Foundation of Cryptography, Lecture 7 Non-Interactive ZK and Proof of Knowledge Handout Mode

Iftach Haitner, Tel Aviv University

Tel Aviv University.

April 1, 2014

Part I

Non-Interactive Zero Knowledge

Interaction is crucial for \mathcal{ZK}

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Proof: HW

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}} \approx_c \{\langle (P(w_x^2), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}},$ for any $\{w_x^1 \in \mathcal{R}_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2 \in \mathcal{R}_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$
 - Witness Hiding
 - 3 Non-interactive "zero knowledge"

Non-Interactive Zero Knowledge (\mathcal{NIZK})

Definition 2 (\mathcal{NIZK})

A pair of non interactive PPTM's (P,V) is a \mathcal{NIZK} for $\mathcal{L} \in \mathcal{NP}$, if $\exists \ell \in \text{poly } s.t.$

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- Zero knowledge: \exists PPTM S s.t. $\{(x,c,\mathsf{P}(x,w(x),c))\}_{x\in\mathcal{L},c\leftarrow\{0,1\}^{\ell(|x|)}}\approx_c \{x,\mathsf{S}(x)\}_{x\in\mathcal{L}}$ for any $w(x)\in\mathcal{R}_{\mathcal{L}}(x)$.
- c common (random) reference string (CRS)
- CRS is chosen by the simulator.
- What does this definition stand for?
- Auxiliary information.
- Amplification?

Section 1

NIZK in HBM

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let cH be the "hidden" CRS:

- Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .
- 2 Verifier only sees the bits in c^H that are indexed by \mathcal{I} .
- **3** Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H .

Soundness, completeness and ZK are naturally defined.

- We give a \mathcal{NIZK} for \mathcal{HC} , Directed Graph Hamiltonicity, in the HBM, and then transfer it into a \mathcal{NIZK} for \mathcal{HC} in the standard model.
- The latter implies a \mathcal{NIZK} for all \mathcal{NP} .

Useful Matrix

- Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an n x n adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix)/
- An $n^3 \times n^3$ Boolean matrix is useful: if it contains an Hamiltonian generalized $n \times n$ sub-matrix, and all its other entries are zeros.

Claim 3

Let T be a random $n^3 \times n^3$ Boolean matrix where each entry is 1 w.p n^{-5} . Then, $\Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$.

Proving Claim 3

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 - 2 \cdot n^3 \cdot n^{-4} = 1 - O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.
- A random permutation matrix forms a cycle wp 1/n (there are n! permutation matrices and (n-1)! of them form a cycle)

\mathcal{NIZK} for Hamiltonicity in HBM

- Common input: a directed graph G = ([n], E)
- we assume wlg. that n is a power of 2
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

Algorithm 4 (P)

Input: *n*-node graph G and a cycle C in G.

CRS: $T \in \{0, 1\}_{n^3 \times n^3}$.

- ① If T not useful, set $\mathcal{I} = n^3 \times n^3$ (i.e., reveal all T) and $\phi = \bot$.
- ② Otherwise, let H be the (generalized) $n \times n$ sub-matrix containing the hamiltonian cycle in T.
 - Set $\mathcal{I} = T \setminus H$ (i.e., reveal the bits of T outside of H).
 - **2** Choose $\phi \leftarrow \Pi_n$ s.t. *C* is mapped to the cycle in *H*.
 - 3 Add the entries in H corresponding to non edges in G (wrt. ϕ) to \mathcal{I} .
- 3 Output $\pi = (\mathcal{I}, \phi)$.

\mathcal{NIZK} for Hamiltonicity in HBM cont.

Algorithm 5 (V)

Input: a graph G, index set $\mathcal{I} \subseteq [n^3] \times [n^3]$, ordered set $\{T_i\}_{i \in \mathcal{I}}$, a mapping ϕ .

Accept if all the bits of *T* are revealed and *T* is not useful.

Otherwise,

- Verify that $\exists n \times n$ submatrix $H \subseteq T$ with all entries in $T \setminus H$ are zeros.
- **2** Verify that $\phi \in \Pi_n$, and that all entries of H not corresponding to edges of G (according to ϕ) are zeros.

Claim 6

The above protocol is a perfect \mathcal{NIZK} for \mathcal{HC} in the HBM, with perfect completeness and soundness error $1 - \Omega(n^{-3/2})$

Proving Claim 6

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then φ⁻¹ maps the unrevealed "edges" of H to the edges of G.
 Hence, φ⁻¹ maps the cycle in H to an Hamiltonian cycle in G.
- Zero knowledge?

