Cloud computing - Introduction

- 1. Fundamentals on cloud computing
- 2. Cloud characteristics
- 3. Cloud service models
- 4. Cloud implementation models
- 5. Cloud technology
- 6. Standardization
- 7. Cloud bigdata
- 8. Final remarks

According to NIST¹:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

This cloud model is composed of <u>five</u> essential characteristics, <u>three</u> service models, and <u>four</u> deployment models."

¹ The NIST Definition of Cloud Computing; http://csrc.nist.gov/.

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016

Fundamentals on cloud computing - challenges

• Investment on IT infrastructure CAPEX versus OPEX

• The desire to reduce IT complexity - Scalability

Elasticity

• Consumption-based pricing | Risk reduction | Elasticity

• Business agility | Mobility | Collaboration and innovation

Security, risks and compliance

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016

Cloud
$$\neq$$
 technology itself only virtualization

Cloud roles

The Official (ISC)2® Guide to the CCSPSM CBK®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.12)

Cloud functions

The Official (ISC)2 $^{\circ}$ Guide to the CCSP $^{\circ}$ M CBK $^{\circ}$, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.16-17)

Five characteristics

- On-demand self service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service

The NIST Definition of Cloud Computing; http://csrc.nist.gov/

5 x 3 x 4

Characteristics Services Implementations

Three service models

- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Infrastructure as a Service (IaaS)
- *aaS

Four implementation models

- Private cloud
- Public cloud
- Hybrid cloud
- Community cloud

Service models

IaaS - Infrastrucutre as a Service

PaaS – Platform as a Service

SaaS – Software as a Service

DBaaS – Database as a Service

BaaS – Billing as a Service

NaaS – Network as a Service

MaaS – Malware as a Service

*aaS – "anything" as a Service

How strong is your level of "independence" from the cloud provider?

What is being managed by you, versus by the cloud provider?

Service models – IaaS

- Resources made available by cloud provider:
 - Almost everything!
 - Install and to manage computational fundamental resources: storage, memory, CPU and network
 - Install and to run programs: OS and applications
 - Control over OS and some IP networking configurations
- User controls everything <u>but</u> the hardware used.

Service models – IaaS - providers

Amazon Web Services aws.amazon.com	8 zonas (4 continentes)	EC2 (compute), S3 (storage)	0,0500 € ou \$ 0,0650 para 1.7 GM RAM, 1 CPU, 160 GB DISK
Rackspace Cloud www.rackspacecloud.com	3 zonas (3 continentes)	Cloud Servers, Cloud Files	0,0170 € ou \$ 0,0220 para 0.5 GB RAM, 1 CPU, 20 GB DISK
HP Cloud www.hpcloud.com	2 zonas (1 continente)	Cloud Compute, Cloud Object Storage	0,0307 € ou \$ 0,0400 para 1 GB RAM, 1 CPU, 30 GB DISK
GoGrid www.gogrid.com	3 zonas (2 continentes)	Cloud Servers, Cloud Storage	0,0307 € ou \$ 0,0400 para 0.5 GB RAM, 0.5 CPU, 25 GB DISK
Lunacloud www.lunacloud.com	2 zonas (1 continente)	Cloud Servers, Cloud Storage	0,0155 € ou \$ 0,0200 para 0.5 GB RAM, 1 CPU, 10 GB DISK
Joyent www.joyent.com	4 zonas (2 continentes)	SmartMachine	0,0230 € ou \$ 0,0300 para 0.5 GB RAM, 1 CPU, 15 GB DISK
ElasticHosts www.elastichosts.com	1 zona (1 continente)	Cloud Hosting	0,0920 € ou \$ 0,1200 para 1 GB RAM, 1 CPU, 10 GB DISK
Microsoft Azure www.azure.microsoft.com	17 zonas (4 continentes)	Virtual Machines Storage	0,0144 € ou \$ 0,0180 para 0.75 GB RAM, 1 CPU, 30 GB DISK

EC2 – Elastic Compute Cloud

Cloud <u>regions</u> and zones

António Miguel Ferreira; "Introdução ao Cloud Computing"; FCA; ISBN: 978-972-722-802-7; 2015 (Portuguese)

Service models – IaaS - providers

Gartner's *Magic Quadrant* for IaaS cloud providers Gartner 2019

Amazon Web Services Microsoft Google Alibaba Cloud Oracle Tencent Cloud As of August 2020 © Gartner, Inc COMPLETENESS OF VISION

Quadrant for service models also available at http://www.gartner.com.

