

Química Nivel medio Prueba 1

Miércoles 8 de noviembre de 2017 (tarde)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

	8	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,90	54 Xe 131,29	86 Rn (222)	118 Uuo (294)		
	17		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	117 Uus (294)	71 Lu 174,97	103 Lr (262)
	16		8 O 16,00	16 S 32,07	34 Se 78,96	52 Te 127,60	84 Po (209)	116 Uuh (293)	70 Yb 173,05	102 No (259)
	15		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98	115 Uup (288)	69 Tm 168,93	101 Md (258)
	4		6 C 12,01	14 Si 28,09	32 Ge 72,63	50 Sn 118,71	82 Pb 207,2	114 Uug (289)	68 Er 167,26	100 Fm (257)
	13		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,38	113 Unt (286)	67 Ho 164,93	99 Es (252)
	12				30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 Cn (285)	66 Dy 162,50	98 Cf (251)
g	7				29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg (281)	65 Tb 158,93	97 Bk (247)
riódie	10				28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds (281)	64 Gd 157,25	96 Cm (247)
Tabla periódica	6				27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt (278)	63 Eu 151,96	95 Am (243)
	œ				26 Fe 55,85	44 Ru 101,07	76 0s 190,23	108 Hs (269)	62 Sm 150,36	94 Pu (244)
	^				25 Mn 54,94	43 Tc (98)	75 Re 186,21	107 Bh (270)	61 Pm (145)	93 Np (237)
	9	ooj	lativa		24 Cr 52,00	42 Mo 95,96	74 W 183,84	106 Sg (269)	60 Nd 144,24	92 U 238,03
	2	Número atómico Elemento Masa atómica relativa	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (268)	59 Pr 140,91	91 Pa 231,04		
	4	Núy.		22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf (267)	58 Ce 140,12	90 Th 232,04	
	က				21 Sc 44,96	39 <	57 † La 138,91	89 ‡ Ac (227)	+	#
	7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra (226)		
	_	1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		
		_	8	က	4	rð.	9			

- 1. ¿Cuántos átomos de nitrógeno hay en 0,50 mol de (NH₄)₂CO₃?
 - A. 1
 - B. 2
 - C. $3,01 \times 10^{23}$
 - D. $6,02 \times 10^{23}$
- **2.** ¿Cuál es el valor de **x** cuando 32,2 g de Na₂SO₄ **x**H₂O se calientan originando 14,2 g de Na₂SO₄ anhidro? $M_r(H_2O) = 18$; $M_r(Na_2SO_4) = 142$.

$$Na_2SO_4 \cdot \mathbf{x}H_2O(s) \rightarrow Na_2SO_4(s) + \mathbf{x}H_2O(g)$$

- A. 0,1
- B. 1
- C. 5
- D. 10
- 3. ¿Cuántos gramos de azida de sodio, NaN₃, se necesitan para producir 68,1 dm³ de N₂(g) a PTN? Volumen molar a PTN = $22.7 \,\text{dm}^3 \,\text{mol}^{-1}$; $M_r(\text{NaN}_3) = 65.0$.

$$2NaN_3(s) \rightarrow 3N_2(g) + 2Na(s)$$

- A. 32,5
- B. 65,0
- C. 130,0
- D. 195,0
- **4.** ¿Cuál es la suma de los coeficientes cuando se ajusta la siguiente ecuación con los números enteros más pequeños?

$$_C_6H_{12}O_6(aq) \rightarrow _C_2H_5OH(aq) + _CO_2(g)$$

- A. 4
- B. 5
- C. 9
- D. 10

5. ¿Cuál es el número de protones y el número de neutrones en el ¹³¹I?

	Protones	Neutrones
A.	53	78
B.	53	131
C.	78	53
D.	131	53

- **6.** ¿Cuál es la configuración electrónica de un átomo de cromo en su estado fundamental?
 - A. $[Ne]3s^23p^64s^13d^4$
 - B. [Ar]3d³
 - C. $1s^22s^22p^63s^23p^64s^23d^4$
 - D. [Ar]4s¹3d⁵
- 7. ¿Qué tendencias son correctas a lo largo del periodo 3 (del Na al Cl)?
 - I. El radio atómico disminuye
 - II. El punto de fusión aumenta
 - III. La energía de primera ionización aumenta
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- 8. ¿Qué óxido se disuelve en agua para dar una solución con pH menor que 7?
 - A. MgO
 - B. Li₂O
 - C. CaO
 - D. P₄O₁₀
- **9.** Se dan los valores de electronegatividad de cuatro elementos.

