Strahlenschutzver ordnung

(StSV)

vom 22. Juni 1994 (Stand am 28. Dezember 2001)

Der Schweizerische Bundesrat.

gestützt auf Artikel 47 Absatz 1 des Strahlenschutzgesetzes (StSG) vom 22. März 1991¹.

verordnet.

1. Kapitel:

Allgemeine Bestimmungen und Grundsätze des Strahlenschutzes

Art. 1 Geltungsbereich

- ¹ Diese Verordnung gilt für Stoffe, Gegenstände und Abfälle, deren Aktivität, Konzentration, Kontamination, Dosisleistung oder Masse über den in Anhang 2 aufgeführten Werten liegen.
- ² Die Verordnung gilt weiter:
 - a. für Anlagen zur Erzeugung ionisierender Strahlen;
 - b. für Geräte und Anlagen, die parasitäre ionisierende Strahlen aussenden können, sofern die nach Anhang 5 ermittelte Ortsdosisleistung in 10 cm Abstand von der Oberfläche mehr als 1 Mikrosievert (μSv) pro Stunde beträgt;
 - c. ...2
- ³ Für die Umsetzung der Strahlenschutzvorschriften gelten die in Anhang 3 enthaltenen Werte

Art. 2 Ausnahmen

- ¹ Diese Verordnung gilt nicht für den Umgang mit Rohmaterialien natürlicher Herkunft und Nuklidzusammensetzung, die in Anhang 2 nicht erwähnt sind und zu einer Dosis von weniger als 1 mSv pro Jahr führen.³
- 2 Diese Verordnung gilt nicht für Stoffe mit einer spezifischen Aktivität unterhalb der Freigrenze nach Anhang 3 Spalte 9 und einer Ortsdosisleistung in 10 cm Abstand von der Oberfläche nach Abzug des Untergrundes von mehr als 0,1 μSv pro Stunde, wenn der Aufsichtsbehörde nachgewiesen wurde, dass Personen zu keiner Zeit eine effektive Dosis von mehr als 10 μSv pro Jahr akkumulieren werden.

AS 1994 1947

- 1 SR 814.50
- Aufgehoben durch Ziff. I der V vom 17. Nov. 1999 (AS 2000 107).
- Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

³ Auf Tätigkeiten, für die nach dem Atomgesetz vom 23. Dezember 1959⁴ eine Bewilligung nötig ist, sind die Artikel 125–127, 133 und 134 nicht anwendbar.

Art. 3 Mischungen

- ¹ Mischungen von radioaktiven Stoffen mit inaktiven Materialien einzig zum Zweck, diese Verordnung nicht anwendbar zu machen, sind nicht zulässig.
- ² Die Aufsichtsbehörde kann gestatten, dass Stoffe nach Artikel 2 Absatz 2 zur Rezyklierung mit inaktiven Materialien vermischt werden, wenn der in jener Bestimmung verlangte Nachweis erbracht werden kann. Ferner bleibt Artikel 82 vorbehalten

Art. 4 Begriffsbestimmungen

Für diese Verordnung gelten die in Anhang 1 enthaltenen Begriffsbestimmungen.

Art. 5 Rechtfertigung

- ¹ Eine Tätigkeit ist im Sinne von Artikel 8 StSG gerechtfertigt, wenn die mit ihr verbundenen Vorteile die strahlungsbedingten Nachteile deutlich überwiegen und keine gesamthaft für Mensch und Umwelt günstigere Alternative ohne Strahlenexposition zur Verfügung steht.
- 2 Tätigkeiten mit ionisierenden Strahlen, die für die betroffenen Personen zu einer effektiven Dosis von weniger als $10~\mu Sv$ pro Jahr führen, gelten in jedem Fall als gerechtfertigt.

Art. 6 Optimierung

- ¹ Bei gerechtfertigten Tätigkeiten gilt der Strahlenschutz als optimiert, wenn:
 - a. die angemessenen Lösungsvarianten bezüglich Strahlenschutz bewertet und gegeneinander abgewogen wurden;
 - b. der Entscheidungsweg zur gewählten Lösung nachvollziehbar ist;
 - das Auftreten von Störfällen und die Beseitigung der Strahlenquellen in Betracht gezogen wurden.
- ² Die Aufsichtsbehörde (Art. 136) kann für die Optimierung im Einzelfall Richtwerte festlegen.
- 3 Der Grundsatz der Optimierung gilt als erfüllt bei Tätigkeiten, welche in keinem Fall zu einer effektiven Dosis von mehr als $100~\mu Sv$ pro Jahr für beruflich strahlenexponierte Personen und von mehr als $10~\mu Sv$ pro Jahr für nichtberuflich strahlenexponierte Personen führen.

4 SR 732.0

Art. 7⁵ Quellenbezogener Dosisrichtwert

¹ Der quellenbezogene Dosisrichtwert darf nicht höher sein als der Grenzwert nach Artikel 37.

- ² Die Bewilligungsbehörde (Art. 127) entscheidet, für welche Betriebe ein quellenbezogener Dosisrichtwert erforderlich ist, und legt diesen fest.
- ³ Der quellenbezogene Dosisrichtwert wird nach dem Prinzip der Optimierung festgelegt. Dabei sind auch die Abgaben radioaktiver Stoffe und die Direktstrahlung aus anderen Betrieben zu berücksichtigen.

Art. 8 Forschung

- ¹ Die Aufsichtsbehörden können Forschungsprojekte über Strahlenwirkungen und Strahlenschutz in Auftrag geben oder sich an Forschungsprojekten beteiligen.
- ² Das Paul Scherrer-Institut (PSI) und andere Stellen des Bundes stehen den Aufsichtsbehörden im Rahmen ihrer Möglichkeiten zur Durchführung von Forschungsaufträgen über Strahlenwirkungen und Strahlenschutz zur Verfügung.
- ³ Die Aufsichtsbehörden sprechen sich untereinander ab, bevor sie einen Forschungsauftrag vergeben.

Art. 96 Kommission für Strahlenschutz und Überwachung der Radioaktivität

- ¹ Die Kommission für Strahlenschutz und Überwachung der Radioaktivität (KSR) ist beratendes Organ des Bundesrates, des Eidgenössischen Departements des Innern (EDI), des Eidgenössischen Departements für Umwelt, Verkehr, Energie und Kommunikation (UVEK), des Departements für Verteidigung, Bevölkerungsschutz und Sport (VBS), der interessierten Ämter sowie der Schweizerischen Unfallversicherungsanstalt (Suva) für Fragen des Strahlenschutzes.
- ² Sie äussert sich namentlich zur:
 - a. Auslegung und Auswertung internationaler Empfehlungen auf dem Gebiet des Strahlenschutzes im Hinblick auf ihre Anwendung in der Schweiz;
 - b. Erarbeitung und Weiterentwicklung einheitlicher Grundsätze für die Anwendung der Strahlenschutzvorschriften;
 - c. Radioaktivität in der Umwelt, zu den Ergebnissen der Überwachung, ihrer Interpretation und den daraus für die Bevölkerung resultierenden Strahlendosen.
- ³ Sie orientiert die Öffentlichkeit regelmässig über die Situation des Strahlenschutzes in der Schweiz.
- ⁴ Sie ist administrativ dem Bundesamt für Gesundheit (BAG) angegliedert.
- Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).
- Fassung gemäss Ziff. I der V vom 15. Nov. 2000, in Kraft seit 1. Jan. 2001 (AS 2000 2894).

2. Kapitel: Sachkunde, Sachverständige, Aus- und Fortbildung

1. Abschnitt: Grundsatz

Art. 10

¹ Personen, die mit ionisierenden Strahlen umgehen, müssen ihrer Tätigkeit und Verantwortung entsprechend im Strahlenschutz aus- und fortgebildet werden.

- ² Die Ausbildung muss sicherstellen, dass diese Personen:
 - a. mit den Grundregeln des Strahlenschutzes vertraut werden;
 - b. eine geeignete Arbeitstechnik erlernen;
 - die für die entsprechende T\u00e4tigkeit geltenden Strahlenschutzvorschriften anwenden k\u00f6nnen:
 - d. die Risiken von Strahlenexpositionen kennen, die sich aus einem Fehlverhalten ergeben können;
 - e. über die Gefahren informiert sind, welche ihre Arbeit mit ionisierenden Strahlen für die Gesundheit mit sich bringt.

2. Abschnitt: Sachkunde für medizinische Anwendungen

Art. 11 Diagnostische Anwendungen

- ¹ Als Nachweis der notwendigen Sachkunde gilt:
 - für diagnostische Anwendungen von Anlagen zur Erzeugung ionisierender Strahlen (Anlagen) und geschlossenen radioaktiven Strahlenquellen das eidgenössische Arztdiplom;
 - für diagnostische Anwendungen von Anlagen zu chiropraktischen Zwecken eine vom BAG anerkannte Ausbildung mit Prüfung in Röntgentechnik und Strahlenschutz.
- ² Für dosisintensive oder interventionelle diagnostische Anwendungen nach Absatz 1 Buchstabe a muss zusätzlich die entsprechende Facharztausbildung FMH oder eine gleichwertige Weiterbildung in der entsprechenden radiologischen Methode nachgewiesen werden.
- ³ Als Nachweis der notwendigen Sachkunde für diagnostische Anwendungen von Anlagen zu zahnärztlichen Zwecken gilt:
 - a. das eidgenössische Zahnarztdiplom; oder
 - b. eine vom BAG anerkannte Ausbildung mit Prüfung in zahnärztlicher Röntgentechnik und Strahlenschutz für kantonal zugelassene Zahnpraktiker.

⁵ Das EDI erlässt das Kommissionsreglement.

⁴ Für die Tätigkeit als Sachverständiger bleibt Artikel 18 vorbehalten.

Art. 12 Therapeutische Anwendungen

¹ Als Nachweis der notwendigen Sachkunde für therapeutische Anwendungen von Anlagen und geschlossenen radioaktiven Strahlenquellen gilt:

- a. das eidgenössische Arztdiplom,
- b. die entsprechende Facharztausbildung FMH,
- c. eine vom BAG anerkannte Ausbildung in Strahlenschutz, und
- d. eine angemessene praktische Ausbildung in einem Spital.
- ² Wird der Inhalt der Ausbildung nach Absatz 1 Buchstabe c bereits im Rahmen der Facharztausbildung FMH vermittelt, so kann das BAG den Arzt von einer zusätzlichen Ausbildung dispensieren.⁷

Art. 13 Diagnostik und Therapie mit offenen radioaktiven Strahlenquellen

- ¹ Als Nachweis der notwendigen Sachkunde für die Anwendung von offenen radioaktiven Strahlenquellen gilt:
 - a. das eidgenössische Arztdiplom,
 - b. die entsprechende Facharztausbildung FMH,
 - ein vom BAG anerkannter Kurs über den Strahlenschutz bei der medizinischen Anwendung von Radionukliden, und
 - d. eine angemessene praktische Ausbildung in einem Spital.
- ² Wird der Inhalt des Kurses nach Absatz 1 Buchstabe c bereits im Rahmen der Facharztausbildung FMH vermittelt, so kann das BAG den Arzt vom Kurs dispensieren

Art. 14 Tierärzte

- ¹ Als Nachweis der notwendigen Sachkunde für tiermedizinische Anwendungen ionisierender Strahlen gilt das eidgenössische Diplom für Tierärzte.
- ² Für die Tätigkeit als Sachverständiger bleibt Artikel 18 vorbehalten.

Art. 15 Medizinisches Personal

Die folgenden Berufsgruppen müssen den Nachweis der notwendigen Sachkunde durch eine vom BAG anerkannte Ausbildung im Strahlenschutz mit Prüfung erbringen:

- a. Medizinisch-technische Radiologie-Assistentinnen und -Assistenten (MTRA);
- b. Medizinische Praxisassistentinnen und Zahnmedizinische Assistentinnen sowie Dentalhygienikerinnen und -hygieniker;

Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

- c. ...8
- d. Tiermedizinische Assistentinnen:

übriges medizinisches Personal, welches medizinische Röntgenaufnahmen erstellt.

3. Abschnitt: Sachkunde für andere Anwendungen

Art. 16 Anforderungen an die Sachkunde

- ¹ Personen in Forschung, Lehre, medizinischer Analytik, Industrie, Kernanlagen, Transport und Handel, die Strahlenschutzaufgaben gegenüber anderen Personen wahrnehmen, müssen den Nachweis der notwendigen Sachkunde durch eine von der Aufsichtsbehörde anerkannte Ausbildung im Strahlenschutz mit Prüfung erbringen.
- ² Die Aufsichtsbehörde kann im Einzelfall von einer Prüfung absehen, wenn die mit einer Tätigkeit verbundene Gefährdung gering ist.

Art. 17 Sachkunde für Tätigkeiten in Notfallorganisationen

- ¹ Personen, die einer Notfallorganisation wie Polizei, Feuerwehr, Zivilschutz, Führungsstäbe oder Sanitätsdienste angehören, und die bei einem radiologischen Störfall Strahlenschutzaufgaben wahrnehmen, müssen ihrer Funktion und Tätigkeit entsprechend ausgebildet werden.
- ² Die Eidgenössische Kommission für AC-Schutz koordiniert die Ausbildung.

4. Abschnitt: Sachverständige

Art. 18

- ¹ Sachverständige nach Artikel 16 StSG haben sich durch eine ihrer Tätigkeit und Verantwortung entsprechende von der Aufsichtsbehörde anerkannte Ausbildung im Strahlenschutz mit Prüfung sowie über Kenntnisse in der Strahlenschutzgesetzgebung auszuweisen.
- ² Ärzte, Zahnärzte und Tierärzte, die über eine Ausbildung nach den Artikeln 11 und 14 verfügen und die Funktion des Sachverständigen ausüben, müssen über eine vom BAG anerkannte Ausbildung mit Prüfung in Strahlenschutz und Röntgentechnik verfügen.
- ³ Ärzte, die nach Artikel 12 über eine vom BAG anerkannte Ausbildung verfügen oder nach Artikel 13 einen vom BAG anerkannten Kurs absolviert haben sowie Chiropraktoren und Zahnpraktiker mit einer vom BAG anerkannten Ausbildung nach Artikel 11 Absätze 1 und 3, gelten in ihrem Tätigkeitsbereich als Sachverständige.

⁸ Aufgehoben durch Ziff. I der V vom 17. Nov. 1999 (AS **2000** 107).

⁴ Die Aufsichtsbehörde kann im Einzelfall von einer Prüfung absehen, wenn die mit einer Tätigkeit verbundene Gefährdung gering ist.

5. Abschnitt: Aus- und Fortbildungskurse; Finanzhilfen

Art. 19 Aus- und Fortbildungskurse

- ¹ Die Aufsichtsbehörden und das PSI führen bei Bedarf Strahlenschutzkurse durch.
- 2 Das EDI und das UVEK 9 können andere Stellen oder Institutionen mit der Durchführung von Strahlenschutzkursen beauftragen.

Art. 20 Finanzhilfen an Aus- und Fortbildungskurse von Dritten

- ¹ Das BAG oder die Hauptabteilung für die Sicherheit der Kernanlagen (HSK) können im Rahmen der bewilligten Kredite Finanzhilfen gewähren an Aus- oder Fortbildungskurse im Strahlenschutz, die von Dritten (Schulen, Fachorganisationen) durchgeführt werden.
- ² Die Finanzhilfen werden nur gewährt, wenn die Ausbildung von der Aufsichtsbehörde anerkannt worden ist.
- ³ Die Finanzhilfen sind so zu bemessen, dass sie zusammen mit den übrigen Einnahmen des Kursveranstalters dessen nachgewiesene Kosten nicht übersteigen.

6. Abschnitt: Delegation an EDI und UVEK; Anerkennung einer ausländischen Ausbildung

Art. 21

- ¹ Das EDI und das UVEK regeln im Rahmen ihrer Zuständigkeit:
 - a. die Voraussetzungen für die Anerkennung einer Ausbildung oder eines Kurses nach den Artikeln 11, 12, 13, 15, 16 und 18;
 - b. die Bedingungen für Tätigkeiten in Notfallorganisationen nach Artikel 17.
- ² Sie können den Inhalt der Prüfungen und das Prüfungsverfahren regeln.
- ³ Sie legen fest, zu welchen Tätigkeiten sachkundige Personen berechtigt sind.

Art. 22¹⁰ Anerkennung einer ausländischen Ausbildung

Die Aufsichtsbehörde anerkennt eine ausländische Ausbildung, wenn sie der Ausbildung nach den Artikeln 11–16 und 18 gleichwertig ist.

9 Bezeichnung gemäss nicht veröffentlichtem BRB vom 19. Dez. 1997. Diese Änd. ist im ganzen Erlass berücksichtigt.

Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

3. Kapitel: Medizinische Strahlenanwendungen

1. Abschnitt: Grundsätze

Art. 23 Information und Einwilligung des Patienten

Bei geplanten diagnostischen oder therapeutischen Strahlenanwendungen gelten hinsichtlich der Information und der Einwilligung des Patienten die entsprechenden gesetzlichen Vorschriften des Bundes über den Schutz von Leib, Leben und der Persönlichkeit sowie die gesundheitsrechtlichen Vorschriften der Kantone.

Art. 24 Schutz des Patienten

Der Bewilligungsinhaber muss dafür sorgen, dass zu jeder medizinischen Anlage die notwendigen Mittel zum Schutz des Patienten vorhanden sind und eingesetzt werden.

Art. 25 Registrierung

Der Bewilligungsinhaber muss therapeutische oder dosisintensive oder interventionelle diagnostische Strahlenanwendungen so registrieren, dass die Strahlendosis des Patienten auch im nachhinein ermittelt werden kann.

Art. 26 Durchleuchtung

- ¹ Die Durchleuchtung darf nur vom Arzt, eine Durchleuchtung zur Einstellungskontrolle für die Strahlentherapie nach Anweisung eines Arztes auch von einer MTRA durchgeführt werden.
- ² Es dürfen dafür nur Anlagen mit Bildverstärker und automatischer Dosisleistungsregulierung verwendet werden.
- ³ Durchleuchtungen für Eignungsuntersuchungen, insbesondere Abklärungen für die Aufnahme in eine Versicherung, sind nicht zulässig.

2. Abschnitt: Besondere Untersuchungen

Art. 27 Radiologische Reihenuntersuchungen

- ¹ Radiologische Reihenuntersuchungen dürfen nur durchgeführt werden, wenn sie medizinisch und epidemiologisch gerechtfertigt sind.
- ² Reihenuntersuchungen mittels Durchleuchtung oder mittels Schirmbildverfahren sind unzulässig.

Art. 28 Physiologische und pharmakologische Untersuchungen

¹ Die Applikation offener und geschlossener radioaktiver Strahlenquellen am Menschen für physiologische und pharmakologische Untersuchungen bedarf für jedes Projekt der Bewilligung des BAG.

- ² Dem Gesuch um Erteilung der Bewilligung sind beizulegen:
 - a. eine ethische und wissenschaftliche Beurteilung des Versuchsplans;
 - b. Angaben zur vorgesehenen Qualitätskontrolle;
 - c. Angaben über Einverständniserklärung, Anzahl, Alter und Geschlecht der Versuchspersonen;
 - d. eine Abschätzung der Strahlenexposition.
- ³ Für die an diesen Projekten teilnehmenden gesunden Probanden gilt der Grenzwert von Artikel 37.
- ⁴ Mit Zustimmung des BAG darf der Grenzwert bis 5 mSv betragen, sofern die Summendosis der letzten fünf Jahre einschliesslich des laufenden Jahres unter 5 mSv liegt.
- ⁵ Die für den Strahlenschutz relevanten Ergebnisse des Forschungsprojekts sind dem BAG nach Versuchsabschluss zu melden.

3. Abschnitt: Besondere Bestimmungen für Radiopharmazeutika¹¹

Art. 29¹² Klinische Versuche mit Radiopharmazeutika

- ¹ Klinische Versuche mit Radiopharmazeutika müssen nach der Verordnung vom 17. Oktober 2001¹³ über klinische Versuche mit Heilmitteln durchgeführt werden.
- $^2\,\mathrm{Die}$ Meldung an das Schweizerische Heilmittelinstitut muss zusätzlich enthalten:
 - a. Angaben zur vorgesehenen Qualitätskontrolle des Radiopharmazeutikums;
 - b. eine Abschätzung der Strahlenexposition.
- ³ Das Schweizerische Heilmittelinstitut leitet die Meldung an das BAG weiter.
- ⁴ Für die an diesen Projekten teilnehmenden gesunden Probanden gilt der Grenzwert von Artikel 37.
- ⁵ Mit Zustimmung des BAG darf der Grenzwert bis 5 mSv betragen, sofern die Summendosis der letzten fünf Jahre einschliesslich des laufenden Jahres unter 5 mSv liegt.
- ⁶ Die für den Strahlenschutz relevanten Ergebnisse des Forschungsprojekts sind dem BAG nach Versuchsabschluss zu melden.

Fassung gemäss Ziff. II 7 der V vom 17. Okt. 2001, in Kraft seit 1. Jan. 2002 (AS 2001 3294).

Fassung gemäss Ziff. II 7 der V vom 17. Okt. 2001, in Kraft seit 1. Jan. 2002 (AS 2001 3294).

¹³ SR **812.214.2**

Art. 30 Zulassung von Radiopharmazeutika

¹ Radiopharmazeutika dürfen erst dann in den Verkehr gebracht oder am Menschen angewendet werden, wenn sie mit Zustimmung des BAG vom Schweizerischen Heilmittelinstitut zugelassen worden sind.¹⁴

- ² Das BAG erteilt seine Zustimmung, wenn die Qualitätskontrollen für das Radionuklid nach dem Stand von Wissenschaft und Technik durchgeführt werden.¹⁵
- 3 . . 1
- ⁴ Radiopharmazeutika müssen als solche bezeichnet sein und mindestens folgende Angaben enthalten:
 - den Produktenamen;
 - b. das Gefahrenzeichen nach Anhang 6;
 - die Radionuklide, ihre chemische Form und ihre Aktivitäten sowie andere noch vorhandene Radionuklide und ihre Aktivitäten an einem bestimmten Datum:
 - d. andere noch vorhandene chemische Formen der Radionuklide:
 - e. beigemengte nicht radioaktive Stoffe;
 - f. frühestes und äusserstes Gebrauchsdatum (Verfalldatum).

Art. 31 Qualitätskontrolle

- ¹ Wer Radiopharmazeutika herstellt oder am Menschen anwendet, muss regelmässig Qualitätskontrollen durchführen.
- ² Das BAG kann jederzeit von Radiopharmazeutika Proben erheben, um festzustellen, ob die Voraussetzungen nach Artikel 30 noch gegeben sind.¹⁷ Es kann dafür spezialisierte Laboratorien beiziehen.

Art. 32¹⁸ Paritätische Fachkommission

- ¹ Eine paritätische Fachkommission, bestehend aus Vertretern des BAG und des Schweizerischen Heilmittelinstituts, ist im Rahmen der Zulassung von Radiopharmazeutika als beratendes Organ anzuhören.
- ² Das EDI legt die Aufgaben der paritätischen Kommission fest und ernennt die Mitglieder.

¹⁶ Aufgehoben durch Ziff. II 7 der V vom 17. Okt. 2001 (AS **2001** 3294).

Fassung gemäss Ziff. II 7 der V vom 17. Okt. 2001, in Kraft seit 1. Jan. 2002 (AS 2001 3294).

Fassung gemäss Ziff. II 7 der V vom 17. Okt. 2001, in Kraft seit 1. Jan. 2002 (AS 2001 3294).

Fassung gemäss Ziff. II 7 der V vom 17. Okt. 2001, in Kraft seit 1. Jan. 2002 (AS 2001 3294)

Fassung gemäss Ziff. II 7 der V vom 17. Okt. 2001, in Kraft seit 1. Jan. 2002 (AS 2001 3294).

4. Kapitel: Schutz der strahlenexponierten Personen

1. Abschnitt: Dosisbegrenzungen

Art. 33 Beruflich strahlenexponierte Personen

- ¹ Der Bewilligungsinhaber bezeichnet alle beruflich strahlenexponierten Personen des Betriebes und informiert sie über ihre besondere Stellung als beruflich strahlenexponierte Person.
- ² Er informiert sie insbesondere über:
 - a. die bei ihrer Tätigkeit zu erwartenden Strahlendosen;
 - b. die für sie geltenden Dosisgrenzwerte.
- ³ Der Bewilligungsinhaber darf Personen unter 16 Jahren nicht als beruflich strahlennexponierte Personen beschäftigen.

Art. 34 Dosisgrenzwerte

- ¹ Die Dosisgrenzwerte nach den Artikeln 35–37 gelten für die in einem Kalenderjahr akkumulierte Dosis aus kontrollierbarer Strahlung.
- ² Sie gelten nicht für:
 - a. Strahlenanwendungen an Patienten zu diagnostischen oder therapeutischen Zwecken;
 - b. Strahlenexpositionen in ausserordentlichen Lagen nach Artikel 20 StSG;
 - Expositionen durch natürliche Strahlung, deren Quelle nicht beeinflusst werden kann;
 - d. die Exposition von Personen, soweit sie nichtberuflich bei der Unterstützung und Pflege von Patienten helfen.
- ³ Für die Berechnung der Dosisgrenzwerte wird die Strahlenexposition durch die natürliche Strahlung und durch allfällige medizinische Massnahmen nicht berücksichtigt. Vorbehalten bleibt die Berücksichtigung einer Strahlenexposition durch Radon nach Artikel 110 Absatz 3.

Art. 35 Dosisgrenzwert für beruflich strahlenexponierte Personen

- ¹ Für beruflich strahlenexponierte Personen darf die effektive Dosis den Grenzwert von 20 mSv pro Jahr nicht überschreiten. Artikel 36 bleibt vorbehalten.
- ² Für beruflich strahlenexponierte Personen, die wichtige Arbeiten ausführen, beträgt der Dosisgrenzwert ausnahmsweise und mit Einwilligung der Aufsichtsbehörde bis 50 mSv pro Jahr, sofern die Summendosis der letzten fünf Jahre einschliesslich des laufenden Jahres unter 100 mSv liegt.
- ³ Für beruflich strahlenexponierte Personen darf die Äquivalentdosis die folgenden Grenzwerte nicht übersteigen:
 - a. für die Augenlinse 150 mSv pro Jahr;

b. für die Haut, die Hände und die Füsse 500 mSv pro Jahr.

Art. 36 Schutz von jungen Personen und Frauen

- ¹ Für beruflich strahlenexponierte Personen im Alter von 16–18 Jahren darf die effektive Dosis den Grenzwert von 5 mSv pro Jahr nicht überschreiten.
- ² Ab Kenntnis einer Schwangerschaft bis zu ihrem Ende darf für beruflich strahlenexponierte Frauen die Äquivalentdosis an der Oberfläche des Abdomens 2 mSv und die effektive Dosis als Folge einer Inkorporation 1 mSv nicht überschreiten.
- ³ Stillende Frauen dürfen keine Arbeiten mit radioaktiven Stoffen ausführen, bei denen die Gefahr einer Inkorporation oder radioaktiven Kontamination besteht.

