■ ■ série de livros didáticos informática ufrgs

Matemática discreta para computação e informática

Paulo Blauth Menezes

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4 – Relações

u Conceito intuitivo de relação

muito próximo do conceito formal

u Exemplos do cotidiano

- parentesco
- maior ou igual (como estatura de pessoas)
- igualdade (como de números reais)
- lista telefônica que associa a cada assinante o seu número (ou números) de telefone
- faz fronteira com para um conjunto de países
- filas de pessoas para os diversos caixas em um banco

Computação e Informática

- muitas construções são baseadas em relações ou derivados (funções...)
 - * algumas são introduzidas na disciplina
- existem importantes construções que são relações
 - * Banco de Dados Relacional
 - * Rede de Petri

4.1 Introdução

Conceito intuitivo de relação

• é usual na Matemática e na Computação e Informática

u Exemplos de relações já usados

- Teoria dos Conjuntos
 - * igualdade
 - * continência
- Lógica
 - * equivalência
 - * implicação

u São relações binárias

• relacionam dois elementos de cada vez

Seguindo o mesmo raciocínio

• relações ternárias, quaternárias, unárias, etc.

Relações podem ser sobre coleções que não são conjuntos

exemplo: a continência sobre todos os conjuntos

u O estudo que segue

relações binárias e pequenas

Def: Relação

Relação (pequena e binária) R de A em B

$$R \subseteq A \times B$$

- A: domínio, origem ou conjunto de partida de R
- B: contradomínio, codomínio, destino ou conjunto de chegada de

u Se
$$\langle a, b \rangle \in R$$

a relaciona-se com b

Exp: Relação

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

- Ø é relação de A em B
 * de A em C, de B em C, etc.
- A × B = { (a, a), (a, b) } é relação com origem em A e destino B
- conjunto de partida A e conjunto de chegada B
 * { (a, a) } é relação de igualdade
- { (0, 1), (0, 2), (1, 2) }
 * relação de "menor" de C em C
- { (0, a), (1, b) } é uma relação de C em B

u Notação alternativa para relação R⊆A×B

 $R: A \rightarrow B$

u **Notação para ⟨a, b**⟩∈ **R**

aRb

Exp: Relação

 $A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$

- Para \subseteq : $P(B) \rightarrow P(B)$, tem-se que $\{a\} \subseteq \{a, b\}$
- Para \leq : C \rightarrow C, tem-se que $0 \leq 2$
- Para =: $A \rightarrow A$, tem-se que a = a

Relação não necessariamente relaciona entidades de um mesmo conjunto

- exemplo: lista telefônica relaciona pessoas com números
- relacionar entidades de um mesmo conjunto: especialmente importante

Def: Endorrelação, Autorrelação

A um conjunto. Relação R: A → A é uma Endorrelação ou Auto-Relação

- nesse caso, R é uma relação em A
- u Notação de uma endorrelação R: A → A

 $\langle A, R \rangle$

Exp: Endorrelação

A um conjunto

- $\langle \mathbb{N}, \leq \rangle$
- **⟨**Z, **<⟩**
- **(**Q, =**)**
- $\bullet \langle P(A), \subseteq \rangle$
- **⟨**P**(**R**)**, **८**⟩

Diagrama de Venn

elementos relacionados: ligados por setas

Exp: Diagrama de Venn

- par $\langle a, b \rangle$ de R: A \rightarrow B
- para C = { 0, 1, 2 }, a relação ⟨C, <⟩ = { ⟨0, 1⟩, ⟨0, 2⟩, ⟨1, 2⟩ }
 - * C foi repetido no diagrama
 - * usual na diagramação de endorrelações.

Def: Domínio de Definição, Conjunto Imagem, Conexa

R: A → B uma relação

- $\langle a, b \rangle \in R$
 - * R está definida para a
 - * b é imagem de a
- Domínio de Definição
 - * elementos de A para os quais R está definida
- Conjunto Imagem ou Domínio de Valores
 - * todos os elementos de B, os quais são imagem de R

Exp: Domínio de Definição, Conjunto Imagem

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

- \emptyset : $A \rightarrow B$
 - * domínio de definição e conjunto imagem: vazios
- (C, <), sendo que < é definida por $\{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle\}$
 - * domínio de definição: { 0, 1 }
 - * domínio de valores: { 1, 2 }
- $\bullet =: A \rightarrow B$
 - * domínio de definição e conjunto imagem: { a }

u Representação gráfica das relações binárias

- importante em diversas aplicações computacionais ou não
 - * em especial, das endorrelações em R
 - * $R \subseteq \mathbb{R}^2$ representados no plano cartesiano

Exp: Relações no Plano Cartesiano

• seno:

*
$$R_1 = \{\langle x, y \rangle \mid y = \operatorname{sen} x \}$$

parábola

*
$$R_2 = \{\langle x, y \rangle \mid x = y^2 \}$$

Coordenadas polares são frequentemente usadas para representar imagens no plano

Exp: Relações no Plano Cartesiano

- $sen(6 cos r + 5\theta) < -0.3$
- $\cos 10\theta < \tan(r \sec 2r)$

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.2 Endorrelação como Grafo

- u Endorrelação R: A → A pode ser vista como grafo
- u Será visto que
 - toda endorrelação é um grafo
 - nem todo grafo é uma endorrelação

u Teoria dos Grafos

- conceitos introduzidos em capítulo específico
- não é objetivo desta disciplina
- introduzido via exemplos

Endorrelação como grafo

- facilita o estudo
- visão mais clara do relacionamento e das propriedades

u Limitações da representação física

conveniente para relações com poucos pares

u Se representação física não é importante

- como grafo pode ser conveniente
- mesmo com um número infinito de pares

u Uma endorrelação R: A → A como grafo

- Nodos
 - * elementos de A
 - * ponto ou círculo
- Setas, arcos, arestas
 - * pares da relação

Exp: Endorrelação como Grafo

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

- $\bullet \varnothing : A \rightarrow A$
- (B, =)
- (C, <)
- R: $C \rightarrow C$

= é definida por
$$\{\langle a, a \rangle, \langle b, b \rangle\}$$

< é definida por $\{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle\}$
$$R = \{\langle 0, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$$

 endorrelação cujo grafo possui dois ou mais arcos distintos com o mesmo nodo origem e destino?

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.3 Relação como Matriz

 $A = \{a_1, a_2, ..., a_n\} \in B = \{b_1, b_2, ..., b_m\}$ conjuntos finitos

- representação de R: A → B como matriz
 - * especialmente interessante para implementação

u **Representação**

- n linhas
- m colunas
- m∗n posições ou células
 - * cada posição contém valor lógico (verdadeiro ou falso)
 - * por simplicidade: 0 e 1 representam falso e verdadeiro
- se $\langle a_i, b_j \rangle \in R$
 - * linha i e coluna j contém o valor verdadeiro
 - * caso contrário, falso

Exp: Relação como Matriz

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

- $\bullet \varnothing : A \rightarrow A$
- (B, =)
- (C, <)
- R: $C \rightarrow C$

= é definida por
$$\{\langle a, a \rangle, \langle b, b \rangle\}$$

< é definida por $\{\langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle\}$
$$R = \{\langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 2 \rangle\}$$

Exp: Relação como Matriz

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

- $A \times B: A \rightarrow B$
- $\{\langle 0, a \rangle, \langle 1, b \rangle\}: C \rightarrow B$
- $\bullet \subseteq : P(A) \to P(B)$

A×B	а	b		a	b
			S		
а	1	1	0 1 2	1	0
			1	0	1
			2	0	0

			{b}	{a,b}
Ø {a}	1	1	1	1
{a}	0	1	0	1

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.4 Relação Dual e Composição de Relações

- Duas questões naturais no estudos das relações
 - relação dual
 - * inversão (troca) das componentes de cada par de uma relação
 - * operação unária sobre as relações
 - relação composta
 - * aplicação de uma relação sobre o resultado de outra
 - * operação binária sobre as relações

u Álgebra de relações

- dualidade e composição
- juntamente com outras operações
 - * união
 - * intersecção
 - * ...(exercício)
- constituem uma álgebra de relações
- álgebra grande
 - * coleção de todas as relações não é um conjunto
 - * exercício

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
 - 4.4.1 Relação Dual
 - 4.4.2 Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.4.1 Relação Dual

Def: Relação Dual, Relação Oposta, Relação Inversa

R: A → B relação. Relação Dual, Oposta ou Inversa de R

$$R^{-1}: B \rightarrow A$$
 ou $R^{op}: B \rightarrow A$

é tal que

$$R^{-1} = \{ \langle b, a \rangle \mid \langle a, b \rangle \in R \}$$

Obs: Relação Dual × Relação Inversa

O termo relação dual será usado preferencialmente ao relação inversa

- relação inversa é mais comum nas bibliografias
- causa confusão com o termo possuir inversa
 - * fundamental no estudos das relações (será visto adiante)

Exp: Relação × Relação Dual

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

 $=: A \rightarrow B \text{ dada por } \{\langle a, a \rangle\}$

 $\{\langle 0, a \rangle, \langle 1, b \rangle\}: C \rightarrow B$

 $A \times B: A \rightarrow B$

 $\varnothing: A \rightarrow B$

 $<: C \rightarrow C$

=op: B
$$\rightarrow$$
 A dada por { $\langle a, a \rangle$ }
{ $\langle a, 0 \rangle, \langle b, 1 \rangle$ }: B \rightarrow C
 $(A \times B)^{-1} = B \times A$: B \rightarrow A
 $\varnothing^{op} = \varnothing$: B \rightarrow A
 $<^{op} = >$: C \rightarrow C

