ELECTROTECNIA TEÓRICA

MEEC

IST

2° Semestre 2017/18

1º TRABALHO LABORATORIAL

DETERMINAÇÃO EXPERIMENTAL

DA MATRIZ DE COEFICIENTES DE CAPACIDADE

DE UM SISTEMA DE N+1 CONDUTORES

(VIA ANALOGIA REO-ELÉCTRICA)

Prof. V. Maló Machado Prof. M. Guerreiro das Neves Prof^a M^a Eduarda Pedro

ELECTROTECNIA TEÓRICA

TRABALHO LABORATORIAL

DETERMINAÇÃO EXPERIMENTAL DA MATRIZ DOS COEFICIENTES DE CAPACIDADE DE UM SISTEMA DE N+1 CONDUTORES POR ANALOGIA REO-ELÉCTRICA

1. OBJECTIVOS

Determinação da matriz dos coeficientes de capacidade de um sistema constituído por dois condutores cilíndricos circulares, paralelos a um plano condutor.

Determinação experimental da matriz dos coeficientes de condutância, recorrendo à analogia reo-eléctrica.

Redução do sistema a um esquema equivalente de condutâncias.

Os ensaios laboratoriais são realizados com utilização de um tanque electrolítico, Fig. 1.

Fig. 1 – Vista de topo do tanque electrolítico para o caso de dois eléctrodos cilíndricos em presença de um plano condutor (condutor de referência).

2. DIMENSIONAMENTO

O dimensionamento deve ser entregue no início da aula de realização do trabalho, sem o que o mesmo não poderá ser realizado!

- a) Considere o ensaio da Fig. 2. Obtenha a expressão que permite obter a condutividade da água a partir dos resultados do ensaio e das características geométricas do tanque.
- b) Determine as expressões que permitem calcular os elementos da matriz dos coeficientes de resistência para o sistema de condutores da Fig. 1. Verifique que esta pode ser escrita na forma

$$[R] = \frac{1}{\sigma \ell} [K]$$

onde os elementos da matriz [K] dependem apenas do raio dos condutores cilíndricos e das distâncias destes entre si e ao plano condutor. Para o conjunto de dados fornecido na Fig. 1, calcule os valores numéricos da matriz [K]. Note que as tensões entre os condutores cilíndricos e o plano, para correntes impostas, podem ser obtidas através de

$$[U] = [R][I]$$
 ou $[U] = \frac{1}{\sigma \ell}[K][I]$

c) Calcule a matriz inversa de [K], i.e. $[K]^{-1}$. Note que:

$$[G] = [R]^{-1} = \sigma \ell [K]^{-1}$$

onde [G] é a matriz de coeficientes de condutância.

- d) Considere o ensaio da Fig. 5 (onde $I = I_1 + I_2$ e $U_1 = U_2 = U$). Obtenha as expressões das correntes I_1 e I_2 em função da corrente I imposta, bem como a expressão de U em função de I. Determine os valores das relações I_1/I e I_2/I (para os obter utilize os valores dos coeficientes da matriz $[K]^{-1}$ calculada em c)).
- e) Diga porque razão o ensaio é feito a 1 kHz e não em corrente contínua.

3. LISTA DE MATERIAL (por bancada)

- $_{\rm F\,-}$ Gerador de funções BECKMAN, saída sinusoidal de frequência f = 1 kHz, resistência interna 50 Ω . M: saída principal (Main).
- A Multímetro digital FLUKE 8010A, utilizado como miliamperímetro para medida de valor eficaz de corrente eléctrica.

- V _ Multímetro digital FLUKE 8010A, utilizado como Voltímetro para medida de valor eficaz de tensão.
- C Comutador de três posições.
- T Tanque electrolítico (Fig. 1).
- EC 1 barra de acrílico com um conjunto de dois eléctrodos. Os eléctrodos são cilíndricos de raio r₀, estão suspensos sobre o tanque e fixos à barra de acrílico.
- EP Dois eléctrodos planos.

4. CONDUÇÃO DO TRABALHO

4.1.Introdução

- Antes de ligar o gerador F, reduza o seu nível de saída a zero. Uma vez ligado, aumente progressivamente o seu nível de saída até obter o valor eficaz de tensão ou corrente desejado.
- Desligue o gerador após cada ensaio, reduzindo previamente o seu nível de saída a zero.

4.2. Determinação Experimental da Condutividade da Água

(0) e (4) Placas condutoras (PT) Parede do Tanque

Fig. 2 – Esquema de ligações para determinação da condutividade da água.

- Introduzindo a placa metálica (4) paralela a (0) à distância *a* uma da outra, e ainda sem introduzir qualquer eléctrodo cilíndrico no tanque, efectue as ligações da Fig.2.
- Regule o nível de saída do gerador tal que a corrente registada no amperímetro seja
 5 mA.
- Anote as leituras de V para a tensão *U* e de A para a corrente *I*.
- Meça a altura da água no tanque, l.

4.3. Determinação experimental dos coeficientes de resistência

- Retire a placa metálica (4) e introduza os eléctrodos EC de modo a que o eléctrodo 1 fique à distância h_I do plano condutor (0) e o eléctrodo 2 fique à distância h_I+d do plano condutor (0).
- Coloque os eléctrodos suspensos EC de modo a que fiquem paralelos ao plano condutor (0) e de acordo com as distâncias indicadas na Fig. 1.
- Para cada ensaio ajuste o nível de saída do gerador de modo a que o valor eficaz da corrente seja aproximadamente 5 mA (em cada ensaio tome nota do valor exacto).

