EECS 251A: Detection & Estimation Theory Sufficient Statistics

https://eee.uci.edu/14w/18660

Anima Anandkumar

Electrical Engineering and Computer Engineering
University of California, Irvine, CA 92697
a.anandkumar@uci.edu
Copyright © 2013

Outline

Concepts

- Parametric statistical model.
- Statistics, sufficient statistics, and minimal sufficient statistics.
- Exponential families.

References

- 1. H.V. Poor, An Introduction to Signal Detection and Estimation, 2nd Ed., Springer-Verlag, 1994, Chapter IV.C.
- L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis, Addison-Wesley, Publishing Company, Inc., 1991, Chapter 3.
- 3. P.J. Bickel and K.A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, Prentice Hall, 1977, Chapter 2.
- 4. T. S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach, Academic Press, 1967, Chapter 3.3.
- 5. J. Shao, Mathematical Statistics, Springer-Verlag, 1999, Chap. 2.

Motivating Examples

Coin Flip

The experiment of flipping a coin with probability of showing head θ can be modeled by pmfs indexed by θ

$$f(y|\theta) \stackrel{\Delta}{=} \begin{cases} \theta & y=1\\ 1-\theta & y=0 \end{cases}, \quad \theta \in \Theta \stackrel{\Delta}{=} [0,1]$$

Binary signaling in Gaussian noise

The transmission of $\theta \in \{1, -1\}$ over an AWGN channel

$$Y = \theta + N, \quad N \sim \mathcal{N}(0, \sigma^2)$$

with known σ^2 can be modeled by pdfs indexed by $\theta \in \{\pm 1\}$

$$f(y|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(y-\theta)^2}{2\sigma^2}\}, \quad \theta \in \Theta \stackrel{\Delta}{=} \{\pm 1\}$$

Channel Estimation

An unknown linear fading channel in Gaussian noise

$$Y_1 = \theta s_1 + N_1, \ Y_2 = \theta s_2 + N_2, \ N_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

with known input s_1, s_2 and σ^2 can be modeled by

$$f(y_1, y_2 | \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(y_1 - s_1\theta)^2 + (y_2 - s_2\theta)^2}{2\sigma^2}\}, \quad \theta \in \Theta \stackrel{\triangle}{=} \Re$$

Parametric Model

Observation Space Γ

Frequentist Model

The statistic model is defined by the probability density (or pmf) function $f(\mathbf{y}|\boldsymbol{\theta})$ on the observation space Γ indexed by deterministic parameter $\boldsymbol{\theta} \in \Theta$. Note that $f(\mathbf{y}|\boldsymbol{\theta})$ is not the conditional PDF ($\boldsymbol{\theta}$ is deterministic); it is merely for notational convenience.

Bayesian Model

If the parameter can be modeled as random with prior pdf $\pi(\theta)$, we then have a Bayesian model

$$f(\mathbf{y}, \boldsymbol{\theta}) = \pi(\boldsymbol{\theta}) f(\mathbf{y}|\boldsymbol{\theta}).$$

The posterior distribution of Θ given observation y is

$$f(\boldsymbol{\theta}|\mathbf{y}) = \frac{\pi(\boldsymbol{\theta})f(\mathbf{y}|\boldsymbol{\theta})}{\int \pi(\mathbf{t})f(\mathbf{y}|\mathbf{t})d\mathbf{t}}$$

Statistics vs. Probability

In statistics, we are interested in inferring θ after observing $\mathbf{Y} = \mathbf{y}$. In probability, we are interested in deducing the chance of various outcomes without experiments.

Frequentist vs. Bayesian

Frequentist Viewpoint

- Probability is objective; it is connected to the physical world through the relative frequency of event occurrence.
- Parameters are deterministic and unknown; it does not make sense to calculate $Pr(\theta \in X|Y = y)$.
- Statistical procedures should have well-behaved long-run properties.

