机器人驱动与运动控制

第四章 经典分散运动控制

4.3 独立关节位置PID控制器

华东理工大学信息科学与工程学院

卿湘运

2024年1月

● 回顾

机器人关节电机控制系统组成原理

规划器指令:

2

- 控制器设计
 - ▶ 通用电机模型 —— 内含关节电机线性简化模型

- PID控制器结构?
- 控制器参数?

● 仅含位置环的PID控制器

- > 应用场合
 - 对速度轨迹没有要求的位置随动系统

● 位置-速度双环PID控制器基本原理

▶ 优点

- 速度校正器误差为零,则位置误差为零,可以简化位置校正器,易 于整定位置环
- 内环的存在有利于保证系统稳定和提高系统动态响应
- 便于引入速度前馈

- 位置-速度双闭环PID控制器的设计
 - 分别设计速度校正器和位置校正器
 - 速度校正器——比例积分(PI)控制器 $C_v = K_v \frac{1 + T_v S}{S}$ 积分用于消除惯性环节,使系统对斜坡信号的稳态跟踪误差有界
 - 位置校正器——比例(P)控制器 $C_p = K_p$
 - > 系统框图

6

- 传递函数
 - 系统前向通道传递函数

$$G(s) = K_{p} \frac{K_{v}(1 + T_{v}s)}{s} K_{m} \frac{1}{1 + T_{m}s} \frac{1}{s} = \frac{K_{m}K_{p}K_{v}(1 + T_{v}s)}{s^{2}(1 + T_{m}s)}$$

ightharpoonup 系统反馈通道传递函数 $H(s)=1+rac{s}{K_p}$

8

● 控制器参数整定

▶ 系统开环传递函数

$$G(s)H(s) = \frac{K_{\rm m}K_{\rm p}K_{\rm v}(1+T_{\rm v}s)}{s^2(1+T_{\rm m}s)} (1+\frac{s}{K_{\rm p}}) = \frac{K_{\rm m}K_{\rm p}K_{\rm v}(1+T_{\rm v}s)(1+\frac{1}{K_{\rm p}}s)}{\frac{s^2(1+T_{\rm m}s)}{\mathbb{II}型系统}}$$

- ▶ 二阶系统校正的一般原则
 - —— 首先消除被控对象的实极点
- > 令 $\frac{T_{\text{v}} = T_{\text{m}} }{T_{\text{v}}}$,则前向通道和开环传递函数分别简化为

$$G(s) = \frac{K_{\rm m} K_{\rm p} K_{\rm v}}{s^2} \qquad G(s) H(s) = \frac{K_{\rm m} K_{\rm p} K_{\rm v} (1 + \frac{1}{K_{\rm p}} s)}{s^2}$$

- 控制器参数整定
 - 简化后的系统开环传递函数

$$G(s)H(s) = \frac{K_{\rm m}K_{\rm p}K_{\rm v}(1 + \frac{1}{K_{\rm p}}s)}{s^2}$$

- 开环极点: $p_1 = p_2 = 0$
- 开环零点: z₁ = -K_p

- 控制器参数整定
 - > 系统闭环传递函数

$$W(s) = \frac{\Theta_{\rm m}(s)}{\Theta_{\rm md}(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{K_{\rm m}K_{\rm p}K_{\rm v}}{s^2 + K_{\rm m}K_{\rm v}s + K_{\rm m}K_{\rm p}K_{\rm v}} = \frac{1}{1 + \frac{1}{K_{\rm p}}s + \frac{1}{K_{\rm p}K_{\rm v}}\frac{1}{K_{\rm m}}s^2}$$

二阶系统传递函数标准形式

$$W(s) = \frac{\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}$$

 $W(s) = \frac{\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}$ • 自然频率: $\omega_{\rm n} = \sqrt{K_{\rm m}K_{\rm p}K_{\rm v}}$ • 阻尼比: $\zeta = \frac{1}{2}\sqrt{\frac{K_{\rm m}K_{\rm v}}{K_{\rm p}}}$

