

密级状态: 绝密() 秘密() 内部() 公开(√)

RK1808_RKNN_SDK 开发指南

(技术部,图形显示平台中心)

文件状态:	当前版本:	v0. 9. 6
[]正在修改	作 者:	杨华聪
[√] 正式发布	完成日期:	2018-12-24
	审核:	熊伟
	完成日期:	2018-12-24

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Semiconductor Co., Ltd

(版本所有,翻版必究)

更新记录

版本	修改人	修改日期	修改说明	核定人
v0.9.6	杨华聪	2018-12-20	初始版本	熊伟

目 录

1	主要功	b能说明	4
2	系统依	5赖说明	4
3	使用证	治明	4
	3.1 E	XAMPLE 使用说明	4
	3.2 R	KNN API 详细说明	5
	3.2.1	rknn_init	5
	3.2.2	rknn_destroy	6
	3.2.3	rknn_query	6
	3.2.4	rknn_inputs_set	9
	3.2.5	rknn_run	9
	3.2.6	rknn_outputs_get	10
	3.2.7	rknn_outputs_release	11
	3.3 R	KNN 数据结构定义	11
	3.3.1	rknn_input_output_num	11
	3.3.2	rknn_tensor_attr	11
	3.3.3	rknn_input	13
	3.3.4	rknn_output	13
	3.3.5	rknn_perf_detail	13
	3.3.6	rknn_sdk_version	14
	3 3 7	rknn 返回值错误码	14

1 主要功能说明

RK1808 RKNN SDK 为 RK1808 平台 NPU 提供编程接口,能够帮助用户在 RK1808 Linux 平台上部署运行 RKNN-Toolkit 导出的 RKNN 模型。本 SDK 主要包括以下两部分:

- 1) librknn_runtime: 提供 RKNN 模型的加载、运行、数据输入输出以及调试等接口。
- 2) Linux Demo: 提供了 Linux 平台的 MobileNet 图像分类 Demo、MobileNet SSD 目标检测 Demo 以及 Yolo v3 目标检测 Demo。

2 系统依赖说明

RK1808 RKNN SDK 所包含的库支持运行于 RK1808 Linux 64 位平台。

3 使用说明

3.1 Example 使用说明

SDK 提供了 Linux 平台的 MobileNet 图像分类、MobileNet SSD 目标检测以及 Yolo v3 目标检测 Demo。这些 Demo 能够为客户基于 RKNN SDK 开发自己的 AI 应用提供参考。Demo 代码位于<rk1808-linux-sdk>/external/rknpu/rknn/examples 目录。下面以 rknn_mobilenet_demo 为例来讲解如何快速上手运行。

1)编译 Demo

cd examples/rknn_mobilenet_demo mkdir build && cd build cmake .. make && make install cd –

2) 部署到 RK1808 设备

adb push install/rknn_mobilenet_demo /userdata/

3)运行 Demo

adb shell cd /userdata/rknn_mobilenet_demo/ ./rknn_mobilenet_demo mobilenet_v1.rknnn dog_224x224.jpg

3.2 RKNN API 详细说明

3.2.1 rknn_init

rknn_init 初始化函数将创建 rknn_context 对象、加载 RKNN 模型以及根据 flag 执行特定的初始化行为。

API	rknn_init
功能	初始化 rknn
参数	rknn_context *context: rknn_context 指针。函数调用之后,context 将会被赋值。
	void *model: RKNN 模型的二进制数据。
	uint32_t size: 模型大小。
	uint32_t flag: 特定的初始化标志。目前 RK1808 平台仅支持以下标志:
	RKNN_FLAG_COLLECT_PERF_MASK: 打开性能收集调试开关,打开之后能够通过
	rknn_query 接口查询网络每层运行时间。需要注意,该标志被设置后 rknn_run 的
	运行时间将会变长。
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)。

示例代码如下:


```
rknn_context ctx;
int ret = rknn_init(&ctx, model_data, model_data_size, 0);
```

3.2.2 rknn_destroy

rknn destroy 函数将释放传入的 rknn context 及其相关资源。

АРІ	rknn_destroy
功能	销毁 rknn_context 对象及其相关资源。
参数	rknn_context context: 要销毁的 rknn_context 对象。
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)。

示例代码如下:

```
int ret = rknn_destroy (ctx);
```

3.2.3 rknn_query

rknn_query 函数能够查询获取到模型输入输出、运行时间以及 SDK 版本等信息。

API	rknn_query	
功能	查询模型与 SDK 的相关信息。	
参数	rknn_context context: rknn_context 对象。	
	rknn_query_cmd cmd: 查询命令。	
	void* info: 存放返回结果的结构体变量。	
	uint32_t size: info 对应的结构体变量的大小。	
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)	

