

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(31) Internationale Patentklassifikation ⁶ : C07D 277/30, 319/06, 417/06, 277/24, 493/04 // (C07D 493/04, 313:00, 303:00)	A1	(11) Internationale Veröffentlichungsnummer: WO 99/03848 (43) Internationales Veröffentlichungsdatum: 28. Januar 1999 (28.01.99)
(21) Internationales Aktenzeichen: PCT/EP98/04462		(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) Internationales Anmeldedatum: 16. Juli 1998 (16.07.98)		
(30) Prioritätsdaten: 197 31 316.7 16. Juli 1997 (16.07.97) DE		
(71) Anmelder (für alle Bestimmungsstaaten ausser US): SCHER- ING AKTIENGESELLSCHAFT (DE/DE); Müllerstrasse 178, D-13353 Berlin (DE).		
(72) Erfinder; und		Veröffentlicht
(75) Erfinder/Anmelder (nur für US): MULZER, Johann (DE/AT); Universitätsstrasse 10/16, A-1090 Wien (AT). MAN- TOULIDIS, Andreas (DE/AT); Reithlegasse 1578, A-1190 Wien (AT).		Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Titel: THIAZOLE DERIVATIVES, METHOD FOR THEIR PRODUCTION AND USE

(54) Bezeichnung: THIAZOLDERIVATE, VERFAHREN ZUR HERSTELLUNG UND VERWENDUNG

(57) Abstract

The invention relates to thiazole derivatives of formula (II), in which R¹ is C₁-C₄ alkyl, R² is any protective group with chelating power, R³ is hydrogen or C₁-C₄ alkyl, and Y is CO₂R⁴, CHO, CH=CH₂ or CH₂R⁵, in which R⁴ stands for C₁-C₄ alkyl and an optionally substituted benzyl group, R⁵ is halogen, hydroxy, p-toluenesulphonate and -OSO₂B, and B stands for C₁-C₄ alkyl or C₁-C₄ perfluoroalkyl. These derivatives are produced without diastereomers and are used in the production of epothilon A and epothilon B and their derivatives.

(57) Zusammenfassung

Thiazolderivate der Formel II, worin R¹ C₁-C₄-Alkyl, R² eine beliebige chelatisierungsfähige Schutzgruppe, R³ Wasserstoff oder C₁-C₄-Alkyl, Y CO₂R⁴, CHO, CH=CH₂ oder CH₂R⁵, wobei R⁴ für C₁-C₄-Alkyl und eine gegebenenfalls substituierte Benzylgruppe, R⁵ für Halogen, Hydroxy, p-Toluolsulfonat und -OSO₂B und B für C₁-C₄-Alkyl oder C₁-C₄-Perfluoralkyl steht, bedeutet, lassen sich diastereomerenrein herstellen und sind geeignet für die Herstellung von Epothilon A und Epothilon B und deren Derivaten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Ghana	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Ghana	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauritanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Thiazolderivate, Verfahren zur Herstellung und Verwendung

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, daß heißt Thiazolderivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Epothilon A, Epothilon B oder deren Derivaten.

Es ist bekannt, daß die Naturstoffe Epothilon A ($R = H$) und Epothilon B ($R = Methyl$) (Verbindung I, DE 195 42 986 A1, DE 41 38 042 C2)

10

15

fungizid und cytotoxisch wirken. Nach Hinweisen für eine in vitro Aktivität gegen Brust- und Darmtumorzelllinien erscheint diese Verbindungsklasse in besonderem Maße interessant für die Entwicklung eines Arzneimittels. Verschiedene Arbeitsgruppen beschäftigen sich daher mit der Synthese dieser makrocyclischen Verbindungen. Die Arbeitsgruppen gehen von unterschiedlichen Bruchstücken des Makrocyclus aus, um die gewünschten Naturstoffe zu synthetisieren. Danishefsky et al plant die Synthese aus drei Bruchstücken C(1)-C(2) + C(3)-C(9) + C(10)-C(20). Bei dem C(10)-C(20)-Bruchstück handelt es sich um ein Thiazolderivat, das in einer 15-stufigen Synthese nicht diastereomerenrein erhalten werden konnte (JOC, 1996, 61, 7998-7999). Diastereomerenreinheit ist jedoch oft entscheidend für die Wirkung und Voraussetzung für die Herstellung eines Arzneimittels.

20

25

Es bestand daher die Aufgabe, geeignete Bruchstücke diastereomerenrein bereitzustellen, aus denen sich die makrocyclischen Verbindungen und deren Derivate synthetisieren lassen.

Es wurde nun gefunden, daß die Thiazolderivate der Formel II

5 worin R^1 C_1 - C_4 -Alkyl,
 R^2 eine beliebige chelatisierungsfähige Schutzgruppe,
 R^3 Wasserstoff oder C_1 - C_4 -Alkyl
 Y CO_2R^4 , CHO , $CH=CH_2$ oder CH_2R^5 ,
 wobei

10 R^4 für C_1 - C_4 -Alkyl oder eine gegebenenfalls substituierte Benzylgruppe,
 R^5 für Halogen, Hydroxy, p-Toluolsulfonat oder $-OSO_2B$ und
 B für C_1 - C_4 -Alkyl oder C_1 - C_4 -Perfluoralkyl steht,
 bedeutet,
 sich diastereomerenrein herstellen lassen und geeignet sind für die Herstellung von
 15 Epothilon A und Epothilon B und deren Derivaten.

Unter C_1 - C_4 -Alkyl für R^1 , R^3 , R^4 , und B sind Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl und Tertiärbutyl zu verstehen.

20 Unter einer beliebigen chelatisierungsfähigen Schutzgruppe R^2 sind zum Beispiel Benzylreste wie z.B. Benzyl, p-Methoxybenzyl (PMB), Silylreste wie z.B. Trimethyl-silyl, 2-(Trimethylsilyl)ethoxymethyl (SEM), Tetrahydropyranyl, Methoxymethyl, Benzyl-oxymethoxymethyl, Benzoyl, Acetyl zu verstehen.

25 Die substituierte Benzylgruppe R^4 kann z.B. p-Methoxybenzyl, 2,4-Dimethoxybenzyl oder ein durch andere elektronenschiebende Substituenten substituierter Benzylrest sein.

Mit Halogen sind Fluor, Chlor, Brom und Iod gemeint, wobei Brom und Iod bevorzugt sind.

30 Unter C_1 - C_4 -Perfluoralkyl sind geradkettige oder verzweigte vollständig fluorierte Alkylreste wie zum Beispiel CF_3 , C_2F_5 , C_3F_7 , C_4F_9 zu verstehen.

Die Verbindungen II können nach dem in Schema I gezeigten Verfahren hergestellt werden, in dem die Synthese beispielhaft für Verbindung IIa mit $R^2 = p$ -Methoxybenzyl, $R^3 = \text{Methyl}$ und $Y = \text{CO}_2\text{Et}$ dargestellt ist.

Ausgehend von der natürlich vorkommenden (S)-Äpfelsäure (III) wird die α -Hydroxysäurefunktion mit Trifluoressigsäureanhydrid/Methanol (a) in den Mono-methylester überführt. Die noch verbliebene Säurefunktion wird dann mit Diboran in Tetrahydrofuran (b) zum Alkohol reduziert. Der so erhaltene (S)-(-)-Methyl-2,4-Dihydroxyester wird mit p -Methoxybenzylidimethylacetal mit Camphersulfonsäure in Toluol unter Rückfluß (c) in das cyclische Acetal (IV) überführt. Aus dem Methylester wird durch Reaktion mit einem Äquivalent Methylolithium in 2 Stunden bei -100°C (d) das Methylketon (V) erhalten. Umsetzung mit einer C_2 -, C_3 - oder C_4 -metallorganischen Verbindung z.B. einer Grignardverbindung unter üblichen Reaktionsbedingungen führt zu den übrigen Resten R^1 . Bei der Wittigreaktion (e) wird das 2-Methyl-4-thiazolylmethyltriphenylphosphoniumbromid, das in zwei Stufen aus 1,3-Dichlorpropanon zugänglich ist, zuerst mit Natriumhexamethyldisilazid bei -78°C in Tetrahydrofuran zusammengegeben bevor das Keton dazugegeben wird. Die Reaktion führt nach 1 Stunde und Erwärmen auf -40°C zu einem E/Z-Gemisch ($E/Z = 3,6 : 1$). Das E-Isomer (VI) ist durch einfache Flashchromatographie abzutrennen. Regioselektive Freisetzung der terminalen Hydroxygruppe durch reduktive Öffnung des Acetals mit 4 Äquivalenten Diisobutylaluminiumhydrid in Methylchlorid in 4 Stunden bei -20°C (f) ergibt ein gut trennbares Gemisch ($5,6 : 1$ für das gewünschte Regioisomer) der Alkohole. Nach Trennung wird der Alkohol durch Swern-Oxidation in einer Stunde unter Aufwärmen von -78°C nach 0°C (g) in den entsprechenden Aldehyd überführt, der sofort zur Wadsworth-Horner-Emmons-Kondensation unter Still's Bedingungen (h) mit Ethyl-2-Diethoxyphosphinylpropionat oder dem entsprechend dem gewünschten Rest R^3 geeigneten Horner-Reagenz unter Zugabe von Kaliumhexamethyldisilazid, 18-Krone-6 bei -78°C für eine Stunde in Tetrahydrofuran umgesetzt wird. Es wird ein E/Z-Gemisch ($E/Z = 6,2 : 1$) der α,β -ungesättigten Ester erhalten, aus dem das Z-Isomer (IIa) in guter Ausbeute abgetrennt werden kann. Die Verwendung des Trifluorethylphosphonat-Derivates führt zu einer besseren Selektivität von 15:1.

Schema I

Die Verbindung der allgemeinen Formel IIa stellt einen zentralen Baustein für die Synthese von Epothilon-Derivaten und Epothilon selbst dar.

Die Esterfunktion in Position 11 kann in jede beliebige, für den späteren Ringschluß benötigte, Funktionalität überführt werden.

