Dispositivos e Infraestructuras para Sistemas Multimedia

Tema 2.Introducción a las infraestructuras multimedia

• Multimedia:

- Campo que estudia la integración controlada por computador de:
 - Texto,
 - Gráficos,
 - Dibujos,
 - Imágenes estáticas o en movimiento,
 - Animaciones,
 - Audio,
 - Otros medios,
- Donde cada tipo de información puede ser representada, almacenada, transmitida y procesada digitalmente.

Multimedia:

- Una aplicación multimedia es aquella que utiliza diversos medios procedentes de distintas fuentes, como texto, gráficos, audio, vídeo, etc.
 - o WWW
 - Creación multimedia, diseño de cursos hipermedia
 - TV interactiva, edición y producción de vídeo digital
 - Juegos para Pc y plataformas móviles
 - Realidad virtual y aumentada
 - Sistemas de bases de datos multimedia...

Hipermedia:

- Conjunto de métodos o procedimientos para escribir, diseñar o componer contenidos que integren soportes tales como:
 - Texto,
 - Imagen,
 - Video,
 - Audio,
 - Mapas
 - Otros soportes de información emergentes,
- El resultado obtenido debe permitir interactuar con los usuarios.

Sistema multimedia:

- Es un sistema informático capaz de procesar aplicaciones y datos multimedia.
- Características:
 - Almacenamiento.
 - Procesamiento.
 - Generación.
 - Manipulación.
 - Interpretación.
 - Controlado por computador.
 - La integración de componentes es fundamental.
 - La información debe estar representada en formato digital.
 - Interactividad.
 - Transparencia.
 - Navegación.

- Ámbitos de aplicación de los sistemas multimedia:
 - Mundo empresarial.
 - Industria.
 - Educación.
 - Doméstico.
 - Público.

- Ámbitos de aplicación de los sistemas multimedia:
 - Mundo empresarial
 - Presentaciones de proyectos, resultados, productos, previsiones, etc.
 - En publicidad.
 - Formación.
 - Mercadotecnia.
 - Encuestas.
 - Catálogos.
 - Aplicaciones multimedia en bases de datos, comunicaciones, planificación y control de proyectos.

- Ámbitos de aplicación de los sistemas multimedia:
 - Industria
 - Sistemas de control industrial.
 - Herramientas de simulación para operarios, pilotos, etc.
 - Sistemas de gestión de piezas y stocks.
 - Sistemas de producción.

- Ámbitos de aplicación de los sistemas multimedia:
 - Educación
 - Donde aporta una mayor innovación y beneficio.
 - Presentaciones interactivas.
 - Powerpoint
 - Impress
 - Keynote
 - Prezzi
 - Posibilidad de seguir desarrollos, comprobar resultados, ejercicios interactivos, representación gráfica animada de estructuras y modelos, imágenes, etc.
 - Las simulaciones tienen un papel fundamental.
 - Educación a distancia.

- Ámbitos de aplicación de los sistemas multimedia:
 - Doméstico
 - Electrónica de consumo está confluyendo con el modelo multimedia.
 - No solo PCs.
 - TV.
 - Dispositivos móviles.
 - Consolas.
 - Domótica.
 - Difícil de predecir y está muy ligado a la evolución de los sistemas telemáticos.

Ámbitos de aplicación de los sistemas multimedia:

Público

- En bibliotecas, museos, campus universitarios, centros comerciales, bares, cines, teatros, aeropuertos, estaciones y en las propias vías públicas, disponemos de puntos de acceso a información.
- Contenido visual e impactante, IU ricos, son básicos para el éxito de su funcionamiento.
- 24x7
- Sistemas de compra de entradas, reserva de alojamiento, llamada de taxis, planos de la zona con itinerarios al destino deseado, pago electrónico, Internet, etc...

11

- Etapas de un proyecto multimedia:
 - Planificación y evaluación de costes
 - Necesidades de material, personal y tiempo.
 - Documento de requisitos y especificaciones del producto.
 - Prototipo básico.
 - Diseño y producción
 - Desarrollo de todo el material.
 - El trabajo en equipos de personas exige cuidado en el control de cada tarea y en los trabajos de integración.
 - Pruebas
 - Se debe de poner el sistema en todas las situaciones posibles y evaluar el grado de satisfacción de los requisitos en cada aspecto de los planteados en las especificaciones.
 - Distribución
 - Empaquetado, distribución y promoción son tareas importantes, para el éxito del producto.

12

- Cuestiones fundamentales que debe gestionar un sistema multimedia:
 - Cómo representar y almacenar información temporal.
 - Como mantener estrictamente las relaciones temporales en la reproducción multimedia.
 - Cómo representar y procesar digitalmente todos los datos Conversión AD-DA, muestreo (sampling), etc.
 - Requerimientos para almacenamiento y procesamiento de grandes cantidades de datos – Ancho de banda, dispositivos de memoria.
 - La compresión de los datos se convierte en una necesidad.

Características deseables de un sistema multimedia:

- Capacidad de procesamiento muy alta. Necesaria para lograr procesamiento de grandes cantidades de datos y *entrega* de datos multimedia en tiempo real – Hardware especializado.
- Sistema de ficheros preparado para multimedia. Necesario para producir datos multimedia en tiempo real – Vídeo-Audio streaming, tecnología RAID.
- Software/hardware especializado.
- Representación de la información. Formato de ficheros que soporten multimedia, sean fáciles de manejar, y permitan compresión y descompresión en tiempo real.
- E/S eficiente. La E/S al subsistema de ficheros debe ser eficiente y rápida, tanto para grabación en tiempo real como para reproducción.

Streaming:

Definición:

- Distribución de multimedia a través de una red de manera que el usuario consume el producto al mismo tiempo que se descarga.
- El termino streaming se refiere a: una corriente continua (sin interrupción).
- Este tipo de tecnología funciona mediante un búfer de datos que va almacenando lo que se va descargando en el dispositivo del usuario para luego mostrar el material descargado.
- Se envía la información a través de la red y el cliente la reproduce en tiempo real al recibirla

Streaming:

- Descarga tradicional
 - El cliente descarga toda la información a disco y después la reproduce.
- Streaming
 - El cliente reproduce la información según le llega segmentada a través de la red y luego la descarta (servicios de calidad)

Streaming vs Descarga Tradicional:

- Ficheros de audio o vídeo almacenados en servidor
- Ficheros transferidos mediante diversos protocolos (Ej. HTTP)
- Descarga tradicional
 - Recibidos completamente por el cliente.
 - Pasados al reproductor.
 - No hay "streaming". Gran espera hasta empezar.

Streaming

- Pasados al reproductor a medida que los recibe.
- Calcula cuándo empezar dada la velocidad a la que recibe.

Descarga Tradicional

Streaming

Tipos de Servicios

- En directo (live).
 - Similar a un canal de televisión.
- Bajo demanda (Video On Demand –VOD-).
 - Similar a un reproductor de vídeo.

- Tipos de Servicios: En directo (live).
 - Está orientado a la multidifusión.
 - El servidor comienza a transmitir en un instante dado.
 - Los usuarios ven la información que se está emitiendo.
 - En este tipo de servicio no existe interactividad.
 - Unicamente está permitido realizar pausas.
 - Cuando el usuario recupere la reproducción podrá ver la información que se está transmitiendo en ese instante.

21

Tipos de Servicios: En directo (live).

- Tipos de Servicios: En directo (live).
 - Según el origen de las señales de audio/vídeo
 - Con información en vivo.
 - Con información almacenada.

Tipos de Servicios: En directo (live).

- Según el tipo de transmisión
 - Unicast : se envía un flujo de información a cada usuario.
 - Multicast : se envía un flujo único de información, a un grupo específico.
 - **Broadcast**: se envía un flujo de información a los usuarios sin saber quien lo va a recibir.
- ¿TV en directo por internet?
- ¿TV Satelite?
- ¿TV sistema hospitalario?
- ¿Quien consume más ancho de banda

Unicast, Broadcast, Multicast?

Tipos de Servicios: Video Bajo Demanda (VOD)

- Los usuarios solicitan el envío de información en cualquier instante
- Envío de un flujo a cada usuario
- Existen diversos tipos de interacciones
 - Pausas
 - Saltos hacia delante
 - Saltos hacia atrás

- Tipos de Servicios: Video Bajo Demanda (VOD)
 - **VOD**: Video On Demand, permite a los usuarios ver cualquiera de una gran colección de videos en cualquier momento.
 - OTT: Over-the-top, término utilizado para la entrega de contenido de películas y televisión a través de Internet, sin requerir que los usuarios se suscriban a un servicio tradicional de televisión de pago por cable o satélite.

26

Tipos de Servicios: Video Bajo Demanda (VOD)

- Tipos de Servicios: OTT
 - AVOD:
 - Los sistemas AVOD (Advertising Video on Demand) son un modelo de entrega de contenido donde el usuario tiene acceso gratuito a los videos pero estos videos contienen inserciones de publicidad.
 - Mediante esta estrategia de publicidad el dueño del contenido puede rentabilizar los videos sin hacer que el usuario tenga que pagar por ellos.
 - Los anuncios son conocidos como Video Insert :
 - Mientras el usuario ve el contenido:
 - Antes del video y se denominan pre-Rolls.
 - En un punto intermedio del video mid-rolls.
 - Al final del video *post-rolls*.
 - La publicidad suele ser de pocos segundos y el usuario podrá decidir si quiere dejar de verla transcurridos unos segundos. De esta forma se define el precio que el anunciante va a pagar por aparecer en el video.
 - Ejemplo Youtube.
 - SVOD:
 - TVOD:

28

Tipos de Servicios: OTT

- AVOD:
- SVOD:
 - Los sistemas SVOD (Subscription Video on Demand) son la forma de ofrecer contenido al usuario mediante una suscripción.
 - Permite el acceso a Contenido Premium como estrenos, contenido exclusivo y extenso catálogo de videos disponibles solo para los usuarios suscritos.
 - En algunos casos se permite a los usuarios descargar contenido para poder disfrutarlo posteriormente sin necesidad de una conexión a Internet.
 - Ejemplo: Netflix
- TVOD:

Tipos de Servicios: OTT

- AVOD:
- SVOD:
- TVOD:
 - Los sistemas TVOD (Transactional Video on Demand) son la manera de que el usuario pague por el contenido que quiera.
 - El contenido está disponible mientras transcurre el video si se trata de un contenido en vivo (fútbol), o el usuario puede acceder al video durante un periodo de tiempo. Similar a un alquiler.
 - El usuario puede elegir determinado contenido para consumir sin tener que comprar una suscripción completa y paga solo una vez.
 - Lo más común es el sistema PPV, donde el usuario paga por los eventos individuales o la película que desea ver.
 - Ejemplo: ITunes o Amazon Instant Video.

Tipos de Servicios: OTT

Arquitectura Streaming.

Arquitectura Streaming. Servidor:

- Funcionamiento bajo demanda
 - 1. Espera peticiones de los clientes.
 - 2. Cuando recibe una petición decide si la acepta (control de admisión).
 - 3. Establece una conexión con el cliente
 - 4. Recibe las interacciones del cliente y actúa en la transmisión convenientemente transmitiendo un flujo continuo de información no transmitiendo.
 - 5. Finaliza la conexión cuando el cliente da por finalizada la comunicación o cuando la información solicitada finaliza.

Arquitectura Streaming.

- Funcionamiento en directo
 - 1. Recibe la transmisión del productor.
 - 2. Comienza la emisión.
 - 3. Espera peticiones de los clientes.
 - 4. Cuando recibe una petición decide si la acepta (control de admisión).
 - Establece una conexión con el cliente
 - Recibe la interacción del cliente (sólo pausa) y actúa en la transmisión convenientemente.
 - Transmitiendo un flujo continuo de información.
 - No transmitiendo.
 - 7. Finaliza la conexión cuando el cliente lo solicita.
 - Finaliza la emisión cuando deja de recibir señal del productor.

34

Arquitectura Streaming. Conexiones

- Canal para el control de los flujos multimedia.
 - Canal bidireccional.
 - Recibe las interacciones del cliente y transmite las respuestas.
- Canales para el envío de los datos multimedia.
 - Unidireccionales.
 - Transmiten la información cuando las interacciones lo requieren.

