BIOMECHANICAL ANALYSIS OF ANKLE TORQUE IN HUMAN MOVEMENT

ANALYSIS OF HUMAN GAIT BIOMECHANICS BY CALCULATING THE ANKLE TORQUE

DATA FLOW AT A GLANCE

- I. Marker trajectories \rightarrow ankle centre (global frame)
- 2. Force-plate file \rightarrow GRF + COP (local frame)
- 3. Align, rotate, resample
- 4. Cross-product $\tau = r \times F$
- 5. Visualise & export stats

FORCE PLATE: BERTEC TREADMILL FIT GEN 5

FORCE PLATE: BERTEC TREADMILL FIT GEN 5

RIGHT FORCE PLATE Since the force plates are switched during uphill and downhill walking, the left force plate data in downhill walking is used as the right foot data, and the right force plate data is used as the left foot data.

FORCE-PLATE META (DUAL-BELT TREADMILL)

- Bertec | 1200 Hz | Length 1778 mm | Width 558.8 mm
- 4 corner markers
- Output forces already in local (+Z = upward GRF)

- Right belt Local-origin offset → X = +279.4 mm, Y = +889.0 mm, Z = 0 mm
- Left belt
 Local-origin offset → X = -279.4 mm,
 Y = +889.0 mm, Z = 0 mm

CODE STRUCTURE

Cell	Purpose	Output
1	Load libs + helpers + file paths	variables in memory
2	Process one trial (core function)	numpy arrays
3	Ankle-position plots	4-panel figure
4	Force & torque plots	4-panel figure
5	Batch loop / sanity check	console log

DYNAMIC DISPATCH

For subject 2-10

T01 is a trial at 0 degree walking with the boot actuated

T02 is a trial at 0 degree walking with the boot unactuated

T04 is a trial at 5 degrees

T05 is a trial at -5 degrees

T06 is a trial at 10 degrees

T07 is a trial at -10 degrees

- Automate file identification and data extraction with code
- Automatically match files based on experiment orientation

```
#1 loop through all files
for file in root dir:
  if file = S??_T??.tsv:
                                  # trajectory file
     prefix = file without ".tsv"
     trial = number after T
     # choose force filenames
     if trial in (5,7):
                                 # swapped case
       R = prefix + "f 7.tsv"
       L = prefix + "_f_6.tsv"
     else:
                                  # normal case
       R = prefix + "f 6.tsv"
       L = prefix + "f 7.tsv"
     # add existing pairs
     if R exists: add (pos, R, "RIGHT")
     if L exists: add (pos, L, "LEFT")
print total pairs
```

DYNAMIC DISPATCH

- Scan folders → find every Sxx_Txx.tsv trajectory file
- Derive trial number and decide which force file belongs to each foot
 - normal trials → ?_f_6.tsv = RIGHT,
 ?_f_7.tsv = LEFT
 - trials T05 / T07 → mapping is swapped
- Verify files exist; discard missing pairs
- Output list [(trajectory, force, "RIGHT/LEFT"),
 ...] for batch processing

FORCE-PLATE HELPER FUNCTIONS

- Translate and rotate the ankle joint trajectory to the same coordinate system as the force plate
- Correctly superimpose COP and GRF and calculate the force arm and joint torque.

FORCE-PLATE HELPER FUNCTIONS

rs):

• $Z = X \times Y$ (right_hand rule)

S02_T04_f_6.tsv		_T04_f_6.tsv
FIRST_SAMPLE 1		15722.59718610
FORCE_PLATE_TYPE FORCE_PLATE_MODEL FORCE_PLATE_MODEL FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_NE FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO FORCE_PLATE_CORNER_PO	Unknown Right belt SX_POSY_X 507.676721 SX_POSY_Y 1415.532112 SX_POSY_Z -1.608300 GX_POSY_X 1066.476464 GX_POSY_Y 1416.136622 GX_POSY_Z -1.755400 GX_NEGY_X 1068.399668 GX_NEGY_Y -361.862302 GX_NEGY_Z -2.971600 SX_NEGY_X 509.599984 SX_NEGY_Y -362.466902 SX_NEGY_Z -2.824600 279.400000	
FORCE_PLATE_OFFSET_Y FORCE_PLATE_OFFSET_Z FORCE_PLATE_LENGTH FORCE_PLATE_WIDTH	1778.000000	

