# ALLIED'S ELECTRONICS DATA HANDBOOK

DONALD G BILL



ALLIED RADIO CORPORATION

CHICAGO

# FOREWORD

Allied Radio Corporation has long recognized the need for a comprehensive and condensed handbook of formulas and data most commonly used in the field of radio and electronics. It was felt also that such a book should serve entirely as a convenient source of information and reference and that all attempts to teach or explain the basic principles involved should be left to classroom instruction and to the many already existing publications written for this distinct purpose.

The Electronics Data Handbook, therefore, consists of formulas, tables, charts and data. Every effort has been made to present this information clearly and to arrange it in a convenient manner for instant reference. All material was carefully selected and prepared by Allied's technical staff to serve the requirements of many specific groups in the radio and electronics field. It is hoped that our objectives have been successfully attained and that this Handbook will serve as: (1) A valuable adjunct to classroom study and laboratory work for the student and instructor; (2) A dependable source of information for the beginner, experimenter and set builder; (3) A reliable guide for the service engineer and maintenance man in his everyday work; (4) A time-saving and practical reference for the radio amateur, technician and engineer, both in the laboratory and in the field of operations.

The publishers are indebted to the McGraw-Hill Book Company, Inc., for their permission to use material selected from "Mathematics for Electricians and Radiomen" by Nelson M. Cooke. Allied also takes this opportunity to thank those manufacturers who so generously permitted our use of current data prepared by their engineering personnel. Special recognition and our sincere appreciation are extended to Commander Cooke for his helpful suggestions and generous contribution of his time and specialized knowledge in editing the material contained in this book.

ALLIED RADIO CORPORATION

# TABLE OF CONTENTS

| Fundamental Mathematical Data                     |    |     |       |     |            |
|---------------------------------------------------|----|-----|-------|-----|------------|
| Mathematical Constants                            |    |     |       |     | 4          |
| Mathematical Symbols                              |    |     |       |     | 4          |
| Decimal Parts of an Inch                          |    |     |       |     |            |
| Fundamental Algebraic Formulas                    |    |     |       |     |            |
|                                                   |    |     |       |     |            |
| Decibel Tables, Attenuators and Matching Pads     |    |     |       |     | 5-10       |
| Decibels, Fundamental Formulas                    |    |     | •     |     | . 5-10     |
| DR Expressed in Wester and Wester                 |    |     |       |     | 5          |
| DB Expressed in Watts and Volts                   |    |     |       |     | 5          |
| Decibel-Voltage, Current and Power Ratio Table.   |    |     |       |     | 6          |
| Table of Values for Attenuator Network Formulas   |    |     |       |     | 7-8        |
| Attenuator Network Formulas                       |    |     |       |     | 8-9        |
| Minimum Loss Pads                                 |    |     |       |     | 10         |
| A4 4 4                                            |    |     |       |     |            |
| Most Used Radio and Electronic Formulas           |    |     |       |     | . 11-25    |
| 70-Volt Loud-Speaker Matching Formulas            |    |     |       |     | . 11       |
| Resistance                                        | •  | •   |       |     | 12         |
| Capacitance                                       |    |     |       |     | 12         |
| Inductance                                        |    | •   |       |     | 10 10      |
| Reactance                                         |    |     |       |     | 10-10      |
| Resonance                                         | •  |     | ٠     |     | 13         |
| Resonance                                         |    |     | •     |     | 13         |
| Frequency and Wavelength                          |    |     |       |     | 13         |
| "Q" Factor                                        |    |     |       |     | 14         |
| Impedance                                         |    |     |       |     | . 14-16    |
| Conductance                                       |    |     |       |     | 17         |
| Susceptance                                       |    |     |       |     | 17         |
| Admittance                                        |    |     |       |     | 177        |
| Transient I and E in LCR Circuits                 |    |     |       |     | 18-19      |
| Steady State Current Flow                         |    |     |       |     | 19         |
| Transmission Line Formulas                        | •  | •   |       |     | 20         |
| Capacity of a Vertical Antenna.                   | •  |     |       | • . | 20         |
| Vacuum Tube Formulas and Symbols                  |    |     |       | •   | 20         |
| R.M.S., Peak and Average Volts and Current        |    | •   |       | ٠.  | 21         |
| D-C Meter Formulas                                |    |     |       |     | ZI         |
| Ohm's Law for A-C and D-C Circuits                |    | •   |       |     | . 22-23    |
| out of have and bed offcults                      |    |     |       |     | . 24-25    |
| Engineering and Servicing Data                    |    |     |       |     | 20 55      |
| R F Coil Winding Formulas                         |    |     |       | •   | . 20-55    |
| R-F Coil Winding Formulas                         |    | ٠   |       |     | 26         |
| Wire Table                                        |    |     |       |     | 27         |
| R-F Coil Winding Data Chart                       |    |     |       |     | 28         |
| Inductance, Capacitance, Reactance Charts         |    |     |       |     | . 29-32    |
| How to Use Logarithms                             |    |     |       |     | 22-25      |
| Trigonometric Relationships  Metric Relationships |    |     |       |     | 36         |
| Metric Relationships                              |    |     |       |     | 37         |
| Pilot Lamp Data                                   |    |     |       |     | 9.0        |
| Directly Interchangeable Tubes                    |    |     |       |     | 39-49      |
| Directly Interchangeable T V Picture Tubes        |    |     |       | •   | 12 11      |
| Interchangeable Batteries                         |    |     |       |     | 45 4C      |
| Interchangeable Batteries                         | Ċ. |     | غادات |     | 45 50      |
| RETMA Color Codes for Change Wining               | UE | 1pa | acit  | ors | .47-50     |
| RETMA Color Codes for Chassis Wiring              |    |     |       |     |            |
| Schematic Symbols used in Radio Diagrams          |    |     |       |     |            |
| Abbreviations and Letter Symbols                  |    |     | ٠.    |     | 55         |
| Log and Trig Tables                               |    |     |       |     | <b>*</b> 0 |
| Log and Trig Tables                               |    |     |       |     | . 56-63    |
| Four-Place Common Log Tables                      |    |     |       |     | . 56-57    |
| Table of Natural Sines, Cosines and Tangents      |    |     |       |     | . 58-63    |
|                                                   |    |     |       |     |            |
| Index                                             |    |     |       |     | G A        |

# Mathematical Symbols

× or · Multiplied by + or : Divided by

Positive, Plus, Add

Negative. Minus. Subtract

Positive or negative. Plus or minus

Negative or positive. Minus or plus

= or :: Equals

= Identity

Is approximately equal to  $\cong$ 

# Does not equal

Is greater than >

Is much greater than >>>

Is less than

<< Is much less than

Greater than or equal to

<u>≥</u> Less than or equal to

Therefore

7 Angle

Increment or Decrement Δ

Perpendicular to

Parallel to 11

Absolute value of n 11

# Mathematical Constants

$$\pi = 3.14$$
  $\sqrt{\pi} = 1.77$   $2\pi = 6.28$   $\frac{\pi}{2} = 1.25$ 

$$(2\pi)^2 = 39.5$$
  $\frac{2}{2} = 1.41$ 

$$\pi^2 = 9.87$$
  $\sqrt{3} = 1.73$ 

$$\frac{\pi}{2} = 1.57 \qquad \qquad \frac{1}{\sqrt{2}} = 0.707$$

$$\frac{1}{\pi} = 0.318 \qquad \qquad \frac{1}{\sqrt{3}} = 0.577$$

$$\frac{1}{2\pi} = 0.159 \qquad \log \pi = 0.497$$

$$\frac{1}{\pi^2} = 0.101 \qquad \log \frac{\pi}{2} = 0.196$$

$$\frac{1}{\sqrt{\pi}} = 0.564 \qquad \log \pi^2 = 0.994 \\ \log \sqrt{\pi} = 0.248$$

# **Decimal Inches**

Inches × 2.540 = Centimeters Inches  $\times 1.578 \times 10^{-5} = \text{Miles}$  $10^{3}$ = Mils Inches ×

| 11101  | 162 🗸   | 10     | - IVII                | 15                       |
|--------|---------|--------|-----------------------|--------------------------|
|        | Inches  |        | Decimal<br>Equivalent | Millimeter<br>Equivalent |
| 1/64   | 1/32    |        | .0156<br>.0313        | 0.397<br>0.794           |
| 3/64   |         | 1/16   | .0469<br>.0625        | 1.191<br>1.588           |
| 5/64   | 3/32    |        | .0781                 | 1.985<br>2.381           |
| 7/64   |         | 1/8    | .1094                 | 2.778<br>3.175           |
| 9/64   | 5/32    |        | .1406                 | 3.572<br>3.969           |
| 11/64  |         | 3/16   | .1719                 | 4.366<br>4.762           |
| 13/64  | 7/32    |        | .2031                 | 5.159<br>5.556           |
| 15/64  |         | 1/4    | .2344                 | 5.953<br>6.350           |
| 17/64  | 9/32    |        | .2656<br>.2813        | 6.747<br>7.144           |
| 19/64  |         | 5 16   | .2969                 | 7.541<br>7.937           |
| 21, 64 | 11 '32  |        | .3281<br>.3438        | 8.334<br>8.731           |
| 23 64  |         | 3 8    | .3594<br>.3750        | 9.128<br>9.525           |
| 25 64  | 13 32   |        | .3906<br>.4063        | 9.922<br>10.319          |
| 27 64  |         | 7 16   | .4219<br>.4375        | 10.716                   |
| 29 64  | 15 32   |        | .4531                 | 11.509<br>11.906         |
| 3" 54  |         | 1/2    | .4844                 | 12.303<br>12.700         |
| 33 64  | 17 32   |        | .5156<br>.5313        | 13.097<br>13.494         |
| 35 64  |         | 9/16   | .5469<br>.5625        | 13.891<br>14.287         |
| 37 64  | 19 '32  |        | .5781<br>.5938        | 14.684<br>15.081         |
| 39 64  |         | 5/8    | .6094<br>.6250        | 15.478<br>15.875         |
| 41/64  | 2*/32   |        | .6406<br>.6563        | 16.2 <b>72</b><br>16.669 |
| 43/64  |         | 11/16  | .6719<br>.6875        | 17.067<br>17.463         |
| 45/64  | 23/32   | ,      | .7031                 | 17.860<br>18.238         |
| 47/64  | 20,02   | 3,4    | .7344<br>.7500        | 18.635<br>19.049         |
| 49/64  | 25 / 32 | -/ *   | .7656<br>.7813        | 19.446<br>19.842         |
| 51/64  |         | 13/16  | .7969<br>.8125        | 20.239<br>20.636         |
| 53/64  | 27/32   |        | .8281<br>.8438        | 21.033<br>21.430         |
| 55/64  | 2.,02   | 7,8    | .8594<br>.8750        | 21.827<br>22.224         |
| 57/64  | 29 32   |        | .8906<br>.9063        | 22.621 23.018            |
| 59/64  | 23 02   | 15,16  | .9219                 | 23.415<br>23.812         |
| 61/64  | 31/32   | 107.10 | .9531<br>.9688        | 24.209<br>24.606         |
| 63/64  | 31/32   | 1.0    | .9844<br>1.0000       | 25.004<br>25.400         |
|        |         | 1.0    | 1.0000                |                          |

# Algebra

# **Exponents and Radicals**

$$a^{x} \times a^{y} = a^{(x+y)}.$$

$$a^{y} = a^{(x+y)}.$$

$$a^{y} = a^{x}b^{x}.$$

$$\sqrt[x]{\frac{a}{b}} = \frac{\sqrt[x]{a}}{\sqrt[x]{b}}.$$

$$a^{-x} = \frac{1}{a^{x}}.$$

$$a^{-y} = a^{xy}.$$

$$\sqrt[x]{ab} = \sqrt[x]{a}\sqrt[x]{b}.$$

$$a^{y} = \sqrt[x]{a^{y}}.$$

$$a^{y} = \sqrt[x]{a^{x}}.$$

$$a^{0} = 1.$$

### Solution of a Quadratic

Quadratic equations in the form

$$ax^2 + bx + c = 0$$

may be solved by the following:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

### Transposition of Terms

$$\text{If } A = \frac{B}{C}, \quad \text{then} \quad B = AC, \quad C = \frac{B}{A}.$$

If 
$$\frac{A}{B} = \frac{C}{D}$$
, then  $A = \frac{BC}{D}$ , 
$$B = \frac{AD}{C}$$
,  $C = \frac{AD}{B}$ ,  $D = \frac{BC}{A}$ .

If 
$$A = \frac{1}{D\sqrt{BC}}$$
, then  $A^2 = \frac{1}{D^2BC}$ , 
$$B = \frac{1}{D^2A^2C}$$
,  $C = \frac{1}{D^2A^2B}$ ,  $D = \frac{1}{A\sqrt{BC}}$ .

If 
$$A = \sqrt{B^2 + C^2}$$
, then  $A^2 = B^2 + C^2$ ,  
 $B = \sqrt{A^2 - C^2}$ ,  $C = \sqrt{A^2 - B^2}$ .

# **Decibels**

The number of db by which two power outputs  $P_1$  and  $P_2$  (in watts) may differ, is expressed by

 $10\log\frac{P_1}{P_2};$ 

or in terms of volts,

 $20 \log \frac{E_1}{E_2};$ 

or in current,

 $20\,\log\frac{I_1}{I_2}\,\cdot$ 

While power ratios are independent of source and load impedance values, voltage and current ratios in these formulas hold true only when the source and load impedances  $Z_1$  and  $Z_2$  are equal. In circuits where these impedances differ, voltage and current ratios are expressed by,

$$db = 20 \log \frac{E_1 \sqrt{Z_2}}{E_2 \sqrt{Z_1}} \quad \text{or, } 20 \log \frac{I_1 \sqrt{Z_1}}{I_2 \sqrt{Z_2}}$$

# **DB** Expressed in Watts & Volts

| *                | Above Ze                                       | ro Level                             | Below Ze                                                                                                                  | ro Level                                  |
|------------------|------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| DB               | Watts                                          | Volts                                | Watts                                                                                                                     | Volts                                     |
| 0                | 0.00600                                        | 1.73                                 | 6.00x10 <sup>-3</sup>                                                                                                     | 1.73                                      |
| 1                | 0.00755                                        | 1.94                                 | 4.77x10 <sup>-3</sup>                                                                                                     | 1.54                                      |
| 2                | 0.00951                                        | 2.18                                 | 3.78x10 <sup>-3</sup>                                                                                                     | 1.38                                      |
| 3                | 0.0120                                         | 2.45                                 | 3.01x10 <sup>-3</sup>                                                                                                     | 1.23                                      |
| 4                | 0.0151                                         | 2.74                                 | 2.39x10 <sup>-7</sup>                                                                                                     | 1.09                                      |
| 5                | 0.0190                                         | 3.08                                 | 1.90x10 <sup>-3</sup>                                                                                                     | 0.974                                     |
| 6<br>7<br>8<br>9 | 0.0239<br>0.0301<br>0.0378<br>0.0477<br>0.0600 | 3.46<br>3.88<br>4.35<br>4.88<br>5.48 | 1.51x10 <sup>-3</sup><br>1.20x10 <sup>-3</sup><br>9.51x10 <sup>-4</sup><br>7.55x10 <sup>-4</sup><br>6.00x10 <sup>-4</sup> | 0.868<br>0.774<br>0.690<br>0.614<br>0.548 |
| 11               | 0.0755                                         | 6.14                                 | 4.77x10 <sup>-4</sup>                                                                                                     | 0.488                                     |
| 12               | 0.0951                                         | 6.90                                 | 3.78x10 <sup>-4</sup>                                                                                                     | 0.435                                     |
| 13               | 0.120                                          | 7.74                                 | 3.01x10 <sup>-4</sup>                                                                                                     | 0.388                                     |
| 14               | 0.151                                          | 8 68                                 | 2.39x10 <sup>-4</sup>                                                                                                     | 0.346                                     |
| 15               | 0.190                                          | 9 74                                 | 1.90x10 <sup>-4</sup>                                                                                                     | 0.308                                     |
| 16               | 0.239                                          | 10 93                                | 1.51x10 <sup>-4</sup>                                                                                                     | 0.275                                     |
| 17               | 0.301                                          | 12.26                                | 1.20x10 <sup>-4</sup>                                                                                                     | 0.245                                     |
| 18               | 0.378                                          | 13.76                                | 9.51x10 <sup>-5</sup>                                                                                                     | 0.218                                     |
| 19               | 0.477                                          | 15.44                                | 7.55x10 <sup>-5</sup>                                                                                                     | 0.194                                     |
| 20               | 0.600                                          | 17.32                                | 6.00x10 <sup>-5</sup>                                                                                                     | 0.173                                     |
| 25               | 1.90                                           | 30.8                                 | 1.90x10 <sup>-5</sup>                                                                                                     | 0 0974                                    |
| 30               | 6.00                                           | 54.8                                 | 6.00x10 <sup>-6</sup>                                                                                                     | 0.0548                                    |
| 35               | 19.0                                           | 97.4                                 | 1.90x10 <sup>-6</sup>                                                                                                     | 0.0308                                    |
| 40               | 60.0                                           | 173.                                 | 6.00x10 <sup>-7</sup>                                                                                                     | 0.0173                                    |
| 45               | 190.                                           | 308.                                 | 1.90x10 <sup>-7</sup>                                                                                                     | 0.00974                                   |
| 50               | 600.                                           | 548.                                 | 6.00x10 <sup>-8</sup>                                                                                                     | 0.00548                                   |
| 60               | 6,000.                                         | 1,730.                               | 6.00x10 <sup>-9</sup>                                                                                                     | 0.00173                                   |
| 70               | 60,000.                                        | 5,480.                               | 6.00x10 <sup>-10</sup>                                                                                                    | 0.000548                                  |
| 80               | 600,000.                                       | 17,300.                              | 6.00x10 <sup>-11</sup>                                                                                                    | 0.000173                                  |

\*Zero db = 6 milliwatts into a 500 ohm load. Power ratios hold for any impedance, but voltages must be referred to an impedance load of 500 ohms.

# Decibel-Voltage, Current and Power Ratio Table

|                                            |                                                    |                                        | -                                                    | <del>-</del>                              | _                                                   |                                                |                                              | -                                           | -                                                                               |
|--------------------------------------------|----------------------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|
| Voltage<br>ar<br>Current<br>Rotio          | Power<br>Ratia                                     | DB                                     | Voltage<br>or<br>Current<br>Ratio                    | Power<br>Ratio                            | Voltoge<br>or<br>Current<br>Ratio                   | Power<br>Rotio                                 | DB                                           | Voltage<br>or<br>Current<br>Rotio           | Power<br>Rotio                                                                  |
| 1.0000<br>.9886<br>.9772<br>.9661<br>.9550 | 1.0000<br>.9772<br>.9550<br>.9333<br>.9120         | 0<br>.1<br>.2<br>.3<br>.4              | 1.000<br>1.012<br>1.023<br>1.035<br>1.047            | 1.000<br>1.023<br>1.047<br>1.072<br>1.096 | .4898<br>.4842<br>.4786<br>.4732<br>.4677           | .2399<br>.2344<br>.2291<br>.2239<br>.2188      | 6.2<br>6.3<br>6.4<br>6.5<br>6.6              | 2.042<br>2.065<br>2.089<br>2.113<br>2.138   | 4.169<br>4.266<br>4.365<br>4.467<br>4.571                                       |
| .9441<br>.9333<br>.9226<br>.9120<br>.9016  | .8913<br>.8710<br>.8511<br>.8318<br>.8128          | .5<br>.6<br>.7<br>.8                   | 1.059<br>1.072<br>1.084<br>1.096<br>1.109            | 1.122<br>1.148<br>1.175<br>1.202<br>1.230 | .4624<br>.4571<br>.4519<br>.4467<br>.4416           | .2138<br>.2089<br>.2042<br>.1995<br>.1950      | 6.7<br>6.8<br>6.9<br>7.0<br>7.1              | 2.163<br>2.188<br>2.213<br>2.239<br>2,265   | 4.677<br>4.786<br>4.898<br>5.012<br>5.129                                       |
| .8913<br>.8810<br>.8710<br>.8610<br>.8511  | .7943<br>.7762<br>.7586<br>.7413                   | 1.0<br>1.1<br>1.2<br>1.3               | 1.122<br>1.135<br>1.148<br>1.161<br>1.175            | 1.259<br>1.288<br>1.318<br>1.349<br>1.380 | .4365<br>.4315<br>.4266<br>.4217<br>.4169           | .1905<br>.1862<br>.1820<br>.1778<br>.1738      | 7.2<br>7.3<br>7.4<br>7.5<br>7.6              | 2.291<br>2.317<br>2.344<br>2.371<br>2.399   | 5.248<br>5.370<br>5.495<br>5.623<br>5.754                                       |
| .8414<br>.8318<br>.8222<br>.8128           | .7079<br>.6918<br>.6761<br>.6607                   | 1.5<br>1.6<br>1.7<br>1.8               | 1.189<br>1.202<br>1.216<br>1.230<br>1.245            | 1.413<br>1.445<br>1.479<br>1.514<br>1.549 | .4121<br>.4074<br>.4027<br>.3981<br>.3936           | .1698<br>.1660<br>.1622<br>.1585<br>.1549      | 7.7<br>7.8<br>7.9<br>8.0<br>8.1              | 2,427<br>2,455<br>2,483<br>2,512<br>2,541   | 5.888<br>6.026<br>6.166<br>6.310<br>6.457                                       |
| .8035<br>.7943<br>.7852<br>.7762<br>.7674  | .6457<br>.6310<br>.6166<br>.6026                   | 1.9<br>2.0<br>2.1<br>2.2<br>2.3        | 1.259<br>1.274<br>1.288<br>1.303<br>1.318            | 1.585<br>1.622<br>1.660<br>1.698<br>1.738 | .3890<br>.3846<br>.3802<br>.3758<br>.3715           | .1514<br>.1479<br>.1445<br>.1413               | 8.2<br>8.3<br>8.4<br>8.5<br>8.6              | 2.570<br>2.600<br>2.630<br>2.661<br>2.692   | 6.607<br>6.761<br>6.918<br>7.079<br>7.244                                       |
| .7586<br>.7499<br>.7413<br>.7328<br>.7244  | .5754<br>.5623<br>.5495<br>.5370<br>.5248          | 2.4<br>2.5<br>2.6<br>2.7<br>2.8        | 1.334<br>1.349<br>1.365<br>1.380                     | 1.778<br>1.820<br>1.862<br>1.905<br>1.950 | .3673<br>.3631<br>.3589<br>.3548<br>.3508           | .1349<br>.1318<br>.1288<br>.1259               | 8.7<br>8.8<br>8.9<br>9.0<br>9.1              | 2.723<br>2.754<br>2.786<br>2.818<br>2.851   | 7.413<br>7.586<br>7.762<br>7.943<br>8.128                                       |
| .7161<br>.7079<br>.6998<br>.6918           | .5129<br>.5012<br>.4898<br>.4786<br>.4677          | 2.9<br>3.0<br>3.1<br>3.2<br>3.3        | 1.396<br>1.413<br>1.429<br>1.445<br>1.462<br>1.479   | 1.995<br>2.042<br>2.089<br>2.138<br>2.188 | .3467<br>.3428<br>.3388<br>.3350<br>.3311           | .1202<br>.1175<br>.1148<br>.1122<br>.1096      | 9.2<br>9.3<br>9.4<br>9.5<br>9.6              | 2.884<br>2.917<br>2.951<br>2.985<br>3.020   | 8.318<br>8.511<br>8.710<br>8.913<br>9.120                                       |
| .6761<br>.6683<br>.6607<br>.6531<br>.6457  | .4571<br>.4467<br>.4365<br>.4266<br>.4169<br>.4074 | 3.4<br>3.5<br>3.6<br>3.7<br>3.8<br>3.9 | 1.479<br>1.496<br>1.514<br>1.531 -<br>1.549<br>1.567 | 2.239<br>2.291<br>2.344<br>2.399<br>2.455 | .3273<br>.3236<br>.3199<br>.3162<br>.2985           | .1072<br>.1047<br>.1023<br>.1000<br>.08913     | 9.7<br>9.8<br>9.9<br>10.0<br>10.5            | 3.055<br>3.090<br>3.126<br>3.162<br>3.350   | 9,333<br>9,550<br>9,772<br>10,000<br>11,22                                      |
| .6383<br>.6310<br>.6237<br>.6166<br>.6095  | .3981<br>.3890<br>.3802<br>.3715                   | 4.0<br>4.1<br>4.2<br>4.3               | 1.585<br>1.603<br>1.622<br>1.641<br>1.660            | 2.512<br>2.570<br>2.630<br>2.692<br>2.754 | .2818<br>.2661<br>.2512<br>.2371<br>.2239           | .07943<br>.07079<br>.06310<br>.05623           | 11.0<br>11.5<br>12.0<br>12.5<br>13.0         | 3.548<br>3.758<br>3.981<br>4.217<br>4.467   | 12:59<br>14:13<br>15:85<br>17:78<br>19:95                                       |
| .6026<br>.5957<br>.5888<br>.5821<br>.5754  | .3631<br>.3548<br>.3467<br>.3388<br>.3311          | 4.4<br>4.5<br>4.6<br>4.7<br>4.8        | 1.679<br>1.698<br>1.718<br>1.738                     | 2.818<br>2.884<br>2.951<br>3.020          | .2113<br>.1995<br>.1884<br>.1778<br>.1585           | .04467<br>.03981<br>.03548<br>.03162<br>.02512 | 13.5<br>14.0<br>14.5<br>15.0                 | 4.732<br>5.012<br>5.309<br>5.623<br>6.310   | 22.39<br>25.12<br>28.18<br>31.62<br>39.81                                       |
| .5689<br>.5623<br>.5559<br>.5495<br>.5433  | .3236<br>.3162<br>.3090<br>.3020<br>.2951          | 4.9<br>5.0<br>5.1<br>5.2<br>5.3        | 1.758<br>1.778<br>1.799<br>1.820<br>1.841            | 3.090<br>3.162<br>3.236<br>3.311<br>3.388 | .1383<br>.1413<br>.1259<br>.1122<br>.1000<br>.03162 | .01995<br>.01585<br>.01259<br>.01000           | 16.0<br>17.0<br>18.0<br>19.0<br>20.0<br>30.0 | 7.079<br>7.943<br>8.913<br>10.000<br>31.620 | 50.12<br>63.10<br>79.43<br>100.00<br>1,000.00                                   |
| .5370<br>.5309<br>.5248<br>.5188<br>.5129  | .2884<br>.2818<br>.2754<br>.2692<br>.2630          | 5.4<br>5.5<br>5.6<br>5.7<br>5.8        | 1.862<br>1.884<br>1.905<br>1.928<br>1.950            | 3.467<br>3.548<br>3.631<br>3.715<br>3.802 | .01<br>.003162<br>.001<br>.0003162                  | .00100<br>.00010<br>.00001<br>10-4<br>10-7     | 40.0<br>50.0<br>60.0<br>70.0                 | 100.00<br>316.20<br>1,000.00<br>3,162.00    | 10,000.00<br>10,000.00<br>10 <sup>5</sup><br>10 <sup>6</sup><br>10 <sup>7</sup> |
| .5070<br>.5012<br>.4955                    | .2570<br>.2512<br>.2455                            | 5.9<br>6.0<br>6.1                      | 1.972<br>1.995<br>2.018                              | 3.890<br>3.931<br>4.074                   | .0001<br>.00003162<br>10-5                          | 10-#<br>10-9<br>10-10                          | 90.0<br>100.0                                | 10,000.00<br>31,620.00<br>10 <sup>5</sup>   | 10°<br>10°<br>10°                                                               |

ALLIED'S ELECTRONICS DATA HANDBOOK

# Table of Values for Attenuator Network Formulas

| ш    | 089515<br>08491<br>079748<br>063309<br>063309<br>064797<br>031706<br>022643<br>022675<br>022675<br>022675<br>022675<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072743<br>072                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ۵    | 91448 91448 91907 92343 92343 923869 95387 95387 95387 95587 995871 995874 995874 995876 995888 995876 995888 995876 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888 995888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40   | 95533<br>95783<br>96019<br>97628<br>97628<br>97628<br>97761<br>98205<br>98205<br>99206<br>99206<br>99366<br>99375<br>99375<br>99375<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397<br>99397 |
| ∢    | 044668<br>042170<br>031623<br>023714<br>023714<br>012387<br>011583<br>011783<br>011289<br>011289<br>011289<br>011289<br>011289<br>011289<br>011289<br>011289<br>011289<br>011289<br>011289<br>0013623<br>0028119<br>0013623<br>001783<br>001783<br>001783<br>00031623<br>00039811<br>00039811<br>00031623<br>0001783<br>0001783<br>0001783<br>0001783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ф    | 27.0<br>27.0<br>33.0<br>33.0<br>33.0<br>33.0<br>33.0<br>33.0<br>33.0<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ш    | 86.857<br>43.426<br>34.739<br>21.7367<br>17.362<br>11.567<br>10.842<br>11.567<br>10.842<br>11.567<br>10.842<br>11.567<br>10.842<br>11.567<br>10.842<br>11.567<br>10.288<br>3.4288<br>2.0366<br>1.1648<br>1.336<br>1.1028<br>3.428<br>3.428<br>3.428<br>3.428<br>3.428<br>1.336<br>1.1160<br>3.515<br>2.225<br>4.137<br>1.1568<br>3.173<br>4.1137<br>4.1137<br>4.1137<br>4.1158<br>1.1568<br>1.1568<br>1.1568<br>1.1568<br>1.1568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ۵    | 005756<br>011512<br>014390<br>023022<br>02874<br>02874<br>02874<br>02874<br>04074<br>04074<br>04074<br>04077<br>04455<br>04455<br>04456<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501<br>057501                                                                                                                                             |
| U    | 86.360<br>42.931<br>34.247<br>21.219<br>16.876<br>11.392<br>11.392<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.398<br>11.284<br>11.473<br>11.473<br>11.473<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11.004<br>11                                                                                                                                                |
| · 40 | 011447<br>022763<br>028372<br>028372<br>055939<br>055939<br>0677442<br>0087724<br>0087724<br>0087724<br>0087724<br>0087724<br>0087724<br>0087724<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>008738<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>00873<br>0                     |
| 4    | 98855<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763<br>97763 |
| db   | 1.7.25.2.3.3.5.0.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# **Attenuator Networks**

# For Insertion Between Equal Impedances

For data covering networks between unequal impedances, see Minimum Loss Pads on page 10. See also Decibel—Voltage Current and Power Ratio Table on page 6.

