Keren Zhou

6100 Main ST – Houston, TX – 77005, United States

EDUCATION BACKGROUND

09/2017-07/2022 Department of Computer Science, Rice University

Houston, United States

Expected Degree: *Ph.D. in Computer Science* **GPA:** 3.9/4.0

Advisor: John Mellor-Crummey

09/2014-07/2017 Institute of Computing Technology, Chinese Academy of Sciences

Beijing, China

Degree: *M.S. in Computer Architecture* **GPA:** 90/100

Advisor: Guangming Tan **Thesis:** High Performance Deep Learning Algorithms

09/2010-07/2014 School of Software, Yunnan University

Kunming, China

Degree: *B.E. in Network Engineering* **GPA:** 92/100 (Rank: 1/290) **Advisor:** Wei Zhou **Thesis:** A Practical Concurrent Quadtree

RESEARCH EXPERIENCE

09/2017-NOW Rice University

Houston, United States

Research Assistant

Scalable GPU Performance Measurement and Analysis Tool

- o Implemented OpenMP 5.0 OMPT Tool Interface for CUDA backend in llvm-openmp;
- Built a general runtime system to collect GPU activities on NVIDIA, AMD, and Intel GPUs and attributed them back to the corresponding CPU calling context;
- Analyzed GPU binaries to extract GPU functions, recover control flows, and map instructions to source code;
- Associated runtime samples with static GPU program structures to reconstruct calling context on GPUs and estimate instruction throughput and roof-line model;
- Studied HPC and machine learning applications, including PyTorch, Darknet, Quicksilver, Nekbone, Laghos, PeleC, QMCPACK, Nyx, GAMESS, NAMD, and LAMMPS.

GPU Performance Advisor

- Devised a method to attribute instruction stalls back to the instructions that caused them;
- Built a profile-guided performance advisor based on GPU performance metrics, program structures, and PC samples;
- Derived performance models to estimate speedups of individual suggestions proposed by the advisor;
- \circ Optimized GPU applications by applying advice generated by the advisor to obtain speedups on a V100 GPU with 1.22× on average.

GPU Value Redundancy Profiler

- \circ Investigated value redundancy problems in HPC and machine learning applications and achieved speedups by up to 1.93 \times .
- Built the first value profiler for NVIDIA GPUs to explore both temporal and spatial value redundancies in multi-node multi-GPU clusters;
- \circ Devised asynchronous analysis and hierarchical sampling methods to reduce the tool overhead to 7.5× on average for Rodinia benchmarks.

06/2015-07/2017

Institute of Computing Technology, Chinese Academy of Sciences Research Assistant

Beijing, China

GPU Performance Model

- o Decoded Nvidia GPU assembly codes and developed assemblers to generate GPU binaries;
- Built a static performance analysis model to estimate performance bottlenecks in GPU binaries.

High Performance Deep Learning Framework

- Devised a coarse-grained parallelism strategy with fine-grained vectorization and blocking effects on CPU, making CNNs 5-12 times faster than Caffe on a 16-core E5-2670;
- \circ Wrote assembly codes to make use of dual issue and avoid bank conflict on GPU, improving convolution performance with up to $1.6 \times$ speedup than cuDNN on Kepler architectures.

Research Assistant

Concurrent Data Structures

 \circ Designed several concurrent multi-dimensional trees, including the first lock-free quadtree and k-d tree that are $1.09 \times$ faster than state-of-the-art concurrent trees;

SELECTED PUBLICATIONS

<u> </u>	
JOURNALS	
[1]	Keren Zhou , Guangming Tan, and Wei Zhou. Quadboost: A Scalable Concurrent Quadtree. In: <i>IEEE Transactions on Parallel and Distributed Systems</i> (TPDS), 2018
CONFERENCES	S
[1]	Keren Zhou , Xiaozhu Meng, Ryuichi Sai, John Mellor-Crummey. GPA: A GPU Performance Advisor Based on Instruction Sampling. In: <i>International Symposium on Code Generation and Optimization</i> (CGO), 2021
[2]	Keren Zhou , Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu. GVProf: A Value Profiler for GPU-based Clusters. In: <i>The International Conference for High Performance Computing, Networking, Storage, and Analysis</i> (SC), 2020
[3]	Keren Zhou , Mark Krentel, and John Mellor-Crummey. Tools for top-down performance analysis of GPU-accelerated applications. In: <i>34th ACM International Conference on Supercomputing</i> (ICS), 2020
[4]	Keren Zhou , Guangming Tan, Xiuxia Zhang, Chaowei Wang, and Ninghui Sun. A Performance Analysis Framework for Exploiting GPU Microarchitectural Capability. In 26th ACM International Conference on Supercomputing (ICS), 2017
[5]	Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou , and Mingyu Chen. Understanding GPU Microarchitecture to Achieve Bare-Metal Performance Tuning. In: 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP), 2017
POSTERS	
[1]	Keren Zhou , Mark Krentel, and John Mellor-Crummey. A tool for top-down performance analysis of GPU-accelerated applications. In: 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2020
[2]	Keren Zhou and John Mellor-Crummey. A tool for performance analysis of GPU-accelerated applications. In: <i>International Symposium on Code Generation and Optimization</i> (CGO), 2019

INDUSTRY EXPERIENCE

05/2020-08/2020 C++ Performance Optimization Team, Google Inc.

