1 Medición corriente de bias y tensión de offset

1.1 Modelo de amplificador operacional con corrientes de bias y tensión de offset

Figura 1: Modelo de amplificador operacional con corrientes de bias y tensión de offset

Que es corriente de bias y tension de offset. fijarme que puso roch en la intro

1.2 Importancia de las corrientes de bias y la tensión de offset

Las corrientes de bias $(I_B^+$ y $I_B^-)$ y la tensión de offset (V_{IO}) pueden generar efectos que no concuerdan con el modelo ideal de un amplificador operacional. Se presentan a continuación dos ejemplos:

Efecto de V_{IO}

Figura 2: Modelo de amplificador con configuración inversora con V_{IO} no despreciable

El circuito de la figura 2 representa un amplificador operacional en configuración inversora con tensión de offset no despreciable modelado por un op-amp ideal y una fuente de tensión continua V_{IO} . De ignorarse la tensión de offset, puede obtenerse la función transferencia:

$$\frac{V_{OUT}}{V_{IN}} = \frac{-R_F}{R_G}$$

Sin embargo, si se considera la tensión de offset, no es posible obtener obtener la función transferencia ya que el sistema no es lineal:

$$\begin{aligned} V_{OUT} &= V_{IN} \frac{-R_F}{R_G} + V_{IO} \left(1 + \frac{R_F}{R_G} \right) \\ \text{Si } V_{IN} &= 0, V_{OUT} = V_{IO} \left(1 + \frac{R_F}{R_G} \right) \neq 0 \\ \Rightarrow \text{El sistema no es lineal} \end{aligned}$$

Dependiendo el orden de V_{IN} y de V_{IO} y de la precisión necesaria, el efecto de V_{IO} en V_{OUT} no puede ser despreciado.

Efecto de I_B^+ y I_B^-

El amplificador operacional no puede funcionar si se impide el paso de las corrientes de bias. Si se decide poner un capacitor en serie con una de las entradas, I_B no podrá circular, haciendo que el amplificador no funcione correctamente. Ver ejemplo en figura 3.

"impide el paso" suena medio choto pero no sé como decirlo más mejor

 $\operatorname{redaccion}$

Figura 3: Circuito GIC. Si Z_2 y Z_3 fueran capacitores, no podriían circular las corrientes de bias. Una posible solución consiste en poner una resistencia en paralelo que permita la circulación y que sea lo suficientemente grande como para que la impedancia resultante sea aproximadamente capacituva pura.

Por otro lado, si hay una resistencia R en serie con la entrada del operacional, habrá una caída de tensión $V = I_B^{\pm} \cdot R$ que puede o no ser despreciable dependiendo de la relación entre I_B^{\pm} y R y las características del circuito. Este efecto es usado en el circuito de medición explicado en la siguiente sección para medir I_B^+ y I_B^-

1.3 Funcionamiento del circuito

La función del circuito es medir la tensión de offset y las corrientes de bias. La corriente de bias se obtiene midiendo la caída de tensión que genera sobre una resistencia de $1M\Omega$. En la tabla

	$V_{IO}(mV)$	$I_B(pA)$	$I_B \cdot 1M\Omega(mV)$
Típico	3	30	0.03
Máximo	10	200	0.2

Table 1: Valores de V_{IO} , I_B , y caída de tensión generada por I_B para el LF356 y TL081. Valores típicos con $V_{cc\pm}=15V$ y a 25°C especificados por el fabricante en la hoja de datos.

Todas las tensiones a determinar son amplificadas para así aumentar la precisión en la medición. Una posibilidad sería amplificar a lazo abierto. Este método cuenta con dos desventajas:

- La ganancia a lazo abierto A_{vol} típica es $200 \, {\rm V/mV}$. Con los valores de la tabla 1 el amplificador saturaría.
- Incluso si no hubiera saturación,

Por estos motivos se utiliza amplificación a lazo cerrado. En la figura 4 se muestra un circuito de medición de V_{IO} . Sabiendo que la ganancia de un circuito de amplificación no inversor es $(1 + \frac{R_2}{R_1})$, se obtiene $V_{IO} = \frac{R_1}{R_1 + R_2} \cdot V_{OUT}$.

Ya que las señales que se quieren medir tienen una amplitud comparable con el ruido que pueda llegar a inducirse en el circuito, es conveniente reducir la amplificación para las frecuencias mayores a cero. Esto se logra en el circuito presentado en la consigna (figura 5

con los interruptores cerrados llego a que Vio=

1.3.1 Funcionamiento en DC

Consideraciones a la hora de hacer el diagrama de flujo de señal:

- $\Delta V_{R1} = I_B^- \cdot R_1 \approx 0$
- $V_{d\,ideal} =$

En régimen permanente, la ganancia en el OA X es A_{vol} , ya que el capacitor se abre:

Se desprecian las caidas de tension generadas por las corrientes de bias en las resistencias R1, R2 y R4, por lo que en en R1 y en R4 delta V es 0, en R2 delta V es (divisor de tension con Vout)

redaccion:
avol es super
impreciso/
cambia una
bocha entonces el
resultado
seria muy
impreciso

redaccion

(a) Con op-amp real

(b) Con op-amp ideal y fuente de tensión modelando el op-amp real

Figura 4: Circuito de medición de V_{IO} simplificado. $V_{OUT} = V_{IO} \cdot \left(1 + \frac{R_2}{R_1}\right)$. No mide corrientes de bias y amplifica todas las frecuencias por igual.

1.3.2 Funcionamiento en AC

- estabilidad
- inversion de los opamps

Figura 5: Circuito de medición de $V_{IO},\ I_B^+$ y I_B^- . La amplificación disminuye con el aumento de la frecuencia.

Figura 6: Análisis en DC por diagrama de flujo de señal