闭环系统特征根——极点

$$s_{1,2} = -\zeta \omega_{\rm n} \pm \omega_{\rm n} \sqrt{\zeta^2 - 1}$$

≽ 结论:

只要 K_v 和 K_p 取正,闭环系统特征根就有负实部,系统稳定

● 控制器参数整定

位置校正器 K_p

速度校正器 $K_v \frac{1+T_v s}{s}$

▶ 首先,为消除被控对象实极点,设定:

$$T_{
m v} = T_{
m m}$$

u 如果给定了系统的期望动态响应 ——已知 $\frac{\omega_n}{\omega_n}$

根据

• 自然频率: $\omega_{\rm n} = \sqrt{K_{\rm m} K_{\rm p} K_{\rm v}}$

• 阻尼比: $\zeta = \frac{1}{2} \sqrt{\frac{K_{\rm m} K_{\rm v}}{K_{\rm p}}}$

一般根据系统类型 (欠、临界、过阻尼) 和上升时间确定

> 可计算位置和速度增益

$$K_{\rm v} = \frac{2\zeta\omega_{\rm n}}{K_{\rm m}}$$

$$K_{\rm p} = \frac{\omega_{\rm n}}{2\zeta}$$

> 系统稳定条件

 $\zeta > 0$

● 控制器参数整定

- > 控制器参数理论值的简化计算过程
 - 1. 设定系统阶跃响应5%误差带调节时间 t_s 和阻尼比 ζ
 - 2. 根据下表计算自然频率 ω_n

类型	阻尼比	自然频率	特点及适用场合				
欠阻尼	$1 > \zeta > 0$	$\omega_{\rm n} = \frac{3.5}{\zeta t_{\rm s}}$	系统以衰减振荡形式逼近期望值,当取 $\zeta = 0.707$ 时,可以兼顾快速性和小超调				
临界阻尼	ζ=1	$\omega_{\rm n} = \frac{4.75}{t_{\rm s}}$	系统无超调逼近期望值,响应速度低于 欠阻尼情况,是无超调响应的理想情况, 常用于计算理想的PID参数初值				
过阻尼	ζ>1	$\omega_{\rm n} = \frac{3.3}{(\zeta - \sqrt{\zeta^2 - 1})t_s}$	系统无超调,缓慢逼近期望值,ζ越大, 系统响应越慢,仅适用于对响应速度要 求不高、不能允许超调的场合				

3. 根据公式计算控制器参数

$$T_{\rm v} = T_{\rm m}$$
 $K_{\rm p} = \frac{\omega_{\rm n}}{2\zeta}$ $K_{\rm v} = \frac{2\zeta\omega_{\rm n}}{K_{\rm m}}$

- 控制器参数整定
 - > 计算理论值的意义
 - 估算合理的初值,避免系统失稳,保证调试安全
 - ➤ 工程中的实际操作方法 —— PID参数整定
 - 根据理论模型计算控制器初值
 - 让系统跟踪阶跃、正弦等标准输入信号,根据实际响应调整PID参数
 - 按照P、I、D的顺序反复调整, 使系统输出符合预期
 - P 提高系统响应速度和精度,过大会导致振荡、失稳
 - I 减小稳态误差,过大会导致超调严重或积分饱和
 - D 改善动态性能和抑制偏差变化,过大会引入高频干扰

- 扰动响应 ——考察系统抑制干扰的能力
 - 系统输出与干扰力矩的传递函数 ——假设系统期望输入为零

2024/2/23

15

● 扰动响应

 > 系统输出与干扰力矩的传递函数
 $\frac{\Theta_{md}(s)}{\tau_{md}(s)} = \frac{\frac{1}{K_p K_v} \frac{1}{K_m} s}{(1 + \frac{1}{K_p} s + \frac{1}{K_p K_v} \frac{1}{K_m} s^2)(1 + T_v s)}$

