

CONTENT

01 Introduction

Data

02

03

04

05

06

Methodology

Empirical Results

Extension

Conclusion

Introduction

Influence of Climate Change

In recent years, frequent **extreme weather** events have brought a series of **catastrophic consequences**

Energy crisis in Europe - Under the influence of extreme weather

Whether it is gradual climate change or sudden extreme weather, it will pose a serious threat to economic growth and financial stability.

Ways to Capture Climate Risk

The search volumes of Google

Public Sentiment

Climate policy uncertainty index

Climate factors (e.g., temperature, precipitation)

Applying Climate Risk to forecasting

- Examines the forecasting performance of indicators of climate risk;
- Mainly focused on the volatility of the Chinese stock market

Data

Index

Uncertainty

- Shanghai Stock Exchange Index (SSEC)
- CSI 300 ESG Index

- Chinese Climate Uncertainty (CU)
- Chinese Climate Policy Uncertainty (CEU)
- Chinese Economic Policy Uncertainty (CEPU)!
- US Climate Policy Uncertainty (UCPU)

Formula

$$R(t) = \ln \frac{P_{t+1}}{P_t}$$

$$U_Change(t) = \ln \frac{U(t)}{U(t-1)}$$

In-sample data: 3 July 2017 to 18 July 2019 (500 trading days)

Out-of-sample data: 19 July 2019 to 30 June 2022 (715 trading days)

Latest period: 1 July 2022 to 31 January 2023 (141 trading days)

Confirming our Data Sources

	Mean	Standard Deviation	Skew	Kurtosis
R _{ESG}	0.0174	1.2928	-0.4484	3.0101
R _{SSEC}	0.0052	1.1274	-0.6907	5.2227
CU	0.0476	0.8805	0.8634	1.6477
CEU	0.0648	0.7808	-0.1429	-0.1829
CEPU	0.0270	0.2721	-0.4324	1.4489
UCPU	-0.0011	0.3608	0.3226	1.4047

^{*2017-06-30} to 2023-01-31

Data to the Latest Period

	Mean	Standard Deviation	Skew	Kurtosis
R _{ESG}	0.0102	1.2728	-0.3828	2.9509
R _{SSEC}	0.0014	1.1056	-0.6461	5.1242
CU	0.0078	1.0382	0.2689	0.6534
CEU	0.0120	0.7736	-0.0546	-0.2914
CEPU	0.0119	0.2627	-0.4281	1.5711
UCPU	0.0009	0.3537	0.3335	1.3619

^{*2017-06-30} to 2023-01-31

Variables ADF Test

 R_{ESG}

-36.6522

R_{SSEC}

-16.3446

CU

-6.5453

CEU

-9.3232

CEPU

-8.2336

UCPU

-6.5105

Conclusion

Data has no unit root and is stationary

Methodology

Short-term

mean-reverting high-frequency daily GARCH

Long-term

by integrating low-frequency explanatory variables through the Beta weighting schemes

demeaned index return

Daily log return at day $i = 1, ..., N_t$ in a period t = 1, ..., T (e.g. month)

- 1. The τ_t secular component exerts an influence on the dynamics of long-term volatility,
- 2. g_{i,t} is the short-run component of volatility, and
- 3. ε $|\phi_{i-1,t}\sim N(0,1)$

GARCH (1,1)

$$g_{i,t} = (1 - \alpha - \beta) + \alpha \frac{(r_{i-1,t} - \mu)^2}{\tau_t} + \beta g_{i-1,t}$$

- α and β denote the ARCH and GARCH parameters
- ARCH portion incorporates the impacts of the secular component τ_t
- $\alpha > 0, \beta > 0$ and $(\alpha + \beta) < 1$ in order to satisfy the stability criterion

Smoothed Realized Volatility

$$ln\tau_t = m + \theta \sum_{k=1}^K \varphi_k(\omega_1, \omega_2) RV_{t-k}$$

- RV_t is the realized volatility of t month, calculated by $RV_t = \sum_{i=1}^{N_t} r_{i,t}^2$
- $\varphi_k(\omega_1, \omega_2)$ is weighting function of lag variables; K is the length of lag
- m and heta are parameters in GARCH-MIDAS model

With Exogenous Factors

$$\tau_{t} = e^{m + \theta_{1} \sum_{k=1}^{K} \varphi_{k}(\omega_{1}, \omega_{2}) RV_{t-k} + \theta_{2} \sum_{k=1}^{K} \varphi_{k}(\omega_{1}, \omega_{2}) U_{t-k}}$$

