```
연습문제(2)
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1.2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

연습문제(2)

#01. 작업준비

패키지 가져오기

```
import sys
import os
import numpy as np
import seaborn as sb
from pandas import DataFrame, read_excel, pivot_table, crosstab
from matplotlib import pyplot as plt
from statsmodels.graphics.mosaicplot import mosaic
```

직접 만든 모듈의 위치(폴더)를 파이썬에 등록

```
# helper.py 파일이 존재하는 폴더 위치를 파이썬 라이브러리 경로에 추가 sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))
```

직접 만든 모듈 참조

```
from helper import setCategory
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

데이터 불러오기

df = read_excel('https://data.hossam.kr/D02/wage.xlsx')
df

	year	age	maritl	race	education	region	jobclass	health
0	2006	18	1. Never Married	1. White	1. < HS Grad	2. Middle Atlantic	1. Industrial	1. <=Good
1	2004	24	1. Never Married	1. White	4. College Grad	2. Middle Atlantic	2. Information	2. >=Very Good
2	2003	45	2. Married	1. White	3. Some College	2. Middle Atlantic	1. Industrial	1. <=Good
3	2003	43	2. Married	3. Asian	4. College Grad	2. Middle Atlantic	2. Information	2. >=Very Good
4	2005	50	4. Divorced	1. White	2. HS Grad	2. Middle Atlantic	2. Information	1. <=Good

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

	year	age	maritl	race	education	region	jobclass	health
2995	2008	44	2. Married	1. White	3. Some College	2. Middle Atlantic	1. Industrial	2. >=Very Good
2996	2007	30	2. Married	1. White	2. HS Grad	2. Middle Atlantic	1. Industrial	2. >=Very Good
2997	2005	27	2. Married	2. Black	1. < HS Grad	2. Middle Atlantic	1. Industrial	1. <=Good
2998	2005	27	1. Never Married	1. White	3. Some College	2. Middle Atlantic	1. Industrial	2. >=Very Good
2999	2009	55	5. Separated	1. White	2. HS Grad	2. Middle Atlantic	1. Industrial	1. <=Good

3000 rows × 11 columns

문제 1, 2

데이터를 로드하여 명목형 변수를 1, 2 등으로 레이블링 하시오. 값의 종류는 데이터프레임으로부터 조회하여 확인하시오.

레이블링 된 명목형 변수를 category 타입으로 변경하시오.

```
연습문제(2)
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

명목형 변수 처리 및 라벨링

데이터의 유형

df.dtypes

```
int64
vear
                int64
age
maritl
               object
               object
race
education
               object
region
               object
iobclass
               object
health
               object
              object
health ins
logwage
              float64
wage
              float64
dtype: object
```

```
ilist = list(df.dtypes.index)
ilist
```

```
['year',
  'age',
  'maritl',
  'race',
  'education',
```

```
연습문제(2)
 #01. 작업준비
   패키지 가져오기
   직접 만든 모듈의 위치(폴더)
   를 파이썬에 등록
     직접 만든 모듈 참조
   데이터 불러오기
 문제 1, 2
   명목형 변수 처리 및 라벨링
     데이터의 유형
     특정 변수의 데이터 종류
     파악
     범용적인 경우를 고려한 코
     직접 만든 모듈을 활용
 문제 3
 문제 4
 문제 5
 문제 6
 문제 7.
   풀이 (1)
```

```
'region',
'jobclass',
'health',
'health_ins',
'logwage',
'wage']
```

특정 변수의 데이터 종류 파악

```
vlist = list(df.dtypes.values)
vlist
```

```
[dtype('int64'),
  dtype('o'),
  dtype('0'),
  dtype('o'),
  dtype('o'),
  dtype('o'),
  dtype('o'),
  dtype('o'),
  dtype('o'),
  dtype('o'),
  dtype('float64'),
  dtype('float64')]
```

```
cdf = df.copy()
for i, v in enumerate(vlist):
   if v = 'object':
```

```
23. 7. 11. 오후 1:12
   연습문제(2)
     #01. 작업준비
       패키지 가져오기
       직접 만든 모듈의 위치(폴더)
       를 파이썬에 등록
         직접 만든 모듈 참조
       데이터 불러오기
     문제 1, 2
       명목형 변수 처리 및 라벨링
         데이터의 유형
         특정 변수의 데이터 종류
         파악
         범용적인 경우를 고려한 코
         직접 만든 모듈을 활용
     문제 3
     문제 4
     문제 5
     문제 6
     문제 7.
       풀이 (1)
```

