Demostudo

Por: Arthur Franco Rezende

Equilíbrio lônico em soluções aquosas

Roteiro de Estudos	3
Equilíbrio Iônicos em Geral:	3
2.1- Conceito:	3
2.2- Ionização de ácidos:	4
2.3- Dissociação de bases:	5
2.4- Lei de Ostwald	6
Equilíbrio lônico na Água/ pH e pOH:	8
3.1 – Conceito:	8
– Cálculo pH / pOH :	8
- Classificação por pH / pOH:	9
Hidrólise de Sais:	11
Exercícios:	12
Gabarito e resolução:	16

1. Roteiro de Estudos

Conteúdo: equilíbrio iônico em soluções aquosas

Sugestões para complemento do estudo:

https://www.youtube.com/watch?v=HxOUKFp6afY (vídeo-aula sobre Equilíbrio lônico em Geral – 15 minutos)

https://www.youtube.com/watch?v=nkxetwcKWTQ (vídeo-aula sobre Constante de Ionização e Lei da Diluição de Ostwald – 7 minutos)

https://www.youtube.com/watch?v=RTIV8JxPNE8 (vídeo-aula sobre Equilíbrio lônico na Água - 9 minutos)

https://www.youtube.com/watch?v=jCdUR4CXnws (vídeo-aula sobre Hidrólise Salina – 9 minutos)

Ações a serem tomadas:

- I. Ler o material abaixo.
- II. Fazer a lista de exercícios após o material.
- III. Conferir o gabarito e as resoluções.
- IV. Realizar as sugestões acima.

2. Equilíbrio Iônicos em Geral:

2.1- Conceito:

O equilíbrio iônico só é caracterizado quando se refere a um eletrólito fraco, ou seja,quando uma substância molecular possui íons livres na solução. Se considerarmos que 100% das moléculas, do ácido ou da base, se ionizam, assim, o equilíbrio não é estabelecido, e a reação terá

um só sentido. O equilíbrio iônico ocorre principalmente com ácidos, bases e sais.

Exemplos:

$$NaCl \Longrightarrow Na^+ + Cl^- / NH_4OH \Longrightarrow NH_4^+ + OH^- / HCN \Longrightarrow H^+ + CN^-$$

2.2- Ionização de ácidos:

Ácido é um composto covalente que ioniza em água e libera H⁺ em solução, formando íons hidrogênio H₃O⁺.

$$HCN + H_2O \Longrightarrow H_3O^{\dagger} + CN^{-}/HCN \Longrightarrow H^{\dagger} + CN^{-}$$

A água provoca a quebra das moléculas de HCN originando os íons H+ e CN-. Esta solução é um sistema em equilíbrio, pois, à medida que o processo de ionização acontece, originando os íons, ocorre também a associação iônica, regenerando a molécula de HCN. As duas reações (ionização e associação) acontecem simultaneamente e com velocidades iguais, caracterizando um equilíbrio iônico.

O deslocamento do equilíbrio está relacionado com a força do ácido: quanto mais forte o ácido, o equilíbrio será deslocado para direita, no sentido de formação das espécies iônicas.

Para descobrir se o ácido é fraco ou forte, precisa-se calcular a constante de acidez (Ka) que é a mesma expressão da constante de equilíbrio (Ki).

$$H+CN-Ka=Ki=i$$

Ka = constante de acidez

Ki = constante de equilíbrio

[H+] = concentração do íon H+

[CN⁻] = concentração do íon CN⁻

A constante de acidez indica a força do ácido, quanto maior a constante (Ka) mais forte será o ácido.

Ácido	Ka
HI	10 ⁹
HCI	10 ⁷
H ₂ SO ₃	1,7.10-2
H ₂ NO ₂	5,1.10-4
CH₃COOH	1,8. 10-5
HCN	4,0. 10 ¹⁰

Constante de ionização de ácidos (imagem de educação.globo.com)

2.3- Dissociação de bases:

O processo ocorrido com a base é semelhante, no entanto as bases são compostos iônicos que ao se dissociarem liberam hidroxila (OH⁻).

$$NH_4OH + H_2O \Longrightarrow NH_4^+ + OH^-$$

A água provoca a quebra das moléculas de NH₄OH originando os íons NH₄+ e OH-. Esta solução é um sistema em equilíbrio, pois, à medida que o processo de dissociação acontece, originando os íons, ocorre também a associação iônica, regenerando a molécula de NH₄OH. As duas reações (dissociação e associação) acontecem simultaneamente e com velocidades iguais, caracterizando um equilíbrio iônico.

O deslocamento do equilíbrio está relacionado com a força da base: quanto mais forte a base, o equilíbrio será deslocado para direita, no sentido de liberação das hidroxilas em solução.

Calculando a constante de equilíbrio (Ki) ou a constante de basicidade (Kb), é possível descobrir se a base é forte ou fraca. Assim como os ácidos, quanto maior a constante maior a força.

A expressão de constante de basicidade (Kb) ou constante de equilíbrio (Ki):

$$NH 4+\times [OH^{-}]Ki=Kb=$$

Base	Kb
NH₄OH	1,8 . 10 ⁻⁵
CH ₃ NH ₃ OH	5,0 . 10 ⁻⁴
C ₆ H ₅ NH ₃ OH	4,6 . 10 ⁻
	10

Constante de ionização de bases (imagem de educação.globo.com)

2.4- Lei de Ostwald

Esta lei relaciona a constante de equilíbrio, o grau de ionização e a molaridade dos eletrólitos. A lei é expressa por:

$$Ki = \frac{M \cdot \alpha}{1 - \alpha}$$

Como se trata de eletrólitos fracos , α é muito pequeno, logo a expressão é simplificada:

$$Ki = M \cdot \alpha^2$$

Onde:

M= a molaridade (mol/L);

α= o grau de ionização;

 $\mathbf{K}i = \mathbf{a}$ constante de ionização.

A lei de diluição de Ostwald estabelece que o acréscimo de solvente - substância que dissolve um soluto- em uma solução provoca um aumento no grau de ionização. Quanto menor for a molaridade, maior é o grau de ionização do eletrólito, pois o valor de K*i* é constante.

Essa lei serve tanto para ácidos como para bases.

Exercícios de exemplo:

1-(PUC) O ácido acético, em solução aquosa 0,02 molar e a 25° C, está 3% dissociado. Sua constante de dissociação, nessas condições, é aproximadamente:

- a) 1,8 x 10-5
- b) 1,2 x 10-4
- c) 2,0 x 10-2
- d) 3,6 x 10-2
- e) 6,0 x 10-2

Resolução:

Pela expressão da lei de Ostwald podemos calcular o valor de Ka:

$$Ka = M \cdot \alpha^2$$

Dados:

$$\alpha = 0.03$$

$$M = 0.02$$

Substituindo:

$$Ka = 0.02 \times (0.03)^2$$

$$Ka = 0,000018$$

$$Ka = 1.8 \times 10 - 5$$

2-(<u>PUC</u>)–Na temperatura ambiente, a constante de ionização do ácido acético é 1,80 x 10-5. Qual é a molaridade da solução onde o ácido se enc $2,00 \times 10-2$ molar

- b) 3,00 x 10-2 molar
- c) 5,82 x 10-4 molar
- d) 5,40 x 10-5 molar
- e) 6,0 x 10-7 molar

Resolução:

Fórmula: Ka=M· α²

Dados:

$$Ka = 1.8 \times 10-5$$
 $\alpha = 0.03$

Substituindo:

$$1.8 \times 10-5 = M \times (0.03)^2$$

$$1.8 \times 10-5 = 0.0009 M$$

$$M = \frac{1,8 \times 10 - 5}{0,0009}$$

$$M = 0.02$$

3. Equilíbrio lônico na Água/ pH e pOH:

3.1 - Conceito:

A água possui caráter anfótero, comportando-se como bases, aceitando elétrons, e como ácidos, doando elétrons. Quando as moléculas de água se chocam, devido ao seu constante movimento, há uma transferência de elétron (OH⁻) de uma molécula para outra, gerando uma autoionização, representada a seguir

$$H_2O_0 \Leftrightarrow H+(aq) + OH-aq$$

Tendo essa reação, a constante de equilíbrio pode ser calculada pela expressão:

$$H + OH - Kw = Ki = i$$

Essa constante é representada por K_w e recebe o nome de produto iônico da água. Experimentalmente à temperatura ambiente, verifica-se que $Kw = 10^{-14}$, alterando-se apenas com a mudança de temperatura. Logo:

$$10^{-14} = [H+][OH-] \rightarrow [H+] = [OH-] = 10^{-7} mol/L$$

3.2 - Cálculo pH / pOH:

A concentração molar dos íons H+ e OH⁻ de uma solução são geralmente potências de dez com expoente negativo. O químico dinamarquês Peter Lauritz Sörensen propôs uma maneira mais simples de indicar a acidez ou basicidade de uma solução, através do uso de logaritmos. Sörensen criou o conceito de pH (potencial hidrogeniônico) e pOH (potencial hidroxiliônico):

Potencial hidrogeniônico (pH) - É o logaritmo negativo da concentração molar de íons H+

$$H + pH = -\log$$

Exemplo:

$$[H+] = 0.001 = 10^{-3}$$

$$pH = - log 10^{-3} = 3$$

Os valores de pH compreendem uma faixa que varia entre 0 a 14. Quando a solução possuir um valor de pH entre 0 e 7, será ácida. Se o valor de pH estiver entre 7 e 14, será básica. Quando o pH for igual a 7, trata-se de um meio neutro.

Potencial hidroxiliônico (pOH) - É o logaritmo negativo da concentração molar de íons OH⁻.

$$pOH = -\log[OH^{-}]$$

Exemplo:

$$[OH_{-}] = 0,0001 = 10^{-4}$$

$$pOH = - log 10^{-4} = 4$$

Assim como os valores de pH, os valores de pOH também representam uma faixa de 0 a 14 unidades. Quando o valor do pOH for maior que 0 e menor que 7, significa que o meio é básico. Se o valor do pOH for maior

que 7 significa que o meio é ácido. E se o pOH for igual a 7, o meio é neutro.

3.3 - Classificação por pH / pOH:

As escalas de pH e pOH são inversas, assim como é mostrado a seguinte:

$$pH + pOH = 14$$

Meio neutro	Meio ácido	Meio básico
pH = 7	pH < 7	pH > 7
pOH = 7	pOH > 7	pOH < 7

Imagem sobre escala de pH/pOH (pt.wikipédia.com)

рН	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
H+	10°	10-1	10-2	10 ⁻³	10-4	10-5	10-6	10-7	10 ⁻⁸	10-9	10-10	10 ⁻¹¹	10 ⁻¹²	10 ⁻¹³	10 ⁻¹⁴
ОН-	10 ⁻¹⁴	10 ⁻¹³	10-12	10-11	10 ⁻¹⁰	10 ⁻⁹	10-8	10 ⁻⁷	10-6	10-5	10-4	10 ⁻³	10-2	10-1	10-0
оОН	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Imagem sobre escala de pH/pOH e concentração dos íons (aprendendoquímicaonline.blogspot.com)

4. Hidrólise de Sais:

A hidrólise salina ou dissociação salina é o processo resultante da ionização de um sal em água, e os íons formados reagem, gerando ácidos e/ou bases fracas.

Vejamos a seguinte reação:

$$NaHCO_3 + H_2O \Longrightarrow Na^+ + OH^- + H_2CO_3$$

Os produtos formados são os íons o Na^+ e o OH^- , e o ácido fraco H_2CO_3 . Na teoria, esses íons deveriam reagir entre si e formar uma base, no entanto formariam uma base forte (NaOH), a qual apresenta grande grau de ionização, permanecendo ionizado.