Service models – IaaS - nomenclature

- Main characteristics of storage in the cloud:
 - Speed
 - Resiliency
 - Accessibility
 - Measured in GB

About nomenclature:

Service models – IaaS - interoperability

- Each provider has its own API for management and development
- Convencional method: web interface

Problems – each provider has its own API

Effect – migration between cloud providers becames hard. Need to deal with different APIs.

Solution – To adopt ongoing standard APIs and access metods, like Openstack used with REST API.

To use cloud brokers and cloud aggregators

Gravitant

Service models – PaaS

- Resources made available by cloud provider:
 - In house developed applications or purchased software packages
 - Programming languages compilers and libraries
 - Software versioning and revision control system
 - Aim: to use cloud as a software development platform
- User has very litle control over cloud infrastructure.

Service models – PaaS - providers

Services and Platforms

Heroku www.heroku.com	AWS USA (1 continente)	Ruby, Node js, Clojure, Java, Python, Scala, Postgres, Mongo, Hadoop, etc.	\$ 0,05/hora para 1 processo + + \$ 9/mês para 1 base de dados
Nodejitsu www.nodejitsu.com	Joyent USA (1 continente)	Node.js	\$ 2,5/mês para 1 processo
Google App Engine www.appengine.goo- gle.com	13 zonas (4 continentes)	Java, Python, Go	\$ 0,05/hora para 1 app
CloudBees www.cloudbees.com	AWS USA, Europa, HP (3 continentes)	Java	\$ 60/mês para 5 GB de código e 2 processos
Appfog www.appfog.com	AWS USA, Europa, Ásia, Rackspace, HP, Azure (3 continentes)	Java, Scala, Python, Node.js, PHP, Ruby, Erlang, MongoDB, MySQL, Postgres	\$ 20/mês para 8 processos, até 2 GB RAM e 250 MB dados
dotCloud www.dotcloud.com	AWS USA (1 continente)	PHP, Node.js, Python, Ruby, Perl, Java, MySQL, MongoDB, Postgres	\$ 8,64/mês
OpenShift www.openshift.com	AWS USA (1 continente)	PHP, Node.js, Python, Ruby, Java	\$ 0,02/hora

António Miguel Ferreira; "Introdução ao Cloud Computing"; FCA; ISBN: 978-972-722-802-7; 2015 (Portuguese)

Service models – SaaS

- Resources made available by cloud provider:
 - Applications stored on the cloud.
 - Applications accessed through HTTP, usually via web browser
 - Billing (examples): storage, number of accounts, duration and/or functionalities provided
- User has no control over the cloud applications. Little control on some configuration features.

Service models – SaaS - providers

Microsoft Office 365

iCloud $\stackrel{\triangle}{=}$

Mailchimp

SAP BusinessOne SAP Business One

ServiceNow - Troubleticket servicenow

LogicMonitor – IT infrastructure monitoring LogicMonitor

Service models – a market perspective

Why? Mainly due to growing development for mobile devices iOS e Android: Examples: Google Apps, Evernote, Dropbox, Facebook, Shazam

Implementation models

- Multiple clients
- Configured in a public Datacenter
- Shared infrastructure
- Access over web
- Low security
- Low cost in a "pay per use" basis
- "Do it yourself"

- Single-tenant solution
- Setup as a Virtual Private Datacenter
- Dedicated servers
- Access over secure private networks
- High security
- High TCO
- Custom solutions

Implementation models

It combines features of public and private (and community) cloud models

Cloud technology - virtualization

Cloud technology – virtualization - storage

Cloud technology – virtualization - storage

- Grouping physical devices in one "logical unit"
- Grouping is irrespective to physical disks location
- Used with other local strategies: e.g. RAID
- Shared, block-based and transparent access to end-users
- Smooth storage manager and data replication
- Essential in a fault-tolerant and HA perspective
- Implementation over IP: <u>iSCSI</u> and iFC

Cloud technology – virtualization - Google

Americas

Berkeley County, South Carolina Council Bluffs, Iowa Douglas County, Georgia Jackson County, Alabama Lenoir, North Carolina Mayes County, Oklahoma Montgomery County, Tennessee Quilicura, Chile The Dalles, Oregon

Asia

Changhua County, Taiwan Singapore

Europe

Dublin, Ireland Eemshaven, Netherlands Hamina, Finland St Ghislain, Belgium

15 datacenters world wide

http://www.google.com/about/datacenters/inside/locations/ http://www.datacentermap.com

Cloud technology – virtualization - security

Critical component = Hypervisor

Type 1 (hardware based)

Software that comprise the hypervisor package (virtualization function and OS functions)

Security elements

Type 2 (operating system based)

More attractive to attackers. More vulnerabilities. OS and applications expose breaches.