Derivatisierungen in 12- und 13-Position (Epothilon-Zählweise) sind aus der Doppelbindung möglich. So zum Beispiel die Überführung in das im Epothilon selbst vorhandene Epoxid durch Sharpless-Oxidation:

Dazu wird der Ester IIa mit 3 Äquivalenten Diisobutylaluminiumhydrid in Tetrahydrofuran bei -20°C (i) zum α,β -ungesättigten Alkohol reduziert und anschließend die Doppelbindung des Allylalkohols mit 4A Molekularsieb, Titanatetraisopropylat, D-(-)-diisopropyltartrat, Tertiärbutylhydroperoxid in Methylenchlorid für 3 Stunden bei -30°C (k) diastereoselektiv epoxidiert.

15

Auch die noch in geschützter Form vorliegende Hydroxyfunktion in 15-Position lässt 20 Derivatisierungen an dieser Stelle zu oder ist unter literaturbekannten Bedingungen spaltbar.

Verbindungen mit $\text{Y} = \text{CHO}$ können durch Dibal-Reduktion von Verbindung IIa in literaturbekannter Weise erhalten werden. Nachfolgende Wittigreaktion führt zu Verbindungen mit $\text{Y} = \text{CH}=\text{CH}_2$.

25

Die Verbindungen mit $\text{Y} = \text{CH}_2\text{R}^3$ mit $\text{R}^3 = \text{p-Toluolsulfonat, (C}_1\text{-C}_4\text{)alkylsulfonat, oder (C}_1\text{-C}_4\text{)perfluoralkylsulfonat}$ können aus dem Alkohol (VII) erhalten werden.

Die Verbindungen mit $Y = \text{CH}_2\text{-Halogen}$ lassen sich aus z.B. der Verbindung mit $Y = \text{CH}_2\text{-p-Toluolsulfonat}$ oder $Y = \text{OH}$ in üblicher Weise erhalten.

Im Gegensatz zu dem Verfahren von Danishefsky et al werden nur 10 Stufen für die Synthese bis zur Stufe des Epoxids benötigt und das Thiazolderivat der Formel IIa kann ebenso wie auch das Epoxid diastereomerenrein erhalten werden. Ein weiterer Vorteil besteht darin, daß das verwendete natürliche Ausgangsmaterial und die Reaktionen der Synthese eine Herstellung größerer Mengen erlauben.

10 Die Weiterverarbeitung der erfindungsgemäßen Verbindungen zu Epothilon A und B kann wie in der nachstehenden Reaktionssequenz angegeben erfolgen. Die Verbindung der allgemeinen Formel XI wird analog zu bekannten Verfahren durch Abspaltung der primären Schutzgruppe, Oxidation in Position 1, selektive Freisetzung der 15-Hydroxygruppe, wie sie beispielsweise von K.C. Nicolaou et al. In *Nature*, Vol. 387, 1997, S. 268 – 272 und J. Am. Chem. Soc. 1997, 119, S. 7960 – 7973 beschrieben sind.

15 zu Epothilon B weiterverarbeitet:

f) (i) Iodidbildung, (ii) Sulfonkupplung, 76,5%; g) Desulfonierung, 70%;

h) Desilylierung, 98%; i) Aldolreaktion.

Die nachfolgenden Beispiele dienen der näheren Erläuterung des Erfindungsgegenstandes, ohne ihn auf diese beschränken zu wollen.

Präparative Methoden

Alle Umsetzungen metallorganischer Reagenzien und alle Reaktionen in absoluten Lösemitteln werden unter Luft- und Feuchtigkeitsausschluß durchgeführt. Die verwendeten Glasapparaturen werden vor Versuchsbeginn mehrmals im Ölumpen-vakuum ausgeheizt und mit getrocknetem Argon der Firma Linde belüftet. Wenn nicht anders angegeben, werden sämtliche Reaktionsansätze magnetisch gerührt.

Methylenchlorid wird über eine basische Aluminiumoxidsäule der Aktivitätsstufe I (Woelm) getrocknet. Diethylether wird nach Vortrocknung auf einer basischen Aluminiumoxidsäule über eine 8:1 Natrium/Kalium-Legierung refluxiert bis zur stabilen Blaufärbung des Benzophenon-Indikators und vor der Verwendung frisch abdestilliert. Das Tetrahydrofuran (THF) wird über KOH vorgetrocknet, über eine mit basischem Aluminiumoxid beschickte Säule filtriert und anschließend über Kalium mit Triphenylmethan als Indikator destilliert.

Der Essigsäureethylester (EE) wird nach Vortrocknung über Calciumchlorid ebenso wie Hexan (Hex) vor der Verwendung zur Säulenchromatographie am Rotationsverdampfer abdestilliert.

20 Chromatographische Verfahren

Sämtliche Reaktionen werden durch Dünnschichtchromatographie (DC) auf Kieselgel-60-Alufolien mit UV-Indikator F₂₅₄ der Firma Merck verfolgt. Als Laufmittel werden zumeist Lösemittelgemische aus Hexan (Hex) und Essigsäureethylester (EE) verwendet. Zum Sichtbarmachen nicht UV-aktiver Substanzen bewährt sich meist Anisaldehyd/Eisessig/Schwefelsäure (1:100:1) als Standard-Tauchreagenz.

Die präparative Säulenchromatographie wird an Kieselgel-60 der Firma Merck (0,04-0,063 mm, 230-400 mesh) durchgeführt, wobei als Eluens Lösemittelgemische aus Hexan (Hex) und Essigsäureethylester (EE) bzw. Diisopropylether dienen.

Im analytischen, wie auch im präparativen Maßstab werden die hochdruckflüssig-keitschromatographischen Trennungen (HPLC) auf Modulsystemen der Firmen Knauer (Pumpe 64, UV- und RI-Detektoren, Säulen und Schreiber), Waters/Millipore (Injektionssystem U6K9) und Milton-Roy (Integrator CI-10) durchgeführt. Für die analytische HPLC wird zumeist eine Knauer-Säule (4·250 mm) mit 5 µm Nucleosil und für die präparative HPLC eine Säule (16·250 mm, 32·250 mm bzw. 64·300 mm) mit 7 µm oder 5 µm Nucleosil 50 verwendet.

Färbereagenzien

5 Färbereagenz I (F I): 1 g Cer(IV)sulfat in 10 mL konz. Schwefelsäure und 90 mL Wasser liefert mit den meisten reduzierbaren Verbindungen intensiv blaue Farbreaktion beim Trocknen.

10 Färbereagenz II (F II): Eine 10%ige ethanolische Lösung von Molybdatophosphorsäure stellt ein weiteres Tauchreagenz zum Nachweis ungesättigter und reduzierbarer Verbindungen dar. Im Unterschied zum Färbereagenz I zeigt das Molydat-Färbereagenz, speziell auf einige Funktionalitäten ansprechend, ein breiteres Farbspektrum bei praktisch gleicher Zuverlässigkeit.

15 Färbereagenz III (F III): 1 mL Anisaldehyd in 100 mL Ethanol und 2 mL konz. Schwefelsäure stellt ein äußerst empfindliches Färbereagenz dar, daß zudem auch das wohl breiteste Farbspektrum zeigt.

Färbereagenz IV (F IV): Das Vanillin-Tauchbadreagenz ist ähnlich empfindlich, wie das Anisaldehyd-Färbereagenz und zeigt wie dieses ein nahezu breites Farbspektrum.

20 Färbereagenz V (F V): 1 g 2,4-Dinitrophenylhydrazin in 25 mL Ethanol, 8 mL Wasser und 5 mL konz. Schwefelsäure stellt ein hervorragendes, selektiv schon ohne Erwärmung auf Aldehyde und etwas langsamer auf Ketone ansprechendes, Tauchreagenz dar.

25 Färbereagenz VI (F VI): Eine 0.5%ige wässrige Lösung von Kaliumpermanganat zeigt durch Entfärbung oxidierbare Gruppen an, wobei ungesättigte, nicht aromatische Struktureinheiten spontan ohne Erwärmung reagieren.

30 Spektroskopische Verfahren und allgemeine Analytik

NMR-Spektroskopie

35 Die ¹H-NMR-Spektren werden mit einem AC 250, AM 270 oder AMX 500 Spektrometer der Firma Bruker mit den Substanzen als Lösung in deuterierten Lösemitteln und Tetramethylsilan als internem Standard aufgenommen. Die Auswertung der Spektren erfolgt nach den Regeln erster Ordnung. Ist eine auftretende Signalmultiplizität damit nicht zu erklären, erfolgt die Angabe des beobachteten Liniensatzes. Zur Bestimmung der Stereochemie wird die NOE-Spektroskopie (Nuclear Overhauser Effect) verwendet.

Zur Charakterisierung der Signale werden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), dd (Doppeldublett), ddd (6-Liniensystem bei zwei gleichen Kopplungskonstanten bzw. ein 8-Liniensystem bei drei verschiedenen Kopplungskonstanten), t (Triplet), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), m (Multiplett), mc (zentriertes Multiplett), br (breit) und v (verdecktes Signal).

Die ^{13}C -NMR-Spektren werden mit einem AC 250 der Firma Bruker mit CDCl_3 -Signal bei 77,0 ppm als internem Standard vermessen, wobei die Protonenresonanzen breitbandentkoppelt werden.

10

Verwendete Abkürzungen

abs.: absolut, Ar: Aryl/Aromat, ber.: berechnet, Brine: kalt gesättigte Kochsalzlösung, c: Konzentration, COSY: korrelierte Spektroskopie (correlated spectroscopy), DC: Dünnschichtchromatographie, DDQ: Dichloro-dicyano-Quinon, d.e.: diastereomeric excess, DIBAL: Diisobutyl-aluminiumhydrid, DMF: N,N'-Dimethylformamid, DMS: Dimethylsulfid, DMSO: Dimethylsulfoxid, ds: Diastereoselektion, EA: Elementaranalyse, e.e.: enantiomeric excess, EE: Essigsäureethylester, EI: Elektronenstoßionisation, eq: Äquivalent(e), eV: Elektronenvolt, FG: functional group, gef.: gefunden, ges.: gesättigt(e), h: Stunde(n), Hex: n-Hexan, HMDS: Hexamethyldisilazid, HPLC: Hochdruckflüssigkeitschromatographie (high pressure liquid chromatographie), Hünig Base: N-Ethyl-diisopropylamin, HRMS: High Resolution Massenspektrometrie, HV: Hochvakuum, iPrOH: 2-Propanol, IR: Infrarotspektrometrie/Infrarotspektrum, J: Kopplungskonstante, LDA: Lithiumdiisopropylamin, Lsg.: Lösung, Lsm.: Lösemittel, Me: Methyl, MeLi: Methylolithium, min: Minute(n), MS: Massenspektrometrie/Massenspektren, NMR: Kernmagnetische Resonanz (Nuclear Magnetic Resonanz), NOE: Kern-Overhauser-Effekt (Nuclear Overhauser Effect), PCC: Pyridiniumchlorochromat, PG: Schutzgruppe (protection group), Ph: Phenyl, ppm: parts per million, Rkt.: Reaktion, rt: Retentionszeit, RT: Raumtemperatur (20-30 °C), Std.: Stunde(n), TBAF: Tetra-n-Butylammoniumfluorid, TBDPS: tert.-Butyldiphenyl-silyl-, TBS: tert.-Butyldimethylsilyl-, tert./t: tertiar, TFA: Trifluorethansäure, TFAA: Trifluorethansäureanhydrid, TFMS: Trifluormethansulfonsäure, THF: Tetrahydrofuran, TMS: Trimethylsilyl-, u: g/mol⁻¹.

