ICCS311 PROJECT PRESENTATION.

Nattamon Sa

Nattamon Santrakul Krittin Pornthippithak 6381020 6381068

OVERVIEW

Implement variance functions to calculate linear algebra problem using parallel programming. With parallel technique, we aim to optimize time complexity compared to sequential programming.

IMPLEMENTED FUNCTIONS

slidesmania.com

dot()

dot product with 1024-size

sequential dot product

output: 358438400.0

time: 15.291µs

parallel dot product

output: 358438400.0

time: 161.084µs

dot product with 20,000,000-size

sequential dot product

output: 2.666666866689715e21

time: 287.792375ms

parallel dot product

output: 2.66666686666832e21

time: 66.765417ms

dot product

matrixMult()

sequential matrix multiply with 1024-size time: 127.209171042s

parallel matrix multiply with 1024-size time: 8.308849375s

slidesmania.com

matrix multiply

transpose()

sequential matrix transpose with 1024-size time: 52.542417ms

parallel matrix transpose with 1024-size time: 14.656708ms

slidesmania.con

transpose

trace()

Matrix trace with small matrix (less than ~700)

sequential matrix trace time: 542ns output: 15.0

parallel matrix trace time: 28.541µs output: 15.0

matrix trace with 1024-size

sequential matrix trace time: 347.333µs output: 523776.0

parallel matrix trace time: 334.875µs output: 523776.0

trace

QR-DECOMPOSITION

$$egin{aligned} \mathbf{u}_1 &= \mathbf{a}_1, & \mathbf{e}_1 &= rac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \ \mathbf{u}_2 &= \mathbf{a}_2 - \operatorname{proj}_{\mathbf{u}_1} \mathbf{a}_2, & \mathbf{e}_2 &= rac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \ \mathbf{u}_3 &= \mathbf{a}_3 - \operatorname{proj}_{\mathbf{u}_1} \mathbf{a}_3 - \operatorname{proj}_{\mathbf{u}_2} \mathbf{a}_3, & \mathbf{e}_3 &= rac{\mathbf{u}_3}{\|\mathbf{u}_3\|} \ &dots & & dots \ \mathbf{u}_k &= \mathbf{a}_k - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_j} \mathbf{a}_k, & \mathbf{e}_k &= rac{\mathbf{u}_k}{\|\mathbf{u}_k\|} \end{aligned}$$

$$Q = [egin{array}{cccccccc} \mathbf{e}_1 & \cdots & \mathbf{e}_n \ \end{array}]$$
 $R = egin{bmatrix} \langle \mathbf{e}_1, \mathbf{a}_1
angle & \langle \mathbf{e}_1, \mathbf{a}_2
angle & \langle \mathbf{e}_1, \mathbf{a}_3
angle & \cdots & \langle \mathbf{e}_1, \mathbf{a}_n
angle \ 0 & \langle \mathbf{e}_2, \mathbf{a}_2
angle & \langle \mathbf{e}_2, \mathbf{a}_3
angle & \cdots & \langle \mathbf{e}_2, \mathbf{a}_n
angle \ 0 & 0 & \langle \mathbf{e}_3, \mathbf{a}_3
angle & \cdots & \langle \mathbf{e}_3, \mathbf{a}_n
angle \ \vdots & \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & \langle \mathbf{e}_n, \mathbf{a}_n
angle \ \end{bmatrix}.$

det()

determinant of matrix with 100-size time: 2.351741208s

determinant of matrix with 300-size time: 70.579182875s

determinant of matrix with 400-size time: 179.376007041s

det

THANK YOU