LOCAL ARITHMETIC FUNCTIONS: A PRIMEWISE FRAMEWORK

PU JUSTIN SCARFY YANG

ABSTRACT. This work introduces a new framework for arithmetic functions by localizing classical global arithmetic data into prime-indexed components. Termed local arithmetic functions, these objects isolate the contribution of each prime p via functions $f_p: \mathbb{Z}_{\geq 0} \to \mathbb{C}$, assembled into global functions by multiplicative or additive aggregation. The formalism naturally extends to define local zeta transforms, primewise convolution rings, and sheaf-theoretic interpretations over $\operatorname{Spec}(\mathbb{Z})$. This approach unifies concepts from analytic number theory, algebraic geometry, and arithmetic cohomology, and offers generalizations to motivic, perfectoid, and p-adic Hodge theoretic settings. Connections to the Yang-number systems provide a potential foundation for future frameworks in arithmetic geometry and motivic analysis.

Contents

1. Local Arithmetic Functions: Definitions and Foundational Framework	1
1.1. Motivation	1
1.2. Primewise Decomposition	2
1.3. Definition of Local Arithmetic Function	2
1.4. Examples	2
1.5. Local Multiplicativity	2
1.6. Future Directions	2
2. Local Zeta Transforms and Euler Product Structure	3
3. Local Convolution and Ring Structures	3
3.1. Primewise Convolution	3
3.2. Algebraic Structure	3
3.3. Connections to Analytic, Algebraic, and Geometric Structures	3
4. Sheaf-Theoretic Interpretation over $\operatorname{Spec}(\mathbb{Z})$	4
4.1. Arithmetic Sheaves via Local Systems	4
4.2. Structure Sheaf Interpretation	4
4.3. Derived Functors and Cohomological Invariants	4
4.4. Toward Arithmetic Motives	4
5. Extensions: Toward Yang Number Systems, Motivic Cohomology, and Perfectoid	
Geometry	4
5.1. $\operatorname{Yang}_n(F)$ -Local Arithmetic Structures	4
5.2. Motivic Cohomology and Functorial Lifts	5
5.3. Perfectoid Extensions and Tilting	5
5.4. p-adic Hodge Theoretic Cohomology	5

Date: May 4, 2025.

- 1. Local Arithmetic Functions: Definitions and Foundational Framework
- **1.1.** Motivation. In classical analytic number theory, arithmetic functions $f: \mathbb{N} \to \mathbb{C}$ typically reflect global data of the integer n, such as its complete prime factorization. In this section, we initiate the development of a theory of *local arithmetic functions* that isolate and encode information at each individual prime p, forming a primewise analytical structure.
- **1.2. Primewise Decomposition.** Let \mathbb{P} denote the set of all prime numbers. For any $n \in \mathbb{N}$, its prime factorization can be uniquely expressed as:

$$n = \prod_{p \in \mathbb{P}} p^{v_p(n)}$$

where $v_p(n) \in \mathbb{Z}_{\geq 0}$ is the p-adic valuation of n, and only finitely many $v_p(n)$ are non-zero.

1.3. Definition of Local Arithmetic Function.

Definition 1 (Local Arithmetic Function):

A local arithmetic function at a prime p is a function

$$f_p: \mathbb{Z}_{\geq 0} \to \mathbb{C}$$

which depends only on the exponent $v_p(n)$ of p in the factorization of n. The collection $\{f_p\}_{p\in\mathbb{P}}$ defines a local arithmetic system.

Definition 2 (Global Function Induced by Local Family):

Given a local system $\{f_p\}$, define the corresponding global arithmetic function $F: \mathbb{N} \to \mathbb{C}$ by either

$$F(n) := \prod_{p^{\alpha} \parallel n} f_p(\alpha), \quad \text{or} \quad F(n) := \sum_{p^{\alpha} \parallel n} f_p(\alpha)$$

depending on whether a multiplicative or additive aggregate is desired.

1.4. Examples.

Example 1. Local Degree Function: $f_p(k) = k$ leads to $F(n) = \sum_{p|n} v_p(n)$.

Example 2. Local Exponential Function: $f_p(k) = p^k$ recovers the original n, i.e., F(n) = n.

Example 3. Local Möbius-Like Function:

$$f_p(k) = \begin{cases} -1 & \text{if } k = 1\\ 0 & \text{if } k \ge 2\\ 1 & \text{if } k = 0 \end{cases} \Rightarrow F(n) = \mu(n)$$

1.5. Local Multiplicativity.

Definition 3 (Local Multiplicativity):

A local system $\{f_p\}$ is said to be **locally multiplicative** if the induced global function F satisfies

$$F(mn) = F(m)F(n)$$
 whenever $gcd(m, n) = 1$

This holds automatically when the f_p depend only on $v_p(n)$ and interact multiplicatively under disjoint support.

