Modèles de graphes déchoires réguliers de surfaces hyperboliques déchoires

N'b chromatique $\chi(G) = t$ petit n'b de contens récessaires pour colorer le graphe sans avoir 2 sommets adj. de mê content.

Chreshon: JL, JC by systole 7, L => X(6) & C?

Inhihan: Les boules de ayon = sont des asbres

-s un arbre 52 hijat
$$\chi(\tau) = 2$$

Erdős à montré que la réponse à la qu'est régalite : Thm; F du graphes (Gn) ty syst(Gn) -> 00 $\chi(Gn) \rightarrow \infty$ ind (6) = "nb d'indipendance" → Ens. indépendent dans 6 = ens. I de sommets

ty xxy EI => xxy. ind (6) = cardinal maximal d'un ensemble indipendent. On & : prop: $\chi(G) > \frac{|V(G)|}{ind(G)}$. Thm: Vn, Vh, I gapte Ga n sommets to and $(G_n) \leq n^{1-\eta}$ pow $\eta < \frac{1}{\epsilon k}$ et syst $(G_n) \geqslant k$ dunc $\chi(G_n) \geqslant n^{\eta}$. Démoi K⁽ⁿ⁾ graphe complet à n sommets avec probe 1 on concerne l'arête (ij), de manière II $V(ij) \in E$ $i, j \in V$

-) < de Markov; soit t>0 fixé (peht) $P(\#giod. fernies de longueur <math>\leq k$) $\geq tn$) $\leq \frac{\#[--]}{tn} \rightarrow 0$ On modifie Gn en Gn' en retirant une arête par géodésique fermée simple de longueur k, de sorte que syst(Gn') > k -1 On a relité au plus en prêtes de sorte qu 51 En partage au moins narêtes accounts les capites de K(P) 22-s K(h), alors Gn aussi et ind (6,1) > p. Graphes d-régulier alectoires, d73

N = #V, on V= 11,-, N}

Phiseus modèls · U = misure uniforme sur tous les graphes d-régulies à n sommets (on interdit les crêtes multiples et les auto-arêtes)

 $\mathbb{F}[-] \leq h = o(n) \text{ par } \epsilon < \frac{1}{h}$

· d = pair, un tire indipersonant de permutators de {1,-, N} σ_{1} , - σ_{2} et on met une aête entre x et $\sigma_{1}(x)$ Vi=1,-d -, loi gn, d (ex: Friedman) an adjoint à chaqe sommet de demi-arêtes et un fait des "appariements perfaits" (perfect matching) entre les demi-arêles. Or pred PN, 1 la proba uniforces perfect matchings # {perfect metching }: (dN-1)(dN-3)(dN-5)--1 = (dN-1)!!NBI PN, d | intochizio boncles = Un, d

k avêtes multiples

Grand pow
$$G_N, \frac{1}{2}$$

Lemma: $P(G_N \text{ non convexe}) = O(N^{1-\frac{d}{2}}) \rightarrow O$

Dimo: denombrement.

P($G_N \text{ non convexe}) = ALJB$, $|A| = k$, $|B| = N - k$
 $k = 1$
 $S_{N,2} = (N) \left(\frac{k!(N-k)!}{N!}\right) \frac{d^2z}{d^2z}$
 $K_{N,1} = (N) \left(\frac{k!(N-k)!}{N!}\right) \frac{d^2z}{d^2z}$
 $K_{N,2} = (N) \left(\frac{k!(N-k)!}{N!}\right) \frac{d$

prop; 3770 tq $|P(\exists p \delta h h d n) + (1, -n) = A \sqcup B t q$ $|A| \leq \frac{n}{\epsilon} \text{ of } lenb \delta' w e h a entre A et B e st \leq n |A|) \xrightarrow{N \to \infty} 0$ Defi este de Cheeger (on este isopérimetrique) $h(G) = min \frac{E(A,B)}{V = A \sqcup B} \quad \text{on} \quad E(A,B) = \# \{arih_1 \text{ on } A \}$ $h(6) = 0 \iff G$ pas connexe h(6) grad $\iff G$ "très connexe". la prop pric. peut se traduire par P(h(GN)>2) -> 1. Bollobas 1988: (*(d) = le neilleur y possible i(d) = limsup sup h(GN) = sup (& 70 tq h(G) > 8

N-, 00 graphs d-rig

a N summels

d-riguliers} $\rightarrow i^*(d) \leq i(d)$

Dans le cons, d sua fixé (mais on put considirer d variable en général)

Borre sup sur
$$i(d)$$
:

soit T_d ('Nore infini d-régulier

 $h(T_d) = d-2$ (exercice)

On pout n_q $i(d) \le h(T_d)$ (burne climentaire)

Thm (Bollobas): à N fixé,

sup $h(G_N) \le \frac{d}{2} \frac{N+1}{N-1} \implies i(d) \le \frac{d}{2}$.

