Flight Data Analytics

Overview

Flight Data Analytics analyzes aviation accident data to identify potential risks associated with expansion to the aviation industry as well advise on how to mitigate said risks. The analysis leverages accident data to inform decisions on aircraft acquisition, equipment purchase as well as staff training to successfully purchase and operate planes for commercial and private enterprises.

Business Problem

Our company is expanding into aviation and needs to evaluate potential risks associated with managing fleets of airplanes. The goal is to: 1.determine which aircraft are best to purchase 2.Necessary equipment to be purchased to enhance safety 3.Necessary experience needed by staff as well as additional training they should undertake

Data Understanding

The data is sourced from the National Transportation Safety Board (NTSB), covering aviation accidents from 1948 to the end of 2022. It includes information such as: 1.accident severity 2,aircraft type 3.injury statistics 3.weather condition 4.plane make and model

For this particular project we will only analyse data going back six(6) years for actionable insight as requested by management

```
In [28]: 
| #importing standard libraries

from matplotlib import pyplot as plt
import pandas as pd
import seaborn as sns

In [29]: 
| pd.set_option("display.max_columns",500) #This allows me to look at all
data=pd.read_csv(r"C:\Users\User\Desktop\DATA SCIENCE\Phase 1 project\A
```

In [30]: M df=data.copy()#Create a copy of the data to use for manipulation df.head() #Check the first five rows make sure data is successfully impo

Out[30]:

	Event.ld	Investigation.Type	Accident.Number	Event.Date	Location	Co
0	20001218X45444	Accident	SEA87LA080	1948-10-24	MOOSE CREEK, ID	L S
1	20001218X45447	Accident	LAX94LA336	1962-07-19	BRIDGEPORT, CA	L S
2	20061025X01555	Accident	NYC07LA005	1974-08-30	Saltville, VA	L S
3	20001218X45448	Accident	LAX96LA321	1977-06-19	EUREKA, CA	L S
4	20041105X01764	Accident	CHI79FA064	1979-08-02	Canton, OH	L S
4						

In [31]: ▶ df.shape #Checking the number of rows and columns

Out[31]: (88889, 31)

In [32]: ▶ df.columns #Check for column names

```
▶ df.info() #Summary of the data
In [33]:
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 88889 entries, 0 to 88888 Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype		
	French Td	0000011			
0	Event.Id	88889 non-null	object		
1	Investigation.Type	88889 non-null	object		
2	Accident.Number	88889 non-null	object		
3	Event.Date	88889 non-null	object		
4	Location	88837 non-null	object		
5	Country	88663 non-null	object		
6	Latitude	34382 non-null	object		
7	Longitude	34373 non-null	object		
8	Airport.Code	50132 non-null	object		
9	Airport.Name	52704 non-null	object		
10	Injury.Severity	87889 non-null	object		
11	Aircraft.damage	85695 non-null	object		
12	Aircraft.Category	32287 non-null	object		
13	Registration.Number	87507 non-null	object		
14	Make	88826 non-null	object		
15	Model	88797 non-null	object		
16	Amateur.Built	88787 non-null	object		
17	Number.of.Engines	82805 non-null	float64		
18	Engine.Type	81793 non-null	object		
19	FAR.Description	32023 non-null	object		
20	Schedule	12582 non-null	object		
21	Purpose.of.flight	82697 non-null	object		
22	Air.carrier	16648 non-null	object		
23	Total.Fatal.Injuries	77488 non-null	float64		
24	Total.Serious.Injuries	76379 non-null	float64		
25	Total.Minor.Injuries	76956 non-null	float64		
26	Total.Uninjured	82977 non-null	float64		
27	Weather.Condition	84397 non-null	object		
28	Broad.phase.of.flight	61724 non-null	object		
29	Report.Status	82505 non-null	object		
30	Publication.Date	75118 non-null	object		
	es: float64(5), object(2		,		
memory usage: 21.0+ MB					

memory usage: 21.0+ MB

▶ df.describe() #Statistical summary of my data frame In [34]:

Out[34]:

	Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	Total.Minor.Injuries
count	82805.000000	77488.000000	76379.000000	76956.000000
mean	1.146585	0.647855	0.279881	0.357061
std	0.446510	5.485960	1.544084	2.235625
min	0.000000	0.000000	0.000000	0.000000
25%	1.000000	0.000000	0.000000	0.000000
50%	1.000000	0.000000	0.000000	0.000000
75%	1.000000	0.000000	0.000000	0.000000
max	8.000000	349.000000	161.000000	380.000000
4				•

In [35]: ▶ df.isnull().sum() #Check for null values

Out[35]: Event.Id 0 Investigation. Type 0 Accident.Number 0 Event.Date 0 Location 52 Country 226 Latitude 54507 Longitude 54516 Airport.Code 38757 Airport.Name 36185 Injury.Severity 1000 Aircraft.damage 3194 Aircraft.Category 56602 Registration.Number 1382 Make 63 Model 92 Amateur.Built 102 Number.of.Engines 6084 Engine.Type 7096 FAR.Description 56866 Schedule 76307 Purpose.of.flight 6192 Air.carrier 72241 Total.Fatal.Injuries 11401 Total.Serious.Injuries 12510 Total.Minor.Injuries 11933 Total.Uninjured 5912 Weather.Condition 4492 Broad.phase.of.flight 27165 Report.Status 6384 Publication.Date 13771 dtype: int64

DATA PREPARATION

Data Cleaning

Data cleaning and wrangling is essential to the data science process. I do these by first checking and dropping all the duplicates in the data frame.

Next I standardize all the column names by removing white space, using underscore as a separator and making all the characters lower case making them easier to call.

I then filter out all the data older than 6 years because of constant innovation and changing technologies in the aviation space

Dropping columns with more than half null values

I impute all numerical columns with zero[0] and all the categorical with "unknown"

Lastly I drop all the non essential columns and finally I drop all rows with null values

```
▶ #Check and drop duplicates
In [36]:
             df.duplicated().sum()
   Out[36]: 0
          #Standardize column names by removing white space, lowercase, using und
In [37]:
             df.columns=df.columns.str.strip().str.lower().str.replace(" ","_").str.
             df.columns
   Out[37]: Index(['event_id', 'investigation_type', 'accident_number', 'event_da
             te',
                    'location', 'country', 'latitude', 'longitude', 'airport_cod
             e',
                    'airport_name', 'injury_severity', 'aircraft_damage',
                    'aircraft_category', 'registration_number', 'make', 'model',
                    'amateur_built', 'number_of_engines', 'engine_type', 'far_desc
             ription',
                    'schedule', 'purpose_of_flight', 'air_carrier', 'total_fatal_i
             njuries',
                    'total_serious_injuries', 'total_minor_injuries', 'total_uninj
             ured',
                    'weather_condition', 'broad_phase_of_flight', 'report_status',
                    'publication_date'],
                   dtype='object')
```


Out[38]:

	event_id	investigation_type	accident_number	event_date	location
79402	20170110X14448	Accident	GAA17CA108	2017-01-01	Casa Grande, AZ
79403	20170117X42903	Accident	CEN17LA079	2017-01-01	New Braunfels, TX
79404	20170103X14851	Accident	WPR17FA045	2017-01-02	Payson, AZ
79405	20170103X43747	Accident	WPR17LA046	2017-01-03	Paradise, MT
79406	20170105X45917	Accident	WPR17LA048	2017-01-04	Napa, CA
79407	20170105X51011	Accident	CEN17LA068	2017-01-04	Nacogdoches, TX
79408	20170105X81632	Accident	CEN17FA067	2017-01-04	Brookfield, WI
79409	20170105X41106	Accident	WPR17FA047	2017-01-05	San Pedro, CA
79410	20170105X74726	Accident	CEN17FA071	2017-01-05	Gurdon, AR
79411	20170105X85226	Accident	ERA17LA078	2017-01-05	Atlanta, GA
4					•

▶ df.shape #The new shape of the filtered data In [39]: Out[39]: (9487, 31) In [40]: ▶ df.isnull().sum() #Check the null values of the new data Out[40]: event_id 0 investigation_type 0 accident_number 0 event_date 0 location 0 country 0 latitude 1347 longitude 1347 airport_code 3979 airport_name 4162 injury_severity 559 aircraft_damage 780 aircraft_category 192 registration_number 2 make 0 model 0 amateur_built 0 number_of_engines 2019 engine_type 3795 for docomination

100

