Gwinnett School of Math, Science, and Technology

Multivariable Calculus Yearlong Notes

Anish Goyal 1st Period Donny Thurston Educator

2023-2024

Table of Contents

1	Cha	apter 1: Systems of Linear Equations and Matrices	6
	1.1	Matrix Operations	6
		1.1.1 Addition & Subtraction	6
		1.1.2 Scalar Multiplication	6
		1.1.3 Matrix Multiplication	6
		1.1.4 Properties of Matrix Arithmetic	7
		1.1.5 Examples	7
	1.2	Transpose of a Matrix	8
		1.2.1 Transpose Matrix Properties	8
	1.3	Homework — "Matrix Stuff" (08/03/2023)	9
		1.3.1 Suppose that A, B, C, D and E are matrices with the following sizes:	9
		1.3.2 Consider the matrices	9
2	Intr	o to Systems	11
_	2.1	•	12
			12
			12
	2.2		13
	2.3		13
		, ,	13
	2.4		13
		2.4.1 Example 2: again	14
			14
			14
			15
	2.5		15
		2.5.1 Examples	16
	2.6	Gaussian Elimination With Back-Substitution	16
		2.6.1 Goal:	16
		2.6.2 Gaussian Elimination Homework Problem (08/09/2023)	17
	2.7	Gauss-Jordan Elimination	18
		2.7.1 Goal:	18
	2.8	Matrix Properties, Equations, and Inverses	18
		2.8.1 With Real Numbers	18
			18
		2.8.2.1 Multiply:	18
		2.8.3 Matrix Inverses	19
3	Cha	apter 2: Determinants	20
	21	Prior Knowledge:	20

3.2	Minor	s & Cofa	ctors	20			
	3.2.1	Example	e	20			
3.3	Cofac	tor Expa	nsion	21			
	3.3.1	Example	e	21			
	3.3.2	Does th	ne method generalize to 2×2 matrices?	22			
	3.3.3	Find the	e determinant of a 4×4	22			
3.4				22			
	3.4.1	Example	e	23 23			
3.5	_	「riangular Matrices					
3.6 An Important Definition							
3.7	A Pair of Theorems						
	3.7.1		m: If a square matrix A has a row of column of zeros, then				
			0				
	3.7.2	Theore	m: If A is a square matrix, then $det(A) = det(A^T) \dots \dots \dots$				
3.8			nework Problems	25			
	3.8.1		an Elimination" (08/11/2023)				
		3.8.1.1	Solve this system using Gaussian Elimination				
			Solve this system using Gaussian Elimination				
	3.8.2		es and Determinants" (08/14)	26			
		3.8.2.1	9	26			
	3.8.3	3.8.2.2		26			
	3.8.3		s and Determinants (08/15)	27 27			
	3.8.3.1 Use a matrix equation to solve the following problems: 3.8.4 Consistent Systems (08/21)						
	3.6.4	3.8.4.1	Solve the linear systems together by reducing the appro-	28			
		3.0.4.1	priate augmented matrix	28			
		3812	Determine the conditions on <i>b</i> , if any, in order to guarantee	2.0			
		5.0.4.2	that the linear system is consistent	29			
	3.8.5	Anothe	r "determining the conditions" problem:	29			
	3.8.6 Triangular and Diagonal Matrices						
	0.0.0	3.8.6.1	Find A ²	30			
		3.8.6.2	Find A^{-k} , such that k is some nonzero constant	31			
		3.8.6.3	Find a diagonal matrix A that satisfies the given condition.	33			
	3.8.7	Determ	inants and Triangular Matrices (08/29)				
		3.8.7.1		34			
		3.8.7.2	Find all values of λ such that $ A = 0$				
		3.8.7.3	For the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{bmatrix}$ find the determinant 3 differ-				
			ent ways with cofactor expansion. Pick different rows and				
			columns each time	35			
			COMMINIS CACITURIES	J			

			3.8.7.4	Evaluate det(A) by a cofactor expansion along a row or column of your choice	36
			3.8.7.5	Evaluate the determinant of the following matrices by just	50
				looking at them	36
			3.8.7.6	·	36
		3.8.8	Row ope	erations and Determinants (08/31)	37
			3.8.8.1	Find the determinant of $\begin{bmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{bmatrix}$ WITHOUT using co-	
				factor expansion	37
			3.8.8.2	factor expansion	38
		3.8.9	Adioints	and Cramer's Rule (09/05)	39
		0.0.0	,,	[2 5 5]	
			3.8.9.1	Find the inverse of $A = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$ using the adjoint method	39
			3.8.9.2	Solve the following system of equations using Cramer's Rule	40
4	Cha	pter 5:	Eigenve	ectors and Eigenvalues	41
	4.1				41
		4.1.1	Example	es	41
			4.1.1.1	es	41
				Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \vec{u} and \vec{v} eigenvectors	
	4.0				42
	4.2	Eigenv	ector HC) γ Δ		42
		4.2.1	$A = \begin{bmatrix} 7 & 3 \\ 2 & 3 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 3 & 2 \\ 0 & 4 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \dots \dots \dots$	42
	4.3	Findin	g Eigenva	alues and Eigenvectors (11/07)	42
		4.3.1	Find the	e characteristic equation and the eigenvalues of $A =$	
			$\begin{bmatrix} 3 & 0 \\ \frac{1}{5} & -1 \end{bmatrix}$	5	
			$\begin{bmatrix} \frac{1}{5} & -1 \\ 1 & 1 \end{bmatrix}$	5 0 -2	43
		4.3.2	Find the	e characteristic equation and the eigenvalues of $A =$	
			[-1 0 -1 3	1 0 -1	43
			L-4 13	-1]	

	4.3.3	Find the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$	44
	4.3.4	Find the eigenvalues of A^3 if $A = \begin{bmatrix} \frac{1}{2} & 4 & 5 & -2 \\ 0 & -1 & 3 & -8 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 4 \end{bmatrix}$	44
	4.3.5	Give me a matrix with eigenvalues $\lambda = 0, 2, 5 \dots \dots \dots$	44
	4.3.6	Finding eigenvectors!	45
4.4	Diago	nalization and Similar Triangles	45
	4.4.1	Properties of Similar Matricces	46
	4.4.2	Procedure	46
	4.4.3	Example: Find a matrix P that diagonalizes A and compute $P^{-1}AP$.	46
	4.4.4	Conclusion	47
4.5	More	on Similar Matrices	48
	4.5.1	Example	48
	4.5.2		49
		4.5.2.1 Theorem: Geometric and Algebraic Multiplicity	49
4.6	Simila		49
	4.6.1	Warm-Up	49
	4.6.2		49
	4.6.3	Suppose that a characteristic polynomial of some matrix A is found	
		to be:	50

1 Chapter 1: Systems of Linear Equations and Matrices

1.1 Matrix Operations

- Matrix operations are given as: rows x columns

1.1.1 Addition & Subtraction

Two matrices can be added/subtracted \iff they have the same dimensions.

