Non-commuting, non-generating graphs and intersection graphs of groups

Saul D. Freedman

University of St Andrews

SUSTech Group Theory Seminar October 10 2022

The generating graph of a group G has vertices $G \setminus \{1\}$, with vertices x and y joined if and only if $\langle x, y \rangle = G$.

The generating graph of a group G has vertices $G \setminus \{1\}$, with vertices x and y joined if and only if $\langle x, y \rangle = G$.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

The generating graph of a group G has vertices $G \setminus \{1\}$, with vertices x and y joined if and only if $\langle x, y \rangle = G$.

Example: $G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$.

The generating graph of a group G has vertices $G \setminus \{1\}$, with vertices x and y joined if and only if $\langle x, y \rangle = G$.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

The graph is not connected – e.g., there is no path from a^2 to b.

The generating graph of a group G has vertices $G \setminus \{1\}$, with vertices x and y joined if and only if $\langle x, y \rangle = G$.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

The graph is not connected – e.g., there is no path from a^2 to b.

The non-isolated vertices form a connected component – a subgraph that is maximal among connected subgraphs.

The generating graph of a group G has vertices $G \setminus \{1\}$, with vertices x and y joined if and only if $\langle x, y \rangle = G$.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

The graph is not connected – e.g., there is no path from a^2 to b.

The non-isolated vertices form a connected component – a subgraph that is maximal among connected subgraphs.

This connected component has diameter 2 – this is the maximal length of a shortest path between two vertices.

Cameron (2022) introduced a hierarchy of graphs defined on $G \setminus \{1\}$:

The complete graph

- The complete graph
- The non-generating graph

- The complete graph
- The non-generating graph
- The commuting graph:

$$x \sim y \iff xy = yx$$

- The complete graph
- The non-generating graph
- The commuting graph: $x \sim y \iff xy = yx$
- ..

Cameron (2022) introduced a hierarchy of graphs defined on $G \setminus \{1\}$:

- The complete graph
- The non-generating graph
- The commuting graph: $x \sim y \iff xy = yx$
- . . .

The generating graph is the difference between the first two graphs. We will consider the next difference.

Definition

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \setminus Z(G)$, with vertices x and y joined if and only if: $xy \neq yx$ and $\langle x, y \rangle \neq G$.

1. Start with the generating graph of *G*.

Definition

- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.

Definition

- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.

Definition

- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.

Definition

- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.

Definition

- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.

Definition

- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.
- 4. Remove vertices from Z(G).

Definition

- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.
- 4. Remove vertices from Z(G).

Theorem (Breuer, Guralnick & Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2.

Theorem (Breuer, Guralnick & Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2.

Theorem (Burness, Guralnick & Harper, 2021)

The generating graph of a finite group G has no isolated vertices

 \iff the graph is connected with diameter at most 2

 \iff every proper quotient of G is cyclic.

Theorem (Breuer, Guralnick & Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2.

Theorem (Burness, Guralnick & Harper, 2021)

The generating graph of a finite group G has no isolated vertices

 \iff the graph is connected with diameter at most 2

 \iff every proper quotient of G is cyclic.

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Theorem (Breuer, Guralnick & Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2.

Theorem (Burness, Guralnick & Harper, 2021)

The generating graph of a finite group G has no isolated vertices

 \iff the graph is connected with diameter at most 2

 \iff every proper quotient of G is cyclic.

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

Theorem (Breuer, Guralnick & Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2.

Theorem (Burness, Guralnick & Harper, 2021)

The generating graph of a finite group G has no isolated vertices

 \iff the graph is connected with diameter at most 2

 \iff every proper quotient of G is cyclic.

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

$$x \sim y \implies y \sim x^{-1}$$

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

$$x \sim y \implies y \sim x^{-1}$$

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

$$x \sim y \implies y \sim x^{-1} \implies |x| = 2.$$

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

$$x \sim y \implies y \sim x^{-1} \implies |x| = 2.$$

 $x \sim y \implies x \sim xy \sim y.$

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

$$x \sim y \implies y \sim x^{-1} \implies |x| = 2.$$

$$x \sim y \implies x \sim xy \sim y$$
.

$$|x| = |y| = |xy| = 2 \implies xy = yx.$$

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph has no vertices if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1:

Suppose that x and y are vertices in such a component.

$$x \sim y \implies y \sim x^{-1} \implies |x| = 2.$$

$$x \sim y \implies x \sim xy \sim y$$
.

$$|x| = |y| = |xy| = 2 \implies xy = yx.$$

A contradiction.

Graphs with no edges

Suppose that G is non-abelian.

Graphs with no edges

Suppose that G is non-abelian.

 $\Gamma(G)$ has no edges \iff the elements of each non-generating pair commute.

Suppose that G is non-abelian.

 $\Gamma(G)$ has no edges \iff the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

Suppose that G is non-abelian.

 $\Gamma(G)$ has no edges \iff the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Suppose that G is non-abelian.

 $\Gamma(G)$ has no edges \iff the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

The order of such a group is divisible by at most two primes.

Suppose that G is non-abelian.

 $\Gamma(G)$ has no edges \iff the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

The order of such a group is divisible by at most two primes.

The infinite case is still open, but well-known examples are the Tarski monsters, infinite simple groups where the order of every proper nontrivial subgroup is a fixed prime p.

Suppose that G is non-abelian.

 $\Gamma(G)$ has no edges \iff the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

The order of such a group is divisible by at most two primes.

The infinite case is still open, but well-known examples are the Tarski monsters, infinite simple groups where the order of every proper nontrivial subgroup is a fixed prime p.

Ol'shanskiĭ showed in 1982 that a Tarski monster exists for each prime $p>10^{75}$.

