AUT201

ENSTA

TD1 - Commandabilité

Exercice 1.

La position d'un train sur une voie est repérée par sa position x(t) et son accélération est commandée par la relation

$$\frac{d^2x}{dt^2} = u.$$

1. Écrire l'équation (1) sous la forme d'un système de commande

$$X' = AX + Bu.$$

- 2. Montrer que le système est commandable.
- 3. Montrer qu'en se restreignant à des commandes $u(t) = \pm 1$ constantes par morceaux, le système reste commandable.

Exercice 2 (Critère de Kalman).

On considère le système de commande dans \mathbb{R}^n

$$x'(t) = Ax(t) + Bu(t), \tag{1}$$

où A est une matrice $n \times n$, B une matrice $n \times m$ et $u : [0,T] \to \mathbb{R}^m$ est une loi de commande. On note $\mathcal{A}_T \subset \mathbb{R}^n$ l'ensemble des points atteignables en temps T à partir de 0 et

$$\mathcal{C} = [B AB \cdots A^{n-1}B]$$

la matrice $n \times nm$ de commandabilité

- 1. Écrire x(T) en fonction de x(0), $u(\cdot)$, A et B.
- 2. a) Montrer que pour tout $k \in \mathbb{N}$,

$$A^k \in \text{Vect}(Id, A, A^2, \dots, A^{n-1}).$$

b) En déduire que pour tout réel t,

$$e^{tA} \in \text{Vect}(Id, A, A^2, \dots, A^{n-1}),$$

et que $\mathcal{A}_T \subset \mathrm{Im}\mathcal{C}$.

3. a) Soit $y \in \mathcal{A}^{\perp}$. Montrer que, pour tout $s \in [0, T]$,

$$u^{\top} e^{(T-s)A} B = 0.$$

- b) Montrer que $A_T = \text{Im} C$. En déduire la condition nécessaire et suffisante de commandabilité.
- 4. Considérons maintenant le système commandé affine,

$$x'(t) = Ax(t) + Bu(t) + b(t),$$
 où $b: \mathbb{R} \to \mathbb{R}^n$ est continue.

Montrer que ce système est commandable si et seulement si le système (1) l'est.

Exercice 3.

Une voiture commandée en vitesse est modélisée de la façon suivante :

$$\begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} v\cos\theta \\ v\sin\theta \\ w \end{bmatrix}$$

où les commandes v et w sont les vitesses linéaires et angulaires.

- 1. Montrer que le système est commandable, par exemple par des commandes constantes par morceaux $(v, w) = (0, \pm 1)$ ou $(\pm 1, 0)$.
- 2. Écrire le linéarisé du système autour d'une trajectoire $X(t)=(x,y,\theta)(t)$ correspondant à une commande (v(t),w(t)).
- 3. Le linéarisé autour d'une trajectoire correspondant à $(v, w) \equiv (0, 0)$ est-il commandable?
- 4. Même question pour le linéarisé autour d'une trajectoire correspondant à $(v, w) \equiv (v_0, 0)$, où v_0 est une constante non nulle.

Exercice 4.

On modélise un satellite en orbite par un système plan composé d'une roue à inertie de masse M et de moment d'inertie J, et d'une barre rigide de masse m et de longueur l. La barre symbolise un télescope que l'on désire aligner sur une étoile fixe. À l'aide d'un moteur, la roue à inertie peut appliquer sur l'extrémité fixe de la barre un couple u, permettant ainsi de commander le système. On désigne par θ l'angle que fait la barre par rapport à une direction fixe, et par ω la vitesse angulaire de la roue à inertie. On ne mesure que θ .

Les équations régissant la dynamique du système sont

$$\theta'' = \frac{u}{ml^2}, \qquad \omega' = -\frac{u}{J}.$$

- 1. Préciser l'état, l'entrée et la sortie et écrire le système commandé associé.
- 2. Montrer que ce système n'est pas commandable.
- 3. Montrer qu'il existe une constante du mouvement (c'est-à-dire une fonction constante le long de toute solution du système).
- 4. En déduire que l'ensemble des états atteignables à partir d'une condition initiale donnée, en temps quelconque, est un espace affine dont on donnera l'équation.

Corrigés

Corrigé de l'exercice 1.

1. En prenant pour état X=(x,x'), on obtient

$$X'(t) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} X(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t).$$

- **2.** La matrice de commandabilité $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est de rang 2, le système est donc commandable.
- 3. À partir d'un point $X_0 = (x_0, x_0') \in \mathbb{R}^2$, la trajectoire du système associée à la loi de commande $u \equiv +1$ a pour équation x'' = 1, c'est-à-dire x'x'' = x', et en intégrant

$$\frac{1}{2}(x'(t)^2 - x_0'^2) = x(t) - x_0.$$

De même, l'équation de la trajectoire associée à la loi de commande $u \equiv -1$ est

$$\frac{1}{2}(x'(t)^2 - x_0'^2) = -x(t) + x_0.$$

Les orbites des ces deux trajectoires sont des paraboles couchées orientées en sens inverse (voir la figure 1).

