Seminarski rad u okviru kursa Istraživanje podataka 1 Matematički fakultet

Klasifikacija skupa podataka Online News Popularity

Lea Petković 163/2016

mi16163@alas.matf.bg.ac.rs

1. Opšte o podacima

Podaci koji su korišćeni u ovom seminarskom radu predstavljaju skup podataka o člancima koje je *Mashable*¹ objavio u periodu od dve godine. Skup podataka moguće je besplatno preuzeti na veb-sajtu UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/Online+News+Popularity. Cilj je, metodom klasifikacije, predvideti broj objava nekog članka na društvenim mrežama, tj. predvideti popularnost datog članka.

Podaci su smešteni u tabelu koja sadrži 39797 instanci i opisani pomoću 61 atributa. Sledi lista i opis svih atributa:

url: URL članka	weekday_is_monday: da li je članak bio objavljen u ponedeljak?							
timedelta: dani protekli između objavljivanja	weekday_is_tuesday: da li je članak bio							
članka i akvizicije podataka	objavljen u utorak?							
n_tokens_title: broj reči u naslovu	weekday_is_wednesday: da li je članak bio							
vov	objavljen u sredu?							
n_tokens_content: broj reči u sadržaju	weekday_is_thursday: da li je članak bio							
članka	objavljen u četvrtak?							
n_unique_tokens: stopa jedinstvenih reči u	weekday_is_friday: da li je članak bio							
sadržaju	objavljen u petak?							
n_non_stop_words: stopa non-stop reči u	weekday_is_saturday: da li je članak bio							
sadržaju	objavljen u subotu?							
n_non_stop_unique_tokens: stopa	weekday_is_sunday: da li je članak bio							
jedinstvenih non-stop reči u sadržaju	objavljen u nedelju?							
num_hrefs: broj veza	is_weekend: da li je članak objavljen za							
	vikend?							
<pre>num_self_hrefs: broj veza ka drugim</pre>	LDA_00: blizina LDA temi 0							
člancima koje je objavio Mashable								
num_imgs: broj slika	LDA_01: blizina LDA temi 1							
num_videos: broj video snimaka	LDA_02: blizina LDA temi 2							
average_token_length: prosečna dužina reči	LDA_03: blizina LDA temi 3							
u sadržaju								
num_keywords: broj ključnih reči u	LDA_04: blizina LDA temi 4							
metapodacima								
data_channel_is_lifestyle: da li je tema	global_subjectivity: subjektivnost teksta							
kanala podataka stil života?								
data_channel_is_entertainment: da li je	<pre>global_sentiment_polarity: polaritet</pre>							
tema kanala podataka zabava?	osećanja u tekstu							
data_channel_is_bus: da li je tema kanala	global_rate_positive_words: stopa							
podataka buznis?	pozitivnih reči u sadržaju							
data_channel_is_socmed: da li su tema	global_rate_negative_words: stopa							
kanala podataka društveni mediji?	negativnih reči u sadržaju							

_

¹ Mashable je digitalni medijski veb-sajt. Osnovao ga je Pit Kešmor 2005. godine (engl. Pete Cashmore)