Isso também acontece caso fosse formado um ácido forte, como acontece no próximo no qual forma NH₄OH e os íons H⁺ e Cl⁻, os quais formariam o ácido clorídrico que é forte e possui alto grau de ionização.

$$NH_4CI + H_2O \Longrightarrow NH_4OH + H^+ + CI^-$$

Nesses casos, há diferença de grau de ionização entre ácido e base formados resultando em uma variação de pH da solução.

1° caso: ácido fraco + base forte = pH aumenta (meio fica mais básico)

2° caso: ácido forte + base fraca = pH diminui (meio fica mais ácido)

3° caso: ácido fraco + base fraca ou ácido forte + base forte = sem variação de pH

Esse 3° caso acontece no próximo exemplo.

 $NH_4CN + H_2O \Longrightarrow NH_4OH + HCN$ (ácido e base fracas)

NaCl + $H_2O \implies Na^+ + OH^- + H^+ + Cl^-$ (ácido e base fortes)

5. Exercícios:

1-(UESPI) A fadiga muscular, comum quando se executa um grande esforço físico, é causada pelo acúmulo do Ácido Láctico (HC~3~H~5~O~3~) nas fibras musculares de nosso organismo. Considerando que, em uma solução aquosa 0,100M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atômica: H=1; O=16; C=12.

- a) 1,0 x 10–1
- b) 1,4 x 10–4
- c) 2,7 x 10-2
- d) 3,7 x 10–2
- e) 3,7 x 10-3
- 2-(ITA) Numa série de ácidos, chama-se de mais forte aquele que:
- a) Reage mais rapidamente com metais.
- b) Tem maior constante de ionização.
- c) Tem menor constante de ionização.
- d) Consome menos moles de NaOH por mol de ácido numa reação de neutralização.
- e) Consome mais moles de NaOH por mol de ácido numa reação de neutralização.
- **3-** (USP) O exame dos seguintes dados:
- I. $(H3CNH3)CN + H_2O \Longrightarrow HCN + (H3CNH3)OH$
- II. Constante de ionização ácido K1 = 5 x 10-10

base K2 = 5 x 10-4
Permite concluir que, na dissolução em água, do composto [H3CNH3] CN, se obtém uma solução:
a) básica, porque K1 < K2
b) básica, porque K1 > K2
c) básica, porque K2 < K1
d) básica, porque K2 > K1
e) neutra, porque [ácido] = [base]
4- (PUC-MG) Ao analisar um determinado suco de tomate, um técnico determinou que sua concentração hidrogeniônica é igual a 0,001 mol/L. Assim, o pH desse suco de tomate é:
a) 2
b) 3
c) 4
d) 9
e) 11
5- Em uma análise realizada com a água (H ₂ O) a 90 ^O C, um químico encontrou
uma quantidade de hidrônios (H ₃ O ⁺) igual a 5.10 ⁻⁷ mol/L e de hidróxidos igual

a 5.10⁻⁷ mol/L. Qual será o valor da constante de ionização da água nessa temperatura?

- a) 2,5. 10⁻¹⁴
- b) 25.10⁻¹⁴
- c) 25.10⁻⁷
- d) 25
- e) 1.10⁻⁷

6-Qual das expressões abaixo representa a equação para calcular a constante de ionização da água (Kw)?

a) $Kw = [OH^{-}]$

 H_2O

b) Kw = $[H_3O^+]$

 H_2O

- c) $Kw = [H_3O^+].[OH^-]$
- d) Kw = $[H_3O^+].[OH^-]$

 H_2O

e) Kw = <u>H₂O</u>

 $[H_3O^+].[OH^-]$

7-(UFV) O equilíbrio de ionização da água pura é dado pela equação abaixo, cuja constante do produto iônico (Kw) é 2.5×10^{-14} , a 37 °C.

$$H_2O \rightleftharpoons H^+ + OH^-$$

Assinale a alternativa que indica CORRETAMENTE o valor de pH da água pura nessa temperatura: (Dado: $log_{10}1,58 = 0,2$)

