CSARCH1 Mock Long Exam 3

by: Clive Jarel Ang

General Reminders:

- 1. Read ALL instructions carefully and thoroughly before answering this mock exam.
- 2. If applicable, denote don't-care conditions by "X" and inteterminate outputs as "indeterminate" or "indet."
- 3. Take note of what variables are used in the questions. Incorrect variables used will immediately be marked as 0.
- 4. All variables are to be written in lexographical order.

I. Concepts of Sequential Circuits [24 pts]

1) How many output lines are there in multiplexers?	
(write in terms of n input lines)	
2) How many output lines are there in decoders?	
(write in terms of n input lines)	
3) What can be used to simplify boolean expressions?	
4) What is used to synchronize the operations of a	
circuit?	
5) What is the type of FSM where the output is a	
function of the present state?	
6) What is the type of FSM where the output is a	
function of both the present state and the input?	
7) What is the type of sequential circuit that operates	
without a global clock signal?	
8) What is the type of sequential circuit that operates	
with a global clock signal?	
9) Level-trigger memory is also known as?	
10) Edge-trigger memory is also known as?	
11) Given a 18-state machine with 4 of said states	
being denoted as don't-cares, how many JK flip-flops	
are needed to represent the machine?	
12) What is the full name of this course?	

II. Understanding Synchronous Sequential Circuits [40 pts]

1. Fill in the truth table and excitation table for the following flip-flops:

Q(t)	S	R	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Q(t)	Q(t+1)	S	\mathbf{R}
0	0		
0	1		
1	0		
1	1		

Q(t)	J	K	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Q(t)	$\mathrm{Q}(\mathrm{t}{+}1)$	J	K
0	0		
0	1		
1	0		
1	1		

Q(t)	D	Q(t+1)
0	0	
0	1	
1	0	
1	1	

Q(t)	$\mathrm{Q}(\mathrm{t}{+}1)$	D
0	0	
0	1	
1	0	
1	1	

Q(t)	${f T}$	Q(t+1)
0	0	
0	1	
1	0	
1	1	

Q(t)	$\mathbf{Q}(\mathbf{t}{+}1)$	${f T}$
0	0	
0	1	
1	0	
1	1	

III. Analysis of Sequential Circuit #1 [16 pts]

A hypothetical BS flip-flop has four operations: no change, toggle, reset to 0, and set to 1 when B and S are 00, 01, 10, and 11 respectively.

1. Fill in the characteristic table:

В	${f S}$	$\mathbf{Q}(\mathbf{t}{+}1)$
0	0	
0	1	
1	0	
1	1	

2. Fill in the truth table and excitation table:

Q(t)	В	S	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Q(t)	$\mathrm{Q}(\mathrm{t}{+}1)$	В	\mathbf{S}
0	0		
0	1		
1	0		
1	1		

IV. Analysis of Sequential Circuit #2 [46 pts]

Analyze the circuit diagram and complete the state table.

Input	Presen	t State	Flip-Flop Input			te Flip-Flop Inputs Output			Output	Next State	
A	S	${f T}$	JS	KS	$\mathbf{J}\mathbf{T}$	KT	В	S	${f T}$		
0	0	0									
0	0	1									
0	1	0									
0	1	1									
1	0	0									
1	0	1									
1	1	0									
1	1	1									

1) SOP for J input to flip-flop S	
2) SOP for K input to flip-flop S	
3) SOP for J input to flip-flop T	
4) SOP for K input to flip-flop T	
5) SOP for output B	
6) Type of FSM: Mealy or Moore?	

V. Design of Sequential Circuit #1 [12 pts]

Design a T flip-flop using a JK flip-flop. Fill in the excitation table.

Present State	Input	Next State	Flip-Flo	pp Inputs	
A	${f T}$	A	JA	KA	
0	0				
0	1				
1	0				
1	1				

1) SOP for J input to flip-flop A	
2) SOP for K input to flip-flop A	

VI. Design of Sequential Circuit #2 [20 pts]

Design a sequential circuit with a single JK flip-flop A, and two inputs S and T.

If S = 0, the circuit goes to the other state.

If ST = 11, the circuit goes to state 1.

If ST = 10, the circuit remains at the same state.

Present State	Inputs		Next State	Flip-Flo	p Inputs
\mathbf{A}	\mathbf{S}	${f T}$	A	JA	KA
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1) SOP for J input to flip-flop A	
2) SOP for K input to flip-flop A	

VII. Design of Sequential Circuit #3 [63 pts]

Design a 3-bit Gray code counter using JK flip-flops that outputs 1 if there are an even number of 1s in the present state and outputs 0 otherwise.

Present State		Next State		Flip-Flop Inputs					Output			
A	В	\mathbf{C}	A	В	\mathbf{C}	JA	KA	JB	KB	JC	KC	${f z}$
0	0	0										
0	0	1										
0	1	0										
0	1	1										
1	0	0										
1	0	1										
1	1	0										
1	1	1										

1) SOP for J input to flip-flop A	
2) SOP for K input to flip-flop A	
3) SOP for J input to flip-flop B	
4) SOP for K input to flip-flop B	
5) SOP for J input to flip-flop C	
6) SOP for K input to flip-flop C	
7) SOP for output Z	