## McGill University ECSE 425 COMPUTER ORGANIZATION AND ARCHITECTURE Fall 2011 Midterm Examination

10:35-11:25, October 12th, 2011

**Duration: 50 minutes** 

- Write your name and student number in the space below. Do the same on the top of each page of this exam.
- The exam is 11 pages long. Please check that you have all 11 pages.
- There are four questions for a total of 100 points. Not all parts of all questions are worth the same number of points; read the whole exam first and spend your time wisely!
- This is a closed-book exam. You may use one double-sided sheet of notes; please turn this sheet in with your exam.
- Calculators are permitted, but no cell phones or laptops are allowed.
- Clearly state any assumptions you make.
- Write your answers in the space provided. Show your work to receive partial credit, and clearly indicate your final answer.

| Name:           |     |
|-----------------|-----|
| Student Number: |     |
| Q1:             | Q3: |
| Q2:             | Q4: |

Name: ID:

Total:

**Question 1: MIPS Floating Point Pipeline (30 pts)** Consider the following loop that computes the dot product of two vectors.

| Loop: | L.D    | F2, 0(R1)  |
|-------|--------|------------|
|       | L.D    | F4, 0(R2)  |
|       | MULT.D | F2, F2, F4 |
|       | ADD.D  | F0, F0, F2 |
|       | DADDUI | R1, R1, #8 |
|       | DADDUI | R2, R2, #8 |
|       | SUBUI  | R4, R3, R1 |
|       | BNEZ   | R4, Loop   |
|       |        |            |

This code will run on the standard MIPS floating point pipeline, illustrated below.



## (a) (20 pts) Assume:

- Full hazard detection and forwarding logic;
- The register file supports one write and two reads per clock cycle;
- Branches are resolved in ID;
- Branches are handled by flushing the pipeline;
- Memory accesses take one clock cycle;
- Structural hazards are resolved by giving priority to older instructions.

Fill in the chart on the next page to show the timing of one loop iteration.

| Instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25                                                                                                                                                                                                      | <br> |  |  | <br> |  |  |  |  |  |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|------|--|--|--|--|--|--------|
| 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                  |      |  |  |      |  |  |  |  |  | Instr. |
| 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                    |      |  |  |      |  |  |  |  |  | 1      |
| 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                      |      |  |  |      |  |  |  |  |  | 2      |
| 5       6       7       8       9       10       11       12       13       14       15       16       17       18       19       20       21       22       23       24 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> |      |  |  |      |  |  |  |  |  | 3      |
|                                                                                                                                                                                                                                                                               |      |  |  |      |  |  |  |  |  | 4      |
| 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                            |      |  |  |      |  |  |  |  |  | 5      |
| 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                              |      |  |  |      |  |  |  |  |  | 6      |
| 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                |      |  |  |      |  |  |  |  |  | 7      |
| 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                  |      |  |  |      |  |  |  |  |  | 8      |
| 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                     |      |  |  |      |  |  |  |  |  | 9      |
| 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                        |      |  |  |      |  |  |  |  |  | 10     |
| 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                           |      |  |  |      |  |  |  |  |  | 11     |
| 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                              |      |  |  |      |  |  |  |  |  | 12     |
| 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                                 |      |  |  |      |  |  |  |  |  | 13     |
| 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                                    |      |  |  |      |  |  |  |  |  | 14     |
| 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                                       |      |  |  |      |  |  |  |  |  | 15     |
| 18 19 20 21 22 23 24                                                                                                                                                                                                                                                          |      |  |  |      |  |  |  |  |  | 16     |
| 19 20 21 22 23 24                                                                                                                                                                                                                                                             |      |  |  |      |  |  |  |  |  | 17     |
| 20 21 22 23 24                                                                                                                                                                                                                                                                |      |  |  |      |  |  |  |  |  | 18     |
| 21 22 23 24                                                                                                                                                                                                                                                                   |      |  |  |      |  |  |  |  |  | 19     |
| 22 23 24                                                                                                                                                                                                                                                                      |      |  |  |      |  |  |  |  |  | 20     |
| 23 24                                                                                                                                                                                                                                                                         |      |  |  |      |  |  |  |  |  | 21     |
| 24                                                                                                                                                                                                                                                                            |      |  |  |      |  |  |  |  |  | 22     |
|                                                                                                                                                                                                                                                                               |      |  |  |      |  |  |  |  |  | 23     |
| 25                                                                                                                                                                                                                                                                            |      |  |  |      |  |  |  |  |  | 24     |
|                                                                                                                                                                                                                                                                               |      |  |  |      |  |  |  |  |  | 25     |

| Name:                                                                                   | ID:                                        |
|-----------------------------------------------------------------------------------------|--------------------------------------------|
| <b>(b) (3 pts)</b> If initially R3-R1 = 160, he loop given the assumptions in part (a)? | ow many cycles are required to execute the |
|                                                                                         |                                            |
|                                                                                         |                                            |
| <b>(c) (3 pts)</b> What about the MIPS FP pip challenging? Give a brief example.        | eline makes maintaining precise exceptions |
|                                                                                         |                                            |
|                                                                                         |                                            |
| (d) (2 pts) Give two reasons why main                                                   | taining precise exceptions is important.   |
|                                                                                         |                                            |
|                                                                                         |                                            |
| <b>(e) (2 pts)</b> <i>Briefly</i> describe one way of oprecise exceptions.              | extending the MIPS FP pipeline to support  |

