שיעור 2 חוגים מתמטיים

\mathbb{Z}_m החוג 2.1

\mathbb{Z}_m הגדרה 2.1 החוג

החוג מוגדר להיות להיות הקבוצה של מספרים שלמים החוג \mathbb{Z}_m

$$\mathbb{Z}_m = \{0, 1, \dots, m-1\}$$

יחד עם הפעולות ⊕ ו- ⊙ המוגדרות כך:

 $a,b \in \mathbb{Z}_m$ לכל

$$a \oplus b = (a+b)$$
 % m , $a \odot b = ab$ % m .

mבמילים אחרות, \mathbb{Z}_m היא קבוצת השארית בחלוקה ב

 $\cdot\cdot$ או imes ואילך נסמן חיבור וכפל ב- \mathbb{Z}_m עם הסימנים הרגילים

דוגמה 2.1

 $.\mathbb{Z}_{16}$ -ם 11 imes 13 חשבו את

פתרון:

16 -ב בחלוקה ב- 11. נמצא את השארית בחלוקה ב- 143

$$(11 \times 13)$$
 % $16 = 143$ % $16 = 15$.

 \mathbb{Z}_{16} -ב $11 \times 13 = 15$ לפיכך

\mathbb{Z}_m משפט 2.1 תכונות של החוג

לכל מתקיימים הבאים התנאים $a,b,c\in\mathbb{Z}_m$ לכל

בור: סגירה תחת חיבור:

$$a+b\in\mathbb{Z}_m$$
.

2. חוק החילוף לחיבור:

$$a+b=b+a$$
.

3. חוק הקיבוץ לחיבור:

$$(a+b) + c = a + (b+c)$$
.

4. קיום איבר הניטרלי ביחס לחיבור:

$$a + 0 = 0 + a = a$$
.

.-בר: הסבר .-a=m-a, ז"א א-a=m-a הסבר:

$$a + (m - a) = (m - a) + a = m = 0$$

$$\mathbb{Z}_m$$
 -ב

6. סגירה תחת כפל:

$$ab \in \mathbb{Z}_m$$
.

ל. חוק החילוף לכפל:

$$ab = ba$$
.

8. חוק הקיבוץ לכפל:

$$(ab)c = a(bc)$$
.

9. קיום איבר הניטרלי ביחס לכפל:

$$a \times 1 = 1 \times a = a$$
.

10. חוק הפילוג:

$$(a+b)c = (ac) + (bc) .$$

תכונות 1, 3-5 אומרות כי \mathbb{Z}_m הינו "חבורה מתמטית". יחד עם תכונה 2, \mathbb{Z}_m הוא חבורה אָבֶּלִית. כל התכונות 1-10 אומרות כי \mathbb{Z}_m הוא חוג מתמטי.

\mathbb{Z}_m -בי ההופכי ב- איבר הגדרה 2.2

יהי את ומקיים a^{-1} -ם מסומן a את התנאי $a\in\mathbb{Z}_m$ יהי

$$a^{-1}a\equiv 1 \mod m$$
 וגם $aa^{-1}\equiv 1 \mod m$.

משפט 2.2

נתון היחס שקילות

$$ax \equiv y \mod m$$
.

 $\gcd(a,m)=1$ אם ורק אם $y\in\mathbb{Z}_m$ לכל $x\in\mathbb{Z}_m$ יש פתרון יחיד

הוכחה:

a>m ללא הגבלת כלליות נניח כי

 $\gcd(a,m)=1$ -ו בניח כי ו- נוכיח דרך השלילה כי ו- נוכיח נניח כי יש פתרון

 $\gcd(a,m)=d>1$ כלומר, נניח כי יש פתרון יחיד

 $.ax \equiv y \mod m$ פתרון ל- $x_1 = a^{-1}y$ יהי

נשים לב ש- $ax_1+\frac{am}{d}=ax_1+km\equiv ax_1\mod m$ כאשר אלם. $x_1+\frac{m}{d}=ax_1+km$ פתרון. $x_1+\frac{m}{d}$

זאת בסתירה לכך שהפתרון יחיד.

