Julie Josse

Meetup Rladies, Paris, 20 April 2017

Research activities

- Dimensionality reduction methods to visualize complex data (PCA based): multi-sources data, textual data, arrays
- Missing values matrix completion
- Low rank estimation, selection of regularization parameters
- Fields of application: bio-sciences (agronomy, sensory analysis), health data (hospital APHP)
- R community: book R for Statistics, R foundation, R taskforce for women, R packages and JSS papers:
 - FactoMineR explore continuous, categorical, multiple contingency tables (correspondence analysis), combine clustering and PC, .. MissMDA for single and multiple imputation, PCA with missing denoiseR to denoise data

Missing values

are everywhere: unanswered questions in a survey, lost data, damaged plants, machines that fail...

The best thing to do with missing values is not to have any" Gertrude Mary Cox.

 \Rightarrow Still an issue in the "big data" area

Data integration: data from different sources

Kaggle

Allstate ran a competition to predict a customer's purchase based on a limited amount of shopping history data.

Jobs • 1,429 teams Airbnb New User Bookings

Ved 25 Nov 2015

Thu 11 Feb 2016 (40 hours to go)

Predict in which country a new user will make his first booking:

age: 42.4 %

date first booking: 6.7 % first affiliate tracked: 2.2 %

gender: 46 %

Multi-blocks data set

L'OREAL: 100 000 women in different countries - 300 questions

- Self-assessment questionnaire: life style, skin and hair characteristics, care and consumer habits
- Clinical assessments by a dermatologist: facial skin complexion, wrinkles, scalp dryness, greasiness
- Hair assessments by a hair dresser: abundance, volume, breakage, curliness
- Skin and Hair photographs and measurements: sebum quantity, etc.

Ozone data set

	maxO3	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	V×15	maxO3v
0601	NA	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	17	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	0	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

http://www.airbreizh.asso.fr/

ozo <- read.table("http://juliejosse.com/wp-content/uploads/2016
/06/ozoneNA.csv",header=TRUE,sep=",",row.names=1)</pre>

Recommended methods

⇒ Modify the method, the estimation process to deal with missing values. Maximum likelihood: EM algorithm to obtain point estimates (+ other algorithms for their variability)

One specific algorithm for each statistical method...

 \Rightarrow Imputation (multiple) to get a completed data set on which you can perform any statistical method

- ⇒ A simple way: delete rows. Be careful to delete subpopulations!
- ⇒ Imputation to get a completed data set

$$\mu_y = 0$$

$$\sigma_y = 1$$

$$\rho = 0.6$$

$$\hat{\mu}_y = 0.01$$

$$\hat{\sigma}_y = 0.5$$

$$\hat{\rho} = 0.30$$

Wright IJ, et al. (2004). The worldwide leaf economics spectrum. *Nature*, 69 000 species - LMA (leaf mass per area), LL (leaf lifespan), Amass (photosynthetic assimilation), Nmass (leaf nitrogen), Pmass (leaf phosphorus), Rmass (dark respiration rate)

- ⇒ A simple way: delete rows. Be careful to delete subpopulations!
- ⇒ Imputation to get a completed data set

 \Rightarrow Approx of X with a low rank matrix S < p: $||X_{n \times p} - \hat{X}_{n \times p}||^2$

 \Rightarrow Approx of X with a low rank matrix S < p: $||X_{n \times p} - \hat{X}_{n \times p}||^2$

SVD:
$$\hat{X}^{PCA} = U_{n \times S} \Lambda_{S \times S}^{\frac{1}{2}} V'_{p \times S} = F_{n \times S} V'_{p \times S}$$

 \Rightarrow Approx of X with a low rank matrix S < p: $||X_{n \times p} - \hat{X}_{n \times p}||^2$

SVD:
$$\hat{X}^{PCA} = U_{n \times S} \Lambda_{\hat{S} \times S}^{\frac{1}{2}} V'_{p \times S} = F_{n \times S} V'_{p \times S}$$

 \Rightarrow Missing: weighted least squares $w_{ij} = 0$ if x_{ij} is miss/ $w_{ij} = 1$

$$\|W_{n\times p}\odot(X_{n\times p}-U_{n\times S}\Lambda_{S\times S}^{\frac{1}{2}}V'_{p\times S})\|^2$$

```
x1 x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5 NA
2.0 1.98
```


Initialization $\ell=0$: X^0 (mean imputation)

PCA on the completed data set $o (U^\ell, \Lambda^\ell, V^\ell)$;

Missing values imputed with the fitted matrix $\hat{X}^\ell = U^\ell \Lambda^{1/2\ell} V^{\ell \prime}$

The new imputed dataset is $\hat{X}^\ell = W*X + (\mathbf{1} - W)*\hat{X}^\ell$

Steps are repeated until convergence

PCA on the completed data set o $(U^\ell, \Lambda^\ell, V^\ell)$ Missing values imputed with the fitted matrix $\hat{X}^\ell = U^\ell \Lambda^{1/2^\ell} V^{\ell\prime}$

-1

0

x1

2

3

-2

1.5 1.46 2.0 1.98

- initialization $\ell = 0$: X^0 (mean imputation)
- step ℓ :
 - PCA on completed data $\hat{x}_{ij}^\ell = \sum_{s=1}^{\mathcal{S}} \sqrt{\lambda_s}^\ell U_{is}^\ell V_{js}^\ell$
 - missing values imputed with \hat{X} new imputed data is $X^\ell = W \odot X + (1-W) \odot \hat{X}^\ell$
- steps of estimation and imputation are repeated

- \Rightarrow Very good quality of imputation. (Netflix: 99% missing).
- \Rightarrow Model: Data = structure of rank S + noise makes sense.

- initialization $\ell = 0$: X^0 (mean imputation)
- step ℓ :
 - PCA on completed data $\hat{x}_{ij}^\ell = \sum_{s=1}^p (\sqrt{\lambda_s} \lambda)_+^\ell U_{is}^\ell V_{js}^\ell$
 - missing values imputed with \hat{X} new imputed data is $X^\ell = W \odot X + (1-W) \odot \hat{X}^\ell$
- steps of estimation and imputation are repeated

$$\operatorname{argmin}_{\mu}\left\{\left\|W\odot(X-\mu)
ight\|_{2}^{2}+\lambda\left\|\mu
ight\|_{*}
ight\}$$

- \Rightarrow Different transformations ways of selecting λ
- ⇒ Very good quality of imputation. (Netflix: 99% missing).
- \Rightarrow Model: Data = structure of rank S + noise makes sense.

Iterative Random Forests imputation

- 1 Initial imputation: mean imputation
- 2 Fit a RF X_1^{obs} on X_{-1} and then predict X_1^{miss} Fit a RF X_2^{obs} on X_{-2} and then predict X_2^{miss} ... cycling through variables
- 3 Repeat until convergence
- \Rightarrow Conditional modeling based on RF
 - number of trees: 100
 - number of variables randomly selected at each node \sqrt{p}
 - number of iterations: 4-5
- ⇒ Good for complex relationships between variables

Random Forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5.
C1	1	1	1	1	1
C2	1	1	1	1	1
C3	2	2	2	2	2
C4	2	2	2	2	2
C5	3	3	3	3	3
C6	3	3	3	3	3
C7	4	4	4	4	4
C8	4	4	4	4	4
C9	5	5	5	5	5
C10	5	5	5	5	5
C11	6	6	6	6	6
C12	6	6	6	6	6
C13	7	7	7	7	7
C14	7	7	7	7	7
Igor	8	NA	NA	8	8
Frank	8	NA	NA	8	8
Bertrand	9	NA	NA	9	9
Alex	9	NA	NA	9	9
Yohann	10	NA	NA	10	10
Jean	10	NA	NA	10	10

