

別紙添付の書類に記載されている事項は下記の出願書類に記載されてる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed th this Office.

出願年月日

2001年 3月 6日

10,086,625

Pate of Application:

2001 + 9), 00

D 願 畓 号 pplication Number: 特願2001-062687

ST. 10/C]:

[JP2001-062687]

願 plicant(s):

株式会社トプコン

CERTIFIED COPY OF PRIORITY DOCUMENT

BEST AVAILABLE COPY

特許庁長官 Commissioner, Japan Patent Office 2004年 9月 2日

1) 11]

【書類名】

特許願

【整理番号】

01-122TP

【提出日】

平成13年 3月 6日

【あて先】

特許庁長官 殿

【国際特許分類】

GO1N 23/04

【発明者】

【住所又は居所】

東京都板橋区蓮沼町75番1号 株式会社トプコン内

【氏名】

高地 伸夫

【発明者】

【住所又は居所】

東京都板橋区蓮沼町75番1号 株式会社トプコン内

【氏名】

小池 紘民

【特許出願人】

【識別番号】

000220343

【氏名又は名称】

株式会社トプコン

【代理人】

【識別番号】

100097320

【弁理士】

【氏名又は名称】

宮川 貞二

【電話番号】

03(3225)0681

【選任した代理人】

【識別番号】

100096611

【弁理士】

【氏名又は名称】 宮川 清

【選任した代理人】

【識別番号】

100098040

【弁理士】

【氏名又は名称】 松村 博之

【選任した代理人】

【識別番号】

100097744

【弁理士】

【氏名又は名称】 東野 博文

【手数料の表示】

【予納台帳番号】 047315

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

要

【物件名】

要約書 1

【プルーフの要否】

【書類名】 明細書

【発明の名称】 電子線装置用データ処理装置、電子線装置のステレオ測定方法

【特許請求の範囲】

【請求項1】 電子線を放射する電子線源、前記電子線を試料に照射する電子光学系、前記試料を保持する試料ホルダ、前記試料ホルダと前記照射電子線とを相対的に傾斜させる試料傾斜部、前記試料から出射される電子線を検出する電子線検出部とを有する電子線装置と接続される電子線装置用データ処理装置であって;

前記電子線装置での測定条件を受け取る測定条件判別部と;

前記試料傾斜部により前記試料ホルダと前記照射電子線とを相対的に傾斜させた際の、前記電子線検出部で検出した複数傾斜角度での検出データを受取り、前記測定条件判別部で判別する測定条件に基づいて、前記試料の形態を立体的に測定する形状測定部と;

を備える電子線装置用データ処理装置。

【請求項2】 前記測定条件判別部は、前記電子線装置の種類、又は前記電子光学系の倍率の少なくとも一方の情報を用いて測定条件の判別を行う;

請求項1に記載の電子線装置用データ処理装置。

【請求項3】 前記試料は基準位置となる基準マークを有し;

前記形状測定部は、前記複数傾斜角度での検出データに含まれる基準マークに 基づいて、前記複数傾斜角度での検出データに含まれる前記傾斜による歪みと縮 尺の相違が矯正された状態で、前記試料の形態を立体的に測定する;

請求項1又は請求項2に記載の電子線装置用データ処理装置。

【請求項4】 請求項1又は請求項2に記載の電子線装置用データ処理装置において;

更に基準テンプレートの基準マークを用いて、前記複数傾斜角度での検出データに含まれる前記傾斜による歪みと縮尺の相違を矯正する為の偏位修正パラメータを取得する偏位修正パラメータ取得手段と;

前記取得した偏位修正パラメータを用いて、前記複数傾斜角度での検出データ

に含まれる前記傾斜による歪みと縮尺の相違を矯正する画像データ偏位修正手段 とを有し;

前記形状測定部は、前記画像データ偏位修正手段で矯正された複数傾斜角度で の検出データを用いて、前記試料の形態を立体的に測定する;

請求項1又は請求項2に記載の電子線装置用データ処理装置。

【請求項5】 前記基準テンプレートの基準マークは、少なくとも2種類の 高さに関連付けて設けられており;

前記偏位修正パラメータ取得手段は、更に前記電子光学系のレンズ歪を補正するレンズ歪補正パラメータを取得し;

前記画像データ偏位修正手段は、更に前記レンズ歪補正パラメータを用いて、 前記複数傾斜角度での検出データに含まれるレンズ歪を矯正する;

請求項4に記載の電子線装置用データ処理装置。

【請求項6】 電子線を放射する電子線源、前記電子線を試料に照射する電子光学系、前記試料を保持する試料ホルダ、前記試料ホルダと前記照射電子線とを相対的に傾斜させる試料傾斜部、前記試料から出射される電子線を検出する電子線検出部を有する電子線装置を用いて、前記試料の形状を測定する為の電子線装置のステレオ測定方法であって;

前記試料には基準位置となる基準マークが作成されており;

前記試料ホルダと前記照射電子線とが第1の相対的傾斜角度をなす状態において、前記電子線検出部で第1の検出データを検出し;

前記試料ホルダと前記照射電子線とが第2の相対的傾斜角度をなす状態において、前記電子線検出部で第2の検出データを検出し;

前記第1及び第2の検出データに含まれる基準マークに基づいて、前記第1及 び第2の検出データに含まれる前記第1及び第2の相対的傾斜角度の相違による 歪みと縮尺の相違が矯正された状態で、前記試料の形態を立体的に測定する;

電子線装置のステレオ測定方法。

【請求項7】 電子線を放射する電子線源、前記電子線を試料に照射する電子光学系、前記試料を保持する試料ホルダ、前記試料ホルダと前記照射電子線とを相対的に傾斜させる試料傾斜部、前記試料から出射される電子線を検出する電

3/

子線検出部を有する電子線装置を用いて、前記試料の形状を測定する為の電子線 装置のステレオ測定方法であって;

前記試料の代わりに、基準位置となる基準マークが作成された基準テンプレートを前記試料ホルダに挿入し;

前記試料ホルダと前記照射電子線とが第1及び第2の相対的傾斜角度をなす状態において、前記電子線検出部で前記基準テンプレートに対する第1及び第2の 検出データを検出し;

前記基準マークを用いて、前記第1及び第2の検出データに含まれる前記第1 及び第2の相対的傾斜角度の相違による歪みと縮尺の相違を矯正する為の偏位修 正パラメータを取得し;

前記試料を前記試料ホルダに挿入し;

前記試料ホルダと前記照射電子線とが第1及び第2の相対的傾斜角度をなす状態において、前記電子線検出部で前記試料に対する第1及び第2の検出データを 検出し;

前記第1及び第2の相対的傾斜角度の相違による歪みと縮尺の相違が矯正された状態で、前記試料の形態を立体的に測定する;

電子線装置のステレオ測定方法。

【発明の詳細な説明】

$[0\ 0\ 0\ 1\]$

【産業上の利用分野】

この発明は、電子顕微鏡により得られた画像をステレオ観察可能な画像としたり、試料の形状を求めたりする電子線装置用データ処理装置、電子線装置のステレオ測定方法に関する。

