

PolarFire® SoC Icicle Kit

Introduction

The PolarFire® SoC FPGA Icicle Kit (MPFS250T-FCVG484EES) is an RoHS-compliant, cost-optimized kit with general-purpose interfaces that enables you to evaluate features of the PolarFire SoC family of FPGAs.

Table of Contents

Intr	oductio	n	······ <i>'</i>
1.	Gettin	g Started	2
	1.1.	Kit Contents	
	1.2.	Block Diagram	
	1.3.	Web Resources	
	1.4.	Board Overview	
	1.5.	Handling the Board	8
	1.6.	Operating Temperature	8
	1.7.	Powering Up the Board	8
2.	Install	ation and Settings	10
	2.1.	Software Settings	10
	2.2.	Hardware Settings	10
	2.3.	Power Sources	12
3.	Board	Components and Operations	15
	3.1.	LDDR4 Memory Interface	15
	3.2.	SPI Serial Flash	15
	3.3.	eMMC and SDIO Interface	15
	3.4.	High Speed Transceivers Configuration	16
	3.5.	Communication Interfaces	16
	3.6.	Expansion Capabilities	16
	3.7.	Voltage and Current Monitoring	
	3.8.	GPIO	17
	3.9.	User Interface	17
	3.10.	Mux for JTAG Selection	18
		Programming Scheme	
		System Reset	
	3.13.	50 MHz Oscillator	18
4.	Pin Li	st	20
5.	Board	Component Placement	2
6.	Demo	Design	23
7.		ndix: Programming PolarFire SoC FPGA Using the On-Board Programmer	
8.	Revis	ion History	2
The	Micro	chip Website	26
Pro	duct C	hange Notification Service	26
Cus	stomer	Support	26
Mic	rochip	Devices Code Protection Feature	26
Leg	al Noti	ce	27

Trademarks	27
Quality Management System	28
Worldwide Sales and Service	.29

1. Getting Started

The PolarFire SoC Icicle Kit supports the following interfaces:

- · PCI Express Root Port
- eMMC (DDR Model/HS200/HS400)
- · SD card
- LPDDR4
- SGMII
- I²C-Power Monitor
- USB
- UART
- CAN
- mikroBUS
- · 40 pin Raspberry Pi 4 interface connector

The PolarFire SoC device available on Icicle Kit is programmed using the on-board FlashPro6 programmer. The on-board FlashPro6 programmer is used to develop and debug embedded applications using SoftConsole, Identify, or SmartDebug.

Note: Embedded FlashPro6 is enabled only for the production kits. For PROTO kits, the device can be programmed using an external FlashPro 4, 5, or 6 programmer.

1.1 Kit Contents

The following table lists the contents of the PolarFire SoC Icicle Kit.

Table 1-1. Kit Contents

Item	Quantity
PolarFire SoC FPGA Icicle Kit ES featuring the MPFS250T-FCVG484EESEES device with 254 K logic elements	1
12 V/5 A wall-mounted power adapter	1
Ethernet cable	1
USB 2.0 micro AB connector for UART interface to PC	1
Quickstart card	1

1.2 Block Diagram

The following block diagram shows the key components of the PolarFire SoC Icicle Kit.

ICICLE KIT <u>5V</u> RaspberryPi CONN LEDs Push Buttons 12V mikroBUS 3.3V CONN 1.0V Mikro Bus Socket Power <u>1.</u>1V HDR Module 1.2V mikroBUS 2.5V 1.05V eMMC CONN LPDDR4 SD-CARD Memory 1.8V CAN x2 Micro USB CONN USB I2C Power sensor PHY PolarFire® SoC MPFS250T-FCVG484 (484 package) USB CONN RJ-45 CONN USB-To PCIe RP CONN VSC8662 XCVR x4 **UART X4** RJ-45 CONN SC-SPI JTAG MUX SC-SPI Flash XCVR x4 Embedded JTAG-PROG USB CONN 10-pin HDR FP6 -LITE PCIe RootPort- CONN x16

Figure 1-1. PolarFire SoC Icicle Kit Block Diagram

1.3 Web Resources

For more information about the PolarFire SoC Icicle Kit, refer to PolarFire SoC Page.

1.4 Board Overview

The PolarFire SoC Icicle Kit features a MPFS250T-FCVG484EES FPGA with the following capabilities:

- VSC8662 with two RJ45 connectors for 10/100/1000 Mbps Ethernet
- LPDDR4 memory
- · Power monitor module
- PCIe root port
- · One SPI flash device
- · 40 pin raspberry Pi 4 interface connector
- · mikroBUS expansion port

The following illustration highlights various components of the PolarFire SoC Icicle Kit.

Figure 1-2. PolarFire SoC Icicle Kit

1.4.1 Form Factor

The following are the dimensions of PolarFire SoC Icicle Kit.

- Form factor is 7.2 x 4.95 inches.
- Maximum height of the component at the top side: 0.59 inches.
- Maximum height of the component at the bottom side: 0.51 inches.

1.4.2 FPGA Bank IO Assignment for Individual Interfaces

Table 1-2. FPGA Bank Assignment

Interfaces	FPGA Bank Allocation
LPDDR4	B6
SGMII	B5, B1, B9, and B2
PCI	XCVRO, B1, B9
mikroBUS	B1, B9, and B2
USB-UART (x4)	B1, B9
USB interface	B2
SC-SPI_FLASH	В3
JTAG Header	В3

continued			
Interfaces	FPGA Bank Allocation		
eMMC/SDIO	B4		
CAN	B2, B1		
Raspberry Pi 4 interface connector	B1		
User defined LEDs/Switches	В0		

The following table lists the important components of the PolarFire SoC Icicle Kit.

Table 1-3. PolarFire SoC Icicle Kit Components

Component	Label on Board	Description			
Featured Device					
PolarFire SoC FPGA		MPFS250T-FCVG484EES Extended Commercial (0 °C to 100 °C) temperature support.			
Power Supply and Monitoring					
12 V power supply input	J29	The board is powered by a 12 V power source using an external +12 V/5 A DC jack.			
ON/OFF switch	SW6	Power ON/OFF switch from +12 V external DC jack.			
Clocks					
On-board 50 MHz clock oscillator	X5	50 MHz clock oscillator with single-ended output.			
OSC	X2	125 MHz oscillator (differential LVDS output) which is the input to the MSS Reference clk.			
FPGA Programming and Debugging					
SPI flash	U43	1 Gb Micron MT25QL01GBBB8ESF-0SIT SPI flash memory device connected to SPI pins on bank3 of the PolarFire SoC device.			
JTAG programming header	J23	Header to program and debug the PolarFire SoC device using FlashPro. The appropriate programmer must be selected in the FlashPro software. Note: For PROTO kits, the device can be programmed using an external FlashPro 4, 5, or 6 programmer.			
Embedded FlashPro 6	U26	On-board programming.			
Expansion Interfaces					
mikroBUS	J44, J8	mikrobus connector.			
Raspberry Pi 4	J26	Raspberry Pi 4 interface connector.			
PCle X 16	J6	PCI Express Root port connector.			
Communication Interfaces					
1000Base-X Gigabit Ethernet Transceiver RJ45 conn-2	J1, J2	Ethernet (RJ45) jack with external magnetics interfacing with VSC8662 in SGMII mode.			
USB-UART	J11	USB Micro AB connector.			
CAN	J25, J27	CAN Headers.			

continued				
Component	Label on Board	Description		
USB-ULPI	J16	USB Micro AB connector.		
Memory Chips				
LPDDR4	U2	MT53D512M32D2DS-053 WT:D TR is used for LPDDR4 interface. Memory size: 16 Gb.		
eMMC	U45	SDINBDG4-8G eMMC is used for this interface. Memory size: 8 GB.		
SD card	J30	SD connector.		
General Purpose I/O	General Purpose I/O			
Debug Switches	SW1 to SW4	For debug.		
Light-emitting diodes (LEDs)	LED1 to LED4	Four active-high LEDs connected to some of the user I/Os for debugging.		

1.5 Handling the Board

Pay attention to the following points while handling or operating the board to avoid possible damage or malfunction:

- Handle the board with electrostatic discharge (ESD) precautions to avoid damage. For more information about using the board with ESD precautions, refer to Understanding Product Handling and ESD Precautions (for Hybrid Devices).
- Power down the board to switch between the programming headers J17 and PCIe CONN (CON1).

1.6 Operating Temperature

Extended commercial temperature range (0 °C to 100 °C).

1.7 Powering Up the Board

To power up the board, do the following:

- 1. Connect 12 V/5 A power supply brick to J29.
- 2. Slide switch SW6 to ON position.
- 3. Power status LEDs 12P0, 5P0, 2P5V, VDDAUX4, 3P3V, VDD, 1P8, 1P1V_LPDDR4, and VDDA will glow.
- 4. Install the software required for developing designs and set the jumpers for the pre-programmed design. For more information, refer to 2. Installation and Settings.

The following table provides the probing points for power rails.

Table 1-4. Power Measurements

#	Power Rail	Probing Point	Tolerance Allowed	Expected Voltage (in Volt)
1	12P0V	C476	±5%	12 V
2	5P0V	C482	±5%	5 V
3	1P8V	C542	±5%	1.8 V

Getting Started

continued				
#	Power Rail	Probing Point	Tolerance Allowed	Expected Voltage (in Volt)
4	2P5V	C786	±5%	2.5 V
5	1P5V_DDR3	C602	±5%	1.5 V
6	0P75V_VTT_DDR3	C514	±5%	0.75 V
7	VDD	C499	±3%	1 V
8	1P1V_LPDDR4	C574	±5%	1.1 V
9	1P2V_PHY_VSC_FP6	C587	±5%	1.2 V
10	3P3V	C527	±5%	3.3 V
11	VDDA	C556	±3%	1.05 V

2. Installation and Settings

This section provides information about the software and hardware settings required to run the pre-programmed demo design on the PolarFire SoC Icicle Kit.

2.1 Software Settings

- 1. Download and install the latest release of Libero® SoC software from the Microsemi website.
- 2. Generate a free silver license for your software. The Libero SoC installer includes FlashPro5 drivers.

For instructions about installing Libero SoC, refer to Libero Software Installation and Licensing Guide. For instructions about how to download and install DirectCores and driver firmware cores on the PC where Libero SoC is installed, refer to Installing IP Cores and Drivers User's Guide.

2.2 Hardware Settings

This section provides information about jumper settings, switches, and LEDs on the PolarFire SoC Icicle Kit.

2.2.1 Jumper Settings

The following table lists the default jumper settings on board.

Table 2-1. Jumper Settings

Jumper	Description	Pin	Default Setting
J31	To select LPDDR4 Vref	_	Open
J9	Select pin for programming FPGA with external FlashPro header or with on-board programmer.	_	Open
J21	To select PolarFire SoC JTAG reset.	_	Open
J46	To select 3.3 V for RPI connector from the Icicle Kit	_	Open
J47	To select 5 V for RPI connector from the Icicle Kit	_	Open
J15	To select USB ID	Short pin 1-2	_
J17	5 V for VBUS switch for USB3340	Short pin 1-2	_
J43	To select 1.8 V 0r 3.3 V for eMMC modes	Short pin 1-2	_
J28	Jumper for PolarFire SoC Serdes Vref	Short pin 1-2	_
J24	5 V for VBUS switch for USB3320	Short pin 1-2	_
J34	To select 1.8 V or 3.3 V for BANK4 voltage	Short pin 1-2	_
J35	To select 2.5 V or 3.3 V for BANK4 Aux voltage	Short pin 1-2	_
J45	To select 1 V or 1.05 V for VDD core voltage	Short pin 1-2	_

2.2.2 Power Supply LEDs

The following table lists the power supply LEDs on the PolarFire SoC Icicle Kit.

Table 2-2. Power Supply LEDs

LED	Description
12P0	12 V power supply
5P0	5 V power supply

continued		
LED	Description	
2P5V	2.5 V power supply	
VDDAUX4	Bank4 Aux voltage	
3P3V	3.3 V power supply	
VDD	Core voltage	
1P8	1.8 V power supply	
1P1V_LPDDR4	LPDDR4 voltage	
VDDA	Power for Serdes channels	

2.2.3 Test Points

The following test points are available on the PolarFire SoC Icicle Kit.

