Shusen Wang

• Inputs:

- Coins of different values, e.g., 1 cent, 2 cents, 5 cents, 25 cents, and 100 cents.
- A total amount of money, e.g., 200 cents.
- Output: The number of combinations that make up that amount.
- **Assumption:** There are infinite number of each kind of coin.

• Example inputs:

• Amount: n = 5.

• Coins' values: v = [1, 2, 5].

• Example inputs:

- Amount: n = 5.
- Coins' values: v = [1, 2, 5].
- Example output: 4.
- Why? There are 4 ways to make up the amount:

•
$$5 = 1 + 1 + 1 + 1 + 1$$
,

•
$$5 = 1 + 1 + 1 + 2$$
,

•
$$5 = 1 + 2 + 2$$
,

•
$$5 = 5$$
.

Coin Change Problem

- Example inputs:
 - Amount: n = 3.
 - Coins' values: v = [2, 5, 10].
- Example output: 0.

• Inputs:

- n: the total amount. (E.g., n = 10.)
- $\mathbf{v} = [v_1, v_2, \dots, v_m]$: values of coins. (E.g., $\mathbf{v} = [1, 2, 5]$.)

• Inputs:

- n: the total amount. (E.g., n = 10.)
- $\mathbf{v} = [v_1, v_2, \dots, v_m]$: values of coins. (E.g., $\mathbf{v} = [1, 2, 5]$.)
- Let c_i be the number of the coin of value v_i .
- Constraint: c_1, c_2, \cdots, c_m are such integers that

$$n = c_1 v_1 + c_2 v_2 + \dots + c_m v_m$$
.

• Inputs:

- n: the total amount. (E.g., n = 10.)
- $\mathbf{v} = [v_1, v_2, \dots, v_m]$: values of coins. (E.g., $\mathbf{v} = [1, 2, 5]$.)
- Let c_i be the number of the coin of value v_i .
- Constraint: c_1, c_2, \cdots, c_m are such integers that

$$n = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

• Goal: Find the number of unique vector $\mathbf{c} = [c_1, c_2, \cdots, c_m]$.

• Inputs:

- n = 5: the total amount.
- $\mathbf{v} = [v_1, v_2, v_3] = [1, 2, 5]$: values of coins.

• Inputs:

- n = 5: the total amount.
- $\mathbf{v} = [v_1, v_2, v_3] = [1, 2, 5]$: values of coins.

There are four ways of combinations:

```
• n = 5 \times v_1 + 0 \times v_2 + 0 \times v_3, (c = [5,0,0].)

• n = 3 \times v_1 + 1 \times v_2 + 0 \times v_3, (c = [3,1,0].)

• n = 1 \times v_1 + 2 \times v_2 + 0 \times v_3, (c = [1,2,0].)

• n = 0 \times v_1 + 0 \times v_2 + 1 \times v_3, (c = [0,0,1].)
```

Optimal Substructure

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Constraint: $n = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$.

Question: What are the possible choices of c_i ?

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Constraint: $n = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$.

Question: What are the possible choices of c_i ?

- The integer c_i is at least 0 and at most $\left\lfloor \frac{n}{v_i} \right\rfloor$.
- Thus, c_i must be in the set $\{0, 1, \dots, \left\lfloor \frac{n}{v_i} \right\rfloor\}$.

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Let F[m][n] be the number of combinations.
- c_m is chosen from the set $\{0, 1, \dots, \left\lfloor \frac{n}{v_m} \right\rfloor\}$.

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Let F[m][n] be the number of combinations.
- c_m is chosen from the set $\{0, 1, \dots, \left\lfloor \frac{n}{v_m} \right\rfloor\}$.

What if I use $c_m = 0$ coins of value v_m ?

- The problem is reduced to: "Changing the amount of n into the coins of values $v_1, v_2, \cdots, v_{m-1}$."
- The number of combinations is F[m-1][n].

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Let F[m][n] be the number of combinations.
- c_m is chosen from the set $\{0, 1, \dots, \left\lfloor \frac{n}{v_m} \right\rfloor\}$.

What if I use $c_m = 1$ coins of value v_m ?

- The problem is reduced to: "Changing the amount of $n-v_m$ into the coins of values $v_1, v_2, \cdots, v_{m-1}$."
- The number of combinations is $F[m-1][n-v_m]$.

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Let F[m][n] be the number of combinations.
- c_m is chosen from the set $\{0, 1, \dots, \left\lfloor \frac{n}{v_m} \right\rfloor\}$.

What if I use $c_m = 2$ coins of value v_m ?

