Lecture I MAT 228A - W Bob Guy 9/22 Standard Model PDEs: 1) Advection equation pro-latypical ex. of ahyperbolic egn -> Ut + CUx = 0 2) Diffusion egn: Ut = Duxx e-prototypical parabolic egn. 3) Poisson egn: Uxx = f & prototypical elliptic egn. E discontinuity hard to deal of numerically laterintime (Z) for all time! laterin fines

(in)

(in 1) { Utt = Uxx , O < x < 1 $\begin{cases} u(0,t)=1, & u(1,t)=0 \\ u(x,0)= \begin{cases} 1 & |x| < 1/2 \\ 0 & |x| \geq 1/2 \end{cases}$ Super easy to represent numerically R Need different schemes for huncically reping time & space for the different problems

In 228A, we will focus on the Poisson egn, which is time independent

Where does the Poisson egn. come up? Steady-state diffusion problems Eg u is a concentration: Ut - Duxx + f transport by diffusion At stendy-state, u, >0 => -Duxx = + Reaction-diffusion egn: Ut = Duxx-ku+f Strady - State: - Duxx + ku = f 2. Electrostatics: Ez: È is a steady electric field. P is a charge distribution, Eu is a parameter P. E = C/20 & VXE= O -> there is a potential (95) E = -VP Thus D. (-DR) = P/Eo => - Al= P/Eo 3. Potential Flow: Cirplant S P. Li = O. Li is a velocità divergence free / incompressible & we also have Tx II = 0 no vorticity => == PP => P· == 0 / 4. Low Regnolds # Flow: very small tenoth scales, e.g. bacteria swimming drug-dominated, no inertia take div. of firstern $M\Delta \vec{u} - Rp = 0$] stoke's equis. - Op=0

control Poisson Egn: Uxx-f 1D
Uxx + Myy = f ZD (cartesian)
$\Delta u = f$
$0-\sqrt{2}u=4$
treed a domain, track boundary conditions
1D- Steady state diffusion egn: [constant concentration atend] = Oux(1)=0 1Ut = Duxx + f (n-no => U(0,t) = Uo (Dirichlet BC) Here des capped and translate to n BC?
Civen (a,b), g(+) = \ an(x,t) dx = total ant. of charical in literal (a,b).
Consider ut = Duxx -> Sut dx = So Duxx dx
transport inter on boundary of (a16)
J=- Dux is the diffusive flux, capped end => nodiffusive flux! (at end) ux10:10=0
Must about a given f(-x? - Dux(o,t) = g (non-homogeneous Neumann B.C.)
J= α (α) => flux balance: The semipermental and membrane α => α (α) => α (α) = α (α) => α (α) = α (α
=) Robin BC &u(at) + Dux(oit) = QUO
Solving Poisson egn need Dirichlet, Neumann, Ur Rubin BC's.


```
228A 9/27 lecture2
```

u(0) = u(1) = 0

Funcier series soln what if $f = -(nR)^2 \sin(-RA)$, n = 1, 2. Soln $u = \sin(nRx)$

Reference higher level: Ln = f w/ Loperator dz on space of fis.

Satisfying n(0) = n(0 = 0.

 $L\left(\sin(n\pi x)\right) = -(n\pi)^2 \sin(n\pi x)$

These eigenfus are orthogonal in $L^2[0,1]$ Esquare intersorte fors.

Ninnerprod: $(-f(x),g(x)) = \int_0^1 f(x)g(x)dx$

For any $f \in L^2[0:1]$, $f(x) = \begin{cases} 2 & \text{only BC's} - FS \text{ will always} \\ \text{def not pointing} \end{cases}$

Know soln conferritten inform n(x) = EBn sin Gatix)

We can comprte an hyporthegonality: $a_n = 2\int_0^1 f(x) \sin(nilx) dx = (f_1 \sin nilx)$ an is the projection of f onto the eigenspace spanned by $\sin(nilx) = (f_1 \sin nilx)$

L (E Prosintation) = 2 an sintation

2 2 Prosintation) = 2 an sintation

note that the sintation is a sintation of the sintation in the sintain in the sintation in the sintation in the sintation in the sintain in the sintain

using orthogonality => Bn = == = .

Same idea on a 2D rectarge: Du=uxxxy=f on (0,1)x/0,1)

N=O on the boundary

Figurfas: Unim = Sin(nTx)sin(mTy), u,m=1,2,...

Znim = -(n2+m2)T2

Finite Difference Methods - Directize space Given PDE, domain, & boundary conditions · Discietize the dumain · Represent functions by their values at the points Use discrete values to approximate deciratives using algebraic form Va => Get an algebraic can Au = b - Discretize function space finite Element Methods Reformulate the problem as a variational problem Du=+: F(u)= / = Du. Tu + uf dx Find nes to minimize F(n) where Sisthespace of admissable fors. Assume the minimization problem gives the PDE. Now discretize The function space S, i.e. pick a finite-dim'l space Sh C S.

So that for une Sh , un = 2 uk Pk(x) The skylker O's are locally supported, small our strip who ther Q's the skylker these are a basis for piecewise linear fas. Solve the minimization problem Exactly on the finite-dim space Sh. F(un)= = ZAi; Niuj + Zbini where Aij = In Pai Taj dx & mostly

Ossi

Obi = In fait

The unknowns are the ui's -> coefficients for expension of min solution

The unknowns are the ui's -> coefficients for expension of min solution If there is a minimismon, it must be true that IF = 0 & i => TF = Ontain competing this, get A is = 5. The Structure of this is very similar to that of a Finite Difference method.

1284-4/27 Lecture Cont

Spectral Methods

Use or ap'n: Un (x) = { ak (lk(x))}

generally, the (D's are not locally s-provided (1.7. (lk=sin(kfix)))

From here, solve the variational problem

Ly changes structure of Air = { structure of A is dense}

Or set of points, solve (Au)(kj) = f(kj).

get { at (lj''(xi) = f(xi) for i=1,..., N) }

=> { [inversystem Aij = (V', (xi) still dense > Ai =].

9/29 - MAT 228A - Lecture 3

Finite-Difference Methods: iden-approximate desiratives using function values at points

Approx. derivative wa difference:

Forward difference operator: D+u(x) = u(x+h)-u(x), h-fixed

Backward difference operator: Du(x) = n(x)-u(x-h)

flow accurately do these approximante ix?

Error E = D, u(x)-gx u(x)

Expandusing Taylorseires as 4-00

u(x+h) = u(x) + hu'(x) + h u'(x) + h u''(x) + ...

 $D_{+}u(x) = u'(x) + \frac{h}{2}u''(x) + \frac{h}{6}u''(x) + \dots$

Assume u'is bounded then E = 0(4).

Same idea for D_{-} : $u(x-h) = u(x) - hu'(x) + \frac{h^2}{2}u''(x) - \frac{h^3}{6}u''(x) + \dots$ $D_{-}u(x) = u'(x) - \frac{h}{2}u''(x) + \frac{h^2}{6}u''(x) + \dots$

error E= O(h). E-error is some but-pp. size

Of a 7 leading order.

For sider $D_0 u(x) = \frac{1}{2} (D_+ + D_-) u(x) = \frac{1}{2} \left[\frac{u(x+h) - u(x)}{h} + \frac{u(x) - u(x-h)}{h} \right]$ The entered difference $u(x+h) - u(x-h) = u'(x) + \frac{h^2}{2} u''(x) + \dots$

 $= u(x+h) - u(x-h) = u'(x) + \frac{h^2}{6}u''(x) + \dots$

Do u(x) is O(h2) accurate (assiming n''(x) bounded) error

Termindagy: D+ & D_ provide first-order accorde approximations to Jx

Forward differences and centered differences of $f(x) = \exp(x)$ at x = 2.

		error of		error of		. 17.1.
1 1 540	h	forward difference	ratio	centered difference	e ratio	haltin
halving -	1.00000e+00	5.307e+00		1.295e+00		1 grid spacing
h	5.00000e-01	2.198e+00	2.41	3.117e-01	4.15	1 should
resultsin	2.50000e-01	1.006e+00	2.19	7.721e-02	4.04	quaction
halving	1.25000e-01	4.817e-01	2.09	1.926e-02	4.01	the
March 8	6.25000e-02	2.358e-01	2.04	4.812e-03	4.00	cilor
e ((0)	3.12500e-02	1.167e-01	2.02	1.203e-03	4.00	Casyonplohen
e (coss (usymptotically)	1.56250e-02	5.803e-02	2.01	3.007e-04	4.00	- / /
()	7.81250e-03	2.894e-02	2.01	7.517e-05	4.00	
	3.90625e-03	(1.445e-02	2.00	1.879e-05 🧷	\[\] 4.00	- 1
	1	つきョの(4)		1 -	-2 = 2	0(h²)
Recoll-	D+ is	O(h) accurate		Dois	0 (h2)	accurate

A often dumonstrate the desired order of accoracy by displaying this table or this lag-les play.

P+D+ this is only first-order accurate since if lacks the symmetry of our other Similarly how his his his also would only be letordrage. Expect generically that 3 point operators fire only 1= order approx.

to the 22 decinative. L7 (an odd another pt. togive another ega/coefficient to cancel out a leading order error. 0--0 0 0 0 want white;) How many points in do we need to approx. ntderiv. to ptooder accome, L) W, U, + Wz Uz + ... + Wm Um Taylor series => = Aoulx) + A, u'(x) + ... + Anu(n)(x) + An+, u (n)(x) + ... ntl constraints => at least n+1 points t-get on the derivative. La solving for these constraints, mexpect was him so then Ann size h (generically)

To get up to pt order accoracy, need on = (n+1)+(p-1)
=> m=n+p

MATTERA-LUTSICH-1014 Une-D finite diff. soln- of Poissoney- $u_j \approx u(x_j) \rightarrow u_{j-1} - 2u_j + u_{j+1} = f_j = f(x_j)$ (*) $\lim_{x \to \infty} \frac{1}{h^2} = f_j = f(x_j)$ (*) Now $u = \begin{cases} u_1 \\ u_2 \end{cases}$ equisoftherform Au = b, where A is D_{+-} op $\begin{cases} u_1 \\ u_N \end{cases} = \begin{pmatrix} b \\ b \end{pmatrix}$ is the f vector. (aji ... ajn) (i) = f; should match (#) hence all aj; but 3 should be O => F_{0} , $j=2,...,N-1: \alpha_{j}=-\frac{7}{h^{2}}, \alpha_{j,j+1}=\alpha_{j,j-1}=\frac{1}{h^{2}}, b_{j}=f_{j}=f(x_{j})$ J=1, ho-2n,+hz = f, but no is known by BC => x-2n,+hz $= \int \frac{-2u_1 + u_2}{h^2} = f_1 - \frac{\alpha}{h^2} = \int \alpha_{11} = -\frac{2}{h^2}, \quad \alpha_{112} = \frac{1}{h^2}, \quad b_1 = f_1 - \frac{\alpha}{h^2}$ hence $A = \frac{1}{h^2}\begin{pmatrix} -2 \\ 1 - 2 \\ 1 \end{pmatrix}$ $b = \begin{pmatrix} f_1 - \frac{\alpha}{h^2} \\ \vdots \\ f_N - \frac{\alpha}{h^2} \end{pmatrix}$ $f_N - \frac{\alpha}{h^2}$ What if $\vec{n} = \begin{pmatrix} u_0 \\ u_{N1} \end{pmatrix}$? Then $\frac{1}{h^2}\begin{pmatrix} h^2 \\ 1-21 \end{pmatrix}\begin{pmatrix} u_0 \\ u_1 \\ 1-21 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{NN} \end{pmatrix}$ We indust Notes A have an inverse? Yes. low close is uj to U(xj) + solnto PDE? Explicit rotation of grid spacingh? Wed like 11ehl >0 as h>0 for some norm.

If the ecros goes to zero as the mesh spacing goesto zero, the method/scheme is convergent

Vector, metrix, function norms: (moder u(x)=1 or (0,1) Then u _2 = u _1 = u _0 = 1 etn. norms
Sample u(x): (a) = u(xi), a;= \ sample using N points
$ \vec{u} _2 = (\frac{\xi}{2}u_i^2)^{1/2} = (\frac{\xi}{2})^{1/2} = \int N \vec{u} _{\omega} = \max_i u_i = 1$
Westernorms -> values depend on length of vector
We should use discretized function norms for errors! Constappropriatelier
We should use discretized function norms for errors! Const-ppropriate here Let Eh be a grid function: (Eh _z = (h: zej) 1/2.
eh = h. Elejl, define the ruins based on the mesh.
matiex runs: A: 12 -> 12 " Ais an axa matrix
All = max AxII = max AxII = AxI
IlAlla= max [laij = max con som
All = max & lail = max colons sun
11A112 = Vp(A*A), where p is the spectral andius = modulus of largest eigenval
= largest singular value of A
Proof of Allow = max row som:
Proof of Allow = max row som: Allow = max Axlow: Axlow = max & aij x = max & laij box
E Max E Mail
Note the max is attained at some I: max 2 "ij = 2 uj = 2 uj .
Hence Mixrowsum & I/Allos, hence equality.
For any induced martix norm,
Ax < max Ax = A => Ax < A . X .

278A-Lecture 5-10/6 U(0)=a of the Auth = B finite difference approx. $O(1) = \beta$ Knowhow big the eccos is in = in-ison (insol) = u(x;) Hope that 11e1 = 0(42). We get error by using our difference operator D+ instead of dx of O(h3) Lo Eccur in equation - show does it translate to eccur in sola? by Piscietization error/local truncation error Ingeneral, isol is not a solution to An=6 Local truncation error Th = Atusoi - 5 for j=2,..., N-1, 2h = 1/2 (n(xj-1)-2u(xj)+u(xj,1))-f(xj) = $\frac{1}{h^2}(u(x_j-h)-2u(x_j)+u(x_j+h))-f(x_j)$ $TS - > = u_{xx}(x_j) + \frac{h^2}{12}u^{(4)}(x_j) + h.o.t. - f(x_j) = O(h^2)$ Non Ann = 5 expect enortesting O(L) A 1154 = 6+2h A(in-isu) = - Th => A(eh) = - Th => (eh = - A-Th) A numerical scheme is consistent if the >0 -shoo. A numerical scheme is convergent if et >0 -sh->0. For linear schemes applied le linear PDFs: Lax-equivalence Thm: It a scheme is consistent & stuble, it is convergent. Lierors don't separate los impidlyin time Eventime independent BUP, stable An=b"=> 11(Ah)"/1 = C for all h= ho.

PAnaluso stabilita bus boundin 11 +11

Stability in 2-norm: $A = \frac{1}{n^2} \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}$ is symmetric.

Assymm => $||A||_2 = P(A) = \max_i |2i|$ A symm -> A -1 also symm => ||A-1||_2 = p(A-1) = max | \frac{1}{2j} = \frac{1}{min |2j|} (Since At has inverse eigenvalues of A) Withouts 1/2-12772 Recall: uk(x) = sin(kt(x) is an eigentine of Jx2 on frs. Zero at x=0,1. It turns out that the eigenvectors of A are the eigenfus. It Jiz evaluated at the grid points. I benneary mismutch doesn't muittersince bondary data in 5) Show up = Sin(knx) (k=1,..., N) is an eigenvector, compute the eigenvalues 12 (sin(k11xj-1)-2sin(k11xj)+sin(k11xj1)) $=\frac{1}{L^2}\left(\sinh(k\pi(x_j-h))-2\sin(k\pi(x_j)+\sin(k\pi(x_j+h))\right)$ = 1/2 (sin (kTx;) cos(kTh) -sin (kft) cos(kTx;) - 2 sin(kTx;) +sin(kTx;) tos(kTh) + sin(kTh) cos(kTx;) = 1/2 sin(k(Txj) [7cos(k(Th)) - 2] = 7k sin(k(Txj)) => eigenvalues are $Z_k = \frac{2}{h^2} \left[\cos(k\pi h) - 1 \right]$, k=1,...,N= -4 Sin2 (KTH/2) For k from to N, KTh your from The to NTH = NT Smallest eigenvalue 2x occurs at k=1 12 10 $|\lambda_1 - \frac{1}{h^2} \left(\cos(\pi h) - 1 \right)|$ $|\lambda_2 - \frac{1}{h^2} \left(\cos(\pi h) - 1 \right)|$ $|\lambda_4 - \frac{1}{h^2} + O(h^2)|$ $|\lambda_5 - \frac{1}{h^2} + O(h^2)|$ 2, = = = (cos(174)-1) = == [1-2(1-21742+0(44)-1) = -172+0(43) 2,-7? as h->0: hence ||A" || = + + O(h2) => == -A" Th => ||Eh|| = ||A" ||2 || = ||Eh|| = ||A" ||2 || = ||Eh|| = ||A" ||2 || = ||Eh|| = = (1/12+0(L2)) . O(L2).

lecture 5 - 10/6 handont

Errors $e^h = u^h - u(x)$

expect eh 2 Ch2 =>e 2 Ch2

- 6.250000e-02 3.125000e-02

7.812500e-03

- 3.906250e-03
- ratio 2.342e-04 5.779e-05 4.053
- 1.440e-05 4.013
- 3.598e-06 4.003
- 8.992e-07 4.001
- 5.088e-06

3.312e-04

8.173e-05

2.037e-05

4.003 1.272e-06

4.001

4.053

4.013

Kalso 2º mideracconte in the max arm

expect ratio 4

slope 2.

need 2 spacings for 1 ratio. eh/e4224

No if we don't four the soln?

Make your own computing f. B.C.

estiments the apploximetions

Differences $d^h = u^h - u^{h/2}$

h	d2	ratio
6.250000e-02	1.764e-04	
3.125000e-02	4.339e-05	4.066
1.562500e-02	1.080e-05	4.016

- 1.080e-05 4.016 2.698e-06 4.004
- 4.066 6.137e-05 1.528e-05 4.016 3.816e-06 4.004

2.495e-04

dmax

ratio

42 m(x)+ C 48 - 1 u42 2 u(x)+ C(2)p

In= un- n/2 C (hp- /2)p) = (hp/1- +p)

~ G 6P dh/22 (2/h/2)"

need 3 spacings for I ration 14/2 m/2 = 4

MAT 228 A-Lecture 6 - 10/11
Uxx=f u(0)=a, u(1)=B >) discretize to An=5
there A = 1/2/1. How do we solve this linear system?
Solve by Gaussian elimination $A = LU = \begin{pmatrix} 1 & 0 \\ 51 & 1 \end{pmatrix} \begin{pmatrix} 1 & 51 & 51 \\ 0 & 1 \end{pmatrix}$ Then $A\vec{v} = \vec{b} = \vec{v}$ $LU\vec{u} = \vec{b} = \vec{v}$ $L\vec{v} = \vec{b}$ & then $U\vec{u} = \vec{v}$ expension 15 thire?
Then Av=b=> LUv=b=> Lv=b & then Uv=v expension
Suppose A is nxn, takes n2 computations to eliminate one of the n rows L> Work is O(n3) to factor A
Wild solve on tagingular system is O(n2)
Our matrix has a special structure -> tridingonal & diagonally-dominant
$ \begin{vmatrix} -2 & 1 \\ -1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ -1 & 2 \end{vmatrix} $ $= \begin{vmatrix} -1 & 1 \\ -1 & 2 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/2 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 & 1 \\ 0 & -1/3 & 1 \end{vmatrix} $ $= \begin{vmatrix} -1 & 2 & 1 \\ 0 & -1/3 &$
For this matrix, distributed to formate back-sh
This pacess is the Thomas Algorithm. In Matlab, $\vec{u} = A \cdot \vec{b}$ where Ais spaise We can get the inverse analytically, but $A^{-1} \cdot \vec{b}$ takes $O(n^2)$ worth!!! (but it is dense)
MATLAB: n=100; e=ones(n,1); A=spdiags(le-l*e e], -1:1,n,n); Af=full(A); b=rand(n,1); Jimperations diagrants additions
Tici y= Albitoc, tici Z= Aflb; toc tici B=inv(A); toc ->.001892x L> 0.000994sec Lx0.228348sec tici w= B*b; toc ->.001858xe

List time, we showed Aë = - 7 had O(42) from
I discretization * ||A-1||_= O(1) => ||e||2= ||A'Z||2 = ||A'||2 ||T||2 = O(L2) Samuel where Hellow = O(L2) Ty norm equivalence: cllèlla = llēllz = Cllèlla ||e||2 = h'/2 (£ej²)/2 ≥ h'/2 leil for ang i => ≥ h'/2 ||e||ω => h"2 llella = llellz = Ch2 => llella = Ch3/2 enwerando Max-norm analysis: Au= i where bi= { l for i= j for some j

