# **Endogenous Protection and International Rivalry**

**Linking the Domestic Politics of Trade and Interstate Conflict** 

Brendan Cooley March 2, 2017

# **Theorizing International Rivalry**

- · Big Picture Question: Where do international rivalries come from?
  - Motivating historical example: *The Rise of the Anglo-German Antagonism* (Kennedy 1987)
  - Contemporary example: Sino-U.S. relations
- The Lake (2014) hypothesis: evolution of U.S.-China relations in 21st century will be determined by character of domestic political economies
  - "If integration strengthens market forces within China, cooperation between the two superpowers will likely be expanded as common interests prevail. If political forces remain dominant in China, greater conflict may emerge."
- Broad definition of conflict: costly signals of various sorts (Fearon 1997)
  - Low end: denouncements/accusations/threats
  - High end: military mobilization/skirmishes/war
- · To evaluate the Lake hypothesis, need a coherent theoretical framework linking domestic political regimes and policies, cross-border economic flows, and international bargaining

# **Trade Policy Preferences and Externalities**

- · Rationales for protectionism:
  - Classical economic explanation: Large economies and terms of trade effects
  - **Political economic explanation**: Goverments disproportionately weigh politically-organized producer interests relative to social welfare (Grossman and Helpman 1994, 1995)
- **Externalities of Protection**: imposes costs on both domestic consumers *and foreign exporters in the protected sector* 
  - Domestic demand for protection generates conflicts of interest between imperfectlyreprestentative governments
  - Grossman and Helpman 1995: "Increased government sensitivity to the concerns of special interests in one country raises the profits of the organized factor owners in that country at the expense of their counterparts abroad"

# **Externalities of Trade Policy**

Free Trade



Imposition of Foreign Tariff



- When foreign country has pricing power, increase in tariff pushes international price down
- This causes shift in income in the home country, favoring consumers at the expense of producers
- $\cdot$   $\Delta$  PS = loss suffered by producers in the home country as a result of the imposition of the foreign tariff
- How is the government's utility affected by these shifts? Depends on whose interests it represents...

# Roadmap

- 1. Develop N-country, K-sector model of the international economy with domestic lobbying, based on Grossman and Helpman (1995)
- 2. Estimate model's structural parameters  $a_i$ , weight government places on social welfare relative to political contributions
  - · Goldberg and Maggi (1999), Mitra, Thomakos and Ulubasoglu (2006), Gawande, Krishna and Olarreaga (2009, 2015), Ossa (2014)
- 3. Measure implied dyadic conflicts of interest
  - · What bilateral trade policy would country i set if it controlled instruments in countries i and j?
  - How much does i's utility change from the scenario in which it controls bilateral trade policy to the scenario in which j controls bilateral trade policy?
- 4. Connect implied conflict of interest to patterns of dyadic conflict, measured with ICEWS event dataset

## **Model Primatives**

- · Countries  $i \in \{1, ..., N\}$ , sectors  $k \in \{1, ..., K\}$
- · Trade policy instrument  $\tau_{ik}$  (uniform tariff applying to all goods in sector k)
  - $\tau_{ik} = 1$  no barriers to trade
  - $\tau_{ik} > 1$  import tariff
  - $\tau_{ik}$  < 1 export subsidy
- · International price  $\pi_k(\tau_{1k},\ldots,\tau_{Nk})$
- Domestic price  $\tau_{ik}\pi_k(\tau_{1k},\ldots,\tau_{Nk})$
- $W_i(\vec{\tau_i}, \vec{\pi})$  social welfare derived from producer profits, consumer surplus, and tariff revenue in economy:

$$W_{i}(\vec{\tau}_{i}, \vec{\pi}) = \sum_{k} \underbrace{\Pi_{ik}(\tau_{ik}, \pi_{k})}_{\text{producer profits}} + \underbrace{r_{i}(\vec{\tau}_{i}, \vec{\pi})}_{\text{tariff revenue}} + \underbrace{S_{i}(\vec{\tau}_{i}, \vec{\pi})}_{\text{consumer surplus}}$$

# **Agents' Objectives**

· Governments optimize

$$G_i(\vec{\tau}_i, \vec{\pi}) = \sum_{k=1}^K C_{ik}(\vec{\tau}_i, \vec{\pi}) + a_i W_i(\vec{\tau}_i, \vec{\pi})$$

- ·  $C_{ik}(\vec{\tau}_i, \vec{\pi})$  political contributions to government i from sector k
- · Menu auction (Bernheim and Whinston 1986), sectors of relative population size  $\alpha_k$  set contribution schedules to maximize  $W_{ik}(\vec{\tau_i}, \vec{\pi}) C_{ik}(\vec{\tau_i}, \vec{\pi})$  where

$$W_{ik}(\vec{\tau}_i, \vec{\pi}) = l_i + \Pi_{ik}(\tau_{ik}, \pi_{ik}) + \alpha_k \left[ r_i(\vec{\tau}_i, \vec{\pi}) + S_i(\vec{\tau}_i, \vec{\pi}) \right]$$

