OPTIMIZATION ALGORITHMS FOR LOGISTIC REGRESSION IWLS | SGD | ADAM

PROJECT 1
ADVANCED MACHINE LEARNING
MATEUSZ BOROWSKI | SZYMON MATUSZEWSKI | MIKOŁAJ ROGUSKI

TABLE OF CONTENTS

1. Datasets

small datasets

big datasets

name	observations	variables	% of y=1	name ob	servations	variables	% of y=1
banknote	1372	4	44	elevators	16599	18	31
kin8nm	8192	8	49	jm1	10885	21	19
phoneme	5404	5	29	Idd_JapaneseVowels	9961	14	16
				mfeat_karhunen	2000	64	10
				mfeat-zernike	2000	47	10
				pc1	1109	21	7

2. Pipeline

datasets

3. Experiments

4. Results

without products

with products

name	best model	mean acc	std acc
banknote	RF	0.96	0.006
kin8nm	RF	0.86	0.008
phoneme	RF	0.87	0.007

Table 1: Balanced accuracy and the best models for test datasets with products of variables

name	best model	mean acc	std acc
banknote	RF	0.89	0.015
kin8nm	RF	0.83	0.005
phoneme	RF	0.88	0.006
elevators	IWLS	0.68	0.007
jm1	IWLS	0.61	0.011
ldd JapaneseVowels	s QDA	0.97	0.005
mfeat_karhuner	LDA	0.98	0.011
mfeat-zernike	QDA	0.97	0.005
pc1	ADAM	0.70	0.041

Table 2: Balanced accuracy and the best models fortest datasets without products of

without products

with products

name	worst model	mean acc	std acc
banknote	ADAM	0.86	0.010
kin8nm	ADAM	0.78	0.007
phoneme	LDA	0.70	0.007

Table 3: Balanced accuracy and the worst models for test datasets with products of variables

name	worst model	mean acc	std acc
banknote	SGD	0.85	0.009
kin8nm	LDA	0.73	0.005
phoneme	LDA	0.68	0.013
elevators	Decision Tree	0.64	0.009
jm1	LDA	0.52	0.004
ldd JapaneseVowe	els ADAM	0.84	0.007
mfeat_karhune	en ADAM	0.83	0.012
mfeat-zernike	a ADAM	0.87	0.016
pc1	Decision Tree	0.55	0.031

Table 4: Balanced accuracy and the worst models for test datasets without products of variables

WHICH OPTIMIZER IS THE BEST?

name	IWLS	ADAM	SGD
banknote	1	3	2
kin8nm	1	3	2
phoneme	2	3	1
elevators	1	3	2
jm1	1	3	2
ldd JapaneseVowels	2	3	1
mfeat_karhunen	2	3	1
mfeat-zernike	1	3	2
pc1	3	1	2

5. Conclusions

FINAL CONCLUSIONS

Random Forests

It is easy to conclude that for most cases the Random Forest algorithm achieves the best balanced accuracy outperforming even the Logistic Regression optimizers like IWLS, ADAM and SGD

IWLS best optimizer for Logistic Regression

Comparing only optimizers' performance it is IWLS algorithm which achieves the best scores. It was the best for 2 of the big datasets and its convergence seems to be the fastest and controlable.

ADAM is outperformed by other optimizers

ADAM optimizer seems to be outperformed in terms of balanced accuracy by other optimizers but it is possibly because of a non-tuned learning rate.

Small vs Big Datasets

For small datasets the simplest algorithms are the best in terms of balanced accuracy, i.e. Random Forests. Bigger require different approaches like IWLS or QDA.

