로봇 운영체제 ROS

Contents

- I. ROS 소개
- II. 메타 운영체제
- III. ROS의 목적
- IV. ROS의 구성
- V. ROS의 생태계
- VI. ROS의 역사
- VII.ROS의 버전

로봇 운영체제 ROS 소개

ROS 란?

ROS is an open-source, meta-operating sy stem for your robot. It provides the services y ou would expect from an operating system, in cluding hardware abstraction, low-level device control, implementation of commonly-used fu nctionality, message-passing between process es, and package management. It also provides tools and libraries for obtaining, building, writ ing, and running code across multiple comput ers.

http://www.ros.org/wiki/

http://www.ros.org/news/

소프트웨어 프레임워크

- ■로봇 소프트웨어를 개발하기 위한 소프트웨어 프레임워크
 - 노드간에 메시지 교환 방법으로 복잡한 프로그램을 잘게 나눠 공동 개발이 가능
 - 명령어 도구, 시각화 도구 Rviz, GUI 도구 모음 rqt, 3차원 시뮬레이터 Gazebo 지원
 - 로보틱스에서 많이 사용되는 모델링, 센싱, 인식, 내비게이션, 매니퓰레이션 기능 지원
 - 로보틱스 생태계 생성!

http://www.ros.org/about-ros/

ROS의 진정한 목적

弘思公公里和四7H线室和州1731 知場例行 現場公公司7H台子各人はEH731量子会計七次!

http://imgfave.com/

ROS는 새로운 운영 체제(OS)인가?

- 운영 체제 (Operating System)
 - 범용 컴퓨터
 - Windows(Windows XP, 7, 8 ...)
 - Linux(Ubuntu, Redhat, Fedora, Mint, Gentoo ...)
 - MAC(OS X ...) 등
 - 스마트폰
 - Android, iOS, Windows Phone, Symbian, RiMO, Tizen등
- ROS = Robot Operating System
- ROS는 메타운영체제(Meta-Operating System)이다.

메타운영체제(Meta-Operating System)

- 메타운영체제(Meta-Operating System) 딱히 정확히 정의된 용어는 아니지만, 어플리케이션과 분산 컴퓨팅 자원간의 가상화 레이어로 분산 컴퓨팅 자원을 활용하여, 스케쥴링 및 로드, 감시, 에러 처리 등을 실행하는 시스템이라고 볼 수 있다.
- 즉, 윈도우, 리눅스, 안드로이드와 같은 전통적인 운영체제는 아니다. 오히려, ROS는 기존의 전통적인 운영체제(리눅스, 윈도우즈, OS-X, 안드로이드)를 이용하고 있다.
- 기존 운영체제의 프로세스 관리 시스템, 파일 시스템, 유저 인터페이스, 프로그램 유틸 (컴파일러, 스레드 모델 등)등을 사용하고 있다. 이에 추가적으로 다수의 이기종 하드웨 어간의 데이터 송수신, 스케쥴링, 에러 처리 등 로봇 응용 소프트웨어 개발을 위한 필수 기능들을 라이브러리 형태로 제공하고 있다.
- 또한, 이러한 로봇 소프트웨어 프레임워크를 기반으로 다양한 목적의 응용 프로그램을 개발, 관리, 제공하고 있으며 유저들이 개발한 패키지 또한 유통하는 생태계 (ecosystem)를 갖추고 있다.

메타운영체제(Meta-Operating System)

- 메타운영체제(Meta-Operating System) 딱히 정확히 정의된 용어는 아니지만, 어플리케이션과 분산 컴퓨팅 자원간의 가상화 레이어로 분산 컴퓨팅 자원을 활용하여, 스케쥴링 및 로드, 감시, 에러 처리 등을 실행하는 시스템이라고 볼 수 있다.
- 즉, 윈도우, 리눅스, 안드로이드와 같은 전통적인 운영체제는 아니다. 오히려, ROS는 기존의 전통적인 운영체제(리눅스, 윈도우즈, OS-X, 안드로이드)를 이용하고 있다.
- 기존 운영체제의 프로세스 관리 시스템, 파일 시스템, 유저 인터페이스, 프로그램 유틸 (컴파일러, 스레드 모델 등)등을 사용하고 있다. 이에 추가적으로 다수의 이기종 하드웨 어간의 데이터 송수신, 스케쥴링, 에러 처리 등 로봇 응용 소프트웨어 개발을 위한 필수 기능들을 라이브러리 형태로 제공하고 있다.
- 또한, 이러한 **로봇 소프트웨어 프레임워크**를 기반으로 다양한 목적의 응용 프로그램을 개발, 관리, 제공하고 있으며 유저들이 개발한 패키지 또한 유통하는 **생태계** (ecosystem)를 갖추고 있다.

