An English fragment

COGS 532, Spring 2023 April 16, 2023

1 The formalism

We define the components of our formalism.

Definition 1.1 (Vocabulary). The vocabulary of the grammar formalism consists of the following sets:

- i. a set of attribute symbols *A*;
- ii. a set of basic value symbols V^b ;
- iii. a set of decorations $D = \{u, x\}$;
- iv. the set of value symbols $V = \{v \mid v \in V^b \text{ or } v = {^\delta}v' \text{ for some } v' \in V^b \text{ and } \delta \in D\}$
- v. a set of variables X;

Definition 1.2 (Feature map). A feature map of a grammar, designated μ , is a function from A to $\mathcal{P}(V)$. It maps each attribute symbol to the set of possible values it can take.

Definition 1.3 (Feature structures). A possible feature structure defined in a grammar is some set

$$\{a: v \mid a \in A' \text{ and } v \in \mu(a)\}\$$
 for some $A' \subseteq A$

Note that Definition 1.3 guarantees that a feature structure can set a value for an attribute at most once. Also, it rules out nested feature structures, where the value of an attribute is also a feature structure.

Definition 1.4 (Merge). The operation Merge takes as input two feature structures F_1 and F_2 and returns a feature structure F_3 . The result is computed through the following steps:

- i. For each feature a: v in F_1 , if you find a feature u in F_2 delete the latter, and vice versa.
- ii. For each feature a: v in F_1 , if you find a feature x a: v in F_2 delete both features, and vice versa.
- iii. If there are no conflicts in feature structures, merge them into a single feature structure.

2 Notational conventions

Convention 2.1. An attribute value pair a: v is shortened to a^v .

Convention 2.2. When obvious, we omit the attribute. E.g. we write N instead of Cat^N.

 $^{^{1}\}mathcal{P}$ stands for the power set function.

3 Features

Attribute Value Description Cat N,V,D,Adj,C,... category

Cmp 0,1,2,3 Number of missing complements

Spc +,- Specified or not

 ϕ 0, 1 Person, number

4 Lexicon

Lexicon 4.1 (nominal).

book $[N, {}^{u}V]$ (1) := book [N, "Fin] (2):= the $[D, ^xN]$ (3) := $[D, ^xN]$ (4) a := John [D, N](5) :=

Lexicon 4.2 (verbal).

sleep := [V] (1) love := [V, D] (2) (3)

Lexicon 4.3 (functional).

 $-s := [Fin^+, {}^xV, {}^xD]$ (1) to := $[Fin^-, {}^xV]$ (2) (3)

(1) Mary loves John.

