DISCLAIMER

Questo è un file che contiene una lista di tutti i teoremi, osservazioni, definizioni, esempi, lemmi, corollari, formule e proposizioni senza alcuna dimostrazione, di conseguenza molte informazioni risulteranno essere senza alcun contesto se già non si conosce la materia. Detto questo, buona

Coefficienti binomiali

Definizione 1

- Coefficiente binomiale
 - 0! := 1

•
$$n, k \in \mathbb{N}$$

• $\binom{n}{k} := \begin{cases} \frac{n!}{n!(n-k)!} & k \leq n \\ 0 & k > n \end{cases}$

Teorema 1

• Hp
$$-n, k \in \mathbb{N}$$
• Th
$$-\binom{n}{k} = \binom{n}{n-k}$$

Teorema 2

- Hp $-n, k \in \mathbb{N}$

-
$$n, k \in \mathbb{N}$$

- $\binom{n}{k+1} = \binom{n-1}{k+1} \binom{n-1}{k}$

Teorema 3

• Hp

$$\begin{array}{l} - \mathbf{p} \\ - p \in \mathbb{P} \\ - k \in \mathbb{N} \mid 0 < k < p \end{array}$$

• Th
$$-p \binom{p}{k}$$

- Hp
 - $-n \in \mathbb{Z}$ $-p \in \mathbb{P} : p \mid n$ $-[a] \in \mathbb{Z}_p$

• Th
$$- n \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

• Hp
$$\begin{array}{l}
-n \in \mathbb{Z} \\
-p \in \mathbb{P} : p \mid n \\
-[a] \in \mathbb{Z}_p \\
-k \in \mathbb{N} \mid 0 < k < p
\end{array}$$
• Th
$$-\binom{p}{k} \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

Teorema 6

• Hp
$$-p \in \mathbb{P}$$
 $-[a], [b] \in \mathbb{Z}_p$
• Th $-([a] + [b])^p = [a]^p + [b]^p \text{ in } \mathbb{Z}_p$

Teorema 7

• Hp
$$- p \in \mathbb{P} \\ - [a_1], \dots, [a_n] \in \mathbb{Z}_p$$
• Th
$$- ([a_1] + \dots + [a_n])^p = [a_1]^p + \dots + [a_n]^p \text{ in } \mathbb{Z}_p$$

Determinante

- Applicazione multilineare
 - K campo
 - $k \in \mathbb{N}$
 - V_1, \dots, V_k, W spazi vettoriali
 - $f: V_1 \times \ldots \times V_k \to W: (v_1, \ldots, v_k) \to w$
- > $ff **multilineare** \forall i \in [1, k], \forall v_1 \in V_1, \dots, v_i', v_i'' \in [1, k], \forall v_1 \in V_1, \dots, v_i', v_i'' \in [1, k], \forall v_1 \in V_1, \dots, v_i', v_i'' \in [1, k], \forall v_1 \in V_1, \dots, v_i', v_i'' \in [1, k], \forall v_1 \in V_1, \dots, v_i', v_i'' \in [1, k], \dots, v_i'', \dots, v_i'', \dots, v_i'', \dots, v_i'', \dots, \do$
 - Determinante
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $\det: \operatorname{Mat}_{n \times n}(\mathbb{K}) \to \mathbb{K}$
 - 1. $\forall A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ det multilineare su $A_1, \ldots A_n$ e A^1, \ldots, A^n

- 2. $\forall A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ $A_1, \ldots A_n \in A^1, \ldots, A^n$ basi di $\mathbb{K}^n \iff \det(A) \neq 0$
- $3. \det(I_n) = 1$
- 4. per $\mathbb{K} \mid 1 \neq -1$!!! SCRIVI DETERMINANTE ALTERNANTE
- det è il **determinante** \iff det verifica 1, 2 e 3, oppure 1, 3 e 4
 - poiché è possibile dimostrare che la funzione che verifica tali condizioni esiste ed è unica, allora il det è totalmente determinato da tali caratteristiche

- Hp
 - $\mathbb{K} \text{ campo } | 1 \neq -1$
 - $-n \in \mathbb{N} \{0\}$
 - $-f: \operatorname{Mat}_{n \times n}(\mathbb{K}) \to \mathbb{K}$
 - 4. !!! SCRIVI
- Th
 - !!! DETERMINANTE ALTERNANTE

Teorema 9

- Hp
 - $-\mathbb{K}$ campo
 - $-n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - 1. A invertibile
 - 2. A_1, \ldots, A_n base di \mathbb{K}^n
 - 3. A^1, \ldots, A^n base di \mathbb{K}^n
 - 4. $\operatorname{rk}(A) = n$
 - 5. $det(A) \neq 0$
 - 6. $A \equiv I_n$ tramite la relazione di equivalenza delle operazioni sulle righe
 - 7. !!! NON ANCHE PER COLONNE? CEH PENSO DE SI
- Th
 - le proposizioni sono equivalenti

Teorema 10

- Hp
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $-A\in \mathrm{Mat}_{n\times n}(\mathbb{K})\mid \exists i\in [1,n]: A_i=0_{\mathbb{K}^n}\vee \exists j\in [1,n]: A^j=0_{\mathbb{K}^n},$ ovvero in A è presente o una riga, o una colonna nulla
- Th
 - $\det(A) = 0$

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-n \in \mathbb{N} \{0\}$

-
$$A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$$
- $\operatorname{det}(A) = \operatorname{det}(A^T)$

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- A \in \text{Mat}_{n \times n}(\mathbb{K})$$
• Th
$$- \det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma_i}$$

Teorema 13

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- A \in \text{Mat}_{2\times 2}(\mathbb{K})$$

$$- A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$
• Th
$$- \det(A) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

Teorema 14

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- A \in \text{Mat}_{3\times3}(\mathbb{K})$$

$$- A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

$$-\det(A) = a_{1,1}a_{2,2}a_{3,3} + a_{1,3}a_{2,1}a_{3,2} + a_{1,2}a_{2,3}a_{3,1} - a_{1,3}a_{2,2}a_{3,1} - a_{1,1}a_{2,3}a_{3,2} - a_{1,2}a_{2,1}a_{3,3}$$

Teorema 15

• Hp
$$- \mathbb{K} \text{ campo}$$
$$- n \in \mathbb{N} - \{0\}$$
$$- \lambda \in \mathbb{K}$$

$$-A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$$

$$-A' = \begin{pmatrix} A_1 \\ \vdots \\ \lambda A_i \\ \vdots \\ A_n \end{pmatrix}$$

• Th
$$- \det(A') = \lambda \cdot \det(A)$$

$$\mathbbm{K}$$
 campo

$$- n \in \mathbb{N} - \{0\}$$

$$-A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$$

• Th

$$- \forall 1 \le i, j \le n \quad \det(A) = \sum_{k=1}^{n} (-1)^{i+k} \cdot a_{i,k} \cdot \det(A_i^k) = \sum_{h=1}^{n} (-1)^{h+j} \cdot a_{h,j} \cdot \det(A_h^j)$$

Definizione 3

- Aggiunta di una matrice
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A^* è detta aggiunta di $A\iff \forall i,j\in [1,n]$ $a^*_{i,j}=(-1)^{i+j}\cdot\det(A^j_i)$

Teorema 18

$$\mathbbm{K}$$
 campo

$$-n \in \mathbb{N} - \{0\}$$

$$-A \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \mid \det(A) \neq 0$$

$$-A^{-1} = \frac{(A^*)^T}{\det(A)}$$

$$-A \in \operatorname{Mat}_{2 \times 2}(\mathbb{K}) \mid \det(A) \neq 0$$

$$-A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- A \in \text{Mat}_{2 \times 2}(\mathbb{K}) \mid \det(A) \neq 0$$

$$- A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
• Th
$$- A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Polinomio caratteristico

Definizione 4

- K campo
- $n \in \mathbb{N} \{0\}$
- $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
- $p_A(x) := \det(x \cdot I_n A)$ è detto polinomio caratteristico di A

Teorema 20

Hp

 K campo
 n ∈ N − {0}
 A ∈ Mat_{n×n}(K)

 Th

 p_A(x) = xⁿ − tr(A) · xⁿ⁻¹ + ... + (−1)ⁿ · det(A)

Teorema 21

Hp

 K campo
 n ∈ N − {0}
 A, B ∈ Mat_{n×n}(K) | A simile a B

 Th

 p_A(x) = p_B(x)

Definizione 5

- Autovalore
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K} \mid p_A(\lambda) = 0$ è detto autovalore di A
- Spettro
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $\operatorname{sp}(A) := \{\lambda \in \mathbb{K} \mid p_A(\lambda) = 0\}$ è detto **spettro di** A

Teorema 22

Hp

 K campo
 n ∈ N − {0}
 A, B ∈ Mat_{n×n}(K) | A simile a B

 Th

 sp(A) = sp(B)

```
• Hp
- \mathbb{K} \text{ campo}
- n \in \mathbb{N} - \{0\}
- A \in \text{Mat}_{n \times n}(\mathbb{K})
- \lambda \in \mathbb{K}
```

• Th

 $-\lambda$ autovalore $\iff \exists v \in \mathbb{K}^n - \{0\} \mid A \cdot v = \lambda \cdot v$

Definizione 6

- Autovettore
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
 - $\lambda \in \operatorname{sp}(A)$
 - $v \in \mathbb{K}^n \{0\}$ è detto autovettore di A relativo a $\lambda \iff (A \lambda \cdot I_n) \cdot v = 0$
- Autospazio
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - $\lambda \in \operatorname{sp}(A)$
 - $E_{\lambda}(A) := \{ v \in \mathbb{K}^n \mid A \cdot v = \lambda \cdot v \}$ è detto autospazio di A relativo a λ

Teorema 24

• Hp

 $\begin{aligned} & - \ \mathbb{K} \text{ campo} \\ & - \ n \in \mathbb{N} - \{0\} \\ & - \ A \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \\ & - \ \lambda \in \operatorname{sp}(A) \end{aligned}$

• Th

- $\mathrm{E}_{\lambda}(A)\subset\mathbb{K}$ sottospazio vettoriale

Gruppi diedrali

- Gruppo diedrale
 - $n \in \mathbb{N}_{\geq 2}$
 - D_n è l'insieme delle simmetrie dell'n-gono regolare
 - -l'insieme delle rotazioni che lasciano l $\!\!\!\!\!\!n$ -gono invariato, e delle riflessioni rispetto agli assi di simmetria
 - $\rho := \text{rotazione di } \frac{360\tilde{r}}{n}$ gradi di un n-gono regolare
 - $\sigma_i :=$ riflessione rispetto all'*i*-esimo asse di simmetria dell'*n*-gono regolare

$$-n \in \mathbb{N}_{\geq 2}$$

 $-D_n$ insieme delle simmetrie dell'n-gono regolare

$$-|D_n|=2n$$

Teorema 26

$$-n \in \mathbb{N}_{\geq 2}$$

- D_n insieme delle simmetrie dell'n-gono regolare

- · è l'operazione di composizione delle simmetrie

• Th

$$-(D_n,\cdot)$$
 è un gruppo

Teorema 27

- D_2 gruppo diedrale

$$(D_2,\cdot)$$
 è l'unico gruppo diedrale abeliano

Teorema 28

 $-D_n$ gruppo diedrale

$$-D_n \hookrightarrow S_r$$

$$\begin{array}{l} -\ D_n \hookrightarrow S_n \\ -\ \exists X \subset S_n \ \text{sottogruppo di} \ S_n \mid D_n \cong X \\ *\ D_3 \cong S_3 \end{array}$$

