Full-Information Online Learning with Adversarial Reward

Chen-Yu Wei

The Expert Problem

Alternative protocol:

Environment **decides** the reward vector r_t (not revealing)

Learner chooses an expert a_t

Environment reveals r_t

Given: set of experts $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Learner chooses a distribution over experts $p_t \in \Delta_{\mathcal{A}}$

Environment **decides** and reveals the reward vector $r_t = (r_t(1), ..., r_t(A))$

Adversarial environment: $r_1(a), ..., r_T(a)$ do not have the same mean

Regret =
$$\max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_t(a) - \sum_{t=1}^{T} \langle p_t, r_t \rangle$$

Strategies?

Follow the leader

$$a_t = \max_{a \in \mathcal{A}} \left\{ \sum_{i=1}^{t-1} r_i(a) \right\}$$

time		2	3	4	5	`
action 1	1/2		(0)		0	· · · -
action2	1			(\circ)	1	

Learner total remand < |

Total remand of best action

= T

•

Incremental Updates

Projected gradient ascent:

$$p_{t+1} = \Pi_{\Delta_{\mathcal{A}}}(p_t + \eta r_t)$$

Exponential weight updates:

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))}$$

$$\prod_{\Delta} (y) = \underset{X \in \Delta}{\operatorname{agmin}} \| x - y \|_{2}$$

Equivalent Forms of EWU

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))}$$

$$P_{t+1}(\alpha) \propto P_{t}(\alpha) \exp(2 I_{t}(\alpha)) \propto P_{t-1}(\alpha) \exp(2 I_{t-1}(\alpha))$$

$$= \exp(2 I_{t}(\alpha))$$

$$p_{t+1}(a) = \frac{\exp(\eta \sum_{i=1}^{t} r_i(a))}{\sum_{a' \in \mathcal{A}} \exp(\eta \sum_{i=1}^{t} r_i(a'))} \frac{1}{2} t \cdot \frac{f_t(a)}{f_t(a)}$$

$$p_{t+1} = \operatorname*{argmax}_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(p, p_t) \right\}$$

$$\mathrm{KL}(p,q)\coloneqq\sum_{a=1}^Ap(a)\ln\frac{p(a)}{q(a)}$$
 (KL divergence) $H(p)\coloneqq\sum_{a=1}^Ap(a)\ln\frac{1}{p(a)}$ (Shannon entropy)

$$p_{t+1} = \operatorname*{argmax}_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(p, p_t) \right\} \qquad p_{t+1} = \operatorname*{argmax}_{p \in \Delta_{\mathcal{A}}} \left\{ \left\langle p, \sum_{i=1}^{t} r_i \right\rangle + \frac{1}{\eta} H(p) \right\}$$

$$H(p) \coloneqq \sum_{a=1}^{A} p(a) \ln \frac{1}{p(a)}$$
 (Shannon entropy)

Regret Bound for Exponential Weight Updates

Theorem.

Assume that $\eta r_t(a) \leq 1$ for all t, a. Then EWU

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))}$$

$$\frac{\ln A}{\eta} + \eta \sum_{t=1}^{\infty} p_t(a) \exp(\eta r_t(a'))$$

ensures

sures
$$\operatorname{Regret} = \max_{a^{\star}} \sum_{t=1}^{T} (r_{t}(a^{\star}) - \langle p_{t}, r_{t} \rangle) \leq \frac{\ln A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} p_{t}(a) r_{t}(a)^{2}$$

Regret Bound Analysis

$$P_{I}(\alpha) = \frac{1}{A}$$

$$P_{t+1}(a) = \frac{P_{t}(u) \exp(2Y_{t}(a))}{\sum_{a'} P_{t}(a') \exp(2Y_{t}(a'))}$$

$$\Rightarrow_{log} \frac{P_{t+1}(\alpha^*)}{P_{t}(\alpha^*)} = log \frac{exp(2Y_{t}(\alpha^*))}{\sum_{\alpha} P_{t}(\alpha) exp(2Y_{t}(\alpha))} = 2Y_{t}(\alpha^*) - log(\sum_{\alpha} P_{t}(\alpha) exp(2Y_{t}(\alpha)))$$

$$\Rightarrow r_{t}(\alpha^{*}) - \langle P_{t}, r_{t} \rangle = \frac{1}{2} \log \frac{P_{t+1}(\alpha^{*})}{P_{t}(\alpha^{*})} + \frac{1}{2} \log \left(\sum_{\alpha} P_{t}(\alpha) \exp(2k_{t}(\alpha)) \right) - \langle P_{t}, r_{t} \rangle$$