Let d be the minimum size of a generating set for G.

Let d be the minimum size of a generating set for G.

The generating graph of G is only interesting if d = 2.

Let d be the minimum size of a generating set for G.

The generating graph of G is only interesting if d = 2.

The same is true for $\Gamma(G)$:

Let d be the minimum size of a generating set for G.

The generating graph of G is only interesting if d = 2.

The same is true for $\Gamma(G)$:

If d = 1, then G is cyclic and hence abelian, and so $\Gamma(G)$ has no vertices.

Let d be the minimum size of a generating set for G.

The generating graph of G is only interesting if d = 2.

The same is true for $\Gamma(G)$:

If d=1, then G is cyclic and hence abelian, and so $\Gamma(G)$ has no vertices.

If $d \geqslant 3$, then G has no generating pairs. Hence $\Gamma(G)$ is the non-commuting graph of G (with vertices $G \setminus Z(G)$).

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If $x, y \in G \setminus Z(G)$, then $C_G(x) < G$ and $C_G(y) < G$.

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If
$$x, y \in G \setminus Z(G)$$
, then $C_G(x) < G$ and $C_G(y) < G$.

The union of two proper subgroups of G is a proper subset of G, so $\exists h_{x,y} \in G \setminus (C_G(x) \cup C_G(y)).$

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If
$$x, y \in G \setminus Z(G)$$
, then $C_G(x) < G$ and $C_G(y) < G$.

The union of two proper subgroups of G is a proper subset of G, so $\exists h_{x,y} \in G \setminus (C_G(x) \cup C_G(y)).$

 $(x, h_{x,y}, y)$ is a path in the graph.

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If
$$x, y \in G \setminus Z(G)$$
, then $C_G(x) < G$ and $C_G(y) < G$.

The union of two proper subgroups of G is a proper subset of G, so $\exists h_{x,y} \in G \setminus (C_G(x) \cup C_G(y)).$

 $(x, h_{x,y}, y)$ is a path in the graph.

Similarly to $\Gamma(G)$, the graph cannot have diameter 1.

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If $x, y \in G \setminus Z(G)$, then $C_G(x) < G$ and $C_G(y) < G$.

The union of two proper subgroups of G is a proper subset of G, so $\exists h_{x,y} \in G \setminus (C_G(x) \cup C_G(y)).$

 $(x, h_{x,y}, y)$ is a path in the graph.

Similarly to $\Gamma(G)$, the graph cannot have diameter 1.

We are therefore only interested in $\Gamma(G)$ when G is 2-generated and non-abelian.

Let H be a maximal subgroup of G and $x, y \in H \setminus Z(H)$.

Let H be a maximal subgroup of G and $x, y \in H \setminus Z(H)$.

The subgraph of $\Gamma(G)$ induced by $H \setminus Z(H)$ is the subgraph with vertex set $H \setminus Z(H)$, and with all pre-existing edges between these vertices.

Let H be a maximal subgroup of G and $x, y \in H \setminus Z(H)$.

The subgraph of $\Gamma(G)$ induced by $H \setminus Z(H)$ is the subgraph with vertex set $H \setminus Z(H)$, and with all pre-existing edges between these vertices.

$$\langle x, y \rangle \leqslant H < G$$
. Hence $x \sim y \iff xy \neq yx$.

Let H be a maximal subgroup of G and $x, y \in H \setminus Z(H)$.

The subgraph of $\Gamma(G)$ induced by $H \setminus Z(H)$ is the subgraph with vertex set $H \setminus Z(H)$, and with all pre-existing edges between these vertices.

$$\langle x, y \rangle \leqslant H < G$$
. Hence $x \sim y \iff xy \neq yx$.

Thus the above induced subgraph is the non-commuting graph of H, of diameter 2.

Suppose that G is non-abelian and 2-generated.

Suppose that G is non-abelian and 2-generated.

A vertex x of $\Gamma(G)$ is isolated $\iff xy = yx$ whenever $\langle x, y \rangle \neq G$

Suppose that G is non-abelian and 2-generated.

A vertex x of $\Gamma(G)$ is isolated $\iff xy = yx$ whenever $\langle x, y \rangle \neq G$ \iff each maximal subgroup of G containing x also centralises x.

Suppose that G is non-abelian and 2-generated.

A vertex x of $\Gamma(G)$ is isolated $\iff xy = yx$ whenever $\langle x, y \rangle \neq G$ \iff each maximal subgroup of G containing x also centralises x.

An element $x \in G \setminus Z(G)$ is centralised by at most one maximal subgroup of G.

Suppose that G is non-abelian and 2-generated.

A vertex x of $\Gamma(G)$ is isolated $\iff xy = yx$ whenever $\langle x, y \rangle \neq G$ \iff each maximal subgroup of G containing x also centralises x.

An element $x \in G \setminus Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

- (i) x lies in a unique maximal subgroup M of G; and
- (ii) $x \in Z(M)$.

Suppose that G is non-abelian and 2-generated.

A vertex x of $\Gamma(G)$ is isolated $\iff xy = yx$ whenever $\langle x, y \rangle \neq G$ \iff each maximal subgroup of G containing x also centralises x.

An element $x \in G \setminus Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

- (i) x lies in a unique maximal subgroup M of G; and
- (ii) $x \in Z(M)$.

Conjecture: If x is isolated, then M is abelian.

Suppose that G is non-abelian and 2-generated.

A vertex x of $\Gamma(G)$ is isolated $\iff xy = yx$ whenever $\langle x, y \rangle \neq G$ \iff each maximal subgroup of G containing x also centralises x.

