Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome.	nome e matricola:	

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Siano A, B, C lettere proposizionali e P una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

A	В	С	Р
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{V}	\mathbf{F}	\mathbf{V}	\mathbf{F}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	\mathbf{F}	\mathbf{V}	\mathbf{F}
${f F}$	\mathbf{F}	\mathbf{F}	\mathbf{V}

- □ P non è una tautologia. □ P \models C. □ P \land C \models B
- $\square \neg P \wedge B$ è una contraddizione.
- (b) Sia φ la formula $\forall x \forall y P(y,x) \to \exists y P(x,y)$, dove P è un simbolo di predicato binario.

2 punti

- \Box φ è un enunciato e la variabile x occorre sia libera che vincolata in φ .
- \Box ϕ è un enunciato.
- \Box La variabile x occorre libera e vincolata in φ .
- \Box La variabile y occorre libera e vincolata in φ .

(c)	Siano φ, ψ delle <i>L</i> -formule.	2 punti
	\square Se φ è soddisfacibile allora $\psi \to \varphi$ è soddisfacibile.	
	\square Se $\neg \varphi$ è soddisfacibile allora φ è una tautologia.	
	\Box ϕ è soddisfacibile se e solo se ϕ è una tautologia.	
	\square Se ϕ è una tautologia allora $\psi \to \phi$ è soddisfacibile.	
(d)	Consideriamo il linguaggio L con due simboli di funzione unaria f,g . Quali delle seguenti espressioni sono L -enunciati che formalizzano correttamente relativamente alla L -struttura $\langle A,f,g\rangle$ l'affermazione "la funzione f è l'inversa della funzione g "	2 punti
	$\Box \ \forall x (f(g(x)) = x)$	
	$\square \ \forall x (f(x) \cdot g(x) = 1)$	
	$\Box \ \forall x (f(g(x)) = x \land g(f(x)) = x)$	
	$\Box f = g^{-1}$	
(e)	La relazione S su $\mathbb{Q} \setminus \{0\}$ definita da x S y se e solo se $\exists z(x \cdot z = y)$	2 punti
	□ è riflessiva.	
	\square non è simmetrica.	
	□ è transitiva.	
	□ non è una relazione d'equivalenza.	
(f)	La funzione $f: \mathbb{Q} \to \mathbb{Q}$ definita da $f(q) = 2q^2 + 1$ è	2 punti
	□ iniettiva ma non suriettiva.	
	□ suriettiva ma non iniettiva.	
	\Box biettiva.	
	\square né iniettiva, né suriettiva.	
(g)	Quali dei seguenti insiemi sono infiniti e numerabili?	2 punti
	$\square \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Z} \lor y \notin \mathbb{Q} \}$	
	$\square \ \{x \in \mathbb{R} \mid \sqrt{x} \in \mathbb{Q}\}$	
	$\square \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Z} \land y \in \mathbb{Q}\}$	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L=\{f\}$ con f simbolo di funzione binario. Sia φ la L-formula

$$\exists y \, (f(y,y) = x).$$

1. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \varphi[y/2, x/1].$$

2. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \varphi[y/2, x/2].$$

3. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \forall x \varphi[y/2, x/2].$$

4. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \exists x \varphi [y/2, x/1].$$

5. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \varphi[y/1, x/3].$$

6. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \varphi[y/\sqrt{2}, x/-2].$$

- 7. È vero che $\langle \mathbb{R}, \cdot \rangle \models \forall x \, \varphi[y/1, x/3]$?
- 8. Sia $\mathcal{C} = \langle \mathbb{R}^+, \cdot \rangle$, dove $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$. È vero che $\mathcal{C} \models \forall x \, \phi[y/1, x/3]$?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia $\langle A, < \rangle$ un ordine lineare stretto e siano B, C sottoinsiemi di A. Formalizzare relativamente alla struttura $\langle A, <, B, C \rangle$ mediante il linguaggio $L = \{<, B, C\}$ con un simbolo di relazione binaria e due simboli di predicato unari le seguenti affermazioni:

- 1. Tra due elementi di A c'è un elemento di B.
- 2. Dati due elementi distinti di B, uno dei due è minore dell'altro, cioè $\langle B, < \rangle$ è un ordine totale.
- 3. Ogni elemento di B è minore di ogni elemento di C.
- 4. C'è un elemento di B che è il minimo di $\langle A, < \rangle$.