$[0\ 0\ 0\ 2\]$

【従来の技術】

透過型電子顕微鏡(TEM)の場合には試料を傾斜させ、異なる傾斜角度の透 過画像を得て、これを左右画像としてステレオ観察が行われている。また、走査 型電子顕微鏡(SEM)の場合には試料を傾斜させたり、電子線を傾斜させたり して、異なる傾斜角度の反射画像を得て、これを左右画像としてステレオ観察が 行われている(「医学・生物学電子顕微鏡観察法」第278頁~第299頁、1982年刊行参照)。そして、肉眼においてステレオ観察をする場合のように、試料の概括的な凸凹形状を観察する用途には十分な画像が得られている。

[0003]

【発明が解決しようとする課題】

他方、異なる傾斜角度の画像から左右画像を得てステレオ観察を行って、試料の正確な三次元形状の計測を行う場合には、電子顕微鏡の電子レンズ系における収差の影響や試料の傾斜角度、或いは電子線の傾斜角度を数秒程度の非常に正確な角度で制御する必要がある。しかしながら、従来の傾斜角度は数度若しくは数分程度の概括的な制御しか行われておらず、左右画像の立体視から正確な三次元形状の計測を行うには不十分であるという課題があった。

[0004]

本発明は、上述した課題を解決したもので、電子顕微鏡から得られたステレオの検出データを適切に処理して、試料像を正確に精度よく立体観察可能として、 試料の三次元形状計測を行うことができる電子線装置用データ処理装置、電子線 装置のステレオ測定方法を提供することを目的とする。

[0005]

【課題を解決するための手段】

上記課題を達成する本発明の電子線装置用データ処理装置は、図3、図15、並びに図16に示すように、電子線装置10に接続されるデータ処理装置20であって、電子線装置10での測定条件を受け取る測定条件判別部25と、試料ホルダ3と照射電子線7とを相対的に傾斜させた際の、電子線検出部4で検出した複数傾斜角度での検出データを受取り、測定条件判別部25で判別する測定条件に基づいて、試料9の形態を立体的に測定する形状測定部32とを備えている。ここで、電子線装置10は、電子線7を放射する電子線源1と、電子線7を試料9に照射する電子光学系2と、試料9を保持する試料ホルダ3と、試料ホルダ3と照射電子線7とを相対的に傾斜させる試料傾斜部と、試料9から出射される電子線7dを検出する電子線検出部4とを有する。

[0006]

ここで、試料傾斜部は、試料ホルダ3の傾斜角度を制御して、試料9を照射電子線7に対して傾斜させるホルダ傾斜制御部5bを用いて構成されていてもよい。或いは、試料傾斜部は、照射電子線7を試料9に対して傾斜して照射するように電子光学系2を制御するビーム傾斜制御部5aを用いて構成されていてもよい。また、電子線検出部4は、試料9から出射される二次電子を検出するように構成されていると、走査型電子顕微鏡として好ましい。

[0007]

試料ホルダ3と照射電子線7とが第1及び第2の相対的傾斜角度をなす状態は、図3に示すように、ビーム傾斜制御部5aを用いる場合には第1の相対的傾斜角度では照射電子線7Rとなり、第2の相対的傾斜角度では照射電子線7Lとなる。また、図15並びに図16に示すように、ホルダ傾斜制御部5bを用いる場合には第1の相対的傾斜角度では試料ホルダ3の傾斜角度Rとなり、第2の相対的傾斜角度では試料ホルダ3の傾斜角度Lとなる。

[0008]

好ましくは、測定条件判別部25は、電子線装置10の種類、又は電子光学系2の倍率の少なくとも一方の情報を用いて測定条件の判別を行う構成とすると、複数傾斜角度での検出データを矯正する演算形態が適切に選択できる。電子線装置10の種類としては、透過型電子顕微鏡や走査型電子顕微鏡の別がある。電子光学系2の倍率としては、低倍率と高倍率の区別があり、例えば複数傾斜角度での検出データを矯正する演算形態として、中心投影と平行投影のどちらを選択するかの要素として用いる。電子光学系2の倍率は、電子線装置10に設けられる倍率変更部6の倍率指定信号から定める。

[0009]

好ましくは、試料9は基準位置となる基準マークを有し、形状測定部32は、 複数傾斜角度での検出データに含まれる基準マークに基づいて、複数傾斜角度で の検出データに含まれる傾斜による歪みと縮尺の相違が矯正された状態で、試料 9の形態を立体的に測定する構成とすると、試料9に設けられた基準マークを用 いて複数傾斜角度での検出データを偏位修正データに矯正した状態で試料9の形 態を立体的に測定できる。基準マークは、試料9に電子線7を照射して形成した り、試料9に既に存在するパターン等の特徴点を用いる。

[0010]

好ましくは、データ処理装置20は、基準テンプレートの基準マークを用いて、試料ホルダ3と照射電子線7との複数傾斜角度での検出データに含まれる傾斜による歪みと縮尺の相違を矯正する為の偏位修正パラメータ取得手段31aと、取得した偏位修正パラメータを用いて、試料9の複数傾斜角度での検出データに含まれる傾斜による歪みと縮尺の相違を矯正する画像データ偏位修正手段31bと、画像データ偏位修正手段で矯正された複数傾斜角度での検出データを用いて、試料9の形態を立体的に測定する形状測定部32を備える構成とすると、基準マークの形成された基準テンプレートにより偏位修正パラメータを取得することができ、試料9に基準マークを形成したり、特徴点を抽出したりする必要がなく、効率的に試料9の正確な形態の立体的測定が行える。

[0011]

好ましくは、本発明の電子線装置用データ処理装置は、さらに基準テンプレートの基準マークは、少なくとも2種類の高さに関連付けて設けられており、偏位修正パラメータ取得手段31aは更に電子光学系2のレンズ歪を補正するレンズ歪補正パラメータを取得し、画像データ偏位修正手段31bは、更にレンズ歪補正パラメータを用いて、複数傾斜角度での検出データに含まれるレンズ歪を矯正する構成とすると、形状測定部32はレンズ歪も補正した試料9の正確な形態の立体的測定が行える。

$[0\ 0\ 1\ 2]$

上記課題を達成する本発明の電子線装置のステレオ測定方法は、図11に示すように、試料9には基準位置となる基準マークが作成されており(S311、S314)、試料ホルダ3と照射電子線7とが第1の相対的傾斜角度をなす状態において、電子線検出部4で第1の検出データを検出し(S316)、試料ホルダ3と照射電子線7とが第2の相対的傾斜角度をなす状態において、電子線検出部4で第2の検出データを検出し(S316)、第1及び第2の検出データに含まれる基準マークに基づいて、第1及び第2の検出データに含まれる第1及び第2の相対的傾斜角度の相違による歪みと縮尺の相違を矯正し(S322、S326

)、試料9の形態を立体的に測定する(S330)工程を有している。

[0013]

上記課題を達成する本発明の電子線装置のステレオ測定方法は、図6に示すように、試料9の代わりに、基準位置となる基準マークが作成された基準テンプレート40を試料ホルダ3に挿入し(S204)、試料ホルダ3と照射電子線7とが第1及び第2の相対的傾斜角度をなす状態において、電子線検出部4で基準テンプレート40に対する第1及び第2の検出データを検出し(S206)、前記基準マークを用いて、第1及び第2の検出データに含まれる前記第1及び第2の相対的傾斜角度の相違による歪みと縮尺の相違を矯正する為の偏位修正パラメータを取得する(S208, S210)工程を有している。

[0014]

続いて、図10に示すように、試料9を試料ホルダ3に挿入し(S252)、 試料ホルダ3と照射電子線7とが第1及び第2の相対的傾斜角度をなす状態において、電子線検出部4で試料9に対する第1及び第2の検出データを検出し(S254)、取得した偏位修正パラメータを用いて、試料9の第1及び第2の相対的傾斜角度の相違による歪みと縮尺の相違を矯正し(S258、S260)、試料9の形態を立体的に測定する(S264)工程を有している。

[0015]

【発明の実施の形態】

[ステレオ画像を用いた三次元形状測定の原理]

まず、本発明の電子線装置を説明する前に、傾斜角の異なった画像を立体視可能な画像に偏位修正し、立体観察を行うと同時に三次元計測を行う測定原理について説明する。図1は3本の同じ長さの直線パターンが等間隔に存在している被写体に対して所定の傾斜角度で撮影したステレオ画像の説明図で、図1(A)は0度(平行)、図1(B)は10度傾斜している場合を示している。平行の場合、図1(A)に示すように、等間隔dで同じ長さ1の直線パターンが映っていた場合、10度に傾いた画像では、図1(B)に示されるように異なる間隔d12,d23で、異なる長さ11、12、13となる。

[0016]

図1 (A) と図1 (B) の画像をステレオメーター (視差測定かん) で立体視しようとしても、立体視ができないばかりでなく、視差差の測定に基づく比高の正確な計測もできないという課題がある。さらに三次元計測するために画像相関処理によるステレオマッチングを行おうとしても、左右画像の傾斜角度が異なるために旨くいかないという課題がある。

$[0\ 0\ 1\ 7]$

図2は図1(A)、(B)の傾斜画像を偏位修正画像に修正したステレオ画像の説明図で、図2(A)、(B)共に平行状態に偏位修正している場合を示している。偏位修正された結果、傾いて撮影された図1(A)、(B)の傾斜画像は対象物に対して平行となり、縮尺も等しくなって縦視差が除去されて、図2(A)、(B)に示されるように立体視が可能となる。立体視可能なステレオ画像は、同一エピポーラライン上にある左右画像の対応点を求めることにより正確な三次元座標が求めることができるようになる。偏位修正画像を作成するためには、2枚の画像上で最低3点以上の既知の基準点座標が画像上に必要である。

[0018]

また、それら基準点から、二つの画像の傾き、位置(これらを外部標定要素と呼ぶ)等を算出することができる。これら外部標定要素が最初から判っていれば偏位修正処理を行うことができる。本発明においては、偏位修正画像を作成するために基準点となる基準マークを有する基準テンプレートを予め作成、若しくは試料面上を電子線で撮影中に試料に基準点となる基準マークを作成し、画像の偏位修正処理によるデータ修正をして外部標定要素を求めるものである。偏位修正処理後のステレオ画像は、立体視可能であると同時に三次元計測も可能な状態となっている。

[0019]

[第1の実施の形態]

以下、本発明の実施の形態を図面により説明する。図3は本発明の第1の実施の形態を説明する構成ブロック図で、走査型顕微鏡の電子線を偏向させてステレオ画像を得る場合を示している。図において、走査型顕微鏡としての電子線装置10は、電子線7を放射する電子線源1、電子線7を試料9に照射する電子光学

9/

系2、試料9を傾斜可能に保持する試料ホルダ3、電子光学系2の倍率を変える 倍率変更部6、倍率変更部6に電力を供給する走査電源6a、電子線7を検出す る検出器4、電子線7を傾斜制御する傾斜制御部5としてのビーム傾斜制御部5 a、試料9から出射される二次電子のエネルギを減衰させて検出器4に反射させ る2次電子変換ターゲット8を備えている。なお、試料ホルダ3を傾斜制御する 傾斜制御部5としてのホルダ傾斜制御部5bは、第1の実施の形態で用いないが 、後で説明する第2の実施の形態で用いる。

[0020]

電子光学系2は、電子線源1から放射された電子線7の電子流密度、開き角、照射面積等を変えるコンデンサレンズ2a、電子線7の試料面上の入射角度を制御する偏向レンズ2b、細かく絞られた電子線7を偏向して試料面上を二次元的に走査させる走査レンズ2c、最終段縮小レンズの働きと共に試料面上での入射プローブの焦点合わせを行う対物レンズ2dを備えている。倍率変更部6の倍率変更命令に従って、走査レンズ2cにより電子線7を走査する試料面上の領域が定まる。ビーム傾斜制御部5aは偏向レンズ2bに傾斜制御信号を送り、試料ホルダ3と照射電子線7とが第1の相対的傾斜角度をなす電子線7Rと、第2の相対的傾斜角度をなす電子線7Rと、第2の相対的傾斜角度をなす電子線7Lとで切替えている。なお、ビーム傾斜制御部5aによる試料ホルダ3と照射電子線7の相対的傾斜角度は、2個に限らず多段に設定してよいが、ステレオの検出データを得る為には最小2個必要である。

[0021]

試料9は、例えばシリコン半導体やガリウム・ヒ素半導体のような半導体のチップであるが、電力用トランジスタ、ダイオード、サイリスタのような電子部品でもよく、また液晶パネルや有機ELパネルのようなガラスを用いた表示装置用部品でもよい。典型的な走査型顕微鏡の観察条件では、電子線源1は-3kV、試料9は-2.4kVに印加されている。試料9から放出された二次電子は、2次電子変換ターゲット8に衝突して、エネルギが弱められて検出器4で検出される。なお、試料9をマースポテンシャルにした場合には、二次電子は霧のように振る舞いエネルギが弱く、検出器4で直接検出することができ、2次電子変換ターゲット8は不要である。

[0022]

データ処理装置20は、画像作成処理部21、表示装置22、基準マークパターン発生器23、測定条件判別部25、データ修正部31、形状測定部32、立体画像観察部33、並びにステレオ画像記憶部34を有している。画像作成処理部21は、走査レンズ2cにより電子線7が試料面上の領域を走査する際に、検出器4で検出される二次電子線を用いて、試料面上の画像を作成する。表示装置22は画像作成処理部21で作成された画像をオペレータが観察できるように表示するもので、例えばCRTや液晶パネルが用いられる。表示装置22は通常の一画面モニタでもよく、ステレオ表示可能なモニタでもよく、或いは両方備えていてもよい。

[0023]

基準マークパターン発生器23は、電子線7を制御して試料9に基準マークを作成するものである。好ましくは、基準マークパターン発生器23に、予め試料9の面上からパターン形状やエッチングパターン等から特徴点を抽出し、既に存在する特徴点では不足する場合に基準マークを作成すべき位置と個数を定める機能も持たせるとよい。基準テンプレートに基準マークを作成する場合にも、基準マークパターン発生器23に基準マークの作成数と作成位置を記憶させておくとよい。

