Statistical hypothesis tests remembes: t test to compare group means hypothesis -> Ho: | male = / female alternative -> Hn: / male + / female Chypokesis) dala example: > t.test(wage~gender) Welch Two Sample t-test data: wage by gender t = 4.8853, df = 530.55, p-value = 1.369e-06alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 1.265164 2.966949 sample estimates: mean in group male mean in group female Mean for females mean for here: p value = 0,00000 1369 = 0.000 1369 % < 5% => We reject the hypotenesis (at level 5%) (we would also reject at 1% or 0,1% or 10%)

odle test (wire -1. test in R)

Ho: $\mu = g$ \times expected brage

Ho: $\mu + g$ equals g US gAn: $\mu + g$ one sample g

> t.test(wage,mu=9)

One Sample t-test

data: wage
t = 0.1082, df = 533, p-value = 0.9139
alternative hypothesis: true mean is not equal to 9
95 percent confidence interval:
 8.587194 9.460933
sample estimates:
mean of x

9.024064

=> (we accept tho)

bette: we do not reject tho!

political correct formulation

(decision from data)

Ho Ho Ho Charles Control of the decision of th

it is complicated to minimize

or and & simultaneously

predefine of typically 5%

(or 10% or 1%)

=) if we reject then we have either an error or or everything is

=) if we reject the then one maximal error is a

(as if we do not reject to:

We do not know the size of >)

Statistical tests in regression

- e t tests for the coefficients sj Coefficient of the jthe variable
 - Ho: $g_j = 0$ be could also

 test a notice value

 than 0, but

 this is the most

 nites tiny case
 - =) in order to perform Such a test we need some more assumptions on E; (or on our model)
 - =) normality assumption for & (or later on: large 5 ample 8721)

Normality Assumption

Until now we assumed:

$$\boldsymbol{E}\boldsymbol{\varepsilon} = \mathbf{0}$$
, $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$

Let us here assume that the ε_i are

$$\varepsilon_i \sim N(0, \sigma^2) \text{ iid} \iff \varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$$
additional
assumption: normality of ε_i

Distribution of the LSE under Normality

Theorem:

Under the assumption $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$ hold:

(i)
$$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\boldsymbol{\mathcal{X}}^{\top}\boldsymbol{\mathcal{X}})^{-1}\right)$$

(ii) $\widehat{\boldsymbol{\beta}}$ (and therefore also $\widehat{\boldsymbol{Y}} = \mathcal{X}\widehat{\boldsymbol{\beta}}$) is independent from RSS = $\boldsymbol{Y}^{\top}(\mathbf{I} - \mathbf{P})\,\mathbf{Y}$

(iii)
$$\frac{1}{\sigma^2}$$
 RSS $\sim \chi^2_{n-p-1}$ \leftarrow Chrisquare distribution with n -(p+1) degrees of freedom.

(vi) $\frac{\widehat{\beta}_j - \beta_j}{\widehat{\sigma}\sqrt{c_{jj}}} \sim t_{n-p-1}$ for each $j = 0, \dots, p$ (where c_{jj} ist the jth diagonal element of the matrix $(\mathcal{X}^\top \mathcal{X})^{-1}$)

mon p has a mormal distribution and we need that distibution to establish a test for p or for each single by

for our t tests now

 \rightarrow we see that we also have to estimate σ (or σ^2)

Going back to our test problem:
Ho: $l_j = 0$ hypothesis) H1: $l_j \neq 0$ alternative (alternative hypothesis)
=> Why is this test interesting for us?
remandes the model (multiplie linear)
Y = So + Sox + + Six; + + Sparp + E if Sj = 0 => the tesm Sjx; is not relevant => no need to consider vanable x;
test statistic if the: $3j=0$ (estimated) $3j-0$ $3j-0$ Absolute Value to be defined: estimated via RSS
we reject the hypothesis to if Si Ca Critical value reject if determined by the this is to large thought to distribution

$$\hat{S}^{2} = \frac{RSS}{M - (p+1)} = \frac{RSS}{M - p-1}$$
Sample

8:2c no. of all

Coefficients (incl. intercept)

$$\hat{\delta} = \sqrt{\hat{\delta}^2}$$

hat matrix:

$$P = \infty (\infty^T \infty)^{-1} \infty^T$$

Colled P because it is a projection matrix:
$$P^2 = P$$

$$(\Rightarrow)$$
 $P^k = P)$

$$\Rightarrow$$
 $(I-P)^2 = I-P$

```
( See: CPS 1985_ttests.R)
> summary(1m1)
Call:
lm(formula = log(wage) ~ education + experience + I(experience^2))
Residuals:
   Min
           1Q Median
                         3Q
-2.12709 -0.31543 0.00671 0.31170 1.98418
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
            (Intercept)
             0.0897561 0.0083205 10.787 < 2e-16 ***
education
             experience
I(experience^2) -0.0005362  0.0001245  -4.307  1.97e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4619 on 530 degrees of freedom
Multiple R-squared: 0.2382, Adjusted R-squared: 0.2339
F-statistic: 55.23 on 3 and 530 DF, p-value: < 2.2e-16
-> one + test for each coefficient:
       (1) Ho: So=0 vs. Ho: So = 0
       (F) Ho: By=0 vs. H1: By =0
  - all p values are very small
  - we reject all 4 hypotheses at 5% (also et 1%
   ni ou model: p+1 = 4 => p=3
           n = 534 \Rightarrow m - (p+1) = 534 - 4 = 530
  > all coeficients bo, br, br, bz, bz are
       significantly difficult from 0 at 5% (1%,
```

recall 4 , bj = 0

=> if the is not rejected. Si is not significantly different from O => variable X; may not be not be relevant in the Model if to is rejected: (we are interested in rejecting to!) Si is significantly different from O => variable X; is relevant. Note: le numerical value of Di does not maker in general, for its

significance it is the practie to look at