Name: 김재환(KimJaeHwan) Student ID: 20230499

CSED261: Discrete Mathematics for Computer Science Homework 6: Graphs

Question 1. Show that in a simple graph with at least two vertices there must be two vertices that have the same degree.

Solutions

Let G be a simple graph. Let n be the number of vertices in G. Let d_1, d_2, \ldots, d_n be the degrees of the vertices of G. Since G is simple, the degrees of the vertices are non-negative integers. Since there are n vertices and n-1 possible degrees, by the Pigeonhole Principle, there must be two vertices with the same degree.

Question 2. Represent the below graph with an adjacency matrix.

${\bf Solutions}$

The adjacency matrix for the graph is as follows:

	a	b	$^{\mathrm{c}}$	d	e
a	0	1	0	1	0
b	1	0	0	1	1
c	0	0	0	1	1
d	1	1	1	0	0
e	0	1	1	0	0

 $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$

Question 3. What is the sum of the entries in a row of the adjacency matrix for an undirected graph? For a directed graph?

Solutions

The sum of the entries in a row of the adjacency matrix for an undirected graph is the number of edges connected to the node(vertex), in other words, the degree of the node. For a directed graph, the sum of them is the out-degree of the node. In addition, the sum of the entries in a column of the adjacency matrix is also the degree of the node for an undirected graph, and the in-degree of the node for a directed graph.

Question 4. Suppose that G and H are isomorphic simple graphs. Show that their complementary graphs \overline{G} and \overline{H} are also isomorphic.

Solutions

Let $f: V(G) \to V(H)$ be an isomorphism between garph G and H. This means, for any two vertices $a, b \in V(G)$, a and b are adjacent in G, then f(a) and f(b) are adjacent in H.

Now, let's consider an isomorphism between complementary graphs \overline{G} and \overline{H} . We define a function $g:V(\overline{G})\to V(\overline{H})$ which f=g. Because G and H are isomorphic, we know that f is a bijection, also g is. Then, let's prove that g is an isomorphism between \overline{G} and \overline{H} .

- Assume that $u, v \in V(\overline{G})$ and u and v are adjacent in \overline{G} , then u and v are not adjacent in G because of property of complementary. Since f is an isomorphism between G and H, f(u) and f(v) are not adjacent in H. This implies that g(u) and g(v) are adjacent in \overline{H} .
- Assume that $u, v \in V(\overline{G})$ and u and v are not adjacent in \overline{G} . Then, u and v are adjacent in G, because of complementary. Then, f(u) and f(v) are adjacent in H because f is an isomorphism. This implies that g(u) and g(v) are not adjacent in \overline{H} .

So, the function g between \overline{G} and \overline{H} maintains isomorphism from the function f between G and H. Therefore, \overline{G} and \overline{H} are isomorphic.

Question 5. Find the strongly connected components of each of these graphs.

a) a b

Solutions

- **a).** (a, b, e), (d), (c)
- **b).** (a), (f), (b), (c, d, e)
- c). (a, b, c, d, f, g, h, i), (e)

Question 6. Show that every connected graph with n vertices has at least n-1 edges.

Solutions

Let's prove this statement using induction. When the number of vertices n = 1, the graph has no edges, so the statement is true. So, we have to prove that if the statement is true for n = k, then it is also true for n = k + 1.

Let G be a connected graph with k+1 vertices. Let's remove an arbitrary vertex v from G. Then, the graph G-v has k vertices and at least k-1 edges. When we add the vertex v back to the graph, we have to add at least one edge to connect v to the rest of the graph. So, the graph G has at least k-1+1=k edges. Therefore, the statement is true for n=k+1.

By induction, the statement is true for all $n \in \mathbb{N}$.

Question 7. Show that a directed multigraph having no isolated vertices has an Euler circuit if and only if the graph is weakly connected and the in-degree and out-degree of each vertex are equal.

Solutions

Prove the following two statements:

- (\leftarrow) A directed multigraph having no isolated vertices has an Euler circuit, then the graph is weakly connected and the in-degree and out-degree of each vertex are equal.
 - Euler circuit visits every nodes, so the graph is weakly connected.
 - The start and end node is equal, so the in-degree and out-degree of start(end) node is equal now. During the Euler circuit, we have to enter and exit the node, so the in-degree and out-degree of each node(contain start and end node) are equal.
- (\rightarrow) A directed multigraph is weakly connected and the in-degree and out-degree of each vertex are equal, then the graph has an Euler circuit.

We already know the theorem that a connected multigraph with a least two vertices has an Euler circuit if and only if each of its vertices has even degree (during class). A graph is weakly connected, so we can know that the every nodes are connected if we ignore the direction. Also, we know that the in-degree and out-degree of each vertex are equal, so every nodes have even degree. Therefore, the graph has an Euler circuit by theorem.