"New Electricity" for Partial Differential Equations: A Deep Learning Approach

Kailai Xu, Bella Shi, Shuyi Yin {kailaix, bshi, syin3}@stanford.edu

Overview

Novel Deep Learning Approach for the Laplace equation

$$\Delta u(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \Omega \subset \mathbf{R}^d$$
$$u(\mathbf{x}) = g_D(\mathbf{x}), \mathbf{x} \in \partial \Omega$$

Motivation

- ☐ Traditional methods in engineering are good at d =1, 2, 3;
- ☐ For high dimensions, they suffer from the curse of the dimensionality;
- ☐ Deep Learning is a very promising approach.

Datasets

☐ Generate Boundary Data (o)

$$\{(x_i, y_i) \in \partial \Omega\}, (g_D)_i = g_D(x_i, y_i)$$

☐ Generate Domain Data (x)

Data Generation: A 2D Example.

Boundary Network A(x, y; w)Approximation on the boundary

PDE Network N(x, y; w)

Coupled with A(x, y; w)

Approximation within the domain

Loss Function $\sum_{i=1}^{m} ((g_D)_i - u(x_i, y_i))^2 + \sum_{i=1}^{n} (f_i - \Delta u(x_i, y_i))^2$

Training Algorithm (GAN style):

for number of training iterations for k steps do sample minibatch on the boundary train the **boundary network**

end for

sample minibatch within the domain train the PDE network

Results

- \Box PDE: $\Delta u(x,y) = f(x,y)$
- □ Boundary condition: $u(x,y) = g_D(x,y) = 0$, $x,y \in \partial[0,1]^2$
- □ Exact Solution: $u(x,y) = sin(\pi x)sin(\pi y)$, $f(x,y) = -4\pi^2 u(x,y)$

Mean Square Error

Insights

- For small dimensions, increasing #layers does not increase accuracy, but accelerate convergence.
- For large dimensions, more iterations in training are needed to see convergence, while increasing #layers may also accelerate convergence.

Future Work

- ☐ Generalize results to other types of PDEs.
- ☐ Investigate algorithms for ill-behaved solutions, such as peaks, exploding gradients, oscillations, etc.

References

[1] I.E. Lagaris, A. Likas and D.I. Fotiadis. *Artificial Neural Networks* for Solving Ordinary and Partial Differential Equations, 1997. [2] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations, 2007.