Регулярные грамматики и выражения. Теорема Клини

Теория формальных языков $2022 \ z$.

Грамматики

Определение

Грамматика — это четвёрка $G = \langle N, \Sigma, P, S \rangle$, где:

- N алфавит нетерминалов;
- Σ алфавит терминалов;
- Р множество правил переписывания $\alpha \to \beta$ типа $\langle (\mathsf{N} \cup \Sigma)^+ \times (\mathsf{N} \cup \Sigma)^* \rangle;$
- $S \in N$ начальный символ.

 $\alpha \Rightarrow \beta$, если $\alpha = \gamma_1 \alpha' \gamma_2$, $\beta = \gamma_1 \beta' \gamma_2$, и $\alpha' \to \beta' \in P$. \Rightarrow^* — рефлексивное транзитивное замыкание \Rightarrow .

Язык $\mathcal{L}(G)$, порождаемый G — множество $\{u \mid u \in \Sigma^* \& S \Rightarrow^* u\}$. Сентенциальная форма — элемент множества $\{u \mid u \in (N \cup \Sigma)^* \& S \Rightarrow^* u\}$.

Регулярные грамматики и НКА

Регулярная грамматика имеет правила вида $S \to \epsilon$ (причём S не встречается в правых частях никаких правил), $T_i \to \alpha_i$, $T_i \to \alpha_i$ T_j .

НКА (неформально) определяется списком правил перехода и финальными состояниями.

- $T_i \to a_i T_j$ соответствует переходу $\langle T_i, a_i, T_j \rangle$;
- $T_i \to \alpha_i$ соответствует переходу $\langle T_i, \alpha_i, F \rangle$, где F уникальное финальное состояние;
- $S \to \epsilon$ соответствует объявлению S финальным.

Лемма о накачке

Рассмотрим слово $w \in \mathcal{L}(\mathsf{G}), |w| \geqslant n+1$. Оно получается применением не меньше, чем n+1 правил \Rightarrow после применения хотя бы двух из них в сентенциальной форме справа будет стоять один и тот же нетерминал A.

4/21

Лемма о накачке

Рассмотрим слово $w \in \mathcal{L}(\mathsf{G}), |w| \geqslant n+1$. Оно получается применением не меньше, чем n+1 правил \Rightarrow после применения хотя бы двух из них в сентенциальной форме справа будет стоять один и тот же нетерминал A.

Известно, что $|\Phi| + |\Psi| \le n$.

$$S \longrightarrow \cdots \longrightarrow \Phi$$
 $A \longrightarrow \cdots \longrightarrow \Phi$ $Y \longrightarrow A \longrightarrow \cdots \longrightarrow \Phi$ $Y \longrightarrow$

Все выводы вида $\rho_1\left(\rho_2\right)^*\rho_3$ допустимы в $G\Rightarrow \forall k(\Phi\ \Psi^k\ \Theta\in \mathscr{L}(G)).$

Лемма о накачке

Утверждение

Если G — регулярная, то существует такое $n \in \mathbb{N}$, что $\forall w \big(w \in \mathcal{L}(\mathsf{G}) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathcal{L}(\mathsf{G})) \big) \big).$

Известно, что $|\Phi| + |\Psi| \leqslant n$.

$$\underbrace{S \longrightarrow \cdots \longrightarrow \Phi}_{\rho_1: \text{ вывод } \Phi A \text{ из } S}^{\rho_2: \text{ вывод } \Psi A \text{ из } A} \underbrace{\Phi \Psi}_{\rho_3: \text{ вывод } \Theta \text{ из } A}^{\rho_3: \text{ вывод } \Theta \text{ из } A}$$

Все выводы вида $\rho_1\left(\rho_2\right)^*\rho_3$ допустимы в $G\Rightarrow \forall k(\Phi\ \Psi^k\ \Theta\in \mathscr{L}(G)).$

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $\mathscr{L} = \{w \, w^R \mid w \in \Sigma^+\}$.

Пусть длина накачки — n. Рассмотрим слово $b^{n+1}a$ а $b^{n+1}\in \mathscr{L}$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=b^k$, $k\geqslant 1$. Но b^ma а $b^n\notin \mathscr{L}$, если $m\neq n$. Поэтому \mathscr{L} — не регулярный.

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $\mathscr{L} = \{w \, w^R \mid w \in \Sigma^+\}$.

