NSI DIU 2019 - Bloc 1

ACTIVITÉS

CODAGE DES NOMBRES ENTIERS

Exercice 1: Conversions

Questions	Réponses
a) Convertir en binaire les nombres décimaux suivants : 273.	100010001
b) Convertir en décimal les nombres binaires suivants : 10001101.	141
c) Convertir en hexadécimal les nombres décimaux suivants : 314.	13A
d) Convertir (9F2) ₁₆ en binaire	2546
e) Convertir $(1111110101)_2$ en hexadécimal.	3F5
f) Convertir en décimal les nombres hexadécimaux suivants : 2C4.	708

Exercice 2 : Codage sur 2 octets

Un ordinateur code les entiers sur 2 octets, dont un bit de signe (bit de poids le plus fort).

Qu	estions	Réponses
a)	Donner le codage de l'entier 38	38 = 00100110
		Sur 2 octets
		38 = 00000000 00100110
b)	Donner le codage de l'entier 156.	156 = 10011100
		Sur 2 octets
		156 = 00000000 10011100
c)	Donner le codage de l'entier 194.	194 = 11000010
		Sur 2 octets
		194 = 00000000 11000010
d)	Retrouver ce résultat en utilisant les réponses aux questions a et b.	38 + 156 = <u>194</u>
		00100110 + 10011100
		= <u>11000010</u>

Exercice 3: Codage sur 2 octets

Un ordinateur code les entiers sur 2 octets, selon la méthode du complément à 2.

Questions	Réponses
a) Donner le codage de l'entier 147	147 = 10010011
	Sur 2 octets
	147 = 00000000 10010011
b) Donner le codage de l'entier -200.	200 = 11001000
	Sur 2 octets
	200 = 00000000 11001000
	Inversion des bits= 11111111 00110111
	On ajoute 1 = 00000000 00000001
	Complément à 2 = 11111111 00111000
	-200 = 11111111 00111000
c) Donner le codage de l'entier -53.	Sur 2 octets 200 = 00000000 00110101
	Inversion des bits= 11111111 11001010
	On ajoute 1 = 00000000 00000001
	Complément à 2 = 11111111 11001011
	-53 = 11111111 11001011
d) Retrouver ce résultat en utilisant les réponses aux	147 -200 = <u>- 53</u>
questions a et b.	00000000 10010011 + 111111111

NSI DIU 2019 - Bloc 1

00111000 = <u>11111111 11001011</u>

Exercice 4: Opérations sur les nombres binaires

1) Effectuer ces additions en binaire, puis vérifier en décimal.

		1					1				1				1	1	1			1	1	1				
	1	0	1	1	0	0	0	1	1		8	5	5			1	1	1	0	0	1	1	1	2	3	1
+			1	0	0	1	0	1	0			7	4		+			1	1	0	1	1	1		5	5
	1	1	0	1	0	1	1	0	1		4	2	9		1	0	0	0	1	1	1	1	0	2	8	6

2) Effectuez ces soustractions en binaire, puis vérifiez en décimal.

	1	0	1	1	0	1	1		9	₁ 1				1	₁ 0	1	₁ 0	₁ 0	1	0		8	2
-			1	0	0	0	1		₁ 1	7			1	1	1	11	10	1	1	0		2	2
									7	4												6	0
	1	0	0	1	0	1	0							0	1	1	1	1	0	0			

3) Effectuer ces multiplications en binaire, puis vérifier en décimal.

			1	1	1	1	0				3	0						1	1	0	0	1	1			5	1	
		*	_	_	1	1	0					6					*	_	1	0	0	1	1			1	9	
	1	1	1							1	8	0				1	0	1		1	1				4	5	9	
			0	0	0	0	0											1	1	0	0	1	1		5	1		
		1	1	1	1	0											1	1	0	0	1	1			9	6	9	
	1	1	1	1	0									1	1	0	0	1	1									
1	0	1	1	0	1	0	0							1	1	1	1	0	0	1	0	0	1					