0.1 Cyclic Subspaces and Annihilaters

Definition 0.1.1: *T*-Cyclic Subspaces

T: endo. on f.d.v.s. V/F. Take $\alpha \in V$. Then the T-cyclic subspace generated by α is denoted as $Z(\alpha; T) := \{g(T)\alpha \in V \mid g(x) \in F[x]\}$. Just in case $Z(\alpha; T) = V$, we say V is cyclically generated by α and T, and α is a cyclic vector for T.

Note:-

 $Z(\alpha; T)$ is always T-invariant. Also, $Z(\alpha; T)$ is very sensitive to choice of α . If $\alpha = 0$, nothing no show. If α is a char. vec., then $T\alpha = c\alpha$, so $Z(\alpha; T) = \text{span}\{\alpha\}$, which implies 1-dimensional. Also note that converse holds.

Definition 0.1.2: *T*-Annihilaters

The *T*-annihilater, denoted as $M(\alpha; T) := \{g(x) \in F[x] \mid g(T)\alpha = 0\}.$

Note:-

Note that annihilator is just a special case of conductor, which takes W = 0. We can also see that monic generator of annihilater divides minimal poly.

Theorem 0.1.1

T: endo. on f.d.v.s. V/F. p_{α} : T-annihilator of α . Then

- i) $deg(p_{\alpha}) = dim(Z(\alpha; T))$
- ii) If $deg(p_{\alpha}) = k$, then $\{\alpha, T\alpha, ..., T^{k-1}\alpha\}$ forms a basis of $Z(\alpha; T)$
- iii) Let $U := T|_{Z(\alpha;T)} : Z \mapsto Z$. Then min. poly. of U is $p_{\alpha}(x)$.

Proof. Take $g(x) = p_{\alpha}q(x) + r(x)$ by Euclidean algorithm for $\deg(p_{\alpha}) = k$. Note that $(p_{\alpha}) = M(\alpha; T)$. Thus $p_{\alpha}q \in M(\alpha; T) \Rightarrow g(T)\alpha = p_{\alpha}(T)q(T)\alpha + r(T)\alpha = r(T)\alpha \Rightarrow Z(\alpha; T) = \operatorname{span}\{\alpha, T\alpha, \dots, T^{k-1}\alpha\}$. Thus $\dim(Z(\alpha; T)) \leq k$.

Claim 0.1.1

 $\{\alpha, T\alpha, \dots, T^{k-1}\alpha\}$ is a linearly independent set.

Proof. Suppose not. Then there is nonzero coefficients satisfying $\sum c_i T^i \alpha = 0$. Clearly $g(x) = \sum c_i x^i$ has deg < k. But p_α is the nonzero poly. of min. deg. in $M(\alpha; T)$, while $g(x) \in M(\alpha; T)$ with degree less than $p_\alpha(x)$. This is contradiction, so this set is linearly independent.

Thus by Claim 0.1.1, $Z(\alpha; T)$ is k-dimensional with $\deg(p_{\alpha}) = k$. i) and ii) done. For iii), need to check $p_{\alpha}(U) = 0$ and it really is poly. with min. deg.

An arbitrary element of $Z(\alpha; T)$ is of the form $g(T)\alpha$ for some $g(x) \in F[x]$. Thus $p_{\alpha}(U)g(T)\alpha = p_{\alpha}(T)g(T)\alpha = g(T)p_{\alpha}(T)\alpha = 0$. Our first condition holds. Second condition is immediate from the minimality of the degree of p_{α} in $M(\alpha; T)$.

Lemma 0.1.1 Companion Matrices

T: endo. on f.d.v.s. V/F. $W=Z(\alpha;U)\subset V$ where $U:=T|_{Z(\alpha;T)}$. Then w.r.t. the basis

$$\{\alpha, T\alpha, \dots, T^{k-1}\alpha\} = \mathfrak{B} \text{ of } Z, [U]_{\mathfrak{B}} = \begin{bmatrix} 0 & & -c_0 \\ 1 & \ddots & -c_1 \\ & \ddots & \ddots & \vdots \\ & & 1 & -c_{k-1} \end{bmatrix} \text{ where } p_{\alpha} = x^k + \sum_{i=0}^{k-1} c_i x^i.$$

Proof. $\mathfrak{B}:=\{\alpha,T\alpha,\ldots,T^{k-1}\alpha\}=\{\alpha_1,\ldots,\alpha_k\}$. Then $U\alpha_1=T\alpha=\alpha_2,\ U\alpha_2=T^2\alpha=\alpha_3,\ \text{and}$ so on, $U\alpha_{k-1}=T^{k-1}\alpha=\alpha_k$. By our supposition of $p_\alpha,\ p_\alpha(U)\alpha=U^k\alpha+\sum_{i=0}^{k-1}c_iU^i\alpha$. Thus we can derive companion matrix of above form.

