

MA2011 Mechatronics System Interfacing (Part-II)

Domenico Campolo

d.campolo@ntu.edu.sg

Nanyang Technological University
School of Mechanical & Aerospace Engineering

Office: N3.2-02-74

topics in the text-book

Sensors

Basic Definitions

sensors: basic definitions

- transducers:
 - convert one form of energy into another
 - non necessarily to perform a measurement
- sensors:
 - produce an output signal (typically electrical) for the purpose of sensing a physical phenomenon

sensor classification

- analog vs digital
 - light on/off switch vs light dimmer
- passive vs active
 - passive sensors: do not require external power supplies, they draw the energy from the input signal itself
- null vs deflection type
 - null type: any deflection due to the measured quantity is balanced by an opposing calibrated force
- subject of measurement
 - mechanical, optical, thermal etc...

instrumentation systems

- sensing module
 - X=mechanical, thermal, optical, pyro, piezo,...
- conversion module
 - from analog to digital
- pre-processing
 - variable manipulation module
- data transmission
 - wired/wireless, over the web...
- presentation/storage
 - to the final user

basic concepts

- I/O characteristic function or response:
 - input: stimulus or measurand
 - (temperature, pressure, strain...)
 - output: electrical signal
 - (voltage, current, frequency, phase...)
- sensitivity S
 - output variation / input variation
 - slope S = df/dx
- resolution
 - minimum change of the measurand that can be reliably detected
 - limited by noise, bit-conversion,...
- accuracy
 - difference of the measurement from the true value (%F\$, Full Scale)

instrument static parameters

- repeatability
 - how well a system or device can reproduce an outcome in unchanged conditions

main instrument errors

sensitivity error

hysteresis

• zero-shift error

response dynamics

first and second order systems

1st order systems: an example

- heat $q = (T_b T_s) / R$
 - R: thermal resistance
 - materials, geometries ...
- heat-up: $dT_s/dt = q/C$
 - C: thermal capacitance
- $\text{ if } dT_b/dt = 0 ...$

$$-T_s(t) = T_{s0} + (T_b - T_{s0}) (1 - e^{-t/RC})$$

In general, the time response of a 1st order system is $x(t) = a + b e^{-t/\tau}$ where τ is the time constant.

1st order systems: forced and natural response

- general (forced) equation
 - time constant
 - forcing input f(t)
 - initial condition x_0

- $x(0) = x_0$ uniqueness of solutions $x(0) = x_0$
- natural (unforced) equation
 - solution
 - satisfying the initial condition $x_N(t) = Ke^{-t/\tau}$

$$\begin{cases} \frac{dx_N(t)}{dt} + \frac{x_N(t)}{\tau} = 0\\ x(0) = x_0 \end{cases}$$

$$x_N(t) = x_0 e^{-t/\tau}$$

1st order systems: time constant

- electrical time constants
 - what are the units of RC or L/R?

$$RC = \frac{voltage}{current} \cdot \frac{charge}{voltage} = \frac{charge}{charge/time} = time$$

$$\frac{L}{R} = \frac{voltage}{current/time} \cdot \frac{current}{voltage} = time$$

$\frac{x(t)}{X_0}$	n	$x(t) = x_0 e^{-t/\tau}$
1	0	_
0.3679	1	after 3 time-constants
0.1353	2	the signal decays to
0.0498	3←	5% —
0.0183	4	of its initial value
0.0067	5	Of its illitial value
		_

1st order systems response to DC forcing inputs

- we have the following problem
 - where $f(t)=F_0$ is a constant

- $\frac{dx(t)}{dt} + \frac{x(t)}{\tau} = F_0$ $x(0) = x_0$
- let's look for a particular (forced) solution $x_F(t)$
 - consider a DC steady-state solution

$$x_F(t) = x_{SS}$$

$$\frac{dx_{ss}}{dt} + \frac{x_{SS}}{\tau} = F_0 \quad \Rightarrow \quad \frac{x_{SS}}{\tau} = F_0 \quad \Rightarrow \quad x_{SS} = F_0 \tau = x_{\infty}$$