- The problem is reduced to: "Changing the amount of $n-2\times v_m$ into the coins of values v_1,v_2,\cdots,v_{m-1} ."
- The number of combinations is $F[m-1][n-2\times v_m]$.

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Let F[m][n] be the number of combinations.
- c_m is chosen from the set $\{0, 1, \dots, \left\lfloor \frac{n}{v_m} \right\rfloor\}$.

What if I use $\left\lfloor \frac{n}{v_m} \right\rfloor$ coins of value v_m ?

- The problem is reduced to: "Changing the amount of $n-\left\lfloor \frac{n}{v_m} \right\rfloor \times v_m$ into the coins of values $v_1, v_2, \cdots, v_{m-1}$."
- The number of combinations is $F[m-1]\left[n-\left\lfloor\frac{n}{v_m}\right\rfloor\times v_m\right]$.

Optimal Substructure

Formula:
$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

Optimal Substructure

Formula:
$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$
 There are $m-1$ kinds of coins remaining.

- We use c_m coins of value v_m .
- The remaining amount is $n c_m \times v_m$.

Dynamic Programming

Example

```
Inputs: v=[2,5] and n=10.
```

$$v =$$

Example

Inputs: v=[2,5] and n=10.

In the table, the (i, j)-th entry is F[i][j].

Total amount:

		0	1	2	3	4	5	6	7	8	9	10
Coin	1											
types:	2											

2

Total amount:

		0	1	2	3	4	5	6	7	8	9	10
Coin	1											
types:	2											

2

- How to change change the sum of n = 0 into 2-cent coins.
- Only 1 combination, $c_1 = 0$, satisfies $0 = c_1 \times 2$.

Coin

types:

Total amount:

 $\mathbf{v} =$

- How to change change the sum of n = 0 into 2-cent coins.
- Only 1 combination, $c_1 = 0$, satisfies $0 = c_1 \times 2$.

Total amount:

 $\mathbf{v} =$

$$F[1][0] = 1$$

- How to change change the sum of n = 1 into 2-cent coins.
- No c_1 can satisfies $1 = c_1 \times v_1$.

Coin

types:

Total amount:

 $\mathbf{v} =$

- How to change change the sum of n=1 into 2-cent coins.
- No c_1 can satisfies $1 = c_1 \times v_1$.

Total amount:

$$v =$$

2

$$F[1][1] = 0$$

types:

- How to change change the sum of n = 2 into 2-cent coins.
- Only 1 combination, $c_1 = 1$, satisfies $2 = c_1 \times 2$.

Coin 1

types:

Total amount:

0	1	2	3	4	5	6	7	8	9	10
1	0	?								

v =

- How to change change the sum of n = 2 into 2-cent coins.
- Only 1 combination, $c_1 = 1$, satisfies $2 = c_1 \times 2$.

Total amount:

types:

$$F[1][2] = 1$$

•
$$F[1][n] = \begin{cases} 1, & \text{if } n \mod v_1 = 0; \\ 0, & \text{otherwise.} \end{cases}$$

types:

Total amount:

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	0	1								

v =

•
$$F[1][n] = \begin{cases} 1, & \text{if } n \mod v_1 = 0; \\ 0, & \text{otherwise.} \end{cases}$$

types:

Total amount:

	_						5					
Coin ¹	L	1	0	1	0	1	0	1	0	1	0	1

 $\mathbf{v} =$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	0	1	0	1	0	1	0	1	0	1
types:	2											?

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• c_2 can be 0, 1, or 2. (Because $\frac{n}{v_2} = \frac{10}{5} = 2$.)

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	0	1	0	1	0	1	0	1	0	1
types:	2											?

m > 1

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

- c_2 can be 0, 1, or 2. (Because $\frac{n}{v_2} = \frac{10}{5} = 2$.)
- F[2][10] = F[1][0] + F[1][5] + F[1][10].

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	0	1	0	1	0	1	0	1	0	1
types:	2											?

m > 1

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

- c_2 can be 0, 1, or 2. (Because $\frac{n}{v_2} = \frac{10}{5} = 2$.)
- F[2][10] = F[1][0] + F[1][5] + F[1][10].

Another Example

Another Example

```
Inputs: v=[1,3,5] and n=10.
```

Another Example

Inputs: v=[1,3,5] and n=10.

		0	1	2	3	4	5	6	7	8	9	10	V :
Coin	1												1
types:	2												3
	3												5

Base case: only one type of coin

•
$$F[1][n] = \begin{cases} 1, & \text{if } n \mod v_1 = 0; \\ 0, & \text{otherwise.} \end{cases}$$
 (Note that $v_1 = 1$.)

