Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

3/2

HARD RED SPRING WHEAT

QUALITY REPORT

Physical, Chemical, Milling, and Baking Characteristics

1971 CROP

UNITED STATES DEPARTMENT OF AGRICULTURE
AGRICULTURAL RESEARCH SERVICE
CROPS RESEARCH DIVISION
PLANT SCIENCE RESEARCH DIVISION

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE PLANT SCIENCE RESEARCH DIVISION in cooperation with STATE AGRICULTURAL EXPERIMENT STATIONS

REPORT OF PHYSICAL, CHEMICAL, MILLING, AND BAKING EXPERIMENTS

WITH HARD RED SPRING WHEAT

1971 $CROP^{1/2}$

Ъу

W. C. Shuey, Research Cereal Technologist; K. J. Sprick, Chemist; J. W. Dick, Food Technologist; R. D. Crawford, R. D. Maneval, and N. B. Lofthus, Technicians, Plant Science Research Division, Agricultural Research Service.

Source of the Samples	Contents	Page
Source of the Samples	Cooperating Agencies	2
Table of Varieties and Crosses	Introduction	3
Methods	Source of the Samples	4
Discussion	Table of Varieties and Crosses	5
Field Plot Nursery Samples	Methods	6
Uniform Regional Nursery Samples	Discussion	9
Sawfly Yield Nursery Samples	Field Plot Nursery Samples	13
·	Uniform Regional Nursery Samples	24
Waller Na 1 three Na 22	Sawfly Yield Nursery Samples	30
lables - No. 1 thru No. 25	Tables - No. 1 thru No. 23	
Reference Mixograms	Reference Mixograms	

1/ This is a progress report of cooperative investigations containing some results that have not been sufficiently confirmed to justify general release; interpretations may be modified with additional experimentation. Confirmed results will be published through established channels. The report is primarily a tool for use of cooperators and their official staffs and to those persons having direct and special interest in the development of agricultural research programs.

This report was compiled in the Plant Science Research Division, Agricultural Research Service, U.S. Department of Agriculture. Special acknowledgment is made to the North Dakota State University for their facilities and services provided in support of these studies. The report is not intended for publication and should not be referred to in literature citations nor quoted in publicity or advertising. Use of the data may be granted for certain purposes upon written request to the agency or agencies involved.

COOPERATING AGENCIES, STATIONS, AND PERSONNEL

The cooperating agencies and stations conducting the varietal plot and nursery experiments from which the 1971 spring wheat samples were received are listed below:

California Agricultural Experiment Station:

Davis and El Centro

Colorado Agricultural Experiment Station:

Fort Collins

Idaho Agricultural Experiment Station:

Tetonia

Minnesota Agricultural Experiment Station:

Crookston, Morris, and St. Paul

Montana Agricultural Experiment Station:

Bozeman, Conrad, Havre, and Sidney

North Dakota Agricultural Experiment Station:

Carrington, Dickinson, Fargo, Langdon, and Minot

South Dakota Agricultural Experiment Station:

Highmore and Watertown

Washington Agricultural Experiment Station:

Lind

Wisconsin Agricultural Experiment Station:

Madison

Wyoming Agricultural Experiment Station:

Sheridan

A complete list of all cooperating agencies, stations, and personnel for the year will be found in the report by Dr. R. E. Heiner, "Results on Spring Wheat Varieties Grown in Cooperative Plot and Nursery Experiments in the Spring Wheat Region in 1971," PSR-3-72.

INTRODUCTION

Samples of standard varieties and many of the new strains of hard red spring wheat grown in cooperative experiments in the spring wheat region of the United States 2/ have been milled each year by the USDA. The flours were assayed chemically and physically and baked into bread to determine the quality characteristics. The purpose of this report is to make available to the cooperators, quality data on the standard varieties and new strains of hard red spring wheat from the 1971 crop.

The same general format and techniques were used in evaluating the wheats as outlined in quality reports for previous years. The data contained in this report are comparable to data in past reports and, where applicable, average results and also the average results of the 1970 crop are compared.

The format adopted in 1962 for the evaluation of a sample utilized three categories: kernel characteristics, milling performance, and baking evaluation. The basic difference between this report and previous reports is the manner in which the ratings were obtained. Previous to last year, an individual judgment was used to ascertain the rating for each sample. A brief description of the new technique is given on Pages 9 and 10 of this report. It is hoped that with the use of this technique, a more objective evaluation is obtained. Also, it will be possible to quickly deduce the various characteristics of the selection and any outstanding features or deficiencies which are apparent. No specific comments are made regarding the mixogram patterns, since reference mixograms for each of the general types are presented at the end of the report.

Generally, the 1971 crop was grown under very favorable conditions with plenty of rainfall. The average extraction was higher than the 1970 crop and the flour mineral content at 65% extraction was lower, as was the wheat mineral content. The protein content was approximately 1% lower than last year.

The baking performance was slightly better than last year. Lower absorption was experienced. Even though the protein content of wheat was lower, the loaf volume was about the same. The doughs were slightly stronger than last year which was unexpected because of the lower protein content.

The oxidation requirements for the 1971 crop were somewhat erratic, but requiring somewhat less bromate than last year.

^{2/} Heiner, R. E. "Results on Spring Wheat Varieties Grown in Cooperative Plot and Nursery Experiments in the Spring Wheat Region in 1971." Plant Science Research Division, Agricultural Research Service, USDA, PSR-3-72.

SOURCE OF THE SAMPLES

Tests were performed on 585 samples received from field plots, uniform regional nurseries, and sawfly yield nurseries of the 1971 crop. These samples originated in ten states: California, Colorado, Idaho, Minnesota, Montana, North Dakota, South Dakota, Washington, Wisconsin, and Wyoming. Twenty-one stations from these states were represented, namely, Davis and El Centro in California; Fort Collins in Colorado; Tetonia in Idaho; Crookston, Morris, and St. Paul in Minnesota; Bozeman, Conrad, Havre, and Sidney in Montana; Carrington, Dickinson, Fargo, Langdon, and Minot in North Dakota; Highmore and Watertown in South Dakota; Lind in Washington; Madison in Wisconsin; and Sheridan in Wyoming.

Due to apparent differences in the characteristics of the wheats and protein contents, no samples were blended this year.

On page 5 are listed the spring wheats which were included in the 1971 Uniform Regional Nursery trials. The variety or cross, the station which developed the variety, the state selection number, and the C.I. number are given.

In Table 18 are given the average data for the Uniform Regional Nursery samples. The data for kernel characteristics and milling performance are arithmetical averages of the individual samples. However, the mixograms and baking data were obtained from blends of equal proportions of the individual flours for each sample from the 17 stations.

In Table 23 are given the average data for the Sawfly Yield Nursery samples obtained from the arithmetical averages of the individual samples.

ENTRIES FOR THE 1971 UNIFORM REGIONAL HARD RED SPRING WHEAT NURSERY

Entry No.	Cross or Variety	C.I. or Sel. No.	Year Entered	Source
1	MADOUTC	3461	1929	Canada
1	MARQUIS	13462	1959	North Dakota
2	JUSTIN	13100	1953	Canada
3	SELKIRK	13751	1960	USDA-MN
4	CHRIS	13958	1964	North Dakota
5	WALDRON	RL4200	1967	Canada
6	NEEPAWA		1967	North Dakota
7	ND140/ND363	ND491		
8	do	ND506	1971	North Dakota
9	WALDRON/POLK	ND501	1971	North Dakota
10	ERA	13986**	1968	USDA-MN
11	FLETCHER	13985**	1968	USDA-MN
12	BONANZA	14077**	1970	DeKalb Ag. Res.
13	WORLD SEEDS 1809**		1971	World Seeds, Inc.
14	BOUNTY 208**		1971	Cargill, Inc.
15	JT*2/4/ND259/CLY//CLY/			
	ND122/3/JT/5/ND363	ND499**	1970	North Dakota
16	do	ND497**	1971	North Dakota
17	PJ60/3/HRY*7/P54//K184/			
	7*WIS250/4/K184/4*WIS250	WIS271**	1967	USDA-WIS
18	do	H678-1-6-9**	1969	USDA-WIS
19	LARK	WORLD SEEDS 1651-E**	1971	World Seeds, Inc.
20	NK70Y14**		1971	Northrup King

^{**} Semidwarf

METHODS

The terminology and methods used are briefly described below:

Test Weight Per Bushel - The weight per Winchester bushel of cleaned, dry, scoured wheat. To determine the dockage-free test weight on a comparable sample, approximately one pound per bushel should be subtracted from the value given.

1000 Kernel Weight - The 1000 kernel weight was determined by counting the number of kernels in a 10 gram sample of cleaned, picked wheat with an ASCO Seed Counter $\frac{4}{}$.

Kernel Size - The percentages of the size of the kernels (large, medium, and small) were determined on a wheat sizer as described by Shuey 5/.

The sieves of the sizer were clothed as follows:

Top Sieve - Tyler # 7 with 2.92 mm. opening Middle Sieve - Tyler # 9 with 2.24 mm. opening Bottom Sieve - Tyler #12 with 1.65 mm. opening

Potential Yield - The potential yield is not shown on the computer tables but it can be determined by multiplying the percentages of the overs of each sieve #7, #9, and #12, by the value of 78%, 73%, and 68%, respectively. The accumulation percentage would be the potential yield.

Milling - The samples were cleaned by passing the wheat over an Emerson Kicker and Dockage Tester and through a modified Forster Scourer Model 6. The clean dry samples were pre-tempered to 12% moisture for at least 72 hours; then tempered to 16% moisture and allowed to stand overnight prior to milling.

All samples except the field plot samples were milled on a Brabender Quadrumat Junior Mill. The mill was equipped with a #18 wire on the drum sieve. The throughs of the #18 wire were rebolted on a Strand Sifter equipped with a #60 Tyler sieve. The sample was sifted for 1 minute. The throughs of the #60 wire were classified as flour and this was the material tested. The overs of the #18 wire were classified as bran and the throughs of the #18 wire and overs of the #60 Tyler sieve as crude shorts.

The field plot nursery samples were milled on a Buhler Continuous Experimental Mill. This mill has been slightly modified to give results

^{4/} Mention of a trademark name or a proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.

⁵/ Shuey, William C. A Wheat Sizing Technique for Predicting Flour Milling Yield. Cereal Science Today 5: 71-72,75 (1960).

more comparable to commercial milling. The break scalping sieves were clothed with #54 stainless steel wire, the reduction scalping sieves with #58, #66, and #105 stainless steel wire for the first, second, and third reduction, respectively. All of the flour sieves were clothed with #135 stainless steel wire.

All six flour streams were combined to give the patent flour. The extraction of a good milling wheat using this flow is approximately 68%. This is comparable to a commercial "long patent" extraction flour. At this flour extraction of the wheat, the changes in flour ash are most sensitive to changes in percent extraction.

<u>Protein Content</u> - The protein was calculated by multiplying the factor of 5.7 times the percent nitrogen as determined by the standard Kjeldahl procedure.

Mineral Content or Ash Content - This was determined by measuring the residue of the minerals left after incinerating the sample for approximately 16 hours at 565°C. The results were reported as percentage of the sample which was incinerated.

 $\underline{\text{Mixogram}}$ - The mixogram was determined by using 30 g. of flour and adding 20 cc. of water. The sensitivity spring setting was set at 10. All mixograms were run with constant weight of flour and volume of water. Absorptions reported were adjusted according to the height of the mixogram. The correction factor was determined from a series of flours by varying the amount of absorption.

Mixogram Pattern - The reference mixogram patterns given at the end of the report demonstrate the different types of mixograms which were obtained. A single number is assigned each pattern to characterize and simplify the classification of the curves - the larger number indicating stronger curve characteristics.

Baking Procedure or Formula - The baking formula used was as follows:

100% flour 3% milk D.S.M. 2% salt 3% yeast

5% sugar 2% shortening (Crisco, melted)

The sample was mixed to development in a National Manufacturing mixer; for the 25 g. sample the Micro mixer, and for the 100 g. sample the 100 g. Special mixer size. Also, 10 p.p.m. of bromate, except for the 100 g. samples in which 5 p.p.m. of bromate was used for oxidation and 0.1% Barley Malt Flour for enzymatic supplement. The 25 g. samples were moulded in a Roll-Er-Up moulder, while the 100 g. samples were "hand panned."

Absorption - This was the water, expressed as percent of the flour, required to bring the dough to proper consistency.

<u>Crumb Color</u> - This value was determined by comparing the loaf of the tested sample against a baking standard. This standard was selected as an average for the crop year for the spring wheat area.

 $\underline{\text{Loaf Volume}}$ - This was volume of the baked loaf as determined by seed displacement.

All values (Protein, Ash, and Absorption) were reported on a 14% moisture basis.

DISCUSSION

The following discussion presents some of the basic techniques and criteria used in the milling and baking quality evaluation of the samples. There are four major evaluation categories used: kernel characteristics, to characterize the kernel; milling performance, to evaluate the general milling characteristics; mixogram patterns, to classify the flour as to type; and baking evaluation, to rate the flour as to overall baking.

Each evaluation category can be important. A sample could be of a sufficiently poor quality for a given category to eliminate it from possible future testing. However, a sample submitted for the first time and found to be questionable should be tested again to establish if it has a satisfactory or unsatisfactory classification. A sample which is consistently rated as questionable should be discarded.

A computer program for evaluating milling and baking quality was developed from 749 previously evaluated uniform regional nursery samples. The samples represented 5 crop years, 7 states, 21 stations, and 33 series. Chris, Justin, and Selkirk were selected as the standard varieties for each series. The percent deviation of each independent variable varied from the mean of the standard varieties was determined. Limits consistent with previous data obtained on the 749 samples were established for each independent variable. Nebraska regressions were run to establish the regression coefficients of each variable.

Six characteristics (test weight, 1000 kernel weight, percent large kernels, percent small kernels, wheat mineral, and wheat protein) were independent variables used to calculate the dependent variable - Kernel Characteristics. Four characteristics (percent extraction, mineral @65% extraction, milling characteristic, and protein difference between flour and wheat protein) were used to calculate the dependent variable - Milling Performance. Bake absorption, mixing time, dough characteristics, crumb color, crumb grain, and loaf volume were the six independent variables used to determine the dependent variable - Baking Evaluation. These three dependent variables after calculation become independent variables, used to calculate the dependent variable - General Evaluation.

The three dependent variables, Kernel Characteristics, Milling Performance, and Baking Evaluation are rated on a scale of 1 to 8, with 1 being Very Satisfactory and 8 being Unsatisfactory. The General Evaluation is rated on a scale of 1 to 4, with 1 being no promise; 2, little promise; 3, some promise; and 4, good promise. If one of the independent variables conver value is 8 (with the exception of crumb color), this automatically will rate the General Evaluation as 1, or no promise. If there are no 8's, the three values are employed in a regression equation to derive the General Evaluation. The weighted value for each of these variables on the General Evaluation are approximately 6% for Kernel

Characteristics, 47% for Milling Performance, and 47% for Baking Evaluation.

To quickly point out problem areas for a selection, two additional columns have been added to the printout. One column is minor deficiencies in which the independent variables converred to a 5 or 6, that is Questionable or Questionable to Unsatisfactory will appear. The second column is major deficiencies in which the independent variables were converred either to a 7 or 8, that is Unsatisfactory to Questionable and Unsatisfactory. Deficiencies of the various selections may be readily determined by scanning these columns. It is also possible to have one or two independent variables that would appear in the major deficiency column, rating 7 and should be given serious consideration, but they still did not influence the general rating sufficiently to rank the selection as having no promise.

All samples, as in previous years, are compared to a milling and baking standard which represents a blend of th crop year blended to a known quality. However, the samples for the individual stations are evaluated against the average results of the check varieties from the respective stations. The agronomic and climatic conditions of the individual locations can effect the quality of the wheat sample, such that, the evaluation at certain locations could have all samples -- even the named varieties -- classified as questionable to unsatisfactory. Therefore, the evaluation ratings of one station are not directly comparable to those of another station. For example, an area may produce low protein wheats which give large and plump kernels, good milling and kernel characteristics, but low protein and unsatisfactory baking properties such as short mixing time, low loaf volume, and weak dough characteristics. The wheat from this area could not be considered as a strong spring wheat, and would not maintain the quality expected from the spring wheat producing area. A good variety should have tolerance to a wide range of environmental conditions and the overall picture taken into consideration for establishing these varieties.

Kernel Characteristics are important in determining the initial value of the wheat and, if extremely poor, could disqualify a new variety from further consideration. Because of the present grading system, it is desirable to have a good test weight. If a sample has a low 1,000 kernel weight and small kernel size distribution, it would be considered a poor sample for milling because of the high ratio of bran to endosperm. Therefore, it is desirous to have plump kernels. Wheat ash is an important factor when comparing a variety against other standard varieties. If a sample would have consistently higher wheat mineral content, it would enhance the probability of having high flour ash. Low protein would not be desirous when comparing with standard varieties, because in a low protein crop year the probability of it having such a low protein as to be undesirable is very probable. Therefore, the protein must also be considered as a characteristic when comparing other varieties grown in the same locality.

Milling Performance is very important, especially the sub-category of milling characteristics. If low extractions or high flour ash are obtained, this becomes a major factor and is quite unacceptable from a commercial milling standpoint. All flour mineral contents are reported at a constant extraction of 65% so that the figures are directly comparable. As a rule of thumb, one can approximate that each point of ash (0.01%) is equivalent to approximately 2% in extraction.

Milling characteristics are important. A sample which tends to be soft in character requires a different milling technique to be milled properly. On commercial mills flowed for hard vitreous spring wheats, soft milling characteristics cause great difficulty. Therefore, if a sample shows softness in character, it is considered to be unsatisfactory. Likewise, a sample which is extremely hard and vitreous will cause difficulty. Both types of wheat (soft and vitreous) require different roll pressures, clothing, sifter surface, and temper to be milled properly. If these wheats are blended with normal milling wheats, improper results are obtained since these characteristics are not necessarily compatible or additive. Normal to soft score indicates that the sample shows a tendency toward softness of character on the flour mill stocks and extraction. This would indicate that the sample may give some difficulty for certain mill streams and an adjustment would either have to be made in the milling flow, or in tempering procedures to compensate for these differences. The properties of this wheat may or may not be compatible with other wheats with which it may be blended, therefore, it is important to maintain varieties with as uniform milling characteristics as possible.

The amount of protein recovered in the flour for a sample is of importance. The high protein wheats yielding low protein flours are not desirable. Such a wheat would have much of the protein distributed in the outer portion of the kernel which would result in excessive protein in the feed. Therefore, higher protein in the wheat would be necessary to yield a flour of comparable protein to a wheat which gives good flour protein recovery.

Mixogram Patterns and Farinogram Patterns are important in estimating the strength and mixing tolerance or potential mixing tolerance of a flour. A long flat curve is more desirable than a short peaked curve; however, an extremely long curve may be undesirable, if the flour would require excessive mixing for proper development. The pattern of the curve is of importance as well as the length, and both must be considered. An abnormal curve, such as a sway-back or long initial time to incorporate the water, indicate undesirable characteristics.

Baking Evaluation takes into account the flour absorption, mixing time, dough characteristics, loaf volume, and machinability. A sample which has low absorption would be unsatisfactory, compared to other spring wheats with normal absorption. A sample with extremely short mixing time would also be considered undesirable as a good strong spring wheat. When a sample is in the minimal range for these values, it is considered as questionable until further testing demonstrates whether a definite deficiency exists.

Doughs having mellow to weak dough properties show a tendency towards weakness. Also, for mellow to strong, the dough is mellow but has a tendency to be strong, and a strong to mellow dough is just the reverse. Since these characteristics are subjective rather than objective, it is necessary at times to estimate the tendency; therefore, the necessity exists for apparent double grades.

The grain or appearance of the interior of the loaf shows how well the sample stood up during baking and may point out or explain some deficiencies which have been observed during the baking test.

Loaf volume indicates potential strength of the flour in a different manner than mixing time or dough characteristics, in that it shows the ability or lack thereof for the dough to expand under pressure and to contain the entrapped gases during this expansion. Weak flours act much like rotten balloons which burst when blown up and collapse, thus yielding low loaf volume or extremely large volume and large holes in the interior of the loaf. Low protein flours and lifeless (dead) doughs exhibit the properties similar to putty and do not expand during fermentation or baking and give low loaf volume. Tough and very bucky doughs are bound too tight and impede expansion of the gases causing low loaf volume.

General Evaluation rating applies only to the data contained in the year of the report. A new category, The Prospect of a selection, will apply to two or more years of data. The Prospect is given for each selection which has been tested for at least two crop years. This evaluation takes into account the various grading factors and the results of the crop years in an effort to determine if the selection should be considered as a prospective new variety. The main defects and outstanding features are discussed. A selection which is promising should be continued. Those which show some promise with outstanding agronomic characteristics should be seriously considered and looked at in large plots, if it has not been previously, providing other sufficient information has been obtained. A sample which shows little or no promise should be discontinued.

FIELD PLOT NURSERY SAMPLES - 1971 CROP

One hundred and forty field plot nursery samples were received from three states and five stations. The data for the individual samples are given in Tables 1 through 4. In Table 5, are given the averages for the varieties by state for the following varieties: Chris, Justin, and Selkirk for North Dakota. The averages for these commercial varieties per location were used as standards for judging the other samples in the field plots. The averages for California are not given due to the fact that all of these varieties were semidwarfs. The Colorado data were not included since only one station, as well as one check variety (Chris) was received. The milling and baking standard Chris blend was used for the samples which did not have comparable grown check varieties. The 1970 and 1971 averages also are given for the check varieties from the state of North Dakota.

CALIFORNIA SAMPLES

Fifty-one samples were received from the Davis and El Centro, California stations. All of these samples were named varieties, semidwarfs or semidwarf selections. The named varieties were: Anza, Bluebird 2, Bluebird 3, Ciano 67, Inia 66 Sel., Nuri 70, and Siete Cerros 66. The selections or varieties not discussed independently should be discarded as showing no promise. The results for each variety are given in Table 1. The selections were tested against both the Ciano 67 as a check variety and the regular Chris spring wheat milling and baking standard. Only the data using the Ciano 67 check are given, since the Chris check being higher in protein caused a majority of the samples to be rated no promise on the basis of protein content.

Anza

Kernel Characteristics - Unsatisfactory. Low protein and small kernel size.

Milling Performance - Satisfactory.

Baking Evaluation - Unsatisfactory. Low bake absorption, dead doughs, low loaf volume, and short mixing time.

General Evaluation - Based on this crop year's results, this variety would show no promise in the California area, even compared with Ciano 67.

Bluebird 2

Kernel Characteristics - Satisfactory to Questionable. Large percentage of small kernels.

Milling Performance - Questionable. Minimum flour extraction and high flour ash at 65% extraction.

Baking Evaluation - Unsatisfactory. Tendency towards weak doughs and low bake absorption.

General Evaluation - This variety shows no promise, based on this year's results of poor milling and baking results.

The Prospect - Based on two years' results, this selection would show <u>little promise</u> as a new variety because of erratic milling results in showing very satisfactory results last year and questionable results this year, as well as a definite tendency toward weak doughs and erratic results regards to loaf volume, protein content, and bake absorption.

Bluebird 3

Kernel Characteristics - Questionable to Satisfactory. Tendency towards low test weight and small kernel size.

Milling Performance - Satisfactory to Questionable. Tendency to have too large a spread between flour and wheat protein.

Baking Evaluation - Satisfactory.

General Evaluation - This variety would show some promise.

The Prospect - Based on two crop years' results, this selection would show some promise, although it has given erratic results. Last year it showed a definite tendency to have erratic protein content, minimum bake absorption and loaf volume, as well as dead doughs when the protein content was low. The dead dough characteristics associated with low protein is probably more prevalent with this variety than with some of the other selections.

Inia 66 Sel.

Kernel Characteristics - Satisfactory to Questionable. Tendency towards low protein.

Milling Performance - Satisfactory to Questionable. Minimum extraction.

Baking Evaluation - Questionable. Tendency towards erratic results for dough characteristics and minimum bake absorption.

Inia 66 Sel. (Cont'd.)

General Evaluation - This variety shows <u>some promise</u> in the California area, although it does have a tendency to show erratic results respondent to the environmental conditions which appear to be somewhat unpredictable.

Nuri 70

Kernel Characteristics - Satisfactory to Questionable. Tendency towards small kernels.

Milling Performance - Questionable. Tendency towards high ash at 65% extraction.

Baking Evaluation - Questionable. Tendency towards low bake absorption.

General Evaluation - This variety would show little promise.

The Prospect - This variety was originally known as Bluebird No. 1 and based on two crop years, this variety would show <u>little promise</u> as a variety because of low protein, weak doughs, low absorption, and a tendency towards low loaf volume.

Siete Cerros 66

Kernel Characteristics - Unsatisfactory. Low test weight, low 1,000 kernel weight, poor kernel size distribution, and low wheat protein.

Milling Performance - Unsatisfactory. High flour mineral content and low extraction.

Baking Evaluation - Unsatisfactory. Low absorption, dead dough, poor grain, and low loaf volume.

General Evaluation - This variety would show no promise.

The Prospect - Based on four crop years' results, this variety shows no promise.

7021

Kernel Characteristics - Satisfactory to Questionable. Tendency towards small kernels.

Milling Performance - Very Satisfactory.

7021 (Cont'd.)

Baking Evaluation - Questionable to Unsatisfactory. Low absorption and tendency towards strong dough.

General Evaluation - Based on this year's results, this selection would show some promise.

The Prospect - Based on two crop years' results, this selection would show some promise as a new variety, although it has shown somewhat erratic results with a tendency for lower than expected protein in low protein areas. This year it had low bake absorption.

7052

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable. Low absorption and strong dough.

General Evaluation - This year's results show this selection to have some promise.

The Prospect - This selection would show <u>some promise</u> as a new variety based on two crop years' results. It does have a tendency to show somewhat erratic results; that is, lower than normal protein in low protein areas accompanied with low loaf volume, and in high protein areas a tendency towards strong doughs but not as high absorption as would be anticipated.

7055

Kernel Characteristics - Questionable to Satisfactory. Minimum test weight, 1,000 kernel weight and small kernels.

Milling Performance - Questionable to Satisfactory. Minimum flour extraction.

Baking Evaluation - Satisfactory.

General Evaluation - This selection would show little promise.

The Prospect - Based on two crop years' results, this selection would show <u>little promise</u> as a new variety due to minimum baking performance last year and minimum kernel characteristics and milling performance this year.

7059

Kernel Characteristics - Satisfactory. Tendency towards low test weight and small kernel size.

Milling Performance - Satisfactory.

Baking Evaluation - Satisfactory.

General Evaluation - This selection would show good promise this year.

The Prospect - Based on two crop years' results, this selection would show <u>some promise</u> as a new variety. Last year this selection showed a tendency towards low loaf volume, protein content, and weak dough.

7079

Kernel Characteristics - Satisfactory. Tendency towards low test weight and small kernel size.

Milling Performance - Satisfactory to Questionable. Tendency towards high mineral content at 65% extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Based on this year's crop results, this selection would show good promise as a new variety.

7153

Kernel Characteristics - Satisfactory to Questionable. Minimum test weight and small kernel size.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable. Low absorption.

General Evaluation - Based on this year's crop results, this selection would show some promise as a new variety.

7156

Kernel Characteristics - Questionable to Satisfactory. Low test weight and small kernel size.

Milling Performance - Satisfactory. Showed a tendency toward maximum spread between protein content of wheat and flour.

7156 (Cont'd.)

Baking Evaluation - Satisfactory. The sample did, however, have poor crumb color.

General Evaluation - Based on this year's crop results, this selection would show good promise as a new variety.

7157

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory to Questionable. Tendency towards low extraction.

Baking Evaluation - Questionable to Satisfactory. Shows a definite tendency towards weak dough.

General Evaluation - This year's results show this selection to have some promise as a new variety.

COLORADO SAMPLES

Eleven samples were received from the Fort Collins, Colorado station. All of these samples were named varieties, except a Northrup King selection 70Y14.

The Chris variety was used as the check for the series. The varieties showing no promise were Bluebird 1, Bluebird 4, Ciano Sib (Calano), Red River 68, Siete Cerros 66, Waldron, and Northrup King NK 70Y14. The varieties Bounty 208, Inia 66, and Inia 66 Sel., showed some promise in this series. Data are given in Table 2.

Inia 66 Sel.

Kernel Characteristics - Questionable. Minimum wheat protein.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable. Minimum bake absorption and maximum mixing time.

General Evaluation - Based on this crop year's results, this selection would show some promise as a new variety. It does have a tendency toward minimum protein and bake absorption, as well as maximum mixing time.

NK 70Y14

Kernel Characteristics - Satisfactory to Questionable. Tendency for lower protein content.

Milling Performance - Satisfactory.

Baking Evaluation - Unsatisfactory. Long mixing time and tendency towards strong, tough doughs.

General Evaluation - Based on this crop year's results, this selection would show \underline{no} promise as a new variety due to the undesirable baking characteristics, especially the mixing properties and dough handling properties.

NORTH DAKOTA SAMPLES

Seventy-eight samples were received from the Carrington irrigated and dryland plots and the Dickinson, North Dakota stations. Fifty-four samples were the named varieties which have been released: Barton, Bonanza, Bounty 208, Chris, Empire, Era, Fletcher, Fortuna, Justin, Manitou, Neepawa, Polk, Red River 68, Selkirk, Thatcher, Waldron, Lark (WS 1651-E), WS 1809, and WS 1812. Twenty-four were the experimental selections: WS 1877, NK AB67-70, North Dakota selections ND 491, 497, 499, 500, 501, 502, and Sawfly ND S6662. The results for each variety and selection are given in Tables 3 and 4. The average results of the 1971 data are given in Table 5.

WS 1877

Kernel Characteristics - Satisfactory to Questionable. Minimum acceptable protein content.

Milling Performance - Very Satisfactory. Good extraction and low mineral content.

Baking Evaluation - Satisfactory. Tendency towards minimum loaf volume.

General Evaluation - Based on this crop year's results, this selection would show good promise as a new variety.

AB 67-70

Kernel Characteristics - Satisfactory. Tendency towards low kernel weight.

Milling Performance - Questionable to Satisfactory. Tendency towards low extraction, and protein loss between flour and wheat.

Baking Evaluation - Questionable to Satisfactory. Tendency for weak doughs.

General Evaluation - Based on this year's crop results, this selection would show some promise as a new variety.

The Prospect - Based on two crop years, this selection would show little promise as a new variety, because of consistent poor milling results and tendency towards weak doughs.

•		
		,

ND 491

 $\label{towards} \mbox{Kernel Characteristics - Satisfactory to Questionable.} \mbox{ Tendency towards low protein.}$

Milling Performance - Satisfactory to Questionable. Tendendy towards low extraction.

Baking Evaluation - Questionable. Low bake absorption and tendency towards weak doughs.

General Evaluation - Based on this crop year's results, this selection would show little promise as a new variety.

The Prospect - Based on three crop years, this selection would show $\underline{\text{no}}$ promise as a new variety due to the milling performance which tended to be somewhat erratic, giving poor recovery from year to year and the poor dough characteristics which tend to be erratic from year to year.

ND 497

Kernel Characteristics - Questionable to Satisfactory. Tendency for low protein.

Milling Performance - Satisfactory to Questionable. Tendency to low extraction.

Baking Evaluation - Questionable to Unsatisfactory. Low absorption, poor dough handling properties, with long mixing time characteristics.

General Evaluation - Based on this year's results, this selection would show little promise as a new variety due primarily to poor baking characteristics.

The Prospect - Based on two crop years' results, this selection would show <u>no promise</u> as a new variety primarily because of poor baking performance which was noted the previous year.

ND 499

Kernel Characteristics - Satisfactory to Questionable. Tendency towards low protein.

Milling Performance - Very Satisfactory.

Baking Evaluation - Questionable. Tendency to low absorption, long mixing time, and peculiar dough handling properties.

General Evaluation - This year's results show this selection to have little promise as a new variety due to the erratic results.

ND 500

Kernel Characteristics - Satisfactory to Questionable. Minimum test weight, kernel weight, and wheat protein.

Milling Performance - Satisfactory to Very Satisfactory.

Baking Evaluation - Questionable to Unsatisfactory. Very definite tendency to low absorption.

General Evaluation - Based on this crop year's results, this selection would show <u>little promise</u> as a new variety due to the minimal kernel characteristics and bake absorption, even though it does have relatively good milling properties.

ND 501

Kernel Characteristics - Satisfactory.

Milling Performance - Unsatisfactory. High ash content at 65% extraction.

Baking Evaluation - Satisfactory to Questionable. Tendency to have tough dough.

General Evaluation - This year's results show this selection to have no promise due to the poor milling performance.

ND 502

Kernel Characteristics - Satisfactory to Questionable. Small amount of large kernels.

Milling Performance - Questionable to Unsatisfactory. Low extraction.

Baking Evaluation - Very Satisfactory.

General Evaluation - This year's results show this selection to have some promise, even though the milling performance was poor; however, this was based on just one sample.

S6662

Kernel Characteristics - Satisfactory to Questionable. Minimum protein content.

Milling Performance - Very Satisfactory to Satisfactory.

S6662 (Cont'd.)

Baking Evaluation - Satisfactory to Questionable. Tendency for weak doughs.

General Evaluation - Based on this crop year's results, this selection would show $\underline{\text{some promise}}$ as a new variety, although it does show minimum dough handling properties.

UNIFORM REGIONAL NURSERY SAMPLES - 1971 CROP

A total of 340 Uniform Regional Nursery samples were received. The samples represented 17 stations from eight states. No blends were made of the samples for this crop year due to the lack of compatibility and were milled as individual samples to eliminate any possible erroneous results. Thus, a total of 340 samples were milled and baked. Twenty samples were received from each of the stations. Eight selections were included for quality evaluation in the Uniform Regional Nursery samples; a ninth selection WS 1651-E was named Lark and released before the evaluations were completed. The remainder of the samples were the commercially named varieties of: Bonanza, Bounty 208, Chris, Era, Fletcher, Justin, Marquis, Neepawa, Selkirk, Waldron, and WS 1809.

Twenty samples were received from the Tetonia, Idaho station. Data for these samples are given in Table 6.

Sixty samples were received from the three Minnesota stations: Crookston, Morris, and St. Paul. Data for these samples are given in Tables 7 and 8.

Sixty samples were received from three stations in Montana: Bozeman, Havre, and Sidney. Data for these samples are given in Tables 9 and 10.

One hundred samples were received from five stations in North Dakota: Carrington, Dickinson, Fargo, Langdon, and Minot. The data for these samples are given in Tables 11 through 13. The samples from Carrington were grown on irrigated land.

Forty samples were received from two stations in South Dakota: Highmore and Watertown. The data for these samples are given in Table 14.

Twenty samples were received from Lind, Washington. The data for these samples are given in Table 15.

Twenty samples were received from Madison, Wisconsin. The data for these samples are given in Table 16.

Twenty samples were received from Sheridan, Wyoming. The data for these samples are given in Table 17.

In Table 18 are given the average results for each of the twenty samples submitted from eight states and 17 stations. The results for kernel characteristics and milling performance were obtained by averaging the results from the 12 tables——6 through 17. The baking results were obtained from a blend of the flours in equal proportions from each of the stations for the respective variety or selection. The regular 100 g. straight dough rich formula baking procedure was used in baking the flour blends. The General Evaluation column includes the general overall

performance of the blend of each sample. The General Evaluation given for the sample may not agree with that of the blend, since averages do not express the range and poor characteristics may be masked. In an endeavor to clarify this problem, the averages of General Evaluation, the number of total deficiencies and the number of major deficiencies are given after each variety or selection in parenthesis -- (Average General Evaluation - #Total Deficiencies/#Major Deficiencies).

For simplicity and brevity of the report, as in previous reports, each variety will be discussed from the general overall viewpoint rather than the individual stations. The general evaluation summarizes the results from the individual stations for one crop year. The evaluation is more meaningful for the overall performance of a variety or selection when at least two or more crop years are included. The data discussed under the category, The Prospect, includes two or more years.

In Table 19, the averages are given by states for the three varieties of Chris, Justin, and Selkirk. This table gives a comparison of the varieties by state, as well as state averages of the three varieties for comparative purposes, and the 1971 grand averages for the three varieties for comparison of the two crop years. In general, the 1971 crop had slightly better kernel characteristics (test weight, 1,000 kernel weight, kernel size distribution) than last year with approximately 1/2% lower protein content. The milling was better than last year showing a 2% higher flour extraction, and 3 points lower flour mineral content. The absorption was $1\frac{1}{2}\%$ less than last year. The mixing time was slightly shorter than last year, as were the mixogram patterns. The dough characteristics were stronger. The crumb color was the same, but the crumb grain was better than last year. The loaf volume was approximately the same as last year.

The average results of the varieties, Chris, Justin, and Selkirk, for each of the individual stations, were used as a standard for the other selections from that station; therefore, a variety or selection may be rated satisfactory at two different stations, but comparison of the data may show much poorer results for one station due to adverse environmental conditions. Thus, in actuality, the sample with poor results could be rated as unsatisfactory quality wise when compared to the overall spring wheat area. The state averages in Table 19, are additional guides for the relative performance for the crop year by states.

By using the new format and employment of the computer, all named varieties receive a general evaluation. Only those varieties in the Good Promise category could be consistently considered as acceptable to the trade both in the domestic as well as foreign markets. However, in order to be brief, the varieties may be broadly classified as follows:

Bonanza (1.7 - 79/26) - No Promise.

Bounty 208 (1.9 - 59/22) - No Promise.

Chris (3.1 - 30/2) - Good Promise.

Era (1.2 - 77/40) - No Promise.

Fletcher (2.3 - 44/19) - Little Promise.

Justin (3.4 - 17/1) - Good Promise.

Marquis (2.3 - 52/18) - Little Promise.

Neepawa (2.2 - 42/12) - Little Promise.

Selkirk (2.7 - 38/5) - Some Promise.

Waldron (2.8 - 32/8) - Some Promise.

World Seeds 1809 (2.6 - 42/9) - Some Promise.

WS 1651-E (Lark) (1.5 - 82/34)

Kernel Characteristics - Questionable to Unsatisfactory. Low 1,000 kernel weight, poor kernel size distribution, and low protein.

Milling Performance - Questionable to Satisfactory. Low extraction and high flour mineral content at 65% extraction.

Baking Evaluation - Questionable to Unsatisfactory. Low absorption, long mixing time, and poor dough handling properties

General Evaluation - This selection would show <u>no promise</u> as a new variety, based on this crop year's results because of deficiencies in every category.

ND 491 (2.7 - 29/6)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory to Questionable. Tendency towards low extraction.

Baking Evaluation - Satisfactory to Questionable. Tendency towards low absorption and weak doughs.

General Evaluation - Based on this year's crop results, this selection would show some promise as a new variety.

ND 491 (Cont'd.)

The Prospect - Based on two crop years, this selection would show some promise as a new variety, but does have minimum extraction and bake absorption, as well as a tendency for weak dough characteristics.

ND 497 (2.1 - 43/8)

Kernel Characteristics - Satisfactory to Questionable. Low protein content.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable. Minimum baking absorption, maximum mixing time, and poor dough handling properties.

General Evaluation - Based on this crop year's results, this selection would show little promise as a new variety.

ND 499 (2.2 - 44/13)

Kernel Characteristics - Questionable to Satisfactory. Minimum protein content.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable. Definite minimum absorption, and tendency towards weak doughs.

General Evaluation - This selection would show little promise as a new variety based on this crop year's results.

The Prospect - Based on two crop years, this selection would show little promise as a new variety. Last year it showed good promise, however the growing conditions were favorable for the characteristics which usually give minimum evaluation. An example is the complete reversal in the dough characteristics from strong doughs to a tendency towards weak doughs.

ND 501 (1.6 - 33/19)

Kernel Characteristics - Satisfactory.

Milling Performance - Unsatisfactory. Low extraction, high flour mineral content at 65% extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Based on this crop year's results, this selection would show no promise as a new variety primarily because of its poor milling performance.

ND 506 (2.6 - 32/7)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory to Questionable. Tendency to give minimum extraction, occasional high flour ash, and large protein spread between flour and wheat.

Baking Evaluation - Satisfactory to Questionable. Tendency for minimum absorption and strong doughs.

General Evaluation - This year's results for this selection would indicate that it would have some promise as a new variety.

Wisc. 271 (1.8 - 68/20)

Kernel Characteristics - Questionable to Unsatisfactory. Minimum test weight, 1,000 kernel weight, kernel size distribution, and low protein.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable. Definite tendency towards minimum absorption, long mixing time, and strong doughs.

General Evaluation - This selection would show no promise as a new variety, based on this crop year's results due to several deficiencies -- especially protein content, strong doughs, long mixing requirements, and low absorption.

The Prospect - This selection would show <u>no promise</u> as a new variety based on five crop years, primarily because of a tendency towards long mixing, strong doughs, minimum protein content, as well as bake absorption.

Wisc. 67-1-69 (2.2 - 41/19)

Kernel Characteristics - Questionable to Satisfactory. Minimum protein content.

Milling Performance - Satisfactory.

Baking Evaluation - Unsatisfactory to Questionable. Minimum absorption, definite tendency to too long mixing, and too strong doughs.

General Evaluation - Based on this crop year's results, this selection would show little promise as a new variety, primarily because of the baking characteristics of long mixing and strong doughs.

Wisc. 67-1-69 (Cont'd.)

The Prospect - This selection would show <u>no promise</u> as a new variety based on three crop years' results, due to tendencies for minimum protein content and tendencies towards long mixing time and doughs which are too strong, as well as a tendency towards minimum milling characteristics.

NK 70Y14 (1.1 - 61/30)

Kernel Characteristics - Questionable. Minimum kernel size distribution and low protein.

Milling Performance - Satisfactory.

Baking Evaluation - Unsatisfactory. Mixing time too long and dough characteristics too strong.

General Evaluation - Based on this crop year's results, this selection would show no promise as a new variety, primarily due to the low protein content, long mixing time, and strong dough.

SAWFLY YIELD NURSERY SAMPLES - 1971 CROP

One hundred and four samples were received from two stations in Montana and two stations in North Dakota. Twenty-one samples were received from each of the stations: Conrad and Sidney, Montana and Fargo and Minot, North Dakota. Five of these samples were the named varieties: Chinook, Chris, Fortuna, Rescue, and Thatcher. Sixteen of the samples were the selections: MT 7020, MT 7025, MT 7026, S683, \$686, \$6662, \$6677, \$6763, \$6765, \$6851, \$6855, \$01-484, \$068-159, 7530-411, 7823-112, and 8068-40. Replicate samples from Minot were processed, however, selection S683 was only in Replicate II. The data for these samples from the individual stations are given in Tables 20 through 22. In Table 23, are the averages for these data. Again, averages and blends may not reflect the range of response of a selection or variety to environmental conditions; therefore, averages of the General Evaluation, number of total deficiencies, and the number of major deficiencies are given as they were for the Uniform Regional Nursery series. The varieties of Chinook, Chris, Fortuna, Rescue, and Thatcher from each station were averaged for a standard of performance and results of the individual samples were compared to this average.

Chinook (3.0 - 6/0) - Good Promise.

Chris (3.2 - 9/2) - Good Promise.

Fortuna (3.4 - 5/2) - Good Promise.

Rescue (1.8 - 14/4) - Little Promise.

Thatcher (2.0 - 27/6) - Little Promise.

MT 7020 (1.0 - 31/15)

 $\label{thm:characteristics-Unsatisfactory. This selection was deficient in all categories. \\$

Milling Performance - Questionable. Tends to give low extraction and high mineral content at 65% extraction.

Baking Evaluation - Questionable. Tends to give minimum absorption and loaf volume, as well as too long mixing time and too strong a dough.

General Evaluation - This selection would show no promise as a new variety because of deficiencies in kernel characteristics, which tend to be reflected in the milling process.

MT 7025 (1.2 - 28/16)

Kernel Characteristics - Questionable to Unsatisfactory. Minimum test weight, 1,000 kernel weight, wheat protein and kernel size distribution.

Milling Performance - Unsatisfactory. Low extraction, and high flour ash.

Baking Evaluation - Questionable to Unsatisfactory. Minimum absorption and weak dough characteristics.

General Evaluation - This selection would show no promise as a new variety, as it is deficient in almost all categories.

MT 7026 (1.4 - 23/6)

Kernel Characteristics - Questionable. Minimum 1,000 kernel weight, tendency towards low test weight and poor kernel size distribution.

Milling Performance - Satisfactory to Questionable. Tendency towards high ash in the flour.

Baking Evaluation - Unsatisfactory to Questionable. Minimum bake absorption, loaf volume, a tendency towards short mixing, and has the poorest crumb color of all the samples.

General Evaluation - This crop year's results show this selection to be of little promise as a new variety.

S683 (2.5 - 11/3)

Kernel Characteristics - Satisfactory to Questionable. Tendency towards low percentage of large kernels.

Milling Performance - Satisfactory to Questionable. Tendency towards high flour mineral content.

Baking Evaluation - Satisfactory. Minimum bake absorption and color.

General Evaluation - Based on this crop year's results, this selection would show <u>some promise</u> as a new variety; however, if it continues to show big responses to environmental conditions of either being satisfactory or not satisfactory, it should be discarded.

5686 (3.8 - 3/0)

Kernel Characteristics - Satisfactory.

Milling Performance - Very Satisfactory.

S686 (Cont'd.)

Baking Evaluation - Satisfactory.

General Evaluation - This selection shows good promise as a new variety.

S6662 (3.8 - 2/0)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

Baking Evaluation - Satisfactory.

General Evaluation - This selection shows good promise as a new variety.

The Prospect - Based on three crop years' results, this selection would show good promise as a new variety.

S6677 (3.2 - 5/0)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable to Satisfactory. Tendency toward weak doughs.

General Evaluation - Based on this crop year's results, this selection would show good promise as a new variety.

56763 (1.8 - 13/4)

Kernel Characteristics - Satisfactory.

Milling Performance - Questionable. Minimum extraction and maximum flour ash.

Baking Evaluation - Questionable to Satisfactory. Definite tendency toward weak doughs and minimum absorption.

General Evaluation - Based on this crop year's results, this selection would show little promise as a new variety.

The Prospect - Based on two crop years' results, this selection would show <u>little promise</u> as a new variety, primarily due to the minimum milling performance.

S6765 (1.6 - 14/5)

Kernel Characteristics - Satisfactory. Tendency toward minimum test weight.

Milling Performance - Questionable. Tendency for low extraction and high ash.

Baking Evaluation - Questionable to Satisfactory. Tendency toward weak doughs and low loaf volume.

General Evaluation - Based on this crop year's results, this selection would show little promise as a new variety, due to milling and baking performance.

The Prospect - Based on two crop years' results, this selection would show no promise as a new variety, due to minimum milling performance and baking characteristics.

S6851 (2.2 - 10/3)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory to Questionable. Minimum extraction and maximum flour ash.

Baking Evaluation - Questionable to Satisfactory. Low absorption and minimum dough properties.

General Evaluation - Based on this crop year's results, this selection would show $\underline{\text{little promise}}$ as a new variety, due to questionable milling and baking characteristics.

S6855 (1.6 - 13/5)

Kernel Characteristics - Satisfactory.

Milling Performance - Questionable. Minimum extraction and maximum mineral content in the flour.

Baking Evaluation - Questionable to Unsatisfactory. Low bake absorption, weak doughs, and low loaf volume.

General Evaluation - This crop year's results show this selection to have <a href="https://little.com/little.c

01-484 (2.8 - 12/2)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory to Questionable. Maximum mineral content in the flour.

Baking Evaluation - Satisfactory to Questionable. Tendency towards weak dough.

General Evaluation - This selection would show $\underline{\text{some promise}}$ as a new variety, although it does give somewhat erratic results for kernel characteristics and maximum mineral content in the flour, and minimum dough strength.

068-159 (2.6 - 12/3)

Kernel Characteristics - Satisfactory to Questionable. Minimum kernel weight, minimum amount of large kernels, and maximum wheat mineral content.

Milling Performance - Satisfactory to Questionable. Minimum flour extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Based on this crop year's results, this selection would show some promise as a new variety, although it does tend to give somewhat erratic results with minimum dough characteristics.

7530-411 (2.4 - 7/1)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

Baking Evaluation - Satisfactory to Questionable. Shows a definite tendency towards minimum absorption.

General Evaluation - Based on this crop year's results, this selection would show some promise as a new variety.

7823-112 (1.4 - 20/10)

Kernel Characteristics - Questionable to Satisfactory. Minimum test weight, kernel size distribution and high wheat mineral content.

Milling Performance - Unsatisfactory. Low extraction and high flour mineral content.

7823-112 (Cont'd.)

Baking Evaluation - Questionable to Unsatisfactory. Weak doughs.

General Evaluation - Besides having minimal kernel characteristics and baking characteristics, one sample definitely showed soft milling characteristics. Therefore, this selection would show no promise as a new variety based primarily on the milling characteristics, low extraction and high ash.

8068-40 (2.6 - 13/3)

Kernel Characteristics - Satisfactory to Questionable. Minimum kernel size, 1,000 kernel weight, and wheat protein.

Milling Performance - Satisfactory to Questionable. Minimum flour extraction.

Baking Evaluation - Satisfactory. Tendency towards weak doughs.

General Evaluation - This selection would show $\underline{\text{some promise}}$ as a new variety; however, it does have a tendency to be either satisfactory or unsatisfactory. If such characteristics continue, it would show little promise.

1		
1		
NOW SERVICE		
2		
TICE C		
5		
4 80		
T T T T		
3		

								,																								
VARIETY OR SEL. NO.	1.1	1000 KWT.	KEBL	KERNEL SIZE LG MED SM		MIN. R	HMT. K	KERN. CMAR.	æ -	4IN.8	:::	MLG MI CMAR. PI	MLG. PER.	MIX. MIX. ABS. PAT.		84KE MI 485. TI	MIX. OC	CMAR. COLOR	AB CRUPB	WB LCAF IN VOL.	F BAKE • EVAL.	GEN. EVAL.	MINOR	R DEF	DEFICIENCY	>		MAJOR DEFICIENCY	DEF 10.1	ENCY		
	#/BU.	ی	50	100	50		!	1	90	50			1				NIN.			• 00												1
DAVIS, CALIFORNIA	AINS																															
CIANO 67 ANZA	66.99	39.5	96	433	. 3	1.75	11.7		67.0		11.1							20 100	. 6 85.99 .5 80.00	99 780	0 0 0	4 (SA	E					8A 00	^		
INIA 66 SEL SIETE CERROS D 7045	63.7	34.5	49	3 4 8	7 8 2	1.49	8.8 10.5	n ao w	60.0	0.45	7.9	7 5 7	2 9 2	58.3 3 60.0 5		57.0	3.50 2	0 101.5 7 101.0				7	S I S	KW SM DG LV	S C			E 3E 3E	EX M65 8A	8 B A	00 LV	_
D 7164 D 7165 D 7166 D 7167 D 7168	65.8 65.3 66.2 61.8	40.3 44.2 34.2 31.8	70 71 71 63	28 53 48 35	22242	1.42 1.55 1.48 1.63	10.1 10.4 9.6 10.1 9.8		66.9 66.0 65.0 65.5		99.99	1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		59.3 5. 60.7 5. 59.7 5. 58.7 3			3.75 4.00 4.75 2.50 3.00 2	6 100.8 6 100.5 6 101.5 7 105.6 2C 103.7	90.99 5 88.10 5 85.09 6 86.01	99 775 10 715 09 725 01 745 01 685	5 5 5 5 5 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N N X X N X X X X X	00 CV FG SM FD 000 W65 LV	00			3 3 3 E E E	88A 88A 88A 88A 00	60 4		
D 7169 D 7170 D 7171 D 7172 D 7173	64.9 65.1 65.2 66.1	42.2 43.7 44.1 41.2 36.1	64 74 70 70 52	25 25 40 40 40 40 40 40 40 40 40 40 40 40 40	2	1.51 1.48 1.46 1.43 1.53	10.6 10.7 10.4 11.0	0 N O 4 N	67.1 66.9 65.6 66.3 64.1	0.38 0.37 0.39 0.43	9.5 9.9 9.5 10.2	2 5	00000	59.7 4 60.7 6 59.7 4 60.0 4		60 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.50 4.75 3.25 4.00 4.50	6 102.0 6 99.0 5 102.7 6 101.7 5 100.0	85.09 86.99 7 88.09 7 84.01	09 740 99 750 09 760 01 750 01 930	00000 80884	1711	1 1 1 2 X	000 000 SM WR	E X	8 A		3 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8. A 8.			
D 7174 D 7175 D 7176 D 7177 D 7178	65.8 66.0 65.8 65.8	36.0 40.2 39.2 41.2 40.8	55 67 65	43 33 34 34	2 2 2 1	1.40 1.47 1.52 1.41	10.1 11.3 11.0 10.6		63.0 64.3 63.2 69.2	0.41 0.38 0.40 0.40	9.5 10.1 10.1 9.7 9.1	12222	- 4 0 0 U	61.9 3 62.5 4 61.9 4 59.7 5		61.5 61.0 60.1 58.1 57.8	44.50 44.50 34.35 3.25	20 101.0 20 101.0 20 102.0 7 101.7 7 102.7	84.01 987.99 982.01 96.99 7 882.10		705 5 710 8 675 8 695 8		X N N N U	E X G X Y	M65 00 M65 8A M65 00	3 33		7 0 × 4 7	6 E X 8 A B A B A B A B A B A B A B A B A B A			
BLUEBIRD 2 INIA 66 SEL D 7053 D 7152 D 7153	66.3 67.0 65.2 64.1	41.8 44.6 34.7 36.9	55 71 44 45 67	43 28 54 53	2 2 2 2 2 2 2	1.40 1.31 1.45 1.48	11.3 11.6 11.1 11.1	m N 4 4 m	64.66 653.6 65.8 66.9	0.41 0.35 0.41 0.41	10.7 10.9 10.2 10.1	2 5 2 1 1 1 2 2	22002	59.7 6 61.3 4 60.3 5 60.3 4		588.5 660.1 559.0 588.9 9.9	3.25 3.25 3.25 3.25	6 100.8 6 99.0 6 100.0 5 100.8	92.70 91.70 95.10 99.99 9 91.99	70 785 70 805 10 715 99 770 99 815	8 W 8 8 W	3 1 1 3	S B T T M T T W M T	M65 E0	2 C Z	WR E)	EX M65 DO	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
D 7154 D 7155 O 7156 D 7157	64.5 64.5 63.0 65.5	36.1 41.8 38.2 39.8 38.5	43 72 52 70 61	55 27 29 37	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.48 1.42 1.50 1.41	11.2 12.1 12.8 12.5 11.0	0 m 4 N 0	65.3 66.0 68.6 64.3	0.42 0.37 0.36 0.39	10.3 11.1 11.6 11.5	2 2 2 1 1 1	22232	61.3 4 61.6 2 62.5 4 62.8 3 61.0 3		59.7 6C.0 60.7 61.3 59.5	3.50 2.00 2.75 3.25	6 99.0 6 100.0 5 97.2 6 100.8 6 99.0	89.99 88.99 86.10 8 87.99	99 770 99 795 10 815 99 775 07 720	0 2 2 2 2 7	1345	2 T T W Z	N W W W W W W W W W W W W W W W W W W W	LG SM CO COL EX OO	8A 00 LV	0	M 65	84			
D 7159 D 7160 D 7161 D 7162 BLUEBIRD 2	65.5 65.0 61.6 63.2 65.3	41.2 36.6 31.1 29.2 42.9	65 34 38 58	3 9 9 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9	12462	1.39 1.50 1.44 1.50	11.2 12.0 10.9 10.8 11.6	4 M & L M	64.5 63.4 67.5 65.6	0.36 0.37 0.41 0.36	10.6 11.3 10.3 9.9	2 1 2 5 2	22778	61.3 2 62.5 7 60.7 2 59.0 7		59.9 61.1 59.3 57.5 58.5	2.75 5.00 2.50 4.75	6 99.0 6 101.8 7 100.4 5 101.7 6 100.8	.0 86.10 .8 75.05 .4 86.99 .7 91.59		750 6 725 6 715 7 820 8	2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A W X X X X X X X X X X X X X X X X X X	S S C C C C C C C C C C C C C C C C C C	EX MT HR M65 SM HP	0C GR	α >	X K W W C C C C C C C C C C C C C C C C C	S.M. E.X. 8.A. 8.A.	8 A		
NURI 70 D 7004 D 7021 D 7051	66.4 64.9 65.6 66.1	38.6 45.2 41.2 45.5	58 68 62 70 80	30 35 29 20	3 2 2 0	1.48 1.47 1.50 1.50	12.0 11.1 12.0 13.3	w #1 #1 N N	67.2 66.5 70.6 65.5	0.42 0.42 0.38 0.38	11.4 10.6 11.3 13.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2322	60.7 5 59.7 4 61.6 7 61.9 3		59.1 3.59.8 60.0 2.60.3 2.2	3.50 4.50 2.75 2.25	5 101.0 6 100.8 4 101.8 4 100.8 3 100.9	.0 85.99 .8 87.10 .8 85.10 .9 92.70	99 760 10 745 10 805 10 815 70 875	ουννίν να ουν	3 2 2 3	S T W B B B B B B B B B B B B B B B B B B	8 A 000	00			X 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	8A 8A			
D 7055 D 7059 D 7061 D 7079	65.2 64.5 64.3	36.4 4C.5 38.8 41.7	50 54 54	48 44 36	0 0 0 ý	1.50 1.50 1.51 1.57	13.0 12.6 11.9 13.1	4 W 4 W	63.9 68.0 64.7 66.3	0.36	12.2 12.0 11.2 12.5	1 2 1 1	4226	62.3 3 62.5 4 61.9 4 62.5 6	60 61 60 60	60.8 2.61.0 3.60.3 5.00.7 4.60.7	2.50 3.25 3.50 4.00	5 99.0 5 100.0 5 100.E 5 100.E	.0 87.10 .0 9C.99 .f 88.59	10 825 99 825 99 800 99 820	2 2 2 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	W 4 N 4	3333	S S S S S S S S S S S S S S S S S S S	SM EX #65 BA #65		٠					
EL CENTRO, CAL	. I FORNIA																															
CIANO 67 1N1A 66 SEL BLUEBIRD 3 CA 70-003 D 6923	66.9 65.3 63.2 63.2	39.5 39.8 42.6 40.0	66 50 50 65	33 40 46 32	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.75 1.29 1.41 1.33	11.7 12.0 12.4 12.2 11.6	0 m 4 4 m	67.0 64.4 64.7 66.1 66.4	0.38 0.34 0.36 0.40	11.1 10.9 11.2 10.9	1 2 2 2 1 1	24442	62.5 4 61.3 3 61.3 3 61.6 2 58.1 1		61.4 3.61.5 3.61.3 2.61.6 1.6 1.5	3.25 3.00 2.75 1.75	5 101. 5 101. 7 101.	w c n n &	5.99 780 4.99 790 7.99 825 5.99 735 5.99 715	00000	4 4 4 7 11	* * *	SM PD 765 RD SM PE	000 E	۵۵ د۷	>	% ⊗ 7- ∀				
166-5 113-1-2-0 21-2-3-D	61.3 59.2 61.2	38°C 41°5 43°3	45 56	53 42	5 4 2	1.49 1 1.49 1.37	12.7 12.8 11.7	00 00 00	66.4 62.9 66.8	0.35	10.8 10.7 9.7	m 4 m	4 00 4	57.2 2 57.5 1 56.3 1	56 55	56.6 2. 56.4 1. 55.4 2.	2.50 1.75 2.00	6 101. 7 101. 7 102.	.7 84.99 .7 85.99 .6 84.99	99 785 99 795 99 740	R B B		LG LG SM	00 765 00 00	0			T T T S	SM PO SM EX RD 8A	8 A P O	8 A	
1/ CLEAN DRY	- 1 9	SUBTRACT 1 L8./8U.	.8./81	U. FOR		DOCKAGE-FREE	, k																									

CLEAN DRY - SUBTRACT 1 L8./8U, FCR DOCKAGE-FREE I...

14 TRO 510RE BASIS.

14 TRO 510RE BASIS.

15 TRO 510RE BASIS.

15 TRO 510RE BASIS.

18 TRO 510RE BASIS TO THORAGAN TO THE BASIS TO THE 6 64624366

QUALITY CATA ON FIELD PLOT NURSERY SAMPLES

MA'JCR OEFICIENCY			ВА	MT		θA		,		CO F.V			ISFACTORY. .LY DPEN,IRREGULAR
MAJCR			N 65	35		3		d.	E	3.	00	MT	9 8 = UNSATI DEAO. 1.30 = SLIGHT
MINOR OFFICIENCY			MP MT	Th M65 BA	BA MT	PT 00 LV	MP MT 00	BA MT	WP M65 DC	SM 8A	WM M65 P0	00	LCLANDERY SUBTRACT ILB./BU. FCR OOCKAGE-FREE 1 14.2 MOISTORY 3 SATISFACTORY-DUESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = QUESTIONABLE, 6 = QUESTIONABLE-UNSATISFACTORY, 7 = UNSATISFACTORY-DUESTICKABLE, 8 = UNSATISFACTORY 1 = NORMAL 2 = NORMAL 4 = SOFIT, 6 = PILABLE 5 = TABLE-MEAN 1 = VERY PROME 1 = NORMAL 2 = NORMAL 4 = SOFIT, 6 = PILABLE 5 = TABLE-MEAN 1 = VERY PROME 1 = SOFIT-MEAN 1 = VERY PROME PATERN 1 = VERY PROME 1 = SOFIT-MEAN 1 = VERY PROME PATERN 1 = VERY PROME 1 = SOFIT-MEAN 1 = VERY PROME PATERN 1 = VERY PROME 1 = SOFIT-MEAN 1 = VERY PROME PATERN 1 = VERY PA
!			_	_	e .			_		_	_		7 = UN EAK 2 ××× 1 = OPEN
BAKE GEN EVAL. EVA			9	9	500	7 60	2	5	8	89	8	αυ	FORY, WIERY WIE GRAY, Xx.09
	.00		935	935	935	880	980	955	980	195	096	1015	10 = 10 = 10 EN x)
CRUMB L GRAIN V			91.70	63°65	91.70	92.99	66°56	90.30	88.07	87.99	96.50	86.05	VABLE-UNSAT 9 = WEAK, AY, XXX.2 = RREGULAR, OP
ODUGH CRUME CHAR. CCLOR 6/ 7/			101.0	101.0	102.0	100.001	102.0	102.0	103.0	100.7	102.0	100.0	= QUESTION C-PLIABLE, XXX.3 = GR.
	i		4	4	4 .	'n	6	4	3	1	7	. 3	LEAR
MIX.	X I X		3.50	4.25	3.50	3.25	3.25	3.00	4.50	2.25	2.25	4.00	TIONAB AK, B RY CRE IRREGL
	80		62.0	63.2	62.8	62.1	63.6	63.1	66.1	65.9	63.B	63.B	5 = QUES LIABLE-HE XX.4 = VE SLIGHTLY L.
MIX. MIX. ABS. PAT. 27. 57.	ðw.		4	9	50	J 4	4	4	9	c#	3	2	UUSSIONABLE-SAIISFACTORY, S SDF1. SDF2. ASTIC. 6 = PLIABLE, 7 = PLI GEGMY, XXX.5 = GREAMY, XXX IRREGULRA, XXX.06 = DPRN-SL IRREGULRA, XXX.99 = NORMAL.
MIX. ABS.	ðw.		61.9	63.5	63.2	62.5	64.2	63.5	9.99	63.5	64.2	64.2	ATISFA (ONG) ABLE, = CRE (*06 =
MLG. PER.			8	4	2 0	7	-	2	6	4	3	2	BLE-S/ RY STF XXX.5 XXX.5 R* XX)
MLG CHAR.			1	2	2 (7 -	-	н	-	۴	1	1	STIONA FT. 1 = VE TIC, 6 EAMY, REGULA REGULA
FLR. MLG PRO. CHAR.	∞		13.3	13.3	13.5	12.B	13.5	13.2	13.9	10.7	13.6	14.0	= 90E ERY SO 1 E-ELAS GHT CR EN* IR
	m	٠,	0.39	0.38	0.34	0.33	0.33	0.34	0.37	0.36	0.37	0.35	(BLE, 4 6 = V KY WEAK PLIABL 9 = BRI 15 = OP
FLR. MIN. 3 EXT. 65%EX	94°		0.69	5B.4	6B.5	69.2	7.7	7.70	6.8	63.9	9.99	11.2	STIONA SRITTY, S = 5 = 5 X X X & 6 X X X X X X X X X X X X X X X X X X X
	l			9		n en	41	2	4	8	2	, m	NY-QUE No 1 LIABLE REAMY ECCS
MET. KERN. PRO. CHAR. 27. 37.	346		14.3	14°0	14.9	13.6	14.2	14.0`	14.8	11.8	15.2	15.0	T.W. I SFACTO = SOFT, ASTIC-F GHTLY (GHTLY OF
MIN. P			1.67	1.55	1.64	1.65	1.61	I.59	1.67	I.52	1.79	1.63	AGE-FREE 3 = SAT 3RMAL, 4 2AL CURVE 5, 4 = EL 6,7 = SLI -ARSH, XX
SM	500		1	7			_		-	2	1	1	ODCK. CTDRY OFT-NC UMERI LASTI E, XXX
KEBNEL SIZE	50		2.7	30	28	28	24	2.2	36	38	1.5	71 28	ATISE
	94		7.2	69	71		75	7.2	63	99	84	11	LB./E 2 = S OGRAMS ASTIC, XXX.e = THI EGLLAR
1000 KWT.	.9	00	40.3	45°C	36.8	40.3	41.7	45.4	39.5	36.B	39.7	41.7	RACT 1 IS. CTORY, NCRMAL. CE MIXI CE MIXI CE MIXI CE MIXI CXX.01
1.k.	#/BU.	5, COLORA	62.0	8°09	63.5	63.1	65.9	62.7			62.7	63.2	CLEAN DRY - SUGTRACT I LB./BU. FCR OGCKAGE-FREE I.». "HE MOSTAME BAASIS." "HE MOSTAME BAASIS." "E STISFACTORY - 3 = SATISFACTORY - 3 = SATISFACTORY-QUESTIONABLE, 4 = QUESTIONABLE-SATISF "E NORMAL - 3 = NEW ALL-SCFT, 3 = SOFT-NORMAL 4 = SOFT-S = GRITTY , 6 = VERY SOFT STRONG) "EFFER TO REFERENCE MIXOGRARS FOR NUMBER A. = SOFT-SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT
VARIETY OR SEL. NO.		FORT COLLINS, COLORADO	BLUEBIRO 1	BLUEBIRO 4	BCLNTY 208	CIANC SIB	INIA 66	INIA 66 SEL	REO RIVER 68	STETE CERROS	WALORDN	NK 70Y14	1/ CLEAN DR 2/ 14% MOIS 3/ 1 = VERY 4/ 1 = NORM 5/ REFER TO 6/ 1 = BUCK 7/ XXX.00 = 8/ XXX.50 =

T. H.	1000 KWT.	KERN	KERNEL SIZE LG MEO SM		WH'T.	KERN. CHAR.	∻ :	MIN. 2	FLR. ML PRO. CH	MLG MLG. CHAR. PER.	Σ<	X. MIX. S. PAT.	84KE 485.	FIX.	COUGH CRUMB CHAR. COLOR		CRUM8 GRAIN		HAKE GEN. EVAL. EVAL. 3/ 9/		MINOR OFFICIENCY .	MAJOR OFFICIENCY
0.5		104	BP 194	77	7.97	1	84P	200	M	1	184		200	Σ	77			.00				
CARRINGTON, NORTH		DAKOTA	٨																			
37.7 36.2 35.0 33.4		74 57 61 54	25 1 43 0 38 1 46 0 46 0	1.42 1.34 1.37 1.35 1.46	12.4 13.1 13.5 14.2	64266	63.2 66.5 67.8 64.4	0.34 0.32 0.33 0.33	11.7 12.3 12.3 13.3	2 4 1 2 1 1 1 2 2 3 1 2	60.0 60.7 61.0 63.2	22 23 33 33 33 33 33 33 33 33 33 33 33 3	60.1 61.2 61.2 63.2 60.7	2.75 3.00 3.75 2.75 3.00	00440	101.7 102.8 101.8 100.0	85.99 53.99 89.90 92.99	805 815 855 890 850	5 2 4 3 3 3 4 4 5 3 3 4 4 5 5 3 4 6	# 8 ¥ E	00 8A CC KW W BA	Ø. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
25.9 36.0 32.3		32 57 53 62	67 1 42 1 27 1 42 1 38 0	1.50 1.38 1.56 1.40	12.5 14.2 13.8 14.2	23237	66.3 66.8 66.6 65.1 63.6	0.37 0.36 0.33 0.33	11.9 11.7 13.4 13.3	22 2 2 2 4 2 5 4 5 4 5 5 6 4 5 6 6 6 6 6 6 6 6 6 6 6	60.7 61.3 63.5 61.6	44880	60.3 60.9 63.0 61.3 62.0	3.75 3.75 3.00 2.25	N 4 4 4 4	101.5 100.7 101.0 100.7 99.5	89.99 86.09 87.99 87.09	820 870 850 865	2 4 4 2 3 3 3 3 3 3	X F X	LG 1465 8A 8A	нР M65 8A
39.1 38.3 33.1 38.0 39.8		65 52 36 35	31 0 34 1 47 1 64 0	1.45 1.56 1.41 1.55 1.30	14.2 13.9 13.0 14.5	0m0m4	65.4 66.6 64.8 66.1 66.9	0.34 0.34 0.34 0.35	13.5 12.9 12.3 13.5	11 3 3 3 3 1 1 1 1 1 3 3 3 3 3 3 3 3 3	62.5 60.7 59.3 62.5	5 2 5 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	62.1 60.7 60.3 62.0 58.8	3.50 2.50 2.50 2.50 4.50	4 የ የ የ የ የ የ	100.0 99.0 99.0 100.0	88.10 90.59 89.70 92.99	900 850 855 930 805	4 5 2 2 4 8 9 1 3 3 2 4 4	0 X J J	MP 00 FF 00 PF 00	48 H
35.0 40.0 36.2 37.8		62 52 65 77	37 1 55 0 47 1 3C 1 23 0	1.31 1.43 1.35 1.55	13.6 13.2 14.3 13.6	N 4 m N m	67.1 67.4 68.5 64.4	0.30	12.9 12.1 13.2 12.3	111111111111111111111111111111111111111	60.3 62.3 61.6 62.3 61.3		60.1 62.1 61.6 61.9 61.1	3.00 3.00 3.00	44400	100.0 101.5 100.0 101.0	85.10 86.59 89.99 86.70	890 870 885 825 830	0.0040	¥ 00 A		ΑΑ
39.1 39.1 33.1 42.0 38.2		74 50 66 47	26 0 22 0 49 1 33 1 53 0	1.49 1.47 1.49 1.50	13.2 13.3 13.3 14.5	4 6 5 7 7 7	666.5 67.8 66.5 63.7	0.31 0.30 0.32 0.39	11.9 12.2 12.4 13.9	1 1 1 1 2 2 8 1 1 4	58.7 60.3 59.7 64.2	2 4 3 3 5 6 4 4 3 3 5	59.2 61.3 59.7 63.8 65.7	5.00 3.50 3.00 2.75 4.00	0 W W 4 N	100.5 104.0 104.6 100.0	86.90 85.09 83.10 52.59 80.05	805 855 825 910	88 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	7 8 8 7 0 8 8 8 0 6 8 8	1 00 6.8	8 B B B B B B B B B B B B B B B B B B B
43.1		81	19 0	1.44	12.3	10	67.5	C.32	11.8	1 1	1.09	7 2	61.4	2.50	9	100.0	65.09	820	5 3	00		d M
CARRINGTON, NC	œ	NCRTH DAKCTA	STA	•.																		
41.5 35.1 38.8 36.5	6 5 8 1 5	84 75 71 70	16 0 25 0 22 0 29 0	1.59 1.56 1.54 1.49 1.58	13.9 12.0 13.5 13.8 11.9	V W W V V	63.5 67.0 64.5 67.0	0.36 0.36 0.32 0.33	12.4 10.8 11.8 12.9	2 3 1 1 1 1 1 2 2 2 2 1 1 2 2 1 1 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	62.5 58.1 60.0 63.2 61.6	2012 3224 3324 3324	61.9 57.6 59.4 62.6 61.1	2.25 3.00 3.50 2.50	2000	101.0 101.8 101.8 95.5 102.0	83.99 92.99 89.99 87.99	815 770 875 830 830	2 4 4 4 3 4 4 4 3 3 4 4 4 3 3 4 4 5 4 5 4	9 X X 0 X Z	M65 8A	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
34.1.41.3 40.7 34.4		68 84 86 65 81	32 0 16 0 14 0 35 0	1.56 1.52 1.59 1.54 1.63	12.6 12.0 13.8 12.4 12.4	N N N N 4	67.7 65.1 64.9 63.9	0.35 0.35 0.34 0.36	11.4 10.7 12.8 11.6	32223	61.3 58.3 62.8 60.0	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	61.3 58.7 62.4 59.7 60.2	3.50 2.75 3.00 2.75 2.50	99592	102.6 100.7 100.7 100.5	86.99 86.99 86.99 86.99	790 81C 84C 780	44 22 . 1 8 8 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	MP 8A	мР 8A 8A Ex M65 8A
42.7 41.5 36.1 42.4 38.3	~ 10 -1 .+ 60	82 77 66 87 67	18 0 23 0 33 1 13 0	1.65 1.70 1.87 1.71 1.49	13.5 12.8 12.2 12.9	84745	64.8 66.5 63.5 65.1	0.36 0.38 0.36 0.36	12.4 12.1 11.3 11.9	1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	62.5 62.5 61.3 62.8	48355	62.0 62.0 60.7 62.3 62.3	3.25 2.50 2.50 3.00 4.25	41-054	98.0 99.0 100.7 100.0	92.99 88.99 83.99 91.99	920 820 820 845 795	44400	2 CO X K K K K K K K K K K K K K K K K K K	MP 765 00 8A 765 00	M.W. W.P. M.6.5
36.4 43.1 40.3 45.5 41.8		72 66 74 85	27 1 34 0 26 0 14 1 13 0	1.43 1.48 1.44 1.49	14.5 13.4 13.1 14.6 12.5	00004	65.8 68.0 67.0 63.4	0.31 0.29 0.30 0.34	13.1 12.2 111.7 12.7	1 2 1 1 1 1 1 2 2 4 4 2 3 3	62.5 64.2 62.5 64.2	46222	62.2 63.6 61.9 63.3	3.25 1.75 3.75 2.75 3.00	ммило	100.7 93.5 102.0 102.8	75.99 90.99 87.99 85.99	900 940 820 855 785	00000	3 KW 4 COL 2 PO 2 WP	GR 8 A	, 00 00
44.8 43.5 43.6 43.9		87 77 87 83	13 0 13 0 23 0 13 0	1.56 1.51 1.55 1.68 1.63	12.8 12.8 13.1 15.0 14.5	44000	65.5 68.1 66.6 63.3	0.32 0.30 0.31 0.39	11.5 11.7 12.0 13.8	1 2 1 1 1 1 2 8 2 8	61.6 62.3 61.9 65.3	0 4 6 8 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	60.6 61.0 60.7 64.0 65.0	4.50 3.50 2.50 2.50 4.00	0 W W 4 N	100.5 99.0 98.5 96.0	88.99 87.99 90.99 91.99	775 815 845 935 960	04440	2 MP 3 WP 3 8A 1 C0	8A MT	, 00 00
44.4		48	16 0	1.55	13.7	2	67.3	0.32	12.6	1 1	63.5	3	62.2	2.50	۰	100. E	91.99	885	2 . 4			

CLEAN CRY - SUBTRACT I L0./80. FOR OCCKAGE-FREE 1.w.

14 MON STATISFACTORY - SATISFACTORY - SATISFACTORY - SEQUESTIONABLE - SATISFACTORY - SEQUESTIONABLE - SATISFACTORY - SATISFACTORY - SOFT - SETTING - SETTING - SOFT - SETTING - SOFT - SOF

FIELO PLOT NURSERY SAMPLES NO. QUALITY OATA

MAJCR OEFICIENCY						,	Z.	00	CC cc		90			E A 0.0						20			00		EX	
MINOR DEFICIENCY			Ex 00				8A 00	84	LG 8A			C C	000	465	00	MP MT		LG wm Ex		KW EX	0.0	Ex 00		3.1	LG	00
LCAF BAKE GEN. VOL. EVAL. EVAL. 3/ 9/			mr	n m	44		- 4	r ets	m -	4	2	4 (m.	_	en	Э	4	e	4	2	3	2	٣	4	Э	3
BAKE EVAL.			* *	7	2 2	,	9 10	9	7 a	D	5	2 .	4 :	٧	4	4	2	7	m	2	4	4	5	2	-	4
LCAF 8	. 33		865	870	910		855	980	900	2	870	910	950	046	880	850	915	970	855	875	885	908	885	928	016	910
CRUMB GRAIN B/			88.99	66.35	83,99		89.99	66.06	66.58	5 5 0 D	66.48	87.99	63.99	66.36	85.99	86.99	88.99	88.99	66.68	66.68	87.59	88.99	66.58	91.99	91.99	66.68
RUMB OLOR			02.7	0.00	101.7		0000	01.7	102.7	0.20	103.7	01.0	01.7	05.7	00.0	102.C	03.7	01.0	01.0	5.10.	02.5	01.4	100.7	01.5	6.00	0.101
OCUGH CRUPB CHAR. COLOR			4 4		m m	,	4 4		e .		5			9		3	3				4	4		6		4
FIX.	Z I E		2.50	4.25	3.50		4.25	3.00	3.00	0000	2.75	3.75	3.50	3.00	3.50	5.00	3.00	2.00	70°+	4.25	3.50	3.75	3.50	3.00	3.00	2.75
84KE 485.	*		62.5	61.1	62.2		60.4	60.2	60.3	1.66	62.4	62.1	62.0	61.2	61.2	61.1	63.9	1.49	61.2	63.1	61.8	63.2	62.3	61.9	0.49	61.4
MIX. PAT.			w r	9	4 6	1	5 4	rm	67.6	n	3	۲.	4	m	4	8	4	2	_	9	5	2	2	3	2	8
MIX. A	340		62.3	1.3	61.3		7.0	3.7	61.0	0 .	62.3	5.0	2.3	7.0	7.0	7.0	63.8	2.0	0.1	2.8	9.1	3.5	62.5	2.5	4.2	9.19
MLG. PER.				5 6		,	2 2	1 6	2 6	n n	3 6.		2 6	9	3	2 6(4 6	1 6	4	2 6	9 5	2 6.		9	1 6
ALG ML HAR. PE			2 5	2 2	2 5	,	2 5	, ,	2 5	7	2	2	2	2	2	2	,5	2	2	2	2	2	2	-	2	-
FLR. P	ж		13.9	13.0	14.3		12.4	13.7	14.5	t * t T	14.1	14.4	14.2	14.6	14.3		15.1		13.6	13.4	13.4	14.6	14.2	14.0	14.4	15.3
FLR. MIN. å EXT. 65%EX.	34		0.40	0.37	0.44		0.41	0.38	0.42	n + -	94.0	0.41	0.42	0.45	0.43	0.38	0.41	0.43	0.36	0.43	0.40	0.40	0.39	0.36	0.44	0.36
FLR.	æ		0.09	63.6	61.2	•	63.0	67.0	63.7	6.20	61.7	63.2	63.6	58.8	6.19	63.4	61.9	60.3	63.4	60.2	61.3	59.5	62.0	9.49	59.1	64.4
KERN. CHAR.			2 5	2	2 5	,	oc r	n	m	n	2	2	m	20	2	5	2	3	6	m	е	2	2	٣	e	2
WHT.	!		15.1	13.5	15.2	•	13.3	14.6	15.3	10.4	15.0	15.1	15.1	15.8	15.3	13.8	16.4	17.0	14.5	14.9	14.5	15.7	15.6	15.0	15.6	16.0
WHT.	54		1.67	1.63	1.69		1.57	1.58	1.71	C -1	1.70	1.68	1.72	1.75	1.73	1.70	1.66	1.90	F-69	1.65	1.73	1.70	1.63	1.68	1.64	1.62
Z.E.	84		4 u	n LO	6 4		9 6	1 4	4 9	n	e	4 :	S	9	2	5	4	٣	4	9	3	9	4	2	9	6
KEBNEL SIZE LG MEO SM	840		83	92	90		75	18	93	1,	98	8.	91	90	99	91	82	46	65	9.6	5.7	81	14	9.4	9.5	7.1
KEB?	84		13	rm	٦ 8)	20	18	e	ŧ	11	σ	4	4	32	4	14	m	4	æ	40	13	22	14	2	26
1000 KWT.	9	T.A	28.2	24.7	24.6		25.9	32.2	24.2	7.4.7	26.7	30.0	24.7	53.9	30.1	27.9	28.4	28.5	26.2	22.5	30.9	26.5	26.4	30.6	23.9	31.3
3.1	#/8U.	ORTH CAKO	59.7	61.4	57.1		60.6	60.7	58.4	0.00	29.0	6.09	57.5	51.2	57.8	60.7	2.09	9.69	61.6	6.65	59.0	59.7	58.9	55.8	59.4	0.65
VARIETY OR SEL. NO.		DICKINSON, NORTH CAKOTA	BARTON	BCUNTY 208	CHRIS		ERA	FORTUNA	JUSTIN	MANITOO	NEEPAWA	PCLK	SELKIRK	THATCHER	WALORON	WS 1651-E	WS 1809	WS 1812	WS 1877	A8-67-70	NO 491	NO 497	N0 499	NO 500	NO 502	56662

CLEAN ORY - SUBTRACT I L8./BU. FOR OOCKAGE-FREE I.W.

14 WORST SATISFACTORY 2 = SATISFACTORY - QUESTIONABLE, 4 = QUESTIONABLE - SATISFACTORY 5 = QUESTIONABLE, 6 = QUESTIONABLE - UNSATISFACTORY 7 = UNSATISFACTORY - DUESTICRABLE, 8 = UNSATISFACTORY 7 = UNSATISFACTORY 2 = VERY SATISFACTORY 2 = VERY SATISFACTORY 4 = ACTIVE 4 = ACTIV

MAJOR DEFICIENCY						UNSATISFACTORY. SLIGHTLY OPEN,IRREGULAR,
MINOR OFFICIENCY						LLEAN ORY - SUBTRACT I LB./BU. FOR DOCKAGE-FREE 1.w. 4.4 MOSTIONABLE ASSIGN. 1.2 VERY SATISFACTORY, 3 = SATISFACTORY OUESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = DUESTIONABLE-UNSATISFACTORY, 7 = UNSATISFACTORY OUESTIONABLE, 9 = UNSATISFACTORY OUESTIONABLE, 4 = SCRT. 5 = GRATTY, 6 = VERY STRONG 1.2 NORMAL-SOFT, 2 = NORMAL-SOFT, 3 = SOFT-NORMAL, 4 = SCRT. 5 = SATISFACTORY OUESTIONABLE STRONG 1.3 NORMAL-SOFT, 3 = EASTIC, 4 = ELASTIC, 4 = ELASTIC, 6 = PLANDE E-LASTIC, 6 = PLANDE E-LASTIC, 6 = PLANDE E-LASTIC, 7 = STORTHY OF ANY XXX.0 = SOGT, XXX.0 = SUGHTY OPEN, XXX.1 = VERY CREAMY, XXX.0 = SUGHTY OPEN, XXX.1 = VERY CREAMY, XXX.1 = VERY CREAMY, XXX.0 = SUGHTY OPEN, XXX.1 = VERY CREAMY, XXX.0 = SUGHTY OPEN, XXX.0 = SUGHTY OPEN, XXX.1 = VERY CREAMY, XXX.0 = SUGHTY OPEN, XXX.1 = SUGHTY OPEN, XXX.0 = SU
LOAF BAKE GEN.	77		4 4 E		4 m	, 7 = WEAK, WEAK, XXX
LOAF BAKE GEN. VOL. EVAL. EVAL	75		3 5 2		3.6	VERY VERY GRAY (XX.09
0AF 8	.00		868 863 873		970	15FAC 10 = 0ULL
	8/		88.98 86.32 91.32		88.29	AABLE-UNSAT 9 = WEAK, ay, XXX.2 = RREGULAR,OF
MIX. OCUGH CRUMB	787175		99.1 101.5 99.9		101.7	= OUESTION -PLIABLE, xx.3 = GRA
OCUG	74		440		m 4	E, 6 MY, X AR, X
	. NI M		2.91 3.00 2.83		3.75	ESTIONABL WEAK, 8 = VERY CREA
	77		62.7 61.9 61.6		63.0	5 = 0UI PLIABLE-I XXXX-4 = -1 SLIGHTL'
MIX. MIX.	27 27		***		4 6	CTORY 7 = AMY, OPEN
MIX.	72	•	62.6 62.4 61.8		63.9	T1SFA ONG) ABLE, - O6 =
ALG.	7		2 2 3		3 8	JESTIONABLE-SATISFACIORY, 5 OGFI. 11 - VERY STRONG) SIIC, 6 = PLIABLE, 7 = PLI REEMY XXX,5 = CREMY, XXX RRECULAR, XXX.06 = OPEN,SI RRECULAR, XXX.09 = NORWAL,
LG HAR.	75		2 2 I		1 2	TIONAL T. VEI IC. 6 AMY, EGULA
LR. M	-		13.5 13.6 13.1		14.7	QUESTIVE SOFT. II == ELASTIC T CREAM , IRREG
HHT. WHT. KERN, FLR. MIN.S FLR. MLG MLG. MIN. PRG. CHAR. EXT. 65%EX. PRO. CHAR. PER.			0.36 1 0.36 1 0.37 1		3 67.3 0.37 1 3 64.7 0.36 1	8LE, 4 = 6
LR. X	N		63.4 65.1 65.6		3	TIONA ITTY: = VER XXX:6 XXX:6 XXX:0
2.0			666		3 64	COUES COUES COUES COUES COUES COUES COUES COUES COUES COUES COUES COUES COUES COUES COUES COUES
KERI	7		4 M D			ACTORY CFT, CFT, TTERN, IC-PLI LY CRE
HHT.	77		14.4 14.3 13.9		15.5	ATISF 4 = S 4 = S 1 ELAST ELAST ELIGHT XXXX0 RCMIS
M I M			1.50 1.61 1.65		1.68	CKAGE-FRE 2Y, 3 = S NORMAL, 11CAL CUR 11CA, 4 = 11CA, 4 = 11CA, 5 = 11CA, 6 = 11
S12E SM			1 2 2		2 2	OR DOOR SOFT-NUMER ELAS
KERNEL SIZE LG MED SM	84		55 44 49		29 69	SATIS 3 = 3 = 5 5 FOR 1 CK W 1 CK W PRCMI
KE	54	AKOTA	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		29	2 = -50FT 0GRAM ASTIC XXX.8 = TH EGULA
1000 KhT.	.5	DRIH D	31.5 33.8 34.8		29.9	AACT 1 IS. YORMAL WORMAL WORMAL WITE, CXX.01
3	#/8U. G. % % %	ES FOR NO	61.7 61.6 60.8	ERAGES	60.7	CLEAN ORY - SUBTRACT 1 L8./8U. FOR DOCKAGE-FREE T.w. 1 = VERY SATISFACTORY, 2 = SATISFACTORY, 3 = SATISFACTORY-OUESTIONABLE, 4 = OUESTIONABLE-SATISF. 1 = NORMAL, 2 = NORMAL-SOFT, 3 = SOFT-NORMAL, 4 = SCFT, 5 = GRITTY, 6 = VERY SOFT. REFER TO REFERENCE HIXOGRAMS FOR NUMERICAL CHRVE FAITERN. (1 = VERY HEAK 11 = VERY STRONG) 1 = BUCKY, 2 = VERY ELASTIC, 3 = ELASTICAL CHRVE FAITERN. (1 = VERY HEAK 11 = VERY STRONG) 1 = BUCKY, 2 = VERY ELASTIC, 5 = LASTIC, 6 = PLIABLE ELASTIC, 6
VARIETY OR 1000 KEBNEL SI SEL. NO. T.W. KHT. LG MED		STATE AVERAGES FOR NORTH CAKOTA	CHRIS JUSTIN SELKIRK	CROP YEAR AVERAGES	1970 AVERAGE 1971 AVERAGE	1/ CLEAN OR 2/ 14% MOIS 3/ 1 = VERY 4/ 1 = VERY 5/ REFER TO 5/ XXX.9 = CX 7/ XXX.00 = CX 8/ XXX.00 = CX

14. MOSTIGNER SATISFACTORY-DUESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = OUESTIONABLE-UNSATISFACTORY, 7 = UNSATISFACTORY-DUESTIONABLE, 8 = UNSATISFACTORY-DUESTIONABLE, 8 = UNSATISFACTORY-DUESTIONABLE, 8 = UNSATISFACTORY-DUESTIONABLE, 8 = UNSATISFACTORY-DUESTIONABLE, 9 = WERN STATISFACTORY-SET SATISFACTORY-SET SATISFACTORY-SE

QUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

MAJOR DEFICIENCY			нр ва	× u	,	,	ж н 8 А А
MINOR OEFICIENCY		KW M65 MT KW HT KB 16		7.7.7.7.7.7.7.7.0.0.0.0.0.0.0.0.0.0.0.0		KW LG 8A MT MP 8A MT EX MT PO 8A	00 00 00 KW HP KH HT
BAKE GEN. EVAL. EVAL. 37.		m m v	2 3	2 5 5 7 7 7 1 7 7 7 1 7 7 1 7 7 1 7 1 7 1	3 4 3	00044	3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
CRUMB LDAF GRAIN VOL.	• 22	96.99 190 95.99 192 96.99 192		91.99 192 92.99 188 90.99 182		90.99 185 90.99 180 89.99 208 89.99 194 91.99 188	88.00 205 86.99 222 86.99 220 89.99 185 85.99 205
CRUM8 COLOR		100.8		100.0		101.0 101.5 99.8 101.0	99.9 100.8 105.9 100.5
MIX. ODUGH TIME CHAR.	MIN.	4.25 5	2.50 5	2.50 4 3.00 5	3.75 3	5.00 4.00 3.50 4.00 5.50 5.50	3.25 3.75 3.75 11.25 4.00 6.50
8AKE A8S. 21		61.6 61.9 62.8	59.7	61.9	61.9	60.7 60.3 62.5 62.3 61.0	63.8 61.9 64.2 60.0 62.8
MIX. MIX. A8S. PAT. 27. 57.	ы	61.6 5 61.9 6 62.8 3	59.7 4	61.9 3 64.2 4 60.3 2	61.9 2 62.5 5	60.7 8 60.3 4 62.5 4 62.3 5	63.8 4 61.9 4 64.2 11 60.0 5 62.8 5
-LR. MLG MLG. PRO. CHAR. PER.		1 1 3	1 2	. 1 2 2 2 6 6 6	1 2	111111	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	50 50	0.44 14.7 0.38 14.8 0.40 15.5		0.41 14.7 0.40 15.6 0.43 15.8		0.40 14.5 0.41 13.6 0.39 14.4 0.38 13.9 0.38 13.8	0.45 15.5 0.40 14.8 0.42 15.0 0.40 13.5 0.36 13.8
KERN. FLR. MIN. a CHAR. EXT. 65 EEX. 3/	9 ₽	3 60.6 2 60.9 3 63.0	5 63.6	2 60.5 3 63.0 3 59.1	3 64.6	3 60.7 5 64.2 2 63.4 2 60.0	2 62.0 2 62.0 2 63.9 4 62.8
WHT. KER	b-0	15.2		15.3 15.9 16.3		15.0	15.9 15.4 15.3 14.8
ZE WHT. SM MIN. 27	5 4	5 1,33 2 1,33 3 1,36	3 1.31	3 1.37 3 1.46 3 1.42	3 1,37	4 1.35 5 1.26 1 1.38 1 1.40 3 1.37	3 1.43 2 1.39 3 1.31 6 1.29 3 1.29
KEBNEL SIZE LG MEO SM	94	6 89 7 91 4 93	22 75 39 59	8 89 20 77 5 92	9 87 21 76	4 92 11 84 38 61 33 66 49 48	30 67 29 69 9 88 5 89
1 4 4	#/8U. G.	58.0 28.0 60.5 27.1 58.0 25.9		60.5 27.8 59.0 30.4 57.5 26.5		60.0 26.5 57.5 37.7 58.5 33.1 60.0 34.4 59.0 34.0	57.0 31.2 59.5 30.6 58.5 30.4 57.0 27.6 56.5 28.7
VARIETY OR SEL. NO.	TETONIA, IOAHO	BONANZA BOUNTY 208 CHRIS		JUSTIN MARQUIS NEEPAWA		WS 1651-E WS 1809 NO 491 NO 497 NO 499	NO 501 NO 506 NK 70Y14 WISC 271 WISC H678-1-6-9

CLEAN ORY - SUBTRACT I LB./BU. FOR DOCKAGE-FREE T.W.

14 YOR'S MISTACTORY - S ATISFACTORY - OUESTIONABLE, 4 = QUESTIONABLE - SATISFACTORY - S CATISFACTORY - S ATISFACTORY - S A SOFT - S A GONT - WORMALL - S A SOFT - S A GONT - WORMALL - S A SOFT - S A SOTT - S A SO

QUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

MAJOR DEFICIENCY				-		8 4			বব		M65 8A	9 A	-
DEF IC			4 4	M65 8A		E E	M H		WP 8A WP 8A BA	84		π A8	M65 8A MT 8A
JDR (WP 8A ₩P 8A	WP Me	8 A	LG WP	M65 WP M			8 d M	MP EX M65 8A 8A WM 8A	LG S 8A Ex 8	X 4 0 0 0
M A M			33	35 00	8	9	ISII			3	3203	9 8	т 60 35 35 35
MINOR DEFICIENCY			EX M65 DO LV LG MT		M6.55 WP	88 M T T T T T T T T T T T T T T T T T T	MM DD LG DD		SA S	SM DD	WH LG SM EX WP EX SM MP M65 00	SM MP PD SM MP PD SM MP BA DO SM MP SA DO SM MP	SM WP 8A SM EX LG SM DD SM MT SM 8A MT DO
GEN. EVAL.													
E GE	1				4 11 4 11 4	-6442	44464		3 1 1		,	3 2 2 1	1 2 2 2
LDAF BAKE	1 .		0000		25222	4227	7486				0 2 2 4 1	88948	4000
LDAF	22		165	166	181 175 179 175 184	169 180 182 180	176 170 171 175 200		174 188 180 183	18	174 174 176 174 181	179 175 200 186 182	176 192 204 204 185
CRUMB	78		91.99	92.99	87.99 91.99 86.99 91.99 84.99	86.99 91.99 88.99 88.99	90.99 93.99 84.99 92.99 86.99		92.99 90.99 90.99 89.99	85.99	90.99 91.99 90.99 91.99	92.99 91.99 89.99 89.99 84.99	94.99 93.99 85.99 87.99
CRUMB			104.8 100.E	102.7	101.7 103.7 101.7 101.7 101.7	103.0 101.7 101.0 102.0 102.8	101.0 102.7 103.0 101.0		104.8 101.0 102.0 100.0	102.0	101.0	101.0 100.0 100.0 101.0	101.0 102.0 105.6 103.0 100.0
DDUGH CHAR.	1		041	n 40 r	4 10 4 10 4	0 4 4 5 0	N 2 E 7 E		v 4 4 v	im i	มณ์ณจณ	~~~~~~	22626
MIX. 0	·NIM.		6.00	3.00	4.00 3.75 3.00 3.75	5.50 3.25 3.75 3.00 4.50	3.00 3.00 7.50 4.50		4.25 4.75 2.50 3.00	2.50	2.75 2.75 3.00	5.00 3.75 3.00 3.50 4.50	2.75 2.75 6.25 4.75
BAKE ABS.	*		59.7	59.7 60.3	65.3 62.3 62.3 60.3	59.3 61.3 63.2 62.5 60.7	63.5 62.5 61.6 60.3 63.2		60.3 60.0 62.5 59.7	9-19	61.3 61.3 61.3 60.7	60.7 60.3 62.8 62.5 60.7	62.5 61.9 61.9 60.3 62.5
MIX.	1		41-0	5 5 3	43045	9 K 4 K R	10 120		N 2 M W	2 1	n 4 m n m	04440	4000
MIX.	1		7.00	59.7	65.3 62.3 62.3 60.3 62.5	59.3 61.3 63.2 62.5 60.7	63.5 62.5 61.6 60.3 63.2		60.3 60.0 62.5 59.7	61.6	61.3 61.3 61.3 60.7	60.7 60.3 62.8 62.5	62.5 61.9 61.9 60.3
				0 00 0	22920	W 20 20 20	28=22		22.20		20000	20.000	22.24
MLG.	7			.,								1010111-10	1- 4 1/11010
FLR. MLG PRD. CHAR.	1		2 2 2		2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 2						2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FLR.	₩		111.9	9.7	15.0 13.2 13.4 12.7 13.6	11.8 12.9 12.9 12.2 12.1	13.3 13.4 11.7 12.2 13.0		13.3 12.3 15.2	12.7	13.4 13.9 14.0 13.7	12.7 12.9 14.1 13.4	13.8 13.9 12.9 12.8
M I	*		0.47	0.50	0.42 0.47 0.45 0.45	0.45 0.41 0.44 0.40 0.40	0.43 0.49 0.41 0.40		0.44	0.43	0.54 0.50 0.48 0.48	0.45	0.50 0.44 0.46 0.41
FLR. EXT.	H		58.5	57.9 62.1	59.4 59.9 59.2 61.3 62.1	56.3 61.3 60.3 62.4 60.1	61.3 58.5 62.0 60.6 59.6		64.0 61.8 64.3	9.49	59.6 61.1 64.6 63.4	63.2 62.9 61.7 64.6	59.6 60.8 64.3 63.4
KERN. CHAR.	7,			n 00 4	22252	@ W 4 4 W	N N B 4		0 0 m 0		71-53-5	@ N W N 4	N 4 1 0 0
1			0 9	e v. e	88768	48838	90=96		9055		7 50 FV FV 50	8 2 0 2 5	73885
PRO.	*		12.	10.5	15.3 13.5 13.7 12.9	12.5 13.3 13.2 12.9	13.6 13.8 12.1 12.1 13.3		13.8 12.9 15.5	13.	13.8 14.5 14.5	13.8 14.2 15.0 14.2	14.2 14.8 13.8 13.3
WHT.	8		1.44	1.42	1.62 1.60 1.52 1.55	1.50 1.44 1.64 1.62 1.52	1.60 1.64 1.48 1.47 1.47		1.73	1.73	1.85 1.95 1.83 1.90 2.14	1.80 1.68 1.85 1.75	1.85 1.85 1.77 1.73
17E SH SH	547		1 2	7 7 1		7 1 1 1 7	7 1 1 1 7		2616	. 2	7 1 3 2	3 2 4 2 2	26623
KERNEL SIZE LG MEO SM	540		66	37	31 52 41 55 34	87 24 16 18	20 24 39 65		8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	90 47 42	50 49 38
KER	84		32	34 61 69	68 58 65	111 55 75 83 83	79 75 60 34 41		9 35 38	57	4 5 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	. 46 50 56 56	44 32 44 60
1000 KWT.	3		34.6	36.8 36.8	36.1 35.2 36.4 38.3	31.0 35.2 40.5 44.6	41.2 41.3 38.5 35.0		29.5 32.4 30.7		33.8 31.2 36.0 32.3	26.8 31.3 33.6 34.8	35.0 34.5 32.2 36.0 34.1
1	#/8N.	CRODKSTON, MINNESOTA		65.0	62.5 63.0 63.5 61.0 63.0	62.0 644.0 644.0 64.0 64.0	63.0 64.5 65.2 63.0 1-6-9 62.0	NNESOTA	63.5	62.5	61.5 62.5 61.5 61.5	62.0 63.0 61.5 63.0 62.0	62.0 61.5 62.5 63.5 1-6-9 62.5
VARIETY DR		CRDDKSTDN,	BDUNTY 208	CHRIS ERA FLETCHER	JUSTIN MARQUIS NEEPAWA SELKIRK WALDRON	WS 1651-E WS 1809 ND 491 ND 497 ND 499	ND 501 ND 506 NK 70Y14 WISC 271 WISC H678-1-6-9 6	MDRRIS, MINNESDTA	8DNANZA 8DUNTY 208 CHR1S ERA	FLETCHER	MARQUIS NEEPAWA SELKIRK	WS 1651-E WS 1809 ND 491 ND 497 VD 499	ND 501 62.0 ND 506 61.5 NK 70Y14 62.5 WISC 271 63.5 WISC H678-1-6-9 62.5

CLEAN DRY - SUBTRACT I LB./BU. FOR DOCKAGE-FREE I.W.

14 WOISTIDNABLE BASIS.

14 WOISTIDNABLE BASIS.

15 WOISTIDNABLE BASIS.

16 WESTIDNABLE-UNSATISFACTORY, 2 = SATISFACTORY-QUESTIONABLE, 4 = QUESTIONABLE, 5 = QUESTIONABLE, 6 = QUESTIONABLE, 6 = QUESTIONABLE, 9 = WERSTIGNABLE, 9 =

OUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

MAJOR DEFICIENCY		LG SM M65 LG HP 8A MP 8A		È.	LG SM WP 8A 00	LG WP MT MP 8A 00 MP
MINOR DEFICIENCY		TW KW WP BA MT KW MT KW LG		LG WP M65 00 TW M65 8A 00 8A D0		M65 D0 P0 M1 00 SM M2 00 LV 8A
LCAF BAKE GEN. VOL. EVAL. EVAL.		188 5 1 189 6 2 194 2 3 187 8 1	200 2 4	191 4 2 184 6 2 189 6 2	189 8 1 180 7 2 198 2 4 195 6 2 188 4 3	189 4 2 205 6 2 194 8 1 176 8 1 193 4 3
CRUMB GRAIN BL		92.99 91.99 93.99 91.99	90.99	91.99 90.99 92.99	91.99 91.99 89.99 87.99	91.99 87.99 90.99 90.99
DOUGH CRUMB CHAR. COLOR		4 99.0 4 102.8 4 101.0 4 101.7	3 99.0	3 100.7 5 101.5 5 100.0	4 99.0 6 98.0 4 101.0 3 100.0	5 100.5 3 101.0 6 101.5 4 100.0
MIX. DO	ž.	4.50 2.75 3.00	3.75	2.25	5.00 3.00 2.25 3.25 2.75	2.25 5.00 6.00 3.50
BAKE ABS. 2/	*	61.3 60.3 61.9 59.7	62.3	61.9 61.3 61.3	60.0 61.3 61.9 61.0	61.9 61.6 60.7 59.3 61.0
MIX. MIX. ABS. PAT. 2/ 5/	•	61.3 60.3 5 61.9 3 59.7 3	62.3 2	61.9 2 61.3 2 61.3 2	60.0 5 61.3 3 61.9 2 61.0 3 61.0 2	61.9 2 61.6 2 60.7 6 59.3 4
FLR. MLG MLG. PRO. CHAR. PER.		7777	1 2	1122	1 2 2 1 3	2 1 2 2 1 1 1 1 1 1
A FLR. K		6 14.2 0 12.9 2 14.8 7 12.4		5 14.2 3 14.3 9 14.2	1 13.3 7 13.2 5 14.0 2 14.4 0 13.3	4 13.8 6 13.3 9 12.2 1 12.2 0 12.6
FLR. MIN.3 EXT. 65%EX.	*	58.2 0.56 60.0 0.50 56.5 0.52 61.4 0.47		58.1 0.55 63.2 0.53 64.3 0.49	58.7 0.51 64.2 0.47 60.3 0.45 58.9 0.42 62.8 0.40	59.1 0.54 60.6 0.46 63.0 0.49 62.9 0.41 62.0 0.40
KERN. CHAR.		0 r m 0	ω N,	0 00 00 00	047774	N 10 00 W
WHT. PRO. 27	•	14.6 13.5 15.0	16.3	14.4	13.6 14.3 15.1 14.9	14.9 14.8 13.2 12.9 13.5
MHT. MIN.		1.98 1.90 1.90 1.79	1.89	1.92	1.94 1.75 1.94 1.96 1.83	1.90 1.94 1.86 1.83
KERNEL SIZE LG MEO SM		37 11 36 5 34 3	51 2	2000	37 10 55 3 51 3 51 3	4 4 6 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
KERNEL LG ME	·	35 66	35	277	54.58 W	443 46 46 99 99
		22.9 27.4 28.0	32.4	28.3 31.4 32.3	23.9 30.4 34.8 33.6	33.8 33.8 31.2 33.1
1 1		58.0 51.2 51.5 51.5 51.5			58.5 61.1 60.5 60.5	0.100 0.100 0.000 0.000 0.000 0.000
VARIETY OR SEL. NO.	#/80 ST. PAUL, MINNESOTA	80NANZA 80UNTY 208 CHRIS ERA	FLETCHER	MAKOUIS NEEPAWA SELKIRK WALORON	WS 1651-E WS 1809 NO 491 NO 497 NO 499	NO 501 NO 506 NK 70Y14 HISC 271 MISC H678-1-

CLEAN ORY - SUBTRACT I L8./8U. FOR DOCKAGE-FREE T.W.

14. WORSTINGE BASIS.

15. WORK SATISFACTORY - 3 = SATISFACTORY - QUESTIONABLE, 4 = OUESTIONABLE-SATISFACTORY, 5 = QUESTIONABLE - UNSATISFACTORY, 7 = UNSATISFACTORY - OUESTIONABLE, 8 = UNSATISFACTORY
15. WORK SATISFACTORY, 5 = SOFT, 5 = GRITTY, 6 - VERY STORY

15. WORK SATISFACTORY - SOFT, 5 = GRITTY, 6 - VERY STORY

15. WORK SATISFACTORY - SOFT, 5 = GRITTY, 6 - VERY STORY

16. WORK STORY - SOFT, 5 = GRITTY, 6 - VERY STORY

17. WORK STORY - SOFT, 5 = GRITTY OF A SOFT, 6 - DEAD.

18. WORK STORY - SOFT, 5 = GRITTY OF A SOFT, 6 - DEAD.

19. WORK STORY - SOFT, 5 = GRITTY OF A SOFT, 6 - DEAD.

19. WORK STORY - SOFT, 5 = GRITTY OF A SOFT, 6 - DEAD.

19. WORK STORY - SOFT, 5 = GRITTY OF A SOFT, 6 - DEAD.

19. WORK STORY - SOFT, 5 = GRITTY OF A SOFT, 6 - DEAD.

19. WORK STORY - SOFT, 5 = GRITTY OF A SOFT, 6 - DEAD.

19. WORK STORY - SOFT, 6 - DEAD.

19. WORK STORY 7787576 6

QUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

MAJOR DEFICIENCY	M 8A M 65 E X 8A 00	ବ୍ୟବ୍ୟ ପ୍ର ବ୍ୟବ୍ୟ ପ୍ର	76.5 7 T M M M M M M M M M M M M M M M M M M	LG EX M65 EX M65 LG MM WP M65 BA M65 M65 BA		LG EX #65	EX M65
MINOR OFFICE	KH LG M65 M05 UU KH LG M65 M05 UU KH LG M65 LV KH BD LK LK BA	MP 'MT 00 00 MP LV MP LV 00 MP LV 00 00 MP MS MS 00 00 MS MS 00 MT MS MS MS 00 MT MS	MM WP 00 LG M65 8A 00 WP	N M M M M M M M M M M M M M M M M M M M	LG 8A	SA EX M65 EX M65 EX M65 SA T	ым LG мР 00 Кы SM M65 HT Кы LG MT 00
LDAF BAKE G	204 2 4 2 184 2 4 1 184 3 3 1 184 3 3 1 184 3 3 1 184	190 6 2 187 5 2 185 8 1 176 8 1 183 6 1	197 2 3 198 3 3 204 8 1 185 6 2 194 2 4	180 2 1 198 2 1 195 2 1 180 8 1 190 2 3		182 4 1 189 2 3 195 2 4 198 3 3	199 2 1 202 2 4 200 8 1 198 4 1 214 5 2
CRUMB	100.0 92.99 101.7 92.99 100.7 92.99 100.0 85.99 100.0 86.99 100.5 85.99 100.5 85.99	99.0 90.99 99.0 92.99 99.0 93.99 100.0 92.99	100.0 93.99 100.0 89.99 102.8 89.99 101.5 93.99 99.0 90.99	99.0 94.99 99.0 88.99 101.0 92.99 100.7 90.99 99.5 93.99	100.0 100.0 100.0 100.0 99.0	98.0 91.99 100.7 91.99 100.8 85.99 100.0 91.99	100.0 91.99 100.0 90.99 100.6 87.99 103.7 89.99 98.0 92.99
MIN.	61.3 2.00 6.01.9 5.00 6.01.3 1.75 5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0	60.0 3.25 4 60.0 2.25 5 5 59.7 1.75 6 59.7 3.00 4 60.3 2.25 6	63.2 2.00 5 61.9 1.75 5 63.2 4.25 3 60.7 2.50 6 62.8 2.50 5	60.3 5.25 5 61.6 5.25 6 60.3 3.20 4 57.0 5.00 5	62.8 3.75 5 60.7 3.00 4 59.7 3.00 5 59.7 3.50 5	60.0 6.50 5 60.3 3.75 4 61.3 5.00 5 61.9 6.00 5 61.6 4.25 5	63.5 3.50 4 61.6 63.5 9.75 3 61.9 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 6 6.00 9 6 6
HIX. H	6 61.9 3 3 61.3 2 6 61.3 2 6 61.3 2 6 61.3 2 6 61.3 2 6 61.3 2 6 61.3 2 6 61.0 2 6 61.0 2 6 61.0 2 6 61.0 2 6 61.0 2 6 61.0 2 61.0 2 6 61.0 2	3 60.0 3 3 60.0 2 2 59.7 1 2 59.7 3 1 60.3 2	5 63.2 2 3 61.9 2 63.2 3 60.7 2 62.8 3	6 60.3 5 6 61.6 7 4 60.3 4 6 57.0 5 4 60.7 4	1 62.8 5 1 60.7 3 2 59.7 2 4 59.7 2 2 61.6 5	8 60.0 9 6 60.3 4 3 61.3 6 2 61.6 5	8 63.5 4 3 61.6 6 8 63.5 11 4 61.9 7 3 64.2 8
FLR. MLG PRO. CHAR.	i, i	1 13.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 15.5 1 11 14.4 1 11 13.4 1 13 13.6 1	11 14.1 2 14.1 2 14.3 1 16 14.3 1 19 12.1 1 10 13.6 1		12 13.8 2 18 13.9 1 14 13.5 1 14 13.8 1 12 13.5 1	.2 14.7 2 4 13.5 1 7 13.4 2 8 14.0 1 5 14.2 1
EXT. 6	5 59.6 0.414 6 60.8 0.444 6 60.	5 61.3 0.40 5 62.7 0.41 3 62.4 0.40 4 61.1 0.38 8 64.2 0.37	3 62.3 0.45 4 65.7 0.41 6 64.5 0.43 5 62.7 0.35	8 56.1 0.51 3 56.3 0.52 8 59.9 0.45 8 58.9 1.59 2 62.9 0.50	2 63.1 0.42 3 62.9 0.44 3 61.7 0.42 4 62.4 0.49 2 62.0 0.45	8 54.0 0.52 3 58.7 0.48 3 59.1 0.44 3 59.8 0.44 3 61.5 0.42	3 57.4 0.52 3 58.9 0.44 5 57.5 0.44 8 60.4 0.48 4 59.8 0.45
WHT. WHT.	1,46 15.47 1,45 15.9 1,45 15.9 1,49 14.3 1,49 14.3 1,46 15.8 1,46 15.8 1,46 15.8 1,46 15.8 1,46 15.8	1,48 14.5 1,44 14.5 1,52 15.0 1,44 14.5 1,43 13.6	1.58 16.0 1.50 14.9 1.45 14.7 1.44 13.8 1.46 14.3	1.50 14.3 1.41 14.6 1.44 14.6 2.32 12.4 1.47 14.1	1.43 1.43 1.38 1.46	1,49 14,3 1,43 14,6 1,46 13,8 1,46 14,4 1,47 14,0	1,53 15.0 1,45 13.8 1,39 13.6 1,46 14.2 1,45 14.5
KERNEL SIZ LG MED S	312.3 20 76 4 312.8 30 76 4 28.9 20 76 4 31.2 50 66 4 35.5 52 66 6 32.8 60 58 2 30.5 30 66 4 30.5 30 66 4 30.5 30 66 4 35.2 41 55 4	31.2 26 72 2 32.6 42 54 4 37.6 66 32 2 36.6 58 40 2 37.7 55 37 8	38.3 66 30 4 36.8 59 39 2 36.8 41 57 2 31.9 17 78 5 35.2 44 53 3	24.5 1 88 11 28.6 6 9 4 26.0 3 93 4 26.9 4 88 8 29.8 18 77 5		25.4 2 87 11 28.0 9 83 8 32.6 30 68 2 30.0 6 89 5 29.5 14 79 7	34.2 27 69 4 34.5 33 64 3 11.2 5 88 10 26.0 5 89 6 27.9 5 89 6
T.H. 1/ #/8U. INTANA	000MANAA 61.0 3 000MAY 208 61.5 3 ERA 61.5 3 FLETCHER 60.5 3 FLETCHER 60.5 3 UNTIN 60.5 3 UNTIN 60.5 3 NEFRAN 59.5 3 SERVIRK 58.0 3	WS 1651-E 62.0 3 WS 1809 61.0 3 NO 491 60.6 3 NO 497 62.5 3	ND 501 58.8 3 ND 506 61.0 3 NK 70714 60.5 3 WISC 271 55.0 3	HAVRE, MONTANA BONANZA BOUNTY 208 61.5 2 CARTS CARTS	60.0 61.0 60.5 58.5 59.5	MS 1651-E 60.0 2 MS 1809 61.5 2 NO 491 60.0 NO 497 59.5 3 NO 499 59.5 2	ND 501 59.5 3 ND 506 60.5 3 NK 70Y14 61.5 3 WISC 271 59.0 2

CLEAN ORY - SUBTRACT I L8,/8U, FOR COCKAGE-FREE I.W.

14 FOR SATISFACTORY - S SATISFACTORY - GUESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = QUESTIONABLE, 6 = QUESTIONABLE-UNSATISFACTORY, 7 = UNSATISFACTORY - GUESTIONABLE, 8 = UNSATISFACTORY - LA SATISFACTORY - SOFT-UNGAMIL, 4 = S 1/ CLEAN ORY - SUBIRACT 1 | 2 / 1 / 2 M OISTUDE BASIS.
3 | 1 = VERY SATISFACTORY.
4 | 1 = NORMAL. 2 = NORMAL.
5 | REFER TO REFERENCE MIXD.
6 | 1 = BUCKY. 2 = VERY CLA.
7 | XX.50 = SIGHTY WHITE, X XX.50 = SIGHTY IN IRE.
9 | XXX.50 = SIGHTY IN IRE.
1 | NO PROMISE, 2 = LIT

QUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

MAJOR OFFICIENCY LG M65 LG M65 LG EX M65 LG EX M65	\$9 ₹,	Ė
M65 M65 M65 EX		E E X X
AJOR LG LG TW M65 LG		2 2 2 2
*	3	
60		00
> C		Ε
NNN		₹ 6.5
O O O O O O O O O O O O O O O O O O O	0000	03 WS
MN S M S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S S W S W S S W	S W W C C C C C C C C C C C C C C C C C	20 P65 MT D0 TW KW TW 00
	CCMXX	7 5 0
6 EN - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 2 2 1 1	1 2 1 1 1
3 A L	44004 (. v a v a
CCF BAKE VOIC EVAL 1165 2 1165 2 205 4 1191 4 1191 4 210 4	187 199 216 213 198	203 203 221 221 228
	00000	,,,,,,
CRUV BAIN BC. 99 885. 99 922. 90 922.	93.99 91.99 83.99 90.99 90.99	66°25 66°36 66°36
88 8-8-8 -80-0	0000	-0057
98.5 101.7 103.7 101.5 100.7 100.5 100.5	99.0 100.5 101.7 101.7	100.0 100.0 99.0 101.5
CHAR. CHAR. 64 44 44 44 44 44 44		~~~~
1 1 1 1	6.75 5.00 7.50 9.00 6.00	7.50 7.00 18.75 9.25
5 E 0 0 4 9 9 9 4 4 4 9	96769	188
8 A A B S S S S S S S S S S S S S S S S S	63.2 64.2 64.7 64.7	63.5 64.2 64.2 64.2
× 1 7		
MIX. PAIX. 7	8 4 6 0 7	98101
MAIX. ABS. ABS. ABS. ABS. ABS. ABS. ABS. ABS	63.2	63.5 64.2 64.2 66.2
PERC. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	23448	0 m // 00 00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 1 1 1 2
7 P P P P P P P P P P P P P P P P P P P	0 1 0 4 4	1 - 2 - 0
l	16.9 15.7 15.5 16.4	16.1 15.7 16.2 17.7
MIN.a. 653EX. 22/ 22/ 22/ 22/ 22/ 22/ 22/ 22/ 22/ 22	0.58 0.56 0.51 0.51	0.54
FLR	57.2 57.6 58.7 59.1 51.0	56.4 61.6 53.5 57.4
	600000	55.5
CHARA. 3/4	outman (7 < 1 cm cm cm
## FEFT 19.00 19.0	17.2 16.4 15.9 16.9	16.2 16.2 16.7 18.1 17.5
82 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	1.87 1.69 1.85 1.79	1.88 1.78 1.89 1.89
1100 deed deed	المنظمة ا	12422
23 3 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33 16 16 17 12	, 8 16 35 16
LEGEN LE LEGEN LE LEGEN LE LEGEN LEG	67 83 91 85	91 94 94 94
CC CC CC CC CC CC CC C	01611	V N O O O
100 C C C C C C C C C C C C C C C C C C	250.1 26.1 24.5 21.4	22.3 22.3 21.3 21.3
12.W.	55.0 54.5 57.0 55.0 56.5	58.0 58.0 58.0 58.0
		NO 501 NO 506 NK 70Y14 WISC 271 WISC H678-1-6-9
8 0 8		20
SEC. NO. SEC. NO. SIGNEY, MONTANA SIGNEY, MONTANA SIGNIT 208 FRA FLETCHER WARGUIS NEFDAM WARGUIS	WS 1651-E WS 1809 ND 491 NO 497 ND 499	NO 501 NO 506 NK 70Y14 WISC 271

CLEAN CRY - SUBTRACT I LB./BU. FOR DOCKAGE-FREE T.W.

14 YERSTOTE PASTS.

15 YERSTOTE PASTS.

16 YERSTOTE PASTS.

17 YERSTOTE PASTS.

18 YERSTOTE PASTS.

19 YERSTOTE PASTS.

19 YERSTOTE PASTS.

19 YERSTOTE PASTS.

19 YERSTOTE PASTS.

10 YERSTOTE PASTS.

10 YERSTOTE PASTS.

11 YERSTOTE PASTS.

12 SOCKTACKELL, 2 SOFT, 5 SETTIVE, 4 SELASTIC.

13 SOCKTACKELL, 2 SOFT, 5 SETTIVE, 4 SELASTIC.

14 YERSTOTE PASTS.

15 SOCKTACKELL, 2 SOFT, 5 SETTIVE, 4 SELASTIC.

16 YERSTOTE PASTS.

17 YERSTOTE PASTS.

17 YERSTOTE PASTS.

18 SOCKTACKELL, 2 SELASTIC.

19 SOCKTACKELL, 3 SELASTIC.

10 SOCKTACKELL, 3 SOCKTACKELL, 3 SELASTIC.

10 SOCKTACKELL, 3 SELASTIC.

11 SOCKTACKELL, 3 SELASTIC.

12 SOCKTACKELL, 3 SELASTIC.

13 SOCKTACKELL, 3 SELASTIC.

14 SOCKTACKELL, 3 SELASTIC.

15 SOCKTACKELL, 3 SELASTIC.

16 SOCKTACKELL, 3 SELASTIC.

17 SOCKTACKELL, 3 SELASTIC.

18 SOCKTACKELL, 3 SOCKTACKELL, 3 SELASTIC.

18 SOCKTACKELL, 3 SOCKTACKELL, 3 SELASTIC.

18 SOCKTACKELL, 3 SOCKTA

QUALITY CATA GN UNIFCRP REGIONAL NURSERY SAMPLES

VARIETY OR SEL. NO.	T.W. 12.	100c KMT.	KEBN LG	KERNEL SIZE LG MED SM	H HIN.	PRC.	KERA. CHAR.		FLR. MIN.S EXT. 65%EX.	FLR. MLG PRO. CHAR.	MLG.	MIX. A8S. 2/	MIX. PAT. 5/	8AKE A85.	7 - Z	OCLGH CHAR.	OCLGH CRUME CHAR. COLOR	CRLMB GRAIN	LCAF VOL.	LCAF BAKE GEN. VOL. EVAL. EVAL. CC. 34. 56.	GEN. EVAL.	MINDR DEFICIENCY		MAJOR OEFICIENCY	CIENCY
IRRIGATEU -	CARRINGTON, NORTH DAKOTA	ON. NOR	TH OAK	OTA		1																			
BONANZA BCUNTY 208 CHRIS ERA FLETCHER	63.5 64.0 65.0 66.0	39.7 39.0 36.1 35.2	59 64 65 74	40 1 35 1 37 1 25 1		1.48 12 1.55 12 1.57 12 1.59 12 1.46 13	12.6 12.7 12.7 12.3	3 63.4 3 62.3 3 58.5 5 62.9 2 61.7	4 0.43 3 0.43 5 0.45 9 0.46	12.2 1 11.9 1 12.3 2 11.5 1	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61.6 61.0 60.7 59.7 61.3	w 4 N 4 N	61.6 61.0 60.7 59.7	3.00 4.00 2.75 4.00 2.50	0 4 0 4 W	101.0 102.0 101.0 102.5	92.99 91.99 91.99 91.99	164 183 167 160 175	84428	4 6 6 6 7 4	CO KE 8A 60 00 00 00 00 00 00 00 00 00 00 00 00		8 4	
JUSTIN MARQUIS NEEPAWA SELKIRK WALORON	62.5 63.5 63.5 62.8 62.8	42.4 34.5 38.3 44.4	78 60 73 35	21 38 26 1 63 60	2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1.69 14 1.59 15 1.56 14 1.76 12 1.64 13	14.0 115.2 114.6 113.3	2 59.4 3 61.2 2 60.6 3 59.2 3 59.6	2 0 45 6 0 45 2 0 50 2 0 50	13.2 2 14.4 1 14.1 1 12.3 1	3452	63.2 63.5 63.5 61.3 62.3	mm N N m	63.2 63.5 63.5 61.3 62.3	3.00 2.25 2.00 2.50 3.00	*****	101.0 100.0 100.5 101.0	\$1.99 \$2.99 85.99 \$0.99	179 188 190 172 183	40404	***	00 10 10 10 10 10 10 10 10 10 10 10 10 1		20	
WS 1651-E WS 1809 NO 491 NO 497 NO 499	62.8 62.8 62.3 63.0	34.0 36.4 42.4 42.4	47 67 82 78 76	51 2 31 2 17 1 21 1 23 1		1.54 12 1.66 13 1.64 12 1.58 13	12.6 12.6 13.7 12.8 13.7	5 56.3 4 60.3 3 59.1 2 58.0 2 62.3	3 0.49 3 0.44 1 0.48 0 0.44	11.8 2 11.6 1 12.8 1 11.6 1 12.8 1	2 3 1 2	61.3 60.7 61.9 60.3 61.9	4 M M 4 4	61.3 60.7 61.9 60.3 61.9	4.00 3.00 2.75 4.50 3.75	N N N 4	100.0 102.0 100.0 100.0	91.99 90.99 91.99 85.99	172 180 185 162 187	04004	8776	ККИ ЕХ М65 КН 8A 8A МП			
ND 501 6 NC 506 6 NK 7CY14 6 WISC 271 6	63.0 64.0 64.0 63.5 6-9 63.0	344 340°4 340°8 340°8	77 76 70 72	21 2 22 2 29 1 29 1 27 1 23 1	11111	1.58 14 1.63 12 1.54 12 1.53 12 1.55 13	14.6 112.5 112.3 13.8	2 57.7 4 57.9 4 62.6 4 60.4 2 60.0	7 0.50 9 0.47 6 0.43 4 0.43	13.7 2 11.7 2 11.5 1 11.7 1	9 1 1 1 2	63.8 61.0 61.9 60.7 64.2	w 50 4 70	63.8 61.0 61.9 60.7 64.2	2.50 3.00 5.00 4.00	PERMINA	100.7 101.0 100.8 102.5 102.0	65°65 66°65 84°65 66°65 66°65 66°65 66°65 66°65	189 175 194 175 207	2 4 4 5 1	W 42 KI KI KI	7655 1879 MT 17 8A) O C	
GICKINSON, NORTH DAKOTA	ORTH DAKE)TA																							
BONANZA BOUNTY 20B CHRIS ERA FLETCHER	61.0 62.0 61.0 60.5	27.8 26.6 27.6 25.7 29.8	3 6 28 15 29	94 3 90 4 71 1 78 3	131111111111111111111111111111111111111	1.44 14 1.50 14 1.44 14 1.48 12 1.48 13	114.4 14.4 112.8 13.6	8 69.0 8 68.3 2 66.5 8 70.0 6 66.9	0 0.50 3 0.50 5 0.48 0 0.52	13.9 1 13.8 1 14.7 1 12.4 1	W W C) 4 W	62.5 62.8 61.3 60.7 61.6	m 10 10 m m	62.5 62.8 61.3 60.7 61.6	4.25 5.00 3.00 4.75	in 4 4 N W	100.0 101.0 102.0 100.5	55.99 88.99 51.99 94.99	180 188 185 177 181	4 1 4 1 1 10	2 1 3 1 1 2	ър M65 00 ър M65 КМ M65 00 М65 00		LG SM LG SM SP WP	₩ 8
JUST IN MARQUIS NEEPAWA SELKIRK*	60.5 60.0 60.5 59.5 62.0	30.5 31.4 28.4 28.0 31.8	6 17 24 16	94 0 55 1 82 1 75 1	11.0	1.54 16 1.44 14 1.39 14 1.44 14	116.4 14.6 14.9 14.9	3 62.5 4 68.8 3 67.1 4 66.8 2 67.8	5 0.47 8 0.49 1 0.49 8 0.48	15.0 1 14.4 1 14.6 1 14.1 1	4 0 0 0 0	64.7 62.8 61.6 62.3 62.3	10 m N m m	64.7 62.8 61.6 62.3 62.3	4.00 3.25 2.75 3.75	en to to the	101.0 98.5 102.6 100.0	83.99 86.59 85.59 86.99	181 183 180 184 184	W 4 0 N 4	w w c> 4 w	Ex P0 00 C0 84 OC C0		۲e	
WS 1651-E WS 1809 NO 491, NO 497	60.5 61.5 61.0 60.5	24.6 27.0 32.3 31.4 30.8	1 32 15 30 43	93 66 84 1 68 2 55 2	2 11.2	1.56 14. 1.38 14. 1.50 14 1.43 14	14.0 14.3 14.3 14.7 14.5	8 66.3 4 70.2 5 65.4 4 66.7 4 68.8	3 0.51 2 0.47 4 0.49 7 0.45 8 0.53	13.4 1 13.9 1 14.0 1 14.0 1	8 1 3 3	61.6 61.9 60.7 62.5 61.3	10 m m 10 4	61.6 61.9 60.7 62.5 61.3	5.75 3.50 2.75 4.50	nnnna	99.0 99.0 99.0 101.0	88.99 \$1.99 \$1.99 86.99	175 181 182 187 186	4 - 4 4	1 3 3 5 1	X X X X X X X X X X X X X X X X X X X	20	LG SM 8A M65	
ND 501 ND 506 NK 70Y14 WISC 271 WISC H678-1-69	62.0 62.0 62.5 60.5 69.5	32.4 32.3 25.7 26.9 28.2	48 14 6 5 11	51 1 85 1 51 3 91 4	2 4 1 1 2 4 5 1 1 2 4 5 1 1 2 4 5 1 1 2 4 5 1 1 2 4 5 1 1 2 4 5	1.54 15 1.49 14, 1.43 14, 1.49 14, 1.51 14	15.1 14.3 14.0 14.5	5 68.6 5 67.6 6 70.0 8 69.6 5 67.3	6 0.53 0 0.47 6 0.47 6 0.47	14.8 1 13.6 1 13.7 1 14.2 1	8 2 2 1	63.8 62.3 62.3 61.9	4 11 10 10 10	63.8 61.3 62.3 61.9	3.25 3.00 7.50 5.00 6.50	*******	100.0 99.0 101.0 100.5	\$1.99 \$2.59 \$1.99 \$9.99 E7.99	193 182 180 185 210	2 2 8 2 7 5	3 1 1 2	NP 8A 5C WP 0C NP 0C LG SM WT 00		M65 LG SM	±

CLEAN ORY - SUBTRACT 1 L8./BU. FOR OCCKAGE-FREE I.W.

14 TO STATE BASIS.

14 TO STATE BASIS.

14 TO STATE BASIS.

15 TO STATE BASIS.

16 TO STATE BASIS.

17 TO STATE BASIS.

18 TO STATE BASIS.

18 TO STATE BASIS.

19 TO STATE BASIS.

10 TO STATE BASIS.

10 TO STATE BASIS.

10 TO STATE BASIS.

10 TO STATE BASIS.

11 TO STATE BASIS.

12 TO STATE BASIS.

13 TO STATE BASIS.

14 TO STATE BASIS.

15 TO STATE BASIS.

16 TO STATE BASIS.

17 TO STATE BASIS.

18 TO STATE BASIS.

18 TO STATE BASIS.

19 TO STATE BASIS.

10 TO STATE

UNIFORM REGIONAL NURSERY SAMPLES ĕ QUALITY DATA

MAJCR DEFICIENCY			мр 8д мр 8д	мр вд 8А	M65	LG MP 8A EX 8A MP	EX M65 MI 00 MP 8A MT 00	X X Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z	
Σ					٥٥ ٦٨				
					E x 8 A				
ENCY			<u>-</u>	M65	g.	00		Ε	00
MINDR CEFICIENCY			¥ F	Σ	Σ.	7 d .	00	8 A	7 X P
INOP			57	KW LG	KW SM P65 8A	KW SM	S X X X X X X X X X X X X X X X X X X X	7 X Y X X X X X X X X X X X X X X X X X	
			Z Z 3	221	× 1.00	X 3 m 3 m	æ ω κίκι κίν	∃ ¥ X ⊈ 3	***
LCAF BAKE GEN. VOL. EVAL. EVAL. 37. 97.					334114	1 2 2 1 8	7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mm 4	4 16 11 11
E BAKE			0 00 0	4 8 7	2 - 2 - 2 - 2	12769	0.4 6 6 8	0110	
LCA	20		18	172 172 185	178 161 179 174 180	171 186 194 182 181	175 194 197 189 195	190 191 191 178	
CRUPB GRAIN BZ			66.46	92.99	89.99 85.99 87.99 51.99	52.99 51.99 90.99 90.99 91.99	92.99 96.99 96.99 96.99 85.99	66°75 66°76 66°76	
SRUMB SOLOR			0.101	99.00	100.C 101.5 102.0 99.0	100.0 100.0 99.0 99.0	101.0 100.0 101.8 99.0	101.0 101.0 103.0 99.0	100.0
OCLGH CRUMB CHAR. COLOR 5/ 7/			so un u	n 0 4	91595	04400	\$ 17 W 4 W	444001	, won
	Z E			3.50	2.25 2.25 2.25 3.00	4.25 4.25 4.25	2.75 3.25 11.00 6.25 1 9.25	7.50 3.50 3.50 5.50 5.50	
. 84KE . 485. 27			60.3	59.7 61.3	64.7 61.6 62.3 61.6 61.9	59.3 61.9 63.5 60.0 61.9	63.2 61.9 62.5 60.7 63.8	61.6 61.9 63.8 59.0	64.2 61.0 61.0
M1X. PAT. 57			10.00	* 4 W	00004	F 67 8 8	111	00444	5000
MIX. P	04		600	59.7 59.7 61.3	64.7 61.6 62.3 61.6 61.9	59.3 61.9 63.5 60.0 61.9	63.2 61.9 62.5 60.7 63.8	61.6 61.9 63.8 59.0	64.2 61.0 61.0
MLG. PER. 37			5 7 7	111	82883	W W 4 80 VI	8 4 M M M	21 16 12 12 12	· 264
FLR. MLG MLG. PRO. CHAR. PER. 41 37			7 - 1 - 5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 3		
FLR. PRO.	84		13.2	12.4	15.8 14.1 15.3 14.6 14.6	12.5 13.2 14.2 13.4 13.3	14.0 14.2 13.5 13.5	13.4 13.2 14.9 11.1	14.6 13.2 13.5
• FLR• MIN•3 • EXT• 65%EX•	84			0.50	0.45 0.51 0.48 0.49	0.47 0.41 0.47 0.43 0.43	0.53 0.46 0.46 0.41	0000 444 0000 0000 0000	
FLR. EXT.	84		57.6	62.6 59.4	59.4 57.9 60.2 61.9 62.6	59.3 59.9 58.2 56.2 60.7	57.1 58.0 59.3 60.4 58.9	67.6 67.8 68.1 71.2	68.4 68.7 69.5
KERN. CHAR.			996	e en ru	N 0 N 4 N	0 4 W W W	4 W O O W	9 W W B R	, ,,,,,
PRO. C	!			12.9	16.1 14.4 15.7 14.9	13.5 14.6 15.0 14.4	14.8 15.0 14.3 14.0	13.7	
MHT.	04		1.54	1.62	1.71 1.83 1.62 1.70 1.65	1.65 1.56 1.69 1.67	1.75 1.74 1.65 1.50 1.50	1.37	1.56 1.40 1.39
S12E	**		1 6 9 1	9 3 3	5 2 1 2 2 1 2 1 1 1 2 1	8 2 6 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1111	100
KERNEL SIZE LG MED SM	04			43 50 29 68 60 39	74 25 42 56 54 45 61 38 73 26	20 78 63 36 80 19 71 28 69 30	3 16 1 18 9 49 9 49	2 57 2 37 0 49 0 39	
	**						11 83 7 81 2 49 0 49	11 62 62 62 62 65 65 65 65 65 65 65 65 65 65 65 65 65	
1000 KWT.	ئ			31.2 33.6	36.6 32.2 34.7 38.9	31.2 34.6 38.5 36.1	39.1 39.7 35.2 34.0	26.1 36.9 33.6 36.9	
T.W.	#/8n°	TH ORKOTA		63.0 62.0	62.0 62.0 62.5 61.0 62.0	63.00 63.00 63.00 63.00	63.0 62.5 63.5 63.0 1-6-9 62.5	0RTH 0AK01 63.5 63.0 62.0 63.0	62.0 62.5, 60.5
VARIETY OR SEL. NO.		FARGO, NORTH OMKOTA	BOUNTY 208	ERA FLETCHER	JUSTIN MARQUIS NEEPAWA SELKIRK WALORON	MS 1651-E MS 1809 NO 491 NO 497 ND 499	ND 501 ND 506 NK 70Y14 MISC 271 WISC H678-1-6-9	LANGOON, NORTH DAKOTA BONANZA 63.0 GROUNTY 208 62.0 GRRIS 62.0	JUSTIN

00

Ē

X X S Z Z Z Z O F C

187 182 184 182 195

85.99 92.99 887.99

101.0 100.0 100.0 100.0

m 9 W W 4

60.7 61.6 61.3 60.0

13.0 13.1 13.8 13.4

0.44

666.5 70.3 69.5 66.9

1.52 1.37 1.44 1.58

33 64 84 71

62.5 63.0 62.0 61.5 62.5

MS 1651-E MS 1809 NO 491 NO 497 NO 499

14.1 13.6 13.5 13.7

0.53 0.47 0.43 0.46

69.8 69.5 67.8 68.2 66.0

14.6 14.6 14.0 13.8

20 116 49 45 78 83 53 56

41.3 42.9 40.0 34.6 35.1

ND 501 61.0 ND 506 61.5 NK 70Y14 62.5 WISC 271 62.0 WISC H678-1-6-9 60.5

80

Σ×

N 0 0 2 3

202 188 202 205 205 215

96.99 86.99 86.99 96.99

98.C 99.0. 101.E 101.0

CLEAN DRY - SUBTRACT 1 L8./BU. FOR "OGCKAGE-FREE T.W.

14. THOUSTIVE BASIS.

14. THOUSTONE BASIS.

14. THOUSTONE BASIS.

15. THOUSTONE BASIS.

15. THOUSTONE BASIS.

16. THOUSTONE BASIS.

17. THOUSTONE BASIS.

18. THOUSTO

OUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

MAJOR DEFICIENCY	4 44 6 00 00 00 00 00 00 00 00 00 00 00 00 0	0.0 M65 8A 00 M65	0 M M M M M M M M M M M M M M M M M M M	LE SOPE E
MINUR OFFICIENCY	C0 84 PT 00 LV LV V V V V V V V V V V V V V V V	CO L65 L65 R65 BA CO	M1 00 CV WW WP PO VV	84 84 87 89 89 89 89 89 89 89 89 89 89 89 89 89
LCAF BAKE GEN. VOL. EVAL. EVAL. CC. 3/	8 8 4 8 8 H	40000 40000		9988
	171 184 171 9 155 160	9 182 9 167 9 159 9 176	9 160 9 175 9 170 9 163	1173 1173 1173 1182
CRLMB	83.99 83.99 90.99 85.99	66.05 66.05 66.05 66.05	89.99 84.99 92.99 91.99	91.99 91.99 99.99 99.99 99.99
ODLGH CRUMB CHAR. COLOR 5/ 1/	5 100.0 3 104.0 3 100.0 6 101.0	5 100.0 6 102.0 6 101.7 4 100.0	3 101.0 3 101.0 5 94.0 6 100.0	5 100.0 5 99.5 3 99.2 3 102.9
MIN.	3.25 4.25 2.75 3.00	3.25 2.25 2.50 2.25 2.00	5.00 2.25 4.00 3.00	2.00 2.25 6.75 4.25
8AKE A85. 27.	60.00 63.00 63.00 60.00	65.7 63.2 60.7 63.2 62.8	60.7 61.3 60.3 60.3	62.5 64.2 64.2 64.2
MIX. MIX. A8S. PAT. 22. 52.	60.7 62.5 63.5 59.0 60.3 2	65.7 63.2 60.7 63.2 63.2 62.8	60.7 5 60.7 2 60.7 2 60.3 4	62.5 64.2 64.2 62.3 8
FLR. MLG MLG. PRO. CHAR. PER.	4 2 2 2 2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N.a FLR. 22/ \$	0.50 13.0 0.50 13.1 0.51 13.9 0.52 11.0 0.55 12.2	0.49 14.8 0.54 14.0 0.58 14.0 0.54 15.3 0.57 14.8	0.49 12.3 0.51 13.0 0.59 14.0 0.43 13.0 0.46 12.7	0.60 14.5 0.57 13.3 0.48 13.3 0.47 13.5 0.44 12.7
FLR. MIN. a EXT. 65 2EX.	66.9 66.3 66.2 66.2 66.2	65.0 63.5 65.7 66.5 66.5	65.1 68.4 67.8 67.0 69.2	67.9 67.9 67.9 69.5 69.5
T. MFT. KERN. N. PRO. CHAR.	13.3 5 13.7 5 14.2 4 11.3 8	15.0 2 14.2 4 14.2 3 15.5 3	12.6 8 13.4 6 13.7 5 13.9 4	14.8 2 13.7 5 13.7 5
MIN. PRO	1,39 13 1,46 13 1,43 14 1,39 11	1.56 19 1.57 14 1.53 14 1.61 19	1.46 12 1.40 13 1.67 14 1.48 13	1.66 14 1.62 14 1.50 13 1.39 13
KERNEL SIZE LG MEO SM 7	47 1 1 48 1 53 1 24 1	31 44 44 11 42 27 1	53 1 51 1 23 1 18 1 15 1	20 1 21 1 35 1 41 2 35 1
1000 KER KWI. LG	34.8 52 24.6 51 32.3 46 35.7 61 39.8	36.2 68 33.3 54 33.2 55 35.1 56 37.9 72	32.6 46 34.7 46 38.8 76 42.9 81 44.2 84	39.3 75 39.2 78 35.8 64 36.9 57 38.8 64
1.W. K		62.0 62.0 62.0 62.0 3 60.0 61.5	63.0 62.5 61.5 62.0 62.5	61.0 62.0 63.5 62.0 63.0
VARIETY OR SEL. NO.	MINOT, NORTH OAKOTA 8CHANZA 62.0 8CUNTY 208 62.0 6CH S 61.5 FR EFLETCHER 63.5	JUSTIN MAROUIS NEEPAWA SELKIRK WALCRCN	MS 1651-F MS 1809 NO 491 NC 497	NO 501 NO 506 NK 7CY14 WISC 271 WISC H678-1-6-9

CLEAN CRY - SUBTRACT I LB./BU. FCR CCCKAGE-FREE 1.**.

14 TO STATISFACTORY 2 = SATISFACTORY 3 = SATISFACTORY 2 = FURSTIONABLE, 4 = QUESTIONABLE, 5 = QUESTIONABLE, 6 = CUESTIONABLE - UNSATISFACTORY, 7 = UNSATISFACTORY - DUESTIONABLE, 8 = UNSATISFACTORY 3 = SATISFACTORY 2 = SATISFACTORY 2 = SATISFACTORY 3 = SATISFACTORY 2 = SATISFACTORY 3 = SATIS 11/2 2/1/2

ON UNIFICRY REGICNAL NURSERY SAMPLES QUALITY DATA

	MAJOR OEFICIENCY					Ex M65			Ex MT						8.8					6.4		,	,		
	OEF			SH	٥	2		¥65	SA			M65	Ĕ		#65 S#	84				ď.		•	P B	8 8	
	MAJOR			29	2 9	S.E		Ä	27	Ä	Ĕ	E E	¥2,		200	35 35 G G				دو دو	6 A A	M65	LC X	<u>.</u>	
													00				1								
													EX										00		
	ENCY			j.		0			00				o. 3		8 A								8.		
	MINOR DEFICIENCY			MT 765	3	E O		03	M65	5	3		8 % 8		3 Z					¥.			¥.		
	NO.	1		X A		8		00 8A 5	X,				3 3 3		SA	2 (2	,	7. 50 7. 7.	3	M M	8 S	× 8A	X. X.		
				7 7 3 3	X F	- ¥	Ë	8A TW	1	e w a			211		X X .	ננ	č	3203	Ē	3 3	, , , ,	w	X X		
	GEN. EVAL.	77					4 W	3 2 1	-	* m -	4 60						ຳໍ ເ	n m m n	n 4	- 4	6-1-1	-	e	-	
	BAKE EVAL.	1		ታ ጠ	2 0	V 4	2 2	- 9 1	ao 1	2 7 2	2	2 2	00 ec 60		4 0	m co u	η, .	* 10 4 1	o 2	ø N	8 8 8	-	7 8 8		
	LCAF VOL.	20		182	195	194	186	173 180 206	661	203	561	199	209 194 206			191		184			201 204 198		194 223 185		
	CRUMB GRAIN	78		53.99	66.15	51.99 50.99	66.15	85.99 52.99 50.99	88.99	91.99	92.99	92.99 91.99	90°99 91°99 89°99		91.99	91.99	66.35	50.99 50.99 89.10	93.99	91.99	93.99 85.99 50.99	63.99	94.99 86.99 91.99	66.06	
	CCLOR			100.0	100.7	100.0	101.C	101.5	100.0	101.7	102.7	101.5	102.8 100.5 102.7		101.0	102.0	101.7	100.0	100.0	101.0	100.0	0.101	100.0	101.0	
	OCLGH CRUMB CHAR. CCLOR	76		4 4	•	4 W	4 4	200		v vo		es es	m m m		w 4	v vn u	٠	ጠቁጠ፡	n 4	4 4	w w w	2	w m w	4	
	MIX.	Z		4.75	2.50	4.00	3.25	2.75	9.00	3.00	3.50	2.75	9.75 6.50 6.00		4.00	3.00	2.75	3.75	3.25	5.00	3.00	2.75	3.00 9.00 4.25	4.25	
	BAKE ABS.	***		61.6	63.2	61.6	61.9	60.3	62.5	62.5	61.9	64.7	63.2 62.8 63.2		62.5	64.2	91.9	0,40	63.8	60.7	63.8	62.5	63.5 62.3 60.3	61.3	
	MIX.	-		91	- m -	2 4	m 4	223	1	3	n 4	r 4	01 8 9		2 2	e 2 c	2	N 4 W 1	e 4	 • •	404	8	11 4	9	
		**		61.6	3.5	61.6	61.9	600.3	62.5	64.2	61.9	64.7	63.2 62.8 63.2		62.5	60.7	9.1	04.5	63.8	60.7	63.8 61.0 61.0	62.5	63.5 62.3 60.3	61.3	
	MLG. PER.	76			, m			800		w w a			w 4 w			e 51		N W 4 I			440		500		
	MLG CHAR. F	-		٠,	. — .	2		2 - 1	8		۰.	2 2				·	-			1 2	- 7 -7	2	1 1 5	2	
	FLR. PRU.			15.9	16.7	15.6	15.9	16.2	15.3	15.7	14.6	15.4	16.9		14.4	15.8	13.3	15.8	15.0	13.5	13.9	14.6	13.7	13.4	
	FLR. PIN.3 EXT. 653EX.	*		0.52	0.54	09.0	0.49	0.60	0.55	0.53	0.52	0.59	0.52		0.46	0.41	0 - 40	0 0 0 0	0.41	0.40	0.42	0.46	0.43	0.35	
		60		59.2	63.0	58.0	61.2	54.3 62.6 60.2	55.2	58.0	58.6	57.9 57.7	60.3 59.0 60.1		62.4	65.9	64.5	63.4	64.1	6.4.8	61.2 60.4 63.4	1.09	60.4 62.6 64.6	62.6	
	KERN. CHAR.			ao a	000	m v	2 €	262	00	* 17 *	z v	2 2	n op u		00 00	m co u	n i	~~~	5 2	an 20	2 m 3	3	2 9 51	œ	
	MFT.	7,5		16.3	17.0	15.0	16.5	16.9	15.9	15.5	15.4	16.3	15.5		15.0	13.5	14.2	16.1	15.7	14.2	16.1 15.3 14.8	15.4	15.9	14.0	F
	MIN.	77		1.99	2.00	2.08	1.96	1.95	1.99	1.97	1.86	1.98	1.98 1.96 1.86		1.61	1.55	19.1	1.69	1.71	1.64	1.75	1.62	1.75	1.54	AGE-FRE
	1.2E S.4			11 5	, or i	2	2 4	7 7 7	10	6 2 -	3 1	e e	m co m		۰ 6	2 6 1	٧.	2621	5 2	4 4	7 5 7		252	2	202
	KEBNEL S12E	 **		88	25	9 0	79	90 82	88	57	4 4	51	91 89 80		90	83	99	22 52	51	92	51 6C 52	38	8 8 9 6 5	. 59	F.0
	KEBD LG	-		1 0	ımı	n in	15	31	-	41	333	94	3 17		3	16 14	35	23	17	10	38	59	53	3.6	H . / B
-	- ×	6.	TA	23.5	23	24.8	29.7	31.2	22.6	30°C	32.2	34.2	29.2)TA	26.2	29.7	32.4	29.4	32.7	25.7	34.5 31.3 32.6	34.6	34.4 27.9 34.1	31.5	- SHRIPACT 1 18.7811. FOR COCKAGE-EREE T.L.
	4	#/80.	UTH DAKC	57.5	59.5	55.0	60.0	60.09 57.0	56.0	61.0	0.09	59.0	60.5 56.0 6-9 57.0	SOUTH DAKDIA	60.5	62.0	61.0	62.0	61.0	60.5	62.0 61.0 62.0	63.0	62.0 62.0 62.5	6-9 62.5	
	VARIETY DR SEL. NO.		HIGHWORE, SOUTH DAKCTA	BONANZA	CHRIS	ERA FLETCHER	JUSTIN	NEEPAWA SELKIRK WALORON	WS 1651-E	NO 491	664 ON	NO 501 NO 506	MISC 271 WISC 271 WISC H678-1-6-9	WATERTOHN. S	BONANZA BOUNTY 208	CHRIS ERA	FLETCHER	JUSTIN MARCUIS NEEPAWA	MALORON	WS 1651-E WS 1809	NO 491 NO 457 NO 499	ND 501	ND 506 NK 70Y14 6 WISC 271 6	WISC H678-1-	1/ CIFAN DRY

CLEAN OBY - SUBTRACT IL 0./801. FOR COCKAGE-FREE T.*.

14 YOUR STISFACTORY, 2 = SATISFACTORY-QUESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = QUESTIONABLE OF STIGNABLE ON SATISFACTORY, 7 = UNSATISFACTORY-QUESTIONABLE, 8 = UNSATISFACTORY, 7 = UNSATISFACTORY-QUESTIONABLE, 9 = UNSATISFACTORY, 7 = UNSATISFACTORY, 8 = UNSATISFACT

QUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

 MAJOR OFFICIENCY						WP BA											ВА	M65		MT ,00			
MINDR DEFICIENCY			LG EX M65		LG M65		мР ВА		PA	ВА	ВА	*65	ď.			TM 94	¥P		EX		re		
HB LCAF BAKE GEN. IN VOL. EVAL. EVAL. H			3	4	3	-	3	4	9	6	•	9	4	4	6	3	2	1	۳	_	۳	4	
BAKE EVAL. 3/			2	•	2	60	4	2	4	4	4	E.	2	2	e	4	9	2	m	60	er)	ю	
LCAF VOL.	20		173	189	175	173	171	170	180	178	177	186	176	180	191	194	170	185	190	200	190	190	
CRUMB GRAIN 8/			90.01	66°65	90.01	89.70	95.99	90.01	10.06	90.01	90.01	10.06	8B.09	10.16	90.70	91.90	89.01	65°65	63.99	85.05	85.09	91.99	
COLOR			99.5	0.101	101.5	103.6	102.7	100.5	100.7	100.5	9.201	96.6	0.66	9B.5	9B.5	103.6	103.4	100.5	103.6	102.6	9.101	101.5	
CHAR.			•	5	۰	•	9	9	9	•	•	so.	9	•	5	5	1	80	5	3	5	2	
	NIN.		2.50	2.50	2.00	3.00	3.00	3.00	2.50	1.75	2.00	2.50	3.25	2.50	2,15	3.50	2.50	2.25	2.50	2.00	3.25	3.00	
BAKE ABS.			0.09	61.6	61.0	57.2	29.0	62.3	59.3	59.3	59.3	61.3	0.09	60.7	61.3	0.19	58.7	62.B	61.0	63.2	0.19	65.5	
MIX. PAT.			2	٣	7	9	2	6	7	7	7	7	4	7	9	4	7	2	9	9	9	9	
MIX.	••		0.09	9.19	61.0	51.2	20.0	62.3	59.3	59.3	59.3	61.3	0.09	40.7	61.3	0.19	58.7	62 · B	0.19	63.2	0.19	65.5	
MLG. PER.			9	7	4	7	7	9	9	7	-	4	7	7	4	7	7	æ	4	7	٣	7	
MLG CHAR.			2	2	7	7	-	2	-	_	_	1	_	1	-	-	۲	-	7	_	-	7	
FLR. MLG PRO. CHAR.	•		14.7	15.1	15.5	12.7	14.0	15,3	14.4	15.2	14.4	15.6	14.1	14.7	15.0	13.9	13.7	15.7	14.8	15,3	14.4	14.9	
FLR. MIN. 3 EXT. 658EX.			0.55	0.47	0.54	0.51	64.0	0.51	0.52	0.50	64.0	0.55	0.48	0.50	0.52	64.0	0.50	0.57	0.52	0.51	0.53	64.0	
FLR. EXT.	••		56.3	58.5	57.3	58.8	58.3	57.3	59.0	59.0	619	59.2	58.8	59.5	57.1	58.B	29.4	57.5	56.1	62.6	59.5	29.1	
KERN. CHAR.	-		4	2	~	80	4	2	m	٣	3	2	5	7	7	2	un.	2	2	3	4	2	
WHT.	00*		14.9	15.3	15.7	13.2	14.4	15.5	14.9	15.4	14.8	15.8	14.3	14.9	15.2	14.1	14.0	15.9	15.0	15.5	14.6	15.1	•
MHT.	8		1.54	1.58	1.59	1.38	1.44	1.54	1.50	1.46	1.50	1.62	1,52	1.50	1.56	1.50	1.50	1.63	1,55	1.51	1.49	1.55	
SIZE	54		6	2	7	9	7	2	2	7	2	2	2	2	3	7	2	7	7	7	9	2	
KERNEL SIZE LG MEO SM	00		8.7	75	85	17	48	65	80	7.8	72	20	90	57	4 B	53	45	40	20	7.8	83	7.3	
	84				13			33		20			. 16	41	64	45	. 53	5.8	4 B	32	14	25	
1000 KWT.	ن		27.8	31.	27.B	29.	33°	30.	27.	29.4	30.6	33.	30°	32.4	32 • 3	33.6	33.1	32.6	33.1	31.6	29.9	29.	
T.F.	#/BU.	NGTON	0.09	61.5	59.0	0.09	56.65	565	58.5	59.0	57.5	565	61.0	60.5	56.5	59.0	58.5	59.0	0.09	0.09	59.5		
VARIETY OR SEL . NO.		LINO, WASHINGTON	BONANZA	BOUNTY 208	CHRIS	ERA	FLETCHER	JUSTIN	MARCUI S	NEEPAWA	SELKIRK	WALORDN	WS 1651-E	WS 1809	165 ON	764 ON	06 4 0N	NO 501	NO 506	NK 70Y14	WISC 271	MISC H678-1-6-9	

CLEAN ORY - SUBTRACT I LB./BU. FOR OCCKAGE-FREE I.W.

14 POSTION BASIS.

15 POSTION BASIS.

15 POSTION BASIS.

16 POSTION BASIS.

17 POSTION BASIS.

18 POSTION BASIS.

18 POSTION BASIS.

19 POSTION BASIS.

10 POSTION BASIS.

10 POSTION BASIS.

10 POSTION BASIS.

11 POSTION BASIS.

11 POSTION BASIS.

12 POSTION BASIS.

13 POSTION BASIS.

14 POSTION BASIS.

15 POSTION BASIS.

16 POSTION BASIS.

17 POSTION BASIS.

18 POSTION BASIS.

18 POSTION BASIS.

19 POSTION BASIS.

10 POSTION BASIS.

10 POSTION BASIS.

10 POSTION BASIS.

10 POSTION BASIS.

11 POSTION BASIS.

12 POSTION BASIS.

13 POSTION BASIS.

14 POSTION BASIS.

15 POSTION BASIS.

16 POSTION BASIS.

17 POSTION BASIS.

18 POSTION BASIS

QUALITY DATA ON UNIFORM REGIDNAL NURSERY SAMPLES

MAJDR OFFICIENCY	و و د او	ж өө ч о ч өө ч өө ч		7 T T T T T T T T T T T T T T T T T T T
MINDR OFFICIENCY	KM M65 MT 00 KM EX M65 D0 D0 KM MP M65 00 M65	MM EX M65 DO TM MP OO	КМ МР ЕХ МТ	EX M65 DD TM MP OO BA MT DO
LDAF BAKE GEN. VOL. EVAL. EVAL. 37. 97.	203 5 1 200 4 2 198 4 3 195 4 3 201 2 3	186 2 3 184 8 1 198 4 3 182 8 1 201 4 3	207 4 3 213 4 3 215 4 3 205 4 3	194 2 1 208 3 4 211 8 1 205 8 1 214 7 2
CRUMB GRAIN B/			101.0 88.99 102.0 87.99 100.0 89.99 100.0 89.99	
DDUGH CRUMB CHAR. COLOR 8/1/	ммммч	ቁ የ ህ መ የህ መ	3 M M M M	ታ ጠጠጠጠ
BAKE HIX. ABS. TIME 2/2/ HIN.	63.5 5.75 63.2 5.50 64.2 3.50 63.8 3.75 65.3 4.50	64.7 4.75 60.0 3.50 63.5 3.00 60.3 3.25 62.5 3.00	60.3 5.75 62.5 4.25 64.2 3.25 64.4 5.00	65.7 2.75 66.3 3.00 65.7 9.50 63.8 8.00 61.9 6.00
HIX. HIX. ABS. PAT. 2/ 5/	63.5 64.2 64.2 63.8 65.3	64 60.00 63.55 60.33 60.33 33	60.3 62.55 64.2 4 64.4 6	65.7 4 66.3 5 65.7 8 63.8 8 61.9 7
3. CHAR. PER. 44. 34.	16.0 2 8 14.8 2 6 15.3 1 2 14.0 1 3	15.7 2 5 13.2 2 5 16.3 1 2 14.1 2 3	13.5 2 4 15.8 1 1 15.6 1 1 15.1 1 2 14.4 1 1	16.1 2 8 15.9 1 2 15.0 1 3 13.6 1 1
FLR. MIN.a FLR. EXT. 658EX. PRO.	00000	000000000000000000000000000000000000000	0.52 0.47 0.48 0.48	0.57
KERN. CHAR. 3/	3 8 53.8 4 4 54.7 17 3 58.8 6 5 60.7 5 2 59.7	2 54.9 (8 6 55.9 (6 4 59.8 (6 4 59.8	3 6 55.5 7 2 60.5 0 2 60.5 7 2 58.6 0 2 61.4	.1 2 54.7 .6 2 59.0 .0 2 59.0 .3 6 59.0
MHT. MHT. MIN. PRO.	1.97 16.3 2.01 15.4 2.02 15.7 1.87 14.6 1.92 15.5	2.14 16.0 1.99 13.8 2.07 16.6 1.90 14.6 1.94 15.8	1.93 14.3 1.69 16.7 1.91 16.0 1.89 15.7	1.87 17.1 1.95 16.6 1.90 16.0 1.86 14.3 1.81 15.0
KEBNEL SIZE LG MED SM	5 90 5 20 77 3 23 73 4 35 62 3	29 68 3 25 72 3 17 81 2 30 67 3 61 37 2	7 90 3 33 65 2 61 38 1 47 50 3 63 36 1	73 25 2 65 33 2 24 73 3 27 68 5 20 77 3
1.W. KMT. 1.A. KMT. 1.A. KMT.	60.0 26.4 59.0 27.0 61.5 29.8 60.5 26.5 59.5 30.3	60.0 31.2 61.0 29.4 59.5 29.1 58.5 32.1 61.5 33.7	59.5 27.5 61.5 29.9 62.5 36.4 61.0 33.7 62.5 37.6	60.5 39.2 62.0 35.5 61.0 30.6 58.5 29.1 59.0 29.2
VARIETY DR T.W. SEL. NO. 124. W/181	BONANZA BOUNTY 20B CHR1S ERA FLETCHER	JUSTIN MAROUIS NEEPAWA SELKIRK WALDRON	MS 1651-E MS 1809 NO 491 ND 497 ND 499	ND 501 60.5 ND 506 62.0 NK 70Y14 61.0 HISC 271 58.5 MISC H678-1-6-959.0

CLEAN ORY - SUBTRACT 1 L8./BU. FOR DOCKAGE-FREE I.W.

14 MOISTIFE BASIS.

15 WORSTIFE BASIS.

16 WORSTIFE BASIS.

17 WORSTIFE BASIS.

18 WORSTIFE BASIS.

19 VERY SOFT-MORMAL, 4 = SOFT-MORMAL, 5 = SOFT-MORMAL, 4 = SOFT-MORMAL, 4 = SOFT-MORMAL, 4 = SOFT-MORMAL, 5

OUALITY DATA ON UNIFORM REGIONAL NURSERY SAMPLES

MAJOR DEFICIENCY		7 F P B A		8A 00	T TO N
MINOR OFFICIENCY	•	V	765 LG EX BA WP BA WT 00	ыр 8A МТ LV 8A 00 00 8A 00 NP M65 LV	V9 d# 00
LCAF BAKE GEN: VOL. EVAL. EVAL.		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	78775	2 7 7 8 9 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	34 8 5 4 9 3 4 8 9 4 8 9 4 8 9 9 9 9 9 9 9 9 9 9 9 9
CRUMB LCAF	İ	92.99 18C 92.7C 191 92.50 195 89.01 167 86.05 175	E8.99 181 65.07 175 E7.09 185 90.90 192	91.99 171 92.99 184 91.70 191 89.99 173	87.99 201 90.70 195 90.70 196 90.70 185
OOLGH CRUMB		5 101.0 3 104.7 3 104.7 5 102.7 5 103.0	4 95.0 4 100.0 4 102.5 4 102.0 3 101.0	4 102.0 4 100.0 3 101.0 6 100.0	3 101.7 4 100.0 3 102.0 4 101.0 98.0
MIX.	Z			5.25 3.00 3.25 3.75	
MIX. BAKE		4 61.3 5 61.3 2 61.9 4 58.1 2 6C.7	3 62.3 2 60.0 3 60.0 5 61.3	7 59.7 3 60.3 4 60.7 2 59.0	3 63.2 3 60.7 10 61.9 4 59.7 3 63.5
PER. ABS. P		4 61.3 3 61.3 3 61.9 3 58.1 5 60.7	3 62.3 4 61.3 5 60.0 1 60.0 2 61.3	2 59.7 2 60.3 3 60.7 3 60.3 5 59.0	8 63.2 2 60.7 1 61.9 1 2 59.7 3 63.5
FLR. MLG ML		13.5 1 14.0 1 14.6 1 11.3 1	13.6 1 13.7 1 13.9 2 13.0 1	12.3 1 12.9 1 13.3 1 12.8 1 12.0 1	14.8 1 13.6 1 13.7 1 12.9 1
1N. ā 5%Ex.	7 80		65.9 0.40 65.6 0.43 61.7 0.41 66.5 0.38 65.6 0.39	65.1 0.39 65.2 0.38 64.7 0.40 63.1 0.37 63.3 0.43	64.4 0.46 65.2 0.39 66.5 0.37 64.5 0.3E
KERN. CHAR.	7,	14.2 3 6.115.1 2 6.4112.3 8 6 6 14.6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	201440	13.2 5 65 14.1 2 65 14.6 3 64 14.4 2 63	77796
MHT. WHT.	1	1.49 14 1.42 15 1.52 15 1.40 12	1.62 14 1.54 14 1.51 14 1.58 13		
KERNEL SIZE LG MEO SM	80	7 89 4 12 85 3 7 90 3 2C 73 7 45 51 4	19 76 5 16 77 7 8 87 5 22 73 5 31 67 2	13 83 4 29 65 6 41 55 4 4 46 50 4 46 50 4	34 61 5 34 63 3 24 73 3 8 87 5 18 78 4
-	9	29.8 3C.I 28.6 30.9 34.6	31.6 31.1 29.5 32.8 33.3	31.5 32.3 34.1 36.0 36.0	35.1 33.0 34.4 32.4 31.8
VARIETY CR T.W.	#/8U.	80NANZA 63.5 80UNTY 208 64.0 CHRIS 63.0 ERA 64.0	JUSTIN 62.5 MAROUIS 61.5 WEEPAWA 61.5 SELKIRK 62.5 MALORON 64.0	Ψ	NO 501 62.5 NO 506 62.5 NK 70Y14 64.0 MISC 271 62.0 MISC H678-1-6-9 61.5

112621

CLEAN ORY - SUBTRACT I LB./BU. FOR OCCKAGE-FREE I.W.

14. MOISTER BASIS.

14. WISTORIAN S. SATISFACTORY-OUESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = OUESTIONABLE, 6 = OUESTIONABLE-UNSATISFACTORY, 7 = UNSATISFACTORY-OUESTIONABLE, 8 = UNSATISFACTORY-OUESTIONABLE, 8 = UNSATISFACTORY-OUESTIONABLE, 6 = OUESTIONABLE, 9 = WEAK. 10 = UNSATISFACTORY OUESTIONABLE, 9 = WEAK. 10 = UNSATISFACTORY OUESTIONABLE, 9 = WEAK. 10 = UNSATISFACTORY OUESTIONABLE OUESTIONABLE, 9 = WEAK. 10 = UNSATISFACTORY OUESTIONABLE OUESTIONABLE OUESTIONABLE, 9 = WEAK. 10 = UNSATISFACTORY OUESTIONABLE, 10 = UNSATISFACTORY OU

18

HAJOR OEFICIENCY		WP H65 8A		8 A	M65 HT 00
H H		•		>	
				GR L	
				00	
ځ		H65 BA'		Ē	
MINOR DEFICIENCY		SM H6	00	E A	8A DO
R OEF		S S H N D D D D D D D D D D D D D D D D D D	000 8 A A	LG :	d H
MING		N K K C K	00 765 765 00 00	1 0 0 0 1 E	S # S #
GEN. EVAL. 92		4 1 3 5 5	3 2 2 2 3	3332	- e - e e
BAKE EVAL. 37		70780	1 1 1 0 1	8 4 6 6 4	ก 4 m ก ก
LOAF BAKE G	.00	950 975 1010 905 945	995 960 965 920 1015	988 960 950 900 960	1010 990 940 975 1020
CRUMB GRAIN 8/		93.99 91.70 92.99 90.99 87.99	92.99 97.99 85.09 95.99	80.07 85.09 82.07 77.07	90.99 89.99 86.10 92.99 89.99
CRUHB COLOR		101.8 100.8 102.0 100.0	102.6 100.0 99.0 98.2 100.0	101.0 100.0 101.5 100.0	100.0 99.0 101.0 100.0
OOUGH CHAR.		ቆጠጠጠ ቁ	ጠጠ 4 10 11	mm4m4	ቆጠረ/መጠ
MIX.	ž X	4.25 2.50 3.25 2.75	3.25 2.50 2.25 2.50 2.75	4.25 3.00 2.50 4.00	2.50 2.75 6.00 4.25
BAKE ABS. 21	•	61.4 61.7 62.4 59.9 61.6	64.0 61.9 61.4 61.2 62.2	60.6 61.4 62.2 61.6 61.3	63.5 62.3 62.9 61.4 63.1
MIX. PAT.		w w w 4 w	4 11 12 11 14	04404	64040
MIX. ABS. 2/	34	61.4 61.7 62.4 59.9 61.6	64.0 61.9 61.3 61.2 62.2	60.6 61.4 62.2 61.6	63.5 62.3 62.9 61.4 63.1
MLG. PER.		พลพลพ	35456	40000	22238
ALG HAR.					2
FLR. MLG PRO. CHAR.	64	14.0 13.8 15.0 12.4 13.5	15.1 14.4 14.8 14.3	13.4 13.7 14.2 13.7	14.8 14.2 13.8 13.6
FLR. HIN. 3 EXT. 65 %EX.	34	0.49 0.46 0.54 0.54	0.44 0.49 0.48 0.47	0.44	0.51 0.47 0.45 0.44
FLR. EXT.	••	61.0 61.2 61.9 63.5 62.4	61.6 61.3 61.0 63.5 63.2	60.0 63.0 61.7 61.0	60.8 61.4 63.4 62.8 61.7
KERN. CHAR.	•	ທທຸດທຸ	~~~~~	F-m0m4	~~~~
WHT. PRO. 27	57	14.5 14.5 15.3 13.1 14.2	15.6 14.8 15.2 14.7	14.1 14.5 14.9 14.6	15.4 14.9 14.4 14.1
HHT. HIN.	# XI	1.58 1.59 1.60 1.61 1.51	1.68 1.67 1.61 1.66 1.66	1.62 1.52 1.65 1.62	1.67 1.65 1.58 1.57 1.58
1ZE SH	\$ ULAR	******	28282	94000	96 4 2 3
KERNEL SIZE LG MED SM	- REG	77 73 73 65	86998	80 44 44 44	45 64 64 67
KEB	# ENDS	17 22 24 24 30 44	40 23 32 44	14 35 52 49 49	55 28 27 35
1000 KMT.	G. FORM BLI	28.6 29.9 28.8 30.1	32.8 30.0 30.6 34.4 33.9	28.1 31.4 35.4 35.2	36.0 35.1 33.1 31.3
1.4.	#/BU. A FOR UNIF	60.8 61.3 61.5 60.6	63.9 60.9 60.7 58.9	60.8 61.4 61.2 61.0 61.0	60.6 61.3 61.7 60.2 6-9 60.0
VARIETY OR SEL. NO.	#/BU. G. % % % % % % % % % % % % % % % % % %	BONANZA BOUNTY 20B CHRIS ERA FLETCHER	JUSTIN MARQUIS NEEPAWA SELKIRK WALDRON	MS 1651-E HS 1809 NO 491 NO 497 NO 499	ND 501 NO 506 NK 70Y14 WISC 271 WISC H678-1-

CLEAN DRY - SUBTRACT I LB./BU. FOR DOCKAGE-FREE T.W.

14 MOSTICE BASIS.

14 WOSTICKE BASIS.

15 WORNER BASIS.

16 WOSTICKED BASIS.

17 WORNER BASIS.

18 WORNER BASIS.

19 WORNER BASIS.

19 WORNER BASIS.

19 WORNER BASIS.

19 WORNER BASIS.

10 WORNER BASIS.

11 WORNER BASIS.

12 WORNER BASIS.

13 WORNER BASIS.

14 WORNER BASIS.

15 WORNER BASIS.

16 WORNER BASIS.

17 WORNER BASIS.

18 WORNER BASIS.

18 WORNER BASIS.

18 WORNER BASIS.

19 WORNER BASIS.

10 WORNER BASIS.

11 WORNER BASIS.

12 WORNER BASIS.

13 WORNER BASIS.

14 WORNER BASIS.

15 WORNER BASIS.

16 WORNER BASIS.

16 WORNER BASIS.

17 WORNER BASIS.

18 WOR

OEFICIENCY		,															Ex			UNSATISFACTORY. SLIGHTLY OPEN•IRREG
MAJCR		вА										8				M 6.5	3			UNSAT
																				E 8 = EEAO.
																				GNA8L(
۵ ر																SM 00		٠		OUESTI OEAO, REGULA
MINOR DEFICIENCY								00				00		00		LG S 8A 0				TORY- IGHTLY GRAY.) = IR
OR CE		00		LG BA				LG 8A		M65		¥ 0.		LG 8A		χ χ ω	10			FISFAC = SLI VERY XXX.10
		7 0 1 3 0 d		3 7		X Y X		3 C E		LG 8A		0 2 3		Х З З О		3 2 3	M65		7 3	LNSA 20 X.1 =
HAKE GEN. EVAL. EVAL. 32		4 (1) (2)		4 4 E		446		4 6 5		w 4 w		3 3		m 4 m		4 4 4 4 4	2 4		4 4	Y, 7 = Y hEAK AY, XX
HAKE EVAL.		2 4 4		2 2 4		3 2 8		2 4 5		2 2 4		4 N E		404		00000	2 2		2 2	ACTORY = VERY LL GRA
	. 00	183 187 · 178		191 192 188		179 180 179		193 185 181		175 170 177		198 186 182		195 181 185		183 190 179 186 174	189		188	SATISF (* 10 (* 00 EN)
CRUMB GRAIN BZ		91.98 89.98 91.32		91.65 87.58 91.98		91.78 88.98 90.78		91.98 91.98 91.98		00-05		91.98 90.98 89.98		92.50 E8.98 87.08		\$1.10 90.54 90.52 91.98 50.00	90.98		88.29 9C.88	DNABLE-UNS , 9 = WEAK AAY, XXX.2 IRREGULAR,
RUMB CLCR		101.7 100.2 101.3		102.1 100.2 99.6		101.¢ 100.4 100.0		101.3 101.3 100.0		101.5 100.5 102.6		102.0 100.0 100.0		104.7 99.0 102.0		101.1 100.6 100.7 100.9	100.7		100.5	10EST10
COLGH CRUMB CHAR. CCLCR		3 11		4 4 1 1 2		4 4 1 2		5 1 4 1 6 1 1		6 1 6 1 1 6		3 1 5	-	3 1 4		4 4 6 7 9 9	4 4		2 7	AK-PL
		75 91 91		16 00		79		75 37 87		000		50 75 25		25		19 44 26 00 33	93		275	ABLE, B = WE REAMY, GULAR,
FIX. TIME	Z Z	2.75 3.91 2.91		3.16		3.04		2.75 3.37 2.87		3.00		3.50		3.25		3.19 3.44 3.26 3.00 2.33	3.83		3.75	STION. EAK, ERY CI
BAKE ABS. 27	AP.	62.3 65.9 61.0		61.4 63.0 60.8		62.6 64.5 62.2		63.7 63.0 61.8		61.0 62.3 55.3		64.2 64.7 60.3		61.9 62.3 60.0		63.0 61.9 63.1 62.8 60.9	63.1		64.1 62.6	, 5 = QUE PLIABLE-W XXX.4 = V .SLIGHTLY AL.
PIX. PAT. 57		2 5 5		4:0.4		2 2		m 4 m		2 8 2		4 5 6		28.6		m 4 m m N	4 E		4 W	CTORY 7 = AMY + OPEN
MIX. A85. 27	be	62.3 65.9 61.0		61.4 63.6 60.8		62.6 64.5 62.2		63.7 63.0 61.8		61.0 62.3 59.3		64.2 64.7 60.3		61.9 62.3 60.0		63.0 61.9 63.1 62.8 60.9	63.1		64.1	ATISFA 20NG) ABLE: C.06 = C.99 =
MLG. PER. 37		2 2 3		3 5 3		3 2 2		3 5 3		4 6: 1		2 5 2		е н .		0 7 7 7 7	7		2 3	8LE-S. RY STI XXXX.5 R, XXS R, XXS
PLG CHAR. 47		1 1 5								2 2 1		1 2 1				7 - 7 - 7				STIONA ST. ON ET. STIC. 6 ST. ON SEGULA
* ·	**	14.4		15.4		14.3 14.7 14.0		16.3 15.6 15.0		15.5 15.3 14.4		15.3 15.7 14.1		14.6 13.6 13.0		14.6 15.1 14.3 15.8 15.8	15.0		15.6	ERY SOF
FIN.3 65%EX. 22	≈	0.46		0.46		0.46		0.47 0.44 0.44		0.53		0.50		0.40		0.46 0.45 0.47 0.46 0.51	0.50		0.48	ABLE, 4 , 6 = V RY WEAK PLIABL 5 = 8RI 5 = SLIGH MISE.
:: 1	3 -0	59.9 61.1 63.0		61.1 62.3 62.3		64.1 62.9 64.4		62.8 62.3 64.0		57.3 57.3 61.9		58.8 54.9 55.8		65.9 .		61.3 61.9 63.8 63.0	57.8		59.7	GRITTY GRITTY GRITTY GRITTY F, XXX. F, XXX. F, XXX.
KERN. CHAK.		E 51 21		4 23		e 2 e		e 2 e		e 5 e		w 0.7 4		6 2 4		0.4 GEW W	E 4		8 2	ORY-OU FS = 1 RN. 6 PLIABL CREAMY CLCSE CLCSE
NHT. K PRO. C	×	14.7 15.9 14.1		15.8 15.8		14.5 15.3 14.4		16.6 16.3 16.0		15.7 15.5 14.8		15.7 16.0 14.6		15.3 14.6 13.7		14.9 15.5 14.7 16.3	15.4		16.1	T.W. ISFACT = SCFT PATTE ASTIC- GHTLY X.C3 = HTLY NISE,
MET. P		1.71 1.81 I.94		1.56 1.61 1.54		1.47		1.83		1.58 1.53 1.50		2.01 2.13 1.89		1.51		1.79 1.57 1.56 1.84 1.54	2.01		1.72	AGE-FREE " 3 = SAT ORMAL, 4 CAL CUNVE CAL CUNVE CA
	₽ ⊘	2 2 2		9 2				4 2 8		2 2 2		m m m		w w w		2 3 2	4 3		эе	CCCKY CTORY OFT-NUMERI LASTI L OR L
KERNEL SIZE LG MED SM		71 4.3 5.5		83 72 75		5.2 3.8 5.0		85 78		85 65 72		77 68 67		90 76 73	TIES	56 77 47 77	71 8G		72	TISFA 3 = S FOR N 3 = E WHIT K WALL
KERD	۰۰	27 56 43		22 18	CTA	47 61 45	CIA	11 30 19	Z	13 33 26	-	20 29 30		15	VARIETIES	42 16 52 20 20	26 16		32	8.74U SCFT, SRAMS TIC, XX.8 = TFIC SULAR,
1000 KMT.	J. G. MINNESOTA	30.3	TANA	24.4 29.8 3C.4	TH CAR	32.1 37.0 37.4	ITH CAK	26.5 30.1 31.4	FINGTO	27.8 30.3 3C.6	CENSIA	25.3 31.2 32.1	9NI W	28.6 31.6 32.8	THREE	33.2 28.2 35.5 29.4	31.0		27.C 32.0	70 KY, 10
1		62.7 61.3 59.8	S FOR MCN	59.3 59.3 56.5	ES FOR NCRTH CAKCTA	62.5 61.8 60.5	S FOR SOU	60.8 61.3 58.5	S FOR WAS	59.0 59.5 57.5	S FOR WIS	61.5 60.0 58.5	S FOR WYO	63.0 62.5 62.5	0F THE	61.3 58.4 61.6 60.2 58.7	60.0	ER A G E	59.9	CLEAN ORY - SLBTRACT I LB./BU. FCR CCCKAGE-FREE T.W. 14 WOLTSHIP GASIS. 15 WOLTSHIP GASIS. 16 WOLTSHIP GASIS. 17 WOLTSHIP GASIS. 18 WOLTSHIP GASIS. 19 WOLTSHIP GASIS. 19 WOLTSHIP GASIS. 19 WOLTSHIP GASIS. 10 WOLTSHIP GASIS. 11 WOLTSHIP GASIS. 12 WOLTSHIP GASIS. 13 WOLTSHIP GASIS. 14 WOLTSHIP GASIS. 15 WOLTSHIP GASIS. 16 WOLTSHIP GASIS. 17 WOLTSHIP GASIS. 18 WOLTSHIP GASIS. 19 WOLTSHIP GASIS. 19 WOLTSHIP GASIS. 10 WOLTSHIP GASIS. 11 WOLTSHIP GASIS. 12 WOLTSHIP GASIS. 13 WOLTSHIP GASIS. 14 WOLTSHIP GASIS. 15 WOLTSHIP GASIS. 16 WOLTSHIP GASIS. 17 WOLTSHIP GASIS. 18 WOLTSHIP
VARIETY OR SEL. NO.	#/BU STATE AVERAGES FOR	CHRIS JUSTIN SELKIRK	STATE AVERAGES FOR MCNIANA	CHRIS JUSTIN SELKIRK	STATE AVERAGES	CHRIS JUSTIN SELKIRK	STATE AVERAGES FOR SCUTH DAKCTA	CHRIS JUSTIN SELKIRK	STATE AVERAGES FOR WASHINGTON	CHRIS JUSTIN SELKIRK	STATE AVERAGES FOR WISCENSIN	CHRIS JUSTIN SELKIRK	STATE AVERAGES FOR WYOMING	CHRIS JUSTIN SELKIRK	STATE AVERAGES	MINNESOTA MONTANA NORTH OAKOTA SOUTH CAKOTA WASHINGTON	WISCCNSIN WYCMING	CROP YEAR AVERAGE	1970 AVERAGE 1971 AVERAGE	1/ CLEAN ORY 2/ 14% MOIST 3/ 1 = VGFY 4/ 1 = NOFY 5/ REFER TO 5/ XXX.9 = 8 8/ XXX.60 = 8 XXX.50 = 9/ 1 = NC PR

QUALITY DATA ON SAWFLY NURSERY SAMPLES

ENCY	,							`						SA AN MES AN MES	¥		
EF IC						ر د		,		0				KW LG KW LG M65		M6.5	
MAJOR OEFICIÉNCY				LG BA		LG M65 LG M65 LG BA M65	. × × 4	Ex 8A			K H		91 01	E E E E E E E E E E E E E E E E E E E		M65 M65 LG M	
MA			-	32	,	222%	யயக	w -	, ,	י ע	ш		רר ר	1		ר רצצ'	
	,					00							۲				
						Ē	-						00	נכר			
ENCY						BA COL COL COL							ВА	000		00	
EF1C						3 0 0 0 A 0 0 A		00					5 00 #65	M M M 6 5		X	
MINOR OFFICIĘNCY			2	8	3	M X X X X	00	M65	00				X X 65	00X3	84	3 X	
			0 3	8 2 3		조물들의	000 000 4 x	0 *	ВА	6	00		000 X X X X X X X X X X X X X X X X X X	SEN	0111	#030F	
LOAF BAKE GEN. VOL. EVAL. EVAL. 37 57			е с	n m m -	•	4	w w	1 2	mm.		-		64644		4 M 4 4 M	131121	4
BAKE EVAL 37			40	1446	-	12152	44400		2 5		4		N4440	441040	04004	N N N 4 4	2
LOAF VOL.	.00		182	181	1.1	182 200 184 185 200	185 189 190 188 191	184	202	192	200		183 177 182 200 200 171	190 202 180 188 192	190 182 190 188 193	190 174 189 194 187	190
CRUMB GRAIN B/			94.99	92.99	76.77	90.99 90.99 85.99 85.99	87.99 88.99 89.99 94.99	92.99	66°36	66*36	88.99		92.99 89.99 83.99 90.99	87.99 88.99 86.59 91.99	92.99 55.59 85.99 89.99	85.59 90.99 88.99 84.99	83.99
OCLGH CRUMB CHAR. COLOR			98.5	1000.7	. 101	102.7 94.5 70.3 88.5 99.0	98.0 101.0 101.7 101.7 99.0	101.7	100.7	0.101	100.0		98.5 99.5 100.7 102.4 101.5	100.5 100.5 90.2 100.7 97.5	99.0 98.5 101.7 101.5 99.5	100.7 100.5 101.5 99.5 100.7	100.5
CLGH HAR.			m ×	r 47 ft 1	n	m 4 m 4 4	~~~~	~ ~	4 6	4	3		4 W 4 M M	m m w w *	10111	40400	4
	Z E		3.00	3.50	61.7	5.25 3.25 4.25 3.00	3.50 2.75 3.00 2.50 4.00	3.25	3.00	3.25	3.25		4.25 4.25 6.25 3.75	6.25 6.00 3.75 5.25	3.75 4.50 4.75 4.75	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4.50
BAKE ABS.	60		63.8	62.5		61.6 62.5 61.0 61.3 63.2	62.5 62.3 62.5 61.9	60.3	63.2	66.3	4.49		64.2 64.2 62.5 63.8 62.5	67.6 67.0 64.7 63.5	64.2 65.0 64.2 64.7 61.9	64.2 64.7 65.3 63.8	0.59
MIX. PAT.			4 :	+ 4 10 11	n	0 0 M U 4	4 m m m w	е е	rv 4	4	4		40004	~ r w o 4	N4N4V	44000	5
			8.8	62.5		61.6 62.5 61.0 61.3 63.2	62.5 62.3 62.5 61.9 60.3	60.3	63.2	66.3	4.49		64.2 64.2 62.5 63.8 62.5	67.0 67.0 64.7 63.5	64.2 65.0 64.4 64.7 61.9	64.2 64.7 65.3 63.8 67.9	0.59
							3 6 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6				9 9						
MLG. PER.			10	* W W *	•	1 2 2 2 2	1010011	04	4 2		Ψ.		4044	98 98		80000	2
MLG CHAR.	1		~ -		-		1 2 2 1	1	1		2						-
FLR.	50		15.2	14.8	•	13.9 14.7 15.4 15.0	14.7 14.8 14.8 15.1	14.8	15.1	15.8	14.8		16.7 17.0 15.7 16.7 16.7	17.3 17.3 17.8 17.0	17.1 16.8 16.5 16.9 15.4	17.5 17.6 16.9 16.7 16.7	16.4
	50		44.0	777		0.44 0.51 0.50 0.50	0.443	0.47	0.41	0.55	0.42		0.60 0.60 0.58 0.65	0.77 0.82 0.69 0.64	0.58 0.56 0.62 0.59	0.69 0.67 0.61 0.59	0.53
FLR. EXT.	₩		60.09	61.0	0 0	59.7 57.3 63.1 57.2 60.5	60.1 60.1 56.2 56.7 57.8	56.5	56.7	53°C	55.8		64.6 70.0 69.7 66.0	64.3 65.2 66.0 69.0 69.2	69.5 70.2 66.5 67.6 69.3	67.3 68.6 67.8 69.7 66.8	4.99
KERN. CHAR.				FN 4 4		80 80 80 KV	22226		r 2		~		2 0 0 0 0 0	an an an an √	00004	W Z & Z &	2
MFT. KE			15.5	15.7	0.0	14.2 15.2 15.6 15.1	15.0 15.0 15.1 15.3	15.0 16.0	15.4	16.6	15.0		172 17.1 16.0 16.9	17.5 17.5 18.0 17.1	17.2 16.9 16.8 17.0	17.6 17.7 16.6 16.9	16.7
			36	1.34	10	1.32 1.40 1.29 1.27 1.25	1.33 1.29 1.29 1.22		1.30		1.25		1.72 1.71 1.70 1.81	2.04 2.02 1.91 1.84	1.66 1.55 1.84 1.62 1.74	1.92 1.90 1.94	99*1
AIN.	*			4	•			.; . ;	-:	-	-			2			-:
S.M.	90		4 4	0 7 9	*	08947	3116	2 4	2	m .	en		15 15 16 16	43 25 119 15	100	6 16 8 17	==
KERNEL SIZE LG MEO SM	84		90	92 92	7	90 91 92 92	82 70 80 54 75	94	95	9.5	95		8 8 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	57 75 81 85 91	88 89 85 90	93 91 84 90 83	80
KERN	54		91	17	7	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 28 19 45 22	5	2 C	2	C)		0000	0000	10 7 5 6 5	1 2 0 0	-
1CCC KMT.	9		29.7	35.2	0.07	24.2 25.1 24.9 25.1 31.8	32.9 33.8 31.4 35.1	30.8	31.0	27.5	27.2		23.8 22.7 29.9 21.2 22.3	17.3 16.1 19.4 24.5 23.9	29.0 28.4 28.2 28.2 26.8	27.5 23.5 21.6 24.3	24.0
3:	#/80.	٨	61.0	60.5	0.10	59.5 59.0 58.5 60.0	60.5 62.0 60.5 60.0	60.09	62.0	0.09	62.0	٨	59.5 58.5 59.0 57.5	52.0 53.5 55.5 56.5	59.5 60.5 57.5 57.0 59.5	588 59.0 59.5 56.5 56.5	0.09
VARIETY OR SEL. NO.		CONRAD, MONTANA	CHINODK	FORTUNA RESCUE	HAICHER	MT 7020 MT 7025 MT 7026 S 683 S 686	\$ 6662 \$ 6677 \$ 6763 \$ 6765 \$ 6851	S 6855 01-484	068-159 7530-411	7823-112	8068-40	SIONEY, MONTANA	CHINOOK CHRIS FORTUNA RESCUE THATCHER	MT 7020 MT 7025 MT 7026 S 683 S 686	\$ 6662 \$ 6677 \$ 6763 \$ 6765 \$ 6851	\$ 6855 01-484 068-159 7530-411 7823-112	8068-40

CLEAN ORY - SUBTRACT I LB./BU. FCR DOCKAGE-FREE T.W.

14 X FOR STISFACTORY - DESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = QUESTIONABLE, 6 = QUESTIONABLE-UNSATISFACTORY, 7 = UNSATISFACTORY - QUESTIONABLE, 8 = UNSATISFACTORY - DESTIONABLE, 9 = UNSATISFACTORY - DESTIONABLE, 9 = UNSATISFACTORY - QUESTIONABLE, 9 = Q

MAJOR OFFICIENCY	7 @ O 4 @ &	LG WP 8A 00 Th MP M65 8A 00	6 X M6 5	ЕХ Ть LG мм ЕХ LG EX
MINOR CEFICIENCY	59W MM MS MX NO CC KM MS	TM KW SM LV KM LG 00 8A LV	00 FX #65 8A 00 00 00 00	A7 03 dw My 00 00 00 00 00 00 00 00 00 00 00 00 00
LCAF BAKE GEN. VOL. EVAL. EVAL. CC. 34 94	172 4 3 181 2 4 188 2 4 178 5 1 165 8 1	157 8 1 171 7 1 158 8 1 183 2 4	186 2 4 171 4 3 168 6 1 171 4 1	172 6 1 175 3 3 177 3 3 168 5 2 181 4 1 162 5 1
CRUMB LCAF GRAIN VOL.	94.99 17 92.99 18 92.99 18 93.99 17	89.99 15 89.99 15 91.99 15 87.99 18	85.99 18 94.99 17 94.99 16 91.99 16	93.99 117 92.99 118 91.99 16 86.99 16 86.99 16
OCUGH CRUMB CHAR. COLOR	5 100.0 4 101.0 4 101.0 4 101.0 6 102.0	7 102.5 6 102.7 7 103.7 4 98.C 4 100.0	4 102.8 6 99.0 6 101.0 6 100.0 6 100.5	6 102.0 5 101.0 5 100.5 6 102.0 6 90.3
A TT	2.75 3.00 3.00 3.00	3.25 4.00 2.75 3.25 3.25	3.00 2.75 2.75 3.50 3.50	3.25 4.00 3.25 4.25 3.25
8AKE A8S.	62.3 63.8 61.6 60.0 59.0	58.7 59.7 60.3 61.9	61.9 62.5 60.7 61.9 60.0	600.7 655.3 662.3 64.2 63.7
MLG. MIX. MIX. PER. ABS. PAT. 34. 24. 54.	2 62.3 2 63.8 4 2 61.6 3 5 60.0 2 2 59.0 3	3 58.7 2 6 59.7 3 2 60.3 2 2 61.9 3 2 61.6 3	2 61.9 2 3 62.5 3 6 60.7 2 8 61.9 3	6 60.7 3 65.3 4 6 62.3 6 64.2 4 6 64.2 3 8 6 64.2 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
FLR. MLG PRO. CHAR.	14.1 2 15.0 1 13.5 1 13.3 3	11.7 2 12.7 3 13.9 2 13.9 2 13.8 1	13.7 2 14.6 2 13.6 3 13.9 3	14.0 3 15.0 1 14.0 2 13.6 1 13.7 5 12.9 3
FLR. MIN. 3 EXT. 65%EX.		59.2 0.51 58.5 0.56 59.9 0.50 60.1 0.50 61.3 0.47	60.1 0.46 59.4 0.51 57.7 0.55 56.3 0.57 61.0 0.47	57.1 0.53 60.6 0.52 59.4 0.51 60.7 0.53 54.2 0.50 56.4 0.51
HHT. KERN. PRO. CHAR.	14.4 15.4 14.0 14.0 14.0	12.3 8 13.1 8 14.2 3 14.2 3	14.5 15.1 13.9 14.1 14.4	14.2 15.2 14.4 14.4 13.9 8
SM MIN.	3 1.76 1 1.67 1 1.71 6 2.01 1 1.64	8 1.80 4 1.76 2 1.70 3 1.71 2 1.62	1 1.76 2 1.86 2 1.72 2 1.72 2 1.70	3 1,77 1 1,70 2 1,82 1 1,68 4 2,20 4 1,79
KEBNEL SIZE	1 15 84 1 15 84 3 54 45 6 88 6 88	2 90 5 11 85 27 71 21 76 48 50	55 58 40 57 42	65 32 6C 39 8 24 74 9 46 53 10 86
1000 T.W. KWT. 1/ #/8U. G.	EPLICATE 1 - FARGO, NORTH OAKOTA HINOOK 61.0 31.0 28 HRIS 25.5 38.1 15 FECUE 60.0 0.0 25.5 36.4 30 HAICHER 62.5 36.4 30	58.0 24.3 57.5 25.6 60.0 29.8 62.0 31.0 61.5 43.9	63.0 38.0 61.0 31.4 62.0 35.3 61.5 38.5 63.0 34.4	59.5 34.5 61.5 31.9 61.0 29.8 62.0 30.9 57.0 28.2 60.5 26.8
VARIETY OR SEL. NO.	REPLICATE I - CHINOOK CHRIS FORTUNA RESCUE THATCHER	MT 7020 MT 7025 MT 7026 S 683 S 686	\$ 6662 \$ 6677 \$ 6763 \$ 6765 \$ 6851	\$\sqrt{6855} \\ 01-484 \\ 068-159 \\ 7530-411 \\ 7823-112 \\ 8068-40 \end{array}

1, 22, 22, 41, 61, 81, 91,

CLEAN CRY - SUBTRACT IL 6./80. FOR COCKAGE-FREE T.M.

14 WOTSTURE 64515.

15 VOR SALISFACTORY, 2 = SATISFACTORY - OUESTIONABLE, 4 = OUESTIONABLE, 5 = OUESTIONABLE, 6 = QUESTIONABLE, 0 = QUESTIONABLE, 7 = UNSATISFACTORY - OUESTIONABLE, 8 = UNSATISFACTORY.

15 NORMAL, 4 = SOFT, 5 = OST, 5 = ORT, 7 = O

QUALITY DATA ON SAWELY NURSERY SAMPLES

									M65 8A			
MAJOR OEFICIENCY									BA WP EX	⋖		
0EF10									MP 8	M65 8A	8 ₽	
MAJOR			9 A	¥ ₽ O O	. ×	Ä		0	LG RA LG	8 M 8 5 4 5 5	M 65 M 65	
•											0	
NC.				L V 30				M65	00 M65		LV 00 8A 00	8A OC
MINGR OFFICIENCY				000 L				NS.	N M M	8 A	00 MW 2 LV	<u>a</u>
10R 0E				8 40.4 40.4	¥65			M65 8A LG	5 M M M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M65 00	E E E E	97
1			m x x x	2332	765 1¥ EX	3 X X		ZXOXX	X X H &	LG WP CO TW 765	W X X W W W W W W W W W W W W W W W W W	X
GEN. EVAL.			£44⊣	1	431124	44004		መቁመጠጠ	34111	3 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 1 1 1 1	е
BAKE EVAL.	1		2228			2 2 2 2 2		00440	8 8 8 8 9	04845	00 4 60 60	9
LCAF VOL.	.00		173 190 178 184	165 173 185 208 208 190	190 178 184 184 180	189 184 180 182 185		178 188 174 181 179	167 173 180 179 179	183 178 168 165 177	161 186 174 176 165	172
CRUP8 GRAIN BY			88.59 92.99 90.99	88.99 88.99 91.99 98.59		87.99 89.99 88.99 87.99		92.99 86.99 87.99 88.99	66°06 66°36 66°66 66°66	88.99 89.99 90.99 90.99 90.99	90.99 89.99 89.99 92.99	88.99
COLOR			98.0 100.0 98.0 101.0	103.0 99.0 99.0 95.2	98.2 100.0 99.0 100.0	96.C 101.7 102.0 102.E 105.9		100.0 102.0 101.0 101.7	100.7 103.6 100.0 101.0	101.0 100.6 100.7 101.0	101.0 100.0 102.7 102.0 100.0	0-101
OCUGH CHAR.			ጠጠቁቁ	ት የ ላት መጠጠ	. wwawa	W 4 4 W W		44044	w 0 4 4 w	44004	0 m m m 0	5
1	N I N		2.50 2.25 2.75 3.25	2.50 2.75 2.75 2.75	3.00 3.00 3.00 3.00	3.00 2.75 2.50 3.75 2.75		2.25 2.75 2.75 2.75	3.75 3.00 2.50 2.25	2.75 3.00 3.25 2.75 3.00	3.25 2.25 2.50 2.25 3.50	3.50
	3e		63.5 66.3 64.2 61.3	62.5	65.0 65.0 65.7 64.7	67.6 65.3 63.5 66.0		64.7 67.0 65.0 63.5	61.9 61.0 61.9 64.2 63.5	64.4 63.2 62.5 64.4 62.8	61.3 66.0 63.8 61.6	63.2
MIX. PAT.	1		w 0 w 4	n 44044	4 M M M 4	4 4 4 4		04 m m m	w 0 0 4 4	m m m m m	26624	8
MIX. ABS.	**		63.5 66.3 64.2 61.3	66.0	66.0 65.0 65.7 64.7	67.6 65.3 63.5 66.0 65.3		64.7 67.0 65.0 63.5	61.9 61.0 61.9 64.2 63.5	64.4 63.2 62.5 64.4 62.8	61.3 66.0 63.8 61.6 64.2	63.2
MLG. PER.			4 10 20 20	2 2 2 2 2 2	0 N D D 7 M	N M 4 9 M		4 2 2 2 2 2	48461	3 8 8 8	8 M M M 8	-
FLG CHAR.			7 1 1 5	7 17 11 7	1 2 3 1 1 1	7 7 7 7		7	11231	17111	21112	-
	34°		13.8 15.0 13.7	13.4 11.8 12.7 14.1 14.6	14.1 13.8 15.5 15.4	15.8 14.4 14.6 14.1 14.1		14.5 14.5 13.3 13.6 11.6	11.9 12.4 13.4 13.8 14.1	13.8 12.9 12.9 14.7 14.9	13.5 15.8 14.2 14.1 13.2	12.8
50	80		0 4 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.52	0.44 0.50 0.51 0.46	0.44		0.44	0.58 0.58 0.48 0.45	0.42 0.46 0.53 0.52	0.49 0.47 0.45 0.47	0.41
FLR. EXT.			61.1 63.2 65.7 65.6	63.9 61.7 63.8 65.1	64.8 61.6 59.2 60.8	62.4 61.0 60.7 60.0		60.7 61.6 63.0 62.4 62.6	61.1 57.9 61.6 61.9 63.3	64.3 63.2 61.8 60.4 61.3	59.0 62.6 61.1 61.3	63.0
KERN. CHAR.			2624			m m m m m		m 01 m 4 4	88447	m 4 0 m 01	4 11 4 11 4	9
i	ov.	•	14.2	14.0 14.5 14.8	14.4 14.2 15.7 16.0	16.0 15.0 15.2 14.4		15.1 14.8 14.5 13.9	12.3 12.8 14.1 14.1 14.3	14.4 13.7 13.1 14.9	13.7 16.0 14.6 14.6 13.3	13.4
WHT.	ov.		1.44 1.45 1.36 1.45	1.43 1.33 1.42 1.36	1.38 1.38 1.38 1.47	1.44 1.44 1.36 1.46 1.38		1.50 1.30 1.38 1.39	1.36 1.52 1.38 1.33 1.34	1.44 1.34 1.34 1.42 1.42	1.28 1.50 1.50 1.38	1.32
SH	₩		W 4 W 4	∞ 44N0W	44040	w w w v o		N N N N 00	r 8 5 6 7	245002	040 60	-
KEBNEL SIZE LC MEO SM	**	T.A	53 54 64 64			45 44 47 74 8	TA	47 31 35 55	78 75 68 82 30	70 42 45 30 31	33 44 44	62
	94	OAKO	42 40 55 32	23 34 44 55	50 50 60 60 60	52 31 49 51 36	NORTH DAKOTA	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15 17 27 27 15 68	28 54 50 67 67	61 48 28 58 54	3.1
1000 KWT.	ပ	NORTH	34.6 29.8 41.3 31.1	30.9 30.9 30.9 30.5 39.4	38.8 38.8 42.0 41.3	333 333 34 34 34 34		37.5 32.1 43.3 32.7 31.0	30.1 25.0 29.8 40.7 42.4	42.0 40.7 39.1 42.7	39.5 32.2 36.9 36.9	33.0
, H.	#/8N.	- MINOT, NORTH OAKOTA	62.0 61.0 61.0 61.0	59.5 60.0 60.0 59.5	62.0 60.5 59.5 61.5	59.5 61.0 60.0 61.0	I - MINOT.	60.5 62.0 60.0 62.0	60.0 57.5 59.0 62.0 61.5	62.0 61.5 60.0 59.0 61.5	61.5 60.0 60.5 61.0 61.0	0.09
VARIETY OR SEL. NO.		REPLICATE 1	CHINDOK CMR1S FORTUNA RESCUE	MT 7020 MT 7025 MT 7025 MT 7026 S 686 S 686	\$ 6677 \$ 6763 \$ 6765 \$ 6851 \$ 6855	01-484 068-159 7530-411 7823-112 8068-40	REPLICATE II	CHINOOK CHRIS FORTUNA RESCUE THATCHER	MT 7020 HT 7025 HT 7026 S 683 S 686	\$ 6662 \$ 6677 \$ 6763 \$ 6765 \$ 6851	\$ 6855 01-484 068-159 7530-411 7823-112	8068-40

CLEAN ORY - SUBTRACT I L8.78U. FOR COCKAGE-FREE 1.W.

14 FOR STATE SASSIS.

15 FOR STATE SASSIS.

16 FOR COCKAGE-FREE 1.W.

17 FOR STATE SASSIS.

18 FOR STATE SASSIS.

18 FOR STATE SASSIS.

19 FOR STATE SASSIS.

19 FOR STATE SASSIS.

10 FOR STATE SASSIS.

10 FOR STATE SASSIS.

10 FOR STATE SASSIS.

11 FOR STATE SASSIS.

12 FOR STATE SASSIS.

13 FOR STATE SASSIS.

14 FOR STATE SASSIS.

16 FOR STATE SASSIS.

17 FOR STATE SASSIS.

18 FOR STATE SASSIS.

19 FOR STATE SASSIS.

10 FOR S

AJOR OEFICIENCY				, 465 LG
ž į				⊌65 8A 8A 00 CGL
NC.			8 A	7 X O
MINOR OFFICIENCY			8A M65	S R B B B B B B B B B B B B B B B B B B
			97	Λ 3. 3. 3.
			X X X X X X X X X X X X X X X X X X X	TE TE
GEN. EVAL. 97	,		44466	49255
BAKE EVAL. 32			00044	49~22
LOAF BAKE G VOL. EVAL. E			178 183 181 189 178	172 184 177 184 195
CRUMB GRAIN BZ			92.98 91.38 90.98 89.78	89.58 90.58 90.78 88.48 89.18
CRUMB COLOR			99.0 100.8 100.3 101.0	101.9 100.1 92.6 97.0 98.7
OOUGH CHAR.			11111	40044
MIX. TIME	Z E		2.94 3.04 3.25 3.84	4.39 4.25 2.94 4.00 3.09
BAKE ABS.	No.		63.7 64.9 63.2 62.2 62.1	62.5 62.5 62.0 62.1 63.7
MIX. PAT.			w 4 4 4 w	44 m w 4
MIX. ABS.	80		63.7 64.9 63.2 62.2 62.1	62.3 62.5 62.0 62.7
MLG. PER.			m m m m m	4 8 M 4 H
MLG CHAR.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11151
FLR. MLG PRO. CHAR.	i		14.9 15.4 14.2 14.3	13.3 14.0 14.9 14.9
FLR. MIN. B EXT. 65%EX.	140		0.50 0.49 0.48 0.50	0.52 0.59 0.51 0.52
FLR. ExT.	340		61.5 63.1 64.1 62.7 63.4	61.6 60.1 62.9 62.0 63.9
KERN. CHAR.			N m N m 4	80440
MHT.	₩	,	15.3 15.6 14.6 14.7	13.7 14.4 15.3 15.1 15.2
WHT.	840		1.55 1.50 1.49 1.59	1.55 1.60 1.53 1.53 1.48
LZE SM	840		99477	114 100 7 6
MEO S	84		69 73 77 76	
KEBb	84		25 21 38 16 16	10 13 16 17 36
1000 KWT.	. 9	TA		
1000 KERNEL SIZE T.W. KWT. LG MEO SM	#/80.	UALITY OA	60.8 60.8 60.7 60.2 60.0	58.1 57.5 58.6 60.1 60.4
VARIETY OR SEL. NO.		AVERAGE OF G	CHINOOK CHRIS FORTUNA RESCUE THATCHER	MT 7020 58.1 25.4 MT 7025 57.5 26.5 MT 7026 58.6 26.5 MT 7026 58.6 26.5 MT 7026 58.6 26.5 MT 7026 58.1 31.3 MT 7020 58.1 26.4

CLEAN ORY - SUBTRACT I L8./BU. FOR OGCKAGE-FREE T.W.

14 KMO SURFE MASSIS.

15 KMO SURFE MASSIS.

16 KMO SURFE MASSIS.

17 KMO SURFE MASSIS.

18 KMO SURFE MASSIS.

18 KMO SURFE MASSIS.

19 KMO SURFE MASSIS.

10 KMO SURFE MASSIS.

10 KMO SURFE MASSIS.

11 KMO SURFE MASSIS.

12 KMO SURFE MASSIS.

13 KMO SURFE MASSIS.

14 KMO SURFE MASSIS.

15 KMO SURFE MASSIS.

16 KMO SURFE MASSIS.

17 MORALE.

18 MOKAY.

19 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

11 MOKAY.

12 MOKAY.

13 MOKAY.

14 MOKAY.

15 MOKAY.

16 MOKAY.

17 MOKAY.

18 MOKAY.

19 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

11 MOKAY.

12 MOKAY.

13 MOKAY.

14 MOKAY.

15 MOKAY.

16 MOKAY.

17 MOKAY.

18 MOKAY.

19 MOKAY.

19 MOKAY.

19 MOKAY.

19 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

11 MOKAY.

11 MOKAY.

12 MOKAY.

13 MOKAY.

14 MOKAY.

15 MOKAY.

16 MOKAY.

17 MOKAY.

18 MOKAY.

19 MOKAY.

19 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

11 MOKAY.

10 MOKAY.

11 MOKAY.

11 MOKAY.

11 MOKAY.

12 MOKAY.

13 MOKAY.

14 MOKAY.

15 MOKAY.

16 MOKAY.

17 MOKAY.

18 MOKAY.

19 MOKAY.

19 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

11 MOKAY.

18 MOKAY.

18 MOKAY.

19 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

10 MOKAY.

11 MOKAY.

10 MOKAY.

11 MOKAY.

10 MOKAY.

11 MOKAY.

18 MOKAY.

18 MOKAY.

19 MOKAY.

10 MOKAY.

10 MOKAY.

M65

00

Σ

6 3 LG LG

- 4 4 4 -

177 181 184 182 181

90.58 90.98 90.38 90.38

101.3 99.6 101.4 101.1

0 4 4 4 0

3.29

62.4 65.4 64.5 62.6 65.7

62.4 65.4 64.5 62.6 65.7

2 1 2 1 2 2

0.45

60.7

14.6

1.47

29.0

8068-40

14.8 16.0 14.9 14.8

0.52 0.51 0.48 0.49

60.5 62.7 61.2 62.7 58.8

14.9 16.2 15.2 15.3

1.50 1.52 1.58 1.49

57 77 61 70

34.8 29.7 28.8 31.9

60.0 60.0 60.8 60.9 59.1

\$ 6855 01-484 068-159 7530-411 7823-112

102.0

3.44

00 00

00 M65 84

00 765 84 84 M65

46226

91.98 89.78 91.78 91.58 86.88

99.4 99.5 101.0 100.6 99.9

40004

3.14

63.8 63.8 63.0 63.7

4 m m 4 4

63.7 63.8 63.0 63.7 61.9

1 2 2 1

14.7 14.6 14.3 15.2 15.2

0.46 0.47 0.53 0.52 0.52

63.5 63.5 60.0 60.0

2222

15.1 15.0 14.6 15.4

1.52 1.48 1.51 1.51 1.50

64 40 40 40 40

36.0 34.6 34.6 37.3

6662 6677 6763 6765 6851

184 177 184 195 195 187 179 179 183

REFERENCE MIXOGRAMS

HARD RED SPRING WHEAT

U.S.D.A. SPRING WHEAT QUALITY LABORATORY
FARGO, NORTH DAKOTA

THE WASH IN THE WASH TO SEE ASH THE WASH THE WAS