메타운영체제(Meta-Operating System)

디바이스 드라이버, 라이브러리, 디버그 도구, 메시지 통신 구동 도구, 컴파일 도구, 인스톨러, 패키지 생성 및 릴리즈

이기종 디바이스 간의 통신 지원

이기종 디바이스 간의 통신 지원

ROS를 사용 가능한 운영체제

■ 기존 전통적인 운영체제

- ROS를 사용 가능한 운영체제(OS)로는 Ubuntu, OS X, Windows, Fedora, Gentoo, OpenSUSE, Debian, Raspbian, Arch, QNX Realtime OS 등이 있으나 기능 제한사항이 있을 수 있다.
- 스마트폰 운영체제인 Android, iOS 의 경우, 부분적 사용 가능
- OS를 탑재할 수 없는 마이크로 컨트롤러 유닛(MCU)의 경우, 시리얼 통신, 블루스, LAN 경유로 통신할 수 있는 라이브러리 제공

■ 기본적으로는 Ubuntu, OS X 에서 구동하는 것을 추천!

ROS 2.0 은

3대 OS 모두 지원

ROS의 구성

Client Layer	roscpp	rospy	roslisp	rosjava	roslibjs		
Robotics Application	MoveIt! teleop pkgs	navigatioin rocon	executive smach mapviz	descartes people	rospeex ar track		
Robotics Application Framework	dynamic reconfigure tf vision opency	robot localization robot state publisher image pipeline	robot pose ekf robot model laser pipeline	Industrial core ros control perception pcl	calibration laser filters	ros realtime octomap mapping ecto	mavros
Communication Layer	common msgs rosnode	roslaunch	actionlib rosparam	pluginlib rosmaster	rostopic	rosservice ros console	
Hardware Interface Layer	camera drivers audio common	GPS/IMU drivers force/torque sensor drivers	joystick drivers power supply drivers	range finder drivers rosserial	3d sensor drivers ethercat drivers	diagnostics ros canopen	
Software Development Tools	RViz	rqt	wstool	rospack	catkin	rosdep	

Simulation

gazebo ros pkgs

stage ros

로봇, 센서 회사

Erle-Rover

444 Innok Heros

로봇 운영체제 ROS 특징

특징 1) 통신 인프라

- 노드 간 데이터 통신을 제공
- 통상적 미들웨어로 지칭되는 메시지 전달 인터페이스 지원
- 메시지 파싱 기능
 - 로봇 개발 시에 빈번히 사용되는 통신 시스템 제공
 - 캡슐화 및 코드 재사용을 촉진하는 노드들 간의 메시지 전달 인터페이스
- 메시지의 기록 및 재생
 - 노드 간 송/수신되는 데이터인 메시지를 저장하고 필요시에 재사용 가능
 - 저장된 메시지를 기반으로 반복적인 실험 가능, 알고리즘 개발에 용이함
- 메시지 사용으로 인한 다양한 프로그래밍 언어 사용 가능
 - 노드 간의 데이터 교환이 메시지를 사용하기 때문에 각 노드는 서로 다른 언어로 작성 가능
 - 클라이언트 라이브러리: roscpp, rospy, roslisp, rosjava, roslua, roscs, roseus, PhaROS, rosR
- 분산 매개 변수 시스템
 - 시스템에서 사용되는 변수를 글로벌 키값으로 작성하여 공유 및 수정하여 실시간으로 반영

특징 2) 로봇 관련 다양한 기능

- 로봇에 대한 표준 메시지 정의
 - 카메라, IMU, 레이저 등의 센서 / 오도메트리, 경로 및 지도 등의 내비게이션 데이터 등의 표준 메시지를 정의하여 모듈화, 협업 작업을 유도, 효율성 향상
- 로봇 기하학 라이브러리
 - 로봇, 센서 등의 상대적 좌표를 트리화 시키는 TF 제공
- 로봇 기술 언어
 - 로봇의 물리적 특성을 설명하는 XML 문서 기술
- 진단 시스템
 - 로봇의 상태를 한눈에 파악할 수 있는 진단 시스템 제공
- 센싱/인식
 - 센서 드라이버, 센싱/인식 레벨의 라이브러리 제공
- 내비게이션
 - 로봇에서 많이 사용되는 로봇의 포즈(위치/자세) 추정, 지도내의 자기 위치 추정 제공
 - 지도 작성에 필요한 SLAM, 작성된 지도 내에서 목적지를 찾아가는 Navigation 라이브러리를 제공
- 매니퓰레이션
 - 로봇 암에 사용되는 IK, FK 는 물론 응용단의 Pick and Place 를 지원하는 다양한 Manipulation 라이브러리 제공
 - GUI 형태의 매니퓰레이션 Tools 제공(Movelt!)

