信息学奥林匹克联赛(NOIP2024)

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	排列	炼金	礼物	机器人	星际导航
英文题目名称	sort	alchemy	gifts	robot	nav
可执行文件名	sort	alchemy	gifts	robot	nav
输入文件名	sort.in	alchemy.in	gifts.in	robot.in	nav.in
输出文件名	sort.out	alchemy.out	gifts.out	robot.out	nav.out
每个测试点时限	1秒	2 秒	2 秒	5秒	1秒
测试点数目	10	10	10	10	10
每个测试点分值	10	10	10	10	10
附加样例文件	有	有	有	有	有
内存上限	256M	256M	256M	512M	128M

二、注意事项

- 1、文件名(程序名和输入输出文件名)必须使用小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: CPU 3.1GHz,内存 4G,上述时限以此配置为准。 各省在自测时可根据具体配置调整时限。

冲刺 NO1P2024 模拟试题 重庆育才中学

排列

(sort.cpp)

题目描述

有编号为 1···N的N数的组成的排列为a1, a2, ···, aN, 现要变成排列 b1, ···, bN, 可以进行系列 修改操作,每次修改操作可以选择一个数并将其向左移动一些位置。 求最小修改次数。

输入格式

输入的第一行包含 N。 第二行包含 a1, a2, ···, aN。 第三行包含 b1, b2, ···, bN。

输出格式

输出将奶牛排列成所要求的顺序所需的最小修改次数。

输入样例:	输入样例:
5	5
1 2 3 4 5	5 1 3 2 4
1 2 3 4 5	4 5 2 1 3
输出样例:	输出样例:
0	2

在这个例子中,奶牛已经排列成所要求的顺序,所以无需进行修改操作。

在例子2中,两次修改操:

选择4并将其向左移动四个位置。

选择2 并将其向左移动两个位置。

5 1 3 2 4

- -> 4 5 1 3 2
- -> 4 5 2 1 3

数据范围与约定

对于40%的数据, n≤100。

对于70%的数据, n≤5000。

对于100%的数据, n≤105。

冲刺 NO1P2024 模拟试题 重庆育才中学

炼金

(alchemy.cpp)

题目描述

有 ai($0 \le$ ai \le 104)单位的金属 i($1 \le$ i \le N \le 100)。有 K($1 \le$ K \le N)个配方,每个配方可以融合若干种金属各一单位,制造一单位编号大于所有被融合金属的金属。另外保证,对于每种金属,最多只有一种制造该金属的配方。求经过一系列转化后,可能拥有的金属 N的最大单位数。

输入格式

输入的第一行包含 N。

第二行包含 N 个整数 ai。

第三行包含 K。以下 K 行,每行包含两个整数 L 和 M ($M \ge 1$) ,随后是 M 个整数。后 M 个整数表示配方中用于制造一单位金属 L 所需要被融合的金属。输入保证 L 大于这 M个数。

输出格式

输出在应用零次或多次转化后,可能拥有的金属 N的最大单位数。

输入样例:	输出样例:
5	1
2 0 0 1 0	
3	
5 2 3 4	
2 1 1	
3 1 2	

在这个例子中,以下是一种最优的转化方式:

将一单位金属 1 转化为金属 2。

将一单位金属 2 转化为金属 3。

将一单位金属 3 和金属 4 转化为金属 5。

现在还有一单位金属 1 和一单位金属 5。她无法再制造更多的金属 5。

数据范围与约定

对于10%的数据, 一单位金属 i可以被转化为一单位金属 i+1。

对于另20%的数据,每个配方均将一单位的一种金属转化为另一种金属。

对于100%的数据, N≤100。

礼物

(gifts.cpp)

题目描述

N个人编号为 $1\cdots$ N,有N 个同样编号为 $1\cdots$ N的礼物(1<N \leq 500)。每个人都有一个愿望单,是所有 N个礼物的一个排列,每个人相对来说更喜欢序列中较早出现的礼物。 开始时,只是对于所有 i 将礼物 i 分配给编号为i的人。现在,人们一起决定重新分配礼物,使得在重新分配后,每个人最终得到的是她最初得到的礼物,或者比她最初得到的礼物更喜欢的礼物。

