

1 Isolation and characterization of a novel bat coronavirus closely related to the direct  
2 progenitor of SARS coronavirus

3

4 Xing-Lou Yang<sup>1</sup>, Ben Hu<sup>1</sup>, Bo Wang<sup>1</sup>, Mei-Niang Wang<sup>1</sup>, Qian Zhang<sup>1</sup>, Wei Zhang<sup>1</sup>,  
5 Li-Jun Wu<sup>1</sup>, Xing-Yi Ge<sup>1</sup>, Yun-Zhi Zhang<sup>2</sup>, Peter Daszak<sup>3</sup>, Lin-Fa Wang<sup>4</sup>, Zheng-Li  
6 Shi<sup>1#</sup>

7

8 **Author affiliations:**

9 <sup>1</sup>Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases,  
10 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.

11 <sup>2</sup>Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.

12 <sup>3</sup>EcoHealth Alliance, New York, NY 10001, USA.

13 <sup>4</sup>Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School,  
14 Singapore 169857, Singapore.

15

16 **Running title:** Novel SARS-like coronavirus

17

18 **Corresponding Author:** Zheng-Li Shi, Key Laboratory of Special Pathogens and  
19 Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071,  
20 China; Tel: +86 27 87197240; Email address: [zlshi@wh.iov.cn](mailto:zlshi@wh.iov.cn).

21

22 Word counts: 75 for abstract; 1035 for main text

23     **Abstract**

24     We report the isolation and characterization of a novel bat coronavirus which is much  
25     closer to the SARS coronavirus (SARS-CoV) in genomic sequence than others  
26     previously reported, particularly in the S gene. Cell entry and susceptibility studies  
27     indicated that this virus can use ACE2 as receptor and infect animal and human cell  
28     lines. Our results provide further evidence of bat origin of the SARS-CoV and  
29     highlight the likelihood of future bat coronavirus emergence in humans.

30

31     **Key words:** bat, SARS-like coronavirus, natural reservoir, receptor

32    **Text**

33    The 2002-3 outbreak of severe acute respiratory syndrome coronavirus (SARS-CoV)  
34    was a significant public health threat at the beginning of the twenty-first century (1).  
35    Initial evidences showed that the masked palm civet (*Paguma larvata*) was the  
36    primary suspect of the animal origin of SARS-CoV (2, 3). Later studies suggested that  
37    Chinese horseshoe bats are natural reservoirs and masked palm civet most likely  
38    served as an intermediate amplification host for SARS-CoV (4, 5). From our  
39    longitudinal surveillance of bat SARS-like coronavirus (SL-CoV) in a single bat  
40    colony of the species *Rhinolophus sinicus* in Kunming, Yunnan Province, China, we  
41    found a high prevalence of diverse SL-CoVs (6). Whole genome sequence  
42    comparison revealed these SL-CoVs have 78%-95% nucleotide (nt) sequence  
43    identities to SARS-CoV with the major difference located in the spike protein (S)  
44    genes and the ORF8 region. Significantly, we have recently isolated a bat SL-CoV  
45    (WIV1) and constructed an infectious clone of another strain (SH014) which are  
46    closely related to SARS-CoV and capable of using the same cellular receptor  
47    (angiotensin-converting enzyme, ACE2) as for SARS-CoV (6, 7). Despite the high  
48    similarity in genomic sequences and receptor usage of these two strains, there is still  
49    some difference at N-terminal domain of the S proteins between SARS-CoV and  
50    other SL-CoVs, indicating that more similar viruses are circulating in bat (s).

51              Here we report the isolation of a new SL-CoV strain, named bat SL-CoV  
52              WIV16. SL-CoV WIV16 was isolated from a single fecal sample of *Rhinolophus*  
53              *sinicus* which was collected in Kunming, Yunnan Province, in July, 2013. The full

54 genomic sequence of SL-CoV WIV16 (GenBank number: KT444582) was  
55 determined and contained 30,290 nt in size and a poly (A) tail, which is slightly  
56 larger than that of SARS-CoVs and other bat SL-CoVs (6, 8-13). The WIV16  
57 genome has a 40.9% G+C content and short untranslated regions (UTRs) of 264 and  
58 339 nt at the 5' and 3' termini, respectively. Its gene organization is identical to  
59 WIV1 and slightly different from the civet SARS-CoV and other bat SL-CoVs due to  
60 an additional ORF (name ORFx) detected between the ORF6 and ORF7 genes of the  
61 WIV1 and WIV16 genomes (data not shown). The conserved transcriptional  
62 regulatory sequence was identified upstream ORFx, indicating this is likely to be a  
63 potential functional gene. The overall nt sequence of WIV16 shared 96% identity,  
64 higher than any previously reported bat SL-CoVs, with human and civet  
65 SARS-CoVs (**Table 1**) (4-6, 8-13). A detailed comparison of protein sequences  
66 between the SARS-CoV GZ02, a strain from an early phase patient, and all reported  
67 bat SL-CoVs indicated that WIV16 is the closest progenitor of the SARS-CoV in  
68 most proteins, particularly in the S protein (**Table 1**).

69 The S protein is responsible for virus entry and is functionally divided into two  
70 domains, denoted S1 and S2. The S1 domain is involved in receptor binding and the  
71 S2 domain for cellular membrane fusion (14). S1 is functionally subdivided into two  
72 domains, an N-terminal domain (S1-NTD) and a C-domain (S1-CTD), both of which  
73 can bind to host receptors and hence function as receptor-binding domain (RBDs)  
74 (15). All isolates of SARS-CoV and SL-CoV share high identity in both nt and amino  
75 acid (aa) sequences in S2 region but highly diverse in their S1 regions. The WIV16 S

76 gene shared 95% sequence identity at nt level and 97% at aa level, respectively, with  
77 SARS-CoVs, much higher than that of WIV1 with 88% at nt level and 90% at aa level,  
78 respectively. Different from other bat SL-CoVs, the S1-NTD of WIV16 is much more  
79 similar to that of SARS-CoV (**Fig. 1**). The S1-NTD of WIV16 shared aa sequence  
80 identity of 94% with SARS-CoVs, but only 50%-75% with other bat SL-CoVs. It's  
81 worth to note that the WIV16 RBD (aa 318-510) shared 95% sequence identity with  
82 SARS-CoV, but is almost identical with WIV1. Thus WIV16 S gene is likely a  
83 recombinant of WIV1 and a recent ancestor of SARS-CoV.

84 High sequence conservation of the WIV16 RBD with that of SARS-CoVs  
85 predicts that WIV16 is likely to also use ACE2 as a cellular entry receptor. This was  
86 confirmed by infection of HeLa cells expressing ACE2 from human, civet and  
87 Chinese horseshoe bat, respectively (**Fig. 2A**). Cell susceptibility test using different  
88 cell lines further indicated that WIV16 has the same host range as WIV1 (**Fig. 2B**)  
89 (6).

90 To assess whether the major sequence difference of the S1-NTD will have an  
91 effect on virus entry and/or replication, the growth kinetics of the two viruses was  
92 comparatively studied. Vero E6 cells were infected with WIV1 or WIV16 at MOI of 1  
93 and virus production in the medium supernatant was determined at four time points  
94 post infection by quantification of viral RNA (**Fig. 3**, see figure legend for more  
95 technical detail). The two viruses grew at a very similar rate with WIV16 slightly  
96 slower than WIV1 during the 48-hr duration examined in this study. It is hard to  
97 conclude whether this subtle difference is significant and related to the S1-NTD

98 sequence difference. Further investigation with more cell lines is required to confirm  
99 this preliminary observation.

