Universidade Federal Fluminense Escola de Engenharia Curso de Graduação em Engenharia Elétrica

Bernardo Albuquerque Domingues da Silva

Estimação da Geração Hidrotermo-Eólica Utilizando Redes Neurais e Variáveis do Fenômeno El Niño

Niterói

Bernardo Albuquerque Domingues da Silva

Estimação da Geração Hidrotermo-Eólica Utilizando Redes Neurais e Variáveis do Fenômeno El Niño

Projeto de Conclusão de Curso apresentado ao Corpo Docente do Departamento de Engenharia Elétrica da Escola de Engenharia da Universidade Federal Fluminense, como parte dos requisitos necessários à obtenção do título de Engenheiro Eletricista.

Orientador: Prof. André da Costa Pinho, D.Sc.

Ficha Catalográfica elaborada pelo Aluno, acesse o site:

 $\underline{https://bibliotecas.uff.br/bcg/fichacatalografica/}$

Gere o pdf da ficha e substitua o arquivo ficha.pdf com a sua ficha.

As informações abaixo são ilustrativas. Os alunos devem inserir a Ficha Catalográfica nesta página.

M514 Tal, Fulano de

Título do Trabalho / Fulano de Tal. -Rio de Janeiro, RJ: [s.n.], 2022.

xx f.

Trabalho de Conclusão de Curso de Graduação em Engenharia Civil - Universidade Federal Fluminense, 2022.

1. Construção Civil. 2. Lean Construction. 3. Gerenciamento de Obra

Bernardo Albuquerque Domingues da Silva

Estimação da Geração Hidrotermo-Eólica Utilizando Redes Neurais e Variáveis do Fenômeno El Niño

Projeto de Conclusão de Curso apresentado ao Corpo Docente do Departamento de Engenharia Elétrica da Escola de Engenharia da Universidade Federal Fluminense, como parte dos requisitos necessários à obtenção do título de Engenheiro Eletricista.

provado em:	de	de	
	В	ANCA EXAMINADORA	
Prof. André da Co	osta Pinho, D.S	Sc UFF	
Prof. Bruno Soar	es Borba, D.Sc	c UFF	

Prof. Marcio Andre Ribeiro Guimaraens, D.Sc. - UFF

Agradecimentos

Agradeço aos meus pais, Débora e Gilvan, por sempre me apoiarem nas minhas escolhas, terem me ajudado a superar os obstáculos que surgiram no caminho e sempre estarem presentes nos momentos mais importantes. Obrigado por acreditarem em mim, por terem abdicado de tantas coisas para me proporcionar uma educação de qualidade e me ensinado a importância da ética, esforço, estudo e trabalho. Serei eternamente grato pelos esforços e sacrifícios que fizeram por mim. Vocês sempre serão os meus maiores exemplos na vida.

À minha irmã, Letícia, por ser meu alívio cômico por todos esses anos. À minha família, por compreender minhas ausências e por todos os aprendizados que me proporcionaram.

À minha companheira, Juliana, por ter me apoiado, incentivado e compreendido durante essa trajetória. Por ter me ajudado a manter a calma e acreditar que eu era capaz de superar qualquer obstáculo. Obrigado por ser a minha maior incentivadora e por nunca me deixar desistir nos momentos de dificuldade. Seu amor e paciência foram essenciais para que eu pudesse concluir este trabalho.

Aos amigos que fiz durante a graduação, que sem dúvidas espero levar para a vida toda. Sem vocês o caminho teria sido muito mais difícil. Agradeço por todos os momentos de descontração, pelas risadas, pelos estudos em grupo e, principalmente, pelo revezamento de faltas nas disciplinas mais chatas. À Faraday E-Racing, que representou um marco na minha trajetória acadêmica e me proporcionou aprendizados e oportunidades essenciais para a minha formação.

Ao professor André Pinho, pela sua excelência, ética, maestria em ensinar e por ter me orientado de maneira exemplar durante o desenvolvimento deste projeto. Agradeço também aos professores Flávio Martins, Felipe Sass e Marcio Guimaraens, por me lembrarem em cada aula do motivo pelo qual escolhi a Engenharia Elétrica.

Resumo

A matriz energética brasileira é caracterizada por uma dependência significativa de fontes renováveis, especialmente a geração hidrelétrica. Essa dependência torna o sistema elétrico vulnerável a variações climáticas, como secas prolongadas que podem ser intensificadas por fenômenos como o El Niño e La Niña, afetando a disponibilidade de água nos reservatórios e, consequentemente, a geração de energia. Com o crescimento da fonte eólica, também vulnerável a variações climáticas, é necessário investigar o impacto dessas variáveis na operação do Sistema Interligado Nacional (SIN), com ênfase nas fontes hidráulica, térmica e eólica. Este trabalho analisa séries históricas disponibilizadas pelo Operador Nacional do Sistema Elétrico (ONS) e variáveis que definem o fenômeno El Niño, obtidas do ERA5, para avaliar os efeitos desses fenômenos na geração de energia elétrica. Diferentes modelos de regressão e aprendizado de máquina são aplicados para analisar o impacto dessas variáveis na geração de energia.

Palavras-chave: Geração de energia. Clima. Planejamento energético. Machine learning.

Abstract

The Brazilian electrical system is characterized by a significant dependence on renewable sources, especially hydropower generation. This dependence makes the electric system vulnerable to climatic variations, such as prolonged droughts and phenomena such as El Niño (EN) and La Niña (LN), which can affect the availability of water in reservoirs and, consequently, energy generation. With the adoption of wind power, also vulnerable to climatic variations, it is necessary to investigate the impact of climatic variables on the operation of the National Interconnected System (SIN), with an emphasis on hydraulic, wind and thermal sources. This work analyzes historical series provided by the National Electric System Operator (ONS) and variables that define the El Niño phenomenon, obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis project (ERA5), to evaluate the effects of these phenomena on electricity generation. Different regression and machine learning models are applied to analyze the impact of these variables on energy generation.

Key-words: Energy generation. Climate. Risk mitigation. Machine learning.

Lista de Figuras

Figura 1 -	Geração centralizada anual por fonte
Figura 2 -	Curva de carga diária do SIN em base horária
Figura 3 -	Curva de carga do SIN em base mensal
Figura 4 -	Geração hidráulica total em base mensal
Figura 5 -	Índice ONI (Oceanic Niño Index)
Figura 6 -	Regiões do fenômeno El Niño-Oscilação Sul (ENSO)
Figura 7 -	Regressão Linear de uma Senoide
Figura 8 -	Estrutura do Perceptron
Figura 9 -	MLP de dupla camada
Figura 10 -	Arquitetura do modelo neural usado
Figura 11 -	Subsistemas do SIN

Lista de Tabelas

Tabela 1 -	Bibliotecas utilizadas no projeto	3(
Tabela 2 -	Parâmetros dos dados de geração	31
Tabela 3 -	Parâmetros dos dados de carga	31

Lista de Abreviaturas e Siglas

ONS Operador Nacional do Sistema Elétrico

EPE Empresa de Pesquisa Energética

SIN Sistema Interligado Nacional

Sumário

1	Intr	odução		13
	1.1	Contex	kto	13
	1.2	Motiva	nção	14
	1.3	Objetiv	vo	17
	1.4	Estrut	ura do Trabalho	18
2	Trak	oalhos i	Relacionados	19
3	Fun	damen	tação Teórica	21
	3.1	Impac	to do ENSO na Geração de Energia Elétrica	21
	3.2	O Mod	lelo NEWAVE	22
		3.2.1	Representação das Usinas	23
		3.2.2	Dados de Entrada	23
	3.3	Model	os Linear e Não-linear	24
		3.3.1	Modelo Linear	24
		3.3.2	Modelos Não-lineares: Random Forest e Gradient Boosting	25
	3.4	Model	o Neural	25
		3.4.1	O Perceptron	25
		3.4.2	Multi Layer Perceptrons (MLPs)	26
		3.4.3	Arquitetura TSMixer	27
		3.4.4	Modelo Tiny Time Mixer	28
4	Met	odolog	ia	29
	4.1	Aborda	agem computacional	29
	4.2	Obten	ção e pré-processamento dos dados	30
		4.2.1	Séries históricas do ONS	30
		4.2.2	Séries históricas de variáveis climatológicas	32
		4.2.3	Pré-processamento dos dados	33
	4.3	Anális	e exploratória dos dados	33

R	eferê:	ncias	
6	Con	clusão	
5	Resu	ıltados	
	4.5	Implen	nentação do Modelo Neural
		4.4.3	Avaliação dos Modelos de regressão
		4.4.2	Análise de componentes principais
		4.4.1	Feature selection
	4.4	Implen	nentação dos modelos de regressão

Capítulo 1

Introdução

1.1 Contexto

Historicamente, a matriz elétrica brasileira é considerada uma das mais limpas do mundo, com destaque para a fonte hidráulica, que é responsável pela maior parte da geração de energia elétrica no país. Nos últimos anos, outras fontes de geração vêm sendo incorporadas ao sistema, das quais destacam-se a eólica e solar fotovoltaica, conforme observado na Figura 1, elaborada a partir de dados brutos de geração centralizada obtidos do Operador Nacional do Sistema Elétrico (ONS), sem considerar a geração distribuída.

Figura 1 - Geração centralizada anual por fonte

Fonte: o autor.

Nota-se, em especial, um crescimento significativo da geração eólica, observado a partir de 2015, e uma diminuição significativa da contribuição de geração térmica média no panorama geral nos anos seguintes. Em 2023, a fonte eólica foi responsável por 48% da expansão da capacidade instalada total de 10,19 GW (EPE, 2024). Essa expansão se dá em função do maior número de empreendimentos participantes nos Leilões de

Série histórica

Energia Elétrica do Ambiente de Contratação Regulada (ACR) realizados pela Empresa de Pesquisa Energética (EPE). Isso ocorre, dentre outros fatores, devido à queda nos custos de aerogeradores e painéis fotovoltaicos, além do fator "combustível zero" dessas fontes, o que torna novos empreendimentos mais atrativos economicamente para os agentes.

Embora essa expansão seja positiva, poupando recursos hídricos, contribuindo para a diversificação da matriz elétrica e reduzindo o acionamento de usinas térmicas, essas fontes possuem características intrínsecas que as tornam intermitentes, como a incidência solar e a velocidade do vento. Sendo assim, uma alta dependência dessas fontes tem o potencial de tornar o sistema como um todo mais vulnerável.

Além disso, ao analisar a curva de carga do SIN, observa-se que, embora o seu pico ocorra no início da tarde, momento no qual a geração solar fotovoltaica apresenta significativa contribuição, o período noturno também apresenta carga considerável, conforme a Figura 2, que mostra a curva de carga do SIN para o dia 15 de março de 2024, dia em que registrou-se um recorde de demanda máxima instantânea de 102.478 MW, segundo o ONS, e como pode ser observado na Figura 3.

Figura 2 - Curva de carga diária do SIN em base horária

Fonte: o autor.

1.2 Motivação

Em um contexto no qual a implementação de sistemas de armazenamento de energia elétrica ainda é incipiente, a matriz segue bastante dependente da fonte hidráulica e, de

maneira complementar, das térmicas. A dependência da fonte hidráulica, por sua vez, torna o sistema elétrico vulnerável a eventos climáticos extremos ocasionados pelas mudanças climáticas. Por exemplo, em 2021, verificou-se um acionamento recorde de usinas térmicas e uma geração hidráulica percentual mínima. Isso se deve em razão da forte crise hídrica enfrentada pelo Brasil no período, a pior dos últimos 91 anos até então. (SOARES; COSTA, 2023)

1e3 Carga [GWh] Série histórica

Figura 3 - Curva de carga do SIN em base mensal

Fonte: o autor.

Portanto, o estudo do sistema elétrico brasileiro, no contexto de cenários de eventos climatológicos extremos é altamente relevante para a segurança energética do país, considerando uma estimativa de crescimento médio anual da carga do SIN de 3,2%. (ONS, 2024)

Ao analisar a geração hidráulica bruta na Figura 4, evidenciam-se pontos nos quais a geração é reduzida. Isso ocorre devido à sazonalidade das vazões nas bacias hidrográficas, responsáveis pelo abastecimento dos reservatórios. Considerando a amostragem em base mensal, observa-se que a geração é reduzida nos meses de inverno, período caracterizado por menor ocorrência de precipitação e, consequentemente, menor vazão nos rios. Por outro lado, nos meses de verão, a geração atinge seus maiores valores.

Esse comportamento é natural e esperado, uma vez que a geração hidráulica é diretamente influenciada pelas condições que afetam a vazão dos rios. No entanto, a ocorrência de eventos climáticos como o El Niño-Oscilação Sul (ENSO) pode favorecer condições que impactam diretamente no potencial de geração hidráulica. (GURJÃO et al.,

4.5 4.0 4.0 3.5 3.0 2.5 2.0 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 Série histórica

Figura 4 - Geração hidráulica total em base mensal

Fonte: o autor.

2012)

Fenômenos como o ENSO são monitoradas por meio de índices como o ONI (Oceanic Niño Index), que classifica os eventos em três categorias: *El-Niño* (EN), *La-Niña* (LN) e neutro. A Figura 5 mostra a classificação dos eventos de EN e LN ocorridos entre 2000 e 2024, na qual a escala de cores indica a intensidade do evento. Ao analisar a geração hidráulica bruta no mesmo período, observa-se que a ocorrência de eventos de EN e LN pode estar associada a variações na geração.

Figura 5 - Índice ONI (Oceanic Niño Index)

Fonte: o autor.

Fundamentalmente, em sistemas interligados cuja fonte hidráulica constitui a base

da matriz elétrica, é essencial, para um planejamento energético eficiente, otimizar o sistema de modo a considerar a incerteza associada às afluências futuras. Dessa forma, estima-se o valor da geração hidrelétrica que poderia substituir a geração térmica a curto ou longo prazo, de modo a minimizar os custos de operação do sistema e o risco de utilizar reservatórios de maneira desnecessária, garantindo assim o atendimento à demanda futura, principalmente em casos de escassez hídrica.

Os estudos de planejamento energético são realizados por meio de modelos computacionais como o NEWAVE, DECOMP e DESSEM, do Centro de Pesquisas de Energia Elétrica (CEPEL), que consideram diferentes horizontes temporais: longo, médio e curto prazos, respectivamente. Também há outras soluções disponíveis no mercado, como o PSR SDDP, que engloba todos os horizontes temporais. Considerando o escopo deste trabalho, o modelo NEWAVE será brevemente apresentado no capítulo seguinte.

Embora esses modelos sejam amplamente utilizados pelo setor elétrico brasileiro, sendo consolidados como ferramentas confiáveis e essenciais para o planejamento energético, eles não consideram variáveis externas, como fenômenos climáticos como o EN e LN, que podem impactar a geração de energia elétrica. Esses modelos são baseados em dados históricos de vazões e velocidade do vento, que são obtidos a partir de medições locais, além de dados individuais de cada usina.

1.3 Objetivo

Sendo assim, o projeto tem como objetivo investigar um possível impacto de variáveis climáticas externas na geração de energia elétrica no Brasil, com foco nas fontes hidráulica, térmica e eólica.

Para tanto, foram empregadas técnicas computacionais para relacionar as séries históricas de geração com as séries de variáveis climáticas, através de modelos lineares, não lineares e neurais. Além disso, foram utilizadas séries históricas de geração, carga e vazões disponibilizados pelo ONS, bem como séries históricas de variáveis climáticas, como temperatura da superfície do mar, obtidas a partir de dados do ERA5, um projeto de reanálise atmosférica do European Centre for Medium-Range Weather Forecasts (ECMWF).

A partir dessa investigação, espera-se poder avaliar o impacto dessas variáveis na geração de energia elétrica, o que pode contribuir para o planejamento energético do país, especialmente em cenários de eventos climáticos extremos e tendências climáticas.

É importante salientar que outras variáveis externas poderiam ser incorporadas ao estudo, ou até mesmo uma combinação entre variáveis locais e externas. Também poderiam ser considerados indicadores econômicos e outros dados relevantes. No entanto, este trabalho considera apenas as variáveis relacionadas ao fenômeno EN e LN, uma vez que estudos indicam uma alta correlação entre esses fenômenos e o regime de chuvas no Brasil (GURJÃO et al., 2012; ANDREOLI et al., 2016), sendo a incorporação de outras variáveis reservada para trabalhos futuros.

1.4 Estrutura do Trabalho

No capítulo 1, é feita uma breve introdução apresentando o contexto, motivação, objetivo e a estrutura do trabalho. Uma breve análise da matriz elétrica é apresentada, com foco no histórico recente e no crescimento da geração eólica. Também são apresentadas as curvas de carga do SIN e de geração hidráulica. Uma breve contextualização acerca dos fenômenos do ENSO e a importância do modelo NEWAVE para o planejamento energético do país são apresentadas. Por fim, é apresentado o objetivo do trabalho e a estrutura do documento.

O capítulo 2 apresenta um panorama acerca de trabalhos relacionados ao tema.

