

Physicsaholics_prateek

Physicsaholics.com

Unacademy

Exercise

Vector

(Physicsaholics)

Physicsaholics

Physicsaholics_prateek Physicsaholics.com

Unacademy

Exercise-3

(Miscellaneous Type)

Physicsaholics_prateek

Physicsaholics.com

Unacademy

Column Matching

For component of a vector $\vec{A} = (3\hat{\imath} + 4\hat{\jmath} - 5\hat{k})$, match the following table :

Table-1

Table-2

(A) y-axis

- (P) 5 unit
- Along another vector (B) $(2\hat{\imath} + \hat{\jmath} + 2\hat{k})$
- (Q) 4 unit

(C) Along
$$(6\hat{i} + 8\hat{j} - 10\hat{k})$$

- (R) Zero
- (D) Along another vector $(-3\hat{\imath} + 4\hat{\jmath} + 5\hat{k})$
- (S) None
- If $\overrightarrow{R} = \overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{S} = \overrightarrow{a} \overrightarrow{b}$ also θ is angle between \overrightarrow{a} and \overrightarrow{b} . Q 2.

Column-I

Column-II

 $R^2 + S^2$ (A)

R is perpendicular to a(P)

 $R^2 - S^2$ (B)

(Q) $2(a^2 + b^2)$

(C)

 $\overrightarrow{a}.\overrightarrow{b}$ (R)

R <8 (D)

- $tan\left(\frac{\theta}{2}\right)$ If $|\vec{a}| = |b|$ (S)
- If $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} \hat{k}$ and $\vec{B} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ then Q 3.

Column I

Column II

 $|A \times B|$

(P) $\sqrt{11}$

(B) |A - B| (Q) 6

(C) A.B

 $\sqrt{35}$ (R)

(D) A+B

- (S) $\sqrt{90}$
- On a vector diagram, show a pair of vectors \vec{d} and \vec{e} such that as mentioned in Q 4. column-I they could match with the cases mentioned in column-II. Mark the correct matches

Column I

(A) $\vec{d} + \vec{e} = \vec{f}$, f=d-e

(B) $\vec{d} + \vec{e} = \vec{f}$, f=d+e

Column II

antiparallel

- (P) \vec{d} , \vec{e} are aligned
 - (Q) \vec{d} , \vec{e} are aligned parallel

Physicsaholics_prateek

Physicsaholics.com

Unacademy

- (C) $\vec{d} \vec{e} = \vec{f}$, f= d+ e
- (D) $\vec{d} + \vec{e} = \vec{f}$, f = dv2, d= e

- (R) \vec{d} , \vec{e} are aligned at 90°
- (S) \vec{d} , \vec{e} are aligned at 270°
- **Q 5.** Column-I contains vector diagram of three vectors \vec{a} , \vec{b} , \vec{c} & Column-II contains vector equation. Match them.

Column-I

(P)
$$\vec{a} - (\vec{b} + \vec{c}) = 0$$

(Q)
$$\overrightarrow{b}$$

(R)
$$\vec{a} + \vec{b} = -\vec{c}$$

Physicsaholics_prateek

Physicsaholics.com

Unacademy

Paragraph based questions

Passage -1 (Q.6 to Q.8)

The second law of vector addition is triangle law, which says that if we take $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ as two vectors acting at point O as shown in figure, then the resultant of vector is get by taking $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ as adjacent sides of a triangle and the 3rd side of the triangle as the resultant, then if θ is angle between $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ then.

Q 6. If α is the angle made by resultant vector with A; then $\tan \alpha =$

(A)
$$\frac{a \sin \theta}{b + a \cos \theta}$$

(B) $\frac{b \sin \theta}{a + b \cos \theta}$

(C) $\frac{a\cos\theta}{b+a\cos\theta}$

(D) $\frac{b\cos\theta}{b+a\sin\theta}$

Q 7. If the magnitude of both the vector |A| & |B| is A, then the resultant will have magnitude –

(A) A cos $\theta/2$

(B) $2A \cos \theta/2$

(C) 3A $\cos \theta/2$ (D) 3A $\cos \theta/3$

Q 8. If |A| = |B| = a and $\theta = 120^\circ$, then the two vectors and the resultant will form a –

(A) Acute angle triangle

(B) Obtuse angle triangle

(C) Right angle triangle

(D) Equilateral triangle

Passage # 2 (Q.9 to Q.11)

Four vectors are shown in the figure where $|\overrightarrow{A}| = 5\sqrt{2}$ m, $|\overrightarrow{B}| = 10$ m, $|\overrightarrow{C}| = 10$ m and

 $|\vec{D}| = 10 \,\mathrm{m}$

Q 9. $(B_X + D_X)$ is equal to –

(A) $20\sqrt{3}$ m

(B) $-10\sqrt{3}$ m

(C) Zero

(D) 10 m

Physicsaholics_prateek

Physicsaholics.com

Unacademy

Q 10.
$$(A_X + C_X)$$
 is equal to –

- (A) Zero
- (B) 10 m
- (C) -5m
- (D) $-5\sqrt{3}$ m

Q 11.
$$(A_Y + B_Y + C_Y + D_Y)$$
 is equal to –

- (A) $5(1-\sqrt{3})$ m (B) 5(-1)m (C) $5\sqrt{3}$ m
- (D) $10(\sqrt{3}-1)$ m

Passage # 3 (Q.12 to Q.14)

For the given vectors

$$\vec{A} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$$

$$\vec{B} = \hat{\imath} - \hat{\jmath} - \hat{k}$$

$$\vec{C} = 2\hat{\imath} + \hat{\imath} + \hat{k}$$

Answer the following

Q 12. The magnitude of $\vec{A} + \vec{B} - \vec{C}$ is:

- (A) $\sqrt{10}$
- (C) $\sqrt{11}$

Q 13. The angle between \vec{B} and \vec{C} is:

- $(A)\frac{\pi}{4}$

- (D) $\frac{\pi}{4}$

The vector $\vec{\mathcal{C}} \times \vec{B}$ has a magnitude :

- (A) √5
- (B) $\sqrt{18}$
- (C) 4

(D) $2\sqrt{5}$

Assertion/Reason Type Questions:

Each of the questions given below consist of Statement – I and Statement – II. Use the following Key to choose the appropriate answer.

- (A) If both Statement- I and Statement- II are true, and Statement II is the correct explanation of Statement-I.
- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation of Statement – I.
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false but Statement II is true.

Q 15. Statement

 $\mathbf{I}: \bar{v} = \bar{\omega} \times \bar{r} \text{ and } \bar{v} \neq \bar{r} \times \bar{\omega}$

Statement

II: Cross product is commutative.

Physicsaholics_prateek

Physicsaholics.com

Unacademy

Q 16. Statement I: When $\bar{P} + \bar{Q} = \bar{R}$ and P + Q = R, the angle between $\bar{P} \& \bar{Q}$ must be 0° .

Statement II: Here $\theta = 0^{\circ}$

$$R = \sqrt{P^2 + Q^2 + 2PQ \cos 0} = P + Q.$$

Answer Key

Q.1) (A) Q, (B) R, (C) S, (D) S	Q.2) (A) Q; (B) R; (C) S; (D) P	Q.3) (A) S; (B) P; (C) Q; (D) R	Q.4) (A) Q, (B) P, R, (C) Q, (D) P, R, S	Q.5) (A) R; (B) S; (C) P; (D) Q
Q.6) B	Q.7) B	Q.8) D	Q.9) C	Q.10) A
Q.11) A Q.16) A	Q.12) C	Q.13) B	Q.14) B	Q.15) C

