Package 'RMOA'

December 22, 2014

Version 1.0
Title Connect R with MOA for Massive Online Analysis
Description Connect R with MOA (Massive Online Analysis - http://moa.cms.waikato.ac.nz) to build classification models and regression models on streaming data or out-of-RAM data
Depends RMOAjars (>= 1.0), rJava (>= 0.6-3), methods
Suggests ff
SystemRequirements Java (>= 5.0)
License GPL-3
Copyright Code is Copyright (C) Jan Wijffels and BNOSAC
Maintainer Jan Wijffels < jwijffels@bnosac.be>
<pre>URL http://www.bnosac.be, https://github.com/jwijffels/RMOA,</pre>
http://moa.cms.waikato.ac.nz/
Author Jan Wijffels [aut, cre], BNOSAC [cph]
NeedsCompilation no
Repository CRAN
Date/Publication 2014-09-19 00:54:31
R topics documented:
datastream datastream_dataframe datastream_ffdf datastream_file datastream_matrix factorise MOAattributes MOAoptions MOA_classification_activelearning MOA_classification_bayes

2 datastream

data	ream Datastream objects and methods	
Index		2 1
	rainMOA	18
	summary.MOA_regressor	
	summary.MOA_classifier	
	oredict.MOA_trainedmodel	
	MOA_regressors	1:
	MOA_regressor	14
	MOA_classifier	13
	MOA_classification_trees	12
	MOA_classification_ensemblelearning	1

Description

Reference object of class datastream. This is a generic class which holds general information about the data stream.

Currently streams are implemented for data in table format (streams of read.table, read.csv, read.csv2, read.delim, read.delim2), data in RAM (data.frame, matrix), data in ff (on disk).

See the documentation of datastream_file, datastream_dataframe, datastream_matrix, and datastream_ffdf $\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} -$

Arguments

description The name how the stream is labelled

args a list with arguments used to set up the stream and used in the datastream methods

Value

A class of type datastream which contains

description: character with the name how the stream is labelled.

state: integer with the current state at which the stream will read new instances of data

processed: integer with the number of instances already processed

finished: logical indicating if the stream has finished processing all the instances

args: list with arguments passed on to the stream when it is created (e.g. arguments of read.table)

See Also

datastream_file

datastream_dataframe 3

Examples

```
## Basic example, showing the general methods available for a datastream object x \leftarrow datastream(description = "My own datastream", args = list(a = "TEST")) x str(x) try(x\$get\_points(x))
```

datastream_dataframe data streams on a data.frame

Description

Reference object of class datastream_dataframe. This is a class which inherits from class datastream and which can be used to read in a stream from a data.frame.

Arguments

data

a data.frame to extract data from in a streaming way

Value

A class of type datastream_dataframe which contains

data: The data.frame to extract instances from

all fields of the datastream superclass: See datastream

Methods

- get_points(n) Get data from a datastream object.
 - ${\bf n}$ integer, indicating the number of instances to retrieve from the datastream

See Also

datastream

```
x <- datastream_dataframe(data=iris)
x$get_points(10)
x
x$get_points(10)
y</pre>
```

4 datastream_ffdf

datastream_ffdf

data streams on an ffdf

Description

Reference object of class datastream_ffdf. This is a class which inherits from class datastream and which can be used to read in a stream from a ffdf from the ff package.

Arguments

data

a data.frame to extract data from in a streaming way

Value

A class of type datastream_ffdf which contains

data: The ffdf to extract instances from

all fields of the datastream superclass: See datastream

Methods

- get_points(n) Get data from a datastream object.
 - \mathbf{n} integer, indicating the number of instances to retrieve from the datastream

See Also

datastream

```
## You need to load package ff before you can use datastream_ffdf
require(ff)
irisff <- as.ffdf(factorise(iris))
x <- datastream_ffdf(data=irisff)
x$get_points(10)
x
x$get_points(10)</pre>
```

datastream_file 5

ıta stream	
ita stream	

Description

Reference object of class datastream_file. This is a class which inherits from class datastream and which can be used to read in a stream from a file. A number of file readers have been implemented, namely datastream_table, datastream_csv, datastream_csv2, datastream_delim, datastream_delim2.

See the examples.

