Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. To adapt the Newton-Raphson root-finding method to inverse kinematics when the desired end-effector configuration is represented as a transformation matrix $X_d \in SE(3)$, we need to express the error between $T_{sb}(\theta^i)$ (the forward kinematics, where θ^i is our current guess at a joint solution) and X_d . One expression of this error is the twist that takes the the robot from $T_{sb}(\theta^i)$ to X_d in unit time. When this twist is expressed in the end-effector frame {b}, we write it as \mathcal{V}_b . Which of the following is a correct expression?

1/1 point

- $\bigcirc \mathcal{V}_b = \log(T_{sb}^{-1}(\theta^i)X_d)$
- $\mathcal{V}_b = \exp(T_{sb}^{-1}(\theta^i)X_d)$
- **⊘** Correct

 T_{sb}^{-1} is the same as T_{bs} , and X_d can be written as T_{sd} , so $T_{sb}^{-1}T_{sd}=T_{bd}$ by the subscript cancellation rule. The log of this is the se(3) matrix representation of the twist (expressed in the $\{b\}$ frame) that takes $\{b\}$ to $\{d\}$ in unit time.

- 1. To adapt the Newton-Raphs matrix $X_d \in SE(3)$, we n expression of this error is th write it as \mathcal{V}_b . Which of the f
 - $\mathcal{O} \mathcal{V}_b = \log(T_{sb}^{-1}(\theta^i)X)$
 - \bigcirc $[\mathcal{V}_b] = \log(T_{sb}^{-1}(\theta^i).$
 - $\mathcal{V}_b = \exp(T_{sb}^{-1}(\theta^i)\lambda)$
 - **⊘** Correct

 T_{sb}^{-1} is the same as $T_{\rm i}$ representation of the