MATH 1060 Calculus of One Variable I

4.b.

4.c.

7

5

Test 2 – Answer Key Version A

Spring 2015 Sections 3.2 – 3.9

Student's Printed Name:	CUID:
Instructor:	Section:
Instructions: You are not permitted to use a calculator on allowed to use a textbook, notes, or any technology on any pose turned off and stored out of sight while you are in the test	ortion of this test. All devices must
During this test, any communication with any person (other to proctor) in any form, including written, signed, verbal, or digo of academic integrity.	
No part of this test may be removed from the examination ro	om.
Read each question very carefully. To receive full credit for 1. Show legible, logical, and relevant justification who 2. Use complete and correct mathematical notation. 3. Include proper units, if necessary. 4. Give exact numerical values whenever possible.	,
You have 90 minutes to complete the entire test.	
On my honor, I have neither given nor received inappropat any time before or during this test.	riate or unauthorized information
Student's Signature:	
Do not write below this line.	

Free Response Problem	Possible Points	Points Earned	Free Response Problem	Possible Points	Points Earned
1.a.	8		5.a.	6	
1.b.	8		5.b.	6	
1.c.	8		6.a.	7	
1.d.	8		6.b.	7	
2.a.	8		Test Total	100	
2.b.	6				
3.	12				
4.a.	1				

Read each question carefully. In order to receive full credit you must show legible, logical, and relevant justification which supports your final answer. Give numerical answers as exact values. You are NOT permitted to use a calculator on any portion of this test.

1. (8 pts. each) Find the indicated derivatives. Assume f(x) and g(x) are differentiable functions wherever they appear.

a) Find
$$\frac{dy}{dx}$$
 if $y = \sqrt{[f(x)]^2 g(2x)}$.

$$y = \sqrt{[f(x)]^{2} g(2x)}$$

$$y = ([f(x)]^{2} g(2x))^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{1}{2} ([f(x)]^{2} g(2x))^{-\frac{1}{2}} \frac{d}{dx} [[f(x)]^{2} g(2x)]$$

$$\frac{dy}{dx} = \frac{1}{2} ([f(x)]^{2} g(2x))^{-\frac{1}{2}} [[f(x)]^{2} g'(2x)(2) + g(2x)(2)f(x)f'(x)]$$

Work on Problem:	Points
Derivative of square root function	2 points
Derivative of $[f(x)]^2 g(2x)$	6 points
Notes:	
•	

b) Find
$$\frac{dy}{dx}$$
 if $\sin(x)\cos(y) = \sin(x) + \cos(y)$.

$$\sin(x)\cos(y) = \sin(x) + \cos(y)$$

$$\sin(x) \left[-\sin(y) \frac{dy}{dx} \right] + \cos(y)\cos(x) = \cos(x) - \sin(y) \frac{dy}{dx}$$

$$-\sin(x)\sin(y) \frac{dy}{dx} + \sin(y) \frac{dy}{dx} = \cos(x) - \cos(y)\cos(x)$$

$$\frac{dy}{dx} \left[-\sin(x)\sin(y) + \sin(y) \right] = \cos(x) - \cos(y)\cos(x)$$

$$\frac{dy}{dx} = \frac{\cos(x) - \cos(y)\cos(x)}{-\sin(x)\sin(y) + \sin(y)}$$

Work on Problem:	Points
Derivative of left side	4 points
Derivative of right side	2 points
Solves for $\frac{dy}{dx}$	2 points
Notes:	
•	
•	

c) Find h'(x) if $h(x) = \tan^{-1} \left(\frac{e^{x^2}}{2^x} \right)$. Do not try to simplify h'(x).

$h(x) = \tan^{-1}\left(\frac{e^{x^2}}{2^x}\right)$
$h'(x) = \frac{1}{1 + \left(\frac{e^{x^2}}{2^x}\right)^2} \frac{d}{dx} \left(\frac{e^{x^2}}{2^x}\right)$
$h'(x) = \frac{1}{1 + \left(\frac{e^{x^2}}{2^x}\right)^2} \left(\frac{2^x e^{x^2} (2x) - e^{x^2} 2^x \ln 2}{(2^x)^2}\right)$

Work on Problem:	Points
Derivative of the inverse tangent function	3 points
Derivative of the argument for the inverse tangent	5 points
function	_
Notes:	
•	

d) Find $\frac{dy}{dx}$ if $y = x^{\sin(x^2)}$.