Table 2-3. Test Points

Test Point	Description
GND1TP_BLK to GND10TP_BLK	Test point for Ground
SD_D0	Test point for SD_DATA0/eMMCMC_DATA0 at Mux
SD_D1	Test point for SD_DATA1/eMMCMC_DATA1 at Mux
SD_D2	Test point for SD_DATA2/eMMCMC_DATA2 at Mux
SD_D3	Test point for SD_DATA3/eMMC_DATA3 at Mux
SD_CLK	Test point for SD_CLK/eMMC_CLK at Mux
SD_CMD	Test point for SD_CMD/eMMC_CMD at Mux
eMMC_CLK	Test point for eMMCMC_CLK at eMMCMC device
SDC_CLK	Test point for SD_CLK at SD connector
SDC_CMD	Test point for SD_CMD at SD connector
SDC_D3	Test point for SD_DATA3 at SD connector
SDC_D2	Test point for SD_DATA2 at SD connector
SDC_D1	Test point for SD_DATA1 at SD connector
SDC_D0	Test point for SD_DATA0 at SD connector
SD_CLK_FB_EM_D4	Test point for SD_CLK_FB/eMMC_DATA4 at Mux
SD_VSEL_EM_D5	Test point for SD_VSEL/eMMC_DATA5 at Mux
SD_CMD_DIR_EM_D7	Test point for SD_CMD_DIR/eMMC_DATA7 at Mux
SD_WP#_EM_RSTN	Test point for SD_WP#/eMMC_RSTN at Mux
SD_CD#_EM_STB	Test point for SD_CD#/eMMC_STB at Mux
TP19-UART0 TX Togg	Test point for UART0 TX Togg
TP17-UART0 RX Togg	Test point for UART0 RX Togg
TP16-UART1 TX Togg	Test point for UART1 TX Togg
TP15-UART1 RX Togg	Test point for UART1 RX Togg
TP12-UART2 TX Togg	Test point for UART2 TX Togg

continued		
Test Point	Description	
TP13-UART2 RX Togg	Test point for UART2 RX Togg	
TP14-UART3 TX Togg	Test point for UART3 TX Togg	
TP18-UART3 RX Togg	Test point for UART3 RX Togg	
XTAL2_VSC	Test point for XTAL2 for Phy	
RCLK1_VSC	Test point for Phy recovered clk1	
RCLK2_VSC	Test point for Phy recovered clk2	
CKO_VSC	Test point for Phy clkout	
THMDA1	Test point for THMDA1	
FIBR_DIP_1	Test point for PHY_Serdes receiver input pair	
FIBR_DIN_1	Test point for PHY_Serdes receiver input pair	
FIBR_DOP_1	Test point for PHY_Serdes transmitter output pair	
FIBR_DON_1	Test point for PHY_Serdes transmitter output pair	
FIBR_DIP_0	Test point for PHY_Serdes receiver input pair	
FIBR_DIN_0	Test point for PHY_Serdes receiver input pair	
FIBR_DOP_0	Test point for PHY_Serdes transmitter output pair	
FIBR_DON_0	Test point for PHY_Serdes transmitter output pair	
TP1 to TP6 -	Test points for PCIe reserved pins	
TP_VDD	Test point for VDD_core voltage	
TP_1P1V	Test point for 1.1 V	
GND_1P1V	Test point for 1.1V_Ground	
TP_1P2V	Test point for 1.2 V	
GND_1P2V	Test point for 1.2V_Ground	
TP_3P3V	Test point for 3.3 V	
TP_VDDA	Test point for VDDA voltage	
TP_2P5V	Test point for 2.5 V	
TP_1P8V	Test point for 1.8 V	
TP_5P0V	Test point for 5 V	
GND_1P8V	Test point for 1.8V_Ground	

2.3 Power Sources

The PolarFire SoC Icicle Kit uses power supply devices. For more information about these power supply devices, refer to Power Management web page.

The following table lists the key power supplies required for normal operation of the PolarFire SoC Icicle Kit.

