§ 7.3 区间估计

由于样本的随机性,点估计有以下缺陷:

- (1) 无从断定估计值是否为待估参数的真实值(即使是无偏有效估计量);
- (2) 不能把握估计值与参数真实值的偏离程度 及估计的可靠程度.

改进 对于 θ 的估计,给定一个范围 $[\hat{\theta}_1, \hat{\theta}_2]$ 满足:

- (1) $P\{\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2\}$ 应尽可能大,即可靠程度高;
- (2) $\hat{\theta}_2 \hat{\theta}_1$ 应尽可能小,精确度高.

一、定义

定义7.3.1 设总体的未知参数为 θ , 由样本

 X_1 , ..., X_n 确定两个统计量

$$\hat{\theta}_1 = \hat{\theta}_1(X_1,...,X_n), \quad \hat{\theta}_2 = \hat{\theta}_2(X_1,...,X_n)$$

对于给定的实数 $\alpha(0 < \alpha < 1)$,满足

$$P\{\hat{\theta}_1(X_1,...,X_n) \le \theta \le \hat{\theta}_2(X_1,...,X_n)\} = 1 - \alpha$$

称随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 为 θ 的置信度为 $1 - \alpha$ 的区间估计(置信区间).

 $1-\alpha$ 又称置信水平或置信概率 α 称显著性水平,通常取值为0.1,0.05.

思考: 应如何理解概率式

$$P\{\hat{\theta}_1(X_1,...,X_n) \le \theta \le \hat{\theta}_2(X_1,...,X_n)\} = 1 - \alpha$$

1) 随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 以1 - α 的概率包含着 待估参数 θ .

$1 - \alpha$ 反映了区间估计的可靠程度.

2) 随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 的长度 $\hat{\theta}_2 - \hat{\theta}_1$ 是随机变量,反映了区间估计的精确程度.

希望精度与可靠程度均高,但二者是矛盾的.在实际应用中广泛接受的原则是:

确定能接受的可靠程度的前提下,尽量提高 精确度.

问题:如何构造随机区间?

正态分布中μ的区间估计

- 二、置信区间的枢轴变量法
- 1. 选取待估参数 θ 的估计量;

原则: 优良性准则

常用: $\overline{X} \rightarrow \mu$, $S^2 \rightarrow \sigma^2$

2. 建立枢轴变量 对选定的 θ 的估计量,构造关于待估参数 θ 和样本的函数

 $W(X_1, X_2, ..., X_n, \theta)$ 其中W不含任何其他未知参数.

3. 确定W的分布

在一定条件下,W 通常具有经典分布(主要有正态、 χ^2 、T、F分布);

4. 根据W的分布,对置信水平1 - α查上侧分 位数,使

$$P\{w_{1-\alpha/2} \leq W \leq w_{\alpha/2}\} = 1 - \alpha$$

或类似的概率式成立.

5. 改写不等式得

$$P\{A \le \theta \le B\} = 1 - \alpha$$

其中A、B是不含未知参数的统计量.

以较大概率包 含待估参数

上面过程的关键是构造枢轴变量W,并以它为轴心,由 $a \le W \le b$ 旋转出所需不等式

$$A \leq \theta \leq B$$
.

三、正态总体的区间估计

单个正态总体: $X\sim N(\mu, \sigma^2)$

$1.\mu$ 的估计

1) **已知**
$$\sigma = \sigma_0$$

1) 己知
$$\sigma = \sigma_0$$
:
$$U = \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$$

$$P\{-u_{\alpha/2} \leq \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \leq u_{\alpha/2}\} = 1 - \alpha$$

$$\left[\overline{X} - \frac{\sigma_0}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} u_{\alpha/2}\right]$$

因
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 是 μ 的优良估计量,且

$$\overline{X} \sim N(\mu, \frac{\sigma_0^2}{n})$$

从而

$$U = \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$$

$$P\{|U|\leq u_{\alpha/2}\}=1-\alpha$$

$$P\left\{-u_{\frac{\alpha}{2}} \leq \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \leq u_{\frac{\alpha}{2}}\right\} = 1 - \alpha$$

$$\mathcal{K} \overline{\overline{n}} \quad P \left\{ \overline{X} - \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}} \le \mu \le \overline{X} + \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}} \right\} = 1 - \alpha$$

由此可得 μ 的置信度为 $1-\alpha$ 的置信区间为:

$$[\overline{X} - \frac{\sigma_0}{\sqrt{n}}u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma_0}{\sqrt{n}}u_{\frac{\alpha}{2}}]$$

思考:未知 σ 时如何求 μ 的估计?

未知参数的替换

2)
$$\sigma^2$$
未知:
$$T = \frac{X - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$P\{-t_{\alpha/2}(n-1) \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le t_{\alpha/2}(n-1)\} = 1 - \alpha$$

$$\left[\overline{X}-t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \quad \overline{X}+t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right]$$

2. σ²的估计

为确定枢 轴变量

分析: σ^2 的优良估计量为 S^2 ,

当*μ*未知时,由抽样分布定理可知,应选枢轴变

量:

$$\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)$$

当μ已知时, 应选枢轴变量:

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu_0}{\sigma} \right)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu_0)^2 \sim \chi^2(n)$$

问题: 如何构造大概率事件?

1) **己知** μ_0

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{X_{i} - \mu_{0}}{\sigma} \right)^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(X_{i} - \mu_{0} \right)^{2} \sim \chi^{2}(n)$$

$$\mathbf{P}\{\chi_{1-\frac{\alpha}{2}}^{2}(n) \leq \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu_{0})^{2} \leq \chi_{\frac{\alpha}{2}}^{2}(n)\} = 1 - \alpha$$

$$\begin{bmatrix} \sum_{i=1}^{n} (X_i - \mu_0)^2 & \sum_{i=1}^{n} (X_i - \mu_0)^2 \\ \chi_{\alpha/2}^2(n) & \chi_{1-\alpha/2}^2(n) \end{bmatrix}$$

$$\chi^2 = \frac{n-1}{\sigma^2} S^2 \sim \chi^2 (n-1)$$

$$P\{\chi_{1-\alpha/2}^2(n-1) \le \frac{n-1}{\sigma^2}S^2 \le \chi_{\alpha/2}^2(n-1)\} = 1-\alpha$$

$$[(n-1)S^2/\chi_{\alpha/2}^2(n-1), (n-1)S^2/\chi_{1-\alpha/2}^2(n-1)]$$

TIPS

零件长度的方差

婴儿体重的估计

四、两个正态总体

 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X = Y相互独立.

- $1.\mu_1 \mu_2$ 的估计
 - 1) 已知 σ_1^2 和 σ_2^2

枢轴变量取

$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

$$P\{-u_{\frac{\alpha}{2}} \leq \frac{(\overline{X} - \overline{Y}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2} + \frac{\sigma_{2}^{2}}{n_{1}}}}} \leq u_{\frac{\alpha}{2}}\} = 1 - \alpha$$

$$\left[\overline{X} - \overline{Y} - u_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \quad \overline{X} - \overline{Y} + u_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right]$$

2) σ_1^2 和 σ_2^2 未知,但 $\sigma_1^2 = \sigma_2^2 = \sigma^2$

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$\begin{split} \left[\overline{X} - \overline{Y} - t \frac{\alpha}{2} (n_1 + n_2 - 2) S_{\text{w}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} , \\ \overline{X} - \overline{Y} + t \frac{\alpha}{2} (n_1 + n_2 - 2) S_{\text{w}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right] \end{split}$$

两稻种产量的期望差的置信区间

问题 能否用另外的方法求μ1 - μ2的区间估计?

