2018-2019年第一学期(大学化学(I)-1) B卷	
The Spare of the Solve of the	
一、总择是	24 m 2 m
ACBCD CDDCC DCCBA	ACDBA
二. 慎空衰	
r = k[A][B]	
2、 不变; t曾大; 不确定; /威小; t管	7大,不要
3、 光学; 动力, 电学	
4. [A]; t; -k	
5, K1/K2	Anna Alamana and Anna Anna Anna Anna Anna Anna An
6. P4	
三、简答駁	
1. (1) Y= k [NO] [H2]	
(2) mol -1. dm3. 5-1	
2. (1) 聚况; (2) 渗透压	4999
3. (1) Ea, Eá 均降低; (2)不衰;	(3) 不变
4. [(Agc1)m.nC1-(n-x)k+]* xk	节点单1
5. (1) 正 (2) 负	
口.计算题	Carteth by J. Commission in the
€1. QI=315.0] &WI=115.0]	1.1 2- 07

$$QI - WI = QI - WI$$

$$QI = QI - WI + WI = 315.0 - 115.0 + (-80.0) = 120.0 J$$
2. (1) $\Delta r H_m^0 = 0 + 62.44 - 2 \times 26.48 = 9.48 \text{ kJ.mol}^{-1}$

$$\Delta r S_m^0 = (0 + 260.49) - 2 \times 206.59 = -152.49 \text{ J.mol}^{-1}.\text{k}^{-1}$$

$$\Delta r G_m^0 = \Delta r H_m^0 - T \Delta r S_m^0$$

$$= 9.48 - 298.15 \times (-152.69) \times 10^{-3} = 55.00 \text{ kJ.mol}^{-1} > 0$$

反应连向进行

(3)
$$k^{\theta} = \exp(-\frac{\Delta r \mathcal{E}_{t_n}^{\theta}}{RT}) = \exp(-\frac{55.00 \times 10^3}{8.314 \times 298115}) = 2.31 \times 10^{-10}$$

$$M = \frac{PVM}{RT} = \frac{41.4 \times 1.000 \times 46}{8.314 \times 777} = 0.29 \text{ G}$$

$$\lg \frac{p}{p_0} = \frac{kt}{2.30} \qquad \lg \frac{10.2}{41.4} = \frac{k \times 3155}{2.30} \qquad k = 4.44 \times 10^{-4} \text{ S}^{-1}$$

4.
$$l_1 \frac{k_2}{k_1} = \frac{E_0}{R} \left(\frac{1}{I_1} - \frac{1}{I_2} \right)$$