# **FETKY**<sup>TM</sup>

# P-Channel Enhancement-Mode **Power MOSFET and Schottky Diode Dual SO-8 Package**

#### **Features**

- High Efficiency Components in a Single SO-8 Package
- High Density Power MOSFET with Low R<sub>DS(on)</sub>, Schottky Diode with Low V<sub>F</sub>
- Independent Pin-Outs for MOSFET and Schottky Die Allowing for Flexibility in Application Use
- Less Component Placement for Board Space Savings
- SO-8 Surface Mount Package, Mounting Information for SO-8 Package Provided
- Pb-Free Packages are Available

#### **Applications**

- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery-Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular and Cordless Telephones

# **MOSFET MAXIMUM RATINGS** ( $T_J = 25^{\circ}C$ unless otherwise noted).

| Rating                                                                                                                                                                                                                            | Symbol                                                                  | Value                                 | Unit                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|---------------------|
| Drain-to-Source Voltage                                                                                                                                                                                                           | V <sub>DSS</sub>                                                        | -20                                   | V                   |
| Gate-to-Source Voltage - Continuous                                                                                                                                                                                               | $V_{GS}$                                                                | ±20                                   | V                   |
| Thermal Resistance – Junction-to-Ambient (Note 1) Total Power Dissipation @ T <sub>A</sub> = 25°C Continuous Drain Current @ T <sub>A</sub> = 25°C Continuous Drain Current @ T <sub>A</sub> = 70°C Pulsed Drain Current (Note 4) | R <sub>0JA</sub><br>P <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | 171<br>0.73<br>-2.34<br>-1.87<br>-8.0 | °C/W<br>W<br>A<br>A |
| Thermal Resistance – Junction-to-Ambient (Note 2) Total Power Dissipation @ T <sub>A</sub> = 25°C Continuous Drain Current @ T <sub>A</sub> = 25°C Continuous Drain Current @ T <sub>A</sub> = 70°C Pulsed Drain Current (Note 4) | R <sub>0JA</sub><br>P <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | 100<br>1.25<br>-3.05<br>-2.44<br>-12  | °C/W<br>W<br>A<br>A |
| Thermal Resistance – Junction-to-Ambient (Note 3) Total Power Dissipation @ T <sub>A</sub> = 25°C Continuous Drain Current @ T <sub>A</sub> = 25°C Continuous Drain Current @ T <sub>A</sub> = 70°C Pulsed Drain Current (Note 4) | R <sub>0JA</sub><br>P <sub>D</sub><br>I <sub>D</sub><br>I <sub>D</sub>  | 62.5<br>2.0<br>-3.86<br>-3.10<br>-15  | °C/W<br>W<br>A<br>A |
| Operating and Storage Temperature Range                                                                                                                                                                                           | T <sub>J</sub> , T <sub>stg</sub>                                       | -55 to<br>+150                        | °C                  |
| Single Pulse Drain-to-Source Avalanche<br>Energy - Starting $T_J$ = 25°C<br>( $V_{DD}$ = -20 Vdc, $V_{GS}$ = -4.5 Vdc,<br>Peak $I_L$ = -7.5 Apk, $L$ = 5 mH, $R_G$ = 25 $\Omega$ )                                                | E <sub>AS</sub>                                                         | 140                                   | mJ                  |
| Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds                                                                                                                                                    | TL                                                                      | 260                                   | °C                  |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Minimum FR-4 or G-10 PCB, Steady State.
   Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06" thick single-sided), Steady State.
- Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06" thick single sided),  $t \le 10$  seconds.
- 4. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.



### ON Semiconductor®

http://onsemi.com

**MOSFET -3.05 AMPERES** -20 VOLTS

0.085  $\Omega$  @ V<sub>GS</sub> = -10 V

**SCHOTTKY DIODE** 1.0 AMPERE 20 VOLTS

470 mV @ I<sub>F</sub> = 1.0 A



#### **MARKING DIAGRAM & PIN ASSIGNMENT**



**CASE 751** STYLE 18



E3P1 = Device Code = 02 or S XX

= Assembly Location Α

= Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

#### ORDERING INFORMATION

| Device         | Package           | Shipping <sup>†</sup> |
|----------------|-------------------|-----------------------|
| NTMSD3P102R2   | SO-8              | 2500/Tape & Reel      |
| NTMSD3P102R2G  | SO-8<br>(Pb-Free) | 2500/Tape & Reel      |
| NTMSD3P102R2SG | SO-8<br>(Pb-Free) | 2500/Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

## **SCHOTTKY MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Rating                                                                                                                 | Symbol                             | Value | Unit |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|------|
| Peak Repetitive Reverse Voltage DC Blocking Voltage                                                                    | V <sub>RRM</sub><br>V <sub>R</sub> | 20    | V    |
| Thermal Resistance - Junction-to-Ambient (Note 5)                                                                      | $R_{	heta JA}$                     | 204   | °C/W |
| Thermal Resistance - Junction-to-Ambient (Note 6)                                                                      | $R_{	heta JA}$                     | 122   | °C/W |
| Thermal Resistance - Junction-to-Ambient (Note 7)                                                                      | $R_{	heta JA}$                     | 83    | °C/W |
| Average Forward Current (Note 7)<br>(Rated V <sub>R</sub> , T <sub>A</sub> = 100°C)                                    | I <sub>O</sub>                     | 1.0   | А    |
| Peak Repetitive Forward Current (Note 7)<br>(Rated V <sub>R</sub> , Square Wave, 20 kHz, T <sub>A</sub> = 105°C)       | I <sub>FRM</sub>                   | 2.0   | А    |
| Non-Repetitive Peak Surge Current (Note 7)<br>(Surge Applied at Rated Load Conditions, Half-Wave, Single Phase, 60 Hz) | IFSM                               | 20    | А    |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Minimum FR-4 or G-10 PCB, Steady State.
   Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06" thick single-sided), Steady State.
   Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06" thick single sided), t ≤ 10 seconds.

#### SCHOTTKY ELECTRICAL CHARACTERISTICS (T<sub>J</sub> = 25°C unless otherwise noted) (Note 8)

| Characteristic                        |                                                      | Symbol         | Value                 |                        | Unit  |
|---------------------------------------|------------------------------------------------------|----------------|-----------------------|------------------------|-------|
| Maximum Instantaneous Forward Voltage | I <sub>F</sub> = 1.0 Adc<br>I <sub>F</sub> = 2.0 Adc | V <sub>F</sub> | T <sub>J</sub> = 25°C | T <sub>J</sub> = 125°C | Volts |
| Maximum Instantaneous Forward Voltage | I <sub>F</sub> = 1.0 Adc<br>I <sub>F</sub> = 2.0 Adc | V <sub>F</sub> | 0.47<br>0.58          | 0.39<br>0.53           | Volts |
| faximum Instantaneous Reverse Current |                                                      | I <sub>R</sub> | T <sub>J</sub> = 25°C | T <sub>J</sub> = 125°C | mA    |
|                                       | V <sub>R</sub> = 20 Vdc                              |                | 0.05                  | 10                     |       |
| Maximum Voltage Rate of Change        | V <sub>R</sub> = 20 Vdc                              | dV/dt          | 10,                   | 000                    | V/μs  |

<sup>8.</sup> Indicates Pulse Test: Pulse Width = 300  $\mu$ s max, Duty Cycle = 2%.