See table on page 7 for values of A, B, C. D, E used in the following attenuator network formulas.

In the case of L and U networks where only the input or output can be matched, as required, the matched side is indicated by an arrow pointing toward the pad. On all other networks, both the input and output circuits are matched.





# **Constant Impedance Attenuators in Parallel**





| _ 1                |      | Numbe | er of Ch | annels |      |
|--------------------|------|-------|----------|--------|------|
| Z                  | 2    | 3     | 4        | 5      | 6    |
| 30                 | 10   | 15    | 18       | 20     | 21.5 |
| 50                 | 16.6 | 25    | 30       | 33.3   | 35.7 |
| 150                | 50   | 75    | 90       | 100    | 107  |
| 200                | 66.6 | 100   | 120      | 133    | 143  |
| 250                | 83.3 | 125   | 150      | 166    | 179  |
| 500                | 166  | 250   | 300      | 333    | 357  |
| 600                | 200  | 300   | 360      | 400    | 428  |
| Network<br>db Loss | 6    | 9.5   | 12       | 14     | 15.5 |

$$R_1 = Z_L \left( \frac{N-1}{N+1} \right) \mid \text{Insertion loss}$$
  
in  $db = 20 \log_{10} N$ 

Where  $Z_L$  = identical line and load impedances; and N = number of channels in parallel.

# Minimum Loss Pads





For Matching Two Impedances where  $Z_1 > Z_2$ 

$$R_{1} = \sqrt{Z_{1} (Z_{1} - Z_{2})}$$

$$R_{2} = \frac{Z_{1} Z_{2}}{R_{1}}$$

$$db \text{ loss} = 20 \log_{10} \left( \sqrt{\frac{Z_{1}}{Z_{2}}} + \sqrt{\frac{Z_{1}}{Z_{2}} - 1} \right)$$

matched, use a resistor  $R_L$  in series with the smaller impedance such that

$$R_L = Z_1 - Z_2$$

$$db \text{ loss} = 20 \log_{10} \sqrt{\frac{Z_1}{Z_2}}$$

If the smaller impedance only is to be matched, use a resistor  $R_S$  in shunt across the larger impedance such that

$$R_S = \frac{Z_1 \ Z_2}{Z_1 - Z_2}$$
 Here also  $db$  loss =  $20 \log_{10} \sqrt{\frac{Z_1}{Z_2}}$ 

Where Only One Impedance is to be Matched

If the larger impedance only is to be

# Tables of $R_1$ and $R_2$ Values

When  $Z_1$  is 500 ohms and  $Z_2$  is less than 500 ohms.

| Z <sub>2</sub> | 400 | _ 300 | 250 | 200 | 160 | 125  | 100  | 80   | <b>6</b> 5 | 50   | 40   | <b>3</b> 0 | 25   |
|----------------|-----|-------|-----|-----|-----|------|------|------|------------|------|------|------------|------|
| R <sub>1</sub> | 224 | 316   | 354 | 387 | 412 | 433  | .447 | 458  | 466        | 474  | 480  | 485        | 487  |
| $R_2$          | 894 | 474   | 354 | 258 | 194 | 144  | 112  | 87.3 | 69.7       | 52.7 | 41.7 | 30.9       | 25.6 |
| db<br>loss     | 4   | 6.5   | 7.5 | 9   | 10  | 11.5 | 12.5 | 13.5 | 14.5       | 16   | 17   | 18         | 19   |

When Z2 is less than 25 ohms,

let 
$$R_1 = 500 - \frac{Z_1}{Z_2}$$
  
and  $R_2 = Z_2$ 

Where  $Z_2$  is 500 onms, and  $Z_1$  is greater than 500 ohms.

| Z <sub>1</sub> | 600   | 800 | 1,000 | 1,200 | 1,500 | 2,000 | 2,500 | 3,000 | 4,000 | 5,000 | 6,000 | 8,000 | 10, <b>00</b> 0 |
|----------------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|
| R <sub>1</sub> | 245   | 490 | 707   | 917   | 1,225 | 1,732 | 2,236 | 2,739 | 3,742 | 4,743 | 5,745 | 7,746 | 9,747           |
| R <sub>2</sub> | 1,225 | 817 | 707   | 655   | 612   | 577   | 559   | 548   | 534   | 527   | 522   | 516   | 513             |
| db<br>Loss     | 3.5   | 6   | 7.5   | 9     | 10    | 11.5  | 12.5  | 13.5  | 15    | 16    | 17    | 18    | 19              |

When  $Z_1$  is greater than 10,000 ohms,

let 
$$R_1 = Z_1 - 250$$
  
and  $R_2 = 500$ 

# 70-Volt Loud-Speaker Matching Systems

The RETMA 70.7 volt constant voltage system of power distribution provides the engineer and technician with a simple means of matching a number of loudspeakers to an amplifier. To use this method:

- 1. Determine the power required at each loudspeaker.
- 2. Add the powers required for the individual speakers and select an amplifier with a rated power output equal to or greater than this total.
- Select 70.7-volt transformers having primary wattage taps as determined in step 1.\*
- 4. Wire the selected primaries in parallel across the 70.7-volt line.
- Connect each secondary to its speaker; selecting the tap which matches the voice coil impedance.

For transformers rated in impedance, the following formulas may be used to determine the proper taps in step 3.

Primary Impedance = 
$$\frac{(\text{Amplifier output voltage})^2}{\text{Desired speaker power}}$$
or  $Z = \frac{E^2}{P}$  (1)

Since the voltage at rated amplifier power is 70.7, this reduces to:

$$Z = \frac{70.7^2}{P} = \frac{5000}{P} \tag{2}$$

From formula (2) these relationships are:

- 1 watt requires 5000 ohm primary
- 2 watts requires 2500 ohm primary
- 5 watts requires 1000 ohm primary
- 10 watts requires 500 ohm primary

Once the primary taps have been determined, continue on through step 4 and 5 as outlined above. When selecting transformer primary taps, use the next highest available value above the computed value. A mismatch of 25% is generally considered permissible.

# Example: Required

One 6 watt speaker with 4 ohm voice coil. Two 10 watt speakers with 8 ohm voice coils (use one transformer at this location).

- (1-2) Total power = 6 + 10 + 10 = 26 watts (use a 30-watt amplifier or other amplifier capable of handling at least 26 watts)
  - (3)  $Z_{6 \text{ watts}} = \frac{5000}{6} = 833 \text{ ohms (use } 1000 \text{ ohm transformer)}$

$$Z_{\text{ 20 watts}} = \frac{5000}{20} = 250 \text{ ohms}$$

(4-5) See sketch below.



<sup>\*</sup>These transformers have the primary taps marked in watts and the secondaries marked in ohms.

# Most Used Formulas

### Resistance Formulas

In series  $R_t = R_1 + R_2 + R_3 \dots \text{etc.}$ 

In parallel  $R_t = \frac{1}{\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3} \dots \text{ etc.}}$ 

Two resistors in parallel  $R_t = \frac{R_1 R_2}{R_1 + R_2}$ 

# Capacitance

In parallel  $C_t = C_1 + C_2 + C_3 \dots$  etc.

In series  $C_t = \frac{1}{\frac{1}{C_t} + \frac{1}{C_t} + \frac{1}{C_t} \cdot \dots \text{ etc.}}$ 

Two capacitors  $C_t = \frac{C_1 C_2}{C_1 + C_2}$  in series

# The Quantity of Electricity Stored Within a Capacitor is Given by

Q = CE

where Q =the quantity stored, in coulombs,

E = the potential impressed across the condenser, in volts

C =capacitance in farads.

# The Capacitance of a Parallel Plate Capacitor is Given by

 $C = 0.0885 \frac{KS(N-1)}{d}$ 

where C = capacitance in mmfd.

K = dielectric constant,

\*S =area of one plate in square centimeters,

N = number.of plates,

\*d = thickness of the dielectric in centimeters (same as the distance between plates).

\* When S and d are given in inches, change constant 0.0885 to 0.224. Answer will still be in micromicrofarads.

### DIELECTRIC CONSTANTS

| Kind of                       | Abbi | oximate* |
|-------------------------------|------|----------|
| Dielectric                    | K    | Value    |
| Air (at atmospheric pressure) |      | 1.0      |
| Bakelite                      |      | 5.0      |
| Beeswax                       |      | 3.0      |
| Cambric (varnished)           |      | 4.0      |
| Fibre (Red)                   |      | 5.0      |
| Glass (window or flint)       |      | 8.0      |
| Gutta Percha                  |      | 4.0      |
| Mica                          |      | 6.0      |
| Paraffin (solid)              |      | 2.5      |
| Paraffin Coated Paper         |      | 3.5      |
| Porcelain                     |      | 6.0      |
| Pyrex                         |      | 4.5      |
| Quartz                        |      | 5.0      |
| Rubber                        |      | 3.0      |
| Slate                         |      | 7.0      |
| Wood (very dry)               |      | 5.0      |

\* These values are approximate, since true values depend upon quality or grade of material used, as well as moisture content, temperature and frequency characteristics of each.

### Self-Inductance

In series  $L_t = L_1 + L_2 + L_3 \dots \text{ etc.}$ 

In parallel  $L_t = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} \dots \text{etc.}}$ 

Two inductors  $L_t = \frac{L_1 L_2}{L_1 + L_2}$ 

# Coupled Inductance

In series with fields aiding

$$L_t = L_1 + L_2 + 2M$$

In series with fields opposing

$$L_t = L_1 + L_2 - 2M$$

In parallel with fields aiding

$$L_{t} = \frac{1}{\frac{1}{L_{1} + M} + \frac{1}{L_{2} + M}}$$

In parallel with fields opposing

$$L_{t} = \frac{1}{\frac{1}{L_{1} - M} + \frac{1}{L_{2} - M}}$$

where  $L_t$  = the total inductance,

M =the mutual inductance,

 $L_1$  and  $L_2$  = the self inductance of the individual coils.

### **Mutual Inductance**

The mutual inductance of two r-f coils with fields interacting, is given by

$$M=\frac{L_A-L_O}{4}$$

where M = mutual inductance, expressed in same units as  $L_A$  and  $L_{O_1}$ 

 $\mathcal{L}_A$  = Total inductance of coils  $L_1$  and  $L_2$  with fields *aiding*,

 $L_0$  = Total inductance of coils  $L_1$  and  $L_2$  with fields opposing.

# **Coupling Coefficient**

When two r-f coils are inductively coupled so as to give transformer action, the coupling coefficient is expressed by

$$K = \frac{M}{\sqrt{L_1 L_2}}$$

where K = the coupling coefficient;  $(K \times 10^2 = \text{coupling coefficient in } \%)$ ,

M =the mutual inductance value,

 $L_1$  and  $L_2$  = the self-inductance of the two coils respectively, both being expressed in the same units.

### Resonance

The resonant frequency, or frequency at which inductive reactance  $X_L$  equals capacitive reactance  $X_C$ , is expressed by.

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

also 
$$L = \frac{1}{4\pi^2 \int_{\tau^2} C}$$

and 
$$C = \frac{1}{4\pi^2 f_{\tau}^2 L}$$

where  $f_{\tau}$  = resonant frequency in cycles per second,

L = inductance in henrys,

C = capacitance in farads,

 $2\pi = 6.28$ 

 $4\pi^2=39.5$ 

### Reactance

of an inductance is expressed by

$$X_L = 2\pi f L$$

of a capacitance is expressed by

$$X_C = \frac{1}{2\pi fC}$$

where  $X_L$  = inductive reactance in ohms, (known as positive reactance),

 $X_C = ext{capacitive rectance in ohms,}$  (known as negative reactance),

f =frequency in cycles per second,

L =inductance in henrys,

C =capacitance in farads,

 $2\pi = 6.28$ 

# Frequency from Wavelength

$$f = \frac{3 \times 10^5}{\lambda}$$
 (kilocycles)

where  $\lambda$  = wavelength in *meters*.

$$f = \frac{3 \times 10^4}{\lambda}$$
 (megacycles)

where  $\lambda$  = wavelength in centimeters.

# **Wavelength from Frequency**

$$\lambda = \frac{3 \times 10^5}{f} \, (\text{meters})$$

where f = frequency in kilocycles.

$$\lambda = \frac{3 \times 10^4}{f} \text{ (centimeters)}$$

where f = frequency in megacycles.

# Q or Figure of Merit

of a simple reactor

$$Q = \frac{X_L}{R_L}$$

of a single capacitor

$$Q = \frac{X_C}{R_C}$$

Q = a ratio expressing the figure where of merit,

 $X_L$  = inductive reactance in ohms,

 $X_C = \text{capacitive reactance in ohms,}$ 

 $R_L$  = resistance in ohms acting in series with inductance,

 $R_C$  = resistance in ohms acting in series with capacitance,

# **Impedance**

In any a-c circuit where resistance and reactance values of the R, L and C components are given, the absolute or numerical magnitude of impedance and phase angle can be computed from the formulas which follow.

In general the basic formulas expressing total impedance are:

for series circuits,

$$Z_t = \sqrt{R_t^2 + X_t^2}$$

for parallel circuits,

$$Z_t = \frac{1}{\sqrt{G_t^2 + B_t^2}}.$$

See page 17 for formulas involving impedance, conductance, susceptance and admittance.

In series circuits where phase angle and any two of the Z, R and X components are known, the unknown component may be determined from the expressions:

$$Z = \frac{R}{\cos \theta}$$
  $Z = \frac{X}{\sin \theta}$ 

$$Z = \frac{X}{\sin \theta}$$

$$R = Z \cos \theta$$

$$X = Z \sin \theta$$

where Z = magnitude of impedance in ohms.

R = resistance in ohms,

X = reactance (inductive or capacitive) in ohms.

### Nomencloture

Z = absolute or numerical value of impedance magnitude in ohms

R = resistance in ohms,

 $X_L$  = inductive reactance in ohms,

 $X_C$  = capacitive reactance in ohms,

L = inductance in henrys,

C =capacitance in farads,

 $R_L = \text{resistance in ohms acting in}$ series with inductance,

 $R_C$  = resistance in ohms acting in series with capacitance,

 $\theta$  = phase angle in degrees by which current leads voltage in a capacitive circuit, or lags voltage in an inductive circuit. In a resonant circuit, where  $X_L$ equals  $X_C$ ,  $\theta$  equals  $0^{\circ}$ .

Degrees  $\times$  0.0175 = radians.  $1 \text{ radian} = 57.3^{\circ}$ .

# Numerical Magnitude of Impedance . . .



of resistance alone

$$Z = R$$



of resistance in series

$$Z = R_1 + R_2 + R_3 \dots \text{ etc.}$$

$$\hat{\theta} = 0^{\circ}$$

of inductance alone

$$Z = X_L$$
$$\theta = +90^{\circ}$$

$$\begin{array}{c}
Z = XL \\
\theta = +90^{\circ}
\end{array}$$

of inductance in series

$$Z = X_{L_1} + X_{L_2} + X_{L_3} \dots$$
 etc.  
 $\theta = +90^{\circ}$ 



of capacitance alone

$$Z = X_C$$
$$\theta = -90^{\circ}$$

of capacitance in series

$$Z = X_{C_1} + X_{C_2} + X_{C_3} \dots$$
 etc.  $\theta = -90^{\circ}$ 

or where only 2 capacitances  $C_1$  and  $C_2$  are involved,

$$Z = \frac{1}{2\pi f} \left( \frac{C_1 + C_2}{C_1 C_2} \right)$$

$$\theta = -90^{\circ}$$

of resistance and inductance in series

$$Z = \sqrt{R^2 + X_L^2}$$

$$\theta = \arctan \frac{X_L}{R}$$
.



of resistance and capacitance in series

$$Z = \sqrt{R^2 + Xc^2}$$

$$\theta = \arctan \frac{X_C}{R}$$



of inductance and capacitance in series

$$Z = X_L - X_C$$

$$\theta = -90^{\circ} \text{ when } X_L < X_C$$

$$=0^{\circ}$$
 when  $X_L=X_C$ 

$$= +90^{\circ} \text{ when } X_L > X_C$$



of resistance, inductance and capacitance in series

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$\theta = \arctan \frac{X_L - X_C}{R}$$



of resistance in parallel

$$Z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \cdots \text{ etc.}}$$

$$\theta = 0^{\circ}$$



or where only 2 resistances  $R_1$  and  $R_2$  are involved,

$$Z=\frac{R_1\,R_2}{R_1+R_2}$$

$$\theta = 0^{\circ}$$



of inductance in parallel

$$Z = \frac{1}{\frac{1}{X_{L_1}} + \frac{1}{X_{L_2}} + \frac{1}{X_{L_3}} \dots \text{ etc.}}$$

$$\theta = +90^{\circ}$$



or where only 2 inductances  $L_1$  and  $L_2$  are involved,

$$Z = 2\pi f \left(\frac{L_1 L_2}{L_1 + L_2}\right)$$
$$\theta = +90^{\circ}$$



of capacitance in parallel

$$Z = \frac{1}{\frac{1}{X_{c_1}} + \frac{1}{X_{c_2}} + \frac{1}{X_{c_3}} \dots \text{ etc.}}$$

$$\theta = -90^{\circ}$$

or where only 2 capacitances  $C_1$  and  $C_2$  are involved,

$$Z = \frac{1}{2\pi f \left(C_1 + C_2\right)}$$



of inductance and resistance in parallel,

$$Z = \frac{RX_L}{\sqrt{R^2 + X_L^2}}$$

$$\theta = \arctan \frac{R}{X_L}$$



of capacitance and resistance in parallel,

$$Z = \frac{RX_C}{\sqrt{R^2 + X_C^2}}$$

$$\theta = -\arctan\frac{R}{X_C}$$



of inductance and capacitance in parallel,

$$Z = \frac{X_L \, X_C}{X_L - X_C}$$

$$\theta = 0^{\circ}$$
 when  $X_L = X_C$ 



of inductance, resistance and capacitance in parallel

$$Z = \frac{RX_{L}X_{C}}{\sqrt{X_{L}^{2}X_{C}^{2} + (RX_{L} - RX_{C})^{2}}}$$

$$\theta = \arctan \frac{RX_C - RX_L}{X_L X_C}$$



of inductance and series resistance in parallel with capacitance

$$Z = X_C \sqrt{\frac{R^2 + X_L^2}{R^2 + (X_L - X_C)^2}}$$

$$\theta = \arctan\left(\frac{X_L X_C - X_L^2 - R^2}{RX_C}\right)$$



of capacitance and series resistance in parallel with inductance and series resistance

$$Z = \sqrt{\frac{(R_L^2 + X_L^2)(R_C^2 + X_C^2)}{(R_L + R_C)^2 + (X_L - X_C)^2}}$$

$$\theta = \arctan \frac{X_L (R_C^2 + X_C^2) - X_C (R_L^2 + X_L^2)}{R_L (R_C^2 + X_C^2) + R_C (R_L^2 + X_L^2)}$$

### Conductance

In direct current circuits, conductance is expressed by

$$G=\frac{1}{R}$$

where G = conductance in mhos,

R = resistance in ohms.

In d-c circuits involving resistances  $R_1$ ,  $R_2$ ,  $R_3$ , etc., in parallel,

the total conductance is expressed by

$$G_{\text{total}} = G_1 + G_2 + G_3 \dots \text{ etc.}$$

ond the total current by

$$I_{\text{total}} = E G_{\text{total}}$$

ond the amount of current in any single resistor,  $R_2$  for example, in a parallel group, by

$$I_2 = \frac{I_{\text{total}} G_2}{G_1 + G_2 + G_3 \dots \text{etc.}},$$

R, E and I in Ohm's law formulas for d-c circuits may be expressed in terms of conductance as follows:

$$R = \frac{1}{G}, \qquad E = \frac{I}{G}, \qquad I = EG,$$

where G = conductance in mhos,

R = resistance in ohms.

E =potential in volts.

I = current in amperes.

### Susceptance

In an alternating current circuit, the susceptance of a series circuit is expressed by

$$B = \frac{X}{R^2 + X^2}$$

or, when the resistance is 0, susceptance becomes the reciprocal of reactance, or

$$B = \frac{1}{X}$$

where B =susceptance in mhos,

R = resistance in ohms.

X = reactance in ohms.

### Admittance

In an alternating current circuit, the admittance of a scries circuit is expressed by

$$Y = \frac{1}{\sqrt{R^2 + X^2}}$$

Admittance is also expressed as the reciprocal of impedance, or

$$Y = \frac{1}{Z}$$

where Y = admittance in mhos,

R = resistance in ohms,

X = reactance in ohms.

Z = impedance in ohms.

### R and X in Terms of G and B

Resistance and reactance may be expressed in terms of conductance and susceptance as follows:

$$R = \frac{G}{G^2 + B^2}, \qquad X = \frac{B}{G^2 + B^2}.$$

### G, B, Y and Z in Parallel Circuits

In any given a-c circuit centaining a number of smaller parallel circuits only,

the effective conductance  $G_t$  is expressed by

$$G_t = G_1 + G_2 + G_3 \dots \text{etc.}$$

and the effective susceptance  $B_t$  by

$$B_t = B_1 + B_2 + B_3 \dots \text{ etc.}$$

and the effective admittance  $Y_t$  by

$$Y_t = \sqrt{G_t^2 + B_t^2}$$

and the effective impedance  $Z_t$  by

$$Z_t = \frac{1}{\sqrt{G_t^2 + B_t^2}} \text{ or } \frac{1}{Y_t}$$

where R = resistance in ohms.

X = reactance (capacitive or inductive) in ohms,

G =conductance in mhos,

B =susceptance in mhos,

Y = admittance in mhos.

Z = impedance in ohms.

# Transient I and E in LCR Circuits

The formulas which follow may be used to closely approximate the growth and decay of current and voltage in circuits involving L, C and R:

where i = instantaneous current in amperes at any given time (t),

E =potential in volts as designated,

R = circuit resistance in ohms

C =capacitance in farads,

L = inductance in henrys,

V =steady state potential in volts,

 $V_C$  = reactive volts across C,

 $V_L$  = reactive volts across L,

 $V_R = \text{voltage across } R$ 

RC = time constant of RC circuit inseconds.

= time constant of RL circuit in

t =any given time in seconds after switch is thrown.

 $\epsilon$  = a constant, 2.718 (base of the natural system of logarithms),

Sw = switch

The time constant is defined as the time in seconds for current or voltage to fall to  $\frac{1}{\epsilon}$ or 36.8% of its initial value or to rise to  $(1-\frac{1}{6})$  or approximately 63.2% of its final value.

# Charging a De-energized Capacitive Circuit



E = applied potential.

$$i = \frac{E}{R} e^{-\frac{t}{RC}}$$





$$V_C = E \left( 1 - \epsilon^{-\frac{t}{RC}} \right) \qquad V_R = E \epsilon^{-\frac{t}{RC}}$$

$$V_R = E \ \epsilon^{-\frac{t}{RC}}$$

# Discharging an Energized Capacitive Circuit



E =potential to which C is charged prior to closing Sw.

$$i = \frac{E}{R} \, \epsilon^{-\frac{t}{RC}}$$





$$V_C = V_R = E \ \epsilon^{-\frac{t}{RC}}$$

# Voltage is Applied to a Deenergized Inductive Circuit



E =applied potential

$$i = \frac{E}{R} \left( 1 - \epsilon^{-\frac{Rt}{L}} \right)$$



# An Energized Inductive Circuit is Short Circuited

Hound of Give



E = counter potential induced incoil when switch is closed.

$$i = \frac{E}{R} \epsilon^{-\frac{Rt}{L}}$$



$$V_L = V_R = E \epsilon^{-\frac{Rt}{L}}$$

# Steady State Current Flow

# In a Capacitive Circuit

In a capacitive circuit, where resistance loss components may be considered as negligible, the flow of current at a given alternating potential of constant frequency, is expressed by

$$I = \frac{E}{X_C} = \frac{E}{\left(\frac{1}{2\pi fC}\right)} = E (2\pi fC)$$

where i = current in amperes,

 $X_{\mathbf{c}}$  = capacitive reactance of the circuit in ohms,

E =applied potential in volts.

### In an Inductive Circuit

In an inductive circuit, where inherent resistance and capacitance components may be so low as to be negligible, the flow of current at a given alternating potential of a constant frequency, is expressed by

$$I = \frac{E}{X_L} = \frac{E}{2\pi f L}$$

where I = current in amperes,

 $X_L = \text{inductive reactance of the cir-}$ cuit in ohms,

E = applied potential in volts.

# Transmission Line Formulas

### **Concentric Transmission Lines**

Characteristic impedance in ohms is given by

 $Z = 138 \log \frac{d_1}{d_2}$ 

R-f resistance in ohms per foot of copper line, is given by

$$r = \sqrt{f} \left( \frac{1}{d_1} + \frac{1}{d_2} \right) \times 10^{-3}$$

Attenuation in decibels per foot of line, is given by

$$\alpha = \frac{4.6\sqrt{f}(d_1 + d_2)}{d_1d_2\left(\log\frac{d_1}{d_2}\right)} \times 10^{-6}$$

where Z = characteristic impedance in ohms,

r = radio frequency resistance in ohms per foot of copper line,

a = attenuation in decibels per foot of line,

 $d_1$  = the *inside* diameter of the *outer* conductor, expressed in inches,

 $d_2$  = the *outside* diameter of the *inner* conductor, expressed in inches,

f =frequency in megacycles.

# Two-Wire Open Air Transmission Lines

Characteristic impedance in ohms is given by

 $Z = 276 \left( \log \frac{2D}{d} \right)$ 

Inductance in microhenrys per foot of *line* is given by

 $L = 0.281 \left( \log \frac{2D}{d} \right)$ 

Capacitance in micromicrofarads per foot of line is given by

$$C = \frac{3.68}{\log \frac{2D}{d}}$$

Attenuation in decibels per foot of wire is given by

$$db = \frac{0.0157 \ R_f}{\log \frac{2D}{d}}$$

R-f resistance in Ohms per loop-foot of wire, is given by

$$R_f = \frac{2 \times 10^{-3} \sqrt{f}}{d}$$

where Z = characteristic impedance in ohms,

D =spacing between wire centers in inches,

d =the diameter of the conductors in inches,

L =inductance in microhenrys per foot of *line*,

C = capacitance in micromicrofar- ads per foot of *line*,

db =attenuation in decibels per foot. of *wire*,

 $R_f = r - f$  resistance in ohms per loopfoot of wire,

f =frequency in megacycles.

# Vertical Antenna

The capacitance of a vertical antenna, shorter than one-quarter wave length at its operating frequency, is given by

$$C_a = \frac{17l}{\left[\left(\log_{\epsilon} \frac{24l}{d}\right) - 1\right] \left[1 - \left(\frac{fl}{246}\right)^2\right]}$$

where  $C_a$  = capacitance of the antenna in micromicrofarads,

l = height of antenna in feet,

d =diameter of antenna conductor in inches,

f =operating frequency in megacycles,

 $\epsilon = 2.718$  (the base of the natural system of logarithms).

# Vacuum Tube Formulas and Symbols

# **Vacuum Tube Constants**

Amplication factor  $(Mu \text{ or } \mu)$  is given by

$$\mu = \frac{\Delta E_p}{\Delta E_g} \text{ (with } I_p \text{ constant)}$$

Dynamic plate resistance in ohms, is given by

$$r_p = \frac{\Delta E_p}{\Delta I_p}$$
 (with  $E_q$  constant)

Mutual conductance in mhos, is given by

$$g_{\infty} = \frac{\Delta I_p}{\Delta E_q}$$
 (with  $E_p$  constant)

# Vacuum Tube Formulas

Gain per stage is given by

$$\mu\left(\frac{R_L}{R_L+r_p}\right)$$

Voltage output appearing in  $R_L$  is given by

$$\mu\left(\frac{E_s R_L}{r_p + R_L}\right)$$

Power output in  $R_L$ , is given by

$$R_L \left(\frac{\mu E_s}{r_p + R_L}\right)^2$$

Maximum power output in  $R_L$  which results when  $R_L = r_p$ , is given by

$$\frac{(\mu E_s)^2}{4r_n}$$

Maximum undistorted power output in  $R_L$ , which results when  $R_L = 2r_p$ , is given by

$$\frac{2(\mu E_s)^2}{9r_p}$$

Required cathode biasing resistor in ohms, for a single tube is given by

$$\frac{E_g}{I_k}$$

# Vacuum Tube Symbols

 $Mu \text{ or } \mu = \text{Amplification factor.}$ 

 $r_p = \text{Dynamic}$  plate resistance in ohms,

 $g_m = \text{Mutual conductance in mhos},$ 

 $E_p$  = Plate voltage in volts,

 $E_{g} = \text{Grid voltage in volts},$ 

 $I_p$  = Plate current in amperes,

 $R_L$  = Plate load resistance in ohms,

 $I_{k}$  = Total cathode current in amperes,

 $E_s = \text{Signal voltage in volts},$ 

Δ = change or variation in value, which may be either an increment (increase), or a decrement (decrease).