 G_N d-reg $\ni N$ summet, on re exhiber

 $V = ALIB$ I_q $|A| = \lfloor \frac{N}{2} \rfloor$ et $E(A,B) \le \frac{N+1}{N-1}$

Bollobes; i*(d) > d/L - (log z) d

i*(3) 7/2

On choisit A an hasard parmi tous les son-ensembles

or La elements.

On calcule
$$F[E(A,B)] = ZP(z \in A, y \in B)$$
 $(M-z)$

$$= dN - \frac{\left(\frac{N}{2} - 1\right)}{\left(\frac{N}{2}\right)} = \frac{d}{N-1} \left[\frac{N}{2}\right] \left(\frac{N}{2}\right)$$

donc
$$\exists$$
 une pahhan AUB $\frac{1}{4}$ $E(A,B) \leq \frac{d}{N-1} |A| \lceil \frac{N}{2} \rceil$ $\leq \frac{d}{N-1} (N+1) |A|$

$$G = (V, E)$$
, $f : V \rightarrow C$, $\Delta f : V \rightarrow C$

$$\frac{1}{4} \Delta f(x) = \sum_{y \sim x} (f(y) - f(x)) = \left(\sum_{y \sim x} f(y)\right) - df(x)$$

$$= Af(x) - df(x)$$

$$= Af(x) - df(x)$$

$$= \left(\sum_{y \sim x} f(y)\right) - d$$

< 3 (N+1) |A| D

=
$$Af(x) - df(x)$$

= $(A - dI) f(x)$, A opérateur d'adjacence

Preux de l'iniq. Frale: Coacténial vanahonnelle des valeurs propres $d - \mu_z = \inf \left(\frac{\Delta f, f}{\|f\|^2} \right)$ quotient de Rayleigh Ef(x)=0

signifie se f L an vector propre trival $= \inf \frac{1}{2} \sum_{x \neq y} |f(y) - f(z)|^{2}$ $f: V \to C$ $= \inf \frac{1}{2} \sum_{x \neq y} |f(x)|^{2}$ $= \exp e^{-\lambda t}$ $= \exp e^{-\lambda t}$ $= \exp e^{-\lambda t}$ $= \exp e^{-\lambda t}$ soit ALIB pathinan $F = \frac{1}{1AI} - \frac{21}{1BI}$ \rightarrow on a biren $\overline{z} f(x) = 0$ $d-\mu_2 \leq -\frac{\langle \Delta f, f \rangle}{\|f\|^2} \leq \frac{E(A, B)}{\|f\|^2}$ MIN (IAIJB) VM VALIB

Tron spectro des graphes réguliers Inig. de Alon - Boppana: $\mu_2 > 2[d-1] - O(\frac{1}{(log N)})$ tresson Friedman: ((Lug N)2) (snalogne peur suf hypels: Huber 1974 $\lambda_1 \leq \frac{1}{4} + O(\frac{1}{\log(9)^2})$ $d-\mu_2 \leq d-2\sqrt{d-1}+O\left(\frac{1}{(\log N)^2}\right)$ Def: Gapher de Ramanujan | | | < 2 Vd-1 45 > 2 d'une infinité de telsgaphs Existence Voonnue pour d=p+1 avec p premier (construction arithmétique) - Margulis, Lubotzky-Phillips. - Sernah 19881 Thm (Marcus - Spielman - Srivastava); Vd, I une infinité de grophes de Ramanujan bipatr

Tron spectal des graphes réguliers aleatoires Thm: $\forall \epsilon \geq 0$, $\mathbb{P}(|\mu_j| \leq \epsilon |d-1+\epsilon) \longrightarrow 1$ which is a special standard of the square Ramanujan's Friedman 2008) méthode des traces Bordenave 2017 Huang - Yao 2021) technique de matries aleatoires Chen - Ga za Vergas - Topp - Van Handel 2024) CV forte de Thm (Ananthazman - Honk) sufaces hyperboliques compactes orientables de gave g (Aire = 4T(g-1)) PP = mesure de Weil-Petersson = mesure de Lebesgue sur Mg $\forall \, \epsilon, \, \mathbb{P}(\lambda_1 \geqslant \frac{1}{4} - \epsilon) \longrightarrow 1$ $g \rightarrow \infty$ Corollaire: I une suite de surfaces hyp. de genre $g \rightarrow \infty$ tq $\lambda_1(S_g) > \frac{1}{4} - o(1)$

