REEU 2021 – Homework 2

Justin A. Gould gould29@purdue.edu

June 21, 2021

Instructions

All files and data you need to complete this assignment are:

- ./tl_2015_26_prisecroads: A folder containing a shapefile (and supporting files) of Michigan's limited access highways.
- ./tl_2016_26_cousub: A folder containing a shapefile (and supporting files) of Michigan's counties.
- ./ch11: A folder containing the data used in weeks 5-6 lectures, from chapter 11 of our textbook. If you followed along our lecture notebook, loading the data into your Postgres database was already done.

Problem 1

Split a POLYGON

Please create a geometry collection consisting of 2 halves of a right-hand-winding polygon, based on the following:

Input: Below are the shapes you will use in your SQL query. Split the POLYGON with the LINESTRING

• POLYGON:

```
ST_Buffer(
ST_ForceRHR(
ST_Boundary(
    ST_GeomFromText('POLYGON ((50 50, 50 150, 150 150, 150 50, 50 50))')
)
),
20,'side=right')
```

• LINESTRING: ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190))

Desired Outputs:

- 1. Correct SQL query text shown.
- 2. Showing the .head() of your GeoDataFrame. Columns to include:
 - (a) Geometry
 - (b) Geometry type
- 3. Showing the .plot() of your GeoDataFrame.

Problem 2

Dividing San Francisco into Hexagons

Using the chl1.stclines_streets dataset from our lecture, split the road network of the San Francisco into hexagons of $500 ft^2$. Your geometry's CRS should be WGS 84.

Input: The ch11.stclines_streets dataset.

Desired Outputs:

- 1. Correct SQL query text shown.
- 2. Showing the .head() of your GeoDataFrame. Columns to include:
 - (a) Geometry
 - (b) The row number along the grid, i
 - (c) The column number along the grid, j
 - (d) The number of streets contained within each hexagon
 - (e) Order the GeoDataFrame by the number of streets within each hexagon descending
- 3. Showing the .plot() of your GeoDataFrame.

Problem 3

Create a LINESTRING from a Series of POINTs

Using the ch11.aussie_track_points dataset from our lecture, return a LINESTRING containing all chronologically-ordered points for each race (track_fid). Please transform your coordinates into WGS 84 / Pseudo-Mercator.

Input: The ch11.aussie_track_points dataset.

Desired Outputs:

- 1. Correct SQL query text shown.
- 2. Showing the .head() of your GeoDataFrame. Columns to include:
 - (a) Race ID (track_fid)
 - (b) Geometry
 - (c) The race's start time
 - (d) The race's end time
 - (e) The length of each race in meters
 - (f) Order the GeoDataFrame by the track_fid ascending
- 3. Showing the .plot() of your GeoDataFrame.

Problem 4

Create a MULTILINESTRING of all Races from Problem 3

Using the result of problem 3, please combine every race's LINESTRING into a single MULTILINESTRING.

Input: The GeoDataFrame from problem 3.

Desired Outputs:

- 1. Correct SQL query text shown.
- 2. Showing the .head() of your GeoDataFrame. Columns to include:
 - (a) Geometry
- 3. Showing the .plot() of your GeoDataFrame.

Problem 5

Determining which County in Michigan Has the Highest Mileage of Limited-Access Highways

Michigan—particularly the Detroit area—is known for having many highways. Please determine if this is, indeed, true. Given the shapefiles for both the counties (POLYGON) and limited-access highways (LINESTRING) in the state of Michigan, please determine the total mileage of limited-access highways belonging to each county in Michigan.

Input: The shapefiles contained within the tl_2015_26_prisecroads and tl_2016_26_cousub folders provided in this homework directory.

Desired Outputs: You will be required to provide a GeoDataFrame and a pandas.DataFrame. Please see the below requirements:

- 1. Correct SQL query text to generate the GeoDataFrame shown.
- 2. Showing the .head() of your GeoDataFrame. Columns to include:
 - (a) County name
 - (b) Highway name
 - (c) Highway ID (LINEARID)
 - (d) Geometry of the portion of a given highway within a county's POLYGON
 - (e) Length of the geometry of the portion of a given highway within a county's POLYGON, in miles
- 3. Showing the .plot() of your GeoDataFrame.
- 4. Showing a pandas. DataFrame with the following columns:
 - (a) County name
 - (b) Sum of the length of highway portions within the county's POLYGON, in miles. Convert the GeoDataFrame into a Pandas DataFrame to perform aggregation.
 - (c) Order the pandas. DataFrame by the summed highway length descending

TIP: The SQL query to generate the GeoDataFrame may take a couple minutes to run. To test your logic, I suggest running on a subset of counties (via SQL's LIMIT function, before applying to all data once your query behaves as desired.)

HINT: In order to return lengths in miles, you will need to change both the county and highway CRS. This can be done by changing to a CRS providing lengths and distances in either meters or feet, and calculating a simple conversion.