

代数结构

Algebra Structures

任课教师:杨海

yanghai@ecust.edu.cn

勤奋求实 励志明德

内容提要

- 1. 运算及其性质
- 2. 代数系统
- 3. 群与子群
- 4. 阿贝尔群和循环群
- 5. 环与域
- 6. 格与布尔代数

1、运算及其性质

概念:

运算, 封闭的, 可交换的, 可结合的, 可分配的, 吸收律, 幂等的, 幺元, 零元, 逆元, 消去律

运算 对于集合 A, f 是从Aⁿ到 A 的函数, 称 f 为集合A上的一个n元运算。

注:函数f: $A^n \rightarrow B$, 若B \subseteq A, 称函数f在集合A上是封闭的。

运算实例:

- (1) 加法和乘法是N上的二元运算,但减法和除法不是.
- 加法、减法和乘法都是Z上的二元运算,而除法不是.
- (3) 乘法和除法都是R*上的二元运算,而加法和减法不 是.
- (4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_n(R) = \left\{ egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, \ i,j = 1,2,...,n \right\}$$
顾过在原体和过去和新进来是从 (\mathbf{P}) 上的一元运算

则矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

(5) S为任意集合,则 \cup 、 \cap 、 \cap 、 \cup 为P(S)上二元运算.

运算的表示

1. 算符

可以用∘,*,·,⊕,⊗,∆等符号表示二元或一元运算,称为算符.

2. 运算表:表示有穷集上的一元和二元运算

О	a_1	a_2		a_n
a_1	$a_1 \circ a_1$	a_1 0 a_2	•••	$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	a_2 o a_2	•••	$a_2 \circ a_n$
•				
		• • •		
•				
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$

二元运算的运算表

	o <i>a</i> _i
a_1	o <i>a</i> ₁
a_2	o a 2
•	•
•	•
•	•
a_n	$\circ a_n$

一元运算的运算表

运算表的实例

例 设 $S=P(\{a,b\})$, S上的 \oplus 和 ~运算的运算表如下

\oplus	Ø	<i>{a}</i>	{ b }	$\{a,b\}$
Ø	Ø	<i>{a}</i>	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }
{a}	{a}	Ø	$\{a.b\}$	{ b }
{ b }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }	Ø	<i>{a}</i>
{a,b}	{a,b	} {b}	<i>{a}</i>	Ø

x	~x
Ø	{a,b}
{ <i>a</i> }	{a}
{ b }	{ b }
{a,b}	Ø

运算的性质

交換律 (Commutative)

已知 $\langle A, * \rangle$,若 $\forall x, y \in A$,有x*y=y*x,称*在A上是可交换的。

例:判断相应的运算是否满足交换律。

- (1) (Z, +), (Z, -) (Z, \times)
- (2) 设〈R,*〉,*定义如下: a*b=a+b-ab

结合律(Associative)

已知〈A,*〉,若 \forall x,y,z \in A,有 x*(y*z)=(x*y)*z, 称*在A上是可结合的。

例:判断相应的运算是否满足结合律。

- (1) (Z, +), (Z, -) (Z, \times)
- (2) <A, *>, 若∀a, b∈A, 有a*b=b

幂等律(Idempotent)

已知〈A,*〉,若 \forall x \in A,x*x=x 则称满足幂等律。

例:已知集合s, $\langle \wp(s), U, \cap \rangle$,则U, \cap 满足幂等律。

分配律(Distributive)

设〈A,*,△〉, 若∀x, y, z∈A有:

$$x*(y\triangle_Z) = (x*y) \triangle (x*z) ;$$

$$(y\triangle_Z)*_X = (y*_X) \triangle (z*_X)$$
;

称运算*对△是可分配的。

*	α	β
α	α	β
β	β	α

\triangle	α	β
α	α	α
β	α	β

倒:设A={α, β}, 二元运 算*, △定义如左:

问分配律成立否?

① 运算△ 对*是可分配的。

即: $X\triangle(y^*z)=(X\triangle y)^*(X\triangle z)$ 成立

证: $3x=\alpha$: $x\triangle(y*z)=\alpha$

$$(x\triangle y)*(x\triangle z) = \alpha$$

$$(x \triangle y)^*(x \triangle z) = y^*z$$

(2)、运算*对运算△不可分配

证: $:: \beta^* (\alpha \triangle \beta) = \beta^* \alpha = \beta$

$$\beta^* (\alpha \triangle \beta) = \beta^* \alpha = \beta$$

 $(\beta^*\alpha) \triangle (\beta^*\alpha) = \beta \triangle \alpha = \alpha$

*	α	β
α	α	β
β	β	α

\triangle	α	β
α	α	α
β	α	β

吸收律(Absorbtive)

设*, Δ 是定义在集合A上的两个可交换二元运算,若对 $\forall x, y \in A$,都有:

$$x*(x\Delta y) = x$$

$$x\Delta(x*y) = x$$

则称运算*和Δ满足吸收律.

