Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Projeto de AFDs

* Projeto de AFDs

Propriedades dos AFDs Complemento da Linguagem

* Seja
$$M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$$

* Se
$$L(M'_1) = L(M_1)$$
 então $M'_1 = (E_1, \Sigma, \delta_1, i_1, E_1 - F_1)$

* O complemento da linguagem $L(M_1)$ pode ser obtido fazendo finais todos os estados de M_1 que não são finais.

Propriedades dos AFDs Interseção de Linguagens

- * Sejam $M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$ e $M_2 = (E_2, \Sigma, \delta_2, i_2, F_2)$
- * Se $L(M_3) = L(M_1) \cap L(M_2)$ então $M_3 = (E_1 \times E_2, \Sigma, \delta_3, [i_1, i_2], F_3)$.
- * Serão colocados como estados de M_3 pares de estados de E_1 x E_2 , e a função de transição δ_3 será tal que, para todo $e_1 \in E_1$ e $e_2 \in E_2$ e $a \in \Sigma$.
- * $\delta_3([e_1, e_2], a) = [\delta_1(e_1, a), \delta_2(e_2, a))]$
- * $F_3 = F_1 \times F_2$

Propriedades dos AFDs Interseção de Linguagens

* Exemplo:

```
* L_1 = \{0w0 \mid w \in \{0, 1\}^*\};
* L_2 = \{w \in \{0, 1\}^* \mid |w| \text{ é divisível por 3}\};
```

- * $L_1 \cap L_2 = Conjunto de todas as palavras que começam e terminam com 0 e ao mesmo tempo sejam divisíveis por 3.$
- * Exemplos: 000, 010, 000000, 011110...
- * A prática é bem mais simples do que a definição teórica...

Propriedades dos AFDs União de Linguagens

- * Sejam $M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$ e $M_2 = (E_2, \Sigma, \delta_2, i_2, F_2)$
- * Se $L(M_3) = L(M_1) \cup L(M_2)$ então $M_3 = (E_1 \times E_2, \Sigma, \delta_3, [i_1, i_2], F_3)$.
- * Serão colocados como estados de M_3 pares de estados de E_1 x E_2 , e a função de transição δ_3 será tal que, para todo $e_1 \in E_1$ e $e_2 \in E_2$ e $a \in \Sigma$.
- * $\delta_3([e_1, e_2], a) = [\delta_1(e_1, a), \delta_2(e_2, a))]$
- * $F_3 = (F_1 \times E_2) \cup (E_1 \times F_2)$

Propriedades dos AFDs União de Linguagens

* Exemplo:

```
* L_1 = \{w \in \{0, 1\} * \mid |w| \text{ é divisível por 3}\};
```

- * $L_2 = \{0w0 \mid w \in \{0, 1\}^*\};$
- * $L_1 \cup L_2 = Conjunto de todas as palavras que sejam divisíveis por 3 ou começam e terminam com 0.$
- * Exemplos: 00, 000, 010, 100, 111, 000000, 011110, 1111111...
- * A prática é bem mais simples do que a definição teórica...

Exemplo

- * Sejam
 - * $L(M_1) = \{w \in \{0, 1\}^* \mid |w| \text{ é divisível por 3}\};$
 - * $L(M_2) = \{w \in \{0, 1\}^* \mid |w| \text{ é divisível por 2}\};$
- * Construir autômatos que reconheçam as seguintes linguagens:
 - * $\overline{L(M_1)}$
 - * $L(M_1) \cap L(M_2)$
 - * $L(M_1) \cup L(M_2)$

- * Para melhor entendimento, vamos aos AFD's primeiro:
 - * $L(M_1) = \{w \in \{0, 1\}^* \mid |w| \text{ é divisível por 3}\};$

- * Para melhor entendimento, vamos aos AFD's primeiro:
 - * $L(M_2) = \{w \in \{0, 1\}^* \mid |w| \text{ é divisível por 2}\};$

* $L(M_1)$

- * Todas as palavras que não forem divisíveis por 3
- * Exemplos: 0, 1, 00, 11, 0000, 1111, 0101...

*
$$L(M_1) \cap L(M_2)$$

*
$$i = (0,0)$$
 δ 0 1
* $F = \{(0,0)\}$ $(0,0)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(2,0)$ $(2,0)$ $(2,0)$ $(2,0)$ $(0,1)$ $(0,1)$ $(0,1)$ $(1,0)$ $(1,0)$ $(1,0)$ $(2,1)$ $(2,1)$ $(2,1)$ $(2,1)$

- * Todas as palavras que forem divisíveis por 3 e por 2 ao mesmo tempo
- * Exemplos: 000000, 111111, 010000, 100000...

* $L(M_1) \cap L(M_2)$

- Todas as palavras que forem divisíveis por 3 e por 2 ao mesmo tempo
- * Exemplos: 000000, 111111, 010000, 100000...

*
$$L(M_1) \cup L(M_2)$$

- *i = (0,0)
- * $F = \{(0,0), (0,1), (1,0), (2,0)\}$

- Todas as palavras que forem divisíveis por 3 ou por 2
- * Exemplos: 00, 11, 000, 111, 0000, 1111, 000111, 111000...

*
$$L(M_1) \cup L(M_2)$$

- *i = (0,0)
- * $F = \{(0,0), (0,1), (1,0), (2,0)\}$
- * Por que na união (1,1) não é estado final?
- * Por que na união (2,1) não é estado final?

- Todas as palavras que forem divisíveis por 3 ou por 2
- * Exemplos: 00, 11, 000, 111, 0000, 1111, 000111, 111000...

- * $L(M_1) \cup L(M_2)$
- * Por que na união (1,1) não é estado final?
- * Porque se não as palavras:
- * 0, 1, 0000000, 11111111...
- * Seriam reconhecidas, sendo que não são divisíveis nem por 2 e nem por 3

- * $L(M_1) \cup L(M_2)$
- * Por que na união (2,1) não é estado final?
- * Porque se não as palavras:
- * 00000, 11111, 10000...
- * Seriam reconhecidas, sendo que não são divisíveis nem por 2 e nem por 3

* $L(M_1) \cup L(M_2)$

- * Todas as palavras que forem divisíveis por 3 ou por 2
- * Exemplos: 00, 11, 000, 111, 0000, 1111, 000111, 111000...

Propriedades dos AFDs Linguagens Finitas

- * Sempre existe um AFD que reconhece uma linguagem finita
 - * Dentre os AFDs possíveis para reconhecer linguagens finitas, existem aqueles cujo diagrama de estados simplificado não contém ciclos (são árvores) em que o nó inicial é a raiz

Propriedades dos AFDs Linguagens Finitas e Infinitas

- * Assim, tem-se que: uma linguagem é finita se, e somente se, existe algum AFD que a reconhece cujo diagrama de estados simplificado não tem ciclos. Dizer isso é equivalente a dizer que uma linguagem L é infinita se, e somente se:
- * a) não existe AFD que reconhece L; ou
- * b) o diagrama de estados simplificado de qualquer AFD que a reconhece tem ciclo.

Propriedades dos AFDs Linguagens Infinitas

- * Existem linguagens infinitas para as quais:
 - * <u>É possível</u> construir um AFD:

$$L_1 = \{a^n | n \ge 0\}$$

* <u>É impossível</u> construir um AFD:

$$L_2 = \{a^n b^n | n \ge 0\}$$

Propriedades dos AFDs Linguagens Infinitas

- * Por que impossível?
 - * A existência de ciclo implicaria o reconhecimento de palavras que não pertencem a L.

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

