

FCC Test Report

FCC ID : XU8TEW813DRU

Equipment : AC1200 Dual Band Wireless Router

Model No. : TEW-813DR, TEW-813DRU

Brand Name : TRENDnet

Applicant : TRENDnet, Inc.

Address : 20675 Manhattan Place, Torrance, CA 90501,

USA

Standard : 47 CFR FCC Part 15.407

Received Date : Jul. 03, 2013

Tested Date : Sep. 02 ~ Sep. 14, 2013

Mar. 20, 2014

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

lac-MRA

Page: 1 of 53

Report No.: FR370301AN

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	8
1.4	The Equipment List	9
1.5	Testing Applied Standards	10
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	12
3	TRANSMITTER TEST RESULTS	13
3.1	Conducted Emissions	13
3.2	Emission Bandwidth	18
3.3	RF Output Power	20
3.4	Peak Power Spectral Density	22
3.5	Peak Excursion	24
3.6	Transmitter Radiated and Band Edge Emissions	27
3.7	Frequency Stability	51
4	TEST LABORATORY INFORMATION	53

Release Record

Report No.	Version	Description	Issued Date
FR370301AN	Rev. 01	Initial issue	Apr. 23, 2014

Report No.: FR370301AN Page: 3 of 53

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.389MHz 39.13 (Margin -8.95dB) - AV	Pass
15.407(b)(1)(2)(3) 15.209	Radiated Emissions	[dBuV/m at 3m]: 10400.00MHz 67.18 (Margin -1.02dB) - PK	Pass
15.407(a)(1)(2)(3)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(a)(1)(2)(3)	RF Output Power	Power [dBm]: 5150~5250 MHz:16.81	Pass
15.407(a)(1)(2)(3)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(a)(6)	Peak Excursion	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR370301AN Page: 4 of 53

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name Model Name Product Name		Product Name	Description
TDENDnot	TEW-813DR		w/o USB.
TRENDnet	TEW-813DRU	AC1200 Dual Band Wireless Router	with USB.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
IEEE Std. 802.11	Frequency Range (MHz)	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS		
а	5150-5250	5180-5240	36-48 [4]	2	6-54 Mbps		
n (HT20)	5150-5250	5180-5240	36-48 [4]	2	MCS 0-15		
n (HT40)	5150-5250	5190-5230	38-46 [2]	2	MCS 0-15		
ac (VHT20)	5150-5250	5180-5240	36-48 [4]	2	MCS 0-8		
ac (VHT40)	5150-5250	5190-5230	38-46 [2]	2	MCS 0-9		
ac (VHT80)	5150-5250	5210	42 [1]	2	MCS 0-9		

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: IEEE802.11ac is draft version.

1.1.3 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	PCB	2	Ipex	
2	PCB	2	Ipex	

1.1.4 EUT Operational Condition

Supply Voltage		□ DC	
Type of DC Source	☐ Internal DC supply	☐ External DC adapter	☐ From Host

Report No.: FR370301AN Page: 5 of 53

1.1.5 Accessories

	Accessories					
For Ti	For TEW-813DRU					
1	AC adapter 1	Brand Name: AMIGO Model Name: AMS3-1202000FU Power Rating: I/P: 100-240Vac, 50-60Hz, 0.8A O/P: 12Vdc, 2.0A Power Line: DC 1.2m non-shielded cable w/o core.				
2	AC adapter 2	Brand Name: OEM Model Name: ADS0271-W 120200 Power Rating: I/P: 100-240Vac, 50-60Hz, 0.6A O/P: 12Vdc, 2.0A Power Line: DC 1.22m non-shielded cable w/o core.				
For TE	EW-813DR					
No.	Equipment	Description				
3	AC adapter 3	Brand Name: AMIGO Model Name: AMS9-1201000FU2 Power Rating: I/P: 100-240Vac, 50-60Hz, 0.5A O/P: 12Vdc, 1.0A Power Line: DC 1.22m non-shielded cable w/o core.				
4	AC adapter 4	Brand Name: FRECOM Model Name: F12W-120100SPAU Power Rating: I/P: 100-240Vac, 50-60Hz, 0.3A O/P: 12Vdc, 1.0A Power Line: DC 1.2m non-shielded cable w/o core.				

1.1.6 Channel List

802.11 a / H	T20 / VHT20	HT40 / VHT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
36	5180	38	5190	
40	5200	46	5230	
44	5220	VHT 80		
48	5240	42	5210	

Report No.: FR370301AN Page: 6 of 53

1.1.7 Test Tool and Duty Cycle

Test Tool	MP_TEST, V1.3.8.0					
	Mode	Duty cycle (%)	Duty factor (dB)			
	11a	90.70%	0.42			
Duty Cycle and Duty Factor	VHT20	90.59%	0.43			
	VHT40	79.44%	1.00			
	VHT80	71.16%	1.48			

1.1.8 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11a	5180	38/33
11a	5200	37/32
11a	5240	36/31
HT20	5180	38/33
HT20	5200	37/32
HT20	5240	36/31
HT40	5190	39/34
HT40	5230	38/34
VHT20	5180	38/33
VHT20	5200	37/32
VHT20	5240	36/31
VHT40	5190	39/34
VHT40	5230	38/34
VHT80	5210	38/34

1.2 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)	
1	Notebook	DELL	E6430		DoC	RJ45 10m non-shielded cable w/o core.	
2	Notebook	DELL	E6430		DoC	RJ45 10m non-shielded cable w/o core.	
3	USB Dongle	Transcend 8G					

Report No.: FR370301AN Page: 7 of 53

1.3 Test Setup Chart

Report No.: FR370301AN Page: 8 of 53

1.4 The Equipment List

Test Item	Conducted Emission									
Test Site	Conduction room 1 / (CO01-WS)									
Test date	Sep. 24, 2013	ep. 24, 2013								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
EMC Receiver	R&S	ESCS 30	100169	Oct. 15, 2013	Oct. 14, 2014					
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Nov. 23, 2013	Nov. 22, 2014					
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2013	Dec. 03, 2014					
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Apr. 24, 2013	Apr. 23, 2014					
50 ohm terminal (Support Unit)	NA	NA 50 04 Apr. 22, 2013 Apr. 21, 2014								
Note: Calibration Inter	val of instruments listed a	above is one year.								

Test Item	Radiated Emission be	Radiated Emission below 1GHz									
Test Site	966 chamber 2 / (03C	966 chamber 2 / (03CH02-WS)									
Test date	Sep. 13, 2013										
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until						
Spectrum Analyzer	R&S	FSV40	101499	Jan. 28, 2013	Jan. 27, 2014						
Receiver	R&S	ESR3	101657	Jan. 30,2013	Jan. 29, 2014						
Bilog Antenna	ScHwarzbeck	VULB9168	VULB9168-524	Jan. 11, 2013	Jan. 10, 2014						
Amplifier	Burgeon	BPA-530	100218	Dec. 09, 2013	Dec. 08, 2014						
Amplifier	Agilent	83017A	MY39501309	Dec. 09, 2013	Dec. 08, 2014						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-003	Dec. 25, 2012	Dec. 24, 2013						
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-004	Dec. 25, 2012	Dec. 24, 2013						
Note: Calibration Inter	val of instruments listed	l above is one year.									

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Test date	Sep. 14, 2013				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013
Power Meter	Anritsu	ML2495A	1241002	Oct. 15, 2012	Oct. 14, 2013
Power Sensor	Anritsu	MA2411B	1027366	Oct. 24, 2012	Oct. 23, 2013
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014

Report No.: FR370301AN Page: 9 of 53

Test Item	Radiated Emission above 1GHz										
Test Site	966 chamber 2 / (030	CH02-WS)									
Test date	Mar. 20, 2014	Mar. 20, 2014									
Instrument	Manufacturer	Model No.	Calibration Date	Calibration Until							
Spectrum Analyzer	R&S	FSV40	101499	Feb. 08, 2014	Feb. 07, 2015						
Receiver	R&S	ESR3	101657	Jan. 18, 2014	Jan. 17, 2015						
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-524	Jan. 08, 2014	Jan. 07, 2015						
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Jan. 07, 2014	Jan. 06, 2015						
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Dec. 27, 2013	Dec. 26, 2014						
Preamplifier	Burgeon	BPA-530	100218	Dec. 09, 2013	Dec. 08, 2014						
Preamplifier	Agilent	83017A	MY39501309	Dec. 09, 2013	Dec. 08, 2014						
Preamplifier	EM	EM18G40G	060572	Jun. 20, 2013	Jun. 19, 2014						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 17, 2013	Dec. 16, 2014						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 17, 2013	Dec. 16, 2014						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 17, 2013	Dec. 16, 2014						
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 17, 2013	Dec. 16, 2014						
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-004	Dec. 17, 2013	Dec. 16, 2014						