Then A= b = jth colon. of A

construction a sort of Green's for / inverse operator

to one difference operator

this juice of the construction for i = j, ui= x;

his can solisfy this construction for i > j

where bi= { local solisfy this of what inverse for i > j

where bi= { local solisfy this of what inverse for i > j

where bi= { local solisfy this of what inverse for i > j

where bi= { local solisfy this of what inverse for i > j

where bi= { local solisfy this of what inverse for i > j

where bi= { local solisfy this of what inverse for i > j

where bi= { local solisfy this of what inverse for i > j

where bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { local solisfy this of what inverse coperator

in the bi= { loca For [=), Nj-1-Zuj+uj+1=1 $\frac{u \times_{j-1}}{x_j} - 2u + u(1-x_{j+1}) = h^2 \in \text{solve this for } U$ $= 7u = h(x_j-1)x_j$ So the solution in = A b is ui = sh(xj-1)xi is j = looks like a sceens (h(xi-1)x; i>j = a sceens fin!! this is the it clement of the jt column of A-1. = h(xe-1)xs => ||AT || S= max & |Aij| & nh & I since nscales like 1/h. Hence l'élla = 11A-11/00 (171100 = 0(62).

MAT228A-Lecture 7-10/13 last time $A = \frac{1}{h^2} \begin{pmatrix} -2 \\ 1-2 \end{pmatrix}$ analyzed errors in the new norm by computing the inverse $A^- = B$ where Bij = h(x,-1)x2 -> where x = x for j > i Looks like a Green's for (kernel of niverseop to fix). Recall: $A\vec{e} = -\vec{7} = -\vec{R}\vec{r} = -\vec{R$ error at a point affect the error? Hence each term in the sum (B) is the largest element & is O(h). 2 bit; is O(43) But we add up O(4) terms => total error still O(h2) Vortabout transaction error at a point near the boundary? b, = biggest element is B11 = h(x,-1)x, = h(h-1)h = O(h2). => b, T,= O(h4) + Canget away of bisser truncation cover near boundaries in Dirichlet problem since BC's keep you close to O. Neumann Boundaires 1) discretize x=0 x=4 x=24... L) solve linearsysten ux(0)= g Look at discretized operator at X1: No-Zu, + 42 = f, Int know up this time! Why not disoretize the BC? $u_{x}(o)=g \approx \frac{u_{1}-u_{0}}{h} => u_{0}=u_{1}-gh$ $\Longrightarrow \frac{1}{h^{2}} \left(\frac{h}{1-2} + \frac{1}{2}\right) \overline{u} = \left(\frac{g}{1-2}\right)$ or $= \frac{1}{h^{2}} \left(\frac{-1}{1-2} + \frac{1}{2}\right) \left(\frac{u_{1}}{u_{2}} + \frac{1}{2}\right)$ discretizing the BC introduces an O(h) approximation Zunobviously, this makes the total error O(h). Laboundary errors didn't matter in Dirichlet problem ble of its Green's for but this problem has a different Green's function!

This method is only first-order accurate.

```
Another way to disactive the Nemana BC.
 Note that u_1 - u_0 = u_x(0) + O(h), but u_1 - u_0 = u_x(h/2) + O(h^2)

(as a centered difference approx.)

Inagine extending the domain \frac{1}{2} - \frac{1}
InforcePDI at to 0: 1-2 = fo
  E use BC ux(0)=g to define the ghost point; centered difference: 4, - 4-1 = g+a
       => U, = U, - 2hg => fo = 41-2hg-240+41 => -240+241 = fo+ 29
  => 1/2/1-21. )(ii) = (f.+ ii) e this methodis O(62) accurate.

but our matrix is not symmetric
     andivide first romby 2 toget in (1-21.)
   Difference bluen these methods lies in the size of the matrices & misplacement of the boundary
                                                                     \begin{cases} u_{xx} = f, & 0 < x < 1 \\ u_{x}(0) = \lambda \end{cases} = \int_{0}^{1} u_{xx} dx = \int_{0}^{1} f dx
= \int_{0}^{1} u_{x}(0) = \int_{0}^{1} f(x) dx
= \int_{0}^{1} f(x) dx
= \int_{0}^{1} f(x) dx
        Solvability:
     Suppose u is a soln to the problem. Then ute for any constant is also a sol this doesn't matter physically since this comes from potential problems.
             ( who cares what actual voltage/pressure is, only care about it relative to norm)
     This will cause issues in our numerical method, though.
 Piscutize the problem: 12/1-21

Matrix is singular for 1/2 | 1-21 | (um) = | fortall |

fortile B/h
    Supp is a soln, then in+c] is also a soln (all roursums of our matir are O)
    => I spans the nullspace of A. AI=O.
        Au=5 will have a solu myfor 5 e ran A => 51 ker A* => 617.
             => An=b- <b(1) 1 has a soln.
                     => A = f - So f (Ddx = f - B+ x
```

MATZZ8A - Lecture 8 - 10/18 tinish up 1-D stuff: Paison egn of Neumann BC's: [hxx = f] soln is

boundary values unknown

- t - 1

Vix(0) = d | vnight

Vix(1) = B

End order discretization: 1 / 1-21

h2 | 1-21

h2 | 1-21

For solvability

Solvability

Solvability

Fig. 28/h) | flada=8-1 Note: A. I = 0 => Tenul A & Womenerk, Ispans nullA. => \frac{h}{2} \forall h \frac{2}{2} \frac{f_1}{1} + \frac{h}{2} \frac{f_{mi}}{1} = \frac{B}{-\alpha} This is a 2- order accurate approximation to) of (x) dx using impercidate. => \(\begin{aligned} & \phi(\chi) & \phi & \phi(\chi^2) & = \beta - \alpha \end{aligned}. \end{aligned} Satisfying the cent's condition doesn't granantee discrete condition holds! One way to solve Au= is is af an iteration schene Fig. in (K+1) = Tulk) + C Togeta soln, need be ran A
Project b onto ran A if its not exactly there (but O(h2) away') Pb = b - VTb. V is guaranted to be in can. At.
This is O(h2), so changing disciplinated according. Pircet Solve: Perturbed system: An=16-20 cassume don't know 7. => An + IV = 5. From appropriate choice of I. have soln. vi. choose: I'v = 0 count soln of above to have mean zero.

Needed an exten equ. for 2. so just picked one arbitrarily since solus. are amunique.

