Class Exercise 5, due 5 pm Monday 16 October 2017

- 1. (a) Let $f:(0,1) \to \mathbb{R}$ be a function such that $f(x) \geq 0$ for all $x \in (0,1)$ and the third derivative f'''(x) exists for every $x \in (0,1)$. If f(c) = f(d) = 0 for some 0 < c < d < 1, prove that f'''(x) = 0 for some $x \in (0,1)$. (Hint: use Rolle's Theorem more than once.)
- (b) Let $f: [0,1] \to \mathbb{R}$ be a continuous function such that $f(x) \le x^3$ for all $x \in [0,1]$ and such that $\int_0^1 f(x) dx = 1/4$. Prove that $f(x) = x^3$ for all $x \in \mathbb{R}$. (Hint: $\int_0^1 x^3 dx = 1/4$.)

 [6 points]
- **2.** Suppose that $f,g:[a,b]\to\mathbb{R}$ are continuous on [a,b] and differentiable on (a,b). If $g'(x)\neq 0$ for all $x\in (a,b)$ prove that there exists $c\in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

[6 points]

3. Let $\ln: (0, \infty) \to \mathbb{R}$ be defined by

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$$

for x > 0. Prove that

- (i) In is differentiable on $(0, \infty)$ with $\ln'(x) = 1/x$ for all x > 0.
- (ii) for any a > 0, the function $\ln(x)$ is uniformly continuous on $[a, \infty)$.

[6 points]

- **4.** Recall that $e = \exp(1)$.
- (a) Prove that $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$. (Hint: what is $\ln'(1)$?)
- (b) By considering the function $f(x) = \frac{\ln(1+x)}{x}$ and the sequence $x_n = 1/n$, use Proposition 6.5 to prove that $\lim_{n\to\infty} \ln(1+\frac{1}{n})^n = 1$.
- (c) Use part (b) to prove that $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$.

[6 points]

- **5.** (a) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series such that $a_n > 0$ and $b_n > 0$ for all n. If $\lim_{n \to \infty} a_n/b_n = c \neq 0$ prove that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges. (Hint: c > 0 why? Therefore you can take $\epsilon = c$ in the definition of convergence for $\lim_{n \to \infty} a_n/b_n$. Use the Comparison Test.)
- (b) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$ converges and evaluate the sum of the series.

[6 points]