### **Artificial Intelligence**

# Agents and environments



Instructors: Stuart Russell and Dawn Song ai.berkeley.edu

### Outline

- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

### Agents and environments



 An agent perceives its environment through sensors and acts upon it through actuators (or effectors, depending on whom you ask)

### Agents and environments



- Are humans agents?
- Yes!
  - Sensors = vision, audio, touch, smell, taste, proprioception
  - Actuators = muscles, secretions, changing brain state

# Agents and environments



- Are pocket calculators agents?
- Yes!
  - Sensors = key state sensors
  - Actuators = digit display

## Agent functions

- The agent function maps from percept histories to actions:
  - $f: \mathcal{P}^* \to \mathcal{A}$
  - I.e., the agent's actual response to any sequence of percepts



### Agent programs

- The **agent program** 1 runs on some machine M to implement f:
  - f = Agent(l, M)
  - Real machines have limited speed and memory, introducing delay, so agent function f depends on M as well as 1



# Example: Vacuum world



- Percepts: [location,status], e.g., [A,Dirty]
- Actions: Left, Right, Suck, NoOp

# Vacuum cleaner agent





#### Agent function

| Percept sequence    | Action |
|---------------------|--------|
| [A,Clean]           | Right  |
| [A,Dirty]           | Suck   |
| [B,Clean]           | Left   |
| [B,Dirty]           | Suck   |
| [A,Clean],[B,Clean] | Left   |
| [A,Clean],[B,Dirty] | Suck   |
| etc                 | etc    |

#### Agent program

function Reflex-Vacuum-Agent([location,status])
returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the *right* agent function?

Can it be implemented by a small agent program?

(Can we ask, "What is the right agent program?")

# Rationality





- Fixed *performance measure* evaluates the environment sequence
  - one point per square cleaned up?
    - NO! Rewards an agent who dumps dirt and cleans it up
  - one point per clean square per time step, for t = 1,...,T
- A rational agent chooses whichever action maximizes the expected value of the performance measure
  - given the percept sequence to date and prior knowledge of environment

Does Reflex-Vacuum-Agent implement a rational agent function?

Yes, if movement is free, or new dirt arrives frequently

### A human agent in Pacman



#### The task environment - PEAS

- Performance measure
  - -1 per step; + 10 food; +500 win; -500 die;+200 hit scared ghost
- Environment
  - Pacman dynamics
- Actuators
  - Left Right Up Down
- Sensors
  - Entire state is visible



#### **PEAS:** Automated taxi

- Performance measure
  - Income, happy customer, vehicle costs, fines, insurance premiums
- Environment
  - streets, other drivers, customers, weather, police...
- Actuators
  - Steering, brake, gas, display/speaker
- Sensors
  - Camera, radar, accelerometer, engine sensors, microphone, GPS



Image: http://nypost.com/2014/06/21/how-google-might-put-taxi-drivers-out-of-business/

### PEAS: Medical diagnosis system

- Performance measure
  - Patient health, cost, reputation
- Environment
  - Patients, medical staff, insurers, courts
- Actuators
  - Screen display, email
- Sensors
  - Keyboard/mouse



# More Examples

| Agent                            | Performance<br>Measure                             | Environment                                       | Actuator                                      | Sensor                             |
|----------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------|
| Hospital<br>Management<br>System | Patient's health,<br>Admission process,<br>Payment | Hospital, Doctors,<br>Patients                    | Prescription, Diagnosis,<br>Scan report       | Symptoms,<br>Patient's<br>response |
| Automated<br>Car Drive           | Comfortable trip,<br>Safety, Maximum<br>Distance   | Roads, Traffic, Vehicles                          | Steering wheel,<br>Accelerator, Brake, Mirror | Camera, GPS,<br>Odometer           |
| Subject<br>Tutoring              | Maximize scores,<br>Improvement is<br>students     | Classroom, Desk, Chair,<br>Board, Staff, Students | Smart displays,<br>Corrections                | Eyes, Ears,<br>Notebooks           |
| Part -picking<br>Robot           | Percentage of parts in correct bins                | Conveyor belt with parts,<br>Bins                 | Jointed Arms, Hand                            | Camera,<br>Joint angle,<br>sensors |

# Summary

- An agent interacts with an environment through sensors and actuators
- The *agent function*, implemented by an *agent program* running on a *machine*, describes what the agent does in all circumstances
- Rational agents choose actions that maximize their expected utility
- PEAS descriptions define task environments; precise PEAS specifications are essential and strongly influence agent designs
- More difficult environments require more complex agent designs and more sophisticated representations