# **Diversity Techniques**

#### **Outline:**

- Performance of M-ary Modulation (recap)
- Diversity
- Diversity Techniques at Receiver
- Diversity Techniques at Transmitter
- Summary

# Performance of M-ary Digital Modulation in an AWGN Channel with coherent receiver (a quick review)

• Consider AWGN channel with  $h=1, n \sim \mathcal{CN}(0,N_0), \mathbb{E}[|x|^2]=E_s$ 

$$y = hx + n$$

UNION BOUND: 
$$P_s \le (M-1)Q(\sqrt{d_{\min}^2/(2N_0)}), 2Q(x\sqrt{2}) = erfc(x)$$

where: 
$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du = \frac{1}{\pi} \int_{0}^{\pi/2} e^{-x^2/(2\sin^2\theta)} d\theta$$
 to simplify calculations (by Laplace transform) [J. Craig, 91]

M-QAM,M-PSK, (Linear): more spectrally efficient than M-FSK (Nonlinear)

$$s(t) = \sum_{n} a_{n} g(t - nT_{s}) \cos(2\pi f_{c} t) - \sum_{n} b_{n} g(t - nT_{s}) \sin(2\pi f_{c} t)$$

Performance:

$$P_s \approx A_M Q\left(\sqrt{B_M^2 (E_s/N_0)}\right), E_s/N_0 = P/(f_s N_0) = SNR \ (f_s: \text{Nyquist BW})$$
  
e.g., squared  $M - QAM$ :  $A_M = 2(1 - M^{-1/2}), B_M^2 = 3/(M-1)$ 

# Performance of M-ary Modulation in AWGN channel

- BER approximation
  - Gray mapping: 1 symbol error=1 bit error  $P_b \approx P_s/\log_2(M)$
  - Symbol energy equally divided among bits  $E_b \approx E_s/\log_2(M)$

$$P_b \approx \hat{\alpha}_M \cdot Q \left( \sqrt{\frac{\hat{\beta}_M E_b}{N_0}} \right)$$
  $\hat{\alpha}_M = \alpha_M / \log_2(M)$   $\hat{\beta}_M = \beta_M \cdot \log_2(M)$   $\alpha_M, \beta_M$  depend on M and approximation

- Chernoff bound:  $Q(\sqrt{2x}) < \exp(-x)$
- SER/BER over AWGN  $P_s(\gamma_s), P_b(\gamma_b)$  decay exponentially with SNR

$$\gamma_s = E_s/N_0, \quad \gamma_b = E_b/N_0$$

# Performance of M-ary Digital Modulation in an AWGN Channel

binary, antipodal signaling: M=2,  $P_b = P_e = \frac{1}{2} erfc \left[ \sqrt{\frac{E_b}{N_0}} \right]$ 

$$E_{S} = (\log_{2} M) E_{b}$$

Union bound: 
$$P_e \le \frac{1}{2}(M-1)erfc\left[\frac{d}{2\sqrt{N_0}}\right]$$

M-ary ASK: 
$$P_e \approx erfc \sqrt{\frac{3}{M^2 - 1} \frac{E_S}{N_0}}, d = \sqrt{\frac{12}{(M^2 - 1)} E_S}$$

M-ary PSK: 
$$P_e \approx erfc \left[ sin \frac{\pi}{M} \sqrt{\frac{E_S}{N_0}} \right], d_{min} = \sqrt{E_S} . sin \frac{\pi}{M}$$

squared M-ary QAM: 
$$P_{e,M-aryQAM} \approx 2P_{eASK} \approx 2\left(1 - \frac{1}{\sqrt{M}}\right) erfc\left(\sqrt{\frac{3}{2(M-1)}} \frac{E_S}{N_0}\right)$$

Orthogonal FSK: 
$$P_e \le \frac{1}{2}(M-1)erfc\sqrt{\frac{E_S}{2N_0}}$$

M-ary orthogonal FSK signaling schemes are power-efficient but not bandwidth-efficient.