No capítulo 3, a fundamentação teórica necessária para a compreensão do projeto é apresentada. São abordados os fatores que fazem com que os fenômenos do EN e LN impactem o regime de chuvas no Brasil e a sua relação com a geração de energia elétrica. Também será feita uma breve introdução ao modelo NEWAVE, que é amplamente utilizado pelo setor elétrico brasileiro para planejamento energético. Por fim, serão apresentados os modelos de previsão de séries temporais implementados, com foco no modelo neural, uma implementação baseada na arquitetura textitTSMixer desenvolvida pela Google.

O capítulo 4 apresenta a metodologia utilizada para a realização do projeto. Serão apresentados os conjuntos de dados considerados e suas respectivas etapas de obtenção, tratamento e análise. Além disso, será apresentada a metodologia utilizada para implementação dos modelos de previsão, incluindo seus parâmetros e métricas de avaliação. *Snippets* de códigos serão apresentados para facilitar a compreensão.

O capítulo 5 apresenta os resultados obtidos a partir da implementação de cada modelo de previsão. Inicia-se com os resultados do modelo linear, seguido pelo modelo não linear e, por fim, o modelo neural. Para cada modelo, serão apresentados os resultados de

previsão, métricas de avaliação e uma análise crítica dos resultados obtidos.

Por fim, no capítulo 6, são apresentadas as considerações finais do trabalho, incluindo uma discussão final dos resultados obtidos, limitações observadas e sugestões para trabalhos futuros.

Capítulo 2

Trabalhos Relacionados

Os impactos do fenômeno ENSO vêm sendo estudados extensamente em diversas áreas. Segundo Cirino et al. (2015), eventos de El Niño e La Niña influenciam significativamente a agricultura brasileira, especialmente nas regiões Sul e Nordeste.

Um estudo de Pirani et al. (2024) demonstrou que a ocorrência do fenômeno El Niño está associada a uma maior taxa de casos de dengue no estado de São Paulo, devido a um aumento na temperatura e precipitação, condições favoráveis para a proliferação do mosquito Aedes aegypti.

Segundo Capozzoli, Cardoso e Ferraz (2017), o fenômeno ENSO tem uma relação direta sobre a disponibilidade de recursos hídricos nas bacias hidrográficas brasileiras, o que sugere um impacto direto sobre a geração hidrelétrica no Brasil. Além disso, os resultados são coerentes com a literatura, indicando impactos distintos nas diferentes regiões do país.

Naturalmente, o fenômeno ENSO também vem sendo estudado no contexto do setor elétrico brasileiro. Segundo um estudo da EPE (2023), a ocorrência do fenômeno La Niña em 2021 foi um fator determinante para a crise hídrica que afetou o Brasil nesse período, em decorrência da redução das afluências, ou seja, a quantidade de água que chega aos reservatórios das usinas hidrelétricas.

Segundo o relatório da Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico (CPAMP), constituída por instituições do setor elétrico como EPE, ONS e CEPEL, a incorporação de dados de variáveis climáticas, como o fenômeno ENSO, aos modelos computacionais é ativamente discutida devido a relação entre as séries históricas de vazões e dos ciclos de índices climáticos. (CPAMP, 2019)

De acordo com Resende, Soares e Ferreira (2018), o uso de modelos de aprendizado de máquina para previsão de carga do SIN tem o potencial de aprimorar o resultado das previsões, reduzindo os desvios de previsão de carga e, consequentemente, uma redução significativa dos custos de operação do sistema elétrico. Infere-se, portanto, que essa

abordagem também poderia ser aplicada para estimar outros parâmetros, como a geração futura.

Para isso, é essencial selecionar modelos que sejam capazes de capturar as relações potencialmente complexas entre os dados de geração e os fenômenos climáticos. Considerando que a literatura sugere que essa relação seja altamente não-linear, modelos neurais seriam uma escolha natural, mas não necessariamente os modelos neurais mais avançados seriam os mais adequados.

Segundo Zeng et al. (2022), modelos de previsão de séries temporais baseados na arquitetura *Transformer*, introduzida por Vaswani et al. (2017), podem produzir resultados inferiores quando comparados a modelos mais simples. Nesse contexto, surge então a arquitetura *TSMixer*, proposta por Chen et al. (2023). Essa arquitetura, embora mais simples, produz resultados consideravelmente superiores com uma fração do custo computacional.

Capítulo 3

Fundamentação Teórica

3.1 Impacto do ENSO na Geração de Energia Elétrica

O ENSO é um fenômeno que ocorre no Oceano Pacífico Equatorial, caracterizado por variações na temperatura da superfície do mar (TSM) em regiões específicas, como ilustrado na Figura 6. O fenômeno é um dos principais fatores que influenciam os padrões de vento e precipitação em diversas regiões da América do Sul e seus efeitos se estendem por todas as regiões do Brasil. (ANDREOLI et al., 2016)

NIN 1.2 NIN 3 NIN 3.4 NIN 4 60 40 20 Latitude [°] 0 -20-40-60-100100 -150-5050 150 Longitude [°]

Figura 6 - Regiões do fenômeno El Niño-Oscilação Sul (ENSO)

Fonte: o autor.

Os impactos em cada região estão resumidos a seguir, de acordo com Capozzoli, Cardoso e Ferraz (2017):

- **Sul:** A região Sul é uma das mais consistentemente afetadas. Eventos de El Niño tendem a causar precipitação acima da média, particularmente durante a primavera e o verão, enquanto eventos de La Niña estão associados à condições de seca.
- **Sudeste**: A região Sudeste apresenta uma resposta mais complexa, sendo consdierada uma zona de transição. A bacia do Rio Paraná, em especial, apresenta

sensibilidade aos fenômenos do ENSO, tendo apresentado tendência de aumento de vazão durante alguns eventos de El Niño.

