CAUSALITY-INSPIRED SPATIAL-TEMPORAL EXPLANATIONS FOR DYNAMIC GRAPH NEURAL NETWORKS

Hooman Zolfaghari

AGENDA

- Introduction
- Problem Definition
- Proposed Method
- Experiments
- Related Work
- Conclusion

ZOOM

- Recent methods have emerged to provide explanations for GNNs
- · Difference between this work and them
- Addressed the critical challenges associated with interpretability in DyGNNs.
- Superior performance of DyGNNExplainer in both explanation tasks and real predictions
- Generated synthetic dynamic datasets tailored for dynamic graph interpretability tasks for similar future work

CONCLUSION

INTRODUCTION

PROBLEM DEFINITION

OVERVIEW OF THE TARGET MODEL

Dynamic Graph Neural Network (DyGNN)

- $f = f_d \circ f_a$
- $f_a: \mathcal{G}_{1:T} \to \mathcal{R}$
 - Aggregation Function: Captures temporal structures and feature patterns
 - Input: Dynamic graphs $\mathcal{G}_{1:T}$ over T time steps.
 - Output: High-dimensional graph representation in ${\mathcal R}$
- Downstream Task: $f_d: \mathcal{R} \to \mathcal{Y}$
 - Downstream Task Function: Transforms graph representation to label space.
 - Output: Final label prediction in ${\mathcal Y}$

OVERVIEW OF THE TARGET MODEL (CONT.)

Dynamic Graph Structure

- Input at Each Time Step t: $G_t = (X_t, A_t)$
- Node Attribute Matrix: $X_t \in \mathbb{R}^{|V| \times D}$
 - |V|: Number of nodes.
 - *D*: Dimension of node attributes.
- Adjacency Matrix: $A_t \in \mathbb{R}^{|V| \times |V|}$

OBJECTIVE

Explanation Objective Critical Criteria for DyGNNs

1. Fidelity

- Explanations (dynamic subgraphs) should accurately reflect the model's behavior around the input graphs.
- Explanatory subgraphs, when fed back into the model, should produce similar predictions as the original dynamic graphs.

2. Interpretability

- Explanations should highlight the most important parts of the input while ignoring irrelevant components.
- Spatial Interpretability: Identifies key subgraphs within each graph
- Temporal Interpretability: Identifies key time steps contributing to the prediction

OBJECTIVE (CONT.)

Model-Agnostic Explainer. Generative Model ${\mathcal F}$

- Identifies aspects of the input that contribute to DyGNN's predictions.
- Meets both fidelity and interpretability criteria.
- Model-Agnostic: Can explain any black-box DyGNN without needing access to its internal mechanisms or ground-truth labels.
- Focus: providing spatial-temporal explanations (dynamic subgraph set) for dynamic graph structures.

- Framework Overview •
- A Causal View On DyGNNs
 - Backdoor Adjustments •
- Disentangling Complex Causal Relationships •

PROPOSED METHOD

Causality-Inspired Spatial-Temporal DyGNN Explainer

FRAMEWORK OVERVIEW

- Construct a Structural Causal Model (SCM), enabling a comprehensive understanding of dynamic graphs
- 2. generate causal and dynamic soft masks to enable **backdoor adjustment**, to **intervene** in the targeting causal and dynamic factors
- 3. Use:
 - Contrastive Loss: Separates trivial and causal relationships
 - Dynamic Loss: Disentangles static and dynamic relationships
- 4. Use Prediction & Sparsity Loss: Enhance prediction accuracy and interpretability

