Equality handling and efficiency improvement of SMT for non-linear constraints over reals

By VU XUAN TUNG

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of Professor Mizuhito Ogawa

Equality handling and efficiency improvement of SMT for non-linear constraints over reals

By VU XUAN TUNG (1310007)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of Professor Mizuhito Ogawa

and approved by
Professor Mizuhito Ogawa
Associate Professor Nao Hirokawa
Professor Tachio Terauchi

February, 2015 (Submitted)

Abstract

Solving polynomial constraints is raised from many applications of Software Verification such as roundoff/overflow error analysis, automatic termination proving or loop invariant generation. Although in 1948, Tarski proved the decidability of polynomial constraints over real numbers, the current complete method named Quantifier Elimination by Cylindrical Algebraic Decomposition has the complexity of doubly-exponential with respect to the number of variables which remains as an impediment. Interval Constraint Propagation (ICP) which use the inequalities/equations to contract the interval of variables by removing the unsatisfiable intervals is an efficient methodology because it uses floating point arithmetic. However the number of boxes (combination of intervals of variables) may grow exponentially.

This thesis presents strategies for efficiency improvement and extensions of an SMT solver named **raSAT** for polynomial constraints. **raSAT** which initially focuses on polynomial inequalities over real numbers follows ICP methodology and adds testing to boost satisfiability detection. In this work, in order to deal with exponential exploration of boxes, several heuristic measures, namely *SAT likelyhood*, *sensitivity*, and *the number of unsolved polynomial inequalities*, are proposed. From the experiments on standard SMT-LIB benchmarks, **raSAT** is able to solve large constraints (in terms of the number of variables) which are difficult for other tools. In addition to those heuristics, extensions for handling equations using the Intermediate Value Theorem and handling constraints over integer number are also presented in this thesis.

Contents

1	Intr	roduction					
	1.1	Polynomial Constraint Solving	4				
	1.2	Existing Approaches	5				
	1.3	Proposed Approach and Contributions	6				
	1.4	Thesis Outline	8				
2	Pre	liminaries	9				
	2.1	Abstract DPLL	9				
	2.2	Satisfiability Modulo Theories - SMT	11				
			11				
		2.2.2 Semantics	11				
	2.3	Polynomial Constraints over Real Numbers	13				
		2.3.1 Syntax	13				
			14				
3	Ove	er-Approximation and Under-Approximation	17				
	3.1	11	17				
	3.2	Interval Arithmetic as an Over-Approximation Theory of Sub-Theory of					
			17				
			17				
		3.2.2 Interval Arithmetic as an Over-Approximation Theory of Sub-Theory					
		of Real Numbers	18				
	3.3	Testing as an Under-Approximation Theory of Sub-Theory of Real Numbers	22				
	3.4	· · · · · · · · · · · · · · · · · ·	22				
	3.5		24				
		3.5.1 Soundness	24				
			26				
4	$\operatorname{Int}\epsilon$	erval Arithmetic	28				
	4.1	Classical Interval	28				
	12		20				

5 Design Strategies						
	5.1	Incremental search	32			
		5.1.1 Incremental Windening and Deepening				
		5.1.2 Incremental Testing				
	5.2	Refinement Heuristics				
6	Exp	Experiments				
	6.1	Experiments on Strategy Combinations	36			
	6.2	Comparison with other SMT Solvers				
	6.3	Experiments with QE-CAD Benchmark	38			
7	Ext	ensions: Equality Handling and Polynomial Constraint over Integers	39			
	7.1	SAT on Equality by Intermediate Value Theorem	39			
	7.2	Polynomial Constraints over Integers	43			
8	Further Strategies					
	8.1	UNSAT Core	44			
	8.2	Test Case Generation	45			
	8.3	Box Decomposition				
9	Cor	nclusion	48			

Chapter 1

Introduction

1.1 Polynomial Constraint Solving

Polynomial constraint solving over real numbers aims at computing an assignment of real values to variables that satisfies given polynomial inequalities/equations. If such an assignment exists, the constraint is said to be satisfiable (SAT) and the assignment is called SAT instance; otherwise we mention it as unsatisfiable (UNSAT).

Example 1.1.1. The constraint $x^2 + y^2 < 1 \land xy > 1$ is an example of an unsatisfiable one. While the set of satisfiable points for the first inequality $(x^2 + y^2 < 1)$ forms the read circle in Figure 1.1, that for the second forms the blue area. Because these two areas do not intersect, the conjunction of two inequalities is unsatisfiable.

Figure 1.1: Example of UNSAT constraint

Example 1.1.2. Figure 1.2 illustrates the satisfiability of the constraint: $x^2 + y^2 < 4 \land xy > 1$. Any point in the purple area is a SAT instance of the constraint, e.g. (1.5, 1).

Figure 1.2: Example of SAT constraint

Solving polynomial constraints has many application in Software Verification, such as

- Locating roundoff and overflow errors which is our motivation [14, 15].
- Automatic termination proving which reduces termination detection to finding a suitable ordering [12], e.g., T_TT₂¹, AProVE², that leads to polynomial constraints.
- Loop invariant generation [3, 20] is reduced to solving polynomial constraints over coefficients of invariant template.

1.2 Existing Approaches

Although solving polynomial constraints on real numbers is decidable [22], current methodologies have their own pros and cos. They can be classified into the following categories:

- 1. Quantifier Elimination by Cylindrical Algebraic Decomposition (QE-CAD) [2] is a complete technique, and is implemented in Mathematica, Maple/SynRac, Reduce/Redlog, QEPCAD-B, and recently in Z3 4.3 (which is referred as nlsat in [9]). Although QE-CAD is precise and detects beyond SAT instances (e.g., SAT regions), scalability is still challenging, since its complexity is doubly-exponential with respect to the number of variables.
- 2. Virtual Substitution eliminates an existential quantifier by substituting the corresponding quantified variable with a very small value $(-\infty)$, and either each root (with respect to that variable) of polynomials appearing in the constraint or each

¹http://cl-informatik.uibk.ac.at/software/ttt2/

²http://aprove.informatik.rwth-aachen.de

root plus an infinitesimal ϵ . Disjunction of constraints after substitutions is equivalent to the original constraint. Because VS needs the formula for roots of polynomials, its application is restricted to polynomials of degree up to 4. SMT-RAT and Z3 [17] applies VS.

- 3. **Bit-blasting**. In this category of methodology, numerical variables are represented by a sequence of binary variables. The given constraint is converted into another constraint over the boolean variables. SAT solver is then used to find a satisfiable instance of binary variables which can be used to calculate the values of numerical variables. MiniSmt [23], the winner of QF_NRA in SMT competition 2010, applies it for (ir)-rational numbers. It can show SAT quickly, but due to the bounded bit encoding, it cannot conclude UNSAT. In addition, high degree of polynomial results in large SAT formula which is an obstacle of bit-blasting.
- 4. **Linearization**. CORD [6] uses COrdinate Rotation DIgital Computer (CORDIC) for real numbers to linearizes multiplications into a sequence of linear constraints. Each time one multiplication is linearized, a number of new constraints and new variables are introduced. As a consequence, high degree polynomials in the original constraint lead to large number of linear constraints.
- 5. Interval Constraint Propagation (ICP) which are used in SMT solver community, e.g., iSAT3 [5], dReal [7], and RSOLVER [18]. ICP combines over-approximation by interval arithmetics and constraint propagation to prune out the set of unsatisfiable points. When pruning does not work, decomposition (branching) on intervals is applied. ICP which is capable of solving "multiple thousand arithmetic constraints over some thousands of variables" [5] is practically often more efficient than algebraic computation.

1.3 Proposed Approach and Contributions

Our aim is an SMT solver for solving polynomial constraint. We first focus on strict inequalities because of the following reasons.

- 1. Satisfiable inequalities allow over-approximation. An over-approximation estimates the range of a polynomial f as $range_O(f)$ that covers all the possible values of f, i.e. $range(f) \subseteq range_O(f)$. For an inequality f > 0, if $range_O(f)$ stays in the positive side, it can be concluded as SAT. On the other hand, over-approximation cannot prove the satisfiability of SAT equations.
- 2. Satisfiable inequalities allow under-approximation. An under-approximation computes the range of the polynomial f as $range_U(f)$ such that $range(f) \supseteq range_U(f)$. If $range_U(f)$ is on the positive side, f > 0 can be said to be SAT. Due to the continuity of f, finding such an under-approximation for solving f > 0 is more feasible than that for f = 0.

- If $f(\bar{x}) > 0$ has a real solution \bar{x}_0 , there exist rational points near \bar{x}_0 which also satisfy the inequality. Solving inequalities over real numbers thus can be reduced to that over rational numbers.
- The real solution of $f(\bar{x}) = 0$ cannot be approximated to any rational number.

For UNSAT constraint (both inequalities and equations) can be solved by over-approximation. Suppose $range_O(f)$ is the result of an over-approximation for a polynomial f.

- 1. If $range_O(f)$ resides on the negative side, f > 0 is UNSAT.
- 2. If $range_O(f)$ stays on either negative or positive side, f=0 is UNSAT.

Our approach of "iterative approximation refinement" - raSAT loop for solving polynomial constraint was proposed and implemented as an SMT solver named raSAT in [10]. This work improves the efficiency of the tool and extend it to handle equations and constraints over integer numbers. The summary of the proposed method in [10] is:

- 1. Over-approximation is used for both disproving and proving polynomial inequalities. In addition, under-approximation is used for boosting SAT detection. When both of these methods cannot conclude the satisfiability, the input formula is refined so that the result of approximation become more precise.
- 2. Interval Arithmetic (IA) and Testing are instantiated as an over-approximation and an under-approximation respectively. While IA defines the computations over the intervals, e.g. $[1,3] +_{IA} [3,6] = [2,9]$, Testing attempts to propose a number of assignments of real numbers to variables and check each assignment against the given constraint to find a SAT instance.
- 3. In refinement phase, intervals of variables are decomposed into smaller ones. For example, $x \in [0, 10]$ becomes $x \in [0, 4] \lor x \in [4, 10]$.
- 4. Khanh and Ogawa [10] also proposed a method for detecting *satisfiability of equations* using the Intermediate Value Theorem.

The contributions of this work are as follows:

- 1. Although the method of using IA is robust for large degrees of polynomial, the number of boxes (products of intervals) grows exponentially with respect to the number of variables during refinement (interval decomposition). As a result, strategies for selectin gone variable to decomposed and selecting one box to explore play a crucial role in efficiency. We introduce the following strategies:
 - Selecting one box. The box with more possiblity to satisfy the constraint is selected to explore, which is estimated by several heuristic measures, called *SAT likelyhood*, and *the number of unsolved polynomial inequalities*.
 - Selecting one variable. The most influential variable is selected for multiple test cases and decomposition. This is estimated by *sensitivity* which is determined during the computation of IA.

- 2. Two schemes of *incremental search* are proposed for enhancing solving process:
 - Incremental deepening. raSAT follows the depth-first-search manner. In order to escape local optimums, it starts searching with a threshold that each interval will be decomposed no smaller than it. If neither SAT nor UNSAT is detected, a smaller threshold is taken and raSAT restarts.
 - Incremental widening. Starting with a small interval, if raSAT detects UNSAT, input intervals are enlarged and raSAT restarts. For SAT constraint, small (finite) interval allows sensitivity to be computed because Affine Interval [10] requires finite range of variables. As a consequence, our above strategies will take effects on finding SAT instance. For the UNSAT case, combination of small intervals and incremental deepening helps raSAT quickly determines the threshold in which unsatisfiability may be proved by IA.
- 3. SAT confirmation step by an error-bound guaranteed floating point package iR- RAM^3 , to avoid soundess bugs caused by roundoff errors.
- 4. This work also implemented the idea of using Intermediate Value Theorem to show the satisfiability of multiple equations which was suggested in [10].
- 5. We also extend raSAT to handle constraints over integer numbers. For this extension, we only generate the integer values for variables in testing phase. In addition, the threshold used for stopping decomposition is set to 1.

1.4 Thesis Outline

Coming soon...

³http://irram.uni-trier.de

Chapter 2

Preliminaries

2.1 Abstract DPLL

In propositional logic, we have a set of propositional symbols P and every $p \in P$ is called an atom. A literal l is either p or $\neg p$ with $p \in P$. The negation $\neg l$ of a literal l is $\neg p$ if l is p, or p if l is $\neg p$. A disjunction $l_1 \vee \cdots \vee l_n$ of literals is said to be a clause. A Conjuctive Normal Form (CNF) formula is a conjunction of clauses $C_1 \wedge \cdots \wedge C_n$. If $C = l_1 \vee \cdots \vee l_n$ is a clause, $\neg C$ is used to denote the CNF formula $\neg l_1 \wedge \cdots \wedge \neg l_n$

An (partial) assignment M is a set of literals such that $l \in M$ and $\neg l \in M$ for no literal l. A literal l is undefined in M if neither $l \in M$ nor $\neg l \in M$. If $l \in M$, l is said to be true in M. On the other hand if $\neg l \in M$, we say that l is false in M. A clause is true in M if at least one of its literals is in M. An assignment M satisfies a CNF formula F (or F is satisfied by M) if all clauses of F is true in M which is denoted as $M \models F$. Given two CNF formula F and F', we write $F \models F'$ if for any assignment M, $M \models F$ implies $M \models F'$. The formula F is unsatisfiable if there is no assignment M such that $M \models F$.

Abstract DavisPutnamLogemannLoveland (DPLL) Procedure [16] searches for an assignment that satisfies a CNF formula. Each state of the procedure is either FailState or a pair $M \parallel F$ of an assignment M and a CNF formula F. For the purpose of the procedure, M is represented as a sequence of literals where each literal is optionally attached an annotation, e.g. l^d which basically means that the literal l is selected to be included in the assignment by making a decision (l is called a decision literal). An empty sequence is denoted by \emptyset . Each DPLL procedure is modeled by a collection of states and a binary relation \Longrightarrow between states. Basic DPLL procedure is a transition system which contains the following four rules.

1. UnitPropagate

$$M \parallel F \land (C \lor l) \Longrightarrow Ml \parallel F \land (C \lor l) \text{ if } \left\{ \begin{array}{l} M \models \neg C \\ l \text{ is undefined in } M. \end{array} \right.$$

2. Decide

$$M \parallel F \Longrightarrow Ml^d \parallel F$$
 if $\left\{ \begin{array}{l} l \text{ or } \neg l \text{ occur in a clause of F} \\ l \text{ is undefined in } M. \end{array} \right.$

3. Fail

$$M \parallel F \wedge C \Longrightarrow FailState \text{ if } \begin{cases} M \models \neg C \\ l^d \in M \text{ for no literal } l. \end{cases}$$

4. Backjump

$$Ml^{d}M' \parallel F \wedge C \Longrightarrow Ml' \parallel F \wedge C \text{ if } \begin{cases} Ml^{d}M' \models \neg C, \text{ and there is some clause } C' \vee l' \\ \text{such that } F \wedge C \models C' \vee l' \text{ and } M \models \neg C', l' \text{ is } \\ \text{undefined in } M, \text{ and } l' \text{ or } \neg l' \text{ occurs in } F \text{ or in } \\ Ml^{d}M'. \end{cases}$$

Let F be a given CNF formula. Starting with the state $\emptyset \parallel F$, basic DPLL procedure terminates with either FailState (which is denoted as $\emptyset \parallel F \Longrightarrow^! FailState$) when F is unsatisfiable, or a state $M \parallel F$ (which is denoted as $\emptyset \parallel F \Longrightarrow^! M \parallel F$) where M satisfies F. Intuitively, the above four rules can be explained as following.

