

REMARKS

Claims 14-31 are pending in the present application.

Applicants acknowledge the withdrawal of rejections not reiterated in the Office Action. Reexamination of the application and reconsideration of the new rejections are respectfully requested in view of the following remarks.

I. Rejection under 35 U.S.C. § 102(a)

The Office Action alleges that claims 14-18 and 20-30 are anticipated by CA 2 471 239 A1 (“the ‘239 application”). OA, p. 3. Applicants respectfully submit that this reference is disqualified as prior art.

The ‘239 application claims priority to PCT/EP2002/014365, which *published in a language other than English* as WO 03/055304 on July 10, 2003. Therefore, the earliest date that this reference can be applied as prior art is its publication date of July 10, 2003.

The present application is the national stage of a PCT which properly claims foreign priority to DE 102 56 162.1, which was filed on December 2, 2002. This date antedates the ‘239 application’s date of July 10, 2003. Applicants note that the Office Action acknowledges receipt of the certified copies of the priority document from the International Bureau. Attached hereto as Exhibit A in accordance with 37 CFR § 1.55(a)(4)(i)(B) is an English language translation of the priority document. Accompanying the translation as required by 37 CFR § 1.55(a)(ii) is a statement that the translation is accurate. Therefore, the ‘239 application is disqualified as prior art. In view thereof, Applicants respectfully request withdrawal of the rejection.

II. Rejection under 35 U.S.C. § 102(e)

The Office Action alleges that claims 14-18 and 20-30 are anticipated by Meyer et al. (U.S. Patent App. Pub. No. 2006/0142159 A1) (“the ‘159 application”). OA, p. 3. Applicants respectfully submit that this reference does not qualify as prior art under 35 U.S.C. § 102(e).

The ‘159 application is a national stage application of PCT/EP02/014365, which published on July 10, 2003, in *a language other than English* as WO03/055304. Therefore, this patent has no 102(e) date. *See*, M.P.E.P. 706.02(f)(1). As such, the § 102(e) rejection based on the ‘159 application is improper. In view thereof, Applicants respectfully request withdrawal of the rejection.

III. Rejection under 35 U.S.C. § 103

The Office Action alleges that claims 19 and 31 are obvious over Meyer et al., i.e. the ‘159 application, or Zerrer et al., i.e. the ‘239 application, in view of Narayanan et al. Applicants respectfully traverse.

As discussed above, the ‘159 application is a national stage application of PCT/EP02/014365, which published on July 10, 2003, in *a language other than English* as WO03/055304. Therefore, the published application may potentially be used as prior art only as of the date it is published or granted. *See*, M.P.E.P. 706.02(f)(1). The ‘159 application published on June 29, 2006. As such, the present application antedates the ‘159 application. The ‘159 application is therefore disqualified as prior art. With regard to the ‘239 application, as discussed above, this reference is likewise disqualified.

According to the Office Action, it is the combination of the ‘159 application or the ‘239 application and Narayanan et al. which renders the present claims obvious. However, because both the ‘159 and ‘239 applications have been disqualified, the rejection which relies on this art cannot stand. In view thereof, Applicants respectfully request withdrawal of the rejection.

In view of the above, Applicants request withdrawal of all rejections and that all claims are allowed.¹ A Notice to this effect is respectfully requested. If any questions remain, the Examiner is invited to contact the undersigned at the number given below.

Respectfully submitted,

BRINKS HOFER GILSON& LIONE

Date: FEBRUARY 3, 2009

By:
Bryan L. Skelton
Registration No. 50,893

2801 Slater Road, Suite 120
Morrisville, NC 27560
919.481.1111
654975v1

¹ As discussed above, no reference cited against the present application qualifies as prior art. As such, Applicants have not had to reach the alleged teachings of any reference as set forth in the Office Action. Applicants in no way acquiesce to any of the reasoning in the Office Action with regard to the patentability of any pending claim.

EXHIBIT A

UNITED STATES PATENT AND TRADEMARK OFFICE

I, Charles Edward SITCH BA,

Managing Director of RWS Group Ltd UK Translation Division, of Europa House, Marsham Way, Gerrards Cross, Buckinghamshire, England declare;

1. That I am a citizen of the United Kingdom of Great Britain and Northern Ireland.
2. That the translator responsible for the attached translation is well acquainted with the German and English languages.
3. That the attached is, to the best of RWS Group Ltd knowledge and belief, a true translation into the English language of the accompanying copy of the specification filed with the application for a patent in Germany on 2 December 2002 under the number 102 56 162.1 and the official certificate attached thereto.
4. That I believe that all statements made herein of my own knowledge are true and that all statements made on information and belief are true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the patent application in the United States of America or any patent issuing thereon.

For and on behalf of RWS Group Ltd

The 9th day of January 2009

FEDERAL REPUBLIC OF GERMANY

Priority Certificate for the filing of a Patent Application

File Reference: 102 56 162.1

Filing date: 02 December 2002

Applicant/Proprietor: BASF Aktiengesellschaft,
Ludwigshafen/DE

Title: Copolymers based on N-vinylamide as adjuvant and
compositions for the agrotechnical field

IPC: C 08 F, A 01 G

**The attached documents are a correct and accurate reproduction of the
original submission for this application.**

Munich, 17 December 2003
German Patent and Trademark Office
The President
pp

[seal of the
German
Patent and
Trademark Office]

[signature]
Aぐurks

Copolymers based on N-vinylamide as adjuvant and compositions for the agrotechnical field

The present invention relates to specific copolymers
5 based on N-vinylamide and to their use as activity-improving adjuvant in the agrotechnical field and in particular in the field of plant protection. Appropriate agrotechnical compositions are likewise described.

10

In addition to the optimization of the properties of the active compound, the development of an effective composition assumes particular importance with a view to industrial production and application of active
15 compounds. An optimum balance between properties, such as biological activity, toxicology, possible effects on the environment and costs, some of which are contradictory, has to be found by proper formulating of the active compound or compounds. In addition, the
20 formulating determines to a large extent the shelf life and the user friendliness of a composition.

Of particular importance to the activity of an agrotechnical composition is the effective uptake of
25 the active compound by the plant. If this uptake takes place via the leaf, this thus shows itself to be a complex transport process, in which the load of active substance, for example a herbicide, must first penetrate the waxy cuticle of the leaf and must
30 subsequently diffuse, via the cuticle, into the underlying tissue to the actual site of action.

It is generally known and is agricultural practice to add specific auxiliaries to formulations for the
35 purpose of improved activity. The amounts of active substance in the formulation can thereby advantageously be reduced while keeping the activity the same, thereby allowing costs to be minimized and, if appropriate, existing statutory regulations to be adhered to. In

individual cases, success is achieved in expanding the spectrum of activity in that plants which, without additive, could only be insufficiently treated with a specific active compound are accessible to an appropriate treatment by addition of certain auxiliaries. In addition, the performance under unfavorable environmental conditions can in individual cases be enhanced by a suitable formulation. Consequently, incompatibilities of different active compounds in a formulation can also be avoided.

Such auxiliaries are also occasionally described as adjuvants. They are often surface-active or salt-like compounds. Modifiers, actuators, fertilizers and pH buffers, e.g., can be distinguished, according to method of action. Modifiers affect the wetting, sticking and spreading of a formulation. Actuators break up the waxy cuticle of the plants and improve the penetration of the active compound into the cuticle, both in the short term (in the region of minutes) and long term (in the region of hours). Fertilizers, such as ammonium sulfate, ammonium nitrate or urea, improve the absorption and solubility of the active compound and they can reduce the antagonistic behavior of active compounds. pH buffers are conventionally used for optimum adjustment of the pH of the formulation.

With regard to the uptake of the active compound into the leaf, surface-active substances can act as modifiers and actuators. It is generally accepted that suitable surface-active substances can increase the effective contact area of liquids on leaves through a reduction in the surface tension. In addition, specific surface-active substances can dissolve or break up the waxes of the epicuticle, which makes it easier for the active compound to be absorbed. Furthermore, some surface-active substances can also improve the solubility of active compounds in formulations and

thereby avoid or at least delay crystallization. Finally, they can also in certain cases affect the absorption of active compounds by retaining moisture.

5 Adjuvants of the surface-active type are used in varied ways for agrotechnical applications. They can be subdivided into groups of anionic, cationic, nonionic or amphoteric substances.

10 Petroleum-based oils are conventionally used as activating adjuvants. In the recent past, seed extracts, natural oils and their derivatives, for example from soybeans, sunflowers and coconut, have also been used.

15

Synthetic surface-active substances, which are conventionally used as actuators, are inter alia polyoxyethylene condensates with alcohols, alkylphenols or alkylamines which exhibit HLBs ranging from 8 to 13.

20

The spectrum of homo- or copolymers based on N-vinylamide is varied. In the agrotechnical field, they find application as dispersants (US-A-5,776,856; DE-A-19917562; EP-A-1099378; EP-A-1097638; WO 99/37285), as

25 binders (DE-A-19843903; DE-A-19843904) or as swelling agents (US-A-5,904,927) or they are used for the formulating of active compounds which are difficult to dissolve (EP-A-0649649) or for the formation of a coherent solid deposit on the plant (EP-A-0981957). The

30 latter is of importance for the administration of contact insecticides, since this application demands the best possible bioavailability of the insecticide on the leaf.

35 Additional applications outside the agrotechnical field relate, for example, to use in contact lenses or as adhesive in wound dressings, here again special copolymers based on N-vinyl lactam being used which can

comprise alkoxylated (meth)acrylates as comonomers (cf. EP-A-0350030 and US-A-5,407,717).

It is an object of the present invention to make
5 available additional copolymers based on N-vinylamide.

We have found that this object is achieved by the
present invention through novel copolymers based on N-
vinylamide and their use as adjuvants, and the
10 preparation of agrotechnical compositions comprising
these copolymers.

The present invention hence relates to copolymers
comprising monomer units

15

(i) of at least one N-vinylamide,

20

(ii) of at least one ester of an ethylenically
unsaturated carboxylic acid, and, if
appropriate,

25

(iii) of at least one additional copolymerizable
comonomer,

wherein the carboxylic acid esters exhibit alkoxylate residues of the general formula (I)

30 in which

R¹ is hydrogen or an aliphatic hydrocarbon residue with 3 to 40 carbon atoms, preferably linear or branched, saturated or unsaturated
35 C₃₋₄₀-alkyl;

R², R³, R⁴ are, independently of one another, hydrogen or C₁₋₄-alkyl;

w, x, z correspond, independently of one another, to a value of 0 to 100, the sum of w, x and z being greater than 0;

5

y corresponds to a value of 1 to 20;

x is N or O,

10 n being 1 and R¹ not being hydrogen if x is O; or n being 2 if x is N.

