Sebelum masuk ke kedua metode uji optimum, kita lihat dulu alasan mengapa perlu dilakukan uji optimum terhadap tabel solusi awal basis yang diperoleh dari penentuan variabel basis awal.

Uji Optimum

Perhatikan tabel kecil dibawah ini (kiri) yang diselesaikan menggunakan metode SBL. Kita cek dengan cara menggeser satu satuan alokasi ke kotak yang kosong, dan tentukan nilai fungsinya, apakah ada perbedaan dan bagaimana perbedaannya sebagai berikut?

Pada tabel kanan, kotak K_{21} diisi dengan alokasi satu satuan dengan cara menggeser satu satuan dari K_{22} , otomatis alokasi pada K_{22} akan berkurang satu satuan, dan alokasi pada K_{11} digeser satu satuan ke K_{12} , sehingga K_{12} akan bertambah satu satuan sedangkan K_{11} akan berkurang satu satuan.

	D_1		D)2	b_i
01	50	4	30	2	80
02		1	20	2	20
a_{j}	5	0	5	0	100

	D_1	D_2	b_i
O_1	4	2	80
	50 – 1	30 + 1	
02	1	2	20
02	0 + 1	20 – 1	20
a_j	50	50	100

Selanjutnya kita periksa ongkos total (nilai fungsi tujuan) dari kedua tabel:

(a) Pada tabel kiri (penentuan variabel basis awal dengan Metode SBL)

$$C = 50.4 + 30.2 + 20.2 = 200 + 60 + 40 = 300.$$

(b) Pada tabel kanan (setelah penggeseran)

$$C = 49.4 + 31.2 + 1.1 + 19.2 = 196 + 62 + 1 + 38 = 297 < 300.$$

Dengan melakukan penggeseran hanya satu satuan alokasi saja bisa menunjukkan bahwa tabel awal masalah (dalam contoh ini Metode SBL) tidak memberikan solusi optimal (yaitu meminimumkan). Maka dapat dipertimbangkan untuk melakukan penggeseran alokasi lebih besar lagi, yang diharapkan akan memberikan hasil yang lebih baik (lebih cepat mencapai nilai minimum yang diinginkan), dengan petunjuk sebagai berikut.

Sekarang alokasi jika K_{22} seluruhnya digeser ke K_{21} , sehingga K_{22} menjadi kotak kosong (variabelnya menjadi variabel non basis), sedangkan kotak K_{21} menjadi variabel basis dengan nilai alokasi 20. Proses ini tidak berhenti disini, karena pergeseran alokasi akan menyebabkan perlunya perubahan pada alokasi kotak-kotak terkait dengan nilai *supply* dan *demand* pada sumber dan tujuan terkait. Untuk itu perlu dilakukan pergeseran alokasi pada kotak terkait sebagai berikut. Agar kolom ke-1 tetap jenuh maka K_{11} harus digeser 20 satuan ke K_{12} , yaitu alokasi pada K_{11} menjadi 50-20=30, sedangkan alokasi pada K_{12} menjadi 30+20=50. Solusi layak basis sekarang adalah pada K_{11} diperoleh x_{11} dengan alokasi 30, pada K_{12} diperoleh x_{12} dengan alokasi 50, dan pada K_{21} diperoleh x_{21} dengan alokasi 20, sedangkan pada K_{22} diperoleh x_{22} dengan alokasi 0, yaitu x_{22} menjadi variabel non basis. Ongkos total (fungsi tujuan setelah perubahan) adalah C=30.4+50.2+20.1=120+100+20=240

Nilai C = 240 ini menjadi nilai optimum tabel contoh. Mengapa?