- ▶ 闭环系统对扰动的响应时间 ——决定了对干扰的恢复时间,越小越好
 - 取决于与三个极点相关的时间常数

$$s_{1} = -\frac{1}{T_{v}} \longrightarrow T_{v} \qquad s_{2,3} = -\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2} - 1} \longrightarrow \frac{1}{\xi \omega_{n}}$$

- 系统从扰动偏差恢复的时间常数: $T_R = \max\{T_v, 1/\zeta \omega_n\}$
- 闭环系统对扰动的增益 —— 决定了对干扰的响应幅度,越小越好

 $\frac{K_{\rm d}}{K_{\rm p}K_{\rm v}K_{\rm m}}$

● 稳态误差

$$K_{m}K_{p}K_{v}(1+T_{v}s)(1+\frac{1}{K_{p}}s)$$
系统开环传递函数
$$G(s)H(s) = \frac{s^{2}(1+T_{m}s)}{II型系统}$$

- \triangleright 误差与输入的关系 $E_{\theta}(s) = \frac{1}{1 + G(s)H(s)} \Theta_{\text{md}}(s)$
- > 系统对输入响应的稳态误差 ——终值定理

$$\lim_{t\to\infty} e(t) = \lim_{s\to 0} sE_{\theta}(s)$$

- ightharpoonup 对单位加速度输入 $\Theta_{\mathrm{md}}(s) = \frac{1}{s^3}$
 - 稳态误差:

$$\lim_{s \to 0} sE_{\theta}(s) = \lim_{s \to 0} \left(s \cdot \frac{1}{s^{3}} \cdot \frac{1}{1 + GH} \right) = \lim_{s \to 0} \frac{1}{K_{\text{m}} K_{\text{p}} K_{\text{v}} (1 + \frac{1}{K_{\text{p}}} s)} = \frac{1}{K_{\text{m}} K_{\text{p}} K_{\text{v}}}$$

$$s^{2} (1 + \frac{1}{K_{\text{p}}} s)$$

增大控制增益,可以 减小关节跟踪加速度 输入信号的稳态误差

- 稳态误差
 - ▶ II型系统对典型输入的稳态误差
 - 对阶跃输入(常值)的稳态误差为零
 - 对斜坡输入(一次曲线)的稳态误差为零 —— <mark>速度为常值</mark>

位置为常值

- 对加速度(二次曲线)输入的稳态误差有界 加速度为常值
- 对急动度(三次曲线)输入的稳态误差为无穷大 —— 急动度为常值
- 机器人运动控制中的典型位置曲线

● 实例 — 工作于竖直平面的单关节机器人

▶ 由电压或电流型放大器驱动电机,连杆质量和杆长的理论值与实际值之间均存在5%的负偏差。设初始关节角度为0°,减速器传动比为N=50。

	项目	符号	取值	单位	
	额定电压	$u_{\rm r}$	24	V	
	额定转速	$\omega_{ m r}$	258	rad/s	
	额定转矩	$ au_{ m r}$	8.82×10^{-2}	N⋅m	
ь	额定电流	$i_{ m r}$	1.09	A	
电机参数	电枢电阻	$R_{\rm a}$	2.49	Ω	
	电枢电感	$L_{ m a}$	6.10×10^{-4}	Н	
	转矩常数	$K_{\rm a}$	8.22×10^{-2}	$(N \cdot m)/A$	
	感应电动势常数	$K_{ m e}$	8.24×10^{-2}	V/(rad/s)	
	转子惯量	$I_{ m r}$	1.19×10^{-5}	$Kg \cdot m^2$	
	转子阻尼	$B_{ m r}$	4.10×10^{-4}	$(N \cdot m)/(rad/s)$	
	连杆质量	m	0.5	Kg	
_	连杆质心距转轴距离	l	0.1	m	
系统参数	负载惯量	I_1	5.0×10^{-3}	$Kg \cdot m^2$	
	关节阻尼	B_1	2.0×10^{-2}	$(N \cdot m)/(rad/s)$	
	电压增益	$K_{ m u}$	3	无	
	跨导增益	$K_{ m g}$	1	A/V	
	重力加速度	g	9.8	m/s^2	

