Lecture Notes 8

Graphs

- Graph Pairwise connections of vertices via edges
- Examples:
 - Map Intersection and road
 - Web Content Page and link
 - Circuit Device and wire
 - Schedule Job and constraint
 - Commerce Customer and transaction
 - Network Site and connection
 - Software Method and call (or invocation)
 - Social Network Person and friendship
- Undirected Graphs
 - Multigraphs Parallel edges are allowed
 - Simple Graphs No self loops or parallel edges
 - Adjacent Vertices Two vertices directly connected via an edge
 - Degree Vertex Number of edges incident to the vertex
 - Subgraph Subset of the graphs edges and associated vertices
 - Path Sequence of vertices connected by edges
 - Simple Path Path with no repeated vertices
 - Cycle Path with at least one edge whose first and last vertices are the same
 - Simple Cycle Cycle with only beginning and end vertices repeated
 - Path Length Number of edges in the path
 - Connected Vertices A path exists between the vertices
 - Connected Graph All vertices are connected to every other vertex
 - Acyclic Graph Graph with no cycles
 - Tree An acyclic graph
 - Forest Disjoint set of trees
 - Spanning Tree A subgraph of the connected graph containing all vertices
 - Spanning Forest The union of spanning trees
 - Graph G with V vertices is a trees if any is true:
 - G has V 1 edges and no cycles
 - G has V 1 edges and is connected
 - G is connected but removing any edge disconnects it
 - G is acyclic, but adding any edge creates a cycle
 - Every pair of vertices in G has exactly one simple path connecting them
 - Bipartide Graph Vertices can divide into two sets, and edges only connect between sets
 - Implementations
 - Adjacency Matrix Boolean for every pair of edges
 - Array of Edges Array containing the pairs of vertices

- Array of Adjacency Lists Array of vertex with list of adjacent nodes
- Depth First Search (DFS) Search that traverses deeper (or further away) from start first
 - At each vertex mark visited
 - Traverse edges to next unvisited node
 - Once all edges are exhausted return to previous node
- Path Finding from Source
 - Use DFS from source node
 - Add previous edge to search when visiting node
 - Reconstruct path in reverse from destination to source
- Breadth First Search (BFS) Visit vertices in order of further distance away
 - Edge count BFS can be implemented with FIFO
- Connected Components
 - Use DFS to find all reached from first vertex
 - Repeat for each unmarked vertex
- Symbol Graph
 - Vertices are named
 - Use symbol table to translate name to vertex index
 - Have vector of names to translate back
- Degrees of Separation Use BFS to find the distance from source to all others
- Directed Graphs Edges are directed
 - Indegree Number of edges coming in to vertex
 - Outdegree Number of edges leaving the vertex
 - Reachability Use DFS from single source to find all reachable vertices
 - Directed Acyclic Graphs (DAGs) A directed graph with no cycles
 - Scheduling Problems Directed edges are placed between a task and a dependency
 - Precedence Constrained Scheduling Scheduling tasks by their precedence
 - Topological Sort Order vertices in order such that directed edges point from earlier vertex
 - Post order of DFS Order
 - Strong Connectivity All vertices are strongly connected
 - Strongly Connected Vertices For v and w, both can reach each other (only exists if a directed cycle contains both of them)
 - Kosaraju-Sharir Algorith
 - Calculate Post order of DFS Order from GR
 - Do DFS Order of G but with the previously calculated Post order
- Minimum Spanning Trees
 - Edge Weighted Graph Graph where edges have weights
 - Minimum Spanning Tree Spanning tree of a graph with minimum weight sum
 - Cut Partitioning of graph vertices into two nonempty disjoint sets
 - Crossing Edge Connects vertex in one partition to another of a cut graph
 - Edge Weighted Graph Implementation Store weight instead of bool for edges
 - Prim's Algorithm Grow the tree by adding the minimum cut edge until tree is built
 - Use vector to store added vertices

- Use vector to store the edges of the MST
- Use a min heap to store the candidate edges by weight
- Lazy Prim's O(E lg E)
 - For every new vertex added put all edges to unattached vertices in min heap
 - While edges in min heap consider adding new vertex if hasn't already been added
- Eager Prim's O(E lg V) time, O(V) extra space compared to Lazy
 - Improvement can avoid adding to min heap if saw a better candidate to add in future
- Kruskal's Algorithm Add edges that do not form a cycle, consider all edges in sorted order
 - O(E lg E) time, O(E) space
 - Use priority queue for edges
 - Use find-union structure for detecting cycles
- Shortest Paths
 - Edge-Weighted Digraphs Directed graph with weights attached to each edge
 - Shortest Path Directed path from vertex s to t where no other path has lower weight
 - Shortest Path Assumed Properties
 - Paths are directed
 - Weights are not necessarily distance
 - Not all vertices may be reachable
 - Paths may repeat vertices and edges
 - Shortest paths normally are simple
 - There isn't necessarily a single shortest path
 - Parallel edges and self-loops may be present
 - Negative weights introduce complications
 - Single Source Shortest Path
 - Edge relaxation When a better path is found from s to w via v, the path weight is updated to go through v
 - Dijkstra's Algorithm Solves SSSP with no negative weights
 - Requires O(V) space and O(E lg V) time
 - Initialize all distances as infinite except source which is zero
 - Initialize all previous nodes to invalid
 - Insert the source vertex in priority queue (sorted by distance
 - While have vertices in priority queue
 - Get nearest vertex and check if any edges can be relaxed, add unvisited nodes to priority queue
 - Edge Weighted DAG
 - O(E + V) time
 - Sort vertices in topological order
 - Consider each edge and relax the edges as necessary
 - Longest path possible by negating path weight and finding shortest path (useful for finding critical path in scheduling)
 - Bellman Ford Solves SSSP negative weights allowed (no negative cycles)

- Requires O(V) space and $O(E \cdot V)$ time
- Initialize all distances as infinite except source which is zero
- Initialize all previous nodes to invalid
- Consider each edge in any order, and do V passes relaxing where necessary