The term "monomer unit" means, in the context of the present disclosure, a monomer which has been 15 incorporated in the polymer, where the monomer which has been incorporated in the polymer, i.e. the monomer unit, in comparison with the actual monomer charged to the polymerization reaction, is not only structurally changed by the polymerization reaction but, in 20 addition, can also exhibit further modifications. Thus, in particular, the monomer units of the carboxylic acid esters can be derived by esterification from the monomers charged to the reaction.

25 The N-vinylamides include in particular noncyclic representatives, such as N-vinylformamide and N-vinylacetamide, as well as N-vinyllactam. N-Vinyllactams according to the invention are cyclic amides, of which those with 4 to 6 carbon atoms are 30 particularly important. These N-vinyllactams can also exhibit 1, 2 or 3 identical or different alkyl residues with preferably 1 to 4 carbon atoms on the ring. The N-vinyllactams include in particular N-vinylpyrrolidone, N-vinylcaprolactam or the corresponding N-vinyllactams 35 substituted with a methyl or ethyl group.

According to one embodiment, copolymers according to the invention comprise one kind of monomer unit (i),

i.e. monomer units of an N-vinylamide. According to an additional embodiment, copolymers according to the invention comprise two or more kinds of monomer units (i), e.g. monomer units of several N-vinylamides, such 5 as N-vinylpyrrolidone and another N-vinylamide chosen from N-vinylcaprolactam, N-vinylformamide and N-vinylacetamide.

According to a preferred embodiment, the monomer units 10 (i) present in the copolymer are composed essentially of monomer units of an N-vinylamide, preferably of N-vinylpyrrolidone.

The copolymers accordingly comprise in particular 15 monomer units (i) of the formula (VIIa)

in which a is the mean number of monomer units of the 20 formula (VIIa) in the copolymer and preferably corresponds to a number ranging from 40 to 4 500, advantageously ranging from 65 to 5 000 and in particular ranging from 80 to 3 200.

25 Esters of ethylenically unsaturated carboxylic acid are suitable as monomer units (ii).

Ethylenically unsaturated carboxylic acid esters with 4 to 8 and in particular 4 to 6 carbon atoms in the 30 carboxylic acid part are preferred in this connection.

Mention may in particular be made of acrylic acid esters and methacrylic acid esters. Among these

carboxylic acid esters, methacrylic acid esters are particularly preferred.

The carboxylic acid esters exhibit, as alcohol part,
5 alkoxylates of linear or branched, saturated or unsaturated, primary, secondary or tertiary alcohols or amines. Alcohol alkoxylates are preferred ($X = O$).

Particular embodiments of alkoxylates of the formula
10 (I) ensue if z corresponds to a value of 1 to 100 and w and x are zero (alkoxylates, such as ethoxylates ($R^4 = H$; $y = 1$) or propoxylates ($R^4 = CH_3$; $y = 1$)); if w is zero and x and z correspond, independently of one another, to a value of 1 to 100 (EO/PO block copolymers
15 with, for example, an EO/PO block arrangement ($y=1$; $R^3=CH_3$; $R^4=H$) or a PO/EO block arrangement ($y=1$; $R^3=H$; $R_4=CH_3$)); if w , x and z correspond, independently of one another, to a value of from 1 to 100 (EO/PO/EO block copolymers with, for example, an EO/PO/EO block
20 arrangement ($y=1$; $R^2=H$; $R^3=CH_3$; $R^4=H$) or a PO/EO/PO block arrangement ($y=1$; $R^2=CH_3$; $R^3=H$; $R^4=CH_3$)).

Alcohol residues of the formula (I) in which R^1 is an alkyl residue with preferably 3 to 30 carbon atoms, in
25 which the longer-chain residues and in particular those with 5 to 15, preferably 8 to 12 and in particular 10 to 12 carbon atoms are advantageous, have proved in particular to be suitable according to the invention.

30 Alkoxylate residues and in particular ethoxylate residues of the formula (Ia)

35 in which

R¹ has the above meaning and preferably is linear or branched, saturated or unsaturated C₅₋₁₅-alkyl; and

5 z corresponds to a value of 1 to 100 and preferably lies between 1 and 30,

are very particularly suitable.

10 Consequently, R¹ is in particular the following alkyl residues: hexan-1-yl (capryl), heptan-1-yl (oenanthyl), octan-1-yl (caprylyl), nonan-1-yl (pelargonyl), decan-1-yl, undecan-1-yl, dodecan-1-yl (lauryl), tridecan-1-yl, tetradecan-1-yl (myristyl) or pentadecan-1-yl.

15 Mention may also be made, in addition to the abovementioned linear alkyl residues, of branched alkyl residues, such as isodecanyl and isolauryl, these branched alkyl residues generally being a mixture of different residues with a corresponding carbon number.

20

The alkoxylation results from the reaction with suitable alkylene oxides, which generally exhibit 2 to 15 and preferably 2 to 6 carbon atoms. Mention may in particular be made here of ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), pentylene oxide (PeO) and hexylene oxide (HO).

One type of suitable alkoxylate residues of the formula (I) or (Ia) is based on one kind of alkylene oxide.

30

Another type of suitable alkoxylate residues of the formula (I) or (Ia) is based on at least two different kinds of alkylene oxide. At the same time, it is preferred to arrange several alkylene oxide units of one kind as a block, so that at least two different alkylene oxide blocks result, which in each case are formed from several units of the same alkylene oxides. If such block alkoxylates are used, it is preferable

for the alkylene oxide part to be composed of 3 and in particular of 2 blocks.

According to one aspect, it is preferable for the 5 alkoxylate residues to be used according to the invention to be ethoxylated or at least to exhibit one ethylene oxide block. According to another aspect, ethylene oxide blocks are combined in particular with propylene oxide or pentylene oxide blocks.

10

The degree of alkoxylation resulting in each case depends on the amounts of alkylene oxide(s) used chosen for the reaction and on the reaction conditions. In this connection, it is generally a statistical mean 15 value since the number of alkylene oxide units of the alcohol alkoxylate residues resulting from the reaction varies.

The degree of alkoxylation, i.e. the mean chain length 20 of the polyether chains of suitable alkoxylate residues according to the invention, can be determined through the molar quantitative proportion of alcohol or amine to alkylene oxide. Alkoxylates with approximately 1 to 50, preferably approximately 1 to 20, in particular 1 25 to 10 alkylene oxide units (sum of w, x, z), in particular ethylene oxide units, are preferred.

The synthesis of the alcohols or alcohol mixtures which 30 can be used for the alcohol part of the formula (I) or of the amines or amine mixtures which can be used for the amine part of the formula (I) is carried out according to conventional processes known to a person skilled in the art and in equipment conventional for such processes.

35

The alkoxylation of the alcohols or alcohol mixtures can be catalyzed by strong bases, such as alkali metal hydroxides and alkaline earth metal hydroxides,

Brönsted acids or Lewis acids, such as AlCl_3 , BF_3 , and the like. Catalysts such as hydrotalcite or DMC can be used for narrowly distributed alcohologlycates.

- 5 The alkoxylation is preferably carried out at temperatures ranging from approximately 80 to 250°C, preferably approximately 100 to 220°C. The pressure is preferably between ambient pressure and 600 bar. The alkylene oxide can, if desired, comprise an inert gas
10 admixture, e.g. of approximately 5 to 60%.

The alcohols themselves are generally commercially available and can also be prepared in ways known per se. Mention may be made in this connection of the
15 "Guerbet alcohols", which can be obtained, for example, through dimerization of appropriate primary alcohols at raised temperature in the presence of basic condensation agents; the alcohol mixtures frequently described as " C_{13} -oxo alcohols", the main component of
20 which is formed from at least one branched C_{13} -alcohol (isotridecanol) and which are generally obtainable by hydrogenation of hydroformylated trimeric butene; and the alcohol mixtures frequently described as " C_{10} -oxo alcohols", the main component of which is formed from
25 at least one branched C_{10} -alcohol (isodecanol) and which are generally obtainable by hydrogenation of hydroformylated trimeric propene.

Copolymers according to the invention can exhibit
30 several kinds of monomer units (ii), e.g. carboxylic acid esters with different carboxylic acids and/or different alkoxyate parts. According to a particular embodiment, the monomer units (ii) present in the copolymer derive from a carboxylic acid and in
35 particular one of the carboxylic acids described above as preferred. Copolymers with monomer units (ii) essentially composed of monomer units of acrylic acid

esters and in particular methacrylic acid esters have accordingly proved to be particularly suitable.

Accordingly, the copolymers comprise in particular
5 monomer units (ii) of the formula (VIIb1) and/or of the
formula (VIIb2)

(VIIb1)

(VIIb2)

10 in which

R is one of the alkoxylate residues described above; and

15 b can be alike or different and is the mean number of the monomer units of the formula (VIIb1) or (VIIb2) in the polymer and corresponds preferably to a number ranging from 1 to 100, advantageously ranging from 5
20 to 50 and in particular ranging from 11 to 25.

In formula (VIIb1) or (VIIb2), R is advantageously an alkoxylate residue of the formula (I) and in particular
25 of the formula (Ia).

In principle, all copolymerizable ethylenically unsaturated comonomers with at least one double bond, in particular monoethylenically unsaturated comonomers,
30 are suitable as monomer units (iii).

Mention may in particular be made, for example, of salts, esters and amides of acrylic acid or methacrylic

acid. The salts can be derived from any nontoxic metal, ammonium or substituted ammonium counterion, e.g. cations mentioned above under M.

- 5 The esters can - if not already employed as monomer unit (ii) - be derived from linear C₁-C₄₀, branched C₃-C₄₀ or carbocyclic C₃-C₄₀ alcohols, from polyfunctional alcohols with 2 to approximately 8 hydroxyl groups, such as ethylene glycol, hexylene glycol, glycerol and
10 1,2,6-hexanetriol, from aminoalcohols or from alcohol ethers, such as methoxyethanol and ethoxyethanol.

The amides can be unsubstituted, N-alkyl-substituted or N-alkylamino-monosubstituted or N,N-dialkyl-substituted
15 or N,N-dialkylamino-disubstituted, in which the alkyl or alkylamino groups are derived from linear C₁-C₄₀, branched C₃-C₄₀ or carbocyclic C₃-C₄₀ units. The alkylamino groups can furthermore be quaternized.

