

High Performance Dummy Fill Insertion with Coupling and Uniformity Constraints

Yibo Lin, Bei Yu, David Z. Pan
Electrical and Computer Engineering
University of Texas at Austin

Outline

- > Introduction
- Problem Formulation
- > Algorithms
- Experimental Results
- Conclusion

Chemical Mechanical Polishing (CMP)

Example of CMP [source: www.ntu.edu.sg]

Uniformity

Layout uniformity for CMP

Even distribution

Coupling capacitance

Related Works

- Minimize density variation and number of fills
 - Linear Programming (LP)
 - [Kahng+,TCAD'99]
 - [Tian+, TCAD'01]
 - [Xiang+, TCAD'08]
 - Monte Carlo and heuristic approaches
 - [Chen+, ASPDAC'00]
 - [Chen+, DAC'00]
 - [Wong+, ISQED'05]
- Minimize density variation with coupling capacitance constraints
 - ILP
 - [Chen+, DAC'03], [Xiang+, ISPD'07]

Holistic Metrics for Uniformity

- Holistic metrics for layout uniformity from IBM (ICCAD 2014 Contest)
 - Variation (standard deviation)
 - Line hotspots
 - Outlier hotspots

Holistic Metrics for Uniformity

- Holistic metrics for layout uniformity from IBM (ICCAD 2014 Contest)
 - Variation (standard deviation)
 - Line hotspots
 - Outlier hotspots

Metrics for Coupling Capacitance

- Coupling capacitance
 - Minimize overlay between layers

Problem Formulation

Based on the ICCAD 2014 contest

- > Input
 - Layout with fill insertion regions
 - Signal wire density information across each window
- Quality score
 - Overlay area (20%)
 - Variation/std. dev. (20%)
 - Line hotspot (20%)
 - Outlier hotspot (15%)
 - File size for dummy fill insertion (5%)

Normalization function

$$f(x) = \max\left(0, 1 - \frac{x}{\beta}\right)$$

The **higher** score, the **better**

- Overall score
 - Quality score (80%)
 - Runtime (15%)
 - Memory usage (5%)
- Output
 - Dummy fill positions and dimensions with maximum quality score

Outline

- > Introduction
- Problem Formulation
- > Algorithms
- Experimental Results
- Conclusion

d_1	d_2	d_3		
d_4	d_5	d_6		
d_7	d_8	d_9		

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

0.3	0.5	0.6		
0.5	0.4	0.4		
0.4	0.4	0.4		

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

0.3	0.5	0.6		
0.5	0.4	0.4		
0.4	0.4	0.4		

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

0.3	0.5	0.6		
0.5	0.4	0.4		
0.4	0.4	0.4		

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

0.3	0.5	0.6
0.5	0.4	0.4
0.4	0.4	0.4

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

0.3	0.5	0.6		
0.5	0.4	0.4		
0.4	0.4	0.4		

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

Step 2: Candidate Fill Generation

- Generate candidate fills with minimum overlay
- With the guidance of target density
- A final fill is a rectangle within a candidate fill

Step 2: Candidate Fill Generation

- Generate candidate fills with minimum overlay
- With the guidance of target density
- A final fill is a rectangle within a candidate fill

$$q = -\frac{fill\ overlay}{fill\ area} + \gamma \cdot \frac{fill\ area}{window\ area}$$

Step 3: Dummy Fill Insertion (1)

- Given a set of candidate fills
- Determine dimension of fills
- Under DRC constraints
- Minimize overlay area and density variation

Shrink in horizontal direction

Solve in an iterative manner

Shrink in vertical direction

Layer 2 Fill

Step 3: Dummy Fill Insertion (2)

An example of the mathematical formulation in one iteration

Step 3: Dummy Fill Insertion (3)

$$\min \frac{|(x_2 - x_1) \cdot h_A + (x_4 - x_3) \cdot h_B - t_{d1} \cdot A_{win}| + |(x_6 - x_5) \cdot h_C - t_{d2} \cdot A_{win}|}{+ (x_2 - x_5) \cdot h_{AC} + (x_6 - x_3) \cdot h_{BC}}$$

- Further relax to remove absolute operation
- Add tighter bound constraints to variables

Step 3: Dual to Min-Cost Flow

Prime

$$\min_{x_i} \sum_{i=1}^{N} c_i x_i$$

s.t.
$$x_i - x_j \ge b_{ij}, (i, j) \in E,$$

 $l_i \le x_i \le u_i, i = 1, 2, ..., N,$
 $x_i \in Z$

- Convert bound constraints to differential constraints
- Dual to min-cost flow

Dual

$$c'_{i} = \begin{cases} c_{i} & i = 1, 2, ..., N \\ -\sum_{i=1}^{N} c_{i} & i = 0 \end{cases}$$

$$b'_{ij} = \begin{cases} b_{ij} & (i, j) \in E \\ l_{i} & i = 1, 2, ..., N, j = 0 \\ -u_{i} & i = 0, j = 1, 2, ..., N \end{cases}$$