data_channel_is_tech: da li je tema kanala	rate_positive_words: stopa pozitivnih reči								
podataka tehnologija?	među neneutralnim tokenima								
data_channel_is_world: da li je tema kanala	rate_negative_words: stopa negativnih reči								
_podataka svet?	među neneutralnim tokenima								
kw_min_min: najgora ključna reč (min.	avg_positive_polarity: prosečni polaritet								
objava)	pozitivnih reči								
kw_max_min: najgora ključna reč (max.	min_positive_polarity: minimalni polaritet								
objava)	pozitivnih reči								
kw_avg_min: najgora ključna reč (prosečno	max_positive_polarity: maksimalni polaritet								
objava)	pozitivnih reči								
kw_min_max: najbolja ključna reč (min.	avg_negative_polarity: prosečni polaritet								
objava)	negativnih reči								
kw_max_max: najbolja ključna reč (max.	min_negative_polarity: minimalni polaritet								
objava)	pozitivnih reči								
kw_avg_max: najbolja ključna reč (prosečno	max_negative_polarity: maksimalni								
objava)	polaritet pozitivnih reči								
kw_min_avg: prosečna ključna reč (min.	title_subjectivity: subjektivnost naslova								
objava)									
kw_max_avg: prosečna ključna reč (max.	title_sentiment_polarity: polaritet naslova								
objava)									
kw_avg_avg: prosečna ključna reč (prosečno	abs_title_subjectivity: apsolutni nivo								
objava)	subjektivnosti								
self_reference_min_shares: minimalni br.	abs_title_sentiment_polarity: apsolutni nivo								
objava referenciranih članaka na Mashable-u	polariteta								
self_reference_max_shares: maksimalni br.	shares: broj objava (ciljni atribut)								
objava referenciranih članaka na Mashable-u									
self_reference_avg_shares: prosečan br.									
objava referenciranih članaka na Mashable-u									

2. O klasifikaciji

Problem klasifikacije predstavlja problem učenja strukture skupa podataka koji je već podeljen u grupe koje nazivamo kategorijama ili klasama. Učenje ovih kategorija se obično postiže pomoću modela. Model se koristi za procenu oznake klase nekog podatka čije oznake nisu poznate. Dakle, jedan od ulaznih parametara problema klasifikacije jeste skup podataka koji je već podeljen u klase – trening skup. Nepoznati podaci, odnosno podaci koje je potrebno klasifikovati čine test skup. Klasifikacija pripada nadgledanom učenju zato što na osnovu trening skupa uči strukturu grupe.

Neki od algoritama klasifikacije, koji su takođe primenjeni nad skupom podataka Online News Popularity, su: C5.0, CR&T (CART), KNN, SVM ...

3. Analiza i pretprocesiranje podataka

Analiza i pretprocesiranje skupa vršeni su u IBM SPSS modeleru, učitavanjem čvora *Var*, a potom i drugih odgovarajućih čvorova. Analizirani su tipovi atributa, kao i njihove statistike:

Field -	Sample Graph	Measurement	Min	Max	Sum	Mean	Std. Dev	Variance	Valid
n_tokens_title		d Continuous	2.000	23.000	412248.000	10.399	2.114	4.469	39644
		& Continuous	0.000	8474.000	21666030.000	546.515	471.108	221942.284	39644
n_unique_tokens			0.000	701.000	21733.464	0.548	3.521	12.395	39644
♠ n_non_stop_words		& Continuous	0.000	1042.000	39504.000	0.996	5.231	27.366	39644
		d [©] Continuous	0.000	650.000	27321.669	0.689	3.265	10.659	39644
num_hrefs	L	d Continuous	0.000	304.000	431473.000	10.884	11.332	128.415	39644
num_self_hrefs		₫ [©] Continuous	0.000	116.000	130573.000	3.294	3.855	14.862	39644
num_imgs	m	& Continuous	0.000	128.000	180148.000	4.544	8.309	69.047	39644
♠ num_videos		₫ [©] Continuous	0.000	91.000	49550.000	1.250	4.108	16.874	39644
♦ shares		& Continuous	1	843300	134606452	3395.380	11626.951	135185983.712	39644

Slika 3. 1. Tipovi i statistike nekih atributa

Imajući u vidu broj atributa, njihove opise, kao i to da, kao što je već napomenuto, želimo da klasifikujemo podatke prema popularnosti članka, bilo je jasno da nam nisu potrebni svi atributi. Takođe, tipovi (skoro) svih atributa su numerički, uključujuči i ciljni atribut. Iz te činjenice uočeno je da je diskretizacija ciljnog atributa bila neophodna kako bi klasifikacija postala moguća. Postavilo se pitanje: *na koji način je najbolje diskretizovati potrebne podatke?* Prva ideja bila je da se interval podeli na jednake podintervale, ali na osnovu analize vrednosti ciljnog atributa *shares*, izveden je zakljucak da je to najbolje učiniti podelom na podintervale tako da svaka klasa sadrži jednak broj instanci. U suprotnom bi skoro svi podaci pripadali malom broju od ukupnog broja klasa. Ovo je učinjeno primenom čvora *Binning*, a novonastali (diskretizovani) atribut, korišćenjem čvorova *Type* i *Filter*, postavljen je kao novi cilj.

