الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2009

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: العلوم التجريبية

المُدة: 3 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (03.5 نقطة)

$$u_0 = 1$$
 و $u_1 = 2$ و $u_{n+2} = \frac{4}{3}u_{n+1} - \frac{1}{3}u_n$ و $u_0 = 1$ و $u_1 = 2$ و $u_{n+2} = \frac{4}{3}u_{n+1} - \frac{1}{3}u_n$ و $u_0 = 1$

$$v_n = u_{n+1} - u_n$$
 :المنتالية (v_n) معرفة على $\mathbb N$ كما يلي

- v_1) v_0 (1)
- 2) برهن أن (v_n) منتالية هندسية يطلب تعيين أساسها.

$$S_n = v_0 + v_1 + \dots + v_{n-1} : S_n$$
 large n (1) (3)

$$u_n = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^n\right) + 1$$
: n عدد طبیعي عدد طبیعي (ب

بین أن (u_n) متقاربة.

التمرين الثاني: (05 نقاط)

و
$$Z$$
 عدد مرکب $P(Z) = (Z-1-i)(Z^2-2Z+4)$ و $P(Z)$

$$P(Z)=0$$
 المعائلة \mathbb{C} المجموعة (1

$$Z_2 = 1 - \sqrt{3}i + Z_1 = 1 + i$$
 نضع: (2

أ) أكتب
$$Z_1$$
 و Z_2 على الشكل الأسي.

ب) أكتب
$$\frac{Z_1}{Z_2}$$
 على الشكل الجبري ثم الشكل الأسي.

$$\sin\left(\frac{7\pi}{12}\right) \cos\left(\frac{7\pi}{12}\right)$$
 or $\cos\left(\frac{7\pi}{12}\right)$

أ) معدد طبيعي. عيّن قيم
$$n$$
 بحيث يكون العدد $\left(\frac{Z_1}{Z_2}\right)^n$ عدد طبيعي. عيّن قيم n أ)

$$\cdot \left(rac{Z_1}{Z_2}
ight)^{456}$$
 عبد العدد (پ

التعرين الثالث: (04 نقاط)

الفضاء مزود بمعلم متعامد و متجانس $(o;\vec{i};\vec{j};\vec{k})$.

$$C\left(2\,;1\,;\,3
ight)$$
 ، $B\left(0\,;2\,;1
ight)$ ، $A\left(1\,;0\,;2
ight)$: نعتبر النقط

$$\cdot X - Z + 1 = 0$$
 مستو معادلة له من الشكل (P) مستو معادلة له من الشكل أ) بيّن أن المستوي (P) هو المستوي (ABC) ما طبيعة المثلث ABC

$$D(2;3;4)$$
 لا تتمي إلى $D(2;3;4)$ ا) نحقّق من أن النقطة $D(2;3;4)$ الم المبيعة $ABCD$

$$(ABC)$$
 أ أحسب المسافة بين (ABC) و المستوي (ABC) .

التمرين الرابع: (07.5 نقطة)

$$f(x) = -x + \frac{4}{x+1}$$
: بـــ: $I =]-\infty; -1[\cup]-1;0]$ دالة معرقة على $f(x) = -x + \frac{4}{x+1}$

تمثیلها البیاني في مستوي منسوب إلى معلم متعامد ومتجانس
$$(c_f)$$
 كما هو مبین في الشكل.

$$g(x)=x+rac{4}{x+1}$$
 كما يلي: $g(x)=x+rac{4}{x+1}$ كما يلي: $g(x)=x+rac{4}{x+1}$

مثيلها البياني في مستوي منسوب إلى معلم متعامد تجانس.
$$(c_g)$$

$$(\Delta)$$
 بقبل مستقیما مقاربا مائلاً (c_g) بقبل مستقیما مقاربا مائلاً $+\infty$ عند $+\infty$ بطلب تعیین معادلهٔ له.