- Arquitectura Streaming. Interacciones
 - Recibe las interacciones del cliente (play, stop, pause, etc.) y actúa sobre el flujo de información multimedia

- Arquitectura Streaming. Transmisión de medios
 - Fracciona la información y la envía de forma temporizada

Fichero con formato para transmisión streaming

- Arquitectura Streaming. Condiciones de la red
 - Se modifica la calidad del vídeo en tiempo real en función de las condiciones de la red

Arquitectura Streaming. Proxy

- Funcionalidades según el tipo de servicio:
 - Bajo demanda:
 - Almacena temporalmente la información más recientemente utilizada y la transmite a los clientes en caso de ser nuevamente solicitada
 - En directo:
 - Reduce el número de flujos que salen del servidor.

- RTP (Real Time Transport Protocol)
- RTCP (RTP Control Protocol)
- RTMP (Real Time Messaging Protocol)
- RTSP (Real Time Streaming Protocol)
- HLS (HTTP Live Stream)
- MPEG-DASH (Dynamic Adaptive Streaming over HTTP)
- HDS (HTTP Dynamic Streaming)

- RTP (Real Time Transport Protocol)
 - La primera versión fue publicada en 1996.
 - Se ejecuta sobre UDP.
 - TCP es muy lento a la hora de establecer la comunicación entre cliente y servidor.
 - TCP detecta la pérdida de paquetes y los vuelve a retransmitir.
 - Utiliza UDP ya que interesa más la rapidez que la pérdida de algunos paquetes.
 - Estructura del paquete:
 - Cabecera IP + Cabecera UDP + Cabecera RTP + Datos.

- RTP (Real Time Transport Protocol)
 - Cabecera RTP
 - Tipo de carga útil (Payload Type): describe el formato de la información que lleva el paquete.
 - Número de secuencia (Sequence number): utilizado por el emisor para numerar los paquetes enviados.
 Sirve para detectar paquetes perdidos.
 - Registro de tiempo (Timestamp): utilizado para que el receptor pueda reproducir las muestras que le llegan a intervalos apropiados.
 - Reemplazado por RTCP

- RTCP (RTP Control Protocol)
 - Complementa a RTP y se basa en la transmisión periódica a todos los participantes de una sesión, enviándoles información sobre la calidad del servicio.
 - Transmite información como:
 - La cuenta de paquetes.
 - El recuento de paquetes perdidos
 - Variación del retardo de paquetes.
 - Permite a una aplicación limitar el flujo de datos o utilizar un codec diferente.

- RTMP (Real Time Messaging Protocol)
 - Protocolo de mensajería en tiempo real, para el streaming de audio, vídeo y datos a través de Internet, entre un flash player y un servidor.
 - Protocolo propiedad de Adobe.
 - RTMP se basa en TCP y la comunicación se establece entre el Adobe Flash Media Server y el reproductor Flash cliente.
 - Todos los archivos de vídeo y audio se envían a un archivo SWF que se puede reproducir en un reproductor de Flash.

- RTSP (Real Time Streaming Protocol)
 - Este protocolo utiliza RTP como protocolo de entrega de datos y ofrece un control VCR al usuario.
 - Es un protocolo no orientado a conexión y mayoritariamente usa TCP para el envío de datos de control del reproductor y UDP para los datos de audio y vídeo.

Arquitectura Streaming. Protocolos

RTSP (Real Time Streaming Protocol)

- Web Browser solicita Presentation Description File a Web Server.
- Web Server encapsula Presentation Description File en un mensaje HTTP de respuesta y envía el mensaje al Web Browser.
- Cuando el Web browser recibe mensaje HTTP de respuesta, invoca a un reproductor (Media Player) basándose en el campo Payload Type (PT) del mensaje.
- Media Player envía una petición RTSP SETUP y Media Server responde RTSP OK.
- Media Player envía una petición RTSP PLAY y Media Server responde RTSP OK.
- Media Server inicia el streaming de video hacia Media player.
- Si usuario desea pausar la transmisión, envía RTSP PAUSE a Media Server y éste responderá RTSP OK.
- Cuando el usuario ha terminado, Media player envía RTSP TEARDOWN, a lo que Media server responde RTSP OK.

