Tries

Definição e Construção

Prof. Edson Alves - UnB/FGA

Sumário

- 1. Definição
- 2. Construção $\operatorname{\it naive} O(N^2)$ da $\operatorname{\it trie}$
- 3. Construção *online* da *trie*

Definição

Árvores de sufixos

- \bullet Árvores de sufixos são estruturas de dados que representam o conjunto B(s) de todas as substrings de uma string s dada
- A relação de pertinência $(r \in B(s)?)$ é o mais básico problema associado a esta estrutura
- Uma "boa" árvore de sufixos tem três características fundamentais:
 - 1. pode ser construída com tamanho linear
 - 2. pode ser construída em tempo linear
 - 3. pode responder questão de pertinência em complexidade linear em relação ao tamanho de \boldsymbol{s}

Conceitos elementares

- ullet Seja G um grafo acíclico direcionado, com raiz, cujas arestas recebem, como rótulos, caracateres ou palavras de um alfabeto A de tamanho constante
- ullet Seja label(e) o rótulo da aresta e
- ullet O rótulo de um caminho p é a concatenação dos rótulos de todas as arestas do caminho
- $\bullet\,$ Tal grafo representa um conjunto de strings, que são definidas pelos rótulos de todos os caminhos possíveis em G
- Seja

$$\mathcal{L}(G) = \{label(p) \mid p \text{ \'e caminho em } G \text{ com in\'(cio na raiz}\}$$

- G representa todas as substrings de s se $\mathcal{L}(G) = B(s)$
- $\bullet\,$ Um nó n cujo caminho da raiz até n tem como rótulo um sufixo de s é denominado nó essencial

Tries

- Uma trie de substrings de s, ou simplesmente trie, é o grafo G que representa todas as substrings de s, cujos rótulos consistem apenas de um único caractere
- O nome foi cunhado em 1961 por Edward Fredkin, a partir da sílaba central da palavra retrieval
- A pronúncia é idêntica a palavra tree, mas a grafia é diferente para diferenciar esta estrutura das árvores em geral
- A próxima figura ilustra a trie da palavra "BANANA"
- Os nós pretos são nós essenciais
- Os números ao lado dos nós essenciais são os índices do caractere inicial do sufixo

Visualização da trie da palavra 'BANANA'

Construção naive $O(N^2)$ da trie

Construção naive da trie

- ullet Seja s uma string de tamanho N
- ullet Cada nó da trie de s pode ter até |A| filhos, onde A é o alfabeto
- Assim, cada nó pode ser implementado como um vetor de pares ou como um mapa, onde o par (c, n), indicando que há uma aresta de rótulo c que aponta para o nó n
- A raiz da árvore será o nó identificado por n=0
- Para cada caractere c do sufixo sufixo s[i..N], e iniciando na raiz, verifica-se se existe a aresta (c,n)
- ullet Em caso, afirmativo, segue-se esta aresta e se processa o caractere que sucede c
- Caso não exista, cria-se um novo nó m, adiciona-se ao nó atual a aresta (c,m), e segue o processamento para m e para o próximo caractere
- ullet Esta construção tem complexidade $O(N^2)$
- A memória necessária também é $O(N^2)$

Implementação naive da trie

```
1 #include <bits/stdc++.h>
3 using namespace std;
4 using Node = map<char, int>;
s using Trie = vector<Node>;
7 Trie build_naive(const string& s)
8 {
      int root = \emptyset, next = \emptyset;
9
10
      Trie trie(1); // Instancia o nó raiz vazio
      for (int i = s.size() - 1; i >= 0; --i)
14
          string suffix = s.substr(i);
          int v = root:
16
          for (auto c : suffix)
18
              auto it = trie[v].find(c):
20
```

Implementação naive da trie

```
if (it != trie[v].end())
22
23
                   v = it->second;
24
               } else
25
26
                   trie.push_back({ });
                   trie[v][c] = ++next;
28
                   v = next:
29
30
31
32
33
      return trie;
34
35 }
```

Busca de substring em um trie

- ullet A $\it trie$ da string $\it s$ pode ser utilizada para identificar se uma string $\it p$ $\acute{
 m e}$ ou não substring de $\it s$
- O algoritmo é semelhante à busca binária, e tem complexidade O(m), onde m=|p|
- Por exemplo, se s= "BANANA" e p= "NAN", partindo da raiz, tem-se "N" na aresta à direita, "A" na única aresta e "N" na aresta seguinte: logo p é substring de s
- $\bullet\,$ Como o nó de chegada é branco, p não é sufixo de s
- Para p = "NAS", o último caractere ("S") não seria encontrado
- ullet O mesmo vale para p= "MAS", porém a falha acontece logo no primeiro caractere
- ullet Para p= "NANAN" a busca se encerraria ao atingir um nó nulo