Lecture 9 Handout - 10/20

30 of gridsize nineachdin Memory Usage

	. In 107 To 1
n	mem (B) (4712)
10	1.48e+06
20	4.90e+07
30	3.77e+08
40	1.60e+09
50	4.90e+09 ~59b

Hence menory scales like O(n5)

Solution Time

computation time (s)	slope ≈ 7 slope ≈ 3.2	0
10	number of points in each dimension (n	102

n	t (GE)	t (FFT)
10	0.2415	0.0893
20	0.0834	0.0025
30	0.7502	0.0085
40	4.0408	0.0145
50	17.3654	0.0202
60	61.7943	0.0365
70	163.9611	0.0569
80	443.7283	0.0891
90	1016.0200	0.1412
100	2185.5417	0.1790

Comp. time goods like O(n7)

FFT is rear-optimal, time O(n3.2) = O(Ne.N)

Lecture 10 10/25 or L-=f -> u=usor, + O(62) -> can approx. a al-sebenicalism of this o(62) & remains within O(62) to usor. AU= 6 Suppose ut is an approximate sola to Lu=f, where a istheexact sola.

Algébraic essor: ek=u-uk.

(diende assistance) Lek = Lu-Luk = f - Luk = rk eresidual (defect) Correction equ: u= uk+ek = uk+ Lick casy to compute Let B2L, then example iterative scheme:

Uhi = uk + Brk If Bat' is good approx, hope until is better approx to un than ut. A simple method: Let B=D-1 where Disthediag--- part of L. => uk1 = uk + D-1/k = uk + D-1(A-Luk) = (I-D-1L)uk + D-1f Comproblem is Dirichlet

Laplacianon
Cedargle For our problem. $D = -\frac{4}{h^2} T \Rightarrow D^{-1} = -\frac{h^2}{4} T$ => ukil= (I+ h2L) uk - h2f At a point: $u_{ij}^{k+1} = u_{ij}^{k} + h^{2} \left(u_{i-1j}^{k} + u_{ij-1}^{k} - 4u_{ij}^{k} + u_{i+1j}^{k} + u_{i+1j+1}^{k}\right) - h^{2} f_{ij}$ uij = - 4 (uki + uki + uki + uiji) - h fij This is the Jacobi iterative scheme, and for our problem it converges (very slowly). As we do this, we go through the grid & compute better values ais better values "behind you" as one go?

Loop some # of times

loop i

loop i

loop i

loop i

loop y

loop i

l

Gauss-Seidel (lexicographicoides) converges faster than Jacobi. Loop some max # Roop i loop j uij = 4 (nij + uini) + uini) + uini) - 4 fig but still slow but not parallelizable Think of both methods as splitting methods: Ac=b -> A=M-N where Miseasy to invert => Mn-Nn=b=> n=M'Nn+M'b Iterative scheme: uk+1 = M-1 Nuk + M'b For one problem. A=D-L-U where Disdingonal, -Lislower trianglar part, -U supportringular part Jacobi: M=D, N=L+U=>uk1=D-1(L+U)uk+D-16 Gauss-Siedel: M=D-L. N=U=> uhi= (D-L) Uuh + (D-L) b Both methods are of the form: until = Tunt + C eafixed pt. iteration fixed point solm: N= Tn+C When does this fixed pt. iteration converge?.

When does this fixed pt. iteration converge?.

ek= u-uk, -luhi= Tuh+c) =

ek= u-uk, -luhi= Tuh+c) =

ek= u-uk, -luhi= Tuh+c) =

ek= u-uk, -luhi= Tuh+c) [=> ek=Tke0 Twhen does et -> 07.

only for p(T) < 1. (". normalistical) Suppose we can diagonalize T: TX = XA & diagonal 2 modix

T = XAX'

-> T2 = (XAX')(XAX') = XA2X' >> TK = XAKX'

AL 11K 1 = (21 21) > 0 => Tke0-> 0 for any E0 ; flze1<1 4l.

MAT 228A-Lecture 11 11/1
Theralize Methods for the Poisson Egn:
UK1 = Tut + c When do we stop the iteration?
Two standard ways to stop iteration: 1) Rased on the size of the residual rt=f-Ant These
Use the residual absolute tolerance: rk 2 to = & Etypically ansame relative tolerance: rk 2 (tol) ·
If up=0, r=+ sociative tol. measures residual from this initial point
Rud offer based on residual sound. All = Ch
Want to control et: 11em = 11A MI = 11A 11
Calculating residents takes exten work, but already have successive iterates! Be util-ut: absolute tolerance util-util = tol relative tolerance util-util = (tol) util
Jacobi, GS, SOR, multigred all of the form util-ut+Brt, Bat' => util-ut = Brt, Cdepends on gidspring
Note et = A'rt - A'B' (util-ut) = A'B' util-ut
Jacobi: B=-4I => 11B-11= 42 => 11ek = 42 1A-11 1/4-41
Jacobi does not depend on the ordering of the unknowns
a the state of the
GS-lex: Another may to order: Take relocate points Update one point then update another update color after another update color after another update all black The relocate points The reloca
Pook rafter another volute, of other reds.
Louping all black Louping the order blacks Ling = 4 (Many + May) - + Many + May + May + May 101

ploop to 65-RB: (our black - note these are Loop red Loop black
wij = " 65-7B makes sense for our Poisson solver since a red point is updated & vice-versa. L7 Easier to 11-ize than 65 lex. Other variations > block or line calaxation methods (like 1D Poisson ean.)

Litidingonal solve on each row of pts. For problems such as weak compliand in ydirection so just do Dode -> Uxx + Eugy = f
on the x direction bloop over y-rows. "anisotropy" [rouldate do Hecks SOR (successive over-relaxation) (GS: Wij = 4 (Wing + Wijj-1 + Willi) + Wijji - h? (ij) SOR: Wij = w (ui-nij+uij-1+uinij+uni+1-12-fij)+(1-w) Uij Linear combination of GS update & current iterate.

Well under-relaxation, w>1 over-relaxation \$502 requires that OCWCZ for convergence. A Recall: All these methods are "metrix-splittins" A= M-N

Muhil= Nut +f uhil= M-1 Nuk + M-1 f SOR: M= &D-L (where A= D-L-U) N= END+U TSOR = M-N = (aD-L) -1 (-w D+V) = w(D-wL)-(1-wD+V) = (D-wL)-((1-w)D+wU) det (Tsop) = det (D-wL)") det ((1-w)D+wU) = det ((1-w)D) = (1-w) Require (det(Tsor) (<1 => 11-W <1 => 0 < W < 2.

convergence analysis for SOTZ: Lacture 11 cont (11/1) (use some trick as in GS convergence analysis
to compute eigenvalues of the update matrix in terms of Jacobi update) It m be an eigenvalue of Jacobi update Tj. Then m= 2+w-1 for > eigenvalue of Tson Rearranged: 7 - wn 21/2 + (w-1) = 0 =>27/12= WM = JW2-4(w-1) As w->0, real injuntues 1212 ->1 As w=> 2, complex eigenvalues if I complex, know |21/2 = |w-11, hence |21/2 -> 1. Want to minimize 12" so decrense on from 2 -> better convingence. I real, to minimize (21/2),)2"2 co so increase when o for better convergence. => Pick on boundary of real & complex 7: optimal w* satisfies w*2 m2 = 4(w*-1) $work = > w^{+} = \frac{2}{1+(1-p_{J}^{2})^{1/2}}$, where $p_{J} = D(T_{J})$ $= > P_{SOR} = w^{+} - 1$. Recall: DJ = COS (Th) => N# = 7/11(1-cos Th) = 1+sin Th As h->0, w== 2 2 2 (1-174) + 0(42) 1-216+0(62). => A= h->0, PSOR 2 SOP has better 32x32 250 SOR 254 12 SOR has better 74 64×64 985 iteration count 47 128 × 128 3882 and scaling! 14404 94 7567751

