Reinforcement Learning and Collusion by Clemens Possnig (UBC)

Drew Van Kuiken

January 30, 2023

Competition via Algorithm Has Uncertain Consequences

- Companies increasingly use algorithms to optimize price/quantity decisions
- Algorithms may learn to collude¹ ⇒ antitrust concerns
- Important to know how collusion arises

¹See, e.g., Assad et al. (2020), Klein (2021), and Calvano et al. (2021).

Research Question

What outcomes can we expect when algorithms compete against each other?

Proceed in Three Steps

- 1. Model of reinforcement learning algorithms playing Cournot quantity competition repeatedly
- 2. Can algorithms learn static Nash equilibrium?
- 3. What are the channels under which collusion happens?

Preview of Results

- Model of reinforcement learning algorithms playing Cournot quantity competition repeatedly
 - Algorithms observe common state variable
 - But don't know payoff function or state transitions
 - Experiment with quantity ⇒ estimate value function
 - Long-run behavior characterized by stable rest points of differential equation
- 2. Can algorithms learn static Nash equilibrium?
- 3. What are the channels under which collusion happens?

Preview of Results

- 1. Model of reinforcement learning algorithms playing Cournot quantity competition repeatedly
- 2. Can algorithms learn static Nash equilibrium?
 - It depends on which state variables are tracked and how states evolve
 - Richer states lead to collusion with higher probability
- 3. What are the channels under which collusion happens?

Preview of Results

- 1. Model of reinforcement learning algorithms playing Cournot quantity competition repeatedly
- 2. Can algorithms learn static Nash equilibrium?
- 3. What are the channels under which collusion happens?
 - Conditions on payoffs/observables leading to collusive equilibria
 - Simulations to demonstrate theoretical results

Outline of Presentation

- 1. Brief Overview of Actor-Critic Reinforcement Learning
- 2. Setting and General Limiting Results
- 3. Application to Repeated Cournot Game
 - Example of Collusive Equilibrium

1. Brief Overview of Actor-Critic Reinforcement Learning

Single-Agent Characterization of Use Case

- Agent chooses $q \in A$ repeatedly, state variable $s \in S$
- Discount rate $\delta \in (0,1)$
- Find policy $\rho: S \to A$ maximizing future expected discounted payoffs:

$$W(s_0) = E \sum_t \delta^t u_t$$

- Agent can maximize W by computing the value function:

$$V(s) = \max_{q \in A} \{u(q, s) + \delta E[V(s')|q, s]\}$$

Reinforcement Learning (RL) is useful when information about *u* and transition probabilities isn't available

Our RL Algorithm: Q-Learning

General rule: RL updating rules move policies towards successful actions and away from bad options

Q-Learning Algorithm:

- Estimates function $Q: S \times A \rightarrow \mathcal{R}$, targeting:

$$Q^*(s,q) = u(q,s) + \delta E[\max_{q' \in A} Q^*(s',q')|q,s]$$

- I.e., *Q* evaluates payoff from playing *q* in current state *s* and playing optimally afterwards

Algorithm to Estimate Q*

- Model-free: works without knowledge of u_t or transition function
- Initialize with Q_0 , and algorithm updates as follows:

$$Q_{t+1}(s,q) = egin{cases} Q_t(s,q) + eta_t[u_t + \delta \max_{q' \in A} Q_t(s_{t+1},q') - Q_t(s,q)] & ext{if } s_t = s, q_t = q \ Q_t(s,q) & ext{otherwise} \end{cases}$$

- Assess value of playing a new action
- β_t (learning rate) is a sequence converging to 0
- Specifies a performance criterion, not a policy

Explore Policy Space via ε -Greedy Sampling

Agents face a trade-off: follow current optimal action or try to find something better?

