Aprendizaje profundo

VARIANTES DE CAPAS CONVOLUCIONALES

Gibran Fuentes-Pineda Septiembre 2023

Filtros separables

 Filtros que pueden descomponerse como el producto de 2 más simples. Por ej., un filtro 2D puede separarse en 2 filtros 1D.

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

Convolución espacial separable

Imagen tomada de Kunlun Bai. A Comprehensive Introduction to Different Types of Convolutions in Deep Learning, 2019.

Convolución en profundidad

Imagen tomada de Chi-Feng Wang. A Basic Introduction to Separable Convolutions, 2018.

Convolución puntual (de 1×1)

Imagen tomada de Chi-Feng Wang. A Basic Introduction to Separable Convolutions, 2018.

Convolución puntual (de 1×1)

Imagen tomada de Chi-Feng Wang. A Basic Introduction to Separable Convolutions, 2018.

Convolución separable en profundidad

Imagen tomada de Eli Bendersky. Depthwise separable convolutions for machine learning, 2018.

Cuellos de botella residuales inversos

Input	Operator	Output	
$h \times w \times k$ $h \times w \times tk$ $\frac{h}{s} \times \frac{w}{s} \times tk$	1x1 conv2d, ReLU6 3x3 dwise s=s, ReLU6 linear 1x1 conv2d	$\begin{array}{c} h \times w \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times k' \end{array}$	

Imagen

y tabla tomadas de Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks, 2018.

EfficientNets (1)

- · Emplea bloques de cuello de botella residuales inversos
- Explora el crecimiento de la red en tres dimensiones:
 profundidad (d), amplitud (w) y resolusión de la entrada (r)

Tabla tomada de Tan and Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 2019.

EfficientNets (2)

 Exactitud para diferentes profundidades, amplitudes y resoluciones de entrada

Tabla tomada de Tan and Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 2019.

EfficientNets (3)

- Búsqueda de arquitectura neuronal (NAS), optimizando de forma conjunta eficiencia y exactitud
 - Versiones B0–B7 de architectura EfficientNet, siendo la más básica la B0

Table 1. EfficientNet-B0 baseline network – Each row describes a stage i with \hat{L}_i layers, with input resolution $\langle \hat{H}_i, \hat{W}_i \rangle$ and output channels \hat{C}_i . Notations are adopted from equation 2.

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

EfficientNets v2

 Búsqueda de arquitectura neuronal (NAS) con bloques MBConv y Fuse-MBConv, optimizando de forma conjunta eficiencia, exactitud y velocidad de entrenamiento

Bloques ConvNext

 La familia de arquitecturas ConvNeXt actualiza la familia ResNet con bloques cuello de botella residuales inversos y otros hiperparámetros del entrenamiento

Convolución dilatada

Imagen tomada de Dumoulin and Visin. A guide to convolution arithmetic for deep learning, 2018.

Convolución transpuesta (1)

Figura tomada de Zhang et al. Dive into Deep Learning, 2022.

Convolución transpuesta (2)

Figura tomada de Zhang et al. Dive into Deep Learning, 2022.

Convolución transpuesta (3)

Redes convolucionales 1D

Imagen tomada de Dai et al. Very Deep Convolutional Neural Networks for Raw Waveforms, 2016

Redes convolucionales 3D (1)

· Respuesta en redes convolucionales 2D en una imagen

Imagen tomada de Tran et al. Learning Spatiotemporal Features with 3D Convolutional Networks, 2015

Redes convolucionales 3D (2)

 Respuesta en redes convolucionales 2D en varias imágenes

Imagen tomada de Tran et al. Learning Spatiotemporal Features with 3D Convolutional Networks, 2015

Redes convolucionales 3D (3)

· Respuesta en redes convolucionales 3D

Imagen tomada de Tran et al. Learning Spatiotemporal Features with 3D Convolutional Networks, 2015