[0024]

測定条件判別部25は、電子線装置10の種類、並びに電子光学系2の倍率のの情報を用いて測定条件の判別を行う。電子線装置10の種類としては、透過型電子顕微鏡や走査型電子顕微鏡の別がある。電子光学系2の倍率としては、低倍率と高倍率の区別があり、例えばデータ修正部31において複数傾斜角度での検出データを矯正する演算形態として、中心投影と平行投影のどちらを選択するかの要素として用いる。

[0025]

データ修正部31は、画像作成処理部21で作成した画像を偏位修正画像に修正して立体視可能なステレオ画像とするもので、リアルタイムで偏位修正画像に修正する場合は直接、画像作成処理部21から電子顕微鏡10での測定条件を受

け取っている。なお、電子顕微鏡10での測定条件は、一旦ステレオ画像記憶部34に画像を記憶させている場合は、測定条件判別部25から受取っても良く、またステレオ画像記憶部34に画像と共に記憶された電子顕微鏡10での測定条件を用いても良い。形状測定部32は、データ修正部31により修正されたステレオ画像に基づき試料9の三次元形状を測定する。立体画像観察部33は、データ修正部31により修正されたステレオ画像に基づき試料9の立体的な画像を形成する。ステレオ画像記憶部34は、画像作成処理部21で作成した画像を記憶すると共に、データ修正部31により修正されたステレオ画像を記憶すると共に、データ修正部31により修正されたステレオ画像を記憶すると共に、データ修正部31により修正されたステレオ画像を記憶すると共に、データ修正部31により修正されたステレオ画像を記憶すると共に、データ修正部31により修正されたステレオ画像を記憶する場合は磁気ハードディスク、CRーROM、フロッピーディスク、光磁気ディスクのような情報記憶媒体に画像データを記憶している。なお、ステレオ画像記憶部34が、画像作成処理部21で作成した偏位修正されていない画像を記憶する場合は電子顕微鏡10での測定条件も記憶しておくと良い。

[0026]

データ修正部31は、基準位置となる基準マークを有する試料9を用いて直接 データ修正する場合と、基準マークを有する基準テンプレートを用いて試料9の データ修正をする場合の二通りに対処している。試料9が基準位置となる基準マ ークを有する場合は、データ修正部31は基準マークを用いて、ステレオの検出 データを偏位修正データに修正する。

[0027]

基準マークを有する基準テンプレートを用いて試料9のデータ修正をする場合に備えて、データ修正部31は偏位修正パラメータ取得手段31aと画像データ偏位修正手段31bとを有している。偏位修正パラメータ取得手段31aは、基準テンプレートの基準マークを用いて、ステレオの検出データを得る試料ホルダ3と照射電子線7との相対的傾斜角度における偏位修正パラメータを取得する。ここで、ステレオの検出データとは、試料ホルダ3と照射電子線7とが第1及び第2の相対的傾斜角度をなす状態において、電子線検出部4で試料9に対する第1及び第2の検出データを検出することを言う。画像データ偏位修正手段31bは、取得した偏位修正パラメータを用いて、試料9のステレオの検出データを偏位修正データに修正する。

[0028]

図4は試料若しくは基準テンプレート基板に形成する基準マークの説明図で、(A)は四隅に基準マークを有する平面図、(B)は格子状に基準マークを有する平面図、(C)はレンズ歪補正用の基準テンプレートの断面図である。試料9の場合には、四隅に基準マーク9aを形成すると、データ修正部31による偏位修正が行いやすい。基準マーク9aは試料9のなるべく広い範囲に3点以上形成すると使用しやすい。基準マーク9aとは、三次元位置が既知の基準点である。基準テンプレート40であっても、四隅に基準マークを形成してよい。基準テンプレート40とは、ステレオ画像を形成する基準面となる平坦面を有するもので、好ましくは試料9を構成する材料と同一の組成成分を有し、凸凹のない平坦なものがよい。基準テンプレート基板40bとは、基準マークを作成して基準テン

[0029]

プレート40とする基板である。

基準テンプレート40の場合は、基準マーク40aを基準テンプレート基板40bの任意の位置に形成できるので、例えば格子状に基準マークを形成する。格子状に基準マークを設けると、外部標定要素に加えて電子線のレンズ歪まで補正するのに用いることができる。電子線のレンズ歪を補正する場合は、平坦な基準テンプレートの場合には複数方向から撮影する必要がある。図4(C)のように基準テンプレートに段差を付けて、且つこの段差方向の縁に格子状に基準マークを設けると、基準マークに高さ成分が含まれる為、電子線のレンズ歪が正確に補正できる。なお、レンズ歪にはザイデル収差である球面収差、コマ収差、湾曲収差、非点収差、歪み収差等があり、色収差として軸上収差、倍率色収差、回転色収差がある。

[0030]

[試料若しくは基準テンプレート基板に基準マークを作成する方法]

続いて、試料若しくは基準テンプレート基板に基準マークを作成する方法について説明する。試料 9 や基準テンプレート基板 4 0 b の場合には、基準マークパターン発生器 2 3 を用いて電子線 7 を位置決めして照射することでコンタミネーション、欠陥等を試料 9 面上に形成して基準マークとすることができる。電子線

7を用いることで、基準マークは非常に精密な位置決め精度で試料 9 や基準テンプレート基板 4 0 b に形成される。

[0031]

コンタミネーションは試料上の炭化水素の分子が電子線照射により焼き付く現象で、その大きさは、電子線のプローブ径に依存するが、電子線密度、照射時間が大きいほど、コンタミ量は多くなり、ほぼ裾野を持つ円錐状に育つ。従ってプローブをゆっくり走査させると、コンタミネーションはその走査の形状に沿って付くようになる。コンタミネーションを任意の形状や任意の分布をさせるには、その形状に従って電子線プローブを走査して一定時間保持する。コンタミネーションを作成する場合、その大きさをビーム径、電流値等で電子線密度、照射時間を制御する。画像処理しやすくするために、基準マークは、画像上で10画素以上とするのが望ましく、照射するビーム径を画素以上にする。好ましくは、基準マークパターン発生器23に電子線照射制御の最適値を設定しておく。

[0032]

コンタミネーションが付きやすい時は、照射系の一部に電子線7をカットする ビームブランキングを設けて、電子線の走査に伴う移動の時は、電子線7が試料 9に当たらなくするとよい。また、検出器4から得られる二次電子信号のレベル を基準マークパターン発生器23に帰還して、電子線7の照射時間を調整するこ とによりコンタミネーションの量を制御することができる。

[0033]

図5は試料若しくは基準テンプレート基板に基準マークを作成する手順を示す流れ図である。まず、基準マークを作成する試料9若しくは基準テンプレート基板40bを試料ホルダ3に収容し、基準マークパターン発生器23に基準マークを作成する位置を読み込ませる(S100)。そして、電子線源1から電子線7を照射しつつ、走査レンズ2cにより電子線7を試料9若しくは基準テンプレート基板40bの面上でスキャンさせる(S102)。次に、電子線7の照射位置が、予めプログラムされた基準マークの作成位置か確認する(S104)。基準マークの作成位置であれば、電子線7をその位置で停止させ(S106)、電子線7を照射させる(S108)。ここで検出器4によって得られた信号が予め設

