Изучение плазмы газового разряда в неоне

Каспаров Николай, Б01-304 October 26, 2024

Цель работы:

• изучить спектральный состав периодических электрических сигналов

1 Ход работы

1.1 Настройка генерации прямоугольных импульсов и анализ их спектра

Частота повторения импульсов: $\nu=1$ к Γ ц Длительность импульса: $\tau=T/20=50$ мкс

Рисунок 1: Прямоугольный сигнал 2 кГц

Будем экспериментировать с импульсами разной длины и с разными частотами повторения.

Рисунок 2: Прямоугольный сигнал 2 к Γ ц

Рисунок 3: Прямоугольный сигнал 3 кГц

Рисунок 4: Прямоугольный сигнал $\tau=50$ мкс

Рисунок 5: Прямоугольный сигнал $\tau=100~{\rm mkc}$

Рисунок 6: Прямоугольный сигнал au=150 мкс

Как мы можем видеть, спектр находится в соответствии с формулой для гармоник спектра прямоугольных сигналов:

$$c_n = \frac{\tau}{T} \frac{\sin n\omega_0 \tau/2}{n\omega\tau/2} \tag{1}$$

1.2 Измерение амплитуд и частот гармоник

При фиксированных параметрах $\nu_{\text{повт}}=1$ к Γ ц и $\tau_{\text{повт}}=50$ мкс были измерены амплитуды a_n и частоты ν_n нескольких спектральных компонент (гармоник). Эти значения были сопоставлены с теоретически рассчитанными на основе соотношений:

Поскольку единицы измерения амплитуд гармоник произвольны, для сравнения использовались относительные величины, например $|a_n/a_1|$. Полученные экспериментальные данные занесены в таблицу ??.

n	1	2	3	4	5	6	7
$\nu_n^{\text{эксп}}$, Гц	1	2	3	4	5	6	7
$\nu_n^{\text{теор}}$, Гц	1	2	3	4	5	6	7
$ a_n ^{\mathfrak{s}\mathfrak{K}\mathfrak{C}\mathfrak{n}}$, усл. ед.	277	273	267	260	250	238	226
$ a_n/a_1 ^{\mathfrak{S}KC\Pi}$	1.00	0.99	0.96	0.94	0.90	0.86	0.82
$ a_n/a_1 ^{\text{reop}}$	1.00	0.99	0.97	0.94	0.90	0.86	0.81

Таблица 1: Измерение характеристик спектра прямоугольного сигнала

Также были измерены ширины спектра, данные занесены в таблицу 2.

Таблица 2: Измерение ширины спектра $\nu=1$ к Γ ц, $\tau=50$ мкс

τ , MKC	$\Delta \nu$, к Γ ц
20	50
60	16.6
100	10
150	6.6
200	5

Также были измерены расстояния между гармониками:

При фиксированной длительности импульса $\tau = 100$ мкс были проведены измерения расстояний $\delta \nu = \nu_{n+1} - \nu_n$ между соседними гармониками спектра при изменении периода повторения T в диапазоне от 2τ до 50τ , данные занесены в таблицу 3.

Таблица 3: Измерение расстояния между гармониками

T, MC	ν_1 , к Γ ц	ν_2 , к Γ ц	$\Delta \nu$, к Γ ц
1	1.0	2.0	1.0
2	1.0	1.5	0.4
3	1.0	1.4	0.4
4	1.7	2.0	0.4
5	1.4	1.6	0.2

2 Анализ спектра синусоидального импульса

Был настроен генератор сигнала с несущей частотот
й $\nu_0=50$ к Γ ц, периодом повторения T=1 м
с и числом периодов в одном импульсе N=5

Отсюда следует, что $\nu_{\text{повт}}=1/T=1$ к Γ ц

А длительность импульса $\tau = N/\nu_0 = 100$ мкс

Посмотрим на сигналы и спектры при стандартных параметрах, а также при из изменении

Результаты соответствуют теоретическим данным.

