 0.8.1

✓ stringr 1.3.1
✓ readr 1.2.0
✓ forcats 0.3.0
— Conflicts ——
---- tidyverse_confli
cts() ---
≭ dplyr::filter() masks
stats::filter()
★ dplyr::lag() masks
stats::lag()
```

```
In [2]:
#
# https://youtu.be/50NFqIk3RFg
#
```

```
#
# MASS: Support Functions and Dataset
s for Venables and Ripley's MASS
# ISLR: Data for an Introduction to S
tatistical Learning with Applications
```

In [3]:

in R

```
library(MASS)
library(ISLR)
```

Attaching package: 'MAS S'

The following object is masked from 'package:dpl yr':

select

In [4]:

see name of the variables
names(Boston)

'crim' 'zn' 'indus' 'chas' 'nox' 'rm' 'age' 'dis' 'rad' 'tax' 'ptratio' 'black' 'lstat' 'medv'

In [5]:

And so if you want more detail, yo
u're going to ask
for help on Boston.
?Boston
It's got 506 rows and 14 columns.

In [6]:

Simple linear regression

In [7]:

plot some variables: medv and lstat
the response is medv (on vertical a
xis)
find these variables in data set Bo
ston

```
# plot(Boston$1stat, Boston$medv)
# or
plot(medv~lstat, Boston)
```


In [8]:

```
# medv : response
# ~ : is modeled as
# lstat: single predictor
fit1=lm(medv~lstat,data=Boston)
fit1
# you can see its a negative relation
ship
# it gives you a brif summary

par(mfrow=c(2,2))
plot(fit1)
```

Call:

lm(formula = medv ~ lsta
t, data = Boston)

Coefficients:

(Intercept) lstat

-0.95

34.55

$3.R_Linear\ Regression\ in\ R \mid Kaggle$

In [9]:

get more detail of summary
summary(fit1)

both of intercept and lstat are sig
nificant

Call:

lm(formula = medv ~ lsta
t, data = Boston)

Residuals:

Min 1Q Median 3Q Max -15.168 -3.990 -1.318 2.034 24.500

Coefficients:

Estimate St
d. Error t value Pr(>|t
|)
(Intercept) 34.55384
0.56263 61.41 <2e-16

lstat -0.95005
0.03873 -24.53 <2e-16

--Signif. codes: 0 '***'
0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1

Residual standard error: 6.216 on 504 degrees of freedom Multiple R-squared: 0.5

441, Adjusted R-squar ed: 0.5432
F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

In [10]:

add linear model line to the plot
need to plot before abline
plot(medv~lstat,Boston)
abline(fit1,col="red")
#?abline

In [11]:

names(fit1)

'coefficients' 'residuals' 'effects' 'rank' 'fitted.values' 'assign' 'qr' 'df.residual' 'xlevels' 'call' 'terms' 'model'

In [12]:

find the confident interval for the
 fit
confint(fit1)
#?confint

	2.5 %	97.5 %
(Intercept)	33.448457	35.6592247
Istat	-1.026148	-0.8739505

In [13]:

- # The predict function is another one
 of these methods
- # where we can use to query a linear model fit.
- # In this case, we're going to predic
 t with three new values
- # for lstat, or three particular valu
 es, five, 10, and 15.
- # 3 And we're going to not only ask f
 or predictions, we're
- # going to ask for a confidence inter
 val.
- # So those are additional arguments t
 o predict.
- predict(fit1, data.frame(lstat=c(5,10,
 15)),interval="confidence")
- # And when we do that, we get the fit at those three values,
- # and then the lower confidence inter
 val, and the upper
- # confidence band.
- # https://stackoverflow.com/question
 s/38109501/how-does-predict-lm-comput
 e-confidence-interval-and-predictioninterval

	fit	lwr	upr
1	29.80359	29.00741	30.59978
2	25.05335	24.47413	25.63256
3	20.30310	19.73159	20.87461

3.R_Linear Regression in R

R notebook using data from **no data sources** ⋅ 5 views ⋅ *P* Edit tags

...

Version 5

9 5 commits

Notebook

Data

Output

Log

Comments

In [15]:

we wanna fit lstat and age
we seperate variables with +
fit2=lm(medv~lstat+age,data=Boston)
summary(fit2)

And age is also significant, quite strongly so, but not as significant lstat.

One of the things down below is the r squared, which we talked about as well, for the model.

Remember, r squared, it's the highe r the better. It's a percentage of va riance explained.

Call:

lm(formula = medv ~ lsta
t + age, data = Boston)

Residuals:

Min 1Q Median 3Q Max -15.981 -3.978 -1.283 1.968 23.158

Coefficients:

Estimate St
d. Error t value Pr(>|t
|)
(Intercept) 33.22276
0.73085 45.458 < 2e-16

lstat -1.03207
0.04819 -21.416 < 2e-16

age 0.03454
0.01223 2.826 0.00491

U . I

