What is claimed:

1	1. A method of aligning an input port of a first device, the input port			
2	having a face, to an output port of a second device, the output port having a face, the			
3	method comprising the steps of:			
4	 a) activating the second device to emit a signal via the output port; 			
5	b) designating an alignment data point on the face of the output port;			
6	c) designating at least three perimeter data points disposed around the			
7	alignment data point in a planar geometric configuration at respectively predetermined			
8				
9	d) obtaining a measure of alignment quality at the alignment data point			
10	by translating one of the face of the input port and the face of the output port with respect			
11	to another one of the face of the output port and the face of the input port to the			
12	alignment data point;			
13	e) obtaining further measures of alignment quality at each of the			
14	perimeter data points by translating the face of the input port with respect to the face of			
the output port to each of the perimeter data points; and				
16	f) aligning the face of the input port to the alignment data point having			
17	a highest measure of alignment quality.			
1	2. A method according to claim 1, further comprising the steps of:			
2	g) designating a new alignment data point at one of the alignment and			
3	perimeter data points having the highest measure of alignment quality; and			
4	h) repeating steps c-g, wherein the at least three perimeter data points			
5	are disposed around the new alignment data point.			

1	3. A method according to claim 2, further comprising the step of
2	repeating step h until the highest measure of alignment quality is greater than a threshold
3	value.
1	4. A method according to claim 2, wherein the predetermined distances
2	of the at least three perimeter data points from the alignment data point are set according
3	to a scan resolution having a current setting, the method further comprising the steps of:
4	initializing the current setting of the scan resolution to a lowest setting
5	before step c; and
6	f1) setting the scan resolution to a higher setting if the new alignment
7	data point is at the same location as the alignment data point and if the current setting of
8	the scan resolution is not at a highest setting after step g.
o	the seath resolution is not at a highest setting after step g.
1	5. A method according to claim 4, further comprising the steps of:
	, , , , , , , , , , , , , , , , , , , ,
2	f2) setting the scan resolution to an intermediate setting if the current
3	setting of the scan resolution is at the highest setting and if the alignment quality at the
4	alignment data point has a value within an intermediate threshold range;
5	f3) setting the scan resolution to the lowest setting if the current setting
6	of the scan resolution is at the highest setting and if the alignment quality at the
7	alignment data point is less than a lowest threshold.
1	6. The method according to claim 5, wherein step f3 further includes a
2	plurality of intermediate settings each having a respective threshold range.
1	7. A method of aligning an optical fiber to a first device having an
1	- · · · · · · · · · · · · · · · · · · ·
2	optical output port, the output port having a face, the method comprising the steps of:
3	a) designating a center alignment point on the face of the optical output
4	port;

3		U)	activating the first device to enilt an optical signal via the optical		
6	output port;				
7		c)	designating four vertex alignment points on the face of the optical		
8	output port, the vertex data points being disposed around the center alignment point in a				
9	substantially diamond planar configuration at respectively predetermined distances from				
10	the center alig	nment	point according to a scan resolution having a current setting;		
11 .		d)	aligning the optical fiber and the optical output port to the center		
12	alignment point and to each of the vertex alignment points to obtain five respective				
13	measures of alignment quality;				
14	,	e)	determining a greatest measure of alignment quality among the five		
15		•	ent quality and designating the respective alignment point as a new		
16	center alignme	_			
10	contor anguine	one poi	ne, and		
17	1	f)	repeating steps b-e, wherein the four vertex alignment points are		
18	disposed arour	nd the	new center alignment point.		
1		0	The method of claim 7, wherein step diebtains the five respective		
1		8. 	The method of claim 7, wherein step d obtains the five respective		
2		ngnme	ent quality by moving the optical fiber with respect to the optical		
3	output port.				
1	•	9.	The method according to claim 7, wherein step d obtains the five		
2	respective mea	asures	of alignment quality by moving the optical output port with respect to		
3	the optical fibe	er.			
1		10.	A method according to claim 7, further comprising the steps of:		
2		b1)	initializing the current setting of the scan resolution to a lowest		
3	setting;	- - /			
_					

4	er) setting the scan resolution to a higher setting if the new center			
5	alignment point is at the same location as the center alignment point and if the current			
6	setting of the scan resolution is not at a highest setting.			
1	11. A method according to claim 10, further comprising the steps of:			
2	e2) setting the scan resolution to a lower setting if the current setting of			
3	the scan resolution is not at the lowest setting and if the alignment quality at the center			
4	alignment point has a value within a threshold range of the lower setting;			
5	e3) setting the scan resolution to the lowest setting if the current setting			
	-			
6	of the scan resolution is at the highest setting and if the alignment quality at the center			
7	alignment point is less than a lowest threshold.			
1	12. The method according to claim 11, wherein step e2 further includes a			
2	plurality of lower settings each having a respective threshold range.			
1	13. An apparatus for aligning an optical input port having a face with			
2	respect to an optical output port having a face, the apparatus comprising:			
-	respect to an option output port narmy a recey the apparatus comprising.			
3	an X-Y linear table for moving one of the optical input port and optical			
4				
5	an optical power meter for obtaining measures of alignment quality of the			
6				
_				
7	a controller for			
8	directing movement of the X-Y linear table,			
9	comparing respective measures of alignment quality from the optical			
10	power meter at different relative positions of the optical input port and the			
11	optical output port,			

12	initializing and changing a scan resolution setting, and					
13	designating and updating the respective relative positions of the optical					
14	input port and optical output port according to the scan resolution setting and comparison					
15	of the measures of alignment quality.					
1	14. An apparatus according to claim 13, further comprising means for					
2	collecting and displaying measures of alignment quality, the scan resolution setting, and					
3	the respective relative positions of the optical input port and the optical output port,					
4	wherein the controller is a manually operated controller.					
1	15. An apparatus according to claim 13, wherein the optical input port is					
2	an optical fiber and the optical output port is a semiconductor laser.					
1	16. An apparatus according to claim 13, further comprising memory for					
2	storing measures of alignment quality at the respective relative positions of the optical					
3	input port and the optical output port.					
1	17. A method of aligning an optical fiber to a laser diode output face,					
2	comprising the steps of:					
3	a) initializing a current setting of scan resolution to a lowest setting;					
4	b) activating the laser to emit an optical signal;					
5	c) translating the optical fiber along the laser diode output face from a					
6	starting position along a path until a first light signal is detected;					
7	d) designating a current alignment point on the laser diode output face					
8	at the location of the first light signal;					
9	e) designating four vertex alignment points on the laser diode output					
10	face, the vertex alignment points being disposed around the current alignment point in a					

MKPA-108US

intermediate threshold range.

3

11 12	diamond planar configuration at respectively predetermined distances from the current alignment point according to the current setting of scan resolution;				
13	f) aligning the optical fiber to the current alignment point and to each				
14	of the vertex alignment points to obtain five respective measures of alignment quality;				
15	g) determining a greatest measure of alignment quality among the five				
16	measures of alignment quality and designating the respective alignment point as a new				
17	current alignment point;				
1 /	current anginnent point,				
18	h) setting the scan resolution to a higher setting if the new current				
19	alignment point is at the same location as the current alignment point and if the current				
20	setting of scan resolution is not at a highest setting;				
21	 setting the scan resolution to an intermediate setting having a 				
22	respective intermediate threshold range if the current setting of scan resolution is not at				
23	the lowest setting and if alignment quality at the current alignment point is less than a				
24	respective intermediate threshold range;				
25	j) setting the scan resolution to the lowest setting if the current setting				
26					
20 27	of scan resolution is at the highest setting and if alignment quality at the current alignment point is below a lowest threshold; and				
	alignment point is below a lowest timeshold, and				
28	k) repeating steps d-k, wherein the four vertex alignment points are				
29	disposed around the new current alignment point until the greatest measure of alignment				
30	quality is greater than a predetermined value.				
1	18. The method according to claim 17, wherein step i sets the scan				
2	resolution to one of a plurality of intermediate settings, each setting having a respective				
_					