

Computer Networks Day 2 Layer 2 Security

Outline

- ✓ Layer 2 vulnerabilities.
- ✓ CAM table overflow attacks.
- ✓ Configure port security to mitigate CAM table overflow attacks.
- ✓ Configure VLAN Truck security to mitigate VLAN hopping attacks.
- ✓ Implement DHCP Snooping to mitigate DHCP attacks.
- ✓ Implement Dynamic ARP Inspection to mitigate ARP attacks.

Layer 2 Vulnerabilities

Layer 2 Vulnerabilities

Switch Attack Categories

CAM Table Attacks

Basic Switch Operation

```
S1# show mac-address-table
          Mac Address Table
Vlan
        Mac Address
                          Type
                                      Ports
                                      Fa0/4
        0001.9717.22e0
                          DYNAMIC
        000a.f38e.74b3
                                      Fa0/1
                          DYNAMIC
                                      Fa0/3
        0090.0c23.ceca
                          DYNAMIC
        00d0.ba07.8499
                                      Fa0/2
                          DYNAMIC
Sw1#
```

CAM Table Operation Example

CAM Table Attack

Intruder Runs Attack Tool

CAM Table Attack

Switch Floods All Traffic

Attacker Captures Traffic

CAM Table Attack Tools

```
macof -i eth1
36:a1:48:63:81:70 15:26:8d:4d:28:f8 0.0.0.0.26413 > 0.0.0.0.49492: S 1094191437:1094191437(0) win 512
16:e8:8:0:4d:9c da:4d:bc:7c:ef:be 0.0.0.61376 > 0.0.0.0.47523: S 446486755:446486755(0) win 512
18:2a:de:56:38:71 33:af:9b:5:a6:97 0.0.0.0.20086 > 0.0.0.0.6728: S 105051945:105051945(0) win 512
e7:5c:97:42:ec:1 83:73:1a:32:20:93 0.0.0.0.45282 > 0.0.0.0.24898: S 1838062028:1838062028(0) win 512
62:69:d3:1c:79:ef 80:13:35:4:cb:d0 0.0.0.11587 > 0.0.0.0.7723: S 1792413296:1792413296(0) win 512
c5:a:b7:3e:3c:7a 3a:ee:c0:23:4a:fe 0.0.0.0.19784 > 0.0.0.0.57433: S 1018924173:1018924173(0) win 512
88:43:ee:51:c7:68 b4:8d:ec:3e:14:bb 0.0.0.0.283 > 0.0.0.0.11466: S 727776406:727776406(0) win 512
b8:7a:7a:2d:2c:ae c2:fa:2d:7d:e7:bf 0.0.0.0.32650 > 0.0.0.0.11324: S 605528173:605528173(0) win 512
e0:d8:1e:74:1:e 57:98:b6:5a:fa:de 0.0.0.0.36346 > 0.0.0.0.55700: S 2128143986:2128143986(0) win 512
```


Mitigating CAM Table Attacks

Secure Unused Ports

The interface range command can be used to apply a configuration to several switch ports at one time.

Countermeasure for CAM Table Attacks

Port Security: Operation

- Port security limits the number of valid MAC addresses allowed to transmit data through a switch port.
 - If a port has port security enabled and an unknown MAC address sends data, the switch presents a security violation.
 - Default number of secure MAC addresses allowed is 1.
- Methods use to configure MAC addresses within port security:
 - Static secure MAC addresses manually configure switchport port-security mac-address mac-address
 - Dynamic secure MAC addresses dynamically learned and removed if the switch restarts
 - Sticky secure MAC addresses dynamically learned and added to the running configuration (which can later be saved to the startup-config to permanently retain the MAC addresses)

switchport port-security mac-address sticky mac-address

Note: Disabling sticky learning converts sticky MAC addresses to dynamic secure addresses and removes them from the running-config.

Port Security: Violation Modes

- Protect data from unknown source MAC addresses are dropped; a security notification IS NOT presented by the switch
- Restrict data from unknown source MAC addresses are dropped; a security notification IS presented by the switch and the violation counter increments.
- Shutdown (default mode) interface becomes error-disabled and port LED turns off. The violation counter increments. Issues the shutdown and then the no shutdown command on the interface to bring it out of the error-disabled state.