 Domestic game induces governments to maximize weighted sum of producer welfare and social welfare

$$G_i(\vec{\tau}_i, \vec{\pi}) = \sum_{k=1}^K W_{ik}(\vec{\tau}_i, \vec{\pi}) + a_i W_i(\vec{\tau}_i, \vec{\pi})$$

## 'Trade Talks' (Cooperative) Equilibrium

- $\cdot$  Nash ('optimal tariffs') are inefficient from the perspective of N governments with objective functions as specified above
  - Principals of reciprocity and nondiscrimination embedded in multilateral trading system allow politically-motivated governments to realize joint gains (Bagwell and Staiger 2001)
- · Equilibrium conditions:
  - Joint maximization:

$$\nabla_{\tau_k} G_i(\vec{\tau}_i, \vec{\pi}) = 0 \quad \forall i, k$$

- Market clearing, net imports = demand - production:

$$M_{ik}(\tau_{ik}, \pi_k) = d_{ik}(\tau_{ik}, \pi_k) - X_{ik}(\tau_{ik}, \pi_k)$$
$$\sum_{i} M_{ik}(\tau_{ik}, \pi_k) = 0 \quad \forall k$$

# 'Trade Talks' (Cooperative) Equilibrium

· Equilibrium protection (ruling out export subsidies ( $\tau_{ik}$  < 1) and normalizing most 'open' country-sector to  $\tau_{ik}$  = 1):

$$\tau_{ik}^{\star} - 1 = -\frac{1 - \alpha_{iL}}{a + \alpha_{iL}} \frac{X_{ik}}{\pi_k M_{ik}^{'}}$$

· Population size of owners of specific factors:

$$\alpha_{iL} = \sum_{k} \alpha_{ik}$$

- · Characteristics:
  - Decreasing in weight government places on social welfare ( $a \to \infty$ )
  - Increasing in economic size of sector  $k(X_{ik})$
  - Decreasing in population size of owners of specific factors ( $\alpha_L \to 1$ )

# **Effect of Foreign Tariffs on Home Welfare**

• Consider a change in foreign tariffs in sector *k*:

$$\frac{\partial G_i}{\partial \tau_{j \neq i}} = \underbrace{\frac{\partial \pi}{\partial \tau_{j \neq i}}}_{\text{effect of } \tau_{j \neq i} \text{ on } \pi} \underbrace{\left(\frac{\partial \Pi_i}{\partial \pi} + \alpha_k \left[\frac{\partial r_i}{\partial \pi} + \frac{\partial S_i}{\partial \pi}\right]\right) + a \underbrace{\left[\frac{\partial \Pi_i}{\partial \pi} + \frac{\partial r_i}{\partial \pi} + \frac{\partial S_i}{\partial \pi}\right]}_{\text{effect on producer interests}} + a \underbrace{\left[\frac{\partial \Pi_i}{\partial \pi} + \frac{\partial r_i}{\partial \pi} + \frac{\partial S_i}{\partial \pi}\right]}_{\text{effect on consumer interests}}\right)$$

- · Limiting Cases
  - $a \rightarrow 0$  (contribution maximizing govt):

$$\frac{\partial G_i}{\partial \tau_{j \neq i}} = \frac{\partial \pi}{\partial \tau_{j \neq i}} \left( \frac{\partial \Pi_i}{\partial \pi} + \alpha_k \left[ \frac{\partial r_i}{\partial \pi} + \frac{\partial S_i}{\partial \pi} \right] \right)$$

-  $a \rightarrow \infty$  (social welfare maximizing govt):

$$\frac{\partial G_i}{\partial \tau_{i \neq i}} = \frac{\partial \pi}{\partial \tau_{i \neq i}} \left( \frac{\partial \Pi_i}{\partial \pi} + \frac{\partial r_i}{\partial \pi} + \frac{\partial S_i}{\partial \pi} \right)$$

## **Bilateral Ideal Points and Conflicts of Interest**

· Assumption: governments always adversely effected by increases in foreign tariffs

$$\frac{\partial G_i}{\partial \tau_{j \neq i}} < 0 \quad \forall i, k$$

- Might be violated for highly representative governments ( $a \to \infty$ ), which weigh increase in consumer surplus induced by decrease in international price equivalently to loss in producer surplus
- When assumption is met, all governments prefer zero tariffs ( $\tau=1$ ) in all foreign countries (ruling out possibility of export subsidies)
- **Dyadic Ideal Point**: bilateral trade policy country i would set if it controlled trade policy instrument in countries i and j
- Conflict of Interest: difference in i's welfare evaluated at it's own ideal point versus j's ideal point
  - Will follow Eaton, Dekle and Kortum (2007) and Ossa (2014) in calculating welfare changes induced by counterfactual tariff changes

