k-Nearest Neighbours & k-Means Clustering

Ali Akbar Septiandri

August 9, 2017

Universitas Al Azhar Indonesia

Table of contents

- 1. k-Nearest Neighbours
- 2. k-Means Clustering

Deskripsi Dataset

- Iris dataset
- Pembuat: R.A. Fisher (1936)
- http://archive.ics.uci.edu/ml/
- 4 atribut: sepal length, sepal width, petal length, petal width
- 3 label: Iris Setosa, Iris Versicolour, Iris Virginica

Figure 1: Tanaman Iris

Iris Dataset

Data Baru

Data Baru

• Mencari referensi dari tetangga terdekat

- Mencari referensi dari tetangga terdekat
- Apa definisi "terdekat"?

- Mencari referensi dari tetangga terdekat
- Apa definisi "terdekat"?
- Metode umum: Euclidean distance

Euclidean Distance

$$d([x_1, x_2, ..., x_d], [y_1, y_2, ..., y_d]) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

Masalah

Figure 2: Seberapa yakin kita dengan referensi terdekat?

• Mencari referensi dari beberapa (k) tetangga terdekat

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat
- Perhatikan bahwa harus dihitung jaraknya dengan semua data yang ada

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat
- Perhatikan bahwa harus dihitung jaraknya dengan semua data yang ada
- Kompleksitas: O(nd)

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat
- Perhatikan bahwa harus dihitung jaraknya dengan semua data yang ada
- Kompleksitas: O(nd)
- Tidak mungkin kita hitung sendiri!

Algoritma Klasifikasi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i: nilai atribut
 - y_i: label kelas
 - instance uji x
- Algoritma:
 - 1. Hitung jarak $D(x, x_i)$ untuk semua x_i
 - 2. Pilih k tetangga terdekat dengan labelnya
 - 3. $\hat{y} = \text{mayoritas dari label tetangga terdekat}$

Prediksi

Klasifikasi k-NN

Figure 3: 7-NN pada data MNIST dengan data uji di paling kanan

Algoritma Regresi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i: nilai atribut
 - y_i: nilai numerik sebenarnya
 - instance uji x
- Algoritma:
 - 1. Hitung jarak $D(x, x_i)$ untuk semua x_i
 - 2. Pilih k tetangga terdekat dengan labelnya
 - 3. $\hat{y} = f(x) = \frac{1}{k} \sum_{j=1}^{k} y_{ij}$ (nilai rata-rata)

Regresi k-NN

Figure 4: Interpolasi dengan $\{1,2,3\}$ -NN

Regresi k-NN

Figure 5: Ekstrapolasi dengan $\{1,2,3\}$ -NN

Bagaimana cara memilih nilai k?

Memilih Nilai k

- Nilai yang besar o P(y) atau \bar{y}
- ullet Nilai yang kecil o terlalu variatif, batas keputusan yang tidak stabil

Memilih Nilai k

- Nilai yang besar o P(y) atau \bar{y}
- ullet Nilai yang kecil o terlalu variatif, batas keputusan yang tidak stabil
- Solusi: Gunakan data validasi!

Batas Keputusan

Figure 6: Pengaruh nilai k pada batas keputusan [DeWilde, 2012]

- Hasil seri:
 - 1. Gunakan jumlah k ganjil
 - 2. Acak, lemparan koin
 - 3. Prior probability
 - 4. 1-NN
- Missing values: harus diganti (impute)
- Rentan terhadap perbedaan rentang variabel

Perbedaan Rentang

Figure 7: Perbedaan rentang variabel bisa mengacaukan klasifikasi k-NN [Wibisono, 2015]

Pros & Cons

- Pros:
 - Tidak ada asumsi terhadap data, non-parametrik
 - Asymptotically correct
- Cons:
 - Harus mengganti nilai yang hilang
 - Sensitif terhadap kelas pencilan (data latih yang salah dilabeli)
 - Sensitif terhadap atribut yang irelevan
 - Mahal secara komputasi O(nd)

k-Means Clustering

• Unsupervised learning

- Unsupervised learning
- Subpopulasi apa yang ada dalam data?

