MEASURING SOLAR NEUTRINO FLUX IN THE SNO+ PURE SCINTILLATOR PHASE

Eric Marzec

A DISSERTATION

in

Physics and Astronomy

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

2018

α	•	C	T .	
S 1	upervisor	Ot	I DIESOI	rtation
\sim	aper visor	$\mathbf{o}_{\mathbf{I}}$. uauioii

Graduate Group Chairperson

Professor, Physics and Astronomy

J.R. Klein

J.R. Klein

Professor, Physics and Astronomy

Dissertation Comittee:

Joe Kroll, Professor, Physics and Astronomy

Christopher Mauger, Professor, Physics and Astronomy

Justin Khoury, Professor, Physics and Astronomy

Doc 4, Professor, Physics and Astronomy

Doc 5, Professor, Physics and Astronomy

Doc 6, Professor, Physics and Astronomy

MEASURING SOLAR NEUTRINO FLUX IN THE SNO+ PURE SCINTILLATOR PHASE

COPYRIGHT ©

2018

Eric Marzec

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

 $I\ did\ it\ on\ my\ own.\ Get\ rekt\ suck as$

Acknowledgements

I did this mostly on my own. Anyone else who helped did so in such an insignificant way that I've by now forgotten about it.

ABSTRACT

MEASURING SOLAR NEUTRINO FLUX IN THE SNO+ PURE SCINTILLATOR PHASE

Eric Marzec

J.R. Klein

Described here is a measurement of the solar neutrino flux as measured by SNO+.

Contents

\mathbf{T}^{i}	itle			i
\mathbf{C}_{0}	opyri	ght		ii
D		iii		
\mathbf{A}	cknov	wledge	ements	iv
A	bstra	.ct		\mathbf{v}
C	onter	$_{ m tts}$		vi
Li	st of	Table	${f s}$	viii
Li	st of	Figur	es	ix
1	Intr	oducti	ion	1
	1.1	Neutri	inos	1
		1.1.1	Solar Neutrinos	1
		1.1.2	Neutrino Oscillations	1
			1.1.2.1 Vacuume Oscillations	1
			1.1.2.2 The MSW Effect	1
		113	Neutrino Experiments	1

CONTENTS

			1.1.3.1	Solar Exp	oerimen	ts						 					1
			1.1.3.2	Terrestria													1
	1.2	The SI	NO+ Det	ector													1
		1.2.1		ector in B													1
		1.2.2		ics And D													2
		1.2.3		tor	•												2
	1.0																
	1.3	Ü		on													2
		1.3.1	Data Cle	eaning .								 					2
			1.3.1.1	CAEN C	ut							 					2
			1.3.1.2	Getting r	id of fla	shers	in	sci	ntil	lato	r	 					2
	1.4	Chame	eleons									 					2
	1.5	Conclu	usion									 					2
2	Con	clusion	n														3
	2.1	Wrapp	ing up									 					3
A Some Appendix										5							
	A.1	first se	ection									 					5
В	Ano	ther A	Appendix	ζ													6
Gl	ossaı	сy															7
		v															
$R\epsilon$	References											8					

List of Tables

List of Figures

Chapter 1

Introduction

1.1 Neutrinos

Neutrinos are a spin- $\frac{1}{2}$ particles that are pretty cool.

- 1.1.1 Solar Neutrinos
- 1.1.2 Neutrino Oscillations
- 1.1.2.1 Vacuume Oscillations
- 1.1.2.2 The MSW Effect
- 1.1.3 Neutrino Experiments
- 1.1.3.1 Solar Experiments
- 1.1.3.2 Terrestrial Experiments
- 1.2 The SNO+ Detector
- 1.2.1 The Detector in Brief

It's a big ole ball of glowing goo

1.2.2 Electronics And DAQ

1.2.3 Scintillator

Its just magic.

1.3 Signal Extraction

1.3.1 Data Cleaning

1.3.1.1 CAEN Cut

1.3.1.2 Getting rid of flashers in scintillator

It was really EZ

1.4 Chameleons

1.5 Conclusion

Neutrinos don't even exist

Chapter 2

Conclusion

2.1 Wrapping up...

I rest my case.

Appendices

Appendix A

Some Appendix

A.1 first section

Appendix B

Another Appendix

Glossary

Roman Symbols

M Mass of object, page 7

Greek Symbols

τ Optical depth, page 7

Superscripts

* Conjugate, page 7

 ${\bf Subscripts}$

• relating to the sun (Sol), page 7

Other Symbols

11HUGS 11 Mpc Halpha and Ultraviolet Galaxy Survey, page 7

Acronyms

2MASS Two-Micron All Sky Sruvey, page 7

References