Test Item	Radiated Emission ab	Radiated Emission above 1GHz								
Test Site	966 chamber 2 / (03C	66 chamber 2 / (03CH02-WS)								
Test date	Mar. 20, 2014	Лаг. 20, 2014								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 15, 2012	Nov. 14, 2014					
Amplifier	EM	EM18G40G	060572	Jun. 20, 2013	Jun. 19, 2015					
Note: Calibration Inte	rval of instruments listed	l above is two year.		•						

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2009

FCC KDB 412172

FCC KDB 789033 D01 General UNII Test procedures v01r03

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

Report No.: FR370301AN Page: 10 of 53

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Parameters	Uncertainty						
Bandwidth	±74.147 Hz						
Conducted power	±0.717 dB						
Power density	±2.687 dB						
Frequency error	±74.147 Hz						
Temperature	±0.3 °C						
AC conducted emission	±2.43 dB						
Radiated emission	±2.49 dB						

Report No.: FR370301AN Page: 11 of 53

2 Test Configuration

2.1 Testing Condition

Test Item	Test Item Test Site		Tested By		
AC Conduction	CO01-WS	23°C / 53%	Peter Lin		
Radiated Emissions	03CH02-WS	23°C / 68% 24°C / 63%	Anderson Hong		
RF Conducted	TH01-WS	24°C / 61%	Brad Wu		

FCC site registration No.: 657002IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	VHT40	5230	MCS 0	1, 2
Radiated Emissions ≤1GHz	VHT40	5230	MCS 0	1, 2
	11a	5180 / 5200 / 5240	6 Mbps	
	HT20	5180 / 5200 / 5240	MCS 0	
RF Output Power	HT40	5190 / 5230	MCS 0	1
Tri Odiput i Owoi	VHT20	5180 / 5200 / 5240	MCS 0	'
	VHT40	5190 / 5230	MCS 0	
	VHT80	5210	MCS 0	
	11a	5180 / 5200 / 5240	6 Mbps	
Radiated Emissions >1GHz	VHT20	5180 / 5200 / 5240	MCS 0	4
Emission Bandwidth Peak Power Spectral Density	VHT40	5190 / 5230	MCS 0	1
Tour ower opposital Bollony	VHT80	5210	MCS 0	
	11a	5240	6 Mbps	
Dook Everysian	VHT20	5240	MCS 0	4
Peak Excursion	VHT40	5230	MCS 0	1
	VHT80	5210	MCS 0	
Frequency Stability	Un-modulation	5240		1

NOTE:

- 1. Adapter 1 & 2 had been pretested and found that adapter 2 was the worst for model TEW-813DRU for final testing.
- 2. Adapter 3 & 4 had been pretested and found that adapter 4 was the worst for model TEW-813DR for final testing.
- Two samples had been tested on the following test configurations.
 - 1) Configuration 1: Model TEW-813DRU (with USB port), with adapter 2.
 - 2) Configuration 2: Model TEW-813DR (w/o USB port), with adapter 4.

Report No.: FR370301AN Page: 12 of 53

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *					
0.5-5	56	46					
5-30	60	50					
Note 1: * Decreases with the logarith	m of the frequency.	·					

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR370301AN Page: 13 of 53

3.1.4 Test Result of Conducted Emissions

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

2: Over Limit (dBuV) = Limit Line (dBuV) – Level (dBuV).

Report No.: FR370301AN Page: 14 of 53

Modulation		VHT4	0			Test Freq. (MHz)			5230	
ower Phase		Neutra	al			Test Configuration 1				
	l aval (d	RuV)							Date: 20	013-09-24
	80 Level (d	buv)							Date. 20	710-03-24
	70 60								CISPR/CNS	/VCCI-B
	40								ISPR/CNS/VC	CI-B AV
	30		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Market ar	HADJANA L. JANA		WALMAN MAN	Hadally and had been for	MANAGE POR	1/1 1/1 1/1/1/10/20/201
	10		· M		11		198			
	0.150.2		0.5	1	Frequ	2 ency (MH		5	10	20 30
	Fr	eq Level	Limit	Over	Read	LISN	cable			
	м	Hz dBuV	Line dBuV	Limit dB	Level dBuV	factor dB	loss	Remark		
1 2	0.1	51 41.74 51 56.51	55.96		41.64 56.41	0.04	0.06	Average QP		
3	0.1			-15.27	39.57	0.04	0.11			
4		69 52.94				0.04	0.11			
5	0.1		53.80		33.07	0.04		Average		
6	0.1				48.98	0.04	0.17			
7	0.4			-23.62		0.07		Average		
9	0.4	86 23.55		-25.74		0.07	0.05	QP Average		
10		86 32.95				0.08	0.05			
		62 27.22						Average		
11	20 1	62 32.63	60.00	-27.37	30.75	1.68	0.20	QP		

Report No.: FR370301AN Page: 15 of 53

Report No.: FR370301AN Page: 16 of 53

Modulation Power Phase		VHT40)			Test F	req. (N	5230	5230		
		Neutra	al			Test Configuration 2					
									D-4 2042 00 04		
	80 Level (dB	uV)							Date: 2013-09-24		
	70										
									CISPR/CNS/VCCI-B		
	60								CISPR/CNS/VCCI-B		
	50	No. 40						CIS	PR/CNS/VCCI-B AV		
		Maria Mar	1 10					4			
	40			Audit				uA .	J/6		
	20		WIW	LANGE AND THE WAY	VIII AND MAN	MANAGARAN MANAGA	"Hypothylo" yleddd	appropriate before	11 Ha All Marcher		
	30 1 3 5 7		13	T T	Mula 14	Y V	M. L.	"YAYA Jamy	May halled		
	20	9	10						- I		
	55.5										
	10					1					
	12										
	0.150.2	101 101	0.5	1	_	2		5 10	20 30	0	
					Frequ	ency (MF	iz)				
	Free	q Level			Read	LISN	cable	Damauk			
	MH	z dBuV	dBuV	Limit dB	dBuV	dB	dB	Remark			
2											
1 2	0.16			-27.97 -13.12	27.33 52.18	0.04	0.09	Average QP			
3	0.17			-28.87	25.60	0.04	0.13	135			
4	0.17			-11.58	52.89	0.04	0.13				
5	0.20				24.48	0.04		Average			
6 7	0.20			-13.00 -25.40	50.40	0.04	0.18	QP Average			
8		49.19			48.99	0.04	0.16				
9	0.27				19.92	0.05	0.12				
10	0.27			-15.55		0.05	0.12	QP			
11	0.38				33.55	0.06		Average			
	0.38		58.17		46.37	0.06	0.06				
12	0.50			-23.36 -19.12	36.75	0.08	0.05	Average QP			
13	0.50				29.28	1.52	0.18	Average			
	0.50 18.92	30.98	50.00				55777				

Report No.: FR370301AN Page: 17 of 53

3.2 Emission Bandwidth

3.2.1 Test Procedures

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

3.2.2 Test Setup

Report No.: FR370301AN Page: 18 of 53

3.2.3 Test Result of Emission Bandwidth

				Emis	sion Band	width				
Mode	N	Freq.	26dB	Bandwidth	(MHz)	99% E	Bandwidth	(MHz)	26dB	99%
Wode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 0	Chain 1	Chain 2	Limit	Limit
11a	2	5180	20.87	21.62		16.79	16.85		17.00	16.25
11a	2	5200	21.04	21.62		16.79	16.79		17.00	16.25
11a	2	5240	21.16	21.62		16.79	16.85		17.00	16.25
VHT20	2	5180	21.91	22.14		17.95	18.00		17.00	16.54
VHT20	2	5200	22.08	22.20		17.95	18.00		17.00	16.54
VHT20	2	5240	21.91	22.09		17.95	18.00		17.00	16.54
VHT40	2	5190	44.41	44.64		36.93	36.93		17.00	17.00
VHT40	2	5230	44.75	44.64		36.93	36.93		17.00	17.00
VHT80	2	5210	83.48	83.25		75.95	75.95		17.00	17.00

Report No.: FR370301AN Page: 19 of 53

3.3 RF Output Power

3.3.1 Limit of RF Output Power

	Frequency Band (GHz)	Limit
\boxtimes	5.15~5.25	50mW or 4dBm+10 log B
	5.25~5.35	250mW or 11dBm+10 log B
	5.47~5.725	250mW or 11dBm+10 log B
Note	e: "B" is the 26dB emission bandwidth in MHz.	