Пусть длина накачки — n. Рассмотрим слово $b^{n+1}a$ а $b^{n+1}\in \mathscr{L}$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=b^k$, $k\geqslant 1$. Но b^ma а $b^n\notin \mathscr{L}$, если $m\neq n$. Поэтому \mathscr{L} — не регулярный.

Рассмотрим язык $\mathscr{L}' = \{\mathfrak{a}^{\mathfrak{n}}\mathfrak{b}^{\mathfrak{m}} \mid \mathfrak{n} \neq \mathfrak{m}\}.$

Пусть длина накачки — п. Рассмотрим множество слов $\mathfrak{a}^n\mathfrak{b}^{n+n!}\in \mathscr{L}'$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=\mathfrak{a}^k$, $k\geqslant 1$. Но для всех $k\leqslant n$ $\exists \nu(n+k*\nu=n+n!)$. Поэтому слово вида $\mathfrak{a}^{n+n!}\mathfrak{b}^{n+n!}\in \mathscr{L}'$, что абсурдно. Следовательно, \mathscr{L}' не является регулярным.

Нерегулярные языки

Пусть $\mathscr{L} = \{ w \mid |w|_{\mathfrak{a}} = |w|_{\mathfrak{b}} \}$. Все слова вида $\mathfrak{a}^k \mathfrak{b}^k$ принадлежат \mathscr{L} . Пусть длина накачки равна \mathfrak{n} . Рассмотрим слово $\mathfrak{a}^n \mathfrak{b}^n$. Поскольку $|\Phi| + |\Psi| \leqslant \mathfrak{n}$, то $\Psi = \mathfrak{a}^k$, k > 0. Но слова $\mathfrak{a}^{n+k*i}\mathfrak{b}^n$ не принадлежат \mathscr{L} .

Совпадает ли $\mathscr L$ с языком правильных скобочных последовательностей P (язык Дика)? Если да, доказать. Если нет, исследовать язык L \setminus P. Регулярен ли он?

Анализ на достаточность

Гипотеза

G — регулярная
$$\stackrel{???}{\Longleftrightarrow}$$
 существует такое $n \in \mathbb{N}$, что $\forall w (w \in \mathcal{L}(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 (|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathcal{L}(G)))).$

Анализ на достаточность

Гипотеза

G — регулярная $\stackrel{???}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w (w \in \mathcal{L}(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 (|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathcal{L}(G))).$

Рассмотрим язык $\mathscr{L}=\left\{w\,w^{\mathsf{R}}\,z\,|\,w\in\Sigma^{+}\ \&\ z\in\Sigma^{+}\right\}$ и $\mathfrak{n}=4.$

- Если |w|=1, тогда можно разбить слово $w\,w^R\,z$ так: $\Phi=w\,w^R,\,\Psi=z[1],\,\Theta=z\big[2..|z|\big].$ Тогда для всех $\Phi\,\Psi^k\,\Theta\in\mathscr{L}.$
- Если $|w| \geqslant 2$, тогда разбиваем так: $\Phi = \varepsilon$, $\Psi = w[1]$, $\Theta = w[2..|w|] w^R z$. Слова $w[2..|w|] w^R z$ и $w[1]^k w[2..|w|] w^R z$ при $k \geqslant 2$ также принадлежат \mathscr{L} .

Смысл леммы о накачке

Структура доказательства указывает, что длина накачки п регулярного языка $\mathscr L$ не больше (возможно, меньше) числа нетерминалов в минимальной грамматике для $\mathscr L$.

Рассмотрим $\mathcal{L} = a \mid b \mid (a \{a \mid b\}^*a) \mid (b \{a \mid b\}^*b)$. Если выбрать n = 2, то в качестве Ψ можно взять вторую букву слова из \mathscr{L} . Пусть G имеет два нетерминала S, T и распознаёт \mathscr{L} . Если G содержит правила $\mathsf{S} \to \mathsf{aT}$ и $\mathsf{S} \to \mathsf{bT}$ (или $S \to aS$, $S \to bS$), то для некоторого непустого z слова вида az и bz будут либо оба принадлежать \mathscr{L} , либо нет, чего не может быть. Значит, G содержит либо пару $S \to aT$, $S \to bS$, либо пару $S \to bT$, $S \to aS$. Рассмотрим первый случай. Тогда для некоторого непустого z имеем $az \in \mathscr{L} \Leftrightarrow b^+az \in \mathscr{L}$, что абсурдно.

