1

Chapter 1: Source Coding

Gautam Singh

1 Learning Objective 1

 $H(X) = -\sum_{x} p(x) \log p(x)$ (1.1.1)

$$= 2.23 \text{ bits}$$
 (1.1.2)

1.2 The source entropy is

1.1 The source entropy is

$$H(X) = -\sum_{i=1}^{\infty} 2^{-i} (-i)$$
 (1.2.1)

$$= \sum_{i=1}^{\infty} \frac{i}{2^i} = 2 \text{ bits}$$
 (1.2.2)

1.3 The source entropy is

$$H(X) = -\sum_{i=1}^{\infty} p (1-p)^{i-1} \log \left(p (1-p)^{i-1} \right)$$

$$= -\left(\frac{p \log p}{1 - (1-p)} + \frac{p \log (1-p) (1-p)}{(1 - (1-p))^2} \right)$$

$$= -\left(\log p + \frac{1-p}{p} \log (1-p) \right) \text{ bits}$$

- 1.4 Since p(H) = p, we get p(T) = 1 p. Let E denote the event of getting at least one head.
- 1.4.1 The probability of failure is clearly $p(E') = (1 p)^N$. Hence, the information conveyed by the failure is

$$I(E') = -N \log (1 - p)$$
 (1.4.1)

(1.3.3)

- 1.4.2 When $N \to \infty$ in (1.4.1), $I(E') \to \infty$ as $0 \le 1 p \le 1$. This means that the event E conveys little information as N increases, which makes sense since the probability of E increases with N.
- 1.5 We compute the pmfs of X and Y first. Using Table 1.5.1 and Table 1.5.2, we can now compute the pmfs of X|Y and Y|X.

х	x_1	x_2	x_3
p(x)	<u>5</u> 8	$\frac{1}{4}$	$\frac{1}{8}$

TABLE 1.5.1: PMF of *X*.

у	<i>y</i> ₁	<i>y</i> ₂
p(y)	$\frac{3}{4}$	$\frac{1}{4}$

TABLE 1.5.2: PMF of *Y*.

	x_1	x_2	x_3
y_1	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$
<i>y</i> ₂	$\frac{1}{2}$	$\frac{1}{2}$	0

TABLE 1.5.3: PMF of X|Y.

	x_1	x_2	<i>x</i> ₃
<i>y</i> ₁	$\frac{4}{5}$	$\frac{1}{2}$	1
<i>y</i> ₂	$\frac{1}{5}$	$\frac{1}{2}$	0

TABLE 1.5.4: PMF of Y|X.

1.5.1 The entropy of X is

$$H(X) = -\left(\frac{5}{8}\log\frac{5}{8} + \frac{1}{4}\log\frac{1}{4} + \frac{1}{8}\log\frac{1}{8}\right)$$
(1.5.1)

$$= 1.30 \text{ bits}$$
 (1.5.2)

1.5.2 The entropy of Y is

$$H(Y) = -\left(\frac{3}{4}\log\frac{3}{4} + \frac{1}{4}\log\frac{1}{4}\right) \quad (1.5.3)$$

$$= 0.81 \text{ bits}$$
 (1.5.4)

1.5.3 The joint entropy of X and Y is

$$H(X, Y) = E[-\log p(X, Y)]$$
 (1.5.5)

$$= 2 \text{ bits}$$
 (1.5.6)

1.5.4 The conditional entropy of X given Y is

$$H(X|Y) = E[-\log p(X|Y)]$$
 (1.5.7)

$$= 1.19 \text{ bits}$$
 (1.5.8)

1.5.5 The conditional entropy of Y given X is

$$H(Y|X) = E[-\log(Y|X)]$$
 (1.5.9)
= 0.70 bits (1.5.10)

1.6 The differential entropy of X is

$$h(X) = -\int_{-\infty}^{\infty} p(x) \log p(x) dx$$
 (1.6.1)
= $\int_{0}^{a} a^{-1} \log a dx = \log a$ (1.6.2)

$$= \int_{0}^{a} a^{-1} \log a \ dx = \log a$$
 (1.6.2)

From Figure 1.6.1, the differential entropy monotonically increases with a. It is zero when a = 1, negative when a < 1 and positive when a > 1.

Fig. 1.6.1: h(X) as a function of a.