SciSports: Player evaluation in soccer using 2D tracking data

Anatoliy Babic, Harshit Bansal, Gianluca Finocchio, Julian Golak, Mark Peletier, Jim Portegies, Clara Stegehuis, Anuj Tyagi, Roland Vincze, William Weimin Yoo

SWI 2018

2D Tracking Data

Goals

- Quantifying football.
- ▶ Player Evaluation using 2D tracking data.

Game Plan towards Player Evaluation

- 1. Gain insights on player's space-time geometry and statistics of trajectories of players.
- 2. Generate trajectories of a single player.
- Generate trajectories of all players.
- 4. Generate trajectories conditional on players' positions.
- 5. Use reinforcement learning to evaluate game setup and eventually individual players.

Dynamic Linear Model and Newtonian Dynamics

$$egin{aligned} oldsymbol{y}_t &= oldsymbol{F}_t lpha_t + \epsilon_t & ext{(Observation)} \ lpha_{t+1} &= oldsymbol{G}_t lpha_t + \eta_t & ext{(Latent process)} \end{aligned}$$

 ϵ_t, η_t are Gaussian error and innovation

$$lpha_t = egin{pmatrix} \mathsf{position} \ x \\ \mathsf{position} \ y \\ \mathsf{velocity} \ x \\ \mathsf{velocity} \ y \end{pmatrix}$$

We only observe the (x, y) positions. The entries of G_t are based on $s = vt + \frac{1}{2}at^2$

Kalman Filter

One-step ahead online prediction

Red: Actual footballer's position, Blue: Predicted

Generative Adversarial Network and Variational Autoencoder

Two competing neural networks:

- 1. One tries to generate the best trajectories possible
- 2. One tries to distinguish generated and real trajectories

GAN works well for generating images

Generating Pokémon

Can we generate trajectories instead?

Generating Pokémon

- Problem with GAN: Not enough computation power to train two Neural Networks.
- We train the discriminator to distinguish between players.
- We train the discriminator to distinguish between artificial and realised trajectories.

Distinguishing between two players

Given a trajectory, can we guess which player it belongs to?

Discriminator

Using neural network:

When trajectories represent (x,y) coordinates, accuracy $\approx 90\%$ When using centered trajectories, accuracy $\approx 60\%$

(Longer training period may improve results)

Variational Autoencoder

Figure: Generated (red) and Realised (blue) Trajectory.

(a) Realised Trajectory: Player and Ball

(b) Generated Trajectory: Player and Ball

(a) Realised Trajectory: Player and Ball

(b) Generated Trajectory: Player and Ball

Summary, Recommendations and Future Work

- Kalman Filter, GAN, VAE
- Preliminary results seem promising: individual player's trajectory can be predicted and generated

Recommendations:

- ► Kalman Filter suitable for short-term fast/online prediction
- Longer horizons might need more sophisticated (deeper) methods, e.g. GAN + VAE or deep Kalman
- However need lots of data and GPUs to speed up computations

Future Research:

► All trajectories of 22 players and ball, complex interactions, extract underlying strategy