FRAMEWORK OVERVIEW

CAUSAL VIEW

- $\mathcal{T} \leftarrow \mathcal{G} \rightarrow \mathcal{C}$:
 - C: Genuine causal relationships
 - T: Trivial relationships (data biases/spurious patterns)
- $\blacksquare \quad \mathcal{T} \to \mathcal{R} \leftarrow \mathcal{C}$
 - \mathcal{R} : high-dimensional representation of dynamic graph node data.
 - Uses both \mathcal{T} and \mathcal{C} to extract discriminative information.
- $\mathcal{D} \to \mathcal{R} \leftarrow \mathcal{S}$: Causal relationships consist of dynamic relationship and static relationship
- ${\mathcal R} o {\mathcal Y}$: Ultimate aim of dynamic graph representation learning to predict graph properties

G: graph data
C: causal factor

S: static factor

y: prediction

T: trivial factor
D: dynamic factor

R: representation

CAUSAL VIEW

Backdoor Paths from the SCM:

- Path 1: $\mathcal{C} \leftarrow \mathcal{G} \rightarrow \mathcal{T} \rightarrow \mathcal{R} \rightarrow \mathcal{Y}$
 - Issue: Tacts as a confounder between G and Y
 - Consequence: Misleading correlation between **C** and **Y** leading to incorrect predictions
- Path 2: $\mathcal{D} \leftarrow \mathcal{C} \rightarrow \mathcal{S} \rightarrow \mathcal{R} \rightarrow \mathcal{Y}$
 - Issue: S acts as a confounder between C and Y
- Thus:
 - It is important to <u>block backdoor paths</u> to ensure DyGNNs <u>utilize genuine causal</u> <u>relationships</u> without interference from confounders

BACKDOOR ADJUSTMENT

- Safeguard DyGNNs against confounding factors and distinguish between dynamic and static relationships
- Focus: representation learning that eliminates the backdoor path
- Do-Calculus on T:
 - Estimate $P(\mathcal{Y}|do(\mathcal{C}))$ without interference from \mathcal{T}
- Do-Calculus on \mathcal{D} :
 - Estimate $P(\mathcal{Y}|do(\mathcal{D}))$ eliminating backdoor from \mathcal{S}

BACKDOOR ADJUSTMENT

Challenge:

- ullet Can't directly employ the standard backdoor adjustment method due to confounder ${\mathcal T}$
- Merge the estimation of $P(Y|do(\mathcal{C}))$ with that of $P(Y|do(\mathcal{D}))$: $P(Y|do(\mathcal{D})) = \sum P(Y|do(\mathcal{C}))P(\mathcal{S}) = \sum P(\mathcal{S})\sum P(Y|\mathcal{G})P(\mathcal{T})$
- No explicit information is available for the identification of trivial, dynamic, and static relationships.

- Casual soft masks for Casual relationship at t^{th} time step as $M_t^{\mathcal{C}} \in \mathbb{R}^{|V| \times |V|}$.
- Each element represents an attention score typically in [0,1].
- Complementary Mask: $\overline{M} = 1 M$
- Partition dynamic graph set as:
 - Casual set $G_{1:T}^{\mathcal{C}} = (X_{1:T}, A_{1:T} \oplus M_{1:T}^{\mathcal{C}})$
 - Trivial set $G_{1:T}^{\mathcal{T}} = (X_{1:T}, A_{1:T} \oplus \overline{M}_{1:T}^{\mathcal{C}})$
 - Elementwise dot product : ⊕

Disentangling Complex Causal Relationships

- Similarly, denote the dynamic soft masks as $M_t^{\mathcal{D}} \in \mathbb{R}^{|V| \times |V|}$, to extract dynamic relationships and its complementary to extract the static relationships.
- Dynamic Casual set $G_{1:T}^{\mathcal{D}} = (X_{1:T}, A_{1:T} \oplus M_{1:T}^{\mathcal{C}} \oplus M_{1:T}^{\mathcal{D}})$
- Static Casual set $G_{1:T}^{\mathcal{S}} = (X_{1:T}, A_{1:T} \oplus M_{1:T}^{\mathcal{C}} \oplus \overline{M}_{1:T}^{\mathcal{D}})$
- The ground-truth trivial set, dynamic causal set, and static causal set are unavailable in real world applications.
- So, we aim to capture the trivial, dynamic, and static relationships from the full graph by learning the masks.