- 20 Salts, esters and amides of substituted acrylic acids, in which the substituents are present on the carbon atoms in position 2 or 3 of the acrylic acid and are chosen, independently of one another, from C₁-C₄-alkyl, -CN and COOH, are comonomers which can likewise be used
25 as monomer units (iii). Mention may particularly preferably be made here of salts, esters and amides of methacrylic acid, ethacrylic acid and 3-cyanoacrylic acid.
30 Particularly preferred as component (iii) are comonomers of the general formula (II):

- 35 in which

Y is chosen from -OM, -OR⁷, NH₂, -NHR⁷ or N(R⁷)₂, in which the R⁷ residues can be identical or

5 different and are chosen from hydrogen, linear or branched C₁-C₄₀-alkyl, N,N-dimethylaminoethyl, 2-hydroxyethyl, 2-methoxyethyl, 2-ethoxyethyl, hydroxypropyl, methoxypropyl and ethoxypropyl, in which OR⁷ should not be OH;

M 10 is a cation selected from alkali metal, alkaline earth metal and transition metal cations, in particular Na⁺, K⁺, Mg⁺⁺, Ca⁺⁺ and Zn⁺⁺, NH₄⁺ and quaternary ammonium cations, in particular alkylammonium, dialkylammonium, trialkylammonium and tetraalkylammonium; and

15 R⁵, R⁶ independently of one another, are chosen from hydrogen, linear or branched C₁-C₈-alkyl, methoxy, ethoxy, 2-hydroxyethoxy, 2-methoxyethoxy and 2-ethoxyethyl.

20 Furthermore, N,N-dialkylaminoalkyl acrylates and N,N-dialkylaminoalkyl methacrylates, along with N,N-dialkylamino-alkylacrylamides and N,N-dialkylaminoalkylmethacrylamides, of the general formula (III)

25

in which

30 R⁸ is hydrogen or C₁-C₈-alkyl;

R⁹ is hydrogen or methyl;

35 R¹⁰ is C₁-C₂₄-alkylene which can be substituted by alkyl;

R¹¹, R¹² independently of one another, are C₁-C₄₀-alkyl;

Z is nitrogen and g = 1 or Z is oxygen and g = 0;

are suitable.

5

Preferred comonomers of the formula (III) are N,N-dimethylaminomethyl (meth)acrylate, N,N-diethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N-[3-(dimethylamino)-propyl]methacrylamide and N-[3-(dimethylamino)propyl]acrylamide. It should be mentioned at this point that the expression "(meth)acrylate" represents both "acrylate" and "methacrylate".

Furthermore, allyl esters of linear C₁-C₄₀, branched C₃-C₄₀ or carbocyclic C₃-C₄₀ carboxylic acids, vinyl halides or allyl halides, preferably vinyl chloride and allyl chloride, vinylformamide, vinylmethylacetamide, vinylamine; vinyl- or allyl-substituted heterocyclic compounds, preferably vinylpyridine, vinyloxazoline and allylpyridine, are also suitable.

25 N-Vinylimidazoles of the general formula (IV)

in which

30

R¹³ - R¹⁵ independently of one another, are hydrogen, C₁-C₄-alkyl or phenyl,

are also suitable.

Diallylamines of the general formula (V)

5

in which

R^{16} is $\text{C}_1\text{-C}_{24}$ -alkyl,

10 are likewise suitable.

Comonomers which can likewise be used as monomer units (iii) are olefins, i.e. in principle all unsaturated hydrocarbons with at least one ethylenically 15 unsaturated polymerizable double bond. Olefins with a terminal double bond are advantageous. Monoethylenically unsaturated olefins are preferred. Monoethylenically unsaturated olefins with a terminal double bond are particularly preferred.

20

Preferred olefins have 4 to 40, in particular 4 and preferably 8 to 24 carbon atoms. According to a particular embodiment, the olefins have 8 or 18 or 20 to 24 carbon atoms.

25

Suitable olefins include, for example, but-1-ene, but-2-ene, butadiene, 2-methylprop-1-ene (isobutene), pent-1-ene, isoprene, 2-methylbut-1-ene, 3-methylbut-1-ene, hex-1-ene, cyclohexadiene, 2-methylpent-1-ene, 3-methylpent-1-ene, 4-methylpent-1-ene, 2-ethylbut-1-ene, 4,4-dimethylbut-1-ene, 2,4-dimethylbut-1-ene, 2,3-dimethylpent-1-ene, 3,3-dimethylpent-1-ene, 2,4-dimethylpent-1-ene, 3,4-dimethylpent-1-ene, 4,4-dimethylpent-1-ene, oct-1-ene, 2,4,4-trimethylpent-1-ene, 2,4,4-trimethylpent-2-ene, diisobutene, in particular one which exists technically as an isomeric mixture of essentially 2,4,4-trimethylpent-1-ene and

2,4,4-trimethylpent-2-ene, e.g. in a ratio of approx. 80 weight% to approx. 20 weight%, 4,4-dimethylhex-1-ene, 2-ethylhex-1-ene, oligo- and polyisobutenes with a molecular weight of less than 2 000, oligopropenes with 5 a molecular weight of less than 1 000, dec-1-ene, dodec-1-ene, tetradec-1-ene, hexadec-1-ene, heptadec-1-ene, octadec-1-ene, C₁₈-1-olefin, C₂₀-1-olefin, C₂₂-1-olefin, C₂₄-1-olefin, C₂₀- to C₂₄-1-olefin, C₂₄- to C₂₈-1-olefin, C₃₀-1-olefin, C₃₅-1-olefin, styrene, alkyl-10 substituted styrenes, such as α-methylstyrene, tert-butylstyrene or vinyltoluene, cyclic olefins, such as cyclooctene, and mixtures of these monomers.

Ethylene, propylene and vinylidene chloride are also 15 suitable in principle as comonomers for the monomer units (iii).

Additional suitable monomer units (iii) are vinyl ethers, the alcohol part of which has 1 to 30 and 20 preferably 1 to 20 carbon atoms. Mention may in particular be made here of C₁-C₃₀-alkyl vinyl ethers in which the alkyl residues can be linear, branched or cyclic and substituted or unsubstituted. Examples of suitable alkyl vinyl ethers are methyl vinyl ether, 25 ethyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether and dodecyl vinyl ether.

Comonomers for the monomer units (iii) which may in particular be mentioned are methyl acrylate, ethyl 30 acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl 35 methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, methyl ethacrylate, ethyl ethacrylate, n-butyl ethacrylate, isobutyl ethacrylate, t-butyl ethacrylate, 2-ethylhexyl ethacrylate, decyl

ethacrylate, stearyl (meth)acrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl ethacrylate, 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, 2-methoxyethyl ethacrylate, 2-ethoxyethyl methacrylate, 2-ethoxyethyl ethacrylate, hydroxypropyl methacrylate, glyceryl monoacrylate, glyceryl monomethacrylate and unsaturated sulfonic acids, such as, for example, acrylamidopropanesulfonic acid;

acrylamide, methacrylamide, ethacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-ethylacrylamide, N-isopropylacrylamide, N-butylacrylamide, N-t-butylacrylamide, N-octylacrylamide, N-t-octylacrylamide, N-octadecylacrylamide, N-phenylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-dodecylmethacrylamide, 1-vinylimidazole, 1-vinyl-2-methylvinylimidazole, N,N-dimethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-dimethylaminobutyl (meth)acrylate, N,N-diethylaminobutyl (meth)acrylate, N,N-dimethylaminohexyl (meth)acrylate, N,N-dimethylaminoctyl (meth)acrylate, N,N-dimethylaminododecyl (meth)acrylate, N-[3-(dimethylamino)propyl]methacrylamide, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino)butyl]methacrylamide, N-[8-(dimethylamino)octyl]methacrylamide, N-[12-(dimethylamino)dodecyl]methacrylamide, N-[3-(diethylamino)propyl]methacrylamide, N-[3-(diethylamino)propyl]acrylamide;

diallyldimethylammonium chloride, vinylformamide, vinylmethylacetamide, vinylamine; methyl vinyl ketone,

vinylopyridine, vinylimidazole, vinylfuran, styrene, styrenesulfonate, allyl alcohol, and mixtures thereof.

Particularly preferred among these are methyl acrylate,
5 methyl methacrylate, ethyl acrylate, ethyl
methacrylate, n-butyl acrylate, n-butyl methacrylate,
t-butyl acrylate, t-butyl methacrylate, isobutyl
acrylate, isobutyl methacrylate, 2-ethylhexyl acrylate,
stearyl acrylate, stearyl methacrylate, N-t-
10 butylacrylamide, N-octylacrylamide, 2-hydroxyethyl
acrylate, hydroxypropyl acrylate, 2-hydroxyethyl
methacrylate, hydroxypropyl methacrylate, styrene,
unsaturated sulfonic acids, such as, for example,
acrylamidopropanesulfonic acid, vinylformamide,
15 vinylmethylacetamide, vinylamine, 1-vinylimidazole, 1-
vinyl-2-methylimidazole, N,N-dimethylaminomethyl
methacrylate and N-[3-
20 (dimethylamino)propyl]methacrylamide; 3-methyl-1-
vinylimidazolium chloride, 3-methyl-1-vinylimidazolium
methyl sulfate, N,N-dimethylaminoethyl methacrylate, N-
[3-(dimethylamino)propyl]methacrylamide quaternized
with methyl chloride, methyl sulfate or diethyl
sulfate.

30 Alkyl halides with 1 to 24 carbon atoms in the alkyl group, for example methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, propyl chloride, hexyl chloride, dodecyl chloride, lauryl chloride and benzyl halides, in particular benzyl chloride and benzyl bromide, are suitable, for example,
35 for the quaternization of the amines. Additional suitable quaternizing agents are dialkyl sulfates, in particular dimethyl sulfate or diethyl sulfate. The basic amines can also be quaternized with alkylene

oxides, such as ethylene oxide or propylene oxide, in the presence of acids. Preferred quaternizing agents are: methyl chloride, dimethyl sulfate or diethyl sulfate.

5

The quaternization can be carried out before or after the polymerization.

10 The reaction products of unsaturated acids, such as, e.g., acrylic acid or methacrylic acid, with a quaternary epichlorohydrin of the general formula (VI)

15 in which

R¹⁷ is C₁-C₄₀-alkyl,

can furthermore be used.

20

Examples of such reaction products are (meth)acryloyloxyhydroxypropyltrimethylammonium chloride and (meth)acryloyloxyhydroxypropyltriethylammonium chloride.

