

Initial Results from Exhaust Noise Tests of Three Streams

Supersonics Project

Model

Hardware designed and manufactured under SUP NRA NNC10CA02C – N+2 Supersonic Validation, Lockheed Martin

Third Stream Upgrade - Capabilities

- Mass flow rate 0.5 to 6.0 lbm/sec
- Temperature range 70° to 250° F (no independent temperature control)
- Controllable plenum outlet pressure 14 to 30 psia
- Evenly distributed flow (circumferentially) accomplished with choke plate and Dynapore screens
- Instrumentation
 - o plenum static pressure, total pressure, total temperature
 - o mass flow venturi meter

Studies

- Far-field acoustics
- PIV
 - o cross-stream stereo
 - o streamwise

Acoustic Results - Mixer vs. Splitter

$$M_{fj} = 0.3$$

Acoustic Results - Core Splitter

1	
BIL	20
NA	ZA.
-	
	NĄ

	NPR _c	NPR _b	NPR _t	W _c (lbm/s)	W _b (lbm/s)	W _t	
	1.8	1.8	1.3	3.5	16.1	3.2	$M_{fi} = 0.3$
	1.8	1.8	1.4	3.5	16.1	3.8	
	1.8	1.8	1.5	3.5	16.1	4.2	
	1.7	1.8	1.5	2.8	16.9	4.2	
120	· Inners						120
110					90°		Peak Direction
100		es.M	h-yyyyy				100
PSD (dB)	-			The same of the sa			90
80				Come Le	/		80
70	entimost consumptions and an artist and an artist and artist artist and artist and artist art	— NPRO	c,b,t: 1.8, c,b,t: 1.8, c,b,t: 1.8,	1.8, 1.3 N ⁻ 1.8, 1.4 N ⁻ 1.8, 1.5 N ⁻	TRc,b: 3.2, TRc,b: 3.2, TRc,b: 3.2,	1.25 1.25 1.25	70 - NPRc,b,t: 1.8, 1.8, 1.3 NTRc,b: 3.2, 1.25 NPRc,b,t: 1.8, 1.8, 1.4 NTRc,b: 3.2, 1.25 NPRc,b,t: 1.8, 1.8, 1.5 NTRc,b: 3.2, 1.25
60 l) ²		10 ³ Fre	eq (Hz)	04	10 ⁵	60 ₁₀ ² 10 ³ 10 ⁴ 10 ⁵ Supersonics Project - 6

Acoustic Results - Core Lobed Mixer

	NPR _c	NPR _b	NPR _t	W _c (lbm/s)	W _b (lbm/s)	W _t (lbm/s)	
	1.8	1.8	1.3	3.6	15.5	3.3	$M_{fi} = 0.3$
	1.8	1.8	1.4	3.6	15.5	3.8	
	1.8	1.8	1.5	3.6	15.5	4.2	
	1.7	1.8	1.5	2.9	16.3	4.2	
120	_						20 🗆
110	rect				90°	- 011 1	Peak Direction
100 6	~~	arvw	hall Mark			1	00
PSD (dB)	-						90
80					1	A	80
70		- NPRc,	b,t: 1.8, 1	.8, 1.3 NTF .8, 1.4 NTF .8, 1.5 NTF	Rc,b: 3.2, 1.	.25 .25 .25	70
60 l)2		10 ³		0 ⁴	10 ⁵	60 NPRC, b. t: 1.8, 1.8, 1.5 NTRC, b: 3.2, 1.25 10 ² 10 ³ 10 ⁴ 10 ⁵ Freq (Hz)

Acoustic Results - Core Lobed Mixer

NP	NPR _c NPR _b		NPR.	W _c	W _b	W _t
	· ·C	I I I I D	141 141	(lbm/s)	(lbm/s)	(lbm/s)
1.	8	1.8	1.3	3.6	15.5	3.3
1.	8	1.8	1.4	3.6	15.5	3.8
1.	8	1.8	1.5	3.6	15.5	4.2
1.	7	1.8	1.5	2.9	16.3	4.2

Velocity and Thrust

NPR _c	NPRb	NPR _t	V _b /V _c	V _t /V _b	V _{fj} /V _t	Thrust Increase (%)
1.8	1.8	1.3	0.63	0.68	0.45	
1.8	1.8	1.4	0.63	0.76	0.40	3
1.8	1.8	1.5	0.63	0.83	0.36	5
1.7	1.8	1.5	0.66	0.84	0.36	3

Current Three-stream Experiments

- Experiments conducted October 2011
- Hardware includes core splitter and core lobed mixer
- Experiments include
 - Far-field acoustics
 - -PIV
 - Two-component streamwise
 - Cross-stream stereo

Conclusions

- Increase in thrust achieved with addition of third stream without increase in noise
- Database needs to be expanded to understand potential of third-stream for noise reduction