Задачи календарного планирования

Олимпийские игры 1992 г., Барселона, более 2000 мероприятий за 15 дней.

- частичный порядок на множестве событий (четверть финала, полуфинал, финал);
- мощность спортивных сооружений (число одновременных соревнований, число зрителей);
- транспортные проблемы и доход (максимизировать посещаемость наиболее популярных соревнований — раздвинуть их по времени);
- требования TV (минимум параллельных трансляций);
- обеспечение безопасности (число полицейских ограничено).

Система поддержки решений «SUCCESS—92» Университет г. Барселоны

-1-

Постановка задачи

```
Дано: J = \{1, ..., n\} — множество работ; 	au_j \geq 0 — длительность работы j; C = \{(i,j)|i,j\in J\} — частичный порядок, работа j не может начаться раньше окончания работы i.
```

Найти:

- Минимальное время завершения всего проекта.
- Наиболее ранний момент начала и завершения каждой работы.
- Множество критических работ, то есть таких работ, задержка хотя бы одной из которых приведет к задержке всего проекта.
- Допустимое запаздывание для некритических работ.
- Вероятность завершения проекта к заданному сроку.

Сетевой график «работы — дуги»

G = (V, E) — ориентированный взвешенный граф без циклов с одним источником s и одним стоком t, каждой дуге j = (i, k) приписан вес $\tau_j \ge 0$.

Вершины — события. Дуги — работы.

-3-

Пример

	Предше- ствование	Длитель- ность
A — выбрать место для офиса	_	3
B — создать финансовый и организационный план	_	5
С — определить обязанности персонала	B	3
D — разработать план офиса	A, C	5
E — ремонт помещений	D	10
F — отобрать кандидатов на увольнение	С	2
G — нанять новых служащих	F	5
H — назначить ключевых руководителей	F	2
I — распределить обязанности руководителей	В	5
J — обучить персонал	H, E, G	3

Диаграмма Гантта

Работа E является критической. Задержка работы F ведет к задержке работ G, H, но не работы J.

Сетевой график «работы — дуги»

Некоторые фиктивные дуги можно исключить

Параметры сетевой модели

Определение *Рангом* r(x) вершины $x \in V$ называется число дуг в максимальном пути (по числу дуг) из источника s в вершину x. Рангом проекта R называется ранг стока t: R = r(t).

Рекуррентные соотношения для рангов

$$r(x) = \begin{cases} 0, & x = s \\ \max\{r(y) + 1 \mid (y, x) \in E\}, & x \neq s \end{cases}$$

Алгоритм Форда

$$|V| = n$$
, $|E| = m$, дуга $e = (i(e), k(e)) \in E$.

Алгоритм

- 1. r(x) := 0 для всех $x \in V$.
- 2. for $l \coloneqq 1, ..., |V|$ do for $e \coloneqq 1, ..., |E|$ do if r(k(e)) < r(i(e)) + 1 then $r(k(e)) \coloneqq r(i(e)) + 1$.

$$T = O(|V||E|), \quad \Pi = O(|V| + |E|)$$

Определение Нумерация вершин сети G = (V, E) называется *правильной*, если для каждой дуги $e = (i(e), k(e)) \in E$ справедливо неравенство i(e) < k(e).

Построение правильной нумерации вершин (топологическая сортировка)

В произвольном порядке нумеруем вершины ранга 1, затем ранга 2, и т.д.

Определение *Наиболее ранним моментом* свершения события x называется максимальный момент времени $T_p(x)$, раньше которого данное событие произойти не может.

Обозначим через L_{SX} длину максимального пути из s в x во взвешенном графе $G=(V,E), \tau(e)\geq 0, e\in E$. Тогда $T_p(x)=L_{SX}$.

Рекуррентные соотношения

$$T_P(x) = \begin{cases} 0, & x = s \\ \max\{T_P(y) + \tau(yx) | (yx) \in E, & x \neq s \end{cases}$$

Упражнение Используя правильную нумерацию вершин, построить алгоритм вычисления всех величин $T_P(x)$ с трудоемкостью T = O(|E|).

Критическое время проекта — наиболее раннее время завершения всего проекта, то есть $T_{\mathrm{Kp}} = T_P(t)$.

Определение Всякий путь в G = (V, E), имеющий длину T_{Kp} называется *критическим*. Работы и события, лежащие на критическом пути, называются *критическими*.

Определение Наиболее поздним моментом $T_{\Pi}(x)$ свершения события x называется максимально возможный момент свершения события x, не приводящий к увеличению T_{Kp} . Легко заметить, что $T_{\Pi}(x) = T_{\mathrm{Kp}} - L_{xt}$.

Рекуррентные соотношения

$$T_{\Pi}(x) = \begin{cases} T_{\text{Kp}}, & x = t \\ \min\{T_{\Pi}(y) - \tau(x, y) | (x, y) \in E, & x \neq t \end{cases}$$

Упражнение Построить алгоритм вычисления величин $T_{\Pi}(x)$ с T = O(|E|).

Определение Полным резервом времени для работы $e = (i, k) \in E$ называется величина $T_{\Pi}(k) - T_{P}(i) - \tau(e)$.

Теорема Необходимым и достаточным условием принадлежности работы критическому пути является равенство нулю ее полного резерва времени.