Daljom analizom je uočeno da nema pojavljivanja nedostajućih vrednosti, te samim tim da njihova obrada nije neophodna. Takođe, nekoliko atributa je promenjen tip: iz numeričkog (na intervalu [0.0, 1.0]) u binarni atribut.

Elementi van granice i ekstremne vrednosti su zadržani u skupu podataka, zato što su skoro svi modeli primenjeni nad podacima bez njih loše klasifikovali podatke.

4. Primena algoritama

Pre primene klasifikacije nad podacima, skup podataka podeljen je na dva skupa: a) trening skup; b) test skup. Trening skup iznosi 70% svih instanci, dok test skup čini preostalih 30% svih instanci.

4.1. C5.0 algoritam

Prvi primenjeni algoritam za klasifikaciju bio je C5.0. Napravljena su dva modela primenom ovog algoritma.

U prvom slučaju, broj atributa u podacima je redukovan upotrebom rotacije osa (PCA). PCA algoritmom je početnih 60 atributa svedeno na 25 nezavisnih atributa koji imaju najveći uticaj na ciljni atribut. Kasnije, upotrebom čvora *Type* na čvor PCA algoritma, napomenuto je da će se u daljoj klasifikaciji koristiti samo izdvojeni atributi. U drugom slučaju, model je koristio svih 60 atributa. Takođe, radi što boljeg klasifikovanja podataka korišćena je opcija *use boosting*.

Na dobijene modele je primenjen čvor *Analysis*, čime su dobijene matrica konfuzije i statistike rada klasifikatora nad (trening i test) podacima.

Slika 4.1. Statistike modela C5.0 algoritma nad svim atributima

Slika 4.2. Statistike modela C5.0 algoritma nad atributima koji su rezultat rada PCA algoritma

U slučaju oba klasifikatora primećujemo da između klasifikacije trening i test skupa skoro da ne postoji razlika, što je dobro jer ne dolazi do problema preprilagođavanja trening podacima. Klasifikator nad redukovanim atributima se pokazao kao bolji od klasifikatora nad svim atributima.

4.2. CART algoritam

Naredni algoritam korišćen za klasifikaciju podataka je CR&T (CART) algoritam. Kao i prethodni (C5.0), algoritam je primenjen nad svim atributima i nad redukovanim skupom atributa. Dubina stabla koja je korišćena je 15. Takođe, prevencija od preprilagođavanja je smanjena i postavljena na 15%, umesto podrazumevanih 30%.

'Partition'	Testing	710-0000	Trainin	g]					
Correct	4,819	40.59%	11,14	7 4	0.14%						
Wrong	7.054	59.41%	16,62	4 5	9.86%						
Total	otal 11,873		27,77	1		1					
Coincidence M	atrix for \$R- sl	hares diskre	etizovano	10 (ro	ws sh	ow actua					
'Partition'		1	2	3	4						
1		3,735	642	42	2						
10		26	2	2	0 7						
2		1,888	967	70	7						
3		1,014	662	104	10						
4		622	409	59	13						
5	5		263	42	9						
6		252	141	26	0						
7							179	81	11	1	
8		102	32	10	0						
9		60	15	3	0						
'Partition'	= Training	1		2	3 .	4					
1		8,728	1,492	2 8	8	3					
10		39		5	1 1	0					
2		4,416	2,185	17	1 1	8					
3		2,364	1,556	20	4 1	2					
4		1,459	961	1 16	5 3	0					
5		970	571	1 12							
6		621	334	4		5					
7		441	181	2	0	4					
8		259	114	1	0	1					
9		125	46	3	4	1					

