CS 170 DIS 1

Released on 2019-01-22

1 $(\star\star)$ Asymptotic notation

- (a) For each pair of functions f(n) and g(n), state whether f(n) = O(g(n)), $f(n) = \Omega(g(n))$, or $f(n) = \Theta(g(n))$. For example, for $f(n) = n^2$ and $g(n) = 2n^2 n + 3$, write $f(n) = \Theta(g(n))$.
 - $f(n) = n \text{ and } g(n) = n^2 n$
 - $f(n) = n^2$ and $g(n) = n^2 + n$
 - f(n) = 8n and $g(n) = n \log n$
 - $f(n) = 2^n$ and $g(n) = n^2$
 - $f(n) = 3^n$ and $g(n) = 2^{2n}$
- (b) For each of the following, state the order of growth using Θ notation, e.g. $f(n) = \Theta(n)$.
 - f(n) = 50
 - $f(n) = n^2 2n + 3$
 - $f(n) = n + \cdots + 3 + 2 + 1$
 - $f(n) = n^{100} + 1.01^n$
 - $f(n) = n^{1.1} + n \log n$
 - $f(n) = (g(n))^2$ where $g(n) = \sqrt{n} + 5$

Solution:

- (a) f(n) = O(g(n))
 - $f(n) = \Theta(g(n))$
 - f(n) = O(g(n))
 - $f(n) = \Omega(q(n))$
 - f(n) = O(g(n))
- (b) $f(n) = \Theta(1)$
 - $f(n) = \Theta(n^2)$
 - $f(n) = \frac{(n+1)n}{2} = \Theta(n^2)$
 - $\bullet \ f(n) = \Theta(1.01^n)$
 - $f(n) = \Theta(n^{1.1})$
 - $f(n) = n + 10\sqrt(n) + 25 = \Theta(n)$

Asymptotic Bound Practice

Prove that for any $\epsilon > 0$ we have $\log x = O(x^{\epsilon})$.

Solution:

Observe that $x > \log x \forall x > 0$. We can see this by taking finding the minimum of the function $x - \log x$ over the range $(0, \inf)$ using some calculus (find the critical points, then check concavity). The minimizing x is 1, with value 1.

If $x > \log x$, then we have that $\log x^{\epsilon} < x^{\epsilon}$, and therefore $\epsilon \log x < x^{\epsilon}$. It follows that a constant factor times x^{ϵ} is always larger than $\log x$ for x>0. This proves $\log x=O(x^{\epsilon})$.

Here is an alternate argument, using l'Hopital's rule:

$$\lim_{x \to \infty} \frac{\log x}{x^{\epsilon}} = \lim_{x \to \infty} \frac{\frac{d}{dx} \log x}{\frac{d}{dx} x^{\epsilon}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{x}}$$
$$= \lim_{x \to \infty} \frac{1}{\epsilon x^{\epsilon}} = 0$$

And so therefore $\log x = O(x^{\epsilon})$.

Bounding Sums 3

Let $f(\cdot)$ be a function. Consider the equality

$$\sum_{i=1}^{n} f(i) = \Theta(f(n)),$$

Give a function f_1 such that the equality holds, and a function f_2 such that the equality does not hold.

Solution: There are many possible solutions.

$$f_1(i) = 2^i$$
: $\sum_{i=1}^n 2^i = 2^{n+1} - 2 = \Theta(2^n)$.

$$f_1(i) = 2^i : \sum_{i=1}^n 2^i = 2^{n+1} - 2 = \Theta(2^n).$$

$$f_2(i) = i : \sum_{i=1}^n i = \frac{n(n+1)}{2} = \Theta(n^2) \neq \Theta(n).$$