Eigenvectors and eigenvalues, Part II

Roberto Svaldi

École Polytechnique fédérale de Lausanne

January 7th 2022

Eigenvalues and eigenvectors

Let V be a finite dimensional \mathbb{F} -vector space and $T: V \to V$ a linear transformation.

Our goal: answering 2 important questions

- O Do eigenvalues and eigenvectors exist for every choice of T?
- $oldsymbol{\circ}$ How do we compute eigenvalues and eigenvectors of T?

Eigenvalues and eigenvectors

Let V be a finite dimensional \mathbb{F} -vector space and $T:V\to V$ a linear transformation.

Our goal: answering 2 important questions

- lacktriangle Do eigenvalues and eigenvectors exist for every choice of T?
- ② How do we compute eigenvalues and eigenvectors of T?

Definition 2.1

We say that $\lambda \in \mathbb{F}$ is an eigenvalue of T if there exists $w \in V$, $w \neq \underline{0}$ such that

$$Tw = \lambda w$$
.

If λ is an eigenvalue of T, then any $w \in V$, $w \neq \underline{0}$ such that $Tw = \lambda w$ is called an eigenvector of T corresponding to the eigenvalue λ .

Existence of eigenvalues and eigenvectors

Question 2.1

Do eigenvalues/eigenvectors exist for any $T: V \rightarrow V$? No!!

Consider $T:\mathbb{R}^2 \to \mathbb{R}^2$ the counterclockwise rotation of 90° around $\underline{0} \in \mathbb{R}^2$

$$T\left(y_{1},y_{2}\right)\coloneqq\left(\begin{array}{cc}\cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right)\\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right)\end{array}\right)\left(\begin{array}{c}y_{1}\\ y_{2}\end{array}\right)=\left(\begin{array}{cc}0 & -1\\ 1 & 0\end{array}\right)\left(\begin{array}{c}y_{1}\\ y_{2}\end{array}\right)=\left(\begin{array}{c}-y_{2}\\ y_{1}\end{array}\right)$$

For any $w \in \mathbb{R}^2$, $w \neq \underline{0}$, Tw and w are never parallel and w is not an eigenvector of T.

T does not admit any eigenvector in \mathbb{R}^2 nor any eigenvalue in $\mathbb{R}!$

Computing eigenvalues

Fix $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of $\mathcal T$ if and only if, by definition,

$$\exists w \in V, w \neq \underline{0} \text{ such that } Tw = \lambda w$$

Let's work on the equation $Tw = \lambda w$:

Computing eigenvalues

Fix $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of T if and only if, by definition,

$$\exists w \in V, w \neq \underline{0} \text{ such that } Tw = \lambda w$$

Let's work on the equation $Tw = \lambda w$:

$$Tw = \lambda w$$

$$\iff Tw - \lambda w = 0$$

$$\iff Tw - \lambda I_V w = 0$$

$$\iff (T - \lambda I_V) w = 0$$

$$\iff w \in \ker(T - \lambda I_V).$$

Computing eigenvalues

Fix $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of T if and only if, by definition,

$$\exists w \in V, w \neq \underline{0} \text{ such that } Tw = \lambda w$$

Let's work on the equation $Tw = \lambda w$:

wition
$$Tw = \lambda w$$
:

 $Tw = \lambda w$
 $\Rightarrow Tw - \lambda w = 0$
 $\Rightarrow Tw - \lambda I_V w = 0$
 $\Rightarrow (T - \lambda I_V) w = 0$
 $\Rightarrow w \in \ker(T - \lambda I_V)$.

DEFIN of Ken

Conclusion: λ is an eigenvalue of T if and only if

$$\exists w \in V, w \neq \underline{0} \text{ such that } w \in \ker(T - \lambda I_V)$$

Computing eigenvalues, II

We can summarize the previous discussion with the following statement.

Theorem 2.1

 $\lambda \in \mathbb{F}$ is an eingenvalue of $T: V \to V$ if and only $\det(T - \lambda I_V) = 0$. Eigenvectors corresponding to λ are all $w \in V$, $w \neq \underline{0}$ such that

$$w \in \ker(T - \lambda I_v).$$

Computing eigenvalues, II

We can summarize the previous discussion with the following statement.

Theorem 2.1

 $\lambda \in \mathbb{F}$ is an eingenvalue of $T: V \to V$ if and only $\det(T - \lambda I_V) = 0$. Eigenvectors corresponding to λ are all $w \in V$, $w \neq \underline{0}$ such that

$$w \in \ker(T - \lambda I_v).$$

Characteristic equation. We can define a function $p_T: \mathbb{F} \to \mathbb{F}$ as

$$p_T(x) := \det(T - xI_V).$$

Part 3: we will show that $p_T(x)$ is a polynomial in x of degree dim V.

Computing eigenvalues, II

We can summarize the previous discussion with the following statement.

