KEY 4 = ZUVÉXZIX GUVZPTÝGEWV KXI ÒPIX GUVZPTÝGEWV

&1 Opigus Kai Basikés i Sistytes

o Op: 'EGTW $A \subseteq IR$ My KEVÓ, $f = A \longrightarrow IR$ KUI $X_0 \in A$, $H \neq KRAZÍTKI$ $GWEXNS GTO X_0 OU$

¥ε70, 3570 τ.ω. ∀ΧΕΑ με | X-X₀ | < δ, έχουμε | f(x) - f(x₀) | < ε
[1608. ∀ΧΕΑ Ω (X₀ - δ, X₀+δ)] [1608. f(x) ∈ (f(x₀) - ε, f(x₀) +ε)]

160 fúvapad, n f GWEXNS 670 X0 dv 4870, 3870 T.W. f[An(x0-8, x0+8)) = (f(x0)-2, f(x0)+8).

- · H f Ka A ETAI GWEXYS GEO A ON M f GWEXYS GE KÁBE XOEA.
- 0 Παραδείχματα: i) Έστω c∈ R και f : R → iR με f(x) = c, ∀x∈ R,

 και έστω $x_0∈ R$. Τότε η f είναι εωεχής ετο x_0 . Πράγματι f είναι f είναι ενεχής ετο f f είναι f
- iii) $|E_{67W}| f = |R| \rightarrow |R| \mu \epsilon f(x) = 3x^2$, $|x_{01}| |x_{0} \in |R|$. Totally fixed a supplied $|f(x) f(x_{0})| = |x_{0}| |x_{0}| |x_{0}| |x_{0}| = |x_{0}| |x_{0}| |x_{0}| |x_{0}| |x_{0}| |x_{0}| |x_{0}| |x_{0}| = |x_{0}| |x_{$

$$|x-x_0| < \delta \implies |f(x)-f(x_0)| \le 3(2|x_0|+1)|x-x_0| < \epsilon$$

 $\epsilon \approx 15\% 3(|x_0|+|x_1|) \le 3(2|x_0|+1)$

"Apymon of 16 μού δωέχειας: "Ε67ω $A \subseteq IR$ μη κενό, $f:A \rightarrow IR$ και $X_0 \in A$.

Η f είναι αδωέχής 620 X_0 αν υπάρχει E > 0 $\tau.ω$. + F > 0 , $\exists X \in A$ με $|X - X_0| < \delta$ $\tau.ω$. $|f(X) - f(X_0)| \ge \varepsilon$ $S_{A} \exists X \in A \cap (X_0 - \delta_1 X_0 + \delta)$

ο Παράδειχμα: Η σωάρτηση Dirichlet f= IR → IR με f(x) = \$1 x ∈ Q x 4Q είναι ασωέχης σε κάθε xo∈ IR.

Av $x_0 \in \mathbb{Q}$, $\exists x \in (x_0 - \delta, x_0 + \delta)$ ME $x \notin \mathbb{Q}$ (nukvirged applyton) Kal Governing $|f(x) - f(x_0)| = |D - 1| = 1 \gg \epsilon$.

Av $x_0 \notin \mathbb{Q}$, $\exists x \in [x_0 - \xi, x_0 + \delta]$ $\mu \in x \in \mathbb{Q}$ (nukvötyta fyrúv) $x_{d,1}$ $\in \mathbb{Q}$ $\in \mathbb{$

APXÝ preta clopás

- θεώρημα: Έστω $A \subseteq IR$ μη κενό, $f = A \rightarrow IR$ και $X_0 \in A$.

 Η f είναι συνεχής στο X_0 ANN για κάθε ακολουθία $(X_N)_N$ στο A με $X_N \xrightarrow{\gamma \to \infty} X_0$ έχουμε ότι $f(X_N) \xrightarrow{N \to \infty} f(X_0)$.
- ο Παρατήρηση: Η αρχή μεταφοράς είναι πολύ χρήσιμη για να δείξουμε αδυνέχεια 670 χο ΕΑ καθώς τότε αρκεί να βρούμε μία (χη)η ακολουθώ 670 Α τ.ω.

