Лекции по предмету **Алгоритмы 2**

Группа лектория ФКН ПМИ 2016-2017 Данила Кутенин

2016/2017 учебный год

Содержание

1	Про	ограмма. Орг моменты	2
2	Лекция 01 от 02.09.2016. Матроиды.		2
	2.1	Матроид	2
	2.2	Приводимость одной базы к другой	4
	2.3	Жадный алгоритм на матроиде	4
3 Лекция 2 от 06.09.2016. Быстрое преобразование Фурье.		кция 2 от 06.09.2016. Быстрое преобразование Фурье.	6
	3.1	Применение преобразования Фурье	6
	3.2	Алгоритм быстрого преобразования Фурье.	7

Программа. Орг моменты

- 1. Матроиды.
- 2. Быстрое преобразование Фурье.
- 3. ρ -метод Полладра.
- 4. Автоматы. Регулярные языки.
- 5. Классы алгоритмов.
- 6. Численные методы.
- 7. Симплекс метод.
- 8. Венгерский алгоритм.
- 9. Local sensitive hashing.

Формула такая же, как и в прошлом году:

 $0.3 \cdot O_{\text{контесты}} + 0.25 \cdot O_{\text{семинарские листки}} + 0.15 \cdot O_{\text{кр}} + 0.3 \cdot O_{\text{экзамен}} + Б.$

Округление вверх.

Лекция 01 от 02.09.2016. Матроиды.

Пока чуть отдаленно от матроидов.

У нас есть конечное множество A, которое в будущем мы будем называть *носителем*. Пусть $F \subset 2^A$, и F мы будем называть *допустимыми* множествами.

Также у нас есть весовая функция $c(w) \ \forall w \in A$. Для каждого $B \in F$ мы определим cmoumocmb множетсва, как $\sum_{w \in B} c(w)$. Наша задача заключается в том, чтобы найти максимальный вес из всех лопустимых множеств.

Пример 1 (Задача о рюкзаке). У каждого предмета есть вес и стоимость. Мы хотим унести как можно больше вещей максимальной стоимости с весом не более k.

Вес не более k нам задает ограничение, то есть множество F. A максимизация унесенной суммы нам и задаёт задачу.

Матроид

Множество F теперь будет всегда обозначаться как I.

Матроидом называется множество подмножеств множества A таких, что выполняются следующие 3 свойства:

1. $\varnothing \in I$

- **2.** $B \in I \Rightarrow \forall D \subset B \Rightarrow D \in I$
- **3.** Если $B,D\in I$ и $|B|<|D|\Rightarrow\exists w\in D\setminus B$ такой, что $B\cup w\in I$

Дальнейшее обозначение матроидов — $\langle A, I \rangle$.

Определение 1. Базой матроида называют множество всех таких элементов $B \in I$, что **не** существует B', что $B \subset B'$, |B'| > |B| и $B' \in I$. Обозначение \mathfrak{B} .

Свойство 1. Все элементы из базы имеют одну и ту же мощность. И все элементы из I, имеющие эту мощность, будут в базе.

Доказательство очевидно из определения.

Пример 2 (Универсальный матроид). Это все подмножества B множества A такие, что $|B| \leq k$ при $k \geq 0$. Все свойства проверяются непосредственно.

База такого матроида — все множества размера k.

Пример 3 (Цветной матроид). У элементов множества A имеются цвета. Тогда $B \in I$, если все элементы множества B имеют разные цвета. Свойства проверяются непосредственно, в 3 свойстве надо воспользоваться принципом Дирихле.

База такого матроида — множества, где присутствуют все цвета.

Пример 4 (Графовый матроид на n вершинах). $\langle E, I \rangle$. Множеество ребер $T \in I$, если T не содержит циклов.