Art. 37 Dosisgrenzwert für nichtberuflich strahlenexponierte Personen

Für nichtberuflich strahlenexponierte Personen darf die effektive Dosis den Grenzwert von 1 mSv pro Jahr nicht überschreiten.

Art. 38 Massnahmen bei einer Überschreitung von Dosisgrenzwerten

- ¹ Wer vermutet oder feststellt, dass ein Dosisgrenzwert überschritten ist, muss dies sofort der Aufsichtsbehörde melden.
- ² Der Bewilligungsinhaber muss eine Untersuchung nach Artikel 99 veranlassen.
- ³ Die Aufsichtsbehörde trifft die erforderlichen Massnahmen.
- ⁴ Wird ein Dosisgrenzwert für beruflich strahlenexponierte Personen überschritten, so darf die betroffene Person für den Rest des Jahres zusätzlich höchstens eine effektive Dosis von 1 mSv akkumulieren. Vorbehalten bleibt eine Einwilligung der Aufsichtsbehörde nach Artikel 35 Absatz 2.

Art. 39 Ärztliche Kontrolle bei einer Überschreitung von Dosisgrenzwerten

- ¹ Hat eine Person innerhalb eines Jahres eine effektive Dosis von mehr als 250 mSv, eine Äquivalentdosis für die Haut oder Knochenoberfläche von mehr als 2500 mSv oder eine Äquivalentdosis für ein anderes Organ von mehr als 1000 mSv erhalten, so ist sie unter ärztliche Kontrolle zu stellen.
- ² Der Arzt teilt das Ergebnis seiner Untersuchung mit einem Antrag über die zu treffenden Massnahmen dem Betroffenen und der Aufsichtsbehörde mit. Er informiert die Suva¹⁹, wenn es sich um einen Arbeitnehmer handelt.
- ³ Der Arzt gibt der Aufsichtsbehörde dabei bekannt:
 - Daten über erkannte Frühschäden:
 - b. Daten über Krankheiten oder besondere Veranlagungen, welche einen Nichteignungsentscheid notwendig machen;
 - c. Daten der biologischen Dosimetrie.
- Ausdruck gemäss Ziff, I der V vom 17. Nov. 1999, in Kraft seit. 1. Jan. 2000 (AS 2000 107). Diese Änd. ist im ganzen Erlass berücksichtigt.

⁴ Die Aufsichtsbehörde bewahrt diese Daten so lange auf, wie die betreffende Person beruflich strahlenexponiert ist.

⁵ Die Aufsichtsbehörde trifft die erforderlichen Massnahmen bei Personen, die in keinem Arbeitsverhältnis stehen. Sie kann einen befristeten oder dauernden Arbeitsausschluss verfügen.

Art. 40 Aussergewöhnliche Strahlenexpositionen

- ¹ Die Dosisgrenzwerte nach den Artikeln 35–37 dürfen zur Bewältigung von Störfällen nach Artikel 97 überschritten werden, wenn dies zum Schutz der Bevölkerung und insbesondere zur Rettung von Menschenleben erforderlich ist.
- ² Für Personen, die nach Artikel 120 verpflichtet sind, gelten die Werte von Artikel 121 Absatz 1.

Art. 41 Flugpersonal

- ¹ Personal von Düsenflugzeugen ist beim Eintritt in den Flugdienst durch den Betriebsinhaber über die bei der Berufsausübung auftretende Strahlenexposition zu informieren.
- ² Schwangere Frauen können verlangen, dass sie vom Flugdienst befreit werden.

2. Abschnitt: Ermittlung der Strahlendosis (Dosimetrie)

Art. 42 Dosimetrie bei beruflich strahlenexponierten Personen

- ¹ Bei beruflich strahlenexponierten Personen ist die Strahlenexposition individuell und nach Anhang 5 zu ermitteln (Personendosimetrie).
- ² Die externe Strahlenexposition ist monatlich zu ermitteln.
- ³ Die Aufsichtsbehörde legt im Einzelfall fest, wie und in welchen Zeitabschnitten die interne Strahlenexposition zu ermitteln ist. Sie berücksichtigt dabei die Arbeitsbedingungen und die Art der verwendeten Radionuklide.
- ⁴ Die Aufsichtsbehörde kann verlangen, dass ein zweites, unabhängiges Dosimetriesystem, welches eine zusätzliche Funktion erfüllt, eingesetzt wird.
- ⁵ Die Aufsichtsbehörde kann Ausnahmen von den Absätzen 1 und 2 erlauben, wenn ein zusätzliches oder ein anderes geeignetes System zur Dosisüberwachung zur Verfügung steht.

Art. 43 Pflichten des Bewilligungsinhabers

- ¹ Der Bewilligungsinhaber muss die Strahlenexposition aller in seinem Betrieb tätigen beruflich strahlenexponierten Personen von anerkannten Personendosimetriestellen ermitteln lassen. Triagemessungen für die Feststellung einer internen Strahlenexposition kann er auch selber durchführen.
- ² Er muss diese Personen über die Ergebnisse der Dosimetrie informieren.

- ³ Er muss für die Kosten der Dosimetrie aufkommen.
- ⁴ Er muss der Suva die für die Durchführung der arbeitsmedizinischen Vorsorge notwendigen Betriebs-, Personen- und Dosimetriedaten zur Verfügung stellen.

Art. 44 Dosimetrie bei nichtberuflich strahlenexponierten Personen²⁰

- ¹ Die Strahlenexposition von nichtberuflich strahlenexponierten Personen wird im Rahmen der Überwachung der Immissionsgrenzwerte nach Artikel 102 oder durch Modellrechnungen ermittelt. In Einzelfällen kann die Strahlenexposition auch individuell ermittelt werden.
- 2 Für nichtberuflich strahlenexponierte Personen innerhalb eines Betriebes legt die Aufsichtsbehörde die Methode zur Ermittlung der Strahlenexposition im Einzelfall fest
- ³ Die interne Strahlenexposition ist nach den Anhängen 4 und 5 zu ermitteln.

3. Abschnitt: Personendosimetriestellen

Art. 45 Anerkennung und Voraussetzungen

- ¹ Wer eine Personendosimetriestelle betreiben will, muss diese anerkennen lassen.
- ² Die Anerkennung wird erteilt, wenn folgende Voraussetzungen erfüllt sind:
 - a. Der verantwortliche Leiter der Personendosimetriestelle muss als Sachverständiger für den Strahlenschutz ausgebildet sein, über ein Diplom technisch-naturwissenschaftlicher Richtung einer Hochschule oder einer höheren technischen Lehranstalt und über praktische Kenntnisse in der betreffenden Messtechnik verfügen.
 - Die Personendosimetriestelle muss in der Schweiz liegen, über eine geeignete Organisation sowie über genügend und hinreichend ausgebildetes Personal verfügen.
 - c. Das Messsystem muss dem Stand der Technik entsprechen und an nationale oder internationale Normale angeschlossen sein (Rückverfolgbarkeit²¹).
- ³ Ist eine Personendosimetriestelle für diese Tätigkeit akkreditiert, so gilt die Vermutung, dass die Voraussetzungen nach Absatz 2 erfüllt sind.

Art. 46 Verfahren und Geltung der Anerkennung

- ¹ Die anerkennende Behörde stellt durch eine Inspektion und eine technische Prüfung fest, ob die Voraussetzungen für eine Anerkennung erfüllt sind. Sie kann Dritte damit beauftragen.
- Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).
- Ausdruck gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit. 1. Jan. 2000 (AS 2000 107). Diese Änd. ist im ganzen Erlass berücksichtigt.

² Die Rückverfolgbarkeit nach Artikel 45 Absatz 2 Buchstabe c wird im Einzelfall durch das Bundesamt für Metrologie und Akkreditierung (metas)²² festgelegt und durch eine von ihm anerkannte Stelle überprüft.

³ Die Anerkennung ist fünf Jahre gültig.

Art. 47 Anerkennende Behörden

- ¹ Zuständig für die Anerkennung sind:
 - das BAG, wenn eine Personendosimetriestelle ganz oder zum grösseren Teil in seinem Aufsichtsbereich oder in demjenigen der Suva tätig sein will;
 - b. die HSK, wenn eine Personendosimetriestelle ganz oder zum grösseren Teil in ihrem Aufsichtsbereich tätig sein will.
- ² Will eine Personendosimetriestelle in verschiedenen Aufsichtsbereichen tätig sein, so sprechen sich die anerkennenden Behörden darüber ab, welche von ihnen für die Anerkennung zuständig ist.
- ³ Die anerkennenden Behörden dürfen keine Personendosimetriestelle betreiben.

Art. 48 Meldungen des Bewilligungsinhabers

Der Bewilligungsinhaber muss der von ihm beauftragten Personendosimetriestelle die Personalien (Name, Vorname, Ledigname, Geburtsdatum, AHV-Nummer, Geschlecht) der in seinem Betrieb tätigen beruflich strahlenexponierten Personen und die betriebsbezogenen Daten (Name des Betriebs, Adresse) melden.

Art. 49 Meldungen der Personendosimetriestelle

- ¹ Die Personendosimetriestelle muss die Daten nach Artikel 48 und die ermittelten Strahlendosen innerhalb eines Monats nach Ablauf der Überwachungsperiode dem Bewilligungsinhaber und in einer vom BAG vorgeschriebenen Form dem zentralen Dosisregister (Art. 53) melden. Die Daten aus dem Aufsichtsbereich der HSK sind auch dieser direkt zu melden.
- ² Beträgt die über die Überwachungsperiode ermittelte effektive Dosis mehr als 2 mSv oder die Äquivalentdosis für ein Organ mehr als 10 mSv, so muss die Personendosimetriestelle dem Bewilligungsinhaber und der zuständigen Aufsichtsbehörde (BAG oder Suva) dies spätestens zehn Kalendertage nach dem Eintreffen des Dosimeters melden.
- ³ Bei Verdacht auf Überschreitung eines Dosisgrenzwertes muss die Personendosimetriestelle das Resultat dem Bewilligungsinhaber innerhalb von 24 Stunden mitteilen. Liegt die Dosis über dem Dosisgrenzwert nach Artikel 35 oder 36, so muss die Personendosimetriestelle sofort die zuständige Aufsichtsbehörde benachrichtigen. Sie informiert auch die Suva, wenn es sich um einen Arbeitnehmer handelt.
- Die Bezeichnung der Verwaltungseinheit wurde gemäss Art. 4a der Publikationsverordnung vom 15. Juni 1998 (SR 170.512.1) angepasst. Die Anpassung wurde im ganzen Text vorgenommen.

Art. 50 Pflichten der Personendosimetriestelle

¹ Die Personendosimetriestelle muss die Dosiswerte und Personalien sowie alle Rohdaten, welche für eine nachträgliche Berechnung der zu meldenden Dosen notwendig sind, nach Ablieferung an das zentrale Dosisregister zwei Jahre aufbewahren.

² Sie muss sich nach den Weisungen der anerkennenden Behörde auf eigene Kosten an Vergleichsmessungen beteiligen.

Art. 51 Schweigepflicht und Datenschutz

- ¹ Die Personendosimetriestelle darf Personalien und Dosiswerte der dosimetrierten Personen nur diesen selbst, ihrem Auftraggeber, der Aufsichtsbehörde, der Bewilligungsbehörde und dem zentralen Dosisregister bekanntgeben.
- ² Die mit der Durchführung der Dosimetrie betrauten Personen unterstehen hinsichtlich ihrer Schweigepflicht und des Datenschutzes den für die Bundesbeamten geltenden Vorschriften.

Art. 52 Technische Bestimmungen

- ¹ Das EDI und das UVEK erlassen nach Anhören des metas gemeinsam technische Bestimmungen zur Personendosimetrie.
- ² Die technischen Bestimmungen enthalten insbesondere:
 - a. Mindestanforderungen an die Messsysteme;
 - b. Mindestanforderungen an die Messgenauigkeit im Routinebetrieb und bei Vergleichsmessungen;
 - c. Standardmodelle zur Berechnung der Strahlendosen;
 - d. Format der Meldungen.

4. Abschnitt: Registrierung der Strahlendosen

Art. 53 Zentrales Dosisregister

- ¹ Das BAG führt ein Register der Dosen, die von den beruflich strahlenexponierten Personen in der Schweiz akkumuliert werden (zentrales Dosisregister).
- ² Das zentrale Dosisregister hat zum Zweck:
 - den Aufsichtsbehörden jederzeit eine Kontrolle der akkumulierten Dosen aller beruflich strahlenexponierten Personen in der Schweiz zu ermöglichen;
 - b. statistische Aussagen zu ermöglichen;
 - c. die Aufbewahrung der Daten sicherzustellen.

Art. 54 Bearbeitete Daten

¹ Die folgenden Daten können im zentralen Dosisregister gespeichert werden:

- a. Name, Vorname und Ledigname;
- b. Geburtsdatum:
- c. AHV-Nummer:
- d. Geschlecht:
- e. Name und Adresse des Betriebs;
- f. Dosiswerte:
- g. Berufsgruppe.
- ² Bei nur vorübergehend in der Schweiz tätigen Personen werden die in der Schweiz akkumulierten Dosen registriert. Bei den übrigen beruflich strahlenexponierten Personen werden auch die im Ausland akkumulierten Dosen registriert.
- ³ Die Aufsichtsbehörden und der arbeitsärztliche Dienst der Suva haben direkten Zugriff auf die Daten aus ihrem Aufsichtsbereich.

Art. 55 Aufbewahrung und Veröffentlichung der Daten

- ¹ Das BAG muss alle Daten, die im zentralen Dosisregister erfasst werden, 100 Jahre aufbewahren.
- ² Die Aufsichtsbehörden erarbeiten jährlich einen Bericht über die Ergebnisse der Personendosimetrie.
- ³ Das BAG veröffentlicht den Bericht.

Art. 56 Verwendung für Forschungsprojekte

- ¹ Das BAG kann die im zentralen Dosisregister gespeicherten Daten für Forschungsprojekte über Strahlenwirkungen und Strahlenschutz verwenden oder an Dritte bekanntgeben.
- ² Das BAG stellt die Daten nur in anonymisierter Form zur Verfügung, es sei denn, die Bekanntgabe von Personendaten sei für die Durchführung des Forschungsprojekts unerlässlich.
- ³ Die Daten werden zur Verfügung gestellt, wenn:
 - a. der Empfänger für die Durchführung eines Forschungsprojekts darauf angewiesen ist;
 - b. er für die Einhaltung des Datenschutzes Gewähr bietet.
- ⁴ Der Empfänger darf die Daten nur im Rahmen seines Forschungsprojekts verwenden. Er darf die Daten nur im Rahmen des Forschungsprojekts an Dritte weitergeben.
- ⁵ Der Empfänger muss die Daten anonymisieren oder vernichten, wenn er sie im Rahmen seines Forschungsprojekts nicht mehr braucht. Ist ein Folgeprojekt geplant, so müssen die Daten beim BAG hinterlegt werden.

Art. 57 Persönliches Dosisdokument

- ¹ Das BAG gibt ein persönliches Dosisdokument heraus.
- ² Die anerkannten Personendosimetriestellen müssen dieses Dosisdokument den beruflich strahlenexponierten Personen kostenlos abgeben.
- ³ Der Bewilligungsinhaber muss die akkumulierten Dosen registrieren. Bei Beendigung des Arbeitsverhältnisses oder vor einem Einsatz in einem anderen Betrieb muss er der beruflich strahlenexponierten Person das persönliche Dosisdokument mit den eingetragenen Dosen übergeben.

5. Kapitel: Umgang mit Anlagen und radioaktiven Strahlenquellen

1. Abschnitt: Kontrollierte Zonen

Art. 58

- ¹ Der Bewilligungsinhaber muss zur Begrenzung und Kontrolle der Strahlenexposition kontrollierte Zonen einrichten.
- ² Kontrollierte Zonen sind deutlich zu begrenzen und nach Anhang 6 zu kennzeichnen.
- ³ Der Bewilligungsinhaber muss Zutritt zu und Aufenthalt in kontrollierten Zonen unter Kontrolle halten.
- ⁴ Das EDI und das UVEK erlassen die erforderlichen Vorschriften für das Verhalten in kontrollierten Zonen.

2. Abschnitt: Abschirmung und Standort von Anlagen und radioaktiven Strahlenquellen

Art. 59 Abschirmung

Der Raum oder Bereich, in dem stationäre Anlagen oder radioaktive Strahlenquellen betrieben oder gelagert werden, ist so zu konzipieren oder abzuschirmen, dass unter Berücksichtigung der Betriebsfrequenz:

- a. an Orten ausserhalb von kontrollierten Zonen innerhalb des Betriebsareals, wo sich nichtberuflich strahlenexponierte Personen aufhalten können, die Ortsdosis 0,02 mSv pro Woche nicht übersteigt. Dieser Wert kann an Orten, wo sich Personen nicht dauernd aufhalten, bis zum Fünffachen überschritten werden;
- an Orten ausserhalb des Betriebsareals die Immissionsgrenzwerte nach Artikel 102 nicht überschritten werden.

Art. 60 Standort von nichtmedizinischen Anlagen und radioaktiven Strahlenquellen

- ¹ Anlagen für nichtmedizinische Anwendungen und Bestrahlungseinheiten, die für die zerstörungsfreie Materialprüfung (Grobstrukturanalysen) eingesetzt werden, müssen in einem Bestrahlungsraum installiert sein oder über eine Vollschutzeinrichtung verfügen.
- ² Der Bestrahlungsraum muss den folgenden Anforderungen genügen:
 - Die Schalteinrichtung muss sich ausserhalb des Bestrahlungsraumes befinden.
 - b. Geeignete Vorrichtungen müssen das Betreten des Bestrahlungsraumes verhindern, solange die Anlage in Betrieb steht. Das Verlassen des Raumes muss jederzeit gewährleistet sein.
 - c. Der Betriebszustand der Anlage muss im Bestrahlungsraum, am Eingang zum Bestrahlungsraum und bei der Schalteinrichtung durch ein akustisches oder optisches Signal deutlich angezeigt werden.
- ³ Die Aufsichtsbehörde kann Ausnahmen von Absatz 1 zulassen, wenn eine Anlage oder Bestrahlungseinheit nicht in einem Bestrahlungsraum betrieben werden kann. Die Ortsdosis darf an der Abgrenzung der kontrollierten Zone im Freien 0,1 mSv pro Woche und in Gebäuden 0,02 mSv pro Woche nicht übersteigen.
- ⁴ Wird eine Anlage oder eine Bestrahlungseinheit ausserhalb eines Bestrahlungsraumes eingesetzt, so ist sicherzustellen, dass der Betreiber jederzeit eine weitere Person für Hilfeleistungen beiziehen kann.
- ⁵ Analytische und andere Röntgenanlagen sowie Einheiten mit geschlossenen radioaktiven Strahlenquellen für radiometrische Messungen wie Füllstandsmesser, Niveauregler und Schichtdickenanlagen, müssen in einer kontrollierten Zone installiert sein oder über eine Vollschutzeinrichtung verfügen.

Art. 61 Standort von medizinischen Anlagen und radioaktiven Strahlenquellen

- ¹ Das EDI regelt die Anforderungen an den Standort von medizinischen Anlagen. Es legt insbesondere die baulichen Massnahmen und die Berechnungsgrundlagen fest.
- ² Der Aufenthalt von Personen in der Nähe von Patienten, denen radioaktive Strahlenquellen zu therapeutischen Zwecken appliziert wurden, ist auf ein Minimum zu beschränken. Der für den Patienten verantwortliche Arzt sorgt für eine angemessene Überwachung des Aufenthaltsbereiches des Patienten.
- ³ Das EDI legt fest:
 - a. die Anforderungen an die Applikationsräume;
 - b. die Strahlenschutzmassnahmen f
 ür die Betreuung und Stationierung von Therapiepatienten.

Art. 62 Technische Anforderungen

Das EDI und das UVEK regeln die technischen Anforderungen an Anlagen und radioaktive Strahlenquellen und legen die erforderlichen Schutzmassnahmen für den Umgang fest.

3. Abschnitt: Strahlenmessgeräte

Art. 63 Strahlenmessgeräte

- ¹ Der Bewilligungsinhaber muss dafür sorgen, dass der Betrieb über die notwendige Anzahl von geeigneten Strahlenmessgeräten verfügt.
- ² In Räumen oder Bereichen, in denen radioaktive Strahlenquellen gehandhabt werden, müssen jederzeit geeignete Strahlenmessgeräte für Dosisleistungs- bzw. Kontaminationskontrollen zur Verfügung stehen.
- ³ Werden nichtmedizinische Anlagen oder Bestrahlungseinheiten für die Grobstrukturanalyse von Materialien ohne feste Abschirmung oder ausserhalb von Bestrahlungsräumen betrieben, so muss das Bedienungspersonal zusätzlich zum persönlichen Dosimeter ein mit einer Warnvorrichtung versehenes Strahlenmessgerät zur Verfügung haben.
- ⁴ Wenn Lage und Dimensionen von Abschirmungen verändert werden können oder wenn Abschrankungen zur Abgrenzung einer kontrollierten Zone zu errichten sind, muss zur Messung von Ortsdosisleistungen mindestens ein geeignetes, direkt ablesbares Strahlenmessgerät bei der Anlage zur Verfügung stehen.

Art. 64 Prüfung und Eichung von Strahlenmessgeräten

- ¹ Der Bewilligungsinhaber muss Strahlenmessgeräte in angemessenen Zeitabständen mit geeigneten Prüfquellen auf ihre Funktionstüchtigkeit überprüfen.
- ² Die Aufsichtsbehörde kann den Bewilligungsinhaber verpflichten, an Vergleichsmessungen teilzunehmen.
- ³ Sie kann verlangen, dass Strahlenmessgeräte und Messgeräte zur Bestimmung von Aktivitäten durch das metas oder durch eine von ihm anerkannte Stelle geprüft und geeicht werden.
- ⁴ Die zur Kontrolle der Strahlentherapieanlagen eingesetzten ortsunabhängigen Referenzmesssysteme müssen regelmässig durch das metas oder durch eine von ihm anerkannte Stelle geeicht und dabei auf ihre Funktionstüchtigkeit geprüft werden.
- ⁵ Die Anforderungen an diese Referenzmesssysteme und die Zeitspanne der periodischen Nachprüfungen werden durch das metas im Einzelfall nach Anhörung der Aufsichtsbehörde festgelegt.

4. Abschnitt: Bauart und Kennzeichnung von geschlossenen radioaktiven Strahlenquellen

Art. 65 Bauart

- ¹ Geschlossene radioaktive Strahlenquellen müssen bezüglich Bauart dem Stand von Wissenschaft und Technik, insbesondere den Normen der Internationalen Standard Organisation (ISO-Normen) entsprechen.
- ² Für geschlossene radioaktive Strahlenquellen sind Radionuklide in einer chemisch möglichst stabilen Form zu wählen.
- ³ Werden geschlossene radioaktive Strahlenquellen ausschliesslich als Gammastrahler verwendet, so muss eine Abschirmung vorhanden sein, die das Austreten der primären Teilchenstrahlung verhindert.

Art. 66 Kennzeichnung

- ¹ Geschlossene radioaktive Strahlenquellen und deren Behälter sind so zu kennzeichnen, dass die Identifikation der Quelle jederzeit möglich ist. Die Aufsichtsbehörde kann Ausnahmen gewähren, wenn sich eine Kennzeichnung nicht anbringen lässt.
- ² Aus der Kennzeichnung müssen Radionuklid, Aktivität, Herstellungs- und Messdatum und ISO-Klassifikation ersichtlich oder ableitbar sein.

Art. 67 Prüfung

- ¹ Jede geschlossene radioaktive Strahlenquelle muss durch eine für diese Tätigkeit akkreditierte oder von der Aufsichtsbehörde anerkannte Stelle auf Dichtheit und Kontaminationsfreiheit geprüft werden.
- ² Jede geschlossene radioaktive Strahlenquelle, deren Aktivität oberhalb des hundertfachen Werts der Bewilligungsgrenze nach Anhang 3 Spalte 10 liegt, muss einer Typenprüfung gemäss ISO-Normen unterzogen werden und entsprechend klassifiziert sein.
- ³ Die Aufsichtsbehörde kann in begründeten Fällen Ausnahmen von den Absätzen 1 und 2 zulassen oder zusätzliche Qualitätsprüfungen verlangen.

Art. 68 Verwendung und Betrieb

- ¹ Bestrahlungseinheiten und Schutzbehälter mit geschlossenen radioaktiven Strahlenquellen, welche ausserhalb von Bestrahlungsräumen gehandhabt werden, dürfen bei verschlossener Abschirmung in 1 m Abstand von ihrer Oberfläche eine Ortsdosisleistung von höchstens 0,1 mSv pro Stunde aufweisen.
- ² Geschlossene radioaktive Strahlenquellen für die zerstörungsfreie Materialprüfung sind bei Nichtgebrauch in einem Schutzbehälter (Bestrahlungseinheit) aufzubewahren. Die Nutzstrahlung der ausgefahrenen radioaktiven Strahlenquelle muss mit einem Kollimator auf das benötigte Feld ausgeblendet werden.

5. Abschnitt: Arbeitsbereiche für den Umgang mit offenen radioaktiven Strahlenquellen

Art. 69 Arbeitsbereiche

- ¹ Arbeiten mit offenen radioaktiven Strahlenquellen, deren Aktivität die Bewilligungsgrenze nach Anhang 3 Spalte 10 übersteigt, sind in Arbeitsbereichen auszuführen.
- ² Arbeitsbereiche sind in separaten, nur für diese Zwecke vorgesehenen Räumen einzurichten.
- ³ Die Arbeitsbereiche werden aufgrund der pro Arbeitsgang gehandhabten oder pro Tag umgesetzten Aktivitäten in die folgenden Typen eingestuft:
 - Typ C: Eine Aktivität von 1 bis zu 100 Bewilligungsgrenzen nach Anhang 3 Spalte 10;
 - Typ B: Eine Aktivität von 1 bis zu 10 000 Bewilligungsgrenzen nach Anhang 3 Spalte 10;
 - c. Typ A: Eine Aktivität von 1 Bewilligungsgrenze bis zu einer oberen Grenze, welche im Bewilligungsverfahren festgelegt wird.
- ⁴ Für Tätigkeiten ohne Inhalationsgefahr kann die Aufsichtsbehörde im Einzelfall den Typ des Arbeitsbereiches unter Berücksichtigung des Inkorporationsrisikos festlegen.
- ⁵ Das EDI und das UVEK erlassen die erforderlichen Vorschriften über Schutzmassnahmen in Arbeitsbereichen.

