

DFIR-PLC INTERFÉSZ MŰSZAKI LEÍRÁS

Tartalomjegyzék

1.	A DI	IR rendszer funkciói	3
2.	A DF	FIR rendszer felépítése	4
	2.1 A I	DFIR rendszer felosztása üzemeltetők szerint	6
	2.2 A I	DFIR rendszer működése	7
3.		ECH rendszer	
	3.1 A I	PLC feladata	8
		PLC Hardver ismertetése	
	3.3 A I	PLC kommunikáció beállításai	8
		A PLC Ethernet kártya beállítása	
		Az Ethernet hálózat topológiája	
		Az Ethernet hálózat beállítása	
		úrásterv kezelés	
	3.4.1	A PLC-be leküldött szúrásterv adatok	10
	3.4.2	A PLC által küldött válasz a DFIR-nek	11
		PLC Szúrásterv kezelés folyamatábrája	
		ngerlési adatok	
		csévélőről levett tekercsadatok	
		lcsévélőről levett tekercsadatok	
		kercslevétel nyugtázó telegram	
		etjelküldés	
		Mérlegelés	
	3.10.1	A mérlegelés kommunikációs protokollja	16
		2 DISOMAT_F_MEAS	
	3.10.3	Soros kommunikációs kábel	17
	3.11 N	MOXA ETHERNET – RS232 átalakító	18
	3.11.1	MOXA átalakító beállítása	20
	3.11.2	A beállítások:	23
	3.11.3	A beállítások visszaállítása	23
4.	DFIF	R – PLC Interfész	25
	4.1 Vii	rtuális számítógép	25
	4.2 My	ySQL adatbázis	26
	4.3 A J	DFIRPLC program	28
	4.3.1	DFIRPLC Program felépítése	
	4.3.2	Szúrásterv kezelése	30
	4.3.3	Hengerlési adatok	32
	4.3.4	Tekercslevétel	33
	4.3.5	A DFIRPLC használata	34
	4.3.6	PLC Üzenetek panel	35
		Dresszírozó panel	
		– Esemény Napló panel	
	4.3.9	Esemény napló fájlok	
5.	Melle	ékletekék	

5.1	Disomat_F_Meas SCL kódja	39
	Moxa Nport beállítása	

1. A DFIR rendszer funkciói

A Dresszírozói Folyamat Irányító Rendszer (DFIR) a következő funkciókat látja el:

- SAP –VATECH adatkapcsolat

A dresszírozásra küldött tekercseket az SAP átadja a DFIR –nek. A kezelő kiválasztja a http://dfirapp.ms.dunaferr.hu/page.html "Tekercsléptető" oldalról A leküldhető tekercsek közül a küldeni kívánt tekercseket. A tekercsek megjelennek a VATECH rendszerben a HMI-n (Human Machine Interface) a szúrásterv kezelő ablakon. A kihengerelt tekercsek visszaadásra kerülnek az SAP felé.

- Technológia adatok tárolása

A DFIR tárolja a kihengerelt Tekercsek minősítési, technológiai és egyéb adatokat, valamint a VATECH rendszerből kapott részletes nyúlási, hengerlési erő, síkkifekvés, sebesség, stb. rekordokat, melyek a http://dfirapp.ms.dunaferr.hu/regf.html oldalon megtekinthetőek.

- Automatikus súlymérés

A DFIR minden tekercslevételnél lekérdezi a tekercsleszedő kocsiba épített mérleg által mért súlyt, és továbbítja az SAP felé.

- Vonalkód tikett nyomtatás

A tekercs elkészítése után a DFIR rendszer minden tekercshez vonalkód tikettet nyomtat.

2. A DFIR rendszer felépítése

A DFIR rendszer sematikus ábrája az alábi ábrán látható. A rendszer a következő elemekből épül fel:

- 1. HMI
- 2. Mérleg
- 3. Moxa Ethernet RS232 Átalakító
- 4. Zebra tikett nyomtató
- 5. Siemens S7-400 PLC
- 6. DFIR –PLC Interfész (Virtuális PC)
- 7. DFIR Szerver (Virtuális PC)
- 8. SAP
- 9. Web kliensek

1. ábra – DFIR rendszer sematikus ábrája

A rendszer elemeinek feladata:

- 1. <u>HMI:</u> A főpulton elhelyezett számítógépes vezérlő képernyő, amely a technológiai folyamatirányító rendszer része. A HMI-n a szúrásterv képernyő kapja meg a DFIR rendszerből a leadott tekercseket, és a hozzá tartozó adatokat.
- 2. <u>Mérleg:</u> A felcsévélőn a levett tekercsek súlyát méri. A Disomat mérleg kiértékelő a főpulton az operátor mellett van elhelyezve.
- 3. <u>Moxa Ethernet RS232 átalkító:</u> A Disomat mérleg kiértékelője soros porton kommunikál. A PLC-ben Ethernet interfész van. Az átalakítón keresztül történik a kommunikáció a mérleg és a PLC között.
- 4. Zebra tikett nyomtató: A vonalkód nyomtató a DFIR szerverről nyomtat. A nyomtatást a web kliensen keresztül indíthatjuk el. A nyomtató a Dresszírozói étkezőben található.
- 5. <u>Siemens S7400 PLC:</u> A PLC a technológiai folyamatirányító rendszer feladatát látja el. A PLC –én keresztül küldjük el a DFIR rendszer felé a DFIR-ben rögzíteni kívánt technológiai adatokat, illetve az anyagkövetéshez tartozó eseményeket. PL.: Tekercslevétel. A DFIR –ből leadott tekercsek adatait a PLC küldi tovább a technológiai képernyőre.
- 6. <u>DFIR PLC Interfész (Virtuális PC):</u> Az informatika szerverén fut egy virtuális számítógép. Ez a számítógép virtuális Ethernet hálózaton keresztülkommunikál az S7400 PLC-vel. A PLC-től érkező hengerlési adatokat összegyűjti, és letárolja a MYSQL adatbázisba. A DFIR szervertől érkező szúrásterv adatokat átküldi a PLC-nek.
- 7. <u>DFIR Szerver (Virtuális PC):</u> Az informatika szerverén fut egy másik virtuális számítógép is. A DFIR PLC Interfész adatbázisból átmásolja az adatokat az SAP rendszerbe. Ez a számítógépen keresztül lehet a DFIR rendszert vezérelni bármelyik web kliensről. Ez a pc nyomtatja ki a tiketteket.
- 8. <u>SAP rendszer</u>: A Dunaferr SAP rendszere. A level 3-as szintű termelésirányítást valósítja meg.
- 9. <u>Web kliensek</u>: Azok a számítógépek melyek rendelkeznek modern web böngészővel, és fizikailag össze van kötve a Dunaferres belső hálózattal. A web böngészőn keresztül lehet megnézni a tekercsek hengerlés során regisztrált adatait, illetve a DFIR rendszert vezérelni.

2.1 A DFIR rendszer felosztása üzemeltetők szerint

- 1. <u>Villamos üzem</u>: A villamos üzem üzemelteti a HMI-t, a Moxa Ethernet-RS232 átalakítót, A Siemens S7400 PLC-t, a DFIR –PLC Interfészen futó programokat.
- 2. <u>Informatika</u>: Az informatika üzemelteti a Zebra tikett nyomtatót, a DFIR szervert, a Dunaferr hálózatot, és az SAP rendszert.
- 3. <u>Mérleg szerelők:</u> A mérleg szerelők üzemeltetik a mérleget.

2.2 A DFIR rendszer működése

A dresszírozón dolgozó operátor az SAP -ből leküldi a dresszírozni kívánt tekercset a DFIR -be. A DFIR rendszert a http://dfirapp.ms.dunaferr.hu/page.html weboldalra történt bejelentkezés után lehet vezérelni. A tekercsléptető képernyőn látható a DFIR-be leadott tekercsek helyzete. Az SAP -ból leadott tekercsek megjelennek a "leküldhető tekercsek" között. A tekercs kiválasztásával a szúrástervet át lehet küldeni a VATECH rendszerbe. Ekkor a tekercsadatok megjelennek a DFIR ben a szúrásterv képernyőn. Ezzel egy időben megjelenik a tekercs a technológiai HMI –n a szúrásterv kezelő táblázatban. A tekercs dresszírozása közben a PLC 100ms időnként elküldi a hengerlési adatokat a DFIR rendszer felé. elkészült a mérleg megméri a tekercs súlyát, és a sikeres mérlegelés után a plc elküldi a levett tekercs adatait a DFIR rendszer felé. Ekkor a tekercs a DFIR-ben a "Legyártott tekercsek" között fog megjelenni, és a Zebranyomtató kinyomtatja a kis tikettet. A legvártott tekercs kijelölésével át lehet küldeni a "Visszajelenthető tekercsek" közé. Ekkor a felugró ablakban a mérlegelt súlyt tudjuk hitelesíteni. A hitelesített tekercsek átkerülnek a visszajelenthető tekercsek közé, és addig lesznek láthatóak, amíg a tekercseket legyártását nem rögzitik az SAP-ban.