例: 幂集P(S)上的运算∪和○满足吸收律。

单位元(幺元)(Identity)

设*是A上二元运算,e_l,e_r,e∈A

若 \forall x∈A,有 e_i *x=x,称 e_i 为运算*的左幺元;

若 \forall x∈A,有x*e_r=x,称e_r为运算*的右幺元

若e既是左幺元又是右幺元,称e为运算*的幺元

▶∀x∈A,有e*x=x, x*e=x

定理:设*是A上的二元运算,具有左幺元e₁,右幺元

$$e_r$$
, 则 $e_1 = e_r = e$
证明: $e_r = e_{l^*}e_r = e_{l}$

推论: 二元运算的幺元若存在则唯一

证明: 反证法: 设有二个幺元e, e'; 则e=e*e'=e'

季元 (Zero)

设*是A上二元运算, θ_1 , θ_r , $\theta \in A$

若∀x∈A, 有 θ_1 *x= θ_1 , 称 θ_1 为运算*的左零元;

若∀x∈A, 有x*θ_r=θ_r, 称θ_r为运算*的右零元;

岩θ既是左零元又是右零元,称θ为运算*的零元。

 $\triangleright \forall x \in A, \ \eta \theta^* x = x^* \theta = \theta$

例:

- a)〈Z, x〉, Z为整数集则幺元为1, 零元为0
- b) $\langle \wp (A), U, \cap \rangle$

对运算U, ∅是幺元, A是零元 对运算∩, A是幺元, ∅是零元。

c) $\langle N, + \rangle$

有幺元0,无零元。

例:代数A=〈{a, b, c, d}, *〉用下表定义:

*	a	b	c	d
a	a	a	a	a
b	b	b	b	b
c	c	d	a	b
d	d	d	b	c

左幺元 右幺元 右条元 a,b

定理: 设*是A上的二元运算,具有左零元 θ_1 , 右零元 θ_r ,则 $\theta_1 = \theta_r = \theta$

推论: 二元运算的零元若存在则唯一。

逆元 (Inverse)

设*是A上的二元运算,e是运算*的幺元

若x*y=e那对于运算*, x是y的左逆元, y是x的 右逆元

若x*y=e, y*x=e, 则称x是y的逆元。记为y-1

》存在逆元(左逆无,右逆元)的元素称为可逆的(左可逆的,右可逆的)

例:

a)、代数〈N,+〉仅有幺元0,有逆元0,

b)、A= 〈{a, b, c}, *〉由下表定义:

*	a	b	c
a	a	a	b
b	a	b	c
c	a	c	c

b是幺元,

a的右逆元为C, 无左逆元,

b的逆元为b,

C无右逆元, 左逆元为a

定理:对于可结合运算o,如果元素x有左逆元l,右逆元r,则 $|=r=x^{-1}$

$$i = l o e = l o (x o r)$$

$$= (l o x) o r = e o r = r$$

二逆元存在为r

推论: 逆元若存在, 则唯一

证: 若存在X的另一个逆元r1; 则:

$$r^{1} = r^{1} o e = r^{1} o (x o r)$$

= $(r^{1} o x) o r = e o r = r$

消去律 (Cancellation Law)

已知〈A,*〉, 若∀x, y, z∈A, 有

- (1) 若 $x*y = x*z且 x \neq \theta$, 则y=z;
- (2) 若 y*x = z*x且 x ≠θ,则y=z; 那么称*满足消去律。

- 例: (1) 整数集上的加法和乘法都满足消去律;
 - (2) S ={1,2,3}, P(S)的交、并运算不满足消去律。

2、代数系统及同态

概念:

代数系统,子代数,积代数,同态,同构。

代数系统设A为非空集合, Ω 为A上运算的集合,称<A, Ω >为

- 一个代数系统.
- 当Ω ={ f_1 ,..., f_n }是有限时,代数系统常记为<A, f_1 ,..., f_n >;
- 当A有限时,称<A,Ω>是有限代数系统。

例:

- (1) <N,+>,<Z,+,·>,<R,+,·>是代数系统,+和·分别表示普通加法和乘法。
- $(2) < P(S), \cup, \cap, \sim >$ 是代数系统, \cup 和 \cap 为并和交, \sim 为绝对补。

构成代数系统的成分:

- 集合(也叫载体,规定了参与运算的元素)
- 运算(这里只讨论有限个二元和一元运算)
- 代数常数(通常是与运算相关的特异元素: 如单位元等)

例如:代数系统 $\langle Z,+,0 \rangle$:集合Z,运算+,代数常数0代数系统 $\langle P(S),\cup,\cap \rangle$:集合P(S),运算 \cup 和 \cap ,无代数常数

如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.

例:

$$V_1$$
=
 V_2 =< M_n (R), +, ·, θ , E >, θ 为 n 阶全0矩阵, E 为 n 阶单位矩阵 V_3 =< $P(B)$, \cup , \cap , \varnothing , B >

• V_1, V_2, V_3 是同类型的代数系统,它们都含有2个二元运算,2个代数常数.

设 $V=<S, f_1, f_2, ..., f_k>$ 是代数系统,B是S的非空子集,如果B对 $f_1, f_2, ..., f_k$ 都是封闭的,且B和S含有相同的代数常数,则称< $B, f_1, f_2, ..., f_k>$ 是V的子代数系统,简称子代数。

注:有时将子代数系统简记为B.

实例

N是<Z,+>的子代数,N也是<Z,+,0>的子代数 N-{0}是<Z,+>的子代数,但不是<Z,+,0>的子代数

几个术语

- (1) 最大的子代数: 就是 V本身
- (2) 最小的子代数:如果令V中所有代数常数构成的集合是B,且B对V中所有的运算都是封闭的,则B就构成了V的最小的子代数
- (3) 最大和最小的子代数称为1/的平凡的子代数
- (4) 若B是S的真子集,则B构成的子代数称为V的真子代数.
- 例 设 $V=\langle Z,+,0\rangle$,令 $nZ=\{nz\mid z\in Z\}$,n为自然数,则nZ是V的子代数

当n=1和0时,nZ是V的平凡的子代数,其他的都是V的非平凡的真子代数.

