Teoría de conjuntos

Clase 09

IIC 1253

Prof. Cristian Riveros

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

¿qué es un conjunto?

Definición

Un **conjunto** es una colección bien definida de objetos. Estos objetos son llamados **elementos del conjunto** y se dice que **pertenecen** a él.

Las siguiente nociones son primitivas y no requieren definición:

- Conjunto.
- Elemento del conjunto.
- Pertenencia (∈).

Definiremos la teoría de conjuntos a partir de estas nociones primitivas.

Nociones primitivas: predicado de pertenencia (€)

Si S es un conjunto y a es un objeto:

$$a \in S$$
 significa a es un elemento de S $a \notin S$ significa a NO es un elemento de S

Un conjunto esta completamente determinado por sus elementos.

Definición

Para definir un conjunto S en particular, es posible especificar sus elementos usando **llaves** como:

$$S = \{1,2,3\}$$

$$S' = \{0,1,2,\ldots\}$$

Nociones primitivas: conjunto y elementos de un conjunto

"En teoría de conjuntos, un objeto puede ser un conjunto."

Ejemplos

Suponga que $A = \{1,2\}$ y $B = \{1,\{1,2\}\}$

- ¿es cierto que 2 ∈ A?
- i es cierto que $2 \in B$?
- ¿es cierto que $A \in B$?

¿es cierto que si $A \in B$ y $B \in C$, entonces $A \in C$?

Subconjunto (⊆)

Definición

Para dos conjuntos A y B, diremos que A es subconjunto de B si, y solo si:

$$\forall x. \ x \in A \rightarrow x \in B$$

Si A es subconjunto de B escribiremos $A \subseteq B$.

Ejemplos

- ¿es cierto que $\{1,2\} \subseteq \{1,2,3\}$?
- ¿es cierto que $\{1, \{2\}\} \subseteq \{1, 2\}$?
- ¿es cierto que $\{1,2\} \subseteq \{1,\{1,2\}\}$?

¿es cierto que si $A \subseteq B$ y $B \subseteq C$, entonces $A \subseteq C$?

Igualdad entre conjuntos (=)

Definición

Para dos conjuntos A y B, diremos que A es **igual** de B si, y solo si:

$$A \subseteq B \land B \subseteq A$$
.

Si A es igual a B escribiremos A = B. En otras palabras:

$$A = B$$
 si, y solo si, $\forall x. \ x \in A \leftrightarrow x \in B$

Ejemplos

- ¿es cierto que $\{1,2\} = \{2,1\}$?
- ¿es cierto que $\{1,2\} = \{\{1,2\}\}$?
- ¿es cierto que $\{1,2\} = \{1,1,2\}$?

¿es cierto que A = A para todo conjunto A?

Negación de subconjunto
$$(\not\equiv)$$
 e igualdad $(\not\equiv)$

Escribiremos la negación de la relación de subconjunto e igualdad como:

$$A \not\subseteq B$$
 si, y solo si, A **NO** es subconjunto de B

$$A \neq B$$
 si, y solo si, $A \text{ NO}$ es igual a B

¿qué debe suceder para que se cumpla A ⊈ B?

$$A \not\subseteq B$$
 si, y solo si, $\exists x. \ x \in A \land x \notin B$

• ¿qué debe suceder para que se cumpla $A \neq B$?

$$A \neq B$$
 si, y solo si, $A \nsubseteq B \lor B \nsubseteq A$

Conjunto vació

Definición (axioma)

Existe un conjunto \emptyset tal que para todo x se cumple que $x \notin \emptyset$.

$$\forall x. \ x \notin \emptyset$$

El conjunto Ø lo llamaremos el conjunto vació.

Proposición

Existe un único conjunto vacío.

Demostración

Por contradicción , suponga que existe un conjunto \varnothing' tal que:

- 1. $\forall x. \ x \notin \emptyset'$ y
- 2. $\emptyset' \neq \emptyset$.

$$i \varnothing' \subseteq \varnothing$$
 ?

Conjunto vació

Definición (axioma)

Existe un conjunto \varnothing tal que para todo x se cumple que $x \notin \varnothing$.

 $\forall x. \ x \notin \emptyset$

El conjunto Ø lo llamaremos el conjunto vació.

Proposición

Existe un único conjunto vacío.

¿es cierto que $\emptyset \in A$ para todo A? ¿ $\emptyset \subseteq A$ para todo A?

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

¿cómo definir un conjunto?

1. Por extensión: listando todos sus elementos.

$$S = \{1, 2, 3, 4, 5\}$$

Para todo a: $a \in S \Leftrightarrow a$ aparece en la lista.

