- In the first task we want to compare the distribution of NC and KY mortality rate (by using plotly to draw a histogram).
- From the histogram we can see that KY has a higher mean for normalized death compare to NC.

```
import plotly.express as px
# Create a histogram of Normalized Deaths variable for NC and KY as a distribution.
fig = px.histogram(super_df_NC_KY, x="Norm_Deaths", opacity = 0.85, color = 'State Abbreviation', title = "NC a
# Add a vertical line to the histogram representing the ***mean*** Normalized Opioid Death for NC.
fig.add_vline(x=super_df[super_df['State Abbreviation'] == 'NC']['Norm_Deaths'].mean(),line_dash="dash",annotation and the same and
```

NC and KY Opioid Related Normalized Death Per 100,000 Population

• For the next task we are asked to select a distribution for opioid related mortality rate. First I created a histogram for US Opioid Mortality Related Normalized Death.

US Opioid Related Normalized Death Per 100,000 Population

- For choosing the best distribution, I used fitter library.
- The fitter method compares the selected distribution based on the "sum square-error", so we can choose the one that has the lowest "sum square-error", which is gamma in this case.

- It is also asked to develop distribution estimator with MoM, MLE and KDE for calculating the attributes related each of them I used the exact codes which is covered in the class.
- By using the go function from the plotly, we can have the distribution and estimators in the same chart.

```
import plotly.graph_objects as go
x = np.linspace(0, 70,1000)
fig = go.Figure()
fig.add_trace(go.Scatter(x=x, y=gamma_dist_MoM,mode='lines',name='Method of Moments'))
fig.add_trace(go.Scatter(x=x, y=gamma_dist_MLM,mode='lines',name='Maximum Likelihood Method'))
fig.add_trace(go.Scatter(x=x, y=gamma_dist_KDE,mode='lines', name='Kernel Density Estimation'))
fig.add_trace(go.Bar(x=bin_edges, y = counts,name = 'Normaliezed Deaths Distribution'))
fig.show()
```


- For comparing the three estimators, we need to calculate mean square.
- As we can see KDE has the lowest mean square, so it is the best estimator.

```
In [35]:

OBS, bins = np.histogram(super_df['Norm_Deaths'], density = True, bins = np.linspace(0, 70,1001))
mse = np.mean((OBS - gamma_dist_KDE)**2)
print('mse for KDE is: ' + str(mse))
mse = np.mean((OBS - gamma_dist_MoM)**2)
print('mse for MOM is: ' + str(mse))
mse = np.mean((OBS - gamma_dist_MLM)**2)
print('mse for MLM is: ' + str(mse))

mse for KDE is: 7.703600732145187e-05
mse for MOM is: 7.935161626223034e-05
mse for MLM is: 7.707464251209312e-05
```

- I did the same thing for they and TN.
- These two states has the higher average value and smaller range compare to the US.

- The next step is to perform hypothesis testing for the 5 variables we selected from the previous stages. For each of the variables we need to separate data into high and low categories.
- I separated them based on the median normalized death.

```
import scipy.stats as stats
# create high and low data frame
selected_df_high = super_df[super_df['Norm_Deaths']>super_df['Norm_Deaths'].median()]
selected_df_low = super_df[super_df['Norm_Deaths']<=super_df['Norm_Deaths'].median()]
# filter thosed data frame for five selected variables
selected_df_low = selected_df_low [['Primary care physicians raw value', 'Life expectancy raw value', 'Premature death
, 'Unemployment raw value', 'Some college raw value']]
selected_df_high = selected_df_high [['Primary care physicians raw value', 'Life expectancy raw value', 'Premature dea
, 'Unemployment raw value', 'Some college raw value']]</pre>
```

- We need to chose the method for hypothesis testing. Because the variables are the same and continuous, so I think T-Test would be a good choice.
- After performing the T-Test, we can see that the last one failed to reject the null hypothesis.
- There is some difference that exists in the top four variables listed in the table for high and low normalized death values.

- For the next task we want to perform the linear and non linear regression for the selected variables.
- First it is asked to normalize the Opioid_Dispensing_Rate, the Opioid_Dispensing_Rate is expressed per 100 person, so we need to divide it by 1,000 to be expressed per 100,000 population.

```
# Opiod_Dispensing_Rate is expressed per 100 person, so we need to devide it by 1,000 to be expressed per 100,000 posuper_df['Norm_Opiod_Dispensing_Rate'] = (super_df['Opiod_Dispensing_Rate']/super_df['Population'])*1000
```