Art. 70 Ausnahmen

- ¹ Die Aufsichtsbehörde kann Ausnahmen von Artikel 69 Absatz 2 gestatten, wenn betriebstechnische Gründe vorliegen und der Strahlenschutz gewährleistet ist.
- ² Für Handhabungen mit geringen Inkorporationsrisiken kann die Aufsichtsbehörde in Ausnahmefällen die Werte nach Artikel 69 Absatz 3 bis zu einem Faktor 10 erhöhen, sofern der Strahlenschutz gewährleistet ist.
- ³ Die Aufsichtsbehörde kann die Werte nach Artikel 69 Absatz 3 bis zu einem Faktor 100 erhöhen, wenn ein Arbeitsbereich nur der Lagerung von radioaktiven Strahlenquellen dient.

Art. 71 Richtwerte für Kontaminationen

- ¹ Für maximale Kontaminationen der Haut, von Wäsche, Kleidern, Materialien und Oberflächen ausserhalb von kontrollierten Zonen gelten die in Anhang 3 Spalte 12 festgelegten Richtwerte.
- ² Wenn in begehbaren Bereichen von kontrollierten Zonen die Kontamination von Materialien und Oberflächen über dem zehnfachen Richtwert nach Anhang 3 Spalte 12 liegt, müssen Dekontaminationsmassnahmen durchgeführt oder andere geeignete Schutzmassnahmen getroffen werden.

³ Bleibt in einer kontrollierten Zone ein Teil einer Kontamination bei den voraussehbaren Beanspruchungen an der Oberfläche fixiert, so gelten die Richtwerte nach Anhang 3 Spalte 12 nur für die übertragbare Kontamination.

Art. 72 Behandlung und Freigabe von Arbeitsbereichen nach Einstellung der Arbeiten

- ¹ Der Bewilligungsinhaber muss Arbeitsbereiche, in denen der Umgang mit offenen radioaktiven Strahlenquellen eingestellt wird, und nötigenfalls auch die Umgebung solcher Bereiche mit allen Installationen und dem dort verbleibenden Material mindestens soweit dekontaminieren, dass die in Anhang 3 Spalte 12 festgelegten Richtwerte und die Immissionsgrenzwerte nach Artikel 102 nicht überschritten werden.
- ² Der Bewilligungsinhaber muss der Aufsichtsbehörde über die nach Absatz 1 durchgeführten Massnahmen einen Bericht erstatten.
- ³ Er darf die betroffenen Arbeitsbereiche nur nach Freigabe durch die Aufsichtsbehörde zu anderen Zwecken verwenden.

6. Abschnitt: Wartung und Unterhalt von Anlagen und radioaktiven Strahlenquellen

Art. 73 Grundsatz

- ¹ Der Bewilligungsinhaber muss dafür sorgen, dass Anlagen in angemessenen Zeitabständen umfassend überprüft und gewartet werden.
- ² Die Aufsichtsbehörde legt für nichtmedizinische Anlagen im Einzelfall die Zeitabstände fest
- ³ Der Bewilligungsinhaber muss geschlossene radioaktive Strahlenquellen regelmässig auf ihren Zustand prüfen und über die Prüfungen Buch führen.

Art. 74 Medizinische Anlagen und medizinische Einrichtungen mit geschlossenen radioaktiven Strahlenquellen

- ¹ Der Bewilligungsinhaber muss dafür sorgen, dass vor der ersten Anwendung einer medizinischen Anlage oder medizinischen Einrichtung mit geschlossenen radioaktiven Strahlenquellen eine Abnahmeprüfung durchgeführt wird.
- ² Er muss nach Inbetriebnahme der medizinischen Anlage oder medizinischen Einrichtung mit geschlossenen radioaktiven Strahlenquellen regelmässig ein Qualitätssicherungsprogramm anwenden.
- ³ Bei einer medizinischen Röntgenanlage oder medizinischen Einrichtung mit geschlossenen radioaktiven Strahlenquellen muss eine Wartung mindestens alle drei Jahre, bei Kleinanlagen für die Zahnmedizin mindestens alle sechs Jahre, bei Therapieanlagen über 100 Kilovolt und bei Bestrahlungseinheiten mindestens jährlich durchgeführt werden.

⁴ Bei Therapieanlagen oder Bestrahlungseinheiten müssen die sicherheitsrelevanten und die dosisbestimmenden Elemente mindestens jährlich sowie nach jeder Änderung einer Komponente, welche die Dosisleistung beeinflussen kann, überprüft werden. Die Überprüfung der dosisbestimmenden Elemente muss unter Aufsicht eines Medizinphysikers mit Fachanerkennung in medizinischer Strahlenphysik der Schweizerischen Gesellschaft für Strahlenbiologie und medizinische Physik oder einer anderen gleichwertigen Ausbildung erfolgen.²³

- ⁵ Der Bewilligungsinhaber muss für den Betrieb von medizinischen Beschleunigeranlagen und medizinischen Bestrahlungseinheiten sowie für die Dosimetrie bei der Bestrahlungsplanung einen oder mehrere Medizinphysiker nach Absatz 4 zur Verfügung haben.
- ⁶ Das EDI legt den Mindestumfang der Abnahmeprüfung und des Qualitätssicherungsprogramms fest. Es berücksichtigt dabei internationale Qualitätssicherungsnormen.

7. Abschnitt: Lagerung, Transport, Ein-, Aus- und Durchfuhr von radioaktiven Strahlenquellen

Art. 75 Lagerung

- ¹ Radioaktive Strahlenquellen, deren Aktivität über der Bewilligungsgrenze nach Anhang 3 Spalte 10 liegt, müssen so gelagert werden, dass sie nur Personen zugänglich sind, die zu ihrer Benützung befugt sind.
- $^2\,\mathrm{Das}$ EDI und das UVEK regeln die Art der Lagerung und die Anforderungen an die Lagerstellen.

Art. 76 Transport ausserhalb des Betriebsareals

- ¹ Wer radioaktive Strahlenquellen ausserhalb des Betriebsareals transportiert oder transportieren lässt, muss die für den Transport massgebenden Vorschriften des Bundes für die Beförderung gefährlicher Güter einhalten.
- ² Er muss ein angemessenes Qualitätssicherungsprogramm nachweisen und anwenden.
- ³ Der Versender und der Transporteur von radioaktiven Strahlenquellen müssen einen Verantwortlichen für die Qualitätssicherung benennen und die Qualitätssicherungs-Massnahmen schriftlich festlegen.
- ⁴ Verfügen der Versender oder der Transporteur über ein von einer akkreditierten Stelle zertifiziertes Qualitätssicherungssystem für den Transport radioaktiver Strahlenquellen, so gilt die Vermutung, dass sie ein angemessenes Qualitätssicherungsprogramm anwenden.

²³ Fassung des Satzes gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

⁵ Der Versender und der Transporteur müssen sich vergewissern, dass die Transportbehälter oder Verpackungen den massgebenden Vorschriften entsprechen und gewartet werden.

⁶ Der Versender muss überprüfen, ob der von ihm beauftragte Transporteur eine Bewilligung für den Transport von radioaktiven Strahlenquellen besitzt.

Art. 77 Transport innerhalb des Betriebsareals

Das EDI und das UVEK legen fest, welchen Anforderungen die Transportverpackung von radioaktiven Strahlenquellen genügen muss, die innerhalb des Betriebsareals transportiert werden.

Art. 78 Ein-, Aus- und Durchfuhr

- ¹ Radioaktive Strahlenquellen dürfen nur über die Hauptzollämter ein-, aus- oder durchgeführt werden.
- ² In der Zolldeklaration für die Ein- und Ausfuhr müssen folgende Angaben enthalten sein:
 - a. die genaue Warenbezeichnung;
 - b. die Radionuklide;
 - c. die Gesamtaktivität pro Radionuklid in Becquerel;
 - d. die Nummer der Bewilligung des Empfängers oder Absenders in der Schweiz.
- ³ Für die Einlagerung in ein Zolllager bedarf es einer Einzelbewilligung. Diese muss dem Zollamt vorgelegt werden.

6. Kapitel: Radioaktive Abfälle

1. Abschnitt: Abgabe an die Umwelt

Art. 79 Grundsatz

- ¹ Radioaktive Abfälle dürfen nur mit einer Bewilligung und unter Kontrolle durch den Bewilligungsinhaber an die Umwelt abgegeben werden.
- ² Es dürfen nur radioaktive Abfälle mit geringer Aktivität an die Umwelt abgegeben werden.

Art. 80 Abgabe luftgetragener und flüssiger Abfälle

- ¹ Luftgetragene oder flüssige radioaktive Abfälle dürfen nur über die Abluft an die Atmosphäre oder über das Abwasser an Oberflächengewässer abgegeben werden.
- ² Die Bewilligungsbehörde legt im Einzelfall für jeden Betrieb maximal zulässige Abgaberaten und gegebenenfalls Abgabekonzentrationen fest.

³ Sie legt die Abgaberaten und Abgabekonzentrationen so fest, dass der quellenbezogene Dosisrichtwert nach Artikel 7 und die Immissionsgrenzwerte nach Artikel 102 nicht überschritten werden.

Art. 81 Kontrollmassnahmen

- ¹ Die Bewilligungsbehörde legt in der Bewilligung eine Emissionsüberwachung fest. Sie kann eine Meldepflicht vorsehen.
- ² Die Immissionsüberwachung richtet sich nach Artikel 103.
- ³ Der Bewilligungsinhaber kann für Überwachungsmessungen externe Stellen beiziehen, wenn diese von der Aufsichtsbehörde anerkannt sind.
- ⁴ Die Bewilligungs- oder Aufsichtsbehörde kann verlangen, dass vor der Betriebsaufnahme meteorologische Gutachten erstellt und Nullpegelmessungen durchgeführt werden.

Art. 82 Abgabe fester Abfälle

Feste radioaktive Abfälle mit spezifischen Aktivitäten von höchstens der hundertfachen Freigrenze nach Anhang 3 Spalte 9 können ausnahmsweise mit Zustimmung der Bewilligungsbehörde an die Umwelt abgegeben werden, wenn durch eine Vermischung mit inaktiven Materialien sichergestellt werden kann, dass die Werte von Anhang 2 nicht überschritten sind.

Art. 83 Verbrennung von Abfällen in Betrieben

- ¹ Biologische oder organisch-chemische radioaktive Abfälle können im Betrieb, in welchem sie anfallen, oder in anderen bewilligten Betrieben verbrannt werden, wenn diese über eine geeignete Abfallverbrennungsanlage nach den Vorschriften der Luftreinhalteverordnung vom 16. Dezember 1985²⁴ und der Technischen Verordnung vom 10. Dezember 1990²⁵ über Abfälle verfügen.
- ² Die Abfälle dürfen nur die Radionuklide H-3, C-14 oder S-35 enthalten. In begründeten Fällen können Abfälle, die andere Radionuklide enthalten, mit Zustimmung der Aufsichtsbehörde verbrannt werden.
- ³ Die wöchentlich zur Verbrennung zugelassene Aktivität darf die tausendfache Bewilligungsgrenze nach Anhang 3 Spalte 10 nicht überschreiten.
- ⁴ Radioaktive Rückstände aus der Verbrennung und der Rauchgasreinigung müssen als radioaktiver Abfall behandelt werden.

²⁴ SR **814.318.142.1**

²⁵ SR **814.600**

2. Abschnitt: Behandlung der Abfälle im Betrieb

Art. 84 Buchführung

Der Inhaber von radioaktiven Abfällen muss seine Bestände kontrollieren sowie die für die weitere Behandlung massgebenden Aktivitäten und die Zusammensetzung dokumentieren.

Art. 85 Abfälle mit kurzer Halbwertszeit

- ¹ Abfälle, die ausschliesslich Radionuklide mit Halbwertszeiten von 60 Tagen oder weniger enthalten, müssen in den Betrieben, in welchen sie anfallen, gelagert werden, bis ihre Aktivität soweit abgefallen ist, dass sie nicht mehr unter den Geltungsbereich nach Artikel 1 fallen oder die bewilligte Abgaberate nach Artikel 80 unterschreiten
- ² Die Aktivität muss unmittelbar vor der Beseitigung der Abfälle in geeigneter Weise kontrolliert werden.
- ³ Der Bewilligungsinhaber muss dafür sorgen, dass Etiketten, Gefahrenzeichen oder sonstige Aufschriften, die auf Radioaktivität hinweisen, nach dem Abklingen der Aktivität, aber vor der Beseitigung als inaktive Abfälle entfernt werden.

Art. 86 Gase, Staub, Aerosole und Flüssigkeiten

Wenn dies mit zumutbarem Aufwand möglich und sinnvoll ist, so sind:

- a. radioaktive Abfälle in Form von Gasen, Staub oder Aerosolen durch geeignete Vorrichtungen wie Filter oder Waschtürme zurückzuhalten;
- b. flüssige radioaktive Abfälle in feste Form überzuführen.

3. Abschnitt: Ablieferung

Art. 87²⁶ Ablieferungspflichtige radioaktive Abfälle

¹ Radioaktive Abfälle, die nicht als Folge der Nutzung von Kernenergie entstehen, müssen nach ihrer allfälligen Behandlung im Betrieb an die Sammelstelle des Bundes abgeliefert werden.²⁷

1bis Die Sammelstelle des Bundes ist das PSI.28

- ² Von einer Ablieferung an das PSI sind ausgenommen:
 - a. radioaktive Abfälle, die an die Umwelt abgegeben werden dürfen;
- Fassung gemäss Ziff. I der V vom 3. Juni 1996, in Kraft seit 1. Aug. 1996 (AS 1996 2129).
- Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).
- Eingefügt durch Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

- b. radioaktive Abfälle mit kurzer Halbwertszeit nach Artikel 85.
- ³ Das EDI regelt die technischen Einzelheiten für die Behandlung der ablieferungspflichtigen radioaktiven Abfälle.

Art. 87*a*²⁹ Aufgaben des PSI

¹ Das PSI nimmt im Rahmen der erteilten Bewilligungen und unter Voraussetzung der Freigabe durch die Aufsichtsbehörde die Abfälle entgegen, stapelt sie, konditioniert sie und besorgt bis zur Beseitigung deren Zwischenlagerung. Es kann dafür Dritte beiziehen.

² Das PSI hat ein angemessenes Qualitätssicherungsprogramm anzuwenden.

Art. 87*b*³⁰ Koordinationskommission

Eine Koordinationskommission aus Vertretern des BAG, der HSK und des PSI gibt zuhanden der Aufsichts- und Bewilligungsbehörden Empfehlungen über das weitere Vorgehen ab, falls neue oder zusätzliche Bewilligungen oder Freigaben notwendig sind.

4. Abschnitt: Konditionierung, Zwischenlagerung und Beseitigung der Abfälle

Art. 88 Grundsatz

Radioaktive Abfälle, die als Folge der Nutzung von Kernenergie entstanden oder die an die Sammelstelle abgeliefert worden sind, müssen konditioniert, wenn nötig zwischengelagert und beseitigt werden.

Art. 89 Konditionierung

- ¹ Radioaktive Abfälle müssen in eine zwischen- und endlagerfähige Form gebracht werden (Konditionierung).
- ² Das Verfahren für die Konditionierung bedarf der Genehmigung durch die HSK.

Art. 90 Zwischenlagerung

Radioaktive Abfälle müssen in für Unbefugte unzugänglichen Räumen oder Behältern so zwischengelagert werden, dass:

- a. Mensch und Umwelt nicht unzulässig strahlenexponiert werden können;
- b. die Endlagerfähigkeit der Abfälle nicht beeinträchtigt wird.

²⁹ Eingefügt durch Ziff. I der V vom 3. Juni 1996, in Kraft seit 1. Aug. 1996 (AS 1996 2129).

³⁰ Eingefügt durch Ziff. I der V vom 3. Juni 1996, in Kraft seit 1. Aug. 1996 (AS 1996 2129).

Art. 91 Beseitigung

Radioaktive Abfälle müssen unter Kontrolle so beseitigt werden, dass der Schutz von Mensch und Umwelt dauernd gewährleistet ist.

Art. 92 Delegation an das UVEK

Das UVEK erlässt die nötigen Bestimmungen über die Konditionierung, Zwischenlagerung und Beseitigung.

5. Abschnitt: Ausfuhr von radioaktiven Abfällen

Art. 93

Eine Bewilligung für die Ausfuhr von radioaktiven Abfällen zum Zwecke der Beseitigung kann ausnahmsweise erteilt werden, wenn:

- a. die Garantie besteht, dass im Empfängerstaat genügende Sicherheitsanforderungen eingehalten werden,
- b. ein geeignetes, dem Stand von Wissenschaft und Technik entsprechendes Endlager zur Verfügung steht, und
- c. die Beseitigung im Rahmen einer völkerrechtlichen Vereinbarung erfolgt.

7. Kapitel: Störfälle

1. Abschnitt: Störfallvorsorge

Art. 94 Vorsorge

- $^{\rm l}$ Der Bewilligungsinhaber muss geeignete Massnahmen zur Vermeidung von Störfällen treffen.
- ² Der Betrieb muss so ausgelegt sein, dass der quellenbezogene Dosisrichtwert nach Artikel 7 auch bei Störfällen eingehalten werden kann, die mit einer Häufigkeit von mehr als 10−1 pro Jahr eintreten.
- ³ Bei Störfällen, die mit einer Häufigkeit zwischen 10-1 und 10-2 pro Jahr zu erwarten sind, muss der Betrieb so ausgelegt sein, dass ein einzelner Störfall eine zusätzliche Dosis von höchstens dem für diesen Betrieb festgelegten quellenbezogenen jährlichen Dosisrichtwert zur Folge hat.
- ⁴ Bei Störfällen, die mit einer Häufigkeit zwischen 10-² und 10-⁴ pro Jahr zu erwarten sind, muss der Betrieb so ausgelegt sein, dass:
 - a. die aus einem einzelnen Störfall resultierende Dosis für nichtberuflich strahlenexponierte Personen höchstens 1 mSv beträgt;
 - b. nur wenige derartige Störfälle auftreten können.

⁵ Für Störfälle, deren Eintretenshäufigkeit kleiner ist als 10-⁴ pro Jahr, deren Auswirkungen aber gross sein können, verlangt die Aufsichtsbehörde die erforderlichen vorsorglichen Massnahmen.

⁶ Die Aufsichtsbehörde legt im Einzelfall die Methodik und die Randbedingungen für die Störfallanalyse fest.

Art. 95 Sicherheitsbericht

- ¹ Die Aufsichtsbehörde kann vom Bewilligungsinhaber einen Sicherheitsbericht verlangen.
- ² Der Sicherheitsbericht umfasst die Beschreibung:
 - a. der Sicherheitssysteme und -einrichtungen;
 - b. der Massnahmen, die getroffen werden, um die Sicherheit zu gewährleisten;
 - der Betriebsorganisation, die f
 ür die Sicherheit und den Strahlenschutz massgeblich ist;
 - d. von Störfällen, ihren Auswirkungen auf den Betrieb und die Umgebung sowie ihre ungefähre Häufigkeit;
 - e. der Notfallschutzplanung für die Bevölkerung bei Betrieben nach Artikel 101 Absatz 1.
- ³ Die Aufsichtsbehörde kann weitere Unterlagen verlangen.

Art. 96 Vorsorgliche Massnahmen

- ¹ Der Bewilligungsinhaber muss die notwendigen betriebsinternen Vorbereitungen treffen, damit Störfälle bewältigt werden können.
- ² Er erlässt Weisungen über die zu treffenden Sofortmassnahmen.
- ³ Der Bewilligungsinhaber muss dafür sorgen, dass für die Bewältigung von Störfällen jederzeit geeignete Mittel verfügbar sind; in Räumen, in welchen mit radioaktiven Stoffen umgegangen wird, gilt dies auch für die Brandbekämpfung.
- ⁴ Er muss dafür sorgen, dass das Personal regelmässig über die Verhaltensregeln instruiert, in den Sofortmassnahmen ausgebildet und mit dem Standort und dem Gebrauch der Mittel vertraut gemacht wird.
- ⁵ Er muss durch geeignete Massnahmen dafür sorgen, dass das zur Störfallbeseitigung eingesetzte Personal im ersten Jahr nach dem Ereignis keine effektive Dosis von mehr als 50 mSv, für Tätigkeiten zum Schutz der Bevölkerung und insbesondere zur Rettung von Menschenleben von mehr als 250 mSv erhält.
- ⁶ Die Aufsichtsbehörde kann verlangen, dass die Meldewege, die Funktionstüchtigkeit der Mittel und die Ausbildung des Personals in Übungen überprüft werden. Sie kann selber Übungen durchführen.
- ⁷ Der Bewilligungsinhaber muss die zuständigen kantonalen Stellen und Ereignisdienste über die in seinem Betrieb vorhandenen Strahlenquellen informieren.

2. Abschnitt: Bewältigung von Störfällen

Art. 97 Sofortmassnahmen

¹ Der Bewilligungsinhaber muss alle Anstrengungen unternehmen, um Störfälle zu bewältigen.

- ² Insbesondere muss er unverzüglich:
 - eine weitere Ausbreitung des Störfalls verhindern, insbesondere mit Massnahmen an der Quelle;
 - b. dafür sorgen, dass alle Personen, die nicht bei der Bewältigung des Störfalls mitwirken, die Gefahrenzone nicht betreten oder sie unverzüglich verlassen;
 - Schutzmassnahmen f
 ür das Einsatzpersonal treffen, wie Dosis
 überwachung und Instruktion;
 - d. alle Beteiligten erfassen und auf Kontaminationen und Inkorporationen kontrollieren sowie nötigenfalls dekontaminieren.
- ³ Der Bewilligungsinhaber muss baldmöglichst:
 - a. entstandene Kontaminationen beseitigen;
 - jene Massnahmen treffen, die für eine Abklärung des Störfalls erforderlich sind.

Art. 98 Meldepflicht

- ¹ Der Bewilligungsinhaber muss jeden Störfall der Aufsichtsbehörde melden.
- ² Er muss radiologische Störfälle unverzüglich auch der Nationalen Alarmzentrale (NAZ) melden.
- ³ Bei einem Strahlenunfall muss der Bewilligungsinhaber unverzüglich die Aufsichtsbehörde benachrichtigen. Er muss den Strahlenunfall zusätzlich unverzüglich der Suva melden, wenn es sich beim Verunfallten um einen Arbeitnehmer handelt.

Art. 99 Untersuchung

- ¹ Der Bewilligungsinhaber muss nach einem Störfall unverzüglich einen Sachverständigen mit einer Untersuchung beauftragen.
- ² Das Ergebnis der Untersuchung ist in einem Bericht festzuhalten. Der Bericht muss enthalten:
 - a. die Beschreibung des Störfalls, seine Ursache, die festgestellten und möglichen weiteren Auswirkungen sowie die getroffenen Massnahmen;
 - die Darstellung der Massnahmen, die zur Vermeidung weiterer ähnlicher Störfälle geplant sind oder bereits getroffen wurden.
- ³ Der Bewilligungsinhaber übergibt der Aufsichtsbehörde den Bericht spätestens sechs Wochen nach dem Störfall.

Art. 100 Information über den Störfall

Die Aufsichtsbehörde sorgt dafür, dass die betroffenen Personen und Kantone sowie die Bevölkerung über radiologische oder technische Störfälle rechtzeitig informiert werden. Artikel 16 der Verordnung vom 26. Juni 1991³¹ über die Einsatzorganisation bei erhöhter Radioaktivität (VEOR) bleibt vorbehalten.

3. Abschnitt: Notfallschutz in der Umgebung von Betrieben

Art. 101

- ¹ Die Bewilligungsbehörde legt für Betriebe, bei denen infolge eines Störfalls der Dosisgrenzwert nach Artikel 37 überschritten werden kann, im Einzelfall fest, in welchem Umfang sie sich an der Vorbereitung und Durchführung von Notfallschutzmassnahmen in ihrer Umgebung beteiligen oder solche Massnahmen selber treffen müssen.
- ² Die Bewilligungsbehörde zieht die zuständigen kantonalen Stellen und Ereignisdienste bei der Vorbereitung von Notfallschutzmassnahmen bei und informiert sie über die getroffenen Massnahmen.
- ³ Für die Warnung und Alarmierung sowie die Vorbereitung und Durchführung von Schutzmassnahmen für den Fall erhöhter Radioaktivität in der Umgebung von Kernanlagen gilt die Notfallschutzverordnung vom 28. November 1983³².

8. Kapitel: Überwachung der Umwelt und der Lebensmittel

1. Abschnitt: Überwachung der Umwelt

Art. 102 Immissionsgrenzwerte

- ¹ Immissionen radioaktiver Stoffe dürfen ausserhalb des Betriebsareals in der Luft im Jahresmittel einen Dreihundertstel des Richtwerts nach Anhang 3 Spalte 11 nicht übersteigen.
- ² Immissionen radioaktiver Stoffe dürfen in öffentlich zugänglichen Gewässern im Wochenmittel einen Fünfzigstel der Freigrenze für die spezifische Aktivität nach Anhang 3 Spalte 9 nicht übersteigen.
- ³ Die Direktstrahlung darf ausserhalb des Betriebsareals nicht zu Ortsdosen führen, die in Wohn-, Aufenthalts- und Arbeitsräumen 1 mSv pro Jahr und in anderen Bereichen 5 mSv pro Jahr übersteigen.

³¹ SR 732.32

³² SR **732.33**

Art. 103 Immissionsüberwachung durch den Betrieb

¹ Die Bewilligungsbehörde kann den Bewilligungsinhaber dazu verpflichten, die Immissionen radioaktiver Stoffe und die Direktstrahlung aus seinem Betrieb messtechnisch zu überwachen und die Resultate der Aufsichtsbehörde zu melden.

² Der Bewilligungsinhaber kann für Überwachungsmessungen externe Stellen beiziehen, wenn diese von der Aufsichtsbehörde anerkannt sind.

Art. 104 Überwachung der Umweltradioaktivität

- ¹ Das BAG überwacht die ionisierende Strahlung und die Radioaktivität in der Umwelt.
- ² Die HSK überwacht zusätzlich die ionisierende Strahlung und die Radioaktivität in der Umgebung der Kernanlagen und des PSI.
- ³ Bei der Überwachung der Radioaktivität in Lebensmitteln arbeitet das BAG mit den Kantonen zusammen.

Art. 105 Probenahme- und Messprogramm

- ¹ Das BAG erstellt in Zusammenarbeit mit der HSK, der Suva, der NAZ und den Kantonen ein Probenahme- und Messprogramm.
- ² Für die Durchführung des Probenahme- und Messprogramms sind Laboratorien des Bundes, namentlich das PSI, die Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz und das AC-Laboratorium Spiez zur Mitarbeit und zur ständigen Bereithaltung der dazu erforderlichen personellen und materiellen Mittel verpflichtet. Es können dafür Dritte beigezogen werden.

