Informed Search

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Main messages

A*. Always be optimistic.

Uninformed vs. informed search

- Uninformed search (BFS, uniform-cost, DFS, ID etc.)
 - Knows the actual path cost g(s) from start to a node s in the fringe, but that's it.

Informed search

- also has a heuristic h(s) of the cost from s to goal. ('h'= heuristic, non-negative)
- Can be much faster than uninformed search.

Recall: Uniform-cost search

- Uniform-cost search: uninformed search when edge costs are not the same.
- Complete (will find a goal). Optimal (will find the least-cost goal).
- Always expand the node with the least g(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)
 - Pop out the state with the least g(s) first.
- Now we have an estimate of the <u>second-half-cost</u> <u>h(s)</u>, how to use it?

First attempt: Best-first greedy search

- Idea 1: use h(s) instead of g(s)
- Always expand the node with the least h(s)
 - Use a priority queue:
 - Push in states with their second-half-cost h(s)
 - Pop out the state with the least h(s) first.
- Known as "best first greedy" search
- How's this idea?

Best-first greedy search looking stupid

- It will follow the path $A \rightarrow C \rightarrow G$ (why?)
- Obviously not optimal

Second attempt: A search

- Idea 2: use g(s)+h(s)
- Always expand the node with the least g(s)+h(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)+h(s)
 - Pop out the state with the least g(s)+h(s) first.
- Known as "A" search
- How's this idea?

Works for this example

A search still not quite right

A search is not optimal.

Third attempt: A* search

- Same as A search, but the heuristic function h() has to satisfy $h(s) \le h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.
- Such heuristic function h() is called admissible.
 - An admissible heuristic never over-estimates

It is always optimistic

• A search with admissible h() is called A^* search.

Admissible heuristic functions h

8-puzzle example

Example State	1		5
	2	6	3
	7	4	8

Goal State	1	2	3
	4	5	6
	7	8	

- Which of the following are admissible heuristics?
 - •h(n)=number of tiles in wrong position
 - -h(n)=0
 - •h(n)=1
 - •h(n)=sum of Manhattan distance between each tile and its goal location

Admissible heuristic functions h

 In general, which of the following are admissible heuristics? h*(n) is the true optimal cost from n to goal.

•
$$h(n)=max(2,h^*(n))$$

•
$$h(n)=min(2,h^*(n))$$

•
$$h(n)=h^*(n)-2$$

Heuristics for Admissible heuristics

• How to construct heuristic functions?

Example State	1		5
	2	6	3
	7	4	8

- Often by relaxing the constraints
 - h(n)=number of tiles in wrong position
 Allow tiles to fly to their destination in one step
 - •h(n)=sum of Manhattan distance between each tile and its goal location

Allow tiles to move on top of other tiles

"my heuristic is better than yours"

- A heuristic function h2 **dominates** h1 if for all s $h1(s) \le h2(s) \le h^*(s)$
- We prefer heuristic functions as close to h* as possible, but not over h*.

But

- Good heuristic function might need complex computation
- Time may be better spent, if we use a faster, simpler heuristic function and expand more nodes