CURSO: Tecnologia Em Ciência De Dados

POLO DE APOIO PRESENCIAL: Jundiaí e Higienópolis

SEMESTRE: 2/2023

COMPONENTE CURRICULAR / TEMA: PROJETO APLICADO I {TURMA 02A} 2023/2

NOME DO GRUPO - OLHAR INFINITO

23003685 - BEATRIZ DE SOUZA FERREIRA - 10923003685@MACKENZISTA.COM.BR

23006794 - EDUARDO DAVID - 10923009764@MACKENZISTA.COM.BR

23023708 - GUSTAVO CASTRO SANGALI - 10923023708@MACKENZISTA.COM.BR

23008385 - JESSICA CLARA - 10923008385@MACKENZISTA.COM.BR

23006005 - MOISÉS DE LIMA SOUZA - 10923006005@MACKENZISTA.COM.BR

NOME DO PROFESSOR: EVERTON KNIHS

O que deve conter na entrega da Etapa 1 da Tarefa Aplicando Conhecimento?

- · Título do trabalho.
- Membros do grupo (nome completo, TIA e email)
- Contexto do estudo (premissas do projeto, objetivos e metas, cronograma de atividades, pensamento computacional em contextos organizacionais).
- Referências de aquisição do dataset (origem dos dados, limitações de uso e período da coleta).
- Descrição da origem (informações sobre a organização que gerou os dados e o contexto em que os dados foram gerados).
- Descrição do dataset (o que ele contém, qual é a proposta, quais problemas ou fenômenos foram registrados).

Sumário

1.	Título:	5
2.	Introdução	5
3.	Objetivos:	5
4.	Metas:	5
5.	Cronograma:	6
6.	Fluxo Baseado em Pensamento Computacional em Contextos Organizacionais:	
A.		
В.		
C.	. Abstração:	7
D.	•	
7.	Organização e o contexto em que os dados foram gerados:	
8.	Referências de aquisição do dataset:	
9.	Dataset e Metadados	
Α.		
В.		
C.	•	
D.		
E.	•	
F.		
G	'	
10.	Análise Exploratória:	
Α.	·	
В.	•	
C.	•	
D.	•	
11.	Gráficos e Visualizações:	
A.		
В.		
C.		
D.		
E.		
F.	Gráfico 06: Histograma da coluna PERSONS_LAST_DOSE_PER100	22
G		
Н.		
I.	Gráfico 09: Box Plot da coluna NUMBER_VACCNES_TYPE_USED	24
J.		
12.	Pipeline de Dados:	26
A.	Coleta:	26

В	. L	impeza:	26
С	. A	nálise Exploratória:	26
D). T	écnicas de Análise:	26
Е	. V	isualização:	26
F	. F	elatório Final:	26
13.	Pro	posta Analítica:	27
Α	. A	presentação da OMS (Organização Mundial de Saúde):	27
14.	Sto	rytelling:	29
	14.1		
	14.2		
	14.3	Empresa/Organização de Estudo	29
	14.4	. Área do Problema	29
	14.5	. Descrição do Problema / Gap	29
	14.6		
	14.7	. Dados Disponíveis	30
	14.8	. Análise Exploratória	30
	14.9	. Resultados Pretendidos	30
15.	Art	efatos do Projeto:	31
Α		ink Github:	
В	. L	ink Projeto:	31
С		ink Artefatos do Projeto:	

Tabela 01	Cronograma	6
Tabela 02	DataSet	8
Tabela 03	Informação do DataFrame	11
Tabela 04	Análise da coluna 'TOTAL_VACCINATIONS'	14
Tabela 05	Análise da coluna 'PERSONS_VACCINATED_1PLUS_DOSE'	15
Tabela 06	Análise da coluna 'TOTAL_VACCINATIONS_PER100'	15
Tabela 07	Análise da coluna 'PERSONS_VACCINATED_1PLUS_DOSE_PER100'	16
Tabela 08	Análise da coluna 'PERSONS_LAST_DOSE'	16
Tabela 09	Análise da coluna 'PERSONS_LAST_DOSE_PER100'	17
Tabela 10	Análise da coluna 'NUMBER_VACCINES_TYPES_USED'	18
Tabela 11	Análise da coluna 'PERSONS_BOOSTER_ADD_DOSE'	18
Tabela 12	Análise da coluna 'PERSONS_BOOSTER_ADD_DOSE_PER100'	18

1. Título:

Vacinação contra a COVID-19: Uma Análise Abrangência e Adesão à Vacinação

2. Introdução

A COVID-19, desde seu surgimento, evoluiu em termos de mutações, disseminação e impacto, necessitando de um combate efetivo e uma rápida resposta para conter as consequências da sua disseminação na população mundial.

Para conter a doença, foram desenvolvidas vacinas que desde 2021 passaram a ser disponibilizadas ao redor do mundo para todas as pessoas.

Neste projeto, utilizando pensamento computacional e análise exploratória, vamos analisar e entender a abrangência e adesão à vacinação entre os países ao redor do mundo.

