

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	18.56 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
C _s =	0.82	
C _e =	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II
Peak Velocity Pressure, q _z =	12.72 psf	Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.1 (7)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.1 1.7 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _s =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
S ₁ =	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T. =	0.00	$C_4 = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	<u>Location</u>	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	1		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>90</u>	in
$\Phi F_{ty STRONG-AXIS} =$	28.37	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
S _y =	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.926	k-ft
$M_z =$	0.205	k-ft
M _{y allowable} =	1.207	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>100%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type =	<u>1.5x0.25</u>	
Aluminum Type =	6061-T6	
$F_{ty} =$	35	ksi
Φ =	0.90	
S _y =	0.02	in ³
E =	10100	ksi
I _y =	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.005	k-ft
$P_n =$	0.043	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>11%</u>	

A cross brace kit is required every 17 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>151.95</u>	<u>1716.66</u>	k
Compressive Load =	<u>1700.79</u>	<u>1414.78</u>	k
Lateral Load =	<u>4.73</u>	921.21	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 25517.5 in-lbs Resisting Force Required = 850.58 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1417.64 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding 221.34 lbs Force = Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 553.36 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 221.34 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{\text{22 in}} = \frac{23 \text{ in}}{\text{23 in}} = \frac{24 \text{ in}}{\text{25 in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(5 \text{ ft})(1.83 \text{ ft}) = \frac{1994 \text{ lbs}}{\text{2084 lbs}} = \frac{2175 \text{ lbs}}{\text{2266 lbs}}$

ASD LC	1.0D + 1.0S					1.0D+	+ 1.0W		1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	651 lbs	651 lbs	651 lbs	651 lbs	493 lbs	493 lbs	493 lbs	493 lbs	805 lbs	805 lbs	805 lbs	805 lbs	-70 lbs	-70 lbs	-70 lbs	-70 lbs
FB	472 lbs	472 lbs	472 lbs	472 lbs	533 lbs	533 lbs	533 lbs	533 lbs	715 lbs	715 lbs	715 lbs	715 lbs	-824 lbs	-824 lbs	-824 lbs	-824 lbs
F _V	72 lbs	72 lbs	72 lbs	72 lbs	402 lbs	402 lbs	402 lbs	402 lbs	350 lbs	350 lbs	350 lbs	350 lbs	-443 lbs	-443 lbs	-443 lbs	-443 lbs
P _{total}	3117 lbs	3207 lbs	3298 lbs	3389 lbs	3020 lbs	3111 lbs	3201 lbs	3292 lbs	3513 lbs	3604 lbs	3695 lbs	3785 lbs	302 lbs	356 lbs	411 lbs	465 lbs
M	457 lbs-ft	457 lbs-ft	457 lbs-ft	457 lbs-ft	551 lbs-ft	551 lbs-ft	551 lbs-ft	551 lbs-ft	722 lbs-ft	722 lbs-ft	722 lbs-ft	722 lbs-ft	690 lbs-ft	690 lbs-ft	690 lbs-ft	690 lbs-ft
е	0.15 ft	0.14 ft	0.14 ft	0.13 ft	0.18 ft	0.18 ft	0.17 ft	0.17 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	2.28 ft	1.93 ft	1.68 ft	1.48 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	280.1 psf	277.4 psf	274.9 psf	272.6 psf	257.3 psf	255.6 psf	254.0 psf	252.5 psf	288.8 psf	285.7 psf	282.8 psf	280.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	399.9 psf	391.9 psf	384.7 psf	378.0 psf	401.6 psf	393.6 psf	386.3 psf	379.5 psf	477.8 psf	466.5 psf	456.1 psf	446.6 psf	504.8 psf	219.2 psf	166.7 psf	146.3 psf

Maximum Bearing Pressure = 505 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 277.8 \text{ ft-lbs}$

Resisting Force Required = 303.04 lbs S.F. = 1.67 Weight Required = 505.07 lbs

Minimum Width = 22 in in
Weight Provided = 1993.75 lbs

A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E					
Width		22 in			22 in			22 in				
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer			
F _Y	85 lbs	228 lbs	81 lbs	312 lbs	921 lbs	307 lbs	25 lbs	67 lbs	24 lbs			
F _V	4 lbs	4 lbs	0 lbs	19 lbs	18 lbs	1 lbs	1 lbs	1 lbs	0 lbs			
P _{total}	2554 lbs	2696 lbs	2549 lbs	2661 lbs	3271 lbs	2657 lbs	747 lbs	788 lbs	745 lbs			
М	6 lbs-ft	6 lbs-ft	0 lbs-ft	33 lbs-ft	27 lbs-ft	4 lbs-ft	2 lbs-ft	2 lbs-ft	0 lbs-ft			
е	0.00 ft	0.00 ft	0.00 ft	0.01 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft			
L/6	0.31 ft	1.83 ft	1.83 ft	1.81 ft	1.82 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft			
f _{min}	276.3 sqft	292.0 sqft	277.9 sqft	278.6 sqft	347.1 sqft	288.5 sqft	80.8 sqft	85.4 sqft	81.3 sqft			
f _{max}	280.9 psf	296.3 psf	278.2 psf	302.0 psf	366.5 psf	291.1 psf	82.1 psf	86.6 psf	81.4 psf			

Maximum Bearing Pressure = 367 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
1.308 k	Maximum Axial Load =	1.184 k
5.692 k	M8 Bolt Capacity =	5.692 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>23%</u>	Utilization =	<u>21%</u>
	<u>Bracing</u>	
0.476 k	Maximum Axial Load =	0.043 k
5.692 k	M10 Bolt Capacity =	8.894 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>8%</u>	Utilization =	<u>1%</u>
	5.692 k 7.952 k 23% 0.476 k 5.692 k 7.952 k	1.308 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 0.617 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.059 \text{ in} \\ \hline N\!\!\!\!/\!\!\!/\!\!\!\!/} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 90.00 \text{ in}$$

$$J = 0.255$$

$$234.355$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 =
$${}^{(1.6)}_{1701.56}$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(JyJ)/2)}}]$
 $\varphi F_I = 28.4 \text{ ksi}$

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 90.00 \text{ in}$$

$$J = 0.255$$

$$243.363$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.3$$

3.4.16

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 28.4 \text{ ksi} \\ \\ k = & 250988 \text{ mm}^4 \\ \\ 0.603 \text{ in}^4 \\ \\ y = & 30 \text{ mm} \\ \\ Sx = & 0.511 \text{ in}^3 \\ \\ M_{\text{max}} St = & 1.207 \text{ k-ft} \end{array}$$

77.3

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

Compression

3.4.9

b/t =7.4 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi b/t =23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.5 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.47 \text{ ksi}$$

$$A = 578.06 \text{ mm}^2$$

$$0.90 \text{ in}^2$$

$$P_{\text{max}} = 25.51 \text{ kips}$$

0.0

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 21.0912 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\varphi F_L = \varphi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\varphi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_1 = & 29.8 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Weak Direction

3.4.16

N/A for Strong Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$(Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$\begin{aligned} \text{h/t} &=& 24.46 \\ S1 &=& \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr} \\ \text{S1} &=& 34.4 \\ \text{m} &=& 0.70 \\ \text{C}_0 &=& 34.23 \\ \text{Cc} &=& 37.77 \\ S2 &=& \frac{k_1Bbr}{mDbr} \\ \text{S2} &=& 72.1 \\ \phi \text{F}_{\text{L}} &=& 1.3\phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &=& 43.2 \text{ ksi} \end{aligned}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $Ix = 364470 \text{ mm}^4$
 0.876 in^4
 $y = 37.77 \text{ mm}$
 $Sx = 0.589 \text{ in}^3$
 $M_{max} St = 1.463 \text{ k-ft}$

3.4.18

h/t = 4.29

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$k = 217168 \text{ mm}^4$$

x =

Sy=

 $M_{max}Wk =$

0.522 in⁴

0.457 in³

0.513 k-ft

29 mm

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 0.46067 \\ r = & 1.374 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \varphi cc = & 0.90326 \\ & \varphi F_L = & \varphi cc(Bc-Dc^*\lambda) \\ & \varphi F_L = & 30.1251 \text{ ksi} \end{array}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))}/(5.1b/t) \\ \phi F_1 = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$b/t = 24.46$$

$$t = 2.6$$

$$ds = 6.05$$

$$rs = 3.49$$

$$S = 21.70$$

$$\rho st = 0.22$$

$$F_{UT} = 10.43$$

$$F_{ST} = 28.24$$

$$\phi F_L = Fut + (Fst - Fut)\rho st < Fst$$

$$\phi F_L = 14.3 \text{ ksi}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \overline{\theta_b} Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{\text{max}} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$\phi F_L = 31.2 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1 Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{cases} 1.6Dt \\ S2 = C_t \end{cases}$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$1x = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.423 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$

$$\phi F_L = 31.2$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_I = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 31.2 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

 $Sy = 0.163 \text{ in}^3$

 $M_{max}Wk = 0.423 \text{ k-ft}$

h/t = 7.75

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 ϕF_L = 24.5226 ksi

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \theta_b rey}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$SI = 0.5140$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 Rb/t = 0.0

 $\phi F_L = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_1 = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F C y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ M_{\text{max}} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.98863 \\ r = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.85841 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \end{array}$$

 $\phi F_L = 7.59722 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_{b} + 3}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_{L} = \phi y F c y$$

$$\phi F_{L} = 33.25 \text{ ksi}$$

$$\phi F_{L} = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^{2}$$

$$0.50 \text{ in}^{2}$$

$$P_{max} = 3.81 \text{ kips}$$

0.0

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{C_c}\right)^2$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})]} \end{split}$$

$$\phi F_L = 30.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

i.16.1 Not U Rb/t = 0.0 3.4.16.1 Not Used

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.2 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

y = 15 mm
Sx = 0.163 in³

$$M_{max}St = 0.410 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))]}$$

$$\phi F_L = 30.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_{0} = 15$$

$$Cc = 15$$

$$S2 = \frac{k_{1}Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_{L} = 1.3\varphi y Fcy$$

$$\varphi F_{L} = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$Sy = 0.163 \text{ in}^3$$

 $M_{max}Wk = 0.450 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 1.5514$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.7972$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 11.5927 \text{ ksi}$$
3.4.9
$$b/t = 7.75$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

33.3 ksi

33.3 ksi

7.75

12.21

32.70

3.4.10

 $\varphi F_L = \varphi y F c y$ $\varphi F_L = 33$

 $\varphi F_L = \varphi y F c y$ $\varphi F_L = 33$

b/t =

S1 =

S2 =

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 11.59 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.82 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-39.013	-39.013	0	0
2	M16	V	-60.293	-60.293	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	78.026	78.026	0	0
2	M16	V	35.466	35,466	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	169.386	2	295.899	2	001	15	0	2	0	1	0	1
2		min	-221.123	3	-400.159	3	158	1	0	3	0	1	0	1
3	N7	max	0	15	479.645	1	071	15	0	15	0	1	0	1
4		min	163	2	-26.56	3	-1.685	1	003	1	0	1	0	1
5	N15	max	0	15	1308.301	1	.602	1	.001	1	0	1	0	1
6		min	-1.878	1	-116.887	3	349	3	0	3	0	1	0	1
7	N16	max	670.061	2	1088.29	1	184	10	0	1	0	1	0	1
8		min	-708.622	3	-1320.504	3	-38.983	3	0	3	0	1	0	1
9	N23	max	0	15	479.342	1	3.635	1	.006	1	0	1	0	1
10		min	163	2	-26.077	3	.143	15	0	15	0	1	0	1
11	N24	max	169.879	2	300.352	2	39.259	3	.002	1	0	1	0	1
12		min	-221.218	3	-397.52	3	.027	10	0	3	0	1	0	1
13	Totals:	max	1007.245	2	3946.105	1	0	1						
14		min	-1151.131	3	-2287.706	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	331.882	1	.641	4	.659	1	0	15	0	3	0	1
2			min	-361.109	3	.151	15	046	3	001	1	0	1	0	1
3		2	max	331.998	1_	.596	4	.659	1	0	15	0	3	0	15
4			min	-361.021	3	.141	15	046	3	001	1	0	1	0	4
5		3	max	332.115	1	.55	4	.659	1	0	15	0	1	0	15
6			min	-360.934	3	.13	15	046	3	001	1	0	10	0	4
7		4	max	332.231	1	.504	4	.659	1	0	15	0	1	0	15
8			min	-360.847	3	.119	15	046	3	001	1	0	3	0	4
9		5	max	332.347	1	.459	4	.659	1	0	15	0	1	0	15
10			min	-360.759	3	.108	15	046	3	001	1	0	3	0	4
11		6	max	332.464	1	.413	4	.659	1	0	15	0	1	0	15
12			min	-360.672	3	.098	15	046	3	001	1	0	3	0	4
13		7	max	332.58	1	.367	4	.659	1	0	15	0	1	0	15
14			min	-360.585	3	.087	15	046	3	001	1	0	3	0	4
15		8	max	332.697	1	.322	4	.659	1	0	15	0	1	0	15
16			min	-360.498	3	.076	15	046	3	001	1	0	3	0	4
17		9	max	332.813	1	.276	4	.659	1	0	15	0	1	0	15
18			min	-360.41	3	.065	15	046	3	001	1	0	3	0	4
19		10	max	332.929	1	.23	4	.659	1	0	15	0	1	0	15
20			min	-360.323	3	.055	15	046	3	001	1	0	3	0	4
21		11	max	333.046	1	.185	4	.659	1	0	15	0	1	0	15
22			min	-360.236	3	.044	15	046	3	001	1	0	3	0	4
23		12	max	333.162	1	.139	4	.659	1	0	15	.001	1	0	15
24			min	-360.148	3	.033	15	046	3	001	1	0	3	0	4
25		13	max	333.279	1	.099	2	.659	1	0	15	.001	1	0	15
26			min	-360.061	3	.017	12	046	3	001	1	0	3	0	4
27		14	max	333.395	1	.063	2	.659	1	0	15	.001	1	0	15
28			min	-359.974	3	002	3	046	3	001	1	0	3	0	4
29		15	max	333.511	1	.028	2	.659	1	0	15	.001	1	0	15
30			min	-359.886	3	029	3	046	3	001	1	0	3	0	4
31		16	max		1	007	10	.659	1	0	15	.001	1	0	15
32			min	-359.799	3	056	3	046	3	001	1	0	3	0	4
33		17	max		1	02	15	.659	1	0	15	.002	1	0	15
34					3	089	4	046	3	001	1	0	3	0	4
35		18	max		1	031	15	.659	1	0	15	.002	1	0	15
36			min		3	135	4	046	3	001	1	0	3	0	4
37		19	max		1	042	15	.659	1	0	15	.002	1	0	15
					•										

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC_
38			min	-359.537	3	181	4	046	3	001	1	0	3	0	4
39	M3	1	max		2	1.777	4	025	15	00	15	.002	1	0	4
40				-128.812	3	.418	15	671	1	0	1	0	15	0	15
41		2		105.441	2	1.599	4	025	15	0	15	.002	1	0	2
42			min	-128.863	3	.376	15	<u>671</u>	1	0	1	0	15	0	12
43		3		105.372	2	1.422	4	025	15	0	15	.002	1	0	2
44		1		-128.915	3	.335	15	<u>671</u>	1	0	1	0	15	0	3
45		4		105.304	2	1.245	4	025	15	0	15	.002	1	0	15
46				-128.966	3_	.293	15	<u>671</u>	1	0	1	0	15	0	4
47		5	max	105.235	2	1.068	15	025	15 1	<u> </u>	15	.002	15	0	15
48		6		-129.018	3	.251		671	15	0	15	0		0	4
49		6		105.167 -129.069	3	.891 .21	15	025 671	1	0	1	.001 0	15	<u>0</u> 	1 <u>5</u>
50 51		7		105.098	2	.713	4	025	15	<u> </u>	15	.001	1	<u> </u>	15
52				-129.121	3	.168	15	671	1	0	1	0	15	0	4
53		8		105.029	2	.536	4	025	15	0	15	.001	1	0	15
54		-		-129.172	3	.127	15	671	1	0	1	0	15	001	4
55		9		104.961	2	.359	4	025	15	0	15	0	1	0	15
56		<u> </u>		-129.223	3	.085	15	671	1	0	1	0	15	001	4
57		10		104.892	2	.182	4	025	15	0	15	0	1	0	15
58		10		-129.275	3	.043	15	671	1	0	1	0	15	001	4
59		11		104.824	2	.024	2	025	15	0	15	0	1	0	15
60				-129.326	3	021	3	671	1	0	1	0	15	001	4
61		12		104.755	2	04	15	025	15	0	15	0	1	0	15
62				-129.378	3	173	4	671	1	0	1	0	15	001	4
63		13		104.686	2	082	15	025	15	0	15	0	1	0	15
64			min	-129.429	3	35	4	671	1	0	1	0	15	001	4
65		14	max	104.618	2	123	15	025	15	0	15	0	1	0	15
66			min	-129.481	3	527	4	671	1	0	1	0	12	001	4
67		15	max	104.549	2	165	15	025	15	0	15	0	1	0	15
68				-129.532	3	704	4	671	1	0	1	0	3	0	4
69		16		104.481	2	207	15	025	15	0	15	0	15	0	15
70				-129.584	3	881	4	671	1	0	1	0	1	0	4
71		17		104.412	2	248	15	025	15	0	15	0	15	0	15
72		10		-129.635	3	-1.059	4	<u>671</u>	1	0	1	0	1	0	4
73		18		104.343	2	29	15	025	15	0	15	0	15	0	15
74		40		-129.687	3	-1.236	4	<u>671</u>	1	0	1	0	1	0	4
75		19	max		2	332	15	025	15	0	15	0	15	0	1
76	N 4 4	4		-129.738	3	-1.413	4	671	1	0	1	0	1	0	1
77 78	<u>M4</u>	1	max	478.48	3	0	1	071	15	0	1	<u> </u>	3	0	1
		2		-27.433											
79				478.545	<u>1</u> 3	0	1	071 -1.832	15	0	1	0	12	0 0	1
80		3		<u>-27.385</u> 478.61	<u>ა</u> 1	0	1	-1.032 071	15	0	1	0	15	0	1
82		3	min	-27.336	3	0	1	-1.832	1	0	1	0	1	0	1
83		4		478.675	_ <u></u>	0	1	071	15	0	1	0	15	0	1
84				-27.287	3	0	1	-1.832	1	0	1	0	1	0	1
85		5		478.739	1	0	1	071	15	0	1	0	15	0	1
86				-27.239	3	0	1	-1.832	1	0	1	0	1	0	1
87		6	max	478.804	1	0	1	071	15	0	1	0	15	0	1
88				-27.19	3	0	1	-1.832	1	0	1	0	1	0	1
89		7		478.869	1	0	1	071	15	0	1	0	15	0	1
90				-27.142	3	0	1	-1.832	1	0	1	001	1	0	1
91		8		478.933		0	1	071	15	0	1	0	15	0	1
92			min	-27.093	3	0	1	-1.832	1	0	1	001	1	0	1
93		9		478.998	1	0	1	071	15	0	1	0	15	0	1
94				-27.045	3	0	1	-1.832	1	0	1	001	1	0	1
					_										

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
95		10	max	479.063	1_	0	1	071	15	0	1	0	15	0	1
96			min	-26.996	3	0	1	-1.832	1	0	1	002	1	0	1
97		11	max	479.127	1	0	1	071	15	0	1	0	15	0	1
98			min	-26.948	3	0	1	-1.832	1	0	1	002	1	0	1
99		12	max		1	0	1	071	15	0	1	0	15	0	1
100			min	-26.899	3	0	1	-1.832	1	0	1	002	1	0	1
101		13		479.257	1	0	1	071	15	0	1	0	15	0	1
102		10	min	-26.851	3	0	1	-1.832	1	0	1	002	1	0	1
103		14	max		1	0	1	071	15	0	1	0	15	0	1
104		17		-26.802	3	0	1	-1.832	1	0	1	002	1	0	1
105		15		479.386	1	0	1	071	15	0	1	<u>002</u> 0	15	0	1
		15									-				_
106		40	min		3	0	1	-1.832	1	0	1	002	1	0	1
107		16	max		_1_	0	1	071	15	0	1	0	15	0	1
108			min	-26.705	3	0	1	-1.832	1	0	1	003	1	0	1
109		17	max		_1_	0	1	071	15	0	1	0	15	0	1
110			min	-26.657	3	0	1	-1.832	1	0	1	003	1	0	1
111		18	max	479.58	_1_	0	1	071	15	0	1	0	15	0	1
112			min	-26.608	3	0	1	-1.832	1	0	1	003	1	0	1
113		19	max	479.645	1	0	1	071	15	0	1	0	15	0	1
114			min	-26.56	3	0	1	-1.832	1	0	1	003	1	0	1
115	M6	1		1085.263	1	.642	4	.216	1	0	1	0	3	0	1
116	1110			-1184.471	3	.151	15	135	3	0	15	0	1	0	1
117		2		1085.379	1	.596	4	.216	1	0	1	0	3	0	15
118				-1184.383	3	.141	15	135	3	0	15	0	11	0	4
		3		1085.496	<u> </u>			.216	1	-	1	0	3		
119		3		-1184.296		.55	4			0				0	15
120		4			3	.13	15	135	3	0	15	0	15	0	4
121		4		1085.612	1_	.505	4	.216	1	0	1	0	1	0	15
122				-1184.209	3	.119	15	135	3	0	15	0	15	0	4
123		5		1085.729	_1_	.459	4	.216	1	0	1	0	1	0	15
124				-1184.121	3	.108	15	135	3	0	15	0	12	0	4
125		6	max	1085.845	_1_	.415	2	.216	1	0	1	0	1	0	15
126			min	-1184.034	3	.098	15	135	3	0	15	0	3	0	4
127		7	max	1085.961	1	.379	2	.216	1	0	1	0	1	0	15
128				-1183.947	3	.082	12	135	3	0	15	0	3	0	4
129		8		1086.078	1	.344	2	.216	1	0	1	0	1	0	15
130				-1183.86	3	.064	12	135	3	Ö	15	0	3	0	4
131		9		1086.194	1	.308	2	.216	1	0	1	0	1	0	15
132		J		-1183.772	3	.047	12	135	3	0	15	0	3	0	4
133		10		1086.311	_ <u></u>	.272	2	.216	1	0	1	0	1	0	15
		10					_			-	-				
134		4.4	111111	-1183.685	<u>3</u>	.029	12	135	3	0	15 1	0	3	0	4
135		11	max	1086.427		.237	2	.216		0	-	0		0	15
136				-1183.598	3_	.011	3	135	3	0	15	0	3	0	2
137		12		1086.543	_1_	.201	2	.216	1	0	1	0	1	0	12
138				-1183.51	3	016	3	135	3	0	15	0	3	0	2
139		13		1086.66	_1_	.166	2	.216	1	0	1	0	1	0	12
140				-1183.423	3	043	3	135	3	0	15	0	3	0	2
141		14		1086.776	1	.13	2	.216	1	0	1	0	1	0	12
142				-1183.336	3	07	3	135	3	0	15	0	3	0	2
143		15		1086.893	1	.095	2	.216	1	0	1	0	1	0	12
144				-1183.248	3	096	3	135	3	0	15	0	3	0	2
145		16		1087.009	1	.059	2	.216	1	0	1	0	1	0	12
146		10		-1183.161	3	123	3	135	3	0	15	0	3	0	2
147		17	_	1087.125	1		2	.216	1	0	1	0	1	0	12
		17				.023			_	_	-		-		
148		40		-1183.074	3_	15	3	135	3	0	15	0	3	0	2
149		18		1087.242	1	012	2	.216	1	0	1	0	1	0	12
150				-1182.987	3_	176	3	135	3	0	15	0	3	0	2
151		19	max	1087.358	_1_	042	15	.216	1	0	1	0	1	0	12

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]		y-y Mome	LC	z-z Mome	_LC_
152			min	-1182.899	3	203	3	135	3	0	15	0	3	0	2
153	M7	1	max		2	1.779	4	.014	1	0	2	0	2	0	2
154			min	-398.415	3	.419	15	004	10	0	3	0	3	0	12
155		2	max	475.649	2	1.602	4	.014	1	0	2	0	2	0	2
156			min	-398.466	3	.377	15	004	10	0	3	0	3	0	3
157		3	max	475.581	2	1.425	4	.014	1	0	2	0	2	0	2
158			min	-398.518	3	.335	15	004	10	0	3	0	3	0	3
159		4	max	475.512	2	1.248	4	.014	1	0	2	0	2	0	2
160			min	-398.569	3	.294	15	004	10	0	3	0	3	0	3
161		5	max	475.443	2	1.07	4	.014	1	0	2	0	2	0	15
162			min	-398.621	3	.252	15	004	10	0	3	0	3	0	3
163		6	max	475.375	2	.893	4	.014	1	0	2	0	2	0	15
164			min	-398.672	3	.21	15	004	10	0	3	0	3	0	4
165		7	max	475.306	2	.716	4	.014	1	0	2	0	2	0	15
166			min	-398.724	3	.169	15	004	10	0	3	0	3	0	4
167		8	max		2	.539	4	.014	1	0	2	0	2	0	15
168			min	-398.775	3	.127	15	004	10	0	3	0	3	001	4
169		9	max		2	.362	2	.014	1	0	2	0	2	0	15
170			min	-398.827	3	.085	15	004	10	0	3	0	3	001	4
171		10	max	475.1	2	.224	2	.014	1	0	2	0	2	0	15
172			min	-398.878	3	.018	12	004	10	0	3	0	3	001	4
173		11	max		2	.086	2	.014	1	0	2	0	2	0	15
174			min	-398.93	3	082	3	004	10	0	3	0	3	001	4
175		12	max		2	04	15	.014	1	0	2	0	2	0	15
176		1 -	min	-398.981	3	186	3	004	10	0	3	0	3	001	4
177		13	max		2	081	15	.014	1	0	2	0	2	0	15
178		1.0	min	-399.032	3	347	4	004	10	0	3	0	3	001	4
179		14	max		2	123	15	.014	1	0	2	0	2	0	15
180			min	-399.084	3	524	4	004	10	0	3	0	3	001	4
181		15	max	474.757	2	165	15	.014	1	0	2	0	2	0	15
182		10	min	-399.135	3	702	4	004	10	0	3	0	3	0	4
183		16	max		2	206	15	.014	1	0	2	0	2	0	15
184		10	min	-399.187	3	879	4	004	10	0	3	0	3	0	4
185		17	max		2	248	15	.014	1	0	2	0	2	0	15
186		1 ' '	min	-399.238	3	-1.056	4	004	10	0	3	0	3	0	4
187		18	max		2	29	15	.014	1	0	2	0	2	0	15
188		10	min	-399.29	3	-1.233	4	004	10	0	3	0	3	0	4
189		19	max		2	331	15	.014	1	0	2	0	2	0	1
190		15	min	-399.341	3	-1.41	4	004	10	0	3	0	3	0	1
191	M8	1		1307.136	1	0	1	.766	1	0	1	0	15	0	1
192	IVIO			-117.761		0	1	342	3	0	1	0	1	0	1
193		2		1307.201	1	0	1	.766	1	0	1	0	1	0	1
194			min		3	0	1	342	3	0	1	0	3	0	1
195		3		1307.266	1	0	1	.766	1	0	1	0	1	0	1
196			min	-117.664	3	0	1	342	3	0	1	0	3	0	1
197		4		1307.33		0	1	.766	1	0	1	0	1	0	1
198		1		-117.615	3	0	1	342	3	0	1	0	3	0	1
199		5		1307.395	<u> </u>	0	1	.766	1	0	1	0	1	0	1
		- 5					1	342	3		1		3		1
200		G		-117.566 1207.46	<u>3</u> 1	0	1	.766	1	<u> </u>	1	0	<u>ა</u> 1	0	1
201 202		6		1307.46 -117.518	3	0	1	342	3	0	1	0	3	0	1
		7				-	1	.766			1				
203		/		1307.525	<u>1</u>	0			1	0		0	1	0	1
204		0		-117.469	3_1	0	1	342 766	3	0	1	0	3	0	1
205		8		1307.589	1	0		.766	1	0	1	0	1	0	1
206		_	min	-117.421	3	0	1	342	3	0	1	0	3	0	1
207		9		1307.654	1	0	1	.766	1	0	1	0	1	0	1
208			min	-117.372	3	0	1	342	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

209	000	Member	Sec		Axial[lb]							LC	y-y Mome		I -	
11	209		10			1_	0	1	.766	1	0	1	0	1	0	1
213			4.4	_									_	_		_
1213												<u> </u>				_
214			40				-				_					_
215			12													_
17			12					-					_			-
1217			13									_				
19			1.1													
179			14													
220			15					-								-
221			13				_	-			_	<u> </u>				_
17			16	_									-			_
223			10													_
224			17				_	· ·					_			
225			17													_
226			18					-					_			-
19			10									_				
228			10									<u> </u>	_			
230			19									<u> </u>				
230		M10	1								_					<u> </u>
231		IVIIO										_				_
232			2										_			_
233												_				
234			3								_					
235			<u> </u>									<u> </u>				
236			1										_			
237																
238			5													_
239																
240			6								_					
241 7 max 345.447 1 .36 4 007 15 .001 1 0 1 0 15 242 min .343.362 3 .086 15 188 1 0 3 0 3 0 4 243 8 max 345.563 1 .314 4 007 15 .001 1 0 1 0 15 244 min .345.68 1 .268 4 007 15 .001 1 0 11 0 11 0 11 0 11 0 11 0 15 246 min .343.188 3 .064 15 188 1 0 3 0 3 0 4 247 10 max 345.913 1 .177 4 007 15 .001 1 0 15 0 15 25 .001																
242 min -343.362 3 .086 15 188 1 0 3 0 3 0 4 243 8 max 345.563 1 .314 4 007 15 .001 1 0 1 0 15 244 min -343.275 3 .075 15 188 1 0 3 0 3 0 4 245 9 max 345.68 1 .268 4 007 15 .001 1 0 11 0 15 246 min -343.188 3 .064 15 188 1 0 3 0 3 0 4 247 10 max 345.796 1 .223 4 007 15 .001 1 0 15 0 15 248 min -343.013 3 .043 15			7										_			
243 8 max 345.563 1 .314 4 007 15 .001 1 0 1 0 15 244 min -343.275 3 .075 15 188 1 0 3 0 3 0 4 245 9 max 345.68 1 .268 4 007 15 .001 1 0 11 0 15 246 min -343.188 3 .064 15 188 1 0 3 0 3 0 4 247 10 max 345.796 1 .223 4 007 15 .001 1 0 15 0 15 248 min -343.1 3 .054 15 188 1 0 3 0 3 0 4 249 11 max 345.913 1 .177 4 <td></td>																
244 min -343.275 3 .075 15 188 1 0 3 0 3 0 4 245 9 max 345.68 1 .268 4 007 15 .001 1 0 11 0 15 246 min -343.188 3 .064 15 188 1 0 3 0 3 0 4 247 10 max 345.796 1 .223 4 007 15 .001 1 0 15 0 15 248 min -343.1 3 .054 15 188 1 0 3 0 3 0 4 249 11 max 345.913 1 .177 4 007 15 .001 1 0 15 0 15 250 min -342.926 3 .032 15			8													
245 9 max 345.68 1 .268 4 007 15 .001 1 0 11 0 15 246 min -343.188 3 .064 15 188 1 0 3 0 3 0 4 247 10 max 345.796 1 .223 4 007 15 .001 1 0 15 0 15 248 min -343.11 3 .054 15 -188 1 0 3 0 3 0 4 249 11 max 345.913 1 .177 4 007 15 .001 1 0 15 0 15 250 min -343.013 3 .043 15 188 1 0 3 0 3 0 4 251 12 max 346.029 1 .134 2 </td <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>												<u> </u>				
246 min -343.188 3 .064 15 188 1 0 3 0 3 0 4 247 10 max 345.796 1 .223 4 007 15 .001 1 0 15 0 15 248 min -343.1 3 .054 15 188 1 0 3 0 3 0 4 249 11 max 345.913 1 .177 4 007 15 .001 1 0 15 0 15 250 min -343.013 3 .043 15 188 1 0 3 0 3 0 4 251 12 max 346.029 1 .134 2 007 15 .001 1 0 15 0 15 252 min -342.926 3 .032 15			9							15	_		0			15
247 10 max 345.796 1 .223 4 007 15 .001 1 0 15 0 15 248 min -343.1 3 .054 15 188 1 0 3 0 3 0 4 249 11 max 345.913 1 .177 4 007 15 .001 1 0 15 0 15 250 min -343.013 3 .043 15 188 1 0 3 0 3 0 4 251 12 max 346.029 1 .134 2 007 15 .001 1 0 15 0 15 252 min -342.926 3 .032 15 188 1 0 3 0 3 0 4 253 13 max 346.145 1 .099 2																
248 min -343.1 3 .054 15 188 1 0 3 0 3 0 4 249 11 max 345.913 1 .177 4 007 15 .001 1 0 15 0 15 250 min -343.013 3 .043 15 188 1 0 3 0 3 0 4 251 12 max 346.029 1 .134 2 007 15 .001 1 0 15 0 15 252 min -342.926 3 .032 15 188 1 0 3 0 3 0 4 253 13 max 346.145 1 .099 2 007 15 .001 1 0 15 0 15 254 min -342.838 3 .021 15			10										0			
249 11 max 345.913 1 .177 4 007 15 .001 1 0 15 0 15 250 min -343.013 3 .043 15 188 1 0 3 0 3 0 4 251 12 max 346.029 1 .134 2 007 15 .001 1 0 15 0 15 252 min -342.926 3 .032 15 188 1 0 3 0 3 0 4 253 13 max 346.145 1 .099 2 007 15 .001 1 0 15 0 15 254 min -342.838 3 .021 15 188 1 0 3 0 1 0 4 255 14 max 346.262 1 .063 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>15</td><td></td><td></td><td></td><td>3</td><td>0</td><td></td><td></td><td></td></td<>						3		15				3	0			
250 min -343.013 3 .043 15 188 1 0 3 0 3 0 4 251 12 max 346.029 1 .134 2 007 15 .001 1 0 15 0 15 252 min -342.926 3 .032 15 188 1 0 3 0 3 0 4 253 13 max 346.145 1 .099 2 007 15 .001 1 0 15 0 15 254 min -342.838 3 .021 15 188 1 0 3 0 1 0 4 255 14 max 346.262 1 .063 2 007 15 .001 1 0 15 0 15 256 min -342.751 3 004 1 <t< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>.001</td><td>1</td><td>0</td><td></td><td>0</td><td>15</td></t<>			11							15	.001	1	0		0	15
252 min -342.926 3 .032 15 188 1 0 3 0 3 0 4 253 13 max 346.145 1 .099 2 007 15 .001 1 0 15 0 15 254 min -342.838 3 .021 15 188 1 0 3 0 1 0 4 255 14 max 346.262 1 .063 2 007 15 .001 1 0 15 0 15 256 min -342.751 3 004 1 188 1 0 3 0 1 0 4 257 15 max 346.378 1 .028 2 007 15 .001 1 0 15 0 15 258 min -342.664 3 04 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td></td<>						3						3				
252 min -342.926 3 .032 15 188 1 0 3 0 3 0 4 253 13 max 346.145 1 .099 2 007 15 .001 1 0 15 0 15 254 min -342.838 3 .021 15 188 1 0 3 0 1 0 4 255 14 max 346.262 1 .063 2 007 15 .001 1 0 15 0 15 256 min -342.751 3 004 1 188 1 0 3 0 1 0 4 257 15 max 346.378 1 .028 2 007 15 .001 1 0 15 0 15 258 min -342.664 3 04 1 <td< td=""><td></td><td></td><td>12</td><td>max</td><td></td><td>1</td><td>.134</td><td>2</td><td>007</td><td>15</td><td>.001</td><td>1</td><td>0</td><td>15</td><td>0</td><td>15</td></td<>			12	max		1	.134	2	007	15	.001	1	0	15	0	15
254 min -342.838 3 .021 15 188 1 0 3 0 1 0 4 255 14 max 346.262 1 .063 2 007 15 .001 1 0 15 0 15 256 min -342.751 3 004 1 188 1 0 3 0 1 0 4 257 15 max 346.378 1 .028 2 007 15 .001 1 0 4 258 min -342.664 3 04 1 188 1 0 3 0 1 0 4 259 16 max 346.495 1 008 10 007 15 .001 1 0 15 0 15 260 min -342.577 3 076 1 188 1						3						3			0	
254 min -342.838 3 .021 15 188 1 0 3 0 1 0 4 255 14 max 346.262 1 .063 2 007 15 .001 1 0 15 0 15 256 min -342.751 3 004 1 188 1 0 3 0 1 0 4 257 15 max 346.378 1 .028 2 007 15 .001 1 0 15 0 15 258 min -342.664 3 04 1 188 1 0 3 0 1 0 4 259 16 max 346.495 1 008 10 007 15 .001 1 0 15 0 15 260 min -342.577 3 076 1 <			13	max		1	.099			15	.001	1	0	15	0	15
256 min -342.751 3 004 1 188 1 0 3 0 1 0 4 257 15 max 346.378 1 .028 2 007 15 .001 1 0 15 0 15 258 min -342.664 3 04 1 188 1 0 3 0 1 0 4 259 16 max 346.495 1 008 10 007 15 .001 1 0 15 0 15 260 min -342.577 3 076 1 188 1 0 3 0 1 0 4 261 17 max 346.611 1 022 15 007 15 .001 1 0 15 0 15 262 min -342.489 3 111 1	254			min		3	.021	15	188	1	0	3	0	1	0	4
257 15 max 346.378 1 .028 2007 15 .001 1 0 15 0 15 258 min -342.664 304 1188 1 0 3 0 1 0 4 259 16 max 346.495 1008 10007 15 .001 1 0 15 0 15 260 min -342.577 3076 1188 1 0 3 0 1 0 4 261 17 max 346.611 1022 15007 15 .001 1 0 15 0 15 262 min -342.489 3111 1188 1 0 3 0 1 0 4 263 18 max 346.727 1032 15007 15 .001 1 0 15 0 15 264 min -342.402 3147 1188 1 0 3 0 1 0 4	255		14	max	346.262	1	.063	2	007	15	.001	1	0	15	0	15
258 min -342.664 3 04 1 188 1 0 3 0 1 0 4 259 16 max 346.495 1 008 10 007 15 .001 1 0 15 0 15 260 min -342.577 3 076 1 188 1 0 3 0 1 0 4 261 17 max 346.611 1 022 15 007 15 .001 1 0 15 0 15 262 min -342.489 3 111 1 188 1 0 3 0 1 0 4 263 18 max 346.727 1 032 15 007 15 .001 1 0 15 0 15 264 min -342.402 3 147 1	256			min	-342.751	3	004	1	188	1	0	3	0	1	0	4
259 16 max 346.495 1 008 10 007 15 .001 1 0 15 0 15 260 min -342.577 3 076 1 188 1 0 3 0 1 0 4 261 17 max 346.611 1 022 15 007 15 .001 1 0 15 0 15 262 min -342.489 3 111 1 188 1 0 3 0 1 0 4 263 18 max 346.727 1 032 15 007 15 .001 1 0 15 0 15 264 min -342.402 3 147 1 188 1 0 3 0 1 0 4	257		15	max	346.378	1	.028	2	007	15	.001	1	0	15	0	15
259 16 max 346.495 1 008 10 007 15 .001 1 0 15 0 15 260 min -342.577 3 076 1 188 1 0 3 0 1 0 4 261 17 max 346.611 1 022 15 007 15 .001 1 0 15 0 15 262 min -342.489 3 111 1 188 1 0 3 0 1 0 4 263 18 max 346.727 1 032 15 007 15 .001 1 0 15 0 15 264 min -342.402 3 147 1 188 1 0 3 0 1 0 4	258			min	-342.664	3	04	1			0	3	0		0	
261 17 max 346.611 1022 15007 15 .001 1 0 15 0 15 262 min -342.489 3111 1188 1 0 3 0 1 0 4 263 18 max 346.727 1032 15007 15 .001 1 0 15 0 15 264 min -342.402 3147 1188 1 0 3 0 1 0 4	259		16	max	346.495	1	008	10	007	15	.001	1	0	15	0	15
262 min -342.489 3 111 1 188 1 0 3 0 1 0 4 263 18 max 346.727 1 032 15 007 15 .001 1 0 15 0 15 264 min -342.402 3 147 1 188 1 0 3 0 1 0 4				min		3	076	1		1	0	3	0	1	0	
262 min -342.489 3 111 1 188 1 0 3 0 1 0 4 263 18 max 346.727 1 032 15 007 15 .001 1 0 15 0 15 264 min -342.402 3 147 1 188 1 0 3 0 1 0 4			17	max	346.611	1	022	15	007	15	.001		0	15	0	15
264 min -342.402 3147 1188 1 0 3 0 1 0 4	262					3	111	1	188	1	0	3	0	1	0	
	263		18	max	346.727	1	032	15		15	.001		0	15	0	15
265 19 max 346.844 1 043 15 007 15 .001 1 0 15 0 15	264				-342.402	3		1				3	0	1	0	4
	265		19	max	346.844	1	043	15	007	15	.001	1	0	15	0	15

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
266			min	-342.315	3	188	4	188	1	0	3	0	1	0	4
267	M11	1	max	105.247	2	1.781	4	.775	1	.001	1	0	3	0	4
268			min	-129.436	3	.419	15	.01	12	0	15	002	1	0	15
269		2	max	105.178	2	1.604	4	.775	1	.001	1	0	3	0	4
270			min	-129.487	3	.377	15	.01	12	0	15	002	1	0	12
271		3	max	105.109	2	1.427	4	.775	1	.001	1	0	3	0	1
272			min	-129.539	3	.335	15	.01	12	0	15	002	1	0	3
273		4	max	105.041	2	1.25	4	.775	1	.001	1	0	3	0	15
274			min	-129.59	3	.294	15	.01	12	0	15	002	1	0	3
275		5	max	104.972	2	1.073	4	.775	1	.001	1	0	3	0	15
276			min	-129.642	3	.252	15	.01	12	0	15	001	1	0	4
277		6	max	104.904	2	.895	4	.775	1	.001	1	0	3	0	15
278			min	-129.693	3	.211	15	.01	12	0	15	001	1	0	4
279		7	max	104.835	2	.718	4	.775	1	.001	1	0	3	0	15
280			min	-129.745	3	.169	15	.01	12	0	15	001	1	0	4
281		8	max	104.766	2	.541	4	.775	1	.001	1	0	3	0	15
282			min	-129.796	3	.127	15	.01	12	0	15	0	1	001	4
283		9	max	104.698	2	.364	4	.775	1	.001	1	0	3	0	15
284			min	-129.847	3	.086	15	.01	12	0	15	0	1	001	4
285		10	max	104.629	2	.187	4	.775	1	.001	1	0	3	0	15
286		10	min	-129.899	3	.044	15	.01	12	0	15	0	1	001	4
287		11	max	104.561	2	.025	1	.775	1	.001	1	0	3	0	15
288			min	-129.95	3	04	3	.01	12	0	15	0	1	001	4
289		12	max	104.492	2	039	15	.775	1	.001	1	0	3	0	15
290		12	min	-130.002	3	168	4	.01	12	0	15	0	1	001	4
291		13	max	104.423	2	081	15	.775	1	.001	1	0	3	0	15
292		13	min	-130.053	3	345	4	.01	12	0	15	0	1	001	4
293		14	max	104.355	2	123	15	.775	1	.001	1	0	3	0	15
294		14	min	-130.105	3	522	4	.01	12	0	15	0	2	001	4
295		15	max	104.286	2	164	15	.775	1	.001	1	0	3	0	15
296		13	min	-130.156	3	699	4	.01	12	0	15	0	10	0	4
297		16	max	104.218	2	206	15	.775	1	.001	1	0	1	0	15
298		10	min	-130.208	3	877	4	.01	12	0	15	0	15	0	4
299		17	max	104.149	2	248	15	.775	1	.001	1	0	1	0	15
300		17	min	-130.259	3	-1.054	4	.01	12	0	15	0	15	0	4
301		18	max	104.08	2	289	15	.775	1	.001	1	0	1	0	15
302		10	min	-130.311	3	-1.231	4	.01	12	0	15	0	15	0	4
303		19		104.012	2	331	15	.775	1	.001	1	0	1	0	1
304		19	max min	-130.362	3	-1.408	4	.01	12	0	15	0	15	0	1
305	M12	1			1	0	1	3.947	1	0	1	0	1	0	1
	IVIIZ	-	max			0	1			0	1			0	1
306 307		2	min	-26.95 478.242	<u>3</u> 1	0	1	.144 3.947	1 <u>5</u>	0	1	0	1	0	1
308			min	-26.902	3	0	1	.144	15	0	1	0	15	0	1
309		3		478.307	<u> </u>	0	1	3.947	1	0	1	0	1	0	1
310		J	min	-26.853	3	0	1	.144	15	0	1	0	15	0	1
311		4		478.371	1	0	1	3.947	1	0	1	.001	1	0	1
312		-	min	-26.805	3	0	1	.144	15	0	1	0	15	0	1
313		5	max		1	0	1	3.947	1	0	1	.001	1	0	1
314		J	min	-26.756	3	0	1	.144	15	0	1	0	15		1
315		6	max		1	0	1	3.947	1	0	1	.002	1	0	1
316		0	min	-26.708	3	0	1	.144	15	0	1	.002	15		1
317		7			<u> </u>		1	3.947	1		1	.002	1		1
318			max	-26.659	3	0	1	.144	15	0	1	.002	15	0	1
318		8	min		<u> </u>	0	1	3.947	1	0	1	.003	1	0	1
320		0	max	-26.611	3	0	1	.144	15	0	1	.003	15		1
321		9	min	478.695	<u> </u>	0	1	3.947	1	0	1	.003	1	0	1
322		3			3	0	1		15	0	1	.003	15		1
322			min	-26.562	3	U		.144	10	U		U	10	U	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	478.76	_1_	0	_1_	3.947	1	0	1_	.003	1	0	1
324			min	-26.514	3	0	1_	.144	15	0	1	0	15	0	1
325		11	max	478.824	<u>1</u>	0	<u>1</u>	3.947	1	0	1_	.004	1	0	1
326			min	-26.465	3	0	1	.144	15	0	1	0	15	0	1
327		12	max	478.889	_1_	0	_1_	3.947	1	0	1_	.004	1	00	1
328			min	-26.417	3	0	1_	.144	15	0	1	0	15	0	1
329		13	max	478.954	_1_	0	_1_	3.947	1	0	1_	.004	1	0	1
330			min	-26.368	3	0	1_	.144	15	0	1	0	15	0	1
331		14	max	479.018	_1_	0	_1_	3.947	1	0	1_	.005	1	0	1
332			min	-26.319	3	0	1_	.144	15	0	1	0	15	0	1
333		15	max	479.083	_1_	0	_1_	3.947	1	0	1	.005	1	0	1
334			min	-26.271	3	0	_1_	.144	15	0	1	0	15	0	1
335		16	max	479.148	_1_	0	_1_	3.947	1	0	1	.005	1	0	1
336			min	-26.222	3	0	1_	.144	15	0	1	0	15	0	1
337		17	max	479.213	1_	0	_1_	3.947	1	0	1	.006	1	0	1
338		4.0	min	-26.174	3	0	1_	.144	15	0	1	0	15	0	1
339		18	max	479.277	_1_	0	_1_	3.947	1	0	1	.006	1	0	1
340		40	min	-26.125	3	0	1_	.144	15	0	1_	0	15	0	1
341		19	max	479.342	_1_	0	1_	3.947	1_	0	1	.006	1	0	1
342	1.14	_	min	-26.077	3	0	1_	.144	15	0	1	0	15	0	1
343	<u>M1</u>	1_	max	142.908	1_	339.859	3	-2.888	15	0	1	.155	1	0	1
344			min	5.206	<u>15</u>	-329.79	1_	-78.462	1_	0	3	.006	15	0	3
345		2	max	143.026	1_	339.669	3	-2.888	15	0	1	.138	1	.072	1
346			min	5.241	15	-330.043	1_	-78.462	1_	0	3	.005	15	074	3
347		3	max	97.388 -2.767	1	7.174	9	-2.865	15	0	<u>12</u>	.12	1	.142	1
348		4	min		10	-18.093	3	-78.276	1_	0	_	.004	15	<u>146</u>	3
349		4	max	97.506	1_	6.964	9	-2.865	1 <u>5</u>	0	<u>12</u>	.103	15	.142	3
350		5	min	-2.668 97.625	<u>10</u> 1	-18.283 6.753	9	-78.276	15	0	12	.004 .086	1	<u>142</u> .143	1
351 352		5	max				3	-2.865 -78.276	1	0	1		15	138	3
353		6	min max	-2.57 97.743	<u>10</u> 1	-18.473 6.542	<u> </u>	-76.276	15	0	12	.003 .069	1	<u>136</u> .143	1
354		0	min	-2.472	10	-18.662	3	-78.276	1	0	1	.003	15	134	3
355		7	max	97.861	1	6.331	9	-2.865	15	0	12	.052	1	.143	1
356			min	-2.373	10	-18.89	2	-78.276	1	0	1	.002	15	13	3
357		8	max	97.979	1	6.12	9	-2.865	15	0	12	.035	1	.144	1
358		0	min	-2.275	10	-19.144	2	-78.276	1	0	1	.001	15	126	3
359		9	max	98.097	1	5.909	9	-2.865	15	0	12	.018	1	.144	1
360			min	-2.177	10	-19.397	2	-78.276	1	0	1	0	15	122	3
361		10	max	98.215	1	5.698	9	-2.865	15	0	12	0	3	.146	2
362		- ' '	min	-2.078	10	-19.65	2	-78.276	1	0	1	0	10	118	3
363		11	max		1	5.487	9	-2.865	15	0	12	0	12	.15	2
364			min	-1.98	10	-19.903	2	-78.276	1	0	1	016	1	113	3
365		12	max	98.451	1	5.276	9	-2.865	15	0	12	001	12	.154	2
366			min	-1.882	10	-20.156	2	-78.276	1	0	1	033	1	109	3
367		13	max	98.569	1	5.065	9	-2.865	15	0	12	002	12	.159	2
368			min	-1.783	10	-20.409	2	-78.276	1	0	1	05	1	105	3
369		14	max	98.687	1	4.855	9	-2.865	15	0	12	002	15	.163	2
370			min	-1.685	10	-20.662	2	-78.276	1	0	1	067	1	1	3
371		15	max	98.805	1	4.644	9	-2.865	15	0	12	003	15	.168	2
372			min	-1.587	10	-20.915	2	-78.276	1	0	1	084	1	096	3
373		16	max	88.132	2	60.01	2	-2.889	15	0	1	004	15	.172	2
374			min	-19.725	3	-122.464	3	-78.849	1	0	12	102	1	091	3
375		17	max	88.25	2	59.757	2	-2.889	15	0	1	004	15	.162	1
376			min	-19.636	3	-122.654	3	-78.849	1	0	12	119	1	064	3
377		18	max	-5.219	15	377.089	1	-2.96	15	0	3	005	15	.082	1
378				-142.525	1	-147.738	3	-80.836	1	0	1	136	1	032	3
379		19	max	-5.184	15	376.836	1	-2.96	15	0	3	006	15	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
380			min	-142.407	1_	-147.928	3	-80.836	1_	0	1_	154	1	0	3
381	<u>M5</u>	1	max	311.542	1	1125.53	3	067	10	0	1	.004	1	0	3
382			min	9.706	12	-1093.621	1_	-34.981	3	0	3	0	10	0	1
383		2	max	311.66	1	1125.341	3	067	10	0	1	0	2	.237	1
384			min	9.765	12	-1093.874	1_	-34.981	3	0	3	004	3	244	3
385		3	max	181.933	3	7.375	9	4.05	3	0	3	0	2	.47	1
386			min	-23.057	10	-70.898	2	41	2	0	1	011	3	483	3
387		4	max	182.021	3	7.165	9	4.05	3	0	3	0	2	.475	1
388			min	-22.958	10	-71.151	2	41	2	0	1	01	3	469	3
389		5	max	182.11	3	6.954	9	4.05	3	0	3	0	2	.481	1
390			min	-22.86	10	-71.405	2	41	2	0	1	009	3	454	3
391		6	max	182.198	3	6.743	9	4.05	3	0	3	0	2	.487	1
392			min	-22.761	10	-71.658	2	41	2	0	1	008	3	44	3
393		7	max	182.287	3	6.532	9	4.05	3	0	3	0	2	.493	1
394			min	-22.663	10	-71.911	2	41	2	0	1	008	3	426	3
395		8	max	182.375	3	6.321	9	4.05	3	0	3	0	2	.499	1
396			min	-22.565	10	-72.164	2	41	2	0	1	007	3	412	3
397		9	max	182.464	3	6.11	9	4.05	3	0	3	0	2	.506	1
398			min	-22.466	10	-72.417	2	41	2	0	1	006	3	397	3
399		10	max	182.552	3	5.899	9	4.05	3	0	3	0	10	.512	1
400			min	-22.368	10	-72.67	2	41	2	0	1	005	3	383	3
401		11	max	182.641	3	5.688	9	4.05	3	0	3	0	10	.518	1
402			min	-22.27	10	-72.923	2	41	2	0	1	004	3	369	3
403		12	max	182.729	3	5.477	9	4.05	3	0	3	0	10	.528	2
404			min	-22.171	10	-73.176	2	41	2	0	1	003	3	354	3
405		13	max	182.818	3	5.266	9	4.05	3	0	3	0	10	.543	2
406			min	-22.073	10	-73.429	2	41	2	0	1	002	3	34	3
407		14	max	182.906	3	5.056	9	4.05	3	0	3	0	10	.559	2
408			min	-21.975	10	-73.682	2	41	2	0	1	002	1	325	3
409		15	max	182.995	3	4.845	9	4.05	3	0	3	0	15	.575	2
410			min	-21.876	10	-73.935	2	41	2	0	1	002	1	31	3
411		16	max	306.77	2	300.095	2	4.021	3	0	1	0	12	.588	2
412			min	-65.395	3	-379.768	3	43	2	0	15	001	1	293	3
413		17	max	306.888	2	299.842	2	4.021	3	0	1	0	3	.534	1
414		17	min	-65.307	3	-379.958	3	43	2	0	15	001	1	211	3
415		18	max	-10.429	12	1243.951	1	3.682	3	0	3	.002	3	.269	1
416		10	min	-312.322	1	-487.323	3	102	2	0	1	0	1	105	3
417		19	max	-10.37	12	1243.698	1	3.682	3	0	3	.002	3	0	3
418		19	min	-312.204	1	-487.513	3	102	2	0	1	.002	2	0	1
419	M9	1		142.26	1		3		1	0	3	006	15	0	1
	IVIS		max			339.838		101.093			1		-	0	
420 421		2	min	5.18 142.378	15	-329.773 339.648		3.909 101.093	1 <u>5</u>	0	2	154	12	.072	3
422			max		1		3		15	0	3	003 132			3
		3	min	5.216 97.336	15	-330.026		3.909			1		3	074 .142	1
423		3	max		1	7.151	9	74.174	1	0		.004			
424		4	min	-2.265	10	-18.03	3	1.09	12	0	15	109	1	146	3
425		4	max		1	6.94	9	74.174	1	0	1	.004	3	.142	1
426		_	min	-2.167	10	-18.22	3	1.09	12	0	15	093	1	142	3
427		5	max	97.572	1	6.729	9	74.174	1	0	1_	.004	3	.143	1
428		_	min	-2.068	10	-18.409	3	1.09	12	0	15	077	1	138	3
429		6	max	97.69	1	6.518	9	74.174	1	0	1	.005	3	.143	1
430			min	-1.97	10	-18.648	2	1.09	12	0	15	061	1	134	3
431		7	max		1	6.307	9	74.174	1	0	1	.005	3	.143	1
432			min	-1.872	10	-18.901	2	1.09	12	0	15	045	1	13	3
433		8	max		1	6.096	9	74.174	1	0	1	.005	3	.144	1
434			min	-1.773	10	-19.154	2	1.09	12	0	15	029	1	126	3
435		9	max		1	5.885	9	74.174	1_	0	1	.006	3	.144	1
436			min	-1.675	10	-19.407	2	1.09	12	0	15	013	1	122	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC			z-z Mome	
437		10	max	98.162	1	5.674	9	74.174	1	0	1	.006	3	.146	2
438			min	-1.577	10	-19.66	2	1.09	12	0	15	0	2	<u>118</u>	3
439		11	max	98.28	1	5.463	9	74.174	1	0	1	.02	1	.15	2
440			min	-1.478	10	-19.914	2	1.09	12	0	15	0	15	113	3
441		12	max	98.398	1	5.253	9	74.174	1	0	1	.036	1	.154	2
442			min	-1.38	10	-20.167	2	1.09	12	0	15	.001	15	109	3
443		13	max	98.516	1	5.042	9	74.174	1	0	1	.052	1	.159	2
444		4.4	min	-1.282	10	-20.42	2	1.09	12	0	15	.002	15	105	3
445		14	max	98.634	1	4.831	9	74.174	1	0	1	.068	1	.163	2
446		4.5	min	-1.183	10	-20.673	2	1.09	12	0	15	.003	15	101	3
447		15	max	98.752	1	4.62	9	74.174	1	0	1	.084	1	.168	2
448		4.0	min	-1.085	10	-20.926	2	1.09	12	0	15	.003	15	096	3
449		16	max	88.415	2	59.795	2	74.861	1 12	0	15 1	.101	15	.172	2
450 451		17	min	-19.813 88.533	2	-122.9 59.542	2	1.103 74.861	1	<u> </u>	15	.004 .118	1	091 .162	1
451		17	max min	-19.724	3	-123.09	3	1.103	12	0	1	.004	15	064	3
453		18	max	-19.724 -5.209	15	377.089	1	78.85	1	0	1	.135	1	.082	1
454		10	min	-142.216	1	-147.736	3	1.387	12	0	3	.005	15	032	3
455		19	max	-5.174	15	376.836	1	78.85	1	0	1	.152	1	0	1
456		10	min	-142.098	1	-147.925	3	1.387	12	0	3	.006	15	0	3
457	M13	1	max	101.341	1	329.274	1	-5.18	15	0	1	.154	1	0	1
458	14110		min	3.909	15	-339.831	3	-142.241	1	0	3	.006	15	0	3
459		2	max	101.341	1	232.174	1	-3.976	15	0	1	.049	1	.241	3
460		_	min	3.909	15	-239.553	3	-109.09	1	0	3	.002	15	234	1
461		3	max	101.341	1	135.073	1	-2.772	15	0	1	.002	3	.399	3
462			min	3.909	15	-139.276	3	-75.94	1	0	3	028	1	387	1
463		4	max		1	37.973	1	-1.568	15	0	1	0	12	.473	3
464			min	3.909	15	-38.998	3	-42.789	1	0	3	077	1	459	1
465		5	max	101.341	1	61.279	3	364	15	0	1	002	12	.464	3
466			min	3.909	15	-59.127	1	-9.638	1	0	3	099	1	45	1
467		6	max	101.341	1	161.556	3	23.512	1	0	1	002	12	.371	3
468			min	3.909	15	-156.228	1	.25	12	0	3	093	1	36	1
469		7	max	101.341	1	261.834	3	56.663	1	0	1	002	12	.195	3
470			min	3.909	15	-253.328	1	1.418	12	0	3	06	1	19	1
471		8	max	101.341	1	362.111	3	89.813	1	0	1	.001	2	.062	1
472			min	3.909	15	-350.429	1_	2.586	12	0	3	0	3	065	3
473		9	max	101.341	1	462.388	3	122.964	1	0	1	.09	1	.394	1
474		4.0	min	3.909	15	-447.529	1	3.754	12	0	3	.003	12	<u>409</u>	3
475		10	max	101.341	1	562.666	3	156.115	1	0	2	.206	1	.808	1
476		4.4	min	3.909	15	-544.629	1_	4.922	12	0	1	.006	12	836	3
477		11	_	78.733	1	447.529		-3.612	12	0	3	.086	1	.394	1
478		40	min	2.888	15		3	-122.312	1	0	1	0	3	409	3
479		12			1	350.428	1	-2.444	12	0	3	.001	2	.062	1
480 481		12	min	2.888	15	-362.111	3	-89.162	1	0		003 002	3	065	3
482		13	max min	78.733 2.888	15	253.328 -261.834	3	-1.276 -56.011	12	0	3	002 062	15	<u>.195</u> 19	3
483		1/	max		1	156.228	1	095	3	0	3	002	15	.371	3
484		14	min	2.888	15	-161.556	3	-22.861	1	0	1	005 095	1	36	1
485		15	max	78.733	1	59.127	1	10.29	1	0	3	004	15	<u>50</u> .464	3
486		13	min	2.888	15	-61.279	3	.39	15	0	1	004 1	1	45	1
487		16		78.733	1	38.999	3	43.441	1	0	3	003	12	.473	3
488		10	min	2.888	15	-37.973	1	1.594	15	0	1	078	1	459	1
489		17	max	78.733	1	139.276	3	76.591	1	0	3	0	12	.399	3
490		.,	min	2.888	15	-135.073	1	2.798	15	0	1	028	1	387	1
491		18	max	78.733	1	239.553	3	109.742	1	0	3	.05	1	.241	3
492			min	2.888	15	-232.174	1	4.002	15	0	1	.002	15	234	1
493		19	max		1	339.831	3	142.892	1	0	3	.155	1	0	1
				. 511 50	•	000.001							•		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
494			min	2.888	15	-329.274	1	5.206	15	0	1	.006	15	0	3
495	M16	1	max	-1.386	12	377.371	1	-5.174	15	0	3	.152	1	0	1
496			min	-78.554	1	-147.947	3	-142.114	1	0	1	.006	15	0	3
497		2	max	-1.386	12	266.084	1	-3.97	15	0	3	.047	1	.105	3
498			min	-78.554	1	-104.417	3	-108.963	1	0	1	.002	15	268	1
499		3	max	-1.386	12	154.797	1	-2.766	15	0	3	0	12	.174	3
500			min	-78.554	1	-60.886	3	-75.813	1	0	1	03	1	443	1
501		4	max	-1.386	12	43.51	1	-1.562	15	0	3	003	15	.207	3
502			min	-78.554	1	-17.355	3	-42.662	1	0	1	079	1	526	1
503		5	max	-1.386	12	26.175	3	358	15	0	3	004	15	.203	3
504			min	-78.554	1	-67.777	1	-9.512	1	0	1	101	1	516	1
505		6	max	-1.386	12	69.706	3	23.639	1	0	3	003	15	.163	3
506			min	-78.554	1	-179.064	1	.422	12	0	1	095	1	413	1
507		7	max	-1.386	12	113.237	3	56.79	1	0	3	002	15	.087	3
508			min	-78.554	1	-290.351	1	1.59	12	0	1	061	1	218	1
509		8	max	-1.386	12	156.767	3	89.94	1	0	3	.001	2	.071	1
510			min	-78.554	1	-401.638	1	2.758	12	0	1	002	3	026	3
511		9	max	-1.386	12	200.298	3	123.091	1	0	3	.089	1	.452	1
512			min	-78.554	1	-512.925	1	3.926	12	0	1	.001	12	175	3
513		10	max	-2.96	15	-14.483	15	156.241	1	0	15	.205	1	.926	1
514			min	-80.576	1	-624.212	1	-7.894	3	0	1	.007	12	36	3
515		11	max	-2.96	15	512.925	1	-4.108	12	0	1	.089	1	.452	1
516			min	-80.576	1	-200.298	3	-122.782	1	0	3	.003	12	175	3
517		12	max	-2.96	15	401.638	1	-2.94	12	0	1	.001	2	.071	1
518			min	-80.576	1	-156.767	3	-89.631	1	0	3	0	3	026	3
519		13	max	-2.96	15	290.351	1	-1.772	12	0	1	002	12	.087	3
520			min	-80.576	1	-113.237	3	-56.48	1	0	3	061	1	218	1
521		14	max	-2.96	15	179.064	1	604	12	0	1	003	12	.163	3
522			min	-80.576	1	-69.706	3	-23.33	1	0	3	094	1	413	1
523		15	max	-2.96	15	67.777	1	9.821	1	0	1	003	12	.203	3
524			min	-80.576	1	-26.175	3	.368	15	0	3	1	1	516	1
525		16	max	-2.96	15	17.355	3	42.971	1	0	1	002	12	.207	3
526			min	-80.576	1	-43.51	1	1.572	15	0	3	078	1	526	1
527		17	max	-2.96	15	60.886	3	76.122	1	0	1	0	12	.174	3
528			min	-80.576	1	-154.797	1	2.776	15	0	3	028	1	443	1
529		18	max	-2.96	15	104.417	3	109.273	1	0	1	.049	1	.105	3
530			min	-80.576	1	-266.084	1	3.98	15	0	3	.002	15	268	1
531		19	max	-2.96	15	147.947	3	142.423	1	0	1	.154	1	0	1
532		1	min	-80.576	1	-377.371	1	5.184	15	0	3	.006	15	0	3
533	M15	1	max	0	2	2.617	4	.034	3	0	1	0	1	0	1
534				-41.747	3	0	2	036	1	0	3	0	3	0	1
535		2	max	0	2	2.326	4	.034	3	0	1	0	1	0	2
536			min	-	3	0	2	036	1	0	3	0	3	001	4
537		3	max	0	2	2.035	4	.034	3	0	1	0	1	0	2
538		Ť	min	-41.877	3	0	2	036	1	0	3	0	3	002	4
539		4	max	0	2	1.745	4	.034	3	0	1	0	1	0	2
540			min	-41.942	3	0	2	036	1	0	3	0	3	003	4
541		5	max	0	2	1.454	4	.034	3	0	1	0	1	0	2
542			min	-42.007	3	0	2	036	1	0	3	0	3	004	4
543		6	max	0	2	1.163	4	.034	3	0	1	0	1	<u>.004</u>	2
544			min	-42.073	3	0	2	036	1	0	3	0	3	004	4
545		7	max	0	2	.872	4	.034	3	0	1	0	3	<u>.00+</u>	2
546			min	-42.138	3	0	2	036	1	0	3	0	1	005	4
547		8	max	0	2	.582	4	.034	3	0	1	0	3	<u>003</u>	2
548			min	-42.203	3	.302	2	036	1	0	3	0	1	005	4
549		9	max	0	2	.291	4	.034	3	0	1	0	3	- <u>003</u> 0	2
550			min	-42.268	3	0	2	036	1	0	3	0	1	005	4
JJU			1111111	72.200	J	U		000		U	J	U		000	

Model Name

Schletter, Inc.

: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
551		10	max	0	2	0	1	.034	3	0	1	0	3	0	2
552			min	-42.333	3	0	1	036	1	0	3	0	1	005	4
553		11	max	0	2	0	2	.034	3	0	1	0	3	0	2
554			min	-42.399	3	291	4	036	1	0	3	0	1	005	4
555		12	max	0	2	0	2	.034	3	0	1	0	3	0	2
556			min	-42.464	3	582	4	036	1	0	3	0	1	005	4
557		13	max	0	2	0	2	.034	3	0	1	0	3	0	2
558			min	-42.529	3	872	4	036	1	0	3	0	1	005	4
559		14	max	0	2	0	2	.034	3	0	1	0	3	0	2
560			min	-42.594	3	-1.163	4	036	1	0	3	0	1	004	4
561		15	max	0	2	0	2	.034	3	0	1	0	3	0	2
562			min	-42.659	3	-1.454	4	036	1	0	3	0	1	004	4
563		16	max	0	2	0	2	.034	3	0	1	0	3	0	2
564			min	-42.725	3	-1.745	4	036	1	0	3	0	1	003	4
565		17	max	0	2	0	2	.034	3	0	1	0	3	0	2
566			min	-42.79	3	-2.035	4	036	1	0	3	0	1	002	4
567		18	max	0	2	0	2	.034	3	0	1	0	3	0	2
568			min	-42.855	3	-2.326	4	036	1	0	3	0	1	001	4
569		19	max	0	2	0	2	.034	3	0	1	0	3	0	1
570			min	-42.92	3	-2.617	4	036	1	0	3	0	1	0	1
571	M16A	1	max	853	10	2.617	4	.022	1	0	3	0	3	0	1
572			min	-42.365	3	.615	15	013	3	0	1	0	1	0	1
573		2	max	78	10	2.326	4	.022	1	0	3	0	3	0	15
574			min	-42.299	3	.547	15	013	3	0	1	0	1	001	4
575		3	max	708	10	2.035	4	.022	1	0	3	0	3	0	15
576			min	-42.234	3	.478	15	013	3	0	1	0	1	002	4
577		4	max	636	10	1.745	4	.022	1	0	3	0	3	0	15
578			min	-42.169	3	.41	15	013	3	0	1	0	1	003	4
579		5	max	563	10	1.454	4	.022	1	0	3	0	3	0	15
580			min	-42.104	3	.342	15	013	3	0	1	0	1	004	4
581		6	max	491	10	1.163	4	.022	1	0	3	0	3	0	15
582		Ť	min	-42.039	3	.273	15	013	3	0	1	0	1	004	4
583		7	max	418	10	.872	4	.022	1	0	3	0	3	001	15
584		<u> </u>	min	-41.973	3	.205	15	013	3	0	1	0	1	005	4
585		8	max	346	10	.582	4	.022	1	0	3	0	3	001	15
586		—	min	-41.908	3	.137	15	013	3	0	1	0	1	005	4
587		9	max	273	10	.291	4	.022	1	0	3	0	3	001	15
588		 	min	-41.843	3	.068	15	013	3	0	1	0	1	005	4
589		10	max	201	10	0	1	.022	1	0	3	0	3	001	15
590		10	min	-41.778	3	0	1	013	3	0	1	0	1	005	4
591		11			10	068	15	.022	1	0	3	_	3	001	15
592		11	max min	-41.713	3	291	4	013	3	0	1	0	1	005	4
593		12	max	056	10	137	15	.022	1	0	3	0	3	003	15
594		12	min	-41.648	3	137	4	013	3	0	1	0	<u> </u>	001	4
595		13		.016	10	582 205	15	.022	1		3		2	005	15
		13	max	-41.582				013	3	0	1	0			
596		4.4	min		3	872	4			0		0	3	005	4
597		14	max	.089	10	273	15	.022	1	0	3	0	1	0	15
598		4.5	min	-41.517	3	-1.163	4	013	3	0		0	3	004	4
599		15	max	.161	10	342	15	.022	1	0	3	0	1	0	15
600		40	min	-41.452	3	-1.454	4	013	3	0	1	0	3	004	4
601		16	max	.234	10	41	15	.022	1	0	3	0	1	0	15
602			min	-41.387	3	-1.745	4	013	3	0	1	0	3	003	4
603		17	max	.306	10	478	15	.022	1	0	3	0	1	0	15
604			min	-41.322	3	-2.035	4	013	3	0	1	0	3	002	4
605		18		.378	10	547	15	.022	1	0	3	0	1	0	15
606			min	-41.256	3	-2.326	4	013	3	0	1	0	3	001	4
607		19	max	.451	10	615	15	.022	1	0	3	0	_1_	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-41.191	3	-2.617	4	013	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
1	M2	1	max	.003	1	.008	2	.015	1	-4.494e-5	15	NC	3	NC	3
2			min	003	3	008	3	0	3	-1.224e-3	1	4569.43	2	2442.744	1
3		2	max	.003	1	.007	2	.014	1	-4.303e-5	15	NC	3	NC	3
4			min	003	3	007	3	0	3	-1.172e-3	1	4976.945	2	2637.177	1
5		3	max	.003	1	.007	2	.013	1	-4.112e-5	15	NC	3	NC	3
6		<u> </u>	min	003	3	007	3	0	3	-1.121e-3	1	5459.85	2	2866.512	1
7		4		.002	1	.006	2	.012	1	-3.92e-5	15	NC	1	NC	3
		4	max												
8		_	min	003	3	007	3	0	3	-1.069e-3	1_	6036.081	2	3139.155	
9		5	max	.002	1	.005	2	01	1	-3.729e-5	15	NC	1	NC	3
10			min	003	3	006	3	0	3	-1.017e-3	<u>1</u>	6729.476	2	3466.33	1
11		6	max	.002	1	.005	2	.009	1	-3.538e-5	15	NC	_1_	NC	3
12			min	002	3	006	3	0	3	-9.656e-4	1	7572.227	2	3863.291	1
13		7	max	.002	1	.004	2	.008	1	-3.346e-5	15	NC	1	NC	2
14			min	002	3	006	3	0	3	-9.139e-4	1	8608.649	2	4351.204	1
15		8	max	.002	1	.004	2	.007	1	-3.155e-5	15	NC	1	NC	2
16			min	002	3	005	3	0	3	-8.622e-4	1	9901.104	2	4960.144	1
17		9	max	.002	1	.003	2	.006	1	-2.963e-5	15	NC	1	NC	2
18		9	min	002	3	005	3	0	3	-8.105e-4	1	NC	1	5734.056	
		10					2		1			NC	1	NC	2
19		10	max	.001	1	.003		.005		-2.772e-5	<u>15</u>		4		4
20		4.4	min	002	3	005	3	0	3	-7.588e-4	1_	NC	1	6739.302	1
21		11	max	.001	1	.002	2	.004	1	-2.581e-5	<u>15</u>	NC	_1_	NC	2
22			min	001	3	004	3	0	3	-7.071e-4	<u>1</u>	NC	1_	8080.139	
23		12	max	.001	1	.002	2	.004	1	-2.389e-5	<u>15</u>	NC	<u>1</u>	NC	2
24			min	001	3	004	3	0	3	-6.553e-4	1_	NC	1	9928.461	1
25		13	max	0	1	.001	2	.003	1	-2.198e-5	15	NC	1	NC	1
26			min	001	3	003	3	0	3	-6.036e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	.002	1	-2.007e-5	15	NC	1	NC	1
28			min	0	3	003	3	0	3	-5.519e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	.002	1	-1.815e-5	15	NC	1	NC	1
30		13	min	0	3	002	3	0	3	-5.002e-4	1	NC	1	NC	1
		4.0			1										4
31		16	max	0		0	2	.001	1	-1.624e-5	<u>15</u>	NC		NC	1
32			min	0	3	002	3	0	3	-4.485e-4	1_	NC	1_	NC	1
33		17	max	00	1	0	2	0	1	-1.432e-5	15	NC	_1_	NC	1_
34			min	0	3	001	3	0	3	-3.968e-4	<u>1</u>	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	-1.241e-5	<u>15</u>	NC	<u> 1</u>	NC	1
36			min	0	3	0	3	0	12	-3.451e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-8.664e-6	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.934e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.366e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1		12	NC	1	NC	1
41		2	max	0	3	0	2	0	12		1	NC	1	NC	1
42			min	0	2	0	3	0	1	6.13e-6	15	NC	1	NC	1
43		3		0	3	0	2	0	12		1	NC	1	NC	1
		3	max												
44			min	0	2	002	3	0	1	7.372e-6	<u>15</u>	NC	1_	NC NC	1
45		4	max	0	3	0	2	0	12	2.371e-4	1_	NC	1_	NC	1
46			min	0	2	002	3	001	1	8.614e-6	15	NC	1_	NC	1
47		5	max	0	3	0	2	0	12	2.707e-4	_1_	NC	_1_	NC	1_
48			min	0	2	003	3	001	1	9.857e-6	15	NC	1	NC	1
49		6	max	0	3	0	2	0	3	3.042e-4	1	NC	1	NC	1
50			min	0	2	004	3	001	1	1.11e-5	15	NC	1	NC	1
51		7	max	0	3	0	2	0	3	3.377e-4	1	NC	1	NC	1
			IIIUA							0.0110 T		110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		LC
52			min	0	2	005	3	0	1	1.234e-5	15	NC	1_	NC	1
53		8	max	0	3	0	2	0	3	3.712e-4	_1_	NC	_1_	NC	1
54			min	0	2	005	3	0	1	1.358e-5	<u>15</u>	NC	<u>1</u>	NC	1
55		9	max	0	3	.001	2	0	3	4.048e-4	_1_	NC	1_	NC	1
<u>56</u>		10	min	0	2	006	3	0	2	1.483e-5	15	NC	1_	NC	1
57		10	max	0	3	.002	2	0	1	4.383e-4	1_	NC	1	NC	1
58		44	min	0	2	006	3	0	15	1.607e-5	15	NC NC	1_	NC NC	1
59		11	max	0	3	.002	2	.001	1	4.718e-4	1_	NC NC	1_	NC	1
60		40	min	0	2	007	3	0	15	1.731e-5	<u>15</u>	NC NC	1_1	NC NC	1
61 62		12	max	0	3	.003	3	.002	15	5.054e-4	1_	NC NC	<u>1</u> 1	NC NC	1
63		13	min	0	3	007 .003	2	.003	1	1.855e-5 5.389e-4	<u>15</u> 1	NC NC	1	NC NC	1
64		13	max	0	2	003 007	3	<u>.003</u>	15	1.98e-5	15	NC NC	1	NC NC	1
65		14	min	.001	3	.007	2	.004	1	5.724e-4	1	NC NC	1	NC NC	1
66		14	max min	.001	2	007	3	004 0	15	2.104e-5	15	NC NC	1	NC NC	1
67		15	max	.001	3	.005	2	.004	1	6.059e-4	1	NC	1	NC	1
68		13	min	0	2	007	3	0	15	2.228e-5		9338.298	2	NC	1
69		16	max	.001	3	.006	2	.005	1	6.395e-4	1	NC	1	NC	2
70		10	min	0	2	008	3	0	15			7891.463	2	8630.278	1
71		17	max	.001	3	.007	2	.006	1	6.73e-4	1	NC	3	NC	2
72			min	001	2	008	3	0	15	2.476e-5		6776.051	2	7428.196	
73		18	max	.001	3	.008	2	.007	1	7.065e-4	1	NC	3	NC	2
74			min	001	2	008	3	0	15	2.601e-5		5906.032	2	6537.428	
75		19	max	.001	3	.009	2	.008	1	7.401e-4	1	NC	3	NC	2
76			min	001	2	008	3	0	15	2.725e-5	15	5221.162	2	5862.164	1
77	M4	1	max	.002	1	.009	2	0	15	-3.536e-5	15	NC	1	NC	3
78			min	0	3	008	3	006	1	-9.749e-4	1	NC	1	3259.909	1
79		2	max	.002	1	.009	2	0	15	-3.536e-5	15	NC	1	NC	3
80			min	0	3	007	3	005	1	-9.749e-4	1	NC	1	3556.611	1
81		3	max	.002	1	.008	2	0	15	-3.536e-5	<u>15</u>	NC	1_	NC	2
82			min	0	3	007	3	005	1	-9.749e-4	1_	NC	1_	3909.719	
83		4	max	.002	1	.008	2	0	15	-3.536e-5	15	NC	1_	NC	2
84			min	0	3	006	3	004	1	-9.749e-4	1_	NC	1_	4334.111	1
85		5	max	.002	1	.007	2	0	15	-3.536e-5	<u>15</u>	NC	_1_	NC	2
86			min	0	3	006	3	004	1	-9.749e-4	_1_	NC	1_	4850.061	1
87		6	max	.002	1	.007	2	0	15	-3.536e-5	<u>15</u>	NC	_1_	NC	2
88			min	0	3	005	3	004	1	-9.749e-4	_1_	NC	1_	5485.766	
89		7	max	.002	1	.006	2	0	15	-3.536e-5		NC	1_	NC	2
90			min	0	3	005	3	003	1	-9.749e-4	1_	NC	1_	6281.389	
91		8	max	.001	1	.006	2	0	15	-3.536e-5		NC NC	1_	NC	2
92			min		3	005	3	003		-9.749e-4		NC NC		7295.751	
93		9	max	.001	3	.005	2	0		-3.536e-5	15	NC NC	1_1	NC 0C47 007	2
94		10	min	0		004	2	002	1 1 5	-9.749e-4	1 =	NC NC	<u>1</u> 1	8617.827	1_1
95 96		10	max	.001 0	3	.005 004	3	0 002	1	-3.536e-5 -9.749e-4	1 <u>1</u>	NC NC	1	NC NC	1
97		11	min max	.001	1	.004	2	<u>002</u> 0				NC NC	1	NC NC	1
98		11	min	0	3	003	3	002	1	-9.749e-4	1	NC	1	NC	1
99		12	max	0	1	.003	2	<u>002</u> 0				NC	1	NC	1
100		12	min	0	3	003	3	001	1	-9.749e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	<u>001</u> 0	15	-3.749e-4 -3.536e-5	15	NC	1	NC	1
102		13	min	0	3	003	3	0	1	-9.749e-4	1	NC	1	NC	1
103		14	max	0	1	.003	2	0		-3.749e-4 -3.536e-5		NC	1	NC	1
104		14	min	0	3	002	3	0	1	-9.749e-4	1	NC NC	1	NC	1
105		15	max	0	1	.002	2	0		-3.536e-5	•	NC	1	NC	1
106		13	min	0	3	002	3	0	1	-9.749e-4	1	NC	1	NC	1
107		16	max	0	1	.002	2	0	15	-3.536e-5		NC	1	NC	1
108		1	min	0	3	001	3	0	1	-9.749e-4	1	NC	1	NC	1
. 50			1111111			.001				311 100 T		110			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC		LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio LC						
109		17	max	0	1	.001	2	0	15	-3.536e-5	15	NC	1_	NC	1
110			min	0	3	0	3	0	1	-9.749e-4	1	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-3.536e-5	15	NC	1	NC	1
112			min	0	3	0	3	0	1	-9.749e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-3.536e-5	15	NC	1	NC	1
114			min	0	1	0	1	0	1	-9.749e-4	1	NC	1	NC	1
115	M6	1	max	.01	1	.029	2	.005	1	2.54e-4	3	NC	3	NC	2
116			min	011	3	024	3	003	3	2.138e-6		1238.073	2	7826.214	
117		2	max	.009	1	.027	2	.004	1	2.464e-4	3	NC	3	NC	2
118			min	01	3	023	3	003	3	1.417e-6		1322.718	2	8491.276	
119		3	max	.009	1	.026	2	.004	1	2.388e-4	3	NC	3	NC	2
120			min	009	3	022	3	003	3	6.95e-7	10	1419.449	2	9279.462	
-		1													1
121		4	max	.008	1	.024	2	.004	1	2.312e-4	3	NC 4500 004	3_	NC NC	1
122		-	min	009	3	02	3	003	3	0	10	1530.681	2	NC	1
123		5_	max	.008	1	.022	2	.003	1	2.236e-4	3	NC	3_	NC	1
124			min	008	3	019	3	002	3	-7.483e-7	10	1659.524	2	NC	1
125		6	max	.007	1	.02	2	.003	1	2.159e-4	3_	NC	3	NC	1
126			min	008	3	018	3	002	3	-2.437e-6	2	1810.049	2	NC	1
127		7	max	.006	1	.018	2	.003	1	2.083e-4	3	NC	3	NC	1
128			min	007	3	017	3	002	3	-5.897e-6	2	1987.688	2	NC	1
129		8	max	.006	1	.017	2	.002	1	2.007e-4	3	NC	3	NC	1
130			min	006	3	015	3	002	3	-9.356e-6	2	2199.851	2	NC	1
131		9	max	.005	1	.015	2	.002	1	1.931e-4	3	NC	3	NC	1
132			min	006	3	014	3	001	3	-1.282e-5	2	2456.914	2	NC	1
133		10	max	.005	1	.013	2	.002	1	1.854e-4	3	NC	3	NC	1
134		1.0	min	005	3	013	3	001	3	-1.628e-5	2	2773.865	2	NC	1
135		11	max	.004	1	.011	2	.001	1	1.778e-4	3	NC	3	NC	1
136			min	005	3	011	3	001	3	-1.974e-5	2	3173.186	2	NC	1
137		12	max	.004	1	.01	2	.001	1	1.702e-4	3	NC	3	NC	1
138		12	min	004	3	01	3	0	3	-2.32e-5	2	3690.201	2	NC	1
139		13		.003	1	.008	2	0	1	1.626e-4	3	NC	3	NC	1
		13	max												1
140		4.4	min	004	3	009	3	0	3	-2.666e-5	2	4383.778	2	NC NC	1
141		14	max	.003	1	.007	2	0	1	1.55e-4	3_	NC 5050.004	3_	NC NC	1
142			min	003	3	007	3	0	3	-3.011e-5	2	5359.864	2	NC	1
143		15	max	.002	1	.005	2	0	1	1.473e-4	3_	NC	3_	NC	1
144			min	002	3	006	3	0	3	-3.357e-5	2	6830.333	2	NC	1
145		16	max	.002	1	.004	2	0	1	1.397e-4	3_	NC	_1_	NC	1
146			min	002	3	004	3	0	3	-3.703e-5	2	9289.519	2	NC	1
147		17	max	.001	1	.003	2	0	1	1.321e-4	3	NC	1_	NC	1
148			min	001	3	003	3	0	3	-4.049e-5	2	NC	1	NC	1
149		18	max	0	1	.001	2	0	1	1.245e-4	3	NC	1	NC	1
150			min	0	3	001	3	0	3	-4.395e-5	2	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.169e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-4.741e-5	2	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.184e-5	2	NC	1	NC	1
154	1411		min	0	1	0	1	0	1	-5.412e-5	3	NC	1	NC	1
155		2	max	0	3	.002	2	0	3	1.893e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	2	-4.e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.805e-5	<u> </u>	NC	1	NC	1
158				0	2	004	3	0	1	-2.587e-5	3	NC	1	NC	1
		4	min		3		2		-			NC NC	1		
159		4	max	0		.004		0	3	1.717e-5	1			NC NC	1
160		+-	min	0	2	005	3	0	1	-1.175e-5	3	NC NC	1_	NC NC	1
161		5	max	.001	3	.006	2	0	3	1.629e-5	1 -	NC	3	NC NC	1
162			min	001	2	007	3	0	1	4.616e-7	15	7915.461	2	NC	1
163		6	max	.001	3	.007	2	.001	3	1.649e-5	3	NC	3	NC	1
164			min	001	2	009	3	0	1	5.16e-7	15	6347.85	2	NC	1
165		7	max	.002	3	.009	2	.001	3	3.061e-5	3	NC	3	NC	1_

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					LC
166			min	002	2	011	3	0	1	-6.413e-8	2	5277.881	2	NC	1
167		8	max	.002	3	.01	2	.001	3	4.474e-5	3	NC	3	NC	1
168			min	002	2	012	3	0	1	-3.715e-6	2	4494.862	2	NC	1
169		9	max	.002	3	.012	2	.002	3	5.886e-5	3_	NC	3	NC	1
170		40	min	002	2	<u>014</u>	3	0	1	-7.366e-6	2	3893.779	2	NC	1
171		10	max	.002	3	.013	2	.002	3	7.298e-5	3	NC	3_	NC	1
172		44	min	003	2	015	3	001	1	-1.102e-5	2	3416.428	2	NC NC	1
173		11	max	.003	3	.015	2	.002	3	8.71e-5	3_	NC	3	NC	1
174		40	min	003	2	016	3	001	1	-1.467e-5	2	3027.879	2	NC NC	1
175		12	max	.003	3	.017 017	3	.002	3	1.012e-4	2	NC 2705.811	2	NC NC	1
176 177		13	min	003 .003	3	.017 .019	2	001 .002	3	-1.832e-5		NC	3	NC NC	1
178		13	max	004	2	019	3	002 001	1	1.153e-4 -2.197e-5	2	2435.202	2	NC NC	1
179		14	max	.003	3	.021	2	.002	3	1.295e-4	3	NC	3	NC NC	1
180		14	min	004	2	02	3	002	1	-2.562e-5	2	2205.495	2	NC	1
181		15	max	.004	3	.023	2	.002	3	1.436e-4	3	NC	3	NC	1
182		10	min	004	2	021	3	002	1	-2.927e-5	2	2008.998	2	NC	1
183		16	max	.004	3	.025	2	.002	3	1.577e-4	3	NC	3	NC	1
184		10	min	004	2	022	3	002	1	-3.292e-5	2	1839.926	2	NC	1
185		17	max	.004	3	.027	2	.002	3	1.718e-4	3	NC	3	NC	1
186		<u> </u>	min	005	2	022	3	002	1	-3.657e-5	2	1693.827	2	NC	1
187		18	max	.004	3	.029	2	.002	3	1.86e-4	3	NC	3	NC	1
188			min	005	2	023	3	002	1	-4.022e-5	2	1567.199	2	NC	1
189		19	max	.005	3	.032	2	.002	3	2.001e-4	3	NC	3	NC	1
190			min	005	2	024	3	002	1	-4.388e-5	2	1457.25	2	NC	1
191	M8	1	max	.006	1	.033	2	.002	1	-2.39e-6	10	NC	1	NC	2
192			min	0	3	024	3	001	3	-1.576e-4	3	NC	1	7999.19	1
193		2	max	.006	1	.031	2	.002	1	-2.39e-6	10	NC	1	NC	2
194			min	0	3	023	3	0	3	-1.576e-4	3	NC	1	8721.282	1
195		3	max	.006	1	.03	2	.002	1	-2.39e-6	10	NC	1_	NC	2
196			min	0	3	022	3	0	3	-1.576e-4	3	NC	1_	9580.933	1
197		4	max	.005	1	.028	2	.002	1	-2.39e-6	10	NC	1_	NC	1
198			min	0	3	02	3	0	3	-1.576e-4	3	NC	1_	NC	1
199		5	max	.005	1	.026	2	.002	1	-2.39e-6	10	NC	_1_	NC	1
200			min	0	3	019	3	0	3	-1.576e-4	3	NC	_1_	NC	1
201		6	max	.004	1	.024	2	.001	1	-2.39e-6	10	NC	_1_	NC	1
202		<u> </u>	min	0	3	<u>017</u>	3	0	3	-1.576e-4	3	NC	1_	NC	1
203		7	max	.004	1	.022	2	.001	1	-2.39e-6	10	NC	1_	NC	1
204			min	0	3	016	3	0	3	-1.576e-4	3_	NC	1_	NC	1
205		8	max	.004	1	.02	2	.001	1	-2.39e-6	10	NC	1_	NC NC	1
206			min		3	015	3	0		-1.576e-4		NC NC	1	NC NC	1
207		9	max	.003	1	.019	2	0	1	-2.39e-6	<u>10</u>	NC	1	NC	1
208		10	min	0	3	013	2	0	3	-1.576e-4	3	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.003	3	.017	3	<u> </u>	3	-2.39e-6	10		1	NC NC	1
210		11	min max	.003	1	012 .015	2	0	1	-1.576e-4 -2.39e-6	<u>3</u> 10	NC NC	1	NC NC	1
212			min	0	3	011	3	0	3	-1.576e-4	3	NC	1	NC	1
213		12	max	.002	1	.013	2	0	1	-2.39e-6	10	NC	1	NC	1
214		12	min	0	3	009	3	0	3	-1.576e-4	3	NC	1	NC	1
215		13	max	.002	1	.011	2	0	1	-1.376e-4 -2.39e-6	10	NC NC	1	NC NC	1
216		13	min	.002	3	008	3	0	3	-2.39e-6 -1.576e-4	3	NC NC	1	NC NC	1
217		14	max	.002	1	.009	2	0	1	-2.39e-6	10	NC	1	NC	1
218			min	0	3	007	3	0	3	-1.576e-4	3	NC	1	NC	1
219		15	max	.001	1	.007	2	0	1	-2.39e-6	10	NC	1	NC	1
220		10	min	0	3	005	3	0	3	-1.576e-4	3	NC	1	NC	1
221		16	max	.001	1	.006	2	0	1	-2.39e-6	10	NC	1	NC	1
222			min	0	3	004	3	0	3	-1.576e-4	3	NC	1	NC	1
			11/01/1			1001				1101 00 T		.,,			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.004	2	0	1	-2.39e-6	10	NC	1	NC	1
224			min	0	3	003	3	0	3	-1.576e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-2.39e-6	10	NC	1	NC	1
226			min	0	3	001	3	0	3	-1.576e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1		10	NC	1	NC	1
228		1.0	min	0	1	0	1	0	1	-1.576e-4	3	NC	1	NC	1
229	M10	1	max	.003	1	.008	2	0	3	1.052e-3	1	NC	3	NC	1
230	IVITO	+ -	min	003	3	008	3	002	1	-2.541e-4	3	4573.492	2	NC	1
231		2		.003	1	.007	2	<u>.002</u>	3	9.978e-4	1	NC	3	NC	1
232			max		3		3	002	1				2	NC NC	1
		-	min	003		007				-2.465e-4	3	4981.493			
233		3	max	.003	1	.007	2	0	3	9.436e-4	1	NC	3	NC	1
234			min	003	3	007	3	002	1	-2.389e-4	3	5464.997	2	NC	1
235		4	max	.003	1	.006	2	0	3	8.894e-4	_1_	NC	_1_	NC	1
236			min	003	3	007	3	002	1	-2.313e-4	3	6041.974	2	NC	1
237		5	max	.002	1	.005	2	0	3	8.352e-4	1	NC	1	NC	1
238			min	002	3	006	3	002	1	-2.237e-4	3	6736.305	2	NC	1
239		6	max	.002	1	.005	2	0	3	7.81e-4	1	NC	1	NC	1
240			min	002	3	006	3	002	1	-2.161e-4	3	7580.248	2	NC	1
241		7	max	.002	1	.004	2	0	3	7.268e-4	1	NC	1	NC	1
242		-	min	002	3	006	3	001	1	-2.085e-4	3	8618.206	2	NC	1
243		8		.002	1	.004	2	<u>001</u> 0	3		1	NC	1	NC NC	1
		-	max							6.726e-4					
244			min	002	3	00 <u>5</u>	3	001	1	-2.009e-4	3_	9912.68	2	NC	1
245		9	max	.002	1	.003	2	0	3	6.184e-4	1_	NC	_1_	NC	1
246			min	002	3	005	3	001	1	-1.933e-4	3	NC	1_	NC	1
247		10	max	.002	1	.003	2	0	3	5.642e-4	<u>1</u>	NC	<u>1</u>	NC	1
248			min	002	3	005	3	0	1	-1.857e-4	3	NC	1	NC	1
249		11	max	.001	1	.002	2	0	3	5.1e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-1.782e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	4.558e-4	1	NC	1	NC	1
252		T -	min	001	3	004	3	0	1	-1.706e-4	3	NC	1	NC	1
253		13	max	.001	1	.001	2	0	3	4.017e-4	1	NC	1	NC	1
254		10	min	001	3	003	3	0	1	-1.63e-4	3	NC	1	NC	1
		1.1							_		1				1
255		14	max	0	1	.001	2	0	3	3.475e-4	1	NC	1_	NC NC	1
256			min	0	3	003	3	0	1	-1.554e-4	3	NC	_1_	NC	1
257		15	max	0	1	0	2	0	3	2.933e-4	1_	NC	1_	NC	1
258			min	0	3	002	3	0	1	-1.478e-4	3	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	2.391e-4	<u>1</u>	NC	<u>1</u>	NC	1
260			min	0	3	002	3	0	1	-1.402e-4	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	1.849e-4	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-1.326e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.307e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	-1.25e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	7.649e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-1.174e-4	3	NC NC	1	NC NC	1
	N/4.4	4			1		-								-
267	<u>M11</u>	1	max	0	-	0	1	0	1	5.464e-5	3	NC NC	1	NC NC	1
268			min	0	1	0	1	0	1	-3.694e-5	1_	NC	1_	NC NC	1
269		2	max	0	3	0	2	0	1	3.885e-5	3	NC	_1_	NC	1
270			min	0	2	0	3	0	3	-9.831e-5	1	NC	1_	NC	1
271		3	max	0	3	0	2	0	2	2.306e-5	3	NC	_1_	NC	1
272			min	0	2	002	3	0	3	-1.597e-4	1	NC	1	NC	1
273		4	max	0	3	0	2	0	10	7.268e-6	3	NC	1	NC	1
274			min	0	2	002	3	0	3	-2.21e-4	1	NC	1	NC	1
275		5	max	0	3	0	2	0	10		12	NC	1	NC	1
276			min	0	2	003	3	0	3	-2.824e-4	1	NC	1	NC	1
277		6		0	3	<u>003</u> 0	2	0			15	NC	1	NC NC	1
		0	max	0	2		3		1				1		1
278		-	min			004		001		-3.438e-4	1_	NC NC	•	NC NC	_
279		7	max	0	3	0	2	0	15	-1.483e-5	<u>15</u>	NC	<u>1</u>	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
280			min	0	2	005	3	002	1	-4.051e-4	1_	NC	1_	NC	1
281		8	max	0	3	00	2	0	15	-1.714e-5	<u>15</u>	NC	_1_	NC	1
282			min	0	2	005	3	003	1	-4.665e-4	1_	NC	1_	NC	1
283		9	max	0	3	.001	2	0	15		15	NC	1_	NC	1
284		40	min	0	2	006	3	004	1_	-5.279e-4	1_	NC	1_	NC	1
285		10	max	0	3	.002	2	0	15	-2.178e-5	<u>15</u>	NC	1	NC	2
286		44	min	0	2	006	3	005	1_	-5.892e-4	1_	NC NC	1_	9106.767	1
287		11	max	0	3	.002	2	0	15	-2.409e-5	<u>15</u>	NC NC	1_	NC 7474 FO4	2
288		40	min	0	2	007	3	006	1_1	-6.506e-4	1_	NC NC	1_1	7474.524	1
289		12	max	0	3	.003	3	0 007	15	-2.641e-5	<u>15</u>	NC NC	1	NC	1
290 291		13	min	0	3	007 .003	2	007 0	15	-7.119e-4 -2.873e-5	<u>1</u> 15	NC NC	1	6297.736 NC	2
291		13	max	0	2	003	3	008	1	-2.673e-5 -7.733e-4	1	NC NC	1	5421.744	
293		14	max	.001	3	.007	2	<u>008</u> 0	15	-7.733e-4 -3.104e-5	15	NC NC	1	NC	2
294		14	min	.001	2	007	3	01	1	-8.347e-4	1	NC NC	1	4753.091	1
295		15	max	.001	3	.005	2	0	15	-3.336e-5	15	NC	1	NC	2
296		10	min	0	2	008	3	011	1	-8.96e-4	1	9350.766	2	4232.559	
297		16	max	.001	3	.006	2	0	15	-3.568e-5	15	NC	1	NC	2
298		10	min	0	2	008	3	012	1	-9.574e-4	1	7900.989	2	3821.154	
299		17	max	.001	3	.007	2	0	15	-3.799e-5	15	NC	3	NC	3
300		<u> </u>	min	001	2	008	3	013	1	-1.019e-3	1	6783.532	2	3492.385	
301		18	max	.001	3	.008	2	0	15	-4.031e-5	15	NC	3	NC	3
302			min	001	2	008	3	014	1	-1.08e-3	1	5912.063	2	3227.804	1
303		19	max	.001	3	.009	2	0	15	-4.263e-5	15	NC	3	NC	3
304			min	001	2	008	3	015	1	-1.141e-3	1	5226.147	2	3014.323	1
305	M12	1	max	.002	1	.009	2	.013	1	1.028e-3	1	NC	1	NC	3
306			min	0	3	008	3	0	15	3.902e-5	15	NC	1	1532.841	1
307		2	max	.002	1	.009	2	.012	1	1.028e-3	1	NC	1	NC	3
308			min	0	3	007	3	0	15	3.902e-5	15	NC	1	1671.763	1
309		3	max	.002	1	.008	2	.011	1	1.028e-3	1_	NC	1_	NC	3
310			min	0	3	007	3	0	15	3.902e-5	15	NC	1_	1837.123	
311		4	max	.002	1	.008	2	.009	1	1.028e-3	1_	NC	1_	NC	3
312			min	0	3	006	3	0	15	3.902e-5	15	NC	1_	2035.89	1
313		5	max	.002	1	.007	2	.008	1	1.028e-3	_1_	NC	_1_	NC	3
314			min	0	3	006	3	0	15	3.902e-5	15	NC	_1_	2277.559	1
315		6	max	.002	1	.007	2	.008	1	1.028e-3	_1_	NC	_1_	NC	3
316		<u> </u>	min	0	3	005	3	0	15	3.902e-5	15	NC	1_	2575.336	
317		7	max	.002	1	.006	2	.007	1	1.028e-3	_1_	NC	1_	NC	3
318			min	0	3	005	3	0	15	3.902e-5	15	NC NC	1_	2948.031	1
319		8	max	.001	1	.006	2	.006	1	1.028e-3	1_	NC NC	1_	NC 0400 404	3
320			min		3	005	3	0		3.902e-5			1	3423.191	
321		9	max	.001	3	.005	2	.005	1	1.028e-3	1_	NC NC	1_1	NC	2
322		10	min	0	1	004	2	004	15	3.902e-5	<u>15</u>	NC NC	<u>1</u> 1	4042.483	
323		10	max	.001	3	.005	3	.004	1	1.028e-3	15	NC NC	1	NC 4974 42	2
324 325		11	min max	.001	1	004 .004	2	.003	15	3.902e-5 1.028e-3	<u>15</u> 1	NC NC	1	4871.42 NC	2
326			min	0	3	003	3	<u>.003</u>	15	3.902e-5	15	NC	1	6017.909	
327		12	max	0	1	.003	2	.003	1	1.028e-3	1	NC	1	NC	2
328		12	min	0	3	003	3	<u>.003</u>	15		15	NC	1	7670.197	
329		13		0	1	.003	2	.002	1	1.028e-3	1	NC	1	NC	1
330		13	max min	0	3	003	3	<u>.002</u>	15	3.902e-5	15	NC NC	1	NC NC	1
331		14	max	0	1	.003	2	.001	1	1.028e-3	1	NC	1	NC	1
332			min	0	3	002	3	0	15	3.902e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	1.028e-3	1	NC	1	NC	1
334		10	min	0	3	002	3	0	15	3.902e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	1.028e-3	1	NC	1	NC	1
336		1.0	min	0	3	001	3	0	15	3.902e-5	15	NC	1	NC	1
			111111	•		.001			10	3.0020	10	.10			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	1.028e-3	1_	NC	1_	NC	1
338			min	0	3	0	3	0	15	3.902e-5	15	NC	1	NC	1
339		18	max	0	1	0	2	0	1	1.028e-3	1	NC	1	NC	1
340			min	0	3	0	3	0	15	3.902e-5	15	NC	1	NC	1
341		19	max	0	1	0	1	0	1	1.028e-3	1	NC	1	NC	1
342		1.0	min	0	1	0	1	0	1	3.902e-5	15	NC	1	NC	1
343	M1	1	max	.007	3	.023	3	.002	3	2.52e-2	1	NC	1	NC	1
344	IVII	<u> </u>	min	008	2	024	1	005	1	-2.588e-2	3	NC	1	NC	1
345		2	max	.007	3	.013	3	.001	3	1.213e-2	1	NC	4	NC	2
346		-			2		1		1	-1.282e-2		4351.718	1	7735.211	1
		2	min	008		013	•	<u>011</u>			3		4		
347		3	max	.007	3	.004	3	0	3	6.808e-6	3	NC OO 45 O 5 O	4_	NC 4004 045	2
348		-	min	008	2	003	1	015	1	-7.032e-4	1_	2245.258	_1_	4691.215	
349		4	max	.007	3	.005	1	0	3	1.115e-5	3	NC	5	NC	2
350			min	008	2	003	3	017	1	-5.947e-4	<u> 1</u>	1587.083	1_	3882.524	
351		5	max	.007	3	.012	1	0	3	1.55e-5	3	NC	_5_	NC	3
352			min	008	2	01	3	017	1	-4.863e-4	1_	1270.841	1_	3728.876	1
353		6	max	.007	3	.018	1	0	3	1.985e-5	3	NC	5	NC	2
354			min	008	2	015	3	016	1	-3.778e-4	1	1092.098	1	3991.027	1
355		7	max	.007	3	.023	1	0	3	2.42e-5	3	NC	5	NC	2
356			min	008	2	019	3	014	1	-2.694e-4	1	983.848	1	4754.003	1
357		8	max	.007	3	.026	1	0	3	2.854e-5	3	NC	5	NC	2
358			min	008	2	021	3	012	1	-1.609e-4	1	918.238	1	6530.623	
359		9	max	.007	3	.028	1	0	3	3.289e-5	3	NC	5	NC	1
360		+ -	min	008	2	023	3	008	1	-5.248e-5	1	882.259	1	NC	1
361		10		.007	3	.029	1	008	-	5.597e-5	1	NC	•	NC	1
362		10	max	008	2	023	3	005	1	2.388e-6	15	869.908	<u>5</u> 1	NC NC	1
		4.4	min										•		
363		11	max	.007	3	.028	2	0	3	1.644e-4	1_	NC 074 005	_5_	NC NC	1
364		10	min	008	2	022	3	001	1	6.34e-6	<u>15</u>	874.035	2	NC	1
365		12	max	.007	3	.026	2	.002	1	2.729e-4	_1_	NC	_5_	NC	2
366			min	008	2	02	3	0	15	1.029e-5	15	900.254	2	7453.825	
367		13	max	.007	3	.023	2	.005	1	3.813e-4	_1_	NC	5_	NC	2
368			min	008	2	017	3	0	15	1.424e-5	<u> 15</u>	954.927	2	5190.886	1
369		14	max	.007	3	.018	2	.007	1	4.898e-4	1_	NC	5	NC	2
370			min	008	2	014	3	0	15	1.82e-5	15	1049.908	2	4262.126	1
371		15	max	.007	3	.012	2	.008	1	5.982e-4	1	NC	5	NC	2
372			min	008	2	009	3	0	15	2.215e-5	15	1211.067	2	3929.102	1
373		16	max	.007	3	.004	1	.008	1	6.757e-4	1	NC	4	NC	2
374			min	008	2	003	3	0	15			1501.291	2	4052.066	1
375		17	max	.007	3	.003	3	.006	1	2.92e-5	3	NC	4	NC	2
376		1 '	min	008	2	005	2	0	15	1.383e-6		2118.668	2	4863.924	
377		18	max	.007	3	.01	3	.002	1	1.431e-2	1	NC	4	NC	2
378		10			2		2								
		10	min	008		016		0		-5.691e-3		4100.219	2	7983.559	
379		19	max	.007	3	.018	3	0	3	2.888e-2	1	NC NC	1_	NC NC	1
380	N.4=		min	008	2	028	2	003	1	-1.152e-2	3	NC NC	1_	NC NC	1
381	<u>M5</u>	1_	max	.022	3	.075	3	.002	3	9.913e-7	3_	NC	_1_	NC	1
382			min	028	2	083	1	006	1	5.172e-8	10	NC	<u>1</u>	NC	1
383		2	max	.022	3	.043	3	.002	3	6.659e-5	3	NC	5	NC	1
384			min	028	2	047	1	005	1	-7.516e-5	1	1263.538	1	NC	1
385		3	max	.022	3	.013	3	.003	3	1.309e-4	3	NC	5	NC	1
386			min	028	2	012	1	005	1	-1.495e-4	1	651.047	1	NC	1
387		4	max	.022	3	.017	1	.004	3	1.281e-4	3	NC	5	NC	1
388			min	028	2	011	3	004	1	-1.409e-4	1	459.018	1	NC	1
389		5	max	.022	3	.042	1	.004	3	1.253e-4	3	NC	5	NC	1
390		Ť	min	028	2	032	3	004	1	-1.323e-4	1	366.58	1	NC	1
391		6	max	.022	3	.063	1	.004	3	1.225e-4	3	NC	15	NC	1
392			min	028	2	048	3	003	1	-1.238e-4	1	314.193	1	NC	1
		7			3								_		
393		7	max	.022	J	.079	1	.004	3	1.197e-4	3	NC	15	NC	1_

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
394			min	028	2	061	3	003		1.152e-4	1	282.323	1_	NC	1
395		8	max	.022	3	.091	1	.004		1.169e-4	3	NC	<u>15</u>	NC	1
396			min	028	2	069	3	003	1 -	1.066e-4	1_	262.841	1	NC	1
397		9	max	.022	3	.098	1	.004	3 1	1.141e-4	3	NC	15	NC	1
398			min	028	2	073	3	002		9.806e-5	1	251.941	1	NC	1
399		10	max	.022	3	.101	1	.004	3 1	1.113e-4	3	NC	15	NC	1
400			min	028	2	074	3	002	1 -	-8.95e-5	1	247.853	1	NC	1
401		11	max	.022	3	.099	1	.004	3 1	1.085e-4	3	NC	15	NC	1
402			min	028	2	072	3	002	1 -8	8.093e-5	1	250.016	1	NC	1
403		12	max	.022	3	.092	1	.003	3 1	1.057e-4	3	NC	15	NC	1
404			min	028	2	066	3	002	1 -	7.236e-5	1	258.847	1	NC	1
405		13	max	.022	3	.08	1	.003	3 1	1.029e-4	3	NC	15	NC	1
406			min	028	2	057	3	002	1 -(6.379e-5	1	275.939	1_	NC	1
407		14	max	.022	3	.063	1	.002	3 1	1.001e-4	3	NC	15	NC	1
408			min	028	2	044	3	002	1 -	5.523e-5	1	304.819	1	NC	1
409		15	max	.022	3	.042	1	.002	3 9	9.726e-5	3	NC	5	NC	1
410			min	028	2	029	3	002	1 -4	4.666e-5	1	353.111	1	NC	1
411		16	max	.022	3	.015	1	.002	3	9.13e-5	3	NC	5	NC	1
412			min	028	2	011	3	002		4.555e-5	1	439.2	1	NC	1
413		17	max	.022	3	.01	3	.001		1.023e-5	3	NC	5	NC	1
414			min	028	2	018	2	002		2.219e-4	1	620.002	1	NC	1
415		18	max	.022	3	.033	3	0		4.307e-6	3	NC	5	NC	1
416			min	028	2	055	2	003		1.137e-4	1	1200.428	1	NC	1
417		19	max	.022	3	.057	3	0	3	0	15	NC	1	NC	1
418			min	028	2	095	2	003	1 -	1.955e-7	3	NC	1	NC	1
419	M9	1	max	.007	3	.023	3	.001		2.589e-2	3	NC	1	NC	1
420			min	008	2	024	1	007		-2.52e-2	1	NC	1	NC	1
421		2	max	.007	3	.013	3	0		1.282e-2	3	NC	4	NC	2
422			min	008	2	014	1	001		1.239e-2	1	4352.688	1	8919.145	
423		3	max	.007	3	.004	3	.002		1.822e-4	1	NC	4	NC	2
424			min	008	2	004	1	0		8.777e-6	3	2245.771	1	5533.703	1
425		4	max	.007	3	.005	1	.004		9.044e-5	1	NC	5	NC	2
426			min	008	2	004	3	0		1.732e-5	3	1587.437	1	4685.998	
427		5	max	.007	3	.012	1	.004		1.274e-5	2	NC	5	NC	2
428			min	008	2	01	3	001		2.586e-5	3	1271.103	1	4640.487	1
429		6	max	.007	3	.018	1	.003		1.057e-6	10	NC	5	NC	2
430			min	008	2	015	3	002		9.317e-5	1	1092.3	1	5201.321	1
431		7	max	.007	3	.023	1	.002		6.706e-6	15	NC	5	NC	2
432			min	008	2	019	3	002		-1.85e-4	1	984.007	1	6710.149	
433		8	max	.007	3	.026	1	0		1.008e-5	15	NC	5	NC	1
434			min		2	021	3	003		2.768e-4		918.363	1	NC	1
435		9	max	.007	3	.028	1	0		1.345e-5		NC	5	NC	1
436			min	008	2	023	3	004		3.686e-4	1	882.357	1	NC	1
437		10	max	.007	3	.029	2	0			15	NC	5	NC	1
438		10	min	008	2	023	3	007		4.604e-4	1	869.983	1	NC	1
439		11	max	.007	3	.028	2	0		2.019e-5	15	NC	5	NC	2
440			min	008	2	022	3	01		5.522e-4	1	874.386	2	8476.382	
441		12	max	.007	3	.026	2	0		2.356e-5	15	NC	5	NC	2
442		14	min	008	2	02	3	012		-6.44e-4	1	900.607	2	5501.227	1
443		13	max	.007	3	.023	2	0		2.693e-5	•	NC	5	NC	2
444		10	min	008	2	017	3	015		7.358e-4	1	955.293	2	4276.903	
445		14	max	.007	3	.018	2	0		-3.03e-5	15	NC	5	NC	3
446		14	min	008	2	014	3	016		8.276e-4	1	1050.298	2	3720.368	
447		15		.007	3	.012	2	016 0		3.367e-5	15	NC	5	NC	3
447		10	max	008	2	009	3	016		9.194e-4	1	1211.504	2	3553.486	
448		16	min	.008	3	009 .004	1	016 0		9.194e-4 3.609e-5	15	NC	4	NC	3
		10	max								-				
450			min	008	2	003	3	015	1 -9	9.861e-4	1_	1501.811	2	3752.927	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
451		17	max	.007	3	.003	3	0	15	2.432e-6	3	NC	4_	NC	2
452			min	008	2	005	2	013	1	-4.572e-4	1_	2119.352	2	4581.908	
453		18	max	.007	3	.01	3	0	15	5.708e-3	3	NC	_4_	NC	2
454			min	008	2	016	2	008	1	-1.453e-2	1_	4101.499	2	7615.583	
455		19	max	.007	3	.018	3	0	3	1.152e-2	3	NC	_1_	NC	1
456			min	008	2	028	2	002	1	-2.888e-2	1_	NC	1_	NC	1
457	M13	1	max	.007	1	.023	3	.007	3	3.689e-3	3	NC	1_	NC	1
458			min	001	3	024	1	008	2	-4.037e-3	_1_	NC	_1_	NC	1
459		2	max	.007	1	.273	3	046	1	4.625e-3	3	NC	5_	NC	3
460			min	001	3	268	1	0	10	-5.126e-3	1	720.241	3	3606.614	1
461		3	max	.007	1	.477	3	.117	1	5.561e-3	3	NC	<u>15</u>	NC	3
462		-	min	001	3	<u>466</u>	1	.004	15	-6.215e-3	1	396.718	3	1486.874	1
463		4	max	.007	1	.603	3	.178	1	6.497e-3	3_	NC	<u>15</u>	NC	3
464		_	min	001	3	59	1	.007	15		1_	310.147	3_	990.328	1
465		5_	max	.006	1	.638	3	.207	1	7.433e-3	3	NC 000 500	<u>15</u>	NC	3
466			min	001	3	<u>625</u>	1	.008	15	-8.394e-3	1	292.566	3	850.394	1
467		6	max	.006	1	.583	3	.198	1	8.369e-3	3	NC 004 000	<u>15</u>	NC 004.054	3
468		-	min	001	3	<u>573</u>	1	.007	15	-9.483e-3	1_	321.328	3_	891.954	1
469		7	max	.006	1	.456	3	.15	1	9.305e-3	3_	NC 445.007	5	NC 4404 000	3
470		_	min	002	3	451	1	.004	10	-1.057e-2	1	415.297	3_	1164.692	1
471		8	max	.006	1	.293	3	.079	1	1.024e-2	3	NC CC7 404	5	NC 0450 000	3
472			min	002	3	293	1	004	10	-1.166e-2	1_	667.421	3_	2152.338	
473		9	max	.006	1	.143	3	.021	3	1.118e-2	3	NC	5_	NC NC	1
474		10	min	002	3	149	1	014	2	-1.275e-2	1_	1445.402	1	NC NC	1
475		10	max	.006	1	.075	3	.022	3	1.211e-2	3	NC	4	NC 0000 400	1
476		4.4	min	002	3	083	1	028	2	-1.384e-2	1	3050.876	1_	8806.139	
477		11	max	.006	1	.143	3	.026	3	1.118e-2	3	NC	5	NC 0540 455	2
478		40	min	002	3	<u>149</u>	1	<u>014</u>	2	-1.275e-2	1	1445.403	1_	9513.455	
479		12	max	.006	1	.293	3	.086	1	1.024e-2	3	NC CC7 40	5	NC 2002 004	5
480 481		13	min	002 .006	3	293 .456	3	004 .158	10	-1.166e-2 9.307e-3	<u>1</u> 3	667.42 NC	<u>3</u> 5	2002.984 NC	5
482		13	max	002	3	456 451	1	.004	10	-1.057e-2	<u> </u>	415.296	3	1111.831	1
483		14	min	.002	1	<u>451</u> .583	3	.004 .205	1	8.371e-3	3	NC	<u>၂</u> 15	NC	5
484		14	max	002	3	573	1	.008	15		1	321.328	3	860.322	1
485		15		.002	1	.638	3	.214	1	7.436e-3	3	NC	<u> </u>	NC	5
486		15	max min	002	3	625	1	.008	15	-8.393e-3	1	292.566	3	824.394	1
487		16	max	.005	1	.603	3	.183	1	6.501e-3	3	NC	15	NC	3
488		10	min	002	3	59	1	.007	15	-7.303e-3	1	310.147	3	962.071	1
489		17	max	.005	1	<u>59</u> .477	3	.121	1	5.565e-3	3	NC	15	NC	3
490		17	min	002	3	466	1	.005	15	-6.214e-3	1	396.718	3	1443.575	1
491		18	max	.005	1	.273	3	.047			3	NC	5	NC	3
492		10	min	002	3	267	1	0	10	-5.124e-3	1	720.24	3	3482.602	
493		19	max	.005	1	.023	3	.007	3	3.694e-3	3	NC	1	NC	1
494		10	min	002	3	024	1	008	2	-4.035e-3	1	NC	1	NC	1
495	M16	1	max	.002	1	.018	3	.007	3	4.446e-3	2	NC	1	NC	1
496	WITO	•	min	0	3	028	2	008	2	-2.814e-3	3	NC	1	NC	1
497		2	max	.002	1	.129	3	.048	1	5.628e-3	2	NC	5	NC	3
498			min	0	3	305	1	0	10		3	645.445	1	3406.246	
499		3	max	.002	1	.22	3	.122	1	6.809e-3	2	NC	15	NC	3
500		Ť	min	0	3	533	1	.005	15	-4.218e-3	3	355.349	1	1427.582	1
501		4	max	.002	1	.278	3	.184	1	7.991e-3	2	NC	15	NC	3
502			min	0	3	675	1	.007	15	-4.92e-3	3	277.561	1	957.05	1
503		5	max	.002	1	.295	3	.214	1	9.173e-3	2	NC	15	NC	5
504			min	0	3	715	1	.008		-5.623e-3	3	261.436	1	823.717	1
505		6	max	.002	1	.274	3	.204	1	1.035e-2	2	NC	15	NC	5
506		Ĭ	min	0	3	655	1	.008	15		3	286.38	1	863.387	1
507		7	max	.002	1	.22	3	.156	1	1.154e-2	2	NC	5	NC	5
					-						_		_		<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Solution Solution		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
Second Color	508			min	0	3	515	1	.004	10		3	368.231	1_	1122.36	1
511			8													
513														•		
10 max			9			-										•
514			10													-
516			10													
516			4.4							_						
518			11			_										
518			40					-								•
520			12													
S20			40											•		
S22			13													
S22			4.4									_				
523			14			-										5
524			15											_		1
526			15													
526			16													
527 17 max .003 1 .22 3 118 1 6.811e-3 2 NC 15 NC 3 528 min 0 3 .533 1 .004 15 4.214e-3 3 355.39 1 1466.231 1 529 18 max .003 1 129 3 .046 1 5.629e-3 2 NC 5 NC 3 530 min 0 3 .305 1 0 10 3.511e-3 3 645.445 1 3543.049 1 531 min 0 3 .028 2 .008 2 2.808e-3 3 NC 1 NC 1 532 min 0 1 0 1 0 1 3.393e-4 3 NC 1 NC 1 533 M 1 0 1 0 1 8.521e			10													1
S28			17											•		2
Secondary			17								4.2146.2					
S30			10													
Table Tabl			10													
S32			10											1		
533			19			-								1		
S34		M15	1													-
S35		IVITO														
S36			2			-										
537 3 max 0 3 009 15 .004 1 1.365e-3 3 NC 15 NC 1 538 min 0 10 038 4 003 3 -1.296e-3 1 2548.099 4 NC 1 539 4 max 0 3 013 15 .008 1 1.878e-3 3 7436.859 15 NC 4 540 min 0 10 056 4 007 3 -1.927e-3 1 1748.145 4 7670.11 1 541 5 max 0 3 017 4 011 3 -2.557e-3 1 1364.095 4 5076.532 1 542 min 0 10 085 4 016 3 -3.188e-3 1 1148.03 4 3717.954 1 544 min 0 10										_						
538 min 0 10 038 4 003 3 -1.296e-3 1 2548.099 4 NC 1 540 min 0 10 056 4 007 3 -1.927e-3 1 1748.145 4 7670.11 1 541 5 max 0 3 017 15 .013 1 2.391e-3 3 5803.057 15 NC 4 542 min 0 10 071 4 011 3 -2.557e-3 1 1364.095 4 5076.532 1 543 6 max 0 3 02 15 .019 1 2.903e-3 3 4881.886 15 NC 4 544 min 0 10 085 4 016 3 318e-3 1 1148.03 4 371.7954 1 545 7 max 0 3			2									•		•		
