

Outline

Introduction and Background

Audio quality assessment, motivation, and recapping LIME, MOSNet

Method

Overview of implementation for running LIME framework on MOSNet

Results

Two examples of LIME output

Conclusion

Limitations and future work

Introduction and Background

Audio quality assessment, motivation, LIME, MOSNet

Speech Assessment

- Two metrics:
 - 1. Quality how well the signal is perceived.
 - 2. *Intelligibility* how well the speech in a signal is understood.
- Ways to measure quality or intelligibility
 - Subjective vs. objective measures: whether human listeners provide the score.
 - *Intrusive* vs. *non-intrusive* measures: whether a clean reference signal is present.
- *Mean Opinion Score (MOS)*: a subjective, non-intrusive measure of average human quality ratings on a scale of 1-5.

Speech Assessment: Explainability

- Objective metrics are commonly used but correlate poorly with human perceptual scores *why?*
- Hard to reason about the poor correlation if we don't understand what aspects of a signal the networks focus on.
- Networks are not black-boxes, but difficult to reason about on a large scale.

LIME [1]

- Recall from class discussion.
- Learns an already-interpretable model which locally approximates a target network on a specific input.

Figure 3: Toy example to present intuition for LIME. The black-box model's complex decision function f (unknown to LIME) is represented by the blue/pink background, which cannot be approximated well by a linear model. The bold red cross is the instance being explained. LIME samples instances, gets predictions using f, and weighs them by the proximity to the instance being explained (represented here by size). The dashed line is the learned explanation that is locally (but not globally) faithful.

MOSNet [2]

• Deep neural network which predicts a signal's MOS (audio quality) score from a magnitude spectrogram.

Table 2: Configuration of different model architectures. The convolutional layer parameters are denoted as "conv{receptive field size}-{number of channels}/{stride}." The ReLU [23] activation function after each convolutional layer is not shown for brevity. N is for the number of frames.

model	BLSTM	CNN	CNN-BLSTM
input layer	input (N X 257 mag spectrogram)		
conv. layer	$\begin{cases} conv3 - (channels)/1 \\ conv3 - (channels)/1 \\ conv3 - (channels)/3 \end{cases} X4$ $channels = [16, 32, 64, 128]$		
recurrent layer	BLSTM-128		BLSTM-128
	FC-64,	FC-64,	FC-128,
FC	ReLU,	ReLU,	ReLU,
layer	dropout	dropout	dropout
ř	FC-1 (frame-wise scores)		
output layer	average pool (utterance score)		

Methods

Overview

Data Preprocessing

 Convert target audio signals (.wav) to image

Initialization

- Load pretrained MOSNet
- Load LIME Image Explainer

Explanation

- Convert image to array
- Modify MOSNet to take image array as input

Data Preprocessing

- Dataset format: .way
- MOSNet input format: magnitude spectrogram
- LIME input format: image array

THE OHIO STATE UNIVERSITY

Explanation · Load pre-Convert target audio trained image to MOSNet signals arrav (.wav) to • Load LIME Modify image MOSNet to Explainer take image array as

Lamba, 12/04/2023

Initialization

- Lime Image Explainer
 - Pros: Easy conversion from MOSNet input format
 - Cons: Requires a classifier, and MOSNet is a regressor
 - Example:
 - MOS: 1.25
 - Truncated: 1
 - Class probabilities [1, 0, 0, 0, 0]

Explanation

- LIME calls the target model's prediction function
 - Issue: LIME has an image array, MOSNet takes magnitude spectrogram
 - Solution: Wrapper prediction function that loads wav file and calculates magnitude spectrogram for associated image
- Limitation: to reduce computation time, currently using 100 samples

Results

Two examples of LIME output

Image Explanation: Example 1

Image Explainer: Example 2

Conclusion

Challenges, Limitations, and Future Work

- Slight abuse of data format: converting audio file to image and using that.
 - Lossy?
- Audio signals are not natively supported by LIME.
 - Related work: audioLIME [3] is a preprint publication which implements LIME for audio signals.
- Future work:
 - Use a regression explanation model from LIME instead of categorization.
 - Use audioLIME implementation for MOSNet.

References

- [1] M. T. Ribeiro, S. Singh, and C. Guestrin, "Why Should I Trust You?" Explaining the Predictions of Any Classifier," in KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.
- [2] C.-C. Lo, S.-W. Fu, W.-C. Huang, X. Wang, J. Yamagishi, Y. Tsao, and H.-M. Wang, "MOSNet: Deep learning based objective assessment for voice conversion," in *Proc. Interspeech 2019*, 2019.
- [3] Haunschmid, V., Manilow, E., and Widmer, G. "audioLIME: <u>Listenable Explanations Using Source Separation</u>." 13th International Workshop on Machine Learning and Music, 2020

