IIT Jodhpur

Biological Vision and Applications Module 07-05: Qualitative spatial and temporal relations

Hiranmay Ghosh

Allen's Interval Algebra

- Consider three 1D interval events: A, B, C
 - 1. A r_{AB} B
 - 2. B *r_{BC}* C
- Can we infer the relation between A and C?
 - ightharpoonup A r_{AC} C
 - ► Given r_{AB} , r_{BC} , can we find r_{AC} ?

An Intuitive Introduction

- Consider the statements:
 - 1. I went to gym just before having my breakfast: Gym m Bf
 - 2. I went to office immediately after the breakfast: Bf m Office
- We can conclude
 - ► Temporal relation between Gym and Office: Gym *b* Office
- Transition rule: $(m, m) \rightarrow b$
- An example of temporal sequencing

An Intuitive Introduction (contd)

- Consider the statements:
 - 1. I attended office some time during yesterday: Office d Yday
 - 2. I ate my lunch while at office: Lunch d Office
- We can conclude
 - Temporal relation between Lunch and Yesterday: Lunch d Yday
- Transition rule: $(d, d) \rightarrow d$
- An example of hierarchical decomposition

An Intuitive Introduction (contd)

- 1. Ram came in the room while Shyam was there and continued after Shyam left:
 - Shyam o Ram
- 2. Jadu came into the room when Ram was there and continued after Ram left:
 - ▶ Ram *o* Jadu

- The temporal relation between Shyam and Jadu cannot be uniquely resolved
 - ► Shyam b, m, o Jadu
- Transition rule: $(o, o) \rightarrow \{b, m, o\}$

Allen's temporal algebra

- Given that A r_{AB} B and B r_{BC} C
 - 1. where r_{XY} is one of the Allen's relation
- Temporal constraint between A and C: A R_{AC} C
 - \triangleright where R_{AC} is a subset of Allen's relation
- Mapping $r \times r \xrightarrow{T} R$ is defined over a transitivity table
 - $ightharpoonup R \leftarrow T(r_1, r_2)$
 - ▶ 13 × 13 entries in transitivity table

Allen's transitivity table

Allen's Interval Algebra

Generalizing ...

- R_{ij} , R_{jk} , R_{ik} : Temporal constraints between event-pairs
- (E_i, E_j) , (E_j, E_k) and (E_i, E_k)
 - In general, each is a subset of Allen's relations
- The algorithm for computing $Constraint(R_{ij}, R_{jk}) \neq R_{ik}$:

Algorithm 18: Computing relational constraint

```
procedure Constraint(R_{ij}, R_{jk})
C = \emptyset;
for each p \in R_{ij} do
\begin{array}{c|c} & \text{for each } p \in R_{ij} \text{ do} \\ & \hline C \leftarrow C \cup T(p,q); \\ & \text{end} \\ & \text{end} \\ & \text{return } C; \\ \end{array}
```

Uncertainty with the endpoints

- Where do the shore ends and the sea starts
- A man is walking He falls
- When does he start falling and when does he end falling?

Measurement error

 \mathbf{B}

A before B?
A meets B?
A overlaps B?

Approximate qualitative relations

Conceptual neighborhood

- Relations organized in 2D defines conceptual neighbors
- Ambiguity in boundary / Measurement error may lead to a relation to be misclassified in it's conceptual neighborhood
- A set of relations in a conceptual neighborhood defines an "approximate relation"
- For fuzzy representation, see book

	$e_A < e_B$			$e_A = e_B$		$e_A > e_B$		
$e_A = s_B$ $e_A < s_B$	ь							
$e_A = s_B$		m						$s_A < s_B$
$e_A > s_B$			0	fi	di			
			s	eq	si			$s_A = s_B$
			d	f	oi			
						mi		$s_A > s_B$
							bi	
	$s_A < e_B$					$s_A = e_B$	$s_A > e_B$	

Semantics of Allen's relations

No quiz for module 07-05

End of Module 07-05