

PORTAS UNIVERSAIS

Daniel Oliveira

POR QUE UNIVERSAIS?

São portas que sozinhas podem implementar qualquer função lógica

POR QUE UNIVERSAIS?

São portas que sozinhas podem implementar qualquer função lógica

Ou seja, podem executar as operações básica E,
 OU e NÃO (AND, OR e NOT)

Δ	N	\Box
$\boldsymbol{\Gamma}$	IV	$oldsymbol{-}$

X	Y	X.Y
V	V	V
V	F	F
F	V	F
F	F	F

OR

X	Y	X+Y
V	V	V
V	F	V
F	V	V
F	F	F

NOT

X	X'
V	F
F	V

QUAIS SÃO?

Tanto a porta **NAND** como a porta **NOR** são universais

ľ	V	F	1	/)

X	Y	X.Y
V	V	F
V	F	V
F	V	V
F	F	V

$$X \longrightarrow \overline{X \cdot Y}$$

NOR

X	Y	X+Y
V	V	F
V	F	F
F	V	F
F	F	V

$$X \longrightarrow \overline{X + Y}$$

NOT

$$A = \frac{A \cdot A}{A \cdot A} = A$$

$$A = \frac{A \cdot A}{A \cdot A} = A$$

AND

$$A = \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{4 \cdot 13} = \frac{1}{4 \cdot 13}$$

OR

$$\frac{\overline{A} + \overline{B}}{\overline{B}} = A + \overline{B}$$

A
$$-\frac{\overline{A}}{\overline{A}\cdot\overline{B}} = \overline{A}+\overline{B} = \underline{A}+\underline{B}$$

EXERCÍCIO

Implemente o circuito da função A(B+C) usando apenas NOR

EXERCÍCIO

Implemente o circuito da função A(B+C) usando apenas NOR

A = A (B+C) B = C