- 实例 工作于竖直平面的单关节机器人
 - (1)设计双闭环位置控制系统,对控制器积分环节设置选择开关
 - ➤ 利用SIMULINK搭建仿真系统
 - 用于计算非线性力矩的参数 $m_d = m^*(1-5\%)$ 和 $L_d = L^*(1-5\%)$ 为理论值

- 实例 工作于竖直平面的单关节机器人
- (2)以临界阻尼和调节时间0.1s为条件,计算两种电机模式、减速器传动比为分别为N=10或50的位置PID控制器增益
 - ▶ 速度模式

$$T_{\rm m} = T_{\rm mv} = \frac{R_{\rm a}I_{\rm m}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm m}}$$
 $K_{\rm m} = K_{\rm mv} = \frac{K_{\rm a}K_{\rm u}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm m}}$ $K_{\rm d} = K_{\rm dv} = \frac{K_{\rm mv}R_{\rm a}}{K_{\rm a}K_{\rm u}}$

▶ 力矩模式

$$T_{\rm m} = T_{\rm m\tau} = \frac{I_{\rm m}}{B_{\rm m}}$$
 $K_{\rm m} = K_{\rm m\tau} = \frac{K_{\rm \tau}}{B_{\rm m}}$ $K_{\rm d} = K_{\rm d\tau} = \frac{1}{B_{\rm m}}$

➤ 电机模型参数和PID控制器增益

减速 比 <i>N</i>	速度模式					力矩模式						
	系统参数			PID参数		系统参数			PID参数			
	$T_{ m m}$	$K_{\rm m}$	$K_{\rm d}$	$T_{ m v}$	$K_{ m v}$	K_{p}	$T_{ m m}$	K_{m}	$K_{\rm d}$	$T_{ m v}$	$K_{ m v}$	K_{p}
10	0.02	29.74	300.28	0.02	3.19	23.75	0.10	134.75	1.64×10^{3}	0.10	0.71	23.75
50	0.004	31.56	318.65	0.004	3.01	23.75	0.03	196.65	2.39×10^{3}	0.03	0.48	23.75

● 实例 — 工作于竖直平面的单关节机器人

- (3)利用仿真系统,针对两种电机模式和减速比N=50的情况开展仿真验证,并给出速度和位置误差,要求系统跟踪如下位置输入:
 - 位置保持——使机器人保持在水平位置,即位置和速度期望值均为零
 - 斜坡轨迹——关节在1s内从水平位置以 $\pi/4$ rad/s 的速度逆时针等速运动1秒,然后停止1秒

- 位置S轨迹——关节轨迹等分为匀加速、匀速、 匀减速和静止4个阶段,各段运行时间均为1s, 给定关节加速度值±π/8rad/s²
- 速度S轨迹——关节轨迹等分为加加速、匀加速 、减加速度、匀速、加减速、匀减速、减减速 和静止8个阶段,各段时间间隔所图所示,总运 行时间为7s,给定关节急动度为±π/20rad/s³

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PD控制器作用下的位置保持响应

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PID控制器作用下的位置保持响应

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PD控制器作用下的斜坡输入响应

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PID控制器作用下的斜坡输入响应

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PD控制器作用下的位置S轨迹响应

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PID控制器作用下的位置S轨迹响应

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PD控制器作用下的速度S轨迹响应

- 实例 工作于竖直平面的单关节机器人
 - ▶ 位置PID控制器作用下的速度S轨迹响应

● 仿真结果分析

现象

▶ 原因

- 多数情况下,力矩模式电机比速度 ——在控制器作用下,力矩模式电机能 模式电机有更快的响应速度 保持输出力矩恒定
- 输入轨迹越平滑,跟踪误差越小 ——平滑轨迹的期望值突变更小,降低 了对系统动态特性的要求
- 在系统启动瞬间,关节都会偏离初 ——重力作用 始位置,之后在控制器作用下,开 始跟踪期望轨迹

