

120 V power Schottky rectifier

Features

- · High current capability
- Avalanche rated
- · Low forward voltage drop
- · High frequency operation
- Insulated package TO220FPAB:
 - Insulated voltage: 2000 V_{RMS} sine
- ECOPACK®2 compliant

Applications

- Switching diode
- SMPS
- DC/DC converter
- · LED lighting
- · Notebook adapter

Description

This Schottky diode is suited for high frequency switch mode power supply.

Packed in TO-220AB and TO-220FPAB, the STPS20SM120S is optimized for use in notebook, game station and desktop adapters, providing in these applications a good efficiency at both low and high load.

Product status
STPS20SM120S

Product summary		
I _{F(AV)}	20 A	
V _{RRM}	120 V	
T _j (max)	150 °C	
V _F (typ)	0.65 V	

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified, anode terminals short circuited)

Symbol	Paramete	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage	120	V	
I _{F(RMS)}	Forward rms current	Forward rms current		
I _{F(AV)}	Average forward current δ = 0.5, square wave	20	Α	
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$		220	Α
P _{ARM}	Repetitive peak avalanche power	900	W	
T _{stg}	Storage temperature range	-65 to +175	°C	
Tj	Maximum operating junction temperature (1)	+150	°C	

^{1.} $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameter

Symbol	Parameter		Value	Unit
Ru a	Junction to case	TO-220AB	1.55	°C/W
R _{th(j-c)}	Junction to case	TO-220FPAB	4	C/VV

For more information, please refer to the following application note:

AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics (anode terminals short circuited)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
1 (1)	T _j = 25 °C	V - V	-	40	210	μA	
I _R ⁽¹⁾	Reverse leakage current	T _j = 125 °C	125 °C V _R = V _{RRM}	-	15	40	mA
	$V_{F}^{(2)} \qquad Forward \ voltage \ drop \qquad \begin{array}{c} T_{j} = 125 \ ^{\circ}C \qquad \qquad I_{F} = 5 \ A \\ \hline T_{j} = 25 \ ^{\circ}C \qquad \qquad \\ T_{j} = 125 \ ^{\circ}C \qquad \qquad I_{F} = 10 \ A \\ \hline T_{j} = 25 \ ^{\circ}C \qquad \qquad \\ T_{j} = 25 \ ^{\circ}C \qquad \qquad $	I _F = 5 A	-	0.49	0.54		
		T _j = 25 °C	L = 10 A	-		0.75	
V _F (2)		T _j = 125 °C	IF - 10 A	-	0.57	0.62	V
		L = 20 A	-		0.89		
		T _j = 125 °C	I _F = 20 A	-	0.65	0.72	

^{1.} Pulse test: $t_p = 5 \text{ ms}, \delta < 2\%$

To evaluate the conduction losses, use the following equation:

 $P = 0.56 \times I_{F(AV)} + 0.008 I_{F}^{2} (RMS)$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

DS8944 - Rev 4 page 2/11

^{2.} Pulse test: t_p = 380 μ s, δ < 2%

1.1 Characteristics (curves)

Figure 1. Average forward power dissipation versus average forward current

P_{F(AV)}(W)

24

20 $\delta = 0.05$ $\delta = 0.1$ $\delta = 0.2$ $\delta = 0.5$ $\delta = 1.0$ 16

12

8

Figure 2. Average forward current versus ambient temperature ($\delta = 0.5$, TO-220AB) $I_{F(AV)}(A)$ 24 R_{th(j-a)}=R_{th(j-c)} 20 16 12 8 T_{amb}(°C) δ=tp/T 0 25 50 75 150

pulse duration (T_j = 125 °C)

1 P_{ARM}(tp)
P_{ARM}(10 μs)

0.01

1 1 10 100 1000

Figure 3. Normalized avalanche power derating versus

DS8944 - Rev 4 page 3/11

Figure 5. Reverse leakage current versus reverse voltage applied (typical values)

Figure 6. Junction capacitance versus reverse voltage applied (typical values)

DS8944 - Rev 4 page 4/11

Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

2.1 TO-220AB package information

Epoxy meets UL 94,V0

Cooling method: by conduction (C)

Recommended torque value: 0.55 N·m

Maximum torque value: 0.70 N·m

Figure 8. TO-220AB package outline

DS8944 - Rev 4 page 5/11

Table 4. TO-220AB package mechanical data

	Dimensions				
Ref.	Millin	neters	Inches (for re	ference only)	
	Min.	Max.	Min.	Max.	
А	4.40	4.60	0.173	0.181	
b	0.61	0.88	0.240	0.035	
b1	1.14	1.55	0.045	0.061	
С	0.48	0.70	0.019	0.028	
D	15.25	15.75	0.600	0.620	
D1	1.27	' typ.	0.050 typ.		
E	10.00	10.40	0.394	0.409	
е	2.40	2.70	0.094	0.106	
e1	4.95	5.15	0.195	0.203	
F	1.23	1.32	0.048	0.052	
H1	6.20	6.60	0.244	0.260	
J1	2.40	2.72	0.094 0.107		
L	13.00	14.00	0.512 0.551		
L1	3.50	3.93	0.138 0.155		
L20	16.40 typ.		0.646 typ.		
L30	28.90 typ.		1.138	typ.	
θР	3.75	3.85	0.148	0.152	
Q	2.65	2.95	0.104	0.116	

DS8944 - Rev 4 page 6/11

2.2 TO-220FPAB package information

Epoxy meets UL 94,V0

Cooling method: by conduction (C)
Recommended torque value: 0.55 N·m

Maximum torque value: 0.70 N·m

Figure 9. TO-220FPAB package outline

DS8944 - Rev 4 page 7/11

Table 5. TO-220FPAB package mechanical data

	Dimensions				
Ref.	Millin	neters	Inches (for re	ference only)	
	Min.	Max.	Min.	Max.	
А	4.40	4.60	0.1739	0.1818	
В	2.50	2.70	0.0988	0.1067	
D	2.50	2.75	0.0988	0.1087	
E	0.45	0.70	0.0178	0.0277	
F	0.75	1.00	0.0296	0.0395	
F1	1.15	1.70	0.0455	0.0672	
F2	1.15	1.70	0.0455	0.0672	
G	4.95	5.20	0.1957	0.2055	
G1	2.40	2.70	0.0949	0.1067	
Н	10.00	10.40	0.3953 0.4111		
L2	16.00	0 typ.	0.632	4 typ.	
L3	28.60	30.60	1.1304	1.2095	
L4	9.80	10.60	0.3874 0.4190		
L5	2.90	3.60	0.1146	0.1423	
L6	15.90	16.40	0.6285	0.6482	
L7	9.00	9.30	0.3557	0.3676	
Dia	3.00	3.20	0.1186	0.1265	

DS8944 - Rev 4 page 8/11

3 Ordering information

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS20SM120ST	PS20SM120ST	TO-220AB	1.95 g	50	Tube
STPS20SM120SFP	PS20SM120SFP	TO-220FPAB	1.90 g	50	Tube

DS8944 - Rev 4 page 9/11

Revision history

Table 7. Document revision history

Date	Revision	Changes
02-Apr-2012	1	First issue.
13-Nov-2014	2	Added TO-220AB and TO-220FPAB package information.
27-Jun-2018	3	Removed I²PAK and TO-220AB narrow leads package information. Updated Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified, anode terminals short circuited) and Figure 3. Normalized avalanche power derating versus pulse duration (T_j = 125 °C).
29-Nov-2018	4	Updated Table 6.

DS8944 - Rev 4 page 10/11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS8944 - Rev 4 page 11/11