Calculadora Casio fx-570MS (Newton-Raphson)

O exemplo deste tutorial é para achar a raiz positiva de $f(x) = e^{-2x} + x^2 - 4 = 0$ pelo método de Newton-Raphson. Após ler o tutorial, você pode testar para a raiz negativa.

Obs. 1: Cada botão está representado neste tutorial entre os símbolos de desigualdade '<' e '>'.

1. Para armazenar o valor do "chute" inicial x_0 para a raiz, aperto os botões na sequência:

e vai aparecer no display: $X \leftarrow NÚMERO$.

Obs.: Neste modelo, <SHIFT> em laranja e <ALPHA> em vermelho estão no canto superior esquerdo da calculadora, enquanto STO aparece em laranja sobre o botão <RCL> e a variável X aparece em vermelho sobre o botão do parêntese <)>.

Neste exemplo, foi escolhido $x_0 = 1.9$ como o valor do "chute" inicial x_0 para a raiz positiva. Neste caso, aperto os botões:

e vai aparecer no display: $X \leftarrow 1.9$.

2. No mesmo exercício, para digitar a expressão do lado direito da fórmula iterativa

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \left(\frac{e^{-2x_n} + x_n^2 - 4}{-2e^{-2x_n} + 2x_n}\right),$$

a dica é sempre usar os botões <ALPHA> e <)> para calcular usar X como variável da expressão a ser calculada. Neste exemplo, a expressão que está no lado direito da fórmula iterativa de Newton-Raphson $(x_n - (e^{-2x_n} + x_n^2 - 4)/(-2e^{-2x_n} + 2x_n))$ é representada pela sequência de botões:

Agora, apertando o botão <=>, você verá o resultado da próxima iteração, x_1 , que é aproximadamente 1.997897184.

Agora, para calcular a próxima iteração, x_2 , tenho que armazenar x_1 . Basta então apertar os botões

para armazenar x_1 e, em seguida, apertar o botão <=> para voltar a usar a fórmula iterativa, a qual será calculada sobre x_1 . Agora, vai aparecer no display o valor de x_2 , que é aproximadamente 1.995374839.

Depois, é só ir apertando o botão <=> para as próximas iterações de Newton-Raphson e os valores aparecerão no display.

Agora, aperto \ll e aparece o valor de x_3 : 1.99537317.

Apertando <=> de novo, aparece o valor de x_4 : 1.99537317 (mesmo valor de x_3 , indicando que a raiz converge para este valor).

 ${\bf E}$ se apertar <=> mais vezes, o display continuará mostrando uma aproximação de 1.99537317 para a raiz positiva.

Você pode testar os mesmos procedimentos analogamente para achar uma aproximação para a raiz negativa do exercício, usando como "chute" inicial $x_0 = -0.5$.