2. ábra - Tekercs léptető

3. VATECH rendszer

3.1 A PLC feladata

Az AP1 –es PLC –be lett megírva a DFIR-rel és a mérleggel az Ethernet kapcsolat. A PLC feladata a kommunikációk vezérlése és az adatok feldolgozása.

3.2 A PLC Hardver ismertetése

A PLC Hardver konfigurációjában a "=10AP1+E37E1.VH1-A09" –es tervjelű CP443-1 kommunikációs kártya lett beüzemelve. Így most két Ethernet vezérlő kártya van a plc-ben. Az eredeti vezérlő kártya kommunikál a simítói belső hálózattal, illetve a mérleggel. Az új vezérlő kártya kommunikál a vasműs hálózaton keresztül a DFIR – PLC interfésszel. Az új kártyára azért volt szükség, hogy a simítói hálózat továbbra is el legyen szeparálva a Dunaferr hálózattól.

3.3 A PLC kommunikáció beállításai

3.3.1 A PLC Ethernet kártya beállítása

	Ethernet kártya CP443-1	Ethernet kártya CP443-1
slot	11	12
Name	CP 443-1 DFIR	CP 443-1
IP address	192.168.210.11	172.24.2.160
Subnet mask	255.255.255.0	255.255.255.192
Gateway	Do not use router	Do not use router

1. táblázat - Ethernet kártya konfigurálása

3.3.2 Az Ethernet hálózat topológiája

3. ábra PLC hálózati topológiája.

3.3.3 Az Ethernet hálózat beállítása

Megnevezés	Local ID	Local Address (PLC IP cím:port)	Partner Address (Partner IP cím:port)	Sender (Küldő) DB	Receiver (Fogadó) DB
Tekercslevétel	0007				
nyugtázó telegram	A050	192.168.210.11:2010	192.168.210.10:2010		DB881
Hengerlési adatok	0008 A050	192.168.210.11:2011	192.168.210.10:2011	DB882	
Felcsévélőről					
levett	0009				
tekercsadatok	A050	192.168.210.11:2012	192.168.210.10:2012	DB883	
Lecsévélőről levett	000A				
tekercsadatok	A050	192.168.210.11:2013	192.168.210.10:2013	DB884	
Szúrásterv adatok	000B				
Szurasterv adatok	A050	192.168.210.11:2014	192.168.210.10:2014		DB885
Szúrásterv	000C				
nyugtázás	A050	192.168.210.11:2015	192.168.210.10:2015	DB886	
Élatiol	000D				
Életjel	A050	192.168.210.11:2016	192.168.210.10:2016	DB887	
Tekercssúly	000F			_	_
lekérés	A020	172.14.1.160:2100	172.24.1.138:2100	DB3001	DB3001

2. táblázat - Ethernet hálózat beállítása

3.4 Szúrásterv kezelés

A HMI-n a szúrásterv kezelő képernyőn 50 tekercset lehet tárolni. Az eltárolt tekercsek a HMI szerver belső memóriájába kerülnek. A PLC-ben az első 20 tekercsek azonosítóit lehet megtalálni. Ezért a HMI újraindítás után a tekercsek elvesznek. A HMI a leadott szúrástervet a szúrástervkezelő képernyő első szabad helyére teszi be. Ha már nincs szabad hely a HMI egyszerűen eldobja a tekercs adatokat. Ezért nagyon fontos hogy csak akkor küldjünk a HMI –nek új tekercsadatot, ha van szabad hely. Ezt egy másodpercenként futó scripttel ellenőrizzük a HMI-n, és PLC-ből elküldjük a DFIR felé. A DFIR csak akkor küld újabb szúrástervet, ha a plc engedélyezi.

3.4.1 A PLC-be leküldött szúrásterv adatok

A PLC-be a szúrásterv adatok a DB885 –ös adatblokkba tároljuk le. A PLC-be a következő adatok érkeznek meg:

Address	Name	Туре	Comment
0.0	DwaPssSchTelld	INT	
		STRING [14	
2.0	DwaCoilld]	DWA beállítási adat: tekercsazonosító
		STRING [20	
18.0	DwaSteelGrade]	DWA beállítási adat: Acélminőség
40.0	DwaWidth	REAL	DWA beállítási adat: Szélesség [mm]
44.0	DwaThickness	REAL	DWA beállítási adat: Vastagság [mm]
48.0	DwaWeight	REAL	DWA beállítási adat: tekercssúly [kg]
52.0	DwaLength	REAL	DWA beállítási adat: tekercshossz [m]
56.0	DwaExitCoilsNo	INT	DWA beállítási adat: gyártandó tekercsek száma
58.0	DwaExitCoil1Length	REAL	DWA beállítási adat:az 1. Kész tekercs hossza [m]
62.0	DwaExitCoil2Length	REAL	DWA beállítási adat: a 2. Kész tekercs hossza [m]
66.0	DwaProcessType	INT	DWA beállítási adat: folyamat típusa
68.0	DwaElongation	REAL	DWA beállítási adat: nyúlás [%]
72.0	DwaRollForce	REAL	DWA beállítási adat: hengerlési erő [kN]
76.0	DwaBendingForce	REAL	DWA beállítási adat: hajlító erő [kN]
80.0	DwaLineSpeed	REAL	DWA beállítási adat: sori sebesség [m/min]
84.0	DwaBasicSprayAmount	REAL	DWA beállítási adat: alap felszórt mennyiség [l/min]
88.0	DwaTensionPorEsBr	REAL	DWA beállítási adat: feszítés FCS-Beo S-ggő [N/mm2]
92.0	DwaTensionEsBrStd	REAL	DWA beállítási adat: FEszítés Beo S ggő-állvány [N/mm2]
96.0	DwaTensionStdXsBr	REAL	DWA beállítási adat: Feszítés Állv-Kio Sggő [N/mm2]
100.0	DwaTensionXsBrTr	REAL	DWA beállítási adat: Feszítés KioSggős-FCS [N/mm2]
104.0	DWACoreDiameter	REAL	DWA beállítási adat: magátmérő (belső menetek) [mm]
108.0	DwaElongLowLim	REAL	DWA beállítási adat: nyúlás alsó határ

3. táblázat - DB885 Szúrásterv adatok

D

Hideghengermű Dresszírozói DFIR Interfész

A "*DwaPssSchTelId*" az üzenet azonosítót tartalmazza. A DFIR számozza a telegramok számát. 0–től 999 -ig. A számozást egyesével növeli, majd 999 után újra az 0-ás jön. Ebből az azonosítóból tudja a PLC, hogy új telegram érkezet. A "*DwaCoilId*" a hidegtekercs számot tartalmazza. A többi mező egyértelmű a táblázatban.

3.4.2 A PLC által küldött válasz a DFIR-nek

A PLC 100mS időnként elküldi a nyugtázó üzenetet a DFIR-nek . A telegram a üzeneteit a DB886 –os adatblokk tárolja:

Address	Name	Туре	Comment
0.0	PassSchedTelId	INT	Üzenetazonosító
2.0	PassSchedRecHMI	INT	Pass Schedule Received by HMI (1- ready for next telegram)

4. táblázat - DB886 szúrásterv válasz telegram

A "*PassSchedTelId*" az utoljára fogadott szúrásterv azonosítóját küldi vissza (*DB885.DwaPssSchTelId*). A DFIR ebből az üzenetből fogja tudni, hogy az elküldött üzenetet a PLC megkapta.