Bayesian Viewpoint

- Probability is subjective; it merely describes the degree of a belief. ("tomorrow, 30% chance of snow).
- Even if θ is deterministic, we can assign certain distribution of prior belief.
- The inference of a parameter is made based on the posterior distribution $f(\theta|\mathbf{y})$.

Likelihood

Likelihood Function

Given the observation data Y = y, then the likelihood function of θ is a function of the form

$$l(\boldsymbol{\theta}; \mathbf{y}) \stackrel{\Delta}{=} \gamma(\mathbf{y}) f(\mathbf{y}|\boldsymbol{\theta})$$

where $\gamma(\mathbf{y})$ does not depend on θ . A standard choice is when $\gamma(\mathbf{y}) = 1$.

- A likelihood function should be viewed as a function of parameter θ , and it is not uniquely defined.
- Sometimes, it is more convenient to work with log-likelihood function

$$L(\boldsymbol{\theta}; \mathbf{y}) = \log f(\mathbf{y}|\boldsymbol{\theta}).$$

• The average log-likelihood function happens to be the entropy:

$$H_{\boldsymbol{\theta}}(\mathbf{Y}) \stackrel{\Delta}{=} \mathbb{E}_{\boldsymbol{\theta}}(-L(\boldsymbol{\theta}; \mathbf{Y})) = -\int f(\mathbf{y}|\boldsymbol{\theta}) \log f(\mathbf{y}|\boldsymbol{\theta}) d\mathbf{y}$$

Note that the connection between entropy and likelihood function is only valid when the expectation is taken using the same probability model that the observations are generated.

Example: Uniform Distribution

Consider N independent random samples $Y_i \overset{i.i.d.}{\sim} \mathcal{U}(0,\theta)$. The parametric model is then given by the PDF

$$f(\mathbf{y}|\theta) = \begin{cases} \frac{1}{\theta^n} & \theta \ge \max\{y_i\} \\ 0 & \text{otherwise} \end{cases}$$

The likelihood function $l(\theta; \mathbf{y})$ defined

$$l(\theta; \mathbf{y}) \stackrel{\Delta}{=} f(\mathbf{y}|\theta)$$

has a very different look from the PDF.

Examples: The Gaussian Popoulation

Independent Sampling

Consider N independent random samples $Y_i \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$. With $\boldsymbol{\theta} = (\mu, \sigma^2) \in \mathcal{R} \times \mathcal{R}^+$, the parametric model is then given by

$$f(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}^N} \exp\{-\frac{\sum_{i=1}^N y_i^2 - 2\mu \sum_{i=1}^N y_i + N\mu^2}{2\sigma^2}\}$$

The likelihood function can be defined as

$$l(\boldsymbol{\theta}; \mathbf{y}) = \exp\{-N \frac{\frac{1}{N} \sum_{i=1}^{N} y_i^2 - 2\mu \frac{1}{N} \sum_{i=1}^{N} y_i + \mu^2 + 2\sigma^2 \ln \sigma}{2\sigma^2}\}$$

$$L(\boldsymbol{\theta}; \mathbf{y}) = -N \frac{\frac{1}{N} \sum_{i=1}^{N} y_i^2 - 2\mu \frac{1}{N} \sum_{i=1}^{N} y_i + \mu^2 + 2\sigma^2 \ln \sigma}{2\sigma^2}$$

$$l(\boldsymbol{\theta}; \mathbf{y})$$

$$\sigma^2$$

$$0$$

$$\sum_{i=1}^{N} y_i^2 - 2\mu \frac{1}{N} \sum_{i=1}^{N} y_i + \mu^2 + 2\sigma^2 \ln \sigma}{\mu}$$

Remark

- The likelihood function depends only on data summary $(\sum_i y_i, \sum_i y_i^2)$.
- What happens when $N \to \infty$? By the law of large numbers, we have roughly

$$\frac{1}{N}L(\boldsymbol{\theta}; \mathbf{y}) \to -\frac{1+2\ln\sigma^2}{2}$$

Example: Independent Bernoulli Trials

The Model

Suppose that we conduct N independent Bernoulli trials with probability of success $\Pr(Y_i=1)=\theta$, $\Pr(Y_i=0)=1-\theta$, and $\theta\in\{\theta_1,\theta_2\}$, and $\theta_1\neq\theta_2$. The parametric model is then given by

$$f(\mathbf{y}|\theta) = \theta^{\sum y_i} (1 - \theta)^{N - \sum y_i}$$

Remarks

• Again, the model depends not on the entire y but only on a single number $t(y) = \sum_i y_i$ —the total number of successes in N trials, *i.e.*, the model can be written as

$$f(\mathbf{y}|\theta) = g(t(\mathbf{y});\theta)$$

 A less obvious but more fundamental fact is that the model depends only on the likelihood ratio

$$r(\mathbf{y}) = \frac{f(\mathbf{y}|\theta_1)}{f(\mathbf{y}|\theta_2)} = \left(\frac{\theta_1}{\theta_2}\right)^{\sum_i y_i} \left(\frac{1 - \theta_1}{1 - \theta_2}\right)^{n - \sum_i y_i}$$

This follows from

$$r(\mathbf{y}) \to t(\mathbf{y}) \to f(\mathbf{y}|\theta) = q(r(\mathbf{y});\theta)$$

• If we can write $f(\mathbf{y}|\theta) = g(t(\mathbf{y});\theta)$, can we discard \mathbf{y} using only $t(\mathbf{y})$?

Statistics

Given a parametric model $f(\mathbf{y}|\boldsymbol{\theta})$, a (measurable) function $\mathbf{t}(\mathbf{Y})$ of the random observation $\mathbf{Y} \sim f(\mathbf{y}|\boldsymbol{\theta})$ is called a statistic.

- A statistic is a random vector that conveys information about the original parametric model. It often has lower dimension than y and less complex; it represents a (possibly lossy) data reduction.
- There are many statistics. The original observation Y is a trivial statistic.
- Statistics are used for inference. It is therefore desirable that (i) they do not loose information about the model—sufficiency and (ii) their dimension is as low as possible—parsimony.

Sufficiency

A statistic $t(\mathbf{Y})$ is a sufficient statistic for model $f(\mathbf{y}|\boldsymbol{\theta})$ if the conditional density of r.v. \mathbf{Y} given $t(\mathbf{Y}) = \mathbf{u}$ is not a function of $\boldsymbol{\theta}$ for all \mathbf{u} . A sufficient statistic $t(\mathbf{Y})$ is a minimal sufficient statistic if, for any other sufficient statistic \tilde{t} , there is a (measurable) function $h(\cdot)$ such that $t(\mathbf{y}) = h(\tilde{t}(\mathbf{y}))$.

Example

Consider n Bernoulli trials $Y_i \stackrel{\text{IID}}{\sim} \mathcal{B}(\theta)$. Denote $\mathbf{Y} = (Y_1, \dots, Y_n)$. We claim that $t(\mathbf{Y}) = \sum Y_i$ is a sufficient statistic.

$$\begin{split} \Pr(\mathbf{Y} = \mathbf{y} | t(\mathbf{Y}) = j) &= \frac{\Pr(\mathbf{Y} = \mathbf{y}, t(\mathbf{Y}) = j)}{\Pr(t(\mathbf{Y}) = j)} \\ &= \begin{cases} \frac{\theta^{j} (1 - \theta)^{n - j}}{\binom{n}{j} \theta^{j} (1 - \theta)^{n - j}} & \text{if } t(\mathbf{y}) = j \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Remarks:

- If we know t(y), then we can discard y since, given t(Y) = t(y), the probability of Y no longer depends on θ ; the outcome of Y = y is no longer informative.
- How to find sufficient statistics?