$$\Rightarrow Regnt = \sum_{t=1}^{T} \left(r_{t}(\alpha^{*}) - (l_{t}, r_{e}) \right)$$

$$= \frac{1}{2} \log \frac{\left(r_{t}(\alpha^{*}) - (l_{t}, r_{e}) \right)}{\left(r_{t}(\alpha^{*}) - (l_{t}, r_{e}) \right)}$$

$$= \frac{1}{2} \log A + 2 \sum_{t=1}^{T} l_{t}(\alpha) l_{t}(\alpha)^{2}$$

$$\leq \frac{1}{2} \log A + 2 \sum_{t=1}^{T} l_{t}(\alpha) l_{t}(\alpha)^{2}$$

$$\frac{1}{2} \log \left(\sum_{\alpha} P_{t}(\alpha) \exp \left(2 r_{t}(\alpha) \right) \right) - \langle P_{t}, r_{t} \rangle$$

$$\leq \frac{1}{2} \log \left(\sum_{\alpha} P_{t}(\alpha) \left(1 + 2 r_{t}(\alpha) + 2 r_{t}(\alpha)^{2} \right) \right) - \langle P_{t}, r_{t} \rangle$$

$$= \frac{1}{2} \log \left(\sum_{\alpha} P_{t}(\alpha) \left(1 + 2 r_{t}(\alpha) + 2 r_{t}(\alpha)^{2} \right) \right) - \langle P_{t}, r_{t} \rangle$$

$$= \frac{1}{2} \log \left(\sum_{\alpha} P_{t}(\alpha) + 2 \sum_{\alpha} P_{t}(\alpha) r_{t}(\alpha) + 2 \sum_{\alpha} P_{t}(\alpha) r_{t}(\alpha)^{2} \right) - \langle P_{t}, r_{t} \rangle$$

$$= \frac{1}{2} \left(2 \sum_{\alpha} P_{t}(\alpha) r_{t}(\alpha) + 2 \sum_{\alpha} P_{t}(\alpha) r_{t}(\alpha)^{2} \right) - \langle P_{t}, r_{t} \rangle$$

$$= 2 \sum_{\alpha} P_{t}(\alpha) r_{t}(\alpha)^{2}$$

$$= 2 \sum_{\alpha} P_{t}(\alpha) r_{t}(\alpha)^{2}$$

Exponential Weight Updates

$$\Delta A = \left\{ \begin{array}{l} \chi \in \mathbb{R}^A : \sum_{\alpha} \chi(\alpha) = 1, \quad \chi(\alpha) \geq 0 \end{array} \right\}$$

Exponential Weight Updates = KL divergence regularized policy updates

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))} = p_{t+1} = \underset{p \in \Delta_{\mathcal{A}}}{\operatorname{argmax}} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(p, p_t) \right\}$$

$$F(p)$$

$$F$$

KL divergence regularized policy updates is the basis of many RL algorithms (e.g., PPO, SAC).

Projected Gradient Descent

Projected Gradient Descent = Euclidean norm regularized policy updates

$$p_{t+1} = \Pi_{\Delta_{\mathcal{A}}}(p_t + \eta r_t)$$

$$= \left| p_{t+1} = \underset{p \in \Delta_{\mathcal{A}}}{\operatorname{argmax}} \left\{ \langle p, r_t \rangle - \frac{1}{2\eta} \| p - p_t \|_2^2 \right\} \right|$$

Recap

- We considered **full-information**, **policy-based** learning algorithms for the expert problem (finite action decision-making problem).
- We showed that the exponential weight algorithm achieves sub-linear regret even when the reward is adversarial.
- Actually, projected gradient descent also works, though we haven't provided a proof (will do it today).
- Exponential weight updates = KL divergence regularized gradient updates
- Projected gradient descent = Euclidean norm regularized gradient updates

Distance Regularized Updates

Projected Gradient Descent

$$p_{t+1} = \prod_{\Delta_{\mathcal{A}}} (p_t + \eta r_t)$$

$$p_{t+1} = \max_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{2\eta} ||p - p_t||_2^2 \right\}$$

$$p_{t+1} = \max_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} ||p - p_t||_2^2 \right\}$$

$$p_{t+1} = \max_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} ||p - p_t||_2^2 \right\}$$

Exponential Weight Updates

$$p_{t+1}(a) \propto p_t(a) \exp(\eta r_t(a))$$

$$p_{t+1} = \max_{n \in A} \left\{ \langle p, r_t \rangle - \frac{1}{n} \text{KL}(p, p_t) \right\}$$

- Adversarial reward
- Stochastic reward
- For non-linear functions, gradient only approximates the function locally