## **Bilateral Ideal Points and Conflicts of Interest**

· Optima tariffs for country i, constraining country j's tariffs to zero solve:

$$\vec{\tau_i^c} = \arg \max_{\vec{\tau_i}} \sum_{k=1}^K \Pi_{ik} (\tau_{ik}, \pi_k(\tau_{ik}, \dots, 1_{jk}, \dots, \tau_{nk})) + a \sum_{k=1}^K W_{ik} (\tau_{ik}, \pi_k(\tau_{ik}, \dots, 1_{jk}, \dots, \tau_{nk}))$$

· Government i's utility evaluated at its ideal point:

$$\overline{G}_{ij}(\tau_i^c) = \sum_{k=1}^K G_{ik}(\tau_{ik}^c, \pi_k(\tau_{ik}^c, \dots, 1_{jk}, \dots, \tau_{nk}))$$

• Government i's utility evaluated at j's ideal point:

$$\underline{G}_{ij}(1_i) = \sum_{k=1}^K G_{ik}(1_{ik}^c, \pi_k(1_{ik}^c, \dots, \tau_{jk}^c, \dots, \tau_{nk}))$$

· Magnitude of conflict of interest:  $\overline{G}_{ij}(\tau^c_i) - \underline{G}_{ij}(1_i)$ 

## **Estimation Procedure**

- · Goal: recover N estimates of  $a_i$  from  $N \times K$  country-sector level data
- · Recall equilibrium protection:

$$\tau_{ik}^{\star} - 1 = \max \left\{ 1, -\frac{1 - \alpha_{iL}}{a + \alpha_{iL}} \frac{X_{ik}}{\pi_k M_{ik}^{'}} \right\}$$

· Multiplying rhs by total imports  $M_{ik}/M_{ik}$  and everything by  $1/\tau_{ik}^{\star}$  gives relationship in terms of observables and  $a_i$ :

$$\frac{\tau_{ik}^{\star} - 1}{\tau_{ik}^{\star}} = -\frac{1 - \alpha_{iL}}{a + \alpha_{iL}} \frac{X_{ik}}{M_{ik}} \frac{1}{e_{ik}}$$

·  $\tau_{ik}^{\star}$  - magnitude of protection,  $M_{ik}$  - imports,  $X_{ik}$  - production,  $e_{ik}$  - elasticity of import demand,  $\alpha_{iL}$  - number of employees in organized sectors divided by total population

#### **Estimation Procedure**

· Assume inverse import penetration ratio  $X_{ik}/M_{ik}$  measured with error  $\eta_{ik} \sim \mathcal{N}(0, \sigma^2)$ , giving

$$\frac{\tau_{ik}^{\star} - 1}{\tau_{ik}^{\star}} = -\frac{1 - \alpha_{iL}}{a + \alpha_{iL}} \left( \frac{X_{ik}}{M_{ik}} + \eta_{ik} \right) \frac{1}{e_{ik}}$$

$$\eta_{ik} = \frac{\tau_{ik}^{\star} - 1}{\tau_{ik}^{\star}} \frac{1 - \alpha_{iL}}{a + \alpha_{iL}} e_{ik} + \frac{X_{ik}}{M_{ik}}$$

· Since  $\mathbb{E}(\eta_{ik}) = 0$ , estimate of  $a_i$  solves

$$\min_{a_i} \sum_{k} \left( \frac{\tau_{ik}^{\star} - 1}{\tau_{ik}^{\star}} \frac{1 - \alpha_{iL}}{a + \alpha_{iL}} e_{ik} + \frac{X_{ik}}{M_{ik}} \right)^2$$

#### **Data**

- · World Bank's Trade, Production, and Protection dataset (Nicita and Olarreaga 2006)
  - Observations at country-sector-year level (28 ISIC 3-digit sectors)
- · Estimate model on combined tariff and non-tariff barriers to trade

$$\tau_{ik} = \tau_{ik}^{tar} + \tau_{ik}^{ntb}$$

- Focus on cross sectional variation, availability of NTB data leaves ~60 countries with sufficient data, spanning 1995-2001
  - All credibly 'large' countries with pricing power included (i.e. U.S., Japan, China, EU, Russia, South Korea, etc)
- · Country-sector import demand elasticity estimates and ad-valorem equivalents of NTBs from Kee et al (2008)