(an Ne try to improve convergence) shows in J and J across in J a

1-2w + 12 W > 11

Lecture Mandont 1/3

tegent contribution of all frequencies

More formally. $m = max \mid mx \mid$ is the smoothing factor, i.e., $\frac{n}{2} \leq k \leq n$ the largest factor by which high frags $(k \geq n)$ are reduced of one application of the smoother on-Jac w/w=4;
wTacobi: 13th M GS leix. GSRB II W-GSRB
1D 2/3 1/3 0.45 0.125 2D 4/5 3/5 0.5 0.25 3D 6/7 5/7 0.567 0.445 0.23
69 has nothiner eigenfus, not important how these are climinated by the does 65 climinate high freq. sine waves?
OS Lex analysis of smeething: Local fourier analysis: i prove houndaries & analyze the problem on the infinite domain (xj=jh, j+Z), Now the signifies are $uk = e^{ik \times e} = e^{ik \times e} = e^{ik \cdot h} \in Ferrier modes$ What values does k take? Highest unvenionable k corresponds to the period 2h => k(2h)=2R => k = R/h
Q is Continuous" unrenumber () () = (xo(i62) high freq. 10 2 11/2
eigentas - Ul (18) = Conjuntation of the state of the st
$= 2 \alpha e_{k}^{k} = \frac{1}{2} (\alpha c_{k-1} + c_{k+1}) \qquad \begin{cases} c_{k-1} = c_{k} e_{xp}(-i\Theta) & \text{Use sub.} \\ c_{k+1} = c_{k} e_{xp}(i\Theta) \end{cases}$ $= 2 \alpha = \frac{1}{2} (\alpha e_{xp}(-i\Theta) + e_{xp}(i\Theta)) \qquad \begin{cases} c_{k+1} = c_{k} e_{xp}(i\Theta) & \text{Use sub.} \\ c_{k+1} = c_{k} e_{xp}(i\Theta) & \text{Use sub.} \end{cases}$ $= 2 \alpha = \frac{1}{2} (\alpha e_{xp}(-i\Theta) + e_{xp}(i\Theta)) \qquad \qquad \begin{cases} c_{k+1} = c_{k} e_{xp}(-i\Theta) & \text{Use sub.} \\ c_{k+1} = c_{k} e_{xp}(i\Theta) & \text{Use sub.} \end{cases}$ $= 2 \alpha = \frac{1}{2} (\alpha e_{xp}(-i\Theta) + e_{xp}(i\Theta)) \qquad $

MAT 22-0A - Lecture 14 - 11/10 In 30. GENN"3 scaling FFT~N32/3 scaling, SOR~N"1/3 MATLAB Overtvire code for speedup! Recall Big Iden of Multigrid is to use Smoothers (Jawbi, GS) to get cid of high spatial frequerror & then use a coaiser mesh to eliminate low frag-errors Coarse Grid Correction. Let un be the algebraic soln to Ly 1/4 = 1/4 Uh is the approximate soln after k-iterations (ic. through Jacobi or 65) Ch = Un-Un algebraiceror Vh = fn-Lhuk resideal Ly Uh = Uh + eh = Uh + Lh rh approximate Lh togen. iterative schene a coarse mesh to "solve" Lheh = rh for the (since me wiped out high fully. ellor!) Notation: Let Dh= mesh w/spacing h (original fine gold) according hen Stan is a coarser grid -> half as ananypts in ID G(DLh) set of gird functions on 52h (i.e., f. u. L.) Transfer operators Restriction operator: In: 6(52h) -> 6(52zh) Interpolation/prolongation: In: 6(Man) -> 6(52n) Have uk, Compute fine grid residual mi=fh-Lhuk

Solve for error $k = L_{2h} r_{2h} + L_{2h} r_$

êk = In en Interpolate to fine grid: Correct the approx soln uh = uh + êh

Iterative Schene

= Uh + In ezh

= Uh + In Lin 12h

= Un + In Lin Ih rh

= un+ In [-1 In (fn-Lnuh)

= (I - In Lzh In Lh) uh + In Lzh In fh

hopethis is close to Li => product close to I

- 1. Presmoothing => apply S V, times
- 7. Apply loaise Gird Correction Forestrict residual > solve for coarse grid error \$ add more grids > interpolate error multigric Gerrect (add error back in)

3. Postsmooth => apply 5 vz times

Questions: 1. How to pick v, & vz.

2. What are the transfer operators

- 3. How to solve for Lin? What is this course grid operator?
- 5. How efficient is this? =>O(NLAN). 4. Which smalling open 1-1?

Lecture 14 - 11/10 contéd Questions Answered 5 Multigrid will be a O(NenN) galgorithm 2. Transfer operators: Restriction 0 2j-1 2; 2j+1 Full-weighting (uzn) = 4 (un) zj-1 + 2 (un) zj+1 Deripes out high fregs. very well DAdjoint of the linear interpolation op. Stencil for Fell-Weighting In = 4[121] $\frac{1}{2}h = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ = 4 [2] 4 [1 2 i] = (In) I'm & outer/tensor product

Multigrid/2-gid oruvier One may to define lan: Lan = In Lh - in
Galerkin course scide op. Lan = In Lh - in 7 - [-Zhezh= 12n In 20, stencil Ln = h2 [1-41] => Lzn - (24) 2 -12 2 , Lyn = sampling clsc le This came from a PDE though! So just rediscretize the PDE! Simpler approach: Lzn = (zh)z[1-41] e rediscritization (Calerkin used in Algebraic multigrid -> more general, but slower!) How well does this work? Let vi = # of presmooth steps, vz=#of postsmooth steps. pro port part part Elling from start vouly # that matters in Zgrid. Spectral radiis to Z-grid, 2D, full weighting bilinear interpol, rediscretization A these spectal and is are GS-RB V W-Jac 1 0.6 independent if meshspacing! 0.25 (before: P=f(h) &p>1 nsh=0) 0.074 0.360 3 0.216 0.053 4 0.137 DPCC<1. 0.041 Recall: To det. iteration counts to reduce error by E PK = E => K= ln E/lnp How much smoothing should ne do? k ~ - /103,0(P) A: Balance smoothing work of iteration work Work = V + W else (2+w) (work) (#its.per Work per digitofaccurage Comparable with -log10(P) totalwork w=0 | w=1 | w=5 O(N) W=6 total nork of (V+W) -9.97 1.66 3.32 1663 WELIS 1.77 2.65 2 6-19 7.07 Comparable 2.35 | 3.14 | 6.27 7.05 Suggests V= Z sins work to 7.88 3.60 6.49 7.21 1 smooth lovestukik!

