

Representação de Conhecimento: Ontologias

Prof. Elder Rizzon Santos ersantos@inf.ufsc.br

+ Ontologia

- Uma disciplina filosófica
 - Lida com a **natureza** e **organização** da realidade
- Ciência do "Ser" (Aristóteles, Metafísica)
- Tenta responder questões (difíceis) como:
 - O que caracteriza ser?
 - O que é ser?
- Também lida com organização de conhecimento
 - Como as coisas devem ser classificadas?

Ontologias – aspectos gerais

- Uma ontologia pode ser vista como um artefato de engenharia contendo (Horrocks):
 - Um vocabulário utilizado para descrever algum domínio
 - Uma especificação explícita do significado do vocabulário
 - Restrições capturando conhecimento adicional
- *Idealmente* uma ontologia deve:
 - Capturar um entendimento compartilhado de um domínio de interesse
 - Fornecer um modelo do domínio, que seja:
 - formal e manipulável por máquinas

+ Exemplo

- Ontologia de Domínio
- Vocabulário e significado ("definições")
 - Elefante é um conceito cujos membros são do tipo animal
 - **Herbívoro** é um conceito cujos membros são *exatamente* aqueles animais que *só* comem <u>plantas</u> *ou partes de* <u>plantas</u>
 - Elefante Adulto é o conceito cujos membros são exatamente aqueles *elefantes* cuja *idade* é superior à 20 anos.
- Conhecimento do domínio / restrições / "axiomas gerais"
 - Elefantes adultos pesam no mínimo 2.000kg
 - Todos elefantes sao Elefantes Africanos ou Elefantes Indianos
 - Nenhum indivíduo pode ser um Herbívoro e um Carnívoro

Ontologias – Tipos/níveis

■ Base/Genérica/Alto Nível

- Mais próximas da noção filosófica
- Construtos universais
- *Upper-Ontologies*. Ex.: SUMO, DOLCE, Sowa

Domínio

Conceitos e relações de uma área de interesse particular. Ex.:
FMA, UMLS, Gene Ontology

■ Tarefa/Método

- Conceitualizações necessárias para realizar uma tarefa
- Ontologias de estados e transições. Tate's plan Onto

Ontologias – em computação

- Uma especificação formal e explícita de uma conceitualização compartilhada. Gruber
 - Formal
 - Explícita
 - Conceitualização
 - Compartilhada
- IA, KR, Engenharia de Conhecimento, Engenharia de Ontologias

Aplicações

- e-Science, e-Government, Bioinformática
 - The Gene Ontology
 - The Protein Ontology (MGED)
- SGBD
 - Integração de bases heterogêneas
 - Resposta à perguntas
- Processamento de Linguagem Natural
- Web Semântica
- Sensores e contexto
- Sistemas de Recomendação
 - Modelos/perfis de usuários

Linguagens ontologicas

- Possibilitam uma especificação explícita do domínio
 - Lógica
 - Grafos conceituais
 - Lógicas não clássicas (modalidades, graus de crença, etc.)
 - Probabilísticas, bayesianas, fuzzy
- Diferentes níveis de expressividade
- A formalização (sintaxe e semântica) possibilita o raciocínio automatizado (inferência)

+ Formalismos & Linguagens SHOE OKBC XOL **OWL** Redes Semânticas RDF(S) Frames OIL Ontolingua/KIF L. Descritiva DAML+OIL **FLogic OCML** LOOM KL-ONE CLASSIC L. Primeira Ordem CycL

Elementos da Linguagem

http://www.w3.org/TR/owl2-syntax/

Exemplo – Raciocínio TBox

Exemplo – Raciocínio tBox

- Class(a:bus_driver complete intersectionOf(a:person restriction(a:drives someValuesFrom (a:bus))))
- Class(a:driver complete intersectionOf(a:person restriction(a:drives someValuesFrom (a:vehicle))))
- Class(a:bus partial a:vehicle)
- Um motorista_de_onibus é uma pessoa que dirige um ônibus.
- Um ônibus é um veículo.
- Motorista_de_onibus dirige um veiculo, logo é motorista.

+ Exemplo – raciocínio Tbox

- Ontologia Inferida (classificação)
 - Bus_driver é subclasse de Driver
 - Todo Driver é Gownup

Exemplo – Raciocínio ABox

+

Exemplo – Raciocínio abox

Individual(a:Minnie type(a:female) type(a:elderly) value(a:has_pet a:Tom))

Individual(a:Tom type(owl:Thing))

ObjectProperty(a:has_pet domain(a:person) range(a:animal))

Class(a:old_lady complete intersectionOf(a:person a:female a:elderly))

Class(a:old_lady partial intersectionOf(restriction(a:has_pet allValuesFrom (a:cat)) restriction(a:has_pet someValuesFrom (a:animal))))

- Ou seja, Tom, é declarado somente como Thing e é pet de Minie
- A restrição de domínio permite inferir um tipo mais específico (Animal) e a quantificação universal possibilita inferir o tipo dessa instância