# Performance in AWGN: PROBABILITY OF SYMBOL ERROR

# error probability decays exponentially in SNR in the AWGN channel



M-QAM, M-PSK: BW-efficient but not power-efficient For M>8, M-QAM outperforms M-PSK

# **Performance of M-ary Modulation in Fading channel**

With fading, instantaneous SNR is random

$$\gamma_s = E_s |h|^2 / N_0, \quad \gamma_b = E_b |h|^2 / N_0,$$

- Error performance for given realization  $P_s(\gamma_s), P_b(\gamma_b)$  also random
- Average SER/BER  $ar{P_s} = \mathbb{E}[P_s(\gamma_s)], \quad ar{P_b} = \mathbb{E}[P_b(\gamma_b)]$
- Rayleigh fading  $h \sim \mathcal{CN}(0,1)$ 
  - BPSK:

$$ar{P}_b = \mathbb{E}[Q(\sqrt{2\gamma_b})] = rac{1}{2} \left| 1 - \sqrt{rac{ar{\gamma}_b}{1 + ar{\gamma}_b}} 
ight| pprox rac{1}{4ar{\gamma}_b}$$

M-QAM:

$$ar{P_s} pprox \mathbb{E}[lpha_M Q(\sqrt{eta_M \gamma_s})] = rac{lpha_M}{2} \left[ 1 - \sqrt{rac{ar{\gamma}_s eta_M}{2 + ar{\gamma}_s eta_M}} 
ight] pprox rac{lpha_M}{2ar{\gamma}_s eta_M}$$

where  $\alpha_M$ ,  $\beta_M$  depend on M and approximation, and

$$\bar{\gamma}_s = E_s \cdot \mathbb{E}[|h|^2]/N_0, \quad \bar{\gamma}_b = E_b \cdot \mathbb{E}[|h|^2]/N_0$$

# Why poor performance?

- Due to randomness of channel gain
- When  $\gamma_s \gg 1$ ,
  - Conditional error probability small since Q() decays rapidly
  - Constellation pts separation larger than standard deviation of noise
- When  $\gamma_s \ll 1$  (deep fade),
  - Conditional error probability large
  - Constellation pts separation smaller than standard deviation
    - Deep fade event:  $\gamma_s < 1$
    - Prob. of deep fade:  $\mathbb{P}\{\gamma_s < 1\} = 1 \exp(-1/\bar{\gamma}_s)$
    - At high SNR:  $\mathbb{P}\{\gamma_s < 1\} pprox 1/ar{\gamma}_s$
  - At high SNR, error events most often occur because of deep fade and not because of large noise

# **BER/SER** decay only inversely with SNR



# **Diversity**

- Single path suffers from deep fading
- Multiple independent paths unlikely to fade simultaneously



# Diversity approach for frequency-flat fading channels





- Multiple independent paths (or channels) unlikely to fade simultaneously
- ⇒ Diversity techniques:
  - Send the same signals over independent fading paths obtained by diversity in time, space, frequency, ...
    - reduced possibility of all paths in deep fading simultaneously
  - Combine paths to mitigate fading effects: exploit the diversity in an efficient manner to combat fading effectively.

# **Time Diversity**

- Dispersing information signals over multiple time intervals
- Repetition coding: Transmit the same signal repeatedly over multiple coherence times (time separation > coherence time)
  - → Bandwidth inefficiency!!
- Error Control Coding: Much more sophisticated scheme



# **Diversity: Frequency, Space**

#### **Frequency diversity:**

- Transmit same info over different subcarriers
- frequency separation > coherence bandwidth

#### **Space diversity:**

- Transmit/receive from multiple antennas
- Sufficient antenna separation to achieve uncorrelated channel gains, e.g., about half wavelength, λ/2, for a Rayleigh fading



# **Diversity Techniques at Receiver**

 Transmitter sends same signal over L independent fading paths obtained by diversity in time, space, frequency (repetition coding)



$$egin{aligned} oldsymbol{y} &= oldsymbol{h} x + oldsymbol{n} \ oldsymbol{y} &= [y_1, \dots, y_L]^ op \ oldsymbol{h} &= [h_1, \dots, h_L]^ op = [r_1 e^{j heta_1}, \dots, r_L e^{j heta_L}]^ op \ oldsymbol{n} &= [n_1, \dots, n_L]^ op \sim \mathcal{CN}(oldsymbol{0}, N_0 oldsymbol{I}_L) \end{aligned}$$

