CM50264: Machine Learning 1

Decision trees and random forests

Kwang In Kim k.kim@bath.ac.uk

Slide acknowledgements:
Neill Campbell, Richard Turner, and Manfred Law

Example machine learning task: Guessing subsequent numbers

1, 3, 5, 7, ? ...

Three steps of learning and inference

- 1. Observe phenomena.
- 2. Build a model of phenomena.
- 3. Make a prediction.

This is more or less the definition of natural science [Olivier Bousquet].

The goal of machine learning is to automate this process.

Learning and inference

It might be impossible to estimate a true model from finite observations (data).

It could be still possible to estimate a useful model.

Different flavours of machine learning

- Supervised/unsupervised
 - Supervised algorithms
 - learn from labelled examples: pairs of input and the corresponding desired output.
 - Unsupervised algorithms
 - learn from unlabelled examples: input data only; no desired outputs.
 - E.g., clustering and dimensionality reduction.
- Classification/regression
 - Classification: output variables take categorical (discrete) class index (e.g., {1, 0}, {Cat, Dog}).
 - Regression: output variables take continuous values (e.g., {0.75, -10.25, ...}).

Classification problem

We are given a set of training data points:

$$D = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\} \subset X \times \{0,1\}.$$

Our goal is to find a rule (e.g., function)

$$f: X \to \{0,1\}$$

such that its output $f(\mathbf{x}^*)$ for an unseen input $\mathbf{x}^* \notin D$ is close to the underlying ground-truth class y^* .

Classification error

Classification loss (error) per instance:

$$l(f(x), y) = \begin{cases} 0, & \text{if } f(x) = y \\ 1, & \text{otherwise.} \end{cases}$$

Overall, classification error:

$$\int l(f(x),y)dx.$$

Mean classification error:

$$\int l(f(x),y(x))dP(x,y).$$

Classification examples

$$f: X \rightarrow \{0,1\}$$

- Elements of $x \in X$ can be continuous or discrete (categorical).
- Outputs are categorical.
- x: credit score, own or rent, age, ...
 y: load defaults (yes/no).
- x: Length, word frequency histogram, ... y: Email classification (spam/no spam).
- x: pixel values of a face image, ...
 y: gender.

Image-based gender classification

Training

Testing

Image-based gender classification

Training

I: image

x: representation (or *features*) of I

$$\Rightarrow \mathbf{x}^1 = [x_1^1, x_2^1, x_3^1, ..., x_{n-1}^1, x_n^1] \in \mathbf{R}^n$$
 $y^1 = 1$

Testing

$$\Rightarrow \mathbf{x}^* = [x_1^*, x_2^*, x_3^*, ..., x_{n-1}^*, x_n^*] \in \mathbf{R}^n$$

$$y^* = ?$$

Regression

We are given a set of training data points:

$$D = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\} \subset \mathbf{X} \times \mathbf{R}.$$

Our goal is to find a function

$$f: X \to \mathbf{R}$$

such that its output $f(\mathbf{x}^*)$ for an unseen input $\mathbf{x}^* \notin D$ is close to the underlying ground-truth label y^* .

Regression error

- L2-loss: $l(f(x), y) = (f(x) y)^2$.
- L1-loss: l(f(x), y) = |f(x) y|.
- Mean squared error:

$$\int (f(x)-y)^2 dP(x,y).$$

Mean absolute deviation:

$$\int |f(x)-y|dP(x,y).$$

Regression examples

$$f: X \to \mathbf{R}$$

- Elements of $x \in X$ can be continuous or discrete (categorical).
- Outputs are continuous.
- x: age, education, occupation, ...
 y: income.
- x: size, age, location, ...
 y: selling price of houses.
- x: pixel values of a face image, ...
 y: age.

One-dimensional regression

Task: from a set of pairs of input \mathbf{x}^i and the corresponding output y^i , to estimate the output value y^* for the new input \mathbf{x}^* .

One-dimensional regression

Basic idea of machine learning: Keep things simple.