Definizione 8

• Gruppo di Klein

•
$$K_{\bullet} := \{1, a, b, c\}$$

•
$$K_4 := \{1, a, b, c\}$$

• $a^2 = b^2 = c^2 = 1$

•
$$ab = c = ba$$

•
$$ac = b = ca$$

•
$$cb = a = bc$$

$$-K_4$$
è il gruppo di Klein

$$-K_4 \cong D_2$$

Gruppi

Definizione 9

- Semigruppo
 - \bullet S insieme
 - $\bullet \quad m:S\times S\to S$
 - (S,m) semigruppo $\iff \forall x,y,z \in S \quad m(x,m(y,z)) = m(m(x,y),z)$
- Monoide
 - S insieme
 - $m: S \times S \rightarrow S$
 - (S,m) monoide \iff (S,m) semigruppo e $\forall x \in S \ \exists e \in S \mid m(x,e) = m(e,x) = x$
- Gruppo
 - \bullet S insieme
 - $m: S \times S \rightarrow S$
 - (S,m) gruppo \iff (S,m) monoide e $\forall x \in S \ \exists x^{-1} \in S \mid m(x,x^{-1}) = m(x^{-1},x) = e$
- Gruppo abeliano
 - \bullet S insieme
 - $m: S \times S \rightarrow S$
 - (S,m) gruppo abeliano \iff (S,m) gruppo e $\forall x,y \in S$ m(x,y) = m(y,x)

Teorema 30

- Hp
 - $-\ G$ monoide
 - $\ \exists e \in G$ elemento neutro
- Th
 - $-\ e$ è unico in G

Teorema 31

- Hp
 - -(G,m) gruppo
 - $-x \in G$
 - $\ \exists x^{-1} \in G$ inverso di xrispetto ad m
- Th
 - $-x^{-1}$ è unico in G per x rispetto a m

- Hp
 - $-X, Y \text{ insiemi,} \\ -Y^X = \{f \mid f : X \to Y\}$
- Th

 $-(X^X, \circ)$ è monoide

Teorema 33

• Hp

-X,Y insiemi finiti

• Th

$$- |Y^X| = |Y|^{|X|}$$

Anelli

Definizione 10

- Anello
 - \bullet A insieme
 - $+: A \times A \rightarrow A$
 - $\bullet \ \ *: A \times A \rightarrow A$
 - (A,+,*) anello \iff (A,+) gruppo abeliano, (A,*) monoide e $\forall a,b,c \in A$ a*(b+c)=a*b+a*c
 - $a*b=b*a \quad \forall a,b\in A \implies (A,*,+)$ è un anello commutativo
- Campo
 - (A, +, *) anello
 - (A, +, *) è un campo $\iff \forall x \in A \quad \exists x^{-1}$ rispetto a *
- Semianello commutativo
 - A insieme
 - $+: A \times A \rightarrow A$
 - $\bullet \ \ *: A \times A \rightarrow A$
 - (A, +, *) semianello commutativo \iff (A, +) monide commutativo, (A, *) monide commutativo e $\forall a, b, c \in A$ a * (b + c) = a * b + a * c
- Sottoanello
 - $(A, +, \cdot)$ anello
 - $(B,+,\cdot)\subset (A,+,\cdot)$ sottoanello $\iff (B,+)\subset (A,+)$ sottogruppo e $B\cdot B\subset B$

- Invertibili
 - $(A, +, \cdot)$ anello commutativo
 - $a \in A$ invertibile $\iff \exists a^{-1} \in A \mid a \cdot a^{-1} = e$, dove e è l'elemento neutro dell'anello rispetto a \cdot
 - $A^* := \{a \in A \mid a \text{ invertibile}\}$ è l'insieme degli invertibili di A

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)$ è un gruppo

Teorema 35

- **Hp**
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-\ (A^*,\cdot)\subset (A,\cdot)$ è un sottogruppo

Definizione 12

- Divisori dello 0
 - $(A, +, \cdot)$ anello commutativo
 - $a \in A$ divisore dello $0 \iff \exists b \in A \{0\} \mid a \cdot b = 0$
- Dominio di integrità
 - $(A, +, \cdot)$ anello commutativo
 - A dominio di integrità $\iff \nexists x \neq 0 : x \mid 0$
 - alternativamente, A è dominio di integrità \iff in A vale la legge di annullamento del prodotto

Teorema 36

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-x \mid 0 \iff x \notin A^*$

Teorema 37

- Hp
 - A campo
- Th
 - $-\ A$ dominio di integrità

- Elementi irriducibili
 - ullet A anello commutativo
 - $a \in A \{0\} \mid a \in A^*$
 - a irriducibile $\iff \exists b, c \in A \mid a = bc \implies b \in A^* \lor c \in A^*$
- Elementi primi
 - A anello commutativo

- $a \in A \{0\} \mid a \in A^*$
- $a \text{ primo} \iff \exists b, c \in A : a \mid bc \implies a \mid b \lor a \mid c$

- Hp
 - A dominio di integrità
- Th
 - -a primo $\implies a$ irriducibile

Sottogruppi

Definizione 14

- Sottogruppo
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo $\iff \exists e \in H \mid e \text{ è l'elemento neutro}, H*H \subset H$ $e \exists x^{-1} \in H \quad \forall x \in H$

Definizione 15

- Sottogruppo normale
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo
 - $x \in G$
 - $xH := \{xh \mid h \in H\}$
 - $Hx := \{ hx \mid h \in H \}$
 - H sottogruppo normale $\iff \forall x \in G \quad xH = Hx$

Teorema 39

- Hp
 - G gruppo
 - 1) H è sottogruppo normale

 - 2) $\forall g \in G, h \in H$ $g \cdot h \cdot g^{-1} \in H$ 3) $\forall g \in G, h \in H$ $\exists k \in H \mid g \cdot h = k \cdot g$
- Th
 - le proposizioni sono equivalenti

Ordine

Definizione 16

• Ordine di un elemento in un gruppo

- G gruppo
- g ∈ G
- $H(g) := \{g^n \mid n \in \mathbb{Z}\}$ è detto sottogruppo ciclico
 - -prende il nome di $sottogruppo\ ciclico$ poiché, a seconda del gruppo, le potenze di g possono essere infinite o finite, ma quest'ultimo caso si verifica esclusivamente quando le potenze ciclano su loro stesse
- o(g) := |H(g)| è detto **ordine di** $g \in G$
 - tale valore può dunque essere infinito o finito, e in quest'ultimo caso l'ordine costituisce il valore più piccolo, non nullo, per cui $g^{o(g)} = e$, poiché per valori maggiori le potenze ricicleranno infinitamente

Hp

 (G, +) gruppo
 g ∈ G

 Th

 (H(g), +) ⊂ (G, +) sottogruppo

Teorema 41

Hp

 (G, ·) gruppo
 g ∈ G

 Th

 (H(g), ·) ⊂ (G, ·) è sottogruppo

Teorema 42

Hp

 G gruppo
 g ∈ G
 I(g) := {n ∈ Z | gⁿ = e}

 Th

 I(g) è un ideale

Teorema 43

• Hp $-G \text{ gruppo} \\ -g \in G \\ -\exists! d \geq 0 \mid I(g) = I(d)$ • Th $-d = 0 \implies o(g) := |H(g)| = |\mathbb{Z}|, \text{ dunque infinito} \\ -d > 0 \implies d = o(g)$

Teorema 44

• **Hp** $- (G, \cdot)$ gruppo finito

-
$$g \in G \mid d := o(g)$$
 finito
- \mathbf{Th} - $g^{|G|} = e$

Hp

 G gruppo finito
 g ∈ G

 Th

 o(g) = o(g⁻¹)

Teorema 46

• **Hp** -G gruppo finito $-k \in \mathbb{Z}$ • **Th** $-\forall g \in G \quad o(g^k) \mid o(g)$

Teorema 47

• **Hp** -G gruppo finito $-g,h \in G \mid gh = hg$ -d := MCD(o(g), o(h)) -m := mcm(o(g), o(h))• **Th** $-\frac{m}{d} \mid o(gh) \wedge o(gh) \mid m$

Teorema 48

• **Hp** $- G \text{ gruppo finito} \\
 - g, h \in G \mid gh = hg \\
 - d := \text{MCD}(o(g), o(h)) = 1 \\
 - m := \text{mcm}(o(g), o(h))$ • **Th** - o(gh) = o(hg) = m

Ideali

- Ideali
 - $(A, +, \cdot)$ anello
 - $I\subset A$ ideale \iff $(I,+)\subset (A,+)$ è un sottogruppo e $A\cdot I\subset I$ e $I\cdot A\subset I$

- Hp $\begin{array}{c} (A,+,\cdot) \text{ anello} \\ a \in \mathbb{Z} \\ I(a) := \{ax \mid x \in A\} \end{array}$
- Th I(a) è un ideale, e prende il nome di *ideale di A generato da* $a \in A$

Teorema 50

Hp

 A dominio di integrità
 a, b ∈ A

 Th

 I(a) = I(b) ⇔ ∃c ∈ A* | a = bc

Teorema 51

Hp

 a, b ∈ Z − {0}

 Th

 I(a) = I(b) ⇐⇒ a = ±b

Teorema 52

Hp

 - (A, +, ·) anello
 - a₁,..., a_n ∈ Z
 - I(a₁,..., a_n) := {a₁b₁ + ... + a_nb_n | b₁,..., b_n ∈ A}

 Th

 I(a₁,..., a_n) è un ideale, e prende il nome di *ideale di A generato dagli* a₁,..., a_n ∈ A

Definizione 18

- Congruenza modulo di un ideale
 - $(A, +, \cdot)$ anello
 - $I \subset A$ ideale
 - per definizione, I ideale \Longrightarrow $(I,+) \subset (A,+)$ sottogruppo, dunque ha senso definire A/I, e infatti I induce una relazione di equivalenza su A detta **congruenza modulo** I, dove $\forall a,b \in A$ $a \equiv b \pmod{I} \iff b-a \in I$
 - $b-a \in I \iff (-a)+b \in I$, di conseguenza questa congruenza coincide con la classe laterale sinistra di (A,+)

