Environmental product declaration (EPD)

Declaration code: EPD-LD-GB-24.1

Lindab A/S

sectional doors

LDI steel, LDC steel, LDP

basis:

DIN EN ISO 14025 EN15804 company-EPD Environmental Product Declaration

Publication date: 14.06.2017 Next revision:

14.06.2022

www.ift-rosenheim.de/ erstellte-epds

Environmental product declaration (EPD)

Declaration code: EPD-LD-GB-24.1

Programme operator	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim		
Practitioner of the LCA	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim		
Declaration holder	Lindab A/S Finnmarken 1 Jels DK 6630 Roedding		
Declaration code	EPD-LD-GB-24.1		
Designation of declared product	sectional doors		
Scope		overhead sectional door are function, design and installation	•
Basis	15804:2012+A1:2013. In Typ III Umweltprodukt Environmental Product D	ed on the basis of EN I addition, the "Allgemeiner Loadklarationen" (Guidance Declarations) applies. This do d Tore" – PCR-TT-2.1:2018	eitfaden zur Erstellung von on preparing Type III
	Publication date: 14.06.2017	Last revision: 09.07.2019	Next revision: 14.06.2022
Validity		nvironmental Product Declar valid for a period of 5 years 15804.	
LCA basis	EN ISO 14044. The base production site and the calculations were carried	d in accordance with DIN data include both, the data generic data derived from the out for the product stage "from e.g. raw material extraction, etc.	collected at the Lindab A/S ne GaBi ts database. LCA n cradle to grave" including
Notes		ance on the Use of ift Test Dessumes full liability for the u	
Mil Summy		Patrick Ces	to
Prof. Ulrich Sieberath Institut Manager	-	Patrick Wortner external verifier	

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

page 3

1 General product information

Product definition

The EPD relates to the product group doors and applies to the product:

sectional door from the company Lindab A/S

The declared unit refers to 1 m² of sectional doors.

Name	Product	Value	Unit
mass per unit area	LDI steel	20,3	kg/m ²
	LDP	19,7	kg/m ²
	LDC steel	21,1	kg/m ²
Conversion factor to 1 kg.	LDI steel	0,0495	-
	LDP	0,0510	-
	LDC steel	0,0475	-

The reference product of LDI steel (Lindab industrial), LDP (Lindab panoramic), LDC (Lindab combined) steel was calculated with a size of 16 m². This size represents a conservative assumption in the calculation of the sectional doors. Because environmental impacts of larger sectional doors tend to be lower.

Product description

The Lindab LDI steel / LDP / LDC steel overhead sectional door are suitable for nearly all types of building, regarding operation, design and installation. The various combinations of panel types, design and hardware types, make it possible to install this door solution in almost every building type. When operated, the door leaf slides up under the roof for optimal use of existing room height, leaving the door opening with full clearance. The overhead sectional door has 3 main parts: 1) Door leaf. 2) Hardware set. 3) Electrical operating system or chainhoist. The door leaf is made of roll formed steel or aluminium with a core of 46 mm polystyrene. The doorleaf is designed with finger protection, cold bridge separation, in the center of the panel, which is quite unique and with top- and bottom seals of EPDM. Furthermore the panel is designed with slotted end cassettes for improved insulation. The hardware set including its counterbalance system is made of galvanized steel as standard. The counterbalance system is composed of a shaft fitted with torsion springs, cable drums and cables, which ensures the correct weight balance when the door is operated. The standard operating system comes with energy saving features such as ½ opening height, and auto-close programming which reduces energy costs. The software can be updated for future improvements and new features which ensures long term operation. The Lindab LDI / LDP / LDC overhead sectional door has been designed to meet all operational and safety requirements set in the European Directives and standards.

EPD sectional door page 4

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

Door type LDI-steel, insulated

LDI door is built of 46 mm thick insulated sections of extruted polystyrene, with steel surface. For the LCA a steel door with 46 mm extruted polystyrene was calculated.

Door type LDP - Panorama

LDP door is made of extruted aluminum profiles and fillings from styrol acryl nitril (SAN).

For the LCA a aluminium frame door with SAN fillings was calculated.

EPD sectional door page 5

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

Door type LDC-steel, combined

LDC door is a combined solution from the LDI and LDP. It's a combination of extruted polystyrene panels and aluminum frames with SAN fillings.

For the LCA a steel door with 46 mm extruted polystyrene with a combination of an aluminium frame and a SAN filling was calculated.

For a detailed product description refer to the manufacturer specifications at www.lindab.dk or the product descriptions for the desired product.

Product manufacture

Figure 1: Life cycle of the sectional doors

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

page 6

Product group: doors

Application

The Lindab LDI steel / LDP / LDC steel overhead sectional door are suitable for nearly all building types, regarding function, design and installation. The 46 mm panel of extruded polystyrene, is a panel of great strength and comes without a thermal brigde for better insulations value. This combined with the flexibility for installation, regarding choice of hardware sets, makes this solution ideal for almost every building type.

Verifications

The following verifications are held:

- Product quality according to DIN EN 13241-1
- Durability test according to DS/EN 12605: 2000

Management systems

The following management systems are in place:

- Quality management system as per DIN EN ISO 9001:2008
- Environmental management system as per DIN EN ISO 14001:2009

Additional information

For detailed building physics characteristics please refer to the CE marking and to the accompanying documents.

2 Materials used

Primary materials

The primary materials used are listed in the LCA (see Section 7).

Declarable substances

The product contains no substances from the REACH candidate list (declaration from 01. Oktober 2012). Lindab carries out a regular review of the list.

....

All relevant safety data sheets are available from Lindab A/S.

3 Construction process stage

Processing recommendations – installation

Observe the manufacturer's instructions for interim storage, processing, assembly/installation and information on compatibility.

www.lindab.dk

4 Use stage

Emissions to the environment Reference service life (RSL)

Emissions to air and soil can not be quatified.

The RSL information was provided by the manufacturer. The RSL shall refer to the declared technical and functional performance of the product within the building. It shall be established in accordance with specific rules set out in the European product standards and shall also take into account ISO 15686-1, -2, -7 and -8. Where European product standards provide guidance on deriving the RSL, such guidance shall have priority. If it is not possible to determine the service life as RSL in accordance with ISO 15686, the table "Nutzungsdauern von Bauteilen zur Lebenszyklusanalyse nach BNB" ("Service life of building components for life cycle analysis in accordance with

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

page 7

the Sustainable Construction evaluation system" of the German Federal Institute for Research on Building, Urban Affairs and Spatial Development) can be used. For further information and explanations refer to www.nachhaltigesbauen.de

For this EPD the following applies:

For a "Cradle to Grave" EPD (life cycle declaration covering all modules in the stages A to C) a declaration of the RSL is required. See 6.3.3.

The service life of sectional doors from Lindab A/S is specified with 20 years according to ISO 15686 (see Table 1).

The service life solely applies to the characteristics specified in this EPD or the corresponding references.

The reference service life (RSL) does not reflect the actual life span which is usually determined from the service life and when the building is renovated. It does not provide any indication of durability, nor does it constitute a warranty regarding the product's performance characteristics, nor any kind of guarantee.

