Biological Sequence Alignment

Group 3: Bhagyashri Bhamare - 181IT111 Chinmayi C. R. - 181IT113 Prajna Hebbar - 181IT133 K. Keerthana - 181IT221

Introduction

Sequence alignment is the procedure of comparing sequences by searching for a series of individual characters or character patterns that are in the same order in both sequences.

Local Alignment

Global Alignment

Local vs Global Alignment

Objectives

- Implement and compare different algorithms for sequence alignment.
- Global alignment of two sequences using Needleman Wunsch algorithm.
- Local alignment of two sequences using Smith Waterman algorithm.
- Global alignment of two sequences in linear space using Hirschberg's algorithm.
- Adapt Hirschberg's algorithm to perform local alignment of two sequences in linear space.
- K-Band alignment of two sequences using K-Band algorithm.

Needleman - Wunsch algorithm (Global alignment)

- The Needleman-Wunsch algorithm is used for aligning two sequences in bioinformatics applications.
- Uses dynamic programming
- Also referred to as the optimal matching algorithm and the global alignment technique.

Needleman - Wunsch : Algorithm

- The Needleman-Wunsch algorithm requires two matrices: score matrix and traceback matrix.
- Initialization of matrices
- Calculate scores to fill score matrix and traceback matrix.
- Deduce the best alignment from traceback matrix.
- Scoring Systems:
 - Basic scoring schemes
 - Similarity matrix
 - Gap penalty

SCORING MATRIX

TRACEBACK MATRIX

Needleman - Wunsch: Pseudo Code

```
S[0,0]=0
for i = 1 to M do:
           S[i, 0] = S[i - 1, 0] + \delta(x_i, -)
   for j = 1 to N do:
           S[0, j] = S[0, j - 1] + \delta(-, y_i)
           for i = 1 to M do:
                   S[i,j] = MAX \begin{cases} S[i-1,j-1] + \delta(x_i, y_j) \\ S[i-1,j] + \delta(x_i, -) \\ S[i,j-1] + \delta(-, y_i) \end{cases}
   return S[M,N]
```

M - length of sequence 1 N - length of sequence 2 S - memo matrix of size MxN $\delta(x_i, -)$ - score of aligning x_i with a gap $\delta(-, y_j)$ - score of aligning y_j with a gap $\delta(x_i, y_j)$ - score of aligning x_i with y_i

Needleman - Wunsch: Space and Time Complexity

- Time Complexity: O(m*n) for pairwise sequence alignment with one sequence of length m and another sequence of length n.
- Space Complexity: O(m*n) since it fills an n x m matrix.

Smith - Waterman Algorithm (Local Alignment)

- The Smith-Waterman algorithm performs local sequence alignment determines similar regions between two sequences.
- Compares segments of all possible lengths and optimizes the similarity measure.

Need for Local Alignment

Gap Penalties

Gap penalty designates scores for insertion or deletion. A simple gap penalty strategy is to use fixed score for each gap.

- Linear :
 - A linear gap penalty has the same scores for opening and extending a gap. The gap penalty is directly proportional to the gap length. With Linear Gap Penalty, the algorithm takes O(mn) steps.
- Affine :
 - An affine gap penalty considers gap opening and extension separately. The original Smith-Waterman algorithm takes O(m2n) time. Later improvements on the algorithm take O(mn) time.

Algorithm

- Determine the substitution matrix and the gap penalty scheme.
 Each base substitution or amino acid substitution is assigned a score. In general, matches are assigned positive scores, and mismatches are assigned relatively lower scores.
- Initialize the scoring matrix.
 The final optimal alignment is found by iteratively expanding the growing optimal alignment.
- Scoring.
- Traceback.

