COMP90054 Al planning Autonomy Workshop 5

• Discuss in your group the heuristics you used in project 1. Are any of them related to the domain independent heuristics we have covered in class?

- 1. What is the (optimal) delete relaxation heuristic h+? How would it be interpreted in pacman?
- 2.What is the relationship between hmax, h+, and hadd? What about h*?

Recap: Manhattan Grid Problem

- Consider an $m \times m$ Manhattan Grid, and a set of coordinates G to visit in any order.
- **Hint**: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them
- Formulate a state-based search problem to find a tour of all the desired points (i.e. define a state space, applicable actions, transition and cost functions).

Common Heuristic for Manhattan Grid Problems

- Goal counting: h = |V'|
- Manhattan to the closest: h = min(Manhattan(all food))
- Manhattan to the furthest: h = max(Manhattan(all food))
- Average Manhattan: h = average(min, max Manhattan)
- Manhattan: h = Manhattan(all food))
- Minimum Spanning Tree: h = len(minimum spanning tree(all food))

Revision on Relaxation

- Initial STRIPS model: P = <F,O,I,G> ==> h
- After applying some transition: P' = <F, O', I, G>, ==> h'
- If change is relaxation, then the h' is guaranteed to be admissible and consistent

_

Example: Precondition and delete relaxation

- General Idea: Ignore delete and precondition lists, only keep add lists
- Then P' becomes a Subset sum problem
- Bad news!! It is still an NP-hard problem

Common Heuristic for Manhattan Problems

- Goal counting: h = |V'|
- Manhattan to the closest: h = min(Manhattan(all food))
- Manhattan to the furthest: h = max(Manhattan(all food))
- Average Manhattan: h = average(min, max)
- Manhattan: h = Manhattan(all food)
- Minimum Spanning Tree: h = len(minimum spanning tree(all food))

The problem of Minimum Spanning Tree

It is not consistent

Minimum Steiner Tree

- Idea: add extra node along the path
- How to derive from the original? Delete relaxation: h+
- Is it easier to compute the minimum Steiner Tree?

• Discuss in your group the heuristics you used in project 1. Are any of them related to the domain independent heuristics we have covered in class?

- 1. What is the (optimal) delete relaxation heuristic h+? How would it be interpreted in pacman?
- 2.What is the relationship between hmax, h+, and hadd? What about h*?

Task 1. Describe the init and goal set.

- I:={on(A, C), onTable(C), onTable(B), clear(A), clear(B), armFree}
- G:={on(A, B), on(B, C), onTable(c), clear(A)}

The additive and max heuristics

Definition (h^{add}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The additive heuristic h^{add} for Π is the function $h^{\text{add}}(s) := h^{\text{add}}(s, G)$ where $h^{\text{add}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{add}}(s, g) =$

$$\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\mathsf{add}}(s, pre_a) & |g| = 1 \\ \sum_{g' \in g} h^{\mathsf{add}}(s, \{g'\}) & |g| > 1 \end{cases}$$

Definition (h^{max}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The max heuristic h^{max} for Π is the function $h^{\text{max}}(s) := h^{\text{max}}(s, G)$ where $h^{\text{max}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{max}}(s, g) =$

$$\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\max}(s, pre_a) & |g| = 1 \\ \max_{g' \in g} h^{\max}(s, \{g'\}) & |g| > 1 \end{cases}$$

- Task 2. Compute hadd(s0) for the 4 operators blocks-world problem.
- I:={on(A, C), onTable(C), onTable(B), clear(A), clear(B), armFree}
- G:={on(A, B), on(B, C), onTable(c), clear(A)}

- I:={on(A, C), onTable(C), onTable(B), clear(A), clear(B), armFree}
- G:={on(A, B), on(B, C), onTable(c)}

```
I: {on(A, C), onTable(C), onTable(B), clear(A), clear(B), armFree}
hadd(s0)
 = hadd(s0, G)
 = hadd(on(A, B), on(B, C), onTable(c)})
 = hadd(on(A, B)) + hadd(on(B, C)) + hadd(onTable(c))
 = hadd(on(A, B)) + hadd(on(B, C)) + ?
                                   h^{\text{add}}(s,g) =
                                                \begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\text{add}}(s, pre_a) & |g| = 1 \\ \sum_{a' \in a} h^{\text{add}}(s, \{g'\}) & |g| > 1 \end{cases}
```

```
h^{\text{add}}(s,g) = \begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\text{add}}(s, pre_a) & |g| = 1 \\ \sum_{g' \in g} h^{\text{add}}(s, \{g'\}) & |g| > 1 \end{cases}
```

```
hadd(s0)
= hadd(s0, G)
 = hadd(on(A, B), on(B, C), onTable(c)})
 = hadd(on(A, B)) + hadd(on(B, C)) + hadd(onTable(c))
 = hadd(on(A, B)) + hadd(on(B, C)) + 0
 = cost(stack(A, B) + hadd(prec(stack(A, B)) + ....
 = 1 + hadd(holding(A), clear(B)) + ...
 = 1 + hadd(holding(A)) + hadd(clear(B)) + ...
```

For example

```
hadd(clear ( c ))
putdown( c ) = 1 + holding ( c )
stack(C, A) = 1 + holding ( c ) + clear(A)
stack(C, B) = 1 + holding ( c ) + clear(B)
stack(C, C) = 1 + holding ( c ) + clear(C)
unstack(A, C) = 1 + armFree + on(A, C) + clear(A) = 1
unstack(B, C) = 1 + armFree + on(B, C) + clear(B)
```

unstack(C, C) = 1 + armFree + on(C, C) + clear(C)

What about on(B, C) in the third row?

• Task 3. Compute hmax(s0) for the 4 operators blocks-world problem.

Consider the following problem: $G = \{A, B, C\}$, $I = \{\}, O = \{add(o_a) = \{A\}, add(o_b) = \{B\}, add(o_c) = \{C\}\}$, which following option is correct?

- $h^* = 3$, $h_{max} = 1$, $h_{add} = 1$
- $h^* = 3, h_{max} = 1, h_{add} = 3$
- $h^* = 3$, $h_{max} = 3$, $h_{add} = 1$
- $h^* = 3$, $h_{max} = 3$, $h_{add} = 3$

Consider the following problem: $G = \{A, B, C\}$, $I = \{\}, O = \{add(o_a) = \{A, B, C\}\}$, which following option is correct?

- $h^* = 1, h_{max} = 1, h_{add} = 1$
- $h^* = 1, h_{max} = 1, h_{add} = 3$
- $h^* = 1, h_{max} = 3, h_{add} = 1$
- $h^* = 1, h_{max} = 3, h_{add} = 3$