APRENDIZAJE AUTOMATICO PROFUNDO (DEEP LEARNING)

Docentes

- Profesora: Dra. Laura Lanzarini
 - Temas: Redes Neuronales y Técnicas de Optimización
 - Aplicaciones en Minería de Datos y Procesamiento de Señales.
- □ JTP : Esp. César Estrebou
 - Temas: Redes Neuronales Profundas
 - Desarrollo de aplicaciones de Machine Learning para Sistemas Embebidos.

Bibliografía

Deep Learning with Python, 2nd edition.

François Chollet.

Manning Publications Co. 2021

Neural Networks and Deep Learning

Michael A. Nilsen

Determination Press. 2015

Reglamento

ACTIVIDADES

- Responder cuestionarios.
- Examen escrito al final del curso.

□ **NOTA FINAL** del curso

Promedio de

- Nota promedio de los cuestionarios.
- Nota del examen final

Reglamento

ACTIVIDADES

- Responder cuestionarios.
- Examen escrito al final del curso.

■ NOTA FINAL del curso

Promedio de

- Nota promedio de los cuestionarios.
- Nota del examen final

APROBACION DEL CURSO

- Promoción
 - □ 75% de los cuestionarios aprobados
 - Nota examen escrito \geq 6 puntos.
 - NOTA FINAL \geq 6 puntos.

Cursada

- 50% de los cuestionarios aprobados
- Nota examen escrito ≥ 4 puntos.
- NOTA FINAL \geq 4 puntos

Semana	Teoría		Práctica		Cuestionarios	
1	20-ago	Introducción al aprendizaje automático y aprendizaje profundo. Visualización y preprocesamiento.	25-ago	P1) Análisis y preprocesamiento de Datos	C1 - Preprocesamiento y visualización. Perceptrón (habilitado del 01/09 al 14/9)	
2	27-ago	Redes Neuronales. Introducción. El perceptrón Matriz de confusión. Precisión y recall.	01-sep	P2) El perceptrón. Resolución de problemas de clasificación de 2 clases		
3	03-sep	Aprendizaje supervisado. Combinador lineal. Descenso del gradiente. Regresión Lineal.	08-sep	P3.a) Minimización de funciones por gradiente. Resolución de problemas de regresión lineal y polinomial.	C2 - Regresión y Clasificación binaria (habilitado del 15/9 al 28/9)	
4	10-sep	Neurona no lineal. Regresión Logística. Clasificación multiclase. Entropía cruzada.	15-sep	P3.b) Resolución de problemas de clasificación binaria.		
5	17-sep	RN multiperceptrón. Algoritmo backpropagation.	22-sep	P3.c) Capa SoftMax. Métricas		
6	24-sep	Métricas de validación del modelo predictivo.	29-sep	P4.a) MLP aplicado a la resolución de problemas concretos	C3 - MLP (habilitado del 29/9 al 19/10)	
7	01-oct	Redes Neuronales Profundas. Visualización de la red. Tipos de capas. Funciones de pérdida. Keras	06-oct	P4.b) validación de los modelos generados		
8	08-oct	Redes convolucionales	13-oct	Día del Respeto a la Diversidad Cultural (trasladado del 12/10)		
9	15-oct	Autoencoders y GANs	20-oct	P5) RN Convolucionales	C4- Redes Neuronales profundas. CNN (habilitado del 20/10 al 09/11)	
10	22-oct	Expo Ciencia y Tecnología - Hall de la Facultad	27-oct	P6) Autoencoders y redes generativas		
11	29-oct	Repaso	03-nov	Consultas práctica 6 y 1ra. Fecha examen		
12			10-nov	1ra. Fecha de Examen	C5- Autoencoders y GANs.	

Inteligencia Artificial

□ La Inteligencia Artificial (IA) es la inteligencia llevada a cabo por máquinas.

