MA1100 - Basic Discrete Mathematics Suggested Solutions

(Semester 1: AY2020/21)

Written by: Chow Yong Lam Audited by: Yip Jung Hon

Question 1

Consider the Fibonacci numbers F_n (for $n \in \mathbb{Z}_{\geq 0}$) defined recursively by: $F_0 := 0$, $F_1 := 1$, and $F_n := F_{n-1} + F_{n-2}$ for all $n \geq 2$ Show that for any positive integers $m, n \in \mathbb{Z}_{>0}$, one has

$$F_{m+n} = F_{m-1}F_n + F_m F_{n+1}$$

Solution

When n = 1, we have $\forall m \in \mathbb{Z}_{>0}$,

$$\begin{split} F_{m+n} &= F_{m+1} \\ &= F_{m-1} + F_m \\ &= F_{m-1} F_n + F_m F_{n+1} \end{split}$$

because $F_n = F_1 = 1$ and $F_{n+1} = F_2 = 1$

When n=2, we have $\forall m \in \mathbb{Z}_{>0}$,

$$F_{m+n} = F_{m+2}$$

$$= (F_{m-1} + F_m) + F_m$$

$$= F_{m-1}F_n + F_mF_{n+1}$$

because $F_n = F_2 = 1$ and $F_{n+1} = F_3 = 2$

Fix $N \in \mathbb{Z}_{>0}$ with $N \geq 2$ and assume the induction hypothesis such that $\forall m, n \in \mathbb{Z}_{>0}$ with $n \leq N$, one has $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$ Then $\forall m \in \mathbb{Z}_{>0}$, one has

$$\begin{split} F_{m+N+1} &= F_{m+N} + F_{m+N-1} \quad \text{(by recursive definition of } F_{m+N+1}) \\ &= F_{m-1}F_N + F_mF_{N+1} + F_{m-1}F_{N-1} + F_mF_N \quad \text{(by induction hypothesis for } n=N \text{ and } n=N-1) \\ &= F_{m-1}F_{N+1} + F_mF_{N+2} \quad \text{(by recursive definition of } F_{N+1} \text{ and } F_{N+2}) \end{split}$$

Thus by strong induction, for any positive integers $m, n \in \mathbb{Z}_{>0}$, one has

$$F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$$

Question 2

Keep the notation F_n for the Fibonacci numbers as in the previous question. Show that for any $d, n \in \mathbb{Z}_{>0}$,

if
$$d|n$$
, then $F_d|F_n$.

Solution

Fix $d \in \mathbb{Z}_{>0}$, we claim that $\forall q \in \mathbb{Z}_{>0}$, one has $F_d|_{F_{qd}}$.

When q = 1, $F_{qd} = F_d$, and clearly $F_d|F_{qd}$ in this case.

Suppose our claim holds for a fixed $q \in \mathbb{Z}_{>0}$. Then

$$\begin{split} F_{(q+1)d} &= F_{qd+d} \\ &= F_{qd-1}F_d + F_{qd}F_{d+1} \quad \text{(by result in Question 1)} \end{split}$$

 $F_{qd-1}F_d$ is divisible by F_d and $F_{qd}F_{d+1}$ is divisible by F_d by the induction hypothesis on q.

Hence, $F_d|F_{(q+1)d}$

By induction, our claim holds for all $q \in \mathbb{Z}_{>0}$.

Now given $n \in \mathbb{Z}_{>0}$, if d|n, then there exists $q \in \mathbb{Z}_{>0}$, such that n = qd.

It follows that $F_d|F_n = F_{qd}$ by our claim.

Question 3

Let $a, b, c, d \in \mathbb{Z}_{>0}$ be positive integers such that ad - bc = 1. Show that

a+b and c+d are relatively prime.

Solution

We have

$$d(a+b) - b(c+d) = ad - bc = 1$$

or

$$a(c+d) - c(a+b) = ad - bc = 1$$

By Bezout's theorem, since there exists integeers d, b (or a, -c) such that the two equations above are fulfilled, either of the equations shows that a + b and c + d are relatively prime.

Explicitly, suppose $g := \gcd(a + b, c + d) \in \mathbb{Z}_{>0}$,

Then g = 1 in $\mathbb{Z}_{>0}$.

Question 4

Let S be a set with the following property:

(*) For any set X, there exists a unique function $f: X \to S$.

Show that card(S) = 1.

