

LECTURE 26 OF 42

Reasoning under Uncertainty: Probability Review & Graphical Models Overview Discussion: Fuzzy Sets and Soft Computing

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Sections 14.1 - 14.2, p. 492 - 499, Russell & Norvig 2nd edition

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 26 OF 42

NTELLIGENCE LECTURE 28 0

LECTURE OUTLINE

- Reading for Next Class: Sections 14.1 14.2 (p. 492 499), R&N 2^e
- Last Class: Uncertainty, Probability, 13 (p. 462-486), R&N 2^e
 - * Where uncertainty is encountered: reasoning, planning, learning (later)
 - * Sources: sensor error, incomplete/inaccurate domain theory, randomness
- Today: Probability Intro, Continued, Chapter 13, R&N 2^e
 - * Why probability
 - ⇒ Axiomatic basis: Kolmogorov
 - ⇒ With utility theory: sound foundation of rational decision making
 - * Joint probability
 - * Independence
 - * Probabilistic reasoning: inference by enumeration
 - * Conditioning
 - ⇒ Bayes's theorem (aka Bayes' rule)
 - **⇒** Conditional independence
- Coming Week: More Applied Probability, Graphical Models

ACKNOWLEDGEMENTS

Stuart J. Russell
Professor of Computer Science
Chair, Department of Electrical
Engineering and Computer Sciences
Smith-Zadeh Prof. in Engineering

© 2004-2005

Russell, S. J. University of California, Berkeley http://www.eecs.berkeley.edu/~russell

Peter Norvig
Director of Research
Google

Lotfali Asker-Zadeh

Norvig, P. http://norvig.com/

Slides from: http://aima.eecs.berkeley.edu

Zadeh, L. A. University of California, Berkeley http://bit.ly/39shSQ

CIS 530 / 730

LECTURE 26 OF 42

COMPUTING & INFORMATION SCIENCES

PROBABILITY: BASIC DEFINITIONS AND AXIOMS

- Sample Space (Ω): Range of Random Variable X
- Probability Measure Pr(•)
 - * Ω denotes range of observations; $X: \Omega$
 - * Probability Pr, or P: measure over power set 2^{Ω} event space
 - * In general sense, $Pr(X = x \in \Omega)$ is measure of <u>belief</u> in X = x
 - \Rightarrow P(X = x) = 0 or P(X = x) = 1: plain (aka categorical) beliefs \Rightarrow Can't be revised; all other beliefs are subject to revision
- Kolmogorov Axioms
 - * 1. $\forall x \in \Omega . 0 \le P(X = x) \le 1$
 - * 2. $P(\Omega) \equiv \sum_{x \in \Omega} P(X = x) = 1$
 - * 3. $\forall X_1, X_2, \dots \ni i \neq j \Rightarrow X_i \wedge X_j = \emptyset$.

$$\mathbf{P}\left(\bigcup_{i=1}^{\infty} \mathbf{X}_{i}\right) = \sum_{i=1}^{\infty} \mathbf{P}(\mathbf{X}_{i})$$

- Joint Probability: $P(X_1 \land X_2) \equiv \text{Prob.}$ of Joint Event $X_1 \land X_2$
- Independence: $P(X_1 \wedge X_2) = P(X_1) \cdot P(X_2)$

INFERENCE BY ENUMERATION

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

$$\begin{array}{c} P(\neg cavity|toothache) \,=\, \frac{P(\neg cavity \wedge toothache)}{P(toothache)} \\ \text{conditional probabilities} \end{array} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4 \end{array}$$

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

ARTIFICIAL INTELLIGENCE

LECTURE 26 OF 42

COMPUTING & INFORMATION SCIENCES

NORMALIZATION

	toothache			¬ toothache		
	catch	¬ cato	ch	catch	¬ catch	
cavity	.108	.012		.072	.008	
¬ cavity	.016	.064		.144	.576	

Denominator can be viewed as a normalization constant lpha

 $\mathbf{P}(Cavity|toothache) = \alpha \, \mathbf{P}(Cavity,toothache)$

 $= \ \alpha \left[\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch) \right]$

 $= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right]$

 $= \alpha (0.12, 0.08) = (0.6, 0.4)$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

EVIDENTIAL REASONING — INFERENCE BY ENUMERATION APPROACH

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$\mathbf{P}(\mathbf{Y}|\mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries????

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

INDEPENDENCE

A and B are independent iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

P(Toothache, Catch, Cavity, Weather)= P(Toothache, Catch, Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

© 2004 S. Russell & P. Norvig. Reused with permission.

