Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Dr. Liam O'Connor University of Edinburgh LFCS UNSW. Term 3 2020

Natural Deduction

Formalisation

Assignment Project Exam Help

To talk about lang

Formalisation https://eduassistpro.github.io/

Formalisation

Assignment Project Exam Help

To talk about lang

```
Formalisation https://eduassistpro.github.io/
Formalisation i https://eduassistpro.github.io/
Typically, we describe the language in another language, call language. For implementations it is usually a minimal logic called as assist_pro
```

Learning from History

What sort of meta logic should we use? There are a number of things to formalise: ASSIGNMENT PROJECT EXAM Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Parsing

Syntax

Grammar

Runtime Behaviour

Learning from History

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Ambiguity
Syntax
Grammar

Truth Models

Learning from History

Assignment Project Exam Help In this course, we will use a meta-logic based on Natural Deduction and Inductive inference rules, or 1930s.

https://eduassistpro.github.io/

Judgements

A judgement is a statement asserting a certain property for an object. Help

Example (Informal Judgements)

Example (Informal Judgements)

- $3 + 4 \times 5$ is
- The string https://eduassistpro.github.io/
 - ⇒ Judgements do not have to hold.

Judgements

A judgement is a statement asserting a certain property for an object. Help

- $3 + 4 \times 5$ is
- The string https://eduassistpro.github.io/
 - ⇒ Judgements do not have to hold.

Unary Judgem Atdd WeChat edu_assist_pro

Formally, we denote the judgement that a property A holds for a s A.

Typically, s is a string when describing syntax, and s is a term when describing semantics.

Proving Judgements

we densignment berojectidi Examer Help

Inference Rule

Natural Deduction

000000000

https://eduassistpro.github.io/

J

This states that A through to J_n (the premises).

Rules with no premises are called axioms. Their conclusions always hold.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChaiten edu_assist_pro

What terms are in the set $\{n \mid n \text{ Nat}\}$?

Natural Deduction

Example (Nitural Numbers) t Project Exam Help

https://eduassistpro.github.io/

Ambiguity

 $Add \overset{\text{0 is a natural number}}{WeCh} \overset{\text{iffn i}}{\underset{\text{is a n}}{\text{edu}}} \text{edu_assist_pro}$

What terms are in the set $\{n \mid n \text{ Nat}\}$?

$$\{0, (S 0), (S (S 0)), (S (S (S 0))), \dots\}$$

Assignment Project Exam Help

https://eduassistpro.github.io/

The Proof Vid Add WeChat edu_assist_pro

To show that a judgement s A holds:

- Find a rule whose conclusion matches s.A.
- The preconditions of the applied rules become new proof obligations.
- Rince and repeat until all obligations are proven up to axioms.

Natural Deduction

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Natural Deduction

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Natural Deduction

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

 $\frac{\overline{(S (S 0)) \text{ Even}}}{\overline{(S (S (S (S 0)))) \text{ Even}}} E_2}$ $\overline{(S (S (S (S (S 0))))) \text{ Odd}} O_1$

Natural Deduction

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

```
0 Even
```


Natural Deduction

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Natural Deduction

Natural Deduction

Defining Languages

Examples Signment Purgiect Exam Help

Examples of st inttps://eduassistpro.github.io/

Three rules:

Axiom The empty string is in M
Nesting More ring Note and the articular delay assist pro
parentheses, giving a new string in M

Any two strings in M can be concatenated **Juxtaposition**

to give a new string in M

With Rules

The Anguage Mnment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

()(())M

Natural Deduction

With Rules

The Answing Ment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

() M (()) M M_J

Natural Deduction

Rule Induction

With Rules

The Answing Ment Project Exam Help

https://eduassistpro.github.io/

```
\frac{\overline{\varepsilon M}^{ME}}{() M} M_N \qquad (()) M}{() (()) M} M_J
```


With Rules

The Answing Ment Project Exam Help

https://eduassistpro.github.io/

```
\frac{\overline{\varepsilon} \stackrel{\mathsf{M}}{\mathsf{M}} M_{\mathsf{E}}}{\underbrace{() \mathsf{M}} M_{\mathsf{N}}} \frac{\overline{() \mathsf{M}} M_{\mathsf{N}}}{\underbrace{(()) \mathsf{M}} M_{\mathsf{N}}} M_{\mathsf{N}}
```

Getting Stuck

Assignment Project Exam Help If we had started with rule M_N instead, we would have gotten stuck:

https://eduassistpro.github.io/

Takeaway

Add WeChat edu_assist_pro

Getting stuck does not mean what you're trying to prove is false!

Considerates for from the Project Exam Help

Does adding this type://eduassistpro.github.io/

Considerates for from the Project Exam Help

Does adding this rutos://eduassistpro.githubioio/ No, because what ps://eduassistpro.githubioio/ of existing rules are called *derivable*:

Add We
$$\underbrace{\text{Chat edu_assist_pro}}_{(s) \text{ M}}$$

We can prove rules as well as judgements, by deriving the conclusion of the rule while taking the premises as local axioms.

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add Wellassist_pro

Is th Assignment Project Exam Help

https://eduassistpro.github.io/

Is th Assignment Project Exam Help

It is not admissiply type://eduassistpro.github.io/

```
Add Wechatedu_assist_pro
```

Assignment Project Exam Help Is this rule admissible? If so, is it derivable?

https://eduassistpro.github.io/

Assignment Project Exam Help Is this rule admissible? If so, is it derivable?

https://eduassistpro.github.io/

- It is admissible, as it doesn't let us prove any new judgement.
 It is not derivable, as it is not made us the compositions state of the compositions of the composition of the composition of the composition of the compositions of the composition of the
- We will see how to prove these sorts of rules are admissible later on.

Hypothetical Derivations

we Assignment Project Exam Help

This allows us to heaps://eduassistpro.github.io/

Example

Add WeChat edu_assist_pro

Read as: If assuming A we can derive B, then we can derive C.

Specifying Logic

With Appetralia Department of Proposition A is true. With Appetralia Department of Proposition A is true.

 $\frac{\text{A True}}{A} \text{ B True} \text{ A A B True} \text{ A B True}$

Specifying Logic

With Appetral gament by Pgit, Oje Casth Erguan purpose Healpal deduction. Let A True be the judgement that the proposition A is true.

 $\frac{\text{A True}}{A} = \frac{\text{B True}}{A \land B} = \frac{A \land B}{A} = \frac{$

Specifying Logic, Continued

Exan Als Significent Project Exam Help

https://eduassistpro.github.io/

C True

$$\frac{A \text{ True} \vdash \bot \text{ True}}{\neg A \text{ True}} \neg_{I}$$

$$\frac{\neg A \text{ True}}{B \text{ True}} \neg B$$

Specifying Logic, Continued

Exan Als Signifient Project Exam Help

https://eduassistpro.github.io/

C True

$$\frac{A \text{ True} \vdash \bot \text{ True}}{\neg A \text{ True}} \neg_{I}$$

$$\frac{\neg A \text{ True}}{B \text{ True}} \neg B$$

Minimal Definitions

Assignment Project Exam Help

https://eduassistpro.github.io/

The above rules are the smallest set of rules to define every string in Add WeChat edu_assist_pro

Therefore

If we know that a string s M, it must have been through one of these rules.

This is called an *inductive definition* of M.

Suppose overware to show that to property of the tribes xholds for any stribes M.

https://eduassistpro.github.io/

Then we have shown P(s) for all s M.

These assumptions are called *inductive hypotheses*.

Assignment Project Exam Help

Example (Cou

Let op(s) denonttps://eduassistpro.github.io/

by doing rule induction on sw. eChat edu_assist_pro

Examples (Significant Project Exam Help Base Case: $op(\varepsilon) = 0 = cl(\varepsilon)$

https://eduassistpro.github.io/

Ambiguity

```
Examples (Significant Project Exam Help Base Case: op(\varepsilon) = 0 = cl(\varepsilon)
```

ৈhttps://eduassistpro.github.io/

Examples (Significant Project Exam Help Base Case: $op(\varepsilon) = 0 = cl(\varepsilon)$

ढंhttps://eduassistpro.github.io/

$$\underset{s_1 \text{ s}_2 \text{ M}}{\underbrace{\text{Add}}} \underset{M}{\underbrace{\text{Moductive}}} \underset{\text{ase:}}{\underbrace{\text{edu_assist_pro}}}$$

$$op(s_1) = cl(s_1) \text{ and } op(s_2) = cl(s_2)$$

$$op(s_1s_2) = op(s_1) + op(s_2) = cl(s_1s_2)$$

Rule Induction in General

Assignment Project Exam Help Given a set of rules ements that can be inferred_wit https://eduassistpro.github.io/ that if P holds Add f W. C. Chehatdedu assist pro

Therefore, axioms are the base cases of the induction, all other rules form inductive cases, and the premises of each rule give rise to inductive hypotheses.

Structural Induction

Convertiss igniment schaolie cutatura Xumbers which we have encountered before, is a special case of rule induction.

Natural Numb

To show a property of the show a property of

Show that P(0)0 Nat

Add WeChat edu_assist_pro

Assuming P(n), show P(n+1).

Another Example

Assignment Project Exam Help

We could defin https://eduassistpro.github.io/

Add We Chat edu_assist_pro

Let's prove the original Odd rule, but for Odd' (to whiteboard):

n Even (S n) Odd'

Arithmetic

Assignment Project Exam Help

Example (Arithmetic Expression)

https://eduassistpro.github.io/

Arithmetic

Assignment Project Exam Help

Example (Arithmetic Expression) https://eduassistpro.github.io/ $i \in \mathbb{Z}$ Arith b Arith a Arith a Arith b Arith a Ar

Infer $1 + 2 \times 3$ Arith (both ways) to whiteboard

Ambiguity

Assignment Project Exam Help
Arith is ambiguas, which means that there are multiple ways to derive the same judgement.

For syntax, this is a bi semantic inconfuttps://eduassistpro.github.io/

Second Attempt

We want to specify Arith in such a way that enforces order of operations. Here we Sistis and the color of the specific and the specific a

Example (Arithmetic Expression)

https://eduassistpro.github.io/

Second Attempt

We want to specify Arith in such a way that enforces order of operations. Here we Sistis and the color of the specific and the specific a

Example (Arithmetic Expression)

https://eduassistpro.github.io/

Add We Chat edu_assist_pro

$$\frac{a \text{ PExp}}{a \times b \text{ PExp}} \quad \frac{a \text{ SExp}}{a + b \text{ SExp}}$$

Consider: Is there still any ambiguity here?

More ambiguity

Assignment Project Exam Help

https://eduassistpro.github.io/

d. Beechat. eduless assist_pro operations. Which ones?

More ambiguity

Assignment Project Exam Help

https://eduassistpro.github.io/

dmls eChatedulessassist_pro operations. Which ones? Operators that are not

We have to specify the *associativity* of operators. How?

Associativities

Assignment Project Exam Help Operators have various associativity constraints:

Associative https://eduassistpro.github.io/

Left-Associative $A \odot B \odot C = (A \odot B) \odot C$

Right-Associa And We Chat edu_assist_pro

Try to think of some examples!

Enforcing associativity

We force the grammar to accept a smaller set of expressions on one side of the operator Sny 1 source that the writing eCT EX am Help

Example (Arithmetic Expression)

https://eduassistpro.github.io/

Enforcing associativity

We force the grammar to accept a smaller set of expressions on one side of the operator Sny 1 source that the writing eCT EX am Help

Example (Arithmetic Expression)

https://eduassistpro.github.io/

Add We Chat edu_assist_pro

$$\frac{a \text{ Atom} \qquad b \text{ PExp}}{a \times b \text{ PExp}} \qquad \frac{a \text{ PExp}}{a + b \text{ SExp}}$$

Here we made multiplication and addition right associative. How would we do left?

Bring Back Parentheses

Assignment Project Exam Help

The Parenthetical Language

https://eduassistpro.github.io/ Add WeChat edu_assist_pro

Is this language ambiguous? to whiteboard

Ambiguity in Parentheses

Not only is it ambiguous, it is infinitely so. Strings like () () () could be split at two different School by Nil Wilbut I we use their even the ching () is ambiguous:

https://eduassistpro.github.io/

$$\frac{\varepsilon M}{M_E} \frac{\frac{\varepsilon M}{\varepsilon M} M_E \frac{\varepsilon}{() M} N}{() M} M_J$$

We will eliminate the ambiguity by once again splitting M into two judgements, N and

L. Assignment Project Exam Help The crucial observation is that terms in M are a list (L) of terms nested within

parentheses (N)

Example (Unantips://eduassistpro.github.io/

Add We Chat edu_assist_pro_
$$\frac{s L}{\varepsilon L^{L_E}}$$
 $\frac{s}{(s) N^{N_N}}$ $\frac{s}{s_1 s_2 L}$

Proving Equivalence

Assignment Project Exam Help

Now we shall prove

https://eduassistpro.github.io/

The first case requires proving a lemma. The secon These proofs with carried but to the Board? edu_assist_pino proof will also be uploaded.