- Unsupervised learning
- Subpopulasi apa yang ada dalam data?
- Apa kesamaan dari elemen di tiap subpopulasi?

- Unsupervised learning
- Subpopulasi apa yang ada dalam data?
- Apa kesamaan dari elemen di tiap subpopulasi?
- Bisa digunakan untuk menemukan pencilan

Contoh Data

Figure 8: Contoh data dalam 2D [VanderPlas, 2016]

Subpopulasi

Figure 9: Subpopulasi dari algoritma k-Means [VanderPlas, 2016]

Tetangga dalam satu kompleks, tanpa memedulikan kelasnya Berapa jumlah subpopulasi (klaster) yang ingin kita cari?

Data Iris

Klaster

Figure 10: k-Means dengan k = 2

Klaster

Figure 11: k-Means dengan k = 3

Klaster

Figure 12: k-Means dengan k = 4

k-Means

- Jumlah k ditentukan dari awal
- Tidak memerlukan label
- Menggunakan centroid, i.e. rata-rata nilai dari objek yang masuk dalam cluster tersebut
- Mencari centroid terdekat dari tiap objek

Algoritma: Expectation-Maximization

- 1. Inisialisasi k centroid secara acak
- 2. Ulangi hingga konvergen
 - A. E-step: Masukkan tiap titik/objek ke centroid terdekat

$$\arg\min_{j} D(x_i, c_j)$$

B. M-step: Ubah nilai *centroid* menjadi rata-rata dari tiap titik/objek

$$c_j(a) = \frac{1}{n_j} \sum_{x_i \to c_j} x_i(a), \text{ for } a = 1..d$$

Visualisasi EM

Figure 13: Konvergensi klaster tercapai hanya dalam tiga iterasi [VanderPlas, 2016]

Algoritma ini sangat bergantung pada inisialisasi *centroid*!

Berapa nilai k yang optimal?

Menentukan Nilai k

- Gunakan label kelas, e.g. 10 untuk MNIST
- Gunakan V untuk menggambarkan scree plot

$$V = \sum_{j} \sum_{x_i \to c_j} D(c_j, x_i)^2$$

lalu gunakan *elbow method*, i.e. nilainya dapat dicari dengan menggunakan nilai optimal turunan kedua

Scree Plot

Figure 14: Secara visual, scree plot menunjukkan nilai optimal k=4

Evaluasi Intrinsik: Klaster ~ **Kelas**

- Klaster $c_1, c_2, ..., c_K$
- Kelas $R_1, R_2, ..., R_N$
- ullet Cocokkan R_i dengan c_j , hitung akurasinya

Contoh Evaluasi Intrinsik

Figure 15: Confusion matrix dari MNIST clustering [VanderPlas, 2016]

Contoh Evaluasi Intrinsik

	G1	G2	G3	G4	G5	G6
C1	1	7	0	1	4	0
C2	0	0	0	0	2	7
C2 C3 C4	0	0	2	0	0	0
C4	3	1	0	0	1	0

Figure 16: Klaster karakter dalam Julius Caesar

Aplikasi Clustering

- Representasi gambar: bag of cluster id atau fitur lain (lihat [Coates, 2012])
- Kompresi gambar (lihat [VanderPlas, 2016])
- Sistem rekomendasi

References

Burton DeWilde (26 Oktober 2012)

Classification of Hand-written Digits (3)

http://bdewilde.github.io/blog/blogger/2012/10/26/ classification-of-hand-written-digits-3/

Okiriza Wibisono (16 September 2015)

kNN: Perhitungan Jarak, serta Batasan dan Keunggulan

https://tentangdata.wordpress.com/2015/09/16/ knn-perhitungan-jarak-serta-keunggulan-dan-batasan/

Jake VanderPlas (2016)

In Depth: k-Means Clustering

http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/ 05.11-K-Means.ipynb

References

Adam Coates & Andrew Y. Ng (2012)

Learning feature representations with k-means.

Neural networks: Tricks of the trade (pp. 561-580). Springer Berlin Heidelberg.

Thank you