Predictive Insights for Flight Delay Mitigation

Leveraging Machine Learning to Enhance Airline and Airport Reliability

Presented by: Indra Kumar

Sihag

Enrollment: 23124010

Department of

Biotechnology, IIT Roorkee

Date: June 2025

Date

Problem Statement:

Flight delays are a persistent challenge in air travel, causing inconvenience for passengers and substantial operational costs for airlines. These delays impact fuel usage, crew management, customer satisfaction, and overall reliabilit.

Project Objective:

This project leverages historical flight data to:

- Uncover hidden delay patterns through in-depth EDA
- Build a two-step predictive model to forecast both delay occurrence and duration
- Generate actionable insights for airlines to proactively mitigate delays and improve operational efficiency

Data Summary & Preprocessing:-

Key Features:-

- Delay Causes: carrier_ct, weather_ct, nas_ct, security_ct, late_aircraft_ct
 - **Delay Durations**: carrier_delay, weather_delay, nas_delay, security_delay, late_aircraft_delay
- Other: arr_flights, arr_del15, arr_cancelled,
 arr_diverted, arr_delay, month, carrier, airport

Preprocessing Workflow

- Dropped irrelevant columns: year, carrier_name,
 airport_name
- Encoded airline and airport by frequency (carrier_encoded, airport_encoded)
- Handled missing values:
 - Common missing rows across multiple columns dropped
 - arr_del15 filled using median imputation
- Outlier Treatment:
 - Z-score method for arr_delay
 - Group-wise IQR capping by airport for multiple numerical columns
- Removed sparse airport (YNG)
- Engineered target metric:

Operational Adjustability Index (OAI)

- carrier_encoded, airport_encoded
- □ delay_rate, delay_prone, OAI

EDA — Delay Distribution & Trends

Delay Risk by Airport:-

- Medium-sized airports show the highest delay risk (~65%) compared to small and large airports.
- Indicates a potential resource into the congestion at

- **DUT tops** the list with a delay rate exceeding 40%.
- Several smaller regional airports dominate the top 10 list — hinting at limited operational buffer capacity.

Monthly Delay Rate Pattern:-

- Peak delay months: June, July, and August, suggesting seasonal congestion (likely summer travel surge).
- Delay rates dip in September–
 November indicating operational ease post-peak season.

Controllable delay by Carrier:-

OAI shifts focus from total delay to fixable delay — helping airlines prioritize internal interventions where they can actually make a difference. Top carriers with highest OAI:

WN, AA, B6, DL, UA have the highest Mean OAI, meaning a large share of their total delay is operationally controllable.

These airlines have greater potential to reduce delays through internal process improvements (e.g., better turnaround management, staffing, or fleet coordination).

Mid-range OAI carriers (OO, EV, CP, etc.):

These carriers have a mix of controllable and uncontrollable delays. Focused interventions can still yield moderate improvement.

Low OAI carriers:-

Carriers like **EM, PT, 9K** have **low Mean OAI**, meaning most of their delays are due to **factors outside their control**, such as **weather or airspace restrictions**.

Operational improvements may have limited impact on total delay for these airlines.

Insightful Model Overview:-

1. Delay Classification Model (XGBoost Classifier) :-

Objective: Predict whether a flight will be delayed

• F1 Score: 0.8408

• F2 Score: 0.8710 (prioritises recall for delay events)

AUC Score: 0.8757

Key Features:

Late Aircraft Ct, NAS Ct, Arr Flights, Carrier Delay, Carrier Ct

> **Insight: Accurately identifies high-risk delay scenarios, supporting timely operational responses.

2. Delay Severity Estimator (XGBoost Regressor) :-

Objective: Predict Operational Delay Impact Score (ODIS) based on controllable delay factors

• MAE: 245.59 minutes

• RMSE: 1091.29 minutes

• R² Score: 0.7834 (strong explanatory power)

• Top Contributors:

Carrier Delay, Carrier Ct, Late Aircraft Ct, Weather Delay, NAS Delay

**> Insight: Enables deeper understanding of delay severity to prioritize interventions.

3. Unified Delay Prediction Pipeline:-

Function: predict_flight_delay(input_df, clf_model, reg_model)

- Combines classification (delay or not) and regression (how long, if delayed)
- Predicts delay minutes only if classified as a delay
- Returns precise, interpretable results for each flight

**> Insight: A robust end-to-end tool for real-time flight delay prediction and impact estimation—ready for operational deployment.

Key Insights & Actionable Recommendations:-

- □ High Operational Adjustability carriers (WN, AA, DL) face more controllable delays → prime candidates for operational improvements.
- Major delay causes: Late Aircraft and Carrier Delay dominate across airlines.
- □ Low Adjustability carriers (9K, EM, PT) mainly suffer from uncontrollable delays → limited intervention scope.

Actionable Recommendations & Consulting Insights:-

To mitigate delay occurrences and enhance operational resilience:-

• Schedule Optimization:

Adjust flight schedules for high-delay routes or peak congestion hours to reduce operational strain.

• Enhanced Ground Operations:

Improve turnaround processes through better coordination of baggage handling, fueling, and boarding.

• Proactive Passenger Communication:

Deploy real-time delay alerts and rebooking support to reduce customer frustration and manage flow.

• Targeted Resource Allocation:

Allocate more personnel and equipment at high-risk airports or during adverse weather periods.

Collaboration Between Stakeholders:

Foster coordination between carriers and airports to address systemic bottlenecks collectively.