DispersionRelation

April 21, 2019

1 Visualization of quadratic and honeycomb lattice dispersion relations in tight-binding model

1.1 Quadratic lattice

```
Quadratic lattice dispersion relation:
```

```
\epsilon_{\vec{k}} = \epsilon_0 - 2t \cdot (\cos(k_x a_x) + \cos(k_y a_y))
```

Where ϵ_0 is ground level energy at given site and -t is hopping energy for nearest neighbours.

1.2 Honeycomb lattice (graphene)

Quadratic lattice dispersion relation:

$$\epsilon_{\vec{k}} = \epsilon_0 - 2t \cdot (\cos(\vec{k} \cdot \vec{\delta}_1) + \cos(\vec{k} \cdot \vec{\delta}_2) + \cos(\vec{k} \cdot \vec{\delta}_3))$$

 $\epsilon_{\vec{k}} = \epsilon_0 - 2t \cdot (\cos(\vec{k} \cdot \vec{\delta}_1) + \cos(\vec{k} \cdot \vec{\delta}_2) + \cos(\vec{k} \cdot \vec{\delta}_3))$ Where ϵ_0 is ground level energy at given site and -t is hopping energy for nearest neighbours.

Vectors $\vec{\delta}_1$, $\vec{\delta}_2$, $\vec{\delta}_3$ describe lattice:

$$\vec{\delta}_{1} = a_{0}(\frac{1}{2}, \frac{\sqrt{3}}{2})$$

$$\vec{\delta}_{2} = a_{0}(\frac{1}{2}, -\frac{\sqrt{3}}{2})$$

$$\vec{\delta}_{3} = a_{0}(-\frac{1}{2}, 0)$$

In [37]: disp = graphene_dispersion_calculator()

In [39]: calc = DensityOfStatesCalculator(disp, grid)

In []: