

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет

имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУ «Информатика и системы управления»
*D.TD.	
КАФЕДРА	ИУ-7 «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

 $no\ ducциплине\ «Защита информации» <math>$ «Алгоритм шифрования AES»

Студент группы ИУ7-76Б	(Подпись, дата)	В. М. Мансуров (И.О. Фамилия)
Руководитель	(Подпись, дата)	<u>И.С.Чиж</u> (И.О. Фамилия)

содержание

\mathbf{B}	ВВЕДЕНИЕ				
1	Ана	алитическая часть	5		
	1.1	Алгоритм AES	5		
		1.1.1 Получение ключей раунда	5		
		1.1.2 Раунд шифрования	7		
	1.2	Режимы работы алгоритма AES	8		
	1.3	Режимы работы алгоритма CFB	8		
2	Koı	нструкторская часть	10		
	2.1	Разработка алгоритмов	10		
3	Tex	нологическая часть	11		
	3.1	Средства реализации	11		
	3.2	Реализация алгоритма	11		
	3.3	Тестирование	13		
За	клю	эчение	15		
C]	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1				

ВВЕДЕНИЕ

Шифрование информации — занятие, которым человек занимался ещё до начала первого тысячелетия, занятие, позволяющее защитить информацию от посторонних лиц.

Шифровальная алгоритм AES — алгоритм, разработанный в 2001 году Национальным универитетом стандатов и технологий США и пришедший на смену алгоритму AES.

Целью данной работы является реализация в виде программы на языке программирования С или С++ шифровального алгоритма AES в режиме работы CFB — режима параллельного сцепления блоков шифра.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- 1) изучить шифроовальный алгоритм AES и его режим работы CFB;
- 2) реализовать шифровальный алгоритм AES в виде программы, обеспечив возможности шифрования и расшифровки файла в режиме работы CFB:
- 3) протестировать разработанную программу, показать, что удаётся дешфировать все файлы;
- 4) описать и обосновать полученные результаты в отчёте о выполненной лабораторной работе.

1 Аналитическая часть

В этом разделе будут рассмотрен шифровальный алгоритм AES в режиме шифрования CFB.

1.1 Алгоритм AES

Шифровальная алгоритм AES (англ. Advanced Encryption Standart — AES) — симметричный блочнный шифровальный алгоритм, разработанный в 2001 году Национальный институтом стандартов и технологий США. Он использует блочное шифрование, длина блока фиксирована и равна 128 битам, длина ключа 128, 192 либо же 256 бит. Он состоит раундов шифрования, количество которых зависит от длины ключа: 10 раундов для ключа размером 128 бит, 12 раундов для ключа размером 192 бита и 14 раундов для ключа размером 256 бит.

Прежде чем перейти к раундам шифрования, происходит генерация ключей раунда (раундовых ключей) из исходного ключа, Рассмотрим, как это происходит.

1.1.1 Получение ключей раунда

Определим фунцию g, изменяющую четырёхбайтовое слово так, как указано на рисунке 1.1.

Ключей раундов k_i необходимо на 1 больше, чем количество раундов, т.е. 11 ключей раундов для основногоключа длиной 128 бит, 13 ключей раунда для основного ключа длиной 192 бита и 15 ключей раунда для основного ключа длиной 256 бит.

Функция g:

Рисунок 1.1 – Схема функции д

Алгоритм получения ключа раунда из исходного ключа преставлен в виде схемы алгоритма на рисунке 1.2.

Рисунок 1.2 – Схема функции д

1.1.2 Раунд шифрования

Раунд шифрования состоит из 5 следующих этапов

- 1) замена (англ. confussion);
- 2) процедура перестановки строк (англ. row-row mix procedure RR);
- 3) процедура перестановки столбцов (англ. row- $columns\ mix$ RC);
- 4) смешивание ключа (англ. $key \ mixing KM$).

Замена обеспечивает нелинейность алгоритма шифрования, обрабатываая каждый байт состояния, производя нелинейную замену байт с использованием таблицы замен.

Процедура перестановки строк представляет из себя циклический сдвиг строки ссостояний на количество байт, зависящее от номера строки.

Процедура перестановки столбцов 4 байта каждого столбца смешиваются с использовоанием обратимой линейной трансформации. На последнем раунду эта процедура не выполняется.

Смешивание ключа представляет из себя операцию XOR с ключом раунда, полученным заранее.

1.2 Режимы работы алгоритма AES

Режим шифрования — метод применения блочного шифра, позволяющий преобразовать последовательность блоков открытых данных в последовательность блоков зашифрованных данных.

Для AES рекомендованы следующие режими работы:

- 1) режим электронной кодовой книги (англ. $Electronic\ Code\ Bloc-ECB)$;
- 2) режим сцепления блоков (англ. Cipher Block Chaining CBC);
- 3) режим параллельноого сцепления блоков (англ. Parallel Cipher Block Chaining PCBC);
- 4) режим обратной связи по шифротексту (англ. $Cipher\ Feed\ Back-{
 m CFB});$
- режим обратной связи по выходу (англ. Output Feed Back OFB).
 В данной работе будет CFB.

1.3 Режимы работы алгоритма CFB

Алгоритм CFB схематично представлен на рисунке 1.3. Суть алгоритма заключается в том, что изначально берется блок из 128 битов ₀, который называется синхропосылкой. Вектор инициализации (или результаты прошлого XOR) шифруется алгоритмом AES или DES (в нашем случае AES). Затем результат суммируется по модулю 2 с блоком ₀ и при этом результат

используется для шифрования следующего блока. Таким образом каждый блок суммируется с результатом шифрования предыдущего блока.

