Row:	Seat:

FINAL EXAM, VERSION 3 CSci 127: Introduction to Computer Science Hunter College, City University of New York

16 December 2019

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an 8 1/2" x 11" piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, earbuds, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand	I understand that all cases of academic dishonesty will be reported to the							
Dean of Stud	Dean of Students and will result in sanctions.							
Name:								
EmpID:								
Email:								
Signature:								

ASCII TABLE

	Jecimal Hex	Char	Decimal	Hex	Char	Decimal	Hex (Char
1 [START OF HEADING] 2 [START OF TEXT] 3 [END OF TEXT] 4 [END OF TRANSMISSION] 5 [ENQUIRY] 6 [ACKNOWLEDGE] 7 [BELL] 8 [BACKSPACE] 9 [HORIZONTAL TAB] A [LINE FEED] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 4] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	20	[SPACE]	64	40	@	96	09	,
2 [START OF TEXT] 3 [END OF TEXT] 4 [END OF TEXT] 5 [ENQUIRY] 6 [ACKNOWLEDGE] 7 [BELL] 8 [BACKSPACE] 9 [HORIZONTAL TAB] A [LINE FEED] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 4] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	21		65	41	V	97	61	a
3 [END OF TEXT] 4 [END OF TRANSMISSION] 5 [ENQUIRY] 6 [ACKNOWLEDGE] 7 [BELL] 8 [BACKSPACE] 9 [HORIZONTAL TAB] A [LINE FEED] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 4] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	22	=	99	42	B	86	62	þ
4 [END OF TRANSMISSION] 5 [ENQUIRY] 6 [ACKNOWLEDGE] 7 [BELL] 8 [BACKSPACE] 9 [HORIZONTAL TAB] A [LINE FEED] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	23	#	29	43	U	66	63	U
5 [ENQUIRY] 6 [ACKNOWLEDGE] 7 [BELL] 8 [BACKSPACE] 9 [HORIZONTAL TAB] A [LINE FEED] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	24	₩.	89	44	۵	100	64	o o
6 [ACKNOWLEDGE] 7 [BELL] 8 [BACKSPACE] 9 [HORIZONTAL TAB] A [LINE FEED] B [VERTICAL TAB] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 4] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	25	%	69	45	ш	101	65	9
7 [BELL] 8 [BACKSPACE] 9 [HORIZONTAL TAB] A [LINE FEED] B [VERTICAL TAB] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 4] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	26	ম্	70	46		102	99	+
B [BACKSPACE]	27	_	71	47	G	103	29	6
9 [HORIZONTAL TAB] A [LINE FEED] B [VERTICAL TAB] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	28	_	72	48	I	104	89	٦.
A [LINE FEED] B [VERTICAL TAB] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	29	•	73	49	_	105	69	
B [VERTICAL TAB] C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT N] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	2A	*	74	44	_	106	6 A	į
C [FORM FEED] D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	2B	+	75	4B	¥	107	6B	×
D [CARRIAGE RETURN] E [SHIFT OUT] F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	2C		92	4C	_	108	9C	_
E [SHIFT OUT]	2D		77	4D	Σ	109	Q9	E
F [SHIFT IN] 10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	2E		78	4E	z	110	9E	2
10 [DATA LINK ESCAPE] 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	2F	/	79	4F	0	111	6F	0
 11 [DEVICE CONTROL 1] 12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE] 	30	0	80	20	۵	112	20	d
12 [DEVICE CONTROL 2] 13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	31	1	81	51	0	113	71	.
13 [DEVICE CONTROL 3] 14 [DEVICE CONTROL 4] 15 [NEGATIVE ACKNOWLEDGE]	32	2	82	52	~	114	72	_
14 [DEVICE CONTROL 4]15 [NEGATIVE ACKNOWLEDGE]	33	3	83	23	S	115	73	S
15 [NEGATIVE ACKNOWLEDGE]	34	4	84	54	_	116	74	4
	35	2	85	22	-	117	75	5
16 [SYNCHRONOUS IDLE]	36	9	98	26	>	118	9/	>
17 [ENG OF TRANS. BLOCK]	37	7	87	22	>	119	77	*
18 [CANCEL]	38	8	88	28	×	120	78	×
[END OF MEDIUM]	39	6	88	29	>	121	79	^
1A [SUBSTITUTE]	3A		06	5 A	Z	122	7A	N
1B [ESCAPE]	3B		91	5B	_	123	78	Ļ
1C [FILE SEPARATOR]	3C	v	92	2C	_	124	JC	
29 1D [GROUP SEPARATOR] 61	3D	II	93	2D	_	125	7D	_
30 1E [RECORD SEPARATOR] 62	3E	٨	94	2E	‹	126	7E	}
1F [UNIT SEPARATOR]	3F	-	95	5F	1	127	7F	[DEL]

(Image from wikipedia commons)