Durability test according EN 12605 was made. The declared liftetime is 100.000 door cycles.

Information according ISO 15686 see Table 1:

Publication date: 14.06.2017

Data are based on a few quantities wented. LDI steel LDI door is built of insulated sections of extruted polystyrene, with steel surface.	polystyrene panels and aluminum frames with SAN fillings. I doors and constructed assets (fe In-use condition grade 3 3 3 NA	company Lindab. Material ectional doors. LDP LDP door is made of extruted aluminum profiles and fillings from styrol acryl nitril (SAN).					
Data are based on a few quantities went placed by the control of t	years of expert expierence of the eassessed for different types of some constructed assets (fed in the condition of extruted polystyrene panels and aluminum frames with SAN fillings. Il doors and constructed assets (fed in the condition of extra in th	company Lindab. Material ectional doors. LDP LDP door is made or extruted aluminum profiles and fillings from styrol acryl nitril (SAN).					
LDI steel LDI door is built of insulated sections of extruted polystyrene, with steel surface. Inspection of sectiona Factor-factor category A - inherent performance level B - design level C - work execution level D - indoor environment	E assessed for different types of si LDC steel LDC door is a combined solution from the LDI and LDP. It's a combination of extruted polystyrene panels and aluminum frames with SAN fillings. Il doors and constructed assets (fe In-use condtion grade 3 3 NA	LDP LDP door is made or extruted aluminum profiles and fillings from styrol acryl nitril (SAN).					
LDI door is built of insulated sections of extruted polystyrene, with steel surface. Inspection of sectiona Factor-factor category A - inherent performance level B - design level C - work execution level D - indoor environment	LDC door is a combined solution from the LDI and LDP. It's a combination of extruted polystyrene panels and aluminum frames with SAN fillings. Il doors and constructed assets (fe In-use condtion grade 3 3 NA	LDP door is made of extruted aluminum profiles and fillings from styrol acryl nitril (SAN).					
insulated sections of extruted polystyrene, with steel surface. Inspection of sectiona Factor-factor category A - inherent performance level B - design level C - work execution level D - indoor environment	from the LDI and LDP. It's a combination of extruted polystyrene panels and aluminum frames with SAN fillings. Il doors and constructed assets (fe In-use condtion grade 3 3 NA	LDP door is made of extruted aluminum profiles and fillings from styrol acryl nitril (SAN).					
Factor-factor category A - inherent performance level B - design level C - work execution level D - indoor environment	In-use condtion grade 3 3 NA	. ,					
A - inherent performance level B - design level C - work execution level D - indoor environment	3 3 3 NA	data for two deographical					
level B - design level C - work execution level D - indoor environment	3 3 NA	data for two geographical					
B - design level C - work execution level D - indoor environment	3 NA	data for two geographical					
C - work execution level D - indoor environment	3 NA	data for two geographical					
D - indoor environment	NA NA	data for two geographical					
		data for two geographical					
	NA NA	sub-areas "inner city" and "Outer areas" not applicable on product level					
F - usage conditions	3						
G - maintenance level	2						
All of the degradation a	gents that are expected to be of si	gnificance are included.					
Critical property	Performance requirement Safety consequence	Refence					
	2	EN13241 EN12604					
Torsion springs	4	EN13241					
breakage.	•	EN12604 EN13241					
clearance, derailment.	2	EN12604					
•	4	EN13241 EN12604					
Bearings on shafts	4	EN13241					
	_	EN12604 EN13241					
malfunction.	3	EN12453/EN12978 EN13241					
malfunction.	3	EN12453/EN12978					
Sideseal wear.	6	EN13241 EN12425/EN12426					
r Object-specific	Reference in use condition	Factor value Φ					
normal	normal	1,0					
normal	normal	1,0					
normal	normal	1,0					
not applicable	not applicable	X					
normal (inner city)	low (outer areas)	1,1					
normal	normal	1,0					
high	high	0,9					
20 ±5years		19,8					
Data are generated on	the basis of a systematic procedu reviewed by third party	are but are not critically					
Data are provided by non	reviewed, research documentation	and company documents					
	G - maintenance level All of the degradation a Critical property Suspension cables breakage. Torsion springs breakage. Door rollers clearance, derailment. Hinges clearance, breakage. Bearings on shafts breakage. Safaty edge system malfunction. Photocell malfunction. Sideseal normal normal normal normal normal normal normal normal inormal normal normal high 20 ±5 years Data are generated or	All of the degradation agents that are expected to be of si Critical property Performance requirement Suspension cables breakage. Torsion springs breakage. Door rollers clearance, derailment. Hinges clearance, breakage. Bearings on shafts breakage. Safaty edge system malfunction. Photocell malfunction. Sideseal wear. Object-specific Reference in use condition normal high high 20 ±5years with factor					

Table 1: Information according ISO 15686

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

page 9

5 End-of-life stage

Possible end-of-life stages

The sectional door can be shipped to central collecting points. They are generally shredded and sorted into their original pure components. Residual fractions are thermally recycled or disposed of in landfill.

6 Life Cycle Assessment (LCA)

Environmental product declarations are based on life cycle analyses (LCAs), which use material and energy flows for the calculation and subsequent representation of environmental impacts.

As the basis for this, a Life Cycle Analysis (LCA) was prepared for the sectional doors. The LCA is in conformity with EN 15804 and the requirements set out in the international standards EN ISO 14040, EN ISO 14044, ISO 21930 and EN ISO 14025.

The LCA is representative of the products presented in the Declaration and the specified reference period.

6.1 Definition of goal and scope

Goal

The goal of the LCA is to demonstrate the environmental impacts of the sectional door. In accordance with EN 15804, the environmental impacts covered by this Environmental Product Declaration are presented for the product stage in the form of basic information. Apart from these, no other environmental impacts have been specified.

Data quality, data availability, and geographical and timerelated system boundaries

The specific data originate from the fiscal year 2015. They were collected from Lindab and ift-Rosenheim at the the plant at Jels DK 6630 Roedding. The generic data originate from the GaBi ts professional and construction materials databases. No other generic data were used for the calculation. Data gaps were filled with comparable data. The system boundaries were adhered to and upstream processes were considered. No additional data were collected; instead, generic data were used.

The life cycle was modelled using the sustainability software tool "GaBi ts" for the development of Life Cycle Assessments.

Data were collected following the 1 percent rule, meaning that all energy and mass shares exceeding 1 percent were included, as were lower energy and mass shares. In this way, the total of all negligible processes does not exceed 5 percent of the energy and mass input.

Scope/system boundaries

The system boundaries refer to the supply of raw materials and purchased parts, and to the manufacture of the sectional door (cradle to grave). No additional data from pre-suppliers/subcontractors were taken into consideration.

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

page 10

Product group: doors

Cut-off criteria

All company data (for module A3) collected, i.e. all commodities/input and raw materials used, thermal energy and electricity consumption, were taken into consideration.

The boundaries cover only the production-relevant data. Building sections/parts of facilities that are not relevant to the manufacture of the products were excluded.

The average transport distances to the plant at Jels DK 6630 Roedding were determined for the different product groups. The average was obtained by calculation based on the percentages by mass. Since the preproducts are delivered only by hauliers, capacity utilisation is assumed to be high. 85 % was assumed. The basis for 85 % is removed from Gabi database.