Art. 106 Sammlung der Daten und Bericht

- ¹ Die HSK, die Suva, die NAZ, die Kantone sowie andere beteiligte Laboratorien stellen dem BAG die aus der Überwachung anfallenden und interpretierten Daten zur Verfügung.
- ² Das BAG erstellt aus diesen Beiträgen jährlich einen Bericht über die Ergebnisse der Überwachung und die daraus für die Bevölkerung resultierenden Strahlendosen. Es veröffentlicht den Bericht.

Art. 10733

³³ Aufgehoben durch Ziff. I der V vom 15. Nov. 2000 (AS **2000** 2894).

2. Abschnitt: Überwachung der Lebensmittel

Art. 108 Grenz- und Toleranzwerte für Radionuklide in Lebensmitteln

Für Radionuklide in Lebensmitteln gelten die in der Fremd- und Inhaltsstoffverordnung vom 27. Februar 1986³⁴ festgelegten Grenz- und Toleranzwerte.

Art. 109 Information

- ¹ Stellen die Kontrollorgane eine Überschreitung eines Grenz- oder Toleranzwerts fest, so informieren sie das BAG.
- ² Das BAG informiert die Kontrollorgane über die bei ihm eingehenden Meldungen nach Absatz 1.

3. Abschnitt: Erhöhte Radonkonzentrationen

Art. 110 Grenzwerte und Richtwert

- ¹ Für Radongaskonzentrationen in Wohn- und Aufenthaltsräumen gilt ein über ein Jahr gemittelter Grenzwert von 1000 Becquerel pro Kubikmeter (Bq/m³).
- ² Für Radongaskonzentrationen im Arbeitsbereich gilt ein über die monatliche Arbeitszeit gemittelter Grenzwert von 3000 Bq/m³.
- ³ Ist eine beruflich strahlenexponierte Person bei der Ausübung ihres Berufes zusätzlich Radongaskonzentrationen von über 1000 Bq/m³ ausgesetzt, so ist die durch Radon zusätzlich akkumulierte Dosis bei der Berechnung der zulässigen Jahresdosis nach Artikel 35 mitzuberücksichtigen.
- ⁴ Bei Neu- und Umbauten (Art. 114) sowie bei Sanierungen (Art. 113 und 116) gilt ein Richtwert von 400 Bq/m³, soweit dies mit einfachen baulichen Massnahmen erreicht werden kann.

Art. 111 Messungen

- ¹ Die Radongaskonzentration muss durch anerkannte Messstellen ermittelt werden.
- ² Messungen können durch den Eigentümer oder jede andere betroffene Person veranlasst werden.
- ³ Wenn eine Messung nicht nach Absatz 2 erfolgt, wird sie auf Gesuch des Betroffenen durch die Kantone angeordnet. Die Kantone sorgen dafür, dass das Resultat der Messung dem Betroffenen mitgeteilt wird.
- ⁴ Als Betroffene gelten Personen, bei denen Anhaltspunkte bestehen, dass die Grenzwerte infolge Aufenthalts in Räumen oder Bereichen nach Artikel 110 über-
- [AS 1986 647, 1987 1288, 1988 1235 1342, 1989 1197, 1990 1094, 1991 1878,
 1994 2051 Art. 2. AS 1995 2893 Art. 6 Bst. a]. Siehe heute die V vom 26. Juni 1995 über Fremd- und Inhaltsstoffe in Lebensmitteln (SR 817.021.23).

schritten sind. Dies gilt insbesondere für Personen, die sich in Gebieten mit erhöhten Radongaskonzentrationen nach Artikel 115 aufhalten.

- ⁵ Die Benützer von Gebäuden müssen die Räume für Messungen zugänglich machen.
- ⁶ Die Kosten der durch die Kantone angeordneten Messungen gehen zu Lasten des Eigentümers.

Art. 112 Anerkennung und Pflichten der Messstellen

- ¹ Die Messstellen werden durch das BAG anerkannt, wenn das vorgesehene Messsystem dem Stand der Technik entspricht und an nationale oder internationale Normale angeschlossen ist (Rückverfolgbarkeit).
- ² Die Rückverfolgbarkeit wird im Einzelfall durch das metas festgelegt und durch eine von ihm anerkannte Stelle überprüft.
- ³ Die Messstellen sind verpflichtet, die Resultate der Messungen der zuständigen kantonalen Stelle mitzuteilen.

Art. 113 Schutzmassnahmen

- ¹ Auf Gesuch eines Betroffenen muss der Eigentümer bei einer Überschreitung des Grenzwerts nach Artikel 110 die erforderlichen Sanierungen innerhalb von drei Jahren vornehmen.
- ² Bei unbenutztem Ablauf der Frist oder bei Weigerung des Eigentümers ordnen die Kantone die erforderlichen Sanierungen an. Sie bestimmen für die Durchführung der Sanierungen eine Frist von längstens drei Jahren nach der Dringlichkeit des Einzelfalls.
- ³ Die Kosten der Sanierungen gehen zu Lasten des Eigentümers.
- ⁴ Vorbehalten bleiben Sanierungsmassnahmen, welche durch die Suva nach dem Bundesgesetz vom 20. März 1981³⁵ über die Unfallversicherung getroffen werden.

Art. 114 Bauvorschriften

- ¹ Die Kantone treffen die notwendigen Massnahmen, damit Neu- und Umbauten so erstellt werden, dass der Grenzwert von 1000 Bq/m³ nicht überschritten wird. Sie sorgen dafür, dass mit geeigneten baulichen Massnahmen angestrebt wird, dass die Radongaskonzentration den Richtwert von 400 Bq/m³ nicht überschreitet.
- 2 Nach Beendigung der Bauarbeiten kontrollieren die Kantone stichprobenweise, ob der Grenzwert eingehalten wird.

Art. 115 Radongebiete

¹ Die Kantone sorgen dafür, dass auf ihrem Gebiet eine genügende Anzahl von Messungen durchgeführt wird.

² Sie bestimmen die Gebiete mit erhöhten Radongaskonzentrationen und passen diese aufgrund der Daten der Messungen laufend an.

- ³ Die Kantone sorgen dafür, dass in Gebieten mit erhöhten Radongaskonzentrationen in einer genügenden Anzahl von Wohn-, Aufenthalts- und Arbeitsräumen in öffentlichen Gebäuden Messungen durchgeführt werden.
- ⁴ Die Pläne der Gebiete mit erhöhten Radongaskonzentrationen können von jeder Person eingesehen werden.

Art. 116 Sanierungsprogramme

- ¹ In Gebieten mit erhöhten Radongaskonzentrationen legen die Kantone die zu treffenden Sanierungsmassnahmen fest für Räume, in denen der Grenzwert nach Artikel 110 Absatz 1 überschritten ist.
- ² Sie bestimmen die Frist, innerhalb welcher die Sanierungsmassnahmen durchzuführen sind, entsprechend der Dringlichkeit des Einzelfalls und der wirtschaftlichen Tragbarkeit.
- ³ Die Sanierungsmassnahmen müssen bis spätestens 20 Jahre nach dem Inkrafttreten dieser Verordnung durchgeführt sein.
- ⁴ Die Kosten der Sanierungsmassnahmen gehen zu Lasten der Eigentümer.

Art. 117 Information

- ¹ Die Kantone übergeben dem BAG die Pläne mit den Radongebieten spätestens zehn Jahre nach dem Inkrafttreten dieser Verordnung.
- ² Sie informieren das BAG regelmässig über den Stand der Sanierungen.

Art. 118 Fach- und Informationsstelle Radon

- ¹ Das BAG betreibt eine Fach- und Informationsstelle Radon.
- ² Es nimmt dabei folgende Aufgaben wahr:
 - a. es macht regelmässig zusammen mit den Kantonen Messempfehlungen und Messkampagnen;
 - es berät Kantone, Hauseigentümer und weitere Interessierte bei Radon-Problemen;
 - es informiert die Öffentlichkeit regelmässig über die Radonproblematik in der Schweiz;
 - d. es berät die betroffenen Personen und interessierten Stellen über die geeigneten Schutzmassnahmen:
 - e. es evaluiert regelmässig die Auswirkungen der Massnahmen;
 - f. es kann Untersuchungen über die Herkunft und Wirkung des Radons durchführen;
 - g. es gibt den Kantonen regelmässig einen Überblick über die ihm nach Artikel 115 gemeldeten Radongebiete.

9. Kapitel: Schutz der Bevölkerung bei erhöhter Radioaktivität

1. Abschnitt: Einsatzorganisation

Art. 119

Für Ereignisse, die eine Gefährdung der Bevölkerung durch erhöhte Radioaktivität hervorrufen können, gilt zusätzlich zu den Bestimmungen dieser Verordnung die VEOR³⁶

2. Abschnitt: Verpflichtete Personen und Unternehmungen

Art. 120 Personenkategorien

- ¹ Im Fall einer Gefährdung durch erhöhte Radioaktivität sind zu Aufgaben nach Artikel 20 Absatz 2 Buchstabe b StSG verpflichtet:
 - a. Personen und Unternehmungen wie Mess- und Strahlenschutzequipen für die unmittelbare Schadensbekämpfung;
 - Personen und Unternehmungen des öffentlichen und privaten Verkehrs für die Durchführung von Personen- und Gütertransporten und Evakuierungen;
 - Personen und Unternehmungen für die mittelbare Schadensbekämpfung wie Massnahmen an der Quelle, die eine weitere Kontamination der Umgebung verhindern sollen;
 - d. Zollorgane f
 ür Kontrollen an der Grenze:
 - Medizinalpersonen und medizinisches Fachpersonal zur Pflege von verstrahlten oder anderen betroffenen Personen.
- 2 Von Einsätzen nach Absatz 1 befreit sind Personen unter 18 Jahren und schwangere Frauen.

Art. 121 Schutz der Gesundheit

- ¹ Die verpflichteten Personen dürfen nur für Arbeiten eingesetzt werden, bei denen nicht zu erwarten ist, dass sie im ersten Jahr nach dem Ereignis eine effektive Dosis von mehr als 50 mSv, beim Einsatz zur Rettung von Menschenleben von mehr als 250 mSv akkumulieren.
- ² Hat eine verpflichtete Person eine effektive Dosis von mehr als 250 mSv erhalten, so ist sie unter ärztliche Kontrolle zu stellen. Der untersuchende Arzt teilt das Er-

³ Das BAG stellt den Kantonen auf Gesuch die bisher gesammelten Messdaten zur Verfügung.

⁴ Das BAG kann Ausbildungskurse durchführen.

gebnis der Untersuchung mit Antrag bezüglich der zu treffenden Massnahmen der betroffenen Person und dem BAG mit. Er informiert die Suva, wenn es sich um einen Arbeitnehmer handelt.

- ³ Die Bekanntgabe der Daten durch den Arzt richtet sich nach Artikel 39 Absatz 3.
- ⁴ Die Strahlenexposition der verpflichteten Personen ist in angemessenen Zeitabständen und durch geeignete Messungen zu ermitteln.
- ⁵ Werden Angehörige der Armee, des Zivilschutzes oder der Ereignisdienste gestützt auf das StSG eingesetzt, so richtet sich der Schutz der Gesundheit nach Absatz 1.

Art. 122 Ausrüstung

¹ Die Einsatzorganisation bei erhöhter Radioaktivität (EOR) sowie die nach Artikel 2 der VEOR³⁷ zur Zusammenarbeit verpflichteten Organe des Bundes und der Kantone veranlassen, dass die verpflichteten Personen über die für die Wahrnehmung ihrer Aufgabe und zum Schutz ihrer Gesundheit erforderliche Ausrüstung verfügen.

- ² Zur erforderlichen Ausrüstung gehören insbesondere:
 - eine genügende Anzahl von Messgeräten zur Bestimmung der Strahlenexposition:
 - b. Mittel zum Schutz vor Inkorporationen oder Kontaminationen.

Art. 123 Instruktion und Ausbildung

¹ Die EOR sowie die nach Artikel 2 der VEOR³⁸ zur Zusammenarbeit verpflichteten Organe des Bundes und der Kantone veranlassen, dass die verpflichteten Personen vor der Ausübung ihrer Aufgabe angemessen instruiert und über die Gefahren, die mit ihrer Aufgabe verbunden sind, aufgeklärt werden.

- ² Die Instruktion muss mindestens umfassen:
 - a. das Verhalten im Strahlenfeld (Selbstschutz);
 - b. die Risiken von Strahlenexpositionen;
 - Arbeits- und Messmethoden im Einsatzfall.

³ Die verpflichteten Personen können zu Übungen aufgeboten werden.

³⁷ SR **732.32**

³⁸ SR **732.32**

Art. 124 Versicherungsschutz und Entschädigung

¹ Bei erhöhter Radioaktivität sind die verpflichteten Personen gegen Unfall und Krankheit versichert. Sofern die obligatorische Unfallversicherung und die bisherigen privaten Versicherungen keine genügende Deckung gewährleisten, garantiert der Bund die Leistungen entsprechend den Bestimmungen des Bundesgesetzes vom 19. Juni 1992³⁹ über die Militärversicherung. Für den Vollzug kann soweit erforderlich das Bundesamt für Militärversicherung beigezogen werden.

² Entstehen den verpflichteten Personen und Unternehmungen aus ihrer Tätigkeit ungedeckte Kosten, so werden sie dafür durch den Bund entschädigt. Das EDI legt die finanzielle Abwicklung fest.

10. Kapitel: Bewilligungen und Aufsicht

1. Abschnitt: Bewilligungspflicht und -verfahren

Art. 125 Bewilligungspflicht

- ¹ Die Bewilligungspflicht richtet sich nach Artikel 28 StSG.
- ² Der Bewilligungspflicht untersteht auch, wer Personen in einem anderen Betrieb als seinem eigenen als beruflich strahlenexponierte Personen einsetzt.⁴⁰
- ³ Von der Bewilligungspflicht sind ausgenommen:
 - a.⁴¹ Tätigkeiten mit radioaktiven Stoffen, deren gehandhabte oder täglich umgesetzte Aktivität die Bewilligungsgrenze nach Anhang 3 Spalte 10 nicht überschreitet:
 - b. der Umgang mit Strahlenquellen, die nach Artikel 128 zugelassen worden sind, mit Ausnahme des Vertreibens:
 - c.⁴² das Vertreiben, Verwenden, Lagern, Transportieren, Beseitigen, Ein-, Ausund Durchführen von fertigen Uhren mit radioaktiven Stoffen, wenn sie den ISO-Normen 3157 und 4168⁴³ entsprechen, sowie von höchstens 1000 Uhrenbestandteilen mit radioaktiver Leuchtfarbe;

⁴³ Zu beziehen bei: Schweizerische Normenvereinigung, 8008 Zürich

³⁹ SR 833.1

⁴⁰ Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

⁴¹ Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

Eingefügt durch Ziff. I der V vom 3. Juni 1996 (AS 1996 2129). Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

d.⁴⁴ das Transportieren von freigestellten Versandstücken nach den Blättern 1–4, Klasse 7, ADR⁴⁵/SDR⁴⁶, RID/RSD⁴⁷, LTrR⁴⁸, Verordnung vom 10. Januar 1973⁴⁹ über Beförderung gefährlicher Güter zur See, ADNR⁵⁰.

Art. 126 Erteilung und Befristung der Bewilligung

- ¹ Gesuche um Erteilung einer Bewilligung sind zusammen mit den erforderlichen Unterlagen bei der zuständigen Bewilligungsbehörde einzureichen.
- ² Die Bewilligungsbehörde befristet die Bewilligung auf maximal zehn Jahre.
- ³ Die Bewilligung für die Ein- oder Ausfuhr von radioaktiven Strahlenquellen, deren Aktivität die Bewilligungsgrenze um mehr als das 10 000 000-fache übersteigt, wird nur für die einzelne Ein- oder Ausfuhr erteilt.
- ⁴ Die Bewilligungsbehörde teilt ihren Entscheid den betroffenen Kantonen, der Aufsichtsbehörde und bei Betrieben, die dem Arbeitsgesetz⁵¹ unterstehen, auch dem zuständigen Eidgenössischen Arbeitsinspektorat mit.

Art. 127 Bewilligungsbehörden

- ¹ Das Bundesamt für Energie⁵² (BEW) ist Bewilligungsbehörde für:
 - a. Tätigkeiten in Kernanlagen;
 - b.53 Tätigkeiten in der Sammelstelle des Bundes;
 - c. ...54
 - d. Versuche mit radioaktiven Stoffen im Rahmen von vorbereitenden Handlungen nach Artikel 10 Absatz 2 des Bundesbeschlusses vom 6. Oktober 1978⁵⁵ zum Atomgesetz;
 - e.56 die Ein- bzw. Ausfuhr radioaktiver Stoffe für oder aus Kernanlagen;
 - f.⁵⁷ den Transport radioaktiver Stoffe von und zu Kernanlagen.

- Eingefügt durch Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).
- 45 SR **0.741.621**
- 46 SR **741.621**
- 47 SR **742.401.6**
- ⁴⁸ SR **748.411**
- 49 SR **747.354.3**
- 50 SR **747.224.141.1**
- 51 SR **822.11**
- 52 Bezeichnung gemäss nicht veröffentlichtem BRB vom 19. Dez. 1997.
- Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Juli 2000 (AS 2000 107).
- ⁵⁴ Aufgehoben durch Ziff. II 2 der V vom 15. Nov. 1995 (AS **1995** 4959).
- 55 SR **732.01**
- 56 Eingefügt durch Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).
- 57 Eingefügt durch Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

² In allen übrigen Fällen ist das BAG die Bewilligungsbehörde.

2. Abschnitt: Zulassungen

Art. 128 Voraussetzungen

¹ Anlagen und radioaktive Strahlenquellen können vom BAG zugelassen werden, wenn:

- a. durch konstruktive Massnahmen verhindert wird, dass Personen unzulässig strahlenexponiert oder radioaktiv kontaminiert werden;
- die gegebenenfalls notwendige Beseitigung als radioaktiver Abfall nach Ende der Gebrauchsdauer gewährleistet ist;
- c. die Ortsdosisleistung im Abstand von 10 cm von der Oberfläche 1 μSv pro Stunde nicht überschreitet.
- ² Das EDI kann Vorschriften über die Zulassung von bestimmten Anlagen und radioaktiven Strahlenquellen erlassen.

Art. 129 Typenprüfung

Das BAG unterzieht die für eine Zulassung vorgesehenen Anlagen und radioaktiven Strahlenquellen einer Typenprüfung. Es kann dafür andere Stellen beiziehen.

Art. 130 Wirkungen der Zulassung

- ¹ Wer mit zugelassenen Anlagen und radioaktiven Strahlenquellen umgeht, braucht hiefür mit Ausnahme des Vertreibens keine Bewilligung.
- ² Das BAG legt mit der Zulassung fest:
 - a. unter welchen Bedingungen mit radioaktiven Strahlenquellen wie mit inaktiven Stoffen umgegangen werden kann;
 - b. wie radioaktive Strahlenquellen nach Ende der Gebrauchsdauer gegebenenfalls als radioaktiver Abfall beseitigt werden müssen;
 - welche Anlagen und radioaktiven Strahlenquellen über eine Warnaufschrift verfügen müssen.

Art. 131 Pflichten des Inhabers der Zulassung

- ¹ Der Inhaber der Zulassung untersteht der Buchführungs- und Berichterstattungspflicht nach Artikel 134.
- $^2\,\rm Er$ muss die zugelassenen Anlagen und radioaktiven Strahlenquellen mit einem vom BAG bestimmten Zulassungszeichen kennzeichnen.
- ³ Das BAG kann bestimmte Kategorien von zugelassenen Anlagen und radioaktiven Strahlenquellen von einer Kennzeichnung ganz oder teilweise befreien.

³ Es befristet die Zulassung auf maximal zehn Jahre.

3. Abschnitt: Pflichten des Bewilligungsinhabers

Art. 132 Organisatorische Pflichten

- ¹ Der Bewilligungsinhaber muss betriebsinterne Weisungen über Arbeitsmethoden und Schutzmassnahmen erteilen und deren Einhaltung überwachen.
- ² Er hält schriftlich die Kompetenzen der verschiedenen Linienvorgesetzten und der Sachverständigen für den Strahlenschutz sowie jener Personen fest, die mit Strahlenquellen umgehen. Er erteilt den Sachverständigen die Kompetenz, einzugreifen, wenn dies aus Schutzgründen erforderlich ist.
- ³ Er muss dafür sorgen, dass alle in seinem Betrieb tätigen Personen über die Gefahren, die sich aus dem betrieblichen Umgang mit ionisierenden Strahlen für ihre Gesundheit ergeben können, in angemessener Weise aufgeklärt werden.
- ⁴ Setzt der Bewilligungsinhaber Personen aus Dienstleistungsbetrieben oder anderen Betrieben als beruflich strahlenexponierte Personen ein, so muss er diese Betriebe auf die massgebenden Strahlenschutzvorschriften aufmerksam machen.

Art. 133 Meldepflicht

- ¹ Der Bewilligungsinhaber muss der Aufsichtsbehörde Änderungen vor ihrer Vornahme melden, insbesondere:
 - a. Änderungen der Anlageleistung, der baulichen und konstruktiven Gegebenheiten und der Strahlrichtung;
 - Änderungen des Aufbewahrungsortes von Strahlenquellen, deren Aktivität grösser ist als der 100 000-fache Wert der Bewilligungsgrenze nach Anhang 3 Spalte 10;
 - c. Wechsel des Sachverständigen für den Strahlenschutz.
- ² Er muss der Aufsichtsbehörde jährlich den genauen Standort jeder Strahlenquelle melden, deren Aktivität grösser ist als der 20 000 000-fache Wert der Bewilligungsgenze nach Anhang 3 Spalte 10.
- ³ Der Verlust einer radioaktiven Strahlenquelle, deren Aktivität die Bewilligungsgrenze nach Anhang 3 Spalte 10 überschreitet, ist unverzüglich der Aufsichtsbehörde zu melden.

Art. 134 Buchführungs- und Berichterstattungspflicht

- ¹ Wer mit radioaktiven Strahlenquellen umgeht, deren Aktivität die Bewilligungsgrenze nach Anhang 3 Spalte 10 überschreitet, muss darüber ein Inventar führen.
- ² Wer mit offenen radioaktiven Strahlenquellen umgeht, deren Aktivität die Bewilligungsgrenze nach Anhang 3 Spalte 10 überschreitet, muss darüber Buch führen.
- ³ Wer Strahlenquellen vertreibt, muss der Bewilligungsbehörde auf Jahresende wie folgt Bericht erstatten:
 - die Bezeichnung der Radionuklide sowie ihrer chemischen und physikalischen Form;

 die Bezeichnung der Apparate oder Gegenstände, die radioaktive Stoffe enthalten mit Angabe der Radionuklide und ihrer Aktivität;

- c. die Bezeichnung der Anlagen und deren Parameter;
- d. die Adressen der inländischen Lieferanten:
- die Adressen der inländischen Bezüger sowie die Aktivität der einzelnen bezogenen Radionuklide.

Art. 135 Sorgfaltspflicht des Vertreibers

Der Vertreiber darf Anlagen oder radioaktive Strahlenquellen, deren Aktivität die Bewilligungsgrenze nach Anhang 3 Spalte 10 überschreitet, im Inland nur an Betriebe oder Personen weitergeben, die eine entsprechende Bewilligung besitzen.

4. Abschnitt: Aufsicht

Art. 136 Aufsichtsbehörden

- ¹ Für die Aufsicht über den Personen- und Umgebungsschutz sind das BAG, die Suva und die HSK zuständig.
- ² Das BAG beaufsichtigt die Betriebe, bei denen vor allem die Öffentlichkeit geschützt werden muss, insbesondere die medizinischen Betriebe und die Institute für Forschung und Lehre an Hochschulen.
- ³ Die Suva beaufsichtigt die Betriebe, in denen vor allem die Arbeitnehmer geschützt werden müssen, insbesondere die Industrie- und Gewerbebetriebe.
- ⁴ Die HSK beaufsichtigt:
 - a. die Kernanlagen;
 - b. die vorbereitenden Handlungen nach Artikel 10 Absatz 2 des Bundesbeschlusses vom 6. Oktober 1978⁵⁸ zum Atomgesetz;
 - c. ...⁵⁹
 - d.60 die Sammelstelle des Bundes für radioaktive Abfälle:
 - e.61 den Empfang bzw. Versand radioaktiver Stoffe in oder aus Kernanlagen.
- ⁵ Bei Unklarheit über die Zuständigkeit sprechen sich die Aufsichtsbehörden gegenseitig ab.
- 58 SR **732.01**
- ⁵⁹ Aufgehoben durch Ziff. I der V vom 17. Nov. 1999 (AS **2000** 107).
- Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Juli 2000 (AS 2000 107).
- 61 Eingefügt durch Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

⁴ Für alle anderen Formen des Umgangs wird die Buchführung und Berichterstattung im Einzelfall in der Bewilligung geregelt.

⁶ Die Aufsichtsbehörden gehen von der Vermutung aus, dass der Bewilligungsinhaber seine organisatorischen Pflichten nach Artikel 132 einhält, wenn er über ein von einer akkreditierten Stelle zertifiziertes Qualitätssicherungssystem verfügt.

Art. 137 Kontrolle von medizinischen Anlagen und medizinischen Einrichtungen mit geschlossenen radioaktiven Strahlenquellen

- ¹ Die erste Strahlenschutzkontrolle einer medizinischen Anlage oder medizinischen Einrichtung mit geschlossenen radioaktiven Strahlenquellen und deren Betrieb wird im Rahmen des Bewilligungsverfahrens nach erfolgter Abnahmeprüfung nach Artikel 74 Absatz 1 durch die Aufsichtsbehörde durchgeführt.
- ² Die Aufsichtsbehörde führt regelmässig eine Nachkontrolle der Betriebe durch. In Arzt-, Zahnarzt- und Tierarztpraxen sowie Praxen von Chiropraktoren und Zahnpraktikern erfolgt diese Nachkontrolle stichprobenweise.
- ³ Das BAG kann Dritte, die bei Diagnostikanlagen in Arzt-, Zahnarzt- und Tierarztpraxen sowie Praxen von Chiropraktoren und Zahnpraktikern eine Wartung nach Artikel 74 Absatz 3 durchführen, mit einer Nachkontrolle beauftragen.

Art. 138 Kontrolle von Ein-, Aus- und Durchfuhr

- ¹ Für die Kontrolle der Ein-, Aus- und Durchfuhr von radioaktiven Strahlenquellen erlässt die Oberzolldirektion im Einvernehmen mit dem BAG und dem BEW Weisungen.
- ² Die Zollämter stellen dem BAG von jeder Zolldeklaration nach Artikel 78 Absatz 2 eine Kopie bzw. eine Meldung zu. Bei der Einlagerung in ein Zolllager löschen sie die Einzelbewilligung und stellen sie dem BAG zu.
- ³ Die Zollämter überprüfen im Rahmen ihrer Kontrollen bei der Ein- und Durchfuhr, ob für den Transport eine Bewilligung des BAG vorliegt.

