Exploratory analysis

Dr Emanuele Giorgi Lancaster University e.giorgi@lancaster.ac.uk

March 23, 2022

Pre-requisites

- ► Good knowledge of generalized linear models
- ► Basic knowledge of R
- Notions of probability calculus (e.g. conditional distribution and expectation).
- ▶ Basic mastering of mathematical equations

Learning outcomes of the workshop

You should be able:

- to understand the limitations of generalized linear models;
- ▶ to test for the presence of spatial correlation using variogram-based techniques;
- to formulate a suitable geostatistical model for data-analysis;
- to understand and correctly interpret the results from a geostatistical analysis;
- ▶ to fit generalized linear geostatistical models and carry out spatial prediction using PrevMap in R.

Science and statistics

Adapted from "Statistics and Scientific Method" (Diggle and Chatwynd, 2011).

Science and statistics

Adapted from "Statistics and Scientific Method" (Diggle and Chatwynd, 2011).

- ightharpoonup S = "process of nature"
- ► *Y* = "data"

Science and statistics

Adapted from "Statistics and Scientific Method" (Diggle and Chatwynd, 2011).

- \triangleright S = "process of nature"
- ► *Y* = "data"

$$[Y,S]=[S][Y|S]$$

Statistical analysis

Assumptions:

1. $Y_i \sim f(\cdot)$ belongs to the exponential family;

- 1. $Y_i \sim f(\cdot)$ belongs to the exponential family;
- 2. $E[Y_i] = m_i \mu_i$ and $Var[Y_i] = m_i V(\mu_i)$;

- 1. $Y_i \sim f(\cdot)$ belongs to the exponential family;
- 2. $E[Y_i] = m_i \mu_i$ and $Var[Y_i] = m_i V(\mu_i)$;
- 3. $g(\mu_i) = \eta_i = d_i^{\top} \beta$;

- 1. $Y_i \sim f(\cdot)$ belongs to the exponential family;
- 2. $E[Y_i] = m_i \mu_i$ and $Var[Y_i] = m_i V(\mu_i)$;
- 3. $g(\mu_i) = \eta_i = d_i^{\top} \beta;$
- 4. Y_i are mutually independent for i = 1, ..., n.

Assumptions:

- 1. $Y_i \sim f(\cdot)$ belongs to the exponential family;
- 2. $E[Y_i] = m_i \mu_i$ and $Var[Y_i] = m_i V(\mu_i)$;
- 3. $g(\mu_i) = \eta_i = d_i^{\top} \beta;$
- 4. Y_i are mutually independent for i = 1, ..., n.

Anything missing?

Assumptions:

- 1. $Y_i \sim f(\cdot)$ belongs to the exponential family;
- 2. $E[Y_i] = m_i \mu_i$ and $Var[Y_i] = m_i V(\mu_i)$;
- 3. $g(\mu_i) = \eta_i = d_i^{\top} \beta$;
- 4. Y_i are mutually independent for i = 1, ..., n.

Anything missing?

• $S = d^{\top}\beta$ (process of nature)

Assumptions:

- 1. $Y_i \sim f(\cdot)$ belongs to the exponential family;
- 2. $E[Y_i] = m_i \mu_i$ and $Var[Y_i] = m_i V(\mu_i)$;
- 3. $g(\mu_i) = \eta_i = d_i^{\top} \beta$;
- 4. Y_i are mutually independent for i = 1, ..., n.

Anything missing?

- ▶ $S = d^{T}\beta$ (process of nature)
- ▶ Our model for the data: [S][Y|S].

Assumptions:

- 1. $Y_i \sim f(\cdot)$ belongs to the exponential family;
- 2. $E[Y_i] = m_i \mu_i$ and $Var[Y_i] = m_i V(\mu_i)$;
- 3. $g(\mu_i) = \eta_i = d_i^{\top} \beta;$
- 4. Y_i are mutually independent for i = 1, ..., n.

Anything missing?

- ▶ $S = d^{T}\beta$ (process of nature)
- ▶ Our model for the data: [S][Y|S].
- \blacktriangleright Under the assumptions of classical GLMs, we can ignore [S].

What is the purpose of statistical modelling?

- ▶ **Prediction:** developing a probabilistic model that can accurately predict future realizations of *Y*
- **Explanation:** developing a probabilistic model that can reliable explain and quantificy the association bewteen Y and a covariate d.

► An introduction to the disease: https://www.youtube.com/watch?v=PIJ8UYDAF3M

- An introduction to the disease: https://www.youtube.com/watch?v=PIJ8UYDAF3M
- Y_i ="number of positively tested individuals for river-blindness out of n_i .

- An introduction to the disease: https://www.youtube.com/watch?v=PIJ8UYDAF3M
- ► Y_i= "number of positively tested individuals for river-blindness out of n_i.
- $ightharpoonup d_i =$ "elevation of the *i*-th village"

- An introduction to the disease: https://www.youtube.com/watch?v=PIJ8UYDAF3M
- Y_i="number of positively tested individuals for river-blindness out of n_i.
- $ightharpoonup d_i$ ="elevation of the *i*-th village"
- ▶ **Question:** How should we formulate and estimate a model to understand the association between d_i and the probability of being positive for river-blindness, p_i ? (script1.R)

▶ **Definition:** the data show a greater variability than that implied by a classical GLM.

▶ **Definition:** the data show a greater variability than that implied by a classical GLM.

What causes over dispersion?

▶ Definition: the data show a greater variability than that implied by a classical GLM.

What causes over dispersion?

▶ **Example:** $Y = \sum_{i=1}^{n} Y_i$ such that $Y_i \sim \text{Bernoulli}(p)$ and $Cor(Y_i, Y_j) = \rho > 0$ $(i \neq j)$. Show that Var(Y) > np(1 - p).

▶ Definition: the data show a greater variability than that implied by a classical GLM.

What causes over dispersion?

▶ **Example:** $Y = \sum_{i=1}^{n} Y_i$ such that $Y_i \sim \text{Bernoulli}(p)$ and $Cor(Y_i, Y_j) = \rho > 0$ $(i \neq j)$. Show that Var(Y) > np(1 - p).

How to account for over-dispersion?

▶ **Definition:** the data show a greater variability than that implied by a classical GLM.

What causes over dispersion?

▶ **Example:** $Y = \sum_{i=1}^{n} Y_i$ such that $Y_i \sim \text{Bernoulli}(p)$ and $Cor(Y_i, Y_j) = \rho > 0$ $(i \neq j)$. Show that Var(Y) > np(1 - p).

How to account for over-dispersion?

1. Marginal models. e.g. quasi-models, $E[Y_i] = m_i \mu_i$ and $V[Y_i] = \phi m_i V(\mu_i)$ where ϕ is the over-dispersion parameter.

▶ **Definition:** the data show a greater variability than that implied by a classical GLM.

What causes over dispersion?

▶ **Example:** $Y = \sum_{i=1}^{n} Y_i$ such that $Y_i \sim \text{Bernoulli}(p)$ and $Cor(Y_i, Y_j) = \rho > 0$ $(i \neq j)$. Show that Var(Y) > np(1 - p).

How to account for over-dispersion?

- 1. Marginal models. e.g. quasi-models, $E[Y_i] = m_i \mu_i$ and $V[Y_i] = \phi m_i V(\mu_i)$ where ϕ is the over-dispersion parameter.
- 2. Random effects models. $S = d^{T}\beta + Z$, where Z is a stochastic process.

Assumptions:

1. Z_i are i.i.d. random variables;

- 1. Z_i are i.i.d. random variables;
- 2. $Y_i|Z_i \sim f(\cdot)$ belongs to the exponential family;

- 1. Z_i are i.i.d. random variables;
- 2. $Y_i|Z_i \sim f(\cdot)$ belongs to the exponential family;
- 3. $E[Y_i|Z_i] = m_i\mu_i$ and $Var[Y_i|Z_i] = m_iV(\mu_i)$;

- 1. Z_i are i.i.d. random variables;
- 2. $Y_i|Z_i \sim f(\cdot)$ belongs to the exponential family;
- 3. $E[Y_i|Z_i] = m_i\mu_i$ and $Var[Y_i|Z_i] = m_iV(\mu_i)$;
- 4. $g(\mu_i) = \eta_i = d_i^{\top} \beta + Z_i$;

- 1. Z_i are i.i.d. random variables;
- 2. $Y_i|Z_i \sim f(\cdot)$ belongs to the exponential family;
- 3. $E[Y_i|Z_i] = m_i\mu_i$ and $Var[Y_i|Z_i] = m_iV(\mu_i)$;
- 4. $g(\mu_i) = \eta_i = d_i^{\top} \beta + Z_i$;
- 5. $Y_i|Z_i$ are mutually independent for $i=1,\ldots,n$.

Assumptions:

- 1. Z_i are i.i.d. random variables;
- 2. $Y_i|Z_i \sim f(\cdot)$ belongs to the exponential family;
- 3. $E[Y_i|Z_i] = m_i\mu_i$ and $Var[Y_i|Z_i] = m_iV(\mu_i)$;
- **4**. $g(\mu_i) = \eta_i = d_i^{\top} \beta + Z_i;$
- 5. $Y_i|Z_i$ are mutually independent for $i=1,\ldots,n$.

Are the Y_i mutually independent?

- **Examples:** 1) $Y_i|Z_i \sim \text{Poisson}(e^{d_i^\top \beta + Z_i})$ and $Z_i \sim \mathcal{N}(-\tau^2/2, \tau^2)$ i.i.d.; $E[Y_i] = \dots$ and $Var[Y_i] = \dots$ (Hint: Use the law of total expectation and variance)
 - 2) $Y_i|Z_i \sim \text{Poisson}(e^{d_i^\top \beta + Z_i})$, $e^{Z_i} \sim \text{Gamma}(k, k)$ i.i.d.; show that Y_i is a Negative Binomial distribution.

$$ightharpoonup Z_i \sim N(0, \sigma^2)$$
 i.d.d. for $i = 1, \ldots, n$

- $ightharpoonup Z_i \sim N(0, \sigma^2)$ i.d.d. for $i = 1, \ldots, n$
- $\qquad \qquad \theta = (\beta, \sigma^2) \; \text{(vector of unknown parameters)}$

- $ightharpoonup Z_i \sim N(0, \sigma^2)$ i.d.d. for $i = 1, \ldots, n$
- $\theta = (\beta, \sigma^2)$ (vector of unknown parameters)
- ► The likelihood function

$$L(\theta) = \prod_{i=1}^{n} \int_{-\infty}^{+\infty} [Z_i][Y_i|Z_i] dY_i$$

- $ightharpoonup Z_i \sim N(0, \sigma^2)$ i.d.d. for $i = 1, \ldots, n$
- $\theta = (\beta, \sigma^2)$ (vector of unknown parameters)
- ► The likelihood function

$$L(\theta) = \prod_{i=1}^n \int_{-\infty}^{+\infty} [Z_i][Y_i|Z_i] dY_i$$

► Maximize the likelihood using the Laplace approximation (glmer in the lme4 package).

- $ightharpoonup Z_i \sim N(0, \sigma^2)$ i.d.d. for $i = 1, \ldots, n$
- $\theta = (\beta, \sigma^2)$ (vector of unknown parameters)
- ► The likelihood function

$$L(\theta) = \prod_{i=1}^n \int_{-\infty}^{+\infty} [Z_i][Y_i|Z_i] dY_i$$

- Maximize the likelihood using the Laplace approximation (glmer in the lme4 package).
- ▶ Hypothesis testing on $\beta = \beta_0$ (H_0).

- $ightharpoonup Z_i \sim N(0, \sigma^2)$ i.d.d. for $i = 1, \ldots, n$
- $\theta = (\beta, \sigma^2)$ (vector of unknown parameters)
- ► The likelihood function

$$L(\theta) = \prod_{i=1}^n \int_{-\infty}^{+\infty} [Z_i][Y_i|Z_i] dY_i$$

- Maximize the likelihood using the Laplace approximation (glmer in the lme4 package).
- ▶ Hypothesis testing on $\beta = \beta_0$ (H_0).
 - 1. Obtain $\hat{\theta}$ (MLE).
 - 2. Obtain $\hat{\theta}_0$, the MLE constrained by fixing p values of β to 0.
 - 3. Compute the log-likelihood ratio

$$D = 2(logL(\hat{\theta}) - logL(\hat{\theta}_0)) \sim \chi_p^2$$

4. P-value: $P(D > D_{obs}|H_0)$

Example: River-blindness in Liberia (Revisited)

- Y_i ="number of positively tested individuals for river-blindness out of n_i .
- $ightharpoonup d_i$ ="elevation of the *i*-th village"
- ▶ Question: How should we account for overdispersion? (script2.R)

