

## Universidade de Aveiro

Departamento de Electrónica e Telecomunicações

## Linguagens Formais e Autómatos

(Ano lectivo de 2005/6)

1º exame intercalar

15 de Março de 2006

[8,5] 1. Sobre o alfabeto  $A = \{a, b, c\}$  considere os autómatos



e seja  $L_1$  e  $L_2$  as linguagens por eles reconhecidas.

- [1,0] (a) Seja  $L_3 = \{w \in A^* \mid w \in L_1 \cap L_2 \land |w| = 3\}$ . Represente  $L_3$  por extenso.
- [2,5] (b) Construa um autómato finito determinista equivalente a  $M_1$ .
- [2,5] (c) Construa um autómato que reconheça a linguagem  $L_4 = (L_1 \cup L_2)^*$
- [ 2,5 ] (d) Mostre que a expressão regular  $e_5 = (\lambda |b|c)(a|b)^*(b|c)$  descreve a linguagem  $L_5 = L_2 \cdot L_1$ .
- [5,5] 2. Sobre o alfabeto  $A = \{a, b, c\}$  considere a linguagem

$$L = \{ w \in A^* \mid |w| \ge 1 \land w_i = a \Rightarrow (w_{i-1} = b \lor w_{i+1} = c) \}$$

- [ 1,0 ] (a) Apresente 3 palavras de comprimento 4, cada uma contendo duas ou mais ocorrências do símbolo a, que pertençam a L.
- [4,5] (b) Projecte um autómato que reconheça L.
- [ 3,5 ] 3. A figura seguinte representa uma máquina de Mealy M, definida sobre o alfabeto de entrada  $A = \{a, b, c\}$  e o alfabeto de saída  $Z = \{0, 1\}$ .



- [1,0] (a) Qual é a resposta da máquina M às sequências de entrada abbabb e baabaa.
- [2,5] (b) Construa uma máquina de Moore equivalente a M.
- [ 2,5 ] 4. O teorema da repetição (pumping lemma) diz o seguinte: se L é uma linguagem regular, existe um número p>0 tal que se u é uma palavra qualquer de L com  $|u|\geq p$ , então pode-se escrever u=xyz, satisfazendo as condições: |y|>0;  $|xy|\leq p$ ; e  $xy^iz\in L$ , para qualquer  $i\geq 0$ .

Sobre o alfabeto  $A = \{a, b, c\}$  considere a linguagem

$$L = \{a^n b^m c^m \mid n \ge 2 \land m \ge 0\}$$

Usando o teorema da repetição mostre que L não é regular.