CONDITIONAL INDEPENDENCE [1]

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity:

P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity)

P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

© 2004 S. Russell & P. Norvig. Reused with permission.

CONDITIONAL INDEPENDENCE [2]

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

- $= \mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch, Cavity)$
- = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
- = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

© 2004 S. Russell & P. Norvig. Reused with permission.

BAYES'S THEOREM (AKA BAYES' RULE)

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow \ \, \mathsf{Bayes'} \ \mathsf{rule} \ P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha\mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

BAYES' RULE & **CONDITIONAL INDEPENDENCE**

 $P(Cavity|toothache \land catch)$

- $= \alpha P(toothache \wedge catch|Cavity)P(Cavity)$
- $= \alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity)$

This is an example of a naive Bayes model:

 $P(Cause, Effect_1, ..., Effect_n) = P(Cause)\Pi_i P(Effect_i | Cause)$

Total number of parameters is linear in n

© 2004 S. Russell & P. Norvig. Reused with permission.

WUMPUS WORLD WITH PROBABILITY

 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit}$

 $B_{ij}\!=\!true$ iff [i,j] is breezy Include only $B_{1,1},B_{1,2},B_{2,1}$ in the probability model

© 2004 S. Russell & P. Norvig. Reused with permission.

6

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 26 OF 42

COMPUTING & INFORMATION SCIENCES

UNCERTAIN REASONING ROADMAP

- Framework: Interpretations of Probability [Cheeseman, 1985]
 - * Bayesian subjectivist view
 - ⇒ Measure of agent's belief in proposition
 - \Rightarrow Proposition denoted by random variable (range: <u>sample space</u> Ω)
 - ⇒ e.g., Pr(Outlook = Sunny) = 0.8
 - * Frequentist view: probability is frequency of observations of event
 - * $\underline{\text{Logicist}}$ view: probability is $\underline{\text{inferential evidence}}$ in favor of proposition
- Some Applications
 - * HCI: learning natural language; intelligent displays; decision support
 - * Approaches: prediction; sensor and data fusion (e.g., bioinformatics)
- Prediction: Examples
 - * Measure relevant parameters: temperature, barometric pressure, wind speed
 - * Make statement of the form *Pr(Tomorrow's-Weather = Rain) =* 0.5
 - * College admissions: Pr(Acceptance) = p
 - ⇒ <u>Plain beliefs</u>: unconditional acceptance (*p*=1), <u>categorical</u> rejection (*p*=0)
 - ⇒ Conditional beliefs: depends on reviewer (use probabilistic model)

NON-PROBABILISTIC REPRESENTATION [2]: PRECISIATION & DEGREE OF MEMBERSHIP

- Set A in U: Class with Crisp Boundary
- Precisiation: Association with Function whose Domain is *U*
- Precisiation of Crisp Sets
 - * Through association with (Boolean-valued) characteristic function
 - * $c_A: U \to \{0, 1\}$
- Precisiation of Fuzzy Sets
 - * Through association with membership function
 - * $\mu_A: U \to [0, 1]$
 - * $\mu_A(u)$, $u \in U$, represents grade of membership of u in A
- Degree of Membership
 - * Membership in A: matter of degree
 - * "In fuzzy logic everything is or is allowed to be a matter of degree." Zadeh

Adapted from slide © 2008 L. A. Zadeh, UC Berkeley

http://bit.ly/39shSQ

NON-PROBABILISTIC REPRESENTATION [3]: FUZZY SET EXAMPLE — MIDDLE-AGE

- "Linguistic" Variables: Qualitative, Based on Descriptive Terms
- Imprecision of Meaning = Elasticity of Meaning
- Elasticity of Meaning = Fuzziness of Meaning

Adapted from slide © 2008 L. A. Zadeh, UC Berkeley

http://bit.ly/39shSQ

ARTIFICIAL INTELLIGENCE

LECTURE 26 OF 42

BASIC FORMULAS FOR PROBABILITIES

• Product Rule (Alternative Statement of Bayes's Theorem)

$$P(A/B) = \frac{P(A \land B)}{P(B)}$$

- * Proof: requires axiomatic set theory, as does Bayes's Theorem
- Sum Rule

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

- * Sketch of proof (immediate from axiomatic set theory)
 - \Rightarrow Draw a Venn diagram of two sets denoting events \emph{A} and \emph{B}
 - \Rightarrow Let $A \cup B$ denote the event corresponding to $A \vee B$...

