10.1.1 常数项级数的概念和性质

基础过关

一、填空题

1. 设级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\lim_{n\to\infty} (u_n^2 - 2u_n - 3) =$ ______.

2. 设级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,且 $S_n = u_1 + u_2 + \dots + u_n$,则 $\lim_{n \to \infty} (S_{n+1} + S_{n-1} - 2S_n) = \underline{\qquad}$

4. 若级数
$$\sum_{n=1}^{\infty} u_n$$
 的和是3,则级数 $\sum_{n=3}^{\infty} \frac{u_n + u_{n+1}}{2}$ 的和是 ______.

5. 若级数
$$\sum_{n=1}^{\infty} t^n$$
 的和是 2,则级数 $\sum_{n=1}^{\infty} \frac{t^n}{2}$ 的和是 ______.

6.
$$|x| < 1$$
 时, 级数 $\sum_{n=1}^{\infty} x^n$ 的和是 ______.

9. 以下命题: (1) 若
$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$$
 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛.

(2) 若
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\sum_{n=1}^{\infty} u_{n+100}$ 收敛.

(3) 若
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} > 1$$
, 则 $\sum_{n=1}^{\infty} u_n$ 发散.

(4) 若
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
收敛,则 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都收敛.

正确的是_____

二、用定义判断下列级数的敛散性:

1.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$
.

2.
$$\sum_{n=1}^{\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} \right)$$
.

3.
$$\sum_{n=2}^{\infty} \ln(1 - \frac{1}{n^2})$$
.

三、判断下列级数的敛散性

1.
$$\sum_{n=1}^{\infty} (-1)^{n-1}$$

2.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{4}{5}\right)^n$$

$$3. \quad \sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n.$$

4.
$$\sum_{n=1}^{\infty} \sqrt[n]{0.01}$$
.

$$5. \quad \sum_{n=1}^{\infty} \frac{\pi^n + e^n}{6^n} \, .$$

6.
$$\sum_{n=1}^{\infty} \frac{3^n + (-1)^n}{2^n}.$$

能力提升

一、设
$$a_n > 0, n = 1, 2, \cdots,$$
若 $\sum_{n=1}^{\infty} a_n$ 发散, $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,则下列结论正确的是()

A.
$$\sum_{n=1}^{\infty} a_{2n-1}$$
 收敛, $\sum_{n=1}^{\infty} a_{2n}$ 发散

A.
$$\sum_{n=1}^{\infty} a_{2n-1}$$
 收敛, $\sum_{n=1}^{\infty} a_{2n}$ 发散 B. $\sum_{n=1}^{\infty} a_{2n}$ 收敛, $\sum_{n=1}^{\infty} a_{2n-1}$ 发散

C.
$$\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$$
 收敛

D.
$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$$
 收敛