

Shortest Path Problem - what?

En kısa yolu **(shortest path)** bulmak, temelde iki düğüm arasında **(node-to-node)** en az maliyetle gidilebilen bir yolun varlığını belirleme problemidir.

- □**Dijktra:** Bir düğümden diğer tüm düğümlere en kısa yollar. (sıfır veya sıfırdan büyük)
- □ Bellman ve Ford: Bir düğümden diğerlerine en kısa yollar (eksi maliyetli graflarda).
- ☐ Floyd Warshall Algorithm: Tüm düğümler için en kısa yollar.

History and naming – how?

- > Bernard Roy in 1959
- > Stephen Warshall in 1962
 - ✓ the same as algorithms previously published
 for finding the transitive closure of a graph
- > Robert Floyd in 1962
 - ✓ published in its *currently* recognized form
- ➤ Peter Ingerman in 1962
 - √The modern formulation of the algorithm as three nested for-loops was first described by Peter Ingerman

History and naming – how?

- > The algorithm is also known as
 - ❖ The Floyd's algorithm
 - The Roy–Warshall algorithm
 - *The Roy-Floyd algorithm, or
 - ❖ The WFI algorithm

- En kısa yolu bulmak için en genel algoritmadır.
- > Yoğun graflarda kullanılması daha iyi seçim olur.
- \triangleright Çok seyrek graflarda **Dijkstra** algoritmasının |D| kez çalıştırılmasıyla daha iyi sonuç elde edilir.


```
for (aradüğüm sayacı < düğüm sayısı) {</pre>
     for (satir sayaci < düğüm sayısı) {</pre>
          for (sütun sayacı < düğüm sayısı) {</pre>
                 if (ara düğüm üzerinden gitmek daha kısa ise) {
                     Aradüğümlü maliyeti en küçük maliyet kabul et;
                     Rota bilgisini güncelle;
```

Time Complexity

- ✓ İç içe üç çevrim ile gerçekleştirilen Floyd'un Algoritmasının karmaşıklığı;
- \checkmark 0 = (N^3) olmaktadır.

- Algoritma, n düğümlü şebekeyi n satırlı ve n sütunlu kare matris olarak gösterir.
- ☐ Matrisin (i,j) elemanı, i. düğümden j. düğüme olan d_{ij} uzaklığı verir.
- i doğrudan j'ye bağlı ise d_{ij} sonlu, bağlı değilse sonsuzdur.

	1	2		j		n
1	-	d ₁₂		d_{1j}		d _{1n}
2	d _{2i}	•		d_{2j}		d _{2n}
		•		•	•	•
		•				.
$D_0 = i$	d _{i1}	d_{i2}		dij		d _{in}
		•	•	•	•	
						.
n	d _{n1}	d _{n2}		\mathbf{d}_{nj}		-

 D_0 = Başlangıç uzaklık matrisi

		1	2		j		n
	1		2		j		n
	2	1	•		j		n
			•	-			
			•		•	•	
S ₀ =	i	1	2		j		n
			•	-			
			•		•	•	
	n	1	2		j		-

 $S_0 = D \ddot{g} \ddot{g} m sırası matrisi$

- Eğer d_{ii}+d_{ik} ≤ d_{ik} ise, i'den başlayıp j'den geçerek k'ya ulaşmak daha kısadır.
- ❖ Bu durumda i'den k'ya doğrudan yolu, i→j → k dolaylı yolu ile değiştirmek optimumu verir.
- Bu **üçlü işlem değişimi,** aşağıdaki adımlar kullanılarak şebekeye sistematik olarak uygulanır.

k. Genel Adım

- k. Satırı ve k. Sütunu anahtar (pivot) satır ve anahtar (pivot) sütun olarak tanımla.
- Tüm i ve j'ler için D_{k-1}'deki her bir d_{ij} elemanına üçlü işlemi uygula. Eğer burada;

d_{ik}+d_{ki} ≤ d_{ij}, (i ≠ k, j ≠ k ve i ≠ j) sağlanıyorsa aşağıdaki değişiklikleri yap.

- a) D_{k-1} 'de d_{ij} 'yi $d_{ik} + d_{kj}$ ile değiştirerek D_k ' yı oluşturduk.
- b) S_{k-1} de S_{ii} yi k ile değiştirerek S_k yı oluşturduk. k = k + 1 olarak belirle ve k. adımı tekrar et.

Eğer anahtar satır ve sütundaki karelerle gösterilen elemanların toplamı, daireyle gösterilen ilgili arakesit elemanından küçükse, arakesit uzaklığı yerine anahtar uzaklıkların toplamını yazmak optimumdur.

k. Genel Adım

- n adım sonra \mathbf{i} ve \mathbf{j} düğümleri arasındaki en kısa yolu $\mathbf{D_n}$ ve $\mathbf{S_n}$ matrislerinden aşağıdaki kuralları kullanarak belirleriz.
- 1. D_n' deki d_{ii}, i ve j düğümleri arasındaki en kısa yolu verir.
- 2. S_n'deki i→j → k yolunu veren k = S_{ii} ara düğümünü belirle.
- Eğer $S_{ik} = k \text{ ve } S_{ki} = j \text{ ise dur; } yolun tüm ara düğümleri bulunmuştur.}$
- Aksi halde i ve k düğümleri ve k ve j düğümleri arasındaki prosedürü tekrar et.

Örnek: Aşağıdaki şebeke için her iki düğüm arasındaki en kısa yolları bulun. Uzaklıklar km cinsinden bağlantıların üzerinde belirtilmiştir.

(3,5) bağlantısı 5. düğümden 3. düğüme trafiğin olmadığı **tek yönlü** bir bağlantıdır. Diğer düğümlerde iki yönde de trafik akışına izin verilmektedir.

			D_2		
	1	2	3	4	5
1	-	3	10	8	8
2	3	1	13	5	8
3	10	13	1	6	15
4	8	5	6	-	4
5	∞	∞	∞	4	-

	15				
	1	2	S ₂ 3	4	5
_	ı	2	3	2	5
2	1	-	1	4	5
3	1	1	ı	4	5
ļ	2	2	3	1	5
•	1	2	3	4	-

Example: 4. iteration

Herhangi bir iyileşme yoktur. İşlemler bitmiştir.

			D_4		
	1	2	3	4	5
1	-	3	10	8	12
2	3	-	11	5	9
3	10	11	ı	6	10
4	8	5	6	-	4
5	12	9	10	4	-

/	15	5			
	1	2	S ₄ 3	4	5
	-	2	3	2	4
	1	_	4	4	4
	1	4	-	4	4
	2	2	3	1	5
	4	4	4	4	-

Example: 4. iteration

Herhangi bir iyileşme yoktur. İşlemler bitmiştir.

			D_4		
	1	2	3	4	5
1	1	3	10	8	12
2	3	ı	11	5	9
3	10	11	-	6	10
4	8	5	6	-	4
5	12	9	10	4	-

Örneğin 1 düğümünden 5 düğümüne **shortest path** $d_{15} = 12'$ dir.

Route : $S_{15} = 4$; $S_{14} = 2$; $S_{12} = 2$

O halde: 1'den 5'e yol $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$

Kaynaklar

- [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein Introduction to Algorithms-MIT Press (2009)
- [2] Anany Levitin Introduction to the Design and Analysis of Algorithms-Pearson (2012)
- [3] Harsh Bhasin Algorithms Design and Analysis-Oxford (2015)
- [4] Rıfat Çölkesen Veri Yapıları ve Algoritmalar Papatya Yayıncılık (2014)
- [5] https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm