k-Vecinos más cercanos

Carlos Malanche

12 de abril de 2018

El méodo de machine learning de hoy es uno de los más intuitivos, sólo que lo trataré de presentar de manera formal.

1. Clasificación múltiple

Ahora nos enfrentamos a un problema más duro. Tenemos una serie de pares de datos $S = \{y_i, \underline{x}_i\}_{i=1}^N$, y sabemos que $y_i \in C = \{\text{Clase1}, \text{Clase2}, \cdots, \text{ClaseH}\}$, es decir, hay H clases a las que cada y_i puede pertenecer.

2. k-Vecinos más cercanos (k-Nearest Neighbours, k-NN)

El único requisito para que este método funcione es que las variables \underline{x}_i vivan en algún espacio U al que se le pueda asignar una métrica, de tal modo que la cantidad $D(\underline{x}_i, \underline{x}_j)$, la distancia entre dos elementos del espacio, esté bien definida para cualesquiera dos elementos $\underline{x}_i, \underline{x}_j \in U$. Definimos por $\dot{S}_{\underline{x}}$ la permutación de la serie S en donde se cumple que

$$D((S_x)_i, \underline{x}) \le D((S_x)_{i+1}, \underline{x}), \text{ para } i = 1, \dots, N-1$$

En donde $(\dot{S}_{\underline{x}})_i$ es el elemento número i de la lista. En el caso de que todas las componentes del vector \underline{x} estén en los reales, $D(\underline{x}_i, \underline{x}_j) \coloneqq \|\underline{x}_i - \underline{x}_j\|$. Por último, denotamos por $\dot{S}_{\underline{x}}^k$ al conjunto que contiene los primeros k elementos de \dot{S}_x . Un estimador de k-NN queda escrito entonces como:

$$\hat{f}(\vec{x}) = \frac{1}{k} \sum_{i: x_i \in S_x^k} y_i \tag{1}$$

Es decir, nuestra estimación es el promedio de los k elementos más cercanos a \vec{x} , según la métrica establecida. Cuando se trata de clasificaciones, basta con tomar el elemento de voto mayoritario.

