

TEMA: INTRODUÇÃO À LÓGICA BIVALENTE.

TIPO: FICHA DE TRABALHO N°5

LR MAT EXPLICAÇÕES

- 1. Seja p a proposição: "O Sol está no centro do Universo". Escreve, em linguagem corrente, a proposição $\sim p$.
- 2. Seja q a proposição: $3^{-2} + 4^{-2} = \left(\frac{5}{12}\right)^2$.
 - 2.1 Indica o valor lógico da proposição q.
 - 2.2 Seja r uma proposição tal que é verdadeira a equivalência $q \Leftrightarrow (\sim r)$. Qual é o valor lógico da proposição r? Justifica a tua resposta.
- 3. Seja p(x) a seguinte condição, definida em \mathbb{R} : $|x-8|=\frac{x+10}{x}$. Indica o valor lógico de cada uma das seguintes proposições.
 - $3.1 p(5) \land \sim p(-1)$ 3
 - $3.2 p(-2) \vee p(8)$
- 4. Considera, em \mathbb{R} , a condição p(x): $-2 \le x < 1$.
 - 4.1 Exprime p(x) recorrendo ao símbolo Λ .
 - 4.2 Escreve uma condição equivalente a $\sim p(x)$, sem utilizar o símbolo \sim .
- 5. Indica o valor lógico de cada uma das seguintes proposições.
 - $5.1 \ \exists x \in \mathbb{R} : 3x + 1 = 5$
 - $5.2 \ \exists x \in \mathbb{R} : x^4 = -4$
 - $5.3 \ \exists x \in \mathbb{R} : x^2 \le 0$
 - 5.4 $\exists n \in \mathbb{N} : n > 2 \land n^2 1 \text{ é primo}.$
- 6. Indica o valor lógico de cada uma das seguintes proposições.
 - 6.1 $\forall n \in \mathbb{N}, 4n^2 1$ é um múltiplo de 3.
 - 6.2 $\forall n \in \mathbb{N}, (n+1)^2 n^2$ é ímpar.
 - 6.3 $\forall x \in \mathbb{R}, (x-1)^2 = x^2 1.$
- 7. Classifica cada uma das condições (isto é, indica se é <u>impossível</u>, <u>possível mas não universal</u> ou <u>universal</u>).

$$7.1 x + |x| \ge 0 \qquad (D = \mathbb{R})$$

$$7.2 \ 2x = 6$$
 $(D = \mathbb{Z})$

$$7.3 \ x^2 = 3$$
 $(D = \mathbb{Q})$

$$7.4 x^2 - x = 0$$
 $(D = \mathbb{N})$

- 8. Seja $D = \{1,2,3,4,5\}$. Indica o valor lógico de cada uma das seguintes proposições.
 - 8.1 $\forall x \in D, 6x 1 \text{ é primo}.$
 - 8.2 $\exists x \in D : \pi + x > 9$
- 9. Seja p a proposição $\exists x \in \mathbb{Z} : 3x + 7 = 3$.

Escreve a negação da proposição p e indica o seu valor lógico.

10. Seja q a proposição $\forall x \in \mathbb{N}, n^2 < 4$.

Escreve a negação da proposição q e indica o seu valor lógico.

- 11. Define em extensão cada um dos seguintes conjuntos.
 - 11.1 $\{x \in \mathbb{Z} : -1 < x \le 3\}$
 - 11.2 $\{n \in \mathbb{N} : n \text{ \'e m\'ultiplo de } 4 \land n < 23\}$
- 12. Considera o conjunto $A = \{-2, -1, 0, 1, 2, 3, 4, 5\}$. Indica um subconjunto do conjunto A formado por 3 elementos.
- 13. Indica o resultado das seguintes interseções de conjuntos.
 - 13.1 $\{1,2,3\} \cap \{2,4,6\}$
 - 13.2 $\{1,2,3\} \cap \emptyset$
 - 13.3 $\{1,2,3\} \cap \mathbb{R}$
 - 13.4 $[1,5] \cap [3,7]$
 - 13.5]2,8[∩]5,9]
 - 13.6]−3,6] ∩ [6,9[
 - 13.7]1,5] ∩]5,9[
 - 13.8 $\mathbb{N} \cap \mathbb{Z}$
- 14. Indica o resultado das seguintes uniões de conjuntos.
 - 14.1 $\{1,4,9,16\} \cup \{3,5,7\}$
 - 14.2 [2,6] ∪ [4,9]
 - 14.3]1,8[∪ {8}
 - 14.4 $[-2,7] \cup \{3,7\}$
 - 14.5]5,15] ∪ [8,12[
 - 14.6 {1,2,3} ∪ Ø
 - 14.7 $\{1,2,3\} \cup \mathbb{R}$
 - 14.8 $\mathbb{N}_0 \cup \mathbb{Z}^-$
- 15. Indica o resultado das seguintes diferenças de conjuntos.
 - 15.1 {1,2,5,6,7,9}\{1,5,9}
 - 15.2 $\{1,2,3\}\setminus\{1,2,3\}$
 - 15.3 {1,4,9}\Ø
 - 15.4 $\{-2, -1, 0, 1\} \setminus \mathbb{N}$
 - 15.5 [4,9]\[6,9]
 - 15.6]0,10]\[5,15]
 - 15.7 $]0, +\infty[\setminus[-3,18[$
 - 15.8 $]-\infty,4]\setminus\{4,5,6\}$

16. Considera o conjunto $A = \{-1,0,1,3,5,7,8\}$.

Relativamente ao conjunto A, indica o complementar do conjunto $\{1,5,8\}$.

17. Considera o conjunto B = [2,12].

Relativamente ao conjunto B, indica o complementar de cada um dos seguintes conjuntos.

18. Considera, definidas em \mathbb{R} , as seguintes condições:

$$p(x)$$
: $3x + 1 < 5x - 7$

$$q(x)$$
: $x^2 + 4 > 0$

$$r(x)$$
: $|x| < 0$

Classifica cada uma das seguintes condições.

18.1
$$p(x) \wedge r(x)$$

$$18.2 p(x) \wedge q(x)$$

18.3
$$p(x) \vee r(x)$$

18.4
$$p(x) \vee q(x)$$

$$18.5 \sim p(x)$$

18.6
$$p(x) \wedge \sim r(x)$$