Prof. Jefferson T. Oliva

Algoritmos e Estrutura de Dados I (AE22CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Listas
- Listas Estáticas
- TAD Listas Estáticas

Introdução

- Programas operam sobre dados
- Estrutura de dados
- Abstração de informações
 - Tipo abstrato de dados
 - Programação estruturada
 - Programação orientada a objetos
- Conjunto de dados

Introdução

- Exemplos de abstrações de conjunto de dados alocados sequencialmente (listas)
 - Alocação sequencial contígua

Edereço na memória	3000	3001	3003	3004	
Conteúdo na memória					

Alocação por encadeamento

4

Sumário

Listas

- Listas são coleções de elementos (variáveis, registros, etc) organizados sequencialmente
 - Agrupam informações referentes a um conjunto de elementos
- As listas estão presentes em várias situações e aplicações do nosso cotidiano
 - Compras
 - Lista de presença
 - Contatos no smartfone
 - Livros

- Aplicações
 - Adequadas para aplicações em que não é possível prever a demanda por memória
 - Gerenciamento de memória
 - Simulações
 - Manipulação simbólica
 - Processamento de imagens
 - Entre outras
- Listas podem ser do tipo linear ou não-linear (generalizada)
- Tipos especiais de listas
 - Fila
 - Pilha

7

• Uma lista linear é uma sequência de 0 ou mais itens

$$x_1, x_2, ..., x_n$$

- n é o tamanho da lista
- x_i é o i-ésimo elemento da lista
- x_1 é o primeiro item da lista e x_n o último
- x_i sucede x_{i-1} e precede x_{i+1}
- Se n=0, então a lista é vazia

8

- Operações básicas em uma lista:
 - Criar uma lista vazia
 - Inserir um elemento
 - Remover um elemento
 - Verificar se a lista está vazia
 - Procurar um elemento
 - Concatenar duas ou mais listas

- Operações básicas em uma lista:
 - Dividir uma lista em duas ou mais listas
 - Ordenar a lista
 - Imprimir todos os elementos
 - Retornar referência (e.g. primeiro ou próximo item da lista)
 - Liberar lista
 - Etc

- Alocação sequencial (contígua): elementos são alocados em sequência (sequência "física")
 - Geralmente são utilizadas estruturas estáticas (vetores)

0	1	2	3	4	5	6	7
Α	В	С	D				

- Na lista acima:
 - 'A' é o primeiro elemento
 - 'D' é o último elemento
 - Por mais que a lista tenha a capacidade de alocar até 8 elementos, apenas 4 posições foram utilizadas em sequência
 - Mais elementos podem ser colocados na estrutura acima

1

- Alocação encadeada: elementos não estão necessariamente em posições adjacentes de memória (sequência "lógica" ou "virtual")
 - Geralmente são utilizadas estruturas dinâmicas (apontadores)

12

Sumário

- Os itens dessa estrutura são armazenados em posições contíguas da memória
- A lista estática pode ser precorrida, linearmente, em qualquer direção
- Armazenamento em arranjos (arrays/vetores)

Edereço na memória	3000	3001	3003	3004	
Conteúdo na memória					

- Uma forma de implementação de listas estáticas, além de considerar um vetor, também podem ser definidas
 - Uma variável para indicar a posição do último elemento

		Fim						
1	2	3		n		m		

 Um novo item pode ser inserido no final da lista com custo constante

 No entanto, a remoção do item requer o deslocamento de itens para preencher o espaço vazio

- Vantagens
 - Simples implementação
 - Economia de memória
- Desvantagens
 - Custo para retirar itens
 - Caso a lista atinja o limite de armazenamento, não é possível realocar memória

Sumário

- Geralmente, em uma lista é necessária as seguintes operações
 - Criar uma lista vazia
 - Inserir um item
 - Remover um item
 - Acessar um item
 - Verificar se a lista está vazia
 - Verificar se a lista está cheia
 - Imprimir a lista
 - Liberar lista

• Primeiro passo: definir arquivo .h

```
// List.h
#define MAX_SIZE 100 // tamanho máximo da lista
typedef struct Lista Lista;
```

• Primeiro passo: definir arquivo .h

```
// lista.h
Lista* criar_lista();
int vazia(Lista *1);
int cheia(Lista *1);
int buscar(Lista *1, int chave);
int inserir(Lista *1, int chave);
int remover(Lista *1, int chave);
void imprimir(Lista *1);
void liberar(Lista *1);
```

• Segundo passo: definir arquivo .c

```
// lista.c
#include "lista.h"
struct Lista{
  int item[MAX_SIZE];
  int qtd; // quantidade de elementos que foram
colocados na lista
};
List* criar lista() {
  Lista *l = (Lista*) malloc(sizeof(Lista));
1->qtd = -0;
return 1;
```

```
int vazio(Lista *1) {
  return (1 == NULL) || (1->qtd == 0);
int cheio(Lista *1) {
  return (1->qtd == MAX_SIZE);
int buscar(Lista 1, int chave) {
 int i;
  for (i = 0; i < 1 - > qtd; i++)
   if (key == l->item[i])
    return i;
  return -1;
```

```
int inserir(Lista *1, int chave) {
  if (!cheio(1)) {
    l->item[l->qtd] = chave;
    l->qtd++;
    return 1;
  }
  return 0;
}
```

```
int remover(Lista *1, int chave) {
  int i;
  int p = buscar(*1, chave);
  if (p >= 0) {
   for (i = p; i < 1->qtd - 1; i++)
    1->item[i] = 1->item[i + 1];
    1->qtd--;
   return 1;
  return 0;
```

```
void imprimir(List *1) {
   int i;

for (i = 0; i < l->qtd; i++)
   printf("%d\n", l->item[i]);
}

void liberar(List *1) {
   free(1);
}
```

 Os arquivos com implementação mais detalhada do TAD de listas estáticas estão disponíveis no Github: https://github. com/jefferson-oliva/material_grad/tree/main/ AE22CP-Algoritmos-1/aula_06_lista_est%C3%A1tica

- Exercício: aproveitando o TAD anterior, faça:
 - Implemente uma função que concatena duas listas
 - Altere o TAD de forma que os itens devam estar ordenados
 - Implemente uma função que intercale duas listas em uma terceira de forma ordenada

Referências I

Pereira, S. L.

Estrutura de Dados e em C: uma abordagem didática.

Saraiva. 2016.

Szwarcfiter, J.; Markenzon, L. Estruturas de Dados e Seus Algoritmos. LTC, 2010.

Tenenbaum, A.; Langsam, Y. Estruturas de Dados usando C. Pearson, 1995.

Referências II

Ziviani, M.

Projetos de Algoritmos: com implementações em Pascal e C. Thomson, 2004.