100 In conclusion, we isolated and characterized a novel bat SL-CoV isolate WIV16  
101 which is the closest ancestor to date of the SARS-CoV. Our results provide further  
102 evidence that Chinese horseshoe bats are natural reservoirs of SARS-CoVs. It should  
103 be noted that the WIV16 is not the closest strain to the human SARS-CoVs with  
104 regards to ORF8. A full-length ORF8 is present in several SARS-CoV genomes of  
105 early phase patients, all civet SARS-CoVs and bat SL-CoVs. It is split into two ORFs  
106 (ORF8 a & b) in most of human SARS-CoVs from late phase patients due to a  
107 deletion event in this part of the genome (3). Recently two papers reported that they  
108 found a full-length ORF8 which share higher similarities to the SARS-CoV GZ02 and  
109 civet SARS-CoV SZ3, suggesting that SAS-CoV derived from a complicated  
110 recombination and genetic evolution among different bat SL-CoVs (10, 12). Taking  
111 together, we predict that there are diverse SL-CoVs to be discovered in bats.  
112 Continued surveillances of this group of viruses in bats will be necessary and  
113 important not only for better understanding of spill over mechanism, but also for more  
114 effective risk assessment and prevention of future SARS-like disease outbreaks.

115

#### 116 **Funding information**

117 This work was jointly funded (to Z-LS) by National Natural Science Foundation  
118 of China (81290341, 31321001), China Mega-Project for Infectious Disease  
119 (2014ZX10004001-003) and Scientific and technological basis special project

120 (2013FY113500) from the Minister of Science and Technology of the People's  
121 Republic of China, and National Institutes of Health (NIAID R01AI110964 to PD).  
122 L-FW is supported in part by the NRF-CRP grant (NRF2012NRF-CRP001-056) in  
123 Singapore.  
124

125    **References**

- 126    1. Peiris JSM, Guan Y, Yuen KY. 2004. Severe acute respiratory syndrome. *Nat Med*  
127    **10**:S88-S97.
- 128    2. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH,  
129    Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF,  
130    Yuen KY, Peiris JS, Poon LL. 2003. Isolation and characterization of viruses related  
131    to the SARS coronavirus from animals in southern China. *Science* **302**:276-278.
- 132    3. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao YW,  
133    Zhou HQ, Xiang H, Zheng HJ, Chern SW, Cheng F, Pan CM, Xuan H, Chen SJ,  
134    Luo HM, Zhou DH, Liu YF, He JE, Qin PZ, Li LH, Ren YQ, Liang WJ, Yu YD,  
135    Anderson L, Wang M, Xu RH, Wu XW, Zheng HY, Chen JD, Liang G, Gao Y,  
136    Liao M, Fang L, Jiang LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong S, Kong X,  
137    Du L, Hao P, Tang H, Bernini A, Yu XJ, Spiga O, Guo ZM, Pan HY, He WZ,  
138    Manuguerra JC, Fontanet A, Danchin A, Niccolai N, Li YX, Wu CI, Zhao GP.  
139    2005. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm  
140    civet and human. *Proc Natl Acad Sci U S A* **102**:2430-2435.
- 141    4. Lau SKP, Woo PCY, Li KSM, Huang Y, Tsui HW, Wong BHL, Wong SSY, Leung  
142    SY, Chan KH, Yuen KY. 2005. Severe acute respiratory syndrome coronavirus-like  
143    virus in Chinese horseshoe bats. *Proc Natl Acad Sci U S A* **102**:14040-14045.
- 144    5. Li WD, Shi ZL, Yu M, Ren WZ, Smith C, Epstein JH, Wang HZ, Crameri G, Hu  
145    ZH, Zhang HJ, Zhang JH, McEachern J, Field H, Daszak P, Eaton BT, Zhang  
146    SY, Wang LF. 2005. Bats are natural reservoirs of SARS-like coronaviruses. *Science*  
147    **310**:676-679.
- 148    6. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B,  
149    Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G,  
150    Zhang SY, Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of a  
151    bat SARS-like coronavirus that uses the ACE2 receptor. *Nature* **503**:535-538.
- 152    7. Menachery VD, Yount BL, Jr., Debbink K, Agnihothram S, Gralinski LE, Plante  
153    JA, Graham RL, Scobey T, Ge XY, Donaldson EF, Randell SH, Lanzavecchia A,  
154    Marasco WA, Shi ZL, Baric RS. 2015. A SARS-like cluster of circulating bat  
155    coronaviruses shows potential for human emergence. *Nat Med* **21**:1508-1513.
- 156    8. Ren W, Li W, Yu M, Hao P, Zhang Y, Zhou P, Zhang S, Zhao G, Zhong Y, Wang  
157    S, Wang LF, Shi Z. 2006. Full-length genome sequences of two SARS-like  
158    coronaviruses in horseshoe bats and genetic variation analysis. *J Gen Virol*  
159    **87**:3355-3359.
- 160    9. Yuan J, Hon CC, Li Y, Wang D, Xu G, Zhang H, Zhou P, Poon LL, Lam TT,  
161    Leung FC, Shi Z. 2010. Intraspecies diversity of SARS-like coronaviruses in  
162    Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in  
163    humans. *J Gen Virol* **91**:1058-1062.
- 164    10. Wu Z, Yang L, Ren X, Zhang J, Yang F, Zhang S, Jin Q. 2015. ORF8-Related  
165    Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute  
166    Respiratory Syndrome Coronavirus. *J Infect Dis*. 10.1093/infdis/jiv476
- 167    11. He B, Zhang Y, Xu L, Yang W, Yang F, Feng Y, Xia L, Zhou J, Zhen W, Feng Y,

