Correction: TP sur Acidité

M. Nayrac

2019-10-07

1 Protocole

1.1 Matériel requis

- Blouse
- PHmètre
- Solution tampon de ph 4
- Solution tampon de ph 7
- Pissette d'eau
- 3 Erlen meyer

1.2 Mode opératoire

- 1. On étalonne le phmètre en réglant l'offset et la slope avec—respectivement—les solutions de ph 4 et 7
- 2. On nettoie la sonde du phmètre à l'aide de la pissette d'eau
- 3. On plonge la sonde dans le erlen meyer contenant la solution à mesurer

2 Réalisation

Solution		HNO_3	$\mathrm{CH_{3}CO_{2}H}$	$NH_4^+NO_3^-$	
PH-mètre	$\pm 0, 1$	2,0	3,9	6,1	
papier PH	± 1	2	4	6	

Table 1: Résultats de l'expérience

3 Réponse à la problématique

On constate que pour une même concentration, les trois acides n'ont pas le même pH. Celui qui aura le pH le plus faible sera considéré comme le plus dangereux.

4 Interprétation

$$\begin{split} &HNO_{3(aq)} + H_2O_{(l)} \longrightarrow NO_{3(aq)}^- + H_3O^+_{(aq)} \\ &CH_3COOH_{(aq)} + H_2O_{(l)} \longrightarrow CH_3COO_{(aq)}^- + H_3O^+_{(aq)} \\ &NH_4^+_{(aq)} + H_2O_{(l)} \longrightarrow NH_{3(aq)} + H_3O^+_{(aq)} \end{split}$$

5 Tableau d'avancement

		$HA_{(aq)} + H_2O_{(l)} \longrightarrow A^{-}_{(aq)} + H_3O^{+}_{(aq)}$				
État	Avancement	Quantité de matière [mol]				
Initial	x = 0	n_0		0	0	
En cours	x	$n_0 - x$	en excès	$\parallel x$	x	
Final	x_{max}	$n_0 - x_{\max}$		$ x_{\max} $	x_{max}	

6

Pour le réactif en défaut:

$$n_0 - x_{\text{max}} = 0 \iff x_{\text{max}} = n_0$$

Donc $x_{\text{max}} = C_0 \cdot V$

7

$$[\mathrm{H}_3\mathrm{O}^+]_f = \frac{n_{\mathrm{H}_3\mathrm{O}^+}}{V} = \frac{x_{\mathrm{max}}}{V} = \frac{C_0 \cdot V}{V} = C_0 \,\,\mathrm{mol} \cdot \mathrm{L}^{-1}$$

= 0,010 mol · L⁻¹

8

$$pH = -\log[H_3O^+]$$

$$-pH = \log[H_3O^+]$$

$$10^{-pH} = [H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$

Calculons ainsi

8.1 Acide nitrique

$$[H_3O^+] = 10^{-2.0}$$

 $\approx 10^{-2} \text{ mol} \cdot \text{L}^{-1}$

8.2 Acide éthanoïque

$$\begin{split} [\mathrm{H_3O^+}] &= 10^{-3.9} \\ &\approx 1,25 \cdot 10^{-4} \; \mathrm{mol} \cdot \mathrm{L}^{-1} \end{split}$$

8.3 Nitrate d'ammonium

$$\begin{split} [\mathrm{H_3O^+}] &= 10^{-6,1} \\ &\approx 7,94 \cdot 10^{-7} \; \mathrm{mol} \cdot \mathrm{L}^{-1} \end{split}$$

9

	Acide nitrique	Acide éthanoïque	Nitrate d'ammonium
pH mesuré	2,0	3,9	6,1
Concentration finale théorique de H_3O^+ en mol· L^{-1}	$5,0\cdot 10^{-4}$	$5,0\cdot 10^{-4}$	$5,0\cdot 10^{-4}$
Concentration réelle mesurée de H_3O^+ en mol· L^{-1}	10^{-2}	$1,25 \cdot 10^{-4}$	$7,94 \cdot 10^{-7}$

On remarque que—pour l'acide nitrique—on retrouve bien la concentration C_0 pour H_3O^+ , mais ce n'est pas le cas pour les deux autres acides. De plus, les différences ne s'expliquent pas avec les incertitudes.

Donc pour $\mathrm{CH_3COOH}$ et $\mathrm{NH_4}^+$, l'avancement final x_f sera différent de l'avancement maximal x_{max} . Il n'y aura plus de réactif limitant et la réaction est dans ce cas **non totale**

$$\begin{split} \text{HNO}_{3(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} &\longrightarrow \text{NO}_{3(\text{aq})}^- + \text{H}_3\text{O}^+_{\text{(aq)}} \\ \text{Dans ce cas, } x_f &= x_{\text{max}}. \\ \\ \text{NH}_4^+_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} & \Longrightarrow \text{N}_2\text{O}_{(\text{aq})}^- + \text{H}_3\text{O}^+_{\text{(aq)}} \\ \\ \text{Dans ce cas, } x_f &< x_{\text{max}}. \\ \\ \text{CH}_4\text{COO}_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} & \Longrightarrow \text{CH}_3\text{COO}_{(\text{aq})}^- + \text{H}_3\text{O}^+_{\text{(aq)}} \\ \\ \text{Dans ce cas, } x_f &< x_{\text{max}} \end{split}$$