	D_1		D_2		b_i
01	30	4	50	2	80
02	20	1		2	20
a_j	5	0	5	0	100

Demikianlah, pergeseran di atas mengilhami pemikiran melakukan pergeseran melalui suatu lintasan tertentu yang disebut dengan *lintasan tertutup*, yaitu suatu lintasan yang dimulai dari suatu kotak kosong terhadap kotak-kotak isi disekitarnya dengan menjaga tetap jenuhnya baris kolom yang telah terjadi dari penentuan variabel basis awal dengan Metode SBL, Metode Vogel, ataupun Metode c_{ij} Terkecil. Apakah penentuan lintasan ini bisa dilakukan sembarang? Tidak. Bagaimana cara menentukannya? Mari perhatikan kembali tabel contoh sederhana di atas. Kita awali dengan kotak kosong K_{21} yang kita isi dengan alokasi maksimum yang dimiliki oleh kotak K_{22} (Perhatikan maksimum yang dimiliki oleh K_{22} , mengapa?). Kemudian dilanjutkan dengan menjaga alokasi pada kotak isi disekitarnya sedemikian sehingga *supply* dan *demand* tetap terjaga nilainya, yaitu dengan menggeser alokasi pada kotak K_{11} sebesar 20 ke kotak isi K_{12} . Jika digambarkan lintasannya adalah $K_{21} \rightarrow K_{11} \rightarrow K_{12} \rightarrow K_{22} \rightarrow K_{21}$, tampak merupakan

suatu lintasan tertutup dari K_{21} (kotak kosong) ke kotak-kotak isi lain dan kembali ke kotak K_{21} . Pergeseran alokasi dari K_{22} ke K_{21} ke K_{11} dan terakhir ke K_{12} . Mengapa dari K_{22} dan tidak dari K_{11} atau K_{12} ?

Perhatikan lintasan tertutup kita adalah dari kotak kosong bergerak ke atas (kotak isi), ke kanan (kotak isi), ke bawah (kotak isi), dan kembali ke kotak kosong. Dengan arah pergerakan searah putaran jarum jam.

Dari pergerakan ini kita akan dapatkan kotak donor (pemberi) dan kotak akseptor (penerima). Kotak donor adalah kotak yang akan memberikan alokasi yang dimilikinya, sedangkan kotak akseptor adalah kotak yang akan menerima alokasi. Selanjutnya bagaimana menentukan alokasi donor yang akan diberikan? Kita lanjutkan dengan memberi tanda pada kotak donor dengan tanda negatif (-), sedangkan pada kotak akseptor dengan tanda positif (+). Selanjutnya kita pilih alokasi donor yang termurah (yang nilainya paling kecil), pada contoh kita di atas kotak donor dengan alokasi termurah adalah K_{22} dengan alokasi 20. Nilai donor termurah ini yang akan mengisi kotak kosong, menjadi pengurang kotak donor yang lain, dan menjadi penambah kotak akseptor yang lain.

Pertanyaan:

- 1. Apakah lintasan tertutup ini harus hanya terdiri dari 4 kotak saja? Jawabnya Tidak.
- 2. Kalau begitu kotak donor dan kotak akseptor, masing-masing bisa lebih dari dua? Jawabnya Iya.
- 3. Apakah lintasan ini harus bergerak ke atas, ke kanan, ke kiri, dan ke bawah? Jawabnya Iya.
- 4. Apakah tidak boleh bergerak ke arah diagonal? Jawabnya Tidak Boleh.
- 5. Apakah boleh meloncati kotak isi atau kotak kosong yang tidak digunakan? Jawabnya Boleh.
- 6. Apakah kotak isi dan kotak kosong yang dilewati harus masuk dalam lintasan tertutup? Jawabnya Tidak, jika kotak-kotak tersebut tidak digunakan.

Untuk lebih jelasnya kita lihat pada dua metode uji optimal berikut.

Sekarang kita kupas kedua metode uji optimum berikut, dimulai dengan metode Stepping Stone atau Metode Batu Loncatan (MBL).

Metode Batu Loncatan (MBL)

Algoritma MBL adalah:

1. Buat Tabel Lintasan Tertutup

Kotak	LINTASAN	Δc	c'_{ij}
Kosong			

- 2. Daftarkan semua kotak kosong.
- 3. Buat lintasan tertutup untuk semua kotak kosong.
- 4. Beri tanda (+) dan (-) berselang seling pada kotak-kotak di lintansan tertutup.
- 5. Beri nilai c_{ij} pada kotak yang bersesuaian di lintasan tertutupnya.
- 6. Jumlahkan nilai c_{ij} tersebut sebagai nilai Δc .
- 7. Tentukan nilai $c'_{ij} = -\Delta c$.
- 8. Lakukan Uji Optimum dengan indikator keoptimuman: Tabel optimum jika $c'_{ij} \leq 0$ untuk setiap i, j indeks pada kotak kosong.

