Stat 435 Lecture Notes 5b

Xiongzhi Chen Washington State University

Contents

eifferent Error Measures	
Hypothesis testing	
Example 1: One Hypothesis	
Example 2: Many Hypotheses	
Family-wise error rate (FWER)	
Family-wise error rate (FWER)	
alse Discovery Rate	
False discovery rate	
Classification table	
False discovery rate (FDR)	
FDR: Example	
Control false discovery rate	
enjamini-Hochberg procedure	
Benjamini-Hochberg procedure	
BH procedure: example	
ost-selection inference	
Linear model and LASSO	
Linear Ridge regression	
Penalized logistic regression	
Post-selection inference	
License and session Information	

Different Error Measures

Hypothesis testing

- Null hypothesis H_0 : natural status
- Alternative hypothesis H_1 : status under intervention; complement to H_0
- Test statistic T, rejection region \mathcal{T} and rejection rule \mathcal{R} : reject H_0 if $T \in \mathcal{T}$
- Type I error α : probability of rejecting H_0 when it is true
- Type II error γ : probability of not rejecting H_0 when H_0 is false
- Power: 1γ

Example 1: One Hypothesis

• Linear model: $E(Y) = \beta_0 + \beta_1 X$

• $H_0: \beta_1 = 0 \text{ versus } H_1: \beta_1 \neq 0$

• Pick type I error level $\alpha \in (0,1)$

• Test statistic T; reject H_0 if $|T| > c_{\alpha}$

• How to interpret α ?

Example 2: Many Hypotheses

• Linear model: $E(Y) = \beta_0 + \beta_1 X + \dots + \beta_m X_m$

• $H_{i0}: \beta_i = 0$ versus $H_{i1}: \beta_i \neq 0, i = 1, ..., m$

• Test all $H_{i0}, i = 1, ..., m$ simultaneously

• If each H_{i0} , i = 1, ..., m is tested individually at type I error level α , what will happen to the number of rejected true null hypotheses?

Family-wise error rate (FWER)

• $H_{i0}: \beta_i = 0$ versus $H_{i1}: \beta_i \neq 0, i = 1, ..., m$

• Rejection of a true null hypothesis is called "false rejection"

• V: number of false rejections, i.e., rejected true H_{i0} 's

• Family-wise error rate (FWER):

$$Pr(V > 1) = 1 - Pr(V = 0)$$

• Control FWER: $Pr(V \ge 1) \le \alpha$

Family-wise error rate (FWER)

• Widely used, e.g., by FDA

• Good when there are only a few hypotheses to test simultaneously

• Too stringent when there are many hypotheses to test simultaneously, and hence may suffer loss in power

• What about controlling "k-FWER", i.e.,

$$\Pr(V \ge k) \le \alpha$$
?

False Discovery Rate

False discovery rate

• Allow false rejections, and hence much less stringent than FWER

- Modern standard on testing many hypotheses simultaneously
- Scalable to many, many hypotheses simultaneously
 - GWAS study with a few millions of hypotheses to test simultaneously
 - Gene expression study with a few thousand hypotheses to test simultaneously
- A standard criterion in model/variable selection

Classification table

• $H_{i0}: \beta_i = 0 \text{ versus } H_{i1}: \beta_i \neq 0, i = 1, ..., m$

	Null is true	Null is false	Total
Reject null	V	S	R
Retain null	U	T	m-R
Total	m_0	$m-m_0$	\overline{m}

False discovery rate (FDR)

- \mathcal{R} : decision rule
- V: number of false rejections
- R: number of rejections
- False discovery proportion: $FDP(\mathcal{R}) = V/\max\{R, 1\}$
- False discovery rate:

$$FDR(\mathcal{R}) = E\left[\frac{V}{\max\{R, 1\}}\right]$$

FDR: Example

- m = 5 hypothesis $H_{i0}: \beta_i = 0, i = 1, 2, 3, 4, 5$
- H_{i0} , i = 1, 2, 3 are true nulls
- Decision rule \mathcal{R} rejects $H_{i1}, H_{i2}, H_{i4}, H_{i5}$
- What is the false discovery proportion?