当前 SDK 支持的查询命令如下表所示:

查询命令	返回结果结构体	功能
RKNN_QUERY_IN_OUT_NUM	rknn input_output_num	查询输入输出 Tensor 个数
RKNN_QUERY_INPUT_ATTR	rknn_tensor_attr	查询输入 Tensor 属性

RKNN_QUERY_OUTPUT_ATTR	rknn_tensor_attr	查询输出 Tensor 属性
RKNN_QUERY_PERF_DETAIL	rknn perf_detail	查询网络各层运行时间
RKNN_QUERY_SDK_VERSION	rknn sdk version	查询 SDK 版本

接下来的小节将依次详解各个查询命令如何使用。

3.2.3.1 查询输入输出 Tensor 个数

传入 RKNN_QUERY_IN_OUT_NUM 命令可以查询模型输入输出 Tensor 的个数。其中需要先创建 rknn_input_output_num 结构体对象。

示例代码如下:

3.2.3.2 查询输入 Tensor 属性

传入 RKNN_QUERY_INPUT_ATTR 命令可以查询模型输入 Tensor 的属性。其中需要先创建 rknn tensor attr 结构体对象。

示例代码如下:

3.2.3.3 查询输出 Tensor 属性

传入 RKNN QUERY OUTPUT ATTR 命令可以查询模型输出 Tensor 的属性。其中需要先

创建 rknn tensor attr 结构体对象。

示例代码如下:

3.2.3.4 查询网络各层运行时间

如果在 rknn_init 函数调用时有设置 RKNN_FLAG_COLLECT_PERF_MASK 标志,那么在执行 rknn_run 完成之后,可以传入 RKNN_QUERY_PERF_DETAIL 命令来查询网络每层运行时间。其中需要先创建 rknn_perf_detail 结构体对象。

示例代码如下:

注意,用户不需要释放 rknn perf detail 中的 perf data, SDK 会自动管理该 Buffer 内存。

3.2.3.5 查询 SDK 版本

传入 RKNN_QUERY_SDK_VERSION 命令可以查询 RKNN SDK 的版本信息。其中需要 先创建 rknn_sdk_version 结构体对象。

示例代码如下:

3.2.4 rknn_inputs_set

通过 rknn_inputs_set 函数可以设置模型的输入数据。该函数能够支持多个输入,其中每个输入是 rknn input 结构体对象,在传入之前用户需要设置该对象。

API	rknn_inputs_set	
功能	设置模型输入数据。	
参数	rknn_context context: rknn_contex 对象。	
	uint32_t n_inputs:输入数据个数。	
	rknn_input inputs[]:输入数据数组,数组每个元素是 rknn_input 结构体对象。	
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)	

示例代码如下:

```
rknn_input inputs[1];
memset(inputs, 0, sizeof(inputs));
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_UINT8;
inputs[0].size = img_width*img_height*img_channels;
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].buf = in_data;

ret = rknn_inputs_set(ctx, 1, inputs);
```

3.2.5 rknn run

rknn_run 函数将执行一次模型推理,调用之前需要先通过 rknn_inputs_set 函数设置输入数据。

	API	rknn_run	
--	-----	----------	--

功能	执行一次模型推理。
参数	rknn_context context: rknn_context 对象。
	rknn_run_extend* extend:保留扩展,当前没有使用,传入 NULL 即可。
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)

示例代码如下:

ret = rknn_run(ctx, NULL);

3.2.6 rknn_outputs_get

rknn_outputs_get 函数可以获取模型推理的输出数据。该函数能够一次获取多个输出数据。 其中每个输出是 rknn_output 结构体对象,在函数调用之前需要依次创建并设置每个rknn_output 对象。

对于输出数据的 buffer 存放可以采用两种方式:一种是用户自行申请和释放,此时 rknn_output 对象的 is_prealloc 需要设置为 1,并且将 buf 指针指向用户申请的 buffer;另一种是由 rknn 来进行分配,此时 rknn_output 对象的 is_prealloc 设置为 0 即可,函数执行之后 buf 将指向输出数据。

API	rknn_outputs_get	
功能	获取模型推理输出	
参数	rknn_context context: rknn_context 对象。	
	uint32_t n_outputs: 输出数据个数	
	rknn_output outputs[]:输出数据的数组,其中数组每个元素为 rknn_output 结构体对	
	象,代表模型的一个输出。	
	rknn_output_extend* extend: 保留扩展,当前没有使用,传入 NULL 即可。	
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)	

示例代码如下:


```
rknn_output outputs[io_num.n_output];
memset(outputs, 0, sizeof(outputs));
for (int i = 0; i < io_num.n_output; i++) {
    outputs[i].want_float = 1;
}
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);</pre>
```