定された閾値以上か判定し、閾値以上となるまで基準マークの作成位置にて照射 し続ける(S 1 1 0)。閾値以上となると、基準マークを所定数作成したか確認 する(S 1 1 2)。仮に所定数に達していなければ、S 1 0 2 に戻り、再び電子 線 7 をスキャンさせ、所定数の基準マークを作成していれば終了する(S 1 1 4)。

[0034]

なお、図4 (C) のように基準テンプレート基板40bに段差の形状があって、コンタミネーションを段差上に付ける場合は次のように行う。まず、基準テンプレート基板40bの段差の作製は、レジストの露光、エッチングを繰り返すことにより任意の形状で段差を作ることが可能である。電子顕微鏡は焦点深度が高いため段差の任意の場所に電子線プローブをとどめることにより、電子線プローブが止まったところにコンタミネーションの基準マークを作ることが可能である

[0035]

このように作成された基準テンプレートを用いて偏位修正パラメータを取得する処理手順について説明する。図6は基準テンプレートを用いて偏位修正パラメータを取得する処理の流れ図である。まず、電子顕微鏡の倍率を決定する(S202)。これによって中心投影か平行投影かを決定する。なお、中心投影と平行投影については後で説明する。次に、基準マークを有する基準テンプレート40を試料ホルダ3にセットする(S204)。外部標定要素を補正する場合は、基準マークが3点以上の基準テンプレート40を用い、レンズ歪補正まで行う場合は基準マークが多数作成されている方の基準テンプレート40を使用する。ただし、外部標定要素のみであっても、基準マークが多数作成されている基準テンプレート40を使用することもできる。また、レンズ歪補正を正確に行う場合は、段差付きの基準テンプレート40が望ましい。

[0036]

試料ホルダ3と照射電子線7とが第1及び第2の相対的傾斜角度をなす状態において、電子線検出部4で基準テンプレート40に対する第1及び第2の検出データを検出する(S206)。外部標定要素の補正であれば、この第1及び第2

の相対的傾斜角度は試料9を計測するのと同じ角度とし、少なくとも2方向以上の傾斜角度にて撮影する。レンズ歪補正を行う場合は、試料9を計測するのと同じ2方向の傾斜角度に加えて、第3の傾斜角度(例えばプラス3方向)から撮影する。次に、撮影された画像から画像相関処理等を用いて基準マークを抽出して、計測する(S208)。

[0037]

図7は画像相関処理の説明図である。図中、探索画像Tは縦N1、横N1で左上座標が(a,b)となっている小さな矩形図である。対象画像Iは縦M、横Mの大きな矩形図である。画像相関処理は、正規化相関法や残差逐次検定法(SSDA法)など、どれを用いてもよい。残差逐次検定法を使用すれば処理が高速化できる。残差逐次検定法は次式を用いる。

【数1】

$$R(a,b) = \sum_{m_1=0}^{N_1-1} \sum_{n_1=0}^{N_1-1} |I_{(a,b)}(m_1,n_1) - T(m_1,n_1)| \quad \bullet \quad \bullet \quad \bullet \quad (1)$$

ここで、T(m1,n1)は探索画像、I(a,b)(m1,n1)は対象画像の部分画像、(a,b)は探索画像の左上座標、R(a,b)は残差である。残差R(a,b)が最小になる点が求める画像の位置である。処理の高速化をはかるため、式(1)の加算において、R(a,b)の値が過去の残差の最小値を越えたら加算を打ち切り、次のR(a,b)に移るよう計算処理を行う。

[0038]

再び図6に戻り、基準マークを用いて、ステレオの検出データを得る試料ホルダ3と照射電子線7との相対的傾斜角度における偏位修正パラメータの計算を行う(S210)。計測された基準マークの画像座標と実際の座標から、中心投影の場合は後述する式(2)~(4)を使って偏位修正パラメータを算出する。平行投影の場合は式(5)、(6)を使って偏位修正パラメータを算出する。レンズ歪補正まで行う場合は、式(7)を使って偏位修正パラメータを算出する。そ

して、試料ホルダ3から基準テンプレート40を取り出して、偏位修正パラメータの取得が完了する(S212)。

[0039]

[平行投影と中心投影]

電子顕微鏡では倍率が低倍率~高倍率(ex. 数倍~数百万倍)までレンジが幅広いため、電子光学系2が低倍率では中心投影、高倍率では平行投影とみなせる。中心投影と平行投影とを切替える倍率は、偏位修正パラメータの算出精度を基準にして定めるのがよく、例えば1000倍乃至10000倍から適宜選択される。図8は中心投影の説明図である。中心投影の場合、投影中心点〇cを基準にして試料9の置かれる対象座標系50と、検出器4の置かれる画像座標系52が図8のような位置関係にある。対象座標系50における基準マークのような対象物の座標を(X, Y, Z)、投影中心点〇cの座標を(Xo, Yo, Zo)とする。画像座標系52における座標を(x, y)、投影中心点〇cから画像座標系52までの画面距離をCとする。このとき、中心投影式として次式が成立する。

[0040]

【数2】

$$\begin{bmatrix} x \\ y \\ -C \end{bmatrix} = k \begin{bmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{bmatrix} \begin{bmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{bmatrix}$$
 • • • (2)

ここで、k は係数、ai,j:(i=1,2,3;j=1,2,3) は回転行列の要素である。式 (2) を画像座標系 5 2 の座標 (x, y) について解くと次式が成立する。

【数3】

$$\begin{cases} x = -C \frac{(X - X_0)a_{11} + (Y - Y_0)a_{12} + (Z - Z_0)a_{13}}{(X - X_0)a_{31} + (Y - Y_0)a_{32} + (Z - Z_0)a_{33}} \\ y = -C \frac{(X - X_0)a_{21} + (Y - Y_0)a_{22} + (Z - Z_0)a_{23}}{(X - X_0)a_{31} + (Y - Y_0)a_{32} + (Z - Z_0)a_{33}} \end{cases}$$

また、回転行列の要素 a i, j は画像座標系 5 2 の対象座標系 5 0 を構成する 3 軸 X, Y, Z に対する傾き ω 、 ϕ 、 κ を用いて次のように表せる。

【数4】

$$\begin{vmatrix} a_{11} = \cos \omega \cos \varphi, & a_{12} = -\cos \omega \sin \varphi, & a_{13} = \sin \omega \\ a_{21} = \cos \mathcal{K} \sin \varphi + \sin \mathcal{K} \sin \omega \cos \varphi, & a_{22} = \cos \mathcal{K} \cos \varphi - \sin \mathcal{K} \sin \omega \sin \varphi, & a_{23} = -\sin \mathcal{K} \cos \omega \\ a_{31} = \sin \mathcal{K} \sin \varphi - \cos \mathcal{K} \cos \omega \cos \varphi, & a_{32} = \sin \mathcal{K} \cos \varphi + \cos \mathcal{K} \sin \omega \sin \varphi, & a_{33} = \cos \mathcal{K} \cos \omega \end{vmatrix} \bullet \bullet \bullet (4)$$

