A Spacial Autoregressive Stochastic Frontier Model with Inefficiency Heterogeneity for Panel Data

Shirong Zhao

July 16, 2019

Outline

- Introduction
- 2 Models
- Stimation
- Monte Carlo Experiments
- Data
- 6 Alternative Models

2 / 22

Shirong Zhao A Spacial Autorogressive Stochastic From July 16, 2019

Introduction

The global financial crisis has given rise to reexamine the performance of the banking sector.

• Pre-crisis: bigger is better

• Post-crisis: too-big-to-fail

Previous literature ignored the spacial spillover effect.

3 / 22

Shirong Zhao A Special Autoregressive Studiestic From July 16, 2019

Research Question

A bank holding company (BHC) is a company that controls one or more banks, but does not necessarily engage in banking itself.

- Does there exist spacial spillovers in the U.S. BHC during global financial crisis?
- Controlling for the spacial spillovers, what determines the cost/profit inefficiency of BHC?

4 / 22

Shirong Zhao A Special Autoregressive Studiostic From July 16, 2019

Stochastic Frontier Model

First introduced independently by Aigner et al. (1977), and Meeusen and van Den Broeck (1977).

$$y_i = \mathbf{x_i}\boldsymbol{\beta} + \nu_i - u_i,$$

 $\nu_i \sim N(0, \sigma^2),$ (SFM)
 $i = 1, 2 \dots, N$

- y_i: the (logged) cost/profit
- x_i : the (logged) output, input prices and or environmental variables
- ν_i : two-sided, idiosyncratic error
- u_i : one-sided error, measuring efficiency (exp($-u_i$)): exponential, truncated normal, half-normal, gamma, ...

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQ♡

5 / 22

Shirong Zhao A Special Autorogressive Stochastic From July 16, 2019

SFM with Heterogeneous Inefficiency for Panel Data

z_{it} are observed covariates vector that affects inefficiency.

$$y_{i,t} = \mathbf{x_{i,t}}\boldsymbol{\beta} + \nu_{i,t} - u_{i,t},$$
 $\nu_{i,t} \sim N(0, \sigma^2),$
 $u_{i,t} \sim \exp(\lambda),$
 $\lambda = \exp(\mathbf{z_{i,t}}\boldsymbol{\gamma})$
 $i = 1, 2, \dots, N, \quad t = 1, 2, \dots, T,$

4□ > 4□ > 4 = > 4 = > = 90

Shirong Zhao A Shaolal Annarca essive Studiastic From July 16, 2019 6 / 22

SFM with Spacial Autoregressive Effect

Glass et al. (2016) proposed the spacial autoregressive stochastic frontier model, similar as following:

$$y_{i,t} = \rho \sum_{j=1}^{N} W_{i,j} y_{j,t} + \mathbf{x}_{i,t} \boldsymbol{\beta} + \nu_{i,t} - u_{i,t},$$

$$\nu_{i,t} \sim N(0, \sigma^2),$$

$$u_{i,t} \sim \exp(\lambda)$$

$$i = 1, 2, \dots, N, \quad t = 1, 2, \dots, T,$$
(SAR)

W: a neighborhood structure, measuring geographic or economic distances

Shirong Zhao July 16, 2019

SAR with Heterogeneous Inefficiency

I propose the following SAR model with heterogeneous inefficiency for panel data:

$$y_{i,t} = \mathbf{x}_{i,t}\boldsymbol{\beta} + \rho \sum_{j=1}^{N} W_{i,j}y_{j,t} + \nu_{i,t} - u_{i,t},$$

$$\nu_{i,t} \sim N(0, \sigma^{2}),$$

$$u_{i,t} \sim \exp(\lambda),$$

$$\lambda = \exp(\mathbf{z}_{i,t}\boldsymbol{\gamma})$$

$$i = 1, 2, \dots, N, \quad t = 1, 2, \dots, T.$$
(SARH)

8 / 22

Shirong Zhao A Special Autoregressive Stochastic Front July 16, 2019

Estimation Method

Bayesian inference techniques organized around Markove Chain Monte Carlo (MCMC) are applied.

The model is completed by specifying the following priors:

$$eta \sim N(\mathbf{0}, \sigma^2 \mathbf{R}),$$
 $ho \sim Unif(rac{1}{r_{min}}, 1),$
 $\sigma^{-2} \sim \Gamma(a_s, b_s),$
 $\gamma \sim N(\mathbf{0}, \mathbf{R}_1)$

Where r_{min} is the most negative real characteristic root of $W = (W_{i,j})$ to ensure the above equation (SARH) stable.

→ □ ▷ → □ ▷ → □ ▷ → ○ ○ ○

Shirong Zhao A Spacial Autoregressive Stochastic from July 16, 2019

Posterior Distribution

$$p(\beta, \sigma^{2}, \rho, u, \gamma | X, y) \propto p(X, y | \beta, \sigma^{2}, \rho, u, \gamma) p(u | \gamma) p(\beta | \sigma^{2}) p(\sigma^{2}) p(\rho) p(\gamma)$$

$$\propto (\sigma^{-2})^{\frac{NT}{2}} \exp\left[-\frac{(y^{*} - X\beta + u)'(y^{*} - X\beta + u)}{2\sigma^{2}}\right]$$

$$\times (\exp(z_{it}\gamma))^{NT} \exp(-\exp(z_{it}\gamma)u'1_{NT}) I(u \geq 0)$$

$$\times (\sigma^{-2})^{\frac{\rho}{2}} \exp(-\frac{\beta' \mathbf{R}^{-1}\beta}{2\sigma^{2}})$$

$$\times (\sigma^{-2})^{a_{s}-1} \exp(-\sigma^{-2}b_{s})$$

$$\times I(\rho \in (\frac{1}{r_{min}, 1}))$$

$$\times \exp(-\frac{\gamma' \mathbf{R}_{1}^{-1}\gamma}{2})$$

where $y^* = (I_{NT} - \rho I_T \otimes W_N)y$, and \otimes is kronecker product.

Shirong Zhao A Special Autoregressive Stochastic From July 16, 2019 10 / 22

Conditional Posterior Distribution

$$\beta | else \sim N((X'X + R^{-1})^{-1}X'(y + u), \sigma^2(X'X + R^{-1})^{-1})$$
 (3)

$$\sigma^{-2} | \textit{else} \sim \Gamma(\frac{NT + \rho}{2} + a_s, \frac{(y^* - X\beta + u)'(y^* - X\beta + u)}{2} + b_s + \frac{\beta' R^{-1} \beta}{2})$$
 (4)

$$u|else \sim N(-(y^* - X\beta + \sigma^2 \exp(z_{it}\gamma)\mathbf{1}_{NT}), \sigma^2\mathbf{1}_{NT})$$
 (5)

$$\rho|\textit{else} \sim \textit{N}(-(y'(\textit{IW})'(\textit{IW})y)^{-1}y'(\textit{IW})'(y - X\beta + u), \\ (y'(\textit{IW})'(\textit{IW})y)^{-1}\sigma^2)l(\rho \in (\frac{1}{t_{min},1}))$$
 (6)

$$p(\gamma|else) \propto (\exp(z_{it}\gamma))^{NT} \exp(-\exp(z_{it}\gamma)u'1_{NT})I(u \ge 0) \exp(-\frac{\gamma'R_1\gamma}{2})$$
 (7)

where $IW = I_T \otimes W_N$.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 0 0 0

11 / 22

Shirong Zhao A Spacial Autoregressive Stochastic From July 16, 2019

Monte Carlo Experiments

Simulation data are generated according to Equation (SARH).

		— SA RH —				
Param	True	Estimate	95%HPD			
eta_1	1	1.1893	[0.7146, 1.5705]			
β_2	4	4.0469	[3.8602, 4.2376]			
ρ	0.5	0.5048	[0.4949, 0.5168]			
σ^2	1	0.9128	[0.5039, 1.4246]			
γ_1	-2	-2.0264	[-2.1191, -1.9155]			
γ_2	1	0.9719	[0.8835, 1.0754]			

12 / 22

Shirong Zhao A Special Autoregressive Stochastic From July 16, 2019

Monte Carlo Experiments

		— SAR —		_	SFMH —	— SFM —		
Param	True	Estimate	95%HPD	Estimate	95%HPD	Estimate	95%HPD	
β_1	1	2.1784	[1.8159, 2.5630]	-7.6708	[-8.6454,6.7861]	-5.0684	[-5.8480,-3.9995]	
β_2	4	4.0403	[3.7775, 4.2874]	4.5026	[3.8493,5.1452]	4.6834	[3.9951,5.3196]	
ρ	0.5	0.5091	[0.5002, 0.5189]	NA	NA	NA	NA	
σ^2	1	0.4372	[0.1750, 0.7045]	15.9938	[10.5209,20.8060]	8.7776	[4.9596,12.7367]	
γ_1	-2	NA	NA	-2.4489	[-2.5855,-2.3336]	NA	NA	
γ_2	1	NA	NA	0.7995	[0.6833,0.8993]	NA	NA	
λ	NA	0.0708	[0.0645, 0.0769]	NA	NA	0.0511	[0.0466,0.0563]	

Shirong Zhao A Spacial Autoregressive Stochastic Gran July 16, 2019 13 / 22

Data and Variables

Source: Federal Reserve FR Y-9C Bank Holding Company Reports

- Quarterly data from 1986 to 2018
- Effective March 31, 2006, the FRY-9C filing threshold was increased from \$150 million to \$500 million or more
- I use yearly end data over 2006-2014
- Remove BHC with NA and negative equity/profit

Year	No. of BHC
2006	290
2007	277
2008	218
2009	203
2010	230
2011	249
2012	268
2013	285
2014	298

No. of BHC in banlanced panel: 143

July 16, 2019

Variable Description

$\overline{X_1}$	Sum of deposits, federal funds purchased, trading liabilities and other borrowed money
X_2	Number of full-time equivalent employees at end of current period
X_3	Premises and fixed assets (including capitalized leases)
Y_1	Loans and lease financing receivables
Y_2	Securities: held-to-maturity and available-for-sale
Y_3	Total non-interest income
Z_1	Total equity capital
Z_2	Total assets
Z_3	Allowance for loan and lease losses (NPL)
W_1X_1	Total interest expense
W_2X_2	Salaries and employee benefits
W_3X_3	Expenses of premises and fixed assets
TC	$W_1X_1 + W_2X_2 + W_3X_3$
TP	Net income (loss) attributable to holding company

Shirong Zhao A. Spacial Autorograssive Stochastic Francisco July 16, 2019 15 / 22

Inefficiency Determinants

The inefficiencies are assumed to depend upon covariates as in Tecles and Tabak (2010), they are:

- Market share of loans (MS)
- Non-performing loans/Asset (NPL)
- Equity/Asset (EQUITY)
- Asset size (SIZE)
- ...

$$\lambda = \exp(\gamma_1 MS + \gamma_2 NPL + \gamma_3 EQUITY + \gamma_4 SIZE + \dots)$$
 (8)

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥

16 / 22

Shirong Zhao A. Spacial Autorepressive Stochastic From July 16, 2019

Density of (log) Total Assets

Shirong Zhao A Spacial Autorogressive Stochastic From July 16, 2019 17 / 22

Summary Statistics for Year 2014 (Dollar Amount in Millions)

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Funds and Deposits (X_1)	143	35,279.47	217,535.10	379.56	824.74	5,072.30	2,134,102.00
Labor (X_2)	143	5,581.61	30,121.13	95	224	1,353.5	264,452
Fixed Asset (X_3)	143	295.91	1,355.71	2.63	17.39	87.91	12,936.00
Loans (Y ₁)	143	18,602.25	100,025.80	158.28	560.06	3,790.52	865,677.00
Securities (Y ₂)	143	7,444.89	39,989.74	2.53	259.54	1,715.29	346,901.00
Non-interest income (Y_3)	143	850.48	5,489.55	1.97	7.99	75.62	51,394.00
Equity (Z_1)	143	4,278.75	25,136.01	45.04	103.63	775.45	231,727.00
Asset (Z_2)	143	41,664.43	259,375.40	434.24	933.69	5,826.67	2,572,773.00
$NPL(Z_3)$	143	287.98	1,618.71	1.44	8.67	47.02	14,185.00
Total Cost (TC)	143	844.03	5,089.92	7.91	22.51	123.30	46,005.00
Total Profit (TP)	143	451.51	2,698.06	1.72	9.78	74.25	23,057.00

18 / 22

Shirong Zhao A. Spacial Autorogressive Stochastic From July 16, 2019

Neighborhood Matrix W

We have two possible definitions:

- distance between pairs of BHC (Glass and Kenjegalieva (2019)))
- k nearest neighbor (KNN)

Row sums of W are equal to 1.

