

Core Topics Covered in the Program

Embedded System Architecture Fundamentals

Explore foundational concepts of embedded systems, encompassing hardware components, essential software layers, and core design principles. Gain critical insights into the intricate interaction between processors, memory, and peripheral devices.

Foundational Concepts

System Interplay

Timers, Interrupts, & Serial Communication

Dive deep into advanced microcontroller features, including precision timers for accurate timing and interrupts for efficient, event-driven task handling. Gain expertise in standard serial communication protocols like UART, SPI, and I2C.

Event-Driven Design

Communication Protocols

8051 Microcontroller Programming

Master programming the industry-standard 8051 microcontroller using both low-level Assembly and high-level Embedded C. Develop proficiency in real-time techniques and code optimization for resource-constrained environments.

8051 Mastery

Dual-Language Proficiency

AVR & PIC Overviews & RTOS Introduction

Broaden your expertise with overviews of popular AVR and PIC families. Introduce Real-Time Operating Systems (RTOS) concepts for managing complex, concurrent embedded applications effectively.

Diverse Architectures

RTOS Fundamentals

Phase 1: Month 1 - Embedded Fundamentals & 8051 Core

Introduction to Embedded Systems & 8051 Architecture

Explore foundational principles of embedded systems, their role as dedicated computers in larger devices. Delve into the classic 8051 microcontroller architecture, a cornerstone for embedded education due to its robust design and historical significance. Gain insights into its internal components and operational flow.

Foundational Concepts

Intel Legacy

System Overview

8051 Assembly Language Programming Fundamentals

Master the fundamentals of 8051 Assembly Language, providing direct, low-level control over the microcontroller's hardware. Understand the 8051's instruction set, addressing modes, and register usage for precise manipulation. Develop proficiency in writing efficient code crucial for resource-constrained environments.

Low-Level Control

Hardware Interaction

Instruction Set

8051 Embedded C Programming & Basic I/O

Transition to Embedded C for the 8051, leveraging a high-

External Memory & Peripheral Interfacing

Advance to interfacing external memory modules to

Phase 1: Month 2 - 8051 Peripherals & Other Microcontrollers

Mastering 8051 Peripherals: Timers, Interrupts & Serial Communication

Mastering 8051 Timers and Counters

Delve into the precise control offered by 8051 Timers/Counters, essential for time-critical events and configuring modes for PWM generation, frequency measurement, and event counting.

Time-Critical Control

Event Counting

PWM

Understanding and Implementing 8051 Interrupts

Gain a deep understanding of 8051 Interrupts, enabling efficient response to events without constant polling by implementing Interrupt Service Routines (ISRs) for responsive applications.

Event-Driven

Real-time Response

ISR Handling

8051 Serial Communication (UART)

Explore serial communication via the Universal Asynchronous Receiver/Transmitter (UART) for data exchange, learning to configure baud rates for reliable interfacing with other devices.

Phase 2: Project Application & Industry Immersion

The overarching goal of Phase 2 is to empower participants to conceptualize, develop, and thoroughly document a complete real-world embedded system solution from start to finish.

Design & Implementation

Translate theory into functional systems, focusing on efficient design, component selection, and robust coding to bring ideas to life.

Documentation & Validation

Develop critical skills in documenting project specifications, design choices, and testing procedures to ensure system reliability and performance.

End-to-End Development

Solution-Oriented

System Reliability

Capstone Mini Project

Intensive Hands-on Experience

Career Readiness Workshops

Capstone Mini Project: From Concept to Implementation

1. Design & Planning

Initiate with clear objectives, form a cohesive team, and develop a comprehensive design with system architecture, schematics, and flowcharts.

Planning

Collaboration

Architecture

2. Hardware Assembly

Source components, execute precise hardware assembly and soldering, and conduct initial power-on tests to ensure hardware integrity.

Sourcing

Prototyping

Hardware Validation

3. Software Development

shutterstock.com : 1747004057

Develop essential software modules like drivers and protocols. Integrate them into a coherent firmware base using version control.

Firmware

Drivers

Modularity

4. System Refinement

Incorporate advanced functionalities, UI enhancements, and network connectivity. Refine code and hardware for improved efficiency.

Enhancements

Optimization

Iteration

5. Testing & Validation

Execute comprehensive unit, integration, and system tests. Perform rigorous optimization and debug issues for a reliable final product.

Validation

Debugging

Reliability

Project Showcase & Career Launchpad

Project Showcase & Documentation

Dynamic Presentations: Showcase your Capstone project with compelling oral presentations and live demos, articulating technical achievements and problem-solving processes.

Comprehensive Documentation: Develop professional-grade project documentation, including design specs, code comments, and user manuals for industry standards.

Technical Communication

Professional Portfolio

Project Defense

Career Development Workshops

Resume & LinkedIn Optimization: Craft impactful resumes and optimize your LinkedIn profile to highlight embedded systems skills and attract leading recruiters.

Interview Preparation: Participate in mock interviews focusing on technical problem-solving and behavioral questions for embedded systems engineering roles.

Job Readiness

Skill Alignment

Professional Branding