Package 'RProbSup'

October 12, 2022

Type Package
Title Calculates Probability of Superiority
Version 3.0
Author John Ruscio
Maintainer John Ruscio <ruscio@tcnj.edu></ruscio@tcnj.edu>
Description The A() function calculates the A statistic, a nonparametric measure of effect size for two independent groups that's also known as the probability of superiority (Ruscio, 2008), along with its standard error and a confidence interval constructed using bootstrap methods (Ruscio & Mullen, 2012). Optional arguments can be specified to calculate variants of the A statistic developed for other research designs (e.g., related samples, more than two independent groups or related samples; Ruscio & Gera, 2013). DOI:10.1037/1082-989X.13.1.19>. DOI:10.1080/00273171.2012.658329>. DOI:10.1080/00273171.2012.738184>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-19 04:40:06 UTC
R topics documented:
A

A

Α	A	
Index		24
	RemoveMissing	23
	Ord2	
	Ord1	21
	IK2	20
	IK1	19
	CalcOrd2	18
	CalcOrd1	17
	CalcIK2	16
	CalcIK1	15
	CalcAAPD2	14
	CalcAAPD1	13
	CalcAAD2	12
	CalcAAD1	11
	CalcA2	10
	CalcA1	9

Description

Calculates probability of superiority (A), its standard error, and a confidence interval.

Usage

```
A(data, design = 1, statistic = 1, weights = FALSE, w = 0, w1 = 0, w2 = 0, increase = FALSE, ref = 1, r = 0, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

data	For a between subjects design, a matrix of cases (rows) by scores (column 1) and group codes (column 2). For a within subjects design, a matrix of scores with each sample in its own column (matrix).
design	Design of experiment (scalar, default = 1 (for between subjects design), user can also call 2 (for within subjects design)).
statistic	Statistic to be calculated (scalar, default = 1 (A), user can also call 2 (A.AAD), 3 (A.AAPD), 4 (A.IK), or 5 (A.Ord)).
weights	Whether to assign weights to cases (default = FALSE); if set to TRUE, data contains case weights in final column.
W	Weights for cases (vector; default $= 0$).
w1	Weights for cases in group 1 (vector; default = 0).
w2	Weights for cases in group 2 (vector; default = 0).

A1 3

increase Set to TRUE if scores are predicted to increase with group codes (default =

FALSE).

ref Reference group (to compare to all others) (scalar, default = 1).

r Vector of proportions (vector, default = 0, represents equal proportions).

n.bootstrap Number of bootstrap samples (scalar, default = 1999).

conf. level Confidence level (default = .95).

ci.method Method used to construct confidence interval (scalar, default = 1 (for BCA), user

can also call 2 (for percentile)).

seed Random number seed (scalar, default = 1).

Value

Returns list object with the following elements: A: A statistic (scalar). SE: Standard error of A (scalar). ci.lower: Lower bound of confidence interval (scalar). ci.upper: Upper bound of confidence interval (scalar). conf.level: Confidence level (scalar). n.bootstrap: Number of bootstrap samples (scalar). boot.method: Bootstrap method ("BCA" or "percentile"). n: Sample size (after missing data removed; scalar). n.missing: Number of cases of missing data, removed listewise (scalar).

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)

x2 <- x1 - rnorm(25, mean = 1)

x3 <- x2 - rnorm(25, mean = 1)

data <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))

A(data, 1, 2)
```

A1 *A1*

Description

Calculates the standard error and constructs a confidence interval for the A statistic using bootstrap methods.

```
A1(y1, y2, weights = FALSE, w1 = 0, w2 = 0, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

4 A2

Arguments

y1	Scores for group 1 (vector).
y2	Scores for group 2 (vector).
weights	Whether to weight cases (default = FALSE).
w1	Weights for cases in group 1 (optional) (vector, default is 0).
w2	Weights for cases in group 2 (optional) (vector, default is 0).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
#Example used in Ruscio and Mullen (2012) y1 \leftarrow c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4) y2 \leftarrow c(4, 3, 5, 3, 6, 2, 2, 1, 6, 7, 4, 3, 2, 4, 3) A1(y1, y2)
```