• Norte/Nordeste: Para as regiões Norte e Nordeste, eventos de El Niño estão associados a períodos de seca, enquanto eventos de La Niña tendem a trazer chuvas acima da média. No entanto, é importante destacar que outros fenômenos atmosféricos podem interferir com esses padrões, modulando os efeitos do ENSO.

Sendo assim, verifica-se que as variações induzidas pelos fenômenos do ENSO traduzem-se diretamente em variações nas vazões dos rios que alimentam as bacias, que por sua vez impactam o potencial de geração da fonte hidráulica.

3.2 O Modelo NEWAVE

Desenvolvido e mantido pelo Centro de Pesquisas de Energia Elétrica (CEPEL) e amplamente utilizado pelo setor elétrico brasileiro para definição de estratégias e tomada de decisão, o NEWAVE é um modelo de otimização que busca minimizar os custos de operação do sistema, considerando a incerteza das afluências futuras e a operação de um sistema hidro-térmico-eólico interligado. O modelo é utilizado para estudos como:

- Elaboração do Plano Decenal de Expansão de Energia (PDE), pela EPE;
- Elaboração do Programa Mensal de Operação (PMO) e Plano de Operação Energética (PEN), pelo ONS;
- Formação de preços, como no cálculo do Preço de Liquidação das Diferenças (PLD) pelo CCEE;
- Cálculo de Garantia Física e da Energia Assegurada para empreendimentos de geração participantes nos leilões de energia elétrica, pela EPE;
- Elaboração de diretrizes para os leilões de energia, pela EPE.

Em resumo, o modelo emprega a Programação Dinâmica Dual Estocástica (PDDE), uma técnica de otimização que permite lidar com as incertezas ligadas às afluências futuras sem que o modelo se torne computacionalmente impraticável, considerando múltiplos reservatórios, interconexões e o horizonte temporal de médio e longo prazos.

3.2.1 Representação das Usinas

O NEWAVE modela o sistema de geração hidrelétrico em Reservatórios Equivalentes de Energia (REEs), que são grupos de usinas associadas a um subsistema ou submercado de energia. Cada subsistema pode conter mais de um REE, possibilitando diferenciar bacias hidrográficas com regimes distintos, ainda que pertençam a um mesmo subsistema.

Além disso, cada REE é definido por um conjunto de parâmetros que são calculados a partir das características indivuduais de cada usina. Nas versões mais recentes do modelo, também é possível considerar todas as usinas indivudalmente ou operar de maneira híbrtida, ou seja, considerando alguns REEs e outras usinas individualmente.

As usinas termelétricas são representadas no modelo através de classes térmicas. Cada classe agrupa usinas com custos semelhantes e está associada a um subsistema. Cada classe também é definida por um conjunto de parâmetros calculados a partir das características individuais de cada usina.

Nas versões mais recentes do modelo, a fonte eólica também é modelada. De maneira similar, os parques eólicos são agrupados em Parques Eólicos Equivalentes (PEE). O agrupamento é feito a aprtir de dados de cadastro de cada prque eólico, estado, submercado, função de produção (curva relacionando a velocidade do vento com a potência gerada), dados sobre torres de medição e séries históricas de velocidade do vento.

3.2.2 Dados de Entrada

O modelo requer um conjunto de dados de entrada que inclui as características das usinas, dados dos subsistemas, demanda, séries históricas de vazões e ventos, cronogramas de expansão, restrições operativas, dentre outros. Observa-se, portanto, que todos os dados de entrada são locais e, portanto, o modelo não considera variáveis externas, como fenomênos climáticos como o EN e LN, que podem impactar a geração de energia elétrica.

Ainda que as últimas versões do modelo apresentem campos previstos para a entrada de dados do ENSO, esses campos estão marcados como "não implementados". Dessa forma, entende-se que o modelo não considera diretamente o impacto dessas variáveis. No entanto, vale destacar que essas variáveis externas podem ser utilizadas para elaborar as séries históricas de vazões e velocidade de ventos utilizadas como dados de entrada.

3.3 Modelos Linear e Não-linear

Nesse projeto, foram utilizados modelos de regressão linear e não linear a fim de se obter uma *baseline* para comparação com o modelo neural. Para ambos os casos, a biblioteca *scikit-learn* foi utilizada.

3.3.1 Modelo Linear

O modelo linear utilizado foi o *LinearRegression* da biblioteca *scikit-learn*. Ele consiste na aplicação do método dos mínimos quadrados para determinar os coeficientes da equação linear que melhor se ajusta aos dados, conforme ilustrado na Figura 7.

Figura 7 - Regressão Linear de uma Senoide

Fonte: o autor.

Naturalmente, esse tipo de modelo é utilizado quando se espera que a variável de interesse (dependente) seja uma combinação linear das variáveis de entrada (independentes), conforme a equação 3.1,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n \tag{3.1}$$

em que y é a variável de interesse, β_0 é o intercepto, $\beta_1,\beta_2,...,\beta_n$ são os coeficientes e $x_1,x_2,...,x_n$ são as variáveis de entrada.

O método de mínimos quadrados busca minimizar a soma dos quadrados dos resíduos, ou seja, a diferença entre os valores observados e os valores previstos pelo modelo.

Matematicamente, isso é representado pela equação 3.2,

$$\min_{\beta} \sum_{i=1}^{m} (y_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_n x_{in}))^2$$
 (3.2)

em que m é o número de observações, y_i é o valor observado da variável de interesse para a i-ésima observação, x_{ij} é o valor da j-ésima variável de entrada para a i-ésima observação e β é o vetor de coeficientes do modelo.

Ainda que se espere que as relações entre os dados seja altamente não linear, o método é capaz de capturar algumas das relações lineares entre as variáveis, além de servir como ponto de partida para as próximas análises.