```
Residual standard error:
6.173 on 503 degrees of
freedom
Multiple R-squared: 0.5
513, Adjusted R-squar
ed: 0.5495
F-statistic: 309 on 2
and 503 DF, p-value: <
2.2e-16
```

In [16]:

```
# And ~. means is that we're supposed
to use all
# the other variables in the Boston d
ata frame except medv,
# which is the response, and all the
others will be predictors.
fit3=lm(medv~.,Boston)
summary(fit3)
# Age, now, is no longer significant.
# So age, when it was in the model ju
st with 1stat, was
# significant. But now it's in the mo
del with all these other predictors.
# And it's no longer significant. Wha
t that means is there's basically a 1
ot of other
# predictors that are very correlated
with age.
# And in the presence of them, age is
no longer required.
```

Call:

```
lm(formula = medv \sim ., d ata = Boston)
```

Residuals:

```
Min 1Q Median
3Q Max
-15.595 -2.730 -0.518
1.777 26.199
```

Coefficients:

Estimate S td. Error t value Pr(>|t |) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.0010 87 ** 4.642e-02 1.373e-02 3.382 0.0007 78 *** indus 2.056e-02 6.150e-02 0.334 0.7382 88 chas 2.687e+00 8.616e-01 3.118 0.0019 25 ** -1.777e+01 nox 3.820e+00 -4.651 4.25e-06 *** 3.810e+00 rm 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.9582 29 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** 3.060e-01 6.635e-02 4.613 5.07e-06 *** -1.233e-02 3.760e-03 -3.280 0.0011 12 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.0005 73 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e16 ***
--Signif. codes: 0 '***'
0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' '1

Residual standard error:
4.745 on 492 degrees of
freedom
Multiple R-squared: 0.7
406, Adjusted R-squar
ed: 0.7338
F-statistic: 108.1 on 13
and 492 DF, p-value: <

In [17]:

2.2e-16

```
# You can plot linear models.
# I made a two by two layout, because
I know that four plots
par(mfrow=c(2,2))
plot(fit3)
# The first one is the residuals agai
nst the fitted values.
# The vector fitted values is just a
single vector.
# So we can plot the residuals agains
t that.
# And the reason we do that is we are
looking for non-linearities.
# And we kind of know there's a non-1
inearity in this one.
# We saw that in the very first plot.
And by the curve in the residuals he
re, we can see
# that the model is not quite capturi
ng everything that's going on.
# There seems to be some non-linearit
У.
# This lower left one, is the square
 root of the absolute standardized re
siduals.
```

- # One plots this to see, perhaps, if the variance is changing with the me an or the fit.
- # In this case, it looks like there m ay be some relationship there.
- # But that could be a result of a non
 -linearity that we seem
- # to have missed in the model.

In [18]:

- # Twiddle means--nothing on the left
 means we're going to
- # use the same response,
- # . means whatever the model was in f
 it3, That's replaced in dot.
- # And minus age means we want to remo ve age.
- # And minus indus, we want to remove indus as well.
- # So this will fit the model with tho se two variables removed, all the oth ers in.
- fit4=update(fit3,~.-age-indus)
 summary(fit4)
- # And now everything that's left in t he model appears to be significant.

Call:

- lm(formula = medv ~ crim
- + zn + chas + nox + rm +
- dis + rad +

tax + ptratio + blac
k + lstat, data = Bosto
n)

Residuals:

Min 1Q Medi an 3Q Max -15.5984 -2.7386 -0.50 46 1.7273 26.2373

Coefficients:

Estimate S
td. Error t value Pr(>|t
|)
(Intercept) 36.341145
5.067492 7.171 2.73e-1
2 ***

crim -0.108413 0.032779 -3.307 0.00101 0 **

zn 0.045845 0.013523 3.390 0.00075

4 ***

chas 2.718716 0.854240 3.183 0.00155

1 **

nox -17.376023 3.535243 -4.915 1.21e-0

6 ***

rm 3.801579 0.406316 9.356 < 2e-1

6 ***

dis -1.492711 0.185731 -8.037 6.84e-1

5 ***

rad 0.299608 0.063402 4.726 3.00e-0

6 ***

tax -0.011778 0.003372 -3.493 0.00052

1 ***

ptratio -0.946525 0.129066 -7.334 9.24e-1 3 ***

black 0.009291 0.002674 3.475 0.00055