Penentuan pergeseran variabel basis:

- a. Penentuan variabel masuk (variabel basis baru): Jika tabel belum optimum, yaitu masih ada $c'_{ij} > 0$, maka pilih nilai $c'_{ij} > 0$ terbesar. Variabel pada kotak dengan $c'_{ij} > 0$ terbesar tersebut menjadi variabel basis baru. Jika ada nilai yang sama, bisa dipilih salah satu.
- b. Penentuan variabel keluar (variabel non basis baru):

Perbaiki tabel:

- i. Pada kotak terpilih, lakukan perpindahan alokasi kotak donor (kotak bertanda (-)) ke kotak akseptor (kotak bertanda (+)) pada lintasan tertutupnya. Tentukan alokasi kotak donor terkecil (abaikan tanda (-)). Tambahkan alokasi donor terkecil pada semua kotak akseptor, dan gunakan alokasi donor terkecil tersebut untuk mengurangi alokasi kotak donor yang lain.
- ii. Isikan alokasi kotak isi lain yang tidak masuk dalam lintasan tertutup seperti pada tabel sebelumnya.
- 9. Ulangi langkah 1 8 hingga indikator optimum dicapai.

Contoh berikut ini penentuan variabel basis awal menggunakan Metode c_{ij} Terkecil

	D_1	I)2	D	3	L) ₄	b_i
O_1	4		4		7	ĺ	8	50
		50						
O_2	5		7		9		1	100
2	20			_		80		
O_3	3	l i	3		4		9	100
03	100	∣ i						100
O_4	6	I	5		8		7	100
4	30	10	l	60				
a_{j}	150	6	50	6	0	8	0	350

Menggunakan metode c_{ij} terkecil pengisian dilakukan dari $K_{24} \to K_{31} \to K_{12} \to K_{21} \to K_{42} \to K_{41} \to K_{43}$. Banyaknya kotak isi $7 = m + n - 1 \to \text{tidak merosot}$.

Variabel basis awal: x_{24} , x_{31} , x_{12} , x_{21} , x_{42} , x_{41} , x_{43} dengan alokasi berturut-turut 80,100,50,20,10,30,60.

Nilai ongkos total

$$C = 50.4 + 20.5 + 80.1 + 100.3 + 30.6 + 10.5 + 60.8$$
$$= 200 + 100 + 80 + 300 + 180 + 50 + 480$$
$$= 1390.$$

Lakukan algoritma MBL untuk menentukan keoptimuman masalah pada Tabel 1.

1. Buat Tabel Lintasan Tertutup untuk semua kotak kosong. Pada Tabel 1 terdapat mn - (m+n-1) = 16-7 = 9 kotak kosong, m banyaknya sumber, n banyaknya destinasi. Daftarkan kotak kosong pada Tabel Lintasan Tertutup.

	LINTASAN	Δc	c'_{ij}
K ₁₁			
K ₁₃			

K ₁₄		
K ₂₂		
K ₂₃		
K ₃₂		
K ₃₃		
K ₃₄		
K ₄₄		

2. Buat lintasan tertutup untuk semua kotak kosong.

	LINT	ASAN					Δc	c'_{ij}
K ₁₁	K ₁₁	K ₁₂	K ₄₂	K ₄₁				
K ₁₃	K ₁₃	K ₁₂	K ₄₂	K ₄₃				
K ₁₄	K ₁₄	<i>K</i> ₁₂	K ₄₂	K ₄₁	K ₂₁	K ₁₄		
K ₂₂	K ₂₂	K ₂₁	K ₄₁	K ₄₂				
K ₂₃	K ₂₃	K ₂₁	K ₄₁	K ₄₃				
K ₃₂	K ₃₂	K ₃₁	K ₄₁	K ₄₂				
K ₃₃	K ₃₃	K ₃₁	K ₄₁	K ₄₃				
K ₃₄	K ₃₄	K ₃₁	K ₂₁	K ₂₄				
K_{44}	K ₄₄	K ₂₄	K ₂₁	K ₄₁				

