3620. Network Recovery Pathways

Solved

You are given a directed acyclic graph of n nodes numbered from 0 to n-1. This is represented by a 2D array edges of length m, where edges[i] = [u_i , v_i , $cost_i$] indicates a one-way communication from node u_i to node v_i with a recovery cost of $cost_i$.

Some nodes may be offline. You are given a boolean array online where online[i] = true means node i is online. Nodes 0 and n-1 are always online.

A path from 0 to n-1 is **valid** if:

- All intermediate nodes on the path are online.
- The total recovery cost of all edges on the path does not exceed k.

For each valid path, define its **score** as the minimum edge-cost along that path.

Return the **maximum** path score (i.e., the largest **minimum**-edge cost) among all valid paths. If no valid path exists, return -1.

Example 1:

Input: edges = [[0,1,5],[1,3,10],[0,2,3],[2,3,4]], online = [true,true,true,true], k = 10

Output: 3

Explanation:

- The graph has two possible routes from node 0 to node 3:
 - 1. Path $0 \rightarrow 1 \rightarrow 3$
 - Total cost = 5 + 10 = 15, which exceeds k (15 > 10), so this path is invalid.
 - 2. Path $0 \rightarrow 2 \rightarrow 3$
 - Total cost = $3 + 4 = 7 \le k$, so this path is valid.
 - The minimum edge-cost along this path is min(3, 4) = 3.
- There are no other valid paths. Hence, the maximum among all valid path-scores is 3.

Example 2:

Input: edges = [[0,1,7],[1,4,5],[0,2,6],[2,3,6],[3,4,2],[2,4,6]], online = [true,true,true,true,false,true], k = 12

Output: 6

Explanation:

- Node 3 is offline, so any path passing through 3 is invalid.
- Consider the remaining routes from 0 to 4:
 - 1. Path $0 \rightarrow 1 \rightarrow 4$
 - Total cost = $7 + 5 = 12 \le k$, so this path is valid.
 - The minimum edge-cost along this path is min(7, 5) = 5.
 - 2. Path $0 \rightarrow 2 \rightarrow 3 \rightarrow 4$
 - Node 3 is offline, so this path is invalid regardless of cost.
 - 3. Path $0 \rightarrow 2 \rightarrow 4$
 - Total cost = $6 + 6 = 12 \le k$, so this path is valid.
 - The minimum edge-cost along this path is min(6, 6) = 6.
- Among the two valid paths, their scores are 5 and 6. Therefore, the answer is 6.

Constraints:

- n == online.length
- 2 <= n <= 5 * 10⁴
- $0 \le m == edges.length \le min(10^5, n * (n 1) / 2)$
- edges[i] = [u_i, v_i, cost_i]
- $0 \le u_i, v_i \le n$
- u_i!= v_i
- $0 \le \cos t_i \le 10^9$
- $0 \le k \le 5 * 10^{13}$
- online[i] is either true or false, and both online[0] and online[n 1] are true.
- The given graph is a directed acyclic graph.

Seen this question in a real interview before? 1/5

Yes No

Accepted 12.347/40.7K Acceptance Rate 30.3%

Topics	~
Hint 1	~
Hint 2	~
Hint 3	~
Discussion (45)	~

Copyright © 2025 LeetCode. All rights reserved.