A "*PassSchedRecHMI*" üzenet jelzi a DFIR-nek, hogy a HMI képes fogadni új üzenetet, vagy nem. (Feltöltöttük az 50 mezőt a HMI-n). Amíg nem rendelkezünk újabb üres hellyel addig blokkolva lesz az új szúrásterv adatok küldése.

3.4.3 PLC Szúrásterv kezelés folyamatábrája

Az alábbi ábrán a szúrásterv kezelés folyamatábrája látható:

4. ábra - szúrásterv kezelés folyamat

3.5 Hengerlési adatok

A PLC hengerlés közben 100 msec-onként küldi a DFIR felé a hengerlési adatokat. A telegram üzeneteit a DB882 adatblokk tárolja:

Address	Name	Туре	Comment
0.0	TelegrId	INT	távirat azonosító szám [1999]
2.0	Coilld	STRING[14]	Tekercsazonosító (tekercsszám)
18.0	CoilPartNo	INT	A vágás után képzett tekercsrész-szám [0999]
20.0	ProcType	INT	A feldolgozás típusa [0-száraz, 1-nedves]
22.0	ElongRef	REAL	Nyúlás alapjel (a szúrástervből)
26.0	ElongAct	REAL	Tényleges nyúlás (a TCS -től)
30.0	FlatDevZone1 -32	REAL[32]	Síkfekvés-hiba (a TCS-től) 1-32 zóna
158.0	RollingSpeed	REAL	Hengerlési sebesség [m/min] (a TCS-től)
162.0	HGCRollForceAct	REAL	Hengerlési erő összesen CSO + HO [kN]
166.0	HGCRollForceDiffAct	REAL	Hengerlési erő eltérés HO - CSO [kN]
170.0	WRBending	REAL	Hengerhajlítás [kN]
174.0	TensionPOR_EsBr	REAL	Feszítés a lecsévélő és a bemenő S-ggő között [kN]
178.0	TensionEsBr_Ms	REAL	Feszítés a bemenő S-ggő és a hengerállvány között [kN]
182.0	TensionMs_XsBr	REAL	Feszítés hengerállvány és a kimenő S-ggő között [kN]
186.0	TensionXsBr_TR	REAL	Feszítés kimenő S-ggő és a felcsévélő között [kN]
200.0	TrRollStripLength	REAL	Kihengerelt hossz a felcsévélőn [m]

5. táblázat - DB882 hengerlési adatok

Az üzenetekből a DFIR fogja elkészíteni a tekercshez tartozó rekordokat.

3.6 Lecsévélőről levett tekercsadatok

Ha a tekercsfeladó kocsival leveszik a tekercseket, vagy a tekercsmaradékot akkor a tekercsszámot tartalmazó telegramot a PLC elküldi a DFIR-nek. A lecsévélőről levett tekercs adatait a DB884 adatblokk tárolja.

Address	Name	Туре	Comment
0.0	RemovePORTelld	INT	Anyag levéve az LCS-ről távirat ID
2.0	Coilld	STRING[14]	Tekercsazonosító (tekercsszám)
18.0	CoilPartNo	INT	A vágás után képzett tekercsrész-szám [0999]

6. táblázat - DB884 Lecsévélőről levett tekercsadatok

A "RemovePORTelId" 1...999-ig növekedő azonosító.

3.7 Felcsévélőről levett tekercsadatok

Ha a tekercsleszedő kocsival leszedjük a tekercset, a PLC lekérdezi a mérlegtől a tekercs súlyát. Ha a mérlegelés sikerült, vagy 30s alatt nem sikerült a mérlegelés a tekercsadatokat elküldjük a DFIR felé. A tekercsleszedés folyamatábrája:

5. ábra - Felcsévélői tekercslevétel folyamatábrája

A felcsévélőről levett tekercsadatok a DB 883-ban tároljuk:

Address	Name	Туре	Comment
0.0	RemoveTRTelId	INT	Anyag levéve az FCS-ről távirat ID
2.0	Coilld	STRING[14]	Tekercsazonosító (tekercsszám)
18.0	CoilPartNo	INT	A vágás után képzett tekercsrész-szám [0999]
20.0	CoilWidth	INT	Lemez szélesség (mm)
22.0	CoilMeasWeight	INT	Tekercs mért súly [kg]
24.0	CoilThickness	INT	Lemez vastagság
26.0	CoilCalcWeight	INT	Tekercs számított súly [kg]

7. táblázat - DB883 Felcsévélőről levett tekercsadatok

3.8 Tekercslevétel nyugtázó telegram

A Lecsévélő és a felcsévélő telegram küldésére a DFIR visszaküldi a telegram azonosítót. A PLC ebből fogja tudni, hogy megkapta a DFIR a telegramot. Ha nem érkezik válasz a DFIR-től akkor a PLC újraküldi a telegramot. A nyugtázó telegramot a DB881-es adatblokkban tároljuk.

Address	Name	Туре	Comment
0.0	RemoveTRTelId	INT	Anyag levéve az FCS-ről távirat ID
2.0	RemovePORTelld	INT	Anyag levéve az LCS-ről távirat ID

8. táblázat - DB881 lecsévélőről levett tekercsadatok

3.9 Életjelküldés

A DFIR és a PLC adatokat a Dunaferr hálózatán keresztül küldjük. Vannak olyan hálózati eszközök, amik újraépítik a kapcsolat jelet, így kommunikációs hiba esetén a DFIR nem mindig veszi észre, hogy kommunikációs hiba van. Az életjelet a DB887 adatblokkból küldjük.

Address	Name	Туре	Comment
0.0	LifeSignal	INT	Életjel
2.0	LifeSignalError	INT	ÉletjelHiba

9. táblázat - DB887 életjelküldés

A "LifeSignal" 1-9999 –ig számol. Az értékét eggyel növeljük, ha sikerült elküldeni az üzenetet. 9999 után 1 következik. A LifeSignalError akkor számol, ha nem sikerült elküldeni az üzenetet.

3.10 Mérlegelés

A mérlegelés a Disomat F típusú mérleggel történik. A PLC a Moxa Ethernet - RS232 Átalakítón keresztül kommunikál a mérleggel

3.10.1 A mérlegelés kommunikációs protokollja

A mérleggel a **SCHENCK Poll Protokollal (DDP 8785**) kommunikálunk. A mérlegnek a "*STX>00#TG#*<*ETX> BCC>*" üzenetet küldjük, ha le szeretnénk kérni a mérlegtől a súlyt. Az *STX>* az üzenet kezdetét az *ETX>* az üzenet végét jelenti. A köztük lévő üzenet az adat. A *BCC>* az ellenőrző adat. Az értéke a kezdő *STX>* kivételével a csomag minden bájtja XOR-olva. A TG jelenti hogy a súlyt szeretnénk lekérdezni. Ha a mérleg válaszol akkor a következő üzenetet kapjuk: "*STX>00#TG#súly (7 karakter)#tára (7 karakter)#dG/dt (7 karakter)#státusz (2 karakter)#*<*ETX> BCC>*". A súly lekérdezés után 5s –e van a mérlegnek arra, hogy válaszoljon. Ha ez nem történik meg akkor újra lekérhetjük a súlyt. Ha a válaszban a státusz 128 akkor a mért adatok hitelesek. Ilyenkor fogja a PLC letárolni az adatokat.

3.10.2 DISOMAT_F_MEAS

A PLC –ben a súly lekérését a "DISOMAT_F_MEAS" Blokk végzi el.

6. ábra - DISOMAT_F_MEAS blokk

Bemenetek:

TRG_MEAS: Súly lekérdezése a mérlegtől

ID: Partner id (NetPro-ból)

LADDR: CP címe

T: Az időtúllépéshez használt Timer

Kimenetek:

WEIGHT: Mért tömeg [kg]

TARA: Tára [kg] DG_DT:dG/dt [kg]

DISOMAT_STATUS: Mérleg állapota COMM_ERROR: Kommunikációs hiba COMM_STATUS: Kommunikáció állapota SEND_STATUS: ETH küldés állapota RECV STATUS: ETH fogadás állapot

A Disomat_F_Meas Blokk működésének a programját az 5.1 "Disomat_F_Meas SCL kódja" lehet megtekinteni.

3.10.3 Soros kommunikációs kábel

A mérleg és a MOXA közötti kommunikációs kábel bekötését az alábbi ábra mutatja.

