Einführung in die lineare und kombinatorische Optimierung Serie 7

Sven-Maurice Althoff (FU 4745454) Michael R. Jung (HU 502133) Felix Völker (TU 331834)

5. Dezember 2014

Aufgabe 25

Füge zunächst eine Quelle s und eine Senke t ein:

Gesucht ist ein Fluss mit Wert f := 30. Für den den Fluss $x_a = 0 \,\forall a \in A$ ist das resultierende augmentierende Netzwerk gleich N. Hier finden wir keine gerichteten Kreise. In diesem Netzwerk hat der Weg s234t das geringste Gewicht für einen (s,t)-Weg. Die minimale Kapazität ist 5, das resultierende augmentierende Netzwerk ist:

In diesem Netzwerk hat der Weg s147t das geringste Gewicht für einen (s,t)-Weg. Die minimale Kapazität ist 10, das resultierende augmentierende Netzwerk ist:

In diesem Netzwerk hat der Weg s2357t das geringste Gewicht für einen (s,t)-Weg. Die minimale Kapazität ist 5, das resultierende augmentierende Netzwerk ist:

In diesem Netzwerk hat der Weg s268t das geringste Gewicht für einen (s,t)-Weg. Die minimale Kapazität ist 10, das resultierende augmentierende Netzwerk ist:

Nun hat der Fluss den gewünschten Wert, die Kosten betragen 1.5+7.10+11.5+14.5=200.

Aufgabe 26

Hierzu nutzen wir einfach parallele Bögen. Unsere Knotenmenge ist $V = \{s, t\} \cup F \cup Z \cup S$ und unserer Bogenmenge ist $A = A_1 \dot{\cup} A_2 \cup \{(s, f) | f \in F\} \cup \{(m, t) | m \in S\}$, wobei $A_1 = A_2 = F \times Z \cup Z \times S$. Die unteren Kapazitäten sind 0 und die oberen Kapazitäten c_a werden

definiert durch

$$c_a = \begin{cases} a_f & a \in \{s\} \times F \\ b_m & a \in S \times \{t\} \end{cases}$$
Kapazität des ersten Spediteurs $a \in A_1$
Kapazität des zweiten Spediteurs $a \in A_2$.

Die Kosten werden folglich definiert durch

$$k_a = \begin{cases} 0 & a \in \{s\} \times F \cup S \times \{t\} \\ \text{Kosten des ersten Spediteurs} & a \in A_1 \\ \text{Kosten des zweiten Spediteurs} & a \in A_2. \end{cases}$$

Nun sind wir im Standardfall für das Minimalkosten-Flussproblem.

Aufgabe 27

Wir modellieren das Problem als Transshipment Problem. $D=(V,A), V=V_a \dot{\cup} V_n \dot{\cup} V_u$ $V_a=$ Lager mit Schlitten, $V_n=Zielorte, V_u=$ alle Lager

Jeder Bogen $a \in A$ hat eine Kapazität c(a) = Liefermenge und einen Kostenkoeffizient w(a) = Reisezeit und Es gilt $v \in V_a \forall a(v), v \in V_n \forall b(v)$

Zum Lösen des Problems wird der Primal-Dual-Algorithmus empfohlen. Um dann die Anzahl der Wichtel zu bestimmen muss nur die Anzahl der verwendeten Schlitten mal 2 genommen werden, da für die Wichtel keine Pausen oder Arbeitszeiten berücksichtigt werden müssen.

Aufgabe 28