Solution

Apply the property (*) with $X = \{0\}$ (the singleton set with only one element called 0). Thus, $f(0) \in S$, so $S \neq \emptyset$, which means $\operatorname{card}(S) \geq 1$.

Suppose card(S)> 1. Then, $\exists s_1, s_2 \in S \text{ with } s_1 \neq s_2.$

Let $g: \{0\} \to S$ be the function $g(0) := s_1$,

and $h: \{0\} \to S$ be the function $h(0) := s_2$,

Then g and h are distinct functions from $\{0\}$ to S, which contradicts the uniqueness in (*). Hence, we must have $\operatorname{card}(S) = 1$.

Questions 5 to 8: True or False

Question 5

(a) For any sets A, B, C, one has $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$.

False. A counterexample will be when $A = \{1, 2\}, B = \{1\}, C = \{2\}$. Then, $LHS = \emptyset$, RHS = A

(b) For any sets A, B, C, one has $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$. Then, LHS = A, $RHS = \emptyset$

False. A counterexample will be when $A = \{1, 2\}, B = \{1\}, C = \{2\}.$

(c) For any sets A, B, C, one has $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.

True. Let x be an arbitrary element in $(A \cup B) \setminus C$

$$x \in (A \cup B) \backslash C \iff x \in (A \cup B) \land x \notin C$$

$$\iff (x \in A \lor x \in B) \land x \notin C$$

$$\iff (x \in A \land x \notin C) \lor (x \in B \land x \notin C)$$

$$\iff (x \in A \backslash C) \lor (x \in B \backslash C)$$

$$\iff x \in (A \backslash C) \cup (B \backslash C)$$

(d) For any sets A, B, C, one has $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.

True. Let x be an arbitrary element in $(A \cap B) \setminus C$

$$x \in (A \cap B) \backslash C \iff x \in (A \cap B) \land x \notin C$$

$$\iff (x \in A \land x \in B) \land x \notin C$$

$$\iff (x \in A \land x \notin C) \land (x \in B \land x \notin C)$$

$$\iff (x \in A \backslash C) \land (x \in B \backslash C)$$

$$\iff x \in (A \backslash C) \cap (B \backslash C)$$

(e) For any sets A, B, C, one has $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

True. Let (x,y) be an arbitrary element in $A \times (B \cup C)$

$$(x,y) \in A \times (B \cup C) \iff (x \in A) \land (y \in (B \cup C))$$

$$\iff (x \in A) \land ((y \in B) \lor (y \in C))$$

$$\iff (x \in A \land y \in B) \lor (x \in A \land y \in C)$$

$$\iff ((x,y) \in (A \times B)) \lor ((x,y) \in (A \times C))$$

$$\iff (x,y) \in (A \times B) \cup (A \times C)$$

(f) For any sets A, B, C, one has $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

True. Let (x,y) be an arbitrary element in $A \times (B \cap C)$

$$(x,y) \in A \times (B \cap C) \iff (x \in A) \land (y \in (B \cap C))$$

$$\iff (x \in A) \land ((y \in B) \land (y \in C))$$

$$\iff (x \in A \land y \in B) \land (x \in A \land y \in C)$$

$$\iff ((x,y) \in (A \times B)) \land ((x,y) \in (A \times C))$$

$$\iff (x,y) \in (A \times B) \cap (A \times C)$$

(g) For any sets A, B, one has $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

False. A counterexample will be when $A = \{1\}, B = \{2\}$. Then, $LHS = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}, RHS = \{\emptyset, \{1\}, \{2\}\}.$

(h) For any sets A, B, one has $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

True. Let $x \in \mathcal{P}(A \cap B)$ be arbitrary.

$$x \in \mathcal{P}(A \cap B) \iff x \subseteq (A \cap B)$$

$$\iff x \subseteq A \land x \subseteq B$$

$$\iff x \in \mathcal{P}(A) \land x \in \mathcal{P}(B)$$

$$\iff x \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

(i) For any sets A, B, one has $\mathcal{P}(A \backslash B) = \mathcal{P}(A) \backslash \mathcal{P}(B)$.

False. A counterexample will be when $A = \{1, 2\}, B = \{2\}$. Then, $LHS = \{\emptyset, \{1\}\}, RHS = \{\{1\}, \{1, 2\}\}$

(j) For any sets A, B, one has $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.

