104 Chapter 5 Stiffness Analysis of Frames—II

Member ed:

			[1	c]:		
	u_{ϵ}	v_{e}	θ_{ze}	u_d	v_d	θ_{zd}
200	T0.0048	0	-12.00	-0.0048	0	-12.00
		0.800	0	0	-0.800	0
			0.4×10^{5}	12.00	0	0.2×10^{5}
				0.0048	0	12.00
		Sym.			0.800	0
						0.4×10^{5}

Assembled global stiffness equation:

	$\lfloor P_{sa}$	P_{ra}	P_{mts}	P_{xb}	P_{yb}	P_{mzb}	P_{sc}	P_{rc}	P_{suge}	P_{xd}	P_{yd}	P_{mtd}	P_{se}	$P_{y\tau}$	$P_{mz\epsilon} \rfloor^{\mathrm{r}} =$	
	Γ ^μ ,	v _a	$\theta_{z\sigma}$	иь	ν_b	θ_{zb}	u _c	v_c	θ_z ft	u_d	V _d	θ_{zd}	u,	v_{ϵ}	θ_{ze} .) ()
- 1	0.0048	0	-12.00	-0.0048	0	-12.00										u_a
		0.800	0	0	-0.800	0		0			0		1	0		v _a
			0.4×10^{5}	12.00	0	0.2×10^{5}				<u> </u>						θ _{z,a}
				0.6500	0.2591	4.969	-0.6452	-0.2591	-7.0313				!			иь
				i	0.9695	17.381	-0.2591	-0.1095	17.381		0			0		Ub
				} [1.4×10^{5}	7.0313	-17.381	0.5×10^{5}							0,1
200	~~~			 !			1.1589	-0.1226	14.231	-0.5137	0.3817	7.200	i I			$\{u_c\}$
				E E	Sym			0.4006	-7.781	0.3817	-0.2911	9.600	i 1	0		υ _c
				1 [1.4 × 10 ⁵	-7.200	-9.600	0.2×10^{5}	! !			θ_{zc}
				r						0.5185	-0_3817	4.80	~0.0048	0	12,00	ud
) 		ļ					1.0911	-9.60	0	-0.800	0	υ _d
] 		ļ						$0.8\times10^{\rm s}$	−12.00	0	0.2×10^5	Bzd
				L						~			0.00480	0	-12.00	u _e
						į			i				t T	0.800	0	v.
				, 1		į			Ì				1		0.4×10^{5}	$\left[\theta_{ze} \right]$

EXAMPLE 5.4

A pin-jointed space truss is supported and loaded as shown. $E=200,\!000$ MPa. Bar areas are:

$$A_{ab} = 20 \times 10^3 \text{ mm}^2$$

 $A_{ac} = 30 \times 10^3 \text{ mm}^2$
 $A_{ad} = 40 \times 10^3 \text{ mm}^2$
 $A_{ac} = 30 \times 10^3 \text{ mm}^2$

- A_{ae} 1. Calculate the displacement at a.
- 2. Calculate the reactions.

Develop the three-dimensional stiffness matrix for an axial force member. Stating Equation 4.34 in the local coordinates shown and eliminating all irrelevant degrees of freedom,

$$\begin{cases} F_{x'1} \\ F_{x'2} \end{cases} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} u_1' \\ u_2' \end{cases} = \begin{bmatrix} \mathbf{k}' \end{bmatrix} \begin{cases} u_1' \\ u_2' \end{cases}$$

In Equation 5.7 delete all columns except those corresponding to F_{x1} , F_{y1} , F_{z1} , F_{x2} , F_{y2} , and F_{z2} and all rows except those corresponding to $F_{x'1}$ and $F_{x'2}$ (compare Example 5.1) yielding

$$[\Gamma] = \begin{bmatrix} l_{x'} & m_{x'} & n_{x'} & 0 & 0 & 0 \\ 0 & 0 & 0 & l_{x'} & m_{x'} & n_{x'} \end{bmatrix}$$

Using Equation 5.16, $[k] = [\Gamma]^T [k'] [\Gamma]$,

Member	x	у	z	L	$l_{x'}$	$m_{x'}$	$n_{x'}$
ab	-2	-4	8	9.165	-0.2182	-0.4364	-0.8729
ac	6	-4	8	10.770	0.5571	-0.3714	-0.7428
ad	6	2	8	10.198	0.5883	0.1961	-0.7845
ae	-2	2	8	8.485	-0.2357	0.2357	-0.9428

Record direction cosine products multiplied by A/L. (Values of A/L are in mm.)

Member	(A/L)	×	$I_{x'}^2$	$m_{x'}^2$	$n_{x'}^2$	$l_{x'}m_{x'}$	$l_{x'}n_{x'}$	$m_{x'}n_{x'}$
ab	2.182		0.1034	0.4156	1.663	0.2078	0.4156	0.8312
ac	2.785		0.8643	0.3841	1.537	-0.5762	-1.1525	0.7683
ad	3.922		1.3574	0.1508	2.414	0.4524	-1.8101	-0.6034
ae	3.536		0.1964	0.1964	3.143	-0.1964	0.7858	-0.7858
	Σ		2.5215	1.1469	8.757	-0.1124	-1.7612	0.2103

Referring to the [k] matrix and adding stiffnesses in the usual way, the global stiffness equations for the nonzero degrees of freedom are

$$\begin{cases} P_{xa} \\ P_{ya} \\ P_{ta} \end{cases} = \begin{cases} 200 \\ 600 \\ -800 \end{cases} = 200 \begin{bmatrix} 2.522 & -0.1124 & -1.7612 \\ 1.147 & 0.2103 \\ \text{Sym.} \end{cases} \begin{cases} u_a \\ v_a \\ w_a \end{cases}$$

Solving for the displacements,

$$|\Delta| = |u_a \ v_a \ w_a| = [0.1783 \ 2.722 \ -0.4863] \text{ mm}$$

106 Chapter 5 Stiffness Analysis of Frames—II

2. Reactions. Using the properties of the element stiffness matrices (see above table), the global components of the reactions are

_			u_a	v_{σ}	₩ _a ¬		76.4		
\int_{R}	xb]		0.1034	0.2078	0.4156		-152.8		
- 1	yb .	1	0.2078	0.4156	0.8312		-305.6		
E	zb		0.4156	0.8312	1.663				
	xc		0.8643	-0.5762	-1.1525		170.8		
ı	ye	= - 200	= - 200	-0.5762	0.3841	0.7683	(0.1783)	-113.8	
	· 1			-1.1525	0.7683	1.537	2.722 } =	-227.7	kN
\ \frac{2}{R}	$\left \frac{\partial z}{\partial xd}\right = -$			1.3574	0.4524	-1.8101	-0.4863	-470.7	
- [yd		0.4524		£-0.40057	-156.9			
	Zd Zd		-1.810	-0.6034	2.414		627.8	ļ	
	Zza Zze		0.1964	-0.1964	0.7858		176.3		
- 1	Rye		-0.1964	0.1964	-0.7858		-176.3		
- 1	Rze		0.7858	-0.7858	3.143		705.5		
l 1	ر ۳۰		L		-	j.	-		

EXAMPLE 5.5

Find the direction cosines of the member shown x and z are horizontal; y is vertical. The x' axis is along the member. The x'y' plane makes a dihedral angle of 30° with a vertical plane through the member axis. Demonstrate that the matrix of direction cosines $[\gamma]$ can be generated by three successive rotations.

