弱极值原理、边值问题解的唯一性定理的陈述

陈轶钊

2024年11月27日

这篇是关于极值原理的补充笔记,主要给出极值原理和(第一)边值问题解的唯一性定理的严格陈述。对于一些比较简单的定理,我们列出它的证明——考虑到课程还没有涉及到多元微积分学的内容,读者可以跳过所有定理的证明(甚至部分公式),仅阅读定理的陈述。

这篇笔记的主要参考资料是周蜀林编著的《偏微分方程》,电学部分参考的是刘雄军老师的课程讲义。

1 记号

后文会使用到的记号见表??.

2 (弱)极值原理

我们考虑一个一般的方程

$$\mathcal{L}u = -\Delta u + c(x)u = f(x), \quad x \in \Omega. \tag{1}$$

在下面的讨论中 Ω 是 \mathbb{R}^n 上的有界开集。当我们考虑方程 (??) 的极值原理时,我们需要假定

$$c(x) \geqslant 0, \quad \forall x \in \Omega.$$
 (2)

此条件在极值原理的证明中很重要。

我们给出下面的结论。

\mathbb{R}	实数集
\mathbb{R}^n	标准 n 维向量空间,即集合 $\{x = (x_1, x_2, \dots, x_d) \mid x_j \in \mathbb{R}\}$
x	$x = (x_1, \dots, x_d)$ 的长度,即 $ x = \sqrt{x \cdot x} = \sqrt{x_1^2 + \dots + x_d^2}$
Ω	\mathbb{R}^n 中的有界开区域
$\partial\Omega$	区域 Ω 的边界,如实心开球 $B(0,r) = \{x \in \mathbb{R}^n \mid x < r\}$
	的边界是球面 $\{x \in \mathbb{R}^n \mid x = r\}$
$ar{\Omega}$	Ω 的闭包,即 $\Omega \cup \partial \Omega$.
$u _{\partial\Omega}$	u 在 Ω 边界上的限制
$\overline{\partial_{j}}$	(对一个 n 元函数) 关于第 j 个变量求偏导数
Δ	Laplace 算子,即 $\Delta u = \sum_{k=1}^{n} \partial_k^2 u$
$\rho:\Omega\to\mathbb{R}$	电荷密度
$\overrightarrow{E}:\Omega\to\mathbb{R}^3$	电场强度,它是一个向量值的函数
$\varphi:\Omega\to\mathbb{R}$	静电势

表 1: 记号

定理 2.1 假设 $c(x) \geq 0$, f(x) < 0。如果 $u \in C^2(\Omega) \cap C(\bar{\Omega})$ 满足方程 (??),则 u(x) 不能在 Ω 上达到它在 $\bar{\Omega}$ 上的非负最大值,即 u(x) 只能在 $\partial\Omega$ 上达到它的非负最大值。

这一定理的证明和作业中的练习是十分类似的,唯一的不同是,部分的论证要靠线性代数和多元微积分的工具来完成。

证明 1 用反证法。如果 u(x) 在点 $x_0 \in \Omega$ 达到非负最大值,即

$$u(x_0) = \max_{x \in \bar{\Omega}} u(x) \ge 0,$$

则由多元微积分的定理知,u(x) 在 x_0 的梯度向量 $Du(x_0)=0$ 和 Hessian 矩阵 $D^2u(x_0)$ 是非正定的。对 Hessian 矩阵 $D^2u(x_0)$ 求迹得到

$$\Delta u(x_0) = tr(D^2 u(x_0)) \le 0.$$

因而

$$\mathcal{L}u(x_0) = -\Delta u(x_0) + c(x_0)u(x_0) = f(x_0) \ge 0.$$

这与定理的假设 $f(x_0) < 0$ 矛盾, 因此 u(x) 不能在 Ω 上达到它的非负最大值。

定理??的证明思想在位势方程和热方程的极值原理中非常常见:从技术上来看,这种证明方法的本质是靠比较在最值处方程两端的符号来导出矛盾。

从上面的定理可以推出:

定理 2.2 (弱极值原理) 假设 $c(x) \ge 0, f(x) \le 0$ 。如果 $u \in C^2(\Omega) \cap C(\bar{\Omega})$ 满足方程 (2.38),则 u(x) 必在 $\partial\Omega$ 上达到它在 $\bar{\Omega}$ 上的非负最大值,即

$$\max_{x \in \bar{\Omega}} u(x) \le \max_{x \in \partial \Omega} u^{+}(x),$$

其中 $u^+(x) = \max\{u(x), 0\}$ 。

3 最大模估计

在这一小节中我们定义位势方程的第一边值问题,叙述它的最大模估计并由此得出解的惟一性。所谓的位势方程的第一边值问题是指

$$\begin{cases}
-\Delta u = f(x), & x \in \Omega, \\
u|_{\partial\Omega} = g.
\end{cases}$$
(3)

利用极值原理我们可以得到下面的最大模估计。

定理 3.1 假设 $u \in C^2(\Omega) \cap C(\overline{\Omega})$ 是边值问题 (??) 的解,则

$$\max_{\bar{\Omega}} |u(x)| \le G + CF,$$

其中 $G=\max_{\partial\Omega}|g(x)|, F=\sup_{\Omega}|f(x)|, C$ 是一个仅依赖于维数 n 以及 Ω 的直径 $d=\sup_{x,y\in\Omega}|x-y|$ 的常数。

从而我们有推论:

推论 3.1 (边值问题解的唯一性定理) 假设 $u_1, u_2 \in C^2(\Omega) \cap C(\bar{\Omega})$ 是边值问题 (??) 的解,则 $u_1 = u_2$.

在知道最大模估计后,这一推论的证明是容易的,只需要对 $u_1 - u_2$ 使用最大模估计即可。

4 一点应用:静电场的唯一性

静电学里常常会考虑这样的问题:如果知道了一个(真空)区域 Ω 内电荷的分布 ρ ,并且知道了 Ω 的边界 $\partial\Omega$ 上的电场或者电势,如何确定区域内的电场 \overrightarrow{E} . 这时会不可避免地涉及到电场是否唯一的问题。

我们这里只考虑已知在区域边界处的电势 $\varphi|_{\partial\Omega}=g(x)$ 的情形。我们直接使用下面两个事实:

- (1) 如果电势 φ 已知,那么电场强度 \overrightarrow{E} 可以由电势唯一确定。准确来说, \overrightarrow{E} 是负的 φ 的梯度,即 $\overrightarrow{E}=-\nabla \varphi$.
- (2) (高斯单位制下) 电势 φ 满足: $-\Delta \varphi(x) = 4\pi \rho(x), \forall x \in \Omega$.

第一个事实告诉我们:为了计算电场强度,只需要计算电势 φ .而第二个事实告诉我们,为了求解电势,只需要求解下面的边值问题

$$\begin{cases}
-\Delta\varphi(x) = 4\pi\rho(x), \forall x \in \Omega \\
\varphi|_{\partial\Omega} = g
\end{cases}$$
(4)

这样,根据上面两个小节列出的结果,就有:

结论 4.1 在给定电荷分布 ρ 和区域 Ω 边界上的电势 $\varphi|_{\partial\Omega}$ 后,区域 Ω 上的电势 φ 被唯一确定,进而区域 Ω 上的电场也被唯一确定。