- Aristotle: The best demonstration is the one using the least number of hypotheses.
- Mach: Simple is more economical in terms of number of experiments needed to confirm.
- Occam's Razor: Entities should not be multiplied beyond necessity.
- Popper: Falsifiability, more empirical content means easier to falsify (require less experiments).
- Einstein: Everything should be as simple as it is but not simpler.

One-dimensional regression

Classification and regression trees

- L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, Wadsworth, 1984.
- L. Breiman, Bagging predictors,
 Machine Learning, 24, 123-140, 1996.
- L. Breiman, Random Forests,
 Machine Learning, 45, 5-32, 2001

Leo Breiman [27 Jan. 1928–5 Jul. 2005]

Classification and regression trees

- Training: build a tree given dataset D
 - Grow a (binary) tree.
 - At each node, split the data into children nodes.
 - Splits are chosen using a splitting criterion.
 - Bottom nodes are *leaf* nodes.
- Testing: make a prediction for an input x*
 - Traverse tree from root to a leaf based on splitting criteria.
 - For classification, the predicted class is the most common class in the node (majority vote).
 - For regression, the predicted value is the average outputs for all training data in the node.

Classification = space partitioning

$$\mathbf{x}^1 = [x_1^1, x_2^1] \in \mathbf{R}^2$$

- Input: continuous or discrete *features*: x_1 and x_2 .
- Output: categorical decisions (0 or 1).
- Based on training data, we want to predict class labels for every possible inputs
 - \Rightarrow partition the space.

Decision tree example

Note: there's no need to achieve zero training error.

Another example

Our training data: Discrete + continuous input features, binary outputs.

Everente	Attributes								Carl			
Example	X ₁	X ₂	<i>X</i> ₃	<i>X</i> ₄	<i>x</i> ₅	x ₆	<i>X</i> ₇	X ₈	x ₉	<i>X</i> ₁₀	Goal <i>WillWait</i>	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est		
x ¹	Yes	No	No	Yes	Some	£££	No	Yes	French	0-10	Yes	<i>y</i> ¹
x ²	Yes	No	No	Yes	Full	£	No	No	Thai	30-60	No	
x ³	No	Yes	No	No	Some	£	No	No	Burger	0-10	Yes	
x ⁴	Yes	No	Yes	Yes	Full	£	No	No	Thai	1000	oal predica	
X ⁵	Yes	No	Yes	No	Full	£££	No	Yes	French	>60	lassification	וי
x ⁶	No	Yes	No	Yes	Some	££	Yes	Yes	Italian	0-10	Yes	
x ⁷	No	Yes	No	No	None	£	Yes	No	Burger	0-10	No	
x ⁸	No	No	No	Yes	Some	££	Yes	Yes	Thai	0-10	Yes	
x ⁹	No	Yes	Yes	No	Full	£	Yes	No	Burger	>60	No	
x ¹⁰	Yes	Yes	Yes	Yes	Full	£££	No	Yes	Italian	10-30	No	
x ¹¹	No	No	No	No	None	£	No	No	Thai	0-10	No	
x ¹²	Yes	Yes	Yes	Yes	Full	£	No	No	Burger	30-60	Yes	

Decision tree (one possibility)

Decision tree for deciding whether to wait for a table

Decision tree (one possibility)

Decision tree (one possibility)

- Represents a Boolean function (goal predicate: WillWaitForTable()).
- Leaf nodes are Boolean values: final decisions (classifications).
- Internal nodes (split nodes) are tests of an attribute or feature.

Truth tables and decision trees

- A truth table row = path in tree from root to leaf.
- Trivially, there is a consistent decision tree for any data set with one path to leaf for each example (zero-training error)
 - But most likely won't generalise to new examples.
- And such a tree is much larger than necessary, so we prefer to find more compact decision trees.