- In the next step I used "statsmodels" for creating a fitted linear regression model. Also, I replace the "college raw value" with "norm opioid dispensing rate".
- This linear regression provides us some parameters which are intercept and the coefficient for the other variables. So if we want to predict the Normalized Death, it is gonna be a combination of these parameters.

```
In [41]:
                                                                                                             Slide Type -
         # I replace "Some college raw value" by "Norm_Opiod_Dispensing_Rate" due to two reasons:
         # 1) the new variable should be considered because it expresses opioid related drug consumption
         # 2) It does not differ for two groups with low and high normalized deaths.
         import statsmodels.formula.api as smf
         # create a fitted model in one line
         lm = smf.ols(formula='Norm_Deaths ~ Q("Norm_Opiod_Dispensing_Rate") + Q("Primary care physicians raw value") + Q("Li
         # print the coefficients
         lm.params
Out[41]: Intercept
                                                      -4.050354
         Q("Norm_Opiod_Dispensing_Rate")
                                                      -4.395861
         Q("Primary care physicians raw value")
                                                    3961.287115
         Q("Life expectancy raw value")
                                                       0.043944
         Q("Premature death raw value")
                                                       0.001133
         Q("Unemployment raw value")
                                                      25.986149
         dtype: float64
```

• In the summary of results we can see the performance of the linear regression model.

• R-Square is low

• P-value for two parameters is greater than 5 percent, which means these two variables are not significant and it is better to

be replaced with new variable.

Dep. Variable:	Norm_Deaths	R-squared:	0.158
Model:	OLS	Adj. R-squared:	0.156
Method:	Least Squares	F-statistic:	92.84
Date:	Mon, 21 Nov 2022	Prob (F-statistic):	8.59e-90
Time:	14:19:42	Log-Likelihood:	-8043.3
No. Observations:	2479	AIC:	1.610e+04
Df Residuals:	2473	BIC:	1.613e+04
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4.0504	10.921	-0.371	0.711	-25.465	17.364
Q("Norm_Opiod_Dispensing_Rate")	-4.3959	0.776	-5.668	0.000	-5.917	-2.875
Q("Primary care physicians raw value")	3961.2871	401.393	9.869	0.000	3174.186	4748.388
Q("Life expectancy raw value")	0.0439	0.127	0.346	0.730	-0.205	0.293
Q("Premature death raw value")	0.0011	0.000	7.615	0.000	0.001	0.001
Q("Unemployment raw value")	25.9861	9.168	2.834	0.005	8.008	43.964

Omnibus:	504.817	Durbin-Watson:	1.976
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1661.591
Skew:	1.008	Prob(JB):	0.00
Kurtosis:	6.467	Cond. No.	2.84e+07

- For the non linear regression model, I used the stats models too, but I squared one of the variables to create a non linear function.
- I added the "Some college raw value" and omitted the intercept for this model.

- In the summary of the non linear regression, we can see that the R-square has increased significantly and there is no p-value greater than 5 percent.
- My non-linear regression performs better than the linear one.

nlm.summary()							
OLS Regression Res	ults						
Dep. Variable:	Norm_Deaths	R-squa	red (uncent	ered):	0.80	04	
Model:	OLS	Adj. R-squa	red (uncent	tered):	0.80)4	
Method:	Least Squares		F-sta	itistic:	169	1.	
Date:	Mon, 21 Nov 2022		Prob (F-sta	tistic):	0.0	00	
Time:	16:58:24		Log-Likeli	ihood:	-8027	.7	
No. Observations:	2479			AIC:	1.607e+0)4	
Df Residuals:	2473			BIC:	1.610e+0	04	
Df Model:	6						
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975]
Q("Norm_Opio	d_Dispensing_Rate"	-4.0880	0.772	-5.292	0.000	-5.603	-2.573
Q("Primary care ph	ysicians raw value"	2915.4357	439.280	6.637	0.000	2054.040	2776 921
		2010.4001	403.200	0.037	0.000	2034.040	3776.831
Q("Life exp	pectancy raw value"			-5.092		-0.104	-0.046
		, -0.0750	0.015				
Q("Prematu	pectancy raw value") -0.0750) 0.0012	0.015 5.77e-05	-5.092	0.000	-0.104	-0.046
Q("Prematu Q("Unemp	pectancy raw value") -0.0750) 0.0012) 35.2653	0.015 5.77e-05 9.230	-5.092 20.211 3.821	0.000	-0.104 0.001	-0.046 0.001 53.365
Q("Prematu Q("Unemp Q("Some	pectancy raw value" are death raw value" ployment raw value"	, -0.0750) 0.0012) 35.2653) 8.7056	0.015 5.77e-05 9.230	-5.092 20.211 3.821	0.000 0.000 0.000	-0.104 0.001 17.165	-0.046 0.001
Q("Prematu Q("Unemp Q("Some	pectancy raw value" are death raw value" ployment raw value" e college raw value"	, -0.0750) 0.0012) 35.2653) 8.7056	0.015 5.77e-05 9.230 1.551	-5.092 20.211 3.821	0.000 0.000 0.000	-0.104 0.001 17.165	-0.046 0.001 53.365
Q("Prematu Q("Unemp Q("Some Omnibus: 4	pectancy raw value" lire death raw value" bloyment raw value" e college raw value" 96.287 Durbin-W	, -0.0750) 0.0012) 35.2653) 8.7056	0.015 5.77e-05 9.230 1.551	-5.092 20.211 3.821	0.000 0.000 0.000	-0.104 0.001 17.165	-0.046 0.001 53.365