35

Beispiel 1

(2S,4S)-2-[4-Methoxyphenyl]-1,3-dioxan-4-carbonsäuremethylester

AW-5-2 C₁₃H₁₆O₅

M= 252.26 g/mol

C 61.9% H 6.4% O 31.7%

5

In einem ausgeheizten 250 ml Dreihalslöwenthalkolben werden 6.7 g (50 mmol) (S)-Äpfelsäure bei 0 °C unter Argon vorgelegt. Unter Rühren werden bei 0 °C 30 ml Trifluoressigsäureanhydrid über einen Tropftrichter sehr langsam zugegeben 10 (Druckausgleich!). Nach vollständiger Zugabe wird das Eisbad entfernt und die Reaktionslösung noch 2 h bei Raumtemperatur gerührt.

Nun wird Trifluoressigsäure und überschüssiges Anhydrid zunächst im Wasserstrahlvakuum und anschließend an der Ölpumpe entfernt und der kristalline Rückstand bei 0 °C tropfenweise mit 4.5 ml Methanol versetzt (Druckausgleich, s.o.!) und nach 15 Entfernung des Eisbades noch ca. 12 h gerührt.

Nach Einengung und Trocknung im Vakuum wird die kristalline Verbindung von (2S)-2-Hydroxy-butan-1,4-disäure-1-monomethylester in 70 ml abs. THF gelöst und bei 0 °C tropfenweise mit 100 ml einer 1M Boran-THF-Komplex-Lsg. versetzt, 3 h nachgerührt und dann vorsichtig durch tropfenweise Zugabe von 60 ml Methanol die 20 Reaktion abgebrochen. Nach Einengung am Rotationsverdampfer wird das zähe Öl zur Entfernung von Trimethylborat noch mehrfach mit Methanol versetzt und im Vakuum eingedampft. (Eventuell liegt die Dihydroxyverbindung im Gemisch mit Hydroxy-butyrolacton vor; das so gereinigte Rohprodukt wird direkt weiter umgesetzt):

In einem ausgeheizten 250 ml Dreihalslöwenthalkolben wird obiges Rohprodukt 25 in 220 ml abs. Toluol mit 12.8 mL (65 mmol) Anisaldehyddimethylacetal vorgelegt, mit 1.16 g Campfersulfonsäure versetzt und über einen mit aktiviertem 4 Å Molsieb gefüllten Soxhletextraktor unter Rückfluß 5 h gerührt. Nach Abkühlung der Lösung wird über eine mit Kieselgel beschickte Fritte filtriert, nachgewaschen mit Ether, mit ges. Natriumcarbonat-Lsg. ausgeschüttelt, über Magnesiumsulfat getrocknet, filtriert und eingengegt. Das Rohprodukt wird über eine 5:1-Hex/EE-Kieselgelsäule chromatographiert. Man erhält 6.65 g (52.7%) des thermodynamischen Acetalproduktes als kristalline Verbindung.

5 ¹H-NMR (400 MHz, CDCl₃): δ in ppm =

1.85 (dtd, $J_{3a,3b}$ = 13.5 Hz, $J_{3a,4a}$ u. 2 = 2.8 Hz, $J_{3a,4b}$ = 1.5 Hz, 1H, 3a-H); 2.12 (dddd, $J_{3b,3a}$ = 13.5 Hz, $J_{3b,2}$ \equiv $J_{3b,4a}$ \equiv 12.0 Hz, $J_{3b,4b}$ = 5.0 Hz, 1H, 3b-H); 3.76+3.77 (s, 3H+3H, OCH₃+CO₂CH₃); 3.98 (ddd, $J_{4a,3b}$ \equiv $J_{4a,4b}$ \equiv 12.0 Hz, $J_{4a,3a}$ = 2.5 Hz, 1H, 4a-H); 4.30 (ddd, $J_{4b,4a}$ = 12.0 Hz, $J_{4b,3b}$ = 5.0 Hz, $J_{4b,3a}$ = 1.5 Hz, 1H, 4b-H); 4.49 (dd, $J_{2,3b}$ = 12.0 Hz, $J_{2,3a}$ = 2.8 Hz, 1H, 2-H); 5.47 (s, 1H, OCHArO); 6.87 (dt, J_{ArH,ArH} = 8.5 Hz, J_{ArH,OCHArO} = 2.0 Hz, 2H, ArH); 7.42 (d, J_{ArH,ArH} = 8.5 Hz, 2H, ArH).

10 ¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

28.1 (C-3); 52.2 (C-6); 55.5 (C-11); 66.6 (C-4); 75.7 (C-2); 101.3 (C-5); 113.6 (C-9); 127.5 (C-8); 130.2 (C-7); 160.1 (C-10); 170.4 (C-1).

15 IR (Si-Film): ν in cm⁻¹ =

2961m; 2855m; 1730s; 1614m; 1519m; 1445m; 1375m; 1310s; 1251vs; 1207m; 1185m; 1137s; 1096s; 1070m; 1028vs; 993vs; 832s.

20 MS (EI, 70 eV, 30°C): m/e =

252 (98) [M⁺]; 251 (100) [M⁺-H]; 221 (14); 193 (86); 169 (16); 137 (88); 136 (98); 135 (98); 121 (28); 119 (34); 109 (42); 77 (53); 69 (58); 57 (25); 55 (31).

25 Schmp.: 78-80°C (aus Et₂O)

C₁₃H₁₆O₅: (M = 252.26 g·mol⁻¹)

EA: ber.: C: 61,90 % H: 6,39 %
gef.: C: 61,67 % H: 6,43 %

25

Beispiel 2

(2S,4S)-(2-[4-Methoxyphenyl]-1,3-dioxan-4-yl)-ethan-1-on

AW-6-2 C₁₃H₁₆O₄
M = 236.26 g/mol
C 66.1% H 6.8% O 27.1%

In einem 250 ml Dreihalsrundkolben werden 2.066 g (8.19 mmol) der aus Beispiel 1 erhaltenen Verbindung in ca. 80 ml abs. THF bei -100 °C tropfenweise mit 7.17 ml einer 1.6 M MeLi-Lsg. (1.4 eq) versetzt und 1-2 h nachgerührt.

Bei vollständigem Umsatz des Eduktes, wird das Kühlbad entfernt und zügig mit ca. 100 ml ges. NH₄Cl-Lsg. gequenstet und 1 h nachgerührt. Zur Aufarbeitung wird mit Ether verdünnt, die Phasen getrennt, die org. Phase mit Wasser, ges. NaHCO₃-Lsg., Wasser und Brine gewaschen und die wässrige Phase nochmals mit Ether extrahiert. Die vereinigten org. Phasen werden über Magnesiumsulfat getrocknet, filtriert und eingetrocknet, wobei das Produkt eventuell schon auskristallisiert (in diesem Fall kann zur Reinigung einfach mit kaltem Hexan gewaschen werden). Nach Chromatographie über eine 3:1-Hex/EE-Kieselgelsäule wurden 1.656 g (85.6%) erhalten.

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

15 1.79 (dtd, *J*_{2a,2b} = 13.3 Hz, *J*_{2a,1a u. 3} = 2.9 Hz, *J*_{2a,1b} = 1.5 Hz, 1H, 2a-H); 1.90 (dddd, *J*_{2b,2a} = 13.3 Hz, *J*_{2b,2 u. 3} = 11.8 Hz, *J*_{2b,1b} = 4.9 Hz, 1H, 2b-H); 2.27 (s, 3H, COCH₃); 3.79 (s, 3H, OCH₃); 3.96 (td, *J*_{1a,1b} = *J*_{1a,2b} = 11.8 Hz, *J*_{1a,2a} = 2.5 Hz, 1H, 1a-H); 4.25 (dd, *J*_{3,2b} = 11.3 Hz, *J*_{3,2a} = 3.0 Hz, 1H, 3-H); 4.29 (ddd, *J*_{1b,1a} = 11.3 Hz, *J*_{1b,2b} = 4.9 Hz, 1b-H); 5.50 (s, 1H, OCHArO); 6.89 (d, *J*_{ArH,ArH} = 8.8 Hz, 2H, ArH); 7.43 (d, *J*_{ArH,ArH} = 8.4 Hz, 2H, ArH).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

25 25.7 (C-5); 27.2 (C-2); 55.2 (C-11); 66.7 (C-1); 81.5 (C-2); 100.9 (C-6); 113.6 (C-9); 127.3 (C-8); 130.5 (C-7); 160.1 (C-10); 208.1 (C-1).

IR (Si-Film): ν in cm⁻¹ =

30 2999m; 2969s; 2931s; 2909m; 2871s; 2832m; 1710s; 1615m; 1590m; 1520s; 1464m; 1452m; 1429s; 1399m; 1359vs; 1328w; 1310m; 1296m; 1236vs; 1220m; 1207m; 1180s; 1119s; 1100s; 1069m; 1035vs; 1018vs; 992vs; 971vs; 948m; 833vs.

MS (EI, 70 eV, 30°C): m/e =

35 236 (88) [M⁺]; 235 (91); 221 (20); 194 (72); 193 (78); 163 (33); 153 (27); 137 (88); 136 (88); 135 (86); 121 (77); 109 (85); 100 (28); 92 (47); 84 (99); 83 (65); 77 (92); 65 (31); 63 (31); 57 (43); 55 (31); 43 (100).