Доказательство Необходимость. Пусть дуга e=(i,k) является критической. Тогда

$$L_{si}+ au(e)+L_{kt}=L_{\mathrm{Kp}}$$
 и $\left(T_{\mathrm{Kp}}-L_{kt}
ight)-L_{si}- au(e)=0$, но $T_{\mathrm{Kp}}-L_{kt}=T_{\Pi}(k)$ и $L_{si}=T_{P}(i)$,

откуда и следует доказательство теоремы. Достаточность доказывается аналогично. ■

Следствие Событие x является критическим, если и только если $T_P(x) = T_\Pi(x)$.

Стратегический анализ

Критический путь B, C, D, E, J. Длина пути $T_{\mathrm{Kp}}=26$.

Работа J — обучение персонала. Работа E — ремонт помещений.

Можно обучать персонал в учебном центре и убрать предшествование E для J. Длительности работ можно сократить, если привлечь дополнительные средства.

Новая сетевая модель

Сократили длительности работ D, E, G и удалили работу E из предшественников работы J. Новый критический путь B, C, D, E.

Длина пути $T_{\rm Kp} = 20$.

Вопросы

- Задача вычисления критического времени проекта принадлежит классу Р (Да или Hem?)
- Если полный резерв времени некоторой работы e = (i, k) равен нулю, то события i, k являются критическими (Да или Hem?)
- Сокращение длительности критической работы или удаление условия предшествования между двумя критическими работами ведет к сокращению длительности всего проекта (Да или Hem?)
- Критическое время проекта можно найти, решив задачу линейного программирования (Как?)
- Если требуется сократить критическое время проекта путем сокращения длительности каких-то работ, то минимум таких сокращений можно найти, решив задачу линейного программирования. (Да или Hem?)

Вероятностная модель

Для каждой работы $j \in J$ кроме τ_j — длительности выполнения (в среднем) зададим три величины:

 a_j — оптимальное время завершения;

 m_i — наиболее вероятное время завершения;

 b_i — пессимистическое время завершения.

Оценка параметров для $oldsymbol{eta}$ – распределения

Для работы j среднее значение $au_j pprox rac{(a_j + 4m_j + b_j)}{6}$, дисперсия $\sigma_j pprox \left(rac{b_j - a_j}{6}
ight)^2$, стандартное отклонение $\sqrt{\sigma_j} pprox rac{b_j - a_j}{6}$.

j	a	m	b	Среднее	Ст. отклонение	Дисперсия
\overline{A}	1	3	5	3	2/3	4/9
B	3	4,5	9	5	1	1
C	2	3	4	3	1/3	1/9
D	2	4	6	4	2/3	4/9
E	4	7	16	8	2	4
F	1	1,5	5	2	2/3	4/9
G	2,5	3,5	7,5	4	5/6	25/36
H	1	2	3	2	1/3	1/9
I	4	5	6	5	1/3	1/9
J	1,5	3	4,5	3	1/2	1/4

Вероятность завершения проекта к заданному сроку

Предполагаем, что

- длительности работ являются независимыми случайными величинами;
- ullet случайная величина $ilde{T}_{\mathrm{Kp}}$ имеет нормальное распределение.

Требуется оценить $Prob\{\tilde{T}_{\mathrm{Kp}} \leq T^*\}$ для любого T^* .

Пример Берем критический путь B , C , D , E и считаем дисперсию для \tilde{T}_{Kp} .

$$\sigma(\tilde{T}_{\mathrm{Kp}}) = \sigma(B) + \sigma(C) + \sigma(D) + \sigma(E) = 1 + \frac{1}{3} + \frac{4}{9} + 4 = \frac{52}{9}$$
. Стандартное отклоне-

ние
$$\sqrt{\sigma(\tilde{T}_{
m Kp})}=\sqrt{\frac{52}{9}}=2,\!404.$$
 Итак, $\tilde{T}_{
m Kp}$ — нормально распределенная случай-

ная величина с мат.ожиданием $ilde{T}_{
m Kp}=20$ и стандартным отклонением 2,404.

Тогда для
$$z=\left(ilde{T}_{\mathrm{Kp}}-T_{\mathrm{Kp}}
ight)/\sqrt{\sigma}$$
 при $T^*=22$ получаем

$$Prob\{\tilde{T}_{Kp} \leq T^*\} = Prob\left\{\frac{\tilde{T}_{Kp} - T_{Kp}}{\sqrt{\sigma}} \leq \frac{T^* - T_{Kp}}{\sqrt{\sigma}}\right\} = Prob\{z \leq 0.8319\} \approx 0.8.$$

Расчеты по имитационной модели

Функция распределения для вероятности окончания проекта к времени T^* $Prob\{\tilde{T}_{\mathrm{Kp}} \leq T^*\}$

Распределение резерва времени для работы F

Полный резерв для работы F равен 3. Среднее значение полного резерва по имитационной модели 3,026, но большая дисперсия. Достаточно часто работа F оказывалась критической!

Вопросы

- Функция распределения для вероятности окончания проекта к заданному сроку вычисляется за полиномиальное время (Да или Hem?)
- Полный резерв времени любой работы является случайной величиной (Да или Hem?)
- Если требуется решить задачу о рюкзаке в вероятностной постановке, то можно аналогичным образом построить функцию распределения для суммарной ценности выбранных предметов и оценить вероятность получения дохода не ниже заданного (Да или Hem?)