# Laporan Perancangan Data Warehouse pada Industri Lingkungan & Sustainability



## **Disusun Oleh:**

| Muhammad Farhan             | 121450044 |
|-----------------------------|-----------|
| Mayada                      | 121450145 |
| Khoirul Anam                | 122450039 |
| Alvia Asrinda Br Ginting    | 122450077 |
| Syalaisha Andina Putrinsyah | 122450121 |

PROGRAM STUDI SAINS DATA FAKULTAS SAINS INSTITUT TEKNOLOGI SUMATERA 2025

#### 1. Profil Industri & Masalah Bisnis:

Sebagai CEO perusahaan penghasil listrik berbasis energi terbarukan, saya bertanggung jawab mengoptimalkan operasi bisnis yang berorientasi pada keuntungan dan keberlanjutan. Perusahaan ini terdiri dari divisi kunci seperti Sumber Daya Manusia (SDM), Produksi, dan Finansial, yang masing-masing menghasilkan data heterogen seperti kinerja karyawan HR analytics, efisiensi mesin produksi IoT sensor data, dan laporan keuangan triwulan. Untuk menjawab kebutuhan spesifik tiap departemen, kami mengadopsi pendekatan bottom-up dengan membangun Data Mart terpisah: Data Mart Produksi menganalisis inefisiensi rantai pasok, Data Mart SDM mengevaluasi produktivitas karyawan, dan Data Mart Pemasaran merancang kampanye pelanggan berbasis perilaku konsumen. Data Mart ini dirancang dengan model dimensional skema bintang untuk kemudahan akses pengguna non-teknis, lalu diintegrasikan secara bertahap ke dalam Data Warehouse guna analisis lintas divisi, seperti mengidentifikasi korelasi antara pelatihan karyawan dan efisiensi produksi. Melalui pendekatan ini, perusahaan berhasil mengurangi biaya produksi serta meningkatkan inovasi karyawan. Efektivitas kampanye pelanggan juga meningkat, sembari membangun fondasi data terpadu untuk strategi jangka panjang tanpa mengorbankan kecepatan solusi masalah spesifik.

### 2. Daftar Stakeholder & Tujuan Bisnis (tabel):

Tabel 1. Stakeholder dan tujuan bisnis

| Daftar Stakeholder         | Tujuan Bisnis                                                                                                  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------|--|
| CEO                        | Memastikan efisiensi operasional dan<br>keberlanjutan perusahaan melalui keputusan<br>berbasis data            |  |
| Divisi Produksi            | Meningkatkan efisiensi pembangkit energi<br>terbarukan dan mengurangi downtime melalui<br>analisis data sensor |  |
| Divisi Sumber Daya Manusia | Meningkatkan produktivitas dan retensi karyawan melalui pemantauan performa dan efektivitas pelatihan          |  |
| Divisi Pemasaran           | Merancang kampanye yang lebih efektif dan tepat sasaran melalui analisis perilaku pelanggan                    |  |
| Divisi Keuangan            | Mengoptimalkan investasi dan operasional dengan<br>menilai efisiensi biaya dan ROI pembangkit energi           |  |
| Tim Data Analyst           | Menyediakan laporan dan dashboard lintas divisi<br>untuk mendukung pengambilan keputusan strategis             |  |
| Regulator                  | Memantau dan menilai kepatuhan perusahaan terhadap kebijakan energi bersih dan keberlanjutan                   |  |

| investor  | Mengevaluasi profitabilitas dan kelayakan proyek<br>energi terbarukan untuk pengambilan keputusan<br>investasi |
|-----------|----------------------------------------------------------------------------------------------------------------|
| Pelanggan | Mendapatkan layanan energi bersih yang andal<br>dengan partisipasi dalam program keberlanjutan                 |

## 3. Fakta & Dimensi (diagram + penjelasan):

Berdasarkan masalah dan tujuan bisnis, maka dapat diidentifikasi sejumlah kebutuhan bisnis yang dirincikan pada tabel berikut.