3.3.2 Modelos Não-lineares: Random Forest e Gradient Boosting

3.4 Modelo Neural

Antes de apresentar o modelo neural, será feita uma breve introdução a respeito de alguns conceitos importantes, como o *Perceptron* e os *Multi Layer Perceptrons* (MLPs). Esses conceitos são fundamentais para compreender a arquitetura do modelo utilizado.

3.4.1 O Perceptron

O *Perceptron* é um modelo de rede neural artificial proposto por Rosenblatt (1958), inspirado no funcionamento de neurônios biológicos. A figura 8 ilustra a estrutura básica de um Perceptron.

Um perceptron recebe um conjunto $X=[x_1,x_2,...,x_n]$ de entradas, com cada x_i associada a um peso aleatório w_i . O Perceptron então calcula a soma ponderada das entradas e aplica uma função de ativação para produzir a saída. Matematicamente, isso é dado por:

$$\hat{y}(X) = f\left(\sum_{i=1}^{n} w_i x_i + b\right) \tag{3.3}$$

em que \hat{y} é a saída do Perceptron e f a função de ativação que, para esse caso, usa-se a função degrau u(t).

O Perceptron é limitado a resolver problemas de classificação linearmente separáveis. Ou seja, problemas nos quais é possível traçar uma linha (ou hiperplano) que separe as classes de forma clara. Para essas aplicações, o Perceptron atualiza os pesos de modo iterativo durante o treinamento, através da taxa de aprendizado r, conforme a equação 3.4, que demonstra o aprendizado através da atualização dos pesos no tempo:

$$w_i(t+1) \leftarrow w_i(t) + r(y(t) - \hat{y}(t))x_i \tag{3.4}$$

em que y é o valor real e \hat{y} a saída do Perceptron. A taxa de aprendizado representa o quão rápido os pesos são atualizados durante o treinamento. A atualização é feita de forma a minimizar o erro entre a saída prevista e a saída real.

Para problemas mais complexos, como aqueles que envolvem relações não-lineares entre as variáveis, outras abordagens são necessárias.

3.4.2 Multi Layer Perceptrons (MLPs)

MLPs surgiram como uma evolução dos *Perceptrons* simples, com a finalidade de permitir a modelagem de relações não lineares, e são a base para o *deep learning*, metodologia que utiliza redes neurais com inúmeras camadas para resolução de tarefas complexas. A figura 9 ilustra a estrutura básica de um MLP de dupla camada.

Essas estruturas são compostas por neorônios (perceptrons) interconectados e organizados em camadas. Cada neurônio de uma camada está conectado a todos os neurônios das camadas adjacentes (*fully connected*). A primeira e última camadas são chamadas de camada de entrada e camada de saída, respectivamente, enquanto as camadas intermediárias são chamadas de camadas ocultas.

MLPs são treinadas utilizando o algoritmo de *backpropagation*, ou retropropagação, usado para atualizar os pesos e viéses dos neurônios de forma a minimizar o erro entre a saída prevista e a saída real. O algoritmo de retropropagação funciona da seguinte forma:

- Forward Pass: Os dados de entrada são propagados através da rede, camada por camada, até a camada de saída.
- Cálculo do Erro: O erro é calculado comparando a saída prevista com a saída real.

Figura 9 - MLP de dupla camada

- Backward Pass: O erro é propagado de volta através da rede, camada por camada, para calcular os gradientes dos pesos e viéses.
- Atualização dos Pesos: Os pesos e viéses são atualizados utilizando os gradientes calculados e uma taxa de aprendizado.

Esse processo é repetido por várias iterações (épocas) até que o modelo converja para uma solução satisfatória.

3.4.3 Arquitetura TSMixer

A arquitetura proposta por Chen et al. (2023) é uma abordagem inovadora para previsão de séries temporais. Ela utiliza camadas de *Multi Layer Perceptrons* (MLPs) em cascata, denominadas de *Mixing Layers*, para capturar as relações na dimensão temporal, bem como na dimensão das características (variáveis). A figura 10 ilustra a arquitetura do modelo.

A mistura no domínio do tempo permite ao modelo capturar os padrões temporais da

série estudada. Essa etapa consiste em uma MLP de camada única que opera ao longo da dimensão do tempo. Essa abordagem se mostrou eficaz para aprender padrões temporais complexos, como sazonalidades e tendências, sem a necessidade de mecanismos de atenção, como os utilizados na arquitetura *Transformer*.

A mistura no domínio das características permite ao modelo capturar as relações entre as variáveis. Essa etapa consiste em MLPs de camada dupla que operam ao longo da dimensão das características. Ou seja, as relações entre as váriaveis em um determinado instante de tempo são capturadas. Essa abordagem é eficaz para aprender interações entre variáveis, como correlações e dependências, sem a necessidade de mecanismos de atenção.

Fonte: Adaptado de Chen et al. (2023)

3.4.4 Modelo Tiny Time Mixer

Capítulo 4

Metodologia

4.1 Abordagem computacional

Considerando o escopo do projeto e o grande volume de dados a serem processados, não há outra abordagem viável senão a utilização de técnicas computacionais. Sendo assim, optou-se por desenvolver o projeto em Python, devido à familiaridade do autor com a linguagem e a vasta gama de bibliotecas disponíveis para manipulação de séries históricas, análise estatística e aprendizado de máquina.

Como o computador utilizado possui uma placa de vídeo da AMD e o projeto foi desenvolvido em Windows, não foi possível realizar o offload do processamento para a Graphics Processing Unit (GPU), como seria possível com placas de vídeo NVIDIA nativamente com a biblioteca torch. Para isso, seria necessário utilizar Linux, em que há suporte da biblioteca para a plataforma Radeon Open Compute (ROCm). Sendo assim, as etapas do projeto empregando modelos neurais foram processadas apenas no CPU. O sistema utilizado possui um processador AMD Ryzen 5900X e 32 GB de memória RAM. Todo o processamento intensivo foi realizado em paralelo, utilizando todas as 24 threads disponíveis.