נניח כי $\gcd(a,m)=1$. נוכיח בשלילה כי הפתרון יחיד.

 $x_1 \not\equiv x_2 \mod m$ נניח כי $\gcd(a,m) = 1$ וקיימים שני פתרונות פונים:

א"ז

 $ax_1 \equiv y \mod m$, וגם $ax_2 \equiv y \mod m$.

לכן

 $ax_1 \equiv ax_2 \mod m$.

לכן

 $m \mid ax_1 - ax_2$.

לפיכך $\gcd(a,m)=1$

 $m \mid x_1 - x_2$,

א"ז

 $x_1 \equiv x_2 \mod m$,

 $.x_1 \not\equiv x_2 \mod m$ בסתירה לכך ש

מסקנה 2.1

יהי את מקיים 2.2 אשר לפי הגדרתו $a^{-1} \in \mathbb{Z}_m$ איבר הופכי $a \in \mathbb{Z}_m$ יהי $a \in \mathbb{Z}_m$

$$aa^{-1} \equiv 1 \mod m$$
,

gcd(a,m)=1 אם ורק אם

הוכחה: משפט 2.2.

דוגמה 2.2

. הוכיחו שקיים איבר הופכי ל- \mathbb{Z}_{26} ב- \mathbb{Z}_{26} ואם כן מצאו אותו

פתרון:

קיים איבר הופכי של ב- \mathbb{Z}_m אם ורק אם \mathbb{Z}_m אם היכל מכן לכן לכך איבר הופכי של ב- \mathbb{Z}_m אם ורק אם איבר הופכי של איבר המוכלל.

.a = 26, b = 11 יהיו

$$r_0 = a = 26$$
, $r_1 = b = 11$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

	$t_2 = 0 - 2 \cdot 1 = -2$		$r_2 = 26 - 2 \cdot 11 = 4$	
			$r_3 = 11 - 2 \cdot 4 = 3$	
	$t_4 = -2 - 1 \cdot (5) = -7$		$r_4 = 4 - 1 \cdot 3 = 1$:i=3 שלב
$q_4 = 3$	$t_5 = 5 - 3 \cdot (-7) = 28$	$s_5 = -2 - 3 \cdot (3) = -11$	$r_5 = 3 - 3 \cdot 1 = 0$:i=4 שלב

$$gcd(a,b) = r_4 = 1$$
, $x = s_4 = 3$, $y = t_4 = -7$.

$$ax + by = 3(26) - 7(11) = 1$$
.

. \mathbb{Z}_{26} ב- קיים ב- מכאן אנחנו רואים כי $\gcd(26,11)=1$ ולכן לפי משפט 2.2 ההופכי של 11 קיים ב- מחשבים את האיבר ההופכי לפי השיטה הבאה:

$$-7(11) = 1 - 9(26) \quad \Rightarrow \quad -7(11) = 1 \mod 26 \quad \Rightarrow \quad 19(11) = 1 \mod 26 \quad \Rightarrow \quad 11^{-1} = 19 \mod 26 \; .$$

_

כלל 2.1

האיברים של שעבורם קיימים איברים של \mathbb{Z}_{26} שעבורם האיברים של

1^{-1}	3^{-1}	5^{-1}	7^{-1}	9^{-1}	11^{-1}	15^{-1}	17^{-1}	19^{-1}	21^{-1}	23^{-1}	25^{-1}
1	9	21	15	3	19	7	23	11	5	17	25

$\phi(m)$ הגדרה 2.3 פונקצית אוילר

נתון החוג \mathbb{Z}_m כאשר $m\geq 2$ כאשר כאיי.

m -לים אר ארים ב- ב- איברים הנותנת את מספר הנותנת הפונקציה הנותנת $\phi(m)$

(שימו לב ההגדרה הזאת זהה להגדרה 1.7.)