1.1.2 Scalar Multiplication

• Scalar multiplication is defined as multiplying each element of a matrix by a number

$$3\begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 15 & 6 \end{bmatrix}$$

1.1.3 Matrix Multiplication

- We can **only** multiply an (m x n) by (n x p) matrix.
- The resulting matrix will be (m x p)

1.1.4 Properties of Matrix Arithmetic

(a)
$$A + B = B + A$$
 (Commutative law for addition)

(b)
$$A + (B + C) = (A + B) + C$$
 (Associative law for addition)

(c)
$$A(BC) = (AB)C$$
 (Associative law for multiplication)

(d)
$$A(B + C) = AB + AC$$
 (Left distributive law)

(e)
$$(B + C)A = BA + CA$$
 (Right distributive law)

(f)
$$A(B-C) = AB - AC$$

(g)
$$(B-C)A = BA - CA$$

(h)
$$a(B+C) = aB + aC$$

(i)
$$a(B-C) = aB - aC$$

$$(j)$$
 $(a+b)C = aC + bC$

(k)
$$(a-b)C = aC - bC$$

(I)
$$a(bC) = (ab)C$$

(m)
$$a(BC) = (aB)C = B(aC)$$

1.1.5 Examples

1.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 4 \\ 3 \cdot 1 + 4 \cdot 3 & 3 \cdot 2 + 4 \cdot 4 \end{bmatrix}$$

$$= \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

2.

$$\begin{bmatrix} 2 & -3 \\ 5 & 0 \\ -2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \cdot (-1) + (-3) \cdot 3 \\ 5 \cdot (-1) + 0 \cdot 3 \\ -2 \cdot (-1) + 4 \cdot 3 \\ 1 \cdot (-1) + 2 \cdot 3 \end{bmatrix}$$

$$= \begin{bmatrix} -11 \\ -5 \\ 14 \\ 5 \end{bmatrix}$$

3.

$$\begin{bmatrix} 4 & 5 & -1 \end{bmatrix} \begin{bmatrix} 8 \\ 0 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \cdot 8 + 5 \cdot 0 + (-1) \cdot 2 \end{bmatrix}$$
$$= \begin{bmatrix} 30 \end{bmatrix}$$

1.2 Transpose of a Matrix

The transpose of an (m x n) matrix is the (n x m) matrix where the rows and columns are swapped.

If
$$B = \begin{bmatrix} 4 & 2 \\ -1 & 0 \\ 3 & 5 \end{bmatrix}$$
, $B^T = \begin{bmatrix} 4 & -1 & 3 \\ 2 & 0 & 5 \end{bmatrix}$

$$B \cdot B^{T} = \begin{bmatrix} 4 & 2 \\ -1 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 4 & -1 & 3 \\ 2 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \cdot 4 + 2 \cdot 2 & 4 \cdot (-1) + 2 \cdot 0 & 4 \cdot 3 + 2 \cdot 5 \\ (-1) \cdot 4 + 0 \cdot 2 & (-1) \cdot (-1) + 0 \cdot 0 & (-1) \cdot 3 + 0 \cdot 5 \\ 3 \cdot 4 + 5 \cdot 2 & 3 \cdot (-1) + 5 \cdot 0 & 3 \cdot 3 + 5 \cdot 5 \end{bmatrix}$$

$$= \begin{bmatrix} 20 & -4 & 22 \\ -4 & 1 & -3 \\ 22 & -3 & 34 \end{bmatrix}$$

- The transpose of a matrix is **always** multiplicative with the original.
- There is also a main diagonal that is the diagonal from the top left to the bottom right, but only square matrices have these.
- The **trace** of a square matrix A is equal to the sum of all the elements on the main diagonal: tr(A)

1.2.1 Transpose Matrix Properties

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$ $(A B)^T = A^T B^T$ $(kA)^T = kA^T$ $(AB)^T = B^T A^T$

1.3 Homework — "Matrix Stuff" (08/03/2023)

1.3.1 Suppose that A, B, C, D and E are matrices with the following sizes:

A B C D E
$$(3 \times 2)$$
 (2×3) (3×3) (3×2) (2×3)

For each matrix operation, sort them into undefined if the operation can't be done, or defined if it can along with the correct dimensions of the outcome.

Undefined	Defined; (4 × 2)	Defined; (5 × 5)	Defined; (5 × 2)
BA AB + B E ^T A AE + B	AC + D	E(A + B)	$(A^T + E)D$ E(AC)

1.3.2 Consider the matrices

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

In each part, compute the given expression (where possible).

2. **2A^T + C**

$$2A^{T} + C = 2\begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}^{T} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= 2\begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -2 & 2 \\ 0 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$

3. $B^{T} + 5C^{T}$

$$B^{T} + 5C^{T} = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}^{T} + 5\begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}^{T}$$
$$= \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} + 5\begin{bmatrix} 1 & 3 \\ 4 & 1 \\ 2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 15 \\ 20 & 5 \\ 10 & 25 \end{bmatrix}$$

= Undefined

4. $2E^{T} - 3D^{T}$

$$2E^{T} - 3D^{T} = 2\begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}^{T} - 3\begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}^{T}$$

$$= 2\begin{bmatrix} 6 & -1 & 4 \\ 1 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix} - 3\begin{bmatrix} 1 & -1 & 3 \\ 5 & 0 & 2 \\ 2 & 1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & -2 & 8 \\ 2 & 2 & 2 \\ 6 & 4 & 6 \end{bmatrix} - \begin{bmatrix} 3 & -3 & 9 \\ 15 & 0 & 6 \\ 6 & 3 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -5 & -1 \\ -13 & 2 & -4 \\ 0 & 1 & -6 \end{bmatrix}$$

5. tr(**DE**)

$$tr(DE) = tr \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

$$= tr \begin{pmatrix} 1 \cdot 6 + 5 \cdot (-1) + 2 \cdot 4 & 1 \cdot 1 + 5 \cdot 1 + 2 \cdot 1 & 1 \cdot 3 + 5 \cdot 2 + 2 \cdot 3 \\ (-1) \cdot 6 + 0 \cdot (-1) + 1 \cdot 4 & (-1) \cdot 1 + 0 \cdot 1 + 1 \cdot 1 & (-1) \cdot 3 + 0 \cdot 2 + 1 \cdot 3 \\ 3 \cdot 6 + 2 \cdot (-1) + 4 \cdot 4 & 3 \cdot 1 + 2 \cdot 1 + 4 \cdot 1 & 3 \cdot 3 + 2 \cdot 2 + 4 \cdot 3 \end{bmatrix}$$

$$= tr \begin{pmatrix} 9 & 8 & 19 \\ -2 & 0 & 0 \\ 32 & 9 & 25 \end{bmatrix}$$

$$= 34$$

2 Intro to Systems

What are we looking for?

Lines: How many possible solutions?

- · Infinite solutions
- One solution
- No solutions

Planes: How many possible solutions?

- · Infinite solutions
- No solutions

What does linear actually mean?

- The word linear *really* means that you've got equations with variables and **all** of the variables are degree one.
- This means that there is no limit to the number of dimensions in a linear system.

Linear Systems in Three Unknowns

2.1 Review: Solve the following systems

1.
$$\begin{cases} 2x + y = 10 \\ 3x - y = 5 \end{cases}$$

$$5x = 15$$

$$x = 3$$

$$2(3) + y = 10$$

$$6 + y = 10$$

$$y = 4$$

2.
$$\begin{cases} 2x + y = 10 \\ 6x + 3y = 10 \end{cases}$$

$$y = 10 - 2x$$

 $6x + 3(10 - 2x) = 10$
 $6x + 30 - 6x = 10$
 $30 = 10$: no solution

3.
$$\begin{cases} 5x - 2y = 4 \\ 15x - 6y = 12 \end{cases}$$

$$0 = 0$$

12 = 12: infinite solutions

2.1.1 Consistent

2.1.2 Inconsistent

- A system of equations is **consistent** if it has at least one solution.
- A system of equations is inconsistent if it has no solutions.

2.2 The Augmented Matrix

$$\begin{cases} x - y + 2z = 5 \\ 2x - 2y + 4z = 10 \longrightarrow \begin{bmatrix} 1 & -1 & 2 & 5 \\ 2 & -2 & 4 & 10 \\ 3 & -3 & 6 & 15 \end{bmatrix}$$

2.3 Elementary Row Operations

- 1. Interchange 2 rows
- 2. Multiply a row by a non-zero constant
- 3. Add/substract a multiple of one row to/from another row

Doing these things changes the matrix, but it's the same system!

2.3.1 Example 1... again

$$\begin{cases} 2x + y = 10 \\ 3x - y = 5 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & | & 10 \\ 3 & -1 & | & 5 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 3 & -1 & | & 5 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & -\frac{5}{2} & | & -10 \end{bmatrix}$$

$$\xrightarrow{-\frac{2}{5}R_2} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{R_1 - \frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 4 \end{bmatrix}$$

And so... x = 3 and y = 4!

