Numerical Analysis Assignment 2019 Spring Semester

Youngwan Kim

May 6, 2019

Assignment. Implement a Matlab code in order to plot a Bezier curve using the second method introduced during the class.

In total there are 3 MATLAB script files. The main routine for the code is implemented in bezier_hw.m, and the other MATLAB scripts are implementations of functions including Mid(P,n) and Bzrt(n). Before introducing the main routine, let us go through the functions first.

Listing 1. 'Mid m'

The above Mid(P) function gets a 4×2 matrix as an input, where each of the P(i,:) of P are a single control point. Thus Mid(P) gets 4 control points of a Bezier curve as an

input, and it gives us an output of a 8×2 matrix, or 8 points. These 8 points will act as new control points for the half-segments of the initial Bezier curve given. To elaborate, Mid(P)(1:4,1:2) will be the control points for $B(\frac{t}{2})$ and Mid(P)(5:8,1:2) for $B(\frac{1+t}{2})$ where B(t) is the Bezier curve defined by P and for $t \in [0,1]$.

Here I deliberately duplicated the midpoint in order to ease indexing problems later. (This might have caused some unnecessary computations)

Listing 2: 'Bzrt.m'

```
function Bzrt(P,n)

for i=1:n
for j=1:2^(i-1)
Q(8*j-7:8*j,1:2) = Mid(P(4*j-3:4*j,1:2));
end
P=Q;
end
plot(P(:,1),P(:,2),'o-')
```

The above function Bzrt(P,n) has 2 inputs, where P again is the control points of the Bezier curve. Also n is an input parameter which will act as the desired accuracy for approximation, or the desired number of iterations. The relation used in the code is a generalization of a recursion I discovered while writing this code:

```
i=1 1
P(1:8,1:2)=Mid(P(1:4,1:2))

i=2 2 2^1
P(1:8,1:2)=Mid(P(1:4,1:2))
P(9:16,1:2)=Mid(P(5:8,1:2))

i=3 4 2^2
P(1:8,1:2)=Mid(P(1:4,1:2))
P(9:16,1:2)=Mid(P(5:8,1:2))
P(17:24,1:2)=Mid(P(9:12,1:2))
P(25:32,1:2)=Mid(P(13:16,1:2))
```

and so on. After getting the points the code plots the final points. The code itself requires a double for loop in order to obtain $2^{(n+2)}$ points to approximate the Bezier curve. The following is a result of a test script to see if the code above works well:

The control points used here for testing the code was (0,0), (0,2), (2,2) and (2,0). Also starting from the outside the control parameter was set as n=0 to n=4. We can obviously see that as n gets bigger the more closer it gets to the desired Bezier curve.

Listing 3: 'bezier_hw.m'

```
1 function bezier_hw(n)
2 figure; hold on
3 axis([1 700 0 700])
4 load T.txt
5
6 for i=1:size(T,1)
7 for j=1:4
8 P(j,:)=T(i,:)(2*j-1:2*j);
9 end
10 Bzrt(P,n);
11 end
```

Now we take a look at the main routine code bezier_hw.m, which is also a function as it gets an input n, which is a parameter for approximation accuracy. This code loads a 16×8 matrix by loading T.txt. Each T(i,:) has 8 coordinate information of the 4 control points for a single Bezier curve, in total having 16 Bezier curves to express T. The first routine goes through these 16 Bezier curves. The inner routine (lines 7 to 9) is a simple code converting a 1×8 matrix into a 4×2 matrix in order to fit it into Mid(P) and Bzrt(P,n). After reshaping T(i,:) into P, for each T(i,:) it evaluates and plots the $2^{(n+2)}$ points of approximation using the Bzrt(P,n) function. The figure; hold on code lets the 16 set of line segments plotted in a single figure.

Here is the final result of approximating the Bezier curve data of ${\sf T.txt}$ into line segments :