对于 1 到 N 中的每一个 i,计算编号为i的人在重新分配后有希望收到的最喜欢的礼物。

输入格式

输入的第一行包含N。以下 N行每行包含一个人的愿望单。输入保证每行均为 1···N的一个排列。

输出格式

输出 N行, 其中第 i 行包含第i个人在重新分配后有希望收到的最喜欢的礼物。

输入样例:	输出样例:
4	1
1 2 3 4	3
1 3 2 4	2
1 2 3 4	4
1 2 3 4	

在这个例子中,有两种可能的重新分配方式:

第1个人收到礼物 1, 第2个人收到礼物3, 第3个人收到礼物2, 第4个人收到礼物 4。

数据范围与约定

对于30%的数据, N≤10。

对于100%的数据, N≤100。

机器人

(robot.cpp)

题目描述

机器人从坐标平面上的点(0,0)开始移动,而你希望机器人移动到点(xg,yg)。初始时有一个包含 N $(1 \le N \le 40)$ 条指令的指令列表可以用于控制机器人,其中第 i 条指令可以令机器人向右移动 xi个单位,向上移动 yi个单位(或向左、向下,当 xi和yi分别为负数时)。对于从 1到 N中的每一个 K,请你计算可以从原来的 N条指令中选择 K条的方法数,使得在执行这 K条指令后,机器人将移动到点(xg,yg)。

输入格式

输入的第一行包含 N。第二行包含 xg 和 yg,均在 -10° … 10° 范围内。最后 N 行表示指令。每行包含两个整数 xi 和 yi,同样在 -10° … 10° 范围内。输入保证 $(xg,yg)\neq (0,0)$ 以及对于所有的 i 有 $(xi,yi)\neq (0,0)$ 。

输出格式

输出 N 行,对 1 到 N 中的每一个 K 输出可以从原来的 N 条指令中选择 K 条的方法数。

样例输入	样例输出
7	0
5 10	2
-2 0	0
3 0	3
4 0	0
5 0	1
0 10	0
0 -10	
0 10	

在这个例子中,有六种选择指令的方法:

(-2,0) (3,0) (4,0) (0,10) (0,-10) (0,10) (123567)

(-2,0) (3,0) (4,0) (0,10) (1235)

(-2,0) (3,0) (4,0) (0,10) (1 2 3 7)

(5,0) (0,10) (0,-10) (0,10) (4 5 6 7)

(5,0) (0,10) (45)

(5,0) (0,10) (47)

对于第一种方法,机器人的移动路径如下:

 $(0,0) \rightarrow (-2,0) \rightarrow (1,0) \rightarrow (5,0) \rightarrow (5,10) \rightarrow (5,0) \rightarrow (5,10)$

数据范围与约定

对于50%的数据, N≤20。

对于100%的数据, N≤40。

冲刺 NO1P2024 模拟试题 重庆育才中学

星际导航

(nav.cpp)

题目描述

sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好。为了方便起见,我们可以认为宇宙是一张有N个顶点和M条边的带权无向图,顶点表示各个星系,两个星系之间有边就表示两个星系之间可以直航,而边权则是航行的危险程度。

sideman 现在想把危险程度降到最小,具体地来说,就是对于若干个询问(A, B), sideman 想知道从顶点A 航行到顶点B 所经过的最危险的边的危险程度值最小可能是多少。作为 sideman 的同学,你们要帮助sideman 返回家园,兼享受安全美妙的宇宙航行。所以这个任务就交给你了。

输入格式

第一行包含两个正整数N 和M,表示点数和边数。

之后M 行,每行三个整数A,B 和L,表示顶点A 和B 之间有一条边长为L 的边。顶点从1 开始标号。

下面一行包含一个正整数Q,表示询问的数目。

之后Q 行,每行两个整数A 和B,表示询问A 和B 之间最危险的边危险程度的可能最小值。

输出格式

对于每个询问,在单独的一行内输出结果。如果两个顶点之间不可达,输出 impossible。

样例输入	样例输出
4 5	5
1 2 5	4
1 3 2	5
2 3 11	
2 4 6	
3 4 4	
3	
2 3	
1 4	
1 2	

数据范围与约定

对于40% 的数据,满足N≤1000, M≤3000, Q≤1000。

对于80% 的数据,满足N≤10000, M≤105, Q≤1000。

对于100% 的数据,满足N \leq 10 5 ,M \leq 3 \times 10 5 ,Q \leq 10 5 ,L \leq 10 9 。数据不保证没有重边和自环。