东南大学 2009-2010 学年第二学期《高等数学(上)》 期中考试试卷

			, v, i , , , ,	V-V				
课程名称	高等数	学 A、B(期	中) 考试 ———	学期 09·	-10-2	得分 ———		
适用专业	<u> </u>	科类	考试形式_	【形式 闭卷 ————————————————————————————————————		考试时间长度 120 分		
题号	_	=	Ξ	四	五	六		
得分								
一.填空题(每个空格 4 分,本题满分 24 分)								
1. 设 $f(x) = \begin{cases} \frac{1 - \sqrt{1 - x}}{x}, & x < 0 \\ a + bx, & x \ge 0 \end{cases}$ 在 $x = 0$ 处可导,则 $a = $;								
2. 设y = ai	rctan e ^x – x	$x+\frac{1}{2}\ln(e^{2x}+$	1), $\bigcup_{x} \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x}$	-1 =	;			
3. 设y = y	(x) 是由方	程xsiny+)	$ve^x + \frac{\pi}{2} = 0 \ $	听确定的 隐函	函数,则 y′(€)) =;	:	
4. 函数 y =	$e^{2x}(x^2-2$) 的单调减少	区间是					
5. $f(x) = 3$	arcsin x 带	有Peano 余	项的三阶 M a	claurin 公式	式为 <u></u>	_;		
6. 当x → 0) 时, f(x)	$)=\sin x-2s$	$\sin 3x + \sin 5$	x 是 x 的	阶无穷小	∖量(填数字	');	
二.单项选择	题(每小匙	0.4分,本题	满分 12 分)					
7. 若极限1	$\lim_{x\to a} f(x) = 0$	∞ , $\lim_{x\to a} g(x) =$	= ∞ ,则必有		Ī	1		
(A) $\lim_{x\to a} [f]$	(x) + g(x)] = ∞	(E	$\lim_{x \to a} \left[f(x) \right]$	-g(x) =	œ		
(C) $\lim_{x \to a} \frac{1}{f(x)}$	$\frac{1}{(x)+g(x)}=$	= 0	(2	$D) \lim_{x \to a} kf(x)$) = ∞,(k为 ⋮	非零常数))	
8. 设函数 /	在区间[0	,1] 上二阶可	导,且 f "(x)	> 0 ,则有]]		
(A) $f'(1) >$	f'(0) > f	(1) - f(0)	(B)	f'(1) > f(1	(1) - f(0) > f(0)	f'(0)		
(C) f(1)-	f(0) > f'(1)	l) > f'(0)	(D)	f'(1) > f(0) - f(1) >	f'(0)		

[]

9. 下列命题中正确的是

- (A)若 f 在点 x。处可导,则 |f| 在点 x。处也可导;
- (B) 若 f 在点 x_0 处可导,则 f 在点 x_0 的某个邻域内连续;
- (C) 若 $f \in C[a,b)$, f 在 (a,b) 可导,且 $\lim_{x \to a^+} f'(x) = k$, (k为有限数),则 f 在点a处存在 右导数 $f'_+(a)$,且 $f'_+(a) = \lim_{x \to a^+} f'(x) = k$;
- (D) 设函数 $y=f\circ g$ 是由 y=f(u), u=g(x) 复合而成,如果 g 在 x_0 处间断, f 在点 $u_0=g(x_0)$ 处间断,则复合函数 $y=f\circ g$ 在点 x_0 处也间断。

三.计算题(每小题 9 分, 本题满分 36 分)

10. 计算极限
$$\lim_{n\to\infty} \left(1 + \frac{1}{n} + \frac{1}{n^2} \sin^2 n\right)^n$$

11. 计算极限
$$\lim_{x\to 0} \frac{e^{-x^2}-1+x^2}{\sin^4(\sqrt{2}x)}$$

四(14).(8分)求函数
$$F(x) = \frac{1+e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}$$
 的间断点,并指出间断点的类型(需说明理由).

五(15). (8分) 证明: 当 0 <
$$x < \frac{\pi}{2}$$
时, $2 \sin x + \tan x > 3x$.

六(16). (6分). 设
$$f(x) = ax^2 + bx + c$$
, (a,b,c) 常数),且当 $|x| \le 1$ 时, $|f(x)| \le 1$,

证明: 当 $|x| \le 1$ 时, $|f'(x)| \le 4$.

七(17). (6分) 设 $f \in C[0,1]$, f在(0,1)可导,且f(0) = f(1) = 0,

 $\max_{x \in [0,1]} f(x) = M > 0$,证明: 对于大于 1 的任意正整数 n ,存在互异的两点 $\xi_1, \xi_2 \in (0,1)$,

使得 $\frac{1}{f'(\xi_1)} - \frac{1}{f'(\xi_2)} = \frac{n}{M}$.

09-10-2 高等数学(A, B)期中试卷参考答案

- 一.填空题(每个空格 4 分, 本题满分 24 分)

- 3. $1+\frac{\pi}{2}$;

- 二.单项选择题(每小题 4 分, 本题满分 12 分)

反例: $u = g(x) = \begin{cases} 2, x = 0 \\ & \text{在 } x = \text{ 问 断 }, y = f(u) = (\begin{cases} 3u, > 2 \\ 1, x \neq 0 \end{cases} = \text{问 断}$

三.计算题(每小题9分,本题满分36分)

10.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} + \frac{1}{n^2} \sin^2 n \right)^n = e$$
 11. $\lim_{x \to 0} \frac{e^{-x^2} - 1 + x^2}{\sin^4(\sqrt{2}x)}$

11.
$$\lim_{x \to 0} \frac{e^{-x^2} - 1 + x^2}{\sin^4(\sqrt{2}x)} = \frac{1}{8}$$

12.
$$\frac{dy}{dx}\Big|_{t=0}$$
, $\frac{d^2y}{dx^2}\Big|_{t=0} = 3$, $\frac{11}{3}$

13.
$$f(x) = \frac{1}{2}x^2 + \frac{1}{2}x^2\cos 2x$$

$$f^{(n)}(x) = 2^{n-3} \left[4x^2 \cos(2x + \frac{n}{2}\pi) + 4nx \cos(2x + \frac{n-1}{2}\pi) + n(n-1)\cos(2x + \frac{n-2}{2}\pi) \right] \square$$

(14). (8分)

$$x = 0$$
是第一类, $x = \frac{1}{\ln \frac{2}{3}}$ 是第二类

五(15). (8分) 答案略

六(16). (6分). 提示: $|f'(x)| = |2ax + b| \le |\pm 2a + b| \le |a| + |a \pm b| \le 2 + 2 = 4$

七(17). (6分) 提示:存在 $c, f(c) = \frac{M}{n}$,在[0,c][c,1]上分别使用Lagrange中值定理.

