Generatori di Tensione

Simbologia

La corrente di elettroni si muove dal polo negativo a quello positivo.

Gli opposti si attraggono.

Il potenziale tra A e B sarà:

$$V_{AB} = V_A - V_B = E(V)$$

IL potenziale *E* si può chiamare anche f.e.m (forza elettromotrice)

Generatori in serie e in parallelo

Le tensioni di due generatori in serie si sommano

$$V_{AD} = V_{AB} + V_{CD} = E_1 + E_2$$

Le tensioni di due generatori in parallelo sono identiche

$$V_{AB} = E_1 = E_2$$

Calcolare la tensione V_{AB} Sapendo che:

$$E_1 = 3 \text{ V}$$
 $E_2 = E_3 = E_4 = 1,5 \text{ V}$
 $E_5 = 6 \text{ V}$

Calcolare il potenziale in A, B e C nei due casi sapendo che $E_1=14 \text{V}$ e $E_2=8 \text{V}$

Resistenze

Legge di Ohm

Le resistenze con comportamento lineare seguono la legge di Ohm:

$$V = R \cdot i$$

Per convenzione la freccia che indica la caduta di tensione dovuta alla resistenza è opposta al senso in cui scorre la corrente *i*

Bipoli attivi e passivi

Un bipolo attivo ha la caratteristica di erogare energia. Tutti i generatori sono bipoli attivi

Un bipolo passivo invece dissipa energia, come ad esempio le resistenze

Resistenze in serie e in parallelo

$$R_s = R_1 + R_2$$

Le resistenze in parallelo seguono la seguente regola :

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Conversione Stella – Triangolo

Queste formule sono utili per trasformare una configurazione a triangolo in una a stella e viceversa.

$$R_A = \frac{R_{AB}R_{AC}}{R_{AB} + R_{AC} + R_{BC}}$$

$$R_B = \frac{R_{BC}R_{AB}}{R_{AB} + R_{AC} + R_{BC}}$$

$$R_C = \frac{R_{AC}R_{BC}}{R_{AB} + R_{AC} + R_{BC}}$$

$$R_{AB} = \frac{R_A R_B + R_A R_C + R_B R_C}{R_C}$$

$$R_{AC} = \frac{R_A R_B + R_A R_C + R_B R_C}{R_B}$$

$$R_{BC} = \frac{R_A R_B + R_A R_C + R_B R_C}{R_A}$$

Calcolare la resistenza equivalente ai nodi AB e AC

 $R_1=3k\Omega R_2=1,2k\Omega R_3=22k\Omega R_4=400\Omega$

Nella rete illustrata, calcola la resistenza vista fra i morsetti M-N. Si consideri: R₁=1,2k Ω ,

$$R_2$$
=3kΩ, R_3 =170Ω, R_4 =2kΩ, R_5 =85kΩ:

Nel circuito illustrato, calcola la resistenza vista tra i morsetti A-B,

Essendo i valori delle tre resistenze R_1 =25 Ω R_2 =8 Ω R_3 =14 Ω . Si ripetano i calcoli nel caso in cui la R_2 si interrompe e nel caso in cui R_2 vada in corto circuito.

Nella rete riportata si ha R_1 =80 Ω R_2 =20 Ω R_3 =2 $k\Omega$. Calcola: .

A] La R_{AB} con T aperto

B] La R_{AB} con T chiuso

C] il valore della R_x da sostituire alla R_3 affinché R_{AB} =96 Ω .

Nel circuito dato con R₁=50 Ω R₂=30 Ω R₃=50 Ω R₄=40 Ω R₅=17 Ω R₆=10 Ω . Calcola la R_{AB}.

Nel circuito, trovare la R_{AB}.

Considerando che $R_1=R_2=R_3=30\Omega$ e poi $R_4=R_5=R_6=150\Omega$.