Mathematics Review

Algebra

Using exponents:

$$a^{-x} = \frac{1}{a^x}$$

$$a^{-x} = \frac{1}{a^x}$$
 $a^x = a^{(x+y)}$ $\frac{a^x}{a^y} = a^{(x-y)}$ $(a^x)^y = a^{xy}$

$$\frac{a^x}{a^y} = a^{(x-y)}$$

$$(a^x)^y = a^{xy}$$

$$a^{0} = \frac{1}{2}$$

$$a^1 = c$$

$$a^{1} = a \qquad \qquad a^{1/n} = \sqrt[n]{a}$$

Fractions:

$$\left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{ac}{bd}$$

$$\frac{a/b}{c/d} = \frac{ad}{bc}$$

$$\frac{1}{1/a} = a$$

Logarithms:

Natural (base e) logarithms: If $a = e^x$, then $\ln(a) = x$

$$\ln(e^x) = x$$

$$e^{\ln(x)} = x$$

Base 10 logarithms: If $a = 10^x$, then $\log_{10}(a) = x$ $\log_{10}(10^x) = x$

$$og_{10}(a) = x$$

$$10^{\log_{10}(x)} = x$$

The following rules hold for both natural and base 10 algorithms:

$$\ln(ab) = \ln(a) + \ln(b)$$

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b) \qquad \ln(a^n) = n\ln(a)$$

$$\ln(a^n) = n\ln(a)$$

The expression ln(a + b) cannot be simplified.

Linear equations:

The graph of the equation y = ax + b is a straight line. a is the slope of the graph. b is the y-intercept.

Proportionality:

To say that y is proportional to x, written $y \propto x$, means that y = ax, where a is a constant. Proportionality is a special case of linearity. A graph of a proportional relationship is a straight line that passes through the origin. If $y \propto x$, then

$$\frac{y_1}{y_2} = \frac{x_1}{x_2}$$

The quadratic equation $ax^2 + bx + c = 0$ has the two solutions $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. **Ouadratic equation:**

Geometry and Trigonometry

Area and volume:

Rectangle
$$A = ab$$
 a

$$V = abc$$

Triangle

$$A = \frac{1}{2}ab$$

Right circular cylinder

$$V = \pi r^2 l$$

Circle

$$C = 2\pi r$$

$$A = \pi r^2$$

Sphere

$$A = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

APPENDIX A

Arc length and angle: The angle θ in radians is defined as $\theta = s/r$.

The arc length that spans angle θ is $s = r\theta$.

$$2\pi \text{ rad} = 360^{\circ}$$

Right triangle:

Pythagorean theorem
$$c = \sqrt{a^2 + b^2}$$
 or $a^2 + b^2 = c^2$

$$\sin \theta = \frac{b}{c} = \frac{\text{far side}}{\text{hypotenuse}}$$

$$\theta = \sin^{-1} \left(\frac{b}{c} \right)$$

$$\frac{c}{\theta}$$

$$\cos \theta = \frac{a}{c} = \frac{\text{adjacent side}}{\text{hypotenuse}}$$

$$\theta = \cos^{-1}\left(\frac{a}{c}\right)$$

$$\tan \theta = \frac{b}{a} = \frac{\text{far side}}{\text{adjacent side}}$$

$$\theta = \tan^{-1} \left(\frac{b}{a} \right)$$

In general, if it is known that sine of an angle θ is x, so $x = \sin \theta$, then we can find θ by taking the *inverse sine* of x, denoted $\sin^{-1} x$. Thus $\theta = \sin^{-1} x$. Similar relations apply for cosines and tangents.

General triangle:

$$\alpha + \beta + \gamma = 180^{\circ} = \pi$$
 rad

Identities:

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\sin^2\!\alpha + \cos^2\!\alpha = 1$$

$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$$

Expansions and Approximations

Binomial approximation: $(1+x)^n \approx 1 + nx$ if x <<< 1

Small-angle approximation: If $\alpha \ll 1$ rad, then $\sin \alpha \approx \tan \alpha \approx \alpha$ and $\cos \alpha \approx 1$.

> The small-angle approximation is excellent for $\alpha < 5^{\circ}$ (≈ 0.1 rad) and generally acceptable up to $\alpha \approx 10^{\circ}$.