30 The basic comonomers can also be cationized by being neutralized with inorganic acids, such as, e.g., sulfuric acid, hydrochloric acid, hydrobromic acid, hydriodic acid, phosphoric acid or nitric acid, or with organic acids, such as, e.g., formic acid, acetic acid, lactic acid or citric acid.

35 In addition to the abovementioned comonomers, "macromonomers", such as, for example, silicone-comprising macromonomers with one or more groups

capable of undergoing free radical polymerization or alkyloxazoline macromonomers, can be used for the monomer units (iii), such as are disclosed in EP 408 311. Reference is herewith expressly made to 5 this publication and the macromonomers revealed therein.

In addition, fluorine-comprising monomers, such as are disclosed in EP 558 423, and compounds with a 10 crosslinking activity or which regulate the molecular weight can be used, in combination or alone.

According to a particular embodiment, copolymers according to the invention comprise essentially no 15 monomer units (iii). These copolymers accordingly are composed essentially of monomer units (i) and (ii). The proportion of monomer units (i) preferably amounts to 10 mol% to 99 mol%, advantageously 40 mol% to 95 mol% and in particular 60 mol% to 90 mol% and the proportion 20 of monomer units (ii) preferably amounts to 90 mol% to 1 mol%, advantageously 60 mol% to 5 mol% and in particular 40 mol% to 10 mol%.

According to an additional particular embodiment, 25 copolymers according to the invention comprise monomer units (iii). These copolymers accordingly are composed essentially of monomer units (i) and (iii), or (i), (ii) and (iii). In the context of the first embodiment, the proportion of monomer units (iii) amounts to up to 30 10 mol%, advantageously up to 5 mol% and in particular up to 1 mol%. In the context of the second embodiment, the proportion of monomer units (i) amounts to 60 mol% to 99 mol%, advantageously 70 mol% to 95 mol% and in particular 85 mol% to 95 mol%, the proportion of 35 monomer units (ii) amounts to 30 mol% to 1 mol%, advantageously 20 mol% to 3 mol% and in particular 15 mol% to 5 mol%, and the proportion of monomer units

(iii) amounts to up to 10 mol%, advantageously up to 5 mol% and in particular up to 1 mol%.

In this connection, the fact should be borne in mind
5 that, at relatively low molecular weights, a deviation from the given values can occur due to an increase in the number of specific end monomer units.

As a rule, the copolymers to be used according to the
10 invention exhibit a relatively small contact angle. Copolymers with a contact angle of less than 90° and preferably of less than 75°, determined in a way known per se using an aqueous solution comprising 2 weight% of copolymer on a paraffin surface, are particularly
15 preferred.

The surface-active properties of the copolymers depend in particular on the kind and distribution of the monomer units. The surface tension of copolymers to be
20 used according to the invention, which can be determined by the pendant drop method, preferably ranges from 20 to 72 mN/m and in particular 30 to 65 mN/m for a solution comprising 0.1 to 2.0 weight% of copolymer. Copolymers preferably to be used according
25 to the invention hence qualify as amphiphilic substances.

The weight-average molecular weight of the copolymerizes according to the invention lies between
30 5 000 and 800 000, preferably between 7 500 and 600 000, particularly preferably between 10 000 and 400 000.

The copolymers according to the invention are
35 preferably not crosslinked.

The polymerizes according to the invention can be prepared by copolymerization of suitable monomers

corresponding to the monomer units (i) and (ii) (monomers of the groups (i) or (ii)) and, if appropriate, of additional comonomers corresponding to the monomer units (iii) (comonomers of the group 5 (iii)). To this end, the monomers or comonomers can be polymerized with the help of free-radical initiators or else by the action of high-energy radiation, which should be understood as also including the action of high-energy electrons (cf., e.g., EP 9 169 A1, 10 EP 9 170 A1 and EP 276 464, which are expressly referred to).

The conventional peroxy and/or azo compounds used as initiators for free radical polymerization can be used, 15 for example alkali metal or ammonium peroxydisulfates, diacetyl peroxide, dibenzoyl peroxide, succinyl peroxide, di(tert-butyl) peroxide, tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl permaleinate, cumene hydroperoxide, diisopropyl 20 peroxydicarbamate, bis(o-toluoyl) peroxide, didecanoyl peroxide, dioctanoyl peroxide, dilauroyl peroxide, tert-butyl perisobutyrate, tert-butyl peracetate, di(tert-amyl) peroxide, tert-butyl hydroperoxide, azobisisobutyronitrile, azobis(2-amidonopropane) 25 dihydrochloride or 2,2'-azobis(2-methylbutyronitrile). Initiator mixtures or redox/initiator systems, such as, e.g., ascorbic acid/iron(II) sulfate/sodium peroxodisulfate, tert-butyl hydroperoxide/sodium disulfite or tert-butyl hydroperoxide/sodium 30 hydroxymethanesulfinate, are also suitable. Organic peroxides are preferably used.

The amounts of initiator or initiator mixtures used, based on the amounts of monomer used, lie between 0.01 35 and 10 weight%, preferably between 0.05 and 5 weight%.

As a rule, the polymerization is carried out in a temperature range from 40 to 200°C, preferably in the

range from 50 to 140°C, particularly preferably in the range from 60 to 130°C. It is usually carried out at atmospheric pressure but can also proceed under reduced or elevated pressure, in the latter case preferably 5 between 1 and 5 bar.

The polymerization can be carried out, for example, as solution polymerization, bulk polymerization, emulsion polymerization, inverse emulsion polymerization, 10 suspension polymerization, inverse suspension polymerization or precipitation polymerization, without the methods which can be used being limited thereto.

In bulk polymerization, it is possible to proceed such 15 that the monomers of the group (i), the monomers of the group (ii) and, if appropriate, additional comonomers of the group (iii) are mixed with one another and, after addition of a polymerization initiator, the mixture is fully polymerized. The polymerization can 20 also be carried out semibatchwise by first introducing a portion, e.g. 10%, of the mixture of monomers or comonomers of the groups (i) and (ii) and, if appropriate, (iii) to be polymerized and initiator, by heating the mixture to polymerization temperature and, 25 after the polymerization has started, by adding the remainder of the mixture to be polymerized according to the progress of the polymerization. The polymerizates can also be obtained by introducing the monomers of the group (i) into a reactor, heating to polymerization 30 temperature, adding at least one monomer of the group (ii) and, if appropriate, one or more further comonomers of the group (iii) and polymerization initiator, either all at once, stepwise or, preferably, continuously, and polymerizing. The polymerization can 35 in the process be carried out with the assistance of protective colloids, as disclosed, for example, in DT 2840201.

If desired, the abovedescribed polymerization can also be carried out in a solvent. Suitable solvents are, for example, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-
5 butanol, n-hexanol and cyclohexanol, and glycols, such as ethylene glycol, propylene glycol and butylene glycol, and the methyl or ethyl ethers of dihydric alcohols, diethylene glycol, triethylene glycol, glycerol and dioxane. When using ethylenically
10 unsaturated carboxylic acid esters from group (ii), it is preferable to use solvents which are inert with respect to the carboxylic acid esters used.

The polymerization can also be carried out in water as
15 solvent. In this case, a solution is first present which is more or less soluble in water depending on the amount of the monomers of the groups (i) and (ii) added and of the additional comonomers of the group (iii) added. In order to dissolve water-insoluble products
20 which may be formed during the polymerization, it is possible to add, for example, organic solvents such as monohydric alcohols with 1 to 3 carbon atoms, acetone or dimethylformamide. However, it is also possible in the polymerization in water to proceed in such a way
25 that the water-insoluble polymerizates are converted to a finely divided dispersion by addition of conventional emulsifiers or protective colloids, e.g. polyvinyl alcohol.

30 Examples of emulsifiers which are used are ionic or nonionic surfactants with HLBs ranging from 3 to 13. Reference is made to the publication by W.C. Griffin, J. Soc. Cosmetic Chem., Volume 5, 249 (1954), for the definition of the HLB.

35

The amount of surfactants, based on the polymerizate, generally amounts to 0.1 to 10 weight%. When water is used as solvent, solutions or dispersions of the

polymerizates are obtained. If solutions of the polymerizate in an organic solvent or in mixtures of an organic solvent and water are prepared, 5 to 2 000, preferably 10 to 500, parts by weight of the organic 5 solvent or of the solvent mixture are generally used per 100 parts by weight of the polymerizate.

The copolymers which can be used according to the invention can be obtained in particular by 10 copolymerization

- (1) of at least one vinylamide,
- 15 (2) of at least one ethylenically unsaturated carboxylic acid and/or of at least one ethylenically unsaturated carboxylic acid derivative, in particular a carboxylic acid ester, and, if appropriate,
- 20 (3) of at least one additional copolymerizable comonomer,

and, if required, partial or complete solvolysis and/or derivatization, in particular esterification or 25 transesterification, of the carboxylic acids and/or carboxylic acid derivatives.

In particular, the copolymer CP' resulting from the copolymerization can, if necessary, be subjected to one 30 or more of the following additional process steps:

- (4) an at least partial solvolysis of derivatized carboxylic acid groups;
- 35 (5) an esterification of carboxylic acid groups;
- (6) an at least partial neutralization of carboxylic acid groups.

The relative amounts of monomers and comonomers to be chosen for the purpose of the copolymerization can be inferred from the above remarks on the proportions of
5 monomer units (i) and (ii) and, if appropriate, (iii).

The polymerization of monomers and comonomers which leads directly to the desired copolymer CP is preferred according to the invention.

10

The kind of monomers or comonomers to be used does not, though, depend only on the monomer units to be formed. Rather, it is in many cases advisable to polymerize monomers or comonomers which, subsequent to the
15 polymerization reaction, are converted to the desired monomer units. This course of procedure may be conditioned by the reaction and process technology.

In particular, the monomers which can be used for the
20 monomer units (ii) can differ from the monomer units involved in the formation of the copolymer CP. Thus, carboxylic acids or specific carboxylic acid derivatives can be polymerized first. The monomer units (ii') thus formed, of the copolymer CP', are
25 subsequently as a rule subjected to one or more of the process steps (4), (5) and/or (6), finally resulting in the copolymer CP or a salt thereof. In this sense, it is also possible to polymerize carboxylic acid esters with short-chain, readily hydrolyzable ester groups,
30 such as alkyl esters with preferably 1 to 3 carbon atoms in the alkyl part, their alcohol part subsequently being split off and replaced with another alcohol.

35 The copolymer CP' obtainable by copolymerization can accordingly comprise carboxyl groups and/or derivatized carboxyl groups, e.g. ester groups, which are subsequently, if desired, converted in a polymer-

analogous reaction, generally with formation of the carboxylic acid esters. Preferred polymer-analogous reactions are (4) solvolyses, such as hydrolyses and alcoholyses, of carboxylic acid derivatives, and (5) 5 esterifications of carboxyl groups.