An element $x \in G \setminus Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

- (i) x lies in a unique maximal subgroup M of G; and
- (ii) $x \in Z(M)$.

Conjecture: If x is isolated, then M is abelian.

The conjecture holds when $M \leq G$.

Suppose that G is non-abelian and 2-generated.

A vertex x of $\Gamma(G)$ is isolated $\iff xy = yx$ whenever $\langle x, y \rangle \neq G$ \iff each maximal subgroup of G containing x also centralises x.

An element $x \in G \setminus Z(G)$ is centralised by at most one maximal subgroup of G.

Hence *x* is isolated if and only if:

- (i) x lies in a unique maximal subgroup M of G; and
- (ii) $x \in Z(M)$.

Conjecture: If x is isolated, then M is abelian.

The conjecture holds when $M \leq G$.

For finite groups, it suffices to prove the conjecture for primitive groups ${\it G}$ with all proper quotients cyclic.

More general than being nilpotent, but equivalent for finite groups.

More general than being nilpotent, but equivalent for finite groups.

$$\Delta(G) := \Gamma(G) \setminus \{\text{isolated vertices}\}.$$

More general than being nilpotent, but equivalent for finite groups.

$$\Delta(G) := \Gamma(G) \setminus \{\text{isolated vertices}\}.$$

More general than being nilpotent, but equivalent for finite groups.

$$\Delta(G) := \Gamma(G) \setminus \{\text{isolated vertices}\}.$$

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

Sketch of proof for (the contrapositive of) (b):

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

Sketch of proof for (the contrapositive of) (b):

(i) Assume that $\Delta(G) \neq \Gamma(G)$.

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

- (i) Assume that $\Delta(G) \neq \Gamma(G)$.
- (ii) Then $\Gamma(G)$ has an isolated vertex x.

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

- (i) Assume that $\Delta(G) \neq \Gamma(G)$.
- (ii) Then $\Gamma(G)$ has an isolated vertex x.
- (iii) x must lie in a unique maximal subgroup M of G, with $x \in Z(M)$.

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

- (i) Assume that $\Delta(G) \neq \Gamma(G)$.
- (ii) Then $\Gamma(G)$ has an isolated vertex x.
- (iii) x must lie in a unique maximal subgroup M of G, with $x \in Z(M)$.
- (iv) As M is normal in G, (iii) implies that M is abelian.

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge.

- (a) $\Delta(G)$ is connected with diameter 2 or 3.
- (b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

- (i) Assume that $\Delta(G) \neq \Gamma(G)$.
- (ii) Then $\Gamma(G)$ has an isolated vertex x.
- (iii) x must lie in a unique maximal subgroup M of G, with $x \in Z(M)$.
- (iv) As M is normal in G, (iii) implies that M is abelian.
- (v) G has an abelian maximal subgroup $\Longrightarrow Z(K) \leqslant Z(G)$ for each non-abelian (normal) maximal subgroup K of G.

Theorem (Cameron, F. & Roney-Dougal, 2021)

Suppose every maximal subgroup of G is normal, and $\Gamma(G)$ has an edge. (a) $\Delta(G)$ is connected with diameter 2 or 3.

(b) If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

Key lemma: Let K and L be (normal) maximal subgroups of G, and let $x \in K \setminus Z(K)$ and $y \in L \setminus Z(L)$. Then $d(x,y) \leq 3$. If $Z(K) \leq Z(G)$ and $Z(L) \leq Z(G)$, then $d(x,y) \leq 2$.

- (i) Assume that $\Delta(G) \neq \Gamma(G)$.
- (ii) Then $\Gamma(G)$ has an isolated vertex x.
- (iii) x must lie in a unique maximal subgroup M of G, with $x \in Z(M)$.
- (iv) As M is normal in G, (iii) implies that M is abelian.
- (v) G has an abelian maximal subgroup $\Longrightarrow Z(K) \leqslant Z(G)$ for each non-abelian (normal) maximal subgroup K of G.
- (vi) By the above lemma, $\Delta(G)$ has diameter 2.

For a finite nilpotent group G, we can prove a more precise relationship between the structures of G and $\Gamma(G)$. We use the fact that G is the direct product of its Sylow subgroups.

For a finite nilpotent group G, we can prove a more precise relationship between the structures of G and $\Gamma(G)$. We use the fact that G is the direct product of its Sylow subgroups.

Proposition (Cameron, F. & Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.

(i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2.

For a finite nilpotent group G, we can prove a more precise relationship between the structures of G and $\Gamma(G)$. We use the fact that G is the direct product of its Sylow subgroups.

Proposition (Cameron, F. & Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.

- (i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2.
- (ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

For a finite nilpotent group G, we can prove a more precise relationship between the structures of G and $\Gamma(G)$. We use the fact that G is the direct product of its Sylow subgroups.

Proposition (Cameron, F. & Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.

- (i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2.
- (ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

Main idea of proof: if $(a_1, a_2) \neq A$ then $((a_1, b_1), (a_2, b_2)) \neq A \times B$, and if $a_1 a_2 \neq a_2 a_1$, then $(a_1, b_1)(a_2, b_2) \neq (a_2, b_2)(a_1, b_1)$.

For a finite nilpotent group G, we can prove a more precise relationship between the structures of G and $\Gamma(G)$. We use the fact that G is the direct product of its Sylow subgroups.

Proposition (Cameron, F. & Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.

- (i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2.
- (ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

Main idea of proof: if $(a_1, a_2) \neq A$ then $((a_1, b_1), (a_2, b_2)) \neq A \times B$, and if $a_1 a_2 \neq a_2 a_1$, then $(a_1, b_1)(a_2, b_2) \neq (a_2, b_2)(a_1, b_1)$.