2.4 Connection to Matrices

If we can make a system's matrix look like

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & c_1 \\ 0 & 1 & 0 & c_2 \\ 0 & 0 & 1 & c_3 \end{array}\right],$$

then the solution to the system will be the ordered triple (c_1, c_2, c_3) .

2.4.1 Example 2: again

$$\begin{cases} 2x + y = 10 \\ 6x + 3y = 10 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & | & 10 \\ 6 & 3 & | & 10 \end{bmatrix} \xrightarrow{\frac{1}{2}R1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 6 & 3 & | & 10 \end{bmatrix} \xrightarrow{R2-6R1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & 0 & | & -20 \end{bmatrix}$$

This is inconsistent, so there is no solution.

2.4.2 Example 3: again

$$\begin{cases} 5x - 2y = 4 \\ 15x - 6y = 12 \end{cases}$$

$$\begin{bmatrix} 5 & -2 & | & 4 \\ 15 & -6 & | & 12 \end{bmatrix} \xrightarrow{\frac{1}{5}R1} \begin{bmatrix} 1 & -\frac{2}{5} & | & \frac{4}{5} \\ 15 & -6 & | & 12 \end{bmatrix} \xrightarrow{R2-15R1} \begin{bmatrix} 1 & -\frac{2}{5} & | & \frac{4}{5} \\ 0 & 0 & | & 0 \end{bmatrix}$$

Since 0 = 0, there are infinitely many solutions.

2.4.3 Example 4: Solve the following system

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix} \xrightarrow{R3+4R1} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \end{bmatrix} \xrightarrow{R3+\frac{3}{2}R2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & 0 & -1 & 3 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & -3 & 13 & -9 \end{bmatrix} \xrightarrow{R_3+3R_2} \begin{bmatrix} 1 & 0 & -7 & 8 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{R_1+7R_3} \begin{bmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Therefore the solution to (x_1, x_2, x_3) is (29, 16, 3).

2.4.4 Elementary Row Operations & REF Homework Problem (08/08/2023)

$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ -1 & -2 & 3 & 1 \\ 3 & -7 & 4 & 10 \end{bmatrix} \xrightarrow{R_2+R_1} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14 \end{bmatrix} \xrightarrow{R_2-R_3} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 10 & 2 & 14 \end{bmatrix}$$

$$\xrightarrow{R_1-R_2} \begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 52 & 104 \end{bmatrix} \xrightarrow{\frac{1}{52}R_3} \begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_1-7R_3} \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Therefore, the solution to (x, y, z) is (3, 1, 2).

2.5 Gaussian Elimination

Vocabulary: A matrix is in Row Echelon Form (REF) if:

- (a) Any rows of all zeroes are placed at the bottom of the matrix
- (b) All other rows have a leading 1 ("pivot")
- (c) As we move down the matrix, each leading 1 is further to the right than the 1 above it

A matrix is in Row Reduced Echelon Form if the three above conditions are met in adition to:

(d) Each column with a leading 1 has all other entries in the column as a 0. ("pivot column")

2.5.1 Examples

2.6 Gaussian Elimination With Back-Substitution

2.6.1 Goal:

To get the augmented matrix in REF

Solve:
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 9 \\ -x_1 + 3x_2 = -4 \\ 2x_1 - 5x_2 + 5x_3 = 17 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{\stackrel{R_2 + R_1}{R_3 - 2R_1}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & -1 & -1 \end{bmatrix} \xrightarrow{\stackrel{R_1 + 2R_2}{R_3 + R_2}} \begin{bmatrix} 1 & 0 & 9 & 19 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{\stackrel{1}{2}R_3} \begin{bmatrix} 1 & 0 & 9 & 19 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$x + 9z = 19$$

$$y + 3z = 5$$

$$z = 2$$

$$\therefore z = 2, y = 5 - 3z, x = 19 - 9z$$

$$z = 2, y = 5 - 3(2), x = 19 - 9(2)$$

$$z = 2, y = -1, x = 1$$

RREF? ×

Therefore, the solution (x_1, x_2, x_3) is (1, -1, 2).

2.6.2 Gaussian Elimination Homework Problem (08/09/2023)

$$\begin{cases}
-2w & + y + z = -3 \\
x + 2y - z = 2 \\
-3w + 2x + 4y + z = -2 \\
-w + x - 4y - 7z = -19
\end{cases}$$

$$\begin{bmatrix} -2 & 0 & 1 & 1 & | & -3 \\ 0 & 1 & 2 & -1 & | & 2 \\ -3 & 2 & 4 & 1 & | & -2 \\ -1 & 1 & -4 & -7 & | & -19 \end{bmatrix} \xrightarrow{R_4} \begin{bmatrix} -1 & 1 & -4 & -7 & | & -19 \\ 0 & 1 & 2 & -1 & | & 2 \\ -2 & 0 & 1 & 1 & | & -3 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 4 & 7 & | & 19 \\ 0 & 1 & 2 & -1 & | & 2 \\ -3 & 2 & 4 & 1 & | & -2 \\ -2 & 0 & 1 & 1 & | & -3 \end{bmatrix} \xrightarrow{R_3 + 3R_1} \begin{bmatrix} 1 & -1 & 4 & 7 & | & 19 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & -2 & 9 & 15 & | & 35 \end{bmatrix} \xrightarrow{R_3 + R_2} \xrightarrow{R_3 + 2R_2} \begin{bmatrix} 1 & 0 & 6 & 6 & | & 21 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & 0 & 18 & 21 & | & 57 \\ 0 & 0 & 13 & 13 & | & 39 \end{bmatrix} \xrightarrow{\frac{18}{18}R_3} \begin{bmatrix} 1 & 0 & 6 & 6 & | & 21 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & 0 & 1 & | & \frac{7}{19} & | & \frac{19}{19} &$$

2.7 Gauss-Jordan Elimination

2.7.1 Goal:

To get the matrix into RREF

Solve:
$$\begin{cases} x_1 & -3x_3 = -2 \\ 3x_1 + x_2 - 2x_3 = 5 \\ 2x_1 + 2x_2 + x_3 = 4 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 3 & 1 & -2 & | & 5 \\ 2 & 2 & 1 & | & 4 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 2 & 7 & | & 8 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 0 & -7 & | & -14 \end{bmatrix}$$

$$\xrightarrow{\frac{-1}{7}R_3} \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \xrightarrow{\frac{R_1 + 3R_3}{R_2 - 7R_3}} \begin{bmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \Longrightarrow \begin{cases} X_1 = 4 \\ X_2 = -3 \\ X_3 = 2 \end{cases}$$

2.8 Matrix Properties, Equations, and Inverses

2.8.1 With Real Numbers

- If ab = bc, then a = c, if $b \neq 0$
- If ab = 0, then a = 0 or b = 0, or both

2.8.2 With Matrices

- If AB = AC, then B = C, if A is invertible
- If AB = [0], then A = [0] or B = [0], or both

2.8.2.1 Multiply:

$$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2(5) + 3(-3) & 2(-3) + 3(2) \\ 3(5) + 5(-3) & 3(-3) + 5(2) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.8.3 Matrix Inverses

- If a matrix has an inverse, it is said to be invertible or non-singular.
- If a matrix does not have an inverse, it is said to be singular.
- Every square matrix has a "special number" associated with it called the **determinant**.
- For the 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant is ad bc
- $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
- When det A = 0, the matrix is singular and has no inverse (since you cannot divide by zero)

Find the inverse of $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$

$$\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}^{-1} = \frac{1}{\det A} \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

$$= \frac{1}{(4)(2) - (3)(1)} \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{4}{5} \end{bmatrix}$$

3 Chapter 2: Determinants

3.1 Prior Knowledge:

$$\begin{bmatrix} 10 & -4 \\ -3 & -5 \end{bmatrix} = -50 - = -62$$

$$\begin{bmatrix} 2 & 4 & 3 \\ -1 & 2 & 3 \\ 3 & 0 & -2 \end{bmatrix}$$

$$= ((2 \cdot 2 \cdot -2) + (4 \cdot 3 \cdot 3) + (3 \cdot -1 \cdot 0)) - ((3 \cdot 2 \cdot 3) + (0 \cdot 3 \cdot 2) + (-2 \cdot -1 \cdot 4))$$

$$= (-8 + 36 + 0) - (18 + 0 + 8)$$

$$= 28 - 26$$

$$= 2$$

3.2 Minors & Cofactors

Given a square matrix A, the $\underline{\text{minor}}$ of matrix element a_{ij} , (M_{ij}) is the determinant of the matrix formed by removing the i^{th} row and j^{th} column from matrix A.