W

Periodic Table of Elements

ActivPhysics OnLine™ Activities Physics

20.4 Potential Barriers

www.masteringphysics.com

	•			1 4	
1.1	Analyzing Motion Using Diagrams	7.6	Rotational Inertia	11.12	Electric Potential, Field, and Force
1.2	Analyzing Motion Using Graphs	7.7	Rotational Kinematics		Electrical Potential Energy and Potential
1.3	Predicting Motion from Graphs	7.8	Rotoride: Dynamics Approach	12.1	DC Series Circuits (Qualitative)
1.4	Predicting Motion from Equations	7.9	Falling Ladder	12.2	DC Parallel Circuits
1.5	Problem-Solving Strategies for	7.10	Woman and Flywheel Elevator:	12.3	DC Circuit Puzzles
1.5	Kinematics	7.10	Dynamics Approach	12.4	Using Ammeters and Voltmeters
1.6	Skier Races Downhill	7.11	Race Between a Block and a Disk	12.5	Using Kirchhoff's Laws
1.7	Balloonist Drops Lemonade	7.12	Woman and Flywheel Elevator: Energy	12.6	Capacitance
1.8		7.12		12.7	
	Seat Belts Save Lives	7.40	Approach		Series and Parallel Capacitors
1.9	Screeching to a Halt	7.13	Rotoride: Energy Approach	12.8	RC Circuit Time Constants
1.10	Pole-Vaulter Lands	7.14	Ball Hits Bat	13.1	Magnetic Field of a Wire
1.11	Car Starts, Then Stops	8.1	Characteristics of a Gas	13.2	Magnetic Field of a Loop
1.12	Solving Two-Vehicle Problems	8.2	Maxwell-Boltzmann Distribution:	13.3	Magnetic Field of a Solenoid
1.13	Car Catches Truck)	Conceptual Analysis	13.4	Magnetic Force on a Particle
1.14	Avoiding a Rear-End Collision	8.3	Maxwell-Boltzmann Distribution:	13.5	Magnetic Force on a Wire
2.1.1	Force Magnitudes		Quantitative Analysis	13.6	Magnetic Torque on a Loop
2.1.2	Skydiver	8.4	State Variables and Ideal Gas Law	13.7	Mass Spectrometer
2.1.3	Tension Change	8.5	Work Done by a Gas	13.8	Velocity Selector
2.1.4	Sliding on an Incline	8.6	Heat, Internal Energy, and First Law of	13.9	Electromagnetic Induction
2.1.5	Car Race		Thermodynamics	13.10	Motional emf
2.2	Lifting a Crate	8.7	Heat Capacity	14.1	The RL Circuit
2.3	Lowering a Crate	8.8	Isochoric Process	14.2	The RLC Oscillator
2.4	Rocket Blasts Off	8.9	Isobaric Process	14.3	The Driven Oscillator
2.5	Truck Pulls Crate	8.10	Isothermal Process	15.1	Reflection and Refraction
2.6	Pushing a Crate Up a Wall	8.11	Adiabatic Process	15.2	Total Internal Reflection
2.7	Skier Goes Down a Slope	8.12	Cyclic Process: Strategies	15.3	Refraction Applications
2.8	Skier and Rope Tow	8.13	Cyclic Process: Problems	15.4	Plane Mirrors
2.9	Pole-Vaulter Vaults	8.14	Carnot Cycle	15.5	Spherical Mirrors: Ray Diagrams
2.10	Truck Pulls Two Crates	9.1	Position Graphs and Equations	15.6	Spherical Mirror: The Mirror Equation
2.11	Modified Atwood Machine	9.2	Describing Vibrational Motion	15.7	Spherical Mirror: Linear Magnification
3.1	Solving Projectile Motion Problems	9.3	Vibrational Energy	15.8	Spherical Mirror: Problems
3.2	Two Balls Falling	9.4	Two Ways to Weigh Young Tarzan	15.9	Thin-Lens Ray Diagrams
