Richer output spaces

DSE 220

Multiclass classification

We have mostly discussed binary classification problems, with $|\mathcal{Y}| = 2$. Do the methods we've studied generalize to cases with k > 2 labels?

- Nearest neighbor?
- Generative models?
- Linear classifiers?

Multiclass classification

We have mostly discussed binary classification problems, with $|\mathcal{Y}|=2$. Do the methods we've studied generalize to cases with k>2 labels?

- Nearest neighbor?
- Generative models?
- Linear classifiers?

Linear classifiers seem inherently binary: there are just two sides of the boundary! How can they be extended to multiple classes?

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^p$, the classifier is given by $w \in \mathbb{R}^p$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}}.$$

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^p$, the classifier is given by $w \in \mathbb{R}^p$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}}.$$

When $\mathcal{Y} = \{1, 2, \dots, k\}$, specify a classifier by $w_1, \dots, w_k \in \mathbb{R}^p$:

$$\Pr(y=j|x)=\frac{e^{w_j\cdot x}}{e^{w_1\cdot x}+\cdots+e^{w_k\cdot x}}.$$

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^p$, the classifier is given by $w \in \mathbb{R}^p$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}}.$$

When $\mathcal{Y} = \{1, 2, \dots, k\}$, specify a classifier by $w_1, \dots, w_k \in \mathbb{R}^p$:

$$\Pr(y=j|x)=\frac{e^{w_j\cdot x}}{e^{w_1\cdot x}+\cdots+e^{w_k\cdot x}}.$$

Prediction: given a point x, predict label

$$\underset{j}{\operatorname{arg\,max}} \operatorname{Pr}(y = j | x) = \underset{j}{\operatorname{arg\,max}} w_j \cdot x$$

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^p$, the classifier is given by $w \in \mathbb{R}^p$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}}.$$

When $\mathcal{Y} = \{1, 2, ..., k\}$, specify a classifier by $w_1, ..., w_k \in \mathbb{R}^p$:

$$\Pr(y=j|x)=\frac{e^{w_j\cdot x}}{e^{w_1\cdot x}+\cdots+e^{w_k\cdot x}}.$$

Prediction: given a point x, predict label

$$\underset{j}{\operatorname{arg\,max}} \ \Pr(y = j | x) \ = \ \underset{j}{\operatorname{arg\,max}} \ w_j \cdot x$$

Learning: given data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \mathcal{Y}$, find vectors $w_1, \dots, w_k \in \mathbb{R}^p$ that maximize the likelihood

$$\prod_{i=1}^{n} \Pr(y^{(i)}|x^{(i)}).$$

Taking negative log gives a convex minimization problem.

- $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{1, 2, \dots, k\}$.
- **Model:** $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.
- **Prediction:** On instance x, predict label arg $\max_j w_j \cdot x$.

- $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{1, 2, ..., k\}$.
- Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.
- **Prediction:** On instance x, predict label $\arg \max_j w_j \cdot x$.

- $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{1, 2, \dots, k\}$.
- **Model:** $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.
- **Prediction:** On instance x, predict label arg $\max_i w_i \cdot x$.

- $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{1, 2, ..., k\}$.
- Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.
- **Prediction:** On instance x, predict label arg $\max_i w_i \cdot x$.

Each class is the intersection of half-spaces through the origin.

Multiclass Perceptron

Setting: $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{1, 2, \dots, k\}$

Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.

Prediction: On instance x, predict label arg $\max_i w_i \cdot x$.

Multiclass Perceptron

Setting: $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{1, 2, \dots, k\}$

Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.

Prediction: On instance x, predict label arg $\max_i w_i \cdot x$.

Learning. Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

- Initialize $w_1 = \cdots = w_k = 0$
- Repeat while some training point (x, y) is misclassified:

for correct label y: $w_y = w_y + x$ for predicted label \hat{y} : $w_{\hat{v}} = w_{\hat{v}} - x$

Multiclass Perceptron

Setting: $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{1, 2, \dots, k\}$

Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.

Prediction: On instance x, predict label arg $\max_i w_i \cdot x$.

Learning. Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

- Initialize $w_1 = \cdots = w_k = 0$
- Repeat while some training point (x, y) is misclassified:

for correct label y: $w_y = w_y + x$ for predicted label \hat{y} : $w_{\hat{y}} = w_{\hat{y}} - x$

Guarantee: Suppose all $||x^{(i)}|| \le R$ and that there exist unit-length $u_1, \ldots, u_k \in \mathbb{R}^p$ and "margin" $\gamma > 0$ such that for all i and all $y \ne y^{(i)}$,

$$u_{v^{(i)}} \cdot x^{(i)} - u_y \cdot x^{(i)} \geq \gamma.$$

Then the multiclass perceptron algorithm makes at most $2kR^2/\gamma^2$ updates.

Multiclass SVM

Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.

Prediction: On instance x, predict label $\arg \max_i w_i \cdot x$.

