CS101 Algorithms and Data Structures

Array and Linked List Textbook Ch 10.2

Excellent Resources

Please subscribe, follow, and like ("一键三连")!!!

WeChat Course Code:

WeChat Video Code:

Outline

- List ADT
- Array
- Linked list
- Doubly linked list
- Node-based storage with arrays
- Application

Ex1 compute the summation for a polynomial at a fixed value x.

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

```
double fpoly1 ( int n, double a[ ], double x )
{ int i;
   double p = a[0];
   for (i = 1; i <=n; i++)
        p += (a[i] * pow( x, i) );
   return p;
}</pre>
```

$$f(x) = a_0 + x(a_1 + x(a_2 + \cdots + x(a_{n-1} + x(a_n)) \cdots))$$

```
double fpoly2 ( int n, double a[ ], double x )
{ int i;
   double p = a[n];
   for (i = n; i > 0; i-- )
        p = a[i-1] + x* p;
   return p;
}
```

Representation of polynomial coefficients a_n

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

```
double fpoly1 ( int n, double a[ ], double x )
{ int i;
    double p = a[0];
    for (i = 1; i <=n; i++)
        p += (a[i])* pow( x (i));
    return p;
}</pre>
```

Method 1: array

$$f(x) = 4x^5 - 3x^2 + 1$$

a[i]

Array indices

1	0	-3	0	0	4	•••
0	1	2	3	4	5	•••

Discussion 1

Method 2: structure array

- For each non-zero term, need to know two components: the coefficient a_i , the index no. i.
- We can use a structure array (a_i, i) .
- Ex:

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

Store the coefficients in descent order of exponential index.

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

a[i]	3	10	15		4	30	5	
Expon index i	100	50	0		100	60	0	
Array indices	0	1	2	•••	0	1	2	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

	1			
a[i]	3	10	15	
Expon index i	100	50	0	
Arrav indices	0	1	2	• • •

	—			_
	4	30	5	
	100	60	0	
[0	1	2	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

	1 ()				2 \				
						•			
a[i]	3	10	15		4	30	5		
Expon index i	100	50	0		100	60	0		
Array indices	0	1	2	•••	0	1	2	•••	
a[i]									
Expon index i									
Array indices	0	1	2	3	4	5	6	•••	

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

					_	1			
a[i]	3	10	15			4	30	5	
Expon index i	100	50	0			100	60	0	
Array indices	0	1	2	•••		0	1	2	•••
		•	•			Ť			
a[i]	7								
Expon index i	100								
Array indices	0	1	2	3		4	5	6	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

		!			_		-	<u> </u>		
a[i]	3	10	15			4	30		5	
Expon index i	100	50	0			100	60		0	
Array indices	0	1	2			0	1		2	•••
a[i]	7									
Expon index i	100									
Array indices	0	1	2	3		4	5		6	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

		₹			_					
a[i]	3	10	15			4	30	5		
Expon index i	100	50	0			100	60	0		
Array indices	0	1	2	•••		0	1	2		•••
a[i]	7	30							T	
Expon index i	100	60								
Array indices	0	1	2	3		4	5	6		•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

	- 1 ()		. —			- 2 ()			. –
		—						—	334
a[i]	3	10	15			4	30	5	
Expon index i	100	50	0			100	60	0	
Array indices	0	1	2	•••	Ī	0	1	2	•••
a[i]	7	30							
Expon index i	100	60							
Array indices	0	1	2	3		4	5	6	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

	- 1 (,,)	0.70			•	- 2 (50)	, -,,		
								1	,
a[i]	3	10	15			4	30	5	
Expon index i	100	50	0			100	60	0	
Array indices	0	1	2	•••	<u>.</u>	0	1	2	•••
					_				
a[i]	7	30	10						
Expon index i	100	60	50						
Array indices	0	1	2	3		4	5	6	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

	_ ` `					_ ` ^			
			₹		_			1	·
a[i]	3	10	15			4	30	5	
Expon index i	100	50	0			100	60	0	
Array indices	0	1	2	•••		0	1	2	•••
a[i]	7	30	10						
Expon index i	100	60	50						
Array indices	0	1	2	3		4	5	6	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