RAMAS

- DEDUCTIVA (lógica)
 - Sistemas expertos
- **INDUCTIVA** (ejemplos)
 - Redes Neuronales
 - Técnicas de Optimización

Inteligencia Artificial

□ La Inteligencia Artificial (IA) es la inteligencia llevada a cabo por máquinas.

RAMAS

- DEDUCTIVA (lógica)
 - Sistemas expertos
- **□ INDUCTIVA** (ejemplos)
 - Redes Neuronales
 - Técnicas de Optimización

El **aprendizaje automático** pertenece a esta rama

lA y Aprendizaje Automático

Programación clásica y Aprendizaje Automático

Tipos de aprendizaje

Aprendizaje supervisado

GATO

GATO

GATO

ARBOL

ARBOL

CUADERNO

CUADERNO

CUADERNO

GATO

-

Aprendizaje no supervisado

AGRUPAMIENTO

Aprendizaje supervisado

GATO

GATO

GATO

ARBOL

ARBOL

CUADERNO

CUADERNO

CUADERNO

En este curso trabajaremos con APRENDIZAJE SUPERVISADO

GATO

7

Aprendizaje Supervisado

Según si la respuesta a predecir es discreta o continua se trata de un problema de clasificación o de regresión respectivamente.

Redes Neuronales y Aprendizaje Profundo

Tareas que pueden resolverse con RN

- Predicción de un resultado futuro a partir de los datos disponibles.
 - Predecir el nivel de seguridad de un vehículo dadas sus características.
 - Determinar si un mail recibido es spam o no.
 - Dada la historia clínica de un paciente, predecir la probabilidad de contraer cierta enfermedad.
- Segmentación de los datos en subgrupos con características similares
 - Agrupar clientes para determinar perfiles que ayuden a direccionar campañas de marketing.
 - Caracterizar transacciones comerciales y detectar situaciones anómalas.

Redes Neuronales

- El cerebro humano
 - Procesa información imprecisa rápidamente.
 - Aprende sin instrucciones explícitas.
 - Crea representaciones internas que permiten estas habilidades.

Las Redes Neuronales Artificiales o simplemente Redes Neuronales,
 buscan emular el comportamiento del cerebro humano.

Neurona biológica

□ El cerebro consta de un gran número de elementos (aprox. 10¹¹)
 altamente interconectados (aprox. 10⁴ conexiones por elemento),

llamados neuronas.

Similitudes entre una neurona biológica y una artificial

Las entradas X_i representan las señales que provienen de otras neuronas y que son capturadas por las dendritas

Similitudes entre una neurona biológica y una artificial

Los pesos W_i son la intensidad de la sinápsis que conecta dos neuronas; tanto X_i como W_i son valores reales.

Similitudes entre una neurona biológica y una artificial

 θ es la función umbral que la neurona debe sobrepasar para activarse; este proceso ocurre biológicamente en el cuerpo de la célula.

Red Neuronal Artificial

Ejemplo: Clasificación de flores de Iris

□ Se dispone de información de 3 tipos de flores Iris

Ejemplo: Clasificación de flores de Iris

Id	sepallength	sepalwidth	petallength	petalwidth	class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
•••	•••	•••	•••	•••	•••
95	5,6	2,7	4,2	1,3	lris-versicolor
96	5,7	3,0	4,2	1,2	Iris-versicolor
97	5,7	2,9	4,2	1,3	Iris-versicolor
•••	• • •	•••	•••	•••	•••
149	6,2	3,4	5,4	2,3	lris-virginica
150	5,9	3,0	5,1	1,8	Iris-virginica

https://archive.ics.uci.edu/ml/datasets/lris

Ejemplo: Clasificación de flores de Iris

Historia de las Redes Neuronales

Sistemas inteligentes

Análisis de imágenes

Pinterest incorporó VisualGraph

Detector de personas

Detector de bolsos

Detector de faldas https://techcrunch.com

- Empresa Vicarious: Inversores Mark Zuckerberg (Facebook), Elon Musk
 (cofundador de PayPal) buscan determinar las "relaciones de causa y efecto".
- 2.300 millones de usuarios activos en Facebook generando muchos datos.
 (Fuente: Data Never Sleeps 2019)

www.adweek.com

- Seguimiento de sus redes sociales para saber
 - quién está consumiendo sus bebidas
 - dónde están sus clientes
 - qué situaciones los incitan a hablar sobre su marca
- Identifica sus productos en fotografías y determina cuando enviar publicidad
- Ahora buscan usar bots para generar anuncios