# Peak, R.M.S., and Average A-C Values of E & I

| Given  |                           | To get                   |                            |
|--------|---------------------------|--------------------------|----------------------------|
| Value  | Peak                      | R.M.S.                   | Av.                        |
| Peak   |                           | $0.707 	imes 	ext{Peak}$ | $0.637 \times \text{Peak}$ |
| R.M.S. | $1.41 \times R.M.S.$      |                          | 0.9 × R.M.S.               |
| Av.    | $1.57 \times \text{Av}$ . | $1.11 \times \text{Av}.$ | •                          |

# **D-C Meter Formulas**

### Meter Resistance

The d-c resistance of a milliammeter or voltmeter movement may be determined as follows:



- 1. Connect the meter in series with a suitable battery and variable resistance  $R_1$  as shown in the diagram above.
- 2. Vary  $R_1$  until a full scale reading is obtained.
- Connect another variable resistor R<sub>2</sub> across the meter and vary its value until a half scale reading is obtained.
- 4. Disconnect R<sub>2</sub> from the circuit and measure its d-c resistance.

The meter resistance  $R_m$  is equal to the measured resistance of  $R_2$ .

Caution: Be sure that  $R_1$  has sufficient resistance to prevent an off scale reading of the meter. The correct value depends upon the sensitivity of meter, and voltage of the battery. The following formula can be used if the full scale current of the meter is known:

$$R_1 = \frac{\text{voltage of the battery used}}{\text{full scale current of meter in amperes}}$$

For safe results, use twice the value computed. Also, never attempt to measure the resistance of a meter with an ohmmeter. To do so would in all probability result in a burned-out or severely damaged meter, since the current required for the operation of some ohmmeters and bridges is far in excess of the full scale current required by the movement of the average meter you may be checking.

# Ohms per Volt Rating of a Voltmeter

$$\Omega/V = \frac{1}{I_{fs}}$$

where  $\Omega/V = \text{ohms per volt}$ ,

 $I_{fs}$  = full scale current in amperes.

### **Fixed Current Shunts**



R =shunt value in ohms,

N= the new full scale reading divided by the original full scale reading, both being stated in the same units,

 $R_m = \text{meter resistance in ohms.}$ 

# **Multi-Range Shunts**



 $R_1$  = intermediate or tapped shunt value in ohms,

 $R_{1+2}$  = total resistance required for the lowest scale reading wanted,

 $R_m = \text{meter resistance in ohms}$ ,

N = the new full scale reading divided by the original full scale reading, both being stated in the same units.

# Voltage Multipliers



$$R = \frac{E_{fs}}{I_{fs}} - R_m$$

R = multiplier resistance in ohms.

 $E_{fs}$  = full scale reading required in volts,

I<sub>f</sub> = full scale current of meter in amperes,

 $R_m = \text{meter resistance in ohms.}$ 

### Measuring Resistance



with Milliammeter and Battery\*

$$R_x = R_m \left( \frac{I_2}{I_1 - I_2} \right)$$

 $R_x = unknown$  resistance in ohms,

 $R_m$  = meter resistance in ohms, or effective meter resistance if a shunted range is used,

 $I_1$  = current reading with switch open,  $I_2$  = current reading with switch closed,

R<sub>1</sub> = current limiting resistor of sufficient value to keep meter reading on scale when switch is open.

\* Approximately true only when current limiting resistor is large as compared to meter resistance.

# Shunt Values for 27-Ohm 0-1 Milliammeter

| FULL SCALE<br>CURRENT | SHUNT<br>RESISTANCE · |
|-----------------------|-----------------------|
| 0-10 ma               | 3.0 ohms              |
| 0-50 ma               | 0.551 ohms            |
| 0-100 ma              | 0.272 ohms            |
| 0-500 ma              | 0.0541 ohms           |

# Measuring Resistance—(Continued)



with Milliammeter, Battery and Known Resistor

$$R_x = \left(R_y + R_m\right) \left(\frac{I_1 - I_2}{I_2}\right)$$

 $R_x = \text{unknown resistance in ohms},$ 

 $R_{\nu} = \text{known resistance in ohms,}$ 

 $R_m = \text{meter resistance in ohms},$ 

 $I_1$  = current reading with switch closed,

 $I_2 =$ current reading with switch open.



with Voltmeter and Battery

$$R_x = R_m \left( \frac{E_1}{E_2} - 1 \right)$$

 $R_x$  = unknown resistance in ohms,

 $R_m$  = meter resistance in ohms, including multiplier resistance if a multiplied range is used.

 $E_1 = \text{voltmeter reading with switch closed},$ 

 $E_2$  = voltmeter reading with switch open.

# Multiplier Values for 27-Ohm 0-1 Milliammeter

| FULL SCALE<br>VOLTAGE | MULTIPLIER<br>RESISTANCE |
|-----------------------|--------------------------|
| 0-10 volts            | 10,000 ohms              |
| 0-50 volts            | 50,000 ohms              |
| 0-100 volts           | 100,000 ohms             |
| 0-250 volts           | 250,000 ohms             |
| 0-500 volts           | 500,000 ohms             |
| 0-1,000 volts         | 1,000,000 ohms           |

# Ohm's Law for A-C Circuits

The fundamental Ohm's law formulas for a-c circuits are given by

$$I=rac{E}{Z}\,, \qquad \qquad Z=rac{E}{I}\,,$$

$$E = IZ, \qquad P = EI \cos \theta$$

where I = current in amperes,

Z = impedance in Ohms,

E = volts across Z,

P =power in watts,

 $\theta$  = phase angle in degrees.

# Phase Angle

The phase angle is defined as the difference in degrees by which current leads voltage in a capacitive circuit, or lags voltage in an inductive circuit, and in series circuits is equal to the angle whose tangent is given by the

ratio  $\frac{X}{R}$  and is expressed by

$$\arctan \frac{X}{R}$$

where X = the inductive or capacitive reactance in ohms,

R =the non-reactive resistance in ohms.

of the combined resistive and reactive components of the circuit under consideration.

### Therefore

in a purely resistive circuit,  $\theta = 0^{\circ}$  in a purely reactive circuit,  $\theta = 90^{\circ}$  and in a resonant circuit,  $\theta = 0^{\circ}$ 

also when

$$\theta = 0^{\circ}$$
, cos  $\theta = 1$  and  $P = EI$ ,  $\theta = 90^{\circ}$ , cos  $\theta = 0$  and  $P = 0$ .

Degrees 
$$\times$$
 0.0175 = radians.  
1 radian = 57.3°.

### **Power Factor**

The power-factor of any a-c circuit is equal to the true power in watts divided by the apparent power in volt-amperes which is equal to the cosine of the phase angle, and is expressed by

$$p.f. = \frac{EI \cos \theta}{EI} = \cos \theta$$

where

p.f. =the circuit load power factor,

 $EI\cos\theta$  = the true power in watts,

EI = the apparent power in voltamperes,

E =the applied potential in volts

I = load current in amperes.

Therefore

in a purely resistive circuit.

$$\theta = 0^{\circ}$$
 and  $p.f. = 1$ 

and in a reactive circuit.

$$\theta = 90^{\circ}$$
 and  $p.f. = 0$ 

and in a resonant circuit,

$$\theta = 0^{\circ}$$
 and  $p.f. = 1$ 

### Ohm's Law for D-C Circuits

The fundamental Ohm's law formulas for d-c circuits are given by,

$$I = \frac{E}{R}$$
,  $R = \frac{E}{I}$ ,

$$E = IR, \qquad P = EI.$$

where I = current in amperes,

R = resistance in ohms,

E =potential across R in volts,

P = power in watts.

# Ohm's Law Formulas for D-C Circuits

| Known  | Formulos for Determining Unknown Volues of |                   |               |                 |  |
|--------|--------------------------------------------|-------------------|---------------|-----------------|--|
| Values |                                            | R                 | E             | P               |  |
| I&R    |                                            |                   | IR            | $I^2R$          |  |
| I & E  |                                            | $\frac{E}{I}$     |               | EI              |  |
| I&P    |                                            | $\frac{P}{I^2}$   | $\frac{P}{I}$ |                 |  |
| R & E  | $\frac{\mathbf{E}}{R}$                     |                   |               | $\frac{E^2}{R}$ |  |
| R&P    | $\sqrt{\frac{P}{R}}$                       | -                 | $\sqrt{PR}$   |                 |  |
| E&P    | $\frac{P}{E}$                              | $\frac{E^{2}}{P}$ |               |                 |  |

# Ohm's Law Formulas for A-C Circuits

| Known  | Formulos for Determining Unknown Volues of |                                     |                                 |                          |  |  |
|--------|--------------------------------------------|-------------------------------------|---------------------------------|--------------------------|--|--|
| Values | _                                          | Z                                   | E                               | P                        |  |  |
| 1& Z   |                                            |                                     | IZ                              | $I^2Z\cos \theta$        |  |  |
| I & E  |                                            | $\frac{E}{I}$                       |                                 | $IE\cos\theta$           |  |  |
| I & P  |                                            | $\frac{\tilde{P}}{I^2 \cos \theta}$ | $\frac{P}{I\cos\theta}$         |                          |  |  |
| Z & E  | $\frac{E}{Z}$                              |                                     | Egh <sub>a</sub>                | $\frac{E^2\cos	heta}{Z}$ |  |  |
| Z & P  | $\sqrt{\frac{P}{Z\cos	heta}}$              |                                     | $\sqrt{\frac{PZ}{\cos \theta}}$ |                          |  |  |
| E&P    | $\frac{P}{E\cos\theta}$                    | $\frac{E^2 \cos \theta}{P}$         |                                 |                          |  |  |

# **Coil Winding Data**

# **Turns Per Inch**

| Gauge<br>(AWG)          | Number of Turns per Linear Inch |              |                                 |                                 |  |  |  |
|-------------------------|---------------------------------|--------------|---------------------------------|---------------------------------|--|--|--|
| or<br>(B&S)             | Enamel                          | s.s.c.       | D.S.C.<br>and<br>S.C.C.         | D.C.C.                          |  |  |  |
| 1 /<br>2<br>3<br>4<br>5 | _<br>_<br>_<br>_                |              | 3.3<br>3.8<br>4.2<br>4.7<br>5.2 | 3.3<br>3.6<br>4.0<br>4.5<br>5.0 |  |  |  |
| 6<br>7<br>8<br>9<br>10  | 7.6<br>8.6<br>9.6               | <del>-</del> | 5.9<br>6.5<br>7.4<br>8.2<br>9.3 | 5.6<br>6.2<br>7.1<br>7.8<br>8.9 |  |  |  |
| 11                      | 10.7                            |              | 10.3                            | 9.8                             |  |  |  |
| 12                      | 12.0                            |              | 11.5                            | 10.9                            |  |  |  |
| 13                      | 13.5                            |              | 12.8                            | 12.0                            |  |  |  |
| 14                      | 15.0                            |              | 14.2                            | 13.8                            |  |  |  |
| 15                      | 16.8                            |              | 15.8                            | 14.7                            |  |  |  |
| 16                      | 18.9                            | 18.9         | 17.9                            | 16.4                            |  |  |  |
| 17                      | 21.2                            | 21.2         | 19.9                            | 18.1                            |  |  |  |
| 18                      | 23.6                            | 23.6         | 22.0                            | 19.8                            |  |  |  |
| 19                      | 26.4                            | 26.4         | 24.4                            | 21.8                            |  |  |  |
| 20                      | 29.4                            | 29.4         | 27.0                            | 23.8                            |  |  |  |
| 21                      | 33.1                            | 32.7         | 29.8                            | 26.0                            |  |  |  |
| 22                      | 37.0                            | 36.5         | 34.1                            | 30.0                            |  |  |  |
| 23                      | 41.3                            | 40.6         | 37.6                            | 31.6                            |  |  |  |
| 24                      | 46.3                            | 45.3         | 41.5                            | 35.6                            |  |  |  |
| 25                      | 51.7                            | 50.4         | 45.6                            | 38.6                            |  |  |  |
| 26                      | 58.0                            | 55.6         | 50.2                            | 41.8                            |  |  |  |
| 27                      | 64.9                            | 61.5         | 55.0                            | 45.0                            |  |  |  |
| 28                      | 72.7                            | 68.6         | 60.2                            | 48.5                            |  |  |  |
| 29                      | 81.6                            | 74.8         | 65.4                            | 51.8                            |  |  |  |
| 30                      | 90.5                            | 83.3         | 71.5                            | 55.5                            |  |  |  |
| 31                      | 101.                            | 92.0         | 77.5                            | 59.2                            |  |  |  |
| 32                      | 113.                            | 101.         | 83.6                            | 62.6                            |  |  |  |
| 33                      | 127.                            | 110.         | 90.3                            | 66.3                            |  |  |  |
| 34                      | 143.                            | 120.         | 97.0                            | 70.0                            |  |  |  |
| 35                      | 158.                            | 132. •       | 104.                            | 73.5                            |  |  |  |
| 36                      | 175.                            | 143.         | 111.                            | 77.0                            |  |  |  |
| 37                      | 198.                            | 154.         | 118.                            | 80.3                            |  |  |  |
| 38                      | 224.                            | 166.         | 126.                            | 83.6                            |  |  |  |
| 39                      | 248.                            | 181.         | 133.                            | 86.6                            |  |  |  |
| 40                      | 282.                            | 194.         | 140.                            | 89.7                            |  |  |  |

# **Coil Winding Formulas**

The following approximations for winding r-f coils are accurate to within approx. 1% for nearly all small air-core coils, where

L = self inductance in microhenrys,

N = total number of turns,

r = mean radius in inches,

l = length of coil in inches,

b = depth of coil in inches.

# Single-Layer Wound Coils



$$L = \frac{(rN)^2}{9r + 10l}$$

$$N = \frac{\sqrt{L(9r + 10l)}}{r}$$

# **Multi-Layer Wound Coils**



$$L = \frac{0.8(rN)^2}{6r + 9l + 10b}$$

# Single-Layer Spiral Wound Coils



# Table of Standard Annealed Bare Copper Wire Using American Wire Gauge (B&S)

| Gauge    | DIAN    | METER IN         | CHES           | AREA             | WEIGHT           | LENGTH          | RESIS          | TANCE AT        | Γ 68° F         | Current  |
|----------|---------|------------------|----------------|------------------|------------------|-----------------|----------------|-----------------|-----------------|----------|
| (AWG)    |         |                  |                |                  |                  |                 |                |                 | 1               | Capacity |
| or       | Min.    | Nom.             | Max.           | Circular<br>Mils | Pounds<br>per M' | Feet<br>per Lb. | Ohms<br>per M' | Feet<br>per Ohm | Ohms<br>per Lb. | (Amps)-  |
| 3 & S)   |         |                  |                | Wille            | por ivi          | per LD.         | per ivi        | per Onm         | per Lb.         | insulate |
| 0000     | .4554   | .4600            | .4646          | 211600.          | 640.5            | 1.561           | .04901         | 20400.          | .00007652       | 225      |
|          | .4055   | .4096            | .4137          | 167800.          | 507.9            | 1.968           | .06180         | 16180.          | .0001217        | 175      |
|          | .3612   | .3648            | .3684          | 133100.          | 402.8            | 2.482           | .07793         | 12830.          | .0001935        | 150      |
|          | .3217   | .3249            | .3281          | 105500.          | 319.5            | 3.130           | .09827         | 10180.          | .0003076        | 125      |
| 1 2      | .2864   | .2893<br>.2576   | .2922<br>.2602 | 83690.           | 253.3            | 3.947           | .1239          | 8070.           | .0004891        | 100      |
| 3        | .2271   | .2294            | .2317          | 66370.<br>52640. | 200.9            | 4.977           | .1563          | 6400.           | 0007778         | 90       |
| 4        | .2023   | .2043            | .2063          | 41740.           | 159.3<br>126.4   | 6.276<br>7.914  | .1970<br>.2485 | 5075.<br>4025.  | .001237         | 80<br>70 |
| 5        | .1801   | .1819            | .1837          | 22100            |                  |                 |                |                 |                 |          |
| 6        | .1604   | .1620            | .1636          | 33100.           | 100.2            | 9.980           | .3133          | 3192.           | .003127         | 55       |
| 7        | .1429   | .1443            | .1457          | 26250.           | 79.46            | 12.58           | .3951          | 2531.           | .004972         | 50       |
| ź        | .1272   | .1285            | .1298          | 20820.           | 63.02            | 15.87           | .4982          | 2007.           | .007905         |          |
|          |         |                  |                | 16510.           | 49.98            | 20.01           | .6282          | 1592.           | .01257          | 35       |
| 10       | .1133   | .1144<br>.1019   | .1155<br>.1029 | 13090.<br>10380. | 39.63<br>31.43   | 25.23           | .7921          | 1262.           | .01999          |          |
| 11       | .08983  | .09074           | .09165         | 8234.            | 24.92            | 31.82           | .9989          | 1001.           | .03178          | 25       |
| 12       | .08000  | .08081           | -08162         | 6530.            | 19.77            | 40.12<br>50.59  | 1.260<br>1.588 | 794.<br>629.6   | .05053          | 20       |
| 13       | .07124  | .07196           | .07268         | 5178.            | 15.68            |                 |                |                 |                 |          |
| 14       | .06344  | .06408           | .06472         | 4107.            | 12.43            | 63.80<br>80.44  | 2.003          | 499.3           | .1278           |          |
| 15       | .05650  | .05707           | .05764         | 3257.            | 9.858            | 101.4           | 2.525<br>3.184 | 396.0           | .2032           | 15       |
| 16       | ,05031  | .05082           | .05133         | 2583.            | 7.818            | 127.9           | 4.016          | 314.0<br>249.0  | .3230<br>.5136  | 6        |
| 17       | .04481  | .04526           | .04571         | 2048.            | 6.200            | 161.3           | E 064          |                 |                 |          |
| 10       | .03990  | .04030           | .04070         | 1624.            | 4.917            | 203.4           | 5.064<br>6.385 | 197.5           | .8167           | 3        |
| 19       | .03553  | .03589           | .03625         | 1288.            | 3.899            | 256.5           | 8.051          | 156.5<br>124.2  | 1.299           | 3        |
| 20       | .03164  | .03196           | .03228         | 1022.            | 3.092            | 323.4           | 10.15          | 98.5            | 2.065<br>3.283  |          |
| 21       | .02818  | .02846           | .02874         | 810.1            | 2.452            | 407.8           | 12.80          | 78.11           | 5.221           |          |
| 22       | .02510  | .02535           | .02560         | 642.4            | 1.945            | 514.2           | 16.14          | 61.95           | 8.301           |          |
| 23       | .02234  | .02257           | .02280         | 509.5            | 1.542            | 648.4           | 20.36          | 49.13           | 13.20           |          |
| 24       | .01990  | .02010           | .02030         | 404.0            | 1.223            | 817.7           | 25.67          | 38.96           | 20.99           |          |
| 25       | .01770  | .01790           | .01810         | 320.4            | .9699            | 1031            | 32.37          | 30.90           | 33.37           |          |
| 26       | .01578  | .01594           | .01610         | 254.1            | .7692            | 1300.           | 40.81          | 24.50           | 53.06           |          |
| 27       | .01406  | .01420           | .01434         | 201.5            | .6100            | 1639.           | 51.47          | 19.43           | 84.37           |          |
| 28       | .01251  | .01264           | .01277         | 159.8            | .4837            | 2067.           | 64.90          | 15.41           | 134.2           |          |
| 29       | .01115  | .01126           | .01137         | 126.7            | .3836            | 2607.           | 81.83          | 12,22           | 213.3           |          |
| 30       | .00993  | .01003           | .01013         | 100.5            | .3042            | 3287.           | 103.2          | 9.691           | 339.2           |          |
| 31 32    | .008828 | .008928          | .009028        | 79.7             | .2413            | 4145.           | 130.1          | 7.685           | 539.3           |          |
|          |         |                  |                | 63.21            | .1913            | 5227.           | 164.1          | 6.095           | 857.6           |          |
| 33       | .006980 | .007080          | .007180        | 50.13            | .1517            | 6591.           | 206.9          | 4.833           | 1364.           |          |
| 34       | .006205 | .006305          | .006405        | 39.75            | .1203            | 8310.           | 260.9          | 3.833           | 2168.           |          |
| 35       | .005515 | .005615          | .005715        | 31.52            | .09542           | 10480.          | 329.0          | 3.040           | 3448.           |          |
| 36       | .004900 | .005000          | .005100        | 25.00            | .07568           | 13210.          | 414.8          | 2.411           | 5482.           |          |
| 37       | .004353 | .004453          | .004553        | 19.83            | .06001           | 16660.          | 523.1          | 1.912           | 8717.           |          |
| 38       | .003865 | .003965          | .004065        | 15.72            | .04759           | 21010.          | 659.6          | 1.516           | 13860.          |          |
| 39<br>40 | .003431 | .003531          | .003631        | 12.47            | .03774           | 26500.          | 831.8          | 1.202           | 22040.          |          |
|          | .003045 | .003145          | •.003245       | 9.888            | .02993           | 33410.          | 1049.          | 0.9534          | 35040.          |          |
| 41 42    | .00270  | .00280           | .00290         | 7.8400           | .02373           | 42140.          | 1323.          | .7559           | 55750.          |          |
| 43       | .00239  | .00249           | .00259         | 6.2001           | .01877           | 53270.          | 1673.          | .5977           | 89120.          |          |
| 44       | .00212  | .00222           | .00232         | 4.9284           | .01492           | 67020.          | 2104.          | .4753           | 141000.         |          |
| 45       | .00187  | .00197           | .00207         | 3.8809           | .01175           | 85100.          | 2672.          | .3743           | 227380.         |          |
| 46       | .00166  | .00176<br>.00157 | .00186         | 3.0976           | .00938           | 106600.         | 3348.          | .2987           | 356890.         |          |
|          | .00147  | .00107           | .00167         | 2.4649           | .00746           | 134040.         | 4207.          | .2377           | 563900.         |          |

\*Note: Values from National Electrical Code.



# Single-Layer Wound Coil Chart

The chart on the opposite page provides accevenient means of determining the uniown factors of small sized single-layer wound r-f coils. Values thus found so closely accommate those determined by measurement or mathematical calculation as to be accept satisfactory for all practical pursues of experimentation, design, and reserved. Since in all coils of this type, the acceptance between the mean and inner discrete of the winding is so slight as to be acceptable, **D** in all instances may be either mean or inner diameter as desired.

winding length and diameter of a to find the inductance;

 Place a straightedge on the chart so as to form a line intersecting the number of turns N, and the ratio of diameter to length K, and note the point intersected on the linear axis column.

- 2. Now move the straightedge so as to form a second line which will intersect this same point on the axis column, and the diameter **D**.
- 3. The point where this line intersects the L column indicates the inductance of the coil in microhenries.

**Example:** Given the diameter, winding length and inductance in microhenries,— to find the number of turns;

- 1. Simply reverse the process outlined above for determining inductance.
- After finding the number of turns, consult the wire table on page 26 and determine the size of wire to be used.

The dotted lines appearing on the chart illustrate the correct plotting of a 600-microhenry coil consisting of 100 turns of wire, wound to 51/64" on a form 2" in diameter.

# Inductance, Capacitance, Reactance Charts

The direct-reading charts appearing on the following three pages are designed for intermining unknown values of frequency, included a contractance, capacitance and reactance completes operating in a-f and r-f circuits.

The simplifications embodied in these make them extremely useful. The sequency range covered comprises the frequency spectrum from 1 cycle per second to 1000 megacycles per second. All of scales involved are plotted in actual smitudes so that no computations are reduced to determine the location of the decimal point in the final result.

To make these conditions possible the frequency spectrum has been divided into three parts:

Covers the range from 1 cycle to 1000 cycles.

Chart II (page 31)—From 1 kilocycle to 1000 kilocycles.

Chart III (page 32)—From 1 megacycle to 1000 megacycles.

Inductance, capacitance, reactance and incurrency have been plotted so that the rescurre offered by an inductance or capacitance at any frequency may be readily described by placing a straight-edge across the chart connecting the known quantities.

Since  $X_L = X_C$  at resonance in most radio circuits, the charts may also be used to find the resonant frequency of any combination of L and C.

To illustrate with a simple example, suppose the reactance of a 0.01  $\mu$ f. capacitor is desired at a frequency of 400 cycles. Place a straight-edge across the proper chart so as to connect the points 0.01  $\mu$ f. and 400 cycles per sec. The quantity desired is the point of intersection with the reactance scale which is 40,000 ohms. The straightedge also intersects the inductance scale at 15.8 henrys indicating that this value of inductance likewise has a reactance of 40,000 ohms at 400 cycles per sec. and furthermore, that these values of L and C produce resonance at this frequency.

There are many practical uses for these charts. The radio experimentor, maintenance man and engineer will find them helpful in the rapid solution of many reactance problems. Unusual care was exercised in laying out the various scales in order to secure a high degree of accuracy for the charts. Results should be obtainable which are at least as accurate as might be secured with a ten-inch slide rule.







# How to Use Logarithms

I ogarithms are used to simplify numerical computations involving multiplications, division, powers and roots. With logarithms, multiplication is reduced to simple addition, and division is reduced to simple subtraction. Raising to a power is reduced to a single multiplication, and extracting a root is reduced to a single division.

The common logarithm of any number is the power to which 10 must be raised in order to equal that number.

Therefore, since

 $\begin{array}{c} 1000 = 10^3 \\ 100 = 10^2 \\ 10 = 10^1 \\ 1 = 10^0 \\ 0.1 = 10^{-1} \\ 0.01 = 10^{-2} \\ 0.001 = 10^{-3} \\ 0.0001 = 10^{-4} \end{array}$ 

it is true that

log 1000 = 3log 100 = 2log 10 = 1log 1 = 0log 0.1 = -1log 0.01 = -2log 0.001 = -3log 0.0001 = -4

The common system of logarithms has for its base the number 10, and is written  $\log_{10}$  or more commonly  $\log$ , since the base 10 is always implied unless some other base is specifically indicated. There are formulas however which use the natural system of logarithms. This system has for its base the number 2.718 . . . which is represented by the Greek letter  $\epsilon$  and is always written  $\log \epsilon$ .

A table of natural logarithms has not been included in this handbook however, since the common log of a number is approximately equal to 2.3026 times the natural log of the same number. Conversely, the natural log of a number is approximately equal to 0.4343 times the common log of the same number.

In observing the following exponential and logarithmic relationships,

| Exponential Form |                 | Logarithmic Form |       |     |        |
|------------------|-----------------|------------------|-------|-----|--------|
| 100              | $= 10^2$        | log              | 100   | =   | 2.000  |
| 15               | $= 10^{1.176}$  | log              | 15    | === | 1.176  |
| 10               | $= 10^{1}$      | log              | 10    | =   | 1.000  |
| 7                | $= 10^{.845}$   | log              | 7     | =   | 0.845  |
| 1                | $= 10^{0}$      | $\log$           | 1     | =   | 0.000  |
| 0.1              | $= 10^{-1}$     | $\log$           | 0.1   | _   | -1.000 |
| 0.7              | $= 10^{-1.845}$ | $\log$           | 0.7   |     | -1.845 |
| 0.15             | $=10^{-2.176}$  | $\log$           | 0.15  |     | -2.176 |
| 0.001            | $= 10^{-3}$     | log              | 0.001 |     | -3.000 |

it will be seen that only the direct powers of 10 have whole numbers for logarithms; also that the logarithms of all numbers lying between a power of 10, consist of a whole number and a decimal. The whole number is called the characteristic, and the decimal, the mantissa. Since the characteristic serves only to fix the location of the decimal point in the expression indicated by the log, it can be found by inspection and is not included in the log table. The following will be helpful:

- 1. The characteristic of any number greater than 1 is always positive and is equal to one less than the number of digits to the left of the decimal.
- 2. The characteristic of any number less than 1 is always negative and is equal to one plus the number of zeros to the decimal.
- 3. The characteristic of any number may be determined by expressing the number as a power of 10 and using this power as the characteristic of the logarithm for that number.

