

Heaven's Light is Our Guide

Rajshahi University of Engineering & Technology

Department of Electrical & Computer Engineering

Lab report

Course Code : ECE 1202

Course Title : Circuits & Systems-II Sessional

Date of experiment : 04-06-2024

Date of Submission : 10-09-2024

Submitted To:	Submitted By:		
Oishi Jyoti Assistant Professor, Department of ECE, RUET	Name : Md. Naimur Rahman Naim Roll : 2210026 Registration : 1080 Session : 2022-2023 Department of ECE, RUET		

Experiment no.: 02

Experiment name: Study the relationship between phase current & line current of a delta connected 3-phase balanced system.

Theory: In a balanced $3 - \phi \ Y - \Delta$ system, phase currents are:

$$\mathbf{I_{ab}} = \frac{V_{ab}}{Z_{\Delta}}, \ \mathbf{I_{bc}} = \frac{V_{bc}}{Z_{\Delta}}$$
and $\mathbf{I_{ca}} = \frac{V_{ca}}{Z_{\Delta}}$

The line currents can be obtained from applying KCL. So, the line currents will be:

$$I_A = I_{ab} - I_{ca}$$
, $I_B = I_{bc} - I_{ab}$ and $I_C = I_{ca} - I_{bc}$

Since, $I_{CA} = I_{AB} \angle -240^{\circ}$,

$$I_{A} = I_{ab} - I_{ca} = I_{ab} \; (1 \text{ - } 1 \angle -240^{\circ}) = I_{ab} \; (1 + 0.5 \text{ -j} 0.866) = I_{ab} \sqrt{3} \angle 30^{\circ}$$

Now, if we consider the magnitude only, we get the relation between phase and line current as,

$$I_P = \frac{I_L}{\sqrt{3}}...$$
 ... (1)

Required Apparatus:

- 1. Source
- 2. VARIAC
- 3. Voltmeter
- 4. Ammeter
- 5. Resistor
- 6. Multimeter
- 7. Connecting wires

Circuit diagram:

Fig. : Delta connected 3-phase balanced circuit

Calculation:

• Reading 1:

Line current, $I_L = 2.25 \text{ A}$

Measured phase current, $I_{P(m)} = 1.26 \text{ A}$

Calculated phase current, $I_{P(calc)} = 1.29 A$

Error =
$$\frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|1.29 - 1.26|}{1.29} \times 100\% = 2.32\%$$

• Reading 2:

Line current, $I_L = 0.72 \text{ A}$

Measured phase current, $I_{P(m)} = 0.39 A$

Calculated phase current, $I_{P(calc)} = 0.41 A$

$$Error = \frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|0.41 - 0.39|}{0.41} \times 100\% = 4.87\%$$

• Reading 3:

Line current, $I_L = 1.28 \text{ A}$

Measured phase current, $I_{P(m)} = 0.7 A$

Calculated phase current, $I_{P(calc)} = 0.74 \text{ A}$

Error =
$$\frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|0.74 - 0.7|}{0.74} \times 100\% = 5.4\%$$

• Reading 4:

Line current, $I_L = 1.87 A$

Measured phase current, $I_{P(m)} = 1.04 \text{ A}$

Calculated phase current, $I_{P(calc)} = 1.08 \text{ A}$

Error =
$$\frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|1.08 - 1.04|}{1.08} \times 100\% = 3.7\%$$

• Reading 5:

Line current, $I_L = 2.79 A$

Measured phase current, $I_{P(m)} = 1.59 \text{ A}$

Calculated phase current, $I_{P(calc)} = 1.61 \text{ A}$

$$Error = \frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|1.61 - 1.59|}{1.61} \times 100\% = 1.24\%$$

∴ Average error =
$$\frac{2.32+4.87+5.4+3.7+1.24}{5}$$
 = 3.506%

Table for Studying Relation Between Line and Phase Voltage:

Serial	Line	Measured	Calculated	Percentage	Line	Phase
No	Current,	Phase	Phase	of	Voltage,	Voltage,
	$I_L(A)$	Current, I-	Current, I-	Error (%)	$V_{L}(V)$	$V_{P}(V)$
		$_{P(m)}(A)$	$_{P(calc)}(A)$			
1	41.47	23.5	24.07	2.32	39.0	38.3
2	34.1	19	19.69	4.87	12.84	12.83
3	55.5	31.4	32.04	5.4	22.15	21.83
4	63.6	35.6	36.72	3.7	32.17	31.6
5	71.7	40.5	41.4	1.24	47.3	47.1

Result: Average percentage of error was 3.506%

Discussion: Through the experiment, we proved the relation between phase and line current in a $3-\varphi$ balanced Y - Δ system. After all the calculations, we figured our error margin was 3.506% which is negligible. This little error margin certifies that, the line current is $\sqrt{3}$ times that of phase current.

Reference:

Fundamentals of Electric Circuits by Charles K. Alexander and Mathew N. O. Sadiku.