称 $V=<A\times B$,■>为 V_1 与 V_2 的积代数,记作 $V_1\times V_2$. 这时也称 V_1 和 V_2 为V的因子代数.

定理 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $V_1 \times V_2 = \langle A \times B, \bullet \rangle$ 是它们的积代数.

- (1) 如果[。]和 *运算是可交换(可结合、幂等)的,那幺•运算也是可交换 (可结合、幂等)的
- (2) 如果 e_1 和 e_2 (θ_1 和 θ_2) 分别为[°] 和 *运算的单位元(零元),那幺 $< e_1, e_2 >$ ($< \theta_1, \theta_2 >$) 也是 **□**运算的单位元(零元)
- (3) 如果 x 和 y 分别为 \circ 和 *运算的可逆元素,那幺< x,y>也是 \bullet 运算的可逆元素,其逆元就是 $< x^{-1},y^{-1}>$

设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $f: A \rightarrow B$, 对 $\forall x, y \in A$ 有 $f(x \circ y) = f(x) * f(y)$, 则称 $f \in V_1$ 到 V_2 的同态映射,简称同态 (Homomorphism)。

特殊的同态

- (1) f如果是单射,则称为单同态(Monomorphism)。
- (2) 如果是满射,则称为满同态 (Epimorphism),这时称 V_2 是 V_1 的同态像, 记作 $V_1 \sim V_2$ 。
- (3) 如果是双射,则称为同构 (Isomorphism),也称代数系 统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$ 。
- (4) 如果 $V_1 = V_2$,则称作自同态(Endomorphism)。

实例

(1) 设 V_1 =< Z_n +>, V_2 =< Z_n , Θ >. 其中Z为整数集,+为普通加法; Z_n ={0,1,...,n-1}, Θ 为模n加. 令

 $f: \mathbb{Z} \to \mathbb{Z}_n$, $f(x) = (x) \mod n$

那幺ƒ是以到以的满同态.

(2) 设 V_1 =<R,+>, V_2 =<R*,·>, 其中R和R*分别为实数集与非零实数集,+和·分别表示普通加法与乘法.令

$$f: \mathbf{R} \rightarrow \mathbf{R}^*, \ f(x) = \mathbf{e}^x$$

则f是 V_1 到 V_2 的单同态.

(3) 设 $V=<\mathbb{Z},+>$,其中 \mathbb{Z} 为整数集,+为普通加法. $\forall a \in \mathbb{Z}$,令 $f_a:\mathbb{Z}\to\mathbb{Z}$, $f_a(x)=ax$,

那幺 f_a 是V的自同态; 当 $a=\pm 1$ 时,称 f_a 为自同构; 除此之外其他的 f_a 都是单自同态.

32

3、群与子群

概念:

半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,拉格朗日(Lagrange)定理

半群 (Semigroup)

设 $V=\langle S, \circ \rangle$ 是代数系统, \circ 为二元运算,如果 \circ 运算是可结合的,则称V为半群。

独异点(Monoid).

设 $V=<S, \circ>$ 是半群,若 $e\in S$ 是关于 \circ 运算的单位元,则称V是含幺半群,也叫做独异点。 有时也将独异点V记作 $V=<S, \circ, e>$.

实例

- (1) <Z+,+>,<N,+>,<Z,+>,<R,+>都是半群,+是普通加法.这 些半群中除<Z+,+>外都是独异点
- (2) <*P*(*B*),⊕>为半群,也是独异点,其中⊕为集合对称差运 算
- (3) $< R^*, ∘>$ 为半群,但不是独异点,其中 R^* 为非零实数集合, ∘运算定义如下: $\forall x, y ∈ R^*, x ∘ y = y$

群(Group)

设V=<G,∘>是独异点,e∈ G关于∘运算的单位元,若 $\forall a$ ∈G,a-¹∈G, 则称V是群(Group). 通常将群记作G.

群的另一种定义(基本形式)

设<G,。>是代数系统,。为二元运算。

- (1)。对G是封闭的;
- (2)。是可结合的;
- (3) 存在幺元 e;
- (4) 对于每一个元素 x∈ G,都存在它的逆元x⁻¹∈ G则称<G, ∘ >是一个群.

实例

设 $G=\{e,a,b,c\}$,G上的运算由下表给出,称为Klein四元群。

	e	a	b	c
e	e	a	b	c
a	a	e	C	b
b	b	C	e	a
c	c	b	a	e

特征:

- 1. 满足交换律
- 2. 每个元素都是自己的逆元
- 3. a, b, c中任何两个元素运算结 果都等于剩下的第三个元素

群的阶数

设<G,*>是一个群,如果G是有限集,那么称<G,*>为有限群,并且|G|为该有限群的阶数;如果G是无限集,则称<G,*>为无限群。

注: 阶数为1(即只含单位元)的群称为平凡群.

例: <Z,+>和<R,+>是无限群;

 $\langle Z_n, \oplus \rangle$ 是有限群,也是 n 阶群;

Klein四元群是4阶群;

<{0},+>是平凡群。

n阶(n≥2)实可逆矩阵集合关于矩阵乘法构成的群是非交换群.