3. Beri tanda (+) dan (-) berselang seling pada kotak-kotak di lintansan tertutup.

	LINTAS	SAN		Δc	c'_{ij}
K ₁₁	K ₁₁ F	K_{12} K_{42}	K ₄₁		
	+ -	+	_		
K ₁₃	K ₁₃ F	K_{12} K_{42}	K_{43}		
	+ -	+	_		

K ₁₄	K ₁₄	K ₁₂	K ₄₂	K ₄₁	K ₂₁	K ₁₄	
	+	_	+	_	+	_	
K ₂₂	K ₂₂	K ₂₁	K_{41}	K ₄₂			
	+	_	+	_			
K ₂₃	K ₂₃	K ₂₁	K ₄₁	K ₄₃			
	+	_	+	_			
K ₃₂	K ₃₂	K ₃₁	K_{41}	K_{42}			
	+	_	+	_			
K ₃₃	K ₃₃	K ₃₁	K ₄₁	K ₄₃			
	+	_	+	_			
K ₃₄	K ₃₄	K ₃₁	K ₂₁	K ₂₄			
	+	_	+	_			
K_{44}	K_{44}	K ₂₄	K ₂₁	K ₄₁			
	+	_	+	_			

4. Beri nilai c_{ij} pada kotak yang bersesuaian di lintasan tertutupnya.

	LINT	ASAN					Δc	c'_{ij}
K ₁₁	K ₁₁	K ₁₂	K ₄₂	K ₄₁				
	+4	-4	+5	-6				
K ₁₃	_		K_{42}	_				
	+7	-4	+5	-8				
K ₁₄	K ₁₄	K ₁₂	K_{42}	K_{41}	K ₂₁	K ₁₄		
	+8	-4	+5	-6	+5	-1		
K ₂₂	K ₂₂	K ₂₁	K_{41}	K_{42}				
	+7	-5	+6	-5				
K ₂₃			K_{41}					
	+9	-5	+6	-8				
K ₃₂			K ₄₁					
	+3	-3	+6	-5				

K ₃₃	K ₃₃	K ₃₁	K_{41}	K_{43}		
	+4	-3	+6	- 9		
K ₃₄	K ₃₄	K ₃₁	K ₂₁	K ₂₄		
	+9	-3	+5	-1		
K ₄₄	K_{44}	K_{24}	K ₂₁	K ₄₁		
	+7	-1	+5	-6		

5. Jumlahkan nilai c_{ij} tersebut sebagai nilai Δc .

	LINT	ASAN					Δc	c'_{ij}
K ₁₁	K ₁₁	K ₁₂	K_{42}	K ₄₁				
	+4	-4	+5	-6			-1	
K ₁₃	K ₁₃	K ₁₂	K_{42}	K_{43}				
	+7	-4	+5	-8			0	
K ₁₄	K ₁₄	K_{12}	K_{42}	K_{41}	K_{21}	K_{14}		
	+8	-4	+5	-6	+5	-1	7	
K ₂₂	K ₂₂	K ₂₁	K_{41}	K_{42}				
	+7	-5	+6	-5			3	
K ₂₃	K ₂₃	K ₂₁	K ₄₁	K ₄₃				
	+9	-5	+6	-8			2	
K ₃₂	K ₃₂	K ₃₁	K ₄₁	K ₄₂				
	+3	-3	+6	-5			1	
K ₃₃	K ₃₃	K ₃₁	K_{41}	K_{43}				
	+4	-3	+6	- 9			-1	
K ₃₄	K ₃₄	K ₃₁	K ₂₁	K ₂₄				
	+9	-3	+5	-1			10	
K_{44}	K ₄₄	K ₂₄	K ₂₁	K ₄₁				
	+7	-1	+5	-6			5	