Control false discovery rate

- Computing exact false discovery rate can be quite difficult
- Control FDR at a nominal level:
 - Pick a nominal level $\alpha \in (0,1)$
 - Find a decision rule \mathcal{R} , such that

$$FDR(\mathcal{R}) \leq \alpha$$

• Find such a decision rule can be hard in general

Benjamini-Hochberg procedure

Benjamini-Hochberg procedure

- Given: m null hypotheses H_{i0}
- Given: m p-values; p_i for testing H_{i0}
- Benjamini-Hochberg (BH) procedure
 - Order p-values into $p_{(1)} \le p_{(2)} \le \cdots \le p_{(m)}$
 - Set $r = \max \{k \in \{1, \dots, m\} : p_{(i)} \le i\alpha m^{-1}\}$
 - Rejection rule:
 - * If r is defined, reject the r H_{i0} 's corresponding to $p_{(1)}, \ldots, p_{(r)}$
 - * If r is not defined, do not reject any H_{i0}
- Under some conditions, FDR of BH procedure is upper bounded by α

BH procedure: example

- 5 hypotheses $H_{10}, H_{20}, H_{30}, H_{40}, H_{50}$
- $p_1 = 0.03, p_2 = 0.1, p_3 = 0.02, p_4 = 0.05, p_5 = 0.02$
- Implement BH procedure at nominal FDR level $\alpha = 0.05$

Post-selection inference

Linear model and LASSO

• Model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \varepsilon$$

• The LASSO estimate $\hat{\boldsymbol{\beta}}_{\lambda}^{L} = (\hat{\beta}_{1}, \dots, \hat{\beta}_{p})$ is the $\boldsymbol{\beta} = (\beta_{1}, \dots, \beta_{p})$ that minimizes

$$L_1(\beta_0, \boldsymbol{\beta}, \lambda) = \frac{1}{2} \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^p |\beta_i|$$

• The optimal value λ^* of the tuning parameter λ is often determined by k-fold cross-validation

Linear Ridge regression

• Model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n + \varepsilon$$

• The LASSO estimate $\hat{\boldsymbol{\beta}}_{\lambda}^{R} = (\hat{\beta}_{1}, \dots, \hat{\beta}_{p})$ is the $\boldsymbol{\beta} = (\beta_{1}, \dots, \beta_{p})$ that minimizes

$$L_1(\beta_0, \boldsymbol{\beta}, \lambda) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^{p} \beta_i^2$$

• The optimal value λ^* of the tuning parameter λ is often determined by k-fold cross-validation

4

Penalized logistic regression

• LASSO logistic regression when some β_i 's are zero:

$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_m) \in \underset{\beta}{\operatorname{argmin}} \left[-\log L(\beta) + \lambda \sum_{j=1}^m |\beta_j| \right]$$

• Ridge logistic regression:

$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_m) \in \underset{\beta}{\operatorname{argmin}} \left[-\log L(\beta) + \lambda \sum_{j=1}^m |\beta_j|^2 \right]$$

• The optimal value λ^* of the tuning parameter λ is often determined by k-fold cross-validation **Note:** argmin_{β} refers to optimal β^* which minimizes the corresponding objective function

Post-selection inference

- Post-selection inference often aims at controlling false discovery rate (FDR)
- Benjamini-Hochberg procedure is used to control FDR
- Bias correction method or knock-off method can be used

Note: Please see practice files

License and session Information

```
License
```

```
> sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats
              graphics grDevices utils
                                            datasets methods
[7] base
other attached packages:
[1] knitr_1.21
loaded via a namespace (and not attached):
 [1] compiler_3.5.0 magrittr_1.5
```

```
[4] htmltools_0.3.6 yaml_2.2.0 Rcpp_1.0.12
[7] stringi_1.2.4 rmarkdown_1.11 stringr_1.3.1
[10] xfun_0.4 digest_0.6.18 evaluate_0.13
```