Implementação da busca em O(m) em uma trie

```
66 bool search(const Trie& trie, const string& s)
67 {
      int v = 0:
68
69
      for (auto c : s)
70
          auto it = trie[v].find(c);
72
          if (it == trie[v].end())
74
               return false;
75
76
          v = it->second;
78
79
      return true;
80
81 }
```

Trie com marcadores

- \bullet A construção proposta para a trie permite ao algoritmo de busca descrito apenas determinar se a substring p ocorre ou não em s
- Se for preciso determinar a posição (ou posições) desta ocorrência, é preciso modificar a construção da trie, de modo que seja possível discriminar os nós essenciais dos demais
- Uma maneira de fazê-lo é adicionar um caractere terminador (em geral, o caractere '#'),
 que não pertença a string original
- \bullet A este caractere estará associado o índice i da string tal que o sufixo terminado no marcador é igual a S[i..N]
- Importante notar que o segundo elemento do par terá dois significados distintos: ou será um ponteiro para o próximo nó, ou o índice do sufixo caso o rótulo da aresta seja o terminador
- É preciso atentar a esta diferença na implementação das rotinas de construção e busca

Visualização da trie da palavra 'BANANA' com terminador

Construção da trie com marcador

```
83 Trie build_naive_with_marker(const string& s)
84 {
      int root = \emptyset, next = \emptyset;
85
86
      Trie trie(1): // Instancia o nó raiz vazio
87
88
      for (int i = s.size() - 1; i >= 0; --i)
89
90
           string suffix = s.substr(i) + '#';
91
           int v = root;
92
93
           for (auto c : suffix)
94
95
               if (c == '#')
96
97
                    trie[v][c] = i:
98
                    break;
99
100
101
               auto it = trie[v].find(c):
```

Construção da trie com marcador

```
if (it != trie[v].end())
104
                    v = it->second;
106
                } else
108
                    trie.push_back({ });
                    trie[v][c] = ++next;
110
                    v = next:
1111
112
113
114
115
       return trie;
116
117 }
```

Identificação das ocorrências de uma substring em uma trie com marcadores

```
119 vector<int> find(const Trie& trie, const string& s)
120 {
      vector<int> is;
      int v = 0;
      for (auto c : s)
          auto it = trie[v].find(c);
          if (it == trie[v].end())
128
               return is:
130
          v = it->second:
      queue<int> a:
134
      q.push(v);
```

Identificação das ocorrências de uma substring em uma trie com marcadores

```
while (not q.empty())
138
           auto u = q.front();
           q.pop();
140
141
           for (auto [c, v] : trie[u])
               if (c == '#')
144
                    is.push_back(v);
               else
146
                    q.push(v);
148
150
      return is:
152 }
```

Número de substrings distintas

- Outra informação que pode ser obtida a partir da $\it trie$ é o número de substring distintas de $\it s$
- Se s tem n caracteres, ela terá n(n+1)/2 substrings não vazias, não necessariamente distintas
- Estas substrings correspondem a todos os pares de índices (i,j), com $i \leq j$, onde $i,j=1,2,\ldots,n$
- Em uma trie, qualquer nó, exceto a raiz, representa uma substring distinta, formada pela concatenação dos rótulos do caminho da raiz até o nó em questão

Contagem de substrings distintas em uma trie

```
154 size_t unique_substrings(const Trie& trie)
155 {
      size_t count = 0;
156
      queue<int> q;
      q.push(0);
158
      while (not q.empty()) {      // BFS para contabilizar o número de nós
160
          auto u = q.front();
          q.pop();
          for (auto [c, v] : trie[u]) {
              if (c != '#') {
                   ++count;
                   q.push(v);
168
170
      return count;
173 }
```

Considerações sobre a construção naive da trie

- Embora as buscas apresentadas satisfaçam o terceiro critério para uma boa árvore de sufixo, os outros dois critérios não são satisfeitos
- ullet Se a string s inicial tem N caracteres, a construção e o espaço em memória são $O(N^2)$.
- É possível melhorar a complexidade da construção da trie, por meio de um algoritmo online
- ullet O espaço em memória, contudo, permanecerá $O(N^2)$, por conta da representação de cada caractere por meio de uma aresta
- Assim, a redução de memória só é possível por meio de uma mudança na representação dos caracteres e dos sufixos, o que leva a uma outra estrutura, a suffix trie