3.3	Changing the x-Velocity	9.5	Ape Drops Tarzan		Converging Lens Problems
3.4	Projectile <i>x</i> - and <i>y</i> -Accelerations	9.6	Releasing a Vibrating Skier I		Diverging Lens Problems
3.5	Initial Velocity Components	9.7	Releasing a Vibrating Skier II		Two-Lens Optical Systems
3.6	Target Practice I	9.8	One- and Two-Spring Vibrating Systems	16.1	Two-Source Interference: Introduction
3.7	Target Practice II	9.9	Vibro-Ride	16.2	Two-Source Interference: Qualitative
4.1	Magnitude of Centripetal Acceleration	9.10	Pendulum Frequency	10.2	Questions
4.2	Circular Motion Problem Solving	9.12	Risky Pendulum Walk	16.3	Two-Source Interference: Problems
4.3	Cart Goes Over Circular Path	9.13	Physical Pendulum	16.4	The Grating: Introduction and Qualitative
4.4	Ball Swings on a String	10.1	Properties of Mechanical Waves		Questions Questions
4.5	Car Circles a Track	10.2	Speed of Waves on a String	16.5	The Grating: Problems
4.6	Satellites Orbit	10.3	Speed of Sound in a Gas	16.6	Single-Slit Diffraction
5.1	Work Calculations	10.4	Standing Waves on Strings	16.7	Circular Hole Diffraction
5.2	Upward-Moving Elevator Stops	10.5	Tuning a Stringed Instrument: Standing	16.8	Resolving Power
5.3	Stopping a Downward-Moving Elevator	10.5	Waves	16.9	Polarization
5.4	Inverse Bungee Jumper	10.6	String Mass and Standing Waves	17.1	Relativity of Time
5.5	Spring-Launched Bowler	10.7	Beats and Beat Frequency	17.2	Relativity of Length
5.6	Skier Speed	10.8	Doppler Effect: Conceptual Introduction	17.2	Photoelectric Effect
5.7	Modified Atwood Machine	10.9	Doppler Effect: Problems	17.4	Compton Scattering
6.1	Momentum and Energy Change		Complex Waves: Fourier Analysis	17.5	Electron Interference
6.2	Collisions and Elasticity	11.1	Electric Force: Coulomb's Law	17.6	Uncertainty Principle
6.3	Momentum Conservation and Collisions	11.2	Electric Force: Contonio & Law Electric Force: Superposition Principle	17.7	Wave Packets
6.4	Collision Problems	11.3	Electric Force Superposition Principle	18.1	The Bohr Model
		11.3			
6.5	Car Collision: Two Dimensions	11.4	(Quantitative)	18.2 18.3	Spectroscopy The Locar
6.6	Saving an Astronaut		Electric Field: Point Charge		The Laser
6.7	Explosion Problems	11.5	Electric Field Due to a Dipole	19.1	Particle Scattering
6.8	Skier and Cart	11.6	Electric Field: Problems	19.2	Nuclear Binding Energy
6.9	Pendulum Bashes Box	11.7	Electric Flux	19.3	Fusion Redispativity
6.10	Pendulum Person-Projectile Bowling	11.8	Gauss's Law	19.4	Radioactivity
7.1	Calculating Torques	11.9	Motion of a Charge in an Electric Field:	19.5	Particle Physics
7.2	A Tilted Beam: Torques and Equilibrium	11 40	Introduction Motion in an Electric Field, Problems	20.1	Potential Energy Diagrams
7.3	Arm Levers		Motion in an Electric Field: Problems	20.2	Particle in a Box
7.4	Two Painters on a Beam	11.11	Electric Potential: Qualitative	20.3	Potential Wells