1.	<pre>(a) What will the following Python code print: pioneers = "Jones-Karen Spark; Jobs- i. print(pioneers[-4:], pioneers[-10:-5 print(pioneers.count('-'))</pre>	
	<pre>names = pioneers.split(';') ii. m = names[1] print(m[:4])</pre>	Output:
	<pre>for n in names: iii. print(n.split('-')[0].upper())</pre>	Output:
	<pre>(b) Consider the following shell commands: \$ ls snow.png p30.py p40.py tickets.png i. What is the output for: \$ ls *png</pre>	Output:
	<pre>ii. What is the output for: \$ ls grep py wc -l</pre>	Output:

iii. What is the output for:

- \$ mkdir new
- \$ cd new
- \$ touch stars.png
- \$ ls

Output:

2. (a) Consider the code:

import turtle thomasH = turtle.Turtle()

- i. After the command: thomasH.color("#00DD00"), what color is thomasH? \square black \square green \square white \square gray □ purple
- ii. After the command: thomasH.color("#FFFFFF"), what color is thomasH? \square black \square green \square white \square gray □ purple
- iii. Fill in the code below to change thomasH to be the brightest red:

") thomasH.color("#

iv. Fill in the code below to change thomasH to be the color black:

") thomasH.color("#

(b) Fill in the code to produce the output on the right:

i. for i in range(print(i, end=" ")

Output:

0 1 2 3 4 5 6 7 8

ii. for j in range(print(i, end=" ")

Output:

-1 0 1 2 3

Output:

plt.matshow(im)

plt.show()

iv.

import numpy as np import matplotlib.pyplot as plt

im = np.ones((10,10,3))

, :] = 0im[1::L 」,1∷∟ plt.matshow(im)

plt.show()

Output:

3. (a) What is the value (True/False):

in3 = False

(b) Draw a circuit that implements the logical expression:

(not (in1 and in2) and (not in2))

(c) Fill in the circuit that implements the logical expression:

4. (a) Draw the output for the function calls:

```
import turtle
    tyler = turtle.Turtle()
    tyler.shape('circle')
4:
    def ramble(tori, dist, repeat):
5:
        if dist > 5:
6:
            for i in range(4):
7:
                  tori.left(90)
8:
                  tori.forward(dist*10)
9:
            ramble(tori,dist//2,repeat)
        elif repeat:
10:
            for i in range(dist):
11:
                  tori.forward(20)
12:
                  tori.stamp()
13:
14:
        else:
15:
            tori.stamp()
```


ii. ramble(tyler,30,False)

- /\	
7 ~ () •	
TE().	

(b) What are the formal parameters for ramble():

(c) If you call ramble(tyler,4,True), which branches of the function are tested (check all that apply):

 \square The block of code at Lines 6-9.

 \square The block of code at Lines 11-13.

 \square The block of code at Line 15.

□ None of these blocks of code (lines 6-9, 11-13, 15) are visited from this invocation (call).

(d) If you call ramble(tyler, 30, False), which branches of the function are tested (check all that apply):

 \square The block of code at Lines 6-9.

 \square The block of code at Lines 11-13.

 \square The block of code at Line 15.

□ None of these blocks of code (lines 6-9, 11-13, 15) are visited from this invocation (call).

5. Design an algorithm that rotates an image by 90 degrees to the right. For simplicity, you may assume a square image (i.e. same hight and length)

Process (as a list of steps):

6. Given the FiveThirtyEight dataset containing data on nearly 3 million tweets sent from Twitter handles connected to the Internet Research Agency, a Russian "troll factory", a snapshot given in the image below:

author	content	region	language	publish_date	harvested_date	following	followers	updates
10_GOP	"We have a sitting Democrat US Senator on trial	Unknown	English	10/1/2017 19:58	10/1/2017 19:59	1052	9636	253
10_GOP	Marshawn Lynch arrives to game in anti-Trump s	Unknown	English	10/1/2017 22:43	10/1/2017 22:43	1054	9637	254
10_GOP	JUST IN: President Trump dedicates Presidents	Unknown	English	10/1/2017 23:52	10/1/2017 23:52	1062	9642	256
10_GOP	Dan Bongino: "Nobody trolls liberals better than	Unknown	English	10/1/2017 2:47	10/1/2017 2:47	1050	9644	247
10_GOP	'@SenatorMenendez @CarmenYulinCruz Doesn'	Unknown	English	10/1/2017 2:52	10/1/2017 2:53	1050	9644	249
10_GOP	As much as I hate promoting CNN article, here to	Unknown	English	10/1/2017 3:47	10/1/2017 3:47	1050	9646	250
10_GOP	After the 'genocide' remark from San Juan Mayo	Unknown	English	10/1/2017 3:51	10/1/2017 3:51	1050	9646	251
10_GOP	Sarah Sanders destroys NBC reporter: "Trump n	Unknown	English	10/10/2017 20:57	10/10/2017 20:57	1066	10319	301
10_GOP	Hi @MichelleObama, remember when you praise	Unknown	English	10/10/2017 22:06	10/10/2017 22:06	1066	10320	302
10_GOP	Wow! Even CNN is slamming the Obamas for sil	Unknown	English	10/10/2017 22:17	10/10/2017 22:17	1066	10322	303
10_GOP	First lady Melania Trump visits infant opioid treat	Unknown	English	10/10/2017 23:42	10/10/2017 23:42	1068	10328	304
10_GOP	"It took Hillary abt 5 minutes to blame NRA for n	Unknown	English	10/11/2017 20:26	10/11/2017 20:27	1070	10358	308