Докажем 3 свойство:

Доказательство. Пусть у нас есть T_1 и T_2 такие, что $|T_1| < |T_2|$. Разобьём граф, построенный на T_1 на компоненты связности. Так как ребер ровно $|T_1|$ на n вершинах, то компонент связности будет $n-|T_1|$. В другом случае компонент связности будет $n-|T_2| < n-|T_1|$. То есть во 2-ом графе будет меньше компонент связности, а значит по принципу Дирихле найдётся ребро, которое соединяет 2 компоненты связности в 1-ом графе.

Этот алгоритм чем-то отдаленно напоминает алгоритм Краскала.

Базой в таком матроиде являются все остовные деревья.

Пример 5 (Матричный матроид). Носителем здесь будут столбцы любой фиксированной матрицы. I — множество всех подмножеств из линейно независимых столбцов. Все свойства выводятся из линейной алгебры (3-е из метода Гаусса, если быть точным).

Пример 6 (Трансверсальный матроид). $G = \langle X, Y, E \rangle - \partial$ вудольный граф c долями X, Y. Матроид будет $\langle X, I \rangle$ такой, что $B \in I$, если существует паросочетание такое, что множество левых концов этого паросочетания совпадает c B.

Докажем 3 свойство:

Доказательство. Пусть есть 2 паросочетания на $|B_1|$ и $|B_2|$ ($|B_1| < |B_2|$) вершин левой доли. Тогда рассмотрим симметрическую разность этих паросочетаний. Так как во 2-ом паросочетании ребер больше, то существует чередующаяся цепь, а значит при замене ребер на этой чередующейся цепи с новой добавленной вершиной (а она найдётся по принципу Дирихле) получим паросочетание с ещё 1 добавленной вершиной.

Базой в таком матроиде будут вершины левой доли максимального паросочетания.

Приводимость одной базы к другой.

Лемма 1. Пусть $B, D \in \mathfrak{B}$. Тогда существует последовательность $B = B_0, B_1, \ldots, B_k = D$ такие, что $|B_i \triangle B_{i+1}| = 2$, где \triangle обозначает симметрическую разность множеств.

Доказательство. Будем действовать по шагам. Если текущее $B_i \neq D$, тогда возьмём произвольный элемент w из $B_i \setminus D$. Тогда по 2-ому пункту определения матроида следует, что $B_i \setminus w \in I$. Так как $|B_i \setminus w| < |D|$, то существует $u \in D$ такой, что $(B_i \setminus w) \cup u \in I$. И теперь $B_{i+1} \leftarrow (B_i \setminus w) \cup u$. Мы сократили количество несовпадающих элементов с D на 1, симметрическая разность B_i и B_{i+1} состоит из 2 элементов — w и u.

Наконец, мы подошли к основной теореме лекции — жадный алгоритм или теорема Радо-Эдмондса.

Жадный алгоритм на матроиде.

Доказательство будет в несколько этапов.

Для начала определимся с обозначениями. $M = \langle A, I \rangle, n = |A|, w_i$ — элементы множества A. Решаем обычную задачу на максимизацию необходимого множества.

Теорема 1 (Жадный алгоритм. Теорема Радо-Эдмондса). Если отсортировать все элементы A по невозрастанию стоимостей весовой функции: $c_1 \geqslant c_2 \geqslant \ldots \geqslant c_n$, то такой алгоритм решает исходную задачу о нахождении самого дорогого подмножества:

Algorithm 1 Жадный алгоритм на матроиде.

```
B \leftarrow \varnothing

for c_i do

if B \cup w_i \in I then

B \leftarrow B \cup w_i
```

Доказательство. Теперь поймём, что наш алгоритм в итоге получит какой-то элемент из базы. Пусть B_i — множество, которое мы получим после i шагов цикла нашего алгоритма. Действительно, если это не так, что существует множество из базы, которое его накрывает: формально $\exists D \in I : B_n \subset D$ и $|B_n| < |D|$, так как можно взять любой элемент из базы и добавлять в B_n по 1 элементу из пункта 3 определения матроида. Тогда у нас существует элемент w_i , который мы не взяли нашим алгоритмом, но $B_{i-1} \cup w_i \in I$, так как $B_{i-1} \cup w_i \subset B_n \cup w_i \subset D$, то есть это лежит в I по пункту 2 определения матроида. Значит мы должны были взять w_i , противоречие.