3.3.2 Test Procedures

Now Power meter

Measurements is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required

3.3.3 Test Setup

Report No.: FR370301AN Page: 20 of 53

3.3.4 Test Result of Maximum Conducted Output Power

	RF Output Power (dBm)										
Mode	Mode N _{TX} Freq. (MHz)		Chain 0 Chain 1 Cha		Chain 2	Total Power (mW)	Total Power (dBm)	Limit			
11a	2	5180	13.48	13.12		42.796	16.31	17.00			
11a	2	5200	13.33	13.03		41.619	16.19	17.00			
11a	2	5240	13.51	13.32		43.917	16.43	17.00			
HT20	2	5180	13.30	13.06		41.610	16.19	17.00			
HT20	2	5200	13.16	13.10		41.119	16.14	17.00			
HT20	2	5240	13.32	13.29		42.809	16.32	17.00			
HT40	2	5190	13.36	13.22		42.666	16.30	17.00			
HT40	2	5230	13.51	13.84		46.649	16.69	17.00			
VHT20	2	5180	13.42	13.14		42.585	16.29	17.00			
VHT20	2	5200	13.21	13.12		41.453	16.18	17.00			
VHT20	2	5240	13.44	13.35		43.707	16.41	17.00			
VHT40	2	5190	13.48	13.29		43.615	16.40	17.00			
VHT40	2	5230	13.67	13.92		47.941	16.81	17.00			
VHT80	2	5210	13.88	13.71		47.931	16.81	17.00			

Report No.: FR370301AN Page: 21 of 53

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

Frequency Band (GHz)	Limit (dBm)
5.15~5.25	4
5.25~5.35	11
5.47~5.725	11

3.4.2 Test Procedures

	Method	SA-1
--	--------	------

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

☐ Method SA-2

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
- Set sweep time ≥ 10 * (number of points in sweep) * (symbol period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.

Method SA-2 Alternative

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- 5. Add $10 \log(1/x)$, where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR370301AN Page: 22 of 53

3.4.4 Test Result of Peak Power Spectral Density

Co	ondition		Peak Power Spectral Density (dBm)						
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm)	Duty factor (dB)	PPSD with D.F (dBm)	PPSD Limit (dBm)			
11a	1	5180	3.52	0.42	3.94	4			
11a	1	5200	3.28	0.42	3.70	4			
11a	1	5240	3.55	0.42	3.97	4			
VHT20	1	5180	3.48	0.43	3.91	4			
VHT20	1	5200	3.45	0.43	3.88	4			
VHT20	1	5240	3.46	0.43	3.89	4			
VHT40	1	5190	0.05	1.00	1.05	4			
VHT40	1	5230	0.39	1.00	1.39	4			
VHT80	1	5210	-2.41	1.48	-0.93	4			

Note: D.F is duty factor

Note: Power density plot without duty factor

Report No.: FR370301AN Page: 23 of 53

3.5 Peak Excursion

3.5.1 Peak Excursion Limit

Peak excursion of the modulation envelope shall not exceed 13 dB across any 1 MHz bandwidth.

3.5.2 Test Procedures

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = peak.
- 2. Trace mode = max-hold. Allow the sweeps to continue until the trace stabilizes.
- 3. Use the peak search function to find the peak of the spectrum.
- 4. Use the procedure of section 3.4.2 to measure the PPSD.
- 5. Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD

3.5.3 Test Setup

Report No.: FR370301AN Page: 24 of 53

3.5.4 Test Result of Peak Excursion

Frequency	band(MHz)	5150~5250							
Mode	Modulation Mode	N _{TX}	Freq. (MHz)	Measured value(dB)	Duty factor (dB)	Peak Excursion (dB)	Limit		
11a	BPSK	1	5240	8.66	0.42	8.24	13		
11a	QPSK	1	5240	8.81	0.27	8.54	13		
11a	16QAM	1	5240	9.02	1.74	7.28	13		
11a	64QAM	1	5240	10.58	2.26	8.32	13		
VHT20	BPSK	1	5240	8.34	0.43	7.91	13		
VHT20	QPSK	1	5240	9.06	0.60	8.46	13		
VHT20	16QAM	1	5240	9.86	1.46	8.40	13		
VHT20	64QAM	1	5240	9.99	2.65	7.34	13		
VHT20	256QAM	1	5240	10	2.73	7.27	13		
VHT40	BPSK	1	5230	8.62	1.00	7.62	13		
VHT40	QPSK	1	5230	9.6	1.62	7.98	13		
VHT40	16QAM	1	5230	10.7	2.26	8.44	13		
VHT40	64QAM	1	5230	10.41	2.95	7.46	13		
VHT40	256QAM	1	5230	11.41	2.69	8.72	13		
VHT80	BPSK	1	5210	9.85	1.48	8.37	13		
VHT80	QPSK	1	5210	9.66	1.77	7.89	13		
VHT80	16QAM	1	5210	10.62	3.08	7.54	13		
VHT80	64QAM	1	5210	11.17	4.39	6.78	13		
VHT80	256QAM	1	5210	11.93	4.54	7.39	13		

