Vectors and dot products

September 3rd, 2024

Here are some key ideas from sections 8.2 and 8.3.	
 When we scale a vector by a constant c, we mult magnitude by a factor of 	iply its coordinates by a factor of and multiply its
• For a vector $\vec{a} = [a_1, a_2, \cdots a_n]$, its magnitude is g	iven by
 For two vectors \$\vec{a} = [a_1, a_2, a_3]\$ and \$\vec{b} = [b_1, b_2, b_3]\$, t Let \$\theta\$ be the angle between the two vectors lying two angles we could draw). Then we can calcula 	in the interval $0 \le \theta \le \pi$ (in other words, the smaller of the
two ungres we could draw). Then we can eace and	
Problem 1: (Stewart & Day 8.2) Find a unit vector in the	the same direction as $[8,-1,4]$.
My Attempt:	Solution:
Problem 2: (Stewart & Day 8.2) Find a vector that has	the same direction as $[-2, 4, 2]$ but has length 6.
My Attempt:	Solution:

Problem 3: (LibreTexts) A methane molecule has a carbon atom situated at the origin and four hydrogen atoms located at points P(1,1,-1), Q(1,-1,1), R(-1,1,1), and S(-1,-1,-1). Let O be the origin. Find the angle between vectors OS and OR (both beginning at O) that connect the carbon atom with the hydrogen atoms located at S and S. This is also called the bond angle.

Problem 4: (Stewart & Day 8.3) For what values of b are $[-6, b, 2]$ and $[b, b^2, b]$ perpendicular? My Attempt: Solution: Problem 5: (Stewart & Day 8.3) Find the three angles of the triangle with the vertices $(1, 0)$, $(3, 6)$, and $(-1, 4)$. My Attempt: Solution:	My Attempt:	Solution:	
My Attempt: Solution:			
Problem 5: (Stewart & Day 8.3) Find the three angles of the triangle with the vertices $(1,0)$, $(3,6)$, and $(-1,4)$.	Problem 4: (Stewart & Day 8.3) For what values of b are $[-6, b, 2]$ and $[b, b^2, b]$ perpendicular?		
	My Attempt:	Solution:	
	Problem 5: (Stewart & Day 8.3) Find the three angles of t	he triangle with the vertices $(1,0)$, $(3,6)$, and $(-1,4)$.	
My Attempt: Solution:			
	My Attempt:	Solution:	

Problem 5: Use a formula we discussed today to derive new ones

- 1. Write a formula for the dot product of two parallel vectors.
- 2. Write a formula for the dot product of two vectors pointing in opposite directions.
- 3. Write a formula for the dot product of two perpendicular vectors.

My Attempt:	Solution:

Problem 6: (Stewart & Day 8.3) Let \vec{u} be a diagonal of some cube (going through the cube), and let \vec{v} be a diagonal of one of its faces. Find the angle between \vec{u} and \vec{v} . Hint: what are the vectors?

My Attempt: Solution:

Problem 7: (Apostol 12.8) Prove that for two vectors \vec{a} and \vec{b} in \mathbb{R}^n , we have

$$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2|\vec{a}|^2 + 2|\vec{b}|^2.$$

My Attempt:

Solution:

Challenge Problem: (Stewart & Day 8.3) Show that if $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are orthogonal, then the vectors \vec{u} and \vec{v} must have the same length.