```
7 ***
lstat
            -0.522553
0.047424 -11.019 < 2e-1
6 ***
Signif. codes: 0 '***'
0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1
Residual standard error:
4.736 on 494 degrees of
freedom
Multiple R-squared: 0.7
406, Adjusted R-squar
ed: 0.7348
F-statistic: 128.2 on 11
and 494 DF, p-value: <
2.2e-16
```

In [19]:

Nonlinear terms and Interaction
s

In [20]:

```
# The first thing we'll do is make a
 fit where we put an interaction
# between 1stat and age. And that we
 do with a star, sort of like multipl
У.
# But in this formula language, it me
ans an interaction.
fit5=lm(medv~lstat*age,Boston)
summary(fit5)
# So that star in the formula means t
hat we're going to have
# main effects for each and the inter
action.
# And the pure interaction is indicat
ed by a colon.
# And while the main effect for age i
s not significant here,
```

the interaction is somewhat signifi
cant.

https://stackoverflow.com/question
s/24192428/what-does-the-capital-lett
er-i-in-r-linear-regression-formula-m
ean
?formula

Call:

lm(formula = medv ~ lsta
t * age, data = Boston)

Residuals:

Min 1Q Median 3Q Max -15.806 -4.045 -1.333 2.085 27.552

Coefficients:

Estimate S td. Error t value Pr(>|t |) (Intercept) 36.0885359 1.4698355 24.553 < 2e-16 *** lstat -1.3921168 0.1674555 -8.313 8.78e-16 *** age -0.0007209 0.0198792 -0.036 0.97 11 lstat:age 0.0041560 0.0018518 2.244 0.02 52 * Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.149 on 502 degrees of freedom Multiple R-squared: 0.5 557, Adjusted R-squar ed: 0.5531 F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

In [21]:

```
# And we saw that there was a non-lin
ear looking scatter plot
# between medv and 1stat. And so here
 we explicitly put in a quadratic ter
m.
# And there's two things going on her
# (1) the quadratic we indicate by ls
tat power two.
      But power has a meaning in this
 formula language.
     And so if you want it to mean a
ctually just raise 1stat to
      the power of two, we protect it
 with this identity function.
      So the formula language doesn't
 dig inside this identity function.
# (2) we've put two commands in one 1
ine, which you can do in R.
     But you have to separate them w
ith a semi-colon.
      So you can have as many command
s in one line as you like,
      but separate them with semi-col
ons.
fit6=lm(medv~lstat +I(lstat^2),Boston
); summary(fit6)
# And sure enough, no surprise, both
 coefficients are strongly
# significant, the linear and the qua
dratic.
```

Call:

lm(formula = medv ~ lsta