- **UnitPropagate**: In order to satisfy $F \wedge (C \vee l)$, $C \vee l$ needs to be satisfied. Because all the literals in C is false in current assignment M ($M \models \neg C$), l must be made true when extending M.
- **Decide**: This rule is applied when no more **UnitPropagation** can be applied. The annotation d in l^d denotes that if Ml cannot be extended to satisfy f, $M\neg l$ needs to be explored further.
- Fail: When a clause is false in M (conflict) and M has no literal which is decided by making a decision (there is no more options to explored), the formula F is unsatisfiable.
- **Backjump**: As same as in **Fail** rule, a conflict is detected. However, in **Backjump**, because there exists some decision literal in the assignment, new possible assignments can be explored. The clause $C' \vee l'$ is called the backjump clause.

Example 2.1.1. For the formula $(\neg l_1 \lor l_2) \land (\neg l_3 \lor l_4) \land (\neg l_5 \lor \neg l_6) \land (l_6 \lor \neg l_5 \lor \neg l_2)$, the basic DPLL procedure proceeds as following:

Additionally DPLL implementation can add the backjump clauses into the CNF formula as learnt clause (or lemmas), which is usually referred as *conflict-driven learning*. Lemmas aim at preventing similar conflicts to occur in the future. When the conflicts are not likely to happen, the lemmas can be removed. The following two rules are prepared for DPLL.

6. Learn

$$M \parallel F \Longrightarrow M \parallel F \wedge C$$
 if $\left\{ \begin{array}{l} \text{each atom in C appears in F} \\ F \models C. \end{array} \right.$

7. Forget

$$M \parallel F \wedge C \Longrightarrow M \parallel F \text{ if } \left\{ \begin{array}{l} \text{each atom in C appears in F} \\ F \models C. \end{array} \right.$$

2.2 Satisfiability Modulo Theories - SMT

2.2.1 Syntax

Definition 2.2.1. A signature Σ is a 4-tuple (S, P, F, V, α) consisting of a set S of sorts, a set P of predicate symbols, a set F of function symbols, a set V of variables, and a sorts map α which associates symbols to their sorts such that

- for all $p \in P$, $\alpha(p)$ is a n-tuple argument sorts of p,
- for all $f \in F$, $\alpha(f)$ is a n-tuple of argument and returned sorts of f, and
- for all $v \in V$, $\alpha(v)$ represents the sort of variable v.

A Σ -term t over the signature Σ is defined as

$$\begin{array}{cccc} t & ::= & v & \text{where } v \in V \\ & | & f(t_1, \cdots, t_n) & \text{where } f \in F \text{ with arity } n \end{array}$$

A Σ -formula φ over the signature Σ is defined recursively as (we only focus on equantifier-free formulas):

$$\varphi ::= p(t_1, \dots, t_n) \quad \text{where } p \in P \text{ with arity } n$$

$$| \perp | \neg \varphi_1$$

$$| \varphi_1 \wedge \varphi_2 | \varphi_1 \vee \varphi_2$$

$$| \varphi_1 \to \varphi_2 | \varphi_1 \leftrightarrow \varphi_2$$

2.2.2 Semantics

Definition 2.2.2. Let $\Sigma = (S, P, F, V, \alpha)$ is a signature. A Σ -model M of Σ is a pair (U, I) in which U is the universe and I is the interpretation of symbols such that

- for all $s \in S$, $I(s) \subseteq U$ specifies the possible values of sort s,

- for all $f \in F$, I(f) is a function from $I(s_1) \times \cdots \times I(s_{n-1})$ to $I(s_n)$ with $\alpha(f) = (s_1, \cdots, s_n)$,
- for all $p \in P$, I(p) is a function from $I(s_1) \times \cdots \times I(s_n)$ to $\{0,1\}$ where $\alpha(p) = (s_1, \cdots, s_n)$, and
- for all $v \in V$, $I(v) \in I(\alpha(v))$

A Σ -theory T is a (infinite) set of Σ -models. A theory T' is a subset of theory T if and only if $T' \subseteq T$.

The interpretation of each predicate or function symbol is allowed to be not total, i.e. I(p) or I(f) are not necessarily total. We extend the universe of each model to include the symbol \mathring{u} (unknown) which is prepared to indicate the result of undefined operations. For further convenience, we also define the following relations: $\mathring{u} < 0, 1$ and $\mathring{u} > 0, 1$ and the following arithmetic $1 - \mathring{u} = \mathring{u}$ which are useful when we evaluate the values of formulas containing logical connectives $(\land, \lor, \to, \leftrightarrow, \text{ or } \neg)$.

Definition 2.2.3. Let $\Sigma = (S, P, F, V, \alpha)$ and M = (U, I) are a signature and a Σ -model respectively. The valuation of a Σ -term t against M which is denoted by t^M is defined recursively as:

$$v^{M} = I(v) \qquad where \ v \in V, \ and \ f^{M}(t_{1}, \dots, t_{n}) = \begin{cases} I(f)(t_{1}^{M}, \dots, t_{n}^{M}) & \text{if } (t_{1}^{M}, \dots, t_{n}^{M}) \in Dom(I(f)) \\ \mathring{u} & \text{otherwise} \end{cases} where \ f \in F.$$

Similarly, the valuation φ^M of φ is defined as:

$$p^{M}(t_{1}, \cdots, t_{n}) = \begin{cases} I(p)(t_{1}^{M}, \cdots, t_{n}^{M}) & if (t_{1}^{M}, \cdots, t_{n}^{M}) \in Dom(I(p)) \\ \mathring{u} & otherwise \end{cases}$$
 where $p \in P$,
$$L^{M} = 0 ,$$

$$(\neg \varphi_{1})^{M} = 1 - \varphi_{1}^{M} ,$$

$$(\varphi_{1} \wedge \varphi_{2})^{M} = \min(\varphi_{1}^{M}, \varphi_{2}^{M}),$$

$$(\varphi_{1} \vee \varphi_{2})^{M} = \max(\varphi_{1}^{M}, \varphi_{2}^{M}),$$

$$(\varphi_{1} \vee \varphi_{2})^{M} = \max(1 - \varphi_{1}^{M}, \varphi_{2}^{M}), \text{ and}$$

$$(\varphi_{1} \rightarrow \varphi_{2})^{M} = \begin{cases} 1 & \text{if } \varphi_{1}^{M} = \varphi_{2}^{M} \\ 0 & \text{otherwise} \end{cases} .$$

We say that M satisfies φ which is denoted by $\models_M \varphi$ iff $\varphi^M = 1$. If $\varphi^M = 0$, $\not\models_M \varphi$ is used to denote that M does not satisfy φ .

Given a signature Σ , a Σ -theory T and a Σ -formula φ , a Satisfiability Modulo Theories(SMT) problem is the task of finding a model $M \in T$ such that $\models_M \varphi$.

Lemma 2.2.1. Given any Σ -model M and Σ -formula φ , we have $\models_M \varphi$ if and only if $\not\models_M \neg \varphi$

Proof.
$$\models_M \varphi \iff \varphi^M = 1 \iff 1 - \varphi^M = 0 \iff (\neg \varphi)^M = 0 \iff \not\models^M \neg \varphi$$

Definition 2.2.4. Let T be a Σ -theory. A Σ -formula φ is:

- satisfiable in T or T-SAT if and only if for all $M \in T$ we have $\models_M \varphi$,
- valid in T or T-VALID if and only if for all $M \in T$ we have $\models_M \varphi$,
- unsatisfiable in T or T-UNSAT if and only if for all $M \in T$ we have $\not\models_M \varphi$, and
- unknown in T or T-UNKNOWN if and only if for all $M \in T$, $\varphi^M = \mathring{u}$.

Lemma 2.2.2. If T be a Σ -theory, then φ is T-VALID if and only if $\neg \varphi$ is T-UNSAT

Proof.
$$\varphi$$
 is T-VALID $\iff \forall M \in T; \models_M \varphi \iff \forall M \in T; \not\models_M \neg \varphi \text{ (Lemma 2.2.1)} \iff \neg \varphi \text{ is T-UNSAT.}$

Lemma 2.2.3. If $T' \subseteq T$, then φ is T'-SAT implies that φ is T-SAT.

Proof.
$$\varphi$$
 is T' -SAT $\Longrightarrow \exists M \in T'; \models_M \varphi \Longrightarrow \exists M \in T; \models_M \varphi \text{ (because } T' \subseteq T)$
 $\Longrightarrow \varphi \text{ is } T\text{-SAT}.$

2.3 Polynomial Constraints over Real Numbers

2.3.1 Syntax

We instantiate the signature $\Sigma^p = (S^p, P^p, F^p, V^p, \alpha^p)$ in Section 2.2.1 for polynomial constraints as following:

- 1. $S^p = \{Real\}$
- 2. $P^p = \{ \succ, \prec, \succeq, \preceq, \approx, \not\approx \}$
- 3. $F^p = \{ \oplus, \ominus, \otimes, \mathbf{1} \}$
- 4. for all $p \in P^p$, $\alpha^p(p) = (Real, Real)$
- 5. for all $f \in F^p \setminus \{\mathbf{1}\}$, $\alpha^p(f) = (Real, Real, Real)$ and $\alpha^p(\mathbf{1}) = Real$
- 6. for all $v \in V$, $\alpha^p(v) = Real$

A polynomial and a polynomial constraint are a Σ^p -term (we referred as letters f or g) and a Σ^p -formula respectively.

Definition 2.3.1. Given a polynomial f, the set of its variables which is denoted as var(f) is defined recursively as following:

- 1. $var(v) = \{v\} \ for \ v \in V$.
- 2. $var(\mathbf{1}) = \emptyset$.
- 3. $var(f_1 \circ f_2) = var(f_1) \cap var(f_2)$ with $\circ \in \{\oplus, \ominus, \otimes\}$.

2.3.2 Semantics

A model $M_{\mathbb{R}}^p = (\mathbb{R}, I_{\mathbb{R}}^p)$ over real numbers for polynomial constraints contains the set of reals number \mathbb{R} and a map I that satisfies the following properties.

- 1. $I^p_{\mathbb{R}}(Real) = \mathbb{R}$.
- 2. $\forall p \in P$; $I_{\mathbb{R}}^p(p)$ is a function from $\mathbb{R} \times \mathbb{R}$ to $\{1,0\}$ such that

$$I_{\mathbb{R}}^{p}(p)(r_{1}, r_{2}) = \begin{cases} 1 & \text{if } r1 \ p_{\mathbb{R}} \ r2 \\ 0 & \text{otherwise} \end{cases}$$

where
$$(\succ_{\mathbb{R}}, \prec_{\mathbb{R}}, \succeq_{\mathbb{R}}, \preceq_{\mathbb{R}}, \approx_{\mathbb{R}}, \approx_{\mathbb{R}}) = (>, <, \geq, \leq, =, \neq).$$

3. $\forall f \in F \setminus \{\mathbf{1}\}; I_{\mathbb{R}}^p(f)$ is a function from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} such that

$$I_{\mathbb{R}}^{p}(f)(r_{1}, r_{2}) = r_{1} f_{\mathbb{R}} r_{2}$$

where
$$(\bigoplus_{\mathbb{R}}, \bigoplus_{\mathbb{R}}, \bigotimes_{\mathbb{R}}) = (+, -, *).$$

- 4. $I_{\mathbb{R}}^{p}(\mathbf{1}) = 1$
- 5. $\forall v \in V; I_{\mathbb{R}}^p(v) \in \mathbb{R}$.

The valuation of polynomials (Σ^p -terms) and polynomial constraints (Σ^p -formulas) against a model $M^p_{\mathbb{R}}$ follows Definition 2.2.3.

The theory of real numbers is $T^p_{\mathbb{R}} = \{M^p_{\mathbb{R}} | M^p_{\mathbb{R}} \text{ is a model of real numbers } \}$. By this instantiation, each model differs to another by the mapping from variables to real numbers. As a result, an assignment of real numbers to variables, e.g. $\{v \mapsto r \in \mathbb{R} | v \in V\}$, can be used to represent a model. Given a map $\theta = \{v \mapsto r \in \mathbb{R} | v \in V\}$, $\theta^p_{\mathbb{R}}$ denotes the model represented by θ .

Moreover, because all the predicate and function symbols' interpretations are total functions, so a given polynomial constraint φ cannot be $T^p_{\mathbb{R}}$ -UNKNOWN. In the other words, φ can only be $T^p_{\mathbb{R}}$ -SAT, $T^p_{\mathbb{R}}$ -VALID, or $T^p_{\mathbb{R}}$ -UNSAT.

From now on, we focus on Σ^p -formulas φ of the forms:

$$\varphi ::= p(f_1, f_2) \text{ where } p \in P$$

$$| \varphi_1 \wedge \varphi_2|$$

because this does not lose the generality. Given a general polynomial constraint φ that is formed by the syntax in Section 2.2.1:

- If we consider each formula $p(f_1, f_2)$ as an propositional symbols, we can first convert φ into an CNF formula and then use DPLL procedure to infer a sequence of literals that satisfies φ (in terms of propositional logic).
- The sequence of literals may contains some literals of the form $\neg p(f_1, f_2)$. However, from the semantics of polynomial constraints, we can change:

$$\neg(\succ (f_1, f_2)) \quad \text{to} \quad \preceq (f_1, f_2)
\neg(\prec (f_1, f_2)) \quad \text{to} \quad \succeq (f_1, f_2)
\neg(\succeq (f_1, f_2)) \quad \text{to} \quad \prec (f_1, f_2)
\neg(\preceq (f_1, f_2)) \quad \text{to} \quad \succ (f_1, f_2)
\neg(\approx (f_1, f_2)) \quad \text{to} \quad \approx (f_1, f_2)
\neg(\approx (f_1, f_2)) \quad \text{to} \quad \approx (f_1, f_2)$$

- The remaining task is solving the SMT problem with the constraint is the conjunction of literals in the sequence.

Representing (sub-)theory of real numbers as a constraint of real intervals

The signature of the first order logic is instantiated as $\Sigma^I = (S^I, P^I, F^I, \alpha^I)$ for real interval constraints such that

- 1. $S^I = \{Real, Interval\},\$
- 2. $P^I = \{ \in \},$
- 3. $F^I = \{c | c \text{ is a constant}\},\$
- 4. $\alpha^I(\in) = (Real, Interval),$
- 5. for all $c \in F^I$, $\alpha^I(c) = Interval$, and
- 6. $\forall v \in V; \ \alpha^I(v) = Real.$

We call Σ^I -formula is an interval constraint. The interval constraints in this thesis is represented by symbol Π . A model $M_{\mathbb{R}}^I = (\mathbb{I} \cup \mathbb{R}, I_{\mathbb{R}}^I)$ of real intervals consists of the union of real intervals \mathbb{I} which is defined later in Definition 3.2.2 and real numbers \mathbb{R} and a map $I_{\mathbb{R}}^I$ that satisfies the following properties.

- 1. $I_{\mathbb{R}}^{I}(Real) = \mathbb{R}$ and $I_{\mathbb{R}}^{I}(Interval) = \mathbb{I}$.
- 2. $I_{\mathbb{R}}^{I}(\in) = \mathbb{R} \times \mathbb{I} \mapsto \{1, 0\}$ such that

$$I_{\mathbb{R}}^{I}(\in)(r,\langle a,b\rangle) = \left\{ \begin{array}{ll} 1 & \text{if } a \leq r \leq b \\ 0 & \text{otherwise} \end{array} \right.$$

- 3. For all $c \in F^I$, $I_{\mathbb{R}}^I(c) \in \mathbb{I}$.
- 4. For all $v \in V$, $I_{\mathbb{R}}^{I}(v) \in \mathbb{R}$.

The valuation of $\Sigma^{\mathbb{I}}$ -terms and $\Sigma^{\mathbb{I}}$ -terms follows Definition 2.2.3. The theory of real intervals is $T_{\mathbb{R}}^{I} = \{M_{\mathbb{R}}^{I} | M_{\mathbb{R}}^{I} \text{ is a model of real intervals}\}$. By this instantiation, each model differs to another by the mapping from variables to real numbers. As a result, an assignment of real numbers to variables, e.g. $\{v \mapsto r \in \mathbb{R} | v \in V\}$, can be

used to represent a model. Given an assignment $\theta = \{v \mapsto r \in \mathbb{R} | v \in V\}$, we denote $\theta_{\mathbb{R}}^{I}$ as a model of real intervals represented by θ . If Π is a $\Sigma^{\mathbb{I}}$ -formula, the notation $\Pi_{\mathbb{R}}^{p} = \{\theta_{\mathbb{R}}^{p} \mid \theta = \{v \mapsto r \in \mathbb{R} \mid v \in V\}$ and $\models_{\theta_{\mathbb{R}}^{I}} \Pi\}$ represents the (sub-)theory of real numbers that each of its model contain the assignment from real numbers to variables that (intuitively) satisfies Π .

Chapter 3

Over-Approximation and Under-Approximation

3.1 Approximation Theory

Definition 3.1.1. Let T, T' be Σ -theories and φ be any Σ -formula.

- T' is an over-approximation theory of T iff T'-UNSAT of φ implies T-UNSAT of φ .
- T' is an under-approximation theory of T iff T'-SAT of φ implies T-SAT of φ .

Theorem 3.1.1. If T_O be an over-approximation theory of T, then for any Σ -formula φ : φ is T_O -VALID implies φ is T-VALID.

Proof.
$$\varphi$$
 is T_O -VALID $\Longrightarrow \neg \varphi$ is T_O -UNSAT (Lemma 2.2.2) $\Longrightarrow \neg \varphi$ is T -UNSAT (Definition 3.1.1) $\Longrightarrow \varphi$ is T -VALID (Lemma 2.2.2)

3.2 Interval Arithmetic as an Over-Approximation Theory of Sub-Theory of Real Numbers

3.2.1 Real Intervals

We adopt the definition of real intervals from [8]:

Definition 3.2.1. [8] Let a and b be reals such that $a \leq b$.

x+y	$-\infty$	NR	0	PR	$+\infty$
$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	
\overline{NR}		NR	NR	\mathbb{R}	$+\infty$
0			0	PR	$+\infty$
\overline{PR}				PR	$+\infty$
$+\infty$					$+\infty$

x - y	$-\infty$	NR	0	PR	$+\infty$
$-\infty$	上	$+\infty$	$+\infty$	$+\infty$	$+\infty$
\overline{NR}	$-\infty$	\mathbb{R}	PR	PR	$+\infty$
0	$-\infty$	NR	0	PR	$+\infty$
\overline{PR}	$-\infty$	NR	NR	\mathbb{R}	$+\infty$
$+\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	

$x \times y$	$-\infty$	NR	0	PR	$+\infty$
$-\infty$	$+\infty$	$+\infty$		$-\infty$	$-\infty$
\overline{NR}		PR	0	NR	$-\infty$
0			0	0	丄
PR				PR	$+\infty$
$+\infty$					$+\infty$

Table 3.1: Arithmetics Operations for $\mathbb{R} \cup \{-\infty, +\infty\}$

The *intervals* in this definition can be summarized by $\langle a, b \rangle$ where $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}$ and $a \leq b$ with the assumption that $\forall c \in \mathbb{R} - \infty < c < \infty$. Furthermore, Hickey et al. [8] also defined arithmetic operations for $\mathbb{R} \cup \{-\infty, +\infty\}$ which is summarized in Table 3.2.1.

Definition 3.2.2. The set of all real intervals \mathbb{I} is defined as:

$$\mathbb{I} = \{ \langle a, b \rangle | a, b \in \mathbb{R} \cup \{ -\infty, +\infty \} \text{ and } a \leq b \}$$

.

3.2.2 Interval Arithmetic as an Over-Approximation Theory of Sub-Theory of Real Numbers

A model $M_{IA}^p = (\mathbb{I}, I_{IA}^p)$ over intervals for polynomial constraints consists a set of all real intervals \mathbb{I} and a map I_{IA}^p that satisfies the following conditions.

- 1. $I_{IA}^p(Real) = \mathbb{I}$
- 2. For all $p \in P^p$, $I_{IA}^p(p)$ is a function from $\mathbb{I} \times \mathbb{I}$ to $\{0,1\}$ where

$$I_{IA}^p(p)(i_1, i_2) = i_1 \ p_{IA} \ i_2$$

The definition of p_{IA} is as follow:

$$\langle l_1, h_1 \rangle \succ_{IA} \langle l_2, h_2 \rangle = \begin{cases} 1 & \text{if } l_1 > h_2 \\ 0 & \text{if } h_1 \leq l_2 \end{cases}$$

$$\langle l_1, h_1 \rangle \prec_{IA} \langle l_2, h_2 \rangle = \begin{cases} 1 & \text{if } h_1 < l_2 \\ 0 & \text{if } l_1 \geq h_2 \end{cases}$$

$$i_1 \succeq_{IA} i_2 = 1 - (i_1 \prec_{IA} i_2)$$

$$i_1 \preceq_{IA} i_2 = 1 - (i_1 \succ_{IA} i_2)$$

$$i_1 \approx_{IA} i_2 = \min(i_1 \succeq_{IA} i_2, i_1 \preceq_{IA} i_2)$$

$$i_1 \approx_{IA} i_2 = \min(i_1 \succeq_{IA} i_2, i_1 \preceq_{IA} i_2)$$

$$i_1 \approx_{IA} i_2 = 1 - (i_1 \approx_{IA} i_2)$$

3. For all $f \in F^p \setminus \{1\}$, $I_{IA}^p(f)$ is a function from $\mathbb{I} \times \mathbb{I} \mapsto \mathbb{I}$ such that

$$I_{IA}^p(f)(i_1, i_2) = i_1 f_{IA} i_2$$

where f_{IA} satisfies the following properties:

- $i_1 \oplus_{IA} i_2 \supseteq \{r_1 + r_2 | r_1 \in i_1 \text{ and } r_2 \in i_2\}.$
- $i_1 \ominus_{IA} i_2 \supseteq \{r_1 r_2 | r_1 \in i_1 \text{ and } r_2 \in i_2\}.$
- $i_1 \otimes_{IA} i_2 \supseteq \{r_1 * r_2 | r_1 \in i_1 \text{ and } r_2 \in i_2\}.$
- 4. $I_{IA}^p(\mathbf{1}) = \langle 1, 1 \rangle$
- 5. For all $v \in V$; $I_{IA}^p \in U_{IA}^p$

Theory $T_{IA}^p = \{M_{IA}^p | M_{IA}^p \text{ is a model over intervals}\}$. Each model differs to another by the mapping from variables to intervals. As a consequence, one assignment from variables to intervals can be used to describe an model. In addition, an assignment $\{v \mapsto i \in \mathbb{I} | v \in V\}$ and an interval constraint $\bigwedge_{v \in V} v \in i$ are equivalent in terms of the set of assignments

from variables to real numbers. So by abusing notation, for a constraint of the form $\Pi = \bigwedge_{v \in V} v \in i$, we denote Π^p_{IA} as a model of interval arithmetics for polynomial constraints.

By definition, $\{\Pi_{IA}^p\}$ represents a sub-theory of T_{IA}^p .

Lemma 3.2.1. Let $M_{IA}^p = (\mathbb{I}, I_{IA}^p)$ be a model over intervals, $i_1, i_2 \in \mathbb{I}$, $r_1 \in i_2, r_2 \in i_2$, $p \in P^p$, we have $i_1 \ p_{IA} \ i_2 = 0$ implies not $(r_1 \ p_{\mathbb{R}} \ r_2)$

Example 3.2.1. We have $\langle 1, 3 \rangle \succ_{IA} \langle 5, 8 \rangle = 0$ by the definition of \prec_{IA} . Take $2 \in \langle 1, 3 \rangle$ and $6 \in \langle 5, 8 \rangle$. Following Lemma 3.2.1, we have not $(2 \prec_{\mathbb{R}} 6)$ holds or not (2 < 6) holds (because $\prec_{\mathbb{R}} = <$) which is obviously true.

Proof. Let $i_1 = \langle l_1, h_1 \rangle$ and $i_2 = \langle l_2, h_2 \rangle$ where $l_1 \leq h_1$ and $l_2 \leq h_2$. We have:

- $r_1 \in i_1$ implies $l_1 \leq r_1 \leq h_1$, and
- $r_2 \in i_2$ implies $l_2 \le r_2 \le h_2$.

Suppose that $i_1 p_{IA} i_2 = 0$, we need to show not $(r_1 p_{\mathbb{R}} r_2)$ by considering all the possible cases of p:

- 1. If p is \succ , we have $\langle l_1, h_1 \rangle \succ_{IA} \langle l_2, h_2 \rangle = 0 \implies h_1 \leq l_2 \implies r_1 \leq r_2$ (because $r_1 \leq h_1$ and $l_2 \leq r_2$) $\implies not (r_1 > r_2) \implies not (r_1 \succ_{\mathbb{R}} r_2)$.
- 2. If p is \prec , we have $\langle l_1, h_1 \rangle \prec_{IA} \langle l_2, h_2 \rangle = 0 \implies l_1 \geq h_2 \implies r_1 \geq r_2$ (because $r_1 \geq l_1$ and $r_2 \leq h_2$) $\implies not (r_1 < r_2) \implies not (r_1 \prec_{\mathbb{R}} r_2)$.
- 3. If p is \succeq , we have $\langle l_1, h_1 \rangle \succeq_{IA} \langle l_2, h_2 \rangle = 0 \implies 1 (\langle l_1, h_1 \rangle \prec_{IA} \langle l_2, h_2 \rangle) = 0 \implies \langle l_1, h_1 \rangle \prec_{IA} \langle l_2, h_2 \rangle = 1 \implies h_1 < l_2 \implies r_1 < r_2 \text{ (because } r_1 \leq h_1 \text{ and } r_2 \geq l_2) \implies not \ (r_1 \geq r_2) \implies not \ (r_1 \succeq_{\mathbb{R}} r_2).$
- 4. If p is \leq , we have $\langle l_1, h_1 \rangle \leq_{IA} \langle l_2, h_2 \rangle = 0 \implies 1 (\langle l_1, h_1 \rangle \succ_{IA} \langle l_2, h_2 \rangle) = 0 \implies \langle l_1, h_1 \rangle \succ_{IA} \langle l_2, h_2 \rangle = 1 \implies l_1 > h_2 \implies r_1 > r_2$ (because $r_1 \geq l_1$ and $r_2 \leq h_2$) $\implies not \ (r_1 \leq r_2) \implies not \ (r_1 \leq_{\mathbb{R}} r_2)$.
- 5. If p is \approx , we have $i_1 \approx_{IA} i_2 = 0 \implies min(i_1 \succeq_{IA} i_2, i_1 \preceq_{IA} i_2) = 0 \implies i_1 \succeq_{IA} i_2 = 0$ or $i_1 \preceq_{IA} i_2 = 0 \implies r_1 < r_2$ or $r_1 > r_2$ (as the third and fourth case of this proof) $\implies not (r_1 = r_2) \implies not (r_1 \approx_{\mathbb{R}} r_2)$.
- 6. If p is $\not\approx$, we have $i_1 \not\approx_{IA} i_2 = 0 \implies 1 (i_1 \approx_{IA} i_2) = 0 \implies min(i_1 \succeq_{IA} i_2, i_1 \preceq_{IA} i_2) = 1 \implies i_1 \succeq_{IA} i_2 = 1 \text{ and } i_1 \preceq_{IA} i_2 = 1 \implies 1 (i_1 \prec_{IA} i_2) = 1 \text{ and } 1 (i_1 \succ_{IA} i_2) = 1 \implies i_1 \prec_{IA} i_2 = 0 \text{ and } i_1 \succ_{IA} i_2 = 0 \implies r_1 \ge r_2 \text{ and } r_1 \le r_2 \text{ (as the first and second case of this proof)} \implies r_1 = r_2 \implies not (r_1 \ne r_2) \implies not (r_1 \not\approx_{\mathbb{R}} r_2).$

Lemma 3.2.2. Let $\Pi = \bigwedge_{v \in V} v \in i$ with $i \in \mathbb{I}$, g is a polynomial $(\Sigma^p\text{-term})$. For every model over real numbers $M^p_{\mathbb{R}} \in \Pi^p_{\mathbb{R}}$, we have $g^{M^p_{\mathbb{R}}} \in g^{\Pi^p_{IA}}$.

The intention of this lemma is that for given a box of variables' intervals and a polynomial, interval arithmetic will, essentially, output an interval that contains all the possible values of the polynomial with respect to any point inside the box.

Proof. Let $M_{\mathbb{R}}^p = (\mathbb{R}, I_{\mathbb{R}}^p) \in \Pi_{\mathbb{R}}^p$. As mentioned in Section 3.2.2, Π can also be referred as a map from variables to intervals, i.e. $\{v \mapsto i \mid v \in V\}$. Proof is done by induction on structure of polynomial f.

1. Base case

• If $g = v \in V$, we have

$$v^{M_{\mathbb{R}}^p} = I_{\mathbb{R}}^p(v) \in \Pi(v)$$
 because $M_{\mathbb{R}}^p \in \Pi_{\mathbb{R}}^p$, and $v^{\Pi_{IA}^p} = \Pi(v)$

Then, $v^{M_{\mathbb{R}}^p} \in v^{\Pi_{IA}^p}$.