 $[\]Rightarrow$ MAR missing values

Random Forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5		Feat1	Feat2	Feat3	Feat4	Feat5
C1	1	1.0	1.00	1	1	C1	1	1	1	1	1
C2	1	1.0	1.00	1	1	C2	1	1	1	1	1
C3	2	2.0	2.00	2	2	C3	2	2	2	2	2
C4	2	2.0	2.00	2	2	C4	2	2	2	2	2
C5	3	3.0	3.00	3	3	C5	3	3	3	3	3
C6	3	3.0	3.00	3	3	C6	3	3	3	3	3
C7	4	4.0	4.00	4	4	C7	4	4	4	4	4
C8	4	4.0	4.00	4	4	C8	4	4	4	4	4
C9	5	5.0	5.00	5	5	C9	5	5	5	5	5
C10	5	5.0	5.00	5	5	C10	5	5	5	5	5
C11	6	6.0	6.00	6	6	C11	6	6	6	6	6
C12	6	6.0	6.00	6	6	C12	6	6	6	6	6
C13	7	7.0	7.00	7	7	C13	7	7	7	7	7
C14	7	7.0	7.00	7	7	C14	7	7	7	7	7
Igor	8	6.87	6.87	8	8	Igor	8	8	8	8	8
Frank	8	6.87	6.87	8	8	Frank	8	8	8	8	8
Bertrand	9	6.87	6.87	9	9	Bertrand	9	9	9	9	9
Alex	9	6.87	6.87	9	9	Alex	9	9	9	9	9
Yohann	10	6.87	6.87	10	10	Yohann	10	10	10	10	10
Jean	10	6.87	6.87	10	10	Jean	10	10	10	10	10

⇒ with Random Forests

 \Rightarrow with PCA

Ozone data

	O3	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	V×12	V×15	O3v
0601	NA	15.6	18.5	18.4	4	4	8	NA NA	-1.7101	-0.6946	84
							7				87
0602	82	17	18.4	17.7	5	5		NA	NA	NA	
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
:	:	:	:	:	:	:	:	:	:	:	
	NIA	140	16.2	15.0	7	7	7	4 2201	6.0600	F 1060	40
0919	NA	14.8	16.3	15.9				-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	0	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

Count missing values

> library(missMDA)

```
> WindDirection <- ozo[,12]
> don <- ozo[,1:11]
> library(VIM)
> res <- summary(aggr(don, sortVar = TRUE))$combinations
> res[rev(order(res[, 2])),]
Variables sorted by
number of missings:
                                     Combinations Count
                                                            Percent
Variable
                            0:0:0:0:0:0:0:0:0:0:0:0
              Count
                                                      13 11.6071429
   Ne12 0.37500000
                            0:1:1:1:0:0:0:0:0:0:0:0
                                                          6.2500000
      T9 0.33035714
                            0:0:0:0:0:1:0:0:0:0:0
                                                       5 4.4642857
     T15 0.33035714
                            0:1:0:0:0:0:0:0:0:0:0
                                                       4 3.5714286
     Ne9 0.30357143
                            0:1:0:0:1:1:1:0:0:0:0
                                                          2.6785714
     T12 0.29464286
                            0:0:1:0:0:0:0:0:0:0:0:0
                                                       3 2.6785714
   Ne15 0.28571429
                            0:0:0:1:0:0:0:0:0:0:0
                                                       3 2.6785714
   Vx15 0.18750000
                            0:0:0:0:1:1:1:0:0:0:0
                                                          2.6785714
                                                          2.6785714
     Vx9 0.16071429
                            0:0:0:0:0:1:0:0:0:0:1
   max03 0.14285714
                            0:1:1:1:1:0:0:0:0:0:0
                                                         1.7857143
 max03v 0.10714286
                            0:0:0:0:1:0:0:0:0:1:0
                                                       2 1.7857143
   Vx12 0.08928571
                            0:0:0:0:0:0:1:1:0:0:0
                                                       2 1.7857143
                            0:0:0:0:0:0:1:0:0:0:0
                                                       2 1.7857143
```