- 168                   **Guo H, Zhang H, Tu C.** 2014. Identification of Diverse Alphacoronaviruses and  
169                   Genomic Characterization of a Novel Severe Acute Respiratory Syndrome-Like  
170                   Coronavirus from Bats in China. *J Virol* **88**:7070-7082.
- 171           12. **Lau SKP, Feng Y, Chen HL, Luk HKH, Yang WH, Li KSM, Zhang YZ, Huang Y, Song ZZ, Chow WN, Fan RYY, Ahmed SS, Yeung HC, Lam CSF, Cai JP, Wong SSY, Chan JFW, Yuen KY, Zhang HL, Woo PCY.** 2015. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. *J Virol* **89**:10532-10547.
- 177           13. **Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, Seebens A, Niedrig M, Pfefferle S, Yordanov S, Zhelyazkov L, Hermanns U, Vallo P, Lukashev A, Muller MA, Deng H, Herrler G, Drosten C.** 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. *J Virol* **84**:11336-11349.
- 183           14. **Paul S. Masters, Perlman S.** 2013. Coronaviridae, p. 825-858. In David M. Knipe, Howley PM (ed.), *Fields Virology*, vol. I. Lippincott Williams & Wilkins, Philadelphia.
- 186           15. **Li F.** 2012. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. *J Virol* **86**:2856-2858.

189 **Figure legends**

190

191 **FIG 1** Similarity plot based on the nucleotide sequence of the S gene of bat SL-CoV  
192 WIV16. S genes of human/civet SARS-CoVs and bat SL-CoV WIV1 were used as  
193 reference sequences, with window of 200 bp, a step size of 20 bp, under Kimura  
194 model.

195

196 **FIG 2** Receptor analysis (A) and susceptibility test (B) of bat SL-CoV WIV16.  
197 **A**, HeLa cells with and without the expression of ACE2. ACE2 expression was  
198 detected with goat anti-human ACE2 antibody followed by fluorescein isothiocyanate  
199 (FITC)-conjugated donkey anti-goat IgG. Virus replication was detected with rabbit  
200 antibody against the SL-CoV Rp3 nucleocapsid protein followed by cyanine 3  
201 (Cy3)-conjugated mouse anti-rabbit IgG. Nuclei were stained with DAPI (4',  
202 6-diamidino-2-phenylindole). The columns (from left to right) show staining of nuclei  
203 (blue), ACE2 expression (green), virus replication (red) and the merged triple-stained  
204 images. b, bat; c, civet; h, human.