```
3.R_Linear Regression in R | Kaggle
```

 $t + I(1stat^2), data = B$ oston)

Residuals:

Min 1Q Medi an 3Q Max -15.2834 -3.8313 -0.52 95 2.3095 25.4148

Coefficients:

Estimate St d. Error t value Pr(>|t |) (Intercept) 42.862007 0.872084 49.15 <2e-1 6 *** lstat -2.332821 0.123803 -18.84 <2e-1 6 *** I(lstat^2) 0.043547 0.003745 11.63 <2e-1 6 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ·.' 0.1 ' ' 1

Residual standard error:

5.524 on 503 degrees of

freedom

Multiple R-squared: 0.6 407, Adjusted R-squar ed: 0.6393

F-statistic: 448.5 on 2 and 503 DF, p-value: <

2.2e-16

In [22]:

attach: That means that the named v ariables in Boston are # available in our data space. attach(Boston)

In [23]:

```
# Now, we can't use abline anymore, b
ecause that only
# works when you've got a straight li
ne fit.
# we use points:
# And the first argument is 1stat its
elf.
# The second argument are the fitted
values from fit6.
# That was our quadratic fit.
# So the fitted values are for each v
alue of Istat, it's the
# fitted value from the model.
par(mfrow=c(1,1))
plot(medv~lstat)
points(lstat, fitted(fit6), col="red", p
ch=20)
# And the pch, which is the plotting
character, is to be 20.
```


In [24]:

```
# we are going to fit medv as a polyn
omial of degree four in lstat.
par(mfrow=c(1,1))
plot(medv~lstat)
fit7=lm(medv~poly(lstat,4))
fit7
points(lstat,fitted(fit7),col="blue",
pch=20)
```

#?points
#?fitted
And you can see that the fourth deg
ree polynomial is
getting a little bit too wiggly.
It's starting to over-fit the data
a little bit,

Call:

lm(formula = medv ~ poly
(lstat, 4))

Coefficients:

(Intercept) poly(1s tat, 4)1 poly(1stat, 4)2 poly(1stat, 4)3 22.53 -152.46 64.23 -27.05 poly(1stat, 4)4 25.45

In [25]:

Let's have a look at what plotting
 characters are available.
So here's a simple way of seeing th
 em all; plot one to
20 and plotting characters one to 2
0.
We can see the whole lot. And there
 you see them.

plot(1:20,1:20,pch=1:20,cex=2)

In [26]:

###Qualitative predictors

In [27]:

So the command fix is a way of thro
wing up an editor in R.
#fix(Carseats)

... = ... (• • . • • • • . •)

head(Carseats, n=10)

its studies on children's carseats

Sales	CompPrice	Income	Advertisi
9.50	138	73	11
11.22	111	48	16
10.06	113	35	10
7.40	117	100	4
4.15	141	64	3
10.81	124	113	13
6.63	115	105	0
11.85	136	81	15
6.54	132	110	0
4.69	132	113	0

In [28]:

names(Carseats)

'Sales' 'CompPrice' 'Income' 'Advertising' 'Population' 'Price' 'ShelveLoc' 'Age' 'Education' 'Urban' 'US'

In [29]:

summary(Carseats)

Sales

Comp

```
Price Income
 Advertising
Min. : 0.000 Min.
: 77 Min. : 21.00
Min. : 0.000
1st Qu.: 5.390 1st Q
u.:115 1st Qu.: 42.75
 1st Qu.: 0.000
Median: 7.490 Median
:125 Median : 69.00
Median : 5.000
Mean : 7.496 Mean
:125 Mean : 68.66
Mean : 6.635
3rd Qu.: 9.320 3rd Q
u.:135 3rd Qu.: 91.00
 3rd Qu.:12.000
Max. :16.270 Max.
:175 Max. :120.00
Max. :29.000
  Population Pri
ce ShelveLoc
  Age
            Educatio
n
Min. : 10.0 Min.
: 24.0 Bad : 96 Mi
n. :25.00 Min. :1
0.0
1st Qu.:139.0 1st Q
u.:100.0 Good : 85
1st Qu.:39.75 1st Qu.:
12.0
```