The <u>cofactor</u> of matrix element a_{ij} , $C_{ij} = (-1)^{i+j} \cdot M_{ij}$

3.2.1 Example

Let
$$\det \begin{bmatrix} 2 & 4 & 3 \\ -1 & 2 & 3 \\ 3 & 0 & -2 \end{bmatrix}$$
. What is the cofactor of element (1, 1)?

Cofactor checkerboard:
$$\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

$$M_{11} = \begin{vmatrix} 2 & 3 \\ 0 & -2 \end{vmatrix} = -4$$

$$C_{11} = 1 \cdot -4 = -4$$

Find the minor and cofactor of: \ a) $a_{21} = -1$

$$M_{21} = \begin{vmatrix} 4 & 3 \\ 0 & -2 \end{vmatrix} = -8$$
$$C_{21} = 8$$

b)
$$a_{33} = -2$$

$$M_{33} = \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} = 8$$

$$C_{33} = 8$$

3.3 Cofactor Expansion

- 1) Pick a row or column
- 2) Multiply every entry in that row or column by it's corresponding cofactor
- 3) Add those together. That's it

$$A = \begin{bmatrix} 6 & 7 & -1 \\ 0 & 4 & 1 \\ 2 & 5 & -3 \end{bmatrix}$$

$$det(A) = 6 \begin{pmatrix} 4 & 1 \\ 5 & -3 \end{pmatrix} + 7 \begin{pmatrix} -1 & 0 & 1 \\ 2 & -3 \end{pmatrix} + -1 \begin{pmatrix} 0 & 4 \\ 2 & 5 \end{pmatrix}$$

$$= 6(-17) + 7(2) + (-1(-8))$$

$$= -102 + 14 + 8$$

$$= -80$$

3.3.1 Example

$$A = \begin{bmatrix} 6 & 4 & 2 \\ 5 & -6 & 1 \\ 0 & 3 & 0 \end{bmatrix}$$

$$6\begin{vmatrix} -6 & 1 \\ 3 & 0 \end{vmatrix} + 4\begin{pmatrix} -\begin{vmatrix} 5 & 1 \\ 0 & 0 \end{vmatrix} \end{pmatrix} + 2\begin{vmatrix} 5 & -6 \\ 0 & 3 \end{vmatrix}$$

$$= 6(-3) + 0 + 2(15)$$

$$= -18 + 30$$

$$= 12$$

3.3.2 Does the method generalize to 2×2 matrices?

The determinant of a 1×1 matrix is... itself!

3.3.3 Find the determinant of a 4×4

$$A = \begin{bmatrix} -3 & 2 & 0 & 8 \\ 2 & 1 & 0 & -4 \\ 5 & -2 & 1 & 5 \\ 2 & 3 & 0 & 6 \end{bmatrix}$$

$$= 0 + 0 + \begin{vmatrix} -3 & 2 & 8 \\ 2 & 1 & -4 \\ 2 & 3 & 6 \end{vmatrix} + 0$$

$$= -2 \begin{vmatrix} 2 & 8 \\ 3 & 6 \end{vmatrix} + \begin{vmatrix} -3 & 8 \\ 2 & 6 \end{vmatrix} - \left(-4 \begin{vmatrix} -3 & 2 \\ 2 & 3 \end{vmatrix} \right)$$

$$= 24 - 34 - 52$$

$$= -62$$

3.4 Theorem

If A is an $n \times n$ matrix, then regardless of which row or column of A is chosen, the number obtained by multiplying the elements in that row or column by their corresponding cofactors is **always the same** and is called the determinant of A.

3.4.1 Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$

$$1 \cdot \begin{vmatrix} 1 & 0 & -1 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{vmatrix}$$

$$= \begin{pmatrix} -2 \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \end{pmatrix}$$

$$= -6$$

3.5 Triangular Matrices

Find the determinant of
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

$$\begin{vmatrix} 2 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 4 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 3 & 3 \\ 0 & 4 \end{vmatrix}$$

$$= 2(3 \cdot 4)$$

$$= 2 \cdot 12$$

$$= 24$$

If A is an $n \times n$ triangular matrix, then det(A) is equal to the product of the elements along the main diagonal.

3.6 An Important Definition

Elementary Matrix a matrix that can be obtanied from the $n \times n$ identity matrix by performing a single row operation. \

Are the following matrices elementary? 1) $\begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}$ + $(R_3 + 5R_1)$ yes 2) $\begin{bmatrix} -5 & 1 \\ 1 & 0 \end{bmatrix}$ + $(R_1 + 5R_2)$...

3.7 A Pair of Theorems

- **3.7.1** Theorem: If a square matrix A has a row of column of zeros, then det(A) = 0
- **3.7.2** Theorem: If A is a square matrix, then $det(A) = det(A^T)$

3.8 Unit 1 & 2 Homework Problems

3.8.1 "Gaussian Elimination" (08/11/2023)

3.8.1.1 Solve this system using Gaussian Elimination

$$\begin{cases} x_1 + x_2 + 2x_3 = 8 \\ -x_1 - 2x_2 + 3x_3 = 1 \\ 3x_1 - 7x_2 + 4x_3 = 10 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 8 \\ -1 & -2 & 3 & 1 \\ 3 & -7 & 4 & 10 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14 \end{bmatrix} \xrightarrow{-R_2} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & -10 & -2 & -14 \end{bmatrix}$$

$$\xrightarrow{R_3 + 10R_2} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & -52 & -104 \end{bmatrix} \xrightarrow{-\frac{1}{52}R_3} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\therefore \begin{cases} x_1 + x_2 + 2x_3 = 8 \\ x_2 - 5x_3 = -9 \Rightarrow \begin{cases} x_1 = 3 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

3.8.1.2 Solve this system using Gaussian Elimination

$$\begin{cases} x_1 - 2x_2 + 3x_3 = 0 \\ -2x_1 - 3x_2 - 4x_3 = 0 \\ 2x_1 - 4x_2 + 4x_3 = 0 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 1 & -2 & 3 & 0 \\ -2 & -3 & -4 & 0 \\ 2 & -4 & 4 & 0 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & 0 & -2 & 0 \end{bmatrix} \xrightarrow{\frac{-7}{2}R_2} \begin{bmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & \frac{2}{7} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\therefore \begin{cases} x_1 - 2x_2 + 3x_3 = 0 \\ x_2 + \frac{2}{7}x_3 = 0 \Rightarrow 1 \neq 0 \therefore \text{ no solution} \end{cases}$$

$$x_3 = 0$$

3.8.2 "Inverses and Determinants" (08/14)

3.8.2.1 Find the determinants of the following:

$$1) \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

$$\begin{vmatrix} 2 & -3 \\ 4 & 4 \end{vmatrix} = 2(4) - (-3)(4) = 8 + 12 = 20$$

$$2) \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} = 2(3) - 0(0) = 6$$

3)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1$$

3.8.2.2 Find the INVERSES of those matrices:

1)
$$\begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}^{-1} = \frac{1}{20} \begin{bmatrix} 4 & 3 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{3}{20} \\ -\frac{1}{5} & \frac{1}{10} \end{bmatrix}$$

$$2) \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \frac{1}{6} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