2. Por comprensión: una propiedad $\phi(x)$ en algún lenguaje formal (ej. lógica de predicados) que solo cumplen los elementos del conjunto.

$$S = \{ x \mid \phi(x) \text{ es verdadero } \}$$

Para todo a: $a \in S \Leftrightarrow a \text{ satisface } \phi(x)$. $(\phi(a) \text{ es verdadero})$

¿cómo definir un conjunto?

¿cuáles son definiciones válidas?

- $S_1 = \{a, b, c, \ldots, x, y, z\}$
- $S_2 = \{1, 2, 3, \ldots\}$
- $S_4 = \{A \mid A \text{ es un conjunto con más de tres elementos}\}$
- $S_5 = \{B \mid B \in B\}$

¿existen definiciones inválidas en teoría de conjuntos?

Paradoja de Russell (1901)

Bertrand Russell (1872 - 1970)

Paradoja de Russell (1901)

Defina el siguiente conjunto:

$$S^* = \{ B \mid B \notin B \}$$

¿es la definición de S^* válida?

$$j S^* \in S^*$$
?

¿cuál es el problema de este tipo de definiciones?

Problema

"Considerar definiciones que se referencian a si mismas"

Moraleja: NO todas las definiciones son válidas en teoría de conjuntos.

... hay que tener cuidado, **pero** todas las definiciones que veamos en este curso serán válidas.

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Operaciones sobre conjuntos

Definición

Se definen las siguientes operaciones entre conjuntos:

■ Union: $A \cup B$ son todos los elementos que están en A o en B.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

■ Intersección: $A \cap B$ todos los elem. que están en A y en B, simult..

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

Operaciones sobre conjuntos

Definición

Se definen las siguientes operaciones entre conjuntos:

Diferencia: $A \setminus B$ son todos los elem. que están en A pero no en B.

$$A \setminus B = \{ x \mid x \in A \land x \notin B \}$$

Complemento: A^c son todos los elementos que NO están en A.

$$A^c = \{x \mid x \notin A\}$$

(**relativo** a un universo \mathcal{U} tal que $A \subseteq \mathcal{U}$)

Operaciones sobre conjuntos

Ejemplos

Suponiendo que A = $\{1,2\}$ y B = $\{1,\{2\}\}$ con \mathcal{U} = $\{1,2,\{1\},\{2\}\}$:

- $A \cup B = \{1, 2, \{2\}\}$
- $\bullet A \cap B = \{1\}$
- $A \setminus B = \{2\}$
- $\bullet B \setminus A = \{\{2\}\}$
- $A^c = \{\{1\}, \{2\}\}$

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

1. Asociatividad:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

2. Conmutatividad:

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Demostración: ejercicio!

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

3. Idempotencia:

$$A \cup A = A$$
$$A \cap A = A$$

4. Absorción:

$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

Demostración: ejercicio!

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

5. Distributividad:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

6. De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Demostraremos Distributividad (De Morgan es ejercicio)

Demostración:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Vamos a demostrar: $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.
(la otra dirección es similar)
Sea $x \in A \cup (B \cap C)$.
Por demostrar: $x \in (A \cup B) \cap (A \cup C)$
 $x \in A \cup (B \cap C) \implies x \in A \lor x \in B \cap C$ (por def.)
 $\Rightarrow x \in A \lor (x \in B \land x \in C)$ (por def.)
 $\Rightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C)$ (por distrib.)
 $\Rightarrow (x \in A \cup B) \land (x \in A \cup C)$ (por def.)
 $\Rightarrow x \in (A \cup B) \cap (A \cup C)$ (por def.)

Todas las propiedades son consecuencia de una equivalencia lógica!

Propiedades

Para conjuntos A, B y C, con un universo \mathcal{U} .

7. Elemento neutro:

$$A \cup \varnothing = A$$

 $A \cap \mathcal{U} = A$

8. Dominación:

$$A \cup \mathcal{U} = \mathcal{U}$$

 $A \cap \emptyset = \emptyset$

9. Elemento inverso:

$$A \cup A^c = \mathcal{U}$$

 $A \cap A^c = \emptyset$

Demostración: ejercicio!

Paréntesis y precedencia

Simplificación de operadores de conjuntos y parentésis

Desde ahora asumiremos el siguiente orden de precedencia entre operadores:

Operadores	Precedencia
.c	1
Ω	2
U	3

Ejemplo

$$P \cap Q^c \cup R \cap Q = ((P \cap (Q)^c) \cup (R \cap Q))$$

Definición

Para un conjunto ${\mathcal S}$, se definen las siguientes operaciones :

■ Union generalizada: $\bigcup S$ son todos los elementos que pertenecen a algún elemento de S.

$$\bigcup S = \{x \mid \exists A. \ A \in S \land x \in A\}$$

■ Intersección generalizada: $\bigcap S$ son todos los elementos que pertenecen a todos los elementos en S, simultaneamente.