11. Kapitel: Straf- und Schlussbestimmungen

Art. 139 Strafbestimmungen

- ¹ Nach Artikel 44 Absatz 1 Buchstabe f StSG wird bestraft, wer vorsätzlich oder fahrlässig:
 - a. ohne Zustimmung der Aufsichtsbehörde radioaktive Stoffe mit inaktiven Materialien mischt einzig zum Zweck, diese Verordnung nicht anwendbar zu machen (Art. 3 Abs. 1):
 - b.62 eine Tätigkeit ausübt, die eine Gefährdung durch ionisierende Strahlen mit sich bringen kann, ohne dafür über die nach den Artikeln 10–18 geforderte Ausbildung zu verfügen;

Fassung gemäss Ziff. I der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

c. Radiopharmazeutika ohne Zulassung des BAG in den Verkehr bringt oder am Menschen anwendet (Art. 30 Abs. 1);

- d. die von ihm vermutete oder festgestellte Überschreitung eines Dosisgrenzwerts nicht sofort der Aufsichtsbehörde meldet (Art. 38);
- e. eine Personendosimetriestelle ohne Anerkennung betreibt (Art. 45);
- f. eine Personendosimetriestelle betreibt und die dieser auferlegten Pflichten nach den Artikeln 49–51 verletzt;
- g. in der Zolldeklaration nicht die in Artikel 78 Absatz 2 geforderten Angaben macht:
- h. bei der Ausübung einer Tätigkeit einen Störfall verursacht.
- ² Mit Haft oder Busse bis zu 20 000 Franken wird bestraft, wer vorsätzlich oder fahrlässig:
 - a. Aufgaben nicht übernimmt, die ihm nach Artikel 20 Absatz 2 Buchstabe b StSG auferlegt worden sind (Art. 120);
 - b. unentschuldigt nicht an Übungen teilnimmt, zu denen er nach Artikel 123 Absatz 3 aufgeboten wurde.

Art. 140 Aufhebung und Änderung bisherigen Rechts

¹ Es werden aufgehoben:

- 1. die Verordnung vom 30. Juni 1976⁶³ über den Strahlenschutz;
- 2. die Dosimetrieverordnung vom 11. November 1981⁶⁴;
- die Verordnung vom 30. August 1978⁶⁵ über Aus- und Weiterbildung im Strahlenschutz.
- ² Die Verordnung vom 19. Dezember 1983⁶⁶ über die Unfallverhütung wird wie folgt geändert:

Art. 78 Abs. 3

Aufgehoben

Art. 141 Übergangsbestimmungen

- ¹ Ärzte, Zahnärzte und Tierärzte gelten ohne eine Ausbildung nach Artikel 18 Absatz 2 als Sachverständige:
 - längstens bis zum 30. September 2004, wenn sie beim Inkrafttreten dieser Verordnung eine Bewilligung für Anwendungen nach den Artikeln 11 und 14 besitzen;

^{63 [}AS **1976** 1573, **1979** 256, **1981** 537, **1983** 1964, **1984** 876, **1987** 652 Art. 21 Ziff. 4, **1988** 1561, **1991** 1459 Art. 22 Ziff. 2]

^{64 [}AS **1981** 1872]

^{65 [}AS **1978** 1404]

⁶⁶ SR **832.30**

 b. längstens bis zum 30. September 1997, wenn sie nach dem Inkrafttreten dieser Verordnung eine Bewilligung für Anwendungen nach den Artikeln 11 und 14 erhalten.

- ² Ärzte und Tierärzte, die beim Inkrafttreten dieser Verordnung Anwendungen nach den Artikeln 11 Absatz 2 sowie 12–14 durchführen und dafür nicht über die in diesen Bestimmungen verlangte Sachkunde verfügen, müssen diese bis zum 30. September 2004 nachweisen.
- ³ Nach bisherigem Recht erteilte Zulassungen von Radiopharmazeutika bleiben gültig bis zum 30. September 1999.
- ⁴ Die Dosisgrenzwerte nach Artikel 35 Absätze 1 und 2 gelten erst ab dem 1. Januar 1995.
- ⁵ Die Abschirmung und der Standort von bewilligten Anlagen oder radioaktiven Strahlenquellen müssen den Artikeln 59 und 60 spätestens ab dem 1. Oktober 2004 entsprechen.
- ⁶ Die Durchleuchtung darf mit bewilligten Anlagen ohne Bildverstärker und ohne automatischer Dosisleistungsregulierung bis längstens zum 30. September 1996 durchgeführt werden.
- ⁷ Reihenuntersuchungen dürfen mit bewilligten Anlagen mit Schirmbildverfahren ohne Bildverstärker bis längstens zum 30. September 1999 durchgeführt werden. Für Thorax-Reihenuntersuchungen mit Bildverstärker- und Speicherfoliensystemen gilt Artikel 27 Absatz 1.⁶⁷
- ⁸ Nach bisherigem Recht erteilte unbefristete Bewilligungen, Anerkennungen nach Artikel 45 oder Zulassungen nach Artikel 128 bleiben gültig bis zum 30. September 2004. Die Absätze 6 und 7 bleiben vorbehalten.
- ⁹ Auf Verfahren, die beim Inkrafttreten dieser Verordnung hängig sind, findet das neue Recht Anwendung.
- Wenn Mensch und Umwelt nicht gefährdet sind und wenn nicht berechtigte Interessen der Betroffenen entgegenstehen, kann die Aufsichtsbehörde im Einzelfall bis zum 30. September 1997 nach dem alten Recht beurteilen:
 - a. die Mindestanforderungen an das Messsystem einer Personendosiemetriestelle, die Messgenauigkeit und der Schwellenwert für beschleunigte Meldungen (Art. 52);
 - b. der Standort von medizinischen Anlagen und radioaktiven Strahlenquellen (Art. 61);
 - c. die Art der Lagerung von radioaktiven Strahlenquellen und die Anforderungen an die Lagerstellen (Art. 75);
 - d. der Transport von radioaktiven Strahlenquellen innerhalb des Betriebsareals (Art. 77).

⁶⁷ Fassung gemäss Ziff. I der V vom 3. Juni 1996, in Kraft seit 1. Aug. 1996 (AS 1996 2129).

Art. 142 Inkrafttreten

Diese Verordnung tritt am 1. Oktober 1994 in Kraft.

Anhang 168 (Art. 4)

Begriffsbestimmungen

Abfälle, radioaktive

Radioaktive Stoffe oder radioaktiv kontaminierte Materialien, die nicht weiterverwendet werden.

Abgabe

Kontrollierte Freisetzung von radioaktiven Stoffen an die Umwelt, hauptsächlich als Gase und Aerosole über den Abluftpfad und als Flüssigkeiten über den Abwasserpfad. Die Einbringung radioaktiver Abfälle in ein Endlager gilt nicht als Abgabe an die Umwelt im Sinne von Artikel 79.

Abnahmeprüfung

Prüfung eines zur Lieferung offerierten oder gelieferten Produktes, um festzustellen, ob für die vorgesehene Anwendung die technischen Spezifikationen und Sicherheitserfordernisse erfüllt sind.

Aktivität

Anzahl der Zerfälle pro Zeiteinheit. Die Einheit der Aktivität ist das Becquerel (Bq); $1 \text{ Bq} = 1 \text{ s}^{-1}$.

Aktivität, spezifische

Aktivität pro Masseneinheit. Die spezifische Aktivität wird ausgedrückt in Becquerel pro Kilogramm (Bq/kg).

Aktivitätskonzentration

Aktivität pro Volumeneinheit. Die Aktivitätskonzentration wird ausgedrückt in Becquerel pro Kubikmeter (Bq/m³).

Anlagen zur Erzeugung ionisierender Strahlen

Einrichtungen und Apparate, die zur Erzeugung von Photonen- oder Korpuskularstrahlen von über 5 Kiloelektronenvolt Energie dienen.

Becquerel (Bq)

Einheit für die Aktivität eines Radionuklids. 1 Bq = 1 Zerfall pro Sekunde. Das Becquerel ersetzt die frühere Einheit Curie (Ci). (1 Ci = 3.7×10^{10} Bq).

Fassung gemäss Ziff. II der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

Bestrahlungseinheit

Ein zu Bestrahlungszwecken benutzbares Gerät, das eine geschlossene radioaktive Strahlenquelle enthält. Die Strahlenquelle ist in einer Abschirmung eingeschlossen, mit welcher sie in jedem Betriebszustand mechanisch verbunden bleibt.

Dosis

Mass für die Beurteilung des gesundheitlichen Risikos durch ionisierende Strahlung. Wenn in dieser Verordnung nicht anders erwähnt, ist die effektive Dosis gemeint.

Dosis, absorbierte Dosis

Die durch Wechselwirkung von ionisierender Strahlung mit Materie in einer Masseneinheit deponierte Energie. Der spezielle Name dieser Einheit ist das Gray (Gy); 1 Gy = 1 J/kg.

Dosis, Äquivalentdosis H

Das Produkt aus der absorbierten Dosis $D_{T,R}$ infolge der Strahlung R im Gewebe T und dem Strahlen-Wichtungsfaktor w_R (vgl. auch Dosis, effektive). Der spezielle Name der Einheit der Äquivalentdosis ist das Sievert (Sv); 1 Sv = 1 J/kg. $H_{T,R} = w_R \cdot D_{T,R}$; für ein Gemisch von Strahlungen: $H_T = \Sigma_R \ w_R \cdot D_{T,R}$

Dosis, effektive Dosis E

Summe der mit den Wichtungsfaktoren w_T gewichteten Äquivalentdosen in allen Organen und Geweben.

$$E = \Sigma_T \ w_T \ H_T = \Sigma_T \ w_T \ \Sigma_R \ w_R \ D_{T,R}$$

D_{T R} = Im Gewebe T durch Strahlung R absorbierte Dosis

w_R = Wichtungsfaktor der Strahlung

w_T = Wichtungsfaktor für Gewebe (Anteil am Gesamtrisiko für Gewebe/Organ T)

H_T = Äquivalentdosis des Gewebes/Organs T

Die spezielle Einheit der effektiven Dosis ist das Sievert (Sv); 1 Sv = 1 J/kg.

Wichtungsfaktoren der Strahlung

Strahlenart und Energiebereich		Wichtungsfaktoren der Strahlung wR
Photonen, alle Energien Elektronen und Müonen, alle Energien Neutronen, mit Energie	 unter 10 keV 10 keV bis 100 keV 100 keV bis 2 MeV 2 MeV bis 20 MeV über 20 MeV 	1 1 5 10 20 10 5
Protonen, ohne Rückstossprotonen,	 Energie über 2 MeV 	5
Alphateilchen, Spaltfragmente, schwere	e Kerne	20

Wichtungsfaktoren für Gewebe

Gewebe oder Organ	Wichtungsfaktoren für Gewebe, w _T
Gonaden	0.20
Knochenmark (rot)	0.12
Dickdarm	0.12
Lunge	0.12
Magen	0.12
Blase	0.05
Brust	0.05
Leber	0.05
Speiseröhre	0.05
Schilddrüse	0.05
Haut	0.01
Knochenoberfläche	0.01
Übrige	0.05

Dosis, effektive Folgedosis E₅₀

Effektive Dosis, die als Folge einer Aufnahme eines Nuklids in den Körper im Verlauf von 50 Jahren akkumuliert wird.

Dosis, Ortsdosis

Als Ortsdosis gilt

- a. die Grösse H*(10) (Umgebungs-Äquivalentdosis) bei durchdringungsfähiger Strahlung;
- die Grösse H'(0,07) (Richtungs-Äquivalentdosis) bei Strahlung geringer Eindringtiefe.

Dosis, Personen-Tiefendosis H_n(10) [Kurzbezeichnung H_n]

Äquivalentdosis in weichem Gewebe in einer Tiefe von 10 mm im Bereich des Thorax.

Dosis, Personen-Oberflächendosis H_p(0,07) [Kurzbezeichnung H_s]

Äquivalentdosis in weichem Gewebe in einer Tiefe von 0,07 mm im Bereich des Thorax.

Dosis, Umgebungs-Äquivalentdosis H*(10)

Die Umgebungs-Äquivalentdosis H*(10) am interessierenden Punkt im tatsächlichen Strahlungsfeld ist die Äquivalentdosis im zugehörigen ausgerichteten und aufgeweiteten Strahlungsfeld in 10 mm Tiefe der an diesem Punkt zentrierten ICRU-Kugel auf demjenigen Kugelradius, der dem ausgerichteten Strahlungsfeld entgegengerichtet ist.

Dosisintensive diagnostische Anwendungen

Untersuchungen des Achsenskeletts, des Beckens und des Abdomens sowie Untersuchungen, bei denen mehrere Schnitte durch Direkt- oder Indirektradiographie angefertigt werden. Durchleuchtungen, durchleuchtungsgestützte Kontrastmittelunter-

suchungen und durchleuchtungsgestützte Interventionen zählen ebenfalls dazu. Nicht als dosisintensive diagnostische Anwendungen gelten Durchleuchtungen der peripheren Extremitäten inklusive Ellbogen resp. inklusive oberes Sprunggelenk.

Dosis, Richtungs-Äquivalentdosis H'(0,07)

Die Richtungs-Äquivalentdosis H'(0,07) am interessierenden Punkt im tatsächlichen Strahlungsfeld ist die Äquivalentdosis im zugehörigen aufgeweiteten Strahlungsfeld auf einem festgelegten Radius der ICRU-Kugel in der Tiefe 0,07 mm.

Dosimeter

Instrument zur Messung der Orts- oder Personendosis.

Eichung

Amtliche Prüfung und Bestätigung, dass ein einzelnes Strahlenmessgerät (Messmittel) den gesetzlichen Vorschriften entspricht.

Einfuhr/Ausfuhr

Als Ein- oder Ausfuhr gilt die definitive wie die vorübergehende Ein- oder Ausfuhr. Als Einfuhr gilt auch die Einlagerung in ein Zolllager.

Gegenstände des täglichen Gebrauchs

Gegenstände wie Wäsche und Kleidungsstücke, Mobiliar, Haushalteinrichtungen und ähnliches, jedoch ohne Baumaterialien.

Gray (Gy)

Der spezielle Name für die Einheit der absorbierten Dosis. 1 Gy = 1 J/kg.

Halbwertszeit

Zeit, in der die Aktivität eines Radionuklids auf die Hälfte abklingt.

ICRU-Kugel

Die ICRU-Kugel ist definiert als eine Kugel mit dem Durchmesser 30 cm, der Dichte 1 g/cm³ und der Zusammensetzung (relative Massenteile): Sauerstoff 76,2 Prozent; Kohlenstoff 11,1 Prozent; Wasserstoff 10,1 Prozent und Stickstoff 2,6 Prozent (Näherung für Weichteilgewebe).

Ingestion

Aufnahme von radioaktiven Stoffen in den Körper über den Verdauungstrakt.

Inhalation

Aufnahme radioaktiver Stoffe durch Einatmen.

Inkorporation

Aufnahme radioaktiver Stoffe in den menschlichen Organismus durch Ingestion, Inhalation oder durch Aufnahme durch die Haut oder Wunden.

Ionisierende Strahlen

Strahlen, deren Energie zur Herauslösung von Elektronen aus der Elektronenhülle ausreicht (Ionisation).

Konditionierung

Die Gesamtheit der Operationen, mit welchen radioaktive Abfälle für die Zwischenoder Endlagerung vorbereitet werden. Dazu gehören insbesondere die mechanische Zerkleinerung, die Dekontamination, die Verpressung, die Veraschung brennbarer Abfälle, die Einbettung in Abfallmatrizen und die Verpackung.

Konstanzprüfungen

Prüfung bestimmter Parameter auf Abweichungen gegenüber Referenzwerten in regelmässigen Abständen.

Kontamination, radioaktive

Zustand einer Verunreinigung eines Materials durch radioaktive Stoffe.

Normal

Messmittel oder Massverkörperung einer Messgrösse, welche die Grundlage zur Prüfung anderer Messmittel bilden.

Parasitäre Strahlung

Von einem nicht primär zur Erzeugung von ionisierender Strahlung vorgesehenen Gerät oder dessen Bestandteilen als Nebenwirkung beim Betrieb oder als Folge von Defekten ausgesandte ionisierende Strahlung.

Personen, beruflich strahlenexponierte

Personen, die:

- auf Grund ihrer beruflichen T\u00e4tigkeit oder bei ihrer Ausbildung durch eine kontrollierbare Strahlung eine effektive Dosis von mehr als 1 mSv pro Jahr akkumulieren k\u00f6nnen; oder
- b. regelmässig in kontrollierten Zonen arbeiten oder ausgebildet werden.

Personen, nichtberuflich strahlenexponierte

Personen, die durch Umstände, die nicht mit der beruflichen Tätigkeit oder der Ausbildung verknüpft sind, einer gegenüber dem natürlichen Untergrund erhöhten und kontrollierbaren Strahlung ausgesetzt sein können.

Pharmakologische Untersuchungen

Alle Untersuchungen, die zur Abklärung des Einflusses eines Arzneimittels auf den menschlichen Organismus (Pharmakodynamik), sowie des Einflusses des Organismus auf ein Arzneimittel (Pharmakokinetik) dienen. Phase-I-Untersuchungen von Pharmazeutika werden den pharmakologischen Untersuchungen gleichgestellt.

Physiologische Untersuchungen

Untersuchungen, die zur Abklärung der Funktionsabläufe im Stoffwechsel, beim Wachstum, bei der Entwicklung und bei Bewegungen dienen.

Qualitätssicherung

Planung, Überwachung, Prüfung und Korrektur der Ausführung eines Produktes oder einer Tätigkeit mit dem Ziel, vorgegebene Qualitätsanforderungen zu erfüllen.

Radioaktivität

Spontaner Zerfall von Nukliden unter Emission ionisierender Strahlung.

Radionuklid

Nuklid, das spontan unter Strahlungsemission zerfällt.

Radionuklidgeneratoren

Radioaktive Strahlenquelle mit einem chemisch fixierten Mutternuklid, welches ein Tochternuklid erzeugt, das durch Elution oder ein anderes Verfahren herausgelöst werden kann.

Radiopharmazeutika

Arzneimittel, die Radionuklide enthalten, deren Strahlung diagnostisch oder therapeutisch ausgenützt wird.

Als Radiopharmazeutika im Sinne dieser Verordnung gelten namentlich:

- a. Pharmazeutika, welche in gebrauchsfertiger Form ein oder mehrere Radionuklide für die Anwendung in der Medizin enthalten:
- b. nicht radioaktive Komponenten (Kits), die zur Herstellung von Radiopharmazeutika durch Neubildung von oder durch Verbindung mit Radionukliden unmittelbar vor der Anwendung am Menschen dienen;
- c. Radionuklidgeneratoren mit einem festen Mutternuklid, auf dessen Basis ein Tochternuklid erzeugt wird, das durch Elution oder ein anderes Verfahren herausgelöst und zur Herstellung eines Radiopharmazeutikums verwendet wird:
- Radionuklide, die direkt oder als Vorstufen zur Radiomarkierung anderer Stoffe (Trägerverbindungen, Zellen, Plasmaproteine) vor Verabreichung dienen.

Reihenuntersuchung, radiologische

Ohne individuelle Indikation an einer grossen Zahl von Personen systematisch durchgeführte radiologische Untersuchung. Arbeitsmedizinische Vorsorgeuntersuchungen gelten nicht als Reihenuntersuchungen.

Richtwert

Generelle Bezeichnung für einen Wert, der von einem Grenzwert abgeleitet wird, dessen Überschreiten gewisse Massnahmen bewirkt bzw. dessen Einhaltung auch die Einhaltung des zugehörigen Grenzwertes sicherstellt.

Der Richtwert für Radongaskonzentrationen gilt als Wert, welcher angestrebt werden soll. Eine Überschreitung hat keine rechtlichen Konsequenzen.

Rückverfolgbarkeit

Eigenschaft eines Messergebnisses oder des Wertes eines Normals, durch eine ununterbrochene Kette von Vergleichsmessungen mit angegebenen Messunsicherheiten auf geeignete Normale, im Allgemeinen internationale oder nationale Normale, bezogen zu sein.

Sievert (Sv)

Der spezielle Name der Einheit der Äquivalentdosis bzw. der effektiven Dosis. 1 Sv = 1 J/kg.

Stoffe, radioaktive

Stoffe, die Radionuklide enthalten, deren Aktivität die in Anhang 3, Spalte 9 festgesetzten Freigrenzen übersteigt.

Störfall

Ereignis, bei welchem eine Anlage vom bestimmungsgemässen Betrieb abweicht und:

- a. die Sicherheit einer Anlage oder eines Gegenstandes beeinträchtigt wird (technischer Störfall):
- b. das zu einer Überschreitung eines Immissionsgrenzwerts oder des Dosisgrenzwerts für nichtberuflich strahlenexponierte Personen führen kann (radiologischer Störfall); oder
- bei dem jemand einer Dosis von mehr als 50 mSv ausgesetzt wird (Strahlenunfall).

Strahlenguellen

Apparate und Gegenstände, die radioaktive Stoffe enthalten (geschlossene und offene radioaktive Strahlenquellen), sowie Anlagen, die ionisierende Strahlen aussenden können.

Strahlenquellen, radioaktive

Geschlossene und offene Strahlenquellen.

Strahlenguellen, geschlossene radioaktive

Strahlenquellen, die radioaktive Stoffe enthalten und deren Bauart unter üblicher Beanspruchung ein Austreten radioaktiver Stoffe vollständig verhindert und so die Möglichkeit einer Kontamination ausschliesst. Die Quellenkapselung soll für die

vorgesehene Anwendung den Anforderungen der ISO-Normen genügen und entsprechend klassifiziert sein.

Strahlenguelle, offene radioaktive

Strahlenquellen, die radioaktive Stoffe enthalten und die sich ausbreiten und eine Kontamination verursachen können.

Summenregel

Regel zur Überprüfung der Einhaltung von Aktivitätsgrenzwerten bei Nuklidgemischen. Dabei werden die verschiedenen Nuklide entsprechend ihrer Gefährdung gewichtet. Wenn die folgenden Ungleichungen erfüllt sind, so liegen die Gemische unter der Freigrenze bzw. unter dem Richtwert für die Oberflächenkontamination.

$$\frac{a_1}{LE_1} + \frac{a_2}{LE_2} + \dots + \frac{a_n}{LE_n} < 1$$

a₁,a₂,...a_n: spezifische Aktivitäten der Nuklide 1, 2, ... n in Bq/kg.

LE₁,LE₂,...LE_n: Freigrenzen der Nuklide 1, 2, ... n in Bq/kg gemäss Anhang 3 Spalte 9

$$\frac{c_1}{CS_1} + \frac{c_2}{CS_2} + \dots + \frac{c_n}{CS_n} < 1$$

c₁,c₂,...c_n: Kontaminationswerte der Nuklide 1, 2, ... n in Bq/cm²

CS₁,CS₂,...CS_n: Richtwert für die Oberflächenkontamination der Nuklide 1, 2, ... n in Bq/cm² gemäss Anhang 3, Spalte 12

Triagemessung

Messverfahren zur Feststellung von Inkorporationen ohne Bestimmung der entsprechenden effektiven Dosis. Bei Überschreitung eines vorbestimmten Schwellwertes muss eine Inkorporationsmessung mit Bestimmung der effektiven Folgedosis durchgeführt werden.

Vollschutzeinrichtung

Abschirmung einer Anlage zur Erzeugung ioniserender Strahlung sowie Einheiten mit geschlossenen Strahlenquellen, welche bei Betrieb der Anlage Nutz-, Streu- und parasitäre Strahlung vollständig umschliesst und derart abschirmt, dass die Ortsdosisleistung in 10 cm Abstand von der Oberfläche auf weniger als 1 Mikrosievert pro Stunde gesenkt wird und an allen zugänglichen Stellen die für nichtberuflich strahlenexponierte Personen geltenden Dosisgrenzwerte nicht überschritten werden können.

Wartung

Sicherstellung der Funktionalität und Sicherheit einer Einrichtung durch vorbeugende Massnahmen und Durchführung einer Zustandsprüfung.

Zone, kontrollierte

Kontrollierte Zonen sind:

 Arbeitsbereiche für den Umgang mit offenen radioaktiven Strahlenquellen nach Art. 69:

- Bereiche, in welchen die Konzentration der Luft über ¹/₂₀ der Richtwerte nach Anhang 3 Spalte 11 liegen kann;
- c. Bereiche, in welchen die Oberflächenkontamination über den Richtwerten nach Anhang 3 Spalte 12 liegen kann;
- d. Bereiche, in denen Personen durch externe Strahlenexpositionen eine effektive Dosis von mehr als 1 mSv pro Jahr akkumulieren können;
- e. Bereiche, in denen Anlagen ohne Vollschutzeinrichtung betrieben werden;
- f. Bereiche, die von der Aufsichtsbehörde als solche bezeichnet werden.

Zwischenlagerung

Lagerung geeignet konditionierter und verpackter radioaktiver Abfälle unter kontrollierten Bedingungen bis zur Beseitigung.

Zustandsprüfung

Prüfung des Zustandes eines in Gebrauch stehenden Produktes und Feststellung der Erfüllung vorgegebener Erfordernisse.

814.501 Verordnung

> Anhang 269 (Art. 1 Abs. 1 und 2 Abs. 1)

Geltungsbereich

1. Stoffe und Gegenstände

Die Verordnung gilt, wenn für einen Stoff oder Gegenstand in mindestens einer Zeile alle Werte überschritten werden.

Für Erze, Mineralien- und Gesteinssammlungen ist allein die spezielle Zeile massgebend.

