1. (a) (2 points) For the following four numbers given in decimal or hexadecimal notation, write the corresponding binary number using the indicated format.

$(-6)_{10}$ using 6-bit sign magnitude:	$(100110)_2$
$(37)_{10}$ using 6-bit unsigned:	$(100101)_2$
$(-28)_{10}$ using 6-bit two's complement:	$(100100)_2$
$(2B)_{16}$ using 6-bit unsigned:	$(101011)_2$

- (b) (3 points) State whether the following statements about the binary representation of numbers are *true* or *false*. Give **brief** explanations for the statements that are *false*.
 - Both two's complement and sign/magnitude representation can be used to represent negative numbers in binary.

Solution: True, however it is more difficult to design arithmetic circuits that work with sign/magnitude format. Still they are used.

• Using N bits it is possible to represent 2^N different numbers when an unsigned number system is used.

Solution: True.

• While there are methods to represent both positive and negative integers, it is not possible to represent fractions or real numbers using binary numbers.

Solution: False, fixed and floating point number systems can be used to represent such numbers.

Second Session Exam Page 2 of 17