EE227 - Digital Logic Design Spring 2018

Credit Hours: 3 Pre-Requisite: None

Course Instructor: Omer Ali Email: ali.omer@nu.edu.pk

Folder: \\Xeon\fall2018\DLD (A) Office Hours: TBA

Objectives:

Upon completion of the course students will:

- Understand different Number systems & Boolean Algebra
- Design combinational and sequential circuits
- Understand the internal working of different components of a digital computer
- Design moderately complex sequential digital circuits using techniques studied in this course
- Be able to undertake Computer Architecture course in future

Important Instructions:

- According to the university policy:
 - o You have to secure at least 50% marks to pass the course.
 - o For 'A' grade the student must secure at least 80% marks in the course.
- Plagiarism is not tolerable in any of its form; minimum penalty would be an 'F' grade in the course without prior warning.
- You bear all responsibility for protecting your assignments. If anyone else submits your assignment, you will be considered equally responsible.

Text Book:

M. Morris Mano & Charles R. Kime, <u>Logic and Computer Design Fundamentals</u> (4th Edition Updated, Prentice Hall)

Reference Books:

- John F. Wakerly, *Digital Design: Principles and Practices* (3rd Edition, Pearson Education, 2001)
- Thomas L. Floyd, Digital Fundamentals (7th Edition, Prentice Hall, 2000)

Syllabus and Schedule:

Topics DIGITAL SYSTEMS AND INFORMATION Digital computers and Binary Numbers Other base numbers (base-8, base-16 etc.) Number base conversions COMBINATIONAL LOGIC CIRCUITS Introduction to Boolean Algebra Standard forms Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Analysis Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Encoders	Synabus and Schedule.		
DIGITAL SYSTEMS AND INFORMATION Digital computers and Binary Numbers Other base numbers (base-8, base-16 etc.) Number base conversions COMBINATIONAL LOGIC CIRCUITS Binary Logic and Introduction to Logic Gates Timing Diagrams Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Analysis Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 Chapter 3	Topics	Text	# of
 Digital computers and Binary Numbers Other base numbers (base-8, base-16 etc.) Number base conversions COMBINATIONAL LOGIC CIRCUITS Binary Logic and Introduction to Logic Gates Timing Diagrams Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I Combinational Logic DESIGN (Continued) Chapter 3 Chapter 3 Chapter 3 Chapter 3 Decoders 			Lectures
Other base numbers (base-8, base-16 etc.) Number base conversions COMBINATIONAL LOGIC CIRCUITS Binary Logic and Introduction to Logic Gates Timing Diagrams Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 Chapter 3 Chapter 3	DIGITAL SYSTEMS AND INFORMATION	Chapter 1	3
 Number base conversions COMBINATIONAL LOGIC CIRCUITS Binary Logic and Introduction to Logic Gates Timing Diagrams Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Chapter 3 Combinational Circuits Analysis Procedure Design Procedure COMBINATIONAL LOGIC DESIGN (Continued) Chapter 3 Chapter 3 Chapter 3 CombinationAl Logic DESIGN (Continued) Decoders	Digital computers and Binary Numbers	-	
COMBINATIONAL LOGIC CIRCUITS Binary Logic and Introduction to Logic Gates Timing Diagrams Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 Chapter 3 Chapter 3			
 Binary Logic and Introduction to Logic Gates Timing Diagrams Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates Combinational Circuits Analysis Procedure Design Procedure Midterm I Combinational Logic DESIGN (Continued) Chapter 3 Chapter 3 	Number base conversions		
 Timing Diagrams Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Chapter 3 Chapter 3 	COMBINATIONAL LOGIC CIRCUITS	Chapter 2	6
 Introduction to Boolean Algebra Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Chapter 3 Chapter 3 Chapter 3 	Binary Logic and Introduction to Logic Gates		
 Standard forms Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Chapter 3 Combinational Circuits Analysis Procedure Design Procedure Midterm I Combinational Logic Design (Continued) Chapter 3 Chapter 3 			
 Positive and Negative Logic Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Cambinational Circuits Analysis Procedure Design Procedure Midterm I Combinational Logic Design (Continued) Chapter 3 Chapter 3 			
 Boolean Functions and their implementation Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Chapter 3 Chapter 3 Chapter 3 			
 Canonical and Standard Forms (Minterms, Maxterms, Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Chapter 3 Chapter 3 Chapter 3 			
Conversions) Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 4	·		
 Minimization of Boolean functions using K-Map Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure COMBINATIONAL LOGIC DESIGN (Continued) Chapter 3 Chapter 3 Combinational Circuits Design Procedure Chapter 3 Decoders 			
 Don't Care States Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders 	· ·		
 Universal gates and implementation of Boolean functions using universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders 			
universal gates COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 4	2011104100		
COMBINATIONAL LOGIC DESIGN Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 4			
 Combinational Circuits Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders 		Chambar 2	1
Analysis Procedure Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 4		Chapter 3	1
Design Procedure Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 4			
Midterm I COMBINATIONAL LOGIC DESIGN (Continued) Decoders Chapter 3 4	-		
COMBINATIONAL LOGIC DESIGN (Continued) • Decoders Chapter 3 4	Design Procedure		
• Decoders	Midterm I		
• Decoders	COMBINATIONAL LOGIC DESIGN (Continued)	Chapter 3	4
• Encoders	Decoders	-	
	Encoders		

•	Multiplexers		
•	Demultiplexer		
AF	RITHMETIC FUNCTIONS AND HDLs	Chapter 4	2
•	Binary Adders (Half Adder, Full Adders, Binary Ripple Carry		_
	Adder, Carry Look ahead Carry Adder)		
•	Binary Subtractor		
•	Binary Adder/Subtractor		
•	Binary Multipliers		
•	Code Conversion		
	Magnitude Comparator		
	Parity Generators/ Checkers		
	Design Applications		
	1's and 2's Complements		
	Unsigned and Signed numbers and Arithmetic operations		
	(Addition, subtraction, Multiplication and Division)		
SE	QUENTIAL CIRCUITS	Chapter 5	5
•	Introduction to Sequential Circuits		-
•	Introduction to Latches		
	Introduction to Flip Flops		
	Type of Flip Flops		
•	Analysis of Sequential Circuits		
•	Design Procedures		
•	Introduction to develop state diagram and state table		
•	State reduction excitation tables		
	Midterm II		
RE	GISTERS AND REGISTER TRANSFERS	Chapter 7	4
•	Registers		-
•	Counters		
•	Synchronous/Asynchronous		
•	Shift Registers		
•	Serial Shift Registers		
•	Loading Registers		
•	Parallel Registers		
•	Ripple Counters		
•	Synchronous Binary Counters		
•	Other Counters		
М	EMORY BASICS	Chapter 8	2
•	Read-Only Memories		
•	Programmable Logic Array Devices		
•	Random Access Memory		
•	Static and Dynamic RAM		
•	Array of RAM ICs		
•	Memory construction using RAM Integrated Circuits		
A/	D & D/A Converters (optional)	*	1
	Final Exam		

^{*} Material not in the text book will be provided to you in the class.

Evaluation Criteria:

Assignments + project	15%
Quizzes	15%
Midterm(2)	30%
Final	40%