2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Primitive Roots of Unity (1)

Primitive roots of unity play an important role in modular arithmetic. They were studied by Euler, Lambert, and Lagrange. Gauss first rigorously proved their existence.

Leonhard Euler (1707-1783)

Johann Heinrich Lambert (1728-1777)

Joseph-Louis Lagrange (1736-1813)

https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Primitive Roots of Unity (2)

Definition

An integer A $(1 \le A \le P-1)$ is a **primitive** root of unity (mod P) if $A^K \not\equiv 1 \pmod{P}$ for $1 \le K \le P-2$.

Example (P=7)

- > 3, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1$ $\Rightarrow 3$ is a primitive root of unity (mod 7)
- > 2, $2^2 \equiv 4$, $2^3 \equiv 1$
 - \Rightarrow 2 is **not** a primitive root of unity (mod 7)

Primitive Roots of Unity (3)

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline A \ (\bmod{\,7}) & 0 & 1 & 2 & \mathbf{3} & 4 & \mathbf{5} & 6\\\hline A^2 \ (\bmod{\,7}) & 0 & 1 & 4 & \mathbf{2} & 2 & \mathbf{4} & 1\\ A^3 \ (\bmod{\,7}) & 0 & 1 & 1 & \mathbf{6} & 1 & \mathbf{6} & 6\\ A^4 \ (\bmod{\,7}) & 0 & 1 & 2 & \mathbf{4} & \mathbf{4} & \mathbf{2} & 1\\ A^5 \ (\bmod{\,7}) & 0 & 1 & 4 & \mathbf{5} & 2 & \mathbf{3} & 6\\ A^6 \ (\bmod{\,7}) & 0 & 1 & 1 & 1 & 1 & 1\\ \hline A^K \ (\bmod{\,7}) & \text{for } K = 1, 2, \dots, 6\\ \hline \end{array}$$

- > **3,5** primitive roots of unity (mod 7)
- > 1,2,4,6 not primitive roots of unity