Homework Assignments:

- Chapter 3 HW due Tomorrow (September 20), 11:55 pm
- Chapter 4 HW due September 26, 11:55 pm
- Quiz 2 (Covers the Chapters 3 and 4) will post this Friday and due Monday 11:59 pm
- Exam 1 will be on September 26 (Wednesday), 50 minutes (20 25 MCQs), covers chapters 1, 2, 3, and 4

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

31

Questions from Percent Yield and solution stoichiometry:

12) The percent yield of the following reaction is consistently 87%.

$$\mathrm{CH_4(g)} + 4\ \mathrm{S(g)} o \mathrm{CS_2(g)} + 2\ \mathrm{H_2S(g)}$$

How many grams of sulfur would be needed to obtain 80.0 g of CS₂?

(2)
$$CH_{+}cgs + 4Scgs - oCS_{2}cgs + 2H_{2}Scgs - MM_{CS_{2}} = 76.13gml$$

mass? $80.0g$ $MM_{S} = 33.0bgml$

Percent yield = Actual yield of CS_{2}

Theoretical yield of CS_{2}

Theoretical yield of CS_{2}

Theoretical yield CS_{2}

Theoretical yield of CS_{2}

Theoretical yield CS_{2}

Theoretical yield CS_{2}

Theoretical yield CS_{2}

Theoretical yield of CS_{2}

Theoretic

13) If 18.4 g of Mg₃N₂ forms from the reaction of 20.0 g of magnesium with excess nitrogen, what is the percent yield?

$$3\,\mathrm{Mg}(s) + \mathrm{N_2}(g) \to \mathrm{Mg_3N_2}(s)$$

14) How many grams of H_2 can be prepared from 25.0 mL of 6.00 M H_2SO_4 and excess zinc?

$$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$$
 $Zncss+ H_2SO_4caqs \longrightarrow ZnSO_4caqs + H_2cgs$
 $V=25.0mL$
 $M=6.00M$
 $N_{42}SO_4 = M\times V = 6.00molL \times 25.0 \times 10^3 L$
 $M=0.150mol$
 $M=0.150mol \times \frac{1}{1} = 0.150mol$
 $M=0.150mol \times MM_{12} = 0.150mol \times MM_{12} = 0.150mol$

15) What volume, in mL, of 0.512 M NaOH is required to react completely with 25.0 mL of 0.234 M H₂SO₄?

Table 2.3: Common Monatomic Ions

40

Cation Name	Symbol	Anion Name	Symbol
Sodium ion	Na ⁺	Fluoride ion	F^-
Lithium ion	Li ⁺	Chloride ion	Cl-
Potassium ion	K^+	Bromide ion	Br^-
Magnesium ion	Mg^{2+}	Sulfide ion	S^{2-}
Aluminum ion	Al^{3+}	Nitride ion	N^{3-}

Copyright ©2019 Cengage Learning, All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Common cations: (Table 2.5) Sodium ion $\mathrm{Na^{+}}$ Common anions (Table 2.6) ${\rm Mg^{2+}}$ Magnesium ion $\mathrm{Fe^{2+}}$ Iron(II) ion F-, Cl-, Br-, I-Halides Iron(III) ion $\mathrm{Fe^{3+}}$ Nitrate NO_3 Silver ion Ag^+ PO_{4}^{3-} Phosphate $\mathrm{NH_4}^+$ Ammonium ion CO_3^{2-} Carbonate Potassium ion K^{+} Sulfate $\mathrm{SO_4}^{2-}$ Ca^{2+} Calcium ion Hydroxide OH-Copper(I) ion Cu^+ Cyanide CN-Copper(II) ion Cu^{2+} O^{2-} Zn^{2+} Zinc ion Oxide Hydronium ion H_3O^+ 41 Copyright © 2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.