Академические регулярные выражения $\mathcal{R}\mathcal{E}$

Допустимые операции

- A* замыкание Клини ноль или больше итераций А;
- A⁺ одна или больше итерация A;
- A? 0 или 1 вхождение A;
- А | В альтернатива (вхождение либо А, либо В).

Академические регулярные выражения $\Re \mathcal{E}$

Допустимые операции

- A* замыкание Клини ноль или больше итераций A;
- A⁺ одна или больше итерация A;
- A? 0 или 1 вхождение A;
- А | В альтернатива (вхождение либо А, либо В).

Следствия

Если $r_1, r_2 — \mathcal{RE}$, тогда

- $\mathbf{r}_1 \mid \mathbf{r}_2 \mathcal{R}\mathcal{E}$;
- $\mathbf{r}_1\mathbf{r}_2 \mathcal{R}\mathcal{E}$;
- $r_1^*, r_2^+ \Re \mathcal{E}$.

Операции в регулярных грамматиках

Объединение

Дано: G_1 и G_2 — праволинейные. Построить $G: \mathcal{L}(G) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α -преобразование). Применить переименовку к правилам G_1 и G_2 .
- **2** Объявить стартовым символом свежий нетерминал S и для всех правил G_1 вида $S_1 \to \alpha$ и правил G_2 вида $S_2 \to \beta$, добавить правила $S \to \alpha$, $S \to \beta$ в правила G.
- **3** Добавить в правила G остальные правила из G_1 и G_2 .

10/21

Операции в регулярных грамматиках

Конкатенация

Дано: G_1 и G_2 — праволинейные. Построить $G: \mathcal{L}(G) = \mathcal{L}(G_1) \mathcal{L}(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α-преобразование).
- **2** Построить из G_1 её вариант без ϵ -правил (см. ниже).
- **3** По всякому правилу из G_1 вида $A \to \alpha$ строим правило G вида $A \to \alpha S_2$, где S_2 стартовый нетерминал G_2 .
- Добавить в правила G остальные правила из G_1 и G_2 . Объявить S_1 стартовым.
- **§** Если $\varepsilon \in \mathscr{L}(\mathsf{G}_1)$ (до шага 2), то по всем $\mathsf{S}_2 \to \beta$ добавить правило $\mathsf{S}_1 \to \beta$.

Операции в регулярных грамматиках

Положительная итерация Клини

Дано: G_1 — праволинейная. Построить

$$G: \mathscr{L}(G) = \mathscr{L}(G_1)^+.$$

- \bullet Построить из G_1 её вариант без ϵ -правил.
- По всякому правилу из G_1 вида $A \to \mathfrak{a}$ строим правило G вида $A \to \mathfrak{a} S_1$, где S_1 стартовый нетерминал G_1 .
- **3** Добавить в правила G все (включая вида $A \to a$) правила из G_1 . Объявить S_1 стартовым.
- **©** Если $\varepsilon \in \mathscr{L}(\mathsf{G}_1)$ (до шага 2), добавить правило $\mathsf{S}_1 \to \varepsilon$ и вывести S_1 из рекурсии.

12/21

Построение грамматики без ε-правил

Дано: G — праволинейная. Построить G' без правил вида $\mathsf{A} \to \varepsilon$ такую, что $\mathscr{L}(\mathsf{G}') = \mathscr{L}(\mathsf{G})$ или $\mathscr{L}(\mathsf{G}') \cup \{\varepsilon\} = \mathscr{L}(\mathsf{G}).$

- $oldsymbol{0}$ Перенести в G' все правила G, не имеющие вид $A \to \varepsilon$.
- $oldsymbol{2}$ Если существует правило $A o \epsilon$, то по всем правилам вида $B o \alpha A$ дополнительно строим правила $B o \alpha$.

Пересечение регулярных грамматик

Дано: G_1 , G_2 — праволинейные. Построить G' такую, что $\mathscr{L}(G') = \mathscr{L}(G_1) \cap \mathscr{L}(G_2)$.

