12. Juni 2019

M.Sc. Matthias Thiel

Stochastik I

10. Übung

Aufgabe 1 (3 Punkte) Seien $(X_n)_{n\in\mathbb{N}}$ unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit $P_{X_1} = P_{X_i}$ für alle $i \in \mathbb{N}$. Zeigen Sie:

$$E[|X_1|] < \infty \Leftrightarrow \forall \epsilon > 0: \ \sum_{n \in \mathbb{N}} P\left(\left\{\frac{|X_1|}{\epsilon} > n\right\}\right) < \infty \Leftrightarrow \frac{X_n}{n} \to 0 \ P\text{-fast sicher}.$$

- **Aufgabe 2** (3 Punkte) Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $A \in \mathcal{A}$ und $(A_n)_{n \in \mathbb{N}}$ eine Folge von Mengen in \mathcal{A} und $p \geq 1$. Zeigen Sie die Äquivalenz der folgenden Aussagen:
 - (i) $\mathbb{1}_{A_n} \to \mathbb{1}_A$ in Wahrscheinlichkeit.
 - (ii) $\mathbb{1}_{A_n} \to \mathbb{1}_A$ in L^p .
 - (iii) $P(A_n \triangle A) \to 0$, wobei \triangle die symmetrische Differenz sei.
- **Aufgabe 3** (3 Punkte) Sei X eine Zufallsvariable und $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, 2^{\Omega}, P)$, wobei Ω höchstens abzählbar sei. Zeigen Sie

$$X_n \to X$$
 in Wahrscheinlichkeit $\Leftrightarrow X_n \to X$ P-fast sicher.

- **Aufgabe 4** (3 Punkte) Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen und X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Weiter sei $f : \mathbb{R} \to \mathbb{R}$ eine stetige Abbildung. Zeigen Sie
 - (i) $X_n \to X$ in Wahrscheinlichkeit $\Rightarrow f(X_n) \to f(X)$ in Wahrscheinlichkeit.
 - (ii) Ist die Funktion f zudem beschränkt, so folgt aus $X_n \to X$ in Wahrscheinlichkeit auch $E[f(X_n)] \to E[f(X)]$.
- Aufgabe 5 (5 Punkte) Seien $(\Omega_i, \mathcal{A}_i, \mu_i)$ (i = 1, 2) zwei σ-endliche Maßräume. Weiter seien reellwertige, nichtnegative messbare Funktionen X_i auf $(\Omega_i, \mathcal{A}_i, \mu_i)$ (i = 1, 2) gegeben.
 - (i) Zeigen Sie, dass die durch

$$\nu(A_i) := \int_{A_i} X_i d\mu_i, \quad A_i \in \mathcal{A}_i, \quad i = 1, 2$$

definierten Maße σ -endlich sind.

(ii) Zeigen Sie, dass das Produktmaß $\nu_1 \otimes \nu_2$ die Dichte $X(\omega_1, \omega_2) = X_1(\omega) X_2(\omega)$ bezüglich des Produktmaßes $\mu_1 \otimes \mu_2$ besitzt.