$$k(x) = |x| + \frac{4}{x+1}$$
 کما یلی: $\mathbb{R} - \{-1\}$ کا دالة معرفة علی k (II

$$\lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h}$$
 ، $\lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h}$ ماذا تستنج (أ

ب) أعط تفسيرا هندسيا لهذه النتيجة.

$$\mathbf{x}_0 = \mathbf{0}$$
 اكتب معادلتي المماسين (Δ_1) و (Δ_2) عند النقطة التي فاصلتها (Δ_1)

$$.(C_k)$$
 و $(_2\Delta)$ ، $(_1\Delta)$ (3

4) أحسب مساحة الحيز المستوي المحدد بالمنحنى
$$(C_k)$$
 و المستقيمات التي معادلاتها:

$$x = -\frac{1}{2}$$
, $x = \frac{1}{2}$, $y = 0$

الموضوع الثاني

التعرين الأول: (04 نقاط)

في الفضاء المنسوب إلى معلم متعامد و متجانس $\left(0; \vec{i}; \vec{j}; \vec{k}\right)$ نعتبر النقط:

.
$$D(1;-1;-2) + C(3;0;-2) + B(1;-2;4) + A(2;3;-1)$$

. 2x - y + 2z + 1 = 0 : المستوي المعرف بمعادلته الديكارتية

المطلوب: أجب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

- 1. النقط C ، B ، A في استقامية.
- . $25 \times -6 y z 33 = 0$: مستوي معادلة ديكارنية له : (ABD) مستوي معادلة ديكارنية اله : (
 - π) عمودي على المستقيم (CD) عمودي على المستوي (π).
 - + H(1;1;-1) هو النقطة B على (π) هو النقطة 4.

التمرين الثاني: (04 نقاط)

 $\left(0;\overrightarrow{i};\overrightarrow{j}\right)$ المستوي منسوب إلى معلم متعامد و متجانس

 $z^2 - 2z + 4 = 0$ المعادلة: C الأعداد المركبة الأعداد المركبة

2. نسمى Z2 ؛ Z1 حلى هذه المعادلة.

- أ) أكتب العددين 21 و 22 على الشكل الأسى.
- ب) C ، B، A هي النقط من المستوي التي لواحقها على الترتيب:

$$z_{\rm C} = \frac{1}{2} (5 + i\sqrt{3})$$
 $z_{\rm B} = 1 + i\sqrt{3}$ $z_{\rm A} = 1 - i\sqrt{3}$

($i^2 = -1$ يرمز إلى العدد المركب الذي يحقق ($i^2 = -1$

أحسب الأطوال BC، AC ، AB ثم استنتج طبيعة المثلث ABC

$$Z = \frac{Z_{C} - Z_{B}}{Z_{A} - Z_{B}}$$
 : حيث $Z_{C} = \frac{Z_{C} - Z_{B}}{Z_{A} - Z_{B}}$

د) أحسب Z^3 و Z^6 ثم استنتج أن Z^{3k} عدد حقيقي من أجل كل عدد طبيعي Z^3

التمرين الثالث: (05 نقاط)

- 1. أ) أحسب u_2 و الأساس q لهذه المنتالية و استنتج الحد الأول u_1
 - ب) أكتب عبارة الحد العام u_n بدلالة n
- جــ) أحسب $S_n = u_1 + u_2 + ... + u_n$ بحيث يكون: $S_n = u_1 + u_2 + ... + u_n$ جيث يكون: $S_n = 728$

2. (v_n) متتالية عددية معرفة من اجل كل عدد طبيعي غير معدوم n كما يلي:

$$v_{n+1} = \frac{3}{2}v_n + u_n$$
 $v_1 = 2$

أ) أحسب v₂ و v₃.

$$\cdot_{\mathbf{W}_n} = \frac{\mathbf{V}_n}{\mathbf{u}_n} - \frac{2}{3}$$
: معدوم غير معدوم غير عدد طبيعي (ب