[0041]

図9は平行投影の説明図である。平行投影の場合は、中心投影の投影中心点Ocに相当する点がない。そこで、対象座標系54として回転を考慮した座標系(X_R , Y_R , Z_R)を用い、縮尺係数として X_1 , X_2 を選定すると次式が成立する。

【数5】

$$\begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} K_1 00 \\ 0K_2 0 \\ 000 \end{bmatrix} \begin{bmatrix} X_R \\ Y_R \\ Z_R \end{bmatrix} \qquad \bullet \quad \bullet \quad \bullet \quad (5)$$

すると、対象座標系54で選択した原点(Xo, Yo, Zo)とオリエンテーション行列Aを用いて、次のように表せる。

【数6】

$$\begin{bmatrix} X_R \\ Y_R \\ Z_R \end{bmatrix} = A \begin{bmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{bmatrix} \qquad \bullet \quad \bullet \quad \bullet \quad (6)$$

ここで、オリエンテーション行列Aの要素 a i, jに関しては式 (4) に相当する 関係が成立している。

[0042]

偏位修正パラメータの算出においては、式(2)~(4)又は式(5)、(6)に含まれる6つの外部標定要素 ω 、 ϕ 、 κ 、 χ 0、 χ 0、 χ 0、 χ 0を求める。即ち、 χ 0 において、これらの式を、最低3点以上の基準マークにより観測方程式をたて、逐次近似解法によってこれら6つの外部標定要素を算出する。具体的には、未知変量の近似値を与え、近似値のまわりにテーラー展開して線形化し、最小二乗法により補正量を求めて近似値を補正し、同様の操作を繰り返し収束解を求める逐次近似解法によってこれら6つの外部標定要素を求めることができる。また、式(2)~(4)又は式(5)、(6)に代えて、単写真標定や相互標定、その他空中三角測量で外部標定として用いられている各種の演算式のうちから適宜採択して演算を行うとよい。

[0043]

[レンズ歪補正]

電子光学系 2 を構成する電子レンズの歪曲収差まで求める場合は、さらに複数の基準マークを用意し、複数方向からの画像を得ることにより式 (7)、 (8) によって補正することが可能となる。即ち、式 (2) ~ (4) 又は式 (5) 、 (6) でさらにレンズ歪を補正した x、 y 座標を x '、 y 'とすれば、次式が成立する。

$$x' = x + \Delta x$$
 (7)
 $y' = y + \Delta y$

ここで、k 1、k 2 を放射方向レンズ歪み係数とすると、 Δ x 、 Δ y は次式により表される。

【数7】

$$\Delta x = x_0 + x(k_1r^2 + k_2r^4)$$

$$\Delta y = y_0 + y(k_1r^2 + k_2r^4) \qquad \bullet \quad \bullet \quad \bullet \quad (8)$$

$$r^2 = (x^2 + y^2)/c^2$$

[0044]

電子レンズの歪曲収差の計算は、画像座標と対象座標を計測することにより、 上式にあてはめ逐次近似解法によって算出される。また、レンズ歪係数は、式(8)では放射方向レンズ歪みとしているが、さらにタンジェンシャルレンズ歪み やスパイラルレンズ歪み、その他電子レンズの歪曲収差の修正に必要な要素を式 (8)に加えてレンズ歪係数を求めれば、それらの較正(キャリブレーション) が可能となる。

[0045]

続いて、偏位修正パラメータを取得した後で、試料のステレオ画像を処理する 処理手順について説明する。図10は偏位修正パラメータを用いて試料のステレ オ画像を処理する手順の流れ図である。まず、観察・計測したい試料9を試料ホ ルダ3にセットする(S252)。続いて、ビーム傾斜制御部5aにより、電子 線7の試料ホルダ3に対する傾斜角を2つ以上にして、電子線検出部4で試料9 に対する第1及び第2の検出データを検出し、ステレオ撮影を行って画像を取り 込む(S254)。この2つ以上の傾斜角は、S206において偏位修正パラメ ータを取得するのに用いた、試料ホルダ3と照射電子線7とがなす第1及び第2 の相対的傾斜角度と同じ角度とする。

[0046]

次に、倍率変更部6の設定倍率により、試料9の撮影は中心投影か平行投影かを判別する(S256)。中心投影の場合には、偏位修正パラメータとしての6つの外部標定要素 ω 、 ϕ 、 κ 、X0、Y0、Z0を用いて、対象座標に該当する画像座標を式(2)~(4)に代入して求め、それをステレオ表示したい立体画像観察部33の座標系に変換して、再配列を行えば、データ修正部31により検出器4で検出するステレオ画像の偏位修正画像を作成することができる(S258)。平行投影の場合には、6つの外部標定要素 ω 、 ϕ 、 κ 、 χ 0、 χ 0、 χ 0、 χ 0、 χ 0、 χ 1、 χ 1、 χ 2 を用いて、対象座標に該当する画像座標を式(χ 3)、(6)に代入して求め、それをステレオ表示したい立体画像観察部33の座標系に変換して、再配列を行えば、データ修正部31により検出器4で検出するステレオ画像の偏位修正画像を作成することができる(χ 260)。

[0047]

そして、偏位修正パラメータによって偏位修正されたステレオ画像は一旦ステレオ画像記憶部34に記録されると共に、立体画像観察部33で立体表示する(S262)。なお、立体画像観察部33のような立体モニタがない場合は、代替手段として表示部22の1画面上に2画像表示すると、オペレータ側の対処で立体視が可能となる。

[0048]

次に、形状測定部32により、データ修正部31により修正されたステレオ画像に基づき試料9の三次元計測したい箇所を計測する(S264)。三次元計測は立体表示させた左右画像を計測することにより(横視差を求める)、三角測量の原理により算出される。左右画像の計測はマニュアル、或いは画像相関処理等を用いて行うことができる。

[0049]

そして、測定終了であるか判断し(S 2 6 6)、測定を継続するのであれば既に求めてある偏位修正パラメータが利用できるか判断する(S 2 6 7)。同じ倍率で別試料を測定する場合と、違う倍率で測定を行う場合であっても電子顕微鏡の倍率再現性があるときは、既に求めてある偏位修正パラメータを利用して、S 2 5 2 に戻って計測を繰り返す。電子顕微鏡に倍率再現性がない場合、或いは経

時変化がある場合は、既に求めてある偏位修正パラメータが利用できないので、 図6のS202に戻り、最初から基準テンプレート40を使用して倍率に応じた 偏位修正パラメータを算出する。測定終了の場合は試料9を試料ホルダ3から抜 いて終了する(S268)。

[0050]