 Most combiners are linear (weighted sum of branches)

$$egin{aligned} y_{\Sigma} &= (oldsymbol{lpha}^{ op} oldsymbol{h}) \cdot x + (oldsymbol{lpha}^{ op} oldsymbol{n}) \ oldsymbol{lpha} &= [lpha_1, \dots, lpha_L]^{ op} \end{aligned}$$

# **Diversity Techniques at Receiver**

- Can select one or combine multiple branches
  - To add coherently, combining requires **co-phasing**  $\alpha_i = a_i e^{-j\theta_i}$
- Combiner SNR

$$\gamma_{\Sigma} = rac{|oldsymbol{lpha}^{ op}oldsymbol{h}|^2 E_s}{\|oldsymbol{lpha}\|^2 N_0}$$

- We hope that  $\gamma_{\Sigma}$  has better distribution than  $\gamma_l = [|h_l|^2 E_s]/N_0$
- SER

$$ar{P_s} = \mathbb{E}[P_s(\gamma_\Sigma)] = \int P_s(\gamma) f_{\gamma_\Sigma}(\gamma) \, d\gamma$$

Performance gains?

# **Receiver Diversity: selection combining (SC)**

• SC: Select fading path with largest SNR  $\gamma_l = [|h_l|^2 E_s]/N_0$ 

$$egin{aligned} l^{\star} &= \operatorname{argmax}_{1 \leq l \leq L} \quad \gamma_l \ oldsymbol{lpha}_{\operatorname{SC}} &= [0, \dots, 1, \dots, 0]^{ op} \end{aligned} egin{aligned} \gamma_{\Sigma} &= \gamma_{l^{\star}} \end{aligned}$$

- $\quad \mathsf{CDF} \quad F_{\gamma_\Sigma}(\gamma) = \mathbb{P}[\gamma_\Sigma < \gamma] = \mathbb{P}[\max(\gamma_1, \dots, \gamma_L) < \gamma] = \prod_{l=1}^L F_{\gamma_l}(\gamma)$
- If all branches equally distributed

CDF: 
$$F_{\gamma_{\Sigma}}(\gamma) = [F_{\gamma}(\gamma)]^{L}$$

PDF: 
$$f_{\gamma_{\Sigma}}(\gamma) = \frac{d \left[ F_{\gamma}(\gamma) \right]^L}{d \gamma} = L [F_{\gamma}(\gamma)]^{L-1} f_{\gamma}(\gamma)$$

# **SC** over Rayleigh fading

```
received vector: \mathbf{r}(k) = \mathbf{h}x(k) + \mathbf{n}(k), \mathbf{h} = [h_1, h_2, ..., h_L]^T
Rayleigh channel: h_l = |h_l| e^{j\varphi_l}, l = 1, 2, ..., L: i.i.d., |h_l|: Rayleigh
Y = |h_l|^2 > 0: exponential, p_Y(y) = \left[2\sigma^2\right]^{-1} e^{-y/2\sigma^2}, \overline{Y} = 2\sigma^2, var: \sigma_Y^2 = 4\sigma^4
                                                                                                                     2\sigma^{2} = 1
select the max |h_*| and coherently demodulate:
                                                                                                                      (normalized)
 \tilde{r}(k) = |h_*| x(k) + n_*(k), |h_*| = \max\{|h_l|, l = 1, 2, ..., L\}
cdf: \Pr\{|h_*|^2 \le y\} = \Pr\{\bigcap_{l=1}^{L} |h_l|^2 \le y\} = \left[\int_0^y \left[2\sigma^2\right]^{-1} e^{-x^2/2\sigma^2} dx\right]^{L}
p_{|h_*|^2}(y) = \frac{d \Pr\{|h_*|^2 \le y\}}{dy} = \frac{L}{2\sigma^2} e^{-y/2\sigma^2} \left[1 - e^{-y/2\sigma^2}\right]^{L-1}, y \ge 0 \quad \text{No longer exponential}
SNR_{SC} = |h_*|^2 [E_s / N_o] as compared to non-diversity case: SNR = |h_l|^2 [E_s / N_o]
BPSK: P_{s|h_*|} = Q\left(\sqrt{2|h_*|^2} E_b / N_o\right) Average SINK. E_S/N_o - \gamma Instantaneous SNR: \gamma = y(E_S/N_o) = y\bar{\gamma}
\rightarrow \overline{P}_{s} = \left[ L/(2\sigma^{2}) \right] \int_{0}^{\infty} Q\left(\sqrt{2yE_{b}/N_{o}}\right) e^{-y/2\sigma^{2}} \left[ 1 - e^{-y/2\sigma^{2}} \right]^{L-1} dy
                                                                                                                      solved by numerical
                                                                                                                              integration
```

