Combinational Logic Design

Today's lecture

- Combinational Logic
 - Different Representations of Boolean Functions (review)
- How to design any circuit
 - Write a truth table
 - Sum-of-Products implementation
 - Example
- Other gates you should know about (XOR, NAND, NOR)
- Divide-and-Conquer design

Combinational Logic

- Definition: Boolean circuits where the output is a pure function of the present input only.
- Circuits made up of gates, that don't have any feedback
 - No feedback: outputs are not connected to inputs
 - If you change the inputs, and wait for a while, the correct outputs show up.
 - Real circuits have delays (more on this later)
- Can be represented by Boolean Algebra

Four representations of Boolean functions

Equivalent functionality

Relatively mechanical to translate between these formats

A fifth representation

An English description/specification

Example: A sandwich shop has the following rules for making a good (meat) sandwich:

- (1) All sandwiches must have at least one type of meat.
- (2) Don't put both roast beef and ham on the same sandwich.
- (3) Cheese only goes on sandwiches that include turkey.

Write a Boolean expression for the allowed combinations of sandwich ingredients using the following variables:

```
c = cheese
```

h = ham

t = turkey

r = roast beef

English → Truth Table example

Most reliable method

- Write a truth table
- 2. Every row evaluating to 1 becomes a term
- 3. OR all the terms together

This will give an un-optimized expression

- (we can write computer programs to optimize expressions)
 - (or better yet, use the ones that other people wrote...)
- (we can't write programs to design circuits for us.)

Sum of Products (SOP) form

- A useful way to represent any Boolean expression
- A sum of products (SOP) expression contains:
 - only OR (sum) operations at the "outermost" level
 - Each term that is summed must be a product of literals

$$f(x,y,z) = y' + x'yz' + xz$$

- The advantage is that any sum of products expression can be implemented using a two-level circuit
 - literals and complements at "0th" level
 - AND gates at the first level
 - a single OR gate at the second level

Truth tables to Boolean expressions

- For each row in truth table where output is 1
 - Write a product term that is true for that set of inputs
 - And only for that set of inputs

×	У	Z	f(x,y,z)	•
1	0	1	1	xy'z

- This product will include each terminal exactly once
- 2. OR all the product terms together

product-term1 + product-term2 + product-term3 + ...

Step 1. Write a truth table

Rules:

- (1) must have at least one meat.
- (2) not both roast beef and ham.(3) cheese only if turkey.

Ingredients: c = cheese

h = ham

t = turkey

r = roast beef

Step 1. Write a truth table

Rules:

- (1) must have at least one meat.
- (2) not both roast beef and ham.(3) cheese only if turkey.

Ingredients: c = cheese

h = ham

t = turkey

r = roast beef

С	h	†	r	f()	
0	0	0	0	0	
0	0	0	1	1	c'h't'r
0	0	1	0	1	c'h'tr'
0	0	1	1	1	c'h'tr
0	1	0	0	1	c'ht'r'
0	1	0	1	0	
0	1	1	0	1	c'htr'
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	1	ch'tr'
1	0	1	1	1	ch'tr
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	1	chtr'
1	1	1	1	0	

Step 2. Every 1 becomes a term

C	h	†	r	f()
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0 0 0 0 0 0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

c'h't'r c'h'tr' c'h'tr c'ht'r'

c'htr'

ch'tr' ch'tr

chtr'

Step 3. OR all the terms together

c'h't'r + c'h'tr' + c'h'tr + c'ht'r' + ch'tr' + ch'tr + chtr'

c'h't'r + c'h'tr' + c'h'tr + c'ht'r' + c'htr' + ch'tr' + ch'tr + chtr'

Three other notable 2-input functions

Remember this table?

			\checkmark	-AN	ID				$\sqrt{}$	OR							
X	У	fO	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Additional Boolean operations

Operation:

NAND (NOT-AND)

NOR (NOT-OR)

XOR (eXclusive OR)

$$(xy)' = x' + y$$

$$(x + y)' = x'y$$

Expressions:
$$(xy)' = x' + y'$$
 $(x + y)' = x'y'$ $x \oplus y = x'y + xy'$

Truth table:

X	У	(xy)'
0	0	1
0	1	1
1	0	1
1	1	0

×	у	(x+y)'
0	0	1
0	1	0
1	0	0
1	1	0

Logic gates:

XOR gates

A two-input XOR gate outputs true when exactly one of its inputs is true:

×	У	х⊕у
0	0	0
0	1	1
1	0	1
1	1	0

$$x \oplus y = x'y + xy'$$

- XOR corresponds more closely to typical English usage of "either ... or," either of the two, but not neither nor both.
- Several fascinating properties of the XOR operation:

x [⊕] 0 = x	x ⊕ 1 = x'	
$x \oplus x = 0$	$x \oplus x' = 1$	
$x \oplus (y \oplus z) = (x \oplus y) \oplus z$		[Associative]
$x \oplus y = y \oplus x$		[Commutative]

x XOR y = x' XOR y'

- a) True
- b) False

Divide-and-Conquer Design

Consider the following problem

- You are building system to help avoid train collisions on subways.
- Each of the 28 segments of track:
 - Senses if there is a train on it (T = 1) or no train (T = 0)
 - Has a red/yellow/green stoplight, where exactly 1 light is on at a time
 - The red light is on (R = 1) if there is a train in the next segment
 - Otherwise, yellow is on (Y = 1) if a train is 2 segments away
 - Else, green is on (G = 1)

We could implement this as one big circuit.

Why would that be a bad idea?

Divide-and-Conquer Design

Instead build a module:

Xin——Xout

Yin——Yout

And replicate:

What is Y(Xin, Yin)?

- a) Xin ⊕ Yin
- b) Xin + Yin'
- c) Xin' + Yin
- d) Xin Yin'
- e) Xin' Yin

What is G(Xin, Yin)?

- a) Xin OR Yin
- b) Xin NOR Yin
- c) Xin AND Yin
- d) Xin NAND Yin
- e) Xin XOR Yin