Limited access and strong control over embeeded OS increase robustness of Type 1 hypervisor.

Standardization is needed to effectively reduce the risk!

Service models – security considerations - IaaS

IaaSMain Threats

- 1. VM attacks
- 2. Virtual network
- 3. Hypervisor attacks
- 4. VM-based rootkits (VMBR)
- 5. Virtual switch attacks
- 6. DoS attacks
- 7. Colocation

Highly dependent on the widespread use of virtualization and the associated hypervisor components.

The Official (ISC)2® Guide to the CCSPSM CBK®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.48-50)

Service models – security considerations - IaaS

New threats:

- Provisioning tools and VM templates try to create new <u>unauthorized VM</u> or <u>patch the VM templates</u>
- 2. Infection propagates by new **VM clones**
- 3. These new threats are the result of a new, complex and dynamic nature of the cloud virtual infrastructure

Service models – security considerations - IaaS

Factors that determine the cloud dynamic notion:

- 1. Multitenancy
- 2. Loss of control
- 3. Dynamic network topology
- 4. Logical network segmentation
- 5. No physical endpoints
- 6. Single Point of Access/Failure (SPoA/SPoF)

Service models – security considerations - PaaS

- 1. System and Resource Isolation
- 2. User-level permissions

PaaSMain Threats

3. User Access Management

- Intelligence
- Administration
- Authentication
- Authorization

4. Protection against malware, backdoors and trojans

The Official (ISC)2® Guide to the CCSPSM CBK®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.50-52)

Service models – security considerations - SaaS

SaaSMain Threats

- 1. Data segregation
- 2. Data access and policies
- 3. Web application security

Cloud Security Alliance Controls Matrix (CCM)

https://cloudsecurityalliance.org/group/cloud-controls-matrix/#_overview

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition

Cloud technology – common threats

"The notorious nine" – cloud computing top threats in 2013

- 1. Data breaches
- 2. Data loss
- 3. Account or service traffic hijacking
- 4. Insecure interfaces and API
- 5. Denial of Service
- 6. Malicious insiders
- 7. Abuse of cloud services
- 8. Insufficient due diligence
- 9. Shared technologies vulnerabilities

The Official (ISC)2® Guide to the CCSPSM CBK®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.43-47)

Cloud technology – security risks

OWASP Top 10 Application Security Risks – 2017

[https://www.owasp.org]

A1 - Injection

A2 – Broken Authentication and session management

A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References

A5 – Security Misconfiguration

A6 - Sesitive Data Exposure

A7 – Missing Function Level Access Control

A8 – Cross-Site Request Forgery (CSRF)

A9 – Using Components with known vulnerabilities

A10 – Unvalidated Redirects and Forwards

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.54-55)

Cloud security – data and media sanitization

- Ability to safely remove all data from a system or media.
- Needed if you want to leave or migrate one CSP to another.

Challenges:

- Vendor lock-in
- Cryptographic erasure
- Data overwriting

Cloud secure data lifecycle

- Data is the single most valuable asset for most organizations.
- Auditing, compliance and other control requirements implies a good understanding of data lifecycle.

Be aware of logical and Physical location of data.

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.55-56)

Cloud cross-cutting aspects

- Define protections that enable <u>trust in the cloud</u>.
- Develop <u>cross-platform capabilities</u> and patterns for proprietary and open source providers.
- Facilitate trusted and efficient access, administration, and resiliency to the customer or consumer.

Cloud architecturekey principles

- Provide direction to secure information that is <u>protected by regulations</u>.
- Facilitate proper and efficient identification, authorization, administration, and auditability.
- Centralize security policy, maintenance operation, and oversight functions.
- Make access to information both secure and easy to obtain.
- Delegate or federate access control where appropriate.
- Ensure <u>ease of adoption and consumption</u>, supporting the design of security patterns.
- Make the architecture elastic, flexible, and resilient, supporting multitenant, multilandlord platforms.
 - Ensure the architecture addresses and supports <u>multiple levels of protection</u>, including network, OS, and application security needs.

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.27)

Cloud cross-cutting aspects

NIST Cloud Technology roadmap

- 1. Interoperability
- 2. Portability
- 3. Availability
- 4. Security
- 5. Privacy
- 6. Resiliency
- 7. Performance
- 8. Governance
- 9. SLAs
- 10.Auditability

- Industry-recommended
- Guidance and recommendations
- Target: security architects, enterprise architects, and risk-management professionals
- Useful to review and understand which controls and techniques may be required

11.Regulatory compliance

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.28-32)

It is worth being on the cloud?

