MA2102: LINEAR ALGEBRA

Lecture 12: Rank-Nullity Theorem 11th September 2020

Recall that for a linear map $T: V \to W$, we observed:

- T is injective (one-to-one) if and only if $N(T) = \{0_V\}$
- T is surjective (onto) if and only if R(T) = W

Let us revisit the previous examples through this table.

Eg	N(T)	R(T)	Nullity	Rank	Domain
1	{0}	\mathbb{R}	0	1	\mathbb{R}
2	{0}	V	0	$\dim_F(V)$	V
	$(if 2 \neq 0 in F)$				
2	V	{0}	$\dim_F(V)$	0	V
	(if 2 = 0 in F)				
3	$\{O_V\}$	V	0	$\dim_F(V)$	V
4	V	$\{O_W\}$	$\dim_F(V)$	0	V

Eg	N(T)	R(T)	Nullity	Rank	Domain
5	kernel of A	column space	nullity(A)	rank of A	\mathbb{R}^n
6	{(0,0)}	\mathbb{R}^2	0	2	\mathbb{R}^2
7	{(0,0)}	\mathbb{R}^2	0	2	\mathbb{R}^2
8	y-axis	y-axis	1	1	\mathbb{R}^2
	line $y = x$	x-axis	1	1	\mathbb{R}^2
	z-axis	xy-plane	1	2	\mathbb{R}^3
9	{(0,0)}	a line	0	1	\mathbb{R}
	{(0,0)}	a plane	0	2	\mathbb{R}^2
10	constant	$P_{n-1}(\mathbb{R})$	1	n	$P_n(\mathbb{R})$
	polynomials				
13	W	V/W	$\dim(W)$	$\dim(V)$	V
				$-\dim(W)$	

All the examples point towards the following result.

Rank-Nullity Theorem

Let V be a finite dimensional vector space. If $T: V \to W$ is a linear map, then

$$rank(T) + nullity(T) = dim(V)$$
.

It is also referred to as the Dimension Theorem.

Corollary Let $T: V \to W$ be a linear map and suppose that

$$\dim(V) = \dim(W) < \infty$$
.

Then the following are equivalent:

- (i) *T* is one-to-one;
- (ii) T is onto.

Proof.

We establish the following sequence of equivalences:

$$T$$
 is one-to-one $\iff N(T) = \{0_V\}$ [observation] \iff nullity $(T) = 0$ [definition] \iff rank $(T) = \dim(V)$ [Theorem] \iff rank $(T) = \dim(W)$ [hypothesis] \iff range $(T) = W$ [corollary C] \iff T is onto [definition]

This completes the proof.

Question Let $T: V \to V$ be an injective map and $\dim(V) = n$. Is $T^{-1}: V \to V$ a linear map?

Note that T^{-1} is a bijection.

If $T^{-1}(w_i) = v_i$ for i = 1, 2, then

$$T(v_1 + v_2) = T(v_1) + T(v_2) = w_1 + w_2$$

implies that $T^{-1}(w_1 + w_2) = v_1 + v_2$. Similarly,

$$T(cv_1) = cT(v_1) = cw_1$$

implies that $T^{-1}(cw_1) = cT^{-1}(w_1)$. Thus, T^{-1} is a linear map.

Proof of Theorem.

Let $k = \dim(N(T)) \le \dim(V) = n$. Choose a basis $\{v_1, \dots, v_k\}$ of N(T). By Replacement Theorem, extend this linearly independent set to a basis

$$\beta = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$$

of V.

Note that $\{T(v_1), \dots, T(v_n)\}$ spans R(T). However,

$$T(v_1) = T(v_2) = \cdots = T(v_k) = 0_W.$$

We will show that $\dim R(T) = n - k$.

Claim: The set $\{T(v_{k+1}), \dots, T(v_n)\}$ is a basis of R(T).

It suffices to prove linear independence. Let

$$b_{k+1}T(v_{k+1}) + \dots + b_nT(v_n) = 0_W.$$

By linearity of T, $b_{k+1}v_{k+1} + \cdots + b_nv_n \in N(T)$. Thus, there exists scalars a_1, \ldots, a_k such that

$$a_1v_1 + \dots + a_kv_k = b_{k+1}v_{k+1} + \dots + b_nv_n.$$

As β is linearly independent, all the a_i 's and b_j 's are zero.

Example Consider the map $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ given by

$$T(p) = 2p' + 3 \int_{0}^{x} p(t) dt.$$

Note that

$$T(1) = 3x$$
, $T(x) = 2 + \frac{3}{2}x^2$, $T(x^2) = 4x + x^3$.

It can be shown (exercise) that $\beta = \{T(1), T(x), T(x^2)\}$ is linearly independent. Since $R(T) = \operatorname{span}(\beta)$, rank of T is 3. By Rank-Nullity Theorem, nullity is 0, whence $N(T) = \{0\}$.