Teorema 53

• Hp $\begin{array}{c} - (A,+,\cdot) \text{ anello} \\ - I \subset A \text{ ideale} \\ - + : A/I \times A/I \to A/I \end{array}$

-
$$\cdot: A/I \times A/I \to A/I$$

- $(A/I, +, \cdot)$ è un anello

- Hp $I \subset \mathbb{Z} \text{ ideale}$
- Th $\exists ! \ d \in \mathbb{N} \mid I = I(d), \text{ o equivalentemente, in } \mathbb{Z} \text{ ogni ideale è principale}$

Teorema 55

• Hp $-a_1, \dots, a_n \in \mathbb{Z}$ $-\exists ! d \in \mathbb{N} \mid I(a_1, \dots, a_n) = I(d)$ • Th $-d = \mathrm{MCD}(a_1, \dots, a_n)$

Definizione 19

- Massimo Comun Divisore
 - $a_1, \ldots, a_n \in \mathbb{Z}$
 - $\exists!d\in\mathbb{N}\mid I(a_1,\ldots,a_n)=I(d)$, ed è detto massimo comun divisore degli a_1,\ldots,a_n
 - per dimostrazione precedente $I(a_1, \ldots, a_n)$ è un ideale, e per dimostrazione precedente ogni ideale in \mathbb{Z} è principale, dunque per un certo d coincide con I(d), e in particolare d è proprio il massimo comun divisore degli a_1, \ldots, a_n per dimostrazione precedente

Teorema 56

- Hp $-a_1, \dots, a_n \in \mathbb{Z}$ $-d := MCD(a_1, \dots, a_n)$
- Th $-\exists x_1, \dots, x_n \in \mathbb{Z} \mid a_1 x_1 + \dots + a_n x_n = d, \text{ che prende il nome di } identità di Bézout$

Teorema 57

• !!! MANCA DIMOSTRAZIONE SISTEMA DI IDENTITÀ DI BÉZOUT

Operazioni sugli ideali

Definizione 20

 \bullet + tra ideali

- $(A, +, \cdot)$ anello commutativo
- $I, J \subset A$ ideali
- $I + J = \{i + j \mid \forall i \in I, j \in J\}$

- Hp
 - $-\ (A,+,\cdot)$ anello commutativo
 - $I, J \subset A$ ideali
- Th
 - -I+Jè un ideale

Definizione 21

- \cap tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I \cap J = \{x \in I \land x \in J\}$

Teorema 59

- Hp
 - $-\ (A,+,\cdot)$ anello commutativo
 - $-I, J \subset A$ ideali
- Th
 - $I\cap J$ è un ideale

Definizione 22

- Minimo Comune Multiplo
 - $a_1,\ldots,a_n\in\mathbb{Z}$
 - $\exists ! m \in \mathbb{N} \mid I(m) = I(a_1) \cap \ldots \cap I(a_n) = \bigcap_{i=1}^n I(a_i)$, ed è detto minimo comune multiplo degli a_1, \ldots, a_n

Definizione 23

- · tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I \cdot J = \{i_1 j_1 + \ldots + i_k j_k \mid k \ge 1, \forall i_1, \ldots, i_k \in I, j_1, \ldots, j_k \in J\}$

- Hp
 - $(A,+,\cdot)$ anello commutativo $I,J\subset A$ ideali
- -1, J
- Th

 $-\ I\cdot J$ è un ideale

Teorema 61

• Hp
$$-a, b \in \mathbb{Z}$$
 $-d := MCD(a, b)$
• Th $-I(a) + I(b) = I(d)$

Teorema 62

• Hp
$$\begin{array}{ccc} - \ a,b \in \mathbb{Z} \\ \bullet \ \mathbf{Th} \\ & - \ I(a) \cdot I(b) = I(a \cdot b) \end{array}$$

Induzione

Definizione 24

• Induzione

• successione di proposizioni infinita P_1, P_2, P_3, \dots • $\begin{cases} P_1 \text{ vera} \\ P_1, P_2, P_3, \dots, P_n \implies P_{n+1} & \forall n \geq 1 \end{cases}$ • allora P_n vera $\forall n$

Teorema 63

• Hp
$$-\begin{cases} F_0=0\\ F_1=1\\ F_n=F_{n-1}+F_{n-2} & \forall n\geq 2 \end{cases}$$
è detta sequenza di Fibonacci
$$-x^2-x-1=0 \text{ ha come soluzioni} \begin{cases} \phi:=\frac{1+\sqrt{5}}{2}\\ \psi:=\frac{1-\sqrt{5}}{2} \end{cases}$$
• Th
$$-\forall n\in\mathbb{N} \quad F_n=\frac{\varphi^n-\psi^n}{\varphi-\psi}=\frac{\varphi^n-\psi^n}{\sqrt{5}}$$

Insieme quoziente

Definizione 25

• Insieme quoziente

- \bullet G gruppo
- \sim relazione di equivalenza in G
- $\forall x \in G \quad [x] := \{y \in G \mid x \sim y\}$
- $G/\sim:=\{[x]\mid x\in G\}$ è l'insieme quoziente, ovvero l'insieme delle classi di equivalenza determinate da \sim

- Insieme quoziente \mathbb{Z}_n
 - $(\mathbb{Z}, +, \cdot)$ anello, in particolare $(\mathbb{Z}, +)$ gruppo
 - $n \in \mathbb{Z}$
 - \mathbb{Z}/\equiv è l'insieme delle classi di equivalenza definite dalla relazione di equivalenza =
 - $m \equiv r \pmod{n} \iff r \equiv m \pmod{n} \implies n \mid m-r \implies \exists q : nq = m-r \implies m = nq + r \quad 0 \le r < n$
 - $0 \le r < n \implies$ è possibile definire $\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$, che coincide con \mathbb{Z}/\equiv

Teorema 64

- Hp
 - $-n \in \mathbb{Z}$
 $-I(n) := \{nk \mid k \in \mathbb{Z}\}\$
- Th
 - $-(\mathbb{Z}_n,+)$ è un gruppo

Teorema 65

- Hp
 - $-p\in\mathbb{P}$
 - $\begin{array}{l}
 -a, b \in \mathbb{Z} \\
 -p \mid ab
 \end{array}$
- Th
 - $-p \mid a \lor p \mid b$

Teorema 66

- Hp
 - $-n \in \mathbb{Z}$
- Th
 - $-\mathbb{Z}_n$ dominio di integrità $\iff n \in \mathbb{P}$

- Hp
 - $-n \in \mathbb{Z}$
- Th
 - $-\forall [a] \in \mathbb{Z}_n \quad MCD(a, n) = 1 \iff [a] \in \mathbb{Z}_n^*$

• Hp $-p \in \mathbb{P}$

• Th $-\mathbb{Z}_p$ campo

Teorema 69

• Hp $-p \in \mathbb{P}$

• Th - (\mathbb{Z}_p^*,\cdot) è ciclico

Funzione totiente di Eulero

Definizione 27

- Funzione totiente di Eulero
 - $n \in \mathbb{N}$
 - $\varphi(n) := |\mathbb{Z}_n^*|$

Teorema 70

• Hp

 $-n, m \in \mathbb{N} \mid \mathrm{MCD}(a, n) = 1$

 $- [a] \in \mathbb{Z}_{mn}^* \iff [a] \in \mathbb{Z}_m^* \land [a] \in \mathbb{Z}_n^*$

Teorema 71

 $-m, n \in \mathbb{N} \mid MCD(m, n) = 1$

 $-\varphi(m\cdot n) = \varphi(m)\cdot\varphi(n)$

Teorema 72

• Hp

 $-p \in \mathbb{P}$ $-k \in \mathbb{N} \mid k \ge 1$

 $-\varphi(p^k) = p^{k-1}(p-1)$

Teorema 73

• **Hp** $- k \in \mathbb{N} \mid k \ge 1$

$$-p_1, \dots, p_k \in \mathbb{P}$$

$$-i_1, \dots, i_k \ge 1$$

$$-n \in \mathbb{N} \mid n = p_1^{i_1} \cdot \dots \cdot p_k^{i_k}$$
• Th
$$-\varphi(n) = n \cdot \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$$

Matrici

Definizione 28

- Matrici
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $\mathrm{Mat}_{m\times n}(\mathbb{K})$ è l'insieme delle matrici aventi m righe e n colonne a coefficienti in \mathbb{K}
- Vettori riga e vettori colonna
 - K campo
 - $m, n \in \mathbb{N} \{0\}$

 - $\forall A \in \operatorname{Mat}_{1 \times n}(\mathbb{K})$ $A = (x_1, \dots, x_n)$ è detto **vettore riga** $\forall A \in \operatorname{Mat}_{m \times 1}(\mathbb{K})$ $A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ è detto **vettore colonna** $\forall A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ $\exists A^1, \dots, A^n \in \mathbb{K}^m$ vettori colonna e $A_1, \dots, A_m \in \mathbb{K}^n$
 - vettori riga | $A = (A^1, \dots, A^n) = \begin{pmatrix} A_1 \\ \vdots \\ A \end{pmatrix}$

- Somma tra matrici
 - K campo

 - $\begin{array}{ll} \bullet & m,n \in \mathbb{N} \{0\} \\ \bullet & \forall i \in [1,m], j \in [1,n] \quad a_{i,j},b_{i,j} \in \mathbb{K} \end{array}$

•
$$A, B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid A = \begin{pmatrix} \ddots & & \\ & a_{i,j} & \\ & & \ddots \end{pmatrix} \wedge B = \begin{pmatrix} \ddots & & \\ & b_{i,j} & \\ & & \ddots \end{pmatrix}$$

•
$$A+B=\left(\begin{array}{ccc} \ddots & & \\ & a_{i,j}+b_{i,j} & \\ & & \ddots \end{array}\right)$$
è la somma tra A e B

- Hp
 - − K campo
 - $-m, n \in \mathbb{N} \{0\}$
- - $\operatorname{Mat}_{m \times n}(\mathbb{K})$ è uno spazio vettoriale

Definizione 30

- Prodotto scalare
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{1 \times n}(\mathbb{K})$

 - B ∈ Mat_{m×1}(K)
 A · B := ∑_{i=1}ⁿ a_i · b_i è il prodotto scalare tra A e B

Teorema 75

• !!! WIP

Definizione 31

- Prodotto tra matrici
 - K campo
 - $l, m, n \in \mathbb{N} \{0\}$

•
$$A \in \operatorname{Mat}_{l \times m}(\mathbb{K}) \mid A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{l,1} & \cdots & a_{l,m} \end{pmatrix}$$

•
$$B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid B = \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,n} \end{pmatrix}$$

