Generative Grammars Informally

- Fix a vocabulary
 - A set of symbols
 - Some of these symbols, called terminals, play the tokens of the output stream of lexical analysis

-E.g. take the vocabulary {S, a, b} where "a" and "b" are terminals

One non-terminal symbol of the vocabulary is chosen as start symbol

-E.g., S in {S, a, b}

- -Fix a set of **productions**
 - Rules for rewriting strings into strings
 - Constraint:
 - the string to be replaced must contain at least a nonterminal

 $-E.g. \{S \rightarrow aSb, S \rightarrow ab\}$

- These are the ingredients of a generative grammar
- A language of words of terminals can be generated from the start symbol:
 - Apply the rewriting rules in any possible way, as many times as possible
 - Each rewriting is called a derivation step

Notation for the derivation relation \rightarrow aSb, S \rightarrow ab} \rightarrow a b

- -Is a one-step derivation from S
- "ab" is made up of terminals only
- Hence "ab" belongs to the language generated by the given grammar

$$\{S \rightarrow aSb, S \rightarrow ab\}$$

 $S \Rightarrow aSb \Rightarrow aabb$

- -Is a two-step derivation from S
- "aabb" is made up of terminals only
- Hence "aabb" belongs to the language generated by the given grammar

$$\{S \rightarrow aSb, S \rightarrow ab\}$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

- Is a two-step derivation of a string from
- -But "aaSbb" contains a non-terminal
- Hence "aaSbb" does not belong to the language generated by the given grammar

$$\{S \rightarrow aSb, S \rightarrow ab\}$$

–Which is the language generated by this grammar?

$$-\{a^nb^n \mid n>0\}$$

Notation

-Capital letters for non-terminals

Convention

-Special character epsilon (ε) used to denote the empty word

- -Length of ε is 0
 - · 8 8 8
 - ε b⁰ for every terminal b

$$S \rightarrow aAb$$

 $aA \rightarrow aaAb$
 $A \rightarrow \epsilon$

- -Generated language: {anbn | n>0}
- -OBSERVE: Different grammars can generate the same language

- $S \rightarrow AB$
- $A \rightarrow aA$
- $A \rightarrow a$
- $B \rightarrow Bb$
- $B \rightarrow b$

-Generated language: {anbm | n,m>0}

 $S \rightarrow aSBc$

 $S \rightarrow abc$

 $cB \rightarrow Bc$

 $bB \rightarrow bb$

-Generated language: {anbncn | n>0}

 $S \rightarrow AB$

 $A \rightarrow a$

-Generated language:

 $S \rightarrow$

-Generated language:

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

- -Generated language:
 - $\{a^nb^n \mid n>0\} = \{a^nb^n \mid n0\}$

Exam Notation for more productions with same left-hand side

$$S \rightarrow CD$$

$$C \rightarrow aCA \mid bCB$$

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

$$C \rightarrow \epsilon$$

$$D \rightarrow \epsilon$$

$$S \rightarrow CD$$

$$C \rightarrow aCA \mid bCB$$

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

$$C \rightarrow \epsilon$$

$$D \rightarrow \epsilon$$

$$S \Rightarrow CD$$

$$CD \Rightarrow D$$

$$D \Rightarrow \epsilon$$

$$S \rightarrow CD$$

 $C \rightarrow aCA \mid bCB$

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

$$C \rightarrow \epsilon$$

$$D \rightarrow \epsilon$$

$$S \Rightarrow CD$$

$$aCAD \Rightarrow aCaD$$

$$aCaD \Rightarrow aaD$$

$$aaD \Rightarrow aa$$

$$S \rightarrow CD$$

 $C \rightarrow aCA \mid bCB$

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

$$C \rightarrow \epsilon$$

$$D \rightarrow \epsilon$$

$$S \Rightarrow CD$$
 $CD \Rightarrow aCAD$
 $aCAD \Rightarrow abCBAD$
 $abCBAD \Rightarrow abCBA$

$$S \rightarrow CD$$

 $C \rightarrow aCA \mid bCB$

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

$$C \rightarrow \epsilon$$

$$D \rightarrow \epsilon$$

$$S \Rightarrow CD$$

$$CD \Rightarrow aCAD$$

$$aCAD \Rightarrow abCBAD$$

$$abCBaD \Rightarrow abCaBD$$

$$abCaBD \Rightarrow abCabD$$

$$abCabD \Rightarrow ababD$$

$$ababD \Rightarrow abab$$

Generative Grammars Formally

A grammar is a tuple(V,T,S,P)

- V vocabulary of terminals and nonterminals
- T set of terminals
- S start symbol in (V\T)
- P set of productions

Not

Zero or more repetitions of elements in the base set

ábet

Aphabet

∕ the alphabet

- Uppercase, early in the
 - A,B,.... (V\T)
- Uppercase, late in t
 - X,Y,... V
- Lowercase, early
 - a,b,.... T
- Lowercase, extly in Greek alphabet
 - V*
- Strings of terminals
 - W,W₀,....

Productions

-General form:

One or more repetitions of elements in the base

- V+
- contains at least a non-terminal
- called driver of the production
- called body of the production

Generated Languages

$$\neg G = (V,T,S,P)$$

$$-L(G) = \{ w \mid w T^* \text{ and } S \Rightarrow^* w \}$$

T* because w may just be

Hierarchy of Grammars

Depending on the shape of productions

-Context-free grammars, or just free grammars:

Context-free Languages

- -L is a context-free language
- Iff
- There exists a context-free grammar G such that L=L(G)

Context-free Languages

Canonical Derivations

- -Rightmost (Leftmost) derivation step:
 - Replace the rightmost (leftmost) nonterminal
- -Canonical derivations of words in the language:
 - Either every step is rightmost
 - Or every step is leftmost

Derivation Trees

- -Start symbol is the root
- For every derivation step under the production
- $-A X_1 X_2 ... X_n$
- -Generate children X₁ X₂ ... X_n for node A
- -Terminals are the leaves (and so is)

Derivation Trees

The derived word is at the frontier of the tree

$$S \rightarrow aSb \mid \epsilon$$

Ambiguity in Natural Languages

L'uomo guarda la donna con il binocolo

Ambiguity

- -Grammar G is ambiguous
- -Iff
- There exists w L(G) that can be generated by two distinct canonical derivations, either both rightmost or both leftmost

$$E \rightarrow E+E \mid E*E \mid n$$

-Ambiguous?

$$E \rightarrow E+E \mid E*E \mid n$$

-Take w = n+n*n

But also

$$E \rightarrow E + E \mid E^*E \mid n$$

-Ambiguous!

 $S \rightarrow if b then S | if b then S else S | other$

-Ambiguous?

 $S \rightarrow if b then S | if b then S else S | other$

- -Take
- -w = if b then if b then other else other

-Which "then" matches "else"?

 $S \rightarrow if b then S | if b then S else S | other$

-Ambiguous!

Observation

-Ambiguity is undecidable

 No algorithm can be designed to decide whether a grammar is ambiguous or not