CS-E4740 - Federated Learning

FL Networks

Assoc. Prof. Alexander Jung

Spring 2025

YouTube

LinkedIn

GitHub

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

A ("Real-World") FL System

Abstracting Away Details

To analyze an FL system, we (need to) ignore many details:

- physical properties of communication links
- low-level communication protocols
- hardware configuration of devices
- operating systems of devices
- scientific computing software (Python packages)

An FL Network

- ▶ FL network consists of devices, denoted i = 1, ..., n
- ▶ some i, i' connected by edge with the weight $A_{i,i'} > 0$
- ightharpoonup device i generates data $\mathcal{D}^{(i)}$ and trains model $\mathcal{H}^{(i)}$
- ▶ data $\mathcal{D}^{(i)}$ used to construct loss func. $L_i(\cdot)$

FL Network is an Approximation

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

A Precise Definition

An FL Network is a tuple, consisting of a

- finite number of **nodes** $V := \{1, \ldots, n\}$
- ▶ **local model** $\mathcal{H}^{(i)}$ at each node $i \in \mathcal{V}$
- ▶ a **local loss function** $L_i(\cdot)$ at each node $i \in \mathcal{V}$
- ightharpoonup set of undirected **edges** $\mathcal E$
- ▶ positive **edge-weight** $A_{i,i'}$ ∈ \mathbb{R}_{++} for each $\{i,i'\}$ ∈ \mathcal{E}

We collect nodes V, edges \mathcal{E} and edge-weights $A_{i,i'}$ of FL network into an **undirected weighted graph** \mathcal{G} .

Nodes of an FL Network

- consider an FL system with finite number n of devices
- ▶ index devices with natural number i = 1, ..., n
- \blacktriangleright indices form the nodes $\mathcal V$ of an FL network
- \blacktriangleright each node $i \in \mathcal{V}$ represents a physical device
- we abuse language and use "device i" for "node i" and vice-versa

Local Models of an FL Network

- ightharpoonup consider FL system with devices $i = 1, \dots, n$
- ightharpoonup each device trains local (personal) model $\mathcal{H}^{(i)}$
- devices can use different local models (heterogeneity)
- ightharpoonup use local model parameters $\mathbf{w}^{(i)}$ for parametric $\mathcal{H}^{(i)}$

Local Loss Functions of an FL Network

- ightharpoonup device *i* trains local model $\mathcal{H}^{(i)}$
- ▶ to train a model is to learn a useful hypothesis $h^{(i)} \in \mathcal{H}^{(i)}$
- \blacktriangleright measure usefulness of $h^{(i)}$ by the local loss function

$$L_{i}\left(\cdot\right):\mathcal{H}^{\left(i\right)}\rightarrow\mathbb{R}:h^{\left(i\right)}\mapsto L_{i}\left(h^{\left(i\right)}\right)$$

different nodes can have different loss functions

Local Loss Functions of an FL Network - ctd.

- ▶ FL methods use different constructions of loss funcs.
- lacktriangle for param. models $\mathcal{H}^{(i)}$, with parameters $\mathbf{w}^{(i)} \! \in \! \mathbb{R}^d$, use

$$L_{i}\left(\cdot\right):\mathbb{R}^{d}\rightarrow\mathbb{R}:\mathbf{w}^{\left(i\right)}\mapsto L_{i}\left(\mathbf{w}^{\left(i\right)}\right)$$

can use average loss on local dataset

$$L_{i}\left(\mathbf{w}^{(i)}\right) := \frac{1}{m_{i}} \sum_{r=1}^{m_{i}} \left(y^{(i,r)} - \left(\mathbf{w}^{(i)}\right)^{T} \mathbf{x}^{(i,r)}\right)^{2}$$

use reward signals to estimate loss (federated reinf. learning)

Edges (Links) in FL Network

- ightharpoonup FL network contains undirected edges ${\cal E}$
- ▶ edge $\{i, i'\} \in \mathcal{E}$ indicates **similarity** between devices i, i'
- we quantify similarity with edge weight $A_{i,i'} > 0$
- ▶ meaning of $\{i, i'\}$ ∈ \mathcal{E} is two-fold
 - ▶ channel between devices i, i' ($A_{i,i'} \approx$ channel capacity)
 - devices should have similar personalized models

$$\mathcal{D}^{(i)}, \mathcal{H}^{(i)}$$
 $A_{i,i'}$ $\mathcal{D}^{(i')}, \mathcal{H}^{(i')}$

 $\mathcal{V}, \mathcal{E}, \left\{A_{i',i'}
ight\}_{\{i,i'\}\in\mathcal{E}}$ constitute the graph \mathcal{G} of an FL network

Connectivity of an FL Network

consider FL network with undirected graph ${\cal G}$

- $ightharpoonup \mathcal{G}$ is connected if there is a path between any two $i,i'\in\mathcal{V}$
- lacktriangle a component $\mathcal C$ of $\mathcal G$ is a connected sub-graph $\mathcal C\subseteq\mathcal V$
- ▶ neighbourhood of $i \in V$ is $\mathcal{N}^{(i)} := \{i' \in V : \{i, i'\} \in \mathcal{E}\}$
- weighted node degree $d^{(i)} := \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'}$
- ightharpoonup max. node degree $d_{\max} := \max_{i \in \mathcal{V}} d^{(i)}$

Connectivity of an FL Network - Example

- ▶ FL network with graph \mathcal{G} containing n=6 nodes
- ▶ uniform edge-weights, $A_{i,i'} = 1$ for all $\{i, i'\} \in \mathcal{E}$
- $ightharpoonup \mathcal{G}$ consists of two connected components $\mathcal{C}^{(1)},\mathcal{C}^{(2)}$
- ightharpoonup max. node degree $d_{\text{max}} = 2$

Design Choices

- ▶ we use FL networks to design FL algorithms
- each FL network involves design choices for
 - nodes (which devices do we include?)
 - local models and loss functions
 - edges (which devices are connected or similar?)
- trade-offs between computational complexity, accuracy, robustness, explainability, privacy-protection

Design Space and Objectives

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

Laplacian Matrix of FL Network

- lacktriangle Consider an FL network with undirected weighted graph ${\cal G}$
- ▶ Laplacian matrix $\mathbf{L}^{(\mathcal{G})} \in \mathbb{R}^{n \times n}$ of \mathcal{G} defined element-wise

$$L_{i,i'}^{(\mathcal{G})} := \begin{cases} -A_{i,i'} & \text{for } i \neq i', \{i, i'\} \in \mathcal{E} \\ \sum_{i'' \neq i} A_{i,i''} & \text{for } i = i' \\ 0 & \text{else.} \end{cases}$$

Laplacian Matrix - Example

Consider graph \mathcal{G} with uniform edge weights $A_{i,i'}=1$

$$\mathbf{L}^{(\mathcal{G})} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Properties of the Laplacian Matrix

The Laplacian matrix $\mathbf{L}^{(\mathcal{G})}$ of any FL network is

- ightharpoonup symmetric $\mathbf{L}^{(\mathcal{G})} = \left(\mathbf{L}^{(\mathcal{G})}\right)^T$ (since edges are undirected)
- ▶ and positive semi-definite (psd),

$$\mathbf{w}^T \mathbf{L}^{(\mathcal{G})} \mathbf{w} \ge 0 \text{ for every } \mathbf{w} \in \mathbb{R}^n.$$
 (1)

The psd property (1) follows from the identity

$$\mathbf{w}^{T} \mathbf{L}^{(\mathcal{G})} \mathbf{w} = \underbrace{\sum_{\{i,i'\} \in \mathcal{E}} A_{i,i'} (w^{(i)} - w^{(i')})^{2}}_{\text{total variation}}$$

which holds for any
$$\mathbf{w} = \left(w^{(1)}, \dots, w^{(n)}\right)^T \in \mathbb{R}^n$$

The Spectrum of the Laplacian Matrix

▶ We can decompose any Laplacian matrix $\mathbf{L}^{(\mathcal{G})} \in \mathbb{R}^{n \times n}$ as

$$\mathbf{L}^{(\mathcal{G})} = \sum_{j=1}^{n} \lambda_{j} \mathbf{u}^{(j)} (\mathbf{u}^{(j)})^{T},$$

ightharpoonup with orthonormal eigenvecs. $\mathbf{u}^{(1)},\ldots,\mathbf{u}^{(n)}\in\mathbb{R}^n$, i.e.,

$$(\mathbf{u}^{(j)})^T \mathbf{u}^{(j')} = \begin{cases} 1 & \text{for } j = j' \\ 0 & \text{otherwise.} \end{cases}$$

▶ and non-neg. eigvals

$$0=\lambda_1\leq\ldots\leq\lambda_n\leq 2\textit{d}_{\max}$$

spectrum of $\mathbf{L}^{(\mathcal{G})} = \text{set of different eigvals}$

Spectral Characterization of FL Networks

Consider an FL network with the graph \mathcal{G} consisting of k connected components $\mathcal{C}^{(1)}, \ldots, \mathcal{C}^{(k)}$.