Note: Measured value = Peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission. Since the duty cycle is < 98 %, duty factor is required to average spectrum Peak exclusion = Measured value – duty factor

Report No.: FR370301AN Page: 25 of 53

Report No.: FR370301AN

Page: 26 of 53

3.6 Transmitter Radiated and Band Edge Emissions

3.6.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit							
Operating Band	Limit						
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]						
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]						
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]						
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]						

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR370301AN Page: 27 of 53

3.6.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.6.3 Test Setup

Report No.: FR370301AN Page: 28 of 53

3.6.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 29 of 53

Modulation	VHT40	Test F	req. (MHz)	5230	5230			
Polarization	Vertical	Test C	Test Configuration		1			
90 Level (dBuV/m)								
30								

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	30.00	36.43	40.00	-3.57	53.47	-17.04	QP		
2	39.70	36.39	40.00	-3.61	52.81	-16.42	QP		
3	83.35	33.63	40.00	-6.37	55.14	-21.51	QP		
4	374.35	38.17	46.00	-7.83	51.91	-13.74	Peak		
5	624.61	32.39	46.00	-13.61	40.98	-8.59	Peak		
6	874.87	33.29	46.00	-12.71	38.45	-5.16	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 30 of 53

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	212.36	35.29	43.50	-8.21	54.07	-18.78	Peak		
2	374.35	37.52	46.00	-8.48	51.26	-13.74	Peak		
3	390.84	34.34	46.00	-11.66	47.63	-13.29	Peak		
4	499.48	34.51	46.00	-11.49	45.47	-10.96	Peak		
5	624.61	35.02	46.00	-10.98	43.61	-8.59	Peak		
6	874.87	34.25	46.00	-11.75	39.41	-5.16	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 31 of 53

Modulation	VHT40	Test Freq. (MHz)	5230	
Polarization	Vertical	Test Configuration	2	

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	38.73	36.69	40.00	-3.31	53.18	-16.49	QP		
2	85.29	34.18	40.00	-5.82	55.94	-21.76	QP		
3	374.35	37.74	46.00	-8.26	51.48	-13.74	Peak		
4	499.48	31.21	46.00	-14.79	42.17	-10.96	Peak		
5	624.61	31.25	46.00	-14.75	39.84	-8.59	Peak		
6	874.87	32.83	46.00	-13.17	37.99	-5.16	Peak		

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 32 of 53

3.6.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR370301AN Page: 33 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 34 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 35 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 36 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 37 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 38 of 53

3.6.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR370301AN Page: 39 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 40 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 41 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 42 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 43 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 44 of 53

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR370301AN Page: 45 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 46 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 47 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 48 of 53

3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page: 49 of 53

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AN Page : 50 of 53

3.7 Frequency Stability

3.7.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.7.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.7.3 Test Setup

Report No.: FR370301AN Page: 51 of 53

3.7.4 Test Result of Frequency Stability

Frequency: 5200 MHz	Frequency Drift (ppm)			
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes
T20°CVmax	-0.16	-0.04	-0.31	-0.42
T20°CVmin	4.20	4.55	4.06	4.44
T55°CVnom	4.35	4.98	4.24	4.40
T50°CVnom	4.22	4.22	4.13	4.49
T40°CVnom	-2.62	-2.32	-2.18	-2.22
T30°CVnom	0.20	0.59	0.50	0.67
T20°CVnom	0.45	0.88	1.15	0.01
T10°CVnom	-0.29	0.12	-0.64	-0.06
T0°CVnom	-0.24	0.38	-0.44	0.07
T-10°CVnom	-0.53	-0.84	-0.88	-0.45
T-20°CVnom	-1.00	-0.63	-1.26	-0.71
T-30°CVnom	-0.53	-0.62	-0.57	-0.34
Vnom [Vac]: 110		Vmax [Vac]: 126.5	•	Vmin [Vac]: 93.5
Tnom [°C]: 20		Tmax [°C]: 55		Tmin [°C]: -30

Report No.: FR370301AN Page : 52 of 53

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-2-2601-1640 Tel: 886-3-271-8666

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei
City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan
Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR370301AN Page: 53 of 53