大模型于网络安全的应用

汇报人: 唐晨阳

专业: 软件工程

相关背景

Related background

关键技术

Key technology

未来发展

Future Development

创新总结

Innovation Summary

— 01— 背景介绍

Part one

大模型应用&网络安全

大模型特点

大模型是"大算力""大数据"与"强算法"结合的划时代人工智能产物,随高性能芯片算力、训练数据集、神经网络复杂度变化而进化。国内常指大语言模型,也涵盖视觉、多模态等大模型。它具备语义分析、代码理解、复杂推理等能力,可应用于众多行业。

两者的关联

大模型在网络安全领域有以下优势:一是语义分析能力,可基于文本特征助力威胁情报共享、异常流量发现;二是代码理解能力,能识别代码相关模式并发现安全问题;三是复杂推理能力,可辅助安全运营团队实现攻击溯源及响应处置自动化、自主化。

大模型应用&网络安全

目前已有多家公司推出了安全领域的大模型应用,如图所示:

公司	安全大模型	基础模型	应用场景	功能
微软	Security Copilot	GPT-4	安全事件调查处置	对安全事件攻击路径、攻击目标进行还原,提出事件 处置方案等
谷歌	Sec-PaLM 2	PaLM 2	代码审计	解释潜在恶意脚本行为检测代码威胁
深信服	安全 GPT	类 GPT 技术	XDR 平台	实现高级威胁检测、安全监测调查、热门漏洞排查
启明星辰	PanguBot (盘小古)	_	安全运营	实现自动化和智能化的安全运营
奇安信	类 ChatGPT 安全大模型	类 ChatGPT 技术		应用于安全产品开发、 威胁检测、漏洞挖掘、 安全 运营及自动化、攻防对抗、反病毒、威胁情报分析和 运营、涉网犯罪分析等领域
安恒信息		类 ChaGPT 技术	数据安全	数据分类分级、智能生成检测规则
360	360GPT 安全应用框架	360 智脑	·	
绿盟科技	SecXO ps	A 经验积淀	安全智能分析平台	安全智能分析

—— 02 —— 关键技术

Part two

大模型在网络安全领域的潜在应用场景

异常流量检测

当下网络攻击呈现出一种新 态势, 攻击行为与正常网络 行为之间的相似度持续攀升, 其隐蔽性愈发深厚,传统的 异常流量检测手段难以察觉 攻击流量中那些极为细微的 差异。利用大模型对网络日 志、流量数据讲行聚类,可 以识别和捕获与正常行为模 式不符的异常流量。

攻击行为发现

大模型可进行代码比对, 精准识别已知攻击模式与 工具,分析代码及执行路 径能发现恶意代码与攻击 行为,还能结合威胁情报 分析共享功能,与数据库 对比匹配,挖掘海量数据 关联与新威胁迹象,提升 未知攻击发现能力。

漏洞利用排查

大模型通过对代码展开静态、 动态分析, 可精准定位潜在 漏洞、安全风险及错误运用 之处。它能深度理解代码语 法、API 调用与数据走向, 锁定可能引发漏洞的代码片 段,依据 API 调用及数据流 向路径,联动资产管理系统, 自动筛查可能受波及的 IP 服务器与系统资产。

大模型在网络安全领域的潜在应用场景

安全运维审计

大模型可全方位审查代码, 精准揪出违反安全与合规 标准的代码片段,彻查敏 感信息处理、访问控制及 加密运用等方面的漏洞, 挖掘潜藏的安全隐患。如 中国电信借助大模型,帮 助安全运维审计人员高效 精准地处置代码安全问题。

攻击溯源分析

大模型助力安全团队剖析攻 击事件,深度解析行为模式、 技术特性与攻击者意图。融 合历史数据、网络流量、系 统日志,展开精密推理,精 准定位攻击源,追踪攻击轨 迹。借助威胁情报,大模型 迅速甄别攻击关联,挖掘攻 击者来源及所用工具和技术。

深度学习框架 (Transformer架构)

从整体结构上看,Transformer 主要由编码器 (Encoder) 和解码器 (Decoder) 组成。编码器 用于理解输入序列的语义信息,解码器则在理解输 入的基础上生成目标序列。

Transformer 架构的优势在于它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)在处理序列数据时的一些局限。Transformer可以高效地并行计算,并且能够很好地处理长序列中的长距离依赖,在机器翻译、文本生成等众多任务中取得了优异的性能。