図11は試料に存在する基準マークを用いてステレオ画像の観察を行う手順の流れ図である。まず、試料9を試料ホルダ3に挿入する(S302)。続いて、倍率変更部6により試料9を観察又は計測する倍率を設定する(S304)。そして、設定した倍率にて電子線7により試料9の面上をプリスキャンする(S306)。プリスキャンにより検出器4が二次電子を検出して、画像作成処理部21により画像が作成される。基準マークパターン発生器23では、画像作成処理部21により作成された画像から特徴点を抽出する(S308)。ここで、特徴点とは基準マークのように偏位修正パラメータの算出に適する位置に存在する明認できるマークである。

[0051]

[特徴点の抽出処理]

ここで、基準マークパターン発生器 2 3 で行う特徴点の抽出処理について説明する。入力画像を f (i, j)、入力画像のラプラシアンを ∇ 2 f (i, j) とすると、画像の鮮鋭化処理が行われる。

 $g(i, j) = f(i, j) - \nabla^2 f(i, j)$ …… (9) ここで、g(i, j) は鮮鋭化画像である。また、入力画像のラプラシアン ∇^2 f(i, j) に関しては、ラプラシアン・オペレータ、線検出オペレータ等のいろな形の微分オペレータがある。

[0052]

図12は3 x 3 画素用の画像鮮鋭化処理の微分オペレータで、(A) はラプラシアン・オペレータ、(B) は線検出オペレータである。中心の画素に重い重み付けをし、隣接する画素に軽い重み付けをすることで鮮鋭化処理を行っている。なお、画像鮮鋭化処理の微分オペレータは、図12の3 x 3 画素用微分オペレータにガウス曲線による重み付けの修正を施したものとしてもよい。

[0053]

画像の鮮鋭化処理の次に、エッジ抽出処理が行われる。エッジ抽出処理は、鮮鋭化画像の濃度値のゼロ交差点をエッジとすることにより行うことができる。すなわち、ゼロとなった点のみを画像化する、或いはゼロを境にしてプラス領域を白、マイナス領域を黒とすることにより画像化される。

[0054]

また、式(9)を用いたデジタル画像処理に代えて、下式に示されるような計算処理によって求めてもよい。

【数8】

$$\nabla^2 G(x, y) = \frac{x^2 + y^2 - 2a^2}{2\pi a^6} \exp(-(x^2 + y^2) / 2a^2) \cdot \cdot \cdot (10)$$

式(10)は、計算処理の中にガウス曲線による濃淡の激変緩和措置を内蔵させたものである。

[0055]

図11に戻り、基準マークパターン発生器23では、特徴点の位置と数が十分か判断し(S310)、十分であれば特徴点を基準マークとして扱う(S311)。不十分であれば既存の特徴点を基準マークとして扱うと共に、追加して形成すべき基準マークの位置決定をし(S312)、基準マークパターン発生器23により基準マークを作成する(S314)。特徴点の位置と数が十分か否か判断するために、画像作成処理部21により作成された画像をブロック分けしてから判断するとよい。

[0056]

図13は特徴点の抽出処理後に、画像作成処理部により作成された画像をブロック分けする場合の説明図である。画像作成処理部21により作成された画像は、例えば4個のブロックA、B、C、Dに区分する。好ましくは、画像のブロック分けは各ブロックに1個若しくは2個の特徴点が存在するように定めると共に、各ブロックの面積と形状は均等になるようにするとよい。もし、あるブロック

に特徴点が存在しない場合は、基準マークの作成位置を決める。

[0057]

図14は基準マークの形成された試料面の一例を示す平面図である。試料9は 既に所定のパターン9bを有する半導体基板とする。試料9の画像の四隅には基 準マーク9aが形成されている。このような基準マーク9aは、試料面を対象画 像Iとし、標準的な基準マークを有する探索画像Tにてマッチングをとることで 、容易に検出できる。

[0058]

図11に戻り、ビーム傾斜制御部5 aにて電子線7の傾斜角を制御して電子線7R、7Lを切替えて、画像作成処理部21に画像を必要枚数取り込む(S316)。倍率変更部6で設定される倍率により、データ修正部31にて中心投影により偏位修正パラメータを算出するのか、平行投影により偏位修正パラメータを算出するのか選択する(S318)。続いて、画像中の基準マークの座標を検出する(S320、S324)。図13に示すように、基準マークがどのブロックにあるか予め判っているので、図7及び図14に示すように、画像相関処理によってその領域を探索、検出する。

[0059]

データ修正部 3 1 は、検出された基準マークの画像座標の座標から、中心投影の場合は前述した式(2)~(4)を使って偏位修正パラメータを算出する。そして、偏位修正パラメータとしての6つの外部標定要素 ω 、 ϕ 、 κ 、X o、Y o、Z o を用いて、対象座標に該当する画像座標を式(2)~(4)に代入して求め、それをステレオ表示したい立体画像観察部 3 3 の座標系に変換して、再配列を行えば、データ修正部 3 1 により検出器 4 で検出するステレオ画像の偏位修正画像を作成することができる(S 3 2 2)。

[0060]

レオ表示したい立体画像観察部33の座標系に変換して、再配列を行えば、データ修正部31により検出器4で検出するステレオ画像の偏位修正画像を作成することができる(S326)。

$[0\ 0\ 6\ 1]$

続いて、ステレオ画像の偏位修正画像を立体画像観察部33に表示して、立体観察可能とする(S328)。次に、形状測定部32により、データ修正部31により修正されたステレオ画像に基づき試料9の三次元計測したい箇所を計測する(S330)。そして、測定終了であるか判断し(S332)、さらに同じ倍率で別試料を測定する場合、或いは倍率を変更して行う場合は、S304に戻って計測を繰り返す。測定終了の場合は試料9を試料ホルダ3から抜いて終了する(S334)。ここで、倍率を変更して同じ試料9を計測する場合、基準マークを既に作成してあるので、それが特徴点として使用可能かは、S308の特徴抽出処理にて判定して使用可能であれば使用する。使用できなければ、基準マークを新たに作成する(S312、S314)。

[0062]

なお、図11に示す処理は画像作成処理部21を介して自動で行う実施の形態を示したが、表示装置22にプリスキャン画像を表示しながらオペレータがマニュアルにて実行してもよい。

[0063]

[第2の実施の形態]

図15は本発明の第2の実施の形態を説明する構成ブロック図で、試料ホルダの傾斜角度を変えて走査型顕微鏡のステレオ画像を得る場合を示している。第2の実施の形態では、試料ホルダ3を傾斜制御する傾斜制御部5としてホルダ傾斜制御部5bを用いており、ビーム傾斜制御部5aは作動させない。ホルダ傾斜制御部5bによる試料ホルダ3と照射電子線7の相対的傾斜角度は、ここでは右側上がりRと左側上がりLの二通りに切替えて設定する場合を図示しているが、2段に限らず多段に設定してよいが、ステレオの検出データを得る為には最小2段必要である。試料9を所定角度($\pm \theta$)傾けて検出器4で撮影することは、試料9を固定して電子線7を所定角度($\pm \theta$)傾けて照射し、検出器4で撮像するこ

とと等価となる。

[0064]

このように構成された装置においても、第1の実施の形態と同様に検出した生の画像を偏位修正画像に修正して立体視できるようにする。偏位修正画像に修正する態様としては、図6、図10に示すように基準テンプレートを用いて偏位修正パラメータを取得し、その後試料のステレオ画像を処理するものと、図11に示すように試料の基準マークを用いて直接ステレオ画像を処理するものとがある