- HLS (HTTP Live Stream)
 - Protocolo desarrollado por Apple para dispositivos iOS y su reproductor QuickTime.
 - HLS divide el vídeo en fragmentos cortos, por lo general entre 2-10 segundos de duración, los cuales se cargan en un servidor HTTP junto con un archivo de manifiesto M3U8 → índice que permite al cliente saber qué secuencias y segmentos están disponibles en un momento dado.
 - El dispositivo selecciona automáticamente la secuencia más adecuada, teniendo en cuenta las limitaciones de ancho de banda y de CPU, siendo una de sus características principales la Adaptabilidad.

- MPEG-DASH (Dynamic Adaptive Streaming over HTTP)
 - Introducido por MPEG, para solucionar la dificultad de la distribución de contenido a múltiples dispositivos mediante un estándar común.
 - Utiliza TCP, funcionamiento similar a HLS → divide el archivo multimedia en pequeños fragmentos.
 - Se comienza obteniendo el MPD (documento XML que representa las diferentes calidades del contenido) mediante HTTP.
 - Se obtiene información necesaria para la reproducción.
 - Tras obtener información, selecciona las características adecuadas y empieza a realizar el streaming obteniendo los segmentos mediante peticiones HTTP.
 - Durante la petición de segmentos, monitoriza los cambios en el ancho de banda de la red y decide si es necesario realizar algún cambio.

- HDS (HTTP Dynamic Streaming)
 - Similar a HLS, desarrollado por Adobe.
 - Al igual que HLS funciona mediante la detección de la capacidad de ancho de banda de un cliente y ajusta la calidad del flujo de vídeo en tiempo real.
 - Audio y vídeo se pueden mantener por separado, pudiendo almacenar flujos de audio y vídeo en cualquier lugar, de forma independiente.
 - Incluye un manifiesto basado en XML que contiene la información sobre la ubicación de los archivos de vídeo y audio junto con los segmentos.

Arquitectura Streaming. Cliente

- Componentes:
 - Recepción.
 - Recibe la información solicitada por el usuario.
 - Presentación.
 - Reproduce la información recibida de forma temporizada.
 - Proporciona un interfaz para que el usuario interaccione.
 - Buffer.
 - Se utiliza para controlar la calidad del servicio.

Arquitectura Streaming. Cliente

- El buffer se carga antes de comenzar la reproducción
- Cuando el buffer se vacía, se detiene la reproducción para recargarlo (fallo de reproducción).
- El buffer amortigua posibles retrasos en la llegada de paquetes (por problemas en la red o sobrecarga en el servidor).
- Habitualmente existen buffers tanto de audio como de vídeo.
- El tamaño del buffer debe balancear el tiempo de arranque y calidad de reproducción.

Arquitectura Streaming. Cliente

Streaming vs Streaming P2P

Streaming Caso NetFlix

- Netflix tiene más de 230 millones de suscriptores (2022). (167M en 2019, 208M 2021).
- Netflix está disponible en más de 200 países.
- Representa mas del 15% de la capacidad de ancho de banda de internet en el mundo.
- Netflix obtiene casi 3.000 millones de dólares en beneficios por trimestre.
- Netflix añade más de 5 millones de nuevos suscriptores por trimestre.
- Netflix reproduce más de mil millones de horas de vídeo cada semana:
 - YouTube transmite mil millones de horas de vídeo todos los días.
 - Facebook transmite 110 millones de horas de vídeo a diario.
- ...
- Netflix ha diseñado un sistema de transmisión de video con muy alta disponibilidad y escalabilidad.

54

- Basado en modelo de suscripciones.
- Almacenamiento:
 - AWS
 - Open Connect
- Estructura:
 - Cliente:
 - Web
 - App Smartphone
 - Apps SmartTV
 - ...
 - Servidor BackEnd:
 - Open Connect:

- Estructura:
 - Cliente:
 - Servidor BackEnd:
 - Instancias informáticas escalables (AWS EC2)
 - Almacenamiento escalable (AWS S3)
 - Microservicios de lógica empresarial (framework especifico de Netflix).
 - Bases de datos distribuidas escalables (AWS DynamoDB, Cassandra)
 - Trabajos de análisis y procesamiento de grandes cantidad de datos (AWS EMR, Hadoop, Spark, Flink, Kafka y otras herramientas específicas de Netflix)
 - Procesamiento y transcodificación de video (herramientas diseñadas específicamente por Netflix)
 - Open Connect:

- Estructura:
 - Cliente:
 - Servidor BackEnd:
 - Open Connect:
 - Es una red de servidores denominada Open Connect Appliances (OCA) optimizada para almacenar y transmitir videos grandes.
 - Estos servidores OCA están ubicados dentro de las redes de proveedores de servicios de Internet (ISP) y ubicaciones de intercambio de Internet (IXP) en todo el mundo.
 - Las OCA son responsables de transmitir videos a los clientes.

- Centro de Datos:
 - Propio centro de datos hasta 2008.
 - Tras una interrupción del servicio en sus propios centros de datos cerró todos los servicios de alquiler de DVD durante tres días.
 - Migra la infraestructura de TI de sus centros de datos a una *nube* pública y reemplaza programas *monolíticos* con pequeños componentes de software manejables por una *arquitectura de microservicios. (Éxito)*
 - Un microservicio almacena todos los programas a reproducir.
 - Otro deduce la tarifa mensual de su tarjeta de crédito.
 - Otro proporciona a su dispositivo el archivo de video a reproducir.
 - **...**
 - AWS.
 - Independencia de centro de datos.
 - Sistema distribuido.
 - Alta tolerancia a fallos.
 - 32 regiones a nivel mundial, 102 zonas de disponibilidad.
 - https://aws.amazon.com/es/about-aws/global-infrastructure/?p=ngi&loc=1

Streaming Caso NetFlix (Arquitectura reproducción)

Streaming Caso NetFlix (Arquitectura Backend)

- Backend maneja:
 - El registro.
 - Inicio de sesión.
 - Facturación.
 - Tareas de procesamiento complejas como la transcodificación de video.
 - Recomendaciones personalizadas.
 - Etc.
- Netflix emplea la arquitectura de microservicios para su sistema basado en la nube.

Streaming Caso NetFlix (Arquitectura Backend)

Streaming Caso NetFlix (Arquitectura Backend)

2. AWS ELB enviará esa solicitud al servicio API Gateway que se ejecuta en instancias AWS EC2.

Se aplicarán algunos filtros predefinidos correspondientes a la lógica de negocio y se reenviará a la API de la aplicación para su posterior manejo.

Streaming Caso NetFlix (Arquitectura Backend)

- 3. El componente API de la aplicación es la lógica de negocio central detrás de las operaciones de Netflix. Tipos API:
 - API Registro.
 - API recomendaciones.
 - API Player.

Streaming Caso NetFlix (Arquitectura Backend)

- 4. Play API llamará a un microservicio o una secuencia de microservicios para cumplir con la solicitud.
 - Servicio Playback Apps
 - Servicio Steering
 - Servicio Cache Control

Streaming Caso NetFlix (Arquitectura Backend)

Backend on AWS Los microservicios son en su mayoría pequeños programas sin estado y Signup API Cache pueden llamarse entre sí. API **AWS** Discovery Gateway **ELB** API Service Play API Micro service Application API Client Stream Processing Devices **Pipeline** 5. El resultado tras la ejecución se puede almacenar en una caché, para AWS **Datastores** permitir un acceso más rápido. Hadoop S3

Streaming Caso NetFlix (Arquitectura Backend)

Streaming Caso NetFlix (Arquitectura Backend)

7. Los microservicios pueden enviar eventos para rastrear las actividades del usuario u otros datos a Stream Processing Pipeline.

Streaming Caso NetFlix (Arquitectura Backend)

8. Los datos que salen de Stream Processing Pipeline pueden ser persistidos en otros almacenes de datos:

- AWS S3
- Hadoop HDFS
- Cassandra
- etc.

Streaming Caso NetFlix (Objetivos finales)

- Garantizar una alta disponibilidad para los servicios de transmisión a escala global.
- Diseñar un sistema en la nube capaz de recuperarse automáticamente de fallos o interrupciones del sistema.
- Minimizar la latencia de transmisión para cada dispositivo compatible en diferentes condiciones de red.
- Admitir escalabilidad con un gran volumen de solicitudes.