NIAILLOA - LECTUREIT - 11/17 Lust time, we saw that N=Z smoothing steps gives the lowest work for GS-RB, full-weighting, bilinear interpolation, rediscretization Z-grid approx In to pick vi & vz (The pre-smooth step# & post-smooth step#)? Let M be the multigrid iteration operator. Then error at iteration k is e = Mek-1 => ||ek||2 = ||M||2 ||ek-1||2 => |lek||2 = |M||2 for small k, IlMIlzisa better error approx. Than Ak. IIMIIZ 0.559 Jeven tho 1.414 Jeans and. 0.200 Jeffer to mix! 11/11/2 V, / V2 0.137 0.001 0.081 0 3 1.414 In general, common choices: $\gamma_1 = 1, \sqrt{2} = 1$ for $\gamma_1 = 2$, $\gamma_2 = 1$)

socure 2 aptimal 1.414 & bal! Marington Z-grid to Multigrid. Tony use direct solve on the course grid? Use another Zgrid as the solver! Solving Ly un=fy

Solving Ly u Ly smooth Lynn= fra vi times (initial guess len=0)

Ractually error & resident

Compute residual to error equation "Zn" 1) restrict to ryh -> solve Lyneyn = ryh rename & solve Lynnyh = fyll (for myn) This is one Hention interpolate to correct Uzn= uzn+ In uyh of a 3grid algorithm smooth vz times using a "V-cycle" ideipolate & correct un = Un + In uzh -> other forms of cycles: smooth of times No itamions before X=2 on 4 gild, Weyele cuturning to fine gird >2.9. 8=2 on 3-gird 240 V-cycle => 8=1.

MAILLOH - Lecture 18 - 11/22
Conjugate Gradient Method: Av=f
Just solve using where Ais symmetric positive definite AT = A = by TAy>0 Vy +0 just us compute Au and eigenvalues of A our positive Ereal and accomplete set of orthogonal eigenvectors
Cois related to minimization garas - not sym, indefinite
Define functional of: RN->TR: Q(u)= = u Au - u f
Sula to Aug - C is the minimizer of M
B DO = - Au + - ATu - f = Au - f = O for Au - f
Pf $DQ = \frac{1}{2}Au + \frac{1}{2}Au - f = Au - f = 0$ for $Au - f$ $BDQ = A \in Aprs. del., so Pis convex. => Au = f soluminates P_{I}$
Althod of Steepest Descents. Have UK. K! iterate, want method for generating UKH jolus Pur. => UKH = UK + & TK
O(1)
Pick a to minimize (P(MK+) - MINO(ERICK)) $= \sum_{\alpha \in \text{argmin}} Q(MK+\alpha T_K)$ $= \sum_{\alpha \in \text{argmin}} Q(MK+\alpha T_K) = \frac{1}{2}(M+\alpha T_K)^T A(M+\alpha T_K) - (M+\alpha T_K)^T A$ $= \frac{1}{2}M^T A M - M^T + \alpha(\frac{1}{2}M^T A M + \frac{1}{2}M^T A M - M^T A)$
$+ \alpha^{2} \frac{1}{2} E^{T} A E^{T} \int_{Snme} \frac{1}{\sin \alpha} \frac{1}{$
$0 = r^{7}(A_{n}-f) + \kappa r^{7}Ar = -r^{7}r + \alpha r^{7}Ar$ $= r^{7}Ar > 0$ $= r^{7}Ar$ $= r^{7}Ar$ $= r^{7}Ar$

Steepest Descents 112-114m initialize no mainly Zmatix-vectopodocts loop in k TK= f-AUK faster: [KH = f - AUKH) check Irkll for stopping =f-A(uk+ark) a- rick = ick - dAck which we already compute in finding A. Uktl = NK + drk More efficient method initialize no & ro=f-Ano unty one motion-und-product loop k check Ilrall in w= Ar step! compute w= Ark Aresidual used as stopping criterion d = TKYK b/c it is available & generally YK W more robust -> doesn't dep. on it metho Uk+1 = Uk + ark rk+1 = rk-dw Level curves of Pare ellipses オチコノーコマ the shape is celated to the eigenvalues C= 7(n-x) 1 it 10 f-Ay = 7 (u-y) metho An-Ay= 7(n-y) Conve A(n-n)= 3(n-n) quickty Hence un-vis an eigenvector of A

so residual at these points (in pic) and takes ikazits. (60) 대를 >기 The convergence rate of steepest descents Rods of little stops depends on K= ||A||2||A"||2 the condition#. Slow convergence. Forsomm. matrix, X = max 12x1 min 12xl

MATZZ8A - Lecture 19- 11/29

Recall: Have public Air-f where Ais symm, pos. definite
Only need to be able to compute matrix-vector products!
Steepest Descents governmed to converge! Lo Q(u) = u An -u f a minimize this forctional to salve Ati= f.

Speed depends on condition Hi KallAllz. 11A-112 For symm. matrix, K = max 12k1/min 12k1

Conjugate Gradient Descent - search direction is different than residual

Let pr be the vector to follow/search: Uk+1 = Uk + xpk.

Follow this search path until Pinerensesile. The minimizer of P on a Dspace

Find x = Pk K

No Can

Pr Apr

Start u/ Conj. grad in 2D:

-initial quess no Ly compute initial resident to Lyinitia lize Po= ro

U= uo+ × Po , x = PoTAPo Jone step of steepest descent toget ui

- pick P, so that Pot Ap, = O.

Ly new direction not orthogonal to old, but A-conjugate, Why?

i.e. vithegenal in the A-inner product < po. P.) A

size A:s symm. pos. def. = pot Apr.

Ly p. is forgent to level set of Q at Q (up) i.e. pot r = 0

=> pot(f-Au)=0=>pot(An-An)=0=>potA(u-u)=0 So p. will be in the direction of u-u.