Overall Flow

Experimental Environment

- Implemented in C++
- > 8-Core 3.4GHz Linux server
- > 32GB RAM
- ▶ ICCAD 2014 contest benchmarks

Experimental Results

- Compared with contest winners
 - Quality Scores (13% better than the 1st place winner)
 - Overall Scores (10% better than the 1st place winner)

Experimental Results

Detailed results

Table 3: Experimental Results on ICCAD 2014 Benchmark

Design	Team	Overlay*	Variation*	Line*	Outlier*	Size*	Run-time*	Memory*	Testcase Quality	Testcase Score
s	1st	0.743	0.636	0.733	1.000	0.976	0.877	0.885	0.621	0.797
	2nd	0.743	0.909	0.967	0.975	0.103	0.846	0.831	0.675	0.844
	3rd	0.613	0.985	0.990	1.000	0.158	0.842	0.429	0.676	0.823
	ours	0.723	0.948	0.979	0.994	0.887	0.872	0.818	$\boldsymbol{0.724}$	$\boldsymbol{0.895}$
b	1st	0.748	0.368	0.364	0.871	0.924	0.515	0.891	0.473	0.594
	2nd	0.841	0.381	0.534	0.000	0.053	0.513	0.828	0.354	0.472
	3rd	0.576	0.485	0.601	0.000	0.568	0.554	0.339	0.361	0.461
	ours	0.685	0.499	0.470	0.953	0.765	0.351	0.852	$\boldsymbol{0.512}$	0.607
m	1st	0.598	0.462	0.486	0.204	0.941	0.556	0.845	0.387	0.513
	2nd	0.668	0.460	0.618	0.000	0.000	0.780	0.761	0.349	0.504
	3rd	0.510	0.509	0.689	0.000	0.807	0.748	0.772	0.382	0.533
	ours	0.493	0.643	0.766	0.088	0.905	0.750	0.786	0.439	0.591

Conclusion

- Methodology for fill optimization with holistic and multiple objectives
- Validated on industry benchmarks
 - ICCAD 2014 contest benchmark
- Future work
 - Lithography related impacts

Thank you!

Backup

Backup

$$\min_{x_i} \sum_{i=1}^{N} c_i x_i$$

s.t.
$$x_i - x_j \ge b_{ij}, (i, j) \in E,$$

 $l_i \le x_i \le u_i, i = 1, 2, ..., N,$
 $x_i \in Z$

Dual

$$\max_{f_{ij}} \sum_{i,j} b'_{ij} f_{ij},$$
s.t.
$$\sum_{i} f_{ij} - \sum_{k} f_{jk} = -c'_{j},$$

$$f_{ij} \ge 0$$

Prime

$$\min_{y_i} \sum_{i=0}^{N} c'_i y_i,$$
s.t. $y_i - y_j \ge b'_{ij}, \ (i, j) \in E',$

$$y_i \in Z,$$

where

$$x_{i} = y_{i} - y_{0}, \quad i = 1, 2, ..., N$$

$$c'_{i} = \begin{cases} c_{i} & i = 1, 2, ..., N \\ -\sum_{i=1}^{N} c_{i} & i = 0 \end{cases}$$

$$b'_{ij} = \begin{cases} b_{ij} & (i, j) \in E \\ l_{i} & i = 1, 2, ..., N, j = 0 \\ -u_{i} & i = 0, j = 1, 2, ..., N \end{cases}$$

Dual Min-cost Flow Example (1)

Dual Min-cost Flow Example (2)

$$x_i = y_i - y_0, \quad i = 1, 2, ..., N$$

Step 3: Dummy Fill Insertion (3)

$$\min \frac{|(x_2 - x_1) \cdot h_A + (x_4 - x_3) \cdot h_B - t_{d1} \cdot A_{win}| + |(x_6 - x_5) \cdot h_C - t_{d2} \cdot A_{win}|}{+ (x_2 - x_5) \cdot h_{AC} + (x_6 - x_3) \cdot h_{BC}}$$

Further relax to remove absolute operation

$$\begin{split} E = & (x_2 - x_1) \cdot h_A + (x_4 - x_3) \cdot h_B \\ \text{if} \quad E \leq & t_{d1} \cdot A_{win} \\ \text{then} \\ & |E - t_{d1} \cdot A_{win}| \rightarrow t_{d1} \cdot A_{win} - E \\ \text{else} \\ & |E - t_{d1} \cdot A_{win}| \rightarrow E - t_{d1} \cdot A_{win} \\ & l_i \leq x_i \leq l_i + \epsilon \quad i = 1, 3 \\ & u_i - \epsilon \leq x_i \leq u_i \quad i = 2, 4 \\ \\ \epsilon = \frac{\text{current total fill area} - t_{d1} \cdot A_{min}}{\text{current total fill width} + \text{current total fill height}} \end{split}$$