Programming Languages

Janyl Jumadinova

February 6-10, 2023

Most Important Steps in Compilation

Lexical Analysis

Lexical analysis produces a "token stream" in which the progam is reduced to a sequence of token types, each with its identifying number and the actual string (in the program) corresponding to it.

Lexical Analysis

For each token type, give a description:

- either a literal string
 - "≤" or "while" to describe an operator or reserved word,

Lexical Analysis

For each token type, give a description:

- either a literal string
 - "≤" or "while" to describe an operator or reserved word,
- or a < rule >
 - a rule < unsigned int > example: "a sequence of one or more digits";
 - a rule < identifier > example: "a letter followed by a sequence of zero or more letters or digits."

Typical Tokens in Programming Languages

Operators and Punctuation

```
0 + - * / ( ) [ ] ; : : < <= == != ! ...!</pre>
```

- Keywords
 - if while for goto return switch void ...
- Identifiers (variables)
- Integer constants
 - Other constants (string, floating point, boolean, ...), etc.

Lexical Complications

- Most modern languages are free-form
 - Layout doesn't matter
 - White space separates tokens
- Alternatives
 - Haskell, Python indentation and layout can imply grouping

Syntactic Analysis

• The syntax of a language is described by a **grammar** that specifies the legal combinations of tokens.

Syntactic Analysis

- The syntax of a language is described by a **grammar** that specifies the legal combinations of tokens.
- Grammars are often specified in BNF notation ("Backus Naur Form"):

Syntactic Analysis

- The syntax of a language is described by a **grammar** that specifies the legal combinations of tokens.
- Grammars are often specified in BNF notation ("Backus Naur Form"):

```
<item1> ::= valid replacements for <item1>
<item2> ::= valid replacements for <item2>
```

Alternative Notations

 There are several syntax notations for productions in common use; all mean the same thing. E.g.:

```
 \begin{array}{l} {\rm ifStmt} \ ::= \ {\rm if} \ (\ {\rm expr}\ ) \ {\rm statement} \\ {\rm <ifStmt} \ \to \ {\rm if} \ (\ {\rm <expr}\ ) \ {\rm <statement} \\ \\ \end{array}
```

A formal grammar for a "pig language" could be:
 PigTalk ::= oink PigTalk (Rule 1)

```
| oink! (Rule 2)
```

PigTalk can then generate, for example:

```
1 PigTalk ::= oink! (Rule 2)
```

A formal grammar for a "pig language" could be:
 PigTalk ::= oink PigTalk (Rule 1)

```
| oink! (Rule 2)
```

- PigTalk can then generate, for example:
 - ① PigTalk ::= oink! (Rule 2)
 - PigTalk ::= oink PigTalk (Rule 1)
 - ::= oink oink!

A formal grammar for a "pig language" could be:
 PigTalk ::= oink PigTalk (Rule 1)

```
Pigialk ::= oink Pigialk (F
| oink! (Rule 2)
```

PigTalk can then generate, for example:

```
PigTalk ::= oink! (Rule 2)
```

```
② PigTalk ::= oink PigTalk (Rule 1)
```

```
::= oink oink!
```

```
::= oink oink oink! (Rule 2)
```

 Collection of VARIABLES (things that can be replaced by other things), also called NON-TERMINALS.

- Collection of VARIABLES (things that can be replaced by other things), also called NON-TERMINALS.
- Collection of TERMINALS ("constants", strings that can't be replaced)

- Collection of VARIABLES (things that can be replaced by other things), also called NON-TERMINALS.
- Collection of TERMINALS ("constants", strings that can't be replaced)
- One special variable called the START SYMBOL.

- Collection of VARIABLES (things that can be replaced by other things), also called NON-TERMINALS.
- Collection of TERMINALS ("constants", strings that can't be replaced)
- One special variable called the START SYMBOL.
- Collection of RULES, also called PRODUCTIONS.

- Collection of VARIABLES (things that can be replaced by other things), also called NON-TERMINALS.
- Collection of TERMINALS ("constants", strings that can't be replaced)
- One special variable called the START SYMBOL.
- Collection of RULES, also called PRODUCTIONS.

```
variable \rightarrow rule1 | rule2 | rule3 | ...
You can also write each rule on a separate line
```

Grammars (Context-free Grammars): EXAMPLE

Grammar

A, B, and C are non-terminals.

0, 1, and 2 are terminals.

The start symbol is A.

The rules are:

- $A \rightarrow 0A|1C|2B|0$
- $B \rightarrow 0B|1A|2C|1$
- $C \rightarrow 0C|1B|2A|2$

Grammars (Context-free Grammars): EXAMPLE

Grammar

A, B, and C are non-terminals.

0, 1, and 2 are terminals.

The start symbol is A.

The rules are:

- $\bullet \ A \rightarrow 0A|1C|2B|0$
- $B \rightarrow 0B|1A|2C|1$
- $C \rightarrow 0C|1B|2A|2$

Can 2011020 be parsed?

Grammars (Context-free Gramars): ACTIVITY

Grammar

A, B, and C are non-terminals.

0, 1, and 2 are terminals.

The start symbol is A, the rules are:

- $A \rightarrow 0A|1C|2B|0$
- $B \to 0B|1A|2C|1$
- $C \rightarrow 0C|1B|2A|2$

https://itempool.com/jjumadinova/live

Grammars (Context-free Gramars): ACTIVITY

Grammar

A, B, and C are non-terminals.

0, 1, and 2 are terminals.

The start symbol is A, the rules are:

- $A \rightarrow 0A|1C|2B|0$
- $B \to 0B|1A|2C|1$
- $C \rightarrow 0C|1B|2A|2$

https://itempool.com/jjumadinova/live

Can 1112202 be parsed?

Can 00102 be parsed?

Can 2121 be parsed?

A context-free grammar is said to be ambiguous if there is more than one derivation for a particular string.

A context-free grammar is said to be ambiguous if there is more than one derivation for a particular string.

Consider:

- $\mathbf{S} \rightarrow \epsilon$
- 3 A \rightarrow a
- \bullet B \rightarrow b

Consider:

- 1 Expr \rightarrow Expr + Expr
- 2 Expr \rightarrow Expr * Expr
- 3 Expr \rightarrow (Expr)
- 4 Expr \rightarrow var
- \bigcirc Expr \rightarrow const

There are two different derivation trees for the string var+var*var

- We need unambiguous grammars for parsing
 - The derivation determines the shape of the parse tree/ abstract syntax tree, which in turn determines meaning.

- We need unambiguous grammars for parsing
 - The derivation determines the shape of the parse tree/ abstract syntax tree, which in turn determines meaning.
- If a grammar can be made unambiguous at all, it is usually made unambiguous through layering.

- We need unambiguous grammars for parsing
 - The derivation determines the shape of the parse tree/ abstract syntax tree, which in turn determines meaning.
- If a grammar can be made unambiguous at all, it is usually made unambiguous through **layering**.
 - Have exactly one way to build each piece of the string.
 - Have exactly one way of combining those pieces back together.

Resolving Ambiguity

 With grammar: If you can re-design the language, can avoid the problem entirely, e.g., create an end to match closest if

Resolving Ambiguity

- With grammar: If you can re-design the language, can avoid the problem entirely, e.g., create an end to match closest if
- With tools: Most parser tools can cope with ambiguous grammars.
 - Typically one can specify operator precedence and associativity.
 - Allows simpler, ambiguous grammar with fewer non-terminals as basis for generated parser, without creating problems.

Activity 7: Grammar Ambiguity

Determine if the grammar is ambiguous

Regular Expressions used for Scanning

- Defined over some alphabet \sum .
 - For programming languages, alphabet is usually ASCII or Unicode.
- If re is a regular expression, L(re) is the language (set of strings) generated by re.

Fundamentals of Regular Expressions (REs)

• These are the basic building blocks that other REs are built from.

re	L(re)	Notes	
а	{ a }	Singleton set, for each symbol a in the alphabet Σ	
ε	{ε}	Empty string	
Ø	{}	Empty language	

Operations on REs

re	L(re)	Notes	
rs	L(r)L(s)	Concatenation – r followed by s	
r s	$L(r) \cup L(s)$	Combination (union) – r or s	
r*	L(r)*	0 or more occurrences of r (Kleene closure)	

Operations on REs

re	L(re)	Notes
rs	L(r)L(s)	Concatenation – r followed by s
r s	$L(r) \cup L(s)$	Combination (union) – r or s
r*	L(r)* 0 or more occurrences of r (Kleene closure)	

- Precedence: (R), R*, R_1R_2 , $R_1|R_2$ (lowest).
- Parenthesis can be used to group REs as needed.

Examples

re	Meaning	
+	single + character	
!	single! character	
!=	2 character sequence "!="	
xyzzy 5 character sequence "xyzzy"		
(1 0)*	Zero or more binary digits	
(1 0)(1 0)*	Binary constant (possible leading 0s)	
0 1(1 0)*	Binary constant without extra leading 0s, i.e, 0 or starts with 1 (has lowest precedence)	

Abbreviations on REs

• There are common abbreviations used for convenience.

Abbr.	Meaning	Notes
r+	(rr*)	1 or more occurrences
r?	(r ε)	0 or 1 occurrence
[a-z]	(a b z)	1 character in given range
[abxyz]	(a b x y z)	1 of the given characters

Example

Possible syntax for numeric constants

```
digit ::= [0-9]
digits ::= digit +
number ::= digits ( . digits )?
([eE] (+ | -)? digits )?
```

 Notice that this allows (unnecessary) leading 0s, e.g., 00045.6. (0, or 0.14 would be necessary 0s).

Example

Possible syntax for numeric constants

```
digit ::= [0-9]
nonzero_digit ::= [1-9]
digits ::= digit +
number ::= (0 | nonzero_digit digits?)
( . digits )?
([eE] (+ | -)? digits )?
```

RE Practice:

https://regexone.com/