Pattern visualization


```
#library(VIM)
> aggr(don, sortVar = TRUE)
```

Visualization


```
# library(VIM)
```

- > matrixplot(don, sortby = 2)
- > marginplot(don[,c("T9", "max03")])

Visualization with Multiple Correspondence Analysis

\Rightarrow Create the missingness matrix

```
> mis.ind <- matrix("o", nrow = nrow(don), ncol = ncol(don))</pre>
> mis.ind[is.na(don)] = "m"
> dimnames(mis.ind) = dimnames(don)
> mis.ind
         max03
                T9
                     T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 max03v
                "O" "O" "m" "O" "O"
                                        "0"
                                              11011 11011
20010601
          "0"
                "m" "m" "m" "o" "o"
                                        "0"
                                              11011 11011
                                                             "0"
20010602
                "0" "0" "0" "m"
                                              "O" "m"
                                                        "o"
                                                             "0"
20010603
          11011
                                        II m II
                "O" "O" "m" "O" "O"
                                              "m" "0"
                                        11011
                                                        11011
                                                             11011
20010604
          "0"
                "m" "O" "O" "m" "m"
                                              11011 11011
20010605
          11011
                                        II m II
                                                        11011
                                                             "0"
                "O" "O" "O" "O" "m"
                                        "0"
                                              "0" "0"
                                                        "0"
20010606
          11011
                                                             11011
                "0" "0" "0" "0" "0"
                                        II m II
                                              11011 11011
20010607
          11 0 11
                                                        11011
                                                             11011
                "0" "0" "0" "0" "0"
                                        "m"
                                              "0" "0"
                                                        "0"
                                                             11011
20010610 "o"
```

Visualization with Multiple Correspondence Analysis

MCA graph of the categories

- > library(FactoMineR)
- > resMCA <- MCA(mis.ind)
- > plot(resMCA, invis = "ind", title = "MCA graph of the categories")

Imputation with PCA in practice

 \Rightarrow Step 1: Estimation of the number of dimensions (Cross Validation, Bro, 2008; GCV, Josse & Husson, 2011)

```
> library(missMDA)
> nb <- estim_ncpPCA(don, method.cv = "Kfold")
> nb$ncp #2
> plot(0:5, nb$criterion, xlab = "nb dim", ylab ="MSEP")
```


Imputation with PCA in practice

\Rightarrow Step 2: Imputation of the missing values

Cherry on the cake: PCA on incomplete data!


```
> imp <- cbind.data.frame(res.comp$completeObs, ozo[, 12])</pre>
```

> res.pca <- PCA(imp, quanti.sup = 1, quali.sup = 12)</pre>

> plot(res.pca, hab = 12, lab = "quali"); plot(res.pca, choix = "var")

> res.pca\$ind\$coord #scores (principal components)

Multiple imputation

⇒ iterative PCA: single imputation

 \Rightarrow A unique value can not reflect the uncertainty of prediction

Multiple imputation

⇒ iterative PCA: single imputation

- ⇒ A unique value can not reflect the uncertainty of prediction
- \Rightarrow Multiple imputation (Rubin, 1987): different plausibles values for each missing entry (bootstrap/ bayesian approaches)

Ex: one cell: predict 18.5. Empirical interval [14.8; 22.18]

\Rightarrow Step 1: Generate M imputed data sets

```
> library(Amelia)
> res.amelia <- amelia(don, m = 100)
> library(mice)
> res.mice <- mice(don, m = 100, defaultMethod = "norm.boot")
> library(missMDA)
> res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)
> res.MIPCA$res.MI
```

⇒ Step 2: visualization

Observed versus Imputed Values of maxO3


```
library(Amelia)
```

- > res.amelia <- amelia(don, m = 100)</pre>
- > compare.density(res.amelia, var = "T12")
- > overimpute(res.amelia, var = "max03")

```
library(missMDA)
```

- \Rightarrow Step 2: visualization
- ⇒ Individuals position (and variables) with other predictions

