TRANSPORTNÍ VRSTVA

RNDr. Ing. Vladimir Smotlacha, Ph.D.

Katedra počítačových systémů
Fakulta informačních technologií
České vysoké učení technické v Praze
© Vladimír Smotlacha, 2019

Počítačové sítě BI-PSI LS 2018/19, Přednáška 6

https://courses.fit.cvut.cz/BI-PSI

Transportní vrstva

- druhy služeb
- protokoly
- vytvoření a uzavření spojení
- řízení toku

TCP

UDP

RTP, RTCP

SLUŽBY

Transportní vrstva – hranice mezi

aplikací (software)

a

sítí (technologie)

Transparentní přenos dat mezi koncovými uživateli

- spolehlivost
- řízení datového toku
- segmentace dat
- oprava chyb

ADRESACE

Služba musí mít adresu

- TSAP Transport Service Access Point
- předdefinované TSAP ("well-known ports")
 - např. port 80 pro http
- dynamicky přidělované
 - portmapper
 - registruje TSAP pro služby

NAVÁZÁNÍ SPOJENÍ

Základní dohoda o navázání spojení:

CONNECTION REQUEST --->

<--- CONNECTION ACCEPTED

problémy: duplikace paketu Request nebo ztráta Accepted

- potřebné vylepšení
 - unikátní identifikátor každé relace
 - omezená životnost požadavku
 - nutný 3. paket ("potvrzení potvrzení")

NAVÁZÁNÍ SPOJENÍ

Správné řešení

- 3 pakety ("three-way handshake")
- identifikátor/čítač přenesených dat

$$(seq = x)$$

<--- ACKNOWLEDGE

$$(seq = y, ack = x)$$

DATA

$$(seq = x+1, ack = y)$$

UKONČENÍ SPOJENÍ

- Asymetrické ukončení
 - jeden účastník ukončí spojení
 - příklad: telefonní hovor
 - možná ztráta dat
 - účastník mohl odeslal data před přijetím zprávy o ukončení
- Symetrické ukončení
 - obě strany se musí dohodnout
 - neexistuje zcela spolehlivé řešení, pokud komunikace není bezpečná
 - Problém dvou armád (Two Armies Problem / Coordinated Attack Problem / Two Generals' Problem)

UKONČENÍ SPOJENÍ

Premisa: A zvítězí, pokud A1 i

A2 zaútočí najednou

- A1 pošle zprávu
 - není jisté že projde

A1 B A2

- A2 odešle potvrzení
 - co když se ztratí zpráva nebo potvrzení?
 - A1 odpoví potvrzením přijatého potvrzení
- stále není jisté, že A1 i A2 se dohodli
 - další potvrzení ???

Důkaz neexistence řešení sporem:

Nechť *n* je délka nejkratšího protokolu. Je poslední, *n*-tý paket nezbytný?

BI-PSI, Transportní vrstva

ZAJIŠTĚNÍ SPOLEHLIVOSTI

Princip obdobný jako v linkové vrstvě

- detekce chybných paketů
- eliminace duplikovaných paketů
 - sekvenční číslo
- omezený počet nepotvrzených paketů
 - "plovoucí okénko" (sliding window)
- zamezení zahlcení (congestion control)
 - vynucené omezení/přerušení přenosu

Transmission Control Protocol

- služba v L4
 - spojově orientovaná
 - zabezpečená
 - duplexní
 - v jedné relaci lze přenášet neomezený počet dat
- mnoho implementací
 - různá vylepšení (např. předcházení zahlcení, ...)
 - Reno
 - Tahoe
 - Vegas

HLAVIČKA TCP

verze IP	IP délka záhlaví typ služby		celková délka							
N A	idetifikace IP datagramu							posunutí fragmentu		
	TIL (ol vy	/šší	vrst	tvy		kontrolní součet IP záhlaví		
57//	275			3	ΙP	adre	esa odesílatele			
		1	F		V IF	o adı	resa příjemce			
				vo	liteli	né p	oložky IP hlavič	šky		
	zdrojový port TCP							cílový port TCP		
						sek	venční číslo			
				pc	otvrz	ova	cí číslo (je-li AC	CK)		
délka záhlaví	rezerva	U	А	Р	R	S	F	délka okna		
	kontrolní součet TCP							ukazatel naléhavých dat		
				voli	teln	é po	ložky TCP hlavi	ičky		
							data			

TCP – NAVÁZÁNÍ SPOJENÍ

TCP - UKONČENÍ SPOJENÍ

VLASTNOSTI TCP

- zabezpečení
 - kontrolní součty
 - detekce duplicitních paketů
 - opakované odeslání
 - správné seřazení
 - timeout
- odesílání dat bez potvrzení předešlých
 - "sliding window"
- detekce zahlcení