Schmp.: 74-76°C

C₁₃H₁₆O₄: (M = 236.26 g·mol⁻¹)

EA: ber.: C: 66,09 % H: 6,83 %
gef.: C: 66,34 % H: 6,99 %

Beispiel 3

(2'*S*,4'*S*,1*E*)-4-[2-(4-Methoxyphenyl-1,3-dioxan-4-yl)-prop-1-enyl]-2-methylthiazol

5

AM-5-2 $C_{18}H_{21}NO_3S$
 $M = 331.42$ g/mol
 C 65.2% H 6.4% N 4.2% O 14.5% S 9.7%

In einem 100 mL Dreihals-Löwenthalkolben werden 1.475 g (3.25 mmol; 1.3 eq) Wittigreagenz (2-Methyl-thiazol-4-yl-methyl-triphenylphosphoniumbromid); nach erneuter 10 Trocknung im Ölumpenvakuum mit 5 ml abs. THF suspendiert. Nach Abkühlung der Suspension auf -78 °C, wird mit einer Lösung von 715 mg (3.9 mmol; 1.2 eq) NaHMDS, gelöst in 5 ml abs. THF, durch langsame Zugabe deprotoniert und 15 min nachgeführt.

Nochmals direkt vor der Verwendung getrocknete 590 mg (2.5 mmol) der aus 15 Beispiel 2 erhaltenen Verbindung, gelöst in 5 ml abs. THF, werden bei -78 °C langsam zugetropft, 5 min nachgeführt, anschließend das Kühlbad entfernt und auf Raumtemperatur erwärmen gelassen. Nach ca. 40 min wird die Reaktionslösung im Wasserbad auf 40-50 °C erwärmt und 1 h geführt.

Zur Aufarbeitung wird durch Zugabe von ges. NH_4Cl -Lsg. gequencht, die Phasen getrennt, die organische Phase über Magnesiumsulfat getrocknet, filtriert und einrotiert. Nach Chromatographie über eine 6:5:1- CH_2Cl_2 /Hex/EE-Kieselgelsäule werden 171 20 mg Z-Olefin und 614 mg E-Olefin erhalten.

Die Olefinierungsprodukte werden somit in einer Ausbeute von 94.75% im Verhältnis von 1:3.6-Z:E-Olefin erhalten.

25

1H -NMR (400 MHz, $CDCl_3$) (E-Olefin): δ in ppm =

1.67 (dtd, $J_{2a,2b} = 13.3$ Hz, $J_{2a,1a \text{ u. } 3} = 2.5$ Hz, $J_{2a,1b} = 1.5$ Hz, 1H, 2a-H); 2.02 (mc, 1H, 2b-H); 2.10 (d, $J_{4,5} = 1.0$ Hz, 1H, 4-H); 2.69 (s, 3H, TAr- CH_3); 3.78 (s, 3H,

OCH_3); 4.02 (td, $J_{1a,1b} \equiv J_{1a,2b} \equiv 11.5$ Hz, $J_{1a,2a} = 2.5$ Hz, 1H, 1a-H); 4.29 (ddd: $J_{1b,1a} = 11.5$ Hz, $J_{1b,2b} = 5.0$ Hz, $J_{1b,2a} = 1.5$ Hz, 1H, 1b-H); 4.34 (mc, 1H, 3-H); 5.56 (s, 1H, $OCHArO$); 6.63 (q, $J_{5,4} \equiv 1.0$ Hz, 1H, 5-H); 6.88 (mc, 2H, Ar-H); 6.97 (s, 1H, TAr-H); 7.44 (mc, 2H, Ar-H).

5

^{13}C -NMR (100 MHz, $CDCl_3$) (E-Olefin): δ in ppm =

15.1 (C-16); 19.2 (C-9); 30.2 (C-2); 55.3 (C-15); 67.1 (C-1); 81.7 (C-3); 101.1 (C-10);
113.5 (C-13); 115.7 (C-7); 118.9 (C-5); 127.5 (C-12); 131.3 (C-11); 139.1 (C-4);
152.8 (C-6); 159.9 (C-14); 164.4 (C-8).

10

IR (Si-Film): ν in cm^{-1} =

3105w; 3057w; 2959m; 2925m; 2850m; 1658w; 1614s; 1517s; 1463m; 1442m;
1429m; 1394m; 1371m; 1302s; 1248vs; 1215w; 1172s; 1152w; 1118s; 1096s;
15 1062w; 1034s; 977w; 830m.

MS (EI, 70 eV, 40°C): m/e =

331 (41) [M^+]; 279 (35); 247 (23); 231 (21); 195 (34); 178 (24); 167 (54); 164 (52); 149 (57); 140 (43); 139 (51); 136 (92); 135 (100); 119 (96); 97 (40); 94 (44); 91 (69); 77 (36); 69 (52); 57 (44); 55 (43); 43 (50).

20

$C_{18}H_{21}NO_3S$:
($M = 331.42$ g·mol $^{-1}$)

EA: ber.: C: 65,23 % H: 6,39 % N: 4,22 %
gef.: C: 65,37 % H: 6,41 % N: 4,40 %

25

Beispiel 4

(3S, 4E)-3-[(4-Methoxyphenyl)methoxy]-4-methyl-5-(2-methylthiazol-4-yl)pent-4-enol

AM-12-2 $C_{18}H_{23}NO_3S$

$M = 333.44$ g/mol

C 64.8% H 7.0% N 4.2% O 14.4% S 9.6%

In 30 ml abs. CH_2Cl_2 werden 662 mg (2 mmol) der aus Beispiel 3 erhaltenen Verbindung bei -20°C tropfenweise mit 8 ml einer 1M DIBAL-Lsg. (4 eq) versetzt und ca. 5 h gerührt. Zum Reaktionsabbruch wird mit 1 ml MeOH gequenicht und anschließend langsam gesättigte NaK-Tartrat-Lsg. (30 ml) hinzugegeben. Die Lsg. wird über Nacht gerührt, wobei sich zwei klare Phasen gebildet haben. Die Phasen werden getrennt, die wässrige Phase noch zweimal mit CH_2Cl_2 extrahiert und die vereinigten org. Phasen mit ges. $\text{NH}_4\text{Cl-Lsg.}$ gewaschen. Nach Trocknung über MgSO_4 wird filtriert und im Vakuum eingeengt.

10 Chromatographie über eine 2:1-Hex/EE-Kieselgelsäule erbrachte 594 mg (89.1%) Gesamtausbeute im Verhältnis 15:85 ((89 mg); (505 mg)).

$^1\text{H-NMR}$ (400 MHz, CDCl_3) : δ in ppm =

15 1.68 (dq, $J_{2a,2b} = 14.3$ Hz, $J_{2a,1's u. 3} = 4.9$ Hz, 1H, 2a-H); 1.94 (mc, 1H, 2b-H); 1.99 (s, 3H, 4-H); 2.37 (br s, 1H, 1-OH); 2.66 (s, 3H, TAr- CH_3); 3.68 (br mc, 2H, 1-H); 3.73 (s, 3H, OCH_3); 3.99 (dd, $J_{3,2a} = 8.9$ Hz, $J_{3,2b} = 3.9$ Hz, 1H, 3-H); 4.18+4.42 (je d, $J = 11.3$ Hz, 2H, OCH_2Ar); 6.48 (s, 1H, 5-H); 6.80 (mc, 2H, Ar-H); 6.93 (s, 1H, TAr-H); 7.18 (mc, 2H, Ar-H).

20

$^{13}\text{C-NMR}$ (100 MHz, CDCl_3) : δ in ppm =

13.6 (C-16); 19.2 (C-9); 36.7 (C-2); 55.2 (C-15); 61.1 (C-1); 69.9 (C-3); 84.3 (C-10); 113.9 (C-13); 115.9 (C-7); 121.1 (C-5); 129.4 (C-12); 130.2 (C-11); 139.1 (C-4); 152.6 (C-6); 159.2 (C-14); 164.7 (C-8).

25

IR (Si-Film): ν in cm^{-1} =

3396br; 2926m; 2856w; 2835w; 1612m; 1586w; 1514vs; 1464m; 1453m; 1442m; 1302m; 1248vs; 1181m; 1173m; 1060m; 1035s; 821m.

30 MS (EI, 70 eV, 40°C): m/e =

333 (9) [M^+]; 281 (14); 231 (14); 212 (40); 197 (51); 164 (30); 135 (22); 122 (40); 121 (100); 113 (31); 97 (23); 91 (39); 77 (37); 69 (38).

$\text{C}_{18}\text{H}_{23}\text{NO}_3\text{S}$:

35 ($M = 333.44 \text{ g}\cdot\text{mol}^{-1}$)

EA: ber.: C: 64,84 % H: 6,95 % N: 4,20 %

gef.: C: 65,08 % H: 7,00 % N: 4,14 %

Beispiel 5

(5*S*,2*Z*,6*E*)-2,6-Dimethyl-5-[(4-ethoxyphenyl)methoxy]-7-(2-methylthiazol-4-yl)hepta-2,6-diensäure-ethylester

5

AM-14-1 $C_{23}H_{29}NO_4S$
 $M = 415.54 \text{ g/mol}$
 C 66.5% H 7.0% N 3.4% O 15.4% S 7.7%

In 30 ml abs. CH_2Cl_2 werden 102 μL Oxalylchlorid (1,1 eq) vorgelegt und nach Einkühlung auf $-78^\circ C$ unter Argon langsam mit 187 μL DMSO (2,5 eq) versetzt und 10 min nachgerührt. (Trübung)

Bei $-78^\circ C$ werden 354 mg (1,062 mmol) der aus Beispiel 4 erhaltenen Verbindung, gelöst in 5 ml abs. CH_2Cl_2 , langsam zugegeben und 10 min nachgerührt. Anschließend wird ca. 1 ml (>5 eq) Hünigbase zugegeben, 15 min nachgerührt und dann das Kühlbad entfernt. (Wieder klare Lsg.). Die Reaktionslösung wird mit 40 ml einer 1:1-Hex/EE-Lsg. verdünnt und mit Eiswasser gequenst. Die Phasen werden getrennt, die wässrige Phase noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet, über eine kurze Kieselgelfritte filtriert, im Vakuum eingeengt und an der Ölspülung getrocknet. Der Rohaldehyd wird ohne weitere Aufreinigung direkt für die nachfolgende Umsetzung verwendet.