Fill in the Python program below:

#P6,V3: extracts dates with highest number of troll tweets #Import the libraries for data frames and plotting data:

#Prompt user for input file name:
csvFile =
#Read input data into data frame:
trolls =
<pre>#split date into date and time columns trolls[['pub_date','pub_time']] = trolls.publish_date.str.split(expand=Tru</pre>
#Count the number of tweets for each date:
trollDates =
#Print the top 5 dates with most troll tweets
<pre>print(trollDates[</pre>
#Generate a bar plot of the top 5 dates with largest number of troll tweet
trollDates.
plt.show()

blue values are all over 90% .	
Import the packages for images and arrays:]
Ask user for image name and read into img:]
Get height and width:]
Initialize counter:]
Loop through all the pixels & update count if very light:	1
Compute and print fraction:]

7. Write a **complete Python program** that prompts the user for the name of an .png (image) file and prints the fraction of pixels that are very light. A pixel is very light if the red, green, and

8. (a) What is printed by the MIPS program below:

Output:

(b) Modify the program to print out 99 copies of the character '!'. Shade in the box for each line that needs to be changed and rewrite the instruction below.

 \square ADDI \$sp, \$sp, -6 # Set up stack

□ ADDI \$s3, \$zero, 1 # Store 1 in a registrar

☐ ADDI \$t0, \$zero, 33 # Set \$t0 at 33 (!)

 \square ADDI \$s2, \$zero, 5 # Use to test when you reach 5

☐ SETUP: SB \$t0, 0(\$sp) # Next letter in \$t0

□ ADDI \$sp, \$sp, 1 # Increment the stack

 \square SUB \$s2, \$s3 # Decrease the counter by 1

 \square BEQ \$s2, \$zero, DONE # Jump to done if \$s0 == 0

 \square J SETUP # If not, jump back to SETUP for loop

□ DONE: ADDI \$t0, \$zero, 0 # Null (0) to terminate string

 \square SB \$t0, 0(\$sp) # Add null to stack

 \square ADDI \$sp, \$sp, -6 # Set up stack to print

 \square ADDI \$v0, \$zero, 4 # 4 is for print string

□ ADDI \$a0, \$sp, 0 # Set \$a0 to stack pointer for printing

 \square syscall # Print to the log

9. What is the output of the following C++ programs?

```
//Quote by Bill Gates
   #include <iostream>
                                                 Output:
   using namespace std;
   int main()
   {
        cout<<"We've got to put\na ";</pre>
(a)
        cout<<"lot of money into \nchanging";</pre>
        cout<<" behavior."<<endl<<"B.G.";</pre>
        return 0;
   }
   #include <iostream>
   using namespace std;
   int main()
                                                 Input: 50,75,150
   {
                                                 Output:
        double num = 0;
        double weight = 0;
        while (weight < 100) {
            cout <<"Please enter weight\n";</pre>
(b)
            cin >> weight;
            num += weight;
        }
        cout << num << endl;</pre>
        return 0;
   }
   #include <iostream>
                                                  Output:
   using namespace std;
   int main(){
        int i, j;
        for (i = 1; i \le 5; i++){
            for (j = 0; j < i; j++){}
                 if(j \% 2 == 0)
(c)
                     cout << "0";
                 else
                     cout << "X";
            cout << endl;</pre>
        }
        return 0;
   }
```

10.	(a)	Translate the following program into a complete C++ program :
		<pre>#Python Loops, V3 for i in range(0,15,3): print(i, '*', i)</pre>
		//include library and namespace
		//function signature
		{ //loop line
		//loop body
		//return
		}

(b)	The number	of Facebook	monthly	active use	rs grew	from	${\sim}500$	${\rm million}$	in 2010	to	~ 2500
	million (2.5 h	billion) in 201	9. The av	erage ann	ual grov	wth ra	te can	then be	e estimat	ed a	as

$$avgGrowth = \frac{\%growth}{number-of-years} = \frac{100 \cdot \frac{2500 - 500}{500}}{2019 - 2010} = 44.4\%$$

We can thus estimate an average annual growth: avgGrowth = 44.4%

Write a **complete C++ program** that asks the user for a year greater than 2010 (assume user complies) and prints the estimated number (in millions) of monthly active Facebook users in that year.

//include library and namespace
//function signature
{
//initialize variables
//obtain input
//calculate users
// Calculate users
//output users
//return
l