False. A counterexample will be when $A = \{1\}, B = \{2\}.$

Then, $LHS = \{\emptyset, \{(1,2)\}\}, RHS = \{(\emptyset,\emptyset), (\emptyset,\{2\}), (\{1\},\emptyset), (\{1\},\{2\})\}.$

Question 6

(a) For any sets X, Y and for any injective function $f: X \to Y$, there exists a function $g: Y \to X$ which is injective. False. Take X to be the empty set \varnothing . Then, f will be injective. However, there does not exist any function with \varnothing as the codomiain.

(b) For any sets X, Y and for any injective function $f: X \to Y$, there exists a function $g: Y \to X$ which is surjective.

False. Take X to be the empty set \varnothing . Then, f will be injective. However, there does not exist any function with \varnothing as the codomiain.

(c) For any sets X, Y and for any surjective function $f: X \to Y$, there exists a function $g: Y \to X$ which is injective.

True. f being surjective means that for any y in Y, there exist at least one element x in X such that f(x) = y. We can define a choice function by the Axiom of Choice, $\phi: \{f^{-1}[\{y\}] \mid y \in Y\} \to X$ such that we can choose one element from all elements in X that is being mapped to y by f, for every y in Y. Also, define $\alpha: Y \to \{f^{-1}[\{y\}] \mid y \in Y\}$ such that α maps every element y in Y to its corresponding inverse image set $f^{-1}[\{y\}]$. (Note that by the surjectivity of f, $f^{-1}[\{y\}]$ is never empty, since every element in Y has at least one element from X being mapped onto it). Both functions defined above are injective. (Note that α is injective, or else it would mean that x can be mapped by f to two distinct values of y in Y. Hence when we define $g = \phi \circ \alpha$, $g: Y \to X$ is injective.

(d) For any sets X, Y and for any surjective function $f: X \to Y$, there exists a function $g: Y \to X$ which is surjective.

False. Take $X = \{1, 2\}$ and $Y = \{0\}$. Define f such that f(1) = 0, f(2) = 0. Then, f is surjective. However, for any well-defined function g from Y to X, we can define either g(0) = 1 or g(0) = 2, i.e. not all elements in X can be mapped from Y via the function g

(e) For any sets X, Y and for any function $f: X \to Y$ and for any subsets A, B of X, one has $f[A \cap B] \subseteq f[A] \cap f[B]$. True. Let $y \in Y$ be an arbitrary element such that $y \in f[A \cap B]$. Then, $\exists x \in A \cap B$ s.t. $f(x) = y \implies$ for both sets A and B, $\exists x$ in each set s.t. f(x) = y. Then, $y \in f[A] \land y \in f[B]$. It follows that $y \in f[A] \cap f[B]$. Thus the claim holds.

(f) For any sets X, Y and for any function $f: X \to Y$ and for any subsets A, B of X, one has $f[A] \cap f[B] \subseteq f[A \cap B]$. **False.** Take $X = \{1, 2\}, A = \{1\}, B = \{2\}, Y = \{0\}$. Define $f: X \to Y$ such that f(1) = 0, f(2) = 0. We can see that f[A] = f[B] = Y so $f[A] \cap f[B] = Y$. However, since $A \cap B = \emptyset$, $f[A \cap B] = \emptyset$. It is impossible that a non-empty set Y is a subset of \varnothing , thus we have provided a counterexample.

(g) For any sets X, Y and for any function $f: X \to Y$ and for any subsets A, B of X, one has $f[A \cup B] \subseteq f[A] \cup f[B]$. **True.** Denote A as A_1 and B as A_2 Let $y \in Y$ be arbitrary such that $y \in f[A_1 \cup A_2]$.

$$y \in f[A_1 \cup A_2] \iff \exists x \in A_1 \cup A_2 \text{ s.t. } y = f(x)$$

 $\iff y \in f[A_1] \cup f[A_2].$

(h) For any sets X, Y and for any function $f: X \to Y$ and for any subsets A, B of X, one has $f[A] \cup f[B] \subseteq f[A \cup B]$.

True. Refer to the explanation in (g). The converse is also true since the relation above is an 'if and only if' relation.

(i) For any sets X, Y and for any function $f: X \to Y$ and for any subsets A of X, one has $f[X \setminus A] \subseteq Y \setminus f[A]$.

False. Consider $X = \{1, 2\}, A = \{1\}, Y = \{0\}$ and define the function $f: X \to Y$ such that f(1) = f(2) = 0. Note that $f(1) = 0 \implies f[A] = \{0\} = Y$. $f[X \setminus A] = f[\{2\}] = \{0\} = Y$, while $Y \setminus f[A] = \emptyset$. It is impossible for a non-empty set Y to be a subset of \emptyset , thus we have provided a counterexample.