The Laplacian matrix $\mathbf{L}^{(\mathcal{G})} = \sum_{j=1}^n \lambda_j \mathbf{u}^{(j)} (\mathbf{u}^{(j)})^T$

- ▶ has eigvals. $\lambda_c = 0$ for c = 1, ..., k
- **ightharpoonup** corresponding eigvec. $\mathbf{u}^{(c)}$ is the indicator for $\mathcal{C}^{(c)}$,

$$u_i^{(c)} = egin{cases} rac{1}{\sqrt{\left|\mathcal{C}^{(c)}
ight|}} & ext{for } i \in \mathcal{C}^{(c)} \ 0 & ext{otherwise}. \end{cases}$$

Note: \mathcal{G} is connected, i.e., consists of single component (k=1), if and only if $\lambda_2>0$

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

Weather Stations across Finland

Each weather station i collects data (observations) $\mathcal{D}^{(i)}$ that can be used to train a local model $\mathcal{H}^{(i)}$

Python script for reproducing the Fig.:

Local Dataset of a FMI Station

Each FMI station i generates a local dataset $\mathcal{D}^{(i)}$ of the form

Time	Air Temperature
2025-01-13 16:08:00	-1.5
2025-01-13 16:09:00	-1.5
2025-01-13 16:10:00	-1.4
2025-01-13 16:11:00	-1.5
2025-01-13 16:12:00	-1.5

FL Network for FMI

Which nodes (FMI stations) should be connected by edges?

The Effect of Adding an Edge

- ▶ model params. (updates) exchanged across edge \Rightarrow requires a communication link between i, i'!
- ightharpoonup model params. $\mathbf{w}^{(i)}, \mathbf{w}^{(i')}$ are coupled with strength $A_{i,i'}$

Connectivity measured by λ_2

- ▶ FL faster for \mathcal{G} with large $\lambda_2(\mathcal{G})$
- for given total number of edges (per-iteration complexity), place them in order to maximize $\lambda_2(\mathcal{G})$

Computational Aspects

- ► FL algorithms operate by iterative message passing
- ▶ each edge adds compute/comm. per-iteration
- adding edges can speed up convergence (reducing nr. of iterations)

Statistical Aspects

Consider an FL network with nodes i = 1, ..., n, each generating the data $\mathcal{D}^{(i)}$ and training the model $\mathcal{H}^{(i)}$

- ▶ edge $\{i, i'\}$ forces similar trained models at i, i'
- detrimental if $\mathcal{D}^{(i)}, \mathcal{D}^{(i')}$ have different distributions
- ightharpoonup place edges only between "statistically similar" nodes i, i'
- \blacktriangleright how to measure statistical similarity between nodes i, i'?

Measuring Statistical Similarity

ightharpoonup Consider the local (weather) dataset $\mathcal{D}^{(i)}$

Time	Air Temperature
2025-01-13 16:08:00	-1.5
2025-01-13 16:09:00	-1.5
2025-01-13 16:10:00	-1.4
2025-01-13 16:11:00	-1.5
2025-01-13 16:12:00	-1.5

- ▶ interpret data as (a realization) of a random process with parametric prob. distr. $p(\mathcal{D}^{(i)}; \theta)$
- lacktriangle compute parameter estimate $\widehat{m{ heta}}^{(i)}$ from $\mathcal{D}^{(i)}$
- lacktriangle measure similarity between i,i' via $\left\|\widehat{m{ heta}}^{(i)}-\widehat{m{ heta}}^{(i')}
 ight\|$

Measuring Statistical Similarity (ctd.)

- ▶ parameter estimator $\widehat{\boldsymbol{\theta}}^{(i)}$ is only one example of a vector representation $\mathbf{z}^{(i)} \in \mathbb{R}^k$ for $\mathcal{D}^{(i)}$
- lacktriangle place edges between nearest neighb. using $\left\|\mathbf{z}^{(i)}-\mathbf{z}^{(i')}\right\|$
- ightharpoonup many other constructions for vector $\mathbf{z}^{(i)}$ exist, e.g.,
 - for FMI stations, could use $\mathbf{z}^{(i)} := (latitude, longitude)^T$
 - ightharpoonup use gradient $\mathbf{z}^{(i)} := \nabla L_i(\mathbf{w})$
 - ightharpoonup construct $\mathbf{z}^{(i)}$ by auto-encoder (learnt embedding)

Example: Using Lat/Lon. for Similarity

nodes=FMI stations, nearest neighb. graph using lat./lon.

Python script for reproducing the Fig.:

Example: Using Avg. Temp. for Similarity

place edges based on avg. temp during 2024-05-15

Python script for reproducing the Fig.:

What's Next?

The next module formulates FL as an optimization problem defined over an FL network.

Later modules use FL networks for the design and analysis of FL systems.