Unidad 2.1 Conceptos basicos y enfoque de probabilidad

Módulo 2

Daniel Enrique González Gómez Universidad Javeriana Cali

2021-08-20

AGENDA

- 1. Presentación guía de aprendizaje 2.1
- 2. Conceptos básicos de probabilidad
- 3. Enfoques de probabilidad
- 4. Varios

PROBABILIDAD

```
¿Qué es.....?
¿Cuál es su uso .....?
¿Como se mide .....?
¿Qué tipo de ..... existen?
¿Qué propiedades posee .....?
```

Son similares o diferentes?

aleatorio - azar deterministico - no deterministico probable - improbable cierto - incierto Imagine que está jugando dados con un amigo. Él indica que hay tres posibilidades de resultados al lazar dos dados:

- Que los dos resultados sean pares
- Que los dos resultados sean impares
- Que uno sea par y el otro impar
- Pero además afirma que estos tres eventos son igualmente probables.

¿Que opina?, ¿Cómo podría verificarse o contradecir esta afirmación?

	1	2	3	4	5	6	
1	NA	1.2	1,3	1,4	1,5	1,6	
2	2,1	2,2	2,3	2,4	2.5	2,6	
3	3,1	3,2	3,3	3,4	3,5	3,6	
4	4,1	4,2	4,3	4.4	4,5	4,6	
5	5,1	5,2	5,3	5,4	5,5	5,6	
6	6,1	6,2	6,	6,4	6,5	6,6	
				١	1	•	

CONCEPTOS BASICOS DE PROBABILIDAD

EXPERIMENTO ALEATORIO
ESPACIO MUESTRAL
EVENTO ALEATORIO

EXPERIMENTO ALEATORIO

Acción que puede ser replicada bajo las mismas condiciones y cuyo resultado no se conoce por anticipado

- \bullet E_1 : Lanzar una moneda dos veces y observar los resultados obtenidos en sus caras superiores
- E_2 : Lanzar dos dados y observar la suma de los resultados superiores
- E_3 : Realizar un examen de estadística y observar el resultado obtenido
- ullet E_4 : En una salida de campo, observo si se cumple o no, totalmente el objetivo planteado

ESPACIO MUESTRAL

Conjunto de todos los posibles valores que puede tomar el experimento aleatorio.

- $S_1 = \{(cc), (cs), (sc), (ss)\}$
- $S_2 = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- S_3 = $\{x\in\mathbb{R}|0\leq x\leq 5\}$
- S_4 = $\{x\in\mathbb{N}|0\leq x\leq 1\}$

EVENTO ALEATORIO

Subconjunto del espacio muestral que es de nuestro interés.

- A_1 : Se obtienen solo caras
- ullet A_2 : La suma de los resultados es inferior a 6
- A_3 : Se gana el examen
- A_4 : Se cumple el objetivo de la salida

ENFOQUES DE PROBABILIDAD

ENFOQUE CLÀSICO
ENFOQUE FRECIENTISTA
ENFOQUE SUBJETIVO

Prerrequisitos para el enfoque clàsico : Teoria de conjuntos, Tècnicas de conteo - Unidad 0.2

ENFOQUE CLASICO

Es el enfoque más antiguo de probabilidad. La probabilidad bajo ese enfoque para el evento A se calcula como:

$$P(A) = rac{n(A)}{n(S)}$$

Para:

- \bullet E_1 : Lanzar una moneda dos veces y observar los resultados obtenidos en sus caras superiores
- ullet E_2 : Lanzar dos dados y observar la suma de los resultados superiores

У

- A_1 : Se obtienen solo caras
- A_2 : La suma de los resultados es inferior a 6

Encontrar

- $P(A_1) = ?$
- $P(A_2) = 3$

Como calcular las siguientes probabilidades?

- A_3 : Se gana el exàmen
- A_4 : Se cumple el objetivo de la salida
- A_5 : Se obtener más de 5 ensayos éxitos

ENFOQUE FRECIENTISTA

Este enfoque basa su cálculo en la frecuencia con que ocurre un evento en un tamaño de muestra determinado n.

$$\lim_{n o +\infty} P(A) = \left[rac{ ext{número de veces que ocurre A}}{n}
ight]$$

ENFOQUE SUBJETIVO

En este caso la probabilidad es valorada y asignada por un **EXPERTO**, como un médico, un ingeniero, un abogado, biólogo, técnico, psicólogo, sociólogo, papá, mamá......

AXIOMAS DE PROBABILIDAD

- ullet A_1 : Sea S un espacio muestral asociado a un experimento. Entonces P(S)=1
- A_2 : Para cualquier evento A, se cumple que $0 \leq P(A) \leq 1$
- A_3 : Si A y B son dos eventos mutuamente excluyentes, entonces:

$$P(A \cup B) = P(A) + P(B)$$

En general $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

- A_4 : Para cualquier evento A, $P(A^c)$ = 1 P(A)
- $ullet A_5$: La probabilidad de $P(\phi)=0$

PROBLEMAS PROPUESTOS

- Determine la probabilidad de que en una mano de poker obtenga 21 con tres cartas seleccionadas de manera aleatoria.
- Determine la probabilidad de que al destapar una ficha de dominó, sus puntos sean mayores a 4
- Determine la probabilidad de que al lanzar dos dados:
 - o a. la suma de los resultados sea mayor a 7
 - b. la resta de los números sea negativa
 - oc. su multiplicación sea mayor a 20
 - od. en el caso de agregar otro dado (en total 3 dados), la suma esté entre 10 y 15

No intentes cambiar tu pasado, puede que de haber sido distinto todo hubiera sido peor... (Efecto mariposa)