Example:

- $\Gamma(S_4)$ is connected with diameter 3.
- $\Gamma(S_4 \times C_2)$ is connected with diameter 2.
- $\Gamma(S_4 \times C_3)$ is connected with diameter 3.

Proposition (Cameron, F. & Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.

- (i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2.
- (ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

Example:

- $\Gamma(S_4)$ is connected with diameter 3.
- $\Gamma(S_4 \times C_2)$ is connected with diameter 2.
- $\Gamma(S_4 \times C_3)$ is connected with diameter 3.

Theorem (Crestani & Lucchini, 2013)

Let k be a positive integer. There exists a non-abelian finite simple group T and a positive integer n such that, excluding isolated vertices, the generating graph of T^n is connected with diameter greater than k.

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter at most 3.

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter at most 3.

What about $\Gamma(G)$?

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter at most 3.

What about $\Gamma(G)$?

There exist 2-generated finite soluble groups G with maximal subgroups M_1,\ldots,M_n , where for all distinct i,j: $M_i\cap M_j=Z(M_1)>Z(G)$. For $i\neq 1$, $Z(M_i)=Z(G)$.

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter at most 3.

What about $\Gamma(G)$?

There exist 2-generated finite soluble groups G with maximal subgroups M_1, \ldots, M_n , where for all distinct i, j: $M_i \cap M_j = Z(M_1) > Z(G)$. For $i \neq 1$, $Z(M_i) = Z(G)$.

Here, $\Gamma(G)$ is the union of two connected components of diameter 2: $M_1 \setminus Z(M_1)$, and everything else.

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter at most 3.

What about $\Gamma(G)$?

There exist 2-generated finite soluble groups G with maximal subgroups M_1, \ldots, M_n , where for all distinct i, j: $M_i \cap M_j = Z(M_1) > Z(G)$.

For $i \neq 1$, $Z(M_i) = Z(G)$.

Here, $\Gamma(G)$ is the union of two connected components of diameter 2: $M_1 \setminus Z(M_1)$, and everything else.

We will call a group G a [2,2]-group if $\Gamma(G)$ is the union of two connected components of diameter 2.

13 / 22

There exist 2-generated finite soluble groups G with maximal subgroups M_1, \ldots, M_n , where for all distinct i, j: $M_i \cap M_j = Z(M_1) > Z(G)$. For $i \neq 1$, $Z(M_i) = Z(G)$.

Here, $\Gamma(G)$ is the union of two connected components of diameter 2: $M_1 \setminus Z(M_1)$, and everything else.

We will call a group G a [2,2]-group if $\Gamma(G)$ is the union of two connected components of diameter 2.

Theorem (F., 2022+)

Let G be a finite soluble group, s.t. $\Gamma(G)$ has an edge. Either G is a [2,2]-group, or $\Delta(G)$ is connected with diameter 2 or 3. If $\Delta(G)$ is connected with diameter 3, then $\Delta(G) = \Gamma(G)$.

There exist 2-generated finite soluble groups G with maximal subgroups M_1, \ldots, M_n , where for all distinct i, j: $M_i \cap M_j = Z(M_1) > Z(G)$. For $i \neq 1$, $Z(M_i) = Z(G)$.

Here, $\Gamma(G)$ is the union of two connected components of diameter 2: $M_1 \setminus Z(M_1)$, and everything else.

We will call a group G a [2,2]-group if $\Gamma(G)$ is the union of two connected components of diameter 2.

Theorem (F., 2022+)

Let G be a finite soluble group, s.t. $\Gamma(G)$ has an edge. Either G is a [2,2]-group, or $\Delta(G)$ is connected with diameter 2, 3 or 4. If $\Delta(G)$ is connected with diameter 3 or 4, then $\Delta(G) = \Gamma(G)$.

Theorem (Adnan, 1980)

A finite group G has exactly two conjugacy classes of maximal subgroups if and only if there exist distinct primes p and r such that:

- (i) $G = P \times R$, with P a p-group and R a cyclic r-group; and
- (ii) R acts irreducibly on $P/\Phi(P)$.

Theorem (Adnan, 1980)

A finite group G has exactly two conjugacy classes of maximal subgroups if and only if there exist distinct primes p and r such that:

- (i) $G = P \times R$, with P a p-group and R a cyclic r-group; and
- (ii) R acts irreducibly on $P/\Phi(P)$.

Proposition (F., 2022+)

A finite group G is a [2,2]-group if and only if: G is as above, $\Phi(P) = Z(P) \nleq Z(G)$, and the maximal subgroup of R is normal in G.

Theorem (Adnan, 1980)

A finite group G has exactly two conjugacy classes of maximal subgroups if and only if there exist distinct primes p and r such that:

- (i) $G = P \times R$, with P a p-group and R a cyclic r-group; and
- (ii) R acts irreducibly on $P/\Phi(P)$.

Proposition (F., 2022+)

A finite group G is a [2,2]-group if and only if: G is as above, $\Phi(P) = Z(P) \not \leqslant Z(G)$, and the maximal subgroup of R is normal in G.

Example: Consider the simple group $Sz(q) = {}^2B_2(q)$, $q = 2^i$, $i \ge 3$ odd.

Theorem (Adnan, 1980)

A finite group G has exactly two conjugacy classes of maximal subgroups if and only if there exist distinct primes p and r such that:

- (i) $G = P \times R$, with P a p-group and R a cyclic r-group; and
- (ii) R acts irreducibly on $P/\Phi(P)$.

Proposition (F., 2022+)

A finite group G is a [2,2]-group if and only if: G is as above, $\Phi(P) = Z(P) \not \leqslant Z(G)$, and the maximal subgroup of R is normal in G.

