时间序列分析实验报告书

班级: 统计 2001 姓名: 张逸敏 实验日期: 2023.5.4

实验四 趋势分析与季节效应分析

1 实验目的

R 语言的基本操作,对非平稳序列进行确定性分析。

2 实验条件

PC 机, R语言

3 实验原理

3.1 确定性因素分解

因素分解方法是一种常用的确定性时间序列分析方法。统计学家经过对经济 序列的长期观察和分析,他们发现尽管不同的序列波动特征千变万化,但所有的 序列波动都可以归纳为受到如下四大类因素的综合影响:

- (1)长期趋势:序列呈现出明显的长期递增或递减的变化趋势。
- (2)循环波动:序列呈现出从低到高再从高到低的反复循环波动。循环周期可长可短,并不是固定的。
- (3)季节性变化:序列呈现出和季节变化相关的稳定周期波动。
- (4)随机波动:除了长期趋势、循环波动和季节性变化之外,其他不能用确定性因素解释的序列波动,都属于随机波动。

换言之,任何时间序列都可以用这四个因素的某个函数进行拟合。

$$x_t = f(T_t, C_t, S_t, I_t)$$

最常用的两个函数是加法函数和乘法函数,相应的因素分解模型称为加法模型和乘法模型。

加法模型: $x_t = T_t + C_t + S_t + I_t$

乘法模型: $x_t = T_t \times C_t \times S_t \times I_t$

如果观察时期不够长,人们对确定性因素分解模型做了改进,将循环因素 (circle) 改为特殊交易日因素 (day)。新的四大因素为: 趋势 (T)、季节 (S)、交易日 (D) 和随机波动 (I)。即

$$x_t = f(T_t, S_t, D_t, I_t)$$

而常见的因素分解模型在加法模型和乘法模型的基础上,也增加了伪加法模型和对数加法模型。

伪加法模型: $x_t = T_t \times (S_t + D_t + I_t - 1)$

对数加法模型: $\ln x_t = \ln T_t + \ln S_t + \ln D_t + \ln I_t$

3.2 指数平滑预测模型

确定性因素分析的主要目的之一是根据序列呈现的确定性特征,选择适当的模型,预测序列未来的发展。根据序列是否具有长期趋势与季节效应,可以把序列分为如下三大类:

第一类: 既没有长期趋势,又没有季节效应的序列,采用简单指数平滑模型。 第二类: 只有长期趋势,没有季节效应的序列,采用 Holt 两参数指数平滑模型。

第三类: 既可以有长期趋势,也可以没有长期趋势,但一定有季节效应的序列,采用 Holt-Winters 三参数指数平滑模型。

4 实验过程与结果

4.1 实验案例表述

8. 某城市 1980 年 1 月至 1995 年 8 月每月屠宰生猪数量(单位:头)如表 5—12 所示(行数据)。

表 5—12									
76 378	71 947	33 873	96 428	105 084	95 741	110 647	100 331	94 133	103 055
90 595	101 457	76 889	81 291	91 643	96 228	102 736	100 264	103 491	97 027
95 240	91 680	101 259	109 564	76 892	85 773	95 210	93 771	98 202	97 906
100 306	94 089	102 680	77 919	93 561	117 062	81 225	88 357	106 175	91 922
104 114	109 959	97 880	105 386	96 479	97 580	109 490	110 191	90 974	98 981
107 188	94 177	115 097	113 696	114 532	120 110	93 607	110 925	103 312	120 184
103 069	103 351	111 331	106 161	111 590	99 447	101 987	85 333	86 970	100 561
89 543	89 265	82 719	79 498	74 846	73 819	77 029	78 446	86 978	75 878
69 571	75 722	64 182	77 357	63 292	59 380	78 332	72 381	55 971	69 750
85 472	70 133	79 125	85 805	81 778	86 852	69 069	79 556	88 174	66 698
72 258	73 445	76 131	86 082	75 443	73 969	78 139	78 646	66 269	73 776
80 034	70 694	81 823	75 640	75 540	82 229	75 345	77 034	78 589	79 769
75 982	78 074	77 588	84 100	97 966	89 051	93 503	84 747	74 531	91900
81 635	89 797	81 022	78 265	77 271	85 043	95 418	79 568	103 283	95 770
91 297	101 244	114 525	101 139	93 866	95 171	100 183	103 926	102 643	108 387
97 077	90 901	90 336	88 732	83 759	99 267	73 292	78 943	94 399	92 937
90 130	91 055	106 062	103 560	104 075	101 783	93 791	102 313	82 413	83 534
109 011	96 499	102 430	103 002	91 815	99 067	110 067	101 599	97 646	104 930
88 905	89 936	106 723	84 307	114 896	106 749	87 892	100 506		

- (1) 绘制该序列时序图,直观考察该序列的确定性因素特征。
- (2) 选择适当的模型对该序列进行因素分解。
- (3) 选择适当的模型对该序列进行为期5年的预测。

4.2 实验过程与代码

4.2.1 绘制该序列时序图, 直观考察该序列的确定性因素特征

首先读入数据, 创建时间序列对象。

y = ts(c(76378,71947,33873,96428,105084,95741,110647,100331,94133,103055,90595,101457,76889,81291,91643,96228,102736,100264,103491,97027,plot(y)

接下来绘制时序图。

观察时序图,发现有明显的周期效应,没有明显的递增或者递减趋势,周期波动大小与时间无关。

4.2.2 选择适当的模型对序列进行因素分解

由于周期波动与时序值无关, 所以采用加法模型:

$$x_t = T_t + S_t + I_t$$

通过 LOESS 光滑做季节性分解,使用 R 语言中的 stl()函数实现。其中,令 s.windows="periodic"可使得季节效应在各年间都一样。

因素分解结果绘图如下:

上图给出了 1980~1995 年的时序图、季节效应图、趋势图以及随机波动项。可以看出 1-4 月屠宰生猪数量比较少,5-8 月、10 月、12 月屠宰生猪数量较多。 1980 年至 1985 年呈现递增趋势,1985 年至 1987 年呈现递减趋势,1987 年至 1995年呈现递增趋势。

每个观测值中的季节、趋势、随机效应的具体组成如下:

	seasonal	trend	remainder	Aug 1981	2277.3127	95929.88	-1180.19283
Jan 1980	-10123.9396	79002.77	7499.17325	Sep 1981	-1411.3587	96125.56	525.79457
Feb 1980	-7498.6709	81008.08	-1562.40915	•			
Mar 1980	-962.7128	83013.39	-48177.68102	Oct 1981	1152.1978	95973.52	-5445.72165
Apr 1980	-2485.0233	84738.96	14174.05925	Nov 1981	-171.7844	95821.48	5609.30090
May 1980	4816.7962	86464.53	13802.66955	Dec 1981	6875.7863	95607.86	7080.35093
Jun 1980	2537.5005	88035.98	5167.51557	Jan 1982	-10123.9396	95394.24	-8378.30249
Jul 1980	4993.8952	89607.43	16045.67117	Feb 1982	-7498.6709	95217.77	-1946.10132
Aug 1980	2277.3127	91295.29	6758.39590	Mar 1982	-962.7128	95041.30	1131,41039
Sep 1980	-1411.3587	92983.15	2561.20963				
Oct 1980	1152.1978	94083.17	7819.63212	Apr 1982	-2485.0233	94791.62	1464.40788
Nov 1980	-171.7844	95183.19	-4416.40662	May 1982	4816.7962	94541.93	-1156.72459
Dec 1980	6875.7863	95053.43	-472.21647	Jun 1982	2537.5005	94524.36	844.14164
Jan 1981	-10123.9396	94923.67	-7910.72979	Jul 1982	4993.8952	94506.79	805.31745
Feb 1981	-7498.6709	94794.12	-6004.44983	Aug 1982	2277.3127	94855.36	-3043.67054
Mar 1981	-962.7128	94664.57	-2058.85933	Sep 1982	-1411.3587	95203.93	8887.43049
Apr 1981	-2485.0233	94821.47	3891.55439				
May 1981	4816.7962	94978.37	2940.83815	Oct 1982	1152.1978	95636.85	-18870.04883
Jun 1981	2537.5005	95356.28	2370.21867	Nov 1982	-171.7844	96069.77	-2336.98939
Jul 1981	4993.8952	95734.20	2762.90878	Dec 1982	6875.7863	96596.31	13589.90337

我汉理工大学

Jan 1983	-10123.9396	97122.85	-5773.90734	Dec 1984	6875.7863	108309.06	4999.15674
Feb 1983	-7498.6709	97677.43	-1821.75856	Jan 1985	-10123.9396	107689.89	5503.04461
Mar 1983	-962.7128	98232.01	8905.70076	Feb 1985	-7498.6709	106398.40	4451.27540
Apr 1983	-2485.0233	98836.26	-4429.24123	Mar 1985	-962.7128	105106.90	7186.81673
May 1983	4816.7962	99440.52	-143.31319	Apr 1985	-2485.0233	103533.89	5112.13672
Jun 1983	2537.5005	99943.03	7478.47254	May 1985	4816.7962	101960.88	4812.32675
Jul 1983	4993.8952	100445.54	-7559.43216	Jun 1985	2537.5005	99963.96	-3054.46108
Aug 1983	2277.3127	100921.06	2187.62791	Jul 1985	4993.8952	97967.04	-973.93933
Sep 1983	-1411.3587	101396.58	-3506.22301	Aug 1985	2277.3127	95640.48	-12584.79772
Oct 1983	1152.1978	101884.20	-5456.40023	Sep 1985	-1411.3587	93313.93	-4932.56708
Nov 1983	-171.7844	102371.82	7289.96132	Oct 1985	1152.1978	90945.59	8463.21008
Dec 1983	6875.7863	103138.66	176.55382	Nov 1985	-171.7844	88577.26	1137.52601
Jan 1984	-10123.9396	103905.50	-2807 <mark>.5</mark> 57 1 5	Dec 1985	6875.7863	86692.31	-4303.09285
Feb 1984	-7498.6709	104700.84	1778.83184	Jan 1986	-10123.9396	84807.35	8035.58484
Mar 1984	-962.7128	105496.18	2654.53136	Feb 1986	-7498.6709	83277.78	3718.89443
Apr 1984	-2485.0233	105998.54	-9336.51529	Mar 1986	-962.7128	81748.20	-5939.48544
May 1984	4816.7962	106500.90	3779.30809	Apr 1986	-2485.0233	80080.88	-3776.85733
Jun 1984	2537.5005	106948.54	4209.95763	May 1986	4816.7962	78413.56	-6201.35918
Jul 1984	4993.8952	107396.19	2141.91675	Jun 1986	2537.5005	76876.54	-968.03947
Aug 1984	2277.3127	107952.77	9879.91709	Jul 1986	4993.8952	75339.52	6644.58982
Sep 1984	-1411.3587	108509.35	-13490.99356	Aug 1986	2277.3127	74381.40	-780.71400
Oct 1984	1152.1978	108718.79	1054.01654	Sep 1986	-1411.3587	73423.29	-2440.92880
Nov 1984	-171.7844	108928.22	-5444.43460	Oct 1986	1152.1978	72743.95	1825.84882

其余的因素分解结果由于篇幅原因不再展示。

我们还可以通过两幅图来对季节分解进行可视化,即用 R 中自带的 monthplot()函数和 forecast 包中的 seasonplot()函数来画图:

```
par(mfrow=c(2,1))
library(forecast)
monthplot(y, xlab="", ylab="")
seasonplot(y, year.labels="TRUE", main="张逸敏")
```


上面两幅图中的第一幅图是月度图,表示的是每个月份组成的子序列(连接所有1月的点、连接所有2月的点,以此类推),以及每个子序列的平均值。可以看到,每个月份在1980年至1995年期间的变化趋势基本上是相同的。第二幅图是季节图(season plot),这幅图以年份为子序列。从这幅图中我们也可以观测到同样的趋势性和季节效应。

4.2.3 选择适当的模型对该序列进行为期5年的预测

根据上一小节的分析,该序列具有明显的季节效应,并且有长期趋势,所以采用 Holt-Winters 指数光滑模型进行拟合。

```
library(forecast)
fit <- ets(y, model="AAA")
fit
ETS (A, Ad, A)
Call:
 ets(y = y, model = "AAA")
  Smoothing parameters:
    alpha = 0.3037
    beta = 1e-04
    gamma = 1e-04
    phi = 0.9386
 Initial states:
    1 = 91441.9326
    b = 754.24
    s = 6826. 26 -181. 714 992. 3283 -1546. 933 2155. 48 5844. 166
           1665. 114 3222. 642 -2663. 646 1882. 659 -7338. 432 -10857. 92
  sigma: 9325.233
     AIC
            AICc
                      BIC
4439, 453 4443, 500 4497, 709
```

该模型拟合的准确性度量如下:

accuracy(fit)

A matrix: 1 × 7 of type dbl

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-107.1603	8893.625	6378.186	-1.294863	7.725895	0.6382084	0.009024906

预测未来5年(60个月)的时序值:

pred <- forecast(fit, 60)
pred</pre>

```
Point Forecast
                              Lo 80
                                         Hi 80
                                                   Lo 95
Sep 1995
                95273, 46 83322, 69 107224, 23 76996, 34 113550, 6
Oct 1995
                97812. 73 85322. 72 110302. 75 78710. 90 116914. 6
Nov 1995
                96638. 43 83631. 20 109645. 65 76745. 59 116531. 3
Dec 1995
                103646. 30 90141. 39 117151. 21 82992. 33 124300. 3
                85961. 80 71976. 67 99946. 94 64573. 38 107350. 2
Jan 1996
Feb 1996
                89479. 88 75030. 24 103929. 52 67381. 07 111578. 7
                98697. 12 83797. 26 113596. 99 75909. 75 121484. 5
Mar 1996
Apr 1996
                94157, 24 78820, 18 109494, 30 70701, 23 117613, 3
               100045. 44 84283. 13 115807. 74 75939. 07 124151. 8
May 1996
                98485. 79 82309. 26 114662. 32 73745. 92 123225. 7
Jun 1996
               102661. 76 86081. 21 119242. 31 77303. 99 128019. 5
Jul 1996
Aug 1996
                98975. 32 82000. 23 115950. 41 73014. 16 124936. 5
Sep 1996
                95272. 94 77911. 91 112633. 96 68721. 54 121824. 3
Oct 1996
                97812. 24 80073. 80 115550. 68 70683. 64 124940. 8
Nov 1996
                96637. 96 78529. 88 114746. 05 68944. 04 124331. 9
               103645. 87 85175. 45 122116. 29 75397. 80 131893. 9
Dec 1996
Jan 1997
                85961. 40 67135. 52 104787. 27 57169. 70 114753. 1
                89479. 50 70304. 68 108654. 32 60154. 14 118804. 9
Feb 1997
Mar 1997
                98696, 77 79179, 17 118214, 36 68847, 18 128546, 4
                94156. 91 74302. 38 114011. 43 63792. 03 124521. 8
Apr 1997
May 1997
               100045, 12 79859, 23 120231, 01 69173, 47 130916, 8
                98485. 49 77973. 53 118997. 45 67115. 16 129855. 8
Jun 1997
Jul 1997
               102661. 48 81828. 50 123494. 46 70800. 19 134522. 8
Aug 1997
                98975. 06 77825. 88 120124. 24 66630. 18 131319. 9
Sep 1997
                95272.69 73811.73 116733.66 62450.98 128094.4
                97812. 01 76043. 89 119580. 14 64520. 54 131103. 5
Oct 1997
Nov 1997
                96637. 75 74566. 70 118708. 80 62882. 99 130392. 5
Dec 1997
               103645, 67 81275, 76 126015, 58 69433, 84 137857, 5
Jan 1998
                85961. 21 63296. 34 108626. 07 51298. 29 120624. 1
Feb 1998
                89479. 32 66523. 26 112435. 38 54371. 06 124587. 6
Mar 1998
                98696. 60 75452. 97 121940. 23 63148. 53 134244. 7
Apr 1998
                94156. 75 70629. 03 117684. 47 58174. 21 130139. 3
               100044. 98 76236. 54 123853. 41 63633. 11 136456. 8
May 1998
Jun 1998
                98485. 36 74399. 45 122571. 26 61649. 14 135321. 6
Jul 1998
               102661. 35 78301. 11 127021. 59 65405. 58 139917. 1
                98974. 94 74343. 40 123606. 47 61304. 25 136645. 6
Aug 1998
Sep 1998
                95272. 58 70372. 51 120172. 65 57191. 20 133354. 0
Oct 1998
                97811. 90 72646. 32 122977. 49 59324. 46 136299. 3
Nov 1998
                96637. 65 71209. 31 122065. 99 57748. 36 135526. 9
Dec 1998
               103645. 57 77957. 15 129334. 00 64358. 52 142932. 6
```