# SC performance: Probability of deep fade event

i.i.d. Rayleigh fading

CDF: 
$$F_{\gamma_\Sigma}(\gamma)=[1-\exp(-\gamma/ar{\gamma})]^L$$
 No longer exponential PDF:  $f_{\gamma_\Sigma}(\gamma)=[L/ar{\gamma}]\cdot[1-\exp(-\gamma/ar{\gamma})]^{L-1}\exp(-\gamma/ar{\gamma})$ 

Probability of deep fade event

$$\mathbb{P}\{\gamma_{\Sigma} < 1\} = F_{\gamma_{\Sigma}}(1) = [1 - \exp(-1/\bar{\gamma}_l)]^L \approx \frac{1}{\bar{\gamma}_l^L}$$

- Deep fade only if all channel gains are small
- BER BPSK

$$ar{P}_b = \int Q(\sqrt{2\gamma}) f_{\gamma_\Sigma}(\gamma) \, d\gamma$$
 (numerical evaluation)

#### SC: array gain



#### **SC:** performance of BPSK over Rayleigh fading



# **Array gain & Diversity gain**

• Array gain: 
$$A_g = rac{\mathbb{E}[\gamma_\Sigma]}{\mathbb{E}[\gamma_l]} = rac{ar{\gamma}_\Sigma}{ar{\gamma}_l}$$

- From coherent combining of multiple received signals
- Applies to AWGN and fading channels

#### Diversity gain:

- More favorable distribution of  $\gamma_{\Sigma}$
- At large SNRs  $\bar{P}_s \approx c \cdot \bar{\gamma}^{-d}$  Diversity order (slope of BER vs. SNR) modulation/coding)
- Average BER decreases with average SNR<sup>-d</sup>
- Change in slope of BER
- Applies only to fading channels
- System is said to be full-diversity if d=L

# **Receiver Diversity: Maximal ratio combining (MRC)**

MRC: Co-phase all branches and add with optimal weights to maximize combiner output SNR

$$m{lpha_{ ext{MRC}}} = [a_1^\star e^{-j heta_1}, \dots, a_L^\star e^{-j heta_L}]^ op \qquad \qquad \gamma_\Sigma = rac{E_s\left(\sum_{l=1}^L a_l^\star|h_l|
ight)^2}{N_0\left(\sum_{l=1}^L (a_l^\star)^2
ight)}$$

Optimal weights solution to

$$\max_{a_l} \quad rac{E_s\left(\sum_{l=1}^L a_l |h_l|
ight)^2}{N_0\left(\sum_{l=1}^L a_l^2
ight)}$$

Intuitively, need to give higher weights to branches with higher SNR

#### **MRC:** Matched filter solution

Solution (by partial derivatives or Cauchy-Schwarz inequality):

#### Matched filter or maximal ratio combiner

$$egin{aligned} a_l^\star &= |h_l| \ lpha_l^\star &= |h_l| e^{-j heta_l} \end{aligned} egin{aligned} oldsymbol{lpha_{ ext{MRC}}^ op} &= oldsymbol{h}^\dagger \end{aligned}$$
 Hermitian

