

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Fachbereich Geowissenschaften

Einführung in Matlab

Hausaufgaben 2

Prof. Dr. Christiane Zarfl, Dipl.-Inf. Willi Kappler, Prof. Dr. Olaf Cirpka

$$h(x,y) = C - I \cdot x + \frac{1}{2 \cdot \pi \cdot T} \cdot Q \cdot \ln\left(\frac{r}{R}\right)$$
$$r = \sqrt{(x - x_b)^2 + (y - y_b)^2}$$

- C: Integrationskonstante (= 0 m)
- ullet 1: Hydraulischer Gradient ohne Brunnen (=1%)
- Q: Förderrate des Brunnens ($Q = 1000 \text{ m}^3/\text{Tag}$)
- T: Transmissivität des Grundwasserleiters (= $5*10^{-3}$ m²/s)
- r: Abstand zum Brunnen
- R: Reichweite des Brunnens (= 500 m)
- x_b, y_b: Koordinaten des Brunnens (-50,0)

Grundwasserstand

- Erstellen Sie einen Grundwassergleichenplan (Karte mit Höhenlinien des Grundwasserstandes h (x, y))
- Hinweise
 - $\ln(0) = -\infty$; deshalb ersetzen Sie alle Brunnenabstände < Brunnenradius (10 cm) durch den Brunnenradius.
 - daspect[1 1 1] verhindert Verzerrung im Plot.

Pseudocode Grundwasserstand

- Definiere alle Konstanten.
- Erzeuge regelmäßiges Gitter von (x,y)-Werten.
- 🧿 Berechne Abstand aller Punkte zum Brunnen (Matrix **R**).
- Setze $R(R < r_Brunnen) = r_Brunnen$
- Berechne Grundwasserpegel an allen Punkten (ergibt Matrix H).
- Erzeuge Höhenlinien-Grafik h(x,y).

- Verfolge ein Teilchen auf dem Weg durch ein Geschwindigkeitsfeld $\frac{d\mathbf{x}}{dt} = \mathbf{v}(\mathbf{x}(t))$, \mathbf{x} und \mathbf{v} sind Vektoren
- Geschwindigkeitsfeld: Brunnen plus Grundströmung

$$v_x(x,y) = \frac{T}{n \cdot m}I + \frac{1}{2 \cdot \pi \cdot n \cdot m} \cdot Q \cdot \left(\frac{x - x_b}{r^2}\right)$$
$$v_y(x,y) = \frac{1}{2 \cdot \pi \cdot n \cdot m}Q \cdot \left(\frac{y - y_b}{r^2}\right)$$

- m Mächtigkeit des Grundwasserleiters (=10 m)
- n Porosität (25 %)
- Integration durch explizites Euler-Verfahren:

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \cdot \mathbf{v}(\mathbf{x}(t))$$

Particle Tracking

- Setzen Sie Teilchen am Brunnenrand des Brunnens (Brunnenradius = 10 cm) ein.
- Verfolgen Sie das Teilchen, bis 1 Jahr vergangen ist.
- Grafische Ausgabe ist erwünscht.
- Hinweis:
 - Eine feste Ortsschrittweite $\Delta x < r$ _Brunnen statt fester Zeitschrittweite Δt beschleunigt die Berechnung.

Pseudocode Particle Tracking


```
Definiere Anzahl Teilchen n part
und Einzelschrittweite dx=0.5*r Brunnen
FOR i=1:n part
                                % Beginn Teilchenschleife
    alpha=2*pi*i/n part;
                                % Verteile Teilchen
                                % gleichmaessig auf Kreis
                                % um Brunnen (Winkel)
    x=xb+cos(alpha) *r Brunnen; % Startpunkte der Partikel
    y=yb+sin(alpha)*r_Brunnen;
    x_traj=x; y_traj=y;
                                % Vektoren der
                                % Trajektorien
    Initialisiere: t=0
    WHILE (t<t_end)</pre>
                                % Beginn Trajektorien-
                                % schleife
      Berechne Abstand r zum Brunnen
      Berechne vx(x,y) und vy(x,y)
      Berechne Absolutgeschwindigkeit v=(vx^2+vy^2)^0.5
      Berechne Zeitschrittweite dt = dx/v
```