Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol

Meng-Hui Li* and Bei-Chia Chang

Department of Chemical Engineering, Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China

The solubilities of carbon dioxide in water (1) + monoethanolamine (2) + 2-amino-2-methyl-1-propanol (3) have been measured at 40, 60, 80, and 100 °C and at partial pressures of carbon dioxide ranging from 1.0 to 200 kPa. The ternary mixtures studied were $w_2 = 0$, $w_3 = 0.3$; $w_2 = 0.06$, $w_3 = 0.24$; $w_2 = 0.12$, $w_3 = 0.18$; $w_2 = 0.18$, $w_3 = 0.12$; and $w_2 = 0.24$, $w_3 = 0.06$ where w is the mass fraction. The modified Kent and Eisenberg model has been used to represent the solubility of CO_2 in the ternary solutions. The model reasonably reproduces the equilibrium partial pressure of CO_2 above the ternary solutions, not only over a temperature range from 40 to 100 °C, but also for various concentrations of components in the ternary solutions.

Introduction

Alkanolamine aqueous solutions are widely used in gas treating processes to remove acid gases, such as CO2 and H2S, from natural, refinery, and synthesis gas streams. Industrially important alkanolamines are monoethanolamine (MEA), diethanolamine (DEA), di-2-propanolamine (DIPA), and N-methyldiethanolamine (MDEA). Aqueous MEA solutions have been widely used due to their high reactivity, low solvent cost, ease of reclamation, and low absorption of hydrocarbons (1). When the primary (or secondary) amine reacts with CO_2 , stable carbamates are usually formed (2). The maximum CO₂ loading is limited by stoichiometry to 0.5 mol of CO₂/ mol of amine when carbamate formation is the only reaction. At high CO₂ partial pressures, however, carbamates may hydrolyze and generate free amines which can react with additional CO2; thus, the CO2 loading of MEA may exceed 0.5. For a gas stream that contains both CO₂ and H₂S, the aqueous MDEA solution is found to be an appropriate solution for the selective removal of H_2S from the gas stream (3, 4). Advantages of the use of MDEA solutions include their high loading capacity (about 1.0 mol of CO₂/mol of amine) and low enthalpy of reaction with the acid gases (5). The lower enthalpy of reaction leads to lower energy requirements for regeneration. However, a slow reaction rate of CO₂ with tertiary amines limits the use of MDEA solutions (2).

Recently the use of blended amines, a solution of two or more amines in varying compositions, shows considerable improvement in absorption and savings in energy requirements (6). Blended amines combine the absorption characteristics of the constituent amines such as a higher loading capacity and faster reaction rates. Blends of primary and tertiary amines, such as mixtures of MEA and MDEA, have been suggested for CO_2 removal (6).

Sterically hindered alkanolamines have also been proposed as commercially attractive solvents for removal of acid gases from gaseous streams (2). An example of the sterically alkanolamines is 2-amino-2-methyl-1-propanol (AMP), which is the hindered form of MEA. Due to the bulkiness of the group attached to a tertiary carbon atom of AMP, the formation of carbamates is inhibited when AMP reacts with CO_2 (2, 7). Thus, the reaction of CO_2 with AMP is mainly the formation of the bicarbonate ion as follows:

$$CO_2 + RR'NH_2 + H_2O \leftrightarrow HCO_3^- + RR'NH_3^+$$
 (1)

where RR'NH₂ denotes AMP. Therefore, the CO₂ loading of AMP can approach 1.0 mol of CO₂/mol of amine. The kinetics of the reaction of CO₂ with AMP have been shown to be first order with respect to both CO₂ and AMP, and the rate constant has the value of 1270 m³/(kmol·s) at 40 °C (7). Compared to MDEA, AMP has the same high CO₂ loading capacity (about 1.0 mol of CO₂/mol of amine) but has a higher reaction rate constant for the reaction with CO₂. The reaction rate constant of CO₂ with MDEA is 3.5 m³/(kmol·s) at 25 °C (8). Therefore, H₂O + MEA + AMP may be an attractive new solvent in addition to H₂O + MEA + MDEA for the acid gas treating process.

Some solubilities of CO_2 and H_2S in blended alkanolamine aqueous solutions are available in the literature. The solubilities of CO_2 and H_2S in $H_2O + MEA + MDEA$ have been studied (9–12). However, the solubility of acid gases in aqueous mixtures of MEA with AMP has not been reported in the literature. Therefore, it is the purpose of this research to measure the solubility of CO_2 in aqueous MEA + AMP solutions.

