THE UNIVERSITY OF SYDNEY

MATH1901 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Tutorial Week 2 2012

1. (This question is a preparatory question and should be attempted before the tutorial. Answers are provided at the end of the sheet – please check your work.)

Express the following in the form x + iy (Cartesian or standard form):

(a)
$$(2+3i)+(4-5i)$$
;

(b)
$$(1+i)(1-i)$$
;

(c)
$$(2+3i)-(4-5i)$$
;

(d)
$$\frac{1+i}{1-i}$$
;

(e)
$$\frac{1+2i}{3-4i}$$
;

(f)
$$(1+i)^2$$
;

(g)
$$i^9$$
;

(h)
$$i^{123} - 4i^8 - 4i$$
.

Questions for the Tutorial

2. Solve the following equations in \mathbb{C} :

(a)
$$z^2 + 3z + 2 = 0$$

(b)
$$z^2 + z + 1 = 0$$

(c)
$$z^2 + 2\overline{z} + 1 = 0$$

(d)
$$z^4 = 16$$

- **3.** (a) Find all solutions of the equation $z^2 + 3 + 4i = 0$ by setting z = a + bi for some real numbers a and b.
 - (b) Solve $z^2 + z + 1 + i = 0$. (*Hint*: Use your solution to the previous part.)

4. For all complex numbers z_1 and z_2 , prove that

(a)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
, (b) $\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$, (c) $\overline{z_1} = z_1$ if and only if z_1 is real,

and (d)
$$\overline{\left(\frac{1}{z_1}\right)} = \frac{1}{\overline{z_1}}$$
 for $z_1 \neq 0$.

 ${\bf 5.}$ Sketch the following sets in the complex plane.

(*Hint*: Note that |z-c| is the distance between z and c in the complex plane, hence |z+c|=|z-(-c)| is the distance between z and -c.)

(a)
$$\{z \in \mathbb{C} \mid |z+i| = 5\},$$

(b)
$$\{z \in \mathbb{C} \mid \frac{1}{2} \le |z+i| < 1\}.$$

(c)
$$\{z \in \mathbb{C} \mid |z| \le 3\}$$

(d)
$$\{z \in \mathbb{C} \mid |z+i| > 2\}$$

(e)
$$\{z \in \mathbb{C} \mid \text{Re } z < -1\}$$

(f)
$$\{z \in \mathbb{C} \mid \text{Im } z \ge -1\}$$

(g)
$$\{z \in \mathbb{C} \mid |z - i| \le |z - 1| \}$$

(h)
$$\{z \in \mathbb{C} \mid \left| \frac{z-1}{z-2} \right| \leq 3 \}$$

(i)
$$\{z \in \mathbb{C} \mid \operatorname{Im}(2z - \overline{z}(1+i)) = 0 \text{ and } \operatorname{Re}(2z - \overline{z}(1+i)) < 4\}$$

(j)
$$\{z \in \mathbb{C} \mid \operatorname{Im}(z^2) < \operatorname{Re} z\}$$

6. (a) Write the following in *polar* form, $z = r(\cos \theta + i \sin \theta) = r \cos \theta$:

$$(i)$$
 1 + i

(ii) $1+\sqrt{3}i$

(iii)
$$3\sqrt{3} + 3i$$

(b) Using your answers to the previous part, find the following, expressing your answers first in polar then Cartesian (standard) form.

$$(i)$$
 $(1+i)^{11}$

(*ii*) $(1+\sqrt{3}i)^7$

(iii)
$$(3\sqrt{3} + 3i)^3$$

 $(iv) \quad \frac{1+i}{1+\sqrt{3}i}$

$$(v) \quad \frac{3\sqrt{3}+3i}{1+i}$$

 $(vi) \quad \frac{1+\sqrt{3}i}{3\sqrt{3}+3i}$

7. Prove the triangle inequality $|z_1 + z_2| \leq |z_1| + |z_2|$, for all $z_1, z_2 \in \mathbb{C}$.

8. If the complex number z is imagined as a point in the complex plane, then its conjugate \overline{z} is the point obtained from z by reflecting in the real axis. What are the complex numbers obtained from z by the following geometric transformations?

- (a) 180° rotation about 0.
- (b) Reflection in the imaginary axis.
- (c) 45° clockwise rotation about 0.
- (d) Reflection in the line y = x.

Extra Questions

9. Express $\cos 5\theta$ and $\sin 5\theta$ in terms of $\cos \theta$ and $\sin \theta$, respectively. (*Hint*: Recall the binomial expansion:

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$$

Use this as well as de Moivre's Theorem to expand $(\cos \theta + i \sin \theta)^5$.)

10. (a) Let r be a real constant greater than 2. The set $\{z \in \mathbb{C} \mid |z+1|+|z-1|=r\}$ is a curve in the plane. Describe it and then find its equation in terms of x and y.

(b) Next, assume that -2 < r < 2 and $r \neq 0$. Describe the curve $\{z \in \mathbb{C} \mid |z+1| - |z-1| = r\}$ and find its equation.

Solution to Question 1

1. (a)
$$(2+3i) + (4-5i) = 6-2i$$
; (b) $(1+i)(1-i) = 1^2 - i^2 = 1+1=2$;

(c)
$$(2+3i) - (4-5i) = -2+8i;$$
 (d) $\frac{1+i}{1-i} = \frac{(1+i)(1+i)}{1^2-i^2} = \frac{(1+i)^2}{2} = i;$

(e)
$$\frac{1+2i}{3-4i} = \frac{1}{5}(-1+2i);$$
 (f) $(1+i)^2 = 2i;$

(g)
$$i^9 = i^8 i = i$$
; (h) $i^{123} - 4i^8 - 4i = -4 - 5i$.