 $\frac{1}{2}$ بین أن (w_n) متتالیة هندسیة أساسها

. n بدلالهٔ v_n بدلالهٔ v_n بدلالهٔ v_n بدلالهٔ

التمرين االرابع: (07 نقاط)

الجزء الأول:

 $h(x) = x^2 + 2x + \ln(x+1)$ دالة عددية معرفة على -1; + ∞ اله عددية معرفة على h

- $\lim_{x \to +\infty} h(x) = \lim_{x \to -1} h(x) \cdot 1$
- $h'(x) = \frac{1+2(x+1)^2}{x+1}$:] -1; + ∞[من المجال x من المجال عدد حقیقی x من المجال x من ا
 - h(x) و استنتج إشارة h(x) حسب قيم h(0)

 $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$: كما يلي: $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$ كما يلي:

نسمي (C_f) المنحنى الممثل للدالة f في مستوي منسوب إلى معلم متعامد و متجانس (C_f) .

- $\cdot \lim_{u \to +\infty} \frac{\ln u}{u} = 0$ ، برهن أن $\lim_{t \to +\infty} \frac{e^t}{t} = +\infty$ باستخدام النتيجة باستخدام النتيجة ، برهن أن النتيجة
 - $\lim_{x\to +\infty} f(x)$ \leftarrow
- د) أحسب $\lim_{x \to 0} [f(x) (x-1)]$ و استتنج وجود مستقيم مقارب مائل للمنحنى
 - هـ) أدرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم المقارب المائل.
- f غيرات الدالة $f'(x) = \frac{h(x)}{(x+1)^2}$ ؛ $f'(x) = \frac{h(x)}{(x+1)^2}$ عن المجال $f(x) = \frac{h(x)}{(x+1)^2}$
 - y=2 عند نقطة فاصلتها محصورة بين 3,3 و المعادلة y=2 عند نقطة فاصلتها محصورة بين 3,3 و 3,4 و
 - 4. أرسم (C_f).
 - 5. أحسب مساحة الحيز المستوي المحدود بالمنحنى (C_f) و المستقيمات التي معادلاتلها :