Estimating soft mask

- dynamic VGAE-based encoder-decoder to estimate the soft masks of explainable subgraphs.
- At the t-th time step, the causal soft mask matrix can be calculated as

$$\mathbf{M}_{t}^{\mathcal{C}} = f_{v}\left(\mathbf{X}_{1:t}, \mathbf{A}_{1:t}; \Theta_{\mathcal{C}}\right) = p(\mathbf{M}_{t}^{\mathcal{C}} \mid \mathbf{H}_{t}) q(\mathbf{H}_{t} \mid \mathbf{G}_{1:t})$$

Latent representation calculation

$$q(\mathbf{H}_{t} \mid \mathbf{G}_{1:t}) = \prod_{i=1}^{N} q(\mathbf{h}_{t,i} \mid \mathbf{G}_{1:t}), q(\mathbf{h}_{t,i} \mid \mathbf{G}_{1:t}) = \mathcal{N}(\mathbf{h}_{t,i} \mid \boldsymbol{\mu}_{t,i}, \operatorname{diag}(\boldsymbol{\sigma}_{t,i}^{2}))$$

• Generating explainable subgraphs:

$$p(\mathbf{M}_{t}^{\mathcal{C}} \mid \mathbf{H}_{t}) = \prod_{i=1}^{N} \prod_{j=1}^{N} p\left(\mathbf{M}_{t,ij}^{\mathcal{C}} \mid \mathbf{h}_{t,i}, \mathbf{h}_{t,j}\right), p\left(\mathbf{M}_{t,ij}^{\mathcal{C}} = 1 \mid \mathbf{h}_{t,i}, \mathbf{h}_{t,j}\right) = g\left(\mathbf{h}_{t,i}, \mathbf{h}_{t,j}\right)$$

- static relationship S can also be treated as the co-founder between D and Y, just like the trivial relationship T respect to C and Y.
- The same VGAE-based encoder-decoder framework, different parameters Θ_D :

$$\mathbf{M}_{t}^{\mathcal{D}} = f_{v} \left(\mathbf{X}_{1:t}, \mathbf{A}_{1:t} \oplus \mathbf{M}_{1:t}^{\mathcal{C}}; \Theta_{\mathcal{D}} \right)$$

- Now we have adjacency matrix of Casual Set, Dynamic Causal Set, Static Causal Set
- We need to disentangle the trivial, dynamic, and static relationships

Disentangling trivial and causal

- Objective: Ensure Explanation Fidelity
 - Causal Subgraph Set: Target for explanations, representing essential information.
 - Trivial Subgraph Set: Treated as noise, serving as negative examples.
- Approach:
 - Fidelity Criterion: Explanations with causal subgraphs should mimic the original graph's behavior.
 - Negative Treatment: Trivial subgraphs should not influence the model's predictions.

Disentangling trivial and causal

- Methodology: Embedding Extraction:
- <u>Utilize the pre-trained aggregation function from the DyGNN.</u>
- During each time step t:
 - f_a would generate the embeddings via extracting the essential information until time t, for:
 - Original Graph Set $G_{1:t}$, Causal Subgraph Set $G_{1:t}^{\mathcal{C}}$, Trivial Subgraph Set $G_{1:t}^{\mathcal{T}}$.

$$\mathbf{R}_t = f_a(\mathbf{G}_{1:t}), \mathbf{R}_t^{\mathcal{C}} = f_a(\mathbf{G}_{1:t}^{\mathcal{C}}), \mathbf{R}_t^{\mathcal{T}} = f_a(\mathbf{G}_{1:t}^{\mathcal{T}})$$

The above outputs can be the node (graph) embedding for downstream tasks.

