Assignment 3 for StatØk2, Block 1, 2021/2022

- (1) Consider an MA(1) process $X_t = Z_t + \theta Z_{t-1}$ with white noise $(Z_t), \theta \neq 0$.
 - (a) Calculate the autocovariance function γ_X of this process.
 - (b) Show that the function

$$\gamma(h) = \begin{cases} 1 & \text{for } h = 0\\ \rho & \text{for } h = \pm 1\\ 0 & \text{otherwise} \end{cases},$$

is the autocorrelation function of some stationary process if and only if $|\rho| \leq 1/2$. Hint: find a relationship between (a) and (b). To show that

$$\Gamma_n = (\gamma(i-j))_{i,j=1,\dots,n}$$

is not a covariance matrix (is not non-negative definite) it suffices to find a (simple) vector \mathbf{a} such that $\mathbf{a}'\Gamma_n\mathbf{a} < 0$.

- (2) Consider an $n \times n$ matrix Σ and a mean-zero random vector $\mathbf{X} = (X_1, \dots, X_n)'$.
 - (a) Prove that Σ is the covariance matrix of \mathbf{X} if and only if it is non-negative definite and symmetric, i.e. $\mathbf{a}'\Sigma\mathbf{a} \geq 0$ for any $\mathbf{a} \in \mathbb{R}^n$ and $\Sigma = \Sigma'$. Hints: A symmetric non-negative definite matrix Σ has the decomposition $\Sigma = O'\Lambda O$,

where O is orthonormal, i.e., OO' = O'O = I, and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of Σ which are non-negative. Morover, there exists a matrix $\Sigma^{1/2}$ such that $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$. It can be defined as $\Sigma^{1/2} = O'\Lambda^{1/2}O$, where $\Lambda^{1/2}$ is the diagonal matrix whose diagonal entries are the square roots of the eigenvalues of Σ . Which covariance matrix does the vector $\mathbf{X} = \Sigma^{1/2}\mathbf{Z}$ have if $\mathbf{Z} \in \mathbb{R}^n$ is $N(\mathbf{0}, I)$ distributed?

(3) Consider the defining difference equation of an AR(1) process

$$(0.1) X_t = \phi X_{t-1} + Z_t, t \in \mathbb{Z},$$

for a white noise process (Z_t) .

(a) If $|\phi| < 1$ we know that (0.1) has a solution given by the infinite series

(0.2)
$$X_t = \sum_{j=0}^{\infty} \phi^j Z_{t-j}, \qquad t \in \mathbb{Z}.$$

Show that the stationary solution (X_t) with this representation is a.s. unique.

Hint: suppose there is another stationary solution (X_t) to (0.1) which does not have the form (0.2). By iterating (0.1), show that $E[|X_t - \widetilde{X}_t|] = 0$, hence $X_t = \widetilde{X}_t$ a.s.

- (b) Show that the AR(1) equation (0.1) does not have a stationary solution for $\phi = \pm 1$.
- (4) Consider a sample X_1, \ldots, X_n , where we assume that for some $p \in (0, 1)$,

$$X_i^{(1)} = X_i, \quad i = 1, \dots, [np],$$

comes from a strictly stationary ergodic model with finite variance and expectation $EX_1^{(1)}$ and

$$X_i^{(2)} = X_i, \quad i = [np] + 1, \dots, n,$$

comes from another strictly stationary ergodic model with finite variance and expectation $EX_1^{(2)}$. Apply the ergodic theorem to show that the sample autocovariances satisfy

(0.3) $\gamma_{n,X}(h) \stackrel{\text{a.s.}}{\to} p \gamma_{X^{(1)}}(h) + (1-p) \gamma_{X^{(2)}}(h) + p (1-p) |EX_0^{(1)} - EX_0^{(2)}|^2,$ for $h = 0, 1, 2, \dots$

This means the following: if $\gamma_{X^{(i)}}(h) \to 0$ as $h \to \infty$ then we should see that the sample ACF tends to a positive constant for large h.

- (5) Let (Z_t) be white noise.
 - (a) Show that the ARMA(2,1) equations

$$(1 - B + \frac{1}{4}B^2)X_t = (1 + B)Z_t.$$

have a causal stationary solution.

(b) Do the ARMA(1,2) equations $(1-0.5B)X_t = (1+0.5B)(1+0.7B)Z_t$ define a causal, stationary solution? If so, determine the first 5 coefficients ψ_j in the linear process representation $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$.