3)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

3.8.3 Inverses and Determinants (08/15)

3.8.3.1 Use a matrix equation to solve the following problems:

1)
$$\begin{cases} 3x_1 - 2x_2 = 1 \\ 4x_1 + 5x_2 = 3 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 3 & -2 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 4 & 5 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{23} \begin{bmatrix} 5 & 2 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{23} \begin{bmatrix} -1 \\ 9 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{23} \\ \frac{9}{23} \end{bmatrix}$$

2)
$$\begin{cases} 6x_1 + x_2 = 0 \\ 4x_1 - 3x_2 = -2 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 6 & 1 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 4 & -3 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{-22} \begin{bmatrix} -3 & -1 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{-22} \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{11} \\ -\frac{4}{11} \end{bmatrix}$$

3.8.4 Consistent Systems (08/21)

3.8.4.1 Solve the linear systems together by reducing the appropriate augmented matrix.

$$\begin{cases} x_1 - 5x_2 = b_1 \\ 3x_1 + 2x_2 = b_2 \end{cases}$$

1)
$$b_1 = 1$$
, $b_2 = 4$
2) $b_1 = -2$, $b_2 = 5$

2)
$$b_1 = -2$$
, $b_2 = 5$

First, let's solve it for the general case:

$$\begin{bmatrix} 1 & -5 & b_1 \\ 3 & 2 & b_2 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -5 & b_1 \\ 0 & 17 & b_2 - 3b_1 \end{bmatrix} \xrightarrow{\frac{1}{17}R_2} \begin{bmatrix} 1 & -5 & b_1 \\ 0 & 1 & \frac{b_2 - 3b_1}{17} \end{bmatrix} \xrightarrow{\frac{R_1 + 5R_2}{17}} \begin{bmatrix} 1 & 0 & \frac{2b_1 + 5b_2}{17} \\ 0 & 1 & \frac{-3b_1 + b_2}{17} \end{bmatrix}$$

Therefore, the solution to the general case is $(x_1, x_2) = (\frac{2b_1 + 5b_2}{17}, \frac{-3b_1 + b_2}{17})$

And so, for the specific cases:

1)
$$(x_1, x_2) = \left(\frac{2(1)+5(4)}{17}, \frac{-3(1)+4}{17}\right) = \left(\frac{13}{17}, \frac{1}{17}\right)$$

2) $(x_1, x_2) = \left(\frac{2(-2)+5(5)}{17}, \frac{-3(-2)+5}{17}\right) = \left(\frac{16}{17}, \frac{11}{17}\right)$

2)
$$(x_1, x_2) = \left(\frac{2(-2)+5(5)}{17}, \frac{-3(-2)+5}{17}\right) = \left(\frac{16}{17}, \frac{11}{17}\right)$$

3.8.4.2 Determine the conditions on b, if any, in order to guarantee that the linear system is consistent.

$$\begin{cases} x_1 + 3x_2 = b_1 \\ -2x_1 + x_2 = b_2 \end{cases}$$

$$\begin{bmatrix} 1 & 3 & b_1 \\ -2 & 1 & b_2 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & 3 & b_1 \\ 0 & 7 & b_2 + 2b_1 \end{bmatrix} \xrightarrow{\frac{1}{7}R_2} \begin{bmatrix} 1 & 3 & b_1 \\ 0 & 1 & \frac{b_2 + 2b_1}{7} \end{bmatrix} \xrightarrow{\frac{R_1 - 3R_2}{7}} \begin{bmatrix} 1 & 0 & \frac{b_1 - 3b_2}{7} \\ 0 & 1 & \frac{b_2 + 2b_1}{7} \end{bmatrix}$$

There are no conditions. The system is consistent for all values of b_1 and b_2 .

3.8.5 Another "determining the conditions" problem:

$$\begin{cases} x_1 - 2x_2 - x_3 = b_1 \\ -4x_1 + 5x_2 + 2x_3 = b_2 \\ -4x_1 + 7x_2 + 4x_3 = b_3 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & -1 & b_1 \\ -4 & 5 & 2 & b_2 \\ -4 & 7 & 4 & b_3 \end{bmatrix} \xrightarrow{\frac{R_2 + 4R_1}{R_3 + 4R_1}} \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & -3 & -2 & b_2 + 4b_1 \\ 0 & -1 & 0 & b_3 + 4b_1 \end{bmatrix} \xrightarrow{\frac{1}{3}R_2} \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & 1 & \frac{2}{3} & \frac{-b_2 - 4b_1}{3} \\ 0 & 0 & -\frac{2}{3} & \frac{b_3 + 4b_1}{3} \end{bmatrix}$$

$$\xrightarrow{\frac{-\frac{3}{2}R_3}{3}} \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & 1 & \frac{2}{3} & \frac{-b_2 - 4b_1}{3} \\ 0 & 0 & 1 & \frac{-b_3 - 4b_1}{3} \end{bmatrix}$$

Therefore, the system is consistent for all values of b_1 , b_2 , and b_3 .

3.8.6 Triangular and Diagonal Matrices

3.8.6.1 Find *A*²

1)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 1(1) + 0(0) & 1(0) + 0(-2) \\ 0(1) + (-2)(0) & 0(0) + (-2)(-2) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

$$2) A = \begin{bmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} (-6)(-6) + (0)(0) + (0)(0) & (-6)(0) + (0)(3) + (0)(0) & (-6)(0) + (0)(0) + (0)(5) \\ (0)(-6) + (3)(0) + (0)(0) & (0)(0) + (3)(3) + (0)(0) & (0)(0) + (3)(0) + (0)(5) \\ (0)(-6) + (0)(0) + (5)(0) & (0)(0) + (0)(3) + (5)(0) & (0)(0) + (0)(0) + (5)(5) \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 25 \end{bmatrix}$$

3.8.6.2 Find A^{-k} , such that k is some nonzero constant

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$A^{-k} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}^{-k}$$

$$= \begin{bmatrix} 2^{-k} & 0 & 0 & 0 \\ 0 & (-4)^{-k} & 0 & 0 \\ 0 & 0 & (-3)^{-k} & 0 \\ 0 & 0 & 0 & 2^{-k} \end{bmatrix}$$

4. Determine whether each matrix is symmetric or not.

 $\mathbf{\#} \begin{bmatrix} -8 & -8 \\ 0 & 0 \end{bmatrix}$

 $\mathbf{H} \quad \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

 $\mathbf{ii} \begin{bmatrix} 3 & 4 \\ 4 & 0 \end{bmatrix}$

 $\mathbf{H} \begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 7 \end{bmatrix}$

Symmetric

 $\begin{bmatrix} 0 & -7 \\ -7 & 7 \end{bmatrix}$

ō

ō

ō

 $\begin{bmatrix} 3 & 4 \\ 4 & 0 \end{bmatrix}$

 $\begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 7 \end{bmatrix}$

Not symmetric

 $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

 $\begin{bmatrix} -8 & -8 \\ 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 5 & -6 \\ 2 & 6 & 6 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$

32

3.8.6.3 Find a diagonal matrix A that satisfies the given condition

1)
$$A^5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{\frac{1}{5}}$$

$$= \begin{bmatrix} 1^{\frac{1}{5}} & 0 & 0 \\ 0 & (-1)^{\frac{1}{5}} & 0 \\ 0 & 0 & (-1)^{\frac{1}{5}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

2)
$$A^{-2} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-\frac{1}{2}}$$

$$= \begin{bmatrix} 9^{-\frac{1}{2}} & 0 & 0 \\ 0 & 4^{-\frac{1}{2}} & 0 \\ 0 & 0 & 1^{-\frac{1}{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3.8.7 Determinants and Triangular Matrices (08/29)

