Fetecau Model Part 1

Andree Qi

November 2020

1 Introduction

1D model:

$$\partial_t u^+ + \partial_x (\gamma u^+) = -\lambda^+ [u^+, u^-] + \lambda^- [u^+, u^-] u^-$$
$$\partial_t u^- + \partial_x (\gamma u^-) = -\lambda^+ [u^+, u^-] \lambda^- [u^+, u^-] u^-$$

u⁺: right moving density of individual

 \mathbf{u}_{-} : left moving density of individual

 γ : constant speed

 $\lambda^+(\lambda_-)$:turning rate of original at right(left) to the left(right)

2 Model Description

2D model:

$$\partial_t u + \gamma \boldsymbol{e}_{\phi} \cdot \nabla_x u = -\lambda(\boldsymbol{x}, \phi) u + \int_{-\pi}^{\pi} T(\boldsymbol{x}, \phi) u(\boldsymbol{x}, \phi', t) d\phi'$$

 $u(\boldsymbol{x},\phi^{'},t)$ is the density of individuals at $\boldsymbol{x}=(x,y)$ moving in the direction $\phi(-\pi,\pi]$)

 γ : constant speed in the direction $e_{/phi} = (cos\phi, sin\phi)$

 $\lambda(\boldsymbol{x},\phi)$: reorientation rate of individuals at (\boldsymbol{x},ϕ)

 $T(\boldsymbol{x},\phi)$: the rate of individuals at x that changes their direction from ϕ' to ϕ

$$\lambda(oldsymbol{x},\phi)=\int_{-\pi}^{\pi}T(oldsymbol{x},\phi)u(oldsymbol{x},\phi^{'},t)d\phi^{'}$$

Assumptions on $\lambda(\boldsymbol{x},\phi)$ and $T(\boldsymbol{x},\phi',\phi)$:

1. Distance from neighbour

Distance kernel: what is distance kernel?

$$K_j^d(\boldsymbol{x}) = \frac{1}{A_j} e^{-(\sqrt{x^2 + y^2} - d_j)^2 / m_j^2}$$

with j = r, al, a and d_j represents the ranges.

 A_i ensures that each kernel integrates to 1:

$$A_{j} = \pi m_{j} (m_{j} e^{-d_{j}^{2}/m_{j}^{2}} + \sqrt{\pi} d_{j} + \sqrt{\pi} d_{j} erf(d_{j}/m_{j}))$$

where erf is error rate function.

Figure 1b: superposition?

2. Neighbour's orientation

Can be described using rotation kernels dependent on the:

reference individual: movement direction ϕ and position x

reference individual's neighbour: movement direction θ and position s

Modeling the turning rate λ :

 q_j with j = al, a, r is a constant represents the strength of alignment, attraction and repulsion.

Alignment:

Less likely to change direction if their neighbours are going with the same direction.

More likely to turn if their neighbours are going with opposite direction

$$K_{al}^{o}(\theta;\phi) = \frac{1}{2\pi}(-\cos(\phi - \theta) + 1)$$

If θ is very close to ϕ , then $\cos(\phi - \theta)$ will be closer to 1, and $(-\cos(\phi - \theta) + 1)$ will become 0. $K_{al}^{o}(\theta; \phi) = 0$

If θ is completely opposite to ϕ , then $\cos(\phi - \theta)$ will be closer to -1, and $(-\cos(\phi - \theta) + 1)$ will become 2. $K_{al}^{o}(\theta; \phi) = 1/\pi$

o and d represents distance kernel and rotation kernel.

$$\lambda_{al}(oldsymbol{x},\phi) = q_{al} \int_{\mathbb{R}^2}^{\pi} \int_{-\pi}^{\pi} K_{al}^d(oldsymbol{x}-oldsymbol{s}) K_{al}^o(heta;\phi) u(oldsymbol{s}, heta,t) d heta doldsymbol{s}$$

Attraction:

Rotation mechanism depend on \boldsymbol{x} and \boldsymbol{s} positions. Let \boldsymbol{s} - $\boldsymbol{x} = (s_x, s_y)$, then we can get ψ by

$$cos(\psi) = \frac{s_x}{\sqrt{s_x^2 + s_y^2}}, sin(\psi) = \frac{s_y}{\sqrt{s_x^2 + s_y^2}}$$

then we get

$$K_a^o(\boldsymbol{s}; \boldsymbol{x}, \phi) = \frac{1}{2\pi} (-\cos(\phi - \psi) + 1)$$

If ψ is very close to ϕ , then $\cos(\phi - \psi)$ will be closer to 1, and $(-\cos(\phi - \psi) + 1)$ will become 0. $K_a^o(\mathbf{s}; \mathbf{x}, \phi) = 0$

If ψ is completely opposite to ϕ , then $\cos(\phi - \psi)$ will be closer to -1, and $(-\cos(\phi - \psi) + 1)$ will become 2. $K_a^o(\mathbf{s}; \mathbf{x}, \phi) = 1/\pi$

$$\lambda_a(\boldsymbol{x},\phi) = q_a \int_{\mathbb{R}^2} \int_{-\pi}^{\pi} K_a^d(\boldsymbol{x}-\boldsymbol{s}) K_a^o(\boldsymbol{s};\boldsymbol{x},\phi) u(\boldsymbol{s},\theta,t) d\theta d\boldsymbol{s}$$

Repulsion:

Totally opposite to the attraction pattern where

$$K_r^o(\boldsymbol{s}; \boldsymbol{x}, \phi) = \frac{1}{2\pi} (\cos(\phi - \psi) + 1)$$

where when the angle is closer, the more likely they are going to turn, an vice versa.

$$\lambda_r(\boldsymbol{x},\phi) = q_r \int_{\mathbb{R}^2} \int_{-\pi}^{\pi} K_r^d(\boldsymbol{x}-\boldsymbol{s}) K_r^o(\boldsymbol{s};\boldsymbol{x},\phi) u(\boldsymbol{s},\theta,t) d\theta d\boldsymbol{s}$$

Sum All Together

$$\lambda(\boldsymbol{x},\phi) = \lambda_{al}(\boldsymbol{x},\phi) + \lambda_{a}(\boldsymbol{x},\phi) + \lambda_{r}(\boldsymbol{x},\phi)$$

Modeling the reorientation terms

$$T(\boldsymbol{x}, \phi', \phi)$$
:

Turning probability function: $\omega(\phi' - \phi, \phi' - \theta)$.

 ω represents the possibility of turning rate from direction ϕ' to ϕ as a result of interactions with individuals located(moving) at direction θ . And we get reorientation terms similar to the turning rate.

$$T_{al}(\boldsymbol{x}, \phi^{'}, \phi) = q_{al} \int_{\mathbb{R}^{2}} \int_{\pi}^{\pi} K_{al}^{d}(\boldsymbol{x} - \boldsymbol{s}) K_{al}^{o}(\theta; \phi) \omega_{al}(\phi^{'} - \phi, \phi^{'} - \theta) u(\boldsymbol{s}, \theta, t) d\theta d\boldsymbol{s}$$

$$T_{a}(\boldsymbol{x}, \phi^{'}, \phi) = q_{a} \int_{\mathbb{R}^{2}} \int_{\pi}^{\pi} K_{a}^{d}(\boldsymbol{x} - \boldsymbol{s}) K_{a}^{o}(\boldsymbol{s}; \boldsymbol{x}, \phi^{'}) \omega_{a}(\phi^{'} - \phi, \phi^{'} - \theta) u(\boldsymbol{s}, \theta, t) d\theta d\boldsymbol{s}$$

$$T_r(\boldsymbol{x},\phi^{'},\phi) = q_r \int_{\mathbb{R}^2} \int_{\pi}^{\pi} K_r^d(\boldsymbol{x}-\boldsymbol{s}) K_r^o(\boldsymbol{s};\boldsymbol{x},\phi^{'}) \omega_r(\phi^{'}-\phi,\phi^{'}-\theta) u(\boldsymbol{s},\theta,t) d\theta d\boldsymbol{s}$$

And similar to the turning rate λ , the total term of T is:

$$T(\boldsymbol{x}, \phi', \phi) = T_{al}(\boldsymbol{x}, \phi', \phi) + T_{a}(\boldsymbol{x}, \phi', \phi) + T_{r}(\boldsymbol{x}, \phi', \phi)$$

What is the reorientation term? What does this term represent?