Algorithm 7 (S)

Input: G

- Choose T at random (i.e., each entry is one wp n^{-5}).
- 2 If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \perp$.
- Otherwise,
 - Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T).
 - **2** Let $\phi \leftarrow \Pi_n$. Replace all entries of H with zeros.
 - 3 Add the entries in H corresponding to non edges in G to \mathcal{I} .
- **①** Output $\pi = (T, \mathcal{I}, \phi)$.
- Perfect simulation for non-useful T's.
- For useful *T*, the location of *H* is uniform in the real and simulated case.
- ϕ is a random element in Π_n in both (real and simulated) cases
- Hence, the simulation is perfect!

Section 2

From HBM to Standard NIZK

Trapdoor Permutations

Definition 8 (trapdoor permutations)

A triplet (G, f, Inv), where G is a PPTM, and f and Inv are polynomial-time computable functions, is a family of trapdoor permutation (TDP), if:

- ① On input 1^n , $G(1^n)$ outputs a pair (sk, pk).
- 2 $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $n \in \mathbb{N}$ and $pk \in \text{Supp}(G(1^n)_2)$.
- 3 $\operatorname{Inv}(sk,\cdot) \equiv f_{pk}^{-1}$ for every $(sk,pk) \in \operatorname{Supp}(G(1^n))$
- **4** For any PPTM A, $\Pr_{x \leftarrow \{0,1\}^n, pk \leftarrow G(1^n)_2} \left[A(pk, x) = f_{pk}^{-1}(x) \right] = \text{neg}(n)$

Hardcore Predicates for Trapdoor Permutations

Definition 9 (hardcore predicates for TDP)

A polynomial-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of a TDP (G, f, Inv), if

$$\Pr_{e \leftarrow G(1^n)_2, x \leftarrow \{0,1\}^n}[P(e, f_e(x)) = b(x)] \leq \frac{1}{2} + \mathsf{neg}(n),$$

for any PPTM P.

Goldreich-Levin: any TDP has an hardcore predicate (ignoring padding issues)

Example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n]: \gcd(x, n) = 1\}$
- \bullet $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e \mod n$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 10 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in\mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1} \bmod \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

Factoring is easy \implies RSA is easy. Other direction?

The transformation

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity we assume G(1ⁿ) chooses (sk, pk) as follows
 - **1** $sk \leftarrow \{0,1\}^n$

where $PK: \{0,1\}^n \mapsto \{0,1\}^n$ is a polynomial-time computable function.

We construct a \mathcal{NIZK} (P,V) for \mathcal{L} , with the same completeness and "not too large" soundness error.

The protocol

Algorithm 11 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRS $c = (c_1, \dots, c_{\ell}) \in \{0, 1\}^{n\ell}$, where n = |x| and $\ell = \ell(n)$.

- Ohoose $(sk, pk) \leftarrow G(sk)$ and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{\ell(n)} = f_{pk}^{-1}(c_{\ell})))$
- 2 Let $(\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x, w, c^H)$ and output $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

Algorithm 12 (V)

Input: $x \in \mathcal{L}$, CRS $c = (c_1, \dots, c_\ell) \in \{0, 1\}^{np}$, and $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$, where n = |x| and $\ell = \ell(n)$.

- **①** Verify that $pk \in \{0,1\}^n$ and that $f_{pk}(z_i) = c_i$ for every $i \in \mathcal{I}$
- 2 Return $V_H(x, \pi_H, \mathcal{I}, c^H)$, where $c_i^H = b(z_i)$ for every $i \in \mathcal{I}$.

Claim 13

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of $pk \in \{0,1\}^n$.
- Zero knowledge:?

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.
- Exists efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w_x)) \approx_c P(x, w_x)$
- Distinguishing $P(x, w_x)$ from S(x) is hard
- Need to be slightly modified to get "adaptive NIZK"

Section 3

Adaptive NIZK

Adaptive \mathcal{NIZK}

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n$ and P^* $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto \mathit{cl} \cap \{0, 1\}^n$

$$\{(f(c),c,\mathsf{P}(f(c),w_{f(c)}),c\leftarrow\{0,1\}^{\ell(n)})\}_{n\in\mathbb{N}}\approx_c \{\mathsf{S}^f(n)\}_{n\in\mathbb{N}}.$$

where $S^{f}(n)$ is the output of the following process

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.
- Not every \mathcal{NIZK} is adaptive (but the above protocol is).