Introduction

Lecturing from a Beam

Atomic and Nuclear Data

Atomic Number (Z)	Element	Symbol	Mass Number (A)	Atomic Mass (u)	Percent Abundance	Decay Mode	Half-Life t _{1/2}
0	(Neutron)	n	1	1.008 665		$oldsymbol{eta}^-$	10.4 min
10 п.	Hydrogen	Н	1	1.007 825	99.985	stable	
Jr.	Deuterium	D	2	2.014 102	0.015	stable	
140	Tritium	T	3	3.016 049		$oldsymbol{eta}^-$	12.33 yr
2	Helium	He	3	3.016 029	0.000 1	stable	
	· (O)		4	4.002 602	99.999 9	stable	
		2	6	6.018 886		$oldsymbol{eta}^-$	0.81 s
3	Lithium	Li	6	6.015 121	7.50	stable	
		07.	7	7.016 003	92.50	stable	
		- /	8	8.022 486		$oldsymbol{eta}^-$	0.84 s
4	Beryllium	Be	9	9.012 174	100	stable	
			10	10.013 534		$oldsymbol{eta}^-$	$1.5 \times 10^6 \text{ yr}$
5	Boron	В	10	10.012 936	19.90	stable	
			11	11.009 305	80.10	stable	
			12	12.014 352		$oldsymbol{eta}^-$	0.020 2 s
6	Carbon	C	10	10.016 854		$oldsymbol{eta}^{\scriptscriptstyle +}$	19.3 s
			11	11.011 433	CN.	$\boldsymbol{\beta}^{\scriptscriptstyle +}$	20.4 min
			12	12.000 000	98.90	stable	
			13	13.003 355	1.10	stable	
			14	14.003 242		$oldsymbol{eta}^-$	5 730 yr
			15	15.010 599		$oldsymbol{eta}^-$	2.45 s
7	Nitrogen	N	12	12.018 613		$oldsymbol{eta}^{\scriptscriptstyle +}$	0.011 0 s
			13	13.005 738		$oldsymbol{eta}^{\scriptscriptstyle +}$	9.96 min
			14	14.003 074	99.63	stable	
			15	15.000 108	0.37	stable	
			16	16.006 100		$oldsymbol{eta}^-$	7.13 s
			17	17.008 450		$oldsymbol{eta}^-$	4.17 s
8	Oxygen	O	15	15.003 065		$\boldsymbol{\beta}^{\scriptscriptstyle +}$	122 s
			16	15.994 915	99.76	stable	
			17	16.999 132	0.04	stable	
			18	17.999 160	0.20	stable	
			19	19.003 577		$oldsymbol{eta}^-$	26.9 s
9	Fluorine	F	18	18.000 937		$\boldsymbol{\beta}^{\scriptscriptstyle +}$	109.8 min
			19	18.998 404	100	stable	
			20	19.999 982		$oldsymbol{eta}^-$	11.0 s
10	Neon	Ne	19	19.001 880		$\boldsymbol{\beta}^{\scriptscriptstyle +}$	17.2 s
			20	19.992 435	90.48	stable	
			21	20.993 841	0.27	stable	
			22	21.991 383	9.25	stable	
17	Chlorine	Cl	35	34.968 853	75.77	stable	
			36	35.968 307		$oldsymbol{eta}^-$	$3.0 \times 10^5 \text{ yr}$
			37	36.965 903	24.23	stable	

APPENDIX D

Atomic Number (Z)	Element	Symbol	Mass Number (A)	Atomic Mass (u)	Percent Abundance	Decay Mode	Half-Life $t_{1/2}$
18	Argon	Ar	36	35.967 547	0.34	stable	
	8		38	37.962 732	0.06	stable	
			39	38.964 314		$oldsymbol{eta}^-$	269 yr
0.			40	39.962 384	99.60	stable	,— J
701			42	41.963 049		$oldsymbol{eta}^-$	33 yr
19	Potassium	K	39	38.963 708	93.26	stable	
,	101		40	39.964 000	0.01	$oldsymbol{eta}^+$	$1.28 \times 10^{9} \text{yr}$
	SOX		41	40.961 827	6.73	stable	
26	Iron	Fe	54	54.939 613	5.9	stable	
		0	56	55.934 940	91.72	stable	
		<0	57	56.935 396	2.1	stable	
		10	58	57.933 278	0.28	stable	
			60	59.934 072		$oldsymbol{eta}^-$	$1.5 \times 10^{6} \text{yr}$
27	Cobalt	Co	59	58.933 198	100	stable	, ,
			60	59.933 820		$oldsymbol{eta}^-$	5.27 yr
38	Strontium	Sr	84	83.913 425	0.56%	stable	J-
			86	85.909 262	9.86%	stable	
			87	86.908 879	7.00%	stable	
			88	87.905 614	82.58%	stable	
			89	88.907 450	· /\`	$oldsymbol{eta}^-$	50.53 days
			90	89.907 738	~0/	$oldsymbol{eta}^-$	27.78 yr
53	Iodine	I	127	126.904 474	100	stable	271.0)1
			129	128.904 984		β	$1.6 \times 10^7 \mathrm{yr}$
			131	130.906 124		β^{-}	8 days
54	Xenon	Xe	128	127.903 531	1.9	stable	A
			129	128.904 779	26.4	stable	/
			130	129.903 509	4.1	stable	
			131	130.905 069	21.2	stable	
			132	131.904 141	26.9	stable	
			133	132.905 906		$oldsymbol{eta}^-$	5.4 days
			134	133.905 394	10.4	stable	,
			136	135.907 215	8.9	stable	
55	Cesium	Cs	133	132.905 436	100	stable	
190.00			137	136.907 078		$oldsymbol{eta}^-$	30 yr
82	Lead	Pb	204	203.973 020	1.4	stable	
			206	205.974 440	24.1	stable	
			207	206.975 871	22.1	stable	
			208	207.976 627	52.4	stable	
			210	209.984 163		$lpha,eta^-$	22.3 yr
			211	210.988 734		$oldsymbol{eta}^-$	36.1 min
83	Bismuth	Bi	209	208.980 374	100	stable	
* #00254			211	210.987 254		α	2.14 min
			215	215.001 836		$oldsymbol{eta}^-$	7.4 min
86	Radon	Rn	219	219.009 477		ά	3.96 s
			220	220.011 369		α	55.6 s
			222	222.017 571		$lpha,eta^-$	3.823 days
						59/d	~

