1990 HI10

已知 $a_0 = 1$, $a_1 = 3$ 及 $a_n^2 - a_{n-1}a_{n+1} = (-1)^n$,其中 n 為正整數。求 a_4 的值。 Given that $a_0 = 1$, $a_1 = 3$ and $a_n^2 - a_{n-1}a_{n+1} = (-1)^n$ for positive integers n. Find the value of a_4 .

1991 FG8.1-2

細看以下之六邊形數:Consider the following hexagonal numbers:

G8.1 求 H_5 的值。Find the value of H_5 .

G8.2 若 $H_n = an^2 + bn + c$, 其中 n 為正整數, 求 a 的值。

If $H_n = an^2 + bn + c$, where *n* is any positive integer, find the value of *a*.

1992 FG9.3-4

細看以下之數形:Consider the following number pattern:

G9.3 求 T_{10} 的值。Find the value of T_{10} .

G9.4 若 $T_n = 722$, 求 n 的值。If $T_n = 722$, find the value of n.

1995 FI4.3

已知 $F_1 = F_2 = 1$ 且 $F_n = F_{n-1} + F_{n-2}$,其中 $n \ge 3$ 。若 $F_t = 5$,求 t 的值。 It is given that $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$, where $n \ge 3$. If $F_t = 5$, find the value of t.

1997 HG2

已知
$$f(x) = \frac{2x}{x+2}$$
 ,及 $x_1 = 1$, $x_n = f(x_{n-1})$,求 x_{99} 的值。

If $f(x) = \frac{2x}{x+2}$ and $x_1 = 1$, $x_n = f(x_{n-1})$, find the value of x_{99} .

1999 FI2.4

設
$$f_0(x) = \frac{1}{c-x}$$
,且 $f_n(x) = f_0(f_{n-1}(x))$, $n = 1, 2, 3, \dots$

若
$$f_{2000}(2000) = d$$
, 求 d 之值。

Let
$$f_0(x) = \frac{1}{c - x}$$
 and $f_n(x) = f_0(f_{n-1}(x)), n = 1, 2, 3, \dots$

If $f_{2000}(2000) = d$, find the value of d.

1999 FI3.4

數列 $\{a_n\}$ 的定義如下: $a_1=2$, $a_{n+1}=a_n+2n$ $(n \ge 1)$ 。若 $a_{100}=d$,求 d 之值。 The sequence $\{a_n\}$ is defined as $a_1=2$, $a_{n+1}=a_n+2n$ $(n \ge 1)$.

If $a_{100} = d$, find the value of d.

1999 FI5.4

設 f(1) = 1 及 f(n) = (n-1) f(n-1) ,其中 n > 1 。若 d = f(4) ,求 d 之值 。 Let f(1) = 1 and f(n) = (n-1) f(n-1), where n > 1. If d = f(4), find d.

1999 FG3.2

數列 $\{a_k\}$ 定義如下: $a_1 = 1, a_2 = 1$ 及 $a_k = a_{k-1} + a_{k-2} (k > 2)$ 。

若
$$a_1 + a_2 + ... + a_{10} = 11 a_b$$
, 求 b 之值。

The sequence $\{a_k\}$ is defined as: $a_1 = 1$, $a_2 = 1$ and $a_k = a_{k-1} + a_{k-2}$ (k > 2).

If $a_1 + a_2 + ... + a_{10} = 11 \ a_b$, find the value of b.

2000 FI3.4

設
$$f(0) = 0$$
; $f(n) = f(n-1) + 3$ 當 $n = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$

如果
$$2f(S) = 3996$$
 , 求 S 的值。

Let
$$f(0) = 0$$
; $f(n) = f(n-1) + 3$ when $n = 1, 2, 3, 4, \dots$

If 2f(S) = 3996, find the value of S.

2001 FG4.1

$$x_1 = 2001$$
。當 $n > 1$, $x_n = \frac{n}{x_{n-1}}$ 。已知 $x_1 x_2 x_3 ... x_{10} = a$,求 a 的值。

 $x_1 = 2001$. When n > 1, $x_n = \frac{n}{x_{n-1}}$. Given that $x_1 x_2 x_3 ... x_{10} = a$, find the value of a.