$$c_n(\omega) = \frac{\tau}{2} \frac{\sin(n\omega_0 \tau/2)}{n\omega\tau/2} \tag{2}$$

Рисунок 7: Синусоидальный импульс, стандартные параметры

Рисунок 8: Синусоидальный импульс. N=3

Рисунок 9: Синусоидальный импульс. N=10

Рисунок 10: Синусоидальный импульс. $T=500~{
m mkc}$

Рисунок 11: Синусоидальный импульс.
 $\nu_{\text{повт}}=10~\text{к}\Gamma\text{ц}$

3 Спект амплитудно-модулированного синусоидального сигнала

Был настроен режим генерации амплитудно-модулированного синусоидального сигнала с $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\text{мол}}=2$ к Γ ц, глубиной модуляции m=50%

модуляции $\nu_{\text{мод}}=2$ к Γ ц, глубиной модуляции m=50% Было проверено соотношение $m=\frac{A_{max}-A_{min}}{A_{max}+A_{min}},~A_{max}=1.49B,~A_{min}=0.49B,~m\approx0.5$ - соотношение выполняется

Рисунок 12: А-м импульс. Стандартные параметры

Рисунок 13: А-м импульс. $\nu=40$ к
Гц

Рисунок 14: А-м импульс. $\nu=60$ к
Гц

Рисунок 15: А-м импульс. $\nu_{\text{мод}}=1$ к
Гц

Рисунок 16: А-м импульс. $\nu_{\text{мод}}=3$ к
Гц

Рисунок 17: А-м импульс. $\nu_{\mbox{\tiny MOД}}=8$ к
Гц

3.1 Измерение отношения амплитуд боковых и основной гармоник

Изменяя на генераторе глубину модуляции m в диапазоне от 10% до 100%, измерим отношение амплитуд боковой гармоники $(a_{\text{бок}})$ к основной гармонике $(a_{\text{осн}})$

Рисунок 18: Зависимостьь отношения амплитуд боковых и основной гармнок

Из графика: $k=0.50\pm0.01$ - что сходится с теорией

Е. Изучение фильтрации сигналов

Для RC-фильтра низких частот рассчитаем его характерную временную постоянную:

$$\tau_{RC} = R \cdot C = 3 \text{ MKC} \tag{3}$$

На вход интегратора были поданы прямоугольные импульсы с периодом повторения $T \approx \tau_{RC}, \, \tau \approx T/20$ Для разных T посмотрим спектр и сигнал на выходе фильтра

Рисунок 19: Выход RC-цепочки. T=1мкс

Рисунок 20: Выход RC-цепочки. T=2мкс

Рисунок 21: Выход RC-цепочки. T=3мкс

3.2 Измерение отношений амплитуд спектральных гармоник

При фиксированном значении периода Т были проведены измерения отношений амплитуд соответствующих спектральных гармоник фильтрованного сигнала и исходного сигнала для 5 гармоник. Отношение амплитуд для n-й гармоники:

$\nu, k\Gamma$	ц $ a_n^{\phi} $, МІ	$B \mid a_n^0 , MB$	K_n
333	359.2	1019	0.35
666	154.6	827.6	0.18
1000	59.11	545.6	0.11
1333	22.26	256.1	0.087
2333	11.09	236.4	0.047

Таблица 4: Измерение отношения амплитуд спектров входного и выходного сигналов

$$K_n = \left| \frac{a_n^{\Phi}}{a_n^0} \right| \tag{4}$$

На основе проведённых измерений был построен график зависимости амплитудного коэффициента фильтрации $K(\nu)$ от величины, обратной частоте

Рисунок 22

Из полученного графика можно найти его коэффициент наклона:

$$k = \frac{1}{2\pi RC} = (59 \pm 1) \kappa \Gamma \eta \tag{5}$$

Отсюда: $RC = (2.70 \pm 0.05)$ - близко, но не совсем точно Скорее всего это произошло из-за аппроксимации прямой

4 Вывод

В ходе работы были изучены различные сигнали и их спектры, а также влияние на них параметров