Theorem 0.1.2

U has a cyclic vec. \iff there is some ordered basis s.t. U is represented by the companion mat. of the min. poly. for U.

Corollary 0.1.1

If A is the companion mat. of a monic poly. p, then p is both min. and char. poly. of A.

Cyclic Decompositions and the Rational Form 0.2

Definition 0.2.1: Complementary Subspaces

T: endo. on f.d.v.s. V/F. $W \subset V$ as T-inv. subspaces. If $\exists T$ -inv. subspace $W' \subset V$ s.t. $V = W \oplus W'$, then we say W' is a complementary T-inv. subspaces of W.

Definition 0.2.2: *T***-Admissible**

T: endo. on f.d.v.s. V/F. A subspace is T-admissible if W is T-inv. and $\exists f(x) \in$ $F[x] \exists \beta \in V \exists \gamma \in W \ (f(T)\beta \in W \Rightarrow f(T)\beta = f(T)\gamma).$

Lemma 0.2.1

T: endo. on f.d.v.s. V/F. Suppose W is T-inv. If its complementary T-inv. subspace exists, then *W* is *T*-admissible.

Proof. W is trivially T-inv. Suppose $f(T)\beta \in W$ for $(f(x) \in F[x]) \land (\beta \in V)$. Since $V = (f(x)) \land (f(x)) \land$ $W \oplus W'$, $\beta = \gamma + \gamma'$ for unique $(\gamma \in W) \land (\gamma' \in W')$. Then $f(T)\beta = f(T)\gamma + f(T)\gamma'$. Since $f(T)\beta$ and $f(T)\gamma$ are T-inv. and in W, $f(T)\gamma'$ should be in W. Independence of W and W' implies thus $f(T)\gamma' = 0$. Thus $f(T)\beta = f(T)\gamma$, so W is T-admissible.

Theorem 0.2.1 Cyclic Decomposition Theorem

T: endo. on f.d.v.s. V/F. Let $W_0 \subset V$ be any proper T-admissible subspace. $\exists \alpha_1, \ldots, \alpha_r \in V$ $V \setminus \{0\}$ with respective *T*-annihilators p_1, \dots, p_r s.t.

i)
$$V = W_0 \oplus (\bigoplus_{i=1}^r Z(\alpha_i; T))$$

ii) $p_k \mid p_{k-1}$

ii)
$$p_k | p_{k-1}$$

Furthermore, the integer r and p_i are uniquely determined by i), ii), and the fact that

no α_k is 0.

Proof. We will divide our proof to 4 steps. During our proof, we intentionally denote $f(T)\beta$ as $f\beta$.

Before: Let $\beta \in V \setminus W$. Consider $S(\beta; W) := \{g(x) \in F[x] \mid g(T)\beta \in W\}$. Then \exists monic poly. generator f s.t. $f(T)\beta \in W$. By T-admissibility, $\exists \gamma \in W$ s.t. $f(T)\beta = f(T)\gamma$. Let $\alpha := \beta - \gamma$, then $f(T)\alpha = 0$. Since $\gamma \in W$, we can see that $S(\alpha; W) = S(\beta; W)$ and f is also the T-conductor of α to W. Since $f(T)\alpha = 0$, $f \in M(\alpha; T)$. Thus $(f) = S(\alpha; W) \subset M(\alpha; T)$. Conversely, if $g \in M(\alpha; T)$, $g(T)\alpha = 0 \in W$ so $M(\alpha; T) \subset S(\alpha; T)$. Thus $S(\alpha; W) = M(\alpha; T)$ and f is also a T-annihilater.

```
Claim 0.2.1 W \cap Z(\alpha; T) = 0.
```

Proof. Suppose $g(T)\alpha \in W \cap Z(\alpha; T)$. Then $g \in S(\alpha; W) = M(\alpha; T)$ implies $g(T)\alpha = 0$. Thus $W \cap Z(\alpha; T) = 0$, so $W + Z(\alpha; T) \Rightarrow W \oplus Z(\alpha; T)$.

Step 1: Let's make following observation: Let $W \subset V$ be a proper T-inv. subspace. Then $\max_{\alpha \in V} S(\alpha; W)$ is obtained by some $\beta \in V$, so that $\deg(S(\beta; W))$ is maximized.

