0.1 著名积分不等式

定理 0.1 (Young 不等式初等形式)

设 $(x_i)_{i=1}^n \subset [0,+\infty), (p_i)_{i=1}^n \subset (1,+\infty), \sum_{i=1}^n \frac{1}{p_i} = 1$, 则有

$$\prod_{i=1}^n x_i \leqslant \sum_{i=1}^n \frac{x_i^{p_i}}{p_i}.$$

且等号成立条件为所有 x_i , $i = 1, 2, \dots, n$ 相等

笔记 最常用的是 Young 不等式的二元

对任何 $a,b \ge 0$, $\frac{1}{p} + \frac{1}{q} = 1$, p > 1 有 $ab \le \frac{a^p}{p} + \frac{b^q}{q}$. 证明 不妨设 $x_i \ne 0$, $(i = 1, 2, \dots, n)$. 本结果可以取对数用 Jensen 不等式证明, 即

$$\prod_{i=1}^{n} x_i \leqslant \sum_{i=1}^{n} \frac{x_i^{p_i}}{p_i} \Leftrightarrow \sum_{i=1}^{n} \ln x_i \leqslant \ln \left(\sum_{i=1}^{n} \frac{x_i^{p_i}}{p_i} \right) \Leftrightarrow \sum_{i=1}^{n} \frac{1}{p_i} \ln x_i^{p_i} \leqslant \ln \left(\sum_{i=1}^{n} \frac{x_i^{p_i}}{p_i} \right),$$

而最后一个等价之后就是 In 的上凸性结合 Jensen 不等式给出.

定义 0.1

(1) $d\mu = g(x)dx$, 这里 g 是一个在区间上内闭黎曼可积的函数.

(2) 若
$$E \subset \mathbb{Z}$$
, 则 $\int_E f(x)d\mu = \sum_{n \in E} f(n)$.

定理 0.2 (Cauchy 不等式)

$$\left(\int_E f(x)g(x)d\mu\right)^2 \leqslant \int_E |f(x)|^2 d\mu \int_E |g(x)|^2 d\mu.$$

证明 只需证

$$\int_E |f(x)g(x)| d\mu \leqslant \sqrt{\int_E |f(x)|^2 d\mu \int_E |g(x)|^2 d\mu}.$$

当 $\int_{F} |f(x)| d\mu$ 或 $\int_{E} |g(x)| d\mu = 0$ 时, 不等式右边为 0, 结论显然成立.

当
$$\int_{E} |f(x)| d\mu \neq 0$$
 且 $\int_{E} |g(x)| d\mu \neq 0$ 时, 不妨设 $\int_{E} |f(x)|^{2} d\mu = \int_{E} |g(x)|^{2} d\mu = 1$, 否则, 用 $\frac{f(x)}{\sqrt{\int_{E} |f(x)|^{2} d\mu}}$ 代

替 f(x), $\frac{g(x)}{\sqrt{\int_{\Gamma} |g(x)|^2 du}}$ 代替 g(x) 即可. 利用 Young 不等式可得

$$\int_{E} |f(x)||g(x)|d\mu \leqslant \int_{E} \frac{|f(x)|^{2} + |g(x)|^{2}}{2} d\mu = \frac{1}{2} + \frac{1}{2} = 1.$$

等号成立当且仅当存在不全为零的 c_1, c_2 , 使得 $c_1 f(x) + c_2 g(x) = 0$.

定理 0.3 (Jensen 不等式 (积分形式))

设 φ 是下凸函数且 $p(x) \ge 0$, $\int_a^b p(x)dx > 0$, 则在有意义时, 必有

$$\varphi\left(\frac{\int_{a}^{b} p(x)f(x)dx}{\int_{a}^{b} p(x)dx}\right) \leqslant \frac{\int_{a}^{b} p(x)\varphi(f(x))dx}{\int_{a}^{b} p(x)dx}.$$
(1)

笔记 1. 类似的对上凸函数, 不等式(??)反号.

2. 一般情况可利用下凸函数可以被 C^2 的下凸函数逼近得到, 例如定理 Bernstein 多项式保凸性一致逼近.

3.Jensen 不等式 (积分形式) 考试中不能直接使用, 需要证明.

证明 为书写简便, 我们记 $d\mu = \frac{p(x)}{\int_a^b p(y)dy} dx$, 那么有 $\int_a^b 1d\mu = 1$. 于是我们记 $x_0 = \int_a^b f(x)d\mu$ 并利用下凸函数恒 在切线上方

$$\varphi(x) \geqslant \varphi(x_0) + \varphi'(x_0)(x - x_0),$$

就有

$$\int_a^b \varphi(f(x)) d\mu \geqslant \int_a^b [\varphi(x_0) + \varphi'(x_0)(f(x) - x_0)] d\mu = \varphi(x_0) = \varphi\left(\int_a^b f(x) d\mu\right),$$

这就完成了证明.

例题 0.1 对连续正值函数 f, 我们有

$$\ln\left(\frac{1}{b-a}\int_{a}^{b}f(x)dx\right)\geqslant \frac{1}{b-a}\int_{a}^{b}\ln f(x)dx.$$

证明 令 $d\mu = \frac{1}{b-a}dx$, 则 $\int_a^b d\mu = 1$, 再令 $x_0 \triangleq \int_a^b f(x)d\mu > 0$, 则由 $\ln x$ 的上凸性可知

$$\ln x \leqslant \ln x_0 + \frac{1}{x_0}(x - x_0), \forall x > 0.$$

从而

$$\begin{split} \int_{a}^{b} \ln f(x) d\mu & \leq \int_{a}^{b} \ln x_{0} d\mu + \frac{1}{x_{0}} \int_{a}^{b} (f(x) - x_{0}) d\mu \\ & = \ln x_{0} + \frac{1}{x_{0}} \left(\int_{a}^{b} f(x) d\mu - x_{0} \int_{a}^{b} d\mu \right) \\ & = \ln x_{0} = \ln \int_{a}^{b} f(x) d\mu. \end{split}$$

故结论得证.