- - PD控制器无法实现稳态误差为零 ——PD控制器仅依靠偏差产生输出,必 须有位置偏差,控制信号才不为零,才 能克服重力矩
- PID控制器可以实现静止时的稳态 ——积分环节对过程误差进行累计,即 误差为零
 - 便稳态位置误差为零,输出的控制信号 也不为零, 能够克服重力矩
- 指令
 - 位置PID控制器难以有效跟踪动态 ——无前馈PID控制器本质上是单纯的反 馈控制器,只有位置环存在偏差时,速度 环才有有效输入, 导致系统跟踪动态信号 时存在滞后

● 关于积分项

- > 积分项可以有效减小稳态误差
- ▶ 真实机器人中存在摩擦力、离心力、哥氏力等动态干扰,将使积分增益的整定变得困难
- 积分项可能导致过大的超调
- 和分还可能存在积分饱和现象——控制器输出信号达到驱动器上限

● 减小跟随误差的思路

- 1. 速度环和位置环均采用<mark>完整PID</mark>控制器,加入微分项和积分项
 - 问题1:需要整定的参数多,调试难度大
 - 问题2:位置环中的积分环节不利于系统稳定
- 2. 速度和加速度前馈 ——分散前馈
 - 利用期望速度和加速度,直接估算控制量,强化跟踪能力

分散前馈补偿

问题

考察一个通用电机位置闭环系统 如何确保无偏跟踪任意输入轨迹

▶ 思路

根据期望输入 $\Theta_{
m md}$ 设计一个参考输入 $\Theta_{
m md}$

$$\Theta_{\text{md}}'(s) = \frac{1}{W(s)} \boxed{\Theta_{\text{md}}(s)}$$
期望输入

如果用参考输入 Θ_{md} 替换期望输入 Θ_{md} ,则

$$\triangleright \quad \mathbb{H} \quad \Theta_{\mathrm{m}}(s) = W(s)\Theta_{\mathrm{md}}'(s) = W(s)\frac{1}{W(s)}\Theta_{\mathrm{md}}(s) = \Theta_{\mathrm{md}}(s)$$

33

† 分散前馈补偿

● 按输入补偿的前馈项设计方法

- **首先计算原闭环系统的传递函数** $W(s) = \frac{\Theta_{\rm m}(s)}{\Theta_{\rm md}(s)} = \frac{\overline{s}}{1 + \frac{CM}{s}}$
- > 然后计算参考输入

$$\Theta_{\mathrm{md}}'(s) = \frac{1}{W(s)}\Theta_{\mathrm{md}}(s) = (1 + \frac{s}{CM})\Theta_{\mathrm{md}}(s) = \Theta_{\mathrm{md}}(s) + \frac{1}{C}\frac{s}{M}\Theta_{\mathrm{md}}(s)$$
新增项

在原闭环系统中加入新增项

† 分散前馈补偿

- 按输入补偿的前馈项设计方法
 - 含新增项的系统框图

▶ 把新增项作用点移到闭环校正器之后

† 分散前馈补偿

- 机器人关节电机闭环控制系统的分散前馈补偿
 - > 参考输入计算公式

$$\Theta_{\mathrm{md}}'(s) = \frac{1}{W(s)}\Theta_{\mathrm{md}}(s) = \Theta_{\mathrm{md}}(s) + \frac{1}{C} \underbrace{\frac{s}{M}}_{\mathrm{md}}\Theta_{\mathrm{md}}(s)$$
 的 使 $\underbrace{\frac{s}{M}}_{\mathrm{mid}}\otimes \underbrace{\frac{s}{M}}_{\mathrm{mid}}\otimes \underbrace{\frac{s}{M}}$

