Discrete Mathematics

combinations, inverse binomial transform, distributing objects into boxes

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 11

THEOREM: There is a T-route from $A = (a, \alpha)$ to $B = (b, \beta)$ iff

(1)
$$b \ge a$$
; (2) $b - a \ge |\beta - \alpha|$; and (3) $2|(b + \beta - a - \alpha)$.

- (1) b > a; (2) $b a \ge |\beta \alpha|$; and (3) $2|(b + \beta a \alpha)$. **THEOREM:** If $A = (a, \alpha), B = (b, \beta)$ satisfy the T-condition.

 # of T-routes from A to B is $\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta-\alpha}{2}\right)! \left(\frac{b-a}{2} \frac{\beta-\alpha}{2}\right)!}$
 - $\alpha, \beta > 0$: # of T-Routes intersecting the x-axis is $\frac{(b-a)!}{(\frac{b-a}{2} + \frac{\beta+\alpha}{2})!(\frac{b-a}{2} \frac{\beta+\alpha}{2})!}$

THEOREM: The number of solutions of the equation system

EXECUTE: The number of solutions of the equation system
$$\begin{cases} x_1 + x_2 + \dots + x_{2n+1} = n \\ x_1 + x_2 + \dots + x_i < i/2, i = 1, 2, \dots, 2n + 1 \\ x_i \in \{0, 1\}, i = 1, 2, \dots, 2n + 1 \end{cases}$$
 is $C_n = \frac{(2n)!}{n!(n+1)!}$ Catalan Number: # of ways of parenthesizing $a_1 * a_2 * \dots * a_n * a_{n+1}$

is
$$C_n = \frac{(2n)!}{n!(n+1)!}$$

Combinations of Sets

DEFINITION: Let $A = \{a_1, ..., a_n\}$ and let $r \in \{0, 1, ..., n\}$.

• **r-combination of A**: an **r**-subset of **A**.

Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 < \dots < i_r \le n$ the number of r-combinations of an n-element set

THEOREM: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ for all $n \in \mathbb{Z}^+$ and $r \in \{0,1,...,n\}$.

DEFINITION: Let $A = \{a_1, ..., a_n\}$ and let $r \ge 0$.

- **r-combination of A with repetition**: a multiset $\{x_1 \cdot a_1, ..., x_n \cdot a_n\}$ of r elements, where $x_1, ..., x_n \ge 0$ are integers and $x_1 + \cdots + x_n = r$.
 - Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 \le i_2 \le \dots \le i_r \le n$

THEOREM: The number of r-combinations of an n element set with repetition is $\binom{n+r-1}{r}$

Combinations of Sets

- \mathcal{U} : the set of all r-combinations of A with repetition
- \mathcal{V} : the set of all r-combinations of [n+r-1] without repetition
 - Let $U = \{u_1, u_2, ..., u_r\} \in U$ and $1(\le u_1 \le u_2 \le ... \le u_r \le n$.
 - - $\{u_1, u_2 + 1, \dots, u_r + r 1\} \in \mathcal{V}$
 - $f: \mathcal{U} \to \mathcal{V} \{u_1, u_2, ..., u_r\} \mapsto \{u_1, u_2 + 1, ..., u_r + r 1\}$
 - *f* is bijective. Hence, $|\mathcal{U}| = |\mathcal{V}| = \binom{n+r-1}{r}$

HEOREM: The number of natural number solutions of the

equation
$$x_1 + x_2 + \dots + x_n = r$$
 is $\binom{n+r-1}{r}$.

- $\mathcal{X} = \{(x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{N} \text{ and } x_1 + \cdots + x_n = r\}$
- y: the set of all r-combinations of [n] with repetition
- $f: \mathcal{X} \to \mathcal{Y}$ $(x_1, \dots, x_n) \mapsto \{x_1 \cdot 1, x_2 \cdot 2, \dots, x_n \cdot n\}$
 - f is bijective. Hence, $|x| = |y| \neq \binom{n+r-1}{r}$.

Application

In is limiting # of layers. So go through

Call possible

EXAMPLE: What is the value of k after the program execution?

- k = 0;
- for $i_1 := 1 \text{ to}(n) \text{do}$
 - for i_2 : = 1 to i_1 do

Analysis:

- for i_r : = 1 to i_{r-1} do $k \coloneqq k+1$; $j \in i_r \le i_r = 1$ Loop variables: $1 \le i_r \le i_{r-1} \le \cdots \le i_1 \le n$
- The number of iterations is equal to the number of r-combinations of the set [n] with repetition

个级伤那

- In every iteration, k increases by 1.
 - After the program execution, $k = \binom{n+r-1}{r}$

Combinations of Multiset

- **DEFINITION:** Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k\}$ be an *n*-multiset. Let $r \in \{0, 1, ..., n\}$.
 - r-combination of A: an r-subset (multiset) of A
 - Notation: $\{x_1 \cdot a_1, x_2 \cdot a_2, \dots, x_k \cdot a_k\}$, where $0 \le x_i \le n_i$ for every $i \in [k]$ and $x_1 + x_2 + \dots + x_k = r$.
- **EXAMPLE:** $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c\}$
 - $\{1 \cdot b, 2 \cdot c\}$ is a 3-combination of A; a 3-subset of A

REMARK:

- For every $r \in \{0,1,...,n\}$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ without repetition is an r-combination of $\{1 \cdot a_1, 1 \cdot a_2, ..., 1 \cdot a_n\}$.
 - For every $r \ge 0$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ with repetition is an r-combination of $\{\infty \cdot a_1, \infty \cdot a_2, ..., \infty \cdot a_n\}$.

