XV. Nemzetközi Magyar Matematika Verseny

Zenta, 2006. márc. 18-22.

12. osztály

1. feladat: Legyen x_1, x_2, \ldots, x_n egész számok olyan sorozata, amelyre fennáll, hogy $-1 \le x_i \le 2$, ha $i=1,2,\ldots,n,$ $x_1+x_2+\ldots+x_n=19$ és $x_1^2+x_2^2+\ldots x_n^2=99$. Legyen az $x_1^3+x_2^3+\ldots x_n^3$ kifejezés lehetséges legkisebb értéke m, illetve lehetséges legnagyobb értéke M. Mivel egyenlő $\frac{M}{m}$ értéke?

Kiss Sándor (Nyíregyháza)

1. feladat I. megoldása: A feltételek szerint x_i értéke -1, 0, 1 és 2 lehet. Tegyük fel, hogy a darab -1-est, b darab 1-est és c darab 2-est használtunk fel. A 0-ákkal nem kell törődnünk. Ekkor $x_1+x_2+\ldots+x_n=19$ és $x_1^2+x_2^2+\ldots+x_n^2=99$ alapján,

$$-a+b+2c = 19$$
$$a+b+4c = 99.$$

Vonjuk ki a második egyenletből az elsőt: a=40-c. Adjuk őket össze: b=59-3c. Mivel $b\geq 0$, ezért $0\leq c\leq 19$. Vizsgáljuk ezek után a $x_1^3+x_2^3+x_3^3+\ldots+x_n^3$ kifejezés értékét. A fentieket behelyettesítve kapjuk, hogy: $x_1^3+x_2^3+x_3^3+\ldots+x_n^3=-a+b+8c$. Viszont az a=40-c és a b-59-3c értékeket behelyettesítve ide azt kapjuk, hogy:

$$x_1^3 + x_2^3 + x_3^3 + \ldots + x_n^3 = 19 + 6c.$$

A korábban c-re tett feltétel miatt ez akkor minimális, ha c=0. Ekkor $a=40,\ b=59$. Így m=19. Akkor maximális a vizsgált kifejezés, ha c=19, s így $a=21,\ b=2,\ M=133$.

A keresett tört értéke: $\frac{M}{m} = 7$.

2. feladat: Az adott konvex α szög belső tartományában van a P pont. Hogyan kell a P ponton keresztül meghúzni egy olyan egyenest, hogy a szög szárait B és C pontban messe, és az $\frac{1}{|BP|} + \frac{1}{|PC|}$ a lehető legnagyobb legyen?

Szabó Magda (Szabadka)

2. feladat I. megoldása: Az α szöget az AP egyenes két részre osztja φ és $\alpha - \varphi$ szögekre, míg az $ABP \angle$ a β és a szinusz-tétel alapján:

$$|BP| = \frac{|AP|\sin(\alpha - \varphi)}{\sin\beta}$$
 és $|PC| = \frac{|AP|\sin\varphi}{\sin(\alpha + \beta)}$.

Ebből pedig a következő számolás adódik:

$$\frac{1}{|BP|} + \frac{1}{|PC|} = \frac{\sin\beta}{|AP|\sin(\alpha - \varphi)} + \frac{\sin(\alpha + \beta)}{|AP|\sin\varphi} =$$

$$\begin{split} &=\frac{\sin\varphi\sin\beta+\sin(\alpha-\varphi)\sin(\alpha+\beta)}{|AP|\sin\varphi\sin(\alpha-\varphi)} = \\ &=\frac{\frac{1}{2}[\cos(\varphi-\beta)-\cos(\varphi+\beta)]}{|AP|\sin\varphi\sin(\alpha-\varphi)} + \frac{\frac{1}{2}[\cos(\varphi+\beta)-\cos(2\alpha-\varphi+\beta)]}{|AP|\sin\varphi\sin(\alpha-\varphi)} = \\ &=\frac{\sin\alpha\sin(\alpha+\beta-\varphi)}{|AP|\sin\varphi\sin(\alpha-\varphi)}. \end{split}$$

Mivel a $\frac{\sin\alpha}{|AP|\sin\varphi\sin(\alpha-\varphi)}$ kifejezés állandó, ezért meg kell vizsgálni, hogy $\sin(\alpha-\varphi+\beta)$ mikor lesz maximális vagyis 1. Ez akkor áll fenn, ha $\alpha-\varphi+\beta=90^\circ$.

Mivel $PAB\angle + ABP\angle = \alpha - \varphi + \beta = 90^{\circ}$, tehát $APB\angle = 90^{\circ}$, ezért a keresett irány merőleges az AP egyenesre, és ekkor teljesülnek a feltételek.