Exp: Relação Dual no Plano Cartesiano

$$R_1 = \{\langle x, y \rangle \mid y = \operatorname{sen} x \}$$

$$R_1^{op} = ???$$

$$R_2 = \{ \langle x, y \rangle \mid x = y^2 \}$$

$$R_2^{op} = ???$$

Exp: ...Relação Dual no Plano Cartesiano

$$R_1 = \{\langle x, y \rangle \mid y = \operatorname{sen} x \}$$

$$R_2 = \{\langle x, y \rangle \mid x = y^2 \}$$

$$R_1^{op} = \{ \langle y, x \rangle \mid y = \operatorname{sen} x \}$$

$$R_2^{op} = \{ \langle y, x \rangle \mid x = y^2 \}$$

Relação dual como matriz ou grafo (endorrelação)

- matriz da relação dual: matriz transposta
 - * troca linhas por colunas
- grafo da relação dual: grafo dual
 - * troca do sentido das arestas

Exp: Grafo e Matriz de Relação Dual

$$C = \{0, 1, 2\}, \langle C, \langle \rangle e \langle C, R \rangle$$

Exp: Matriz de Relação Dual

Sejam A = { a }, B = { a, b }, C = { 0, 1, 2 }, $\langle C, \langle \rangle$ e \subseteq : $P(A) \rightarrow P(B)$

<	0	1	2		Ø	{a}	{b}	{ a,b }	>	0	1	2	\supseteq	Ø	{a}
0	0	1	1	Ø	1	1	1	1	0	0	0	0	Ø	1	0
1	0	0	1	{a}	0	1	0	1	1	1	0	0	{a}	1	1
2	0	0	0						2	1	1	0	{b}	1	0
													{ a,b }	1	1

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
 - 4.4.1 Relação Dual
 - 4.4.2 Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.4.2 Composição de Relações

Def: Composição de Relações

R: $A \rightarrow B$ e S: $B \rightarrow C$ relações. Composição de R e S

 $S \circ R: A \rightarrow C$

é tal que:

$$(\forall a \in A)(\forall b \in B)(\forall c \in C)(a R b \land b S c \rightarrow a (S \circ R) c)$$

- u Em Computação e Informática
 - usual representar a composição por ";"
 - ordem inversa

$$R; S: A \rightarrow C$$

Exp: Composição de Relações

R: $A \rightarrow B$, S: $B \rightarrow C$ e S o R: $A \rightarrow C$

- R = { $\langle a, 1 \rangle$, $\langle b, 3 \rangle$, $\langle b, 4 \rangle$, $\langle d, 5 \rangle$ }
- S = { $\langle 1, x \rangle$, $\langle 2, y \rangle$, $\langle 5, y \rangle$, $\langle 5, z \rangle$ }
- S o R = $\{\langle a, x \rangle, \langle d, y \rangle, \langle d, z \rangle\}$

u Relação resultante de uma composição

- pode ser composta com outra relação
- ¿composição de relações é associativa?

Teorema: Associatividade da Composição de Relações

R: $A \rightarrow B$, S: $B \rightarrow C$ e T: $C \rightarrow D$ relações. Então:

$$(T \circ S) \circ R = T \circ (S \circ R)$$

Prova: $(T \circ S) \circ R = T \circ (S \circ R)$

Suponha R: $A \rightarrow B$, S: $B \rightarrow C$ e T: $C \rightarrow D$ relações

Prova dividida em dois casos (duas continências)

Caso 1. $(T \circ S) \circ R \subseteq T \circ (S \circ R)$. Seja $\langle a, d \rangle \in (T \circ S) \circ R$

- $\langle a, d \rangle \in (T \circ S) \circ R \Rightarrow$
- $(\exists b \in B)(a R b \land b (T \circ S) d) \Rightarrow$
- (∃b ∈ B)(∃c ∈ C)(a R b ∧ (b S c ∧ c T d))⇒ associatividade lógica
- $(\exists b \in B)(\exists c \in C)((a R b \land b S c) \land c T d) \Rightarrow$
- $(\exists c \in C)(a (S \circ R) c \land c T d) \Rightarrow$
- $\langle a, d \rangle \in To(SoR)$

definição composição definição composição associatividade lógica definição composição definição composição

Caso 2. To $(S \circ R) \subseteq (T \circ S) \circ R$. Análoga: exercício

Logo, a composição de relações é associativa

u Como a composição de relações é associativa

parênteses podem ser omitidos

$$(T \circ S) \circ R = T \circ (S \circ R) = T \circ S \circ R$$

u Composição de relações como grafos

• não é especialmente vantajoso

u Composição de relações como matrizes

- produto de matrizes
- valores da matrizes são lógicos (verdadeiro, falso ou 1 e 0)
 - * multiplicação substituída pelo conetivo lógico 🔨
 - * adição substituída pelo conetivo lógico v

u Produto lógico de matrizes

- relação R: matriz m×n
- relação S: matriz n×p
- relação T = SoR: matriz m×p
- cálculo de cada célula t_{uv} da matriz m×p resultante

$$t_{uv} = (r_{u1} \wedge s_{1v}) \vee (r_{u2} \wedge s_{2v}) \vee ... \vee (r_{um} \wedge s_{mv})$$