The Neyman-Fisher Factorization Theorem

Theorem: A statistic $t(\mathbf{Y})$ is sufficient if and only if the pdf $f(\mathbf{y}|\boldsymbol{\theta})$ has the factorization

$$f(\mathbf{y}|\theta) = g(t(\mathbf{y}); \boldsymbol{\theta})h(\mathbf{y})$$

where g and h are non-negative functions.

Proof for the discrete case: If $f(y|\theta) = g(t(y);\theta)h(y)$, then

$$\Pr(\mathbf{Y} = \mathbf{y} | t(\mathbf{Y}) = \mathbf{u}; \boldsymbol{\theta}) = \frac{\Pr(\mathbf{Y} = \mathbf{y}, t(\mathbf{Y}) = \mathbf{u}; \boldsymbol{\theta})}{\Pr(t(\mathbf{Y}) = \mathbf{u}; \boldsymbol{\theta})}$$

$$= \begin{cases} \frac{g(\mathbf{u}, \boldsymbol{\theta})h(\mathbf{y})}{\Pr(t(\mathbf{Y}) = \mathbf{u}; \boldsymbol{\theta})} & \text{if } t(\mathbf{y}) = \mathbf{u} \\ 0 & \text{otherwise} \end{cases}$$

But

$$\Pr(t(\mathbf{Y})) = \mathbf{u}; \boldsymbol{\theta}) = \sum_{\mathbf{y}, t(\mathbf{Y}) = \mathbf{u}} f(\mathbf{y} | \boldsymbol{\theta}) = g(\mathbf{u}; \boldsymbol{\theta}) \sum_{\mathbf{y}, t(\mathbf{y}) = \mathbf{u}} h(\mathbf{y})$$

Hence

$$\Pr(\mathbf{Y} = \mathbf{y} | t(\mathbf{Y}) = \mathbf{u}; \boldsymbol{\theta}) = \begin{cases} \frac{h(\mathbf{y})}{\sum_{\mathbf{y}, t(\mathbf{y}) = \mathbf{u}} h(\mathbf{y})} & \text{if } t(\mathbf{y}) = \mathbf{u} \\ 0 & \text{otherwise} \end{cases}$$

If $t(\mathbf{Y})$ is sufficient, let

$$g(t(\mathbf{y}); \boldsymbol{\theta}) \stackrel{\Delta}{=} \Pr(t(\mathbf{Y}) = t(\mathbf{y}); \boldsymbol{\theta}),$$

 $h(\mathbf{y}) = \Pr(\mathbf{Y} = \mathbf{y} | t(\mathbf{Y}) = \mathbf{t}(\mathbf{y}))$

Then

$$f(\mathbf{y}|\boldsymbol{\theta}) = \Pr(\mathbf{Y} = \mathbf{y}; \boldsymbol{\theta}) = \Pr(\mathbf{Y} = \mathbf{y}, t(\mathbf{Y}) = t(\mathbf{y}); \boldsymbol{\theta})$$

= $g(t(\mathbf{y}); \boldsymbol{\theta})h(\mathbf{y})$

Sufficiency of Likelihood

Corollary Consider a binary hypothesis model given by $\mathbf{y} \sim p(\mathbf{y}; \boldsymbol{\theta})$, $\boldsymbol{\theta} \in \{\boldsymbol{\theta}_0, \boldsymbol{\theta}_1\}$. Define the statistic by the likelihood ratio

$$r(\mathbf{Y}) \stackrel{\Delta}{=} \frac{f(\mathbf{Y}|\theta_1)}{f(\mathbf{Y}|\theta_0)}.$$

We then have $p(y; \theta) = f(y|\theta_0)g(r(y); \theta)$, where

$$g(r(\mathbf{y}); \theta) = \begin{cases} 1 & \theta = \theta_0 \\ r(\mathbf{y}) & \theta = \theta_1 \end{cases}$$

By the Neyman-Fisher factorization, $r(\mathbf{Y})$ is a sufficient statistic.