Experimental Section

Alkanolamine aqueous solutions were prepared from distilled water. MEA is Riedel-de Haën reagent grade with a 99 mol % purity and AMP is Riedel-de Haën reagent grade with a 98 mol % purity. The solubility of CO₂ in aqueous MEA + AMP solutions was measured in a 1.0-L stainless steel vapor-recirculation equilibrium cell. Another stainless steel sample cylinder (0.3 L) is connected to the equilibrium cell to increase the volume of the vapor phase. Two cylinders were mounted vertically in a thermostated oil bath. The temperature of the system was controlled by an EX-810B basic immersion circulator, made by NESLAB Instruments Inc., to a stability within ± 0.1 °C of the set-point temperature. The pressure of the system is indicated by an Ashcroft test gauge with the scale reading of 0.2 psi. For the low partial pressures of CO₂, nitrogen was introduced and mixed with CO₂, and the partial pressure of CO₂ was determined by online chromatography. The solubility (loading capacity) of CO₂ in amine solutions was determined by the titration method. When both the system pressure and the gas concentration, determined by gas chromatography, do not vary for 2 h, the equilibrium is assumed to have been reached;

^{*} To whom correspondence should be addressed.

Table 1. Partial Pressure P of CO_2 in $H_2O(1) + MEA(2) +$ AMP(3)4

$t = 40 ^{\circ}\mathrm{C}$		$t = 60 ^{\circ}\text{C}$		t = 80 °C		$t=100~{\rm ^{\circ}C}$	
P/kPa	α	P/kPa	α	P/kPa	α	P/kPa	α
		($\omega_2 = 0.0$	$\omega_3 = 0.3$			
1.05	0.396	1.43	0.200	1.68	0.102	1.12	0.039
3.14	0.497	1.67	0.230	4.83	0.163	3.62	0.093
5.54	0.566	4.27	0.331	9.82	0.248	5.79	0.10^{4}
11.5	0.647	9.84	0.451	29.6	0.382	19.7	0.18
17.2	0.666	11.3	0.452	79.5	0.518	25.0	0.20
21.2	0.749	34.2	0.582	146	0.617	71.2	0.343
74.2	0.772	67.9	0.656				
197	0.867	133	0.721				
		ú	$p_2 = 0.06$	$\omega_3 = 0.2$	4		
1.05	0.387	1.06	0.236	1.36	0.169	1.57	0.10
3.08	0.442	1.84	0.279	4.44	0.239	6.00	0.160
5.36	0.484	5.23	0.349	8.47	0.295	8.69	0.19
6.07	0.521	7.21	0.387	21.4	0.348	26.5	0.26
12.1	0.567	15.3	0.429	38.3	0.404	57.7	0.32'
17.0	0.568	16.4	0.452	96.7	0.499	98.8	0.38
32.7	0.626	39.4	0.543				
94.5	0.675	47.4	0.537				
178	0.755	166	0.630				
		ú	$p_2 = 0.12$	$\omega_3 = 0.1$	8		
1.14	0.384	1.14	0.296	0.90	0.181	1.90	0.133
4.39	0.433	3.14	0.358	2.70	0.242	2.17	0.143
27.4	0.511	8.93	0.398	8.90	0.296	3.86	0.18
62.0	0.565	38.9	0.486	32.3	0.385	11.5	0.25
105	0.583	104	0.546	78	0.440	40.9	0.316
175	0.612	171	0.577	161	0.512	101	0.36
			$p_2 = 0.18$	$\omega_3 = 0.1$	2		
0.86	0.379	1.15	0.352	1.05	0.236	1.15	0.15
2.18	0.393	2.18	0.359	2.94	0.254	3.16	0.199
5.47	0.413	4.65	0.390	6.05	0.319	7.75	0.268
8.25	0.457	6.64	0.392	15.1	0.360	24.8	0.32
19.4	0.458	17.4	0.436	64.8	0.443	52.2	0.359
45.7	0.498	46.1	0.465	155	0.492	96.1	0.40'
108	0.546	90.7	0.486			103	0.400
199	0.592	181	0.521				
				$\omega_3 = 0.0$			
1.00	0.403	0.89	0.333	0.95	0.237	0.74	0.123
4.20	0.433	1.98	0.348	2.00	0.282	1.46	0.157
14.2	0.460	6.27	0.391	4.35	0.314	3.25	0.208
39.2	0.482	19.5	0.408	20.9	0.376	9.07	0.260
78.8	0.510	52.1	0.448	81.8	0.434	35.3	0.328
172	0.553	97.7	0.477	165	0.466	105	0.383
		180	0.503				