分析 当 $n_1=n_2$ 时 (成对抽样),

记
$$Z_i = X_i - Y_i$$
, $i = 1, 2, \dots, n$;

则
$$\overline{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \overline{X} - \overline{Y},$$

$$S_Z^2 = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \overline{Z})^2$$

因
$$Z_1, Z_2, \cdots, Z_n$$
相 互 独 立,且
$$Z_i \sim N(\mu_1 - \mu_2, 2\sigma^2)$$

根据抽样定理知,可选枢轴变量

$$T = \frac{\overline{Z} - (\mu_1 - \mu_2)}{S_Z / \sqrt{n}} \sim t(n-1)$$

两稻种产量的期望差的置信区间

2. $\frac{\sigma_2^2}{\sigma_1^2}$ 的区间估计

1) 未知 $\mu_1 \setminus \mu_2$

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2} \cdot \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$$

$$P\{F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1) \leq \frac{\sigma_2^2}{\sigma_1^2} \cdot \frac{S_1^2}{S_2^2} \leq F_{\frac{\alpha}{2}}(n_1-1,n_2-1)\} = 1-\alpha$$

$$\left[\begin{array}{cccc} \frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{1-\frac{\alpha}{2}}(n_{1}-1,n_{2}-1), \frac{S_{2}^{2}}{S_{1}^{2}} \cdot F_{\frac{\alpha}{2}}(n_{1}-1,n_{2}-1) \end{array}\right]$$

2) 已知 μ_1 与 μ_2

$$F = \frac{\frac{1}{n_1}}{\frac{1}{n_2}} \cdot \frac{\sum_{i=1}^{n_1} \left(\frac{X_i - \mu_1}{\sigma_1}\right)^2}{\sum_{j=1}^{n_2} \left(\frac{Y_j - \mu_2}{\sigma_2}\right)^2} \sim F(n_1, n_2)$$

- 三、大样本方法构造置信区间(教材7.3(五))
- 四、单侧置信区间(自学),见教材7.3(六)

小结: 常见的区间估计

例7.3.1 设总体 $X \sim N(\mu, 0.09)$, 有一组样

本值: 12.6, 13.4, 12.8, 13.2, 求参数µ的 置信度为0.95的置信区间.

解: 有1 - α =0.95, σ_0 =0.3, n = 4,

X 是µ的无偏估计量,是优良估计量,且

$$\overline{X} \sim N(\mu, \frac{\sigma_0}{n})$$

从而

$$U = \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$$

在标准正态分布表中查得上侧分位数

$$u_{\alpha/2} = u_{0.025} = 1.96$$

$$P\{|U| \le 1.96\} = P\{\left|\frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}}\right| \le 1.96\} = 1 - \alpha = 0.95,$$

或
$$P\{\overline{X}-1.96\frac{\sigma_0}{\sqrt{n}} \le \mu \le \overline{X}+1.96\frac{\sigma_0}{\sqrt{n}}\}=0.95,$$

得μ的置信区间为

$$[\overline{X} - 1.96 \frac{\sigma_0}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma_0}{\sqrt{n}}]$$

代入样本值算得 $\bar{x} = 13$, 得到 μ 的一个区间估计为

$$[\bar{x}-1.96\frac{0.3}{\sqrt{4}}, \bar{x}+1.96\frac{0.3}{\sqrt{4}}]=[12.706, 13.294].$$

注: 该区间不一定包含μ.

总结此例,做了以下工作:

2) 建立了关于 μ 与统计量 \overline{X} 的函数U, 并确定 U的分布;

这里
$$U = \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1),$$

- 3) 查找临界值 $u_{\alpha/2}$,构造一个关于U的概率为置信水平1 α 的随机事件.
- 4) 由上式解出关于待估参数µ的不等式,建立起关于µ的置信区间. #

未知参数的替换

例7.3.2 设 $X\sim N(\mu,\sigma^2)$, 未知 σ^2 , 求参数 μ 的 置信度为 $1-\alpha$ 的置信区间.

分析: 1.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 是 μ 的优良估计,且 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

思考: 是否仍选统计量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$ 并令

$$P\{u_{1-\alpha/2} \le U \le u_{\alpha/2}\} = 1-\alpha$$

求得置信区间 ?

不行!

因为未知 σ^2 ,故U不是统计量.

2. 选一个统计量去替代 σ^2 ,

$$S^2$$
、 M_2 中选哪一个较好?

选 S^2 因它是 σ^2 的无偏、有效、相合估计.