[0065]

「第3の実施の形態]

図16は本発明の第3の実施の形態を説明する構成ブロック図で、試料ホルダの傾斜角度を変えて透過型顕微鏡のステレオ画像を得る場合を示している。電子線装置10が透過型顕微鏡であるため、電子線検出部4a、4bが試料ホルダ3を挟んで電子線源1の反対側にある。電子光学系2は、電子線7を試料9に照射する第1の電子光学系と、試料9を透過した電子線7をCCD(Charge-coupled devices)等の検出器4aに導く第2の電子光学系を有している。第1の電子光学系として、電子線源1から放射された電子線7の電子流密度、開き角、照射面積等を変えるコンデンサレンズ2aが設けられている。第2の電子光学系として、結像レンズ系の初段にある対物レンズ2g、対物レンズ2gの像面に作られる像、あるいは後焦点面に作られる回折像を拡大・投影する中間レンズ2eと投影レンズ2fが設けられている。

[0066]

検出器4 a の検出信号はCCD制御部4 b を介して画像作成処理部2 1 に送られる。倍率変更部6 は電子光学系2の倍率を変えるもので、ここでは対物レンズ2 g、中間レンズ2 e、投影レンズ2 f に倍率制御信号を送っている。試料ホルダ3を傾斜制御する傾斜制御部5としてホルダ傾斜制御部5 b を用いている。なお、透過型顕微鏡であっても、試料ホルダ3を傾斜制御する傾斜制御部5としてビーム傾斜制御部に相当する構成要素を用いても良い。

[0067]

このように構成された装置においても、第1の実施の形態と同様に検出した生の画像を偏位修正画像に修正して立体視できるようにする。偏位修正画像に修正する態様としては、図6、図10に示すように基準テンプレートを用いて偏位修正パラメータを取得し、その後試料のステレオ画像を処理するものと、図11に示すように試料の基準マークを用いて直接ステレオ画像を処理するものとがある。

[0068]

なお、上記実施の形態においては、電子顕微鏡としてビーム傾斜制御部により電子線を偏向させてステレオ画像を得る方式と、ホルダ傾斜制御部により試料を傾斜させてステレオ画像を得る方式との両方式が採用できる構成となっているが、本発明はこれに限定されるものではなく、ビーム傾斜制御部とホルダ傾斜制御部の何れか一方を備える電子顕微鏡としても、データ処理装置は対処できる。

[0069]

【発明の効果】

以上説明したように、本発明の電子線装置用データ処理装置によれば、電子線装置に接続されるデータ処理装置であって、電子線装置での測定条件を受け取る測定条件判別部と、試料を保持する試料ホルダと電子線源の照射する電子線とを相対的に傾斜させた際の、複数傾斜角度での試料から出射される電子線検出部で検出した電子線検出データを受取り、測定条件判別部で判別する測定条件に基づいて、試料の形態を立体的に測定する形状測定部とを備える構成としているので、電子線装置での測定条件に応じて適切な条件で試料の形態を立体的に測定できる。

【図面の簡単な説明】

- 【図1】 3本の同じ長さの直線パターンが等間隔に存在している被写体に対して所定の傾斜角度で撮影した画像の説明図である。
- 【図2】 図1(A)、(B)の傾斜画像を偏位修正画像に修正したステレオ画像の説明図である。
- 【図3】 本発明の第1の実施の形態を説明する構成ブロック図で、走査型 顕微鏡の電子線を偏向させてステレオ画像を得る場合を示している。

- 【図4】 試料若しくは基準テンプレート基板に形成する基準マークの説明 図である。
- 【図 5 】 試料若しくは基準テンプレート基板に基準マークを作成する手順を示す流れ図である。
- 【図6】 基準テンプレートを用いて偏位修正パラメータを取得する処理の流れ図である。
 - 【図7】 画像相関処理の説明図である。
 - 【図8】 中心投影の説明図である。
 - 【図9】 平行投影の説明図である。
- 【図10】 偏位修正パラメータを用いて試料のステレオ画像を処理する手順の流れ図である。
- 【図11】 試料に存在する基準マークを用いてステレオ画像の観察を行う 手順の流れ図である。
 - 【図12】 3x3画素用の画像鮮鋭化処理の微分オペレータである。
- 【図13】 特徴点の抽出処理後に、画像作成処理部により作成された画像をブロック分けする場合の説明図である。
 - 【図14】 基準マークの形成された試料面の一例を示す平面図である。
- 【図15】 本発明の第2の実施の形態を説明する構成ブロック図で、試料ホルダの傾斜角度を変えて走査型顕微鏡のステレオ画像を得る場合を示している。
- 【図16】 本発明の第3の実施の形態を説明する構成ブロック図で、試料ホルダの傾斜角度を変えて透過型顕微鏡のステレオ画像を得る場合を示している

【符号の説明】

- 1 電子線源
- 2 電子光学系
- 3 試料ホルダ
- 4 電子線検出部
- 5 データ修正部

- 5 a ビーム傾斜制御部
- 5 b ホルダ傾斜制御部
- 6 倍率変更部
- 7 電子線
- 9 試料
- 10 電子線装置
- 20 データ処理装置
- 2 1 画像作成処理部
- 22 表示装置
- 23 基準マークパターン発生器
 - 25 測定条件判別部
 - 31 データ修正部
 - 31a 偏位修正パラメータ取得手段
 - 31b 画像データ偏位修正手段
 - 32 形状測定部
 - 33 立体画像観察部
 - 34 ステレオ画像記憶部

【書類名】

図面

【図1】

【図2】

【図3】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

(A) ラプラシアンオペレータ (B) 線検出オペレータ

0	— 1	0
— 1	5	– 1
0	— 1	0

-1/2	1	-1/2
-1/2	1	-1/2
-1/2	1	-1/2

【図13】

図14】

【図15】

図16]

【書類名】 要約書

【要約】

【課題】 電子顕微鏡から得られたステレオの検出データを適切に処理して、試料像を正確に精度よく立体観察可能として、試料の三次元形状計測を行うことができる電子線装置用データ処理装置を提供する。

【解決手段】 電子線装置10に接続されるデータ処理装置20であって、電子線装置10での測定条件を受け取る測定条件判別部25と、試料ホルダ3と照射電子線7とを相対的に傾斜させた際の、電子線検出部4で検出した複数傾斜角度での検出データを受取り、測定条件判別部25で判別する測定条件に基づいて、試料9の形態を立体的に測定する形状測定部32とを備えている。ここで、電子線装置10は、電子線源1から放射された電子線7を電子光学系2によって試料9に照射し、試料9を保持する試料ホルダ3と照射電子線7とを相対的に傾斜させ、電子線検出部4にて試料9から出射される電子線7dを検出する。

【選択図】 図3

特願2001-062687

出願人履歴情報

識別番号

[000220343]

1. 変更年月日

1990年 8月 8日

[変更理由]

新規登録

住 所

東京都板橋区蓮沼町75番1号

氏 名 株式会社トプコン