Theoretical and Computational Chemistry in Biological Systems

王石嵘 Kuang Yaming Honors School

April 13, 2019

Contents

- Introduction
- Motivations
- Basic Models
 - Ab Initio
 - Molecular Mechanics Force Field
 - QM/MM, or ONIOM
 - Semi-empirical
 - Neural Network

Two main schools of modern theoretical chemistry and physics

- ab initio / empirical
- deductive / inductive
- a priori / a posteriori
- 4 ..

Motivations

Contents in Brief

Preface		viii
1	The Foundations of Biochemistry	1
ı	STRUCTURE AND CATALYSIS	41
2	Water	43
3	Amino Acids, Peptides, and Proteins	71
4	The Three-Dimensional Structure of Proteins	113
5	Protein Function	153
6	Enzymes	183
7	Carbohydrates and Glycobiology	235
8	Nucleotides and Nucleic Acids	271
9	DNA-Based Information Technologies	303
10	Lipids	343
11	Biological Membranes and Transport	371
12	Biosignaling	417

II BIOENERGETICS AND METABOLISM	485
13 Bioenergetics and Biochemical Reaction Types	489
14 Glycolysis, Gluconeogenesis, and the Pentose	
Phosphate Pathway	527
15 Principles of Metabolic Regulation	569
16 The Citric Acid Cycle	615
17 Fatty Acid Catabolism	647
18 Amino Acid Oxidation and the Production of Urea	673
19 Oxidative Phosphorylation and Photophosphorylatio	n 707
20 Carbohydrate Biosynthesis in Plants and Bacteria	773
21 Lipid Biosynthesis	805
22 Biosynthesis of Amino Acids, Nucleotides, and	
Related Molecules	851
23 Hormonal Regulation and Integration of	
Mammalian Metabolism	901
III INFORMATION PATHWAYS	945
24 Genes and Chromosomes	947
25 DNA Metabolism	975
26 RNA Metabolism	1021
27 Protein Metabolism	1065
28 Regulation of Gene Expression	1115

Questions:

- How to predict 2°, 3°, 4°structures of protein and DNA/RNA?
- 4 How to simulate protein/DNA/RNA folding?

Mow to explain or predict the mechanisms of biochemical reactions?

Basic Models

Molecules consist of nuclei and electrons.

$$E = E_N + E_e + E_{NN} + E_{Ne} + E_{ee}$$
 (3.1)

Born-Oppenheimer Approximation:

Nuclei don't move.
$$\Rightarrow E_N = 0$$
 (3.2)

Ab Initio Methods

Number of electrons

$$\mathbf{\hat{H}}\,\Psi = \mathbf{E}\Psi \qquad \Psi_i = \sum_{ij} \mathbf{c}_{ij}\chi_j \tag{3.3}$$

$$E_{\mathsf{HF}} = \sum_{\mu\nu} P_{\nu\mu} \left\langle \mu \left| -\frac{1}{2} \nabla^2 - \sum_{A=1}^{M} \frac{Z_A}{|r - R_A|} \right| \nu \right\rangle$$

$$+ \frac{1}{2} \sum_{\mu\nu} P_{\nu\mu} \sum_{\lambda\sigma} P_{\sigma\lambda} \left[(\mu\nu | \lambda\sigma) - \frac{1}{2} (\mu\sigma | \lambda\nu) \right]$$

$$+ \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{R_{AB}}$$

$$(3.4)$$

$$E_{XC} = E_{XC}[\rho] \tag{3.5}$$

Molecular Mechanics Force Field

$$V = V_{\text{bond}} + V_{\text{angle}} + V_{\text{dihedral}} + V_{\text{electrostatic}} + V_{\text{van der Waals}}$$
 (3.6)

10 / 14

QM/MM, by Martin Karplus

ONIOM (Our own N-layered Integrated molecular Orbital and molecular Mechanics), by Morokuma Keiji (諸熊 奎治)

11 / 14

Semi-empirical

- PM7
- GFN2-xTB
- NN

Neural Network

Descriptor

$$G_i^{rad} = \sum_j Z_j e^{-\eta(R_{ij} - \mu)^2} \bullet f_c(R_{ij})$$

$$\begin{split} G_{i}^{ang} = & 2^{1-\zeta} \sum_{j,k \neq i} Z_{j} Z_{k} (1 + \lambda \cos \theta_{ijk})^{\varsigma} e^{-\eta (R_{ij}^{2} + R_{ik}^{2} + R_{ki}^{2})} \\ & \bullet f_{c}(R_{ij}) f_{c}(R_{ik}) f_{c}(R_{jk}) \end{split}$$

$$f_c(R_{ij}) = \begin{cases} 0.5(\cos\frac{\pi R_{ij}}{R_c} + 1) & R < R_c \\ 0 & R > R_c \end{cases}$$

$$\{G_i^{rad},G_i^{ang}\}$$

对称函数

14 / 14