Slika 4.3. Statistike modela CART algoritma nad svim atributima

'Partition'	Testing		Trainin	g .	
Correct	4,767	39.59%	11.05	3 40	0.04%
Wrong	7,274	60.41%	16,55	0 59	96%
Total	12,041		27,60	3	
Coincidence	Matrix for \$R-sl	hares diskn	etizovano	10 (rov	vs sh
	' = Testing	1	2	3	4
1		3,967	385	55	11
10		15	4	0	0
2		2,180	653	86	26
3		1,229	420	119	31
4		760	290	67	28
5		516	179	39	15
6		289	112	23	10
7		218	51	8	3
8		124	43	9	4
9		63	7	2	0
'Partition	' = Training	1	2		3 4
1		9,189	983		
10		44			3 (
2		4,990	1,535	197	4
3		2,782			
4		1,658		and the second s	
5		1,048			
6		699			
7		462			
8		253			
9		137	36	1 13	3

Slika 4.4. Statistike modela CART algoritma nad atributima koji su rezultat rada PCA algoritma

Na osnovu dobijenih statistika uočeno je da je razlika između dobijenih modela zanemarljiva, kao i to da, imajući u vidu klasifikatore dobijene algoritmom C5.0, CART klasifikatori slabije klasifikuju podatke.

4.3. Algoritam k najbližih suseda (KNN)

Još jedan primenjeni algoritam je k najbližih suseda. Za broj razmatranih suseda, odnosno k, uzete su vrednosti od 3 do 5. Kao mera rastojanja iskorišćeno je Euklidsko rastojanje. Algoritam je primenjen nad svim atributima i nad atributima dobijenim primenom PCA algoritma. Rezultat rada dat je na narednim slikama:

'Partition'	Testing		Train	ing							
Correct	5,622	46.77%	13,0	77 4	7.34%						
Wrong	6,399	53.23%	14,5	46 5	2.66%	1					
Total	12,021		27,6	23							
Coincidence N	latrix for \$KNN	- shares_dis	kretizo	vano 10	(rows	show a	ctuals	5)			
'Partition'	- Testing	1	10	2	3	4	5	6	7	8	
1		3,660	0	511	139	59	27	7	5		
10		14	0	3	- 2	2	1	1	0	0	
2		1,443	0	1,232	166	101	28	13		2	
3		781	1	432	413	83	26	7		1	
- 4		496	0	262	142	195	15	11		1	
5		348	0	174	82	54	85	9	- 4	0	
6		218	0	105	46	24	21	16	3		
7		162	0	64	34	8	4	- 1	13		
8		89	0	20	22				0		
9		44	0	23	- 11	6	-	0	0	- 1	
'Partition'	= Training	1		2	3	4	5	6	7	8	
1		8,550	1,1	55 3	365	131	73	28	13	4	
10		34		7	5	3	2	0	1	0	-
2		3,231	2,7		433	191	84	18	17	2	
3		1,847	1,0	12 1,0	036	172	73	24	10	3	
4		1,138			310	459	66	23	7	8	
5		738			181	107	188	20	4	4	
6		485			114	62	31	57	5	3	1
7		327		40	62	42	19	8	33	0	1
8		189		97	43	17	10	8	5	5	1
9		84	- 53	39	17	12	6	1	3	0	-