205 **B**, Virus infection in A549, LLC-MK2, RSKT, PK15, H292 and Vero-E6 cells.

206 The columns (from left to right) show staining of nuclei (blue), virus replication (red),  
207 and the merged double-stained images. A549 and H292, human lung cells; LLC-MK2,  
208 macaque kidney cells; RSKT, Chinese horseshoe bat kidney cells; PK15, pig kidney  
209 cells; Vero-E6, African green monkey kidney cells

210

211 **FIG 3** One-step growth curve of bat SL-CoV WIV16 compared with WIV1.  
212 Vero E6 cell was infected by WIV16 or WIV1 at an MOI of 1. Supernatants were  
213 collected at 0, 12, 24 and 48 h, post infection. The viruses in the supernatant were  
214 determined by one-step reverse real-time PCR (n=3), virus RNA that extracted from  
215 virus with known titer was used to set up the standard curve; error bars represent  
216 standard deviation.  
217









**Table 1.** Genomic comparison of SARS-CoV GZ02 with civet SARS-CoV and other bat SL-CoVs.

| FL or<br>ORFs | No. of<br>nt | No. of<br>aa | Identity nt/aa(%) |            |            |            |           |            |            |           |           |           |            |            |           |
|---------------|--------------|--------------|-------------------|------------|------------|------------|-----------|------------|------------|-----------|-----------|-----------|------------|------------|-----------|
|               |              |              | SZ3               | WIV16      | WIV1       | Rs3367     | RsSHC014  | Rs672      | Rp3        | Rf1       | Rm1       | LYRa11    | HKU3-1     | YNLF_31C   | BM48-31   |
| FL            | --           | --           | 99.8              | 96.0       | 95.6       | 95.7       | 95.4      | 93.4       | 92.6       | 87.8      | 88.2      | 90.9      | 87.9       | 93.5       | 78.8      |
| P1a           | 13,134       | 4,377        | 99.9/99.9         | 96.6/98.1  | 96.9/98.0  | 96.9/98.0  | 96.8/98.1 | 96.4/98.1  | 94.9/96.6  | 88.0/94.3 | 88.0/93.6 | 91.0/95.9 | 88.2/94.3  | 96.0/97.3  | 76.9/81.6 |
| P1b           | 8088         | 2,695        | 99.9/99.9         | 96.1/99.1  | 96.3/99.4  | 96.3/99.4  | 96.4/99.5 | 96.0/99.3  | 96.2/99.1  | 90.9/98.3 | 91.4/98.6 | 93.8/98.9 | 90.9/98.6  | 96.8/99.2  | 85.5/96.0 |
| S             | 3,768        | 1,255        | 99.6/99.0         | 95.4/97.3  | 90.2/92.4  | 90.2/92.5  | 88.4/90.2 | 77.6/80.1  | 78.1/80.2  | 75.5/78.4 | 78.0/80.6 | 83.3/89.9 | 77.0/79.4  | 76.1/79.2  | 70.9/76.0 |
| (S1)*         | 2,040        | 680          | 99.5/98.8         | 92.6/95.4  | 83.3/86.5  | 83.4/86.8  | 79.9/82.4 | 68.8/67.0  | 69.1/66.7  | 66.7/66.1 | 69.0/67.4 | 80.3/84.4 | 69.2/67.2  | 67.5/66.7  | 65.8/64.5 |
| (S2)*         | 1,728        | 575          | 99.8/99.3         | 98.3/99.5  | 98.3/99.5  | 98.2/99.3  | 98.3/99.5 | 88.0/95.5  | 88.4/96.2  | 85.5/92.7 | 88.3/96.0 | 87.3/96.3 | 85.9/93.9  | 86.0/93.7  | 76.7/89.6 |
| ORF3a         | 825          | 274          | 99.0/97.8         | 99.2/98.2  | 99.0/97.8  | 99.2/98.2  | 99.3/98.2 | 90.4/90.8  | 84.0/84.3  | 88.6/86.9 | 83.5/84.3 | 89.7/91.6 | 83.0/82.5  | 89.0/88.3  | 73.1/71.5 |
| E             | 231          | 76           | 100.0/100.0       | 99.1/100.0 | 99.1/100.0 | 99.1/100.0 | 98.7/98.7 | 99.6/100.0 | 97.8/100.0 | 96.5/96.1 | 96.1/98.7 | 98.3/98.7 | 97.4/100.0 | 99.6/100.0 | 90.0/92.1 |
| M             | 666          | 221          | 99.8/99.5         | 97.4/98.2  | 97.4/98.2  | 97.4/98.2  | 97.4/97.7 | 97.7/98.6  | 93.4/97.3  | 95.5/97.7 | 94.7/97.3 | 94.7/97.7 | 95.0/98.6  | 95.9/98.6  | 81.5/91.4 |
| ORF6          | 192          | 63           | 100.0/100.0       | 95.3/92.1  | 95.8/93.7  | 97.9/96.8  | 97.4/96.8 | 97.4/98.4  | 94.8/92.1  | 94.8/93.7 | 94.8/92.1 | 94.3/95.2 | 94.8/93.7  | 92.7/88.9  | 65.1/50.0 |
| ORF7a         | 369          | 122          | 100.0/100.0       | 94.3/95.1  | 94.9/95.1  | 94.9/95.9  | 94.6/95.9 | 94.3/95.9  | 93.8/95.1  | 92.1/91.8 | 93.0/93.4 | 93.2/94.3 | 93.0/94.3  | 96.7/96.7  | 63.9/58.5 |
| ORF7b         | 135          | 44           | 100.0/100.0       | 96.3/93.2  | 95.6/93.2  | 95.6/93.2  | 95.6/93.2 | 95.6/93.2  | 96.3/93.2  | 94.1/90.9 | 95.6/93.2 | 86.7/90.9 | 92.6/93.2  | 97.0/93.2  | 65.0/70.0 |
| ORF8          | 369          | 122          | 99.5/98.4         | 50.1/38.6  | 50.7/39.5  | 50.7/39.5  | 50.7/40.4 | 51.6/39.5  | 53.3/39.5  | 82.1/81.8 | 52.1/39.5 | 51.0/38.3 | 52.1/37.7  | 82.1/82.6  | N/A       |
| N             | 1,269        | 422          | 99.9/100.0        | 98.4/99.5  | 98.4/99.8  | 98.7/100.0 | 98.3/99.5 | 97.6/98.6  | 96.7/98.1  | 94.2/95.7 | 96.4/97.9 | 96.9/97.9 | 96.2/96.7  | 97.2/98.3  | 78.5/88.2 |

