Feuille d'exercice n° 10 : Suites

Exercice 1 () — Méfiez-vous des faux amis —

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Parmi les affirmations suivantes, dites lesquelles sont vraies (on les démontrera alors) et lesquelles sont fausses (on donnera un contre-exemple):

- 1. Si (u_n) converge, alors $(u_{n+1} u_n)$ converge vers 0.
- 2. Si $(u_{n+1} u_n)$ converge vers 0, alors (u_n) converge.
- 3. Si (u_n) converge et pour tout n $u_n \neq 0$, alors $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers 1.
- 4. Si pour tout n $u_n \neq 0$ et $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers 1, alors (u_n) converge.
- 5. Si pour tout n $u_n \neq 0$ et $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers 1/2, alors (u_n) converge.
- 6. Si (u_n) converge vers 0 et si (v_n) diverge, alors à partir d'un certain rang $|u_n| \leq |v_n|$.
- 7. Si (u_n) est une suite de réels strictement positifs qui converge vers 0, alors elle est décroissante à partir d'un certain rang.
- 8. Si une suite positive est non majorée, elle tend vers $+\infty$.
- 9. (u_n) converge si et seulement si $(|u_n|)$ converge.
- 10. Si $(|u_n|)$ tend vers $+\infty$, alors (u_n) tend vers $+\infty$ ou $-\infty$.
- 11. Si (u_n) n'est pas majorée, elle admet une sous-suite strictement croissante qui tend vers $+\infty$.
- 12. Si (u_n) est monotone et admet une sous-suite convergente, alors (u_n) est convergente.
- 13. Si une suite d'entiers converge, elle est stationnaire.
- 14. Si une suite a un nombre fini de valeurs, elle converge si et seulement si elle est stationnaire.
- 15. Si $(u_n + v_n)$ est convergente, (u_n) et (v_n) convergent.
- 16. Si $(u_n v_n)$ est convergente, (u_n) et (v_n) convergent.
- 17. Si (u_n) converge, $(|u_n|)$ également.

Étudier la suite $u_n = \frac{a^n - b^n}{a^n + b^n}$, a et b étant donnés dans \mathbb{R}_+^* . Exercice 2

— Lemme de Césaro — Exercice 3 (()

Soit (u_n) une suite réelle. On pose $v_n = \frac{u_0 + \dots + u_{n-1}}{n} = \frac{1}{n} \sum_{k=0}^{n-1} u_k$.

- 1. Montrer que si $u_n \xrightarrow[n \to +\infty]{} 0$, alors $v_n \xrightarrow[n \to +\infty]{} 0$.
- 2. Montrer que si $u_n \xrightarrow[n \to +\infty]{} \ell$, alors $v_n \xrightarrow[n \to +\infty]{} \ell$,
- 3. Donner un exemple où (v_n) converge mais (u_n) diverge.

Exercice 4 (%)

- 1. Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ et $\ell\in\overline{\mathbb{R}}$, tels que $\frac{u_{n+1}}{u_n}\xrightarrow[n\to+\infty]{}\ell$. Montrer :

 $\ell<1\Longrightarrow u_n\xrightarrow[n\to+\infty]{}0$ $\ell>1\Longrightarrow u_n\xrightarrow[n\to+\infty]{}+\infty$

2. Soit
$$(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}, \ \sqrt[n]{u_n}\xrightarrow[n\to+\infty]{}\ell.$$
 Montrer:

•
$$\ell < 1 \Longrightarrow u_n \xrightarrow[n \to +\infty]{} 0$$

•
$$\ell > 1 \Longrightarrow u_n \xrightarrow[n \to +\infty]{} +\infty$$

3. Soit
$$(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$$
. Montrer $:\frac{u_{n+1}}{u_n}\xrightarrow[n\to+\infty]{}\ell\Longrightarrow\sqrt[n]{u_n}\xrightarrow[n\to+\infty]{}\ell$ (indication : utiliser le lemme de Césaro).

4. Chercher les limites de :
$$u_n = \sqrt[n]{\binom{2n}{n}}$$
 $v_n = \frac{n}{\sqrt[n]{n!}}$ $w_n = \frac{1}{n^2} \sqrt[n]{\frac{(3n)!}{n!}}$

Exercice 5 (**(A)**) - Divergence de $\cos(n\theta)$ et $\sin(n\theta)$ -

Soit $\theta \in \mathbb{R}$. Montrer que si $\theta \not\equiv 0$ [π], les suites $(\cos(n\theta))$ et $(\sin(n\theta))$ sont toutes les deux divergentes (montrer que si l'une converge, alors l'autre aussi, puis obtenir une contradiction).