- Theorem of Total Probability
 - * Suppose events $A_1, A_2, ..., A_n$ are mutually exclusive and exhaustive
 - \Rightarrow Mutually exclusive: $i \neq j \Rightarrow A_i \land A_j = \emptyset$
 - \Rightarrow Exhaustive: $\sum P(A_i) = 1$
 - * Then $P(B) = \sum_{i=1}^{n} P(B \mid A_i) \cdot P(A_i)$
 - * Proof: follows from product rule and 3rd Kolmogorov axiom

BAYES'S THEOREM: JOINT VS. CONDITIONAL PROBABILITY

Theorem

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)} = \frac{P(h \land D)}{P(D)}$$

- P(h) = Prior Probability of Assertion (Hypothesis) h
 - * Measures initial beliefs (BK) before any information is obtained (hence prior)
- $P(D) \equiv \text{Prior Probability of Data (Observations) } D$
 - * Measures probability of obtaining sample D (i.e., expresses D)
- $P(h \mid D) \equiv Probability of h Given D$
 - * / denotes conditioning hence P(h | D) conditional (aka posterior) probability
- $P(D \mid h) \equiv Probability of D Given h$
 - * Measures probability of observing *D* when *h* is correct ("generative" model)
- $P(h \land D) \equiv \text{Joint Probability of } h \text{ and } D$
 - * Measures probability of observing D and of h being correct

CIS 530 / 730 Artificial Intelligence LECTURE 26 OF 42

COMPUTING & INFORMATION SCIENCES

AUTOMATED REASONING USING PROBABILITY: INFERENCE TASKS

Simple queries: compute posterior marginal $P(X_i|E=e)$

e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: $P(X_i, X_i | E = e) = P(X_i | E = e)P(X_i | X_i, E = e)$

Optimal decisions: decision networks include utility information;

probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

@

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

BAYESIAN INFERENCE: ASSESSMENT

Answering User Queries

- * Suppose we want to perform intelligent inferences over a database DB
 - ⇒ Scenario 1: DB contains records (instances), some "labeled" with answers
 - ⇒ Scenario 2: *DB* contains probabilities (annotations) over propositions
- * QA: an application of probabilistic inference
- QA Using Prior and Conditional Probabilities: Example
 - * Query: Does patient have cancer or not?
 - * Suppose: patient takes a lab test and result comes back positive
 - ⇒ Correct + result in only 98% of cases in which disease is actually present
 - ⇒ Correct result in only 97% of cases in which disease is not present
 - ⇒ Only 0.008 of the entire population has this cancer
 - * $\alpha = P(\text{false negative for } H_0 = Cancer) = 0.02 (NB: \text{ for 1-point sample})$
 - * $\beta = P(\text{false positive for } H_0 = Cancer) = 0.03 (NB: \text{ for 1-point sample})$

P(Cancer) = 0.008 P(+/Cancer) = 0.98 $P(+/\neg Cancer) = 0.03$ P(-/Cancer) = 0.02 $P(-/\neg Cancer) = 0.04$

* $P(+ \mid H_0) P(H_0) = 0.0078, P(+ \mid H_A) P(H_A) = 0.0298 \Rightarrow h_{MAP} = H_A \equiv \neg Cancer$

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 26 OF 42

CHOOSING HYPOTHESES

Bayes's Theorem

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)} = \frac{P(h \land D)}{P(D)}$$

- MAP Hypothesis
 - * Generally want most probable hypothesis given training data
 - * Define: $arg \max_{x \in \Omega} [f(x)] = value \text{ of } x \text{ in sample space } \Omega \text{ with highest } f(x)$
 - * Maximum <u>a posteriori</u> hypothesis, h_{MAP}

$$\begin{split} h_{\text{MAP}} &= arg \max_{h \in H} P(h \mid D) \\ &= arg \max_{h \in H} \frac{P(D \mid h)P(h)}{P(D)} \\ &= arg \max_{h \in H} P(D \mid h)P(h) \end{split}$$

- ML Hypothesis
 - * Assume that $p(h_i) = p(h_i)$ for all pairs i, j (uniform priors, i.e., $P_H \sim$ Uniform)
 - * Can further simplify and choose maximum likelihood hypothesis, h_M

$$h_{ML} = arg \max_{h_i \in H} P(D | h_i)$$

SEMANTICS OF BAYESIAN NETWORKS

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$\mathbf{P}(X_1,\ldots,X_n)=\prod_{i=1}^n\mathbf{P}(X_i|Parents(X_i))$$

e.g.,
$$P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)$$
 is given by??
$$= P(\neg B)P(\neg E)P(A|\neg B \wedge \neg E)P(J|A)P(M|A)$$