Multiclass SVM

Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.

Prediction: On instance x, predict label $\arg \max_j w_j \cdot x$.

Learning. Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{1, \dots, k\}$:

$$\begin{aligned} \min_{w_1, ..., w_k \in \mathbb{R}^p, \xi \in \mathbb{R}^n} & \frac{1}{2} \sum_{j=1}^k \|w_j\|^2 + C \sum_{i=1}^n \xi_i \\ \text{s.t.:} & w_{y^{(i)}} \cdot x^{(i)} - w_y \cdot x^{(i)} \ge 1 - \xi_i & \text{for all } i \text{ and all } y \ne y^{(i)} \\ & \xi \ge 0 \end{aligned}$$

Multiclass SVM

Model: $w_1, \ldots, w_k \in \mathbb{R}^p$, one per class.

Prediction: On instance x, predict label arg $\max_i w_i \cdot x$.

Learning. Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{1, \dots, k\}$:

$$\min_{w_1, ..., w_k \in \mathbb{R}^p, \xi \in \mathbb{R}^n} \frac{1}{2} \sum_{j=1}^k ||w_j||^2 + C \sum_{i=1}^n \xi_i$$
s.t.: $w_{y^{(i)}} \cdot x^{(i)} - w_y \cdot x^{(i)} \ge 1 - \xi_i$ for all i and all $y \ne y^{(i)}$
 $\xi \ge 0$

Once again, a convex optimization problem.

Quick quiz

Suppose we have input space $\mathcal{X} = \mathbb{R}^p$ and label space $\mathcal{Y} = \{1, 2, \dots, k\}$, and we have a training set of size n.

• If we use multiclass SVM, how many variables does the primal program have?

Quick quiz

Suppose we have input space $\mathcal{X} = \mathbb{R}^p$ and label space $\mathcal{Y} = \{1, 2, ..., k\}$, and we have a training set of size n.

- If we use multiclass SVM, how many variables does the primal program have?
- 2 How many constraints does it have?

Part-of-speech tagging.

the/D cat/N bit/V the/D dog/N

Part-of-speech tagging.

$$the/D$$
 cat/N bit/V the/D dog/N

Inaccurate to treat each tag as a separate prediction problem.

Part-of-speech tagging.

the/D
$$cat/N$$
 bit/V the/D dog/N

Inaccurate to treat each tag as a separate prediction problem.

To score a candidate tagging y of a sentence x, add up:

- Score for each (word, tag)
- Score for each trigram (tag1, tag2, tag3)
- Other such component scores

Part-of-speech tagging.

Inaccurate to treat each tag as a separate prediction problem.

To score a candidate tagging y of a sentence x, add up:

- Score for each (word, tag)
- Score for each trigram (tag1, tag2, tag3)
- Other such component scores

To tag a given sentence x: find the tagging y with maximum score. Can be done efficiently by dynamic programming.

Parsing.

Parsing.

Groucho Marx (1930): While hunting in Africa, I shot an elephant in my pajamas. How an elephant got into my pajamas I'll never know.

Here are two possible parse trees y for the sentence x = "I shot an elephant in my pajamas".

Parsing.

Groucho Marx (1930): While hunting in Africa, I shot an elephant in my pajamas. How an elephant got into my pajamas I'll never know.

Here are two possible parse trees y for the sentence x= "I shot an elephant in my pajamas".

Parts-based object recognition.

How to handle such output spaces \mathcal{Y} ?

How to handle such output spaces \mathcal{Y} ?

Features based on both the input and output.
 For any instance (e.g. sentence) x and candidate output (e.g. part-of-speech tagging) y, let

$$\phi_1(x,y), \phi_2(x,y), \ldots, \phi_k(x,y)$$

be features that give a sense of whether y is a desirable output for x. For instance: all word-tag pairs and tag trigrams. Package these features into a vector:

$$\Phi(x, y) = (\phi_1(x, y), \phi_2(x, y), \dots, \phi_k(x, y))$$

How to handle such output spaces \mathcal{Y} ?

Features based on both the input and output.
 For any instance (e.g. sentence) x and candidate output (e.g. part-of-speech tagging) y, let

$$\phi_1(x,y), \phi_2(x,y), \ldots, \phi_k(x,y)$$

be features that give a sense of whether y is a desirable output for x. For instance: all word-tag pairs and tag trigrams. Package these features into a vector:

$$\Phi(x,y) = (\phi_1(x,y), \phi_2(x,y), \dots, \phi_k(x,y))$$

• Score outputs based on a linear function of the features. The score for output $y \in \mathcal{Y}$ is $w \cdot \Phi(x, y)$, where $w \in \mathbb{R}^k$.

How to handle such output spaces \mathcal{Y} ?