- **1.6. Future Directions.** This framework permits generalization to local zeta transforms, convolution algebras on prime-indexed spaces, and interactions with *p*-adic, adelic, or motivic arithmetic settings. Extensions to new arithmetic structures (e.g., Yang-number systems) may further arise from this foundation.
 - 2. Local Zeta Transforms and Euler Product Structure

Given a local arithmetic system $\{f_p\}_{p\in\mathbb{P}}$, we define its local zeta transform at each prime p as:

$$\zeta_{f_p}(s) := \sum_{k=0}^{\infty} \frac{f_p(k)}{p^{ks}}, \quad \text{for } \Re(s) > \sigma_0$$

where the abscissa of convergence σ_0 depends on the growth of $f_p(k)$.

Definition 4 (Global Zeta Function from Local System):

The global zeta function associated to the local arithmetic system is given by the Euler product:

$$\zeta_{\{f_p\}}(s) := \prod_{p \in \mathbb{P}} \zeta_{f_p}(s)$$

This framework generalizes classical zeta functions such as:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$
 corresponding to $f_p(k) = 1$

By tuning each $f_p(k)$, one may encode twisting, local ramification data, or even deformation parameters.

3. Local Convolution and Ring Structures

3.1. Primewise Convolution. Let $\{f_p\}, \{g_p\}$ be two local arithmetic systems. We define their *local convolution* at prime p as:

$$(f_p * g_p)(k) := \sum_{i=0}^k f_p(i)g_p(k-i)$$

The corresponding global function becomes:

$$(F * G)(n) := \prod_{p^{\alpha} || n} (f_p * g_p)(\alpha)$$

- **3.2.** Algebraic Structure. The set of all finitely supported local systems forms a commutative ring under:
 - Pointwise addition: $(f_p + g_p)(k) := f_p(k) + g_p(k)$
 - \bullet Primewise convolution product as above

This ring structure reflects a graded algebra over $\mathbb{P} \times \mathbb{Z}_{\geq 0}$.

- 3.3. Connections to Analytic, Algebraic, and Geometric Structures.
 - Analytic: The zeta transforms define meromorphic functions whose poles/zeros may reflect classical or generalized L-functions.
 - **Algebraic**: The convolution ring may be studied as a prime-indexed module with multiplicative grading, interpretable via formal group laws.
 - Geometric: Local systems can be viewed as stalks of sheaves over $Spec(\mathbb{Z})$, yielding arithmetic sheaves.
 - Cohomological: Taking derived functors or cohomology of such sheaves leads to novel arithmetic invariants and obstructions.
 - 4. Sheaf-Theoretic Interpretation over $Spec(\mathbb{Z})$
- **4.1. Arithmetic Sheaves via Local Systems.** We reinterpret the local arithmetic system $\{f_p\}_{p\in\mathbb{P}}$ as defining a presheaf of arithmetic data over $\operatorname{Spec}(\mathbb{Z})$, where each point $p\in\mathbb{P}$ corresponds to a closed point $\mathfrak{p}\subset\operatorname{Spec}(\mathbb{Z})$.

For each p, define a stalk:

$$\mathscr{F}_p := \{ f_p(k) \}_{k \ge 0}$$

This defines a sheaf \mathscr{F} over the set of primes, i.e.,

$$\mathscr{F}: \operatorname{Spec}(\mathbb{Z}) \to \operatorname{Ab}$$

with
$$\mathscr{F}(U) = \prod_{p \in U} \mathscr{F}_p$$
 for $U \subset \mathbb{P}$.

4.2. Structure Sheaf Interpretation. Let $\mathscr{O}_{\operatorname{arith}}$ be the sheaf of local arithmetic functions over $\operatorname{Spec}(\mathbb{Z})$, assigning to each open U a set of local systems supported on U.

This allows us to view local arithmetic functions as global sections:

$$\Gamma(\operatorname{Spec}(\mathbb{Z}), \mathscr{O}_{\operatorname{arith}}) = \{\{f_p\}_{p \in \mathbb{P}}\}$$

4.3. Derived Functors and Cohomological Invariants. Define the derived functors:

$$\mathbb{R}^i\Gamma(\operatorname{Spec}(\mathbb{Z}),\mathscr{F})$$

which measure arithmetic obstructions and global compatibility among local data. These cohomology groups potentially encode:

- Compatibility of local factors in zeta product expansions;
- Non-trivial interactions or extensions among local systems;
- Hidden global constraints not apparent from primewise values alone.
- **4.4. Toward Arithmetic Motives.** If we equip each stalk \mathscr{F}_p with further structure (e.g., ℓ -adic representations, Frobenius traces, etc.), then \mathscr{F} may be enhanced to a motivic sheaf, yielding arithmetic motivic cohomology:

$$H^i_{\mathrm{mot}}(\mathrm{Spec}(\mathbb{Z}),\mathscr{F})$$

This aligns with the vision of a motivic interpretation of arithmetic functions via their local avatars, possibly extending into the realm of the Langlands program, perfectoid cohomology, or categorical arithmetic frameworks.

