TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC

BÁO CÁO CUỐI KỲ

Bài toán vận tải

Học phần: Các phương pháp tối ưu

Giảng viên hướng dẫn: ThS. PHẠM THU HOÀI

Sinh viên: Nguyễn Công Hiếu - 20195016

Lớp: Toán tin 02 - khóa 64

 $\dot{\text{HA}}$ $\dot{\text{NOI}}$, 02/2022

Tóm tắt

Mục lục

Tóı	m tắt	i
1	Bài toán lập kho nhân hàng	1

Chương 1

Bài toán lập kho nhận hàng

Bài toán đặt ra

Xét một tập đoàn, đang có:

- m nhà máy sản xuất một loại hàng hóa với sản lượng tương ứng là a_i với i=1,...,m.
- n_{old} kho chứa hàng bới trữ lượng tương ứng là b_j với $j=1,...,n_{old}$.
- $C = (c_{ij})$ là ma trận chi phí, với c_{ij} là chi phí vận chuyển từ nhà máy i đến kho j.

Nhà máy định xây dựng n_{new} kho mới với sức chứa không hạn chế.

Câu hỏi:

- 1. Mỗi kho mới phải được thiết kế để chứa được bao nhiêu hàng.
- 2. Tìm phương án vận chuyển hết hàng từ m nhà máy đến $n = n_{old} + n_{new}$ kho sao cho chi phí vận chuyển là nhỏ nhất.

Ý tưởng để giải quyết bài toán: Đưa về bài toán vận tải cầu vượt cung bằng cách gán

$$b_j = \sum_{i=1}^{m} a_i \quad \forall j = n_{old} + 1, ..., \underbrace{n_{old} + n_{new}}_{n}$$

Theo như phương pháp tiếp cận với bài toán cầu vượt cung trước đó, ta cần thêm điểm phát giả (m+1) với lượng phát là

$$a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i$$
 với $c_{m+1,j} = 0, \forall j = 1, ..., n.$

Bài toán sau khi được mô hình hóa có dạng:

$$\min f(x) = \sum_{i=1}^{m+1} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} c_{ij} x_{ij} = a_{i} \quad i = 1 \quad m + 1$$

v.đ.k
$$\sum_{j=1}^{n} x_{ij} = a_i$$
, $i = 1, ..., m + 1$
 $\sum_{j=1}^{n} x_{ij} = b_i$, $j = 1, ..., n$
 $x_{ij} \ge 0$, $i = 1, ..., m + 1$; $j = 1, ..., n$.

Áp dụng phương pháp thế vị giải bài toán trên, giả sử được nghiệm tối ưu là $x^* = (x_{ij}^*)$. Khi đó, mỗi kho mới $j \in \{n_{old} + 1, ..., n\}$ phải được thiết kế với trữ lượng là

$$b_j^* = \sum_{i=1}^m x_{ij}^*$$

Hiển nhiên là nếu $b_j^*=0$ thì không cần lập kho j này. Như vậy, phương án tối ưu của bài toán ban đầu là $x^{opt}=(x_{ij}^{opt})$ với $x_{ij}^{opt}=x_{ij}^*$ với mọi $i=1,...,m;\ j=1,...,n$.

Ví dụ

Một liên hợp sản xuất có ba nhà máy sản xuất xi măng và đã có hai kho. Họ dự định xây dựng thêm hai kho nữa (với lượng chứa tùy ý) sao cho bốn kho này có thể chứa hết lượng xi măng cần chuyển ra khỏi các nhà máy. Thông tin về lượng phát, lượng thu, và cước phí vận chuyển được cho ở bảng dưới đây. Hãy xác định trữ lượng hai kho cần xây dựng và phương án vận chuyển sau khi đã có hai kho này sao cho tổng chi phí vận chuyển là nhỏ nhất.

