TEXT MINING STATISTICAL MODELING OF TEXTUAL DATA LECTURE 2

Mattias Villani

Division of Statistics

Dept. of Computer and Information Science
Linköping University

OVERVIEW

- ► Text classification
- ► Regularization
- ► R's tm package (demo) [TMPackageDemo.R]

SUPERVISED CLASSIFICATION

- ▶ Predict the class label $s \in S$ using a set of features.
- ► Feature = Explanatory variable = Predictor = Covariate
- ▶ Binary classification: $s \in \{0, 1\}$
 - ▶ Movie reviews: $S = \{pos, neg\}$
 - ▶ E-mail spam: $S = \{Spam, Ham\}$
 - ▶ Bankruptcy: S = {Not bankrupt, Bankrupt}
- ▶ Multi-class classification: $s \in \{1, 2, ..., K\}$
 - Topic categorization of web pages:
 S = {'News', 'Sports', 'Entertainment'}
 - ▶ POS-tagging: $S = \{VB,JJ,NN,...,DT\}$

SUPERVISED CLASSIFICATION, CONT.

- Example data:
 - ▶ Larry Wall, born in British Columbia, Canada, is the original creator of the programming language Perl. Born in 1956, Larry went to ...
 - ▶ Bjarne Stroustrup is a 62-years old computer scientist ...

Person	Income	Age	Single	Payment remarks	Bankrupt
Larry	10	58	Yes	Yes	Yes
Bjarne	15	62	No	Yes	No
:	÷	:	:	÷ :	:
Guido	27	56	No	No	No

► Classification: construct prediction machine

Features
$$\rightarrow$$
 Class label

► More generally:

 $\mathsf{Features} \to \Pr(\mathsf{Class\ label}|\mathsf{Features})$

FEATURES FROM TEXT DOCUMENTS

- Any quantity computed from a document can used as a feature:
 - Presence/absence of individual words
 - ▶ Number of times an individual word is used
 - ▶ Presence/absence of pairs of words
 - ► Presence/absence of individual bigrams
 - ► Lexical diversity
 - Word counts
 - ▶ Number of web links from document, possibly weighted by Page Rank.
 - etc etc

Document	has('ball')	has('EU')	has('political_arena')	wordlen	Lex. Div.	Topic
Article1	Yes	No	No	4.1	5.4	Sports
Article2	No	No	No	6.5	13.4	Sports
:	:	:		:	:	:
ArticleN	No	No	Yes	7.4	11.1	News

► Constructing clever **discriminating features** is the name of the game!

SUPERVISED LEARNING FOR CLASSIFICATION

THE BAYESIAN CLASSIFIER

► Bayesian classification

$$\underset{s \in S}{\operatorname{argmax}} p(s|\mathbf{x})$$

where $\mathbf{x} = (x_1, ..., x_n)$ is a feature vector.

▶ By Bayes' theorem

$$p(s|\mathbf{x}) = \frac{p(\mathbf{x}|s)p(s)}{p(\mathbf{x})} \propto p(\mathbf{x}|s)p(s)$$

Bayesian classification

$$\underset{s \in S}{\operatorname{argmax}} p(\mathbf{x}|s)p(s)$$

- \triangleright p(s) can be easily estimated from training data by relative frequencies.
- ▶ Even with binary features [has(word)] the outcome space of p(x|s) is huge (=data are sparse).

NAIVE BAYES

▶ Naive Bayes (NB): features are assumed independent

$$p(\mathbf{x}|s) = \prod_{j=1}^{n} p(x_j|s)$$

Naive Bayes solution

$$\underset{s \in S}{\operatorname{argmax}} \left[\prod_{j=1}^{n} p(x_{j}|s) \right] p(s)$$

▶ With binary features, $p(x_i|s)$ can be easily estimated by

$$\hat{p}(x_j|s) = \frac{C(x_j,s)}{C(s)}$$

▶ Example: s = news, $x_i = \text{has}('\text{ball'})$

$$\hat{p} \text{ (has(ball)|news)} = \frac{\text{Number of news articles containing the word 'ball'}}{\text{Number of news articles}}$$

NAIVE BAYES

- Continuous features (e.g. lexical diversity) can be handled by:
 - Replacing continous feature with several binary features (1 ≤lexDiv < 2, 2 ≤lexDiv ≤ 10 and lexDiv > 10)
 - Estimating $p(x_i|s)$ by a density estimator (e.g. kernel estimator)
- Finding the most discriminatory features. Sort from largest to smallest

$$\frac{p(x_j|s=pos)}{p(x_j|s=neg)} \text{ for } j=1,...,n.$$

- ► **Problem with NB**: features are seldom independent ⇒ double-counting the evidence of individual features.
- Extreme example: what happens with naive Bayes if you duplicate a feature?
- Advantages of NB: simple and fast, yet often surprising accurate classifications.

MULTINOMIAL REGRESSION

► Logistic regression (Maximum Entropy/MaxEnt):

$$p(s = 1|\mathbf{x}) = \frac{\exp(\mathbf{x}'\beta)}{1 + \exp(\mathbf{x}'\beta)}$$

- ▶ Classification rule: Choose s = 0 if $p(s|\mathbf{x}) < 0.5$ otherwise choose s = 1.
- ▶ ... at least when consequences of different choices of s are the same. Loss/Utility function.
- ▶ Multinomial regression for multi-class data with *K* classes

$$p(s = s_j | \mathbf{x}) = \frac{\exp(\mathbf{x}' \beta_j)}{\sum_{k=1}^{K} \exp(\mathbf{x}' \beta_k)}$$

Classification

$$\underset{s \in \{s_1, \dots s_K\}}{\operatorname{argmax}} p(s|\mathbf{x})$$

► Classification with text data is like any multi-class regression problem ... but with hundred or thousand of covariates! Wide data.

