Example Runs

Loading dataset and displaying the first ten rows

```
In [2]: # specifying file name
          file = './birthweight_low.xlsx'
          # setting pandas print options
          pd.set_option('display.max_rows', 500)
         pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
          # reading the file into Python
         birthweight = pd.read_excel (io = file)
          # outputing the first ten rows of the dataset
          birthweight.head(n = 10)
Out[2]:
                   meduc monpre npvis fage feduc omaps fmaps cigs drink male mwhte mblck moth fwhte fblck foth bwght
                      NaN
                                               NaN
                68
                      12.0
                                3
                                    10.0
                                           61
                                                                    25
                                                                                                                          1290
                71
                      12.0
                                     6.0
                                               12.0
                                                                                                                          1490
                59
                      16.0
                                     8.0
                                           48
                                               16.0
                                                                    21
                                                                          10
                                                                                 0
                                                                                        0
                                                                                               0
                                                                                                           0
                                                                                                                          1720
                48
                      12.0
                                     6.0
                                           39
                                                12.0
                                                                    17
                                                                          13
                      11.0
                                     8.0
                                           40
                                                 8.0
                                                                    16
                                                                          14
                                                                                                                          1984
                                    12.0
                                           46
                                               12.0
                                                                          12
                                                                                                                          2050
                                     7.0
                                           51
                                                                    15
                                                                          13
                                                                                               0
                                               11.0
                      12.0
                                     9.0
                      12.0
                                   12.0
                                           61
                                               16.0
```

Pearson correlation and instantiating a heatmap

```
In [9]: # linear (Pearson) correlation
             birthweight_corr = birthweight.corr(method = 'pearson').round(decimals = 2)
             # instantiating a heatmap
             sns.heatmap(birthweight_corr)
             # displaying the plot
             plt.show()
                mage
               meduc
                                                                               0.8
               monpre
                 npvis
                                                                               0.6
                 fage
                feduc
                cigs
drink
                                                                               0.2
               male
mwhte
                                                                               0.0
                mblck
                                                                               -0.2
                moth
                fwhte
                 fblck
                       mage . meduc . oonpre . oonpre . fage . feduc . oigs . disperies . oigs . oigs . oigs . male . male . mwhte . mwhte . moth . fwhte . foth . foth .
```

Performing OLS Regression

OLS Regression Results

Dep. Varial Model: Method: Date: Time: No. Observa Df Residua Df Model: Covariance	ations: ls:				Adj. F-sta Prob Log-l AIC:	uared: R-squared: atistic: (F-statist Likelihood:	ic):	0.706 0.695 64.57 1.12e-46 -1426.0 2868. 2894.
=======		coef	std er	====== r	t	P> t	[0.025	0.975]
Intercept mage cigs drink moth foth mwhte fwhte fblck mblck	-14. -36. -117. 1017. 979. 1026. 937. 1054.	.7332 .4535 .4272 .3954 .7862 .6780 .4093 .0330 .0221	66.82 2.68 4.61 9.72 69.18 73.41 80.69 66.38 86.44 77.92	8 0 9 - 2 5 4 4 0	44.455 -5.376 -7.901 12.066 14.712 13.344 12.720 14.115 12.194 11.891	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2838.908 -19.757 -45.522 -136.588 881.313 834.854 867.227 806.080 883.505 772.828	3102.559 -9.150 -27.333 -98.203 1154.259 1124.502 1185.591 1067.986 1224.540 1080.248
Omnibus: Prob(Omnibus Skew: Kurtosis:	us):			5.189 0.075 -0.139 3.861	Jarqı Prob	. No.	3):	1.278 6.684 0.0354 4.53e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.79e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Generating training and testing scores for OLS Regression

OLS Training Score : 0.7238 OLS Testing Score : 0.6667 OLS Train-Test Gap : 0.0571

Generating training and testing scores for Lasso Regression

Lasso Training Score : 0.7228 Lasso Testing Score : 0.6758 Lasso Train-Test Gap : 0.047

Generating training and testing scores for ARD Regression

ARD Training Score: 0.7233 ARD Testing Score: 0.6749 ARD Train-Test Gap: 0.0484