The criteria for the exclusion of inputs and outputs as set out in EN 15804 are fulfilled. It can be assumed that the total of negligible processes per life cycle stage does not exceed 1 percent of the mass/primary energy. This way the total of negligible processes does not exceed 5 percent of the energy and mass input. The life cycle calculation also includes material and energy flows that account for less than 1 percent.

6.2 Inventory analysis

Goal

All material and energy flows are described below. The processes covered are presented as input and output parameters and refer to the declared/functional unit.

Life cycle stages

The LCA calculations were carried out for the stage "cradle to grave" (i.e. the product stage). The modules considered were those corresponding to the manufacturing process, i.e. A1-A3.

Benefits

The following credits are indicated in accordance with EN 15804:

- Credits from recycling
- Credits (thermal and electrical) from utilisation.

Allocation of co-products

The manufacture of sectional door does not produce any allocations.

Allocations for re-use, recycling and recovery

If the sectional door are re-used/recycled and recovered during the product stage (rejects), the resulting material is reintroduced into the production process. The system boundaries of the sectional door were set following their disposal, with termination of their waste characteristics.

Secondary material

The use of secondary materials in Module A3 by the company Lindab A/S was considered. Secondary materials are not used.

Inputs

The LCA includes the following production-relevant inputs:

Energy

The electricity mix is based on "Strommix Dänemark" (Danish electricity mix 2015).

Gas is based on "Erdgas Dänemark" (danish natural gas 2015).

EPD sectional door page 11

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Water

The water consumed by the individual process steps for the manufacture of the sectional door was approx. 2 I per m² unit.

The consumption of fresh water specified in the results originates from (among other sources) the upstream processes of the pre-products.

Raw materials/pre-products:

The chart below shows the share of raw materials/pre-products in %.

Figure 2: material LDI steel door

Figure 3: material LDP door

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

page 12

Figure 4 material LDC steel door

No.	Material		Mass in %				
	Series and material	LDI steel	LDP	LDC steel			
1	Steel	74	44	66			
2	Aluminum	8	28	16			
3	Plastics (TPU/PE)	7	7	5			
4	Polystyrene	9	1	7			
5	SAN	0	18	3			
6	Paint	2	2	2			
7	Drive mechanism	1	1	1			

Ancillary materials and consumables

Around 0,107g of ancillary materials and consumables are used per m² sectional door

Outputs

The LCA includes the following production-relevant outputs per m² of sectional door:

Waste

Secondary raw materials were included in the benefits. See results (Impact assessment).

Waste water

The manufacture of the sectional door produces 2 I of waste water per m².

6.3 Impact assessment

Goal

The impact assessment covers inputs and outputs. The impact categories applied are named below:

Impact categories

The models for impact assessment were applied as described in EN 15804-A1.

The impact categories presented in the EPD are as follows:

- Depletion of abiotic resources (fossil fuels);
- Depletion of abiotic resources (elements);

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

page 13

- · Acidification of soil and water;
- Ozone depletion;
- Global warming;
- Eutrophication;
- Photochemical ozone creation.

Waste

The waste generated during the production of 1 m² of sectional door evaluated and shown separately for each of the three main fractions, namely trade wastes, special wastes and radioactive wastes. Since waste handling is modelled within the system boundaries, the amounts shown refer to the deposited wastes. A portion of the waste indicated is generated during the manufacture of the pre-products.

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Results for m² of LDI steel sectional door		A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Environmental impacts	Unit															
Global warming potential (GWP 100)	kg CO2 equiv.	5,40E+01	1,02E-01	1,91E+00	0,00	1.07E-01	9.91E+00	0,00	0,00	2,79E+00	0,00	2,25E-01	1,01E-01	6,26E-02	6,19E+00	-2,05E+00
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC 11 equiv.	5,41E-07	4,71E-13	9,35E-14	0,00	6.46E-12	1.17E-07	0,00	0,00	1,72E-13	0,00	1,00E-12	4,66E-13	4,44E-11	1,29E-11	-4,44E-09
Acidification potential of soil and water (AP)	kg SO2 equiv.	1,47E-01	6,24E-04	2,14E-03	0,00	5.53E-04	2.76E-02	0,00	0,00	3,96E-03	0,00	6,40E-04	6,18E-04	1,74E-04	5,10E-04	-1,03E-02
Eutrophication potential (EP)	kg PO43- equiv.	1,49E-02	1,56E-04	2,29E-04	0,00	2.95E-05	2.82E-03	0,00	0,00	5,34E-04	0,00	5,99E-05	1,55E-04	1,56E-05	9,89E-05	3,23E-04
Formation potential of tropospheric ozone (POCP)	kg C2H4 equiv. 6,13E-02 -2,59E-04 2,68E-04 0,00 8.62E-05 2.10E-02 0,00 0,00 2,84E-04 0,00 4,00E-05										-2,57E-04	1,20E-05	6,16E-05	3,12E-03		
Abiotic depletion potential - non-fossil resources (ADP - elements)	kg Sb equiv.	3,38E-04	6,82E-09	3,92E-08	0,00	1.33E-08	3.63E-04	0,00	0,00	1,67E-06	0,00	1,20E-07	6,75E-09	2,03E-08	3,90E-08	-5,70E-06
Abiotic depletion potential - fossil resources (ADP – fossil fuels)	MJ 7,46E+02 1,41E+00 7,68E+00 0,00 5.18E+00 1.83E+02 0,00 0,00 2,76E+01 0,00										2,40E+00	1,40E+00	6,78E-01	8,79E-01	-5,11E+01	
Use of resources	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	5,58E+01	8,02E-02	6,26E+01	0,00	3,74E-02	4,68E-02	0,00	0,00	3,74E+01	0,00	1,55E+00	7,94E-02	3,05E-01	1,26E-01	-6,85E+01
Use of renewable primary energy resources used as raw materials (material use)	MJ	6,22E+01	0,00	-6,22E+01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	1,18E+02	8,02E-02	3,74E-01	0,00	3,74E-02	4,68E-02	0,00	0,00	3,74E+01	0,00	1,55E+00	7,94E-02	3,05E-01	1,26E-01	-6,85E+01
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	8,35E+02	1,42E+00	7,86E+00	0,00	4,19E+00	5,24E+00	0,00	0,00	2,78E+01	0,00	4,11E+00	1,40E+00	1,09E+00	6,70E+01	-8,97E+01
Use of non-renewable primary energy resources used as raw materials (material use)	MJ	6,60E+01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-6,60E+01	0,00
Total use of non-renewable primary energy resources (primary energy and non-renewable primary energy resources used as raw materials) (energy + material use)	ry energy re- MJ 7.69E+02 1.42E+00 7.86E+00 0.00 4.19E+00 5.24								0,00	2,78E+01	0,00	4,11E+00	1,40E+00	1,09E+00	1,01E+00	-8,97E+01
Use of secondary material kg 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0											0,00	0,00	0,00	0,00	0,00	0,00

