Feature Engineering and Imputation

Rayid Ghani and Kit Rodolfa

Carnegie Mellon University

Reminders

This week:

Tomorrow: Wednesday Deep Dive Session on Modeling and Validation Plans

Coming up next week:

- Monday: Project Update 3
- Tuesday: Weekly Feedback Form
- Thursday: Reading on Transductive Top-k

What We'll Cover Today

- Feature Creation/Engineering
- Introducing Bias in Feature Development
- Dealing with Missing Data

Why do we care?

- Features are hints/rules of thumb you give your model
 - Encoding domain knowledge and context for the model to use
- Feature generation is a critical part of the machine learning modeling process, especially with structured data.
- Complexity in features may allow us to use less complex models that are faster to run, easier to understand and easier to maintain.

Practical Pointers

- When generating a feature, what did you know and when did you know it?
 - You can only create features from information available before the "training" date for a given row
- Domain/expert knowledge and prior research in the field can help a lot!

Feature development is an iterative process

Start simple: build a couple features (from each data source) you think are most important and expand from there

Bias in Feature Development: Mechanisms

- Is your feature directly measuring what you want it to or a proxy? Is it an equally good proxy across groups?
- Is measurement error correlated to group membership?

- How does predictiveness of your feature vary by group?
- Does missingness vary across groups?

Bias in Feature Development: Examples

- Inferring age/gender from name
- Creating "other" categories, e.g., multi-racial or non-binary gender
- How are race and ethnicity collected? Self-reported? Recorded by third party?
 Inferred from other data?
- Geocoding for distance or geographic features how are homeless and more mobile populations handled?

Discussion Question

In the class project, what are two ways bias might be introduced in your feature development?

Feature Generation

- Categorical to Binary (Dummies)
- Features for missing values
- Discretization
- Date/Time Features
- Scaling/Normalizing
- Transformations
- Aggregations (space, time, space and time)
- Relative (compared to the average...)
- Interactions

Categorical to Binary

- One vs All (Dummy Variables)
- Groups
- Presence vs Absence

Discretization

- Equal width bins
- Equal size bins
- Entropy-based bins
- Domain-Specific bins to incorporate domain specific discontinuities
 - Age in general
 - Education/school data
 - High school data
 - Infant mortality

Feature Scaling

- Usually a good idea to scale features to have similar range: [-1,1] or [0,1] for example
 - Be careful with outliers

- Standardize/Normalize
 - Zero mean and unit variance

$$x_{new} = \frac{x - \mu}{\sigma}$$

Sklearn.preprocessing.normalize

Is Scaling Important for...

- Decision Trees?
- k-Nearest Neighbors?
- Random Forest?
- Logistic Regression?
- Neural Nets?

Feature Transformations

Non-linear

Log (decreasing marginal utility)

(Square) Root

Squared

Aggregations

- Date differences (# of days since...)
- Aggregates over different time periods
 - o min, max, avg, stdev
 - Avg spend in the past 3 months
- Relative aggregates
 - 1.5x avg spend
- Distances
- Aggregates over different distances
- Seasonality

Feature Interactions

- Generate features for combination of features
 - Age x gender

- Allows you to use linear models but still model non linear relationships
- Random Forests are one way of discovering useful interactions

Features are also model-dependent

- Linear models may need ... ?
- Non-linear models may need …?

Missing Values

- Impute (Fill in) missing values based on why you think they may be missing and what you want the model to do with those missing values
 - Missing Completely at Random
 - Missing at Random
 - Missing Not at Random

 Typically, also add binary feature (dummy) for missing vs not missing in case "missingness" is predictive of the outcome

Imputing Missing Values: Some Options

- Nothing?
- Central Tendency: Mean / Median / Mode
- ML methods that handle missing data (e.g., xgboost)
- Others
 - Regression
 - k-Nearest Neighbor
 - Multiple Imputation

Imputing – Central Tendency

- Simple to calculate and computationally fast
- Often a reasonable starting point
- May be able to capture more nuance by using other, correlated data to help fill in missing values
- Under-represents variance/covariance of data

Imputing – ML Methods with Missing Data Handling

- Some models have built-in handling of missing data, such as xgboost (which decides which direction to send missing values at each split)
- May not be the best modeling method for your problem, don't want to be locked into certain type of model
- Nevertheless, worth exploring performance of other imputation methods even when using these models as well

Imputing – Regression

- Make use of information in correlated features, more flexible than central tendency
- However, may not be flexible enough to capture complex relationships or interactions
- May be somewhat more computationally expensive
- Generally will still underestimate variation in data

Imputing – k-Nearest Neighbor

- More flexible option, capture more complexity in relationships in data
- Difficult to choose appropriate distance metric, value of k
- More computationally expensive than other methods of imputation
- Requires entire training set to calculate imputed values for new examples

Imputing – Multiple Imputation

- Create multiple "complete" datasets with different values using different regression models
- Helps analyze sensitivity to handling of missing values
- Much more computationally expensive, both for imputation and downstream modeling
- Can provide better representation of variability in data

Missing Value Tips

- Do not remove rows or columns with missing values (unless there is a really really really good reason)
- Missingness can be a useful predictor: create a flag even if you impute a value
- Data can be missing for different reasons and missingness for each row/column/cell may need to be handled differently
- Only use data from the past for imputation

How can imputation introduce bias in your models?

Reminders

This week:

Tomorrow: Wednesday Deep Dive Session on Modeling and Validation Plans

Coming up next week:

- Monday: Project Update 3
- Tuesday: Weekly Feedback Form
- Thursday: Reading on Transductive Top-k