SENSITIVITY ANALYSIS MADE EASY

Who are we?

Patrick Steinmann
Wageningen University & Research
patrick.steinmann@wur.nl
@steipatr

Mikhail Sirenko
Delft University of Technology
m.sirenko@tudelft.nl
@mikhailsirenko

Raphaël Klein
Delft University of Technology
r.klein-1@tudelft.nl
@RaphaelKl1

Today's Workshop

- 1. Theory: what is sensitivity analysis, and why should I care?
- 2. From Theory to Practice: So I want to do sensitivity analysis, now what?
- 3. Practice: Let's get our hands dirty!

The study of how uncertainty in the output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model input (Saltelli et al., 2008)

$$y = x_1 + x_2$$

$$y = x_1^2 + x_2$$

$$y = x_1^2 + x_2$$

More change in y as x1 changes than as x2 changes -x1 seems more important.

$$y = sin(x_1) + a * sin(x_2)^2 + b * x_3^4 * sin(x_1)$$

with $x_3 = 1$

$$y = sin(x_1) + a * sin(x_2)^2 + b * x_3^4 * sin(x_1)$$

with $x_3 = 1$

More change in *y* as *x2* changes than as *x1* changes – *x2* seems more important.

 x_1 becomes more important than x_2 as x_3 changes!

When in doubt, use global sensitivity analysis - local (or one-factor-at-a-time) only if you have very good reasons.

- Requires many runs, even with custom sampling routines
- Produces a lot of data

Like every method, Sobol indices are not perfect, and are not always the right answer. But they're a great starting point.

- Numerical sensitivities for individual parameters and their interactions
- Works with categorical variables
- Accurate

First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{x\sim x1}(Y|x1)] / V(Y)$$

V = variance

E = mean

 $X \sim x_i = Set of inputs except x_i$

 First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{x-x1}(Y|x1)] / V(Y)$$

x1 fixed x2, x3 vary across their range

First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{x\sim x1}(Y|x1)] / V(Y)$$

Mean value across values of x2, x3

 First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{x\sim x1}(Y|x1)] / V(Y)$$

Variance of the means across values of x1

First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{x\sim x1}(Y|x1)] / V(Y)$$

 First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{x\sim x1}(Y|x1)] / V(Y)$$

Total effect (ST): e.g. how much does x1 add to the variance of Y, including all its interactions?

$$ST_{x1} = E_{x \sim x1} [V_{x1}(Y|X \sim x1)] / V(Y)$$

 Second-order effects (S2): e.g. how much specific interactions between x1 and x2 add to variance of Y

$$S2_{x1,x2} = E_{x\sim x1,x2} [V_{x1,x2}(Y|X\sim x1,x2)] / V(Y)$$
$$-S1_{x1} - S1_{x2}$$

 For an additive model (no interactions):

$$ST = S1$$

 $\Sigma S1 = 1$

• Otherwise: ∑S1 < 1

In our example: $\Sigma S1 = 0.764$

So that 1 - 0.764 = 24% of output variance is caused by interactions between variables

- In general:
 - Prioritize inputs with the highest S1 index
 - Discard inputs with the lowest ST index

Recap

- What is sensitivity analysis?
 - Determining how big an effect each model input has on the output.
- Why should we care about it?
 - Because we need to understand why models do what they do if we want to use them for understanding and managing complex systems.
- What is a good method for doing SA?
 - Sobol indices are a good starting point. But be aware of the drawbacks, and when in doubt, apply multiple methods and see if they agree.