Problem

Let $M=(Q,\Sigma,\delta,q_0,F)$ (q, s) equals the state where M ends up when M starts at state q and reads input s.) Say

that M is *synchronizable* if it has a synchronizing sequence for some state h. Prove that if M is a k-state synchronizable DFA, then it has a synchronizing sequence of length at most k³. Can you improve upon this bound?

Step-by-step solution

Step 1 of 1

Given:

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ and suppose h is a state of DFA M known as its home state.

Proof:

The at most length of synchronizing sequences is k^3 0 for a k-state synchronizable DFA. In the year 1964, a Slovak scientist named Jan Cerny first tried to solve the problem of synchronizing automata in real time. This problem is sometimes referred as *Cerny's Conjecture*.

To prove the upper bound on the synchronizing sequence we try to device a greedy algorithm.

Algorithm:

- 1. Let a synchronizing DFA be $M = (Q, \Sigma, \delta, q_0, F)$. Initialize the synchronizing sequence $\omega \leftarrow 1$ (empty word) and a set of states $P \leftarrow Q$.
- 2. **while** |P| > 1
- a. Find a word v which is belongs to v and it has minimum length $|\delta(P,v)| < |P|$.
- b. If none exists, *return* failure.
- c. ω ← ωυ

$$P \leftarrow \delta(P, \nu)$$

- 3. return ω
- Now suppose that M is a k-state DFA, that is, |Q|=k then clearly the main loop of the algorithm runs at most k-1 times. In order to get the length of the output word ω user has to estimate the length of each word υ derived at each loop.
- Consider a generic step at which |P|=n>1 and let $\upsilon=a_1\cdots a_l$ with $a_i\in \Sigma,\ i=1\cdots l$. Then it is quite simple to see that the sets, $P_1=P,\ P_2=\delta\big(P_1,a_1\big),\ \ldots,\ P_l=\delta\big(P_{l-1},a_{l-1}\big)$ are n-element subsets of Q.
- Furthermore, since $|\delta(P_i, a_i)| < |P_i|$, there exists two states $|q_i, q_i'| \in P_i$ such that $\delta(q_i, a_i) = \delta(q_i', a_i)$.
- Now define two element subsets $R_i = \{q_i, q_i'\} \subseteq P_i, \ i = 1, \cdots, l-1$, then the condition that $\ \upsilon$ is a word that has minimum length $\ \left| \mathcal{S} \left(P, \upsilon \right) \right| < \left| P \right|$ which implies that $R_i \not\subset P_j$ for $1 \le j < i < l$. Now by the Peter Frankl inequality, the tight bound over $\ l$ be $\binom{k-n+2}{2}$.
- Summing up these inequalities from n=k to n=2, user can get the upper bound over the synchronizing sequence $|\omega| \leq \frac{k^3-k}{6}$.

Conclusion:

Therefore, at most length of synchronizing sequences is k^3 0 for a k-state synchronizable DFA.

Comment