- **①** Построить стартовый символ G' пару $\langle S_1, S_2 \rangle$, где S_i стартовый символ грамматики G_i .
- **②** Поместить $\langle S_1, S_2 \rangle$ в множество U неразобранных нетерминалов. Множество T разобранных нетерминалов объявить пустым.
- **③** Для каждого очередного нетерминала $\langle A_1, A_2 \rangle \in U$:
 - lacktriangle если $A_1 o a \in G_1$, $A_2 o a \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o a$;
 - lacktriangledown если $A_1 o aA_3 \in G_1, A_2 o aA_4 \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o a\langle A_3, A_4 \rangle$, а в U нетерминал $\langle A_3, A_4 \rangle$, если его ещё нет в множестве T:
 - \odot если все пары правил, указанные выше, были обработаны, тогда переместить $\langle A_1, A_2 \rangle$ из U в T.
- **1** Повторять шаг 3, пока множество U не пусто.
- § Если $\varepsilon \in \mathscr{L}(\mathsf{G}_1)$ & $\varepsilon \in \mathscr{L}(\mathsf{G}_2)$, тогда добавить в G' правило $\langle \mathsf{S}_1, \mathsf{S}_2 \rangle \to \varepsilon.$

От ЯЕ к НКА: конструкция Глушкова

Теорема

Если $E \in \mathcal{RE}$, то существует праволинейная регулярная грамматика G такая, что $\mathcal{L}(G) = \mathcal{L}(E)$.

Будем строить сразу же НКА, распознающий то же слово, что и Е. Для этого определим следующие множества:

- First(E) множество символов, с которых может начинаться слово, распознаваемое E.
- Last(E) множество символов, которыми может заканчиваться слово, распознаваемое E.
- Next(E) множество пар символов, которые могут идти в словах, распознаваемых E, друг за другом.

От ЯЕ к НКА: конструкция Глушкова

Теорема

Если $E \in \mathcal{RE}$, то существует праволинейная регулярная грамматика G такая, что $\mathcal{L}(G) = \mathcal{L}(E)$.

В Е пронумеруем все символы из Σ разными номерами. Для полученного Е' построим First(E'), Last(E'), Next(E').

- Введём состояния, соответствующие буквам Е' (нумерованным), а также входное состояние І.
- Если $\tau \in \mathsf{First}(\mathsf{E}')$, тогда порождаем переход из I в τ (по символу τ).
- Если $\tau_1\tau_2 \in \mathsf{Next}(\mathsf{E}')$, тогда порождаем переход из τ_1 в τ_2 по символу τ_2 .
- Если $\tau \in \mathsf{Last}(\mathsf{E}')$, тогда объявляем τ финальным.
- Стираем номера у символов на переходах. НКА, распознающий Е, построен.

Построим НКА, распознающий $(a \mid (ab))^*b^+$.

- Линеаризуем: $E' = (a_1 | (a_2b_3))^*b_4^+$.
- Порождаем множества First, Last, Next:

$$\begin{aligned} & \mathsf{First}(\mathsf{E}') = \big\{ a_1, a_2, b_4 \big\} \\ & \mathsf{Last}(\mathsf{E}') = \big\{ b_4 \big\} \\ & \mathsf{Next}(\mathsf{E}') = \big\{ a_1 a_1, a_1 a_2, a_2 b_3, b_3 a_1, b_3 a_2, a_1 b_4, b_3 b_4, b_4 b_4 \big\} \end{aligned}$$

• Строим конечный автомат:

Производные $\mathcal{R}\mathcal{E}$

Множество $a^{-1}U = \{w \mid aw \in U\}$ называется производным Бзрозовски множества U относительно a. Если $\epsilon \in a^{-1}U$, тогда a распознаётся выражением U.

 Λ_{E} положим равным $\{\epsilon\}$, если $\epsilon\in\mathsf{E}$, и пустым множеством иначе.

- $a^{-1}\varepsilon = \varnothing$, $a^{-1}\varnothing = \varnothing$;
- $a^{-1}a = \{\epsilon\}, a^{-1}b = \emptyset;$
- $a^{-1}(\Phi \mid \dot{\Psi}) = a^{-1}(\Phi) \cup a^{-1}(\Psi);$
- $a^{-1}(\Phi \ \Psi) = a^{-1}(\Phi)\Psi \cup \Lambda_{\Phi}a^{-1}(\Psi);$
- $a^{-1}(\Phi^*) = a^{-1}(\Phi)\Phi^*$.

С помощью последовательного взятия производных можно свести задачу $w \in \mathcal{L}(R)$ к задаче $\varepsilon \in w^{-1}R$. На этом построен ещё один способ преобразования $\mathcal{R}\mathcal{E}$ к автомату.