> 关节电机通用模型

$$M(s) = \frac{K_{\rm m}}{1 + T_{\rm m}s}$$

▶ 得

$$\Theta_{\mathrm{md}}'(s) = \Theta_{\mathrm{md}}(s) + \frac{1}{C} \frac{1}{K_{\mathrm{m}}} s\Theta_{\mathrm{md}}(s) + \frac{1}{C} \frac{T_{\mathrm{m}}}{K_{\mathrm{m}}} s^{2}\Theta_{\mathrm{md}}(s)$$

$$= \Theta_{\mathrm{md}}(s) + \frac{1}{C} \frac{1}{K_{\mathrm{m}}} \Omega_{\mathrm{md}}(s) + \frac{1}{C} \frac{T_{\mathrm{m}}}{K_{\mathrm{m}}} \varepsilon_{\mathrm{md}}(s)$$

$$= \Theta_{\mathrm{md}}(s) + \frac{1}{C} \frac{1}{K_{\mathrm{m}}} \Omega_{\mathrm{md}}(s) + \frac{1}{C} \frac{T_{\mathrm{m}}}{K_{\mathrm{m}}} \varepsilon_{\mathrm{md}}(s)$$

速度前馈增益 加速前馈增益

根据关节期望轨迹可得

$$arOmega_{
m md}(s)$$
 —期望速度 $arepsilon_{
m md}(s)$ —期望加速度

● 机器人关节电机闭环控制系统的分散前馈补偿

参考输入 新增项 新增项 $\Theta_{\mathrm{md}}'(s) = \Theta_{\mathrm{md}}(s) + \frac{1}{C} \frac{1}{K_{\mathrm{m}}} \Omega_{\mathrm{md}}(s) + \frac{1}{C} \frac{T_{\mathrm{m}}}{K_{\mathrm{m}}} \varepsilon_{\mathrm{md}}(s)$

在原闭环系统中加入新增项

把新增项作用点移到校正环节之后

- 机器人关节电机闭环控制系统的分散前馈补偿
 - > 含速度和加速度前馈补偿的电机位置闭环控制系统

● 双闭环位置控制系统的分散前馈补偿

- ▶ 如何在两个校正器之间施加前馈补偿? ——先计算参考输入,再画系统框图
- ho 技巧:先把速度闭环传递函数 W_1 作为整体代入系统闭环传递函数 $W=rac{C_{
 m p}W_1rac{1}{s}}{1+C_{
 m p}W_1rac{1}{s}}$
- ightharpoonup 计算参考输入 $\Theta_{\mathrm{md}}'(s) = \frac{1}{W(s)}\Theta_{\mathrm{md}}(s)$ $W_1 = \frac{C_{\mathrm{v}}M}{1 + C_{\mathrm{v}}M}$ $M = \frac{K_{\mathrm{m}}}{1 + T_{\mathrm{m}}s}$
- ▶ 得

$$\Theta_{\mathrm{md}}'(s) = \Theta_{\mathrm{md}}(s) + \boxed{\frac{1}{C_{\mathrm{p}}}\Omega_{\mathrm{md}}(s)} + \boxed{\frac{1}{C_{\mathrm{p}}}\frac{1}{C_{\mathrm{v}}}\frac{1}{K_{\mathrm{m}}}\Omega_{\mathrm{md}}(s)} + \boxed{\frac{1}{C_{\mathrm{p}}}\frac{1}{C_{\mathrm{v}}}\frac{1}{K_{\mathrm{m}}}\varepsilon_{\mathrm{md}}(s)}$$
新增项 新增项 新增项

● 双闭环位置控制系统的分散前馈补偿

> 参考输入

$$\Theta_{\mathrm{md}}'(s) = \frac{1}{W(s)}\Theta_{\mathrm{md}}(s) = \Theta_{\mathrm{md}}(s) + \frac{1}{C_{\mathrm{p}}}\Omega_{\mathrm{md}}(s) + \frac{1}{C_{\mathrm{p}}}\frac{1}{C_{\mathrm{v}}}\frac{1}{K_{\mathrm{m}}}\Omega_{\mathrm{md}}(s) + \frac{1}{C_{\mathrm{p}}}\frac{1}{C_{\mathrm{v}}}\frac{1}{K_{\mathrm{m}}}\Omega_{\mathrm{md}}(s)$$
新增项 新增项

