Question 42

Let $M \subseteq \mathbf{R}^N$ be a smooth *n*-manifold (with or without boundary!).

- (a) Show that if n < N, then M is a Lebesgue null set
- (b) Show that if n = N and M is closed and its boundary is nonempty, then ∂M coincides with the usual topological boundary (as defined on Handout #2).
- (c) Show that if M is compact and its boundary is nonempty, then M is Jordan measurable.

Proof.

(a):

We begin by proving a lemma:

Lemma: A countable union of sets with Jordan measure 0 is a Lebesgue null set.

Let
$$E = \bigcup_{i>0} E_i$$
, where $\mu(E_i) = 0$.

Ш