Violation Mode	Forwards Traffic	Sends Syslog Message	Displays Error Message	Increases Violation Counter	Shuts Down Port
Protect	No	No	No	No	No
Restrict	No	Yes	No	Yes	No
Shutdown	No	No	No	Yes	Yes

Security Violations Occur In These Situations

- A station with MAC address that is not in the address table attempts to access the interface when the table is full.
- An address is being used on two secure interfaces in the same VLAN.

Port Security: Configuring

Feature	Default Setting
Port security	Disabled on a port
Maximum number of secure MAC addresses	1
Violation mode	Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded.
Sticky address learning	Disabled

Port Security: Configuring (Cont.)

 Before configuring port-security features, place the port in access mode and use the switchport port-security interface configuration command to enable port security on an interface.

Port Security: Configuring (Cont.)

Port Security: Verifying

Use the show port-security interface command to verify the maximum number of MAC addresses allowed on a particular port and how many of those addresses were learned dynamically using sticky.

Dynamic

S1# show port-security interface fastethernet 0/18 Port Security : Enabled Port Status : Secure-up Violation Mode : Shutdown Aging Time : 0 mins Aging Type : Absolute SecureStatic Address Aging : Disabled Maximum MAC Addresses : 1 : 1 Total MAC Addresses Configured MAC Addresses : 0 Sticky MAC Addresses : 0 : 0025.83e6.4b01:1 Last Source Address:Vlan Security Violation Count : 0

Sticky

```
S1# show port-security interface fastethernet 0/19
Port Security
                             : Enabled
Port Status
                             : Secure-up
Violation Mode
                             : Shutdown
Aging Time
                             : 0 mins
Aging Type
                             : Absolute
SecureStatic Address Aging
                             : Disabled
 Maximum MAC Addresses
                             : 10
Total MAC Addresses
                             : 1
Configured MAC Addresses
                             : 0
                             : 1
 Sticky MAC Addresses
                             : 0025.83e6.4b02:1
Last Source Address: Vlan
Security Violation Count
                             : 0
```


Port Security: Verifying (Cont.)

• Use the **show running-config** command to see learned MAC addresses added to the configuration.

```
S1# show run | begin FastEthernet 0/19
interface FastEthernet0/19
switchport mode access
switchport port-security maximum 10
switchport port-security
switchport port-security mac-address sticky
switchport port-security mac-address sticky
switchport port-security mac-address sticky
0025.83e6.4b02
```

• The **show port-security address** command shows how MAC addresses were learned on a particular port.

Ports in Error Disabled State

• Switch console messages display when a port security violation occurs. Notice the port link status changes to down.

```
Sep 20 06:44:54.966: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/18, putting Fa0/18 in err-disable state

Sep 20 06:44:54.966: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred, caused by MAC address 000c.292b.4c75 on port FastEthernet0/18.

Sep 20 06:44:55.973: %LINEPROTO-5-PPDOWN: Line protocol on Interface
FastEthernet0/18, changed state to down

Sep 20 06:44:56.971: %LINK-3-UPDOWN: Interface FastEthernet0/18, changed state to down
```


Ports in Error Disabled State (Cont.)

 Check the port status and the port security settings.

- Do not re-enable a port until the security threat is investigated and eliminated.
- Notice that you must first shut the port down and then issue the no shutdown command in order to use the particular port again after a security violation has occurred.

```
S1(config) # interface FastEthernet 0/18
S1(config-if) # shutdown
Sep 20 06:57:28.532: %LINK-5-CHANGED: Interface FastEthernet0/18, changed state to administratively down
S1(config-if) # no shutdown
Sep 20 06:57:48.186: %LINK-3-UPDOWN: Interface FastEthernet0/18, changed state to up
Sep 20 06:57:49.193: %LINEPROTO-5-UPDOWN: Line protocol on Interface
FastEthernet0/18, changed state to up
```