选下统计量作为枢轴变量,根据抽样定理

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1),$$

3. 由 t 分布的对称性,令

$$P\{-t_{\alpha/2}(n-1) \le T \le t_{\alpha/2}(n-1)\} = 1-\alpha$$

4. 整理后得μ的置信区间为

$$\left[\overline{X} - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right]$$

比较 已知 $\sigma^2 = \sigma_0^2$ 时, μ 的置信区间为

$$\left[\overline{X} - \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} u_{\frac{\alpha}{2}}\right]$$

#

零件长度的方差

例7.3.3 从自动机床加工的同类零件中任取

16件测得长度值如下(单位: mm)

12.15	12.12	12.01	12.28	12.09	12.16	12.03	12.01
12.06	12.13	12.07	12.11	12.08	12.01	12.03	12.06

求方差的估计值和置信区间($\alpha=0.05$).

解 设零件长度为X,可认为X 服从正态分布.

设X1,X2,...,Xn是总体X的样本

$$\overline{x} = \frac{1}{16} \sum_{i=1}^{16} x_i = 12.08, \quad \sum_{i=1}^{16} (x_i - \overline{x})^2 = 0.0761$$

$$s^{2} = \frac{1}{15} \sum_{i=1}^{16} (x_{i} - \overline{x})^{2} = 0.005,$$

求方差的置信区间

由于 μ 未知, S^2 是 σ^2 的优良估计,选取枢轴变量

$$\chi^2 = \frac{n-1}{\sigma^2} S^2 \sim \chi^2 (n-1)$$

相应的置信区间为

$$P\{\chi_{1-\alpha/2}^2(n-1) \le \frac{n-1}{\sigma^2}S^2 \le \chi_{\alpha/2}^2(n-1)\} = 1-\alpha$$

或
$$[(n-1)S^2/\chi_{\alpha/2}^2(n-1), (n-1)S^2/\chi_{1-\alpha/2}^2(n-1)]$$

查火2分布表可得

$$\chi^2_{\alpha/2}(n-1) = \chi^2_{0.025}(15) = 27.488,$$

$$\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.975}(15) = 6.262$$

σ^2 的置信度为 0.95 的置信区间为

$$\left[\frac{0.0761}{27.488}, \frac{0.0761}{6.26}\right]$$
 \$\Pi\$ [0.002768, 0.012].

比较: σ^2 的点估计值为 $s^2 = 0.005$.

例7.3.4 假定初生婴儿的体重服从正态分布,

随机抽取12 名婴儿,测得体重为(单位:克)

3100, 2520, 3000, 3000, 3600, 3160,

3560, 3320, 2880, 2600, 3400, 2540

试以 95% 的置信度估计初生婴儿的平均体重 以及方差.

解设初生婴儿体重为X克,则 $X\sim N(\mu,\sigma^2)$, $X_1,X_2,...,X_n$ 是总体X的样本

(1) 需估计 μ ,而未知 σ^2 .

取
$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$
 作为枢轴变量.

由于:

$$P\{-t_{\alpha/2}(n-1) \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le t_{\alpha/2}(n-1)\} = 1 - \alpha$$

$\therefore \mu$ 的置信区间为:

$$[\overline{X}-t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \overline{X}+t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}]$$

有
$$\alpha = 0.05$$
, $n = 12$,

$$t_{0.025}(11) = 2.201$$

$$x = x \approx 3057$$
, $s \approx 375.3$, μ 的置信区间为

$$[3057 - \frac{375.3}{\sqrt{12}} \times 2.201, 3057 + \frac{375.3}{\sqrt{12}} \times 2.201]$$

即

[2818, 3296].

(2) 需估计 σ ,而未知 μ ,

取枢轴变量为
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

由于:

$$P\{\chi_{1-\alpha/2}^2(n-1) \le \frac{n-1}{\sigma^2}S^2 \le \chi_{\alpha/2}^2(n-1)\} = 1-\alpha$$

$: \sigma^2$ 的置信区间为:

$$[(n-1)S^2/\chi_{\alpha/2}^2(n-1), (n-1)S^2/\chi_{1-\alpha/2}^2(n-1)]$$

有
$$\chi^2_{0.025}(11) = 21.92$$
 , $\chi^2_{0.975}(11) = 3.816$,

$$11 \times S^2 = 1549000$$
,

$$: \sigma^2$$
的置信区间为 $\left[\frac{1549000}{21.92}, \frac{1549000}{3.816}\right]$

即 [70666,405922.4].