Since only the characteristic of a logarithm is ever negative, the mantissa always being a positive number, it is customary to write a log containing a negative characteristic as follows:

$$\log 0.7 = \overline{1.845}$$

or, by adding +10 to the characteristic and, in order to maintain equality, -10 at the right of the characteristic,

$$\log 0.7 = 9.845 - 10$$

Examples:

| 150    | $1.5 \times 10^{2}$   | <b>2</b>       |
|--------|-----------------------|----------------|
| 15     | $1.5 	imes 10^{1}$    | 1              |
| 1.5    | $1.5 	imes 10^{ m o}$ | 0              |
| 0.15   | $1.5 \times 10^{-1}$  | -1  or  9 - 10 |
| 0.015  | $1.5 	imes 10^{-2}$   | -2  or  8 - 10 |
| 0.0015 | $1.5 \times 10^{-3}$  | -3  or  7 - 10 |

Therefore, to find the logarithm of any number:

- 1. Write the number as a power of 10, and put down the resulting exponent of 10 as the characteristic.
- Determine the mantissa from the log tables on page 56, and write this as a decimal figure following the characteristic.
- If the resulting logarithm has a negative characteristic, change this to the positive form.

Example: Find the logarithm of .00623:
Since .00623 =  $6.23 \times 10^{-3}$ , the characteristic is -3. The mantissa as shown by the log table is 7945. The resultant logarithm = 3.7945 or when written in its positive form, 7.7945 - 10.

To find the log of any number having more than three significant figures (by interpolation):

- 1. Determine the characteristic.
- 2. Find the mantissa corresponding to the first three significant figures.
- 3. Find the next higher mantissa and take the tabular difference.
- Find the product of the tabular difference and the digit following the first three significant figures of the given number written as a decimal.
- 5. Add this product to the lesser mantissa.

Example: Find the logarithm of 54.65.

Since  $54.65 = 5.465 \times 10^{1}$ , the characteristic is 1.

Next higher mantissa = .7380 Next lower mantissa = .7372

Tabular difference =  $\frac{.0008}{.0008}$ 

Product  $\frac{\times .5}{.00040}$ Plus lesser mantissa  $\frac{7372}{.00040}$ 

Mantissa of 5.465 .7376

 $\therefore \log 54.65 = 1.7376$ 

Although a four-place log table is used here. for purposes where accuracy to 3 significant figures is required, generally, a three place table is sufficiently accurate for all practical purposes. Since the mantissa of a logarithm represents only the significant figures of any number, the same mantissa is used for .04, 4, 400, etc., the decimal point being fixed later by the characteristic. Therefore any number consisting of 1 or 2 significant figures may be found in the column marked N, and its mantissa will be found on the same line in this column headed by 0. For any number containing 3 significant figures. locate the first two figures in the N column, and the third figure in the column headed by the corresponding digit. The mantissa will be found in this column, on a line even with the first two digits.

Example:

The number corresponding to a given logarithm is called the antilogarithm, and is written "antilog". Example: Since  $\log 692 = 2.8401$ , the antilog of 2.8401 = 692.

Finding the antilog of a number is the reverse of finding the logarithm. First locate the mantissa in the log table, and determine its corresponding number. Now, place the decimal as indicated by the characteristic.

**Example:** To find the antilog of 3.9138, look up 9138 in the log table. Its corresponding number is 82, or expressed as a power of 10, equals 8.2. A characteristic of 3 means that 8.2 must be multiplied by  $10^3$ . Therefore, antilog  $3.9138 = 8.2 \times 10^3 = 8200$ .

Similarly

Antilog  $5.9138 = 8.2 \times 10^5 = 82,0000$ Antilog  $0.9138 = 8.2 \times 10^0 = 8.2$ Antilog  $7.9138 - 10 = 8.2 \times 10^{-3} = 0.0082$ Antilog  $9.9138 - 10 = 8.2 \times 10^{-1} = 0.82$ 

To find the antilogarithm of a logarithm

wiese mantissa is not exactly given in the حاتات

- 1. Find the tabular difference between the next highest and next lowest man-
- Divide this by the difference between the given mantissa and the next lowest mantissa.
- 3 Add the resulting quotient to the significant figures expressed by the next lower mantissa.
- 4 Place the decimal as indicated by the given characteristic.

Example: Find the antilog of 1.7376

Next higher mantissa .7380

Next lower mantissa .7372

Tabular difference .0008

Given mantissa .7376

Next lower mantissa .7372 Tabular difference .0004

Quotient of  $\frac{.0004}{.0008} = .5$ 

The resultant figure therefore is .5 larger the significant figures expressed by the mantissa .7372 or 546. The sequence Tures therefore is 546.5

 $\therefore$  the antilog of 1.7376 = 54.65

Note: When interpolating as shown we. do not exceed four significant figures m your answer since interpolated results a four-place table are not accurate beword this point.

Logarithms are added or subtracted like metical numbers, provided they are with positive characteristics. If the execteristic in the total is greater than 9, the notation -10, -20, -30, etc., after the mantissa, subtract a mulof 10 from the positive part and add same multiple of 10 to the negative so as to make the resultant charactersee less than 10.

### EXAMPLES:

# con of logarithms

|       | or roburing |             |
|-------|-------------|-------------|
| 2764  | 6.326 - 10  | 6.328 - 10  |
| 4.304 | 6.284       | 7.764 - 10  |
| 7.068 | 12.610 - 10 | 9.104 - 10  |
|       | or          | 23.196 - 30 |
|       | 2.610       | or          |
|       |             | 3.196 - 10  |

Subtraction of logarithms

$$\frac{4.107}{6.986} \left\{ = \frac{14.107 - 10}{6.986} \\
\hline
7.121 - 10} \\
\underline{11.672 - 10} \\
\underline{5.785 - 10} \\
5.887$$

The relationships of logarithmic operations are expressed by the following formulas:

$$\log (a \times b) = \log a + \log b$$

$$\log \left(\frac{a}{b}\right) = \log a - \log b$$

$$\log (a)^b = b \log a$$

$$\log \sqrt[b]{a} = \frac{\log a}{b}$$
EXAMPLES

To Multiply 1.24 by 246

 $\log \text{ of } 1.24 = 0.0934$  $\log \text{ of } 246 = 2.3909$ 

Total 2.4843

The antilog of 2.4843 = 305, which is as accurate as can be determined with a fourplace table. The full answer to this problem is 305.04.

To Divide 961 by 224  $\log \text{ of } 961 = 2.9827$  $\log \text{ of } 224 = 2.3502$ Difference 0.6325

The antilog of 0.6325 = 4.29 which is as accurate as can be determined with a fourplace table. The product of 224 and 4.29 is 960.96.

Powers: Find 122 by logarithms:

$$\log \text{ of } 12 = 1.0792$$

$$\times 2$$

$$2.1584$$

The antilog of 2.1584 = 144.

Roots Find  $\sqrt[3]{343}$  $\log \text{ of } 343 = 2.5353 \div 3 = .8451$ The antilog of .8451 = .7.

Logarithms of Negative Numbers. Because the logarithms of negative numbers are imaginary in character, they cannot be used in computation as with positive numbers. However, since the numerical results of multiplying, dividing, etc., are not affected by the signs, you can determine the numerical results by logarithms and later affix the final + or - signs by inspection.

# Trigonometric Relationships

In any right triangle, if we let

 $\theta$  = the acute angle formed by the hypotenuse and the base leg,

 $\phi$  = the acute angle formed by the hypotenuse and the altitude leg,

H =the hypotenuse,

A =the side adjacent  $\theta$  and opposite  $\phi$ ,

O =the side opposite  $\theta$  and adjacent  $\phi$ ,

then 
$$\sin \theta = \sin \theta = \frac{O}{H}$$

$$\cosh \theta = \cos \theta = \frac{A}{H}$$

$$\tan \theta = \tan \theta = \frac{O}{A}$$

$$\operatorname{cosecant} \text{ of } \theta = \csc \theta = \frac{H}{O}$$

secant of 
$$\theta = \sec \theta = \frac{H}{A}$$
  
cotangent of  $\theta = \cot \theta = \frac{A}{A}$ 

also 
$$\sin \theta = \cos \phi \qquad \csc \theta = \sec \phi$$

$$\cos \theta = \sin \phi \qquad \sec \theta = \csc \phi$$

$$\tan \theta = \cot \phi \qquad \cot \theta = \tan \phi$$
and 
$$\frac{1}{\sin \theta} = \csc \theta \qquad \frac{1}{\csc \theta} = \sin \theta$$

$$\frac{1}{\cos \theta} = \sec \theta \qquad \frac{1}{\sec \theta} = \cos \theta$$

$$\frac{1}{\tan \theta} = \cot \theta \qquad \frac{1}{\cot \theta} = \tan \theta$$

The expression "arc sin" indicates, "the angle whose sine is"...; likewise arc tan indicates, "the angle whose tangent is"... etc. See formulas in table below.

| Known           | Formulas for Determining Unknown Values of |                       |                         |                       |                                  |  |  |
|-----------------|--------------------------------------------|-----------------------|-------------------------|-----------------------|----------------------------------|--|--|
| Values          | Α                                          | 0                     | Н                       | θ                     | φ                                |  |  |
| A & O           |                                            |                       | $\sqrt{A^2+O^2}$        | $\frac{O}{A}$         | $\frac{1}{arc \tan \frac{A}{O}}$ |  |  |
| A & H           |                                            | $\sqrt{H^2-A^2}$      |                         | $\frac{A}{H}$         | $\arcsin \frac{A}{H}$            |  |  |
| Α & θ           |                                            | $A \tan \theta$       | $\frac{A}{\cos \theta}$ |                       | 90° - θ                          |  |  |
| Α&φ             |                                            | $\frac{A}{\tan \phi}$ | $\frac{A}{\sin \phi}$   | 90° - φ               |                                  |  |  |
| O & H           | $\sqrt{H^2-O^2}$                           |                       |                         | $\arcsin \frac{O}{H}$ | $arc \cos \frac{C}{H}$           |  |  |
| Ο & θ           | $\frac{O}{\tan \theta}$                    |                       | $\frac{O}{\sin \theta}$ |                       | 90° - θ                          |  |  |
| Ο & φ           | O tan $\phi$                               |                       | $\frac{O}{\cos \phi}$   | 90° – φ               |                                  |  |  |
| Н& в            | $H\cos\theta$                              | $H \sin \theta$       | ,                       |                       | 90° - θ                          |  |  |
| <b>Н&amp;</b> φ | $H \sin \phi$                              | $H\cos\phi$           |                         | 90° - <b>ф</b>        |                                  |  |  |

#### **Metric Relationships**



The above chart shows the relation between the American and the metric systems of notation.

This chart also serves to quickly locate the decimal point in the conversion from one metric expression to another.

**Example:** Convert 5.0 milliwatts to watts. Place the finger on milli and count the number of steps from there to units (since the

term watt is a basic unit). The number of steps so counted is three, and the direction was to the left. Therefore, 5.0 milliwatts is the equivalent of .005 watts.

Example: Convert 0.00035 microfarads to micromicrofarads. Here the number of steps counted will be six to the right. Therefore 0.00035 microfarads is the equivalent of 350 micromicrofarads.

#### **Metric Conversion Table**

| ORIGINAL   | DESIRED VALUE   |             |            |             |             |            |            |            |  |  |  |
|------------|-----------------|-------------|------------|-------------|-------------|------------|------------|------------|--|--|--|
| VALUE      | Mega            | Kilo        | Units      | Deci        | Centi       | Milli      | Micro      | Micromicro |  |  |  |
| Mega       |                 | 3→          | 6→         | 7→          | 8→          | 9→         | 12→        | 18→        |  |  |  |
| Kilo       | <b>←</b> 3      |             | 3→         | 4→          | 5→          | 6→         | 9→         | 15→        |  |  |  |
| Units      | <b>←</b> 6      | <b>→</b> 3  |            | 1→          | 2→          | 3→         | 6→         | 12→        |  |  |  |
| Deci       | <b>←</b> 7      | <b>→</b> 4  | <b>→</b> 1 |             | 1 →         | 2→         | 5→         | 11→        |  |  |  |
| Centi      | <b>←</b> 8      | <b>←</b> 5  | + 2        | <b>→</b> 1  |             | 1→         | 4→         | 10→        |  |  |  |
| Milli      | <b>←</b> 9      | <b>←</b> 6  | <b>→</b> 3 | + 2         | <b>←</b> 1  |            | 3→         | 9→         |  |  |  |
| Micro      | <b>←12</b>      | + 9         | <b>←</b> 6 | <b>←</b> 5  | <b>← 4</b>  | <b>→</b> 3 |            | 6→         |  |  |  |
| Micromicro | <del></del> 418 | <b>←</b> 15 | <b>←12</b> | <b>←</b> 11 | <b>←</b> 10 | <b>←</b> 9 | <b>←</b> 6 |            |  |  |  |

The above metric conversion table provides a fast and automatic means of conversion from one metric notation to another. The notation "Unit" represents the basic units of measurement, such as amperes, volts, ohms, watts, cycles, meters, grams, etc. To use the table, first locate the original or given value in the left-hand column. Now follow this line horizontally to the retical column headed by the prefix of desired value. The figure and arrow this point indicates number of places and direction decimal point is to be moved.

Example: Convert 0.15 ampere to milliamperes. Starting at the "Units" box in the left-hand column (since ampere is a basic unit of measurement), move horizontally to the column headed by the prefix "Milli", and read 3 >. Thus 0.15 ampere is the equivalent of 150 milliamperes.

Example: Convert 50,000 kilocycles to megacycles. Read in the box horizontal to "Kilo" and under "Mega", the notation ←3, which means a shift of the decimal three places to the left. Thus 50,000 kilocycles is the equivalent of 50 megacycles.

### Pilot Lamp Data

| Maximum<br>Size<br>See Chart below<br>for dimensions |                            |                                    |                      |                        |                        |                        |
|------------------------------------------------------|----------------------------|------------------------------------|----------------------|------------------------|------------------------|------------------------|
| Α                                                    | 13/32"                     | 13/22"                             | 7/6"                 | 7/6"                   | %6"                    | 5/6"                   |
| В                                                    | 15/6"                      | 3/4"                               | 23/52"               | 1/2"                   | V2"                    | 5%"                    |
| Ċ                                                    | 1 3/6"                     | 1 3/16"                            | 15/16"               | 15/16"                 | 1 1/16"                | 1 3/6"                 |
| Bulb No.                                             | T-31⁄4                     | T-31/4                             | G-31/2               | G-31/2                 | G-4½                   | G-5                    |
| Base                                                 | Screw<br>(Miniature)       | Bayonet<br>(Miniature)             | Screw<br>(Miniature) | Bayonet<br>(Miniature) | Bayonet<br>(Miniature) | Bayonet<br>(Miniature) |
| Bulb Type                                            | Tubular                    | Tubular                            | Small<br>Round       | Small<br>Round         | Large<br>Round         | Large .<br>Round       |
| Lamp<br>Numbers                                      | 40<br>41<br>42<br>46<br>48 | 43<br>44<br>45<br>47<br>49<br>1490 | 50                   | 51                     | 55                     | 1458                   |

|             |               |                     |              | . RAT | ΓING  |                                |
|-------------|---------------|---------------------|--------------|-------|-------|--------------------------------|
| Lamp<br>No. | Bead<br>Color | Base<br>(Miniature) | Bulb<br>Type | Volts | Amps. | Used for                       |
| 40          | Brown         | Screw               | T-31/4       | 6-8   | 0.15  | Dials                          |
| 41          | White         | Screw               | T-31/4       | 2.5   | 0.5   | Dials                          |
| 42          | Green         | Screw               | T-31/4       | 3.2   | ‡     | Dials                          |
| 43          | White         | Bayonet             | T-31/4       | 2.5   | 0.5   | Dials and Tuning Meters        |
| 44          | Blue          | Bayonet             | T-31/4       | 6-8   | 0.25  | Dials and Tuning Meters        |
| 45          | •             | Bayonet             | T-31/4       | 3.2   | ‡     | Dials                          |
| 464         | Blue .        | Screw               | T-31/4       | 6-8   | 0.25  | Dials and Tuniny Meters        |
| 47          | Brown         | Bayonet             | T-31/4       | 6-9   | 0.15  | Dials                          |
| 48          | Pink          | Screw               | T-3 1/4      | 2.0   | 0.06  | Battery Set Dials              |
| 49          | Pink          | Bayonet             | T-3 1/4      | 2.0   | 0.06  | Battery Set Dials              |
| 50          | White         | Screw               | G-31/2       | 6-8   | 0.2   | Auto-Radio Dials; Flashlights  |
| 514         | White         | Bayonet             | G-31/2       | 6-8   | 0.2   | Auto-Radio Dials; Panel Boards |
| .55         | White         | Bayonet             | G-41/2       | 6-8   | 0.4   | Auto-Radio Dials; Parking Ligh |
| 1458        |               | Bayonet             | G-5          | 20.0  | 0.25  | Dials                          |
| 1490        |               | Bayonet             | T-3 1/4      | 3.2   | 0.15  | Dials                          |

<sup>\*</sup> White in G.E. and Sylvania; Green in National Union Raytheon and Tung-Sol.

<sup>‡ 0.35</sup> in G.E. and Sylvania; 0.5 in National Union Raytheon and Tung-Sol. A Have frosted bulb.

### Directly Interchangeable Tubes

| Tube<br>Number | Replace<br>with  | Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with |
|----------------|------------------|----------------|-----------------|----------------|-----------------|
| 01A            | 40               | 1LN5           | 1LC5            |                | (5AZ4           |
| 0 <b>A</b> 2   | 0 <b>B</b> 2     | 1115           | (1P5            |                | 504             |
| 0A3            | VR75             | 1N5            | 1D5 -           |                | 504             |
| 0A4            | 1267             | 105            | (1N5            | 5AX4           | ∫5W4            |
| 0B3            | ~ VR90           | 1P5            | (1D5            |                | 5Y3             |
| 0C3            | VR105            | 1Q5            | 1C5             |                | 5Z4             |
| 0D3            | VR150            | 186            | 1T6             |                | (               |
| 0Y4            | 0Y4G             | 1T4            | § 1L4           |                | (5AX4           |
| 074            | CK1005           | 114            | 104             |                | 5U4             |
| 0 <b>Z</b> 4   | 1003             | 1T5            | §1A5            | 5AZ4           | <b>/</b> 5V4    |
|                | ( 0Z4A           |                | <b>∂1G4</b>     | 3/124          | ) 5W4           |
|                | (1B4             | 1T6            | 186             |                | 5Y3             |
| 1A4            | 32               | 104            | §1L4            |                | ·\\5Z4          |
| 1A4            | 34<br>1A4P       |                | ) 1T4           |                | /EAVA           |
|                | 1A4P<br>1A4T     | 1V             | 6 <b>Z</b> 3    |                | 5AX4<br>5AZ4    |
| 1A5            | 1G4              | · 1V5          | §1AC5           |                | 5A24<br>5U4     |
| 1A7            | 104<br>1D7       | 1W5            | ) 1W5           | 5T4            | 5V4             |
| 1AC5           | 1V5              |                | 1V5             | 314            | 5W4             |
| 1AD5           | 1W5              | 2A3<br>2A7     | 45              | 1              | 5Y3             |
| 17100          | (1A4             |                | 2A7S            |                | 573<br>5Z4      |
| 1B4            | 32               | 2B7S           | 2B7             |                | (024            |
|                | 34               | 2C52           | § 12SN7         | 1              | (5AX4           |
| 1B8            | 1D8              |                | 12SX7           | -              | 5AZ4            |
| 1C5            | 1Q5              | 2E5            | 2 <b>G</b> 5    | 5U4            | /5T4            |
| 1C8            | 1E8              | 2E30           | 5812            |                | ∑5V4            |
| 1D5            | 1E5              | 2E31           | 2E32            |                | 5W4             |
| 1D8            | 1B8              | 2E32           | 2E31            |                | <b>(5Z4</b>     |
| 1E4            | 1G4              | 2E35           | 2E36            |                | (B              |
| 1E5            | 1D5              | 2E36           | 2E35            |                | (5AX4           |
| 1E8            | 1C8              | 2E41           | 2E42            | · 5\/4         | 5AZ4            |
| 1G4            | § 1E4            | 2E42           | 2E41            | 5V4            | 5T4             |
|                | )1H4             | 2G5            | 2E5             |                | 504             |
| 1G5            | 1J5              | 2G21           | 2G22            |                | (5W4            |
| 1H4            | ∫ 1G4            | 2G22           | 2G21            |                | (5AX4           |
|                | (1E4             |                | (305            |                | 5AZ4            |
| 1J5            | 1G5              | 3B5            | 3Q5             | F144           | )5T4            |
| 1L4            | §1T4             | 3B7            | 1291            | 5 <b>W</b> 4   | 504             |
| 1LA4           | (104             | 05,            | (3B5            |                | 5V4             |
| 1LA4<br>1LA6   | 1LB4             | 3C5            | (3Q5            |                | (5Z4            |
| 1LA6<br>1LB4   | 1LC6             | 3LE4           |                 |                | `               |
| ILD4           | 1LA4             | 3Q4            | 3LF4            |                | (5Z3            |
| 1LC5           | { 1LG5<br>} 1LN5 | 3 Q4           | 3\$4            | 5X3            | <b>₹80</b>      |
| 1LC6           | 1LA6             | 3Q5            | 3B5             |                | (83             |
| 1LG5           | 1LC5             | 1              | (3C5            |                |                 |

#### Directly Interchangeable Tubes—(Continued)

| Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with |
|----------------|-----------------|----------------|-----------------|----------------|-----------------|
|                | (5AX4           | 6AJ5           | 6AK5 -          |                | 16D6            |
|                | 5ÀZ4            | 6AJ7           | ∫6AB7           | 6C6            | { 77            |
|                | 5T4             |                | 6AC7            | -              | § 6C6           |
| .5Y3           | <b>√</b> 5U4    | 6AK5           | 6AJ5            | 6D6            | { 77            |
|                | 5V4             | 6AK7           | 6AG7            | 6D7            | 6E7             |
|                | 5W4             | 6AL5           | 5726            | 007            | 6E7             |
|                | 5Z4             |                | (6AV6           | 6E5            | 16U5            |
| 5Y4 '          | `5X4            |                | 6BF6            | 657            |                 |
|                | (5X3            | 6AT6           | <b>⟨6</b> BK6   | 6E7<br>6F4     | 6D7<br>6L4      |
| 5 <b>Z</b> 3   | ₹80             |                | 6BT6            |                |                 |
| -              | 83              |                | GBU6            | 6F7            | 6F7S            |
|                | (5AX4           |                | ( 6AG5          | 205            | √6E5            |
|                | 5AZ4            | 6AU6           | <b>₹6BA6</b>    | 6G5            | <b>6</b> T5     |
|                | 5T4             |                | ( 6BD6          |                | ( 6U5           |
| 5 <b>Z</b> 4   | ₹5U4            | 0.4145         | ∫6AU5           | 6H5            | 6U5             |
| · ·            | 5V4             | 6AV5           | ₹6BD5           |                | (6AD5           |
|                | 5W4             | 6AV6           | 6AT6            | 6D5            | 6AE5            |
|                | 5Y3             | 00.44          | ∫6U4            | 900            | 6AF5            |
| 6A4            | 52              | 6AX4           | ₹6W4            |                | 6C5             |
| 6A8            | 6J8             | 6B5            | 42              | 6J7            | ∫1233, 6K7      |
| UMO            | SAC7            | 6B6            | 6Q7             | 0)/            | l 6U7           |
| 6AB7           | 6AJ7            |                | (6AU6           | 618            | §6A8            |
| 6AC5G          | 6AC5GT          |                | 6BD6            |                | €6K8            |
| UACOU          | 6AB7            | 6BA6           | < 6AG5          | 6K4            | 6AD4            |
| 6AC7           | (6AJ7           |                | 6BC5            | 6K7            | <b>∮</b> 6J7    |
| 6AD4           | 6K4             | 1              | C6CB6           | OK/            | ₹6U7            |
| UNDA           | /6AE5           | 1              | €6AG5           | 6K8            | <b>∮6AB</b>     |
|                | 6AF5            | 6BC5           | {6AU6           |                | (618            |
| 6AD5           | 16C5            |                | (6CB6           | 6L4            | 6F4             |
| •              | 615             | 6BE6           | 5915            | 6L6            | 1614            |
| 6AD6           | 6AF6            | 6BF6           | 6BU6            | 6L7            | 1612            |
| OADO           |                 | 6BG7           | 6BF7            |                | (6AD5           |
|                | 6AD5            | 6BH6           | 6BJ6            |                | 6AE5            |
| 6AE5           | 6AF5            | 6BJ6           | 6BH6            | 6P5            | < 6AF5          |
|                | 6C5             |                | (6AT6           |                | 6C5             |
|                | (6)5            |                | 6AV6            |                | <b>√6J5</b>     |
|                | (6C5            | 6BK6           | <b>√6BF6</b>    | 6Q7            | 6B6, 6R7        |
| 6AF5           | )6D5            |                | 6BT6            | 607            | ∫6Q7            |
| <b></b> 0      | 6AD5            |                | √6BU6           | 6R7            | ₹ 6V7           |
|                | 6AE5            | 6BT6           | 6BK6            | 6SA7           | 6SB7Y           |
| 6AF6           | 6AD6            | 6BU6           | 6BF6            | 6S7            | 6W7             |
|                | (6BC5           | 6C4            | 9002            | 6SB7Y          | 6SA7            |
|                | 6BA6            |                | (6AD5           |                | (6SE7           |
| 6AG5           | < 6BD6          | 6C5            | )6AE5           | CCD7           | <b>)</b> 6SJ7   |
|                | 6CB6            | 003            | 6AF5            | 6SD7           | 6SK7            |
|                | 6AU6            |                | (6D5            |                | 5693            |

#### Directly Interchangeable Tubes—(Continued)

| Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with |
|----------------|-----------------|----------------|-----------------|----------------|-----------------|
|                | (6SD7           | 7AH7           | 7AG7            | 12AY7          | 12AX7           |
| 6SE7 -         | )6SJ7           | 7AJ7           | 7H7             | 12AZ7          | 12AV7           |
|                | 6SK7            | 7B4            | 7A4             | 12B7           | 14A7            |
|                | <b>\</b> 5613   | 7B6            | 7E6             |                | 12AU6           |
| 6SF7           | 6SV7            |                | <b>§7</b> 07    | 12BA6          | 12BD6           |
|                | (6SG7           | 7B7            | (7AH7           |                | 12AU6           |
| 6SH7           | <b>{6SJ7</b>    |                | § 7J7           | 12BD6 .        | 12BA6           |
|                | (6SK7           | 7B8            | 1787            | 12BF6          | 12BU6           |
| 6SJ7           | 6SK7, 5693      | 707            | 7B7             | 120.0          | /12AT6          |
|                | (6SG7           | 7E5            | 1201            |                | 12A16           |
| 6SK7           | {6SH7           | 7E6            | 7B6             | 12BK6          | 12AV6           |
|                | (68)7           | 7E7            | 7R7             |                | 12BU6           |
| COL 7          | ∫6SU7           | 7E7            | 7AF7            |                | (12AT6          |
| 6SL7           | ₹ 5691, 5692    | 7G7            | 7V7             |                | 12A16<br>12AV6  |
|                | ∫ 5692          | /4/            |                 | 12BT6          | 12BK6           |
| 6SN7           | <b>7</b> 5691   | 7H7            | \7A7<br>\7L7    |                | 12BU6           |
| 6SQ7           | 6SR7            | 717            |                 | 12BU6          | 12BF6           |
| 6SR7           | 6SQ7            | 7,17           | 7B8             | 1237           | 12BF6<br>12K7   |
| 6ST7           | 6SZ7            | 7L7            | §7A7            | 1257<br>12K7   | 1217            |
| 6SU7           | 6SL7            |                | ₹7H7            | 12K7           | 1237<br>12A8    |
| 6SV7           | 6SF7            | 7R7            | 7E7             | 12K8           |                 |
| 6SZ7           | 6ST7            | 707            | ∫7B8            |                | 1644            |
| JOZ,           | 16E5            | 7\$7           | ₹717            | 12SA7          | 12SY7           |
| 6T5            | 6U5             | 7T7            | 7A7, 7H7, 7V7   | 12SC7          | 1634            |
|                | \6W4            | 7V7            | 7T7, 7A7, 7H7   |                | (12SH7          |
| 6U4            | 6AX5            | 7 <b>Z</b> 4   | 7X6             | 12SG7          | 128J7           |
|                |                 | 10             | 10Y             |                | (12SK7          |
| 6U5            | }6E5<br>}6T5    | 10Y            | 10              |                | (12SG7          |
| CUZ            |                 | 12A            | 71A             | 12SH7          | {12SJ7          |
| 6U7            | 6K7             | 12A8           | 12K8            |                | (12SK7          |
| 6V7            | 6R7             |                | 12AV6           |                | 12SG7           |
| 6W4            | §6U4            | 12AT6          | 12BK6           | 12SJ7          | ₹12SH7          |
|                | 6AX4            | 10477          |                 |                | (12SK7          |
| 6W7            | 6S7             | 12AT7          | 12AU7           |                | (12SG7          |
| 6X8            | 6U8 .           | 12AU6          | § 12BA6         | 12SK7          | ₹12SH7          |
| 6 <b>Z</b> 3   | 1V              | 12,000         | (12BD6          |                | (12SJ7          |
| 6 <b>Z</b> 5   | 6Y5             | 12AU7          | 12AT7           | 12SN7          | 12SX7           |
| 7A4            | 7B4             |                | (12AT6          | 12SQ7          | 12SR7           |
| 747            | §7H7            | 10.41/0        | 12BK6           | 12SR7          | 12SQ7           |
| 7A7            | ₹7L7            | 12AV6          | 12BT6           | 12SW7          | 12SR7           |
| 7AB7           | 1204            |                | (12BU6          | 12SX7          | 12SN7           |
| 7AF7           | 7F7             | 12AV7          | 12AZ7           | 12SY7          | 12SA7           |
| 7AG7           | 7AH7            | 12AX7          | 12AY7           | 14A7           | 12B7            |