Table 2-4. I/O Voltage Rails

Supply Name	Description	Value (in Voltage)
VDD	Core Power	1.0/1.05
VDD25	Power for PLL/ICB/Bank Controller/PNVM/Programming Analog block	2.5
VDDA	Power for SerDes RX Channels [3:0] Power for SerDes TX Channels [3:0]	1.0/1.05
VDDA25	Power for SerDes PLLs	2.5
VDD18	HSIO/MSS_DDR Receiver Input Power SE Corner Oscillator Power for programming blocks, analog block and SW Corner Oscillator	1.8
VDDI0	HSIO Bank Power	1.2, 1.5, 1.8
VDDI1	GPIO Bank Power	1.2, 1.5, 1.8, 2.5, 3.3
VDDI2	MSSIO Bank Power	1.2, 1.5, 1.8, 2.5, 3.3
VDDI3	Power for JTAG los	1.8, 2.5, 3.3
VDDI4	MSSIO Bank Power	1.2, 1.5, 1.8, 2.5, 3.3
VDDI5	MSS SGMII Bank Power and Pre-Driver	2.5, 3.3
VDDI6	MSS DDR (HSIO) Bank Power	1.2, 1.5, 1.8
VDDI7	GPIO Bank Power	1.2, 1.5, 1.8, 2.5, 3.3
VDDI8	HSIO Bank Power	1.2, 1.5 1.8
VDDI9	GPIO Bank Power	1.2, 1.5, 1.8, 2.5, 3.3
VDDAUX1	GPIO Pre-Driver Bank Power	2.5, 3.3
VDDAUX2	MSSIO Pre-Driver Bank Power	2.5, 3.3
VDDAUX4	MSSIO Pre-Driver Bank Power	2.5, 3.3
VDDAUX7	GPIO Pre-Driver Bank Power	2.5, 3.3
VDDAUX9	GPIO Pre-Driver Bank Power	2.5, 3.3
XCVR_VREF	All SerDes RefClk receiver's voltage reference pin	0.9/1.25

Note: Bank 9 VDDI power pins are connected to Bank 1 VDDI power pins within the package substrate for pin migration compatibility.

The following figure shows voltage rails (12 V, 5 V, 3.3 V, 2.5 V, 1.8 V, 1.2 V, and 1.0 V) available on the PolarFire SoC Icicle Kit.

Figure 2-1. Voltage Rails on PolarFire SoC Icicle Kit

The following table lists the power regulators used for PolarFire SoC FPGA lcicle voltage rails.

Table 2-5. Power Regulators

Voltage Rail	Part Number	Description	Current
5 V	MIC26950JL	IC REG BUCK ADJ	12 A
VDD (1 V)	MIC22705YML	IC REG BUCK ADJUSTABLE	7 A
VSC_PHY(1.2 V)	MIC23303YML-T5	IC REG BUCK ADJUSTABLE	3 A
1.1V_LPDDR4	MIC23303YML-T5	IC REG BUCK ADJUSTABLE	3 A
1P8V	MIC23303YML-T5	IC REG BUCK ADJUSTABLE	3 A
2P5V	MIC69502WR	IC REG LINEAR POS ADJ	5 A
3P3V	MIC26950JL	IC REG BUCK ADJ	12 A
VDDA	MIC69502WR	IC REG LINEAR POS ADJ	5 A
1P5V_DDR3	MIC23303YML-T5	IC REG BUCK ADJUSTABLE	3 A
VTT	MIC5166YML-TR	IC PWR SUP 3 A HS DDR TERM 10MLF	3 A

3. Board Components and Operations

This section describes the key components of the PolarFire SoC Icicle Kit and provides information about important board operations. For device datasheets, refer to PolarFire SoC Page.

For more information, refer to Board Level Schematics document.

3.1 LDDR4 Memory Interface

LPDDR4 is connected to the MSS BANK 6.

Part number: MT53D512M32D2DS-053 WT:D TR

Manufacturer: MicronFrequency range: 800 MHzMemory size: 16 Gb

3.2 SPI Serial Flash

PolarFire SoC Icicle Kit has one SPI flash 1 Gb. Flash is connected to BANK3 SC-SPI pins to support IAP programming.

Part number: MT25QL01GBBB8ESF-0SIT

Manufacturer: MicronFlash Type: NOR

The following figure shows the SPI Flash interface of the PolarFire SoC Icicle Kit.

Figure 3-1. SPI Flash Interface

3.3 eMMC and SDIO Interface

PolarFire SoC MSS BANK4 has MUXed IOs for SDIO or eMMC interface. PolarFire SoC Icicle Kit uses on board MUX U44 and U29 to select interface between 8 GB eMMC device or SD card connector.

