Università degli studi di Bari facoltà di scienze MM.FF.NN

Progetto Data Mining NASA - Nearest Earth Objects hazard detection

by

Vito Proscia mat. 735975

Anno accadenico 2022-2023

Contents

1	Introduzione	
1.1	Contesto	
1.2	Definizione obiettivo principale	
1.3	Tool utilizzati	
2	Analisi del dataset	
2.1	Descrizione features	
2.2	Analisi esplorativa dei dati	
2.3	Analisi della target feature	
3	title	

1 Introduzione

1.1 Contesto

Near-Earth Objects (NEO) dataset contiene una serie di informazioni, raccolte dalla NASA, che caratterizzano degli oggetti rilevati vicino alla terra, molti di questi oggetti sono a migliaia di chilometri dalla superficie terrestre, ma su scala astronomica queste distanze sono molto piccole e possono influenzare fenomeni naturali, quali per esempio cambiamenti nella marea, eventi sismici, cambiamento atmosferico, variazioni magnetiche e così via.

È importante sottolineare che la maggior parte degli corpi celesti che passano vicini alla Terra sono di piccole dimensioni e passano ad una distanza sicura, solitamente non hanno un impatto significativo sui fenomeni naturali, ma quelli di dimensioni maggiori o che si avvicinano molto possono avere degli effetti.

La natura dei Near-Earth Objects (NEO) si può dividere in:

- Comete: corpo celeste relativamente piccolo, composto da gas ghiacciati frammenti di rocce e metalli
- Asteroidi: corpi minori di un sistema planetario originati dallo stesso processo di formazione dei pianeti ma le cui fasi di accrescimento si sono interrotte più o meno presto, oppure formati attraverso la collisione tra altri corpi celesti, sono composti principalmente da silicati di nichel, ferro e magnesio

1.2 Definizione obiettivo principale

L'obiettivo principale del progetto è quello di addestrare un modello per andare a predirre, in base ad alcuni parametri, quali corpi celesti rilevati attorno alla terra possono provocare danni, questo perchè è ormai ampiamente accettato dalla comunità scientifica che le collisioni di asteroidi con la Terra avvenute in passato hanno avuto un ruolo significativo nel disegnare la storia geologica e biologica del pianeta, per questo risulta interessante effettuare un task di classificazione binaria che coinvolge la feature hazardous con classi:

• True: oggetto potenzialmente pericoloso

• False: oggetto non pericoloso

1.3 Tool utilizzati

Per la sperimentazione sono stati usati diversi stumenti, quali:

- Google Colab, strumento presente nella suite Google che consente di scrivere python notebook direttamente dal proprio browser, utilizzando risorse messe a disposizione da remoto.
- Weka, software contenente una collezione di algoritmi per data Mining e apprendimento Automatico, scritto in Java e sviluppato presso University of Waikato New Zealand

2 Analisi del dataset

2.1 Descrizione features

Il dataset inizialmente si compone di 90836 osservazioni per dieci features che vanno a descrivere una serie di caratteristiche dei corpi celesti registrati, in particolare abbiamo:

- 1. id [numeric]: identificatore univoco per ogno oggetto
- 2. name [string]: nominativo dato dalla NASA
- 3. est diameter min [numeric]: diametro minimo stimato (Km)
- 4. est_diameter_max [numeric]: diametro massimo stimato (Km)
- 5. relative velocity [numeric]: Velocità relativa rispetto alla terra (Km/h)
- 6. miss_distance [numeric]: ???
- 7. orbiting body [string]: Corpo rispetto al quale l'oggetto sta orbitando
- 8. sentry_object [boolean]: Copro incluso o meno in sentry (sistema di monitoraggio automatico delle collisioni)
- 9. absolute_magnitude [numeric]: descrizione della luminosità dell'oggetto (energia radiata dal corpo al secondo)
- 10. hazardous [boolean]: Indica se il corpo è pericoloso o meno

2.2 Analisi esplorativa dei dati

2.2.1 Analisi delle input features

Andando a considerare direttamente il dataset come ci vine fornito ci sono una serie di problematiche legate ad alcune features, alcune di queste sono inutili per lo scopo di addestramento, quali:

- id (nessuna correlazione con la feature su cui fare predizione),
- name (nessuna correlazione con la feature su cui fare predizione),
- orbiting body (ha un unico valore)
- sentry object (ha un unico valore)

Un'altra considerazione si potrebbe fare sulle features est_diameter_min e est_diameter_max, andando a descrivere la dimensione di diametro massima e minima, si potrebbero accopare i dati delle due caratteristiche con un'unica che andrebbe a rappresentare la media matematica dei due valori (est_diameter_mean).

2.3 Analisi della target feature

Il "problema" più grande del lavoro riguarda la natura delle osservazioni inerenti alla target feature hazardous, che presenta una distrubuzione di valori fortemente sbilanciata (90.3% per false e 9.7% per True)

3 title