According to one embodiment, copolymers CP to be used according to the invention can be obtained by (ii) choosing at least one ethylenically unsaturated 10 carboxylic acid and copolymerizing it with the usual monomers or comonomers, and by reacting at least a portion of the carboxyl groups of the resulting copolymerization product CP' with suitable alcohols with formation of esters.

15

The polymer-analogous reaction subsequent to the polymerization can be carried out in the presence of a solvent, for example acetone or tetrahydrofuran. However, it is preferable for the copolymer CP' to be 20 reacted directly with the derivatizing agent, e.g. an alcohol corresponding to the abovementioned formula (I). The amount of reactants to be employed depends on the degree of derivatization to be achieved.

25 If the derivatization is an esterification reaction, this is carried out in the usual way, viz. generally at elevated temperature, e.g. 50 to 200°C and preferably at 80 to 150°C, if appropriate in the presence of a conventional catalyst, e.g. p-toluenesulfonic acid.
30 Normal reaction times range from 0.5 to 20 and in particular 1 to 10 hours. The reaction of anhydride groups present in the polymer is preferred. This can be carried out, if appropriate, without solvent or in a solvent. If a solvent is used, those organic fluids
35 which are inert to anhydride groups and which dissolve or swell not only the starting material but also the reaction product, viz. the at least partially esterified copolymer, are particularly suitable.

Mention may be made in this connection of toluene, xylene, ethylbenzene, aliphatic hydrocarbons and ketones, such as acetone or methyl ethyl ketone. After the esterification, the solvent, if present, is removed
5 from the reaction mixture, for example by distillation.

In order to form salts, the polymerizates can, before or after polymerization, be partially or completely neutralized with bases in order thus, for example, to
10 adjust the water solubility or water dispersibility to a desired extent.

Use may be made, as neutralizing agents for acid groups, of, for example, inorganic bases, such as
15 sodium carbonate, alkali metal hydroxides, such as sodium hydroxide or potassium hydroxide, alkaline earth metal hydroxides and ammonia, or organic bases, such as alkylamines, dialkylamines, trialkylamines, aminoalcohols, especially isopropylamine, ethylamine,
20 diisopropylamine, diethylamine, triisopropylamine, triethylamine, 2-amino-2-methyl-1-propanol, monoethanolamine, diethanolamine, triethanolamine, triisopropanolamine, tri(2-hydroxy-1-propyl)amine, 2-amino-2-methyl-1,3-propanediol or 2-amino-2-
25 hydroxymethyl-1,3-propanediol, and diamines, such as, for example, lysine.

The copolymers according to the invention based on N-vinylamide exhibit adjuvant, in particular action-promoting, properties in the treatment of plants. Thus,
30 the addition of such copolymers makes possible an accelerated uptake of active compounds by a plant to be treated with the active compound. The adjuvant action results in particular in the following aspects in the treatment of plants with one or more active compounds:
35

- in comparison, higher activity of the active compound for a given amount expended;

- in comparison, smaller amount expended for a given effect;
 - in comparison, stronger uptake of the active compound by the plant, in particular via the leaf,
- 5 and accordingly advantages postemergence, in particular in the spray treatment of plants.

10 The present invention accordingly also relates to the use of the copolymers as adjuvant in the treatment of plants.

15 The use according to the invention is aimed in particular at plant cultivation, agriculture and horticulture. It is used in particular for the control of undesired plant growth.

20 Accordingly, the present invention also relates to methods for the treatment of plants corresponding to the above purposes, in which a suitable amount of copolymer according to the invention is administered.

Particular advantages are achieved in particular in the cultivation of Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoiensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza

- sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale,
- 5 Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.
- 10 In addition, the copolymers according to the invention can also be used in crops which tolerate the action of herbicides. Such crops can, for example, be obtained by breeding and also genetic engineering methods.
- 15 In accordance with the use in the agrotechnical field and especially in the field of plant protection, the copolymers can be used as stand-alone products and can be coadministered together with at least one composition comprising an active compound, they can be
- 20 mixed, shortly before use, with at least one composition comprising an active compound and can be administered as corresponding mixture, or they can be incorporated as coformulant in the formulation as a ready mix.
- 25
- The present invention accordingly also relates to compositions comprising
- (a) at least one active compound for the treatment of
- 30 plants; and
- (b) at least one of the abovedescribed copolymers based on N-vinylamide.
- 35 Contributions of the component (b) to the total weight of the composition of more than 0.5 weight%, preferably of more than 1 weight% and in particular of more than 5 weight% are advantageous. On the other hand,

contributions of the component (b) to the total weight of the composition of less than 50 weight%, preferably of less than 25 weight% and in particular of less than 10 weight% are generally advisable.

5

The active compound (component (a)) can be chosen from herbicides, fungicides, insecticides, acaricides, nematocides and active compounds which regulate plant growth.

10

Herbicultural plant protection compositions can comprise one or more, for example, of the following herbicultural plant protection active compounds:

- 15 1,3,4-thiadiazoles, such as buthidazole and cyprazole, amides, such as allidochlor, benzoylprop-ethyl, bromobutide, chlorthiamide, dimepiperate, dimethenamide, diphenamide, etobenzanid, flamprop-methyl, fosamine, isoxaben, monalide, naptalam,
20 pronamide or propanil, aminophosphoric acids, such as bilanafos, buminafos, glufosinate-ammonium, glyphosate or sulfosate, aminotriazoles, such as amitrole, anilides, such as anilofos or mefenacet, aryloxyalkanoic acids, such as 2,4-D, 2,4-DB,
25 clomeprop, dichlorprop, dichlorprop-P, fenoprop, fluroxypyr, MCPA, MCPB, mecoprop, mecoprop-P, napropamide, naproanilide or triclopyr, benzoic acids, such as chloramben or dicamba, benzothiadiazinones, such as bentazone, bleachers, such as clomazone,
30 diflufenican, fluorochloridone, flupoxam, fluridone, pyrazolate or sulcotrione, carbamates, such as carbetamide, chlorbufam, chlorpropham, desmedipham, phenmedipham or vernolate, quinolinecarboxylic acids, such as quinclorac or quinmerac, dichloropropionic acids, such as dalapon, dihydrobenzofurans, such as ethofumesate, dihydrofuran-3-ones, such as flurtamone, dinitroanilines, such as benefin, butralin, dinitramine, ethalfluralin, fluchloralin, isopropalin,

nitralin, oryzalin, pendimethalin, prodiamine,
profluralin or trifluralin, dinitrophenols, such as
bromofenoxim, dinoseb, dinoseb acetate, dinoterb, DNOC
or dinoterb acetate, diphenyl ethers, such as
5 acifluorfen-sodium, aclonifen, bifenox, chlornitrofen,
difenoxyuron, ethoxyfen, fluorodifen, fluoroglycofen-
ethyl, fomesafen, furyloxyfen, lactofen, nitrofen,
nitrofluorfen or oxyfluorfen, dipyridyls, such as
cyperquat, difenzoquat metilsulfate, diquat or paraquat
10 dichloride, imidazoles, such as isocarbamide,
imidazolinones, such as imazamethapyr, imazapyr,
imazaquin, imazamethabenz-methyl or imazethapyr,
oxadiazoles, such as methazole, oxadiargyl or
oxadiazone, oxiranes, such as tridiphane, phenols, such
15 as bromoxynil or ioxynil, phenoxyphenoxypropionic acid
esters, such as clodinafop, cyhalofop-butyl, diclofop-
methyl, fenoxaprop-ethyl, fenoxaprop-P-ethyl,
fenthiaprop-ethyl, fluazifop-butyl, fluazifop-P-butyl,
haloxyfop-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-
20 methyl, isoxapryifop, propaquizafop, quizalofop-ethyl,
quizalofop-P-ethyl or quizalofop-P-tefuryl,
phenylacetic acids, such as chlorfenac, phenylpropionic
acids, such as chlorophenprop-methyl, ppi-active
compounds, such as benzofenap, flumiclorac-pentyl,
25 flumioxazin, flumipropyn, flupropacil, pyrazoxyfen,
sulfentrazone or thidiazimin, pyrazoles, such as
nipyraclofen, pyridazines, such as chloridazon, maleic
hydrazide, norflurazone or pyridate, pyridinecarboxylic
acids, such as clopyralid, dithiopyr, picloram or
30 thiazopyr, pyrimidyl ethers, such as pyrithiobac acid,
pyrithiobac-sodium, KIH-2023 or KIH-6127, sulfonamides,
such as flumetsulam or metosulam, triazolecarboxamides,
such as triazofenamide, uracils, such as bromacil,
lenacil or terbacil, and furthermore benazolin,
35 benfuresate, bensulide, benzofluor, butamifos,
cafenstrole, chlorthal-dimethyl, cinmethylin,
dichlobenil, endothal, fluorbentranil, mefluidide,
perfluidone or piperophos.

Preferred herbicidal plant protection active compounds are those of the sulfonylurea type, such as amidosulfuron, azimsulfuron, bensulfuron-methyl,
5 chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, flazasulfuron, halosulfuron-methyl, imazosulfuron, metsulfuron-methyl, nicosulfuron, primisulfuron, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron-methyl,
10 thifensulfuron-methyl, triasulfuron, tribenuron-methyl, triflusulfuron-methyl or tritosulfuron.

Further preferred herbicidal plant protection active compounds are those of the cyclohexenone type, such as
15 aloxydim, clethodim, cloproxydim, cycloxydim, sethoxydim and tralkoxydim.

Very particularly preferred herbicidal active compounds of the cyclohexenone type are: tepraloxydim (cf. AGROW, No. 243, 3.11.95, page 21, caloxydim) and 2-(1-[2-{4-chlorophenoxy}-propyloxyimino]butyl)-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-one, and of the sulfonylurea type: N-((4-methoxy-6-[trifluoromethyl]-1,3,5-triazin-2-yl)amino)-carbonyl)-
25 2-(trifluormethyl)-benzenesulfonamide.

