Equivalence relations.

Exercice 1:

Can we do without one of the three properties required to define equivalence relations?

Exercice 2:

Let f be an involution (i.e. $f \circ f = Id$) on a finite set E.

- 1. Show that the cardinality of all the fixed points of E is of the same parity as the cardinal of E.
- 2. Deduce that if E is of an odd cardinal, f has (at least) a fixed point.

Exercice 3:

A relationship is given by a matrix $T \in \{0,1\}^{N \times N}$. Where if T[i,j] = 1 then $i \mathcal{R} j$, and T[i,j] = 0, otherwise. What conditions does the matrix needs to exhibit in order for the relationship to be an equivalence relation.

Exercice 4:

Show that the following relation \sim on $(\mathbb{Z} \times (\mathbb{N} \setminus \{0\}))$:

$$(m,n) \sim (p,q) \Leftrightarrow mq = np$$

is an equivalence relation and show that the following operations respect the equivalence relation:

- 1. $(m, n) \oplus (p, q) = (mq + np, nq)$
- 2. $(m, n) \cdot (p, q) = (mp, nq)$

Exercice 5 (Équivalence de Nérode) :

Let $\mathcal{A} = (Q, \Sigma, \delta, i_o, F)$ a deterministic automaton, where Q represents the set of states, Σ the alphabet, δ the transition function, i_o the initial state and F the set of final states.

Let \sim be an equivalence relation on Q s.t.:

- For all states $p, q \in Q$, if $p \sim q$, then for all a in Σ , $\delta(p, a) \sim \delta(q, a)$.
- If $p \in F$, for all q in A s.t. $p \sim q$, then q is also in F.

For all states p, denote their equivalence class by C(p).

1. (a) Demonstrate that the following is a deterministic automaton :

$$\mathcal{A}_{\sim} = (Q/\sim, \Sigma, \delta_{\sim}, C(i_o), F/\sim)$$

where Q/\sim is the set of the equivalence classes, $\delta_{\sim}(C(p),a)=C(\delta(p,a)), F/\sim$ is the set of equivalence classes of the states of F.

- (b) Demonstrate that $L(A) = L(A_{\sim})$.
- 2. We define for all integers n, an equivalence relation on Q: For all states p and q of \mathcal{A} , $p \sim_n q$ if for all the words $|w| \leq n$, $\delta(p, w) \in F \Leftrightarrow \delta(q, w) \in F$. Show that:
 - (a) For all the states p and q of A, $p \sim_{n+1} q \Rightarrow p \sim_n q$.
 - (b) There exists n s.t. $\sim_{n+1} = \sim_n$.

Order relations.

Exercice 6:

Show that:

- 1. Every asymmetrical relationship $(aRb \rightarrow \neg (bRa))$ is anti-symmetric and irreflexive.
- 2. Every strict order is asymmetrical.
- 3. Every trichotomous relation(one of the following holds xRy, yRx or x = y) is asymmetrical.

Let (E, \leq) an ordered set, i.e. \leq is an order on E.

- $x \in E$ is the greatest element of E if $\forall y \in E, y \leq x$.
- $x \in E$ is a maximal element of E if $\forall y \in E, x \leq y \Rightarrow x = y$.
- the **minimal element** and the **least element** are defined analogously.

Let $F \subseteq E$.

- $x \in E$ is a **upper bound** of F if $\forall y \in F, y \leq x$.
- $x \in E$ is a **lower bound** of F if $\forall y \in F$, $x \leq y$.

Exercice 7:

Let (E, \leq) an ordered set.

What is the upper bound of \emptyset ? what is the lower bound of \emptyset ?

Exercice 8:

- 1. We consider the set of numbers whose representation in base 2 has exactly n numbers. Describe precisely using this representation the Successeur function.
- 2. Denote S_n the set of bijections of $\{1,...,n\}$ to itself. Recall that the cardinality of S_n is n!.

A bijection f of the set $\{1, ..., n\}$ to itself is coded by n numbers in base $n : f(1)f(2) \cdots f(n)$. The lexicographic order thus defines a total order on S_n .

- (a) Show the entire order for the cases n=2 and n=3 exhaustively.
- (b) What is the smallest element of S_n ?
- (c) What is the biggest element of S_n ?
- (d) Give an algorithm that from the representation of a bijection, that calculates its position in the order.
- (e) Describe the precisely Successeur function.

Exercice 9:

Let E be a set with a partial order \leq . Recall that an *antichain* is a subset of E in which all the elements are incomparable.

- 1. We consider \mathbb{N}^2 with the product order $((a,b) \leq (x,y) \iff a \leq x \land b \leq y)$
 - (a) Show an antichain of cardinality n, for any n > 1.
 - (b) Can we find an infinite antichain?
- 2. Show that the set Σ^* with the sub-string order $(w_1 < w_2 \text{ iff } \exists u, v \in \Sigma^* \text{ s.t. } w_2 = uw_1v)$, has an infinite chain.

Exercice 10:

Given $A, B \in \mathcal{P}([n])$ we say that A < B iff $A \subset B$.

1. Assume that n > 1. Show that :

$$1 < \binom{n}{1} < \binom{n}{2} < \dots < \binom{n}{\lfloor \frac{n}{2} \rfloor} \ge \dots > \binom{n}{n-2} > \binom{n}{n-1} > 1$$

- 2. For $k \in \{1, ..., \frac{n}{2}\}$ find an antichain of cardinality $\binom{n}{k}$ in $\mathcal{P}([n])$.
- 3. Let A be an anti chain in $\mathcal{P}([n])$. For k in [0, n], we denote by a_k the number of sets of cardinality k in A. We will now show the Lubell-Yamamoto-Meshalkin inequality:

$$\sum_{k=0}^{n} \frac{a_k}{\binom{n}{k}} \le 1$$

- (a) Demonstrate that there are exactly n! Strictly increasing sequences in $\mathcal{P}([n])$, of the form $X_0 = \emptyset \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n = X$.
- (b) Let S be a subset of X of cardinality s. Show that there are exactly s!(n-s)! strictly increasing sequences in $\mathcal{P}([n])$, of the form $X_0 = \emptyset \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n = X$, where $X_s = S$.
- (c) Let $X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_r$ a strictly increasing sequence in $\mathcal{P}([n])$. Then there is at most one X_i in A(the antichain). By partitioning all the strictly increasing sequences $X_0 = \emptyset \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n = X$, according to their possible intersection with A, demonstrate the Lubell-Yamamoto-Meshalkin inequality.
- 4. Deduce the maximal cardinality of an antichain in $\mathcal{P}([n])$.

Bonus question.

Exercice 11:

Using Équivalence de Nérode deduce an algorithm for calculating the minimum automaton of \mathcal{A} .