```
In [41]:  #Drop columns with more than 50% of missing values
    thresh=len(df)*0.5
    df=df.loc[:,df.isnull().sum()<=thresh]

df.isnull().sum()</pre>
```

Out[41]:	event_id	0
	investigation_type	0
	accident number	0
	event_date	0
	location	0
	country	0
	latitude	1347
	longitude	1347
	airport_code	3979
	airport_name	4162
	injury_severity	559
	aircraft_damage	780
	aircraft_category	192
	registration_number	2
	make	0
	model	0
	amateur_built	0
	number_of_engines	2019
	engine_type	3795
	far_description	199
	purpose_of_flight	2194
	total_fatal_injuries	0
	total_serious_injuries	0
	total_minor_injuries	0
	total_uninjured	0
	weather_condition	2320
	report_status	4522
	<pre>publication_date</pre>	953
	dtype: int64	

```
In [42]:  #Filling in numerical columns
    numcol=["total_fatal_injuries", "total_serious_injuries", "total_minor_i
    #The numerical columns will be filled with [0]
    df[numcol]=df[numcol].fillna(0)
    df.isnull().sum()
```

Out[42]:	event_id	0
	investigation_type	0
	accident_number	0
	event_date	0
	location	0
	country	0
	latitude	1347
	longitude	1347
	airport_code	3979
	airport_name	4162
	injury_severity	559
	aircraft_damage	780
	aircraft_category	192
	registration_number	2
	make	0
	model	0
	amateur built	0
	number_of_engines	0
	engine_type	3795
	far_description	199
	purpose_of_flight	2194
	total_fatal_injuries	0
	total_serious_injuries	0
	total_minor_injuries	0
	total uninjured	0
	weather condition	2320
	report_status	4522
	publication_date	953
	dtype: int64	
	7 1	

```
In [43]:
             #Categorical columns
             catcol=["location","injury_severity","weather_condition","country","eng
             #They will be filled with unknown
             df[catcol]=df[catcol].fillna("Unk")
             df.isnull().sum()
   Out[43]: event_id
                                           0
             investigation_type
                                           0
             accident_number
                                           0
             event_date
                                           0
             location
                                           0
             country
                                           0
             latitude
                                        1347
             longitude
                                        1347
             airport_code
                                        3979
             airport_name
                                        4162
             injury_severity
                                           0
             aircraft_damage
                                           0
             aircraft_category
                                           0
             registration_number
                                           2
             make
                                           0
             model
                                           0
             amateur_built
                                           0
             number_of_engines
                                           0
             engine type
                                           0
             far_description
                                         199
             purpose_of_flight
                                        2194
             total_fatal_injuries
                                           0
             total_serious_injuries
                                           0
             total_minor_injuries
                                           0
             total_uninjured
                                           0
             weather_condition
                                           0
             report_status
                                        4522
             publication date
                                         953
             dtype: int64
In [44]:
             #Dropping columns not useful for the analysis"fl
             df=df.drop(columns=["airport_code", "airport_name", "registration_number")
```

```
In [45]:

    df.isnull().sum()

   Out[45]: event_id
                                         0
              investigation_type
                                         0
             event_date
                                         0
             location
                                         0
             country
                                         0
             injury_severity
                                         0
             aircraft_damage
                                         0
             aircraft_category
                                         0
             make
                                         0
             model
                                         0
             amateur_built
                                         0
             number_of_engines
                                         0
             engine type
                                         0
             total_fatal_injuries
                                         0
             total_serious_injuries
                                         0
             total_minor_injuries
                                         0
             total_uninjured
                                         0
             weather_condition
                                         0
             dtype: int64
In [46]:
              #Drop all other null values
             df=df.dropna()
In [47]:

    df.shape

   Out[47]: (9487, 18)
In [48]:
          H
             #Check our final data set with no null values
             df.isnull().sum()
   Out[48]: event_id
                                         0
                                         0
             investigation_type
             event_date
                                         0
             location
                                         0
             country
                                         0
              injury_severity
                                         0
              aircraft_damage
                                         0
             aircraft_category
                                         0
             make
                                         0
             model
                                         0
             amateur built
                                         0
             number_of_engines
             engine_type
                                         0
             total_fatal_injuries
                                         0
             total_serious_injuries
                                         0
             total_minor_injuries
                                         0
             total uninjured
                                         0
             weather_condition
                                         0
             dtype: int64
```