$$x = 1$$
 $y = x-1$

العلامة		عناصر الاجابة	محاور			
المجموع	مجزأة	الموضوع الأول				
	2×0.25	التمرين الأول: $v_1 = \frac{7}{3}$ ، $v_0 = 1$ (1	المتثاليات			
	1	$\frac{1}{3}$ و منه $v_{n+1} = \frac{1}{3}v_n$ انن $v_{n+1} = \frac{1}{3}(u_{n+1} - u_n)$ (2)				
03.5	0.75	$S_n = \frac{3}{2} \left[1 - \left(\frac{1}{3} \right)^n \right]^{\binom{n}{3}}$				
	0.75	$u_n = S_n + 1$ ب $S_n = u_n - u_0$ (ب $s_n = u_n - u_0$				
	0.5	(u_n) و منه $\lim_{n \to +\infty} u_n = \frac{5}{2}$ لدينا (ج				
	4×0.25	التمرين الثانى: $\Delta = \left(2i\sqrt{3}\right)^2$ (1) و منه $z' = 1 + \sqrt{3}i$ ، $z' = 1 + \sqrt{3}i$ ، $z_0 = 1 + i$ و منه $\Delta = \left(2i\sqrt{3}\right)^2$	الأعداد المركبة			
	2×0.5	$z_2 = 2e^{-i\frac{\pi}{3}} \cdot z_1 = \sqrt{2}e^{i\frac{\pi}{4}} $ (1 (2)				
05	2×0.5	$ \frac{z_1}{z_2} = \frac{\sqrt{2}}{2} e^{\frac{7\pi}{12}i} \cdot \frac{z_1}{z_2} = \frac{1-\sqrt{3}}{4} + i\frac{1+\sqrt{3}}{4} $ (\$\to\$				
	2×0.5	$\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4} \text{o} \cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4} (\Rightarrow$				
	0.75	$\left(\frac{z_1}{z_2}\right)^n = \left(\frac{1}{\sqrt{2}}\right)^n e^{\left(\frac{7n\pi}{12}i\right)} \qquad \left(\frac{z_1}{z_2}\right)^n \in \mathbb{R} \text{add} n = 12k (k \in \mathbb{N}) (13)$				
	0.25	$\left(\frac{z_1}{z_2}\right)^{456} = \frac{1}{2^{228}} \; (\Box$				
	1	التمرين الثالث: $\overline{AB}\begin{pmatrix} 1\\1\\1\end{pmatrix}$ و $\overline{AB}\begin{pmatrix} 1\\1\\2\\-1\end{pmatrix}$ أ) $\overline{AB}\begin{pmatrix} -1\\2\\1\\-1\end{pmatrix}$ و رحداثیات کل من \overline{AB}				
		(1) (-1) . (P) نحقق معادلة $C \cdot B \cdot A$	هندسة			
04	0.5	ABC و \overrightarrow{AB} \overrightarrow{AB} و \overrightarrow{AB} \overrightarrow{AB} \overrightarrow{AC} $= 0$ (ب)	فضائية			
	0.5 0.5	D otin (ABC) أ) $D otin (ABC)$ أ) $D otin (ABC)$ أ) $D otin (ABC)$ بنا أن $D otin (ABC)$ فإن $D otin (ABC)$ رباعي وجوه				
	1	(3) المسافة هي: $\frac{\sqrt{2}}{2}$				
	0.5	$V = \frac{1}{3}S.h = \frac{1}{3}.\left(\frac{1}{2}ABAC\right).h = \frac{1}{2}$ (e.e. a Azeria) (e.e. a Azeria)				

ă	العلاما	تابع الإجابة و سنم التنفيظ ماده الريطة السعبة التطوم التجريبية التعاليف ال	محاور
المجموع	مجزأة	الموضوع الأول	الموضوع
***************************************	3×0.25	$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = +\infty \text{if } (1) \text{ (I)}$	
	0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	0.25	$\lim_{x \to +\infty} g(x) = +\infty \text{ (i (2)}$	
07.5	2×0.25	$+\infty$ بجوار (c_f) بجوار مائل نس به $y=x$ معادلة مستقیم مقارب مائل نس بجوار (c_f) بجوار (c_f) بجوار	
	0.75	$g'(x) = \frac{(x-1)(x+3)}{(x+1)^2} \ (\Rightarrow$	
	0.25+0.25		ъ.
	0.5	$g(0) = 4 \cdot g'(x)$ $g'(x) - + + + + + + + + + + + + + + + + + + $	دو ال
	2×0.25	$ \lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h} = -5 \text{im} \lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h} = -3 \text{(i)} \text{(1)} \text{(ii)} $	
	0.25	الدالة k لا تقبل الاشتقاق عند 0	
	0.5	ب) النقطة ذات الفاصلة 0 هي نقطة زاوية والمنحنى $(\mathrm{C_{K}})$ يقبل نصفي مماسين	
	0.5	$old x_0 = 0$ اكتب معادلتي المماسين $old (\Delta)$ و $old (2\Delta)$ عند النقطة التي فاصلتها (2	
	1	(C_{K}) الرسم (Δ) ، (Δ) و (Δ))	
		$A = \int_{-\frac{1}{2}}^{0} f(x) dx + \int_{0}^{\frac{1}{2}} g(x) dx = \left[\frac{x^{2}}{2} + 4Ln(x+1) \right]_{-\frac{1}{2}}^{0} + \left[\frac{x^{2}}{2} + 4Ln(x+1) \right]_{0}^{\frac{1}{2}} $ (4)	
	1	$=\frac{1}{4}+4Ln3\left(\mu a\right)$	