Exp: Composição como Produto de Matrizes

$$t_{11} = (r_{11} \land s_{11}) \lor (r_{12} \land s_{21}) \lor (r_{13} \land s_{31}) \lor (r_{14} \land s_{41}) \lor (r_{15} \land s_{51}) = (1 \land 1) \lor (0 \land 0) \lor (0 \land 0) \lor (0 \land 0) \lor (0 \land 0) = 1 \lor 0 \lor 0 \lor 0 \lor 0 = 1$$

$$t_{23} = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{53}) = (r_{21} \land s_{13}) \lor (r_{22} \land s_{23}) \lor (r_{23} \land s_{33}) \lor (r_{24} \land s_{43}) \lor (r_{25} \land s_{23}) \lor (r_{25} \land s_$$

$$(0 \land 0) \lor (0 \land 0) \lor (1 \land 0) \lor (1 \land 0) \lor (0 \land 1) = 0 \lor 0 \lor 0 \lor 0 \lor 0 = 0$$

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
 - 4.5.1 Funcional e Injetora
 - 4.5.2 Total e Sobrejetora
 - 4.5.3 Monomorfismo e Epimorfismo
 - 4.5.4 Isomorfismo
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.5 Tipos de Relações

- u Tipos de uma relação (não mutuamente exclusivos)
 - funcional
 - injetora
 - total
 - sobrejetora
 - monomorfismo
 - epimorfismo
 - isomorfismo

u Tipos possuem uma noção de dualidade

- se corretamente entendida e aplicada
- simplifica ("divide pela metade") o estudo e o entendimento

u Noção de dualidade

- plenamente explorada no estudo de Teoria das Categorias
 - Teoria das Categorias divide o trabalho pela metade
- nesta disciplina algumas noções categoriais são introduzidas

u A dualidade dos tipos

- funcional é o dual de injetora e vice-versa
- total é o dual de sobrejetora e vice-versa

u Monomorfismo é dual de epimorfismo

- monomorfismo: total e injetora
- epimorfismo: sobrejetora e funcional

u **Isomomorfismo**

- estabelece uma noção semântica de igualdade
- portanto, é o dual de si mesmo

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
 - 4.5.1 Funcional e Injetora
 - 4.5.2 Total e Sobrejetora
 - 4.5.3 Monomorfismo e Epimorfismo
 - 4.5.4 Isomorfismo
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.5.1 Funcional e Injetora

- Relação funcional é especialmente importante
 - permite definir função, desenvolvida em capítulo específico

Def: Relação Funcional

Seja R: A → B relação. Então R é uma Relação Funcional sse

$$(\forall a \in A)(\forall b_1 \in B)(\forall b_2 \in B)(a R b_1 \land a R b_2 \rightarrow b_1 = b_2)$$

u Qual o significado?

Portanto, para R: A → B funcional

- cada elemento de A
- está relacionado com, no máximo, um elemento de B

Exp: Relação Funcional

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

•
$$\varnothing$$
: $A \rightarrow B$

•
$$\{\langle 0, a \rangle \langle 1, b \rangle\}: C \rightarrow B$$

$$\bullet =: A \rightarrow B$$

•
$$x^2$$
: $Z \rightarrow Z$ onde $x^2 = \{\langle x, y \rangle \in Z^2 \mid y = x^2 \}$

•
$$A \times B: A \rightarrow B$$

$$\bullet <: C \rightarrow C$$

8

u Grafo e matriz de uma relação funcional?

Rel. funcional como matriz ou grafo (endorrelação)

- matriz: no máximo um valor verdadeiro em cada linha
- grafo: no máximo uma aresta partindo de cada nodo

u Injetora é o conceito dual

- matriz: no máximo um valor verdadeiro em cada coluna
- grafo: no máximo uma aresta chegando em cada nodo

Def: Relação Injetora

Seja R: A → B relação. Então R é Relação Injetora sse

 $(\forall b \in B)(\forall a_1 \in A)(\forall a_2 \in A)(a_1 R b \land a_2 R b \rightarrow a_1 = a_2)$

u Qual o significado?

Portanto, para R: A → B injetora

- cada elemento de B
- está relacionado com, no máximo, um elemento de A

Exp: Relação Injetora

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

•
$$\emptyset$$
: $A \rightarrow B$

$$\bullet =: A \rightarrow B$$

•
$$\{\langle 0, a \rangle, \langle 1, b \rangle\}: C \rightarrow B$$

•
$$A \times B: A \rightarrow B$$

$$\bullet <: C \rightarrow C$$

•
$$x^2$$
: $Z \rightarrow Z$ onde $x^2 = \{ \langle x, y \rangle \in Z^2 \mid y = x^2 \}$

u **Dual ≠ Complementar**

- funcional e injetora
 - * conceitos duais
 - * não são complementares
- fácil encontrar exempos de relações
 - * são simultaneamente funcional e injetora
 - * não são simultaneamente funcional e injetora