武汉理工大学

```
Jan 1999
                 85961. 12 60015. 21 111907. 03 46280. 27 125642. 0
Feb 1999
                 89479. 24 63278. 35 115680. 12 49408. 44 129550. 0
Mar 1999
                 98696, 52 72243, 11 125149, 93 58239, 52 139153, 5
Apr 1999
                94156. 68 67453. 12 120860. 23 53317. 11 134996. 2
May 1999
               100044. 91 73093. 51 126996. 30 58826. 31 141263. 5
Jun 1999
                98485. 29 71288. 31 125682. 27 56891. 09 140079. 5
Jul 1999
               102661. 29 75220. 91 130101. 67 60694. 85 144627. 7
                98974. 88 71293. 23 126656. 53 56639. 45 141310. 3
Aug 1999
Sep 1999
                95272. 52 67351. 53 123193. 52 52571. 05 137974. 0
Oct 1999
                97811. 85 69653. 70 125970. 01 54747. 67 140876. 0
Nov 1999
                96637. 60 68244. 25 125030. 95 53213. 72 140061. 5
Dec 1999
               103645. 53 75018. 92 132272. 14 59864. 91 147426. 2
Jan 2000
                85961. 08 57103. 08 114819. 07 41826. 58 130095. 6
Feb 2000
                 89479. 20 60391. 66 118566. 74 44993. 64 133964. 8
Mar 2000
                98696. 48 69381. 19 128011. 78 53862. 61 143530. 4
Apr 2000
                94156. 64 64615. 34 123697. 94 48977. 12 139336. 2
May 2000
               100044. 87 70279. 28 129810. 47 54522. 33 145567. 4
Jun 2000
                98485. 26 68497. 05 128473. 47 52622. 25 144348. 3
Jul 2000
               102661. 26 72452. 07 132870. 46 56460. 28 148862. 2
                98974. 85 68546. 28 129403. 43 52438. 36 145511. 3
Aug 2000
```

预测值的图像如下:

```
plot(pred, main="Forecast",
  ylab="y", xlab="Time")
```

Forecast

预测值的置信区间如下:

武汉理工大学

p <- cbind(pred\$mean, pred\$lower, pred\$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p</pre>

	mean	Lo 80	Lo 95	Hi 80	Hi 95
Sep 1995	95273.46	83322.69	76996.34	107224.23	113550.6
Oct 1995	97812.73	85322.72	78710.90	110302.75	116914.6
Nov 1995	96638.43	83631.20	76745.59	109645.65	116531.3
Dec 1995	103646.30	90141.39	82992.33	117151.21	124300.3
Jan 1996	85961.80	71976.67	64573.38	99946.94	107350.2
Feb 1996	89479.88	75030.24	67381.07	103929.52	111578.7
Mar 1996	98697.12	83797.26	75909.75	113596.99	121484.5
Apr 1996	94157.24	78820.18	70701.23	109494.30	117613.3
May 1996	100045.44	84283.13	75939.07	115807.74	124151.8
Jun 1996	98485.79	82309.26	73745.92	114662.32	123225.7
Jul 1996	102661.76	86081.21	77303.99	119242.31	128019.5
Aug 1996	98975.32	82000.23	73014.16	115950.41	124936.5
Sep 1996	95272.94	77911.91	68721.54	112633.96	121824.3
Oct 1996	97812.24	80073.80	70683.64	115550.68	124940.8
Nov 1996	96637.96	78529.88	68944.04	114746.05	124331.9
Dec 1996	103645.87	85175.45	75397.80	122116.29	131893.9
Jan 1997	85961.40	67135.52	57169.70	104787.27	114753.1
Feb 1997	89479.50	70304.68	60154.14	108654.32	118804.9
Mar 1997	98696.77	79179.17	68847.18	118214.36	128546.4
Apr 1997	94156.91	74302.38	63792.03	114011.43	124521.8
May 1997	100045.12	79859.23	69173.47	120231.01	130916.8
Jun 1997	98485.49	77973.53	67115.16	118997.45	129855.8
Jul 1997	102661.48	81828.50	70800.19	123494.46	134522.8
Aug 1997	98975.06	77825.88	66630.18	120124.24	131319.9
Sep 1997	95272.69	73811.73	62450.98	116733.66	128094.4
Oct 1997	97812.01	76043.89	64520.54	119580.14	131103.5
Nov 1997	96637.75	74566.70	62882.99	118708.80	130392.5
Dec 1997	103645.67	81275.76	69433.84	126015.58	137857.5

