There are two possible acts:

- ► Act 1: Switch
 - ► Act 2: Not-Switch

There are two possible acts:

- ► Act 1: Switch
- ► Act 2: Not-Switch

There are two possible *outcomes*:

- ▶ Outcome 1: You get a goat.
- ▶ Outcome 2: You get the car.

We calculate the expected utilities of both acts:

$$EU(\text{Switch}) = (2/3) \cdot U + (1/3) \cdot u$$

$$EU(\text{Not} - \text{Switch}) = (1/3) \cdot U + (2/3) \cdot u$$

We calculate the expected utilities of both acts:

$$EU(\text{Switch}) = (2/3) \cdot U + (1/3) \cdot u$$

$$EU(\text{Not} - \text{Switch}) = (1/3) \cdot U + (2/3) \cdot u$$

As U > u, we see that

$$EU(\text{Switch}) - EU(\text{Not} - \text{Switch}) = (1/3) \cdot (U - u) > 0.$$

The decision problem

- 1. There are a number of acts A_1, A_2, \ldots, A_n of which we have to choose one.
- 2. There are a number of mutually exclusive and exhaustive outcomes O_1, O_2, \ldots, O_m , i.e. one of these outcomes occurs.
- 3. If we choose an act, outcome i occurs with probability $P(O_i)$ and has a utility $U(O_i)$.

The decision problem

- 1. There are a number of acts A_1, A_2, \ldots, A_n of which we have to choose one.
- 2. There are a number of mutually exclusive and exhaustive outcomes O_1, O_2, \ldots, O_m , i.e. one of these outcomes occurs.
- 3. If we choose an act, then outcome i occurs with probability $P(O_i)$ and has utility $U(O_i)$.

The expected utility of an act A is then given by

$$EU(A) = \sum_{i=1}^{m} P(O_i)U(O_i).$$

There are two possible acts.

- ► Act 1: We insure the car.
 - ▶ Act 2: We do not insure the car.

There are two possible acts.

- ▶ Act 1: We insure the car.
- ▶ Act 2: We do not insure the car.

There are two possible states of the world.

- ▶ State 1: The car breaks in an accident.
- ▶ State 2: The car does not break in an accident.

The expected monetary values:

$$EV(A_1) = p(-m\$) + (1-p)(-m\$) = -m\$$$

 $EV(A_2) = p(-M\$) + (1-p)(0\$) = -pM\$$

There is hence an expected monetary gain to buying insurance whenever $m \leq p M$.

The expected utilities:

$$EU(A_1) = p U(-m\$) + (1-p) U(-m\$) = U(-m\$)$$

 $EU(A_2) = p U(-M\$) + (1-p) U(0\$) = p U(-M\$)$

Here we have set U(0\$) = 0.

Dominance: An act A dominates an act B if and only if the outcome of A will be as good as the outcome of B no matter which state of the world happens to be the true one, and strictly better under at least one state of the world.

 $u_i \rightarrow u_i' = a \cdot u_i + b \text{ with } a > 0.$

Utility functions are only unique up to a positive linear transformation:

$$u_i \rightarrow u_i' = a \cdot u_i + b \text{ with } a > 0.$$

EU is the utility function under u, and EU' is the utility function under u'. We then obtain:

$$EU'(A) = \sum p_i u_i' = \sum p_i (a \cdot u_i + b)$$
$$= a \cdot (\sum p_i u_i) + b$$
$$= a \cdot EU(A) + b$$

Hence, EU'(A) > EU'(B) if and only if EU(A) > EU(B).

A set of basic prizes $X = \{A, B, C, \dots\}$.

Each basic prize is a lottery which you may win.

Choose a lottery in which you win A with probability p and B with a probability 1-p. That is, if A and B are lotteries, then

$$pA + (1 - p)B$$

is also a lottery.

We denote the latter lottery by ApB.

- \triangleright A \succ B: you strictly prefer lottery A to lottery B.
- $ightharpoonup A \prec B$: you strictly prefer lottery B to lottery A.

▶ $A \sim B$: you are indifferent between lotteries A and B.

Consider a set \mathcal{L} of lotteries.