Example: Consider the simple group $Sz(q) = {}^2B_2(q)$, $q = 2^i$, $i \ge 3$ odd.

A Sylow 2-subgroup of Sz(q) has normaliser $N = H \times C_{q-1}$, $|H| = q^2$.

Theorem (Adnan, 1980)

A finite group G has exactly two conjugacy classes of maximal subgroups if and only if there exist distinct primes p and r such that:

- (i) $G = P \times R$, with P a p-group and R a cyclic r-group; and
- (ii) R acts irreducibly on $P/\Phi(P)$.

Proposition (F., 2022+)

A finite group G is a [2,2]-group if and only if: G is as above, $\Phi(P) = Z(P) \not \leqslant Z(G)$, and the maximal subgroup of R is normal in G.

Example: Consider the simple group $Sz(q) = {}^2B_2(q)$, $q = 2^i$, $i \ge 3$ odd.

A Sylow 2-subgroup of Sz(q) has normaliser $N = H \rtimes C_{q-1}$, $|H| = q^2$.

There exists a prime divisor r of q-1 such that the subgroup $H \rtimes C_r$ of N is a [2,2]-group.

Theorem (F., 2022+)

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is not simple, and that $\Gamma(G)$ has an edge. Then (at least) one of the following occurs:

(i) $\Gamma(G)$ has an isolated vertex, and $\Delta(G)$ is connected with diameter 2.

Theorem (F., 2022+)

- (i) $\Gamma(G)$ has an isolated vertex, and $\Delta(G)$ is connected with diameter 2.
- (ii) $\Gamma(G)$ is connected with diameter 2 or 3.

Theorem (F., 2022+)

- (i) $\Gamma(G)$ has an isolated vertex, and $\Delta(G)$ is connected with diameter 2.
- (ii) $\Gamma(G)$ is connected with diameter 2 or 3.
- (iii) $\Gamma(G)$ is the union of two connected components of diameter 2, and \overline{G} has a proper non-cyclic quotient.

Theorem (F., 2022+)

- (i) $\Gamma(G)$ has an isolated vertex, and $\Delta(G)$ is connected with diameter 2.
- (ii) $\Gamma(G)$ is connected with diameter 2 or 3.
- (iii) $\Gamma(G)$ is the union of two connected components of diameter 2, and \overline{G} has a proper non-cyclic quotient.
- (iv) $\Gamma(G)$ is connected with diameter 4, G is infinite, and \overline{G} has a proper non-cyclic quotient.

Theorem (F., 2022+)

- (i) $\Gamma(G)$ has an isolated vertex, and $\Delta(G)$ is connected with diameter 2.
- (ii) $\Gamma(G)$ is connected with diameter 2 or 3.
- (iii) $\Gamma(G)$ is the union of two connected components of diameter 2, and \overline{G} has a proper non-cyclic quotient.
- (iv) $\Gamma(G)$ is connected with diameter 4, G is infinite, and \overline{G} has a proper non-cyclic quotient.
- (v) $\Gamma(\overline{G})$ has an isolated vertex, $\Delta(G)$ is connected with diameter 2, 3 or 4, and \overline{G} is an insoluble primitive group with every proper quotient cyclic.

For each $k \in \mathbb{Z}^+$, let t_k be the permutation $i \mapsto i + k$ of \mathbb{Z} , and let $G_k := \langle t_k, \operatorname{Alt}(\mathbb{Z}) \rangle$.

For each $k \in \mathbb{Z}^+$, let t_k be the permutation $i \mapsto i + k$ of \mathbb{Z} , and let $G_k := \langle t_k, \mathrm{Alt}(\mathbb{Z}) \rangle$.

 $G_k = \overline{G_k}$ is an insoluble primitive group with unique minimal normal subgroup $\mathcal{N} = \mathrm{Alt}(\mathbb{Z})$.

For each $k \in \mathbb{Z}^+$, let t_k be the permutation $i \mapsto i + k$ of \mathbb{Z} , and let $G_k := \langle t_k, \mathrm{Alt}(\mathbb{Z}) \rangle$.

 $G_k = \overline{G_k}$ is an insoluble primitive group with unique minimal normal subgroup $\mathcal{N} = \mathrm{Alt}(\mathbb{Z})$.

 $C_{G_k}(N) = 1$, and N is generated by its 3-cycles.

For each $k \in \mathbb{Z}^+$, let t_k be the permutation $i \mapsto i + k$ of \mathbb{Z} , and let $G_k := \langle t_k, \operatorname{Alt}(\mathbb{Z}) \rangle$.

 $G_k = \overline{G_k}$ is an insoluble primitive group with unique minimal normal subgroup $\mathcal{N} = \mathrm{Alt}(\mathbb{Z})$.

 $C_{G_k}(N) = 1$, and N is generated by its 3-cycles.

Let $x \in G_k \setminus \{1\}$. There exists a 3-cycle $\alpha \in N$ such that $\alpha x \neq x\alpha$.

For each $k \in \mathbb{Z}^+$, let t_k be the permutation $i \mapsto i + k$ of \mathbb{Z} , and let $G_k := \langle t_k, \mathrm{Alt}(\mathbb{Z}) \rangle$.

 $G_k = \overline{G_k}$ is an insoluble primitive group with unique minimal normal subgroup $\mathcal{N} = \mathrm{Alt}(\mathbb{Z})$.

 $C_{G_k}(N) = 1$, and N is generated by its 3-cycles.

Let $x \in G_k \setminus \{1\}$. There exists a 3-cycle $\alpha \in N$ such that $\alpha x \neq x\alpha$.