3.2.7 rknn_outputs_release

rknn_outputs_release 函数将释放之前获取得到的输出的相关资源。

API	rknn_outputs_release
功能	释放 rknn_output 对象
参数	rknn_context context: rknn_context 对象
	uint32_t n_outputs: 输出数据个数
	rknn_output outputs[]: 要销毁的 rknn_output 数组
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)

示例代码如下

```
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
```

3.3 RKNN 数据结构定义

3.3.1 rknn_input_output_num

结构体 rknn_input_output_num 表示输入输出 Tensor 个数, 其结构体成员变量如下表所示:

成员变量	数据类型	含义
n_input	uint32_t	输入 Tensor 个数
n_output	uint32_t	输出 Tensor 个数

3.3.2 rknn_tensor_attr

结构体 rknn tensor attr 表示模型的 Tensor 的属性,结构体的定义如下表所示:

成员变量	数据类型	含义
index	uint32_t	表示输入输出 Tensor 的索引位置。
n_dims	uint32_t	Tensor 维度个数。
dims	uint32_t[]	Tensor 各维度值。
name	char[]	Tensor 名称。
n_elems	uint32_t	Tensor 数据元素个数。
size	uint32_t	Tensor 数据所占内存大小。
fmt	rknn_tensor_format	Tensor 维度的格式,有以下格式:
		RKNN_TENSOR_NCHW
		RKNN_TENSOR_NHWC
type	rknn_tensor_type	Tensor 数据类型,有以下数据类型:
		RKNN_TENSOR_FLOAT32
		RKNN_TENSOR_FLOAT16
		RKNN_TENSOR_INT8
		RKNN_TENSOR_UINT8
		RKNN_TENSOR_INT16
qnt_type	rknn_tensor_qnt_type	Tensor 量化类型,有以下的量化类型:
		RKNN_TENSOR_QNT_NONE: 未量化;
		RKNN_TENSOR_QNT_DFP:动态定点量化;
		RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC: 非
		对称量化。
fl	int8_t	RKNN_TENSOR_QNT_DFP 量化类型的参数。
zp	uint32_t	RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC 量化
		类型的参数。
scale	float	RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC 量化
		类型的参数。

3.3.3 rknn_input

结构体 rknn_input 表示模型的一个数据输入,用来作为参数传入给 rknn_inputs_set 函数。 结构体的定义如下表所示:

成员变量	数据类型	含义
index	uint32_t	该输入的索引位置。
buf	void*	输入数据 Buffer 的指针。
size	uint32_t	输入数据 Buffer 所占内存大小。
type	rknn_tensor_type	输入数据的类型。
fmt	rknn_tensor_format	输入数据的格式。

3.3.4 rknn_output

结构体 rknn_output 表示模型的一个数据输出,用来作为参数传入给 rknn_outputs_get 函数,在函数执行后,结构体对象将会被赋值。结构体的定义如下表所示:

成员变量	数据类型	含义
want_float	uint8_t	标识是否需要将输出数据转为 float 类型输出。
is_prealloc	uint8_t	标识存放输出数据的 Buffer 是否是预分配。
index	uint32_t	该输出的索引位置。
buf	void*	输出数据 Buffer 的指针。
size	uint32_t	输出数据 Buffer 所占内存大小。

3.3.5 rknn_perf_detail

结构体 rknn_perf_detail 表示模型的性能详情,结构体的定义如下表所示:

成员变量	数据类型	含义
perf_data	char*	性能详情包含网络每层运行时间,能够直接打印
		出来查看。

data_len uii	nt64_t 存放性能详情的字符串数	坟 组的长度。
--------------	--------------------	----------------

3.3.6 rknn_sdk_version

结构体 rknn_sdk_version 用来表示 RKNN SDK 的版本信息,结构体的定义如下:

成员变量	数据类型	含义
api_version	char[]	rknn_runtime 的版本信息。
drv_version	char[]	rknn_runtime 所基于的驱动版本信息。

3.3.7 rknn 返回值错误码

RKNN API 函数的返回值错误码定义如下表所示

错误码	错误详情
RKNN_SUCC	执行成功
RKNN_ERR_FAIL	执行出错
RKNN_ERR_TIMEOUT	执行超时
RKNN_ERR_DEVICE_UNAVAILABLE	NPU 设备不可用
RKNN_ERR_MALLOC_FAIL	内存分配失败
RKNN_ERR_PARAM_INVALID	传入参数错误
RKNN_ERR_MODEL_INVALID	传入的 RKNN 模型无效
RKNN_ERR_CTX_INVALID	传入的 rknn_context 无效
RKNN_ERR_INPUT_INVALID	传入的 rknn_input 对象无效
RKNN_ERR_OUTPUT_INVALID	传入的 rknn_output 对象无效
RKNN_ERR_DEVICE_UNMATCH	版本不匹配