

Description

Features

- V_{DS}= -30V, I_D= -12A
 - $R_{DS(ON)}$ <14m Ω @ V_{GS} = -10V
 - $R_{DS(ON)}$ < 20m Ω @ V_{GS} = -4.5V
- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- PWM Applications
- Load Switch
- Power Management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM12P03-S8	VSM12P03	TAPING	SOP-8	13inch	4000	48000

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±20	V
1_	Continuous Drain Current	T _A = 25℃	-12	Α
I _D		T _A = 100℃	-7.8	Α
I _{DM}	Pulsed Drain Current note1		-48	
E _{AS}	Single Pulsed Avalanche Energy note2		64	mJ
P _D	Power Dissipation	T _A = 25℃	3	W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		41.7	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D = -250µA	-30	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -30V, V_{GS} = 0V,$	-	-	-1	μA		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA		
On Characteristics								
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250μA	-1.0	-1.6	-2.5	V		
0	Static Drain-Source on-Resistance	V _{GS} =-10V, I _D =-12A	-	9.3	14			
$R_{DS(on)}$	note3	V _{GS} =-4.5V, I _D =-8A	-	14	20	mΩ		
Dynamic (Characteristics	•						
C _{iss}	Input Capacitance	$V_{DS} = -15V, V_{GS} = 0V,$	-	2800	-	pF		
Coss	oss Output Capacitance		-	346	-	pF		
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz	-	319	-	pF		
Qg	Total Gate Charge	\\ - 45\\ I - 40A	-	30	-	nC		
Q_{gs}	Gate-Source Charge	V_{DS} = -15V, I_D = -12A, V_{GS} = -10V	-	5.3	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge		-	7.6	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time		-	14	-	ns		
t _r	Turn-on Rise Time	$V_{DD} = -15V$, $I_D = -6A$,	-	20	-	ns		
t _{d(off)}	Turn-off Delay Time	V_{GS} =-10V, R_{GEN} =2.5 Ω	-	95	-	ns		
t _f	Turn-off Fall Time		-	65	-	ns		
Drain-Sou	rce Diode Characteristics and Maxin	num Ratings						
Is	Maximum Continuous Drain to Source Diode Forward			_	-12	Α		
18	Current			_	-12	^		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-48	Α		
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = -12A	-	-0.8	-1.2	V		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Eas condition: TJ=25 $^{\circ}\mathrm{C}$, VDD=-15V, VG=-10V, RG=25 Ω , L=0.5mH, Ias=-16A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Typical Performance Characteristics

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

