Devoir d'Optimisation n°2 pour le mardi 7 mai 2019

1. Soit $E = \mathcal{S}_n(\mathbb{R})$, l'espace euclidien des matrices symétriques de \mathbb{R}^n , muni du produit scalaire $\langle A, B \rangle = \operatorname{tr}(AB)$ et soit $f : E \to \mathbb{R}$ telle que $f(X) = \frac{1}{n} ||X||^2 - \left(\frac{\operatorname{tr} X}{n}\right)^2$.

On souhaite calculer $f^*: S \in E \mapsto \sup_{X \in E} (\langle S, X \rangle - f(X)).$

- a) Vérifier que, pour tout $X \in E$, $f(X) = \frac{1}{n} ||X \frac{\operatorname{tr} X}{n} I_n||^2$ et en déduire que f est convexe.
 - b) Montrer que $\max_{X \in E} (\langle S, X \rangle f(X))$ existe si et seulement si $\mathrm{tr} S = 0$ et qu'alors

$$f^*(S) = \frac{n}{4} ||S||^2.$$

- 2. Déterminer les extrémums de la fonction f sur C dans les cas suivants :
 - a) $f(x,y) = x^2 + xy$ et $C = \{(x,y) \in \mathbb{R}^2 : y \ge 0, y \ge x, x^2 + y^2 \le 1\}$;
 - **b)** $f(x,y,z) = x^2 + \frac{1}{2}y^2 + \frac{1}{2}z^2 2xy xz$ et $C = \{(x,y,z) \in \mathbb{R}^3 ; x^2 + y^2 + z^2 \le 1\}.$

3. Calculs de distances

a) Sur \mathbb{R}^2 , soit $X = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x+y \le 6 \text{ et } y \ge x^2\}$. Déterminer la distance de $A\left(\frac{9}{4},2\right)$ à X et vérifier graphiquement le résultat.

[On utilisera la factorisation $2x^3 - 3x + \frac{9}{4} = \left(x - \frac{3}{2}\right)\left(2x^2 + 3x + \frac{3}{2}\right)$.]

- b) Sur \mathbb{R}^3 , on considère le cône $C=\{(x,y,z)\in\mathbb{R}^3\;;\;z\geq\sqrt{x^2+y^2}\}$. Déterminer la distance d'un point P(a,b,c) à C.
- **4.** Soit $u \in \mathbb{R}^n$ fixé. On cherche $x \in (\mathbb{R}_+)^n$ vérifiant $\sum_{i=1}^n x_i = 1$, le plus proche de u pour la norme euclidienne.
- a) Formaliser cette question comme un problème de minimisation. Montrer l'existence d'une solution et écrire avec le plus grand soin les relations de Kuhn-Tucker.
 - b) Résoudre le problème dans le cas n=3 et u=(5,1,4).