2. feladat II. megoldása: Ha $PC'\|AB$ és $C'P'\|BC$, akkor ' $AP'C'\triangle \sim APC\triangle$ és $PC'P'\triangle \sim$

 $ABP\triangle$.

Ebből következik:

$$\frac{|P'C'|}{PC} = \frac{|AP'|}{|AP|} \quad \text{\'es} \quad \frac{|P'C'|}{|PB|} = \frac{|PP'|}{|AP|},$$

azaz

$$\frac{|P'C'|}{|PC|} + \frac{|P'C'|}{|PB|} = \frac{|AP'| + |P'P|}{|AP|} = 1,$$

tehát

$$\frac{1}{|BP|} + \frac{1}{|PC|} = \frac{1}{|P'C'|},$$

amelynek bal oldala akkor a legnagyobb amikor |C'P'| a lehető legkisebb, ez pedig azt jelenti, hogy $P'C' \perp AP$, azaz $BC \perp AP$.

3. feladat: Hozzuk a legegyszerűbb alakra a $3+2\cdot 3^2+3\cdot 3^3+\ldots+2005\cdot 3^{2005}+2006\cdot 3^{2006}$ összeget.

Oláh György (Komárom)

3. feladat I. megoldása: Tekintsük az összeg következő felbontását:

$$3^{1} + 3^{2} + 3^{3} + 3^{4} + \ldots + 3^{2005} + 3^{2006}$$

$$3^{2} + 3^{3} + 3^{4} + \ldots + 3^{2005} + 3^{2006}$$

$$3^{3} + 3^{4} + \ldots + 3^{2005} + 3^{2006}$$

$$\vdots$$

$$3^{2005} + 3^{2006}$$

$$3^{2006}$$

Ha minden oszlopban összeadjuk a számokat éppen a keresett összeg tagjait kapjuk. A feladat tehát a táblázatban levő számok összegének meghatározása.

Adjuk össze a számokat soronként, majd összegezzük a sorösszegeket! Ez azért előnyös, mert minden sorban egy-egy mértani sorozat tagjai állnak. A k-adik sorban levő számok összege a mértani sorozat összegképlete szerint:

$$3^{k} + 3^{k+1} + \ldots + 3^{2006} = 3^{k} \frac{3^{2007-k} - 1}{3-1} = \frac{3^{2007} - 3^{k}}{2},$$

a sorösszegek összege pedig, ismét felhasználva a mértani sorozat összegképletét,

$$\frac{3^{2007} - 3^1}{2} + \frac{3^{2007} - 3^2}{2} + \ldots + \frac{3^{2007} - 3^{2006}}{2} = 1003 \cdot 3^{2003} - \frac{3}{2} \left(1 + 3 + 3^2 + \ldots + 3^{2005} \right) =$$

$$= 1003 \cdot 3^{2007} - \frac{3}{2} \cdot \frac{3^{2006} - 1}{3 - 1} = \frac{4011 \cdot 2^{2007} + 3}{4}.$$

Általánosítás. Ha n pozitív egész és $q \neq 1$, akkor

$$q + 2q^2 + 3q^3 + \ldots + nq^n = q \frac{nq^{n+1} - (n-1)q^n + 1}{(q-1)^2}.$$

3. feladat II. megoldása: Tekintsük az $f(x) = 1 + x + x^2 + \ldots + x^{2006}$ függvényt. Könnyű ellenőrizni, hogy $xf'(x) = x + 2x^2 + 3x^3 + \ldots + 2006x^{2006}$. Tehát a feladat 3f'(3) értékének a meghatározása. (f' az f polinom deriváltja)

4. feladat: Az ABCD paralelogrammában a BD átló 12, az átlók metszéspontja O. Az AOD és COD háromszögek köré írható körök középpontjainak a távolsága 16. Az AOB háromszög köré írt kör sugara 5. Határozzuk meg a paralelogramma területét.

Pintér Ferenc (Nagykanizsa)

4. feladat I. megoldása: Legyen ABCD a paralelogramma, jelölje O_1, O_2, O_3 és O_4 az AOB, BOC, COD és AOD háromszögek köré írható körök középpontját. Jelölje továbbá φ az AOB szöget, azaz $AOB \angle = \varphi, \ (0 < \varphi < \pi)$. (lásd az ábrát)

Tekintettel arra, hogy az O_1O_2 , O_2O_3 , O_3O_4 és O_1O_4 egyenesek a BO, CO, DO és AO szakaszok szakaszfelező merőlegesei, ezért az $O_1O_2O_3O_4$ négyszög paralelogramma, továbbá $O_1O_4O_3\angle = AOB\angle = \varphi$. Legyen az E pont az O_3 pont merőleges vetülete az O_1O_4 egyenesre. Mivel AO = OC, ezért $O_3E = OC$

AO. Így $AO=O_3O_4\cdot\sin\varphi=16\sin\varphi$. A húrképlet alapján az ABO háromszögből — melyben a köré írt kör sugara 5 — kapjuk, hogy $AB=2R\sin\varphi=10\sin\varphi$. Mivel $BO=\frac{BD}{2}=6$, felírható a koszinusz tétel:

$$AB^2 = AO^2 + BO^2 - 2AO \cdot BO\cos\varphi,$$

$$100\sin^2\varphi = 256\sin^2\varphi + 36 - 192\sin\varphi\cos\varphi.$$

Utóbbi egyenletet eloszthatjuk $12\sin^2\varphi$ -vel, mivel az nem lehet nulla, és akkor a következő egyenlethez jutunk:

$$3\operatorname{ctg}^2\varphi - 16\operatorname{ctg}\varphi + 16 = 0,$$

melyből két érték adódik: ct
g $\varphi=\frac{4}{3}$ vagy ctg $\varphi=4.$ Ennek megfelelően két érték adódik a terület
re: $\frac{192}{17}$ vagy $\frac{1728}{25}=69,12.$

5. feladat: Bizonyítsuk be, hogy nincs olyan P(x) egész együtthatós (nem azonosan nulla) polinom, amelyre léteznek x_1, x_2, \ldots, x_n (n > 2) különböző egész számok úgy, hogy $P(x_1) = x_2, P(x_2) = x_3, \ldots, P(x_n) = x_1$ teljesül.

Kántor Sándor (Debrecen)

5. feladat I. megoldása: Ha létezne ilyen polinom és ilyen egészek, akkor, felhasználva azt a tételt, hogy egész együtthatós (nem azonosan nulla) polinom és a, b különböző egész számok esetén (a-b)|(P(a)-P(b)), teljesülne:

$$(x_1 - x_2)|(P(x_1) - P(x_2)),$$
 s fgy $(x_1 - x_2)|(x_2 - x_3),$ $(x_2 - x_3)|(P(x_2) - P(x_3)),$ s fgy $(x_2 - x_3)|(x_3 - x_4),$... $(x_n - x_1)|(P(x_n) - P(x_1)),$ s fgy $(x_n - x_1)|(x_1 - x_2).$

Ebből $|x_1-x_2| \leq |x_2-x_3| \leq \ldots \leq |x_1-x_2|$, így $|x_1-x_2| = |x_2-x_3| = \ldots = |x_1-x_2|$ következik. Ez pedig n>2 esetén különböző x_1,x_2,\ldots,x_n értékekre nem állhat fenn.

6. feladat: Egy 10×10 -es négyzetbe beírjuk az $1, 2, 3, \dots, 100$ számokat úgy, hogy bármely két egymás utáni szám élben szomszédos négyzetbe kerüljön. Igazoljuk, hogy létezik legalább egy sor vagy oszlop, amelyik legalább két teljes négyzetet tartalmaz.

Bence Mihály (Brassó)

6. feladat I. megoldása: 10 teljes négyzetünk van, ezek közül 5 páros. Tegyük fel, hogy a négyzetszámok különböző sorokban és különböző oszlopokban vannak. Kifestjük a táblázatot, mint egy sakktáblát, fehérre és feketére. A páros és páratlan számok ugyanolyan színű négyzetben lesznek.

Legyenek $(x_1,y_1),(x_2,y_2),\ldots,(x_{10},y_{10})$ azon négyzetek koordinátái, ahol a teljes négyzetek helyezkednek el. Mivel a feltétel szerint a teljes négyzetek külön sorban és oszlopban helyezkednek el, ezért x_1,x_2,\ldots,x_{10} páronként különböző és $\{x_1,x_2,\ldots,x_{10}\}=\{1,2,\ldots,10\}$. Hasonlóan, $\{y_1,y_2,\ldots,y_{10}\}=\{1,2,\ldots,10\}$ is teljesül. Így

$$(x_1 + y_1) + (x_2 + y_2) + \ldots + (x_{10} + y_{10}) = 2(1 + 2 + \ldots + 10)$$

páros szám. A páros kombinációjú párok összege ugyanolyan színű, ezért létezik páros számú teljes négyzet, ami ellentmondás.