得到附加了新增前馈项的系统框图

把新增项作用点移动到校正器之后

● 双闭环位置控制系统的分散前馈补偿

> 参考输入

$$\Theta_{\mathrm{md}}'(s) = \frac{1}{W(s)}\Theta_{\mathrm{md}}(s) = \Theta_{\mathrm{md}}(s) + \frac{1}{C_{\mathrm{p}}}\Omega_{\mathrm{md}}(s) + \frac{1}{C_{\mathrm{p}}}\frac{1}{C_{\mathrm{v}}}\frac{1}{K_{\mathrm{m}}}\Omega_{\mathrm{md}}(s) + \frac{1}{C_{\mathrm{p}}}\frac{1}{C_{\mathrm{v}}}\frac{T_{\mathrm{m}}}{K_{\mathrm{m}}}\varepsilon_{\mathrm{md}}(s)$$

把新增项作用点移动到校正器之后,得

† 无前馈位置PID控制器

● 实例 — 工作于竖直平面的单关节机器人

▶ 由电流型放大器驱动电机, 连杆质量和杆长的理论值与 实际值之间均存在5%的负偏 差。设初始关节角度为0°, 减速器传动比为N=50。

	项目	符号	取值	单位
电机参数	额定电压	$u_{\rm r}$	24	V
	额定转速	$\omega_{ m r}$	258	rad/s
	额定转矩	$ au_{ m r}$	8.82×10^{-2}	N⋅m
	额定电流	$i_{ m r}$	1.09	A
	电枢电阻	$R_{\rm a}$	2.49	Ω
	电枢电感	$L_{ m a}$	6.10×10^{-4}	Н
	转矩常数	$K_{\rm a}$	8.22×10^{-2}	$(N \cdot m)/A$
	感应电动势常数	$K_{ m e}$	8.24×10^{-2}	V/(rad/s)
	转子惯量	$I_{ m r}$	1.19×10^{-5}	Kg⋅m ²
	转子阻尼	$B_{ m r}$	4.10×10^{-4}	$(N \cdot m)/(rad/s)$
系统参数	连杆质量	m	0.5	Kg
	连杆质心距转轴距离	l	0.1	m
	负载惯量	I_1	5.0×10^{-3}	$Kg \cdot m^2$
	关节阻尼	B_1	2.0×10^{-2}	$(N \cdot m)/(rad/s)$
	跨导增益	$K_{ m g}$	1	A/V
	重力加速度	g	9.8	m/s^2

- 实例 考察前馈补偿的效果
 - ▶ 设计分散前馈补偿双闭环位置PID控制系统,针对上例中的斜坡轨迹、位置S轨迹和速度S轨迹,再次进行仿真验证
 - (1) 利用SIMULINK搭建仿真系统

单关节机器人分散前馈补偿双闭环位置控制仿真系统

● 实例 — 考察前馈补偿的效果

> 跟踪斜坡轨迹

分析

- 1. 引入速度和加速度前馈后,位置响应曲线基本无滞后,速度 响应曲线只在速响应曲线只在速度突变处有明显偏差
- 2. 斜坡轨迹的 期望加速度在零 和两个极大值之 间切换,因此, 加速度前馈的补 偿作用不明显

● 实例 — 考察前馈补偿的效果

➤ 跟踪位置S轨迹

分析

引入速度和加速度前馈后, 速度前馈后, 位置响应曲线基本无滞后, 速度响应曲线 中有在初始时刻有小偏差

45

- 实例 考察前馈补偿的效果
 - ▶ 跟踪<mark>位置S轨迹 ——通过加速度曲线</mark>对比控制效果

- 1. 引入速度前馈后,加速度响应曲线在突变处明显变小
- 2. 进一步引入加速度前馈后,加速度偏差基本消失
- 3. 初始时刻的偏差,由重力矩干扰引起

● 实例 — 考察前馈补偿的效果

▶ 跟踪速度S轨迹

分析

- 1. 引入速度和加速度前馈后,位置响应曲线基本无滞后
- 2. 速度响应曲线 只有在初始时刻 有小偏差,且偏 差值小于跟踪位 置S轨迹时的速 度响应

47

- 实例 考察前馈补偿的效果
 - ➤ 跟踪速度S轨迹 ——通过加速度曲线对比控制效果

- 1. 引入速度前馈后,除开始时刻外,加速度响应曲线基本没有偏差
- 2. 进一步引入加速度前馈后,加速度偏差没有进一步减小,这是由于速度S轨迹的期望加速度没有突变,降低了对控制器的要求