Рассмотрим последовательность d_i из 0 и 1 длины n такую, что $d_i = 1$ только в том случае, если мы взяли алгоритмом i-ый элемент. А оптимальное решение задачи пусть будет e_i — тоже последовательность из 0 и 1. Последовательности будут обозначаться d и e соответственно.

Если на каком-то префиксе последовательности d единиц стало меньше, чем в e, то возьмём все элементы, которые помечены последовательностью e единицами. Пусть это множество будет E. Аналогично на этом префиксе последовательности d определим множество D. $|D| < |E|, D \in I, E \in I$, поэтому мы можем дополнить D каким-то элементом из E, которого не было в D. То есть на этом префиксе у d стоит 0 (пусть это будет место i), но заметим, что на i-ом шаге мы обязаны были брать этот элемент, из-за рассуждений аналогичным рассуждению про базу (2 абзаца вверх).

Получаем, что на каждом префиксе d единиц не меньше, чем на этом же префиксе последовательности e. Значит 1-ая единица в d встретится не позже, чем в e, 2-ая единица в d не позже, чем 2-ая в e и т.д. по рассуждениям по индукции.

На лекции была теория про ранги. В доказательстве можно обойтись без неё, просто приложу то, что сказал Глеб. Может быть понадобиться в задачах.

Рангом множества $B \subset A$ (обозн. r(B)) называют максимальное число k такое, что $\exists C \subset B$ такое, что $|C| = k, C \in I$.

Эта функция обладает таким свойством: для любого элемента $w \in A$ следует, что $r(B \cup w) \le r(B) + r(w)$. Давайте поймём, почему так:

Если $r(B \cup w) = r(B)$, то всё хорошо, так как $r(w) \geqslant 0$. Если $r(B \cup w) = r(B) + 1$ (других вариантов не бывает из определения), то тогда $w \in I$, так как в $B \cup w$ найдётся такое $C \subset (B \cup w)$, что $|C| = r(B \cup w)$, $w \in C$ (иначе C годилось бы для B и $r(B \cup w) = r(B)$), значит r(w) = 1, так как $C \in I$, а $\{w\} \subset C$.

Лекция 2 от 06.09.2016. Быстрое преобразование Фурье.

Чтобы быть успешным программистом, надо знать 3 вещи:

- Сортировки;
- Хэширование;
- Преобразование Фурье.

Глеб

В этой лекции будет разобрано дискретное преобразование Фурье (Discrete Fourier Transform).

Применение преобразования Фурье.

Допустим, что мы хотим решить такую задачу:

Пример 1. Даны 2 бинарные строки A и B длины n и m соответственно. Мы хотим найти, какая подстрока в A наиболее похожа на B. Наивная реализация решает эту задачу в худшем случае за $O(n^2)$. Преобразование Фурье поможет решить эту задачу за $O(n \log n)$, а именно научимся решать другую задачу:

Цель. Хотим научиться перемножать многочлены одной степени $A(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$ и $B(x) = b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}$ так, что C(x) = A(x)B(x), то есть считать свёртку (найти все коэффициенты, если по-другому) $\sum_{i=0}^{n-1} \sum_{j=0}^{i} a_j b_{i-j} x^i$ за $O(n \log n)$.

Вернёмся к нашему примеру. Поймём как с помощью нашей **цели** решать задачу про бинарные строки.

Пусть $A = a_0 \dots a_{n-1}, B = b_0 \dots b_{n-1}$. Их можно считать одной длины (просто добавим нулей в конец b при надобности). Теперь задача переформулировывается как нахождение максимального скалярного произведение B и некоторых циклических сдвигов A (до n-m+1).