SARS-CoV GZ02 was isolated from patients of early phase of the SARS outbreak in 2003. SARS-CoV SZ3 was identified from *Paguma larvata* in 2003 collected in Guangdong, China. SL-CoV WIV16, WIV1, Rs3367 and RsSHC014 were identified from *Rhinolophus sinicus* collected in Yunnan, China, during 2011 to 2013. SL-CoV YNLF\_31C was identified from *R. ferrumequinum* collected in Yunnan, China, in 2013. SL-CoV LYRa11 was identified from *R. affinis* collected in Yunnan, China, in 2011. SL-CoV Rs672, Rp3 and HKU3-1 were identified from *R. sinicus* collected in China (respectively: Guangxi, 2004; Guizhou, 2006; Hong Kong, 2005). Rf1 and Rm1 were identified from *R. ferrumequinum* and *R. macrotis*, respectively, collected in Hubei, China, in 2003. Bat SARS-related CoV BM48-31 was identified from *R. blasii* collected in Bulgaria in 2008. FL, full-length genome. \*S1, the N-terminal domain of the S protein (aa 1-680). S2, the C-terminal domain of the S protein (aa 681-1255). The pairwise comparison was conducted for all ORFs at nucleotide acids (nt) and amino acids (aa) levels. The full-length genome was compared at nt level. N/A, not available.