^a CO₂ loading α = (mol of CO₂/total mol of amine), ω = mass fraction.

it usually takes 6-8 h for the system to reach equilibrium. At equilibrium, a liquid sample was withdrawn from the equilibrium cell into a vessel containing excess 1.0 M NaOH solution, thus converting free dissolved CO2 into the nonvolatile ionic species. An excess amount of BaCl₂ solution is then added to the solution. The solution is shaken well to permit all absorbed (physically and chemically) CO₂ to precipitate the carbonate as BaCO₃. The excess NaOH was titrated with HCl solution using phenolphthalein as the indicator. Using methyl orange as the indicator, a solution of HCl is then added. The amount of HCl added can be used to calculate the solubility of CO2 in terms of the moles of CO2 per mole of amine. The experimental error in the solution CO₂ loading (mol of CO₂/mol of total amine) is estimated to be $\pm 2-3\%$. The materials, vapor-liquid equilibrium apparatus, and methods of analysis are essentially the same as those used in our previous work on the solubility of acid gases in $H_2O + MEA + MDEA (10-12)$.

Results and Discussion

For the measurements of solubility of CO_2 in H_2O (1) + MEA (2) + AMP (3), the systems studied are $w_2 = 0$, $w_3 =$ 0.3; $w_2 = 0.06$; $w_3 = 0.24$; $w_2 = 0.12$, $w_3 = 0.18$; $w_2 = 0.18$, $w_3 = 0.18$ = 0.12; and w_2 = 0.24, w_3 = 0.06 where w is the mass fraction. The CO₂ solubility data in aqueous MEA + AMP solutions at 40, 60, 80, and 100 °C are presented in Table 1.

Owing to its simplicity, the model of Kent of Eisenberg (13) has often been used to represent the solubility of acid gases in aqueous alkanolamine systems (14-18). With the exception of the equilibrium constants for reactions involving amines, literature values for all the ionization constants and Henry's law constants were used in the model of Kent and Eisenberg (13). Jou et al. (15) pointed out that the equilibrium constants involving amines are essentially functions of temperature, acid gas loading, and amine concentration, rather than a function of temperature alone, as used in the model of Kent of Eisenberg. On the basis of the model of Kent and Eisenberg, Hu and Chakma (17, 18) proposed a modified expression for the equilibrium constants, governing the main amine reactions, as functions not only of temperature but also of acid gas partial pressure and amine concentration. In a similar manner, Li and Shen (19) allowed the chemical equilibrium constants involving alkanolamines to be functions of temperature, amine concentration, and carbon dioxide loading for the calculation of CO_2 solubilities in $H_2O + MEA$ + MDEA. In this study, the method of Li and Shen (19) will be applied to correlate the solubility data of CO₂ in aqueous MEA + AMP solutions. The constants in the model will be determined by fitting to the CO2 solubility data in H2O + MEA + AMP.

Equations describing the CO₂ + H₂O + MEA + AMP in the mixture equilibrium, with RNH2 and RR/NH2 representing MEA and AMP, respectively, are as follows:

$$RNH_3^+ \stackrel{K_{11}}{\leftrightarrow} H^+ + RNH_2 \tag{2}$$

$$RR'NH_2^+ \stackrel{K_{12}}{\longleftrightarrow} H^+ + RR'NH_2 \tag{3}$$

$$RNHCOO^{-} + H_2O \stackrel{K_2}{\leftrightarrow} RNH_2 + HCO_3^{-}$$
 (4)

$$H_2O + CO_2 \stackrel{K_3}{\leftrightarrow} H^+ + HCO_3^-$$
 (5)

$$H_2O \stackrel{K_4}{\longleftrightarrow} H^+ + OH^- \tag{6}$$

$$HCO_3^{-\frac{K_5}{4}}H^+ + CO_3^{2-}$$
 (7)

Note that the carbamate ion, RNHCOO-, is formed only by the reaction of CO₂ with MEA and not by CO₂ with AMP.