Инвертируем массив B и припишем в конец n нулей, а κ массиву A припишем самого себя. Посмотрим на все коэффициенты перемножения:

$$c_k = \sum_{i+j=k} a_i b_j$$

Ho $b_i = 0$ при $i \ge n$, поэтому при $k \ge n$:

$$c_k = \sum_{i=0}^{n-1} b_i a_{k-i}$$

Выбрав нужные коэффициенты, мы решили эту задачу.

Алгоритм быстрого преобразования Фурье.

Основная идея алгоритма заключается в том, чтобы представить каждый многочлен через набор n точек и значений многочлена в этих точках, быстро (за $O(n \log n)$) вычислить значения в каких-то n точках для обоих многочленов, потом перемножить за O(n) сами значения. Потом применить обратное преобразование Фурье и получить коэффициенты C(x) = A(x)B(x).

Итак, для начала будем считать, что $n=2^k$ (просто добавим нулей до степени двойки).

Рассмотрим циклическую группу корней из $1-W_n=\{{\rm e}^{i\frac{2\pi k}{n}}\ \forall\ k=0,\ldots,n-1\}$. Обозначим за $w_n={\rm e}^{i\frac{2\pi}{n}}$. Одно из самых главных свойств, что $w_n^p\cdot w_n^q=w_n^{p+q}$, которым мы будем пользоваться в дальнейшем.

Воспользуемся идеей метода «разделяй и властвуй».

Пусть $A(x) = a_0 + \dots a_{n-1}x^{n-1}$.

Представим $A(x) = A_l(x^2) + xA_r(x^2)$ так, что

$$A_l(x^2) = a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2}$$
$$A_r(x^2) = a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2}$$

Определение 1. Назовём Фурье-образом многочлена $P(x) = p_0 + \ldots + p_{m-1}x^{m-1}$ вектор из m элементов — $\langle P(1), P(w_m), P(w_m^2), \ldots, P(w_m^{m-1}) \rangle$.

Теперь рекурсивно запускаемся от многочленов меньшей степени. Так как для любого целого неотрицательного k следует, что 2k четное число, то $w_n^{2k} = w_{n/2}^k \in W_{n/2}$, то есть мы можем уже использовать значения Фурье-образа для вычисления A(x).

Если мы сможем за линейное время вычислить сумму $A_l(x^2) + xA_r(x^2)$, то суммарное время работы будет $O(n \log n)$, так как $A_l(x)$, $A_r(x)$ имеют степень в 2 раза меньше, чем A(x).

Действительно это легко сделать из псевдокода, который приведен ниже:

Algorithm 2 FFT

```
1: function FFT(A) \triangleright A — массив из комплексных чисел, функция возвращает Фурье-образ
 2:
          n \leftarrow \operatorname{length}(A)
          if n == 1 then
 3:
               return A
          A_l \leftarrow \langle a_0, a_2, \dots, a_{n-2} \rangle
 5:
          A_r \leftarrow \langle a_1, a_3, \dots, a_{n-1} \rangle
 6:
          A_l \leftarrow \text{FFT}(A_l)
 7:
          A_r \leftarrow \text{FFT}(A_r)
 8:
          for k \leftarrow 0 to \frac{n}{2} - 1 do
 9:
               A[k] \leftarrow \hat{A}_l[k] + e^{i\frac{2\pi k}{n}}\hat{A}_r[k]
10:
               A[k+\frac{n}{2}] \leftarrow \hat{A}_l[k] - \mathrm{e}^{i\frac{2\pi k}{n}}\hat{A}_r[k]  \triangleright Здесь минус перед комплексным числом из-за того,
11:
     что мы должны найти другой угол, удвоенный которого на окружности будет \frac{2\pi(k+n/2)}{r}
12:
          return A
```

