158 Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie).

Soit E un espace vectoriel sur \mathbb{R} de dimension finie n. On munit E d'un produit scalaire $\langle ., . \rangle$, qui en fait un **espace euclidien**. On note $\|.\|$ la norme associée à ce produit scalaire.

I - Conséquences du caractère euclidien de E

1. Adjoint d'un endomorphisme

Lemme 1 (Théorème de représentation de Riesz).

[**ROM21**] p. 718

$$\forall \varphi \in E^*, \exists! a \in E \text{ tel que } \forall x \in E, \varphi(x) = \langle x, a \rangle$$

Théorème 2.

$$\forall u \in \mathcal{L}(E), \exists! u^* \in \mathcal{L}(E) \text{ tel que } \forall x, y \in E, \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

Définition 3. Avec les notations du théorème précédent, on dit que u^* est **l'adjoint** de u.

Théorème 4. Soient $\mathscr{B}=(e_i)_{i\in I}$ une base de E et $G=(\langle e_i,e_j\rangle)_{i,j\in [\![1,n]\!]}$ la matrice de Gram correspondante. Si $u\in \mathscr{L}(E)$ a pour matrice A dans la base \mathscr{B} , alors la matrice de u^* dans la base \mathscr{B} est

$$B = G^{-1t}AG$$

En particulier, si \mathcal{B} est orthonormée, on a $B = {}^tA$.

Proposition 5.

$$\forall u \in \mathcal{L}(E), |||u||| = |||u^*||$$

Il en résulte que l'application linéaire (cf. Proposition 6) $u \mapsto u^*$ est continue pour la norme $\|.\|$ subordonnée à $\|.\|$.

2. Propriétés de l'adjoint

Proposition 6 (Propriétés de $u \mapsto u^*$). Soient $u, v \in \mathcal{L}(E)$. On a :

- (i) $\forall \lambda \in \mathbb{R}, (\lambda u + v)^* = \lambda u^* + v^*.$
- (ii) $(u^*)^* = u$.
- (iii) $(u \circ v)^* = v^* \circ u^*$.
- (iv) $u \in GL(E) \implies u^* \in GL(E)$, et $(u^*)^{-1} = (u^{-1})^*$.

Proposition 7 (Propriétés de l'endomorphisme adjoint). Soit $u \in \mathcal{L}(E)$. On a :

- (i) $\det(u^*) = \det(u)$.
- (ii) $Ker(u^*) = Im(u)^{\perp}$.
- (iii) $\operatorname{Im}(u^*) = \operatorname{Ker}(u)^{\perp}$.
- (iv) $\operatorname{rang}(u^*) = \operatorname{rang}(u)$.
- (v) Si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u^* .

Proposition 8. Soit $u \in \mathcal{L}(E)$.

$$u = 0 \iff \operatorname{trace}(u \circ u^*) = 0$$

II - Endomorphismes normaux

Définition 9. Un endomorphisme $u \in \mathcal{L}(E)$ est dit **normal** s'il est tel que $u \circ u^* = u^* \circ u$.

Remarque 10. En désignant par $A \in \mathcal{M}_n(\mathbb{R})$ la matrice de $u \in \mathcal{L}(E)$ dans une base orthonormée, u est normal si et seulement si,

$$^{t}AA = A^{t}A$$

ce qui se traduit en disant que la matrice *A* est normale.

Exemple 11. Les endomorphismes symétriques, anti-symétriques (Section III) et orthogonaux (Section IV) sont des endomorphismes normaux.

Proposition 12. $u \in \mathcal{L}(E)$ est normal si et seulement si $||u(x)|| = ||u^*(x)||$ pour tout $x \in E$ où ||.|| est une norme euclidienne.

p. 719

p. 751

p. 743

p. 758

Proposition 13. Soit $u \in \mathcal{L}(E)$ un endomorphisme normal.

- (i) Si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u.
- (ii) Il existe un sous-espace vectoriel de E de dimension 1 ou 2 stable par u.

Proposition 14 (Réduction dans le cas n=2). On suppose n=2. Soit $u \in \mathcal{L}(E)$ un endomorphisme normal.

- Si *u* a une valeur propre réelle : *u* est diagonalisable dans une base orthonormée.
- Sinon : il existe \mathcal{B} une base orthonormée de E telle que la matrice de u dans \mathcal{B} est

$$R(a,b) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

avec $b \neq 0$.

Théorème 15 (Réduction des endomorphismes normaux). Soit $u \in \mathcal{L}(E)$ un endomorphisme normal. Alors, il existe \mathcal{B} une base orthonormée de E telle que la matrice de u dans \mathcal{B} est

$$\begin{pmatrix} D_p & 0 & 0 & \dots & 0 \\ 0 & R(a_1, b_1) & 0 & \dots & 0 \\ 0 & 0 & R(a_2, b_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & R(a_r, b_r) \end{pmatrix}$$

où D_p est diagonale d'ordre p et R(a,b) est définie à la Proposition 14.

