

MINISTÉRIO DA DEFESA DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA Seção de Engenharia Elérica (SE/3)

Projeto de Sistemas Embarcados para Engenharia Elétrica

Trabalho 1

 1º Ten Arthur TRENTIN Bogovicz
 1º Ten Vinícius FUCHSHUBER dos Santos Mateus BORDALO Vieira da Silva

> Rio de Janeiro, RJ Março de 2025

1 Modelo do Sistema Mecânico

Figura 1: Esquemático Acionamento Delta Estrela

1.1 Dedução Acionamento Delta - Estrela

Para o circuito em Estrela:

$$I_L = I_f = \frac{V_f}{Z} = \frac{V_L}{Z\sqrt{3}} \tag{1}$$

Potência ativa em Estrela:

$$P = \sqrt{3}V_L I_L cos\theta = \frac{V_L^2}{Z} cos\theta \tag{2}$$

Para o circuito em Delta:

$$I_f = \frac{V_L}{Z} \tag{3}$$

$$I_L = \sqrt{3}I_F = \sqrt{3}\frac{V_L}{Z} \tag{4}$$

Potência ativa em Estrela:

$$P = \sqrt{3}V_L I_L cos\theta = 3\frac{V_L^2}{Z} cos\theta \tag{5}$$

Com isso, concluímos que:

- Para correntes de linha (drenado da rede): $I_L^{estrela} = \frac{1}{3} I_L^{delta}, \text{ corrente } 66,7\% \text{ menor na partida com estrela}.$
- Para correntes de fase (enrolamentos do motor): $I_F^{estrela} = \frac{1}{\sqrt{3}} I_F^{delta}, \text{ corrente } 42{,}3\% \text{ menor na partida com estrela}.$
- \bullet Para potência do motor: Potência fornecida ao motor em estrela é $\frac{1}{3}$ da potência em triângulo.
- Para o torque do motor: Como o torque é proporcional à potência ativa entregue, também em estrela é $\frac{1}{3}$ do torque em delta.

1.2 Problema Específico:

Figura 2: Dados Motor SEW-EURODRIVE DZ71K4

Nos dados do motor, as tensões indicadas são as possíveis tensões de operação do motor (380V e 220V).

Para uma potência nominal de 0,15kW, em 380V ele demandará 0,61A de corrente de linha da rede e em 220V ele demandará 1,06A da rede.

Para a ligação com tensão de linha 380V (considerando 0,61A com ligação

delta, regime comum de operação): $I_L^{estrela} = \frac{1}{3}I_L^{delta}, I_L^{delta} = 0,61A\ I_L^{estrela} = 0,35A, \text{ corrente de partida}$ reduzida.

$$P_{estrela} = \frac{P_{delta}}{3} = \frac{150}{3} = 50W.$$

Figura 3: Fluxograma do funcionamento simulado

Pinos e Funcionalidades 2

Tabela 1: Funcionalidade dos pinos.

Pino	Funcionalidade	
P2.7	Acionamento e desligamento do motor	
P2.6	Inverter sentido de rotação	
P2.2	Seleção do tempo de comutação	
P2.1	Seleção do tempo de comutação	
P2.0	Seleção do tempo de comutação	
P1.7	Aciona configuração estrela sentido horário	
P1.6	Aciona configuração estrela sentido anti-horário	
P1.5	Aciona configuração delta sentido horário	
P1.4	Aciona configuração delta sentido anti-horário	
P1.0	Indica espera de 3s para desligamento ou inversão	

A relação de pinos utilizados e suas funcionalidades pode ser vista na

Tabela 1. No simulador, os pinos P1 estão ligados a LEDs, enquanto os pinos P2 estão ligados a switches.

Para a escolha do tempo de comutação, o usuário deve agir nos pinos P1.0, P1.2 e P1.3, de forma que o tempo será configurado conforme mostrado na Tabela 2. Essa tabela mostra a relação entre as combinações de nível lógico 1 ou 0 dos switches (nível alto ou baixo) com o tempo configurado pelo programa.

P2.2P2.1P2.0 Tempo de Comutação (s)

Tabela 2: Seleção do tempo de comutação

As funções de ligar e desligar e configurar o sentido do motor são controladas pelos pinos P2.7 e P2.6 e estão explicadas na Tabela 3.

Pino	Nível Lógico	Função
P2.7	1	Desligado
P2.7	0	Ligado
P2.6	1	Sentido Horário
P2.6	0	Sentido Anti-Horário

Tabela 3: Seleção do estado e sentido do motor.

3 Considerações sobre o Firmware

3.1 Fluxograma

A Figura 4 mostra o fluxograma do funcionamento do programa. Ao iniciar o programa, o microcontrolador é direcionado para um estado denominado *IDLE*, no qual ele espera até que o motor seja ligado.

Após ligado, o dispositivo passa para um estado de configuração, no qual os inputs externos serão verificados para configurar o tempo de comutação e o sentido de rotação do motor.

Figura 4: Fluxograma do funcionamento do programa

Assim que a configuração for executada, o motor é acionado na sequência definida de acordo com os requisitos:

- 1. A configuração em estrela é acionada.
- 2. A configuração estrela é mantida pelo tempo de comutação selecionado.
- 3. A configuração estrela é desligada.
- 4. Após uma espera de 100ms, a configuração em delta é acionada.
- 5. A configuração em delta é mantida até que o motor seja desligado ou que o sentido de rotação seja invertido.