	1 ()				2 ()			
							-	
a[i]	3	10	15		4	30	5	
Expon index i	100	50	0		100	60	0	
Array indices	0	1	2		0	1	2	•••
a[i]	7	30	10	20				
Expon index i	100	60	50	0				
Array indices	0	1	2	3	4	5	6	•••

$$P_1(x) = 3x^{100} + 10x^{50} + 15$$
 & $P_2(x) = 4x^{100} + 30x^{60} + 5$

	- 1 ()		. —								
a[i]	3	10	15			4	30	5			
Expon index i	100	50	0			100	60	0			
Array indices	0	1	2	•••		0	1	2	•••		
a[i]	7	30	10	20							
Expon index i	100	60	50	0							
Array indices	0	1	2	3		4	5	6	•••		

$$P_3(x) = P_1(x) + P_2(x) = 7x^{100} + 30x^{60} + 10x^{50} + 20$$

Can we store the coefficients in an increase order of exponential index?

- 1. Different data types can be used for the same type of problem.
- 2. There exists a common problem: the organization and management of ordered linear data.

Outline

- List ADT
- Array
- Linked list
- Doubly linked list
- Node-based storage with arrays
- Application

List ADT

An Abstract List (or List ADT) is linearly ordered data (with same data type)

$$(A_1 A_2 ... A_{n-1} A_n)$$

- The number of elements in the List denotes the length of the List.
- When there is no element, it is an empty List.
- The beginning of a List is called the List head; the end of a List is called the List tail.
- The same value may occur more than once.

Operations

Operations at the k^{th} entry of the list include:

Access to the object

Insertion of a new object

Erasing an object

Replacement of the object

Operations

Given access to the k^{th} object, gain access to either the previous or next object

Given two abstract lists, we may want to

- Concatenate the two lists
- Determine if one is a sub-list of the other

Outline

- List ADT
- Array
- Linked list
- Doubly linked list
- Node-based storage with arrays
- Application

List based on array

	Data	a ₁	a ₂	•••	a _i	a _{i+1}	•••	a _n	•••	
Arra	y indice	0	1	•••	i-1	i	•••	n-1	•••	MAXSIZE-1

List based on array

O(n)

Insert element

Delete element

Outline

- List ADT
- Array
- Linked list
- Doubly linked list
- Node-based storage with arrays
- Application

Definition

A linked list is a data structure where each object is stored in a *node*

As well as storing data, the node must also contain a reference/pointer to the node containing the next item of data

Node Class

The node must store data and a pointer:

```
class Node {
    private:
        int element;
        Node *next_node;
    public:
        Node( int = 0, Node * = nullptr );
        int retrieve() const;
        Node *next() const;
};
```

Node Constructor

The constructor assigns the two member variables based on the arguments

```
Node::Node( int e, Node *n ):
element( e ),
next_node( n ) {
    // empty constructor
}
```

The default values are given in the class definition:

```
Node( int = 0, Node * = nullptr );
```

Accessors

The two member functions are accessors which simply return the **element** and the **next_node** member variables, respectively

```
int Node::retrieve() const {
    return element;
}

Node *Node::next() const {
    return next_node;
}
```

Linked List Class

Because each node in a linked lists refers to the next, the linked list class need only link to the first node in the list

The linked list class requires member variable: a pointer to a node

```
class List {
    private:
        Node *list_head;
    // ...
};
```

Let us look at the internal representation of a linked list

Suppose we want a linked list to store the values

42 95 70 81

in this order

A linked list uses linked allocation, and therefore each node may appear anywhere in memory:

The **next_node** pointers store the addresses of the next node in the list

Because the addresses are arbitrary, we can remove that information:

Structure

We will clean up the representation as follows:

We do not specify the addresses because they are arbitrary and:

- The contents of the circle is the element
- The next_node pointer is represented by an arrow

Operations

First, we want to create a linked list

We also want to be able to:

- insert into,
- access
- erase from

the elements stored in the linked list

Operations

We can do them with the following operations:

```
- Adding, retrieving, or removing the value at the front of the linked list
void push_front( int );
int front() const;
int pop_front();
```

- We may also want to access the head of the linked list
 Node *head() const;
- We may wish to check whether the linked list is empty
 bool empty() const;
 The list is empty when the list_head pointer is set to nullptr

