

## TRATAMIENTO INTELIGENTE DE DATOS

Ernesto Serrano Collado

## T. INTRODUCCIÓN

Presentación del dataset





### 18.865 W.C.

Whoa! That's a big number, aren't you proud?

#### NATIONAL PUBLIC TOILET MAP

Dataset con información detallada de más de 17.000 baños públicos y privados en toda Australia.



#### Algunos de los datos

- Nombre del baño.
- Dirección.
- Latitud y longitud.
- Características generales del baño.
- Ubicación.
- Accesibilidad.
- Horas de apertura.
- Características adicionales (por ejemplo, duchas, instalaciones para cambiar bebés, etc.).
- Notas (por ejemplo, duchas accionadas por monedas, etc.).

https://data.gov.au/dataset/national-public-toilet-map

2.
PRE-PROCESAMIENTO

Pre-Procesamiento

#### **ESTADÍSTICAS**



Con el nodo de estadísticas de KNIME podemos hacernos una primera aproximación de los datos de nuestro dataset

| State                                                                                                                                                                                                       | Male            | Female          | Unisex          | AccessLimited   | Parking                      | IsOpen          | BabyChange      | Showers         | DrinkingWater   | SharpsDisposal  | SanitaryDisposal | Status                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------------------------------------|
| No. missings: 0                                                                                                                                                                                             | No. missings: 0 | No. missings: 0 | No. missings: 0 | No. missings: 0 | No. missings: 0              | No. missings: 0 | No. missings: 0 | No. missings: 0 | No. missings: 0 | No. missings: 0 | No. missings: 0  | No. missings: 0                                |
| Top 20:<br>New South Wales: 6244<br>Victoria: 4233<br>Queensland: 3546<br>Western Australia: 2112<br>South Australia: 1523<br>Tasmania: 823<br>Northern Territory: 206<br>Australian Capital Territory: 178 | false : 3852    |                 | false: 16252    | false: 18182    | false : 11606<br>true : 7259 |                 |                 |                 |                 |                 | false: 15646     | Top 20:<br>Verified: 14614<br>Unverified: 4251 |
| Bottom 20:                                                                                                                                                                                                  | Bottom 20:      | Bottom 20:      | Bottom 20:      | Bottom 20:      | Bottom 20:                   | Bottom 20:      | Bottom 20:      | Bottom 20:      | Bottom 20:      | Bottom 20:      | Bottom 20:       | Bottom 20:                                     |

#### CÁLCULO DE DISTANCIAS

### Fórmula del haversine o semi verséneo

$$ext{hav}igg(rac{d}{r}igg) = ext{hav}(arphi_2 - arphi_1) + \cos(arphi_1)\cos(arphi_2) ext{hav}(\lambda_2 - \lambda_1)$$

- d es la distancia entre dos puntos (sobre un círculo máximo de la esfera, véase distancia esférica),
- R es el radio de la esfera, en este caso 6371 que es el radio en kilómetros de la tierra,
- $\phi_1 \phi_2$  latitud del punto 1 y latitud del punto 2 en radianes,
- $\lambda_1$   $\lambda_2$  longitud del punto 1 y longitud del punto 2 en radianes.

# 2. ANÁLISIS DESCRIPTIVO

Análisis descriptivo

#### CORRELACIÓN



- Correlación entre Male y Female.
- Correlación entre AccesibleMale y AccessibleFemale.
- Correlación entre Status y IsOpen.
- Correlación negativa entre Unisex y Male/Female.
- Correlación negativa entre
   AccesibleUnisex y
   AccesibleMale/AccessibleFemale

#### **MAPA GENERAL**



Podemos ver como los baños se distribuyen sobre los grandes núcleos de población con grandes zonas despobladas por el centro del país.

#### **MAPA POR ESTADOS**



Se aprecia la diferencia entre las distintas provincias conteniendo Sidney casi 11.000 de un total de 17.000 y contando los Territorios del norte con tan solo 211

#### **MAPA POR ESTADOS - ADULT CHANGE**



Vemos la poca cantidad de vestidores para adultos, de nuevo se aprecia mucha diferencia entre los distintos estados.

#### MAPA POR ESTADOS - SHARP DISPOSAL



Curiosamente hay un mayor número de baños públicos con punto de eliminación segura de agujas que cambiadores para adultos.

