IV Fonctions dérivées de fonctions réciproques

Fonction	Primitive	Intervalles
$\frac{1}{1+x^2}$	Arctan x	\mathbb{R}
$\frac{1}{a^2 + x^2} \qquad a \in \mathbb{R}^*$	$\frac{1}{a} \operatorname{Arctan} \frac{x}{a}$	$\mathbb R$
$\frac{1}{1-x^2}$	$\begin{cases} \operatorname{Argth} x \\ \frac{1}{2} \ln \left \frac{1+x}{1-x} \right \end{cases}$	$\begin{cases}]-1;1[\\]-\infty;-1[,\\]-1;1[,]1;+\infty[\end{cases}$
$\frac{1}{a^2 - x^2} \qquad a \in \mathbb{R}^*$	$\begin{cases} \frac{1}{a} \operatorname{Argth} \frac{x}{a} \\ \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right \end{cases}$	$\begin{cases}]- a ; a [\\]-\infty;- a [\;,\\]- a ; a [\;,\;] a ;+\infty[\end{cases}$
$\frac{1}{\sqrt{1-x^2}}$	Arcsin x]-1;1[
$\frac{1}{\sqrt{a^2 - x^2}} \qquad a \in \mathbb{R}^*$	$Arcsin \frac{x}{ a }$]- a ; a [
$\frac{1}{\sqrt{x^2+1}}$	$\operatorname{Argsh} x = \ln\left(x + \sqrt{x^2 + 1}\right)$	$\mathbb R$
$\frac{1}{\sqrt{x^2 - 1}}$	$\begin{cases} \operatorname{Argch} x \\ -\operatorname{Argch}(-x) \\ \ln x + \sqrt{x^2 - 1} \end{cases}$	$\begin{cases}]1; +\infty[\\]-\infty; -1[\\]-\infty; -1[\text{ ou }]1; +\infty[\end{cases}$
$\frac{1}{\sqrt{x^2 + a}} \qquad a \in \mathbb{R}^*$	$\ln\left x + \sqrt{x^2 + a}\right $	$\begin{cases} a > 0 : \mathbb{R} \\ a < 0 : \\] -\infty; -\sqrt{-a} [\\ \text{ou }] \sqrt{a}; +\infty [\end{cases}$
$\frac{1}{(x^2+1)^2}$	$\frac{1}{2} \operatorname{Arctan} x + \frac{x}{2(x^2 + 1)}$	\mathbb{R}
$\frac{x^2}{(x^2+1)^2}$	$\frac{1}{2} \operatorname{Arctan} x - \frac{x}{2(x^2 + 1)}$	$\mathbb R$