#### Directly Interchangeable Tubes—(Continued)

| Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with    |
|----------------|-----------------|----------------|-----------------|----------------|--------------------|
| 14AF7          | 14F7            | 40             | 01A             | 1232           | 7 <b>G</b> 7       |
| 14B6           | 14E6            | 41             | 42              | 1267           | OA4                |
| 1400           | § 14J7          | 42             | 6B5             | 1273           | 7A7                |
| · 14B8         | <u></u> 14S7    | 45             | 2A3             | 1274           | <b>6</b> ¥5        |
| 1407           | § 12B7          | 50             | 10              | 1              | (5X3               |
| 14C7           | 1284            | 50A6           | 50 <b>Z</b> 6   | 1275           | ₹80                |
| 14E6           | 14B6            | 50C6           | 50L6            |                | 83                 |
| 14E7           | 14R7            | 50Y7           | 50 <b>Z</b> 7   | 1280           | 14H7               |
| 14F7           | 14AF7           | 50Z6           | 50AX6           | 1284           | 12B7               |
|                | § 12B7          | 50 <b>Z</b> 7  | 50Y7            | 1291           | 3B7                |
| 14H7           | 14A7            | 53             | 5608-A          | 1294           | 1R4                |
|                | §14B8           | 55             | 2A6             | 1299           | 3D6                |
| 14J7           | 1457            | 56             | 27              | 1612           | 6L7                |
| 14R7           | 14E7            | 57             | 58              | 1614           | 6L6                |
| 14117          | \14J7           | 76<br>77       | 37<br>6C6       | 1620           | 6J7                |
| 14S7           | 14J7<br>14B8    | 78             | 6D6             |                |                    |
|                |                 |                | (83             | 1634           | 12SC7              |
| .14W7          | \$ 12B7<br>14A7 | 80             | 5 <b>Z</b> 3    | 1644           | 12L8               |
| 1000           |                 | 81             | 50              | 5517           | CK1003             |
| 19C8<br>19T8   | 19T8<br>19C8    |                | 12A3            | 5590           | <b>∮9001, 5591</b> |
| 1510           |                 | 82             | 45              | 3330           | (9003              |
| 25A6           | 25B6<br>25C6    | 83             | 5Z3, 80         | 5591           | 5590               |
| ZJMU           | 125L6           | 85             | 75              | 5608-A         | 53                 |
|                | 5824            | 117L7          | 117M7           |                | (6AJ5              |
| 25A7           | 32L7            | 117N7          | 117P7           | 5654           | ₹6AK5              |
| 25B5           | 43              | 950            | 1F4             | 5672           | 5678               |
|                |                 | 954            | 956             | 5678           | 5672               |
| 25S            | 1B5             | 955            | 5731            |                | \$6SN7             |
| 25Y5           | 25 <b>Z</b> 5   | 956            | 954             | 5691           | 5692               |
| 26BK6          | 26C6            | CK1005         | {0Y4            |                | \$5691             |
| 26C6           | 26BK6           |                | (0Z4A           | 5692           | 6SN7               |
| 27             | 56              | CK1013         | 5517            | 5693           | 6SJ7               |
|                | §1A4            | 1201           | 7E5             | 3633           |                    |
| 32             | 1B4             | 1203           | 7C4             | 5725           | ∫6AJ5<br>{6AK5     |
| 32L7           | 25A7            | 1204           | 7AB7            | 5701           |                    |
|                | \$1A4           | 1206           | 768             | 5731           | 9J5                |
| 34             | 1B4             | 1221<br>1223   | 6C6<br>6J7      |                | 25A6               |
| 36             | 39              | 1223           | 1A4             | 5824           | 25B6               |
|                | 76              | L .            |                 |                | 25C6<br>25L6       |
| 37             | 70              | 1230           | 30              |                | 6BE6               |

#### **Directly Interchangeable TV Picture Tubes**

| Tube<br>Number  | Replace<br>with   | Tube<br>Number | Replace<br>with     | Tube<br>Number | Replace<br>with     |
|-----------------|-------------------|----------------|---------------------|----------------|---------------------|
| 7NP4            | 7WP4*             | 12VP4          | 12VP4A              | 16JP4          | 16JP4A              |
| 7WP4            | 7NP4              | 14BP4          | 14BP4A              | 16JP4          | 16HP4               |
| 8AP4            | · 8AP4A           | 14BP4          | 14CP4               | 16JP4A         | 16HP4A              |
| DADAA           | . 0404            | 14BP4A         | 14EP4               | 16KP4          | 16KP4A              |
| 8AP4A           | * 8AP4            | 14CP4          | 14BP4               |                |                     |
| 10BP4           | 10BP4A            | 14074          | 14BP4A              | 16KP4          | 16RP4               |
| 1001            | 100               |                | 14EP4               | 16KP4A         | 16TP4               |
| 10BP4           | 10FP4             |                | 17617               | - 16LP4        | 16LP4A              |
| 10BP4A          | 10FP4A            | 14EP4          | 14BP4               | * 16LP4        | 10LF4A              |
|                 |                   |                | 14BP4A              | 16LP4          | 16ZP4               |
| 10EP4           | 10CP4             |                | 14CP4               | 16LP4A         | . 1021 4            |
| 10FP4           | 10FP4A            | 14FP4          | 14BP4 <b>●</b>      | 101404         | 1086044             |
|                 |                   | 1              | 14BP4A●             | 16MP4          | 16MP4A              |
| 10MP4           | 10MP4A .          |                | 14CP4               | 16MP4          | 16HP4               |
| 10MP4A          | 10MP4             |                | 14EP4●              | 16MP4A         | 16HP4A              |
| 12KP4           | 12KP4A            | 15CP4          | 16CP4               | 16QP4          | 16XP4 ·             |
| 101.04          | 101 044           | 16AP4          | 16AP4A              | 1000           | 101/04              |
| 12LP4           | 12LP4A            |                |                     | 16RP4          | 16KP4               |
| 10LD4           | 10/04*            | 16AP4A         | 16AP4               |                | 16KP4A              |
| 12LP4<br>12LP4A | 12KP4*<br>12KP4A* |                |                     |                | 16TP4               |
| 12LF4A          | 12VP4             | 16CP4          | 15CP4               | 16SP4          | 16SP4A              |
|                 | 12VP4A            | 16DP4          | 16DP4A              |                |                     |
|                 | 12TP4             |                |                     | 16SP4A         | 16SP4               |
|                 |                   | 16DP4          | 16HP4●              |                |                     |
| 12QP4           | 12QP4A            | 16DP4A         | 16HP4A●             | 16SP4          | 16WP4A              |
|                 |                   |                | 16JP4 <b>●</b>      | 16SP4A         |                     |
| 12QP4           | 12JP4*            |                | 16JP4A <sup>●</sup> | 16UP4          | 16KP4●              |
| 12QP4A          | 12RP4             |                | 16MP4●              | 16074          | 16KP4A●             |
| 12RP4           | 12JP4* .          |                | 16MP4A●             |                | 16RP4●              |
| 12KF4           | 120P4 .           | 10504          | 105044              |                | 16TP4●              |
|                 | •                 | 16EP4          | 16EP4A              |                | 10114               |
|                 | 12QP4A            |                | 16EP4B              | 16VP4          | 16YP4●              |
| 12TP4           | 12KP4**           | 16GP4          | 16GP4A              |                |                     |
|                 | 12KP4A*           | ===.           | 16GP4B              | 16WP4          | 16SP4®              |
|                 | 12RP4*            |                |                     |                | 16SP4A <sup>●</sup> |
|                 | 12VP4®            | 16HP4          | 16HP4A              |                | 16WP4A●             |
|                 | 12VP4A●           |                |                     |                |                     |
|                 |                   | 16HP4          | 16JP4               | 16WP4A         | 16SP4               |
| 12UP4           | 12UP4A            | 16HP4A         | 16JP4A              |                | 16SP4A              |

Connect external connector to chassis.

#### Directly Interchangeable TV Picture Tubes (Continued)

| Tube<br>Number     | Replace<br>with | Tube<br>Number | Replace<br>with | Tube<br>Number | Replace<br>with |
|--------------------|-----------------|----------------|-----------------|----------------|-----------------|
| 16XP4              | 16QP4           | 17QP4          | 17UP4           | 20GP4          | 20JP4           |
| 16ZP4              | 16LP4           | 17RP4          | 17HP4 ·         | 20HP4          | 20HP4B          |
| 1021               | 16LP4A          |                | 17HP4A 💲        | 20111 4        | 20111 415       |
|                    |                 |                | 17KP4           | 20HP4          | 20HP4A●         |
| 17AP4              | 17BP4A          |                |                 | 20HP4B         | 20JP4●          |
|                    | 17BP4B          | 17UP4          | 17QP4           |                | 20LP4●          |
|                    | 17BP4C          | 17VP4          | 17LP4           |                |                 |
|                    | 17JP4           | 17774          | 17LP4<br>17LP4A | 21EP4A         | 21EP4B          |
|                    |                 |                | 17SP4           | 03504          | 0150446         |
| 17BP4              | 17AP4 <b>●</b>  |                | 1/3/4           | 21FP4          | 21FP4A•         |
|                    | 17BP4A●         | 19AP4          | 19AP4A          |                | 21 KP4          |
|                    | 17BP4B●         |                | 19AP4B          |                | 21KP4A●         |
|                    | 17BP4C●         | İ              | 19AP4C          | 21FP4A         | 21KP4A          |
|                    | 17JP4 <b>●</b>  |                | 19AP4D          | 211144         | 21NF4M          |
|                    | •               |                |                 | 21KP4          | 21 KP4Ă●        |
| 17BP4A             | 17BP4B          | 19DP4          | 19DP4A          |                |                 |
|                    | 17BP4C          | 19DP4A         | 10004           | 21WP4          | 20CP4A          |
| 170044             | 17AP4           | 19DF4A         | 19DP4           |                | 20DP4A          |
| 17BP4A<br>· 17BP4B | 17AP4<br>17JP4  | 19EP4          | 19JP4           |                |                 |
| 17BP46             | 1/1/4           |                |                 | 21 <b>ZP</b> 4 | 21ZP4A●         |
| 1/6/40             |                 | 19FP4          | 19DP4 <b>●</b>  | 22AP4          | 22AP4A          |
| 17CP4              | 17CP4A          |                | 19DP4A <b>●</b> | 22/11          | 22/0 4/1        |
| 2. 0. ,            |                 | 19JP4          | 10504           | 22AP4A         | 22AP4           |
| 17CP4A             | 17CP4           | 19374          | 19EP4           |                |                 |
|                    |                 | 20CP4          | 20CP4A          | 24AP4          | 24AP4A          |
| 17FP4              | 17FP4A          |                | 20CP4C          |                | 24AP4B          |
| 175044             | 17504           |                | 20DP4           | 24AP4B         | 24AP4           |
| 17FP4A             | 17FP4           |                | 20DP4A●         | 2471 40        | 24AP4A          |
| 17HP4              | 17HP4A          |                |                 |                | 24AF 4A         |
| 17111 4            | 17111 4/4       | 20CP4A         | 20CP4●          | 27EP4          | 27GP4           |
| 17HP4A             | 17HP4           |                | 20DP4A          |                | 27NP4           |
|                    |                 | 2000040        | 20004           |                | 27RP4           |
| 17HP4              | 17KP4 ·         | 20CP4C         | 20CP4           |                |                 |
| 17HP4A             | 17RP4           |                | 20CP4A●         | 27GP4          | 27EP4           |
|                    |                 |                | 20DP4           |                | 27NP4           |
| 17JP4              | 17AP4           | 20CP4C         | 20DP4A●         |                | 27RP4●          |
|                    | 17BP4A          |                |                 |                |                 |
|                    | 17BP4B          | 20DP4          | 20CP4           | 27NP4          | 27EP4           |
|                    | 17BP4C          |                | 20CP4C          |                | 27GP4           |
| 171 D4             | 171 D4 A        |                | 20CP4A®         |                | 27RP4           |
| 17LP4              | 17LP4A          |                | 20DP4A●         | 27RP4          | 27EP4           |
| 17LP4              | 17SP4           | 20FP4          | 20GP4 <b>●</b>  | 2/KF4          | 27EP4<br>27GP4  |
| 17LP4<br>17LP4A    | 173P4<br>17VP4  | 20174          | 20JP4           |                | 27GP4<br>27NP4  |
| 17 LF 48           | 1/ 4/ 4         |                | 20174           |                | 2/11/4          |

Connect external connector to chassis.

#### Interchangeable Batteries

| -                                           | i i                                   | - 7                             |                                          |                                           |                                         |                                    |                                  | u                                           | ·                                           |
|---------------------------------------------|---------------------------------------|---------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------|---------------------------------------------|---------------------------------------------|
| Burgess                                     | Eveready                              | Neda                            | Ray-O-Vac                                | RCA                                       | Burgess                                 | Eveready                           | Neda                             | Ray-O-Vac                                   | RCA                                         |
| 1<br>10308*<br>120<br>17GD60<br>2           | 935-635<br>W363F<br>835<br>759<br>950 | 14<br>716<br>413                | 1LP<br>5930C<br>110LP<br>AB82<br>2LP     | VS035<br>VS127<br>VS022<br>VS036          | B5<br>B30<br>C5<br>D3<br>F2BP           | 713<br>484<br>717<br>726<br>W352   | 8<br>207<br>9<br>19<br>701       | P551<br>P5303<br>P751<br>423PX<br>392S      | VS129<br>VS012<br>VS065<br>VS072<br>VS100   |
| 2F<br>2F4<br>2F4L<br>2D<br>2FBP             | W353<br>718<br>747<br>720<br>W354     | 11<br>1<br>16<br>18<br>700      | 192PX<br>698P<br>698PL<br>122P<br>192S   | VS141<br>VS010<br>VS011<br>VS069<br>VS101 | F3<br>F4A50<br>F4H<br>F4PI<br>F6A60     | 736<br>W368<br>409<br>744<br>753   | 3<br>411<br>908<br>6<br>401      | P93A<br>AB327<br>941<br>P694A<br>AB994      | VS067<br>VS040C<br>VS009<br>VS019           |
| 2R<br>2TXX40<br>20F<br>20F2<br>21R          | 950<br>W370<br>740<br>X125<br>964     | 13<br>412<br>719<br>720<br>20   | 2LP<br>P9203<br>P9403<br>8R              | VS036<br>VS024<br>VS025<br>VS236          | F6A60P<br>G3<br>G5A42<br>G6B60<br>G6M60 | 757<br>746<br>W367<br>752<br>754   | 406<br>7<br>408<br>400<br>402    | AB909<br>P83A<br>AB-794<br>AB-995<br>AB-878 | VS058<br>VS002<br>VS038<br>VS047<br>VS018 . |
| 210<br>21308*<br>2156<br>220<br>2308*       | 1050<br>W364F<br>766T<br>850<br>W365F | 715<br>702<br>723               | 3LP<br>5830C<br>2215C<br>210LP<br>5230C  | VS157<br>VS137<br>VS126                   | K45<br>M30<br>N<br>N60<br>P45           | 457<br>482<br>490<br>477           | 203<br>202<br>910<br>204<br>211P | NSW45<br>P7830<br>716<br>4390<br>NW45       | VS082<br>VS013<br>VS073<br>VS090<br>VS218   |
| 2370ST<br>2370PI<br>4F<br>4FH<br>4FH<br>4FL | 761T<br>771<br>742<br>735             | 712<br>718<br>4<br>900<br>12    | 423S<br>P231W<br>194P<br>194S<br>P94L    | VS130<br>VS030<br>VS004<br>VS106<br>VS005 | P45M<br>P60<br>S461<br>S6D60<br>T5      | 479<br>1461<br>776<br>W360         | 211M<br>907<br>415<br>10         | 946<br>641<br>AB326<br>7CD5P                | VS216-15<br>VS039<br>VS119                  |
| 4F2H<br>4F4H<br>4F5H<br>4F6H<br>4GA42       | W357<br>706<br>715<br>716<br>W366     | 901<br>902<br>903<br>904<br>407 | 398C<br>902<br>903<br>904<br>AB944       | VS138<br>VS103<br>VS139<br>VS140<br>VS053 | T5Z50<br>T6Z60<br>T6Z60P<br>U10<br>U15  | 755<br>756<br>756P<br>411<br>412   | 403<br>405<br>428<br>208<br>215  | AB775<br>AB601<br>510P<br>215               | VS050<br>VS057W<br>VS059<br>VS083<br>VS084  |
| 4SD60<br>4TZ60<br>4156<br>422<br>432        | 758<br>729<br>763<br>750<br>751       | 414<br>425<br>710<br>704<br>705 | AB85<br>AB333<br>2415S<br>342<br>443     | VS021<br>VS064<br>VS102<br>VS134<br>VS142 | U15PF<br>U20<br>U200<br>U30<br>W20PI    | 412<br>413<br>493<br>415           | 210<br>722<br>213                | 915<br>520P<br>5200<br>530CUH<br>99917      | VS085<br>VS093<br>VS086                     |
| 5156SC<br>5156PI<br>5308<br>532<br>5360     | 778<br>768<br>W376<br>703<br>781      | 708<br>721<br>709<br>706<br>714 | 2515C<br>2515P<br>5530S<br>453<br>531R   | VS131<br>VS031<br>VS112<br>VS133<br>VS028 | W30PI<br>XX15<br>XX22<br>XX30<br>XX30PI | 733<br>425P<br>433P<br>455<br>455P | 201                              | N30P<br>PN15<br>PN22<br>930<br>PN30F        | VS055                                       |
| 5540<br>6F<br>6 Ign.<br>6 Ind.<br>6 Tel.    | 773<br>743<br>6 Ign.<br>6 Ind.<br>6GL | 713<br>5<br>905<br>911<br>906   | 755S<br>196P<br>6 IgnS<br>6 RR<br>6 TelC | VS029<br>VS007<br>VS0065<br>VS042C        | XX45<br>XX50<br>XX69<br>Y10<br>Y15      | 467<br>437<br>W361<br>504<br>505   | 200<br>212                       | 4367<br>4375<br>103SN69<br>10P<br>515P      | VS016<br>VS217                              |
| 6TA60<br>7<br>8F<br>8R<br>9R                | W369<br>912<br>741<br>960P<br>1015E   | 410<br>24<br>17<br>23           | AB64<br>400<br>198P<br>191P<br>41        | VS054<br>VS070                            | Y20<br>Y20S<br>Z<br>Z30<br>Z30NX        | 506<br>507<br>915<br>738<br>W350   | 15<br>205<br>711                 | 20P<br>7R<br>57R30P<br>57R30S               | VS034<br>VS015<br>VS114                     |
| 920<br>A30                                  | 815<br>W359                           | 206                             | 710LP<br>P430                            | VS014                                     | Z4                                      | 724                                | 2                                | 67R4                                        | VS068                                       |

<sup>\*</sup> Available with plug-in terminal also.

#### Interchangeable Batteries—(Continued)

| ` `                                           |                                                 |                                 | ä                                          | 1                                         | ۸ ا                                                 | 1                                          | <u> </u>                        | Ä                                        | Ī                                          |
|-----------------------------------------------|-------------------------------------------------|---------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------|--------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------|
| Eveready                                      | Burgess                                         | Neda                            | Ray-O-Vac                                  | RCA                                       | Eveready                                            | Burgess                                    | Neda                            | Ray-O-Vac                                | RCA                                        |
| 6GL<br>6 lgn.<br>6 Ind.<br>X-125<br>W-350     | 6 Tel.<br>6 Ign.<br>6 Ind.<br>20F2<br>Z30NX     | 906<br>905<br>911<br>720<br>711 | 6 TelC<br>6 IgnS<br>6RR<br>P9403<br>57R30S | VS042C<br>VS006S<br>VS025<br>VS114        | 716<br>717<br>718<br>720<br>724                     | 4F6H<br>C5<br>2F4<br>2D<br>Z4              | 904<br>9<br>1<br>18<br>2        | 904<br>P751<br>698P<br>122P<br>67R4      | VS140<br>VS065<br>VS010<br>VS069<br>VS068  |
| W-351<br>W-352<br>W-354<br>W-355<br>W-356     | Z30BP<br>F2BP<br>2FBP<br>2BBP<br>2F2H           | 701<br>700                      | 392S<br>192S                               | VS100<br>VS101<br>VS136                   | 726<br>729<br>735<br>736<br>738                     | D3<br>4TZ60<br>4FH<br>F3<br>Z30            | 19<br>425<br>900<br>3<br>205    | 423PX<br>AB333<br>194S<br>P93A<br>57R30P | VS072<br>VS064<br>VS106<br>VS067<br>VS015  |
| W-357<br>W-358<br>W-362<br>W-363F<br>W-363P   | 4F2H<br>W30BPX<br>W5BP<br>10308SC<br>10308PI    | 901<br>716                      | 398C<br>5930C                              | VS138<br>VS127<br>VS027                   | 740<br>741<br>742<br>743<br>744                     | 20F<br>8F<br>4F<br>6F<br>F4PI              | 719<br>17<br>4<br>5             | P9203<br>198P<br>194P<br>196P<br>P694A   | VS024<br>VS004<br>VS007 -<br>VS009         |
| W-364F<br>W-364P<br>W-365F<br>W-365P<br>W-371 | 21308SC<br>21308PI<br>2308SC<br>2308PI<br>2Z2PI | 715<br>723                      | 5830C<br>5230C                             | VS157<br>VS126<br>VS026                   | 746<br>747<br>750<br>751<br>752                     | G3<br>2F4L<br>422<br>432<br>G6B60          | 7<br>16<br>704<br>705<br>400    | P83A<br>698PL<br>342<br>443<br>AB995     | VS002<br>VS011<br>VS134<br>VS142<br>VS047  |
| W-376<br>409<br>411<br>412                    | 5308<br>F4H<br>U10<br>U15,<br>U15PF             | 709<br>908<br>208<br>215        | 5530S<br>941<br>510P<br>215, 915           | VS112<br>VS040C<br>VS083<br>VS084         | 753<br>754<br>755<br>756<br>756-P                   | F6A60<br>G6M60<br>T5Z50<br>T6Z60<br>T6Z60P | 401<br>402<br>403<br>405<br>428 | AB994<br>AB878<br>AB775<br>AB601         | VS019<br>VS018<br>VS050<br>VS057W<br>VS059 |
| 413<br>415<br>437<br>455<br>457               | U20<br>U30<br>XX50<br>XX30<br>K45               | 210<br>213<br>212<br>201<br>203 | 520P<br>530CUH<br>4375<br>930<br>NSW45     | VS085<br>VS086<br>VS217<br>VS055<br>VS082 | 757<br>758<br>759<br>761 <b>T</b><br>7 <b>62</b> \$ | F6A60P<br>4SD60<br>76D60<br>2370ST<br>5308 | 406<br>414<br>413<br>712<br>709 | AB909<br>AB85<br>AB82<br>423S<br>5530S   | VS058<br>VS021<br>VS022<br>VS130<br>VS119  |
| 467<br>477<br>479<br>482<br>484               | XX45<br>P45<br>P60<br>M30<br>B30                | 200<br>211P<br>202<br>207       | 4367<br>NW45<br>P7830<br>P5303             | VS016<br>VS218<br>VS013<br>VS012          | 763<br>766 <b>T</b><br>768 ·<br>771<br>773          | 4156<br>2156<br>5156P1<br>2370P1<br>5540   | 710<br>702<br>721<br>718<br>713 | 2415S<br>2215C<br>2515P<br>P231W<br>755S | VS102<br>VS137<br>VS031<br>VS030<br>VS029  |
| 490<br>493<br>504<br>505<br>506               | N60<br>U200<br>Y10<br>Y15<br>Y20                | 204<br>722                      | 4390<br>5200<br>10P<br>515P<br>20P         | VS090<br>VS093                            | 776<br>778<br>781<br>912<br>915                     | 56D60<br>5156SC<br>5360<br>7<br>Z          | 415<br>708<br>714<br>24<br>15   | AB326<br>2515C<br>531R<br>400<br>7R      | VS119<br>VS131<br>VS028<br>VS034           |
| 507<br>635<br>703<br>706<br>713               | Y20S<br>1<br>532<br>4F4H<br>B5                  | 14<br>706<br>902<br>8           | 1LP<br>453<br>902<br>P551                  | VS035<br>VS133<br>VS103<br>VS129          | 935<br>950<br>960-P<br>964<br>1461                  | 1<br>2, 2R<br>8R<br>21R<br>S461            | 14<br>13<br>23<br>20<br>907     | 1LP<br>2LP<br>191P<br>8R<br>641          | VS035<br>VS036<br>VS070<br>VS236<br>VS039  |
| 715                                           | 4F5H                                            | 903                             | 903                                        | VS139                                     |                                                     |                                            |                                 |                                          |                                            |

## Resistor Color Code RETMA STANDARD REC-116 MILITARY STANDARD MIL-R-11A





| Color                                                                        | 1st Digit<br>A                       | 2nd Digit<br>B                       | Multiplier<br>C                                                        | Tolerance<br>D         |
|------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------------------------|------------------------|
| Black<br>Brown<br>Red<br>Orange<br>Yellow<br>Green<br>Blue<br>Violet<br>Gray | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 1<br>10<br>100<br>1,000<br>10,000<br>100,000<br>1,000,000<br>10,000,00 |                        |
| White<br>Gold<br>Silver<br>No Color                                          | 9 -                                  | 9<br><br>-                           | 7 0.i<br>0.01*<br>*RETMA ONLY. —                                       | ± 5%<br>± 10%<br>± 20% |

#### INSULATION CODING

RETMA: Insulated resistors with axial leads are designated by a background of any color except black. The usual color is natural tan. Noninsulated resistors with axial leads are designated by a black background color.

MILITARY (MIL): Same as RETMA with the addition of: Noninsulated resistors with radial leads designated by a black background color or by a background the same color as the first significant figure of the resistance value.