3. Objetivos:

Entender o cenário de vacinação contra a COVID-19 nos 229 países que tiveram dados disponibilizados pela OMS (Organização Mundial de Saúde);

Aplicar técnicas de pensamento computacional e análise exploratória com o intuito de analisar dados de vacinação dos países;

Avaliar a abrangência e a adesão à vacinação, e com base nas análises, apontar os países que podem melhorar neste processo;

4. Metas:

- Desenvolvimento de uma análise exploratória dos dados de vacinação contra COVID-19;
- Produção de um relatório com recomendações para organizações com base nos resultados;
- Conclusão de uma revisão literária atualizada sobre a vacinação contra a COVID-19;

5. Cronograma:

https://github.com/meddavid/Mackenzie/issues/7#issuecomment-1692416452

Input	EDT	Nome da tarefa	Duração	Trabalho	Inicio	Término	Nomes dos recursos	IIRR	TTR
0%	1	PROJETO - Atualização Epidemiológica da COVID-19	75 dias?	0 hrs	Ter 08/08/23	Seg 20/11/23		Ter 08/08/23	
0%	1.1	FASE I – PREPARAÇÃO DE DATASET	15 dias?	0 hrs	Ter 08/08/23	Seg 28/08/23		Ter 08/08/23	ND
0%	1.1.1	Artefatos do projeto	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23		Qua 23/08/23	
100%	1.1.1.1	Link GITHUB	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Eduardo	Qua 23/08/23	
	1.1.1.2	Dataset	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Eduardo	Qua 23/08/23	
	1.1.2	Contexto do Estudo	1 dia	0 hrs	Ter 08/08/23	Ter 08/08/23		ND	
	1.1.2.1	Premissas do Projeto	1 dia	0 hrs	Ter 08/08/23	Ter 08/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	-
	1.1.2.2	Objetivos	1 dia	0 hrs	Ter 08/08/23	Ter 08/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
100%	1.1.2.3	Metas	1 dia	0 hrs	Ter 08/08/23	Ter 08/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
100%	1.1.2.4	Cronograma de Atividades	1 dia	0 hrs	Ter 08/08/23	Ter 08/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	ND
100%	1.1.2.5	Pensamento Computacional em contextos organizacionais	1 dia	0 hrs	Ter 08/08/23	Ter 08/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	ND
0%	1.1.3	Referências de Aquisição do Dataset	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23		ND	ND
100%	1.1.3.1	Origem dos Dados	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	ND
100%	1.1.3.2	Limitação de Uso	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
100%	1.1.3.3	Período de Coleta	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
0%	1.1.4	Descrição da Origem	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23		ND	ND
100%	1.1.4.1	Informações sobre a Organização que gerou os dados	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	ND
100%	1.1.4.2	Contexto em que os dados foram gerados	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
0%	1.1.5	Descrição do Dataset	1 dia?	0 hrs	Qua 23/08/23	Qua 23/08/23		ND	ND
100%	1.1.5.1	Conteúdo	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
100%	1.1.5.2	Proposta	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	ND
100%	1.1.5.3	Registro de Problemas ou Fenômenos	1 dia	0 hrs	Qua 23/08/23	Qua 23/08/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
0%	1.1.6	Entrega Moodle	1 dia	0 hrs	Seg 28/08/23	Seg 28/08/23	Eduardo	ND	ND
0%	1.2	FASE II - TBD	15 dias	0 hrs	Ter 05/09/23	Seg 25/09/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
0%	1.2.1	BB Professor	1 dia	0 hrs	Ter 05/09/23	Ter 05/09/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
0%	1.2.2	Atividades - TBD	1 dia	0 hrs	Ter 19/09/23	Ter 19/09/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
0%	1.2.3	BB Professor	1 dia	0 hrs	Ter 19/09/23	Ter 19/09/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
0%	1.2.4	Entrega Moodle	1 dia	0 hrs	Seg 25/09/23	Seg 25/09/23	Eduardo	ND	NE
0%	1.3	FASE III - TBD	15 dias	0 hrs	Ter 10/10/23	Seg 30/10/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
0%	1.3.1	BB Professor	1 dia	0 hrs	Ter 10/10/23	Ter 10/10/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
0%	1.3.2	Atividades - TBD	1 dia	0 hrs	Ter 24/10/23	Ter 24/10/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
0%	1.3.3	BB Professor	1 dia	0 hrs	Seg 30/10/23	Seg 30/10/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
0%	1.3.4	Entrega Moodle	1 dia	0 hrs	Seg 30/10/23	Seg 30/10/23	Eduardo	ND	NE
0%	1.4	FASE IV - TBD	10 dias	0 hrs	Ter 07/11/23	Seg 20/11/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
0%	1.4.1	BB Professor	1 dia	0 hrs	Ter 07/11/23	Ter 07/11/23	Beatriz;Eduardo;Jessica;Moisés;Vanessa	ND	NE
0%	1.4.2	Atividades - TBD	1 dia	0 hrs	Seg 20/11/23	Seg 20/11/23	Beatriz; Eduardo; Jessica; Moisés; Vanessa	ND	NE
0%	1.4.3	Entrega Moodle	1 dia	0 hrs	Seg 20/11/23	Seg 20/11/23	Eduardo	ND	ND

Tabela 1

6. Fluxo Baseado em Pensamento Computacional em Contextos Organizacionais:

A. Decomposição:

Dividir o problema em partes menores: quantidade de países que reportam oficialmente os números de vacinação, adesão à primeira dose da vacina por país e por continente, adesão à segunda ou mais doses, relação entre os tipos de vacinas disponíveis versus número de pessoas vacinadas por país, entre outras.

B. Reconhecimento de padrões:

Analisar tendências da vacinação: velocidade do início de vacinação por país e continente, relação entre os tipos de vacinas disponíveis versus número de pessoas vacinadas, entre outros.

C. Abstração:

Construir uma análise exploratória sobre a vacinação contra COVID-19: Utilizar dados e pesquisas atuais para criar análise.

D. Design de Algoritmos:

Criar um relatório para tomada de decisão: Com base nas análises, produzir relatório com recomendações para organizações.

7. Organização e o contexto em que os dados foram gerados:

A OMS é a Organização Mundial de Saúde, um organismo internacional ligado ao Sistema ONU que tem por objetivo promover o acesso à saúde de qualidade a todos os povos do mundo. A OMS foi criada em 1948 e tem sua sede em Genebra, Suíça. A OMS coordena o trabalho internacional de saúde por meio da colaboração com países, organizações internacionais, sociedade civil, fundações, academia e instituições de pesquisa.

A OMS tem desempenhado um papel importante na resposta à pandemia de COVID-19, que foi declarada como uma Emergência de Saúde Pública de Importância Internacional em 30 de janeiro de 2020 e como uma pandemia em 11 de março de 2020. A OMS tem fornecido orientações, assistência técnica, recursos e informações sobre a doença, sua prevenção, seu tratamento e sua vacinação.

Mesmo após a pandemia, a OMS continuou com a atualização das informações sobre a COVID-19 em mais de 200 países onde está presente, inclusive atualizando os dados de vacinação que serão utilizados neste projeto para entendimento do cenário de vacinação entre os países.

8. Referências de aquisição do dataset:

Os dados têm origem no site da Organização Mundial de Saúde que traz atualizações de 229 países sobre a vacinação contra COVID-19, que são reunidos a partir de inúmeras fontes, incluindo relatórios diretos dos Estados-Membros, análises da OMS de dados oficiais disponíveis ao público ou dados recolhidos e publicados por sites de terceiros, como o Our World in Data.

O período dos dados é de 22 de julho de 2020 a 20 de agosto de 2023.

9. Dataset e Metadados

A. Dataset:

Fonte: https://covid19.who.int/data

Link para download: https://covid19.who.int/who-data/vaccination-data.csv

B. Descrição do Dataset:

O Dataset contém informações sobre a vacinação de países por região. As regiões divididas com base na classificação da Organização Mundial da Saúde (OMS) são: Região Africana (AFRO), Região das Américas (AMRO), Região do Sudeste Asiático (SEARO), Região Europeia (EURO), Região do, Mediterrâneo Oriental (EMRO), Região do Pacífico Ocidental (WPRO).

O arquivo contém dados como o total de vacinação em cada país, pessoas que tomaram mais de uma dose da vacina, quantidade de tipos de vacinas usadas em cada país, quantidade de dose de reforço e data da primeira vacinação. Com isso conseguimos analisar quais regiões tiveram menos ou mais vacinas, quantas pessoas se vacinaram e etc.

A partir disso podemos entender a abrangência e adesão à vacinação, que causa um impacto positivo ainda que não prevenindo 100% a disseminação do vírus, mas modera casos mais graves e mortes por Covid-19.

C. Metadados:

Colunas	Descrição
COUNTRY	País, território, área
ISO3	Código de país ISO Alpha-3
WHO_REGION	Escritórios regionais da OMS: Os Estados-Membros da OMS estão agrupados em seis regiões da OMS: Escritório Regional para África (AFRO), Escritório Regional para as Américas (AMRO), Escritório Regional para o Sudeste Asiático (SEARO), Escritório Regional para a Europa (EURO), Escritório Regional para o Mediterrâneo Oriental (EMRO) e Escritório Regional para o Pacífico Ocidental (WPRO).
DATA_SOURCE	Indica a fonte dos dados: - RELATÓRIO: Dados comunicados pelos Estados-Membros ou provenientes de relatórios oficiais - OWID: Dados provenientes do Our World in Data: https://ourworldindata.org/covid-vaccinations
DATE_UPDATED	Data da última atualização
TOTAL_VACCINATIONS	Doses cumulativas totais de vacina administradas
PERSONS_VACCINATED_1PLUS_DOSE	Número acumulado de pessoas vacinadas com pelo menos uma dose
TOTAL_VACCINATIONS_PER100	Doses cumulativas totais de vacinas administradas por 100 habitantes
PERSONS_VACCINATED_1PLUS_DOSE_PER100	Cumulativo de pessoas vacinadas com pelo menos uma dose por 100 habitantes
PERSONS_LAST_DOSE	Número acumulado de pessoas vacinadas com uma série primária completa
PERSONS_LAST_DOSE_PER100	Número acumulado de pessoas vacinadas com uma série primária completa por 100 habitantes
VACCINES_USED	Nome abreviado combinado da vacina: "Empresa – Nome do produto"
FIRST_VACCINE_DATE	Data das primeiras vacinações. Equivalente à data de início/lançamento da primeira vacina administrada num país.
NUMBER_VACCINES_TYPES_USED	Número de tipos de vacinas utilizadas por país, território, área.
PERSONS_BOOSTER_ADD_DOSE	Número cumulativo de pessoas vacinadas com pelo menos uma dose de reforço ou dose adicional.
PERSONS_BOOSTER_ADD_DOSE_PER100	Número cumulativo de pessoas vacinadas com pelo menos uma dose de reforço ou dose adicional por 100 habitantes.

Tabela 2

D. Tipo do Arquivo:

O arquivo está no formato CSV.