- now, let's determine a general solution
 - including the natural solution

$$x(t) = x_N(t) + x_{SS}(t) = Ke^{-t/\tau} + x_{\infty}$$

satisfying the initial condition

transient state

$$x(0) = K + x_{\infty} = x_0 \quad \Rightarrow \begin{cases} x(t) = (x_0 - x_{\infty})e^{-t/\tau} + x_{\infty} \end{cases}$$

second order dynamics

- we can indirectly estimate the force from a displacement measurement
 - dynamic equations

•
$$f = m\ddot{x} + b\dot{x} + kx$$

frequency response

•
$$\frac{X}{F} = \frac{k^{-1}}{-\frac{\omega^2}{\omega_0^2} + \frac{j\omega}{Q\omega_0} + 1}$$

second order dynamics

$$\frac{X}{F} = \frac{k^{-1}}{-\frac{\omega^2}{\omega_0^2} + \frac{j\omega}{Q\omega_0} + 1}$$

- dynamic response characterized by
 - frequency response
 - resonance $\omega_0^2 = k/m$
 - bandwidth
 - mechanical Q: Q² = km / b²
 - Q=0.5 → critical damping
 - time response
 - · rise time
 - settling time
 - overshoot
 - ...

measuring temperature

RTD and Thermistors

temperature scales

- Kelvin [K], Celsius [C],Fahrenheit [F]
 - [C] = [K] 273.15
 - [F] = 1.8*[C] + 32
- based on
 - fixed-points
 - i.e. temperatures at phase transition, triple points...
 - size of the degree
 - e.g. 1/100 of the difference between icy and boiling water
 - interpolation method in-between fixed points
 - does 50[C] correspond to the level mercury which is half-way between the 0[C] and 100[C] levels?
- ITS-90 standard

bimetallic thermometers

- differential thermal expansion of different metals
 - metal A and B bonded at temperature T1
 - bending occurs at different temperatures
- furnace thermostat
 - switch-control

resistance temperature detectors (RTD)

- based on changes of resistance with temperature
 - metal wire on insulating support
 - eliminate mechanical strain
 - encasing
 - minimize environment influence (e.g. corrosion)

Thick Film Omega Film Element

Glass sealed Biflar Winding

Thin Film Omega TFD Element

RTD: linearity range

 for a given material, a linear relationship can be assumed for a limited range

$$- R/R_0 = 1 + \alpha(T - T_0)$$

- R resistance at temp. T ([C] or [K])
- R0: resistance at temp. T0
- α : temp. coefficient
- platinum
 - ±0.3% over the range 0-200 [C]
 - ±1.2% over the range 200-800 [C]

Wheatstone bridge

bridge equations

$$\begin{cases} \frac{V^{+}}{V_{i}} = \frac{R_{2}}{R_{1} + R_{2}} \\ \frac{V^{-}}{V_{i}} = \frac{R_{4}}{R_{3} + R_{4}} \end{cases}$$

$$\frac{V_o}{V_i} = \frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4}$$

bridge balance condition:

$$V_o = 0 \quad \Leftrightarrow \quad R_1 R_4 = R_2 R_3$$

(product of opposite sides)

RTD: numerical example

An RTD forms one arm of an equal-arm Wheatstone bridge

$$R_0 = R_0 = 25\Omega$$

At 0°C, RTD = 25 Ω
and $\alpha = 0.003925$ °C⁻¹

• If R_3 required to balance the bridge is 37.36 Ω , find the temperature of the RTD

RTD: numerical example (solution)

Bridge-balance condition

R₀* RTD = R₁ * R₀ i.e. RTD = R₁ = 37.36
$$\Omega$$
 From $R_{RTD}/R_0=1+\alpha(T-T_0)$, numerically
$$\frac{37.36\Omega}{25\Omega}=1+0.003925(T-0)$$
 i.e.
$$T=126^oC$$

RTD: measurements

- Wheatstone bridge
 - low resistance (conductors)
 - subject to self-heating
- lead-wire effects
 - 2-wires
 - long wires are also subject to temp-resistance changes
 - RTD +2*r0 = R1
 - 3-wires
 - RTD+r0 = R1+r0 → RTD=R1
 - 4-wires

4-WIRE OHMS MEASUREMENT

Figure 42

thermistors

- thermally sensitive resistors
 - ceramic-like semiconductors
 - R0 much larger than RTD
 - resistance decreases
 rapidly with temperature
 - high-sensitivity
 - ruggedness
 - fast time-response

$$R = R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

measuring displacement (linear/angular)

resistive sensors

resistive sensors

- potentiometer (aka 'pot')
 - 3-terminal electromechanical device based on a conductive wiper sliding against a fixed, resistive element
 - many varieties (quality/function)
 - rheostats, trimmers, volume control,