Representación de los datos

Caracterización de rostros

SIFT features - Lowe (2004)

☐ Gestos Dinámicos

Redes Neuronales Convolucionales

Reconocimiento de expresiones faciales

- BBDD Facial Expressions in the Wild (+ de 80 mil imágenes.
 Alegría, sorpresa, tristeza, enojo, miedo y disgusto)
- Arquitecturas de CNNs : VGG, Inception o ResNet
- TensorFlow, Keras y PyTorch (Frameworks para Deep Learning)

Expresiones faciales en pacientes con Alzheimer

Castillo-Salazar D. et al. (2020) **Detection and Classification of Facial Features Through the Use of Convolutional Neural Networks (CNN) in Alzheimer Patients**. In: Human Systems Engineering and Design II.
IHSED 2019. Advances in Intelligent Systems and Computing, vol 1026. Springer.

https://doi.org/10.1007/978-3-030-27928-8_94

Redes Neuronales que generan datos

2014 Redes Generativas Adversarias (GAN) generan nuevos datos en situaciones en que éstos son limitados.

Redes Neuronales que generan datos

2014 Redes Generativas Adversarias (GAN) generan nuevos datos en situaciones en que éstos son limitados.

https://dl.acm.org/doi/10.5555/2969033.2969125

- 2019 **Autoencoders Variacionales** (VAE) tienen por objetivo reconstruir los datos de entrada.
 - DeepMind demostró que los VAEs podían superar a las GAN en la generación de caras.

https://arxiv.org/abs/1906.00446

Contenido del curso

APRENDIZAJE AUTOMATICO

DEEP LEARNING

Contenido del curso

PARTE I

- Perceptrón
- Combinador Lineal (regresión)
- Neurona no lineal (clasificación)
- Multiperceptrón con aprendizaje backpropagation

PARTE II

- Mejoras al entrenamiento del multiperceptrón.
- Arquitecturas varias
 - RN convolucionales
 - Autoencoders
- Adaptación de modelos preentrenados

Análisis de los datos disponibles

- □ Tipos de Variables
- **4**
- Cuantitativas y cualitativas

- Descripciones estadísticas
 - Medidas de tendencia central
 - Medidas de dispersión

- Gráficos
 - Diagrama de barras
 - □ Diagrama de torta
 - Histograma
 - □ Diagrama de caja
 - Diagrama de dispersión

Tipos de variables

Cuantitativas o numéricas

- □ DISCRETAS (cant. de empleados, cant. de alumnos, etc)
- CONTINUAS (sueldo, metros cuadrados, beneficios, etc)

Cualitativas o categóricas

- NOMINALES: nombran al objeto al que se refieren sin poder establecer un orden (estado civil, raza, idioma, etc.)
- ORDINALES: se puede establecer un orden entre sus valores (alto, medio, bajo, etc)

DRUG5.CSV

Se busca predecir si el tipo de fármaco que se debe administrar a un paciente afectado de rinitis alérgica es el habitual o no.

DRUG5.CSV

- □ Se dispone de información de pacientes afectados de rinitis alérgica:
 - Age: Edad
 - Sex: Sexo
 - BP (Blood Pressure): Tensión sanguínea.
 - Cholesterol: nivel de colesterol.
 - Na: Nivel de sodio en la sangre.
 - K: Nivel de potasio en la sangre.
 - □ Cada paciente ha sido medicado con un único fármaco de entre cinco posibles: DrugA, DrugB, DrugC, DrugX, DrugY.