Arguments

description	The name how the stream is labelled
FUN	The function to use to read in the file. Defaults to read.table for datastream_table, read.csv for datastream_csv, read.csv2 for datastream_csv2, read.delim for datastream_delim, read.delim2 for datastream_delim2
columnnames	optional character vector of column to overwrite the column names of the data read in with in get_points
file	The file to read in. See e.g. read.table
	parameters passed on to FUN. See e.g. read.table

Value

A class of type datastream_file which contains

FUN: The function to use to read in the file

connection: A connection to the file

columnnames: A character vector of column names to overwrite the column names with in get_points

all fields of the datastream superclass: See datastream

Methods

- get_points(n) Get data from a datastream object.
 - \mathbf{n} integer, indicating the number of instances to retrieve from the datastream

See Also

read.table, read.csv, read.csv2, read.delim, read.delim2

6 datastream_matrix

Examples

```
mydata <- iris
mydata$Species[2:3] <- NA
## Example of a CSV file stream
myfile <- tempfile()
write.csv(iris, file = myfile, row.names=FALSE, na = "")
x <- datastream_csv(file = myfile, na.strings = "")
x
x$get_points(n=10)
x
x$get_points(n=10)
x
x$stop()

## Create your own specific file stream
write.table(iris, file = myfile, row.names=FALSE, na = "")
x <- datastream_file(description="My file defintion stream", FUN=read.table,
file = myfile, header=TRUE, na.strings="")
x$get_points(n=10)
x</pre>
```

datastream_matrix

data streams on a matrix

Description

Reference object of class datastream_matrix. This is a class which inherits from class datastream and which can be used to read in a stream from a matrix.

Arguments

data

a matrix to extract data from in a streaming way

Value

A class of type datastream_matrix which contains

data: The matrix to extract instances from

all fields of the datastream superclass: See datastream

Methods

- get_points(n) Get data from a datastream object.
 - **n** integer, indicating the number of instances to retrieve from the datastream

See Also

datastream

factorise 7

Examples

```
data <- matrix(rnorm(1000*10), nrow = 1000, ncol = 10)
x <- datastream_matrix(data=data)
x$get_points(10)
x
x$get_points(10)
x</pre>
```

factorise

Convert character strings to factors in a dataset

Description

Convert character strings to factors in a dataset

Usage

```
factorise(x, ...)
```

Arguments

x object of class data.frame

... other parameters currently not used yet

Value

a data.frame with the information in x where character columns are converted to factors

Examples

```
data(iris)
str(iris)
mydata <- factorise(iris)
str(mydata)</pre>
```

MOAattributes

Define the attributes of a dataset (factor levels, numeric or string data) in a MOA setting

Description

Define the attributes of a dataset (factor levels, numeric or string data) in a MOA setting

Usage

```
MOAattributes(data, ...)
```

8 MOAoptions

Arguments

data object of class data.frame... other parameters currently not used yet

Value

An object of class MOAmodelAttributes

Examples

```
data(iris)
mydata <- factorise(iris)
atts <- MOAattributes(data=mydata)
atts</pre>
```

MOAoptions

Get and set options for models build with MOA.

Description

Get and set options for models build with MOA.

Usage

```
MOAoptions(model, ...)
```

Arguments

model

character string with a model or an object of class MOA_model. E.g. HoeffdingTree, DecisionStump, NaiveBayes, HoeffdingOptionTree, ... The list of known models can be obtained by typing RMOA:::.moaknownmodels. See the examples.

Pi

other parameters specifying the MOA modelling options of each model. See the

examples.

Value

An object of class MOAmodelOptions.

This is a list with elements:

- 1. model: The name of the model
- 2. moamodelname: The purpose of the model known by MOA (getPurposeString)
- 3. javaObj: a java reference of MOA options
- 4. options: a list with options of the MOA model. Each list element contains the Name of the option, the Purpose of the option and the current Value

See the examples.