群的性质

设<G,*>是一个群。

- (1) 非平凡群中不可能有零元.
- (2) 对于∀a,b∈ G, 必存在唯一的x∈ G,使得a* x =b.
- (3) 对于∀{a,b,c}∈ G若:

$$b*a = c*a$$

则必有b=c (消去律)。

- (4)运算表中的每一行或每一列都是一个置换。
- (5)除幺元e外,不可能有任何别的幂等元。

元素的幂

设G是群, $a \in G$, $n \in \mathbb{Z}$, 则a 的 n次幂.

$$a^{n} = \begin{cases} e & n = 0 \\ a^{n-1}a & n > 0 \\ (a^{-1})^{m} & n < 0, n = -m \end{cases}$$

注: 群中元素可以定义负整数次幂.

$$2^{-3} = (2^{-1})^3 = 1^3 = 1 \oplus 1 \oplus 1 = 0$$

$$(-2)^{-3} = 2^3 = 2 + 2 + 2 = 6$$

幂运算性质

设G为群,则G中的幂运算满足:

- (1) $\forall a \in G, (a^{-1})^{-1} = a$
- (2) $\forall a,b \in G$, $(ab)^{-1}=b^{-1}a^{-1}$
- (3) $\forall a \in G$, $a^n a^m = a^{n+m}$, $n, m \in \mathbb{Z}$
- (4) $\forall a \in G$, $(a^n)^m = a^{nm}$, $n, m \in \mathbb{Z}$
- (5) 若G为交换群,则 $(ab)^n = a^n b^n$.

元素的阶

设G是群, $a \in G$,使得等式 $a^k = e$ 成立的最小正整数k 称为元 素 a 的阶,记作|a| = k,称 a 为 k 阶元。若不存在这样的正整数 k,则称 a 为无限阶元。

- 例: (1) 在<Z₆,⊕>中, 2和4是3阶元, 3是2阶元, 1和5是6阶元, 0是1阶元。
 - (2) 在<Z,+>中,0是1阶元,其它整数的阶均为无限。

元素的阶的性质

G为群, $a \in G$ 且 |a| = r. 设k是整数,则

- $(1) a^k = e$ 当且仅当 $r \mid k$
- $(2)|a^{-1}| = |a|$

子群 (Subgroup)

设G 是群,H 是G 的非空子集, 如果H关于G中的运算构成群,则称H是G 的子群,记作H $\leq G$ 。

- ② 对任何群G都存在子群. G和 $\{e\}$ 都是G的子群,称为G的平凡子群.

例: nZ(n是自然数) 是整数加群<Z,+> 的子群. 当 $n\neq1$ 时,nZ是Z的真子群.

子群判定定理1

设G为群,H是G的非空子集,则H是G的子群当且仅当

- $(1) \forall a,b \in H$ 有 $ab \in H$;
- $(2) \forall a \in H$ 有 $a^{-1} \in H$ 。

证 必要性是显然的. 为证明充分性,只需证明 $e \in H$. 因为H非空,存在 $a \in H$. 由条件(2) 知 $a^{-1} \in H$,根据条件(1) $aa^{-1} \in H$,即 $e \in H$.

子群判定定理2

设G为群,H是G的非空子集. H是G的子群当且仅当 $\forall a,b \in H$ 有 $ab^{-1} \in H$.

证 必要性显然. 只证充分性.

因为H非空,必存在 $a \in H$.

根据给定条件得 $aa^{-1} \in H$, 即 $e \in H$.

任取 $a \in H$, 由 $e,a \in H$ 得 $ea^{-1} \in H$, 即 $a^{-1} \in H$.

任取 $a,b \in H$,知 $b^{-1} \in H$. 再利用给定条件得 $a(b^{-1})^{-1} \in H$,即 $ab \in H$.

综合上述,可知H是G的子群.

子群判定定理3

设G为群,H是G的非空有穷子集,则H是G的子群当且仅当 $\forall a,b \in H$ 有 $ab \in H$.

证 必要性显然. 为证充分性,只需证明 $a \in H$ 有 $a^{-1} \in H$. 任取 $a \in H$,若a = e,则 $a^{-1} = e \in H$. 若 $a \neq e$,令 $S = \{a, a^2, \dots\}$,则 $S \subseteq H$. 由于H是有穷集,必有 $a^i = a^j$ (i < j). 根据G中的消去律得 $a^{j-i} = e$,由 $a \neq e$ 可知 j-i > 1,由此得 $a^{j-i-1}a = e$ 和 $a^{j-i-1} = e$

生成子群

设G为群, $a \in G$,令 $H = \{a^k | k \in \mathbb{Z}\}$,则 $H \in G$ 的子群,称为由a生成的子群,记作<a>.

例:

- (1) 整数加群,由2生成的子群是 $<2>=\{2^k | k \in \mathbb{Z}\}=2\mathbb{Z}$
- (2) <Z₆,⊕>中,由2生成的子群<2>={0,2,4}
- (3) Klein四元群 $G = \{e,a,b,c\}$ 的所有生成子群是:

$$=\{e\}, =\{e,a\}, =\{e,b\}, =\{e,c\}.$$

$$AB = \{a*b \mid a \in A ⊥ b \in B\}$$

$$A^{-1} = \{a^{-1} \mid a \in A\}$$

称AB为A,B的积,A-1为A的逆。

陪集

设<H,*>是群<G,*>的一个子群,a∈ G则:

左陪集: aH ::= {a}H, 由a所确定的H在G中的左陪集.