#### **MAPA POR ESTADOS - DRINKABLE**



También resulta
curioso ver como los
baños con agua
para consumo
humano son
menores que los que
permiten desechar
jeringuillas

#### **HISTOGRAMA POR ESTADOS**



Como podemos ver la distribución de los elementos es uniforme por cada estado.

#### **ASEO PARA MUJERES POR ESTADOS**



#### **AGUA POTABLE POR ESTADOS**



#### **ELIMINACION RESIDUOS POR ESTADOS**



#### **ASEO DE PAGO POR ESTADOS**



#### **CLUSTERING**

Método de las **K-medias**directamente por lo que hay
que agregar algunos nodos **RuleEngine** para poder
convertir los valores a enteros.
Usando dos campos que tiene
correlación como son **SharpsDisposal** y **SanitaryDisposal** y vemos
como los clasifica
correctamente.

| SharpsDisposal \ SanitaryDisposal             | 1    | 0                                          |
|-----------------------------------------------|------|--------------------------------------------|
| 1                                             | 1522 | 1283                                       |
| 0                                             | 1678 | 14282                                      |
| Correct classified: 15,804 Accuracy: 84.221 % |      | Wrong classified: 2,961<br>Error: 15.779 % |
| Cohen's kappa (κ) 0.413                       |      |                                            |



#### **CLUSTERING**

K-means entre distancia máxima y mínima



# 3. ANÁLISIS PREDICTIVO

Análisis predictivo

#### **CLASIFICACIÓN**



| = AllH             | iours     |    |  |  |
|--------------------|-----------|----|--|--|
| Victoria (11/42)   |           |    |  |  |
| ▼Table:            | 275 - 275 |    |  |  |
| Category           | %         | n  |  |  |
| Queensland         | 16.7      | 7  |  |  |
| New South Wales    | 23.8      | 10 |  |  |
| South Australia    | 4.8       | 2  |  |  |
| Western Australia  | 16.7      | 7  |  |  |
| Victoria           | 26.2      | 11 |  |  |
| Tasmania           | 11.9      | 5  |  |  |
| Northern Territory | 0.0       | 0  |  |  |
| Total              | 42.0      | 42 |  |  |

| New South W        | lales (12/30) |    |
|--------------------|---------------|----|
| ▼Table:            |               |    |
| Category           | %             | n  |
| Queensland         | 13.3          | 4  |
| New South Wales    | 40.0          | 12 |
| South Australia    | 10.0          | 3  |
| Western Australia  |               |    |
| Victoria           | 16.7          | 5  |
| Tasmania           | 0.0           | 0  |
| Northern Territory | 3.3           | 1  |
| Total              | 30.0          | 30 |

- Variable

| New South V        | Vales (9/28) |     |
|--------------------|--------------|-----|
| ▼Table:            | **           | 73. |
| Category           | %            | n   |
| Queensland         | 10.7         | 3   |
| New South Wales    | 32.1         | 9   |
| South Australia    | 21.4         | 6   |
| Western Australia  | 3.6          | 1   |
| Victoria           | 32.1         | 9   |
| Tasmania           | 0.0          | 0   |
| Northern Territory | 0.0          | 0   |
| Total              | 28.0         | 28  |

= DaylightHours



#### **REGRESIÓN**

R<sup>2</sup>: -0.572

Mean absolute error: 0.2

Mean squared error: 0.2

Root mean squared error: 0.447

Mean signed difference: 0.031

| SharpsDisposal \ Prediction (SharpsDisposal) | 1.0  | 0.0   |
|----------------------------------------------|------|-------|
| 1.0                                          | 1222 | 1583  |
| 0.0                                          | 2167 | 13793 |
|                                              |      |       |

Correct classified: 15,015

Wrong classified: 3,750

Accuracy: 80.016 %

Error: 19.984 %

Cohen's kappa (к) 0.276



4.
CONCLUSIONES

Conclusiones finales

#### **CONCLUSIONES**

Aunque el dataset parecía muy interesante de entrada, el uso de variables booleanas y la uniformidad de los datos en todos los aspectos han hecho que no se pueda extraer demasiada información con las técnicas aprendidas en la asignatura





#### **MUCHAS GRACIAS!**

#### Alguna pregunta?

Podeis contactarme en erseco@correo.ugr.es