- 5. Extensions: Toward Yang Number Systems, Motivic Cohomology, and Perfectoid Geometry
- **5.1.** Yang_n(F)-Local Arithmetic Structures. Let F be a base field, and consider a Yang-type number system $\mathbb{Y}_n(F)$ with arithmetic-like operations. Define a local arithmetic system:

$$\{f_{p,\mathbb{Y}_n}: \mathbb{Z}_{\geq 0} \to \mathbb{Y}_n(F)\}$$

with induced global function:

$$F_{\mathbb{Y}_n}(n) := \prod_{p^{\alpha} \mid\mid n} f_{p,\mathbb{Y}_n}(\alpha)$$

This can be viewed as a sheaf:

$$\mathscr{F}_{\mathbb{Y}_n}: \operatorname{Spec}(\mathbb{Z}) \to \mathbb{Y}_n(F)\operatorname{-Mod}$$

whose sections encode Yang-arithmetic flows. This opens the path toward defining \mathbb{Y}_n -valued arithmetic cohomology and Yang-motivic zeta structures.

5.2. Motivic Cohomology and Functorial Lifts. Enhance each local stalk f_p by attaching geometric or categorical data:

$$f_p(k) \leadsto (f_p(k), \rho_p^{(k)}, \operatorname{Frob}_p^{(k)})$$

where ρ_p denotes a Galois or étale representation and Frob_p the Frobenius element.

This yields a motivic sheaf \mathscr{F}_{mot} and cohomology:

$$H^i_{\mathrm{mot}}(\mathrm{Spec}(\mathbb{Z}), \mathscr{F}_{\mathrm{mot}})$$

capturing not only numeric values but deeper categorical structures. Such cohomology groups may encode hidden functional equations, special values, and generalizations of L-function symmetries.

5.3. Perfectoid Extensions and Tilting. Let \mathbb{F}_p be a perfect field and consider \mathbb{Z}_p^{\flat} , the tilt of the perfectoid ring \mathbb{Z}_p .

We define a perfectoid local arithmetic function:

$$f_p^{\flat}(k) \in \mathbb{Z}_p^{\flat}$$
, inducing $F^{\flat}(n) := \prod_{p^{\alpha} || n} f_p^{\flat}(\alpha)$

and the corresponding sheaf \mathscr{F}^{\flat} over the perfectoid site. This permits construction of:

$$H^i_{\text{pro-\'et}}(\operatorname{Spec}(\mathbb{Z}_p), \mathscr{F}^{\flat})$$

integrating the theory of diamonds and perfectoid towers.

5.4. p-adic Hodge Theoretic Cohomology. Each $f_p(k)$ may be lifted to a p-adic Hodge-theoretic object:

$$f_p(k) \leadsto D_{\mathrm{HT}}(f_p(k)), D_{\mathrm{dR}}(f_p(k)), D_{\mathrm{crys}}(f_p(k))$$

allowing us to define cohomology theories:

$$H_{\mathrm{HT}}^{i}, H_{\mathrm{dR}}^{i}, H_{\mathrm{crys}}^{i}$$

for local arithmetic sheaves, thereby unifying arithmetic functions with Fontaine's p-adic cohomological worlds.

These constructions not only connect analytic number theory with arithmetic geometry, but also offer a blueprint for future arithmetic invariants in the spirit of the Langlands program and beyond.

REFERENCES

- [1] J.-P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, 1979.
- [2] J. Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, 1999.
- [3] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1994.
- [4] P. Scholze, Perfectoid Spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313.
- [5] J.-M. Fontaine, Représentations p-adiques des corps locaux I, in The Grothendieck Festschrift, Vol. II, 249–309, Birkhäuser, 1990.
- [6] J. S. Milne, Etale Cohomology, Princeton Mathematical Series 33, Princeton University Press, 1980.
- [7] P. J. S. Yang, Yang Number Systems and Their Applications in Arithmetic Geometry, preprint, 2025.
- [8] R. P. Langlands, *Problems in the Theory of Automorphic Forms*, Springer Lecture Notes in Mathematics **170**, 1970.