17 - Mar 13 Lecture

- Review of eigenvalues and eigenvectors
- Algebraic multiplicity
- Similar matrices
- Characteristic polynomial
- Matrix diagonalization

Test originally scheduled for next week has been moved to Mar 27. 4 mostly covers eigenvalues / eigenvectors (no Cramer's Rule)

Final exam: Apr 27 9AM - 12PM

- 1 Final exam questions are slightly easier than test questions but cover the whole course.
- 1 There will be review sessions (details to be announced)
- 3 Multiple choice and long answer (same structure as term tests and $\sim 3 \times 10$ nger)

Review_ (Find eigenvalues) 1. Calculate Det (A-21) 2. Factor Det (A- 71)

Find eigenvector wl eigenvalue

I. RR A-7I

2. Set F vars to 1

3. Solve for B vars

Ex: Find eigenvalues of A.

$$A = \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix} \qquad A - \lambda I = \begin{bmatrix} -3 - \lambda & 4 \\ 4 & 3 - \lambda \end{bmatrix} \qquad \frac{Factor}{(\lambda + 5)(\lambda - 5)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Det (A - \lambda I) = (-3 - \lambda)(3 - \lambda) - (4)(4)$$

$$\lambda_1 = -5 \quad \lambda_2 = 5$$

$$= -9 + 3\lambda - 3\lambda + \lambda^2 - 16$$

 $= \lambda^2 - 25$

Find $\vec{v_i} \in \text{Null } (A - \lambda I)$, $\vec{v_i} \neq 0$ (find eigenvalue corresponding to λ .)

let X₂ = 1

$$\begin{array}{c} X_1 + 2X_2 = 0 \implies X_1 = -2 \\ 0 = 0 \end{array} \implies \begin{array}{c} \overrightarrow{V_1} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Check ans. by $A\vec{v}_1 = \lambda_1 \vec{v}_1$.

	Matrix upper tri. ⇒ A-7I upper tri.
	Find eigenvalues upper
Ex:	Find eigenvalues upper $A = \begin{bmatrix} 1 & 7 & 1 & 2 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & -3 \end{bmatrix}$ $A - \lambda I = \begin{bmatrix} 0 & 2 - \lambda & 4 & 0 \\ 0 & 0 & 2 - \lambda & 3 \\ 0 & 0 & 0 & -3 - \lambda \end{bmatrix}$
	0240 02-240
	$A = \begin{bmatrix} 0 & 0 & 2 & 3 \\ 0 & 0 & 2 & 3 \end{bmatrix}$ $A - \lambda I = \begin{bmatrix} 0 & 0 & 2 - \lambda & 3 \\ 0 & 0 & 2 - \lambda & 3 \end{bmatrix}$
	0 0 0 -3 0 0 0 -3-3
	D. E (A. 3T) - (1-3)(2, 3)(-3-2) < Glycody fortunal for you
	Det $(A-\lambda I) = (I-\lambda)(2-\lambda)(2-\lambda)(-3-\lambda) \leftarrow already factored for you$
	$= (1-\lambda)(2-\lambda)^{2}(-3-\lambda)$ repeated roots
	•
	λ ₁ = 1 with algebraic multiplicity 1.
	λ ₂ = 2 with algebraic multiplicity 2.
	λ ₃ = -3 with algebraic multiplicity 1.
Algebraic multiplicity	The algebraic multiplicity of an eigenvalue is the number of times the root is
	repeated in the factorization.
Thm.	The eigenvalues of an upper or lower triangular matrix are the entries on
	the main diagonal. The algebraic multiplicity is how many times that value
	appears on the main diagonal.
	SPECIES DE THE THEIR CHANGE.
£	Find eigenvalues.
	$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $B = \begin{cases} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $both upper triangular$
	[] []
to 1	Both A and B have a single eigenvalue (1) with alg. mult. 2.
"all R vectors".	
04 167	The eigenspace of A corresponding to $\lambda_1 = 1$ is \mathbb{R}^2 . (dim 2) The eigenspace of B corresponding to $\lambda_1 = 1$ is Span $\{[0]\}$ (dim 1)
	The eigenspace of B corresponding to 21=1 is Span { Lolf (dim 1)
RIt'n btwn	
Eigenspace and alg. mult.	The dimension of the eigenspace of a matrix convesponding to an eigenvalue
	is at most the alg. mult. of that eigenvalue.
deg n	$\pm \lambda^{n} + c_{n-1} \lambda^{n-1} + \ldots + c_1 \lambda + C_0 = Det(A-\lambda I)$
polynomial	The sums of the alg. mult. of the eigenvalues is at most n.
	If we work in C instead of R, at most becomes equals.
	Polynomials always factor to linear terms over complex numbers (not the case for IR)
	1. The same of the

Similar Matrices	Let A and B be nxn matrices. A and B are "similar" if there exists an
	invertible nxn matrix P such that $P^{-1}AP = B$ (or $A = PBP^{-1}$)
Ex	$\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \text{ and } \begin{bmatrix} -22 & -30 \\ 16 & 22 \end{bmatrix} \text{ are similar blc} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -22 & -30 \\ 16 & 22 \end{bmatrix}$
Characteristic Polynomial	Characteristic poly of A is Det (A-XI)
	Characteristic poly of $\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$ is $\lambda^2 - 4 = (\lambda - 2)(\lambda + 2)$ same! Characteristic poly of $\begin{bmatrix} -22 & -30 \\ 16 & 22 \end{bmatrix}$ is $\lambda^2 - 4 = (\lambda - 2)(\lambda + 2)$
	Characteristic poly of $\begin{bmatrix} -22 & -30 \\ 16 & 27 \end{bmatrix}$ is $\chi^2 - 4 = (\lambda - 2)(\lambda + 2)$
	If A and B are similar; the eigenvalues, alg. muls. and char. polys.
	·
	will be the same.
	Eigenvectors in general are not the same.
	Note that $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ share Eigenvalues, alg. mult, and char. polys,
	but they are <u>NOT</u> similar.
Matrix Diagonalizations	A nxn matrix B is called diagonalizable if B is similar to a diagonal
	matrix.
	A diagonal matrix is a matrix with no non-zero entries off the main
	diagonal. Aka. both upper and lower triangular
	Ex: [3 0 0]
	0 2 0 can have 0s
	0004 on main diagonal
Check if diagonalizable	A nxn matrix B is diagonalizable iff there exists a linearly independent set of n
	eigenvectors of B.
	set there as cols of matrix P
Wt construct 2 matrices	If the columns of P are a set of n linearly independent eigenvectors of a matrix
	A and D is a diagonal matrix with diagonal entries equal to the eigenvalues of A
	with each eigenvalue corresponding to the eigenvector of P in the same column.
	,
	(order must match P)

eigen \vec{v} of $\lambda_1 \Rightarrow \text{entry 1}$

Ex:
$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$$
 $\lambda_1 = 2$ $\overrightarrow{\nabla}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $\lambda_2 = -2$ $\overrightarrow{\nabla}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$P = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}$$
 $P = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ $A = PPP^{-1}$

$$P = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \qquad A = PDP^{-1}$$