In 25 ml abs. THF werden 303,5 mg 2-Phosphonopropionsäure-triethylester (1,2 eq) und 842 mg 18-Krone-6 (3 eq) bei $-78^\circ C$ vorgelegt. Bei dieser Temperatur wird durch langsame Zugabe von 239 mg KHMDS (1,15 eq), gelöst in ca. 5 ml abs. THF, deprotoniert und 10 min nachgerührt. Anschließend wird der Rohaldehyd, gelöst in ca. 10 ml abs. THF, langsam zugegeben. DC-Kontrolle nach ca. 30 min zeigte bereits vollständigen Umsatz, so dass das Kühlbad entfernt und die Reaktion durch Zugabe von ges. NH_4Cl -Lsg. gequenst wurde.

Nach Phasentrennung wird mit ges. $NaHCO_3$ -Lsg. gewaschen, die wässrigen Phasen noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet. Nach Filtration der organischen Phasen über kurze Kieselgelfritte wird am Rotationsverdampfer eingeengt. Chromatographie über ein 3:1-Hex/EE-Kieselgelforsäule erbrachte 377 mg (85,46%) Isomerengemisch im Verhältnis

von ca. 6,2:1. Zur Trennung der Doppelbindungs isomere empfiehlt sich eine Chromatographie über eine 7:1-Hex/EE-Kieselgelsäule oder eine Reinigung auf der präoperativen HPLC.

5 (Mitlerweile wurde auch die Verwendung des Trifluorethyl-Phosphonat-Derivates untersucht, die eine Selektivität von 15:1 erbrachte).

¹H-NMR (400 MHz, CDCl₃) (Z-Isomer): δ in ppm =

10 1.28 (t, $J= 7.5$ Hz, 3H, -CO₂CH₂CH₃); 1.88 (d, $J_{2,3}= 1.5$ Hz, 3H, 2-H); 2.04 (d, $J_{6,7}= 1.0$ Hz, 3H, 6-H); 2.73 (s, 3H, TAr-CH₃); 2.82 (mc, 2H, 4-H's); 3.80 (s, 3H, OCH₃); 3.88 (t, $J_{5,4a} \text{ u. } 4b= 7.0$ Hz, 1H, 5-H); 4.17 (q, $J= 7.0$ Hz, 2H, -CO₂CH₂CH₃); 4.24+4.49 (je d, $J= 11.5$ Hz, 2H, OCH₂Ar); 5.96 (tq, $J_{3,4a} \text{ u. } 4b= 6.9$ Hz, $J_{3,2}= 1.5$ Hz, 1H, 3-H); 6.54 (s, 1H, 6-H); 6.87 (mc, 2H, Ar-H); 6.99 (s, 1H, TAr-H); 7.25 (mc, 2H, Ar-H).

15

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.4 (C-20); 14.3 (C-13); 19.2 (C-11); 20.7 (C-21); 34.4 (C-4); 55.3 (C-19); 60.1 (C-12); 69.8 (C-14); 84.3 (C-5); 113.7 (C-17); 115.8 (C-9); 121.4 (C-7); 128.4 (C-2); 129.4 (C-16); 130.7 (C-15); 138.8 (C-3); 139.1 (C-6); 152.7 (C-8); 159.1 (C-18); 164.5 (C-10); 167.9 (C-1).

20

MS (EI, 70 eV, 110°C): m/e =

25 415 (8) [M⁺]; 371 (13) [M⁺-OEt]; 294 (20); 289 (40); 288 (100); 248 (26); 231 (18); 204 (18); 164 (29); 138 (30); 122 (96); 121 (92); 113 (28); 97 (61); 91 (39); 78 (50); 77 (71); 69 (40); 53 (45); 43 (37).

C₂₃H₂₉NO₄S:
(M= 415.54 g·mol⁻¹)

EA: ber.: C: 66,48 % H: 7,03 % N: 3,37 %
gef.: C: 65,91 % H: 6,77 % N: 3,29 %

Beispiel 6

(5*S*,2*Z*,6*E*)-2,6-Dimethyl-5-[(4-methoxyphenyl)methoxy]-7-(2-methyl-thiazol-4-yl)hepta-2,6-dienol

AM-15 $C_{21}H_{27}NO_3S$
 $M = 373.51 \text{ g/mol}$
 C 67.5% H 7.3% N 3.8% O 12.9% S 8.6%

In 100 ml abs. THF werden bei -20 °C 417 mg (1,0035 mmol) der aus Beispiel 5 erhaltenen Verbindung vorgelegt und dann tropfenweise mit 3 ml einer 1M-DIBAL in Heptan Lösung versetzt. Nach 3 h wurde zur Vervollständigung des Reaktionsumsatzes noch 10 1 ml der DIBAL-Lsg. nachgegeben und nochmals 30 min bei -20 °C nachgerührt.

Zum Reaktionsabbruch wurde mit 1 ml MeOH gequencht und nach Verdünnung mit 50 ml Diethylether werden 100 ml halbkonz. NaK-Tartrat-Lsg. zugegeben. Nach ca. 2-3 h kräftigen Röhrens bei RT werden die Phasen getrennt, die wässrige Phase noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet, filtriert und im Vakuum eingeengt. Chromatographische Reinigung über eine 1:1-Hex/EE-Kieselgelsäule erbrachte 272 mg (72,56%) Vinylalkohol.

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

20 1.79 (s, 3H, 2-H); 2.03 (d, $J_{6,7} = 1.0$ Hz, 3H, 6-H); 2.21 (mc, 1H, 4a-H); 2.47 (br, 1H, 1-OH); 2.52 (dt, $J_{4b,4s} = 14.3$ Hz, $J_{4b,3 \text{ u. } 5} = 8.4$ Hz, 1H, 4b-H); 2.70 (s, 3H, TAr-CH₃); 3.75 (dd, $J_{5,4s} = 8.4$ Hz, $J_{5,4b} = 4.4$ Hz, 1H, 5-H); 3.77 (s, 3H, OCH₃); 3.84+4.13 (je br d, $J = 11.8$ Hz, 2H, 1-H's); 4.20+4.46 (je d, $J = 11.3$ Hz, 2H, OCH₂Ar); 5.26 (t, $J_{3,4s \text{ u. } 4b} = 8.0$ Hz, 1H, 3-H); 6.49 (s, 1H, 7-H); 6.84 (mc, 2H, Ar-H); 6.97 (s, 1H, TAr-H); 7.20 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.8 (C-18); 19.2 (C-11); 22.2 (C-19); 34.0 (C-4); 55.2 (C-17); 61.3 (C-1); 70.0 (C-12); 83.7 (C-5); 113.7 (C-15); 115.8 (C-9); 121.1 (C-7); 123.8 (C-3); 129.6

(C-14); 129.9 (C-13); 138.2 (C-2); 139.4 (C-6); 152.6 (C-8); 159.2 (C-16); 164.7 (C-10).

MS (EI, 70 eV, 50°C): m/e =

5 373 (9) [M⁺]; 357 (8); 307 (11); 289 (27); 288 (96); 219 (19); 197 (17); 167 (39); 164 (28); 149 (33); 138 (41); 122 (100); 121 (92); 119 (34); 109 (27); 97 (52); 91 (81); 78 (39); 77 (56); 69 (36); 43 (56).

10 Beispiel 7

(5S,2Z,6E)-2,6-Dimethyl-2,3-epoxy-5-[(4-methoxyphenyl)-methoxy]-7-(2-methylthiazol-4-yl)hept-6-enol

AM-16 C₂₁H₂₇NO₄S

M = 389.50 g/mol

15 C 64.8% H 7.0% N 3.6% O 16.4% S 8.2%

Zu einer Suspension von ca. 80 mg aktiviertem, zerstoßenem 3 Å Molsieb in 2 ml abs. CH₂Cl₂ werden bei -15 °C 20,5 mg (0,0874 mmol) D-(-)-Diisopropyl-Tartrat und 21,7 μl (7,28 μmol) Titanisopropoxid zugegeben.

20 Bei -30 °C werden 199 μl einer ca. 5,5M tert.-Butylhydroperoxid-Lsg. in Nonan langsam zugetropft, 10 min nachgerührt. Anschließend wird die resultierende Reagenzlösung bei -30 °C tropfenweise mit 265 mg (0,7095 mmol) der aus Beispiel 5 erhaltenen Verbindung, gelöst in ca. 1 ml abs. CH₂Cl₂, versetzt und 3 d gerührt.

25 Zur Aufarbeitung der Reaktion wird zunächst mit 15 ml CH₂Cl₂ verdünnt, 1 ml Wasser zugegeben und 30 min nachgerührt. Anschließend werden 1 ml (Brine/3N NaOH=1:1) zugegeben und wiederum 30 min kräftig nachgerührt. Nach Phasentrennung, zweimaliger Extraktion der wässerigen Phase mit CH₂Cl₂, Trocknung der vereinigten organischen Phasen über Magnesiumsulfat und Filtration über eine kurze Celite-Fritte wird im Vakuum eingeengt. Chromatographie über eine 1:1-Hex/EE-Kieselgel-30

säule erbrachte 235 mg (215 mg direkt und 20 mg ex ^{13}C -Daten in der Mischfraktion) (85,04%) und noch 40 mg Gemischrest.

5 $^1\text{H-NMR}$ (400 MHz, CDCl_3): δ in ppm =

1.40 (s, 3H, 2-H); 1.76 (ddd, $^2J_{4a, 4b} = 15.3$ Hz, $J_{4a, 5} = 10.8$ Hz, $J_{4a, 3} = 9.9$ Hz, 1H, 4a-H); 2.01 (ddd, $^2J_{4b, 4a} = 14.8$ Hz, $J_{4b, 3} = 3.4$ Hz, $J_{4b, 5} = 2.5$ Hz, 1H, 4b-H); 2.04 (d, $^4J_{6, 7} = 1.0$ Hz, 3H, 6-H); 2.71 (s, 3H, TAr- CH_3); 2.76 (dd, $J_{3, 4a} = 9.9$ Hz, $J_{3, 4b} = 3.5$ Hz, 1H, 3-H); 3.29 (dd, $J_{1-\text{OH}, 1} = 10.8$ Hz, $J_{1-\text{OH}, 1} = 2.0$ Hz, 1H, 1-OH); 3.45 (dd, $^2J_{1a, 1b} = 11.8$ Hz, $J_{1a, 1-\text{OH}} = 2.0$ Hz, 1H, 1a-H); 3.61 (t br, $^2J_{1b, 1a} = 11.3$ Hz, 1H, 1b-H); 3.78 (s, 3H, OCH_3); 3.99 (dd, $J_{5, 4a} = 10.8$ Hz, $J_{5, 4b} = 2.5$ Hz, 1H, 5-H); 4.22+4.51 (je d, $^2J = 11.5$ Hz, 2H, OCH_2Ar); 6.49 (d, $^4J = 1.0$ Hz, 1H, 7-H); 6.86 (mc, 2H, Ar-H); 7.00 (s, 1H, TAr-H); 7.22 (mc, 2H, Ar-H).

