

a)

- i. Το σημείο $M(x_0,y_0)$ είναι σημείο της παραβολής, άρα οι συντεταγμένες του θα επαληθεύουν την εξίσωση της παραβολής. Δηλαδή $y_0{}^2=4\cdot x_0$, άρα $x_{_0}=\frac{y_{_0}^2}{4}$. Επομένως οι συντεταγμένες του Μ είναι Μ($\frac{y_0{}^2}{4}$, y_0). Το σημείο Α είναι η προβολή του Μ στη διευθετούσα της παραβολής που είναι η ευθεία (δ): x=-1. Άρα $A(-1,y_0)$.
- ii. Για το εμβαδό του τριγώνου ΜΑΕ έχουμε ότι (MAE) = $\frac{1}{2}$ $|\det(\overrightarrow{AM}, \overrightarrow{AE})|$ (1), με $\overrightarrow{AM} = (\frac{y_0^2}{4} + 1, 0)$ και $\overrightarrow{AE} = (1 + 1, 0 y_0) = (2, -y_0)$.

$$\det(\overrightarrow{AM}, \overrightarrow{AE}) = \begin{vmatrix} \frac{y_0^2}{4} + 1 & 0 \\ 2 & -y_0 \end{vmatrix} = -\frac{y_0^3}{4} - y_0 = \frac{-y_0^3 - 4y_0}{4}.$$

Επειδή (ΜΑΕ) = $\frac{5}{8}$, η σχέση (1) γίνεται: $\frac{5}{8} = \frac{1}{2} \left| \frac{-y_0{}^3 - 4y_0}{4} \right| \Leftrightarrow |y_0{}^3 + 4y_0{}| = 5$. Όμως $y_0 > 0$ από την υπόθεση, άρα $y_0{}^3 + 4y_0{} = 5 \Leftrightarrow y_0{}^3 + 4y_0{} - 5 = 0$ (2). Εφαρμόζοντας σχήμα Horner με το 1, αφού το 1 αποτελεί ρίζα της εξίσωσης (2), η εξίσωση ισοδύναμα

γράφεται: $(y_0-1)(y_0^2+y_0+5)=0$. Άρα $y_0=1$ η μοναδική λύση της εξίσωσης, αφού το τριώνυμο $y_0^2+y_0+5$ έχει $\Delta=-19<0$ και δεν έχει πραγματικές ρίζες. Επομένως το σημείο Μ είναι το $M(\frac{1}{4},1)$.

β) Η εξίσωση της εφαπτομένης ε της παραβολής σε ένα σημείο της (x_1,y_1) είναι: $yy_1=2(x+x_1)$. Στο σημείο $M(\frac{1}{4},1)$ η παραπάνω εξίσωση γίνεται: $y=2(x+\frac{1}{4})\Leftrightarrow 4x-2y+1=0$. Θέτοντας όπου y=0 έχουμε $x=-\frac{1}{4}$, άρα $M'(-\frac{1}{4},0)$. Για το τμήμα ΑΜ έχουμε: $AM\bot\delta$, $\delta\bot x'x$, άρα AM//x'x.

Επίσης (AM)= $|\overrightarrow{AM}| = \sqrt{\left(\frac{1}{4} + 1\right)^2} = \frac{5}{4}$ και (EM')= $|1 + \frac{1}{4}| = \frac{5}{4}$. Δηλαδή τα τμήματα AM και EM' είναι ίσα και παράλληλα, άρα το τετράπλευρο AMEM' είναι παραλληλόγραμμο. Επιπλέον το M είναι σημείο της παραβολής και ισαπέχει από την εστία και τη διευθετούσα, άρα ME = AM. Επομένως, το παραλληλόγραμμο έχει δύο διαδοχικές πλευρές του ίσες, άρα είναι ρόμβος.