AID-521 Mathematics for Data Science

Module: Statistics | Lecture: 5

HYPOTHESIS TESTING & STATISTICAL DECISIONS

hypotheses, power, p-value, testing for a parameter, testing two samples, tests for count data, **interval estimation**

Hypothesis Testing -- Introduction

- → Make decisions about the population on the basis of sample information (Statistical Decisions)
- → Begin with initial conjectures about the population (Statistical Hypotheses)
- Compare conjecture with sample observations in a probabilistic manner (Tests of significance / Rules of decision)

Elements of a Statistical Test

- \rightarrow Null hypothesis H_0
 - → Usually, the nullification of a claim.
- \rightarrow Alternative hypothesis H_1 or H_a
 - \rightarrow The claim itself.
- → Test statistic TS
 - \rightarrow Function of the sample measurements used for the statistical decision to reject H_0 or not.
 - \rightarrow Known distribution under H_0 .
- → Rejection region (or critical region) RR
 - \rightarrow Values of the observed *TS* for which H_0 will be rejected.
 - → Such values are usually extreme values of TS, or in other words, highly unlikely values of TS

Usual Alternative Hypotheses

One may have hypotheses such as

$$H_0: \mu = \mu_0$$

against one of the following alternatives:

→ a two-tailed test/alternative

$$H_1: \mu \neq \mu_0$$

→ a one-tailed test

$$\begin{cases} H_1: \mu < \mu_0, & \text{a lower (or left) tailed alternative} \\ H_1: \mu > \mu_0, & \text{an upper (or right) tailed alternative} \end{cases}$$

The Test Statistic

- \rightarrow A function of random sample (data), hence is a r.v.
 - ightarrow Usually, an estimator for the unknown parameter
- ightarrow Its prob. distribution is known under null hypothesis H_0
 - ightarrow Assume population $\sim~\mathcal{N}(\mu,\sigma^2=\sigma_0^2)$
 - \rightarrow Consider a simple hypothesis[†] $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
 - o Then $Z(\mu_0|X_1,...,X_n)=\sqrt{n}rac{ar{\chi}-\mu_0}{\sigma_0}$ is a TS with known distribution $\mathcal{N}(0,1)$
- → Observed test statistic is its value when substituted with a given sample's values

$$ightarrow z(\mu_0|\mathbf{X}_1,...,\mathbf{X}_n) = \sqrt{n} \frac{\bar{\mathbf{X}}-\mu_0}{\sigma_0}$$

[†] A hypothesis that uniquely specifies the distribution from which the sample is taken is called a simple hypothesis.

Interpretation of Statistical Decision

If evidence (sampled data) strongly contradicts H_0 (beyond a reasonable doubt), then we reject H_0 in favor of H_1 .

If H_0 is not rejected, then H_1 is automatically rejected.

Failure to reject H_0 does not necessarily mean that H_0 is true.

[†] For e.g., "not guilty" does not mean a person "is innocent". This basically means that there is not enough evidence to reject H_0 .

Errors in Statistical Decision

Statistical	True state of null hypothesis	
decision	H ₀ true	H ₀ false
Do not reject H_0	Correct decision	Type II error (β)
Reject H_0	Type I error (α)	Correct decision

Level of significance =
$$\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

 $\beta = P(\text{don't reject } H_0 \mid H_0 \text{ is false})$

 \rightarrow For fixed α , as n increases β decreases and vice versa.

Errors in Statistical Decision

- → Consequences of different types of errors are, in general, very different.
 - \rightarrow H_0 : Person is innocent, vs. H_1 : Person is guilty
 - \rightarrow H_0 : Person is healthy, vs. H_1 : Person is sick
- → In many situations it is possible to determine which of the two errors is more serious.
 - → Choose null hypothesis such that its rejection should be considered to be more serious.

Rejection Regions in Statistical Decision

- \rightarrow Given the probability distribution of a *TS* under H_0 , the rejection region consists of those values of *TS* that are "extremely unlikely".
- → The statistical analyst decides what values of TS are "extreme".
- → The rejection region RR is pre-determined using the analyst's tolerance for error in decision.
 - ightarrow Usually, the level of significance lpha is used to specify the level of error tolerance, and hence the *RR*
 - ightarrow Each value of lpha corresponds to corresponding critical value(s) of *TS*

Sample Size

•••

Power

The power of a test is the probability that the test rejects H_0 when the alternative H_1 is true.

 \rightarrow If $H_0: \theta = \theta_0$, and $H_1: \theta = \theta_0$, then the power of the test at some $\theta = \theta_1 \neq \theta_0$ is

$$\pi(\theta_1) = Power(\theta_1) = P(reject H_0 | \theta = \theta_1)$$

 \rightarrow A good test will have high power.

