

CONVEX OPTIMIZATION PROBLEMS

MAT 220

Dr.C. Rajan (8113053359) Off: \$109E

The Landscape of Ax=b Solvers

 $\begin{array}{ll} \underline{\text{Direct}} & \underline{\text{Iterative}} \\ A = LU & y' = Ay \end{array}$

Nonsymmetric

Symmetric positive definite

Pivoting GMRES, BiCGSTAB, ...

Cholesky Conjugate gradient

More Robust

Less Storage (if sparse)

METHODS TO SOLVE LINEAR SYSTEMS

Direct methods

Gaussian elimination method

LU method for factorization

Simplex method of linear programming

Iterative method

Jacobi method

Gauss-Seidel method

Multi-grid method

Conjugate gradient method

Conjugate Gradient method

 The CG is an algorithm for the numerical solution of particular system of linear equations Ax=b.

Where A is symmetric i.e., $A = A^{T}$ and positive definite i.e.,

 $x^{T} * A * x > 0$ for all nonzero vectors If A is symmetric and positive definite then the function

$$Q(x) = \frac{1}{2}x'Ax - x'b + c$$

Conjugate gradient method

- Conjugate gradient method builds up a solution
 x*∈ Rⁿ in at most n steps in the absence of round off errors.
- Considering round off errors more than n steps may be needed to get a good approximation of exact solution x*
- For sparse matrices a good approximation of exact solution can be achieved in less than n steps in also with round off errors.

Practical Example

In oil reservoir simulation,

The number of linear equations corresponds to the number of grids of a reservoir

- The unknown vector x is the oil pressure of reservoir
- Each element of the vector x is the oil pressure of a specific grid of the reservoir

Linear System

$$Ax = b$$

Matrix Multiplication

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Positive Definite Matrix

A is positive-definite if, for every nonzero vector x,

$$x^T A x > 0.$$

$$\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} > 0$$

Procedure

- Finding the initial guess for solution *x*o
- Generates successive approximations to *x*o
- Generates residuals
- Searching directions

Conjugate gradient iteration

•
$$x_o = o$$
, $r_o = b$, $p_o = r_o$

•
$$for k = 1, 2, 3, ...$$

•
$$\alpha_k = (r^T_{k-1}r_{k-1}) / (p^T_{k-1}Ap_{k-1})$$
 step length

•
$$x_k = x_{k-1} + \alpha_k p_{k-1}$$
 approximate solution

$$r_k = r_{k-1} - \alpha_k A p_{k-1} residual$$

•
$$\beta_k = (r_k^T r_k) / (r_{k-1}^T r_{k-1})$$
 improvement

•
$$p_k = r_k + \beta_k p_{k-1}$$
 search direction

Iteration of conjugate gradient method is of the form

$$x(t) = x(t-1) + s(t)d(t)$$

where,

- x(t) is function of old value of vector x
- s(t) is scalar step size x
- d(t) is direction vector

Before first iteration, values of x(o), d(o) and g(o) must be set

Steps to find conjugate gradient method

• Every iteration t calculates x(t) in four steps :

Step 1: Compute the gradient

$$g(t) = Ax(t-1) - b$$

Step 2: Compute direction vector

$$d(t) = -g(t) + [g(t)'g(t)/g(t-1)'g(t-1)]d(t-1)$$

Step 3: Compute step size

$$s(t) = [-d(t)' g(t)]/d(t)' A d(t)]$$

Step 4: Compute new approximation of x

$$x(t) = x(t-1) + s(t)d(t)$$

Sequential Algorithm

- 1) x0 = 0
- 2) ro := b Axo
- 3) po := ro
- 4) k := 0
- 5) *Kmax* := maximum number of iterations to be done
- 6) if k < kmax then perform 8 to 16
- 7) if k = kmax then exit
- 8) calculate $v = Ap_k$
- 9) $\alpha_{k} := r_{k}^{T} r_{k} / p_{k}^{T} v$
- $10) \mathcal{X}_{k+1} := \mathcal{X}_k + a_k p_k$
- 11) $r_{k+1} := r_k a_k v$
- 12) if r_{k+1} is sufficiently small then go to 16 end if
- 13) $\beta_k := (r_{k+1}^T r_{k+1})/(r_k^T r_k)$
- $14) p_{k+1} := r_{k+1} + \beta_k p_k$
- 15) k := k + 1
- 16) $result = x_k + 1$

Complexity analysis

- To Identify Data Dependencies
- To identify eventual communications
- Requires large number of operations
- As number of equations increases complexity also increases .

$$x_0 = 0$$
 approx solution

$$r_0 = b$$
 residual = b - Ax

$$x_0 = 0$$
 approx solution $r_0 = b$ residual = b - Ax $d_0 = r_0$ search direction $\mathbf{for} \ k = 1, 2, 3, \dots$

$$for k = 1, 2, 3, ...$$

$$x_k = x_{k-1} + \dots$$
$$r_k = \dots$$

$$r_k = \dots$$

new approx solution

new residual

$$\mathrm{d_k} = \ldots$$

new search direction

$$\begin{array}{lll} x_0 = 0 & \text{approx solution} \\ r_0 = b & \text{residual} = b - Ax \\ d_0 = r_0 & \text{search direction} \\ \underline{\textbf{for}} & k = 1, 2, 3, \dots \\ & \alpha_k = (r^T_{k-1}r_{k-1}) \, / \, (d^T_{k-1}Ad_{k-1}) & \text{step length} \\ & x_k = x_{k-1} + \alpha_k \, d_{k-1} & \text{new approx solution} \\ & r_k = \dots & \text{new residual} \\ & \beta_k = (r^T_k \, r_k) \, / \, (r^T_{k-1}r_{k-1}) \\ & d_k = r_k + \beta_k \, d_{k-1} & \text{new search direction} \end{array}$$

