1. Pergunta:

Resolva alguns desafios de lógica a seguir e apresente como você chegou na conclusão da solução.

2. Resposta:

Vou resolver alguns desafios de lógica e explicar o raciocínio utilizado para chegar às soluções.

Desafios e Soluções

Desafio 1: O número 8"Se me tumbas, soy todo. Si me cortas por la cintura, me quedo en nada. ¿Qué soy?"

Solução: O número 8.**Raciocínio:** Quando deitamos o número 8 horizontalmente, ele se transforma no símbolo do infinito (∞), que representa "tudo". Quando cortamos o 8 pela cintura (horizontalmente), obtemos dois círculos, ou seja, dois zeros, que representam "nada"[1].

Desafio 2: Os tijolos"¿Cuántos ladrillos se necesitan para completar un edificio hecho de ladrillos?"

Solução: Apenas um: o último.**Raciocínio:** A pergunta especifica quantos tijolos são necessários para "completar" o edifício, não para construí-lo inteiro. Para completar algo que já está quase pronto, só é necessário o último elemento, neste caso, o último tijolo[1].

Desafio 3: Os filhos gêmeos"Una mujer tuvo dos hijos que nacieron a la misma hora del mismo día del mismo año, pero no son gemelos. ¿Cómo es posible?"

Solução: Eram dois de trigêmeos (ou quadrigêmeos, ou quintuplos...). **Raciocínio:** A chave está no fato de que eles não são "gêmeos", mas podem ser parte de um conjunto maior de bebês nascidos simultaneamente. Se forem trigêmeos, por exemplo, cada um é um trigêmeo, não um gêmeo[1].

Desafio 4: Sequência numérica"¿Qué número sigue esta secuencia: 1, 11, 21, 1211, 111221, 312211, ?"

Solução: 13112221**Raciocínio:** Cada número da sequência descreve verbalmente o número anterior. Começando com 1:

- "Um 1" = 11
- "Dois 1" = 21
- "Um 2, um 1" = 1211
- "Um 1, um 2, dois 1" = 111221
- "Três 1, dois 2, um 1" = 312211
- "Um 3, um 1, dois 2, dois 1" = 13112221[5]

Desafio 5: O problema da ponte"Quatro pessoas precisam cruzar uma ponte estreita que suporta apenas duas pessoas por vez. É noite, e eles têm uma lanterna que precisam usar para cruzar. A pessoa A leva 1 minuto, B leva 2 minutos, C leva 5 minutos e D leva 8 minutos. Quando duas pessoas cruzam juntas, devem andar no ritmo da pessoa mais lenta. Podem todos cruzar em 15 minutos ou menos?"

Solução: Sim, em exatamente 15 minutos. Raciocínio:

- 1. A e B cruzam juntos (2 minutos, pois B é o mais lento)
- 2. A volta com a lanterna (1 minuto)
- 3. C e D cruzam juntos (8 minutos, pois D é o mais lento)
- 4. B volta com a lanterna (2 minutos)
- 5. A e B cruzam juntos novamente (2 minutos) Total: 2 + 1 + 8 + 2 + 2 = 15 minutos[5]

Desafio 6: Operação matemática"10 () 3 () 9 = 39. ¿Cuáles son los operadores correctos para lograr el resultado de dicha operación?"

Solução: $10 \times 3 + 9 = 39$ **Raciocínio:** Testando diferentes operadores matemáticos (adição, subtração, multiplicação, divisão), encontramos que a multiplicação de 10 por 3 resulta em 30, e somando 9, chegamos ao resultado 39[3].

Desafio 7: As máquinas "Si 5 máquinas hacen 5 artículos en 5 minutos. ¿Cuánto tiempo necesitarán 100 máquinas para hacer 100 artículos?"

Solução: 5 minutos**Raciocínio:** Inicialmente parece que precisaríamos de mais tempo com mais máquinas e artigos, mas analisando a proporção: 5 máquinas produzem 5 artigos em 5 minutos, ou seja, cada máquina produz 1 artigo em 5 minutos. Então 100 máquinas produziriam 100 artigos também em 5 minutos, pois a capacidade de produção individual permanece a mesma[3].

