Ficha 2

Análise Matemática I Curso LESIM-Taguspark, 2º Semestre de 2001/2002

Ι

1-[8 val.] Determine caso existam, ou justifique que não existem, os limites das seguintes sucessões:

- (a) $a_n = \frac{2+n^2}{1-n+3n^2};$ (b) $b_n = \frac{3^{n+2}+1}{3^n+n};$
- (c) $c_n = \frac{n \sqrt{n}}{n + 1}$;
- (d) $d_n = \sqrt{n^2 + n} \sqrt{n}$.

2-[2 val.] A sucessão $u_n = 3^n - n$ é estritamente crescente? Porquê?

(a ser feito em casa)

1- [10 val.] Considere, para cada real c, a seguinte sucessão definida por recorrência:

$$\begin{split} u_1 &= c \\ u_{n+1} &= u_n^2 + c \quad \text{ para todo o natural } n. \end{split}$$

- (a) Determine os termos gerais da sucessão u_n para c=0, c=-1 e
 - (b) Mostre que, para $c > \frac{1}{4}$, u_n é crescente e ilimitada.
- (c) Mostre que, para $0 < c \le \frac{1}{4}, \ 0 < u_n < \frac{1-\sqrt{1-4c}}{2}$ para todo o natural n.
 - (d) Mostre que, para $-2 \le c \le 0$, $|u_n| \le |c|$ para todo o natural n.
 - (e) Mostre que, para $c<-2,\ u_n\geq -c$ para todo o natural $n\geq 2.$
 - (f) Mostre que, para $c<-2, \frac{u_{n+1}}{u_n}\geq -\frac{c}{2}$ para todo o natural $n\geq 2.$
 - (g) Mostre que, para c < -2, u_n é ilimitada.

Nota: Resolva apenas 5 alíneas da questão II.1.