6. Tentukan nilai $c'_{ij} = -\Delta c$.

LINTASAN	Δc	c'_{ij}

K ₁₁	K ₁₁	K ₁₂	K ₄₂	K ₄₁				
	+4	-4	+5	-6			-1	1
K ₁₃	K ₁₃	K ₁₂	K_{42}	K_{43}				
	+7	-4	+5	-8			0	0
K ₁₄	K ₁₄	K ₁₂	K ₄₂	K ₄₁	K ₂₁	K ₁₄		
	+8	-4	+5	-6	+5	-1	7	-7
K ₂₂	K ₂₂	K ₂₁	K ₄₁	K_{42}				
	+7	-5	+6	- 5			3	-3
K ₂₃	K ₂₃	K ₂₁	K ₄₁	K_{43}				
	+9	-5	+6	-8			2	-2
K ₃₂	K ₃₂	K ₃₁	K_{41}	K_{42}				
	+3	-3	+6	-5			1	-1
K ₃₃	K ₃₃	K ₃₁	K ₄₁	K ₄₃				
	+4	-3	+6	- 9			-1	1
K ₃₄	K ₃₄	K ₃₁	K ₂₁	K ₂₄				
	+9	-3	+5	-1			10	-10
K ₄₄	K ₄₄	K ₂₄	K ₂₁	K ₄₁				
	+7	-1	+5	-6			5	-5

7. Lakukan uji optimum.

Ketika mengerjakan soal, kalian cukup membuat tabel berikut ini saja ya... Tabel Lintasan Tertutup

		ASAN					Δc	c'_{ij}
K ₁₁	K ₁₁	K ₁₂	K ₄₂	K ₄₁				
	+4	-4	+5	-6			-1	1
K ₁₃	K ₁₃	<i>K</i> ₁₂ -4	K ₄₂	K_{43}				
	+7	-4	+5	-8			0	0
K ₁₄	K ₁₄	K ₁₂	K_{42}	K ₄₁	K ₂₁	K ₁₄		
	+8	-4	+5	-6	+5	-1	7	-7

K ₂₂	K ₂₂	K ₂₁	K ₄₁	K_{42}		
	+7	-5	+6	-5	3	-3
K ₂₃	K ₂₃	K ₂₁	K_{41}	K_{43}		
	+9	-5	+6	-8	2	-2
K ₃₂	K ₃₂	K ₃₁	K ₄₁	K_{42}		
	+3	-3	+6	- 5	1	-1
K ₃₃	K ₃₃	K ₃₁	K ₄₁	K_{43}		
	+4	-3	+6	-9	-1	1
K ₃₄	K ₃₄	K ₃₁	K ₂₁	K ₂₄		
	+9	-3	+5	-1	10	-10
K ₄₄	K ₄₄	K ₂₄	K ₂₁	K ₄₁		
	+7	-1	+5	-6	5	- 5

- 8. Ada dua c'_{ij} positif terbesar yang sama dengan nilai 1, yaitu c'_{11} pada K_{11} dan c'_{33} pada K_{33} , maka kita boleh memilih x_{11} atau x_{33} untuk menjadi variabel basis baru. Misalkan kita pilih x_{11} untuk menjadi variabel basis baru.
- 9. Perbaiki tabel: Dalam lintasan tertutupnya kotak donor (bertanda (-)) adalah K_{12} dan K_{41} , sedangkan kotak akseptor (bertanda (+)) adalah K_{11} dan K_{42} . Alokasi pada K_{12} adalah 50 dan pada K_{41} adalah 30, sehingga alokasi donor termurah adalah 30 pada K_{41} (x_{41} menjadi variabel non basis). Lakukan pergeseran alokasi:
 - a. Alokasi 30 disikan pada K_{11} dari alokasi 30 dari K_{41} , sehingga K_{41} menjadi kotak kosong.
 - b. Alokasi pada K_{12} dikurangi 30 menjadi 20
 - c. Alokasi pada K₄₂ ditambah 30 menjadi 40
- 10. Buat tabel baru, dengan alokasi baru pada kotak dengan variabel basis baru.
- 11. Ulangi langkah 1-10 pada tabel baru dan seterusnya hingga diperoleh hasil optimum.