2004 FGS.1

對任意整數 n , F_n 的定義如下: $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$ 及 $F_1 = 1$ 。 若 $a = F_{-5} + F_{-4} + ... + F_4 + F_5$, 求 a 的值 。

For all integers n, F_n is defined by $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$ and $F_1 = 1$. If $a = F_{-5} + F_{-4} + ... + F_4 + F_5$, find the value of a. Recurrence sequence (HKMO Classified Questions by topics)

2005 FG4.4

已知
$$f_1 = 0$$
 , $f_2 = 1$ 及對正整數 $n \ge 3$, $f_n = f_{n-1} + 2f_{n-2}$ 。 若 $d = f_{10}$, 求 d 的值 。

Given that $f_1 = 0$, $f_2 = 1$, and for any positive integer $n \ge 3$, $f_n = f_{n-1} + 2f_{n-2}$. If $d = f_{10}$, find the value of d.

2009 HI6

設
$$f_1(x) = \frac{1}{1-x}$$
 及 $f_n(x) = f_1(f_{n-1}(x))$,其中 $n = 2 \cdot 3 \cdot 4 \cdot \dots \circ$ 求 $f_{2009}(2008)$ 的值。

Let
$$f_1(x) = \frac{1}{1-x}$$
 and $f_n(x) = f_1(f_{n-1}(x))$, where $n = 2, 3, 4, \cdots$.

Find the value of $f_{2009}(2008)$.

2009 FI1.4

設 f(x)是一個函數使得對所有整數 $n \ge 6$ 時,f(n) = (n-1)f(n-1)及 $f(n) \ne 0$ 。

若
$$U=\frac{f(11)}{10f(8)}$$
,求 U 的值。

Let f(x) be a function such that f(n) = (n-1)f(n-1) and $f(n) \neq 0$ hold for all integers $n \geq 6$. If $U = \frac{f(11)}{10f(8)}$, find the value of U.

2012 FG3.3

設
$$k$$
 為正整數及函數 $f(k)$ 的定義是若 $\frac{k-1}{k} = 0.k_1k_2k_3......$,則 $f(k) = \overline{k_1k_2k_3}$,

例如
$$f(3) = 666$$
 因為 $\frac{3-1}{3} = 0.666 \cdots$,求 $D = f(f(f(f(f(112)))))$ 的值。

Let k be positive integer and f(k) a function that if $\frac{k-1}{k} = 0.k_1k_2k_3...$

then
$$f(k) = \overline{k_1 k_2 k_3}$$
, for example, $f(3) = 666$ because $\frac{3-1}{3} = 0.666 \cdots$,

find the value of D = f(f(f(f(112)))).

2012 FG3.4

若 F_n 為一整數值函數,其定義為 $F_n(k) = F_1(F_{n-1}(k))$, $n \ge 2$ 且 $F_1(k)$ 是 k 的所有位數的平方之和,求 $F_{2012}(7)$ 的值。

If F_n is an integral valued function defined recursively by $F_n(k) = F_1(F_{n-1}(k))$ for $n \ge 2$ where $F_1(k)$ is the sum of squares of the digits of k, find the value of $F_{2012}(7)$.

2013 HG10

對所有正整數 n,定義函數 f 為

- (i) f(1) = 2012,
- (ii) $f(1) + f(2) + \cdots + f(n-1) + f(n) = n^2 f(n)$, n > 1

求 f(2012) 的值。

For all positive integers n, define a function f as

- (i) f(1) = 2012,
- (ii) $f(1) + f(2) + \cdots + f(n-1) + f(n) = n^2 f(n), n > 1.$

Find the value of f(2012).

2013 FI2.3

設 f(1)=3,f(2)=5 且對所有正整數n,f(n+2)=f(n+1)+f(n)。

當 f(600) 除以 3 的餘數是 c , 求 c 的值。

Let f(1) = 3, f(2) = 5 and f(n + 2) = f(n + 1) + f(n) for positive integers n.

If c is the remainder of f(600) divided by 3, find the value of c.