A2 A2

Description

Calculates the standard error and constructs a confidence interval for the A statistic for two correlated samples using bootstrap methods.

```
A2(y1, y2, weights = FALSE, w = 0, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

AAD1 5

Arguments

y1	Scores for group 1 (vector).
y2	Scores for group 2 (vector).
weights	Whether to weight cases (default = FALSE).
W	Weights for cases in group 1 (optional) (vector, default is 0).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
y1 \leftarrow c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4)

y2 \leftarrow c(7, 5, 6, 7, 6, 4, 3, 5, 4, 5, 4, 5, 7, 4, 5)

A2(y1, y2)
```

AAD1 AAD1

Description

Calculates the confidence interval for the A statistic for the average absolute deviation for two or more groups.

```
AAD1(y, r = 0, weights = FALSE, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

6 AAD2

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
r	Vector of proportions (default = 0, represents equal proportions) (vector).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
AAD1(y)</pre>
```

AAD2

AAD2

Description

Calculates the confidence interval for the A statistic for the average absolute deviation for two or more correlated samples.

```
AAD2(y, r = 0, weights = FALSE, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

AAPD1 7

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
r	Vector of proportions (default = 0, represents equal proportions) (vector).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
AAD2(y)
```

AAPD1

AAPD1

Description

Calculates the confidence interval for the A statistic for the average absolute paired deviation for two or more groups.

```
AAPD1(y, weights = FALSE, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

8 AAPD2

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
AAPD1(y)</pre>
```

AAPD2

AAPD2

Description

Calculates the confidence interval for the A statistic for the average absolute paired deviation for two or more correlated samples.

```
AAPD2(y, weights = FALSE, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

CalcA1

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
AAPD2(y)</pre>
```

CalcA1 CalcA1

Description

Calculates the A statistic for 2 groups.

```
CalcA1(y1, y2, weights = FALSE, w1 = 0, w2 = 0)
```

10 CalcA2

Arguments

y1 Scores for group 1 (vector). y2 Scores for group 2 (vector).

weights Whether to weight cases (default = FALSE).

w1 Weights for cases in group 1 (optional) (vector, default is 0).
 w2 Weights for cases in group 2 (optional) (vector, default is 0).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
#Example used in Ruscio and Mullen (2012) y1 <- c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4) \\ y2 <- c(4, 3, 5, 3, 6, 2, 2, 1, 6, 7, 4, 3, 2, 4, 3) CalcA1(<math>y1, y2)
```

CalcA2

CalcA2

Description

Calculates the A statistic for 2 correlated samples.

Usage

```
CalcA2(y1, y2, weights = FALSE, w = 0)
```

Arguments

y1 Scores for variable 1 (vector). y2 Scores for variable 2 (vector).

weights Whether to weight cases (default = FALSE).

Weights (optional) (vector, default is 0).

Value

a The A statistic.

CalcAAD1 11

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
y1 \leftarrow c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4)
y2 \leftarrow c(7, 5, 6, 7, 6, 4, 3, 5, 4, 5, 4, 5, 7, 4, 5)
CalcA2(y1, y2)
```

CalcAAD1

CalcAAD1

Description

Calculates the A statistic for the average absolute deviation for two or more groups. Note: This function is not meant to be called by the user, but it is called by AAD1.

Usage

```
CalcAAD1(y, r = 0, weights = FALSE)
```

Arguments

Matrix of cases (rows) by scores (column 1) and group codes (column 2) (ma-У

trix).

Vector of proportions (default = 0, represents equal proportions) (vector). r

weights Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case

weights (default = FALSE).

Value

The A statistic. а

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

12 CalcAAD2

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
CalcAAD1(y)</pre>
```

CalcAAD2

CalcAAD2

Description

Calculates the A statistic for the average absolute deviation for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by AAD2.

Usage

```
CalcAAD2(y, r = 0, weights = FALSE)
```

Arguments

y Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).

r Vector of proportions (default = 0, represents equal proportions) (vector).

weights Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)

x2 <- x1 - rnorm(25, mean = 1)

x3 <- x2 - rnorm(25, mean = 1)

y <- cbind(x1, x2, x3)

CalcAAD2(y)
```

CalcAAPD1

CalcAAPD1	CalcAAPD1
Calcaapui	Caicaardi

Description

Calculates the A statistic for the average absolute paired deviation for two or more groups. Note: This function is not meant to be called by the user, but it is called by AAPD1.