Function / Action	Why it matters
extract_force_plate_corners(): • Read lines 10-21 of each <i>.tsv</i>	Get the exact geometry of each belt plate
calculate rotation matrix(corne	

Converts "plate local" vectors into the • X = front_right - front_left global lab frame • Y = front_left - back_left

FORCE-PLATE HELPER FUNCTIONS

- calculate_plate_center_offsets()
 - 1. Call both helpers for left & right plate.
 - 2. Average 4 corners → plate geometric centre.
 - 3. offset = -centre \rightarrow shifts origin to plate centre.
 - 4. Return 4 keys ready for pipeline:
 - right_offset, left_offset (mm → m later)
 - right_rotation, left_rotation (3 × 3 each)

MARKER → ANKLE CENTRE

- Read TSV, pick
 LatAnkle + MedAnkle
- Average & convert mm→m
- Apply:
 - 1. plate offset
 - 2. plate rotation R_plateT
 - 3. add global offset (±279.4 mm, 889 mm)
 - **4. optional** slope-angle rotation (±5°, ±10°)

ANKLE CENTRE POSITION PLOT

S04_T04_LEFT

S04_T04_RIGHT

COP DATA PROCESSING

- COP data before and after adding global offset.
- Resample 1200 Hz → 300 Hz
- Offset is applied only to valid (nonzero) frames.
- The COP in the Y direction shows a clear forward-to-backward pattern during stance phase. This reflects the natural gait cycle, where the foot initially contacts the ground in front of the body and then rolls back behind as the step progresses.

FORCE DATA PLOT

Force Diagram Analysis

Axes & Ranges

- **F_z** (**Green**): Dominant vertical force; high range indicates weight/load.
- **F_y** (**Orange**): Forward shear; lower range shows side loads.
- F_x (Blue): Lateral sway; lower range shows side loads.

Key Features

- Peaks: Sudden impacts or abrupt load changes.
- Slopes: Gradual rises/falls indicating smooth loading/unloading.
- Oscillations: Periodic motion or sensor noise.
- Zero: When the left leg is off ground.

Observations

 Clean gait cycles can be seen in the zoomed-in force data (bottom).

FORCE DATA ANALYSIS

View: Y-Z plane

X axis: out of plane (mediallateral)

The force vector shown represents the ground reaction force acting on the foot.

Moment arm = cop - ap Fz COP Late phase

WHY DO WE USE THIS FORMULA?

F_y: mostly negative

 Because the force sensor is the belt, to drag the feet going backward, the force should be negative y.

WHY DO WE USE THIS FORMULA?

In this diagram, we calculate the moment arm as:

Moment = COP – Ankle (only with valid data, not [0,0,0])

This vector points from the ankle to the point where the ground force is applied.

The resulting torque describes the rotational effect of that force on the ankle joint.

WHY DO WE USE THIS FORMULA?

In this diagram, we calculate the torque as:

$$T = r \times F$$

Torque Statistics (Valid Data)

WHY DO WE USE THIS FORMULA?

Quantity	Typical value	Comment
Peak F_z	≈ 800 N	80 kg subject × 9.8 m/s², plus impact
Horizontal moment arm r_y (medial-lateral)	0.10 – 0.12 m	ankle ↔ COP sideways
Horizontal moment arm r_x (anterior-posterior)	0.28 – 0.35 m	toe-out places COP far forward
Cross-product ⇒ τ _γ peak	r_x × F_z ≈ 0.32 m × 800 N ≈ 256 N·m	plot shows 314 N·m → within 20 %
Cross-product ⇒ τ _x peak	r_y × F_z ≈ 0.11 m × 800 N ≈ 88 N·m + smaller (–r_z F_y) term → ~150 N·m	plot shows 156 N·m
Τℤ	only from horizontal forces (≤ 70 N) × short arms → < 60 N·m	plot max 55 N·m

WHY IS THE TORQUE POSITIVE OR NEGATIVE?