In general when branches do not have equal noise variance

$$lpha_l^\star = rac{|h_l|}{\sqrt{N_l}} e^{-j heta_l}$$

Combiner SNR: sum of SNRs on each branch

$$\gamma_{\Sigma} = rac{\|oldsymbol{h}\|^2 E_s}{N_0} = \sum_{l=1}^L \gamma_L$$

# **MRC:** array gain

Average SNR

$$ar{\gamma}_{\Sigma} = \sum_{l=1}^L \mathbb{E}[\gamma_L] = L \cdot ar{\gamma}$$

- Array gain increases linearly with L (unlike SC)
- PDF: convolution of branches PDFs if independent

# **MRC** in iid Rayleigh fading channels

PDF: sum of exponential RVs (chi-square with 2L degrees of freedom or Erlang distributed)



Probability of fading event:

$$\mathbb{P}\{\gamma_{\Sigma} < 1\} pprox \int_0^1 rac{\gamma^{L-1}}{ar{\gamma}^L (L-1)!} = rac{1}{ar{\gamma}^L \cdot L!}$$

# **MRC & its Performance in Rayleigh Channels**

```
received vector: \mathbf{r}(k) = \mathbf{h}x(k) + \mathbf{n}(k), \mathbf{h} = [h_1, h_2, ..., h_L]^T
 Rayleigh channel: h_l = |h_l| e^{j\varphi_l}, l = 1, 2, ..., L: i.i.d., |h_l|: Rayleigh
Y = |h_l|^2 > 0: exponential, p_Y(y) = \lceil 2\sigma^2 \rceil^{-1} e^{-y/2\sigma^2}
\overline{Y} = 2\sigma^2, var: \sigma_v^2 = 4\sigma^4
 select the max |h_*| and coherently demodulate and combine with optimum weights, \mathbf{h}^H:
 matched filter: \tilde{r}(k) = \mathbf{h}^H \mathbf{r}(k) = \|\mathbf{h}\|^2 x(k) + w(k), w(k) = \mathbf{h}^H \mathbf{n}(k) : Gaussian(0, \|\mathbf{h}\|^2 N_o / 2)
 max output SNR instantaneous SNR_{MRC} = \left[ \|\mathbf{h}\|^2 \right] \left[ E_s / N_o \right] as compared to non-diversity case: SNR = \left| h_l \right|^2 \left[ E_s / N_o \right]
 Y = \|\mathbf{h}\|^2, p_Y(y) = \left[2^L \sigma^{2L} (L-1)!\right]^{-1} y^{L-1} e^{-y/2\sigma^2}, \overline{Y} = 2L\sigma^2, var: \sigma_Y^2 = 4L\sigma^4
 BPSK: P_{s||h|} = Q\left(\sqrt{2\|\mathbf{h}\|^2} E_b / N_o\right)
\rightarrow \overline{P}_{s} = \left[ 2^{L} \sigma^{2L} (L-1)! \right]^{-1} \int_{0}^{\infty} Q\left(\sqrt{2yE_{b}/N_{o}}\right) y^{L-1} e^{-y/2\sigma^{2}} dy
\overline{P}_{s} = \left\lceil \frac{1 - \gamma}{2} \right\rceil^{L} \sum_{l=0}^{L-1} {\binom{L-1+l}{l}} \left\lceil \frac{1+\gamma}{2} \right\rceil^{l}, \gamma = \sqrt{\frac{2\sigma^{2} \left[ E_{b} / N_{o} \right]}{1 + 2\sigma^{2} \left[ E_{b} / N_{o} \right]}}
```

# **MRC** performance: with BPSK

BER

$$ar{P_b} = \int Q(\sqrt{2\gamma}) f_{\gamma_\Sigma}(\gamma) \, d\gamma = \left(rac{1-\mu}{2}
ight)^L \, \sum_{l=0}^{L-1} \left(egin{array}{c} L-1+l \ l \end{array}
ight) \left(rac{1+\mu}{2}
ight)^l$$
 where  $\mu = \sqrt{rac{ar{\gamma}}{1+ar{\gamma}}}$ 