The fungicidal compositions comprise one or more, for example, of the following fungicidal active compounds: sulfur, dithiocarbamates and their derivatives, such as
30 ferric dimethyldithiocarbamate, zinc
dimethyldithiocarbamate, zinc
ethylenebisdithiocarbamate, manganese
ethylenebisdithiocarbamate, manganese zinc
ethylenediaminebisdithiocarbamate, tetramethylthiuram
35 disulfide, ammonia complex of zinc (N,N'-ethylenebisdithiocarbamate), ammonia complex of zinc (N,N'-propylenebisdithiocarbamate), zinc (N,N'-

propylenebis(dithiocarbamate) or N,N'-
polypropylenebis(thiocarbamoyl) disulfide;

nitro derivatives, such as dinitro(1-
5 methylheptyl)phenyl crotonate, 2-sec-butyl-4,6-
dinitrophenyl 3,3-dimethylacrylate, 2-sec-butyl-4,6-
dinitrophenyl isopropyl carbonate or diisopropyl 5-
nitroisophthalate;

10 heterocyclic substances, such as 2-heptadecyl-2-
imidazoline acetate, 2,4-dichloro-6-(o-chloroanilino)-
s-triazine, O,O-diethyl phthalimidophosphonothioate, 5-
amino-1-[bis(dimethylamino)-phosphinyl]-3-phenyl-1,2,4-
triazole, 2,3-dicyano-1,4-dithioanthraquinone, 2-thio-
15 1,3-dithiolo[4,5-b]quinoxaline, methyl 1-
(butylcarbamoyl)-2-benzimidazolecarbamate, 2-
(methoxycarbonylamino)benzimidazole, 2-(2-
furyl)benzimidazole, 2-(4-thiazolyl)benzimidazole, N-
(1,1,2,2-tetrachloroethylthio)-tetrahydropthalimide,
20 N-(trichloromethylthio)-tetrahydropthalimide, N-
(trichloromethylthio)phthalimide,

N-dichlorofluoromethylthio-N',N'-dimethyl-N-
phenylsulfonyl-diamine, 5-ethoxy-3-trichloromethyl-
25 1,2,3-thiadiazole, 2-thiocyanato-
methylthiobenzothiazole, 1,4-dichloro-2,5-
dimethoxybenzene, 4-(2-chlorophenylhydrazone)-3-methyl-
5-isoxazolone, pyridine-2-thiol 1-oxide, 8-
hydroxyquinoline or its copper salt, 2,3-dihydro-5-
30 carboxanilido-6-methyl-1,4-oxathiin, 2,3-dihydro-5-
carboxanilido-6-methyl-1,4-oxathiin 4,4-dioxide, 2-
methyl-5,6-dihydro-4H-pyran-3-carboxanilide, 2-
methylfuran-3-carboxanilide, 2,5-dimethylfuran-3-
carboxanilide, 2,4,5-trimethylfuran-3-carboxanilide, N-
35 cyclohexyl-2,5-dimethylfuran-3-carboxamide, N-
cyclohexyl-N-methoxy-2,5-dimethylfuran-3-carboxamide,
2-methylbenzanilide, 2-iodobenzanilide, N-formyl-N-
morpholine-2,2,2-trichloroethyl acetal, piperazine-1,4-

- diylbis(1-(2,2,2-trichloroethyl)formamide), 1-(3,4-dichloroanilino)-1-formylamino-2,2,2-trichloroethane,
2,6-dimethyl-N-tridecylmorpholine or its salts, 2,6-dimethyl-N-cyclododecylmorpholine or its salts, N-[3-
5 (p-(tert-butyl)phenyl)-2-methylpropyl]-cis-2,6-dimethyl-morpholine, N-[3-(p-(tert-butyl)phenyl)-2-methylpropyl]-piperidine, 1-[2-(2,4-dichlorophenyl)-4-ethyl-1,3-dioxolan-2-ylethyl]-1H-1,2,4-triazole, 1-[2-(2,4-dichlorophenyl)-4-(n-propyl)-1,3-dioxolan-2-ylethyl]-1H-1,2,4-triazole, N-(n-propyl)-N-(2,4,6-trichlorophenoxyethyl)-N'-imidazolylurea, 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol, (2RS,3RS)-1-[3-(2-chlorophenyl)-2-(4-fluorophenyl)oxiran-2-ylmethyl]-1H-1,2,4-triazole, α -(2-chlorophenyl)- α -(4-chlorophenyl)-5-pyrimidinemethanol, 5-butyl-2-dimethylamino-4-hydroxy-6-methylpyrimidine, bis(p-chlorophenyl)-3-pyridinemethanol, 1,2-bis(3-ethoxycarbonyl-2-thioureido)benzene or 1,2-bis(3-methoxycarbonyl-2-thioureido)benzene,
- strobilurins, such as methyl E-methoxyimino- α -(o-tolyloxy-o-tolyl)acetate, methyl E-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate, methyl-E-methoxyimino- α -(2-phenoxyphenyl)acetamide or methyl-E-methoxyimino- α -(2,5-dimethylphenoxy-o-tolyl)acetamide,
- 30 anilinopyrimidines, such as N-(4,6-dimethylpyrimidin-2-yl)aniline, N-[4-methyl-6-(1-propynyl)pyrimidin-2-yl]aniline or N-[4-methyl-6-cyclopropylpyrimidin-2-yl]aniline,
- 35 phenylpyrroles, such as 4-(2,2-difluoro-1,3-benzodioxol-4-yl)pyrrole-3-carbonitrile,

cinnamamides, such as 3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloylmorpholine,

- and various fungicides, such as dodecylguanidine acetate, 3-[3-(3,5-dimethyl-2-oxyhexyl)-2-hydroxyethyl]glutarimide, hexachlorobenzene, methyl N-(2,6-dimethylphenyl)-N-(2-furoyl)-DL-alaninate, N-(2,6-dimethylphenyl)-N-(2'-methoxyacetyl)-DL-alanine methyl ester, N-(2,6-dimethylphenyl)-N-chloroacetyl-D,L-2-aminobutyrolactone, N-(2,6-dimethylphenyl)-N-(phenylacetyl)-DL-alanine methyl ester, 5-methyl-5-vinyl-3-(3,5-dichlorophenyl)-2,4-dioxo-1,3-oxazolidine, 3-[3,5-dichlorophenyl(-5-methyl-5-methoxymethyl)]-1,3-oxazolidine-2,4-dione, 3-(3,5-dichlorophenyl)-1-isopropylcarbamoylhydantoin, N-(3,5-dichlorophenyl)-1,2-dimethylcyclopropane-1,2-dicarboximide, 2-cyano-[N-(ethylaminocarbonyl)-2-methoxyimino]acetamide, 1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole, 2,4-difluoro- α -(1H-1,2,4-triazol-1-ylmethyl)benzhydryl alcohol, N-(3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl)-5-trifluoromethyl-3-chloro-2-aminopyridine or 1-((bis(4-fluorophenyl)methylsilyl)methyl)-1H-1,2,4-triazole.
- Useful growth regulators are, e.g., the group of the gibberellins. These include, e.g., the gibberellins GA₁, GA₃, GA₄, GA₅ and GA₇, and the like, and the corresponding exo-16,17-dihydrogibberellins, and the derivatives thereof, e.g. the esters with C₁-C₄ carboxylic acids. The exo-16,17-dihydro-GA₅-13-acetate is preferred according to the invention.

According to one embodiment of the present invention, the active compound component (a) is composed essentially of one or more of the following preferred active compounds: bentazone, difenzoquat, pendimethalin, quinclorac, cycloxydim, quinmerac, sethoxydim, cinidon-ethyl, mecoprop, mecoprop-P,

dichlorprop, chloridazon, dicamba, metobromuron,
profoxydim, tritosulfuron, diflufenzopyr, S-
dimethenamide, cyanazine, picolinafen, cyclosulfamuron,
imazamethabenz-methyl, imazaquin, acifluorfen,
5 nicosulfuron, sulfur, dithianon, tridemorph, metiram,
nitrothal-isopropyl, thiophanate-methyl, metholachlor,
triforine, carbendazim, vinclozolin, dodine,
fenpropimorph, epoxiconazole, cresoxim-methyl,
pyraclostrobin, dimoxystrobin, cyazofamid, fenoxanil,
10 dimethomorph, metconazole, dimethoate, chlorfenvinphos,
phorate, fenbutatin oxide, chlorfenapyr, simazine,
bensulfuron, flufenoxuron, teflubenzuron,
alphacypermethrin, cypermethrin, hydramethylnon,
terbufos, temephos, halofenozone, flocoumafен,
15 triazamate, flucythrinate, hexythiazox, dazomet,
chlorocholine chloride, mepiquat chloride or
prohexadione-Ca, or of one or more of the following
particularly preferred active compounds: epoxiconazole,
pyraclostrobin, metazachlor, paraquat, glyphosate,
20 imazethapyr, tepraloxydim, imazapic, imazamox,
acetochlor, atrazine, tebufenpyrad, trifluralin or
pyridaben.

The adjuvant effect of the copolymers according to the
25 invention makes itself felt particularly advantageously
with active compounds from the class of the
strobilurins, e.g. with pyraclostrobin, and active
compounds from the class of the triazoles, e.g. with
metconazole, tebuconazole, triadimenol, triadimefon,
30 cyproconazole, uniconazole, paclobutrazol or ipconazole
and in particular epoxiconazole.

The present invention relates in particular to
compositions with high proportions of active compound
35 (concentrates). Thus, the proportion of the component
(a) generally makes up more than 10 weight%, preferably
more than 15 weight% and in particular more than
20 weight% of the total weight of the composition. On

the other hand, the proportion of the component (a) is advisably generally less than 80 weight%, preferably less than 70 weight% and in particular less than 60 weight% of the total weight of the composition.

5

The formulations according to the invention can incidentally comprise conventional auxiliaries and/or additives for the preparation of formulations in the agrotechnical field and in particular in the area of 10 plant protection. These include, for example, surfactants, dispersants, wetting agents, thickeners, organic solvents, cosolvents, antifoaming agents, carboxylic acids, preservatives, stabilizers, and the like.

15

In accordance with a particular embodiment of the present invention, the compositions comprise, as surface-active component (c), at least one (additional) surfactant. The term "surfactant" in this context 20 denotes surface-active agents.

The component (c) is added in particular as dispersant or emulsifier, especially in order to disperse a solid component in suspension concentrates. Furthermore, 25 parts of the component (c) can be used as wetting agent.

Anionic, cationic, amphoteric and nonionic surfactants can be used in principle, including polymer surfactants 30 and surfactants with heteroatoms in the hydrophobic group.

