

TALLER ORIENTADO S09

Magnitudes Físicas y Análisis Dimensional

Conversión de unidades

- 1. Convierta 310 km/h a m/s.
- 2. Convierta 46 dinas a N.
- 3. Convierta 18 millas/h a m/s.
- 4. Convierta 870 cal a Btu.
- 5. Convertir 34 galones a m³.
- 6. Convertir 1500HP a Watt.
- 7. Convertir 450cm3 a pies3.
- 8. Convertir 8.3 bar a mmHg.

Análisis dimensional

9. En la expresión mostrada, determine el valor de: "x+y+z", siendo: F=fuerza, K=número, A= densidad, B=velocidad, C=área

$$F = KA^X B^Y C^Z$$

- 10. Si k=12mg(log5), hallar las dimensiones y unidades de k, sabiendo que la ecuación es dimensionalmente correcta.
 - Además, m: masa, g: aceleración de la gravedad.
- 11. En la siguiente ecuación física

$$3\text{mv}^2 - 2\text{A} = 4\text{g}^2\text{Tan}\left(\frac{\text{C}^2}{\text{A}}\right)$$

Dónde: m: masa; v: velocidad.

Establecer la fórmula dimensional de "C" en el sistema internacional.

12. En la siguiente expresión:

$$Tg \theta = \frac{3R\beta + 2F\alpha}{MT^2}$$

Donde: R: radio, T: tiempo, F: fuerza, M: masa

Hallar las dimensiones de $[\alpha \cdot \beta]$

13. Hallar las dimensiones de "x" en la ecuación dada, si ésta es correcta dimensionalmente

$$kx + y + 5\sqrt{3}cm = 2\pi A \operatorname{Sen}(2\pi ky)$$

Factores de conversión.

Parámetro	Valores Equivalentes
Masa	1 Kg = 1000 g = 0,001 ton = 2,20462 lbm = 35,27392 onzas
	1 lbm = 16 onzas = $5*10^{-4}$ ton = 0,453593 Kg = 453,593 g
	1 ton = 2204,1062 lbm
Longitud	$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \text{ micrones } (\mu \text{m})$
	= 10^{10} Angstroms (Å) = 39,37 pulgadas = 3,2808 pies
	= 1,0936 yardas = 0,0006214 millas
	1 pies = 12 pulgadas = 1/3 yardas = 0,3048 m = 30,48 cm
	1 pulgada = $0.0254 \text{ m} = 2.54 \text{ cm}$
Volumen	$1 \text{ m}^3 = 1000 \text{ litros (L)} = 10^6 \text{ cm}^3 = 10^6 \text{ mL} = 35{,}3145 \text{ pies}^3$
	= 264,17 galones = 1056,68 quarts = 6,289811 barriles
	1 pies ³ = 1728 pulgadas ³ = 7,4805 galones = $0,028317 \text{ m}^3$
	$= 28,317 L = 28317 cm^3 = 28,317 L$
Fuerza	$1 \text{ Nw} = 1 \text{ Kg*m/s}^2 = 10^5 \text{ dinas} = 10^5 \text{ g*cm/s}^2 = 0.22481 \text{ lbf}$
	1 lbf = $32,174$ lbm*pies/s ² = $4,4482$ Nw = $4,4482.10^5$ dinas
	1 Kgf = 9,81 Nw

Parámetro	Valores Equivalentes
Presión	1 atm = 1,01325*10 ⁵ Nw/m ² (Pa) = 101,325 KPa = 1,01325 bars
	$= 1,01325*10^6 \text{ dinas/cm}^2 = 29,921 \text{ pulg Hg} = 760 \text{ mmHg}$
	= $14,696 \text{ lbf/pulg}^2 \text{ (psi)} = 760 \text{ torr} = 33,9 \text{ pies H}_2\text{O}$
	$= 10,333 \text{ m H}_2\text{O} = 1,033 \text{ Kgf/cm}^2 = 10330 \text{ Kgf/m}^2$
	$1 \text{ m H}_2\text{O} = 1000 \text{ Kgf/m}^2$
	$1 \text{ bar} = 14,5038 \text{ lbf/pulg}^2 \text{ (psi)}$
Energía / Trabajo	1 Joules (J) = 1 Nw*m = 10^7 ergs = 10^7 dinas*cm = 0,23901 cal
	$= 2,3901*10^{-4} \text{ Kcal} = 2,778*10^{7} \text{ Kw*h}$
	$= 0.7376 \text{ lbf*pie} = 9.486*10^{-4} \text{ Btu}$
	1 Btu = 778,17 lbf*pie = 252 cal
	1 L*atm = 101,3 Joule
Potencia	1 Watts (W) = 1 J/s = 0,23901 cal/s = 0,7376 lbf*pie/s
	$= 9,486*10^{-4} \text{ Btu/s} = 1,34*10^{-3} \text{ Hp}$
	1 KW = 3,412 Btu/h
	1 Hp = 550 lbf*pie/s = 2545 Btu/h = 745,712 Nw*m/s
	1 Cv = 75 Kgf*m/s
Tiempo	1 siglo = 100 años = 10 decadas
	1 año = 365 días = 8760 horas = $5,256*10^5$ minutos = $3,1536*10^6$ seg