3.8.7.1 What is C_{32}

$$A = \begin{bmatrix} 2 & 3 & -1 & 1 \\ -3 & 2 & 0 & 3 \\ 3 & -2 & 1 & 0 \\ 3 & -2 & 1 & 4 \end{bmatrix}$$

$$C_{32} = (-1)^{3+2} \begin{vmatrix} 2 & -1 & 1 \\ -3 & 0 & 3 \\ 3 & 1 & 0 \end{vmatrix}$$

$$= - \begin{vmatrix} 2 & -1 & 1 \\ -3 & 0 & 3 \\ 3 & 1 & 0 \end{vmatrix}$$

$$= - \left(2 \begin{vmatrix} 0 & 3 \\ 1 & 0 \end{vmatrix} - (-1) \begin{vmatrix} -3 & 3 \\ 3 & 0 \end{vmatrix} + 1 \begin{vmatrix} -3 & 0 \\ 3 & 1 \end{vmatrix} \right)$$

$$= - (2(-3) - (-1)(-9) + 1(-3))$$

$$= - (-6 + 9 - 3)$$

3.8.7.2 Find all values of λ such that |A| = 0

$$A = \begin{bmatrix} \lambda - 2 & 1 \\ -5 & \lambda + 4 \end{bmatrix}$$

$$det(A) = (\lambda - 2)(\lambda + 4) - (-5)(1)$$

$$= \lambda^2 + 2\lambda - 8 + 5$$

$$= \lambda^2 + 2\lambda - 3$$

$$= (\lambda + 3)(\lambda - 1)$$

$$= 0$$

Therefore, $\lambda = -3, 1$

3.8.7.3 For the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{bmatrix}$ find the determinant 3 different ways with cofac-

tor expansion. Pick different rows and columns each time.

$$det(A) = 3 \begin{vmatrix} -1 & 5 \\ 9 & -4 \end{vmatrix} - 0 \begin{vmatrix} 2 & 5 \\ 1 & -4 \end{vmatrix} + 0 \begin{vmatrix} 2 & -1 \\ 1 & 9 \end{vmatrix}$$

$$= 3(-1(-4) - 5(9)) - 0(2(-4) - 5(1)) + 0(2(9) - (-1)(1))$$

$$= 3(4 - 45) - 0(-8 - 5) + 0(18 + 1)$$

$$= 3(-41) - 0(-13) + 0(19)$$

$$= 36$$

$$det(A) = 0 \begin{vmatrix} 2 & 5 \\ 9 & -4 \end{vmatrix} - 3 \begin{vmatrix} 3 & 0 \\ 1 & -4 \end{vmatrix} + 0 \begin{vmatrix} 3 & 0 \\ 2 & 5 \end{vmatrix}$$

$$= 0(2(-4) - 5(9)) - 3(3(-4) - 0(1)) + 0(3(5) - 0(2))$$

$$= 0(-8 - 45) - 3(-12 - 0) + 0(15 - 0)$$

$$= 0(-53) - 3(-12)$$

$$= 36$$

$$det(A) = 0 \begin{vmatrix} 2 & -1 \\ 9 & -4 \end{vmatrix} - 0 \begin{vmatrix} 3 & 0 \\ 1 & -4 \end{vmatrix} + 3 \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix}$$

$$= 0(2(-4) - (-1)(9)) - 0(3(-4) - 0(1)) + 3(3(-1) - 0(2))$$

$$= 0(-8 + 9) - 0(-12 - 0) + 3(-3 - 0)$$

$$= 0(1) - 0(-12) + 3(-3)$$

$$= 0 + 0 - 9$$

$$= 36$$

3.8.7.4 Evaluate det(A) by a cofactor expansion along a row or column of your choice

$$A = \begin{bmatrix} 1 & k & k^2 \\ 1 & k & k^2 \\ 1 & k & k^2 \end{bmatrix}$$

$$\det(A) = 1 \begin{vmatrix} k & k^2 \\ k & k^2 \end{vmatrix} - k \begin{vmatrix} 1 & k^2 \\ 1 & k^2 \end{vmatrix} + k^2 \begin{vmatrix} 1 & k \\ 1 & k \end{vmatrix}$$
$$= 1(k^2 - k^2) - k(1(k^2) - k^2(1)) + k^2(1(k) - k(1))$$
$$= 0$$

3.8.7.5 Evaluate the determinant of the following matrices by just looking at them.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$det(A) = 1(-1)(1) = -1$$

$$A = \begin{bmatrix} 1 & 2 & 7 & -3 \\ 0 & 1 & -4 & 1 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$det(A) = 1(1)(2)(3) = 6$$

3.8.7.6 Show that the value of the determinant is independent of θ

$$A = \begin{vmatrix} \sin \theta & \cos \theta & 0 \\ -\cos \theta & \sin \theta & 0 \\ \sin \theta - \cos \theta & \sin \theta + \cos \theta & 1 \end{vmatrix}$$

$$\det(A) = \sin\theta \begin{vmatrix} \sin\theta & 0 \\ \sin\theta + \cos\theta & 1 \end{vmatrix} - \cos\theta \begin{vmatrix} \cos\theta & 0 \\ \sin\theta + \cos\theta & 1 \end{vmatrix} + 0 \begin{vmatrix} \cos\theta & \sin\theta \\ \sin\theta + \cos\theta & \sin\theta \end{vmatrix}$$

$$=\sin\theta\left(\sin\theta(1)-0(\sin\theta+\cos\theta)\right)-\cos\theta\left(\cos\theta(1)-0(\sin\theta+\cos\theta)\right)$$

 $+0 (\cos \theta (\sin \theta) - \sin \theta (\sin \theta + \cos \theta))$

$$= \sin^2 \theta - \cos^2 \theta$$
$$= 1$$

3.8.8 Row operations and Determinants (08/31)

3.8.8.1 Find the determinant of $\begin{bmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{bmatrix}$ WITHOUT using cofactor expansion

$$det(A) = \begin{vmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & -3 & 0 \\ 0 & -2 & 1 \\ 0 & 13 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & -3 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & \frac{28}{2} \end{vmatrix}$$
$$= 1(-2)\left(\frac{28}{2}\right)$$
$$= -28$$

3.8.8.2 Find the determinant of $\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$

$$det(A) = \begin{vmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 & 3 & 1 \\ 0 & -2 & -5 & -1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 & 3 & 1 \\ 0 & -2 & -5 & -1 \\ 0 & 0 & -4 & -1 \\ 0 & 0 & -3 & 2 \end{vmatrix}$$
$$= 2(-2)(-4)(2)$$
$$= 64$$

3.8.9 Adjoints and Cramer's Rule (09/05)

3.8.9.1 Find the inverse of $A = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$ using the adjoint method

$$det(A) = 2 \begin{vmatrix} -1 & 0 \\ 4 & 3 \end{vmatrix} - 5 \begin{vmatrix} -1 & 0 \\ 2 & 3 \end{vmatrix} + 5 \begin{vmatrix} -1 & -1 \\ 2 & 4 \end{vmatrix}$$

$$= 2(-3) - 5(-3) + 5(-2)$$

$$= -6 + 15 - 10$$

$$= -1$$

$$adj(A) = \begin{bmatrix} (-1)^{1+1} \begin{vmatrix} -1 & 0 \\ 4 & 3 \end{vmatrix} & (-1)^{1+2} \begin{vmatrix} -1 & 0 \\ 2 & 3 \end{vmatrix} & (-1)^{1+3} \begin{vmatrix} -1 & -1 \\ 2 & 4 \end{vmatrix}$$

$$(-1)^{2+1} \begin{vmatrix} 5 & 5 \\ 4 & 3 \end{vmatrix} & (-1)^{2+2} \begin{vmatrix} 2 & 5 \\ 2 & 3 \end{vmatrix} & (-1)^{2+3} \begin{vmatrix} 2 & 5 \\ 2 & 4 \end{vmatrix}$$

$$(-1)^{3+1} \begin{vmatrix} 5 & 5 \\ -1 & 0 \end{vmatrix} & (-1)^{3+2} \begin{vmatrix} 2 & 5 \\ -1 & 0 \end{vmatrix} & (-1)^{3+3} \begin{vmatrix} 2 & 5 \\ 2 & 4 \end{vmatrix}$$

$$= \begin{bmatrix} (-1)(3) & -(-1)(3) & -4 + 2 \\ -(15 - 20) & 6 - 10 & -(8 - 10) \\ 5 & -5 & -2 + 5 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -3 & 3 & -2 \\ 5 & -4 & 2 \\ 5 & -5 & 3 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -3 & 5 & 5 \\ 3 & -4 & -5 \\ -2 & 2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = -\begin{bmatrix} -3 & 5 & 5 \\ 3 & -4 & -5 \\ -2 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & -5 & -5 \\ -3 & 4 & 5 \\ 2 & -2 & -3 \end{bmatrix}$$