(j) For any sets X, Y and for any function $f: X \to Y$ and for any subsets A of X, one has $Y \setminus f[A] \subseteq f[X \setminus A]$.

False. Consider $X = \{1, 2\}, A = \{1\}, Y = \{a, b\}$ and define the function $f: X \to Y$ such that f(1) = f(2) = a. Note that $f(1) = a \implies f[A] = \{a\}$. $f[X \setminus A] = f[\{2\}] = \{a\}$, while $Y \setminus f[A] = \{b\}$. Since $b \notin f[X \setminus A]$, $Y \setminus f[A] \not\subseteq f[X \setminus A]$. Thus we have provided a counterexample.

Question 7

(a) For any $a \in \mathbb{Z}$ with a > 1, there exists a prime number p such that p|a.

True. By the Fundamental Theorem of Arithmetic, every positive integer a > 1 can be expressed as a product of primes. Every prime appeared in the expression can divide a.

(b) For any $a \in \mathbb{Z}$ with a > 1, there exists a prime number p such that a|p.

False. A counterexample is a = 4.

(c) For any $a \in \mathbb{Z}$ with a > 1, there are infinitely many prime numbers p such that p|a.

False. A counterexample is a = 2, and the only prime number that divided 2 is 2 itself, hence 2 has only finitely many prime factors.

(d) For any prime number p, there are infinitely many $a \in \mathbb{Z}$ with a > 1 such that p|a.

True. Let p be a prime number, thus p > 1. Since for any positive integer $k \in \mathbb{Z}_{>0}$, p|kp, from the fact that there are infinitely many positive integers, there exists infinitely many integers a = kp such that p|a.

(e) For any $a \in \mathbb{Z}$ with a > 1, there are infinitely many prime numbers p such that a|p.

False. This is an extension from 7(b). Counterexample: a=4.

(f) For any prime number p, there are infinitely many $a \in \mathbb{Z}$ with a > 1 such that $a \mid p$.

False. A counterexample will be when p=2. The only possible value of a will be a=2. Hence, when p=2, there are finitely many (in fact only one) integers a > 1 such that a|p.

(g) For any $a \in \mathbb{Z}_{>0}$, if there exists a prime number p such that $2^a = p + 1$, then a is prime.

True. If a is not prime, when a=1, p=1 which is not prime. When a>1, then $\exists x,y\in\mathbb{Z}_{>0}$ s.t. $(x,y\neq$ 1) \land $(x, y \neq a) \land (a = xy)$. Then,

$$p = 2^{a} - 1$$

$$= 2^{xy} - 1$$

$$= (2^{y})^{x} - 1$$

$$= (2^{y} - 1)(\sum_{i=0}^{x-1} 2^{iy})$$

 $2^y-1\in\mathbb{Z}$ because only multiplication, addition and subtraction between integers are involved in computations. For the same reason, $\sum_{i=0}^{x-1}2^{iy}\in\mathbb{Z}$. Since $y>1,\ 2^y>2^1\implies (2^y-1)>1$. Also, since $y< a,2^y-1<2^a-1$. Thus, $1<(2^y-1)< p$. By the inequality above $1<(\sum_{i=0}^{x-1}2^{iy})< p$ as well.

Hence, $\exists h, k \in \mathbb{Z}_{>0}$ s.t. $(h, k \neq 1) \land (h, k \neq p) \land (p = hk)$. p is thus not prime.

We have proven the contrapositive of the statement in (g), which means that the statement in (g) itself is true.

(h) For any $a \in \mathbb{Z}_{>0}$, if a is prime, then there exists a prime number p such that $2^a = p + 1$.

False. Consider a = 11 being a prime number. $2^a = 2^{11} = 2018$. However, $p = 2^a - 1 = 2047 = 23 \times 89$ and thus p is not prime. We have provided a counterexample.

(i) The unique prime factorisation of 2019 is 3×673 .

True.

(j) The unique prime factorisation of 2020 is $2 \times 2 \times 2 \times 5 \times 101$.

False. It should be $2 \times 2 \times 5 \times 101$.

Question 8

(a) For any infinite set X, there exists an injective function $\psi: \mathbb{Z} \to X$.

True. Idea: X will have cardinality greater or equal to \mathbb{N} , so there is obviously going to be an injective function from \mathbb{N} (smaller cardinality) to X (bigger cardinality). The following is a more rigorous proof.