2013 FI4.2

設函數
$$F(n)$$
满足 $F(1) = F(2) = F(3) = 1$ 及 $F(n+1) = \frac{F(n) \cdot F(n-1) + 1}{F(n-2)}$,

其中 $n \ge 3$ 為正整數。求b = F(6)的值。

Let F(n) be a function with F(1) = F(2) = F(3) = 1 and

$$F(n+1) = \frac{F(n) \cdot F(n-1) + 1}{F(n-2)}$$
 for positive integer $n \ge 3$,

find the value of b = F(6).

2014 HG8

設 $a_1 = 215$, $a_2 = 2014$ 及 $a_{n+2} = 3a_{n+1} - 2a_n$,其中 n 為一正整數。

求 $a_{2014} - 2a_{2013}$ 的值。

Let $a_1 = 215$, $a_2 = 2014$ and $a_{n+2} = 3a_{n+1} - 2a_n$, where *n* is a positive integer.

Find the value of $a_{2014} - 2a_{2013}$.

2014 FG1.4

給定一實數數列 a1, a2, a3, ··· , 它滿足

(1)
$$a_1 = \frac{1}{2}$$
 , 及 (2) 對 $k \ge 2$, 有 $a_1 + a_2 + \dots + a_k = k^2 a_k$ 。求 a_{100} 的值。

Given a sequence of real numbers a_1, a_2, a_3, \cdots that satisfy

(1)
$$a_1 = \frac{1}{2}$$
, and (2) $a_1 + a_2 + \dots + a_k = k^2 a_k$, for $k \ge 2$.

Determine the value of a_{100} .

2015 HI5

已知
$$a_1, a_2, \dots, a_n, \dots$$
 為一正實數序列,其中 $a_1 = 1$ 及 $a_{n+1} = a_n + \sqrt{a_n} + \frac{1}{4}$ 。 求 a_{2015} 的值。

It is given that $a_1, a_2, \dots, a_n, \dots$ is a sequence of positive real numbers such that $a_1 =$

1 and $a_{n+1} = a_n + \sqrt{a_n} + \frac{1}{4}$. Find the value of a_{2015} .

2016 HI15

已知數列
$$\{a_n\}$$
,其中 $a_{n+2} = a_{n+1} - a_n$ 。若 $a_2 = -1$ 及 $a_3 = 1$,求 a_{2016} 的值。 Given a sequence $\{a_n\}$, where $a_{n+2} = a_{n+1} - a_n$.

If $a_2 = -1$ and $a_3 = 1$, find the value of a_{2016} .

2016 HG3

考慮數列
$$a_1, a_2, a_3, \cdots$$
 。定義 $S_n = a_1 + a_2 + \cdots + a_n$ 其中 n 為任何正整數。

若
$$S_n = 2 - a_n - \frac{1}{2^{n-1}}$$
 , 求 a_{2016} 的值。

Consider a sequence of numbers a_1, a_2, a_3, \cdots .

Define $S_n = a_1 + a_2 + \cdots + a_n$ for any positive integer n.

Find the value of a_{2016} if $S_n = 2 - a_n - \frac{1}{2^{n-1}}$.

2016 FG1.3

若
$$f_1 = 60$$
 , 求 n 的最少可能值 , 令當 $m \ge n$ 時 , 滿足 $f_m \ge 63$ 。

Let
$$f_{n+1} = \begin{cases} f_n + 3 & \text{if } n \text{ is even} \\ f_n - 2 & \text{if } n \text{ is odd} \end{cases}$$
.

If $f_1 = 0$, determine the smallest possible value of n satisfying $f_m \ge 63$ for all $m \ge n$. **2016 FG2.2**

若 B 為 k 的值的可能數量,使得 $f_k < 11$, 求 B 的值。

Let
$$f_1 = 9$$
 and $f_n = \begin{cases} f_{n-1} + 3 & \text{if } n \text{ is a multiple of } 3 \\ f_{n-1} - 1 & \text{if } n \text{ is not a multiple of } 3 \end{cases}$

If *B* is the number of possible values of *k* such that $f_k < 11$, determine the value of *B*.

2017 HI6

已知 $a_0 = 2$, $a_1 = -1$ 及 $a_{n+1} = 2a_n - a_{n-1}$, 其中 $n \ge 1$, 求 a_{2017} 的值。 Given that $a_0 = 2$, $a_1 = -1$ and $a_{n+1} = 2a_n - a_{n-1}$, where $n \ge 1$, determine the value of a_{2017} .

