FRACTAL GEOMETRY METHODS (Section 10-3 in *Computer Graphics*)

SWEEP REPRESENTATIONS (Section 10-4 in *Computer Graphics*)

CONSTRUCTIVE GEOMETRY METHODS (Section 10-5 in *Computer Graphics*)

QUADTREES AND OCTREES (Section 10-6 in *Computer Graphics*)

Fractal Geometry Methods

- used to model irregular and fragmented features (of mountains and clouds, for example)
- a fractal shape has a fractal dimension in addition to its spatial dimension(s)
 - the length of a smooth curve between two points is precise
 - a fractal curve contains infinite detail at each point along the curve - the closer you get, the more detail you see

- a fractal curve is generated by applying repeatedly a transformation function to points within a region of space
- detail in the final display is determined by
 - the number of iterations
 - the resolution of the display
- · generating levels of detail
 - let $P_0 = (x_0, y_0)$ be the initial point
 - $P_1 = F(P_0)$
 - $P_2 = F(P_1)$
 - $P_3 = F(P_2)$
- either regular or random variations can be generated along the curve at each iteration

- pattern (a) is reduced by 1/3
- the reduced pattern is used to replace the middle third
- the result is pattern (b)

example, continued

length increases with each iteration

- many fractal curves are generated with functions in the complex plane
 - each two-dimensional point (x, y) is represented as z = x + iy
 - the complex function f(z) maps points repeatedly from one position to another
 - iteration can cause points to
 - diverge to infinity
 - converge to a finite limit
 - · remain on some curve

• example: $f(z) = z^2$

- transforms points according to their relation to the unit circle

- for abs(z) > 1, the sequence transforms the point toward infinity
- for abs(z) < 1, the sequence transforms the point toward the origin

example:

$$x = 0.3$$
, $y = 0.5$
 $f(z) = z^2$
 $= x^2 - y^2 + 2ixy$
 $= 0.09 - 0.25 + 2i(0.3)(0.5)$
 $= -0.16 + 0.30i$

 for abs(z) = 1, the sequence keeps the point on the circle

• two fractal curves generated with the inverse of the function

- lambda = 2 + i

fractal surfaces

• procedures are similar to fractal curve procedures

- a triangle becomes a fractal surface by random displacement of points on the boundary
 - select a random point on each leg of the triangle
 - apply random displacement distances to each of the three points
 - join displaced points with straight lines
 - repeat the process

fractal surfaces using quaternions

- \bullet q = q₀ + iq₁ + jq₂ + kq₃
- the quaternion formulation requires 4 terms; 1 term is discarded
- points in space are transformed iteratively
- each point is tested to be inside or outside the surface
- any inside point that connects to an outside point is a surface point, keeping points near the surface

display of fractal surfaces

- represent each point on the surface as a small cube
- determine the lighting and color of each surface cube
- remove hidden surfaces
- see figure 10-31 on page 211
 - terrain reflects light
 - clouds absorb and scatter light
- each part of the fractal object has infinite detail
- see figure 10-32 on page 212

Sweep Representations

- solids with translational or rotational symmetry can be formed by sweeping a two-dimensional figure through a region of space
- translational sweep using a cross section of the intended object

 rotational sweep using a cross section parallel to the axis of rotation

Constructive Solid-geometry Methods

- begin with a set of primitive shapes
 - blocks
 - pyramids
 - cylinders
 - cones
 - spheres
 - etc.
- apply set operations
 - union
 - intersection
 - difference

Constructive Solid-geometry Methods, continued

• union

• intersection

- find points within the boundaries of both objects or
- use octree representations

Quadtrees and Octrees

- quadtrees: tree structures which can represent planar objects
 - each node has one field for each quadrant
 - if the quadrant is homogeneous (all the pixels are the same), the field stores its description
 - if the quadrant is heterogeneous, it is divided into four subquadrants

Region of a Two-Dimensional Space

- subdivision continues until all quadrants
- are homogeneous

- 2ⁿ-by-2ⁿ pixels requires at most n levels
 quadtrees produce significant savings when large homogeneous areas exist

Quadtrees and Octrees, continued

- octrees: tree structures which can represent solid objects
 - each node has one field for each octant
 - if all the voxels in an octant are homogeneous (including "void"), the field stores its description
 - if the voxels are heterogeneous, the octant is divided into eight suboctants

Region of a Three-Dimensional Space

0	1	2	3	4	5	6	7

Data Elements in the Representative Octree Node

octree implementation

- a box is defined around the object
- octants are tested to generate the octree representation
- octrees can be unioned, intersected and differenced
- octrees support
 - transformation
 - hidden-surface removal
 - shading
 - conversion to a quadtree representation for mapping to a frame buffer
- spatial coherence produces savings

- Fractal Geometry Methods
- Sweep Representations
- Constructive Geometry Methods
- Quadtrees and Octrees