General Framework: Mirror Descent

Projected Gradient Descent

$$p_{t+1} = \prod_{\Delta_{\mathcal{A}}} (p_t + \eta r_t)$$

$$p_{t+1} = \max_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{2\eta} \|p - p_t\|_2^2 \right\}$$

$$p_{t+1} = \max_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{2\eta} \|p - p_t\|_2^2 \right\}$$

$$p_{t+1} = \max_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} \text{KL}(p, p_t) \right\}$$

Exponential Weight Updates

$$p_{t+1}(a) \propto p_t(a) \exp(\eta r_t(a))$$
$$p_{t+1} = \max_{n \in A} \left\{ \langle p, r_t \rangle - \frac{1}{n} \text{KL}(p, p_t) \right\}$$

$$\psi(p) = \frac{1}{2} \|p\|_2^2$$

Mirror Descent

$$p_{t+1} = \max_{p \in \Omega} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} D_{\psi}(p, p_t) \right\} \bigg|$$

$$\psi(p) = \sum_{a=1}^{n} p(a) \ln p$$

$$D_{\psi}(p,q) := \psi(p) - \psi(q) - \langle \nabla \psi(q), p - q \rangle$$

(Bregman divergence w.r.t. the potential function / regularizer ψ)

Online Linear Optimization and Projected Gradient Descent

Given: Convex feasible set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Learner chooses a point $w_t \in \Omega$

Environment reveals a reward vector $r_t \in \mathbb{R}^d$

Regret =
$$\max_{w \in \Omega} \sum_{t=1}^{T} \langle w, r_t \rangle - \sum_{t=1}^{T} \langle w_t, r_t \rangle$$

Projected Gradient Descent

Arbitrary $w_1 \in \Omega$

$$w_{t+1} = \Pi_{\Omega}(w_t + \eta r_t)$$

Regret Bound of Projected Gradient Descent

Theorem. Projected Gradient Descent ensures

$$\sum_{t=1}^{T} \langle w^*, r_t \rangle - \sum_{t=1}^{T} \langle w_t, r_t \rangle \le \frac{\|w^* - w_1\|_2^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|r_t\|_2^2 \le \frac{D^2}{2\eta} + \frac{\eta G^2 T}{2} \longrightarrow DG\sqrt{T}$$

$$\begin{split} \| w^{*} - w_{t+1} \|^{2} &= \| w^{*} - T_{\Omega} (w_{t} + \gamma_{t}) \|^{2} \\ &= \| w^{*} - (w_{t} + \gamma_{t}) \|^{2} \\ &= \| w^{*} - w_{t} \|^{2} - 2\gamma \langle w^{*} - w_{t}, \gamma_{t} \rangle + \gamma^{2} \| \gamma_{t} \|^{2} \\ &= \| a \|^{2} + 2 \langle a, b \rangle + \| b \|^{2} \\ &\Rightarrow \sum_{t=1}^{T} \langle w^{*} - w_{t}, \gamma_{t} \rangle \leq \sum_{t=1}^{T} \frac{1}{27} \left(\| w^{*} - w_{t} \|^{2} - \| w^{*} - w_{t+1} \|^{2} \right) + \sum_{t=1}^{T} \frac{2}{2} \| \gamma_{t} \|^{2} \end{split}$$

$$\frac{1}{20} \left(||w^*w_1||^2 - ||w^*w_{T+1}||^2 \right)$$

Summary

Projected Gradient Descent

$$w_{t+1} = \Pi_{\Omega}(w_t + \eta r_t)$$

$$w_{t+1} = \max_{w \in \Omega} \left\{ \langle w, r_t \rangle - \frac{1}{2\eta} \| w - w_t \|_2^2 \right\}$$

Regret
$$\leq O(DG\sqrt{T})$$

$$= O(\sqrt{AT}) \text{ (in the expert setting)}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$D = \max_{x,y \in \Omega} \|x-y\|_2$$
, $G = \max_{t} \|r_{t}\|_2$

$$|r_{t}(\alpha)| \le ||r_{t}|| = \sqrt{\sum_{\alpha} (r_{t}(\alpha))^{2}}$$

$$\approx \int_{A}$$

Exponential Weight Updates

$$p_{t+1}(a) \propto p_t(a) \exp(\eta r_t(a))$$

$$p_{t+1} = \max_{p \in \Delta_{\mathcal{A}}} \left\{ \langle p, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(p, p_t) \right\}$$

$$Regret \le O\left(\sqrt{T\log A}\right)$$

$$\frac{D^2}{27} + \frac{7}{2}G^2T = DGJT$$
optimal 2