Methods in Computational Neuroscience Single neuron modeling: action potential generation

arianna.di.bernardo@ens.psl.eu

14.02.2024

In this homework, we will explore how single neurons generate action potentials. In particular, we will investigate two simple models of how real neurons create action potentials: the Integrate-and-Fire and Hodgkin-Huxley models.

MAX PAGES for the report (ex 1 + ex 2) is 8

1. Integrate-and-Fire neuron.

1.1 Simulate the dynamics of the membrane potential. We will start by simulating the voltage across a neuron's membrane when a current I=1nA is injected. For a passive membrane, the voltage is given by the differential equation:

$$C\frac{dV(t)}{dt} = g_L \left(E_L - V(t) \right) + I \tag{1.1}$$

where $C=1\mu F$ is the membrane capacitance, $gL=0.1\mu S$ is the conductance of the membrane, and $E_L=-70mV$ its reversal potential. This equation (and any other differential equation) can be solved numerically using the Euler method, that is, using the approximation:

$$V(t + \Delta t) = V(t) + \frac{dV(t)}{dt} \Delta t.$$
 (1.2)

Implement the Euler Method and plot the dynamics of the membrane potential V(t). Use an initial condition $V(0)=E_L$, and choose a time step $\Delta_t=1ms$. Iterate the model for 100ms (i.e. for 100 time steps).

- **1.2** Change *I*. Change the injected current and explain how the dynamics vary.
- **1.3** [Extra point] Solve the ODE. Compare the numerical solution with the exact solution to the differential equation (1.1).
- **1.4** Spiking mechanism. We will now equip the passive membrane with a very simple action-potential-generating mechanism. For that purpose, we will assume that every

time the voltage V surpasses a threshold V_{th} , the neuron fires an action potential, and the membrane voltage is reset to $V=E_L$. Introduce this spiking mechanism in (1.1) and simulate again the dynamics of the membrane potential. Use $V_{th}=-63mV$ and $V_{max}=+30mV$, which denotes the maximum voltage reached during the spike.

- **1.5** How many spikes? How many spikes do you get within 100ms? Change the input current and see:
- at what current does the neuron starts firing;
- how the current affects the number of spikes within 100ms. Plot the tuning curve of this neuron, i.e. the number of spikes within 100ms as a function of the input current *I*.
- **1.6** Noise and spike trains To make the dynamics more realistic, we introduce a white noise term into the simulation (1.1):

$$C\frac{dV(t)}{dt} = g_L \left(E_L - V(t) \right) + I + \sigma \eta(t). \tag{1.3}$$

Here, σ determines the amount of noise, and $\eta(t)$ is a random variable from a normal distribution with mean 0 and variance 1. Recall to include \sqrt{dt} in the simulation, so that it is independent of the time step (see slides). Simulate again the dynamics of the membrane potential: try with different noise magnitudes and discuss the obtained results.

1.7 Time-varying input Create a time-varying stimulus I(t): this means that the injected current is no longer constant, but it changes at each time step of the dynamics. The simplest time-varying input takes the form: $I = np.zeros(T), \ I[T_{on}:T_{off}] = 1$, meaning that the input is on for a limited period. Invent a time-varying input and see how this impacts the generation of spikes. Use a low level of noise. Plot the membrane potential dynamics, as well as the time-varying input.

2. Hodgkin-Huxley model

So far, we have treated the action potential as a simple threshold crossing of the voltage, without further specification of how exactly it comes about. In the Hodgkin-Huxley model, the generation of the action potential itself is explained through the action of active, voltage-dependent ion channels. The membrane voltage is given by

$$C\frac{dV}{dt} = g_L (E_L - V) + \bar{g}_{\kappa} n^4 (E_K - V) + \bar{g}_{Na} m^3 h (E_{Na} - V) + I$$
 (2.4)

where the second term on the right-hand-side describes the current due to the *delayed-rectifier* K-channel and the third term the current due to the *fast* Na-channel. The parameters of this model are $C=1\mu F/cm^2$, $g_L=0.3mS/cm^2$, $E_L=-54.4mV$, $g_K=36mS/cm^2$, $E_K=-77mV$, $g_{Na}=120mS/cm^2$, and $E_{Na}=50mV$.

The channel variables h,m,n all follow the 1rst-order kinetics, i.e. rate equations of the form

$$\frac{dx}{dt} = \alpha(V)(1-x) - \beta(V)x \tag{2.5}$$

and the opening and closing rates, $\alpha(V)$, and $\beta(V)$ are channel-specific and voltage-dependent:

$$\alpha_n = \frac{.01(V+55)}{1-\exp(-.1(V+55))}$$
 $\beta_n = 0.125 \exp(-0.0125(V+65))$ (2.6)

$$\alpha_m = \frac{.1(V+40)}{1-\exp[-.1(V+40)]}$$
 $\beta_m = 4\exp[-.0556(V+65)]$ (2.7)

$$\alpha_h = .07 \exp[-.05(V + 65)]$$
 $\beta_h = 1/(1 + \exp[-.1(V + 35)])$ (2.8)

2.1 HH dynamics Simulate the Hodgkin-Huxley model. Plot the dynamics of V,h,m and n on the same plot. [Here you have to simulate 4 differential equation **simultaneously**, with the Euler method.]

2.2 Vary I. Increase the injected current I from I=0nA to I=10nA. At which value does the neuron start to spike repetitively? What is its lowest firing rate? What happens at the spiking threshold?