Exercice 6 () Étudier la convergence des suites suivantes, et calculer la limite quand elle existe : $a_n = \sqrt{n^2 + n + 1} - \sqrt{n}$; $b_n = \frac{n \sin(n)}{n^2 + 1}$; $c_n = \frac{1}{n} + (-1)^n$; $d_n = n - \sqrt{n^2 - n}$

$$e_n = \frac{n}{2}\sin\frac{n\pi}{2}$$
; $f_n = \sqrt[n]{3 - \sin n^2}$; $g_n = \frac{n^3 + 2^n}{3^n}$.

Exercice 7 (\circlearrowleft) Soit (u_n) une suite complexe telle que (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Montrer que (u_n) converge.

Exercice 8 (N) Soit $u_n = \frac{1}{n}$ et $v_n = \frac{1}{n^2}$. Montrer que : $\forall n > 1, v_n < u_{n-1} - u_n$. en déduire que la suite $(S_n)_{n \in \mathbb{N}^*}$ définie par $S_n = \sum_{i=1}^n v_i$ converge, et majorer sa limite.

Exercice 9 () Critère spécial des séries alternées ou critère de Leibniz :

Soit (u_n) une suite de réels décroissante et de limite nulle. Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$. Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

Exercice 10 (So) Soit la suite (u_n) définie par $u_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ et soit $v_n = u_n - \ln(n)$ et $w_n = u_n - \ln(n+1)$.

- 1. Montrer que les suites (v_n) et (w_n) sont adjacentes (leur limite commune s'appelle la constante d'Euler)
- 2. En déduire la nature de la suite (u_n)

Exercice 11 On appelle ouvert de $\mathbb R$ toute partie U vérifiant la propriété suivante :

pour tout $x \in U$, il existe un intervalle I ouvert tel que $x \in I \subset U$.

Soient U et V deux ouverts denses de \mathbb{R} . Établir que $U \cap V$ est encore un ouvert dense de \mathbb{R} .

Exercice 12 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles que

$$u_n \to +\infty$$
, $v_n \to +\infty$ et $u_{n+1} - u_n \to 0$

1. Soient $\varepsilon > 0$ et $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|u_{n+1} - u_n| \le \varepsilon$. Montrer que pour tout $a \ge u_{n_0}$, il existe $n \ge n_0$ tel que $|u_n - a| \le \varepsilon$.

- 2. En déduire que $\{u_n v_p | n, p \in \mathbb{N}\}$ est dense dans \mathbb{R} .
- 3. Montrer que l'ensemble $\{\cos(\ln n)|n\in\mathbb{N}\}$ est dense dans [-1,1].

Exercice 13 On donne u_0 réel, et on pose quand cela est possible, $u_{n+1} = \frac{1+u_n}{1-u_n}$. Pour quelles valeurs de u_0 définit-on ainsi une suite (u_n) ? Montrer qu'alors la suite est périodique.

Exercice 14 ($^{\infty}$) Étudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + 1$.

Exercice 15 Soit
$$u_0 = -1$$
 et $u_{n+1} = \frac{3 + 2u_n}{2 + u_n}$.

- 1. Montrer que la suite (u_n) est bien définie.
- 2. Résoudre l'équation f(x) = x où $f: x \to \frac{3+2x}{2+x}$. On notera α et β ses racines.
- 3. Soit $v_n = \frac{u_n \alpha}{u_n \beta}$. Montrer que la suite (v_n) est une suite géométrique. En déduire l'expression de u_n en fonction de n.

Exercice 16 Étudier la suite $z_{n+1} = \frac{z_n}{2 - z_n}$ avec $z_0 \in \mathbb{C}$ tel que $|z_0| \leq 1$.

Exercice 17 Soient (x_n) et (y_n) deux suites réelles telles que $\forall n \in \mathbb{N}, x_{n+1} = \frac{x_n - y_n}{2}$ et $y_{n+1} = \frac{x_n + y_n}{2}$. En introduisant la suite complexe de terme général $z_n = x_n + i.y_n$, montrer que les suites (x_n) et (y_n) convergent et déterminer leurs limites.

