DANIEL RAKITA

CURRICULUM VITAE, JANUARY 2023

Assistant Professor Yale University Department of Computer Science 51 Prospect St., New Haven, CT 06511 USA daniel.rakita@yale.edu, Personal website, Google Scholar

RESEARCH INTERESTS

My research focuses on two main areas: (1) formulating **robot motion synthesis algorithms** that allow robots to smoothly, safely, and accurately move around even complex or cluttered environments in **real-time**; and (2) designing and validating **robot interfaces and systems** that can be used to perform critical tasks deemed unsuitable, undesirable, understaffed, or unsafe for people, such as full-time homecare, home assistance, telenursing, robot surgery, disaster relief, large-scale manufacturing, nuclear materials handling, and space robotics

EDUCATION

Ph.D. in Computer Science , University of Wisconsin-Madison Advisors: Michael Gleicher and Bilge Mutlu					
Masters of Computer Science, University of Wisconsin-Madison					
Undergraduate work in computer science , University of Wisconsin-Madison					
Bachelor of Music in Performance , Indiana University-Bloomington Jacobs School of Music					
AWARDS & HONORS					
[A11]	Outstanding Graduate-Student Research Award, UW-Madison	2022			
[A10]	Outstanding Reviewer Award , Selected by IROS Conference Paper Review Board, Top 4 of 3,942	2021			
[A9]	Cisco Graduate Student Fellowship Recipient, UW-Madison	2021			
[A8]	Three Minute Thesis Competition Finalist, UW-Madison	2021			
[A7]	Best Paper Award Finalist , ACM/IEEE Conference on Human-Robot Interaction (HRI)	2020			

[A6]	Micros	soft PhD Fellowship Recipient	2019
[A ₅]		aper Award Winner, ACM/IEEE Conference on Human-Robot tion (HRI), Top 4 of 206 papers	2018
[A4]	NSF G Mentio	raduate Research Fellowship Program Honorable on	2017
[A ₃]	HRI P	ioneer, accepted to the selective workshop held at HRI 2017	2017
[A2]		aper Award Nominee , IEEE Symposium on Robot and Human tive Communication (RO-MAN)	2017
[A1]	ACM S	SIGGRAPH Student Research Competition 1st Place	2015
JOU	RNAL	ARTICLES	
2022			
	[J6]	Chamzas, C., Quintero, C., Kingston, Z., Orthey, A., Rakita , D. , Glei M., Toussaint, M., Kavraki, L. 2022. MOTIONBENCHMAKER: A To Generate and Benchmark Motion Planning Datasets. <i>Robotics and Automation Letters</i> (RA-L). In <i>Proceedings International Conferent Robotics and Automation</i> (ICRA).	ool to
2021			
	[J5]	Rakita , D. , Mutlu, B., Gleicher, M. 2021. Single Query Path Planning Sample Efficient Probability Informed Trees. <i>Robotics and Automat Letters</i> (RA-L). In <i>Proceedings International Conference on Robotic Automation</i> (ICRA).	tion
2020			
	[J4]	Rakita , D. , Mutlu, B., Gleicher, M. 2020. An Analysis of RelaxedIK Optimization-Based Framework for Generating Accurate and Feasib Arm Motions. <i>Autonomous Robotics</i> (AURO).	
2019			
	[J3]	Rakita , D. , Mutlu, B., Gleicher, M., and Hiatt, L. 2019. Shared-Control-Based Bimanual Robot Manipulation. <i>Science Robot</i>	tics.
2018			
	[J2]	Bodden, C., Rakita , D. , Mutlu, B., and Gleicher, M. 2018. A Flexible Optimization-Based Method for Synthesizing Intent-Expressive Rob Motion. <i>The International Journal of Robotics Research</i> (IJRR). SA	ot Arm

Daniel Rakita Curriculum Vitae, p. 2

[J1] Pejsa, T., **Rakita**, **D.**, Mutlu, B., & Gleicher, M. 2016. Authoring directed gaze for full-body motion capture. ACM *Transactions on Graphics*, 35(6), 1–11. Proceedings *SIGGRAPH ASIA* 2016, December 2016.

REFEREED FULL CONFERENCE PAPERS

2023

- [C19] Patel, V., **Rakita**, **D.**, and Dollar, A. 2023. An Analysis of Unified Manipulation with Robot Arms and Dexterous Hands via Optimization-based Motion Synthesis. *International Conference on Robotics and Automation* (ICRA).
- [C18] Wang, Y., Praveena, P., **Rakita**, **D.**, and Gleicher, M. 2023. RangedIK: An Optimization-Based Robot Motion Generation Method for Ranged-Goal Tasks. *International Conference on Robotics and Automation* (ICRA).
- [C17] Schoen, A., Sullivan, D., Zhang, Z., **Rakita, D.**, and Mutlu, M. 2023. Lively: Enabling Multimodal, Lifelike, and Extensible Real-time Robot Motion. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE.

2022

[C16] **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2022. Proxima: An Approach for Time or Accuracy Budgeted Collision Proximity Queries. *Robotics: Science and Systems* (RSS).

2021

- [C15] **Rakita**, **D.**, Shi, H., Mutlu, B., and Gleicher, M. 2021. CollisionIK: A Per-Instant Pose Optimization Method for Generating Robot Motions with Environment Collision Avoidance. *International Conference on Robotics and Automation* (ICRA).
- [C14] **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2021. Strobe: An Acceleration Meta-algorithm for Optimizing Robot Paths using Concurrent Interleaved Sub-Epoch Pods. *International Conference on Robotics and Automation* (ICRA).

2020

[C13] **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2020. Effects of Onset Latency and Robot Speed Delays on Mimicry-Control Teleoperation. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE (Acceptance rate 24%)

[C12] Praveena, P., **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2020. Supporting Perception of Weight through Motion-induced Sensory Conflicts in Robot Teleoperation. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 24%) [Best Paper Nominee]

2019

- [C11] **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2019. Remote Telemanipulation with Adapting Viewpoints in Visually Complex Environments. *Robotics: Science and Systems* (RSS).
- [C10] **Rakita, D.**, Mutlu, B., and Gleicher, M. 2019. Stampede: A Discrete-Optimization Method for Solving Pathwise-Inverse Kinematics. *International Conference on Robotics and Automation* (ICRA).
- [C9] Praveena, P., **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2019. User-Guided Offline Synthesis of Robot Arm Motion from 6- DoF Paths. *International Conference on Robotics and Automation* (ICRA).

2018

- [C8] **Rakita**, **D**., Mutlu, B., and Gleicher, M. 2018. RelaxedIK: Real-time Synthesis of Accurate and Feasible Robot Arm Motion. *Robotics: Science and Systems* (RSS). *[Invited to Special Issue]*
- [C7] **Rakita, D.**, Mutlu, B., and Gleicher, M. 2018. An Autonomous Dynamic Camera Method for Effective Remote Teleoperation. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 23%) [Best Paper Award Winner]
- [C6] **Rakita**, **D.**, Mutlu, B., Gleicher, M., and Hiatt, L. 2018. Shared Dynamic Curves: A Shared-Control Telemanipulation Method for Motor Task Training. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 23%)

2017

- [C5] **Rakita, D.**, Mutlu, B., and Gleicher, M. 2017. A Motion Retargeting Method for Effective Mimicry-based Teleoperation of Robot Arms. *International Conference on Human-Robot Interaction* (HRI). ACM/IEEE. (Acceptance rate 50/211)
- [C4] Liu, O., **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2017. Understanding Human-Robot Interaction in Virtual Reality. *RO-MAN* 2017-The IEEE International Symposium on Robot and Human Interactive Communication. IEEE.
- [C3] Subramani, G., **Rakita**, **D.**, Wang H., Zinn, M., Gleicher, M. 2017. Recognizing Actions during Tactile Manipulations through Force Sensing. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ.

2016

- [C2] **Rakita, D.**, Mutlu, B., and Gleicher, M. 2016. Motion Synopsis for Robot Arm Trajectories. *RO-MAN* 2016-The 25th IEEE International Symposium on Robot and Human Interactive Communication. IEEE. (Acceptance rate 44%)
- [C1] Bodden, C., **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2016. Evaluating Intent-Expressive Robot Arm Motion. RO-MAN 2016-The 25th IEEE

International Symposium on Robot and Human Interactive Communication. IEEE. (Acceptance rate 44%) [Best Paper Nominee]

REFEREED SHORT CONFERENCE PAPERS

2017

[S2] **Rakita**, **D.** 2017. Methods for Effective Mimicry-based Teleoperation of Robot Arms. *International Conference on Human-Robot Interaction* (HRI) Pioneers Workshop.

2015

[S1] **Rakita**, **D.**, Pejsa, T., Mutlu, B., and Gleicher, M. 2015. Inferring Gaze Shifts from Captured Body Motion. SIGGRAPH 2015 Poster Proceedings 77, 77:1. [1st Place – ACM Student Research Competition]

THESES

2022

[T2] **Rakita**, **D**. 2022. On the Formulation, Characterization, and Application of Per-instant Pose Optimization as a Motion Generation Paradigm in Robotics. University of Wisconsin-Madison Department of Computer Sciences, PhD Dissertation.

