Analysis of Algorithms

Homework 4

Abraham Murciano

December 21, 2020

1 Dijkstra's Algorithm with negative weights

Part A

Figure 1 shows a graph with negative weights such that if we apply Dijkstra's algorithm to find the shortest path between vertices S and D, it will return the wrong path.

Figure 1: Graph for which Dijkstra doesn't work

Starting off, we assign the unvisited vertices v_1 and v_2 with the distances 4 and 8 respectively, marking S as visited. Then we take the unvisited vertex with the smallest distance, v_1 , and check its neighbours, namely D. We assign it the distance 6 and mark v_1 as visited. Now that our destination vertex is the unvisited vertex with the shortest distance, the algorithm would claim that it has finished, with the shortest path going through v_1 with a distance of 6.

However, in reality the shortest path goes through v_2 and has a total distance of 8-4=4. This path was not considered by the algorithm because the path to the intermediate vertex v_2 has a larger distance than the path it found first.

Part B

If we take the example graph in figure 1 and modify it so that the edges are directed (away from S or towards D), then that would form a directed acyclic

graph for which Dijkstra's algorithm would not work for a similar reason to that of part A.

2 Floyd-Warshall with Negative Cycles