Problem 1 - 40 points total

For the sequential machine shown:

a) Determine the Boolean expressions for next state logic and output logic from the circuit. That is, express Q1⁺, Q0⁺, and F as logic expressions in terms of Q1, Q0, and X.
 (Do not write Q1⁺, Q0⁺ logic expressions in terms of F since F is the output)

(1E nts)

$$F = x. Q_1. Q_0$$

$$Q_1 * = \overline{X}. (Q_0 \oplus Q_1)$$

$$Q_0 * = (Q_1. \overline{Q}_0) + x$$

Present State	Input	Next State	Output
Q _Q Q ₁	X	Q + Q +	FIF
00	0	0 0	0
00	1	(1) (0)	0
0 1	0	0 0	0
0 1	1	10	0
10	O	0 10	0
10	1	10	0
the later	0	0 0	0)
11	1	0 0	0

c) Draw a state transition diagram for this sequential machine.

(10 pts)

Page 3 of 10

OPTION 2: Design a controller for a vending machine. It sells soda only and each cost 75 cents. The machine accepts quarter coins only and one quarter at a time. Once it receives 75 cents, it automatically dispenses a soda can and back to the initial reset state. You do not need to consider the changes or coin return scenarios.

a) Draw a state transition diagram for this vending machine controller.

(5 pts)

b) List a state transition table with input, output, current states, and next states.

(10 pts)

Present State	Input	Nex	t State	Output
Q, Q _o	X	Q,+	Q0+	Y
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	Ö	1	0
0 1	1	1	D	0
1 0	0	1	0	0
10	1.	0	0	
1 1	0	X	X	×
1 1		X	X	X

Problem 3-20 points total

a) Given the circuit diagram below, complete the waveform for L and F. Assume the D-Flip Flops are rising-edge triggered and initialized to 0.

Page 8 of 10

b) FPGA implements combinational logic using look-up tables (LUTs). Assume the size of each LUT is only 16-bit that is equivalent to a memory space with 4-bit input and 1-bit output. Fill the LUT contents to implement logic function: (Hint: Use logic cells in K-Map to derive output) (5 pts)

Y = B'D' + A'BD + CD' + AD'

AB CD	D 00	01	11	10
00	1	0	0	1
01	0	1	1	1
11	1	0	0	1
10	1	0	0	1

Fill the memory contents:

