Imposing an energy balance about the heat source, one can write:

$$\dot{m}=rac{Q_{in}}{\int_{T_o}^{T_i}C_p(T)dT} \hspace{1.5cm} (1)$$

Consider an infinitesimal element in the primary radiator. Applying energy conservation:

$$dQ = \dot{m}C_p(T)dT = \epsilon\sigma_b\phi(T^4 - T_a{}^4)dx$$
 (2)

Where  $T_a$  is the ambient temperature and  $\epsilon$  is the surface emissivity coefficient

The above equations in  $\dot{m}$  and T can be numerically solved if  $C_p(T)$  is known. The maximum thermal to electrical conversion efficiency is then:

$$\eta_{th} = \eta_{gen} rac{W_{out} - W_{in}}{Q_{in}}$$
 (3)

Where  $\eta_{gen}$  is the generator's efficiency



For He-Xe cooled systems,  $C_p=2.5rac{R}{MM}$  and it is constant for T>400K. The constant  $C_p$  value leads to simpler solutions for  $\dot{m}$  and T. Rearranging (2):

$$\int \frac{dT}{T^4 - T_a^4} = \frac{\epsilon \sigma_b \phi}{\dot{m} C_p} \int dx \tag{4}$$

However,  $T_a << T$  in space, which simplifies the LHS. The limits for the LHS integration are from  $T_r$  to  $T_e$ . For the RHS, using an assumption that the radiator is a single long tube folded into N sections of W length and  $\phi$  apparent diameter, one has  $\phi \int dx = \phi NW = \phi \frac{L}{\phi}W = LW$ . Putting that result and (1) in (4):

$$\left[\frac{1}{3T_e^3} - \frac{1}{3T_r^3}\right] \left[\frac{1}{T_o - T_i}\right] = \frac{\epsilon \sigma_b LW}{Q_{in}} \quad (5)$$

If the pressure ratio (PR) is isentropically defined as the ratio of the outlet to the inlet temperature raised to  $\frac{\gamma}{\gamma-1}$ , the pressure balance in the system is:

$$CPR = \frac{F_p}{TPR} \tag{6}$$

Where CPR is the compressor array pressure ratio, TPR is the turbine array pressure ratio and  $F_p$  is a pressure factor to account for pressure losses in the cycle from phenomena like friction and fluid expansion.

If one defines  $T_o$ , TPR and  $F_p$ , that results in:

$$T_r = T_o (TPR)^{rac{\gamma-1}{\gamma}} \hspace{1cm} \& \hspace{1cm} T_i = T_e igg[rac{F_p}{TPR}igg]^{rac{\gamma-1}{\gamma}}$$

Substituting for  $T_r$  and  $T_i$  in (5) enables one to find  $T_e$  via numerical solution.

Finally, one can express the system's conversion efficiency using an energy balance:  $\eta_{th}=\eta_{gen}rac{T_o-T_r-T_i+T_e}{T_o-T_i}$ . Substituting for  $T_r$  and  $T_i$  yields:

$$\eta_{th} = \eta_{gen} rac{T_o \left[1 - \left(TPR\right)^{rac{\gamma-1}{\gamma}}\right] - T_e \left[\left(rac{F_p}{TPR}\right)^{rac{\gamma-1}{\gamma}} - 1
ight]}{T_o - T_e \left(rac{F_p}{TPR}\right)^{rac{\gamma-1}{\gamma}}}$$
 (7)