Теперь поговорим про обратное FFT. Этого материала не было на лекции на момент написания:

Фактически, мы вычислили такую вещь за $O(n \log n)$:

$$\begin{pmatrix} w_n^0 & w_n^0 & w_n^0 & w_n^0 & \cdots & w_n^0 \\ w_n^0 & w_n^1 & w_n^2 & w_n^3 & \cdots & w_n^{n-1} \\ w_n^0 & w_n^2 & w_n^4 & w_n^6 & \cdots & w_n^{2(n-1)} \\ w_n^0 & w_n^3 & w_n^6 & w_n^9 & \cdots & w_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^{n-1} & w_n^{2(n-1)} & w_n^{3(n-1)} & \cdots & w_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

где y_i — Фурье-образ многочлена A(x).

Фактически нам надо найти обратное преобразование. Магическим образом обратная матрица к квадратной матрице выглядит почти также:

$$\frac{1}{n} \begin{pmatrix} w_n^0 & w_n^0 & w_n^0 & w_n^0 & \cdots & w_n^0 \\ w_n^0 & w_n^{-1} & w_n^{-2} & w_n^{-3} & \cdots & w_n^{-(n-1)} \\ w_n^0 & w_n^{-2} & w_n^{-4} & w_n^{-6} & \cdots & w_n^{-2(n-1)} \\ w_n^0 & w_n^{-3} & w_n^{-6} & w_n^{-9} & \cdots & w_n^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^{-(n-1)} & w_n^{-2(n-1)} & w_n^{-3(n-1)} & \cdots & w_n^{-(n-1)(n-1)} \end{pmatrix}$$

$$\frac{1}{n} \begin{pmatrix} w_n^0 & w_n^0 & w_n^0 & w_n^0 & \cdots & w_n^0 \\ w_n^0 & w_n^{-1} & w_n^{-2} & w_n^{-3} & \cdots & w_n^{-(n-1)} \\ w_n^0 & w_n^{-2} & w_n^{-4} & w_n^{-6} & \cdots & w_n^{-2(n-1)} \\ w_n^0 & w_n^{-3} & w_n^{-6} & w_n^{-9} & \cdots & w_n^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^{-(n-1)} & w_n^{-2(n-1)} & w_n^{-3(n-1)} & \cdots & w_n^{-(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

Откуда получаем: $a_k = \frac{1}{n} \sum_{j=0}^{n-1} y_j w_n^{-kj}$.

Теперь напишем псевдокод обратного алгоритма:

Algorithm 3 FFT inverted

```
1: function FFT INVERTED(A) \triangleright A — Фурье-образ, возвращает коэффициенты многочлена
             n \leftarrow \operatorname{length}(A)
  2:
             if n == 1 then
  3:
                    return A
  4:
             A_l \leftarrow \langle a_0, a_2, \dots, a_{n-2} \rangle
  5:
             A_r \leftarrow \langle a_1, a_3, \dots, a_{n-1} \rangle
  6:
             \hat{A}_l \leftarrow \text{FFT}(A_l)
  7:
             \hat{A}_r \leftarrow \text{FFT}(A_r)
  8:
            for k \leftarrow 1 to \frac{n}{2} - 1 do
A[k] \leftarrow \hat{A}_l[k] + e^{i\frac{-2\pi k}{n}} \hat{A}_r[k]
A[k + \frac{n}{2}] \leftarrow \hat{A}_l[k] - e^{i\frac{-2\pi k}{n}} \hat{A}_r[k]
A[k] \leftarrow A[k]/2 \qquad \triangleright 1
A[k + \frac{n}{2}] \leftarrow A[k + \frac{n}{2}]/2
  9:
10:
                                                                                                                                     ⊳ Здесь угол идёт с минусом
11:
                                                                        \triangleright Поделим на 2\log n раз, а значит поделим на n в итоге
12:

    Аналогично строчке выше

13:
             return A
14:
```