Multimedia Lecture 10

Dr. Mona M.Soliman

Faculty of Computers and Artificial Intelligence
Cairo University
Fall 2022

Predictive Coding

Differential Pulse Code Modulation DPCM

- Encode the changes between consecutive samples
- •The value of the differences between samples are much smaller than those of the original samples. Less bits are used to encode the data
- The difference is added to the previous sample to obtain the value of the current sample.
- •In DPCM, the number of bits per sample needs to accommodate the largest value changes between samples, both in positive and negative direction.

Differential Pulse Code Modulation DPCM

Example (Temperature)

Data: 30, 33, 34, 37, 40, 40, 40, 38, 38, 37, 35, 34, 33 (6 bits)

Difference 3, 1,3,3,0,0,-2,0,-1,-2,-1,-1 (3 bits including sign)

Example: (Increase in Brightness)

Data: 150, 155, 160, 167,170,173, 180, 190, 205, 210 (8 bits)

Difference 5, 5, 7,3,3,7,10,15,5 (4 Bits)

Feed Forward Coding **Lossy Compression** Send Receive Quantizer **Difference** Original Value **Decoded** Value (Original - Estimated) **Difference** $\tilde{u}(n)$ u(n)Predictor Predictor **Estimated** Entropy **Estimated** (From prev. value) coder/decoder (From prev. value) **Lossless Compression** Same **Predictor**

Samples of DPCM Compressed Images

DPCM Compression

1 Bits / Pixel (2 Levels Quantizer)

2 Bits / Pixel (4 Levels Quantizer)

Feed Forward DPCM

Data	Difference	Quantization	De-quantization	Decoded	error ²
15				_{>} 15	
16	1	0	4	19	3 ²
24	8	1	12	31	7 ²
33	9	1	12	43	10 ²
44	11	1	12	55	11 ²
68	24	3	28	83	15 ²

Uniform Quantizer 2 bits, Step=8

Code	Range	Q-1
0	0 -> 7	4
1	8 →15	12
2	16 23	20
3	24 30	28

Compressed Date= 15,0,1, 1, 1, 3

Feed Backward DPCM

Data	Difference	Quantization	De-quantization	Decoded	error ²
15			 	> 15	
16	16-15=1	0	4	19	3 ²
24	24 - 19 = 5	0	4	23	1 ²
33	33-23=10	1	12	35	2 ²
44	44 - 35=9	1	12	47	3 ²
68	68-47=21	2	20	67	1 ²

Uniform Quantizer 2 bits, Step=8

Code	Range	Q ⁻¹
0	0 -> 7	4
1	8 ->15	12
2	16 23	20
3	24 30	28

Compressed Date= 15,0,0,1,1,2

Linear Predictor (LP)

- •In DPCM, the value of the current sample is guessed based on the previous sample.
- •we can use the previous two samples to predict the current one.
- •LP is more general than DPCM. It exploit the correlation between multiple consecutive samples

Linear Predictor (LP)

For the following sequence

```
3, 7, 11,15, ? (what will be the next number ?) It is 19
```

? = 15 + (15-11) {it is the same as previous number + same difference between previous number and it predecessor)

In general

If there is a sequence
$$U_{n-2}$$
, U_{n-1} , U_n , U_{n+1} ,

Then $U_{n+1} = U_n + (U_n - U_{n-1})$

Linear Predictor

Data	Prediction	Diff	Q		Q-1	Decoded	error ²
45						 45	
49				-		 49	
54	49 + (49-45) = 53	1.	0		1	49 + (49-45) +1 = 54	0
59	54+ (54 – 49) = 59		0		1	54 + (54 – 49) +1=60	1
75	60 + (60 - 54)= 66	9	3		10	60+(60 – 54)+10= 76	1
94	76 + (76 - 60)=92	2	0		1	76+(76-60)+1=93	1
112	93 + (93 -76)=110	2	0		1	93 +(93-76)+1=111	1

Compressed Date= 45, 49, 0, 0, 3, 0, 0

MSE = 1/5 [1+1+1+1] = 4/5

2 bits Uniform Quantizer

(Code	Range			Q ⁻¹
	0	0		2	1
	1	3		5	4
	2	6		8	7
	3	9		11	10

2-D Predictive Coding

2-D Predictors

В	C	D
A	?	

Adaptive 2-D Predictor

[1]
$$? = (A+C)/2$$

[2]
$$? = (A + C - B)$$

[3]
$$? = 0.75 A + 0.75 C - 0.5 B$$

2-D Predictive Coding

Original Image					
5 7 8 10					
6	6	9	11		
7	8	11	13		
9	10	11	14		

Predicted					
	1	1			
	7	7	10		
	7	9	12		
	9	1	13		

Difference					
	-1	2	-1		
	1	2	1		
	7	0	1		

Qunatized Difference					
	1	2	1		
	2	2	2		
	2	1	2		

De-Quantized Diff						
			\ <u></u>			
	-1	2	-1			
	2	2	2			
	2	-1	2			

Decoded Image				
5	7	8	10	
6	6	9	11	
7	9	11	14	
9	11	10	15	

Error ⁻²				
	1			
	0	0	0	
	1	0	1	
	1	1	1	

Quantizer				
0	- 5 → - 3	-4		
1	- 2 → 0	-1		
2	1 → 3	2		
3	4 → 6	5		