$$y = x^{\sin(x^2)}$$
(logaritmic differentiation)
$$\ln(y) = \ln(x^{\sin(x^2)})$$

$$\ln(y) = \sin(x^2) \ln x$$

$$\frac{1}{y} \frac{dy}{dx} = \sin(x^2) \left(\frac{1}{x}\right) + \ln x \cos(x^2) (2x)$$

$$\frac{dy}{dx} = \left[\sin(x^2) \left(\frac{1}{x}\right) + \ln x \cos(x^2) (2x)\right] y$$

$$\frac{dy}{dx} = \left[\sin(x^2) \left(\frac{1}{x}\right) + \ln x \cos(x^2) (2x)\right] x^{\sin(x^2)}$$

Work on Problem:	Points
Natural log of both sides	1 point
Simplifies right side with log properties	1 point
Derivative of left side	1 point
Derivative of right side	3 points
Solves for $\frac{dy}{dx}$	1 point
Replaces y	1 point
NT - 4	

Notes:

• Subtract ½ for missing derivative notation

- 2. **(14 pts.)** A stone is thrown upward from the edge of a bridge over a large river. The height of the stone over the river t seconds after it is thrown is $f(t) = -16t^2 + 32t + 48$ feet.
 - a) (8 pts.) Determine the maximum height of the stone.

$s(t) = -16t^2 + 32t + 48$
v(t) = -32t + 32
Solve
v(t) = 0
-32t + 32 = 0
t = 1
Evaulate $s(t)$ at $t = 1$
$s(1) = -16(1)^2 + 32(1) + 48$
s(1) = 64 feet

Work on Problem:	Points
Finds velocity function	2 points
Sets velocity equal to zero	2 points
Solves for t	2 points
Calculates height	2 points

Notes:

• Subtract ½ point for omitting units from final answer

b) (6 pts.) Find the speed **and** velocity of the stone at the moment it reaches the surface of the river.

Solve

$$s(t) = 0$$

$$-16t^{2} + 32t + 48 = 0$$

$$-16(t^{2} - 2t - 3) = 0$$

$$-16(t - 3)(t + 1) = 0$$

$$t = 3 \text{ or } t = 1$$

Evaulate
$$v(t)$$
 at $t = 3$
 $v(3) = -32(3) + 32$

$$v(3) = -64$$
 feet per second

speed(3)=
$$|v(3)| = |-64| = 64$$
 feet per second

Work on Problem:	Points
Sets height to zero	2 points
Solves for <i>t</i>	2 points
Evaluates velocity at $t=3$	1 point
Calculates speed at $t=3$	1 point
37 /	

Notes:

• Subtract ½ point for omitting units from final answers

3. (12 pts.) Two cylindrical swimming pools are being filled simultaneously at the exact **same** constant rate (in cubic meters per minute). The smaller pool has a radius of 5 meters, and the water level in it rises at a rate of 0.5 meters per minute. The larger pool has a radius of 8 meters.

Note: The volume V of a circular cylinder of radius r and height h is $V = \pi r^2 h$

a) (7 pts.) At what rate is water entering the smaller pool?

$V = \pi(5)^2 h (r \text{ is constant})$
$V = 25\pi h$
$\frac{dV}{dt} = 25\pi \frac{dh}{dt}$
substitute for $\frac{dh}{dt}$
$\frac{dV}{dt} = 25\pi(0.5)$
$\frac{dV}{dt} = 12.5\pi = \frac{25\pi}{2} \text{ m}^3 / \text{min}$

Work on Problem:	Points
Recognizes that radius is constant	2 points
Derivative of left side	1 points
Derivative of right side	2 points
Substitutes value for $\frac{dh}{dt}$	1 point
Answer with units	1 point
Notes:	
•	

b) (5 pts.) At what rate is the water level rising in the larger pool?

$$V = \pi(8)^{2} h \quad (r \text{ is constant})$$

$$V = 64\pi h$$

$$\frac{dV}{dt} = 64\pi \frac{dh}{dt}$$
substitute for $\frac{dV}{dt}$

$$\frac{25\pi}{2} = 64\pi \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{25\pi}{2(64\pi)}$$

$$\frac{dh}{dt} = \frac{25}{128} \text{ m/min}$$

Work on Problem:	Points
Recognizes that radius is constant	1 point
Derivative of left side	1 point
Derivative of right side	1 point
Substitutes value for $\frac{dV}{dt}$	1 point
Answer with units	1 point
Notes:	
•	

4. **(16 pts.)** Let f and g be everywhere differentiable functions. Let $h(x) = \frac{1}{27} [f(g(x))]^2$. Use the values in the table below to answer questions a-c below.

	<i>x</i> =0	<i>x</i> =1	x=2	<i>x</i> =3
f(x)	0	1	8	27
f'(x)	0	3	12	27
g(x)	1	3	9	19
g'(x)	0	2	4	12

a) (4 pts.) Find h(1).