- a) 7,0
- b) 6,8
- c) 7,8
- d) 9,0
- e) 5,0
- **8- (ESCS-DF)** A tabela a seguir fornece a concentração hidrogeniônica ou hidroxiliônica a 25°C, em mol/L, de alguns produtos:

Produto	Concentração em mol/L
Coca-cola	[OH ⁻] = 1,0.10 ⁻¹¹
Leite de vaca	[H ⁺] = 1,0.10 ⁻⁶
Clara de ovo	[OH ⁻] = 1,0.10 ⁻⁶
Água com gás	[H ⁺] = 1,0.10 ⁻⁴
Água do mar	[H ⁺] = 1,0.10 ⁻⁸

Com base nesses dados, NÃO é correto afirmar que:

- a) a água do mar tem pOH = 6;
- b) a água com gás tem pH maior do que a Coca-Cola e menor do que o leite de vaca;
- c) a água do mar tem pH básico;
- d) a clara de ovo é mais básica que o leite de vaca;
- e) a clara de ovo tem maior pH do que a água do mar.

9-(UFPE) A concentração hidrogeniônica do suco de limão puro é 10⁻³ mol/L. Qual o pH de um refresco preparado com 20 mL de suco de limão e água suficiente para completar 200 mL?

- a) 2,5
- b) 3,0
- c) 3,5
- d) 4,0
- e) 4,5

10- (Vunesp) A 25 °C, o pOH de uma solução de ácido clorídrico, de concentração 0,10 mol/L, admitindo-se ionização total do ácido, é: Dados (a 25 °C): [H+] [OH-] = 1,0 · 10-14; pOH = -log [OH-]

- a) 10-13
- b) 10-1
- c) 1
- d) 7
- e) 13

Gabarito e resolução:

1-B) 1,4 x 10–4

Resolução:

$$M = 0.1 \text{ mol/L} = 10-1 \text{ mol/L}$$

$$\alpha = 3.7 \% = 3.7 / 102 = 3.7 . 10-2$$

 $Ka = M \cdot \alpha 2$

$$Ka = 10-1 \cdot (3,7 \cdot 10-2) 2$$

Ka = 10-1 . 13,69 . 10-4

 $Ka = 1,369 \times 10-4$, aproximadamente $Ka = 1,4 \times 10-4$

2- B) Tem maior constante de ionização.

Resolução:

Quanto maior for a constante de ionização, mais produtos são formados no processo. No caso da ionização, forma-se mais íons H⁺ na solução, resultando em uma força maior força do ácido e em um menor pH.

3-A) básica, porque K1 < K2

Resolução:

Quanto maior for a constante de equilíbrio, maior será a formação de produtos de uma reação. Nesse caso, a constante de dissociação da base é maior que a constante de ionização do ácido, consequentemente há mais OH⁻ do que H⁺ na solução, resultando em um caráter básico.

4-B) 3

Resolução:

concentração hidrogeniônica= $[H^{+}]$ = 0,001 = 10^{-3}

$$pH = - log[H^+] = -log 10^{-3}$$

 $pH = 3 \cdot 1$

pH = 3

5- B) 25. 10⁻¹⁴

Resolução:

Os dados fornecidos pelo exercício foram:

$$[H_3O^+] = 5.10^{-7} \text{ mol/L}$$

 $[OH^{-}] = 5.10^{-7} \text{ mol/L}$

Basta aplicá-los na expressão da constante de autoionização da água:

$$Kw = [H_3O^+].[OH^-]$$

$$Kw = 5.10^{-7}.5.10^{-7}$$

$$kw = 25.10^{-14}$$

6- C) Kw =
$$[H_3O^+].[OH^-]$$

A expressão da constante de ionização da água é construída a partir da equação de ionização da água:

$$H_2O_{(I)} \longrightarrow H^+_{(aq)} + OH^-_{(aq)}$$

Para montar a expressão, devemos multiplicar as concentrações dos produtos da equação e dividir pelo reagente. A água não entra na expressão por ser um componente líquido.

$$Kw = [H_3O^+].[OH^-]$$

Resolução:

Como o exercício fala sobre água pura e ela é considerada um meio neutro, $logo [H^+] = [OH^-].$

$$[H^{+}] = [OH^{-}] = x$$

Antes de calcular o pH, é necessário encontrar o valor da concentração de íons hidrônio (H+) por meio da seguinte equação:

$$Kw = [H^+].[OH^-]$$

$$2,5.x10^{-14} = x.x$$

$$2,5.x10^{-14} = x^2$$

$$\sqrt{2,5}.x10^{-14} = x$$

```
x = 1,58.10^{-7}
```

Assim, $[H^+] = 1,58.10^{-7}$ mol/L. Sabendo disso, basta utilizar esse valor na fórmula do pH:

$$pH = -log [H^{+}]$$

$$pH = - log 1,58.10^{-7}$$

$$pH = 7 - log 1,58$$

$$pH = 7 - 0.2$$

$$pH = 6.8$$

8- E) a clara de ovo tem maior pH do que a água do mar.

Resolução:

As fórmulas para calcular pH e pOH são:

$$pH = -log [H^+], pOH = -log [oH^-], [H^+] = 10^{-pH} ou [OH^-] = 10^{-poH}, pH + pOH = 14.$$

A partir de cada expressão, podemos encontrar o pH de todos:

Coca-cola (foi fornecida a [OH-]):

$$pOH = -log [OH^{-}]$$

$$pOH = - log 1, 0.10^{-11}$$

Como pH + pOH = 14, o pH dela é igual a 3 (pH = 3).

Leite de vaca (foi fornecido o [H⁺])

$$pH = -log[H^+]$$

$$pH = - log 1, 0.10^{-6}$$

$$pH = 6$$

```
Clara de ovo (foi fornecida a [OH-]):
pOH = -log [OH^{-}]
pOH = - log 1, 0.10^{-6}
pOH = 6
Como pH + pOH = 14, o pH dela é igual a 8 (pH = 8).
Água com gás (foi fornecido o [H<sup>+</sup>])
pH = -log[H^+]
pH = - log 1, 0.10^{-4}
pH = 4
Água do mar (foi fornecido o [H<sup>+</sup>])
pH = -log[H^+]
pH = - log 1,0.10^{-8}
pH = 8
Como pH + pOH = 14, o pOH dela é igual a 6 (pOH = 6).
Assim, em relação às alternativas:
a) verdadeira, pois foi o valor encontrado.
b) verdadeira, pois o pH da água com gás é 4; o da Coca-Cola é 3 e o do leite
de vaca é 6.
c) verdadeira, pois pH acima de 7 indica meio básico.
d) verdadeira, pois o pH da clara é 8 e do leite é 6.
e) Falso, pois ambos têm pH = 8.
```

9-D) 4,0

Resolução:

A concentração inicial era de 10⁻³ mol/L ou 0,01 mol/L.

Antes da diluição:

$$10^{-3}$$
 mol de H_3O^{1+} ----- 1000 mL \times ----- 20 mL

$$x = 2 . 10^{-5} \text{ mol de } H_3O^{1+} \text{ em } 20 \text{ mL}$$

Depois da diluição:

$$2$$
 . $10^{\text{-5}}$ mol de $H_3O^{1\text{+-----}}$ 200 mL
$$y = 10^{\text{-4}} \text{ mol de } H_3O^{1\text{+}} \text{ em 1000 mL}$$

$$pH = - log [H_3O^{1+}]$$

$$pH = - log [10^{-4}]$$

$$pH = - (-4)$$

$$pH = 4$$

Resolução:

1º passo: calcular o pH da solução.

$$HCI \rightarrow H^{+} + CI^{-}$$
 $0,01M \quad 0,01M$
 $pH = -log[H^{+}]$
 $pH = -log 0,1$
 $pH = 1$

2º passo: converter para o valor em pOH.

$$pOH = 14 - pH$$

 $pOH = 14 - 1$
 $pOH = 13$

Revisado e corrigido por: Lorrayne Zucchi dos Santos