Visualizing high dimensional TEDS data

In [2]: import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

import numpy as np
import scipy.stats as ss

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

In [7]: df=pd.read_csv('__TEDSCountyLevel2008-2017_2.csv')

In [3]: %matplotlib inline

In [8]: df.head(10)

Out[8]:

	Alcohol	Amphetamine	Barbiturates	Benzine	Age	State	Cocaine	County Name	Gender	Hal		Pr
0	0	0	0	0	18- 24	Indiana	0	Pulaski	Male	0		0
1	1	0	0	0	55+	Indiana	0	Pulaski	Male	0		0
2	1	0	0	0	18- 24	Indiana	0	Pulaski	Male	0	:	0
3	0	0	0	0	55+	Indiana	0	Pulaski	Male	0		0
4	0	0	0	0	55+	Indiana	0	Pulaski	Male	0		0
5	1	0	0	0	25- 34	Indiana	0	Pulaski	Male	0		0
6	1	0	0	0	35- 44	Indiana	0	Pulaski	Male	0		0
7	1	0	0	0	25- 34	Indiana	0	Pulaski	Male	0		0
8	1	0	0	0	0- 18	Indiana	0	Pulaski	Male	0	:	0
9	1	0	0	0	25- 34	Indiana	0	Pulaski	Male	0		0

In [9]: #Limit the number of features
 features = ['Year','County Name','Gender','Race','Age','Alcohol','Heroin','Marijuana','O
 pioid','Cocaine','Other Drugs','Pain Killers', 'Methamphetamine', 'Synthetic Drugs']
 df_subset = df[features]
 df_subset.head()

Out[9]:

	Year	County Name	Gender	Race	Age	Alcohol	Heroin	Marijuana	Opioid	Cocaine	Other Drugs		M
0	2009	Pulaski	Male	White	18- 24	0	0	1	0	0	0	0	0
1	2009	Pulaski	Male	White	55+	1	0	0	0	0	0	0	0
2	2009	Pulaski	Male	White	18- 24	1	0	1	0	0	0	0	0
3	2009	Pulaski	Male	White	55+	0	0	1	0	0	0	0	0
4	2009	Pulaski	Male	White	55+	0	0	1	0	0	0	0	0

In [10]: import altair as alt
 alt.renderers.enable('notebook')

Out[10]: RendererRegistry.enable('notebook')

In [11]: #Create a dataset for the 9 substances to use in correlations
 features = ['Alcohol','Heroin','Marijuana','Opioid','Cocaine','Other Drugs','Pain Killer
 s', 'Methamphetamine', 'Synthetic Drugs']
 df_only_features = df_subset[features]
 df_only_features.head()

Out[11]:

	Alcohol	Heroin	Marijuana	Opioid	Cocaine	Other Drugs	Pain Killers	Methamphetamine	Synthetic Drugs
0	0	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0
2	1	0	1	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0

335866

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1bd9f9260b8>

There is strong correlation between Pain Killers and Synthetic Drugs, supported by the Opioids. Heroin appears in 57% of the cases with Opioids. Alcohol is slightly negatively correlates with all four of them.

Remarkably, there appears to be no appreciable correlation between opioid use and such commonly accepted and complementary socio-economic markers as alcohol, marijuana, or methamphetamine use. In fact, these three factors are likely to be biased towards older population (alcohol), younger population (marijuana) and underprivileged rural population (methamphetamine).

Thus, it appears that opioid abuse have roots that are different from the common socio-economic maladies reflected in these three markers.

```
In [13]: df_subset['County Name'].nunique()
Out[13]: 93
In [13]: df_subset['Year'].nunique()
Out[13]: 10
In [14]: # Total number of records
         len(df_subset)
Out[14]: 335866
In [15]: #How many records per year
         df_subset['Year'].value_counts()
Out[15]: 2017
                 37459
         2015
                 34739
         2011
                 34677
         2014
                 34470
         2012
                 33984
         2013
                 33616
         2016
                33170
         2009
                32049
         2010
                31827
         2008
                 29875
         Name: Year, dtype: int64
```

In [15]: #How many records per county
 df_subset['County Name'].value_counts()

Out[15]:	Marion	41678
	Lake	25329
	Allen	16940
	Vanderburgh	14085
	Monroe	13842
	Saint Joseph	13359
	Delaware Madison	10453 9594
	Elkhart	8309
	Hamilton	8033
	Vigo	7895
	Howard	6235
	Bartholomew	6037
	Porter	5455
	LaPorte	5086
	Morgan	5057
	Lawrence	4557
	Tippecanoe	4514
	Wayne	4391
	Grant	4241
	Dearborn	3981
	Clark	3857
	Hendricks	3488
	Knox	3350
	Noble	3024
	Montgomery	3006
	Warrick	2969
	Kosciusko Jefferson	2946 2888
	Johnson	2834
	301113011	2834
	Perry	1407
	Rush	1281
	Shelby	1246
	Vermillion	1241
	Wells	1195
	Јау	1193
	Orange	1174
	Franklin	1115
	Huntington	1107
	Parke	1084 1031
	Whitley Carroll	967
	Brown	922
	Pulaski	906
	Jasper	902
	Sullivan	812
	Blackford	759
	Washington	681
	Fountain	662
	Martin	638
	Tipton	563
	Switzerland	562
	Crawford	511
	Harrison	461
	Pike	433
	Benton	373
	Newton	315
	Ohio	293
	Union	284

Warren 229

Name: County Name, Length: 93, dtype: int64

In [16]:

General method to variably group the data

def group_dataset(df, col1, col2): df_grouped=df.groupby([col1,col2])

return df_grouped

In [17]: #Group by Year and County df_grouped=group_dataset(df_subset, 'Year', 'County Name')

> #Excluded pain killers and synthetic drugs as highly correclated with opioids feature=['Alcohol','Heroin','Marijuana','Opioid','Cocaine','Other Drugs','Methamphetamin

df_grouped=df_grouped[feature].mean()

df_grouped.head()

Out[17]:

		Alcohol	Heroin	Marijuana	Opioid	Cocaine	Other Drugs	Methamphetamine
Year	County Name							
2008	Adams	0.905263	0.021053	0.684211	0.105263	0.231579	0.0	0.010526
	Allen	0.863495	0.012480	0.641186	0.048362	0.325273	0.0	0.017161
	Bartholomew	0.651106	0.004914	0.542998	0.226044	0.255528	0.0	0.299754
	Benton	0.840000	0.000000	0.520000	0.040000	0.160000	0.0	0.040000
	Blackford	0.833333	0.000000	0.620370	0.157407	0.175926	0.0	0.009259

In [18]: #Group by County df_grouped_c=group_dataset(df_subset, 'County Name', 'Year')

> #exclude pain killers and synthetic drugs as highly correclated with opioids feature=['Alcohol','Heroin','Marijuana','Opioid','Cocaine','Other Drugs','Methamphetamin

df_grouped_c=df_grouped_c[feature].mean()

df_grouped_c.head()

Out[18]:

		Alcohol	Heroin	Marijuana	Opioid	Cocaine	Other Drugs	Methamphetamine
County Name	Year							
Adams	2008	0.905263	0.021053	0.684211	0.105263	0.231579	0.000000	0.010526
	2009	0.877863	0.007634	0.549618	0.099237	0.175573	0.000000	0.030534
	2010	0.613497	0.141104	0.496933	0.300613	0.184049	0.147239	0.042945
	2011	0.655405	0.141892	0.540541	0.331081	0.155405	0.108108	0.060811
	2012	0.756098	0.073171	0.528455	0.203252	0.178862	0.138211	0.040650

```
In [19]: # Group by Year to genralize the output
    df_grouped_year1=df_subset.groupby('Year')
    df_grouped_year1=df_grouped_year1[feature].mean()

df_grouped_year1.head()
```