=> uz is the solution (= 20).

```
Conj. Grand Desc. in 31):
    . Tritialize us, compute ro. set po=ro.
   get u. = uo + or po , a = Porto
    Pick pi be A conjugate to Po (2D space to pick from)

by pick some direction in that space (projection of residual and A-conjugarys)
    · P. &r. define new x. uz=u,+ xp1.
    · Po & P. span a plane 42+ copo + C, P. which istangent to level surface
        of Q at Q(nz).
    Now pick Pz A-conjugate to both po Ep.
                                                               (solved).
     G Minimize Palong Pr : Uz = Uz + XPZ
Done ble (copo - cipi) Trz = 0
            (Copo+ Cipi) (f-Anz)=0
            (copo+cipi) (An-An)=0
           (copo+cipi) A (n-nz) = 0

tpick Pz in this direction!
*CGD guaranteed to converge livinfinite arithmetic precision, no round-off)
    to the exact solution in N steps (N=# of unknowns).
 Usually get "close" in far fewer steps.
 Pseudo code for CGD algorithm: · initialize: no. ro=f-Avo. Po=ro
Pseudo code tor CUP.

Sopk

Sopk

SW = APK

SG

TRTKA
                                                This is the with stuff!

The (po. Pi..., pr)-space

projected off in A innerpor
  Pa d= Cry
                            1 pr+1 = Pr+1 + Bpk
    WPK
                                                     go save Think since we
  L> NAHI = UK+ XPK
                                                        use it several times.
                          end loop
  L> (k+1 = 1/2 - an
by Check Ilratill for stopping
```

```
NUTILLOA - LECIVIETI COMINUED - 11/24
 Sketch of analysis of convergence of CGD:
                                                              < Ho. M. Z= W. TAM
 Blc A is sym. pos. def. can define inner product

& a norm ||u||_A = u Au.
 (an show that error after n iterations of CGD is
    llenla < 2 (JK-1) lleolla
 If X is close to 1, error converges rapidly!
If X large, error converges very slowly.
Preconditioning - idea is to change condition number Esolve
Than (for some look) The vectors in the CG algorithm have the following proprite
 Pk 15 A-conjugate to all previous search directions poili. Pk-1
  2) The is orthogonal to all previous residuals for Minimiker.
  3) The following subspaces of TR are identical:

span (Po. Pi..., Pk-1), span (ro. AG, A'ro..., A'ro),

span (Ao 12. ok)
          Span (Alo, Alo, Akla)
 Petine Kn = span(ro, Aro, Aro) n-dimil Krylovspace associated
Kiglor methods perform minimitations on successive/nested Kiglor spaces.)
Note un & Upt Kn (affine space) & un minimizes () in this space.
- Minimizing O is equivalent to minimizing 1/2;1/2.
Ob Nejlla = ejTAej = (uj-n)TA(uj-u) = ujTAuj-ZujTAu + uTAu
              = u, TAu, -Zu, If + nTAn
              = 2 Q(nj) + C
```


MATZLOA - LAST CECTOR
Becall: Minimizing (P(u) is equivalent to minlex la for CG. Key thm: span(poppi,, Pr.) = span (Alo, Alo,, Aleo)
11 11. + 00Po + + 0/kg/K-1
UK = No + C1 Alo + C2 A ² lo + · · + CKA ^k lo Subtract solution! CK = lo + C1 Alo + C2 A ² lo + · · + CKA ^k lo = q(A)·lo CK = lo + C1 Alo + C2 A ² lo + · · · + CKA ^k lo = q(A)·lo CG picks q ∈ N _K = space of polynomials of deg. at most K with q(0) = 1.
to minimize lexl/1=11q(A)eollA.
Note: Ais dingenalizable: A = QNQT = and. QT=QT. So N=QNQ'QNQ'=QNQ'
Fact: $q(A) = QQ(A)Q^{-1} = Q\left(\frac{2(2i)}{2(2i)}\right)Q^{-1}$.
an show $\ e_{\mathbf{k}}\ _{A}^{2} = \ g(A)e_{\mathbf{k}}\ _{A}^{2} \leq \max\left(g(\lambda_{j})\right)^{2} \ e_{\mathbf{k}}\ _{A}^{2}$ one step of CG picks $g_{i}(\mathbf{x})$ our error bound comes from minimizing this so that $ g $ on the spectrum of $ g $. $g_{i}(\lambda_{i}) = -g_{i}(\lambda_{i})$ $g_{i}(\lambda_{i}) = -g_{i}(\lambda_{i})$ To general, can use the spectrum of $ g $ in the spectrum of $ g $.
2 steps of CG: assuming eigenvalues uniformly distributed in [21. 2n] (o/w no unalytic soln) lenter = lente
How well does this work? For Discrete Laplacian, $K = O(h^2)$ sine Inget 2 Old to large K, #iterations to converge to a rel. to leading 2 is $\sqrt{K}\log E$. As $O(h^2)$ it

For discrete Laplacian, #its. to converge to rel. to lot & (| lenlin = E is $\sqrt{K}\log \Sigma = O(h^2) = O(n) = O(JN)$. lach iteration costs O(N), so in 2D, totalwork = O(N3/2) Isame scaling as SOR). What it we cluster the eigenvalues into groups? Then the polymonials we're minimiting over the spectrum can be lower order & CG conveys way faster! This is Preconditioning Pre conditioning CG: An=f = slow convergence if K is big for A:

(hangethe problem => M-An=M-f = same solution in but

Spectrum of M-A is diffillim. Pick Mis.t. Mil A has a smaller X & dustand eigenvalues. 1) symmetric, positive-de-finite For CG. the pre-conditioner M should be: Don't need M, need to be able to apply 11-12) M-1 A better conditioned 3) M-1 easy to apply i.e. N 3) Mil easy to apply i.e. Mx= 5 Unively. Mi should approx. A so that XXI. Moblem: M- A is not symmetric!

An=f=> B-An=B-f=>(B-AB)BTw=(B-f)

Left 8 right preconditioning Perfine $A = B^T A B^T$, $R = B^T u$, $f = B^T f = > A \overline{u} = f$.

Symmetric, positef, since $y^T B^T A B^T y = (B^T y)^T A B^T y = \overline{u}^T A \overline{u} > 0$ for $y \neq 0$. Note: BTB-ABTBT = BTB-A = (BBT)-A = MA => M=BBT À has the same eigenvalues as M-1 A since B-TABT is just a change of basis. Write CG in rariables & then transform back to original variables UK = BTUK PK=BTPKITK=BTK, then B. BTdrap out of algorithm.

Unc step of CG: PR+1 = TR+1 + PRPR

BTPh=1 = BTR+1 + PRBTPR -> PR+1 = BTBTR+1 + BRPR = MTR+1 + BRF

```
Pre-conditioned Conjugate Gendient Descent Algorithm
   initialize ro=f-Ano
Solve MZo = ro or compile Zo = M'ro (if have action apply M')
 Pritialize Po= Zo
   loop k
      WK = APK
      d= ZKTK
       Ph WK
     UKI = UK + & PK
      rkt1 = rk - awk
      check Il full for stopping criterion
     compute ZK+1 = M K+1
  B = Zkti rkti
              ZK rK
       PK+1 = ZK+1 + BPK
    end
How do we pick the pre-conditioner M-17
· Eusy/Naive implementation: M-I = D-I, Dis diag. of A & does nothing for (ie. Poisson) since D'is a scalar.
oUse other iteration schenes, but symmetrized:
  . SSOTZ + symmetric SOR, loop downmesh once, (rep back up (Zx tetal)
  . MG & Using a symmetric smoother (RB-BR etc.)
Approximate factorizations - incomplete LU/cholesky factorization
 b know nothing, just algebraic.
```