Figure 1 - Trajectoires dans le plan de phase

Donnons-nous maintenant un autre point X_1 dans \mathbb{R}^2 . Il est clair que l'une des paraboles issues de X_0 doit couper l'une des paraboles issues de X_1 : il suffit alors de suivre les trajectoires correspondantes pour obtenir une solution amenant le système de l'état X_0 à l'état X_1 . Le système est donc commandable.

Corrigé de l'exercice 2.

De 1 à 3, cf poly.

Pour la question 4, utiliser la formule de la variation de la constante pour écrire l'ensemble atteignable du système affine : cet ensemble apparaît alors comme un espace affine dont la partie vectorielle est \mathcal{A}_T , d'où la conclusion.

Corrigé de l'exercice 3.

1. Il suffit de montrer que l'on peut amener la voiture de l'origine à une configuration (x, y, θ) quelconque. Or ceci peut être réalisé par la commande suivante :

- faire pivoter la voiture jusqu'à ce que son axe pointe vers (x,y), à l'aide d'une commande $(v,w)=(0,\pm 1)$;
- amener la voiture en ligne droite jusqu'à la position (x,y), en utilisant la commande (v,w)=(1,0);
- refaire pivoter la voiture jusqu'à ce qu'elle soit orientée selon l'angle θ , à l'aide d'une commande $(v, w) = (0, \pm 1)$.
- 2. L'équation commandée s'écrit X'(t) = f(X(t), u(t)), où $X = (x, y, \theta)$, u = (v, w) et

$$f(X, u) = \left[\begin{array}{c} v \cos \theta \\ v \sin \theta \\ w \end{array} \right].$$

L'équation linéarisée autour d'une solution $X(\cdot)$ associée à une commande $u(\cdot)$ est

$$\delta X'(t) = A(t)\delta X(t) + B(t)\delta u(t),$$

οù

$$A(t) = D_X f(X(t), u(t)) = \begin{pmatrix} 0 & 0 & -v(t)\sin\theta(t) \\ 0 & 0 & v(t)\cos\theta(t) \\ 0 & 0 & 0 \end{pmatrix},$$

$$B(t) = D_u f(X(t), u(t)) = \begin{pmatrix} \cos\theta(t) & 0 \\ \sin\theta(t) & 0 \\ 0 & 1 \end{pmatrix}.$$

3. Quand $u(\cdot) \equiv 0$, la solution $X(\cdot)$ satisfait $\theta' = 0$, c'est-à-dire $\theta(\cdot) \equiv \theta(0)$. Les fonctions matricielles $A(\cdot)$ et $B(\cdot)$ sont maintenant constantes : $A(\cdot) \equiv 0$ et $B(\cdot) = B_0$.

Le système linéarisé s'écrit donc $\delta X'(t) = B_0 \delta u(t)$ et n'est pas commandable, car le critère de Kalman n'est pas satisfait : rang $\mathcal{C} = \operatorname{rang} B_0 = 2 < 3$.

4. Toute solution $X(\cdot)$ associée au contrôle $(v, w) \equiv (v_0, 0)$ satisfait $x(t) = tv_0 \cos \theta(0) + x(0)$, $y(\cdot) = tv_0 \sin \theta(0) + y(0)$ et $\theta(\cdot) \equiv \theta(0)$. Les fonctions matricielles $A(\cdot)$ et $B(\cdot)$ sont encore une fois constantes :

$$A = \begin{pmatrix} 0 & 0 & -v_0 \sin \theta(0) \\ 0 & 0 & v_0 \cos \theta(0) \\ 0 & 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} \cos \theta(0) & 0 \\ \sin \theta(0) & 0 \\ 0 & 1 \end{pmatrix}.$$

En revanche le critère de Kalman est satisfait, le système est donc commandable.

Corrigé de l'exercice 4.

1. L'état est $x=(\theta,\theta',\omega)$, la sortie $y=\theta$ et l'entrée u, ce qui donne le système de commande suivant :

$$x' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x + u \begin{pmatrix} 0 \\ \frac{1}{ml^2} \\ -\frac{1}{7} \end{pmatrix}, \qquad y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} x.$$

2. La matrice de commandabilité est

$$C = \begin{pmatrix} 0 & \frac{1}{ml^2} & 0\\ \frac{1}{ml_1^2} & 0 & 0\\ -\frac{1}{I} & 0 & 0 \end{pmatrix}.$$

Elle est de rang 2, donc le système n'est pas commandable.

- 3. Le moment cinétique $\xi = J\omega + ml^2\theta'$ reste constant le long de toute solution puisque $\frac{d\xi}{dt}\xi(t) = 0$.
- 4. Faisons le changement de coordonnées linéaire $(\theta, \theta', \xi) = Px$, où

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & ml^2 & J \end{pmatrix}.$$

Dans ces coordonnées, le système de commande satisfait

$$\begin{pmatrix} \theta \\ \theta' \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \theta \\ \theta' \end{pmatrix} + u \begin{pmatrix} 0 \\ \frac{1}{ml^2} \end{pmatrix}, \qquad \xi' = 0.$$

Le système de commande en (θ, θ') est commandable, la matrice de commandabilité associée étant de rang 2. L'ensemble des points atteignables à partir d'une condition initiale $(\theta_0, \theta'_0, \xi_0)$ est donc l'espace affine d'équation $\{\xi = \xi_0\}$. Remarquons que le système réduit en (θ, θ') est également observable.