3.8.9.2 Solve the following system of equations using Cramer's Rule

$$\begin{cases} 4x + 5y &= 2 \\ 11x + y + 2z = 3 & \longrightarrow \begin{vmatrix} 4 & 5 & 0 \\ 11 & 1 & 2 \\ x + 5y + 2z = 1 \end{vmatrix} \longrightarrow 4 \begin{vmatrix} 1 & 2 \\ 5 & 2 \end{vmatrix} - 5 \begin{vmatrix} 11 & 2 \\ 1 & 2 \end{vmatrix} = -132$$

$$\det(x) = \begin{vmatrix} 2 & 5 & 0 \\ 3 & 1 & 2 \\ 1 & 5 & 2 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 1 & 2 \\ 5 & 2 \end{vmatrix} - 5 \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix}$$

$$= 2(2 - 10) - 5(6 - 2)$$

$$= -16 - 20$$

$$= -36$$

$$\det(y) = \begin{vmatrix} 4 & 2 & 0 \\ 11 & 3 & 2 \\ 1 & 1 & 2 \end{vmatrix}$$

$$= 4 \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix} - 2 \begin{vmatrix} 11 & 2 \\ 1 & 2 \end{vmatrix}$$

$$= 4(6 - 2) - 2(22 - 2)$$

$$= 16 - 40$$

$$= -24$$

$$\det(z) = \begin{vmatrix} 4 & 5 & 2 \\ 11 & 1 & 3 \\ 1 & 5 & 1 \end{vmatrix}$$

$$= 4 \begin{vmatrix} 1 & 3 \\ 5 & 1 \end{vmatrix} - 5 \begin{vmatrix} 11 & 3 \\ 1 & 3 \end{vmatrix} + 2 \begin{vmatrix} 11 & 1 \\ 1 & 5 \end{vmatrix}$$

$$= 4(1 - 15) - 5(33 - 3) + 2(55 - 1)$$

$$= -56 - 150 + 108$$

$$= -98$$

Therefore, the solution $(x, y, z) = (\frac{3}{11}, \frac{2}{11}, -\frac{49}{66})$

4 Chapter 5: Eigenvectors and Eigenvalues

4.1 Eigenvalues and Eigenvectors (11/06)

If A is an $n \times n$ matrix, then a non-zero vector \mathbf{x} , in R^n , is called an eigenvector of A if $A\mathbf{x}$ is a scalar multiple of \mathbf{x} ; that is $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . This scalar λ is called an eigenvalue of A and \mathbf{x} is said to be an eigenvector corresponding to λ .

See, normally, multiplying a vector by a square matrix changes both the magnitude and the direction of the vector. Really screws it up.

Some examples:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 8 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 23 \\ 4 \end{bmatrix}$$

However, there are some ways to get consistent results.

4.1.1 Examples

4.1.1.1
$$\vec{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is an eigenvector of $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$ because

$$A\vec{x} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2\vec{x} : \lambda = 2$$

4.1.1.2 Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $\vec{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \vec{u} and \vec{v} eigenvectors of A ?

$$A\vec{u} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} 1(6)+6(-5) \\ 5(6)+2(-5) \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} \therefore \lambda = -4$$

$$A\vec{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1(3) + 6(-2) \\ 5(3) + 2(-2) \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \vec{v}$$

4.2 Eigenvector Homework Problem (11/06)

Confirm by multiplication that ${\bf x}$ is an eigenvector of ${\bf A}$, and find the corresponding eigenvalue.

4.2.1
$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

$$A\mathbf{x} = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4(1) + 0(2) + 1(1) \\ 2(1) + 3(2) + 2(1) \\ 1(1) + 0(2) + 4(1) \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} :: \lambda = 5$$

4.3 Finding Eigenvalues and Eigenvectors (11/07)

Essential question:

If we know an $n \times n$ matrix A, can we find its λ ?

If $A\vec{x} = \lambda \vec{x}$, then:

$$A\vec{x} = \lambda \vec{x}$$

$$A\vec{x}-\lambda\vec{x}=\vec{0}$$

$$(A-\lambda I)\vec{x}=\vec{0}$$

This equation is familiar. It's the homogeneous system of equations $A\vec{x} = \vec{0}$, the solution of which is the nullspace of $A - \lambda I$. Therefore, \vec{x} is an eigenvector of $A \iff \vec{x}$ is in the nullspace of $A - \lambda I$.

In this situation, what do we know about that matrix?

Everything in the equivalent statements is false because \vec{x} cannot be the zero vector. Therefore, we can see that $\det(A - \lambda I)$ OR $\det(\lambda I - A)$ MUST be 0.

Big Idea: If A is an $n \times n$ matrix, then λ is an eigenvalue of $A \iff \det(\lambda I - A) = 0$. This is called the characteristic equation of A.

4.3.1 Find the characteristic equation and the eigenvalues of $A = \begin{bmatrix} 3 & 0 & 5 \\ \frac{1}{5} & -1 & 0 \\ 1 & 1 & -2 \end{bmatrix}$

$$\begin{aligned}
\det(\lambda I - A) &= 0 \\
\begin{vmatrix} \lambda - 3 & 0 & 5 \\ -\frac{1}{5} & \lambda + 1 & 0 \\ -1 & -1 & \lambda + 2 \end{vmatrix} &= 0 \\
0 &= (\lambda - 3)((\lambda + 1)(\lambda + 2)) + 5(\frac{1}{5} + \lambda + 1) \\
0 &= (\lambda - 3)(\lambda^2 + 3\lambda + 2) \\
0 &= \lambda^3 - 2\lambda \\
0 &= \lambda(\lambda^2 - 2)\lambda
\end{aligned}$$

4.3.2 Find the characteristic equation and the eigenvalues of $A = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$

$$\begin{vmatrix} -1 - \lambda & 0 & 1 \\ -1 & 3 - \lambda & 0 \\ -4 & 13 & -\lambda \end{vmatrix} = 0$$

$$(-1 - \lambda)((3 - \lambda)(-\lambda) - 0(13)) + (-1(13) - (3 - \lambda)(-4)) = 0$$

$$(-1 - \lambda)(\lambda^2 - 3\lambda) + (-13 - 4\lambda + 12) = 0$$

$$(-1 - \lambda)(\lambda^2 - 3\lambda) + (-4\lambda - 1) = 0$$

$$-\lambda^3 + 3\lambda^2 + 2 = 0$$

$$(-\lambda + 2)(-\lambda^2 - \lambda - 1) = 0$$

$$(-\lambda + 2)(-\lambda - 1)(-\lambda + 1) = 0$$

$$\lambda = 2$$

4.3.3 Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\begin{vmatrix} \lambda - 2 & 0 & 0 \\ 6 & \lambda - 3 & 0 \\ 1 & 4 & \lambda - 5 \end{vmatrix} = 0$$
$$(\lambda - 2)(\lambda - 3)(\lambda - 5) = 0$$
$$\lambda = 2, 3, 5$$

Theorem 1: For a triangular matrix, the eigenvalues are the elements on the main diagonal.

