Práctica:

2. Demostrar que si S diagonaliza a A entonces S diagonaliza a A^k , para todo $k \in \mathbb{N}$.

Si S diagonaliza a A,

$$S^{-1}AS = \Lambda \Leftrightarrow A = S\Lambda S^{-1}.$$

Luego,

$$A^k = \left(S\Lambda S^{-1}\right)^k = \left(S\Lambda S^{-1}\right)\left(S\Lambda S^{-1}\right)\left(S\Lambda S^{-1}\right)\ldots\left(S\Lambda S^{-1}\right) = S\Lambda\left(S^{-1}S\right)\Lambda\left(S^{-1}S\right)\ldots\left(S^{-1}S\right)\Lambda S^{-1} = S\Lambda I\Lambda I\ldots I\Lambda S^{-1} = S\Lambda^k S^{-1},$$

donde Λ^k es una matriz diagonal cuyas entradas no nulas son $\lambda_1^k, \ldots, \lambda_n^k$, siendo $\lambda_1, \ldots, \lambda_n$ las entradas no nulas de Λ .

Otra forma: Sea A una matriz de tamaño $n \times n$, λ_i con $i=1,\ldots,n$ los autovalores de A y x^i los autovectores asociados. Consideramos S la matriz diagonalizante de A cuya i-ésima columna es x^i y Λ la matriz diagonal, luego $A=S\Lambda S^{-1}$.

Sabemos que, para todo $k \in \mathbb{N}$, λ_i^k con $i = 1, \ldots, n$ son los autovalores de A^k y x^i los autovectores asociados, entonces $A^k x^i = \lambda_i^k x^i$ con $i = 1, \ldots, n$.

Por lo tanto, $AS = S\Lambda^k$ o equivalentemente $A = S\Lambda^kS^{-1}$ donde Λ^k es una matriz diagonal cuyas entradas no nulas son $\lambda_1^k, \ldots, \lambda_n^k$.

Así podemos concluir que S diagonaliza A^k .

3. Dado que los números de Fibonacci satisfacen el sistema en diferencias:

$$u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_k = Au_k,$$

demostrar que para todo $k \geq 2$, $F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right]$.

Dado el sistema en diferencias:

$$u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_k = Au_k,$$

con A diagonalizable por S y autovalores λ_1 y λ_2 , resolvemos el sistema $Sc = u_0$ y obtenemos:

$$u_k = c_1 \lambda_1^k x^1 + c_2 \lambda_2^k x^2,$$

con x^1 y x^2 columnas de S.

Entonces, teniendo en cuenta que $u_k = (F_{k+1}, F_k)$ y $u_0 = (F_1, F_0) = (1, 0)$, vamos a demostrar que para todo $k \geq 2$, $F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right]$.

Primero vamos a calcular los autovalores de A. Para ello, calculamos las raíces del polinomio característico de A:

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & 0 - \lambda \end{bmatrix}$$

Entonces,

$$p_A(\lambda) = \det(A_{\lambda}I) = (1 - \lambda)(-\lambda) - 1 = \lambda^2 - \lambda - 1 = \left(\lambda - \left(\frac{1 + \sqrt{5}}{2}\right)\right) \left(\lambda - \left(\frac{1 - \sqrt{5}}{2}\right)\right).$$

Por lo tanto, los autovalores son: $\lambda_1=\frac{1+\sqrt{5}}{2}$ y $\lambda_2=\frac{1-\sqrt{5}}{2}$.

Podemos observar que el segundo renglón de $A-\lambda I$ es $(1,-\lambda)$. Para obtener $(A-\lambda I)x=0$, el autovector asociado a λ es $(\lambda,1)$. Como los primeros números de Fibonacci $F_0=0$ y $F_1=1$ forman u_0 y $S^{-1}u_0=c$, resulta:

$$S^{-1}u_0 = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

Haciendo cuentas obtenemos:

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\lambda_1 - \lambda_2} \\ -\frac{1}{\lambda_1 - \lambda_2} \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Por lo tanto, dado que ambos vectores característicos, x^1 y x^2 tienen como segunda componente 1 (ya que $x \in N(A-\lambda I)$ sii $x=(\lambda,1)$) y como $u_k=c_1\lambda_1^kx^1+c_2\lambda_2^kx^2$, resulta

$$F_k = c_1 \lambda_1^k + c_2 \lambda_2^k = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right],$$

como queríamos probar.