The anionic surfactants include, for example, carboxylates, in particular alkali metal, alkaline 35 earth metal and ammonium salts of fatty acids, e.g. potassium stearate, which are usually also referred to as soaps; acylglutamates; sarcosinates, e.g. sodium lauroylsarcosinate; taurates; methylcelluloses; alkyl

phosphates, in particular alkyl esters of monophosphoric acid and diphosphoric acid; sulfates, in particular alkyl sulfates and alkyl ether sulfates; sulfonates, further alkylsulfonates and
5 alkylarylsulfonates, in particular alkali metal, alkaline earth metal and ammonium salts of arylsulfonic acids and alkyl-substituted arylsulfonic acids, alkylbenzenesulfonic acids, such as, for example, lignosulfonic acid and phenolsulfonic acid,
10 naphthalenesulfonic acids and dibutynaphthalenesulfonic acids, or dodecylbenzenesulfonates, alkylnaphthalenesulfonates, alkyl methyl ester sulfonates, condensation products of sulfonated naphthalene and derivatives thereof with
15 formaldehyde, condensation products of naphthalenesulfonic acids, phenol- and/or phenolsulfonic acids with formaldehyde or with formaldehyde and urea, mono or dialkyl sulfosuccinates; and protein hydrolysates and lignin sulfite waste
20 liquors. The abovementioned sulfonic acids are advantageously used in the form of their neutral or, if appropriate, basic salts.

The cationic surfactants include, for example,
25 quaternary ammonium compounds, in particular alkyltrimethylammonium halides, dialkyldimethylammonium halides, alkyltrimethylammonium alkyl sulfates and dialkyldimethylammonium alkyl sulfates, and pyridine and imidazoline derivatives, in particular
30 alkylpyridinium halides.

The nonionic surfactants include, for example, other alkoxylates and especially ethoxylates, and nonionic surfactants, in particular

35

- fatty alcohol polyoxyethylene esters, for example lauryl alcohol polyoxyethylene ether acetate,

- alkyl polyoxyethylene ethers and alkyl polyoxypolypropylene ethers, e.g. of linear fatty alcohols, and alkylaryl alcohol polyoxyethylene ethers, e.g. octylphenol polyoxyethylene ether,
- 5 - alkoxylated animal and/or vegetable fats and/or oils, for example corn oil ethoxylates, castor oil ethoxylates or tallow fat ethoxylates,
- glycerol esters, such as, for example, glycerol monostearate,
- 10 - fatty alcohol alkoxylates and oxo alcohol alkoxylates, in particular of the linear type $R_5O-(R_3O)_r(R_4O)_sR_{20}$ with R_3 and R_4 , independently of one another, = C_2H_4 , C_3H_6 or C_4H_8 and R_{20} = H or C_1-C_{12} -alkyl, R_5 = C_3-C_{30} -alkyl or C_6-C_{30} -alkenyl, and r and s, independently of one another, 0 to 50, it not being possible for both to be 0, oleyl alcohol polyoxyethylene ether,
- 15 - alkylphenol alkoxylates, such as, for example, ethoxylated isooctylphenol, octylphenol or nonylphenol, tributylphenol polyoxyethylene ether,
- fatty amine alkoxylates, fatty acid amide alkoxylates and fatty acid diethanolamide alkoxylates, in particular their ethoxylates,
- 20 - sugar surfactants, sorbitol esters, such as, for example, sorbitan fatty acid esters (sorbitan monooleate, sorbitan tristearate) or polyoxyethylene sorbitan fatty acid esters, alkylpolyglycosides or N-alkylgluconamides,
- 25 - alkyl methyl sulfoxides,
- alkyldimethylphosphine oxides, such as, for example, tetradecyldimethylphosphine oxide.

35 The amphoteric surfactants include, for example, sulfobetaines, carboxybetaines and alkyldimethylamine oxides, e.g. tetradecyldimethylamine oxide.

The polymeric surfactants include, for example, di-, tri- and multiblock polymers of the $(AB)_n$, ABA and BAB types, e.g. optionally end-group-capped ethylene oxide/propylene oxide block copolymers, e.g. 5 ethylenediamine-EO/PO-block copolymers, polystyrene-block-polyethylene oxide, and AB comb polymers, e.g. polymethacrylate-comb-polyethylene oxide.

Other surfactants which should be mentioned in this 10 context by way of example are perfluorinated surfactants, silicone surfactants, e.g. polyether-modified siloxanes, phospholipids, such as, for example, lecithin or chemically modified lecithins, amino acid surfactants, e.g. N-lauroylglutamate, and 15 surface-active homo- and copolymers, e.g. polyacrylic acids in the form of their salts, polyvinyl alcohol, polypropylene oxide, polyethylene oxide, maleic anhydride/isobutene copolymers and vinylpyrrolidone/vinyl acetate copolymers.

20

If not specified, the alkyl chains of the surfactants listed above are linear or branched residues with usually 8 to 20 carbon atoms.

25 The additional surfactant in the context of the component (c) is advantageously chosen from nonionic surfactants. The nonionic surfactants with an HLB ranging from 2 to 16, preferably ranging from 5 to 16 and in particular ranging from 8 to 16 are particularly 30 preferred.

The proportion of component (c), if present, generally amounts to less than 50 weight%, preferably less than 15 weight% and in particular less than 5 weight% of the 35 total weight of the composition.

According to a particular embodiment of the present invention, the compositions comprise, as component (d), at least one additional auxiliary.

5 The component (d) can serve many different purposes. The choice of suitable auxiliaries is made in the usual way by a person skilled in the art according to the requirements.

10 Additional auxiliaries are chosen, for example, from

(d1) solvents or diluents;

15 (d2) emulsifiers, retention agents, pH buffers or antifoaming agents.

In addition to water, the compositions can include additional solvents of soluble constituents or diluents of insoluble constituents of the composition.

20 Examples which can be used in principle are mineral oils, synthetic oils, vegetable oils and animal oils, and low-molecular-weight hydrophilic solvents, such as alcohols, ethers, ketones and the like.

25 On the one hand, therefore, mention may be made of aprotic or nonpolar solvents or diluents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene and diesel oil, further coal-tar oils, 30 hydrocarbons, liquid paraffins, e.g. C₈- to C₃₀-hydrocarbons of the n-alkane or isoalkane series or mixtures thereof, optionally hydrogenated or partially hydrogenated aromatics or alkylaromatics from the benzene or naphthalene series, e.g. aromatic or 35 cycloaliphatic C₇- to C₁₈-hydrocarbon compounds, aliphatic or aromatic carboxylic acid esters or dicarboxylic acid esters, or fats or oils of vegetable or animal origin, such as mono-, di- and triglycerides,

- in the pure form or as a mixture, for example in the form of oily extracts of natural products, e.g. olive oil, soybean oil, sunflower oil, castor oil, sesame oil, corn oil, groundnut oil, rapeseed oil, linseed oil, almond oil, castor oil or safflower oil, and their raffinates, e.g. hydrogenated or partially hydrogenated products thereof and/or their esters, in particular methyl and ethyl esters.
- 10 Examples of C₈- to C₃₀-hydrocarbons of the n-alkane or isoalkane series are n-octane, n-decane, n-hexadecane, n-octadecane, n-icosane, iso-octane, isodecane, isohexadecane, iso-octadecane and isoicosane, and preferably hydrocarbon mixtures, such as liquid paraffin (the technical grade of which can comprise up to approximately 5% aromatics) and a C₁₈-C₂₄ mixture which is commercially available from Texaco under the description Spraytex oil.
- 20 The aromatic or cycloaliphatic C₇- to C₁₈-hydrocarbon compounds include in particular aromatic or cycloaliphatic solvents from the alkylaromatics series. These compounds can be nonhydrogenated, partially hydrogenated or completely hydrogenated. Such solvents include in particular mono-, di- or trialkylbenzenes, mono-, di- or trialkyl-substituted tetralins and/or mono-, di-, tri- or tetraalkyl-substituted naphthalenes (alkyl is preferably C₁-C₆-alkyl). Examples of such solvents are toluene, o-, m- or p-xylene, ethylbenzene, isopropylbenzene, tert-butylbenzene and mixtures, such as the products from Exxon sold under the names Shellsol and Solvesso, e.g. Solvesso 100, 150 and 200.
- 35 Examples of suitable monocarboxylic acid esters are oleic acid esters, in particular methyl oleate and ethyl oleate, lauric acid esters, in particular 2-ethylhexyl laurate, octyl laurate and isopropyl laurate, isopropyl myristate, palmitic acid esters, in

particular 2-ethylhexyl palmitate and isopropyl palmitate, stearic acid esters, in particular n-butyl stearate, and 2-ethylhexyl 2-ethylhexanoate.

- 5 Examples of suitable dicarboxylic acid esters are adipic acid esters, in particular dimethyl adipate, di(n-butyl) adipate, di(n-octyl) adipate, diisooctyl adipate, also denoted by bis(2-ethylhexyl) adipate, di(n-nonyl) adipate, diisononyl adipate and ditridecyl 10 adipate; succinic acid esters, in particular di(n-octyl) succinate and diisooctyl succinate, and diisononyl cyclohexane-1,2-dicarboxylate.

15 The proportion of the abovedescribed aprotic solvents or diluents generally amounts to less than 80 weight%, preferably less than 50 weight% and in particular less than 30 weight% of the total weight of the composition.

20 Some of these aprotic solvents or diluents can likewise have adjuvant, i.e. in particular action-promoting, properties. This applies in particular to said monocarboxylic acid esters and dicarboxylic acid esters. From this viewpoint, such adjuvants can also be mixed with the copolymers according to the invention or 25 compositions comprising them at an expedient point in time, generally shortly before administration, as part of another formulation (stand-alone product).

30 On the other hand, mention may be made of protic or polar solvents or diluents, e.g. C₂-C₈ monoalcohols, such as ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, cyclohexanol and 2-ethylhexanol, C₃-C₈ ketones, such as diethyl ketone, t-butyl methyl ketone and cyclohexanone, and aprotic 35 amines, such as N-methylpyrrolidone and N-octylpyrrolidone.

The proportion of the abovedescribed protic or polar solvents or diluents generally amounts to less than 80 weight%, preferably less than 50 weight% and in particular less than 30 weight% of the total weight of
5 the composition.

Sedimentation inhibitors can also be used, in particular for suspension concentrates. They are used
10 in particular for rheological stabilization. Mention may in particular be made in this connection of mineral products, e.g. bentonites, talcites and hectorites.

Other additives which can be used, if appropriate, are to be found, e.g., among inorganic salt solutions,
15 which are used to rectify nutritional and trace element deficiencies, nonphytotoxic oils and oil concentrates, antidrift reagents, antifoaming agents, in particular those of the silicone type, for example the Silicon SL sold by Wacker, and the like.

