Optimización de Portafolio con Enfoque en Cópulas

Felipe Gómez Espinal

Juan José Castrillón

September 2023

Índice

- Introducción
- Antecedentes
- Metodología
- **Datos**
- Implementación
- Optimización de Portafolio
- Resultados
- Conclusiones
- Referencias

Introducción

- La optimización del portafolio para financiamiento de inventario es esencial en la gestión empresarial, este es un enfoque que se utiliza en la gestión de inventario y finanzas para determinar la mejor combinación de activos (inventarios) que maximice el rendimiento o minimice el costo, teniendo en cuenta las restricciones financieras y de riesgo.
- En el contexto de la optimización de portafolio para financiamiento de inventario, las cópulas se utilizan para modelar la dependencia entre los activos o productos en inventario de una manera más realista, ya que capturan las relaciones no lineales y asimétricas entre ellos.

Antecedentes

- Portfolio optimization for inventory financing: Copula-based approaches
- Portfolio Optimization: The Markowitz Mean-Variance Model

Metodología

- Luego de seleccionar el portafolio y los activos a optimizar, ademas de seleccionar si se desea maximizar rendimiento o minimizar el riesgo (o ambas), se realizará una busqueda de la cópula que mejor pueda representar la dependencia de los activos.
- Con la cópula se realizaran simulaciones de este portafolio para posteriormente implementar la optimización de portafolio de Markowitz y encontrar el peso que se le debe asignar a cada activo para la optimizacion de la función objetivo. Finalmente, teniendo la funcion objetivo, se incluyen restricciones asociadas al peso y a la no negatividad.

Datos

- Se tomó un portafolio de Kenneth R. French con los activos Mkt-Rf y SMB y una muestra de 1000 datos que representan los retornos
- Proveniencia de los datos

Distribución de los Datos

descriptive statistics

descriptive statistics

data points	1000	data points	1000
minimum	-2.89576	minimum	-2.84512
maximum	3.01866	maximum	3.52591
mean	0.0728145	mean	0.0225462
median	0.0735593	median	0.0148429
mode	-0.44693	mode	-0.0270252
standard deviation	1.01952	standard deviation	0.99973
variance	1.03942	variance	0.999459
coefficient of variation	1400.16	coefficient of variation	4434.14
skewness	0.107333	skewness	-0.0630301
kurtosis	-0.201958	kurtosis	-0.163556

(1)

Proveniencia de los Datos

Cópulas

(3)

Escogencia de la Cópula

(4)

Cópula Gaussiana

La cópula gaussiana representa la estructura de dependencia para una distribución normal multivariada. La fórmula de la cópula gaussiana está dada por:

$$C_{\Psi}(u_1, u_2) = F_Y(\Phi^{-1}(u_1), \Phi^{-1}(u_2))$$

Donde:

 $C_{\Psi}(u_1,u_2)$: Cópula gaussiana con parámetros Ψ

 $F_Y(\Phi^{-1}(u_1),\Phi^{-1}(u_2))$: Función de distribución acumulada conjunta

 $\Phi^{-1}(u)$: Función inversa de cuantiles de una distribución normal estándar

 Ψ : Matriz de covarianza de las variables aleatorias

Funciones Objetivo

Función Objetivo 1 (Rendimiento)

Esta función tiene como objetivo maximizar el rendimiento esperado de la cartera. Se define como el producto escalar de los pesos de los activos y los rendimientos esperados:

Función Objetivo 1 (Rendimiento) :
$$f_1(w) = w^T R$$

Donde: w es un vector de pesos de activos. R es un vector de rendimientos esperados de activos.

Funciones Objetivo (Continuación)

Función Objetivo 2 (Riesgo)

Esta función tiene como objetivo minimizar el riesgo de la cartera, que se mide mediante la desviación estándar. Se define como la raíz cuadrada de la varianza de la cartera:

Función Objetivo 2 (Riesgo) :
$$f_2(w) = \sqrt{w^T C w}$$

Donde: C es la matriz de covarianza de los activos.

Función Objetivo Combinada

La función objetivo combinada es una combinación lineal de las dos funciones objetivo anteriores, ponderada por los valores de α y β :

Función Objetivo Combinada :
$$f_{combinada}(w) = \alpha f_1(w) + \beta f_2(w)$$

Donde: α y β son pesos que indican la importancia relativa del rendimiento y el riesgo en la cartera.

Finalmente, se obtienen los mejores pesos para cada activo, el rendimiento esperado y el riesgo esperado dependiendo de los valores de α y β .

Resultados

Los datos obtenidos para simular los datos desde la cópula Gaussiana con el código de R fueron:

```
> MKt_sim
[1] 0.6765745
> SMB_sim
[1] 0.04041076
```

Luego de implementar el código en python, los datos obtenidos fueron:

```
0.06235345205694567 0.020957700059043082

Pesos de la cartera optimizada: [0.37762276 0.62237724]

Rendimiento esperado óptimo: 0.03658967808412093

Riesgo óptimo (desviación estándar): 0.7623810501541848
```

Donde los dos primeros valores representan los retornos esperedados de cada activo, los pesos optimidos calculados para la asignación del rendimiento y riesgo esperado de la cartera con estos activos.

Conclusiones

- La optimización de portafolio con enfoque en cópulas permite una gestión de inventario más precisa.
- Por medio de las cópulas se logra capturar de manera más realista las relaciones no lineales y asimétricas entre los activos.
- Ayuda a tomar decisiones financieras informadas y a mitigar riesgos.

Referencias

- Bangdong Zhi, Xiaojun Wang, Fangming Xu, (2021). Portfolio optimization for inventory financing: Copula-based approaches
- sanchez G (27 de Diciembre de 2020). Optimización algorítmica de carteras con Markowitz.
 https://gsnchez.com/blog/article/Optimizacion-algoritmica-decarteras-con-markowitz
- Ayuda a tomar decisiones financieras informadas y a mitigar riesgos.
- Markowitz Efficient Set: Meaning, Implementation, Diversification. (n.d.). Investopedia. Retrieved September 26, 2023, from https://www.investopedia.com/terms/m/markowitzefficientset.asp
- Torres, F. (n.d.). Portfolio Optimization: The Markowitz
 Mean-Variance Model | by Luís Fernando Torres | LatinXinAl.
 Medium. Retrieved September 26, 2023, from
 https://medium.com/latinxinai/portfolio-optimization-the-markowitz-mean-variance-model-c07a80056b8a

Referencias

- Multivariate Distributions Copulas 0.9.1 documentation. (n.d.).
 Synthetic Data Vault. Retrieved September 26, 2023, from https://sdv.dev/Copulas/tutorials/03MultivariateDistributions.html
- . (2022, October 2). . YouTube. Retrieved September 26, 2023, from https://link.springer.com/referenceworkentry/10.1007/978-1-84628-288-151