88 Radium Ra 223 223,018 499 α 11.43 days 224 224,020 187 α 3.66 days 226 226,025 402 α 1 600 yr 228 228,031 064 β⁻ 5.75 yr 90 Thorium Th 227 227,027 701 α 18.72 days 228 228,028 716 α 1.913 yr 229 229.031 757 α 75.000 yr 230 230,033 127 α 75.000 yr 231 231,036 299 α, β⁻ 25.52 hr 231 231,036 299 α, β⁻ 25.52 hr 232 232.038 051 100 α 1.40 × 10¹⁰ yr 234 234,043 593 β⁻ 24.1 days 92 Uranium U 233 233,039 630 α 1.59 × 10⁵ yr 234 234,049 946 α 2.45 × 10⁵ yr 236 236,045 562 α 2.34 × 10° yr 93 Neptunium Np 237 237,048 168 α 2.14 × 10° yr 93 238 238,050 784 99.28 α	Atomic Number (Z)	Element	Symbol	Mass Number (A)	Atomic Mass (u)	Percent Abundance	Decay Mode	Half-Life t _{1/2}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88	Radium	Ra	223	223.018 499		α	11.43 days
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				224	224.020 187		α	3.66 days
90 Thorium Th 227 227.027701 α 18.72 days 228 228.028 716 α 1.913 yr 229 229.031 757 α 7 300 yr 230 230.033 127 α 75.000 yr 231 231.036 299 α , β^- 25.52 hr 232 232.038 051 100 α 1.40 × 10 ¹⁰ yr 234 234.043 593 β^- 24.1 days 92 Uranium U 233 233.039 630 α 1.59 × 10 ⁵ yr 234 234.049 946 α 2.45 × 10 ⁵ yr 235 235.043 924 0.72 α 7.04 × 10 ⁸ yr 236 236 236.045 562 α 2.34 × 10 ⁷ yr 238 238.050 784 99.28 α 4.47 × 10 ⁹ yr 93 Neptunium Np 237 237.048 168 α 2.14 × 10 ⁶ yr 238 238.050 946 α 2.12 days 239 239.052 939 α 2.36 days 94 Plutonium Pu 238 238.049 555 α 87.7 yr 239 239.052 157 α 2.412 × 10 ⁴ yr 240 240.053 808 α 6 560 yr 242 242.058 737 α 3.73 × 10 ⁶ yr 244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr				226	226.025 402		α	1 600 yr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4			228	228.031 064		$oldsymbol{eta}^-$	5.75 yr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	Thorium	Th	227	227.027 701		α	18.72 days
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jri-			228	228.028 716		α	1.913 yr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0	74.		229	229.031 757		α	7 300 yr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11/-		230	230.033 127		α	75.000 yr
92 Uranium U 233 234.043 593 β^- 24.1 days 234.043 593 α 1.59 × 10 ⁵ yr 234 234.040 946 α 2.45 × 10 ⁵ yr 235 235.043 924 0.72 α 7.04 × 10 ⁸ yr 236 236.045 562 α 2.34 × 10 ⁷ yr 238 238.050 784 99.28 α 4.47 × 10 ⁹ yr 238 238.050 946 β^- 2.12 days 239 239.052 939 β^- 2.36 days 94 Plutonium Pu 238 238.049 555 α 87.7 yr 240 240.053 808 α 6 560 yr 242 242.058 737 α 3.73 × 10 ⁶ yr 244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 4 32.21 yr		· (C)		231	231.036 299		$lpha,eta^-$	25.52 hr