Examples

```
control <- MOAoptions(model = "HoeffdingTree")</pre>
control
MOAoptions(model = "HoeffdingTree", leafprediction = "MC",
   removePoorAtts = TRUE, binarySplits = TRUE, tieThreshold = 0.20)
## Other models known by RMOA
RMOA:::.moaknownmodels
## Classification Trees
MOAoptions(model = "AdaHoeffdingOptionTree")
MOAoptions(model = "ASHoeffdingTree")
MOAoptions(model = "DecisionStump")
MOAoptions(model = "HoeffdingAdaptiveTree")
MOAoptions(model = "HoeffdingOptionTree")
MOAoptions(model = "HoeffdingTree")
MOAoptions(model = "LimAttHoeffdingTree")
MOAoptions(model = "RandomHoeffdingTree")
## Classification using Bayes rule
MOAoptions(model = "NaiveBayes")
MOAoptions(model = "NaiveBayesMultinomial")
## Classification using Active learning
MOAoptions(model = "ActiveClassifier")
## Classification using Ensemble learning
MOAoptions(model = "AccuracyUpdatedEnsemble")
MOAoptions(model = "AccuracyWeightedEnsemble")
MOAoptions(model = "ADACC")
MOAoptions(model = "DACC")
MOAoptions(model = "LeveragingBag")
MOAoptions(model = "OCBoost")
MOAoptions(model = "OnlineAccuracyUpdatedEnsemble")
MOAoptions(model = "OzaBag")
MOAoptions(model = "OzaBagAdwin")
MOAoptions(model = "OzaBagASHT")
MOAoptions(model = "OzaBoost")
MOAoptions(model = "OzaBoostAdwin")
MOAoptions(model = "TemporallyAugmentedClassifier")
MOAoptions(model = "WeightedMajorityAlgorithm")
## Regressions
MOAoptions(model = "AMRulesRegressor")
MOAoptions(model = "FadingTargetMean")
MOAoptions(model = "FIMTDD")
MOAoptions(model = "ORTO")
MOAoptions(model = "Perceptron")
MOAoptions(model = "SGD")
MOAoptions(model = "TargetMean")
```

MOA_classification_activelearning

MOA active learning classification

Description

MOA active learning classification

Usage

```
ActiveClassifier(control = NULL, ...)
```

Arguments

control an object of class MOAmodelOptions as obtained by calling MOAoptions

options of parameters passed on to MOAoptions, in case control is left to
NULL. Ignored if control is supplied

Value

An object of class MOA_classifier which sets up an untrained MOA model, which can be trained using trainMOA

See Also

```
MOAoptions, trainMOA
```

Examples

```
ctrl <- MOAoptions(model = "ActiveClassifier")
mymodel <- ActiveClassifier(control=ctrl)
mymodel</pre>
```

```
MOA_classification_bayes
```

MOA bayesian classification

Description

MOA bayesian classification

Usage

```
NaiveBayes(control = NULL, ...)
NaiveBayesMultinomial(control = NULL, ...)
```

Arguments

control an object of class MOAmodelOptions as obtained by calling MOAoptions

options of parameters passed on to MOAoptions, in case control is left to
NULL. Ignored if control is supplied

Value

An object of class MOA_classifier which sets up an untrained MOA model, which can be trained using trainMOA

See Also

```
MOAoptions, trainMOA
```

Examples

```
ctrl <- MOAoptions(model = "NaiveBayes")
mymodel <- NaiveBayes(control=ctrl)
mymodel</pre>
```

```
MOA_classification_ensemblelearning

MOA classification using ensembles
```

Description

MOA classification using ensembles (bagging/boosting/stacking/other)

Usage

```
AccuracyUpdatedEnsemble(control = NULL, ...)

AccuracyWeightedEnsemble(control = NULL, ...)

ADACC(control = NULL, ...)

DACC(control = NULL, ...)

LeveragingBag(control = NULL, ...)

LimAttClassifier(control = NULL, ...)

OCBoost(control = NULL, ...)

OnlineAccuracyUpdatedEnsemble(control = NULL, ...)

OzaBag(control = NULL, ...)

OzaBagAdwin(control = NULL, ...)

OzaBagASHT(control = NULL, ...)

OzaBoost(control = NULL, ...)
```

```
OzaBoostAdwin(control = NULL, ...)
TemporallyAugmentedClassifier(control = NULL, ...)
WeightedMajorityAlgorithm(control = NULL, ...)
```

Arguments

control an object of class MOAmodelOptions as obtained by calling MOAoptions

options of parameters passed on to MOAoptions, in case control is left to
NULL. Ignored if control is supplied

Value

An object of class MOA_classifier which sets up an untrained MOA model, which can be trained using trainMOA

