

基于量化编码的信息隐藏

҈ 原理:

在预测编码中,每一个采样的大小是根据它的邻近采样的值进行预测的。最简单的情况是计算出邻近采样 x_i 和 x_{i-1} 的差值,把差值送入量化器,由量化器输出差分信号的一个离散近似值 $\Delta_i = Q(x_i - x_{i-1})$,在编码

时,只需对公进行编码即可,这就是所谓的增量编码。在增量编码里面,也可以进行信息的图式

面,也可以进行信息的隐藏。

※ 基本思想:

利用差分信号(或调整差分信号)来传送额外信息。 为此,我们需要事先建立一个伪装密钥的表,这个表为每一个可能的 Δ_i 值分配一个比特。

基于量化编码的信息隐藏

量化表编码隐藏信息表例

Δ_i	-4	-3	-2	-1	0	1	2	3	4
								0	

基于量化编码的信息隐藏

嵌入

计算邻近采样 x_i 和 x_{i-1} 的差值,对差值进行量化,得到 $\Delta_i = Q(x_i - x_{i-1})$,查量化隐藏表。

- ✓ 如果 Δ ,与要编码的秘密信息比特相同,则差分信号不变;
- \checkmark 如果 Δ_i 与秘密信息比特不相同,则由最接近的 Δ_i 替换,使得查表所对应的比特与秘密信息比特相同。

提取

接收者拥有同样的伪装密钥表,它根据伪装对象的相邻数据的差分信号,对应密钥表,可以得到每一个差分值所对应的秘密信息比特。

基于量化编码的信息隐藏举例

例如

计算 $\Delta_i = Q(x_i - x_{i-1})$,得到 $\Delta_i = 2$,查表对应的 m_i 是0,但我们要嵌入的秘密信息比特是1,这时需要由最接近的 Δ_i 替换,即让 $\Delta_i = 1$ 。

Δ_i	-4	-3	-2	-1	0	1	2	3	4
									1

基于量化编码的信息隐藏方法尽管很巧妙,但这种方法同最低比特位隐藏方法一样,仍然属于在噪声信号中隐藏信息,因此其稳健性不强。

▼ 无法显示该图片。 PS:内容可编辑范围 在异形框内