

Human-CLAP: Human-perception-based contrastive language—audio pretraining

<u>Taisei Takano</u>*, Yuki Okamoto*, Yusuke Kanamori*, Yuki Saito*, Ryotaro Nagase[†], Hiroshi Saruwatari*

*The University of Tokyo, Japan, [†]Ritsumeikan University, Japan

1 Background

Evaluating text-audio semantic relevance

- An important aspect when evaluating text-to-audio (TTA)
 - Subjective evaluation: Human-scored similarity
 - Extremely costly in time and money
 - Objective evaluation: CLAPScore

- Issue
 - Relationship with human perception is unclear
 - → How reliable is CLAPScore?

-- Purpose and contribution

Analyzed CLAPScore

- Correlation between human-scored similarity and CLAPScore
- → **Low correlation**

The correlation improvement with human-scored similarity

- Fine-tuned CLAP using a small amount of human-scored text-audio similarity
- → Effectively improved the correlation, enabling CLAPScore to align more closely with human perception

2 CLAPScore

Evaluate text-audio similarity using CLAP

- Contrastive language—audio pretraining (CLAP) [1]
 - -Trained to bring paired text-audio embeddings closer together

- CLAPScore [2]
 - -Calculate the cosine similarity between text and audio embeddings obtained from CLAP

$$CLAPScore = \max\left(\frac{\mathbf{e}^{audio} \cdot \mathbf{e}^{text}}{\|\mathbf{e}^{audio}\| \|\mathbf{e}^{text}\|}, 0\right), \quad \mathbf{e}^{audio} : \text{Audio embedding}$$

$$\mathbf{e}^{text} : \text{Text embedding}$$

Analyzed CLAPScore

- Correlation between CLAPScore and human-scored similarity
 - Metric: Spearman's rank correlation coefficient (SRCC)
 - Evaluated LAION CLAP [3] on RELATE [4] test set

SRCC: 0.280

Insufficient correlation with human evaluations

3 Proposed Method: Human-CLAP CLAP model based on human perception

■ Fine-tuned CLAP with human-scored similarity

• Minimize the difference between predicted score and human-scored similarity

Combining regression and contrastive learning

- Regression loss
 - Mean absolute error (MAE)

$$L_{MAE} = \frac{1}{N} \sum_{i=1}^{N} |a_i - y_i|$$

 a_i : Human-scored similarity, y_i : Predicted similarity, N: Batch size

- Contrastive learning
 - Weight symmetric cross entropy loss (wSCE) (Proposed)
 - Symmetrical InfoNCE [5] weighted by human-scored similarity

$$L_{wSCE} = -\frac{1}{2N} \sum_{i=1}^{N} \frac{a_i}{a_i} \left(\log \left(\frac{\exp(e_i^{\text{text}} \cdot e_i^{\text{audio}} / \tau)}{\sum_{j=1}^{N} \exp(e_i^{\text{text}} \cdot e_j^{\text{audio}} / \tau)} \right) + \log \left(\frac{\exp(e_i^{\text{audio}} \cdot e_i^{\text{text}} / \tau)}{\sum_{j=1}^{N} \exp(e_i^{\text{audio}} \cdot e_j^{\text{text}} / \tau)} \right) \right)$$

 a_i : Human-scored similarity, N: Batch size, τ : Temperature, \mathbf{e}_i : Embedding

4 Evaluation

Experimental setup

- Dataset: RELATE [4]
 - 11-point scale human-scored similarity of text—audio pairs
 - -0 (low similarity) ~ 10 (high similarity)
 - → Rescaled to the range of 0 to 1 to use as the target score
 Natural and synthesized audio samples included
 - •Natural: AudioCaps [6]
 - -Synthesized: AudioLDM [7], AudioLDM2 [8], Tango [9], Tango2 [10]
 - -Each pair evaluated by an average of four listeners

- Pretrained encoders from LAION CLAP [3]
 - Text encoder: RoBERTa [11], Audio encoder: HTS-AT [12]

Evaluation metrics

- Correlation between CLAPScore and human-scored similarity
 - Spearman's rank correlation coefficient (SRCC)
 - Linear correlation coefficient (LCC)
 - Kendal's rank correlation coefficient (KTAU)
- Score difference : Mean squared error (MSE)

Overall results

Human-CLAP improved the correlation between CLAPScore and human-scored similarity

Model	SRCC ↑	LCC ↑	KTAU ↑	MSE ↓
Human-CLAP (ours)				
wSCE + MAE	0.457	0.481	0.320	0.057
wSCE	0.383	0.410	0.265	0.063
MAE	0.453	0.472	0.317	0.051
Baseline				
LAION CLAP	0.280	0.294	0.192	0.068
MS CLAP	0.278	0.296	0.192	0.078

Results on natural and synthesized audio

Correlation improved for both natural and synthesized audio

Conclusion

Objective evaluation metric for text-audio similarity

- Conventional CLAPScore had a low correlation with human-scored similarity
- <u>Human-CLAP</u> effectively <u>improved the correlation</u>, enabling CLAPScore to align <u>more closely with human perception</u>

Future work

- Analyze the prediction tendency of CLAPScore
 Depending on the types of sound events
- Transfer Human-CLAP to other text—audio tasks related to human perception (e.g. TTA)

References