Geo Module

Masoumeh Seydi

DBIS Uni Konstanz Aug. 2013

Overview

- Introduction
- Geo Module in BaseX
- Spatial Index
- Performance
- Conclusion

Motivation

Widely used nowadays

Disaster Management

Geo Spatial Data

GML

Geographic properties

WKB

Coordinates and topologies

WKT

GML, extensive XML based language:

KML

W3C XML Schema Language

Developed by OGC

. . .

Why GML?

- Dynamic spatial data sources
- Schema changes
- Fancy semantic issues (data & schema)
- Integration of all geographic information
- No default coordinate system

EXpath Geo Module Specification

- Geospatial API function interface
- Functions conforming OGC
- Namespace conventions
- Error management
- Xquery or XSLT functions

JTS Topology Suite

Geo Module in BaseX

→ BaseX Core Index structure

Geo Module Functionality

<gml:Polygon> </gml:Polygon>

<gml:Polygon> </gml:Polygon>

touches

intersects

boundary

distance

Text

<gml:LineString xmlns:gml="ht <gml:coordinates>1.0,1.0 55.0 coordinates> </gml:LineString>

Text

10.950184911000926

Geo Module in Practice

```
let $x := <gml:Polygon>
      <gml:outerBoundaryIs>... </gml:outerBoundaryIs>
     <gml:Polygon>
for $p in //gml:Polygon
return if (intersects($x, $p)) then $p else ()
 Unnecessary readings,
```

big time complexity

Geo Module in Practice

```
let $x := <gml:Polygon>
      <gml:outerBoundaryIs>... </gml:outerBoundaryIs>
    <gml:Polygon>
for $p in DB//gml:Polygon
return if (intersects($x, $p)) then $p else ()
 Unnecessary readings,
                                    Indexing
```

big time complexity

Spatial Index

- R-Tree, Antonin Guttman in 1984
 - Common indexing technique
 - Some disadvantages
- STR-Tree, Leutenegger et al. In 1997
 - → Improved performance of R-Tree
- JTS STRtree:
 - Serializable
 - Two step filtering

R-Tree

Intersection queries

R-Tree (Cont'd)

R12, R14 → chosen objects

Indexing

Once:

Query time:

Filtering

Indexing: GeoIndex Module

Index functions in a separated module

```
let $a:= <gml:Polygon>... </gml:Polygon>
return geo-index:intersects("DB", $a)
```


- New function implementations, using index structure
- Contains filtering

Implicit Indexing

Implicit Indexing


```
let $a:= <gml:Polygon> ... </gml:Polygon>
for $x in geo-index:filter("DB", $a)
return if (geo:intersects($a, $x)) then $x else ()
Original geo function
```

Worse performance → **Map (cashing)**

Map (Cashing)

 Prevents creation of the same geometry in each function call

```
for $x in geo-index:filter("DB", $polygon)
return if (geo:intersects($polygon, $x)) then $x
else ()

Every time $polygon is created
```

- Used in Geo functions
 - → Shorter query time

Map (Cont'd)

Query Examples

- Data
 - Netherlands Map in GML 2.0
 - From University of Twente, Dept of Geoinformation Processing
- Visualization
 - Automatic conversion from GML to KML
 - Google Earth

Query Examples (Cont'd)

Query Examples (cont'd)

Index Efficiency

Better performance, not satisfying ...

GML Reader

Serializing the XML node

GML Reader

Serializing the XML node

GML Reader: JTS vs Custom

Detailed Timing

```
let $a:= <gml:Polygon> ... </gml:Polygon>
return (
geo-index:filter("DB", $a)
                                           1451 Objects filtered
[geo:intersects( , $a)]
                    Total time
                    (1447 results)
                         Filtering
                       intersects
          Reading all geometries
          Reading input geometry
                                          20
                                                 40
                                                        60
                                                               80
                                                                     100
```

Time (ms)

28

Detailed Timing (Cont'd)

	rank	self	accum	count	method
•	1	6.95%	6.95%	94	org.basex.util. Token.split
•	2	5.33%	12.28%	72	org.expath.ns. GmlReader.createPolygon
•	3	4.59%	16.86%	62	org.basex.util. Token.split
•	4	4.22%	21.08%	57	org.basex.query.func.
					JavaModuleFunc.eval
•	5	3.55%	24.63%	48	org.expath.ns. Geo.geo
•	6	3.18%	27.81%	43	org.basex.util. Token.split
•	7	3.03%	30.84%	41	org.basex.util. Token.split
•	8	2.96%	33.80%	40	org.basex.util. Token.split
•	9	2.74%	36.54%	37	org.expath.ns. Geo.geo 29

•

Conclusion

- Geo spatial functions in BaseX
- Ability to do Geo-Query
- Indexed geometric operations
- Real-world test cases

Future Works

- Profiling
- Performance tuning
- Geo spatial visualization
- Supporting other common encoding (GML 3, OSM, KML, ...)
- Conversion between encodings
- Path finding (traffic segments) in a map

References

- http://expath.org/spec/geo
- Leutenegger S., Edgington J.M., Lopez M.A., STR: A Simple and Efficient Algorithm for R-Tree Packing, NASA Contractor Report 201661, ICASE Report No. 97-14, February 1997
- 3. "Secrets of the JTS Topology Suite M. Davis". May 2013
- 4. S. Steiniger and A.J.S. Hunter "The 2012 Free and Open Source GIS Software Map A Guide to facilitate Research, Development and Adoption"
- 5. http://lin-ear-th-inking.blogspot.de/2007/06/history-of-jts-and-geos.html
- 6. http://en.wikipedia.org/wiki/R-tree
- 7. Y. Manolopoulos; A. Nanopoulos; Y. Theodoridis (2006). R-Trees: Theory and Applications. Springer. ISBN 978-1-85233-977-7. October 2011
- 8. http://www.digitalpreservation.gov/formats/fdd/fdd000296.shtml
- 9. http://blog.dc.esri.com/2006/11/20/geodata-format-wars-gml-vs-kml-vs/

Suggestions for the related Master thesis topics are welcomed!

Thank you!