Entanglement Classification using Knots PH3203 Term Project

Sagnik Seth 22MS026 Jessica Das 22MS157

Sayan Karmakar 22MS163

Instructor: Prof. Sourin Das.

Department of Physics, IISER Kolkata

Basic Theoretical Background

Introduction to Knots

Introduction to Quantum Information

Classifying Entanglement using Knots

Polynomial Approach to Entangledment

Obtaining a Link from given State

Obtaining State from a given Link

Some Examples...

Three Qubit System: 3¹ class

Pure State:
$$\left|3^{1}\right\rangle_{abc} = \frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc}\right)$$

$$\rho_{abc} = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ \end{bmatrix}$$

- **Eigenvalues:** 0.0, 0.5, -0.5
- One eigenvalue is negative → Tripartite Entanglement

Three Qubit System: 31 class

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

• **Eigenvalues:** 0.0, 0.5 > 0

$$\rho_{ab} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

$$\rho_{ab}^{T_a} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

- All eigenvalues are positive.
- System completely separable after cut.

Three Qubit System: 3² class

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

Eigenvalues:

-0.471, 0.0, 0.333, 0.471, 0.666-0.333, 0.0, 0.127, 0.333, 0.872

 One eigenvalue is negative → Tripartite Entanglement

Three Qubit System: 3² class

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

- Eigenvalues: 0.333, -0.333, 0.666
- One eigenvalue is negative → Tripartite Entanglement

$$\rho_{ab} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{ab}^{T_a} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

Three Qubit System: 3² class

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

- Eigenvalues: 0.0, 0.333, 0.666
- No eigenvalue is negative → Separable

$$\rho_{bc} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{bc}^{T_b} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

Three Qubit System: 3³ class

Three Qubit System: 34 class

Four Qubit System

Application to Qubit Networks

Conclusion