#### Limite d'une suite - Terminale S

Exercices corrigés en vidéo avec le cours sur jaicompris.com

# Reconnaitre les formes indéterminées

Dans chaque cas, on donne la limite de  $u_n$  et  $v_n$ .

Déterminer si possible,  $\lim_{n \to +\infty} (u_n + v_n)$  et  $\lim_{n \to +\infty} (u_n - v_n)$ .

a)  $\begin{cases} \lim_{n \to +\infty} u_n = +\infty \\ \lim_{n \to +\infty} v_n = +\infty \end{cases}$  b)  $\begin{cases} \lim_{n \to +\infty} u_n = +\infty \\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$  c)  $\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$  d)  $\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = -4 \end{cases}$ 

a) 
$$\begin{cases} \lim_{n \to +\infty} u_n = +\infty \\ \lim_{n \to +\infty} v_n = +\infty \end{cases}$$

b) 
$$\begin{cases} \lim_{n \to +\infty} u_n = +\infty \\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$$

c) 
$$\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$$

d) 
$$\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = -4 \end{cases}$$

Dans chaque cas, on donne la limite de  $u_n$  et  $v_n$ .  $u_n$ 

Déterminer si possible,  $\lim_{n \to +\infty} (u_n \times v_n)$  et  $\lim_{n \to +\infty} \frac{u_n}{v_n}$ .

a)  $\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = +\infty \end{cases}$  b)  $\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = -3 \end{cases}$  c)  $\begin{cases} \lim_{n \to +\infty} u_n = 3 \\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$  d)  $\begin{cases} \lim_{n \to +\infty} u_n = 0 \\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$ 

a) 
$$\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = +\infty \end{cases}$$

b) 
$$\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = -3 \end{cases}$$

c) 
$$\begin{cases} \lim_{n \to +\infty} u_n = 3\\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$$

d) 
$$\begin{cases} \lim_{n \to +\infty} u_n = 0\\ \lim_{n \to +\infty} v_n = -\infty \end{cases}$$

Dans chaque cas, on donne la limite de  $u_n$  et  $v_n$  et le signe de  $v_n$ .

Déterminer si possible,  $\lim_{n \to +\infty} (u_n \times v_n)$  et  $\lim_{n \to +\infty}$ 

a) 
$$\begin{cases} \lim_{n \to +\infty} u_n = -\infty \\ \lim_{n \to +\infty} v_n = 0 \\ v_n > 0 \end{cases}$$
 b) 
$$\begin{cases} \lim_{n \to +\infty} u_n = -4 \\ \lim_{n \to +\infty} v_n = 0 \\ v_n < 0 \end{cases}$$
 c) 
$$\begin{cases} \lim_{n \to +\infty} u_n = 0 \\ \lim_{n \to +\infty} v_n = 0 \\ v_n > 0 \end{cases}$$

b) 
$$\begin{cases} \lim_{n \to +\infty} u_n = -4 \\ \lim_{n \to +\infty} v_n = 0 \\ v_n < 0 \end{cases}$$

c) 
$$\begin{cases} \lim_{n \to +\infty} u_n = 0\\ \lim_{n \to +\infty} v_n = 0\\ v_n > 0 \end{cases}$$

 $\overline{A}$  l'aide des tableaux de la somme, du produit et du quotient, déterminer si possible  $\lim_{n \to +\infty} u_n$ .

a) 
$$u_n = n^2 + n^2$$

$$b) u_n = n^2 - n$$

$$c) u_n = \frac{2}{n+2}$$

d) 
$$u_n = \frac{3}{2 - n^2}$$

a) 
$$u_n = n^2 + n$$
 b)  $u_n = n^2 - n$  c)  $u_n = \frac{2}{n+2}$  d)  $u_n = \frac{3}{2 - n^2}$  e)  $u_n = \frac{n^2 + 2}{n+1}$  f)  $u_n = \frac{3}{0.5^n}$ 

f) 
$$u_n = \frac{n}{3}$$

## Limite et suite géométrique

Déterminer les limites éventuelles suivantes :

$$\lim_{n \to +\infty} 2^n - 3^n$$

$$\lim_{n \to +\infty} 2^n - 3^n \qquad \lim_{n \to +\infty} \frac{2^n + 5^n}{7^n}$$

#### Limite de suite et forme indéterminée

Dans chaque cas, déterminer la limite éventuelle de la suite  $(u_n)$ : a)  $u_n=n^3-3n^2$  b)  $u_n=\frac{n^2-2n}{n+1}$  c)  $u_n=\frac{n^2+n}{1-n^2}$ 

a) 
$$u_n = n^3 - 3n^2$$

$$b) u_n = \frac{n^2 - 2n}{n+1}$$

c) 
$$u_n = \frac{n^2 + n}{1 - n^2}$$

#### Limite et Algorithme

Soit la suite u définie sur  $\mathbb{N}$  par  $u_n = n^3 - 3n^2 + 5$ .