预训练与微调技术

大模型预训练可从大规模网络安全数据里汲取通用知识与模式,增强泛化性并提升效率。微调则依据特定任务,如攻击检测等,利用少量标注数据精准适配,让模型既有广泛认知基础,又能出色完成专门网络安全任务,实现性能优化。

Lora微调的核心思路是通 过低秩矩阵来近似表示模 型参数的更新。Lora 假设 可以用两个低秩矩阵的乘 积来表示对原始权重矩阵 的微调更新。例如,对于 一个权重矩阵W, Lora使 用 $W+\Delta W$ 来表示微调后的 权重,其中 $\Delta W = BA$, B以 \mathcal{D}^A 是两个低秩矩阵。

对抗生成技术 (生成对抗网络)

GAN 主要包含生成器(Generator)和 判别器 (Discriminator) 两个部分。在 训练过程中, 生成器和判别器相互竞争、 交替进行训练。先固定生成器的参数, 训练判别器使其能够准确地分辨真实样 本和生成的假样本; 然后固定判别器的 参数, 训练生成器使其生成的样本更好 地欺骗判别器。通过不断重复这个过程, 生成器和判别器的性能都逐渐提升,最 终达到一个动态平衡。

GANs模型

隐私保护技术

大模型在隐私保护技术中有着丰富多样的应用,例如全同态加密,像 Zama 对大模型操作拆解应用以保护输入输出隐私;腾讯安全的隐私保护脱敏技术处理提示词;区块链保障数据不可篡改与可追溯,零信任模型严格身份验证授权;还有模型参数加密技术等等,在诸多场景中各展其长,有力地推动了大模型于隐私保护领域的发展。

区块链技术方案示意图

— 03 未来发展

Part three

大模型在安全领域的前景展望

在应用上,将深度融入威胁检测与防御,精准识别新型攻击;助力漏洞管理,高效扫描并修复漏洞;推动安全运营自动化,降低人力成本与失误;强化数据安全保护,精准分类分级与加密数据;优化风险评估与预测,助力提前布局策略。

技术层面, 多模态融合可综合分析多源数据 提升效果; 强化学习使模型能在交互中优化 决策; 模型融合集成则汇聚优势增强可靠性。

大模型在安全领域的发展难点

高质量数据集匮乏

网络安全大模型训练数据集有格 式、噪声、标注难点,应规范并 优化处理。 大模型数据调参消耗资源过大

大模型调参面临超参数多、资源 耗大难题,需要开发更多的改进 调优策略。

3

大模型答案的可信度不稳定

大模型有容易产生"幻觉",影响安全决策,需要专业训练、严格把关数据、综合评估大模型返回的答案。

5

模型更新与维护

安全领域数据变化迅速,新的威胁、漏洞不断涌现,保证大模型 持续有效性是一大难点。

AI 与安全领域不互通

网络安全大模型开发中, AI 与安全人才协调不容易, 需要建立合作机制, 促进知识共享与人才培养。

2

—— 04 —— 创新总结

Part four

大模型应用总结

攻击识别

大模型可凭借对海量数据的分析能力,学习各类网络攻击的复杂模式,从而有效识别新型的恶意软件、 高级持续性威胁以及网络钓鱼手段等,即便攻击者不断变换攻击手法,也能察觉异常,提前预警。

风险评估与防范

通过分析数据的使用、流转情况以及外部环境因素,评估可能出现的隐私泄露风险,还能给出针对性的隐私保护策略建议,比如推荐合适的数据脱敏方法、加密技术应用场景等,保障数据隐私安全。

自动化安全流程

可以实现诸如漏洞扫描、安全策略配置、事件报告生成等诸多安全运营流程的自动化操作,减少人工操作的繁琐与误差,提高整体安全运营的效率,让安全团队能将更多精力投入到更复杂的安全问题解决上。

技术总结

Transformer架构

大模型基于Transformer架构构建, 其多头注意力机制助力精准捕捉数据特征, 为语义理解等任务提供强大支撑。

预训练与微调技术

大规模预训练学习通用知识,再针对特定网络安全任务微调。以少量数据优化,适应多样场景,提升模型实用性与针对性。

对抗生成技术

利用对抗生成网络,生成虚假网络数据用于测试模型鲁棒性,同时可模拟攻击,促使模型不断进化,增强防御真实攻击能力。

隐私保护技术

用多种隐私保护手段,如全同态加密让数据在 密文态运算,脱敏技术处理敏感信息,保障数 据安全,平衡模型效能与隐私需求。

— THANKS

感

谢

观

看

汇报人: 唐晨阳

专业: 软件工程

