,

International Institute of Information Technology Bangalore

MACHINE LEARNING AI511

Project Report: It's A Fraud

Submitted by: Darshak Jivrajani (IMT2020119)

Arhant Arora (IMT2020503)

December 14, 2022

Contents

		processing and EDA:	3
	1.1	Removing Null Values:	3
	1.2	Dealing with Vxx, Cx and Dx columns:	3
	1.3	Dealing with Skewness:	3
		Filling NULL Values:	
	1.5	Outlier Removal:	3
2	Mo	dels and Final Scores:	4
3	Obs	servation And Conclusion:	4

Overview

GitHub Repository Link: https://github.com/A9Aru/MLProject_ItsAFraud

Given data about transactions, train a model which tells if a given transaction is fraudulent or not.

The Train Dataset given to us has 434 columns and rows. To train a model accurately, we clearly need to perform heavy preprocessing and EDA on the dataset.

On observation, we also find that the dataset is highly biased with only 3.5% of the entries as fraud.

1. Preprocessing and EDA:

1.1 Removing Null Values:

Since the dataset has only 3.5% of fraud entries, any row with more than 96.5% of NULL Values was removed.

1.2 Dealing with Vxx, Cx and Dx columns:

We grouped the V columns on the basis of NULL value %, got 9 different groups and looked at the correlation matrix of each group. This helped us remove a large number of columns.

For the V Columns left, we again looked at the correlation matrix to remove any other similarities among columns. We then performed the same with the C and D columns. This helped us decrease number of columns from 434 to around 102.

1.3 Dealing with Skewness:

We looked at the skewness of all the columns. We calculated the square root for the columns with skewness greater than 5.1 and square for the columns with skewness less than -4. After this we calculated the skewness again and this time we removed the columns who's skewness was outside of the range -4 to 5.1.

1.4 Filling NULL Values:

For categorical columns, we filled the with the median of the data values we had. For non-categorical columns, same process as mentioned above except we filled the values with mean if we still had any empty columns, we'll fill it as per our data.

1.5 Outlier Removal:

We checked the outlier for all columns ad for values between 2% and 98%, we kept it and removed the rest. We are finally ready to train our models.

2. Models and Final Scores:

Here is a summary of the models used:

KNN metric algorithm ball_tree manhattan ball_tree 0.82645 leaf_size n_neighbours weights 10 n_neighbours distance 11 noneighbours distance Logistic C Regression C no.1 noneighbours distance 0.756 Regression max_iter near_iter
algorithm ball_tree 10
leaf_size
n_neighbours 11 weights distance Logistic C 0.1 0.756 Regression max_iter 100000
Logistic C 0.1 0.756 Regression max_iter 100000 100000 penalty 12 12 solver 100000 100000 Naive Bayes var_smoothing 1 0.686 Bagging (With base_estimator_max_depth 5 0.85897 Decision Tree) max_samples 0.5 0.8475 ADA Boost base_estimator_max_depth 10 0.8475 (With Decision base_estimator_min_samples 10 0.928 XG Boost colsample_bytree 0.75 0.928
Logistic C 0.1 0.756 Regression max_iter 100000 12 penalty l2 15gs 0.686 Naive Bayes var_smoothing 1 0.686 Bagging (With base_estimator_max_depth 5 0.85897 Decision Tree) max_samples 0.5 0.8475 ADA Boost base_estimator_max_depth 10 0.8475 (With Decision base_estimator_min_samples 10 0.928 XG Boost colsample_bytree 0.75 0.928
Regression max_iter penalty 12 lbfgs Naive Bayes var_smoothing 1 0.686 Bagging (With Decision Tree) base_estimator_max_depth pase_estimator_max_depth lower period 0.5 0.8475 ADA Boost (With Decision Decision Tree) base_estimator_min_samples leaf 10 0.8475 XG Boost (Colsample_bytree) 0.75 0.928
penalty 12 1bfgs Naive Bayes var_smoothing 1 0.686 Bagging (With base_estimator_max_depth 5 0.85897 Decision Tree max_samples 0.5 ADA Boost base_estimator_max_depth 10 0.8475 (With Decision base_estimator_min_samples 10 Tree Leaf XG Boost colsample_bytree 0.75 0.928
Naive Bayes var_smoothing 1 0.686 Bagging (With Decision Tree) base_estimator_max_depth of the part of the
Naive Bayes var_smoothing 1 0.686 Bagging (With Decision Tree) base_estimator_max_depth of the part of the
Bagging (With Decision Tree) base_estimator_max_depth 0.5 0.85897 ADA Boost (With Decision Tree) base_estimator_max_depth 10 0.8475 0.8475 Tree) _leaf 0.75 0.928
Decision Tree) max_samples 0.5 ADA Boost base_estimator_max_depth 10 0.8475 (With Decision Tree) Leaf 10 0.8475 XG Boost colsample_bytree 0.75 0.928
ADA Boost base_estimator_max_depth 10 0.8475 (With Decision base_estimator_min_samples 10 Tree)leaf
(With Decision Tree) base_estimator_min_samples leaf 10 XG Boost colsample_bytree 0.75 0.928
Tree) _leaf
XG Boost colsample_bytree 0.75 0.928
gamma 0.65
learning_rate 0.1
max_depth 20
reg_alpha 0.4
objective binary:logistic
$n_{\text{-estimators}}$ 8000
njobs -1
Neural Networks Layers 2(relu, sigmoid) 0.69716
loss_function binary_crossentropy
epochs 20
batch_size 100
optimizer adam

Table 1: Table showing Hyperparameter values for different models and their final scores.

3. Observation And Conclusion:

We can observe that the best model for our data is XGBoost. This can be because our data is a high bias one and XGBoost aims to reduce bias. Also, XGBoost works well on a heterogeneous data (our data becomes highly uncorrelated after the initial preprocessing.) Thus we can conclude XGBoost is the best model for a highly-biased heterogeneous binary classification data like the one we had.