\mathbb{Z}_m -ם מסקנה 2.2 מספר איברים הפיכיים ב

. $\phi(m)$ -שווה ל- הופכיים איברים שווה ל- שעבורם שעבורם שווה ל- מספר מספר האיברים שווה ל

 $a\in\mathbb{Z}_m$ שווה למספר איברים $\phi(m)$:

 \mathbb{Z}_m אותם האיברים הם אותם אותם פט פט , $\gcd(a,m)$ עבורם עבורם

\mathbb{Z}_m הפיכת מטריצות בחוג 2.2

הגדרה 2.4 המטריצה של קופקטורים

 $A \in \mathbb{R}^{n imes n}$ תהי

i הקופקטור ה- (i,j) של A מוגדר להיות הדטרמיננטה של המטריצה המתקבלת מ-A ע"י מחיקת שורה ועמודה i, כפול $(-1)^{i+j}$.

המטריצה של קופקטורים של המטריצה A מוגדרת

$$C = \begin{pmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nn} \end{pmatrix}$$

A של (i,j) -מאשר הקופקטור הקופקטור מאשר

הגדרה 2.5 המטריצה המצורפת

תהי $\operatorname{adj}(A)$ שמסומנת n imes n מטריצה מטריצה של A היא מטריצה המצורפת . $A \in \mathbb{R}^{n imes n}$

$$adj(A) = C^t$$

A של המטריצה של המטרים של C

משפט 2.3 נוסחת למטריצה הופכית

נניח כי $A \in \mathbb{R}^{n \times n}$) אז המטריצה ההופכית נתונה מניח כי $A \in \mathbb{R}^{n \times n}$) אז המטריצה ההופכית נתונה ע"י נוסחת קיילי המילטון:

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) ,$$

A כאשר $\operatorname{adj}(A)$ המטריצה המצורפת

דוגמה 2.3

מצאו את ההופכית של

$$A = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \in \mathbb{Z}_{26}^{2 \times 2} .$$

פתרון:

$$|A| = 11 \cdot 7 - 8 \cdot 3 = 53 = 1 \mod 26$$
.

 \mathbb{Z}_{26} -ב הפיכה המטריצה $\gcd(1,26)=1$

$$\begin{pmatrix} \frac{11-8}{3} & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{11} = (-1)^{1+1}7 = 7$$

$$\begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{12} = (-1)^{1+2}7 = -3$$

$$\begin{pmatrix} 1 & 8 \\ 3 & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{21} = (-1)^{2+1} 8 = -8$$

$$\begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \qquad \Rightarrow \qquad C_{22} = (-1)^{2+2} 11 = 11$$

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} 7 & -3 \\ -8 & 11 \end{pmatrix}$$

$$\operatorname{adj}(A) = C^t = \begin{pmatrix} 7 & -8 \\ -3 & 11 \end{pmatrix}$$

$$A^{-1} = |A|^{-1} \mathrm{adj}(A)$$
 .

$$|A|^{-1} = 1^{-1} = 1 \in \mathbb{Z}_{26}$$

לפיכד

$$A^{-1} = |A|^{-1} \operatorname{adj}(A) = 1 \cdot \begin{pmatrix} 7 & -8 \\ -3 & 11 \end{pmatrix} = \begin{pmatrix} 7 & 22 \\ 23 & 11 \end{pmatrix} \in \mathbb{Z}_{26}^{2 \times 2} .$$

דוגמה 2.4

מצאו את ההופכית של

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3} .$$

פתרון:

$$|A| = 1 \cdot \begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix} + 0 \begin{vmatrix} 0 & 0 \\ 2 & 3 \end{vmatrix} + 1 \begin{vmatrix} 0 & 5 \\ 2 & 0 \end{vmatrix} = 1 \cdot 15 + 1 \cdot (-10) = 5$$
.