For the above β , $W+Z(\beta;T)$ is T-inv. and strictly larger than W. Applying this observation to the given $W_0 \subset V:T$ -inv. proper subspaces. Then we obtain $\beta_1 \in V$ s.t. $\deg(S(\beta_1;T))$ is maximized among $\deg(S(\beta;W))$. Again, take $W_2=W_1+Z(\beta_2;T)$, which leads $W_0 \subsetneq W_1 \subsetneq \cdots \subsetneq W_r=V$.

From this, we can derive at least $V = W_0 + \sum_{i=1}^r Z(\beta_i; T)$. Know Let's say $(p_k) := S(\beta_k; W_{k-1})$ has the maximum deg. among the conductors.

Step 2: Take W_i , β_i , p_i $i \in [r]$ as above. Fix $1 \le k \le r$ and let $\beta \in V$. Suppose $(f) = S(\beta; W_{k-1})$. Write $f \beta = \beta_0 + \sum_{i=1}^{k-1} g_i \beta_i$ for some $g_i \in F[x]$, $\beta_i \in W_i$.

```
Claim 0.2.2 \beta_0 = f \gamma_0 for some \gamma_0 \in W_0 and f \mid g_i.
```

Proof. If k=1, it means W_0 is T-admissible, so nothing to proof. Thus suppose k>1. By the Euclidean algorithm, $g_i=fh_i+r_i$. We want to prove all $r_i=0$. Let $\gamma:=\beta-\sum_{i=1}^{k-1}h_i\beta_i$. Then $\beta-\gamma=\sum_{i=1}^{k-1}h_i\beta_i\subset W_{k-1}$. This leads $S(\gamma\,;W_{k-1})=S(\beta\,;W_{k-1})$. Also, $f\gamma=f\beta-\sum_{i=1}^{k-1}fh_i\beta_i=f\beta-\sum_{i=1}^{k-1}fh_i\beta_i=f\beta-\sum_{i=1}^{k-1}g_i\beta_i-\sum_{i=1}^{k-1}g_i\beta_i+\sum_{i=1}^{k-1}r_i\beta_i$. Thus $f\gamma=\beta_0+\sum_{i=1}^{k-1}r_i\beta_i$ \cdots (1). Toward contradiction, some $r_j\neq 0$ and say that j is the largest between such numbers.

 $f\gamma=\beta_0+\sum_{i=1}^{k-1}r_i\beta_i \text{ for nonzero } r_i. \text{ Clearly } \dim(r_i)<\dim(f) \cdots \text{ (2). Consider conductor } (p):=S(\gamma;W_{j-1}). \text{ With } W_{j-1}\subset W_{k-1}, S(\gamma;W_{j-1})\subset S(\gamma;W_{k-1})=(f). \text{ Thus } f\mid p, \text{ i.e., } p=fq \text{ for some } q\in F[x]. \text{ Applying } g\text{ to (2) leads } p(\gamma)=g\beta_0+\sum_{i=1}^{j-1}gr_i\beta_i+gr_j\beta_j \text{ where } p(\gamma)\in W_{j-1},\ g\beta_0\in W_0\subset W_{j-1},\ gr_i\beta_i\in W_i\subset W_{j-1}. \text{ This eq. leads } gr_j\beta_j\in W_{j-1},\ \text{ and thus } \deg(gr_j)\geq \deg(S(\beta_j;W_{j-1}))=\deg(p_j) \text{ by definition, and } \deg(p_j)\geq \deg(S(\gamma;W_{j-1})) \text{ by mazimality condition of } \beta_j, \text{ where } \deg(S(\gamma;W_{j-1}))=\deg(p)=\deg(p)=\deg(fg). \text{ Consequently, } \deg(r_i)\geq \deg(f), \text{ which is contradiction. Thus all } r_i=0, \text{ and all } f\mid g_i, \text{ and (1) says } f\gamma=\beta_0\in W_0. \text{ Since } W_0 \text{ is } T\text{-admissible, } \exists \gamma_0\in W_0 \text{ s.t. } f\gamma=\beta_0=f\gamma_0.$

Step 3: Now we will find $\{\alpha_1, \dots, \alpha_r\}$ in V which satisfies i) and ii).