**Question 2: Loop Unrolling and Code Scheduling (30 pts)** Consider the code in Question 1 once more.

| Loop: | L.D    | F2, 0(R1)  |
|-------|--------|------------|
|       | L.D    | F4, 0(R2)  |
|       | MULT.D | F2, F2, F4 |
|       | ADD.D  | F0, F0, F2 |
|       | DADDUI | R1, R1, #8 |
|       | DADDUI | R2, R2, #8 |
|       | SUBUI  | R4, R3, R1 |
|       | BNEZ   | R4, Loop   |
|       |        |            |

(a) (5 pts) Indicate which pairs of instructions have RAW, WAR, and WAW hazards in the above code segment (specify the pair of instructions and hazard type).

**(b) (5 pts)** Perform register renaming on the above code segment to eliminate as many of the hazards in part (a) as possible without violating true dependencies.

| Loop: | L.D    |  |
|-------|--------|--|
|       | L.D    |  |
|       | MULT.D |  |
|       | ADD.D  |  |
|       | DADDUI |  |
|       | DADDUI |  |
|       | SUBUI  |  |
|       | BNEZ   |  |

**(c) (20 pts)** Unroll the loop as many times as necessary to schedule it without any delays (you need not decompose the loop into two loops with different termination conditions, as a compiler would). Assume the branch delay is managed using a delayed branch slot. Show your unrolled, scheduled loop. How many clock cycles are required to do the work of a single iteration in the original loop?

Assume the pipeline latencies and initiation intervals in the table below.

| <b>Functional unit</b> | Latency | Initiation interval |
|------------------------|---------|---------------------|
| Integer ALU            | 0       | 1                   |
| FP add                 | 3       | 1                   |
| FP multiply            | 6       | 1                   |
| FP divide              | 24      | 25                  |

Additional page for Question 2

## Question 3: Amdahl's Law, Cost, and Yield (20 pts)

Three enhancements with the following speedups are proposed for a new architecture:  $S_1=2$ ,  $S_2=8$ ,  $S_3=32$ . The enhancements are mutually exclusive, and may be applied 40%, 20% and 10% of the time, respectively.

**(a) (10 pts)** What is the best speedup that can be achieved using any pair of enhancements?

**(b) (10 pts)** Unenhanced, the architecture requires 200 mm<sup>2</sup>. Enhancements 1, 2 and 3 increase the area of the processor by 10, 25, and 100 mm<sup>2</sup> respectively. When multiple metrics are important, we can combine them to determine the best possible trade-off. Determine which pair of enhancements strikes the best trade-off in performance improvement and yield by maximizing the objective function:

Speedup × Yield.

Assume that wafer yield is 1, defect density is  $0.04/\text{cm}^2$ , and  $\alpha = 4$ .

Additional page for Question 3

**Question 4: Branch Prediction (20 pts)** Consider a simple program with one branch. Given the different predictors and the following sequence of branch outcomes, complete the tables below.

**(a) (10 pts)** What is the branch prediction accuracy of a 1-bit predictor? Assume all predictor state is initialized to "not taken," or N.

| Prediction | Outcome | Update |
|------------|---------|--------|
| N          | T       |        |
|            | T       |        |
|            | T       |        |
|            | N       |        |
|            | T       |        |
|            | N       |        |
|            | T       |        |
|            | T       |        |
|            | T       |        |
|            | N       |        |
|            | T       |        |
|            | N       |        |

**(b) (10 pts)** What is the branch prediction accuracy of a (1, 1) correlating predictor? The branch history register (BHR) is used to store the direction of the last branch. Assume all predictor state is initialized to "not taken," or N.

| Pred.: last<br>branch N | Pred.: last<br>branch T | BHR | Pred. | Outcome | Update: last<br>branch N | Update: last<br>branch T |
|-------------------------|-------------------------|-----|-------|---------|--------------------------|--------------------------|
| N                       | N                       | N   |       | T       |                          |                          |
|                         |                         |     |       | T       |                          |                          |
|                         |                         |     |       | Т       |                          |                          |
|                         |                         |     |       | N       |                          |                          |
|                         |                         |     |       | T       |                          |                          |
|                         |                         |     |       | N       |                          |                          |
|                         |                         |     |       | T       |                          |                          |
|                         |                         |     |       | T       |                          |                          |
|                         |                         |     |       | T       |                          |                          |
|                         |                         |     |       | N       |                          |                          |
|                         |                         |     |       | T       |                          |                          |
|                         |                         |     |       | N       |                          |                          |

Extra blank page