• If $g = \mathbf{1}$, then $\mathbf{1}^{M_{\mathbb{R}}^p} = 1 \in \langle 1, 1 \rangle = \mathbf{1}^{\Pi_{IA}^p}$

2. Induction case: $g = f(g_1, g_2)$ for some $f \in F^p \setminus \{1\}$.

We have

$$\begin{array}{rcl} f^{M_{\mathbb{R}}^{p}}(g_{1},g_{2}) & = & g_{1}^{M_{\mathbb{R}}^{p}} f_{\mathbb{R}} g_{2}^{M_{\mathbb{R}}^{p}} \\ f^{\Pi_{IA}^{p}}(g_{1},g_{2}) & = & g_{1}^{\Pi_{IA}^{p}} f_{IA} g_{2}^{\Pi_{IA}^{p}} \end{array}$$

By induction hypothesis, we have $g_1^{M_{\mathbb{R}}^p} \in g_1^{\Pi_{IA}^p}$ and $g_2^{M_{\mathbb{R}}^p} \in g_2^{\Pi_{IA}^p}$ which due to the properties of f_{IA} implies $g_1^{M_{\mathbb{R}}^p} f_{\mathbb{R}} g_1^{M_{\mathbb{R}}^p} \in g_2^{\Pi_{IA}^p} f_{IA} g_2^{\Pi_{IA}^p}$, or $g^{M_{\mathbb{R}}^p} \in g^{\Pi_{IA}^p}$

Theorem 3.2.1. Let $\Pi = \bigwedge_{v \in V} v \in i$ with $i \in \mathbb{I}$, then $\{\Pi_{IA}^p\}$ is an over-approximation of $\Pi_{\mathbb{P}}^p$.

Proof. Given an polynomial constraint φ and suppose that φ is $\{\Pi_{IA}^p\}$ -UNSAT. We will prove that φ is $\Pi_{\mathbb{R}}^p$ -UNSAT by induction on structure of φ .

1. Base case: $\varphi^p = p(g_1, g_2)$ for some $p \in P^p$.

We prove the lemma for the base case by contradiction. Suppose φ is not $\Pi^p_{\mathbb{R}}$ -UNSAT, that means it is either $\Pi^p_{\mathbb{R}}$ -SAT or $\Pi^p_{\mathbb{R}}$ -VALID. In either case, there exist at least a model $M^p_{\mathbb{R}} \in \Pi^p_{\mathbb{R}}$ such that $\models_{M^p_{\mathbb{R}}} \varphi \iff \varphi^{M^p_{\mathbb{R}}} = 1$. We have

$$\varphi^{M_{\mathbb{R}}^p} = 1 \implies g_1^{M_{\mathbb{R}}^p} p_{\mathbb{R}} g_2^{M_{\mathbb{R}}^p} \tag{3.1}$$

On the other hand,

$$\varphi$$
 is $\{\Pi_{IA}^p\}$ -UNSAT $\implies \varphi^{\Pi_{IA}^p} = 0 \implies g_1^{\Pi_{IA}^p} \ p_{IA} \ g_2^{\Pi_{IA}^p} = 0$

In addition, because $g_1^{M_{\mathbb{R}}^p} \in g_1^{\Pi_{IA}^p}$ and $g_2^{M_{\mathbb{R}}^p} \in g_2^{\Pi_{IA}^p}$ (Lemma 3.2.2), we have

$$g_1^{\Pi_{IA}^p} p_{IA} g_2^{\Pi_{IA}^p} = 0 \implies \text{not } (g_1^{M_R^p} p_R g_2^{M_R^p}) \text{(Lemma 3.2.1)}$$
 (3.2)

Contradiction is raised between (3.1) and (3.2). As the result, φ must be $\Pi^p_{\mathbb{R}}$ -UNSAT.

2. Induction case: $\varphi = \varphi_1 \wedge \varphi_2$.

We have φ is $\{\Pi_{IA}^p\}$ -UNSAT $\Longrightarrow \not\models_{\Pi_{IA}^p} (\varphi_1 \wedge \varphi_2) \Longrightarrow (\varphi_1 \wedge \varphi_2)^{\Pi_{IA}^p} = 0 \Longrightarrow \max(\varphi_1^{\Pi_{IA}^p}, \varphi_2^{\Pi_{IA}^p}) = 0 \Longrightarrow \varphi_1^{\Pi_{IA}^p} = 0 \text{ and } \varphi_2^{\Pi_{IA}^p} = 0.$

Thus, by induction hypothesis, φ_1 and φ_2 are $\Pi^p_{\mathbb{R}}$ -UNSAT \Longrightarrow for all $M^p_{\mathbb{R}} \in \Pi^p_{\mathbb{R}}$, $\not\models_{M^p_{IA}} \varphi_1$ and for all $M^p_{\mathbb{R}} \in \Pi^p_{\mathbb{R}}$, $\not\models_{M^p_{IA}} \varphi_2 \Longrightarrow$ for all $M^p_{\mathbb{R}} \in \Pi^p_{\mathbb{R}}$, $\not\models_{M^p_{IA}} (\varphi_1 \wedge \varphi_2) \Longrightarrow \varphi_1 \wedge \varphi_2$ is $\Pi^p_{\mathbb{R}}$ -UNSAT.

3.3 Testing as an Under-Approximation Theory of Sub-Theory of Real Numbers

Definition 3.3.1. Let $T \subseteq T_{\mathbb{R}}^p$ be a sub-theory of real numbers. Any sub-theory T_T of T, i.e. $T_T \subseteq T$ is call a theory of testing with respect to T.

Theorem 3.3.1. If T_T is a theory of testing w.r.t T, T_T is an under-approximation of T.

Proof. Let φ be a polynomial constraint and suppose it is T_T -SAT. We need to prove φ is T-SAT.

We have φ is T_T -SAT \Longrightarrow there exists $M \in T_T$ such that $\models_M \varphi \Longrightarrow$ there exists $M \in T$ such that $\models_M \varphi$ (because $T_T \subseteq T$) $\Longrightarrow \varphi$ is T-SAT.

Given the interval constraint $\Pi = \bigwedge_{v_i \in V} v \in \langle l_i, h_i \rangle$, we have $\Pi^p_{\mathbb{R}}$ is a sub-theory of $T^p_{\mathbb{R}}$. We randomly select a number of models from $\Pi^p_{\mathbb{R}}$ (by randomly picking values for variables) to form the testing theory $(\Pi^p_{\mathbb{R}})_T$ of $\Pi^p_{\mathbb{R}}$.

Example 3.3.1. Let $\Pi = x \in \langle 1, 5 \rangle \land y \in \langle -5, 10 \rangle$ be an interval constraint. If we pick two values for x (e.g. $\{0, 2\}$) and one value for y (e.g. $\{-3\}$), we will have two assignments from real numbers to variables:

$$\theta_1 = \{x \mapsto 0, y \mapsto -3\}, \text{ and } \theta_1 = \{x \mapsto 2, y \mapsto -3\}$$

Thus, the testing theory $(\Pi^p_{\mathbb{R}})_T$ of $\Pi^p_{\mathbb{R}}$ is

$$(\Pi_{\mathbb{R}}^p)_T = \{(\theta_1)_{\mathbb{R}}^p, (\theta_2)_{\mathbb{R}}^p\}$$

3.4 raSAT Loop

Our algorithm is described using a transition system. Each state of the search procedure is represented by $(\Pi, \varphi, \mathring{\Pi}, \varphi^V, \varphi^U, \varepsilon, \tau)$ where

- Π is a CNF interval constraint. If we consider each $v \in \langle l, h \rangle$ in Π is a propositional symbols, we can apply DPLL procedure to Π .
- φ represents the polynomial constraint.
- $\Pi = \bigwedge_{v_i \in V} v_i \in i_i$ with $i_i \in \mathbb{I}$ is the result of DPLL procedure on Π .
- ullet φ^V contains the constraints that are valid under over-approximation.
- $\bullet \ \varphi^U$ is the set of constraints which are UNKNOWN under over-approximation.
- ε indicates the threshold to stop decomposing intervals.

$$\begin{array}{c} \frac{\emptyset \| \Pi \Longrightarrow^{1} FailState}{(\Pi,\varphi,\emptyset,\emptyset,\emptyset,\varepsilon,\bot) \to UNSAT} & \text{ilunsat.unknown} \\ \\ \frac{\emptyset \| \Pi \Longrightarrow^{1} FailState}{(\Pi,\varphi,\emptyset,\emptyset,\emptyset,\varepsilon,\tau) \to UNKNOWN} & \text{ilunsat.unknown} \\ \\ \frac{\emptyset \| \Pi \Longrightarrow^{1} \mathring{\Pi}}{(\Pi,\varphi,\emptyset,\emptyset,\emptyset,\varepsilon,\tau) \to UNKNOWN} & \text{ilunsat.unknown} \\ \\ \frac{\mathring{\Pi} \# \emptyset \quad \varphi^{V} \wedge \varphi^{U} \Longrightarrow^{1} \mathring{\Pi}}{(\Pi,\varphi,\mathring{\Pi},\emptyset,\emptyset,\varepsilon,\tau) \to (\Pi,\varphi,\mathring{\Pi},\varphi^{V},\varphi^{U},\varepsilon,\tau)} & \text{ilsat} \\ \\ \frac{\mathring{\Pi} \# \emptyset \quad \varphi^{V} \wedge \varphi^{U} = \varphi \quad \varphi^{V} \text{ is } \{\mathring{\Pi}_{IA}^{P}\} - \text{VALID}}{(\Pi,\varphi,\mathring{\Pi},\emptyset^{V},\varphi^{U},\varepsilon,\tau) \to SAT} & \text{illustation} \\ \\ \frac{\varphi^{V} = \varphi}{(\Pi,\varphi,\mathring{\Pi},\varphi^{V},\varphi^{U},\varepsilon,\tau) \to SAT} & \text{illustation} \\ \\ \frac{\mathring{\Pi} \# \emptyset \quad \varphi^{U} \# \emptyset \quad \varphi^{U} \text{ is } (\mathring{\Pi}_{\mathbb{R}}^{p})_{T} - \text{SAT}}{(\Pi,\varphi,\mathring{\Pi},\varphi^{V},\varphi^{U},\varepsilon,\tau) \to SAT} & \text{test.sat} \\ \\ \frac{\varphi^{U} \text{ is } (\mathring{\Pi}_{\mathbb{R}}^{p})_{T} - \text{UNSAT} \quad \mathring{\Pi} = \bigwedge_{v_{i} \in V} v_{i} \in \langle l_{i},h_{i} \rangle \quad \forall i(h_{i}-l_{i}<\varepsilon) \\ \\ \hline{(\Pi,\varphi,\mathring{\Pi},\varphi^{V},\varphi^{U},\varepsilon,\tau) \to (\Pi \wedge \neg\mathring{\Pi},\varphi,\emptyset,\emptyset,\emptyset,\varepsilon,\tau)} & \text{threshold} \\ \\ \frac{\varphi^{U} \text{ is } (\mathring{\Pi}_{\mathbb{R}}^{p})_{T} - \text{UNSAT} \quad \mathring{\Pi} = \bigwedge_{v_{i} \in V} v_{i} \in \langle l_{i},h_{i} \rangle \quad \exists j(h_{j}-l_{j}>\varepsilon) \quad l_{j} < d \in \mathbb{R} < h_{j} \quad l_{j} = v_{j} \in \langle l_{j},h_{j} \rangle \quad I_{j1} = v_{j} \in \langle l_{j},h_{j} \rangle \\ \hline{(\Pi,\varphi,\mathring{\Pi},\varphi^{V},\varphi^{U},\varepsilon,\tau) \to (\Pi \wedge \neg\mathring{\Pi},\varphi,\emptyset,\emptyset,\emptyset,\varepsilon,\tau)} & \text{refine} \\ \\ \frac{\mathring{\Pi} \# \emptyset \quad \varphi \text{ is } \{\mathring{\Pi}_{IA}^{p}\} - \text{UNSAT}}{(\Pi,\varphi,\mathring{\Pi},\emptyset,\emptyset,\varepsilon,\tau) \to (\Pi \wedge \neg\mathring{\Pi},\varphi,\emptyset,\emptyset,\emptyset,\varepsilon,\tau)} & \text{il.unsat} \\ \\ \end{array}$$

Table 3.2: Transition rules

• τ is a flag to mark whether the threshold of intervals has been reached.

The transition rules are described in Table 3.2. Figure 3.1 illustrates the transition system.

Theorem 3.4.1. Starting with state
$$\Pi, \varphi, \emptyset, \emptyset, \varepsilon, \tau$$
, if $\Pi = \bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$ and $\{(x_1, x_2, \cdots) | \models_{\theta^I} \Pi, \theta = \{v_1 \mapsto x_1, v_2 \mapsto x_2, \cdots\}\}$ is bounded, raSATloop terminates.

Proof. In the worst case, all the interval will be decomposed into smallest boxes with size of ε whose number are bounded to $\frac{h_1-l_1}{\varepsilon}\frac{h_2-l_2}{\varepsilon}\cdots$ (the number of variables in one polynomial constraint is also bounded). As a result, raSATloop terminates after checking all of these boxes.

Figure 3.1: raSAT design

3.5 Soundness - Completeness

3.5.1 Soundness

Theorem 3.5.1. Let $(\Pi, \varphi, \mathring{\Pi}, \varphi^V, \varphi^U, \varepsilon, \tau)$ be any state of our system, then the following properties are invariants:

- 1. $\mathring{\Pi}_{\mathbb{R}} \subseteq T_{\mathbb{R}}^p$
- 2. φ^V is $\mathring{\Pi}_R$ -VALID.
- 3. $\varphi^U = \emptyset \lor (\varphi = \varphi^U \land \varphi^V)$
- 4. φ is $\Pi_{\mathbb{R}}$ -UNSAT $\Longrightarrow \varphi$ is $T^p_{\mathbb{R}}$ -UNSAT

Proof. 1. Easy from the definition.

- 2. Easy to see.
- 3. Easy from the transitions.
- 4. The proof is done inductively:

- Initial state: $(\bigwedge_{v \in V} v \in (-\infty, +\infty), \varphi, \emptyset, \emptyset, \emptyset)$ and by definition, $(\bigwedge_{v \in V} v \in (-\infty, +\infty))_{\mathbb{R}} = T_R^p$. Then, the invariant trivially holds.
- Each transition is considered:
 - For rules Π_SAT , IA_SAT the interval constraint Π does not changed, so if the properties holds for the former state, it also does for the later one.
 - For REFINE transition: Denote $\Pi' = \Pi \wedge (\neg I_j \vee I_{j1} \vee I_{j2}) \wedge (I_j \vee \neg I_{j1}) \wedge (I_j \vee \neg I_{j2}) \wedge (\neg I_{j1} \vee \neg I_{j2})$. We will prove that φ is $\Pi'_{\mathbb{R}}$ -UNSAT $\Longrightarrow \varphi$ is $\Pi_{\mathbb{R}}$ -UNSAT. First suppose that φ is $\Pi'_{\mathbb{R}}$ -UNSAT. Let
 - for IA_UNSAT transition,

Theorem 3.5.2. Let φ be the polynomial constraint to be solved. Starting with the state $(\Pi, \varphi, \emptyset, \emptyset, \emptyset)$, if our transitional system terminates and output:

- $SAT then \varphi is T_{\mathbb{R}}^p$ -SAT.
- UNSAT then φ is $T^p_{\mathbb{R}}$ -UNSAT.

Proof. We consider the SAT and UNSAT case.