$h(x) = \frac{1}{27} [f(g(x))]^2$
$h(1) = \frac{1}{27} [f(g(1))]^2$
$=\frac{1}{27}\big[f(3)\big]^2$
$=\frac{1}{27}[27]^2$
= 27

Points
1 point
3 points

Notes:

• Subtract one point for missing work

b) (7 pts.) Find h'(1).

$$h(x) = \frac{1}{27} [f(g(x))]^2$$

$$h'(x) = \frac{2}{27} [f(g(x))] f'(g(x)) g'(x)$$

$$h'(1) = \frac{2}{27} [f(g(1))] f'(g(1)) g'(1)$$

$$= \frac{2}{27} [f(g(1))] f'(g(1)) g'(1)$$

$$= \frac{2}{27} [f(3)] f'(3) g'(1)$$

$$= \frac{2}{27} (27)(27)(2)$$

$$= 108$$

Work on Problem:	Points
Finds $h'(x)$	4 points
Calculates answer	3 points
Notes:	

• Subtract 2 points if h'(x) not shown

c) (5 pts.) Find the equation of the line tangent to the curve y = h(x) at x = 1.

y-27=108(x-1)

Work on Problem:	Points
Substitutes values into a line equation	5 points
Notes:	

- 5. (6 pts. each) Find the following limits. Show all work. Do NOT use L'Hopital's Rule.
- a) $\lim_{x\to 0} \frac{A\tan(3x)}{Bx}$ (A and B are real number constants)

$\lim_{x \to 0} \frac{A \tan(3x)}{Bx} \frac{0}{0}$, Indeterminate Form
$= \frac{A}{B} \lim_{x \to 0} \frac{\tan(3x)}{x}$
$\sin(3x)$
$= \frac{A}{B} \lim_{x \to 0} \frac{\overline{\cos(3x)}}{x}$
$= \frac{A}{B} \lim_{x \to 0} \frac{\sin(3x)}{x \cos(3x)}$
$= \frac{3A}{B} \lim_{x \to 0} \left[\frac{\sin(3x)}{3x} \cdot \frac{1}{\cos(3x)} \right]$
$= \frac{3A}{B} \lim_{x \to 0} \frac{\sin(3x)}{3x} \lim_{x \to 0} \frac{1}{\cos(3x)}$
$=\frac{3A}{B}(1)(1)$
$=\frac{3A}{B}$

Points
1 point
2 points
1 point
1 point
1 point

b)
$$\lim_{x \to 0} \frac{3\sec^5 x}{\sin^{-1} x + 4}$$

$$\lim_{x \to 0} \frac{3\sec^5 x}{\sin^{-1} x + 4} = \frac{3(\sec 0)^5}{\sin^{-1} 0 + 4} = \frac{3(1)^5}{0 + 4} = \frac{3}{4}$$

Work on Problem:	Points
Substitutes	2 points
Value for sec(0)	1.5 points
Value for arcsin(0)	2 points
Calculates final answer	0.5 points
Notes:	
•	

- 6. (7 pts. each) Suppose the population P (billions of cells) of the bacteria *calculosium adnauseam* exhibits exponential growth when placed in a nutrient broth in a laboratory.
- a) If an initial population P_0 doubles in size every 20 **minutes**, find an expression for the population P after t hours.

20 minutes = $\frac{1}{3}$ hour
$P = P_0 e^{kt}$
know $P(1/3) = 2P_0$
$2P_0 = P_0 e^{k(1/3)}$
$2P_0 = P_0 e^{k(1/3)}$
$2 = e^{k(1/3)}$
$ \ln 2 = \ln e^{k(1/3)} $
$ ln 2 = \frac{k}{3} $
$3\ln 2 = k$
$P = P_0 e^{(3\ln 2)t}$

Work on Problem:	Points	
Solves for <i>k</i>	5 point	
Finds equation for <i>P</i>	2 points	
Notes:		
• Subtract two for wrong time		
units		

b) How long (in hours) will it take the population to reach exactly 13 times its original amount? Give your answer in terms of natural logarithms.

$$13P_0 = P_0 e^{(3\ln 2)t}$$

$$13 = e^{(3\ln 2)t}$$

$$\ln(13) = \ln(e^{(3\ln 2)t})$$

$$\ln(13) = (3\ln 2)t \ln(e)$$

$$t = \frac{\ln(13)}{3\ln 2}$$

Points
2 points
5 points

MATH 1060 Calculus of One Variable I Test 2 – Answer Key Version A

Spring 2015 Sections 3.2 – 3.9