Theorem (Cox, 2022)

 G_k is 2-generated, and every proper quotient of G_k is cyclic.

However, if $k \ge 3$, then no 3-cycle in N lies in a generating pair for G_k .

For each $k \in \mathbb{Z}^+$, let t_k be the permutation $i \mapsto i + k$ of \mathbb{Z} , and let $G_k := \langle t_k, \mathrm{Alt}(\mathbb{Z}) \rangle$.

 $G_k = \overline{G_k}$ is an insoluble primitive group with unique minimal normal subgroup $\mathcal{N} = \mathrm{Alt}(\mathbb{Z})$.

 $C_{G_k}(N) = 1$, and N is generated by its 3-cycles.

Let $x \in G_k \setminus \{1\}$. There exists a 3-cycle $\alpha \in N$ such that $\alpha x \neq x\alpha$.

Theorem (Cox, 2022)

 G_k is 2-generated, and every proper quotient of G_k is cyclic.

However, if $k \ge 3$, then no 3-cycle in N lies in a generating pair for G_k .

So if $k \ge 3$, then $x \sim \alpha$.

An infinite family of infinite groups

For each $k \in \mathbb{Z}^+$, let t_k be the permutation $i \mapsto i + k$ of \mathbb{Z} , and let $G_k := \langle t_k, \operatorname{Alt}(\mathbb{Z}) \rangle$.

 $G_k = \overline{G_k}$ is an insoluble primitive group with unique minimal normal subgroup $N = \operatorname{Alt}(\mathbb{Z})$.

 $C_{G_k}(N) = 1$, and N is generated by its 3-cycles.

Let $x \in G_k \setminus \{1\}$. There exists a 3-cycle $\alpha \in N$ such that $\alpha x \neq x\alpha$.

Theorem (Cox, 2022)

 G_k is 2-generated, and every proper quotient of G_k is cyclic.

However, if $k \ge 3$, then no 3-cycle in N lies in a generating pair for G_k .

So if $k \ge 3$, then $x \sim \alpha$.

Hence $\Gamma(G_k) = \Delta(G_k)$ is connected with diameter 2 or 3.

Theorem (F., 2022+)

Suppose that $\overline{G}:=G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Assume G simple, M_i maximal subgroup of even order for $i \in \{1, 2\}$.

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Assume G simple, M_i maximal subgroup of even order for $i \in \{1, 2\}$.

$$x_i, a_i \in M_i \setminus Z(M_i), |a_i| = 2.$$

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Assume G simple, M_i maximal subgroup of even order for $i \in \{1, 2\}$.

$$x_i, a_i \in M_i \setminus Z(M_i), |a_i| = 2.$$

Can choose a_1, a_2 so that $a_1a_2 \neq a_2a_1$.

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Assume G simple, M_i maximal subgroup of even order for $i \in \{1, 2\}$.

$$x_i, a_i \in M_i \setminus Z(M_i), |a_i| = 2.$$

Can choose a_1, a_2 so that $a_1a_2 \neq a_2a_1$.

 $\langle a_1, a_2 \rangle$ is a dihedral subgroup D.

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Assume G simple, M_i maximal subgroup of even order for $i \in \{1, 2\}$.

$$x_i, a_i \in M_i \setminus Z(M_i), |a_i| = 2.$$

Can choose a_1, a_2 so that $a_1a_2 \neq a_2a_1$.

 $\langle a_1, a_2 \rangle$ is a dihedral subgroup D.

So every maximal subgroup has even order $\implies \operatorname{diam}(\Delta(G)) \leq 5$ (proof does not require the Classification of Finite Simple Groups).

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Assume G simple, M_i maximal subgroup of even order for $i \in \{1, 2\}$.

$$x_i, a_i \in M_i \setminus Z(M_i), |a_i| = 2.$$

Can choose a_1, a_2 so that $a_1a_2 \neq a_2a_1$.

 $\langle a_1, a_2 \rangle$ is a dihedral subgroup D.

So every maximal subgroup has even order $\implies \operatorname{diam}(\Delta(G)) \leq 5$ (proof does not require the Classification of Finite Simple Groups).

Using CFSG:

This remains true if G has odd-order maximal subgroups.

Theorem (F., 2022+)

Suppose that $\overline{G} := G/Z(G)$ is a non-abelian finite simple group. Then $\Gamma(G)$ is connected with diameter at most 5.

Assume G simple, M_i maximal subgroup of even order for $i \in \{1, 2\}$.

$$x_i, a_i \in M_i \setminus Z(M_i), |a_i| = 2.$$

Can choose a_1, a_2 so that $a_1a_2 \neq a_2a_1$.

 $\langle a_1, a_2 \rangle$ is a dihedral subgroup D.

So every maximal subgroup has even order $\implies \operatorname{diam}(\Delta(G)) \leqslant 5$ (proof does not require the Classification of Finite Simple Groups).

Using CFSG:

This remains true if G has odd-order maximal subgroups.

$$\Delta(G) = \Gamma(G)$$
 (using results of Guralnick & Tracey, 2022+).