例7.3.5 甲、乙两种稻种分别种在10块试验田中,每块田中甲、乙稻种各种一半。假设两种稻种产量X、Y 服从正态分布,且方差相等. 10块田中的产量如下表 (单位:公斤),求两稻种产量的期望差 μ_1 - μ_2 的置信区间 $(\alpha=0.05)$.

甲	140	137	136	140	145	148	140	135	144	141
Z	135	118	115	140	128	131	130	115	121	125

解 设 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$, $\sigma_1^2=\sigma_2^2=\sigma^2$,估计 μ_1 - μ_2 , 取统计量

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_W = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

由样本表可计算得

$$\bar{x} = 140.6,$$

$$s_1^2 = 16.933, \qquad n_1 = 10,$$

$$n_1 = 10,$$

$$\bar{y} = 126.8,$$

$$\overline{y} = 126.8, \qquad s_2^2 = 71.956, \qquad n_2 = 10,$$

$$n_2 = 10,$$

从而
$$S_w = \sqrt{\frac{9 \times 16.933 + 9 \times 71.956}{18}} = 6.667,$$

查t 分布表得: $t_{0.025}(18)=$ **2.1009**

$$t_{0.025}(18) =$$

两稻种产量期望差的置信度为95%的置信区间为

$$[\overline{X} - \overline{Y} - t\frac{\alpha}{2}(n_1 + n_2 - 2)S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \overline{X} - \overline{Y} + t\frac{\alpha}{2}(n_1 + n_2 - 2)S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}]$$

$$[140.6 - 126.8 - 2.1009 \times 6.667 \sqrt{\frac{2}{10}}, 140.6 - 126.8 - 2.1009 \times 6.667 \sqrt{\frac{2}{10}}]$$

即 [7.536, 20.064].

#

另解 因枢轴变量

$$T = \frac{\overline{Z} - (\mu_1 - \mu_2)}{S_Z / \sqrt{n}} \sim t(n-1),$$

其中
$$Z = X - Y$$
, $\overline{Z} = \frac{1}{10} \sum_{i=1}^{10} (X_i - Y_i)$,

$$P\{|T|\leq t_{\alpha/2}(n-1)\}=1-\alpha,$$

解得
$$P\{\overline{Z} - \frac{S_Z}{\sqrt{n}}t_{\alpha/2}(n-1) \le \mu_1 - \mu_2 \le \overline{Z} + \frac{S_Z}{\sqrt{n}}t_{\alpha/2}(n-1)\},$$

可得两稻种产量期望差的置信度为95%的置 信区间为

$$[\overline{X} - \overline{Y} - t\frac{\alpha}{2}(n-1)\frac{S_Z}{\sqrt{n}}, \overline{X} - \overline{Y} + t\frac{\alpha}{2}(n-1)\frac{S_Z}{\sqrt{n}}]$$

#

单正态总体的区间估计

$$X \sim N(\mu, \sigma^2)$$

$$X \sim N(\mu, \sigma^2)$$
 $P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1 - \alpha$

被估 参数	条 件	统计量 (枢轴变量W)	置信区间
μ	_	$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}\right]$
μ	未 知 σ^2	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$\left[\overline{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right]$

被估 参数	条件	统计量 (枢轴变量)	置信区间
σ^2	已 知 µ	$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$	$\left[\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right]$
σ^2	未知μ	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\left[\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right]$

双正态总体的区间估计

被估参数	条件	统计量 (枢轴变量)
$\mu_1 - \mu_2$	已知 σ_1^2 与 σ_2^2	$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$
$\mu_1 - \mu_2$	未知 σ_1^2 和 σ_2^2	$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ $S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \qquad S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
$rac{\sigma_1^2}{\sigma_2^2}$	未知 μ ₁ 和μ ₂	$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2} \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$