III - Endomorphismes symétriques

1. Définitions et propriétés

Définition 16. Un endomorphisme $u \in \mathcal{L}(E)$ est dit **symétrique** s'il est tel que $u^* = u$.

p. 732

Proposition 17. Un endomorphisme $u \in \mathcal{L}(E)$ est symétrique si et seulement si sa matrice dans une base orthonormée est symétrique.

Corollaire 18. $\mathcal{S}(E)$ est un sous-espace vectoriel de E de dimension $\frac{n(n+1)}{2}$.

Proposition 19. Si $u \in \mathcal{S}(E)$, alors $u^p \in \mathcal{S}(E)$ pour tout entier naturel p, et $v^* \circ u \circ v \in \mathcal{S}(E)$ pour tout $v \in \mathcal{L}(E)$.

Théorème 20 (Spectral). Tout endomorphisme symétrique $u \in \mathcal{S}(E)$ se diagonalise dans une base orthonormée.

Corollaire 21. Toute matrice symétrique réelle se diagonalise dans une base orthonormée.

2. Endomorphismes symétriques positifs

- **Définition 22.** Un endomorphisme $u \in \mathcal{L}(E)$ est dit **symétrique positif** (resp. **symétrique défini positif**) s'il est symétrique tel que $\langle x, u(x) \rangle \geq 0$ (resp. $\langle x, u(x) \rangle > 0$) pour tout $x \in E$. On note $\mathcal{S}^+(E)$ (resp. $\mathcal{S}^{++}(E)$) l'ensemble des endomorphismes symétriques positifs (resp. symétriques définis positifs).
 - Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite **symétrique positive** (resp. **symétrique définie positive**) si elle est symétrique telle que $\langle x, Ax \rangle \geq 0$ (resp. $\langle x, Ax \rangle > 0$) pour tout $x \in E$. On note $\mathcal{S}_n^+(\mathbb{R})$ (resp. $\mathcal{S}_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques positives (resp. symétriques définies positives).

Théorème 23. Soit $u \in \mathcal{S}(E)$. Alors, $u \in \mathcal{S}^+(E)$ (resp. $u \in \mathcal{S}^{++}(E)$) si et seulement si toutes ses valeurs propres sont positives (resp. strictement positives).

Corollaire 24. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors, $A \in \mathcal{S}_n^+(\mathbb{R})$ si et seulement s'il existe $B \in \mathcal{S}_n(\mathbb{R})$ telle que $A = {}^tBB$.

Exemple 25.

[DEV]

$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = P^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} P \text{ avec } P = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & \sqrt{3} & 1 \\ \sqrt{2} & -\sqrt{3} & 1 \\ \sqrt{2} & 0 & -2 \end{pmatrix}$$

Lemme 26. Soit $M \in \mathcal{S}_n(\mathbb{R})$. Alors,

$$||M|| = \rho(M)$$

où ρ est l'application qui a une matrice y associe son rayon spectral.

Théorème 27. L'application $\exp : \mathscr{S}_n(\mathbb{R}) \to \mathscr{S}_n^{++}(\mathbb{R})$ est un homéomorphisme.

p. 752

3. Endomorphismes antisymétriques

Définition 28. Un endomorphisme $u \in \mathcal{L}(E)$ est dit **anti-symétrique** s'il est tel que $u^* = -u$.

[ROM21] p. 718

Théorème 29. Soit $u \in \mathcal{L}(E)$ un endomorphisme anti-symétrique. Alors, les valeurs propres de u sont imaginaires pures (éventuellement nulles) et il existe \mathcal{B} une base orthonormée de E telle que la matrice de u dans \mathcal{B} est

p. 746

$$\begin{pmatrix} D_p & 0 & 0 & \dots & 0 \\ 0 & R(0,b_1) & 0 & \dots & 0 \\ 0 & 0 & R(0,b_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & R(0,b_r) \end{pmatrix}$$

où D_p est diagonale d'ordre p et R(a,b) est définie à la Proposition 14.

IV - Endomorphismes orthogonaux

1. Le groupe orthogonal

Définition 30. Un endomorphisme $u \in \mathcal{L}(E)$ est dit **orthogonal** (ou est une **isométrie**) s'il est tel que $\langle u(x), u(y) \rangle = \langle x, y \rangle$ pour tout $x, y \in E$. On note $\mathcal{O}(E)$ l'ensemble des endomorphismes orthogonaux de E.

p. 720

Exemple 31. — Les seules homothéties qui sont des isométries sont $-id_E$ et id_E . — Si n = 1, on a $\mathcal{O}(E) = \{\pm id_E\}$.

Proposition 32. Soit $u \in \mathcal{L}(E)$.

p. 743

$$u = \mathcal{O}(E) \iff \forall x \in E, ||u(x)|| \iff u \in GL(E) \text{ et } u^{-1} = u^*$$

p. 721

Théorème 33. Les isométries sont des automorphismes. Il en résulte que $\mathcal{O}(E)$ est un sous-groupe de GL(E).

Remarque 34. Ce n'est pas vrai en dimension infinie.