Next, let us add an element to the list If it is empty, we start with:

and, if we try to add 81, we should end up with:

We must:

- create a new node which:
 - stores the value 81, and
 - is pointing to 0 (null)
- assign its address to list_head

We can do this as follows:

```
list_head = new Node( 81, nullptr );
```

Suppose however, we already have a non-empty list

Adding 70, we want:

To achieve this, we must we must create a new node which:

- stores the value 70, and
- is pointing to the current list head
- we must then assign its address to list_head

We can do this as follows:

```
list_head = new Node( 70, list_head );
```

Thus, our implementation could be:

```
void List::push_front( int n ) {
    if ( empty() ) {
        list_head = new Node( n, nullptr );
    } else {
        list_head = new Node( n, head() );
    }
}
```

We could, however, note that when the list is empty, list_head == 0, thus we could shorten this to:

```
void List::push_front( int n ) {
    list_head = new Node( n, list_head );
}
```

Erasing from the front of a linked list is even easier:

We assign the list head to the next pointer of the first node

Graphically, given:

we want:

Easy enough:

```
int List::pop_front() {
    int e = front();
    list_head = head()->next();
    return e;
}
```

Unfortunately, we have some problems:

- The list may be empty
- We still have the memory allocated for the node containing 70

Does this work?

```
int List::pop_front() {
    if ( empty() ) {
        throw underflow();
    }

int e = front();
    delete head();
    list_head = head()->next();
    return e;
}
```

```
int List::pop_front() {
    if ( empty() ) {
       throw underflow();
    }
                           list head
    int e = front();
                           e = 70
    delete head();
    list_head = head()->next();
    return e;
```

```
int List::pop_front() {
    if ( empty() ) {
       throw underflow();
    }
    int e = front();
                             list head ·
    delete head();
                            e = 70
    list_head = head()->next();
    return e;
```

```
int List::pop_front() {
    if ( empty() ) {
       throw underflow();
    }
    int e = front();
    delete head();
    list_head = head()->next();
                       list_head
    return e;
                       e = 70
```

Any problem with the above code?

The correct implementation assigns a temporary pointer to point to the node being deleted:

```
int List::pop_front() {
    if ( empty() ) {
        throw underflow();
    }

    int e = front();
    Node *ptr = list_head;
    list_head = list_head->next();
    delete ptr;
    return e;
}
```

Stepping through a Linked List

The next step is to look at member functions which potentially require us to step through the entire list:

```
int size() const;
int count( int ) const;
int erase( int );
```

The second counts the number of instances of an integer, and the last removes the nodes containing that integer

Stepping through a Linked List

The process of stepping through a linked list can be thought of as being analogous to a for-loop:

- We initialize a temporary pointer with the list head
- We continue iterating until the pointer equals nullptr
- With each step, we set the pointer to point to the next object

int erase(int)

To remove an arbitrary element, *i.e.*, to implement int erase(int), we must update the previous node

For example, given

if we delete 70, we want to end up with

list_head
$$\longrightarrow$$
 42 \longrightarrow 95 \longrightarrow 81 \longrightarrow 0

Destructor

We dynamically allocated memory each time we added a new into this list

Suppose we delete a list before we remove everything from it

This would leave the memory allocated with no reference to it

Linked list

	Front/1st node	k th node	Back/nth node
Find	Θ(1)	O(n)	Θ(1)
Insert Before	$\Theta(1)$	$\mathrm{O}(n)$	$\Theta(n)$
Insert After	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Replace	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Erase	$\Theta(1)$	O(n)	$\Theta(n)$
Next	$\Theta(1)$	$\Theta(1)^*$	n/a
Previous	n/a	O(n)	$\Theta(n)$

^{*}These assume we have already accessed the k^{th} entry—an O(n) operation

Linked list

	Front/1st node	k th node	Back/nth node
Find	$\Theta(1)$	O(n)	$\Theta(1)$
Insert Before	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Insert After	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Replace	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Erase	$\Theta(1)$	$\Theta(1)^*$	$\Theta(n)$
Next	$\Theta(1)$	$\Theta(1)^*$	n/a
Previous	n/a	O(n)	$\Theta(n)$

By replacing the value in the node in question, we can speed things up

Outline

- List ADT
- Array
- Linked list
- Doubly linked list
- Node-based storage with arrays
- Application