Usage

```
CalcAAPD1(y, weights = FALSE)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case

weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
AAPD1(y)</pre>
```

14 CalcAAPD2

CalcAAPD2

CalcAAPD2

Description

Calculates the A statistic for the average absolute paired deviation for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by AAPD2.

Usage

```
CalcAAPD2(y, weights = FALSE)
```

Arguments

y Matrix of cases (rows) by scores (column 1) and group codes (column 2) (ma-

trix).

weights Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case

weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
AAPD2(y)
```

CalcIK1

CalcIK1 CalcIK1

Description

Calculates the A statistic while singling out one group for two or more groups. Note: This function is not meant to be called by the user, but it is called by IK1.

Usage

```
CalcIK1(y, ref = 1, weights = FALSE)
```

Arguments

y Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).

ref Reference group (to compare to all others) (scalar, default = 1).

weights Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case

weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
CalcIK1(y)</pre>
```

16 CalcIK2

CalcIK2

CalcIK2

Description

Calculates the A statistic while singling out one group for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by IK2.

Usage

```
CalcIK2(y, ref = 1, weights = FALSE)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (ma-
	trix).

ref Reference group (to compare to all others) (scalar, default = 1).

weights Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case

weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
CalcIK2(y)</pre>
```

CalcOrd1 17

Description

Calculates the ordinal comparison of the A statistic for two or more groups. Note: This function is not meant to be called by the user, but it is called by AOrd1.

Usage

```
CalcOrd1(y, weights = FALSE, increase = FALSE)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
CalcOrd1(y)</pre>
```

18 CalcOrd2

CalcOrd2	CalcOrd2
----------	----------

Description

Calculates the ordinal comparison of the A statistic for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by AOrd2.

Usage

```
CalcOrd2(y, weights = FALSE, increase = FALSE)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
CalcOrd2(y)</pre>
```

IK1 19

IK1 *IK1*

Description

Calculates the confidence interval for the A statistic while singling out one group for two or more groups.

Usage

```
IK1(y, ref = 1, weights = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
ref	Reference group (to compare to all others) (scalar, default = 1).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
IK1(y)</pre>
```

20 IK2

IK2 IK2

Description

Calculates the confidence interval for the A statistic while singling out one group for two or more correlated samples.

Usage

```
IK2(y, ref = 1, weights = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
ref	Reference group (to compare to all others) (scalar, default = 1).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
IK2(y)</pre>
```

Ord1 21

Ord1

Description

Calculates the confidence interval for the ordinal comparison of the A statistic for two or more groups.

Usage

```
Ord1(y, weights = FALSE, increase = FALSE, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

у	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
Ord1(y)</pre>
```

22 Ord2

Description

Calculates the confidence interval for the ordinal comparison of the A statistic for two or more correlated samples.

Usage

```
Ord2(y, weights = FALSE, increase = FALSE, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
Ord2(y)</pre>
```

RemoveMissing 23

RemoveMissing

RemoveMissing

Description

Checks for missing data and performs listwise deletion if any is detected.

Usage

```
RemoveMissing(data)
```

Arguments

data

For a between subjects design, a matrix of cases (rows) by scores (column 1) and group codes (column 2). For a within subjects design, a matrix of scores with each sample in its own column (matrix).

Value

Data matrix with any missing data removed using listwise deletion of cases.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- c(rnorm(25), NA)

x2 <- x1 - rnorm(26, mean = 1)

x3 <- x2 - rnorm(26, mean = 1)

data <- cbind(c(x1, x2, x3), c(rep(1, 26), rep(2, 26), rep(3, 26)))

A(data, 1, 2)
```

Index

```
A, 2
A1, 3
A2, 4
AAD1, 5
AAD2, 6
AAPD1, 7
AAPD2, 8
CalcA1, 9
CalcA2, 10
CalcAAD1, 11
CalcAAD2, 12
CalcAAPD1, 13
CalcAAPD2, 14
CalcIK1, 15
CalcIK2, 16
CalcOrd1, 17
CalcOrd2, 18
IK1, 19
IK2, 20
Ord1, 21
Ord2, 22
RemoveMissing, 23
```