6. Caso o motor seja desligado ou seu sentido seja invertido, o circuito é desligado e após uma espera de 3s, o motor retorna para o estado *IDLE*.

3.2 Configuração do Timer

Para implementar as funcionalidades de temporização, foi utilizado o timer do 8051. De acordo com os requisitos do projeto seria necessário ter 8 opções de temporização para o tempo de comutação (de 1 a 8s), e além disso um timer de 100ms para a troca da configuração de estrela para delta e um timer de 3s para a inversão do motor.

Portanto, a estratégia adotada foi de criar um timer de 50 ms, e utilizar um contador para determinar o tempo decorrido. O código da implementação do timer de 50 ms é mostrado abaixo:

TIMER50MS:

MOV TL0, #0B0h MOV TH0, #03Ch MOV TCON, #010h JNB TCON.5, \$ DEC R0 SJMP TIMER_COUNTER

O timer consiste num contador de 2 bytes que é incrementado a cada ciclo, correspondente a 12 períodos do oscilador. Nesse caso, a frequência do oscilador é de 12MHz, portanto cada incremento de unidade do contador corresponde a 1μ s.

Assim, o contador deve ser inicializado com um numero x de tal forma que seja incrementado 50000 vezes (para que o tempo decorrido seja de 50ms) para atingir o valor de FFFF. Então:

$$x = FFFFh - 50000d + 1h$$
$$x = 3CB0h$$

Por isso configuramos TH0 (byte mais significativo do timer 0) com o valor 0x3C e TL0 (byte menos significativo do timer 0) com valor 0xB0.

Para inicializar a contagem do tempo, agimos no byte de configuração do timer (TCON) modificando seu valor para 00010000b, de forma a habilitar o Timer 0. Então, o valor do bit TCON.5 foi monitorado, de forma que quando assumisse valor 1, os 50ms estariam transcorridos.

Para que fossem obtidos os tempos desejados, foi implementado um contador denominado TIMER_COUNTER. Para isso, no registrador R0 é armazenado o valor de vezes que o timer de 50ms deve ser utilizado, de forma

que toda vez que este acaba, o valor em R0 é decrementado e checado até que seja nulo.

3.3 Configuração do Tempo de Comutação

No estado de configuração, o tempo de comutação é configurado de acordo com os inputs dos pinos P2.0, P2.1 e P2.2. Isso é feito conforme mostrado no trecho de código a seguir:

```
CONFIG:
    MOV a, #000h
    MOV b, #014h
    ; logica para configurar o tempo de comutacao
        JNB P2.2, ADD2
        ADD a, #004h
    ADD2:
        JNB P2.1, ADD1
        ADD a, #002h
    ADD1:
        JNB P2.0, RETURNADD
        ADD a, #001h
RETURN_ADD:
        ADD a, #001h
        MUL AB
        MOV R0, a
```

Inicialmente o acumulador é zerado e o registrador B é setado com o valor 0x14 (20 decimal). Então o programa avalia os inputs dos pinos, adicionando ao acumulador a quantidade associada a cada pino quando seu valor lógico é 1. Temos então um número de 0 a 7, de forma que temos que adicionar 1 para obter o valores no intervalo desejado para os tempos de comutação.

Em seguida, é necessário multiplicar o valor do acumulador por 20 para obter o número de vezes que o timer de 50ms deve ser acionado. Então o valor resultante é salvo no registrador R0.

3.4 Medidas de Proteção para Inversão do Sentido

Como forma de garantir que o motor seguisse a sequência de estados correta, foi utilizado o bit menos significativo do registrador R7 para registrar o sentido de rotação do motor (1 para sentido horário e 0 para anti-horário). Dessa forma, esse bit passou a ser utilizado como referência para o sentido

de rotação após a configuração. Isso garante que, mesmo que a chave de inversão seja virada enquanto decorre o tempo de comutação, a inversão não ocorre até que tempo de comutação seja transcorrido, o motor seja desligado e o intervalo de 3s seja respeitado.

Também, foi implementado em código que quando desligado o motor, a contagem de 3s seja iniciada, de forma que se o motor for religado no mesmo sentido de rotação anterior ele pode ser acionado instantaneamente, enquanto que se for religado com inversão, ele deverá esperar o tempo de 3s. Isso previne que o operador desative o motor e o reative no sentido invertido sem que o tempo de segurança de 3s tenha sido respeitado.

3.5 Lógica de Interrupção

Por conta da forma como os pinos do simulador estão conectados não foi possível utilizar ons pinos de interrupção externa do 8051 para implementar o programa. Assim, a estratégia adotada para realizar o desligamento do motor foi checar o estado do pino P2.7 durante o estado de confuguração, o estado final de operação do motor e também no TIMER_COUNTER (nesse caso, checado a cada 50ms), de forma que o motor pode ser desligado em qualquer estado de operação. Para a inversão, optou-se por permitir que o motor seja invertido apenas após transcorrido o tempo de comutação, de modo que o estado do pino P2.6 é continuamente verificado no estado de operação final do motor.