•
$$l, m, n \in \mathbb{N} - \{0\}$$

• $A \in \operatorname{Mat}_{l \times m}(\mathbb{K}) \mid A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{l,1} & \cdots & a_{l,m} \end{pmatrix}$
• $B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid B = \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,n} \end{pmatrix}$
• $C \in \operatorname{Mat}_{l \times n}(\mathbb{K}) \mid C = A \cdot B \text{ è il prodotto tra } A \text{ e } B, \text{ ed è definito come } \begin{pmatrix} a_{1,1}b_{1,1} + \ldots + a_{1,m}b_{m,1} & \cdots & a_{1,1}b_{1,n} + \ldots + a_{1,m}b_{m,n} \\ \vdots & \ddots & \vdots \\ a_{l,1}b_{l,1} + \ldots + a_{l,m}b_{m,1} & \cdots & a_{l,1}b_{1,n} + \ldots + a_{l,m}b_{m,n} \end{pmatrix}$

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-\lambda \in \mathbb{K}$
 - $-l, m, n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{l \times m}(\mathbb{K})$
 - $-B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- Th

$$-(AB)C = A(BC)$$

$$-A(B+C) = AB + AC$$

$$-(A+B)C = AC + BC$$

$$-\lambda(AB) = (\lambda A)B = A(\lambda B)$$

$$-\lambda \in \mathbb{K}$$

$$-n \in \mathbb{N} - \{0\}$$

• Th

–
$$(\mathrm{Mat}_{n\times n}(\mathbb{K}),+,\cdot)$$
 è un anello

Matrici particolari

Definizione 32

- Vettore trasposto
 - K campo
 - $n \in \mathbb{N}$

•
$$v \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) \mid \exists x_1, \dots, x_n \in \mathbb{K} : v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

- $v^T = (x_1, \dots, x_n)$ è il vettore trasposto di v
 - -vicendevolmente, se v è un vettore riga, il suo trasposto sarà il corrispondente vettore colonna
- Matrice trasposta
 - $m, n \in \mathbb{N} \{0\}$
 - K campo
 - $A \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid A = (A^1, \dots, A^n)$

•
$$A^T = \begin{pmatrix} A^{1T} \\ \vdots \\ A^{nT} \end{pmatrix}$$
 è la matrice trasposta di A

 $-\,$ vale il ragionamento analogo considerando le righe di A al posto delle colonne

Teorema 78

• Hp

$$-m, n \in \mathbb{N} - \{0\}$$

$$-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$$

$$-B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$$

• Th

$$- (A \cdot B)^T = B^T \cdot A^T$$

- Matrice identità
 - K campo
 - $n \in \mathbb{N} \{0\}$

•
$$n \in \mathbb{N} - \{0\}$$
• $I_n = \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} e_1^T, \dots, e_n^T \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$ è detta matrice identità

identità

- Matrice invertibile
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A invertibile $\iff \exists A^{-1} \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \mid A \cdot A^{-1} = A^{-1} \cdot A = I_n$
- Gruppo Generale Lineare
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $GL(n, \mathbb{K}) := \{A \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \mid A \text{ invertibile } \}$ è detto **gruppo generale** lineare invertibile

Teorema 79

- Hp
 - \mathbb{K} campo
 - $-n \in \mathbb{N} \{0\}$
- Th
 - $(\operatorname{GL}(n, \mathbb{K}), \cdot)$ è un gruppo

Teorema 80

- Hp
 - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $-f: \mathrm{GL}(n,\mathbb{K}) \to \mathbb{K}^*$
- Th
 - -f morfismo di gruppi

- Gruppo Speciale Lineare
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $SL(n, \mathbb{K}) := \{A \in Mat_{n \times n}(\mathbb{K}) \mid det(A) = 1\}$ è detto gruppo generale lineare invertibile

- Matrici simili
 - \mathbb{K} campo
 - $n \in \mathbb{N} \{0\}$
 - $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A simile a $B \iff \exists C \in \mathrm{GL}(n, \mathbb{K}) \mid A = C^{-1}BC$

Teorema 81

- Hp $\mathbb{K} \text{ campo}$ $n \in \mathbb{N} \{0\}$ $A, B \in \mathrm{Mat}_{n \times n}(\mathbb{K}) \mid A \text{ simile a } B$ Th
- Definizione 36
 - Traccia
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$

 $- \det(A) = \det(B)$

• $\operatorname{tr}(A) := a_{1,1} + \ldots + a_{n,n}$ è detta **traccia di** A

Teorema 82

- Hp

 K campo
 n ∈ N − {0}
 A, B ∈ Mat_{n×n}(K) | A simile a B

 Th

 tr(A) = tr(B)

Definizione 37

• Matrice triangolare superiore

- \mathbb{K} campo
- $n \in \mathbb{N} \{0\}$
- $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
- A è detta triangolare superiore $\iff \forall i,j \in [1,n], i>j$ $a_{i,j}=0$
- Matrice triangolare inferiore
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$
 - A è detta triangolare superiore $\iff \forall i,j \in [1,n], i < j \quad a_{i,j} = 0$
- Matrice triangolare

- K campo
- $n \in \mathbb{N} \{0\}$
- $A \in \mathrm{Mat}_{n \times n}(\mathbb{K})$
- A è detta **triangolare** \iff A triangolare superiore o triangolare inferiore

- Sottomatrice di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - A_i^j è una sottomatrice di $A \iff A_i^j$ si ottiene rimuovendo A_i e A^j da A
- Minore di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - M è un minore di $A \iff M$ è una sottomatrice quadrata di A
- Orlato di un minore
 - K campo
 - $m, n, r \in \mathbb{N} \{0\} \mid r < m \land r < n$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $M \in \mathrm{Mat}_{r \times r}(\mathbb{K})$ è un minore di A
 - $M' \in \mathrm{Mat}_{(r+1) \times (r+1)}(\mathbb{K})$ è un orlato di $M \iff M'$ è un minore di A e M si ottiene rimuovendo una riga e una colonna da M'

Teorema 83

- Hp
 - − K campo
 - $-m, n, r \in \mathbb{N} \{0\} \mid r < m \land r < n$
 - $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-M \in \mathrm{Mat}_{r \times r}(\mathbb{K})$ è un minore di A
- Th
 - -M ha $(m-r)\cdot(n-r)$ orlati in A

- Matrice completa
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $b \in \mathrm{Mat}_{m \times 1}(\mathbb{K})$

•
$$b \in \operatorname{Mat}_{m \times 1}(\mathbb{K})$$

• $A_b := \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} & b_m \end{pmatrix}$

Rango

Definizione 40

- Sottospazio ortogonale
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $V \subset \mathbb{K}^n$ sottospazio vettoriale
 - $V^{\perp} := \{ w \in \mathbb{K}^n \mid \forall v \in V \quad w \cdot v = 0_{\mathbb{K}^n} \}$ è detto sottospazio ortogonale di \mathbb{K}^n la definizione ha significato poiché il prodotto scalare tra due vettori è nullo esattamente quando i due vettori sono perpendicolari tra loro, per osservazione precedente

Teorema 84

- Hp
 - \mathbb{K} campo
 - $-n \in \mathbb{N} \{0\}$
 - $V\subset \mathbb{K}^n$ sottospazio vettoriale
- Th
 - $-\ V^{\perp}$ è sottospazio vettoriale di \mathbb{K}^n

Teorema 85

- Hp
 - − K campo
 - $-n \in \mathbb{N} \{0\}$
 - $V\subset\mathbb{K}^n$ sottospazio vettoriale
- Th

$$-\dim(V^{\perp}) = \dim(\mathbb{K}^n) - \dim(V)$$

Definizione 41

- Moltiplicazione sinistra
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $x \in \operatorname{Mat}_{n \times 1}(\mathbb{K})$
 - $\forall A \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \quad L_A : \mathbb{K}^n \to \mathbb{K}^m : x \to A \cdot x$

- Hp
 - \mathbb{K} campo
 - $-m,n\in\mathbb{N}-\{0\}$
 - $-x \in \mathrm{Mat}_{n \times 1}(\mathbb{K})$
- Th
 - $\forall A \in \mathrm{Mat}_{m \times n}(\mathbb{K}) \quad L_A \ \text{è una trasformazione lineare}$

```
    Hp

            K campo
            m, n ∈ N − {0}
            x ∈ Mat<sub>n×1</sub>(K)

    Th

            ∀A ∈ Mat<sub>m×n</sub>(K) ker(L<sub>A</sub>) = span(A<sub>1</sub>,..., A<sub>m</sub>)<sup>⊥</sup> ∧ im(L<sub>A</sub>) = span(A<sup>1</sup>,..., A<sup>n</sup>)
```

Definizione 42

- Rango di una matrice
 - \mathbb{K} campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $x \in \operatorname{Mat}_{n \times 1}(\mathbb{K})$
 - $\operatorname{rk}(A) := \operatorname{rk}(L_A)$ è il **rango di** A

Teorema 88

```
• Hp
 - \mathbb{K} \text{ campo} 
 - m, n \in \mathbb{N} - \{0\} 
 - A \in \operatorname{Mat}_{m \times n}(\mathbb{K}) 
 - x \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) 
• Th
 - \operatorname{rk}(A) = \dim(\operatorname{span}(A^1, \dots, A^n)) = \dim(\operatorname{span}(A_1, \dots, A_n)^{\perp})
```

Operazioni su righe e colonne

- Scambio di righe di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\forall A_1, \ldots, A_m$ righe di A, scambiare A_i e A_j lascia invariato $\ker(L_A)$
- Moltiplicazione di una riga per una costante
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A_1, \ldots, A_m$ righe di A, moltiplicare A_i per λ lascia invariato $\ker(L_A)$
- Somma di una riga con un multiplo di un'altra
 - K campo

- $m, n \in \mathbb{N} \{0\}$
- $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- $\lambda \in \mathbb{K}^*$
- $\forall A_1, \ldots, A_m$ righe di A, sommare ad A_i un certo $\lambda \cdot A_j$ lascia invariato $\ker(L_A)$
- Scambio di colonne di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\forall A^1, \dots, A^m$ colonne di A, scambiare A^i e A^j lascia invariato im (L_A)
- Moltiplicazione di una colonna per una costante
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A^1, \dots, A^m$ colonne di A, moltiplicare A^i per λ lascia invariato im (L_A)
- Somma di una colonna con un multiplo di un'altra
 - \mathbb{K} campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A^1, \ldots, A^m$ righe di A, sommare ad A^i un certo $\lambda \cdot A^j$ lascia invariato im (L_A)

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra righe definite precedentemente
- Th
 - $-\,\equiv\,$ una relazione di equivalenza

Teorema 90

- Hp
 - − K campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-\ A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni $\mathit{tra}\ \mathit{righe}$ definite precedentemente
- Th
 - $-A \equiv B \implies \ker(L_A) = \ker(L_B) \wedge \operatorname{rk}(A) = \operatorname{rk}(B)$

