$$X = \{1, ..., p\}$$
, $Y = \{2, ..., m\}$
card Suri (X,Y)

$$Sin = p$$
 Surj $(X,Y) = Inj(X,Y) = Brj(X,Y) = n!$ (ex. 2.13)

On remarque que
$$A = \bigcup_{i=1}^{m} A_i = \{ \text{fonctions } X \rightarrow Y \text{ non surjections } \}$$

$$A \subset F(X,Y) = \xi ens des functions X - 4 Y$$

Surj $(X,Y) = F(X,Y) \setminus A$

et card (A) =
$$\sum_{g=1}^{M} (-1)^{g-1} \sum_{\substack{I \subset \mathcal{E}_{1,-1}, mJ \\ |I| = g}} (ard \left(\bigcap_{i \in I} A_i\right) \left(\bigcap_{i \in I} A_i\right)$$

done card
$$\bigcap_{i \in I} A_i$$
 = card $\bigcap_{i \in I} A_i$ = card $\bigcap_{i \in I} A_i$ card $\bigcap_{i \in I} A_i$ = $\bigcap_{i \in I} A_i$ $\bigcap_{i \in I} A_i$ = $\bigcap_{i \in I} A_i$ $\bigcap_{i \in I} A$

(*) done card (A) =
$$\sum_{j=1}^{m} (-1)^{j+1} \ge (n-j)^{p}$$
 (II = card (I))

$$\frac{1}{2} = \frac{1}{2} =$$

Rappel:
$$T(X_1Y) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-(p-1))$$
 ex 2.13
= $n!$ $(n-p)!$

$$\frac{2.14}{\text{card } 4}: \text{ calculer and } \frac{2}{4} \frac{7}{4} = \frac{7}{4} = \frac{7}{4} \frac{7}{4} = \frac{7}{4} = \frac{7}{4} \frac{7}{4} = \frac{7}{4} = \frac{7}{4} = \frac{7$$

$$\begin{array}{ccc}
1 & G: I(X,Y) & \longrightarrow Z \\
f & \longmapsto f(X).
\end{array}$$

Gest bien définie : il s'aojet de montrer que card (f(x)) = p.

Or, comme f est injective, card f(x) = card x = p.

Gest surprise: Soit 4'EZ. On évrit 4'= Ey, yp Jour 16i6p, et les y nont là 2 deshitets.

Yi ≠ 3 & pour i≠j.

On definit
$$f: X \longrightarrow Y$$
.

Par définition de f, $f(X) = \{y_1, y_1\} = Y'$, et f est injectite car les y_i ont f (f) = est surjective

2- Dit Y'EZ. $G'(\xi Y'Y) = \{ f: X \rightarrow Y | f injective et f(X) = Y' \}$ = $\mathcal{E}_{f}: X \rightarrow Y' \setminus f$ injective et f(X) = Y'card f(x) = cool X = p et card Y'= p. une industion + égalité des cardinaux = s ensembles e saux! f(X)= Y'. = $\{f: X \rightarrow Y' \mid f \text{ injective } \}$. = I(X, Y'). ex 2.13(question 4.) = p!dinc card $G^{-1}(\xi Y'Y) = \text{card } I(X,Y') = \frac{\text{card}(Y')!}{!}$

3- corollaire 2.47. => card I(X, Y) = p! - card Z. on other card $Z = \frac{n!}{(n-p)!} = \binom{n}{p!}$

exercice 2.15; On vent montrer que
$$2^n = \sum_{p=0}^{n} \binom{n}{p}$$
.

 $Z_p = \{ y' \in P(y) \mid \text{cand } y' = p \}^p$
 $Y = \{ 1.7my \}$

cut $Z_p = \binom{n}{p}$ (exo 2.14)

exo 2.10, questin 3: card $P(y) = 2^n$ (car $n = \text{cand } y$)

 n

On a $P(y) = \bigcup_{p=0}^{n} Z_p$, union disjointe:

 $p = 0$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$
 $Z_p \cap Z_q = \{ y' \in P(y) \mid \text{card } y' = p = q \}$

$$\overline{(1,1)} = \begin{cases} \langle x,y \rangle \in \mathbb{R}^2 \mid xy = 1.1 = 1 \end{cases}$$

$$= \begin{cases} \langle x, \frac{1}{x} \rangle : z \in \mathbb{R} \setminus \{03\} \end{cases}$$

= graphe de la fonction x + 3 \frac{1}{\pi}, c'es une hyperbole.

$$\overline{(1,-1)} = \{(x,y) \in \mathbb{R}^2 \mid xy = -1\}$$

$$= \{(x,y) \in \mathbb{R}^2 \mid x \neq 0 \text{ ot } -\frac{1}{x}\}$$

$$= \{(x,y) \in \mathbb{R}^2 \mid x \neq 0 \text{ ot } -\frac{1}{x}\}$$

$$= \{(x,y) \in \mathbb{R}^2 \mid x \neq 0 \text{ ot } -\frac{1}{x}\}$$

ex3.2 :1- nry (=> |x|= |y|

f:R > R x > |x| (fn'out pas bujective)

Alors rry (=) f(x) = f by) par défantion. Donc N'est brien une relation d'équivalence. par la pag 5.7.

J. On a
$$\overline{x} = \{f \} (f \times y)$$

$$= \{f \times x - x \} \quad \text{(as } |x| = |y| \iff x = y \}$$

On a cand $\overline{x} = \{f \times x = x \}$

$$= \{f \times x = x = x \}$$

$$= \{f \times x = x = x \}$$

$$= \{f \times x = x = x \}$$

$$= \{f \times x = x = x \}$$

On a cand $\overline{x} = \{f \times x = x \}$

$$= \{f \times x = x = x \}$$

$$= \{f \times x = x \}$$

$$= \{f \times x = y \}$$

On a cand $\overline{x} = \{f \times x = y \}$

$$= \{f \times x = y \}$$

$$= \{f \times x =$$

3.
$$\overline{x} = \{x, 1-x\}$$
 $\cot \overline{x} = \{2 \text{ si } x \neq 1-x \in \} x \neq \frac{1}{2}$

2. $\cot \overline{x} = x \neq 1 + x \in \} x \neq \frac{1}{2}$

Autre app. de la formule du crible

$$X = \{1, -, m\}$$
, card $X = n$
card Biz $(X, X) = n!$ (ex 2.13).

FC Bij (X,X)où $F=ff\in Bij(X,X) \mid f(i) \neq i$ pour tout $i \in \{1,...,n,y\}$.

Calculer Card (F).