С	N	0	F
2,6	3,0	3,4	4,0

¿Cuál serie muestra un orden creciente de la polaridad de los enlaces?

- $\mathsf{A.} \qquad \mathsf{CO} < \mathsf{OF}_2 < \mathsf{NO} < \mathsf{CF}_4$
- $\mathsf{B.} \quad \mathsf{CF_4} < \mathsf{CO} < \mathsf{OF_2} < \mathsf{NO}$
- $\mathsf{C.} \quad \mathsf{NO} < \mathsf{OF}_2 < \mathsf{CO} < \mathsf{CF}_4$
- $\mathsf{D.} \quad \mathsf{CF_4} < \mathsf{NO} < \mathsf{OF_2} < \mathsf{CO}$
- 10. ¿Qué compuesto tiene el enlace C-N más corto?
 - A. CH₃NH₂
 - B. (CH₃)₃CNH₂
 - C. CH₃CN
 - D. CH₃CHNH

- 11. ¿Cuál de las siguientes series muestra un aumento en el enlace de hidrógeno con el agua?
 - A. Propano < propanal < propanol < ácido propanoico
 - B. Propano < propanol < propanal < ácido propanoico
 - C. Propanal < propano < ácido propanoico < propanol
 - D. Ácido propanoico < propanol < propanol
- 12. ¿Qué enunciados son correctos para los metales?
 - I. Conducen la corriente eléctrica porque tienen iones que se mueven libremente.
 - II. Constan de una red empacada de iones positivos con electrones deslocalizados.
 - III. Son maleables porque las capas de iones positivos pueden resbalar entre sí.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 13. ¿Qué enunciado es correcto para esta reacción?

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$
 $\Delta H = -26.6 \text{ kJ}$

- A. Se liberan 13,3 kJ por cada mol de Fe producido.
- B. Se absorben 26,6 kJ por cada mol de Fe producido.
- C. Se liberan 53,2 kJ por cada mol de Fe producido.
- D. Se liberan 26,6 kJ por cada mol de Fe producido.

14. Se dan las variaciones de entalpía para dos reacciones.

$$Br_2(l) + F_2(g) \rightarrow 2BrF(g)$$
 $\Delta H = x kJ$
 $Br_2(l) + 3F_2(g) \rightarrow 2BrF_3(g)$ $\Delta H = y kJ$

¿Cuál es la variación de entalpía para la siguiente reacción?

$$BrF(g) + F_2(g) \rightarrow BrF_3(g)$$

- A. x-y
- B. -x + y
- $C. \qquad \frac{1}{2} \left(-x + y \right)$
- $D. \qquad \frac{1}{2}(x-y)$

15. ¿Cuál es la variación de entalpía, en kJ, para la siguiente reacción?

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$$

Enlace	Entalpía de enlace / kJ mol ⁻¹
N≡N	945
H–H	436
N–H	391

- A. $(6 \times 391) [(3 \times 436) + 945]$
- B. $(3 \times 391) (436 + 945)$
- C. $-[(3 \times 436) + 945] + (3 \times 391)$
- D. $-(6 \times 391) + [(3 \times 436) + 945]$

16. El diagrama muestra el perfil energético para una reacción catalizada y sin catalizar. ¿Cuál representa la variación de entalpía, ΔH , y la energía de activación, E_a , para la reacción **catalizada**?

Coordenada de reacción

	ΔН	<i>E</i> _a (reacción catalizada)
A.	Z	x + z
B.	Z	z + y
C.	-z	x
D.	z + x	x

17. Se añadió exceso de magnesio en polvo a un recipiente que contenía ácido clorhídrico, HCl (aq). La masa del recipiente y su contenido se registró y graficó en función del tiempo (línea I).

¿Qué cambio daría la línea II?

- A. Duplicación de la masa de Mg en polvo
- B. Uso de la misma masa de cinta de Mg
- C. Aumento de la temperatura
- D. Uso del mismo volumen de HCl más concentrado
- 18. ¿Qué sucederá si se aumenta la presión de la siguiente mezcla de reacción en equilibrio?

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

- A. El equilibrio se desplazará hacia la derecha y el pH disminuirá.
- B. El equilibrio se desplazará hacia la derecha y el pH aumentará.
- C. El equilibrio se desplazará hacia la izquierda y el pH aumentará.
- D. El equilibrio se desplazará hacia la izquierda y el pH disminuirá.