- 1. Déterminer  $\lim_{n\to+\infty} u_n$ .
- 2. Pour un réel A, on souhaite déterminer le plus petit rang n pour lequel  $u_n \geq A$ . Construire un algorithme permettant de résoudre ce problème.

Dans chaque cas, déterminer la limite éventuelle de la suite u:

a) 
$$u_n = n - \sqrt{n}$$

a) 
$$u_n = n - \sqrt{n}$$
 b)  $u_n = 3 + \frac{2}{n} - \frac{2}{n^2}$  c)  $u_n = \frac{4n - 3}{n^2 + 5}$ 

c) 
$$u_n = \frac{4n-3}{n^2+5}$$

1

### Limite de suite, encadrement et théorème des gendarmes

Dans chaque cas, déterminer la limite éventuelle de la suite  $(u_n)$ 

a) 
$$u_n = \frac{(-1)^n}{n+2}$$

b) 
$$u_n = n - \cos(n)$$

a) 
$$u_n = \frac{(-1)^n}{n+2}$$
 b)  $u_n = n - \cos(n)$  c)  $u_n = \frac{n^2 + \sin(n)}{n+5}$ 

### Limite d'une somme d'une suite géométrique

1°) Déterminer  $\lim_{n\to+\infty} \left(\frac{1}{3}\right)^n$ 2°) Déterminer  $\lim_{n\to+\infty} 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}$ 

3°) On considère la suite  $(u_n)$  définie sur  $\mathbb{N}$  par  $u_n = 1 + x + ... + x^n$  où x est un nombre réel. Déterminer la limite de  $(u_n)$  selon les valeurs de x.

## Limite d'une suite à l'aide d'une suite auxiliaire géométrique

On considère la suite u définie par  $u_0 = 1$  et pour tout entier naturel n par  $u_{n+1} = \frac{1}{3}u_n + n - 2$ .

L'objectif de cet exercice est de déterminer la limite de cette suite u.

Pour cela, on considère la suite v définie par tout entier naturel n par  $v_n = -2u_n + 3n - \frac{21}{2}$ 

1) Démontrer que la suite v est une suite géométrique dont on précisera la raison.

2) Conclure.

### Limite d'une somme

Soit la suite  $(u_n)$  définie pour tout entier  $n \ge 1$  par  $u_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$ .

1°) Démontrer que pour tout entier  $n \ge 1$ ,  $u_n \ge \sqrt{n}$ .

 $2^{\circ}$ ) En déduire la limite de la suite  $(u_n)$ .

#### Problème ouvert

On considère la suite  $(u_n)$  définie pour tout entier  $n \ge 1$  par :  $u_n = \sum_{k=0}^{2n} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$ 

Démontrer que la suite  $(u_n)$  est convergente.

### Somme et suite télescopique

On considère la suite  $(u_n)$  définie pour tout entier  $n \ge 1$  par  $u_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)}$ .

1°) Vérifier que pour tout entier  $k \ge 1$ ,  $\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$ .

2°) En déduire que pour tout entier  $n \ge 1, u_n = 1 - \frac{1}{n+1}$ .

 $3^{\circ}$ ) En déduire la limite de la suite  $(u_n)$ .

On considère une suite  $(u_n)$  croissante qui n'est pas convergente.

1°) Démontrer que  $(u_n)$  n'est pas majorée.

2°) En déduire sa limite.

On considère la suite  $(u_n)$  définie pour tout entier naturel n par :  $\begin{cases} u_0 = 2 \\ u_{n+1} = u_n^2 \end{cases}$ 

1°) Démontrer que pour tout entier naturel  $n, u_n \geq 2$ .

 $2^{\circ})$  Démontrer que la suite  $(u_n)$  est croissante.

 $3^{\circ}$ ) Démontrer que la suite  $(u_n)$  n'est pas majorée. On pourra raisonner par l'absurde.

3

 $4^{\circ}$ ) En déduire la limite de la suite  $(u_n)$ .

