Natural Logarithms

1.
$$\ln(xy) = \ln(x) + \ln(y)$$

2.
$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

3.
$$\ln(x^n) = n \times \ln(x)$$

4.
$$\ln(e^x) = e^{\ln(x)} = x$$

Exponents

$$1. \quad x^m x^n = x^{m+n}$$

$$2. \quad \frac{x^m}{x^n} = x^{m-n}$$

3.
$$x^{-n} = \frac{1}{x^n}$$

4.
$$x^0 = 1$$

$$5. \quad \left(x^{m}\right)^{n} = x^{mn}$$

6.
$$(x^m)(y^m) = (xy)^m$$

The Derivative and Differentiation

Consider a continuous smooth function y=f(x) and two points A and B on the graph of the function, where $A=(x_0,f(x_0))$ and $B=(x_1,f(x_1))$.

The slope of the line joining A and B is $\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta y}{\Delta x}$.

As Δx gets shorter, the slope of the line joining A and B approaches the slope of the tangent line at point x_0 .

We say that the derivative of y = f(x) at x_0 is the slope of the tangent line at the point x_0 :

$$\left. \frac{dy}{dx} \right|_{x_0} = f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

 $f'(x_0)$ is the derivative of y = f(x) at $x = x_0$.

Some rules of differentiation

In the following, a, b and c are constants.

1. If
$$f(x) = ax + b$$
, $f'(x) = a$

2. If
$$f(x) = ax^2 + bx + c$$
, $f'(x) = 2ax + b$

3. If
$$f(x) = x^n$$
, $f'(x) = nx^{n-1}$

4. If
$$h(x) = \sum_{i=1}^{n} g_{i}(x)$$
, $h'(x) = \sum_{i=1}^{n} g'_{i}(x)$

5. Product Rule: If
$$h(x) = f(x)g(x)$$
, then $h'(x) = f'(x)g(x) + f(x)g'(x)$

6. Quotient Rule: If
$$h(x) = \frac{f(x)}{g(x)}$$
 and $g'(x) \neq 0$, $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$

7. If
$$f(x) = e^x$$
, $f'(x) = e^x$

8. If
$$f(x) = e^{g(x)}$$
, $f'(x) = g'(x)e^{g(x)}$

9. If
$$f(x) = \ln(x)$$
, $f'(x) = \frac{1}{x}$

10. If
$$f(x) = \ln(g(x))$$
, $f'(x) = \frac{g'(x)}{g(x)}$

11. L'Hopitals Rule: Suppose that as $x \to a$ both f(x) and g(x) either both tend to 0,

both tend to
$$+\infty$$
 or both tend to $-\infty$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Higher order derivatives

If
$$y = f(x)$$
,

The first derivative is
$$\frac{dy}{dx} = f'(x)$$

The second derivative is
$$\frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{d^2y}{dx^2} = f''(x)$$

The first derivative is
$$\frac{d}{dx} \left[\frac{d^2y}{dx^2} \right] = \frac{d^3y}{dx^3} = f'''(x)$$

Taylor Series Formula

The Taylor Series Formula will be used when we cover duration and convexity of cash flow sequences and Redington immunisation.

Consider the function y=f(x) is differentiable as many times as required. If we know $f(x_0)$ and the associated derivative values, the value of the function at the point x_1 can be approximated using the \mathbf{n}^{th} order Taylor series approximation:

$$f(x_1) \cong f(x_0) + (x_1 - x_0)f'(x_0) + \frac{(x_1 - x_0)^2}{2!}f''(x_0) + \ldots + \frac{(x_1 - x_0)^n}{n!}f^{(n)}(x_0)$$

where $f^{(n)}$ is the nth derivative of y = f(x), and n! = n(n-1)...1 i.e., 5! = 5.4.3.2.1 = 120

For example, consider the exponential function e^x . Let $y = f(x) = e^x$ and set $x_0 = 0$. Using the Taylor series approximation, this can be written as:

$$e^{x_1} = f(x_1) \cong 1 + x_1 + \frac{(x_1)^2}{2!} + \dots$$

Integration

If
$$y = f(x) = \frac{d}{dx}F(x)$$
, then $F(x) + c = \int f(x)dx$

Fundamental theorem of Integral Calculus

If the function f(x) is continuous on the closed interval [a,b] and if F(x) is any indefinite integral of f(x), then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Some rules of integration

In the following, a and b are constants.