右陪集: Ha::=H{a}

陪集是左陪集与右陪集的统称.

例: 设 $G=\{e,a,b,c\}$ 是Klein四元群, $H=\langle a\rangle$ 是G的子群. H所有的右陪集是:

 $He=\{e,a\}=H,\ Ha=\{a,e\}=H,\ Hb=\{b,c\},\ Hc=\{c,b\}$ 不同的右陪集只有两个,即H和 $\{b,c\}$.

陪集性质

设H是群G的子群,则

- \bigcirc He = H
- ② $\forall a \in G$ 有 $a \in Ha$
- ③ $\forall a,b \in G$ 有: $a \in Hb \Leftrightarrow ab^{-1} \in H \Leftrightarrow Ha = Hb$
- 4 在G上定义二元关系R:

 $\forall a,b \in G, \langle a,b \rangle \in R \Leftrightarrow ab^{-1} \in H$ 则 R是G上的等价关系,且 $[a]_R = Ha$.

|Ha|=|H|

Lagrange定理

设G是有限群,H是G的子群,则

$$|G| = |H| \cdot [G:H]$$

其中[G:H] 是H在G中的不同右陪集(或左陪集) 数,称为H在G中的指数.

$$|G| = |H| \cdot [G:H]$$

证 设[G:H]=r, a_1 , a_2 ,…, a_r 分别是H的r个右陪集的代表元素. 根据定理 10.9 的推论有 $G=Ha_1\cup Ha_2\cup \cdots \cup Ha_r$

由于这 r 个右陪集是两两不交的, 所以有

$$|G| = |Ha_1| + |Ha_2| + \cdots + |Ha_r|$$

因为 $|Ha_i| = |H|, i=1,2,\cdots,r$. 将这些等式代入上式得

$$|G| = |H| \cdot r = |H| \cdot [G:H]$$

推论:

- (1) 设G是n阶群,则 $\forall a \in G$, |a|是n的因子,且 $a^n = e$.
- (2) 对阶为素数的群G,必存在 $a \in G$ 使得 $G = \langle a \rangle$.

证 任取 $a \in G$,则<a>是 G 的子群.由拉格朗日定理知<a>的阶是 n 的因子.另一方面,<a>是由 a 生成的子群,若 |a|=r,则

$$\langle a \rangle = \{ a^0 = e, a^1, a^2, \cdots, a^{r-1} \}$$

这说明< a >的阶与|a|相等,所以|a|是n的因子.根据定理 10.3(1)必有 a'' = e.

证 设|G|=p,p是素数. 由 $p\geq 2$ 知 G 中必存在非单位元. 任取 $a\in G, a\neq e, p, a>$ 是 G 的子群. 根据拉格朗日定理,<a>的阶是 p 的因子,即<a>的阶是 p 或 1. 显然<a>的阶不等于 1. 这就推出 G=<a>.

4、阿贝尔群和循环群

概念:

阿贝尔群(交换群),循环群,生成元

阿贝尔 (Abel) 群

若群G中的运算是可交换的,则称G为交换群或阿贝尔群。

- 例: (1) $\langle Z, + \rangle$ 和 $\langle R, + \rangle$, $\langle Z_n, \Theta \rangle$ 、Klein四元群均是阿贝尔群。
 - (2) n阶(n≥2)实可逆矩阵集合关于矩阵乘法构成的群不是 阿贝尔群。

循环群(Cyclic group)

设G是群,若存在a∈G使得

$$G=\{a^k|k\in \mathbb{Z}\}$$

则称G是循环群,记作G=<a>,称a为G的生成元.

循环群的分类

- (1) n 阶循环群: 设 $G=\langle a \rangle$ 是循环群,若a是n 阶元,则 $G=\{a^0=e,a^1,a^2,\ldots,a^{n-1}\}$

循环群的生成元

设G=<a>是循环群。

- (1) 若G是无限循环群,则G只有两个生成元,即a和a-1.
- (2) 若G是 n 阶循环群,则G含有 $\phi(n)$ 个生成元. 对于任何小于n且与 n 互质的数 $r \in \{0,1,...,n-1\}$, a^r 是G的生成元.

实例

- (1) 设 $G=\{e, a, ..., a^{11}\}$ 是12阶循环群,则 ϕ (12)=4. 小于12且与12互素的数是1, 5, 7, 11, 由定理10.13可知 a, a^5 , a^7 和 a^{11} 是G的生成元.
- (2) 设 $G=\langle Z_9, \oplus \rangle$ 是模9的整数加群,则 ϕ (9)=6. 小于9且与9互素的数是 1, 2, 4, 5, 7, 8. 根据定理10.13,G的生成元是1, 2, 4, 5, 7和8.
- (3) 设 $G=3Z=\{3z \mid z \in Z\}$, G上的运算是普通加法. 那幺G只有两个生成元: 3和-3.