$$\bigcap \mathcal{S} = \{ x \mid \forall A. \ A \in \mathcal{S} \to x \in A \}$$

Definición (alternativa)

Para un conjunto \mathcal{S} , se definen las siguientes operaciones:

Union generalizada:

$$\bigcup \mathcal{S} = \bigcup_{A \in \mathcal{S}} A$$

Intersección generalizada:

$$\bigcap \mathcal{S} = \bigcap_{A \in \mathcal{S}} A$$

Ejemplos

Suponiendo que $\mathcal{S} = \{\{1,2\},\{2,3\},\{2,4\}\}$:

- $\cup S = \{1, 2, 3, 4\}$

¿cuál es el conjunto $\bigcup \varnothing$? ¿ $\bigcap \varnothing$?

Caso especial

Si $S = \{A_1, A_2, \dots, A_k\}$, se definen las siguientes operaciones:

Union generalizada (conjunto indexado):

$$\bigcup S = \bigcup_{i=1}^k A_i$$

■ Intersección generalizada (conjunto indexado)

$$\bigcap \mathcal{S} = \bigcap_{i=1}^k A_i$$

Outline

Conjuntos

Descripción de conjuntos

Operaciones de conjuntos

Conjunto potencia

Conjunto potencia

Definición

Para un conjunto A, se define el **conjunto potencia** $\mathcal{P}(A)$ de todos los subconjuntos de A:

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

Ejemplo

Suponga que $A = \{1, 2, 3, 4\}$, entonces:

- ¿es cierto que $2 \in \mathcal{P}(A)$?
- ¿es cierto que $\{1,2\} \in \mathcal{P}(A)$?
- **■** ¿es cierto que $A \in \mathcal{P}(A)$?
- **■** ¿es cierto que $\emptyset \in \mathcal{P}(A)$?

¿cuál es el resultado de $\cup \mathcal{P}(A)$? ¿o de $\cap \mathcal{P}(A)$?

Conjunto potencia

Ejemplo 1

Para el conjunto $\{1,2\}$, ¿cuáles son todos los elementos de $\mathcal{P}(\{1,2\})$?

(¿qué flecha estaría faltando?)

Conjunto potencia

Ejemplo 2

Para el conjunto $\{1,2,3\}$, ¿cuáles son todos los elementos de $\mathcal{P}(\{1,2,3\})$?

Definición

Para todo conjunto A, se define el valor:

|A| = número de elementos distintos en A.

Ejemplo

- $|\{1,2\}| = 2$
- $|\{1,1,2\}| = 2$
- $|\{1,2,3,\ldots\}| = \infty$

¿para cuál conjunto se tiene que |A| = 0?

¿cuál es la cardinalidad de $\mathcal{P}(A)$?

Suponga $A = \{1, 2, ..., n\}$, ¿cuál es la **cardinalidad** de $\mathcal{P}(A)$ según n?

¿2ⁿ? ¿cómo lo demostramos?

Demostración por inducción

Demostración por inducción

Suponga que deseamos demostrar una afirmación $\forall x. P(x)$ sobre \mathbb{N} .

Principio de inducción

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(0) es verdadero,
- 2. si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo n en los naturales se tiene que P(n) es verdadero.

Notación

- P(0) se llama el **caso base**.
- En el paso 2.
 - P(n) se llama la hipótesis de inducción.
 - P(n+1) se llama la **tesis de inducción** o paso inductivo.

Teorema

Si
$$A = \{1, 2, ..., n\}$$
, entonces $|\mathcal{P}(A)| = 2^n$.

Demostración

Demostramos que se cumple para n = 0:

Caso base
$$(n = 0)$$
: $|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0$

Demostración (continuación)

Suponemos que se cumple para un n cualquiera y demostramos para n + 1:

Hipótesis de inducción:

$$|\mathcal{P}(\{1,\ldots,n\})| = 2^n$$

Inducción (idea):

Demostración (continuación)

Suponemos que se cumple para un n cualquiera y demostramos para n + 1:

Hipótesis de inducción:

$$|\mathcal{P}(\{1,\ldots,n\})| = 2^n$$

Inducción:

$$\begin{aligned} |\mathcal{P}(\{1,\ldots,n+1\})| &= |\mathcal{P}(\{1,\ldots,n\}) \cup \{A \cup \{n+1\} \mid A \in \mathcal{P}(\{1,\ldots,n\})\}| \\ &= |\mathcal{P}(\{1,\ldots,n\})| + |\{A \cup \{n+1\} \mid A \in \mathcal{P}(\{1,\ldots,n\})\}| \\ &= |\mathcal{P}(\{1,\ldots,n\})| + |\mathcal{P}(\{1,\ldots,n\})| \\ &= 2^n + 2^n = 2^{n+1} \end{aligned}$$