19 / 22

Shirong Zhao A Spacial Autoregressive Studiostic From July 16, 2019

SARH with Time-varying Spacial Spillovers

The changes of ρ_t can be interpreted as contagion.

$$y_{i,t} = \mathbf{x}_{i,t}\boldsymbol{\beta} + \rho_t \sum_{j=1}^{N} W_{i,j}y_{j,t} + \nu_{i,t} - u_{i,t},$$

$$\nu_{i,t} \sim N(0, \sigma^2),$$

$$u_{i,t} \sim \exp(\lambda),$$

$$\lambda = \exp(\mathbf{z}_{i,t}\boldsymbol{\gamma})$$

$$i = 1, 2, \dots, N, \quad t = 1, 2, \dots, T,$$

$$(9)$$

Shirong Zhao A. Special Autoregressive Stochastic From July 16, 2019 20 / 22

SAR with Inefficiency Spillovers

Inefficiency could also be spatially correlated. That is to say, inefficiency of one unit could also be affected by its neighbours.

$$y_{i,t} = \mathbf{x}_{i,t}\boldsymbol{\beta} + \rho \sum_{j=1}^{N} W_{i,j}y_{j,t} + \nu_{i,t} - u_{i,t},$$

$$\nu_{i,t} \sim N(0, \sigma^{2}),$$

$$u_{i,t} = \theta \sum_{j=1}^{N} W_{i,j}u_{j,t} + \epsilon_{i,t}$$

$$\epsilon_{i,t} \sim \exp(\lambda),$$

$$i = 1, 2, \dots, N, \quad t = 1, 2, \dots, T$$

$$(10)$$

Shirong Zhao A Special Autorespessive Stochastic Front July 16, 2019 21 / 22

Spatial-Temporal Stochastic Frontier Model

Inefficiency could also be time correlated. That is to say, there is adjustment cost for firms.

$$y_{i,t} = \mathbf{x}_{i,t}\boldsymbol{\beta} + \nu_{i,t} - u_{i,t},$$

$$\nu_{i,t} \sim N(0, \sigma^{2}),$$

$$u_{i,t} = \exp(\mathbf{z}_{i,t}\boldsymbol{\lambda} + \epsilon_{i,t}),$$

$$\boldsymbol{\epsilon}_{t} = (\epsilon_{1,t}, \epsilon_{2,t}, \dots, \epsilon_{N,t})^{T},$$

$$\boldsymbol{\epsilon}_{t} = \theta \boldsymbol{\epsilon}_{t-1} + \boldsymbol{\phi}_{t}, \quad \text{for} \quad t = 2, 3, \dots, T,$$

$$\boldsymbol{\epsilon}_{1} = \boldsymbol{\phi}_{1},$$

$$\boldsymbol{\phi}_{t} \sim N(0, \tau^{2}(\boldsymbol{D} - \rho \boldsymbol{W})^{-1}), \quad \text{for} \quad t = 1, 2, \dots, T$$

Shirong Zhao A Sungal Autoparassus Staclastic Form July 16, 2019 22 / 22

Aigner, D., C. Lovell, and P. Schmidt (1977), Formulation and estimation of stochastic frontier production function models, *Journal of Econometrics* 6, 21–37.

URL: http://linkinghub.elsevier.com/retrieve/pii/0304407677900525 ass, A. J. and K. Kenjegalieva (2019), A spatial productivity index in the presence of efficiency spillovers: Evidence for U.S. banks, 1992–2015, European Journal of Operational Research 273, 1165–1179.

URL:

http://www.sciencedirect.com/science/article/pii/S0377221718307574
ss, A. J., K. Kenjegalieva, and R. C. Sickles (2016), A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers, *Journal of Econometrics* 190, 289–300.

URL:

https://linkinghub.elsevier.com/retrieve/pii/S0304407615001803

Meeusen, W. and J. van Den Broeck (1977), Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error, *International Economic Review* 18, 435–444.

URL: https://www.jstor.org/stable/2525757

Shirong Zhao A Spacial Autoroprossive Stochestic From July 16, 2019 22 / 22

Tecles, P. L. and B. M. Tabak (2010), Determinants of bank efficiency:

The case of Brazil, European Journal of Operational Research 207, 1587–1598.

URL:

http://www.sciencedirect.com/science/article/pii/S0377221710004133

□ト 4個ト 4 種ト 4 種ト ■ 9 Q @

Shirong Zhao A Spacial Autoregressive Stochastic from July 16, 2019 22 / 22