Dưới đây là bảng vận tải cho biết thông tin về lượng phát, lượng thu và cước phí vận chuyển của bài toán trên.

	b_1	b_2	b_3	b_4	Supply
	8	2	5	4	
a_1					80
	7	5	6	8	
a_2					110
	1	3	7	5	
a_3					90
Storage	85	75	?	?	

Giải

Giả thiết của bài toán
$$\begin{cases} m=3\\ n_{old}=2, \ n_{new}=2 \ \Rightarrow n=2+2=4 \end{cases}.$$
 Gán lượng trữ hàng tại các nhà kho mới $b_3=b_4=\sum_{i=1}^3 a_i=280.$

Thêm một nhà máy giả (m+1) = 4 với lượng cung

$$a_4 = \sum_{j=1}^{4} b_j - \sum_{i=1}^{3} a_i = 720 - 280 = 440$$

và với các cước phí $c_{4j}=0 \ \forall j=1,...,4.$

Như vậy, từ bảng ban đầu ta thu được bảng T:

	b_1	b_2	b_3	b_4	Supply
	8	2	5	4	
a_1					80
	7	5	6	8	
a_2					110
	1	3	7	5	
a_3					90
	0	0	0	0	
a_4					440
Storage	85	75	280	280	

Tại đây, quá trình tìm phương án vận chuyển tối ưu được thực hiện như sau. **Giai đoạn 1:** Tìm phương án cực biên xuất phát (phương pháp cực tiểu chi phí).

• Nhận thấy $c_{4j}=0$ với mọi j=1,...,4. Tuy nhiên $\arg\max_{j}\min\{a_{4j},b_{j}\}=\{3,4\}$ và $\min\{a_{4j},b_{4}\}=b_{4}=280$ (chọn j=4). Ta thu được bảng T^{1} sau:

	b	1	b	2	b	3	Supply
		8		2		5	
a_1							80
		7		5		6	
a_2							110
		1		3		7	
a_3							90
		0		0		0	
a_4							160
Storage	85		75		280		

• Tại ô (a_4, b_3) có $\min\{a_4, b_3\} = a_4 = 160 > \min\{a_4, b_1\} = 85 > \min\{a_4, b_2\} = 75$. Từ đó, ta thu được bảng T^2 :

	b_1		b	2	b	3	Supply
		8		2		5	
a_1							80
		7		5		6	
a_2							110
		1		3		7	
a_3							90
Storage	85		75		120		

• Tại ô (a_3, b_1) có cước phí thấp nhất toàn bảng T^2 là 1 và $\min\{a_3, b_1\} = b_1 = 85$. Do đó, ta thu được bảng T^3 :

	b	92	b	3	Supply
		2		5	
a_1					80
		5		6	
a_2				L	110
		3		7	
a_3					5
Storage	75		120		

• Tại ô (a_1, b_2) có cước phí thấp nhất toàn bảng T^3 là 2 và $\min\{a_1, b_2\} = b_2 = 75$. Do đó, ta thu được bảng T^4 :

	b	3	Supply
		5	
a_1			5
		6	
a_2			110
		7	
a_3			5
Storage	120		

• Cuối cùng, lần lượt xóa các hàng còn lại của bảng T^4 theo thứ tự a_1 , a_2 , a_3 (thứ tự tăng dần của cước phí). Như vậy, tổng hợp lại các kết quả trên ta nhận được phương án cực biên xuất phát của bài toán là

$$x^{0} = \begin{pmatrix} 0 & 75 & 5 & 0 \\ 0 & 0 & 110 & 0 \\ 85 & 0 & 5 & 0 \\ 0 & 0 & 160 & 280 \end{pmatrix}$$

Giai đoạn 2: Áp dụng thuật toán thế vị để tìm phương án tối ưu.