7. ábra - Mérleg kommunikációs kábel

A mérlegre a kommunikációs kábelt az XPC pontjára kell bekötni.

3.11 MOXA ETHERNET - RS232 átalakító

A PLC-nek nincs soros portja, ezért közvetlenül nem tud kommunikálni a mérleggel. Megoldásként egy MOXA gyártmányú NPort IA5250I típusú Ethernet – RS232 átalakító lett beüzemelve. Az átalakító a 10AP1.VP4 szekrény (főpult) bal oldalára van felszerelve. A bekötése a "=10AP1.VP4+D43P1.VP4-A1" tervjelen található a kapcsolási rajzban.

8. ábra - NPort IA5250AI

Az NPortIA5250 –es átalakítónak, kettő RS-232/422/485 3 DB9 soros portja van az adatkommunikációhoz. A relés kimeneteket nem használjuk. A készülék tetején található a reset gomb. Ha a reset gombot 5 másodpercen keresztül folyamatosan benyomva tartjuk, a készüléket visszaállítjuk a gyári beállításokra.

Portok lábkiosztása

Ethernet port lábkiosztása:

Pin	Signal
1	Tx+
2	Tx-
3	Rx+
6	Rx-

9. ábra - MOXA Ethernet port lábkiosztása

A soros port lábkiosztása:

Pin	RS-232	RS-422, 4-wire	2-wire RS-485
		RS-485	
1	DCD	TxD-(A)	_
2	RxD	TxD+(B)	-
3	TxD	RxD+(B)	Data+(B)
4	DTR	RxD-(A)	Data-(A)
5	GND	GND	GND
6	DSR	-	-
7	RTS	-	-
8	CTS	-	-
9	-	_	_

10. ábra - MOXA RS232/422/485 (apa DB9) lábkiosztása

Az előlapi ledek jelentései:

Név	Szín	Jelentés		
PWR1 PWR2	piros	A tápfeszültség rendben van a PWR1, PWR2 bemeneten.		
Ready	Piros	Feszültség renben van, a készülék boot-ol.		
	piros villogó	IP hibát jelez. A DHCP vagy a BOOTP szerver nem válaszol.		
	zöld	A tápfeszültség rendben van a készülök rendben működik		
	zöld villogó	Az eszköz szerveren az Adminisztrátor aktyválta a "Locate" funkciót		
	nem világit	Tápfeszültség kikapcsolva, vagy tápfeszültség hiba van.		
E1, E2	narancs	10 Mbps Eternet kapcsolat		
	zöld	100 MBPS Eternet kapcsolat		
	nem világit	Eternet kábel nincs bedugva, vagy meghibásodott.		
P1,P2	narancs	Soros port fogadja az adatot		
	zöld	Soros port küldi az adatot		
	nem világit	Nincs adatátvitel a soros porton		

10. táblázat - Ledek jelentései

3.11.1 MOXA átalakító beállítása

A MOXA átalakítót a dresszírozói főpulti PLC programozó számítógépről lehet elérni. A beállítások eléréséhez az "NPort Administrator" programot kell elindítani.

11. ábra - program elindítása

A program elindítása után meg kell keresnünk az Ethernet hálózaton az eszközünket. Ehhez kattintsunk a "Search" nyomógombra.

12. ábra - eszköz keresése

Ha a keresés sikeres volt, akkor a táblázatban megjelennek a megtalált eszközök:

13. ábra - a keresés eredménye

Válasszuk ki a 172.24.2.138-as IP címen működő eszközt: és kattintsunk a "Configure" nyomógombra:

14. ábra - konfigurálás

A "Basic" fül beállítása:

15. ábra- Basic beállítás

3.11.2 A beállítások:

- Basic:
 - Server Name: "NPIA5250AI_1328" (Tetszőlegesen választható)"
 - o Time Zone: "(GMT) Greenwitch Mean Tim: Dublin..."
 - o "Enable Web console" kiválasztva
 - o "Enable Telnet Console" kiválasztva
- Network:
 - o IP Address: "172.24.2.138"
 - o Netmask: "255.255.255.192"
 - o "Enable SNMP" aktiválva
- Serial:
 - o 1. Settings: "9600,N,8,No flowctrl"
 - o 2. Settings: 115200,N,8,1,RTS/CTS (Nem használjuk)
- Operating Mode
 - o 1. OP Mde: "TCP Server Mode"
 - o 2. Disable (Nem használjuk)

3.11.3 A beállítások visszaállítása

Ha elvesztek a beállítások, akkor a korábbi mentés alapján vissza lehet állítani. A 5.2 –es "Moxa Nport beállítása" fejezetben tekinthető meg az elmentett beállítás. A beállítás visszaállításához indítsuk el az NPort Administrator programot, majd keressük meg az eszközünket a hálózaton. Válasszuk ki a 172.24.2.138-as IP címen működő eszközt és a menüből válasszuk ki a Configuration / Import Configuration menüpontot.

16. ábra - konfiguráció importálása

A felugró "Select File" ablakban kattintsunk a Browse nyomógombra, és válasszuk ki a legutolsó konfigurációs fájlt. Majd kattintsunk az Open gombra, majd az Ok gombra. Az eszköz újraindítás után az új beállításokkal fog működni.

17. ábra - konfiguráció importálása 2

4. DFIR - PLC Interfész

A PLC és DFIR rendszer között nincs közvetlen kapcsolat. A kommunikációt egy DFIRPLC nevű java nyelven írt alkalmazással oldottuk meg. Ez az alkalmazás Etherneten kommunikál a PLC-vel, és MySQL adatbázison keresztül adja át az adatokat a DFIR-nek. UDP üzeneteken keresztül küldi el a sor termel, vagy nem termel jelet, a Dresszírozón elhelyezett operátor számítógépének, és ez alapján tud működni a Centralográf Terminál program.

A Program az informatikusoknál valamelyik szerverre telepített virtuális számítógépről fut. ezen a számítógépen van a MYSQL adatbázis is.

4.1 Virtuális számítógép

A számítógépet a Dunaferr belső hálózatáról lehet elérni VNC –n Keresztül. A VNC szerver címe: difir.ms.dunaferr.hu:5901. A belépéshez szükséges jelszó: Qwer1234. A belépés után egy Linuxos bejelentkező képernyő fogad minket. Itt a belépéshez szükséges felhasználónév: gabriel, jelszó: Qwer1234.

Bejelentkezés után egy CENTOS Linux operációs rendszer fogad minket.

18. ábra – Virtuális számítógép

Telepített alkalmazások:

- NetBeans IDE 7.4: Egy ingyenesen használható Integrált fejlesztő környezet. A java program fejlesztése ezzel az eszközzel történt. A DFIRPLC programot futtatás előtt mindig ezzel lett lefordítva.
- Java: A virtuális számítógépen telepített java verziószáma: 1.7.1 51
- Apacche 2.2.15: Webszerver program
- PHP 5.3.3: Általános szerveroldali szkriptnyelv dinamikus weblapok készítésére
- MySQL 5.1.73 : Adatbázis
- phpMyAdmin 4.1.9: Webes felületű adatbázis kezelő MySQL-hez.
- Wireshark : Hálózati forgalom figyelő

4.2 MySQL adatbázis

MySQL adatbázisba lettek létrehozva a DFIR rendszerhez tartozó interfész táblák. Az adatbázist a difir.ms.dunaferr.hu címen lehet elérni. A felhasználó név gabriel, a jelszó Qwer1234, a port száma 3306. A DFIR – hez adatbázishoz tartozó adatbázis neve: dfir.

Az adatbázis a következő táblákból áll:

- regf: A hengerlés során regisztrált adatok kerülnek ide letárolásra. Az id: automatikusan növekedő futósorszám, htek_id: hidegtekercs szám, start_time: a dresszírozás kezdete: stop_time: a dresszírozás vége. record: Az összegyűjtött rekordok blob adatba. Az egy db rekord megegyezik az "5. táblázat DB882 hengerlési adatok" táblázatban látható adatokkal, de a tekercsazonosító nem szerepel benne. A status mező 1 ha rendben van minden adat. coil_width a PLC által számolt lemez szélesség, a coil_meas_weight a mérleg által mért tekercs súly, a coil_cal_weight a PLC által számított tekercs súly, a coil_thickness a lemez vastagsága.
- regf_log: Az eredeti terv szerint a regf táblából az adatok törlésre kerülnek, miután a DFIR rendszer feldolgozta az adatokat. A DFIR rendszer miután feldolgozta az adatokat azért hogy a folyamatok nyomon követhetőek legyenek készít egy másolatot a regf tábláról a record mező nélkül. A length mezőbe a record hossza kerül, a hash mezőbe a rekord hash-elt értéke kerül. Illetve van két státusz mező is.
- szurasterv: a DFIR –ből leadott tekercsek szúrásterv adatai találhatók itt. Csak olyan tekercsek szerepelnek a táblában, amelyek még nem lettek elküldve a PLC-nek. Ha minden jól működik, akkor a tábla üres. Az psssschtelid: automatikusan növekedő futósorszám, coilid: hidegtekercs szám, steelgrade: acélminőség, width: lemez szélesség, thickness: lemez vastagság, weight: tekercssúly, corediameter: Tekercsmag átmérő, ts_küldes: A dátum, amikor le lett adva a szúrásterv az adatbázisba, exitcoilsno: a gyártandó tekercsek száma, processtype: a dresszírozás típusa, elongation:

- nyúlás, elonglowlim: nyulás minimum előírás, elonguplim: nyúlás maximum előírás.
- szurasterv_log: Ha a DFIRPLC program feldolgozta a szúrástervet, akkor leküldi a PLC-be és a leküldött adatok megjellennek a szurasterv_log táblába. A szurasterv táblából átkerülnek az adatok a szurasterv_log táblába, és kiegészítjük számított értékekkel: pl.: exitcoil1lngth. Vannak mezők, amit a PLC feldolgozna, de nem rendelkezünk a szükséges adatokkal, ezért 0 értékkel fogjuk elküldeni. Pl.: rollforce.
- semaphore: A szemafor táblába akkor ír be a DFIRPLC program, ha a regf be új mezőt tároltunk le. Innen fogja tudni a DFIR hogy új adat került a regf táblába. table_name: "dfir", table_status: "0", time_stamp: a bejegyzés ideje.

Az alábbi ábrán a dfir adatbázis táblái láthatóak:

19. ábra - dfir adatbázis

_

4.3 A DFIRPLC program

A DFIRPLC program java programozási nyelven lett megírva. A program a /home/gabriel/DFIRProject/DFIRPLC könyvtárban található. A program a számítógép operációs Ehhez elindításával azonnal indul. az rendszerben System/Preferences/Startup Applicatons menüvel indítható programba a DFIRPLC automatikusan létre. nevű indító lett Ez elindítja /home/gabriel/DFIRProject/DFIRPLC/startDFIRPLC.sh -t. Ez a shell szkript indítja el a DFIRPLC.jar fájlt, és gondoskodik arról, hogy program leállás esetén a program automatikusan újrainduljon.

A program a szúrástervet megkapja adatbázison keresztül a DFIR-től, és továbbküldi a PLC-nek a Dunaferres hálózaton keresztül. A PLC-vel a kommunikáció TCP/IP. A szúrásterv sikeres leküldése után a szurasterv_log tábla feltöltésével tudatja a DFIR-nek, hogy a PLC megkapta a szúrástervet.

Hengerlés közben a DFIRPLC összegyűjti a hengerlési adatokat. Tekercslevétel esetén az összegyűjtött adatokat, és a tekercslevételkor elküldött tekercsadatokat beírja az SQL adatbázis regf táblájába.

4.3.1 DFIRPLC Program felépítése

A program a MainApp.java osztállyal indul. Itt történik a változók inicializálása, és innen indítjuk a program taszkok futását. A MinApp.java induláskor a következő változókat inicializálja:

Név	Típus	Alapértelmezett érték	Leírás
BUFFERSIZE	int	1024	kommunikációhoz használt Byte buffer mérete
IPADDRESS	String	"192.168.210.11"	PLC IP cime
FRAMEISENABLED	boolean	true	Frame engedélyezése
DRESSPANELISENABLED	boolean	true	DressPanel engedélyezése
LOGPANELISENABLED	boolean	true	Loggolás textareában engedélyezése
SENDTELEGRAMISENABLE	boolean	true	Telegram küldésének engedélyezése
CLASSTOSTRINGENABLE	boolean	false	Az osztályok printelésének engedélyezése
MESSAGELENGTHPRINTENABLE	boolean	false	Fogadott üzenetek hosszának kíírásának engedélyezése
CENTRALOGGRAFMESSAGEENABLE	boolean	true	Centralográf terminál programnak üzenet küldés engedélyezése
CENTRALOGGRAFIPADDRESS	String	"10.1.39.154"	Centrál terminál ip címe
LOGMODE	int	1	0:=Minen log új fájlba, 1:= 31 napos naptár szerinti loggolás
PASSSCHEDULEENABLE	boolean	true	Szúrásterv leküldés engedélyezése

11. táblázat - Program futását vezérlő jelek

A változók megváltoztatása, csak a program lefordítása, és újraindítása után lép érvénybe.

A program több csomagba lett helyezve, a csomagok jól elkülönítik a programot funkciók szerint, így a program könnyebben áttekinthető. A Programban a következő csomagok találhatók:

- centralograf: A csomagban az állásidő terminál programnak a sor termel vagy nem termel jelet küldő osztályok találhatóak. A CentalografMessage osztály tárolja hogy a berendezés termel vagy áll. Az UDPConnectionServer és az UDP osztályba van megírva az UDP hálózati kapcsolat. A FillDataToBuffer osztály átalakítja a küldendő adatokat úgy hogy el tudjuk küldeni a hálózaton keresztül.
- db: Struktúra felépítésű osztályok. A PLC adatbázissal megegyezik a szerkezete. DB881 DB887 –ig. A PLC-ben és a Java nyelvben az elemi

típusok nem egyeznek meg. Az int -ből short lesz, a real-ből float, a String a lefoglalt string hossz + 2 byte. Az első byte a String lefoglalt hossza, a második byte a String hossza, majd a String következik.

- form: A megjelenítéshez tartozó form-ok vannak megírva ebben a csomagban.
- images: Az ikon képeket tartalmazza.
- net: A hálózati kommunikáció feldolgozásával kapcsolatos osztályokat tartalmazza.
- process: A program vezérlését végzi. Itt dől el, hogy mit csináljon a program ha üzenet kapott a plc-től, vagy új bejegyzés került az adatbázisba.
- sql: Az adatbázis kapcsolatok kerültek ide.
- tools: Minden egyéb hasznos konvertáló stb. program.
- tray: A tálca programja került ide.

20. ábra - program strukturálása

4.3.2 Szúrásterv kezelése

A PLC 100 ms-onként küldi a DB886 adatblokkban található üzeneteket. Az üzenetben a legutoljára leadott szúrásterv azonosítója (nyugta), és egy jelzőbit található, ami azt tartalmazza, hogy a HMI képes fogadni az újabb szúrástervet, vagy nem. Ha a szúrásterv kezelés engedélyezve van a programban, akkor a program (ProcessDB886), ellenőrzi, hogy van e leküldendő szúrásterv az adatbázisban, ellenőrzi, hogy a leküldés sikerült-e, és szükség szerint újraküldi. A sikeresen leadott

tekercs adatait kitörli az adatbázis szurasterv táblájából és kibővített információkkal bemásolja a szurasterv_log táblába. Az alábbi ábrán a szúrásterv küldés folyamat ábrája látható:

21. ábra - szúrásterv küldés folyamatábrája

4.3.3 Hengerlési adatok

A PLC hengerlés közben 100 ms-onként küldi a hengerlési adatokat. A program a hengerlési adatokat addig gyűjti, míg a hengerlés közben meg nem változik a tekercs száma, vagy a tekercset le nem vesszük a felcsévélőről. Ha a tekercset levettük a felcsévélőről, akkor a tekercshez tartozó összegyűjtött hengerlési adatokat letároljuk az adatbázisba. A DFIR ebből az adatból fogja elkészíteni a hengerlési diagramokat. Az alábbi ábrán a hengerlési adatokat feldolgozó program (ProcessDB882) folyamat ábráját mutatja:

22. ábra - hengerlési adatok feldolgozása

4.3.4 Tekercslevétel

A PLC minden tekercslevételnél elküldi a tekercs azonosítót, a súlyt, a vastagságot, és a szélességet. A tekercslevétel üzenetből tudja a program, hogy a tekercs elkészült, és letárolja a hengerlési adatokat. A felcsévélő tekercslevételt feldolgozó program (ProcessDB883) folyamat ábrája:

23. ábra - tekercslevétel folyamatábrája

4.3.5 A DFIRPLC használata

A program a virtuális számítógép elindulása után azonnal elindul. A program ikonja a tálca jobb oldalán látható.