 $x_n \xrightarrow{n \to \infty} x_0$ Kai $f(x_n) \xrightarrow{n \to \infty} f(x_0)$

h να βρούμε μία ακοδουθία (χηλη 6το Α με χη $\xrightarrow{n\to\infty}$ χο και η $(f(x_n))_n$ να μη ευρκλίνα h να βρούμε (χηλη και |χηλη 6το Α με χη $\xrightarrow{n\to\infty}$ χο και χη $\xrightarrow{n\to\infty}$ χο και οι $(f(x_n))_n$ να ευρκλίνουν σε διαφορετικά όρια.

ZUVÉXELD KAI MPAZELS KAI GÜVÐEGY

- . IEAN $A \subseteq \mathbb{R}$ py keró $\int_{1}^{1} X_{0} \in A$ kai $f_{1}g = A \rightarrow \mathbb{R}$ owexer 670 X_{0} .

 Tote or $f \nmid g$, $f_{1}g$, $f_{2}g$, $f_{3}g$ kar $f_{4}g$ eivar owexer or X_{0} . $f_{4}g$ av $f_{4}g$ $f_{5}g$, $f_{5}g$ owexer or $f_{6}g$.

ENEXED YOUGHN GNAPTYGEEN

- · Di nodumvujuines / pytés emaptysus eines eurexeis.
- · Di cos, sin, tan, cot Eval ENEXES.
- · Av d>0, n f= IR -> IR ME flx) = dx Eval EWEXTS.
- 6 AV BER, η g = (0, +∞) → (0, +∞) με g(X) = XB είναι 6WEXNS.

Toniky bypnepiylopá buvexúv buvepájbemv

IE 61ω A = IR μη κενό, xo E A, f= A -> IR. AV υπάρχει ρ > 0 τ.ω.

· Av unapyEI P.7.0 T.W. HANIXO-PIXO+PI GUVEXÝS GTO XO, TOTE y f. GWEXÝS GTO XO.

χριομοποιούμε την (π) διαδοχικά με $S=1,\frac{1}{2}1--1\frac{1}{n}$, — Επομένως, για κάθε ης IN, βρίσκουμε $x_n \in A$ με $|x_n-x_0| < \frac{1}{n}$ και $|f(x_n)-f(x_0)| > \varepsilon$. Είναι φωερό ότι $x_n \xrightarrow{n\to\infty} x_0$ και από την υπόθεση που κάναμε ηρέπει $f(x_n) \xrightarrow{n\to\infty} f(x_0)$. Αυτό όμως είναι αδύνατο αφού $|f(x_n)-f(x_0)| > \varepsilon$, για κάθε $n \in \mathbb{N}$.

 $\frac{AZK}{2} = \frac{1}{1} = \frac{$

D.O. 01 f Kal g sival abwegets 670 0.

 $\frac{N_06\eta: 'E67w \times N_1 = \frac{1}{n}, \forall n \in \mathbb{N}, \text{ Tots EXOUPS } X_n \xrightarrow{n \to \infty} 0 \text{ sum}}{f(X_1) = \frac{1}{X_1} = \frac{1}{n}} = n \xrightarrow{n \to \infty} \infty \left(\text{ Far GryxAirs} \right). 'Apr and orpxy'$

рети Израя 7 f stran 26WEXIIS 600 0.

 $AZK = {}^{1}E67w$ $f = A \rightarrow IR$ Keli $g = B \rightarrow IR$ ME $f(A) \leq B$. $\Delta.o.$ du ηf $Eveli Gwexys 670 x06 A Keli <math>\eta g$ siveli Gwexys 670 $f(x_0)$, tota $\eta g \circ f : A \rightarrow IR$ eveli Gwexys 670 x0.

Migh: "Edw (Xn) ndxo dovoid enperm tou A pre Xn $\xrightarrow{n\to\infty}$ Xo. A for η fairly over Xis are Xo, η dox Xi pretaclops of Saxver or $f(x_n) \xrightarrow{n\to\infty} f(x_0)$. Oposius, defor η g aver one Xis to $f(x_0) \in \mathbb{B}$ kar η dxo dovo θ at $(f(x_n))_n$ direct destrue and especial tou θ , exoupe $g(f(x_n)) \xrightarrow{n\to\infty} g(f(x_0))$. Enopsius η go f tive one Xis as χ .