Inducing decision trees from examples

- 1		Attributes								C 1	
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	X ₉	<i>X</i> ₁₀	Goal <i>WillWait</i>
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	
X ¹	Yes	No	No	Yes	Some	£££	No	Yes	French	0-10	Yes
x ²	Yes	No	No	Yes	Full	£	No	No	Thai	30-60	No
x ³	No	Yes	No	No	Some	£	No	No	Burger	0-10	Yes
x ⁴	Yes	No	Yes	Yes	Full	£	No	No	Thai	TO-20	oal predication
X ⁵	Yes	No	Yes	No	Full	£££	No	Yes	French	>60 (C	lassification
x ⁶	No	Yes	No	Yes	Some	££	Yes	Yes	Italian	0-10	Yes
x ⁷	No	Yes	No	No	None	£	Yes	No	Burger	0-10	No

- Use the set of examples as a training data to create a decision tree.
- A trivial solution:
 - Build a tree that has one path for each example.
- Occam's Razor (or regularization theory):
 - The most likely hypothesis is the simplest one that is consistent with the data.

Simple tree means small tree

Guidelines for finding a small decision tree:

- Test the most important feature first.
- If you have only one type of example, return a leaf.
- Otherwise, choose the next most important feature.

Decision tree learning

- Following this method, we generate the tree on the left.
- But the examples were generated by the original tree on the right.
- There is nothing wrong with the learning method:
 The method generates a hypothesis that matches the examples, not necessarily the underlying function
 - May be much simpler.
 - May uncover unexpected regularities.

How to decide which attribute to split on?

Idea: a good attribute should reduce uncertainty.

 E.g., splits the examples into subsets that are (ideally) `all positive' or `all negative'

Information

x: rain tomorrow?

P(x=YES)	P(x=NO)
0.9	0.1

- A rare event carries more information.
 - Information of `x=YES' ~ 1/P(x=YES).
 - Information of ` $x=NO' \sim 1/P(x=NO)$.
- Formally, information of each event is defined as
 - Information of `x=YES' = $log_2(1/P(x=YES)) = -log_2(P(x=YES))$.
 - Information of $x=NO' = \log_2(1/P(x=NO)) = -\log_2(P(x=NO))$.

Quantifying the uncertainty: Entropy

x: rain tomorrow?

P(x=YES)	P(x=NO)
0.9	0.1

- Information of events
 - Information of `x=YES' = $\log_2(1/P(x=YES))$ = $-\log_2(P(x=YES))$.
 - Information of ` $x=NO' = log_2(1/P(x=NO)) = -log_2(P(x=NO))$.
- Entropy H(x) of a variable (or a question) x, is defined as the average information of all events: H(x)
 - $= P(x=YES) \cdot -\log_2(P(x=YES)) + P(x=NO) \cdot -\log_2(P(x=NO))$
 - = $P(x=YES) \log_2(P(x=YES)) P(x=NO) \log_2(P(x=NO))$
 - $= -0.9 \log_2(0.9) 0.1 \log_2(0.1) = 0.47 \text{ bit.}$

Entropy

z: blood type?

P(z=O)	P(z=A)	P(z=B)	P(z=AB)
0.44	0.42	0.10	0.04

Entropy of *z*: average information of all events:

```
H(z)
```

```
=-P(z=O) \log_2(P(z=O))

-P(z=A) \log_2(P(z=A))

-P(z=B) \log_2(P(z=B))

-P(z=AB) \log_2(P(z=AB))

= -0.44 \log_2(0.44) -0.42 \log_2(0.42) -0.10 \log_2(0.10) -0.04 \log_2(0.04)

= 1.56 bit.
```

Entropy example

x: rain tomorrow?

P(x=YES)	P(x=NO)
0.9	0.1

• H(x)

= -
$$P(x=YES) \log_2(P(x=YES)) - P(x=YES) \log_2(P(x=NO))$$

 $= -0.9 \log_2(0.9) - 0.1 \log_2(0.1) = 0.47 \text{ bit.}$

x: rain tomorrow?

P(x=YES)	P(x=NO)
0.5	0.5

 \bullet H(x)

= -
$$P(x=YES) \log_2(P(x=YES)) - P(x=YES) \log_2(P(x=NO))$$

 $= -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1 \text{ bit.}$

Entropy example

x: rain tomorrow?

P(x=YES)	P(x=NO)
Α	1-A

A=0.5:

P(x=YES)	P(x=NO)
0.5	0.5

H(x): 1 bit.