Az ikonra jobb egérrel kattintva a következő menü látható:

25. ábra - DFIRPLC menü

A table menüpont a PLC üzenetek nevű panelt nyitja, vagy zárja be. A PLC üzenetek ablakban a PLC-től érkező üzeneteket lehet megnézni, táblázat formájában. A dress menüben az aktuális dresszírozást áttekintő panelt nyitja, vagy zárja be. A log menü, egy egyszerűsített eseménynaplót nyitja meg, vagy zárja be. Az Exit menü bezárja a programot.

Figyelem! A programot csak akkor zárjuk be, ha a berendezés nem megy és a program letárolta a levett tekercs adatait. Egyéb esetben a program el fogja veszíteni az utoljára hengerelt tekercs adatait.

Mivel fut a háttérben a startDFIRPLC.sh szkript ezért a program automatikusan újra fog indulni. Ha a programot véglegesen le szeretnénk állítani, akkor először a szkriptet kell leállítani parancssorból. Az ablakok megnyitása vagy zárása attól függ, hogy éppen nyitva vagy zárva van.

Ha az ikonra a bal egérrel kétszer kattintunk, akkor a nyitott paneleket bezárja, és a bezárt paneleket megnyitja. A paneleket a jobb felső sarokban található keresztel be lehet zárni. A program ettől még tovább fog dolgozni.

4.3.6 PLC Üzenetek panel

A PLC üzenetek ablakban az utoljára érkezett, vagy küldött üzenet tartalmát lehet megtekinteni. Az ablak diagnosztikai célra szolgál.

26. ábra - PLC Üzenetek

Az adatbázisok között a megtekinteni kívánt fül rákattintásával lehet váltani. Az adatokat nem lehet módosítani. A fülek elnevezése a <csomagnév>.<alcsomagnév>.osztálynév

4.3.7 Dresszírozó panel

A dresszírozó panel az aktuális hengerlés ábráját mutatja:

27. ábra - Dresszírozó panel

A dresszírozó panelen a hajtások zöldek, ha a berendezés termel, és kékek, ha a berendezés áll. Mikor a berendezés termel, akkor a jobb felső sarokban egy piros kör villog, ez azt jelzi, hogy a rekordokat rögzíti a program. Ha nincs felvétel, akkor egy fekete négyzet látható. Az ábrán látható a sebesség, a nyúlás, a tekercsszám, és a tekercs hossz. Az ábra alsó felében a síkkifekvés diagram látható.

4.3.8 - Esemény Napló panel

Az eseménynapló panelre a java program működése közben eredetileg konzolra kiírt üzenetek kerültek átirányításra. A DFIRPLC program működése közben fellépő fontosabb eseményeket lehet beállítani. A legújabb üzenetek kerülnek felülre, és a legrégebbiek alulra. A Clear nyomógomb megnyomására az üzenetek törlődnek a naplóból. Kézzel nem lehet az üzeneteken módosítani.

28. ábra - Esemény napló

4.3.9 Esemény napló fájlok

A program a részletesebb eseményeket log fájlba menti. Ezekből a log fájlokból lehet visszaellenőrizni, hogy a DIFIRPLC program működése közben milyen események, hibák történtek. A program naptári nap szerint loggol. A logfájlok a /home/gabriel/log könyvtárban vannak. A logfájl neve: debug.log.<hónap napja> . A logfájlok havonta felülírásra kerülnek.

Példa a log fájlra:

```
[dfirplc.process.ProcessDB883] SelectDB883 : Felcsévélő tekercslevétel: 701057000
  [2015-02-28 00:03:23.497]
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010570000 tekercs elkészült. 1891 record rögzít
  [2015-02-28 00:03:23.518]
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010570000 bytebuffer mérete: 336598
  [2015-02-28 00:03:23.547]
                                  [dfirplc.sql.SQL] INSERT INTO regf(htek_id, start_time, stop_time, record, status, coil_part
                                  [dfirplc.sql.SQL] UPDATE semaphore SET table_status='0', time_stamp='2015-02-28 00:03:23' W [dfirplc.process.ProcessDB883] SelectDB883 : Felcsévélő tekercslevétel: 7010590000
 [2015-02-28 00:03:23.549]
 [2015-02-28 00:13:50.522]
 [2015-02-28 00:13:50.526]
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010590000 tekercs elkészült. 2373 record rögzít
 [2015-02-28 00:13:50.554]
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010590000 bytebuffer mérete: 422394
                                  [dfirplc.sql.SQL] INSERT INTO regf(htek_id, start_time, stop_time, record, status, coil_part [dfirplc.sql.SQL] UPDATE semaphore SET table_status='0' , time_stamp='2015-02-28 00:13:50' W [dfirplc.sql.SQL] SELECT * FROM 'dfir'.'szurasterv' WHERE 1 order by pssschtelid limit 1
 [2015-02-28 00:13:50.588]
[2015-02-28 00:13:50.590]
 [2015-02-28 00:21:36.898]
 [2015-02-28 00:21:37.939]
                                  [dfirplc.process.ProcessDB886] SelectDB886 :7010820000 tekercs szúrásterve leadva.
                                  [dfirplc.sql.SQL] SELECT * FROM 'dfir'.'szurasterv log' WHERE 'pssschtelid' = 222
 [2015-02-28 00:21:37.947]
                                  [dfirplc.sql.SQL] UPDATE 'szurasterv_log' SET 'ts_feldolgozas'='2015-02-28 00:21:36.0' WHERE
 [2015-02-28 00:21:37.950]
 [2015-02-28 00:21:37.957]
                                  [dfirplc.sql.SQL] 1 sor törölve a szurásterv táblából. tekercsszám: 7010820000
 [2015-02-28 00:22:19.582]
                                  [dfirplc.process.ProcessDB883] SelectDB883 : Felcsévélő tekercslevétel: 7010580000
 [2015-02-28 00:22:19.586]
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010580000 tekercs elkészült. 1782 record rögzít
 [2015-02-28 00:22:19.603]
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010580000 bytebuffer mérete: 317196
                                  [dfirplc.sql.SQL] INSERT INTO regf(htek_id, start_time, stop_time, record, status, coil_part [dfirplc.sql.SQL] UPDATE semaphore SET table_status='0' , time_stamp='2015-02-28 00:22:19' W
 [2015-02-28 00:22:19.630]
 [2015-02-28 00:22:19.632]
[2015-02-28 00:30:33.597]
                                  [dfirplc.process.ProcessDB883] SelectDB883 : Felcsévélő tekercslevétel: 7010600000
 [2015-02-28 00:30:33.601]
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010600000 tekercs elkészült. 1884 record rögzít
                                  [dfirplc.process.ProcessDB882] SelectDB882 :7010600000 bytebuffer mérete: 335352
 [2015-02-28 00:30:33.624]
 [2015-02-28 00:30:33.653]
                                  [dfirplc.sql.SQL] INSERT INTO regf(htek_id, start_time, stop_time, record, status, coil_part
                                  [dfirplc.sql.SQL] UPDATE semaphore SET table status='0', time stamp='2015-02-28 00:30:33 [dfirplc.sql.SQL] SELECT * FROM 'dfir'.'szurasterv' WHERE 1 order by pssschtelid limit 1
 [2015-02-28 00:30:33.655]
 [2015-02-28 00:30:48.928]
                                  [dfirplc.process.ProcessDB886] SelectDB886 :7010830000 tekercs szúrásterve leadva.
 [2015-02-28 00:30:49.979]
 [2015-02-28 00:30:49.992]
                                  [dfirplc.sql.SQL] SELECT * FROM 'dfir'.'szurasterv_log' WHERE 'pssschtelid' = 223
  [2015-02-28 00:30:49.995]
                                  [dfirplc.sql.SQL] UPDATE `szurasterv_log` SET `ts_feldolgozas`='2015-02-28 00:30:48.0' WHERE
[2015-02-28 00:30:50.003]
                                  [dfirplc.sql.SQL] 1 sor törölve a szurásterv táblából. tekercsszám: 7010830000
```

29. ábra - debug.log

A log fájl első részében az időpont található, majd a következő szögletes zárójellel elválasztott részben a programrész neve, amelyik az eseményt írta, majd kerek záró jelek közé kerül, a "warning" vagy az "error" jelző, ha van. Ezután az esemény leírása következik.