Theorem 2.1

 $\lambda \in \mathbb{F}$ is an eingenvalue of $T \colon V \to V$ if and only $\det(T - \lambda I_V) = 0$. Eigenvectors corresponding to λ are all $w \in V$, $w \neq \underline{0}$ such that

$$w \in \ker(T - \lambda I_v).$$

Characteristic equation. We can define a function $p_T: \mathbb{F} \to \mathbb{F}$ as

$$p_T(x) \coloneqq \det(T - xI_V).$$

Part 3: we will show that $p_T(x)$ is a polynomial in x of degree dim V.

Theorem 2.1 (2nd version)

 $\lambda \in \mathbb{F}$ is an eingenvalue of $T: V \to V$ if and only if λ is a solution of the characteristic equation

$$p_T(x) = 0.$$

Example

Take
$$A = \begin{pmatrix} 4 & 2 \\ 0 & 3 \end{pmatrix}$$
 and define $T: \mathbb{R}^2 \to \mathbb{R}^2$ as

$$T\left(y_1,y_2\right) := \left(\begin{array}{cc} 4 & 2 \\ 0 & 3 \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{c} 4y_1 + 2y_2 \\ 3y_2 \end{array}\right).$$

Example

Take
$$A = \begin{pmatrix} 4 & 2 \\ 0 & 3 \end{pmatrix}$$
 and define $T: \mathbb{R}^2 \to \mathbb{R}^2$ as

$$T(y_1,y_2) := \begin{pmatrix} 4 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 4y_1 + 2y_2 \\ 3y_2 \end{pmatrix}.$$

The characteristic function of T is

$$p_T(x) = \det(T - xI_{\mathbb{R}^2}) = \det(A - xI_2) = \begin{vmatrix} 4 - x & 2 \\ 0 & 3 - x \end{vmatrix}$$

and the characteristic equation is

$$p_T(x) = (4-x)(3-x)-2\cdot 0 = 0$$

Example

Take
$$A = \begin{pmatrix} 4 & 2 \\ 0 & 3 \end{pmatrix}$$
 and define $T: \mathbb{R}^2 \to \mathbb{R}^2$ as

$$T(y_1,y_2) := \begin{pmatrix} 4 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 4y_1 + 2y_2 \\ 3y_2 \end{pmatrix}.$$

The characteristic function of T is

$$p_T(x) = \det(T - xI_{\mathbb{R}^2}) = \det(A - xI_2) = \begin{vmatrix} 4 - x & 2 \\ 0 & 3 - x \end{vmatrix}$$

and the characteristic equation is

$$p_T(x) = (4-x)(3-x)-2\cdot 0 = 0$$

The roots of the degree 2 polynomial $p_T(x) = (4-x)(3-x)$ are 4 and 3: these are the eigenvalues of T.

To compute the eigenvectors for the eigenvalue 4 of \mathcal{T} , we need to compute

$$\ker(T-4I_{\mathbb{R}^2}) = \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid \begin{pmatrix} 4-4 & 2 \\ 0 & 3-4 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

To compute the eigenvectors for the eigenvalue 4 of \mathcal{T} , we need to compute

$$\ker(T-4I_{\mathbb{R}^2}) = \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid \begin{pmatrix} 4-4 & 2 \\ 0 & 3-4 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

On the other hand, $\operatorname{rank} \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} = 1$ and $\begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Hence, by the Rank-Nullity Thm,

$$\dim \ker (T-4\mathit{I}_{\mathbb{R}^2}) = \dim \mathbb{R}^2 - \operatorname{rank}(T-4\mathit{I}_{\mathbb{R}^2}) = 2-1 = 1, \text{ and}$$
$$\ker (T-4\mathit{I}_{\mathbb{R}^2}) = \{(\mu,0) \in \mathbb{R}^2 \mid \mu \in \mathbb{R}\}$$

In the same way for the eigenvalue 3, we compute

$$\ker(T-3I_{\mathbb{R}^2}) = \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid \begin{pmatrix} 4-3 & 2 \\ 0 & 3-3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

by resolving the associated homogenous linear system

$$\begin{cases} 1 \cdot y_1 + 2y_2 = 0 & \longrightarrow \\ 0 \cdot y_1 + 0 \cdot y_2 = 0 & \longrightarrow \end{cases} y_1 = -2y_2$$

Hence,
$$\ker(T - 3I_{\mathbb{R}^2}) = \{(-2\mu, \mu) \in \mathbb{R}^2 \mid \mu \in \mathbb{R}\}.$$

Existence of eigenvalues and eigenvectors, II

Questions

Do eigenvalues always exist for $T: V \rightarrow V$? No!!

Let us consider $T: \mathbb{R}^2 \to \mathbb{R}^2$ the rotation of 90° around the origin

$$T\left(y_1,y_2\right) \coloneqq \left(\begin{array}{cc} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{c} -y_2 \\ y_1 \end{array}\right)$$

The characteristic function of T is

$$p_T(x) = \begin{vmatrix} -x & -1 \\ 1 & -x \end{vmatrix} = x^2 + 1$$

and the polynomial $x^2 + 1$ has no roots in \mathbb{R} . Hence, again: T does not have eigenvalues in \mathbb{R} .