Teorema 91

• Hp

- \mathbb{K} campo
- $-m, n \in \mathbb{N} \{0\}$
- $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- $A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra colonne definite precedentemente
- Th
 - \equiv una relazione di equivalenza

- Hp
 - − K campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra colonne definite precedentemente
- Th
 - $-A \equiv B \implies \operatorname{im}(L_A) = \operatorname{im}(L_B) \wedge \operatorname{rk}(A) = \operatorname{rk}(B)$

Morfismi

Definizione 44

- Morfismo di gruppi
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $f: G \rightarrow H$
 - f morfismo di gruppi $\iff \forall x, y \in G \quad f(x \cdot y) = f(x) \cdot f(y)$
- Morfismo di anelli
 - $(A, +, \cdot), (B, +, \cdot)$ anelli
 - $f:A \to B$
 - f morfismo di anelli $\iff \forall x,y \in A$ $f(x+y) = f(x) + f(y) \land f(x \cdot y) = f(x) \cdot f(y)$
 - la stessa definizione si applica per morfismo di campi

- Hp
 - $-(G,\cdot),(H,\cdot)$ gruppi
 - -1_G neutro per G
 - -1_H neutro per H
 - $-f:G\to H$ morfismo
- Th
 - $f(1_G) = 1_H$

• **Hp**

$$-(G,\cdot),(H,\cdot) \text{ gruppi}$$

$$-1_G \text{ neutro per } G$$

$$-1_H \text{ neutro per } H$$

$$-f:G\to H \text{ morfismo}$$
• **Th**

$$-f(g^{-1})=f(g)^{-1}$$

Isomorfismi

Definizione 45

- Isomorfismo
 - f isomorfismo $\iff f$ morfismo e f bi
iettiva

Teorema 95

Teorema 96

Hp

 ≃ è la relazione di isomorfismo

 Th

 ≃ è una relazione di equivalenza

Teorema 97

• **Hp**

$$-z \in \mathbb{C} \mid z^n = 1 \text{ sono le radici } n\text{-esime di } 1$$

$$-\zeta := e^{i\frac{2\pi}{n}}$$

$$-H := \{\zeta^0, \zeta^1, \zeta^k, \dots, \zeta^{n-1}\} \text{ è l'insieme delle radici } n\text{-esime di } 1$$
• **Th**

$$-(H, \cdot) \subset (\mathbb{C} - \{0\}, \cdot) \text{ è un sottogruppo}$$

• Hp
$$-f:\mathbb{Z}_n\to H:[k]\to \zeta^k$$
• Th
$$-f \text{ isomorfismo di gruppi } (\mathbb{Z}_n,+) \text{ e } (H,\cdot)$$

```
    Hp

            (G,·) gruppo
            g ∈ G
            f : Z → G : n → g<sup>n</sup>

    Th

            f morfismo di gruppi (Z,+) e (G,·)
```

Teorema 100

• Hp
$$-f:\mathbb{Z}\to\mathbb{Z}_n:k\to [k]$$
 • Th
$$-f \text{ morfismo di anelli } (\mathbb{Z},+,\cdot) \text{ e } (\mathbb{Z}_n,+,\cdot)$$

Teorema 101

Teorema 102

```
    Hp

            G gruppo
            g ∈ G
            f : G → G : h → g · h · g<sup>-1</sup>

    Th

            f morfismo di gruppi (G, ·) e (G, ·)
```

Kernel e immagine

- Kernel e immagine di gruppi
 - G, H gruppi
 - $f: G \to H$ morfismo
 - $\ker(f) := \{g \in G \mid f(g) = 1_H\}$ è detto **kernel/nucleo di** f
 - $\operatorname{im}(f) := \{ h \in H \mid \exists g \in G : f(g) = h \}$ è detta immagine di f
- Kernel e immagine di anelli
 - A, B gruppi
 - $f: A \to B$ morfismo
 - $\ker(f) := \{a \in A \mid f(a) = 0_B\}$ è detto **kernel/nucleo di** f
 - $\operatorname{im}(f) := \{b \in B \mid \exists a \in A : f(a) = b\}$ è detto **immagine di** f

- Hp -G, H gruppi $-f: G \to H \text{ morfismo}$. Th
- Th $\ker(f) \subset G \text{ è sottogruppo}$

Teorema 104

• Hp $-G, H \text{ gruppi} \\ -f: G \to H \text{ morfismo}$ • Th

Teorema 105

• Hp -G, H gruppi $-f: G \to H \text{ morfismo}$ • Th $-f \text{ iniettiva} \iff \ker(f) = \{1_G\}$

 $-\operatorname{im}(f)\subset H$ è sottogruppo

Teorema 106

- Hp $-A, B \text{ anelli} \\ -f: A \to B \text{ morfismo di anelli}$
- Th

 ker(f) ideale

Teorema 107

• Hp $-A, B \text{ anelli} \\ -f: A\to B \text{ morfismo di anelli}$ • Th $-\operatorname{im}(f)\subset B \text{ sottoanello}$

- $\ker(f) = I(n)$

$$-\ker(f)\subset G$$
 sottogruppo normale

Numeri complessi

Definizione 47

• Insieme dei complessi

•
$$\mathbb{C}:=\left\{a+ib\mid a,b\in\mathbb{R},\ i:i^2=-1\right\}$$
 è l'insieme dei complessi • $\forall z\in\mathbb{C}\quad\left\{\begin{array}{l}a:=\mathrm{Re}(z)\\b:=\mathrm{Im}(z)\end{array}\right.$

•
$$\forall z \in \mathbb{C}$$

$$\begin{cases} a := \operatorname{Re}(z) \\ b := \operatorname{Im}(z) \end{cases}$$

Teorema 110

$$-a,b,c,d \in \mathbb{R}$$
$$-z \in \mathbb{C} \mid z = a + ib$$
$$-w \in \mathbb{C} \mid w = c + id$$

$$-z + w = (a+b) + i(c+d)$$
$$-z \cdot w = (ac-bd) + i(ad+bc)$$

Definizione 48

- Coniugato
 - $a, b \in \mathbb{R}$
 - $z \in \mathbb{C} \mid z = a + ib$
 - $\bar{z} := a ib$ è il **coniugato** di z

Teorema 111

$$\begin{array}{l} -\ a,b,c,d,\in\mathbb{R} \\ -\ z\in\mathbb{C}\mid z=a+ib \\ -\ w\in\mathbb{C}\mid w=c+id \end{array}$$

• Th

$$\begin{array}{l} - \ \overline{z} + \overline{w} = \overline{z + w} \\ - \ \overline{z} \cdot \overline{w} = \overline{z \cdot w} \end{array}$$

Teorema 112

• Hp

$$\begin{array}{ll} & -0 \leq \theta < 2\pi \\ \bullet & \mathbf{Th} \\ & -e^{i\theta} = \cos\theta + i\sin\theta \end{array}$$

- Raggio
 - $a, b \in \mathbb{R}$
 - $z \in \mathbb{C} \mid z = a + ib$
 - $|z| := \sqrt{a^2 + b^2}$ è il **raggio** di z
 - -corrisponde alla distanza di z dall'origine nel piano di Gauss

Definizione 50

- Forma polare
 - $a, b \in \mathbb{C}$

 - $z \in \mathbb{C} \{0\}$ $z = |z| \cdot e^{i\theta}$ è detta forma polare di z

Definizione 51

- Soluzione principale
 - $a, b \in \mathbb{R}$
 - $z \in \mathbb{C} \mid z = a + ib$
 - $z \in \mathbb{C} \mid z u + w$ $\arg(z) \subset \mathbb{R}$ è l'insieme delle soluzioni del sistema $\begin{cases} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{cases}$
 - per definizione, $\arg(z) \implies \exists ! \theta \mid 0 \le \theta \le 2\pi$ tale che $\dot{\theta}$ sia soluzione del sistema, e questo prende il nome di Arg(z), detta soluzione principale

Teorema 113

- $(\mathbb{C},+,\cdot)$ è un gruppo
- Th - ($\mathbb{C}, +, \cdot$) è un campo

- Hp $-z, w \in \mathbb{C}$
 - $-|z \cdot w| = |z| \cdot |w| \quad \arg(z \cdot w) = \arg(z) + \arg(w)$

$$-|\overline{w}| = |w| \operatorname{arg}(\overline{w}) = -\operatorname{arg}(w)$$
$$-|w^{-1}| = |w|^{-1} \operatorname{arg}(w^{-1}) = -\operatorname{arg}(w)$$

$$-|\overline{w}| = |w| \operatorname{arg}(\overline{w}) = -\operatorname{arg}(w)$$

$$-|w^{-1}| = |w|^{-1} \operatorname{arg}(w^{-1}) = -\operatorname{arg}(w)$$

$$-|z| = \frac{|z|}{|w|} \operatorname{arg}\left(\frac{z}{w}\right) = \operatorname{arg}(z) - \operatorname{arg}(w)$$

• Hp $-z\in\mathbb{C}$ • Th $-z^n=|z|^ne^{i\theta n}\quad\arg{(z^n)}=n\arg(z)$

Permutazioni

Definizione 52

- Permutazioni
 - X insieme
 - $S_X := \{f \mid f: X \to X \text{ biiettiva }\}$ è l'insieme delle permutazioni di X
 - $X = \{1, \dots, n\} \implies S_n$ è detto gruppo simmetrico di n

Teorema 116

• Hp $-S_X := \{f \mid f : X \to Y \text{ bilettiva } \}$ • Th

• Th $-(S_X, \circ) \text{ è un gruppo, non abeliano se } |X| \geq 3$

Definizione 53

- Ciclo di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_x$

•
$$\exists 1 \leq i_1, \dots, i_d \leq n \in \mathbb{N} \mid \begin{cases} \sigma(i_1) = i_2 \\ \sigma(i_2) = i_3 \end{cases} \implies i_1, \dots, i_n \text{ costituiscono un} \\ \sigma(i_{d-1}) = i_d \\ \sigma(i_d) = i_1 \end{cases}$$

Teorema 117

• Hp

$$\begin{array}{ll} P \\ -n \in \mathbb{N} \\ -\sigma \in S_n \\ -1 \leq i < n \in \mathbb{N} \\ -I(\sigma,i) := \{n \in \mathbb{Z} \mid \sigma^n(i) = i\} \end{array}$$

• Th $- (I(\sigma,i),+) \subset (\mathbb{Z},+) \text{ è un ideale}$

- Hp
 - !!! RISCRIVI TUTTO
 - $I(\sigma,i)$ è **ideale principale** in $\mathbb Z$ generato da I(d), dove d è la lunghezza del ciclo di i, quindi $I(\sigma,i)=I(d)$
 - $-I(\sigma,i) = I(d) \implies d \in I(\sigma,i)$