## Mica Capacitor Color Code MILITARY STANDARD MIL-C-5A



|                                                                                                         | Digits of Capacitance (μμf)                 |                                                | Multiplier                                                                | Tolerance                                      | Characteristic.<br>See table below |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|------------------------------------|
| Color                                                                                                   | Α                                           | В                                              | C                                                                         | %<br>D                                         | E                                  |
| Black<br>Brown<br>Red<br>Orange<br>Yellow<br>Green<br>Blue<br>Violet<br>Gray<br>White<br>Gold<br>Silver | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>. 8 | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1<br>10<br>100<br>1,000<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>0.1<br>0.01 | ± 20<br>± 2<br><br><br><br><br><br>± 5<br>± 10 | B C D E F                          |

#### DESCRIPTION OF CHARACTERISTIC

| Charac-<br>teristic | Temperature<br>Coefficient<br>(parts per<br>million per °C) | Maximum<br>Capacitance<br>Drift | Minimum<br>Insulation<br>Resistance<br>(megohms) |
|---------------------|-------------------------------------------------------------|---------------------------------|--------------------------------------------------|
| В                   | Not specified                                               | Not specified                   | 7500                                             |
| C                   | ±200                                                        | ±0.5%                           | 7500                                             |
| D                   | ±100                                                        | ±0.3%                           | 7500                                             |
| E                   | +100 -20                                                    | $\pm (0.1\% + 0.1 \mu\mu f)$    | 7500                                             |
| F                   | +70                                                         | $\pm (0.05\% +0.1 \mu\mu f)$    | 7500                                             |
|                     |                                                             |                                 |                                                  |

VOLTAGE RATING
(Indicated by dimensions rather than color coding)

| Maximum Inches |       |       | Style | Capacitance              | Rating     |
|----------------|-------|-------|-------|--------------------------|------------|
| Long           | Wide  | Thick | CM    | (μμf)                    | (v d-c)    |
| 35/64          | 5/16  | 7/12  | 15    | 5-510                    | 300        |
| 51/64          | 15/32 | 7/32  | 20    | 5-510<br>560-1000        | 500<br>300 |
| 17/64          | 15/32 | 7/32  | 25    | 51-1000                  | 500        |
| 53/64          | 53/64 | 9/32  | 30    | 560-3300                 | 500        |
| 53/64          | 53/64 | 11/32 | 35    | 3600-6200<br>6800-10,000 | 500<br>300 |
| 11/32          | 41/64 | 11/32 | 40    | 3300-8200<br>9100-10,000 | 500<br>300 |

## Mica Capacitor Color Code RETMA STANDARD REC-115A







| Color  | Digits | Digits of Capacitance (μμf) |   |                 | Tolerance % | Characteristic- |
|--------|--------|-----------------------------|---|-----------------|-------------|-----------------|
| Color  | A      | В                           | С | Multiplier<br>D | E           | See table belov |
| Black  | 0      | 0                           | 0 | 1               | ± 20        | A               |
| Brown  | 1      | 1                           | 1 | 10              | 1           | B               |
| Red    | 2      | 2                           | 2 | 100             | ± 2         | č               |
| Orange | 3      | 3                           | 3 | 1,000           | + 3         | . Ď             |
| Yellow | 4      | 4                           | 4 | 10,000          |             | · F             |
| Green  | 5      | 5                           | 5 | ,               | ± 5         |                 |
| Blue   | 6      | 6                           | 6 |                 |             |                 |
| Violet | 7 1    | 7                           | 7 |                 |             | _               |
| Gray   | 8      | 8                           | 8 | s               |             | 1               |
| White  | 9      | 9                           | 9 | / -             | - 1         | .i              |
| Gold   |        | _                           | _ | 0.1             | 1 _ 1       | _               |
| Silver | — ,    | _                           | - | 0.01            | ± 10        |                 |

| DESCRIPTION | OF | CHARACTERISTIC | è |
|-------------|----|----------------|---|
|             |    |                |   |

| Charac-<br>teristic | Temperature<br>Coefficient<br>(parts per<br>million per °C) | Maximum<br>Capacitance<br>Drift | Minimum<br>Insulation<br>Resistance<br>(megohms) |
|---------------------|-------------------------------------------------------------|---------------------------------|--------------------------------------------------|
| A                   | ±1000                                                       | $\pm (5\% + 1 \mu\mu f)$        | 3000                                             |
| В                   | ±500                                                        | $\pm (3\% + 1 \mu \mu f)$       | 6000                                             |
| C                   | ±200                                                        | $\pm (0.5\% + 0.5 \mu\mu f)$    | 6000                                             |
| D.                  | ±100                                                        | $\pm (0.3\% +0.1 \mu\mu f)$     | 6000                                             |
| E                   | +100 - 20                                                   | $\pm (0.1\% +0.1 \mu\mu f)$     | 6000                                             |
| I                   | +150 - 50                                                   | $\pm (0.3\% +0.2 \mu\mu f)$     | 6000                                             |
| J                   | +100 -50                                                    | $\pm (0.2\% +0.2 \mu\mu f)$     | 6000                                             |

#### VOLTAGE RATING

(Indicated by dimensions rather than color coding)

| Maximum Inches |         |       | C41.  | Capacitance                        | Rating             |
|----------------|---------|-------|-------|------------------------------------|--------------------|
| Long           | Wide    | Thick | Style | (μμf)                              | (v d-c)            |
| 51/64          | 15/32   | 7/32  | 20    | 5-510<br>560-1000                  | 500<br>300         |
| 1764           | - 15/32 | 7/32  | 25    | 5-1000<br>1100-1500                | 500<br>300         |
| 53/64          | 53,64   | 9/32  | 30    | 470-6200<br>Over 6200              | 500<br>300         |
| 53/64          | 58/64   | 3/8   | 35    | 3300-6200<br>Over 6200             | 500<br>300         |
| 11/32          | 41/64   | 11/32 | 40    | 100-2400<br>2700-7500<br>Over 7500 | 1000<br>500<br>300 |



| Dot Color | Digits of Capacitance (μμf) |                  |             | 5.0 U         |          | Voltage Rating |
|-----------|-----------------------------|------------------|-------------|---------------|----------|----------------|
| Dot Color | Α                           | A B C Multiplier | Tolerance % | (v d-c)<br>F  |          |                |
| Black     | 0                           | 0                | 0           | 1             | ± 20     |                |
| Brown     | 1.                          | 1                | 1           | 10            | <b> </b> | 100            |
| * Red     | 2                           | 2                | 2           | 100           | ± 2      | 200            |
| Orange    | 3                           | 3                | 3           | 1,000         | $\pm 3$  | 300            |
| Yellow    | 4                           | 4                | 4           | 10,000        | ± 4      | 400            |
| Green     | 5                           | 5                | 5           | 100,000       | ± 5      | 500            |
| Blue      | 6                           | 6                | 6           | 1,000,000     | ± 6      | 600            |
| Violet    | 7                           | 7                | 7           | 10,000,000    | ± 7      | 700            |
| Gray      | . 8                         | 8                | 8           | 100,000,000   | ± 8      | 800            |
| White     | 9                           | 9                | 9 .         | 1,000,000,000 | ± 9      | 900            |
| Gold      | _                           | _                |             | 0.1           | ± 5      | 1,000          |
| Silver    | _                           | _                | _           | 0.01          | ± 10     | 2,000          |
| No Color  | _                           | _                | _           |               | ± 20     | 500            |

# Ceramic Capacitor Color Code RETMA STANDARD REC-107A MILITARY STANDARD JAN-C-20A Proposed Mil-C-20A



Tubular Capacitars (Valtage rating is always 500 v.)



Tubular Capacitors (Old RMA)



Stand-Off Capacitars (RETMA ONLY)



3-Dat Buttan Capacitars RETMA ONLY



Feed Thraugh Capacitars (RETMA ONLY)



5-Dat Disc Capacitars (RETMA ONLY) (Voltage rating is always 500 v.)



3-Dat Disc Capacitars (RETMA ONLY) (Valtage rating is always 500 v., talerance is always —0.)

|        | Digits of<br>Capacitance (μμf) |     |     | Tolerance<br>F  |                      | Temp. Coef. A<br>(Parts per million per °C.) |                |                 |
|--------|--------------------------------|-----|-----|-----------------|----------------------|----------------------------------------------|----------------|-----------------|
| Color  | В                              | С   | D   | Multiplier<br>E | 10 μμf or less (μμf) | Over 10<br>μμf (%)                           | RETMA          | MILITARY        |
| Black  | 0                              | 0   | 0   | 1               | ±2.0                 | ±20*                                         | 0              | 0               |
| Brown  | 1                              | 1   | 1   | 10              | ±0.1*                | ±1                                           | 33             | — 30            |
| Red    | 2                              | 2   | 2   | 100             | _                    | ±2                                           | <b>— 75</b>    | — 80            |
| Orange | 3                              | 3   | 3   | 1,000           | _                    | ±2.5*                                        | —150           | —150            |
| Yellow | 4 *                            | 4   | 4   | 10,000*         | _                    |                                              | 220            | —220            |
| Green  | 5                              | 5   | . 5 | · —             | ±0.5                 | ±5                                           | 330            | 330             |
| Blue   | 6                              | 6   | 6   | _               | _                    | _                                            | 470            | <del>47</del> 0 |
| Violet | 7                              | 7   | 7   |                 | _                    |                                              | 750            | <del></del> 750 |
| Gray   | 8                              | 8 - | 8   | 0.01            | ±0.25                | _                                            | +150 to        | + 30            |
|        |                                |     |     |                 |                      |                                              | —1500          |                 |
| White  | 9                              | 9   | 9   | 0.1             | ± 1.0                | ±10                                          | +100 to        | +330*           |
|        |                                |     |     |                 |                      |                                              | <del>750</del> |                 |
| Gold   | -                              | _   | _   | _               | - 1                  |                                              | - 14           | +100            |

<sup>\*</sup>RETMA only

## Paper Capacitor Color Code MILITARY STANDARD MIL-C-91A

(Commercial codes are same except as noted)



**Tubular Capacitars** (Cammercial Only)



| Color - | Digits of Capacitance (μμf) |     | Multiplier | Tolerance | Tubular<br>Voltage Rating<br>(v d-c) | Temp. Rating °C and Characteristic |
|---------|-----------------------------|-----|------------|-----------|--------------------------------------|------------------------------------|
| Color   | Α                           | В   | C          | %<br>D    | E E                                  | F                                  |
| Black   | 0                           | . 0 | 1          | ± 20      |                                      | 85-A                               |
| Brown   | 1                           | 1   | 10         |           | 100                                  | 85-E -                             |
| Red     | 2                           | 2   | 100        |           | 200                                  | · —                                |
| Orange  | 3                           | 3   | 1,000      | ± 30      | 300                                  | ,                                  |
| Yellow  | 4                           | 4   | 10,000     | _         | 400                                  |                                    |
| Green   | 5                           | 5   |            |           | 500                                  | _                                  |
| Blue '  | 6                           | 6   | - 1        |           | 600                                  | _                                  |
| Violet  | 7                           | 7   |            | _         | 700                                  |                                    |
| Gray    | 8                           | 8   | /          | _         | 800                                  |                                    |
| White   | 9                           | 9   |            | _         | 900                                  |                                    |
| :Gold   | _                           | _   |            |           | 1,000                                | 11                                 |
| Silver  | _                           |     | _          | ± 10      | _                                    |                                    |

#### **VOLTAGE RATING FOR**

RECTANGULAR CAPACITORS (Indicated by dimensions rather than color coding)

| 'Maximum Dimensions<br>(inches) |       | Style          | Capacitance | Voltage<br>Rating                                         |                                  |
|---------------------------------|-------|----------------|-------------|-----------------------------------------------------------|----------------------------------|
| Length                          | Width | Thick-<br>ness | CN          | (μμf)                                                     | (v d-c)                          |
| 51/64                           | 15/32 | 7/82           | 20          | 1000<br>2000-6000<br>10,000                               | 400<br>200<br>120                |
| 57/64                           | 87/64 | 17/64          | 22          | 2000-3000<br>6000-10,000<br>20,000                        | 400<br>300<br>120                |
| 53/64                           | 58/64 | 9/32           | 30          | 1000-2000<br>3000<br>6000-10,000<br>20,000                | 800<br>600<br>400<br>120         |
| 53/64                           | 53/64 | 11/32          | 35          | 3000<br>6000-10,000<br>20,000                             | 800<br>600<br>300                |
| 11/4                            | 41/64 | 9/32           | 41          | 3000-6000<br>10,000<br>20,000<br>30,000                   | 600<br>400<br>300<br>120         |
| 115/32                          | 49/64 | 11/32          | 42          | 1000-6000<br>10,000-20,000<br>30,000<br>50,000<br>100,000 | 1000<br>600<br>400<br>300<br>120 |
| 115/32                          | 49%1  | 13/32          | 43          | 10,000<br>20,000-30,000<br>50,000-100,000<br>200,000      | 1000<br>600<br>400<br>120        |

#### **RETMA Color Codes**

The color codes on the preceding and two following pages are used by most radio and instrument manufacturers in the wiring of their products, and by parts manufacturers for identifying lead placement or resistor and capacitor values, ratings, and tolerances. These have been included for whatever help they may provide in identifying parts and

leads when trouble-shooting. Since all manufacturers do not use these codes, however, due caution must be observed to determine whether or not the set, instrument, or part under examination does or does not follow the code colors given here. A quick check with a voltmeter, ohmmeter, or continuity meter is usually all that is needed to establish this fact.



#### **RETMA Color Codes—(Continued)**



700

PLUG
PINS TOWARD
YELLOW & RED

PLUG

BLACK

BLACK

OUTPUT TRANSFORMER

GREEN

FILLO 'COIL

FILLO 'GREEN

FILLO 'COIL

FILLO



#### RETMA Color Codes—(Continued)



Speaker Lead Color Codes—(Continued)

## Schematic Symbols Used in Radio Diagrams

| Ψ                 | ANTENNA<br>(AERIAL)                      |            | IRON CORE<br>CHOKE COIL                                                         | · · · · · · · · · · · · · · · · · · · | SWITCH<br>(ROTARY OR<br>SELECTOR)    |
|-------------------|------------------------------------------|------------|---------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|
| <u>+</u>          | GROUND                                   | Tage 1     | R.F.<br>Transformer<br>(AIR CORE)                                               | +                                     | CRYSTAL<br>DETECTOR                  |
| ů                 | ANTENNA<br>(LOOP)                        | 3          | A.F.<br>TRANSFORMER<br>(IRON CORE)                                              | <b></b>                               | LIGHTNING<br>ARRESTER                |
| -                 | WIRING METHOD 1<br>CONNECTION            | gás<br>gás | POWER TRANSFORMER P-115 VOLT PRIMARY S1- CENTER-TAPPED                          | -60-                                  | FUSE                                 |
| -                 | NO CONNECTION                            | 00000 P    | SECONDARY FOR<br>FILAMENTS OF<br>SIGNAL CIRCUIT<br>TUBES<br>\$2 - SECONDARY FOR | -                                     | PILOT LAMP                           |
| -                 | WIRING METHOD 2<br>CONNECTION            | \$3        | RECTIFIER TUBE<br>FILAMENT<br>S3 - CENTER -TAPPED<br>HIGH-VOLTAGE<br>SECONDARY  | P                                     | HEADPHONES                           |
|                   | NO CONNECTION                            | 十          | FIXED<br>CAPACITOR<br>(MICA OR PAPER)                                           |                                       | LOUDSPEAKER,<br>P. M. DYNAMIC        |
|                   | TERMINAL                                 | ‡          | FIXED<br>CAPACITOR<br>(ELECTROLYTIC)                                            | <del>णि</del> स्                      | LOUDSPEAKER,<br>ELECTRODYNAMIC       |
|                   | ONE CELL OR "A" BATTERY                  | *          | ADJUSTABLE<br>OR VARIABLE<br>CAPACITOR                                          | <del>□</del>                          | PHONO PICK-UP                        |
| <del></del>     = | MULTI-CELL OR<br>"B" BATTERY             | ***        | ADJUSTABLE<br>OR VARIABLE<br>CAPACITORS<br>(GANGED)                             | $\forall$                             | VACUUM TUBE<br>HEATER OR<br>FILAMENT |
| w                 | RESISTOR                                 | <b>Z</b>   | I. F.<br>TRANSFORMER<br>(DOUBLE-TUNED)                                          | <b>\( \)</b>                          | VACUUM TUBE<br>CATHODE               |
|                   | POTENTIOMETER<br>(VOLUME CONTROL)        |            | POWER SWITCH<br>S. P. S.T.                                                      | <u></u>                               | VACUUM TUBE<br>GRID                  |
|                   | TAPPED RESISTOR<br>OR VOLTAGE<br>DIVIDER | \ <u>\</u> | SWITCH<br>S. P. D. T.                                                           | 4                                     | VACUUM TUBE<br>⊸PLATE                |
|                   | RHEOSTAT                                 |            | SWITCH<br>D. P. S. T.                                                           |                                       | 3-ELEMENT<br>VACUUM TUBE<br>(TRIODE) |
|                   | AIR CORE<br>CHOKE COIL                   | - 91°      | SWITCH<br>D. P. D. T,                                                           | $\bigcirc$                            | ALIGNING KEY<br>OCTAL BASE<br>TUBE   |

### **Abbreviations and Letter Symbols**

Many of the abbreviations given are in lower-case letters. Obviously, however, there will be occasions such as when the abbreviations are used in titles where the original word would have been capitalized. In these cases, the abbreviation should be similarly capitalized.

A two-word adjective expression should contain a hyphen.

|                                    | Abbrevi-                    | Term                        | Abbrevi-<br>ation  |
|------------------------------------|-----------------------------|-----------------------------|--------------------|
| Term                               | ation                       |                             | l-f                |
| Admittance                         | Y                           | Low-frequency (adjective)   | 1-1<br>l.f.        |
| Alternating-current (adjective)    | a-c                         | Low frequency (noun)        | 1.1.<br>H          |
| Alternating current (noun)         | a.c.                        | Magnetic field intensity    |                    |
| Ampere                             | a                           | Megacycle                   | Mc                 |
| Angular velocity $(2\pi f)$        | ω                           | Megohm                      | $\mathbf{M}\Omega$ |
| Antenna                            | ant.                        | Meter                       | m                  |
| Audio-frequency (adjective)        | a-f                         | Microampere                 | μа                 |
| Audio frequency (noun)             | a.f.                        | Microfarad (mfd)            | μf                 |
| Automatic volume control           | a.v.c.                      | Microhenry                  | μh                 |
| Automatic volume expansion         | a.v.e.                      | Micromicrofarad (mmfd)      | μμf                |
| Capacitance                        | $\boldsymbol{C}$            | Microvolt                   | $\mu V$            |
| Capacitive reactance.              | $X_C$                       | Microvolt per meter         | μv/m               |
| Centimeter                         | cm                          | Microwatt                   | $\mu\mathrm{W}$    |
| Conductance                        | $\boldsymbol{G}$            | Milliampere                 | ma                 |
| Continuous waves                   | c.w.                        | Millihenry                  | mh .               |
| Current                            | I, $i$                      | Millivolt                   | mv                 |
| Cycles per second                  | ~                           | Millivolt per meter         | mv/m               |
| Decibel                            | db                          | Milliwatt                   | mw                 |
| Direct-current (adjective)         | $\mathbf{d}$ - $\mathbf{c}$ | Modulated continuous waves  | m.c.w.             |
| Direct current (noun)              | $\mathbf{d.c.}$             | Mutual inductance           | M                  |
| Double cotton covered              | $\mathbf{d.c.c.}$           | Ohm                         | Ω                  |
| Double pole, double throw          | d.p.d.t.                    | Power                       | P                  |
| Double pole, single throw          | d.p.s.t.                    | Power factor                | p.f.               |
| Double silk covered                | d.s.c.                      | Radio-frequency (adjective) | r-f                |
| Electric field intensity           | $\boldsymbol{E}$            | Radio frequency (noun)      | r.f.               |
| Electromotive force                | e.m.f.                      | Reactance                   | $\boldsymbol{X}$   |
| Frequency                          | f                           | Resistance                  | R                  |
| Frequency modulation               | f.m.                        | Revolutions per minute      | r.p.m.             |
| Ground                             | gnd.                        | Root mean squarc            | r.m.s.             |
| Henry                              | 7                           | Self-inductance             | L                  |
| High-frequency (adjective)         |                             | Short wave                  | s.w.               |
| High frequency (noun)              |                             | Single cotton covered       | s.c.c.             |
| Impedance                          |                             | Single cotton enamel        | s.c.e.             |
| Inductance                         | _                           | Single pole, double throw   | s.p.d.t.           |
| Inductive reactance                |                             | Single pole, single throw   | s.p.s.t.           |
| Intermediate-frequency (adjective) |                             | Single silk covered         | s.s.c.             |
| Intermediate frequency (noun)      |                             | Tuned radio frequency       | t.r.f.             |
| Interrupted continuous waves       |                             | Ultra high frequency        | u.h.f.             |
| Kilocycle                          | _                           | Vacuum tube voltmeter       | v.t.v.m            |
| Kilohm                             | _                           | Volt                        |                    |
| Kilovolt                           |                             | Voltage                     |                    |
|                                    |                             | Volt-Ohm-Milliammeter       | •                  |
| Kilovolt ampere                    | _                           | Watt                        |                    |
| Kilowatt                           | . K.W                       | 1, 200                      |                    |

#### Common Logarithms

|    | <del></del> | 1    | _    |      |      | -    |      |      |      |      |    |
|----|-------------|------|------|------|------|------|------|------|------|------|----|
| N  | 0           | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | N  |
| 10 | 0000        | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 | 10 |
| 11 | 0414        | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755 | 11 |
| 12 | 0792        | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106 | 12 |
| 13 | 1139        | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430 | 13 |
| 14 | 1461        | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 | 14 |
| 15 | 1761        | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014 | 15 |
| 16 | 2041        | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279 | 16 |
| 17 | 2304        | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529 | 17 |
| 18 | 2553        | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765 | 18 |
| 19 | 2788        | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989 | 19 |
| 20 | 3010        | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201 | 20 |
| 21 | 3222        | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404 | 21 |
| 22 | 3424        | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598 | 22 |
| 23 | 3617        | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784 | 23 |
| 24 | 3802        | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962 | 24 |
| 25 | 3979        | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133 | 25 |
| 26 | 4150        | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298 | 26 |
| 27 | 4314        | 4330 | 4346 | 4362 | 4378 | 4393 | 4409 | 4425 | 4440 | 4456 | 27 |
| 28 | 4472        | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609 | 28 |
| 29 | 4624        | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 4757 | 29 |
| 30 | 4771        | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900 | 30 |
| 31 | 4914        | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038 | 31 |
| 32 | 5051        | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172 | 32 |
| 33 | 5185        | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302 | 33 |
| 34 | 5315        | 5328 | 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428 | 34 |
| 35 | 5441        | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 | 35 |
| 36 | 5563        | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670 | 36 |
| 37 | 5682        | 5694 | 5705 | 5717 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786 | 37 |
| 38 | 5798        | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899 | 38 |
| 39 | 5911        | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010 | 39 |
| 40 | 6021        | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117 | 40 |
| 41 | 6128        | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222 | 41 |
| 42 | 6232        | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325 | 42 |
| 43 | 6335        | 6345 | 6355 | 6365 | 6375 | 6385 | 6395 | 6405 | 6415 | 6425 | 43 |
| 44 | 6435        | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522 | 44 |
| 45 | 6532        | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618 | 45 |
| 46 | 6628        | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712 | 46 |
| 47 | 6721        | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803 | 47 |
| 48 | 6812        | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893 | 48 |
| 49 | 6902        | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981 | 49 |
| 50 | 6990        | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 | 50 |
| 51 | 7076        | 7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | 7143 | 7152 | 51 |
| 52 | 7160        | 7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | 7226 | 7235 | 52 |
| 53 | 7243        | 7251 | 7259 | 7267 | 7275 | 7284 | 7292 | 7300 | 7308 | 7316 | 53 |
| 54 | 7324        | 7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396 | 54 |
| N  | 0           | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | N  |

#### Common Logarithms (Continued)

| N    | 0            | 1             | 2    | 3                 | 4    | 5    | 6    | 7    | - 8   | 9    | N  |
|------|--------------|---------------|------|-------------------|------|------|------|------|-------|------|----|
| 55   | 7404         | 7412          | 7419 | 7427              | 7435 | 7443 | 7451 | 7459 | 7466  | 7474 | 55 |
| 56   | 7482         | 7490          | 7497 | 7505              | 7513 | 7520 | 7528 | 7536 | 7543  | 7551 | 56 |
| 57   | 7559         | 7566          | 7574 | 7582              | 7589 | 7597 | 7604 | 7612 | 7619  | 7627 | 57 |
| 58   | 7634         | 7642          | 7649 | 7657              | 7664 | 7672 | 7679 | 7686 | 7694  | 7701 | 58 |
| 59   | 7709         | 7716          | 7723 | 7731              | 7738 | 7745 | 7752 | 7760 | 7767  | 7774 | 59 |
| 60   | 7782         | 7789          | 7796 | 7803              | 7810 | 7818 | 7825 | 7832 | 7839  | 7846 | 60 |
| 61   | 7853         | 7860          | 7868 | 7875              | 7882 | 7889 | 7896 | 7903 | 7910  | 7917 | 61 |
| 62   | 7924         | 7931          | 7938 | 7945              | 7952 | 7959 | 7966 | 7973 | 7980  | 7987 | 62 |
| 63   | 7993         | 8000          | 8007 | 8014              | 8021 | 8028 | 8035 | 8041 | 8048  | 8055 | 63 |
| 64   | 8062         | 8069          | 8075 | 8082              | 8089 | 8096 | 8102 | 8109 | 8116  | 8122 | 64 |
| 65   | 8129         | 8136          | 8142 | 8149              | 8156 | 8162 | 8169 | 8176 | 8182  | 8189 | 65 |
| 00   | 0105         | 0000          | 0000 | 0015              | 0000 |      |      |      |       |      |    |
| 66   | 8195<br>8261 | 8202          | 8209 | 8215              | 8222 | 8228 | 8235 | 8241 | 8248  | 8254 | 66 |
| 67   | 8325         | 8267          | 8274 | 8280              | 8287 | 8293 | 8299 | 8306 | 8312  | 8319 | 67 |
| 68   |              | 8331          | 8338 | 8344              | 8351 | 8357 | 8363 | 8370 | 8376  | 8382 | 68 |
| 69   | 8388         | 8395          | 8401 | 8407              | 8414 | 8420 | 8426 | 8432 | 8439  | 8445 | 69 |
| 70   | 8451         | 8 <b>4</b> 57 | 8463 | 8470              | 8476 | 8482 | 8488 | 8494 | 8500. | 8506 | 70 |
| 71   | 8513         | 8519          | 8525 | 8531              | 8537 | 8543 | 8549 | 8555 | 8561  | 8567 | 71 |
| 72   | 8573         | 8579          | 8585 | 8591              | 8597 | 8603 | 8609 | 8615 | 8621  | 8627 | 72 |
| 73   | 8633         | 8639          | 8645 | 8651              | 8657 | 8663 | 8669 | 8675 | 8681  | 8686 | 73 |
| 74   | 8692         | 8698          | 8704 | 8710              | 8716 | 8722 | 8727 | 8733 | 8739  | 8745 | 74 |
| 75   | 8751         | 8756          | 8762 | 8768              | 8774 | 8779 | 8785 | 8791 | 8797  | 8802 | 75 |
| 76   | 8808         | 8814          | 8820 | 8825              | 8831 | 8837 | 8842 | 8848 | 8854  | 8859 | 76 |
| 77   | 8865         | 8871          | 8876 | <del>~</del> 8882 | 8887 | 8893 | 8899 | 8904 | 8910  | 8915 | 77 |
| 78   | 8921         | 8927          | 8932 | 8938              | 8943 | 8949 | 8954 | 8960 | 8965  | 8971 | 78 |
| 79   | 8976         | 8982          | 8987 | 8993              | 8998 | 9004 | 9009 | 9015 | 9020  | 9025 | 79 |
| 80   | 9031         | 9036          | 9042 | 9047              | 9053 | 9058 | 9063 | 9069 | 9074  | 9079 | 80 |
| 81   | 9085         | 9090          | 9096 | 9101              | 9106 | 9112 | 9117 | 9122 | 9128  | 9133 | 81 |
| 82   | 9138         | 9143          | 9149 | 9154              | 9159 | 9165 | 9170 | 9175 | 9180  | 9186 | 82 |
| 83   | 9191         | 9196          | 9201 | 9206              | 9212 | 9217 | 9222 | 9227 | 9232  | 9238 | 83 |
| 84   | 9243         | 9248          | 9253 | 9258              | 9263 | 9269 | 9274 | 9279 | 9284  | 9289 | 84 |
| 85   | 9294         | 9299          | 9304 | 9309              | 9315 | 9320 | 9325 | 9330 | 9335  | 9340 | 85 |
| - 86 | 9345         | 9350          | 9355 | 9360              | 9365 | 9370 | 9375 | 9380 | 9385  | 9390 | 86 |
| 87   | 9395         | 9400          | 9405 | 9410              | 9415 | 9420 | 9425 | 9430 | 9435  | 9440 | 87 |
| 88   | 9445         | 9450          | 9455 | 9460              | 9465 | 9469 | 9474 | 9479 | 9484  | 9489 | 88 |
| 89   | 9494         | 9499          | 9504 | 9509              | 9513 | 9518 | 9523 | 9528 | 9533  | 9538 | 89 |
| 90   | 9542         | 9547          | 9552 | 9557              | 9562 | 9566 | 9571 | 9576 | 9581  | 9586 | 90 |
| 91   | 9590         | 9595          | 9600 | 9605              | 9609 | 9614 | 9619 | 9624 | 9628  | 9633 | 91 |
| 92   | 9638         | 9643          | 9647 | 9652              | 9657 | 9661 | 9666 | 9671 | 9675  | 9680 | 92 |
| 93   | 9685         | 9689          | 9694 | 9699              | 9703 | 9708 | 9713 | 9717 | 9722  | 9727 | 93 |
| 94   | 9731         | 9736          | 9741 | 9745              | 9750 | 9754 | 9759 | 9763 | 9768  | 9773 | 94 |
| 95   | 9777         | 9782          | 9786 | 9791              | 9795 | 9800 | 9805 | 9809 | 9814  | 9818 | 95 |
| 96   | 9823         | 9827          | 9832 | 9836              | 9841 | 9845 | 9850 | 9854 | 9859  | 9863 | 96 |
| 97   | 9868         | 9872          | 9877 | 9881              | 9886 | 9890 | 9894 | 9899 | 9903  | 9908 | 97 |
| 98   | 9912         | 9917          | 9921 | 9926              | 9930 | 9934 | 9939 | 9943 | 9948  | 9952 | 98 |
| 99   | 9956         | 9961          | 9965 | 9969              | 9974 | 9978 | 9983 | 9987 | 9991  | 9996 | 99 |
| N    | 0            | 1             | 2    | 3                 | 4    | 5    | 6    | 7    | 8     | 9    | N  |