Disentangling trivial and causal

- Utilize contrastive learning
- Ensure the semantic similarity between the causal embedding $e_t^{\it C}$ and the original embedding e_t
- Enlarging the semantic distance between the causal embedding $e_t^{\mathcal{C}}$ and the trivial embedding $e_t^{\mathcal{T}}$.

$$\mathcal{L}_c = \frac{1}{T} \sum_{t=1}^{T} \log \frac{\exp \left(s(\mathbf{e}_t, \mathbf{e}_t^{\mathcal{C}}) / \tau \right)}{\exp \left(s(\mathbf{e}_t, \mathbf{e}_t^{\mathcal{C}}) / \tau \right) + \alpha_1 \exp \left(s(\mathbf{e}_t^{\mathcal{T}}, \mathbf{e}_t^{\mathcal{C}}) / \tau \right) + \alpha_2 \sum_{k \neq t} \exp \left(s(\mathbf{e}_t^{\mathcal{T}}, \mathbf{e}_k^{\mathcal{C}}) / \tau \right)}$$

Disentangling static and dynamic

- Extract the dynamic relationship and static relationship
- From the dynamic causal set $G_{1:T}^D$ and static causal set $G_{1:T}^S$
- Utilize GCN with learn-able parameters Ψ_D and Ψ_S .

$$\boldsymbol{H}_{t}^{\mathcal{D}} = GCN(\boldsymbol{A}_{t}^{\mathcal{D}}, \boldsymbol{X}_{t}; \Psi_{\mathcal{D}}), \boldsymbol{H}_{t}^{\mathcal{S}} = GCN(\boldsymbol{A}_{t}^{\mathcal{S}}, \boldsymbol{X}_{t}; \Psi_{\mathcal{S}}).$$

$$\boldsymbol{H}_{1:(t-1)}^{\mathcal{D}} \longrightarrow \boldsymbol{H}_{t}^{\mathcal{D}}, \quad \boldsymbol{H}_{1:(t-1)}^{\mathcal{S}} \perp \boldsymbol{H}_{t}^{\mathcal{S}}.$$

Disentangling static and dynamic

- we can use the pre-trained aggregation function $f_a(\cdot)$ again, which extracts the dynamic relationship from the original graph set.
- Fidelity \Rightarrow Generated dynamic graph set should guarantee that f_a can extract the dynamic relationship from it
- Dynamic loss:

$$\mathcal{L}_d = \frac{1}{T-1} \sum_{t=2}^{T} d(f_a \left(\mathbf{G}_{1:(\mathbf{t}-\mathbf{1})}^{\mathcal{D}} \right), \boldsymbol{H}_t^{\mathcal{D}})$$

Spatial-temporal explanation

- Due to the highly temporal correlation for dynamic relationships, it would be difficult to disentangle the dynamic relationship.
- Treat the dynamic relationship at time t as an invention
- Define the causal effect at time t as follows:

$$\Delta \boldsymbol{H}_{t}^{\mathcal{D}} = f_{a} \left(\mathbf{G}_{1:t}^{\mathcal{D}} \right) - f_{a} \left(\mathbf{G}_{1:(t-1)}^{\mathcal{D}} \right)$$

Spatial-temporal explanation

Combine the causal effect for the dynamic relationship and the static relationship at time t as the key causal information for Gt

Propose the learn-able weight pooling method to aggregate all the information across all time slots as follows

$$\boldsymbol{H}_{T} = \sum_{t=1}^{T} t_{p}(\Delta \boldsymbol{H}_{t}^{\mathcal{D}} \oplus \boldsymbol{H}_{t}^{\mathcal{S}}) \Delta \boldsymbol{H}_{t}^{\mathcal{D}} \oplus \boldsymbol{H}_{t}^{\mathcal{S}}, \quad t_{p}(\mathbf{H}) = Softmax(\Psi_{\mathcal{P}} \mathbf{H} / \|\Psi_{\mathcal{P}}\|)$$