Trans

$$\begin{cases} \gamma_{1}\alpha_{1}, \chi_{2}\alpha_{2}... \chi_{n}\alpha_{n} \\ 0 \leq \chi_{1} \leq 1 \\ \chi_{1} + \chi_{2} + ... \chi_{n} = r \end{cases}$$

$$\begin{cases} \chi_{1}\alpha_{1}, \chi_{2}\alpha_{2}... \chi_{n}\alpha_{n} \\ \chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

$$\chi_{1} + \chi_{2} + ... + \chi_{2} + ... + \chi_{n} = r \end{cases}$$

Inverse Binomial Transform

DEFINITION: The **binomial transform** of $\{a_n\}_{n\geq s}$ is a sequence $\{b_n\}_{n\geq s}$ such that

$$b_n = \sum_{k=s}^n \binom{n}{k} a_k \tag{1}$$

DEFINITION: The **inverse binomial transform** of $\{a_n\}_{n\geq s}$ is a sequence $\{b_n\}_{n\geq s}$ such that

$$b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k \quad (2)$$

QUESTION: Given (1), how to find the sequence $\{a_n\}$?

- Answer: $\{a_n\}$ is the inverse binomial transform of $\{b_n\}$
- Application: determine $\{a_n\}$ via $\{b_n\}$
- Proof?

$$bst1 = \sum_{k=s}^{st1} {\binom{st1}{k}} ak$$

$$= {\binom{st1}{s}} ast {\binom{st1}{st1}} \cdot ast1$$

基的元本社会

Combinatorial Proofs

DEFINITION: A **combinatorial proof** of an identity L = R is

- a double counting proof, which shows that L, R count the same set of objects but in different ways: LIR:用两件和目标法 H身 |x|中的 • L = |X| = R and L, R count |X| in different ways.
- a bijective proof, which shows a bijection between the sets of objects counted by L and R:
 - L = |X|, R = |Y| and there is a bijection $f: X \to Y$.

EXAMPLE:
$$\binom{n}{r} = \binom{n}{n-r}$$

medica .

神量
$$X = \{s \in \{0,1\}^n : s \text{ contains } r \text{ Os}\} = \{s \in \{0,1\}^n : s \text{ contains } n - r \text{ 1s}\}$$

• $\binom{n}{r} = |X|$ やけまめね 「そう はまえなき

• $\binom{n}{n-r} = |X|$

$$\binom{n}{n-r} = |X| \qquad \text{for } X = X$$

Inverse Binomial Transform

LEMMA:
$$\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$$
 for any $n, k, r \in \mathbb{N}$ such that $n \geq k \geq r$.

- Let $U = \{u_1, u_2, ..., u_n\}$ be a finite set of n elements
- $S = \{(A, B): A \subseteq U, |A| = k, B \subseteq A, |B| = r\}$
 - choose A then choose B: $|S| = \binom{n}{k} \binom{k}{r}$, the left-hand side
 - choose B then choose A: $|S| = \binom{n}{r} \binom{n-r}{k-r}$, the right-hand side $\binom{n}{s} \binom{n-r}{s-r}$

LEMMA:
$$\sum_{k=r}^{n} (-1)^{n-k} {n \choose k} {k \choose r} = \begin{cases} 1 & n = r \\ 0 & n > r \end{cases}$$
 when $n \ge r$.

- $\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$ as $n \ge k \ge r \ge 0$
 - left = $\sum_{k=r}^{n} (-1)^{n-k} {n \choose r} {n-r \choose k-r} = {n \choose r} \sum_{k=r}^{n} (-1)^{(n-r)-(k-r)} {n-r \choose k-r}$

$$= \binom{n}{r} \sum_{i=0}^{n-r} (-1)^{(n-r)+i} \binom{n-r}{i} \frac{n}{n-r}$$

$$= \mathbf{right} \binom{n}{r} \binom{n-r}{i} \frac{n}{n-r} \binom{n-r}{i} \binom{n-$$

Inverse Binomial Transform

LEMMA: Let $n, s \in \mathbb{N}$, $s \leq n$. Then $\sum_{k=s}^{n} \sum_{i=s}^{k} a_{k,i} = \sum_{i=s}^{n} \sum_{k=i}^{n} a_{k,i}$

					,	_ € 5 _	
					: 2K	<u> </u>	E pi
k i	S	s+1	s + 2	• • •	n	row sum	
S	$a_{s,s}$			•••		α_s	
s + 1	$a_{s+1,s}$	$a_{s+1,s+1}$		•••		α_{s+1}	
s + 2	$a_{s+2,s}$	$a_{s+2,s+1}$	$a_{s+2,s+2}$	•••		α_{s+2}	
:	:	:	:	•••	•	:	
n	$a_{n,s}$	$a_{n,s+1}$	$a_{n,s+2}$	•••	$a_{n,n}$	α_n	\$2
col sum	β_s	β_{s+1}	β_{s+2}	•••	β_n	$\Sigma\Sigma$	Sum

THEOREM: Let $\{a_n\}$, $\{b_n\}$ be two sequences s.t. for all $n \ge s$,

$$a_n = \sum_{k=s}^n \binom{n}{k} b_k$$
. Then $b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k$ $(n \ge s)$

$$a_{n} = \sum_{k=s}^{n} {n \choose k} b_{k}. \text{ Then } b_{n} = \sum_{k=s}^{n} {(-1)^{n-k} \binom{n}{k}} a_{k} \quad (n \geq s).$$

$$\sum_{k=s}^{n} {(-1)^{n-k} \binom{n}{k}} a_{k} = \sum_{k=s}^{n} {(-1)^{n-k} \binom{n}{k}} \sum_{i=s}^{n} {\binom{n}{k}} b_{i} = \sum_{k=s}^{n} {\binom{n}{k}} b_{i} = \sum_{k=s}^{n} {\binom{n}{k}} b_{i} = b_{n}$$

$$= \sum_{i=s}^{n} \sum_{k=i}^{n} {(-1)^{n-k} \binom{n}{k}} {\binom{k}{i}} b_{i} = b_{n}$$

 $bn \cdot 1 + ba \cdot (0 + \cdots + b = 0)$ $= bn \cdot$

Distributing Objects into Boxes

The Problem Statement: distributing n objects into k boxes

- Objects may be distinguishable (**labeled** with numbers 1,2, ..., n) or indistinguishable (**unlabeled**)
- Boxes may be distinguishable (**labeled** with numbers 1, 2, ..., k) or indistinguishable (**unlabeled**)
- ? What is the # of distributing n objects into k?

Problem Type	Objects	Boxes
1	labeled	labeled
2	unlabeled	labeled
3	labeled	unlabeled
4	unlabeled	unlabeled

Problem Classification

Type 1

Type

THEOREM: The number of ways of distributing n labeled objects into k labeled boxes such that n_i objects are placed into box i

for every $i \in [k]$ is $N_1 = n!/(n_1! n_2! \cdots n_k!)$.

- S: the set of the expected distributing schemes $(n-n_1) = (n-n_1) = (n-n_1) = n!$
- $|S| = \binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n-n_1-\cdots-n_{k-1}}{n_k} = \frac{n!}{n_1!n_2!\cdots n_k!}$

REMARK: $N_1 = \#$ of permutations of $\{n_1 \cdot 1, ..., n_k \cdot k\}$.

Type 2

安全相用

Problem: distributing n unlabeled objects into k labled boxes

THEOREM: The number of ways of distributing n unlabeled objects into k labeled boxes is $N_2 = \binom{n+k-1}{n}$.

- *S*: the set of the expected distributing schemes
- $T = \{(n_1, n_2, ..., n_k): n_1 + n_2 + \cdots + n_k = n; n_1, n_2, ..., n_k \in \mathbb{N}\}$
- $f: T \to S$ $(n_1, n_2, ..., n_k) \mapsto$ a scheme where n_i objects are put into box i
 - f is a bijection. Hence, $|S| = |T| = {n+k-1 \choose n}$

REMARK: $N_2 = \# \text{ of } n\text{-}\text{combinations of } \{\infty \cdot 1, ..., \infty \cdot k\}$

Type 3

Problem: distributing n labeled objects into k unlabled boxes

EXAMPLE: Assigning 4 employees {a, b, c, d} into 3 unlabeled offices. Each office can contain any number of employees.

- 4 0 0: [abcd --]
- 3 1 0: [abc d -] [abd c -] [acd b -] [bcd a -]
- 2 2 0: [ab cd −] [ac bd −] [ad bc −]
- 2 1 1: [ab c d][ac b d] [ad b c] [bc a d] [bd a c] [cd a b]

REMARK: The schemes can be classified with $\{n_1, ..., n_k\}$

万英分类.

rif ing riving-ex

$S_2(n,j)$ $h 标 物 <math>n \int ** ** 2.$

DEFINITION: $S_2(n, j)$, the **Stirling number of the second kind**, is defined as the number of different ways of distributing n labeled objects into j unlabeled boxes so that no box is empty.

THEOREM:
$$S_2(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n \text{ when } n \ge j \ge 1.$$

THEOREM: The number of schemes of distributing n labeled objects into k unlabeled boxes is

$$S_{2}(n,j) = \sum_{j=1}^{k} \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^{i} {j \choose i} (j-i)^{n}$$

• $S_2(n,j)$: the number of schemes that use exactly j boxes, j=1,2,...,k