

1.6 User Manual

AW6202 Wi-Fi 802.11b/g/n ARM® Cortex M4 Embedded Module Specification

Content Table

1.	. Introduction	3
2.	. Features	3
	2.1. Application Processor	3
	2.2. Wi-Fi Features	3
	2.3. Network Stack	4
	2.3. Hardware Crypto Engine for Fast State-of-the-Art Security	4
	2.4. Power Management System	4
	2.5. Clock Source	4
	2.6. Operating Temperature	4
3.	Functional Block Diagram	5
4.	Application Diagram	7
5.	Pin Assignments	8
	5.1 Pin Outline	8
	5.2 Pin Definition	8
6.	Module Specifications	10
	6.1. Electrical Characteristics	10
	6.2. WLAN RF Characteristics	12
7.	Recommended Reflow Profile	14
	8.1 Temperature	15
	8.2 Handling Environment	15
	8.3 Storage Condition	15
	9.4 Baking Conditions	15

1. Introduction

Able Trend embedded Wi-Fi module AW6202 uses Texas Instruments (TI) CC3200 which is integrated an ARM Cortex M4 processor with 802.11b/g/n Wi-Fi network processor. It is fully available for application development and rich peripheral interfaces to support a wide variety of network connectivitybased applications, such as IOT (Internet of Things). With the surface mountable dielectric chip antennas on board, AW6202 is small and thin, stable and qualified, and suitable for many network based devices.

AW6202 module has a rich set of peripherals for diverse application requirements. The module optimizes bus matrix and memory management to give needed advantage for the application developer.

2. Features

2.1. Application Processor

- ARM Cortex M4
- 80-MHz Operation
- Up to 256 KB Local RAM
- Ext Serial Flash Bootloader & Peripheral Drivers in ROM
- 32 ch uDMA
- Support of Rich Peripherals Including:
 - I2C™ (Both Master and Slave)
 - SPIs (Both Master and Slave)
 - Two UARTs
 - One Multichannel Audio Serial Port (I2S and TDM)
 - Up to 27 GPIOs
 - 4 GPTs with 16-bit PWM Functionality
 - 4-Channel 12-bits ADC
 - 8-bit Parallel Camera Interface

2.2. Wi-Fi Features

- 802.11 b/g/n Station with Fully Integrated Radio, Baseband, and MAC
- WPA2 Personal and Enterprise Security
- SimpleLink Connection Manager
- Smart Config™, AP Mode and WPS2 for Easy Provisioning
- TX Power
 - 18.0 dBm @ 1 DSSS and 11 CCK
 14.5 dBm @ 54 OFDM
- RX Sensitivity
 - -95.7 dBm @ 1 DSSS
 - -74 dBm @ 54 OFDM

AW6202 module datasheet v2.8

Page 3/17

Able Trend Technology Limited 百

2.3. Network Stack

- IPv4 TCP/IP Stack
- 8 Simultaneous TCP, UDP, or RAW Sockets
- 2 Simultaneous TLS and SSL Sockets
- Industry-Standard BSD Socket API
- ARP, ICMP, DHCP, DNS, mDNS
- TLS 1.2/SSL 3.0 with On-Chip Accelerators
- HTTP Server with Built-In Programmable HTML Page for Over-the-Network Device Configuration
- Application Throughput
 UDP: 16 Mbps

 - TCP: 12 Mbps

2.3. Hardware Crypto Engine for Fast State-of-the-Art Security

- AES, DES and 3DES
- SHA2 and MD5
- CRC and Checksum

2.4. Power Management System

- V_{BAT} Wide-Voltage Mode: 2.1 to 3.6 V
- Pre-regulated 1.85-V Mode
- Hibernate: 4 μA
- Low-Power Deep Sleep (LPDS): 120 μA
- RX Traffic (MCU Active): 59 mA @
- TX Traffic (MCU Active): 229 mA @54 OFDM, Maximum Power
- Idle Connected (MCU in LPDS): 695 μA @DTIM = 1

2.5. Clock Source

- 40.0MHz Crystal with internal Oscillaor
- 32.768kHz Crystal or ext. RTC Clock

2.6. Operating Temperature

Ambient Temperature Range: –40°C to 85°C

Device Information

Order Number	Body Size
AW6202	(W)24mm x (H)27mm
AW6202S (preview)	(W)20mm x (H)27mm

AW6202 module datasheet v2.8

Page 4/17

3. Functional Block Diagram

Fig. 3-1 TI CC3200 functional block diagram

AW6202 module datasheet v2.8

Page 5/17

Able Trend Technology Limited 榮 通 科 技 有 限 公 司

Fig. 3-2 Module functional block diagram

AW6202 module datasheet v2.8

Page 6/17

4. Application Diagram

Fig. 4-1 Module functional block diagram

AW6202 module datasheet v2.8

Page 7/17

5. Pin Assignments

5.1 Pin Outline

Fig.5-1 AW6202 Pin Outline

5.2 Pin Definition

No.	Name	Type	Description
1	Reset	IN	Reset Input for the module, active
'	Neset	IIV	low, has 100-k pull up internally
2	SOP1	IN	Sense on Power 1
3	SOP0	IN	Sense on Power 0
4	V3V3	POW	3.3V
5	GND	GND	Ground
6	IO_00/UART1_nRTS	I/O	GPIO / UART host Interface
7	IO_30	I/O	GPIO
8	IO_1/UART1_TX	I/O	GPIO / UART host interface
9	IO_2/UART1_RX	I/O	GPIO / UART host interface
10	IO_3	I/O	GPIO
11	IO_4	I/O	GPIO
12	IO_5	I/O	GPIO
13	IO_6/UART1_nCTS	I/O	GPIO / UART host interface
14	IO_7	I/O	GPIO
15	IO_8	I/O	GPIO
16	IO_9	I/O	GPIO
17	IO_10	I/O	GPIO
18	IO_11	I/O	GPIO
19	IO_12	I/O	GPIO
20	IO_13	I/O	GPIO
21	IO_14/HOST_SPI_CLK	1/0	GPIO / Host interface SPI clock

AW6202 module datasheet v2.8

Page 8/17

Able Trend Technology Limited 禁 通 科 技 有 限 公 司

22	IO_15/HOST_SPI_MOSI	I/O	GPIO / Host interface SPI data input
23	IO_16//HOST_SPI_MISO	I/O	GPIO / Host interface SPI data output
24	IO_17/HOST_SPI_nCS	I/O	GPIO / Host interface SPI chip select
25	IO_22	I/O	GPIO
26	IO_23	I/O	GPIO / JTAG TDI
27	IO_24	I/O	GPIO / JTAG TDO
28	IO_28	I/O	GPIO
29	JTG_TCK	IN	JTAG TCK
30	JTG_TMS	IN	JTAG TMS
31	IO_25	I/O	GPIO / SOP2
32	IO_26	1/0	GPIO
33	IO_27	I/O	GPIO
34	GND	GND	Ground

6. Module Specifications

6.1. Electrical Characteristics

6.1.1. Absolute Maximum Ratings

These specifications indicate levels where permanent damage to the module can occur. Functional operation is not ensured under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the module.

Symbol	Condition	Min	Тур	Max	Unit
VBAT_IN, VBAT_IN2, VBAT_IN3	Respect to GND	-0.5	3.3	3.8	V
VDD_Flash	Respect to GND	-0.5	3.3	3.8	V
Digital I/O	Respect to GND	-0.5	-	VBAT + 0.5	٧
Max ripple on supplied voltage	3.3V			330	mVpp
Operating temperature	-	-20	25	70	°C
Storage temperature	-	-40	25	85	°C

6.1.2. Recommended Operating Conditions

Function operation is not ensured outside this limit, and operation outside this limit for extended periods can adversely affect long-term reliability of the module.

Symbol	Condition	Min	Тур	Max	Unit
VBAT_IN, VBAT_IN2, VBAT_IN3	Battery Mode	2.3	3.3	3.6	V
VDD_Flash	Battery Mode	2.3	3.3	3.6	V

6.1.3. Reset Requirement

Parameter	Symbol	Min	Тур	Max	Unit
Operation mode level	ViH		0.65 x VBAT		٧
Shutdown mode level	ViL	0	0.35 x VBAT		V
Minimum time for nReset low for		5			ms
resetting the module					
Rise/fall times	Tr/Tf		20		US

6.1.4. SPI Host Interface Timings

Fig. 6-1 SPI Master Timing Diagram

Parameter Number	Symbol	Parameter	Min	Max	Unit
11	F	Clock Frequency		20	MHz
12	T _{clk}	Clock period	50		ns
13	t _{LP}	Clock low period		25	ns
14	t _{err}	Clock high period		25	ns

AW6202 module datasheet v2.8

Page 10/17

Test Report No.: 14038604 001 Appendix 5 Page 17 of 24

Able Trend Technology Limited 禁 通 科 技 有 限 公 章

15	D	Duty cycle	45	55	%
16	t _{is}	RX data setup time	1		ns
17	t _{iH}	RX data hold time	2		ns
18	too	TX data output delay		8.5	ns
19	t _{on}	TX data hold time		8	ns

Fig. 6-2 SPI Slave Timing Diagram

Parameter Number	Symbol	Parameter	Min	Max	Unit
11	F	Clock Frequency@VBAT=3.3V		20	MHz
		Clock Frequency@VBAT≤2.1V	┑	12	1
12	Telk	Clock period	50		ns
13	t _{LP}	Clock low period		25	ns
14	t _{HT}	Clock high period		25	ns
15	D	Duty cycle	45	55	%
16	t _{is}	RX data setup time	4		ns
17	t _{IH}	RX data hold time	4		ns
18	top	TX data output delay		20	ns
19	t _{OH}	TX data hold time		24	ns

6.1.5. ESD Specifications

Mode	Level	Unit
HBM	±1500	V
MM	±200	V

6.1.6. Current Consumption

Mode	Condition	Typical Current at 3.6V
Active mode	11Mbps TX at 18.5 dBm	250mA
	54Mbps TX at 14 dBm	200mA
	RX at 54 Mbps	53mA
Low-power mode	LPDS (low-power deep sleep)	100uA
	Hibernate	28uA

6.1.7. Power-up Sequence

AW6202 module datasheet v2.8

Page 11/17

6.2. WLAN RF Characteristics

6.2.1. IEEE802.11b

Items			Contents			
Specification		IEEE 802.11 b				
Mode			DSSS	or CCK		
Data rate			1,2,5.5 ar	nd 11Mbs	os	
Channels			Ch1	-Ch13		
TX Characteristics		Min	Тур	Max	Unit	
Power Level	Target Power	17	18.5	20	dBm	
	f _c = 33MHz < f <f<sub>c -22MHz</f<sub>	-	-	-50	dBr	
Spectrum mask at target power	f _c = 22MHz < f <f<sub>c -11MHz</f<sub>	-	-	-50	dBr	
Spectrum mask at target power	f _c +11MHz < f <f<sub>c +22MHz</f<sub>	-	-	-50	dBr	
	f _c +22MHz < f <f<sub>c +33MHz</f<sub>	-	-	-50	dBr	
Frequency error		-15	-	+15	ppm	
Modulation accuracy (EVM) at target power	1 Mbps	-		-10	dB	
	2 Mbps	-		-10	dB	
	5.5 Mbps	-		-10	dB	
	11 Mbps	-		-10	dB	
RX Characteristics		Min	Тур	Max	Unit	
Minimum input level sensitivity	11 Mbps (FER ≤ 8%)	-	-86	-82	dBm	
Maximum input level (FER < 8%)	1, 2 Mbps (FER ≤ 8%)	-4	-			
	5.5 11 Mbps (FER ≤ 8%)	-10	-			
Spurious Emission (TX)		Min	Тур	Max	Unit	
(30MHz to 1GHz)		-	-	-41.3	dBm/MHz	
(1GHz to 12.75GHz)		-	-	-41.3	dBm/MHz	
Spurious Emission (RX)		Min	Тур	Max	Unit	
(30MHz to 1GHz)		-	-	-57	dBm/MHz	
(1GHz to 12.75GHz)		-	-	-54	dBm/MHz	

6.2.2. IEEE802.11g

Items			Contents			
Specification		IEEE 802.11 g				
Mode			OF	DM		
Data rate	Data rate		6,9,12,18,24,36,48 and 54 Mbps			
Channels			Ch1	-Ch13		
TX Characteristics		Min	Тур	Max	Unit	
	Target power at 6Mbps	15	16.8	18	dBm	
	Target power at 9Mbps	15	16.8	18	dBm	
	Target power at 12Mbps	15	16.8	18	dBm	
Power Level	Target power at 18Mbps	15	16.8	18	dBm	
rower Level	Target power at 24Mbps	14.5	16	17.5	dBm	
	Target power at 36Mbps	14.5	16	17.5	dBm	
	Target power at 48Mbps	13.5	15	16.5	dBm	
	Target power at 54Mbps	13.5	15	16.5	dBm	
	f _c ±11MHz	-	-	-50	dBr	
Spectrum mask at target power	f _c ±20MHz	-	-	-50	dBr	
	f _c >±30MHz	-	-	-50	dBr	
Frequency error		-15	-	+15	ppm	
	6Mbps	-	-	-5	dB	
Constellation error (EVM) at target power	9Mbps	-	-	-8	dB	
	12Mbps	-	-	-10	dB	
	18Mbps	-	-	-13	dB	
	24Mbps	-	-	-16	dB	
	36Mbps	-	-	-19	dB	
	48Mbps	-	-	-22	dB	
	54Mbps	-	-	-25	dB	

AW6202 module datasheet v2.8

Page 12/17

Able Trend Technology Limited 榮 通 科 技 有 限 公 司

RX Characteristics		Min	Тур	Max	Unit
Waiting in the standard and its in	6Mbps (PER < 10%)	-	-89	-85	dBm
	9Mbps (PER < 10%)	-	-88	-84	dBm
	12Mbps (PER < 10%)	-	-86	-82	dBm
	18Mbps (PER < 10%)	-	-85	-81	dBm
Minimum input level sensitivity	24Mbps (PER < 10%)	-	-82	-78	dBm
	36Mbps (PER < 10%)	-	-80	-76	dBm
	48Mbps (PER < 10%)	-	-76	-72	dBm
	54Mbps (PER < 10%)	-	-74	-70	dBm
Maximum input level (PER < 10%)		-15	-	-	dBm
Spurious Emission (TX)		Min	Тур	Max	Unit
(30MHz to 1GHz)		-	-	-41.3	dBm/MHz
(1GHz to 12.75GHz)		-	-	-41.3	dBm/MHz
Spurious Emission (RX)		Min	Тур	Max	Unit
(30MHz to 1GHz)		-	-	-57	dBm/MHz
(1GHz to 12.75GHz)		-	-	-54	dBm/MHz

6.2.3. IEEE802.11n HT20

Items		Contents				
Specification		IEEE 802.11 n HT20				
Mode		OFDM				
Data rate		MCS0, MCS1, MCS2, MCS3, MCS4,				
Data rate		M	CS5, MCS		CS7	
Channels			Ch1-	-Ch13		
TX Characte	eristics	Min	Тур	Max	Unit	
	Target power at MCS0	14	15.5	17	dBm	
	Target power at MCS1	14	15.5	17	dBm	
	Target power at MCS2	14	15.5	17	dBm	
Power Level	Target power at MCS3	14	15.5	17	dBm	
Power Level	Target power at MCS4	13.5	15	16.5	dBm	
	Target power at MCS5	13.5	15	16.5	dBm	
	Target power at MCS6	12.5	14	15.5	dBm	
	Target power at MCS7	12.5	14	15.5	dBm	
	f _c ±11MHz	-	-	-20	dBr	
Spectrum mask at target power	f _c ±20MHz	-	-	-28	dBr	
	f _c >±30MHz	-	-	-45	dBr	
Frequency error		-15	-	+15	ppm	
	MCS0	-	-	-5	dB	
	MCS1	-	-	-10	dB	
	MCS2	-	-	-13	dB	
Constellation error (EVM) at	MCS3	-	-	-16	dB	
target power	MCS4	-	-	-19	dB	
	MCS5	-	-	-22	dB	
	MCS6	-	-	-25	dB	
	MCS7	-	-	-28	dB	
RX Characteristics		Min	Тур	Max	Unit	
Minimum input level sensitivity	MCS0 (PER < 10%)	-	-88	-84	dBm	
	MCS1 (PER < 10%)	-	-85	-81	dBm	
	MCS2 (PER < 10%)	-	-83	-79	dBm	
	MCS3 (PER < 10%)	-	-80	-76	dBm	
	MCS4 (PER < 10%)	-	-78	-74	dBm	
	MCS5 (PER < 10%)	-	-76	-72	dBm	
	MCS8 (PER < 10%)	-	-74	-70	dBm	
	MCS7 (PER < 10%)	-	-71	-67	dBm	
Maximum input level (PER < 10%)		-20	-	-	dBm	
Spurious Emis	ssion (TX)	Min	Тур	Max	Unit	
FCC (30MHz to 1GHz)		-	-	-41.3	dBm/MHz	

AW6202 module datasheet v2.8

Page 13/17

FCC average (1GHz to 12.75GHz)	-	-	-41.3	dBm/MHz
Spurious Emission (RX)	Min	Тур	Max	Unit
(30MHz to 1GHz)	-	-	-57	dBm/MHz
(1GHz to 12.75GHz)	-	-	-54	dBm/MHz

7. Recommended Reflow Profile

- 1. Heating method: Conventional Convection or IR/convection
- Temperature measurement: Thermocouple d = 0.1 mm to 0.2 mm CA (K) or CC (T) at soldering portion or equivalent method.
- 3. Solder paste composition: Sn/3.0 Ag/0.5 Cu
- Allowable reflow soldering times: 2 times based on the following reflow soldering profile
- Temperature profile: Reflow soldering shall be done according to the following temperature profile
- 6. Peak temp: 245°C

Fig. 7-1 Reflow Profile Diagram

AW6202 module datasheet v2.8

Page 14/17

Able Trend Technology Limited 禁 通 科 技 有 限 公 司

Environmental Requirements and Specifications

8.1 Temperature

8.1.1 Operating Temperature Conditions

The product is capable of continuous reliable operation when operating in ambient temperature of -20°C to +70°C

8.1.2 Nonoperating Temperature Conditions

The subassemblies must not be damaged and the operational performance must not be degraded when restored to the operating temperature when exposed to storage temperature in the range of -40°C to +85°C.

8.1.3 PCB Bending

The PCB bending specification shall maintain planeness at a thickness of less than 0.1 mm.

8.2 Handling Environment

8.2.1 ESD

The product ESD immunity is Human Body Model (HBM) $\geq \pm 1500$ (V), Mechanical Model (MM) $\geq \pm 200$ (V). Handle it under ESD protection environment. This device is ESD sensitive, thus it must be protected at all times from ESD. Industry-standard ESD precautions must be followed at all times.

8.2.2 Terminals

The product is mounted with motherboard through land grid array (LGA). To prevent poor soldering, do not touch the LGA portion by hand.

8.2.3 Falling

The mounted components will be damaged if the product falls or is dropped. Such damage may cause the product malfunction.

8.3 Storage Condition

8.3.1 Moisture Barrier Bag Before Opened

A moisture barrier bag must be stored in a temperature of less than 30°C with humidity under 85% RH.The calculated shelf life for the dry-packed product shall be a 12 months from the date the bag is sealed.

8.3.2 Moisture Barrier Bag Open

Humidity indicator cards must be blue, <30%.

8.4 Baking Conditions

Products require baking before mounting if:

- Humidity indicator cards read >30%
- Temp < 30°C, humidity < 70% RH, over 96 hours

Baking condition: 90°C, 12-24 hours

Baking times: 1 time

AW6202 module datasheet v2.8

Page 15/17

Able Trend Technology Limited 禁 通 科 技 有 限 公

CAUTION This bag contains MOISTURE-SENSITIVE DEVICES
If Blank, see adjacent bar code label
Calculated sheril life in sealed bag:12 months at < 40 °C and < 90% relative humidity (RH)
Peak package body temperature:
If Blank, see adjacent bar code label
After bag is opened devices that will be subjected to reflow solder
or other high temperature process must
a) Mounted within: 168 hours of factory
If Blank, see adjacent bar code label
conditions ≤ 30 ℃ / 60 % b) stored at < 10%RH
Devices require bake, before mounting, if :
 a) Humidity Indicator Card is > 10 % when read at 23 ± 5 ℃ b) 3a or 3b not met.
 If baking is required, devices may be baked for 48 hours at 125 ± 5 °C
Note: If device containers cannot be subjected to high temperature
or shorter bake times are desired,
reference IPC /JEDEC J-STQ-033 for bake procedure
Bag Seal Date:
If Blank,see adjacent bar code label
Note:Level and body temperature defined by IPC /JEDEC J-STQ-020

This device compiles with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired operation.

Caution:
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

AW6202 module datasheet v2.8

Page 16/17

Able Trend Technology Limited 禁 通 科 技 有 限 公 司

IMPORTANT NOTE:

RF Exposure statement:

This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body and must not be co-located or operating in conjunction with any other antenna or transmitter.

Comprehensive integration instructions:

The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product. Modular could be only used in mobile or fix device, and could not be used in any portable device.

- This device and its antenna(s) must not be ∞-located or operating in conjunction with any other antenna or transmitter.
- IEEE 802.11b or 802.11g or 802.11n(HT20) operation of this product in the U.S. is firmware-limited to Channel 1 through 11.
- The OEM integrator is responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).
- In the event that the grant conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization for this module in combination with the host equipment is no longer considered valid and the FCC ID of the module cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.
- The final end product must be labeled in a visible area with the following: Contains FCC ID: 2AATFMA026WX (the FCC ID: 2AATFMA026WX)
- Information that must be placed in the end user manual: The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

© Able Trend Technology Limited, 2014. The information contained herein is subject to change without notice. Able Trend Technology Limited assumes no responsibility for the use of any circuitry other than circuitry embodied in an Able Trend product. Nor does it convey or imply any license under patent or other rights, Able Trend products are not warranted nor intended to be used for medical, life support, lifesaving, critical control or safety applications, unless pursuant to an express written agreement with Able Trend. Furthermore, Able Trend does not authorize its products for use as critical components in life-support systems where a marfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Able Trend products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Able Trend against all charges.

Discialmer, ABLE TREND TECHNOLOGY LIMITED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Able Trend reserves the right to make changes without further notice to the materials described herein. Able Trend does not assume any liability arising out of the application or use of any product or circuit described herein. Able Trend does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Able Trend's product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Able Trend against all charges.