Особенностью данного режима является распространение ошибки на всесь последующий текст. Применяется как правило для шифрования потков информации видео и аудио.

Вектор инициализации Процедура шифрования Открытый текст Зашифрованный Зашифрованный

Расшифрование в режиме CFB

текст

Рисунок 1.3 – Обобщенная схема алгоритма режима шифрования CFB

2 Конструкторская часть

В этом разделе будут представлены описания модулей программы, а также схема алгоритма шифроваания AES.

2.1 Разработка алгоритмов

На рисунках 2.1 представлены схемы алгоритма AES, раунда AES.

Рисунок 2.1 – Схема шифровального алгоритма AES

3 Технологическая часть

3.1 Средства реализации

Для программной реализации шифровальной машины был выбран язык C++ [2]. В данном языке есть все требующиеся инструменты для данной лабораторной работы. В качестве среды разработки была выбрана среда CLion [3].

3.2 Реализация алгоритма

Листинг 3.1 – Класс реализации режима CFB

```
1 class cfb {
       public:
 2
       explicit cfb (const vector < uint8 t>& vi);
 4
       string crypt(string message, bool decrypt = false);
5
6
       vector < block > divideBlocks (const vector < uint8 t > & message);
7
       vector < uint8 t > mergeBlocks (const vector < block > & blocks);
8
10
       vector < uint8 t > encrypt (vector < uint8 t > & block 128, const
          vector < uint8 t>& key);
       vector < uint8 t > decrypt (vector < uint8 t > & block 128, const
11
          vector < uint8 t>& key);
12
       void setVI(const vector<uint8 t>& vi);
13
14
15
       void print bloks(const vector<block> &blocks);
       void print message(const vector < uint8 t > message);
16
17|};
```

Листинг 3.2 – Класс шифрования и дешифрования AES

```
1 class aes: public | Encoder {
      public:
2
      block CryptBlock(const block& block128, const key& key128,
3
         bool decrypter = false);
       block EncryptBlock(const block& block128, const key& key128)
4
         override:
       block DecryptBlock(const block& block128, const key& key128)
5
         override;
6
      vector<key> GetKeys128(key key128, bool decrypter = false);
7
      void AddRoundKey(mtx& block, const key& roundKey);
8
      void SubBytes(mtx& block);
9
      void InvSubBytes(mtx& block);
10
      void ShiftRows(mtx& block);
11
      void InvShiftRows(mtx& block);
12
      void MixColumns(mtx& block);
13
      void InvMixColumns(mtx& block);
14
15
      mtx ArrayToMrx4x4(const block& block);
16
      block Mrx4x4ToArray(const mtx &mtx);
17
      void AddPadding(vector < uint8 t>& data);
18
      void RemovePadding(vector<uint8 t>& data);
19
       private
20
21
      // Уожение поля Галуа
22
       uint8_t GMul(uint8_t x, uint8_t y);
23
      AES MODE mode = AES128;
24
25|}
```

Листинг 3.3 – Реализация алгоритма AES

```
1 block aes:: EncryptBlock (const block & block 128, const key & key 128)
     {
       // Расширение ключа — KeyExpansion
       auto keys = GetKeys128(key128, false);
3
       // для удобства конвертируем в матрицу
5
6
       auto state = ArrayToMrx4x4(block128);
 7
       // Начальный раунд — сложение с основным ключом;
8
       AddRoundKey(state, keys[0]);
9
10
11
       // 9 раундов шифрования
       for (int i = 1; i < 10; i++)
12
       {
13
           SubBytes (state);
14
           ShiftRows (state);
15
           MixColumns(state);
16
           AddRoundKey(state, keys[i]);
17
       }
18
19
       // Финальный раунд
20
       SubBytes (state);
21
       ShiftRows(state);
22
23
       AddRoundKey(state, keys[10]);
24
       return Mrx4x4ToArray(state);
25
26|}
```

3.3 Тестирование

Тестирование разработанной программы производилось следующим образом: выбирались случайные значения ключа и вектора IV, а также получа-

лась случайная последовательность блоков для шифрования длиной n. Она зашифровывалась и расшифровывалась, проверялось совпадение полученного результата с начальными данными. Данная процедура повторялась n раз для значений n от 1 до 100.

Таблица 3.1 – Функциональные тесты

Длина, байты	Шифруемое значение	Результат работы
8	12345678	ҐЯЄ70ЌЗ
16	1234567812345678	ҐЯЄ70ЌЗРх ¬6@,
32	1234567812345678	ҐЯЄ70ЌЗРх ¬6@,
J∠	1234567812345678	vќ F°qħЎsЂGZд/\$

Вывод

В данном разделе были рассмотрены средства реализации, а также представлены листинги реализации шифровального алгоритма AES и режима работы CFB, произведено тестирование.

Заключение

В результате лабораторной работы был реализован в виде программы шифровальный алгоритма AES в режиме работы PCBC

Был и выполнены следующие задачи:

- 1) изучен шифроовальный алгоритм AES и его режим работы CFB;
- 2) реализован шифровальный алгоритм AES в виде программы, обеспечена возможность шифрования и расшифровки файла в режиме работы CFB;
- 3) протестирована разработанная программа;
- 4) описаны и обоснованы полученные результаты в отчёте о выполненной лабораторной работе.

Список использованных источников

- 1. И.М. Шолин. Алгоритм переносной шифровальной машины энигма. Кубанский государственный технологический университет.
- 2. Язык программирования C++. https://learn.microsoft.com/en-us/cpp/cpp-language-reference?view=msvc-170. дата обращения: 15.10.2023.
- 3. CLion. jetbrains.com. дата обращения: 15.10.2023.