Problem Set 13.1-13.2

Find a representation z = z(t) of the straight line segment with endpoints

$$1 = 0$$
 and $z = 1 + 2i$

2.
$$z = -3 + 2i$$
 and $z = -4 + 5i$
4. $z = 0$ and $z = 5 + 10i$

1.
$$z = 0$$
 and $z = 1 + 2i$

4.
$$z = 0$$
 and $z = 5 + 10i$

3.
$$z = 4 + 2i$$
 and $z = 3 + 5i$

3.
$$z = 4 + 2i$$
 and $z = 3 + 3i$
5. $z = -4i$ and $z = -7 + 38i$
6. $z = 1 - i$ and $z = 9 - 5i$

What curves are represented by
$$0.3 - it$$
, $-1 \le t \le 1$
7. $(1 + 2i)t$, $0 \le t \le 3$

What curves are represented by the following functions?

8.
$$3 - it$$
, $-1 \le t \le 1$

9.
$$1 - i - 2e^{it}$$
, $0 \le t \le t$

7.
$$(1+2i)t$$
, $0 \le t = 3$
9. $1-i-2e^{it}$, $0 \le t \le \pi$
10. $2+i+3e^{it}$ $0 \le t < 2\pi$

11.
$$t + 3t^2i$$
, $-1 \le t \le 2$

12.
$$t + 2it^3$$
, $-2 \le t \le 2$

11.
$$t + 3t^{-1}$$
, $-1 = t = 2$
13. $\cos t + 2i \sin t$, $-\pi < t < \pi$
14. $t + t^{-1}i$, $\frac{1}{2} \le t \le 5$

14.
$$t + t^{-1}i$$
, $\frac{1}{2} \le t \le 5$

(All amoquality); Represent the following curves in the form z = z(t).

15.
$$|z-3+4i|=4$$

16.
$$|z-i|=2$$

13.1, their L* approaches the length the.

the length of a curve. From this

17.
$$y = 1/x$$
 from (1, 1) to (3, $\frac{1}{3}$)

17.
$$y = 1/x$$
 from (1, 1) to (3, $\frac{1}{3}$) 18. $y = x^2$ from (0, 0) to (2, 4)

inequality (6) in Sec. 12.2 we obtain

19.
$$x^2 + 4y^2 = 4$$

20.
$$4(x-1)^2 + 9(y+2)^2 = 36$$

Evaluate $\int f(z) dz$ by the method in Theorem 1 and check the result by Theorem 2:

21.
$$f(z) = az + b$$
, C the line segment from $-1 - i$ to $1 + i$

22.
$$f(z) = e^{2z}$$
, C the segment in Prob. 1

23.
$$f(z) = z^3$$
, C the semicircle $|z| = 2$ from $-2i$ to $2i$ in the right half-plane

24.
$$f(z) = 5z^2$$
, C the boundary of the triangle with vertices 0, 1, i (clockwise)

Evaluate $\int f(z) dz$, where

25.
$$f(z) = 2z^4 - z^{-4}$$
, C the unit circle (counterclockwise)

26.
$$f(z) = \text{Re } z$$
, C the parabola $y = x^2 \text{ from } 0 \text{ to } 1 + i$

27.
$$f(z) = \text{Im } z$$
, C the circle $|z| = r$ (counterclockwise)

28.
$$f(z) = 4z - 3$$
, C the straight line segment from i to $1 + i$

29.
$$f(z) = (z - 1)^{-1} + 2(z - 1)^{-2}$$
, C the circle $|z - 1| = 4$ (clockwise)

30.
$$f(z) = \sin z$$
, C the line segment from 0 to i

31.
$$f(z) = e^{2z}$$
, C the vertical segment from πi to $2\pi i$

32.
$$f(z) = z \cos z^2$$
, C any path from 0 to πi

33.
$$f(z) = \cosh 3z$$
, C any path from $\pi i/6$ to 0

34.
$$f(z) = e^z$$
, C the boundary of the square with vertices 0, 1, 1 + i, i (clockwise)

35.
$$f(z) = \text{Re }(z^2)$$
, C the square in Prob. 34

36.
$$f(z) = \text{Im } (z^2)$$
, C the square in Prob. 34

37.
$$f(z) = \overline{z}$$
, C the parabola $y = x^2$ from 0 to 1 + i

38.
$$f(z) = (z - 1)^{-1} - (z - 1)^{-2}$$
, $f(z) = \sin^2 z$. C the semisides $f(z) = \sin^2 z$. C the semisides $f(z) = \sin^2 z$. C the semisides $f(z) = \sin^2 z$.

39.
$$f(z) = \sin^2 z$$
, C the semicircle $|z| = \pi$ from $-\pi i$ to πi in the right half-plane

40.
$$f(z) = \sec^2 z$$
, C any path from $\pi i/4$ to $\pi/4$ in the unit disk

07 Cosh (-2+3i)

Sul: f(2)= Cosh(-2+3i)

= cosh(-2) cosh(3i) + Sinh(-2) Sinh(3i) = cosh(2) cos(3) + (-1) Sinh(2) i Sin (3) = cosh(2) cos(3) - i Sinh(2) Sin(3)

f(z) = -3.724-0.5111

Complex Integrabilin

Complex line Integral: The complex line Integral of a complex function fix) over a Path C is written as:

of "" is obsed Path than the complex line integral

can be written as

fletalt.

Not: Path i' can be a straight line, circle or a semicircle.

Evaluate (fizidz, whele

P-760

025 - to - 510.

1,60 P(2)= 22-7, C the unit circle (counter clock wise).