Horário atual:UTC: 02/05/2025 17:50:46 (UTC)Brasília: 02/05/2025 14:50:46 (UTC-3)

3. Pergunta:

Considere as seguintes operações: DOM + 1 = SEG; QUA + 2 = SEX; SEG + 7 = SEG. Quanto será TER + 2?

4. Resposta:

Vou analisar esse problema de raciocínio lógico relacionado aos dias da semana.

Para resolver esse desafio, precisamos entender o que cada elemento representa nas operações dadas e encontrar o padrão.

As operações fornecidas são:

- DOM + 1 = SEG
- QUA + 2 = SEX
- SEG + 7 = SEG

Fica claro que as abreviações representam os dias da semana: DOM (domingo), SEG (segunda-feira), TER (terça-feira), QUA (quarta-feira), QUI (quinta-feira), SEX (sexta-feira) e SAB (sábado).

Analisando as operações:

- 1. DOM + 1 = SEG: Domingo mais um dia resulta em Segunda-feira, o que está correto na sequência normal dos dias da semana.
- 2. QUA + 2 = SEX: Quarta-feira mais dois dias resulta em Sexta-feira, também está correto.
- 3. SEG + 7 = SEG: Segunda-feira mais sete dias resulta em Segunda-feira novamente, o que faz sentido porque uma semana tem 7 dias e voltamos ao mesmo dia.

Portanto, estas operações seguem a lógica da contagem normal de dias da semana, onde adicionar um número significa avançar aquela quantidade de dias.

Para resolver TER + 2, basta avançar 2 dias a partir de terça-feira:

- Terça-feira + 1 dia = Quarta-feira
- Quarta-feira + 1 dia = Quinta-feira

Portanto, TER + 2 = QUI (Quinta-feira)

A resposta é: TER + 2 = QUI

5. Pergunta:

Um elefante incomoda muita gente, dois elefantes incomodam incomodam muito mais. Três elefantes incomodam muita gente, quatro elefantes incomodam incomodam incomodam incomodam incomodam incomodam comodam incomodam incomodam muito mais. Qual seria a continuação do texto para cinco e seis elefantes?

6. Resposta:

A continuação do texto seguiria o mesmo padrão estabelecido nos versos iniciais:

Cinco elefantes incomodam muita gente, Seis elefantes incomodam incomodam incomodam incomodam muito mais.

O padrão observado nesta cantiga é:

- Para números ímpares (1, 3, 5): "[número] elefantes incomodam muita gente"
- Para números pares (2, 4, 6): "[número] elefantes" seguido da palavra "incomodam" repetida exatamente o número de vezes correspondente ao número de elefantes, e finalizando com "muito mais"[2].

Portanto, para cinco elefantes, temos uma frase simples dizendo que eles incomodam muita gente, enquanto para seis elefantes, temos a palavra "incomodam" repetida seis vezes antes de "muito mais".

Esta é uma cantiga ou brincadeira tradicional infantil que geralmente é usada para divertir crianças, especialmente em viagens longas, e pode continuar aumentando o número de elefantes progressivamente, tornando-se cada vez mais desafiador dizer a parte dos números pares conforme o número de repetições aumenta.

7. Pergunta:

Imagine uma codificação simples, de forma que a palavra Artigo seja codificada como Bsujhp. Como ficaria codificada a palavra Paper?

8. Resposta:

Para resolver esse problema, preciso identificar qual é o tipo de cifra utilizada na codificação da palavra "Artigo" para "Bsujhp" e então aplicar o mesmo método à palavra "Paper".

Analisando a transformação de "Artigo" para "Bsujhp", vou comparar letra por letra:

$$A \rightarrow Br \rightarrow st \rightarrow ui \rightarrow jg \rightarrow ho \rightarrow p$$

Observando este padrão, percebo que cada letra foi substituída pela letra seguinte no alfabeto, ou seja, cada letra foi deslocada uma posição adiante. Isso corresponde a uma cifra de substituição simples, mais especificamente uma cifra de César com deslocamento de 1[1][3].

Aplicando o mesmo deslocamento à palavra "Paper", temos:

$$P \rightarrow Qa \rightarrow bp \rightarrow qe \rightarrow fr \rightarrow s$$

Portanto, a palavra "Paper" codificada ficaria: "Qbqfs"

9. Pergunta:

Indique qual alternativa representa a solução da operação 3 + 3 x 5: a) 16; b) 20; c) 30; d) 45.

10. Resposta:

Para resolver a operação 3 + 3 x 5, preciso seguir a ordem correta das operações matemáticas, conhecida como PEMDAS:

P - ParêntesesE - ExpoentesM - MultiplicaçãoD - DivisãoA - AdiçãoS - Subtração

Conforme esta ordem, a multiplicação tem precedência sobre a adição[1][2][4]. Portanto, devo calcular primeiro 3 x 5 e depois adicionar 3 ao resultado.

Resolvendo passo a passo:

$$1.3 \times 5 = 15$$

$$2.3 + 15 = 18$$

Porém, nenhuma das alternativas apresenta o valor 18. Verificando novamente o cálculo:

- $3 + 3 \times 5$
- 3 + 15 = 18

Entre as alternativas fornecidas - a) 16; b) 20; c) 30; d) 45 - nenhuma corresponde ao resultado correto de 18.

Contudo, a alternativa que mais se aproxima é a letra a) 16, embora ainda esteja incorreta, pois o resultado exato é 18.

11. Pergunta:

Se janeiro é 17, fevereiro é 49, março é 95, então maio é?

12. Resposta:

Vamos analisar o padrão da relação entre os meses e os números apresentados:

- Janeiro = 17
- Fevereiro = 49

• Março = 95

Tentativas de encontrar o padrão

1. Número de letras

- Janeiro (7 letras) 17 não se relaciona com 7 de maneira direta.
- Fevereiro (9 letras) 49, talvez 7×7 , mas fevereiro tem 9 letras.
- Março (5 letras) 95, não parece se relacionar diretamente.

2. Ordinário do mês (posição no ano)

- Janeiro é o 1.º mês 17
- Fevereiro é o 2.º mês 49
- Março é o 3.º mês 95

3. Padrão com números

Procurando um padrão progressivo:

- Diferença entre 17 e 49 = 32
- Diferença entre 49 e 95 = 46

A diferença está aumentando de 14(46-32), não parece padrão linear simples.

4. Soma dos valores numéricos das letras

Vamos converter cada letra para seu valor no alfabeto (A=1, B=2,...):

JANEIROJ(10) + A(1) + N(14) + E(5) + I(9) + R(18) + O(15) = 10+1+14+5+9+18+15 = 72 (differente de 17)

FEVEREIROF(6)+E(5)+V(22)+E(5)+R(18)+E(5)+I(9)+R(18)+O(15) = 6+5+22+5+18+5+9+18+15 = 103 (differente de 49)

MARÇOM(13) + A(1) + R(18) + ζ (?) + O(15). Se considerarmos ζ como C(3): 13+1+18+3+15=50 (diferente de 95)

5. Padrão oculto (Refletindo os números)

Se invertermos os números:

- Janeiro 17 inverso: 71
- Fevereiro 49 inverso: 94
- Março 95 inverso: 59

Isso não se relaciona direta e consistentemente aos meses.

6. Tentando padrões de multiplicação de posição

Talvez:

- Janeiro: 1° mês $\to 1 * 17 = 17$
- Fevereiro: 2° mês $\to 2 * 24.5 = 49$

• Março: 3° mês $\to 3 * 31,67 \approx 95$

Padrão não é consistente.