Construção online da trie

Algoritmo online para construção de uma trie

- A construção pode ser melhorada por meio de um algoritmo online
- A ideia principal é, ao invés de construir toda a trie de s de uma só vez, construí-la a partir da trie de s[1..(N-1)]
- ullet Seja T_j a *trie* do prefixo s[1..j] de s
- A principal observação a ser feita é que T_j pode ser construída a partir da inserção do caractere s[j] em T_{j-1} , nas arestas dos novos nós a serem adicionados aos nós essenciais de T_{j-1} , quando for o caso
- \bullet Isto acontecerá quando o nó essencial não tem um filho ligado a ele por meio de uma aresta cujo rótulo é s[j]
- O ponto principal, portanto, se torna determinar a sequência dos nós essenciais $v_k, v_{k-1}, \ldots, v_2, v_1, v_0$, onde v_i corresponde ao prefixo s[1..i] de T_k
- Esta tarefa pode ser feita por meio do uso de links de sufixos

Links de sufixos

- ullet Seja u um nó de T_k
- Defina o *link* de sufixo suf(u) = v, onde v é um nó cujo caminho p(v) da raiz até v é igual ao caminho de [2..p(u)], isto é, o caminho p(u) sem o seu primeiro caractere
- Por definição, se a raiz de T_k corresponde ao vértice v_0 , então $suf(v_0)=v_0$
- Contudo, interpretar $suf(v_0)$ como **nullptr** pode ser mais interessante na implementação do algoritmo
- Esta definição leva a igualdade

$$(v_k, v_{k-1}, \dots, v_0) = (v_k, suf(v_k), suf^2(v_k), \dots, suf^{k-1}(v_k))$$

Visualização dos links de sufixos da trie da palavra 'BANANA'

Construção online da trie

A construção online de T_k a partir de T_{k-1} pode ser feita por meio dos seguintes passos:

- 1. identifique os nós essenciais $v_{k-1},v_{k-2},\ldots,v_1,v_0$ de T_{k-1} , em ordem decrescente em relação ao tamanho do sufixo relacionado
- 2. escolha os nós v_i consecutivos até que se atinja um nó v_t tal que exista um filho de v_t unido por uma aresta cujo rótulo é s[k]
- 3. para cada um dos nós escolhidos, crie novos nós filhos ligados por arestas cujos rótulos sejam s[k]
- 4. atualize os links de sufixos para os novos nós recém-criados

$$k = 0$$

$$\begin{array}{cccc}
i & v_i & suf[v_i] \\
\hline
0 & 0 & -1
\end{array}$$

$$k=1$$
 $c=$ 'b'

$$\begin{array}{cccc}
i & v_i & suf[v_i] \\
\hline
0 & 0 & -1
\end{array}$$

i	v_i	$suf[v_i]$
0	0	-1
1	1	0

$$\begin{aligned} k &= 2 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i$
0	0	-1
1	1	0
2	2	0

	i	v_i	suf[v
_			
	0	0	-1
	1	1	0
	2	2	0

$$\begin{aligned} k &= 2 \\ c &= \text{`a'} \end{aligned}$$

		41.
i	v_i	suf[u]
0	0	-1
1	3	0
2	2	3

i	v_i	$suf[\iota$
0	0	-1
1	3	0
2	2	3
	0	1 3

$$k=3$$
 $c=$ 'n'

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	2	3

3 4

$$k=3$$
 $c=$ 'n'

i	v_i	$suf[v_i$
0	0	-1
1	3	0
2	2	3
3	4	0

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	5	3

5

3 4

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	5	3
	0	0 0 1 3

5

3 4

$$k=3$$
 $c=$ 'n'

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
9	4	5

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	4	5

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	4	5
4	7	0

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	4	5
4	7	0

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
0	0	
1	6	0
2	5	6
3	8	5
4	7	8

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	8	5
4	7	8

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
	0	1
0	0	-1
1	6	0
2	9	6
3	8	9
4	7	8

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	9	6
3	8	9
4	7	8

$$\begin{aligned} k &= 4 \\ c &= \text{`a'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	9	3
3	8	9
4	7	8

$$k=5$$
 $c=$ 'n'