循环群的子群

设G=<a>是循环群。

- (1) 设 $G=\langle a\rangle$ 是循环群,则G的子群仍是循环群;
- (2) 若 $G=\langle a\rangle$ 是无限循环群,则G的子群除 $\{e\}$ 以外都是无限循环群;
- (3) 若 $G=\langle a\rangle$ 是n阶循环群,则对n的每个正因子d,G恰好含有一个d 阶子群。

实例

- (1) G=<Z,+>是无限循环群,其生成元为1和-1. 对于自然数 $m \in N$,1的m次幂是m,m生成的子群是mZ, $m \in N$. 即 $<0>=\{0\}=0$ Z $<m>=\{mz \mid z \in Z\}=m$ Z,m>0
- (2) $G=Z_{12}$ 是12阶循环群. 12正因子是1,2,3,4,6和12,G 的子群: 1阶子群 $<12>=<0>=\{0\}$ 2阶子群 $<6>=\{0,6\}$ 3阶子群 $<4>=\{0,4,8\}$ 4阶子群 $<3>=\{0,3,6,9\}$ 6阶子群 $<2>=\{0,2,4,6,8,10\}$ 12阶子群 $<1>=Z_1$

5、环与域

概念:

环,交换环,含幺环,整环,域

环 (Ring)

设 $< R, +, \cdot >$ 是代数系统, $+ 和 \cdot$ 是二元运算.如果满足以下条件:

- (1) <R,+>构成交换群;
- (2) < R, · > 构成半群;
- (3)·运算关于+运算适合分配律,则称 $< R, +, \cdot >$ 是一个环.

通常称+运算为环中的加法,·运算为环中的乘法. 环中加法单位元记作 0,乘法单位元(如果存在)记作1. 对任何元素 x,称 x 的加法逆元为负元,记作-x. 若 x 存在乘法逆元的话,则称之为逆元,记作 x^{-1} .

例:

- (1) 整数集、有理数集、实数集和复数集关于普通的加法和 乘法构成环,分别称为整数环Z,有理数环Q,实数环R 和复数环C.
- (2) $n(n \ge 2)$ 阶实矩阵的集合 $M_n(\mathbf{R})$ 关于矩阵的加法和乘法构成环,称为 n 阶实矩阵环.
- (3) 集合的幂集P(B)关于集合的对称差运算和交运算构成环, 称为子集环.
- (4) 设 $Z_n = \{0,1,...,n-1\}$, Θ 和 Θ 分别表示模n的加法和乘法,则 $\langle Z_n, \Theta, \Theta \rangle$ 构成环,称为模n的整数环.

环的运算性质

设<R,+,·>是环,则

- (1) $\forall a \in R$, a0 = 0a = 0
- (2) $\forall a,b \in R$, (-a)b = a(-b) = -ab
- (3) $\forall a,b,c \in R$, a(b-c) = ab-ac, (b-c)a = ba-ca
- (4) $\forall a_1, a_2, ..., a_n, b_1, b_2, ..., b_m \in R (n, m \ge 2)$ $(\sum_{i=1}^n a_i) (\sum_{j=1}^m b_j) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$

例: 在环中计算 $(a+b)^3$, $(a-b)^2$

解:
$$(a+b)^3 = (a+b)(a+b)(a+b)$$

 $= (a^2+ba+ab+b^2)(a+b)$
 $= a^3+ba^2+aba+b^2a+a^2b+bab+ab^2+b^3$
 $(a-b)^2 = (a-b)(a-b) = a^2-ba-ab+b^2$

特殊的环

设<R,+,·>是环

- (1) 若环中乘法·适合交换律,则称R是交换环;
- (2) 若环中乘法·存在单位元,则称R是含幺环;
- (3) 若 $\forall a,b \in R$, $ab=0 \Rightarrow a=0 \lor b=0$, 则称R是无零因子环。

例:

- (1) 整数环Z交换环,含幺环,无零因子环。
- (2) 令2Z={2z | z \in Z},则<2Z,+,·>构成交换环和无零因子环,但不是含幺环。

整环(Integrel Domain)

设<R,+,•>是一个代数系统,若满足:

- (1) <R,+>是阿贝尔群;
- (2) <R,●>是可交换独异点,且无零因子,即对∀a,b∈R, a≠0,b≠0 则a● b≠0;
- (3) 运算•对+是可分配的,

则称<R,+,●>是整环。

- 注:(1) 既是交换环、含幺环、无零因子环的代数系统是整环。
 - (2) 整环中的无零因子条件等价于乘法消去律,即 对于c≠0 和c• a = c• b,有a = b.

域 (Field)

设<R,+,•>是一个代数系统,若满足:

- (1) <R,+>是阿贝尔群;
- (2) <R-{0},•>是阿贝尔群;
- (3) 运算•对+是可分配的,

则称<R,+,•>是域。

例:整数环Z整环,但不是域;实数环R既是是域。

两点结论:

- (1) 域一定是整环。
- (2) 有限整环必是域。

6、格与布尔代数

概念:

格,对偶原理,子格,分配格,有界格,有补格布尔代数,有限布尔代数的表示定理

格 (Lattice)

设<S, ≼>是偏序集,如果 $\forall x,y \in S$, $\{x,y\}$ 都有最小上界和最大下界,则称S关于偏序≼作成一个格。

注: $x{x,y}$ 最小上界和最大下界看成x与y的二元运算 \forall 和 \land .

例:设n是正整数, S_n 是n的正因子的集合.D为整除关系,则偏序集 $\langle Sn,D \rangle$ 构成格. $\forall x,y \in S_n, x \lor y$ 是lcm(x,y),即x与y的最小公倍数. $x \land y$ 是gcd(x,y),即x与y的最大公约数.

实例

判断下列偏序集是否构成格,并说明理由.

- (1) $\langle P(B),\subseteq \rangle$,其中P(B)是集合B的幂集.
- (2) <Z,≤>,其中Z是整数集,≤为小于或等于关系.
- (3) 偏序集的哈斯图分别在下图给出.

- (1) 幂集格. $\forall x,y \in P(B)$, $x \lor y$ 就是 $x \cup y$, $x \land y$ 就是 $x \cap y$.
- (2) 是格. $\forall x,y \in \mathbb{Z}$, $x \lor y = \max(x,y)$, $x \land y = \min(x,y)$,
- (3) 都不是格. 可以找到两个结点缺少最大下界或最小上界71

设f是含有格中元素以及符号=,<,>,\>,\\和\的命题. 令f*是将f中的<替换成>,\>替换成<,\\替换成\,\\替换成\\, 所得到的命题. 称f* 为f的对偶命题.

例: 在格中令 f 是 $(a \lor b) \land c \leqslant c$, f*是 $(a \land b) \lor c \succcurlyeq c$.

格的对偶原理

设f是含有格中元素以及符号=, \leq , \geq , \vee 和人等的命题. 若f对一切格为真,则f的对偶命题f*也对一切格为真.

格的性质

- 设<L, ≼>是格,则运算∨和∧适合交换律、结合律、幂等律和吸收律,即
- (1) $\forall a,b \in L$ 有 $a \lor b = b \lor a, \ a \land b = b \land a$
- (2) $\forall a,b,c \in L$ 有 $(a \lor b) \lor c = a \lor (b \lor c), (a \land b) \land c = a \land (b \land c)$
- $(3) \ \forall a \in L \ 有$ $a \lor a = a, \ a \land a = a$
- (4) $\forall a,b \in L$ 有 $a \lor (a \land b) = a, \ a \land (a \lor b) = a$

格的性质: 序与运算

设L是格,则 $\forall a,b \in L$ 有 $a \leq b \Leftrightarrow a \wedge b = a \Leftrightarrow a \vee b = b$

证 (1) 先证 $a \le b \Rightarrow a \land b = a$ 由 $a \le a$ 和 $a \le b$ 可知 $a \not\in \{a,b\}$ 的下界, 故 $a \le a \land b$. 显然有 $a \land b \le a$. 由反对称性得 $a \land b = a$.

- (2) 再证 $a \land b = a \Rightarrow a \lor b = b$ 根据吸收律有 $b = b \lor (b \land a)$ 由 $a \land b = a$ 和上面的等式得 $b = b \lor a$, 即 $a \lor b = b$.
- (3) 最后证 $a \lor b = b \Rightarrow a \le b$ 由 $a \le a \lor b$ 得 $a \le a \lor b = b$

格的性质: 保序

设L是格, $\forall a,b,c,d \in L$, 若 $a \leq b$ 且 $c \leq d$, 则 $a \land c \leq b \land d$, $a \lor c \leq b \lor d$

证 $a \land c \le a \le b, a \land c \le c \le d$ 因此 $a \land c \le b \land d$. 同理可证 $a \lor c \le b \lor d$

格的代数系统定义

设<*S*, *, \circ >是代数系统, *和 \circ 是二元运算, 如果*和 \circ 满足交换律、结合律和吸收律, 则<*S*, *, \circ >构成格.

注: S中的偏序关系 \leq 定义为: 对 $\forall a,b \in S$ 有 $a \leq b \Leftrightarrow a \circ b = b$.

子格(Sub-lattice)

设 $\langle L, \wedge, \vee \rangle$ 是格,S是L的非空子集,若S关于L中的运算 \wedge 和 \vee 仍构成格,则称S是L的子格.

例:设格L如图所示.令

$$S_1 = \{a, e, f, g\},\$$

$$S_2 = \{a, b, e, g\}$$

 S_1 不是L的子格,因为 $e, f \in S_1$ 但

$$e \wedge f = c \notin S_1$$
.

 S_2 是L的子格.

注: 对于格<L, \le >, S是L的非空子集, <S, \le >必定是偏序集,但未必是格; 而且即使<S, \le >是格,也未必是<L, \le >的子格。

分配格(Distributive lattice)

设<L, \land , \lor >是格, 若 $\forall a,b,c \in L$,有 $a \land (b \lor c) = (a \land b) \lor (a \land c)$ $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

则称L为分配格.

● 注意:可以证明以上两个条件是等价的。

例

 L_1 和 L_2 是分配格, L_3 和 L_4 不是分配格. 称 L_3 为钻石格, L_4 为五角格.

分配格的判别

定理: 设L是格,则L是分配格当且仅当L不含有与钻石格或五角格同构的子格.

- 推论 (1) 小于五元的格都是分配格.
 - (2) 任何一条链都是分配格.

例: 说明图中的格是否为分配格,为什么?

解 都不是分配格. $\{a,b,c,d,e\}$ 是 L_1 的子格,同构于钻石格 $\{a,b,c,e,f\}$ 是 L_2 的子格,同构于五角格; $\{a,c,b,e,f\}$ 是 L_3 的子格 同构于钻石格.

设L是格,

- (1) 若存在a∈L使得 $\forall x$ ∈L有 $a \leq x$, 则称a为L的全下界;
- (2) 若存在 $b \in L$ 使得 $\forall x \in L$ 有 $x \leq b$, 则称 $b \supset L$ 的全上界。

说明:

- 格L若存在全下界或全上界, 一定是惟一的.
- 一般将格L的全下界记为0, 全上界记为1.

