Astrostatistika-Domaći broj 5: Analiza raspodjele nesvodljive mase crne rupe

Tatjana Novaković 081/2022

1. Uvod

Analiziramo raspodjelu tzv. nesvodive mase $M_{\rm irr}$ crne rupe, koja zavisi od mase M i spina χ putem formule:

$$M_{\rm irr} = M \sqrt{\frac{1 + \sqrt{1 - \chi^2}}{2}}.$$
 (1)

Uvedena je bezdimenziona funkcija:

$$f = \frac{M_{\rm irr}}{M},$$

koja zavisi isključivo od spina χ , koji se modeluje kao uniformna slučajna varijabla u intervalu [0,1]. Masa M se modeluje kao normalna slučajna promenljiva $\mathcal{N}(\mu=1,\sigma=0.02)$.

2. Numerička simulacija i konstrukcija uzoraka

Korišćeni su uzorci veličine N=10000 kako bi se aproksimirala distribucija $M_{\rm irr}$. Za svaki uzorak:

- M je uzet iz normalne distribucije $\mathcal{N}(\mu = 1, \sigma = 0.02)$,
- χ je izabran uniformno iz [0,1],
- računat je $f = M_{\rm irr}/M$, i zatim $M_{\rm irr} = f \cdot M$.

3. Histogram i KDE distribucija $M_{\rm irr}$

Slika 1: Distribucija $M_{\rm irr}$ dobijena histogramom i KDE metodom. KDE omogućava glatku procenu gustine. Histogram koristi Scottovo pravilo za broj binova.

Analiza: Histogram pokazuje asimetričnu distribuciju, sa blagim repom ka višim vrednostima. Vrh distribucije se nalazi oko $M_{\rm irr} \approx 0.97$. KDE kriva, koja koristi Gaussovu jezgru, glatko interpolira gustinu između binova.

4. Teorijska gustina $\pi(f)$

Za $f = M_{\rm irr}/M$ dobija se teorijska gustina:

$$\pi(f) = 2 \cdot \frac{2f^2 - 1}{\sqrt{1 - f^2}}, \quad f \in \left[\frac{1}{\sqrt{2}}, 1\right].$$
 (2)

Numerička integracija:

$$\int_{1/\sqrt{2}}^{1} \pi(f) \, df \approx 1.0000,$$

pokazuje da je funkcija pravilno normalizovana.

5. Teorijska gustina $p(M_{irr})$

Distribucija M_{irr} se dobija konvolucijom normalne raspodele M i gustine $\pi(f)$, što daje:

$$p(M_{\rm irr}) = \frac{\sqrt{2/\pi}}{\sigma} \int_{1/\sqrt{2}}^{1} \exp\left(-\frac{(M_{\rm irr}/f - \mu)^2}{2\sigma^2}\right) \cdot \frac{2f^2 - 1}{f\sqrt{1 - f^2}} df.$$
 (3)

Za svaku tačku $M_{\rm irr}$, numerički se računa integral korišćenjem quad funkcije iz SciPy biblioteke.

6. Poređenje KDE i teorijske gustine

Slika 2: Poređenje teorijske PDF funkcije (crvena isprekidana linija) i KDE funkcije (plava linija) za $M_{\rm irr}$.

Analiza: - Kriva iz teorijske formule i KDE se veoma dobro slažu. - Blage oscilacije u repovima dolaze od numeričke aproksimacije. - Obje funkcije dostižu maksimum kod $M_{\rm irr} \approx 0.97$, što potvrđuje korektnost modela.

7. Kolmogorov–Smirnov testovi

Računate su Kolmogorov–Smirnov distance radi upoređivanja distribucija:

Mjera	Vrijednost
KS distanca: $M_{\rm irr}$ vs f	0.1551
KS distanca: $M_{\rm irr}$ vs M	0.5045
Integracija $\pi(f)$	1.0000

Tabela 1: Rezultati testiranja i normalizacije.

Tumačenje:

- Manja distanca između $M_{\rm irr}$ i f (0.1551) implicira da $M_{\rm irr}$ više zavisi od f nego od M.
- Distanca između $M_{\rm irr}$ i M (0.5045) je veća jer f nije konstantan već zavisi od spina.
- Normalizacija $\pi(f) = 1.0000$ potvrđuje da je teorijski model konzistentan.

8. Zaključak

Korišćenjem kombinacije statističkog uzorkovanja i numeričke integracije, detaljno smo analizirali raspodjelu nesvodive mase crne rupe. Teorijska gustina $p(M_{\rm irr})$ i empirijska gustina dobijena KDE metodom pokazuju odličnu saglasnost. Ovaj zadatak demonstrira primenu Bayesove statistike, numeričkih integrala i analiza distribucija u kontekstu astrofizičkih problema.