2018 HI14

對任意實數
$$x(x \neq 1)$$
,定義函數 $f(x) = \frac{x}{1-x}$ 及 $f \circ f(x) = f(f(x))$ 。

求
$$2017 \underbrace{f \circ f \circ f \circ \cdots \circ f}_{2018 \text{ (IIII)}}$$
 的值。

For any real number x ($x \ne 1$), define a function $f(x) = \frac{x}{1-x}$ and $f \circ f(x) = f(f(x))$.

Find the value of $2017 \underbrace{f \circ f \circ f \circ \cdots \circ f}_{2018 \text{ copies of f}} (2018)$.

2018 FI3.3

若
$$n$$
 是正整數、 $a_1 = B$ 及 $a_{n+1} = \begin{cases} \frac{a_n}{2} & \stackrel{\textstyle \star}{ } a_n \text{ 是偶數 }; \\ 3a_n + 1 & \stackrel{\textstyle \star}{ } a_n \text{ 是奇數 } \end{cases}$

If n is a positive integer $a_1 = B$ and $a_{n+1} = \begin{cases} \frac{a_n}{2} & \text{if } a_n \text{ is even;} \\ 3a_n + 1 & \text{if } a_n \text{ is odd.} \end{cases}$

determine the value of $C = a_{2018}$.

2019 HG8

設 $\{a_n\}$ 為一個正實數序列使當 n>1 時, $a_n=a_{n-1}a_{n+1}-1$ 。已知 2018 在序列中及 $a_2=2019$ 。若 a_1 的所有可取的數目為 s,求 s 的值。

Let $\{a_n\}$ be a sequence of positive real numbers such that $a_n = a_{n-1}a_{n+1} - 1$ for n > 1. It is given that 2018 is in the sequence and $a_2 = 2019$. If the number of all possible values of a_1 is s, find the value of s.

2022 P2Q8

對所有正整數 n>1,函數 f 定義如下:

$$f(1) = 2021 \ \mathcal{R} \ f(1) + f(2) + f(3) + \dots + f(n) = n^2 f(n) \circ$$

求 f(2021) 的值。

For all positive integers n > 1, a function f is defined as

$$f(1) = 2021$$
 and $f(1) + f(2) + f(3) + \cdots + f(n) = n^2 f(n)$.

Find the value of f(2021).

2023 HI13

數列
$$\{a_n\}$$
 定義為 $a_1 = 1 \cdot a_2 = \frac{3}{7}$ 及對所有 $n \ge 3$, $a_n = \frac{a_{n-2}a_{n-1}}{2a_{n-2} - a_{n-1}}$ 。求 $\frac{1}{a_{2023}}$

的值。

A sequence of numbers $\{a_n\}$ is defined by $a_1 = 1$, $a_2 = \frac{3}{7}$ and

$$a_n = \frac{a_{n-2}a_{n-1}}{2a_{n-2} - a_{n-1}}$$
 for all $n \ge 3$. Find the value of $\frac{1}{a_{2023}}$.

Answers

1990 HI10 109	1991 FG8.1-2 $H_5 = 61, a = 3$	1992 FG9.3-4 $T_{10} = 200, n =$ 19	1995 FI4.3 5	1997 HG2 1/50
1999 FI2.4 2000	1999 FI3.4 9902	1999 FI5.4 6	1999 FG3.2 7	2000 FI3.4 666
2001 FG4.1 3840	2004 FGS.1 16	2005 FG4.4 171	2009 HI6 2007 2008	2009 FI1.4 72
2012 FG3.3 998	2012 FG3.4 1	$ \begin{array}{r} 2013 \text{ HG10} \\ \hline 2 \\ \hline 2013 \end{array} $	2013 FI2.3 2	2013 FI4.2 7
2014 HG8 1584	2014 FG1.4 1 10100	2015 HI5 1016064	2016 HI15 -1	$ \begin{array}{r} 2016 \text{ HG3} \\ \underline{63} \\ 2^{2011} \end{array} $
2016 FG1.3 127	2016 FG2.2 5	2017 HI6 -6049	$ 2018 HI14 \\ -\frac{2018}{2019} $	2018 FI3.3 2
2019 HG8 4	2022 P2Q8 1 1011	2023 HI13 2697		