E. Sensibilidade:

O arquivo não possui dados sensíveis e está compatível com a LGPD.

F. Proprietário do Dado:

O arquivo é de domínio público e foi disponibilizado pela OMS.

G. Restrições de uso:

A OMS não restringiu sua utilização.

10. Análise Exploratória:

A etapa de análise exploratória desempenha um papel fundamental na compreensão aprofundada do dataset disponível. Esta seção visa enriquecer o conhecimento sobre as variáveis contidas no conjunto de dados, oferecendo uma perspectiva detalhada que complementa as informações já fornecidas nos metadados iniciais..

A. Descrição das Variáveis:

Nesta parte, serão apresentados detalhes abrangentes sobre as variáveis presentes no dataset. Isso incluirá informações como o número total de registros para cada variável, os valores máximo e mínimo, a variância e o desvio padrão. Além disso, serão exploradas as distribuições das variáveis, destacando se elas seguem padrões conhecidos, como uma distribuição normal ou binomial. Também será avaliada a presença de dados ausentes e a identificação de valores discrepantes (outliers) que possam influenciar análises subsequentes.

01. Arquivo: Não aplicado

Caminho: Não aplicado

Desenvolvimento:

- pip install pandas
- python.exe -m pip install --upgrade pip
- pip install matplotlib
- pip install seaborn

Retorno:

- Successfully installed numpy-1.26.0 pandas-2.1.1 python-dateutil-2.8.2 pytz-2023.3.post1 six-1.16.0 tzdata-2023.3
- Installing collected packages: pyparsing, pillow, packaging, kiwisolver, fonttools, cycler, contourpy, matplotlib
- Successfully installed pip-23.2.1

02. Arquivo: open_dataset.py

Caminho: .git\Projeto aplicado I\99. Artefatos\02. scripts python

Desenvolvimento:

```
import pandas as pd

# Carregar o arquivo CSV em um DataFrame
url =
"https://raw.githubusercontent.com/meddavid/Mackenzie-
Projeto-Aplicado-
I/adf5948da5b4b0f8fc2bee7fa4dad0ac60f23102/99.%20Artefato
s/01.%20Dataset/vaccination-data.csv"
df = pd.read_csv(url)

# Mostra um resumo do DataFrame (tipos de dados, não
nulos, etc.)
df.info()
#print(df)
```

Retorno:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 229 entries, 0 to 228

Data columns (total 16 columns):

	Data colainiis (total 10 colainiis).					
#	Column	Non-Null Count	Dtype			
0	COUNTRY	229 non-null	object			
1	ISO3	229 non-null	object			
2	WHO_REGION	229 non-null	object			
3	DATA_SOURCE	229 non-null	object			
4	DATE_UPDATED	229 non-null	object			
5	TOTAL_VACCINATIONS	228 non-null	float64			
6	PERSONS_VACCINATED_1PLUS_DOSE	229 non-null	int64			
7	TOTAL_VACCINATIONS_PER100	224 non-null	float64			
8	PERSONS_VACCINATED_1PLUS_DOSE_PER100	229 non-null	float64			
9	PERSONS_LAST_DOSE	229 non-null	int64			
10	PERSONS_LAST_DOSE_PER100	229 non-null	float64			
11	VACCINES_USED	0 non-null	float64			
12	FIRST_VACCINE_DATE	207 non-null	object			
13	NUMBER_VACCINES_TYPES_USED	225 non-null	float64			
14	PERSONS_BOOSTER_ADD_DOSE	213 non-null	float64			
15	PERSONS_BOOSTER_ADD_DOSE_PER100	213 non-null	float64			

dtypes: float64(8), int64(2), object(6)

Tabela 3

Descrição:

Dataframe:

Número de Registros: 229 Número de colunas: 16 03. Arquivos: Analytics.py

Desenvolvimento:

```
import pandas as pd
# Carregar o DataFrame do github
url =
"https://raw.githubusercontent.com/meddavid/Mackenzie-
Projeto-Aplicado-
I/adf5948da5b4b0f8fc2bee7fa4dad0ac60f23102/99.%20Artefato
s/01.%20Dataset/vaccination-data.csv"
dados = pd.read csv(url)
# Analisando Quantidade de Registros
num registros = len(dados)
print(f"#### - Quantidade de registros:
{num registros}\n")
# Analisando Quantidade de registros agrupados por
grupos = dados.groupby('WHO REGION')
num registros por grupo = grupos.size()
print("#### - Quantidade de registros agrupados por
WHO REGION:")
print(num registros por grupo)
print("\nGrupos formados:")
print(list(grupos.groups.keys()))
print()
# Analisando colunas numéricas
colunas numericas = [
    'TOTAL VACCINATIONS',
    'PERSONS VACCINATED 1PLUS DOSE',
    'TOTAL VACCINATIONS PER100',
    'PERSONS VACCINATED 1PLUS DOSE PER100',
    'PERSONS LAST DOSE',
    'PERSONS LAST DOSE PER100',
    'NUMBER VACCINES TYPES USED',
    'PERSONS BOOSTER ADD DOSE',
    'PERSONS BOOSTER ADD DOSE PER100'
for coluna in colunas numericas:
    print(f"Análise da coluna '{coluna}':")
```