• Vòng lặp 1: Do biết x^0 nên $f(x^0) = 955$ và

$$G(x^0) = \{(i,j)|x_{ij}^0 > 0\} = \{(1,2), (1,3), (2,3), (3,1), (3,3), (4,3), (4,4)\}$$

Bước 1: Xác định các thế vị u_i , v_j bằng cách giải hệ $u_i+v_j=c_{ij}$ với $u_1=0$ và $(i,j)\in G(x^0)$ sau:

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} u_2 \\ u_3 \\ u_4 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} c_{12} \\ c_{13} \\ c_{23} \\ c_{31} \\ c_{33} \\ c_{43} \\ c_{44} \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 6 \\ 1 \\ 7 \\ 0 \\ 0 \end{pmatrix}$$

Sau khi giải, ta được các thế vị

$$\begin{pmatrix} u_1 & u_2 & u_3 & u_4 & v_1 & v_2 & v_3 & v_4 \end{pmatrix}^T = \begin{pmatrix} 0 & 1 & 2 & -5 & -1 & 2 & 5 & 5 \end{pmatrix}^T$$

Bước 2: Tính các ước lượng

$$\Delta_{ij} = \begin{cases} u_i + v_j - c_{ij} & \forall (i,j) \notin G(x^0) \\ 0 & \forall (i,j) \in G(x^0) \end{cases}$$

và ta có bảng T sau đây:

	b	1	b	2	b	3	b	4	Supply
		8		2		5		4	
a_1	-9		75		5		1		80
		7		5		6		8	
a_2	-7		-2		110		-2		110
		1		3		7		5	
a_3	85		1		5		2		90
		0		0		0		0	
a_4	-6		-3		160		280		440
Storage	85		75		280		280		

Bước 3: Do $\Delta_{ij} > 0$ với $(i,j) \in \{(1,4),(3,2),(3,4)\} \ (\notin G(x^0))$ nên x^0 chưa là nghiệm tối ưu.

Bước 4: Chọn ô $(i_s, j_s) = (3, 4)$ làm ô điều chính vì

$$\Delta_{34} = \max\{\Delta_{14}, \Delta_{32}, \Delta_{34}\} = 2$$

Ghép ô (3,4) vào tập $G(x^0)$ ta được chu trình $K=\{(3,3),(3,4),(4,3),(4,4)\}$ với $K^+=\{(3,4),(4,3)\}$ và $K^-=\{(3,3),(4,4)\}$. Khi đó

$$\theta = \min\{x_{ij}^0 | (i,j) \in K^-\} = \min\{x_{33}^0, x_{44}^0\} = x_{33}^0 = 5$$

Do đó $(i_r, j_r) = (3,3)$. Tiến hành điều chỉnh phương án ta được phương án cực biên mới x^1 với giá trị hàm mục tiêu là $f(x^1) = f(x^0) - \theta \Delta_{33} = 945$.

• Vòng lặp 2: Ta có,

$$x^{1} = \begin{pmatrix} 0 & 75 & 5 & 0 \\ 0 & 0 & 110 & 0 \\ 85 & 0 & 0 & 5 \\ 0 & 0 & 165 & 275 \end{pmatrix}$$

và $G(x^1) = \{(1,2), (1,3), (2,3), (3,1), (3,4), (4,3), (4,4)\}$

Bước 1: Xác định các thế vị u_i , v_j bằng cách giải hệ $u_i + v_j = c_{ij}$ với $u_1 = 0$ và $(i, j) \in G(x^1)$ sau:

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} u_2 \\ u_3 \\ u_4 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} c_{12} \\ c_{13} \\ c_{23} \\ c_{31} \\ c_{34} \\ c_{43} \\ c_{44} \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 6 \\ 1 \\ 5 \\ 0 \\ 0 \end{pmatrix}$$

Sau khi giải, ta được các thế vị

$$\begin{pmatrix} u_1 & u_2 & u_3 & u_4 & v_1 & v_2 & v_3 & v_4 \end{pmatrix}^T = \begin{pmatrix} 0 & 1 & 0 & -5 & 1 & 2 & 5 & 5 \end{pmatrix}^T$$

