情報理論

第6回 講義 情報源の符号化

> 2015. 5. 27 植松 芳彦

本日の講義範囲と内容

- 1. 情報源符号化に必要な条件
- 2. 瞬時符号と符号の木
- 3. 瞬時符号と符号長の関係

情報源符号化とは

- 情報源符号化とは、情報源から発生する情報源記号列を、一定の規則に基き伝送や記録ができる符号系列に変換すること。
- 情報源復号化とは、受信した符号系列から 元々の情報源記号列を再生すること。

情報源記号例) アルファベット, スペース, カンマ・・・ 符号系列例) 0,1の並び

情報源符号化とは

- 各アルファベットに対する 0,1の列の割り当て 方と捉えると、やり方は無限に存在。
- どのような割り当て方がよいか考える.

表 4.1 情報源符号化の例

情記	報	源号		確	率	c_1	c_{i_1}	<i>c</i> ,	C,	C _v	Cv
	A		T	0	6	00	0	0	0	0	0
	\boldsymbol{B}			0.	25	01	10	10	01	10	10
	C			0	1	10	110	110	011	11	11
	D			0.	05	11	1110	111	111	01	0
平	均	符	号	共		2. 00	1.60	1.55	1. 55	1. 40	1. 35

情報源符号化に必要な条件

- 各情報源記号に割り当てる符号長の平均値 は短いほどよい(平均符号長)
- 受信側(復号側)で解釈を誤ったり、解釈を 迷ったりしない程よい(一意復号性)
- (符号化, 復号装置があまり複雑にならない)

情報源符号化則 CI

• 平均符号長 : 0.6x2+0.25x2+0.1x2+0.05x2 = 2

● 一意復号性 :一意復号可能(瞬時)

その他:等長符号

情報源記号	発生確率	符号則C I
Α	0.6	0 0
В	0.25	0 1
С	0.1	1 0
D	0.05	1 1

情報源符号化則 CⅡ

• 平均符号長 : 0.6x1+0.25x2+0.1x3+0.05x4 = 1.6

• 一意復号性:一意復号可能(瞬時)

その他特徴 :コンマ符号

情報源記号	発生確率	符号則CⅡ	0 1 0 1 1 0 1 1 1 0
Α	0.6	0	
В	0.25	1 0	A R C D
С	0.1	1 1 0	0大平/51 大吼哒不
D	0.05	1110	0を受信した段階で 直ちに元の情報源記号を判定可能
•	•		旦のにルグ情報がむって刊たり形

情報源符号化則 CII

• 平均符号長 : 0.6x1+0.25x2+0.1x3+0.05x3 = 1.55

• 一意復号性:一意復号可能(瞬時)

その他特徴 : 特になし

情報源記憶	号	発生確率	符号則CⅢ
Α		0.6	0
В		0.25	1 0
С		0.1	1 1 0
D		0.05	1 1 1

	 •	. •	•	•	0.	
Α)		D		Α	

- •0を受信した段階 または
- ・1を3つ受信した段階 で 直ちに元の情報源記号を判定可能

情報源符号化則 CIV

• 平均符号長 : 0.6x1+0.25x2+0.1x3+0.05x3 = 1.55

• 一意復号性:一意復号可能(非瞬時)

その他特徴 : 特になし

情報源記号	発生確率	符号則CIV
Α	0.6	0
В	0.25	0 1
С	0.1	0 1 1
D	0.05	1 1 1

A?	D?	D? ←あたり
0 1	1 1	1 1 1 0
B?	D?	?? はずれ
0 1	1 1	1 1 1 0

0 1 1 1 1 1 1 0 - - -

情報源符号化則 CV

• 平均符号長 : 0.6x1+0.25x2+0.1x2+0.05x2 = 1.40

• 一意復号性:一意復号不可能

その他特徴 :特になし

情報源記号	発生確率	符号則CV
Α	0.6	0
В	0.25	1 0
С	0.1	1 1
D	0.05	0 1

この後何を受信してもどちらか決まらない

情報源符号化則 CVI

• 平均符号長 : 0.6x1+0.25x2+0.1x2+0.05x1 = 1.35

• 一意復号性:一意復号不可能

• その他特徴:特異符号

0
7
_
全

異なる情報源記号に同じ符号を割当

最もよい情報源符号化則は?

- 平均符号長,一意復号性のバランスでCⅢ.
- 瞬時符号であるには何か条件が必要そう.

表 4.1 情報源符号化の例

惰記	報	源号		碓	率	c_1	$c_{i_{1}}$	<i>c</i> ,	C,	C _v	Cv
	Α			0.	6	00	0	0	0	0	0
	\boldsymbol{B}			0.	25	01	10	10	01	10	10
	\boldsymbol{c}			0.	1	10	110	110	011	11	11
	D			0.	05	11	1110	111	111	01	0
¥	均	符	号	長		2. 00	1.60	1.55	1.55	1.40	1. 35

一意復号可能(瞬時)

一意復号可能 一意復号不可能 (非瞬時)

13

符号の木

各情報源記号に対応した符号系列を樹形図で表現. どのような符号語も枝を伸ばしていけば

【演習1】符号の木

- 符号則CⅢ, CⅣに対応する符号の木を書く。
- どの接点が符号語に対応するか、接点や枝として残るのは点線のうちどこか書いてみよう。

CⅢの符号の木

符号語 0 10 110 111

CIVの符号の木

符号語

) | C

0 1

0 1 1

111

符号の木と瞬時符号の条件

- CIVはなぜ瞬時符号ではないか。
- 符号「0」を受信した時、「0」か、「01」の始まりか、「011」の 始まりか、判別できない.
- 瞬時符号では、ある符号語が他の符号語の語頭になって はならない(語頭条件)

符号の木と瞬時符号の条件

ある符号語が他の符号語の語頭になってはならない⇒全ての符号語が「葉」に対応しないといけない

クラフトの不等式

- 符号の木の幹から全量1の養分を流し込んだ時に、符号語の「葉」にどれだけ行きわたるか考える。
- 「葉」に行きわたった養分の総和は1を超えないはず.

クラフトの不等式

- これを一般化して、長さが l_1 、 l_2 、•••、 l_M からなるM個の符号語を持つ符号が瞬時符号となる条件を考える.
- それぞれの符号語が「葉」に対応したとき、長さ l_i の符号 語に行きわたる養分は 2^{-li}. 養分の総和は1を超えないの で、以下が成り立つ。
- 符号語の数(M)が大きいとき、l₁、l₂、・・・、lMはあまり小さい値にできない。

$$2^{-l_1} + 2^{-l_2} + \dots + 2^{-l_M} \le 1 \tag{\sharp 4.2}$$

【演習2】以前の公務員試験問題

【No. 36】 表は、情報源アルファベット $S_1 \sim S_4$ を、 4 通りの方法で符号 \bigcirc の一符号 \bigcirc のでおり、各符号は四つのビット列(符号語)で構成されている。符号 \bigcirc の一符号 \bigcirc のうちから、瞬時に復号可能な符号のみをすべて選び出しているのはどれか。

ただし、瞬時に復号可能な符号とは、一つのビット列を受け取れば直ちに情報源アルファベット に復号できるものをいう。

- 1. 符号(7), 符号(7)
- 2. 符号(7), 符号(五)
- 3. 符号(7), 符号(5)
- 4. 符号①, 符号②
- 5. 符号①,符号②

情報源アルファベット	符号⑦	符号①	符号①	符号印
S_1	0	0	0	00
S_2	00	01	10	01
S_3	01	011	110	10
S_4	1	0111	111	11

【演習2】以前の公務員試験問題

