DSA Graph (Slides) - Stight reduling Graph = Gr (V,E) for part array tree in final V = \ 0,1,2,3,4} edges = show relationship $E = \left\{ (0,1), (1,2), (0,3), (3,0), (2,2), (4,3) \right\}$ destination Path - a sequence of consective edges from source to destination Par [1,3]: (1,2),(2,3) STC 2 1 dst= 3

Array based: Adjancey Matrix Link list based: Adjacency List

	15/12/23 HEAP Tree
THE PERSON NAMED IN	HEAP
	Type of Complete Tree Min Heap > Ascending Order Descending Order.
	Min Heap -> Descending Order. Max Heap -> Descending
	Parents node < child Nodes parents > child nodes.
	A40 Mana
	Min Heap:
	60, 50, 45, 40, 50, 65, 70, 80, 30, 35, 25
	(60) 2°=1 → level 1
	(50)
	Now Compare of pour node with parent node:
	If node is less than parent node the swap
1 - L	
7h_	Tree becomes: 50) Againswap > 00 1:
7	Again su 60 (3)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Insexting (40) to new level:-
	Go Again Swapping (10)
	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	inserting (5) (6) (5) (5) (6)
	(60) /m

Again Swap (43) and (60):-The tree becomes true under Min hop Condition: parent node = child node :--> 2' = 2 (B) (B) →2²=4 Print root (25) Nodes = 7 panters = 14 used = 6 unused = 8 Hav to Save this unused nemery (By using threading morder Transdul: - C, B, A, E, D, G, F

Threading :-1- One-way inorder threading 2- Two-way " " with header. 11 with node. 3- Two-way 11 Inorder traversal: - C, B, A, E, D, G, F Connect each node with its successor In Two-way with Header:-Connect free nodes with header node.

Spanning Tree:
> Undirected Graph

> Weighted Graph

Minimum Spanning Tree:
1- Kouskal's Algorithm.

· list all edges in ascending

2- Prims Algorithm

2- Prims Algo time-officer Start from B