Functional Analysis - Spring 2024

Paul Carmody Assignment #6– May 2, 2024

- p. 224 #4, 7, 8, 9,
- 4. Let p be defined on a vector space X and satisfy (1) and (2). Show that for any given $x_0 \in X$ there is a linear functional \tilde{f} on X such that $\tilde{f}(x_0) = p(x_0)$ and $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

Let $f \in X'$ and $f(x_0) = p(x_0)$. Clearly, f is defined on the subspace spanned by x_0 , that is, f is linear and $f(\alpha x_0) = \alpha f(x_0)$. The Hahn-Banach Theorem says that there exists an extension of f, namely, $\tilde{f} \in X'$ such that $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

7. Give another proof of Theorem 4.3-3 in the case of a Hilbert space.

Theorem 4.3-3a: (Bounded linear functionals, Hilbert). Let X be a Hibert space and let $x_0 \neq 0$ be any element in X. Then there exists a bounded linear functional \tilde{f} on X such that

$$\left\| \tilde{f} \right\| = 1, \qquad \qquad \tilde{f}(x_0) = \|x_0\|$$

Proof: Let $x_0 \in X$, then Z is the subspace spanned by x_0 . Any Cauchy sequence in Z will converge because that same sequence is in X which is complete. Hence, Z is also complete. We know that, for any $f_g \in Z'$ there exists a $g \in Z$ such that $f_g(x) = \langle x, g \rangle$ and $||f_g|| = 1$. By Hahn-Bannach, there exists an extension $\tilde{f} \in X'$ such that $||\tilde{f}|| = 1$ and $|f(x_0)| = ||\tilde{f}|| ||x_0|| = ||x||$.

- 8. Let X be a normed space and X' its dual space. If $X \neq \{0\}$, show that X' cannot be $\{0\}$. Let f(x) = ||x||, this is linear by definition. Therefore, $f \in X'$. We can see that when $x \neq 0$ that $f(x) \neq 0$. Therefore f is not the zero function and $X' \neq \{0\}$.
- 9. Show that for a separable normed space X, theorem 4.3-2 can be proved directly, without the use of Zorn's Lemma (which was used indirectly, namely, in the proof of Theorem 4.2-1).

We still need a function p defined over all of X. We can still use the p defined in the proof, that is

$$p(x) = \|f\|_Z \|x\|$$

and we know that it satisfies conditions (1) and (2) as well by

$$p(x+y) = \|f\|_{Z} \|x+y\| \le \|f\|_{Z} (\|x\| + \|y\|) = p(x) + p(y)$$

$$p(\alpha x) = \|f\|_{Z} \|\alpha x\| = |\alpha| \|f\|_{Z} \|x\| = \alpha \|x\|$$

What we need now is an \tilde{f} which is a maximal function such that $\tilde{f} \leq p(x)$ for all $x \in X$. Let f_1 be a linear extension of f over $\mathcal{D}(f_1)$. That is $f_1(x) = f(x)$ for all $x \in Z$. We know that f_1 exists because at the very least $f_1 = f$ and $\mathcal{D}(f_1) = Z$. When $x_1 \in X \setminus Z$ we now have $Z \subset \mathcal{D}(f_1)$. We can repeat this for f_2 giving us $x_2, \mathcal{D}(f_2)$, and so on. For any number n we have a set (f_i) such that $f(x) \leq f_i(x) \leq p(x)$ for all $x \in \bigcup_{i=1}^n \mathcal{D}(f_i)$. Since, X is dense we know that there exists an f_{n+1} and f_n and f_n thus f_n and f_n and f_n and f_n are extension of f_n we know that f_n and f_n are f_n and f_n are f_n are extension of f_n we know that f_n and f_n are f_n are f_n are f_n and f_n are f_n are f_n are f_n are f_n are f_n and f_n are f_n are f_n and f_n are f_n and f_n are f_n are f_n are f_n and f_n are f_n and f_n are f_n are f_n and f_n are f_n and f_n are f_n are f_n are f_n are f_n are f_n and f_n and f_n are f_n and f_n are f_n are f

- p. 255 #10, 11, 13, 14,
- 10. (Space c_0) Let $y = (\eta_j), \eta_j \in \mathbb{C}$, be such that $\sum \xi_j \eta_j$ converges for every $x = (\xi_j) \in c_0$, where $c_0 \in l^{\infty}$ is the subspace of all complex sequences converge to zero. Show that $\sum |\eta_j| < \infty$. (Use 4.7-3)

