

KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY (KIIT)

- Deemed to be University U/S 3 of the UGC Act, 1956 -

LABORATORY RECORD - AUTUMN 2020

MICROWAVE ENGINEERING LAB (EC 3015)

DEBAGNIK KAR

ROLL NO: 1804373 Section: ETC-06

Index Page

Experiment No.	Aim of the Experiment	Date of Experiment	Date of Submission	Page No.	Faculty Remarks
01	To design a quarter wave transformer for matching a 50 Ω microstrip line with a load of 373 Ω	12/08/2020	16/08/2020	2-5	
02	To design a wire dipole antenna operating at 395 MHz and to find the directive gain and half power beam width from the radiation pattern.	19/08/2020	24/08/2020	6-9	
03		26/08/2020		10-	
04					
05					
06					
07					
08					
09	Open Ended Experiment-1				
10	Open Ended Experiment-2				

Experiment Number	01
Date of Experiment	12/08/2020
Date of Submission	16/08/2020
Name of the student	Debagnik Kar
Roll Number	1804373
Section	ETC – 06

Aim of The Experiment:-

To design a quarter wave transformer for matching a 50 Ω microstrip line with a load of 173 Ω

Equipment / Software Required:-

CST Studio Suite 2019 (Student Edition)

Theory:

Fig 1.1: Load matching using a quarter wave transformer

When $Z_0 \neq Z_L$, the load is said to be mismatched and a reflected wave exist. So we use quarter wave transformer for impedance matching.

when
$$l = \frac{\lambda}{4}$$
,

$$Z_{in} = Z_0 \left[\frac{Z_L + \frac{jZ_0 \tan \pi}{2}}{Z_0 + \frac{jZ_L \tan \pi}{2}} \right] = \frac{Z_0^2}{Z_L}$$

A mismatched load can be properly matched to a line (with characteristic impedance Z_0) by inserting prior to the transmission line $\lambda/4$ long (with characteristic impedance Z_0) as depicted in Fig.1.

From (1), Z_0 is selected such that ($Z_{in}=Z_0$)

Therefore,

$$Z_0^{\dagger} = \sqrt{Z_0 Z_L} \tag{2}$$

Note: When microstrip line is used, then guided wavelength must be used ,i.e,

$$\lambda_g = \frac{\lambda_0}{\sqrt{\varepsilon_{eff}}}$$

where, λ_g = guided wavelength.

When $Z_0 \neq Z_L$, the load is said to be mismatched and a reflected wave exist. So we use quarter wave transformer for impedance matching.

when
$$l = \frac{\lambda}{4}$$
,

$$Z_{in} = Z_0 \left[\frac{Z_L + \frac{jZ_0 \tan \pi}{2}}{Z_0 + \frac{jZ_L \tan \pi}{2}} \right] = \frac{Z_0^2}{Z_L}$$

A mismatched load can be properly matched to a line (with characteristic impedance Z_0) by inserting prior to the transmission line $\lambda/4$ long (with characteristic impedance Z_0) as depicted in Fig.1.

From (1), Z_0 is selected such that ($Z_{in}=Z_0$)

Therefore,

$$Z_0' = \sqrt{(Z_0 Z_L)}$$

$$Z_0 = 50$$

$$Z_{L} = 173$$

$$Z_0' = \sqrt{(50 \times 173)}$$

$$Z_0' = 93.01 \,\Omega$$
 (2)

Note: When microstrip line is used, then guided wavelength must be used ,i.e,

$$\lambda_g = \frac{\lambda_0}{\sqrt{\varepsilon_{eff}}} \tag{3}$$

where, λ_g = guided wavelength.

Substrate: FR4 (Lossless) ($\varepsilon_r = 4.3$)

Width of the substrate is 50 mm and the length is 100 mm

h = 1.6 mm

t = 0.2 mm

W = 2.93 mm (determined using Analysis and synthesis of transmission lines)

 $\varepsilon_{eff} = 3.204$

 $Z_0' = 93.01 \Omega \text{ length} = 17 \text{ mm}$

Therefore, width of the quarter wave line is 0.87mm

Design:

Fig 1.2: Design of microstrip line terminated with the desired load.

Fig 1.3: Design of microstrip line terminated with quarter wave line and desired load

Output/Graph:-

Fig 1.4: Result of the design of the microstrip line

Fig 1.5: Result of the design of the microstrip line terminated by quarter wave line.

Observation of the experiment:

- For fig 4, No resonance is observed around 2.4 GHz which implies impedance mismatch.
- For fig 5, an impedance is achieved at 2.4 GHz by using a quarter wave transformer.

Conclusion:-

The designing of a quarter wave transformer for matching a 50 Ω microstrip line with a load od 173 Ω is successfully achieved.

Experiment Number	02
Date of Experiment	19/08/2020
Date of Submission	24/08/2020
Name of the student	Debagnik Kar
Roll Number	1804373
Section	ETC - 06

Aim of The Experiment:-

To design a wire dipole antenna operating at 373 MHz and to find the directive gain and half power beam width from the radiation pattern.

Software Required:-

CST Studio Suite 2019 (Student Edition)

Theory

The length of the Dipole Antenna is given by the formula:

$$L = \frac{\lambda}{2} = \frac{c}{2f}$$

f = 373 MHz

The length of the dipole is 0.402 m = 0.402 mm

For the 402 mm length, we have got , 0.373 GHz which is far from our desired result, so we cant consider it as our result.

We know, the input impedance = $(73 \pm 40j)$

To cancel the complex part we have to use a shorter length.

I am taking 360 mm to get a value which is nearly equal to the desired result 0.373 GHz

Design:-

Fig 2.1: Design of wire dipole antenna

Observation:-

Fig 2.2: S11 Charecteristics

Fig 2.3: Directive Gain

Fig 2.4:Radiation Pattern in X-Z and X-Y plane

Fig 2.5: Plane radiation pattern and half powered beam width

Fig 2.6: H-plane omni-directional Radiation Pattern

Inference of the experiment:

From this experiment, we learnt how to design a wire dipole antenna using CST Studio Suite. We also got to learn about the concept of radiation pattern after performing the experiment

Conclusion:-

A successful design of a wire dipole antenna operating at 373 MHz is successfully simulated on a virtual platform.