On considère la suite  $(u_n)$  définie pour tout entier naturel n par :  $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{3}u_n + 4 \end{cases}$ 

## PARTIE 1 : Conjectures

- 1.a) Sur un même graphique, tracer les droites d'équation y = x et  $y = \frac{1}{3}x + 4$ .
- 1.b) Déterminer graphiquement,  $u_1, u_2, u_3$ .
- 1.c) Déterminer par le calcul,  $u_1$ ,  $u_2$ ,  $u_3$ . Les résultats sont-ils cohérents?
- 1.d) Conjecturer le sens de variation de  $(u_n)$ .
- 1.e) Conjecturer la limite de  $(u_n)$ .

#### PARTIE 2 : Démonstration des conjectures

- 2.a) Démontrer que pour tout entier naturel  $n, 0 \le u_n \le 6$ .
- 2.b) Démontrer la conjecture du 1.d)
- 2.c) Démontrer la conjecture du 1.e)

#### PARTIE 3: Démonstration des conjectures par une seconde méthode

On considère la suite  $(v_n)$  définie sur  $\mathbb{N}$  par  $v_n = u_n - 6$ .

- 3.a) Déterminer  $v_0, v_1, v_2$ .
- 3.b) Conjecturer la nature de la suite  $(v_n)$ .
- 3.c) Démontrer cette conjecture.
- 3.d) Exprimer  $v_n$  en fonction de n. Exprimer  $u_n$  en fonction de n.
- 3.e) En déduire la limite de la suite  $(u_n)$ .

### Limite d'une suite géométrique : démonstration du cours

x est un réel positif.

- 1°) Démontrer que pour tout entier naturel n,  $(1+x)^n \ge 1 + nx$
- 2°) En déduire la limite de la suite  $(q^n)$  où q > 1.
- 3°) On cherche maintenant la limite de  $(q^n)$  où 0 < q < 1.
  - a) On pose  $p = \frac{1}{q}$ . Déterminer  $\lim_{n \to +\infty} p^n$ . b) En déduire  $\lim_{n \to +\infty} q^n$ .

#### Limite d'une somme

Soit la suite  $(u_n)$  définie pour tout entier  $n \ge 1$  par  $u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$ 

- 1°) Démontrer que la suite  $(u_n)$  est croissante.
- 2°) Démontrer par récurrence que pour tout entier naturel  $n \ge 1$ ,  $u_n \le 2 \frac{1}{n}$ .
- 3°) Que peut-on en déduire?

## Suite homographique

Soit la suite u définie sur  $\mathbb{N}$  par  $u_0 = 1$  et pour tout entier naturel n,  $u_{n+1} = 2 + \frac{3}{u_n}$ 

L'objectif du problème est d'exprimer  $u_n$  en fonction de n puis de trouver la limite de  $(u_n)$ .

1°) On a tracé la courbe de la fonction f définie sur  $]0; +\infty[$  par  $f(x)=2+\frac{3}{x}$ 



Déterminer graphiquement  $u_1, u_2, u_3$ .

- 2°) Déterminer par le calcul,  $u_1$ ,  $u_2$ ,  $u_3$ . Est-ce cohérent?
- $3^{\circ}$ ) Quelles conjectures peut-on faire concernant le sens de variation, et la limite de cette suite  $(u_n)$ .
- $4^{\circ}$ ) La suite  $(u_n)$  est-elle arithmétique? géométrique? Justifier.
- 5°) Démontrer que pour tout entier naturel  $n, u_n \ge 1$ .

On considère la suite  $(v_n)$  définie pour tout entier naturel n par :  $v_n = \frac{u_n - 3}{u_n + 1}$ 

- $6^{\circ}$ ) Déterminer par le calcul les 4 premiers termes de la suite  $(v_n)$ .
- $7^{\circ}$ ) La suite v semble-t-elle arithmétique? Géométrique? Justifier votre conjecture.
- 8°) Démontrer la conjecture du 7°).
- 9°) Exprimer  $v_n$  en fonction de n. En déduire l'expression de  $u_n$  en fonction de n.
- $10^{\circ}$ ) En déduire la limite de la suite  $(u_n)$ . Est-ce cohérent?

## Suite arithmético-géométrique

On considère la suite  $(u_n)$  définie pour tout entier naturel n par  $u_0 = 0$  et  $u_{n+1} = \frac{1}{2}u_n + 1$ .

- 1) Montrer que pour tout entier  $n, u_n \leq u_{n+1} \leq 2$ .
- 2) En déduire que la suite  $(u_n)$  est convergente. On note  $\ell$  sa limite.
- 3) Déterminer la valeur de  $\ell$ .

Soit  $(u_n)$  la suite définie par son premier terme  $u_0$  et, pour tout entier naturel n, par la relation :  $u_{n+1} = au_n + b$  (a et b réels non nuls tels que  $a \neq 1$ ).

