AE6102 - Parallel Scientific Computing and Visualization Project Proposal(final)

Spring 2023

Team Name: Sifar Date: March 13, 2023

Requirements

• Title: 3D Visualization and Analysis of Seismic Volumes

Participants

Name	Roll Number	Contact
Adarsh Raj	190050004	190050004@iitb.ac.in
Koustav Sen	190050062	190050062@iitb.ac.in
Raja Gond	190050096	190050096@iitb.ac.in

• Abstract:

The project aims to provide a comprehensive and interactive visual representation of subsurface geology by creating three-dimensional images of seismic volumes in MayaVI library. The project will facilitate a better understanding of subsurface geology by allowing users to interact with the data in a more intuitive and efficient manner utilizing TraitsUI library. Visualization of seismic volumes is a very crucial component of interpretation workflows, be it to pick salt domes, interpret horizons, identify fault planes, or classify rock facies.

• Outline:

The project will involve the following steps:

- Collecting seismic data and processing it to generate seismic volumes.
- Converting the seismic volumes into 3D models (numpy arrays) using a specialized python module segyio.
- Developing an interactive user interface that allows the user to visualize and manipulate the 3D models, using TraitsUI.
- Adding functionalities for analysis using matplotlib and mayaVI to be able to identify fault planes, classification of rock structures, etc.
- Adding features such as colouring, slicing, and annotation to enhance the interpretability of the data.
- Experiments with popular datasets and demonstration of results of our application corresponding to multiple use cases.

Deliverables:

The final project deliverables will include:

- A comprehensive report detailing the methodology and outcomes of the project.
- A functional 3D visualization tool allows users to interact with the seismic volumes and view them from different angles and scales, with multiple functionalities for analysis on that seismic volume.
- An annotated sample of the 3D model to showcase the features and capabilities of the tool.

Sifar 2

• Timeline:

Date-Date	Planned Progress	
12/02/2023 - 26/02/2023	Project proposal submission	
	Finalize project based on feedback received during midsem week	
27/02/2023 - 12/03/2023	Datasets Research, Data Collection, Research on Surface Geology for	
	Analysis Mechanisms, Data Parsing and Transformation into numpy	
	3D models	
13/03/2023 - 26/03/2023	Models and UI Design, Logics Coding Phase using MayaVi and	
	TraitsUI	
27/03/2023 - 09/04/2023	Coding Phase continued, Experimentation on Different factors and	
	tweaks for optimization and better results	
10/04/2023 - 23/04/2023	Final report, demo video and optimized code as an open-source	
	GitHub repository.	

• Git repository: https://github.com/rajagond/AE6102_sifar