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Results for m² of LDI steel sectional door (part 2)		A1-A3	A4	A5	В1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Use of resources	Unit															
Use of renewable secondary fuels	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Use of non-renewable secondary fuels	MJ	0,00	0,00	7,86E+00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Use of net fresh water	m ³	2,13E-01	2,01E-04	0,00	0,00	6.39E-05	7.98E-05	0,00	0,00	7,09E-03	0,00	2,11E-03	1,99E-04	4,71E-04	1,34E-02	-1,53E-01
Waste categories	Unit	A1-A3	A4	A5	В1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste for landfill	kg	2,52E-06	1,07E-07	5,63E-09	0,00	2.85E-09	7.32E-08	0,00	0,00	4,55E-08	0,00	1,93E-09	1,06E-07	6,93E-10	6,49E-09	-1,61E-05
Disposed non-hazardous waste	kg	2,04E+00	1,19E-04	3,83E-02	0,00	9.55E-05	6.78E-02	0,00	0,00	1,01E-01	0,00	2,90E-03	1,18E-04	6,58E-04	1,20E+00	-2,77E+00
Disposed radioactive waste	kg	8,91E-03	2,02E-06	7,15E-05	0,00	2.47E-05	2.98E-03	0,00	0,00	6,99E-05	0,00	6,81E-04	2,00E-06	1,65E-04	5,27E-05	-1,53E-02
Output material flows	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Materials for recycling	kg	1,37E-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1.62E+01	0,00	0,00
Materials for energy recovery	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1.97E+00	0,00	0,00
Exported energy (electricity)	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Exported energy (thermal energy)	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Results for m ² of LDP sectional door	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Environmental impacts																
Global warming potential (GWP 100)	kg CO ₂ equiv.	4,48E+01	9,74E-02	1,86E+00	0,00	1.07E-01	9.91E+00	0,00	0,00	2,79E+00	0,00	2,14E-01	4,82E-02	6,13E-02	1,24E+00	-2,25E+01
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC 11 equiv.	2,53E-07	4,48E-13	9,21E-14	0,00	6.46E-12	1.17E-07	0,00	0,00	1,72E-13	0,00	9,52E-13	2,22E-13	4,35E-11	2,87E-12	-9,14E-09
Acidification potential of soil and water (AP)	kg SO ₂ equiv.	1,25E-01	5,93E-04	2,13E-03	0,00	5.53E-04	2.76E-02	0,00	0,00	3,96E-03	0,00	6,08E-04	2,94E-04	1,71E-04	2,82E-04	-1,13E-01
Eutrophication potential (EP)	kg PO ₄ ³- equiv.	1,39E-02	1,49E-04	2,26E-04	0,00	2.95E-05	2.82E-03	0,00	0,00	5,34E-04	0,00	5,70E-05	7,35E-05	1,53E-05	4,41E-05	-5,99E-03
Formation potential of tropospheric ozone (POCP)	kg C₂H₄ equiv.	2,55E-02	-2,47E-04	2,67E-04	0,00	8.62E-05	2.10E-02	0,00	0,00	2,84E-04	0,00	3,81E-05	-1,22E-04	1,18E-05	2,96E-05	-4,55E-03
Abiotic depletion potential - non-fossil resources (ADP - elements)	kg Sb equiv.	3,40E-04	6,48E-09	3,81E-08	0,00	1.33E-08	3.63E-04	0,00	0,00	1,67E-06	0,00	1,14E-07	3,21E-09	1,98E-08	1,81E-08	-1,45E-05
Abiotic depletion potential - fossil resources (ADP – fossil fuels.)	MJ	7,42E+02	1,34E+00	7,67E+00	0,00	5.18E+00	1.83E+02	0,00	0,00	2,76E+01	0,00	2,28E+00	6,64E-01	6,64E-01	5,67E-01	-2,61E+02
Use of resources	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	6,46E+01	7,63E-02	4,77E+01	0,00	3.74E-02	4.68E-02	0,00	0,00	3,74E+01	0,00	1,47E+00	3,77E-02	2,99E-01	7,12E-02	-1,61E+02
Use of renewable primary energy resources used as raw materials (material use)	MJ	4,74E+01	0,00	-4,74E+01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total use of renewable primary energy recourses (primary		Ī														
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	1,12E+02	7,63E-02	3,71E-01	0,00	3.74E-02	4.68E-02	0,00	0,00	3,74E+01	0,00	1,47E+00	3,77E-02	2,99E-01	7,12E-02	-1,61E+02
energy and renewable primary energy resources used as	MJ MJ	1,12E+02 6,66E+02	7,63E-02 1,35E+00	3,71E-01 7,84E+00	0,00	3.74E-02 4.19E+00	4.68E-02 5.24E+00	0,00	0,00	3,74E+01 2,78E+01	0,00	1,47E+00 3,91E+00	3,77E-02 6,67E-01	2,99E-01 1,07E+00	7,12E-02 1,07E+02	-1,61E+02 -3,29E+02
energy and renewable primary energy resources used as raw materials) (energy + material use) Use of non-renewable primary energy excluding non-		,	,					·			, i	,				,
energy and renewable primary energy resources used as raw materials) (energy + material use) Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials Use of non-renewable primary energy resources used as	MJ	6,66E+02	1,35E+00	7,84E+00	0,00	4.19E+00	5.24E+00	0,00	0,00	2,78E+01	0,00	3,91E+00	6,67E-01	1,07E+00	1,07E+02	-3,29E+02