1. Completeness: For all lotteries A, B in $\mathcal{L}, A \succ B$ or $A \prec B$ or $A \sim B$.

Consider a set \mathcal{L} of lotteries.

- **1. Completeness:** For all lotteries A, B in $\mathcal{L}, A \succ B$ or $A \prec B$ or $A \sim B$.
- **2. Transitivity:** For all lotteries A, B, C in \mathcal{L} , if $A \succ B$ and $B \succ C$, then $A \succ C$.

Consider a set \mathcal{L} of lotteries.

- **1. Completeness:** For all lotteries A, B in $\mathcal{L}, A \succ B$ or $A \prec B$ or $A \sim B$.
- **2. Transitivity:** For all lotteries A, B, C in \mathcal{L} , if $A \succ B$ and $B \succ C$, then $A \succ C$.
- **3. Continuity:** For all lotteries A, B, C in \mathcal{L} , if $A \succ B \succ C$, then there are probabilities p and q such that $ApC \succ B \succ AqC$.

Consider a set \mathcal{L} of lotteries.

- **1. Completeness:** For all lotteries A, B in $\mathcal{L}, A \succ B$ or $A \prec B$ or $A \sim B$.
- **2. Transitivity:** For all lotteries A, B, C in \mathcal{L} , if $A \succ B$ and $B \succ C$, then $A \succ C$.
- **3. Continuity:** For all lotteries A, B, C in \mathcal{L} , if $A \succ B \succ C$, then there are probabilities p and q such that $ApC \succ B \succ AqC$.
- **4. Independence:** For all lotteries A, B, C in $\mathcal{L}, A \succ B$ if and only if $ApC \succ BpC$.

The Neumann and Morgenstern representation theorem.

A preference relation \succ satisfies the axioms 1 to 4, if and only if there exists a utility function u such that

- (i) if $A \succ B$, then u(A) > u(B),
- (ii) u(ApB) = p u(A) + (1 p) u(B),
- (iii) for every other function u' that satisfies (i) and (ii), there are numbers a > 0 and b such that u' = au + b.

u(A) - u(B) = u(C) - u(D)

 $\psi \qquad \Leftrightarrow \qquad u'(A) - u'(B) = u'(C) - u'(D)$

O: optimal element in the lottery W: worst element in the lottery

We set:

$$u(O) =$$

O: optimal element in the lottery W: worst element in the lottery

We set:

$$u(O) = u(M) =$$

If $OpW \sim A$, then u(A) = p.

The Allais Paradox

Choice 1:

A: a cheap car for sure

B: nothing (1%) or an expensive car (10%) or a cheap car (89%)

The Allais Paradox

Choice 1:

A: a cheap car for sure

B: nothing (1%) or an expensive car (10%) or a cheap car (89%)

Choice 2:

 E : a cheap car (11%) or nothing (89%)

F: an expensive car (10%) or nothing (90%)

We set:

$$u(\text{nothing}) = 0$$

 $u(\text{expensive car}) = 1$
 $u(\text{cheap car}) = x$

We set:

$$u(\text{nothing}) = 0,$$

 $u(\text{expensive car}) = 1$
 $u(\text{cheap car}) = x$

Then

$$u(A) - u(B) = x - (.1 + .89x) = .11x - .1$$

 $u(E) - u(F) = .11x - .1$
 $= u(A) - u(B)$

Hence, if there is a utility function u, then $A \succ B \Leftrightarrow E \succ F$.

The Ellsberg Paradox

An urn contains contains 90 balls. 30 of these balls are red. The remaining 60 balls are either blue or yellow.

Choice 1:

G: three nights in a luxury hotel in St. Petersburg if a red ball is drawn

H: three nights in a luxury hotel in St. Petersburg if a blue ball is drawn

The Ellsberg Paradox

An urn contains contains 90 balls. 30 of these balls are red. The remaining 60 balls are either blue or yellow.

Choice 1:

G: three nights in a luxury hotel in St. Petersburg if a red ball is drawn

H: three nights in a luxury hotel in St. Petersburg if a blue ball is drawn

Choice 2:

K: three nights in a luxury hotel in St. Petersburg if a red or yellow ball is drawn

L: three nights in a luxury hotel in St. Petersburg if a blue or yellow ball is drawn