A=1:

P(x=YES)	P(x=NO)
1	0

H(x): 0 bit.

Entropy example

z: blood type?

P(z=O)	P(z=A)	P(z=B)	P(z=AB)
1	0	0	0

• H(z)

$$= -1 \log_2(1) - 0 \log_2(0) - 0 \log_2(0) - 0 \log_2(0) = 0 \text{ bit.}$$

z: blood type?

P(z=O)	P(z=A)	P(z=B)	P(z=AB)
1/4	1/4	1/4	1/4

 \bullet H(z)

= $-0.25 \log_2(0.25) - 0.25 \log_2(0.25) - 0.25 \log_2(0.25) - 0.25 \log_2(0.25) = 2 \text{ bits.}$

Entropy = Uncertainty

Entropy of a question (or random variable) x
 with possible answers {A¹, ..., Aⁿ}:

$$H(x) = \sum_{i=1}^{n} -P(A^{i})\log_{2}P(A^{i}).$$

 Entropy of x measures how even the probability distribution of x is.

P(x=YES)	P(x=NO)
0.5	0.5

H(x): 1 bit.

P(x=YES)	P(x=NO)
1	0

H(x): 0 bit.

Entropy = Uncertainty

- Entropy measures the amount of uncertainty in a probability distribution
 - Perfectly even distribution: completely uncertain about the possible outcomes.
 - Uneven distribution: less uncertain.
 - Perfectly uneven (deterministic) distribution: completely certain about the possible outcomes.
- Entropy of x measures how even the probability distribution of x is.

P(x=YES)	P(x=NO)
0.5	0.5

H(x): 1 bit.

P(x=YES)	P(x=NO)
1	0

H(x): 0 bit.

Choosing an attribute to split on

- Idea: a good attribute should reduce uncertainty and result in gain in information.
- How much information do we gain if we disclose the value of some attribute?
- Answer:

uncertainty before − uncertainty after
⇔ entropy before − entropy after.

Back at the restaurant

x: wait or not?

Before choosing an attribute (6 YES and 6 NO):

 $H(x) = -6/12 \log_2(6/12) - 6/12 \log_2(6/12) = 1 \text{ bit.}$

There is `1 bit of uncertainty'.

Back at the restaurant

- If we choose [Type?]
 - Go along branch French: We have entropy = 1 bit;
 similarly for the others.
 - Information gain = 1-1 = 0 along any branch.
- If we choose [Patrons?]
 - In branch Full and None entropy = 0.
 - For branch Some, entropy = $-2/6 \log_2(2/6) 4/6 \log_2(4/6) = 0.92$ bit.
- So choosing [Patrons?] gains more information.

Entropy across branches

- How do we combine entropy of different branches?
 - Compute average entropy.
- Weight entropies according to probabilities of branches
 - P(None) = 2/12 = 1/6.
 - P(Some) = 4/12 = 1/3.
 - P(Full) = 6/12 = 1/2.

Average entropy

- = P(Full) H(Full) + P(None) H(None) + P(Some) H(Some)
- $= 1/6 \times 0 + 1/3 \times 0 + 1/2 \times 0.92$
- = 0.46 bit.

Information gain

Information gain (*IG*) or reduction in entropy from using feature *A*:

IG(A) = Entropy before– average entropy after choosing A.

Our strategy: Choose the feature with the largest IG.

Information Gain in our example

$$IG(Patrons) = 1 - \left[\frac{1}{6}H(Full) + \frac{1}{3}H(None) + \frac{1}{2}H(Some)\right] = 0.54 \text{ bit.}$$

$$IG(Type) = 1 - \left[\frac{1}{6}H(French) + \frac{1}{6}H(Italian) + \frac{1}{3}H(Thai) + \frac{1}{3}H(Burger)\right] = 0 \text{ bit.}$$

Patrons has the highest IG of all attributes.

So we choose Patrons as the root.

Learned decision tree

- After root node, we repeat process of `choosing an attribute to split on' for each sub-tree, until we get to leaf nodes that are completely or approximately classified to one class.
- In this case, the learned tree is much simpler than the original tree.