Enter ε -greedy sampling:

- Fix ε . In each period, take arg $\max_{q'} Q_t(s_t, q')$ with probability 1ε
- With probability ε , sample uniformly from A
- Under ε -greedy sampling and for suitable β_t , Q_t converges in probability to Q^* if states form a Markov chain controlled by q_t

Extension to Multiple Agents: Agents Now Play a Game

Assume agents use Actor-Critic Q-learning (ACQ) to update their policy function:

Definition 1

Each algorithm i updates policies ρ_t^i according to:

$$\rho_{t+1}^{i}(s) \in \rho_{t}^{i}(s) + \alpha_{t}[\arg\max_{q' \in A} Q_{t}^{i}(s, q') - \rho_{t}^{i}(s) + M_{t+1}^{i}]$$
(1)

where $\alpha_t > 0$ is a sequence converging to 0 and M_{t+1}^i is an i.i.d., zero-mean, bounded variance noise generated to explore policy space.

Want to characterize agents' long-run policy functions

► Existence and Uniqueness of Nash equilibria

2. Setting and General Limiting Results

Definitions and Primitives

- *n* algorithms, compact action space A_i , profile space $A = \times_i A_i$
- Finite state space, |S| = L, transition probability function $T: S^2 \times A \rightarrow (0,1)$
- **Assumption 1**: For all $\rho \in \overline{A}$, the Markov chain induced by playing ρ is irreducible
- Expected future discounted payoffs $W^i(\rho^i,\rho^{-i},s_0)$, defined given stationary policy profiles $[\rho^i,\rho^{-i}]$
- Define $B_S^i(\rho^{-i})$ as the optimal policy given profile ρ^{-i} :

$$B_S^i(\rho^{-i}) = \arg\max_{\rho \in \overline{A}_i} W^i(\rho, \rho^{-i}, s_0)$$
 (2)

Recovering Q*

Thus, conditional on opponents playing ρ_t^{-i} forever, $Q_t^i(s,q)$ is an estimator of:

$$Q^{i*}(s, q, \rho_t^{-i}) = u(q, s) + \delta E[\max_{q' \in A} Q^{i*}(s', q', \rho_t^{-i}) | q, s]$$
(3)

 Q^* is related to W as:

$$\max_{q' \in A} Q^{i*}(s, q', \rho^{-i}) = \max_{\rho \in \overline{A}_i} W^i(\rho, \rho^{-i}, s)$$
(4)

Assumption 2: There exists a bounded function $g^i(s, q, \rho^{-i})$ that represents the limiting difference between Q_t and Q^* with probability 1.

Limiting Behavior: Asymptotic Stability

Definition 2

Given some ODE $\dot{\rho} = f(\rho)$, let ρ^* be a rest point of $f(\rho)$. Let $\Lambda = eigv[Df(\rho^*)]$ be the set of eigenvalues of the linearization of f at ρ^* . For a complex number z, let $\mathbf{Re}[z] \in \mathbb{R}$ be the real part. ρ^* is:

- Hyperbolic if $\mathbf{Re}[\lambda] \neq 0$ holds for all $\lambda \in \Lambda$
- Asymptotically stable if $\mathbf{Re}[\lambda] < 0$ holds for all $\lambda \in \Lambda$
- Linearly unstable if $\mathbf{Re}[\lambda] > 0$ holds for at least one $\lambda \in \Lambda$

We can connect the long-run behavior of ρ_t to limiting sets of the solutions to the above ODE.

ACQ, Asymptotic Stability, and Best Response Dynamics

Define $F_B^S(\rho) = \overline{B}_S(\rho) - \rho$ as the state dependent best response dynamics vector field

Proposition 1

Let ρ^* be asymptotically stable for F_B^S . Then for all γ small enough and all $g(s, q, \rho^{-i})$ with bounded derivatives, there is a profile ρ^g such that:

- 1. $\sup_{g} |\rho^{g} \rho^{*}| \rightarrow 0$ as $\gamma \rightarrow 0$.
- 2. The probability that the limit set of $\rho = \rho^g$ is bounded above 0.

Basic proof sketch: For every ρ^* , there is a unique rest point ρ^g . The stability of ρ^* carries over to the stability of ρ^g . Full Proof Sketch Limit Set Definition

Asymptotic Instability and ρ in the Limit

Proposition 2

Let ρ^* be linearly unstable for F_B^S . Then for all γ and all $g(s,q,\rho^{-i})$ with bounded derivatives, there is an open neighborhood \mathcal{U}_{γ} with $\rho^* \in \mathcal{U}_{\gamma}$ such that the probability that the limit set of the algorithm is contained in \mathcal{U}_{γ} equals 0.