Teorema 119

- **Hp**
 - $-n \in \mathbb{N}$
 - $-\sigma \in S_n \mid \sigma = \gamma_1 \dots \gamma_k$ sia la sua decomposizione in cicli
 - $-d_j := \text{lunghezza di } \gamma_j \quad \forall j \in [1, k]$
 - $m := mcm(d_1, \ldots, d_k)$
 - $I(\sigma) := \{ n \in \mathbb{Z} \mid \sigma^n = \mathrm{id} \}$
- Th
 - $-o(\sigma)=m$

Trasposizioni

Definizione 54

- Trasposizione
 - $n \in \mathbb{N}$
 - $i, j \in \mathbb{N} \mid 1 \le i < j \le n$
 - $k \in [1, n]$
 - $\tau_{i,j} \in S_n \mid \tau_{i,j} = \begin{cases} j & k = i \\ i & k = j \\ k & k \neq i, j \end{cases}$ è detta **trasposizione**, ovvero una permutazione

che inverte esclusivamente due elementi tra loro $-\tau_{i,j}^2=\mathrm{id}\iff \tau_{i,j}=\tau_{i,j}^{-1}$

- Trasposizione adiacente
 - $n \in \mathbb{N}$
 - $i, j \in \mathbb{N} \mid 1 \le i < j \le n \land j = i + 1$
 - $\tau_{i,j} = \tau_{i,i+1}$ è detta **trasposizione adiacente**, poiché inverte esclusivamente due elementi, adiacenti, tra loro

- Hp
 - $\begin{array}{l}
 -n \in \mathbb{N} \\
 -\sigma \in S_n
 \end{array}$
- Th
 - $-\exists 1 \leq i_1, \ldots, i_k < n \mid \sigma = \tau_{i_1, i_1 + 1} \ldots \tau_{i_k, i_k + 1}$, quindi ogni permutazione può essere riscritta come composizione di trasposizioni adiacenti

Segno

Definizione 55

- Segno di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_n$
 - $\text{Inv}(\sigma) := \{(i,j) \mid 1 \leq i < j < n : \sigma(i) > \sigma(j)\}$ è l'insieme delle inversioni di
 - $sgn(\sigma) = +1$ $-\operatorname{sgn}(\operatorname{id}) = (-1)^0 = 1$, in quando la funzione identità non ha inversioni

Teorema 121

- Hp
 - $-n \in \mathbb{N}$

$$-A_n := \{ \sigma \in S_n \mid \sigma \text{ pari} \}$$

- - $-A_n \subset S_n$ è un sottogruppo normale, detto gruppo alterno di ordine n

Teorema 122

- Hp

 - $-\sigma \in S_n \mid \sigma = \tau_1 \dots \tau_k$ dove $\forall j \in [1, k] \quad \tau_j = \tau_{j,j+1}$, dunque tutte le trasposizioni sono
- Th

$$-\operatorname{sgn}(\sigma) = (-1)^k$$

Teorema 123

- Hp

 - $\begin{array}{l} \mathbf{p} \\ -n \in \mathbb{N} \\ -\sigma, \sigma' \in S_n | \left\{ \begin{array}{l} \sigma = \tau_1 \dots \tau_k \\ \sigma' = \tau'_1 \dots \tau'_h \end{array} \right., \text{ dove ogni trasposizione è adiacente}$

$$-\operatorname{sgn}(\sigma\sigma') = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma')$$

- Hp
 - $-n \in \mathbb{N}$ $-\sigma \in S_n$

$$-\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$$

• Hp
$$-n \in \mathbb{N} \\
-\sigma, \sigma' \in S_n \\
-\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}$$
• Th
$$-\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma)$$

Teorema 126

• Hp
$$\begin{array}{l} -n \in \mathbb{N} \\ -\sigma, \sigma' \in S_n \mid \sigma := \gamma_1 \dots \gamma_k, \sigma' := \gamma_1' \dots \gamma_h' \\ -\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}, \text{ che costituisce dunque la relazione di coniugio} \end{array}$$
• Th
$$\begin{array}{l} k = h \\ d = d_1' \\ \vdots \\ d_k = d_h' = d_k' \end{array}$$
del ciclo γ_j' \(\text{ del lunghezza del ciclo } \gamma_j \text{ e d'}_j \text{ è la lunghezza} \)

Teorema 127

• Hp
$$\begin{array}{l}
-n \in \mathbb{N} \\
-\sigma \in S_n \mid \sigma := \gamma_1 \dots \gamma_k
\end{array}$$
• Th
$$-\operatorname{sgn}(\sigma) = (-1)^{n-k}$$

Polinomi

Definizione 56

- Polinomi

 - $a(x):=\sum_{k=0}^n a_k x^k=a_0 x^0+\ldots+a_n x^n$ è un polinomio $\mathbb{K}[x]:=\{a_0 x^0+\ldots+a_n x^n\mid a_0,\ldots,a_n\in\mathbb{K}\}$ è l'insieme dei polinomi a
 - $p(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ è detto **polinomio monico** \iff $a_n = 1$

• Hp
$$-(\mathbb{K},+,\cdot)$$
 anello

$$(\mathbb{K}[x],+,\cdot)$$
è un anello

Definizione 57

- Grado del polinomio
 - \mathbb{K} campo

 - $a(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ $\deg(a(x)) := \begin{cases} n & a(x) \neq 0 \\ -\infty & a(x) = 0 \end{cases}$

Teorema 129

- Hp
 - \mathbbm{K} campo
 - $-a(x),b(x) \in \mathbb{K}[x]$
- - $\deg(a(x) \cdot b(x)) = \deg(a(x)) + \deg(b(x))$

Teorema 130

- Hp
 - \mathbb{K} campo
 - $-a(x) \in \mathbb{K}[x] \mid \deg(a(x)) \ge 1$
- Th
 - $\not \exists a^{-1}(x) \in \mathbb{K}[x]$

Teorema 131

- Hp
 - \mathbb{K} campo
- - $\mathbb{K}[x]^* = \mathbb{K}^* \subset \mathbb{K}[x]$

Teorema 132

- Hp
 - \mathbb{K} campo
- Th
 - $\mathbb{K}[x]$ è un dominio di integrità

Definizione 58

- Radici di un polinomio
 - K campo
 - $p(x) \in \mathbb{K}[x]$
 - $\{c \in \mathbb{K} \mid p(c) = 0\}$ è l'insieme delle radici di p(x)

• Hp $- \mathbb{K} \text{ campo}$ $- p(x) \in \mathbb{K}[x]$ $- c \in \mathbb{K}$ • Th $- p(c) = 0 \iff x - c \mid p(x)$

Teorema 134

• Hp $- \mathbb{K} \text{ campo}$ $- p(x) \in \mathbb{K}[x]$ $- n := \deg(p(x))$ • Th $- |\{c \in \mathbb{K} \mid p(c) = 0\}| \le n$

Teorema 135

• Hp $- \mathbb{K} \text{ campo}$ $- I \subset \mathbb{K}[x] \text{ ideale}$ • Th - I è un ideale principale

Teorema 136

• **Hp** $- \mathbb{K} \text{ campo}$ $- I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] \text{ ideali}$ $- \exists d(x) \in \mathbb{K}[x] \mid I(a_1(x), \dots, a_n(x)) = I(d(x))$ • **Th** $- d(x) = \text{MCD}(a_1(x), \dots, a_n(x))$

Teorema 137

• Hp $- \mathbb{K} \text{ campo} \\ - I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] \text{ ideali} \\ - \exists m(x) \in \mathbb{K}[x] \mid I(a_1(x)) \cap \dots \cap I(a_1(x)) = I(m(x))$ • Th $- m(x) = \text{mcm}(a_1(x), \dots, a_n(x))$

Teorema 138

• Hp - \mathbb{K} campo - $a_1(x), \dots, a_n(x) \in \mathbb{K}[x]$ - $c \in \mathbb{K}$

-
$$d(x) := MCD(a_1(x), \dots, a_n(x))$$

• Th
- $a_1(c) = \dots = a_n(c) = 0 \iff d(c) = 0$

- Hp $\mathbb{K} \text{ campo}$ $p(x) \in \mathbb{K}[x]$
- Th $p(x) \in \mathbb{K}[x] \text{ irriducibile } \iff p(x) \text{ primo}$

Teorema 140

• Hp

- \mathbb{K} campo

- $p(x) \in \mathbb{K}[x] - \{0\}$ • Th

- $\exists !q_1(x), \ldots, q_k(x) \in \mathbb{K}[x]$ irriducibili e monici, $c \in \mathbb{K} - \{0\} \mid p(x) = c \cdot q_1(x) \cdot \ldots \cdot q_k(x)$ - in particolare, i polinomi sono unici a meno di un riordinamento

Teorema 141

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x]$ • Th $- p(x) \text{ irriducibile } \iff \deg(p(x)) = 1$

Teorema 142

• Hp $-p(x)\in\mathbb{R}[x]$ • Th $-p(x) \text{ irriducibile } \Longleftrightarrow \deg(p(x))=1 \text{ oppure } \deg(p(x))=2\land\Delta<0$

Teorema 143

• Hp $- a_0, ..., a_n \in \mathbb{Z} \mid a_0, a_n \neq 0$ $- p(x) \in \mathbb{Z}[x] \mid p(x) = a_0 + ... + a_n x^n$ $- a, b \in \mathbb{Z} \mid \text{MCD}(a, b) = 1$ $- p(\frac{a}{b}) = 0$ • Th $- a \mid a_0 \land b \mid a_n$

Teorema 144

• !!! MANCA UN TEOREMA ENORME

Relazioni

Definizione 59

- Relazioni
 - S insieme
 - ogni elemento $R \subseteq S \times S$ è una **relazione** su S
- Relazione riflessiva
 - S insieme
 - R relazione in $S \times S$
 - R riflessiva $\iff \forall x \in R \quad (x,x) \in R$
- Relazione simmetrica
 - S insieme
 - R relazione in $S \times S$
 - R simmetrica $\iff \forall x, y \in R \ (x, y) \in R \implies (y, x) \in R$
- Relazione transitiva
 - S insieme
 - R relazione in $S \times S$
 - R transitiva $\iff \forall x,y,z \in R \quad (x,y) \in R \wedge (y,z) \in R \implies (x,z) \in R$
- Relazione antisimmetrica
 - S insieme
 - R relazione in $S \times S$
 - R transitiva $\iff \forall x,y \in R \quad (x,y) \in R \land (y,x) \in R \implies x=y$
- Relazione totale
 - S insieme
 - R relazione in $S \times S$
 - R totale $\iff \forall x,y \in R \quad (x,y) \in R \lor (y,x) \in R$
- Relazione di equivalenza
 - S insieme
 - R relazione in $S \times S$
 - R è una relazione di equivalenza \iff R riflessiva, simmetrica e transitiva
- Ordine parziale
 - \bullet S insieme
 - R relazione in $S \times S$
 - R ordine parziale $\iff R$ riflessiva, transitiva e antisimmetrica
- Ordine totale
 - \bullet S insieme
 - R relazione in $S \times S$
 - R ordine totale \iff R ordine parziale in cui vale la totalità