Stoffe, Gegenstände	Spezifische Aktivität	Absolute Aktivität, Masse	Konzentration, Kontamination, Dosisleistung
Feste Stoffe	Freigrenze nach Anhang 3 Spalte 9	Freigrenze nach Anhang 3 Spalte 9	
Feste Stoffe			Ortsdosisleistung in 10 cm von der Ober- fläche nach Abzug des Untergrundes: 0,1 µSv pro Stunde
Feste Stoffe			Richtwert nach Anhang 3 Spalte 12
Flüssigkeiten	Freigrenze nach Anhang 3 Spalte 9	Freigrenze nach Anhang 3 Spalte 9	
Wasser	1% der Freigrenze nach Anhang 3 Spalte 9	Freigrenze nach Anhang 3 Spalte 9	
Gase und Luft (inklusive Radon)			¹ / ₃₀₀ Richtwert nach Anhang 3 Spalte 11
Lebensmittel	Toleranz-, respektive Grenzwerte nach der Verordnung des EDI vom 26. Juni 1995 ⁷⁰ über Fremd- und In- haltsstoffe in Lebens- mitteln		
Gegenstände des täglichen Gebrauchs	1% der Freigrenze nach Anhang 3 Spal- te 9 für künstlich her- gestellte Radionuklide	Freigrenze nach Anhang 3 Spalte 9	

Fassung gemäss Ziff. II der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS $\bf 2000$ 107). SR $\bf 817.021.23$

⁷⁰

Stoffe, Gegenstände	Spezifische Aktivität	Absolute Aktivität, Masse	Konzentration, Kontamination, Dosisleistung
Erze, Mineralien- und Gesteinssammlungen	1000fache Frei- grenze nach Anhang 3 Spalte 9	10 g nat. Thorium oder 100 g Natururan	

2. Abfälle und Abwässer

Die Verordnung gilt, wenn für Abfälle oder Abwässer in mindestens einer Zeile alle Werte überschritten werden.

Die Angabe pro Monat bezieht sich auf Abgaben an die Umwelt.

Abfälle, Abwässer	Spezifische Aktivität	Absolute Aktivität pro Bewilligung	Kontamination, Dosisleistung
Feste Abfälle	Freigrenze nach Anhang 3 Spalte 9	100fache Freigrenze nach Anhang 3 Spalte 9 pro Monat	
Feste Abfälle			Ortsdosisleistung in 10 cm von der Ober- fläche nach Abzug des Untergrundes: 0,1 µSv pro Stunde
Feste Abfälle			Richtwert nach Anhang 3 Spalte 12
Flüssige Abfälle	Freigrenze nach Anhang 3 Spalte 9	100fache Freigrenze nach Anhang 3 Spalte 9 pro Monat	
Abwässer	1% der Freigrenze nach Anhang 3 Spalte 9 (im Wochen- mittel im Abwasser des Arbeitsbereichs)	100fache Freigrenze nach Anhang 3 Spalte 9 pro Monat	
Gasförmige Abfälle, eingeschlossen		Bewilligungsgrenze nach Anhang 3 Spalte 10	

Anhang 371

Daten für den operationellen Strahlenschutz

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	h10 h0,07 h0,07 m3v/h)/GBq (m3v/h)/GBq (m3v/h)/GBq (m3v/h)/m in 1 m in 10 cm (kBq/cm/Abstand Abstand	hco.07 (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
H-3 H-3, HTO H-3. Gas [7]	12.35 a 12.35 a 12.35 a	<u>~~~</u>	4.1 E-11 1.8 E-11 1.8 E-15	4.2 E-11 1.8 E-11	<0.001 <0.001 <0.001	$\triangledown \triangledown \triangledown$	0.1 0.1 0.1	2 E+05 6 E+05	1 E+08 3 E+08 3 E+12	2 E+05 5 E+05 5 E+09	1000	
	53.3 d 1.6 E6 a	ε, γ β ⁻	4.6 E-11 1.9 E-08	2.8 E-11 1.1 E-09	0.008	<1 2000	0.1	4 E+05 9 E+03	1 E+08 3 E+05	1 E+05 9 E+01	1000	
	20.38 m 20.38 m 20.38 m	<u>က်က်</u> ကော်က်	3.2 E-12 1.2 E-12 2.2 E-12	2.4 E-11 1.2 E-12 2.2 E-12	0.160	1000	1.7	4 E+05	7 E+07 7 E+07 7 E+07	7 E+04 [3] 7 E+04 [3] 7 E+04 [3]	т	
C-14 Monoxyd C-14 Dioxyd	5730 a 5730 a 5730 a	2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5.8 E-10 8.0 E-13 6.5 E-12	5.8 E-10 8.0 E-13 6.5 E-12	<0.001	200	0.3	2 E+04	9 E+06 6 E+09 8 E+08		30	
	9.965 m 122.24 s	ε, β^+			0.160	1000	1.7		7 E+07 7 E+07	7 E+04 [3] 7 E+04 [3]	w w	
	109.77 m	ε, β+	9.3 E-11	4.9 E-11	0.160	2000	1.7	2 E + 05	5 E+07	7 E+04 [3]	33	
	2.602 a 15 h	$\epsilon, \beta^+, \gamma \beta^-, \gamma$	2.0 E-09 5.3 E-10	3.2 E-09 4.3 E-10	0.330	2000 1000	1.6	3 E+03 2 E+04	3 E+06 9 E+06	4 E+03 3 E+04	mm	
Mg-28 / $Al-28$	20.91 h	β^-, γ	1.7 E-09	2.2 E-09	0.529	2000	3.1	5 E+03	3 E+06	6 E+03	3	

Fassung gemäss Ziff. II der V vom 17. Nov. 1999 (AS 2000 107). Bereinigt gemäss Ziff. II der V vom 15. Nov. 2000, in Kraft seit 1. Jan. 2001 (AS 2000 2894). 71

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBç in 1 m Abstand	h10 h07 (mSv/h)/GBq (mSv/h)/GBq (mSv/h)/ in 1 m in 10 cm (kBq/cm/ Abstand Abstand	hc_{0.07} q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq∕m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
AI-26	7.16 E5 a	$\epsilon, \beta^+, \gamma$	1.4 E-08	3.5 E-09	0.382	1000	1.5	3 E+03	4 E+05	4 E+02	ĸ	
Si-31 Si-32	157.3 m 450 a	β-', γ β-	1.1 E-10 5.5 E-08	1.6 E-10 5.6 E-10	<0.001	1000	1.6	6 E+04 2 E+04	5 E+07 9 E+04	1 E+05 3 E+01	$\omega \omega$	$\stackrel{3}{3} \rightarrow P-32$
P-30 P-32 P-33	2.499 m 14.29 d 25.4 d	$\epsilon, \beta^+, \gamma$ β^- β^-	2.9 E-09 1.3 E-09	2.4 E-09 2.4 E-10	0.371 <0.001 <0.001	900 1000 700	1.7 1.6 0.8	4 E+03 4 E+04	2 E+06 4 E+06	2 E+03 1 E+04	3 3 10	
S-35 (anorg.) S-35 (org.)	87.44 d 87.44 d		1.1 E-09 1.2 E-10	1.9 E-10 7.7 E-10	<0.001	200 200	0.3	5 E+04 1 E+04	5 E+06 4 E+07	1 E+04 7 E+04	30	
CI-36 CI-38 CI-39	3.01 E5 a 37.21 m 55.6 m	$\beta^{-}, \epsilon, \beta^{+}$ β^{-}, γ β^{-}, γ	5.1 E-09 7.3 E-11 7.6 E-11	9.3 E-10 1.2 E-10 8.5 E-11	<0.001 1.551 0.241	1000 1000 1000	1.5 1.8 1.7	1 E+04 8 E+04 1 E+05	1 E+06 7 E+07 7 E+07	1 E+03 4 E+04 [3] 2 E+05	<i>m m m</i>	33 $3 \rightarrow Ar-39$
Ar-37 Ar-39 Ar-41	35. 02 d 269 a 1.827 h	ε β-, γ			<0.001 <0.001 0.188	2000 1000	<0.1 1.5 1.7		1 E+14 3 E+10 5 E+07	1 E+11 7 E+06 [4] 5 E+04		
K-38 K-40 K-42	7.636 m 1.28 E9 a 12.36 h	$\epsilon, \beta^+, \gamma$ $\beta^-, \epsilon, \gamma$ β^-, γ	3.0 E-09 2.0 E-10	6.2 E-09 4.3 E-10	0.480 0.022 0.464	1000	1.8	2 E+03 2 E+04	2 E+06 3 E+07	3 E+03 2 E+04	w w w	
K-43 K-44 K-45	22.6 h 22.13 m 20 m	<u>~~~</u>	2.6 E-10 3.7 E-11 2.8 E-11	2.5 E-10 8.4 E-11 5.4 E-11	0.152 1.553 0.302	1000	1.8	1 E+05 2 E+05	2 E+07 1 E+08 2 E+08	4 E+04 3 E+05 5 E+05	mmm	
Ca-41 Ca-45 Ca-47	1.4 E5 a 163 d 4.53 d	ε β-, γ β-, γ	1.9 E-10 2.3 E-09 2.1 E-09	2.9 E-10 7.6 E-10 1.6 E-09	<0.001 <0.001 0.156	700 1000	<0.1 0.8 1.6	3 E+04 1 E+04 6 E+03	3 E+07 2 E+06 2 E+06	3 E+04 5 E+03 4 E+03	300 10 3	000000000000000000000000000000000000
Sc-43 Sc-44 Sc-44m	3.891 h 3.927 h 58.6 h	$\begin{array}{c} \epsilon,\beta^+,\gamma\\ \epsilon,\beta^+,\gamma\\ \epsilon,\gamma\end{array}$	1.8 E-10 3.0 E-10 2.0 E-09	1.9 E-10 3.5 E-10 2.4 E-09	0.174 0.324 0.045	1000 1000 200	1.4 1.7 0.2	5 E+04 3 E+04 4 E+03	3 E+07 2 E+07 3 E+06	1 E+05 7 E+04 4 E+03	$\omega \omega \omega$	3 3 → Sc-44 [6]

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	h0,07 P (mSv/h)/GBq (in 10 cm Abstand	hc0,07 iq (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS In Bq/cm ² T	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12 1	13
Sc-46	83.83 d	β-, γ	4.8 E-09	1.5 E-09	0.299	1000	1.2	7 E+03	1 E+06	1 E+03	3	
Sc-47	3.351 d	β^-, γ	7.3 E-10	5.4 E-10	0.017	1000	1.3	2 E + 04	7 E+06	1 E+04	3	
Sc-48	43.7 h	ρ 	1.6 E-09	1.7 E-09	0.495	2000	1.7	6 E+03	3 E+06	7 E+03	m r	
SC-49	57.4 m	р, ү	0.1 E-11	8.2 E-11	0.001	1000	1.0	1 E+03	8 E+0/	3 E+03	c	
Ti-44	47.3 a	ε, γ	7.2 E-08	5.8 E-09	0.026	2 50 5	<0.1	$^{2}_{5}$ E+03	7 E+04	3 E+02	30-	$30 \rightarrow \text{Sc-}44 [6]$
Ti-45	3.08 h	$\varepsilon, \beta^+, \gamma$	1.5 E-10	1.5 E-10	0.136	1000	1.5	7 E + 04	3 E + 07	2E+05	m	
V-47	32.6 m	$\epsilon, \beta^+, \gamma$	5.0 E-11	6.3 E-11	0.156	1000	1.7	2 E + 05	1 E + 08	4 E+05	3	
V-48	16.238 d	$\varepsilon, \beta^+, \gamma$	2.7 E-09	2.0 E-09	0.432	006	1.0	5 E + 03	2 E + 06	3 E + 03	3	
V-49	330 d		2.6 E-11	1.8 E-11	<0.001	$\overline{\lor}$	<0.1	6 E + 05	2 E+08	9 E+04	100	
Cr-48	22.96 h	$\epsilon, \beta^+, \gamma$	2.5 E-10	2.0 E-10	0.071	20	0.1	5 E+04	2 E+07	3 E+04	100	→ V-48 [6]
Cr-49	42.09 m	$\epsilon, \beta^+, \gamma$	5.9 E-11	6.1 E-11	0.166	1000	1.7	2 E + 05	8 E + 07	1 E + 05	<u>ج</u>	$3 \rightarrow V49$
Cr-51	27.704 d	ε, γ	3.6 E-11	3.8 E-11	0.005	3	<0.1	3 E + 05	1 E + 08	2 E+05	100	
Mn-51	46.2 m	$\varepsilon, \beta^+, \gamma$	6.8 E-11	9.3 E-11	0.159	1000	1.7	1 E + 05	7 E+07	1 E + 05	3-	$3 \rightarrow \text{Cr-51}$
Mn-52	5.591 d	$\epsilon, \beta^+, \gamma$	1.8 E - 09	1.8 E-09	0.510	009	0.7	6 E + 03	3 E + 06	5 E+03	10	
Mn-52m	21.1 m	$\epsilon, \beta^+, \gamma$	5.0 E-11	6.9 E-11	0.389	1000	1.7	1 E + 05	1 E + 08	2 E+05	ς,	$3 \rightarrow \text{Mn-52}$
Mn-53	3.7 E6 a	з	3.6 E-11	3.0 E-11	<0.001	20	<0.1 ô.1	3 E+05	1 E+08	2 E+05	1000	
Mn-54 Mn-56	312.5 d 2 5785 b	ς. - ~	1.2 E-09	7.1 E-10	0.126	1000	0.1	1 E+04	4 E+06 3 E+07	/ E+03	100	
OC-IIIAI	2.2763 H		2.0.1-10	2.7 1.7	0.2.0	0001):i	1 0		t 0	, (
Fe-52	8.275 h	$\varepsilon, \beta^{+}, \gamma$	9.5 E-10	1.4 E-09	0.116	006	$\frac{1.0}{0.1}$	7 E+03	5 E+06	9 E+03	ς, 6	→ Mn-52m [6]
Fe-55	2.70 a	ω - -	9.2 E-10	3.3 E-10	<0.001	7000	0.1	3 E+04	5 E+06	9 E+03	300	
Fe-59 Fe-60	44.529 d	م م-' ۲	3.2 E-09	1.8 E-09	0.175	0001	1.1 0.3	0 E+03	2 E+06	3 E+03	n (1	3 Co 60m
00-21	1 L) a		J.J E-07	1.1 E-07	100.0	2	0.5	7 17401	to+17 1	3 12701	ו	7 CO-00III
Co-55	17.54 h	$\epsilon, \beta^+, \gamma$	8.3 E-10	$1.1 \to 09$	0.302	1000	1.4	9 E+03	6 E+06	1 E+04	, 3	$3 \rightarrow \text{Fe-55}$
Co-56	78.76 d	$\varepsilon, \beta^+, \gamma$	4.9 E-09	2.5 E-09	0.485	300	0.6	4 E+03	1 E+06	2 E+03	10	
Co-5/	2/0.9 d	ε, γ	6.0 E-10	2.1 E - 10	0.021	100	0.1	5 E+04	8 E+06	I E+04	100	

					Beurteilungsgrössen	sgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GB in 1 m Abstand	h10 h007 (mSv/h)/GBq (mSv/h)/GBq (mSv/h)/ in 1 m in 10 cm (kBq/cm ² Abstand Abstand	hc_{0,07} 3q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	L.A Bq	CA Bq/m³	CS Instabiles Bq/cm ² Tochternuklid	
1	2	3	4	5	9	7	8	6	10	11	12 13	
Co-58	70.80 d	$\varepsilon, \beta^+, \gamma$	1.7 E-09	7.4 E-10	0.147	300		1 E+04	3 E+06	5 E+03	30	
Co-58m	9.15 h	. >-	1.7 E-11	2.4 E-11	<0.001	10		4 E+05	3 E+08	5 E+05	$1000 \rightarrow \text{Co-58}[6]$	
Co-60	5.271 a	β-, γ	1.7 E-08	3.4 E - 09	0.366	1000		$1 E + 03^{72}$	9 E+04	5 E+02	ю	
Co-60m	10.47 m	β ⁻ , γ	1.2 E-12	1.7 E-12	0.001	20		6 E+06	4 E+09	7 E+06	$300 \rightarrow \text{Co-}60 [6]$	
Co-61	1.65 h	β-, -, -,	7.5 E-11	7.4 E-11	0.017	1000	1.6	1 E+05	7 E+07	1 E+05	m r	
C0-07m	15.91 m	р, ү	3.7 E-11	4.7 E-11	0.436	1000	1.8	2 E+03	I E+08	2 E+05	'n	
Ni-56	6.10 d	ε, γ	9.6 E-10	8.6 E-10	0.260	09	0.1	1 E+04	5 E+06	9 E + 03	$30 \rightarrow \text{Co-56}[6]$	
Ni-57	36.08 h	$\varepsilon, \beta^+, \gamma$	7.6 E-10	8.7 E-10	0.278	700	0.8	1 E + 04	7 E + 06	1 E + 04	$10 \rightarrow \text{Co-}57$	
Ni-59	7.5 E4 a	ω	2.2 E-10	6.3 E-11	<0.001	10	<0.1	2E+05	2 E+07	4 E+04	1000	
Ni-63	96 a	β_	5.2 E-10	1.5 E-10	<0.001	$\overline{\lor}$	<0.1	7 E + 04	1 E + 07	2 E + 04	1000	
Ni-65	2.520 h	β^-, γ	1.3 E-10	1.8 E-10	0.081	1000	1.6	6 E+04	4 E+07	6 E+04	ю	
Ni-66 / Cu-66	54.6 h	β-, γ	1.9 E-09	3.0 E - 09	0.039	2000	2.2	3 E + 03	3 E+06	4 E+03	3	
Cu-60	23.2 m	$\varepsilon, \beta^+, \gamma$	6.2 E-11	7.0 E-11	0.596	1000	1.8	1 E+05	8 E+07	1 E+05	8	
Cu-61	$3.408 \mathrm{h}$	$\varepsilon, \beta^+, \gamma$	1.2 E-10	1.2 E-10	0.128	006	1.1	8 E+04	4 E + 07	7 E+04	æ	
Cu-64	12.701 h	$\varepsilon, \beta^+, \beta^-, \zeta$	$\gamma 1.5 E-10$	1.2 E-10	0.030	006	0.8	8 E+04	3 E + 07	6 E+04	10	
Cn-67	61.86 h	β^-, γ	5.8 E-10	3.4 E-10	0.018	1000	1.4	3 E+04	9 E+06	1 E+04	8	
Zn-62 / Cu-62	9.26 h	$\varepsilon, \beta^+, \gamma$	6.6 E-10	9.4 E-10	0.319	1000	1.9	1 E + 04	8 E+06	1 E+04	3	
Zn-63	38.1 m	$\varepsilon, \beta^+, \gamma$	6.1 E-11	7.9 E-11	0.175	1000	1.6	1 E + 05	8 E + 07	1 E + 05	8	
Zn-65	243.9 d	$\varepsilon, \beta^+, \gamma$	2.8 E - 09	3.9 E - 09	0.086	40	0.1	3 E + 03	2E+06	3 E + 03	30	
Zu-69	57 m	β-, γ	4.3 E-11	3.1 E-11	<0.001	1000	1.6	3 E + 05	1 E + 08	2E+05	ю	
Zn-69m	13.76 h	β-, γ	3.3 E-10	3.3 E-10	0.067	70	0.1	3 E + 04	2 E + 07	3 E+04	$3 \rightarrow \text{Zn-69}$	
Zn-71m	$3.92 \mathrm{h}$	β-, γ	2.4 E - 10	2.4 E - 10	0.240	1000	1.7	4 E+04	2 E + 07	3 E + 04	m	
Zn-72	46.5 h	β-, γ	1.5 E-09	1.4 E-09	0.026	006	6.0	7 E + 03	3 E + 06	6 E + 03	$3 \rightarrow \text{Ga-72}[6]$	
Ga-65	15.2 m	$\epsilon, \beta^+, \gamma$	2.9 E-11	3.7 E-11	0.183	1000	1.6	3 E + 05	2 E+08	3 E + 05	$3 \rightarrow \text{Zn-}65$	
Ga-66	9.40 h	$\varepsilon, \beta^+, \gamma$	7.1 E-10	1.2 E-09	0.877	009	1:1	8 E+03	7 E+06	1 E+04	3	

72 AS **2000** 934

Verordnung

					Beurteilur	Beurteilungsgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte	
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/G in 1 m Abstand	h10 h007 (mSv/h)/GBg (mSv/h)/ in 1 m in 10 cm (kBq/cm²) Abstand Abstand	hco.o7 3q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Instabiles Bq/cm ² Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12 13
Ga-67	78.26 h	٤. ٧	2.8 E-10	1.9 E-10	0.025	30	0.3	5 E+04	2 E+07	3 E+04	30
Ga-68	68.0 m	ε. β+. γ	8.1 E-11	1.0 E-10	0.149	1000	1.5	1 E+05	6 E+07	1 E+05	m
Ga-70	21.15 m	ε, β΄, γ	2.6 E-11	3.1 E-11	0.001	1000	1.6	3 E+05	2 E+08	3 E+05	ıκ
Ga-72	14.1 h	β-, γ	8.4 E-10	1.1 E-09	0.386	1000	1.7	9 E + 03	6 E+06	1 E + 04	e
Ga-73	4.91 h	β-, γ	2.0 E - 10	2.6 E-10	0.052	1000	1.6	4 E+04	3 E + 07	4 E+04	ю
Ge-66	2.27 h	$\epsilon, \beta^+, \gamma$	1.3 E-10	1.0 E-10	0.108	400	0.5	1 E + 05	4 E+07	6 E+04	$10 \to Ga-66[6]$
Ge-67	18.7 m	$\epsilon, \beta^+, \gamma$	4.2 E-11	6.5 E-11	0.407	1000	1.7	2 E + 05	1 E + 08	2E+05	$3 \rightarrow Ga-67$
Ge-68	288d	. 3	7.9 E-09	1.3 E-09	<0.001	10	<0.1	8 E + 03	6 E + 05	1 E + 03	$3 \rightarrow Ga-68$ [6]
Ge-69	39.05 h	$\varepsilon, \beta^+, \gamma$	3.7 E-10	2.4 E - 10	0.132	200	9.0	4 E+04	1 E + 07	2 E + 04	10
Ge-71	11.8 d	. 3	1.1 E-11	1.2 E-11	<0.001	10	<0.1	8 E + 05	5 E+08	8 E + 05	1000
Ge-75	82.78 m	β-, γ	5.4 E-11	4.6 E-11	0.006	1000	1.6	2 E + 05	9 E + 07	2 E + 05	8
Ge-77	11.3 h	β-, γ	4.5 E-10	3.3 E-10	0.163	1000	1.6	3 E + 04	1 E + 07	2 E + 04	33
Ge-78	87 m	β-, γ	1.4 E-10	1.2 E-10	0.045	1000	1.5	8 E+04	4 E + 07	6 E+04	$3 \rightarrow \text{As-78} [6]$
As-69	15.2 m	$\epsilon, \beta^+, \gamma$	3.5 E-11	5.7 E-11	0.250	006	1.7	2 E + 05	1 E + 08	2 E+05	$3 \rightarrow \text{Ge-69}$
As-70	52.6 m	$\varepsilon, \beta^+, \gamma$	1.2 E-10	1.3 E-10	0.603	1000	1.7	8 E+04	4 E+07	7 E+04	8
As-71	64.8 h	$\epsilon, \beta^+, \gamma$	5.0 E-10	4.6 E-10	0.088	700	0.7	2 E + 04	1 E + 07	2E+04	$10 \rightarrow \text{Ge-}71$
As-72	$26.0\mathrm{h}$	$\varepsilon, \beta^+, \gamma$	1.3 E-09	1.8 E - 09	0.339	006	1.6	6 E + 03	4 E+06	6 E + 03	ю
As-73	80.30 d	ε, γ	6.5 E-10	2.6 E-10	0.003	20	<0.1	4 E+04	8 E + 06	1 E + 04	300
As-74	17.76 d	$\varepsilon, \beta^{+}, \beta^{-}$	$\gamma 1.8 E-09$	1.3 E-09	0.117	006	1.1	8 E+03	$\frac{3}{2}$ E+06	5 E + 03	m
As-76	26.32 h	β, γ	9.2 E-10	1.6 E - 09	0.132	1000	1.6	6 E + 03	5 E+06	$^{9}\mathrm{E}{+}03$	m
As-77	38.8 h	β-, γ	4.2 E-10	4.0 E-10	0.001	1000	1.5	3 E + 04	1 E + 07	2E+04	κ
As-78	90.7 m	β-, γ	1.4 E-10	2.1 E-10	0.804	1000	1.7	5 E+04	4 E + 07	6 E+04	ю
Se-70	41.0 m	$\epsilon, \beta^+, \gamma$	1.2 E-10	1.4 E-10	0.158	006	1.3	7 E + 04	4 E + 07	7 E+04	$3 \rightarrow \text{As-70} [6]$
Se-73	7.15 h	$\varepsilon, \beta^+, \gamma$	2.4 E - 10	3.9 E-10	0.174	006	1.2	3 E + 04	2 E + 07	3 E + 04	$3 \rightarrow As-73$
Se-73m	39 m	$\varepsilon, \beta^+, \gamma$	2.7 E-11	4.1 E-11	0.038	300	0.4	2 E + 05	2 E + 08	3 E + 05	$10 \rightarrow \text{Se-}73$
Se-75	119.8 d	ε, γ	1.7 E-09	2.6 E - 09	0.064	80	0.1	4 E+03	3 E + 06	5 E + 03	30
Se-79	6.5 E4 a	β-, γ	3.1 E-09	2.9 E-09	<0.001	200	0.4	3 E + 03	2E+06	3 E + 03	10
Se-81	18.5 m	β-, γ	2.4 E-11	2.7 E-11	0.002	1000	1.6	4 E+05	2 E + 08	3 E + 05	က

