FMAX (vectors)

Floating-point maximum (predicated)

Determine the maximum of active floating-point elements of the second source vector and corresponding floating-point elements of the first source vector and destructively place the results in the corresponding elements of the first source vector.

When FPCR.AH is 0, the behavior is as follows:

- Negative zero compares less than positive zero.
- When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.
- When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

- If both elements are zeros, regardless of the sign of either zero, the result is the second element.
- If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

Inactive elements in the destination vector register remain unmodified.

```
FMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>
```

```
if !HaveSVE() && !HaveSME() then UNDEFINED;
constant integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);</pre>
```

Assembler Symbols

<Zdn>

Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T>

Is the size specifier, encoded in "size":

size	<t></t>
01	H
10	S
11	D

```
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.
<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.
```

Operation

```
CheckSVEEnabled();
constant integer VL = CurrentVL;
constant integer PL = VL DIV 8;
constant integer elements = VL DIV esize;
bits(PL) mask = P[g, PL];
bits(VL) operand1 = Z[dn, VL];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else
bits(VL) result;

for e = 0 to elements-1
   bits(esize) element1 = Elem[operand1, e, esize];
   if ActivePredicateElement(mask, e, esize) then
        bits(esize) element2 = Elem[operand2, e, esize];
        Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);
else
        Elem[result, e, esize] = element1;
Z[dn, VL] = result;
```

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is unpredictable:

- The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register and source element size as this instruction.
- The MOVPRFX instruction must specify the same destination register as this instruction.
- The destination register must not refer to architectural register state referenced by any other source operand register of this instruction.

BaseSIMD&FPSVESMEIndex byInstructionsInstructionsInstructionsEncoding

Internal version only: isa v33.64, AdvSIMD v29.12, pseudocode no diffs 2023 09 RC2, sve v2023-06 rel ; Build timestamp: 2023-09-18T17:56

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Sh Pseu