上海工程技术大学

(勤奋、求是、创新、奉献)

2020 ~ 2021 学年第一学期考试试卷

主考教师:														
	学院 _ =	电子电	包气工	程学	<u>院</u> 班:	级	姓名					学号		
《操作系统》课程试卷 B (本卷考试时间 90 分钟)														
	题号	_	1 1	=	四	五.	六	七	八	九	十	总得分		
	题分	30	20	20	30	30						100		

一、 选择题(本题共 15 小题,每小题 2 分,共 30 分) (请将答案填于下方表格内)

题号	1	2	3	4	5	6	7	8
答案	D	Α	В	В	С	Α	Α	С
题号	9	10	11	12	13	14	15	
答案	С	В	С	Α	В	D	С	

- 1. 制导系统属于以下哪种操作系统()D
 - A. 分时系统

得分

B. 单道批处理系统

C. 网络操作系统

D. 实时系统

- 2. 产生死锁的基本原因是系统资源有限和()。 A
 - A. 进程推进顺序非法
 - B. 作业调度不当
 - C. 资源的独占性
 - D. 资源分配不当
- 3. 可变分区方式常用的主存分配算法有:最先适应、最优适应和最坏适应分配算法,其中,按分区大小排序组织空闲区表的是() B
 - A. 最先适应和最坏适应
 - B. 最优适应和最坏适应
 - C. 最先适应和最优适应

- D. 最先适应、最优适应和最坏适应
- 4. 文件系统实现按名存取主要是通过()来实现的。B
- A. 查找位示图

B. 查找文件目录

C. 查找作业表

- D. 内存地址转换
- 5. 当以单块链接的方式记录空闲块时,设每块的大小是 512 字节,记录一个盘块的位置需要 4 个字节,当有 255 个空闲块时,需要____个磁盘块来记录这些空闲块的位置。()C
 - A. 1
- B. 2
- C. 3
- D. 4
- 6. 某 Linux 操作系统部分文件目录如下图所示,"/"表示根目录,/home 为根目录下子目录,其下又包含两个子目录。若当前目录为/home/example,则访问文件 chapter2 的绝对路径和相对路径分别为 ()A
 - A. /home/experiment/chapter_2 和../experiment/chapter_2
 - B. chapter2 和../experiment/chapter_2
 - C. /home/experiment/chapter_2 和 chapter2
 - D. ../experiment/chapter_2 和/home/experiment/chapter_2

- 7. 某页式管理系统中,地址寄存器的低 10 位表示页内地址,则页面大小为 () A
 - A. 1024 字节
- B. 1024K
- C. 512 字节
- D. 512K

- 8. 请问右图中的 A、B、C 属于 () C
 - A. 程序
- B. 讲程
- C. 线程
- D. 都不是

- 9. 以下哪个不是预防死锁的策略() C
 - A. 预防死锁
 - B. 避免死锁
 - C. 跳过死锁

10.	D. 恢复死锁 在可变式分区分配方案中,某一作业完成后,系统收回其主存空间,并与 相邻空闲区合并,为此需修改空闲区表,造成空闲区表项数加1的情况是
	() B A. 有上邻空闲区,也有下邻空闲区 B. 无上邻空闲区,也无下邻空闲区 C. 有下邻空闲区,无上邻空闲区 D. 有上邻空闲去,无下邻空闲区
11.	为实现地址变换,页式虚拟存储管理建立了 () C A. 段表 B. 分区分配表 C. 页表 D. 空闲区表
12.	位示图方法的作用是() A A A. 文件存储空间的管理 C. 盘的驱动调度 D. 页式虚拟存贮管理中的页面调度
13.	下面哪个不是产生死锁的必要条件 ()。B A. 互斥条件 B. 请求和保持条件 C. 不可抢占条件 D. 循环等待条件
14.	磁盘的访问时间不包括 () DA. 寻道时间
15.	下列选项中不属于第一级容错技术的是() C A. 双份目录和双份文件分配表寻道时间 B. 热修复重定向 C. 磁盘双工 D. 写后读校验
->	填空题(本题共10空,每空2分,共20分)
1.	操作系统的四个发展阶段为①单道批处理系统 ②分时系统 ③手工操作 ④多道批处理系统,请对其正确排序。③①④②
2.	操作系统的基本特征包括、共享、虚拟性和异步性。并发
3.	图形化联机用户接口采用技术。WIMP
4.	三个进程 P1、P2、P3 执行时都需要使用临界资源 A,并且它们都最多需要 2 个资源 A。现在,这三个进程在一个拥有 n 个临界资源 A 的计算机

系统中竞争运行,出现了死锁。那么, n 的最大值是____。 5

5. 以下进程状态变迁图中 a 为 _____(状态), b 为_____。运行; 阳塞

- 6. 页式存储管理中,每次从内存中读取指令或取操作数,需访问内存次。**2**
- 7. 某计算机采用最坏适应算法进行动态分区存储管理,其内存容量为80MB。 初始时,内存处于空闲。运行过程中,依次分配和释放的顺序为:分配 25MB,分配28MB,释放25MB,分配9MB,分配6MB,此时内存中最大空闲分区的大小为_____MB。19
- 8. 覆盖技术、交换技术是为了 _____。 提高 CPU 效率
- 9. 可能出现"饥饿"问题的调度算法包括先来先服务、_____、轮转 法调度算法。高响应比优先

三、 简答题(本题共 4 小题, 共 20 分)

1. (4分)简述文件系统的主要功能。

答: 为用户进行文件操作提供接口(1分);

管理文件目录,将文件的逻辑地址转换为物理地址,对读、写文件进行管理,(1分);

管理文件存储空间 (1分);

提供文件共享和文件保护 (1分)。

多道程序技术利用一道程序来模拟脱机输入时的外围控制机的功能,即把低速 I/O 设备上的数据传送到高速的磁盘上,再用另一道程序来模拟脱机输出时外围控制机的功能,即把数据从磁盘传送到低速 I/O 设备上。或:在主机的直接控制下,实现脱机输入、输出功能。在联机情况下实现的同时与外围设备联机操作

的技术称为 SPOOLing(Simultaneous Peripheral Operation On Line),或称为假脱机技术。(1 分)

四部分:

输入井和输出井、输入缓冲区和输出缓冲区、输入进程和输出进程、井管理程序。(4分)

- 3. 设备驱动程序的功能有哪些?
- 答: (1) 接收由与设备无关的软件发来的命令和参数,并将命令中的抽象要求转换为与设备相关的低层操作序列。 (1分)
- (2) 检查用户 I/O 请求的合法性,了解 I/O 设备的工作状态,传递与 I/O 设备操作有关的参数,设置设备的工作方式。 (1分)
- (3) 发出 I/O 命令,如果设备空闲,便立即启动 I/O 设备,完成指定的 I/O 操作;如果设备忙碌,则将请求者的请求块挂在设备队列上等待。 (1分)
- (4) 及时响应由设备控制器发来的中断请求,并根据其中断类型,调用相应的中断处理程序进行处理。 (1分)
- 4.简述磁盘的访问时间的三个部分,并指出哪一项可忽略。
- 答: 寻道(时间 T_s), 磁头移动定位到指定磁道。(1分)

旋转延迟(时间 7 7),等待指定扇区从磁头下旋转经过。(1 分)

数据传输(时间 7t),数据在磁盘与内存之间的实际传输。(1分)

一次磁盘访问时间 7a 表示为:

 $Ta = Ts + T \tau + Tt$

其中传输时间基本可忽略。(1分)

5. 现有以下两个程序 A、B, 若程序 AB 同时运行,请简述临界资源的概念及变量,并指出临界区的行号。

程序 A: a.c > a.exe

- 1) a = 50;
- 2) i = 100;
- 3) ...
- 4)printf("A:a=%d, i=%d.",a, i);
- 5) ...

程序 B: b.c→b.exe

- 1) b = 0;
- 2) i = 200;
- 3) ...
- 4)printf("B: a=%d, i=%d.",b, i)
- 5) ...

四、应用题(本题共5小题,共30分)

1. 在采用页式存储管理的系统中,某作业 J 的逻辑地址空间为 5 页(每页 1024 字节),且已知该作业的页表如下:

0	2
1	5
2	1
3	7
4	9

试求出有效逻辑地址 4016 所对应的物理地址(要求给出计算过程)。(本题 6 分)解: 4016 除以 1024 所得的商为 3,余数为 944。

可得,逻辑地址 4016 所在的页号为 3,页内地址为 944。 (2分) 查页表得,3号页所在内存物理块号为: 7。 (2分)

所以,逻辑地址 4016 对应的物理地址为: 7*1024+944=8112。 (2分)

2. 假设一个系统中有六个进程{P1,P2,P3,P4,P5,P6}和三类资源{A,B,C},当前资源分配和请求情况如下表:

1 244			
	Allocation	Need	Available
	АВС	АВС	АВС
P1	032	350	124
P2	120	147	
Р3	012	111	
P4	023	121	
P5	211	278	
Р6	101	256	

试用银行家算法分析:

- (1) 系统是否处于安全状态? 为什么?
- (2) 当进程 P6 提出资源请求{0,1,3}后,能否实施分配?为什么?

(本题的两个小题各3分,共6分)

解:(1) 系统是处于安全状态。 (1分)

因为存在安全序列为: P3, P4, P2, P5, P6, P1。 (2分)

下面的这些序列也都是安全序列: 序列: P3, P4, P2, P6, P5, P1; 序列:

- P3, P4, P2, P5, P1, P6; 序列: P3, P4, P2, P6, P1, P5; 序列: P4, P3,
- P2, P6, P5, P1; 序列: P4, P3, P2, P6, P1, P5; 序列: P4, P3, P2, P5,

P6, P1; 序列: P4, P3, P2, P5, P1, P6; 序列: P4, P2, P3, P5, P6, P1; 序列: P4, P2, P3, P5, P1, P6; 序列: P4, P2, P3, P6, P1; 序列: P4, P2, P3, P6, P1, P5; 序列: P4, P2, P6, P3, P5, P1; 序列: P4, P2, P6, P3, P1, P5; 序列: P4, P2, P6, P1, P5, P3; 序列: P4, P2, P6, P1, P3, P5; 序列: P4, P2, P6, P5, P1, P3; 序列: P4, P2, P6, P5, P1, P3; 序列: P4, P2, P6, P5, P3, P1; 序列: P4, P2, P5, P6, P1, P3; 序列: P4, P2, P5, P6, P1, P3; 序列: P4, P2, P5, P3, P6, P1; 序列: P4, P2, P5, P3, P6; 序列: P4, P2, P5, P1, P6; 序列: P4, P2, P5, P1, P6; 序列: P4, P2, P5, P1, P6; 序列: P4, P3, P2, P5, P6, P1; 序列: P4, P3, P2, P5, P1, P6; 序列: P4, P3, P2, P5, P1, P6; P3, P4, P3, P2, P6, P1; 序列: P4, P3, P2, P6, P1, P5, P1, P6, P3, P2, P6, P1, P5, P1, P6, P3, P2, P6, P1, P5, P1, P6, P1, P6, P1, P5, P1, P6, P1, P

(2) 当进程 P6 提出资源请求{0.1.3}时,

因为: Request₆(0,1,3) \leq Need₆(2, 5, 6)

Request₆(0,1,3) \leq Available(1,2,4) (1 $\frac{1}{2}$)

所以试着将资源分配后,系统资源分配情况变化如下:

	Allocation	Need	Available
	ABC	ABC	ABC
P1	032	350	111
P2	120	147	
Р3	012	111	
P4	023	121	
P5	211	278	
Р6	114	243	

根据银行家算法,得知:此时不存在安全序列。

所以,不能按照请求 {0, 1, 3} 把资源分配给进程 P6。 (2分)

- 3. 假定系统完成 90 号柱面的服务请求后,当前存取臂的位置在 95 号柱面上。按照服务请求的时间先后顺序,此刻请求访问的磁道号排列为: 150,45,110,50,65,165,120,72,83。设磁盘最里道为 0 柱面,每移动一个柱面需要 3 毫秒时间;请按下列算法分别计算为完成上述各次访问总共花费的寻找时间。
- (1) SCAN 算法;
- (2) 最短寻找时间优先算法。 (本题的两个小题各 3 分, 共 6 分)

解: (1) 采用 SCAN 算法进行磁盘调度,访问磁道的顺序为: 110、120、150、165、83、72、65、50、45。

移动情况如下表所示:

访问磁道	移动道数
110	15
120	10
150	30
165	15
83	82
72	11
65	7
50	15
45	5

所以,使用 SCAN 算法进行调度,完成访问所花费时间为: (15+10+30+15+82+11+7+15+5)*3=564 毫秒 (3分)

(2) 采用最短寻找时间优先算法进行磁盘调度,访问磁道的顺序为: 83、72、65、50、45、110、120、150、165。

移动情况如下表所示:

访问磁道	移动道数
83	12
72	11
65	7
50	15
45	5
110	65
120	10
150	30
165	15

所以,采用最短寻找时间优先算法进行磁盘调度,完成访问所花费的时间 为:

(12+11+7+15+5+65+10+30+15)*3=510 毫秒。 (3分)

4. 在请求调页系统中,进程 P 调用页号的顺序为: 4, 3, 1, 4, 2, 3, 1, 5, 3, 1, 3, 5, 4, 5。系统分配给该进程的存储块数为 3, 请分别使用 FIFO 置换算法和 LRU 置换算法分析置换过程,写出这两种算法下被置换出内存的页的序号,并计算它们的缺页次数。(假定进程 P 开始调用页面时,被分配的这三个内存存储块都是空的;凡第一次用到的页面都产生一次缺页中断。) (本题 6 分)解: (1) FIFO 调度算法

访问	4	3	1	4	2	3	1	5	3	1	3	5	4	5
内存			1	1	2	2	2	5	3	1	1	1	4	5
		3	3	3	1	1	1	2	5	3	3	3	1	4
	4	4	4	4	3	3	3	1	2	5	5	5	3	1
缺页	×	×	×		×			×	×	×			×	×
置换					4			3	1	2			5	3

可知,采用 FIFO 调度算法,共发生 9 次缺页中断 (1分); 依次淘汰的页为: 4、3、1、

2、5、3。(2分)

(2) LRU 调度算法

访问	4	3	1	4	2	3	1	5	3	1	3	5	4	5
内存	4	3	1	4	2	3	1	5	3	1	3	5	4	5
		4	3	1	4	2	3	1	5	3	1	3	5	4
			4	3	1	4	2	3	1	5	5	1	3	3
缺页	×	×	X		X	X	X	X					×	

可知,采用 LRU 调度算法,共发生 8 次缺页中断 (1分); 依次淘汰的页为: 3、1、4、

2、1 (2分)

5. 系统有两个并发进程 P1 和 P2。进程 P1 和 P2 共享一台输出设备:显示器 A。进程 P1 负责从输入设备上读信息,每读取一个记录便进行处理;处理之后,把处理得到的一部分信息存放到缓冲器 B中,把一部分信息传送给显示器 A输出。进程 P2 从缓冲器 B中取出一个记录,进行加工,再把加工得到的结果向显示器 A输出。缓冲器 B每次只能存放一个记录。要求 P1、P2 两个进程协调完成任务,即:进程 P1 把处理结果存储到缓冲器 B之后,P2 才能从 B读取信息; P2 从缓冲器 B读取信息后,P1 才能把新的处理结果存放到缓冲器 B;并且,显示器 A在任何时候只能提供给一个进程用于输出。请写出实现这两个进程同步并互斥使用显示器 A 的算法。 (本题 6 分)

```
解: Semaphore buffer=1, empty=0, full=0, displayD=1; (1分)
Begin
 P1:
    Begin
       Repeat
         Read data from inputting devices; //从输入设备读入数据
        Compute data; //处理数据
        Swait(buffer, empty);
        Save some data in buffer B; //把一部分数据存储到缓冲器 B
        Ssignal(buffer, full);
                              (1分)
        Wait(displayD);
        Output some data by display device A; //把一部分数据向显示器 A 输出
                       (1分)
        Signal(displayD);
      Until False
    End
```

P2:

Begin

Repeat

```
Swait(buffer, full); (1分)
Read data from buffer B; //从缓冲器 B 读取数据
Ssignal(buffer, empty); (1分)
Compute data; //处理数据
Wait(displayD);
Output data by display device A;
//把处理得到的数据向显示器 A 输出
Signal(displayD); (1分)
Until False
End
```