Families of finite simple groups

G	$\operatorname{diam}(\Gamma(G))$
$M_{11}, M_{12}, M_{22}, J_2$	2
M_{23}, J_1	3
B, PSU(7, 2)	4
Remaining sporadic groups	≪ 4
A_n ; n even	§ 3
A_n ; n odd	≪ 4
$\mathrm{PSL}(n,q),\mathrm{Sz}(q)$	≪ 4
$G_2(q)$, ${}^2G_2(q)$, ${}^3D_4(q)$, $F_4(q)$, $E_8(q)$; q odd	€ 4
Remaining finite simple groups	≤ 5

Families of finite simple groups

G	$\operatorname{diam}(\Gamma(G))$
$M_{11}, M_{12}, M_{22}, J_2$	2
M_{23}, J_1	3
$\mathbb{B}, \mathrm{PSU}(7,2)$	4
Remaining sporadic groups	≪ 4
A_n ; n even	≤ 3
A_n ; n odd	≤ 4
$\mathrm{PSL}(n,q),\mathrm{Sz}(q)$	≤ 4
$G_2(q)$, ${}^2G_2(q)$, ${}^3D_4(q)$, $F_4(q)$, $E_8(q)$; q odd	≤ 4
Remaining finite simple groups	≤ 5

Question: Can these upper bounds be reduced?

Definition (Csákány & Pollák, 1969)

The intersection graph Σ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Definition (Csákány & Pollák, 1969)

The intersection graph Σ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Definition (Csákány & Pollák, 1969)

The intersection graph Σ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Definition (Csákány & Pollák, 1969)

The intersection graph Σ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

(i) Σ_G is disconnected if and only if $G\cong C_p\times C_q$ for primes p and q; or Z(G)=1 and G is minimal non-abelian.

Definition (Csákány & Pollák, 1969)

The intersection graph Σ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

- (i) Σ_G is disconnected if and only if $G\cong C_p\times C_q$ for primes p and q; or Z(G)=1 and G is minimal non-abelian.
- (ii) If Σ_G is connected, then $\operatorname{diam}(\Sigma_G) \leqslant 4$.

Definition (Csákány & Pollák, 1969)

The intersection graph Σ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

- (i) Σ_G is disconnected if and only if $G \cong C_p \times C_q$ for primes p and q; or Z(G) = 1 and G is minimal non-abelian.
- (ii) If Σ_G is connected, then $\operatorname{diam}(\Sigma_G) \leq 4$.

Open question: Is there a finite non-simple group G with $\operatorname{diam}(\Sigma_G)=4$? If yes, then $G=S\rtimes C_p$ for a non-abelian simple group S and an odd prime p (Csákány & Pollák, 1969).

If G is a non-abelian finite simple group, then:

If G is a non-abelian finite simple group, then:

 Σ_G is connected (Shen, 2010; Herzog, Longobardi & Maj, 2010).

If G is a non-abelian finite simple group, then:

 Σ_G is connected (Shen, 2010; Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G)\geqslant 3$ (Shahsavari & Khosravi, 2017).

If G is a non-abelian finite simple group, then:

 Σ_G is connected (Shen, 2010; Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \geqslant 3$ (Shahsavari & Khosravi, 2017).

 $\operatorname{diam}(\Sigma_G) \leqslant$ 64 (Herzog, Longobardi & Maj, 2010).

If G is a non-abelian finite simple group, then:

 Σ_G is connected (Shen, 2010; Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G)\geqslant 3$ (Shahsavari & Khosravi, 2017).

 $\operatorname{diam}(\Sigma_G) \leqslant$ 64 (Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \leqslant 28$ (Ma, 2016).

If G is a non-abelian finite simple group, then:

 Σ_G is connected (Shen, 2010; Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \geqslant 3$ (Shahsavari & Khosravi, 2017).

 $\operatorname{diam}(\Sigma_G) \leqslant$ 64 (Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \leqslant 28 \text{ (Ma, 2016)}.$

Theorem (F., 2021)

Let G be a non-abelian finite simple group. Then $\operatorname{diam}(\Sigma_G) \leqslant 5$.

If G is a non-abelian finite simple group, then:

 Σ_G is connected (Shen, 2010; Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \geqslant 3$ (Shahsavari & Khosravi, 2017).

 $\operatorname{diam}(\Sigma_G) \leqslant$ 64 (Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \leqslant 28 \text{ (Ma, 2016)}.$

Theorem (F., 2021)

Let G be a non-abelian finite simple group. Then $\operatorname{diam}(\Sigma_G) \leqslant 5$.

The diameter is 5 only for the baby monster group \mathbb{B} and certain unitary groups $\mathrm{PSU}(n,q)$, with n an odd prime, e.g., $\mathrm{PSU}(7,2)$.

If G is a non-abelian finite simple group, then:

 Σ_G is connected (Shen, 2010; Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \geqslant 3$ (Shahsavari & Khosravi, 2017).

 $\operatorname{diam}(\Sigma_G) \leqslant 64$ (Herzog, Longobardi & Maj, 2010).

 $\operatorname{diam}(\Sigma_G) \leqslant 28 \text{ (Ma, 2016)}.$

Theorem (F., 2021)

Let G be a non-abelian finite simple group. Then $\operatorname{diam}(\Sigma_G) \leqslant 5$.

The diameter is 5 only for the baby monster group $\mathbb B$ and certain unitary groups $\mathrm{PSU}(n,q)$, with n an odd prime, e.g., $\mathrm{PSU}(7,2)$.

Let $1 < S_1 < M_1$ and $1 < S_2 < M_2$, with M_1 and M_2 maximal subgroups of even order. Then $S_1 \sim M_1 \sim D \sim M_2 \sim S_2$, with D dihedral.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: diam $(\Sigma_G) \leq 4$ (Csákány & Pollák, 1969).

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \leqslant G$.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all M < G.

 M_{23} : Arguing similarly to Shen, $\operatorname{diam}(\Sigma_G) = 4$.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M||A_{n-1}| > |G|$ for all M < G.

 M_{23} : Arguing similarly to Shen, $\operatorname{diam}(\Sigma_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all M < G.