Take $\{\beta_1,\ldots,\beta_r\}$ as **Step 1**. Fix $1 \leq k \leq r$. Apply **Step 2** to the vec. $\beta = \beta_k$ and the *T*-conductor $f = p_k$. We obtain $p_k\beta_k = p_k\gamma_0 + \sum_{i=1}^{k-1} p_k h_i\beta_i$ for $\gamma_0 \in W_0$. Let $\alpha_k :=$

 $\beta_k - \gamma_0 - \sum_{i=1}^{k-1} h_i \beta_i$. Since $\beta_k - \alpha_k \in W_{k-1}$, $S(\alpha_k; W_{k-1}) = S(\beta_k; W_{k-1}) = (p_k)$, and since $p_k \alpha_k = 0$, we have $W_{k-1} \cap Z(\alpha_k; T) = \{0\}$. Because each α_k satisfies this condition, $W_k = W_0 \oplus (\bigoplus_{i=1}^k Z(\alpha_i; T))$ and that p_k is the T-annihilater of α_k .

Since $p_i \alpha_i = 0$ for each i, we have the trivial relation $p_k \alpha_k = 0 + p_1 \alpha_1 + \dots + p_{k-1} \alpha_{k-1}$. Apply **Step 2** with β_i replaced by α_i and with $\beta = \alpha_k$, we can conclude p_k divides each p_i with i < k.

Step 4: We will show r and each poly. p_r are uniquely determined by the conditions. Take γ_i , g_i $i \in [s]$ that satisfies conditions either. We will show r = s and $p_i = g_i$.

The poly. g_1 is determined as the T-conductor of V into W_0 . Let $S(V; W_0)$ be the collection of poly. f s.t. $\forall \beta \in V$ ($f \in W_0$), i.e., poly. f s.t. $R(f(T)) \subset W_0$. Then $S(V; W_0)$ is nonzero ideal. g_1 is the monic generator of this. Each $\beta \in V$ has the form $\beta = \beta_0 + f_1 \gamma_1 + \cdots + f_s \gamma_s$ and so $g_1\beta = g_1\beta_0 + \sum_{i=1}^s g_1f_i\gamma_i$. Since each g_i divides g_1 , we have $g_1\gamma_i = 0$ for all i and $g_1\beta = g_1\beta_0 \in W_0$. Thus $g_1 \in S(V; W_0)$. Since g_1 is the monic poly. of least deg. which sends γ_1 into W_0 , we see that g_1 is the monic poly. of least deg. in the ideal $S(V; W_0)$. By the same argu., g_1 also, so $g_1 = g_1$. Now note three facts:

- 1. $fZ(\alpha; T) = Z(f\alpha; T)$
- 2. If $V = \bigoplus_{i=1}^{k} V_i$, where each V_i is T-inv., $fV = fV_1 \oplus \cdots \oplus fV_k$.
- 3. If α and γ have the same T-annihilator, then $f \alpha$ and $f \gamma$ have the same T-annihilator and thus $\dim(Z(f \alpha; T)) = \dim(Z(f \gamma; T))$.

Now, proceed induction to show that r = s and $p_i = g_i$. Suppose $r \ge 2$. Then $\dim(W_0) + \dim(Z(\alpha_1; T)) < \dim(V)$ Since $p_1 = g_1$, we know $\dim(Z(\alpha_1; T)) = \dim(Z(\gamma_1; T))$. Thus $\dim(W_0) + \dim(Z(\gamma_1; T)) < \dim(V)$. Then

$$p_2V = p_2W_0 \oplus Z(p_2\alpha_1; T)$$

$$p_2V = p_2W_0 \oplus Z(p_2\gamma_1; T) \oplus \cdots \oplus Z(p_2\gamma_s; T)$$

satisfies our desire. Furthermore, we conclude that $p_2\gamma_2 = 0$ and g_2 divides p_2 . The argument can be reversed to show that p_2 divides g_2 . Thus $g_2 = p_2$.

Corollary 0.2.1

If, W is T-admissible, it has complementary T-inv. subspace. So with Lemma 0.2.1, if and only if condition holds.

Theorem 0.2.2

T: endo. There is $\alpha \in V$ s.t. T-annihilator of α is equal to min. poly.

Proof. With $W_0 = 0$, apply cyclic decomposition. Take $\alpha = \alpha_1$. T-conductor fo α_1 to W_0 is T-annihilater of α_1 , which is the min. poly.

Theorem 0.2.3

If T has cyclic vec., then char. poly. of T is equal to min. poly. of T.