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
 - 4.5.1 Funcional e Injetora
 - 4.5.2 Total e Sobrejetora
 - 4.5.3 Monomorfismo e Epimorfismo
 - 4.5.4 Isomorfismo
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.5.2 Total e Sobrejetora

Def: Relação Total

Seja R: A → B relação. Então R é uma Relação Total sse

$$(\forall a \in A)(\exists b \in B)(a R b)$$

u Qual o significado?

u Portanto, para R: A → B total

domínio de definição é A

Exp: Relação Total

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

$$\bullet =: A \rightarrow B$$

•
$$A \times B: A \rightarrow B$$

•
$$x^2$$
: $Z \rightarrow Z$ onde $x^2 = \{\langle x, y \rangle \in Z^2 \mid y = x^2 \}$

•
$$\varnothing$$
: $A \rightarrow B$

•
$$\{\langle 0, a \rangle, \langle 1, b \rangle\}: C \rightarrow B$$

$$\bullet <: C \rightarrow C$$

8

u Grafo e matriz de uma relação total?

u Relação total como matriz ou grafo (endorrelação)

- matriz: pelo menos um valor verdadeiro em cada linha
- grafo: pelo menos uma aresta partindo de cada nodo

u Sobrejetora é o conceito dual

- matriz: pelo menos um valor verdadeiro em cada coluna
- grafo: pelo menos uma aresta chegando em cada nodo

Def: Relação Sobrejetora

Seja R: A → B relação. Então R é uma Relação Sobrejetora sse

 $(\forall b \in B)(\exists a \in A)(a R b)$

u Qual o significado?

Portanto, para R: A → B sobrejetora

conjunto imagem é B

Exp: Relação Sobrejetora

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

$$\bullet =: A \rightarrow A$$

•
$$\{\langle 0, a \rangle, \langle 1, b \rangle\}: C \rightarrow B$$

•
$$A \times B: A \rightarrow B$$

$$\bullet =: A \rightarrow B$$

•
$$\varnothing$$
: $A \rightarrow B$

$$\bullet <: C \rightarrow C$$

•
$$x^2$$
: $z \rightarrow z$ onde $x^2 = \{\langle x, y \rangle \in z^2 \mid y = x^2 \}$

u **Dual ≠ Complementar**

- total e sobrejetora
 - * conceitos duais
 - * não são complementares
- fácil encontrar exempos de relações
 - * são simultaneamente total e sobrejetora
 - * não são simultaneamente total e sobrejetora

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
 - 4.5.1 Funcional e Injetora
 - 4.5.2 Total e Sobrejetora
 - 4.5.3 Monomorfismo e Epimorfismo
 - 4.5.4 Isomorfismo
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.5.3 Monomorfismo e Epimorfismo

u Monomorfismo, epimorfismo e isomomorfismo

- noções gerais
- podem ser aplicadas a outras construções além das relações
 - * estudado em Teoria das Categorias
- nosso estudo: restrito às relações

Def: Monomorfismo, Monorrelação

Seja R: A → B relação. Então R é Monomorfismo ou Monorrelação sse

- total
- injetora

u Portanto, para R: A → B monorrelação

- domínio de definição é A
- cada elem. de B está relacionado com, no máximo, um elem. de A

Exp: Monorrelação

 $\bullet <: C \rightarrow C$

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

• =: A → B
• A × B: A → B
• B × C: B → C
• Ø: A → B
•
$$\{\langle 0, a \rangle, \langle 1, b \rangle\}$$
: C → B

• x^2 : $Z \rightarrow Z$ onde $x^2 = \{\langle x, y \rangle \in Z^2 \mid y = x^2 \}$

u Monorrelação como matriz ou grafo (endorrelação)

- matriz
 - * pelo menos um valor verdadeiro em cada linha (total)
 - * no máximo um valor verdadeiro em cada coluna (injetora)
- grafo (endorrelação)
 - * pelo menos uma aresta partindo (total) em cada nodo
 - * no máximo uma aresta chegando (injetora) em cada nodo

Epirrelação é o conceito dual

- matriz
 - * pelo menos um valor verdadeiro em cada coluna (sobrejetora)
 - * no máximo um valor verdadeiro em cada linha (funcional)
- grafo
 - * pelo menos uma aresta chegando (sobrejetora) em cada nodo
 - * no máximo uma aresta partindo (funcional) em cada nodo

Def: Epimorfismo, Epirrelação

Seja R: A → B relação. Então R é Epimorfismo ou Epirrelação sse

- funcional
- sobrejetora

u Portanto, para R: A → B epirrelação

- conjunto imagem é B
- cada elem. de A está relacionado com, no máximo, um elem. de B

Exp: Epirrelação

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

$$\bullet =: A \longrightarrow A$$

•
$$\{\langle 0, a \rangle, \langle 1, b \rangle\}: C \rightarrow B$$

$$\bullet =: A \rightarrow B$$

$$\bullet \varnothing : A \rightarrow B$$

$$\bullet A \times B: A \rightarrow B$$

$$\bullet <: C \rightarrow C$$

•
$$x^2$$
: $z \rightarrow z$ onde $x^2 = \{\langle x, y \rangle \in z^2 \mid y = x^2 \}$