- 1. If the system output SAT, there are two possibles transition to SAT:
 - In the case of IA_VALID, we have φ^V is $\mathring{\Pi}_R$ -VALID (invariant 2) $\Longrightarrow \varphi^V$ is $\mathring{\Pi}_{\mathbb{R}}$ -SAT $\Longrightarrow \varphi$ is $\mathring{\Pi}_{\mathbb{R}}$ -SAT (because $\varphi^V = \varphi$ is the condition of this transition). In addition, following invariant 1, we have $\mathring{\Pi}_{\mathbb{R}} \subseteq T_{\mathbb{R}}^p$, then φ is $T_{\mathbb{R}}^p$ -SAT (Lemma 2.2.3).
 - In the case of TEST_SAT, φ^U is $\mathring{\Pi}_{\mathbb{R}}$ -SAT $\Longrightarrow \exists M \in \mathring{\Pi}_{\mathbb{R}} \models_M \varphi^V$. Let $M^c_{\mathbb{R}} \in \mathring{\Pi}_{\mathbb{R}}$ such that $\models_{M^c_{\mathbb{R}}} \varphi^V$ which implies $(\varphi^V)^{M^c_{\mathbb{R}}} = 1$. In addition, because φ^V is $\mathring{\Pi}_{\mathbb{R}}$ -VALID (invariant 2) and $M^c_{\mathbb{R}} \in \mathring{\Pi}_{\mathbb{R}}$, we have $\models_{M^c_{\mathbb{R}}} \varphi^U$ or $(\varphi^U)^{M^c_{\mathbb{R}}} = 1$. Consider the evaluation of φ under the model $M^c_{\mathbb{R}}$: $(\varphi)^{M^c_{\mathbb{R}}} = (\varphi^U \wedge \varphi^V)^{M^c_{\mathbb{R}}}$ (invariant 3) $= min((\varphi^U)^{M^c_{\mathbb{R}}}, (\varphi^V)^{M^c_{\mathbb{R}}}) = min(1, 1) = 1 \implies \models_{M^c_{\mathbb{R}}} \varphi \implies \varphi$ is $\mathring{\Pi}_{\mathbb{R}}$ -SAT $\implies \varphi$ is $T^p_{\mathbb{R}}$ -SAT (because of invariant 1 and Lemma 3.2.1)
- 2. If the system output UNSAT, there is only one transition of rule Π_{UNSAT} . Because $\Pi \models_{SAT} \bot$, $\Pi_{\mathbb{R}}$ is empty (Lemma ?). As a result, φ is $\Pi_{\mathbb{R}}$ -UNSAT which implies that φ is $T^p_{\mathbb{R}}$ -UNSAT (invariant 4).

3.5.2 Completeness

 $qetIntv(c, l, h, \delta)$ is defined as following:

Definition 3.5.1. Let $\Pi = \bigwedge_{v \in V} v \in i$ with $i \in \mathbb{I}$, and $\varphi = \bigwedge_{i=1}^{n} f_{i} > 0$. An over-approximation T_{O}^{p} of $T_{\mathbb{R}}^{p}$ is complete if for each open set $O \subset \{(r_{1}, r_{2}, \cdots) | \models_{\theta^{\mathbb{I}}} \Pi; \theta = \{v_{i} \mapsto r_{i} \in \mathbb{R} | v_{i} \in V\}\}$, we have $\forall c \in O; \ \forall \delta > 0; \ \exists \gamma > 0; \ (\langle c - \gamma, c + \gamma \rangle \in O \ and \ \models_{\Pi_{\mathbb{R}}^{\prime p}} \bigwedge_{i=1}^{n} (f_{i}(c) - \delta < f_{i}(x) < f_{i}(c) + \delta)$ where $\Pi' = \bigwedge_{v_{i} \in V} v_{i} \in \langle c_{i} - \gamma, c_{i} + \gamma \rangle$, and $c = (c_{1}, c_{2}, \cdots)$

Lemma 3.5.1. Let $\Pi = \bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$ where $\langle l_i, h_i \rangle \in \mathbb{I}$ is bounded; and $\varphi = \bigwedge_{j=1}^n f_j > 0$. Denote $S = \{(x_1, x_2, \cdots) | \theta = \{v_i \mapsto x_i | v_i \in V\}; \models_{\theta^I} \Pi$ and $\models_{\theta^p_{\mathbb{R}}} \varphi\}$. If $S \neq \emptyset$ and $\{(v_1, v_2, \cdots) | v_1 \in (l_1, h_1), v_2 \in (l_2, h_2) \cdots\}$ is open, then S contain an open set. Proof. Because $S \neq \emptyset$, there exist $c = (c_1, c_2, \cdots) \in S$. By definition of S, $\forall j \in \{1, \cdots, n\} f_j(c) > 0$. Take $\delta = \min_{j=1\cdots n} f_j(c)$, then $\delta > 0$. Because the polynomials are continuous, there exists $\gamma > 0$ such that $\forall v \in \langle c - \gamma, c + \gamma \rangle$; $\bigwedge_{j=1}^n f_j(c) - \delta < f_j(v) < f_j(c) + \delta$ which implies $\forall v \in \langle c - \gamma, c + \gamma \rangle$; $\bigwedge_{j=1}^n f_j(v) > 0$ (because $\delta = \min_{j=1\cdots n} f_j(c) \leq f_j(c)$) for any j. Now consider the open interval $O = \{(x_1, x_2, \cdots) | x_1 \in getIntv(c_1, l_1, h_2, \delta), \cdots\}$ where

$$qetIntv(c, l, h, \delta) =$$

Theorem 3.5.3. Let $\Pi = \bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$ where $\langle l_i, h_i \rangle \in \mathbb{I}$ is bounded; and $\varphi = \bigwedge_{j=1}^n f_j > 0$. Denote $S = \{(x_1, x_2, \cdots) | \theta = \{v_i \mapsto x_i | v_i \in V\}; \models_{\theta^I} \Pi \text{ and } \models_{\theta^p_{\mathbb{R}}} \varphi\}.$ If $S \neq \emptyset$ and $\{(v_1, v_2, \cdots) | v_1 \in (l_1, h_1), v_2 \in (l_2, h_2) \cdots\}$ is open, then raSATloop can detect the satisfiability of φ with assumption that IA is complete.

Proof. Based on Lemma 3.5.1, there exist an open box (l,h) such that $\forall (x_1,x_2,...) \in (l,h)$; $\bigwedge_{j=1}^n f_j > 0$. Take any $c \in (l,h)$ and take $\delta = \min_{j=1\cdots n} (f_j(c))$. Because IA is complete by assumption, from Definition 3.5.1 there exists $\gamma > 0$ such that $\langle c - \gamma, c + \gamma \rangle \in (l,h)$ and $\bigwedge_{j=1}^n f_j(c) - \delta < f_j(v) < f_j(c) + \delta$ is $\bigwedge_{v_i \in V} v_i \in \langle c_i - \gamma, c_i + \gamma \rangle^p$ -VALID. By taking this γ as the threshold in $(\Pi, \varphi, \emptyset, \emptyset, \varepsilon, \bot)$, raSATloop will terminate (Theorem 3.4.1). Furthermore, $\langle c - \gamma, c + \gamma \rangle \in (l,h) \Longrightarrow (c+\gamma) - (c-\gamma) < h-l \Longrightarrow 2\gamma < h-l$. As a consequence, decomposition eventually creates a box of size γ inside (h,l) which can be used to conclude the validity of the constraint by IA.

Theorem 3.5.4. Let $\Pi = \bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$ where $\langle l_i, h_i \rangle \in \mathbb{I}$ is bounded; and $\varphi = \bigwedge_{j=1}^n f_j > 0$. Denote $S_j = \{(x_1, x_2, \cdots) | \theta = \{v_i \mapsto x_i | v_i \in V\}; \models_{\theta^I} \Pi \text{ and } \models_{\theta^p_{\mathbb{R}}} f_j \}$. If $\bigcap_{j=1}^n closure(S_j) = \emptyset$, then raSATloop can prove the unsatisfiability of φ with assumption that IA is complete.

Proof. Let $f(v) = \min_{j=1}^n f_j(v)$, then f(v) is continuous. Because $D = \{(x_1, x_2, \cdots) | \theta = \{v_1 \mapsto x_1, v_2 \mapsto x_2, \cdots\}; \models_{\theta^I} \Pi\}$ is compact, $\delta = |\max_{v \in D} f(v)|$ exists. First we will prove that $\delta > 0$. In fact, suppose $\delta = 0 \implies \forall c \in D; f(c) = 0 \implies \forall c \in D \forall j \in \{1, \cdots, n\} f_j(c) \geq 0$. This contradicts with the assumption that $\bigcap_{j=1}^n closure(S_j) = \emptyset$.

Because IA is complete, by Definition 3.5.1, for any point $c \in D$, there exists $\gamma > 0$ such that $\langle c - \gamma, c + \gamma \rangle \in D$ and $\bigwedge_{j=1}^n f_j(c) - \delta < f_j(v) < f_j(c) + \delta$ is $\bigwedge_{v_i \in V} v_i \in \langle c_i - \gamma, c_i + \gamma \rangle^p$. VALID. Consider $f_k(c) = \min_{j=1}^n f_j(c)$ then $f_k(c) < 0$ otherwise a contradiction with the assumption that $\bigcap_{j=1}^n closure(S_j) = \emptyset$ exists. In addition by definition of f(v) we have $f_k(c) = f(c) \leq \max_{v \in D} f(v) \implies f_k(c) + \delta < 0 \implies \bigwedge_{j=1}^n f_j(v) > 0$ is UNSAT over $\bigwedge_{v_i \in V} v_i \in \langle c_i - \gamma, c_i + \gamma \rangle$. For any point in D, we can find a small box so that the constraint is unsatisfiable. If ε is small enough, the unsatisfiability can be detected by raSATloop.

Chapter 4

Interval Arithmetic

Interval Arithmetic is defined formally in Section 3.2 of Chapter 3. This chapter is going to present two instances of Interval Arithmetic which are used in raSAT: Classical Interval and Affine Interval. These two kinds differ to each other in the way they represent intervals and interpret function symbols.

4.1 Classical Interval

A model $M_{CI}^p = (U_{CI}^p, I_{CI}^p)$ over intervals contains a set of all intervals $U_{CI}^p = U_{IA}^p$ and a map I_{CI}^p that satisfies the following conditions.

- 1. $I_{CI}^p(Real) = I_{IA}^p(Real)$
- 2. $\forall p \in P^p; I_{CI}^p(p) = I_{IA}^p(p)$
- 3. $\forall f \in F^p \setminus \{\mathbf{1}\}; I_{CI}^p(f) = U_{CI}^p \times U_{CI}^p \mapsto U_{CI}^p \text{ such that } I_{CI}^p(f)(i_1, i_2) = i_1 \ f_{CI} \ i_2 \text{ where the definition of } f_{CI} \text{ is:}$
 - $\langle l_1, h_1 \rangle \oplus_{CI} \langle l_2, h_2 \rangle = \langle l_1 + l_2, h_1 + h_2 \rangle.$
 - $\langle l_1, h_1 \rangle \ominus_{CI} \langle l_2, h_2 \rangle = \langle l_1 h_2, h_1 l_2 \rangle.$
 - Operation $i_1 \otimes_{CI} i_2$ is defined using case analysis on the types of i_1 and i_2 . First, the intervals are classified into the following:
 - $P = \{ \langle a, b \rangle | a \ge 0 \land b > 0 \}$
 - $-\ N = \{\langle a, b \rangle | b \le 0 \land a < 0\}$
 - $\ M = \{ \langle a, b \rangle | a < 0 < b \}$
 - $Z = \{\langle a, b \rangle\}$ The definition of \otimes_{CI} is given in Table

Class of $\langle l_1, h_1 \rangle$	Class of $\langle l_2, h_2 \rangle$	$\langle l_1, h_1 angle \otimes_{CI} \langle l_2, h_2 angle$
Р	Р	$\langle l_1 \times l_2, h_1 \times h_2 \rangle$
P	M	$\langle h_1 \times l_2, h_1 \times h_2 \rangle$
P	N	$\langle h_1 \times l_2, l_1 \times h_2 \rangle$
M	Р	$\langle l_1 \times h_2, h_1 \times h_2 \rangle$
M	M	$\langle \min(l_1 \times h_2, h_1 \times l_2), \max(l_1 \times l_2, h_1 \times h_2) \rangle$
M	N	$\langle h_1 \times l_2, l_1 \times l_2 \rangle$
N	Р	$\langle l_1 \times h_2, h_1 \times l_2 \rangle$
N	M	$\langle l_1 \times h_2, l_1 \times l_2 \rangle$
N	N	$\langle h_1 \times h_2, l_1 \times l_2 \rangle$
Z	P, N, M, Z	$\langle 0,0 \rangle$
P, N, M	Z	$\langle 0,0 \rangle$

- 4. $I_{CI}^{p}(\mathbf{1}) = \langle 1, 1 \rangle$
- 5. $\forall v \in V; I_{CI}^p \in U_{CI}^p$

Theory $T_{CI}^p = \{M_{CI}^p | M_{CI}^p \text{ is a model over intervals}\}$. Each model differs to another by the mapping from variables to intervals. As a consequence, one assignment from variables to intervals can be used to describe an model. We denote Π_{CI}^p as the model represented by $\Pi = \{x \in \langle l, h \rangle | v \in V\}$.

Theorem 4.1.1. CI is an IA.

Proof. Easy.
$$\Box$$

4.2 Affine Interval

Affine Interval use the formula $a_0 + \sum_{i=1}^n a_i \epsilon_i$ to represent the interval $\langle a_0 - \sum_{i=1}^n |a_i|, a_0 + \sum_{i=1}^n |a_i| \rangle$ with $a_i \in \mathbb{R}$ for $i = 0, 1, \cdots$. For example, the affine interval form of $(x \in)\langle 2, 4 \rangle$ and $(y \in)\langle 0, 2 \rangle$ is $3 + \epsilon_1$ and $1 + \epsilon_2$ respectively, thus:

$$x^{2} - x \times y = (3 + \epsilon_{1})^{2} - (3 + \epsilon_{1}) \times (1 + \epsilon_{2})$$
$$= 9 + 6\epsilon_{1} + \epsilon_{1}^{2} - (3 + 3\epsilon_{2} + \epsilon_{1} + \epsilon_{1}\epsilon_{2})$$
$$= 6 + 5\epsilon_{1} - 3\epsilon_{2} + \epsilon_{1}^{2} + \epsilon_{1}\epsilon_{2}$$

Types of affine interval vary by choices of estimating multiplications ϵ_1^2 and $\epsilon_1\epsilon_2$:

- 1. AA [4, 21] replaces $\epsilon_1 \epsilon_2$ by a fresh noise symbol.
- 2. AF1 and AF2 [13] prepares a fixed noise symbol for any $\epsilon_1 \epsilon_2$.
- 3. EAI [14] replaces $\epsilon_1 \epsilon_2$ by $\langle -1, 1 \rangle \epsilon_1$ or $\langle -1, 1 \rangle \epsilon_2$.
- 4. AF2 [13] replaces ϵ_1^2 by the fixed noise symbols ϵ_+ or ϵ_- .

