AP Physics C: Chapter 22

Zach Baylin

January 8, 2019

1 Charge Model

- Two types of charge exist
 - (+): proton N_p
 - (-): proton N_e
- Unit is Coulombs (Q, q)
- e is the fundamental charge: 1.6×10^{-19}
- neutral object: some number of N_p and N_e
- charged object: an imbalance of electrons: $q = N_p e N_e e$
- N.B. charge is quantized: increases or decreases in discrete jumps
- Electrons transfer to other object but charge is conserved
- Opposites attract
- Two types of electromagnetic matter
 - conductors: electrons are free to move

- * sea of electrons
- * Valence electrons
- * Mostly metals
- * They charge by **conduction** (touching)
 - · Results in a shift of the sea of electrons
 - · Charge is excessive and equally distributed
 - · An object with the same charge as the other

- **electrostatic equilibrium**: charge is equally distributed, on the surface, and at rest
- **insulators**: electrons are <u>not</u> free to move
 - * (+) (-) (+) (-) (+) (-)
 - * valence e^- tightly bonded to proton
 - * When they are rubbed together, the degree of their opposite charge depends on their measurement on the **triboelectric scale**
- electrostatic discharge requires contact with a conductor
- **polarization**: neutral object with same number of N_p and N_e , but one side is "more positive" and the other "more negative"
- charging by induction: only occurs in conductors
 - Occurs when a charged object is brought near a grounded conductor.
 - Electrons are lost along the grounded wire.
 - Removing ground wire results in a conductor with positive charge in electrostatic equilibrium.

2 Point Charge

- Conceptually shrinking down an object so that it has mass and charge but no size
- We can quantify how much force two charges experience with $\frac{k \cdot |q_1| |q_2|}{r^2}$

$$-k = K = K_E$$

$$-\ k = 8.99 \times 10^9$$

$$+q_1 \longrightarrow \longleftarrow -q_2$$

$$\bullet \longleftarrow +q_1 \longrightarrow +q_2 \longrightarrow$$

3 Electric Field

• Charge causes a change in the space around it, which becomes a vector field

$$\bullet \quad \vec{E} = \frac{1}{4\pi t_0} \cdot \frac{Q}{r^2} \cdot \vec{r}$$

$$\bullet \ \ F_{E_q} = \frac{1}{r\pi t_0} \cdot \frac{qQ}{r^2} \cdot \vec{r} = q\vec{E}$$