First, note that \mathbb{N} is equinumerous to \mathbb{Z} . There exists a bijective function $g: \mathbb{Z} \to \mathbb{N}$.

Next, we define $f: \mathbb{N} \to X$ recursively. Since X is infinite, it is non-empty. Pick $f(1) = x_1 \in X$. For the recursion, let $n \in \mathbb{N}$ be arbitrary such that we assume:

- f(1) to f(n) has been defined.
- $\forall i, j \text{ s.t. } 1 \leq i, j \leq n, i \neq j \implies f(i) \neq f(j).$

We then obtain a finite set. $X_n = \{f(1), f(2), \dots f(n)\}.$

But since X is infinite, therefore $X \setminus X_n$ is infinite (and thus non-empty).

Now we define a choice function. Take $\mathcal{C} = \{B \in \mathcal{P}(X) | (\exists F \subseteq X) (F \text{ is finite } \land B = X \setminus F \}$

Then, we can define a choice function $\alpha: \mathcal{C} \to \bigcup_{B \in \mathcal{C}} B = X$ such that $\alpha(B) \in (B)$, i.e. $\alpha(B)$ is an element in $B = X \setminus F$ for some finite set F.

By the choice function, for all positive integers $n \in \mathbb{Z}_{>0}$, define $B_n = X \setminus X_n$ and define $f(n+1) = \alpha(B_n) \in B_n$.

Then, $f(n-1) \notin X_n = \{f(1), f(2), \dots f(n)\}$, i.e. $\forall i \leq n, f(n+1) \neq f(i)$.

By the recursion theorem and mathematical induction, we have defined an injective function f from \mathbb{N} to X.

Since f, g are injective, the function $f \circ g : \mathbb{Z} \to X$ is injective.

(b) For any infinite set X, there exists an injective function $\psi: X \to \mathbb{Z}$.

False. A counterexample will be when X is an uncountable set like \mathbb{R} .

(c) For any infinite set X, there exists a surjective function $\psi : \mathbb{Z} \to X$.

False. A counterexample will be when X is an uncountable set like \mathbb{R} .

(d) For any infinite set X, there exists a surjective function $\psi: X \to \mathbb{Z}$.

True. This follows from the result in (a). Note that both X and \mathbb{Z} are non-empty.

(e) For any infinite set X and for any finite set S, there exists an injective function $\psi: S \to X$.

True. S is finite, so $\exists n \in \mathbb{N}$ such that there exists a bijective function $f: S \to \mathbb{N}_n$. There also exists an injective function $i_n: \mathbb{N}_n \to \mathbb{N}$. From the result in (a), there exists an injective function $g: \mathbb{N} \to X$. Hence, the composite function $g \circ i_n \circ f: S \to X$ is injective.

(f) For any infinite set X and for any finite set S, there exists a surjective function $\psi: X \to S$.

False. A counterexample will be when $S = \emptyset$, because there does not exist any function with \emptyset as codomain.

(g) For any countable set X, the set $X \times X$ is countable.

True. If $X = \emptyset$, then $X \times X = \emptyset$ is countable.

If X is non-empty and countable, there exists a surjective function $f: N \to X$.

Then, define $g: \mathbb{N} \times \mathbb{N} \to X \times X$ such that $\forall i, j \in \mathbb{N}, g(i, j) := (f(i), f(j)) \in A \times B$.

Given $(a, b) \in A \times B$, $\exists i \in \mathbb{N}$ such that f(i) = a and $\exists j \in \mathbb{N}$ such that f(j) = b.

Thus, $\exists (i,j) \in \mathbb{N} \times \mathbb{N}$ such that $g(i,j) = (a,b) \in A \times B$. Thus, g is surjective.

Note that $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$, then there exists a bijective function. $h : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$.

Then, the function $g \circ h : \mathbb{N} \to X \times X$ is surjective, implying that $X \times X$ is countable.

(h) For any countable set X, the set $\mathcal{P}(X)$ is uncountable.

False. When $X = \emptyset$, X is countable. $\mathcal{P}(X) = \{\emptyset\}$ has one element, so the power set is finite and countable.

(i) For any countable set X and any uncountable set Y, the set $X \cup Y$ is uncountable.

True. Note that $Y \subseteq (X \cup Y)$. Since Y is uncountable, by the subset relation, the union of the two sets is also uncountable.

(j) For any countable set X and any uncountable set Y, the set $X \times Y$ is uncountable. **False.** When $X = \emptyset$, $X \times Y = \emptyset$ is finite and thus countable.