Rx DFE (1-tap)

12 Gbps

Muhammad Aldacher

Outline

- 1. Design Implementation
- 2. Tests & Simulations
 - a) Pulse Response
 - b) Frequency response (DFE loop open)
 - c) Eye Diagrams (DFE loop closed)
- 3. Summary

DFE Design Implementation

Concept

Implementation

Tests & Simulations

Design Parameters

Parameter		Value	
Data Rate		12 Gb/s	
VDD (for CTLE & DFE)		1.2 V	
Input Vswing (PK2PK)	[From TX side]	0.4 V	
Input V _{CM}	[From TX side]	0.75 V	
Channel		14-inch FR4	
Output V _{CM}		0.6 V	

CTLE design used is based on this project:

Channel = 14×1 -inch FR4 section

a) Pulse Response

This test is to see how much the post-cursors' values are compared to the main cursor value

a) Pulse Response: Testbench

a) Pulse Response: Setup

a) Pulse Response:

Measurements

Note:

DFE is used to cancel Post-Cursors only

a) Pulse Response: Waveforms

b) Frequency Response

This test is to design the Gm1 stage of the DFE. (DFE's loop is open)

b) Frequency Response: Testbench

b) Frequency Response: Setup

b) Frequency Response: Measurements

b) Frequency Response:

b) Frequency Response: Results

c) Eye Diagrams

This test is to check the performance with different values for DFE taps

(DFE's loop is closed + Only using 1 tap)

c) Eye Diagrams:

Testbench

c) Eye Diagrams:

Testbench

c) Eye Diagrams: Setup

c) Eye Diagrams:

Measurements

1) No Equalization

 $I_{TAP1} = 5\% * I_{MAIN} = 150uA$

 $W_{M_{B(TAP1)}} = 5\% * W_{M_{B(MAIN)}}$ $W_{M_{1,2(TAP1)}} = 5\% * W_{M_{1,2(MAIN)}}$

2) DFE 1-tap Equalization: (tap1 = 5%)

 $I_{TAP1} = 10\% * I_{MAIN} = 300uA$

 $W_{M_{B(TAP1)}} = 10\% * W_{M_{B(MAIN)}}$ $W_{M_{1,2(TAP1)}} = 10\% * W_{M_{1,2(MAIN)}}$

3) DFE 1-tap Equalization: (tap1 = 10%)

 $I_{TAP1} = 15\% * I_{MAIN} = 450uA$

 $W_{M_{B(TAP1)}} = 15\% * W_{M_{B(MAIN)}}$ $W_{M_{1,2(TAP1)}} = 15\% * W_{M_{1,2(MAIN)}}$

4) DFE 1-tap Equalization: (tap1 = 15%)

 $I_{TAP1} = 30\% * I_{MAIN} = 900uA$

 $W_{M_{B(TAP1)}} = 30\% * W_{M_{B(MAIN)}}$ $W_{M_{1,2(TAP1)}} = 30\% * W_{M_{1,2(MAIN)}}$

5) DFE 1-tap Equalization: (tap1 = 30%)

	No Equalization	tap1=5%	tap1=10%	tap1=15%	tap1=30%
Max Eye Height	0.891 V	0.996 V	1.065 V	1.037 V	0.796 V
Max Eye Width	73.22 ps	76.62 ps	72.49 ps	67.98 ps	54.13 ps
Eye S/N	6.182 dB	7.321 dB	8.043 dB	8.472 dB	4.962 dB
Pk2Pk Jitter	10.58 ps	7.20 ps	11.39 ps	15.99 ps	29.87 ps

→ All the Eye measurement parameters improve as the tap current increases from 0 (no equalization) up to a certain point, then the Eye starts to shrink & the jitter increases. That's because the DFE improves the high-frequency components of the data at the expense of the low-frequency components of the data. *

(Check Waveforms in next Slide)

c) Eye Diagrams:

Results (Transient Waveforms)

Final Results & Remarks

Final Results

Final Results

→ Eye Diagram @ CTLE Outputs

LIL & OILL Outputs

EYE @ Channel Outputs

EYE @ DFE Summing Points (tap1=5%

Final Results

→ Eye Diagram @ DFE Outputs

EYE @ Channel Outputs

Final Results

→ Eye Diagram Measurements:

	Eye Measurements				
	After CTLE	After DFE			
Max Eye Height	359 mV	996 mV			
Max Eye Width	73.23 ps	76.62 ps			
Eye SNR	5.63 dB	7.32 dB			
Pk2Pk Jitter	10.26 ps	7.20 ps			

Final Remarks

• The system may not need to use DFE (or higher-tap DFE) if CTLE can give an enough eye opening.

• Future Work:

- **1. Current-steering** fliflops should be carefully designed for the feedback path of the DFE. (Current-Steering FF lab)
- 2. Data-State DFE can be used to improve high-freq data without affecting low-freq data. (Paper)
- **3. Loop unrolling** technique can be used to improve timing margins at higher speeds. (Lec Note)