Jan 1998	85961.21	63296.34	51298.29	108626.07	120624.1
Feb 1998	89479.32	66523.26	54371.06	112435.38	124587.6
Mar 1998	98696.60	75452.97	63148.53	121940.23	134244.7
Apr 1998	94156.75	70629.03	58174.21	117684.47	130139.3
May 1998	100044.98	76236.54	63633.11	123853.41	136456.8
Jun 1998	98485.36	74399.45	61649.14	122571.26	135321.6
Jul 1998	102661.35	78301.11	65405.58	127021.59	139917.1
Aug 1998	98974.94	74343.40	61304.25	123606.47	136645.6
Sep 1998	95272.58	70372.51	57191.20	120172.65	133354.0
Oct 1998	97811.90	72646.32	59324.46	122977.49	136299.3
Nov 1998	96637.65	71209.31	57748.36	122065.99	135526.9
Dec 1998	103645.57	77957.15	64358.52	129334.00	142932.6
Jan 1999	85961.12	60015.21	46280.27	111907.03	125642.0
Feb 1999	89479.24	63278.35	49408.44	115680.12	129550.0
Mar 1999	98696.52	72243.11	58239.52	125149.93	139153.5
Apr 1999	94156.68	67453.12	53317.11	120860.23	134996.2
May 1999	100044.91	73093.51	58826.31	126996.30	141263.5
Jun 1999	98485.29	71288.31	56891.09	125682.27	140079.5
Jul 1999	102661.29	75220.91	60694.85	130101.67	144627.7
Aug 1999	98974.88	71293.23	56639.45	126656.53	141310.3
Sep 1999	95272.52	67351.53	52571.05	123 <mark>1</mark> 93.52	137974.0
Oct 1999	97811.85	69653.70	54747.67	125970.01	140876.0
Nov 1999	96637.60	68244.25	53213.72	125030.95	140061.5
Dec 1999	103645.53	75018.92	59864.91	132272.14	147426.2
Jan 2000	85961.08	57103.08	41826.58	114819.07	130095.6
Feb 2000	89479.20	60391.66	44993.64	118566.74	133964.8
Mar 2000	98696.48	69381.19	53862.61	128011.78	143530.4
Apr 2000	94156.64	64615.34	48977.12	123697.94	139336.2
May 2000	100044.87	70279.28	54522.33	129810.47	145567.4
Jun 2000	98485.26	68497.05	52622.25	128473.47	144348.3
Jul 2000	102661.26	72452.07	56460.28	132870.46	148862.2
Aug 2000	98974.85	68546.28	52438.36	129403.43	145511.3

5 实验分析与总结

5.1 实验分析

(1) 时序图分析。时序图显示 1980 年至 1995 年屠宰生猪数量具有周期效应,

以及先递减、再递增的趋势。

- (2)因素分解。观察时序图发现周期波动的大小与时序值无关,所以采用加法模型。
- (3)确定模型。由于序列具有季节性以及长期递减、递增的趋势,所以采用Holt-Winters 指数光滑模型进行拟合,并预测未来 5 年的时序值。

5.2 实验总结

指数模型是用来预测时序未来值的最常用模型。这类模型相对比较简单,但是实践证明它们的短期预测能力较好。不同指数模型建模时选用的因子可能不同。单指数模型拟合的是只有常数水平项和时间点i处随机项的时间序列,这时认为时间序列不存在趋势项和季节效应;Holt指数平滑拟合的是有水平项和趋势项的时序;Holt-Winters指数平滑模型拟合的是有水平项、趋势项以及季节效应的时间序列。