Naïve Bayes

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

March 24, 2018

Selayang Pandang

1 Ulasan

2 Naïve Bayes

Klasifikasi Bayesian Conditional Independence Kasus Kontinu Kasus Diskrit Pros & Cons

Ulasan

Minggu lalu...

- Distribusi uniform
- Distribusi normal/Gaussian
- Maximum Likelihood Estimation
- Distribusi Bernoulli, Binomial, dan Beta

Apa itu central limit theorem?

Ada yang bisa menunjukkan bagaimana mendapatkan variansi?

Naïve Bayes

Ingat kembali tentang Bayes' rule!

Contoh

Seorang dokter tahu bahwa meningitis memiliki probabilitas menyebabkan kekakuan leher sekitar 50%. Kasus meningitis sendiri ditemukan dalam 1 dari 50,000 orang. Di sisi lain, probabilitas ditemukannya kasus kekakuan leher adalah 1/20.

Pertanyaan: Jika seseorang menderita kekakuan leher, berapa peluangnya orang tersebut terkena meningitis?

Contoh

Diketahui

$$P(s|m) = 0.5$$

 $P(m) = 1/50,000 = 2 \times 10^{-5}$
 $P(s) = 1/20 = 0.05$

Solusi

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.5 \times 2 \times 10^{-5}}{0.05} = 0.0002$$

Klasifikasi Bayesian

- Tujuan: fungsi pembelajaran $f(x) \rightarrow y$
- Klasifikasi probabilistik: kelas yang paling mungkin jika diberikan hasil observasinya, i.e. $\hat{y} = \underset{y}{arg \ max} P(y|x)$
- Probabilitas Bayesian dari sebuah kelas:

$$P(y|x) = \frac{P(x|y)P(y)}{\sum_{y'} P(x|y')P(y')}$$

Glosarium

Data

Data merupakan kumpulan objek (instances) yang memiliki atribut-atribut tertentu

Glosarium

Data

Data merupakan kumpulan objek (instances) yang memiliki atribut-atribut tertentu

Atribut

Karakteristik dari suatu objek; variabel atau fitur

Kelas

Penanda kelompok suatu objek; label

Glosarium

Data

Data merupakan kumpulan objek (instances) yang memiliki atribut-atribut tertentu

Atribut

Karakteristik dari suatu objek; variabel atau fitur

Kelas

Penanda kelompok suatu objek; label

Objek

Dikenal juga dengan nama record, poin, sampel, entitas, atau instance

Klasifikasi Bayesian: Komponen

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x|y)P(y)}{\sum_{y'} P(x|y')P(y')}$$

- P(y): probabilitas prior dari kelas "mana kelas yang sering muncul, mana yang jarang"
- P(x|y): class-conditional model atau likelihood "seberapa sering observasi x dalam kasus y"
- P(x): faktor normalisasi

• Apa yang terjadi kalau harus menghitung $P(\mathbf{x}|y)$ sedangkan variabelnya bisa banyak sekali?

- Apa yang terjadi kalau harus menghitung $P(\mathbf{x}|y)$ sedangkan variabelnya bisa banyak sekali?
- Contoh: MNIST punya 784 variabel, dengan nilai biner saja artinya ada 2⁷⁸⁴ kemungkinan pola!

- Apa yang terjadi kalau harus menghitung $P(\mathbf{x}|y)$ sedangkan variabelnya bisa banyak sekali?
- Contoh: MNIST punya 784 variabel, dengan nilai biner saja artinya ada 2⁷⁸⁴ kemungkinan pola!
- Namun, kita mengetahui observasi untuk masing-masing nilai
 x_i untuk setiap kelas

- Apa yang terjadi kalau harus menghitung $P(\mathbf{x}|y)$ sedangkan variabelnya bisa banyak sekali?
- Contoh: MNIST punya 784 variabel, dengan nilai biner saja artinya ada 2⁷⁸⁴ kemungkinan pola!
- Namun, kita mengetahui observasi untuk masing-masing nilai x_i untuk setiap kelas
- Asumsi yang digunakan Naïve Bayes adalah x₁...x_d conditionally independent jika diberikan y

$$P(\mathbf{x}|y) = \prod_{i=1}^{d} P(x_i|x_1, ..., x_{i-1}, y) = \prod_{i=1}^{d} P(x_i|y)$$

• Probabilitas pergi ke pantai dan heatstroke tidak independen

- Probabilitas pergi ke pantai dan *heatstroke* tidak independen
- Bisa jadi independen jika kita tahu cuaca sedang terik

- Probabilitas pergi ke pantai dan heatstroke tidak independen
- Bisa jadi independen jika kita tahu cuaca sedang terik
- Cuaca terik "menjelaskan" dependensi antara pergi ke pantai dan heatstroke

- Probabilitas pergi ke pantai dan heatstroke tidak independen
- Bisa jadi independen jika kita tahu cuaca sedang terik
- Cuaca terik "menjelaskan" dependensi antara pergi ke pantai dan heatstroke
- Dalam klasifikasi, nilai kelas menjelaskan hubungan antaratribut

 Naïve Bayes menghitung probabilitas untuk masing-masing kelas yang ada

- Naïve Bayes menghitung probabilitas untuk masing-masing kelas yang ada
- "Apakah datanya lebih besar probabilitasnya sebagai kelas 1 atau kelas 0?"

- Naïve Bayes menghitung probabilitas untuk masing-masing kelas yang ada
- "Apakah datanya lebih besar probabilitasnya sebagai kelas 1 atau kelas 0?"
- Model generatif selalu melakukan klasifikasi probabilistik

- Naïve Bayes menghitung probabilitas untuk masing-masing kelas yang ada
- "Apakah datanya lebih besar probabilitasnya sebagai kelas 1 atau kelas 0?"
- Model generatif selalu melakukan klasifikasi probabilistik
- Klasifikasi probabilistik tidak berarti generatif, e.g. logistic regression

Contoh

Gambar: Gambar rata-rata pixel angka 2 vs 4. Apakah kita dapat menggunakan pixel (0,2) dan (4,6) saja untuk mengklasifikasikan gambar?

Contoh Kasus Kontinu

• Identifikasi angka 2 atau 4 berdasarkan pixel (0,2) dan (4,6): $y = \{2,4\}$, atribut: $\{tl, mr\}$

Contoh Kasus Kontinu

- Identifikasi angka 2 atau 4 berdasarkan pixel (0,2) dan (4,6): $y = \{2,4\}$, atribut: $\{tl, mr\}$
- Probabilitas kelas:

$$P(y = 2) = \frac{177}{177 + 181} \approx 0.49,$$

 $P(y = 4) = 1 - P(y = 2) \approx 0.51$

Contoh Kasus Kontinu

- Identifikasi angka 2 atau 4 berdasarkan pixel (0,2) dan (4,6): $y = \{2,4\}$, atribut: $\{tl, mr\}$
- Probabilitas kelas: $P(y=2) = \frac{177}{177+181} \approx 0.49,$ $P(y=4) = 1 P(y=2) \approx 0.51$
- Asumsi: atribut terdistribusi Gaussian dan independen jika diketahui kelasnya

Distribusi Gaussian

PDF

$$P(x|\mu,\sigma^2) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Maximum Likelihood Estimation (MLE)

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$1 \sum_{i=1}^{N} (x_i - x_i)$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Parameter Distribusi Gaussian untuk Naïve Bayes

Dicocokkan dengan *maximum likelihood estimation* (MLE) untuk Gaussian, e.g.

$$\hat{\mu}_{tl,2} = \frac{1}{177} \sum_{i=1}^{177} tl_i$$

$$\hat{\sigma}_{tl,2}^2 = \frac{1}{177} \sum_{i=1}^{177} (tl_i - \hat{\mu}_{tl,2})^2$$

Naïve Bayes

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(x)}$$

$$= \frac{P(x_{tl}|y)P(x_{mr}|y)P(y)}{\sum_{y} P(x_{tl}|y)P(x_{mr}|y)P(y)}$$

Batas Keputusan

- Beda rataan, variansi sama: garis lurus atau bidang lurus
- Rataan sama, beda variansi: lingkaran atau elips
- Kasus umum: kurva parabola

Batas Keputusan

Gambar: Dalam satu dimensi, perbandingan pixel (0,2) dari dua kelas

Batas Keputusan

Gambar: Dalam dua dimensi, perbandingan pixel (0,2) dan (4,6) dari dua kelas

Contoh Kasus Diskrit

Asumsi: Distribusi Bernoulli Contoh pada kasus identifikasi spam e-mail

D1: "send us your password" (s)
D2: "send us your review" (h)
D3: "review your password" (h)
D4: "review us" (s)
D5: "send your password" (s)
D6: "send us your account" (s)
Dokumen baru: "review us now"

word	spam	ham
password	2/4	1/2
review	1/4	2/2
send	3/4	1/2
us	3/4	1/2
your	3/4	1/2
account	1/4	0/2

$$P(spam) = 4/6, P(ham) = 2/6$$

Contoh Kasus Diskrit

```
P(review\ us|spam) = P(0,1,0,1,0,0|spam)

P(review\ us|ham) = P(0,1,0,1,0,0|ham)

P(ham|review\ us) \approx 0.87
```

• Berdasarkan contoh sebelumnya, setiap e-mail dengan kata "account" akan dianggap spam karena P(account|ham) = 0/2

- Berdasarkan contoh sebelumnya, setiap e-mail dengan kata "account" akan dianggap spam karena P(account|ham) = 0/2
- Solusi: Laplace smoothing, i.e. penambahan angka positif kecil ke semua pencacahan

$$P(w|c) = \frac{num(w,c) + \epsilon}{num(c) + 2\epsilon}$$

- Berdasarkan contoh sebelumnya, setiap e-mail dengan kata "account" akan dianggap spam karena P(account|ham) = 0/2
- Solusi: Laplace smoothing, i.e. penambahan angka positif kecil ke semua pencacahan

$$P(w|c) = \frac{num(w,c) + \epsilon}{num(c) + 2\epsilon}$$

• Nilai ϵ contohnya 1 atau 0.5, tetapi bisa juga dengan num(w)/num

- Berdasarkan contoh sebelumnya, setiap e-mail dengan kata "account" akan dianggap spam karena P(account|ham) = 0/2
- Solusi: Laplace smoothing, i.e. penambahan angka positif kecil ke semua pencacahan

$$P(w|c) = \frac{num(w,c) + \epsilon}{num(c) + 2\epsilon}$$

- Nilai ϵ contohnya 1 atau 0.5, tetapi bisa juga dengan num(w)/num
- Kasus ini sering terjadi karena Zipf's law (50% kata hanya muncul sekali)

• Misalkan kita tidak punya nilai untuk atribut X_i , bagaimana kita bisa menghitung $P(X_1 = x_1, ..., X_i =?, ..., X_d = x_d | y)$?

- Misalkan kita tidak punya nilai untuk atribut X_i , bagaimana kita bisa menghitung $P(X_1 = x_1, ..., X_i =?, ..., X_d = x_d | y)$?
- Naïve Bayes dapat mengabaikan atribut tersebut karena conditional independence

- Misalkan kita tidak punya nilai untuk atribut X_i , bagaimana kita bisa menghitung $P(X_1 = x_1, ..., X_i =?, ..., X_d = x_d | y)$?
- Naïve Bayes dapat mengabaikan atribut tersebut karena conditional independence
- Hitung saja berdasarkan atribut yang bernilai!

- Misalkan kita tidak punya nilai untuk atribut X_i , bagaimana kita bisa menghitung $P(X_1 = x_1, ..., X_i =?, ..., X_d = x_d | y)$?
- Naïve Bayes dapat mengabaikan atribut tersebut karena conditional independence
- Hitung saja berdasarkan atribut yang bernilai!
- Nilai yang hilang tersebut tidak perlu diganti

Masalah lainnya...

Naïve Bayes pada Dua Dimensi

Gambar: Asumsi naif → diagonal covariance matrix

Melunakkan Asumsi

Gambar: Menggunakan full covariance matrix untuk melunakkan asumsi

Ikhtisar

- Naïve Bayes
- Conditional independence
- Penggunaan distribusi Gaussian dan Bernoulli untuk NB
- Diagonal dan full covariance matrix saat klasifikasi

Pertemuan Berikutnya

- Dimensionality Reduction
- Eigenvector & Eigenvalue
- Principal Component Analysis

Office hours minggu ini di hari Kamis, 08.00-09.00

Salindia ini dipersiapkan dengan sangat dipengaruhi oleh: Victor Lavrenko (2014)

Terima kasih