分散前馈补偿

● 结论

- 速度和加速度前馈能有效提升系统跟踪动态指令的能力
- ▶ 设计合理的期望指令.有利于降低对控制器的要求

● 速度和加速度前馈设计过程总结

- 1. 计算系统闭环传递函数的倒数,得到前馈增益
- 2. 利用前馈增益把期望输入转换为参考输入
- 3. 将参考输入作用于原闭环系统校正器之后,实现对期望输入的 无偏跟踪

- 通用的前馈补偿位置PID控制器
 - 商用运动控制器常采用的结构

▶ 问题

• 对于多关节机器人,干扰力矩 τ_{md} 一般随机器人位置、速度和加速度变化,如何获得 U_{R} ?

● 以力矩模式电机为对象再次考察分散前馈

51

● 以力矩模式电机为对象再次考察分散前馈

控制力矩

● 以力矩模式电机为对象再次考察分散前馈

- > 速度前馈控制电压
- 前馈控制力矩 $\tau_{\rm vff}$ + $\tau_{\rm aff}$ _
- hicksim 加速度前馈控制电压 $U_{_{
 m aff}}$

根据动力学模型精确 生成理论驱动力矩

- $oldsymbol{
 egin{array}{c}
 oldsymbol{
 egin{
 egin{array}{c}
 oldsymbol{
 egin{array}{c}
 oldsymbol{
 egin{ar$
- 分散前馈补偿PID控制器的完整控制电压

 $U_{
m vff}$ + $U_{
m aff}$ + $U_{
m bf}$

 $= B_{\rm m} \omega_{\rm md} + I_{\rm m} \varepsilon_{\rm md}$

如果模型精确且干扰力矩 $au_{md}=0$,系统将精确跟踪期望轨迹

53

● 总结

- ➤ 分散前馈补偿PID控制器基于假想的常系数电机模型,计算量小,可以在低成本控制硬件分别运行各电机的位置PID控制器
- 上位机以固定的时序给每个关节控制器下发期望位置、速度和加速度,即可控制本关节跟踪期望轨迹
- ▶ 非线性程度较低的机器人系统:如低速直角坐标机器人、轮式机器人等,可以采用速度模式电机,其固有的速度负反馈环节(感应电动势),有利于提高系统在未建模扰动下的稳定性
- 关节电机工作于力矩模式时,控制器中各环节的输出量具有清晰的物理意义,有利于设计更复杂的控制算法,后续讨论以力矩模式电机为基础展开
- 受力矩电机分散前馈项物理意义的启发,可以考虑利用驱动空间逆动力学方程,计算补偿干扰力矩的控制电压

$$U_{\mathrm{vff}}$$
 + U_{aff} \Longrightarrow K_{τ} 分散前馈控制力矩 $\tau_{\mathrm{vff}} + \tau_{\mathrm{aff}} = B_{\mathrm{m}}\omega_{\mathrm{md}} + I_{\mathrm{m}}\varepsilon_{\mathrm{md}}$
干扰力矩 $\tau_{\mathrm{md}} = \Delta M_{\mathrm{m}}(\theta)\varepsilon_{\mathrm{m}} + V_{\mathrm{m}}(\theta, \ \dot{\theta})\omega_{\mathrm{m}} + G_{\mathrm{m}}(\theta)$ $\Longrightarrow U_{\mathrm{B}}$ 或 $U_{\tau\mathrm{ff}}$