특징 3) 다양한 개발 도구

- 로봇 개발에 필요한 다양한 개발 도구를 제공
- 로봇 개발의 효율성 향상
- Command-Line Tools
 - GUI 없이 ROS에서 제공되는 명령어로만 로봇 억세스 및 거의 모든 ROS 기능 소화

RViz

- 강력한 3D 시각화툴 제공
- 레이저, 카메라 등의 센서 데이터를 시각화
- 로봇 외형과 계획된 동작을 표현

RQT

- 그래픽 인터페이스 개발을 위한 Qt 기반 프레임 워크 제공
- 노드와 그들 사이의 연결 정보 표시(rqt_graph)
- 인코더, 전압, 또는 시간이 지남에 따라 변화하는 숫자를 플로팅(rqt_plot)
- 데이터를 메시지 형태로 기록하고 재생(rqt_bag)

Gazebo

- 물리 엔진을 탑재, 로봇, 센서, 환경 모델 등을 지원, 3차원 시뮬레이터
- ROS와의 높은 호완성

ROS 버전 선택

ROS 릴리즈 스케줄과 버전 선택!

- Hydro부터 1년에 1번 정식 버전 릴리즈 하기로 결정!
- 2017.05.23 Lunar Loggerhead
- 2016.05.23 Kinetic Kame (LTS) 추천
- 2015.05.23 Jade Turtle
- 2014.07.22 Indigo Igloo (LTS)
- 2013.09.04 Hydro Medusa
- 2012.12.31 Groovy Galapagos
- 2012.04.23 Fuerte Turtle
- 2011.08.30 Electric Emys
- 2011.03.02 Diamondback
- 2010.08.02 C Turtle
- 2010.03.02 Box Turtle
- 2010.01.22 ROS 1.0
- Lunar Loggerhead (EOL=May, 2019)
- Kinetic Kame (EOL=April, 2021)
- Jade Turtle (EOL=May, 2017)
- Indigo Igloo (EOL=April, 2019)

버전선택!

- 1) 5년 지원 약속된 최신 LTS버전의 우분투 선택 - 2년마다 LTS 버전 릴리즈, 매년 4월!
- 2) 우분투 릴리즈된 후 3개월 후
- 3) 최신의 LTS 지원 ROS 버전
- 4) 단, ROS는 릴리즈된 후 3개월 후 (일반적인 경우)
- 5) Gazebo "gazebosim.org" 정보 확인 후 사용

- Ubuntu 16.04 Xenial Xerus LTS
- ROS Kinetic Kame
- ■Gazebo 7.0

질문대환영!

* 气和 人 多型星 可能计平约见!

여기서! 광고 하나 나가요~

국내 유일! 최초! ROS 참고서! ROS 공식 플랫폼 **TurtleBot3** 개발팀이 직접 저술한 바이블급 ROS 책

여기서! 광고 둘 나가요~

인공지능(AI) 연구의 시작, ROS 교육용 공식 로봇 플랫폼

터틀봇3는 ROS기반의 저가형 모바일 로봇으로 교육, 연구, 제품개발, 취미 등 다양한 분야에서 활용 할 수 있습니다.

여기서! 광고 셋 나가요~

- 오로카
- www.oroca.org오픈 로보틱스 지향

 - 공개 강좌, 세미나, 프로젝트 진행 로봇공학 소식 공유

- 로봇공학을 위한 열린 모임 (KOS-ROBOT)
- www.facebook.com/groups/KoreanRobotics
- 로봇공학 통합 커뮤니티 지향
- 풀뿌리 로봇공학의 저변 활성화 일반인과 전문가가 어울러지는 한마당

 - 연구자 간의 협력

シストるトフロロリではなけるトイレトユル? 刊品以目的11分设加设化

Yoonseok Pyo pyo@robotis.com www.robotpilot.net

www.facebook.com/yoonseok.pyo