 \mathbb{Z}_{26} -ב הפיכה הפיכה לכן $\gcd(15,26)=1$

$$\begin{pmatrix} \frac{1 & 0 & 1}{0 & 5 & 0} \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{11} = (-1)^{1+1} \begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix} = 15 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 0 \\ 2 & 3 \end{vmatrix} = 0 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{13} = (-1)^{1+3} \begin{vmatrix} 0 & 5 \\ 2 & 0 \end{vmatrix} = -10 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{21} = (-1)^{2+1} \begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix} = 0 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} = 0 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{31} = (-1)^{3+1} \begin{vmatrix} 0 & 1 \\ 5 & 0 \end{vmatrix} = -5 \ .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \qquad \Rightarrow \qquad C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0 .$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{pmatrix} \Rightarrow C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 0 \\ 0 & 5 \end{vmatrix} = 5.$$

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} = \begin{pmatrix} 15 & 0 & -10 \\ 0 & 1 & 0 \\ -5 & 0 & 5 \end{pmatrix}$$

$$\operatorname{adj}(A) = C^t = \begin{pmatrix} 15 & 0 & -5 \\ 0 & 1 & 0 \\ -10 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 15 & 0 & 21 \\ 0 & 1 & 0 \\ 16 & 0 & 5 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3}.$$

$$A^{-1} = |A|^{-1} \operatorname{adj}(A).$$

 $|A|^{-1} = 5^{-1} = 21 \in \mathbb{Z}_{26}$

לפיכך

$$A^{-1} = |A|^{-1} \mathrm{adj}(A) = 21 \cdot \begin{pmatrix} 15 & 0 & 21 \\ 0 & 1 & 0 \\ 16 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 315 & 0 & 441 \\ 0 & 21 & 0 \\ 336 & 0 & 105 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3} \;.$$

$$315 \% \; 26 = 315 - 26 \cdot \left\lfloor \frac{315}{26} \right\rfloor = -23 \equiv 3 \mod 26 \; \Rightarrow \; 315 \equiv 3 \mod 26 \;.$$

$$441 \% \; 26 = 441 - 26 \cdot \left\lfloor \frac{441}{26} \right\rfloor = 25 \; \Rightarrow \; 441 \equiv 25 \mod 26 \;.$$

$$336 \% \; 26 = 336 - 26 \cdot \left\lfloor \frac{336}{26} \right\rfloor = 24 \; \Rightarrow \; 336 \equiv 24 \mod 26 \;.$$

$$105 \% \; 26 = 105 - 26 \cdot \left\lfloor \frac{105}{26} \right\rfloor = 1 \; \Rightarrow \; 105 \equiv 1 \mod 26 \;.$$

לפיכד

$$A^{-1} = \begin{pmatrix} 3 & 0 & 25 \\ 0 & 21 & 0 \\ 24 & 0 & 1 \end{pmatrix} \in \mathbb{Z}_{26}^{3 \times 3} .$$

בדיקה:

$$A \cdot A^{-1} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{array}\right) \left(\begin{array}{ccc} 3 & 0 & 25 \\ 0 & 21 & 0 \\ 24 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} 27 & 0 & 26 \\ 0 & 105 & 0 \\ 78 & 0 & 53 \end{array}\right) \equiv \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \mod 26 \; .$$

2.3 תמורות

הגדרה 2.6 תמורה

דוגמה 2.5

:(a,b) תמורות של הקבוצה •

$$\pi_1(a,b) = (a,b)$$
, $\pi_2(a,b) = (b,a)$.

הראשון הוא מקרה פרטי של תמורה, אשר הוא פונקצית הזהות. קיימים 2! תמורות. תמורות.

:(a,b,c) תמורות של הקבוצה ullet

$$\pi_1(a,b,c) = (a,b,c) , \quad \pi_2(a,b,c) = (c,a,b) , \quad \pi_3(a,b,c) = (b,c,a) ,
\pi_4(a,b,c) = (b,a,c) , \quad \pi_5(a,b,c) = (a,c,b) , \quad \pi_6(a,b,c) = (c,b,a) .$$

קיימים !3 תמורות.

 $:(lpha,eta,\gamma,\delta)$ תמורות של הקבוצה •

$$\pi_1(\alpha,\beta,\gamma,\delta) = (\delta,\alpha,\gamma,\beta) , \dots$$

4! קיימים

 \bullet תמורות של הקבוצה (ד,ג,ב,א):

$$\pi_1(\mathsf{x},\mathsf{z},\mathsf{z},\mathsf{r})=(\mathsf{T},\mathsf{x},\mathsf{x},\mathsf{r})\;,\qquad \pi_2(\mathsf{x},\mathsf{z},\mathsf{x},\mathsf{r})=(\mathsf{T},\mathsf{x},\mathsf{x},\mathsf{r})\;,\ldots$$

קיימים 4! תמורות.

