UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores: Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 7

- 1. (a) Demuestre que si G tiene diámetro mayor que 3 (posiblemente infinito), entonces \overline{G} tiene diámetro menor que 3. Concluya que si G es inconexa, entonces \overline{G} es conexa.
 - (b) Una gráfica G es autocomplementaria si $G \cong \overline{G}$. Demuestre que si G es autocomplementaria, entonces $|V| \stackrel{4}{=} 0$ o $|V| \stackrel{4}{=} 1$.
- 2. Un orden topológico de una digráfica D es un orden lineal de sus vértices tal que para cada flecha a de D, la cola de a precede a su cabeza en el orden.
 - (a) Demuestre que toda digráfica acíclica tiene al menos una fuente (vértice de ingrado 0) y un sumidero (vértice de exgrado 0).

 $egin{align*} \emph{Demostración:} & \mbox{Procedamos por reducción al absurdo. Sea D una digráfica acíclica con $\delta^+ > 0$ y $\delta^- > 0$, esto es que, para cada $v \in V_D$ hay una flecha que le "pega" a v y otra que "sale" de v. Tomemos la trayectoria \vec{T} más larga en D y sea $x \in V_D$ el último vértice de \vec{T}, luego en x sale una arista hacia algún otro vértice en \vec{T} [pues si saliera hacia algún otro vértice que no este en \vec{T}, llegariamos a que \vec{T} no es de longitud máxima!!], así $\vec{T}xy$ claramente contiene un ciclo, esto implica que D contiene un ciclo!!, he aquí una contradicción de suponer que D no contiene ciclos.$

\therefore Si D es acíclica tiene al menos una fuente y un sumidero.
--

(b) Deduzca que una digráfica admite un orden topológico si y sólo si es acíclica.

Demostración: Para este inciso analicemos 2 posibles casos:

⇒) Procedamos por reducción al absurdo. Sea D una digráfica tal que admite un orden topológico. Supongamos que D contiene al menos un ciclo C, entonces existe un $x \in V_D$ tal que $\{x\} \subset C$ y x es un vértice inicial y final en C, luego existe $y \in V_D$: $\{y\} \subset C$ tal que $y\vec{x}$ es una arista, por tanto y < x [esto es que y precede a x en el orden]. Nótese que hay una trayectoria \vec{T} que va de x a y en C, así x < y!! [esto es que x precede a y en el orden], he aquí una contradicción de suponer que D admite un orden topológico.

 \therefore Si D admite un orden topológico \Rightarrow D es acíclica.

⇐) Por el inciso (a) sabemos que D tiene al menos una fuente y un sumidero, tomemos una componente conexa en D y veamos que si los vértices x es fuente e y es sumidero, entonces la trayectoria de x a y es un orden topológico, si hay más de una fuente o más de un sumidero, cada trayectoria entre una fuente y un sumidero es un orden topológico [pues de no serlo, dos flechas distintas provenientes de una misma fuente incidirían en algún vértice en común, lo que implicaría que D contiene un ciclo!!], así la componente conexa admite un orden topológico y esto pasa para cualquier componente conexa en D.

 \therefore Si D es acíclica $\Rightarrow D$ admite un orden topológico.

 \therefore Una digráfica admite un orden topológico si y sólo si es acíclica.

(c) Exhiba un algoritmo de tiempo a lo más cuadrático para encontrar un orden topológico en una digráfica acíclica.

 $^{^1{\}rm Una}$ arista incide en v y v es la cabeza.

 $^{^2}$ Una arista que inicia en v con dirección a otro vértice.

- 3. Demuestre que cada uno de los siguientes problemas está en la clase NP exhibiendo un certificado y un algoritmo de tiempo polinomial para verificar el certificado (escriba el algoritmo utilizando pseudo código como el visto en clase; sólo está permitido el uso de las estructuras de control if, while y for). Demuestre que su algoritmo usa tiempo polinomial.
 - (a) Hamilton Cycle.
 - (b) Vertex Cover.
 - (c) Colouring.
 - (d) Dominating Set.

Puntos extra

- 1. Demuestre que toda digráfica sin lazos admite una descomposición en dos digráficas acíclicas, es decir, que existen D_1 y D_2 subdigráficas de D, acíclicas y tales que $D_1 \cup D_2 = D$ y $A_{D_1} \cap A_{D_2} = \emptyset$.
- 2. Un torneo es una digráfica en la que entre cualesquiera dos vértices existe una única flecha. Demuestre que todo torneo es fuertemente conexo o puede transformarse en un torneo fuertemente conexo al reorientar exactamente una flecha.
- 3. Demuestre que una digráfica es fuertemente conexa si y sólo si contiene un camino cerrado generador.
- 4. Demuestre que si l, m y n son enteros con $0 < l \le m \le n$, entonces existe una gráfica simple G con $\kappa = l$, $\kappa' = m$ y $\delta = n$.

Demostración: Sean l, m, n perteneciente a los Enteros y G una gráfica con K=l, k'=m y δ =n, tenemos que 0 < k ya que una gráfica no puede tener conexidad menor que $0 \rightarrow$ por proposición demostrada en clase esta gráfica tendra la desigualdad $0 < k \leqslant k' \leqslant \delta$ sustituyendo los valores $0 < l \leqslant m \leqslant n$

Por lo tanto existe la grafica (ya que la proposicion demostrada en clase era un para todo y el paratodo implica el existe)