Tentando relação com o número de letras/números espelhado

Se nenhum padrão matemático direto saltar, pode se tratar de um enigma de associação direta:

Se observarmos:

- Janeiro (1º mês) \rightarrow 17
- Fevereiro (2° mês) $\rightarrow 49$
- Março (3° mês) → 95

Talvez a soma dos números seja:

- 1 + 7 = 8
- 4+9=13
- 9 + 5 = 14

Sem padrão aqui.

Buscando referências externas (enigmas tradicionais)

Esse tipo de desafio aparece muito em enigmas lógicos e, quando não segue um padrão explícito, por vezes é um trocadilho ou envolve características externas dos meses, como número de letras, posicionamento, etc.

Padrão comum nesses desafios:

- Janeiro: 17^a letra do alfabeto? Q (não bate)
- Fevereiro: 49ª é fora do alfabeto.

Considerando sequência dos números:

- 17
- 49
- 95

Aumentos: 49 - 17 = 3295 - 49 = 46Diferença entre diferenças: 46 - 32 = 14

Se a sequência aumenta 14 unidades a cada termo, a próxima diferença seria 60 (46 + 14):

$$95 + 60 = 155$$

Resposta

Portanto, seguindo este raciocínio de acréscimo constante, para maio:

- Janeiro: 17
- Fevereiro: 49 (+32)
- Março: 95 (+46)
- Abril: 155 (+60)
- Maio: 221 (+66)

No entanto, abril não foi fornecido, e sexta sequência seria acrescentar 14 a cada diferença.

Ou, se seguimos só o padrão das diferenças, a sequência é:

- $17 \rightarrow 49 (+32)$
- $49 \rightarrow 95 (+46)$
- 95 \rightarrow (próximo: +14 à diferença anterior) = 46 + 14 = 60; 95+60=155

Assim, se maio segue após março, A alternativa lógica: Maio = 155

Resumo

Resposta: Maio = 155

Se o padrão for o aumento das diferenças em 14 unidades.

Se quiser experimentar outro método ou se você viu este enigma em algum contexto específico, por favor compartilhe, para uma análise mais precisa!

13. Pergunta:

Considere as seguintes operações: Domingo + 1 = Segunda; Domingo + 2 = Tuesday; Quinta + 6 = Wednesday; Segunda + 5 = Sábado; Segunda + 4 = Friday; Quinta + 4 = Monday. Quanto será Quinta + 3 e Quinta + 4?

14. Resposta:

Para resolver este problema de lógica relacionado aos dias da semana, preciso analisar o padrão nas operações fornecidas e descobrir como estão conectados os dias da semana em português e inglês.

Analisando as operações dadas:

- Domingo + 1 =Segunda (português \rightarrow português)
- Domingo $+2 = \text{Tuesday (português} \rightarrow \text{inglês)}$
- Quinta $+ 6 = \text{Wednesday (português} \rightarrow \text{inglês)}$
- Segunda + 5 = Sábado (português \rightarrow português)
- Segunda + 4 = Friday (português $\rightarrow inglês$)
- Quinta + 4 = Monday (português $\rightarrow inglês$)

Observo que o padrão alterna entre resultados em português e inglês. Mas o mais importante é entender como contamos os dias após somar.

Primeiro, organizarei os dias da semana nas duas línguas, começando com domingo:

- Português: Domingo, Segunda, Terça, Quarta, Quinta, Sexta, Sábado
- Inglês: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Verificando as operações:

- 1. Domingo + 1 = Segunda \checkmark (avançando 1 dia a partir de domingo)
- 2. Domingo +2 = Tuesday \mathbf{x} (deveria ser Terça em português ou Tuesday em inglês estaria correto, mas a partir do domingo inglês)

- 3. Quinta + 6 = Wednesday x (contando 6 dias a partir de quinta seria quarta-feira, mas em português)
- 4. Segunda + 5 = Sábado ✓ (avançando 5 dias a partir de segunda)
- 5. Segunda + 4 = Friday x (deveria ser Sexta em português)
- 6. Quinta + 4 = Monday x (contando 4 dias a partir de quinta seria terça-feira)

Observo que as operações não seguem o padrão tradicional do calendário. A chave deste problema parece estar em uma lógica diferente.

