CASO PRÁCTICO II Simulación y Metaheurísticas

GENERACIÓN DE VARIABLES ALEATORIAS

José Ignacio Escribano

Móstoles, 24 de abril de 2016

Índice de tablas

1.	Comparativa de distintos parámetros muestrales de tres distribuciones	
	normales con distinto número de muestras	2

Índice

1.	Introducción								
2.	Resolución del caso práctico	1							
	2.1. Cuestión 1	1							
	2.2. Cuestión 2								
	2.3. Cuestión 3								
	2.4. Cuestión 4	2							
3.	Conclusiones	2							
4.	1. Código R utilizado								

1. Introducción

En este caso práctico utilizaremos distintos métodos para generar variables aleatorias; tanto unidimensionales como multidimensionales. En el primer caso generaremos la distribución exponencial y la normal. En el caso multidimensional, generaremos la normal.

2. Resolución del caso práctico

A continuación resolveremos cada una de las cuestiones planteadas.

2.1. Cuestión 1

Usando el comando rnorm generaremos 10, 100 y 10000 observaciones de una distribución normal de parámetros ($\mu = 3$, $\sigma^2 = 6^2$).

La Figura 1 muestra los histogramas con cada número de muestras.

Figura 1: Histograma de una distribución normal con 10, 100 y 10000 muestras

Se puede observar como, a medida que se aumenta el número de muestras de la distribución, el histograma toma la forma característica de una distribución normal: simétrica y con forma de campana.

Usaremos distintos estadísticos muestrales para comprobar el hecho anterior. Estos estadísticos serán la media, varianza, primer y tercer cuartil, la desviación típica, la moda, el kurtosis y la asimetría.

La Tabla 1 muestra una comparativa de los distintos estadísticos según el número de muestras de la distribución normal.

Tabla 1: Comparativa de distintos parámetros muestrales de tres distribuciones normales con distinto número de muestras

Distribución	Media	Varianza	1Q	3Q	Desviación típica	Moda	Kurtosis	Asimetría	Mediana
$\mathcal{N}(\mu=3,\sigma^2=6^2)$ con 10 muestras	2.788	35.593	-2.168	6.826	5.966	2.788	1.820	-0.767	5.735
$\mathcal{N}(\mu = 3, \sigma^2 = 6^2)$ con 100 muestras	3.537	31.452	0.148	7.501	5.608	3.537	3.319	-0.129	3.573
$\mathcal{N}(\mu = 3, \sigma^2 = 6^2)$ con 10000 muestras	3.089	36.470	-0.954	6.039	7.172	3.088	3.045	0.021	3.0340
$\mathcal{N}(\mu = 3, \sigma^2 = 6^2)$	3	36	-1.046	7.046	6	3	3	0	3

Se puede observar que, según aumentamos el número de muestras que tomamos, los resultados de los estadísticos se acercan más a los resultados analíticos. Hay que tener en cuenta que para tener un resultado más fiable habría que repetir la simulación varias veces y calcular la media de esas simulaciones.

- 2.2. Cuestión 2
- 2.3. Cuestión 3
- 2.4. Cuestión 4
- 3. Conclusiones

4. Código R utilizado

A continuación se muestra el código utilizado para la realización de este caso práctico.