Cvičení 3

Příklad 1: Pro následující jazyky sestrojte NKA, které je rozpoznávají:

- a) $L_1 = \{ w \in \{a, b, c\}^* \mid |w|_a = 0 \lor |w|_b \mod 2 = 0 \lor |w|_c \mod 3 = 2 \}$
- b) $L_2 = \{w \in \{\mathfrak{a},\mathfrak{b},\mathfrak{c}\}^* \mid |w| \geq 8 \text{ a osm\'y symbol od konce slova } w \text{ je } \mathfrak{a}\}$
- c) $L_3 = \{abaabw \mid w \in \{a, b\}^*\}$
- d) $L_4 = \{ wabaab \mid w \in \{a, b\}^* \}$
- e) $L_5 = \{w_1 abaabw_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Příklad 2: Následující NKA převeďte na ekvivalentní DKA:

Příklad 3: Sestrojte ZNKA rozpoznávající jazyky L₁, L₄ a L₅:

- a) $L_1 = L_2 \cdot L_3$, kde $L_2 = \{w \in \{0,1\}^* \mid \text{ve } w \text{ je každý výskyt 00 bezprostředně následován znakem 1}\}$ $L_3 = \{w \in \{0,1\}^* \mid |w|_1 \mod 3 = 2\}$
- b) $L_4 = \{w \in \{0,1\}^* \mid w \text{ alespoň třikrát obsahuje podslovo 000}\}$ Poznámka: Výskyty podslov se mohou překrývat, takže do jazyka L_4 patří například slovo 00000.
- c) $L_5 = \{w \in \{a,b\}^* \mid w \text{ vznikne z nějakého slova } w' \in L_6 \text{ vynecháním jednoho znaku}\}$, kde L_6 je jazyk tvořený právě těmi slovy nad abecedou $\{a,b\}$, která obsahují podslovo abba a končí sufixem abb.

Příklad 4: Následující ZNKA převeď te na ekvivalentní DKA:

Příklad 5: Pro každý z následujících automatů najděte alespoň jedno slovo nad abecedou $\{a,b\}$, které nepatří do jazyka rozpoznávaného daným automatem.

Příklad 6: Pro každý z následujících regulárních výrazů sestrojte ekvivalentní konečný automat (může se jednat o ZNKA):

- a) (0+11)*01
- b) (0+11)*00*1
- $\mathrm{c})\ (\alpha + b\alpha b)^* + \alpha^*(b\alpha + \epsilon)$

Příklad 7: Navrhněte obecný postup, jak pro daný NKA $\mathcal{A}=(Q,\Sigma,\delta,I,F)$ zjistit, zda:

- a) $\mathcal{L}(\mathcal{A}) = \emptyset$
- b) $\mathcal{L}(\mathcal{A}) = \Sigma^*$

Příklad 8: Navrhněte obecný postup, jak pro daný NKA $\mathcal{A}_1=(Q_1,\Sigma,\delta_1,I_1,F_1)$ a $\mathcal{A}_2=(Q_2,\Sigma,\delta_2,I_2,F_2)$ zjistit, zda $\mathcal{L}(\mathcal{A}_1)=\mathcal{L}(\mathcal{A}_2)$.

Příklad 9: Navrhněte obecný postup, jak k danému ZNKA \mathcal{A} se sestrojit ekvivalentní NKA \mathcal{A}' tak, aby množina stavů automatu \mathcal{A}' byla stejná jako množina stavů automatu \mathcal{A} .