Mathematical Finance Exercise Sheet 2

Please hand in until Wednesday, October 1st, 12:00 in your assistant's box in HG G 52.1

Exercise 2-1

Consider the multiperiod Cox–Ross–Rubinstein binomial model for the bank account \tilde{B} and stock price process \tilde{S} with parameters r (i.e., $\tilde{B}_n = (1+r)^n$) and u > d > -1. That is, the discounted stock price $S = \tilde{S}/\tilde{B}$ is given by

$$S_k = s_0 \prod_{j=1}^k R_j, \quad k = 0, 1, \dots, T, \quad s_0 > 0,$$

where the R_j are i.i.d. under P with

$$P\left[R_{j} = \frac{1+u}{1+r}\right] = p = 1 - P\left[R_{j} = \frac{1+d}{1+r}\right]$$

for some $p \in (0, 1)$.

- a) If $u \le r$ or $d \ge r$, find an arbitrage opportunity, i.e., a self-financing strategy φ with $V_0(\varphi) = 0$, $V_T(\varphi) \ge 0$ P-a.s. and $P[V_T(\varphi) > 0] > 0$. **Hint:** Compare the behaviour of \tilde{S} and \tilde{B} .
- **b)** If u > r > d, find a probability measure $Q \approx P$ such that S is a Q-martingale.

Together with the results from the lecture, this shows that the CRR model is arbitrage-free if and only if u > r > d.

Exercise 2-2

Let $(\Omega, \mathbb{F}, (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a filtered probability space and $\bar{S} = (1, S_t^1, \dots, S_t^d)_{t \in [0,T]}$ a general continuous-time financial market with time horizon T > 0.

a) Show that if there exists an (elementary) arbitrage opportunity

$$\vartheta = \sum_{k=1}^{N} h_k \mathbf{1}_{\llbracket \tau_{k-1}, \tau_k \rrbracket} \in \mathbf{b} \mathcal{E},$$

then there also exists a "one-step buy-and-hold" arbitrage opportunity $\vartheta^* = h1_{\llbracket \sigma_0, \sigma_1 \rrbracket} \in \mathbf{b}\mathcal{E}$.

b) Assume that S is a semimartingale and satisfies NA. Prove that if $\vartheta \in \Theta_{adm}$ satisfies $G_T(\vartheta) \geq -c$ P-a.s. for some $c \geq 0$, then $G_{\cdot}(\vartheta) \geq -c$ P-a.s. Hint: Use that if ϑ is S-integrable, and $C \in \mathcal{P}$ is a predictable set, then $1_C \vartheta$ is S-integrable, too.

Exercise 2-3

Consider a probability space with discrete-time filtration $(\mathcal{F}_t)_{t\in\mathbb{N}}$ and an \mathbb{R}^d -valued local martingale $X=(X_t)_{t\in\mathbb{N}}$ null at 0. Prove the following:

- a) If all the X_t are integrable, then X is a true martingale.
- **b)** The following sharpening is also true: For any $T \in \mathbb{N}$ we have that if X_T^- is integrable, then $(X_t)_{t=0,1,\dots,T}$ is a true martingale. In particular, if X is bounded from below, then X is a true martingale.

Hint: First show via localization that X^- has the submartingale property. Deduce integrability of each X_t^- and hence of X_t^+ .

c) If ϑ is any \mathbb{R}^d -valued predictable process with $\vartheta_0 := 0$, then the real-valued discrete-time integral $Y = \int \vartheta \, dX$, defined by $Y_t = \sum_{k=1}^t \vartheta_k (X_k - X_{k-1})$, is again a local martingale.

Note: All these assertions are false in continuous time in general.

Exercise sheets and further information are also available on:

http://www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mf/uebungen