Universidad de Granada. Ecuaciones Diferenciales I. Grupo B 22 de Marzo de 2018

NOMBRE:

1. Se considera una solución cualquiera x(t) de la ecuación diferencial

$$x' = 2tx$$
.

Se supone que dicha solución está definida en un intervalo abierto I. Demuestra que existe $c \in \mathbb{R}$ tal que

$$x(t) = ce^{t^2}$$

para cada $t \in I$.

para cada
$$t \in I$$
.

 $x' = 2t \times \Rightarrow \frac{dx}{dt} = 2t \times \Rightarrow \int \frac{1}{x} dx = \int 2t dt = \ln|x| = t^2 + |x| \Rightarrow |x| = e^{k}e^{t^2}$

Sol fina $x^* - 2t x^* \Rightarrow |x^* = 0| \Rightarrow con c=0 \times ct$ cot $x = \pm e^{k}e^{t^2} = ce^{t^2}$
 $x = \pm e^{k}e^{t^2} = ce^$

2. Demuestra que la transformación $\varphi(t,x)=(s,y),\ s=t,\ y=x+t$ define un difeomorfismo del plano que es compatible con la ecuación

$$x' = (x+t)^2.$$

Encuentra la solución de esta ecuación que cumple x(0)=0 y especifica su intervalo de definición.

U define difeomorfismo par que

UCC'C/R²) por serlo sus componentes

$$\int_{y=x+1}^{x=1} = \int_{x=y-s}^{x=s} \exists \forall Cs, y = (y^{-1}Cs, y) = Cs, y-s = \forall CC'C/R^{2})$$

Será compatible par que

 $\frac{\partial y}{\partial t} C b_{x} + \frac{\partial y}{\partial x} C b_{x} + \frac{\partial y}{\partial x}$

Como $\times CO) = 0 \Rightarrow \times CO) = \frac{1}{9}Cc) = 0 \Rightarrow c = K\pi con Kc \#$ De forma que $\times C+1 = \frac{1}{9}C++K\pi$) - t $t+K\pi \neq \pm \frac{\pi}{2} \Rightarrow t \neq K\pi \pm \frac{\pi}{2}$ Al darnos la imagen de 0, tomemos $\times C+1 = \frac{1}{9}C+1-1 \quad \forall t \in J-\frac{\pi}{2}+\frac{\pi}{2}U$

3. Encuentra un cambio de variable que transforme la ecuación diferencial

$$x' = \frac{x+t+3}{t-x+2}$$

en una ecuación homogénea.

Tomoreemos una translación definida $\psi:Ct,\times\rangle \longrightarrow Ct+\psi,\times+\mu$, $\psi:Ct+\psi,\times+\mu$,

duego $(p: |R^2 \rightarrow |R^2)$ como (pCt, x) = Ct + 2/5, x + 0/5) = Cs, y) será el cambio que la reduce a homogénea

No lo pide pero resselvo $y' - \frac{y+s}{s-y} = \frac{\frac{y}{s}+1}{1-\frac{y}{s}} \Longrightarrow (s,y) \mapsto (s,z) \cdot (s,\frac{y}{s})$ $\frac{dz}{ds} = -\frac{z}{s} + \frac{1}{s} \left[\frac{z+1}{1-z} \right] = \frac{1}{s} \left(\frac{z+1-z+z^2}{1-z} \right) \Longrightarrow z' = \frac{1}{s} \frac{1+z^2}{1-z}$ $\int \frac{1-z}{1+z^2} dz = \int \frac{1}{s} ds \Longrightarrow \operatorname{arct}_{\mathbf{q}}(z) - \frac{1}{z} \ln(1+z^2) = \ln|s|$ Deshaces cambos de variable

4. Dadas las ecuaciones

$$x = t + e^t$$
, $y = 1 + t^4$

demuestra que la eliminación del parámetro t nos permite definir una función derivable $y: \mathbb{R} \to \mathbb{R}, \ x \mapsto y(x)$. Además la función y(x) alcanza su mínimo en x=1

AC ser bijectiva
$$\exists q: |R \rightarrow |R|$$
 como, si $f(t)=x$, $q(x)=1$ de forma que $q=1^{-1}$

Para
$$y'=0 \Rightarrow g(x)=0 \lor g(x)=0 \Rightarrow f(x)=1$$

$$(g(x)\neq 0)$$

5. Demuestra que la ecuación

$$x - \frac{1}{3} \operatorname{sen} x = t$$

define de forma implícita una única función $x:\mathbb{R}\to\mathbb{R},\ t\mapsto x(t)$. Además, prueba que se cumple la identidad $x(t+2\pi)=x(t)+2\pi$ para cada $t\in\mathbb{R}$.