Proof sketch:

- Establish 1:1 relationship between stability of ho^* and rest points ho^g
- Instability + variance of $M_{t+1} \Rightarrow \rho_t$ will land on unstable manifolds and move away from ρ^g
- Hyperbolicity of ρ^* , $\rho^g \Rightarrow$ there is a neighborhood U around ρ^g with $\rho^* \in U$ such that ρ^g is the only internally chain transitive set within U.

Some Intuition

Asymptotically stable equilibria can be limit points of the RL procedure, but unstable equilibria cannot

- Agents make errors due to estimation and to explore action space ⇒ opponent strategy profiles constantly perturbed
- Updating rules track F_B^S , so an agent's policy will only stay close to ρ^* if the dynamics of F_B^S are robust to deviations

3. Application to Repeated Cournot Game

Setup for Cournot Game

- 2 agents $i \in \{1, 2\}$
- Stochastic binary price outcome $Y \in \{P_L, P_H\}$
- Quantity choice $q \in I = [0, M], M > 0$, aggregate quantity Q
- Probability of outcome: $Pr[Y = P_L|Q] = h(Q)$
- Expected Price: $Y(Q) = P_L h(Q) + P_H (1 h(Q))$
- Cost c(q) is twice differentiable
- Stage game payoffs: $u^i(q_1, q_2) = Y(Q)q_i c(q_i)$
- Transition probabilities depend on aggregate quantities: $P_{sB}(q_1, q_2) = Pr[s' = B|s; q_1 + q_2]$

Payoffs

Given the binary state space, we can parametrize W^i as follows:

$$W^{i}(\rho, A) = \omega^{-1}[(1 - \delta P_{BB}(\rho))u^{i}(\rho^{i}(A), \rho^{-i}(A)) + \delta P_{AB}(\rho)u^{i}(\rho^{i}(B), \rho^{-i}(B))]$$

$$W^{i}(\rho, B) = \omega^{-1}[\delta(1 - P_{BB}(\rho))u^{i}(\rho^{i}(A), \rho^{-i}(A)) + (1 - \delta(1 - P_{AB}))(\rho)u^{i}(\rho^{i}(B), \rho^{-i}(B))]$$

where

$$\omega = [1 + \delta(P_{AB}(\rho) - P_{BB}(\rho))]$$

Idea: W^i is a convex combination of u^i over two states, weights a function of transition probabilities

Direction Switching Policies

Definition 3

A binary state policy is direction-switching (DS) if the underlying state transitions are irreducible and $P_{AB} = 1 - P_{BB}(Q)$. Denote the state space as S^{DS} .

DS-policy Can Lead to Dynamically Unstable Equilibrium

Proposition 3

Let u satisfy standard assumptions for Cournot competition. Let ζ_N be the DS-policy that plays q_N in every state. Then ζ_N is dynamically unstable (i.e., unstable w.r.t. $F_B^{S^{DS}}$) if

$$-\frac{u_{12}^N}{u_{11}^N} + 2D_N > 1$$

where

$$D_N = \delta \frac{P'_{AB}(Q_N)}{\omega} \frac{\delta u_2^N}{u_{11}^N}$$

Dynamic Vs. Static Stability Using Eigenvalues

Proof sketch:

To prove proposition 3, linearize best responses at ζ_N . This yields:

$$\begin{bmatrix} -\frac{u_{12}^N}{u_{11}^N} + D_N & -D_N \\ -D_N & -\frac{u_{12}^N}{u_{11}^N} + D_N \end{bmatrix}$$

with eigenvalues $\lambda_j \in \{-\frac{u_{12}^N}{u_{11}^N}, -\frac{u_{12}^N}{u_{11}^N} + 2D_N\}$ for $j \in \{1, 2\}$

Thus, if $P'_{AB}(Q_N)$ large enough, static equilibrium is dynamically unstable

Dynamic Vs. Static Stability Using Eigenvalues

Proof sketch:

To prove proposition 3, linearize best responses at ζ_N . This yields:

$$\begin{bmatrix} -\frac{u_{12}^N}{u_{11}^N} + D_N & -D_N \\ -D_N & -\frac{u_{12}^N}{u_{11}^N} + D_N \end{bmatrix}$$

with eigenvalues $\lambda_j \in \{-\frac{u_{12}^N}{u_{11}^N}, -\frac{u_{12}^N}{u_{11}^N} + 2D_N\}$ for $j \in \{1,2\}$

Thus, if $P'_{AB}(Q_N)$ large enough, static equilibrium is dynamically unstable

- $-\frac{u_{12}^{N}}{u_{13}^{N}}$: Slope of static best-response
- $2D_N$: dynamic incentive when DS-policies are played

Dynamic and Static Stability Coincide Under 1R Policies

Definition 4

A public 1R-policy can be defined as policy $\rho: \mathbf{P} = \{P_L, P_H\} \to I$ so that states are price realizations representing last period's observed price. This can equivalently be defined as having a state space \mathbf{P} with transition function $T(s, P) \in \mathbf{P}$ such that T(s, P) = P for all $s \in \mathbf{P}$ and all price observations $P \in \mathbf{P}$.

Proposition 4

Let ρ_N be the 1R-policy that plays stage game Nash quantity q_N in every state. Then ρ_N is asymptotically stable if and only if q_N is.

Visualizing ζ_N - and 1R-Policy Algorithms

3a. Example of Collusive Equilibrium

Price Signals

FIGURE 1. State Transition Diagram

 P_L signals switch and P_H signals remain

Price Signals Can Support Collusion

Suppose S^{DS} is satisfied:

$$P_{AB}(Q) = Pr[P_L|Q] = h(Q); P_{BB}(Q) = Pr[P_H|Q] = 1 - h(Q)$$

and h(Q) takes an S-shaped form.

Proposition 5

There exists h, $P_H > P_L \ge 0$ and convex c(q) such that resulting u satisfies Cournot assumptions, ζ_N is dynamically unstable, and there exists a symmetric equilibrium σ with $0 < \sigma_A < q_N < \sigma_B$.

Appendix

Existence and Uniqueness: Definition

Define $E_S \subset \overline{A}$ to be set of Nash equilibria in policy profiles:

Definition 5

Nash equilibrium $\rho^* \subset E_S$ is called a 'differential Nash equilibrium' if first order conditions hold for each agent at ρ^* and the Hessian of each agent's optimization problem at ρ^* is negative definite.

Thus, if ρ^* is a differential Nash equilibrium, then there is an open neighborhood around ρ^* such that best responses are single-valued for all ρ that neighborhood.

Existence and Uniqueness: Assumptions

Assumption 1

- Given state space S, stationary equilibrium profiles $\rho^* \in \overline{A}$ exist. Call the set of such equilibria E_S .
- There exist $\rho^* \in E_S$ that are differential Nash equilibria

For Assumption to hold, we need an interior static Nash equilibrium to exist given u(r, s) for all $s \in S$.

Proposition 1: Proof Sketch

Define:

$$\dot{
ho} \in \mathit{F}_{\mathsf{g}}(
ho(t)) \equiv \mathit{conv}[\mathit{F}_{\mathsf{B}}^{\mathsf{S}}(
ho(t))] + \mathsf{g}(
ho(t))$$

- If F_B^S satisfies a linear growth condition, there is a global solution to the differential inclusion F_B^S
- Since α_t converges to 0, the time-interpolated version of ρ_t stays close to the solutions to F_R^S
- can recover limit behavior of ρ_t from limit behavior of F_B^S .
- Thus, the attracting points of the differential system also attract ho_t over time

◆ Return

Limit Set Definition

Definition 6

Using the ACQ algorithm, the limit set is defined as

$$L_{S,g} = \bigcap_{t \ge 0} \{ \overline{\rho_s | s \ge t} \}$$

the set of limits of convergent subsequences ρ_{t_k} .

The limit set depends specifically on the state space S and bias function g.