$$\begin{split} x_0 &= 0 & \text{approx solution} \\ r_0 &= b & \text{residual} = b - \mathsf{Ax} \\ d_0 &= r_0 & \text{search direction} \\ \underline{\textbf{for}} \ k &= 1, 2, 3, \dots \\ \alpha_k &= (r^T_{k-1} r_{k-1}) \, / \, (d^T_{k-1} \mathsf{Ad}_{k-1}) & \text{step length} \\ x_k &= x_{k-1} + \alpha_k \, d_{k-1} & \text{new approx solution} \\ r_k &= r_{k-1} - \alpha_k \mathsf{Ad}_{k-1} & \text{new residual} \\ \beta_k &= (r^T_k \, r_k) \, / \, (r^T_{k-1} r_{k-1}) \\ d_k &= r_k + \beta_k \, d_{k-1} & \text{new search direction} \end{split}$$

Conjugate gradient iteration

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage

Conjugate gradient: Krylov subspaces

• Eigenvalues: $Av = \lambda v$

$$\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$$

Cayley-Hamilton theorem:

$$(A - \lambda_1 I) \cdot (A - \lambda_2 I) \cdot \cdot \cdot (A - \lambda_n I) = 0$$

Therefore $\sum_{0 \le i \le n} c_i A^i = 0$ for some c_i

so
$$A^{-1} = \sum_{1 \le i \le n} (-c_i/c_0) A^{i-1}$$

Krylov subspace:

Therefore if Ax = b, then $x = A^{-1}b$ and $x \in \text{span}(b, Ab, A^2b, \dots, A^{n-1}b) = K_n(A, b)$

Conjugate gradient: Orthogonal sequences

- Krylov subspace: $K_i(A, b) = \text{span}(b, Ab, A^2b, ..., A^{i-1}b)$
- Conjugate gradient algorithm:

for
$$i = 1, 2, 3, ...$$

find $x_i \in K_i(A, b)$
such that $r_i = (b - Ax_i) \perp K_i(A, b)$

- Notice $r_i \in K_{i+1}(A, b)$, so $r_i \perp r_j$ for all $j \leq i$
- Similarly, the "directions" are A-orthogonal:

$$(\mathbf{x_i} - \mathbf{x_{i-1}})^{\mathbf{T}} \cdot \mathbf{A} \cdot (\mathbf{x_j} - \mathbf{x_{j-1}}) = 0$$

The magic: Short recurrences. . .

A is symmetric => can get next residual and direction from the previous one, without saving them all.

Conjugate gradient: Convergence

- In exact arithmetic, CG converges in n steps (completely unrealistic!!)
- Accuracy after k steps of CG is related to:
 - consider polynomials of degree k that are equal to 1 at 0.
 - how small can such a polynomial be at all the eigenvalues of A?
- Thus, eigenvalues close together are good.
- Condition number: $\kappa(A) = ||A||_2 ||A^{-1}||_2 = \lambda_{\max}(A) / \lambda_{\min}(A)$
- Residual is reduced by a constant factor by $O(\kappa^{1/2}(A))$ iterations of CG.

Other Krylov subspace methods

- Nonsymmetric linear systems:
 - GMRES: $\frac{\text{for } i=1,2,3,\ldots}{\text{find } x_i \in K_i(A,b) \text{ such that } r_i=(Ax_i-b) \perp K_i(A,b)}$ But, no short recurrence => save old vectors => lots more space
 - (Usually "restarted" every k iterations to use less space.)
 - BiCGStab, QMR, etc.:
 Two spaces K_i(A, b) and K_i(A^T, b) w/ mutually orthogonal bases
 Short recurrences => O(n) space, but less robust
 - Convergence and preconditioning more delicate than CG
 - Active area of current research
- Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)

Preconditioners

- Suppose you had a matrix B such that:
 - 1. condition number $\kappa(B^{-1}A)$ is small
 - 2. By = z is easy to solve
- Then you could solve (B⁻¹A)x = B⁻¹b instead of Ax = b
- B = A is great for (1), not for (2)
- B = I is great for (2), not for (1)
- Domain-specific approximations sometimes work
- B = diagonal of A sometimes works
- Better: blend in some direct-methods ideas...

Preconditioned conjugate gradient iteration

- One matrix-vector multiplication per iteration
- One solve with preconditioner per iteration

The Landscape of Ax=b Solvers

 $\begin{array}{ll} \underline{\text{Direct}} & \underline{\text{Iterative}} \\ A = LU & y' = Ay \end{array}$

Nonsymmetric

Symmetric positive definite

Pivoting GMRES, BiCGSTAB, ...

Cholesky Conjugate gradient

More Robust

Less Storage (if sparse)

Complexity of linear solvers

Time to solve model problem (Poisson's equation) on regular mesh

2D

3D

Sparse Cholesky:	O(n ^{1.5})	O(n²)
CG, exact arithmetic:	O(n ²)	O(n²)
CG, no precond:	O(n ^{1.5})	O(n ^{1.33})
CG, modified IC:	O(n ^{1.25})	O(n ^{1.17})
CG, support trees:	$O(n^{1.20}) -> O(n^{1+})$	$O(n^{1.75}) \rightarrow O(n^{1.31})$
Multigrid:	O(n)	O(n)

Complexity of direct methods

Time and space to solve any problem on any well-shaped finite element mesh

	2D	3D
Space (fill):	O(n log n)	O(n 4/3)
Time (flops):	O(n ^{3/2})	O(n ²)