```
field name = ilist[i]
#print(field name)
vc = cdf[field name].value counts()
#print(vc)
for ii, vv in enumerate(list(vc.index)):
    p = vv.find(".")
    vnum = int(vv[:p])
    print(vv, " \rightarrow ", vnum)
    cdf.loc[cdf[field name] = vv, field name] = vnum
cdf[field name] = cdf[field name].astype('category')
print("-" * 30)
```

```
1. Never Married \longrightarrow 1
4. Divorced \longrightarrow 4
5. Separated \longrightarrow 5
3. Widowed \longrightarrow 3

1. White \longrightarrow 1
2. Black \longrightarrow 2
3. Asian \longrightarrow 3
4. Other \longrightarrow 4
```

cdf

2. Married \longrightarrow 2

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

- 2. HS Grad \longrightarrow 2
- 4. College Grad \longrightarrow 4
- 3. Some College \longrightarrow 3
- 5. Advanced Degree \longrightarrow 5
- 1. < HS Grad \longrightarrow 1
- 2. Middle Atlantic \longrightarrow 2
- 1. Industrial \longrightarrow 1
- 2. Information \longrightarrow 2
- 2. \geqslant Very Good \longrightarrow 2
- 1. \leq Good \longrightarrow 1
- 1. Yes \longrightarrow 1
- 2. No \longrightarrow 2

	year	age	maritl	race	education	region	jobclass	health	health_i
0	2006	18	1	1	1	2	1	1	2
1	2004	24	1	1	4	2	2	2	2
2	2003	45	2	1	3	2	1	1	1
3	2003	43	2	3	4	2	2	2	1
4	2005	50	4	1	2	2	2	1	1
2995	2008	44	2	1	3	2	1	2	1

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

				"\ / 1	•				
	year	age	maritl	race	education	region	jobclass	health	health_i
2996	2007	30	2	1	2	2	1	2	2
2997	2005	27	2	2	1	2	1	1	2
2998	2005	27	1	1	3	2	1	2	1
2999	2009	55	5	1	2	2	1	1	1

3000 rows × 11 columns

범용적인 경우를 고려한 코드

```
cdf = df.copy()
# 데이터 프레임의 변수명을 리스트로 변환
ilist = list(cdf.dtypes.index)
# 데이터 프레임의 변수형을 리스트로 변환
vlist = list(cdf.dtypes.values)

# 변수형에 대한 반복 처리
for i, v in enumerate(vlist):
    # 변수형이 object이면?
    if v == 'object':
        # 변수명을 가져온다.
        field_name = ilist[i]
        # 가져온 변수명에 대해 값의 종류별로 빈도를 카운트 한 후 인덱스 이름순으로
        vc = cdf[field_name].value_counts().sort_index()
        #print(vc)
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

```
# 인덱스 이름순으로 정렬된 값의 종류별로 반복 처리

for ii, vv in enumerate(list(vc.index)):

# 일련번호값 생성

vnum = ii + 1

#print(vv, " → ", vnum)

# 일련번호값으로 치환

cdf.loc[cdf[field_name] = vv, field_name] = vnum

# 해당 변수의 데이터 타입을 범주형으로 변환

cdf[field_name] = cdf[field_name].astype('category')
```

cdf

	year	age	maritl	race	education	region	jobclass	health	health_i
0	2006	18	1	1	1	1	1	1	2
1	2004	24	1	1	4	1	2	2	2
2	2003	45	2	1	3	1	1	1	1
3	2003	43	2	3	4	1	2	2	1
4	2005	50	4	1	2	1	2	1	1
•••			•••			•••		•••	•••
2995	2008	44	2	1	3	1	1	2	1
2996	2007	30	2	1	2	1	1	2	2
2997	2005	27	2	2	1	1	1	1	2

연습문제(2) 풀이.ipynb

연습문제(2)