Likelihood Ratio Tests

•••

p-Value

Corresponding to an observed value of a test statistic, the p-value (or attained significance level) is the lowest level of significance at which the null hypothesis would have been rejected.

- \rightarrow The maximum value of α , willing to tolerate, is chosen.
- \rightarrow If the *p*-value of the test is less than the maximum value of α , reject H_0 .

The lower the p-value, the stronger the evidence.

p-Value and Rejection Regions

- → Large sample
- → One-tailed test (right/upper)

p-Value and Rejection Regions

- → Large sample
- → One-tailed test (left/lower)

p-Value and Rejection Regions

- → Large sample
- → Two-tailed test

Hypothesis Test for Parameter μ

SUMMARY OF HYPOTHESIS TESTS FOR μ

Large Sample (n > 30)

To test

 $H_0: \mu = \mu_0$ versus

 $\mu > \mu_0$, upper tail test H_a : $\mu < \mu_0$, lower tail test

 $\mu \neq \mu_0$, two-tailed test Test statistic: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{p}}$

Replace σ by S, if σ is unknown.

Small Sample (n < 30)

To test $H_0: \mu = \mu_0$ versus

> $\mu > \mu_0$, upper tail test H_a : $\mu < \mu_0$, lower tail test $\mu \neq \mu_0$, two-tailed test

Test statistic: $T = \frac{\overline{X} - \mu_0}{S / \sqrt{p}}$

Assumption: n > 30

Assumption: Random sample comes from a normal

population

Decision: Reject H_0 , if the observed test statistic falls in the RR and conclude that H_0 is true with $(1-\alpha)100\%$ confidence. Otherwise, keep H_0 so that there is not enough evidence to conclude that H_{α} is true for the given α and more experiments may be needed.

Hypothesis Test for Parameter σ^2

If X_1, \ldots, X_n is a random sample from a normal population with the mean μ and variance σ^2 , then

$$\frac{\sum\limits_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}}{\sigma^{2}}=\frac{\left(n-1\right)S^{2}}{\sigma^{2}}$$

has a chi-square distribution with (n-1) degrees of freedom.

We know from Theorem 4.2.7 that $(1/\sigma^2)\sum_{i=1}^n (X_i - \mu)^2$ has a chi-square distribution with n degrees of freedom. Thus,

$$\begin{split} \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 &= \frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \overline{X} + \overline{X} - \mu \right)^2 \\ &= \frac{1}{\sigma^2} \left[\sum_{i=1}^n \left(X_i - \overline{X} \right)^2 + \sum_{i=1}^n \left(\overline{X} - \mu \right)^2 \right] \\ &\left(\text{Since } 2 \sum_{i=1}^n \left(X_i - \overline{X} \right) \left(\overline{X} - \mu \right) = 0 \right) \\ &= \frac{(n-1) \frac{S^2}{\sigma^2}}{\sigma^2} + \left(\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \right)^2. \end{split}$$

The left-hand side of this equation has a chi-square distribution with n degrees of freedom. Also, since $(\overline{X} - \mu) / (\sigma / \sqrt{n}) \sim N$ (0, 1) by Theorem 4.2.6 we have $\left[(\overline{X} - \mu) / (\sigma / \sqrt{n}) \right]^2 \sim \chi^2$ (1). Now from Theorem 4.2.4, $(n-1) S^2 / \sigma^2 \sim \chi^2$ (n-1).

Hypothesis Test for Parameter σ^2

SUMMARY OF HYPOTHESIS TEST FOR THE VARIANCE σ^2

To test

$$H_0: \sigma^2 = \sigma_0^2$$

versus

$$\sigma^2 > \sigma_0^2$$
, upper tail test

$$H_a: \sigma^2 < \sigma_0^2$$
, lower tail test

 $\sigma^2 \neq \sigma_0^2$, two-tailed test.

Test statistic:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

where S^2 is the sample variance.

Observed value of test statistic:

$$\frac{(n-1)s}{\sigma_0^2}$$

$$\text{Rejection region}: \begin{cases} \chi^2 > \chi^2_{\alpha,n-1}, & \text{upper tail RR} \\ \chi^2 < \chi^2_{1-\alpha,n-1}, & \text{lower tail RR} \\ \chi^2 > \chi^2_{\alpha/2,n-1} \text{ or } \chi^2 < \chi^2_{1-\alpha/2,n-1}, & \text{two tail RR} \end{cases}$$

where $\chi^2_{\alpha,n-1}$ is such that the area under the chi-square distribution with (n-1) degrees of freedom to its right is equal to α .

Assumption: Sample comes from a normal population.

Decision: Reject H_0 , if the observed test statistic falls in the RR and conclude that H_a is true with (1 - a)100% confidence. Otherwise, do not reject H_0 because there is not enough evidence to conclude that H_0 is true for given a and more data are needed.

Hypothesis Test for Two Samples

.. next class ..