$(n-1) \times (n-1)$ matrix $V = (a_{ij})_{1 \le i,j \le n}$ over the basis (v_2, \ldots, v_n) . We need to prove that all the eigenvalues of g belong to K. However, since the entries in the first column of U are all zero for $i = 2, \ldots, n$, we get

$$\chi_U(X) = \det(XI - U) = (X - \lambda_1) \det(XI - V) = (X - \lambda_1) \chi_V(X),$$

where $\chi_U(X)$ is the characteristic polynomial of U and $\chi_V(X)$ is the characteristic polynomial of V. It follows that $\chi_V(X)$ divides $\chi_U(X)$, and since all the roots of $\chi_U(X)$ are in K, all the roots of $\chi_V(X)$ are also in K. Consequently, we can apply the induction hypothesis, and there is a basis (u_2, \ldots, u_n) of F such that g is represented by an upper triangular matrix $(b_{ij})_{1 \le i,j \le n-1}$. However,

$$E = Ku_1 \oplus F$$
,

and thus (u_1, \ldots, u_n) is a basis for E. Since p is the projection from $E = Ku_1 \oplus F$ onto F and $g: F \to F$ is the restriction of $p \circ f$ to F, we have

$$f(u_1) = \lambda_1 u_1$$

and

$$f(u_{i+1}) = a_{1i}u_1 + \sum_{j=1}^{i} b_{ij}u_{j+1}$$

for some $a_{1i} \in K$, when $1 \le i \le n-1$. But then the matrix of f with respect to (u_1, \ldots, u_n) is upper triangular.

For the matrix version, we assume that A is the matrix of f with respect to some basis, Then we just proved that there is a change of basis matrix P such that $A = PTP^{-1}$ where T is upper triangular.

If $A = PTP^{-1}$ where T is upper triangular, note that the diagonal entries of T are the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A. Indeed, A and T have the same characteristic polynomial. Also, if A is a real matrix whose eigenvalues are all real, then P can be chosen to real, and if A is a rational matrix whose eigenvalues are all rational, then P can be chosen rational. Since any polynomial over \mathbb{C} has all its roots in \mathbb{C} , Theorem 15.5 implies that every complex $n \times n$ matrix can be triangularized.

If E is a Hermitian space (see Chapter 14), the proof of Theorem 15.5 can be easily adapted to prove that there is an *orthonormal* basis (u_1, \ldots, u_n) with respect to which the matrix of f is upper triangular. This is usually known as Schur's lemma.

Theorem 15.6. (Schur decomposition) Given any linear map $f: E \to E$ over a complex Hermitian space E, there is an orthonormal basis (u_1, \ldots, u_n) with respect to which f is represented by an upper triangular matrix. Equivalently, for every $n \times n$ matrix $A \in M_n(\mathbb{C})$, there is a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*.$$