## Natural Sines, Cosines, and Tangents $0^{\circ}$ -14.9°

| Degs.      | Function   | 0.0°             | 0.1°             | 0.2°             | 0.3°             | 0.4°             | 0.5°             | 0.6°             | 0.7°             | 0.8°             | 0.9°   |
|------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|
| -          | sin        | 0.0000           | 0.0017           | 0.0035           | 0.0052           | 0.0070           | 0.0087           | 0.0105           | 0.0122           | 0.0140           | 0.0157 |
| 0          | cos        | 1.0000           | 1.0000           | 1,0000           | 1.0000           | 1.0000           | 1.0000           | 0.9999           | 0.9999           | 0.9999           | 0.9999 |
| ١          | tan        | 0.0000           | 0.0017           | 0.0035           | 0.0052           | 0.0070           | 0.0087           | 0.0105           | 0.0122           | 0.0140           | 0.0157 |
|            | sin        | 0.0175           | 0.0192           | 0.0209           | 0.0227           | 0.0244           | 0.0262           | 0.0279           | 0.0297           | 0.0314<br>0.9995 | 0.0332 |
| 1          | cos<br>tan | 0.9998<br>0.0175 | 0.9998<br>0.0192 | 0.9998<br>0.0209 | 0.9997<br>0.0227 | 0.9997<br>0.0244 | 0.9997<br>0.0262 | 0.9996<br>0.0279 | 0.9996<br>0.0297 | 0.9995           | 0.0332 |
|            | sin        | 0.0349           | 0.0366           | 0.0384           | 0.0401           | 0.0419           | 0.0436           | 0.0454           | 0.0471           | 0.0488           | 0.0506 |
| 2          | cos        | 0.9994           | 0.9993           | 0.9993           | 0.9992           | 0.9991           | 0.9990           | 0.9990           | 0.9989           | 0.9988           | 0.9987 |
| <b>-</b> . | tan        | 0.0349           | 0.0367           | 0.0384           | 0.0402           | 0.0419           | 0.0437           | 0.0454           | 0.0472           | 0.0489           | 0.0507 |
|            | sin        | 0.0523           | 0.0541           | 0.0558           | 0.0576           | 0.0593           | 0.0610           | 0.0628<br>0.9980 | 0.0645<br>0.9979 | 0.0663<br>0.9978 | 0.0680 |
| 3          | ços<br>tan | 0.9986<br>0.0524 | 0.9985           | 0.9984<br>0.0559 | 0.9983<br>0.0577 | 0.9982<br>0.0594 | 0.9981<br>0.0612 | 0.0629           | 0.0647           | 0.0664           | 0.0682 |
| Ì          | sin *      | 0.0698           | 0.0715           | 0.0732           | 0.0750           | 0.0767           | 0.0785           | 0.0802           | 0.0819           | 0.0837           | 0.0854 |
| 4          | cos        | 0.9976           | 0.9974           | 0.9973           | 0.9972           | 0.9971           | 0.9969           | 0.9968           | 0.9966           | 0.9965           | 0.9963 |
|            | tan        | 0.0699           | 0.0717           | 0.0734           | 0.0752           | 0.0769           | 0.0787           | 0.0805           | 0.0822           | 0.0840           | 0.085  |
| _          | sin        | 0.0872           | 0.0889           | 0.0906           | 0.0924           | 0.0941           | 0.0958           | 0.0976           | 0.0993           | 0.1011           | 0.102  |
| 5          | COS        | 0.9962           | 0.9960           | 0.9959           | 0.9957           | 0.9956           | 0.9954           | 0.9952           | 0.9951           | 0.9949           | 0.994  |
|            | tan        | 0.0875           | 0.0892           | 0.0910           | 0.0928           | 0.0945           | 0.0963           | 0.0981           | 0.0998           | 0.1016           | 0.103  |
|            | sin        | 0.1045           | 0.1063           | 0.1080           | 0.1097           | 0.1115           | 0.1132           | 0.1149           | 0.1167           | 0.1184           | 0.120  |
| 6          | cos        | 0.9945           | 0.9943           | 0.9942           | 0.9940           | 0.9938           | 0.9936           | 0.9934           | 0.9932           | 0.9930           | 0.992  |
|            | tan        | 0.1051           | 0.1069           | 0.1086           | 0.1104           | 0.1122           | 0.1139           | 0.1157           | 0.1175           | 0.1192           | 0.121  |
| 7          | sin        | 0.1219           | 0.1236           | 0.1253           | 0.1271           | 0.1288           | 0.1305<br>0.9914 | 0.1323<br>0.9912 | 0.1340<br>0.9910 | 0.1357<br>0.9907 | 0.137  |
| 7          | tan        | 0.9925           | 0.9923<br>0.1246 | 0.9921<br>0.1263 | 0.9919<br>0.1281 | 0.9917<br>0.1299 | 0.1317           | 0.1334           | 0.1352           | 0.1370           | 0.138  |
|            | sin        | 0.1392           | 0.1409           | 0.1426           | 0.1444           | 0.1461           | 0.1478           | 0.1495           | 0.1513           | 0.1530           | 0.154  |
| 8          | COS        | 0.9903           | 0.9900           | 0.9898           | 0.9895           | 0.9893           | 0.9890           | 0.9888           | 0.9885           | 0.9882           | 0.988  |
| •          | tan        | 0.1405           | 0.1423           | 0.1441           | 0.1459           | 0.1477           | 0.1495           | 0.1512           | 0.1530           | 0.1548           | 0.156  |
|            | sin        | 0.1564           | 0.1582           | 0.1599           | 0.1616           | 0.1633           | 0.1650           | 0.1668           | 0.1685           | 0.1702           | 0.171  |
| 9          | cos        | 0.9877           | 0.9874           | 0.9871           | 0.9869           | 0.9866           | 0.9863           | 0.9860           | 0.9857           | 0.9854           | 0.985  |
|            | tan        | 0.1584           | 0.1602           | 0.1620           | 0.1638           | 0.1655           | 0.1673           | 0.1691           | 0.1709           | 0.1727           |        |
| 40         | sin        | 0.1736           | 0.1754           | 0.1771           | 0.1788           | 0.1805           | 0.1822           | 0.1840           | 0.1857<br>0.9826 | 0.1874           | 0.189  |
| 10         | cos<br>tan | 0.9848           | 0.9845<br>0.1781 | 0.9842<br>0.1799 | 0.1817           | 0.1835           | 0.1853           | 0.1871           | 0.1890           | 0.1908           | 0.192  |
|            | sin        | 0.1908           | 0,1925           | 0.1942           | 0.1959           | 0.1977           | 0.1994           | 0.2011           | 0.2028           | 0.2045           | 0.20   |
| 11         | cos        | 0.9816           | 0.9813           | 0.9810           | 0.9806           | 0.9803           | 0.9799           | 0.9796           | 0.9792           | 0.9789           | 0.97   |
| ••         | tan        | 0.1944           | 0.1962           | 0.1980           | 0.1998           | 0.2016           | 0.2035           | 0.2053           | 0.2071           | 0.2089           | 0.21   |
|            | sin        | 0.2079           | 0.2096           | 0.2113           | 0.2130           | 0.2147           | 0.2164           | 0.2181           | 0.2198           | 0.2215           | 0.22   |
| 12         | cos        | 0.9781           | 0.9778           | 0.9774           | 0.9770           | 0.9767           | 0.9763           | 0.9759           | 0.9755           | 0.9751           | 0.97   |
|            | tan        | 0.2126           | 0.2144           | 0.2162           | 0.2180           | 0.2199           | 0.2217           | 0.2235           | 0.2254           | 0.2272           |        |
| 13         | sin        | 0.2250<br>0.9744 | 0.2267           | 0.2284           | 0.2300           | 0.2318           | 0.2334           | 0.2351           | 0.2368           | 0.2385           | 0.24   |
| 13         | cos<br>tan | 0.2309           | 0.2327           | 0.2345           | 0.2364           | 0.2382           | 0.2401           | 0.2419           | 0.2438           | 0.2456           | 0.24   |
|            | sin        | 0.2419           | 0.2436           | 0.2453           | 0.2470           | 0.2487           | 0.2504           | 0.2521           | 0.2538           | 0.2554           | 0.25   |
| 14         | cos        | 0.9703           | 0.9699           | 0.9694           | 0.9690           | 0.9686           | 0.9681           | 0.9677           | 0.9673           | 0.9668           | 0.96   |
|            | tan        | 0.2493           | 0.2512           | 0.2530           | 0.2549           | 0.2568           | 0.2586           | 0.2605           | 0.2623           | 0.2642           | 0.26   |
|            | Franchic   | 0/               | 6'               | 12'              | 18'              | 24'              | 30'              | 36'              | 42'              | 48'              | 54     |
| Degs.      | Function   | .0′              | 0.               | 12               | 10               | 24               | 30               | 30               |                  | 40               | "      |

## Natural Sines, Cosines, and Tangents—(Continued) 15°-29.9°

| Degs. | Function   | 0.0°             | 0.1°             | 0.2°             | 0.3°              | 0.4°             | 0.5°             | 0.6°             | 0.7°             | 0.8°             | 0.9°   |
|-------|------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|--------|
|       | sin        | 0.2588           | 0.2605           | 0.2622           | 0.2639            | 0.2656           | 0.2672           | 0.2689           | 0.2706           | 0.2723           | 0.2740 |
| 15    | cos        | 0.9659           | 0.9655           | 0.9650           | 0.9646            | 0.9641           | 0.9636           | 0.9632           | 0.9627           | 0.9622           | 0.9617 |
| .0    | tan        | 0.2679           | 0.2698           | 0.2717           | 0.2736            | 0.2754           | 0.2773           | 0.2792           | 0.2811           | 0.2830           | 0.2849 |
| 46    | 'sin       | 0.2756           | 0.2773           | 0.2790           | 0.2807<br>0.9598  | 0.2823<br>0.9593 | 0.2840<br>0.9588 | 0.2857<br>0.9583 | 0.2874<br>0.9578 | 0.2890<br>0.9573 | 0.290  |
| 16    | cos<br>tan | 0.9613<br>0.2867 | 0.9608<br>0.2886 | 0.9603<br>0.2905 | 0.9598            | 0.9593           | 0.2962           | 0.9363           | 0.3000           | 0.3019           | 0.303  |
|       | sin        | 0.2924           | 0.2940           | 0.2957           | 0.2974            | 0.2990           | 0.3007           | 0.3024           | 0.3040           | 0.3057           | 0.307  |
| 17    | cos        | 0.9563           | 0.9558           | 0.9553           | 0.9548            | 0.9542           | 0.9537           | 0.9532           | 0.9527           | 0.9521           | 0.951  |
|       | tan        | 0.3057           | 0.3076           | 0.3096           | 0.3115            | 0.3134           | 0.3153           | 0.3172           | 0.3191           | 0.3211           | 0.323  |
|       | sin        | 0.3090           | 0.3107           | 0.3123           | 0.3140            | 0.3156           | 0.3173           | 0.3190           | 0.3206           | 0.3223           | 0.323  |
| 18    | cos        | 0.9511           | 0.9505<br>0.3269 | 0.9500<br>0.3288 | 0.9494<br>-0.3307 | 0.9489<br>0.3327 | 0.9483<br>0.3346 | 0.9478<br>0.3365 | 0.9472<br>0.3385 | 0.9466<br>0.3404 | 0.946  |
|       | tan        | 0.3249           |                  |                  |                   |                  |                  |                  |                  |                  |        |
| 40    | sin        | 0.3256           | 0.3272<br>0.9449 | 0.3289<br>0.9444 | 0.3305<br>0.9438  | 0.3322           | 0.3338<br>0.9426 | 0.3355<br>0.9421 | 0.3371<br>0.9415 | 0.3387<br>0.9409 | 0.340  |
| 19    | cos<br>tan | 0.9455           | 0.3463           | 0.3482           | 0.9438            | 0.9432           | 0.9426           | 0.9421           | 0.3581           | 0.3600           | 0.362  |
|       |            |                  |                  |                  | 0.2460            | 0.3486           | 0.3502           | 0.2510           | 0.3535           | 0,3551           | 0.356  |
| 20    | sin<br>cos | 0.3420           | 0.3437           | 0.3453<br>0.9385 | 0.3469<br>0.9379  | 0.9373           | 0.3502           | 0.3518           | 0.3333           | 0.3331           | 0.330  |
| 20    | tan        | 0.3640           | 0.3659           | 0.3679           | 0.3699            | 0.3719           | 0.3739           | 0.3759           | 0.3779           | 0.3799           | 0 381  |
|       | sin        | .3584            | 0.3600           | 0.3616           | 0.3633            | 0.3649           | 0.3665           | 0.3681           | 0.3697           | 0.3714           | 0.373  |
| 21    | cos        | 0.9336           | 0.9330           | 0.9323           | 0.9317            | 0.9311           | 0.9304           | 0.9298           | 0.9291           | 0.9285           | 0.927  |
|       | tan        | 0.3839           | 0.3859           | 0.3879           | 0.3899            | 0.3919           | 0.3939           | 0.3959           | 0.3979           | 0.4000           | 0.402  |
|       | sin        | 0.3746           | 0.3762           | 0.3778           | 0.3795            | 0.3811           | 0.3827           | 0.3843           | 0.3859           | 0.3875           | 0.389  |
| 22    | cos        | 0.9272<br>0.4040 | 0.9265<br>0.4061 | 0.9259<br>0.4081 | 0.9252<br>0.4101  | 0.9245<br>0.4122 | 0.9239           | 0.9232           | 0.9225           | 0.9219           | 0.921  |
|       | tan        |                  |                  |                  |                   |                  |                  |                  |                  |                  |        |
| 00    | sin        | 0.3907           | 0.3923           | 0.3939           | 0.3955            | 0.3971           | 0.3987           | 0.4003           | 0.4019           | 0.4035           | 0.405  |
| 23    | cos<br>tan | 0.9205<br>0.4245 | 0.9198<br>0.4265 | 0.9191<br>0.4286 | 0.9184            | 0.9178<br>0.4327 | 0.9171<br>0.4348 | 0.9164           | 0.9157<br>0.4390 | 0.9150           | 0.914  |
|       |            |                  |                  |                  |                   | <u> </u>         |                  |                  |                  |                  |        |
| 0.4   | sin        | 0.4067           | 0.4083           | 0.4099           | 0.4115<br>0.9114  | 0.4131<br>0.9107 | 0.4147           | 0.4163           | 0.4179<br>0.9085 | 0.4195<br>0.9078 | 0.421  |
| 24    | cos<br>tan | 0.9135           | 0.9128<br>0.4473 | 0.9121           | 0.9114            | 0.4536           | 0.4557           | 0.4578           | 0.4599           | 0.4621           | 0.464  |
|       |            |                  |                  | 0.4258           | 0.4274            | 0.4289           | 0.4305           | 0.4321           | 0.4337           | 0.4352           | 0.436  |
| 25    | sin        | 0.4226           | 0.4242           | 0.9048           | 0.9041            | 0.9033           | 0.9026           | 0.4321           | 0.9011           | 0.9003           | 0.899  |
| 20    | tan b      | 0.4663           | 0.4684           | 0.4706           | 0.4727            | 0.4748           | 0.4770           | 0.4791           | 0.4813           | 0.4834           | 0.485  |
|       | sin        | 0.4384           | 0.4399           | 0.4415           | 0.4431            | 0.4446           | 0.4462           | 0.4478           | 0.4493           | 0.4509           | 0.45   |
| 26    | cos        | 0.8988           | 0.8980           | 0.8973           | 0.8965            | 0.8957           | 0.8949           | 0.8942           | 0.8934           | 0.8926           | 0.89   |
|       | tan        | 0.4877           | 0.4899           | 0.4921           | 0.4942            | 0.4964           | 0.4986           | 0.5008           | 0.5029           | 0.5051           | 0.50   |
|       | sin        | 0.4540           | 0.4555           | 0.4571           | 0.4586            | 0.4602           | 0.4617           | 0.4633           | 0.4648           | 0.4664           | 0.467  |
| 27    | cos        | 0.8910           | 0.8902           | 0.8894           | 0.8886            | 0.8878           | 0.8870           | 0.8862           | 0.8854           | 0.8846           | 0.88   |
|       | tan        | 0.5095           | 0.5117           | 0.5139           | 0.5161            | 0.5184           | 0.5206           | 0.5228           | 0.5250           | 0.5272           | 0.52   |
| 28    | sin        | 0.4695           | 0.4710           | 0.4726           | 0.4741            | 0.4756           | 0.4772           | 0.4787           | 0.4802           | 0.4818           | 0.48   |
| 20    | tan        | 0.8829           | 0.8821           | 0.8813           | 0.8805            | 0.8796           | 0.8788           | 0.8780           | 0.8771           | 0.5498           | 0.55   |
|       |            |                  |                  |                  |                   |                  |                  |                  |                  |                  |        |
| 29    | sin        | 0.4848           | 0.4863<br>0.8738 | 0.4879           | 0.4894            | 0.4909           | 0.4924           | 0.4939           | 0.4955<br>0.8686 | 0.4970           | 0.49   |
| 23    | tan        | 0.5543           | 0.5566           | 0.5589           | 0.5612            | 0.5635           | 0.5658           | 0.5681           | 0.5704           | 0.5727           | 0.57   |
|       | -          |                  | -                |                  |                   |                  |                  | -                |                  |                  |        |
| Degs. | Function   | 0'               | 6'               | 12'              | 18'               | 24'              | 30'              | 36'              | 42'              | 48'              | 54     |

#### Natural Sines, Cosines, and Tangents—(Continued) 30°-44.9°

| Degs. | Function     | 0.0°             | 0.1°             | 0.2°             | 0.3°             | 0.4°             | 0.5°             | 0.6°             | 0.7°             | 0.8°             | 0.9°           |
|-------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|
|       |              |                  |                  |                  | 0.0              |                  | 0.0              |                  | 0.7              |                  |                |
| ·00   | sin          | 0.5000           | 0.5015           | 0.5030           | 0.5045           | 0.5060           | 0.5075           | 0.5090           | 0.5105           | 0.5120           | 0.513          |
| 30    | cos          | 0.8660           | 0.8652           | 0.8643           | 0.8634           | 0.8625           | 0.8616           | 0.8607           | 0.8599           | 0.8590           | 0.8581         |
|       | tan          | 0.5774           | 0.5797           | 0.5820           | 0.5844           | 0.5867           | 0.5890           | 0.5914           | 0.5938           | 0.5961           | 0.598          |
| 31    | sin          | 0.5150           | 0.5165           | 0.5180           | 0.5195           | 0.5210           | 0.5225           | 0.5240           | 0.5255           | 0.5270           | 0.5284         |
| 31    | cos -<br>tan | 0.8572<br>0.6009 | 0.8563<br>0.6032 | 0.8554<br>0.6056 | 0.8545<br>0.6080 | 0.8536           | 0.8526<br>0.6128 | 0.8517<br>0.6152 | 0.8508<br>0.6176 | 0.8499           | 0.849          |
|       | sin          | 0.5299           | 0.5314           | 0.5329           | 0.5344           | 0.5358           | 0.5373           | 0.5388           | 0.5402           | 0.5417           | 0.543          |
| 32    | cos          | 0.8480           | 0.8471           | 0.8462           | 0.8453           | 0.8443           | 0.8434           | 0.8425           | 0.8415           | 0.8406           | 0.839          |
|       | tan          | 0.6249           | 0.6273           | 0.6297           | 0.6322           | 0.6346           | 0.6371           | 0.6395           | 0.6420           | 0.6445           | 0.646          |
| 00    | sin≍         | 0.5446           | 0.5461           | 0.5476           | 0.5490           | 0.5505           | 0.5519           | 0.5534           | 0.5548           | 0.5563           | 0.557          |
| 33    | cos          | 0.8387           | 0.8377           | 0.8368           | 0.8358           | 0.8348           | 0 8339           | 0.8329           | 0.8320           | 0.8310           | 0.830          |
|       | tan          | 0.6494           | 0.6519           | 0.6544           | 0.6569           | 0.6594           | 0.6619           | 0.6644           | 0.6669           | 0.6694           | 0.672          |
| 34    | sin<br>cos   | 0.5592<br>0.8290 | 0.5606<br>0.8281 | 0.5621<br>0.8271 | 0.5635<br>0.8261 | 0.5650<br>0.8251 | 0.5664<br>0.8241 | 0.5678<br>0.8231 | 0.5693<br>0.8221 | 0.5707<br>0.8211 | 0.572<br>0.820 |
|       | tan          | 0.6745           | 0.6771           | 0.6796           | 0.6822           | 0.6231           | 0.6873           | 0.6899           | 0.6924           | 0.6950           | 0.620          |
|       |              |                  | 4                |                  |                  |                  |                  |                  |                  |                  |                |
| 35    | sin<br>cos   | 0.5736<br>0.8192 | 0.5750           | 0.5764           | 0.5779           | 0.5793           | 0.5807           | 0.5821           | 0.5835           | 0.5850           | 0.586          |
| JJ (  | tan          | 0.8192           | 0.8181<br>0.7028 | 0.8171<br>0.7054 | 0.8161<br>0.7080 | 0.8151<br>0.7107 | 0.8141<br>0.7133 | 0.8131<br>0.7159 | 0.8121<br>0.7186 | 0.8111<br>0.7212 | 0.810          |
|       | -:           |                  |                  |                  |                  |                  |                  |                  |                  |                  |                |
| 36    | sin<br>cos   | 0.5878           | 0.5892<br>0.8080 | 0.5906<br>0.8070 | 0.5920<br>0.8059 | 0.5934<br>0.8049 | 0.5948<br>0.8039 | 0.5962<br>0.8028 | 0.5976<br>0.8018 | 0.5990           | 0.600          |
| 30    | tan          | 0.7265           | 0.7292           | 0.7319           | 0.7346           | 0.7373           | 0.7400           | 0.7427           | 0.7454           | 0.7481           | 0.750          |
|       | sin          | 0.6018           | 0.6032           | 0.6046           | 0.6060           | 0.6074           | 0.6088           | 0.6101           | 0.6115           | 0.6129           | 0.614          |
| 37    | cos          | 0.7986           | 0.7976           | 0.7965           | 0.7955           | 0.7944           | 0.7934           | 0.7923           | 0.7912           | 0.7902           | 0.789          |
|       | tan          | 0.7536           | 0.7563           | 0.7590           | 0.7618           | 0.7646           | 0.7673           | 0.7701           | 0.7729           | 0.7757           | 0.778          |
| 00    | sin          | 0.6157           | 0.6170           | 0.6184           | 0.6198           | 0.6211           | 0.6225           | 0.6239           | 0.6252           | 0.6266           | 0.628          |
| 38    | cos          | 0.7880           | 0.7869           | 0.7859           | 0.7848           | 0.7837           | 0.7826           | 0.7815           | 0.7804           | 0.7793           | 0.778          |
|       | tan          | 0.7813           | 0.7841           | 0.7869           | 0.7898           | 0.7926           | 0.7954           | 0.7983           | 0.8012           | 0.8040           | 0.806          |
| 39    | sin          | 0.6293           | 0.6307           | 0.6320           | 0.6334           | 0.6347           | 0.6361           | 0.6374           | 0.6388           | 0.6401           | 0.641          |
| 33    | tan          | 0.7771<br>0.8098 | 0.7760<br>0.8127 | 0.7749<br>0.8156 | 0.7738<br>0.8185 | 0.7727<br>0.8214 | 0.7716<br>0.8243 | 0.7705<br>0.8273 | 0.7694<br>0.8302 | 0.7683<br>0.8332 | 0.767          |
|       | •            |                  |                  |                  |                  |                  |                  |                  |                  |                  |                |
| 40    | sin<br>cos   | 0.6428<br>0.7660 | 0.6441<br>0.7649 | 0.6455<br>0.7638 | 0.6468<br>0.7627 | 0.6481<br>0.7615 | 0.6494<br>0.7604 | 0.6508           | 0.6521           | 0.6534           | 0.654          |
| 40    | tan          | 0.8391           | 0.7649           | 0.7638           | 0.7627           | 0.8511           | 0.7504           | 0.7593<br>0.8571 | 0.7581<br>0.8601 | 0.7570<br>0.8632 | 0.755          |
|       | sin          | 0.6561           | 0.6574           | 0.6587           | 0.6600           | 0.6613           | 0.6626           | 0.6639           | 0.6652           | 0.6665           | 0.667          |
| 41    | cos          | 0.7547           | 0.7536           | 0.7524           | 0.7513           | 0.7501           | 0.7490           | 0.7478           | 0.7466           | 0.7455           | 0.744          |
|       | tan          | 0.8693           | 0.8724           | 0.8754           | 0.8785           | 0.8816           | 0.8847           | 0.8878           | 0.8910           | 0.8941           | 0.897          |
|       | sin          | 0.6691           | 0.6704           | 0.6717           | 0.6730           | 0.6743           | 0.6756           | 0.6769           | 0.6782           | 0.6794           | 0.680          |
| 42    | cos          | 0.7431           | 0.7420           | 0.7408           | 0.7396           | 0.7385           | 0.7373           | 0.7361           | 0.7349           | 0.7337           | 0.732          |
|       | tan          | 0.9004           | 0.9036           | 0.9067           | 0.9099           | 0.9131           | 0.9163           | 0.9195           | 0.9228           | 0.9260           | 0.929          |
| 43    | sin<br>cos   | 0.6820           | 0.6833           | 0.6845           | 0.6858           | 0.6871           | 0.6884           | 0.6896           | 0.6909           | 0.6921           | 0.693          |
| 40    | tan          | 0.7314<br>0.9325 | 0.7302<br>0.9358 | 0.7290           | 0.7278<br>0.9424 | 0.7266<br>0.9457 | 0.7254<br>0.9490 | 0.7242<br>0.9523 | 0.7230<br>0.9556 | 0.7218<br>0.9590 | 0.720          |
|       | sin          |                  | 0.6959           |                  |                  | 0.6997           |                  |                  |                  |                  |                |
| 44    | COS          | 0.6947<br>0.7193 | 0.6959           | 0.6972<br>0.7169 | 0.6984<br>0.7157 | 0.6997           | 0.7009<br>0.7133 | 0.7022<br>0.7120 | 0.7034<br>0.7108 | 0.7046<br>0.7096 | 0.705          |
| 7-7   | tan          | 0.9657           | 0.9691           | 0.9725           | 0.9759           | 0.9793           | 0.9827           | 0.9861           | 0.9896           | 0.9930           | 0.996          |
|       |              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                |
| Degs. | Function     | 0'               | 6′               | 12′              | 18′              | 24′              | 30′              | 36'              | 42′              | 48′              | 54'            |