Slika 4.5. Statistike modela KNN algoritma nad svim atributima

'Partition'	Testing		Trainir	ng	2200						
Correct	5,534	46.19%	13,00	08 47	7.02%						
Wrong	6,448	53.81%	14,65	54 52	2.98%						
Total	11,982		27,66	52							
Coincidence M	latrix for \$KNIN	- shares_dis	kretizov	vano10	(rows sh	now act	uals)			
'Partition'	= Testing	1	10	2	3	4	5	6	7	8	5
1		3,617	0	559	147	58	29	14	7	3	.(
10		10	0	4	3	0	. 0	. 1	0	0	(
2		1,451	0	1,196	171	72	29	11	4	2	0 0
3		829	0	418	419	74	26	6	3	3	(
4		524	0	271	128	159	26	9	2	2	(
5		321	0	164	85	50	81	9	- 1	0	(
6		222	0	103	57	25	15	31	- 1	1	(
7		151	0	53	23	17	10	. 5	19	0	(
8		80	0	42	21	7	4	1	- 1	12	-
9		50	1	19	3	3	3	- 1	0	0	(
'Partition'	= Training	1	10	2	3		-	5	6	7	-
1		8,433	0	1,251	335	the second second		67	31	22	
10		33	0	12	6			2	2	0	-
2		3,253	0	2,852	384		-	63	27	14	10
3		1,859		1,024	1,017	_	_	50	21	13	4
4		1,156	0	637	310		-	44	21	11	-
5		772	0	396	194	_		176	15	4	-
6		480	0	230	111			24	59	4	1
7		348	0	152	67	-		5	4	33	3
8		183	0	79	42			6	3	1	18
9		94	0	47	13	1	3	2	2	0	(

Slika 4.6. Statistike modela KNN algoritma nad atributima koji su rezultat rada PCA algoritma

Dobijeni modeli daju vrlo slične rezultate te zaključujemo da nije važno koji ćemo koristiti. Podaci su bolje klasifikovani u odnosu na klasifikaciju podataka CART modela, ali još uvek lošiji od C5.0 klasifikatora.

4.4. Metod potpornih vektora (SVM)

Sledeći klasifikator je metod potpornih vektora (SVM). Klasifikator je primenjen nad svim atributima, a potom i nad redukovanim brojem atributa. Korišćen je čvor *SVM*, gde je za opciju *Mode* izabran *Expert* sa podrazumevanim podešavanjima.

Slika 4.7. Statistike modela SVM algoritma nad svim atributima

'Partition'	Testing		Train	ing								
Correct	4,784	40.17%	10,9	938	39.4	4%						
Wrong	7,126	59.83%	16,7	796	60.5	56%						
Total	11,910		27,	734								
Coincidence M	latrix for \$S- st	nares_diskre	tizova	no10 (rows	sho	w actua	als)				
'Partition'	= Testing	1	10	2		3	4 5	6	7	8	9	
1		4,039	0	345	. 2	8	2 3	0	0	1	0	
10		16	1	- 1			0 0	0	0	0	0	
2		2,267	0	595	7	5	1 1		0	2	0	
3		1,317	0	328	- 11	6	1 3		3		0	
- 4	4 5 6		0	237	7	1	9 2	0	0	0	0 0 0	
5			0	146	- 5	5	0 12		. 0	0	0	
6			0	68	2	7	1 1		0	1	0	
7			195	1	47	- 1		0 1		3	0	0
8			124	0	31			0 2		0	5	0
9		62	0	14		2	1 0	0	0	0	1	
'Partition'	= Training	1	10		2	3		5	6	7	8	
1		9,416	0	8	22	58	6	8	1	2	1	
10		52	0		2	0	-	0	0	2	0	
2		5,359	0	1,2		139		4	1	1	5	
3		3,101	0	8	27	210	2	10	1	2	3	
4	4		0	-	62	152		9	3	0	3	
5		1,208	- 1		23	82		16	0	1	2	
6		755	0	1	77	50		7	7	0	2	
7		518	0		99	23		2	2	7	3	
8		277	1		62	13		1	0	1	6	
9		146	0	-	20	5	0	3	0	0	0	

Slika 4.8. Statistike modela metoda potpornih vektora nad atributima koji su rezultat rada PCA algoritma

Iz dobijenih rezultata zaključujemo da je klasifikator nad svim atributima dao bolje rezultate od klasifikatora nad atributima koji su rezultat PCA algoritma. Prvi klasifikator daje slične rezultate kao klasifikator dobijen primenom algoritma k najbližih suseda, a drugi daje rezultate nalik na klasifikator dobijen CART algoritmom.