# MOSFET ELECTRICAL CHARACTERISTICS ( $T_J = 25^{\circ}C$ unless otherwise noted) (Note 9)

| Cha                                                                                                                                                           | aracteristic                                                                                                                          | Symbol               | Min       | Тур            | Max            | Unit         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|----------------|----------------|--------------|
| OFF CHARACTERISTICS                                                                                                                                           |                                                                                                                                       | •                    |           |                | •              | •            |
| Drain-to-Source Breakdown Volta<br>(V <sub>GS</sub> = 0 Vdc, I <sub>D</sub> = -250 μAdc)<br>Temperature Coefficient (Positive)                                | ge                                                                                                                                    | V <sub>(BR)DSS</sub> | -20<br>-  | -<br>-30       | -<br>-         | Vdc<br>mV/°C |
| Zero Gate Voltage Drain Current $(V_{DS} = -20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T $ $(V_{DS} = -20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T $               |                                                                                                                                       | I <sub>DSS</sub>     |           | -<br>-         | -1.0<br>-25    | μAdc         |
| Gate-Body Leakage Current (V <sub>GS</sub> = -20 Vdc, V <sub>DS</sub> = 0 Vdc)                                                                                |                                                                                                                                       | I <sub>GSS</sub>     | -         | -              | -100           | nAdc         |
| Gate-Body Leakage Current<br>(V <sub>GS</sub> = +20 Vdc, V <sub>DS</sub> = 0 Vdc)                                                                             |                                                                                                                                       | I <sub>GSS</sub>     | -         | _              | 100            | nAdc         |
| ON CHARACTERISTICS                                                                                                                                            |                                                                                                                                       |                      |           | 1              | !              | Į.           |
| Gate Threshold Voltage<br>(V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = -250 μAdc)<br>Temperature Coefficient (Negative)                              |                                                                                                                                       | V <sub>GS(th)</sub>  | -1.0<br>- | -1.7<br>3.6    | -2.5<br>-      | Vdc          |
| Static Drain-to-Source On-State I<br>( $V_{GS} = -10 \text{ Vdc}$ , $I_D = -3.05 \text{ Adc}$ )<br>( $V_{GS} = -4.5 \text{ Vdc}$ , $I_D = -1.5 \text{ Adc}$ ) |                                                                                                                                       | R <sub>DS(on)</sub>  | -<br>-    | 0.063<br>0.090 | 0.085<br>0.125 | Ω            |
| Forward Transconductance<br>(V <sub>DS</sub> = -15 Vdc, I <sub>D</sub> = -3.05 Adc)                                                                           |                                                                                                                                       |                      | -         | 5.0            | -              | Mhos         |
| OYNAMIC CHARACTERISTICS                                                                                                                                       |                                                                                                                                       |                      |           |                |                |              |
| Input Capacitance                                                                                                                                             |                                                                                                                                       | C <sub>iss</sub>     | -         | 518            | 750            | pF           |
| Output Capacitance                                                                                                                                            | $(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, $<br>f = 1.0 MHz)                                                                 | C <sub>oss</sub>     | -         | 190            | 350            |              |
| Reverse Transfer Capacitance                                                                                                                                  |                                                                                                                                       | C <sub>rss</sub>     | -         | 70             | 135            |              |
| SWITCHING CHARACTERISTICS (                                                                                                                                   | Notes 10 & 11)                                                                                                                        |                      |           |                |                |              |
| Turn-On Delay Time                                                                                                                                            |                                                                                                                                       | t <sub>d(on)</sub>   | -         | 12             | 22             | ns           |
| Rise Time                                                                                                                                                     | $(V_{DD} = -20 \text{ Vdc}, I_D = -3.05 \text{ Adc},$                                                                                 | t <sub>r</sub>       | -         | 16             | 30             |              |
| Turn-Off Delay Time                                                                                                                                           | $V_{GS}$ = -10 Vdc,<br>$R_{G}$ = 6.0 Ω)                                                                                               | t <sub>d(off)</sub>  | -         | 45             | 80             |              |
| Fall Time                                                                                                                                                     |                                                                                                                                       | t <sub>f</sub>       | -         | 45             | 80             |              |
| Turn-On Delay Time                                                                                                                                            |                                                                                                                                       | t <sub>d(on)</sub>   | -         | 16             | -              | ns           |
| Rise Time                                                                                                                                                     | $(V_{DD} = -20 \text{ Vdc}, I_D = -1.5 \text{ Adc},$                                                                                  | t <sub>r</sub>       | -         | 42             | -              | ]            |
| Turn-Off Delay Time                                                                                                                                           | $V_{GS}$ = -4.5 Vdc,<br>$R_G$ = 6.0 Ω)                                                                                                | t <sub>d(off)</sub>  | -         | 32             | -              |              |
| Fall Time                                                                                                                                                     |                                                                                                                                       | t <sub>f</sub>       | -         | 35             | _              |              |
| Total Gate Charge                                                                                                                                             | 0/ 20 \/do                                                                                                                            | Q <sub>tot</sub>     | -         | 16             | 25             | nC           |
| Gate-Source Charge                                                                                                                                            | $V_{DS} = -20 \text{ Vdc},$<br>$V_{GS} = -10 \text{ Vdc},$                                                                            | Q <sub>gs</sub>      | -         | 2.0            | -              | 1            |
| Gate-Drain Charge                                                                                                                                             | $I_D = -3.05 \text{ Adc}$                                                                                                             | Q <sub>gd</sub>      | -         | 4.5            | -              | 1            |
| BODY-DRAIN DIODE RATINGS (N                                                                                                                                   | ote 10)                                                                                                                               |                      |           | •              | •              | •            |
| Diode Forward On-Voltage                                                                                                                                      | $(I_S = -3.05 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$<br>$(I_S = -3.05 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$ | V <sub>SD</sub>      | -         | -0.96<br>-0.78 | -1.25<br>-     | Vdc          |
| Reverse Recovery Time                                                                                                                                         |                                                                                                                                       | t <sub>rr</sub>      | -         | 34             | -              | ns           |
|                                                                                                                                                               | $(I_S = -3.05 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$<br>$dI_S/dt = 100 \text{ A}/\mu\text{s})$                                         | t <sub>a</sub>       | -         | 18             | -              | 1            |
|                                                                                                                                                               | dig/dt = 100 A/µs/                                                                                                                    |                      | -         | 16             | -              | 1            |
| Reverse Recovery Stored Charge                                                                                                                                |                                                                                                                                       | Q <sub>RR</sub>      | -         | 0.03           | _              | μС           |