page 17

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Results for m ² of LDP sectional door (part 2)	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	B6	В7	C1	C2	C3	C4	D
Use of resources																
Use of renewable secondary fuels	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Use of non-renewable secondary fuels	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Use of net fresh water	m³	1,79E-01	1,91E-04	2,73E-03	0,00	6.39E-05	7.98E-05	0,00	0,00	7,09E-03	0,00	2,00E-03	9,46E-05	4,62E-04	2,70E-03	-4,05E-01
Waste categories	Unit	A1-A3	A4	A5	В1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste for landfill	kg	4,05E-03	1,02E-07	5,60E-09	0,00	2.85E-09	7.32E-08	0,00	0,00	4,55E-08	0,00	1,83E-09	5,04E-08	6,78E-10	1,06E-08	-1,01E-05
Disposed non-hazardous waste	kg	1,97E+00	1,13E-04	3,70E-02	0,00	9.55E-05	6.78E-02	0,00	0,00	1,01E-01	0,00	2,76E-03	5,60E-05	6,45E-04	2,13E+00	-7,91E+00
Disposed radioactive waste	kg	1,16E-02	1,93E-06	7,05E-05	0,00	2.47E-05	2.98E-03	0,00	0,00	6,99E-05	0,00	6,48E-04	9,53E-07	1,61E-04	1,60E-05	-2,68E-02
Output material flows	Unit	A1-A3	A4	A5	В1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Materials for recycling	kg	1,37E-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,41E+01	0,00	0,00
Materials for energy recovery	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	4,63E+00	0,00	0,00
Exported energy (electricity)	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Exported energy (thermal energy)	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Results for m² of LDC steel sectional door	Unit	A1-A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
Environmental impacts																
Global warming potential (GWP 100)	kg CO ₂ equiv.	4,92E+01	1,07E-01	1,96E+00	0,00	1.07E-01	9.91E+00	0,00	0,00	2,79E+00	0,00	2,34E-01	5,28E-02	6,84E-02	2,73E+00	-9,67E+00
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC 11 equiv.	2,60E-07	4,90E-13	9,47E-14	0,00	6.46E-12	1.17E-07	0,00	0,00	1,72E-13	0,00	1,04E-12	2,42E-13	4,86E-11	5,91E-12	-6,60E-09
Acidification potential of soil and water (AP)	kg SO ₂ equiv.	kg SO ₂ equiv. 1,43E-01 6,49E-04 2,15E-03 0,00 5.53E-04 2.76E-02 0,00 0,00 3,96E-03								0,00	6,65E-04	3,21E-04	1,91E-04	3,59E-04	-5,25E-02	
Eutrophication potential (EP)	kg PO ₄ ³⁻ equiv. 1,48E-02 1,62E-04 2,30E-04 0,00 2.95E-05 2.82E-03 0,00 0,00 5,34E-04 0,00								6,23E-05	8,04E-05	1,70E-05	6,18E-05	-2,07E-03			
Formation potential of tropospheric ozone (POCP)	kg C ₂ H ₄ -equiv. 5,63E-02 -2,70E-04 2,68E-04 0,00 8.62E-05 2.10E-02 0,00 0,00 2,84E-04 0,00								4,16E-05	-1,34E-04	1,31E-05	4,01E-05	5,44E-04			
Abiotic depletion potential - non-fossil resources (ADP - elements)	kg Sb equiv.	3,46E-04	7,09E-09	4,01E-08	0,00	1.33E-08	3.63E-04	0,00	0,00	1,67E-06	0,00	1,24E-07	3,51E-09	2,22E-08	2,49E-08	-9,92E-06
Abiotic depletion potential - fossil resources (ADP – fossil fuels.)									0,00	2,49E+00	7,26E-01	7,41E-01	6,80E-01	-1,29E+02		
Use of resources	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	4,54E+01	8,34E-02	4,77E+01	0,00	3.74E-02	4.68E-02	0,00	0,00	3,74E+01	0,00	1,61E+00	4,13E-02	3,34E-01	9,00E-02	-1,14E+02
Use of renewable primary energy resources used as raw materials (material use)	MJ	4,74E+01	0,00	-4,74E+01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as	MJ									3.74E+01	0,00	1.61E+00		0.045.04	9,00E-02	-1,14E+02
raw materials) (energy + material use)	IVIS	9,28E+01	8,34E-02	3,76E-01	0,00	3.74E-02	4.68E-02	0,00	0,00	3,74E+01	0,00	1,615+00	4,13E-02	3,34E-01	,	
	MJ	9,28E+01 7,08E+02	8,34E-02 1,47E+00	3,76E-01 7,87E+00	0,00	3.74E-02 4.19E+00	4.68E-02 5.24E+00	0,00	0,00	2,78E+01	0,00	4,28E+00	4,13E-02 7,29E-01	1,19E+00	6,59E+01	-1,81E+02
raw materials) (energy + material use) Use of non-renewable primary energy excluding non-				·								,	·		6,59E+01 -6,52E+01	-1,81E+02 0,00
raw materials) (energy + material use) Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials Use of non-renewable primary energy resources used as	MJ	7,08E+02	1,47E+00	7,87E+00	0,00	4.19E+00	5.24E+00	0,00	0,00	2,78E+01	0,00	4,28E+00	7,29E-01	1,19E+00		

Publication date: 14.06.2017

Results for m ² of LDC steel sectional door (part 2)	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Use of resources																
Use of renewable secondary fuels	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Use of non-renewable secondary fuels	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Use of net fresh water	m³	1,93E-01	2,09E-04	3,01E-03	0,00	6.39E-05	7.98E-05	0,00	0,00	7,09E-03	0,00	2,19E-03	1,03E-04	5,15E-04	5,91E-03	-2,74E-01
Waste categories	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste for landfill	kg	9,60E-04	1,11E-07	5,65E-09	0,00	2,85E-09	7,32E-08	0,00	0,00	4,55E-08	0,00	2,01E-09	5,51E-08	7,57E-10	9,83E-09	-1,58E-05
Disposed non-hazardous waste	kg	1,74E+00	1,24E-04	0,0394	0,00	9,55E-05	6,78E-02	0,00	0,00	1,01E-01	0,00	3,01E-03	6,13E-05	7,20E-04	1,94E+00	-5,27E+00
Disposed radioactive waste	kg	8,92E-03	2,11E-06	7,23E-05	0,00	2,47E-05	2,98E-03	0,00	0,00	6,99E-05	0,00	7,09E-04	1,04E-06	1,80E-04	2,73E-05	-2,07E-02
Output material flows	Unit	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Materials for recycling	kg	1,37E-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,75E+01	0,00	0,00
Materials for energy recovery	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,59E+00	0,00	0,00
Exported energy (electricity)	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Exported energy (thermal energy)	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

EPD sectional door page 20

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

ift ROSENHEIM

Product group: doors

6.4 Interpretation, LCA presentation and critical review

Evaluation

Interpretation LDI steel-sectional doors:

The production phase (modules A1-A3) contributes app. 30 % of the overall results for all the environmental impact assessment categories, which are bilanzed. The main impact in this phase related to the extraction of raw materials (A1) for the production of steel.

Module A4 shows the transport to the distribution/construction site. Since the distance is relatively short, the environmental impact of the factor "Transport" is of only secondary importance.

In module B3 the repair of the doors the impacts are calculated for a service life of 20 years. The abiotic depletion potential elements (ADPE) in this scenario has up to 20 %, as expected it is mainly related with the extraction of raw materials for the production of steel, for the spare parts.

In the end-of-life phase, there are loads and benefits (module D) considered. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process.

Interpretation LDP-sectional doors:

The production phase (modules A1-A3) contributes app. 20 % of the overall results for all the environmental impact assessment categories. The main impact in this phase related to the extraction of raw materials (A1) for the production of aluminium.

Module A4 shows the transport to the distribution/construction site. Since the distance is relatively short, the environmental impact of the factor "Transport" is of only secondary importance.

In module B3 the repair of the doors the impacts are calculated for a service life of 20 years. The abiotic depletion potential elements (ADPE) in this scenario has up to 20 %, as expected it is mainly related with the extraction of raw materials for the production of steel, for the spare parts.

In the end-of-life phase, there are loads and benefits (module D) considered. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process.

EPD sectional door page 21

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

Interpretation LDC steel-sectional doors:

The production phase (modules A1-A3) contributes app. 25 %-30 % of the overall results for all the environmental impact assessment categories. The main impact in this phase related to the extraction of raw materials (A1) for the production of steel and aluminium.

Module A4 shows the transport to the distribution/construction site. Since the distance is relatively short, the environmental impact of the factor "Transport" is of only secondary importance.

In module B3 the repair of the doors the impacts are calculated for a service life of 20 years. The abiotic depletion potential elements (ADPE) in this scenario has up to 20 %, as expected it is mainly related with the extraction of raw materials for the production of steel, for the spare parts.

In the end-of-life phase, there are loads and benefits (module D) considered. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process.

