Vincent Bagilet - Lec Zabrocki

Analysis of studies on the short term health effects of air pollution

Crab lab presentation

Vincent Bagilet - Leo Zabrocki

November 30, 2020

Analysis of studies on the short term health effects of air

Vincent Bagilet - Leo Zabrocki

Vincent Bagilet - Le Zabrocki

Best estimation — How to handle missing data?

Vincent Bagilet - Leo Zabrocki

- What is the usual **power** in studies of short-term health effects of air pollution?
- ► How do **different identification strategies** perform to estimate these effects?
- What is the impact of missing data on these estimates?

Vincent Bagilet - Leo Zabrocki

Definitions

- Power: probability of finding an effect when there is actually one
- Power can be low when effects are small and/or variance of the estimates is large (eg small sample size)

Illustraation of type M and S errors 5000 draws of an estimate ~ N(0.5,1)

Jate

+

Vincent Bagilet - Lea Zabrocki

Motivation

- loannidis et al (2017) showed that studies in economics are massively under-powered: median statistical power of 18%
- Is there a similar issue in studies of health effects of air pollution?
- Health effects of air pollution are often tiny, making them difficult to detect
- Low power is associated with high rates of type M and S error

Vincent Bagilet - Led Zabrocki

Method

- Follow loannidis and retrieve point estimates and s.e. of estimates
- Compute power, type M and type S errors
- \blacktriangleright Literature review of causal studies : yield a set of \sim 30 studies
- Systematic literature review for other studies : for now, about 1000 estimates

Preliminary results

 Causal studies: some studies have high power, others have quite low power

PERFORMANCE OF DIFFERENT ESTIMATION METHODS

Analysis of studies on the short term health effects of air pollution

Vincent Bagilet - Lec Zabrocki

Motivation

- ► Epidemiologists often use very simple models, with small sample size: is it enough to recover the true effects?
- Are more "fancy" techniques necessary?
- Some methods can perform better than others in some contexts but less well in others
- Want to look into the performance of Poisson generalized additive model, IV, DiD, event study, RD

???

 Fancy techniques also limit the number of situations in which we can compute the estimates of interest

Method

For the sake of the example, let's focus on a simple Poisson generalized additive model:

$$h_{ct} = \alpha + \beta_c p_{ct} + \mathbf{W_{ct}'} \delta + \mathbf{C_{ct}'} \gamma + \epsilon_{ct}$$

- Use both actual and fake data (here focus on actual data)
 - Estimate the model on the existing data

-

 \blacksquare Define a "fake", known, effect β_c

_

- Do this for each estimation method (with different DGPs of course)
- Look how our measures of interest vary with sample size and effect size.
- \blacktriangleright Where do papers in the literature lie? \rightarrow what problem could it be exposed to
- Reproduce the same analysis with fake data (ie generate all the data)

Vincent Bagilet - Lec

Motivation

Air pollution data sets always display missing observations: not always clear how to handle them

Intervals of missing concentration data in 2017

Vincent Bagilet - Leo Zabrocki

Questions

- Does the literature discuss missing data issues?
- To what extent do missing data affect estimates?
- Are some estimation methods more robust to the missing data problems?
- How does this vary with the type of missing data mechanism?
- If it is actually a problem, which imputation method performs better?

Vincent Bagilet - Lec Zabrocki

Method

- Build a complete data set
- Estimate the model and find the "true" effect

Delete data to create missing observations (create 1000 samples)

- **1** Estimate the model on the incomplete sets

Vincent Bagilet - Lee Zabrocki

Comparison of imputation methods

If missing data is actually a problem:

- Redo the previous steps
- _
 - On each incomplete set, impute missing observation
- _
 - Estimate the model on the imputed sets
- _
 - Compute bias, power, type I, type M, type S error

Vincent Bagilet - Le Zabrocki

class: center, middle