Theorem 0.2.4 Generalized Cayley-Hamilton Theorem

T: endo. on f.d.v.s. V/F. m be min. poly. and p be char. poly. Then

i) $p \mid f$

- ii) p and f have the same prime factors except for multiplicities
- iii) If $p = f_1^{r_1} \cdots f_k^{r_k}$, then $f = f_1^{d_1} \cdots f_k^{d_k}$ where d_i is the nullity of $f_i(T)^{r_i}$ divided by the deg. of f_i .

Proof. *i*): trivial from Cayley-Hamilton Theorem.

- ii): Cyclic decompose with W_0 says $\exists \alpha_1 \sim \alpha_r$ s.t. $V = \bigoplus_{i=1}^r Z(\alpha_i; T)$ with $m(x) = p_1(x)$ which is T-annihilater of α_1 . $p_i \mid p_{i-1}$. Take $T_i := T \mid_{Z(\alpha_i; T)}$. Since $Z(\alpha_i; T)$ is a cyclic vec. space with cyclic vec. α_i , p_i is min. poly. for T_i is also char. poly. of T_i . Thus char. poly. $f(x) = \prod_{i=1}^r p_i$ and any prime factor of m(x) divides f(x) by i) while if a prime factor divides f, it divides one of p_i . Thus $p_i \mid p_{i-1} \mid \cdots \mid p_1 = m(x)$. Thus each prime factor of f also divides m(x).
- iii): Apply primary decomposition: $W_i = N(f_i(T)^{r_i})$. Take $T_i := T|_{W_i}$. Then $f_i(x)^{r_i}$ is the min. poly. of T_i . Applying ii) to T_i its min. poly. Thus char. poly. of T_i is $f_i^{d_i}$ with $d_i \ge r_i$. Here, $\dim(W_i)$ is $d_i \cdot \deg(f_i)$. So $d_i = \frac{\dim(W_i)}{\deg(f_i)} = N(f_i(T)^{r_i})/\deg(f_i)$.

Corollary 0.2.2

T: nilpo. endo. on n-d.v.s. V/F. Then char. poly. of T is x^n .

Proof. T is nilpo. $\Rightarrow \exists N \text{ s.t. } T^N = 0 \Rightarrow \min \text{ poly. } m(x) \mid x^N \Rightarrow m(x) = x^r \text{. Thus } f(x) = x^n \text{.}$

0.3 The Jordan Form

Note:- How to find Jordan form?

Solution. Step 1: char. poly. $f(x) = \prod_{i=1}^k (x-c_i)^{d_i}$ for distinct c_i and $m(x) = \prod_{i=1}^k (x-c_i)^{r_i}$ for $1 \le r_i \le d_i$. Take $W_i = N((T-c_iI)^{r_i})$ as primary decomposition theorem. Then $V = \bigoplus_{i=1}^k W_i$. $T_i := T|_{W_i}$ where $m_i(x)$ of T_i is $(x-c_i)^{r_i}$.

Step 2: For each W_i , let $N_i := (T_i - c_i I) : W_i \to W_i$. Then N_i is nilpotent operator on W_i . Note that $T_i = N_i + c_i I$. Consider each W_i the cyclic decomposition of W_i w.r.t. N_i . So, $W_i = \bigoplus_{k=1}^{s_i} Z(\alpha_k; N_i)$. Take $\beta_j = \{\alpha_j, N_i \alpha_j, \dots, N_i^{k_j-1} \alpha_j\}$. Then

$$[N_{i}|_{Z(\alpha_{j};N_{i})}]_{\beta_{j}} = \begin{bmatrix} 0 & & & 0 \\ 1 & \ddots & & \vdots \\ & \ddots & \ddots & \vdots \\ & & 1 & 0 \end{bmatrix} \qquad \Rightarrow \qquad [T_{i}|_{Z(\alpha_{j};N_{i})}]_{\beta_{j}} = \begin{bmatrix} c_{u} & & & 0 \\ 1 & \ddots & & \vdots \\ & \ddots & \ddots & \vdots \\ & & 1 & c_{i} \end{bmatrix}. \tag{1}$$

Take $\mathfrak{B}^i = \cup \beta_i$. Then

$$[T_i|_{W_i}]_{\mathfrak{B}^i} = \left[egin{array}{ccc} & & & & \ & \ddots & & \ & & & \ & & & \ \end{array}
ight]$$

where each box is of the form at 1 R.H.S. Then finally take $B = \cup \mathfrak{B}^i$. This leads what we call Jordan form, where each small blocks are elementary Jordan blocks.

0.4 Computation of Invariant Factors

This Chapter is Intentionally Skipped at Lectures.

0.5 Summary; Semi-Simple Operators

This Chapter is Intentionally Skipped at Lectures.