Definice

2.2	Matice	
Rál	ná matice typu $m \times n$ je obdélníkové schema (tabulka)	
2.3	Vektor	
Reálný n-rozměrný aritmetický sloupcový vektor je matice typu $m\times 1$		
2.4	* notace	
i-tý	řádek matice A se značí: $A_{i*} = (a_{i1}, a_{i2},, a_{in})$	
2.5	Soustava lineárních rovnic	
2.6	Matice soustavy	
2.8	Elementární řádkové úpravy	
2.12	Odstupňovaný tvar matice	
2.13	Hodnost matice	
2.18	Redukovaný odstupňovaný tvar matice	
3.1	Rovnost	
3.2	Součet	
3.3	Násobek	
3.7	Součin	
3.11	Transpozice	
3.14	Symetrická matice	

3.23 Regulární matice

3.30 Inverzní matice

4.1 Grupa

```
Buď \circ: G^2 \to G binární operace na množině G. Pak grupa je dvojice (G, \circ) splňující: 1. \forall a, b, \in G: a \circ (b \circ c) = (a \circ b) \circ c (asociativita)
```

2. $\exists e \in G \forall a \in G : e \circ a = a \circ e = a$ (existence neutrálního prvku)

3. $\forall a \in G \exists b \in G : a \circ b = b \circ a = e$ (existence inverzního prvku)

4.5 Podgrupa

4.8 Permutace

4.9 Inverzní permutace

4.1 Skládání permutací

4.13 Znaménko permutace

4.22 Těleso

Těleso je množina T spolu se dvěma komutativními binárními operacemi + a · splňující:

- 1. (T, +) je Abelova grupa, neutrální prvek značíme 0 a inverzní k a pak -a
- 2. $(T\setminus\{0\},\cdot)$ je Abelova grupa, neutrální prvek značíme 1 a inverzní k a pak a-1
- 3. $\forall a, b, c \in T : a(b+c) = ab + ac$ (distributivita)

4.35 Charakteristika tělesa

5.1 Vektorový prostor

Buď T těleso s neutrálními prvky 0 pro sčítání a 1 pro násobení. Vektorovým prostorem nad tělesem T rozumíme množinu V s operacemi sčítání vektorů $+:V^2\to V$, a násobení vektorů skalárem $\cdot:T\times V\to V$ splňující pro každé $a,b\in T$ a $u,v\in V$:

- 1. (V, +) je Abelova grupa, neutrální prvek značíme o a inverzní k v pak -v
- 2. a(bv) = (ab)v (asociativita)
- 3. 1v = v
- 4. (a+b)v = av + bv (distributivita)
- 5. a(u+v) = au + av (distributivita)

5.4 Podprostor

5.11	Lineární kombinace
5.21	Lineární nezávislost
5.22	Lineární nezávislost nekonečné množiny
5.29	Báze
5.32	Souřadnice
5.42	Dimenze
5.49	Spojení podprostorů
5.55	Maticové prostory
6.1	Lineární zobrazení
6.6	Obraz a jádro
6.14	Matice lineárního zobrazení
6.20	Matice přechodu
6.29	Isomorfismus
6.41	Prostor lineárních zobrazení
7.1	Afinní podprostor

Lineární obal

5.8

- 7.7 Dimenze afinního podprostoru
- 7.10 Afinní nezávislost

Věty

1.1 Základní věta algebry

Každý polynom s komplexními koeficienty má alespoň jeden komplexní kořen.

dukaz

pres kruznici a jeji zmensovani v rovine komplexnich cisel. Snizujeme stupen polynomu az na nulu delenim kerenem.

2.22 Frobeniova věta

Soustava (A|b) má (aspoň jedno) řešení právě tehdy, když $\operatorname{rank}(A) = \operatorname{rank}(A|b)$

3.28 o regularni matici

Buď $A \in \mathbb{R}^{m \times n}$. Pak RREF(A) = QA pro nějakou regulární matici $Q \in \mathbb{R}m \times m$

dukaz

RREF(A) získáme aplikací konečně mnoha elementárních řádkových úprav. Nechť jdou reprezentovat maticemi $E_1, E_2, ..., E_k$. Pak $RREF(A) = E_k...E_2E_1A = QA$, kde $Q = E_k...E_2E_1$. Protože matice $E_1, E_2, ..., E_k$ jsou regulární, i jejich součin Q je regulární

3.31 O existenci inverzní matice

Buď $A \in \mathbb{R}^{n \times n}$. Je-li A regulární, pak k ní existuje inverzní matice, a je určená jednoznačně. Naopak, existuje-li k A inverzní, pak A musí být regulární

dukaz

Existence - Vytvořme matici A^{-1} tak, aby její sloupce byly vektory x1,...,xn, to jest, $A^{-1}=(x1|x2|...|xn)$ Druha rovnost - $A(A^{-1}A-I)=AA^{-1}A-A=IA-A=0$ Jednoznacnost - $B=BI=B(AA^{-1})=(BA)A^{-1}=IA^{-1}=A^{-1}$