Doubly linked lists

	Front/1st node	k th node	Back/nth node
Find	Θ(1)	O(n)	$\Theta(1)$
Insert Before	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Insert After	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Replace	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Erase	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Next	$\Theta(1)$	$\Theta(1)^*$	n/a
Previous	n/a	$\Theta(1)^*$	$\Theta(1)$

^{*}These assume we have already accessed the k^{th} entry—an O(n) operation

Memory usage versus run times

Using a doubly linked list requires $\Theta(n)$ additional memory, but it speeds up many operations

Memory usage versus run times

In general, there is an interesting relationship between memory and time efficiency

For a data structure/algorithm:

- Improving the run time usually requires more memory
- Reducing the required memory usually requires more run time

Memory usage versus run times

Warning: programmers often mistake this to suggest that given any solution to a problem, any solution which may be faster must require more memory

This guideline not true in general: there may be different data structures and/or algorithms which are both faster and require less memory

This requires thought and research

Outline

- List ADT
- Array
- Linked list
- Doubly linked list
- Node-based storage with arrays
- Application

The issue

A significant issue with linked lists: node-based data structures require $\Theta(n)$ calls to new

 Each new operation requires a call to the operating system requesting a memory allocation

Using an array?

Suppose we store this linked list in an array?


```
list_head = 5;
list_tail = 2;
```

0	1	2	3	4	5	6	7
Α		E	Р		S	С	
6		-1	0		3	2	

Using an array?

Rather than using, -1, use a constant assigned that value

This makes reading your code easier

```
list_head = 5;
list_tail = 2;
```

0	1	2	3	4	5	6	7
Α		E	Р		S	С	
6		NULLPTR	0		3	2	

A solution

Problem: when inserting a new element...

how do you know which cell to use?

Solution: keep a container (a stack) of the indices of unused nodes

A better solution

Problem:

- Our solution requires $\Theta(N)$ additional memory
- In our initial example, the unused nodes are 1, 4 and 7
- How about using these to define a second stack-as-linked-list?

A better solution

Problem:

- Our solution requires $\Theta(N)$ additional memory
- In our initial example, the unused nodes are 1, 4 and 7
- How about using these to define a second stack-as-linked-list?

We only need a head pointer for the stack-as-linked-list

Analysis

This solution:

- Requires only three more member variable than our linked list class
- It still requires O(N) additional memory over an array
- All the run-times are identical to that of a linked list
- Only one call to new, as opposed to $\Theta(n)$
- There is a potential for up to O(N) wasted memory

Question: What happens if we run out of memory?

Reallocation of memory

Suppose we start with a capacity N but after a while, all the entries have been allocated

We can double the size of the array and copy the entries over

```
list_head = 6;
list_tail = 4;
list_size = 8;
list_capacity = 8;
stack_top = NULLPTR;
```

0	1	2	3	4	5	6	7
С	R	U	Т	R	U	S	T
7	2	0	1	NULLPTR	4	3	5

Reallocation of memory

Suppose we start with a capacity N but after a while, all the entries have been allocated

- We can double the size of the array and copy the entries over
- Only the stack needs to be updated and the old array deleted

```
list_head = 6;
list_tail = 4;
list_size = 8;
list_capacity = 16;
stack_top = 8;
```

0	1	2	3	4	5	6	7
С	R	U	Т	R	U	S	Т
7	2	0	1	NULLPTR	4	3	5

0	1	2	3	4	5	6		8	9	10	11	12	13	14	15
C [*]	R	U	T	R	U	S	T								
7	2	0	1	NULLPTR	4	3	5	9	10	11	12	13	14	15	NULLPTR

Outline

- List ADT
- Array
- Linked list
- Doubly linked list
- Node-based storage with arrays
- Application

Sparse Matrices

18	0	33	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	99	0	0
0	0	0	0	0	0
0	0	0	0	0	27

Summary

- List ADT
 - A sequence of elements (special case: string)
 - Array
- Linked list
 - Accessors and mutators
 - Stepping through a linked list
- Doubly linked list
 - Memory usage versus run times
- Node-based storage with arrays
 - No longer need to call new for each new node
- Application
 - Polynomial, sparse matrix