92 Uranium U 233 233.039 630 α 1.59 × 10 ⁵ yr 234 234.040 946 α 2.45 × 10 ⁵ yr 235 235.043 924 0.72 α 7.04 × 10 ⁸ yr 236 236.045 562 α 2.34 × 10 ⁷ yr 238 238.050 784 99.28 α 4.47 × 10 ⁹ yr 93 Neptunium Np 237 237.048 168 α 2.14 × 10 ⁶ yr 238 238.050 946 β 2.12 days 239 239.052 939 β 2.36 days 94 Plutonium Pu 238 238.049 555 α 87.7 yr 240 240.053 808 α 6 560 yr 242 242.058 737 α 3.73 × 10 ⁶ yr 244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr			2-	232	232.038 051	100	α	$1.40 \times 10^{10} \mathrm{yr}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			TO-	234	234.043 593		$oldsymbol{eta}^-$	24.1 days
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92	Uranium	U -	233	233.039 630		α	$1.59 \times 10^{5} \text{yr}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			' /	234	234.040 946		α	$2.45 \times 10^{5} \text{yr}$
93 Neptunium Np 238 238.050 784 99.28 α $4.47 \times 10^9 \text{ yr}$ 93 Neptunium Np 237 237.048 168 α α $2.14 \times 10^6 \text{ yr}$ 238 238.050 946 β^- 2.12 days 239 239.052 939 β^- 2.36 days 94 Plutonium Pu 238 238.049 555 α 87.7 yr 239 239.052 157 α 2.412 × 10 ⁴ yr 240 240.053 808 α 6 560 yr 242 242.058 737 α 3.73 × 10 ⁶ yr 244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr				235	235.043 924	0.72	α	$7.04 \times 10^{8} yr$
93 Neptunium Np 237 237.048 168 α 2.14 × 10 ⁶ yr 238 238.050 946 β^- 2.12 days 239 239.052 939 β^- 2.36 days 94 Plutonium Pu 238 238.049 555 α 87.7 yr 239 239.052 157 α 2.412 × 10 ⁴ yr 240 240.053 808 α 6 560 yr 242 242.058 737 α 3.73 × 10 ⁶ yr 244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr				236	236.045 562		α	$2.34 \times 10^7 \mathrm{yr}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				238	238.050 784	99.28	α	$4.47 \times 10^9 \text{yr}$
94 Plutonium Pu 238 239.052 939 β^- 2.36 days 238.049 555 α 87.7 yr 239 239.052 157 α 2.412 × 10 ⁴ yr 240 240.053 808 α 6 560 yr 242 242.058 737 α 3.73 × 10 ⁶ yr 244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr	93	Neptunium	Np	237	237.048 168		α	$2.14 \times 10^{6} \text{yr}$
94 Plutonium Pu 238 238.049 555 α 87.7 yr 239 239.052 157 α 2.412 × 10 ⁴ yr 240 240.053 808 α 6 560 yr 242 242.058 737 α 3.73 × 10 ⁶ yr 244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr				238	238.050 946		$oldsymbol{eta}^-$	2.12 days
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				239	239.052 939		$oldsymbol{eta}^-$	2.36 days
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	Plutonium	Pu	238	238.049 555	NO.	α	87.7 yr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				239	239.052 157	46/-	α	$2.412 \times 10^4 yr$
244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr				240	240.053 808	70	α	6 560 yr
244 244.064 200 α 8.1 × 10 ⁷ yr 95 Americium Am 241 241.056 823 α 432.21 yr				242	242.058 737		α	$3.73 \times 10^{6} \mathrm{yr}$
				244	244.064 200		α	$8.1 \times 10^{7} \text{yr}$
243 243.061 375 α 73.070 yr	95	Americium	Am	241	241.056 823		α	432.21 yr
				243	243.061 375		α	73.070 yr