3.3.1 eMMC

Part number: SDINBDG4-8GManufacturer: SanDisk

eMMC 5.1

- Supports variable clock frequencies of 0-20 MHz, 0-26 MHz (default), 0-52 MHz (high-speed), 0-200 MHz SDR (HS200), and 0-200 MHz DDR (HS400)
- Dual power system: Core voltage (Vcc) 2.7 to 3.3 V, IO (VCCQ) voltage either: 1.7-1.95 V or 2.7-3.6 V

3.3.2 SD Card

PolarFire SoC Icicle Kit has one SD card connector.

- Part number: 10067847-001RLF
- · Manufacturer: Amphenol ICC (FCI)
- SD interface is connected using a voltage translator between SD card connector and MUX (eMMC/SD)
- Supported modes are default speed (25 MHz), high speed (50 MHz), UHS-I (SDR12, SDR25, SDR50, SDR14, and DDR50)

3.4 High Speed Transceivers Configuration

3.4.1 Transceivers Block Allocations

MPFS250T-FCVG484EES has one XCVR block and 4 SERDES LANES available.

3.4.2 PCIx16 Connector

XCVR x4 lanes are mapped to PCIe CONN.

On board PCIx16 straddle Mount root port connector is available in PolarFire SoC Icicle Kit.

- Part number: 10025026-10103TLF
- · Manufacturer: Amphenol ICC
- · 4-TX/RX pairs are connected to SERDES block
- 100 MHz reference clock is provided to connector

3.5 Communication Interfaces

3.5.1 Ethernet – SGMII Interface

VSC8662 device is a low-power, dual Gigabit Ethernet transceiver (1000BASE-X Gigabit Ethernet Transceiver PHY)

- Part number: VSC8662
- VSC8662 MAC interface dual port signals (Port 0 and Port1) RX/TX is connected on MSS SGMII Bank 5
- VSC8662 MDC and MDIO signals are connected MSS BANK 2

3.5.2 CAN Interface

PolarFire SoC Icicle Kit has two CAN interfaces. One interface is from the MSS BANK 2 and another interface is from the GPIO BANK 1.

Part number: MCP2562FDT-E/SN

Manufacturer: Microchip

3.5.3 USB OTG

USB3340 is a Hi-Speed USB 2.0 Transceiver that provides a physical layer (PHY) solution well-suited for portable electronic devices.

· Part number: USB3340-EZK-TR

- · Manufacturer: Microchip
- USB interface uses MSS BANK 2
- · 26 MHz on board crystal for reference clock

3.6 Expansion Capabilities

The following sections explain the expansion connectors for PolarFire SoC Icicle Kit.

3.6.1 Raspberry Pi 4 Connector

PolarFire SoC Icicle Kit has 40 pin Raspberry pi connector.

- Part number: 61204021621
- · Manufacturer: Wurth Electronics
- Raspberry pi signals use GPIO BANK 1 and BANK 9

3.6.2 mikroBUS Connector

PolarFire SoC Icicle Kit has 16 pin mikroBUS interface connector.

- UART, SPI, and I²C signals
- · SPI signals use MSS BANK 2
- I²C, UART, and other GPIO signals use GPIO BANK 1 and BANK 9

3.7 Voltage and Current Monitoring

PolarFire SoC Icicle Kit has provision to measure current for four power rails.

- VDD
- VDD25
- VDDA25
- VDDA

Current sensing is done by PAC1934T-I/JQ. The I^2C interface is available on digital values to read back values. Sensor's I^2C interface is connected to the MSS I^2C interface.

3.8 **GPIO**

3.8.1 Switches and LEDs

PolarFire SoC Icicle Kit is equipped with four tact switches and four LED indicators.

Switches and LEDs are connected to HSIO BANK 0

3.8.2 LEDs

LED's to indicate:

- Power
- User defined LEDs (quantity 4)

3.9 User Interface

The PolarFire SoC Icicle Kit has four user defined LEDs and four push-button switches.

3.9.1 USB to UART Interface

CP2108 is a USB to quad UART bridge controller to support 4 UART interface on board. UART IOs are connected to the Fabric IOs (Bank1) of PolarFire SoC.