4.3.1 1º Ensaio

Efectue as ligações da Fig. 3. Leia e anote o valor de A e o valor de V para as posições 1 e 2 do comutador.

Fig. 3 – Esquema de ligações para medida dos coeficientes de resistência – 1º Ensaio.

4.3.2 2° Ensaio

Efectue as ligações da Fig. 4. Leia e anote o valor de A e o valor de V para as posições 1 e 2 do comutador.

Fig. 4 – Esquema de ligações para medida dos coeficientes de resistência – 2º Ensaio.

4.4 Previsão das tensões para uma nova configuração das ligações

Efectue as ligações da Fig. 5. Ajuste o nível de saída do gerador de modo a que o valor eficaz da corrente (soma dos valores lidos em A_1 e A_2) seja aproximadamente 5 mA. Leia e anote os valores de A_1 e A_2 e o valor de V para as posições 1 e 2 do comutador.

Fig. 5 – Esquema de ligações para previsão da tensão aplicada aos eléctrodos.

4.5 Repetição de 4.3 com nova geometria

Coloque o suporte com os dois eléctrodos EC de modo a que o eléctrodo 1 fique à distância $1,5h_1$ do plano condutor (0) e o eléctrodo 2 fique à distância $1,5h_1+d$ do plano condutor (0). Repita todos os ensaios referidos em **4.3**.

5. RELATÓRIO

- **5.1.** A partir dos resultados de 2.a) e de 4.2, calcule o valor da condutividade da água.
- **5.2.** Usando os valores de l e de σ , obtenha a matriz teórica dos coeficientes de resistência. Obtenha os valores teóricos de U_1 e U_2 , com o auxílio das expressões referidas na alínea c) do dimensionamento.
- **5.3.** A partir dos resultados de **4.3**, calcule a matriz dos coeficientes de resistência [R]. Faça a média aritmética dos valores obtidos correspondentes às entradas da matriz teoricamente iguais, de forma a obter uma matriz com as características previstas. Calcule a matriz dos coeficientes de condutância [G_{exp_corr}]. Verifique a simetria das matrizes.
- **5.4.** Para a configuração da Fig. 5 compare os valores previstos para I_1 , I_2 e U com os obtidos no ensaio realizado no ponto **4.4**, tendo em conta a corrente I desse ensaio, as expressões obtidas na alínea d) do dimensionamento e a matriz $[G_{exp\ corr}]$ obtida em **5.3**.
- **5.5.** A partir dos resultados de **4.5**, calcule a nova matriz dos coeficientes de condutância $[G_{exp_corr}]$. Compare com a obtida no ponto **5.3**. Comente as diferenças. Considere que a constante dieléctrica da água é $\varepsilon = 80 \ \varepsilon_0$. Estime a matriz dos coefici-

entes de capacidade [C] do sistema.

Nota: O relatório tem que ser entregue no final da aula de laboratório e consiste no preenchimento da ficha apresentada em Anexo.

REFERÊNCIAS

J. A. Brandão Faria, 'Electromagnetic Foundations of Electrical Engineering', Wiley, 2008. Secção 2.9; Prob. 3.9.6.

IST, Fevereiro de 2018

ANEXO

RELATÓRIO DO 1º TRABALHO LABORATORIAL

R 5.1.: Valores medidos em 4.2. e cálculo de σ

U[V]	<i>I</i> [mA]	<i>l</i> [cm]	σ [S/m]

R 5.2. e 5.3:

Valores medidos em 4.3. e cálculo dos valores teóricos das tensões e dos coeficientes de resistência $R_{ij_{exp}}$

	$U_{1teo}\left[V ight]$	$U_{2teo}\left[V ight]$	$U_{lexp}\left[V ight]$	$U_{2exp}\left[V ight]$	R_{ij}_{exp}	[Ω]
$I_1 = I_2 = 0$						
$I_2 = I_1 = 0$						

Cálculo dos coeficientes de condutância e de resistência: $R_{ij_{\text{teo}}}$ (valores teóricos calculados usando os parâmetros σ e l experimentais); $R_{ij_{exp_corr}}$ (coeficientes experimentais corrigidos fazendo a média aritmética dos valores dos elementos teoricamente iguais); $G_{ij_{exp_corr}}$ (valores obtidos a partir da matriz $R_{\text{exp_corr}}$);.

$R_{ij_{teo}}$ [Ω]	$R_{ij}_{exp_corr}$ [Ω]	$G_{ij_{exp_corr}}$ [mS]

R 5.4.: Valores medidos em 4.4. e cálculo das tensões U_1 e U_2 usando a matriz $[G_{exp_corr}]$

Valores	<i>I</i> ₁ [mA]	I_2 [mA]	$U_{I}\left[V ight]$	$U_2\left[V ight]$
Medidos				
Previstos				

R 5.5.: Valores medidos em 4.5. e cálculo dos coeficientes de resistência $R_{ij_{exp}}$

	$U_{I}\left[\mathbf{V} ight]$	$U_2\left[\mathrm{V} ight]$	R_{ij}_{exp}	$[\Omega]$
$I_1 = I_2 = 0$				
$I_2 = 0$				
$I_2 = I_1 = 0$				
$I_1 = 0$				

Coeficientes de condutância e de capacidade

$G_{ij}{}_{exp_coi}$	_{rr} [mS]

C_{ij}_{exp}	[pF]

Comentários:	 	

Número	Nome	Auto-Aval. [%]