- Hp $\begin{array}{ccc} & m,n \in \mathbb{N} \\ & & m \mid n \iff \exists p \in \mathbb{N} \mid mp = n \end{array}$
- Th
 | è ordine parziale

Teorema 146

- Hp $-a,b\in \mathbb{Z}\\ -a\equiv b\ (\mathrm{mod}\ n)\iff m\mid b-a\ \grave{\mathrm{e}}\ \mathrm{detta}\ \mathrm{congruenza}\ \mathrm{modulo}\ n$
- Th $\equiv \grave{\mathrm{e}} \text{ una relazione di equivalenza}$

Teorema 147

Hp

 x, y ∈ Z | x ≡ y (mod n)
 d ∈ Z : d | n

 Th

 x ≡ y (mod d)

Teorema 148

• Hp $-n \in \mathbb{N}$ $-[a], [b] \in \mathbb{Z}_n$ -d := MCD(a, n)• Th $-d \nmid b \implies \nexists [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod n$ $-d \mid b \implies \forall [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod n \quad x \text{ è anche tale che } \frac{a}{d}x \equiv \frac{b}{d} \pmod \frac{n}{d}$

Teorema 149

- Hp $\begin{array}{l} -G \text{ gruppo} \\ -g,h \in G \\ -g \sim h \iff \exists a \in G \mid h=a \cdot g \cdot a^{-1} \text{ è detta } \textit{relazione di coniugio} \end{array}$
- Th $-\sim \grave{\mathrm{e}} \ \mathrm{una} \ \mathrm{relazione} \ \mathrm{di} \ \mathrm{equivalenza}$

Partizioni

Definizione 60

• Partizione

- \bullet X insieme
- \bullet I insieme di indici
- $\forall i \in I \quad X_i \subset X$
- $X = \coprod X_i$

- Hp
 - − G gruppo
- Th

$$- \ \forall x,y \in G \quad x \nsim y \iff [x] \cap [y] = \varnothing \lor x \sim y \iff [x] = [y]$$

Teorema 151

- Hp
 - G gruppo
 - $-\sim$ è una relazione di equivalenza in G

$$- \sim$$
induce una partizione di $G,$ dunque $G = \coprod_{[x] \in X/\sim} [x]$

Classi laterali

Teorema 152

- Hp
 - G gruppo
 - $-H \subset G$ sottogruppo
 - $-x,y\in G$
- Th
 - $-x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza

Definizione 61

- · Classi laterali
 - (G, \cdot) gruppo
 - $(H, \cdot) \subset (G, \cdot)$ sottogruppo

 - $\forall x,y \in G$ $x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza $\forall x,y \in G$ $x \sim_D y \iff xy^{-1} \in H$ è una relazione di equivalenza

 - $[x] = \{y \in G \mid y \sim_S x\}$ è detta classe laterale sinistra
 - $[x] = \{y \in G \mid y \sim_D x\}$ è detta classe laterale destra
 - $G/H := \{[x] \mid x \in G\}$ è l'insieme delle classi laterali sinistre o destre

Teorema 153

• Hp

```
- (\mathbb{Z}, +) \text{ anello}
- n \in \mathbb{N}_{\geq 2}
- I(n) := \{nk \mid k \in \mathbb{Z}\}
- a, b \in \mathbb{Z}
• Th
- a \sim_S b \iff a \equiv b \pmod{n}
```

Hp

 G gruppo
 H ⊂ G sottogruppo

 Th

 H = [1] ∈ G/H

Teorema 155

• **Hp** $- G \text{ gruppo} \\
 - H \subset G \text{ sottogruppo} \\
 - x \in G \\
 - [x] = \{y \in G \mid y \sim_S x\}$ • **Th** $- xH := \{xh \mid h \in H\} = [x]$

Teorema 156

• Hp $-G \text{ gruppo} \\ -H \subset G \text{ sottogruppo} \\ -x \in G \\ \bullet \text{ Th} \\ -|xH|=|H|$

Teorema 157

• **Hp** -G gruppo $-H \subset G \text{ sottogruppo}$ $-+:G/H \times G/H \to G/H$ • **Th** -(G/H,+) è gruppo abeliano

Spazi Vettoriali

Definizione 62

• Spazio vettoriale

- K campo
- $x \in \mathbb{K}$ è detto scalare
- V è **spazio vettoriale su** $\mathbb{K} \iff (V,+)$ gruppo abeliano, è ben definita un'operazione di $\cdot: K \times V \to V$ che ammetta elemento neutro, inoltre $\forall s,t \in \mathbb{K}, v \in V$ $s \cdot (t \cdot v) = (s \cdot t) \cdot v, (s+t) \cdot v = s \cdot v + t \cdot v$ e infine $\forall s \in \mathbb{K}, v, w \in V$ $s \cdot (v+w) = s \cdot v + s \cdot w$
- $x \in V$ è detto **vettore**

- Hp
 - $-n \in \mathbb{N}$
 - − K campo
- Th
 - $-\mathbb{K}^n$ spazio vettoriale su \mathbb{K}

Definizione 63

- Sottospazio vettoriale
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - W è sottospazio vettoriale di $V\iff (W,+)\subset (V,+)$ sottogruppo, e $\forall w\in W, \lambda\in \mathbb{K} \quad \lambda\cdot w\in W$

Definizione 64

- Span di vettori
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - span $(v_1, \ldots, v_n) := \{\lambda_1 v_1 + \ldots + \lambda_n v_n \mid \lambda_1, \ldots, \lambda_n \in \mathbb{K}\}$, ovvero l'insieme delle combinazioni lineari degli v_1, \ldots, v_n

Teorema 159

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-v_1,\ldots,v_n\in V$
- Th
 - span (v_1, \ldots, v_n) è un sottospazio vettoriale di V

Definizione 65

- Vettori generatori
 - $n \in \mathbb{N}$

- K campo
- V spazio vettoriale su \mathbb{K}
- $v_1, \ldots, v_n \in V$
- v_1, \ldots, v_n sono **generatori di** $V \iff \operatorname{span}(v_1, \ldots, v_n) = V$
 - equivalentemente, ogni altro vettore in V è una combinazione lineare degli v_1, \dots, v_n

• Indipendenza lineare

- $n \in \mathbb{N}$
- K campo
- V spazio vettoriale su \mathbb{K}
- $v_1, \ldots, v_n \in V$
- v_1, \ldots, v_n sono linearmente indipendenti se e solo se $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0_V \iff \lambda_1 = \ldots = \lambda_n = 0_K$
 - equivalentemente, nessuno degli v_1,\dots,v_n è combinazione lineare degli altri

• Base di uno spazio vettoriale

- $n \in \mathbb{N}$
- K campo
- V spazio vettoriale su \mathbb{K}
- $v_1, \ldots, v_n \in V$
- v_1, \dots, v_n sono una base di $V \iff v_1, \dots, v_n$ sono generatori di V e linearmente indipendenti
- n è detta cardinalità della base di V

Teorema 160

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo

$$-e_1 := (1, 0, \dots, 0), \dots, e_n := (0, \dots, 0, 1) \in \mathbb{K}^n$$

- Th
 - $-e_1,\ldots,e_n$ sono una base di \mathbb{K}^n , ed è detta base canonica

Teorema 161

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-v_1,\ldots,v_n$ linearmente indipendenti $\iff v_1,\ldots,v_{n-1}$ linearmente indipendenti $\land v_n \notin \operatorname{span}(v_1,\ldots,v_{n-1})$

- Hp
 - $-m, k \in \mathbb{N}$

```
- K campo - V spazio vettoriale su K - w_1,\ldots,w_m\in V - v_1,\ldots,v_k\in \operatorname{span}(w_1,\ldots,w_m)\mid v_1,\ldots,v_k \text{ linearmente indipendenti} • Th - k\leq m
```

- Hp
 - $-n, m \in \mathbb{N}$
 - \mathbb{K} campo
 - V spazio vettoriale su $\mathbb K$
 - $-\ w_1, \dots, w_m \in V \mid w_1, \dots, w_m$ base di V
 - $-v_1,\ldots,v_n\in V\mid v_1,\ldots,v_n$ base di V
- Th
 - -n=m, il che implica che la cardinalità delle basi di uno spazio vettoriale è unica

Definizione 66

- Dimensione di uno spazio vettoriale
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $\dim(V)$ è detta **dimensione di** V, ed è la cardinalità delle basi di V

Teorema 164

- Hp
 - − K campo
 - $-n \in \mathbb{N}$
 - Vspazio vettoriale su $\mathbb K$
 - $-v_1,\ldots,v_n\in V$
- Th

$$-v_1,\ldots,v_n$$
 base di $V\iff \forall v\in V\quad \exists!\lambda_1,\ldots,\lambda_n\in\mathbb{K}\mid v=\lambda_1v_1+\ldots+\lambda_nv_n$

Teorema 165

- Hp
 - − K campo
 - W spazio vettoriale su $\mathbb K$
 - $-n := \dim(W)$
 - $-k \in \mathbb{N} \mid k < n$
 - $-\ w_1, \dots, w_k \in W$ linearmente indipendenti
- Th
 - $\exists w_{k+1}, \dots, w_n \in W \mid w_1, \dots, w_n$ è una base di W

Teorema 166

• Hp

```
− K campo− W spazio
```

- Wspazio vettoriale su $\mathbb K$

 $-n := \dim(W)$

 $-m \in \mathbb{N} \mid m \ge n$

 $-\ w_1, \dots, w_m \in W \mid w_1, \dots, w_m$ generatori di W

• Th

 $- \ \exists 1 \leq i_1, \ldots, i_n \leq m \mid w_{i_1}, \ldots, w_{i_n}$ è una base di W

Teorema 167

- Hp
 - − K campo
 - W spazio vettoriale su \mathbb{K}
 - $-n := \dim(W)$
 - $-w_1,\ldots,w_n\in W$
- Th

 $-w_1,\ldots,w_n$ linearmente indipendenti $\iff w_1,\ldots,w_n$ generatori di W

Teorema 168

- **Hp**
 - \mathbbm{K} campo
 - W spazio vettoriale su \mathbb{K}
 - $U,V\subset W$ sottospazi vettoriali
- Th

 $-\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$

Teorema 169

- Hp
 - \mathbbm{K} campo
 - -V spazio vettoriale su \mathbb{K}
 - $-\ W \subset V$ sottospazio vettoriale
- Th

-V/W sottospazio vettoriale

Teorema 170

- Hp
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-\ W \subset V$ sottospazio vettoriale
- Th