The expressions for the apparent equilibrium constants

$$K_{11} = [H^{+}][RNH_{2}]/[RNH_{3}^{+}]$$
 (8)

$$K_{12} = [H^{+}][RR'NH_{2}]/[RR'NH_{3}^{+}]$$
 (9)

$$K_2 = [RNH_2][HCO_3^-]/[RNHCOO^-]$$
 (10)

$$K_3 = [H^+][HCO_3^-]/[CO_2]$$
 (11)

$$K_{4} = [\mathrm{H}^{+}][\mathrm{OH}^{-}] \tag{12}$$

$$K_5 = [H^+][CO_3^{2-}]/[HCO_3^-]$$
 (13)

Henry's law relates the CO2 partial pressure to the concentration of the physically dissolved CO₂ in the solvent according to

$$P_{\text{CO}_2} = H_{\text{CO}_2}[\text{CO}_2] \tag{14}$$

The following mass balance equations for the reacting species hold:

$$m_1 = [RNH_2] + [RNH_3^+] + [RNHCOO^-]$$
 (15)

$$m_2 = [RR'NH_2] + [RR'NH_3^+]$$
 (16)

$$(m_1 + m_2)\alpha = [CO_2] + [CO_3^2] + [HCO_3] +$$
[RNHCOO] (17)

$$[RNH_3^+] + [RR'NH_3^+] + [H^+] = [OH^-] +$$

 $[RNHCOO^-] + [HCO_3^-] + 2[CO_3^2^-]$ (18)

where m_1 and m_2 are the molarity of MEA and AMP, respectively, and α is the loading capacity of CO_2 of the solvent.

In this study, literature values of the equilibrium constants for eqs 5–7 and the Henry's law constant for CO_2 are used in the calculation, as in the model of Kent and Eisenberg (13). These equations are given as follows:

$$K_3/(\text{kmol m}^{-3}) = \exp[-241.828 + 29.8253 \times 10^4/(T/\text{K}) - 1.48528 \times 10^8/(T/\text{K})^2 + 0.332647 \times 10^{11}/(T/\text{K})^3 - 0.282393 \times 10^{13}/(T/\text{K})^4]$$
 (19)

$$K_4/(\text{kmol m}^{-3})^2 = \exp[-39.5554 - 9.879 \times 10^4/(T/\text{K}) + 0.568827 \times 10^8/(T/\text{K})^2 - 0.146451 \times 10^{11}/(T/\text{K})^3 + 0.136145 \times 10^{13}/(T/\text{K})^4]$$
 (20)

$$K_5/(\text{kmol m}^{-3}) = \exp[-294.74 + 36.4385 \times 10^4/(T/\text{K}) - 1.84157 \times 10^8/(T/\text{K})^2 + 0.415792 \times 10^{11}/(T/\text{K})^3 - 0.354291 \times 10^{13}/(T/\text{K})^4]$$
 (21)

$$H_{\text{CO}_2}$$
/{kPa (kmol m⁻³)⁻¹} = exp[20.2669 - 1.38306 × 10⁴/
 $(T/\text{K}) + 0.06913 \times 10^8/(T/\text{K})^2 - 0.015589 \times 10^{11}/$
 $(T/\text{K})^3 + 0.01200 \times 10^{13}/(T/\text{K})^4$] (22)

The equilibrium constants which govern the main amine reactions, i.e., eqs 2-4, are assumed to be functions of temperature, amine concentration, and CO_2 loading. Using the least-squares fit to the equilibrium partial pressure data of CO_2 in aqueous MEA + AMP solutions, the equilibrium constants were determined as follows:

$$K_{11} = \exp[-33.118 + 777.64/(T/K) - 1.12718 \times 10^8/$$

$$(T/K)^3 + 18.6673\alpha + 3.83728/\alpha - 0.231423/\alpha^2 - 0.711864 \ln\{m_1(\text{kmol m}^{-3})\}\}$$
(23)

$$K_{12} = \exp[-20.6346 + 1027.78/(T/K) - 2.7166 \times 10^{8}/$$

$$(T/K)^{3} + 5.55063\alpha + 0.885938/\alpha - 0.048573/\alpha^{2} -$$

$$0.188085 \ln\{m_{2}/(\text{kmol m}^{-3})\}\} (24)$$

$$K_2 = \exp[1.67709 - 2961.26/(T/K) - 1.07644 \times 10^8/$$

$$(T/K)^3 + 18.7857\alpha + 0.992151/\alpha - 0.056525/\alpha^2 -$$

$$1.5674 \ln\{m_1/(\text{kmol m}^{-3})\}] (25)$$

where α is the ratio of the moles of CO_2 to the total moles of amine and K is in kmol m⁻³.