Universidade Presbiteriana Mackenzie

```
# Número de registros
    num registros coluna = dados[coluna].count()
    print(f"Número de registros: {num registros coluna}")
    # Valor Máximo
   valor maximo = dados[coluna].max()
    print(f"Valor Máximo: {valor maximo:.2f}")
    # Valor Mínimo
   valor minimo = dados[coluna].min()
   print(f"Valor Minimo: {valor minimo:.2f}")
   variancia = dados[coluna].var()
   print(f"Variância: {variancia:.2f}")
    # Desvio Padrão
   desvio padrao = dados[coluna].std()
    print(f"Desvio Padrão: {desvio padrao:.2f}")
    # Distribuição
   distribuicao = dados[coluna].describe().apply(lambda
x: f'(x:.2f)'
   print(f"Distribuição:\n{distribuicao}")
    # Quantidade de NAs (dados faltantes)
   quantidade nas = dados[coluna].isna().sum()
    print(f"Quantidade de NAs (dados faltantes):
{quantidade nas:.2f}")
    # Identificar outliers
   Q1 = dados[coluna].quantile(0.25)
   Q3 = dados[coluna].quantile(0.75)
    IQR = Q3 - Q1
   limite inferior = Q1 - 1.5 * IQR
    limite superior = Q3 + 1.5 * IQR
    outliers = dados[(dados[coluna] < limite inferior) |</pre>
(dados[coluna] > limite superior)]
    print(f"Quantidade de outliers: {len(outliers)}")
   print("\n")
```


Retorno:

- Quantidade de registros: 229
- Quantidade de registros agrupados por WHO_REGION:

WHO_REGION

AFRO 48
AMRO 53
EMRO 22
EURO 60
OTHER 1
SEARO 10
WPRO 35

dtype: int64

• Grupos formados:

['AFRO', 'AMRO', 'EMRO', 'EURO', 'OTHER', 'SEARO', 'WPRO']

Análise da coluna 'TOTAL_VACCINATIONS':

Métrica		Resultado
Número de registros		228
Valor Máximo		3515872818.00
Valor Mínimo		117.00
Variância		80599531141893616.00
Desvio Padrão		283900565.59
Distribuição		
	count:	228.00
	mean:	59204257.11
	std:	283900565.59
	min:	117.00
	25%:	473303.50
	50%:	4705035.00
	75%:	23357295.25
	max:	3515872818.00
Name: TOTAL_VACCINATIONS, dtype: obj		ect
Quantidade de NAs (dados faltantes):		1
Quantidade de outliers:		36

Tabela 4

• Análise da coluna 'PERSONS_VACCINATED_1PLUS_DOSE':

Métrica		Resultado
Número de registros		229
Valor Máximo		1317994878.00
Valor Mínimo		0.00
Variância		12966877158649760.00
Desvio Padrão		113872196.60
Distribuição		
	count :	229
	mean:	24411463.54
	std:	113872196.60
	min:	0.00
	25%:	191403.00
	50%:	2740227.00
	75%:	10884714.00
	max:	1317994878.00
Name: PERSONS_VACCINATED_	1PLUS_[OOSE, dtype: object
Quantidade de NAs (dados faltantes):		0
Quantidade de outliers:		33

Tabela 5

• Análise da coluna 'TOTAL_VACCINATIONS_PER100':

Métrica		Resultado
Número de registros		224
Valor Máximo		469.78
Valor Mínimo		0.34
Variância		7079.81
Desvio Padrão		84.14
Distribuição		
	count:	224.00
	mean:	156.77
	std:	84.14
	min:	0.34
	25%:	84.74
	50%:	161.05
	75%:	222.96
	max:	469.78
Name: TOTAL_VACCINATIONS_P	ltype: object	
Quantidade de NAs (dados faltantes):		5
Quantidade de outliers:		1

Tabela 6

• Análise da coluna 'PERSONS_VACCINATED_1PLUS_DOSE_PER100':

Métrica		Resultado
Número de registros		229
Valor Máximo		163.19
Valor Mínimo		0.00
Variância		639.80
Desvio Padrão		25.29
Distribuição		
	count:	229.00
	mean:	63.85
	std:	25.29
	min:	0.00
	25%:	45.45
	50%:	67.79
	75%:	82.60
	max:	163.19
Name: PERSONS_VACCINATED_1PL	E_PER100, dtype: object	
Quantidade de NAs (dados faltantes):		0
Quantidade de outliers:		1

Tabela 7

• Análise da coluna 'PERSONS_LAST_DOSE':

Métrica		Resultado
Número de registros		229
Valor Máximo		1284413713.00
Valor Mínimo		0.00
Variância		11753776143573370.00
Desvio Padrão		108414833.60
Distribuição		
	count:	229
	mean:	22490382.03
	std:	108414833.60
	min:	0.00
	25%:	184801.00
	50%:	2484985.00
	75%:	9209276.00
	max:	1284413713.00
Name: PERSONS_LAST_DOSE, dt	ect	
Quantidade de NAs (dados faltantes):		0
Quantidade de outliers:		34

Tabela 8

Análise da coluna 'PERSONS_LAST_DOSE_PER100':

Métrica		Resultado	
Número de registros		229	
Valor Máximo		163.19	
Valor Mínimo		0.00	
Variância		642.65	
Desvio Padrão		25.35	
Distribuição			
	count:	229	
	mean:	58.88	
	std:	25.35	
	min:	0.00	
	25%:	39.05	
	50%:	63.59	
	75%:	78.35	
	max:	163.19	
Name: PERSONS_LAST_DOSE_PER100, dtype: object			
Quantidade de NAs (dados faltantes):		0.00	
Quantidade de outliers:		1	