Z	
hut	
SC	
를	
ੜ	
z	

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 k (mSv/h)/GBq (in 1 m i Abstand	h0,07 h0,07 1 (mSv/h)/GBq (mSv/h)/ in 10 cm (kBq/cm²) Abstand	hco.07 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Se-81m Se-83	57.25 m 22.5 m	β^-, γ	6.8 E-11 5.3 E-11	5.9 E-11 5.1 E-11	0.004	100	1.1	2 E+05 2 E+05	$^{7}_{9}_{E+07}$	1 E+05 2 E+05	ĊĊ	$3 \rightarrow \text{Se-81}$ $3 \rightarrow \text{Br-83}$
Br-74	25.3 m	$\epsilon, \beta^+, \gamma$	6.8 E-11	8.4 E-11	1.022	1000	1.8	1 E+05	7 E+07	1 E+05		}
Br-74m	41.5 m	$\epsilon, \beta^+, \gamma$	1.1 E-10	1.4 E-10	1.347	006	1.8	7 E + 04	5 E+07	8 E+04	3	
Br-75	98 m	ε, β ⁺ , γ	8.5 E-11	7.9 E-11	0.189	006	1.3	1 E+05	6 E+07	1 E+05	, Ω	→ Se-75
Br-77	10.2 n 56 h	ω, α Φ. 4, ~	3.8 E-10 1.3 E-10	4.0 E-10 9.6 E-11	0.050	8	0.1	2 E+04 1 E+05	9 E+06 4 E+07	1 E+04 6 E+04	100	
Br-80	17.4 m	$\epsilon, \beta^+, \dot{\beta}^-, \dot{\beta}^-, \dot{\beta}^-$	/ 1.7 E-11	3.1 E-11	0.013	1000	1.5	3 E+05	3 E+08	5 E+05	9	
Br-80m	4.42 h		1.0 E-10	1.1 E-10	0.012	10	<0.1	9 E+04	5 E+07	8 E+04	Ġ	→ Br-80
Br-82	35.30 h	β-, γ	8.8 E-10	5.4 E-10	0.395	1000	1.4	2 E + 04	6 E + 06	9 E+03	3	
Br-83	2.39 h	β-, -	6.7 E-11	4.3 E-11	0.001	1000	1.5	2 E+05	$^{7}_{0.2}_{1.00}$	1 E+05	m c	
Br-84	31.80 m	β,γ	6.2 E-11	8.8 E-11	0.923	1000	1.7	1 E+05	8 E+0/	I E+05	3.	
Kr-79	35.04 h	$\epsilon, \beta^+, \gamma$			0.042	100	0.2		3 E + 08	3 E+05		
Kr-81	2.1 E5 a	ε, γ			0.004	∞ (<0.1		7 E+09	7 E+06		
Kr-83m	1.83 h	>			0.002	က	<0.1		1 E+12			
Kr-85	10.72 a	5 -, -			0.001	1000	1.5		5 E+07 [8]	5 E+06 [4]		20.71
Nr-83m Vr-87	4.48 II	р Д-, -, 2 -, -,			0.020	1000	1.4		2 E+08 8 E+07	2 E+03 8 E+04		→ M-85
Kr-88	2.5 m 2.84 h	ص د خ			0.301	1000	. 1		2 E+07	2 E+04 [1]		7 NO-8/ → Rh-88 [6]
Kr-89	3.18 m	β-, γ			2.047	006	1.8		$\frac{2}{3}E+07$	3 E+04		→ Rb-89 [6]
Rb-79	22.9 m	$\epsilon, \beta^+, \gamma$	3.0 E-11	5.0 E-11	0.217	2000	2.1	2 E + 05	2 E+08	3 E+05	æ	$3 \rightarrow \text{Kr-79}$
Rb-81	4.58 h	$\varepsilon, \beta^+, \gamma$	6.8 E-11	5.4 E-11	0.101	1000	1.2	2 E+05	7 E+07	1 E+05	Ċ	$3 \rightarrow \text{Kr-81}$
Rb-81m	32 m	٠	1.3 E-11	9.7 E-12	0.006	5	0.3	1 E+06	4 E+08	6 E+05	30	→Rb-81 [6]
Rb-82m	6.2 h	$\epsilon, \beta^+, \gamma$	2.2 E-10	1.3 E-10	0.436	400	0.6	8 E+04	2 E+07	4 E+04	10	
Rb-83 Rb-84	32.77 d	ε, 7 β+ β-	1.0 E-09	1.9 E-09 2 8 E-09	0.082	700	0.6	5 E+03 4 F+03	3 E+06 3 E+06	8 E+03	001	
Rb-86	18.66 d	, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	1.3 E-09	2.8 E-09	0.014	1000	1.6	4 E+03	4 E+06	6 E+03	900	
Kb-8/	4.7 E10 a	β	7.6 E-10	1.5 E-09	<0.001	1000	1.2	7 E+03	/ E+06	I E+04	33	

Verordnung

					Beurteilungsgrössen	sgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBo in 1 m Abstand	h10 h007 hc0,07 hc0,07 hc0,07 in 1 m in 10 cm (kBq/cm²)/Abstand Abstand	hco.07 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	$\frac{\mathbf{CS}}{\mathbf{B}q^{\prime}\mathbf{cm}^{2}}$ Instabiles	
1	2	3	4	5	9	7	8	6	10	11	12 13	
Zr-93	1.53 E6 a	β_	2.9 E-08	2.8 E-10	<0.001	<1	<0.1	4 E+04	2 E+05	3 E+02	$100 \rightarrow \text{Nb-93m}$	
Zr-95	63.98 d	β_', γ	4.2 E-09	8.8 E-10	0.112	1000	1.1	1 E+04	1 E+06	2 E+03	$3 \rightarrow Nb-95$ [6]	
76-17	16.90 h	ρ, λ	1.4 E-09	2.1 E - 09	0.07	1000	1.6	5 E+03	4 E+06	6 E+03	2 → NP-9/	
Nb-88	14.3 m	$\epsilon, \beta^+, \gamma$	5.0 E-11	6.3 E-11	0.719	1000	1.8	2 E + 05	1 E+08	2E+05	$3 \rightarrow \text{Zr-88}$	
Nb-89-1 [2]	99 m	$\varepsilon, \beta^+, \gamma$	1.2 E-10	1.4 E-10	0.306	006	1.5	7 E+04	4 E + 07	7 E+04	\uparrow	
Nb-89-2 [2]	122 m	$\varepsilon, \beta^+, \gamma$	1.9 E-10	3.0 E-10	0.392	200	1.3	3 E+04	3 E + 07	4 E+04	$3 \rightarrow \text{Zr-89}$	
Np-90	14.60 h	$\varepsilon, \beta^+, \gamma$	1.1 E - 09	1.2 E - 09	0.574	2000	1.9	8 E + 03	5 E+06	8 E + 03	m	
Nb-91	680 a	ω	4.1 E-09	6.4 E-11				2E+05	1 E + 06	2 E + 03		
Nb-91m	62 d	٤, ٦	2.3 E - 09	6.3 E-10				2 E + 04	2E+06	4 E+03		
Nb-92m	10.15 d	β+, γ	5.9 E-10	6.0 E-10				2 E + 04	8 E+06	1 E+04		
Nb-93m	13.6 a	. >-	8.6 E-10	1.2 E-10	0.003	7	<0.1	8 E + 04	6 E+06	1 E+04	1000	
Nb-94	2.03 E4 a	β-, γ	2.5 E-08	1.7 E - 09	0.237	1000	1.5	6 E + 03	2E+05	3 E+02	3	
Nb-95	35.15 d	β-, γ	1.3 E-09	5.8 E - 10	0.116	100	0.3	2 E+04	4 E+06	6 E + 03	30	
Nb-95m	86.6 h	. >-	8.5 E-10	5.6 E-10	0.021	2000	1.4	2 E+04	6 E + 06	1 E+04	$3 \to \text{Np-95}[6]$	
96-9N	23.35 h	β-, γ	9.7 E - 10	1.1 E - 09	0.372	1000	1.6	9 E + 03	5 E + 06	9 E+03	3	
Nb-97	72.1 m	β-, γ	7.2 E-11	6.8 E-11	0.099	1000	1.6	1 E + 05	7 E + 07	1 E + 05	3	
NP-98	51.5 m	β-, γ	9.9 E - 11	1.1 E-10	0.393	1000	1.8	9 E+04	5 E + 07	8 E+04	33	
Mo-90	5.67 h	$\epsilon, \beta^+, \gamma$	5.6 E-10	6.2 E-10	0.147	1000	1.4	2 E + 04	9 E+06	1 E+04	$3 \rightarrow \text{Np-90} [6]$	
Mo-93	3.5 E3 a	ω	1.4 E-09	2.6 E-09	0.016	4	<0.1	4 E + 03	4 E+06	6 E + 03	300	
Mo-93m	$6.85 \mathrm{h}$	٨	3.0 E-10	2.8 E - 10	0.330	800	0.8	4 E+04	2 E + 07	3 E+04	$10 \rightarrow \text{Mo-}93$	
Mo-99	66.0 h	β-, γ	1.1 E-09	1.2 E-09	0.024	1000	1.6	8 E + 03	5 E + 06	8 E + 03	3 → Tc-99m, Tc-99	66:
Mo-101	14.62 m	β-, γ	4.5 E-11	4.2 E-11	0.196	1000	1.7	2 E + 05	1 E + 08	2E+05	$3 \rightarrow \text{Tc-101}$	
Tc-93	2.75 h	ε, γ	6.5 E-11	4.9 E-11	0.222	20	0.1	2E+05	8 E + 07	1 E + 05	$100 \rightarrow \text{Mo-}93$	
Tc-93m	43.5 m	ε, γ	3.1 E-11	2.4 E - 11	0.098	300	0.4	4 E+05	2E+08	3 E + 05	$10 \rightarrow \text{Tc-}93, \text{Mo-}93$	33
Tc-94	293 m	$\epsilon, \beta^+, \gamma$	2.2 E-10	1.8 ± 10	0.414	200	0.4	6 E+04	$^{2}_{E+07}$	4 E+04	10	
Tc-94m	52 m	$\varepsilon, \beta^{\tau}, \gamma$	8.0 ± 11	1.1 ± 10	0.285	700	$\frac{1.3}{2.1}$	9 E+04	6 E + 07	$\frac{1}{1}\frac{E+05}{E+05}$	e ;	
Tc-95	20.0 h	ა გ-ლ -	1.8 E-10	1.6 E-10	0.135	25	0.1	0 E+04	3 E+0/	5 E+04	100 20 \ T ₂ 05	
10-22111	n 10	č, þ. , ′	0.0 E-10	0.2 E-10	0.117	100	٧.٢	7 E+04	0.12+00	I E+04	JU-7 1C-73	

gui	0
=	
Ξ	
erordni	
9	
ฮ	
>	

					Beurteilungsgrössen	sgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte		1
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GB in 1 m Abstand	hto ho,07 ho,07 hc,007 mSv/h)/GBq (mSv/h)/GBq (mSv/h)/m in 1 m in 10 cm (kBq/cm Abstand Abstand	hc_{0,07} iq (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Instabiles Bq/cm ² Tochternuklid	
1	2	3	4	5	9	7	8	6	10	11	12 13	
Tc-96	4.28 d	۲. ۷	1.0 E-09	1.1 E-09	0.388	40	0.2	9 E+03	5 E+06	8 E+03	30	
Tc-96m	51.5 m	- > -	1.1 E-11	1.3 E-11	0.016	ć	<0.1	8 E+05	5 E+08	8 E+05	$1000 \rightarrow \text{Tc-}96$	
Tc-97	2.6 E6 a	з	1.6 E-10	8.3 E-11	0.017	4	<0.1	1 E + 05	3 E + 07	5 E+04	1000	
Tc-97m	87 d	۸	2.7 E - 09	6.6 E-10	0.014	30	0.7	2 E + 04	2E+06	3 E + 03	$10 \rightarrow \text{Tc-97}$	
Tc-98	ಡ.	β, ,-	6.1 E-09	2.3 E-09	0.215	2000	1.5	4 E+03	8 E+05	1 E+03	m	
Tc-99 Te 00	2.13 E5 a	უ ;	3.2 E-09	7.8 E-10	0.001	1000	1.1	1 E+04	2 E+06	3 E+03	33	
Tc 101	0.02 II	, - -	2.9 E-11	2.2 E-11	0.022	200	0.7	5 E+05	2 E+08	2 E+03	$30 \rightarrow 10-99$	
Tc-101	14.2 m 18.2 m	ص ح خ	4.8 E-11	8.1 E-11	1.219	1000	1.8	1 E+05	2 E+08 1 E+08	2 E+05	n m	
R11-94	51.8 m	. &	7.4 E-11	9.4 E-11	0.100	20	0.1	1 E + 05	7 E+07	1 E+05	100 → Tc-94	
Ru-97	2.9 d	- ≿	1.6 E-10	1.5 E-10	0.055	100	0.1	7 E+04	3 E+07	5 E+04	$100 \rightarrow \text{Tc-97}$	
Ru-103	39.28 d	β-, γ	2.2 E-09	7.3 E-10	0.073	200	9.0	1 E + 04	2 E + 06	4 E+03	10	
Ru-105	4.44 h	ا ا ا	2.5 E-10	2.6 E-10	0.119	1000	1.6	4 E+04	2 E+07	3 E+04	$3 \rightarrow \text{Rh-}105$	
Ku-106 / Kh-106	368.2 d	р, ү	3.5 E-08	7.0 E-09	0.357	1000	1.6	I E+03	I E+05	7 E+07	'n	
Rh-99	16 d	$\epsilon, \beta^+, \gamma$	8.9 E-10	5.1 E-10	0.115	100	0.2	2 E + 04	6 E+06	9 E+03	30	
Rh-99m	4.7 h	$\epsilon, \beta^+, \gamma$	7.3 E-11	6.6 E-11	0.122	100	0.2	2 E + 05	7 E + 07	1 E + 05	30	
Rh-100	20.8 h	$\varepsilon, \beta^+, \gamma$	6.3 E-10	7.1 E-10	0.392	100	0.3	1 E+04	8 E+06	1 E+04	30	
Rh-101	3.200 a	ε, γ	3.1 E - 09	5.5 E-10	0.062	300	0.4	2 E+04	2 E + 06	3 E + 03	10	
Rh-101m	4.34 d	$\epsilon, \chi_{_{\pm}}$	2.7 E-10	2.2 E - 10	0.066	200	0.2	5 E+04	2 E+07	3 E+04	$30 \rightarrow \text{Rh-}101$	
Kh-102	2.900 a	ϵ, β, γ	9.0 E-09	2.6 E-09	0.339	20	0.2	4 E+03	6 E+05	9 E+02	30	
Rh-102m	207 d	ε, β ⁻ , β ⁻ , ¹	γ 4.2 E-09	1.2 E-09	0.085	400	0.6	8 E+03	1 E+06	2 E+03	$10 \rightarrow \text{Rh-}102$	
Kh-103m	56.12 m	<u>~</u>	2.5 E-12	3.8 E-12	0.002	V .	.0.i	3 E+06	2 E+09	3 E+06	1000	
Rh-105	35.36 h	β ⁻ , γ	4.4 E-10	3.7 E-10	0.013	1000	1.2	3 E+04	1 E + 07	2 E+04	m	
Rh-106m	132 m	β-, γ	1.9 E-10	1.6 E-10	0.436	1000	1.7	6 E+04	3 E + 07	4 E+04	m	
Rh-107	21.7 m	β^-, γ	2.8 E-11	2.4 E-11	0.051	1000	1.6	4 E+05	2 E + 08	3 E + 05	$3 \rightarrow \text{Pd-}107$	
Pd-100	3.63 d	٤, ٢	9.7 E-10	9.4 E-10	0.050	20	0.1	1 E+04	5 E+06	9 E+03	$100 \rightarrow \text{Rh-}100 [6]$	
Pd-101	8.27 h	ε, β ⁺ , γ	1.0 E-10	9.4 E-11	0.081	100	0.5	1 E+05	5 E+07	8 E+04	30 → Rh-101m	
Pd-103	16.90 d	ુ.,	3.0 E-10	1.9 E-10	0.019	r	<0.1	2 E+04	7 E+0/	3 E+04	300 → Kn-105m	

Z	
Ē	
$\frac{1}{2}$	
en	
4	
ца	
S	

					Beurteilungsgrössen	sgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GB in 1 m Abstand	h10 h0,7 hc0,07 hc0,07 hc0,07 hc0,07 hi ln lm in 10 cm (kBq/cm ²) Abstand Abstand	hco.07 iq (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Pd-107	6.5 E6 a	β_	2.9 E-10	3.7 E-11	<0.001	<	<0.1	3 E+05	2 E+07	3 E+04	1000	
Pd-109	13.427 h	β-,γ	5.0 E-10	5.5 E-10	0.010	1000	2.0	2 E+04	1 E + 07	2 E+04	3	
Ag-102	12.9 m	$\epsilon, \beta^+, \gamma$	3.2 E-11	4.0 E-11	0.546	800	1.4	3 E + 05	2 E+08	3 E+05	3	
Ag-103	65.7 m	$\varepsilon, \beta^+, \gamma$	4.5 E-11	4.3 E-11	0.125	500	0.8	2 E + 05	1 E + 08	2 E+05	10	$10 \rightarrow Pd-103$
Ag-104	69.2 m	$\epsilon, \beta^+, \gamma$	7.1 E-11	6.0 E-11	0.410	300	0.5	2 E + 05	7 E + 07	1 E + 05	10	
Ag-104m	33.5 m	$\varepsilon, \beta^+, \gamma$	4.5 E-11	5.4 E-11	0.188	400	0.8	2 E + 05	1 E + 08	2E+05	10	$10 \to Ag-104 [6]$
Ag-105	41.0 d	$\varepsilon, \beta^+, \gamma$	8.0 E-10	4.7 E-10	0.102	50	0.1	2 E + 04	6 E+06	1 E+04	100	
Ag-106	23.96 m	$\varepsilon, \beta^+, \gamma$	2.7 E-11	3.2 E-11	0.117	700	1.0	3 E + 05	2E+08	3 E + 05	10	
Ag-106m	8.41 d	ε, γ	1.6 E-09	1.5 E-09	0.435	09	0.2	7 E + 03	3 E + 06	5 E+03	30	
Ag-108m / Ag-108	3 127 a	$\epsilon, \beta^+, \beta^-, \gamma$	γ 1.9 Ε-08	2.3 E - 09	0.263	100	0.3	4 E+03	3 E + 05	4 E+02	30	
Ag-110m / Ag-110) 249.9 d	ε, β ⁻ , γ	7.3 E-09	2.8 E - 09	0.409	200	9.0	4 E+03	7 E + 05	1 E + 03	10	
Ag-111	7.45 d	β-, γ	1.6 E-09	1.3 E-09	0.004	1000	1.6	8 E+03	3 E + 06	5 E+03	3	
Ag-112 3	3.12 h	β-, γ	2.6 E-10	4.3 E-10	0.640	1000	1.7	2 E+04	2E+07	3 E+04	m.	
Ag-115	20.0 m	β-, γ	4.4 E-11	6.0 E-11	0.181	1000	1.7	2 E + 05	1 E + 08	2 E+05	κ'n	$3 \rightarrow \text{Cd-}115, \text{Cd-}115\text{m}$
Cd-104	57.7 m	$\varepsilon, \beta^+, \gamma$	6.3 E-11	5.8 E-11	0.062	20	0.1	2E+05	8 E+07	1 E + 05	100	$100 \rightarrow Ag-104 [6]$
Cd-107	6.49 h	$\varepsilon, \beta^+, \gamma$	1.1 E-10	6.2 E-11	0.030	20	9.0	2 E + 05	5 E + 07	8 E+04	10	
Cd-109	464 d	ε, γ	9.6 E - 09	2.0 E - 09	0.027	5	0.4	5 E + 03	5 E + 05	9 E+02	10	
Cd-113	9.3 E15 a	β_	1.4 E-07	2.5 E-08	<0.001	1000	6.0	4 E+02	4 E+04	6 E + 01	10	
Cd-113m	13.6 a	5	1.3 E-07	2.3 E-08	<0.001	1000	1.4	4 E + 02	4 E+04	6 E + 01	cc	
Cd-115	53.46 h	β-, γ	1.3 E-09	1.4 E - 09	0.037	1000	1.5	7 E + 03	4 E+06	6 E + 03	Ċ	$3 \rightarrow \text{In-}115$
Cd-115m	44.6 d	β-, γ	6.4 E-09	3.3 E-09	0.003	1000	1.6	3 E + 03	8 E + 05	1 E + 03	Ŕ	$3 \rightarrow \text{In-}115$
Cd-117	2.49 h	β-, γ	2.5 E-10	2.8 E - 10	0.158	1000	1.5	4 E+04	2 E + 07	3 E+04	Ŕ	$3 \rightarrow \text{In-}117\text{m}, \text{In-}117$
Cd-117m	3.36 h	β-, γ	3.2 E-10	2.8 E - 10	0.282	1000	1.5	4 E+04	2 E + 07	3 E+04	Ċ	$3 \rightarrow \text{In-}117, \text{In-}117\text{m}$
In-109	4.2 h	$\varepsilon, \beta^+, \gamma$	7.3 E-11	6.6 E-11	0.117	300	0.3	2 E + 05	7 E+07	1 E + 05	30	$30 \rightarrow \text{Cd-109}$
	4.9 h	$\varepsilon, \beta^+, \gamma$	2.5 E-10	2.4 E - 10	0.468	09	0.2	4 E+04	2 E + 07	3 E + 04	30	
In-110S [2]	69.1 m	$\varepsilon, \beta^+, \gamma$	8.1 E-11	1.0 E-10	0.238	700	1.1	1 E + 05	6 E + 07	1 E + 05	3	
In-111	2.83 d	ς, γ - - -	3.1 E-10	2.9 E-10	0.082	400	0.3	3 E+04	2 E+07	3 E+04	10	
In-112	14.4 m	ε, β., β.,	γ 1.3 E-11	1.0 E-11	0.047	900	1.0	I E+06	4 E+08	6 E+05	10	

Verordnung

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBc in 1 m Abstand	h10 h07 (mSv/h)/GBq (mSv/h)/GBq (mSv/h)/ in 1 m in 10 cm (kBq/cm/ Abstand Abstand	hco,07 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Sb-120-2 [2]	5.76 d	ε, γ	1.3 E-09	1.2 E-09	0.386	400	0.4	8 E+03	4 E+06	6 E+03	10	
Sb-122	2.70 d	$\varepsilon, \beta^-, \gamma$	1.2 E-09	1.7 E-09	0.068	1000	1.6	6 E+03	4 E+06	7 E+03	3	
Sb-124	60.20 d	β-, γ	4.7 E-09	2.5 E-09	0.261	1000	1.5	4 E + 03	1 E+06	2E+03	3	
Sb-124m-2 [2]	20.2 m	. ~	8.3 E-12	8.0 E-12	<0.001	abla	<0.1	1 E + 06	6 E+08	1 E + 06	100	$[00 \rightarrow \text{Sb-}124[6]]$
Sb-125	2.77 a	β-, γ	3.3 E-09	1.1 E-09	0.076	700	0.7	9 E + 03	2E+06	3 E + 03	10	$10 \rightarrow \text{Te-}125\text{m}$
Sb-126	12.4 d	β-, γ	3.2 E-09	2.4 E-09	0.434	1000	1.5	4 E + 03	2E+06	3 E + 03	33	
Sb-126m	19.0 m	β-, γ	3.3 E-11	3.6 E - 11	0.239	1000	1.5	3 E + 05	2 E + 08	3 E + 05	Ġ	$3 \rightarrow \text{Sb-}126 [6]$
Sb-127	3.85 d	β-, γ	1.7 E-09	1.7 E-09	0.106	1000	1.6	6 E + 03	3 E + 06	5 E + 03	ÿ	\rightarrow Te-127, Te-127m
Sb-128S [2]	10.4 m	β-, γ	2.6 E - 11	3.3 E-11	0.313	1000	1.8	3 E + 05	2 E + 08	3 E + 05	3	
Sb-128L [2]	9.01 h	β-, γ	6.7 E-10	7.6 E-10	0.472	1000	1.8	1 E + 04	7 E + 06	1 E+04	3	
Sb-129	4.32 h	β-, γ	3.5 E-10	4.2 E-10	0.212	1000	1.6	2 E + 04	1 E + 07	2E+04	Ġ	→ Te-129, Te-129m
Sb-130	40 m	β-, γ	9.1 E-11	9.1 E-11	0.505	2000	2.1	1 E + 05	5 E + 07	9 E+04	3	
Sb-131	23 m	β^-, γ	8.3 E-11	1.0 E-10	0.278	1000	1.7	1 E + 05	6 E+07	1 E+05	ώ	$3 \rightarrow \text{Te-}131, \text{Te-}131\text{m}$
Te-116	2.49 h	ε, γ	1.7 E-10	1.7 E-10	0.033	8	0.2	6 E+04	3 E+07	5 E+04	10.	$10 \rightarrow \text{Sb-}116[6]$
Te-119m	16 h	$\varepsilon, \beta^+, \gamma$	6.3 E-10	8.3 E-10				1 E + 04	8 E + 06	1 E + 04	10	
Te-121	17 d	ε, γ.	4.4 E - 10	4.3 E-10	0.104	20	0.1	2E+04	1 E + 07	2E+04	100	
Te-121m	154 d	ε, γ	3.6 E - 09	2.3 E-09	0.043	200	0.4	4 E + 03	1 E + 06	2E+03	10	$10 \rightarrow \text{Te-}121[6]$
Te-123	1 E13 a	3	5.0 E-09	4.4 E-09	0.017	2	<0.1	2 E + 03	1 E + 06	2 E + 03	300	
Te-123m	119.7 d	- ح	3.4 E - 09	1.4 E - 09	0.032	400	0.8	7 E + 03	1 E + 06	2 E + 03	10	$10 \rightarrow \text{Te-}123$
Te-125m	28 d	~	2.9 E - 09	8.7 E-10	0.027	200	1.1	1 E + 04	2 E + 06	3 E + 03	3	
Te-127	9.35 h	β-, γ	1.8 E-10	1.7 E-10	0.001	1000	1.4	6 E+04	3 E + 07	5 E+04	3	
Te-127m	109 d	β-, γ	6.2 E-09	2.3 E - 09	0.009	40	0.5	4 E + 03	8 E + 05	1 E + 03	10	$10 \rightarrow \text{Te-}127$
Te-129	69.6 m	β^-, γ	5.7 E-11	6.3 E-11	0.012	1000	1.6	2 E + 05	9 E + 07	1 E + 05	Ġ	$3 \rightarrow 1.129$
Te-129m	33.6 d	β-, γ	5.4 E-09	3.0 E - 09	0.011	009	1.2	3 E + 03	9 E + 05	2E+03	Ċ	$3 \rightarrow \text{Te-}129$
Te-131	25 m	β^-, γ	6.1 E-11	8.7 E-11	0.067	2000	2.0	1 E + 05	8 E + 07	1 E + 05	Ġ	$3 \rightarrow 1-131$
Te-131m	30 h	β-, γ	1.6 E-09	1.9 E - 09	0.208	2000	1.5	5 E + 03	3 E + 06	5 E + 03	ώ	$3 \rightarrow 1.131, Te-131$
Te-132	78.2 h	β-, γ	3.0 E - 09	3.7 E - 09	0.050	700	0.7	3 E + 03	2E+06	3 E + 03	10	$10 \rightarrow F132 [6]$
Te-133	12.45 m	β-, γ	4.4 E-11	7.2 E-11	0.151	1000	1.7	1 E + 05	1 E + 08	2E+05	κ'n	→I-133
Te-133m	55.4 m	β^-, γ	1.9 E-10	2.8 E-10	0.344	1000	1.8	4 E+04	3 E + 07	4 E+04	έ	3→I-133, Te-133

