Paleoclimate

source: NASA

Introduction Paleoclim. Methods Planet Earth Earth History

Yesterday's Summary

Introduction Paleoclim. Methods Planet Earth Earth History

Yesterday's Summary

- Paleoclimatology is very interdisciplinary
- many different archives and proxies, but data patchy and often uncertain
- long term climate determined by: insolation, albedo, and greenhouse gases
- Early Earth climate has changed completely
- Life and Evolution have shaped Earth's chemistry

Lecture Progress

Today we finish 15 min early!

Monday	Introduction	Earth History
Tuesday	Proxies I	Cenozoic Hot & Warm House
Wednesday	Specific Climate System components	Pleistocene G-IG climate
Thursday	Proxies II & Climate System Interactions	Abrupt Climate Change
Friday	Current Climate Change	Future & Synthesis

modern biomes

lumenlearning.com Environmental Biology

Day 2 : Overview

- Overview of Cenozoic Climate
 - Marine Isotope Records
- Basics of Isotope Geochemistry
 - Oxygen Isotopes in Paleoclimatology
 - Clumped C-O Isotopes
 - Mg/Ca paleothermometer
 - TEX86 paleothermometer
- Hothouse "Equable Climate"
 - PETM hyperthermal
- Climate Sensitivity
- Mid-Late Cenozoic cooling

Unil

Cenozoic Climate

better records with plenty marine sediment cores

Earle (2016), opentextbc.ca after James Hansen and Root Routledge

Cenozoic Climate

better records with plenty marine sediment cores

Earle (2016), opentextbc.ca after James Hansen and Root Routledge

Cenozoic Climate

Cenozoic Climate

Isotope Geochemistry

Isotope Geochemistry

Isotope fractionation

$$\delta^{18}O = \left[\frac{(^{18}O/^{16}O)_{sam} - (^{18}O/^{16}O)_{SMOW}}{(^{18}O/^{16}O)_{SMOW}} \right] \times 10^{3}$$

I IIII Université de la usanne

Isotope Geochemistry

Isotope fractionation

Isotope Geochemistry

Isotope fractionation

 R_x – isotope ratio in reservoir X

 α, ϵ – fractionation factor

$$\alpha_{A-B} = R_A / R_B$$

e.g. 1.0098 for ¹⁸O in evap. @ 20°C

$$\varepsilon = (\alpha - 1) * 10^3$$

$$\varepsilon_{A-B} \sim \delta_A - \delta_B$$

Unil_

Isotope Geochemistry

Isotope fractionation

 R_x – isotope ratio in reservoir X α, ϵ – fractionation factor

$$\alpha_{A-B} = R_A / R_B$$

e.g. 1.0098 for ¹⁸O in evap. @ 20°C

$$\varepsilon = (\alpha - 1) * 10^{3}$$

$$\varepsilon_{\Delta-B} \sim \delta_{\Delta} - \delta_{B}$$

$$\alpha_{A-B} \sim 1/T^2$$

Isotope Geochemistry

Equilibrium fractionation:

- slow complete equilibration (e.g. condensation @ 100% humidity)
- heavier isotopes enriched in colder phase

Kinetic fractionation:

- fast or incomplete reactions (e.g. condensation @ < 100% humidity or with immediate rain)
- unidirectional
- more complex

UNIL Université de Lausanne

Isotope Geochemistry

Rayleigh fractionation:

- equilibrium fractionation with removal of product
- reservoir decreases in size
- e.g.: raining clouds

$$R = R_0 f^{(\alpha-1)}$$
 (f = fraction remaining)

Isotope Geochemistry

Rayleigh fractionation during water evaporation

UNIL | Université de Lausanne

Isotopes Cenozoic Clim. Hothouse Climate Sens. Cen. Cooling

Oxygen Isotope Geochemistry

Oxygen Isotope Geochemistry

Rayleigh fractionation during water evaporation

| UNIL | Université de Lausanne

Oxygen Isotope Geochemistry

Rayleigh fractionation during water evaporation

UNIL | Université de Lausanne

Oxygen Isotopes in Carbonate

foraminifera – protists with CaCO₃ shells

Unil

Oxygen Isotopes in Carbonate

foraminifera – protists with CaCO₃ shells

Oxygen Isotopes in Carbonate

foraminifera – protists with CaCO₃ shells

Oxygen Isotopes in Carbonate

JNIL | Université de Lausanne

Oxygen Isotopes in the ocean

 δ^{18} O in seawater: ~ salinity

Oxygen Isotopes in the ocean

 δ^{18} O in seawater: ~ salinity

 δ^{18} O in carbonate: ~ salinity & temperature

→ ~ density

Oxygen Isotopes in the ocean

δ¹⁸O in seawater: ~ salinity

 δ^{18} O in carbonate: ~ salinity & temperature

→ ~ density

BUT salinity in paleoceanography depends on global ice volume!

