Friend-based Ranking: Figures

This notebook is to produce figures for *Friend-based Ranking*, available at <u>arXiv:1807.05093</u>. (https://arxiv.org/pdf/1807.05093.pdf).

Setup

Packages

```
In [1]: # Import packages
    import numpy as np
    import scipy as sp
    import networkx as nx
    import decimal
    import math
    import pandas as pd
    import statsmodels.api as sm
    import random

# To import Matlab matrices
    import scipy.io

# Plotting
    import matplotlib.pyplot as plt
    from matplotlib.patches import Patch
    import seaborn as sns
```

```
In [2]: # Suppress the warnings from matplotlib about networkx
import warnings
warnings.filterwarnings("ignore")
# Pandas display settings
pd.set_option("display.max_rows",999)
pd.options.display.float_format = '{:,.4f}'.format
#Seaborn display settings
sns.set(style="ticks", palette="Greys", font_scale=1.4)
#Display plots inside notebook
%matplotlib inline
```

Generate the random seed from <u>random.org (https://www.random.org/integers/?num=1&min=1&max=100000&col=1&base=10&format=html&rnd=new)</u>

```
In [3]: # Seed for random numbers
seed = 40588
random.seed(seed)
```

Colors

I use the ColorBrewer tool (http://colorbrewer2.org/) to choose color palettes.

Read data

Save the panda dataframes to pickle files so that I don't need to extract the data again.

```
In [6]: df = pd.read_pickle('pd_df/netdata.pickle')
```

Tables

Out[8]:

	country	India		Indonesia		
	calculated_on	full	giant	full	giant	
num_nodes	mean	198.7200	188.8667	52.9858	23.6019	
	min	77.0000	75.0000	11.0000	2.0000	
	max	356.0000	341.0000	263.0000	82.0000	
	count	75.0000	75.0000	633.0000	633.0000	
ave_deg	mean	8.8999	9.3437	3.8477	6.4979	
	min	6.1091	6.8224	0.0769	1.0000	
	max	13.4444	13.8286	15.8605	20.6667	
	count	75.0000	75.0000	633.0000	633.0000	
density	mean	0.0491	0.0541	0.1049	0.3588	
	min	0.0225	0.0245	0.0012	0.0930	
	max	0.1141	0.1208	0.8627	1.0000	
	count	75.0000	75.0000	633.0000	633.0000	
ave_clust	mean	0.2510	0.2638	0.4149	0.7320	
	min	0.1516	0.1627	0.0000	0.0000	
	max	0.4397	0.4535	0.9274	1.0000	
	count	75.0000	75.0000	633.0000	633.0000	
ave_dist	mean	nan	2.7463	1.5017	2.0432	
	min	nan	2.2955	1.1373	1.0000	
	max	nan	3.3163	1.9300	4.8097	
	count	0.0000	75.0000	5.0000	633.0000	
info_total	mean	0.3459	0.3805	0.2218	0.7142	
	min	0.1716	0.1873	0.0018	0.2051	
	max	0.5981	0.6306	1.0000	1.0000	
	count	75.0000	75.0000	633.0000	633.0000	
links_supported	mean	0.8182	0.8182	0.9350	0.9542	
	min	0.6751	0.6751	0.0000	0.0000	
	max	0.9474	0.9474	1.0000	1.0000	
	count	75.0000	75.0000	633.0000	633.0000	

Figures

Distributions

```
df_plot= df[(df.calculated_on=="giant")][['info_total_friend_only','links_supported',
                                                         'density','ave_dist','country','num_node
          s']]
         df_plot.groupby('country').num_nodes.describe()
Out[10]:
                    count
                                                    25%
                                                             50%
                                                                      75%
                            mean
                                     std
                                             min
                                                                              max
          country
              India
                     75.0000
                            188.8667
                                     57.1485 75.0000
                                                    146.0000
                                                             175.0000
                                                                      226.5000
                                                                              341.0000
                    633.0000
          Indonesia
                             23.6019 12.3280
                                              2.0000
                                                     15.0000
                                                              22.0000
                                                                      31.0000
                                                                               82.0000
In [11]:
         df_plot[df_plot.info_total_friend_only==1].country.value_counts()
Out[11]:
         Indonesia
         Name: country, dtype: int64
In [12]:
         df plot[df plot.links supported==1].country.value counts()
Out[12]:
         Indonesia
                       127
         Name: country, dtype: int64
In [13]:
          sns.distplot(df_plot[df_plot.country=="Indonesia"]['info_total_friend_only'],kde=Fals
          e,bins=np.arange(0,1.06,0.05),
                       color=colors['Indonesia'],hist_kws={'alpha':1})
          plt.ylabel('Networks')
          plt.xlabel('Density comparison network')
          sns.despine()
          plt.savefig('figures/hist density comp indonesia.pdf', bbox inches='tight')
```


Density comparsion network vs social network

Pairplot

```
In [18]:
          df_pairplot = df[df.calculated_on=="giant"][['info_total_friend_only','links_supporte
          d','ave_clust','density','country']]
          df_pairplot.rename(columns={
                                 'density': 'Density \n social network',
                                 'ave_clust': 'Average clustering',
                                 'info_total_friend_only': 'Density \n comparison network',
                                 'links_supported':'Support',
                                 'country': 'Country'}, inplace=True)
In [19]:
          ax = sns.pairplot(data=df_pairplot[['Density \n social network', 'Average clustering',
                                                   'Density \n comparison network', 'Support', 'Countr
          y']],
                                hue='Country',
                                palette=colors)
          ax._legend.remove()
          ax.savefig('figures/pairplot.pdf');
             social network
                0.5
                0.0
             Average clustering
                1.0
                0.5
                0.0
             comparison network
                1.0
                0.5
                0.0
                1.0
             Support
5.0
                0.0
                                                                                       0
                          Density
                                          Average clustering
                                                                      Density
                                                                                            Support
                       social network
                                                                comparison network
```

Comparison of mechanisms

```
In [20]: df_comp = df[(df.info_SP.notnull())&
                    (df.country=='Indonesia')&
                    (df.calculated_on=='giant')&
                    (df.num_nodes<=20)&
                    (df.info_expostIC<1)&
                    (df.info_total_friend_only>df.info_expostIC)][['key',
                                                                    'num_nodes',
                                                                    'info_total_friend_only',
                                                                    'info_expostIC',
                                                                    'comp_supp',
                                                                    'info_SP']]
In [21]: | df_comp['share_partition'] = df_comp.info_SP/df_comp.info_total_friend_only
In [22]: | df_comp['share_supp'] = df_comp.info_expostIC/df_comp.info_total_friend_only
In [23]: df_comp.describe()
```

Out[23]:

	num_nodes	info_total_friend_only	info_expostIC	comp_supp	info_SP	share_partition	share_su
count	213.0000	213.0000	213.0000	213.0000	213.0000	213.0000	213.00
mean	14.3803	0.7499	0.6006	0.3769	0.4994	0.6605	0.79
std	3.9989	0.1449	0.1599	0.1321	0.1279	0.0692	0.14
min	4.0000	0.3333	0.0000	0.0000	0.1667	0.5000	0.00
25%	11.0000	0.6667	0.4967	0.2857	0.4211	0.6102	0.71
50%	15.0000	0.7727	0.6222	0.3660	0.5000	0.6512	0.83
75%	18.0000	0.8611	0.7143	0.4505	0.5810	0.7083	0.90
max	20.0000	0.9778	0.8889	0.8000	0.8000	0.8403	0.98

```
In [24]: | df_comp[df_comp.info_expostIC>df_comp.info_SP].key.count()
Out[24]: 162
In [25]: | df_comp[df_comp.info_expostIC==df_comp.info_SP].key.count()
```

Out[25]: 13

In [27]: df_comp[['info_expostIC','info_SP']].describe()

Out[27]:

	info_expostIC	info_SP
count	213.0000	213.0000
mean	0.6006	0.4994
std	0.1599	0.1279
min	0.0000	0.1667
25%	0.4967	0.4211
50%	0.6222	0.5000
75%	0.7143	0.5810
max	0.8889	0.8000