#### Natural Sines, Cosines, and Tangents—(Continued) 45°-59.9°

| Degs. | Function | 0.0°   | 0.1°   | 0.2°   | 0.3°   | 0.4°   | 0.5°   | 0.6°                | 0.7°   | 0.8°   | 0.9°   |
|-------|----------|--------|--------|--------|--------|--------|--------|---------------------|--------|--------|--------|
| 45    | sin      | 0.7071 | 0.7083 | 0.7096 | 0.7108 | 0.7120 | 0.7133 | 0.7145              | 0.7157 | 0.7169 | 0.7181 |
|       | cos      | 0.7071 | 0.7059 | 0.7046 | 0.7034 | 0.7022 | 0.7009 | 0.6997              | 0.6984 | 0.6972 | 0.6959 |
|       | tan      | 1.0000 | 1.0035 | 1.0070 | 1.0105 | 1.0141 | 1.0176 | 1.0212              | 1.0247 | 1.0283 | 1.0319 |
| 46    | sin      | 0.7193 | 0.7206 | 0.7218 | 0.7230 | 0.7242 | 0.7254 | 0.7266              | 0.7278 | 0.7290 | 0.7302 |
|       | cos      | 0.6947 | 0.6934 | 0.6921 | 0.6909 | 0.6896 | 0.6884 | 0.6871              | 0.6858 | 0.6845 | 0.6833 |
|       | 'tan,    | 1.0355 | 1.0392 | 1.0428 | 1.0464 | 1.0501 | 1.0538 | 1.0575              | 1.0612 | 1.0649 | 1.0686 |
| 47    | sin      | 0.7314 | 0.7325 | 0.7337 | 0.7349 | 0.7361 | 0.7373 | 0.7385              | 0.7396 | 0.7408 | 0.7420 |
|       | cos      | 0.6820 | 0.6807 | 0.6794 | 0.6782 | 0.6769 | 0.6756 | 0.6743              | 0.6730 | 0.6717 | 0.6704 |
|       | tan      | 1.0724 | 1.0761 | 1.0799 | 1.0837 | 1.0875 | 1.0913 | 1.0951              | 1.0990 | 1.1028 | 1.1067 |
| 48    | sin      | 0.7431 | 0.7443 | 0.7455 | 0.7466 | 0.7478 | 0.7490 | 0.7501              | 0.7513 | 0.7524 | 0.7536 |
|       | = cos    | 0.6691 | 0.6678 | 0.6665 | 0.6652 | 0.6639 | 0.6626 | 0.6613              | 0.6600 | 0.6587 | 0.6574 |
|       | tan      | 1.1106 | 1.1145 | 1.1184 | 1.1224 | 1.1263 | 1.1303 | 1.1343              | 1.1383 | 1.1423 | 1.1463 |
| 49    | sin      | 0.7547 | 0.7559 | 0.7570 | 0.7581 | 0.7593 | 0.7604 | 0.7615              | 0.7627 | 0.7638 | 0.7649 |
|       | cos      | 0.6561 | 0.6547 | 0.6534 | 0.6521 | 0.6508 | 0.6494 | 0.6481              | 0.6468 | 0.6455 | 0.6441 |
|       | tan      | 1.4504 | 1.1544 | 1.1585 | 1.1626 | 1.1667 | 1.1708 | 1.1750              | 1.1792 | 1.1833 | 1.1875 |
| 50    | sin      | 0.7660 | 0.7672 | 0.7683 | 0.7694 | 0.7705 | 0.7716 | 0.7727              | 0.7738 | 0.7749 | 0.7760 |
|       | cos      | 0.6428 | 0.6414 | 0.6401 | 0.6388 | 0.6374 | 0.6361 | 0.6347              | 0.6334 | 0.6320 | 0.6307 |
|       | tan      | 1.1918 | 1.1960 | 1.2002 | 1.2045 | 1.2088 | 1.2131 | 1.2174              | 1.2218 | 1.2261 | 1.2305 |
| 51    | sin '    | 0.7771 | 0.7782 | 0.7793 | 0.7804 | 0.7815 | 0.7826 | 0.7837              | 0.7848 | 0.7859 | 0.7869 |
|       | cos      | 0.6293 | 0.6280 | 0.6266 | 0.6252 | 0.6239 | 0.6225 | 0.6211              | 0.6198 | 0.6184 | 0.6170 |
|       | tan      | 1.2349 | 1.2393 | 1.2437 | 1.2482 | 1.2527 | 1.2572 | 1.2617              | 1.2662 | 1.2708 | 1.2753 |
| 52    | sin      | 0.7880 | 0.7891 | 0.7902 | 0.7912 | 0.7923 | 0.7934 | 0.7944              | 0.7955 | 0.7965 | 0.7976 |
|       | cos      | 0.6157 | 0.6143 | 0.6129 | 0.6115 | 0.6101 | 0.6088 | 0.6074              | 0.6060 | 0.6046 | 0.6032 |
|       | tan      | 1.2799 | 1.2846 | 1.2892 | 1.2938 | 1.2985 | 1.3032 | 1.3079              | 1.3127 | 1.3175 | 1.3222 |
| 53    | sin      | 0.7986 | 0.7997 | 0.8007 | 0.8018 | 0.8028 | 0.8039 | 0.8049              | 0.8059 | 0.8070 | 0.8080 |
|       | cos      | 0.6018 | 0.6004 | 0.5990 | 0.5976 | 0.5962 | 0.5948 | 0.5 <del>9</del> 34 | 0.5920 | 0.5906 | 0.5892 |
|       | tan      | 1.3270 | 1.3319 | 1.3367 | 1.3416 | 1.3465 | 1.3514 | 1.3564              | 1.3613 | 1.3663 | 1.3713 |
| 54    | sin      | 0.8090 | 0.8100 | 0.8111 | 0.8121 | 0.8131 | 0.8141 | 0.8151              | 0.8161 | 0.8171 | 0.8181 |
|       | cos      | 0.5878 | 0.5864 | 0.5850 | 0.5835 | 0.5821 | 0.5807 | 0.5793              | 0.5779 | 0.5764 | 0.5750 |
|       | tan      | 1.3764 | 1.3814 | 1.3865 | 1.3916 | 1.3968 | 1.4019 | 1.4071              | 1.4124 | 1.4176 | 1.4229 |
| 55    | sin      | 0.8192 | 0.8202 | 0.8211 | 0.8221 | 0.8231 | 0.8241 | 0.8251              | 0.8261 | 0.8271 | 0.8281 |
|       | cos      | 0.5736 | 0.5721 | 0.5707 | 0.5693 | 0.5678 | 0.5664 | 0.5650              | 0.5635 | 0.5621 | 0.5606 |
|       | tan      | 1.4281 | 1.4335 | 1.4388 | 1.4442 | 1.4496 | 1.4550 | 1.4605              | 1.4659 | 1.4715 | 1.4770 |
| 56    | sin      | 0.8290 | 0.8300 | 0.8310 | 0.8320 | 0.8329 | 0.8339 | 0.8348              | 0.8358 | 0.8368 | 0.8377 |
|       | cos      | 0.5592 | 0.5577 | 0.5563 | 0.5548 | 0.5534 | 0.5519 | 0.5505              | 0.5490 | 0.5476 | 0.5461 |
|       | tan      | 1.4826 | 1.4882 | 1.4938 | 1.4994 | 1.5051 | 1.5108 | 1.5166              | 1.5224 | 1.5282 | 1.5340 |
| 57    | sin      | 0.8387 | 0.8396 | 0.8406 | 0.8415 | 0.8425 | 0.8434 | 0.8443              | 0.8453 | 0.8462 | 0.8471 |
|       | cos      | 0.5446 | 0.5432 | 0.5417 | 0.5402 | 0.5388 | 0.5373 | 0.5358              | 0.5344 | 0.5329 | 0.5314 |
|       | tan      | 1.5399 | 1.5458 | 1.5517 | 1.5577 | 1.5637 | 1.5697 | 1.5757              | 1.5818 | 1.5880 | 1.5941 |
| 58    | sin      | 0.8480 | 0.8490 | 0.8499 | 0.8508 | 0.8517 | 0.8526 | 0.8536              | 0.8545 | 0.8554 | 0.8563 |
|       | cos      | 0.5299 | 0.5284 | 0.5270 | 0.5255 | 0.5240 | 0.5225 | 0.5210              | 0.5195 | 0.5180 | 0.5165 |
|       | tan      | 1.6003 | 1.6066 | 1.6128 | 1.6191 | 1.6255 | 1.6319 | 1.6383              | 1.6447 | 1.6512 | 1.6577 |
| 59    | sin      | 0.8572 | 0.8581 | 0.8590 | 0.8599 | 0.8607 | 0.8616 | 0.8625              | 0.8634 | 0.8643 | 0.8652 |
|       | cos      | 0.5150 | 0.5135 | 0.5120 | 0.5105 | 0.5090 | 0.5075 | 0.5060              | 0.5045 | 0.5030 | 0.5015 |
|       | tan      | 1.6643 | 1.6709 | 1.6775 | 1.6842 | 1.6909 | 1.6977 | 1.7045              | 1.7113 | 1.7182 | 1.725  |
| Degs. | Function | 0'     | 6′     | 12'    | 18′    | 24'    | 30'    | 36′                 | 42'    | 48′    | 54'    |

## Natural Sines, Cosines, and Tangents—(Continued) 60°-74.9°

| Degs. | Function          | 0.0°                       | 0.1°                                 | 0.2°                                 | 0.3°                                 | 0.4°                                 | 0.5°                                 | 0.6°                                 | 0.7°                                 | 0.8°                                 | 0.9°                                 |
|-------|-------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 60    | sin               | 0.8660                     | 0.8669                               | 0.8678                               | 0.8686                               | 0.8695                               | 0.8704                               | 0.8712                               | 0.8721                               | 0.8729                               | 0.8738                               |
|       | cos               | 0.5000                     | 0.4985                               | 0.4970                               | 0.4955                               | 0.4939                               | 0.4924                               | 0.4909                               | 0.4894                               | 0.4879                               | 0.4863                               |
|       | tan               | 1.7321                     | 1.7391                               | 1.7461                               | 1.7532                               | 1.7603                               | 1.7675                               | 1.7747                               | 1.7820                               | 1.7893                               | 1.7966                               |
| 61    | sin               | 0.8746                     | 0.8755                               | 0.8763                               | 0.8771                               | 0.8780                               | 0.8788                               | 0.8796                               | 0.8805                               | 0.8813                               | 0.8821                               |
|       | cos               | 0.4848                     | 0.4833                               | 0.4818                               | 0.4802                               | 0.4787                               | 0.4772                               | 0.4756                               | 0.4741                               | 0.4726                               | 0.4710                               |
|       | tan               | 1.8040                     | 1.8115                               | 1.8190                               | 1.8265                               | 1.8341                               | 1.8418                               | 1.8495                               | 1.8572                               | 1.8650                               | 1.8728                               |
| 62    | sin               | 0.8829                     | 0.8838                               | 0.8846                               | 0.8854                               | 0.8862                               | 0.8870                               | 0.8878                               | 0.8886                               | 0.8894                               | 0.8902                               |
|       | ⊯ cos             | 0.4695                     | 0.4679                               | 0.4664                               | 0.4648                               | 0.4633                               | 0.4617                               | 0.4602                               | 0.4586                               | 0.4571                               | 0.4555                               |
|       | tan               | 1.8807                     | 1.8887                               | 1.8967                               | 1.9047                               | 1.9128                               | 1.9210                               | 1.9292                               | 1.9375                               | 1.9458                               | 1.9542                               |
| 63    | sin               | 0.8910                     | 0.8918                               | 0.8926                               | 0.8934                               | 0.8942                               | 0.8949                               | 0.8957                               | 0.8965                               | 0.8973                               | 0.8980                               |
|       | cos               | 0.4540                     | 0.4524                               | 0.4509                               | 0.4493                               | 0.4478                               | 0.4462                               | 0.4446                               | 0.4431                               | 0.4415                               | 0.4399                               |
|       | tan               | 1.9626                     | 1.9711                               | 1.9797                               | 1.9883                               | 1.9970                               | 2.0057                               | 2.0145                               | 2.0233                               | 2.0323                               | 2.0413                               |
| 64    | sin               | 0.8988                     | 0.8996                               | 0.9003                               | 0.9011                               | 0.9018                               | 0.9026                               | 0.9033                               | 0.9041                               | 0.9048                               | 0.9056                               |
|       | cos               | 0.4384                     | 0.4368                               | 0.4352                               | 0.4337                               | 0.4321                               | 0.4305                               | 0.4289                               | 0.4274                               | 0.4258                               | 0.4242                               |
|       | tan               | 2.0503                     | 2.0594                               | 2.0686                               | 2.0778                               | 2.0872                               | 2.0965                               | 2.1060                               | 2.1155                               | 2.1251                               | 2.1348                               |
| 65    | sin               | 0.9063                     | 0.9070                               | 0.9078                               | 0.9085                               | 0.9092                               | 0.9100                               | 0.9107                               | 0.9114                               | 0.9121                               | 0.9128                               |
|       | cos               | 0.4226                     | 0.4210                               | 0.4195                               | 0.4179                               | 0.4163                               | 0.4147                               | 0.4131                               | 0.4115                               | 0.4099                               | 0.4083                               |
|       | tan               | 2.1445                     | 2.1543                               | 2.1642                               | 2.1742                               | 2.1842                               | 2.1943                               | 2.2045                               | 2.2148                               | 2.2251                               | 2.2355                               |
| 66    | sin               | 0.9135                     | 0.9143                               | 0.9150                               | 0.9157                               | 0.9164                               | 0.9171                               | 0.9178                               | 0.9184                               | 0.9191                               | 0.9198                               |
|       | cos               | 0.4067                     | 0.4051                               | 0.4035                               | 0.4019                               | 0.4003                               | 0.3987                               | 0.3971                               | 0.3955                               | 0.3939                               | 0.3923                               |
|       | tan               | 2.2460                     | 2.2566                               | 2.2673                               | 2.2781                               | 2.2889                               | 2.2998                               | 2.3109                               | 2.3220                               | 2.3332                               | 2.3445                               |
| 67    | sin               | 0.9205                     | 0.9212                               | 0.9219                               | 0.9225                               | 0.9232                               | 0.9239                               | 0.9245                               | 0.9252                               | 0.9259                               | 09265                                |
|       | cos               | 0.3907                     | 0.3891                               | 0.3875                               | 0.3859                               | 0.3843                               | 0.3827                               | 0.3811                               | 0.3795                               | 0.3778                               | 0.3762                               |
|       | tan               | 2.3559                     | 2.3673                               | 2.3789                               | 2.3906                               | 2.4023                               | 2.4142                               | 2.4262                               | 2.4383                               | 2.4504                               | 2.4627                               |
| 68    | sin<br>cos<br>tan | 0.9272<br>0.3746<br>2.4751 | 0.9278<br>0.3730<br>2.4876           | 0.9285<br>0.3714<br>2.5002           | 0.9291<br>0.3697<br>2.5129           | 0.9298<br>0.3681<br>2.5257           | 0.9304<br>0.3665<br>2.5386           | 0.9311<br>0.3649<br>2.5517           | 0.9317<br>0.3633<br>2.5649           | 0.9323<br>0.3616<br>2.5782           | 0.9330<br>0.3600<br>2.5916           |
| 69    | sin               | 0.9336                     | 0.9342                               | 0.9348                               | 0.9354                               | 0.9361                               | 0.9367                               | 0.9373                               | 0.9379                               | 0.9385                               | 0.9391                               |
|       | cos               | 0.3584                     | 0.3567                               | 0.3551                               | 0.3535                               | 0.3518                               | 0.3502                               | 0.3486                               | 0.3469                               | 0.3453                               | 0.3437                               |
|       | tan               | 2.6051                     | 2.6187                               | 2.6325                               | 2.6464                               | 2.6605                               | 2.6746                               | 2.6889                               | 2.7034                               | 2.7179                               | 2.7326                               |
| 70    | sin<br>cos        | 0.9397<br>0.3420<br>2.7475 | 0.9403<br>0.3404<br>2.7625           | 0.9409<br>0.3387<br>2.7776           | 0.9415<br>0.3371<br>2.7929           | 0.9421<br>0.3355<br>2.8083           | 0.9426<br>0.3338<br>2.8239           | 0.9432<br>0.3322<br>2.8397           | 0.9438<br>0.3305                     | 0.9444<br>0.3289<br>2.8716           | 0.9449<br>0.3272<br>2.8878           |
| 71    | sin               | 0.9455                     | 0.9461                               | 0.9466                               | 0.9472                               | 0.9478                               | 0.9483                               | 0.9489                               | 0.9494                               | 0.9500                               | 0.9505                               |
|       | cos               | 0.3256                     | 0.3239                               | 0.3223                               | 0.3206                               | 0.3190                               | 0.3173                               | 0.3156                               | 0.3140                               | 0.3123                               | 0.3107                               |
| 72    | sin<br>cos<br>tan | 0.9511<br>0.3090<br>3.0777 | 2.9208<br>0.9516<br>0.3074<br>3.0961 | 2.9375<br>0.9521<br>0.3057<br>3.1146 | 2.9544<br>0.9527<br>0.3040<br>3.1334 | 2.9714<br>0.9532<br>0.3024<br>3.1524 | 2.9887<br>0.9537<br>0.3007<br>3.1716 | 3.0061<br>0.9542<br>0.2990<br>3.1910 | 3.0237<br>0.9548<br>0.2974<br>3.2106 | 3.0415<br>0.9553<br>0.2957<br>3.2305 | 3.0595<br>0.9558<br>0.2940<br>3.2506 |
| 73    | sin               | 0.9563                     | 0.9568                               | 0.9573                               | 0.9578                               | 0.9583                               | 0.9588                               | 0.9593                               | 0.9598                               | 0.9603                               | 0.9608                               |
|       | cos               | 0.2924                     | 0.2907                               | 0.2890                               | 0.2874                               | 0.2857                               | 0.2840                               | 0.2823                               | 0.2807                               | 0.2790                               | 0.2773                               |
|       | tan               | 3.2709                     | 3.2914                               | 3.3122                               | 3.3332                               | 3.3544                               | 3.3759                               | 3.3977                               | 3.4197                               | 3.4420                               | 3.4646                               |
| 74    | sin               | 0.9613                     | 0.9617                               | 0.9622                               | 0.9627                               | 0.9632                               | 0.9636                               | 0.9641                               | 0.9646                               | 0.9650                               | 0.9655                               |
|       | cos               | 0.2756                     | 0.2740                               | 0.2723                               | 0.2706                               | 0.2689                               | 0.2672                               | 0.2656                               | 0.2639                               | 0.2622                               | 0.2605                               |
|       | tan               | 3.4874                     | 3.5105                               | 3.5339                               | 3.5576                               | 3.5816                               | 3.6059                               | 3.6305 <sup>‡</sup>                  | 3.6554                               | 3.6806                               | 3.7062                               |
| Degs. | Function          | 0′                         | 6′                                   | 12′                                  | 18′                                  | 24'                                  | 30′                                  | 36′                                  | 42′                                  | 48′                                  | 54′                                  |

## Natural Sines, Cosines, and Tangents—(Continued) 75°-89.9°

| Degs. | Function | 0.0°    | 0.1°   | 0.2°   | 0.3°   | 0.4°   | 0.5°   | 0.6°   | 0.7°   | 0.8°    | 0.9°    |
|-------|----------|---------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 75    | sin      | 0.9659  | 0.9664 | 0.9668 | 0.9673 | 0.9677 | 0.9681 | 0.9686 | 0.9690 | 0.9694  | 0.9699  |
|       | cos      | 0.2588  | 0.2571 | 0.2554 | 0.2538 | 0.2521 | 0.2504 | 0.2487 | 0.2470 | 0.2453  | 0.2436  |
|       | tan      | 3.7321  | 3.7583 | 3.7848 | 3.8118 | 3.8391 | 3.8667 | 3.8947 | 3.9232 | 3.9520  | 3.9812  |
| 76    | sin      | 0.9703  | 0.9707 | 0.9711 | 0.9715 | 0.9720 | 0.9724 | 0.9728 | 0.9732 | 0.9736  | 0.9740  |
|       | cos      | 0.2419  | 0.2402 | 0.2385 | 0.2368 | 0.2351 | 0.2334 | 0.2317 | 0.2300 | 0.2284  | 0.2267  |
|       | tan      | 4.0108  | 4.0408 | 4.0713 | 4.1022 | 4.1335 | 4.1653 | 4.1976 | 4.2303 | 4.2635  | 4.2972  |
| 77 =  | sin      | 0.9744  | 0.9748 | 0.9751 | 0.9755 | 0.9759 | 0.9763 | 0.9767 | 0.9770 | 0.9774  | 0.9778  |
|       | cos      | 0.2250  | 0.2232 | 0.2215 | 0.2198 | 0.2181 | 0.2164 | 0.2147 | 0.2130 | 0.2113  | 0.2096  |
|       | tan      | 4.3315  | 4.3662 | 4.4015 | 4.4374 | 4.4737 | 4.5107 | 4.5483 | 4.5864 | 4.6252  | 4.6646  |
| 78    | sin      | 0.9781  | 0.9785 | 0.9789 | 0.9792 | 0.9796 | 0.9799 | 0.9803 | 0.9806 | 0.9810  | 0.9813  |
|       | cos      | 0.2079  | 0.2062 | 0.2045 | 0.2028 | 0.2011 | 0.1994 | 0.1977 | 0.1959 | 0.1942  | 0.1925  |
|       | tan      | 4.7046  | 4.7453 | 4.7867 | 4.8288 | 4.8716 | 4.9152 | 4.9594 | 5.0045 | 5.0504  | .5.0970 |
| 79    | sin      | 0.9816  | 0.9820 | 0.9823 | 0.9826 | 0.9829 | 0.9833 | 0.9836 | 0.9839 | 0.9842  | 0.9845  |
|       | cos      | 0.1908# | 0.1891 | 0.1874 | 0.1857 | 0.1840 | 0.1822 | 0.1805 | 0.1788 | 0.1771  | 0.1754  |
|       | tan      | 5.1446  | 5.1929 | 5.2422 | 5.2924 | 5.3435 | 5.3955 | 5.4486 | 5.5026 | 5.5578  | 5.6140  |
| 80    | sin      | 0.9848  | 0.9851 | 0.9854 | 0.9857 | 0.9860 | 0.9863 | 0.9866 | 0.9869 | 0.9871  | 0.9874  |
|       | cos      | 0.1736  | 0.1719 | 0.1702 | 0.1685 | 0.1668 | 0.1650 | 0.1633 | 0.1616 | 0.1599  | 0.1582  |
|       | tan      | 5.6713  | 5.7297 | 5.7894 | 5.8502 | 5.9124 | 5.9758 | 6.0405 | 6.1066 | 6.1742. | 6.2432  |
| 81    | sin      | 0.9877  | 0.9880 | 0.9882 | 0.9885 | 0.9888 | 0.9890 | 0.9893 | 0.9895 | 0.9898  | 0.9900  |
|       | cos      | 0.1564  | 0.1547 | 0.1530 | 0.1513 | 0.1495 | 0.1478 | 0.1461 | 0.1444 | 0.1426  | 0.1409  |
|       | tan      | 6.3138  | 6.3859 | 6.4596 | 6.5350 | 6.6122 | 6.6912 | 6.7720 | 6.8548 | 6.9395  | 7.0264  |
| 82    | sin      | 0.9903  | 0.9905 | 0.9907 | 0.9910 | 0.9912 | 0.9914 | 0.9917 | 0.9919 | 0.9921  | 0.9923  |
|       | cos      | 0.1392  | 0.1374 | 0.1357 | 0.1340 | 0.1323 | 0.1305 | 0.1288 | 0.1271 | 0.1253  | 0.1236  |
|       | tan      | 7.1154  | 7.2066 | 7.3002 | 7.3962 | 7.4947 | 7.5958 | 7.6996 | 7.8062 | 7.9158  | 8.0285  |
| 83    | sin      | 0.9925  | 0.9928 | 0.9930 | 0.9932 | 0.9934 | 0.9936 | 0.9938 | 0.9940 | 0.9942  | 0.9943  |
|       | cos      | 0.1219  | 0.1201 | 0.1184 | 0.1167 | 0.1149 | 0.1132 | 0.1115 | 0.1097 | 0.1080  | 0.1063  |
|       | tan      | 8.1443  | 8.2636 | 8.3863 | 8.5126 | 8.6427 | 8.7769 | 8.9152 | 9.0579 | 9.2052  | 9.3572  |
| 84    | sin      | 0.9945  | 0.9947 | 0.9949 | 0,9951 | 0.9952 | 0.9954 | 0.9956 | 0.9957 | 0.9959  | 0.9960  |
|       | cos      | 0.1045  | 0.1028 | 0.1011 | 0.0993 | 0.0976 | 0.0958 | 0.0941 | 0.0924 | 0.0906  | 0.0889  |
|       | tan      | 9.5144  | 9.6768 | 9.8448 | 10.02  | 10.20  | 10.39  | 10.58  | 10.78  | 10.99   | 11.20   |
| 85    | sin      | 0.9962  | 0.9963 | 0.9965 | 0.9966 | 0.9968 | 0.9969 | 0.9971 | 0.9972 | 0.9973  | 0.9974  |
|       | cos      | 0.0872  | 0.0854 | 0.0837 | 0.0819 | 0.0802 | 0.0785 | 0.0767 | 0.0750 | 0.0732  | 0.0715  |
|       | tan      | 11.43   | 11.66  | 11.91  | 12.16  | 12.43  | 12.71  | 13.00  | 13.30  | 13.62   | 13.95   |
| 86    | sin      | 0.9976  | 0.9977 | 0.9978 | 0.9979 | 0.9980 | 0.9981 | 0.9982 | 0.9983 | 0.9984  | 0.9985  |
|       | cos      | 0.0698  | 0.0680 | 0.0663 | 0.0645 | 0.0628 | 0.0610 | 0.0593 | 0.0576 | 0.0558  | 0.0541  |
|       | tan      | 14.30   | 14.67  | 15.06  | 15.46  | 15.89  | 16.35  | 16.83  | 17.34  | 17.89   | 18.46   |
| 87    | sin      | 0.9986  | 0.9987 | 0.9988 | 0.9989 | 0.9990 | 0.9990 | 0.9991 | 0.9992 | 0.9993  | 0.9993  |
|       | cos      | 0.0523  | 0.0506 | 0.0488 | 0.0471 | 0.0454 | 0.0436 | 0.0419 | 0.0401 | 0.0384  | 0.0366  |
|       | tan      | 19.08   | 19.74  | 20.45  | 21.20  | 22.02  | 22.90  | 23.86  | 24.90  | 26.03   | 27.27   |
| 88    | sin      | 0.9994  | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9997 | 0.9997 | 0.9997 | 0.9998  | 0.999   |
|       | cos      | 0.0349  | 0.0332 | 0.0314 | 0.0297 | 0.0279 | 0.0262 | 0.0244 | 0.0227 | 0.0209  | 0.019   |
|       | tan      | 28.64   | 30.14  | 31.82  | 33.69  | 35.80  | 38.19  | 40.92  | 44.07  | 47.74   | 52.08   |
| 89    | sin      | 0.9998  | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 1.000  | 1.000  | 1.000  | 1.000   | 1.000   |
|       | cos      | 0.0175  | 0.0157 | 0.0140 | 0.0122 | 0.0105 | 0.0087 | 0.0070 | 0.0052 | 0.0035  | 0.001   |
|       | tan      | 57 29   | 63.66  | 71.62  | 81.85  | 95.49  | 114.6  | 143.2  | 191.0  | 286.5   | 573.0   |
| Degs. | Function | 0'      | 6′     | 12'    | 18′    | 24'    | 30′    | 36'    | 42'    | 48'     | 54'     |

#### INDEX

| Abbreviations55                      | Minimum Loss Pads10                  |
|--------------------------------------|--------------------------------------|
| Admittance17                         | Mutual Inductance13                  |
| Algebraic Formulas 5                 | Ohm's Law24-25                       |
| Algebraic Symbols 4                  |                                      |
| Attenuator Networks7-9               | Open-Air Transmission Lines20        |
| Average Current21                    | Peak Current21                       |
| Average Volts                        | Peak Volts21                         |
| •                                    | Phase Angle24                        |
| Capacitance12, 20, 29-32, 47-50      | Pilot Lamp Data38                    |
| Capacitors12, 47-50                  | Power Factor24                       |
| Coefficient of Coupling              |                                      |
| Coils                                | "Q" Factor14                         |
| Concentric Transmission Lines 20     | Quadratic Equations 5                |
| Conductance17                        | R-F Coils                            |
| Constants4, 12, 21                   | R.M.S. Current                       |
| Conversion Chart37                   |                                      |
| Coulombs12                           | R.M.S. Volts                         |
| Coupled Inductance12                 | Radicals and Exponents 5             |
| Coupling Coefficient                 | Radio Color Codes                    |
| D C.F. 9. I.'. I.O.P. O'             | Reactance                            |
| Decay of E & I in LCR Circuits18-19  | Resistance                           |
| Decibels                             | Resistor-Capacitor Color Codes47-50  |
| Diagram Symbols54                    | Resistors                            |
| Dielectric Constants                 | Resonance                            |
| Exponents and Radicals 5             | Schematic Symbols54                  |
|                                      | Self-Inductance                      |
| Fractional Inches 4                  | Shunts                               |
| Frequency 13, 20, 29-32              | Solution of a Quadratic 5            |
| Growth of E & i in LCR Circuits18-19 | Speaker Matching—70 Volt System . 11 |
|                                      | Steady State $I$ and $E$             |
| Impedance14-16, 20                   | Susceptance                          |
| Inches to Millimeters 4              | Symbols                              |
| Inductance                           |                                      |
| Interchangeable Batteries 45-46      | Transient $I$ and $E$                |
| Interchangeable Tubes39-44           | Transmission Lines20                 |
| T T 11                               | Trigonometric Formulas36             |
| Log Tables                           | Trigonometric Functions36            |
| Logarithms—How to use33-35           | Trigonometric Tables58-63            |
| Mathematical Constants 4             |                                      |
| Mathematical Symbols 4               | Vacuum Tube Constants                |
| Meter Formulas22-23                  | Vacuum Tube Formulas                 |
| Metric Relationships                 | Vacuum Tube Symbols                  |
| Millimeters to Inches                | Vertical Antenna, Capacitance20      |
| Mixers 9                             | Wavelength13, 20                     |
| Multipliers                          | Wire Tables                          |
| With pricis                          | WIIC Τμυίου,                         |

Consult Your ALLIED Catalog for Everything in Radio, Television and Industrial Electronics

### ALLIED'S ELECTRONICS DATA HANDBOOK

Formerly Allied's Radio Data Handbook

A Compilation of Formulas and Data Most Commonly Used in the Field of Radio and Electronics

Written and Compiled by the Publications Division

ALLIED RADIO CORPORATION

Under the Direction of

EUGENE CARRINGTON

OWNER

DONALD G. GiLL

Edited by
NELSON M. COOKE,

Lieutenant Commander, United States Navy (Ret.)

Senior Member, Institute of Radio Engineers. Author, "Mathematics for Electricians and Radiomen".

> SECOND EDITION 5th Printing, October, 1957

> > Published by

#### ALLIED RADIO CORPORATION

100 North Western Avenue Chicago 80, Ill., U. S. A.

Printed in U.S.A. Copyright 1956 by Allied Radio Corp.

SALTA ANA, CALIFORNIA

546/35000

39 156 39 546 12/544 12/544 466 40

#### FOREWORD

Allied Radio Corporation has long recognized the need for a comprehensive and condensed handbook of formulas and data most commonly used in the field of radio and electronics. It was felt also that such a book should serve entirely as a convenient source of information and reference and that all attempts to teach or explain the basic principles involved should be left to classroom instruction and to the many already existing publications written for this distinct purpose.

The Electronics Data Handbook, therefore, consists of formulas, tables, charts and data. Every effort has been made to present this information clearly and to arrange it in a convenient manner for instant reference. All material was carefully selected and prepared by Allied's technical staff to serve the requirements of many specific groups in the radio and electronics field. It is hoped that our objectives have been successfully attained and that this Handbook will serve as: (1) A valuable adjunct to classroom study and laboratory work for the student and instructor; (2) A dependable source of information for the beginner, experimenter and set builder; (3) A reliable guide for the service engineer and maintenance man in his everyday work; (4) A time-saving and practical reference for the radio amateur, technician and engineer, both in the laboratory and in the field of operations.

The publishers are indebted to the McGraw-Hill Book Company, Inc., for their permission to use material selected from "Mathematics for Electricians and Radiomen" by Nelson M. Cooke. Allied also takes this opportunity to thank those manufacturers who so generously permitted our use of current data prepared by their engineering personnel. Special recognition and our sincere appreciation are extended to Commander Cooke for his helpful suggestions and generous contribution of his time and specialized knowledge in editing the material contained in this book.

ALLIED RADIO CORPORATION