<sup>9.</sup> Handling precautions to protect against electrostatic discharge are mandatory. 10. Indicates Pulse Test: Pulse Width = 300  $\mu$ s max, Duty Cycle = 2%. 11. Switching characteristics are independent of operating junction temperature.

#### TYPICAL MOSFET ELECTRICAL CHARACTERISTICS



Figure 1. On-Region Characteristics



Figure 2. Transfer Characteristics



Figure 3. On-Resistance vs. Gate-to-Source Voltage



Figure 4. On-Resistance vs. Drain Current and Gate Voltage



Figure 5. On Resistance Variation with Temperature



Figure 10. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Diode Forward Voltage vs. Current



Figure 12. Diode Reverse Recovery Waveform



Figure 13. FET Thermal Response

## TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS



Figure 14. Typical Forward Voltage

Figure 15. Maximum Forward Voltage



**Figure 16. Typical Reverse Current** 

Figure 17. Maximum Reverse Current



Figure 18. Typical Capacitance

Figure 19. Current Derating

#### TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS



Figure 20. Forward Power Dissipation



Figure 21. Schottky Thermal Response





#### SOIC-8 NB CASE 751-07 **ISSUE AK**

**DATE 16 FEB 2011** 



XS

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

|     | MILLIMETERS |      | MILLIMETERS INCHES |       | HES |
|-----|-------------|------|--------------------|-------|-----|
| DIM | MIN         | MAX  | MIN                | MAX   |     |
| Α   | 4.80        | 5.00 | 0.189              | 0.197 |     |
| В   | 3.80        | 4.00 | 0.150              | 0.157 |     |
| C   | 1.35        | 1.75 | 0.053              | 0.069 |     |
| D   | 0.33        | 0.51 | 0.013              | 0.020 |     |
| G   | 1.27 BSC    |      | 0.050 BSC          |       |     |
| Н   | 0.10        | 0.25 | 0.004              | 0.010 |     |
| J   | 0.19        | 0.25 | 0.007              | 0.010 |     |
| K   | 0.40        | 1.27 | 0.016              | 0.050 |     |
| M   | 0 °         | 8 °  | 0 °                | 8 °   |     |
| N   | 0.25        | 0.50 | 0.010              | 0.020 |     |
| S   | 5.80        | 6.20 | 0.228              | 0.244 |     |

# **SOLDERING FOOTPRINT\***

0.25 (0.010) M Z Y S



<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **GENERIC MARKING DIAGRAM\***



XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX XXXXXX AYWW AYWW H  $\mathbb{H}$ Discrete **Discrete** (Pb-Free)

XXXXXX = Specific Device Code = Assembly Location Α ww = Work Week = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

#### **STYLES ON PAGE 2**

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from<br>Printed versions are uncontrolled except when stamped "CONTROLLED ( |             |
|------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | SOIC-8 NB   |                                                                                                                                                | PAGE 1 OF 2 |

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

#### SOIC-8 NB CASE 751-07 ISSUE AK

#### **DATE 16 FEB 2011**

| STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER                                                                 | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1               | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1                            | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE                                                                               | 7. BASE, #1 8. EMITTER, #1  STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE                                        | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd                    | STYLE 8:<br>PIN 1. COLLECTOR, DIE #1<br>2. BASE, #1<br>3. BASE. #2                                                                                                       |
| STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND                                                              | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1                                               | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN                                                                                  |
| STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN                                                                              | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN                                                     | STYLE 15:  PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON              | STYLE 16:  PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 |
| STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC                                                                                          | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE                                                                 | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1                                             | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN                                                                    |
| 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6            | STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE                                       |
| STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT                                                                                         | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC                                                                    | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN                                                            | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V MON 6. VBULK 7. VBULK 8. VIN                                                                         |
| STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1                        | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1                           |                                                                                                                                                     |                                                                                                                                                                          |

| DOCUMENT NUMBER: | 98ASB42564B | Printed versions are uncontrolled except when accessed directly from the Document Reposito<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | SOIC-8 NB   |                                                                                                                                                                               | PAGE 2 OF 2 |  |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales