Aufgabe 1: Elektrostatisches Feld und Kräfte

Die Punktladungen Q_1 , Q_2 und Q_3 bilden die Eckpunkte eines rechtwinkligen Dreiecks.

Daten:

$$Q_1 = Q_2 = Q_3 = 0,5 \text{ nAs (positive Ladungen)}$$

$$a = 2 \text{ cm}$$
 $\varepsilon_r = 1$

- a) Berechnen Sie den Betrag der Kraft auf die Ladung Q_1 (2 Pt.) und zeichnen Sie den Vektor im oben dargestellten Bild ein.
- b) Bestimmen Sie den Ort, wo eine zusätzliche negative Ladung $Q_4 = -0.5$ nAs angeordnet werden muss, so dass auf Q_1 keine Kraft wirkt. Berechnen Sie den gesuchten Ort und zeichnen Sie ihn im oben dargestellten Bild ein.
- c) Zeichnen Sie (qualitativ) den Verlauf der Feldlinien im unten vorbereiteten Bild ein. (Feldlinien in der Ebene aufgespannt durch die drei Ladungen, ohne Q_4)

 $Q_3 \stackrel{\text{(+)}}{=}$

Aufgabe 2: Spannung an Kondensator

Daten:

$$U_{\rm q} = 12 \text{ V}$$

 $C_1 = 1,5 \,\mu\text{F}$ $C_2 = 1,5 \,\mu\text{F}$ $C_3 = 0,5 \,\mu\text{F}$
 $C_4 = 0,5 \,\mu\text{F}$ $C_5 = 1 \,\mu\text{F}$ $C_6 = 2,2 \,\mu\text{F}$

Die Spannungsquelle wird langsam hochgefahren, dabei werden die vorher spannungsfreien Kondensatoren aufgeladen.

Bestimmen Sie die Spannung U_5 .

Aufgabe 3: Netzwerk mit Kondensatoren

Daten:

$$U_{q1} = 20 \text{ V}$$
 $U_{q2} = 40 \text{ V}$ $C_1 = 1 \mu\text{F}$ $C_2 = 2 \mu\text{F}$ $C_3 = 3 \mu\text{F}$

Die Spannungsquellen werden langsam hochgefahren, dabei werden die vorher spannungsfreien Kondensatoren aufgeladen.

Bestimmen Sie die Spannungen U_1 , U_2 und U_3 .

Aufgabe 4: Feldstärke im Kugelkondensator

Der im Querschnitt abgebildete Kugelkondensator wird an eine Spannungsquelle angeschlossen, die von Null aus langsam auf die Spannung U hochgefahren wird.

Bestimmen Sie das Verhältnis $r_{\rm i}$ / $r_{\rm a}$, so dass die Feldstärke im Dielektrikum an der Oberfläche der Innenkugel (Radius $r_{\rm i}$) bei einer gegebenen Kondensatorspannung (und einem $r_{\rm a}$) minimal wird.