ÁLGEBRA :: PROVA 02

PROF. TIAGO MACEDO

Nome:	A agin atura.	ъΛ.
Nome:	Assinatura:	na

Questão 1. Considere G um grupo agindo em um conjunto finito não-vazio X. Considere $H \subseteq G$ um subgrupo e denote por O_1, \ldots, O_r as órbitas disjuntas da ação de H em X.

- (a) (1,0 ponto) Mostre que, para todos $i \in \{1,\ldots,r\}$ e $g \in G$, existe $j \in \{1,\ldots,r\}$ tal que $g \cdot O_i := \{g \cdot x \mid x \in O_i\} = G_j$.
- (b) (1,0 ponto) Mostre que, se G age transitivamente em X, então G age transitivamente em $\{O_1, \ldots, O_r\}$.
- (c) (1,0 ponto) Fixe $x \in X$. Mostre que $|O_i| = |H: (H \cap G_x)|$ para todo $i \in \{1, \ldots, r\}$.

Questão 2. Seja G um grupo finito. Mostre que:

- (a) (1,0 ponto) Se p é primo e $|G| = p^n$ para algum n > 0, então todo subgrupo $H \subseteq G$ tal que |G:H| = p é normal.
- (b) (1,0 ponto) Se |G| = 2k e k é impar, então G tem um subgrupo de indice 2.
- (c) (1,0 ponto) Se p < q são primos e |G| = pq, então $G \cong \mathbb{Z}_q \rtimes_{\varphi} \mathbb{Z}_p$ para algum homomorfismo de grupos $\varphi \colon \mathbb{Z}_p \to \operatorname{Aut}(\mathbb{Z}_q)$.

Questão 3. Considere o grupo multiplicativo $G = GL_2(\mathbb{C})$ e os subgrupos

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C}) \mid c = 0 \right\}, \qquad D = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C}) \mid b = c = 0 \right\},$$

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C}) \mid c = 0, \ a = d = 1 \right\}.$$

- (a) (1,0 ponto) Mostre que todo elemento de G é conjugado a algum elemento de B.
- (b) (1,0 ponto) Mostre que $B \cong U \rtimes_{\psi} D$ para algum $\psi \colon D \to \operatorname{Aut}(U)$.

Questão 4. Construa exemplos de grupos satisfazendo as seguintes condições:

- (a) (1,0 ponto) Um grupo infinito tal que todo elemento tem ordem 1 ou 2.
- (b) (1,0 ponto) Um grupo tal que todo elemento tem ordem finita e, para cada n > 0, existe algum elemento de ordem n.
- (c) (1,0 ponto) Um grupo contendo elementos de ordem infinita e de ordem 2.
- (d) (1,0 ponto) Um grupo G não-trivial tal que $G \cong G \times G$.