

REAL-TIME

GARMVOLUTION

MONITORING

Smart Livestock Solutions

Amey Bhole, Remco van Buijtenen and Thorsten Rangnau

September 30, 2021

Contents

System Overview

System Architecture

Hardware Architecture

Software Architecture

Architecture Evaluation

Closing remarks

System Architecture

Hardware Architecture

Software Architecture

Architecture Evaluation

Closing remarks

Farmvolution

- Is the complete automated solution for livestock production and management
- Help farmers manage animals by providing dependable information to make operational and strategic decisions
- Health monitoring and management for cattle and pigs

System Architecture

Hardware Architecture

Software Architecture

Architecture Evaluation

Closing remarks

System Architecture

Actors

- ► Farm Worker
- ▶ Farm Owner
- ► Food Manufactures
- ▶ Maintenance Team

System Architecture Components

Components

- ▶ Pig Sensors
- ▶ Cattle Sensors
- External Data
- ► Local Server
- Database
- Monitoring
- Reporting
- LogisticApiFacade
- UiApiFacade
- ▶ WebInterface

System Architecture

System Architecture

Hardware Architecture

Software Architecture

Architecture Evaluation

Closing remarks

Hardware Architecture

Hardware Overview

Hardware Architecture Components

2 types of sensor arrays:

- Kinect v2 for pigs
- ► 2x FLIR A310 for cattle

Pig setup produces an order of magnitude more data than the cattle setup

Sensor specifications

Kinect v2

- ► 1920x1080 BGRA video @ 30 fps
- ▶ 512x424 depth sensor @ 30 fps
- ▶ 4 channel audio with 32 bit samples @ 16000HZ

FLIR camera

- ▶ 320x240 RGB video @ 30 fps
- periodic measurements, twice per cow per day
- single measurement takes 2-3 seconds on average, and 10 seconds at most.

For Pigs

- ► Typically 10-15 pigs per unit
- Peak bandwith of 260 MB/s
- ► Average bandwith of 120 MB/s
- Around 12 MB/s after compression

For Cows

- ► Peak bandwith of 13MB/s
- ▶ 5 MB/s after compression

Hardware Architecture

Maximum storage required for buffering for 24 hours:

- ▶ 165 TB of storage per pig farm
- ▶ 6 TB of storage per cattle farm

Core i7-6700K CPU @ 4.0GHz can compress 500MB/s using gzip.

Hardware Architecture

Data flow rates for example setup

System Architecture

Hardware Architecture

Software Architecture

Architecture Evaluation

Closing remarks

Overview of components

Structure of Software

Figure: Structure of Cloud

Figure: Structure of Farm

Transactions - Audit Trail Pattern

Transactions - Audit Trail Pattern

Transactions - Audit Trail Pattern

Sensitivity 1: If sensor fails no transaction was created.

Trade off 1: If Local Server or Bridge does not receive data within a certain timeout process will triggered again

Therefore: We have a risk that sensor fails during collection and have to make a trade off.

Software Architecture Buffering

Redundancy of Storage

System Architecture

Hardware Architecture

Software Architecture

Architecture Evaluation

Closing remarks

Architecture Evaluation Scenario

Any component between sensor and cloud storage might fail during:

- collection of data
- sending data
- processing of data

Architecture Evaluation

Scenario 1	One Component fails during collection, send-				
	ing or pro	cessing data	a		
Q-Attribute	Reliability				
Environment	Data of a certain sensor is collected				
Stimulus	One part of Farm- or CloudComponent fails				
Response	99 % Reliability				
Decisions	Requ.	Sensitiv.	Tradeoff	Risk	Non-Risk
Transaction Audit Trail	ATNFR1	S1	TO1	R1	
Buffering	ATNFR1				NR2
Redundancy of Storage	ATNFR1				NR3
Reasoning	The decisions reduce the loss of the data and				
	will nearly always rely on correct data				
Arch. model	Audit Trail Pattern for transactions, Buffering,				
	Redundancy of Storage components				

Table: ATAM Evaluation of Senario 1

System Architecture

Hardware Architecture

Software Architecture

Architecture Evaluation

Closing remarks

Closing remarks

Roadmap

Quarter	1st iteration (2019)
Q1	Minimum viable product for cattle and pigs
Q2	Train and Test ML models for cattle and pigs
Q3-4	Define Web UI for cattle and pig products

Our team

ANDREI CUSNIR

BUIJTENEN

STEFAN EVANGHELIDES

THORSTEN RANGNAU

Questions?

REAL-TIME

GARMVOLUTION

MONITORING