Definition 0.0.1 (Hyperbolic functions).
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
, $\cos z = \frac{e^{iz} + e^{-iz}}{2} \sinh z = -i\sin(iz) = \frac{e^z - e^{-z}}{2}$, $\cosh z = \cos(iz) = \frac{e^z + e^{-z}}{2}$

Definition 0.0.2. X is a convex set, $X \xrightarrow{f} \mathbb{R}$ is **convex** if $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$ for $0 \le t \le 1$ and $x, y \in X$, f is **strictly convex** if f(tx + (1-t)y) < tf(x) + (1-t)f(y) for 0 < t < 1 and $x \ne y \in X$. f is **concave** if -f is convex

Definition 0.0.3. $X \xrightarrow{f} [-\infty, \infty]$ is **upper semicontinuous** at x if for any y > f(x), there exists a neighborhood U of x such that f(U) < y, i.e. f can only jump down at x. Thus $X \xrightarrow{f} [-\infty, \infty]$ is upper semicontinuous if $\{f < a\}$ are open. $X \xrightarrow{f} [-\infty, \infty]$ is **lower semicontinuous** if -f is upper semicontinuous, i.e. f can only jump up

Lemma 0.0.4. $\{f_{\alpha}\}_{{\alpha}\in A}$ is a family of upper semicontinuous functions, $f=\inf_{{\alpha}\in A}f_{\alpha}$ is also upper semicontinuous

Proof.

$$\{f < a\} = \bigcup_{\alpha \in A} \{f_{\alpha} < a\}$$

Lemma 0.0.5. f is upper semicontinuous, K is compact, then f attains maximum over K

Definition 0.0.6. $\Omega \stackrel{u}{\to} [-\infty, \infty)$ is **harmonic** at $x \in \Omega$ if u is continuous at x and for any ball $B(x,r), \ u(x) = \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) dy. \ \Omega \stackrel{u}{\to} [-\infty, \infty)$ is **subharmonic** at $x \in \Omega$ if u is upper semicontinuous at x and for any ball B(x,r), any continuous v harmonic on $B(x,r), \ u \leq v$ on $\partial B(x,r) \Rightarrow u \leq v$ on $\overline{B(x,r)}$. $\Omega \stackrel{u}{\to} [-\infty, \infty)$ is **superharmonic** if -u is subharmonic Harmonic \Leftrightarrow subharmonic and superharmonic

Lemma 0.0.7. $\Omega \xrightarrow{u} \mathbb{R}$ is subharmonic, $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is convex, then $f \circ u$ is also subharmonic f holomorphic $=> \log |f|$ subharmonic **Example 0.0.8.** If f is holomorphic, then $\log |f|$ is subharmonic