- OPerational EXpenses versus CAPital EXpenses
- How big (€£\$) is the TCO (OPEX + CAPEX)?
- How much (€£\$) for the specialized human resources?
- How much (€£\$) for the defined SLA?
- And what about to buy and to subscribe software?
- "Pay only if you use and use only if you need"
- Do you need support for entrepreneurship and inovation?

Cost-benefits analysis

- 1. Resource pooling
- 2. Shift from CAPEX to OPEX
- 3. Factor in time and efficiencies
- 4. Have in mind depreciation of IT technologies
- 5. Reduction in maintenance and configuration time
- 6. Shift in focus regarding professionals' functions
- 7. Utilities cost (power, cooling, datacenter space, ...)
- 8. Software and licensing costs
- 9. Pay per usage
- 10.Others new tech, revised roles, legal costs, SLA revision, ...

It is worth being on the cloud?

Initial costs (CAPEX)

- hardware acquisition and instalation
- OS and software acquisition
- Building infrastrucutres

(...)

TCO = Total Cost of Ownership

The value of the project through its lifetime.

$$TCO = CAPEX + OPEX$$

Operational costs (OPEX)

- Power consumption
- HAVC (rent)
- UPS (rent)

• (...)

Human resources

António Miguel Ferreira; "Introdução ao Cloud Computing"; FCA; ISBN: 978-972-722-802-7; 2015 IDC Withepaper sobre TCO.

Cloud technology – the future

- Ubiquity de facto
- Faster, wider, safer, bigger
- Interoperability standards please!
- Fog Computing (fogging)
- Internet of Things (IoT)
- Bring Your Own Device (BYOD)
- Big Data

Big data - overview

According to NIST¹:

Big Data consists of extensive datasets — primarily in the characteristics of <u>volume</u>, <u>variety</u>, <u>velocity</u>, and/or <u>variability</u> (and/or <u>value</u>) — that require a scalable architecture for efficient storage, manipulation, and analysis.

¹ The NIST Definition of Cloud Computing; http://csrc.nist.gov/.

Big data - overview

	Volume	Variety	Velocity
SaaS	Client-side Personalization	Types of visualization	Real-time
PaaS	Distributed processing	Schemaless databases	Integration on the fly
IaaS	Scalable storage	Federated databased	On-demand resources

Certification

Security standards applied to cloud environment:

- ISO/IEC 27001:2013
- ISO/IEC 27002:2013
- ISO/IEC 27017:2015
- SOC 1/SOC 2/SOC 3 → Audit Reports
- NIST SP 800-53
- PCI DSS -

Cardholder data management for merchants.

Risk Management

Standards for

- Information Security Policies
- 2. Organization of Information Security
- 3. Human Resources Security
- 4. Asset Management
- Access Control
- Cryptographic
- 7. Physical and Environmental Security
- 8. Operations Security
- 9. Communications Security
- 10. System Acquisition, Development, and Maintenance
- Supplier Relationship
- Information Security Incident Management
- 13. Information Security Business Continuity Management
- 4. Compliance

The Official (ISC)2® Guide to the CCSPSM CBK ®, Second Edition Adam Gordon; John Wiley & Sons, Inc, 2016 (pp.62-72)

Bibliography

• Cloud Industry Forum

• IEEE Cloud Computing

• ISO/IEC 27017 cloud security 180

17788, 17789 e 27017

Asia Cloud Computing Association

• EuroCloud Europe EuroCloud

EuroCloud Portugal [www.eurocloud.pt]

Bibliography

- "The NIST Definition of Cloud Computing"; Peter Mell, Timothy Grance; http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.
- "NIST Cloud Computing Standards Roadmap"; http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf; 2013.
- "Introdução ao cloud computing"; A.M. Ferreira; FCA; (pp. 11-78; pp. 89-106)
- "The Official ISC^{2®} Guide to the CCSPSM CBK[®], Second Edition"; Adam Gordon; John Wiley & Sons, Inc; 2016 (Chapter 1; pp.3-77)
- "Certified Cloud Security Professional (CCSP), Official Study Guide"; B. O'Hara, B. Malisow; John Wiley & Sons, Inc; 2017 (Chapter 1)
- "CCSP Official ISC^{2®} Practice tests"; B. Malislow; Sybex; 2018; (Chapter 1; pp.1-30)