Tabela 9

Análise da coluna 'NUMBER_VACCINES_TYPES_USED':

Métrica		Resultado	
Número de registros		225	
Valor Máximo		12.00	
Valor Mínimo		1.00	
Variância		8.49	
Desvio Padrão		2.91	
Distribuição			
	count:	225	
	mean:	4.98	
	std:	2.91	
	min:	1.00	
	25%:	3.00	
	50%:	4.00	
	75%:	7.00	
	max:	12.00	
Name: NUMBER_VACCINES_TYPES_USED, dtype: object			
Quantidade de NAs (dados faltantes):		4	
Quantidade de outliers:		0	

Tabela 10

Análise da coluna 'PERSONS_BOOSTER_ADD_DOSE':

Métrica		Resultado		
Número de registros		213		
Valor Máximo		833820382.00		
Valor Mínimo		0.00		
Variância		3713688762559778.50		
Desvio Padrão		60940042.36		
Distribuição				
	count:	213		
	mean:	11635797.94		
	std:	60940042.36		
	min:	0.00		
	25%:	45446.00		
	50%:	640419.00		
	75%:	4474108.00		
	max:	833820382.00		
Name: PERSONS_BOOSTER_ADD_DOSE, dtype: object				
Quantidade de NAs (dados faltantes):		16.00		
Quantidade de outliers:		32		

Tabela 11

Análise da coluna 'PERSONS_BOOSTER_ADD_DOSE_PER100':

Métrica		Resultado
Número de registros		213
Valor Máximo		145.94
Valor Mínimo		0.00
Variância		637.30
Desvio Padrão		25.24
Distribuição		
	count:	213
	mean:	32.25
	std:	25.24
	min:	0.00
	25%:	8.33
	50%:	30.84
	75%:	52.40
	max:	145.94
Name: PERSONS_BOOSTER_ADD_DOSE		PER100, dtype: object
Quantidade de NAs (dados faltantes):		16.00
Quantidade de outliers:		1

Tabela 12

B. Desafios e Limitações:

É fundamental reconhecer e discutir quaisquer desafios e limitações encontrados durante a análise exploratória. Isso pode incluir a identificação de dados faltantes em grande quantidade, a presença de outliers que exigirão considerações adicionais e quaisquer variáveis que não sigam uma distribuição esperada. Essa seção abordará as complexidades encontradas e fornecerá um contexto importante para decisões posteriores no processo de análise.

C. Recomendações Preliminares:

Com base nas descobertas da análise exploratória, serão apresentadas recomendações preliminares. Isso pode envolver estratégias para lidar com dados faltantes, abordagens para tratar outliers e considerações sobre transformações de dados. As recomendações oferecerão diretrizes iniciais para orientar a próxima fase da análise, aproveitando os insights obtidos durante a exploração detalhada.

D. Conclusão da Análise Exploratória:

A análise exploratória é um estágio crítico para a compreensão aprofundada do dataset, envolvendo a descrição minuciosa das variáveis, o uso de visualizações para destacar padrões, o reconhecimento de desafios e limitações, e a formulação de recomendações iniciais para abordar questões identificadas. Isso proporciona uma base sólida para análises subsequentes e tomadas de decisão informadas..

11. Gráficos e Visualizações:

Esta parte é dedicada à criação e apresentação de gráficos e visualizações que ajudarão na compreensão das características das variáveis. Isso inclui gráficos de barra, histogramas, box Plots e outras representações visuais adequadas à natureza dos dados.

Caminho: .git\Projeto_aplicado_I\99. Artefatos\03. GRAFICOS

A. Gráfico 01: Quantidade de registros agrupados por WHO REGION

Tipo do Gráfico: Barras **Escala do Gráfico:** 0 a 60

Eixo Y: Quantidade de Registros por região

Eixo X: Regiões da OMS

B. **Gráfico 02**: Histograma da coluna TOTAL_VACCINATION_PER100

Tipo do Gráfico: Histograma

Escala do Gráfico: Y: 0.0 a 20.0 X:0 A 400

Eixo Y: Frequência

Eixo X: TOTAL_VACCINATIONS_PER100 Medidas: Densidade KDE / Histograma

C. Gráfico 03: Box Plot da coluna TOTAL VACCINATION PER100

Tipo do Gráfico: Box plot **Escala do Gráfico:** X:0 A 400

Eixo Y: Valores

Eixo X: TOTAL_VACCINATIONS_PER100

D. **Gráfico 04:** Histograma da coluna PERSONS_VACCINATED_1PLUS_DOSE_ PER100

Tipo do Gráfico: Histograma

Escala do Gráfico: Y: 0 a 25 X: 0 A 160

Eixo Y: Frequência

Eixo X: PERSONS_VACCINATED_1PLUS_DOSE_PER100

Medidas: Densidade KDE / Histograma

E. **Gráfico 05:** Box Plot da coluna PERSONS_VACCINATED_1PLUS_DOSE_PER100

Tipo do Gráfico: Box plot **Escala do Gráfico:** X:0 A 400

Eixo Y: Valores

Eixo X: PERSONS_VACCINATED_1PLUS_DOSE_PER100

F. Gráfico 06: Histograma da coluna PERSONS LAST DOSE PER100

Tipo do Gráfico: Histograma

Escala do Gráfico: Y: 0 a 25 X: 0 A 160

Eixo Y: Frequência

Eixo X: PERSONS_LAST_DOSE_PER100 Medidas: Densidade KDE / Histograma

G. Gráfico 07: Box Plot da coluna PERSONS LAST DOSE PER100

Tipo do Gráfico: Box plot **Escala do Gráfico:** X:0 A 160

Eixo Y: Valores

Eixo X: PERSONS_LAST_DOSE_PER100

H. Gráfico 08: Histograma da coluna NUMBER_VACCNES_TYPE_USED

Tipo do Gráfico: Histograma

Escala do Gráfico: Y: 0 a 35 X: 0 A 12

Eixo Y: Frequência

Eixo X: NUMBER_VACCNES_TYPE_USED Medidas: Densidade KDE / Histograma

I. Gráfico 09: Box Plot da coluna NUMBER VACCNES TYPE USED

Tipo do Gráfico: Box Plot **Escala do Gráfico:** X:0 A 12

Eixo Y: Valores

Eixo X: NUMBER_VACCNES_TYPE_USED

J. Código Fonte Gráficos:

01. Arquivo: Graphics OF.py

Caminho: .git\Projeto aplicado I\99. Artefatos\02. scripts python

Desenvolvimento:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Carregar o DataFrame a partir de uma URL do github
url =
"https://raw.qithubusercontent.com/meddavid/Mackenzie-
Projeto-Aplicado-
I/adf5948da5b4b0f8fc2bee7fa4dad0ac60f23102/99.%20Artefat
os/01.%20Dataset/vaccination-data.csv"
dados = pd.read csv(url)
# Gráfico de barras para mostrar a quantidade de
registros por WHO REGION
plt.figure(figsize=(10, 6)) # Define o tamanho da
figura
sns.countplot(data=dados, x='WHO REGION')
                                           # Cria um
gráfico de barras usando Seaborn
plt.title('Quantidade de registros agrupados por
WHO REGION') # Adiciona um título ao gráfico
plt.xlabel('Região da OMS') # Rótulo do eixo X
plt.ylabel('Quantidade de Registros') # Rótulo do eixo
```


Universidade Presbiteriana Mackenzie

