Vilnius University Mathematics and Informatics Faculty Institute of Informatics Bioinformatics study program

Protein thermostability prediction using sequence representations from protein language models

Author: Ieva Pudžiuvelytė

Supervisor: Kliment Olechnovič, PhD

Course work project

Contents

1	Introduction		3
2	Abs	stract in Lithuanian (Santrauka)	4
3	$Th\epsilon$	cory	5
	3.1	ESM-1b embeddings	5
	3.2	ProtTrans embeddings	5
4	Met	thods	6
	4.1	Objective of this work	6
	4.2	Data set	6
	4.3	Correlation analysis of embeddings' components	7
	4.4	Analysed representations	15
	4.5	Analysed architectures	16
5	Res	ults	17
	5.1	Representation analysis	17
	5.2	Architecture analysis	18
6	Con	aclusions	19
7	Ava	ilability	20

1 Introduction

This work is a prolongation of the previous work - the model that performed binary classification into thermostability classes. The model took ESM-1b protein embeddings as input and provided prediction for each protein, how likely it belongs to the thermostable class.

2 Abstract in Lithuanian (Santrauka)

- 3 Theory
- 3.1 ESM-1b embeddings
- 3.2 ProtTrans embeddings

4 Methods

4.1 Objective of this work

The main objective of this work is to analyse which numerical representation of proteins is the most suitable to use as input for the neural network model to make binary protein classification into thermostability classes. Additionally, it was decided to try model architectures with one or two hidden layers and evaluate whether the different architecture improves the performance.

4.2 Data set

The data set that was used for the research of this work was used the same as for the training, validation, and testing of the single-layer perceptron (SLP) with mean ESM-1b representations in the previous work, although for this research the data set was filtered out of identical sequences to get more accurate evaluations.

Table 1: Number of sequences with embeddings before and after filtering the data set

Subset	Original	After filtering
Training	284309	283360
Validation	65156	63158
Testing	73662	73308

Table 2: Number of sequences with embeddings in each class before and after filtering the data set

Class	Original	After filtering
0	216595	212129
1	212729	207697

4.3 Correlation analysis of embeddings' components

Figure 1: Plot of ESM-1b components that have got high correlation coefficients with Prot-Trans components

Figure 2: Histogram of correlation coefficients between ESM-1b and ProtTrans components

Figure 3: Plot of ESM-1b components' maximum correlation coefficients with ProtTrans components

Figure 4: Plot of ESM-1b components' averaged correlation coefficients with ProtTrans components

Figure 5: Plot of ESM-1b principal components (explaining 95% of data variation) that have got high correlation coefficients with ProtTrans principal components (95%)

Figure 6: Histogram of correlation coefficients between ESM-1b and ProtTrans principal components (95%)

Figure 7: Plot of ESM-1b principal components' (95%) maximum correlation coefficients with ProtTrans principal components (95%)

Figure 8: Plot of ESM-1b principal components' (95%) averaged correlation coefficients with ProtTrans principal components (95%)

4.4 Analysed representations

Both protein language models - ESM-1b and ProtTrans - provide per token or per residue representations - each amino acid of the protein gets 1280 or 1024-dimensional vector from ESM-1b or ProtTrans model respectively. Therefore, each protein is originally represented by $m \times n$ matrix, where m is the number of dimensions of the chosen type of embedding and n is the number of amino acids that compose the protein. These representations were processed to get vectors of the same dimension for each protein in the data set. The representations that were included in the analysis:

- 1. Mean ESM-1b and ProtTrans
- 2. Joined mean ESM-1b and ProtTrans
- 3. Normalised mean ESM-1b and ProtTrans
- 4. Joined normalised mean ESM-1b and ProtTrans
- 5. Median ESM-1b and ProtTrans
- 6. Minimum, median, and maximum ESM-1b and ProtTrans
- 7. Quantiles (including minimum and maximum) ESM-1b and ProtTrans
- 8. Quantiles (including minimum and maximum) and mean ESM-1b and ProtTrans
- 9. Octiles (including minimum and maximum) ESM-1b and ProtTrans

Table 3: Sizes of the analysed representations' vectors

Representation	ESM-1b	ProtTrans
Mean	1280	1024
Joined mean	2	304
Median	1280	1024
Minimum, median, maximum	3840	3072
Quantiles	6400	5120
Quantiles and mean	7680	6144
Octiles	11520	9216

4.5 Analysed architectures

Table 4: Models that were tested with ESM-1b embeddings input

Model	Number of hidden layers	Size of hidden layers
C2H2_h640-320	2	640, 320
C2H2_h320-160	2	320, 160
C2H1_h640	1	640
C2H1_h320	1	320
C2H1_h160	1	160
SLP_ESM-1b	0	-

Table 5: Models that were tested with ProtTrans embeddings input

Model	Number of hidden layers	Size of hidden layers
C2H2_h512-256	2	512, 256
C2H2_h256-128	2	256, 128
C2H1_h512	1	512
C2H1_h256	1	256
C2H1_h128	1	128
SLP_ProtTrans	0	-

5 Results

5.1 Representation analysis

By comparing SLP model's trained with ESM-1b embeddings results with results of SLP trained with ProtTrans, it was observed that the latter model performs better (Table 6).

Table 6: Comparison of scores between models trained with ESM-1b and ProtTrans mean representations

	ESM-1b	ProtTrans
MCC	0.843	0.901
Accuracy	0.921	0.951
Loss	0.208	0.128
Precision	0.921	0.949
Recall	0.917	0.949
ROC AUC	0.979	0.990

After joining ESM-1b and ProtTrans mean embeddings, an SLP was trained using these joined representations. The results of this model were not better than model's trained using only ProtTrans embeddings scores (Table 6 and 7).

Table 7: Comparison of scores between models trained with ESM-1b and ProtTrans mean representations

	Joined	Normalised joined
MCC	0.899	0.920
Accuracy	0.949	0.960
Loss	0.131	0.139
Precision	0.945	0.954
Recall	0.951	0.964
ROC AUC	0.991	0.992

Figure 9: Comparison of SLP models', which were trained with different ESM-1b representations, MCC and ROC AUC scores

Figure 10: Comparison of SLP models', which were trained with different ProtTrans representations, MCC and ROC AUC scores

5.2 Architecture analysis

Figure 11: Comparison of models', which were trained using ESM-1b embeddings, MCC and ROC AUC scores

Figure 12: Comparison of models', which were trained using ProtTrans embeddings, MCC and ROC AUC scores

6 Conclusions

7 Availability

The code that was used to receive the results of this work can be found in the designated Github repository: $https://github.com/ievapudz/Course_Work_Project.$

References