a.

calculation flow

- 1. git clone git@github.com:kirschjs/LIT_source.git
- 2. make all in ./LIT_source/src_nucl/, ./LIT_source/src_nucl/V18_PAR/, ./LIT_source/src_nucl/UIX_PAR/, and ./LIT_source/src_elma_pol/
- 3. cd ./LIT_source/src_python/EugenicistsApproach
- 4. ./python3.x NextToNewestGeneration.py
- 5. ./python3.x A3_lit_M.py
- $6.\ \mathtt{mathematica}\ ./\mathtt{LIT_source/src_mathematica/helion_E1_multiBas_crosssection.nb}$
- 7. set resultsDir in 3rd cell to the directory specified by the last output of A3_lit_M.py

support: kirscjo@gmail.com or skype to kirschjs.dc ;

- 3 code repository: git clone git@github.com:kirschjs/LIT_source.git
- 1. optimize bases for final and initial states

NextToNewes	stGeneration.py	
argument	comment	
bastypes	see bridgeA3.py for the defined structures,	
	$ e.g. $, $ ^{3}$ He $\rangle = npp0.5 + (channels dictionary)$	
anzStreuBases	nbr. of bases grown from different initial seed bases	
CgfCycles	nbr. of cycles each cfg. ∈ bastypes is optimized	
nRaces	nbr. of generations for each CgfCycle	
cradleCapacity	nbr. of children produces within a Race	
ini_grid_bounds	arg. of function seedMat; bounds of the initial, partially randomized geometric grid; 8-element array	
ini_dims	arg. of function seedMat ; nbr. of width parameters per cfg. for Jacobi 1,2 ($\gamma_{1,2}$); 1st pair: initial state; 2nd pair: final state	
minCond	minimal condition number=ratio between absolute values of the smallest and largest norm eigenvalue;	
denseEVinterval	parameter to det. loveliness of a vector in loveliness and basQ in	
removalGainFactor	genetic_width_growth.py while stabilizing the initial seed basis and purging an optimized basis after CfgCycles of idlers, the removal of one of the latter must increase the	
maxOnPurge	quality by this factor max. nbr. of basis vectors tested for their effect on stability; ideally = dim(basis)	
maxOnTrail	max. nbr. of basis vectors tested for their effect on quality; ideally = dim(basis)	
muta_initial	mutation rate (random bit flip) during offspring generation	
output	written in respath (set in bridgeA3.py)	
Ssigbasv3heLIT_Jpi_BasNR- <basisset>.dat</basisset>	FORTRAN bookkeeping	
SLITbas_full_Jpi_BasNR-rndSet .dat	*	
Ssigbasv3heLIT_Jpi .dat	*	
SLITbas_full_Jpi .dat	*	
nat_Jpi_BasNR-rndSet	Norm: $\mathbb{N} = \langle \Phi_i \Phi_j \rangle / \sqrt{\langle \Phi_i \Phi_i \rangle \cdot \langle \Phi_j \Phi_j \rangle}$	
	$ \begin{vmatrix} \text{Hamiltonian:} & & \mathbb{H} \\ \left\langle \Phi_{i} \middle \hat{H} \middle \Phi_{j} \right\rangle / \sqrt{\left\langle \Phi_{i} \middle \Phi_{i} \right\rangle \cdot \left\langle \Phi_{j} \middle \Phi_{j} \right\rangle}; \end{aligned} = $	
	H is specified in bridgeA3.py with potnn(n), tnni	
	N is normalized such that its diagonal = 1; ECCE units: $[\mathbb{N}_{ij}] = 0$	
	$\left[\left[\mathbb{H}_{ij} \right] = \left[\hat{H} \right] = MeV \right]$	

5 2. calculate the overlap matrix elements

	A3_lit_M.py
rgument	comment
ultipolarity L	$j_L(kr_i)Y_{LM}(\hat{\boldsymbol{r}}_i)$ with photon energy k ()
utput	written in respath (set in bridgeA3.py)

6 3.