Remarks:

• For the general discrete model $\Theta = \{\theta_1, \cdots, \theta_M\}$, the M-dimensional vector of likelihood functions $l(\mathbf{y}) = [p(\mathbf{y}; \theta_1), \cdots, p(\mathbf{y}; \theta_M)]$ or the M-1 dimensional vectors of likelihood ratios

$$r(\mathbf{Y}) = \left[\frac{f(\mathbf{Y}|\theta_2)}{f(\mathbf{Y}|\theta_1)}, \cdots, \frac{f(\mathbf{Y}|\theta_M)}{f(\mathbf{Y}|\theta_1)}\right]$$

are also sufficient statistics.

• If we broaden the notion of statistic whose values are functions of θ , the the likelihood function $r(\boldsymbol{\theta}; \mathbf{Y})$ is minimal sufficient (Dynkin,1951)[†].

[†]E.B. Dynkin, "Necessary and sufficient statistics for families of distributions," *Sel. Transl. Math., Stat., and Prob.,* vol. 1, pp. 23–41, 1951.

Examples

I.I.D. Gaussian Model: Consider $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$.

$$pf(\mathbf{y}|\mu,\sigma^2) = \frac{1}{(\sqrt{2\pi}\sigma^2)^n} e^{\left\{-\frac{\sum y_i^2}{2\sigma^2} + \frac{\mu \sum y_i}{\sigma^2} - \frac{n\mu^2}{2\sigma^2}\right\}} \to \mathbf{t}(\mathbf{y}) = \left(\frac{\sum_i y_i}{\sum_i y_i^2}\right).$$

I.I.D. Poisson Model: Consider $Y_i \overset{i.i.d.}{\sim} \mathcal{P}(\lambda)$.

$$f(\mathbf{y}|\lambda) = \frac{\lambda^{\sum y_i} e^{-n\lambda}}{\prod y_i!} \to t(\mathbf{y}) = \sum_i y_i.$$

Extreme Statistic. Suppose $Y_i \overset{i.i.d.}{\sim} \mathcal{U}(0,\theta)$.

$$f(\mathbf{y}|\theta) = \begin{cases} \frac{1}{\theta^{-n}} & 0 < y_i < \theta, & \forall i \\ 0 & \text{otherwise} \end{cases} = h(\mathbf{y})g(\theta, \max_i y_i)$$

$$h(\mathbf{y}) = \begin{cases} 1 & y_i > 0, & \forall i \\ 0 & \text{otherwise} \end{cases} g(\theta, t) = \begin{cases} \frac{1}{\theta^{-n}} & t < \theta, \\ 0 & \text{otherwise} \end{cases}$$

Channel Estimation in AWGN. Given

$$y_n = x_0 s_n + x_1 s_{n-1} + w_n$$
, $w_n \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, $n = 0, 1, \dots, N-1$,

To estimate $\boldsymbol{\theta} = [x_0 \ x_1]^T$ with known s_n , let

$$\mathbf{y} = \begin{pmatrix} y_0 \\ \vdots \\ y_{N-1} \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} s_0 & s_{-1} \\ s_1 & s_0 \\ \vdots & \vdots \\ s_{N-1} & s_{N-2} \end{pmatrix}.$$

Then

$$f(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} exp\{-\frac{||\mathbf{y} - \mathbf{S}\boldsymbol{\theta}||^2}{2\sigma^2}\}$$
$$= \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} exp\{\frac{2\mathbf{y}'\mathbf{S}\boldsymbol{\theta} - ||\mathbf{S}\boldsymbol{\theta}||^2}{2\sigma^2}\} exp\{-\frac{||\mathbf{y}||^2}{2\sigma^2}\}$$

Hence

$$t(\mathbf{y}) = \mathbf{y}'\mathbf{S} = \begin{pmatrix} \sum_{i} s_i y_i \\ \sum_{i} s_{i-1} y_i \end{pmatrix}$$

The K-Parameter Exponential Family

Definition: A family of distributions is said to be a K-parameter exponential family if there exist $c_1(\boldsymbol{\theta}), \dots, c_K(\boldsymbol{\theta}), d(\boldsymbol{\theta}), \ t_1(\mathbf{y}), \dots, t_K(\mathbf{y}), s(\mathbf{y})$ and a set \mathcal{A} such that

$$f(\mathbf{y}|\boldsymbol{\theta}) = \exp\{\sum_{i=1}^{K} c_i(\boldsymbol{\theta}) t_i(\mathbf{y}) + d(\boldsymbol{\theta}) + s(\mathbf{y})\} 1_{\mathcal{A}}(\mathbf{y})$$

where $I_A(y)$ is the indicator function not related to θ . It is often more convenient to use the canonical form (or the natural representation) of the exponential distribution

$$f(\mathbf{y}|\boldsymbol{\eta}) = \exp\{\sum_{i=1}^K \eta_i t_i(\mathbf{y}) + d(\boldsymbol{\eta}) + s(\mathbf{y})\} 1_{\mathcal{A}}(\mathbf{y}).$$

Theorem: Let $\{f(\mathbf{y}|\boldsymbol{\theta}), \boldsymbol{\theta} \in \boldsymbol{\Lambda}\}$ be a K-parameter exponential family, *i.e.*,

$$f(\mathbf{y}|\boldsymbol{\theta}) = \exp\{\sum_{i=1}^{K} c_i(\boldsymbol{\theta})t_i(\mathbf{y}) + d(\boldsymbol{\theta}) + s(\mathbf{y})\}I_{\mathcal{A}}(\mathbf{y})$$

If $\{\mathbf{c}(\boldsymbol{\theta}) = [c_1(\boldsymbol{\theta}), \cdots, c_K(\boldsymbol{\theta})], \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ has an interior point, then $t(\mathbf{y}) = [t_1(\mathbf{y}), \cdots, t_K(\mathbf{y})]^T$ is minimal sufficient.

Proof: The sufficiency of $\mathbf{t}(\mathbf{y})$ follows the Neyman-Fisher factorization. The minimality is implied by the completeness of $\mathbf{t}(\mathbf{y})$, which will be discussed later. The reason for the existence of "interior point" is to prevent the trivial cases such as by splitting $c_1(\boldsymbol{\theta}) = c_{11}(\boldsymbol{\theta}) + c_{12}(\boldsymbol{\theta})$ thus increasing the dimension of the statistic.

Examples of Exponential Family

These belong to the exponential family

- 1. Gaussian. $Y_i \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$.
- 2. Binomial: $Y \sim \mathcal{B}(\theta, n)$

$$f(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{(n-k)} = \binom{n}{k} e^{k \ln \frac{\theta}{1-\theta} + n \ln(1-\theta)}$$

3. Multinomial: In n independent trials with s outcomes in each trial. Let p_i be the probability for the ith outcome. Let y_i be the number of trials that have the ith outcome.

$$f(y_1, \dots, y_s | p_1, \dots, p_s) = \frac{n!}{y_1! \dots y_s!} p_1^{y_1} \dots p_s^{y_s}$$
$$= exp(k_1 \ln p_1 + \dots + k_s \ln p_s) h(\mathbf{y}) I_{\mathcal{A}}(\mathbf{y})$$

4. Poisson. $Y_i \overset{i.i.d.}{\sim} \mathcal{P}(\theta)$

$$f(y_1, \dots, y_n | \theta) = \frac{\theta^{\sum y_i}}{\prod y_i!} e^{-n\theta} = \exp\{\sum y_i \ln \theta - n\theta\} h(\mathbf{y})$$

These do not belong to the exponential family

1. Uniform. $Y \sim \mathcal{U}(0, \theta)$.

$$f(y|\theta) = \frac{1}{\theta} I_{(0,\theta)}(y)$$

2.

$$f(y|\theta) = 2\frac{y+\theta}{1+2\theta} = exp\{\ln 2(y+\theta) - \ln(1+2\theta)\}, \ 0 < y < 1, \ \theta > 0$$