A model $M_{AF2}^p = (U_{AF2}^p, I_{AF2}^p)$ over intervals contains a set of all intervals $U_{AF2}^p = \{a_0 + \sum_{i=1}^n a_i \epsilon_i + a_{n+1} \epsilon_+ + a_{n+2} \epsilon_- + a_{n+3} \epsilon_\pm | \forall i \in \{0, 1, \dots, n+3\}; a_i \in \mathbb{R}\}$ and a map I_{AF2}^p that satisfies the following conditions.

- 1. $I_{AF2}^p(Real) = U_{AF2}^p$
- 2. $\forall p \in P^p$; $I_{AF2}^p(p) = U_{AF2}^p \times U_{AF2}^p \mapsto \{true, false\}$ such that $I_{AF2}^p(p)(a_0 + \sum_{i=1}^n a_i \epsilon_i + a_{n+1}\epsilon_+ + a_{n+2}\epsilon_- + a_{n+3}\epsilon_\pm, b_0 + \sum_{i=1}^n b_i \epsilon_i + b_{n+1}\epsilon_+ + b_{n+2}\epsilon_- + b_{n+3}\epsilon_\pm) = I_{AI}^p(p)(\langle a_0 \sum_{i=1}^n |a_i| a_{n+2} a_{n+3}, a_0 + \sum_{i=1}^n |a_i| + a_{n+1} + a_{n+3}\rangle, \langle b_0 \sum_{i=1}^n |b_i| b_{n+2} b_{n+3}, b_0 + \sum_{i=1}^n |b_i| + b_{n+1} + b_{n+3}\rangle)$
- 3. $\forall f \in F^p \setminus \{1\}; I^p_{AF2}(f) = U^p_{AF2} \times U^p_{AF2} \mapsto U^p_{AF2} \text{ such that } I^p_{AF2}(f)(i_1, i_2) = i_1 \ f_{AF2} \ i_2$ where the definition of f_{AF2} is as following. Let $i_1 = a_0 + \sum_{i=1}^n a_i \epsilon_i + a_{n+1} \epsilon_+ + a_{n+2} \epsilon_- + a_{n+3} \epsilon_+$ and $i_2 = b_0 + \sum_{i=1}^n b_i \epsilon_i + b_{n+1} \epsilon_+ + b_{n+2} \epsilon_- + b_{n+3} \epsilon_+$, then:
 - $-i_1 \oplus_{AF2} i_2 = a_0 + b_0 + \sum_{i=1}^n (a_i + b_i)\epsilon_i + (a_{n+1} + b_{n+1})\epsilon_+ + (a_{n+2} + b_{n+2})\epsilon_- + (a_{n+3} + b_{n+3})\epsilon_+$ $b_{n+3})\epsilon_{\pm}.$
 - $-i_1 \ominus_{AF2} i_2 = a_0 b_0 + \sum_{i=1}^n (a_i b_i)\epsilon_i + (a_{n+1} + b_{n+1})\epsilon_+ + (a_{n+2} + b_{n+2})\epsilon_- + (a_{n+3} + b_{n+3})\epsilon_+$ $b_{n+3})\epsilon_{\pm}.$
 - $-i_1 \otimes_{AF_2} i_2 = a_0 b_0 + \sum_{i=1}^n (a_0 b_i + a_i b_0) \epsilon_i + K_1 \epsilon_+ + K_2 \epsilon_- + K_3 \epsilon_{\pm}, \text{ where:}$

$$K_{1} = \sum_{i=1,a_{i}b_{i}>0}^{n+3} a_{i}b_{i} + \begin{cases} a_{0}b_{n+1} + a_{n+1}b_{0} & \text{if } a_{0} \geq 0 \text{ and } b_{0} \geq 0 \\ a_{0}b_{n+1} - a_{n+2}b_{0} & \text{if } a_{0} \geq 0 \text{ and } b_{0} < 0 \\ -a_{0}b_{n+2} + a_{n+1}b_{0} & \text{if } a_{0} < 0 \text{ and } b_{0} \geq 0 \\ -a_{0}b_{n+2} - a_{n+2}b_{0} & \text{if } a_{0} < 0 \text{ and } b_{0} < 0 \end{cases}$$

$$K_2 = \sum_{i=1,a_ib_i<0}^{n+3} a_ib_i + \begin{cases} -a_0b_{n+2} - a_{n+2}b_0 & \text{if } a_0 < 0 \text{ and } b_0 < 0 \\ a_0b_{n+2} + a_{n+2}b_0 & \text{if } a_0 \ge 0 \text{ and } b_0 \ge 0 \\ a_0b_{n+2} - a_{n+1}b_0 & \text{if } a_0 \ge 0 \text{ and } b_0 < 0 \\ -a_0b_{n+1} + a_{n+2}b_0 & \text{if } a_0 < 0 \text{ and } b_0 \ge 0 \\ -a_0b_{n+1} - a_{n+1}b_0 & \text{if } a_0 < 0 \text{ and } b_0 < 0 \end{cases}$$

$$K_3 = \sum_{i=1}^{n+3} \sum_{j=1, j \neq i}^{n+3} |a_i b_j| + |a_0| b_{n+3} + a_{n+3} |b_0|$$

- 4. $I_{AF2}^p(\mathbf{1}) = 1$
- 5. $\forall v \in V; I_{AF2}^p \in U_{AF2}^p$

Theory $T^p_{AF2} = \{M^p_{AF2} | M^p_{AF2} \text{ is a model over intervals}\}$. Each model differs to another by the mapping from variables to intervals. As a consequence, one assignment from variables to intervals can be used to describe an model. We denote Π^p_{CI} as the model represented by $\Pi = \{x \in \langle l, h \rangle | v \in V\}$.

Theorem 4.2.1. AF2 is an IA.

Proof. Easy. \Box

Chapter 5

Design Strategies

We implemented a number of strategies for improving efficiency of raSAT: incremental search and refinement heuristics.

5.1 Incremental search

raSAT applies three incremental strategies, (1) incremental windening, (2) incremental deepening and (3) incremental testing. Let $\varphi = \bigwedge_{j=1}^{m} f_j > 0$ be the constraint to be solved.

5.1.1 Incremental Windening and Deepening

Given $0 < \gamma_0 < \gamma_1 < \cdots$ and $\varepsilon_0 > \varepsilon_1 > \cdots > 0$ raSAT's algorithm design with incremental widening and deepening is described in Algorithm 1. The idea here is that raSAT starts searching within small interval and large value of threshold. If SAT is detected, the result can be safely returned. If the current intervals cannot satisfy the constraint (UNSAT is detected), larger intervals are consider. In the case of UNKNOWN, the threshold is not small enough to detect either SAT or UNSAT. As the result, raSAT decreases it and restarts the search. In Theorem 3.5.3 and Theorem 3.5.4, the threshold γ is not easy to calculate, but by incremental deepening, such threshold can be eventually reached because it does exist.

5.1.2 Incremental Testing

One obstacle in testing is the exponentially large number of test instances (number of selected models). If 2 values are generated for each of n variables, 2^n test cases (combinations of generated values) will present.

Example 5.1.1. Suppose $\{x,y\}$ is the set of variables which appears in the input constraint and let $\{2,9\}$ and $\{5,8\}$ are generated values for x and y respectively. In total 4 test cases arise: (x,y) = (2,5), (2,8), (9,5), (9,8).

In order to tackle the problem, the following strategies are proposed:

Algorithm 1 Incremental Widening and Deepening

```
1: i \leftarrow 0
 2: j \leftarrow 0
 3: while true do
            \Pi = \bigwedge_{v_i \in V} v_i \in \langle -\gamma_i, \gamma_i \rangle
 4:
           if (\Pi, \varphi, \emptyset, \emptyset, \emptyset, \varepsilon_i, \bot) \to SAT then
 5:
                  return SAT
 6:
            else if (\Pi, \varphi, \emptyset, \emptyset, \emptyset, \varepsilon_i, \bot) \to UNSAT then
 7:
                  if \gamma_i = +\infty then
 8:
                       return UNSAT
 9:
10:
                  else
                       i \leftarrow i + 1
11:
                  end if
12:
            else
13:
14:
                  j \leftarrow j + 1
            end if
15:
16: end while
```

- 1. Restrict the number of test cases to 2^{10} by choosing most 10 influential variables which are decided by the following procedures for generating multiple (2) test values.
 - Select 10 inequalities by SAT-likelihood.
 - Select 1 variable of each selected API using sensitivity.
- 2. Incrementally generate test values for variables to prune test cases that do not satisfy an inequality. This was proposed by Khanh and Ogawa in [11]:
 - Dynamically sort the IA-SAT inequalities by SAT-likelihood such that the inequality which is less likely to be satisfiable will be prioritized.
 - Generate the test values for variables of selected inequalities.

Example 5.1.2. Let $x^2 > 4$ and x * y > 0 are two IA-VALID APIs to be tested and somehow they are sorted in that order, i.e. $x^2 > 4$ is selected before x * y > 0. Suppose $\{1,3\}$ are generated as test values for x which are is enough to test the first selected API, i.e. $x^2 > 4$. As a result of testing, x = 1 is excluded from the satisfiable test cases whilst x = 3 is not. Next, when x * y > 0 is considered, y needs to be generated 2 values, e.g. $\{-3,4\}$ and two test cases (x,y) = (3,-3), (3,4) come out to be checked. In this example, (x,y) = (1,-3) and (x,y) = (1,4) are early pruned by only testing x = 1 against $x^2 > 4$.

Definition 5.1.1. Given an assignment from variables to intervals $\theta = \{v \mapsto i | v \in V\}$ in which $i \in \mathbb{I}$ and an inequality f > 0. Let $\langle l, h \rangle = f^{\theta^I}$, then the SAT-likelihood of f > 0 is $|\langle l, h \rangle \cap \langle l, h \rangle|/(h-l)$ which is denoted as $\varpi(f > 0, \theta)$.

Figure 5.1: Incremental Testing Example

Definition 5.1.2. Given an assignment from variables to intervals in the form of affine interval $\theta = \{v_i \mapsto a_{0i} + a_{1i}\epsilon_i | v_i \in V\}$ and a polynomial f. Let $a_0 + \sum_{j=1}^n a_j\epsilon_j = f^{\theta^I}$, then we define sensitivity of variable $v_i \in V$ by the value of a_i .

5.2 Refinement Heuristics

Suppose the number of variable is nVar and initially the intervals assignment is represented by $\Pi = \bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$. If the interval of each variable is decomposed into two smaller ones, the new interval constraint becomes $\Pi' = \bigwedge_{v_i \in V} (v_i \in \langle l_i, c_i \rangle \vee v_i \in \langle c_i, h_i \rangle)$ where c_i is the decomposed point such that $l_i < c_i < h_i$. The number of boxes becomes 2^{nVar} . The exponentially increase in the number of boxes affect the scalability of raSAT. To this point, raSAT applies two strategies for boosting SAT detection:

- 1. In Refine transition, the interval of one variable is selected for decomposition, raSAT chooses such variables through the following steps:
 - Choose the inequality f > 0 in φ^U with the least value of SAT-likelihood.
 - \bullet Within f, choose the variable v_k with the largest value of sensitivity.
- 2. After the interval of v_k is decomposed, basically the box represented by $\Pi = \bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$ will become two boxes which are represented by $\Pi_1 = v_0 \in \langle l_0, h_0 \rangle \wedge \cdots \wedge v_k \in \langle l_k, c_k \rangle \wedge \cdots \wedge v_{nVar} \in \langle l_{nVar}, h_{nVar} \rangle$ and $\Pi_2 = v_0 \in \langle l_0, h_0 \rangle \wedge \cdots \wedge v_k \in \langle c_k, h_k \rangle \wedge \cdots \wedge v_{nVar} \in \langle l_{nVar}, h_{nVar} \rangle$. raSAT prepares the following strategies to choose one box to explore:
 - the box with higher/smaller value of SAT-likelihood to explore in the next iteration, i.e. the result of SAT operation in masar is controlled so that the desired box will be selected, and

• the box with higher/smaller inequalities that can be solved by IA and Testing. **Definition 5.2.1.** Given an assignment from intervals to variables $\theta = \{v \mapsto i | v \in V\}$ in which $i \in \mathbb{I}$ and a constraint $\bigwedge_{i=1}^{n} f_i > 0$. The SAT-likelihood of θ is defined as $\min_{i=1}^{n} \varpi(f_i > 0, \theta)$.

Experiments

This chapter is going to present the experiments results which reflect how effective our designed strategies are. In addition, comparison between raSAT, Z3 and iSAT3 will be also shown. The experiments were done on a system with Intel Xeon E5-2680v2 2.80GHz and 4 GB of RAM. In the experiments, we exclude the problems which contain equalities because currently raSAT focuses on inequalities only.

6.1 Experiments on Strategy Combinations

We perform experiments only on Zankl, and Meti-Tarski families. Our combinations of strategies mentioned in Section 5.2 are,

Selecting a test-UNSAT API	Selecting a box (to explore):	Selcting a variable:
(1) Least SAT-likelyhood.	(3) Largest number of SAT inequalities.	(8) Largest sensitibity.
(2) Largest SAT-likelyhood.	(4) Least number of SAT inequalities.	
	(5) Largest SAT-likelyhood.	
	(6) Least SAT-likelyhood.	
(10) Random.	(7) Random.	(9) Random.

Table 6.1 shows the experimental results of above mentioned combination. The timeout is set to 500s, and each time is the total of successful cases (either SAT or UNSAT).

Note that (10)-(7)-(9) means all random selection. Generally, the combination of (5) and (8) show the best results, though the choice of (1),(2), and (10) shows different behavior on benchmarks. We tentatively prefer (1) or (10), but it needs to be investigated further.