Out[19]:

	Alcohol	Heroin	Marijuana	Opioid	Cocaine	Other Drugs	Methamphetamine
Year							
2008	0.661891	0.038226	0.506644	0.155213	0.223397	0.000000	0.087464
2009	0.682798	0.049237	0.514837	0.177821	0.194359	0.000000	0.091235
2010	0.632168	0.055833	0.490998	0.186006	0.157602	0.119553	0.096962
2011	0.606050	0.068662	0.483837	0.220607	0.146899	0.138593	0.103556
2012	0.590837	0.094191	0.471398	0.275012	0.156809	0.154926	0.112612

```
In [20]: # General method to pivot by two predictors
    def create_pivot_df(df, col_name, index_name, val_name):
        pivot_df = df.pivot_table(columns=col_name, index= index_name, values= val_name, agg
        func='mean')
        return pivot_df
```

Out[21]:

Year	2008	2009	2010	2011	2012	2013	2014	2015	2
County Name									
Adams	0.905263	0.877863	0.613497	0.655405	0.756098	0.812030	0.805195	0.697143	0.559
Allen	0.863495	0.834094	0.812057	0.794048	0.672963	0.736813	0.729648	0.674190	0.665
Bartholomew	0.651106	0.605505	0.442708	0.400815	0.458841	0.522551	0.501475	0.410745	0.345
Benton	0.840000	0.850000	0.684211	0.794118	0.852941	0.659091	0.708333	0.750000	0.780
Blackford	0.833333	0.787234	0.216216	0.523810	0.519231	0.386364	0.440678	0.454545	0.378

```
In [22]: def draw_heatmap(df, nrows, ncols):
    f, ax = plt.subplots(figsize=(nrows, ncols))
    sns.heatmap(df, cmap=sns.cubehelix_palette(8, start=.5, rot=-.75),ax=ax,xticklabels
    =2, square=True, vmin=0, vmax=.9)
```

```
In [23]: def draw_heatmap_corr(df, nrows, ncols):
    f, ax = plt.subplots(figsize=(nrows, ncols))
    df=df.corr()
    sns.heatmap(df, cmap=sns.diverging_palette(220, 10, as_cmap=True), center=0,ax=ax,
    square=True,annot=True,cbar_kws={"shrink": .5})
```

Out[24]:

Year	2008	2009	2010	2011	2012	2013	2014	2015
Alcohol	0.661891	0.682798	0.632168	0.606050	0.590837	0.585792	0.559066	0.528743
Heroin	0.038226	0.049237	0.055833	0.068662	0.094191	0.105396	0.121787	0.156625
Marijuana	0.506644	0.514837	0.490998	0.483837	0.471398	0.476172	0.478648	0.483462
Opioid	0.155213	0.177821	0.186006	0.220607	0.275012	0.303248	0.314244	0.339273
Cocaine	0.223397	0.194359	0.157602	0.146899	0.156809	0.131277	0.112446	0.106825
Other Drugs	0.000000	0.000000	0.119553	0.138593	0.154926	0.165516	0.177894	0.202654
Methamphetamine	0.087464	0.091235	0.096962	0.103556	0.112612	0.121995	0.141514	0.159936

In [30]: #Marijuana
draw_heatmap(create_pivot_df(df_grouped,'Year','County Name', 'Marijuana'), 186, 20)

In [31]: # Methamphetamine
draw_heatmap(create_pivot_df(df_grouped,'Year','County Name', 'Methamphetamine'), 186, 2
0)

From the four heatmaps above, one could infer the following observations:

• while Alcohol remains the most commonly abused substance, its dominance is vaning as the prevalence of other substances, especially opiods and methamphethamine increases. At the same time, marijuana abuse remains fairly stable.