For all the doors the following statement is relevant:

In the modules A4 and C2 (all transport modules) , values for POCP are negative due to emission profile modelled for the selected transportation process and of the characterisation method used in /CML 2001/ for the calculation of the POCP. Transportation processes are

responsible for the emission of NOx in the ground layer atmosphere.

NO in particular can have an ozone depleting effect that is reflected in /CML 2001/ by

assigning a negative characterisation factor to this substance. However, although these negative values may appear unusual, it should be considered that POCP is only one of the analysed environmental impact categories. All other potential impacts would increase with greater transportation distances, showing that transportation is a process leading to net environmental burdens. Furthermore, even for POCP, transportation processes needed for supply of

materials and product distribution only have limited counterbalance effects on the overall LCA results.

The values calculated from the life cycle assessment can be used for building certification.

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

page 22

Figure 5: environmental impacts of LDI steel doors

Figure 6: environmental impacts of LDP doors

EPD sectional door page 23

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

Figure 7: environmental impacts of LDC steel doors

Report

The LCA underlying this EPD was developed according to the requirements set out in EN ISO 14040 and EN ISO 14044 as well as EN 15804 and EN ISO 14025. For reasons of confidentiality, it is not addressed to third parties. It is deposited with the ift Rosenheim. The results and conclusions reported to the target group are complete, correct, without bias and transparent. The results of the study are not designed to be used for comparative statements intended for publication.

Critical review

The critical review of the life cycle assessment was carried out by the independent verifier Patrick Wortner.

7 General information regarding the EPD

Comparability

This EPD was prepared in accordance with EN 15804 and is therefore only comparable with those EPDs that also comply with the requirements set out in EN 15804.

Any comparison must refer to the building context and the same boundary conditions of the various life cycle stages.

For comparing EPDs of construction products, the rules set out in EN 15804 (Clause 5.3) apply.

Communication

The communications format of this EPD meets the requirements of EN 15942:2011 and is therefore the basis for B2B communication. Only the nomenclature has been changed according to EN 15804.

Verification

Verification of the Environmental Product Declaration is documented in accordance with the ift "Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations) in accordance with the requirements set out in EN ISO 14025.

This Declaration is based on the ift PCR Document "Türen und Tore: PCR-TT-2.1 : 2018".

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

The European standard EN 15804 serves as the core PCR a)

Independent verification of the declaration and statements according to EN ISO 14025:2010

☐ Internal ☑ External

Independent third-party verifier: b)

Patrick Wortner

a) Product category rules
b) Optional for business-to-business communication, mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4).

page 24

Revisions of this document

No.	Date	Note	Practitioner of the LCA	Verifier
1	14.06.2017	External verification and approval	F.Stöhr	P.Wortner
2	02.01.2019	Extension cradle to grave	F.Stöhr	P.Wortner
3	09.07.2019	Review	V.Zwick	P.Wortner

Publication date: 14.06.2017

ift ROSENHEIM

Product group: doors

Literaturverzeichnis

 Ökologische Bilanzierung von Baustoffen und Gebäuden

 Wege zu einer ganzheitlichen Bilanzierung (LCA of building materials and buildings – Routes to integrated LCA)

Published by: Eyerer, P.; Reinhardt, H.-W. Birkhäuser Verlag, Basel, 2000

[2] Leitfaden Nachhaltiges Bauen (Guidance on Sustainable Building)

Published by: German Federal Ministry of Transport, Building and Housing Berlin, 2013

[3] GaBi 6: Software und Datenbank zur Ganzheitlichen Bilanzierung (Gabi 6: Software and database for LCA) Published by: IKP Universität Stuttgart and PE Europe GmbH Leinfelden-Echterdingen, 1992-2014

[4] Ökobilanzen (LCA). Klöpffer, W.; Grahl, B. Wiley-VCH-Verlag, Weinheim, 2009

[5] EN 15804:2012+A1:2013

Sustainability of construction works – Environmental product declarations – Rules for the product categories. Beuth Verlag GmbH, Berlin

[6] EN 15942:2011

Sustainability of construction works – Environmental product declaration – Communication format business-to-business
Beuth Verlag GmbH, Berlin

[7] ISO 21930:2007-10

Sustainability in building construction – Environmental declaration of building products
Beuth Verlag GmbH, Berlin

[8] EN ISO 14025:2011-10

Environmental labels and declarations – Type III environmental declarations – Principles and procedures Beuth Verlag GmbH, Berlin

[9] EN ISO 16000-9:2006-08

Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishing – Emission test chamber method Beuth Verlag GmbH, Berlin

[10] EN ISO 16000-11:2006-06

Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishing – Sampling, storage of samples and preparation of test specimens
Beuth Verlag GmbH, Berlin

[11] DIN ISO 16000-6:2004-12

Indoor air – Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA® sorbent, thermal desorption and

gas chromatography using MS/FID Beuth Verlag GmbH, Berlin

[12] DIN EN ISO 14040:2009-11

Environmental management – Life cycle assessment – Principles and framework Beuth Verlag GmbH, Berlin

[13] DIN EN ISO 14044:2006-10

Environmental management – Life cycle assessment – Requirements and guidelines Beuth Verlag GmbH, Berlin

[14] DIN EN 12457-1:2003-01

Characterization of waste – Leaching; Compliance test for leaching of granular waste materials and sludges – Part 1: One stage batch test at a liquid to solid ratio of 2 l/kg and with particle size below 4 mm (without or with size reduction)
Beuth Verlag GmbH, Berlin

[15] DIN EN 12457-2:2003-01

Characterization of waste – Leaching; Compliance test for leaching of granular waste materials and sludges – Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg and with particle size below 4 mm (without or with size reduction)

Beuth Verlag GmbH, Berlin

[16] DIN EN 12457-3:2003-01

Characterization of waste – Leaching; Compliance test for leaching of granular waste materials and sludges – Part 3: Two stage batch test at a liquid to solid ratio of 2 l/kg and 8 l/kg for materials with high solid content with particle size below 4 mm (without or with size reduction). Beuth Verlag GmbH, Berlin

[17] DIN EN 12457-4:2003-01

Characterization of waste – Leaching; Compliance test for leaching of granular waste materials and sludges – Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg with particle size below 10 mm (without or with size reduction)

Beuth Verlag GmbH, Berlin

[18] DIN EN 13501-1:2010-01

Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests
Beuth Verlag GmbH, Berlin

[19] DIN 4102-1:1998-05

Fire behaviour of building materials and building components – Part 1: Building materials; concepts, requirements and tests
Beuth Verlag GmbH, Berlin

[20] OENORM S 5200:2009-04-01

Radioactivity in construction materials Beuth Verlag GmbH, Berlin

[21] DIN/CEN TS 14405:2004-09

Characterization of waste - Leaching behaviour tests -

Publication date: 14.06.2017

Product group: doors

Up-flow percolation test (under specified conditions) Beuth Verlag GmbH, Berlin

[22] VDI 2243:2002-07 Recycling-oriented product development Beuth Verlag GmbH, Berlin

[23] Commission Directive 2009/2/EC amending, for the purpose of its adaptation to technical progress, for the 31st time, Council Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances (15 January 2009)

[24] ift Guideline NA-01/3 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltprodukt-deklarationen (Guidance on preparing Type III Environmental Product Declarations) ift Rosenheim, August 2014

[25] Bundesimmissionsschutzgesetz – BImSchG (Federal Immission Law) Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen (Law on harmful environmental impacts by air contamination, noise, vibrations and similar processes), 18 July 2017

[26] Chemikaliengesetz – ChemG (Chemicals Act) Gesetz zum Schutz vor gefährlichen Stoffen (Law on protection against hazardous substances) Subdivided into Chemicals Law and a series of regulations; of relevance here: Gesetz zum Schutz vor gefährlichen Stoffen (Law on protection against hazardous substances), 18 July 2017

[27] Chemikalien-Verbotsverordnung – ChemVerbotsV (Chemicals Prohibition Regulation) Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach dem Chemikaliengesetz (Regulation on bans and restrictions of the placing on the market of hazardous substances, formulations and products covered by the Chemicals Law), 18 July 2017

[28] Gefahrstoffverordnung – GefStoffV (Hazardous substances regulation) Verordnung zum Schutz vor Gefahrstoffen (Regulation on protection against hazardous substances), 29 March, 2017

[29] PCR Türen und Tore. Product Category Rules nach ISO 14025 und EN 15804". ift Rosenheim, January 2018

[30] Forschungsvorhaben "EPDs für transparente Bauelemente". ift Rosenheim, 2011

[31] Fact Sheet Steel and raw materials, worldsteel

association, June 2016

[32] Global Aluminium Recycling, International Aluminium Institute, January 2013

[33] Gabi Modelling Principles 2016, thinkstep, January 2016 http://www.gabisoftware.com/fileadmin/GaBi_Databases/GaBi_Databas e_Upgrade_2016_Documents_for_website_upload/GaBi _Modelling_Principles_2016.pdf

[34] Manual for the EPD assistant, thinkstep, February 2014

Publication date: 14.06.2017

Product group: doors

page 27

8 Annex

Description of life cycle scenarios for sectional door

Prod	uct sta	age	Co struc sta	ction			U	se sta	ge			E	ind-of-l	ife stag	e	Benefits and loads be- yond the system boundaries
A 1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Raw material supply	Transport	Manufacture	Transport	Construction/Installation	Use	Inspection, maintenance, cleaning	Repair	Exchange/Replacement	Improvement/Modernization	Operational energy use	Operational water use	Deconstruction	Transport	Waste management	Disposal	Re-use Recovery Recycling potential
✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Calculation of the scenarios was based on a building service life of 50 years (as RSL in accordance with Section 4 – Reference Service Life [RSL]).

The standard scenarios selected are presented in bold type. They were also used for calculating the indicators in the summary table.

✓ Included in the LCA MNA module not assessed

Publication date: 14.06.2017

Product group: doors

A1-A3 Product stage

A1 Raw materials

- Extraction and processing of raw materials (e.g. mining processes) and biomass production.
- Generation of electricity, steam and heat from primary energy resources, also including their extraction, refining and transport.
- Extraction of primary aluminium and steel (no secondary material is used)

A2 Transport to the production site

Transportation up to the factory gate and internal transport.

A3 Manufacturing process

- Manufacturing of products and co-products
- Manufacturing of packaging

The product stage comprises the acquisition of all raw materials, products and energy transport, transport to the production site, packaging and waste processing up to the "end of waste" state or final disposal. The LCA results are declared in aggregated form for the product stage, which means, that the sub-modules A1, A2 and A3 are declared as one module A1-A3. Components are manufactured in the EU. Manufacturing of sectional doors LDI steel, LDP, LDC steel in the production site located in Roedding, Denmark.

A4 Transport to site

Nr.	Scenario	Description	
A4	Direct shipment to	40 t truck, 85 percent capacity used, approx. 100 km to domestic construction site	
	construction site/branch	Weight LDI steel: 20.3 kg/m ² Weight LDP: 19.3 kg/m ² Weight LDC steel: 21.1 kg/m ²	

A4 Transport to site				
Environmental impacts	Unit	LDI steel	LDP	LDC steel
Global warming potential (GWP 100)	kg CO2 equiv.	1.02E-01	9.74E-02	1.07E-01
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC 11 equiv.	4.71E-13	4.48E-13	4.90E-13
Acidification potential of soil and water (AP)	kg SO2 equiv.	6.24E-04	5.93E-04	6.49E-04
Eutrophication potential (EP)	kg PO43- equiv.	1.56E-04	1.49E-04	1.62E-04
Formation potential of tropospheric ozone (POCP)	kg C2H4 equiv.	-2.59E-04	-2.47E-04	-2.70E-04
Abiotic depletion potential - non-fossil resources (ADP - elements)	kg Sb equiv.	6.82E-09	6.49E-09	7.09E-09
Abiotic depletion potential - fossil resources (ADP – fossil fuels.)	MJ	1.41E+00	1.34E+00	1.47E+00

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

Use of resources	Unit	LDI steel	LDP	LDC steel
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	8.02E-02	7.63E-02	8.34E-02
Use of renewable primary energy resources used as raw materials (material use)	MJ	0.00	0.00	0.00
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	8.02E-02	7.63E-02	8.34E-02
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	1.42E+00	1.35E+00	1.47E+00
Use of non-renewable primary energy resources used as raw materials (material use)	MJ	0.00	0.00	0.00
Total use of non-renewable primary energy resources (primary energy and non-renewable primary energy resources used as raw materials) (energy + material use)	MJ	1.42E+00	1.35E+00	1.47E+00
Use of secondary material	kg	0.00	0.00	0.00
Use of renewable secondary fuels	MJ	4.61E-06	4.38E-06	4.80E-06
Use of non-renewable secondary fuels	MJ	7.02E-05	6.67E-05	7.30E-05
Use of net fresh water	m ³	2.01E-04	1.91E-04	2.09E-04
Waste categories	Unit	LDI steel	LDP	LDC steel
Hazardous waste for landfill	kg	1.07E-07	1.02E-07	1.11E-07
Disposed non-hazardous waste	kg	1.19E-04	1.13E-04	1.24E-04
Disposed radioactive waste	kg	2.02E-06	1.93E-06	2.11E-06
Output material flows	Unit	LDI steel	LDP	LDC steel
Components for re-use	kg	0.00	0.00	0.00
Materials for recycling	kg	0.00	0.00	0.00
Materials for energy recovery	kg	0.00	0.00	0.00
Exported energy (electricity)	MJ	0.00	0.00	0.00
Exported energy (thermal energy)	MJ	0.00	0.00	0.00

A5 Construction / Installation

No.	Usage scenario	Description			
A 5	manual	Sectional doors are going to installed without the need of additional lifting means! installation material: 0.375 kg disposal packaging: 0.760 kg truck from fitter: 45 km			

Since only one scenario is used, the results are shown in the summary table.

Publication date: 14.06.2017

Product group: doors

B1 use of the installed product

See chapter 5 Emissions to the environment. No emissions are significant.

B2 Maintenance

No.	Scenario	Description		
	Normal use:	Annual functional check, visual inspection and, if neces-		
B2.2	For a service life of 20 years,	sary, repair.		
DZ.Z	Door cycles per year:	0.005 kg/year (0.1 kg in a service life of 20 years) of lubri-		
	7500 door cycles/year	cation grease		

Ancillary materials, energy use and waste materials as well as transport distances during maintenance are negligible.

Since only one scenario is used, the results are shown in the summary table.

B3 Repair (included)

No.	Scenario	Description
В3	Normal use For a service life of 20 years*, 7500 door cycles/year	One-time replacement of 0.30 kg control circuit board, 0.19 kg EPDM gaskets, 2.16 kg hardware parts, 0.7kg EPS 0.20 kg polyamide 6.6.

^{*} Assumptions for evaluation of possible environmental impacts; statements made do not constitute any guaranty or warranty of the company for a lifetime of 20 years.

For updated information of sectional door refer to the respective instructions for assembly/installation, operation and maintenance at www.lindab.dk.

Since only one scenario is used, the results are shown in the summary table.

B4 Replacement

There is no replacement provided in the assumed useful life of 20 years.

B5 Modification / Refurbishment

There is no alteration / renewal provided of the sectional doors.

B6 Operational energy use

	Do Operational chargy acc			
No.	Usage scenario	Description		
B6.1	power-operated industrial load	each drive: 6.85 kWh/20a power (incl. standby) (7500 cycles per year)		
B6.2	power-operated residental load	each drive: 1.00 kWh/20a power (incl. standby) (1100 cycles per year)		

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

B6 operational energy use			
Environmental impacts	Unit	B 6.1	B 6.2
Global warming potential (GWP 100)	kg CO2 equiv.	2.79	0.41
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC 11 equiv.	1.72E-013	2.51E-14
Acidification potential of soil and water (AP)	kg SO2 equiv.	3.96E-03	5.79E-04
Eutrophication potential (EP)	kg PO43- equiv.	5.34E-04	7.8E-05
Formation potential of tropospheric ozone (POCP)	kg C2H4 equiv.	2.84E-04	4.14E-05
Abiotic depletion potential - non-fossil resources (ADP - elements)	kg Sb equiv.	1.67E-06	2.44E-07
Abiotic depletion potential - fossil resources (ADP – fossil fuels.)	MJ	27.60	4.03
Use of resources	Unit	B 6.1	B 6.2
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	37.40	5.46
Use of renewable primary energy resources used as raw materials (material use)	MJ	0.00	0.00
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	37.40	5.46
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw materials	MJ	27.8	4.06
Use of non-renewable primary energy resources used as raw materials (material use)	MJ	0.00	0.00
Total use of non-renewable primary energy resources (primary energy and non-renewable primary energy resources used as raw materials) (energy + material use)	MJ	27.8	4.06
Use of secondary material	kg	0.00	0.00
Use of renewable secondary fuels	MJ	0.00	0.00
Use of non-renewable secondary fuels	MJ	0.00	0.00
Use of net fresh water	m ³	7.09E-03	1.03E-03
Waste categories	Unit	B 6.1	B 6.2
Hazardous waste for landfill	kg	4.55E-08	6.65E-09
Disposed non-hazardous waste	kg	0.10	1.47E-02
Disposed radioactive waste	kg	6.99E-05	1.02E-05
Output material flows	Unit	B 6.1	B 6.2
Components for re-use	kg	0.00	0.00
Materials for recycling	kg	0.00	0.00
Materials for energy recovery	kg	0.00	0.00
Exported energy (electricity)	MJ	0.00	0.00
Exported energy (thermal energy)	MJ	0.00	0.00

There are no transport expenditures during the energy use in the building. Auxiliary, operating materials, waste material and other scenarios can be neglected.

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

B7 Operational water use

There is no water consumption when operating correctly.

C1 Deconstruction (included)

No.	Scenario	Description	
C1	Deconstruction Removal of the door from the building	Sectional door: 99 % deconstruction The energy consumed (e.g. demolition excavator) for deconstruction is negligible. Any consumption arising is marginal. Cannot be quantified.	

There are no relevant inputs or outputs in this scenario.

Expenditures during the construction of a building can't be estimated, they only can be declared as part of the construction process

C2 Transport (included)					
No.	Scenario	Description			
C2	Transport	Transport to collecting point using 40 t truck, 80% ca-pacity used, 50 km distance			
Since only one scenario is used, the results are shown in the summary table.					

C3 Waste management			
No.	Scenario	Description	
С3	Disposal	Removal of door leaf, recirculation of aluminium (90 %), recirculation of remaining metals (90 %), Residual fraction in waste incineration plant	
The below table presents the disposal processes and their percentage by mass/weight. The calcula-tion is			

The below table presents the disposal processes and their percentage by mass/weight. The calcula-tion is based on the above mentioned shares in percent related to the declared unit of the product system.

C3 Disposal	unit	LDI steel	LDP	LDC steel
Collection method, collected separately	kg	20.10	19.10	20.90
Collection method, collected as a mixed construction waste	kg	0.00	0.00	0.00
Repatriation method, for reusing	kg	0.00	0.00	0.00
Repatriation method, for recycling	kg	15.95	13.50	17.50
Repatriation method, for energy recycling	kg	3.25	4.90	3.10
Removal	kg	0.90	0.70	0.30
Assumptions for the scenario development, e.g. for the transport	useful units	-	-	-

Declaration code: EPD-LD-GB-24.1

Publication date: 14.06.2017

Product group: doors

page 33

C4 Disposal (included)		
No.	Scenario	Description
C4	Disposal	The losses of the re-use/recycling chain (C1 and C3) are modelled as "landfilled".

Loads, (e.g. emissions) from waste disposal in module C4 are considered part of the product system under study, according to the "polluter pays principle". If however this process generates energy such as heat and power from waste incineration or landfill the potential benefits from utilisation of such energy in the next product system are assigned to module D and are calculated using current average substitution processes.

D Benefits and loads beyond the system boundaries (included)			
No.	Scenario	Description	
D	Recycling potential	Aluminium recyclate from C3.1 excluding the recyclate used in A3 replaces 85 % of aluminium compound [33] Steel scrap from C3.1 excluding the scrap used in A3 replaces 85% of steel [32] Benefits from waste incinerator: electricity replaces Denmark electricity mix (The electricity mix is based on "Strommix Dänemark" Danish electricity mix 2015)	

Imprint

LCA preperation by

ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim

Programme operator

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim Phone: 0 80 31/261-0 fax: 0 80 31/261 290 E-Mail: info@ift-rosenheim.de

www.ift-rosenheim.de

declaration holder

Lindab A/S Finnmarken 1 Jels DK 6630 Roedding

notes

This EPD is mainly based on the work and findings of the Institut für Fenstertechnik e.V., Rosenheim (ift Rosenheim) and specifically on the ift-Guideline NA.01/1 – Guidance on the Preparation of Type III Environmental Product Declarations.

The publication and all of its parts are protected by copyright. Any utilisation outside the confined limits of the copyright provisions is not permitted without the consent of the publishers and is punishable. In particular, this applies to any form of reproduction, translations, storage on microfilm and the storage and processing in electronic systems.

Lavout

ift Rosenheim GmbH - 2018

Pictures Lindab A/S

© ift Rosenheim, 2018

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim

Telefon: +49 (0) 80 31/261-0 Telefax: +49 (0) 80 31/261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de