6.2 Comparison with other SMT Solvers

We compare \mathbf{raSAT} with other SMT solvers on NRA benchmarks, Zankl and Meti-Tarski. The timeouts for Zankl and Meti-tarski are 500s and 60s, respectively. For $\mathbf{iSAT3}$, ranges of all variables are uniformly set to be in the range [-1000, 1000] (otherwise, it often

Benchmark	(1)-(5)-(8))	(1)	-(5)-(9)	(1)-	-(6)-(8)	(1))-(6)-(9)	(10))-(5)-(8) (10	0)-(6)-(8)
Matrix-1 (SAT)	20	132.72	(s)	21	21.48	19	526.76	18	562.19	21	462.5	7 19	155.77
Matrix-1 (UNSAT)	2	0.00		3	0.00	3	0.00	3	0	3	0.0	0 3	0.00
Matrix-2,3,4,5 (SAT)	11	632.37		1	4.83	0	0.00	1	22.50	9	943.0	8 1	30.48
Matrix-2,3,4,5 (UNSAT)	8	0.37		8	0.39	8	0.37	8	0.38	8	0.3	8 8	0.38
Benchmark	(2)-(5)-(8))	(2)	-(5)-(9)	(2)-	-(6)-(8)	(2))-(6)-(9)	(2)	-(7)-(8)	(10	0)-(7)-(9)
Matrix-1 (SAT)	22	163.47	(s)	19	736.17	20	324.97	18	1068.40	21	799.7	9 21	933.39
Matrix-1 (UNSAT)	2	0		2	0.00	2	0.00	2	0.00	2	0.0	0 2	0.00
Matrix-2,3,4,5 (SAT)	5	202.37		1	350.84	1	138.86	0	0.00	0	0.0	0 0	0.00
Matrix-2,3,4,5 (UNSAT)	8	0.43		8	0.37	8	0.40	8	0.38	8	0.3	7 8	0.38
Benchmark	(1)-(3)-(8))	(1)	-(4)-(8)	(2)-	-(3)-(8)	(2))-(4)-(8)	(10))-(3)-(8) (10	0)-(4)-(8)
Matrix-1 (SAT)	20	738.26	(s)	21	1537.9	18	479.60	21	867.99	20	588.7	8 19	196.21
Matrix-1 (UNSAT)	2	0.00		2	0.00	2	0.00	2	0.00	2	0.0	0 2	0.00
Matrix-2,3,4,5 (SAT)	0	0.00		2	289.17	1	467.12	1	328.03	1	195.1	8 2	354.94
Matrix-2,3,4,5 (UNSAT)	8	0.36		8	0.36	8	0.34	8	0.37	8	0.3	7 8	0.39
Benchmark			(1)-((5)-(8)	(]	1)-(5)-(9	9)	(10)-((5)- (8)	8)	(10)-	(7)- (9)
Meti-Tarski (SAT, 352	28)	3322	2 3	69.6	0 (s)	330	3 425	5.37	3325	653	.87 3	322	642.04
Meti-Tarski (UNSAT,	1573	3) 1052	2 3	83.4	0	106	4 1141	1.67	1100	842	.73 1	.076	829.43

Table 6.1: Combinations of raSAT strategies on NRA/Zankl, Meti-Tarski benchmark

causes segmentation fault). Thus, UNSAT detection of **iSAT3** means UNSAT in the range [-1000, 1000], while that of **raSAT** and **Z3 4.3** means UNSAT over $[-\infty, \infty]$.

Among these SMT solvers, **Z3 4.3** shows the best performance. However, if we closely observe, there are certain tendency. **Z3 4.3** is very quick for small constraints, i.e., with short APIs (up to 5) and a small number of variables (up to 10). **raSAT** shows comparable performance on SAT detection with longer APIs (larger than 5) and a larger number of variables (more than 10), and sometimes outforms for SAT detection on vary long constraints (APIs longer than 40 and/or more than 20 variables). Such examples appear in Zankl/matrix-3-all-*, matrix-4-all-*, and matrix-5-all-* (total 74 problems), and **raSAT** solely solves

- matrix-3-all-2 (47 variables, 87 APIs, and max length of an API is 27),
- matrix-3-all-5 (81 variables, 142 APIs, and max length of an API is 20),
- matrix-4-all-3 (139 variables, 244 APIs, and max length of an API is 73), and
- matrix-5-all-01 (132 variables, 276 APIs, and max length of an API is 47).

Note that, for Zankl, when UNSAT is detected, it is detected very quickly. This is because SMT solvers detects UNSAT only when they find small UNSAT cores, without tracing all APIs. However, for SAT detection with ;arge problems, SMT solvers need to trace all problems. Thus, it takes much longer time.

Benchmark	raSAT				Z3 4.3				iSAT3				
		SAT		UN	ISAT	Ę	SAT	UN	SAT	S	AT	UN	SAT
Zankl/matrix-1 (53)	20	132.72	(s)	2	0.00	41	2.17	12	0.00	11	4.68	3	0.00
Zankl/matrix-2,3,4,5 (98)	11	632.37		8	0.37	13	1031.68	11	0.57	3	196.40	12	8.06
Meti-Tarski (3528/1573)	3322	369.60		1052	383.40	3528	51.22	1568	78.56	2916	811.53	1225	73.83

Table 6.2: Comparison among SMT solvers

raSAT				Z3				
SAT UNSAT				SAT	UNSAT			
156	244.6(s)	2	0.03 (s)	205	1.12 (s)	22	0.05 (s)	

Table 6.3: Experiments on 217 QEPCAD problems from Hidenao Iwane

6.3 Experiments with QE-CAD Benchmark

We also did experiments on QE-CAD problems provided by Mohab Safey El Din¹ - LIP6 who is working on QE-CAD simplification (checking SAT/UNSAT only and the complexity is from DEXP to EXP) and the QEPCAD problems collected by Hidenao Iwane².

The benchmarks from LIP6 are all unsatisfiable and contain long polynomials (in terms of monomials number). From the experiments with raSAT and Z3, these benchmarks show that they are very difficult to be solved (Table 6.3). These benchmarks may be suitable targets for our UNSAT core strategies in the future.

In terms of QEPCAD benchmarks, while Z3 solves all 217 problems, raSAT solves 156/205 satisfiable and 2/22 unsatisfiable benchmarks. Apart from a number of problems which raSAT has errors in parsing, the unsolved ones are mostly unsatisfiable. This can be tackled by strategies on UNSAT core which is left for our future works.

²https://github.com/hiwane/qepcad/

Problem	raS	AT	Z3			
1 Toblem	Time (s)	Result	Time (s)	Result		
f23	3600	Timeout	3599.55	Timeout		
f22	3600	Timeout	3599.51	Timeout		
pol	3600	Timeout	0.02499	UNSAT		
f13	3600	Timeout	3599.17	Timeout		
pol1	3600	Timeout	3601.61	Timeout		
f12	3600	Timeout	3599.27	Timeout		

Table 6.4: Experiments on problems from LIP6

¹http://www-polsys.lip6.fr/~safey/

Extensions: Equality Handling and Polynomial Constraint over Integers

7.1 SAT on Equality by Intermediate Value Theorem

Single Equation

For solving polynomial constraints with single equality (g = 0), we apply *Intermediate Value Theorem*. That is, if existing 2 test cases such that g > 0 and g < 0, then g = 0 is SAT somewhere in between.

Lemma 7.1.1. For $\varphi = \bigwedge_{j}^{m} f_{j} > 0 \land g = 0$, F is SAT, if there is a box represented by $\Pi = \bigwedge_{v_{i} \in V} v_{i} \in (l_{i}, h_{i})$ such that

(i)
$$\bigwedge_{j}^{m} f_{j} > 0$$
 is $\Pi_{\mathbb{R}}^{p}$ -VALID, and

(ii) there are two instances $\vec{t}, \vec{t'}$ in the box with $g(\vec{t}) > 0$ and $g(\vec{t'}) < 0$.

Proof. It is clear from the Intermediate Value Theorem that there exist an point $\vec{t_0}$ between \vec{t} and $\vec{t'}$ such that $g(\vec{t_0}) = 0$. In addition, because $\bigwedge_j^m f_j > 0$ is $\Pi_{\mathbb{R}}^p$ -VALID, $\vec{t_0}$ also satisfies

$$\bigwedge_{i}^{m} f_{i} > 0$$
. As a result, φ is satisfiable with $\vec{t_{0}}$ as the SAT instance.

Example 7.1.1. Consider the constraint $\varphi = f(x,y) > 0 \land g(x,y) = 0$. Suppose we can find a box represented by $\Pi = x \in \langle a,b \rangle \land y \in \langle c,d \rangle$ such that f(x,y) > 0 is $\Pi_{\mathbb{R}}^p$ -VALID (Figure 7.1). In addition, inside that box, we can find two points (u_1,v_1) and (u_2,v_2) such that $g(u_1,v_1) > 0$ and $g(u_2,v_2) < 0$. By Lemma 7.1.1, the constraint is satisfiable.

raSAT first tries to find a box of variables' intervals (by refinements) such that $\bigwedge_{j}^{m} f_{j} > 0$ is VALID inside that box. Then it tries to find 2 instances for g > 0 and g < 0 by testing.

Figure 7.1: Example on solving single equation using the Intermediate Value Theorem

Intermediate Value Theorem guarantees the existence of an SAT instance in between. Note that this method does not find an exact SAT instance.

Multiple Equations

The idea of using the Intermediate Value Theorem can also be used for solving multiple equations. Consider n equations $(n \ge 1)$: $\bigwedge_{i=1}^n g_i = 0$ and an interval constraint $\bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$. If we can find a set $\{V_1, \dots, V_n\}$ that satisfies the following properties, then we can conclude that $\bigwedge_{i=1}^n g_i = 0$ is satisfiable in $\bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle$.

- For all $i = 1, \dots, n$; we have $V_i \subset var(g_i)$.
- For all $i \neq j$, we have $V_i \neq V_j$.
- For all $i = 1, \dots, n$; let $k_i = |V_i|$ and $V_i = \{v_{ij} \mid 1 \leq j \leq k_i\}$. Then, there exist two values $(v_{i1}, \dots, v_{ik_I}) = (x_{i1}, \dots, x_{ik_i})$ and $(v_{i1}, \dots, v_{ik_I}) = (x'_{i1}, \dots, x'_{ik_i})$ such that

$$g_i(x_{i1}, \dots, x_{ik_i}, \dots, v_{ik}, \dots) * g_i(x'_{i1}, \dots, x'_{ik_i}, \dots, v_{ik}, \dots) < 0$$

for all values of v_{ik} in $\langle l_{ik}, h_{ik} \rangle$ where $v_{ik} \in var(g_i) \setminus V_i$. We denote $ivt(g_i, V_i, \Pi)$ to represent that the polynomial g_i enjoy this property with respect to V_i and Π .

By the first two properties, this method restricts that the number of variables must be greater than or equal to the number of equations.

Example 7.1.2. Consider two equations $g_1(x,y) = 0$ and $g_2(x,y) = 0$ (Figure 7.2) which satisfy the above restriction on the number of variables, and the variable intervals is $\Pi = x \in \langle c_1, d_1 \rangle \land y \in \langle d_2, c_2 \rangle$. Let $V_1 = \{x\}$ and $V_2 = \{y\}$, we have:

$$g_1(c_1, y) * g_1(d_1, y) < 0 \text{ for all } y \in \langle d_2, c_2 \rangle, \text{ and}$$

 $g_2(x, d_2) * g_2(x, c_2) < 0 \text{ for all } x \in \langle c_1, d_1 \rangle$

Thus we can conclude that $g_1(x,y) = 0 \land g_2(x,y=0)$ has a solution inside the box represented by Π .

Figure 7.2: Example on solving single equation using the Intermediate Value Theorem

Our current implementation of handling multiple equations is very naive which is described in Algorithm 2 because for each polynomial, raSAT checks every possible subsets of its variables. As the result, given the constraint $\bigwedge_{i=1}^n g_i = 0$, in the worst case raSAT will check $2^{|var(g_1)|} * \cdots * 2^{|var(g_n)|}$ cases. As a future work, we may use variables' sensitivity to give priority on subsets of variables.

Experiments on Benchmarks

In Table 7.1 we show preliminary experiment for 15 problems that contain polynomial equations in Zankl family. The first 4 columns indicate name of problems, the number of variables, the number of polynomial equalities and the number of inequalities in each problem, respectively. The last 2 columns show comparison results of **Z3 4.3** and **raSAT**.

```
Algorithm 2 Solving multiple equations \bigwedge_{i=1}^{n} g_i = 0 with interval constraint \Pi = \bigwedge_{v_i \in V} v_i \in \langle l_i, h_i \rangle
```

```
function EquationsProver (\bigwedge_{i=1}^{n} g_i = 0, \Pi, V_0)
    if j > n then
                                                                          ▶ All equations are checked
        return SAT
    end if
    for V_j \in P(var(g_j)) do
                                                           \triangleright P(var(g_j)) is the powerset of var(g_j)
        if V_j \cap V = \emptyset and ivt(V', g_j, \Pi) then
             V_0 \leftarrow V_0 \cup V'
            if EquationsProver(\bigwedge_{i=j+1}^n g_i = 0, \Pi, V_0) = \text{SAT then}
                 return SAT
             end if
        end if
    end for
    return UNSAT
end function
EQUATIONS PROVER (\bigwedge_{i=1}^{n} g_i = 0, \Pi, \emptyset)
```

Problem	No.	No.	No.	Z3 4.3	(15/15)	raSAT	(15/15)
Name	Variables	Equalities	Inequalities	Result	Time(s)	Result	Time(s)
gen-03	1	1	0	SAT	0.01	SAT	0.001
gen-04	1	1	0	SAT	0.01	SAT	0.001
gen-05	2	2	0	SAT	0.01	SAT	0.003
gen-06	2	2	1	SAT	0.01	SAT	0.005
gen-07	2	2	0	SAT	0.01	SAT	0.002
gen-08	2	2	1	SAT	0.01	SAT	0.009
gen-09	2	2	1	SAT	0.03	SAT	0.007
gen-10	1	1	0	SAT	0.02	SAT	0.002
gen-13	1	1	0	UNSAT	0.05	UNSAT	0.002
gen-14	1	1	0	UNSAT	0.01	UNSAT	0.002
gen-15	2	3	0	UNSAT	0.01	UNSAT	0.03
gen-16	2	2	1	SAT	0.01	SAT	0.006
gen-17	2	3	0	UNSAT	0.01	UNSAT	0.03
gen-18	2	2	1	SAT	0.01	SAT	0.002
gen-19	2	2	1	SAT	0.05	SAT	0.046

Table 7.1: Experimental results for 15 equality problems of Zankl family

7.2 Polynomial Constraints over Integers

raSAT loop can be slightly modified to handle NIA (nonlinear arithmetic over integers) constraints from NRA, by setting $\gamma_0 = 1$ in incremental deepening in Section 5.1 and restricting test data generation on integers. We also compare **raSAT** (combination (1) - (5) - (8)) with **Z3 4.3** on NIA/AProVE benchmark. **AProVE** contains 6850 inequalities among 8829. Some has several hundred variables, but each API has few variables (mostly just 2 variables).

The results are,

- raSAT detects 6764 SAT in 1230.54s, and 0 UNSAT.
- **Z3 4.3** detects 6784 SAT in 103.70s, and 36 UNSAT in 36.08s.

where the timeout is 60s. **raSAT** does not successfully solve any unsatisfiable problem, since they have large coefficients which lead exhaustive search on large area.

Further Strategies

8.1 UNSAT Core

In IA_UNSAT rule, the negation of Π is added into the interval constraint so that Π will not be explore again later because it make the constraint unsatisfiable. If we can find Π' such that $\Pi = \Pi' \wedge \Pi''$ and φ is $\{\Pi'_{IA}^{p}\}$ -UNSAT, we can add $\neg\Pi'$ into interval constraint instead of Π to reduce the search space.

Example 8.1.1. Consider the constraint $\varphi = x^2 + y^2 < 1$. Suppose in the interval, we have $\Pi = (x \in \langle 2, 3 \rangle \lor x \in \langle 0, 2 \rangle) \land (y \in \langle 0, 1 \rangle y \in \langle -1, 0 \rangle)$ and $\mathring{\Pi} = x \in \langle 2, 3 \rangle \land y \in \langle 0, 1 \rangle$. The conditions of interval are satisfied, $\neg \mathring{\Pi}$ is added into the interval constraint which becomes $\Pi \land \neg \mathring{\Pi}$. The new interval constraint contains $\{x \in \langle 2, 3 \rangle, y \in \langle -1, 0 \rangle\}$ as one of its solution. However, with $\mathring{\Pi}' = x \in \langle 2, 3 \rangle$, we have φ is $\{\mathring{\Pi}'^p_{IA}\}$ -UNSAT and by adding $\neg \mathring{\Pi}'$ to the interval constraint, $\{x \in \langle 2, 3 \rangle, y \in \langle -1, 0 \rangle\}$ is also removed from the search space.

The constraint $\varphi = \bigwedge_{j=1}^n f_j > 0$ is Π -UNSAT when $f_k > 0$ is Π -UNSAT with some $k \in \{1, 2, \dots, n\}$. We have two ideas for computing UNSAT core.

- 1. UNSAT core 1: A sub-polynomial f'_k of f_k such that
 - $f'_k > 0$ is Π -UNSAT implies that f_k is Π -UNSAT, and
 - f'_k is in fact Π -UNSAT.

In this case, we just take $\mathring{\Pi}' = \bigwedge_{v_i \in var(f_k)} v_i \in \langle l_i, h_j \rangle$.

2. UNSAT core 2: Check all the possible cases if $\mathring{\Pi}'$.

Example 8.1.2. Consider again the constraint $\varphi = x^2 + y^2 < 1$ or $1 - x^2 - y^2 > 0$. In the ialunsat rule, we also have $\Pi = (x \in \langle 2, 3 \rangle \lor x \in \langle 0, 2 \rangle) \land (y \in \langle 0, 1 \rangle y \in \langle -1, 0 \rangle)$ and $\mathring{\Pi} = x \in \langle 2, 3 \rangle \land y \in \langle 0, 1 \rangle$. Here, φ is Π -UNSAT. In addition, $1 - x^2$ is the UNSAT core of $1 - x^2 - y^2$ because

- $1-x^2$ is Π^p_{IA} -UNSAT implies that $1-x^2-y^2$ is Π^p_{IA} -UNSAT, and
- the constraint $1 x^2 > 0$ is in fact Π_{IA}^p -UNSAT.

Preliminary Experiments

Strategy *UNSAT core 1* was already implemented in [10] and the other strategy was implemented in this work. We did the experiments on the SMT-LIB family Hong where each problem is unsatisfiable and of the following form:

$$\sum_{i=1}^{n} x_i^2 < 1 \land \prod_{i=1}^{n} x_i > 1$$

where n ranges from 1 to 20. Table 8.1 shows the experiments for raSAT with/without UNSAT core strategies where we fixed the initial intervals to be $\langle 0, 10 \rangle$ and the threshold 0.1 (i.e. no incremental deepening and widening). UNSAT core 2 works fine because problems in Hong family contain polynomials with lots of UNSAT cores which this strategy tends to calculate. On the other hand, UNSAT core 1 has not been well implemented in the way raSAT search for a sub-polynomial. Experiments for these strategies on other benchmarks of SMT-LIB did not show improvements in the result, we need further investigations.

8.2 Test Case Generation

The value of variable's sensitivity can also be used to approximate how likely the value of a polynomial increases when the value of that variable increases. Consider the constraint $f = -x_{15} * x_8 + x_{15} * x_2 - x_{10} * x_{16} > 0$. With $x_2 \in [9.9, 10], x_8 \in [0, 0.1], x_{10} \in [0, 0.1], x_{15} \in [0, 10],$ and $x_{16} \in [0, 10]$. The result of AF2 for f is: $0.25\epsilon_2 - 0.25\epsilon_8 - 0.25\epsilon_{10} + 49.5\epsilon_{15} - 0.25\epsilon_{16} + 0.75\epsilon_{+-} + 49.25$. The coefficient of ϵ_2 is positive (0.25), then we expect that if x_2 increases, the value of f also increase. As the result, the test case of x_2 is as high as possible in order to satisfy f > 0. We will thus take the upper bound value of x_2 , i.e. 10. Similarly, we take the test cases for other variables: $x_8 = 0, x_{10} = 0, x_{15} = 10, x_{16} = 0$. With these test cases, we will have f = 100 > 0.

Preliminary Experiments

Table 8.2 illustrates the experiments of this strategy together with (1)-(5)-(8). In comparison with (1)-(5)-(8), this strategy solves more satisfiable constraints and the solving time is generally smaller for the same constraint.

8.3 Box Decomposition

Currently raSAT applies balanced decomposition in REFINE rule, e.g. $x \in \langle 0, 10 \rangle$ will be decomposed into $x \in \langle 0, 5 \rangle$ and $x \in \langle 5, 10 \rangle$. We intend to use the same approximation as

Problem	No UNS	AT core	UNSAT	core 1	UNSAT core 2		
Froniem	Time (s)	Result	Time (s)	Result	Time (s)	Result	
hong_1	0	UNSAT	0	UNSAT	0.004	UNSAT	
hong_2	0.00838	UNSAT	0.016	UNSAT	0.016	UNSAT	
hong_3	0.007441	UNSAT	0.016	UNSAT	0.016	UNSAT	
hong_4	0.114857	UNSAT	0.124	UNSAT	0.016	UNSAT	
hong_5	0.27588	UNSAT	0.272	UNSAT	0.028	UNSAT	
hong_6	1.20687	UNSAT	1.288	UNSAT	0.052	UNSAT	
hong_7	9.29289	UNSAT	9.996	UNSAT	0.112	UNSAT	
hong_8	153.619	UNSAT	164.288	UNSAT	0.68	UNSAT	
hong_9	117.937	UNSAT	129.044	UNSAT	0.08	UNSAT	
hong_10	307.208	UNSAT	281.696	UNSAT	0.152	UNSAT	
hong_11	478.605	UNSAT	412.028	UNSAT	0.236	UNSAT	
hong_12	500	Timeout	500	Timeout	0.456	UNSAT	
hong_13	500	Timeout	500	Timeout	0.752	UNSAT	
hong_14	500	Timeout	500	Timeout	1.572	UNSAT	
hong_15	500	Timeout	500	Timeout	2.756	UNSAT	
hong_16	500	Timeout	500	Timeout	5.98	UNSAT	
hong_17	500	Timeout	500	Timeout	10.864	UNSAT	
hong_18	500	Timeout	500	Timeout	24.352	UNSAT	
hong_19	500	Timeout	500	Timeout	47.968	UNSAT	
hong_20	500	Timeout	500	Timeout	103.484	UNSAT	

Table 8.1: Experiments on UNSAT core computations

Benchmark		SAT	UNSAT		
Zankl/matrix-1 (53)	24	511.07 (s)	2	0.009(s)	
Zankl/matrix-2,3,4,5 (98)	13	477.62 (s)	8	0.39(s)	

Table 8.2: raSAT with sensitivity in testing

Benchmark		SAT	UNSAT		
Zankl/matrix-1 (53)	24	510.55 (s)	2	0.01(s)	
Zankl/matrix-2,3,4,5 (98)	9	1030.35 (s)	8	0.38(s)	

Table 8.3: raSAT with sensitivity in decomposition

in Section 8.2 to guide the decomposition. Take the same example in Section 8.2 and suppose x_{15} is selected for decomposition. Because the coefficient of ϵ_{15} is 49.5 which is positive, we expect the high values for x_{15} so that f > 0 will be satisfied. As the result, the interval $x_{15} \in \langle 0, 10 \rangle$ can be decomposed into $x_{15} \in \langle 0, 10 - \epsilon \rangle$ and $x_{15} \in \langle 10 - \epsilon, 10 \rangle$ where ϵ is the threshold for decomposition.

Preliminary Experiments

Table 8.3 shows the result when this strategy is used together with (1)-(5)-(8) and the strategy in Section 8.2. Basically the result has not been improved in comparison with the result in Section 8.2, we need further investigation.

Conclusion

This thesis presented improvement and extensions for an SMT solved **raSAT** including heuristics to deal with exponential exploration of boxes, extensions for handling equations and handling constraints over integer numbers.

Observation and Discussion

From experimental results in Section ?? and ??, we observe the followings.

- The degree of polynomials will not affect much.
- The number of variables are matters, but also for Z3 4.3. The experimental results do not show exponential growth, and we expect the strategy of selection of an API in which related intervals are decomposed seems effective in practice. By observing Zankl examples, we think the maximum number of variables of each API seems a dominant factor.
- Effects of the number of APIs are not clear at the moment. In simple benchmarks, \mathbf{raSAT} is faster than Z3 4.3, however we admit that we have set small degree n=6 for each API.

For instance, matrix-2-all-5,8,11,12 in Zankl contain a long monomial (e.g., 60) with the max degree 6, and relatively many variables (e.g., 14), which cannot be solved by Z3 4.3, but **raSAT** does. As a general feeling, if an API contains more than $30 \sim 40$ variables, **raSAT** seems saturating. We expect that, adding to a strategy to select an API (Section ??), we need a strategy to select variables in the focus. We expect this can be designed with sensitivity (Example ??) and would work in practice. Note that sensitivity can be used only with noise symbols in Affine intervals. Thus, iSAT and RSOLVER cannot use this strategy, though they are based on IA, too.

Future Work

UNSAT core

Exact confirmation. Currently, **raSAT** uses iRRAM to verify SAT instances only. We are planning to implement confirmation phase to UNSAT cases.

Further strategy refinement. Test data generation, blanced box decomposition

Bibliography

- [1] Hirokazu Anai. Algebraic methods for solving real polynomial constraints and their applications in biology. In *In Algebraic Biology Computer Algebra in Biology*, pages 139–147, 2005.
- [2] GeorgeE. Collins. Quantifier elimination by cylindrical algebraic decomposition twenty years of progress. In BobF. Caviness and JeremyR. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pages 8–23. Springer Vienna, 1998. ISBN 978-3-211-82794-9. doi: 10.1007/978-3-7091-9459-1_2. URL http://dx.doi.org/10.1007/978-3-7091-9459-1_2.
- [3] Michael A. Coln, Sriram Sankaranarayanan, and Henny B. Sipma. Linear invariant generation using non-linear constraint solving. In Jr. Hunt, Warren A. and Fabio Somenzi, editors, Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages 420–432. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-40524-5. doi: 10.1007/978-3-540-45069-6_39. URL http://dx.doi.org/10.1007/978-3-540-45069-6_39.
- [4] Joo Luiz Dihl Comba and Jorge Stolfi. Affine arithmetic and its applications to computer graphics, 1993.
- [5] Martin Frnzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schubert. Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. *Journal on Satisfiability, Boolean Modeling and Computation*, 1: 209–236, 2007.
- [6] M.K. Ganai and F. Ivancic. Efficient decision procedure for non-linear arithmetic constraints using cordic. In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009, pages 61–68, Nov 2009. doi: 10.1109/FMCAD.2009.5351140.
- [7] Sicun Gao, Soonho Kong, and EdmundM. Clarke. dreal: An smt solver for non-linear theories over the reals. In MariaPaola Bonacina, editor, Automated Deduction CADE-24, volume 7898 of Lecture Notes in Computer Science, pages 208—214. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-38573-5. doi: 10.1007/978-3-642-38574-2_14. URL http://dx.doi.org/10.1007/978-3-642-38574-2_14.

- [8] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to implementation. J. ACM, 48(5):1038-1068, September 2001. ISSN 0004-5411. doi: 10.1145/502102.502106. URL http://doi.acm.org/10.1145/502102.502106.
- [9] Dejan Jovanovi and Leonardo de Moura. Solving non-linear arithmetic. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, *Automated Reasoning*, volume 7364 of *Lecture Notes in Computer Science*, pages 339–354. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31364-6. doi: 10.1007/978-3-642-31365-3_27. URL http://dx.doi.org/10.1007/978-3-642-31365-3_27.
- [10] To Van Khanh and Mizuhito Ogawa. {SMT} for polynomial constraints on real numbers. Electronic Notes in Theoretical Computer Science, 289(0):27 40, 2012. ISSN 1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2012.11.004. URL http://www.sciencedirect.com/science/article/pii/S1571066112000746. Third Workshop on Tools for Automatic Program Analysis (TAPAS' 2012).
- [11] To Van Khanh and Mizuhito Ogawa. rasat: Smt for polynomial inequality. Technical report, School of Information Science, Japan Advanced Institute of Science and Technology, 05 2013.
- [12] Salvador Lucas and Rafael Navarro-Marset. Comparing csp and sat solvers for polynomial constraints in termination provers. *Electron. Notes Theor. Comput. Sci.*, 206:75–90, April 2008. ISSN 1571-0661. doi: 10.1016/j.entcs.2008.03.076. URL http://dx.doi.org/10.1016/j.entcs.2008.03.076.
- [13] Frdric Messine. Extensions of affine arithmetic: Application to unconstrained global optimization.
- [14] Do Thi Bich Ngoc and Mizuhito Ogawa. Overflow and roundoff error analysis via model checking. In *Proceedings of the 2009 Seventh IEEE International Conference on Software Engineering and Formal Methods*, SEFM '09, pages 105–114, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3870-9. doi: 10.1109/SEFM.2009.32. URL http://dx.doi.org/10.1109/SEFM.2009.32.
- [15] Do Thi Bich Ngoc and Mizuhito Ogawa. Checking roundoff errors using counterexample-guided narrowing. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, ASE '10, pages 301–304, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0116-9. doi: 10.1145/1858996.1859056. URL http://doi.acm.org/10.1145/1858996.1859056.
- [16] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract dpll and abstract dpll modulo theories. In *In LPAR04*, *LNAI 3452*, pages 36–50. Springer, 2005.
- [17] Anh-Dung Phan, Nikolaj Bjørner, and David Monniaux. Anatomy of alternating quantifier satisfiability (work in progress). In 10th International Workshop on Satisfiability Modulo Theories (SMT), 2012.

- [18] Stefan Ratschan. Efficient solving of quantified inequality constraints over the real numbers. *ACM Trans. Comput. Logic*, 7(4):723–748, October 2006. ISSN 1529-3785. doi: 10.1145/1183278.1183282. URL http://doi.acm.org/10.1145/1183278.1183282.
- [19] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constructing invariants for hybrid systems. In in Hybrid Systems: Computation and Control, LNCS 2993, pages 539–554. Springer-Verlag, 2004.
- [20] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-linear loop invariant generation using grö bner bases. SIGPLAN Not., 39(1):318-329, January 2004. ISSN 0362-1340. doi: 10.1145/982962.964028. URL http://doi.acm.org/10.1145/982962.964028.
- [21] Jorge Stolfi and Luiz Henrique De Figueiredo. Self-validated numerical methods and applications, 1997.
- [22] Alfred Tarski. A decision method for elementary algebra and geometry. In BobF. Caviness and JeremyR. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pages 24–84. Springer Vienna, 1998. ISBN 978-3-211-82794-9. doi: 10.1007/ 978-3-7091-9459-1_3. URL http://dx.doi.org/10.1007/978-3-7091-9459-1_3.
- [23] Harald Zankl and Aart Middeldorp. Satisfiability of non-linear (ir)rational arithmetic. In *Proceedings of the 16th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR'10, pages 481–500, Berlin, Heidelberg, 2010.* Springer-Verlag. ISBN 3-642-17510-4, 978-3-642-17510-7. URL http://dl.acm.org/citation.cfm?id=1939141.1939168.