EpiGraph: Recommender-Style Graph Neural Networks for Highly Accurate Prediction of Conformational B-Cell Epitopes

Jung-Eun Shin

Seismic Therapeutic Watertown, MA 02472 june.shin@seismictx.com

Nathan J. Rollins

Seismic Therapeutic Watertown, MA 02472 nathan.rollins@seismictx.com

Jordan M. Anderson

Seismic Therapeutic Watertown, MA 02472 jordan.anderson@seismictx.com

Daniela Cipolletta

Seismic Therapeutic Watertown, MA 02472 daniela.cipolletta@seismictx.com

Yi Xing

Seismic Therapeutic Watertown, MA 02472 yi.xing@seismictx.com

Kevin L. Otipoby

Seismic Therapeutic Watertown, MA 02472 kevin.otipoby@seismictx.com

Yen-Lin Chen

Seismic Therapeutic Watertown, MA 02472 yen-lin.chen@seismictx.com

Thomas Hopf

Seismic Therapeutic Watertown, MA 02472 thomas.hopf@seismictx.com

Michael P. Cianci

Seismic Therapeutic Watertown, MA 02472 mike.cianci@seismictx.com

Jyothsna Visweswaraiah

Seismic Therapeutic Watertown, MA 02472 jyothsna.visweswaraiah@seismictx.com

Colin H. Lipper

Seismic Therapeutic Watertown, MA 02472 colin.lipper@seismictx.com

Nathan Higginson-Scott

Seismic Therapeutic Watertown, MA 02472 nathan.higginson-scott@seismictx.com

Ryan Peckner

Seismic Therapeutic Watertown, MA 02472 ryan.peckner@seismictx.com

Abstract

The accurate identification of B-cell epitopes is crucial to the development of antibodies and biologics, but traditional experimental methods for epitope identification are time-consuming and resource-intensive. While robust methods exist for the prediction of T-cell epitopes in silico using machine learning, reliable in silico

approaches have yet to be developed for the prediction of B-cell epitopes, due largely to their conformational complexity and the sparsity of publicly available structural data. In this work, we demonstrate both in silico and via in vitro lab assays that recommender-style graph neural networks trained on all publicly available structures of antibody-antigen complexes achieve state-of-the-art predictive performance for conformational epitopes on both known and novel antigens. Our method EpiGraph is broadly applicable to any B-cell epitope prediction task, and to the best of our knowledge, is the first to be experimentally validated on antibody-antigen complexes for which no experimental structures are publicly available.