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	9	3
3	8	9
4	7	8

$$\begin{aligned} k &= 5 \\ c &= \text{`n'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	9	3
3	8	9
4	7	8
5	10	0

$$\begin{aligned} k &= 5 \\ c &= \text{`n'} \end{aligned}$$

_	i	v_i	$suf[v_i]$
	0	0	-1
	1	3	0
	2	9	3
	3	8	9
	4	7	8
	5	10	0

$$\begin{aligned} k &= 5 \\ c &= \text{'n'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	9	3
3	8	9
4	11	8
5	10	11

$$\begin{aligned} k &= 5 \\ c &= \text{`n'} \end{aligned}$$

_	i	v_i	$suf[v_i]$
	0	0	-1
	1	3	0
	2	9	3
	3	8	9
	4	11	8
	5	10	11

$$\begin{aligned} k &= 5 \\ c &= \text{'n'} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	9	3
3	12	9
4	11	12
5	10	11
5	10	11

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	9	3
3	12	9
4	11	12
5	10	11

$$\begin{aligned} k &= 5 \\ c &= \text{'n'} \end{aligned}$$

i	v_{i}	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	12	5
4	11	12
5	10	11

$$\begin{aligned} k &= 6 \\ c &= \text{`a} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	12	5
4	11	12
5	10	11

$$k=6$$
 $c=$ 'a

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	12	5
4	11	12
5	10	11
6	13	0

$$\begin{aligned} k &= 6 \\ c &= \text{`a} \end{aligned}$$

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	12	5
4	11	12
5	10	11
6	13	0

$$k=6$$
 $c=$ 'a

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	12	5
4	11	12
5	14	11
6	13	14

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	12	5
4	11	12
5	14	11
6	13	14

$$k=6$$
 $c=$ 'a

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	$\frac{5}{12}$	6
3		5
4	15	12
5	14	15
6	13	14

$$k=6$$
 $c=$ 'a

i	v_i	$suf[v_i]$
0	0	-1
1	6	0
2	5	6
3	12	5
4	15	12
5	14	15
6	13	14

i	v_i	$suf[v_i]$
0	0	-1
1	3	0
2	9	3
3	8	9
4	15	8
5	14	15
6	13	14

Implementação da construção online da trie

```
9 Trie build_online(const string& s)
10 {
      int next = 0, deepest = 0; \frac{1}{2} deepest = \frac{1}{2} deepest = \frac{1}{2}
      string S = s + '#'; // adiciona o terminador
12
      vector<int> suf { -1 };  // suf[root] = NULL
13
      Trie trie(1);
                             // Instancia o nó raiz vazio
14
      for (size_t i = 0; i < S.size(); ++i)</pre>
16
          // Calculo de Tk, com k = i + 1
1.8
          char c = S[i]:
19
          int u = deepest;
20
          while (u >= \emptyset)
22
               // Procura por c no nó u
24
               auto it = trie[u].find(c);
26
```

Implementação da construção online da trie

```
// Caso #1. link não encontrado
27
              if (it == trie[u].end())
28
                  // Adiciona um novo nó, com aresta c
30
                  trie.push_back({ });
31
                  trie[u][c] = ++next;
                  // valor sentinela: será corrigido na próxima iteração
34
                  suf.push_back(0);
35
36
                  if (u != deepest)
                      suf[next - 1] = next: // correção atrasada
38
                  else
39
                      deepest = next: // v_k é o nó recém-criado
40
              } else
41
42
                  // Caso #2: link encontrado: suf[v_t] aponta para ele
43
                  suf[next] = it->second:
44
                  break:
45
46
```

Implementação da construção online da trie

Considerações sobre a construção online da trie

- Observe que, na implementação proposta, os valores v_k são usandos implicitamente
- ullet Para uma string s de tamanho n, a construção *online* da trie tem complexidade $O(|T_n|)$
- Embora ainda não seja a complexidade desejada (O(n)), esta estratégia será pode ser utilizada, com alguns ajustes, para atingir tal complexidade
- Para reduzir o tamanho em memória da trie uma estratégia possível é compactar as cadeias, onde uma cadeia é o maior caminho possível composto por nós não-essenciais com grau de saída um
- Esta compactação resulta em uma nova estrutura, denominada suffix tree

Referências

- 1. CP Algorithms. Suffix Tree. Ukkonen's Algorithm, acesso em 02/10/2019.
- 2. **CROCHEMORE**, Maxime; **RYTTER**, Wojciech. *Jewels of Stringology: Text Algorithms*, WSPC, 2002.
- 3. **ROY, TUSHAR**. Trie, acesso em 02/10/2019.
- 4. HALIM, Steve; HALIM, Felix. Competitive Programming 3, Lulu, 2013.
- 5. Wikipédia. Trie, acesso em 02/10/2019.