 $-\dim(V/W) = \dim(V) - \dim(W)$

- Hp
 - − K campo
 - $-k \in \mathbb{N}$

```
- V_1, \ldots, V_k spazi vettoriali su \mathbb{K}
- \operatorname{dim}(V_1 \times \ldots \times V_k) = \operatorname{dim}(V_1) \cdot \ldots \cdot \operatorname{dim}(V_k)
```

Applicazioni lineari

Definizione 67

- Applicazioni lineari
 - K campo
 - V e W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ morfismo di spazi vettoriali $\iff \forall x, y \in V \quad f(x+y) = f(x) + f(y)$ e $\forall v \in V, \lambda \in \mathbb{K} \quad f(\lambda v) = \lambda f(v)$
 - un morfismo su spazi vettoriali è detto anche **applicazione lineare** o **trasformazione lineare**

Teorema 172

- Hp
 - \mathbb{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-n := \dim(V)$
- Th
 - $-V \cong \mathbb{K}^n$

Teorema 173

• !!! QUI C'È UN BUCO DI COSE CHE NON HO CAPITO

Teorema 174

- Hp
 - \mathbb{K} campo
 - V,Wspazi vettoriali su $\mathbb K$
- Th

$$-V \cong W \iff \dim(V) = \dim(W)$$

Definizione 68

- Kernel e immagine
 - \mathbb{K} campo
 - V, W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ trasformazione lineare
 - $\ker(f) = \{ v \in V \mid f(v) = 0_W \}$
 - $im(f) = \{w \in W \mid \exists v \in V : w = f(v)\}$

- Hp
 - − K campo
 - V,Wspazi vettoriali su $\mathbb K$
 - $-\ f:V\to W$ trasformazione lineare
- Th
 - $-\ker(f)\subset V$ sottospazio

Teorema 176

- Hp
 - − K campo
 - V,Wspazi vettoriali su $\mathbb K$
 - $f: V \to W$ trasformazione lineare
- Th
 - $-\operatorname{im}(f) \subset W$ sottospazio

Definizione 69

- Rango di un'applicazione lineare
 - \mathbb{K} campo
 - V e W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ applicazione lineare
 - $\operatorname{rk}(f) := \dim(\operatorname{im}(f))$ è detto rango di f

Sottospazi affini

Teorema 177

• !!! TODO

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-b \in \mathrm{Mat}_{m \times 1}(\mathbb{K})$
 - $-X := \{x \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) \mid A \cdot x = b\}$
 - $-X\neq\emptyset$
- Th
 - -X sottospazio affine di \mathbb{K}^n , con dimensione pari a $n-\mathrm{rk}(A)$

Teorema fondamentale dell'algebra

• **Hp**

$$- \mathbb{K} \text{ campo} \\
- p(x) \in \mathbb{K}[x] \mid p(x) = a_0 x^0 + \ldots + a_n x^n$$
• **Th**

$$- \exists z \in \mathbb{C} \mid p(z) = 0$$

Teorema della divisione euclidea con il resto

• Hp
$$-m\in\mathbb{Z}\\ -n\in\mathbb{Z}-\{0\}$$
• Th
$$-\exists!\ q,r\in\mathbb{Z}\mid m=nq+r\quad 0\leq r< n$$

Teorema 179

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- a(x), b(x) \in \mathbb{K}[x] \mid b(x) \neq 0$$
• Th
$$- \exists ! q(x), r(x) \in \mathbb{K}[x] \mid a(x) = b(x) \cdot q(x) + r(x) \quad \deg(r(x)) < \deg(b(x)), \text{ che è detto}$$

$$teorema \ della \ divisione \ con \ il \ resto \ tra \ polinomi$$

Teorema di Lagrange

• Hp
$$-G \text{ gruppo finito} \\ -H \subset G \text{ sottogruppo finito}$$
 • Th
$$-|G|=|H|\cdot |G/H|$$

Teorema fondamentale dell'aritmetica

• Hp
$$-a,b\in\mathbb{N}$$
 • Th
$$-\operatorname{mcm}(a,b)\cdot\operatorname{MCD}(a,b)=a\cdot b$$

Teorema cinese dei resti

Teorema 180

```
• Hp
- a_1, \dots, a_n \ge 2 \in \mathbb{Z} \mid \text{MCD}(a_i, a_j) = 1 \quad \forall i, j \in [1, n] : i \ne j
- m := \text{mcm}(a_1, \dots, a_n)
• Th
- m = a_1 \cdot \dots \cdot a_n
```

Teorema 181

```
• Hp
-n \in \mathbb{N}
-a_1, \dots, a_n \in \mathbb{Z}_{n \geq 2}
-m := \operatorname{mcm}(a_1, \dots, a_n)
• Th
-\exists \phi \mid \phi : \mathbb{Z}_m \to \mathbb{Z}_{a_1} \times \dots \times \mathbb{Z}_{a_n} : x \pmod{m} \to (x \pmod{a_1}, \dots, x \pmod{a_n})
-\phi \text{ è una funzione ben definita, ed è iniettiva}
```

Teorema 182

• Hp
$$-n \in \mathbb{N} \\ -a_1, \dots, a_n \in \mathbb{Z}_{\geq 2} \mid \forall i, j \in [1, n] \quad i \neq j \Longrightarrow \mathrm{MCD}(a_i, a_j) = 1 \\ -b_1, \dots, b_n \in \mathbb{Z} \mid 0 \leq b_1 < a_1, \dots, 0 \leq b_n < a_n \\ -m := \mathrm{mcm}(a_1, \dots, a_n)$$
• Th
$$-\exists! x \; (\bmod \; m) \mid \begin{cases} x \equiv b_1 \; (\bmod \; a_1) \\ \vdots \\ x \equiv b_n \; (\bmod \; a_n) \end{cases}$$

Teorema 183

• Hp
$$-k \in \mathbb{N} \\ -n_1, \dots, n_k \in \mathbb{N} - \{0\} \mid \forall i, j \in [1, k] \quad i \neq j \implies \mathrm{MCD}(n_i, n_j) = 1 \\ -N := \mathrm{mcm}(n_1, \dots, n_k) \\ -[a] \in \mathbb{Z}_N^* \\ -o := o([a]) \text{ in } \mathbb{Z}_N^* \\ -\forall h \in [1, k] \quad o_h := o([a]) \text{ in } \mathbb{Z}_{n_h}^* \\ \bullet \text{ Th} \\ -o = \mathrm{mcm}(o_1, \dots, o_k)$$

Teorema del binomio di Newton

• **Hp**- A anello commutativo

$$-a, b \in A$$

$$-n \in \mathbb{N}$$
• Th
$$-(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

• !!! NON HO CAPITO UN CAZZO

Piccolo teorema di Fermat

Teorema 185

• Hp
$$-p \in \mathbb{P} \\ -[a] \in \mathbb{Z}_p - \{0\}$$
• Th
$$-[a]^{-1} = [a]^{p-2}$$

Teorema 186

• Hp
$$-p \in \mathbb{P}$$
• Th
$$-\prod_{0 < a < p} (x-a) \equiv x^{p-1} - 1 \pmod{p}$$

Teorema 187

• !!! NON HO CAPITO UN CAZZO

Teorema di Eulero

• Hp
$$-a,n\in\mathbb{N}\mid\mathrm{MCD}(a,n)=1$$
 • Th
$$-a^{\varphi(n)}\equiv 1\ (\mathrm{mod}\ n)$$

Teorema fondamentale di isomorfismo

- Hp
 - -A, B anelli
 - $-\ f:A\to B$ morfismo di anelli
- Th
 - $-A/\ker(f)\cong \operatorname{im}(f)$, ovvero $\exists \varphi\mid \varphi:A/\ker(f)\to \operatorname{im}(f):[a]\to f(a)$ isomorfismo di anelli

Teorema 188

- Hp
 - -G, H gruppi
 - $-\ f:G\to H$ morfismo di gruppi
- Th
 - $-G/\mathrm{ker}(f)\cong\mathrm{im}(f),$ o alternativamente $\exists\varphi\mid\varphi:G/\mathrm{ker}(f)\to\mathrm{im}(f):[g]\to f(g)$ isomorfismo di gruppi

Teorema 189

- Hp
 - \mathbb{K} campo
 - V,Wspazi vettoriali su $\mathbb K$
 - $-f:V\to W$ trasformazione lineare
- Th
 - $-V/\ker(f) \cong \operatorname{im}(f)$, o alternativamente $\exists \varphi \mid \varphi : V/\ker(f) \to \operatorname{im}(f) : [v] \to f(v)$

Teorema di Cauchy

- Hp
 - G gruppo finito
 - $-p\in\mathbb{P}$
 - -p|G
- Th

$$- \exists g \in G \mid o(g) = p$$

Teorema 190

• Hp

$$-G$$
 gruppo $|G| = 4$

- . Th
 - $-G \cong \mathbb{Z}_4$ oppure $G \cong K_4$

Teorema del rango

• Hp $-\mathbb{K}$ campo -V,W spazi vettoriali su \mathbb{K} $-f:V\to W$ trasformazione lineare • Th $- \operatorname{rk}(f) = \dim(V) - \dim(\ker(f))$

Teorema di Rouché-Capelli

Teorema di Cramer

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- A \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \mid \det(A) \neq 0$$

$$- b \in \operatorname{Mat}_{n \times 1}(\mathbb{K})$$

$$TI = \frac{1}{\det(A)} \cdot \det \begin{pmatrix} b_1 & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}$$

$$- \begin{cases} \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n,2} & \cdots & a_{n,n} \end{cases}$$
sono le componenti del vettore
$$x_n = \frac{1}{\det(A)} \cdot \det \begin{pmatrix} a_{1,1} & \cdots & a_{1,n-1} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,n-1} & b_n \end{pmatrix}$$

$$x \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) \mid A \cdot x = b$$

Teorema di Kronecker

• Hp
$$- \mathbb{K} \text{ campo}$$
$$- n, r, r' \in \mathbb{N} - \{0\} \mid r < r' < n$$
$$- A \in \text{Mat}_{n \times n}(\mathbb{K})$$

-
$$M_1 \in \operatorname{Mat}_{r \times r}(\mathbb{K}) \mid M_1$$
 minore di $A \wedge \det(A) \neq 0$
- Th
- $\operatorname{rk}(A) = r \iff \forall M_1'$ orlato di $M_1 \quad \det(M_1') = 0 \iff \forall M_2 \in \operatorname{Mat}_{r' \times r'}(\mathbb{K}) \mid M_2$ minore di $A \quad \det(M_2) = 0$

Teorema di Binet

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- n \in \mathbb{N} - \{0\}$$

$$- A \in \text{Mat}_{n \times n}(\mathbb{K})$$
• Th
$$- \det(A)^{-1} = \det(A^{-1})$$