Esame di Ricerca Operativa del 20/12/13

(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases}
\max -9 x_1 + 8 x_2 \\
-3 x_1 + 5 x_2 \le 12 \\
3 x_1 + x_2 \le 6 \\
-x_1 - 2 x_2 \le 12 \\
3 x_1 - x_2 \le 6 \\
-5 x_1 - 2 x_2 \le 20 \\
-2 x_1 - 3 x_2 \le 26
\end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere (si/no)
		(si/no)	(si/no)
$\{1, 2\}$	x =		
$\{3, 6\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{2,4}					
2° iterazione						

Esercizio 3. Una ditta utilizza un cargo per il trasporto di 3 prodotti P1, P2 e P3. Il cargo ha tre scompartimenti per il carico: A,B,C. La seguente tabella mostra i limiti in peso e spazio degli scompartimenti.

	capacità di peso (tonn)	capacità di spazio (m^3)
Α	22	6000
В	16	8500
С	12	5000

La seguente tabella mostra per ogni prodotto la quantità massima (in tonn) di merce da caricare e il volume occupato.

	peso (tonn)	volume occupato $(m^3/tonn)$
P1	20	200
P2	15	300
P3	12	250

Sapendo che il profitto ottenuto dal trasporto di una tonnellata di merce è di 300 Euro/tonn per P1, 350 Euro/tonn per P2 e 250 Euro/tonn per P3, determinare come distribuire la merce negli scompartimenti per massimizzare il profitto.

C=	COMANDI DI MATLAB	
A=	b=	
Aeq=	beq=	
4	~~q	
71	,	
lb=	ub=	

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (2,5) (3,5)				
(4,3) (5,7) (6,7)	(1,3)	x =		
(1,4) (2,5) (3,7)				
(4,6) (5,7) (6,7)	(1,3)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,5) (3,5) (3,7) (4,3) (4,6)	
Archi di U	(5,7)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 7 x_1 + 6 x_2 \\ 15 x_1 + 14 x_2 \ge 63 \\ 6 x_1 + 11 x_2 \ge 44 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassament	тьо соныни	w.
--	------------	----

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$v_S(P) =$$

c) Calcolare un taglio di Gomory.

$$r =$$
 taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	22	51	21
2		13	52	25
3			10	29
4				22

a)	Trovare una	valutazione	inferiore d	lel valore	ottimo	calcolando	il 2-	-albero	di	costo	minimo
----	-------------	-------------	-------------	------------	--------	------------	-------	---------	----	-------	--------

2-albero: $v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{23} , x_{34} .

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -9 x_1 + 8 x_2 \\ -3 x_1 + 5 x_2 \le 12 \\ 3 x_1 + x_2 \le 6 \\ -x_1 - 2 x_2 \le 12 \\ 3 x_1 - x_2 \le 6 \\ -5 x_1 - 2 x_2 \le 20 \\ -2 x_1 - 3 x_2 \le 26 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (1, 3)	SI	NO
{3, 6}	y = (0, 0, -43, 0, 0, 26)	NO	NO

 $\textbf{Esercizio 2.} \ \ \textbf{Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.$

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{2, 4}	(2, 0)	$\left(0, \frac{5}{2}, 0, -\frac{11}{2}, 0, 0\right)$	4	6	1
2° iterazione	{1, 2}	(1, 3)	$\left(\frac{11}{6}, -\frac{7}{6}, 0, 0, 0, 0\right)$	2	$\frac{342}{11}$, 18, $\frac{666}{19}$	5

Esercizio 3.

variabili decisionali	modello
$x_{i,j}={\rm tonnellate\ di\ prodotto\ i}$ immagazzinato nello scompartimento j; i= 1,2,3; j=A,B,C	$\begin{cases} \max & 300 \ (x_{1A} + x_{1B} + x_{1C}) \\ +350 \ (x_{2A} + x_{2B} + x_{2C}) \\ +250 \ (x_{3A} + x_{3B} + x_{3C}) \end{cases} \\ x_{1A} + x_{1B} + x_{1C} \le 20 \\ x_{2A} + x_{2B} + x_{2C} \le 15 \\ x_{3A} + x_{3B} + x_{3C} \le 12 \\ x_{1A} + x_{2A} + x_{3A} \le 22 \\ x_{1B} + x_{2B} + x_{3B} \le 16 \\ x_{1C} + x_{2C} + x_{3C} \le 12 \\ 200 \ x_{1A} + 300 \ x_{2A} + 250 \ x_{3A} \le 6000 \\ 200 \ x_{1B} + 300 \ x_{2B} + 250 \ x_{3B} \le 8500 \\ 200 \ x_{1C} + 300 \ x_{2C} + 250 \ x_{3C} \le 5000 \\ x_{i,j} \ge 0 \end{cases}$

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (2,5) (3,5)				
(4,3) (5,7) (6,7)	(1,3)	x = (-4, 11, 0, 2, 0, 11, 0, -4, 0, 11, -2)	NO	NO
(1,4) (2,5) (3,7)				
(4,6) (5,7) (6,7)	(1,3)	$\pi = (0, 14, 23, 8, 22, 18, 27)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,5) (3,5) (3,7) (4,3) (4,6)	(1,3) (1,4) (2,5) (3,5) (3,7) (4,6)
Archi di U	(5,7)	(5,7)
x	(0, 0, 7, 6, 0, 2, 3, 1, 2, 6, 0)	(0, 1, 6, 6, 0, 2, 3, 0, 2, 6, 0)
π	(0, 8, 12, 8, 16, 18, 16)	(0, 1, 5, 8, 9, 18, 9)
Arco entrante	(1,3)	(5,7)
ϑ^+,ϑ^-	11, 1	5, 2
Arco uscente	(4,3)	(3,5)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		4	:	Ę)	ę	}	(5	7	7
nodo 2	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 3	9	1	9	1	9	1	9	1	9	1	9	1	9	1
nodo 4	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 5	$+\infty$	-1	7	2	7	2	7	2	7	2	7	2	7	2
nodo 6	$+\infty$	-1	$+\infty$	-1	17	4	17	4	17	4	17	4	17	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	24	5	23	3	20	6	20	6
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	3, 5	, 6	3, 6	5, 7	6,	7	7	7	Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	7	(0, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0)	7
1 - 2 - 5 - 7	7	(7, 7, 0, 7, 0, 0, 7, 0, 0, 7, 0)	14
1 - 3 - 5 - 7	7	(7, 14, 0, 7, 0, 7, 7, 0, 0, 14, 0)	21
1 - 4 - 6 - 7	6	(7, 14, 6, 7, 0, 7, 7, 0, 6, 14, 6)	27

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 7 x_1 + 6 x_2 \\ 15 x_1 + 14 x_2 \ge 63 \\ 6 x_1 + 11 x_2 \ge 44 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(0, \frac{9}{2}\right)$ $v_I(P) = 27$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (0,5)

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $14 x_1 + 13 x_2 \ge 59$ $r = 4$ $4 x_1 + 3 x_2 > 14$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	22	51	21
2		13	52	25
3			10	29
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero: (1,3)(1,5)(2,3)(2,5)(3,4) $v_I(P) = 91$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo: 1 - 5 - 4 - 3 - 2

c) Applicare il metodo del Branch and Bound, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{23} , x_{34} .