Tabel 2

	D	1	D	2	D	3	D	4	b_i
O_1		4		4		7		8	50
	30		20						
O_2		5		7		9		1	100
	20						80		
O_3		3		3		4		9	100
	100								
O_4		6		5		8		7	100
1			40		60				
a_j	15	50	6	0	6	0	8	0	350

Sekarang, ongkos totalnya adalah

$$C = 30.4 + 20.4 + 20.4 + 80.1 + 100.3 + 40.5 + 60.8$$
$$= 120 + 80 + 80 + 80 + 300 + 200 + 480$$
$$= 1340 < 1390.$$

Jadi ongkos total sudah turun. Apakah sudah optimum? Cek! (Lakukan uji optimum lagi dengan MBL)

Metode MOD1

Selanjutnya akan diuraikan mengenai Metode MOD1

Metode MOD1 sedikit lebih simpel dibandingkan MBL. Penentuan lintasan tertutup dilakukan hanya pada kotak kosong yang variabelnya terpilih menjadi variabel basis baru. Sedang penentuan variabel basis baru dilakukan dengan perhitungan secara aljabar menggunakan rumus.

Kita uraikan Metode MOD1 dalam algoritma berikut:

Algoritma MOD1: Uji Optimum:

- 1. Buat 1 kolom tambahan dan 1 baris tambahan pada tabel transportasi. Pada kolom tambahan beri identitas u_i yaitu bilangan baris untuk setiap barisnya, sedang pada baris tambahan beri identitas v_i yaitu bilangan kolom untuk setiap kolomnya.
- 2. Tentukan satu nilai sebagai nilai awal (berupa bilangan bulat positif), bisa satu nilai bilangan baris, bisa juga satu bilangan kolom. Salah satunya saja. Nilainya terserah mau diisi berapa menyesuaikan nilai c_{ij} pada tabel ongkos satuan.
- 3. Tentukan nilai bilangan baris dan bilangan kolom yang lain bagi semua kotak isi (c_{ij} kotak isi) pada tabel menggunakan rumus $u_i + v_j = c_{ij}$, dengan memanfaatkan nilai bilangan baris atau bilangan kolom yang dipilih tadi.
- 4. Menentukan variabel basis baru:
 - a. Menggunakan semua nilai bilangan baris dan bilangan kolom yang sudah ditentukan pada bagian 3, tentukan nilai c'_{ij} dengan rumus $c'_{ij} = u_i + v_j c_{ij}$.
 - b. Indikator keoptimuman: tabel optimum jika $c'_{ij} \leq 0$ untuk setiap kotak kosong. Jika masih ada $c'_{ij} > 0$, maka tabel belum optimum, lakukan perbaikan tabel, buat tabel baru dengan penentuan alokasi sebagai berikut:
 - i. Pilih $c'_{ij} > 0$ terbesar. Jika ada yang sama pilih salah satu.
 - ii. Variabel pada kotak kosong dengan $c'_{ii} > 0$ terpilih akan menjadi variabel basis baru.
 - iii. Menentukan variabel non basis baru:
 - (1) Buatkan lintasan tertutup pada kotak kosong terpilih, mulai dari kotak kosong.
 - (2) Tentukan tanda (+) dan (-) berselang seling pada lintasan tertutupnya.
 - (3) Pilih alokasi terkecil pada kotak bertanda (-) (abaikan tanda dalam pemilihannya).
 - (4) Lakukan penggeseran alokasi pada lintasan tertutupnya. Kotak bertanda (+) diberi tambahan alokasi terkecil terpilih tadi, kotak bertanda (-) yang tidak terpilih dikurangi alokasi terkecil terpilih tadi.
 - (5) Isikan alokasi kotak isi lain yang tidak masuk dalam lintasan tertutup.
- 5. Ulangi langkah 1 4 pada tabel berikutnya hingga indikator keoptimuman tercapai.

