COURSE CODE: CSC4066 L-T-P: 4-2-0

COURSE NAME: APPLIED GRAPH THEORY AND CONTACT HOURS/WEEK: 6

ALGORITHMS TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)

COURSE TYPE: ELECTIVE NATURE: GRADED

NUMBER OF CREDITS: 6

COURSE OBJECTIVES:

1. To introduce the students with a number of real life applications that can be treated and solved as graph theoretic problems.

- 2. To introduce the students with algorithms for graph theoretic problems.
- 3. To acquaint the students with domain dependent different representations of graphs.

COURSE PREREQUISITE:

• Basic knowledge of Programming, Discrete Mathematics and Graph Theory.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Analyze different shortest path problems
- Implement different graph matching problems
- Solve different graph colouring algorithms
- Explain different modeling of physical networks

COURSE CONTENT:

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Shortest path	Various versions of the SP problem.	25	20
problems (SP)	 Algorithms for single source SP problem. 		
	• Characterization and presence of SP, SP tree		
	Ford's labeling method and its correctness		
	Labeling and Scanning method - efficient		
	scanning orders. Topological order for a		
	cyclic networks.		
	Shortest-first search for non-negative network (Dijkstra), BFS search for several		
	networks and its analysis, All-pair shortest		
	path problem - Floyd's algorithm and its analysis.		
UNIT-II: Flows in Networks	Basic concepts, Max flow-min cut Theorem.	20	20
	• Ford and Fulkerson's augmenting path		
	method.		
	• The Edmonds-Karp algorithm to solve the		
	maximum flow problem.		
	• Integrality theorem - Maximum capacity		

	augmentation and its analysis - Augmentation by		
	blocking flows - Dinic's algorithm-analysis of		
	number of blocking steps for general and unit		
	networks.		
UNIT-III Matching Problems	Basic concepts. Bipartite matching and	10	15
	network flows. Hall's marriage theorem.		
	• Non-bipartite matching-basic concepts,		
	Edmonds- Blossom shrinking algorithm and		
	its analysis.		
UNIT-IV Planarity and Graph	Review of basic results about planarity.	15	20
Isomorphism	Kuratowski's theorem		
-	Polynomial algorithm for testing of planarity		
	and applications.		
	• Graph Isomorphism and its importance.		
	Backtracking algorithm for general graphs.		
	Isomorphism problem and its complexity.		
	Isomorphism complete problems, polynomial		
	time algorithm for planar graph isomorphism		
	problem, Group theoretic methods and graph		
	isomorphism problem.		
UNIT-V Graph Coloring.	Map and vertex coloring problem.	10	12
	• 6,5 and 4-colour theorems for planar graphs,		
	coloring graphs on compact surfaces,		
	chromatic number.		
UNIT-VI Physical Networks	Modeling physical networks, component	10	13
	equations.		
	Kirchoff's laws, dual networks. Fundamental		
	cycle and cutest equations.		
	Matrix form of the network equations, state		
	equations		
	Total	90	100

TEXTBOOKS/ RECOMMENDED READINGS:

- Chartrand. G. and Ollermann.O.R, (1993), Applied and Algorithmic Graph Theory, Mc-Graw Hill.
- Tarjan T.E., (1983), *Data structures and Network Algorithms*, Siam.Society for Industrial and Applied Mathematics.
- Horowitz E. and Sahani S., (2nd Edition), Fundamentals of Computer Algorithms, Galgotia.
- Deo N., Graph Theory with Applications to Engineering and Computer Science, PHI.

COURSE ASSESSMENT DETAILS:

Internal assessment: Two/ Three mid semester examinations will be conducted. 60% of this evaluation will be added to the total marks for this course.

External assessment: End Semester Examination will be of 100 marks covering the entire course and the exam duration will be 3 hours. 40% of the mark obtained will be added to the total marks for this course.