# 12.1- Modeling of Systems of Differential Equations

## **DEFINITION**

The system of first-order differential equations

$$\frac{dx_1}{dt} = f_1(x_1, x_2, ..., x_n)$$

$$\frac{dx_2}{dt} = f_2(x_1, x_2, ..., x_n)$$

$$\vdots$$

$$\frac{dx_1}{dt} = f_n(x_1, x_2, ..., x_n)$$

is called an **autonomous** system if  $f_i(x_1,x_2,...,x_n)$  does not depend on t for i=1,2,...,n.

#### **REMARKS**



$$\vec{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

are parameterized curves in 2<sup>n</sup>-space.

#### **EXAMPLE**:

$$\frac{dx_2}{dx_1} = x_1$$

or

$$\frac{\frac{dx_{1}}{dt} = x_{1}}{\frac{dx_{2}}{dt} = x_{1}^{2}} \begin{cases} \frac{dx_{2}}{dx_{1}} = \frac{\frac{dx_{2}}{dt}}{\frac{dx_{1}}{dt}} = x_{1} \end{cases}$$



## **REMARKS** (continued)

- These solution curves are known as solution **trajectories**, **paths**, or **orbits** in 2<sup>n</sup>.
- The  $\mathbb{Z}_{-}^n$ -space is known as the **phase space**.

$$\overrightarrow{x}^* = \begin{bmatrix} x_1^* \\ x_2^* \\ \vdots \\ x_n^* \end{bmatrix}$$
 is an equilibrium point if  $f_i(x_i^*) = 0$  for

•  $\overline{x}^*$  is stable if for every  $\varepsilon > 0$ , there exists a  $\delta > 0$  such that if  $|\overline{x}(t_0) - \overline{x}^*| < \varepsilon$ , then  $|\overline{x}(t) - \overline{x}^*| < \delta$  for all  $t > t_0$ .

## **REMARKS** (continued)

- $\overline{x}^*$  is asymptotically stable if  $\overline{x}^*$  is stable <u>and</u> there is an  $\varepsilon>0$  such that if  $|\overline{x}(t_0)-\overline{x}^*|<\varepsilon$  then  $\lim_{t\to\infty} |\overline{x}(t)-\overline{x}^*|=0$ .
- $\overline{x}^*$  is unstable if it is not stable.

## **EXAMPLES**

#### **EXAMPLE 1:**

Consider a first-order autonomous system:

$$\frac{dx_1}{dt} = -x_1 + x_2$$

$$\frac{dx_2}{dt} = -x_1 - x_2$$

Where are the equilibrium points?

$$\begin{aligned}
-x_1 + x_2 &= 0 \\
-x_1 - x_2 &= 0
\end{aligned}
\begin{cases}
x_1^* \\
x_2^*
\end{cases}
x^* = \begin{bmatrix} 0 \\
0 \end{bmatrix}$$

## **EXAMPLES** (continued)

#### **EXAMPLE 2**:

We next study the stability of equilibrium points.

 $\frac{dx}{dt} = dx, \text{ where k is a constant (k plays an important role in the stability of } x^*)$  $x(t) = x_0 e^{kt}$ 

 $x^*=o$  is an equilibrium point.



#### **REMARKS**



$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \text{ where } A = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$

- Similar to the 1x1 system, the eigenvalues of the linear autonomous system will dictate the stability of the equilibrium points.
- $\overline{x}^*$  is asymptotically stable if the real part of the eigenvalues are <0, stable if the real parts are= 0, and unstable if a real part is >0.

#### **EXAMPLE**

For 
$$\frac{dx_1}{dt} = -x_1 + 5$$
$$\frac{dx_2}{dt} = 3x_2$$

we have

$$\frac{d\vec{x}}{dt} = A\vec{x} + \vec{b}$$
, where  $A = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$  and  $\vec{b} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ .

The equilibrium point  $\bar{x}^* = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$  satisfies  $A\bar{x}^* + \bar{b} = \bar{0}$ .

The eigenvalues of A are -1 and 3. Since one of the eigenvalues is greater than zero, then the equilibrium point is unstable.

#### **REMARKS**

- The eigenvalues of a linear autonomous system can determine the stability of the equilibrium points.
- However, many interesting systems are non-linear.
- In these instances, one must rely on the phase space near the equilibrium point to determine its stability

## **EXAMPLES**

#### **EXAMPLE 1:**



#### **EXAMPLE 2**:

Consider a nonlinear autonomous system:

$$\frac{dx}{dt} = 2y^{2}$$

$$\frac{dy}{dt} = y$$

$$= Ax + b, \text{ where } A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2y^{2} \\ 0 \end{bmatrix}.$$

The eigenvalues of A are o and 1. Therefore the equilibrium point is unstable.

#### **REMARK**

- When one eigenvalue is positive the equilibrium point of the nonlinear system is unstable.
- However, even when the eigenvalues are nonpositive, the equilibrium point may still be unstable due to the nonlinear term.

#### **DRAWING PHASES**

#### EXAMPLE

Consider the system  $dx/dt=y^2$ ; dy/dt=xy. The equilibrium points are (a,), where a is arbitrary.



#### **MATLAB CODE**

Consider the system,

$$\frac{dx}{dt} = y - y^2$$

$$\frac{dy}{dt} = (x-1)(x+1)$$

with the equilibrium points (1,0) and (a,1), where a is arbitrary. It's phase portrait looks like this:



#### **MATLAB CODE**

```
xstar1= 1; ystar1= 0;
 dx_{1}=1; dy_{1}=1;
Nx1=15; Ny1=7;
 %[X_1,Y_1] = meshgrid([-Nx_1:Nx_1]*dx_1 + xstar_1, [-Ny_1:Ny_1]*dy_1 + ystar_1);
 a=20;
xstar2= a; ystar2= 1;
 %this plot contains both equilibrium points
 [X_3,Y_3] = \text{meshgrid}([-Nx_1:Nx_1]*dx_1 + (xstar_1 + xstar_2)/2, [-Ny_1:Ny_1]*dy_1 + (ystar_1 + ystar_2)/2);
DX3 = Y3 - Y3.*Y3;
                          %since dx/dt = y-y^2
DY_3 = (X_3-1).*(Y_3-1); %since dy/dt= y
%subplot(3,1,3);
 plot(X3,Y3,'.k'); hold on;
plot(xstar1,ystar1,'rs');
plot(xstar2,ystar2,'rs');
 quiver(X3,Y3,DX3,DY3,'b');
 axis tight;
 grid on;
 title({'Homework 2009-12-02:';['Phase portrait for the system dy/dt = y - y^2 and dx/dt = (x-1)(y-1)']; ['near
 the equilibrium points (x1*,y1*)= ('num2str(xstar1)','num2str(ystar1)') and (x2*,y2*)= ('num2str(xstar2)','
 num2str(vstar2) ').']})
```

## **HOMEWORK**

- Draw the phase portraits for the previous two examples
- #8,9 Section 11.1