Universidad Autónoma de Madrid

Álgebra Lineal MODELO 1

Convocatoria Ordinaria, 22 de mayo de 2020

Compromiso de honestidad
(Para copiar y firmar en la primera hoja del trabajo entregado)
Yo, Poner Nombre y Apellidos , con DNI y NIA
me comprometo a realizar la prueba de evaluación de Álgebra Lineal de manera individual sin la
ayuda de otras personas, ni ayuda externa (llamadas telefónicas, videoconferencia, o cuaquier modod
análogo), ni material adicional, salvo las notas y mis apuntes de la asignatura.

Firma Fecha:

1. (2,5 puntos) Sea $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ el endomorfismo dado por $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ con

$$A = \left[\begin{array}{rrrr} -2 & -1 & 0 & 2 \\ 0 & -2 & 0 & 0 \\ 1 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{array} \right]$$

- a) Halla el polinomio característico del endomorfismo f.
- b) Halla una forma de Jordan de f y la correspondiente base de Jordan.
- 2. (2 puntos) Indica si cada una de las siguientes afirmaciones es verdadera o falsa, escribiendo una justificación si es verdadera o dando un contraejemplo si es falsa.
- a) Si A es una matriz de orden 3 con $\det(A) = \frac{1}{3}$, entonces $\det(3A) = 1$.
- b) Si A es una matriz invertible y B es una matriz singular (es decir, con determinante nulo), entonces AB es también singular.
- c) Si A es una matriz invertible y B es una matriz singular (es decir, con determinante nulo), entonces A+B es invertible.
- d) Si $A = (a_{i,j})$ es la matriz de orden 4 dada por $a_{i,j} = 10i + j$, la matriz A tiene determinante cero.

Continúa detrás

3. (2,5 puntos) Sean V y W dos subespacios vectoriales de \mathbb{R}^4 dados por

$$V = \left\langle \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 2 \\ -2 \end{bmatrix} \right\rangle , \quad W = \left\langle \begin{bmatrix} -1 \\ 3 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 0 \\ 0 \end{bmatrix} \right\rangle.$$

- a) Halla razonadamente las dimensiones de V y W.
- b) Describe las ecuaciones implícitas de cada uno de los subespacios.
- c) Halla la dimensión de V+W y la de $V\cap W$.
- **4.** (3 puntos) Sea $T: P_{\mathbb{R}}^{(2)}[x] \longrightarrow P_{\mathbb{R}}^{(3)}[x]$ la aplicación lineal definida por

$$T(1) = 1 + x + x^2 + x^3$$
, $T(x) = 1 + x + x^2$, $T(x^2) = 1 + x + x^2 - x^3$.

Sea $\mathcal{B}_1 = \{1, x - 1, (x - 1)^2\}$ una colección de elementos de $P_{\mathbb{R}}^{(2)}[x]$ y $\mathcal{B}_2 = \{x^3 - 1, x^2 - 1, x - 1, 1\}$ una colección de elementos de $P_{\mathbb{R}}^{(3)}[x]$.

- a) Prueba que \mathcal{B}_1 es base de $P_{\mathbb{R}}^{(2)}[x]$ y que \mathcal{B}_2 es base de $P_{\mathbb{R}}^{(3)}[x]$.
- b) Halla una base del núcleo de T indicando las coordenadas de sus elementos en la base \mathcal{B}_1 .
- c) Halla la matriz de la aplicación lineal T cuando en el espacio de salida se considera la base \mathcal{B}_1 y en el de llegada la base \mathcal{B}_2 .
- d) Describe la base dual $\mathcal{B}_2^* = \{U_0^*, U_1^*, U_2^*, U_3^*\}$ de \mathcal{B}_2 dando sus elementos en función de la base dual canónoca $\mathcal{C}^* = \{E_0^*, E_1^*, E_2^*, E_3^*\}$ de $\mathcal{C} = \{1, x, x^2, x^3\} \subset P_{\mathbb{R}}^{(3)}[x]$.

Tiempo: 2 horas.