Probability: Definitions

Def: Measurable mapping

Let \mathcal{A}, \mathcal{B} be σ -algebras in Λ, Ω . A mapping $X : \Lambda \to \Omega$ is called *measurable* if $X^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{B}$.

Interpretation: "F measurable" means that expression " $\mathbb{P}(X^{-1}(B))$ " makes sense.

Def: Random variables

A random variable X is a measurable mapping from an abstract probability space $(\Lambda, \mathcal{A}, \mathbb{P})$ into an observation space $(\Omega, \mathcal{B}(\Omega))$.

Image Measure

The measure \mathbb{P} is not known explicitly. We work with the distribution μ_X of random variable X defined as the *image measure*:

$$\mu_X := X(\mathbb{P})$$
 i.e. $\mu_X(A) := \mathbb{P}(X^{-1}(A))$

Parametric Model

Parametric model

Let $X: (\Lambda, \mathcal{A}) \to (\Omega_X, \mathcal{B}_X)$ and $\Theta: (\Lambda, \mathcal{A}) \to (\Omega_\theta, \mathcal{B}_\theta)$ be two random variables, and $\mu_X = X(\mathbb{P})$. Then the conditional distribution $\mu_X(X|\Theta)$ is called a *parametric family* of models (parameterized by $\theta \in \Omega_\theta$).

Bayesian model

If X observed and Θ unobserved, we call:

- $\mu_{\Theta} := \Theta(\mathbb{P})$ the *prior measure*
- ▶ $\mu_{\Theta}(\Theta|X)$ the posterior measure
- ▶ The overall model is called a Bayesian model.

Note: Not defined by a Bayes equation!

15/25

Conditioning

Note

Defining conditional measures requires some effort.

Direct approach

Conditional probability of $X(\omega) \in A$ given that $X(\omega) \in B$:

$$\mu(A|B) := \frac{\mu(A \cap B)}{\mu(B)}$$

 \rightarrow no use if $\mu(B) = 0$ (think of Bayesian model on \mathbb{R}^d)

For now:

- ▶ We will just write $\mu(X|Y)$ for the conditional probability of X given Y and forget about details.
- ▶ If X, Y have a joint density, $\mu(X|Y)$ has a conditional density p(x|y).

Bayes' Theorem

13/25

Problem:

Given the prior and the data, how can we determine the posterior? (Without exhaustive knowledge of \mathbb{P} , \mathcal{A} etc)

Bayes Theorem

If the sampling model $\mu_X(X|\Theta)$ has density $p_{X|\theta}$, then:

$$rac{d\mu_{\Theta|X}}{d\mu_{\Theta}}(heta|x) = rac{p_{X| heta}}{\int p_{X| heta}d\mu_{ heta}(heta)}$$

for all x with $\int p_{X|\theta} d\mu_{\theta}(\theta) \notin \{0, \infty\}$.

14/25 16/25