On pose, pour tout entier naturel n,  $v_n = u_n - \frac{b}{1-a}$ .

- 1. Démontrer que la suite  $(v_n)$  est géométrique de raison a.
- 2. En déduire que si a appartient à l'intervalle ]-1;1[, alors la suite  $(u_n)$  a pour limite  $\frac{b}{1-a}$ .
- 3. On considère la suite  $(h_n)$  définie par  $h_0 = 80$  et pour tout entier naturel n,  $h_{n+1} = 0.75h_n + 30$ . La suite  $(h_n)$  est-elle convergente? Justifier.

Soit la suite  $(u_n)$  définie par  $u_0 = 8$  et pour tout entier naturel n par  $u_{n+1} = 0.5u_n + 4n - 3$ . Soit la suite  $(v_n)$  définie pour tout entier naturel n par  $v_n = u_n - 8n + 22$ .

A l'aide d'un tableur, on obtient :

|  |   | A | В      | С     |
|--|---|---|--------|-------|
|  | 1 | n | $u_n$  | $v_n$ |
|  | 2 | 0 | 8      | 30    |
|  | 3 | 1 | 1      | 15    |
|  | 4 | 2 | 1,5    | 7,5   |
|  | 5 | 3 | 5.75   | 3,75  |
|  | 6 | 4 | 11,875 | 1,875 |

- 1) Conjecturer une expression explicite de  $v_n$ , puis démontrer cette conjecture.
- 2) En déduire une expression explicite de  $u_n$ , puis indiquer si la suite  $(u_n)$  est convergente.

## Limite d'une suite par deux méthodes

On considère la suite  $(u_n)$  définie pour tout entier naturel n par  $\begin{cases} u_0 = 24 \\ u_{n+1} = \sqrt{u_n + 12} \end{cases}$ 

## PARTIE 1 : Étude de la convergence

- 1.a) Déterminer  $u_1, u_2, u_3 \ aound 0.1$  près
- 1.b) Montrer que pour tout entier naturel  $n, u_n \geq 4$
- 1.c) Démontrer que la suite  $(u_n)$  est décroissante.
- 1.d) En déduire que la suite  $(u_n)$  converge.

## PARTIE 2 : Déterminer la limite

Soit l la limite de la suite  $(u_n)$ .

- 2.a) Démontrer que l est solution de l'équation  $l^2 = l + 12$ .
- 2.b) En déduire la limite de la suite  $(u_n)$ .

## PARTIE 3 : Déterminer la limite par une deuxième méthode

- 3.a) Montrer que pour tout entier naturel n,  $u_{n+1} 4 = \frac{u_n 4}{\sqrt{u_n + 12} + 4}$
- 3.b) En déduire que pour tout entier naturel  $n, u_{n+1} 4 \le \frac{1}{8}(u_n 4)$ .
- 3.c) Démontrer par récurrence que pour tout entier naturel n,  $0 \le u_n 4 \le \frac{1}{8n}$
- 3.d) En déduire la limite de la suite  $(u_n)$ .

### Suite: Exercice type Bac

Suite : Exercice type Bac On considère la suite  $(u_n)$  définie pour tout entier naturel n par  $\left\{ \begin{array}{l} u_0=1 \\ u_{n+1}=\frac{1}{10}u_n(20-u_n) \end{array} \right.$ 

- 1°) Soit la fonction f définie sur [0;20] par  $f(x) = \frac{1}{10}x(20-x)$ .
  - a) Étudier les variations de f sur [0;20].
  - b) En déduire que si  $x \in [0; 10]$ , alors  $f(x) \in [0; 10]$ .
- $2^{\circ}$ ) Déterminer  $u_1, u_2$
- 3°) Démontrer que pour tout entier naturel  $n, 0 \le u_n \le u_{n+1} \le 10$ .
- $4^{\circ}$ ) En déduire que la suite  $(u_n)$  est convergente.
- $5^{\circ}$ ) On note l la limite de la suite  $(u_n)$ .
  - a) Démontrer que l est solution de l'équation  $l = \frac{1}{10}l(20-l)$ .
  - b) Résoudre cette équation et en déduire la valeur de l.

#### Suites croisées

Soient  $(a_n)$  et  $(b_n)$  deux suites telles que  $a_0 > 0$  et  $b_0 > 0$  et pour tout entier naturel n:  $a_{n+1} = \frac{a_n + b_n}{2} \text{ et } b_{n+1} = \frac{a_n \times b_n}{a_n + b_n}.$ 1) Démontrer que  $(a_n)$  et  $(b_n)$  sont deux suites strictement positives.

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 et  $b_{n+1} = \frac{a_n \times b_n}{a_n + b_n}$ 

- 2) Démontrer que pour tout entier naturel  $n: a_{n+1} b_{n+1} = \frac{{a_n}^2 + {b_n}^2}{2(a_n + b_n)}$ .
- 3) En déduire le signe de  $a_n b_n$  pour  $n \ge 1$ .
- 4) Démontrer que les suites  $(a_n)$  et  $(b_n)$  sont décroissantes à partir du rang 1.
- 5) Démontrer que les suites  $(a_n)$  et  $(b_n)$  sont convergentes vers une même limite.

#### QCM limite de suite

Préciser si les affirmations suivantes sont vraies ou fausses en justifiant :

- 1. Si deux suites  $(u_n)$  et  $(v_n)$  sont strictement positives et convergent alors la suite  $\left(\frac{u_n}{v_n}\right)$  converge.
- 2. Si pour tout entier naturel  $n, u_n \leq 2$  alors  $\frac{1}{u_n} \geq \frac{1}{2}$ .
- 3. Si la suite  $(u_n)$  est croissante et strictement négative alors la suite  $\left(\frac{1}{u_n}\right)$  est décroissante.
- 4. Si pour tout entier  $n \ge 1$ ,  $|u_n 5| \le \frac{1}{n}$  alors la suite  $(u_n)$  converge vers 5.
- 5. Si la suite  $(u_n)$  n'est pas majorée, alors  $\lim_{n \to +\infty} u_n = +\infty$ .
- 6. Si  $\lim_{n \to +\infty} u_n = +\infty$  alors la suite  $(u_n)$  n'est pas majorée.

## Suite de Héron - type Bac

# PARTIE 1 : Étude d'une fonction f

On considère la fonction définie sur  $]0; +\infty[$  par  $f(x) = \frac{1}{2}(x + \frac{2}{x}).$ 

- 1.a) Justifier que f est dérivable sur  $]0; +\infty[$ .
- 1.b) Déterminer les variations de f sur  $]0; +\infty[$ .
- 1.c) Démontrer que si  $x \ge \sqrt{2}$  alors  $f(x) \ge \sqrt{2}$ .

## PARTIE 2 : Étude de la suite $(u_n)$

On considère la suite  $(u_n)$  définie pour tout entier naturel n par  $\begin{cases} u_0 = 4 \\ u_{n+1} = f(u_n) \end{cases}$ 

- 2.a) Déterminer  $u_1,\,u_2,\,u_3$  à 0.1 près
- 2.b) Démontrer par récurrence que pour tout entier naturel  $n, \sqrt{2} \le u_{n+1} \le u_n$ .
- 2.c) En déduire que  $(u_n)$  est convergente.
- 2.d) On note l la limite de la suite u. Démontrer que l est solution de l'équation  $l = \frac{1}{2}(l + \frac{2}{l})$ .
- 2.e) En déduire la valeur de l.
- 2.f) Que faut-il changer à la définition de la suite  $(u_n)$  pour qu'elle converge vers  $\sqrt{3}$ .

#### PARTIE 3 : Rapidité de convergence

- 3.a) Démontrer que pour tout entier naturel n,  $u_{n+1} \sqrt{2} = \frac{1}{2u_n}(u_n \sqrt{2})^2$ .
- 3.b) En déduire que pour tout entier naturel  $n, u_{n+1} \sqrt{2} \le \frac{1}{2}(u_n \sqrt{2})^2$ .
- 3.c) Démontrer par récurrence que pour tout entier  $n \ge 1$ ,  $u_n \sqrt{2} \le \left(\frac{1}{2}\right)^{2^n} (u_0 \sqrt{2})$
- 4.d) Quelle valeur de n faut-il choisir pour que  $u_n$  soit une valeur approchée de  $\sqrt{2}$  à  $10^{-3}$  près.

#### QCM limite de suite

Préciser si les affirmations suivantes sont vraies ou fausses en justifiant :

- 1. Si une suite est décroissante minorée alors elle est convergente.
- 2. Si une suite est croissante et convergente alors elle est majorée.
- 3. Si une suite est convergente et majorée alors elle est croissante.
- 4. Si une suite est croissante alors elle est minorée.
- 5. Si une suite est croissante alors elle n'est pas majorée.
- 6. Si une suite est croissante et convergente alors elle est bornée.

Objectif: Trouver la limite d'une suite récurrente, arithmétique, géométrique, explicite, croissante, décroissante, majorée, minorée, convergente, par conjecture, théorème des gendarme, limite d'une somme