T-DISTRIBUTED STOCHASTIC NEIGHBORHOOD EMBEDDING (T-SNE)

12.04.2019

Ravi Kiran Sarvadevabhatla

CVIT, IIIT Hyderabad

VISUALIZATION

- Given a collection of N objects x1,x2 ... xN
- How can we get a feel for how these N objects are arranged in data space (d-dimensional)?
- Why go through all this in the first place?

VISUALIZATION

How can we visualize high-dimensional data?

Build map in which distances between points reflect similarities in data

MATHEMATICALLY

Formulation: Minimize some objective function which measures discrepancy between similarities in the data and similarities in the map.

- What does PCA do ?

- What does PCA do ?

- What does PCA do ?

- PCA is mainly concerned with preserving **large** pairwise distances in the map

- PCA is mainly concerned with preserving **large** pairwise distances in the map

- PCA is mainly concerned with preserving **large** pairwise distances in the map

- "crowding" problem for smaller pairwise distances

- Not so good at preserving local similarities
- Linearity is too restrictive an assumption !

ISOMAP

LOCALLY LINEAR EMBEDDING (LLE)

Center a gaussian under each point i

Prob of picking point pair (i,j) \propto p_ij [their similarity] Nearby points=>Large p_ij, Far points => Infinitesimal p_ij

· In practice, we compute the input similarities slightly differently:

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{j' \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_{j'}\|^2 / 2\sigma_i^2)}$$

- We set the bandwidth σ_i such that the conditional has a fixed perplexity

of points
under each
Gaussian

allows for adapting to data distribution

$$\cdot$$
 Finally, we *symmetrize* the conditionals: $p_{ij}=rac{p_{j|i}+p_{i|j}}{2N}$

Provides robustness against outliers

Lay out points in 2D/3D such that q_ij ~ p_ij

Lay out points in 2D/3D such that q_ij ~ p_ij

• Move points around to minimize: $KL(P||Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$ Low-D

• Move points around to minimize: $KL(P||Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Move points around to minimize: $KL(P||Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

T-SNE: SIGNIFICANCE OF KL-DIVERGENCE

* Kullback-Leibler divergence:
$$KL(P||Q) = \sum_i \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
 Not a symmetric distance. This is important!

- Large p_{ij} modeled by small q_{ij} ? Big penalty!
- Small p_{ij} modeled by large q_{ij} ? Small penalty!

· Hence, t-SNE mainly preserves local similarity structure of the data

MOTIVATION

Why a Student-t distribution?

- Why do we define map similarities as $q_{ij} \propto (1 + ||\mathbf{y}_i \mathbf{y}_j||^2)^{-1}$?
- · Suppose data is intrinsically high-dimensional
- · We try to model the local structure of this data in the map
- · Result: dissimilar points have to be modeled as too far apart in the map!

T-SNE: PRESERVING LOCAL SUBSTRUCTURE

T-SNE: DEEP LEARNING

Visualizing deep image features

T-SNE: DEEP LEARNING

Visualizing sparsified sketch object features

T-SNE: OPTIMIZATION

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{j' \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_{j'}\|^2 / 2\sigma_i^2)} \qquad q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

$$KL(P_i||Q_i) = \sum \sum p_{j|i} \log \frac{p_{j|i}}{q_{i|i}}$$

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

$$KL(P_i||Q_i) = \sum_i \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

 $\frac{\delta C}{\delta y_i} = 2\sum_{i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$

 $\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$

$$\sum_{j' \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_{j'}\|^2/2\sigma_i^2) \frac{q_{ij} - \sum_k \sum_{l \neq k} (1+\|\mathbf{x}_l\|^2/2\sigma_i^2)}{2}$$

$$= \sum_{j' \neq i} KL(P_i||Q_i) = \sum_{j \neq i} \sum_{l \neq k} p_{j|i} \log \frac{p_{j|i}}{2}$$

T-SNE: SNACK (ICCV 2015)

Learning Concept Embeddings With Combined Human-Machine Expertise, Wilber et al., ICCV 2015

T-SNE: MULTIPLE MAPS

Multiple maps t-SNE

- · Construct multiple maps, and give each object a point in each map
- · Assign an importance weight to each point
- Define the similarity between two points under the multiple maps model as a weighted sum over the similarities in the individual maps

T-SNE: MULTIPLE MAPS

Monarchy

T-SNE: BARNES-HUT APPROXIMATION

Barnes-Hut approximation

· Approximate such similar interactions by a single interaction:

T-SNE: ADDING IT UP

- t-SNE = t-distributed stochastic neighborhood embedding
- 'N': cares a lot about modelling local/nearby similarities well
- 'S': gradient descent used to decide how to move points is stochastic
- t-distributed: Used to characterize similarities in lowd space
- Note: t-SNE is good for VISUALIZATION, not NECESSARILY for DIMENSIONALITY REDUCTION

IMPORTANT CAVEAT

- t-SNE : Easy to "abuse"
- Will let you see what you "wish" to see :)
- How to interpret t-SNE : http://distill.pub/2016/misreadtsne/

ADDITIONALLY ...

- 1. t-SNE often fails to preserve global structure of the dataset;
- 2. t-SNE tends to suffer from "overcrowding" when N grows above ~100k;
- 3. Barnes-Hut runtime is too slow for large N.

UMAP (UNIVERSAL MANIFOLD APPROXIMATION)

REFERENCES

- Talk : https://www.youtube.com/watch?v=RJVL80Gg3lA

- Paper :
 http://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

https://stats.stackexchange.com/questions/270391/should-dimensionality-reduction-for-visualization-be-considered-a-closed-probl/270414