### Лабораторная 3: Линейные методы



# 1. Классификация

### Метрики

Все описанные ниже метрики реализованы в модуле sklearn.metrics.

Рассмотрим задачу двухклассовой классификации. Пусть  $f_w(x) = \langle w, x \rangle$  — некоторая линейная модель, для которой правило классификации по порогу  $w_0$  записывается в виде  $F_{w,w_0}(x) = \text{sign}(f_w(x) - w_0)$ .

Пусть  $X_{test} = (X_i, Y_i)_{i=1,\dots,n}$  — тестовая выборка, причем  $Y_i \in \{-1, +1\}$ . Обозначим  $I_{good} = \{i|Y_i = 1\}, \ I_{bad} = \{i|Y_i = -1\}$  — индексы хороших и плохих объектов. Для данного классификатора F обозначим так же  $I_{good}^F = \{i|F(X_i) = 1\}, \ I_{bad}^F = \{i|F(X_i) = -1\}$  — индексы объектов, которые классификатором F классифицируются как хорошие и плохие.

В данной модели можно рассмотреть следующие метрики качества.

1. Precision (Точность) — доля действительно хороших объектов среди классифицируемых как хорошие

$$Prec(F, X_{test}) = \frac{\left|I_{good} \cap I_{good}^F\right|}{\left|I_{good}^F\right|}.$$

**2.** Recall (Полнота) — доля объектов, классифицируемых как хорошие, среди действительно хороших объектов

$$Recall(F, X_{test}) = \frac{\left|I_{good} \cap I_{good}^F\right|}{\left|I_{good}\right|}.$$

**3.**  $F_1$ . Ясно, что в некотором смысле две предыдущие метрики противоречат друг другу. Например, если все документы классифицировать как хорошие. Поэтому разумно эти метрики смешать

$$F_1 = \frac{2}{\frac{1}{Prec} + \frac{1}{Recall}}.$$

4. ROC-AUC Доля ложных положительных классификаций (False Positive Rate, FPR):

$$FPR(F, X_{test}) = \frac{\sum_{i=1}^{n} I\{F(X_i) = 1, Y_i = -1\}}{\sum_{i=1}^{n} I\{Y_i = -1\}}$$

1

Доля верных положительных классификаций (True Positive Rate, TPR):

$$TPR(F, X_{test}) = \frac{\sum_{i=1}^{n} I\{F(X_i) = 1, Y_i = 1\}}{\sum_{i=1}^{n} I\{Y_i = 1\}}.$$

ROC-кривой называется график зависимости TPR от FPR при изменении параметра  $w_0$ , и проходит через точки (0, 0) и (1, 1). Чем выше лежит кривая, тем лучше качество классификации. Метрика AUC (Area Under Curve) есть площадь под ROC-кривой.

**5.** MSE Подходит для задачи регрессии, но может давать адекватные значения и для задач классификации.

$$MSE(F, X_{test}) = \frac{1}{|X_{test}|} \sum_{(x,y) \in X_{test}} (F(x) - y)^{2}$$

В отличии от всех предыдущих метрик она является не мерой качества, а мерой ошибки.

#### Задание

Цель лабораторной — исследовать, как различные модели влияют на качество в зависимости от выбранной метрики.

Рассмотрим следующие модели классификации

- 1. LDA линейный дискриминантный анализ (принцип максимума апостериорной вероятности, в котором компоненты имеют гауссовское распределение с одинаковой матрицей ковариаций). В старых версиях это sklearn.lda.LDA, в новых sklearn.discriminant\_analysis.LinearDiscriminantAnalysis.
- 2. Логистическая регрессия (sklearn.linear\_model.LogisticRegression)
- 3. SVM (sklearn.svm.LinearSVC, либо sklearn.svm.SVC с параметром kernel="linear")

Каждую модель классификации можно записать в виде  $F_{w,w_0}(x) = \text{sign}(\langle w, x \rangle - w_0)$ , проверьте это для каждой из них.