Bước 2: Tính các ước lượng

$$\Delta_{ij} = \begin{cases} u_i + v_j - c_{ij} & \forall (i,j) \notin G(x^1) \\ 0 & \forall (i,j) \in G(x^1) \end{cases}$$

và ta có bảng \boldsymbol{T} sau đây:

	b_1		b_{i}	2	b	3	b	4	Supply
		8		2		5		4	
a_1	-7		75		5		1		80
		7		5		6		8	
a_2	-5		-2		110		-2		110
		1		3		7		5	
a_3	85		-1		-2		5		90
		0		0		0		0	
a_4	-4		-3		165		275		440
Storage	85		75		280		280		

Bước 3: Do $\Delta_{ij} > 0$ với (i,j) = (1,4) ($\notin G(x^1)$) nên x^1 chưa là nghiệm tối ưu.

Bước 4: Chọn ô $(i_s, j_s) = (1, 4)$ làm ô điều chính vì

$$\Delta_{14} = 1$$

Ghép ô (1,4) vào tập $G(x^1)$ ta được chu trình $K=\{(1,4),(1,3),(4,3),(4,4)\}$ với $K^+=\{(1,4),(4,3)\}$ và $K^-=\{(1,3),(4,4)\}$. Khi đó

$$\theta = \min\{x_{ij}^1|(i,j) \in K^-\} = \min\{x_{13}^1, x_{44}^1\} = x_{13}^1 = 5$$

Do đó $(i_r, j_r) = (1, 3)$. Tiến hành điều chỉnh phương án ta được phương án cực biên mới x^2 với giá trị hàm mục tiêu là $f(x^2) = f(x^1) - \theta \Delta_{13} = 940$.

• Vòng lặp 3: Ta có,

$$x^{1} = \begin{pmatrix} 0 & 75 & 0 & 5 \\ 0 & 0 & 110 & 0 \\ 85 & 0 & 0 & 5 \\ 0 & 0 & 170 & 270 \end{pmatrix}$$

và $G(x^2) = \{(1,2), (1,4), (2,3), (3,1), (3,4), (4,3), (4,4)\}$

Bước 1: Xác định các thế vị u_i , v_j bằng cách giải hệ $u_i + v_j = c_{ij}$ với

 $u_1 = 0 \text{ và } (i, j) \in G(x^2) \text{ sau:}$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} u_2 \\ u_3 \\ u_4 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{pmatrix} c_{12} \\ c_{14} \\ c_{23} \\ c_{31} \\ c_{34} \\ c_{43} \\ c_{44} \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \\ 1 \\ 5 \\ 0 \\ 0 \end{pmatrix}$$

Sau khi giải, ta được các thế vị

$$\begin{pmatrix} u_1 & u_2 & u_3 & u_4 & v_1 & v_2 & v_3 & v_4 \end{pmatrix}^T = \begin{pmatrix} 0 & 2 & 1 & -4 & 0 & 2 & 4 & 4 \end{pmatrix}^T$$

Bước 2: Tính các ước lượng

$$\Delta_{ij} = \begin{cases} u_i + v_j - c_{ij} & \forall (i,j) \notin G(x^2) \\ 0 & \forall (i,j) \in G(x^2) \end{cases}$$

và ta có bảng T sau đây:

	b	1	b	2	b	3	b	4	Supply
		8		2		5		4	
a_1	-8		75		-1		5		80
		7		5		6		8	
a_2	-5		-1		110		-2		110
		1		3		7		5	
a_3	85		0		-2		5		90
		0		0		0		0	
a_4	-4		-2		170		270		440
Storage	85		75		280		280		

Bước 3: Do $\Delta_{ij} \leq 0$ với $(i,j) \notin G(x^2)$ nên x^2 là nghiệm tối ưu của bài toán

Giai đoạn 3: Kết luận của bài toán.