```
plt.savefig('WHO REGION bar plot.png', dpi=300) # Salva
o gráfico como .png com alta resolução
plt.close() # Fecha a figura atual
colunas numericas = [
    'TOTAL VACCINATIONS PER100',
    'PERSONS VACCINATED 1PLUS DOSE PER100',
    'PERSONS LAST DOSE PER100',
    'NUMBER VACCINES TYPES USED'
# Loop para gerar histogramas e box plots para cada
coluna numérica
for coluna in colunas numericas:
    # Histograma
    plt.figure(figsize=(10, 6))
    sns.histplot(dados[coluna], bins=30, kde=True) #
Gera histograma com densidade KDE
    plt.title(f'Histograma da coluna {coluna}') #
Adiciona um título ao histograma
    plt.xlabel(coluna) # Rótulo do eixo X
    plt.ylabel('Frequência') # Rótulo do eixo Y
    plt.legend(labels=['Densidade KDE', 'Histograma'])
# Adiciona uma legenda
   plt.savefig(f'{coluna} histogram.png', dpi=300) #
   plt.close() # Fecha a figura atual
    # Boxplot
    plt.figure(figsize=(10, 6))
    sns.boxplot(x=dados[coluna]) # Gera box plot usando
Seaborn
    plt.title(f'Box plot da coluna {coluna}') #
    plt.xlabel(coluna) # Rótulo do eixo X
   plt.ylabel('Valores') # Rótulo do eixo Y
    plt.savefig(f'{coluna} boxplot.png', dpi=300)
   plt.close() # Fecha a figura atual
```

12. Pipeline de Dados:

A. Coleta:

• Processo de obtenção dos dados da OMS.

B. Limpeza:

- Remoção de dados faltantes ou inconsistências;
- Transformação de variáveis.

C. Análise Exploratória:

- Estatísticas descritivas (médias, medianas, desvios padrão, etc.);
- Visualizações gráficas (gráficos de barra, mapas de calor, etc.).

D. Técnicas de Análise:

- Algoritmos e ferramentas a serem utilizados (e.g., Python, R);
- Métodos de análise (regressão, clustering, análise de séries temporais).mapas de calo

E. Visualização:

• Ferramentas e abordagens para visualizar os resultados (e.g., Tableau, Power BI, gráficos em Python/R).

F. Relatório Final:

Compilação dos resultados e recomendações em um formato acessível e compreensível

13. Proposta Analítica:

Nesta proposta, vamos mergulhar no mundo da vacinação contra a COVID-19 em 229 países, utilizando dados fornecidos pela OMS. Nosso principal objetivo é descobrir como os países avançaram em seus programas de vacinação e identificar aqueles que ainda têm espaço para melhorias.

Usaremos técnicas básicas de análise para avaliar esses dados e criar representações visuais que tornem as informações mais acessíveis e fáceis de entender.

Esperamos que nosso estudo ofereça uma compreensão aprofundada sobre a origem, evolução e repercussões da pandemia na saúde global e na vacinação. Almejamos destacar as conquistas alcançadas e identificar áreas que necessitam de atenção e esforço adicional para combater efetivamente a pandemia.

A. Apresentação da OMS (Organização Mundial de Saúde):

Breve histórico:

• Estabelecida em 1948, a OMS rapidamente emergiu como a autoridade central em questões de saúde global. Desde sua fundação, a organização tem ampliado sua influência e capacidade, liderando iniciativas internacionais para melhorar a saúde e prevenir enfermidades. Através das décadas, a OMS tem sido instrumental em enfrentar diversas crises de saúde e em lançar campanhas para erradicar doenças, definindo, assim, padrões e diretrizes que têm sido pilares na saúde mundial.

Missão e objetivos:

 A missão fundamental da OMS é agir como a guardiã da saúde em escala global, orientando e consolidando esforços de nações ao redor do mundo para superar desafios na área da saúde. A OMS almeja objetivos claros e nobres: assegurar acesso universal a serviços de saúde de excelência, salvaguardar indivíduos de emergências sanitárias e fomentar o bem-estar em todas as etapas da vida humana.

Importância global:

 A OMS tem se destacado como um pilar durante crises de saúde, incluindo os surtos de Ebola e H1N1, onde forneceu diretrizes cruciais e mobilizou recursos indispensáveis. Ela estabelece parcerias sólidas com governos, ONGs e o setor

privado, potencializando esforços conjuntos para avançar em iniciativas de saúde global. Atualmente, sua relevância é ainda mais evidente na batalha contra a COVID-19, onde a OMS desempenha um papel central desde a investigação científica até a distribuição de tratamentos e imunizantes.

Estrutura e funcionamento:

• A OMS opera através de uma estrutura organizada, abrangendo escritórios regionais em diversos continentes e mantendo sua sede central em Genebra. Esta configuração assegura sua atuação e influência em escala global. Dois órgãos proeminentes dentro da OMS são a Assembleia Mundial da Saúde e o Conselho Executivo. Ambos são vitais na formulação de políticas e estabelecimento de diretrizes, garantindo que a entidade mantenha um alinhamento consistente com seus objetivos estratégicos.

Iniciativas relativas à COVID-19:

 Desde os primeiros sinais da pandemia, a OMS tem sido uma referência em diretrizes e tem alocado recursos para combater a COVID-19, apoiando países em suas ações.
 A OMS tem sido essencial não só na orientação, mas também na pesquisa e distribuição de vacinas contra a COVID-19. Projetos como o COVAX, sob sua liderança, são fundamentais para garantir uma distribuição justa das vacinas pelo mundo.

14. Storytelling:

O storytelling é uma das ferramentas mais poderosas que temos para comunicar e conectar com os outros. É através da narrativa que conseguimos trazer significado, contexto e humanidade aos dados, fatos e estatísticas. Neste contexto, a pandemia da COVID-19, uma das crises mais desafiadoras da nossa era, requer uma narrativa cuidadosa e precisa, para capturar sua amplitude e impacto. A seguir, delineamos o esboço do storytelling que guiará nossa discussão sobre a COVID-19, garantindo que abordemos os pontos cruciais de forma sistemática.

14.1. Apresentação do Grupo

- 14.1.1. Introdução aos Membros da Equipe
- 14.1.2. Breve Histórico e Experiências Anteriores
- 14.1.3. Motivação para Escolher o Tema

14.2. Nome do Projeto

- 14.2.1. Justificativa para o Nome Escolhido
- 14.2.2. Significado e Impacto

14.3. Empresa/Organização de Estudo

- 14.3.1. Histórico da Empresa/Organização
- 14.3.2. Papel da Empresa/Organização na Pandemia
- 14.3.3. Importância e Contribuições para o Combate à COVID-19

14.4. Área do Problema

- 14.4.1. Contextualização da COVID-19 Globalmente
- 14.4.2. Desafios Enfrentados por Empresas e Organizações
- 14.4.3. Impacto Socioeconômico e na Saúde Pública

14.5. Descrição do Problema / Gap

- 14.5.1. Detalhamento da Situação Atual
- 14.5.2. Consequências do Problema
- 14.5.3. Gaps e Áreas de Oportunidade Identificadas

14.6. Proposta Analítica

- 14.6.1. Metodologia Adotada
- 14.6.2. Objetivos da Análise
- 14.6.3. Ferramentas e Técnicas Utilizadas

14.7. Dados Disponíveis

- 14.7.1. Fonte de Dados
- 14.7.2. Qualidade e Confiabilidade dos Dados
- 14.7.3. Limitações e Desafios na Coleta de Dados

14.8. Análise Exploratória

- 14.8.1. Primeiras Impressões e Descobertas
- 14.8.2. Visualizações e Gráficos Relevantes
- 14.8.3. Correlações e Tendências Identificadas

14.9. Resultados Pretendidos

- 14.9.1. Impacto Esperado da Análise
- 14.9.2. Contribuições para a Empresa/Organização e Sociedade
- 14.9.3. Passos Futuros e Recomendações

15. Artefatos do Projeto:

A. Link Github:

https://github.com/meddavid/Mackenzie.git

B. Link Projeto:

https://github.com/users/meddavid/projects/1

C. Link Artefatos do Projeto:

Scripts	https://github.com/meddavid/Mackenzie-Projeto-Aplicado-		
	<u>I/tree/1bcfc57e6e34b1c4621dc602b1d10a616addbc4a/99.%20Artefatos/02.%20scripts_python</u>		
Dataset	https://github.com/meddavid/Mackenzie-Projeto-Aplicado-		
	I/tree/1bcfc57e6e34b1c4621dc602b1d10a616addbc4a/99.%20Artefatos/01.%20Dataset		