Figure 1. Partial pressure P of CO_2 in $w_2 = 0$, $w_3 = 0.3$ H₂O (1) + MEA (2) + AMP (3) at various temperatures for various loadings α (mol of CO_2 /total mol of amine): O, 40 °C; \Box , 60 °C; \triangle , 80 °C; \triangle , 100 °C. Lines are calculated by the method of Kent and Eisenberg.

Figure 2. Partial pressure P of CO_2 in $w_2 = 0.06$, $w_3 = 0.24$ H_2O (1) + MEA (2) + AMP (3) at various temperatures for various loadings α (mol of CO_2 /total mol of amine): O, 40 °C; D, 60 °C; D, 80 °C; D, 100 °C. Lines are calculated by the method of Kent and Eisenberg.

Figure 3. Partial pressure P of CO_2 in $w_2 = 0.12$, $w_3 = 0.18$ H_2O (1) + MEA (2) + AMP (3) at various temperatures for various loadings α (mol of CO_2 /total mol of amine): O, 40 °C; \Box , 60 °C; \triangle , 80 °C; \diamondsuit , 100 °C. Lines are calculated by the method of Kent and Eisenberg.

Figure 4. Partial pressure P of CO_2 in $w_2 = 0.18$, $w_3 = 0.12$ H_2O (1) + MEA (2) + AMP (3) at various temperatures for various loadings α (mol of CO_2 /total mol of amine): O, 40 °C; \Box , 60 °C; \triangle , 80 °C; \diamondsuit , 100 °C. Lines are calculated by the method of Kent and Eisenberg.

Figure 5. Partial pressure P of CO_2 in $w_2 = 0.24$, $w_3 = 0.06$ H_2O (1) + MEA (2) + AMP (3) at various temperatures for various loadings α (mol of CO_2 /total mol of amine): O, 40 °C; \Box , 60 °C; \triangle , 80 °C; \diamondsuit , 100 °C. Lines are calculated by the method of Kent and Eisenberg.

Figures 1-5 show comparisons between calculated and experimental results for the five blended amine aqueous systems. The calculated partial pressures of CO2 over aqueous MEA + AMP systems are in good agreement with experimental data for temperatures ranging from 40 to 100 °C and for systems of various concentrations, as shown in Figures 1-5. The model reasonably reproduces the equilibrium partial pressure of CO₂ over aqueous MEA + AMP systems. To investigate the effects of amine concentrations on CO2 solubility, plots of CO₂ solubilities in H₂O + MEA + AMP at 60 °C for solutions with different concentrations are shown in Figure 6. As can be seen in Figure 6, CO₂ solubilities vary systematically from $w_2 = 0$, $w_3 = 0.3$; $w_2 = 0.06$, $w_3 = 0.24$; w_2 $= 0.12, w_3 = 0.18; w_2 = 0.18, w_3 = 0.12;$ to $w_2 = 0.24, w_3 = 0.06.$ The solubilities of CO₂ in higher AMP mass fraction solutions are higher than those of solutions with a high MEA mass fraction. To test the applicability of the model, calculations of the solubility for data not included in the database have also been performed. Figures 7 and 8 give comparisons between the results of calculated and experimental CO₂ solubilities in 2.0 and 3.0 M (kmol m⁻³) AMP aqueous solutions for temperatures ranging from 20 to 80 °C (data of Tonti-

Figure 6. Partial pressure P of CO_2 in H_2O (1) + MEA (2) + AMP (3) at 60 °C for various loadings α (mol of CO_2 /total mol of amine): O, $w_2 = 0$, $w_3 = 0.3$; \Box , $w_2 = 0.06$, $w_3 = 0.24$; Δ , $w_2 = 0.12$, $w_3 = 0.18$, \diamondsuit , $w_2 = 0.18$, $w_3 = 0.12$; ∇ , $w_2 = 0.24$, $w_3 = 0.06$. Lines are calculated by the method of Kent and Eisenberg.