REGULARIZATION - VARIABLE SELECTION

- Select a subset of the covariates.
- ▶ Old school: Forward and backward selection.
- ▶ New school: Bayesian variable selection.
- ▶ For each β_i introduce binary indicator I_i such that

$$I_i=1$$
 if covariate is in the model, that is $\beta_i\neq 0$ $I_i=0$ if covariate is in the model, that is $\beta_i=0$

- ▶ Use Markov Chain Monte Carlo (MCMC) simulation to approximate $Pr(I_i|Data)$ for each i.
- ► Example $S = \{\text{News}, \text{Sports}\}$. $\Pr(\text{News}|x)$.

	has('ball')	has('EU')	has('political_arena')	wordlen	Lex. Div.
$Pr(I_i Data)$	0.2	0.90	0.99	0.01	0.85

REGULARIZATION - SHRINKAGE

- Keep all covariates, but **shrink** their β -coefficient to zero.
- Penalized likelihood

$$L_{Ridge}(\beta) = LogLik(\beta) - \lambda \beta' \beta$$

where λ is the **penalty parameter**.

- Maximize $L_{Ridge}(\beta)$ with respect to β . Trade-off of fit $(LogLik(\beta))$ against complexity penalty $\beta'\beta$.
- ▶ Ridge regression if regression is linear.
- ▶ The penalty can be motivated as a Bayesian prior $\beta_i \stackrel{iid}{\sim} N(0, \lambda^{-1})$.
- \triangleright λ can be estimated by cross-validation or Bayesian methods.

LASSO - SHRINKAGE AND VARIABLE SELECTION

► Replace Ridge penalty

$$L_{Ridge}(\beta) = LogLik(\beta) - \lambda \sum_{j=1}^{n} \beta_j^2$$

by

$$L_{Lasso}(\beta) = LogLik(\beta) - \lambda \sum_{j=1}^{n} |\beta_j|$$

- ▶ The β that maximizes $L_{Lasso}(\beta)$ is called the Lasso estimator.
- ► Some parameters are shrunked exactly to zero ⇒ Lasso does both shrinkage AND variable selection.
- Lasso penalty is equivalent to a double exponential prior

$$p(\beta_i) = \frac{\lambda}{2} \exp\left(\lambda \left| \beta_i - 0 \right|\right)$$

SUPPORT VECTOR MACHINES

- One of the best classifiers around.
- Finds the line in covariate space that maximally separates the two classes.
- When the points are not linearly separable: add a slack-variable $\xi_i > 0$ for each observation. Allow misclassification, but make it costly.
- Non-linear separing curves can be obtained by basis expansion (think about adding x^2 , x^3 and so on)
- ▶ The kernel trick makes it possible to handle many covariates.
- Drawback: not so easily extended to multi-class.
- svm function in R-package e1071 [or nltk.classify.svm]

LINEAR SVMS

REGRESSION TREES AND RANDOM FOREST

- Binary partioning tree.
- ► At each internal node decide:
 - ▶ Which covariate to split on
 - ▶ Where to split the covariate $(X_j < c$. Trivial for binary covariates)
- ► The optimal splitting variables and split-points are chosen to minimize the mis-classification rate (or other similar measures).
- ▶ Random forest (RF) predicts using an average of many small trees.
- ► Each tree in RF is grown on a random subset of variables. Makes it possible to handle many covariates. Parallel.
- Advantage of RF: better predictions than trees.
- ▶ RF harder to interpret, but provide variable importance scores.
- ▶ R packages: tree and rpart (trees), randomForest (RF).

REGRESSION TREES

EVALUATING A CLASSIFIER: ACCURACY AND ERROR

► Confusion matrix:

		Truth		
		Spam	Not Spam	
Decision	Spam	tp	fp	
Decision	Not Spam	fn	tn	

- ▶ tp = true positive, fp = false positive
- ▶ fn = false negative, tn = true negative
- Accuracy is the proportion of correctly classified items

Accuracy =
$$\frac{tp + tn}{tp + tn + fn + fp}$$

► Error is the proportion of wrongly classified items

$$Error = 1-Accuracy$$

ACCURACY CAN BE MISLEADING

► Accuracy is problematic when tn is large. High accuracy can then be obtained by not acting at all!

		Truth		
		Spam	Not Spam	
Choice	Spam	0	0	
	Not Spam	100	900	

EVALUATING A CLASSIFIER: THE F-MEASURE

► Confusion matrix:

		Truth		
		Spam	Good	
Choice	Spam	tp	fp	
Choice	Good	fn	tn	

▶ Precision = proportion of selected items that the system got right

$$Precision = \frac{tp}{tp+fp}$$

▶ Recall = proportion of spam that the system classified as spam

Recall =
$$\frac{\mathsf{tp}}{\mathsf{tp+fn}}$$

► F-measure is a trade-off between Precision and Recall (harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{Precision} + (1 - \alpha) \frac{1}{Recall}}$$