

TITLE OF YOUR THEIS OR DISSERTATION

LI Tiezhu

李铁柱

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Philosophy

in

Computer and Information Engineering

The Chinese University of Hong Kong, Shenzhen August 1926

Thesis Assessment Committee

Professor ZHANG San (Chair)

Professor LI Si (Thesis Supervisor)

Professor WANG Wu (Thesis Co-supervisor)

Professor ZHAO Liu (Committee Member)

Professor JIN Guo (Examiner from CUHK)

Professor WHO Ever (External Examiner)

Abstract

of thesis entitled:

TITLE OF YOUR THEIS OR DISSERTATION

Submitted by LI Tiezhu for the degree of Master of Philosophy at The Chinese University of Hong Kong, Shenzhen in August 1926

Put your abstract text here.

摘要

香港中文大学深圳学位论文标题

此为摘要。

Acknowledgement

I would like to thank my supervisor Prof.

Contents

Al	ostra	et	i
摘	要		ii
Ad	knov	wledgement	iii
Co	onten	ats	iv
Li	st of	Figures	vi
Li	st of	Tables	vii
Sy	mbo	ls and Acronyms	viii
1	Intr	roduction	1
	1.1	Background	1
	1.2	Related Work	1
	1.3	Contributions	1
	1.4	Organization	1
2	Тор	ic One	3
	2.1	Figure Example with tikz	3
	2.2	Figure Example with pgfplots	3

3	Topic Two	6
	3.1 Citation Example	6
4	Conclusion	7
	4.1 Contributions	7
	4.2 Future Work	7
A	Proof of Propositions	8
В	Publication List	9
Bi	bliography	10

List of Figures

2.1	Plotting figures using tikz like this	•	•	•	•	•	•		•	•	•	•	•	4
2.2	Plotting figures using pgfplots like this.													4

List of Tables

Symbols and Acronyms

In general, we denote a scalar by an italic lower case letter, a vector by a roman lower case bold letter, and a matrix by a roman upper case bold letter respectively, e.g., $a \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{M} \in \mathbb{R}^{p \times q}$, with any exceptions to be mentioned in the context case by case.

Specifically, the components of any vector $\mathbf{v} \in \mathbb{R}^2$ or $\mathbf{v} \in \mathbb{R}^3$ are written as $[v_x \, v_y]^T$ or $[v_x \, v_y \, v_z]^T$.

An identity matrix is written as **I**. Specifically, an $n \times n$ identity matrix is written as \mathbf{I}_n . A zero matrix or vector is written as $\mathbf{0}$. Specifically, an $m \times n$ zero matrix is written as $\mathbf{0}_{m \times n}$.

 $(\check{\cdot})$ denotes the prior of any quantity, while $(\hat{\cdot})$ denotes the posterior. Specialized symbols and major acronyms are defined as follows:

$\mathbf{R} \in SO(3)$	a 3×3 rotation matrix
$T \in SE(3)$	a 4×4 homogeneous transformation matrix
$\mathbf{p} \in \mathbb{R}^3$	a 3D translational vector
$\mathbf{q} = [q_x q_y q_z q_w]^T$	a Hamilton quaternion, with q_w being the real part
$[\mathbf{q}]_{\Im} = [q_x q_y q_z]^T$	the imaginary vector part of \mathbf{q}
\otimes	multiplication of quatertions
$oldsymbol{ heta} \in \mathbb{R}^3$	a rotation vector
$\mathbf{l} \in \mathbb{R}^3$	the 3D position of a landmark point
$\mathbf{v} \in \mathbb{R}^3$	translational velocity
$\mathbf{a} \in \mathbb{R}^3$	translational acceleration
$oldsymbol{\omega} \in \mathbb{R}^3$	angular velocity
$\mathbf{u} \in \mathbb{R}^2$	2D position in image coordinates
$p(\cdot)$	the probability density function (PDF)
$E(\cdot)$	the expectation
Σ	a covariance matrix
Ω	an information matrix
$\mathcal{N}(ar{\mathbf{x}}, oldsymbol{\Sigma})$	a normal distribution with mean \bar{x} and covariance Σ
η	a noise vector
$\mathbf{e}(\cdot)$	an error/residual function
J	a Jacobian matrix
Н	a Hessian matrix
J_ℓ	left Jacobian of SO(3)
\mathcal{J}_ℓ	left Jacobian of SE(3)
\mathcal{T}	adjoint of SE(3)
$\operatorname{tr}(\cdot)$	trace of a matrix
$\det(\cdot)$	determinant of a matrix

BA bundle adjustment

BoW Bags of Words

DoF degree of freedom

EKF extended Kalman filter

GPS Global Positioning System

GN Gauss-Newton

IMU inertial measurement unit

KF Kalman filter

LM Levenberg-Marquardt

MAP maximum a posteriori

PF partical filtering

RANSAC random sample consensus

SfM structure from motion

SLAM simultaneously localization and mapping

MSCKF multi-state constraint Kalman filter

ToF Time-of-Flight

UKF unscended Kalman filter

V-SLAM visual SLAM

VINS visual inertial navigation system

VIF visual inertial fusion

VIO visual inertial odometry

VO visual odometry

Introduction

Summary

This chapter introduces the background and some related work of

It also lists the contributions and sketches the outline of the thesis.

- 1.1 Background
- 1.2 Related Work
- 1.3 Contributions
- 1.4 Organization

The remainder of the thesis is organized as follows.

Summary

This chapter introduces the background and some related work of

It also lists the contributions and sketches the outline of the thesis.

 $[\]hfill\Box$ End of chapter.

Topic One

	Summary
This chapter presents	

2.1 Figure Example with tikz

Check Figure 2.1.

2.2 Figure Example with pgfplots

Check Figure 2.2.

Figure 2.1: Plotting figures using tikz like this.

Figure 2.2: Plotting figures using pgfplots like this.

	Summary
This chapter presents	

 \Box End of chapter.

Topic Two

	Summary
This chapter presents	

3.1 Citation Example

Bibliography data is put in database.bib. Cite like this [Craig, 2005] [Barfoot, 2017].

	Summary
This chapter presents	

 $\hfill\Box$ End of chapter.

Conclusion

Summary

This chapter summarizes the contributions of this thesis, and proposes some potential directions for future work.

4.1 Contributions

4.2 Future Work

 $\hfill\Box$ End of chapter.

Appendix A

Proof of Propositions

 $[\]hfill\Box$ End of chapter.

Appendix B

Publication List

 \Box End of chapter.

Bibliography

Barfoot, T. D. (2017). State Estimation for Robotics. Cambridge Univ. Press.

Craig, J. J. (2005). Introduction to Robotics: Mechanics and Control, 3rd Edition. Pearson.