Sel: Sine the Standard form of a circle is

12-Zol= & -- @

Given unit circle

12/=1 - 2

compasing cyold cy Q1 We get

Z0=0, 8=1

... The Palameteric form of a circle is given by

Z(t)= Zotse 0 ≤ t ≤ 27 (Full circle)

Z(1)=0+e

Diff North Bis

Z(1)= i et

if (z(+))=2(e)-(e)

sit -sit

idorio, moz j

Z(+)= x(+)+iz(+) -0

Limits

Con to (1). I)

When
$$x = 1$$
; $t = 0$

When $x = 1$; $t = 0$

When $x = 1$; $t = 0$

Limits

Con to (1). I)

When $x = 1$; $t = 0$

As $x(1) = 1$

I fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$; $x = 0$

The fix $x = 0$ is $x = 0$.

(127 f(z)=Imz; C the circle |z|=V (counter clockwise).

Sal: The general eq of circle is

|z-zo|= | -0

Also given |z|=V -0

company eq 0 + ep 0 we get

Zo=0, = 8

As Palametric eq: of circle is

Z(1)= 201 Se 0 = t \(27. \)

Z(1)= 201 Se 0 \(\) \(

Diff Min't, f. B. 2 -5(+)= 16

Z(+)=Yiet

Now [Set) = Im [set]

= Im [Yeast + ix smt]

= Y Sont

Stizidz = (f[z(+)] z(+)dt.

= ix (Sint cost + i sout) oft

= ix (T sout) of the sounds.

(fut) of = - TY2

Oz8 f(z)=4z-3, c the line segment from i to 1+1

Sal: Given f(z)=4z-3, Z(=1 d &z=1+1)

The Palamedic form of 9 straight line is

Z(t)= Z(t)=2(t)t; 0 \le t \le 1

Using theorm #1.

$$\int_{\xi} f_{12} dz = \left(f \left(\frac{1}{2} (4) \right) \frac{1}{2} (4) dt \right)$$

$$= \left(\frac{44 - 3 + 4i}{1} \right) 1 dt$$

$$= \frac{4t^{2}}{2} \left[-3t \right] + 4it \frac{1}{2}$$

$$= 2 - 3(1) + 4i$$

$$\int_{C} \int_{C} \int_{C$$

(dockwise).

Sal: Sina the Jeneral form of Circle:

12-201=8-0

Griven that

12-11=4-0

Compain co o d epo we get Zo=1; l=4

: Palameteic form of Civile

Z(1)= 20+ let; 2x <t <0

Z(+)=1+4et

Diff: Wird "E" B.S

Z(+) = <i et

Now $\begin{aligned}
f(z(t)) &= [Y + 4e - Y] + 2[Y + 4e - X] \\
&= \frac{1}{4}e^{it} + \frac{2}{8}e^{-2it} \\
&= \frac{1}{4}e^{it} + \frac{1}{8}e^{-2it}
\end{aligned}$

. Using theorem # 1

$$\int_{0}^{\infty} f(z) dz = \int_{0}^{\infty} f(z(z)) dz = \int$$

030
$$f(z) = \sin z$$
, c the line segment from 0 to ?

Sol: $Z_1 = 0$; $Z_2 = ?$

As $Z(4) = Z_1 + (2z - 2i)H$; $0 \le t \le 1$
 $Z(4) = 0 + (i - 0)H$
 $Z(4) = iH$

Diff. $Wy + H' B.S$

of $f(z(t)) = SiniH$

$$= \int_{0}^{\infty} SinH + \int_{0}^{$$

QSI
$$f(z) = \frac{\lambda^2}{2}$$
, c the Vertical Segment from πi to $2\pi i$

Soli- $Z_1 = \pi i$, $Z_2 = 2\pi i$

As

 $Z(t) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$
 $= \pi i + (2\pi i - \pi i)t$

Diff:

 $Z'(t) = \pi i$

As

 $f(z_1) = \frac{\lambda^2}{2\pi i(1+t)}$

As

 $f(z_1) = \frac{\lambda^2}{2\pi i(1+t)}$
 $= \frac{\lambda^2}{2\pi i(1+t)}$

Q32
$$f(z) = Z\cos z^2$$
, cany Path from 0 to πi

Sol: let c be a St: line

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $0 \le t \le 1$.

 $Z(z) = Z_1 + (Z_2 - Z_1)t$; $Z(z) = Z_1 + (Z_2 -$

 $= -\pi \int \{ \cos x_{j} f_{j} dt \}$

Using substitution method for solving the interpret

Put
$$t^2 = U$$

$$2tdt = du$$

$$tolt = 1/2du$$

$$\int t(t)dt = -\pi/2 \quad [costudu]$$

$$= -\pi/2 \quad [costudu]$$

$$= -1/2 \quad [costudu]$$

033 f(z) = cosh3z, c ony Path from Ti/6 to 0 Sol: Let'c' be a St: line

$$Z(t) = Z_{1} + (Z_{2} - Z_{1}) + 0 \le t \le 1$$

$$= \frac{\pi i}{6} + (0 - \frac{\pi i}{6}) + 1$$

$$= \frac{\pi i}{6} - \frac{\pi i}{6} + 1$$

$$Z'(t) = -\pi i/6$$

$$f(z(t)) = \cosh 3(\sqrt[3]{i} - \frac{\pi}{6}t)$$

$$= \cosh(\sqrt[3]{i} + \cosh(\sqrt[3]{i})$$

$$= \cosh(\sqrt[3]{i} + \cosh(\sqrt[3]{i})$$

$$= -\frac{\pi i}{6} \left(-\frac{\cosh(\sqrt[3]{i})}{\pi/2} \right)$$

$$= \frac{\pi}{6} \left(-\frac{\cosh(\sqrt[3]{i})}{\pi/2} \right)$$