Suplimentary Analysis: Identify any years that differ from the majority

In [34]: #Opioids
draw_heatmap_corr(create_pivot_df(df_grouped,'Year','County Name', 'Opioid'), 10,10)

Beginning 2012 the usage patterns became very similar for the malority of the subjects that requested treatment in Indiana.

Suplimentary Analysis: Identify counties that differ from the majority

In [42]: draw_heatmap_corr(create_pivot_df(df_grouped,'County Name','Year', 'Methamphetamine'), 9
3,93)

Suplimentary analisys: PCA

The <u>principal component analysis (PCA) (http://setosa.io/ev/principal-component-analysis/)</u> is the most basic dimensionality reduction method. To run the PCA we want to isolate only the numerical columns.

```
In [43]: from sklearn.decomposition import PCA
pca = PCA()
```

Now I ran fit() method to identify principal components.

```
[[-3.85284978e-01 1.74017452e-01 -1.44132829e-01 5.72548369e-01
              -2.69179141e-02 -9.45944737e-04 4.88667622e-01 2.68324235e-02
               4.82126552e-01]
             [-4.18457857e-01 -5.05321504e-03 9.00800758e-01 -1.84296925e-02
              -5.53315489e-03 1.53651275e-03 -2.34787354e-02 1.09207683e-01
              -2.39850374e-02]
             [ 7.11756112e-01 -2.43212736e-01 3.74058306e-01 9.21887106e-02
              -1.39977393e-01 -4.67858705e-02 3.29558300e-01 -2.17148697e-01
               3.29070826e-01]
             [ 6.54654403e-02 2.33536949e-01 7.81258265e-02 1.44714164e-01
               6.66987977e-01 -5.86190546e-01 -6.12216977e-02 -3.43352728e-01
              -6.32252001e-02]
             [ 7.12073209e-02 4.07014556e-01 9.88869180e-02 2.09251566e-01
               5.82755415e-02 6.54588384e-01 -1.35008442e-01 -5.53985972e-01
              -1.36726374e-01]
             [-2.01654654e-01 -5.55680657e-01 -7.19214685e-02 -2.79439087e-01
               5.74989672e-01 3.75006655e-01 1.92924758e-01 -1.44138780e-01
               1.95080605e-01]
             [ 3.46163005e-01 2.35182719e-01 8.23741063e-02 1.93313001e-01
               4.47977083e-01 2.91666275e-01 -1.35950867e-02 7.03277331e-01
              -1.29745391e-02]
             [ 3.90868442e-04 5.68343537e-01 4.84514642e-03 -6.90996902e-01
               9.17264956e-03 -1.72477268e-03 2.33910579e-01 5.52881945e-03
               3.80333325e-01]
             [ 1.39976189e-03    5.68623039e-02    4.14804014e-04    -7.54235243e-02
               1.18822447e-03 5.79425375e-04 7.33450549e-01 1.74171781e-03
              -6.73142890e-01]]
'-Other Drugs', Marijuana, Opioid+Alcohol, Marijuana+Cocaine, Marijuana+Alcohol, -Marijuana-Heroin,
Marijuana+Methamphetamine
   In [45]: |
            print(pca.explained_variance_)
            [0.52332706 0.25520259 0.20435398 0.13614426 0.12185475 0.1103172
             0.10171866 0.00989851 0.00189358]
            pca_df_fitted.explained_variance_ratio_
   In [46]:
  Out[46]: array([0.35729042, 0.17423414, 0.13951833, 0.0929496, 0.08319374,
                   0.07531672, 0.06944625, 0.006758 , 0.0012928 ])
```

In [44]:

pca_df_fitted = pca.fit(df_only_features)

print(pca.components_)

In [47]: | pca.components_.shape

Out[47]: (9, 9)

```
In [48]: plt.plot(np.cumsum(pca.explained_variance_ratio_))
    plt.xlabel('number of components')
    plt.ylabel('cumulative explained variance');
```


The first six components capture more than 95% of the variance in original dataset. This means that the PCA is not very effective on this dataset and six components will provide approximation for the rest of the dimensions.