Exercice 1. Simplifier les expressions suivantes.

a)
$$e^{-2} \times e^{6}$$

b)
$$e^4 \times e^{-5} \times e^{-5}$$

a)
$$e^{-2} \times e^{6}$$
 b) $e^{4} \times e^{-5} \times e$ **c)** $(e^{3})^{2} \times \frac{e^{5}}{e^{4}}$ **d)** $\frac{(e^{-1})^{-5}}{e^{-3}}$

d)
$$\frac{(e^{-1})^{-5}}{e^{-3}}$$

Exercice 2. Simplifier les expressions suivantes, où $x \in \mathbb{R}$ est un réel.

a)
$$A = e^{2x-3} \times e^{4-x}$$

b)
$$B = (e^{x-1})^2 \times e^{x+2}$$

c)
$$C = \frac{e^{x+4}}{e^{1-2x}}$$

$$\mathbf{d)} D = \frac{2e^{3x}}{(e^x)^6 \times \epsilon}$$

d)
$$D = \frac{2e^{3x}}{(e^x)^6 \times e}$$
 e) $E = \frac{e^{3-2x} \times (e^x)^5}{e^{x-2}}$ f) $F = \frac{e \times e^{2x-1}}{4e^{-x-2}}$

f)
$$F = \frac{e \times e^{2x-1}}{4e^{-x-2}}$$

Exercice 3. Démontrer les égalités suivantes, pour tout réel $x \in \mathbb{R}$:

a)
$$\frac{1}{1+e^{-x}} = \frac{e^x}{e^x+1}$$

b)
$$e^{-x} - e^{-2x} = \frac{e^x - 1}{e^{2x}}$$

a)
$$\frac{1}{1+e^{-x}} = \frac{e^x}{e^x + 1}$$
 b) $e^{-x} - e^{-2x} = \frac{e^x - 1}{e^{2x}}$ c) $\frac{e^2x - 1}{e^x + 1} = e^x \times \frac{1 - e^{-2x}}{1 + e^{-x}}$

Exercice 4. Soit f la fonction définie sur \mathbb{R} par $f(x) = -2e^x$. Vérifier que f' = f et calculer f(0).

Exercice 5. Déterminer une fonction g définie et dérivable sur \mathbb{R} telle que g'=g et $g(0)=\frac{3}{2}$.

Exercice 6. On souhaite montrer que, pour tous réels a et b, on a $\exp(a+b) = \exp(a) \times \exp(b)$. On fixe un réel $b \in \mathbb{R}$ constant et on définit une fonction f sur \mathbb{R} par, pour tout $x \in \mathbb{R}$,

$$f(x) = \frac{1}{\exp(b)} \times \exp(x+b).$$

- 1. Calculer f(0).
- 2. Calculer f'(x), puis montrer que f'(x) = f(x). Indication : on pensera à la formule de la dérivée d'une fonction du type f(x) = g(ax + b).
- 3. Déduire des deux questions précédentes la propriété algébrique $\exp(a+b) = \exp(a) \times \exp(b)$.

Exercice 7. Développer et réduire les expressions suivantes.

a)
$$A = (e^3 + e^5)^2$$
 b

b)
$$B = (e^2 - e^{-2})^{-1}$$

a)
$$A = (e^3 + e^5)^2$$
 b) $B = (e^2 - e^{-2})^2$ c) $C = (e^6 - e^{-4})(e^6 + e^{-4})$ d) $D = (2e^4 - 3e^{-1})^2$

d)
$$D = (2e^4 - 3e^{-1})^7$$

Exercice 8. Soit $t \in \mathbb{R}$ un réel quelconque. Développer et réduire les expressions suivantes.

a)
$$A(t) = (e^t - 1) (e^t + 1)$$
 b) $B(t) = (e^t + 3)^2$ c) $C(t) = (e^{2t} - 2)^2$

b)
$$B(t) = (e^t + 3)^2$$

c)
$$C(t) = (e^{2t} - 2)$$

Exercice 9. On considère la fonction f définie pour tout réel t par $f(t) = 2e^{-6t}$. Vérifier que, pour tout $t \in \mathbb{R}$,

$$f'(t) + 6f(t) = 0.$$

Exercice 10. Déterminer la fonction dérivée, sous forme factorisée, de la fonction f définie et dérivable sur \mathbb{R} dont l'expression est la suivante.

a)
$$f(x) = (x+1)e^x$$

b)
$$f(x) = (-2x + 3) e^x$$

c)
$$f(x) = x^2 e^x$$

a)
$$f(x) = (x+1)e^x$$
 b) $f(x) = (-2x+3)e^x$ c) $f(x) = x^2e^x$ d) $f(x) = (x^2 - 3x + 1)e^x$

Exercice 11. Déterminer la fonction dérivée, sous forme factorisée, de la fonction f définie et dérivable sur $\mathbb{R} \setminus \{0\}$ dont l'expression est la suivante.

$$\mathbf{a)} \ f(x) = \frac{e^x}{x}$$

b)
$$f(x) = \frac{x}{e^x - 1}$$

Exercice 12. 1. Montrer que, pour tout réel t, on a

$$3t^2 + 5t - 2 = (3t - 1)(t + 2).$$

2. En déduire la résolution de $(3t^2 + 5t - 2)e^{2t-1} = 0$.

Exercice 13. Résoudre les équations suivantes dans \mathbb{R} .

a)
$$e^{x-4} = e^{-x}$$

b)
$$e^{x^2+x}=1$$

a)
$$e^{x-4} = e$$
 b) $e^{x^2+x} = 1$ c) $e^{-x^2} = \frac{1}{e}$ d) $3 + e^x = 1$

d)
$$3 + e^x = 1$$