ISTA 116: Lab Assignment #1 (50 pts)

Kyle Reese Almryde

Due by the end of lab on Aug. 30-31 (as appropriate)

1 (Textbook 1.4) Calculation (8 pts)

Use R as you would a calculator to _nd numeric answers to the following (each lettered subpart worth 2 pts):

a.
$$1 + 2 * (3 + 4) = 15$$

b.
$$4^3 + 3^2 (2 + 1) = 91$$

c.
$$sqrt((4+3)*(2+1)) = 4.582578$$

d.
$$((1+2)/(3+4))^2 = 0.1836735$$

2 (Text 1.8) Arithmetic With Vectors (8 pts)

Let our small data set be:

254108

a. Enter this data into a data vector x.

$$x < -c(2, 5, 4, 10, 8)$$

b. Find the square of each number.

c. Subtract 6 from each number.

$$x - 6 = -4 - 1 - 2 + 2$$

d. Subtract 9 from each number and then square the resulting values.

$$(x-9)^2 = 49 16 25 1 1$$

Use a single line of code for each letter (2 pts each).

3 (Text 1.14) Summarizing a Vector (9 pts)

You track your commute times for ten days, recording the following times in minutes: 17 16 20 24 22 15 21 15 17 22

a. (4 pts) Enter these into R. Use the function max() to _nd the longest commute time, the function mean() to _nd the average, and the function min() to _nd the minimum.

$$x < c(17, 16, 20, 24, 22, 15, 21, 15, 17, 22)$$

max(x) = 24

mean(x) = 18.9

min(x) = 15

b. (5 pts) How many times was your commute 20 minutes or more?

What percentage of your commutes are less than 18 minutes long? Use R to find these answers (Hint: Extract logical subsets, and use the length() function)

length(
$$x[x > 19]$$
) = 5 (20, 21, 22, 22, 24)

$$length(x[x < 18])/length(x) = 0.5 (15 15 16 17 17)$$

4 (Modified from Text 1.25) Accessing Parts of a Data Frame (14 pts)

The data set nym.2002 in the UsingR package contains data about participants in the 2002 New York City Marathon. Use R commands to answer the following questions (include your code as well as the answer, where applicable).

a. (2 pts) Load the UsingR library into the workspace.

Library(UsingR) data(nym.2002)

b. (2 pts) How many participants are recorded in this data set (Hint: you can either use length() with an individual variable, or use the nrow() function on the entire data frame)?

length(nym.2002\$place) = 1000

c. (3 pts) Create a variable called time.hrs that contains times converted to hours (you can leave the result as a decimal value).

time.hrs = with(nym.2002, table(time))

- d. (4 pts) Create a new data frame that contains the data for only those runners from New York State (Hint: select a subset of rows using the home variable).
- e. (3 pts) What percentage of the runners came from within the state?
- 5 Reading in Data from a File (11 pts)

There is a data set available on d2l called BrainBodyWeight.csv, containing brain weights and body weights for various terrestrial (land) mammals.

read.csv(BrainBodyWeight.csv)

a. (2 pts) Create a directory somewhere on your computer for R data sets in this class (you don't need to use R to do this). Download the data _le from d2l into that folder, and in R, set your working directory there.

setwd("/Users/kylealmryde/Desktop/Rstuff")

b. (2 pts) Read the _le into R using read.csv(), and save it as a data frame (i.e., assign the output of read.csv() to a variable). Be sure to use the option header = TRUE so that R interprets the 1rst row of the data as variable names.

read.csv("BrainBodyWeight", header=TRUE)

c. (2 pts) Have R print out the variable names.

names(BrainBodyWeight)

d. (2 pts) Use attach() to make the individual variables directly accessible.

attach(BrainBodyWeight)

e. (2 pts) How much does the heaviest brain weigh?

.14 grams

f. (1 pt) When you're finished, detach() the data frame, to keep the workspace clean

detach(BrainBodyWeight)