"Local" semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

ARTIFICIAL INTELLIGENCE

LECTURE 26 OF 42

COMPUTING & INFORMATION SCIENCES

KANSAS STATE I INVERSIT

MARKOV BLANKET

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

CONSTRUCTING BAYESIAN NETWORKS: CHAIN RULE IN INFERENCE & LEARNING

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i=1 to n add X_i to the network select parents from X_1,\ldots,X_{i-1} such that $\mathbf{P}(X_i|Parents(X_i))=\mathbf{P}(X_i|X_1,\ldots,X_{i-1})$

This choice of parents guarantees the global semantics: $\mathbf{P}(X_1,\dots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i|X_1,\dots,X_{i-1}) \text{ (chain rule)}$ $= \prod_{i=1}^n \mathbf{P}(X_i|Parents(X_i)) \text{ by construction}$

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 26 OF 42

COMPUTING & INFORMATION SCIENCE
KANSAS STATE I INIVERSIT

EVIDENTIAL REASONING: EXAMPLE — CAR DIAGNOSIS

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

TOOLS FOR BUILDING GRAPHICAL MODELS

- Commercial Tools: Ergo, Netica, TETRAD, Hugin
- Bayes Net Toolbox (BNT) Murphy (1997-present)
 - * Distribution page http://http.cs.berkeley.edu/~murphyk/Bayes/bnt.html
 - * Development group http://groups.yahoo.com/group/BayesNetToolbox
- Bayesian Network tools in Java (BNJ) Hsu et al. (1999-present)
 - * Distribution page http://bnj.sourceforge.net
 - * Development group http://groups.yahoo.com/group/bndev
 - * Current (re)implementation projects for KSU KDD Lab
 - · Continuous state: Minka (2002) Hsu, Guo, Li
 - Formats: XML BNIF (MSBN), Netica Barber, Guo
 - · Space-efficient DBN inference Meyer
 - · Bounded cutset conditioning Chandak

Bayesian **Network tools in**

REFERENCES: **GRAPHICAL MODELS & INFERENCE**

- * Bayesian (Belief) Networks tutorial Murphy (2001) http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html
- **Learning Bayesian Networks Heckerman (1996, 1999)** http://research.microsoft.com/~heckerman
- Inference Algorithms
 - Junction Tree (Join Tree, L-S, Hugin): Lauritzen & Spiegelhalter (1988) http://citeseer.nj.nec.com/huang94inference.html
 - (Bounded) Loop Cutset Conditioning: Horvitz & Cooper (1989) http://citeseer.nj.nec.com/shachter94global.html
 - Variable Elimination (Bucket Elimination, ElimBel): Dechter (1986) http://citeseer.nj.nec.com/dechter96bucket.html
 - **Recommended Books**
 - Neapolitan (1990) out of print; see Pearl (1988), Jensen (2001)
 - · Castillo, Gutierrez, Hadi (1997)
 - · Cowell, Dawid, Lauritzen, Spiegelhalter (1999)
 - * Stochastic Approximation http://citeseer.nj.nec.com/cheng00aisbn.html

TERMINOLOGY

- Uncertain Reasoning: Inference Task with Uncertain Premises, Rules
- Probabilistic Representation
 - * Views of probability
 - ⇒ Subjectivist: measure of belief in sentences
 - ⇒ Frequentist: likelihood ratio
 - ⇒ Logicist: counting evidence
 - * Founded on Kolmogorov axioms
 - ⇒ Sum rule
 - ⇒ Prior, joint vs. conditional
 - \Rightarrow Bayes's theorem & product rule: P(A | B) = (P(B | A) * P(A)) / P(B)
 - * Independence & conditional independence
- Probabilistic Reasoning
 - * Inference by enumeration
 - * Evidential reasoning

CIS 530 / 730

LECTURE 26 OF 42

SUMMARY POINTS

- Last Class: Reasoning under Uncertainty and Probability (Ch. 13)
 - * Uncertainty is pervasive
 - * What are we uncertain about?
- Today: Chapter 13 Concluded, Preview of Chapter 14
 - * Why probability
 - ⇒ Axiomatic basis: Kolmogorov
 - ⇒ With utility theory: sound foundation of rational decision making
 - * Joint probability
 - * Independence
 - * Probabilistic reasoning: inference by enumeration
 - * Conditioning
 - ⇒ Bayes's theorem (aka Bayes' rule)
 - **⇒ Conditional independence**
- Coming Week: More Applied Probability
 - * Graphical models as KR for uncertainty: Bayesian networks, etc.
 - * Some inference algorithms for Bayes nets

