In terms of sets, we have the following interpretations:

- $ullet \ x \in igcup_{i \in I} A_i \ ext{means that} \ x ext{ is in at least one of the} \ A_i ext{ sets.}$
- $x \in \bigcap_{i \in I} A_i$ means that x is in all of the A_i sets.

So this means that

- 1. $\bigcap_{N\geq 1}\bigcup_{n\geq N}A_n$ are all elements somewhere in $A_N,A_{N+1},A_{N+2},\ldots$, no matter how large N is. Being a member of this set is logically equivalent to being "in infinitely many of the A_i sets".
- 2. $\bigcup_{N\geq 1}\bigcap_{n\geq N}A_n$ are all elements in every single one of $A_N,A_{N+1},A_{N+2},\ldots$ for some N. Being a member of this set is logically equivalent to being "in all *but* finitely many the A_i sets".

Lim inf

A member of

3

$$\bigcup_{N=1}^{\infty} \bigcap_{n \geq N} A_n$$

is a member of at least one of the sets

$$\bigcap_{n\geq N}A_n$$
 ,

meaning it's a member of either $A_1\cap A_2\cap A_3\cap \cdots$ or $A_2\cap A_3\cap A_4\cap \cdots$ or $A_3\cap A_4\cap A_5\cap \cdots$ or $A_4\cap A_5\cap \cdots$ or $A_4\cap A_5\cap \cdots$ or ... etc. That means it's a member of all except finitely many of the A.

A member of

$$igcap_{N=1}^{\infty}igcup_{n\geq N}A_n$$

is a member of all of the sets

$$\bigcup_{n\geq N}A_n,$$

so it's a member of $A_1 \cup A_2 \cup A_3 \cup \cdots$ and of $A_2 \cup A_3 \cup A_4 \cup \cdots$ and of $A_3 \cup A_4 \cup A_5 \cup \cdots$ and of $A_4 \cup A_5 \cup A_6 \cup \cdots$ and of $A_5 \cup A_6 \cup \cdots$ and of $A_6 \cup \cdots$ and of