See Also

```
MOAoptions, trainMOA
```

Examples

```
ctrl <- MOAoptions(model = "OzaBoostAdwin")
mymodel <- OzaBoostAdwin(control=ctrl)
mymodel</pre>
```

MOA_classification_trees

MOA classification trees

Description

MOA classification trees

Usage

```
AdaHoeffdingOptionTree(control = NULL, ...)

ASHoeffdingTree(control = NULL, ...)

DecisionStump(control = NULL, ...)

HoeffdingAdaptiveTree(control = NULL, ...)

HoeffdingOptionTree(control = NULL, ...)
```

MOA_classifier 13

```
HoeffdingTree(control = NULL, ...)
LimAttHoeffdingTree(control = NULL, ...)
RandomHoeffdingTree(control = NULL, ...)
```

Arguments

control an object of class MOAmodelOptions as obtained by calling MOAoptions
... options of parameters passed on to MOAoptions, in case control is left to
NULL. Ignored if control is supplied

Value

An object of class $MOA_classifier$ which sets up an untrained MOA model, which can be trained using trainMOA

See Also

```
MOAoptions, trainMOA
```

Examples

```
ctrl <- MOAoptions(model = "HoeffdingTree", leafprediction = "MC",
    removePoorAtts = TRUE, binarySplits = TRUE, tieThreshold = 0.20)
hdt <- HoeffdingTree(control=ctrl)
hdt
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
hdt</pre>
```

MOA_classifier

Create a MOA classifier

Description

Create a MOA classifier

Usage

```
MOA_classifier(model, control = NULL, ...)
```

Arguments

model	character string with a model. E.g. HoeffdingTree, DecisionStump, Naive-
	Bayes, HoeffdingOptionTree, The list of known models can be obtained by
	typing RMOA:::.moaknownmodels. See the examples and MOAoptions.
control	an object of class MOAmodelOptions as obtained by calling MOAoptions
•••	options of parameters passed on to MOAoptions, in case control is left to NULL. Ignored if control is supplied

14 MOA_regressor

Value

An object of class MOA_classifier

See Also

MOAoptions

Examples

```
RMOA:::.moaknownmodels
ctrl <- MOAoptions(model = "HoeffdingTree", leafprediction = "MC",
    removePoorAtts = TRUE, binarySplits = TRUE, tieThreshold = 0.20)
hdt <- MOA_classifier(model = "HoeffdingTree", control=ctrl)
hdt
hdt <- MOA_classifier(
    model = "HoeffdingTree",
    numericEstimator = "GaussianNumericAttributeClassObserver")
hdt</pre>
```

MOA_regressor

Create a MOA regressor

Description

Create a MOA regressor

Usage

```
MOA_regressor(model, control = NULL, ...)
```

Arguments

model character string with a model. E.g. AMRulesRegressor, FadingTargetMean,

FIMTDD, ORTO, Perceptron, RandomRules, SGD, TargetMean, ... The list of known models can be obtained by typing RMOA:::.moaknownmodels. See the

examples and MOAoptions.

control an object of class MOAmodelOptions as obtained by calling MOAoptions

... options of parameters passed on to MOAoptions, in case control is left to

NULL. Ignored if control is supplied

Value

An object of class MOA_regressor

See Also

MOAoptions

MOA_regressors 15

Examples

```
mymodel <- MOA_regressor(model = "FIMTDD")
mymodel
data(iris)
iris <- factorise(iris)
irisdatastream <- datastream_dataframe(data=iris)
## Train the model
mytrainedmodel <- trainMOA(model = mymodel,
    Sepal.Length ~ Petal.Length + Species, data = irisdatastream)
mytrainedmodel$model
summary(lm(Sepal.Length ~ Petal.Length + Species, data = iris))
predict(mytrainedmodel, newdata=iris)</pre>
```

MOA_regressors

MOA regressors

Description

MOA regressors

Usage

```
FIMTDD(control = NULL, ...)
AMRulesRegressor(control = NULL, ...)
```

Arguments

control an object of class MOAmodelOptions as obtained by calling MOAoptions options of parameters passed on to MOAoptions, in case control is left to NULL. Ignored if control is supplied

Value

An object of class $MOA_classifier$ which sets up an untrained MOA model, which can be trained using trainMOA