4.5. Algoritam slučajne šume (engl. Random Decision Forest)

Algoritam slučajne šume zasnovan je na stablima odlučivanja i jedan je od poznatijih ansambl metoda u oblasti mašinskog učenja. Ansambli predstavljaju skup modela koji zajedno čine jedan model.

Algoritam je primenjen u programskom jeziku pajton (engl. *Python*) nad skupom podataka koji je pretprocesiran u IBM SPSS modeleru. Korišćeno je 3 stabla odlučivanja (parametar *n_estimators* je postavljen na 3) koja kasnije pri klasifikaciji donose odluku glasanjem. Na narednoj slici nalaze se statistike klasifikacije:

Matrica	konf	uzije								
[[3031	929	123	263	25	5	39	3	2	01	
[1671	769	176	230	23	9	35	1	0	01	
[560	320	83	102	11	5	29	2	3	0)	
[902	497	119	210	12	3	33	2	0	01	
[212	127	31	41	6	3	4	1	0	1]	
[140	69	23	29	3	2	8	1	0	01	
[351	182	72	73	10	5	14	2	0	01	
[82	41	10	20	0	1	3	1	0	01	
[43	19	4	2	5	2	1	0	0	0]	
[11	6	1	4	0	0	1	0	0	0]]	
Izvestaj	kla	sifik	acije							
		pre	cision		recall	f1	-score	31	apport	
	0	00	0.43		0.69		0.53		4420	
	1		0.26		0.26		0.26		2914	
	2		0.13		0.07		0.09		1115	
	3		0.22		0.12		0.15		1778	
	4		0.06		0.01		0.02		426	
	5		0.06		0.01		0.01		275	
	6	i	0.08		0.02		0.03		709	
	7		0.08		0.01		0.01		158	
	8	1	0.00		0.00		0.00		76	
	9		0.00		0.00		0.00		23	
accu	racy						0.35		11894	
macro	avg		0.13		0.12		0.11		11894	
weighted	avg		0.28		0.35		0.30		11894	

Slika 4.9. Matrica konfuzije i izvestaj klasifikacije Random Decision Forest klasifikatora

Na osnovu dobijenog izveštaja, preciznosti klasifikacije trening skupa od približno 0.856 i preciznosti klasifikacije test skupa od približno 0.346, zaključujemo da je došlo do problema preprilagođavanja trening podacima što ovaj klasifikator nad datim podacima čini lošim.

5. Zaključak

Cilj istraživanja Online News Popularity skupa podataka, odnosno skupa podataka o člancima koje je objavio *Mashable*, bio je odrediti njihovu popularnost. Pošto je nad podacima bilo potrebno izvršiti klasifikaciju, bilo je neophodno diskretizovati ciljni atribut prilikom pretprocesiranja podataka. Primenjeno je pet algoritma, od toga četiri nad skupom podataka sa svim atributima i nad skupom podataka sa redukovanim brojem atributa. Najbolje rezultate dao je klasifikator dobijen algoritmom C5.0 nad redukovanim skupom podataka, sa preciznošću preko 70%. Ostali algoritmi (primenjeni korišćenjem IBM SPSS modelera) klasifikovali su podatke sa preciznošću od 40% do 50%, dok se u slučaju algoritma slučajne šume javlja problem preprilagođenosti trening podacima.

Ono što je zanimljivo jeste da između modela nad redukovanim skupom atributa i modela primenjenih nad svim atributima (sa izuzetkom modela dobijenog sa C5.0) nema značajne razlike u klasifikaciji, a metod potpornih vektora se čak pokazao boljim nad svim atributima skupa podataka. Ovo može biti posledica toga da svi atributi u maloj meri utiču na promenljivost ciljnog atributa.