• At high SNRs  $\frac{1+\mu}{2} \approx 1$ ,  $\frac{1-\mu}{2} \approx \frac{1}{4\bar{\gamma}}$ 

$$\bar{P}_b \approx \frac{1}{(4\bar{\gamma})^L} \sum_{l=0}^{L-1} \begin{pmatrix} L-1+l \\ l \end{pmatrix} = \begin{pmatrix} 2L-1 \\ L \end{pmatrix} \frac{1}{(4\bar{\gamma})^L}$$

Full diversity

# MRC performance: general case

BER general

$$\begin{split} \bar{P}_s &= \mathbb{E}[\alpha_M Q(\sqrt{\beta_M \gamma_\Sigma})] \\ &\leq \mathbb{E}[\alpha_M \exp(-\beta_M \gamma_\Sigma/2)] \quad \text{(Chernoff bound)} \\ &= \mathbb{E}[\alpha_M \exp(-\beta_M [\gamma_1 + \ldots + \gamma_L]/2)] \\ &= \alpha_M \prod_{l=1}^L \frac{1}{1 + \beta_M \bar{\gamma}_l/2} \\ &\approx \alpha_M \left(\frac{\beta_M \bar{\gamma}}{2}\right)^{-L} \quad \text{(if i.i.d.)} \end{split}$$

Full diversity of L

# **MRC** performance: with BPSK



# **Receiver Diversity: Equal-gain combining (EGC)**

EGC: Co-phase all branches and add with equal weights

$$oldsymbol{lpha}_{ ext{EGC}} = [e^{-j heta_1}, \dots, e^{-j heta_L}]^ op \qquad \qquad \gamma_\Sigma = rac{E_s}{LN_0} \left( \sum_{l=1}^L |h_l| 
ight)^L$$

- In general, PDF and CDF does not exist in closed-form
- Example: i.i.d. Rayleigh fading
  - Average SNR

$$ar{\gamma}_{\Sigma} = rac{E_s}{LN_0} \sum_{l=1}^L \sum_{l=1}^k \mathbb{E}[|h_l||h_k|] = ar{\gamma} \left(1 + rac{\pi}{4}[L-1]
ight)$$

# **EGC & its Performance in Rayleigh Channels**

received vector:  $\mathbf{r}(k) = \mathbf{h}x(k) + \mathbf{n}(k)$ ,

Rayleigh channel:  $h_l = |h_l| e^{j\varphi_l}$ , l = 1, 2, ..., L: i.i.d.,  $|h_l|$ :Rayleigh

$$Y = |h_l|^2 > 0$$
: exponential,  $p_Y(y) = \left[2\sigma^2\right]^{-1} e^{-y/2\sigma^2}$ ,  $\overline{Y} = 2\sigma^2$ , var:  $\sigma_Y^2 = 4\sigma^4$ 

Coherently demodulate and combine with equal weights:  $\Phi_{\mathbf{h}} = [e^{-j\varphi_1}, e^{-j\varphi_2}, 2, ..., e^{-j\varphi_L}]$ 

$$\tilde{r}(k) = \Phi_{\mathbf{h}} \mathbf{r}(k) = h_{sum} \mathbf{x}(k) + w(k), h_{sum} = \left[\sum_{l=1}^{L} |h_l|\right], w(k) = \Phi_{\mathbf{h}} \mathbf{n}(k) : Gaussian(0, LN_o/2)$$

 $SNR_{EGC} = \left[\frac{h_{sum}^2}{L}\right] \left[E_s / N_o\right]$  as compared to non-diversity case:  $SNR = \left|h_l\right|^2 \left[E_s / N_o\right]$ 

BPSK: 
$$P_{s|h_{sum}} = Q\left(\sqrt{2h_{sum}^2 E_b/N_o}\right)$$

# BPSK over Nakagami-m channels with MRC and EGC (L = 4).



#### **EGC** and Performance



- The received signals from the *L* diversity branches are coherently combined with equal weights
- The receiver does not need the information of  $||\mathbf{h}||$
- Performance is worse than that of MRC (about 1 dB), but much better than SC for large L

# **COMBINING TECHNIQUES**

#### **Selective combining:**

- The receiver monitors the SNR of the received signal from each diversity branch, and, selects only the Rx signal corresponding to the highest SNR for detection;
- Simple but low performance.