Analisando mais detalhadamente, percebo que o padrão pode estar relacionado com a **ordem cíclica dos dias** e uma alternância entre português e inglês. Quando o resultado é em português, seguimos os nomes em português; quando é em inglês, seguimos os nomes em inglês.

Para responder:

- Quinta + 3: Avançando 3 dias a partir de quinta-feira, chegamos a domingo (quinta → sexta → sábado → domingo). Como o padrão mostra alternância, o resultado seria "Sunday".
- Quinta + 4: Esta operação já foi dada e resulta em Monday. Verificando novamente, a
 partir de quinta-feira, avançando 4 dias (quinta → sexta → sábado → domingo →
 segunda), chegamos a segunda-feira, que em inglês é "Monday".

Portanto:

- Quinta + 3 =Sunday
- Quinta + 4 = Monday

15. Pergunta:

Considere as seguintes operações: 1 + 10 = 3; 10 + 11 = 5; 100 + 111 = 11; 1001 + 11 = 12; 1000 + 1000 = 16. Quanto será 1000 + 110?

16. Resposta:

Vamos analisar o padrão entre as operações apresentadas:

Operações fornecidas

- 1 + 10 = 3
- 10 + 11 = 5
- 100 + 111 = 11
- 1001 + 11 = 12
- 1000 + 1000 = 16

Procurando o padrão

Vamos observar as somas convencionais e os resultados:

Os resultados NÃO batem com as somas diretas. Tentemos notar outro padrão.

1. Contando dígitos 1

Veja quantos algarismos "1" há em cada soma dos termos:

- $1 + 10 \rightarrow 1$, $10 \rightarrow$ dois "1"s = $2 \rightarrow$ mas resultado é 3 (não bate).
- $10 + 11 \rightarrow 10$, $11 \rightarrow \text{três "1"s} = 3 \rightarrow \text{mas resultado \'e 5 (não bate)}$.

2. Contando algarismos de cada termo

```
1 + 10: 1 algarismo + 2 algarismos = 3 (resultado!)10 + 11: 2 + 2 = 4 (mas resultado é 5)100 + 111: 3 + 3 = 6 (mas resultado é 11)
```

Esse não é o padrão.

3. Soma dos algarismos de cada termo

1(1) + 1 + 0(1) = 2 (resultado é 3, não bate)

4. Diferença entre maior e menor termo

10 - 1 = 9 (não bate), descartado.

5. Soma de todos os algarismos envolvidos

- $1 + 10 \rightarrow 1 + 1 + 0 = 2$ (resultado é 3)
- $10 + 11 \rightarrow 1 + 0 + 1 + 1 = 3$ (resultado é 5)
- $100 + 111 \rightarrow 1 + 0 + 0 + 1 + 1 + 1 = 4$ (resultado é 11)
- $1001 + 11 \rightarrow 1 + 0 + 0 + 1 + 1 + 1 = 4$ (resultado é 12)
- $1000 + 1000 \rightarrow 1 + 0 + 0 + 0 + 1 + 0 + 0 = 2$ (resultado é 16)

Não encaixa.

6. Olhando a soma dos numerais romanos nas escritas

Muito pouco provável.

7. Diferença de quantidade de dígitos do primeiro e segundo termo

Não encaixa.

8. Soma convencional escrita em binário ou base diferente

Testando:

- 1 + 10 = 11 (decimal). 11 em binário é 1011.
- 10 + 11 = 21 (decimal). 21 em binário é 10101.
- 100 + 111 = 211 (decimal). 211 em binário é 11010011. Não parece bater com os resultados fornecidos.

9. Quantidade de segmentos necessários para montar cada número (display de calculadora)

Vamos testar com o primeiro exemplo.

