TRABALHO FINAL DE ESTATÍSTICA ANÁLISE DE DADOS — FLOTATION PLANT

PÓS GRADUAÇÃO EM CIÊNCIA DE DADOS

IEC PUC MINAS

GRUPO 1

- É UMA PLANTA DE SEPARAÇÃO MINERAL, UMA DAS ETAPAS DE SEPARAÇÃO DO MINÉRIO
- A FLOTAÇÃO FICA ENTRE A MOAGEM E A CONCENTRAÇÃO. O MINÉRIO É MOÍDO, FLOTADO E DEPOIS CONCENTRADO
- É COMPOSTO POR TANQUES EM SÉRIE, PARA QUE TODO O MINERAL SEJA SEPARADO DO REJEITO
- NA FLOTAÇÃO CONVENCIONAL, O MINÉRIO É LEVADO AO TOPO POR BOLHAS E O REJEITO FICA NO FUNDO
- NA FLOTAÇÃO REVERSA, O REJEITO SOBE COM AS BOLHAS E O MINÉRIO VAI PARA O FUNDO
- AS BOLHAS PODEM SER GERADAS POR UM EIXO MECÂNICO OU POR LANÇAS QUE GERAM BOLHAS POR BOMBAS EXTERNAS

PROBLEMA E SOLUÇÃO PROPOSTA

- NA BASE EM ESTUDO, O PROBLEMA É CONSEGUIR EXPLICAR A VARIAÇÃO DO PERCENTUAL DE FERRO CONCENTRADO NO FINAL DO PROCESSO
- A SOLUÇÃO QUE PROPOMOS PARA ESTE PROBLEMA É UMA REGRESSÃO LINEAR SIMPLES

DEFINIÇÃO DAS VARIÁVEIS

date	Data e hora da medição (Março a Setembro de 2017)
% Iron Feed	% de ferro na polpa no início da flotação
% Silica Feed	% de sílica na polpa no início da flotação
Starch Flow	Fluxo de amido
Amina Flow	Fluxo de amina
Ore Pulp Flow	Fluxo da polpa de minério
Ore Pulp pH	PH da polpa de minério
Ore Pulp Density	Densidade da polpa de minério
Flotation Column 01 Air Flow	
Flotation Column 02 Air Flow	
Flotation Column 03 Air Flow	
Flotation Column 04 Air Flow	Fluxo de ar das colunas de flotação
Flotation Column 05 Air Flow	
Flotation Column 06 Air Flow	
Flotation Column 07 Air Flow	
Flotation Column 01 Level	
Flotation Column 02 Level	
Flotation Column 03 Level	
Flotation Column 04 Level	Nível das colunas de flotação
Flotation Column 05 Level	
Flotation Column 06 Level	
Flotation Column 07 Level	
% Iron Concentrate	% de ferro concentrado no final da flotação
% Silica Concentrate	% de sílica concentrado no final da flotação

TESTE DE CORRELAÇÃO DAS VARIÁVEIS

- AS VARIÁVEIS DE FLUXO DE AR DAS COLUNAS DE FLOTAÇÃO
 ALTAMENTE CORRELACIONADAS,
 ASSIM COMO AS VARIÁVEIS DE
 NÍVEL;
- OS PERCENTUAIS DE FERRO E SÍLICA DE ENTRADA E DE FERRO E SÍLICA CONCENTRADOS TAMBÉM TEM ALTA CORRELAÇÃO.

REGRESSÃO LINEAR

- REGRESSÃO LINEAR É UMA EQUAÇÃO PARA SE ESTIMAR O VALOR ESPERADO DE UMA VARIÁVEL, DADOS OS VALORES DE OUTRAS VARIÁVEIS;
- NESSE ESTUDO, CRIAMOS MODELOS DE REGRESSÃO COM CADA VARIÁVEL ENVOLVIDA NO PROCESSO;
- PARA O MODELO FINAL, INCLUÍMOS AS VARIÁVEIS SIGNIFICATIVAS INDIVIDUALMENTE E QUE NÃO SÃO CORRELACIONADAS ENTRE SI,
- FOI UTILIZADO O MÉTODO STEPWISE DE SELEÇÃO DAS VARIÁVEIS;

RESULTADOS DOS MODELOS INDIVIDUAIS

Variável	Significância	R2 Ajustado
% Iron Feed	0,000	0,003
% Silica Feed	0,000	0,002
Starch Flow	0,000	0,005
Amina Flow	0,000	0,012
Ore Pulp Flow	0,000	0,007
Ore Pulp pH	0,000	0,037
Ore Pulp Density	0,000	0,000
Flotation Column 01 Air Flow	0,000	0,010
Flotation Column 02 Air Flow	0,000	0,003
Flotation Column 03 Air Flow	0,000	0,010
Flotation Column 04 Air Flow	0,000	0,005
Flotation Column 05 Air Flow	0,000	0,008
Flotation Column 06 Air Flow	0,000	0,001
Flotation Column 07 Air Flow	0,036	0,000
Flotation Column 01 Level	0,000	0,000
Flotation Column 02 Level	0,000	0,001
Flotation Column 03 Level	0,000	0,000
Flotation Column 04 Level	0,000	0,019
Flotation Column 05 Level	0,000	0,026
Flotation Column 06 Level	0,000	0,007
Flotation Column 07 Level	0,000	0,021
% Silica Concentrate	0,000	0,641