8

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
 - 4.5.1 Funcional e Injetora
 - 4.5.2 Total e Sobrejetora
 - 4.5.3 Monomorfismo e Epimorfismo
 - 4.5.4 Isomorfismo
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.5.4 Isomorfismo

- u Isomorfismo: uma noção de igualdade semântica
 - uma relação tal que
 - quando composta com a sua inversa
 - resulta em uma igualdade

u Intuitivamente

"ir" (via relação) e "voltar" (via sua inversa) "sem alterar"

u Antes de definir isomorfismo: relação identidade

• relações de igualdade são frequentes

```
* =: \{a\} \rightarrow \{a, b\}
* \langle \{a, b\}, = \rangle
```

definida por $\{\langle a, a \rangle\}$ definida por $\{\langle a, a \rangle, \langle b, b \rangle\}$

- relação identidade: endorrelação (A, =)
 - * denotada por (A, idA)

$$id_A: A \rightarrow A$$

Def: Isomorfismo, Isorrelação

Relação R: A → B é Isomorfismo ou Isorrelação, sse existe S: B → A

- $S \circ R = id_A$
- $R \circ S = id_B$

Notação para enfatizar que R: A → B é uma isorrelação

 $R: A \leftrightarrow B$

R possui inversa à esquerda: S o R = id_A

R possui inversa à direita: R \circ S = id_B

R possui inversa: S o R = id_A e R o S = id_B

Conjuntos isomorfos

• se existe uma isorrelação entre dois conjuntos

Exp: Isorrelação, Conjuntos Isomorfos

Sejam $A = \{a, b, c\}, C = \{1, 2, 3\} e R: A \rightarrow C$

• R = $\{\langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 3 \rangle\}$

R \acute{e} um isomorfismo. Considere a dual R⁻¹: C \rightarrow A tal que

•
$$R^{-1} = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, c \rangle \}$$

Logo:

- R^{-1} $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\} = id_A$
- R R⁻¹ = { $\langle 1, 1 \rangle$, $\langle 2, 2 \rangle$, $\langle 3, 3 \rangle$ } = id_B

Portanto, A e C são conjuntos isomorfos

u Prova de que é um isomorfismo

- mostrar que possui inversa
 * se possui inversa, então é a relação dual
- u Prova de que não é um isomorfismo
 - pode ser um pouco mais difícil
 - frequentemente, por absurdo
 - a dual *nem* sempre é a inversa

Exp: Não é Isomorfismo

Sejam $A = \{0, 1, 2\}, B = \{a, b\} e R: A \rightarrow B$

• R =
$$\{\langle 0, a \rangle, \langle 1, b \rangle\}$$

R não é isomorfismo. Prova por absurdo

Suponha que R \acute{e} isomorfismo. Então, R possui relação inversa S: B \rightarrow A

$$S \circ R = id_A \quad e \quad R \circ S = id_B$$

- S o R = $id_A \Rightarrow$
- $\langle 2, 2 \rangle \in S \circ R \Rightarrow$
- $(\exists x \in A)(\langle 2, x \rangle \in R \land \langle x, 2 \rangle \in S)$

definição de relação identidade definição de composição absurdo! Não existe (2, x) em R

Portanto, R não é isomorfismo

Exp: Isorrelação

 $A = \{a\}, B = \{a, b\}, C = \{0, 1, 2\} e X conjunto qualquer$

•
$$id_B: B \rightarrow B$$

•
$$id_X: X \rightarrow X$$

•
$$\{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 0 \rangle\}: C \rightarrow C$$

•
$$\varnothing$$
: $A \rightarrow B$

$$\bullet A \times B: A \rightarrow B$$

$$\bullet <: C \rightarrow C$$

•
$$x^2$$
: $Z \rightarrow Z$ onde $x^2 = \{\langle x, y \rangle \in Z^2 \mid y = x^2 \}$

Teorema: Isorrelação ↔ Monorrelação e Epirrelação

R: A → B relação. Então R é uma isorrelação sse

- R é monorrelação
- R é epirrelação

Portanto, uma isorrelação é

- total
- injetora
- funcional
- sobrejetora

Resultado pode auxiliar na determinação se

• é isorrelação

• não é isorrelação

Isomorfismo: importante resultado que pode ser deduzido

- conjuntos origem e destino
 - * possuem o mesmo número de elementos
- explorado detalhadamente no estudo da cardinalidade de conjuntos
 - * número de elementos
- conjuntos com mesmo cardinal
 - * são ditos "iguais" (semanticamente)
 - * a menos de uma relação de troca de nomes dos elementos
 - * ou seja, a menos de uma isorrelação
- em muitas teorias, para enfatizar que nomes não são importantes