 M_{23} : Arguing similarly to Shen, $\operatorname{diam}(\Sigma_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

 \mathbb{B} : diam(Σ_G) = 5, by a counting argument involving maximal subgroups.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all M < G.

 M_{23} : Arguing similarly to Shen, $\operatorname{diam}(\Sigma_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

 \mathbb{B} : diam(Σ_G) = 5, by a counting argument involving maximal subgroups.

 \mathbb{M} ?

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all M < G.

 M_{23} : Arguing similarly to Shen, $diam(\Sigma_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

 \mathbb{B} : diam(Σ_G) = 5, by a counting argument involving maximal subgroups.

M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all M < G.

 M_{23} : Arguing similarly to Shen, $diam(\Sigma_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

 \mathbb{B} : diam(Σ_G) = 5, by a counting argument involving maximal subgroups.

M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

 $\mathrm{PSL}(n,q)$, n prime: $\mathrm{diam}(\Sigma_G) \leqslant 4$, using arguments from Peter Cameron, involving the group's action on one-dimensional subspaces of \mathbb{F}_q^n .

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , n prime: $\operatorname{diam}(\Sigma_G) \leqslant 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all M < G.

 M_{23} : Arguing similarly to Shen, $diam(\Sigma_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

 \mathbb{B} : diam(Σ_G) = 5, by a counting argument involving maximal subgroups.

M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

 $\mathrm{PSL}(n,q)$, n prime: $\mathrm{diam}(\Sigma_G) \leqslant 4$, using arguments from Peter Cameron, involving the group's action on one-dimensional subspaces of \mathbb{F}_q^n .

 $\mathrm{PSU}(n,q)$, n odd prime: $\mathrm{diam}(\Sigma_G) \leqslant 5$, via similar arguments to the linear case.

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair:

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair: adjacent subgroups in Σ_G contain a common element in $V(\Omega(G))$, and adjacent elements in $\Omega(G)$ lie in a common subgroup in $V(\Sigma_G)$.

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair: adjacent subgroups in Σ_G contain a common element in $V(\Omega(G))$, and adjacent elements in $\Omega(G)$ lie in a common subgroup in $V(\Sigma_G)$.

Two graphs forming a dual pair have diameters that differ by at most one (Cameron, 2022).

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair: adjacent subgroups in Σ_G contain a common element in $V(\Omega(G))$, and adjacent elements in $\Omega(G)$ lie in a common subgroup in $V(\Sigma_G)$.

Two graphs forming a dual pair have diameters that differ by at most one (Cameron, 2022).

The soluble graph of G has vertex set $G \setminus \{1\}$, with $x \sim y \iff \langle x, y \rangle$ is soluble.

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair: adjacent subgroups in Σ_G contain a common element in $V(\Omega(G))$, and adjacent elements in $\Omega(G)$ lie in a common subgroup in $V(\Sigma_G)$.

Two graphs forming a dual pair have diameters that differ by at most one (Cameron, 2022).

The soluble graph of G has vertex set $G \setminus \{1\}$, with $x \sim y \iff \langle x, y \rangle$ is soluble.

Using the fact that $\Sigma_{\mathbb{B}}$ and $\Sigma_{\mathrm{PSU}(7,2)}$ have diameter 5:

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair: adjacent subgroups in Σ_G contain a common element in $V(\Omega(G))$, and adjacent elements in $\Omega(G)$ lie in a common subgroup in $V(\Sigma_G)$.

Two graphs forming a dual pair have diameters that differ by at most one (Cameron, 2022).

The soluble graph of G has vertex set $G \setminus \{1\}$, with $x \sim y \iff \langle x, y \rangle$ is soluble.

Using the fact that $\Sigma_{\mathbb{B}}$ and $\Sigma_{\mathrm{PSU}(7,2)}$ have diameter 5:

• $\Omega(\mathbb{B})$ and $\Omega(\mathrm{PSU}(7,2))$ have diameter 4.

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair: adjacent subgroups in Σ_G contain a common element in $V(\Omega(G))$, and adjacent elements in $\Omega(G)$ lie in a common subgroup in $V(\Sigma_G)$.

Two graphs forming a dual pair have diameters that differ by at most one (Cameron, 2022).

The soluble graph of G has vertex set $G \setminus \{1\}$, with $x \sim y \iff \langle x, y \rangle$ is soluble.

Using the fact that $\Sigma_{\mathbb{B}}$ and $\Sigma_{\mathrm{PSU}(7,2)}$ have diameter 5:

- $\Omega(\mathbb{B})$ and $\Omega(\mathrm{PSU}(7,2))$ have diameter 4.
- $\Gamma(\mathbb{B})$ and $\Gamma(\mathrm{PSU}(7,2))$ have diameter 4.

 Σ_G and the non-generating graph $\Omega(G)$ form a dual pair: adjacent subgroups in Σ_G contain a common element in $V(\Omega(G))$, and adjacent elements in $\Omega(G)$ lie in a common subgroup in $V(\Sigma_G)$.

Two graphs forming a dual pair have diameters that differ by at most one (Cameron, 2022).

The soluble graph of G has vertex set $G \setminus \{1\}$, with $x \sim y \iff \langle x, y \rangle$ is soluble.

Using the fact that $\Sigma_{\mathbb{B}}$ and $\Sigma_{\mathrm{PSU}(7,2)}$ have diameter 5:

- $\Omega(\mathbb{B})$ and $\Omega(\mathrm{PSU}(7,2))$ have diameter 4.
- $\Gamma(\mathbb{B})$ and $\Gamma(\mathrm{PSU}(7,2))$ have diameter 4.
- \bullet The soluble graph of $\mathbb B$ has diameter 4 or 5 (Burness, Lucchini & Nemmi, 2021+).