$$T_{\lambda'\lambda}^{if}\left(\mathbf{k}',\mathbf{k}\right)$$
 with
$$\begin{cases} \lambda'(\lambda) & \text{out-(in-)going photon polarization } \mathbf{e}_{\lambda} \\ \mathbf{k}'(\mathbf{k}) & \text{out-(in-)going photon 3-momentum} \\ i(f) & \text{quantum numbers of the initial(final) nuclear target} \end{cases}$$
 (1)

9 with an intermediate, zero-photon state with energy $\omega + E_i$.

$$\left\langle \underline{\boldsymbol{\rho}} \mid J^{\pi} \right\rangle = \sum_{n} c_{n} \, \Phi_{n,\pi,[L_{n} \otimes S_{n}]^{J}}^{\mathrm{RGM}} \quad \text{with} \quad \begin{cases} \left[L_{n} \otimes S_{n}\right]^{J} & i.e. \,, \, \text{LS-coupling scheme} \\ \underline{\boldsymbol{\rho}} & \text{set of } A - 1 \,\, \text{3-d Jacobi vectors} \\ \overline{J}, \pi & \text{total angular momentum, parity of the state} \end{cases} ; \tag{2}$$

and a decomposition which couples orbital- and spin-angular momenta

$$\Phi_{n,\pi,[L_n\otimes S_n]^J}^{\mathrm{RGM}} = \left[\phi_n\otimes\Xi_n\right]^J\cdot\mathcal{T}_n\tag{3}$$

15 are to be set, here. The orbital part, ϕ of Φ is

$$\phi_n = \prod_{i=1}^{A-1} e^{-\gamma_{n,i} \boldsymbol{\rho}_i^2} \cdot \mathcal{Y}_{l_{n,i}m}(\boldsymbol{\rho}_i)$$

$$\tag{4}$$

	010101		
ı	basis parameter	implementation	comment
ı	S_n		total spin and all intermediate couplings
ı	-	bridgeA3.py	spin-orbital configuration combinations considered in $ $ 3 He \rangle
ı			and $\hat{\mathbb{O}}_{pq} \otimes {}^{3}\text{He} \rangle$
ı	-		dictionary elem_spin_prods_3 translates, e.g., he_no1 \rightarrow
L			$\left[\left[\sigma_{1}\otimes\sigma_{2}\right]^{s_{12}=1}\otimes\sigma_{3}\right]^{S=1/2}\cdot\left[\left[\tau_{1}\otimes\tau_{2}\right]^{\tau_{12}=0}\otimes\tau_{3}\right]^{S=1/2}$

^{16 [1]} G. Bampa, W. Leidemann, and H. Arenhovel, Phys. Rev. C84, 034005 (2011), arXiv:1107.2320 [nucl-th].

^[2] M. Unkelbach and H. Hofmann, Nuclear Physics A **549**, 550 (1992).

- 18 [3] V. D. Efros, W. Leidemann, G. Orlandini, and N. Barnea, Journal of Physics G: Nuclear and Particle Physics 34, 19 R459 (2007).
- [4] R. P. Hildebrandt, Elastic Compton Scattering from the Nucleon and Deuteron, Ph.D. thesis, Munich, Tech. U. (2005),
 arXiv:nucl-th/0512064 [nucl-th].
- 22 [5] A. R. EDMONDS, Angular Momentum in Quantum Mechanics (Princeton University Press, 1985).
- [6] J. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover Books on Engineering (Dover
 Publications, 2006).
- [7] J. Golak, R. Skibiński, W. Glöckle, H. Kamada, A. Nogga, H. Witała, V. Efros, W. Leidemann, G. Orlandini, and
 E. Tomusiak, Nuclear Physics A 707, 365 (2002).
- ²⁷ [8] B. F. Gibson and D. R. Lehman, Phys. Rev. C 13, 477 (1976).
- ²⁸ [9] T. Mertelmeier and H. Hofmann, Nuclear Physics A **459**, 387 (1986).
- ²⁹ [10] I. M. Barbour and A. C. Phillips, Phys. Rev. C 1, 165 (1970).