משפט 2.4

n יהי אורך מסודרת נוצר סופית ללא חזרות של אורך n! קבוצה תמורות.

הוכחה: תרגיל בית.

הגדרה 2.7 סימון אינדקס של תמורה

יהי $\pi:X o X$ ויהי $X=(x_1,x_2,\ldots,x_n)$ יהי

(נניח שאחרי ביצוע של התמורה π על X, האיבר שהיה במיקום ה-i עכשיו במיקום ה-i על אז אנחנו כותבים אז אנחנו כותבים

$$\pi(i) = j$$
.

הביטוי הזה נקרא סימון אינדקס.

דוגמה 2.6

א) נתונה התמורה

$$\pi(a,b) = (b,a) .$$

בסימון אינדקס,

$$\pi(1) = 2$$
, $\pi(2) = 1$.

ב) נתונה התמורה

$$\pi(a,b,c) = (b,c,a) .$$

$$\pi(1) = 3$$
, $\pi(2) = 1$, $\pi(3) = 2$.

ג) נתונה התמורה

$$\pi(\alpha, \beta, \gamma, \delta) = (\beta, \gamma, \delta, \alpha)$$
.

בסימון אינדקס,

$$\pi(1) = 4$$
, $\pi(2) = 1$, $\pi(3) = 2$, $\pi(4) = 3$.

הגדרה 2.8 הצגת שתי-שורות והצגת שורת-אחת

יהי $\pi:X o X$ ויהי ויהי $X=(x_1,x_2,\ldots,x_n)$ יהי

$$\pi(X) = (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)}) .$$

• ההצגה שתי-שורות של התמורה הזאת הינה

$$\pi = \begin{pmatrix} 1 & 2 & \dots & i & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(i) & \dots & \pi(n) \end{pmatrix}$$

• ההצגה שורת-אחת של התמורה הזאת הינה

$$\pi = \begin{pmatrix} \pi(1) & \pi(2) & \dots & \pi(i) & \dots & \pi(n) \end{pmatrix}$$

דוגמה 2.7

א) נתונה התמורה

$$\pi(a,b) = (b,a) .$$

$$\pi(1)=2\;,\;\pi(2)=1.$$
 בסימון אינדקס:

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
. הצגת שתי-שורות:

$$(2 ext{ } 1)$$
 .

ב) נתונה התמורה

$$\pi(a,b,c) = (b,c,a) .$$

$$\pi(1)=3 \;,\; \pi(2)=1 \;,\; \pi(3)=2.$$
 בסימון אינדקס:

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
. :הצגת שתי-שורות:

$$\begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$$
. הצגת שורה-אחת:

ג) נתונה התמורה

$$\pi(\alpha, \beta, \gamma, \delta) = (\beta, \gamma, \delta, \alpha)$$
.

$$\pi(1)=4$$
 , $\pi(2)=1$, $\pi(3)=2$, $\pi(4)=3$.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$
. הצגת שתי-שורות:

$$\begin{pmatrix} 4 & 1 & 2 & 3 \end{pmatrix}$$
. הצגת שורה-אחת:

דוגמה 2.8 הרכבה של תמורות

$$.eta\circlpha$$
 ו- $lpha\circeta$ את את $lpha\circeta$ ו- $lpha=egin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$ ו- $lpha=egin{pmatrix}1&2&3\\2&3&1\end{pmatrix}$ תהיינה

פתרון:

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ \alpha (\beta(1)) & \alpha (\beta(2)) & \alpha (\beta(3)) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ \alpha (2) & \alpha (1) & \alpha (3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
$$\beta \circ \alpha = \begin{pmatrix} 1 & 2 & 3 \\ \beta (\alpha(1)) & \beta (\alpha(2)) & \beta (\alpha(3)) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ \beta (2) & \beta (3) & \beta (1) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$