3.33 Jedna rovnost stačí

Buďte $A, B \in Rn \times n$. Je-li BA = I, pak obě matice A, B jsou regulární a navzájem k sobě inverzní, to jest $B = A^{-1}$ a $A = B^{-1}$

dukaz

vime ze I je regularni, $B = BI = B(AA^{-1}) = (BA)A^{-1} = IA^{-1} = A^{-1}$ a obracene

3.34 Výpočet inverzní matice

Buď $A, B \in \mathbb{R}^{n \times n}$. Nechť matice $(A|I_n)$ typu $n \times 2n$ má RREF tvar $(I_n|B)$. Pak $B = A^{-1}$. Netvoří-li první část RREF tvaru jednotkovou matici, pak A je singulární

dukaz

Je-li RREF $(A|I_n) = (I_n|B)$, potom existuje regulární matice Q taková, že $(I_n|B) = Q(A|I_n)$, neboli po roztržení na dvě části $I_n = QA$ a $B = QI_n$. První rovnost říká $Q = A^{-1}$ a druhá $B = Q = A^{-1}$. Netvoří-li první část RREF tvaru jednotkovou matici, pak RREF $(A) \neq I_n$ a tudíž A není regulární.

3.37 Soustava rovnic a inverzní matice

Buď $A \in \mathbb{R}^{n \times n}$ regulární. Pak řešení soustavy Ax = b je dáno vzorcem $x = A^{-1}b$.

dukaz

Protože A je regulární, má soustava jediné řešení x. Platí $x = Ix = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}b$

3.41 Shermanova–Morrisonova formule

Buď $A \in \mathbb{R}^{n \times n}$ regulární a $b, c \in \mathbb{R}^n$. Pokud $c^T A^{-1} b = -1$, tak $A + b c^T$ je singulární, jinak

$$(A + bc^{T})^{-1} = A^{-1} - \frac{1}{1 + c^{T} A^{-1} b} A^{-1} b c^{T} A^{-1}$$

dukaz

V případě $c^TA^{-1}b = -1$ máme $(A + bc^T)A^{-1}b = AA^{-1}b + bc^TA^{-1}b = b(1 + c^TA^{-1}b) = 0$. Protože $b \neq 0$ a vzhledem k regularitě A je $A^{-1}b \neq 0$, musí matice $(A + bc^T)$ být singulární

3.43 Jednoznačnost RREF

RREF tvar matice je jednoznačně určen

dukaz

$$A = Q_1^{-1}A_1 = Q_2^{-1}A_2$$
, a tedy $A_1 = Q_1Q_2^{-1}A_2 = A_1 = A_2$

4.15 O znaménku složení permutace a transpozice

Buď $p \in S_n$ a buď t = (i, j) transpozice. Pak $sgn(p) = -sgn(t \circ p) = -sgn(p \circ t)$

4.16 Každou permutaci lze rozložit na složení transpozic

4.27 Z_n je těleso právě tehdy, když n je prvočíslo

dukaz

Je-li n složené, pak n=pq, kde 1 < p,q < n. Kdyby Z_n bylo těleso, pak pq=0 implikuje podle tvrzení 4.25 buď p=0 nebo q=0, ale ani jedno neplatí

4.33 O velikosti konečných těles

Existují konečná tělesa právě o velikostech p^n , kde p je prvočíslo a $n \ge 1$

4.38 Malá Fermatova věta

Buď p prvočíslo a buď $0 \neq a \in \mathbb{Z}_p$. Pak $a^{p-1} = 1$ v tělese \mathbb{Z}_p

5.15 o vektorovem prostoru a obalu

Buď V vektorový prostor nad T, a mějme $v1,...,vn \in V$. Pak $span\{v_1,...,v_n\}=\{\sum_{i=1}^n a_iv_i;a_1,...,a_n\in T\}$

5.26 o vektorove zavislosti

Buď V vektorový prostor nad T, a mějme $v1,...,vn \in V$. Pak vektory $v_1,...,v_n$ jsou lineárně závislé právě tehdy, když existuje $k \in 1,...,n$ takové, že $v_k = Pi \neq ka_iv_i$ pro nějaké $a_1,...,a_n \in T$, to jest $vk \in span\{v_1,...,vk-1,v_{k+1},...,vn\}$

5.31 o bazi

Nechť $v_1,...,v_n$ je báze prostoru V. Pak pro každý vektor $u\in V$ existují jednoznačně určené koeficienty $a_1,...,a_n\in T$ takové, že $u=\sum_{i=1}^n a_iv_i$

5.38 O existenci báze

Každý vektorový prostor má bázi

dukaz

Buď $v_1,...,v_n$ systém generátorů V. Jsou-li lineárně nezávislé, tak už tvoří bázi. Jinak podle důsledku 5.27 existuje index k tak,že

$$span\{v_1,...,v_n\} = span\{v_1,...,v_{k-1},v_{k+1},...,v_n\}$$

5.40 Steinitzova věta o výměně

Buď V vektorový prostor, buď $x_1,...,x_m$ lineárně nezávislý systém ve V, a nechť $y_1,...,y_n$ je systém generátorů V. Pak platí:

- 1. m < n
- 2. existují navzájem různé indexy $k_1,...,k_{n-m}$ takové, že $x_1,...,x_m,y_{k_1},...,y_{k_{n-m}}$ tvoří systém generátorů V

dukaz

indukci od m=0 predpoklad pro m-1=> plati i pro m

5.44 Vztah počtu prvků systému k dimenzi

Pro vektorový prostor V platí:

- 1. Nechť $x_1,...,x_m$ jsou lineárně nezávislé. Pak $m \leq dimV$. Pokud m = dimV, potom $x_1,...,x_m$ je báze.
- 2. Nechť $y_1,...,y_n$ jsou generátory V. Pak $n \geq dim V$. Pokud n = dim V, potom $y_1,...,y_n$ je báze

5.45 Rozšíření lineárně nezávislého systému na bázi

Každý lineárně nezávislý systém vektorového prostoru V lze rozšířit na bázi V

5.46 Dimenze podprostoru

Je-li $W \subseteq V$, pak $dimW \leq dimV$. Pokud navíc dimW = dimV, tak W = V

5.50 Spojení podprostorů

Buďte U, V podprostory vektorového prostoru W. Pak $U + V = span(U \cup V)$

5.52 Dimenze spojení a průniku

Buďte U, V podprostory vektorového prostoru W. Pak platí $dim(U+V) + dim(U\cap V) = dimU + dimV$

5.62 Maticové prostory a RREF

Buď $A \in T^{m \times n}$ a buď A^R její RREF tvar s pivoty na pozicích $(1, p_1), ..., (r, p_r)$, kde r = rank(A). Pak:

- 1. nenulové řádky A^R , tedy vektory $A_{1\star}^R,...,A_{r\star}^R$, tvoří bázi R(A)
- 2. sloupce $A_{\star p_1},...,A_{\star p_r}$ tvoří bázi S(A)
- 3. dimR(A) = dimS(A) = r

5.63 Pro každou matici $A \in T^{m \times n}$ platí $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(A^T)$

5.66 O dimenzi jádra a hodnosti matice

Pro každou matici $A \in T^{m \times n}$ platí dim $\operatorname{Ker}(A) + \operatorname{rank}(A) = n$

6.10 Prosté lineární zobrazení

Buď $f: U \to V$ lineární zobrazení. Pak následující jsou ekvivalentní:

- 1. f je prosté
- 2. $Ker(f) = \{o\}$
- 3. obraz libovolné lineárně nezávislé množiny je lineárně nezávislá množina

6.12 Lineární zobrazení a jednoznačnost vzhledem k obrazům báze

Buďte U, V prostory nad T a $x_1, ..., x_n$ báze U. Pak pro libovolné vektory $y_1, ..., y_n \in V$ existuje právě jedno lineární zobrazení takové, že $f(x_i) = y_i, i = 1, ..., n$

6.16 Maticová reprezentace lineárního zobrazení

Buď $f: U \to V$ lineární zobrazení, $B1 = \{x_1, ..., x_n\}$ báze prostoru U, a $B2 = \{y_1, ..., y_m\}$ báze prostoru V. Pak pro každé $x \in U$ je $[f(x)]_{B2} = {}_{B2}[f]_{B1} \cdot [x]_{B1}$

6.18 Jednoznačnost matice lineárního zobrazení

Buď $f:U\to V$ lineární zobrazení, B_1 báze prostoru U, a B_2 báze prostoru V. Pak jediná matice A splňující (6.16) je $A={}_{B_2}[f]_{B_1}$

6.24 Matice složeného lineárního zobrazeni

Buďte $f:U\to V$ a $g:V\to W$ lineární zobrazení, buď B_1 báze $U,\,B_2$ báze V a B_3 báze W. Pak $_{B_3}[g\circ f]_{B_1}=_{B_3}[g]_{B_2}\cdot_{B_2}[f]_{B_1}$

6.35 Isomorfismus n-dimenzionálních prostorů

Všechny n-dimenzionální vektorové prostory nad tělesem T jsou navzájem isomorfní

6.37 O dimenzi jádra a obrazu

Buď $f:U\to V$ lineární zobrazení, U,V prostory nad T,B_1 báze prostoru UaB_2 báze prostoru V. Označme $A=_{B_2}[f]_{B_1}$. Pak:

1. dim $\operatorname{Ker}(f)=\dim\operatorname{Ker}(A)$ 2. dim $f(U)=\dim S(A)=\operatorname{rank}(A)$.

7.4 Charakterizace afinního podprostoru

Buď V vektorový prostor nad tělesem T charakteristiky různé od 2, a buď $\emptyset \neq M \subseteq V$. Pak M je afinní, tj. je tvaru M = U + a právě tehdy, když pro každé $x, y \in M$ a $a \in T$ platí $ax + (1 - a)y \in M$

7.5 Množina řešení soustavy rovnic

Množina řešení soustavy rovnic $A_x = b$ je prázdná nebo afinní. Je-li neprázdná, můžeme tuto množinu řešení vyjádřit ve tvaru $Ker(A) + x_0$, kde x_0 je jedno libovolné řešení soustav