Time series

Robert Tarasevic

2020-04-06

Contents

Load data	2
Chosen time period for signals	
Statistics table	4
Correlation	4
Data discretization	
Auto-correlation	7
Generalized Additive Model	8

```
library("tidyverse")
library("caret")
library("dplyr")
library("rhdf5")
library("zoo")
library("knitr")
library("kableExtra")
library("mgcv")
```

Load data

T7_800_R6292

[1] "Only one graph showed because same sensor chosen"

Chosen time period for signals

First signal subset: 2019-02-06 11:10:00 - 2019-02-06 13:00:00

T7_800_R6292 2019-02-06 11:10:00 - 2019-02-06 13:00:00

Second signal subset: 2019-02-06 16:00:00 - 2019-02-06 18:00:00

T7_800_R6292 2019-02-06 16:00:00 - 2019-02-06 18:00:00

Table 1: Statistics table

	length	t_mode	v_mode	sd	mean	kurt	skew	rms	entropy	cf	sf	cross_r
sub 1	126	12	6879	123.49	7037.98	-0.20	-0.12	7037.98	4.84	1.04	1.00	39
sub 2	137	12	7344	279.48	7032.68	-0.72	-0.60	7032.68	4.92	1.06	1.00	10
raw 1	115711	4	384	2055.88	6472.54	4.08	-2.40	6472.54	11.58	1.22	1.05	698
raw 2	115711	4	384	2055.88	6472.54	4.08	-2.40	6472.54	11.58	1.22	1.05	698

Statistics table

Some statistics explained:

 ${\bf Signal\ length\ -}\ {\it Data\ points\ number\ in\ signal}$

Time mode - Mode of time change frequency

Value mode - Most frequent value

 ${\bf Sd}$ - ${\it Standard\ deviation}$

Mean - Average value

n5, n25, n75, n95 - Quantile values

Kurtosis - Kurtosis quantifies the peak value of the PDF (positive kurtosis tells that there is lot of data in tails, negative - little data in tails

Skewness - Skewness quantifies the asymmetry behavior of vibration signal through its PDF

RMS - Root mean square value changes faster then mean

Entropy - Amount of uncertainty in an entire probability distribution

Crest factor (cf) - Ratio of the instantaneous peak amplitude of a waveform, to its root mean square RMS value

Shape factor (sf) - Shape factor is a value that is affected by an object's shape but is independent of its dimensions

Mean crossing - Mean value crossing count

Correlation

Correlation between sub-sets

[1] -0.08195883

Correlation between signals

[1] 1

Data discretization

discretized signal: T7_800_R6292

[1] "Only one graph showed because same sensor chosen"
First signal subset: 2019-02-06 11:10:00 - 2019-02-06 13:00:00

Second signal subset: 2019-02-06 16:00:00 - 2019-02-06 18:00:00

time

Auto-correlation

Auto correlation is the correlation of a time series with its own past and future values if data is strongly seasonal - peaks will apear with seasonality period

Partial autocorrelation at lag k is the correlation that results after removing the effect of any correlations due to the terms at shorter lags

1-st subset autocorrelation

1-st subset partial autocorrelatic

2-nd subset autocorrelation

2-nd subset partial autocorrelation

Generalized Additive Model

Table 2: Generalized additive method coefficients

	model.coefficients	model2.coefficients
(Intercept)	7041.694	7142.776
s(t).1	182.927	-830.923
s(t).2	-258.267	823.207
s(t).3	163.705	248.025
s(t).4	-382.138	-955.976
s(t).5	-110.540	348.579
s(t).6	459.813	376.510
s(t).7	-221.561	-18.056
s(t).8	272.068	-1200.304
s(t).9	234.727	179.715
s(t).10	64.967	-160.544
s(t).11	288.297	-1041.629
s(t).12	398.487	-75.881
s(t).13	-188.467	0.011
s(t).14	410.885	-1469.601
s(t).15	-147.774	282.820
s(t).16	3.768	-322.895
s(t).17	120.766	629.964
s(t).18	876.167	1733.116
s(t).19	648.390	871.507

Generalized additive model formula:

- $g(E(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + \dots + f_m(x_m) + \varepsilon$
 - x_1, x_2, \dots, x_m are independent variables
 - $-\ \beta_0$ is an intercept
 - $-\ f_1, f_2, \ldots, f_m$ are unknow smooth functions (splines)
 - ε is an random error

In our case formula is:

- $g(E(Y)) = \beta_0 + f_1(x_1) + \varepsilon$,
 - $f(x_1) = \sum_{j=1}^k b_j(x_1)\beta_j,$
 - $b_j(x_1)\beta_j$ smooth spline function.

original subsets

approximated subsets

Correlation between approximated signals

[1] -0.0308847

We can make further signal predictions based on this models.

```
#
#
# #+ eval=F
# ## create a chart for original data with 'plotly'
plotly::plot_ly(
    x = d1$timestamp
    , y = d1$value
    , type = 'scatter'
```

```
, mode = 'lines'
)

## TypeError: Attempting to change the setter of an unconfigurable property.
## TypeError: Attempting to change the setter of an unconfigurable property.
```

```
plot(normalize(model$fitted.values), type = '1')
lines(normalize(model2$fitted.values), col = 4, lty=2)
```