- precision potentiometers
 - manually or digitally tunable

using potentiometers in electrical circuits

voltage divider

+10V CMP time

+10V

Vpot

• variable resistance

tunable filters

variable gain amplifier

Wheatstone bridge with adjustable offset

measuring forces through displacement

force sensors

strain gauges

Force measurements
always indirectly via
deformations

Honeywell FS01 piezoresistive force sensor

calibration curve

What is wrong with this graph?

Honeywell FS01 piezoresistive force sensor

calibration curve

measuring displacement (linear/angular)

inductive sensors and amplitude modulation

Linear Variable Differential Transformer

(LVDT)a type of electrical transformer

- measuring linear displacement
- variable coupling via sliding ferromagnetic core
 - primary coil (AC driven, kHz)
 - two secondary coils
- differential voltage

$$V_{OUT} = \Delta V = V_2 - V_1 \simeq x(t) V_0$$

LVDT: amplitude modulation (AM)

the **amplitude** of the output voltage is **modulated** by the physical

displacement:

$$\Delta V \approx V_0 x(t) = \sin(\omega_0 t) \sin(\omega_x t)$$

LVDT: amplitude demodulation

Amplitude Modulation/Demodulation

measuring displacement (linear/angular)

capacitive sensors (proximity sensor)

capacitive sensing: principle

- capacitance definition
 - -C := Q / V
- ideal case
 - infinite parallel plates
- applications
 - proximity sensing

$$C = \frac{Q}{V} = \frac{\epsilon_0 \epsilon_r ES}{Ed} = \frac{\epsilon_0 \epsilon_r S}{d}$$

capacitive sensing: guard electrode

the guard electrode limits field-fringing effects

interfacing with capacitive sensors: AC

AC bridge

C1 Reference Pressure

AC driving

- Modulation
 - envelope demodulator
 - simplest demodulation
 - for non-negative signals

Process Pressure

proximity sensors

magnetic and optical

Hall effect

• Lorentz force

$$\vec{F} = q\vec{v} \times \vec{B}$$

Hall effect sensors applications

- proximity sensor
 - contactless switch

current sensor

light detectors

photo-resistors

Resistance vs. Illumination

Relative Spectral Response

light detectors

- photo-diodes
 - load resistance

op-amp circuit

photo-transistors

Example of Collector Current V.S. Collect-Emitter Voltage

photo-interrupter

reflective

resistive load

current-voltage op-amp

digital encoders

linear / angular absolute / incremental

digital encoders

- convert motion
 - either linear or rotary

into a sequence of digital pulses

- optical transmitter/receiver pairs
 - glass/plastic material photographically patterned
- Hall effect sensors
 - coupled with magnetic rings / bars

digital encoders

- incremental encoders
 - minimum 2 Tx/Rx pairs
 - encoding steps and direction
- absolute encoders
 - n Tx/Rx pairs for coding 2ⁿ sectors

absolute encoders

- angular n-bits encoders
 - 360°/2ⁿ resolution
 - $n=10 \rightarrow 360^{\circ}/1024=0.35^{\circ}$
 - more expensive
 - require n Tx/Rx pairs
 - CAVEAT: spurious states may arise from contemporary transitions

absolute encoders

- natural binary code vs. Gray code
 - contemporary transitions
 might lead to temporary
 spurious states

Gray code ensures no contemporary transitions

incremental encoders

- simpler design
 - a single pair not sufficient to encode the direction
 - 2 Tx/Rx pairs plus a 'reset' position are required
 - quadrature signals
 - ¼ cycle out-of-phase

measuring higher kinematics

please, refer to this case study

D. Campolo, S. E. Maini, F. Patanè, C. Laschi, P. Dario, F. Keller, E. Guglielmelli, Design of a Sensorized Ball for Ecological Behavioral Analysis of Infants, IEEE Intl. Conf. on Robotics and Automation (ICRA), Rome, Italy, pp. 1529 - 1534, April 10-14, 2007

http://www3.ntu.edu.sg/home/d.campolo/pdf/2007 ICRA BALL.pdf

