strains

Non-SNP mutations

deleted

Ranked, bottom 70%

Pyhlogeny Scores:

Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in *M. tuberculosis*

Alper Yurtseven^{1,2}, Sofia Buyanova⁴, Amay A. Agrawal^{1,2}, Olga O. Bochkareva^{4,5}, Olga V. Kalinina^{1,2,3}

- ¹ Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbruecken, Germany
- ² Center for Bioinformatics, Saarland University, Saarbruecken, Germany
- ³ Faculty of Medicine, Saarland University, Homburg, Germany

0 0 0/

Support Vector

Machine (SVM)

- ⁴ Institute of Science and Technology Austria (ISTA), Vienna, Austria
- ⁵ CUBE, CMESS, University of Vienna, Austria

Introduction

Antimicrobial resistance (AMR) is a global health concern requiring accurate prediction of bacterial resistance patterns. Machine learning (ML) methods often overlook evolutionary relationships, limiting their detection of resistance-associated features. We propose using PRPS (phylogeny-related parallelism score) with ML, which measures whether a certain feature is correlated with the population structure of a set of samples. When validated on *Mycobacterium tuberculosis* genomes screened against 6 antibiotics (Amikacin, Capreomycin, Ethionamide, Kanamycin, Ofloxacin, and Streptomycin), we re-discovered known mutations and uncovered new candidates. Therefore integrating PRPS with ML enhances AMR analysis, addressing limitations and improving treatment and control strategies.

Drug name	Classification by line	Pharmacological group	Number of strains	Number (fraction) of resistant strains	Number of mutations (features)
Streptomycin	First line		4726	1158 (24,5%)	24425
Amikacin	Second line	Aminoglycosides	1149	208 (18,1%)	18864
Capreomycin			1086	205 (18,9%)	17045
Kanamycin			1362	297 (21,8%)	17335
Ofloxacin		Fluoroquinolones	795	307 (38,6%)	14185
Ethionamide		Nicotinamide derivative	571	210 (36,8%)	12974

Dataset

GWAS

To identify genetic variations linked to antibiotic resistance, we utilized Pyseer⁵, a leading tool for genome-wide association analysis. The analysis employed a linear mixed model (LMM) with random effects to control for population structure. To address multiple testing, we calculated Bonferroni p-value thresholds for each antibiotic, selecting significant variants associated with resistance phenotype.

GWAS Results

Left: Mutation Ile145Met in the probable amino acid aminotransferase PabC **Right:** Mutation Lys179Gln in the zinc metalloprotease FtsH

PATRIC Binary mutation table Variant Calling Data collection Data verification filtration (from PATRIC) (filter out faulty strains) Filters Applied >5 consequitive "N"nucleotides o L90 > 100 Genome-wide Machine Learning Phylogeny Analysis and Phylogeny-Related association studies Parallelism Score Calculation Max pairwise distance >0.2 (GWAS) Strains length > 2*std ± mean Variants present in < 0.2%

Mutation Filtration (70% of

mutations filtered out)

Pipeline

Phylogenetic Analysis

Random Forest

Phylogeny was built using the PanACoTA pipeline². Orthologous groups were formed with an 80% protein identity threshold. A maximum-likelihood phylogenetic tree was constructed using fasttree³ from a concatenated codon alignment of 161 common genes. The tree, along with resistance profiles, was visualized using the iTOL online tool⁴.

PRPS

To calculate PRPS for each single-nucleotide polymorphism (SNP), we generate a pairwise distance matrix, collapse clades with SNPs, and calculate the logarithm of the sum of pairwise distances between nodes with SNPs. PRPS reflects SNP frequency and mutation distances.

Machine Learning

	Support Vector Machine (SVM)			Random Forest		
MCC (Matthew's correlation coefficient)	All Features	TOP 30% PRPS	30% Random	All Features	TOP 30% PRPS	30% Random
Amikacin	0,720	0,752	0,302	0,881	0,883	0,481
Capreomycin	0,539	0,620	0,334	0,779	0,780	0,569
Ethionamide	0,325	0,370	0,269	0,550	0,605	0,488
Kanamycin	0,766	0,685	0,415	0,812	0,856	0,546
Ofloxacin	0,508	0,549	0,294	0,778	0,778	0,452
Streptomycin	0,602	0,613	0,477	0,782	0,801	0,650

Machine Learning Results: MCC values of ML models (67% Training, 33% Test)

Variant ID	Gene	Mutation	Uniprot ID	RIN-based simple classification	Observed associated with resistance to	Reported to be associated with resistance to
		Known res	istance-associated	mutations		
(7570, 'C,T', 'snp')	GyrA	A90V	P9WG47	Ligand interaction	Ofloxacin, Ethionamide	Fluoroquinolone
7362, 'G,C', 'snp')	GyrA	E21Q	P9WG47	Protein interaction	Ofloxacin	Fluoroquinolone
7585, 'G,C', 'snp')	GyrA	S95T	P9WG47	DNA interaction	Ofloxacin	Fluoroquinolone
781687, 'A,G', 'snp')	RpsL	K43R	P9WH63	RNA interaction	Streptomycin	Streptomycin
		Previo	ously unreported va	riants		
906857, 'A,G', 'snp')	PabC	I145M	Q79FW0	Protein interaction	Ethionamide, Ofloxacin	_
4052349, 'T,G', 'snp')	FtsH	K179Q	P9WQN3	Protein interaction	Ethionamide	-
	Previously unr	eported variants w	ith no structural ten	nplates (AlphaFold mo	odels used)	
4120926, 'A,G', 'snp')	anion transporter ATPase	N378D	I6Y498	Surface	Ethionamide	_
1896581, 'T,C', 'snp')	membrane protein	M36T	O53918	Surface	Ethionamide	-
835611, 'C,T', 'snp')	hypothetical protein	T153M	I6X9N8	Surface	Ofloxacin	-

Structural Classification Results: Structural classification of known resistance-associated and novel predictive variants with StructMAn⁶

Conclusion

ML has demonstrated its value in clinical treatment as a predictive tool for medical staff¹. We utilized traditional ML to detect the significance of unreported mutations. To enhance our ML approach, we devised a procedure that analyzes phyletic patterns of features. This procedure effectively eliminates numerous false variants and enhances performance metrics. While retaining most known resistance markers, we also discovered several new mutations.

References

- (1) Moran et al. (2020) *J. Antimicrobial Chemotherapy*
- (2) Perrin, A. et al. (2021) *NAR genomics and bioinformatics* (3) Price, M. N. et al. (2010) *PLoS ONE*
- (4) Letunic, I. et al. (2006) Bioinformatics
- (5) Lees, John A., et al. (2018) *Bioinformatics*
- (6) Gress et al. (2016) Nucleic Acids Research