# 第一章 线性代数基础

本章将会正式进入矩阵理论的知识内容中,首先是第一章,这一章的名字叫做"线性代数 基础",按照课本的话来讲,这一部分不是单纯的对于线性代数知识的简单回顾与复习,而是 在已经掌握线性代数的知识的基础上进行深化,同时,这一章也是后面内容的基础。

本章将会涉及到以下内容:

- 线性空间与子空间
- 空间分解与维数定理
- 特征值与特征向量
- 线性变换

• ...

注意: 之后的内容会随着课程的进行进行及时更新

# 1.1 线性空间与子空间

提到"空间"一词,很多人对这个概念应该并不陌生,我们从出生便降临在这个世界中,这个世界便是一个三维空间,我们使用计算机浏览互联网,这也可以称作一个网络空间......类似的例子还有很多很多。

### 1.1.1 线性空间

在这里我们要讨论的概念叫"线性空间",是数学上的空间,上面提到的我们生活在的三维空间,抽象出来也属于线性空间。

线性空间的例子,除了上面提到的三维空间,在平面直角坐标系 x,y 组成的一个平面也是一个空间(二维空间),那究竟何为线性空间呢?有什么标准来判断其是否是一个空间?判断能否组成一个空间的定义如下:

### 定义 1.1.1: 判断空间的定义

设 V 是一个非空集合,P 是一个数域,在集合 V 的元素之间定义加法  $v = \alpha + \beta$ ,定义数量乘法  $\delta = k\alpha$ ,如果加法与数量乘法满足下列规则:

- $\alpha + \beta = \beta + \alpha$
- $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- ∃0 ∈ V, ∀α ∈ V, 有α + 0 = α (存在零 元素)
- $\forall \alpha \in V, \exists \beta \in V,$ 使得 $\alpha + \beta = \mathbf{0}$ (存在负元素)
- $1\alpha = \alpha$ 
  - $k(l\alpha) = (kl)\alpha$
  - $(k+l)\alpha = k\alpha + l\alpha$
  - $k(\alpha + \beta) = k\alpha + k\beta$

则 V 称为数域 P 上的**线性空间** 

在这里我们需要明确下面一个概念: 何为数域?

#### 定义 1.1.2: 数域的概念

如果一个由数字构成的集合(叫做数集)P,这个数集对于加法、减法、乘法、除法(除数不为0)封闭,则就把这个数集P叫做数域

1.1 线性空间与子空间

3

这里又引出了一个新的词——封闭,何为封闭?封闭的概念较为简单:如果一个集合中的某两个数做某一运算之后的结果仍然在该集合中,那么就称该集合对于该运算是封闭的。

如果还是对于这一概念不理解,希望下面这个例子能够帮你理解:

#### 例 1.1.1. 全体整数组成的集合 ℤ 是否是一个数域?

解. 整数集包含两大部分: **正整数和负整数**, 0 是整数, 但 0 既不是正数也不是负数接下来我们来判断整数集是否对于加法封闭:

我们从小学数学的知识就可以得知,两个整数相加依旧是整数,所以整数集对于加法是 封闭的

依次类推,两个整数相减,相乘,结果依旧是一个整数,所以很显然,整数集对于四则运算中的加法、减法和乘法都是封闭的

最后,整数集对于除法是否是封闭的呢?

很显然不是,举一个最简单的例子,a = 1, b = 2,a 除以 b 的结果是  $\frac{1}{2}$ ,它并不是一个整数,而是一个分数,或者说小数,又可以说是一个有理数,所以整数集对于除法并不是封闭的。

综上,可以断定,整数集并不是一个数域。

注. 定义1.1.1中的八条性质说明了什么?

左侧四条定义了空间对于加法需要满足以下特性:加法的交换律、加法的结合律、存在零元素、存在父元素

右侧的四条定义了空间的数量乘法需要满足以下特性:数量乘法的结合律、数量乘法的分配律(分配律分为两个标量相加的分配律,以及两个向量相加的分配律)。

通常,定义1.1.1给出的八个条件即为判断一个集合是否能构成空间的依据,请看下面的例题。

#### 例 1.1.2. 设多项式集合

$$P_n[x] = \{a_{n-1}x^{n-1} + \dots + a_1x + a_0 | a_i \in P, i = 0, 1, \dots, n-1\}$$

这里  $P_n$  代表**次数不超过** n **的多项式**, 请问  $P_n[x]$  是否能构成一个线性空间?

#### 解。按照定义1.1.1的八条规律,依次来判断

首先,多项式的加法一定满足交换律和结合律(由小学数学学过的加法交换律和加法结合律就能得知),同样的,我们可以在这个多项式集合中找到一个元素 0,使得该多项式与 0

相加的结果依旧是该多项式(很明显,这个元素 0 就是数字 0,即  $a_{n-1}, a_{n-2}, \cdots, a_1, a_0$  均为 0 的时候),此外,我们可以构造出下面的一个多项式集合,令其与  $P_n[x]$  相加的结果为 0:

$$Q_n[x] = -P_n[x]$$

综上,该集合满足空间定义中对于加法的规律,接下来判断乘法

很显然,存在一个元素 1,使得该集合与 1 相乘的结果就是其本身(这个元素 1 就是数字 1,即  $a_{n-1}=a_{n-2}=\cdots=a_1=0, a_0=1$  的时候)。同时,由小学数学和初中数学的知识可以知道,多项式的乘法满足数乘的结合律与分配律

综上,该多项式集合是一个线性空间。

注.上面的例子大多数情况下运用了一些"显然,由……的知识可以得知",没有具体写明如何得出的结果,有以下两点原因,第一点原因是在写这段文字的时候确实懒得打这么长的公式了,二是认为大家应该能明白上面判断的过程,所以就没有写明公式,当然写出公式也是可以的,如果后面确实不理解上面是如何"显然"得来的,会重新更新这部分的例子,用公式表明。

## 1.1.2 线性空间的维数

在了解了何为线性空间之后,接下来我们再来了解一下如何形容一个线性空间,维数便是形容线性空间的一个度量,我们前面一直所说的"三维空间"中的"三维",就表明该空间的维数为3

#### 定义 1.1.3: 线性空间维数的定义

在线性空间 V 中,如过有 n 个向量  $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$  线性无关,而 V 中任意 n+1 个向量 线性相关,则称  $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$  为 V 的一组**基底**,由于线性空间的所有基底总含有相同 数目的向量,则 n 称为线性空间 V 的**维数**,常记为  $\dim V = n$ 

上面的定义说明了,一个空间中线性无关向量的个数其实就是该空间的维数,同时,这一系列线性无关的向量便可以构成该空间的一组基,回顾第零章线性表示相关的内容,我们同样可以得知:该空间的任意向量都可以由这一组基来线性表示。

注. 请注意,向量组/线性空间的维数与向量的维数是两个不同的概念,一定要注意区分。 向量的维数: 向量有几行,一般就说是向量的维数为几,如  $\alpha=[1,2,3]^T$ ,那么这就是一个三维向量

向量组/线性空间的维数: 向量组中线性无关向量的个数, 如 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$
 ,虽然  $A$  是

一个  $3 \times 3$  的矩阵,但是经过分析可以看出该矩阵其实只有一个线性无关的向量,故该向量组/空间是 1 维的,但是其中按列分块出的的三个列向量却是三维的向量。

# 1.2 空间分解与维数定理

//TODO