Contoh. Tabel berikut penentuan solusi awalnya menggunakan Metode c_{ij} Terkecil

	D	1	D	2	D	3	D	4	b_i
O_1		4		4		7		8	50
			50						
O_2		5		7		9		1	100
	20						80		
O_3		3		3		4		9	100
	100								
O_4		6		5		8		7	100
	30		10		60				
a_j	15	50	6	0	6	0	8	0	350

Perhatikanlah tabel di atas. Kotak yang diisi berturut-turut: K_{24} , K_{21} , K_{31} , K_{41} , K_{12} , K_{42} , dan K_{43} . Banyaknya kotak isi 7 = m + n - 1 = 4 + 4 - 1. Jadi tabel itu adalah solusi layak basis.

Variabel basis awal: x_{24} , x_{21} , x_{31} , x_{41} , x_{12} , x_{42} , x_{43} dengan alokasi berturut-turut 80,20,100,30,50,10,60.

Nilai ongkos total

$$C = 50.4 + 20.5 + 80.1 + 100.3 + 30.6 + 10.5 + 60.8$$
$$= 200 + 100 + 80 + 300 + 180 + 50 + 480$$
$$= 1390.$$

Uji Optimum:

- 1. Buatkan kolom dan baris tambahan pada tabel, sebagai kolom bilangan baris u_i , dan baris bilangan kolom v_i .
- 2. Tentukan nilai salah satu bilangan baris atau bilangan kolom. Pada contoh ini $v_1 = 0$.
- 3. Tentukan semua nilai bilangan baris dan bilangan kolom sisanya dengan rumus $u_i + v_j = c_{ij}$ sebagai berikut: cek!

Untuk
$$K_{21}: u_2 + v_1 = c_{21} \rightarrow u_2 + 0 = 5 \rightarrow u_2 = 5$$
.

Untuk
$$K_{31}$$
: $u_3 + v_1 = c_{31} \rightarrow u_3 + 0 = 3 \rightarrow u_3 = 3$.

Untuk
$$K_{41}$$
: $u_4 + v_1 = c_{41} \rightarrow u_4 + 0 = 6 \rightarrow u_4 = 6$.

Untuk
$$K_{24}$$
: $u_2 + v_4 = c_{24} \rightarrow 5 + v_4 = 1 \rightarrow v_4 = -4$.

Untuk
$$K_{42}: u_4 + v_2 = c_{42} \rightarrow 6 + v_2 = 5 \rightarrow v_2 = -1$$
.

Untuk
$$K_{43}$$
: $u_4 + v_3 = c_{43} \rightarrow 6 + v_3 = 8 \rightarrow v_3 = 2$.

Untuk
$$K_{12}: u_1 + v_2 = c_{12} \rightarrow u_1 + (-1) = 4 \rightarrow u_1 = 5.$$

	D_1	D_2	D_3	D_4	b_i	u_i
01	1	50	0	-7	50	5
02	20	-3	-2	80	100	5
03	100	-1	1	-10	100	3
O_4	30	5	60	-5	100	6
a_j	150	60	60	80	350	
v_j	0	-1	2	-4		•

4. Tentukan nilai c'_{ij} untuk semua kotak kosong dengan rumus $c'_{ij} = u_i + v_j - c_{ij}$ sebagai berikut: cek!

Untuk
$$K_{11}$$
: $c'_{11} = u_1 + v_1 - c_{11} = 5 + 0 - 4 = 1$.

Untuk
$$K_{22}$$
: $c'_{22} = u_2 + v_2 - c_{22} = 5 - 1 - 4 = 0$.

Untuk
$$K_{32}$$
: $c'_{32} = u_3 + v_2 - c_{32} = 3 - 1 - 7 = -5$.

Untuk
$$K_{13}$$
: $c'_{13} = u_1 + v_3 - c_{13} = 5 + 2 - 7 = 0$.

Untuk
$$K_{23}$$
: $c'_{23} = u_2 + v_3 - c_{23} = 5 + 2 - 9 = -2$.

Untuk
$$K_{33}$$
: $c'_{33} = u_3 + v_3 - c_{33} = 3 + 2 - 4 = 1$.

