Total No. of Questions : 6]	SEAT No. :
P20	[Total No. of Pages : 2

APR - 18/TE/Insem. - 22 T.E. (E & TC)

ANTENNA & WAVE PROPAGATION

(2012 Pattern) (Semester - II)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Derive an expression of wave equation in terms of an electric field & magnetic field for perfect conductor using Maxwell equation in phasor form.
 - b) A 10 GHz plane wave travelling in free space has an amplitude 15 V/m find. [4]
 - i) Velocity of propagation
 - ii) Wavelength
 - iii) Amplitude of H
 - iv) Phase constant (β)

OR

- Q2) a) Derive an expression for transmission & reflection coefficient for normal incidence between free space and perfect dielectric. [5]
 - b) State poynting theorem and derive expression for the poynting theorem. [5]

Q 3) a)	Explain in detail the multi hops communication with proper diagram a what is the limit for hop distance.	nd [4]
b)	Explain the following term	[6]
	i) Virtual height	
	ii) Skip distance	
	iii) MUF	
	OR	
Q4) a)	Explain the Ground wave propagation in detail.	[5]
b)	At what frequency a wave must propagate for the D region to have ind of refraction 0.5, when 400 electrons/cc for D region.	lex [5]
Q5) a)	Explain the following antenna parameters.	[6]
	i) Radiation Intensity	
	ii) Antenna efficiency	
	iii) Effective Length	
b)	A free space H= 0.2 cos(wt - β z) a _z A/m. Find total power passi	
	through a circular disc of radius 5cm on a plane $x = 1$.	[4]
	OR	
Q6) a)	Draw radiation pattern and half power beam width of a antenna a giv	
	by, $U(\theta) = \sin^2 \theta$, for $0 \le \theta \le \pi$.	[4]
b)	Explain following term related to antenna with mathematical expression.	[6]
	i) Maximum Directivity	
	ii) Aperture efficiency	
	iii) Absolute Gain of Antenna	
	26°.	