```
In [49]:
             # Convert all names in the 'make' column to lowercase
             df['make'] = df['make'].str.lower().str.replace(" ","_")
             # Display unique makes to confirm the changes
             unique_makes = df['make'].unique()
             # Print the first 50 unique makes and total count
             print("Unique Aircraft Makes in Lowercase:")
             print(unique makes[:50]) # Display the first 50 unique makes
             print(f"Total unique aircraft makes: {len(unique makes)}")
             Unique Aircraft Makes in Lowercase:
             ['larson_roger_h' 'quicksilver' 'cessna' 'softex_invest_llc'
              'schosanski_john_h' 'mooney_aircraft_corp.' 'demmer'
              'robinson_helicopter' 'columbia_aircraft_mfg'
              'aircraft_mfg_&_development_co' 'boeing' 'canadair' 'cirrus'
              'christen_industries_inc' 'boeing_company' 'maule' 'fields' 'mooney'
              'piper' 'sharpe_william_l' 'beech' 'piper_aircraft_corporation' 'aer
             onca'
              'american_champion_aircraft' 'textron_aviation_inc'
              'american_legend_aircraft_co' 'johnson' 'air_tractor_inc'
              'hawker_beechcraft' 'avro' 'hawker_beechcraft_corp' 'bellanca' 'robi
             nson'
              'bombardier_inc' 'bell' 'cirrus_design_corp'
              'grumman_american_corporation' 'eurocopter_deutschland_gmbh' 'ercoup
              'great_lakes' 'vaughan_gerald_r' 'aviat_aircraft_inc' 'zenith' 'coo
              'robinson_michael_e' 's_c_aerostar_s_a' 'bell_helicopter_textron'
              'shell_john' 'saab' 'md_helicopter']
             Total unique aircraft makes: 1405
          In [50]:
   Out[50]: (9487, 18)
In [51]:
          M df.to_csv(r"C:\Users\User\Desktop\Flight-Data\AviationData_clean.csv",i
```

ANALYSIS

1. Analyse injury severity by weather condition

We can see that majority of accidents, even though they are non-fatal, happen during clear skies and weather conditions when pilots rely on visual references and stimuli

2. Aircraft make & model by fatalities per accidents

Modern aircrafts are all relatively safe due to strict regulations by relevant authorites. Even though we can clearly see the Airbus A320 and Boeing 737 have more accidents than the rest

```
In [53]:
             # Aggregate accident and fatality data by make and model
             safest_models = df.groupby(['make',"model"]).agg({
                 'event_id': 'count', # Total accidents
                 'total fatal injuries': 'sum' # Total fatalities
             }).reset_index()
             safest_models=safest_models.sort_values(by="total_fatal_injuries",ascer
             # safest_models.tail(50)
             # "embraer" in safest_models["make"].unique()
             # biggest Commercial Plane manufacturer
             commercial planes=safest models[safest models["make"].str.lower().isin(
             commercial_planes.head()
             # Get the top 10 models with the least fatalities
             top_10 = commercial_planes.head(10)
             # Get the bottom 10 models with the most fatalities
             bottom_10 = commercial_planes.tail(10)
             # Plot side-by-side bar charts
             plt.figure(figsize=(12, 6))
             # Plot top 10 models with the least fatalities
             plt.subplot(1, 2, 1)
             plt.bar(top_10['model'], top_10['total_fatal_injuries'], color='green')
             plt.title('Top 10 Safest Models (Least Fatal Injuries)', fontsize=12)
             plt.xlabel('Aircraft Model', fontsize=10)
             plt.ylabel('Total Fatal Injuries', fontsize=10)
             plt.xticks(rotation=45)
             # Plot bottom 10 models with the most fatalities
             plt.subplot(1, 2, 2)
             plt.bar(bottom_10['model'], bottom_10['total_fatal_injuries'], color='r
             plt.title('Bottom 10 Models (Most Fatal Injuries)', fontsize=12)
             plt.xlabel('Aircraft Model', fontsize=10)
             plt.xticks(rotation=45)
             # Adjust Layout for readability
             plt.tight layout()
             plt.show()
```


3. Analyse total number of accidents by weather conditions

This graph shows that majority of accidents happen during clear weather conditions while pilots use visual flight rules(VFR)

CONCLUSION

The analysis conducted leads to the following observations and recommendations

1.Invest in advanced training programs for pilots to enhance navigational skills and advanced situational awareness.

This is because most accidents happen during clear skies/ visual meteorological conditions suggesting that over reliance in visual references leads to errors.

2.Consider other factors such as RELIABILITY, EFFICIENCY, VERSATILITY AND PRICE while purchasing aircrafts instead of accident data.

This is because even though we can clearly see the Airbus A320 and Boeing 737 have more accidents than the rest its crucial to note that it's not a reflection on poor safety. These two are the most widely used planes

3.Adopt advanced navigation and auto pilot systems to enhance safety even clear weather conditions

Most accidents happen during VFR conditions which are deceptively safer but pose unique challenges