有界格 (Bounded lattice)

设L是格,若L存在全下界和全上界,则称L 为有界格,一般将有界格L记为<L, \wedge , \vee ,0,1>.

有界格的性质

定理: 设<L, \land , \lor ,0,1>是有界格,则 $\forall a \in L$ 有 $a \land 0 = 0$, $a \lor 0 = a$, $a \land 1 = a$, $a \lor 1 = 1$

注意:

- 有限格 $L=\{a_1,a_2,...,a_n\}$ 是有界格, $a_1 \land a_2 \land ... \land a_n$ 是L的全下界, $a_1 \lor a_2 \lor ... \lor a_n$ 是L的全上界.
- 0是关于 / 运算的零元, / 运算的单位元; 1是关于 / 运算的零元, / 运算的单位元; 1是关于 / 运算的
- 对于涉及到有界格的命题,如果其中含有全下界0或全上界1,在求该命题的对偶命题时,必须将0替换成1,而将1替换成0.

设<L, \land , \lor ,0,1>是有界格, $a \in L$,若存在 $b \in L$ 使得 $a \land b = 0$ 和 $a \lor b = 1$

成立,则称b是a的补元.

● 注意: 若b是a的补元,那幺a也是b的补元.a和b互为补元.

例: 考虑下图中的格.针对不同的元素,求出所有的补元.

解答

- (1) L_1 中 a 与 c 互为补元, 其中 a 为全下界, c为全上界, b 没有补元.
- (2) L_2 中 a 与 d 互为补元, 其中 a 为全下界, d 为全上界, b与 c 也互为补元.
- (3) L_3 中a与e互为补元,其中a为全下界,e为全上界,b的补元是c和d;c的补元是b和d;d的补元是b和c;b,c,d每个元素都有两个补元.
- (4) L_4 中 a 与 e 互为补元, 其中 a 为全下界, e 为全上界, b 的补元是 c 和 d; c 的补元是 b; d 的补元是 b.

有界分配格的补元惟一性

定理: 设<L, \land , \lor ,0,1>是有界分配格. 若L中元素 a 存在补元,则存在惟一的补元.

注意:

- 在任何有界格中,全下界0与全上界1互补.
- 对于一般元素,可能存在补元,也可能不存在补元.如果存在补元,可能是惟一的,也可能是多个补元.对于有界分配格,如果元素存在补元,一定是惟一的.

有补格 (Complemented lattice)

设<L, \land , \lor ,0,1>是有界格,若L中所有元素都有补元存在,则称L为有补格.

例:图中的 L_2, L_3 和 L_4 是有补格, L_1 不是有补格.

布尔格 (Boolean lattice)

如果一个格是有补分配格,则称它为布尔格或布尔代数.布尔代数标记为< B, \land , \lor ,',0,1>,'为求补运算.

例:

- (1) 设 S_{110} = {1, 2, 5, 10, 11, 22, 55, 110}是110的正因子集合,gcd表示求最大公约数的运算,lcm表示求最小公倍数的运算,则< S_{110} , gcd, lcm>构成布尔代数。
- (2) 设B为任意集合,证明B的幂集格<P(B), \cap , \cup , \sim , \emptyset , B> 构成布尔代数。

布尔代数的性质

定理: 设<B, \wedge , \vee ,',0,1>是布尔代数,则

- $(1) \forall a \in B, (a')' = a.$
- $(2) \forall a,b \in B, (a \land b)' = a' \lor b', (a \lor b)' = a' \land b'$ (德摩根律)

布尔代数的代数系统定义

设<B,*,°>是代数系统,*和°是二元运算.若*和°运算满足:

- (1) 交換律, 即 $\forall a,b \in B$ 有 $a*b=b*a, a\circ b=b\circ a$
- (2) 分配律, 即 $\forall a,b,c \in B$ 有

$$a*(b\circ c) = (a*b)\circ (a*c), \ a\circ (b*c) = (a\circ b)*(a\circ c)$$

- (3) 同一律, 即存在 $0,1 \in B$, 使得 $\forall a \in B$ 有 $a * 1 = a, a \circ 0 = a$
- (4) 补元律, 即 $\forall a \in B$, 存在 $a' \in B$ 使得 a * a' = 0, $a \circ a' = 1$ 则称 $\langle B, *, \circ \rangle$ 是一个布尔代数.

有限布尔代数的结构

设 L 是格, 0 ∈ L, a ∈ L 若 $\forall b ∈ L$ 有 0 < b ≤ a ⇔ b = a, 则 称 a 是 L 中的原子.

注:原子是盖住全下界0的元素。

有限布尔代数的表示定理

设B是有限布尔代数,A是B的全体原子构成的集合,则B同构于A的幂集代数P(A).

推论1 任何有限布尔代数的基数为 2^n , $n \in \mathbb{N}$.

推论2 任何等势的有限布尔代数都是同构的.

实例

下图给出了1元,2元,4元和8元的布尔代数.

总结

- 1. 运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律,幂等的,幺元,零元,逆元
- 2. 代数系统: 代数系统, 子代数, 积代数, 同态, 同构。
- 3. 群与子群:半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,拉格朗日(Lagrange)定理
- 4. 阿贝尔群和循环群: 阿贝尔群(交换群), 循环群,生成元
- 5. 环与域:环,交换环,含幺环,整环,域
- 6. 格与布尔代数:格,对偶原理,子格,分配格,有界格,有补格,布尔代数,有限布尔代数的表示定理