4.3.4 Find the eigenvalues of
$$A^3$$
 if $A = \begin{bmatrix} \frac{1}{2} & 4 & 5 & -2 \\ 0 & -1 & 3 & -8 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 4 \end{bmatrix}$

$$\lambda_A = \frac{1}{2}, -1, 2, 4$$

$$\lambda_{A^3} = \frac{1}{8}, -1, 8, 64$$

Theorem 2: The eigenvalues of A^k are $\lambda_1^k, \lambda_2^k, ...$

4.3.5 Give me a matrix with eigenvalues $\lambda = 0, 2, 5$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 2 & 5 \end{bmatrix}$$

Theorem 3: A square matrix A is invertible $\iff \lambda \neq 0$ (which also means its determinant is 0).

4.3.6 Finding eigenvectors!

Find the nontrivial eigenvectors of:

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

$$\begin{vmatrix} \lambda - 1 & -6 \\ -5 & \lambda - 2 \end{vmatrix} = 0$$

$$(\lambda - 1)(\lambda - 2) - (-6)(-5) = 0$$

$$\lambda^2 - 3\lambda - 28 = 0$$

$$(\lambda - 7)(\lambda + 4) = 0$$

$$\lambda = 7, -4$$

Substitute each λ , one at a time into the λI – A matrix and find the null space.

For $\lambda = -4$:

$$\begin{pmatrix} -5 & -6 & 0 \\ -5 & -6 & 0 \end{pmatrix}$$
$$\begin{pmatrix} -5 & -6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\langle -\frac{6}{5}t, t \rangle$$
$$\vec{x} = \{ \langle -6, 5 \rangle \}$$

For $\lambda = 7$:

$$\begin{pmatrix} 6 & -6 & | & 0 \\ -5 & 5 & | & 0 \end{pmatrix}$$
$$\begin{pmatrix} 6 & -6 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$
$$\langle t, t \rangle$$
$$\vec{x} = \{ \langle 6, 6 \rangle \}$$

Therefore, the eigen space is: $\{\langle -6, 5 \rangle, \langle 6, 6 \rangle\}$

4.4 Diagonalization and Similar Triangles

Similar matrices: If A and D are square matrices, we say that A and D are "similar" if there exists an invertible matrix P such that:

$$D = P^{-1}AP$$
.

4.4.1 Properties of Similar Matricces

- They have the same determinant
- If one is invertible, so is the other
- They have the same trace
- They have the same characteristic polynomial
- They have the same eigenvalues

4.4.2 Procedure

- 1. Find the eigenvectors for the $n \times n$ matrix A.
- Theorem: If an n x n matrix A has n distinct eigenvalues, then A is for sure diagonalizable.
- 2. Make matrix P out of the eigenveectors (P is the matrix that diagonalizes A)
- 3. Check your work to find matrix D if reasonable

4.4.3 Example: Find a matrix P that diagonalizes A and compute $P^{-1}AP$

1.
$$A = \begin{bmatrix} 3 & 7 \\ 5 & 5 \end{bmatrix}$$

Find the eigenvalues:

$$\begin{bmatrix} \lambda - 3 & -7 \\ -5 & \lambda - 5 \end{bmatrix} = 0$$

$$(\lambda - 3)(\lambda - 5) - (-7)(-5) = 0$$

$$\lambda^2 - 5\lambda - 3\lambda + 15 - 35 = 0$$

$$\lambda^2 - 8\lambda - 20 = 0$$

$$\lambda = -2, 10$$

Find the eigenvectors:

$$\lambda = -2 : \begin{bmatrix} -5 & -7 & 0 \\ -5 & -7 & 0 \end{bmatrix} \vec{x} = \{\langle -7, 5 \rangle\}$$
$$\lambda = 10 : \begin{bmatrix} -7 & -7 & 0 \\ -5 & 5 & 0 \end{bmatrix} \vec{x} = \{\langle 1, 1 \rangle\}$$

Create the matrix P:

$$P = \begin{bmatrix} -7 & 1 \\ 5 & 1 \end{bmatrix}$$

Find matrix D:

$$D = P^{-1}AP$$

$$= \begin{bmatrix} 7 & 1 \\ 5 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 7 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 5 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 0 \\ 0 & 10 \end{bmatrix}$$

4.4.4 Conclusion

• If D has the same eigenvalues of A and if D must be diagonal, then D is **THE** diagonal matrix with eigenvalues of A on the diagonal.

2.
$$A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

First, find D:

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Then, find P:

$$\lambda = 2 : \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \vec{x} = \langle 1, 0, 0 \rangle$$

$$\lambda = 3 : \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \vec{x} = \langle 0, 1, 0 \rangle$$

$$\lambda = 1 : \begin{bmatrix} -1 & 0 & 2 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{x} = \langle 2, 0, 1 \rangle$$

$$P = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4.5 More on Similar Matrices

There are a few more properties of similar matrices:

- They have the same rank (non-zero eigenvalues)
- They have the same nullity
- They have the same column space
- They have the same row space

4.5.1 Example

**Matrix A is similar to the following matrix:

Rank of A: 4

Nullity of A: 2

Eigenvalues: 3, -3, 5, 2, 0, 0

Characteristic Polynomial:

$$\det(\lambda I - A) = 0$$

$$\begin{vmatrix} \lambda - 3 & 1 & -1 & -4 & -5 & -2 \\ 0 & \lambda + 3 & -5 & 10 & 16 & -1 \\ 0 & 0 & \lambda - 5 & -7 & 8 & -2 \\ 0 & 0 & 0 & \lambda - 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda \end{vmatrix} = 0$$

$$(\lambda - 3)(\lambda + 3)(\lambda - 5)(\lambda - 2)\lambda^2 = 0$$

4.5.2 Some review

- Eigenspace of λ : The nullspace of λI A. Each eigenvalue will have its own eigenspace.
- Algebraic multiplicty: The number of times a given λ appears as a root of the characteristic equation.
- Geometric multiplicity: The number of eigenvectors it maps to.

4.5.2.1 Theorem: Geometric and Algebraic Multiplicity

If A is a square matrix, then: a. For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity. b. A is diagonalizable \iff the geometric multiplicity of each eigenvalue is equal to the algebraic multiplicity.

4.6 Similar Matrices Continued (11/13/2023)

4.6.1 Warm-Up

Can you write a new statement involving eigenvalues to add to the list of equivalent statements?

 $\lambda = 0$ is not an eigenvalue of A

4.6.2 Homework Review

$$A = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{bmatrix}$$

$$\begin{bmatrix} \lambda - 19 & 9 & 6 \\ -25 & \lambda + 11 & 9 \\ 17 & 9 & \lambda + 4 \end{bmatrix} = (\lambda - 19)((\lambda + 11)(\lambda + 4) - 81) + 25(9\lambda + 36 - 54) - 17(81 - 6\lambda - 66)$$

$$= (\lambda - 1)^{2}(\lambda - 2)$$

 λ = 1 has an algebraic multiplicity of 2 and λ = 2 has an algebraic multiplicity of 1.

4.6.3 Suppose that a characteristic polynomial of some matrix A is found to be:

$$p(\lambda) = (\lambda - 1)(\lambda - 3)^2(\lambda = 4)^3$$

a. What are the dimensions of A?

6 × 6

b. What are the algebraic multiplicities of each eigenvalue?

$$\lambda = 1 : 1, \lambda = 3 : 2, \lambda = 4 : 3$$

c. What are the possible dimensions of the eigenspace associated with each of the eigenvalues?

$$\lambda = 1 : 1, \lambda = 3 : 1 \text{ or } 2, \lambda = 4 : 1 \text{ or } 2 \text{ or } 3$$

d. If $\{v_1, v_2\}$ is a linearly independent set of eigenvectors of A, all of which correspond to the same eigenvalue of A, what can you say about the eigenvalue?

The eigenvalue must be 3 or 4.