539 4 max 0 3 013 15 .008 1 1.878e-3 3 7436.859 15 NC 4 540 min 0 10 056 4 007 3 -1.927e-3 1 1748.145 4 7670.11 1 541 5 max 0 3 017 15 .013 1 2.391e-3 3 5803.057 15 NC 4 542 min 0 10 071 4 011 3 -2.557e-3 1 1364.095 4 5076.532 1 543 6 max 0 3 02 15 .019 1 2.903e-3 3 4883.886 15 NC 4 544 min 0 10 085 4 016 3 -3.188e-3 1 1148.03 4 3717.954 1 545 7 max 0			<u> </u>							<u> </u>						-
540 min 0 10 056 4 007 3 -1.927e-3 1 1748.145 4 7670.11 1 541 5 max 0 3 017 15 .013 1 2.391e-3 3 5803.057 15 NC 4 542 min 0 10 071 4 011 3 -2.557e-3 1 1364.095 4 5076.532 1 543 6 max 0 3 022 15 .019 1 2.903e-3 3 4883.886 15 NC 4 544 min 0 10 085 4 016 3 -3.188e-3 1 1148.03 4 3717.954 1 545 7 max 0 3 022 15 .025 1 3.416e-3 3 4331.126 15 NC 4 546 min 0 10			1													•
541 5 max 0 3 017 15 .013 1 2.391e-3 3 5803.057 15 NC 4 542 min 0 10 071 4 011 3 -2.557e-3 1 1364.095 4 5076.532 1 543 6 max 0 3 02 15 .019 1 2.903e-3 3 4883.886 15 NC 4 544 min 0 10 085 4 016 3 -3.188e-3 1 1148.03 4 3717.954 1 545 7 max 0 3 022 15 .025 1 3.416e-3 3 4331.126 15 NC 4 546 min 0 10 096 4 022 3 -3.819e-3 1 1018.096 4 2918.899 1 547 8 max 0			7								-1 927e-3					
542 min 0 10 071 4 011 3 -2.557e-3 1 1364.095 4 5076.532 1 543 6 max 0 3 02 15 .019 1 2.903e-3 3 4883.886 15 NC 4 544 min 0 10 085 4 016 3 -3.188e-3 1 1148.03 4 3717.954 1 545 7 max 0 3 022 15 .025 1 3.416e-3 3 4331.126 15 NC 4 546 min 0 10 096 4 022 3 3819e-3 1 1018.096 4 2918.899 1 547 8 max 0 3 024 15 .03 1 3.929e-3 3 3999.386 15 NC 4 548 min 0 10			5		-											-
543 6 max 0 3 02 15 .019 1 2.903e-3 3 4883.886 15 NC 4 544 min 0 10 085 4 016 3 -3.188e-3 1 1148.03 4 3717.954 1 545 7 max 0 3 022 15 .025 1 3.416e-3 3 4331.126 15 NC 4 546 min 0 10 096 4 022 3 -3.819e-3 1 1018.096 4 2918.899 1 547 8 max 0 3 024 15 .03 1 3.929e-3 3 3999.386 15 NC 4 548 min 0 10 104 4 027 3 -4.49e-3 1 940.115 4 2414.571 1 549 min 0 10																1
544 min 0 10 085 4 016 3 -3.188e-3 1 1148.03 4 3717.954 1 545 7 max 0 3 022 15 .025 1 3.416e-3 3 4331.126 15 NC 4 546 min 0 10 096 4 022 3 -3.819e-3 1 1018.096 4 2918.899 1 547 8 max 0 3 024 15 .03 1 3.929e-3 3 3999.386 15 NC 4 548 min 0 10 104 4 027 3 -4.449e-3 1 940.115 4 2414.571 1 549 9 max 0 3 025 15 .035 1 4.442e-3 3 3820.825 15 NC 4 551 10 max 0			6									•				4
545 7 max 0 3 022 15 .025 1 3.416e-3 3 4331.126 15 NC 4 546 min 0 10 096 4 022 3 -3.819e-3 1 1018.096 4 2918.899 1 547 8 max 0 3 024 15 .03 1 3.929e-3 3 3999.386 15 NC 4 548 min 0 10 104 4 027 3 -4.449e-3 1 940.115 4 2414.571 1 549 9 max 0 3 025 15 .035 1 4.442e-3 3 3820.825 15 NC 4 550 min 0 10 109 4 035 3 -5.58e-3 3 3764.336 15 NC 4 551 min 0 10																
546 min 0 10 096 4 022 3 -3.819e-3 1 1018.096 4 2918.899 1 547 8 max 0 3 024 15 .03 1 3.929e-3 3 3999.386 15 NC 4 548 min 0 10 104 4 027 3 -4.449e-3 1 940.115 4 2414.571 1 549 9 max 0 3 025 15 .035 1 4.442e-3 3 3820.825 15 NC 4 550 min 0 10 109 4 031 3 -5.08e-3 1 898.142 4 2083.702 1 551 10 max 0 3 026 15 .039 1 4.955e-3 3 3764.336 15 NC 4 552 min 0 10			7													
547 8 max 0 3 024 15 .03 1 3.929e-3 3 3999.386 15 NC 4 548 min 0 10 104 4 027 3 -4.449e-3 1 940.115 4 2414.571 1 549 9 max 0 3 025 15 .035 1 4.442e-3 3 3820.825 15 NC 4 550 min 0 10 109 4 031 3 -5.08e-3 1 898.142 4 2083.702 1 551 10 max 0 3 026 15 .039 1 4.955e-3 3 3764.336 15 NC 4 552 min 0 10 11 4 035 3 -5.711e-3 1 884.863 4 1865.11 1 553 11 max 0 3 026 </td <td></td>																
548 min 0 10 104 4 027 3 -4.449e-3 1 940.115 4 2414.571 1 549 9 max 0 3 025 15 .035 1 4.442e-3 3 3820.825 15 NC 4 550 min 0 10 109 4 031 3 -5.08e-3 1 898.142 4 2083.702 1 551 10 max 0 3 026 15 .039 1 4.955e-3 3 3764.336 15 NC 4 552 min 0 10 11 4 035 3 -5.711e-3 1 884.863 4 1865.11 1 553 11 max 0 3 026 15 .042 1 5.467e-3 3 3820.825 15 NC 5 554 min 0 10			8													
549 9 max 0 3 025 15 .035 1 4.442e-3 3 3820.825 15 NC 4 550 min 0 10 109 4 031 3 -5.08e-3 1 898.142 4 2083.702 1 551 10 max 0 3 026 15 .039 1 4.955e-3 3 3764.336 15 NC 4 552 min 0 10 11 4 035 3 -5.711e-3 1 884.863 4 1865.11 1 553 11 max 0 3 026 15 .042 1 5.467e-3 3 3820.825 15 NC 5 554 min 0 10 109 4 037 3 -6.342e-3 1 898.142 4 1726.611 1 555 12 max 0											-4.449e-3	1	940.115			
550 min 0 10 109 4 031 3 -5.08e-3 1 898.142 4 2083.702 1 551 10 max 0 3 026 15 .039 1 4.955e-3 3 3764.336 15 NC 4 552 min 0 10 11 4 035 3 -5.711e-3 1 884.863 4 1865.11 1 553 11 max 0 3 026 15 .042 1 5.467e-3 3 3820.825 15 NC 5 554 min 0 10 109 4 037 3 -6.342e-3 1 898.142 4 1726.611 1 555 12 max 0 3 024 15 .043 1 5.98e-3 3 3999.386 15 NC 5 556 min 0 10			9													
551 10 max 0 3 026 15 .039 1 4.955e-3 3 3764.336 15 NC 4 552 min 0 10 11 4 035 3 -5.711e-3 1 884.863 4 1865.11 1 553 11 max 0 3 026 15 .042 1 5.467e-3 3 3820.825 15 NC 5 554 min 0 10 109 4 037 3 -6.342e-3 1 898.142 4 1726.611 1 555 12 max 0 3 024 15 .043 1 5.98e-3 3 3999.386 15 NC 5 556 min 0 10 104 4 038 3 -6.972e-3 1 940.115 4 1652.302 1 557 13 max 0 3 023 15				min						3						1
552 min 0 10 11 4 035 3 -5.711e-3 1 884.863 4 1865.11 1 553 11 max 0 3 026 15 .042 1 5.467e-3 3 3820.825 15 NC 5 554 min 0 10 109 4 037 3 -6.342e-3 1 898.142 4 1726.611 1 555 12 max 0 3 024 15 .043 1 5.98e-3 3 3999.386 15 NC 5 556 min 0 10 104 4 038 3 -6.972e-3 1 940.115 4 1652.302 1 557 13 max 0 3 023 15 .042 1 6.493e-3 3 4331.126 15 NC 5 558 min 0 10			10		0			15		1		3		15		
553 11 max 0 3 026 15 .042 1 5.467e-3 3 3820.825 15 NC 5 554 min 0 10 109 4 037 3 -6.342e-3 1 898.142 4 1726.611 1 555 12 max 0 3 024 15 .043 1 5.98e-3 3 3999.386 15 NC 5 556 min 0 10 104 4 038 3 -6.972e-3 1 940.115 4 1652.302 1 557 13 max 0 3 023 15 .042 1 6.493e-3 3 4331.126 15 NC 5 558 min 0 10 096 4 037 3 -7.603e-3 1 1018.096 4 1637.785 1 559 14 max 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>										3						1
554 min 0 10 109 4 037 3 -6.342e-3 1 898.142 4 1726.611 1 555 12 max 0 3 024 15 .043 1 5.98e-3 3 3999.386 15 NC 5 556 min 0 10 104 4 038 3 -6.972e-3 1 940.115 4 1652.302 1 557 13 max 0 3 023 15 .042 1 6.493e-3 3 4331.126 15 NC 5 558 min 0 10 096 4 037 3 -7.603e-3 1 1018.096 4 1637.785 1 559 14 max 0 3 02 15 .039 1 7.006e-3 3 4883.886 15 NC 5 560 min 0 10			11		0			15		1		3				5
555 12 max 0 3024 15 .043 1 5.98e-3 3 3999.386 15 NC 5 556 min 0 10104 4038 3 -6.972e-3 1 940.115 4 1652.302 1 557 13 max 0 3023 15 .042 1 6.493e-3 3 4331.126 15 NC 5 558 min 0 10096 4037 3 -7.603e-3 1 1018.096 4 1637.785 1 559 14 max 0 302 15 .039 1 7.006e-3 3 4883.886 15 NC 5 560 min 0 10085 4034 3 -8.234e-3 1 1148.03 4 1690.501 1 561 15 max 0 3017 15 .033 1 7.519e-3 3 5803.057 15 NC 4 562 min 0 10072 4029 3 -8.865e-3 1 1364.095 4 1836.972 1					0					3			898.142	4	1726.611	
556 min 0 10 104 4 038 3 -6.972e-3 1 940.115 4 1652.302 1 557 13 max 0 3 023 15 .042 1 6.493e-3 3 4331.126 15 NC 5 558 min 0 10 096 4 037 3 -7.603e-3 1 1018.096 4 1637.785 1 559 14 max 0 3 02 15 .039 1 7.006e-3 3 4883.886 15 NC 5 560 min 0 10 085 4 034 3 -8.234e-3 1 1148.03 4 1690.501 1 561 15 max 0 3 017 15 .033 1 7.519e-3 3 5803.057 15 NC 4 562 min 0 10 <td></td> <td></td> <td>12</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>3</td> <td></td> <td>15</td> <td>NC</td> <td>5</td>			12		0					1		3		15	NC	5
557 13 max 0 3023 15 .042 1 6.493e-3 3 4331.126 15 NC 5 558 min 0 10096 4037 3 -7.603e-3 1 1018.096 4 1637.785 1 559 14 max 0 302 15 .039 1 7.006e-3 3 4883.886 15 NC 5 560 min 0 10085 4034 3 -8.234e-3 1 1148.03 4 1690.501 1 561 15 max 0 3017 15 .033 1 7.519e-3 3 5803.057 15 NC 4 562 min 0 10072 4029 3 -8.865e-3 1 1364.095 4 1836.972 1										3						
558 min 0 10 096 4 037 3 -7.603e-3 1 1018.096 4 1637.785 1 559 14 max 0 3 02 15 .039 1 7.006e-3 3 4883.886 15 NC 5 560 min 0 10 085 4 034 3 -8.234e-3 1 1148.03 4 1690.501 1 561 15 max 0 3 017 15 .033 1 7.519e-3 3 5803.057 15 NC 4 562 min 0 10 072 4 029 3 -8.865e-3 1 1364.095 4 1836.972 1			13									3		15		
559 14 max 0 3 02 15 .039 1 7.006e-3 3 4883.886 15 NC 5 560 min 0 10 085 4 034 3 -8.234e-3 1 1148.03 4 1690.501 1 561 15 max 0 3 017 15 .033 1 7.519e-3 3 5803.057 15 NC 4 562 min 0 10 072 4 029 3 -8.865e-3 1 1364.095 4 1836.972 1										3		1				
560 min 0 10 085 4 034 3 -8.234e-3 1 1148.03 4 1690.501 1 561 15 max 0 3 017 15 .033 1 7.519e-3 3 5803.057 15 NC 4 562 min 0 10 072 4 029 3 -8.865e-3 1 1364.095 4 1836.972 1			14		0			15		1				15		
561 15 max 0 3 017 15 .033 1 7.519e-3 3 5803.057 15 NC 4 562 min 0 10 072 4 029 3 -8.865e-3 1 1364.095 4 1836.972 1										3						
562 min 0 10072 4029 3 -8.865e-3 1 1364.095 4 1836.972 1			15		0			15	.033	1		3		15		4
					0					3		-				1
	563		16	max	0	3	013	15	.024	1	8.031e-3	3	7436.859	15	NC	4
564 min 0 10057 402 3 -9.495e-3 1 1748.145 4 2148.88 1	564				0	10	057	4	02	3		1		4	2148.88	1