TCP – STAVOVÝ DIAGRAM

POTVRZOVÁNÍ

- příjemce odesílá ACK
 - uvede pořadové číslo byte, který se očekává
 - tím potvrdí, že všechny předešlé byte byly přijaty
 - není nutné všechny potvrzovat pakety jednotlivě

- timeout (u odesílatele)
 - vysílání se vrátí k prvnímu nepotvrzenému paketu pokud nepřišlo potvrzení do očekávané doby

POTVRZOVÁNÍ II

duplicitní ACK

- pokud některý paket nepřijde, ale následující ano, příjemce zopakuje poslední ACK
- slouží jako indikace, že se paket možná ztratil

- timeout (u příjemce)
 - do očekávaného okamžiku nepřišel nový paket
 - odešle se znovu poslední ACK
 - max. 3x opakovat

OKÉNKO ODESÍLATELE

Posuvné okénko (sliding window)

- položka Délka okénka je 16 bitů => max. 64 kB
- snižuje efektivitu pro velké rychlosti nebo zpoždění
 - bandwidth * delay
 - příklad: linka 1 Gbps
 - odeslání 64 kB trvá cca 0.5 ms
 - pro "delay" 50 ms je linka využita jen z 1%
- řešení: option "Window scale"
 - posun o max. 14 bitů => 30 bitů pro velikost okénka

ZAMEZENÍ ZAHLCENÍ

Nelze odeslat více dat nepotvrzených než udává hodnota (Congestion Window)

- Proměnné využité "congestion control":
 - MSS (Maximum Segment Size) max. velikost posílaného paketu
 - definuje příjemce
 - SSTHRESH (Slow-start Threshold) hranice pravděpodobného zahlcení
 - odhad, kolik nepotvrzených dat lze odeslat
 - v násobcích MSS
 - CWND (Congestion Window) okénko odesílatele
 - kolik dosud nepotvrzených dat odesílatel vyšle
 - je nezávislé na "sliding window"

ZAMEZENÍ ZAHLCENÍ - ALGORITMUS

- pomalý start ("slow start")
 - počáteční hodnota CWND je 1
 - zpočátku se okénko odesílatele (CWND) zvětšuje 2x
 - velikost okénka roste exponenciálně!
- po dosažení SSTHRESH se CWND zvětšuje lineárně
- ztracený paket nebo jeho ACK se chápe jako příznak zahlcení (congestion)
 - opakuje se vysílání od posledního potvrzeného paketu
 - opakuje se slow start (verze Tahoo)
 - SSTHRESH se nastaví na polovinu CWND
 - CWND se zmenší na polovinu (verze Reno)

zdroj: http://black.goucher.edu/~kelliher/s2011

ZAMEZENÍ ZAHLCENÍ

Stále jsou vyvíjeny nové algoritmy congestion control

Never ending story:

autor: Oliver H (2017) CC BY-SA 3.0

VYUŽITÍ TCP

TCP je nezbytné všude, kde je nutný zabezpečený datový kanál

- není nutné pro
 - malé bloky dat
 - má velkou režii (čas i data)
- nevhodné pro
 - real-time aplikace: VOIP, streaming
 - paket je doručen za každou cenu nežádoucí zpoždění
 - vestavné systémy (embedded-systems)
 - příliš komplexní

User Datagram Protocol

- služba v L4
 - nespojovaná
 - nezabezpečená
- porty
- max. 64 kB dat
 - většinou menší bloky dat
 - fragmentace ve vrstvě IP je nežádoucí

HLAVIČKA UDP

verze IP	délka záhlaví	typ služby	celková délka			
1	idetifikace IP	datagramu	příznaky	příznaky posunutí fragmentu		
		protokol vyšší vrstvy	kontrolní součet IP záhlaví			
) //		IP adres	a odesílatele			
	MAL	IP adre	sa příjemce	AL/MAL		
		volitelné pol	ožky IP hlavičky			
	zdrojový po	ort UDP	cílový port UDP			
	délka d	dat	kontrolní součet UDP záhlaví			
			data			

VYUŽITÍ UDP

Všude, kde není nutné zabezpečení nebo vadí režie TCP

- pro malé bloky dat
- nevadí případná ztráta
 - např. DNS
- je nežádoucí režie TCP
 - např NTP
- real-time aplikace
 - je lepší ztratit část dat než čekat

Real-time Transport Protocol

- přenos proudu (stream) dat mezi koncovými body v reálném čase
- hlavička obsahuje "timestamp"
 - čas od začátku streamu
 - jednotka závisí na aplikaci
 - umožní interpretovat přijatý blok
- implementováno většinou nad UDP

VYUŽITÍ RTP

- multimediální formáty
 - H.264, MPEG-4, MJPEG, MPEG, ...

- videokonference
- data streaming
- IP telefonie

Děkuji za pozornost