20 The formulations can be provided in the form of an emulsifiable concentrate (EC), a suspoemulsion (SE), an oil-in-water emulsion (O/W), a water-in-oil emulsion (W/O), an aqueous suspension concentrate, an oil suspension concentrate (SC), a microemulsion (ME), and the like.

The compositions can be prepared in a way known per se. For this, at least some of the components are mixed
30 together. It should be taken into consideration, in this connection, that products, in particular standard products, can be used, the constituents of which can contribute to different components. For example, a specific surfactant can be dissolved in an aprotic solvent so that this product can contribute to
35 different components. Furthermore, small proportions of less desired substances may also possibly be introduced with standard products. The products which have been

combined to form a mixture can then generally be intensively mixed with one another to form a homogeneous mixture and, if necessary, e.g. in the case of suspensions, can be milled.

5

The mixing can be carried out in a way known per se, e.g. by homogenizing with suitable devices, such as KPG or magnetic stirrers.

- 10 The milling is also a process known per se. The milling elements which can be used are glass milling elements or other inorganic or metallic milling elements, generally with a size of 0.1-30 mm and in particular of 0.6-2 mm. The mixture is generally comminuted until the
15 desired particle size has been achieved.

- In general, the milling can be carried out using a circulating operation, i.e. continuous recirculation, for example of an SC, in the circuit, or using a
20 passage operation, i.e. one in which a batch is completely and repeatedly pumped through or passed through.

- The milling can be carried out with conventional ball,
25 bead or stirrer mills, e.g. in a Dynomühle (Bachofen), with batch sizes of, for example, 0.5 up to 1 liter in a "passage operation". After several, in particular 4 to 6, passes (the slurry is pumped through the mill using a peristaltic pump), mean particle sizes, by
30 microscopic evaluation, of 0.5 to 10 µm are thereby achieved.

- The compositions are converted before use, generally by diluting in the usual way, to a form which can be used
35 for the application. It is preferable to dilute with water or else aprotic solvents, for example in the tank mix method. Use in the form of a spray emulsion preparation is preferred. The administration can be by

the preemergence or postemergence procedure. There are particular advantages to the postemergence procedure.

The use according to the invention also comprises the 5 employment of the copolymers according to the invention based on N-vinylamide as stand-alone product. For this, the copolymers based on N-vinylamide are prepared in a suitable way in order to be added, shortly before the application, to the composition to be administered.

10

Above all, there are particular advantages to the spray treatment. For a conventional tank mix spray emulsion, the compositions according to the invention, already comprising at least one copolymer based on N-vinylamide, or other plant treatment compositions with addition of at least one copolymer based on N-vinylamide as stand-alone product are diluted with water in such a way that approximately 0.01 to 10, preferably approximately 0.05 to 5 and in particular 15 20 0.1 to 1 kg of at least one copolymer according to the invention are administered per ha.

In the context of the present description, the term "alkyl" comprises straight-chain or branched 25 hydrocarbon groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, isononyl, n-decyl, isodecyl, n-undecyl, isoundecyl, n-dodecyl, isododecyl, n-tridecyl, isotridecyl, stearyl 30 or n-icosyl, preferably, unless otherwise specified, with 1 to 8, in particular 1 to 6 and particularly preferably 1 to 4 carbon atoms for short-chain residues and 5 to 30, in particular 12 to 24 and particularly preferably 8 to 20 carbon atoms for long-chain 35 residues. The branched long-chain residues include in particular 2-ethylhexyl, isononyl, isodecyl, such as 2-propylheptyl, isoundecyl, isododecyl and isotridecyl,

such as 2,4,6,8-tetramethyl-1-nonyl, 3,4,6,8-tetramethyl-1-nonyl and 5-ethyl-4,7-dimethyl-1-nonyl.

In the context of the present description, amounts generally refer to the total weight of a composition, unless otherwise specified. The expression "essentially" generally denotes according to the invention a percentage of at least 80%, preferably of at least 90% and in particular of at least 95%.

10

The invention is explained in greater detail using the following examples:

Preparation examples

15

Reference examples 1 and 2:

Preparation of the copolymers (a) and (b)

Reference example 1:

20

Vinylpyrrolidone/Lutensol AT25MA copolymer 95/5

A solution of 342 g of N-vinylpyrrolidone and 18 g of Lutensol-AT-25 methacrylate (C_{16}/C_{18} fatty alcohol ethoxylate with 25 EO units) in 750 g of isopropanol is heated to 75°C under an inert atmosphere. A solution of 0.9 g of 2,2'-azobis(2-methylbutyronitrile) (WAKO V59) in 50 g of isopropanol is added to the reaction mixture over 4 hours. The mixture is then heated to 85°C and 0.9 g of 2,2'-azobis(2-methylbutyronitrile) (WAKO V59) in 40 g of isopropanol is added all at once. The reaction mixture is stirred for a further 2 hours. On conclusion of the polymerization, the isopropanol is distilled off and 840 g of water are added in the meantime. A cloudy solution of a copolymer is obtained, the copolymer comprising 95 weight% of monomer units (i) and 5 weight% of monomer units (ii).

Reference example 2

Vinylpyrrolidone/Lutensol AT25MA copolymer 85/15

5 A solution of 306 g of vinylpyrrolidone and 54 g of Lutensol-AT-25 methacrylate (C_{16}/C_{18} fatty alcohol ethoxylate with 25 EO units) in 750 g of isopropanol is heated to 75°C under an inert atmosphere. A solution of 0.9 g of 2,2'-azobis(2-methylbutyronitrile) (WAKO V59)

10 in 50 g of isopropanol is added to the reaction mixture over 4 hours. The mixture is then heated to 85°C and 0.9 g of 2,2'-azobis(2-methylbutyronitrile) (WAKO V59) in 40 g of isopropanol is added all at once. The reaction mixture is stirred for a further 2 hours. On

15 conclusion of the polymerization, the isopropanol is distilled off and 840 g of water are added in the meantime. A cloudy solution of a copolymer is obtained, the copolymer comprising 85 weight% of monomer units (i) and 15 weight% of monomer units (ii).

20

Example 1: Biological activity

Improvement in the fungicidal activity

25 Both of the leaves which developed first of wheat seeds of the variety "Kanzler", which were raised in pots, were dusted with spores of *Puccinia recondita*. In order to guarantee the success of the artificial inoculation, the plants were kept for 24 hours in a humidity chamber

30 without light at a relative humidity of 95 to 99% and a temperature of 20 to 22°C. The next day, the plants were sprayed with an aqueous suspension comprising fungicide at the concentration given below as a mixture with water and 125 ppm of the test additive. The plants

35 were allowed to dry in the air. The experimental plants were subsequently cultivated in a greenhouse for 8 days at a temperature of 22 to 26°C and a relative humidity of between 40 and 80%. The extent of the fungal

infestation on the leaves was assessed visually and expressed as a percentage of the affected leaf area with respect to the unaffected leaf area. The results for the fungicides pyraclostrobin and epoxiconazole are
5 given in the following table:

Table

Concentration of the fungicide (ppm a.c.)	% affected leaf area		
	Test additive		
Pyraclostrobin ¹⁾		Copolymer from example 1	Copolymer from example 2
2	13	5	7
1	32	25	17
Epoxiconazole ²⁾	-	Copolymer from example 1	Copolymer from example 2
0.25	47	22	25
0.125	53	53	47

10 ¹⁾ 65% affected leaf area with untreated plants

²⁾ 83% affected leaf area with untreated plants

It is clearly apparent that the copolymers according to
the invention in the sense of an adjuvant significantly
15 strengthen the fungicidal action of pyraclostrobin or
epoxiconazole.

We claim:-

1. A copolymer comprising monomer units

5 (i) of at least one N-vinylamide,

(ii) of at least one ester of an ethylenically unsaturated carboxylic acid, and, if appropriate,

10

(iii) of at least one additional copolymerizable comonomer,

15 wherein the carboxylic acid ester exhibits alkoxylate residues of the general formula (I)

$(R^1)_n-X-(CHR^2CH_2O)_w-(CHR^3CH_2O)_x-(CHR^4(CH_2)_yO)_z-$ (I),

20 in which

25 R^1 is hydrogen or an aliphatic hydrocarbon residue with 3 to 40 carbon atoms;

R^2 , R^3 , R^4 are, independently of one another, hydrogen or C₁₋₄-alkyl;

30 w , x , z correspond, independently of one another, to a value of 0 to 100, the sum of w , x and z being greater than 0;

y corresponds to a value of 1 to 20;

x is N or O,

35 n being 1 and R^1 not being hydrogen if x is O; or n being 2 if x is N.

2. The copolymer according to claim 1, wherein the N-vinylamide is chosen from N-vinylpyrrolidone and N-vinylcaprolactam.
- 5 3. The copolymer according to claim 1, wherein the ethylenically unsaturated carboxylic acid is acrylic acid or methacrylic acid.
- 10 4. The copolymer according to claim 1, wherein the carboxylic acid esters exhibit ethoxylate residues of the general formula (Ia)

15 in which

R^1 is branched or linear, saturated or unsaturated C_{5-15} -alkyl; and

20 z corresponds to a value of 1 to 100.

5. The copolymer according to claim 1, wherein the additional copolymerizable comonomer is chosen from (meth)acrylamide, (meth)acrylonitrile, alkyl (meth)acrylates and alkyl vinyl ethers.
 - 25 6. The copolymer according to any of the preceding claims, which comprises
 - 30 (i) 99 to 60 weight% of monomer units (i);
 - (ii) 1 to 30 weight% of monomer units (ii);
and
 - 35 (iii) 0 to 10 weight% of monomer units (iii).
7. A composition which comprises

- (a) at least one active compound for the treatment of plants; and
- 5 (b) at least one copolymer according to any of claims 1 to 6.
- 8. The use of the copolymer according to any of claims 1 to 6 as adjuvant in the treatment of plants.
- 10 9. The use according to claim 8 for improving the effectiveness of an active compound for plant protection.
- 15 10. The use according to claim 8 in plant cultivation, in agriculture or in horticulture.
- 11. The use according to claim 8 for controlling undesired plant growth.
- 20 12. The use according to claim 8 postemergence.
- 13. The use according to claim 8 in the spray treatment of plants.
- 25 14. The use according to claim 8 as tank additive.

Abstract

Copolymers based on N-vinylamide as adjuvant and compositions for the agrotechnical field

5

The present invention relates to specific copolymers based on N-vinylamide and to their use as activity-improving adjuvant in the agrotechnical field and in particular in the field of plant protection.

10 Appropriate agrotechnical compositions are likewise described.

The copolymers are copolymers of vinylamides and ethylenically unsaturated carboxylic acid esters which

15 are alkoxyolated.