Written Examination Online Convex Optimization 7 January, 2021

Lecturer: Olivier Wintenberger

- This is a closed book examination. You may not use any lecture note or other support.
- This examination paper consists of 2 pages, duration 1h30.
- Solutions can be written in English or French.
- The distribution of the points over the problem will be approximatively as follows.

Question	1	2	3	4	5	6	7	8	9	sum
# points	1	2	1	3	1	2	3	4	3	20

Problem: The aim of the problem is to get a regret bound for the agile version of the OMD algorithm and to apply it to get a log d regret bound over any ℓ^1 -ball. We recall that R is any regularization function (strongly convex and twice differentiable), (f_t) is a sequence of convex loss function and the regret is

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(x_{t}) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x) = \sum_{t=1}^{T} f_{t}(x_{t}) - \sum_{t=1}^{T} f_{t}(x^{*})$$

where K is a bounded close set. We recall also the notions of convex conjugate and Bergman divergence

$$R^*(y^*) = \max_{y \in \mathcal{K}} \{ y^T y^* - R(y) \}$$
 and $B_R(y||x) = R(y) - R(x) - \nabla R(x)^T (y - x)$,

where y^* is any point in $\mathcal{K}^* = {\nabla R(x), x \in \mathcal{K}}$. We want to show that

Theorem 0.1 The agile OMD Algorithm 1 satisfies the regret bound

$$Regret_T \le \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla f_t(x_t)\|_t^{*2} + \frac{R(x^*) - R(x_1)}{\eta},$$

where $\|\cdot\|_t^{*2} = \|\cdot\|_{\nabla^2 R^*(z_t^*)}^2$ for R^* the convex conjugate of R and z_t^* some point in \mathcal{K}^* .

Algorithm 1: Online Mirror Descent (agile version)

Parameters: Regularization function R, step-size $\eta > 0$.

Initialization: Initial prediction $x_1 = \arg\min_{x \in \mathcal{K}} B_R(x||y_1)$ with $y_1 \in \mathbf{R}^d$ such that

 $\nabla R(y_1) = 0.$

For each recursion $t \geq 1$:

Predict: x_t Incur: $f_t(x_t)$ Observe: $\nabla f_t(x_t)$

Recursion: Update $\nabla R(y_{t+1}) = \nabla R(x_t) - \eta \nabla f_t(x_t),$ $x_{t+1} = \arg\min_{x \in \mathcal{K}} B_R(x||y_{t+1}).$

1. Explain what is the difference with the lazy version of OMD?

2. Apply the gradient trick on the regret in order to get a bound depending on $\nabla f_t(x_t)$, x_t , $1 \le t \le T$ and x^* only.

3. Show that

$$Regret_T \leq \frac{1}{\eta} \sum_{t=1}^{T} (\nabla R(x_t) - \nabla R(y_{t+1}))^T (x_t - x^*).$$

4. Express each summand in terms of $B_R(x^*||x_t)$, $B_R(x^*||y_{t+1})$ and $B_R(x_t||y_{t+1})$.

5. Using that $B_R(x^*, y_{t+1}) \geq B_R(x^*, x_{t+1})$ and a telescoping sum argument, derive that

$$Regret_T \le \frac{1}{\eta} (B_R(x^*||x_1) - B_R(x^*||x_{T+1})) + \frac{1}{\eta} \sum_{t=1}^T B_R(x_t||y_{t+1}).$$

- 6. Check that by definition of x_1 we have $R(x_1) = \min_{x \in \mathcal{K}} R(x)$ and $B_R(x^*||x_1) \leq R(x^*) R(x_1)$.
- 7. Assuming the identities

$$B_R(x||y) = B_{R^*}(\nabla R(y)||\nabla R(x)) = \frac{1}{2}||x - y||_{\nabla^2 R(z)}^2$$
 (1)

for some $z \in \mathcal{K}$ and any R, derive the desired bound.

8. Application. We consider $R(x) = \frac{1}{2}||x||_p^2$, 1 , admitting that <math>R is a p-1 strongly convex function such that $R^*(y^*) = \frac{1}{2(p-1)}||y^*||_q^2$ with $\frac{1}{p} + \frac{1}{q} = 1$. Design an algorithm satisfying the regret

$$Regret_T \leq G_{\infty} z \sqrt{Tq} d^{1/q}$$

over $K = B_1(z)$, z > 0 with G_{∞} satisfying $\|\nabla f_t(x_t)\|_{\infty} \leq G_{\infty}$ for all $t \geq 1$.

9. Optimizing the above regret bound in q, derive an algorithm with regret $O(\sqrt{T \log d})$. The performances are comparable with EG+/-, why EG+/- is preferable?

Bonus Prove the identities (1).

End of Examination Paper