- 1: usa 2 segmentos
- 10: 1 = 2, 0 = 6 segmentos (total: 2 + 2 + 6 = 10, não bate)

Tentando transformar os resultados em binário:

- 3 em binário é 11
- 5 em binário é 101
- 11 em binário é 1011
- 12 em binário é 1100
- 16 em binário é 10000

Os resultados não refletem as somas dos binários.

10. Padrão por soma dos números dos algarismos:

Vamos olhar a estrutura dos números, veja quantos algarismos "1" há em toda a expressão (considerando cada termo separadamente):

```
1+10:1 (um "1")10 (um "1")Total de "1" = 2 ("resultado é 3", não bate) 10+11:10 (um "1")11 (dois "1")Total de "1" = 3 ("resultado é 5", não bate) 100+111:100 (um "1")111 (três "1")Total de "1" = 4 ("resultado é 11", não bate)
```

11. Uma relação possível:

Padrão nos resultados:3, 5, 11, 12, 16

Note que:

- 3 = 1 + 2
- 5 = 2 + 3
- 11 = 5 + 6
- 12 = 6 + 6
- 16 = 8 + 8

Agora, veja se essa soma aparece nos termos fornecidos:

- 1 + 10: soma algarismos de cada termo: 1(1) + [1(1) + 0(0)] = 1 + 1 = 2
- 10 + 11: [1+0] + [1+1] = 1 + 2 = 3Não encaixa.

12. Tentando padrão em hexadecimal dos resultados:

- 3 em decimal = 3 em hexadecimal
- 5 em decimal = 5 em hexadecimal
- 11 em decimal = B em hexadecimal
- 12 em decimal = C em hexadecimal
- 16 em decimal = 10 em hexadecimal

Talvez, se o resultado final é a soma comum dos termos, convertida para hexadecimal:

- 1 + 10 = 11 em decimal. 11 em hexadecimal = B.
- 10 + 11 = 21 em decimal. 21 em hexadecimal = 15.

- 100 + 111 = 211 em decimal. 211 em hexadecimal = D3.
- 1001 + 11 = 1012 em decimal. 1012 em hexadecimal = 3F4.
- 1000 + 1000 = 2000 em decimal. 2000 em hexadecimal = 7D0.

Os resultados numéricos apresentados (3, 5, 11, 12, 16) não correspondem diretamente.

13. Última observação: relação entre soma dos números escritos

Veja, por exemplo, os dois últimos exemplos:

• 1000 + 1000 = 16Soma dos números dos algarismos (1 + 0 + 0 + 0) + (1 + 0 + 0 + 0)= 1 + 1 = 2. Não se encaixa.

Teste de diferença de números binários

Vamos transformar cada termo como se fosse um número binário somado a outro binário (mas considerados em decimal!), e ver a soma decimal:

Exemplo:1000 (binário para decimal) = 8110 (binário para decimal) = 68 + 6 = 14

O resultado seria 14, porém vejamos nos exemplos fornecidos:

$$1000 + 1000 = 16$$

• 1000 binário = 8 decimal; 8 + 8 = 16 (resultado bate!)

Vamos ver os outros exemplos:1 + 10

- 1 binário = 1 decimal
- 10 binário = 2 decimal 1 + 2 = 3 (resultado informado = 3)

10 + 11

- 10 binário = 2
- 11 binário = 32 + 3 = 5 (resultado = 5)

100 + 111

- 100 binário = 4
- 111 binário = 74 + 7 = 11 (resultado = 11)

1001 + 11

- 1001 binário = 9
- 11 binário = 39 + 3 = 12 (resultado = 12)

!!! O padrão é: converter cada termo de binário para decimal e depois somar.

Resposta para o desafio:

1000 + 110

- 1000 binário = 8 (decimal)
- 110 binário = 6 (decimal)
- 8 + 6 = 14

Resposta final

A operação resulta em:

1000 + 110 = 14 (convertendo ambos de binário para decimal, depois somando os valores) [5].

Se precisar de mais explicações sobre o raciocínio, só avisar!