DRUG5.CSV

□ Drug5.csv contiene 200 muestras de pacientes atendidos previamente

Nro.	Age	Sex	ВР	Colesterol	Na	K	Drug
1	23	F	HIGH	HIGH	0,792535	0,031258	drugY
2	47	M	LOW	HIGH	0,739309	0,056468	drugC
3	47	M	LOW	HIGH	0,697269	0,068944	drugC
4	28	F	NORMAL	HIGH	0,563682	0,072289	drugX
5	61	F	LOW	HIGH	0,559294	0,030998	drugY
	•••	•••	•••		•••	•••	•••
•••	•••		•••		•••	•••	•••
•••	•••	•••	•••		•••	•••	•••
197	16	M	LOW	HIGH	0,743021	0,061886	drugC
198	52	M	NORMAL	HIGH	0,549945	0,055581	drugX
199	23	M	NORMAL	NORMAL	0,78452	0,055959	drugX
200	40	F	LOW	NORMAL	0,683503	0,060226	drugX

□ Drug5.csv contiene 200 muestras de pacientes atendidos previamente

Nro.	Age	Sex	ВР	Colesterol	Na	K	Drug
1	23	F	HIGH	HIGH	0,792535	0,031258	drugY
2	47	M	LOW	HIGH	0,739309	0,056468	drugC
3	47	M	LOW	HIGH	0,697269	0,068944	drugC
4	28	F	NORMAL	HIGH	0,563682	0,072289	drugX
5	61	F	LOW	HIGH	0,559294	0,030998	drugY
							•••

- □ ¿Cuántos atributos tiene la tabla?
- □ ¿De qué tipo es cada uno de ellos?

Análisis de los datos disponibles

- □ Tipos de Variables
 - Cuantitativas y cualitativas

- Descripciones estadísticas
 - Medidas de tendencia central
 - Medidas de dispersión

- Gráficos
 - Diagrama de barras
 - □ Diagrama de torta
 - Histograma
 - □ Diagrama de caja
 - Diagrama de dispersión

Descripciones estadísticas básicas

 Identifican propiedades de los datos y destacan qué valores deben tratarse como ruido o valores atípicos

MEDIDAS DE TENDENCIA CENTRAL

- Media
- Mediana
- Moda
- □ Rango medio

MEDIDAS DE DISPERSION

- Varianza
- Desviación estándar
- Rango
- Cuartiles
- Rango Intercuartil

Descripciones estadísticas básicas

 Identifican propiedades de los datos y destacan qué valores deben tratarse como ruido o valores atípicos

MEDIDAS DE TENDENCIA CENTRAL

- Media
- Mediana
- Moda
- Rango medio

MEDIDAS DE DISPERSION

- Varianza
- Desviación estándar
- Rango
- Cuartiles
- Rango Intercuartil

Análisis de los datos disponibles

- □ Tipos de Variables
 - Cuantitativas y cualitativas

- Descripciones estadísticas
 - Medidas de tendencia central
 - Medidas de dispersión

□ Gráficos ←

- Diagrama de barras
- Diagrama de torta
- Histograma
- □ Diagrama de caja
- Diagrama de dispersión

Analisis_Drug5.ipynb

Atributo Drug - Diagrama de barras

Atributo Drug - Gráfico de Torta

Atributo AGE – Histograma

(Atributo AGE del archivo Drug5_atipicos.CSV)

Diagrama de caja - Ejemplo

50

30

Minimo

40

Q2

110

Maximo

70

80

90

Q3

60

Determine si hay valores atípicos y si son leves o extremos

100

Cuartiles y RIC del atributo AGE

(Atributo AGE del archivo Drug5_atipicos.CSV)

Luego de ordenar los valores del atributo AGE deben identificarse los valores que los dividen en cuatro partes iguales.

$$RIC = Q_3 - Q_1 = 58 - 31 = 27$$

Diagrama de caja (en construcción)

Atributo AGE (archivo Drug5_atipicos.csv)

Minimo	15
Q1	31
Q2	45
Q3	58
Maximo	174

RIC	Q3 - Q1 = 58 - 31 = 27
Lim.Inf	Q1 - $1.5*RIC = 31-1.5*27 = -9.5$
Lim.Sup	Q3 + 1.5*RIC =58+1.5*27 = 98.5

Hay valores atípicos?