5. Mellékletek

5.1 Disomat_F_Meas SCL kódja

```
FUNCTION BLOCK DISOMAT F MEAS
TITLE = 'DISOMAT F mért tömeg lekédezés'
// DISOMAT F mért tömeg lekédezés
// Protokoll: SCHENK DDP8785
// COMM STATUS értékei:
// 00 - A kommunikáció nincs megkezdve
//
        01 - A kommunikáció folyamatban van
       02 - A kommunikáció sikeresen lezajlott
//
       10 - Hiba történt küldés közben (AG LSEND blokk hibára futott)
//
     Az AG LSEND blokk által küldött státusz a SEND_STATUS
//
kimeneten található.
// 20 - Hiba történt fogadás közben (AG LRECV blokk hibára futott)
//
        Az AG LRECV blokk által küldött státusz a RECV STATUS
kimeneten található.
// 21 - Nem érkezett válasz a mérlegtol 5 sec-en belül (idotúllépés)
//
        22 - A fogadott adatok hossza nem megfelelo (nem 39 karakter)
        23 - A fogadott adatcsomag nem értelmezheto
AUTHOR: 'FD'
VERSION: '1.0'
// Bemeneti változók
VAR INPUT
    TRIG MEAS: BOOL; // Súly lekérdezése a mérlegtol
    ID: INT; // Partner id (NetPro-ból)
                         // CP címe
    LADDR: WORD;
    T: TIMER;
                         // Idotúllépés figyeléshez használt timer
END VAR
// Kimeneti változók
VAR OUTPUT
    WEIGHT: INT; // Mért tömeg [kg]

TARA: INT; // Tára [kg]

DG_DT: INT; // dG/dt [kg]

DISOMAT_STATUS: WORD; // Mérleg állapota

COMM_ERROR: BOOL; // Kommunikációs hiba

COMM_STATUS: WORD := 0; // Kommunikáció állapota
    SEND_STATUS: WORD; // ETH küldés állapot RECV_STATUS: WORD; // ETH fogadás állapot
END VAR
// Statikus változók
VAR
    SEND_ERROR: BOOL; // ETH küldés hiba RECV_ERROR: BOOL; // ETH fogadás hiba
    DISOMAT SEND DATA: ARRAY[0..8] OF BYTE; // Mérlegnek küldendo
adatok
```



```
DISOMAT RECV DATA: ARRAY[0..35] OF BYTE; // Mérlegtol érkezett
adatok
     COMM ENABLE: BOOL;
                                     // Kommunikáció engedély
                              // Küldés parancs
// Küldendo adatok hossza
// Küldés kész
     SEND REQ: BOOL;
     SEND LEN: INT;
     SEND DONE: BOOL;
                                // Fogadás parancs
// Fogadás - új adatok érkeztek
    RECV_REQ: BOOL;
RECV_NDR: BOOL;
    RECV LEN: INT;
                                     // Érkezett adatok hossza
    TEMPINT1: INT; // Ideiglenes INT változó 1
TEMPINT2: INT; // Ideiglenes INT változó 2
TEMPBOOL1: BOOL; // Ideiglenes BOOL változó 1
TEMPCHAR1: CHAR; // Ideiglenes CHAR változó 1
TEMPWORD1: WORD; // Ideiglenes WORD változó 1
COMM_TIMEOUT: BOOL; // Kommunikáció idotúllépés
    COMM_TIMEOUT: BOOL;
    TIMERTIME: S5TIME; // Idotúllépés hátralévo ido
TIMEOUT_TIME: S5TIME; // Idotúllépés idotartam
TIMEOUT_TIMER_ON: BOOL; // Idotúllépés figyelo timer engedélyezése
    TIMEOUT TIMER RESET: BOOL; // Idotúllépés figyelo timer resetelése
    WEIGHT TMP: INT;
                                     // Ideiglenes tároló a súly ASCII->INT
konverzióhoz
                           // Ideiglenes tároló a tára ASCII->INT
    TARA TMP: INT;
konverzióhoz
    DG_DT_TMP: INT; // Ideiglenes tároló a dG/dt ASCII->INT
konverzióhoz
    STATUS_TMP: WORD; // Ideiglenes tároló a státusz ASCII->WORD
konverzióhoz
    SEQ STEP NR: INT; // Folyamat aktuális lépés
END VAR
     DISOMAT RECV DATA2: ARRAY[0..35] OF BYTE; // Mérlegtol érkezett
adatok
                                                            //Mérlegtol érkezett
    PTR: INT;
adat eltolodás figyeléshez használt mutató
END VAR
// Kommunkiáció indítása és inicializálás
IF (NOT COMM ENABLE) AND TRIG MEAS THEN
    COMM ENABLE := TRUE;
    SEQ STEP NR := 0;
    COMM ERROR := FALSE;
     COMM STATUS := W#16#01;
     SEND ERROR := FALSE;
    SEND STATUS := 0;
    SEND DONE := FALSE;
     SEND REQ := FALSE;
    RECV_ERROR := FALSE;
    RECV_NDR := FALSE;
     RECV STATUS := 0;
```



```
RECV REQ := FALSE;
    TIMEOUT TIMER RESET := TRUE;
    TIMEOUT TIMER ON := FALSE;
    WEIGHT := 0;
    TARA := 0;
    DG DT := 0;
    DISOMAT STATUS := W#16#0;
END IF;
// Kommunikáció lebonyolítása
IF (COMM ENABLE) THEN
    // Lépésszámnak megfelelo muvelet végrehajtása
    CASE SEQ STEP NR OF
        0 : // Adatkérelem (<STX>00#TG#<ETX><BCC>)
            DISOMAT_SEND_DATA[0] := B#16#02; // <STX>
            DISOMAT SEND DATA[1] := B#16#30;
                                                // 0
            DISOMAT SEND DATA[2] := B#16#30;
                                                // 0
            DISOMAT SEND DATA[3] := B#16#23;
                                                // #
                                                // T
            DISOMAT SEND DATA[4] := B#16#54;
            DISOMAT SEND DATA[5] := B#16#47;
                                                // G
            DISOMAT SEND DATA[6] := B#16#23;
                                                // #
                                               // <ETX>
            DISOMAT SEND DATA[7] := B#16#03;
                                                // <BCC> (a kezdo STX
            DISOMAT SEND DATA[8] := B#16#10;
kivételével a csomag minden bájtja XOR-olva)
            SEND LEN := 9;
            SEND REQ := TRUE;
            SEQ STEP NR := SEQ STEP NR + 1;
        1 : // Küldés sikeres volt-e?
            IF (NOT SEND REQ AND SEND DONE) THEN
//
                  SEND DONE := FALSE;
11
                  SEND ERROR := FALSE;
                  SEND STATUS := 0;
                SEQ STEP NR := SEQ STEP NR + 1;
            END IF;
            // Küldés hiba figyelése
            IF SEND ERROR THEN
                COMM STATUS := W#16#10;
                COMM ERROR := TRUE;
            END IF;
        2 : // Várakozás adatra a mérlegtol (<STX>00#TG#súly (7
karakter) #tára (7 karakter) #dG/dt (7 karakter) #státusz (2
karakter) #<ETX><BCC>)
            TIMEOUT TIME := T#5s;
            TIMEOUT TIMER ON := TRUE;
            RECV REQ := TRUE;
            SEQ STEP NR := SEQ STEP NR + 1;
        3: // Kapott adatok ellenorzése
            // Folyamatos lekérdezés, ameddig az ethernet adatfogadó puffer
ki nem ürül
```



```
IF (RECV LEN > 0) THEN
//
//
                   RECV REQ := TRUE;
               END IF;
             IF (NOT RECV REQ) AND (NOT RECV ERROR) THEN
                 // Értelmezheto adat érkezett (a visszaadott cím és parancs
ugyanaz)
                 TEMPBOOL1 := TRUE;
                 TEMPINT1 := 0;
                 WHILE (TEMPBOOL1 AND (TEMPINT1 < 7)) DO
                     IF (DISOMAT RECV DATA[TEMPINT1] <>
DISOMAT SEND DATA[TEMPINT1]) THEN
                         TEMPBOOL1 := FALSE;
                     END IF;
                     \overline{\text{TEMPINT1}} := \overline{\text{TEMPINT1}} + 1;
                 END WHILE;
                 IF TEMPBOOL1 THEN
                     RECV ERROR := 0;
                     RECV STATUS := 0;
                     SEQ STEP NR := SEQ STEP NR + 1;
                 ELSE
                     // Ha egyéb más érkezett, akkor hiba
                     COMM STATUS := W#16#23;
                     COMM ERROR := TRUE;
                 END IF;
             END IF;
             // Idotúllépés figyelése
             IF COMM TIMEOUT THEN
                 COMM STATUS := W#16#21;
                 COMM ERROR := TRUE;
             END IF;
             // Fogadás hiba figyelése
             IF RECV ERROR THEN
                 COMM STATUS := W#16#20;
                 COMM ERROR := TRUE;
             END IF;
        4 : // Adatok kiírása a kimenetre
             WEIGHT TMP := 0;
             TARA TMP := 0;
             DG \overline{DT} TMP := 0;
             \overline{STATUS} TMP := W#0;
             // Az érkezett adatok konvertálása (tizedes vesszo utáni
értékek elhagyásával)
             FOR TEMPINT1 := 0 TO 6 BY 1 DO
                 // Tömeq
                 TEMPINT2 := BYTE TO INT (DISOMAT RECV DATA [TEMPINT1 + 7]) -
INT#16#30;
                 IF ((TEMPINT2 >= 0) AND (TEMPINT2 <= 9)) THEN
                     WEIGHT TMP := WEIGHT TMP + TEMPINT2 * REAL TO INT (10 **
(6 - TEMPINT1));
                 END IF;
```



```
// Tára
                TEMPINT2 := BYTE TO INT (DISOMAT RECV DATA [TEMPINT1 + 15]) -
INT#16#30;
                IF ((TEMPINT2 >= 0) AND (TEMPINT2 <= 9)) THEN
                    TARA TMP := TARA TMP + TEMPINT2 * REAL TO INT(10 ** (6
- TEMPINT1));
                END IF;
                // dG/dt
                TEMPINT2 := BYTE TO INT (DISOMAT RECV DATA [TEMPINT1 + 23]) -
INT#16#30;
                IF ((TEMPINT2 >= 0) AND (TEMPINT2 <= 9)) THEN
                    DG DT TMP := DG_DT_TMP + TEMPINT2 * REAL_TO_INT(10 **
(6 - TEMPINT1));
                END IF;
                // Státusz
                IF (TEMPINT1 <= 1) THEN
                    TEMPINT2 := BYTE TO INT (DISOMAT RECV DATA [TEMPINT1 +
31]);
                    // ASCII -> hexa átalakítás (9-nél nagyobb helyiértékek
mindig kisbetuvel jönnek)
                     IF (TEMPINT2 > INT#16#39) THEN
                        TEMPINT2 := 10 + (TEMPINT2 - INT#16#61);
                        TEMPINT2 := TEMPINT2 - INT#16#30;
                    END IF;
                     IF ((TEMPINT2 >= 0) AND (TEMPINT2 <= 15)) THEN
                         STATUS TMP := INT TO WORD (WORD TO INT (STATUS TMP) +
TEMPINT2 * REAL TO INT(16 ** (1 - TEMPINT1)));
                    END IF;
                END IF;
            END FOR;
            WEIGHT := WEIGHT TMP;
            TARA := TARA TMP;
            DG DT := DG \overline{DT} TMP;
            DISOMAT STATUS := STATUS TMP;
            COMM ENABLE := FALSE;
    END CASE;
    // Idotúllépés figyelés
    TIMERTIME := S ODT (T NO := T,
         S := TIMEOUT TIMER ON,
         TV := TIMEOUT TIME,
         R := TIMEOUT TIMER RESET,
         BI := TEMPWORD1,
         Q := COMM TIMEOUT);
    TIMEOUT TIMER RESET := FALSE;
    IF COMM TIMEOUT THEN
        SEND REQ := FALSE;
        RECV REQ := FALSE;
```



```
END IF;
    // Küldés/fogadás
    IF (SEND REQ AND NOT RECV REQ) THEN
        AG LSEND (ACT := SEND REQ,
            ID := ID,
            LADDR := LADDR,
            SEND := DISOMAT SEND DATA,
            LEN := SEND LEN,
            DONE := SEND DONE,
            ERROR := SEND ERROR,
            STATUS := SEND_STATUS
            );
        IF (SEND DONE OR SEND ERROR) THEN
            SEND REQ := FALSE;
        END IF;
    END IF;
    PTR:=0;
    IF (RECV REQ AND NOT SEND REQ) THEN
        AG LRECV(ID := ID,
            LADDR := LADDR,
            RECV := DISOMAT RECV DATA,
            NDR := RECV NDR,
            ERROR := RECV ERROR,
            STATUS := RECV STATUS,
            LEN := RECV LEN
        );
        IF (RECV NDR OR RECV ERROR) THEN
            FOR TEMPINT1 := 0 TO 35 DO
                IF (DISOMAT RECV DATA[TEMPINT1]=B#16#02) THEN
                    PTR:=TEMPINT1;
                END IF;
            END FOR;
            FOR TEMPINT1 := 0 TO 35 DO
                IF (TEMPINT1+PTR)<36 THEN
DISOMAT RECV DATA2[TEMPINT1]:=DISOMAT RECV DATA[TEMPINT1+PTR];
                ELSE
DISOMAT RECV DATA2[TEMPINT1]:=DISOMAT RECV DATA[TEMPINT1+PTR-36];
                END IF;
            END FOR;
            DISOMAT RECV DATA:=DISOMAT RECV DATA2;
            RECV REQ := FALSE;
        END IF;
    END IF;
    PTR:=PTR;
    IF COMM ERROR THEN
        COMM_ENABLE := FALSE;
    END_IF;
```