Figure 7. Comparison of calculated and experimental results for the solubility of CO_2 in 2.0 kmol m⁻³ AMP aqueous solution at 20–80 °C: O, 20 °C; \Box , 40 °C; \triangle , 60 °C; \diamondsuit , 80 °C. Data were reported by Tontiwachwuthikui (20). Lines are calculated by the method of Kent and Eisenberg.

wachwuthikui et al. (20)). The model predicts the solubility of CO_2 in 2.0 and 3.0 kmol m⁻³ AMP aqueous solutions reasonably well except for temperatures below 40 °C (see Figures 7 and 8).

Conclusion

The solubilities of CO₂ in H₂O + MEA + AMP have been reported from 40 to 100 °C and at CO₂ partial pressures up to 200 kPa. The systems studied are $w_2 = 0$, $w_3 = 0.3$; $w_2 = 0.06$, $w_3 = 0.24$; $w_2 = 0.12$, $w_3 = 0.18$; $w_2 = 0.18$, $w_3 = 0.12$; and $w_2 = 0.24$, $w_3 = 0.06$ where w is the mass fraction. The model of Kent and Eisenberg for calculating the solubilities of acid gases in alkanolamine solutions has been extended to represent the solubility of CO₂ in aqueous mixtures of MEA with AMP. The equilibrium constants of chemical reactions involving amines are expressed as functions of temperature, amine concentration, and CO₂ loading. The model reasonably reproduces the equilibrium partial pressure of CO₂ over aqueous MEA + AMP solutions, not only over a temperature range of 40–100 °C, but also for systems of various concentrations. The model has also been tested for systems not

Figure 8. Comparison of calculated and experimental results for the solubility of CO2 in 3.0 kmol m-3 AMP aqueous solution at 20-80 °C: O, 20 °C; □, 40 °C; △, 60 °C; ⋄, 80 °C. Data were reported by Tontiwachwuthikui (20). Lines are calculated by the method of Kent and Eisenberg.

included in the database. Satisfactory results were obtained for the calculation of the solubility of CO₂ in AMP aqueous solutions.

Literature Cited

(1) Isaacs, E. E.; Otto, F. D.; Mather, A. E. J. Chem. Eng. Data 1980, 25, 118.

- (2) Sartori, G.; Savage, D. W. Ind. Eng. Chem. Fundam, 1983, 22, 239.
- (3) Srinivasan, V.; Aiken, R. C. Fuel Process. Technol. 1988, 19, 141.
- (4) Yu, W. C.; Astarita, G. Chem. Eng. Sci. 1987, 42, 419.
- (5) Riesenfeld, F. C.; Brocoff, J. C. Technol., Oil Gas J. 1986, 84, 61.
- Chakravarty, T.; Phukan, U. K.; Weiland, R. H. Chem. Eng. Prog. 1985, 81, 32,
- (7) Yih, S. M.; Shen, K. P. Ind. Eng. Chem. Res. 1988, 27, 2237.
- (8) Crooks, J. E.; Donnellan, J. P. J. Org. Chem. 1990, 55, 1372.
- Austgen, D. M.; Rochelle, G. T.; Chen, C. C. Ind. Eng. Chem. Res. **1991**, *30*, 543.
- (10) Shen, K. P.; Li, M. H. J. Chem. Eng. Data 1992, 37, 96.
- (11) Li, M. H.; Shen, K. P. J. Chem. Eng. Data 1992, 37, 288.
- (12) Li, M. H.; Shen, K. P. J. Chem. Eng. Data 1993, 38, 105.
- (13) Kent, R. L.; Eisenberg, B. Hydrocarbon Process. 1976, 55 (2), 87.
- Lee, J. I.; Otto, F. D.; Mather, A. E. Can. J. Chem. Eng. 1976, 54,
- (15)Jou, F. Y.; Mather, A. E.; Otto, F. D. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 539.
- (16) Pitsinigos, V. D.; Lygeros, A. I. Hydrocarbon Process. 1989, 68 (4),
- (17) Hu, W.; Chakma, A. Chem. Eng. Commun. 1990, 94, 53.
- (18) Hu, W.; Chakma, A. Can. J. Chem. Eng. 1990, 68, 523.
- (19) Li, M. H.; Shen, K. P. Fluid Phase Equilib. 1993, 85, 129.
- (20) Tontiwachwuthikui, P.; Meisen, A.; Lin, C. J. J. Chem. Eng. Data 1**991**, *36*, 130.

Received for review February 24, 1994. Accepted April 23, 1994. This research was supported by a grant, NSC 82-0402-E033-044, of the National Science Council of the Republic of China.

^{*} Abstract published in Advance ACS Abstracts, June 1, 1994.