See Also

MOAoptions, trainMOA

```
ctrl <- MOAoptions(model = "FIMTDD", DoNotDetectChanges = TRUE, noAnomalyDetection=FALSE,
    univariateAnomalyprobabilityThreshold = 0.5, verbosity = 5)
mymodel <- FIMTDD(control=ctrl)
mymodel
mymodel <- FIMTDD(ctrlDoNotDetectChanges = FALSE)
mymodel</pre>
```

```
predict.MOA_trainedmodel
```

Predict using a MOA classifier on a new dataset

Description

Predict using a MOA classifier on a new dataset. Make sure the new dataset has the same structure and the same levels as get_points returns on the datastream which was used in trainMOA

Usage

```
## S3 method for class 'MOA_trainedmodel'
predict(object, newdata, type = "response",
   transFUN = object$transFUN, ...)
```

Arguments

object an object of class MOA_trainedmodel, as returned by trainMOA

newdata a data.frame with the same structure and the same levels as used in trainMOA

type a character string, either 'response' or 'votes'

transFUN a function which is used on newdata before applying model.frame. Useful if

you want to change the results get_points on the datastream (e.g. for making sure the factor levels are the same in each chunk of processing, some data

cleaning, ...). Defaults to transFUN available in object.

... other arguments, currently not used yet

Value

A matrix of votes or a vector with the predicted class

See Also

trainMOA

```
## Hoeffdingtree
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
data(iris)
## Make a training set
iris <- factorise(iris)
traintest <- list()
traintest$trainidx <- sample(nrow(iris), size=nrow(iris)/2)
traintest$trainingset <- iris[traintest$trainidx, ]
traintest$testset <- iris[-traintest$trainidx, ]
irisdatastream <- datastream_dataframe(data=traintest$trainingset)
## Train the model</pre>
```

```
hdtreetrained <- trainMOA(model = hdt,
    Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
    data = irisdatastream)

## Score the model on the holdoutset
scores <- predict(hdtreetrained,
    newdata=traintest$testset[, c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")],
    type="response")
str(scores)
table(scores, traintest$testset$Species)
scores <- predict(hdtreetrained, newdata=traintest$testset, type="votes")
head(scores)

summary.MOA_classifier</pre>
```

Summary statistics of a MOA classifier

Description

Summary statistics of a MOA classifier

Usage

```
## S3 method for class 'MOA_classifier'
summary(object, ...)
```

Arguments

```
object an object of class MOA_classifier
... other arguments, currently not used yet
```

Value

the form of the return value depends on the type of MOA model

18 trainMOA

summary.MOA_regressor Summary statistics of a MOA regressor

Description

Summary statistics of a MOA regressor

Usage

```
## S3 method for class 'MOA_regressor'
summary(object, ...)
```

Arguments

object an object of class MOA_regressor
... other arguments, currently not used yet

Value

the form of the return value depends on the type of MOA model

Examples

TODO

trainMOA

Train a MOA classifier (e.g. a HoeffdingTree) on a datastream

Description

Train a MOA classifier (e.g. a HoeffdingTree) on a datastream

Usage

```
trainMOA(model, formula, data, subset, na.action = na.exclude,
  transFUN = identity, chunksize = 1000, reset = TRUE, trace = FALSE,
  options = list(maxruntime = +Inf))
```

trainMOA 19

Arguments

model	an object of class MOA_model, as returned by MOA_classifier, e.g. a HoeffdingTree
formula	a symbolic description of the model to be fit.
data	an object of class datastream set up e.g. with datastream_file, datastream_dataframe, datastream_matrix, datastream_ffdf or your own datastream.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
na.action	a function which indicates what should happen when the data contain NAs. See model.frame for details. Defaults to na.exclude.
transFUN	a function which is used after obtaining chunksize number of rows from the data datastream before applying model.frame. Useful if you want to change the results get_points on the datastream (e.g. for making sure the factor levels are the same in each chunk of processing, some data cleaning,). Defaults to identity.
chunksize	the number of rows to obtain from the data datastream in one chunk of model processing. Defaults to 1000. Can be used to speed up things according to the backbone architecture of the datastream.
reset	logical indicating to reset the MOA_classifier so that it forgets what it already has learned. Defaults to TRUE.
trace	logical, indicating to show information on how many datastream chunks are already processed as a message.
options	a names list of further options. Currently not used.