15 $^{13}\text{C-NMR}$ (100 MHz, CDCl_3): δ in ppm =

13.4 (C-18); 19.2 (C-11); 20.4 (C-19); 33.7 (C-4); 55.2 (C-17); 60.5 (C-1); 62.1 (C-3); 64.2 (C-2); 70.0 (C-12); 81.3 (C-5); 113.9 (C-15); 116.4 (C-9); 121.7 (C-7); 129.0 (C-14); 131.1 (C-13); 138.1 (C-6); 152.3 (C-8); 159.5 (C-16); 164.9 (C-10).

Patentansprüche

1. Verbindungen der allgemeinen Formel II

5

worin R¹ C₁-C₄-Alkyl,R² eine beliebige chelatisierungsfähige Schutzgruppe,R³ Wasserstoff oder C₁-C₄-Alkyl10 Y CO₂R⁴, CHO, CH=CH₂ oder CH₂R⁵,

wobei

R⁴ für C₁-C₄-Alkyl oder eine gegebenenfalls substituierte Benzylgruppe,R⁵ für Halogen, Hydroxy, p-Tolulsulfonat oder -OSO₂B undB für C₁-C₄-Alkyl oder C₁-C₄-Perfluoralkyl steht,

15 bedeutet.

2. Verbindungen der allgemeinen Formel II

20

25

worin R¹ C₁-C₄-Alkyl,R² p-MethoxybenzylR³ Methyl undY CO₂R⁴mit R⁴ C₁-C₄-Alkyl

bedeutet.

3. Verbindung der Formel IV

5 worin PMP p-Methoxyphenyl bedeutet.

4. Verbindungen der Formel V

10 worin R¹ C₁-C₄-Alkyl und
PMP p-Methoxyphenyl bedeutet.

5. Verbindungen der Formel VI

15

worin

20 R¹ C₁-C₄-Alkyl und
PMP p-Methoxyphenyl bedeutet.

6. Verbindungen der Formel IIa

5 worin

R¹ C₁-C₄-Alkyl

PMB p-Methoxybenzyl bedeutet.

R³ Wasserstoff oder C₁-C₄-Alkyl

10 7. Verbindungen der Formel VII

worin

15 R¹ C₁-C₄-AlkylR² eine chelatisierungsfähige Schutzgruppe darstellt.R³ Wasserstoff oder C₁-C₄-Alkyl

8. Verfahren zur Herstellung der Verbindung der allgemeinen Formel IIa

20

dadurch gekennzeichnet, daß

in einem Schritt 125 von (S)-Äpfelsäure (III) die α -Hydroxysäurefunktion mit Trifluoressigsäure/Methanol (a) in den Methylester überführt wird, die noch vorhandene Säurefunktion mit Diboran

in Tetrahydrofuran (b) zum Alkohol reduziert wird und der so erhaltene (S)-(-)-Methyl-2,4-Dihydroxyester mit p-Methoxybenzylidemethylacetal (c) in das cyclische Acetal (IV) überführt wird,

5

Verbindung IIIVerbindung IVin einem Schritt II

der Methylester mit einer C₁-C₄-Alkyl-metallorganischen Verbindung (d) in das entsprechende Alkylketon (V) überführt wird,

10

15

in einem Schritt III

das (C₁-C₄)-Alkylketon (V) in einer Wittigreaktion mit dem Thiazolylphosphoniumsalz (e) umgesetzt und das E-Isomere (VI) abgetrennt wird

20

in einem Schritt IV

das E-Isomere (VI) durch Reaktion mit Diisobutylaluminiumhydrid (f), Swern-Oxidation (g) und Wadsworth-Horner-Emmons-Kondensation (h) mit Ethyl-2-Diethoxyphosphinylpropionat oder einem für R³ entsprechenden Horner-Reagenz und Reinigung vom

E-Isomeren in den Z- α,β -ungesättigten Ester (IIa) überführt wird.

5 9. Verbindungen der allgemeinen Formel VIIa

worin R^1 Wasserstoff oder C_1 - C_4 -Alkyl und

10 **R² p-Methoxybenzyl**

R³ Wasserstoff oder C₁-C₄-Alkyl

bedeuten.

10. Verwendung der Verbindungen gemäß Ansprüche 1, 2, 3, 4, 5, 6, 7 und/oder 9 zur
15 Herstellung von Epothilon A und Epothilon B und deren Derivaten.

INTERNATIONAL SEARCH REPORT

Int. Application No
PCT/EP 98/04462

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C07D277/30 C07D319/06 C07D417/06 C07D277/24 C07D493/04
 // (C07D493/04, 313:00, 303:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DONGFANG MENG ET AL: "Studies toward a synthesis of epothilone A: Use of hydroxyran templates for the management of acyclic stereochemical relationships" JOURNAL OF ORGANIC CHEMISTRY, vol. 61, no. 23, 1996, pages 7998-7999, XP002035361 EASTON US cited in the application see the whole document ---</p>	1-10
A	<p>DE 195 42 986 A (GESELLSCHAFT FÜR BIOTECHNOLOGISCHE FORSCHUNG) 22 May 1997 cited in the application see the whole document --- -/-</p>	1-10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *A* document member of the same patent family

Date of the actual completion of the international search:

4 November 1998

Date of mailing of the International search report

23/11/1998

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patenttaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Te. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Henry, J

INTERNATIONAL SEARCH REPORT

Int	lational Application No
PCT/EP 98/04462	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P,X	<p>JOHANN MULZER ET AL: "Synthesis of the C(11)-C(20) segment of the cytotoxic macrolide epothilone B "</p> <p>TETRAHEDRON LETTERS.,</p> <p>vol. 38, no. 44, 3 November 1997, pages 7725-7728, XP002083207</p> <p>OXFORD GB</p> <p>see the whole document</p> <p>-----</p>	1-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 98/04462

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 19542986 A	22-05-1997	WO 9719086 A EP 0873341 A	29-05-1997 28-10-1998

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 98/04462

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C07D277/30 C07D319/06 C07D417/06 C07D277/24 C07D493/04
//(C07D493/04, 313:00,303:00)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 C07D

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DONGFANG MENG ET AL: "Studies toward a synthesis of epothilone A: Use of hydropyran templates for the management of acyclic stereochemical relationships" JOURNAL OF ORGANIC CHEMISTRY, Bd. 61, Nr. 23, 1996, Seiten 7998-7999, XP002035361 EASTON US in der Anmeldung erwähnt siehe das ganze Dokument ---	1-10
A	DE 195 42 986 A (GESELLSCHAFT FÜR BIOTECHNOLOGISCHE FORSCHUNG) 22. Mai 1997 in der Anmeldung erwähnt siehe das ganze Dokument ---	1-10 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipielle oder der ihr zugrundeliegenden Theorie angegeben ist
"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
"A" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

4. November 1998

23/11/1998

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70)-340-3016

Befvochtigter Bediensteter

Henry, J

INTERNATIONALER RECHERCHENBERICHT

Int. nationales Aktenzeichen

PCT/EP 98/04462

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P, X	JOHANN MULZER ET AL: "Synthesis of the C(11)-C(20) segment of the cytotoxic macrolide epothilone B" TETRAHEDRON LETTERS., Bd. 38, Nr. 44, 3. November 1997, Seiten 7725-7728, XP002083207 OXFORD GB siehe das ganze Dokument -----	1-10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Im Nationales Aktenzeichen

PCT/EP 98/04462

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 19542986 A	22-05-1997	WO 9719086 A EP 0873341 A	29-05-1997 28-10-1998

99-132130/11 B03

SCHERING AG

97.07.16 97DE-1031316 (99.01.28) C07D 277/30, 277/24, 319/06,
417/06, 493/04 (C07D 303/00, 313/00, 493/04)

New thiazolyl-alkadienol and -epoxide derivatives - used as intermediates for diastereomerically pure epothilon compounds having fungicidal and cytotoxic activity (Ger)

C99-038661 N(AL AM AT AU AZ BA BB BG BR BY CA CH CN CU
CZ DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE
KG KP KR KZ LC LK LR LS LT LU LV MD MG MK
MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL
TJ TM TR TT UA UG US UZ VN YL) R(AT BE CH CY
DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU
MC MW NL OA PT SD SE SZ UG ZW)Addnl. Data: MULZER J. MANTOULIDIS A
98.07.16 98WO-EP04462

SCHD 97.07.16

WO 9903848-A1

B(7-F1) .1

B0561

$Y = COOR_1, CHO, CH=CH_2$ or CH_2R_2 ;
 $R_1 = 1-4C$ alkyl or optionally substituted benzyl;
 $R_2 =$ halo, OH, p-toluenesulphonate or $-OSO_2B$;
 $B = 1-4C$ alkyl or 1-4C perfluoroalkyl;
 in (VII) R_1 can also be H if $R_2 =$ p-methoxybenzyl (PMB).

WO 9903848-A1

Protected thiazolyl-alkadienol derivatives of formula (II) and thiazolyl-epoxide compounds of formula (VII) are new.

$R_1 = 1-4C$ alkyl;
 $R_2 =$ chelate forming protecting group;
 $R_3 = H$ or $1-4C$ alkyl;

1,3-Dioxane derivative intermediates of formulae (IV)-(VI) (see 'Preparation') are also new.

USE

The use of (II) and (VII) is claimed as intermediates for epothilon A, epothilon B and their derivatives. Epothilon A of formula (I; $R = H$) and epothilon B of formula (I; $R = Me$) are macrocyclic natural products having fungicidal and cytotoxic activity, including *in vitro* activity against breast and stomach tumour cell lines; see DE19542986-A1 and DE4138042-C1.

