Carbon price pass through in electricity with known prices

Andrew Leach University of Alberta Blake Shaffer University of Calgary

Future Energy Systems Symposium University of Alberta

May, 2019

Carbon Pricing, Electricity Markets and Output-Based Allocations

- Impacts of carbon pricing has become a central policy question in Canada and globally
- ► Electricity markets, at least in certain jurisdictions are ideal environments in which to study responses to carbon prices
- Rich, hourly electricity market data allows us to observe firm-level decisions with respect to carbon price pass through
- ► Fabra and Reguant (2014) shows how firms respond to emissions credit prices and that lump-sum credit allocations were not distortionary in the short run
- Alberta policy changes alter both carbon prices and output-based credit allocations
- ▶ Brown et al. (2018) have looked at the dynamics of such a market in a simplified, simulation model

Alberta's Power Market is an Ideal Laboratory Alberta's power market:

- ► Alberta's power market is relatively small, isolated, and features a mix of generation technologies
- Our peak internal load for 2018 was 11,697 MW, while our lowest observed internal load was 7,819 MW
- ▶ We have relatively minimal intertie capacity. Alberta is connected to WECC (1325 MW export and 1500 MW import path-rating) via Montana and BC) and to Saskatchewan (150 MW path-rating) but significant hourly variability in capacity which helps us with identification
- ➤ Supply mix (2018) was 44.8% coal, 21.1% net-to-grid from combined heat and power plants, 18.5% natural gas, 2.9% hydro, 6.4% wind, 1.0% other sources including solar and 5.2% imports.

Alberta's Policy Changes as Treatments Alberta's GHG policy changes:

- ► From 2007 to 2015, Alberta's *Specified Gas Emitters* Regulation imposed a carbon price of \$15 per tonne with output-based allocations at a rate of 88% of a facility's historic emissions intensity if the facility's annual emissions were more than 100,000 tonnes per year
- ▶ In 2015, these parameters were changed to \$20 per tonne with allocations equal to 85% of historic emissions intensities in 2016 and \$30 per tonne with allocations of 80% in 2017.
- ➤ 2007-2017 system also had generous emissions credits for combined heat and power systems
- ▶ In 2018, the system changed again, to one with output-based allocations fixed for all generators (0.37t/MWh) including for net generation from combined heat and power.

Data Richness

We have data on:

- ► Hourly merit order (power offers) by unit with data on who held offer control for that unit at that time
- Hourly forecast and actual loads and prices
- Hourly weather for Edmonton, Calgary, and Fort McMurray
- Hourly imports, exports, and intertie capabilities
- ► Hourly wind forecasts including 3 and 7 day advanced forecasts.
- Plant-level emissions intensities and historic allocation rates under SGER

Carbon pricing impacts on power markets

Our results show that:

>

Carbon Pricing Policy and Power Generation Sources

Carbon Intensity of Alberta Power

Carbon pricing policy impacts on the merit order

Within-group, plant-level impacts of policies

Empirical Framework

- ▶ The goal of our empirical framework is to estimate the degree to which carbon prices pass through to merit order behaviour and thus to electricity prices
- ▶ We follow Fabra and Reguant (2014) which estimates:

$$\begin{array}{ll} p_{th} & = & \rho \tau_t e_{th} \\ \text{Cost} \\ \text{pass-through} & & \text{Effect of GHG} \\ \text{price times rate} & & \text{Supply, demand and common} \\ \text{factor adjustments} \\ & + & B_3 I_{th} + \epsilon_{th} \\ \text{Fixed} & \text{Error} \\ \text{effects} & \text{term} \end{array}$$

- Alberta policy changes alter both carbon prices and output-based credit allocations over time, which changes the empirical specifications in our case slightly
- We have hourly forecast prices and loads (3 hour leads) which we can use as supply and demand indicators