Além disso, toda a base de código foi desenvolvida em Python versão 3.12 e está disponível em um repositório público no GitHub. O projeto foi organizado em módulos, cada um responsável por uma etapa do processo, desde a obtenção dos dados até a implementação dos modelos de aprendizado de máquina. A tabela 1 mostra as bibliotecas utilizadas no projeto, suas finalidades e versões.

Tabela 1 - Bibliotecas utilizadas no projeto

Biblioteca	Descrição	Versão
numpy	Cálculos numéricos e manipulação de arrays	1.26.4
pandas	Manipulação e análise de dados (DataFrames)	2.2.3
requests	Requisições HTTP	2.32.3
urllib3	Gerenciamento de conexões HTTP	2.2.3
alive_progress	Barra de progresso para loops	3.2.0
netCDF4	Leitura de arquivos NetCDF	1.7.2
cdsapi	API para download de dados do ECMWF	0.7.5
geopandas	Manipulação de dados geoespaciais	1.0.1
matplotlib	Visualização de dados	3.9.2
scikit-learn	Aplicação de modelos iniciais	1.5.2
scipy	Ferramentas e algoritmos matemáticos	1.14.1
transformers	Modelos Neurais Pré-treinadis	4.52.3
torch	Processamento de Redes Neurais	2.7.0

Fonte: o autor.

4.2 Obtenção e pré-processamento dos dados

4.2.1 Séries históricas do ONS

A primeira etapa do projeto consiste na consolidação das séries históricas de geração, carga e variáveis hidrológicas, que são disponibilizadas publicamente no portal Dados Abertos do ONS, a partir do ano 2000. As séries referentes às variáveis hidrológicas são disponibilizadas em base diária, e os dados de geração e carga são disponibilizados em base horária.

Os dados de geração são disponibilizados em Mega Watt médio (MWmed) por fonte de energia, subsistema, estado, modalidade de operação, entre outras variáveis. Os dados de carga também são disponibilizados em MWmed e contêm informações sobre a carga em cada subsistema do SIN.

Para as séries de geração, os dados de 2000 a 2021 são agrupados pelos respectivos anos, e a partir de 2022, as informações estão agrupadas em arquivos por mês e ano. Para as séries de carga, os dados são disponibilizados por ano. Como o ONS não disponibiliza *Aplication Programming Interface* (API) para a obtenção dos dados diretamente, foi necessário uma outra abordagem, a fim de evitar o download manual dos dados.

Após identificar o padrão de nomenclatura utilizado pelo ONS para os arquivos, foram desenvolvidas as funções *GetGeracao*, *GetCarga* e *GetVazao* para obtenção dos dados de geração, carga e hidrológicos, respectivamente. Os arquivos foram baixados por meio de requisições HTTP, utilizando a biblioteca *requests* e a biblioteca *urllib3* para gerenciar as conexões. Além disso, as funções realizam o download dos arquivos em paralelo, utilizando

todas as threads disponíveis do sistema. Ao todo, cerca de 10 GB de dados em arquivos Comma Separated Values (CSV) foram consolidados.

A fim de obter uma amostragem representativa e suficiente para aplicação dos modelos computacionais, optou-se por fazer uma reamostragem dos dados em base horária para a base diária. Sendo assim, considerando o período de 2000 a 2024, foram consolidados ao todo 9132 amostras diárias para cada variável. Caso fosse considerada a amostragem mensal, o número de amostras seria de apenas 300, o que poderia não ser suficiente para a aplicação dos modelos. Ainda assim, análises em base mensal poderão ser realizadas posteriormente, através de outro processo de reamostragem.

O código **??** mostra a função *GetGeracao*, que recebe como argumentos a lista de anos de interesse e a URL base em que os dados estão hospedados. A mesma abordagem foi utilizada para as funções *GetCarga* e *GetVazao*.

Tabela 2 - Parâmetros dos dados de geração

Parâmetro	Descrição	Tipo
din_instante	Instante de aferição	Datetime
nom_subsistema	Subsistema da usina	String
id_estado	Estado onde a usina está localizada	String
nom_tipousina	Tipo de usina	String
$nom_tipocombustivel$	Tipo de combustível	String
nom_usina	Nome da usina	String
val_geracao	Geração de energia (MWmed)	Float

Fonte: ONS (2024)

Nota: Variáveis não utilizadas foram omitidas.

Tabela 3 - Parâmetros dos dados de carga

Parâmetro	Descrição	Tipo
din_instante	Instante de aferição	Datetime
nom_subsistema	Subsistema da usina	String
$_val_cargaenergiahomwmed$	Carga de energia (MWmed)	Float

Fonte: ONS (2024)

Verifica-se, a partir da tabela 2, que os dados de geração contém informações que permitem uma análise detalhada da operação do SIN em diferentes níveis de granulidade. Dessa maneira, possíveis impactos em diferentes escalas geográficas e temporais poderão ser avaliados. Por outro lado, a tabela 3 mostra que os dados de carga não possuem a mesma granulidade que os dados de geração, limitando a análise a nível de subsistema, conforme a figura 11.

4.2.2 Séries históricas de variáveis climatológicas

A fim de maximizar o potencial de análise do projeto, é essencial considerar um grande número de dados climatológicos, como anomalis de temperatura, precipitação, pressão, radiação solar, entre outros. No entanto, a obtenção de todos esses dados em base diária só é possível através do portal Climate Data Store (CDS) do ECMWF (European Centre for Medium-Range Weather Forecasts), através do ERA5, que é um reanálise climática de alta resolução espacial e temporal. (C3S, 2024)

Embora os dados do ERA5 possam ser obtidos através da API do CDS, sendo possível especificar a escala temporal e a área geográfica de interesse, há um limite de requisições por usuário e uma file de espera para o processamento das requisições. Sendo assim, apenas os dados de temperatura da superfície do mar (TSM) e precipitação das regiões do ENSO foram obtidos em base diária. O código ?? mostra como as solicitações à API do CDS foram realizadas, utilizando a biblioteca *cdsapi*.