WO 9903848-A1

99-132130/11

B0562

ADVANTAGE

(II) and (VII) can be prepared in diastereomerically pure form and converted into diastereomerically pure (I). (I) can be prepared from naturally occurring (S)-malic acid in 10 stages via (II), whereas the prior art synthesis of (I) has 15 stages.

PREPARATION

Claimed preparation of (II; $R_3 = PMB$; $Y = COOEt$) (II') from (S)-malic acid of formula (III) involves:

(1) converting the α -hydroxysacid function into the methyl ester with trifluoroacetic acid/methanol, reducing the other acid function to the alcohol using borane in THF and converting the obtained (S)-methyl-2,4-dihydroxy ester into the cyclic acetal of formula (IV) using PMB dimethyl acetal;

(2) converting (IV) into the corresponding alkyl ketone of formula (V) using a 1-4C alkyl organometallic compound;

(3) subjecting (V) to Wittig reaction with (2-methylthiazol-4-ylmethyl)-triphenylphosphonium chloride and separating the (E) isomer product of formula (VI); and

(4) subjecting (VI) to reaction with diisobutyl aluminium hydride

(DIBAL), Swern oxidation and Wadsworth-Emmons condensation with ethyl 2-diethoxyphosphorylpropionate or a corresponding Horner reagent for R_3 and purifying the Z- α,β -unsaturated ester (II').

WO 9903848-A1

(II) can then be converted into other compounds (II) by conventional reactions (e.g. reduction with DIBAL to give $\text{Y} = \text{CHO}$ followed by Wittig reaction to give $\text{Y} = \text{CH}=\text{CH}_2$); or converted into the corresponding compound (VII) by reduction to the corresponding α,β -unsaturated alcohol, using 3 equivalents of DIBAL

in THF at -20°C, followed by diastereo-selective epoxidation using 4 Å molecular sieve, titanium tetrakisopropylate, (D)-(-)-diisopropyl tartrate and *tert*-butyl hydroperoxide for 3 hours at -30°C.

EXAMPLE

A mixture of 30 ml CH_2Cl_2 and 102 μl oxalyl chloride was cooled to -78°C , treated slowly under Ar with 187 μl DMSO, stirred for 10 minutes, treated slowly with a solution of 354 mg (38.41)-3-(4-methoxybenzoyloxy)-4-methyl-3-(2-methylthiazol-4-yl)-cyclo-4-enol in 5 ml CH_2Cl_2 , stirred for 10 minutes, treated with 1 ml Hünig's base and stirred for 15 minutes.

After removal of the cooling bath, the solution was filtered with hexane/EtOAc and quenched with ice-water. The organic phase was dried, filtered and evaporated to give a crude aldehyde product.

A mixture of 25 ml THF, 303.5 mg triethyl 2-phosphonopropionate and 842 mg 18-crown-6 was cooled to -78°C, treated slowly with a solution of 239 mg potassium hexamethyl disilazide in 5 ml THF, stirred for 10 minutes, treated with a solution of the crude aldehyde in 10 ml THF and reacted until conversion was complete by TLC (ca. 30 minutes).

After removing the cooling bath, the reaction was quenched with

WO 1903848-A1/3

99-132130/11

80563

NH₄Cl solution. The organic phase was worked up to give, after chromatographic purification, 377 mg of ethyl (5S,22,6E)-2,6-dimethyl-5-(4-methoxybenzyl)oxy)-7-(2-methylthiazol-4-yl)-hepta-2,6-dienoate as an isomer mixture in ratio 6.2: 1. (DAH) (33 mg 2400 DW₂, No. 0/0)

WO 1903848-A/4

99-132131/11 B04 D16 X04 (B02)
FBI - SCI INC

JBL SCI INC
98-07-13-0

98.07.17 98US-116220(+97US-053339) (99.01.28) C07D 27/04,
263/62, 277/66, 417/06, C07F 9/653, 9/6541, C07H 11/04, 17/00, G01N
33/58

New dibenzazoles derivatives - useful as fluorescent compounds in biological assays (Eng)

C99-038662 N(AU CA JP NZ) R(AT BE CH CY DE DK ES FI FR GB
GR IE IT LU MC NL PT SE)

GRANT BROWN
BROWN L R XUC
98-07-21 9TWO-US15080

Dibenzazoles compounds of formula (I) and (II) are new?

BL9-97.5721

*WO 990349-A1

B(4-E1, 4-N4, 6-E1, 6-F1, 11-C7AS, 11-C7B3, 12-K4A) D(5-H9) J(4-B1) .7

B0564

WO 903849-A+

Koichi; Ohsumi, Koji; Nakagawa, Ryusuke; Fukuda, Toshihiro; Nihei, Yukio; Suga, Yasuya; Akiyama, Yukio; Taji, Toshiaki (Pharmaceutical Research Laboratories, Ajinomoto Co. Inc., Kawasaki-ku, Kawasaki, Japan 210-9681). *Bioorg. Med. Chem. Lett.* 1999, 9(23), 3371-3374 (Eng). Elsevier Science Ltd.. A series of B-ring modified combretastatin

= C₁₈ hydrocarbon), elimination of phenylpentalenepentanoic acid I (X = CH₂RC₆H₄Me; Y = OTHP; Z = Me; R⁰ = same as above), and hydrolysis of carbacycline I (X = CH₂RC₆H₄Me; Y = OH; Z = Me; R = same as above). II was reacted with Ph₃P=CHCHO in benzene under reflux for 20 h, reacted with CcCl₂H₂O and NaBH₄ in MeOH for 5 min, condensed with Me chloroformate in CH₂Cl₂ in the presence of DMAP for 4 h, condensed with m-(PhSO₂)₂CHC₆H₄Me in the presence of tri(diphenylideneacetone)dipalladium(0)-chloroform addn. compd. and 1,2-bis(diphenylphosphino)ethane in THF for 15 h, eliminated with Me in MeOH for 3 h, and hydrolyzed with NaOH in MeOH at room temp. for 12 h to give 15-deoxy-16-m-tolyl-17,18,19,20-tetranorcarbacycline showing high affinity to prostacyclin receptors.

130: 139198s **Synthesis of eboline chloride with self-catalysis.** Song, Chengping; Zhan, Jianhong; Wang, Liucheng; Xu, Haisheng (Chemical Engineering Dep., Zhengzhou University Technology, Poop. Rep. China 450002). *Huaxue Fanying Gongcheng Yu Gangyi* 1998, 14(4), 431-435 (Ch). Zhejiangsheng Chuban Duiwei Maoyi Congsi. Choline chloride showed good self-catalyzing behavior in its prepn. from chloroethanol and trimethylamine. Under optimal conditions the yield of chlorine chloride was over 99%.

130: 139198s **Synthesis and evaluation of 2-amino-6-fluoro-9-(2-hydroxyethoxymethyl)purine esters as potential prodrugs of acyclovir.** Kim, Dae-Kee; Lee, Namkyu; Im, Guang-Jin; Kim, Hun-Tack; Kim, Key H. (Life Science Research Center, SK Chemicals, Kyungki, 440-745 S Korea). *Biorg. Med. Chem.* 1998, 8(12), 2525-2530 (Eng). Elsevier Science Ltd.. 2-Amino-6-fluoro-9-(2-hydroxyethoxymethyl)purine (I) and its ester derivs. were synthesized as potential prodrugs of acyclovir, and were evaluated for their oral acyclovir bioavailability in rats and in vivo antiviral efficacy in HSV-1-infected mice. Treatment of 2-amino-6-chloro-9-(2-hydroxyethoxymethyl)purine with trimethylamine in THF/DMF (4:1) followed by a reaction of the resulting trimethylammonium chloride salt with KF in DMF gave I in 78% yield. Esterification of I with an appropriate acid anhydride (Ac₂O, Et(CO)₂O, (n-PrCO)₂O, or (i-PrCO)₂O) in DMF in the presence of a catalytic amt. of DMAP at room temp. produced the esters in 90-98% yields. Of the prodrugs tested in rats, the isobutyrate achieved the highest mean urinary recovery of acyclovir (51%) that is 3.7-fold higher than that of acyclovir (9%) and comparable to that of valacyclovir (50%). The prodrug isobutyrate protected dose-dependently the mortality of HSV-1-infected mice, and the group treated with the isobutyrate at a dose of 400 mg/kg showed the longest mean survival day (14.6 ± 3.1 days) (mean ± S.D.).

130: 139200m **Studies on phytochemicals: futeamides from *Piper longum*.** Das, Biswanath; Krishnatham, A. (Organic Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, 500 007 India). *Pittepepi* 1998, 69(6), 548 (Eng). Indena SpA. Futeamide was isolated from *Piper longum*.

130: 139201s **Theoretical studies on the tautomeric properties of diamino-5-formamidopyrimidines.** Cyzewski, Piotr (Dep. Clinical Biochem., Ludwika Rydygier Univ. Medical Sch., 86092 Bydgoszcz, Pol.). *Z. Naturforsch. C: Biosci.* 1998, 53(11/12), 1027-1036 (Eng). Verlag der Zeitschrift für Naturforschung. The results of theor. geometry prediction of formamidopyrimidine(sapy)-adenine and sapy-guanine tautomers are presented. Among 34 potential tautomeric structures of sapy-adenine, the most stable structure corresponds to the diamino keto isomer. The solvent effect has insignificant influence on the (sapy)-adenine tautomers succession. The sapy-guanine has 172 potential isomers. There are 3 most stable tautomers of this guanine deriv., which may exchange the order depending on the polarity of the environment. In vapor, the most probable is the 4-enol 6-keto diamino tautomer, while in water environment the 4,6-diketo diamino isomer is dominant. A more polar solvent stabilizes more polar sapy-guanine tautomers.