#### **Cross-National Patterns of Protection**

Click to go to the Explorer

To open on your computer, open an R console and execute:

```
require(shiny)
runGitHub('tpp-explorer', user='brendancooley')
```

Or go to: https://brendancooley.shinyapps.io/tpp-explorer/

# **Estimates Highly Sensitive to Outliers**

POLITICAL ECONOMY OF GLOBAL TARIFFS

TABLE 1 ESTIMATES OF a FROM CONSTANT-WEIGHT MODEL (2)

|        | Cutoff at $z/e >$ : |         |       |       |       |      |      |       |       |
|--------|---------------------|---------|-------|-------|-------|------|------|-------|-------|
|        | 1000                | 100     | 50    | 20    | 10    | 5    | 2    | 1     | 0.5   |
| 1 ARG  | 1,828.1             | 232.2   | 115.5 | 66.2  | 35.1  | 23.3 | 10.4 | 5.15  | 2.71  |
| 2 AUS  | 325.3               | 325.3   | 212.4 | 125.9 | 67.0  | 35.5 | 14.6 | 11.81 | 11.57 |
| 3 BGD  | 460.4               | 87.2    | 59.6  | 20.2  | 9.20  | 5.13 | 2.14 | 1.68  | 1.30  |
| 4 BOL  | 3,029.9             | 308.1   | 211.8 | 76.6  | 52.1  | 24.9 | 13.0 | 6.57  | 3.08  |
| 5 BRA  | 547.0               | 210.8   | 144.3 | 75.1  | 42.3  | 23.0 | 12.6 | _     | _     |
| 6 CHL  | 1,071.0             | 471.9   | 215.2 | 89.1  | 56.6  | 28.6 | 15.1 | 6.31  | 3.24  |
| 7 CHN  | 577.2               | 180.1   | 88.2  | 35.6  | 25.1  | 17.9 | 9.0  | 5.62  | 2.48  |
| 8 CMR  | 1,122.8             | 258.0   | 45.1  | 34.3  | 27.1  | 14.3 | 4.7  | 3.45  | 2.01  |
| 9 COL  | 1,059.9             | 249.7   | 142.8 | 76.6  | 47.7  | 26.1 | 10.8 | 7.92  | 4.47  |
| 10 CRI | 590.5               | 235.5   | 161.1 | 60.2  | 31.7  | 19.9 | 10.8 | 7.61  | 4.81  |
| 11 ECU | 3,315.5             | 171.9   | 149.2 | 56.2  | 34.4  | 19.4 | 9.3  | 5.69  | 3.61  |
| 12 EGY | 545.5               | 74.7    | 82.2  | 29.7  | 16.3  | 10.9 | 5.2  | 3.69  | 1.69  |
| 13 ETH | 257.5               | 119.6   | 56.5  | 39.9  | 16.5  | 8.6  | 5.8  | 2.60  | 1.87  |
| 14 GRC | 899.4               | 899.4   | 75.5  | 56.2  | 40.4  | 25.3 | 21.5 | 13.49 | 6.70  |
| 15 GTM | 33.9                | 33.9    | 33.9  | 33.9  | 33.9  | 15.9 | 10.5 | 7.06  | 4.48  |
| 16 HUN | 540.4               | 204.2   | 132.4 | 61.3  | 29.9  | 21.8 | 12.9 | 8.97  | 5.50  |
| 17 IDN | 2,053.5             | 190.9   | 112.8 | 50.3  | 35.9  | 21.8 | 14.1 | 7.80  | 4.53  |
| 18 IND | 665.1               | 83.7    | 43.3  | 21.4  | 17.5  | 10.7 | 5.1  | 2.55  | 1.32  |
| 19 JPN | 1,712.6             | 1,036.4 | 599.4 | 295.8 | 111.3 | 35.0 | 16.3 | 8.99  | 0.07  |

from Gawande et al 2015, similar results obtained using estimator derived above

215

#### **Alternatives to Baseline Model**

- Counterlobbying: Model interdependencies across sectors and allow industries to condition contributions on effects of tariff increases on prices of intermediate goods
- Flexible Weights: More complexity in government's objective function, allow for differential weights on producer surplus, tariff revenue, and consumer surplus
  - Drawback takes us further away from lobbying microfoundations of model
- Influence of Labor Orgs: jointly estimate a and  $\alpha_L$  (Mitra, Thomakos and Ulubasoglu (2006)), government's objective depends on social welfare consciousness and percentage of population that is politically organized
- · Others?

## **Next Steps**

- 1. Modify baseline model to achieve realistic parameter estimates, balancing parsimony against face validity
- 2. Derive estimator for welfare changes of counterfactual tariff changes
- 3. Estimate implied dyadic conflicts of interest
- 4. Separate project: build state space model to estimate latent conflict-propensity from ICEWS inernational dyadic event data