Diagrama de caja (en construcción)

Minimo	15
Q1	31
Q2	45
Q3	58
Maximo	174

RIC	Q3 - Q1 = 58 - 31 = 27
Lim.Inf	Q1 - $1.5*RIC = 31-1.5*27 = -9.5$
Lim.Sup	Q3 + 1.5*RIC =58+1.5*27 = 98.5

Diagrama de caja

Atributo AGE

Minimo	15
Q1	31
Q2	45
Q3	58
Maximo	174

RIC	Q3 - Q1= 27
Lim.Inf	Q1 - 1.5*RIC = -9.5
Lim.Sup	Q3 + 1.5*RIC = 98.5

Los bigotes indican el rango de los valores de la muestra comprendidos en el intervalo

$$[Q1 - 1.5 * RIC ; Q3 + 1.5 * RIC] = [-9.5, 98.5]$$

Diagrama de caja

Atributo AGE

Minimo	15
Bigote Inferior	15
Q1	31
Q2	45
Q3	58
Bigote Superior	74
Maximo	174

- Los valores de AGE que pertenezcan a [-50; -9.5) o (98.5; 139] se considerarán atípicos leves.
- Los valores del atributo AGE inferiores a -50 o superiores a 139 se considerarán atípicos extremos.

Histograma y diagrama de caja

(Atributo AGE archivo Drug5_atipicos.CSV)

Diagrama de Dispersión

 Consiste en dibujar pares de valores (x_i, y_i) medidos de la v.a. (X,Y) en un sistema de coordenadas

Entre X e Y no hay ninguna relación funcional

Diagrama de Dispersión

 Consiste en dibujar pares de valores (x_i, y_i) medidos de la v.a. (X,Y) en un sistema de coordenadas

Entre X e Y podría existir un relación funcional que corresponde a una parábola

Diagrama de Dispersión

 Consiste en dibujar pares de valores (x_i, y_i) medidos de la v.a. (X,Y) en un sistema de coordenadas

Entre X e Y existe una relación lineal. Este es el tipo de relación que nos interesa

Relación entre atributos numéricos

Al momento de construir un modelo resulta de interés saber si dos atributos numéricos se encuentran linealmente relacionados o no. Para ello se usa el coeficiente de correlación lineal.

Diagrama de dispersión entre la longitud y el ancho del pétalo de una flor.

Coeficiente de correlación lineal

INTERPRETACION

- □ Si 0.5≤ abs(Corr(A,B)) < 0.8 se dice que A y B tienen una correlación lineal débil.
- □ Si abs(Corr(A,B)) ≥ 0.8 se dice que A y B tienen una correlación lineal fuerte
- □ Si **abs(Corr(A,B))<0.5** se dice que A y B no están correlacionados linealmente. Esto NO implica que son independientes, sólo que entre ambos no hay una correlación lineal.

□ El valor del **coeficiente de correlación lineal** entre los atributos PETALLENGTH y PETALWIDTH es **0.96**

□ El valor del **coeficiente de correlación lineal** entre los atributos SEPALLENGTH y SEPALWIDTH es **-0.11**

Diagrama de dispersión

(atributos K y Na del archivo Drug5.csv)

Corr(K, Na) = 0.017

Resumen

- □ Tipos de aprendizaje
 - Supervisado
 - No supervisado
- □ Tipos de Variables
 - Cuantitativas y cualitativas
- Descripciones estadísticas
 - Medidas de tendencia central
 - Medidas de dispersión

- Gráficos
 - Diagrama de barras
 - Diagrama de torta
 - Histograma
 - Diagrama de caja
 - Diagrama de dispersión
 Coeficiente de correlación lineal