Сгенерируйте двумерную выборку размера 500 из двух классов, для этого можно воспользоваться sklearn.datasets.make\_blobs. Проверьте, что классы достаточно хорошо пересекаются, но не слишком сильно. Этого можно добиться, например, изменением параметра cluster\_std, который отвечает за дисперсию кластеров. Разбейте выборку поровну на трейн и тест (пользуйтесь sklearn.cross\_validation.train\_test\_split)

1. (3 балла) Обучите на трейне предложенные выше модели, получив в каждой из них параметры w и  $w_0$ . Для вектора w у моделей есть поле  $\operatorname{coef}_-$ , а для числа  $w_0$  поле  $\operatorname{intercept}_-$ . Для SVM здесь лучше воспользоваться  $\operatorname{sklearn.sym.LinearSVC}$ . Для каждой модели постройте графики метрик (Prec, Recall,  $F_1$ , MSE) в зависимости от  $w_0$  при фиксированном w. Для каждой модели должен быть свой график, на котором вместе изображены зависимости для всех метрик. Стоит заметить, что для построения графика не нужно использовать сетку из значений  $w_0$ , поскольку при монотонном увеличении  $w_0$  классификация меняется не более n раз, где n — размер тестовой выборки. Поскольку метрики дискретны (в данном случае даже MSE :)), то и график должен выглядеть как кусочно-постоянная функция, а не кусочно-линейная, учтите это при построении графика. После построения всех графиков не забудте сделать выводы. Выводы должны содержать ответы на вопросы: как ведут себя метрики по отношению друг к другу, какая модель оказалась лучшей, почему MSE в данном случае ведет себя адекватно, да и вообще, почему она тут дискретна ...

- **2.** (1 балл) Проведите аналогичное исследования для случая, когда классы хорошо разделяются, и для случая, когда классы сильно перемешаны.
- 3. (2 балла) Теперь для каждой модели посчитайте метрику ROC-AUC и постройте график ROC-кривой (sklearn.metrics.roc\_curve). При построении графика учтите, что в функцию нужно передавать не сами предсказания, а вероятности для первого класса. Оценку вероятностей можно получить с помощью функции predict\_proba. В случае SVM это возможно только для sklearn.svm.SVC, если указать probability=True. Сделайте выводы.
- **4.** (**2 балла**) Рассмотрим теперь SVM. Для некоторых значений C обучите модель на обучающей выборке и визуализируйте полученную классификацию так, как показано в ноутбуке с семинара 11. Постройте графики метрик  $F_1$  и ROC-AUC в зависимости от C на тестовой выборке. Сделайте выводы.

## 2. Регрессия

Рассматриваем только метрику MSE. Скачайте данные с Диска и разбейте из на трейн и тест в сооотношении 3:1. Реализуйте самостоятельно (в одну строчку) и обучите линейную регрессию. Посчитайте ошибку MSE на тесте. Проверьте значение детерминанта матрицы, которую приходится обращать в процессе обучения. Надежный ли получился результат?

- **5.** (2 балла) Обучите Ridge-регрессию для различных значений параметра регуляризации  $\alpha$ . Постройте график метрики MSE в зависимости от значения  $\alpha$ . Проведите аналогичный эксперимент для LASSO-регрессии и ElasticNet-регрессии. В последнем случае параметр изменяйте так, как описано в ноутбуке с семинара 11. Сделайте выводы.
- **6.** (1 балл) Для Ridge-регрессии и LASSO-регрессии постройте графики траекторий путей весов признаков так, как показано в ноутбуке с семинара 11. Сделайте выводы.
- 7. (3 балла) SVM-регрессия (sklearn.svm.SVR) Какую функцию потерь использует SVM-регрессия? Постройте графики метрик MSE и среднего значения функции потерь SVM-регрессии на обучающей и тестовой выборках в зависимости от C для фиксированного  $\varepsilon$  и в зависимости от  $\varepsilon$  при фиксированном C. Подберите оптимальные значения параметров  $\varepsilon$  и C. Сделайте выводы.