– 10 **–**

- A. 8
- B. 9
- C. 11
- D. 12

20. ¿Qué enunciado es **incorrecto** para una solución de HCOOH 0,10 mol dm⁻³?

- A. pH = 1
- B. $[H^+] << 0.10 \,\mathrm{mol}\,\mathrm{dm}^{-3}$
- C. La [HCOO⁻] es aproximadamente igual a la [H⁺]
- D. El HCOOH está parcialmente ionizado

21. ¿Cuáles son los estados de oxidación del cromo en el (NH₄)₂Cr₂O₇(s) y en el Cr₂O₃(s)?

	$(NH_4)_2Cr_2O_7(s)$	Cr ₂ O ₃ (s)
A.	+7	+3
B.	+6	+3
C.	+6	+6
D.	+7	+6

22. ¿Cuál de las siguientes es una reacción rédox?

$$\mathsf{A.} \quad \ \, \mathsf{3Mg}(\mathsf{s}) + \mathsf{2AlCl}_{\mathsf{3}}(\mathsf{aq}) \rightarrow \mathsf{2Al}(\mathsf{s}) + \mathsf{3MgCl}_{\mathsf{2}}(\mathsf{aq})$$

$$\mathsf{B.} \quad \mathsf{SiO}_2(\mathsf{s}) + 2\mathsf{NaOH}(\mathsf{aq}) \to \mathsf{Na}_2\mathsf{SiO}_3(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{l})$$

$$C. \hspace{0.5cm} \mathsf{KCl}\,(\mathsf{aq}) + \mathsf{AgNO}_3(\mathsf{aq}) \to \mathsf{AgCl}\,(\mathsf{s}) + \mathsf{KNO}_3(\mathsf{aq})$$

$$\label{eq:D.2} \mathsf{D.} \quad \ \ \mathsf{2NaHCO}_3(\mathsf{aq}) \to \mathsf{Na}_2\mathsf{CO}_3(\mathsf{aq}) + \mathsf{CO}_2(\mathsf{g}) + \mathsf{H}_2\mathsf{O}(\mathsf{l})$$

23. ¿Cuál es el tipo de reacción y el producto principal en el **ánodo** (electrodo positivo) cuando se electroliza cloruro de sodio fundido con electrodos de platino?

	Tipo de reacción	Producto
A.	reducción	Cl_2
B.	oxidación	Cl_2
C.	reducción	Na
D.	oxidación	Na

- 24. ¿Cuál es el producto principal de la reacción entre HCl y 2-buteno?
 - A. 1,2-diclorobutano
 - B. 2,3-diclorobutano
 - C. 1-clorobutano
 - D. 2-clorobutano
- **25.** ¿Qué compuesto se puede oxidar cuando se calienta con solución acidificada de dicromato(VI) de potasio?
 - A. CH₃C(O)CH₂CH₃
 - B. CH₃CH₂CH(OH)CH₃
 - C. (CH₃)₃COH
 - D. CH₃(CH₂)₂COOH

26. ¿Cuál es el nombre de este compuesto, de acuerdo con las reglas de la IUPAC?

- A. 3-metil-3-butanol
- B. 2-etil-2-propanol
- C. 2-metil-2-butanol
- D. 3-metil-2-butanol
- 27. ¿Qué tipo de reacción se produce entre un alcohol y un ácido carboxílico?
 - A. Adición
 - B. Oxidación
 - C. Esterificación
 - D. Polimerización
- **28.** ¿Cuántos isómeros estructurales del C_6H_{14} existen?
 - A. 4
 - B. 5
 - C. 6
 - D. 7

- **29.** ¿Qué información proporcionan la RMN de ¹H, la EM, y el IR sobre un compuesto orgánico?
 - I. La RMN de ¹H: ambiente(s) químico(s) de los protones
 - II. La EM: patrón de fragmentación
 - III. El IR: tipos de grupos funcionales
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **30.** Un estudiante lleva a cabo una titulación ácido-base usando un pehachímetro, pero se olvida de calibrarlo. ¿Qué tipo de error se producirá y cómo afectará a la calidad de las mediciones?
 - A. Error aleatorio y menor precisión
 - B. Error sistemático y menor exactitud
 - C. Error sistemático y menor precisión
 - D. Error aleatorio y menor exactitud