Total amount:

v =

1

Coin types:

Base case: only one type of coin

•
$$F[1][n] = \begin{cases} 1, & \text{if } n \mod v_1 = 0; \\ 0, & \text{otherwise.} \end{cases}$$
 (Note that $v_1 = 1$.)

Total amount:

_						6			_		
1	1	1	1	1	1	1	1	1	1	1	

7 =

1

Coin types:

$$m = 2, n = 5$$

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2											

$$m = 2, n = 5$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2						3					

$$m = 2, n = 5$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

- $c_2 \in \{0, 1\}$. (Because $\left\lfloor \frac{n}{v_2} \right\rfloor = \left\lfloor \frac{5}{3} \right\rfloor = 1$.)
- The remaining amount can be 5 or 2.

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2						?					

v =

1

$$m = 2, n = 5$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[2][5] = F[1][5] + F[1][2].

Total amount:

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2						?					

v =

1

$$m = 2, n = 5$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[2][5] = F[1][5] + F[1][2].

Total amount:

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2											

v =

1

$$m = 2, n = 5$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[2][5] = F[1][5] + F[1][2].

$$m = 2, n = 9$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2						2				3	

y =

1

$$m = 2, n = 9$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

- $c_2 \in \{0, 1, 2, 3\}$. (Because $\left\lfloor \frac{n}{v_2} \right\rfloor = \left\lfloor \frac{9}{3} \right\rfloor = 3$.)
- The remaining amount can be 9, 6, 3, or 0.

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2						2				?	

v =

1

$$m = 2, n = 9$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[2][9] = F[1][9] + F[1][6] + F[1][3] + F[1][0].

Total amount:

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2						2				3	

v =

1

$$m = 2, n = 9$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[2][9] = F[1][9] + F[1][6] + F[1][3] + F[1][0].

Total amount:

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2						2				٠.	

v =

1

$$m = 2, n = 9$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[2][9] = F[1][9] + F[1][6] + F[1][3] + F[1][0].

$$m = 2$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

		0	1		3	4	5	6	./	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4

$$m = 3, n = 4$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					?						

$$m = 3, n = 4$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

- $c_3 \in \{0\}$. (Because $\left\lfloor \frac{n}{v_3} \right\rfloor = \left\lfloor \frac{4}{5} \right\rfloor = 0$.)
- The remaining amount is 4.

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					3						

$$m = 3, n = 4$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[3][4] = F[2][4].

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					?						

$$m = 3, n = 4$$

$$F[m][n] = \sum_{\mathbf{c}_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-\mathbf{c}_m \times v_m].$$

• F[3][4] = F[2][4].

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3											

$$m = 3, n = 4$$

$$F[m][n] = \sum_{\mathbf{c}_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-\mathbf{c}_m \times v_m].$$

• F[3][4] = F[2][4].

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					2						

$$m = 3, n = 10$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					2						?

$$m = 3, n = 10$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

•
$$c_3 \in \{0, 1, 2\}$$
. (Because $\left\lfloor \frac{n}{v_3} \right\rfloor = \left\lfloor \frac{10}{5} \right\rfloor = 2.$)

• The remaining amount can be 10, 5, 0.

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					2						?

$$m = 3, n = 10$$

$$F[m][n] = \sum_{\mathbf{c}_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-\mathbf{c}_m \times v_m].$$

• F[3][10] = F[2][10] + F[2][5] + F[2][0].

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					2						?

$$m = 3, n = 10$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[3][10] = F[2][10] + F[2][5] + F[2][0].

		0	1	2	3	4	5	6	7	8	9	10
Coin	1	1	1	1	1	1	1	1	1	1	1	1
types:	2	1	1	1	2	2	2	3	3	3	4	4
	3					2						?

$$m = 3, n = 10$$

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

• F[3][10] = F[2][10] + F[2][5] + F[2][0].

Summary

Summary

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Let F[m][n] be the number of combinations.

Summary

- Change the amount of n into coins of values v_1, v_2, \cdots, v_m .
- Let F[m][n] be the number of combinations.
- Optimal substructure:

$$F[m][n] = \sum_{c_m=0}^{\lfloor n/v_m \rfloor} F[m-1][n-c_m \times v_m].$$

- Build an $m \times (n+1)$ table and fill the table.
- Return the bottom right element, F[m][n].

Question

Fill the table

Inputs: v = [2, 3, 4, 5] and n = 10.

Total amount

		0	1	2	3	4	5	6	7	8	9	10
	1											
Coin	2											
types	3											
	4											

y =

2

3

4

Thank You!