# Vision Based Outdoor Localization of IIITD Campus

CV Final Presentation

Srinidhi Hegde 2013164 Tarun Malhotra 2013112 Neeraj Vaishnao 2013142

## Introduction

#### • WHAT?

To estimate the GPS location (outdoors) of the user in the IIIT-Delhi Campus from images

#### WHY?

- Applications Egocentric Localization, Oil Pipeline Inspection, Mine Exploration, Military Applications, Crime Scene investigation
- ➤ Motivated from **"Where am I ?" by ICCV, Computer Vision Contest**

#### HOW?

That's what we will see in this presentation.

## **Location Recognition - Feature Extraction**

- SIFT Descriptors Basic Idea : invariance to geometric transformation and illumination
  - extracts blob like feature points and describe them with a scale, illumination, and rotational invariant descriptor.
  - does not give an overall impression of the image (Not a global descriptor).
  - But, for recognition, Global descriptor is needed. Solution : Bag Of Features

- Bag of Words descriptors -
  - create a vocabulary of features with k words
  - this partitions the continuous SIFT feature space into k regions
  - represent images as bags of quantized SIFT features, based on the vocabulary

## **Motion Estimation**

- Pick 2 best candidate images based on number of matches.
- GPS estimation based on number of matches among inliers as:

$$\frac{N_{ref1}P_{ref1} + N_{ref2}P_{ref2}}{N_{ref1} + N_{ref2}},$$

- If only one image in inliers then assign the GPS of the best match image.
- More accurate GPS estimation using structure of motion techniques of triangulation uses epipolar constraints.

## Vocabulary

Formed the vocabulary by sampling many local features from our training set and then clustering them using k-means.

- The number of k-means clusters is the size of our vocabulary and hence the size of our new feature space.
  - o Tried for 100,200 and 1500 bags
- Clustering is a time consuming process. Built the vocabulary once, and stored the centroids of the clusters.
- For any new SIFT feature we observe, we can figure out which region it belongs to using the saved centroids of our original clusters.

## Training Classifiers

#### A. 1-vs-All SVM

- a. Two Classes : Positive/Negative
- b. Features: Bag of SIFT (Dimensions: 50/100/1500)
- c. Training Set: Maintained training ratio of 1:4 (Positive:Negative Images)

#### B. Multi Class SVM

- a. Ten Classes : 4,3,3 faces for Student Center, Library Building and Boys Hostel, respectively
- b. Features : Bag of Sift

## Server and Mobile Application









### Retrofit 2.0

A type safe REST Client for Android & Java



## Data Collection and Dataset

Two Spots were chosen along a straight line from each of the (open) faces of the buildings (5m and 10m away)

From every spot 5 images were taken. The data of each of these images was later parsed in a 6 dimensional tuple.

A typical tuple corresponding to an image looks like: (NE,28.54,77.27,1455617230886.jpg,F,1) = (Direction,Lat,Long,FileName,Face,Building-Index)

Student Center : 300 Images

Library Building : 200 Images

Boys Hostel : 150 Images



## **Evaluation Criteria**

- A. Location Detection (Classifier Prediction)
  - a. Accuracy = (TP + TN)/(TP + FP + FN + TN)
  - b. Sensitivity (TPR): TP/(TP+FN)
  - c. Specificity (TNR) : TN/(TN + FP)
- B. GPS Localization
  - a. The error in the GPS measurements by our physical devices was large (~10), and hence could not analyse properly



## Results

- Maximum Error in GPS estimation: 3m
- Location Recognition :



| Face of Building               | Accuracy | Sensitivity | Specificity |
|--------------------------------|----------|-------------|-------------|
| Back(Facing West) SC           | 0.73     | 0.64        | 0.75        |
| Front (Facing East) SC         | 0.86     | 0.79        | 0.82        |
| Entry Face (Facing South) LB   | 0.72     | 0.60        | 0.88        |
| Back Face (Facing West)<br>LB  | 0.62     | 0.54        | 0.64        |
| Front Face (Facing West)<br>BH | 0.81     | 0.72        | 0.82        |
| Left Face (Facing North)<br>BH | 0.80     | 0.66        | 0.83        |

1500 bags, 1-vs-All Classifiers

### **Future Works**

- Use cross-validation to measure performance rather than the fixed test / train split.
- More accurate GPS estimation using structure of motion techniques
- Add a validation set to tune learning parameters.
- We can try using the various Machine Learning models, like Artificial Neural Networks, Random Decision Forests, to classify the building faces, and compare the results.
- Add spatial information to the features by creating a grid of visual word histograms over the image, as discussed in Beyond Bag Of Words by Lazebnik et al.

## Questions?

## Thank You