Empirical Framework

Like Fabra and Reguant, we also have hourly bids by plant for up to 7 blocks - an individual supply function - which we can then use to estimate firm-level residual demand for the marginal producer

$$\begin{array}{lll} b_{ijth} & = & \gamma \tau_t e_j & + & \beta c_{jt} \\ \text{Marginal bid of firm } i & & \text{Effect of GHG} \\ \text{unit } j, \text{ time } th & & \text{price times rate} & \text{Marginal cost} \\ & + & \theta \hat{m}_{ijth} & + \epsilon_{ijth} \\ \text{Approximate} & & \text{Error} \\ \text{markup} & & \text{term} \end{array}$$

in our case, emissions prices vary over time as do allocation rates, so we need to modify both structures

Results

Discussion

- Design, procurement and installation of low and high temperature electrolysis fabrication and testing facilities
- Fabrication of single-cell low temperature electrolyzer prototypes using iridium and iridium oxide catalysts
- ▶ Demonstrated, for the first time, the use of inkjet printing as a feasible technology to fabricate low temperature electrolyzer cells (https://doi.org/10.1149/2.1101807jes)
- Development of a novel nano-pompon-like iridium catalyst superstructure for low temperature fuel cell electrolyzers (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of a novel technique for characterization of iridium catalyst degradation (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of novel micro-structures for high temperature solid oxide electrolyzers and fuel cells (https://doi.org/10.1016/j.electacta.2018.02.055)

- Design, procurement and installation of low and high temperature electrolysis fabrication and testing facilities
- Fabrication of single-cell low temperature electrolyzer prototypes using iridium and iridium oxide catalysts
- ▶ Demonstrated, for the first time, the use of inkjet printing as a feasible technology to fabricate low temperature electrolyzer cells (https://doi.org/10.1149/2.1101807jes)
- Development of a novel nano-pompon-like iridium catalyst superstructure for low temperature fuel cell electrolyzers (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of a novel technique for characterization of iridium catalyst degradation (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of novel micro-structures for high temperature solid oxide electrolyzers and fuel cells (https://doi.org/10.1016/j.electacta.2018.02.055)

- Design, procurement and installation of low and high temperature electrolysis fabrication and testing facilities
- Fabrication of single-cell low temperature electrolyzer prototypes using iridium and iridium oxide catalysts
- ▶ Demonstrated, for the first time, the use of inkjet printing as a feasible technology to fabricate low temperature electrolyzer cells (https://doi.org/10.1149/2.1101807jes)
- Development of a novel nano-pompon-like iridium catalyst superstructure for low temperature fuel cell electrolyzers (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of a novel technique for characterization of iridium catalyst degradation (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of novel micro-structures for high temperature solid oxide electrolyzers and fuel cells (https://doi.org/10.1016/j.electacta.2018.02.055)

- Design, procurement and installation of low and high temperature electrolysis fabrication and testing facilities
- Fabrication of single-cell low temperature electrolyzer prototypes using iridium and iridium oxide catalysts
- ▶ Demonstrated, for the first time, the use of inkjet printing as a feasible technology to fabricate low temperature electrolyzer cells (https://doi.org/10.1149/2.1101807jes)
- Development of a novel nano-pompon-like iridium catalyst superstructure for low temperature fuel cell electrolyzers (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of a novel technique for characterization of iridium catalyst degradation (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of novel micro-structures for high temperature solid oxide electrolyzers and fuel cells (https://doi.org/10.1016/j.electacta.2018.02.055)

- Design, procurement and installation of low and high temperature electrolysis fabrication and testing facilities
- Fabrication of single-cell low temperature electrolyzer prototypes using iridium and iridium oxide catalysts
- Demonstrated, for the first time, the use of inkjet printing as a feasible technology to fabricate low temperature electrolyzer cells (https://doi.org/10.1149/2.1101807jes)
- Development of a novel nano-pompon-like iridium catalyst superstructure for low temperature fuel cell electrolyzers (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of a novel technique for characterization of iridium catalyst degradation (https://doi.org/10.1016/j.jcat.2019.01.018)
- Development of novel micro-structures for high temperature solid oxide electrolyzers and fuel cells (https://doi.org/10.1016/j.electacta.2018.02.055)

Contact info

Andrew Leach

School of Business, University of Alberta

Email: andrew.leach@ualberta.ca

Twitter: @andrew_leach