VARIÁVEIS QUE SERÃO TESTADAS NO MODELO DE REGRESSÃO

MODELO FINAL

Resumo do modelo						
R R quadrado	R quadrado	Erro padrão da estimativa				
0,819	0.671	ajustado 0,671	0,641868554536815			
0,019	0,071	0,071	0,041000334330013			

ANOVA					
	Soma dos Quadrados	df	Quadrado Médio	Z	Sig.
Regressão	619001,006	13	47615,462	115572,845	0,000
Resíduo	303821,359	737439	0,412		
Total	922822,365	737452			

		Coeficiente	s		
	Coeficientes não padronizados Coeficientes padronizados			C:	
	В	Erro Erro	Beta	t	Sig.
(Constante)	51,673	0,087		596,431	0,000
% Silica Concentrate	-0,796	0,001	-0,801	-1113,182	0,000
Ore Pulp Flow	0,008	0,000	0,070	94,641	0,000
Flotation Column 05 Air Flow	0,023	0,000	0,074	103,547	0,000
Ore Pulp pH	0,223	0,002	0,077	107,161	0,000
Flotation Column 01 Air Flow	-0,003	0,000	-0,087	-109,240	0,000
Ore Pulp Density	1,151	0,015	0,071	76,433	0,000
% Silica Feed	0,032	0,000	0,196	67,736	0,000
% Iron Feed	0,035	0,001	0,163	56,357	0,000
Flotation Column 01 Level	0,000	0,000	-0,051	-61,743	0,000
Amina Flow	-0,001	0,000	-0,053	-53,409	0,000
Flotation Column 04 Level	0,000	0,000	0,025	31,887	0,000
Flotation Column 06 Level	-5 , 074E-05	0,000	-0,004	-5,103	0,000
Starch Flow	-2,409E-06	0,000	-0,003	-3,542	0,000

PARA O MODELO FINAL, TEMOS UM R2
AJUSTADO DE 0,671, O QUE SIGNIFICA
DIZER QUE AS VARIÁVEIS
SELECIONADAS PELO MODELO,
CONSEGUEM EXPLICAR 67,1% DA
VARIABILIDADE DO PERCENTUAL DO
FERRO CONCENTRADO.

EQUAÇÃO E INTERPRETAÇÃO DO MODELO

% Iron Concentrate = 51,673 - 0,795845870823542*% Silica Concentrate + 0,00803856427126641*Ore Pulp Flow + 0,0227297486376965*Flotation Column 05 Air Flow + 0,223399043373344*Ore Pulp pH - 0,0032969990088754*Flotation Column 01 Air Flow + 1,15084479646634*Ore Pulp Density + 0,0321888692864311*% Silica Feed + 0,0354333934436301*% Iron Feed - 0,00043599128290239*Flotation Column 01 Level - 0,000650547799800729*Amina Flow + 0,00031008435514446*Flotation Column 04 Level - 5,07359906793162E-05*Flotation Column 06 Level - 2,40933387886742E-06*Starch Flow

- ATRAVÉS DA EQUAÇÃO DO MODELO, CONSEGUIMOS PERCEBER AS VARIÁVEIS QUE MAIS EXPLICAM O PERCENTUAL DE FERRO CONCENTRADO E SE ELAS INFLUENCIAM AUMENTANDO OU DIMINUINDO ESSE PERCENTUAL FINAL.
- POR EXEMPLO, SE AUMENTARMOS EM UMA UNIDADE A DENSIDADE DA POLPA, E MANTIVERMOS TODAS AS OUTRAS VARIÁVEIS, O PERCENTUAL DE FERRO CONCENTRADO AUMENTARÁ EM 1,15084479646634 UNIDADES.
- SE AUMENTARMOS EM UMA UNIDADE O FLUXO DE AMINA, E MANTIVERMOS TODAS AS OUTRAS VARIÁVEIS, O PERCENTUAL DE FERRO, DIMINUIRÁ EM 0,000650547799800729 UNIDADES.

CONSIDERAÇÕES FINAIS – VALIDAÇÃO DA SOLUÇÃO

DE ACORDO COM OS RESULTADOS DA REGRESSÃO LINEAR APRESENTADOS NOS SLIDES
 ANTERIORES, PODEMOS CONCLUIR QUE A SOLUÇÃO PROPOSTA PARA O PROBLEMA É
 VÁLIDA, UMA VEZ QUE CONSEGUE EXPLICAR 67,1% DA VARIABILIDADE DO PERCENTUAL DE
 FERRO CONCENTRADO NO CONJUNTO DOS DADOS.