Introduction to Data Science CS 5963 / Math 3900

Lecture 5: Linear Regression

Recommended Reading: ISLR, Ch.3 Available digitally here: link

hw1 grades

In [30]: filtered_hwl_grades.describe()

Out[30]:

	Homework 1 (3014660)
count	33.000000
mean	88.424242
std	23.971377
min	0.000000
25%	91.000000
50%	95.000000
75%	99.000000
max	100.000000

In [32]: ggplot(filtered_hwl_grades, aes(x=hw_label)) + geom_histogram()

Homework 1 (3014660)

Linear Regression

Linear regression models the relationship between a (real-valued) dependent value Y and an independent (explanatory) variable X.

Examples:	explanatory variable	dependent variable
	square footage	house price
	advertising dollars spent	profit
	stress	lifespan
	?	?

Simple Linear Regression

$$y \sim \beta_0 + \beta_1 x$$

15 10 -20 -10 10 20 30 40 50 60

We have samples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n).$

Goal: Find the best values of β_0 and β_1 , denoted $\hat{\beta}_0$ and $\hat{\beta}_1$, so that the prediction $y = \hat{\beta}_0 + \hat{\beta}_1 x$ "best fits" the data.

Theorem. The best parameters in the least squares sense are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$