TLE '17 Contest 4 P4 - Willson and Target Practice

Willson the Canada Goose is like any other Canada Goose he likes to engage in target practice.

There are N unsuspecting targets that Willson can practice on. The i^{th} target is located at (x_i,y_i) .

Unlike other geese who choose a circular area for target practice, Willson is unique and decides to choose an equilateral triangle with side length K as his area, with the additional constraint that one side of the triangle must be parallel to the line y=0.

The poor unsuspecting targets don't see it coming...

Could you tell Wilson the maximum number of targets that could be in such an area?

Note: A target on the perimeter of the triangle is counted.

Constraints

For all subtasks:

1 < N < 20000

 $1 \le K \le 200$

All coordinates c satisfy $|c| \leq 2\,000$.

Subtask	Points	Additional Constraints
1	5	K = 1
2	15	N=2
3	20	$N \leq 200$
4	30	$N \leq 2000$
5	30	No additional constraints

Note 1: There can be multiple targets at the same coordinate.

Note 2: Python users are recommended to submit in PyPy.

Input Specification

The first line of input will contain two integers, N and K.

N lines of input follow. The i^{th} line will contain two integers, x_i and y_i .

Output Specification

Output a single integer, the maximum number of targets that can be in an area as described above.

Sample Input

5 3

1 1

2 0

2 4

3 2

3 3

Sample Output

3

Diagram

