Suppose that you have trained a logistic regression classifier, and it outputs on a new example xx a prediction $h_{total}(x)h\theta(x) = 0.2$. This means (check all that apply):

Our estimate for $P(y=0|x;\theta)$ is 0.8.

Our estimate for $P(y=1|x;\theta)$ is 0.2

2.

Question 2

Suppose you have the following training set, and fit a logistic regression classifier $h_{teta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) + \theta_1 x_1 + \theta_2 x_2$. Which of the following are true? Check all that apply.

 $J(\theta)$ will be a convex function, so gradient descent should converge to the global minimum.

Adding polynomial features (e.g., instead using $h\theta(x) = g(\theta 0 + \theta 1x1 + \theta 2x2 + \theta 3x2 + \theta 4x1x2 + \theta 5x2)$) could increase how well we can fit the training data

3.

Question 3

For logistic regression, the gradient is given by $\frac{\phi_i}{\mu_i} \int \int_{i=1}^{t} \int_{i=1}^{t}$

$$\theta := \theta - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}.$$

$$\theta := \theta - lpha \frac{1}{m} \sum_{i=1}^m \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x^{(i)}.$$

4.

Question 4

Which of the following statements are true? Check all that apply.

The cost function $J(\theta)$ for logistic regression trained with examples is always greater than or equal to zero.

The sigmoid function is never greater than one

Suppose you train a logistic classifier $h_{t} = g(\theta - \theta) + \theta$ $(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose \theta_0 = 6, \theta_1 = -1, \theta_2 = $0\theta_0=6$, $\theta_1=0$, $\theta_2=-1$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Quiz 2

1.

Question 1

You are training a classification model with logistic

regression. Which of the following statements are true? Check

all that apply.

Adding a new feature to the model always results in equal or better performance on the training set.

Suppose you ran logistic regression twice, once with $\lambda=0$, and once with $\lambda=1$. One of the times, you got 2.

parameters
$$\theta = \begin{bmatrix} 74.81 \\ 45.05 \end{bmatrix}$$
 , and the other time you got

$$\theta = \begin{bmatrix} 1.37 \\ 0.51 \end{bmatrix}$$
 . However, you forgot which value of

 λ corresponds to which value of heta. Which one do you

think corresponds to $\lambda=1$?

[40.00]

$$\theta = \begin{bmatrix} 1.37 \\ 0.51 \end{bmatrix}$$

3.

Question 3

Which of the following statements about regularization are

true? Check all that apply.

V

. Using too large a value of $\adjust{lambda}\adju$

4.

Question 4

In which one of the following figures do you think the hypothesis has overfit the training set?

Figure:

5.

Question 5

In which one of the following figures do you think the hypothesis has underfit the training set?

Figure:

