Overview

With rapid urbanization, Prayagraj faces significant traffic congestion issues that impact commute times, increase emissions, and lower the quality of life for residents. Efficient traffic management can help solve these challenges at certain levels.

Objective

The aim of this analysis is to uncover insights into congestion patterns across Prayagraj intersections and provide data-driven recommendations to optimize traffic flow. This report documents the methodology, findings, and recommended actions based on the analysis of historical traffic data.

Data Description

The dataset consists of historical traffic data collected from intersections across Prayagraj over a week. Key columns include timestamp, vehicle_count, average_speed, weather_condition, day_of_week, is_holiday, and event.

Data Cleaning Steps

1. Handling Missing Values:

- Filled missing values in vehicle_count and average_speed with the column mean.
- Filled missing values in weather_condition with the mode, and missing intersection_name with "NA"

2. Outlier Detection:

 Used the Interquartile Range (IQR) to identify and treat outliers in vehicle_count and average_speed.

Weather Impact Analysis

- **Objective:** Examine how different weather conditions affect traffic.
- Findings: Traffic volume and average speed show clear patterns. Adverse weather, such as rain and fog, correlates with reduced speeds and sometimes higher vehicle counts as congestion builds.

Holiday and Event Impact

- Objective: Assess the impact of holidays and events on traffic.
- **Findings:** Events like local market fairs and holidays significantly increase vehicle count. Average vehicle counts are notably higher on event days.

Correlation Analysis

• **Objective:** Identify relationships between variables.

 Findings: There is a negative correlation between vehicle_count and average_speed, indicating that higher congestion reduces average speed. Traffic volume also shows a moderate correlation with pollution_level, especially during peak hours

Data set after cleaning and processing:-

Final Dataset

Power BI Dashboard of the Dataset:-

Dashboard

All the Python codes:-

Python Codes

Recommendations:-

Adaptive Traffic Signals

Install smart signals at busy intersections that adjust based on live traffic data to reduce waiting times, especially during peak hours and bad weather.

Event-Based Traffic Management

Increase traffic control during local events and fairs to manage high traffic flow, and consider redirecting vehicles as needed.

Enhance Public Transit

Offer more frequent public transit during peak hours and events to reduce road congestion in busy areas.

Promote Off-Peak Travel

Run awareness campaigns to encourage off-peak travel, helping to balance traffic around popular destinations.

Conclusions -

- Traffic at "Chowk" and "Naini Bridge" is comparatively more than other sites.
- During peak hours i.e 8:00 AM-10:00 AM and 6:30 PM 9:00 PM the traffic is more congested.
- During afternoon traffic is comparatively less than peak hours.
- In every case Car count comprises more than 50% than bikes, trucks and buses.
- During weekends traffic decreases compared to working days.
- During Fog or Heavy rain traffic is less.