Groupe fondamental et revêtement

Théorème de van

Kampen

Question 1/3

Lien entre $\Pi_1^{\text{rev}}(B,b)$ et $\Pi_1^{\text{lacet}}(B,b)$

Réponse 1/3

Si B est connexe, localement connexe par arcs, localement trivialisable et semi-localement simplement connexe alors $\Pi_1^{\text{rev}}(B,b)$ et $\Pi_1^{\text{lacet}}(B,b)$ sont isomorphes

Question 2/3

Espace semi-localement simplement connexe

Réponse 2/3

Tout $x \in X$ admet un voisinage V tel que tout lacet en x dans V est homotope au lacet constant

Question 3/3

Théorème de van Kampen

Réponse 3/3

Si $X = U_1 \cup U_2$ avec U_1 et U_2 deux ouverts non vides tels que $U_1 \cap U_2$ est un ouvert non vide et connexe par arcs, soient $x \in U_1 \cap U_2$ et $\psi_i: \Pi_1^{\text{lacet}}(U_1 \cup U_2, x) \to \Pi_1^{\text{lacet}}(U_i, x) \to$ $\Pi_1^{\text{lacet}}(X,x)$ alors

$$\Pi_1^{\text{lacet}}(X, x) \text{ alors}$$

$$\psi : \Pi_1^{\text{lacet}}(U_1) * \Pi_1^{\text{lacet}}(U_2, x) \longrightarrow \Pi_1^{\text{lacet}}(X, x) \text{ est}$$
un morphisme de groupes dont le noyau vaut
$$\langle\!\langle \psi_1(g) * \psi_2(g^{-1}), g \in \Pi_1^{\text{lacet}}(U_1 \cap U_2, x) \rangle\!\rangle$$