Lab. de Circuitos Eletrônicos Analógicos - Exp. 03

AMPLIFICADOR DIFERENCIAL

Vídeo_aula de apoio:

https://www.youtube.com/watch?v=AAA8hswed1k

PRÉ-LABORATÓRIO:

- Q_1 , Q_2 , Q_3 , Q_4 , $Q_5 \rightarrow$ CA3046. **Nota:** O pino 13 do CA3046 está ligado ao substrato. Assim, deve haver uma correspondência entre os transistores Q_1 ,..., Q_5 da figura, com os transistores Q_1 ,..., Q_5 da folha de dados técnicos do CA3046. O emissor do Q_5 é o ponto mais negativo possível do circuito.
- 1) Determine o modelo equivalente ac para pequenos sinais do circuito em questão, justificando-o.
- 2) Dado I = 5mA e consultando o *datasheet* do CA3046, determine R_C para um ganho $V_{02}/V_i = 100$ (assuma $r_0 \rightarrow \infty$).
- 3) Determine R_1 , R_2 e R_E para que haja um compromisso entre a independência de I com V_{BE} e o consumo de potência do circuito de polarização. Dica: equacione as malhas e isole a corrente I. Não é necessário aplicar a relação exponencial. Imponha 0.5mA passando por R_2 , de modo a minimizar o consumo. Como há um grau de liberdade no dimensionamento desses resistores, assumir $R_1 = R_2$ e $R_E = 1.2k\Omega$.
- 4) Estime a máxima excursão de tensão em V_{o1} e V_{o2} , assim como para $V_{o2} V_{o1}$.
- 5) Calculando rin+, estime o ganho V_{o1}/Vg

PARTE EXPERIMENTAL:

- 1) Monte o circuito, <u>procurando utilizar resistors o mais possível casados</u>, e verifique, com ambas as bases aterradas, os valores quiescentes de correntes e tensões, comparando-os com os valores esperados. Estime a tensão de offset do amplificador diferencial, impondo uma tensão DC à base de Q₁ (pode ser imposta antes do atenuador, para melhor sensibilidade) para que a tensão DC diferencial à saída seja igual a zero (Obs: por se tratar de um parâmetro randônico, a tensão de offset pode ser positiva ou negativa).
- 2) <u>Modo-Diferencial</u>: Meça o ganho V_{02}/V_i e o ganho diferencial $A_{dm} = (V_{02}-V_{01})/V_i$, comparando-o com o valor teórico. Observe que existe uma defasagem de 180° entre as duas saídas. Isso faz com que o ganho A_{dm} seja o dobro do ganho em relação a uma única saída, referenciada ao terra. <u>Analise e</u> justifique a forma de onda no emissor de Q1 (Q2). Documente as formas de onda.
- 3) Aterre diretamente as bases de Q_1 e Q_2 , e determine indiretamente a tensão de *off-set* através de $V_{OS} = (V_{02}-V_{01})/A_{dm}$. Compare com o valor obtido no ítem 1) experimental.
- 4) <u>Modo-Comum:</u> Conecte a base dos transistores Q_1 e Q_2 ao sinal do gerador (sem o atenuador) e meça o ganho de modo comum $A_{cm} = V_{ocm}/V_i$, onde V_{ocm} é tirado de um dos coletores em relação ao terra. No caso, considere o coletor de Q_1 . Estime o valor da razão de rejeição ao modo-comum CMRR = $20\log(A_{cm}/A_{dm})$,

Repita a análise acima, agora provocando um descasamento de 10% no valor do R_C conectado ao coletor de Q_1 , comparando os valores de CMRR. Comente!