

Trabajo final

Castro Rodríguez Jorge Octavio Pérez Vázquez Ernesto

Jun 2020

Desarrollo de un modelo de deep learning para la detección de anomalías virales con base al procesamiento y clasificación de imágenes de rayos-X de tórax

Agenda

- 1 Objetivo del trabajo final
- 2 Caso de negocio
- 3 Metodología de trabajo
- 4 Set de datos
- 5 Modelo
- 6 Evaluación de los modelos
- 7 Conclusiones

Objetivo del estudio

- Entendimiento del caso de negocio
- Entendimiento de la BDD y sus características
- Entender cuales son las variables que mejor explican el fenómeno
- Desarrollar un modelo que nos permitan realizar la clasificación de imágenes
- Establecer resultados y discusión
- Identificar áreas de oportunidad y establecer next steps

Caso de negocio

Re definición del proceso de atención de pacientes con base a la clasificación de imágenes

Metodología de trabajo

Monitoreo/Mejoras

Set de datos

Se utilizó la siguiente distribución de información

Base Total		
Tipo de imagen	Numero de Registros	
Normal	1,583 - 26.9%	
Bacteria	2,788 - 47.4%	
Virus	1,503 - 25.5%	

Entrenamiento 80%		
Tipo de imagen	Numero de Registros	
Normal	1,266 -26.9%	
Bacteria	2,230 - 47.4%	
Virus	1,203 - 25.6%	

Evaluación 20%				
Tipo de imagen	Numero de registros			
Normal	317 - 26.9%			
Bacteria	558 - 47.4%			
Virus	300 - 25.5%			

Para superar las limitaciones de procesamiento se siguieron los siguientes pasos:

- Se genero un diccionario de imágenes, el cual incluye; las etiquetas y las matrices de datos por cada imagen.
- Las imágenes utilizadas se convirtieron a escala de grises y se redimensionaron quedando una resolución de 256 X 256 px

Modelos

Redes neuronales convolucionales

El modelo se probo con distintas arquitecturas (LeNte-5, VGG-16, AlexNet) y combinaciones respecto a las capas de convolución y reducción. Tras la evaluación de mas de 40 modelos se selecciono la que nos ofreció el mayor grado de accuracy en el set de prueba: 82%

Evaluación de los modelos

Model_4: "sequential" Input_shape(256, 256, I)					
Layer (type)	Output Shape	Param#	Model's Architecture		
conv2d_1 (Conv2D)	(Nane, 254, 254, 16)	160	model_4.add(Conv2D(16, kernel_size=(3,3), activation='relu', input_shape=input_shape))	==========	
max_pooling2d_1 (MaxPooling2	(None, 127, 127, 16)	0	model_4.add(MaxPooling2D(pool_size=(2,2)))		
conv2d_2 (Conv2D)	(None, 125, 125, 32)	4640	model_4.add(Conv2D(32, kernel_size=(3,3), activation='relu'))	 -	
max_pooling2d_2 (MaxPooling2	(None, 62, 62, 32)	0	model_4.add(MaxPooling2D(pool_size=(2,2)))		
conv2d_3 (Conv2D)	(None, 60, 60, 64)	18496	model_4.add(Conv2D(64, kernel_size=(3,3), activation='relu')		
max_pooling2d_3 (MaxPooling2	(None, 30, 30, 64)	0	model_4.add(MaxPooling2D(pool_size=(2,2)))		
conv2d_4 (Conv2D)	(None, 28, 28, 128)	73856	model_4.add(Conv2D(I28, kernel_size=(3,3), activation='relu')		
max_pooling2d_4 (MaxPooling2	(None, 14, 14, 128)	0	model_4.add(MaxPooling2D(pool_size=(2,2)))		
conv2d_5 (Conv2D)	(None, 12, 12, 256)	295168	model_4.add(Conv2D(256, kernel_size=(3.3), activation='relu'))		
max_pooling2d_5 (MaxPooling2	(None, 6, 6, 256)	0	model_4.add(MaxPooling2D(pool_size=(2,2)))		
dropout_1 (Dropout)	(None, 6, 6, 256)	0	model_4.add(Dropout(0.4))		
flatten_1 (Flatten)	(None, 9216)	0	model_4.add(Flatten())		
dense_1 (Dense)	(Nane, 128)	1179776	model_4.add(Dense(I28, activation='relu'))		
dense_2 (Dense)	(None, 64)	8256	model_4.add(Dense(64, activation='relu'))		
dense_3 (Dense)	(None, 32)	2080	model_4.add(Dense(32, activation='relu'))		
dense_4 (Dense)	(None, 16)	528	model_4.add(Dense(I6, activation='relu'))		
dropout_2 (Dropout)	(None, 16)	0	madel_4.add(Dropout(0.4))		
dense_5 (Dense)	(Nane, 3)	51	model_4.add(Dense(nDutputs, activation='softmax'))		

Total params: 1,583,011 Trainable params: 1,583,011 Non-trainable params: 0

Test Set

 $\textbf{Loss}{:}~2.396784364619154~~\textbf{Accuracy}{:}~0.8212766051292419$

Conclusiones

 Indudablemente el uso de Deep learning es un gran apoyo en la especialidad medica, sin embargo, aun no es altamente utilizado en los laboratorios de México para apoyar a la optimización de procesos

 La placa torácica es insensible al comienzo de la enfermedad, por lo que al utilizar este método aun haría falta la indudable intervención humana para apoyar el diagnostico y clasificación

- El uso de recursos tecnológicos es intensivo para el procesamiento de imágenes, para este caso de estudio seria mucho mas efectivo el uso de imágenes de tomografía computarizada sin embargo cuentan con una mayor resolución y por tanto mayor uso de recursos
- Para llevar a cabo la implementación de este tipo de proyectos es necesario trabajar de manera interdisciplinaria (especialidad medica – especialidad técnica) para definir correctamente los limites de sensibilidad vs limites de especificad de los resultados.