WHY IS THE TORQUE POSITIVE OR NEGATIVE?

Vector	Sign (left foot)	Sign (right foot)
$r = Ankle \rightarrow COP$	r_x < 0 ← COP lateral to ankle r_y > 0 ← ankle is medial to COP r_z < 0 ← ankle above plate (-Z)	r_x > 0 ← (same) r_y > 0 ← COP medial but on opposite side r_z < 0 ← (same)
$\mathbf{F} = GRF$ (belt \rightarrow foot)	F_x > 0 ← horizontal force points inward F_y < 0 ← the belt drags the feet backward F_z > 0 ← upward load	F_x < 0 ← (same) F_y < 0 ← (same) F_z > 0 ← (same)

$$egin{array}{cccc} oldsymbol{ au} = \mathbf{r} imes \mathbf{F} & \Longrightarrow & egin{cases} au_x &= r_y F_z &- r_z F_y \ au_y &= r_z F_x &- r_x F_z \ au_z &= r_x F_y &- r_y F_x \end{cases}$$

WHY LEFT_Y_TORQUE "+", BUT RIGHT "-"?

Sign (left foot)

τ_x (sagittal)

- r y × F $z \rightarrow (+)(+) = positive$
- $-(r_z \times F_y) \rightarrow -[(-)(-)] = positive$
- **Result:** $\tau_x > 0$ (plantar-flexion direction)

$τ_{\nu}$ (frontal)

- $r z \times F x \rightarrow (-)(+) = negative$
- $-(r_x \times F_z) \rightarrow -[(-)(+)] = positive$
- r_x & r_z are tiny, |F_z| is much greater than |F_x|, so the result is positive
- Result: $\tau_{v} > 0$

τz (transverse)

- $r_x \times F_y \rightarrow (-)(-) = positive$
- $-(r_y \times F_x) \rightarrow -[(+)(+)] =$ negative
- r_x & r_z are tiny, mostly |F_y| > |F_x|, so most of the result is positive; when |F_y| < |F_x|, the result is negative
- Result: $\tau z > 0$, a small part of $\tau z < 0$

Sign (right foot)

τ_x (sagittal)

- r y × F $z \rightarrow (+)(+) = positive$
- $-(r_z \times F_y) \rightarrow -[(-)(-)] = positive$
- Result: $\tau_x > 0$ (plantar-flexion direction)

$τ_ν$ (frontal)

- $r_z \times F_x \rightarrow (-)(-) = positive$
- $-(r_x \times F_z) \rightarrow -[(+)(+)] =$ negative
- r_x & r_z are tiny, |F_z| is much greater than |F_x|, so the result is negative
- Result: τ_ν < 0 (external inversion)

τz (transverse)

- $r \times F y \rightarrow (+)(-) = negative$
- $-(r_y \times F_x) \to -[(+)(-)] = positive$
- r_x & r_z are tiny, mostly |F_y| > |F_x|, so most of the result is negative; when |F_y| < |F_x|, the result is positive
- Result: $\tau z < 0$, a small part of $\tau z > 0$

TORQUE DATA INSERTION

COMPARISON OF ACCELERATION AND TORQUE

- Side-by-side layout left = ankle linear acceleration;
 right = computed joint torque. Three stacked rows → X, Y, Z axes.
- Step-cycle synchrony
 - Spiky acceleration bursts (heel-strike / push-off) recur
 ≈ 1 Hz.
 - Corresponding torque curves show matching periodic ramps.
- Axis specifics
 - X-axis $\pm 3 \, \text{m/s}^2$ jitter co-occurs with $0 \rightarrow 150 \, \text{N} \cdot \text{m}$ plantar-flexion pulses.
 - Y-axis largest swings: 4 m/s^2 spikes align with $0 \rightarrow 300 \text{ N} \cdot \text{m}$ eversion/ inversion moments.
 - Z-axis vertical impacts < 1.5 m/s² pair with modest ± 40 N·m transverse torque.

THANK YOU!