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

	year	age	maritl	race	education	region	jobclass	health	health_i
2998	2005	27	1	1	3	1	1	2	1
2999	2009	55	5	1	2	1	1	1	1

3000 rows × 11 columns

직접 만든 모듈을 활용

#cdf = setCategory(df, ignore=['education']) cdf = setCategory(df) cdf.dtypes

int64 year int64 age maritl category category race education category region category jobclass category health category health ins category logwage float64 float64 wage

dtype: object

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

문제 3

수치형 변수에 대한 요약 통계를 확인하고 설명하시오

cdf.describe()

	year	age	logwage	wage
count	3000.000000	3000.000000	3000.000000	3000.000000
mean	2005.791000	42.414667	4.653905	111.703608
std	2.026167	11.542406	0.351753	41.728595
min	2003.000000	18.000000	3.000000	20.085537
25%	2004.000000	33.750000	4.447158	85.383940
50%	2006.000000	42.000000	4.653213	104.921507
75%	2008.000000	51.000000	4.857332	128.680488
max	2009.000000	80.000000	5.763128	318.342430

- 1. 조사 인원은 3000명이다.
- 2. 조사 인원의 연령은 18세~80세 까지 이고, 평균 연령은 42.4세이다.
- 3. 조사 인원의 임금은 20~318이고, 평균 임금은 111.7, 로그 변환 값은 4.65이다.
- 4. 연령에 대한 표준 편차는 11.5이고, 임금의 표준 편차는 41.73이다.
 - 이 임금에 대한 표준편차가 크다.

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

문제 4

명목형 변수에 대한 기술 통계를 수행하고 설명하시오.

```
cdf2 = cdf.drop(['year', 'age', 'logwage', 'wage'], axis=1)

for v in cdf2.columns:
    print(cdf2[v].value_counts())
    print("-" * 30)
```

```
maritl
2
     2074
      648
1
      204
       55
5
3
       19
Name: count, dtype: int64
race
1
     2480
      293
      190
3
       37
Name: count, dtype: int64
education
     971
2
```

```
23. 7. 11. 오후 1:12
   연습문제(2)
     #01. 작업준비
       패키지 가져오기
       직접 만든 모듈의 위치(폴더)
       를 파이썬에 등록
         직접 만든 모듈 참조
       데이터 불러오기
     문제 1, 2
       명목형 변수 처리 및 라벨링
         데이터의 유형
         특정 변수의 데이터 종류
         파악
         범용적인 경우를 고려한 코
         직접 만든 모듈을 활용
     문제 3
     문제 4
     문제 5
     문제 6
     문제 7.
```

```
685
     650
5
     426
     268
Name: count, dtype: int64
region
     3000
Name: count, dtype: int64
iobclass
     1544
1
     1456
Name: count, dtype: int64
health
     2142
      858
Name: count, dtype: int64
health ins
     2083
      917
Name: count, dtype: int64
```

```
cdf2 = df.drop(['year', 'age', 'logwage', 'wage'], axis=1)
for v in cdf2.columns:
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

```
print(cdf2[v].value_counts())
print("-" * 30)
```

maritl

2. Married 2074
1. Never Married 648
4. Divorced 204
5. Separated 55
3. Widowed 19
Name: count, dtype: int64

race

1. White 2480

2. Black 293

3. Asian 190

4. Other 37

Name: count, dtype: int64

education

2.	HS Grad	971
4.	College Grad	685
3.	Some College	650
5.	Advanced Degree	426
1.	< HS Grad	268
Nar	ne: count, dtype:	int64

region

2. Middle Atlantic 3000 Name: count, dtype: int64

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

jobclass

1. Industrial 1544

2. Information 1456

Name: count, dtype: int64

health

2. ≥ Very Good 2142

1. ≤ Good 858

Name: count, dtype: int64

health_ins

1. Yes 2083

2. No 917

Name: count, dtype: int64

문제 5

결혼 여부에 따른 임금 수준을 비교하고자 한다. 결혼 여부에 따라 서브플롯을 구성하여 임금 수준을 히스토그램으로 시각화 하고 설명하시오.

```
vcount = cdf['maritl'].value_counts().sort_index()
vcount.index
```

```
CategoricalIndex([1, 2, 3, 4, 5], categories=[1, 2, 3, 4, 5], ordered=Fa
```

```
연습문제(2)
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 ㄷ

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

```
fig, ax = plt.subplots(len(vcount.index), 1, figsize=(12, 25))

fig.subplots_adjust(hspace=0.5)

for i, v in enumerate(vcount.index):
    mdf = cdf.query("maritl = @v")
    hist, bins = np.histogram(mdf['wage'], bins=10)
    bins = np.round(bins, 1)
    sb.histplot(data=mdf, x='wage', bins=10, ax=ax[i])
    ax[i].set_title('maritl = %d' % v)
    ax[i].set_xticks(bins)
    ax[i].set_xticklabels(bins, rotation=30)

plt.show()
plt.close()
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

23. 7. 11. 오후 1:12

연습문제(2)

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.


```
연습문제(2)
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

문제 6

교육 수준에 따른 임금에 대한 히스토그램을 시각화 하고 설명하시오. 교육수준별로 그래프를 나누어 서브플롯으로 제시해야 합니다.

```
vcount = cdf['education'].value counts().sort index()
fig, ax = plt.subplots(len(vcount.index), 1, figsize=(12, 25))
fig.subplots adjust(hspace=0.5)
for i, v in enumerate(vcount.index):
   mdf = cdf.querv("education = @v")
   hist, bins = np.histogram(mdf['wage'], bins=10)
    bins = np.round(bins, 1)
    sb.histplot(data=mdf, x='wage', bins=10, ax=ax[i])
   ax[i].set title('education = %d' % v)
   ax[i].set xticks(bins)
    ax[i].set xticklabels(bins, rotation=30)
plt.show()
plt.close()
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 ㄷ

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

23. 7. 11. 오후 1:12

연습문제(2)

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

문제 7.

직군별 건강상태를 확인하고자 한다. 적절한 형태로 데이터를 재배치하고 설명하시오.

풀이 (1)

hdf = cdf.filter(['jobclass', 'health', 'age'])
hdf

	jobclass	health	age
0	1	1	18
1	2	2	24
2	1	1	45
3	2	2	43
4	2	1	50
•••	•••	•••	•••
2995	1	2	44
2996	1	2	30
2997	1	1	27
2998	1	2	27
2999	1	1	55

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 ㄷ

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

3000 rows × 3 columns

pivot_table(hdf, index='jobclass', columns='health', aggfunc='count')

	age	
health	1	2
jobclass		
1	487	1057
2	371	1085

풀이2 - 교차표 활용

hdf2 = cdf.filter(['jobclass', 'health'])
hdf2

	jobclass	health
0	1	1
1	2	2
2	1	1
3	2	2
4	2	1
•••		

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

	jobclass	health
2995	1	2
2996	1	2
2997	1	1
2998	1	2
2999	1	1

3000 rows × 2 columns

crosstab(index=hdf2['jobclass'], columns=hdf2['health'], rownames=['직군'], colnames=['건강상태'], margins=True)

건강상태	1	2	All
직군			
1	487	1057	1544
2	371	1085	1456
All	858	2142	3000

문제 8

교육 수준을 인종 비율에 따라 설명하고자 한다. 적절한 시각화 자료를 제시하고 설명하시오.

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

풀이 (1)

edf = cdf.filter(['education', 'race'])
edf

	education	race
0	1	1
1	4	1
2	3	1
3	4	3
4	2	1
•••		
2995	3	1
2996	2	1
2997	1	2
2998	3	1
2999	2	1

3000 rows × 2 columns

풀이 1 - catplot 사용

g = sb.catplot(data=edf, x='race', hue='education', kind="count")
g.fig.set_figwidth(10)

```
연습문제(2)
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코 드

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.


```
mosaic(edf, ['education', 'race'])
plt.show()
plt.close()
```

#01. 작업준비

패키지 가져오기

직접 만든 모듈의 위치(폴더) 를 파이썬에 등록

직접 만든 모듈 참조

데이터 불러오기

문제 1, 2

명목형 변수 처리 및 라벨링

데이터의 유형

특정 변수의 데이터 종류 파악

범용적인 경우를 고려한 코

직접 만든 모듈을 활용

문제 3

문제 4

문제 5

문제 6

문제 7.

