

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría I Examen V

Los Del DGIIM

Granada, 2023

Asignatura Geometría I.

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Juan de Dios Pérez Jiménez¹.

Descripción Convocatoria Extraordinaria.

Fecha 15 de febrero de 2022.

¹El examen lo pone el departamento.

- 1. [4 puntos] Sean V y V' espacios vectoriales sobre un mismo cuerpo K. Razonar si son verdaderas o falsas las siguientes afirmaciones:
 - a) Si $f: V \to V'$ es una aplicación lineal y $\{w_1, \ldots, w_k\} \subset V$ es un conjunto linealmente independiente, entonces las siguientes afirmaciones son equivalentes:
 - 1) $\{f(w_1), \ldots, f(w_k)\}\subset V'$ es linealmente independiente.
 - 2) $\mathcal{L}(w_1, ..., w_k) \cap ker(f) = \{0\}$
 - b) Si V y V' son finitamente generados y $f:V\to V'$ es una aplicación lineal, entonces las siguientes afirmaciones son equivalentes:
 - 1) $f y f^t$ son ambas inyectivas.
 - 2) f es biyectiva.
 - c) Si $U \subset V$ es un subespacio vectorial y $\{w_1+U, \ldots, w_k+U\}$ es un conjunto linealmente independiente en V/U, entonces $\{w_1, \ldots, w_k\}$ es linealmente independiente en V.
- 2. [2 puntos] Sean V y V' espacios vectoriales finitamente generados sobre un mismo cuerpo K. Demostrar que la aplicación transposición

$$\begin{array}{ccc} ^t: Hom_K(V,V') & \longrightarrow & Hom_K((V')^*,V^*) \\ f & \longmapsto & f^t \end{array}$$

es un isomorfismo de espacios vectoriales.

3. [4 puntos] Dado $k \in \mathbb{R}$, se consideran los subespacios vectoriales de \mathbb{R}^4 siguientes:

$$U_k = \mathcal{L}(\{(1,2,k,1), (k+1,4,2,2), (2,2,2-k,1)\}),$$

$$V = \{(x,y,z,t) \in \mathbb{R}^4 : y-x=0, t-x=0\}.$$

- a) Obtener una base y la dimensión de U_k para todo $k \in \mathbb{R}$.
- b) Calcular una base de U_k+V y de $U_k\cap V$. ¿Existe $k\in\mathbb{R}$ tal que $\mathbb{R}^4=U_k\oplus V$?
- c) Para k = 1, encontrar una aplicación lineal $f : \mathbb{R}^4 \to \mathbb{R}^4$ tal que $ker(f) = U_1$, Im(f) = V y $f \circ f = f$. Calcular $M(f, B_u)$, donde B_u representa la base usual de \mathbb{R}^4 .
- d) Para la aplicación f calculada en el apartado anterior, hallar $Im(f^t)$ y $ker(f^t)$.