~ +1 ‰ per 100m sea level as ice Today's continental ice ~ 0.6 ‰ Last Glacial Maximum ice ~ + 1 ‰

Cenozoic Climate

Cenozoic Climate

Clumped Isotope Thermometer

Clumped Isotopes

Clumping in carbon dioxide (CO₂)

Unil

Clumped Isotopes

Omil

Clumped Isotopes

Huntington KW, Petersen SV. 2023 Annu. Rev. Earth Planet. Sci. 51:611–41

Cenozoic Clim. Hothouse Climate Sens. Isotopes Cen. Cooling

Clumped Isotopes

- very accurate
- few secondary effects

BUT

- low precision → many replicates
- large samples (few mg)
 - → costly sample analysis

Clumped isotope temperatures

Cenozoic Climate

Mg/Ca paleothermometer

Mg/Ca paleothermometer

Mg/Ca in foraminifera

Mg/Ca paleothermometer

Mg/Ca in foraminifera

Tierney et al. (2019) Paleoceanography and Paleoclimatology

| UNIL | Université de Lausanne

Mg/Ca paleothermometer

Mg/Ca in foraminifera

Mg/Ca paleothermometer

Mg/Ca in foraminifera

- records past water temperature
- species-specific calibrations
- Mg/Ca in seawater dependent
- Ω dependent
- precision typically ~ 1°C

TEX86 paleothermometer

TEX86 paleothermometer

TEX86 proxy for SST

- based on specific organic molecules from sediments formed by archaea (similar to bacteria)
- the abundance ratio of certain molecules depends on ambient seawater temperatures
- mainly records near-sea surface T

TEX86 paleothermometer

TEX86 proxy for SST

GDGT = Glycerol dialkyl glycerol tetraether (lipids)

INIL | Université de Lausanne

TEX86 paleothermometer

TEX86 proxy for SST

Tierney & Tingley (2015) Nature Scientific data

UNIL | Université de Lausanne

Hothouse Climate

Hothouse Climate

Eocene low latitude sea surface T

Equable Climate

Eocene latitudinal sea surface T

Evans et al. (2018) PNAS

NIL | Université de Lausanne

Equable Climate

Eocene latitudinal sea surface T

Evans et al. (2018) PNAS

NIL | Université de Lausanne

Equable Climate

Eocene East Antarctic climate from pollen

Pross et al. (2012) Nature

LUNII | Université de Lausanne

Equable Climate

Eocene East Antarctic climate from pollen

Pross et al. (2012) Nature

UNIL | Université de Lausann

Equable Climate

Cenozoic West Antarctic climate from pollen

UNIL | Université de Lausanne

PNAS

Anderson et al. (2011)

Equable Climate

Evolution of latitudinal temperature gradient

Auderset et al. (2022) Nature

UNIL | Université de Lausanne

Equable Climate

Equable Climate

Causes

high altitude cloud cover?

Equable Climate

Causes

- high altitude cloud cover?
- atmospheric cell change?

Equable Climate

Causes

- high altitude cloud cover?
- atmospheric cell change?
- polar stratospheric clouds?

Equable Climate

Causes

- high altitude cloud cover?
- atmospheric cell change?
- polar stratospheric clouds?
- cyclone ocean mixing?

Cenozoic Climate

Carbon Isotopes

Carbon Isotopes

- C & O isotopes can be measured from CaCO₃
- C also in organics or gas
- ¹²C 98.9 %
 ¹³C 1.1 %
- photosynthesis discriminates against ^{13}C with $\alpha \sim 1.25$

Carbon Isotopes

Cenozoic Climate

Cenozoic Clim. Hothouse Climate Sens. Isotopes Cen. Cooling

PETM

Paleocene-Eocene Thermal Maximum

caused by massive input of greenhouse gases (CO, and/or CH,

possible causes:

- submarine methane hydrates
- uplift and weathering of marine shelves
- warming-induced death of tropical plants (due to photorespiration)
- North Atlantic volcanism
- permafrost thaw

Cenozoic Climate

Boron Isotopes

Boron Isotopes

boron species in seawater: $B(OH_3)$ und $B(OH)_4$

$$^{10}B - 19.65 \%$$
 $^{11}B - 80.35 \%$
 $\delta^{11}B(\%) = \left[\left(\frac{^{11}B/^{10}B_{sample}}{^{11}B/^{10}B_{NIST951}} \right) - 1 \right] \times 1000.$

- B is fractionated between the two species
- B(OH)₄ is built into the shells of foraminifera

UNIL Université de Lausanne

Hothouse Cenozoic Clim. Isotopes Climate Sens. Cen. Cooling

Boron Isotopes

boron species in seawater:

Rae et al. (2011) Earth and Planetary Science Letters

Boron Isotopes

boron species in seawater:

Rae et al. (2011) Earth and Planetary Science Letters

Boron Isotopes

boron isotopes in benthic foraminifera

Epifaunal

Cibicidoides wuellerstorfi

Cibicidoides mundulus

Planulina ariminensis

Cibicidoides lobatus

Cibicidoides ungerianus

Infaunal

Cibicidoides robertsonianus

Oridorsalis umbonatus

Gyroidina soldanii

Lenticulina vortex

Ammonia beccarii

Melonis zaandamae

Uvigerina peregrina

Aragonite

Hoeglundina elegans

Boron Isotopes

pH reconstructed from foraminifera

UNIL | Université de Lausanne

Boron Isotopes

pH reconstructed from foraminifera

together with further assumptions, ocean pH traces (long term) atmospheric CO₂

Unil

Cenozoic Climate

| UNIL | Université de Lausanne

Cenozoic Climate

Rae JWB, et al. 2021 Annu. Rev. Earth Planet. Sci. 49:609-41

T and CO₂ parallel?

Unil

Climate Sensitivity

How much does Earth warm with increasing CO₂?

Equilibrium Climate Sensitivity (ECS)

- long-term, including geologic feedbacks
- usually referenced to doubling of CO₂

Transient Climate Response (TCR)

- short term (~ 20 years) climate response
- including fast feedbacks
- often used for models

Cenozoic Climate

Rae JWB, et al. 2021 Annu. Rev. Earth Planet. Sci. 49:609-41

T and CO₂ parallel?

Unil

Cenozoic Climate Sensitivity

Rae JWB, et al. 2021 Annu. Rev. Earth Planet. Sci. 49:609–41

indicate independent proxy-derived estimates of surface temperature: • Last Glacial Maximum (Tierney et al. 2020b), • Pliocene (de la Vega et al. 2020), • Pliocene (McClymont et al. 2020), • late Paleocene, • Early Eocene Climatic Optimum, and • Paleocene–Eocene Thermal Maximum (Inglis et al. 2020). Dashed lines denote different degrees of temperature change per CO₂ doubling, providing an estimate of Earth system sensitivity.

| UNIL | Université de Lausanne

Cenozoic Climate

Earle (2016), opentextbc.ca after James Hansen and Root Routledge

Cenozoic cooling

Cenozoic cooling

Long term cooling trend from hot-house to ice-house

Causes debated and likely complex

- weathering?
- isolation of Antarctica?
- faunal changes?

Cenozoic cooling

Long term cooling trend from hot-house to ice-house

Causes debatec

• weathering?

Burton (2006) Journal of Geochemical Exploration

UNIL | Université de Lausanne

Cenozoic cooling

spread of extensive grass lands during Miocene favoured e.g. by seasonal aridity

development of C4 photosynthesis at ~ 10 Ma

- developed multiple times
- fixes C in molecule containing 4 C atoms
- deals better with aridity and low CO₂

Cenozoic cooling

spread of extensive grass lands during Miocene favoured e.g. by seasonal aridity

deals better with aridity and low CO₂

Wikipedia

UNIL | Université de Lausanne

Cenozoic cooling

spread of extensive grass lands during Miocene favoured e.g. by seasonal aridity

development of C4 photosynthesis at ~ 10 Ma

- developed multiple times
- fixes C in molecule containing 4 C atoms
- deals better with aridity and low CO₂
- today ~ 25% of plants, mostly grasses
- global food production depends on C4 plants
- fractionates ¹³C less than C3 plants

Cenozoic cooling

spread of extensive grass lands during Miocene

Cenozoic Clim. Hothouse Cen. Cooling Isotopes Climate Sens.

Cenozoic cooling

spread of extensive grass lands during Miocene

Environmental Biology

Cenozoic Climate

Earle (2016), opentextbc.ca after James Hansen and Root Routledge

Cenozoic Climate

Cenozoic Climate

Introduction Paleoclim. Methods Planet Earth Earth History

Today's Summary

- Eocene Hothouse was very hot
- Equable climate led to warm poles
- PETM was extreme warm event caused by GHG
- Cenozoic climate dominated by CO₂
- Cooling was accompanied by CO2 reduction and changes in weathering and fauna
- Temperature proxies: δ^{18} O, $\Delta 47$, Mg/Ca, TEX86
- Carbon proxies: δ^{13} C & δ^{11} B

LUNIL | Université de Lausann

Outlook

Today we finish 15 min early!

Monday	Introduction	Earth History
Tuesday	Proxies I	Cenozoic Hot & Warm House
Wednesday	Specific Climate System components	Pleistocene G-IG climate
Thursday	Proxies II & Climate System Interactions	Abrupt Climate Change
Friday	Current Climate Change	Future & Synthesis

Mul.