Richiami

Varianza stimatore ML

1.metodo diretto

3. toy MC

Intervallo di confidenza

Conclusioni

Stima della media nella pdf esponenziale

Considero una pdf_x esponenziale:

$$pdf_x(x,\mu) = \frac{1}{\mu} e^{-\frac{x}{\mu}}$$

$$E[x] = \mu$$

$$Var[x] = \mu^2$$

Abbiamo visto la volta scorsa che lo stimatore ML per μ è la media campionaria:

$$\hat{\mu}_{ML} = \frac{\sum_{i=1}^{N} x_i}{N} = \overline{x}$$

Immaginiamo di non sapere se lo stimatore della media campionaria sia biasato e quanto vale la sua varianza. Stimiamo entrambi con un toy-MC.

Richiami

Varianza stimatore ML

1.metodo diretto

2.metodo grafic

3. toy MC

Intervallo di confidenza

Conclusioni

Si scrive un programma che faccia le seguenti operazioni

- **1** genera N numeri casuali estratti da una $pdf_x(x,\mu)$ esponenziale di cui ho scelto a priori il valore di μ (p.es. lo scelgo uguale alla mia stima sperimentale)
- $oldsymbol{Q}$ calcola la media aritmetica dei numeri estratti, \overline{x}
- $oldsymbol{3}$ ripete i punti 1+2 un numero K di volte ottenendo K valori \overline{x}_j
- **4** determina il bias dello stimatore la media degli \overline{x}_j è una valutazione della media dello stimatore di ML, se corrisponde a μ lo stimatore è privo di bias
- \bullet la varianza degli \overline{x}_i sarà la varianza del lo stimatore
- $\mathbf{6}$ se rappresento gli \overline{x}_j in un'istogramma trovo la forma della pdf dello stimatore
- N.B. come si sceglie K: la ricetta è semplice, verificate che il risultato sia stabile!

Richiami

Varianza stimatore ML

1.metodo diretto 2.metodo grafico 3. toy MC

Intervallo di

Conclusioni

N=2 campionamenti $\mu=5$

- $pdf(\hat{\mu}_{ML})$ è molto lontana da una gaussiana.
- bias = $E[\hat{\mu}_{ML}] 5 = 4.964 5 = 0.036 \simeq 0$ è unbiased
- $Var[\hat{\mu}_{ML}] = 3.438^2 = 11.8$ è coerente con il valore atteso da MVB = $\mu^2/2 = 12.5$
- ullet l'intervallo definito da $\mathcal{L}_{max}-rac{1}{2}$ è asimmetrico $[1.1,4.6]=2.1^{+2.5}_{-1.0}$

Richiami

Varianza stimatore ML

1.metodo diretto
2.metodo grafico
3. toy MC

Intervallo di

Conclusioni

N=5000 campionamenti $\mu=5$

- $pdf(\hat{\mu}_{ML})$ è gaussiana.
- bias = $E[\hat{\mu}_{ML}] 5 \simeq 0$ è unbiased
- $Var[\hat{\mu}_{ML}]=0.071^2=5.04\cdot 10^{-3}$ è coerente con il valore atteso da MVB = $\mu^2/5000=5\cdot 10^{-3}$
- ullet l'intervallo definito da $\mathcal{L}_{max}-\frac{1}{2}$ è circa simmetrico $[5.07,5.23]=5.14^{+0.09}_{-0.07}$