Spatial-temporal explanation

Use aggregated embedding to explain the ground-truth label via prediction loss

$$\mathcal{L}_p = l(f_d(\boldsymbol{H}_T), \mathcal{Y}))$$

Take the sparsity requirement for both the causal graph set and the dynamic causal graph set via the sparsity loss

$$\mathcal{L}_{s} = \sum_{t=1}^{T} \frac{\left\|\mathbf{A}_{t}^{\mathcal{C}}\right\|_{1} + \left\|\mathbf{A}_{t}^{\mathcal{D}}\right\|_{1}}{\left\|\mathbf{A}_{t}\right\|_{1}}$$

Summary:

learn the optimal explainable causal subgraphs, dynamic subgraphs, and temporal importance by solving the following optimization problems

$$\min_{\Theta, \Psi} \mathcal{L}(\Theta, \Psi) = \lambda_1 \mathcal{L}_c + \lambda_2 \mathcal{L}_s + \lambda_3 \mathcal{L}_p + \lambda_4 \mathcal{L}_d$$

- Use 4 synthetic datasets and 2 real-world datasets
- Node classification task and Graph classification task

Dataset		Node classifi	Graph classification			
Dataset	DBA-Shapes	DTree-Cycles	DTree-Grid	Elliptic	DBA-2motifs	MemeTracker
#nodes	700	871	1,231	203,769	25,000	3.3 mil.
#edges	4,110	1,950	3410	234,355	51,392	27.6 mil.
#labels	7	3	3	2	3	2

Table 2: Explanation accuracy of different models (%). Where best performances are bold.

Task	Dataset	GNNExplainer	PGExplainer	Gem	OrphicX	DyGNNExplainer
Node cls.	DBA-Shapes	92.1	92.9	93.6	94.3	97.8*
	DTree-Cycles	92.8	93.7	94.4	96	98.2*
	DTree-Grid	85.2	85.9	87.1	90.5	94.2*
	Elliptic	92.4	94.1	94.6	96.1	98.7*
Graph cls.	DBA-2motifs	86.5	88.0	90.7	91.4	96.3*
	MemeTracker	88.2	89.2	91.0	91.9	97.4*

^{&#}x27;*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. 'cls.' is short for classification.

- Explanation fidelity: We compare the predicted labels of explanatory subgraphs with the predicted labels of the original graphs as generated by the target model.
- Explanation interpretability analysis:
 The explanation subgraphs should exhibit a high degree of sparsity.
 Measure the number of subgraph edges

Case Study

Prediction accuracy analysis

Table 3: Prediction accuracy of different models (%). Where best performances are bold.

Dataset	GNNExplainer	PGExplainer	Gem	OrphicX	Target	DyGNNExplainer
DBA-Shapes	35.5	36.3	38.5	38.7	40.2	44.6*
Elliptic	39.7	45.6	43.5	47.8	84.3	89.2*

^{*&}quot; indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline.

RELATED WORK

- Recent methods have emerged to provide explanations for GNNs
- Difference between this work and them

RELATED WORK

- Methods predominantly aim to generate input-dependent explanations
- GNNExplainer (Ying et al., 2019) seeks soft masks for edges and node features through mask optimization to explain predictions
- Typically explain each instance individually and lack the ability to generalize graphs

- PGExplainer (Luo et al., 2020)
 proposes learning a mask predictor for
 edge masks to provide explanations.
- XGNN (Yuan et al., 2020) focuses on investigating graph patterns leading to specific classes
- In contrast to these approaches, this work leverages **causality** to achieve faithful explanations

- Addressed the critical challenges associated with interpretability in DyGNNs.
- Superior performance of DyGNNExplainer in both explanation tasks and real predictions
- Generated synthetic dynamic datasets tailored for dynamic graph interpretability tasks for similar future work

CONCLUSION

THANK YOU

Hooman Zolfaghari