Théorème 35. Un endomorphisme de E est une isométrie si et seulement s'il transforme toute base orthonormée de E en une base orthonormée.

Théorème 36. Un endomorphisme de E est une isométrie si et seulement si sa matrice A dans une base orthonormée est inversible, d'inverse tA .

On dit alors que A est **orthogonale**.

Notation 37. On note $\mathcal{O}_n(\mathbb{R})$ le groupe des matrices orthogonales.

Théorème 38.

$$\forall u \in \mathcal{O}(E), \det(u) = \pm 1$$

Remarque 39. On a des résultats équivalents pour les matrices.

Théorème 40 (Réduction des endomorphismes orthogonaux). Soit $u \in \mathcal{O}(E)$. Alors, il existe \mathcal{B} une base orthonormée de E telle que la matrice de u dans \mathcal{B} est

$$\begin{pmatrix} I_p & 0 & 0 & \dots & 0 \\ 0 & -I_q & 0 & \dots & 0 \\ 0 & 0 & R_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & R_r \end{pmatrix}$$

où $R_i = R(\cos(\theta_i), \sin(\theta_i))$ avec R(a, b) définie à la Proposition 14 et $\forall i \in [1, r], \theta_i \in]0, 2\pi[$.

Lemme 41.

$$\forall A \in \mathcal{S}_n^{++}(\mathbb{R}) \, \exists ! B \in \mathcal{S}_n^{++}(\mathbb{R}) \text{ telle que } B^2 = A$$

[C-G]

p. 376

[DEV]

Théorème 42 (Décomposition polaire). L'application

$$\mu: \begin{array}{ccc} \mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) & \to & \mathrm{GL}_n(\mathbb{R}) \\ (O,S) & \mapsto & OS \end{array}$$

est un homéomorphisme.

2. Étude en dimensions 2 et 3

Définition 43. On définit $SO(E) = \{u \in \mathcal{O}(E) \mid \det(u) = 1\} \text{ et } SO_n(\mathbb{R}) = \{A \in \mathcal{O}_n(\mathbb{R}) \mid \det(A) = 1\}$

[**GRI**] p. 241

Proposition 44. SO(E) est un sous-groupe distingué de $\mathcal{O}(E)$ d'indice 2 (de même que $SO_n(\mathbb{R})$ dans $\mathcal{O}_n(\mathbb{R})$).

[ROM21] p. 724

[GRI]

p. 241

Exemple 45.

$$\frac{1}{3} \begin{pmatrix} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{pmatrix} \in SO_3(\mathbb{R})$$

Théorème 46. Soit $A \in \mathcal{O}_2(\mathbb{R})$. Alors :

 $- \operatorname{Si} A \in \operatorname{SO}_2(\mathbb{R}) :$

$$\exists \theta \in \mathbb{R} \text{ tel que } A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

(rotation d'angle θ).

— $Si A \notin SO_2(\mathbb{R})$:

$$\exists \theta \in \mathbb{R} \text{ tel que } A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

(symétrie orthogonale par rapport à la droite d'angle polaire $\frac{\theta}{2}$).

Théorème 47. On suppose n=3. Soit $A\in \mathcal{O}_3(\mathbb{R})$ et u l'endomorphisme de E dont la matrice dans la base canonique est A. Alors, il existe \mathscr{B} une base orthonormée de E telle que la matrice de u dans \mathscr{B} est

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & \epsilon \end{pmatrix}$$

avec $\epsilon=\pm 1$. On note E_ϵ le sous-espace vectoriel associé à la valeur propre ϵ .

- $\underline{\text{Si } \epsilon = 1:} f \in \text{SO}(E)$ est la rotation d'angle $2\cos(\theta) + 1$ autour de l'axe E_1 .
- Si $\epsilon = -1$: $f \notin SO(E)$ est la composée de la rotation d'angle 2 cos(θ) − 1 autour de l'axe E_{-1} avec la symétrie orthogonale par rapport à E_{-1}^{\perp} .

3. Propriétés topologiques

Proposition 48. $\mathcal{O}(E)$ est une partie compacte de $\mathcal{L}(E)$.

[ROM21] p. 722

Proposition 49. SO(E) est connexe dans $\mathcal{O}(E)$.

Corollaire 50. $\mathcal{O}(E)$ est non-connexe. Ses composantes connexes sont SO(E) et $\{u \in \mathcal{O}(E) \mid \det(u) = -1\}$.

Proposition 51. Tout sous-groupe compact de GL(E) qui contient $\mathcal{O}(E)$ est égal à $\mathcal{O}(E)$.

Annexes

FIGURE 1 – Le groupe $\mathcal{O}_2(\mathbb{R})$.

FIGURE 2 – Le groupe $\mathcal{O}_3(\mathbb{R})$.

Bibliographie

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Algèbre Linéaire [GRI]

Joseph Grifone. Algèbre Linéaire. 6e éd. Cépaduès, 9 jan. 2019.

https://www.cepadues.com/livres/algebre-lineaire-edition-9782364936737.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie*. 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$