Houston, United States

Software Engineering Intern

- Developed AutoDiff, a performance regression analysis tool that locates performance difference ranges, provide line and call site information, and allows flexible queries;
- Proposed a method to recover high-resolution calling context with minimal overhead by augmenting call stacks for each instruction in LBR entries;
- o Reference: Software Engineer Wei Mi, wmi@google.com.

06/2018-08/2018 PyTorch Team, Facebook Inc.

Menlo Park, United States

Research Intern

- Accelerated neural networks on ARM CPUs using auto-tuning methods;
- Analyzed Winograd algorithm's complexities of various convolution configurations;
- o Reference: Research Scientist Hao Lu, hlu@fb.com.

04/2017-07/2017 Devtech Team, Nvidia Inc.

Beijing, China

Research Intern

- Developed quantization tools on emerging GPUs to utilize INT8 capabilities;
- Evaluated the precision and speed of different quantization modes on Pascal Titan X;
- Reference: Technical Manager Julien Lai, julienlai@nvidia.com.

10/2013-02/2014 Baidu Inc. Beijing, China

Software Engineering Intern

- Optimized Hadoop workflow with its performance improved by 30%, making it capable of extracting thousands of features from raw text files and loading them into data warehouse;
- Developed a Hadoop workflow monitoring system that can display multiple workflow status and report exceptions;
- Reference: Senior Engineer Jing Li, lijing16@baidu.com.

AWARDS & HONORS

2020	ACM-IEEE-CS George Michael Memorial HPC Fellowship	
2019	Ken Kennedy Institute ExxonMobil Fellowship	
2019	Second Place, ACM CGO Student Research Competition	
2017	Ken Kennedy Institute Andrew Ladd Fellowship	
2017	Ken Kennedy Institute CS&E Fellowship	
2016	Schlumberger Scholarship (3%)	
2015	Top 10, Alibaba 1st Middleware Engineering Contest	
2014	Bronze Medal, The 2014 ACM-ICPC Asia Regional Contest	
2014	Outstanding B.E. Degree Thesis of Yunnan University	
2013	Best Creative Award, Baidu Future Search Engine Contest	
2013	Meritorious Winner, Mathematical Contest in Modeling	
2011	Second Prize, China Undergraduate Mathematical Contest in Modeling	
2011&2012&2016 National Scholarship (2%)		

SELECTED PUBLIC TALKS

04/2021	Measurement and Analysis of GPU-accelerated Applications with HPCToolkit. NVIDIA GPU Technology Conference.
03/2021	Using HPCToolkit to Measure and Analyze the Performance of GPU-accelerated Applications. NERSC Invited Tutorial.
03/2021	GPA: A GPU Performance Advisor Based on Instruction Sampling. CGO'21.
11/2020	GVProf: A Value Profiler for GPU-Based Clusters. SC'20.
07/2020	Tools for Top-down Performance Analysis of GPU-Accelerated Applications. ICS'20.
03/2020	A Tool for Top-down Performance Analysis of GPU-accelerated Applications. PPoPP'20.
02/2020	Using HPCToolkit to Measure and Analyze the Performance of GPU-Accelerated Applications. ECP'20.
10/2019	Measurement and Analysis of GPU-computations Using HPCToolkit. BP Invited Talk.
08/2019	HPCToolkit—A tool for performance analysis for GPU-accelerated applications. Intel Performance Brown Bag.
08/2019	HPCToolkit + OpenMP. ECP/NERSC OpenMP Hackathon.
07/2019	Optimizing GPU-accelerated Applications with HPCToolkit. Scalable Tools Workshop.

ACADEMIC SERVICES

JPDC'21	Journal subreviewer
ICS'21	Conference paper subreviewer
ICDCS'21	Conference paper subreviewer
IPDPS'21	Conference paper subreviewer
PPoPP'21	Artifact Evaluation Committee member
SKILLS	

Languages	C, C++, Java, Python, Bash, Go, JavaScript
Parallelism	Pthread, OpenMP, OpenCL, MPI, CUDA/HIP, DPCPP, RAJA/Kokkos