مادة:ا لرياضيات	التتقيط	سلم	.9	الإجابة	نابع
------------------------	---------	-----	----	---------	------

العلامة		عناصر الاجابة			
المجموع	مجزأة	الموضوع الثاني	محاور الموض وع		
***************************************		التمرين الأول: (04 نقط)			
	01	را جواب خاطئ لأن C ، B ، A ليست على استقامية			
04	01	$D \cdot B \cdot A$ تحقق $D \cdot B \cdot A$ آنحقق المعادلة	هندسة فضائية		
04	01	(3) جو اب خاطئ لأن $(7D)$ ليس شعاع ناظمي لـــ (π)	•		
	01	\overrightarrow{BH} جو اب خاطئ لأن \overrightarrow{BH} ليس شعاع ناظمي لـــ (π)			
		التمرين الثاني: (04 نقط)			
04	0,75	$z_2 = 1 + i\sqrt{3}$ ؛ $z_1 = 1 - i\sqrt{3}$: 1			
	0,5	$z_{2} = 2e^{i\left(\frac{\pi}{3}\right)}$; $z_{1} = 2e^{i\left(-\frac{\pi}{3}\right)}$ (5.2)	tu		
	01	هنانت قائم $ABC + AC = 3 + BC = \sqrt{3} + AB = 2\sqrt{3}$ ب)	الأعداد		
	0,75	$\operatorname{arg}(Z) \equiv \frac{\pi}{3} [2\pi] : Z = \frac{1}{2} (\rightarrow $	المركبة		
	01	$Z^{3k} = \left(-rac{1}{8} ight)^k$ ؛ $Z^6 = rac{1}{64}$ ، $Z^3 = -rac{1}{8}$ (د			

•		التمرين الثالث (05 نقط)	
05	1,75		
	0,25		3
	2x0,5		
	0,5	$v_{2} = 5 \text{ (i.2)}$ $v_{3} = \frac{27}{2}$	المنتاليات
	0,5	$w_{_{1}}=rac{1}{3}$ ب منتالية هندسية أساسها $q=rac{1}{2}$ و حدها الأول $\left(w_{_{n}} ight)$	
	2x0,5		

		التمرين الرابع (07 نقط)	
	0,5	$\lim_{x \to -1} h(x) = -\infty : \lim_{x \to -\infty} h(x) = +\infty (1)$	
	3x0,25	متزایدة علی $(2;+\infty)$ جدول التغیرات $h:h'(x)=\frac{1+2(x+1)^2}{x+1}$ (2)	
	2x0,25	h(x) ؛ إشارة $h(0) = 0$ (3	
	00,5	الجزء الثاني: 1.1) $x=-1$ بالجزء الثاني: 1.1) الجزء الثاني: $x=-1$ الجزء الثاني: $x=-1$ الجزء الثاني: $x=-1$	
		مقارب	
	0,5	$\lim_{u \to +\infty} \frac{\ln u}{u} = \lim_{t \to \infty} \frac{t}{e'} = \lim_{x \to +\infty} \frac{1}{\left(\frac{e'}{t}\right)} = 0 (4)$	
07	0,25	$\lim_{x \to +\infty} f(x) = +\infty $	hi . M
07	0,5	د) $y = x - 1$: $\lim_{x \to +\infty} \left[f(x) - (x - 1) \right] = 0$	الدوال
		مقاریب	
	0,25	هـ)الوضعية	
	0,5+0,5	$f'(x) = \frac{h(x)}{(x+1)^2}$ (2) بجدول التغيرات.	
	0,75	[3,3;3,4] مستمرة و متزايدة على f	
		f(3,3) < 2 < f(3,4)	
	0,75	(C_f) رسم (4)	
		المساحة:	
	0,75	$A = \frac{1}{2} (\ln 2)^2 u.a.$	