Weight Function

Unrestrictive weighting scheme

$$\varphi_k(\omega_1, \omega_2) = \frac{\left(\frac{k}{K}\right)^{\omega_1 - 1} \left(1 - \frac{k}{K}\right)^{\omega_2 - 1}}{\sum_{j=1}^K \left(\frac{j}{K}\right)^{\omega_1 - 1} \left(1 - \frac{j}{K}\right)^{\omega_2 - 1}}$$

• Applying the constraint $\omega_1 = 1$.

$$\varphi_k(1, \omega_2) = \frac{\left(1 - \frac{k}{K}\right)^{\omega_2 - 1}}{\sum_{j=1}^K \left(1 - \frac{j}{K}\right)^{\omega_2 - 1}}$$

This indicates that the decay rate increases with the value of ω_2

We used the restrictive weighting scheme in our project

Calculate Volatility

Benchmark Sigma

$$\ln(\tau_t) = m + \theta \sum_{k=1}^K \varphi_k(\omega_1, \omega_2) RV_{t-k}$$

RV is calculated by log return of CSI ESG index/SSEC index

$$\hat{\sigma}_{t,bench} = \sqrt{\tau_{t,bench} * g_{i,t}}$$

Competing model Sigma

$$\ln(\tau_t) = m + \theta_1 \sum_{k=1}^{K} \varphi_k(\omega_1, \omega_2) \, RV_{t-k} + \theta_2 \sum_{k=1}^{K} \varphi_k(\omega_1, \omega_2) \, U_{t-k}$$

RV is calculated by log return of CSI ESG index/SSEC index, and U_{t-k} is the logarithmic difference of CU/CEU/CEPU/UCPU

$$\hat{\sigma}_t = \sqrt{\tau_t * g_{i,t}}$$

Actual Sigma

$$\sigma_t = logReturn_t$$

Out-of-sample R^2 test

$$R_{OOS}^2 = 1 - \frac{\sum_{t=1}^{\delta} (\sigma_t - \widehat{\sigma_t})^2}{\sum_{t=1}^{\delta} (\sigma_t - \widehat{\sigma}_{t,bench})^2}$$

Mean squared predictive error (MSPE)

$$\frac{\sum_{t=1}^{\delta}(\sigma_{t}-\hat{\sigma}_{t})^{2}}{\delta}$$

$$adj. = \frac{\sum_{t=1}^{\delta}(\hat{\sigma}_{t,bench}-\hat{\sigma}_{t})^{2}}{\delta}$$

$$adjusted\ MSPE = MSPE_{bench}-[MSPE-adj.]$$

Cumulative sum of squared forecast error (CumSFE)

$$CumSFE = \sum_{t=1}^{\delta} \left(\left(\hat{\sigma}_{i,model} - \sigma_{t} \right)^{2} - \left(\hat{\sigma}_{t,bench} - \sigma_{t} \right)^{2} \right)$$

Empirical Results

*Test set: 2019-07-19 to 2022-06-30

Regressions	R_{OOS}^2	MSPE. Adj				
Panel A: CSI 300 ESG index						
GARCH-MIDAS-RV-CU	0.0265	0.0982				
GARCH-MIDAS-RV-CEU	0.0079	0.0298				
GARCH-MIDAS-RV-CEPU	0.2307	1.0891				
GARCH-MIDAS-RV-UCPU	0.1201	0.5209				
Panel B: SSEC index						
GARCH-MIDAS-RV-CU	-0.2665	-0.6588				
GARCH-MIDAS-RV-CEU	-0.1024	-0.2229				
GARCH-MIDAS-RV-CEPU	0.1320	0.4350				
GARCH-MIDAS-RV-UCPU	0.4842	1.9830				

 $R_{OOS}^2 > 0$: Competing model performs better;

Smaller MSPE.Adj: Forecasting results of models with CU/CEU are more accurate

-50

-100

-150

-200

-250

*Test set: 2019-07-19 to 2022-06-30

-100

-200

-300

-400

-500

2019-09 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05

Results Interpretation

Consistently negative CSFE, suggesting superior forecasting performance of the CU, CEU, CEPU and UCPU

Results are consistent with the out-of-sample R² test, confirming the robustness of our empirical findings

04 Empirical Results

Out-of-Sample Results (latest period)

*Test set: 2022-07-01 to 2023-01-31

Regressions	R_{OOS}^2	MSPE. Adj					
Panel A: CSI 300 ESG index							
GARCH-MIDAS-RV-CU	0.0265	0.0903					
GARCH-MIDAS-RV-CEU	0.0058	0.0195					
GARCH-MIDAS-RV-CEPU	0.1824	0.8201					
GARCH-MIDAS-RV-UCPU	0.0827	0.3425					
Panel B: SSEC index							
GARCH-MIDAS-RV-CU	-0.3117	-0.7056					
GARCH-MIDAS-RV-CEU	-0.0633	-0.1231					
GARCH-MIDAS-RV-CEPU	0.1140	0.3655					
GARCH-MIDAS-RV-UCPU	0.4515	1.6076					

 $R_{OOS}^2 > 0$: Competing model performs better;

Smaller MSPE.Adj: Forecasting results of models with CU/CEU are more accurate

Extension

Algorithm of rolling window

Algorithm Rolling Window in Forecasting

- 1: **procedure**: N = 1215 [Number of Trading Days]
- 2: Train = 500; Test = 715 [Split the whole dataset]
- 3: for i from 0 to Test do
- 4: Window $\in [i, i + Train]$
- 5: Index of dataset \in *Window*
- 6: Simulate parameters by using GARCH-MIDAS model (K = 9)
- 7: Forecast 1 day ahead \rightarrow obtain the predicted data with index (i + Train + 1)
- 8: i = i + 1
- 9: end for
- 10: return 715 forecasting data
- 11: Compare with real data in test set
- 12: end procedure

Algorithm of rolling window

*Citing GARCH-MIDAS-RV-CU for CSI ESG Index as an instance

- Both $\hat{\sigma}_{t,bench}$ and $\hat{\sigma}_{t}$ fit σ_{t} well
- Competing model performs better in forecasting some extreme fluctuations
- Depend on computing power

Methodology

Bootstrap Aggregation ("Bagging") and Boosting Algorithms employed to assess ability of CU, CEU, CEPU, and UCPU indices in forecasting Chinese Stock Market Volatility

Ensemble Methods

- Random Forest Regressor (RFR)
- Extra Trees Regressor (ETR)
- Adaptive Boosting Regressor (ABR)
- Gradient Boosting Regressor (GBR)

Train-Test Split

80 – 20 Train Test Split

K-Fold Cross Validation: to ensure robustness and reliability of results

K-Fold Cross Validation Results

In-Sample vs Out-of-Sample Performance under various ML Algos for ml model csi rv cu

The use of Support Vector Machine was subsequently discontinued due to the relatively weaker performance for this use case

Generating predictions using fitted ML models

The ETR and RFR methods were able to generate relatively better forecasts as compared to the other ML algos

Machine Learning

CSI Performance Indicators

Models	Metrics	RFR	ETR	GBR	ABR
RV_CU	R_{OOS}^2	0.08387	0.03000	0.02306	0.01632
	MSPE. Adj	0.00002	0.00002	0.00001	0.00001
RV CEU	R_{OOS}^2	-0.00259	0.04732	-0.02291	-0.04355
NV_CLO	MSPE. Adj	0.00002	0.00002	0.00000	0.00000
RV CEPU	R_{OOS}^2	0.00353	0.04960	-0.08904	0.02344
IV_CLI O	MSPE. Adj	0.00001	0.00002	0.00000	0.00001
RV_UCPU	R_{OOS}^2	-0.95854	0.00398	-1.04125	-1.01001
	MSPE. Adj	0.00003	0.00001	0.00002	0.00003

SSEC Performance Indicators

Models	Metrics	RFR	ETR	GBR	ABR
RV_CU	R_{OOS}^2	0.03472	0.06218	0.02896	0.03136
	MSPE. Adj	0.00001	0.00002	0.00001	0.00001
RV_CEU	R_{OOS}^2	-0.01200	0.06950	-0.02074	-0.04237
	MSPE. Adj	0.00001	0.00002	0.00000	0.00000
DV CEDII	R_{OOS}^2	-0.03246	0.03470	-0.13366	-0.01548
RV_CEPU	MSPE. Adj	0.00001	0.00002	0.00000	0.00001
RV_UCPU	R_{OOS}^2	-1.06827	-0.00600	-1.78133	-1.13290
	MSPE. Adj	-0.00001	0.00002	0.00000	0.00001

Conclusion