Company Designer Job Number Model Name Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	Ö	3	009	15	.011	1	8.544e-3	3	NC	15	NC	4
566			min	0	10	039	4	008	3	-1.013e-2	1	2548.099	4	2850.851	1
567		18	max	.001	3	005	15	.007	3	9.057e-3	3	NC	5	NC	4
568			min	0	10	021	4	011	2	-1.076e-2	1	5007.408	4	5078.884	1
569		19	max	.001	3	.003	3	.026	3	9.57e-3	3	NC	1	NC	1
570			min	001	10	003	9	03	2	-1.139e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.008	3	2.851e-3	3	NC	1	NC	1
572			min	001	3	002	1	008	2	-2.895e-3	2	NC	1	NC	1
573		2	max	0	10	005	15	.005	1	2.732e-3	3	NC	5	NC	2
574			min	001	3	02	4	001	10	-2.766e-3	2	5007.408	4	9452.216	1
575		3	max	0	10	009	15	.013	1	2.613e-3	3	NC	15	NC	4
576			min	0	3	039	4	004	3	-2.637e-3	2	2548.099	4	5346.673	1
577		4	max	0	10	013	15	.019	1	2.494e-3	3	7436.859	15	NC	4
578			min	0	3	056	4	007	3	-2.509e-3	2	1748.145	4	4065.344	1
579		5	max	0	10	017	15	.023	1	2.375e-3	3	5803.057	15	NC	4
580			min	0	3	072	4	01	3	-2.38e-3	2	1364.095	4	3509.822	1
581		6	max	0	10	02	15	.026	1	2.256e-3	3	4883.886	15	NC	4
582			min	0	3	085	4	012	3	-2.252e-3	2	1148.03	4	3266.882	1
583		7	max	0	10	022	15	.027	1	2.137e-3	3	4331.126	15	NC	4
584			min	0	3	096	4	012	3	-2.123e-3	2	1018.096	4	3207.026	1
585		8	max	0	10	024	15	.026	1	2.018e-3	3	3999.386	15	NC	4
586			min	0	3	104	4	012	3	-1.995e-3	2	940.115	4	3285.961	1
587		9	max	0	10	025	15	.025	1	1.899e-3	3	3820.825	15	NC	4
588			min	0	3	108	4	012	3	-1.866e-3	2	898.142	4	3497.702	1
589		10	max	0	10	026	15	.022	1	1.78e-3	3	3764.336	15	NC	4
590			min	0	3	11	4	011	3	-1.737e-3	2	884.863	4	3863.725	1
591		11	max	0	10	025	15	.019	1	1.661e-3	3	3820.825	15	NC	4
592			min	0	3	108	4	009	3	-1.609e-3	2	898.142	4	4437.688	1
593		12	max	0	10	024	15	.016	1	1.542e-3	3	3999.386	15	NC	4
594			min	0	3	104	4	007	3	-1.48e-3	2	940.115	4	5326.29	1
595		13	max	0	10	022	15	.013	1	1.423e-3	3	4331.126	15	NC	3
596			min	0	3	096	4	006	3	-1.352e-3	2	1018.096	4	6742.872	1
597		14	max	0	10	02	15	.009	1	1.304e-3	3	4883.886	15	NC	2
598			min	0	3	085	4	004	3	-1.223e-3	2	1148.03	4	9150.474	1
599		15	max	0	10	017	15	.006	1	1.185e-3	3	5803.057	<u> 15</u>	NC	1_
600			min	0	3	071	4	002	3	-1.094e-3	2	1364.095	4	NC	1
601		16	max	0	10	013	15	.003	1	1.066e-3	3	7436.859	15	NC	1
602			min	0	3	056	4	0	3	-9.659e-4	2	1748.145	4	NC	1
603		17	max	0	10	009	15	.001	1	9.472e-4	3	NC	15	NC	1
604			min	0	3	038	4	0	10	-8.373e-4	2	2548.099	4	NC	1
605		18	max	0	10	005	15	0	3	8.282e-4	3	NC	5	NC	1
606			min	0	3	019	4	0	2	-7.087e-4	2	5007.408	4	NC	1
607		19	max	0	1	0	1	0	1	7.092e-4	3	NC	_1_	NC	1
608			min	0	1	0	1	0	1	-5.802e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 405 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

Ksat

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035				
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)						
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)				
1035	0.50	6.000	9755				
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,l}	NaNa0 (Sec. D.4	I.1 & Eq. D-16a)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)	
109.66	109.66	1.000	1.000	9755	0.55	5365	

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_e)$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.2}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cby} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\varPsi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cby} (lb)
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_s)$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_e)$	a) ^{0.2} √ d aλ√ f 'c C a1 ^{1.5}	5 (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)(2)$	Avc/Avco) \Ped, V	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\varPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	_

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

IV. OUTICI	ote i iyout ou	cingui di Anc	iloi ili olicai	(OCC. D.0.0)				
$\phi V_{cp} = \phi \text{mi}$	$\phi V_{cp} = \phi \min k_{cp} N_a; k_{cp} N_{cb} = \phi \min k_{cp} (A_{Na} / A_{Na0}) \Psi_{ed,Na} \Psi_{p,Na} N_{a0}; k_{cp} (A_{Nc} / A_{Nco}) \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b} \text{ (Eq. D-30a)}$							
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{p,Na}$	N _{a0} (lb)	Na (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	/φN _n V _{ua} /φV _n	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Base Material

Location:

Project description:

Fastening description:

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	732.5	499.5	0.0	499.5
2	732.5	499.5	0.0	499.5
Sum	1465.0	999.0	0.0	999.0

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

256.00

k c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A$	Nc / A Nco $)$ Ψ ec,N Ψ ec	$_{l,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)

1.00

1.000

10469

0.65

7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

1.000

0.865

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

314.72

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	$_a$ / $A_{Na0}) arPsi_{ed,Na} arPsi_g$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \mathrm{m}$	in <i>kcpNag</i> ; <i>kcpN</i>	$I_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{c})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$V_{ed,N} \Psi_{C,N} \Psi_{Cp,N} N_{b}$	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/g	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.