45

Assessing the performance of a learning algorithm

- Randomly divide the examples into a training set and a test set.
- Plot shows a learning curve.

Noise and overfitting

 In the presence of noise, some feature vectors will have multiple examples with conflicting results:

Different outcomes for the same inputs.

- We must be careful to avoid finding meaningless regularity in the data (overfitting)
 - Every time I roll the dice with my left hand it comes up heads.
 - I always encounter less traffic on Mondays (but I'm always late on Mondays).
- Regularization: Sometimes, it is good to stop expanding the tree even when training error > 0.

If data are noisy, achieving zero training error would lead to poor generalization.

When to stop?

- Decision trees will overfit
- Strategies for constructing simpler trees
 - Minimum number of data points per leaf.
 - Fixed maximum depth.

Decision trees examples

Designing oil platform equipment

- GASOIL (1986 BP).
- Designing gas-oil separation systems for offshore platforms.
- 2500 rules.
- Would have taken 10 person-years to build by hand.
- Decision tree took 100 person-days to implement and train.

Learning to Fly

- C4.5 (1992 Sammut et al.).
- Cessna on a flight simulator.
- Observe 3 human pilots make 30 assigned flights.
- Create training example every time a control is touched.
- Flies better than the human instructors!
 - (allows generalisation across errors).

A hard case for simple features

Complex split functions vs. complex tree.

Other splitting criteria

Entropy (for classification)

$$H(x) = \sum_{i=1}^{n} -P(A^{i})\log_{2}P(A^{i}).$$

Gini impurity (for classification)

$$I_G(x) = \sum_{i=1}^n P(A^i) \left(1 - P(A^i)\right).$$

Residual sum of squares (for regression)

$$RSS(x) = \sum_{i=1}^{n} (\overline{A} - A^{i})^{2}.$$

 $\overline{\mathbf{A}}$: mean y value.

Decision trees summary

- Efficient learning algorithm.
- Handle both discrete and continuous inputs and outputs.
- Robust to outliers.
- Automatically ignore irrelevant features: no need for feature selection.
- Decision trees are usually interpretable.
- Strategies to terminate building the tree
 - Too deep and we overfit (doesn't generalize well to unseen data).
 - Too shallow and we underfit (poor performance again).
 - (Hyper-)parameters: maximum depth, # data points per leaf, etc.

Random forests (RFs)

$$D = \{(\mathbf{x}^1, y^1), ..., (\mathbf{x}^N, y^N)\} \subset \mathbf{R}^n \times \{0,1\}$$

Ensemble method – averages over multiple, diverse classification trees (a *forest*).

- For each tree, randomly draw a subset (of size L < N) of the original training set D.
- At each node, randomly sample p < n attributes and choose the best among them.
- Aggregate across trees (majority vote or average → mixture model).
- Avoids over-fitting and computationally efficient (easy to parallelize).
- Random forests are usually not interpretable.

Random forests (RFs)

$$D = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\} \subset \mathbf{R}^n \times \{0,1\}$$

RF hyper-parameters

- # trees, maximum depth of each tree, split function, etc.
- These hyper-parameters have to be decided before we train RFs.
- Ideally, we would tune them based on the expected error:

$$\int l(f(x), y(x))dP(x, y)$$

 But we do not have access to the data generation process.

Estimates of predictive accuracy

Training error

- Use the accuracy on the training set as an estimate of generalization error.
- Typically, too optimistic.

Cross-validation

- Randomly select a training set, use the rest as the test set.
- 2-fold cross-validation
 - Divide the data at random into 2 pieces, D_1 and D_2 .
 - Train the predictor on D_1 and test it on D_2 .
 - Train the predictor on D_2 and test it on D_1 .
 - Calculate the average over splits.
- 10-fold cross-validation.

Out-of-bag error

- Each tree T_i is trained on $D_i \subset D$; It can be validated on $D \setminus D_i$.
- Out-of-bag estimate: aggregated validation error for all trees.

Demo

Motion classification example

© Richard Turner, Jamie Shotton

Depth image features