Modeling the probability function ω_{al}, ω_a and ω_r

$$\omega(\phi' - \phi, \phi' - \theta) = g_{\sigma}(\phi' - \phi - v(\phi' - \theta))$$

 g_{σ} is an approximation of the delta function with width σ v is the turning function with highest possibility of an individual moving in the direction ϕ' turns to $\phi = \phi' - v(\phi' - \theta)$ What is turning function? $\sigma > 0$ is the uncertainty of turning.

Possible expressions for g_{σ} are a **periodic Gaussian function** or a **Normalized step** function:

$$g_{\sigma}(\theta) = \frac{1}{\sqrt{\pi}\sigma} \sum_{z \in \mathbb{Z}} e^{-\left(\frac{\theta + 2\pi z}{\sigma}\right)^2}, \theta \in (-\pi, \pi)$$

what is z above?

$$g_{\sigma} = \begin{cases} \frac{1}{2\sigma}, |\theta| < \sigma \\ 0\sigma < |\theta| <= \pi \end{cases}$$
 (1)

Turning function v:

$$v(\theta) = \kappa sin(\theta)$$

$$v(\theta) = \kappa \theta$$
, $-1 <= \kappa <= 1$

Sign of κ is very important. if κ is negative, then it is **repulsive turning**, if κ is positive, then it is **attracting-like turning**.

3 Numerical results

Use Fourier Methods to calculate the convolution integral for space and angle.

What does it mean by "performs a multiplication in the discrete Fourier transform"?

$$\widehat{K * u(l)} = \hat{K}(l)\hat{u}(l)$$

Apply 2D Fourier transform to $\gamma e_{\phi} \cdot \nabla_x u$ and then obtain

$$\gamma(\cos\phi l_1 + \sin\phi l_2)\hat{u}$$

where $l_1 and l_2$ are horizontal and vertical components of the wave number.

Use the 4th Runge-Kutta Method to solve for the numerical solution.

Space discretization: rectangular grid on $[-L/2, L/2) \times [-L/2, L/2)$ with N^2 points, with $\Delta x = \Delta y = L/N$

Angle discretization: equidistant grid on $[-\pi, \pi)$ with M points, $\Delta \phi = 2 * \pi/M$

To avoid aliasing, all multiplications of Fourier modes are done on an extended spatial grid of size $(\frac{3}{2}N)^2$ and an angular gird of size $\frac{3}{2}M$.

Discrete Convolutions to compute turning rates

The integral defining λ_{al} is trivial to compute its discrete Fourier Spectrum.

The integrals that define λ_a and λ_r are similar and can represent a convolution in space only. What we get is

$$\lambda_r(oldsymbol{x},\phi) = q_r \int_{\mathbb{R}^2} K_r^d(oldsymbol{x}-oldsymbol{s}) K_r^o(oldsymbol{s};oldsymbol{x},\phi) \int_{-\pi}^{\pi} u(oldsymbol{s}, heta,t) d heta doldsymbol{s}$$

The θ integral is the zero mode of u, and the remaining space integral is a convolution.

Calculation of the reorientation terms included in T

We can change $T_a(\boldsymbol{x}, \phi', \phi)$ and $T_r(\boldsymbol{x}, \phi', \phi)$ in space only. For every ϕ and ϕ' fixed, then we get

$$\omega_a(\phi - \phi', \phi' - \psi) = g\sigma_a(\phi' - \phi - \kappa_a sin(\phi' - \psi))$$

$$= g\sigma_a(\phi' - \phi - \kappa_a (sin\phi'cos\psi - cos\phi'sin\psi))$$

$$= g\sigma_a(\phi' - \phi - \kappa_a (sin\phi'\frac{s_x}{s_x^2 + s_y^2} - cos\phi'\frac{s_y}{s_y^2 + s_x^2}))$$

which is a function of x - s, which means it is a convolution is the space only.