1.
$$\int_{a}^{b} x^{n} dx = \frac{x^{n+1}}{n+1} \bigg|_{a}^{b} = \frac{b^{n+1} - a^{n+1}}{n+1}$$

2.
$$\int_{a}^{b} e^{x} dx = e^{x} \Big|_{a}^{b} = e^{b} - e^{a}$$

For example,
$$500 \int_{3}^{8} x^{4} dx = \frac{500 x^{5}}{5} \bigg|_{3}^{8} = 100 (8^{5} - 3^{5})$$

Probability and Statistics

The section on stochastic interest rate models will assume a basic knowledge of statistics. The main results that we will be using are summarised below:

For a **discrete random variable** \tilde{X} , with probability function $p(x) = \Pr[\tilde{X} = x]$, the mean is:

$$\textit{E}\big[\tilde{\textit{X}}\big] = \sum \textit{xp}\big(\textit{x}\big) \text{ and the variance is: } \textit{Var}\big[\tilde{\textit{X}}\big] = \textit{E}\big[\tilde{\textit{X}}^2\big] - \big(\textit{E}\big[\tilde{\textit{X}}\big]\big)^2 = \sum \textit{x}^2.\textit{p}\big(\textit{x}\big) - \big(\sum \textit{xp}\big(\textit{x}\big)\big)^2$$

For a **continuous random variable** \widetilde{X} , with probability density function f(x), the

probability
$$P[a < \tilde{X} < b] = \int_{a}^{b} f(x) dx$$

$$\tilde{X}$$
 has mean: $E\left[\tilde{X}\right] = \int_{-\infty}^{+\infty} xf(x)dx$

and variance:
$$Var\left[\tilde{X}\right] = E\left[\tilde{X}^2\right] - \left(E\left[\tilde{X}\right]\right)^2 = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx - \left(\int_{-\infty}^{+\infty} x f(x) dx\right)^2$$

If a and b are constants then $Var[a\tilde{X}+b]=a^2\times Var[\tilde{X}]$

The standard deviation of \tilde{X} is $\sqrt{Var[\tilde{X}]}$

For a function
$$h(\bullet)$$
: $E[h(\tilde{X})] = \int_{-\infty}^{+\infty} h(x)f(x)dx$

If \tilde{X} and \tilde{Y} are independent random variables then $Var[\tilde{X}+\tilde{Y}]=Var[\tilde{X}]+Var[\tilde{Y}]$

We will also be using a number of continuous distributions:

Uniform distribution

$$f(x) = \frac{1}{b-a} \quad \text{for } a < x < b$$

$$E\left[\tilde{X}\right] = \frac{a+b}{2}$$

$$Var\left[\tilde{X}\right] = \frac{\left(b-a\right)^2}{12}$$

Normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 for $-\infty < x < +\infty$

$$E[\tilde{X}] = \mu$$

$$Var[\tilde{X}] = \sigma^2$$

Recall that if \tilde{X} is normally distributed with mean and variance as above, then

$$P\left[a < \tilde{X} < b\right] = P\left[\frac{a - \mu}{\sigma} < \frac{\tilde{X} - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right] = P\left[\frac{a - \mu}{\sigma} < \tilde{Z} < \frac{b - \mu}{\sigma}\right]$$

where \tilde{Z} has a standard normal distribution (i.e. normal distribution with mean 0 and variance 1).

Statistical tables can be used with a standard normal variable to find probabilities.