Let $T: c_0 \to \mathbb{C}$ such that $T_n(x) = \sum_{i=1}^n \xi_i \eta_i$. $(T_n(x))$ is bounded, thus, (T_n) is bounded. By the Unified Boundedness Theorem there exists c > 0 such that $||T_n|| < c$ for all $n \in \mathbb{N}$. For each n there is a sequence $x_n = (\mu_1, \mu_2, \dots, \mu_n, \dots)$ where μ_i are on the unit sphere, that is $||\mu_i|| = 1$ and $\mu_i \eta_i = \eta_i$. Since $||T_n|| \le c$ for all $n \in \mathbb{N}$, we have $T_n(x_n) = \sum_{i=1}^n ||\mu_i \eta_i|| = \sum_{i=1}^n ||\eta_i|| < c$. Since this is true for all n, y is convergent.

11. Let X be a Banach space, Y a normed space and $T_n \in B(X,Y)$ such that $(T_n x)$ is Cauchy in Y for every $x \in X$. Show that $(\|T_n\|)$ is bounded.

For any $j \in \mathbb{N}$ we know that T_j is Cauchy in Y. Therefore, given any convergent sequence $(x_k) \in X$ we know that $(T_j x_k)$ converges, there must be some number $y_j \in Y$ such $||T_j x_k|| = ||T_j x_k|| ||x_k|| \le ||T_j|| ||x_k||$ for all x_k . That is, there exists c_j such that $||T_j|| \le c_j$. By Uniform Boundedness Thoeorem, there exists a c such that $||T_n|| \le c$ for all $n \in \mathbb{N}$, thus $(||T_n||)$ is bounded.

- 13. If (x_n) in a Banach space X is such that $(f(x_n))$ is bounded for all $f \in X'$, show that $(\|x_n\|)$ is bounded. Let $g: X \to X''$ be such that g(x)f = f(x) and $f \in X'$. Then $|g(x)f| \le |f(x)| \le \|f\| \|x\|$ and hence bounded. Further, $(g(x_n)f)$ is bounded because $(f(x_n))$ is bounded for all $f \in X'$. X is complete therefore, $(|g(x_n)f|)$ is bounded implies that $(\|x_n\|)$ is bounded.
- 14. if X and Y are Banach spaces and $T_n \in B(X,Y), n=1,2,\cdots$, show that equivalent statements are:
 - (a) $(||T_n||)$ is bounded.
 - (b) $(||T_n x||)$ is bounded for all $x \in X$.
 - (c) $(|g(T_nx)|)$ is bounded for all $x \in X$ and all $g \in Y'$.

Let's show that B(X,Y) is complete. Let $T_n \in B(X,Y)$ be a Cauchy sequence. For each $x \in X$, we have

$$||T_n x - T_m x|| \le ||T_n - T_m|| ||x||,$$

which shows that $(T_n x)$ is Cauchy in Y. Since Y is complete, there is a $y \in Y$ such that $T_n x \to y$. We can see that $T: X \to Y$ where $T_n x = y$ forms a linear map. For any $\epsilon > 0$, let N_{ϵ} be such that $||T_n - T_m|| < \epsilon/2$ for all $n, m \ge N_{\epsilon}$. Whenever, $n \ge N_{\epsilon}$, for each $x \in X$, there is an $m_x \ge N_{\epsilon}$ such that $||T_{m_x} x - Tx|| \le \epsilon/2$. If ||x|| = 1 we have

$$||T_n x - Tx|| \le ||T_n x - T_{m_x} x|| + ||T_{m_x} x - Tx|| \le \epsilon$$

If follows that as $n \geq N_{\epsilon}$, then

$$||Tx|| \le ||T_nx|| + ||Tx - T_nx|| \le ||T_n|| + \epsilon$$

for all x with ||x|| = 1, so T is bounded. If follows that $\lim_{n \to \infty} ||T_n - T|| = 0$. Therefore, $T_n \to T$ and B(X, Y) is complete.

- (a) $Tn \to T$ thus $||T_n|| \to ||T||$ thus $(||T_n||)$ is bounded.
- (b) $||T_nx|| \le ||T_n|| ||x||$ for all $x \in X$ and $||T_n||$ is bounded thus $(||T_nx||)$ is bounded.
- (c) Y is a Banach space Y' is also a Banach space. Thus, given any $g \in Y'$ and any convergent sequence $x_n \in X$ then $(|g(x_n)|)$ converges. Let $x_n = T_n x_0$ for some fixed $x_0 \in X$ and we can see that $(|g(T_n x_0)|)$ converges. Since x_0 and g are arbitrary we see that $(|g(T_n x_0)|)$ converges for all $x \in X$ and $g \in Y'$.