Features based on both the input and output.
 For any instance (e.g. sentence) x and candidate output (e.g. part-of-speech tagging) y, let

$$\phi_1(x,y), \phi_2(x,y), \ldots, \phi_k(x,y)$$

be features that give a sense of whether y is a desirable output for x. For instance: all word-tag pairs and tag trigrams. Package these features into a vector:

$$\Phi(x, y) = (\phi_1(x, y), \phi_2(x, y), \dots, \phi_k(x, y))$$

- Score outputs based on a linear function of the features. The score for output $y \in \mathcal{Y}$ is $w \cdot \Phi(x, y)$, where $w \in \mathbb{R}^k$.
- Predict the highest-scoring output. For instance x, return $\arg\max_y w \cdot \Phi(x,y)$. This can often be done efficiently with dynamic programming.

How to handle such output spaces \mathcal{Y} ?

Features based on both the input and output.
 For any instance (e.g. sentence) x and candidate output (e.g. part-of-speech tagging) y, let

$$\phi_1(x,y), \phi_2(x,y), \ldots, \phi_k(x,y)$$

be features that give a sense of whether y is a desirable output for x. For instance: all word-tag pairs and tag trigrams. Package these features into a vector:

$$\Phi(x, y) = (\phi_1(x, y), \phi_2(x, y), \dots, \phi_k(x, y))$$

- Score outputs based on a linear function of the features. The score for output $y \in \mathcal{Y}$ is $w \cdot \Phi(x, y)$, where $w \in \mathbb{R}^k$.
- Predict the highest-scoring output. For instance x, return $\arg\max_y w \cdot \Phi(x, y)$. This can often be done efficiently with dynamic programming.

Learning task: given data, find a suitable weight vector w.

Structured-output Perceptron

Given training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathcal{X} \times \mathcal{Y}$:

- Initialize w = 0
- Repeat until satisfied:
 - For i = 1 to n:

Prediction:
$$\widehat{y} = \underset{y}{\operatorname{arg max}} w \cdot \Phi(x^{(i)}, y)$$

If $y^{(i)} \neq \widehat{y}$: $w = w + \Phi(x^{(i)}, y^{(i)}) - \Phi(x^{(i)}, \widehat{y})$

Structured-output Perceptron

Given training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathcal{X} \times \mathcal{Y}$:

- Initialize w = 0
- Repeat until satisfied:
 - For i = 1 to n:

Prediction:
$$\hat{y} = \underset{y}{\operatorname{arg \, max}} w \cdot \Phi(x^{(i)}, y)$$

If $y^{(i)} \neq \hat{y}$: $w = w + \Phi(x^{(i)}, y^{(i)}) - \Phi(x^{(i)}, \hat{y})$

Convergence guarantee under a margin condition, as before.

Quick quiz

How does structured-output perceptron generalize multiclass perceptron?

Multiclass perceptron

- Initialize $w_1 = \cdots = w_k = 0$
- Repeat while some (x, y) is misclassified: (Prediction is $\hat{y} = \arg\max_{y} w_{y} \cdot x$.)

for correct label
$$y$$
: $w_y = w_y + x$
for predicted label \hat{y} : $w_{\hat{v}} = w_{\hat{v}} - x$

Structured-output perceptron

- Initialize w = 0
- Repeat while some (x, y) is misclassified: (Prediction is $\hat{y} = \arg \max_{y} w \cdot \Phi(x, y)$.)

$$w = w + \Phi(x, y) - \Phi(x, \widehat{y})$$

Structured-output SVM

Loss function.

Not all errors are equal, especially when the outputs have many parts. Let $\Delta(y, \hat{y})$ be the loss when predicting \hat{y} instead of y.

Structured-output SVM

Loss function.

Not all errors are equal, especially when the outputs have many parts. Let $\Delta(y, \hat{y})$ be the loss when predicting \hat{y} instead of y.

Learning. Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathcal{X} \times \mathcal{Y}$:

$$\begin{aligned} \min_{w \in \mathbb{R}^k, \xi \in \mathbb{R}^n} & \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \\ w \cdot \Phi(x^{(i)}, y^{(i)}) - w \cdot \Phi(x^{(i)}, y) \geq \Delta(y^{(i)}, y) - \xi_i & \text{for all } i \text{ and all } y \neq y^{(i)} \\ & \xi \geq 0 \end{aligned}$$

Structured-output SVM

Loss function.

Not all errors are equal, especially when the outputs have many parts. Let $\Delta(y, \hat{y})$ be the loss when predicting \hat{y} instead of y.

Learning. Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathcal{X} \times \mathcal{Y}$:

$$\begin{aligned} \min_{w \in \mathbb{R}^k, \xi \in \mathbb{R}^n} & \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \\ w \cdot \Phi(x^{(i)}, y^{(i)}) - w \cdot \Phi(x^{(i)}, y) \geq \Delta(y^{(i)}, y) - \xi_i & \text{for all } i \text{ and all } y \neq y^{(i)} \\ & \xi \geq 0 \end{aligned}$$

Clever optimization tricks are needed to solve this efficiently.