Sau hai lần điều chỉnh phương án, ta nhận được phương án cực biên tối ưu

$$x^* = \begin{pmatrix} 0 & 75 & 0 & 5 \\ 0 & 0 & 110 & 0 \\ 85 & 0 & 0 & 5 \\ 0 & 0 & 170 & 270 \end{pmatrix}$$

Như vậy, kho thứ ba (b_3) cần được thiết kế để chứa được $\sum_{i=1}^3 x_{i3}^* = 0 + 110 + 0 = 110$ đơn vị hàng. Tương tự, kho thứ tư (b_4) phải chứa được $\sum_{i=1}^4 x_{i4}^* = 5 + 0 + 5 = 10$ đơn vị hàng. Sau khi đã xây dựng xong 2 kho này, phương án vận chuyển hàng tối ưu là

$$x^{opt} = \begin{pmatrix} 0 & 75 & 0 & 5 \\ 0 & 0 & 110 & 0 \\ 85 & 0 & 0 & 5 \end{pmatrix}$$

Chú ý: Trong bảng vận chuyển ở vòng lặp cuối cùng, ô có $\Delta_{32} = 0$ và $(3,2) \notin G(x^*)$ do đó phương án x^* không phải phương án cực biên tối ưu duy nhất của bài toán mở rộng tương đương.

Ta chọn ô (3,2) làm ô điều chỉnh, ghép ô (3,2) vào tập $G(x^1)$ ra được chu trình $K=\{(1,2),(1,4),(3,2),(3,4)\}$ với $K^+=\{(1,4),(3,2)\}$ và $K^-=\{(1,2),(3,4)\}$. Khi đó

$$\theta = \min\{x_{ij}^*|(i,j) \in K^-\} = \min\{x_{12}^*, x_{34}^*\} = x_{34}^* = 5$$

Như vậy, ta được phương án cực biên mới nhưng không thay đổi giá trị hàm mục tiêu như sau:

$$\overline{x}^* = \begin{pmatrix} 0 & 70 & 0 & 10 \\ 0 & 0 & 110 & 0 \\ 85 & 5 & 0 & 0 \\ 0 & 0 & 170 & 270 \end{pmatrix}$$

Tương ứng với bảng vận tải sau:

	b_1	b_2	b_3	b_4	Supply
	8	2	5	4	
a_1	-8	70	-1	10	80
	7	5	6	8	
a_2	-5	-1	110	-2	110
	1	3	7	5	
a_3	85	5	-2	0	90
	0	0	0	0	
a_4	-4	-2	170	270	440
Storage	85	75	280	280	

Từ bảng này, ta tiếp tục chọn ô $(3,4) \notin G(\overline{x}^*)$ có $\Delta_{34} = 0$ làm ô điều chỉnh và biến đổi theo thuật toán thế vị thì lại được bảng trong vòng lặp 3. Như vậy bài toán mở rộng này có 2 phương án cực biên tối ưu

$$x^* = \begin{pmatrix} 0 & 75 & 0 & 5 \\ 0 & 0 & 110 & 0 \\ 85 & 0 & 0 & 5 \\ 0 & 0 & 170 & 270 \end{pmatrix} \qquad \overline{x}^* = \begin{pmatrix} 0 & 70 & 0 & 10 \\ 0 & 0 & 110 & 0 \\ 85 & 5 & 0 & 0 \\ 0 & 0 & 170 & 270 \end{pmatrix}$$

Và tập nghiệm tối ưu của nó là

$$F_* = \{x = \lambda x^* + (1 - \lambda)\overline{x}^* \text{ v\'oi } 0 \le \lambda \le 1\}$$

$$= \begin{cases} 0 & 70 + 5\lambda & 0 & 10 - 5\lambda \\ 0 & 0 & 110 & 0 \\ 85 & 5 - 5\lambda & 0 & 5\lambda \\ 0 & 0 & 170 & 270 \end{cases} \text{ v\'oi } 0 \le \lambda \le 1 \end{cases}$$