iguais a menos de isomorfismo

Exp: Igualdade a Menos de Isomorfismo: Produto Cartesiano

Sabe-se que: produto cartesiano é uma operação não comutativa

Exemplo: $A = \{a, b\} e B = \{0, 1\}$

- $A \times B = \{ \langle a, 0 \rangle, \langle a, 1 \rangle, \langle b, 0 \rangle, \langle b, 1 \rangle \}$
- $B \times A = \{ \langle 0, a \rangle, \langle 0, b \rangle, \langle 1, a \rangle, \langle 1, b \rangle \}$

conjuntos diferentes

Entretanto, são isomorfos

troca: A×B → B×A - troca as componentes

$$troca=\{\langle\langle a,0\rangle,\langle 0,a\rangle\rangle,\langle\langle a,1\rangle,\langle 1,a\rangle\rangle,\langle\langle b,0\rangle,\langle 0,b\rangle\rangle,\langle\langle b,1\rangle,\langle 1,b\rangle\rangle\}$$

possui como inversa a relação dual troca⁻¹: B×A→A×B

$$troca^{-1} = \{ \langle \langle 0, a \rangle, \langle a, 0 \rangle \rangle, \langle \langle 1, a \rangle, \langle a, 1 \rangle \rangle, \langle \langle 0, b \rangle, \langle b, 0 \rangle \rangle, \langle \langle 1, b \rangle, \langle b, 1 \rangle \rangle \}$$

Exp: ...lgualdade a Menos de Isomorfismo: Produto Cartesiano

Claramente

 $troca^{-1} \mathbf{o} troca = id_{A \times B}$ e $troca \mathbf{o} troca^{-1} = id_{B \times A}$

Generalização: exercício

- quaisquer dois conjuntos A e B
- A×B é isomorfo ao B×A
- iguais a menos de isomorfismo

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.6 Banco de Dados Relacional

Bancos de dados

- comuns na grande maioria das aplicações computacionais
 - * de algum porte
 - * de razoável complexidade
- permite manipular os dados com maior eficência e flexibilidade
- atende a diversos usuários
- garante a integridade (consistência) dos dados

u Resumidamente, um banco de dados é

um conjunto de dados integrados cujo objetivo é atender a uma comunidade de usuários

u Banco de dados relacional

- dados são conjuntos (representados como tabelas)
- relacionados com outros conjuntos (tabelas)

Exp: Banco de Dados Relacional

País	Continente	Fica em		
Brasil	América	Brasil	América	
Turquia	Oceania	Alemanha	Europa	
Alemanha	África	Turquia	Europa	
Coreia do Sul	Ásia	Turquia	Ásia	
	Europa	Coreia do Sul	Ásia	

Fica em	América	Oceania	África	Ásia	Europa
Brasil	1	0	0	0	0
Alemanha	0	0	0	0	1
Turquia	0	0	0	1	1
Coreia do Sul	0	0	0	1	0

u Endorrelações em um banco de dados relacional

Semifinais / Final Copa 2002		Semifinais/Final Copa 2002	Bra	Tur	Ale	Cor
Brasil	Turquia	Brasil	0	1	1	0
Alemanha	Coreia Sul	Alemanha	1	0	0	1
Brasil	Alemanha	Turquia	1	0	0	0
		Coreia Sul	0	1	0	0

Modelo conceitual

- modelo abstrato de dados
 - * descreve a estrutura de um banco de dados
 - * independentemente de implementação
- usado para o projeto de um banco de dados
- modelo frequentemente adotado
 - * diagrama entidade-relacionamento
 - * ou simplesmente diagrama E-R

u Diagrama entidade-relacionamento ou Diagrama E-R

• entidades: conjuntos representados por retângulos

Continente

relacionamentos: representado por losangos

Número de elementos que podem ser relacionados em

• 0, 1 ou N (mais que um)

- (1,N) cada a ∈ A está relacionado com, no mínimo 1 e, no máximo N elementos de B
- (0,1) cada b ∈ B está relacionado com, no mínimo 0 e, no máximo 1 elemento de A

u Alguns tipos de relações

- como seria o diagrama de uma monorrelação?
- e de uma epirrelação?

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.7 Rede de Petri

- u Rede de Petri
 - provavelmente, o modelo do tipo concorrente mais usado em CC
- u Conceito de rede de Petri
 - introduzido através de exemplo
- u Por fim, rede de Petri como uma relação

Exp: Rede de Petri - Produtor e Consumidor

Produtor e Consumidor: processos concorrentes

• trocam recursos através do Canal

Exp: ...Rede de Petri - Produtor e Consumidor

- nodos: lugares
- lugares podem conter marcas (tokens)
 - * exemplo: um recurso para ser consumido nos lugares A e Y
- arcos: são transições (quadrados) ou computações atômicas
 - * pode possuir mais de um lugar como origem ou destino
- a cada lugar origem (destino) é associado um valor
 - * quantos recursos serão consumidos (produzidos)
 - * quando da execução da transição
 - * valor 1 é usualmente omitido
- transição habilitada
 - * recursos necessários estão disponíveis nos lugares origem

