Упрощение входных данных как способ увеличения эффективности нейронных сетей

Григорьев А.Д., Коробов Н.С., Куцевол П.Н., Лукоянов А.С. и Жариков И.

Московский физико-технический институт

Курс: Машинное обучение (практика, В.В. Стрижов)/весна 2019

Цель исследования

Задача

Для данной выборки растровых изображений рукописных цифр построить модель, оптимальным образом классифицирующую изображенный символ.

Проблема

При достаточно высоком качестве классификации, существующие решения являются относительно ресурсоемкими. Долгое время обучения и предсказания, большие объемы занимаемой памяти критичны для мобильных устройств.

Существующие решения

Решения сверточными нейронными сетями

- Yanai K., Tanno R., Okamoto K. Efficient mobile implementation of a cnn-based object recognition system //Proceedings of the 24th ACM international conference on Multimedia. – ACM, 2016. – C. 362-366.
- Wan L. et al. Regularization of neural networks using dropconnect //International conference on machine learning. – 2013. – C. 1058-1066.

Решения графовыми нейронными сетями

- Battaglia P. W. et al. Relational inductive biases, deep learning, and graph networks //arXiv preprint arXiv:1806.01261. – 2018.
- Fey M. et al. SplineCNN: Fast geometric deep learning with continuous B-spline kernels //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. – 2018. – C. 869-877.

Предложенное решение

Формальная постановка задачи

Дана выборка из пар: изображение $I \in \mathbb{R}^{n \times m \times k}$, класс изображения y.

$$D = (I_1, y_1), \dots, (I_n, y_n)$$
 (1)

Пусть существует функция бинаризации изображения

$$B(I): \mathbb{R}^{n \times m \times k} \to \mathbb{R}^{n \times m \times 1} \tag{2}$$

Пусть существует функция скелетонизации бинарного изображения

$$f(I_B): \mathbb{R}^{n \times m \times 1} \to \{\mathbb{R}^p, \mathbb{R}^p, ..d \text{ pas..}, \mathbb{R}^p\}$$
 (3)

А также пусть существует функция g отображающая скелет в граф G(E,V), где каждой вершине v_i сопоставляется вектор признаков $h_i \in \mathbb{R}^f$ и вектор координат $x_i \mathbb{R}^d$.

Тогда выборку изображений с ответами D можно отобразить в выборку графовых представлений картинок с ответами:

$$D_G = (g(f(B(I_1))), y_1), \dots, (g(f(B(I_n))), y_n)$$
(4)

Формальная постановка задачи

Тогда задача будет выглядеть следующим образом:

$$\hat{w} = \underset{\mathbf{w}}{\operatorname{arg\,min}} L(D_G, \mathbf{w}|i), \tag{5}$$

где L - функция потерь Cross Entropy Loss

$$L(D_G, \mathbf{w}|i) = -\sum_{j=1}^{n} y_j \log s(i(G_j(E, V)))_j$$
 (6)

$$s(z)_j = \frac{\exp z_j}{\sum_k^C \exp z_k},\tag{7}$$

где s - Softmax, i - нейронная сеть, C - количество классов.

Вычислительный эксперимент

Цель эксперимента

Провести сравнение существующих подходов к классификации изображений с предложенным с точки зрения скорости обучения, скорости работы, требуемой для обучения памяти и точности классификации.

Базы данных

- MNIST Skeleton база данных скелетных представлений картинок MNIST.
- ② MNIST Superpixels 75 база данных графовых представлений над super pixel, полученных из базы данных MNIST.

Базы данных: примеры

Рис.: Скелетное представление цифры 9

Рис.: Super pixels 75 и графовое представление над ними

Message Passing Neural Network

Входные данные — графовые структуры, каждой из вершин сопоставляется вектор признаков h. Для каждой из вершин T раз происходит обмен информации с ее соседями с помощью функции передачи сообщения M с обновлением вектора признаков в каждой вершине с помощью функции U. Затем следует фаза вычитки информации из графа по всем вершинам — R.

$$m_{v}^{t+1} = \sum_{w \in N(v)} M_{t}(h_{v}^{t}, h_{w}^{t}, e_{vw})$$
 (8)

$$h_{v}^{t+1} = U_{t}(h_{v}^{t}, m_{v}^{t+1}) \tag{9}$$

$$\hat{y} = R(h_v^T | v \in G) \tag{10}$$

Пусть (G,I) — граф с заданной раскраской. Для каждого слоя $t\geq 0$ k—GNN вычисляется вектор признаков $f_k^{(t)}(s)$ $\forall s\in [V(G)]^k$, где $[V(G)]^k$ — множество всех подмножеств V(G) мощности k. σ — функция активации.

$$f_k^{(t)}(s) = \sigma(f_k^{(t-1)}(s) \cdot W_1^{(t)} + \sum_{w \in N(v)} f_k^{(t-1)}(s) \cdot W_2^{(t)})$$
(11)

Входные данные – графовые структуры, каждой из вершин которых сопоставлена точка в d-мерном пространстве и вектор признаков. Для каждой вершины по всем ее соседям вычисляется карта весов в обобщенном пространстве координат:

$$w_{\mu,\Sigma}(u) = \exp(-\frac{1}{2}(u-\mu)^T \Sigma^{-1}(u-\mu)),$$
 (12)

где Σ и μ - обучаемые параметры. Тогда операция свертки выглядит как:

$$(f \star g) = \sum_{j=1}^{J} \sum_{k=1}^{n} g_{j} w_{\mu_{k}, \Sigma_{k}}(u(j, k)) f_{k}$$
 (13)

SplineCNN

Входные данные — графовые структуры, каждой из вершин которых сопоставлена точка в d-мерном пространстве и вектор признаков. Обучаемыми параметрами являются коэффициенты с которыми суммируется заранее выбранная базисная функция, определенная на пространстве координат помещенная, в узлы равномерной сетки на выбранном интервале.

Результаты эксперимента

Рис.: Зависимость ассигасу от времени обучения в секундах

Результаты эксперимента

Таблица: Использование GPU в процессе обучения в Гб

	MPNN	k-GNN	MoNet	SplineCNN
Skeleton	1.50	0.34	0.32	0.73
Superpixel	10.76	0.85	1.54	1.04

Таблица: Время предсказания на тесте с batch size 1 в секундах

	MPNN	k-GNN	MoNet	SplineCNN
Skeleton	147.2	47.48	56.2	38.8
Superpixel	211.3	26.23	140.79	17.9

Результаты, выносимые на защиту

- Предложен метод увеличения эффективности нейронных сетей в задаче распознования символов, основанный на упрощении входных данных.
- Показана эффективность предложенного метода в терминах используемой во время обучения памяти при осутствии существенного уменьшения качества по сравнению со стандартным подходом.
- Проведено сравнение времени обучения и предсказания нейросетей, работающих со скелетами и суперпикселями соответсвенно.