17/21

Пример преобразования

Рассмотрим всё то же выражение $(a \mid (ab))^*b^+$. Построим по нему автомат с помощью производных Брзозовски.

- $a^{-1}(a \mid (ab))^*b^+ = (a^{-1}(a \mid (ab))^*)b^+ \cup (a^{-1}b^+)$, но второе очевидно пусто, поэтому $a^{-1}(a \mid (ab))^*b^+ = (\epsilon \mid b) \ (a \mid (ab))^*b^+;$
- $b^{-1}(a \mid (ab))^*b^+ = (b^{-1}(a \mid (ab))^*)b^+ \cup (b^{-1}b^+)$, и здесь как раз пусто первое, поэтому производная равна b^* .
- $a^{-1}b^* = \emptyset$; $b^{-1}b^* = b^*$.
- $a^{-1}((\varepsilon \mid b) (a \mid (ab))*b^+)$ вынуждает первую альтернативу в $(\varepsilon \mid b)$ и порождает само себя.
- $b^{-1}((\varepsilon \mid b) (a \mid (ab))^*b^+)$ порождает $(a \mid (ab))^*b^+ \mid b^*$.
- $a^{-1}((a \mid (ab))^*b^+ \mid b^*)$ порождает $(\varepsilon \mid b) (a \mid (ab))^*b^+,$ $b^{-1}((a \mid (ab))^*b^+ \mid b^*)$ порождает $b^*.$
- Переходы замкнулись. Осталось собрать производные в состояния автомата.

Пример преобразования

Рассмотрим всё то же выражение $(a \mid (ab))^*b^+$. Построим по нему автомат с помощью производных Брзозовски.

Состояние	Производная
q_1	$(a \mid (ab))^*b^+$
q_2	$(\varepsilon \mid b) (a \mid (ab))^*b^+$
q_3	b*
q 4	$(a (ab))^*b^+ b^*$
q_1 q_2 q_3 p	

Неподвижная точка $\mathcal{R}\mathcal{E}$

Неподвижная точка функции f(x) — такое x, что f(x) = x.

Лемма Ардена

Пусть $X = (AX) \mid B$, где X — неизвестное $\Re \mathcal{E}$, а A, B — известные, причём $\mathcal{E} \notin \mathcal{L}(A)$. Тогда $X = (A)^*B$.

Рассмотрим систему уравнений:

$$X_1 = (A_{11}X_1) | (A_{12}X_2) | \dots | B_1$$

 $X_2 = (A_{21}X_1) | (A_{22}X_2) | \dots | B_2$

. . .

$$X_n = (A_{n1}X_1) | (A_{n2}X_2) | \dots | B_n$$

Положим $\varepsilon \notin A_{ij}$. Будем последовательно выражать X_1 через X_2, \ldots, X_n , X_2 через $X_3, \ldots X_n$ и т.д. Получим регулярное выражение для X_n .

От грамматики и НКА к ЯЕ

Теорема Клини

По каждому НКА можно построить $\Re \mathcal{E}$, распознающую тот же язык. Верно и обратное.

Здесь считаем, что в НКА нет ε-переходов.

- Объявляем каждый нетерминал (или состояние НКА) переменной и строим для него уравнение:
 - По правилу $A \to \alpha B$ (или для стрелки из A в B) добавляем альтернативу αB ;
 - По правилу $A \to b$ (или для стрелки в финальное состояние) добавляем альтернативу без переменных.
 - Правило $S \to \epsilon$ обрабатываем отдельно, не внося в уравнение: добавляем в язык альтернативу ($\mathcal{R}\mathcal{E} \mid \epsilon$).
- Решаем систему относительно S.

От грамматики к ЯЕ

Пример

Построим $\Re \mathcal{E}$ по грамматике:

$$S \to \alpha T \quad S \to \alpha b S$$

$$T \rightarrow aT \quad T \rightarrow bT \quad T \rightarrow b$$

Строим по правилам грамматики систему: $S = (abS) \mid (aT)$

$$T = ((a \mid b)T) \mid b$$

Решаем второе уравнение:

$$T = (\alpha \mid b)^*b$$

Подставляем в первое:

$$S = (abS) \mid (a(a \mid b)^*b)$$

Получаем ответ:

$$S = (ab)^* a(a \mid b)^* b$$