#### **Equal gain combining:**

- Signals from the L diversity branches are coherently and weighted equally
- Complexity: receiver needs to estimate/know only the phase distortion introduced by each branch so that signals can be combined coherently.
- Performance: good, better than SC but worse than MRC (quite close, 1 dB of power penalty)

#### **Maximal ratio combining:**

- remove the phase distortion introduced by each branch so that signals can be combined coherently.
- select the weighting factor amplitude proportional to branch amplitude:
   larger branch amplitude yields higher SNR; hence more weight should be put on the corresponding received signal (with better quality).
- maximal ratio combining achieves the best transmission performance at the cost of receiver complexity, i.e., the receiver needs to estimate/know both branch amplitude and phase

# **Performance/complexity tradeoff**

|             | SC                                       | EGC                                                               | MRC                                         |
|-------------|------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| Complexity  | Simplest<br>(co-phasing<br>not required) | Only need to estimate phase                                       | Highest<br>(need to track phase<br>and SNR) |
| Performance | Worst                                    | Much better than SC<br>and worse than MRC<br>(close, 1dB penalty) | Best<br>(much better than SC)               |

# **Diversity Techniques at Transmitter**

Receiver obtains same signal from L independent fading paths



$$egin{aligned} y_{\Sigma} &= \sum_{l=1}^L (lpha_l x) \cdot h_l + n \ &= (oldsymbol{lpha}^ op oldsymbol{h}) \cdot x + n \end{aligned}$$

To keep power constraint

$$\sum_{l=1}^{L} |\alpha_l|^2 = 1$$

# **Diversity Techniques at Transmitter**

Output SNR

$$\gamma_{\Sigma} = rac{|oldsymbol{lpha}^{ op}oldsymbol{h}|^2 E_s}{N_0}$$

- If CSI available at transmitter, similar to receiver diversity
- Example: MRC

$$oldsymbol{lpha}_{ ext{MRC}}^{ op} = oldsymbol{h}^{\dagger}/\|oldsymbol{h}\| \hspace{0.2in} igsqcap_{\Sigma} = rac{\|oldsymbol{h}\|^2 E_s}{N_0} = \sum_{l=1}^L \gamma_L$$

- Still sum of SNRs on each branch (same behavior)
- Same follows for EGC and SC

# **Diversity Techniques at Transmitter**

- How about CSI unknown at transmitter?
- Consider i.i.d. Rayleigh fading  $h \sim \mathcal{CN}(0,1)$

$$oldsymbol{lpha}_{ ext{MRC}}^{ op} = \underbrace{[1/\sqrt{L},\ldots,1/\sqrt{L}]}_{L} \quad \Longrightarrow \quad y_{\Sigma} = rac{1}{\sqrt{L}} \left(\sum_{l=1}^{L} h_{l}
ight) x + n$$

- Since  $[\sum_{l=1}^L h_l/\sqrt{L}] \sim \mathcal{CN}(0,1)$  , same distribution as no diversity
- Need smarter way
  - i.e., space-time codes (will be covered later in the term)

## **Summary**

- Performance of M-ary Modulation
  - BER over AWGN exponentially decaying (good)
  - BER over fading linearly decaying (bad)
  - Why? Deep fading
- Diversity
  - Send multiple independent copies
  - Improve BER slope
  - Time, frequency or space

# **Summary**

- Diversity Techniques at Receiver
  - Array and diversity gains
  - SC (select best path, simple, diminishing gain)
  - MRC (optimal weights, sum of SNRs, best)
  - EGC (equal weights, close to MRC)
- Diversity Techniques at Transmitter
  - If CSIT, same as receiver techniques

## References

- A. Goldsmith, Wireless Communications, Cambridge University Press, 2005, Chapter 4.
- Tse, P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005, Chapter 5
- and materials from various sources