Problem 1. Write each expression in sigma notation but do not evaluate

- (a) $1+2+3+\cdots+10$
- (b) $3 \cdot 1 + 3 \cdot 2 + 3 \cdot 3 + \dots + 3 \cdot 20$
- (c) $2+4+6+8+\cdots+20$
- (d) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5}$

Problem 2. Express the sum of the even integers from 2 to 100 in sigma notation

Problem 3. Evaluate the following sums

(a)
$$\sum_{k=1}^{100} (7k+1)$$

(b)
$$\sum_{\substack{k=1\\30}}^{6} (k - k^3)$$

(c)
$$\sum_{k=1}^{30} k(k-2)(k+2)$$

Problem 4. Express the following sums in closed form

(a)
$$\sum_{k=1}^{n} \frac{3k}{n}$$

(b)
$$\sum_{k=1}^{n-1} \frac{k^2}{n}$$

(c)
$$\sum_{k=1}^{n} \left(\frac{5}{n} - \frac{2k}{n} \right)$$

Problem 5. Express the following functions of n in closed form and then find the limit

(a)
$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2}$$

(a)
$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2}$$

(b) $\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$
(c) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{5k}{n^2}$

(c)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{5k}{n^2}$$

(d)
$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \frac{2k^2}{n^3}$$

Problem 6. Use the definition of area under a curve with x_k^* as the right endpoint of each subinterval to find the area under the curve y = f(x) over the specified intervals.

(a)
$$f(x) = x/2$$
; [1, 4]

(b)
$$f(x) = 9 - x^2$$
; [0, 3]

Problem 7. Use the definition of area under a curve with x_k^* as the *left* endpoint of each subinterval to find the area under the curve y = f(x) over the specified intervals.

(a)
$$f(x) = 5 - x$$
; $[0, 5]$

(b)
$$f(x) = 1 - x^3$$
; $[-3, -1]$