END_IF;
END_FUNCTION_BLOCK

5.2 Moxa Nport beállítása

 $To\ Address 4 =$

[NPort Configuration File] [Accessible IP List] Enabled=0CheckCode=cfgIA Rule1=0..[Basic Information (not changeable)] Rule2=0,,APID=0x80005201 Rule3=0,,HWID = 0x52AARule4=0,, Serial No=1328 Rule 5=0,,MAC Address=00:90:E8:43:33:0A *Rule6*=0,, Firmware version=0x1010000 Rule7=0,, Rule8=0,, [Basic Settings] *Rule9=0,,* Server Name=NPIA5250AI_1328 Rule10=0,, *Time Zone=0* Rule11=0,, *Time Zone index=23* Rule12=0,, Date_Year=115 Rule13=0,, Date_Month=1 Rule14=0,, $Date_Day=13$ Rule15=0,, $Time_Hour=9$ Rule16=0,, $Time_Minute=37$ $Time_Second=46$ [Serial] Port1=9600,3,0,1,0, $Time_Milliseconds = 0$ Time Server= Port2=115200,3,1,1,0, Console Enabled=3 [Operating Mode] [Network Settings] Port1=10 *IP Address*=172.24.2.138 Port2=7 Netmask=255.255.255.192 [Operating Mode Option 2] Gateway= *IP Configuration=0* Port1=16,0x00,0x00,0,0 $DNS\ Server\ 1=$ Port2=16,0x00,0x00,0,0 DNS Server 2= [Operating Mode Option 1] Port1=1000,0,1,2100,966,0,0 [SNMP] Enable SNMP=0 Community = public[Auto Warning] Location= Mail=0x0Trap=0x0Contact =Relay=0x0Trap =[Mail] [Port Auto Warning] Port1 = 0x00, 0x00, 0x00Mail Server= Mail Server Login=0 Port2=0x00,0x00,0x00 $User\ Name =$ Password= [IP Address Report] Server= Address=NPIA5250AI_1328@NPIA5250AI Port=4002 To Address 1 =Period=10 To Address2 =To Address3 =[Password]

Password=

LCM & Reset Protect=0