2017

[T1] **Rakita**, **D.**, Mutlu, B., and Gleicher, M. 2017. Relaxed-IK Solver: A Framework for Robot Arm Importance-based Inverse Kinematics. University of Wisconsin-Madison Department of Computer Sciences, Masters Tech Report.

FUNDING

Cisco Graduate Student Fellowship, one year PhD tuition and stipend 2021-2022 Microsoft PhD Fellowship, \$84,000 for tuition, stipend, and travel funds 2019-2020

WORK AND RESEARCH EXPERIENCE

Assistant Professor, Yale University, Department of Computer Science 2022 - Current **Graduate Researcher**, University of Wisconsin-Madison Visual 2015-2022 Computing Lab and Human-Computer Interaction Lab Advised by Michael Gleicher and Bilge Mutlu NREIP Researcher, Naval Research Lab, Washington, D.C., 2018, 2019 Advised by Laura Hiatt Undergraduate Researcher, University of Wisconsin-Madison Visual 2014-2015 Computing Lab and Human-Computer Interaction Lab IT / System Administrator, Icecube Neutrino Observatory, University of 2013-2015 Wisconsin-Madison

TEACHING EXPERIENCE

Instructor, CPSC 485/585 Applied Planning and Optimization. Yale Spring 2023 University. **Instructor**, CPSC 685 Topics on Robot Motion Generation. Yale University. Fall 2022 Guest Lecturer, CS/ Psych 770 Human-Computer Interaction. University of Spring 2020 Wisconsin-Madison. Guest Lecturer, CS559 Introduction to Computer Graphics, University of Spring 2019 Wisconsin-Madison.

SELECTED ADVISING EXPERIENCE

optimization to incur depth perception cues. University of

Haochen Shi, undergraduate mentee working on inverse kinematics and 2020-2021 motion optimization algorithms. University of Wisconsin-Madison (now a graduate student at Stanford) Olivia Hughes, undergraduate mentee working on human-robot interaction 2019-2020 design and visualization. University of Wisconsin-Madison (now a graduate student at Georgia Tech) Ziyad AlGhunaim, undergraduate mentee working on camera viewpoint 2019-2020

Wisconsin-Madison (now a software engineer at Google)

Oliver Liu, undergraduate mentee working on understanding human-robot interaction in virtual reality. University of Wisconsin-Madison (went on to USC for graduate school)

ACADEMIC SERVICE

Session Chair, ICRA session Optimization-Based Motion Planning	2021
Review Editor, Frontiers in Robotics and AI	2021-Current
Reviewer (>100 papers) , ICRA, IROS, RSS, RA-L, TRO, HRI, CHI, SIGGRAPH, Transactions on Mechatronics, Frontiers, Humanoids	2017-Current

INVITED TALKS

Cornell University.	2022
Workshop on Bimanual Manipulation, ICRA 2022. <i>Generating Accurate, Feasible, and Coordinated Bimanual Robot Motions in Real-time</i>	2022
KavrakiLab , Rice University. <i>Methods and Applications for Generating Accurate and Feasible Robot-arm Motions in Real-time</i> .	2021
Talking-Robotics Series , Methods and Applications for Generating Accurate and Feasible Robot-arm Motions in Real-time. [video link]	2021
Northwestern University . Methods and Applications for Generating Accurate and Feasible Robot-arm Motions in Real-time	2020
AI and Its Alternatives for Shared Autonomy in Assistive and Collaborative Robotics Workshop, RSS 2019. Robust Human-Arm to Robot-Arm Motion Remapping in Real-time for Effective Shared-Control Telemanipulation Methods	2019
UW-Madison Computer Science Student Symposium. <i>Effective Methods for Robot Telemanipulation.</i>	2019
Naval Research Lab. Effective Methods for Robot Teleoperation.	2017

SELECTED MEDIA COVERAGE

Techcrunch, This robot learns its two-handed moves from human dexterity

Tech Xplore, Shared control allows a robot to use two hands working together to complete tasks

Cosmos, The Science of Everything, Breaking: robot makes breakfast

Milwaukee Journal Sentinel, UW team designs robot hands that work together

TECHNICAL SKILLS

Programming: Rust, Python, C++, C, C#, Java, OpenGL, ROS, MATLAB, JavaScript, HTML, CSS, WebGL

Software: Blender, 3dsMax, Unity, MotionBuilder, Photoshop, Illustrator, Premier Pro, After Effects, Maya, MudBox, Office