Os dados do ECMWF foram obtidos através da API do CDS (Climate Data Store), que permite o download de dados meteorológicos de alta resolução, sendo possível especificar a escala temporal e a área de interesse, especificando as coordenadas geográficas. Os dados do NOAA foram obtidos através de requisições HTTP.

É importante ressaltar que, embora a maioria dos dados climatológicos seja disponibilizada em base mensal, alguns possuem escala temporal diária, como alguns dados do ECMWF. Considerando que os dados de energia são disponibilizados em base horária, diferentes análises poderão ser realizadas, considerando as escalas temporais diária e mensal. Para isso, durante a etapa de pré-processamento dos dados, será realizada a consolidação dos dados de geração e carga de modo que estejam na mesma escala temporal dos dados climatológicos.

Além disso, nas próximas etapas do projeto, será realizado a seleção das variáveis climatológicas mais relevantes para a análise, considerando a correlação com a geração de energia. Para isso, serão utilizadas técnicas de *feature selection* e redução de dimensionalidade, como a análise de componentes principais. A tabela ?? mostra as variáveis climatológicas utilizadas no projeto.

Figura 11 - Subsistemas do SIN

Fonte: o autor.

4.2.3 Pré-processamento dos dados

4.3 Análise exploratória dos dados

4.4 Implementação dos modelos de regressão

4.4.1 Feature selection

4.4.2 Análise de componentes principais

4.4.3 Avaliação dos Modelos de regressão

4.5 Implementação do Modelo Neural

Capítulo 5

Resultados

Capítulo 6

Conclusão

Referências

ANDREOLI, Rita Valéria et al. The influence of different el niño types on the south american rainfall. **International Journal of Climatology**, Wiley, v. 37, n. 3, p. 1374–1390, maio 2016. ISSN 1097-0088.

C3S. **ERA5** post-processed daily statistics on single levels from **1940** to present. [S.l.]: ECMWF, 2024.

CAPOZZOLI, Caluan Rodrigues; CARDOSO, Andrea de Oliveira; FERRAZ, Simone Erotildes Teleginski. Padrões de variabilidade de vazão de rios nas principais bacias brasileiras e associação com Índices climáticos. **Revista Brasileira de Meteorologia**, FapUNIFESP (SciELO), v. 32, n. 2, p. 243–254, jun. 2017. ISSN 0102-7786.

CHEN, Si-An et al. Tsmixer: An all-mlp architecture for time series forecasting. arXiv, 2023.

CIRINO, Paulo Henrique et al. Assessing the impacts of enso-related weather effects on the brazilian agriculture. **Procedia Economics and Finance**, Elsevier BV, v. 24, p. 146–155, 2015. ISSN 2212-5671.

CPAMP, Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico. **Representação Hidrológica:Geração de Cenários**. [S.l.], 2019.

EPE. Escassez Hídrica em 2021 - Diagnóstico e Oportunidades para o Planejamento da Expansão da Oferta de Eletricidade. [S.l.], 2023.

Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/ escassez-hidrica-em-2021-diagnostico-e-oportunidades-para-o-planejamento-da-expansao-da-oferta-da-expansao-da-expansao-da-expansao-da-oferta-da-expansao-expansao-expansao-expansao-expansao-expansao-expansao-expansao-expansao-expansao-expansa

_____. **Balanço Energético Nacional 2024**. [S.l.], 2024. Disponível em: https://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/Relato%CC%81rio%20PEN%202024%20VF.pdf.

GURJÃO, Carlos Diego de Sousa et al. Influência do enos (el niño-oscilação sul) no regime hidrológico do rio são francisco: uma análise em regiões com fortes pressões antrópicas (influence of enso (el niño-southern oscillation) in the hydrological regime são francisco river: an analysis...). **Revista Brasileira de Geografia Física**, v. 5, n. 4, p. 774–790, 2012.

ONS. **Plano da Operação Energética (PEN) 2024**. [S.l.], 2024. Disponível em: https://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/Relato%CC%81rio%20PEN%202024%20VF.pdf.

PIRANI, Monica et al. Effects of the el niño-southern oscillation and seasonal weather conditions on aedes aegypti infestation in the state of são paulo (brazil): A bayesian spatio-temporal study. **PLOS Neglected Tropical Diseases**, Public Library of Science (PLoS), v. 18, n. 9, p. e0012397, set. 2024. ISSN 1935-2735.

RESENDE, Larissa; SOARES, Murilo; FERREIRA, Pedro. Electric power load in brazil: view on the long-term forecasting models. **Production**, FapUNIFESP (SciELO), v. 28, n. 0, out. 2018. ISSN 0103-6513.

ROSENBLATT, F. The perceptron: A probabilistic model for information storage and organization in the brain. **Psychological Review**, American Psychological Association (APA), v. 65, n. 6, p. 386–408, 1958. ISSN 0033-295X.

SOARES, Marcos de Abreu; COSTA, Hirdan Katarina de Medeiros. A crise hídrica enfrentada em 2021: uma avaliação das principais medidas adotadas pelo governo. **DELOS: DESARROLLO LOCAL SOSTENIBLE**, South Florida Publishing LLC, v. 16, n. 43, p. 489-503, abr. 2023. ISSN 1988-5245.

VASWANI, Ashish et al. **Attention Is All You Need**. [S.l.]: arXiv, 2017.

ZENG, Ailing et al. **Are Transformers Effective for Time Series Forecasting?** [S.l.]: arXiv, 2022.