Value

An object of class MOA_trainedmodel which is a list with elements

- model: the updated supplied model object of class MOA_classifier
- call: the matched call
- na.action: the vatlue of na.action
- terms: the terms in the model
- transFUN: the transFUN argument

See Also

 ${\tt MOA_classifier, datastream_file, datastream_dataframe, datastream_matrix, datastream_ffdf, datastream, predict. {\tt MOA_trained model}}$

```
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
hdt
data(iris)
iris <- factorise(iris)
irisdatastream <- datastream_dataframe(data=iris)</pre>
```

20 trainMOA

```
irisdatastream$get_points(3)

mymodel <- trainMOA(model = hdt, Species ~ Sepal.Length + Sepal.Width + Petal.Length,
   data = irisdatastream, chunksize = 10)
mymodel$model
irisdatastream$reset()
mymodel <- trainMOA(model = hdt,
   Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Length^2,
   data = irisdatastream, chunksize = 10, reset=TRUE, trace=TRUE)
mymodel$model</pre>
```

Index

```
AccuracyUpdatedEnsemble
                                                {\tt HoeffdingOptionTree}
        (MOA_classification_ensemblelearning),
                                                        (MOA_classification_trees), 12
        11
                                                HoeffdingTree, 19
AccuracyWeightedEnsemble
                                                HoeffdingTree
        (MOA_classification_ensemblelearning),
                                                         (MOA_classification_trees), 12
                                                identity, 19
ActiveClassifier
        (MOA_classification_activelearning),
                                                LeveragingBag
                                                        (MOA_classification_ensemblelearning),
ADACC
        ({\tt MOA\_classification\_ensemblelearning}), \\ {\tt LimAttClassifier}
        11
                                                         (MOA_classification_ensemblelearning),
AdaHoeffdingOptionTree
        (MOA_classification_trees), 12
                                                LimAttHoeffdingTree
AMRulesRegressor (MOA_regressors), 15
                                                         (MOA_classification_trees), 12
ASHoeffdingTree
        (MOA_classification_trees), 12
                                                MOA_classification_activelearning, 9
                                                MOA_classification_bayes, 10
DACC
                                                MOA_classification_ensemblelearning,
        (MOA_classification_ensemblelearning),
                                                MOA_classification_trees, 12
datastream, 2, 3-6, 19
                                                MOA_classifier, 13, 19
datastream_csv (datastream_file), 5
                                                MOA_regressor, 14
                                                MOA_regressors, 15
datastream_csv2 (datastream_file), 5
                                                MOAattributes, 7
datastream_dataframe, 2, 3, 19
datastream_delim (datastream_file), 5
                                                MOAoptions, 8, 10–15
                                                model.frame, 16, 19
datastream_delim2 (datastream_file), 5
datastream_ffdf, 2, 4, 19
                                                na.exclude, 19
datastream_file, 2, 5, 19
                                                NaiveBayes (MOA_classification_bayes),
datastream_matrix, 2, 6, 19
                                                         10
datastream_table (datastream_file), 5
                                                NaiveBayesMultinomial
DecisionStump
                                                         (MOA_classification_bayes), 10
        (MOA_classification_trees), 12
                                                OCBoost
factorise, 7
                                                         (MOA_classification_ensemblelearning),
FIMTDD (MOA_regressors), 15
                                                OnlineAccuracyUpdatedEnsemble
HoeffdingAdaptiveTree
                                                        (MOA_classification_ensemblelearning),
        (MOA_classification_trees), 12
                                                         11
```

INDEX

```
0zaBag
        (MOA_classification_ensemblelearning),
OzaBagAdwin
        (MOA_classification_ensemblelearning),
OzaBagASHT
        (MOA_classification_ensemblelearning),
OzaBoost
        ({\tt MOA\_classification\_ensemble} learning),
        11
OzaBoostAdwin
        (MOA_classification_ensemblelearning),
predict.MOA_trainedmodel, 16, 19
{\tt RandomHoeffdingTree}
        (MOA_classification_trees), 12
read.csv, 5
read.csv2, 5
read.delim, 5
read.delim2, 5
read.table, 5
summary.MOA_classifier, 17
summary.MOA_regressor, 18
{\it Temporally Augmented Classifier}
        ({\tt MOA\_classification\_ensemble} learning),\\
        11
trainMOA, 10-13, 15, 16, 18
WeightedMajorityAlgorithm
        (MOA_classification_ensemblelearning),
```