Untuk
$$K_{14}$$
: $c_{14}' = u_1 + v_4 - c_{14} = 5 + 2 - 8 = -1$.
Untuk K_{34} : $c_{34}' = u_3 + v_4 - c_{34} = 3 - 4 - 9 = -10$.
Untuk K_{44} : $c_{44}' = u_4 + v_4 - c_{44} = 6 - 4 - 7 = -3$.

- 5. Masih ada $c'_{ij} > 0$, tabel belum optimum. Tentukan $c'_{ij} > 0$ terbesar, maka x_{ij} menjadi variabel basis baru. Pada contoh nilai $c'_{ij} > 0$ terbesar adalah c'_{11} dan c'_{33} dengan nilai yang sama yaitu 1. Dipilih c'_{11} sehingga x_{11} pada K_{11} akan menjadi variabel basis baru.
- 6. Buatkan lintasan tertutup untuk K_{11} , yaitu $K_{11} \rightarrow K_{12} \rightarrow K_{42} \rightarrow K_{41}$.
- 7. Beri tanda (+) dan (-) berselang seling yaitu (+) $K_{11} \rightarrow (-)K_{12} \rightarrow (+)K_{42} \rightarrow (-)K_{41}$.
- 8. Pilih alokasi terkecil diantara alokasi pada K_{12} dan K_{41} , yaitu antara 50 dan 30, pilih 30.
- 9. Lakukan penggeseran alokasi: Pada K_{11} menjadi 30, pada K_{12} menjadi 20, pada K_{42} menjadi 40, dan pada K_{41} menjadi 0 (x_{41} menjadi variabel non basis baru).
- 10. Buat tabel baru dengan alokasi baru.

Dalam pengerjaan soal, kalian cukup

- 1. Menentukan pengisian variabel basis awal, urutan pengisian, alokasi, hingga ditentukan nilai fungsi tujuan awal
- 2. Menentukan bilangan baris dan bilangan kolom langsung pada tabel
- 3. Uji optimum
 - a. Menentukan c'_{ij} dengan rumus
 - b. Membuat lintasan tertutup
 - c. Memperbaiki tabel (membuat tabel baru)
 - d. Tentukan nilai fungsi tujuan baru

Dst hingga diperoleh optimum. Uraian 1-10 diperingkas demikian saja.

Tabel 2

	D	1	D	2	D	3	D	94	b_i
O_1		4		4		7		8	50
	30		20						
O_2		5		7		9		1	100
	20						80		
O_3		3		3		4		9	100
3	100								
O_4		6		5		8		7	100
4	'		40		60				
a_j	15	50	6	0	6	0	8	0	350

Sekarang, ongkos totalnya adalah

$$C = 30.4 + 20.4 + 20.4 + 80.1 + 100.3 + 40.5 + 60.8$$
$$= 120 + 80 + 80 + 80 + 300 + 200 + 480$$
$$= 1340 < 1390.$$

11. Ulangi langkah 1-9 pada tabel baru dan seterusnya hingga diperoleh tabel optimum.

Latihan. Masalah Transportasi

Bagian 1

Buatkan flowchart untuk masing – masing algoritma metode MBL dan metode MOD1

Bagian 2

Pengisian tabel awalnya bebas ya...

1. Tentukan nilai optimum masalah transportasi berikut menggunakan Metode Batu Loncatan

Dísusun oleh Caturíyatí, Edísí Revísí 2024

$$C = \begin{bmatrix} 5 & 6 & 7 & 4 \\ 2 & 9 & 7 & 5 \\ 8 & 5 & 8 & 7 \end{bmatrix}, \ b = \begin{bmatrix} 75 \\ 50 \\ 60 \end{bmatrix}, \ s = \begin{bmatrix} 45 \\ 50 \\ 40 \\ 50 \end{bmatrix}$$

2. Tentukan masalah transportasi berikut menggunakan metode MOD1

$$C = \begin{bmatrix} 6 & 4 & 3 & 5 \\ 7 & 4 & 8 & 6 \\ 8 & 3 & 2 & 5 \end{bmatrix}, b = \begin{bmatrix} 100 \\ 65 \\ 85 \end{bmatrix}, s = \begin{bmatrix} 60 \\ 80 \\ 70 \\ 40 \end{bmatrix}$$