

Vikas Dhiman January 30, 2024

Machine learning problems

will Python Machine learny (truftuo, trufn Input Classified on basis of type of input 1. Computer Vision 2. Natural language processing tasks
3. Audio processing 4. Multi-modal machine learning 5. Tabular machine learning

Computer vision

¹Image source: huggingface.co

Intertainage
Output=

Coundins
Sociation,
Size

Hugging face tasks

- Image classification pre-trained Colab
- · Object classification pre-trained Colab

²Image source: huggingface.co

Natural Language Processing

- 1. Conversational (e.g. ChatGPT)/ [[Conversation] 2. Fill-Mask (Fill in the blanks)
- 3. Question Answering
- 4096 4. Sentence Similarity 1
- 5. Summarization
- 6. Text Classification (e.g Sentiment classification)
- 7. Text Generation (e.g. auto-completion)
- 8. Token Classification (e.g. noun, adjectives or person, place etc)
- 9. Translation

Can we run chatbots

• MetaAi LLAMA Clib/Llama-2-13B-chat-GGML

Audio

- 1. Audio Classification
- 2. Audio-to-Audio
- 3. Automatic Speech Recognition
- 4. Text-to-Speech

Tabular

Mutimodal

- 1. Document Question Answering
- 2. Feature Extraction
- 3. Image-to-Text
- 4. Text-to-Image
- 5. Text-to-Video
- 6. Visual Question Answering
- 7. Text-to-3D
- 8. Image-to-3D

Using pre-trained models

- 1. Same as using other people's code.
- 2. Have to find the model that has been trained on a "similar problem"
- 3. Options:
 - Search on Google/Google Scholar/Github (most options, least standardized)
 - · Search on Tensorflow Hub: tensorflow.org/hub
 - · Search on Pytorch Hub: pytorch.org/hub
 - · Search on ONNX Hub: onnx.ai
 - Search on Huggingface tasks (fewest options, most standardized)

Homework 2: Using Pre-trained model

- Think of a project that you might want to do in this class.
- Find out the closest Hugging face task to your project
- Demonstrate that you can run at least one pre-trained Hugging face model on the standard task and a standard dataset on Google Colab or locally.

Dataset, Pre-processing, Models, and Learning

Data as Vectors: Pre-processing

												_										
	Ve	φ	9	_	Q	th c	kir	e di	(gn	+	۰ ۸۰	as.	Hin	nd	L	(1	Sc	alı	MS=	= (Du	ector
MIS	TO	0	tas	et	0	O	0	0	0	٥	0	0	0	0	0					S=	\(\frac{2.}{3.} \)	١
	7	ı	1	١	1	/	/	1	/	1	1	1	1	١	/	1	\	CO	יטע	5=	,ک	
			2																		14.	
			3											_							3.3	
			Y																		$\mathcal{L}^{L,3}$	
			5																			
			6													le		3	R .	300	つ	
	-		7	-	-			-						-	-	-		· 1			=	
			8															300 [=	<u></u>	<u></u>	
	7	૧	9	9	19)	9	3	9	9	р	9	9	9	9	9	4	-th	Ì	1=	-	انتذ	
	\mathcal{D}		{\(x	1 1/	1		(x	. 1/	.)		(x	ا م	(.) ?		4	•	thut	ヽレ	تيا	_		1
_				1, y	١), .		, (^	ועיו), .	,	, (,				_	٥٥ ٥٥ .	700	1 (11			~4
		0	الم حر الم	1 %		Ţ,	0)	0.3	امر	٨			Da	ta	ડ્રન			۱ اړ	11	-1	xt	00
28+28 Clubels Dataset salar 90000 = 15thor																						
			<u> </u>	<u> </u>	7		19	ړ	۱۲.	$t_{ u_0}$	77	y	•				·	1	l' '	\		14
	•							U	W	r								J	l	1		

Models as functions

$$\left\{ \begin{pmatrix} 3, 4 \end{pmatrix}, \\ \begin{pmatrix} 4, 8 \end{pmatrix} \right\}$$
 can all such input output bans be written as f unit f and f are dictor as a function, $f: \mathbb{R}^{n} \to \mathbb{R}$

A predictor as a function,
$$f: \mathbb{R}^{[n]} \mapsto \mathbb{R}$$

1. Example: Linear Model: $f(x; \mathcal{W}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0$

2. Example: Non-linear model (Two layer neural network) $f(x; \mathcal{W}) = \mathbf{w}_2^{\mathsf{T}} \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{w}_0)$, where $\sigma: \mathbb{R} \mapsto \mathbb{R}$ is some non-linear activation function like ReLU, sigmoid or tanh.

$$f(x) = f(x) + f(x)$$

Loss functions and Learning

$$f(x) = Lonear \left(Act \left(Lmean(x)\right)\right)$$

$$Tuo-luyer NN$$

$$X = Lmear \left(Linear(x)\right) = \frac{1}{n} \sum_{i=1}^{n} l(y_i, \hat{y}_i) \quad Avg \ Loss$$

$$\text{over entime}$$

$$\text{over entime}$$

$$\text{odduset in}$$

$$\text{called the empirical risk.}$$

$$\text{loss function} = \text{error function} \quad \text{Empirical Risk}$$

$$x \rightarrow 9 = y \qquad \qquad f(x) = 9.5 \quad \hat{y}$$

$$9-8.5 = |y-f(x)|^2 - 6ss$$

Learning

Learning is the process of finding parameters W that minimize the empirical risk, $R_{emp}(f, X, y)$.

Neural Networks: Biology vs Artificial

³Source: https://openstax.org/books/biology/pages/ 35-2-how-neurons-communicate

Similarities

• The excitation or firing of a biological neuron can be equated to a high positive value of units (x_1, x_2, x_3) in

Differences

- · Biological neuron is all or None
- · Biological neuron has a time component