- · Part number: CP2108-B02-GM
- Manufacturer: Silicon Labs
- · UART interface uses GPIO BANK 1 and BANK 9

Note:

The Silicon Labs CP2108 drivers are needed to see the COM ports through the J11 connector. The drivers can be downloaded from the following location:

www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

3.10 Mux for JTAG Selection

Multiplexer U22 is used for JTAG selection for External Flash Pro header and On board Programmer .

• Part number: 74CBTLV3257BQ,115

Manufacturer: NXP

Table 3-1. Mux for JTAG Selection

Jumper (J9)	JTAG Selection
Open	External Flash Pro header
Close	On-board Programmer

3.11 Programming Scheme

PolarFire SoC silicon is programmed in two ways:

- · Using FlashPro header connected to BANK3 of PolarFire SoC
- On-board programmer (BANK 7)

The following is the block diagram for programming scheme of PolarFire SoC.

Figure 3-2. PolarFire SoC Programming Scheme Block Diagram

3.12 System Reset

DEVRST_N is an input-only reset pad that allows a full reset of the chip to be asserted at any time. The following figure shows a sample reset circuit that uses a Microchip MCP121T-240E/TT device.

Figure 3-3. Reset Circuit

3.13 50 MHz Oscillator

A 50 MHz clock oscillator with an accuracy of ± 10 ppm is available on the board. This clock oscillator is connected to the FPGA fabric to provide a system reference clock.

The pin number of the 50 MHz oscillator is W12, and the pin name is $HSIO92PB0/CLKIN_N_2/CCC$ NW CLKIN N 2/CCC NW PLL1 OUT0.

The following figure shows the 50 MHz clock oscillator interface.

Figure 3-4. 50 MHz Clock Oscillator

For more information, refer to Board-Level Schematics document (provided separately).

4. Pin List

For more information about all package pins on the PolarFire SoC, refer to PolarFire SoC MPFS250T_MPFS250TS-FCVG484 Package Pin Assignment Table.

5. Board Component Placement

The following figure shows the placement of various components on the PolarFire SoC Icicle Kit silkscreen.

Figure 5-1. Silkscreen Top View

The following figure shows the bottom view of the PolarFire SoC Icicle Kit silkscreen.

Figure 5-2. Silkscreen Bottom View

6. Demo Design

For the Icicle kit reference design, refer to the documentation provided on GitHub.

7. Appendix: Programming PolarFire SoC FPGA Using the On-Board Programmer

The PolarFire SoC Icicle Kit includes an on-board programmer. An external programmer hardware is, therefore, not required to program the PolarFire SoC device. The device can be programmed using the FlashPro software installed on the host PC.

Follow these steps to program an on-board PolarFire SoC device using the on-board programmer.

Notes: The programming file will be available in a future release.

- 1. Connect the power supply cable to the **J23** connector on the board.
- Close Jumper J9 for mux U22.
- 3. Power on the board using the **SW6** slide switch.
- 4. When the board is successfully set up, the power LEDs start glowing.
- Download FlashPro Express from the following location: https://www.microsemi.com/product-directory/ programming/4977-flashpro#software
- 6. On the host PC, start the FlashPro Express software.
- 7. Click **New Project** to create a new project.
- 8. In the **New Project** window, do the following, and click **OK**.
 - · Enter a project name.
 - · Select Single device as the programming mode
- 9. Click Configure Device.
- 10. Click Program to program the device.
- 11. From the View Programmer pane, select the on-board FlashPro6 programmer.
- 12. Click Browse, and select the .stp file from the Load Programming File window.

The **Programmer List** window in the FlashPro Express software shows the programmer name, programmer type, port, programmer status, and information about whether the programmer is enabled.

When the device is programmed successfully, a Run Program PASSED status is displayed.

8. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Revision	Date	Description	
В	05/2021	Updated 3.9.1 USB to UART Interface section with a note.	
Α	01/2021	 Following is a list of changes made in this release: Converted this document from Microsemi format to Microchip format. Document number is changed from 50200882 to DS60001679A. Information about 1.4.1 Form Factor has been updated in this revision. 	
2.0	_	 The following is a summary of the changes made in this revision. Updated Table 10. Updated the Appendix: Programming PolarFire SoC FPGA Using the On-Board Programmer. 	
1.0	_	This is the first publication of this document.	

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- **Technical Support**

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

User Guide DS60001679B-page 26

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-8241-3

Quality Management System For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			