Tabel 2. Fakta dan dimensi

| Kebutuhan                                                                     | Fakta                   | Dimensi                                                                   |  |
|-------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|--|
| Analisis produksi, konsumsi dan penyimpanan energi                            | Energy_Production       | Time, Site, Energy_Type, Equipment, Weather                               |  |
| Evaluasi efisiensi peralatan, downtime, output energi, dan penyimpanan energi | Equipment_Per formance  | Time, Site, Equipment, Maintenance_Type, Storage_Type, Battery_ID         |  |
| Monitoring biaya operasional dan efisiensi proyek peningkatan keberlanjutan   | Operational_Ef ficiency | Time, Site, Energy_Type, Cost_Category, Project_Type, Status, Budget      |  |
| Audit emisi karbon, penggunaan air, dan limbah dari operasional               | Environmental           | Time, Site, Emission_Type, Resource_Type, Waste_Type, Regulation_Category |  |
| Evaluasi kepatuhan terhadap regulasi lingkungan dan standar energi hijau      | Regulatory_Co mpliance  | Time, Site, Regulation, Inspection_Result                                 |  |

Dari hasil identifikasi fakta dan dimensi, selanjutnya dirancang desain konseptual dalam bentuk diagram ERD untuk memberikan gambaran hubungan antar entitas dalam skema data warehouse yang akan dibangun.



Gambar 1. Diagram ERD

Terdapat lima tabel fakta yang merepresentasikan berbagai aktivitas penting perusahaan, yaitu fact\_energy\_production, fact\_equipment\_performance, fact\_operational\_efficiency, fact\_environmental, dan fact\_regulatory\_compliance. masing-masing mewakili aspek penting operasional. Setiap tabel fakta terhubung dengan sejumlah tabel dimensi melalui foreign key, yang memungkinkan analisis data dari berbagai sudut pandang. Misalnya, tabel fact\_energy\_production mencatat data kuantitatif terkait produksi energi, dan dianalisis berdasarkan waktu (dim\_time), lokasi (dim\_site), jenis energi (dim\_energy\_type), peralatan yang digunakan (dim\_equipment), serta kondisi cuaca saat itu (dim\_weather). Demikian pula, tabel fact\_equipment\_performance merekam performa

alat berdasarkan dimensi seperti jenis perawatan, tipe penyimpanan, dan baterai yang digunakan.

Hubungan serupa juga terlihat pada fact\_operational\_efficiency, yang menyimpan data efisiensi proyek berdasarkan jenis energi, kategori biaya, tipe proyek, status, serta alokasi anggaran. Tabel fact\_environmental berfungsi untuk mencatat emisi, penggunaan sumber daya, dan limbah, serta keterkaitannya dengan regulasi lingkungan. Terakhir, fact\_regulatory\_compliance digunakan untuk memonitor kepatuhan terhadap regulasi melalui data inspeksi.

#### 4. Sumber Data & Metadata (deskripsi + contoh data):

| No | Sumber Data                                        | Deskripsi                                                    | Frekuensi<br>Update             | Contoh Data                                                                                    | Link        |
|----|----------------------------------------------------|--------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|-------------|
| 1  | Open Power System<br>Data (OPSD)                   | Data teknis<br>pembangkit energi<br>terbarukan di Eropa.     | Triwulanan                      | Kapasitas: 150 MW;<br>Tgl: 2020-01-15;<br>Teknologi: PV; Kode:<br>DE1; Tegangan: 110<br>kV.    | Link        |
| 2  | Kaggle – HR<br>Analytics Dataset                   | Riwayat kerja dan performa karyawan.                         | Triwulanan<br>(internal SDM)    | Kepuasan: 0.85;<br>Proyek: 5; Promosi:<br>1; Jam: 160/bulan.                                   | <u>Link</u> |
| 3  | Kaggle – Customer<br>Personality Analysis          | Preferensi dan<br>demografi pelanggan.                       | Mingguan                        | Pendapatan: \$50,000;<br>Respons: 3; Usia: 35;<br>Belanja: 60.                                 | Link        |
| 4  | U.S. Energy<br>Information<br>Administration (EIA) | Laporan keuangan<br>perusahaan energi<br>global.             | Triwulanan                      | Pendapatan:<br>\$1,000,000; Laba:<br>\$200,000; Arus Kas:<br>\$150,000.                        | <u>Link</u> |
| 5  | Kaggle – Machine<br>Sensor Data                    | Pembacaan sensor<br>mesin untuk<br>maintenance<br>prediktif. | Harian<br>(batch/streamin<br>g) | Waktu: 2024-04-15;<br>ID: 101; Sensor1:<br>0.5; Sensor2: 75 psi;<br>Kegagalan:<br>Overheating. | <u>Link</u> |

Semua data akan diproses melalui tahapan ETL menggunakan Python (Pandas, PyArrow) dan diotomasi dengan Apache Airflow. Pembersihan data mencakup imputasi (mean/median/mode), normalisasi (unit dan waktu), serta deteksi outlier (Z-score dan IQR). Seluruh data dikonversi ke format Parquet dan disusun dalam skema dimensional untuk mendukung integrasi dengan Power BI dan Tableau.