Exercice 1. Soit $X_1...,X_n$ n variables aléatoires indépendantes de même loi et de carré intégrable.

Trouver l'estimateur de la moyenne, $\theta = E[X_1]$, qui soit de variance minimale dans la classe des estimateurs linéaires, $\hat{\theta}_n = \sum_{k=1}^n a_k X_k$, et sans biais.

Exercice 2. On considère le modèle d'échantillonnage $X_1...,X_n$ de taille n associé à la famille de lois exponentielles $P = \{\mathcal{E}(\lambda), \lambda > 0\}$. On veut estimer λ .

- 1. A partir de la méthode des moments, construire un estimateur convergent $\hat{\lambda}_n$ de λ .
- 2. Vérifier qu'il s'agit de l'estimateur du maximum de vraisemblance.
- 3. Déterminer la loi de $\sum_{i=1}^n X_i$. Calculer $E_{\lambda}[\hat{\lambda}_n]$. L'estimateur est-il sans biais ?
- 4. Déterminer un estimateur $\hat{\lambda}_n^*$ sans biais et un estimateur $\hat{\lambda}_n^o$ qui minimise le risque quadratique parmi les estimateurs

$$\hat{\lambda}_n^{(c)} = \frac{c}{\displaystyle\sum_{i=1}^n X_i}, \text{ où } c > 0$$

Exercice 3. Soit $(X_1,...,X_n)$ un échantillon i.i.d. de loi uniforme sur $[\theta,2\theta]$ où $\theta>0$.

- 1. Estimer θ par la méthode des moments
- 2. Déterminer l'estimateur du maximum de vraisemblance ϕ et calculer la constante k telle que

$$E_{\theta}[k\phi] = \theta$$

Exercice 4. Pour un échantillon i.i.d. $(X_1, ..., X_n)$ d'une loi de Bernoulli de paramètre inconnu $\theta \in [0, 1]$, montrez que la moyenne empirique

$$\bar{X}_n: (x_1, ..., x_n) \to \frac{1}{n} \sum_{i=1}^n x_i$$

est le seul estimateur sans biais de θ fonction de la somme

$$\Sigma_n: (x_1, ..., x_n) \to \sum_{i=1}^n x_i$$