Smith - Waterman: Pseudocode

```
S[0,0] = 0
for i = 1 to M do:
S[i,0] = 0
4 for j = 1 to N do:
S[0,j] = 0
          for i = 1 to M do:
                 S[i,j] = MAX \begin{cases} 0\\ S[i-1,j-1] + \delta(x_i, y_j) \\ S[i-1,j] + \delta(x_i, -)\\ S[i,j-1] + \delta(-, y_i) \end{cases}
* return S[M, N]
```

M - length of sequence 1 N - length of sequence 2 S - memo matrix of size MxN $\delta(x_i, -)$ - score of aligning x_i with a gap $\delta(-, y_j)$ - score of aligning y_j with a gap $\delta(x_i, y_j)$ - score of aligning x_i with y_i

SCORING MATRIX

TRACEBACK MATRIX

Smith-Waterman: Space and Time Complexity

To align two sequences of lengths m and n, O(mn) time is required.

 Originally, the space complexity was O(mn), which was optimized by Myers and Miller to O(n) where n is the length of the shorter sequence, for the case where only one of the many possible optimal alignments is desired. This is done by adapting the Hirschberg algorithm.

Hirschberg Algorithm (Linear Space Alignment)

- Hirschberg's algorithm dynamic programming algorithm that finds the optimal sequence alignment between two strings.
- Optimality is measured with the Levenshtein distance, defined to be the sum of the costs of insertions, replacements, deletions, and null actions needed to change one string into the other.
- Hirschberg's algorithm is simply described as a more space efficient version of the Needleman–Wunsch algorithm that uses divide and conquer.

Hirschberg : Pseudocode

```
function Hirschberg(X,Y)
W = ""
if length(X) == 0 or length(Y) == 0
   if length(X) == 0
       for i=1 to length(Y)
           Z = Z + '-'
           W = W + Yi
         end
    else if length(Y) == 0
       for i=1 to length(X)
           Z = Z + Xi
           W = W + '-'
        end
    end
else if length(X) == 1 or length(Y) == 1
    (Z,W) = (Z,W) + NeedlemanWunsch(X,Y)
    xlen = length(X)
   xmid = length(X)/2
   ylen = length(Y)
   ScoreL = NWScore(X1:xmid, Y)
   ScoreR = NWScore(rev(Xxmid+1:xlen), rev(Y))
   ymid = PartitionY(ScoreL, ScoreR)
   (Z,W) = (Z,W) + Hirschberg(X1:xmid, y1:ymid)
    (Z,W) = (Z,W) + Hirschberg(Xxmid+1:xlen, Yymid+1:ylen)
end
return (Z,W)
```

Hirschberg: Algorithm

Hirschberg: Space and Time Complexity

- Time Complexity: O(m*n) for pairwise sequence alignment with one sequence of length m and another sequence of length n.
- Space Complexity: O(min(m,n))

K Band algorithm

- The KBand algorithm can be used to identify a global alignment at most k diagonals away from the main diagonal.
- If we know that the two input sequences are highly similar and we have a bound b on the number of gaps that will occur in the best alignment, then the KBand algorithm with k = b will compute an optimal alignment.

K-Band Algorithm : Pseudocode

```
Set F(i, 0) := -i \cdot d for all i = 0, 1, 2, ..., k.
Set F(0, j) := -j \cdot d for all j = 1, 2, ..., k.
                                                        To test whether (i, j) is inside the
for i = 1 to n do
                                                        band, we use:
     for h = -k to k do
          i := i + h
                                                        insideBand(i, j, k) := (-k \le i - j \le k).
           if 1 \le j \le n then
               F(i, j) := F(i - 1, j - 1) + s(x_i, y_i)
               if insideBand(i - 1, j, k) then
                   F(i, j) := \max\{F(i, j), F(i - 1, j) - d\}
               if insideBand(i, j - 1, k) then
                   F(i, i) := \max\{F(i, i), F(i, i - 1) - d\}
return F(n, n)
```

K-Band : Space and Time Complexity

- Time Complexity: O(k*n) for pairwise sequence alignment with n being the length of the sequences. (m=n)
 The algorithm runs faster for pairs of sequences with more similarities
- Space Complexity: O(n²)

Comparison of the algorithms

Algorithm	Time Complexity	Space Complexity	Alignment
Needleman - Wunsch	O(m*n)	O(m*n)	Global
Smith - Waterman	O(m*n)	O(m*n)	Local
Hirschberg	O(m*n)	O(min{m, n})	Global and Local in Linear space
K-Band	O(k*n), where k is the size of the band	O(n ²)	Global in almost Linear time