Theorem 15

Assume TDP exist, then every \mathcal{NP} language has an adaptive \mathcal{NIZK} with perfect completeness and negligible soundness error.

In the following, when saying adaptive \mathcal{NIZK} , we mean negligible completeness and soundness error.

Section 4

Simulation Sound NIZK

Simulation Soundness

A \mathcal{NIZK} system (P,V) for \mathcal{L} has (one-time) simulation soundness, if \exists a pair of PPTM's $S=(S_1,S_2)$ satisfying the \mathcal{ZK} property of P with respect to \mathcal{L} , such that the following holds \forall pair of PPTM's (P_1^*,P_2^*) : let

Experiment 16 (Exp_{V,S,P^*}^n)

- **2** $(x, p) \leftarrow P_1^*(1^n, c)$

We require $\Pr[(c, x, \pi, x', \pi') \leftarrow \operatorname{Exp}_{V, S, P^*}^n : x' \notin \mathcal{L} \wedge V(x', \pi', c) = 1 \wedge (x', \pi') \neq (x, \pi)] = \operatorname{neg}(n).$

- Even for $x \notin \mathcal{L}$, hard to generate additional false proofs
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive
- Adaptive NIZK guarantees weak type of simulation soundness (hard to fake proofs for simulated CRS)
- Does the adaptive \mathcal{NIZK} we seen in class have simulation soundness?

Construction

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

Ingredients:

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}$
 - * implied by OWP (or TDP)
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - achieved from any commitment scheme by committing to the same value many times
- $\textbf{3} \ \, \mathsf{Adaptive} \, \, \mathcal{NIZK} \, \left(\mathsf{P}_A, \mathsf{V}_A\right) \, \mathsf{for} \\ \mathcal{L}_A := \left\{ (x, \mathsf{com}, w) \colon x \in \mathcal{L} \vee \exists r \in \{0, 1\}^* \colon \, \mathsf{com} = \mathsf{Com}(w, r) \right\} \in \mathcal{NP}$
 - * adaptive WI suffices

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and CRS $c = (c_1, c_2)$

Algorithm 18 (V)

Input: $x \in \{0, 1\}^*$, $\pi = (vk, \pi_A, \sigma)$ and a CRS $c = (c_1, c_2)$ Verify that $Vrfy_{vk}((x, \pi), \sigma) = 1$ and $V_A((x, c_1, vk), c_2, \pi_A) = 1$

Claim 19

The proof system (P,V) is an adaptive \mathcal{NIZK} for $\mathcal L$ with one-time simulation soundness.

Proving Claim 19

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random
 - ► $S_2(x, c, s = (z, sk, vk))$:

 - Output $\pi = (vk, \pi_A, \sigma)$

Proof follows by the adaptive WI of (P_A, V_A) and the pseudorandomness of Com

 Adaptive soundness: Implicit in the proof of simulation soundness, given below

Proving simulation soundness

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2), x, \pi, x'$ and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp^n_{V,S,P^*} .

Assuming $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$, then with save but negligible probability:

• vk' is not the verification key appeared in π

$$\implies \#r \in \{0,1\}^* \text{ s.t. } c_1 = \text{Com}(vk',r)$$
$$\implies x'_A = (x',c_1,vk') \notin \mathcal{L}_A$$

Since c_2 was chosen at random by S_1 , the adaptive soundness of (P_A, V_A) yields that $Pr[V_A(x_A', c_2, \pi_A') = 1] = neg(n)$.

Adaptive soundness?

Part II

Proof of Knowledge

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P* convinces V to accepts x, then P* "knows" $w \in \mathcal{R}_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L} \in \mathcal{NP}$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \mathsf{s.t.}$ $\forall x \in \mathcal{L}$ and deterministic algorithm P^* , $\mathsf{E}^{\mathsf{P}^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \mathsf{Pr}[(\mathsf{P}^*, \mathsf{V})(x) = 1]$.

- (P, V) is a proof of knowledge for \mathcal{L} with error η ,
 - A property of V
 - Why do we need it? Proving that you know the password
 - Why only deterministic P*?

Examples

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The \mathcal{ZK} proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Proof: ?