130: 139202p **Preparation of 15-deoxycarbacycline having high affinity to prostacyclin receptors.** Watanabe, Yasuyoshi; Suzuki, Masashi; Hazato, Atsuo; Watanabe, Yumiko (Foundation for Scientific Technology Promotion, Japan). Jpn. Kokai Tokkyo Koho JP 11 05,784 (99 06,764) (Cl. C07C59/54), 12 Jan 1999, Appl. 97/160,320, 17 Jul 1997; 8 pp. (Japan). Title compds. I (X = CH₂RC₆H₄Me; Y =

OH; Z = H; R = C₁₋₆ hydrocarbon) are prep'd. by reaction of formylpentalenepentanoates II with Ph₃P=CHCHO, reaction of formylpentalenepentanoates I (X = CHO; Y = OTHP; Z = Me) with Me chloroformate, reaction of methoxycarbonyloxypentalenepentanoates I (X = CH₂OCO₂Me; Y = OTHP; Z = Me) with PhSO₂CH₂C₆H₄Me (R⁰

= protecting group) is described. A compd. of formula (II) is reacted with diphenylphosphinic chloride to activate the carboxylic acid group, and then reacted with methanesulfonyl chloride to produce a compd. of formula (III). III is then reacted with a group II metal sulfide source in water to produce I.

130: 139206s **Synthesis of epothilone derivatives and intermediates for use in treatment of hyperproliferative cellular disease.** Vite, Gregory D.; Borzilleri, Robert M.; Kim, Soong-hoon; Johnson, James A. (Bristol-Myers Squibb Company, USA). PCT Int. Appl. WO 99 02,831 (Cl. C07D313/00), 21 Jan 1999, US Appl. 67,524, 4 Dec 1997; 70 pp. (Eng). Syntheses of epothilone derivs. (I) (R = H, Me; A = CH₂,

O, NH; X = H when bond double, α-spacy when bond single) and intermediates for use in treatment of hyperproliferative cellular disease are described.

130: 139205s **Method for the production and use of thiazole derivatives.** Mularz, Johann; Manoliadis, Andreas (Schering Aktiengesellschaft, Germany). PCT Int. Appl. WO 99 03,848 (Cl. C07D277/30), 29 Jan 1999, DE Appl. 19,721,318, 16 Jul 1997; 33 pp. (Ger). The invention relates to thiazole derivs. I (R¹ = C₁₋₆-alkyl; R² = a protective group with chelating power, e.g. CH₂CH₂OMe-4; R³ = H, C₁₋₆-alkyl, esp. Me; Y = CO₂R⁴, CHO, CH=CH₂, CH₂R⁵; R⁴ = C₁₋₆-alkyl, (un)-substituted benzyl group; R⁵ = Halogen, hydroxyl, p-tetrahydroxulfonate, OSO₂B; B = C₁₋₆-alkyl, C₁₋₆-perfluoroalkyl). Intermediates II (PMP = C₆H₅OMe-4), III, IV and V in the prepn. of I are also claimed. Thus, I (R¹ = R² = Me, R³ = CH₂CH₂OMe-4), was prep'd. from ketone III (R¹ = Me) via Wittig reaction with (2-methyl-1,3-thiazol-4-yl)methyl-triphenylphosphonium bromide, regioselective and deprotection of thiazole IV (R¹ = Me), followed by oxind. and Horner-Evans reaction with (EtO)₂P(O)CH₂CO₂Et. I (R¹ = R² = Me, R³ = CH₂CH₂OMe-4) was converted to advanced intermediate VI (R¹ = R² = Me, R³ = CH₂CH₂OMe-4) via redn. with DIBAL-H in heptane/THF followed by stereoselective epoxidn. with Me₂CO₂H in CH₂Cl₂ contg. catalytic Ti(OCHMe₂)₄ and diisopropyl (-)-D-tartarate. These derivs. are produced without diastereomers and are used in the produc. of epothilones A and B and their derivs.

X

130: 139207u Synthesis of isoimides of chlorins and bacteriochlorins and their use for diagnosis and treatment of cancer. Pandey, Ravindra K.; Kosyrov, Andrei N.; Dougherty, Thomas J. (Health Research, Inc., USA) U.S. US 5,864,038 (Cl. 540-472; C07D487/22). 26 Jan 1999. US Appl. 613,134, 8 Mar 1998; 16 pp. Cont.-in-part of U.S. Ser. No. 613,134. (Eng). Chlorins and bacteriochlorins (I) $Z = O$.

NR14; R^{14} = (un)substituted alkyl; R^1 = amine acid, polyamine, polyether, OR13; R^{13} = alkyl; $R^4 - R^{11}$ = $-H$, OH , alkyl, alkylene, $-OR^{16}$; R^{16} = H , alkyl, aryl, carbonyl, carb group, provided that R^4 may be taken together with R^6 to form $=O$; R^6 may be taken together with R^7 to form $=O$; R^7 may be taken together with R^9 to form $=O$; R^9 may be taken together with R^{11} to form $=O$; and R^6 and R^7 may together form a chem. bond and R^6 and R^{11} may together form a chem. bond; and R^{12}

= H , alkyl; provided that if one $Z = O$, the other $Z = NR^{14}$ were present for use in photodynamic therapy of tumors. Thus, I ($Z = N(CH_2)_5Me$; $R^1 = CH_2CH_2Me$; $R^4 = NEt_2$; $R^5 = OH$; $R^6 = OH$; $R^7 = NH$; R^9, R^{11} = bond; $R^8 = OCMe$; $R^{10} = Me$) (II) was prep'd. from bacteriochlorin A by reaction with 1-hexylamine followed by reaction with 1,3-dicyclohexylcarbodiimide. II efficacy for in vivo photodynamic therapy was evaluated RIF tumor model.

For papers of related interest see also Section:

- 1 133442v Oligonucleotide analogs: an overview.
- 133684j Inactivation of O^6 -Alkylguanine-DNA Alkyltransferase. I. Novel O^6 -(Hetarylmethyl)guanines Having Basic Rings in the Side Chain.
- 5 135356a 2-Fluoroabecic acid analogs: Their synthesis and biological activities.
- 135379d Characterization of antibody models of the ryanodine receptor for use in high-throughput screening.
- 10 130322e Absolute stereostructures of novel cytotoxic metabolites, gymnestatins A-E, from a Gymnella species separated from a Hallonaria sponge.
- 11 136549w New Bioactive Flavonoids and Stilbenes in Cubé Resin Insecticides.
- 136558v Isolation of karwinol A from coyotillo (Karwinella humboldtiana) fruits.
- 136559w Antifungal activity of Ficus racemosa leaf extract and isolation of the active compound.
- 136577y Enantioselective Semisynthesis of (+)-Almuhapolide A, a Novel Natural Heptolide Inhibitor of the Mammalian Mitochondrial Respiratory Chain.
- 136585e Nordihydrocapsiate, a New Capsinoid from the Fruits of a Nonpungent Pepper, Capsicum annuum.
- 136586f Two glutaric acid derivatives from olives.
- 136587g Two linear acogenins from Goniothalamus griseus.
- 136588e Butenolides as a common feature of Iryanthera lancifolia and Virola surinamensis.
- 136589a Sevenibusine, a new quinoline-2,4-dione and other constituents from Sevenia businolia.
- 136590f Structure elucidation of annaheptocin, two new heptahydroxylated C₂₀ acogenins by high-energy collision-induced dissociation tandem mass spectrometry.
- 20 138224f Professor Sir Derek Barton.
- 22 Physical Organic Chemistry.
- 23 139065w Synthesis and structure of linear and cyclic oligomers of 3-hydroxybutanoic acid with specific sequences of (R)- and (S)-configurations.
- 30 139467a Oxidation of aromatic monoterpenes with hydrogen peroxide catalyzed by Mn(III) porphyrin complexes.
- 78 147834m Thermal stability of robust unsymmetrical copper porphyrins with multiple diphenylamine and nitro substituents.

For papers of related interest see also Section:

- 33 133676p Preparation of cyclin dependent kinase inhibiting purine derivatives.
- 63 144161k Water soluble polymer-tacrolimus conjugated compounds and process for preparing the same.

27-HETEROCYCLIC COMPOUNDS (ONE HETERO ATOM)

This section includes the synthesis, purification, stabilization, reactions, and determination of molecular structure of cyclic compounds that contain two or more carbon atoms in a single ring and no more than one hetero atom (nitrogen, oxygen, sulfur, and the halogens), as well as spiro compounds with one hetero atom in each ring. Physical organic studies are included in Section 23. Studies on the preparation, processing, and properties of caprolactam, ethylene oxide, propylene oxide, and similar common monomers, unless a non-polymer application is explicitly stated, are included in Section 35 or 36. Industrial manufacturing and processing of compounds normally found in this section are included in Section 45.

130: 139208v Chemistry of indoles: new reactivities of indole nucleus and its synthetic applications. Murakami, Yasuaki (Sch. Pharmaceutical Sciences, Toho Univ., Miyama, Funabashi, Chiba, Japan 274-8510). Yakuza Zasshi 1998, 119(1), 55-60 (Japan). Pharmaceutical Society of Japan. This review summarizes the authors' studies on the development of new reactivities of the indole nucleus and on its application in synthesis with 50 refs. These studies involve the following five main subjects: (1) The Vilsmeyer-Haack reaction was applied to 1,2,3,4-tetrahydrocarbazole and its N-alkyl compds. The conditions and the mechanisms of the formation of three kinds of products obtained from the latter compd. were clarified, and among the three products, 1,9-dimethylcarbazole-3-aldehyde was useful for the syntheses of ellipticine and ellipticine. (2) The Fischer indole synthesis of various 2-substituted phenylhydrazones was examined in detail and it was found that the Fischer indole synthesis of 2-sulfonylphenylhydrazones served a new and convenient method for the synthesis of 7-oxygenated indoles. This reaction was applied to the synthesis of eudistomine A. (3) The reactivities of Et indole-2-carboxylate for acylation and bromination were also studied, and the use of this compd. as a starting material for the synthesis of 4-methoxy- β -carbolines was successfully investigated. (4) Acylation of Et pyrrole-2-carboxylate was concisely studied and this reaction was applied to the syntheses of benzene ring-substituted indoles and benzylindoles involving cycloauramin. (5) Two kinds of method for the debenzylatation of N-benzylindoles were developed using either AlCl₃-benzenes or Me Lithium, and they are complementary with each other.

130: 139208w Recent advances in control of absolute stereochemistry in Diels-Alder cycloadditions of 2-pyrones. Posner, Gary H.; Bell, D. Scott (Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218 USA). Recent Rev. Rev. G. Z. Chem. 1997, 1, 259-271 (Eng). Transworld Research Network. This review of recent progress in controlling the abs. stereochem. of bicyclic lactone

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.