Instructions: Read one of the sections on the other sheet. Then flip that sheet over and with a partner / group answer as many of the associated questions on this sheet as you can, without looking at the notes (think of it as a mini zero-stakes, team quiz :).

1 Cramer's Rule Questions

- 1. How many determinants do you have to compute to solve $A\mathbf{x} = \mathbf{b}$ for an $n \times n$ matrix A with Cramer's rule?
- 2. What if $A\mathbf{x} = \mathbf{b}$ has two solutions? Can you apply Cramer's rule?
- 3. Use Cramer's rule to find \mathbf{x} in $A\mathbf{x} = \mathbf{b}$ for $A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$.

2 Determinants as Area Questions

- 1. Can the determinant formula for an area or volume ever give you a negative area? Why or why not?
- 2. Does the formula still make sense if the matrix is not invertible? What does it say? What is happening geometrically?
- 3. Draw the vectors $[1,2]^T$ and $[0,3]^T$ in \mathbb{R}^2 , shade in the parallelogram they form and compute its area.
- 4. Suppose S is the portion of \mathbb{R}^2 inside a circle, and you know it has area 9π . Let T be the linear transformation defined by matrix $A = \begin{bmatrix} -2 & 3 \\ 0 & 2 \end{bmatrix}$. What is Area(T(S))?
- 5. Suppose S is a subset of \mathbb{R}^{100} with volume 14. Suppose A is a 100×100 diagonal matrix with -2 down the diagonal. What is the volume of A(S)?

3 Eigenvector Questions

- 1. Is zero always an eigenvector?
- 2. Is \mathbf{v} an eigenvector of A if \mathbf{v} is in the null space of A?

- 3. Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. I claim it has eigenvectors $[6, -5]^T$ and $[1, 1]^T$. Check this by drawing these vectors in the plane, as well as $A[6, -5]^T$ and $A[1, 1]^T$.
- 4. Suppose I tell you that the matrix $A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$ has eigenvalue $\lambda = 4$. Can you find the eigenvectors associated to that eigenvalue?

4 Eigenvalue Questions

- 1. Find the eigenvalues for $A = \begin{bmatrix} 2 & -1 & -1 \\ 0 & 3 & -3 \\ -1 & 0 & 1 \end{bmatrix}$. Then, for each eigenvalue, find the associated eigenvectors.
- 2. Let A be an $n \times n$ matrix. Explain why A is invertible if and only if 0 is not an eigenvalue of A.
- 3. For $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ find one eigenvector and eigenvalue (hint: no computation needed).
- 4. (a) Show that the eigenvalues of an upper triangular $n \times n$ matrix are the entries on the main diagonal.
 - (b) Show that if λ is an eigenvalue of an $n \times n$ matrix A then λ^2 is an eigenvalue of A^2 . More generally, show that λ^k is an eigenvalue of A^k if k is a positive integer.
 - (c) Use (a) and (b) to find the eigenvalues of A^9 , where

$$A = \begin{bmatrix} 1 & 3 & 7 & 11 \\ 0 & -1 & 3 & 8 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$