Project Name: Regression-Based Approach for Accurate House Price Forecasting

Group No: 15

Group Members: Md Fahimul Kabir Chowdhury, Jayed Mohammad Barek

1. Imports and Data Loading

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

# Load dataset
california = fetch_california_housing()
X = pd.DataFrame(california.data, columns=california.feature_names)
y = pd.Series(california.target, name='MedHouseVal')
```

2. Data Exploration

df = X.copy()df['MedHouseVal'] = y

print(df.info())

RangeIndex: 20640 entries, 0 to 20639 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	MedInc	20640 non-null	float64
1	HouseAge	20640 non-null	float64
2	AveRooms	20640 non-null	float64
3	AveBedrms	20640 non-null	float64
4	Population	20640 non-null	float64
5	Ave0ccup	20640 non-null	float64
6	Latitude	20640 non-null	float64
7	Longitude	20640 non-null	float64
8	MedHouseVal	20640 non-null	float64

dtypes: float64(9) memory usage: 1.4 MB

None

df.head()

3		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longit
	0	8.3252	41.0	6.984127	1.023810	322.0	2.55556	37.88	-12
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-12
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-12
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-12
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-12

```
print(df.describe())
```

\rightarrow		MedInc	HouseAge	AveRooms	AveBedrms	Population	
	count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	
	mean	3.870671	28.639486	5.429000	1.096675	1425.476744	
	std	1.899822	12.585558	2.474173	0.473911	1132.462122	
	min	0.499900	1.000000	0.846154	0.333333	3.000000	
	25%	2.563400	18.000000	4.440716	1.006079	787.000000	
	50%	3.534800	29.000000	5.229129	1.048780	1166.000000	
	75%	4.743250	37.000000	6.052381	1.099526	1725.000000	
	max	15.000100	52.000000	141.909091	34.066667	35682.000000	
		Ave0ccup	Latitude	Longitude	MedHouseVal		
	count	20640.000000	20640.000000	20640.000000	20640.000000		
	mean	3.070655	35.631861	-119.569704	2.068558		
	std	10.386050	2.135952	2.003532	1.153956		
	min	0.692308	32.540000	-124.350000	0.149990		
	25%	2.429741	33.930000	-121.800000	1.196000		
	50%	2.818116	34.260000	-118.490000	1.797000		
	75%	3.282261	37.710000	-118.010000	2.647250		
	max	1243.333333	41.950000	-114.310000	5.000010		

3. Data Preprocessing

```
# Null check
print("\nMissing values:\n", df.isnull().sum())
\rightarrow
    Missing values:
     MedInc
    HouseAge
    AveRooms
    AveBedrms
Population
    Ave0ccup
    Latitude
    Longitude
    MedHouseVal
    dtype: int64
# Correlation Heatmap
plt.figure(figsize=(10,8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Feature Correlation Matrix")
```

plt.show()


```
# Color-coded scatterplot showing geographic pattern
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='Longitude', y='Latitude', hue='MedHouseVal', palette=
plt.title('House Prices Across California')
plt.legend(title='Price')
plt.show()
```



```
# Histograms
df.hist(bins=30, figsize=(14, 10), edgecolor='black')
plt.suptitle("Feature Distributions")
plt.tight_layout()
plt.show()
```


4. Feature Engineering

```
# Add Engineered Features
X["RoomsPerHousehold"] = X["AveRooms"] / X["AveOccup"]
X["BedroomsPerRoom"] = X["AveBedrms"] / X["AveRooms"]
X["PopulationPerHousehold"] = X["Population"] / X["AveOccup"]

# Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_s

# Standard Scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

5. Model Training

```
# Train Models
lr = LinearRegression()
rf = RandomForestRegressor(random_state=42)
lr.fit(X_train_scaled, y_train)
rf.fit(X_train_scaled, y_train)
# Predictions
lr_preds = lr.predict(X_test_scaled)
rf_preds = rf.predict(X_test_scaled)
```

```
# Evaluation Function
def evaluate_model(y_true, y_pred, name):
    mse = mean_squared_error(y_true, y_pred)
    mae = mean_absolute_error(y_true, y_pred)
    r2 = r2_score(y_true, y_pred)
    print(f" {name}")
    print(f" MSE: {mse:.4f}")
    print(f" MAE: {mae:.4f}")
   print(f" R^2: {r2:.4f}\n")
# Evaluate
evaluate_model(y_test, lr_preds, "Linear Regression")
evaluate_model(y_test, rf_preds, "Random Forest Regressor")
→ Linear Regression
      MSE: 0.4540
      MAE: 0.4874
      R^2: 0.6535
     Random Forest Regressor
      MSE: 0.2561
      MAE: 0.3299
      R^2: 0.8046
```

6. Model Tuning

```
from sklearn.model selection import GridSearchCV
# Define parameter grid for Random Forest
param_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [None, 10, 20],
    'min samples split': [2, 5],
    'min_samples_leaf': [1, 2]
}
# Set up GridSearchCV
grid search = GridSearchCV(
    estimator=RandomForestRegressor(random_state=42),
    param_grid=param_grid,
    cv=3,
    scoring='r2',
    verbose=1,
    n iobs=-1
# Fit the grid search to the data
grid_search.fit(X_train_scaled, y_train)
# Best model
best_rf = grid_search.best_estimator_
print("Best Parameters Found:\n", grid_search.best_params_)
Fitting 3 folds for each of 36 candidates, totalling 108 fits
    Best Parameters Found:
     {'max_depth': 20, 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimator
# Use the best estimator found by GridSearchCV
best_rf = grid_search.best_estimator_
# Predict on the test set
best_rf_preds = best_rf.predict(X_test_scaled)
```

7. Final Prediction & Interpretation

```
from sklearn.metrics import mean squared error, mean absolute error, r2 score
# Evaluation Function
def evaluate_model(y_true, y_pred, name="Model"):
    print(f"\nQ {name} Evaluation:")
    print(f" > Mean Squared Error (MSE): {mean_squared_error(y_true, y_pred
    print(f" > Mean Absolute Error (MAE): {mean_absolute_error(y_true, y_predictions); }
print(f" > R-squared (R² Score): {r2_score(y_true, y_pred):.4f}")
# Evaluate
evaluate model(y test, best rf preds, "Tuned Random Forest")
    Tuned Random Forest Evaluation:
       Mean Squared Error (MSE): 0.2549
       ➤ Mean Absolute Error (MAE):
                                        0.3284
       ➤ R-squared (R<sup>2</sup> Score):
                                        0.8054
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.scatter(y_test, best_rf_preds, alpha=0.5, edgecolors='w')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
plt.xlabel("Actual Median House Value")
plt.ylabel("Predicted Median House Value")
plt.title("Actual vs Predicted Prices (Tuned Random Forest)")
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
import seaborn as sns
import pandas as pd

# Get feature importances
feature_importance = pd.Series(best_rf.feature_importances_, index=X.columns)
feature_importance = feature_importance.sort_values(ascending=True)

# Plot
plt.figure(figsize=(10, 6))
sns.barplot(x=feature_importance.values, y=feature_importance.index, palette="vir plt.title("Feature Importances from Tuned Random Forest")
plt.xlabel("Importance Score")
```

```
plt.ylabel("Feature")
plt.tight_layout()
plt.show()
```

<ipython-input-35-95bf0b323307>:10: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in sns.barplot(x=feature_importance.values, y=feature_importance.index, palette