```
Median :2/2.0
              Median
:117.0 Medium:219 Me
dian :54.50 Median :1
4.0
      :264.8
Mean
               Mean
:115.8
                    Me
an :53.32 Mean
                   :1
3.9
3rd Qu.:398.5
              3rd Q
u.:131.0
3rd Qu.:66.00
              3rd Qu.:
16.0
Max.
       :509.0
               Max.
:191.0
                    Ма
x. :80.00 Max.
                   :1
8.0
            US
Urban
No :118
        No :142
Yes:282
         Yes:258
```

In [30]:

```
# Sales~. : It means everything in t
he frame but sales.
# Plus we're going to add in interact
ions between income, and advertising,

# and age, and price.
fit1=lm(Sales~.+Income:Advertising+Ag
e:Price,Carseats)
summary(fit1)

# And income and advertising appears
to be strongly
# significant.But price and age is no
t.
```

Call:

```
lm(formula = Sales ~ . +
Income:Advertising + Ag
e:Price. data = Carseat
```

s)

Residuals:

Min 1Q Median 3Q Max -2.9208 -0.7503 0.0177 0.6754 3.3413

Coefficients: imate Std. Error t value Pr(>|t|)(Intercept) 6.57 55654 1.0087470 6.519 2.22e-10 *** CompPrice 0.09 29371 0.0041183 22.567 < 2e-16 *** Income 0.01 08940 0.0026044 4.183 3.57e-05 *** Advertising 0.07 02462 0.0226091 3.107 0.002030 ** Population 0.00 01592 0.0003679 0.433 0.665330 Price -0.10 08064 0.0074399 -13.549 < 2e-16 *** ShelveLocGood 4.84 86762 0.1528378 31.724 < 2e-16 *** ShelveLocMedium 1.95 32620 0.1257682 15.531 < 2e-16 *** -0.05 79466 0.0159506 -3.633 0.000318 *** Education -0.02 08525 0.0196131 -1.063 0.288361 UrbanYes 0.14 01597 0.1124019 1.247 0.213171

USYes -0.1575571 0.1489234 -1.058 0.290729 Income: Advertising 0.00 07510 0.0002784 2.698 0.007290 ** Price:Age 0.00 01068 0.0001333 0.801 0.423812 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Residual standard error: 1.011 on 386 degrees of freedom Multiple R-squared: 0.8 761, Adjusted R-squar ed: 0.8719 F-statistic: 210 on 13 and 386 DF, p-value: <

In [31]:

2.2e-16

ShelveLoc was a qualitative variabl
e.
If you look at contrasts function,
 it shows you how R
will code that variable when it's p
 ut in a linear model.
#
And in this case, it's a three-leve
l factor.
And so it puts in two dummy variabl

This kernel has been released under the Apache 2.0 open source license.

Did you find this Kernel useful?Show your appreciation with an upvote

Data

No Data Sources

Edit to add a new Data Source

Output Visualizations

Run Info

Succeeded	True Run Time	12.4 seconds
Exit Code	0	
Docker Image Name	Queue Time kaggle/rstats(Dockerfile)	0 seconds
Timeout Exceeded	False Output Size	0
	Used All Space	False
Failure Message		

Log

Download Log

Time	Line #	Log Message
2.7s	1	<pre>[NbConvertApp] Converting notebook script.irnb to html</pre>
5.3s	2	<pre>[NbConvertApp] Executing notebook with kernel: ir</pre>
12.0s	3	<pre>[NbConvertApp] Support files will be inresultsfiles/</pre>

		<pre>[NbConvertApp] Making directoryresultsfiles</pre>
12.0s	4	[NbConvertApp] Making directoryresultsfiles
12.0s	5	<pre>[NbConvertApp] Making directoryresultsfiles [NbConvertApp] Making directoryresultsfiles</pre>
12.0s	6	<pre>[NbConvertApp] Writing 331141 bytes toresultshtml</pre>
12.0s	7	
12.0s	9	Complete. Exited with code 0.

Comments (0)

Click here to enter a comment...

© 2019 Kaggle Inc

Our Team Terms Privacy Contact/Support