Exp: ...Rede de Petri - Produtor e Consumidor

- execução de uma transição
 - * recursos de cada lugar origem são consumidos
 - * recursos de cada lugar destino são produzidos
- processamento: sucessiva aplicação de computações atômicas
 - * mais de uma transição pode estar habilitada
 - processamento concorrente (se n\u00e3o consomem mesmo recurso)

u Observe que

- com origem no lugar A, p1 consome uma marcação
- p1, com destino no lugar B, produz uma marcação
- p1, com destino no lugar Canal, produz duas marcações

u Como pares ordenados

- ((A, p1), 1)
- ((p1, B), 1)

• ((p1, Canal), 2)

Rede de Petri como uma relação P

- L conjunto de lugares
- T conjunto de transições

$$P: (L \times T) + (T \times L) \rightarrow N$$

- ((A, t), n) transição t, com *origem* em A, *consome* n marcações
- (\langle t, A \rangle, n \rangle transição t, com destino em A, produz n marcações
- união disjunta?

u Todos os pares

- ((A, p1), 1)
- ((p1, B), 1)
- ((p1, Canal), 2)
- ((B, p2), 1)

• $\langle\langle p2, A\rangle, 1\rangle$ $\langle\langle c2, y\rangle, 1\rangle$

Observe que a relação define a rede

- mas não a sua marcação inicial
- uma rede pode ser executada para diversas marcações iniciais
 * marcação inicial é uma opção de execução
- normalmente não faz parte da definição da rede

Exp: Rede de Petri - Relógio

- faz sequências de tic-tac
- tic-tac
 - * um segundo
 - * move ponteiro de segundos
- 60 segundos
 - * move o ponteiro de minutos
- 3600 segundos
 - * move o ponteiro das horas

Exp: Rede de Petri - Relógio

- faz sequências de tic-tac
- tic-tac: um segundo e move ponteiro de segundos
- 60 segundos: move o ponteiro de minutos
- 3600 segundos: move o ponteiro das horas

u Transições que movem os ponteiros seg, min e horas

- consomem recursos mas não produzem qualquer recurso
- sumidouros
- fontes
 - * dual de sumidouros: somente produzem, sem consumir

⟨⟨B, tac⟩, 1⟩ ⟨⟨tac, A⟩, 1⟩ ⟨⟨tac, C⟩, 1⟩ ⟨⟨tac, D⟩, 1⟩ ⟨⟨A, tic⟩, 1⟩ ⟨⟨tic, B⟩, 1⟩ ⟨⟨C, seg⟩, 1⟩ ⟨⟨D, min⟩, 60⟩ $\langle\langle$ tac, E \rangle , 1 \rangle

 $\langle\langle E, horas \rangle, 3600 \rangle$

u Como seria?

- hora: badalada de um cuco
- número da hora (1 ~ 12 horas)
 - * número de badaladas do cuco

4 – Relações

- 4.1 Relação
- 4.2 Endorrelação como Grafo
- 4.3 Relação como Matriz
- 4.4 Relação Dual e Composição de Relações
- 4.5 Tipos de Relações
- 4.6 Banco de Dados Relacional
- 4.7 Rede de Petri
- 4.8 Relações nas Linguagens de Programação

4.8 Relações nas Linguagens de Programação

- Relações não são normalmente disponíveis em LP
 - excetuando-se algumas construções simples (predefinidas)
- Pascal: exemplos de relações predefinidas
 - igualdade e continência de conjuntos
 - implicação e equivalência lógica
 - igualdade e desigualdade entre
 - * valores numéricos (tipo integer e real)
 - * valores alfanuméricos (tipo char)

u Construções mais gerais

• necessitam ser construídas pelo programador

u Forma simples de implementar

- relações como matrizes
- podem ser implementadas usando arranjos bidimensionais
- exemplo: matriz 10 × 10 com células do tipo boolean

```
matriz = array[1..10, 1..10] of boolean
```

- acesso a cada componente
 - * nome da variável arranjo + dois índices (linha e coluna)

```
matriz[2, 3] := true
if matriz[i, j] then ...
```

u Importante restrição (usando arranjos)

• possui um número fixo de componentes

Número variável de células

- outros tipos de construções
- permitem alocação dinâmica de memória
- exemplo: ponteiros
 - * possuem particularidades dependentes de cada linguagem
 - * discussão foge do escopo da disciplina

Exercício - Implementação

Fazer um pequeno sistema que permita

- definir relações
- tratar construções correlatas como a investigação de seus tipos,
 cálculo da composição de relações, etc

Construa um pequeno sistema em (qualquer LP) capaz de

- definir até 6 conjuntos com até 5 elementos cada
- definir até 5 relações como matrizes sobre estes conjuntos
- verificar os tipos de uma relação
- calcular a relação dual
- calcular (e armazenar) a composição de duas relações
 - * permitir todas as ações acima sobre a relação resultante

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões