ENSIBS 2022/2023

Contrôle: vendredi 17 février

Durée: 1h et 20 minutes.

Les réponses devront toujours être justifiées. Les documents, les ordinateurs et les autres appareils électroniques sont interdits

Exercice 1.

- (1) À quoi sert le protocole de Diffie-Hellman?
- (2) Expliquer à l'aide d'un schéma ce protocole.
- (3) Que se passe-t-il si le canal de communication est compromis et qu'un observateur malveillant (Eve) écoute les communications? Comment est-ce que Eve pourrait trouver le résultat partagé par Alice et Bob?
- (4) Pouvez-vous généraliser ce protocole d'échange pour trois personnes?
- (5) Comment définir et calculer l'ordre d'une courbe elliptique sur un corps fini sur SageMath?

Exercice 2. Considérons la courbe elliptique E sur le corps \mathbb{F}_7 d'équation

$$E: y^2 = x^3 + 2x + 4.$$

- (1) Déterminer tous les points de cette courbe. Quel est l'ordre du groupe $E(\mathbb{F}_7)$?
- (2) Pour chaque point $P \in E(\mathbb{F}_7)$, déterminer son symétrique.

Alice et Bob utilisent le protocole d'échange de clé de Diffie-Hellman sur la courbe $E(\mathbb{F}_7)$ et le générateur P=(0,2). Alice choisit a=4 comme clé secrète et Bob choisit b=3.

(3) Calculer les messages aP et bP de l'échange de clés et de leur clé commune.

Exercice 3. Pour qu'Alice puisse envoyer un message secret M à Bob en utilisant le système du chiffrement El Gamal, ils peuvent procéder comme suit :

- Bob commence par générer sa clé publique en choisissant un nombre premier p et un élément g du groupe (\mathbb{F}_p^*, \times) .
- Bob choisit ensuite un nombre b secret et calcule $B = g^b \pmod{p}$.
- Bob publie sa clé publique (p, g, B).
- Pour envoyer le message M, Alice choisit un nombre a secret et envoie $(c_1, c_2) = (g^a, MB^a)$ modulo p à Bob.
- À la réception de (c_1, c_2) , Bob calcule $c_2(c_1^b)^{-1}$ et obtient M.
- (1) Expliquer pourquoi cela fonctionne.

Supposons que la clé publique de Bob est (p, g, B) = (47, 5, 3) et que $c_1 = 17$.

- (2) Trouver les clés secrètes a et b.
- (3) Calculer c_1^b , puis déterminer son inverse dans $(\mathbb{F}_{47}^*, \times)$.

Pour chiffrer un mot, Alice le transforme en séquences de nombre à l'aide de la table ci-après, puis elle chiffre chaque nombre associé.

Let	ttre à coder	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
Nombre associé		20	21	22	23	24	25	26	27	28	29	30	31	32	33
	Lettre à coder		О	Р	Q	R	S	Т	U	V	W	X	Y	Z	
	Nombre ass	34	35	36	37	38	39	40	41	42	43	44	45		

(4) Alice envoie à Bob la séquence

$$(17, 18), (17, 29), (17, 41), (17, 29), (17, 9), (17, 31).$$

Quel est le message en clair d'Alice?