Mitigating VLAN Attacks

VLAN Hopping Attacks

VLAN Double-Tagging Attack

Mitigating VLAN Hopping Attacks

Mitigating DHCP Attacks

DHCP Spoofing Attack

DHCP Starvation Attack

Attacker Initiates a Starvation Attack

DHCP Server Offers Parameters

DHCP Starvation Attack

Client Requests all Offers

DHCP Server Acknowledges All Requests

Configuring DHCP Snooping

Configuring DHCP Snooping Example

DHCP Snooping Reference Topology

Configuring a Maximum Number of MAC Addresses

```
S1(config)# ip dhcp snooping
S1(config)#
S1(config)# interface f0/1
S1(config-if)# ip dhcp snooping trust
S1(config-if)# exit
S1(config)#
S1(config)# interface range f0/5 - 24
S1(config-if-range)# ip dhcp snooping limit rate 6
S1(config-if-range)# exit
S1(config)#
S1(config)#
S1(config)# ip dhcp snooping vlan 5,10,50-52
S1(config)#
```

Configuring DHCP Snooping Example

Verifying DHCP Snooping

```
S1# show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
5,10,50-52
DHCP snooping is operational on following VLANs:
DHCP snooping is configured on the following L3 Interfaces:
Insertion of option 82 is enabled
   circuit-id default format: vlan-mod-port
  remote-id: 0cd9.96d2.3f80 (MAC)
Option 82 on untrusted port is not allowed
Verification of hwaddr field is enabled
Verification of giaddr field is enabled
DHCP snooping trust/rate is configured on the following Interfaces:
                                                      Rate limit (pps)
Interface
                           Trusted
                                      Allow option
FastEthernet0/1
                                                      unlimited
                                      yes
  Custom circuit-ids:
FastEthernet0/5
                                      no
  Custom circuit-ids:
FastEthernet0/6
                                      no
  Custom circuit-ids:
<output omitted>
```

Configuring a Maximum Number of MAC Addresses

S1# show ip dhcp s	nooping binding				
MacAddress	IpAddress	Lease (sec)	Type	VLAN	Interface
00:03:47:B5:9F:AD	192.168.10.10	193185	dhcp-snooping	5	FastEthernet0/5

Mitigating ARP Attacks

ARP Spoofing and ARP Poisoning Attack

Configuring Dynamic ARP Inspection

Configuring DHCP Snooping Example

Configuring Dynamic ARP Inspection

```
S1(config)# ip dhep snooping
S1(config)#
S1(config)# ip dhep snooping vlan 10
S1(config)# ip arp inspection vlan 10
S1(config)#
S1(config)#
S1(config)# interface fa0/24
S1(config-if)# ip dhep snooping trust
S1(config-if)# ip arp inspection trust
S1(config-if)#
```

Configuring DHCP Snooping Example

Checking Source, Destination, and IP

```
S1(config) # ip arp inspection validate ?
  dst-mac Validate destination MAC address
  ip
           Validate IP addresses
  src-mac Validate source MAC address
S1(config) # ip arp inspection validate src-mac
S1(config) # ip arp inspection validate dst-mac
S1(config) # ip arp inspection validate ip
S1(config)#
S1(config) # do show run | include validate
ip arp inspection validate ip
S1(config)#
S1(config) # ip arp inspection validate src-mac dst-mac ip
S1(config)#
S1(config) # do show run | include validate
ip arp inspection validate src-mac dst-mac ip
S1(config)#
```


Mitigating Address Spoofing Attacks

Address Spoofing Attack

Mitigating Address Spoofing Attacks

For each untrusted port, there are two possible levels of IP traffic security filtering:

- Source IP address filter
- Source IP and MAC address filter

Configuring IP Source Guard

IP Source Guard Reference Topology

Configuring IP Source Guard

```
S1(config)# interface range fastethernet 0/1 - 2
S1(config-if-range)# ip verify source
S1(config-if-range)# end
S1#
```

Checking IP Source Guard

		IP-address	Mac-address	Vlan
)	active	192.168.10.10		10
	active	192.168.10.11		10

Configuring Loop Guard

Summary

- Explain endpoint security.
- Describe various types of endpoint security applications.
- Describe Layer 2 vulnerabilities.

Q&A