Regularized iterative PCA ⇒ reference configuration

- \Rightarrow Step 2: visualization
- ⇒ Individuals position (and variables) with other predictions

Regularized iterative PCA ⇒ reference configuration

- \Rightarrow Step 2: visualization
- ⇒ Individuals position (and variables) with other predictions

Regularized iterative PCA ⇒ reference configuration

PCA representation


```
> imp <- cbind.data.frame(res.comp$completeObs, ozo[, 12])</pre>
```

- > res.pca <- PCA(imp,quanti.sup = 1, quali.sup = 12)</pre>
- > plot(res.pca, hab =12, lab = "quali"); plot(res.pca, choix = "var")
- > res.pca\$ind\$coord #scores (principal components)

\Rightarrow Step 2: visualization

```
> res.MIPCA <- MIPCA(don, ncp = 2)
> plot(res.MIPCA, choice = "ind.supp"); plot(res.MIPCA, choice = "var")
```


Multiple imputation

Single imputation: a single value can't reflect the uncertainty of prediction ⇒ underestimate the standard errors

1 Generating *M* imputed data sets

- Performing the analysis on each imputed data set
- 3 Combining: variance = within + between imputation variance

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m}$$

$$T = \frac{1}{M} \sum_{m} \widehat{Var} \left(\hat{\beta}_{m} \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m} \left(\hat{\beta}_{m} - \hat{\beta} \right)^{2}$$

⇒ Step 3. Regression on each table and pool the results

$$\begin{split} \hat{\beta} &= \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m} \\ T &= \frac{1}{M} \sum_{m} \widehat{Var} \left(\hat{\beta}_{m} \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m} \left(\hat{\beta}_{m} - \hat{\beta} \right)^{2} \end{split}$$

0.36 0.10 3.65 46.03

> librarv(mice)

max03v

> summary(pool.mice)

```
> res.mice <- mice(don, m = 100)
> imp.micerf <- mice(don, m = 100, defaultMethod = "rf")
> lm.mice.out <- with(res.mice, lm(max03 ~ T9+T12+T15+Ne9+...+Vx15+max03v))
> pool.mice <- pool(lm.mice.out)</pre>
```

```
df Pr(>|t|) lo 95 hi 95 nmis
                                                          fmi lambda
            est.
(Intercept) 19.31 16.30 1.18 50.48 0.24 -13.43 52.05
                                                       NA 0.46
                                                                0.44
T9
           -0.88 2.25 -0.39 26.43 0.70 -5.50 3.75
                                                       37 0.71 0.69
T12
           3.29 2.38 1.38 27.54 0.18 -1.59 8.18
                                                       33 0.70
                                                                0.68
Vx15
           0.23 1.33 0.17 39.00
                                    0.87 - 2.47 2.93
                                                       21 0.57
                                                                0.55
```

0.00 0.16 0.56

0.48

12 0.50

 \Rightarrow Step 3. Regression on each table and pool the results $\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$

$$\beta = \frac{1}{M} \sum_{m=1}^{M} \beta_m$$

$$T = \frac{1}{M} \sum_{m} \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m} \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

#librarv(missMDA)

```
#res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)</pre>
#require(mice)
imp<-prelim(res.mi = res.MIPCA, X = don)#creating a mids object</pre>
fit <- with(data=imp,exp=lm(max03~T9+T12+T15+Ne9+Ne12+Ne15+Vx9+Vx12+Vx15+max03v
res.pool <-pool(fit)
summary(res.pool)
names(res.amelia$imputations)
res.amelia$imputations$imp1# the first imputed data set
resamelia <- lapply(res.amelia$imputations, as.data.frame)</pre>
# A regression on each imputed dataset
fitamelia <-lapply (resamelia, lm, formula = "max03~ T9+T12+T15+Ne9+Ne12+Ne15+Vx9+Vx
# Pool is a function from mice to aggregate the results according
poolamelia <- pool(as.mira(fitamelia))</pre>
summary(poolamelia)
```

"The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the real and imputed data have substantial biases." (Dempster and Rubin, 1983)