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBc in 1 m Abstand	h10 h07 (mSv/h)/GBq (mSv/h)/GBq (mSv/h)/ in 1 m in 10 cm (kBq/cm/ Abstand Abstand	hco.o7 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Te-134	41.8 m	β^-, γ	1.1 E-10	1.1 E-10	0.142	2000	1.7	9 E+04	5 E+07	8 E+04	3.	3→F134 [6]
I-120	81.0 m	$\epsilon, \beta^+, \gamma$	1.9 E-10	3.4 E-10	1.155	800	1.5	3 E+04	3 E+07	4 E+04	3	
I-120m	53 m	ε, ε	1.4 E-10	2.1 E-10	1.108	800	1.7	5 E+04	4 E+07	6 E+04	8 5	3 To 121
I-123	13.2 h	ر ح ک م	1.1 E-10	2.1 E-10	0.07	400	0.0	5 E+04	5 E+07	8 E+04	2	10 → Te-123
I-124	4.18 d	$\epsilon, \beta^+, \gamma$	6.3 E-09	1.3 E-08	0.170	300	0.5	8 E+02		1 E+03	10	
I-125	60.14 d	ε, γ	7.3 E-09	1.5 E-08	0.033	4	<0.1	7 E + 02		1 E+03	10	
I-126	13.02 d	$\epsilon, \beta^+, \beta^-, \iota$	γ 1.4 E-08	2.9 E - 08	0.078	700	0.7	3 E + 02		6 E+02	æ	
I-128	24.99 m	$\varepsilon, \beta^+, \beta^-, \gamma$	γ 2.2 E-11	4.6 E-11	0.016	1000	1.5	2 E + 05		4 E+05	3	
I-129	1.57 E7 a	β-, γ	5.1 E-08	1.1 E-07	0.016	100	0.3	9 E+01		2 E+02	Ī	$1 \rightarrow \text{Xe-}129$
I-130	12.36 h	β-, γ	9.6 E - 10	2.0 E - 09	0.325	1000	1.6	5 E + 03		9 E+03	B	
I-131	8.04 d	β-, γ	1.1 E-08	2.2 E-08	0.062	1000	1.4	5 E+02		8 E+02	κ'n	$3 \rightarrow \text{Xe-}131\text{m}$
I-132	$2.30 \mathrm{h}$	β-, γ	2.0 E - 10	2.9 E - 10	0.338	1000	1.7	3 E+04	3 E + 07	4 E+04	æ	
I-132m	83.6 m	β ⁻ , γ	1.1 ± 10	2.2 E-10	0.055	300	1.0		5 E + 07	8 E+04	10	$10 \rightarrow \text{F-}132 [6]$
I-133	20.8 h	β-, γ	2.1 E-09	4.3 E-09	0.093	1000	1.6	2 E + 03	2 E + 06	4 E+03	Ċ.	$3 \rightarrow \text{Xe-}133, \text{Xe-}133\text{m}$
I-134	52.6 m	$\hat{\beta}^-, \gamma$	7.9 E-11	1.1 E-10	0.385	1000	1.8	9 E+04	6 E + 07	1 E + 05	m.	
I-135	$6.61 \mathrm{h}$	β^-, γ	4.6 E-10	9.3 E-10	0.223	1000	1.6	1 E+04	1 E + 07	2 E+04	Ŕ	$3 \rightarrow \text{Xe-}135, \text{Xe-}135\text{m}$
Xe-122 / I-122	$20.1 \mathrm{h}$	$\epsilon, \beta^+, \gamma$			0.284	800	1.3		7 E+07	7 E+04		
Xe-123	$2.08 \mathrm{h}$	$\varepsilon, \beta^+, \gamma$			0.107	800	6.0		1 E + 08	1 E+05		→F123
Xe-125	$17.0 \mathrm{h}$	$\varepsilon, \beta^+, \gamma$			090.0	300	0.2		3 E + 08	3 E + 05		→F125
Xe-127	36.41 d	ε, γ			0.059	400	0.3		3 E + 08	3 E+05		
Xe-129m	8.0 d	<u> </u>			0.030	3000	1.9		4 E+09	4 E+06		
Xe-131m	11.9 d	ž			0.012	3000	2.1		9 E+09	9 E+06		
Xe-133	5.245 d	β^-, γ			0.016	1000	1.0		$^{2}E+09$	2 E+06		;
Xe-133m	2.188 d	7			0.016	2000	1.7		2 E+09	2 E+06		→ Xe-133
Xe-135	9.09 n	ک '-۲			0.040	2000	0.10		3 E+08	3 E+05		+Cs-135
Xe-133m Xe-137	3 83 m	ج د 'ح			0.069	200	9. F		2 E+08 3 E+08	2 E+03 3 F+05		→ Cs-133
107.00					10111	1	;		3	2		

	s iuklid		38 [6]	25	[27					34 [6]		35						31	51		55			40 [6]	41	42 [6]	31	
	CS Instabiles Bq/cm ² Tochternuklid	13	\rightarrow Cs-138 [6]	$10 \rightarrow \text{Xe-}125$	30 → Xe-1	10	1000	100	ю	$3 \rightarrow \text{Cs-} 134 [6]$	10	$30 \rightarrow \text{Cs-}135$	m	m r	c	m (υ ;	10 → Cs-131	$10 \rightarrow Ba-151$	30 5	$3 \rightarrow \text{Ba-155}$	m (m	3→La-140 [6]	3→La-141	3→La-142 [6]	$10 \rightarrow Ba-13$	10
te	CS Bq/c	12																										
Richtwerte	CA Bq/m ³	11	6 E+04	4 E+05	2 E+05 1 E+05	6 E+05	2E+05	2E+04	9 E + 02	3 E + 05	8 E + 03	3E+05	4 E+03	1 E+03	7 E+03	7 E+04	0 E+03	7 E+04	1 E+06	0 E+03	3 E+04	4 E+04	2E+05	5 E + 03	2 E+05	3 E + 05	2E+05	3 E+04
Bewilligungs- grenze	LA Bq	10	6 E+07	2 E + 08	1 E+08 6 E+07	3 E+08	1 E + 08	1 E + 07	5 E + 05	2 E + 08	5 E + 06	2 E + 08	3 E + 06	7 E+05	I E+08	4 E+07	4 E+06	1 E+0/	8 E+08	5 E+00	2 E+0/	2 E+07	9 E + 07	3E+06	1 E + 08	2 E + 08	1 E + 08	2 E + 07
Freigrenze	LE Bq/kg bzw. LE _{abs} Bq	6		3 E + 05	4 E+05	4 E+05	2E+05	2E+04	5 E+02	5 E + 05	5 E + 03	5 E+05	3 E+03	8 E+02	I E+03	4 E+04	4 E+03	2 E+04	2 E+06	1 E+04	2 E+04	2 E+04	8 E+04	4 E + 03	1 E + 05	3 E + 05	3 E + 05	3 E + 04
	hco.07 4q (mSv/h)/ (kBq/cm ²)	8	1.7	0.7	0.5	0.8	<0.1	0.1	1.1	1.5	0.7	0.5	1.5	1.5	1.0	1.6	1.2	4.0	4.0		C	1.5	1.7	1.5	1.9	1.7	9.0	0.8
sgrössen	ho,07 hco,07 sq (mSv/h)/GBq (mSv/h)/ in 10 cm (kBq/cm/ Abstand	7	1000	200	100 30	500	2	50	1000	1000	009	70	1000	2000	1000	900	00/	300	000	0/00	2000	2000	1000	1000	1000	1000	400	400
Beurteilungsgrössen	h10 (mSv/h)/GBq in 1 m Abstand	9	0.166	0.114	0.079	0.087	0.016	0.119	0.236	0.00	0.000	0.239	0.327	0.092	0.445	0.805	0.209	0.087	0.019	0.085	0.019	0.018	0.012	0.031	0.152	0.160	0.116	0.379
	eing Sv/Bq	5		3.5 E-11	2.4 E-11 6.0 E-11	2.8 E-11	5.8 E-11	5.0 E-10	1.9 E - 08	2.0 E - 11	2.0 E - 09	1.9 E-11	3.0 E-09	1.3 E-08	9.2 E-11	2.6 E-10	2.7 E-09	4.5 E-10	4.9 E-12	1.0 E-09	5.5 E-10	4.5 E-10	1.2 E-10	2.5 E-09	7.0 E-11	3.5 E-11	3.5 E-11	3.9 E-10
	einh Sv/Bq	4		2.3 E-11	4.0 E-11 8 1 E-11	1.5 E-11	4.5 E-11	7 3.8 E-10	9.6 E-09	2.6 E - 11	9.9 E - 10	2.4 E-11	1.9 E-09	6.7 E-09	4.0 E-11	1.2 E-10	1.5 E-09	3.5 E-10	6.4 E-12	1.8 E-09	2.8 E-10	2.3 E-10	5.5 E-11	1.6 E - 09	3.5 E-11	2.7 E-11	3.6 E-11	2.8 E - 10
	Zerfallsart/ Strahlenart	3	β^-, γ	$\epsilon, \beta^+, \gamma$	ε, Β , γ Α, γ	ε, Β ⁺ ΄, γ	· · · ω	$\varepsilon, \beta^+, \beta^-, \gamma$	ε, β ⁻ , γ	۲,	β_	>	β ⁻ , γ	ص د ``	р, у	ς, φ, τ	ε, ρ., γ	ε, β., γ	٠	ς, -	۸	<u>_</u>	5΄, γ	β-, γ	β-, γ	β-, γ	$\epsilon, \beta^+, \gamma$	$\varepsilon, \beta^+, \gamma$
	Halbwerts- zeit	2	14.17 m	45 m	6.25 h 32.06 h	29.9 m	9.69 d	6.475 d	2.062 a	$2.90 \mathrm{h}$	2.3 E6 a	53 m		30.0 a		96.5 m	2.43 d	11.8 d	14.6 m	10.74 a	38.9 h	28.7 h	82.7 m	12.74 d	18.27 m	10.6 m	29 m	4.8 h
			8	5	7	0	1	2	4	4m	5	5m	9	Cs-137 / Ba-137m	0	Ba-126 / Cs-126	Ba-128 / Cs-128	<u>.</u>	m,	o (Sm	5m	6	0		6	1	La-132
	Nuklid	1	Xe-138	Cs-125	Cs-127	Cs-130	Cs-131	Cs-132	Cs-134	Cs-134m	Cs-135	Cs-135m	Cs-136	Cs-13	CS-15	Ba-12	Ba-12	Ba-131	Ba-131m	Da-133	Ba-155m	Ba-135m	Ba-139	Ba-140	Ba-14	Ba-142	La-131	La-132

					Beurteilungsgrössen	rössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	hto hcoor hcor hc	hco.07 (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS I Bq/cm ² 7	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12 1	13
La-137	6 E4 a	3	1.0 E-08	8.1 E-11	0.014	2	<0.1	1 E+05	5 E+05	8 E+02	1000	
La-138	1.35E11 a	ε, β-, γ	1.8 E-07	1.1 E-09	0.185	400	0.4	9 E+03	3 E+04	5 E+01	10	
La-140	40.272 h	β-, γ	1.5 E-09	2.0 E - 09	0.332	1000	1.8	5 E+03	3 E + 06	6 E+03	æ	
La-141	$3.93 \mathrm{h}$	β-, γ	2.2 E-10	3.6 E - 10	0.016	1000	1.6	3 E+04	2 E + 07	4 E+04	ę.	$3 \rightarrow \text{Ce-}141$
La-142	92.5 m	β-, γ	1.5 E-10	1.8 E-10	0.490	1000	1.8	6 E+04	3 E + 07	6 E+04	æ	
La-143	14.23 m	β-, γ	3.3 E-11	5.6 E-11	0.219	1000	1.6	2 E + 05	2 E + 08	3 E + 05	÷.	$3 \rightarrow \text{Ce-}143$
Ce-134 / La-134	72.0 h	$\varepsilon, \beta^+, \gamma$	1.6 E-09	2.5 E-09	0.149	009	1.0	4 E+03	3 E+06	5 E+03	10	
Ce-135	17.6 h	$\varepsilon, \beta^+, \gamma$	7.6 E-10	7.9 E-10	0.271	2000	1.8	1 E + 04	7 E+06	1 E+04	φ.	$3 \rightarrow \text{La-135}$
Ce-137	9.0 h	ε, γ	1.9 E-11	2.5 E-11	0.016	10	<0.1	4 E + 05	3 E + 08	4 E+05	1000	$1000 \rightarrow \text{La-}137$
Ce-137m	34.4 h	ε, γ	5.9 E-10	5.4 E-10	0.016	2000	1.6	2 E+04	8 E + 06	1 E+04	φ.	$3 \rightarrow \text{Ce-}137, \text{La-}137$
Ce-139	137.66 d	ε, γ	1.4 E-09	2.6 E-10	0.036	200	0.5	4 E+04		6 E+03	10	
Ce-141	32.501 d	β_',γ	3.1 E-09	7.1 E-10	0.014	2000	1.6	1 E+04		3 E+03	3	
Ce-143	33.0 h	β ⁻ , γ	$1.0 \to -09$	1.1 ± 0.09	0.053	1000	1.6	9 E+03		8 E+03	ψ	$3 \rightarrow \text{Pr-}143$
Ce-144 / Pr-144m	284.3 d	β-, γ	2.9 E - 08	5.2 E-09	0.005	800	6.0	2 E + 03	2 E+05	3 E+02	10-	→ Pr-144
Pr-136	13.1 m	$\epsilon, \beta^+, \gamma$	2.5 E-11	3.3 E-11	0.375	009	1.1	3 E+05		3 E+05	3	
Pr-137	76.6 m	$\varepsilon, \beta^+, \gamma$	3.5 E-11	4.0 E-11	0.083	300	0.5			2 E+05	10-	$0 \rightarrow \text{Ce-}137$
Pr-138m	2.1 h	$\varepsilon, \beta^+, \gamma$	1.3 E-10	1.3 E-10	0.379	009	0.8	8 E+04		6 E+04	10	
Pr-139	4.51 h	$\epsilon, \beta^+, \gamma$	3.0 E-11	3.1 E-11	0.028	100	0.1		2 E+08	3 E + 05	30-	$30 \rightarrow \text{Ce-}139$
Pr-142	19.13 h	$\varepsilon, \beta^-, \gamma$	7.4 E - 10	1.3 E-09	0.011	1000	1.6	8 E + 03		1 E+04	B	
Pr-142m	14.6 m	~	9.4 E - 12	1.7 E-11	<0.001	$\overline{\lor}$	<0.1			9 E+05	10-	$10 \rightarrow \text{Pr-}142$
Pr-143	13.56 d	β΄, γ	2.2 E - 09	1.2 E-09	0.000	1000	1.5	8 E + 03	2 E + 06	4 E+03	B	
Pr-144	17.28 m	β-, γ	3.0 E - 11	5.0 E-11	0.099	1000	1.6	2 E + 05		3E+05	æ	
Pr-145	5.98 h	β-, γ	2.6 E - 10	3.9 E-10	0.002	1000	1.6	3 E + 04	2 E + 07	3 E+04	æ	
Pr-147	13.6 m	β-, γ	3.0 E-11	3.3 E-11	0.144	1000	1.8	3 E + 05	2 E + 08	3 E + 05	. .	$3 \rightarrow \text{Nd-}147$
Nd-136	50.65 m	$\epsilon, \beta^+, \gamma$	8.9 E-11	9.9 E-11	0.061	200	0.3	1 E+05	6 E+07	9 E+04	30-	$30 \rightarrow \text{Pr-}136[6]$
Nd-138 / Pr-138	5.04 h	$\varepsilon, \beta^+, \gamma$	3.8 E-10	6.4 E-10	0.398	700	1.3	2 E+04		2 E+04	3	
Nd-139	29.7 m	$\varepsilon, \beta^+, \gamma$	1.7 E-11	2.0 E-11	0.070	300	0.4	5 E+05		5 E+05	10-	$10 \rightarrow \text{Pr-}139$
Nd-139m	5.5 h	$\varepsilon, \beta^+, \gamma$	2.5 E-10	2.5 E-10	0.246	200	9.0	4 E+04	2 E+07	3 E+04	10-	10 → Pr-139, Nd-139

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	h10 h007 h007 hc007 mSv/h)/GBq (mSv/h)/GBq (mSv/h)/m in 10 cm (kBq/cm/Abstand Abstand	hco.o7 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS In Bq/cm ² Tc	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12 13	
Nd-140	3.37 d	3	2.0 E-09	2.8 E-09				4 E+03	3 E+06	4 E+03	3	Ť
Nd-141	2.49 h	$\epsilon, \beta^+, \gamma$	8.8 E-12	8.3 E-12	0.021	50	0.1	1 E + 06	6 E+08	9 E+05	100	
Nd-147	10.98 d	β-' γ	2.1 E-09	1.1 E-09	0.027	1000	1.5	9 E+03	2E+06	4 E+03	S. T.	$3 \rightarrow \text{Pm-}147$
Nd-149	1.73 h	β_, γ	1.3 E-10	1.2 E-10	0.063	2000	1.8	8 E+04	4 E+07	6 E+04	S. T.	$3 \rightarrow \text{Pm-}149$
Nd-151	12.44 m	β_,γ	2.9 E-11	3.0 E-11	0.137	1000	1.7	3 E + 05	2 E + 08	3 E+05	₩ 1.	$3 \rightarrow \text{Pm-}151$
Pm-141	20.90 m	$\epsilon, \beta^+, \gamma$	2.5 E-11	3.6 E-11	0.137	200	0.9	3 E+05	2 E+08	3 E+05	10	$10 \rightarrow \text{Nd-}141, \text{Nd-}141\text{m}$
Pm-143	265 d	ε, γ	9.6 E-10	2.3 E-10	0.057	7	<0.1	4 E+04	5 E+06	9 E+03	300	
Pm-144	363 d	ε, γ	5.4 E-09	9.7 E-10	0.248	40	0.1	1 E + 04	9 E + 05	2 E + 03	100	
Pm-145	17.7 a	ε, γ	2.4 E-09	1.1 E-10	0.013	10	<0.1	9 E + 04	2E+06	3 E+03	1000	
Pm-146	2020 d	$\varepsilon, \beta^-, \gamma$	1.3 E-08	9.0 E-10	0.122	500	9.0	1 E + 04	4 E + 05	6 E+02	10	$10 \rightarrow \text{Sm-}146$
Pm-147	2.6234 a	β-, γ	3.5 E-09	2.6 E-10	<0.001	200	9.0	4 E + 04		2 E+03	10	· Sm-147
Pm-148	5.37 d	β_, γ	2.2 E-09	2.7 E - 09	0.091	1000	1.6	4 E + 03		4 E+03	3	
Pm-148m	41.3 d	β-, γ	4.3 E-09	1.8 E - 09	0.306	1000	1.4	6 E + 03		2E+03	e T	· Sm-148
Pm-149	53.08 h	β-, γ	8.2 E-10	9.9 E-10	0.002	1000	1.6	1 E + 04		1 E + 04	3	
Pm-150	2.68 h	β-, γ	2.1 E-10	2.6 E-10	0.226	1000	1.8	4 E+04	2 E + 07	4 E+04	3	
Pm-151	28.4 h	β-, γ	6.4 E-10	7.3 E-10	0.052	1000	1.5	1 E+04	8 E + 06	1 E+04	T T	$3 \rightarrow \text{Sm-151}$
Sm-141	10.2 m	$\epsilon, \beta^+, \gamma$	2.7 E-11	3.9 E-11	0.287	200	1.0	3 E+05	2 E + 08	3 E+05	10	$10 \rightarrow \text{Pm-}141 [6]$
Sm-141m	22.6 m	$\varepsilon, \beta^+, \gamma$	5.6 E - 11	6.5 E-11	0.338	006	1.1	2 E + 05	9 E + 07	1 E + 05	e T	$3 \rightarrow \text{Pm-}141, \text{Sm-}141$
Sm-142 / Pm-142	72.49 m	$\epsilon, \beta^+, \gamma$	1.1 E-10	1.9 E-10	0.752	800	1.5	5 E+04	5 E + 07	8 E+04	3	
Sm-145	340 d	ε, γ.	1.1 E-09	2.1 E-10	0.026	20	<0.1	5 E + 04	5 E+06	8 E + 03	100	$100 \rightarrow \text{Pm-}145$
Sm-146	1.03 E8 a	ď	6.7 E-06	5.4 E-08	<0.001	7	<0.1	2 E + 02	7 E+02	1 E + 00	1	
Sm-147	1.06E11 a	α	6.1 E-06	4.9 E - 08	<0.001	7	<0.1	2 E + 02	8 E + 02	1 E + 00	1	
Sm-151	90 a	β-, γ	2.6 E - 09	9.8 E-11	<0.001	7	<0.1	1 E + 05	2 E+06	3 E + 03	100	
Sm-153	46.7 h	β-, γ	6.8 E-10	7.4 E-10	0.016	1000	1.6	1 E + 04	7 E+06	1 E+04	3	
Sm-155	22.1 m	β-, γ	2.8 E - 11	2.9 E - 11	0.019	1000	1.6	3 E + 05	2 E + 08	3E+05	e T	$3 \rightarrow \text{Eu-155}$
Sm-156	9.4 h	β^-, γ	2.8 E - 10	2.5 E-10	0.022	1000	1.4	4 E+04	2 E + 07	3 E+04	ec T	$3 \rightarrow \text{Eu-}156[6]$
Eu-145 Eu-146	5.94 d 4.61 d	$\epsilon, \beta^+, \gamma$ $\epsilon, \beta^+, \gamma$	7.3 E-10 1.2 E-09	7.5 E-10 1.3 E-09	0.217 0.375	100	0.2	1 E+04 8 E+03	7 E+06 4 E+06	1 E+04 7 E+03	30 7 7 30 30 30	$30 \rightarrow \text{Sm-}145$ $30 \rightarrow \text{Sm-}146$

Verordnung

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte	
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	h0,07 1 (mSv/h)/GBq (in 10 cm Abstand	hco.o7 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	\mathbf{CS} Instabiles $\mathbf{B}q/\mathbf{cm}^2$ Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12 13
Tb-156	5.34 d	ε, γ	1.4 E-09	1.2 E-09	0.277	200	0.8	8 E+03	4 E+06	6 E+03	10
Tb-156m-1 [2]	5.0 h	. >-	1.3 E-10	8.1 E-11	0.001	8	9.0	1 E + 05	4 E + 07	6 E+04	$10 \rightarrow \text{Tb-156}[6]$
Tb-156m-2 [2]	24.4 h	-ج.	2.3 E-10	1.7 E-10	0.007	4	<0.1	6 E + 04	2 E + 07	4 E+04	1000
Tb-157	150 a	ε, γ	7.9 E-10	3.4 E-11	0.001	9	<0.1	3 E + 05	6 E+06	1 E+04	1000
Tb-158	150 a	$\varepsilon, \beta^-, \gamma$	3.0 E - 08	1.1 E-09	0.127	400	9.0	9 E + 03	2E+05	3 E+02	10
Tb-160	72.3 d	β-, γ	5.4 E-09	1.6 E-09	0.169	1000	1.7	6 E+03	9 E+05	$^{2}_{E+03}$	ω
Tb-161	6.91 d	β^-, γ	1.2 E-09	7.2 E-10	0.013	1000	1.3	1 E + 04	4 E+06	7 E+03	m
Dy-155	10.0 h	$\varepsilon, \beta^+, \gamma$	1.2 E-10	1.3 E-10	0.094	100	0.1	8 E+04	4 E+07	7 E+04	$30 \rightarrow \text{Tb-}155$
Dy-157	8.1 h		5.5 E-11	6.1 E-11	0.065	40	0.1	2E+05	9 E+07	2 E+05	$100 \rightarrow \text{Tb-}157$
Dy-159	144.4 d	ε, γ	2.5 E-10	1.0 E-10	0.015	10	<0.1	1 E + 05	2 E + 07	3 E+04	1000
Dy-165	2.334 h	β-, γ	8.7 E-11	1.1 E-10	0.005	1000	1.6	9 E+04	6 E + 07	1 E + 05	m
Dy-166	81.6 h	β-, γ	1.8 E-09	1.6 E-09	0.010	1000	1.1	6 E + 03	3 E+06	5 E+03	$3 \rightarrow \text{Ho-}166$
Ho-155	48 m	$\epsilon, \beta^+, \gamma$	3.2 E-11	3.7 E-11	0.066	300	0.5	3 E+05	2 E+08	3 E+05	$10 \rightarrow Dy-155$
Ho-157	12.6 m	$\varepsilon, \beta^+, \gamma$	7.6 E-12	6.5 E-12	0.088	300	0.3	2 E + 06	7 E + 08	1 E+06	$30 \rightarrow Dy-157$
Ho-159	33 m	$\varepsilon, \beta^+, \gamma$	1.0 E-11	7.9 E-12	0.069	200	0.2	1 E + 06	5 E + 08	8 E+05	$30 \rightarrow Dy-159$
Ho-161	2.5 h	ε, γ	1.0 E-11	1.3 E-11	0.022	20	<0.1	8 E + 05	5 E+08	8 E + 05	300
Ho-162	15 m	$\epsilon, \beta^+, \gamma$	4.5 E-12	3.3 E-12	0.032	70	0.2	3 E + 06	1 E + 09	2 E+06	30
Ho-162m	68 m	٤, ٢	3.3 E-11	2.6 E-11	0.094	300	0.3	4 E+05		3 E+05	$30 \rightarrow \text{Ho-}162$
Ho-164	29 m	ε, β΄, γ	1.3 E-11	9.5 E-12	0.00	009	0.7	1 E + 06		6 E + 05	10
Ho-164m	37.5 m	۲	1.6 E-11	1.6 E-11	0.014	20	<0.1	6 E + 05		5 E+05	$300 \rightarrow \text{Ho-}164$
Ho-166	26.80 h	β-, γ	8.3 E-10	1.4 E - 09	0.005	1000	1.7	7 E + 03	6 E+06	1 E+04	ю
Ho-166m	1.20 E3 a	β-, γ	7.8 E-08	2.0 E - 09	0.268	800	6.0	5 E + 03	6 E + 04	1 E + 02	10
Ho-167	3.1 h	β-, γ	1.0 E-10	8.3 E-11	0.061	1000	1.4	1 E + 05	5 E + 07	8 E+04	n
Er-161	3.24 h	$\epsilon, \beta^+, \gamma$	8.5 E-11	8.0 E-11	0.139	400	0.4	1 E+05		1 E+05	$10 \rightarrow \text{Ho-}161$
Er-165	10.36 h		1.4 E-11	1.9 E-11	0.011	7	<0.1	5 E + 05		6 E+05	1000
Er-169	9.3 d	β-, γ	9.2 E - 10	3.7 E-10	<0.001	1000	1.0	3 E + 04		9 E+03	10
Er-171	7.52 h	β', '-'	3.0 E-10	3.6 E-10	0.064	2000	1.9	3 E+04	2 E+07	3 E+04	$3 \rightarrow \text{Tm-}171$
Er-1/2	49.3 n	р, ү	1.2 E-09	1.0 E - 09	0.084	1000	1.0	I E+04	4 E+00	/ E+03	10→ Im-1/2

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq (in 1 m in Abstand	ho,07 hc,07 q (mSv/h)/GBq (mSv/h)/ in 10 cm (kBq/cm/ Abstand	he0,07 8q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq∕m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Tm-162	21.7 m	$\epsilon, \beta^+, \gamma$	2.7 E-11	2.9 E-11	0.261	300	0.0	3 E+05	2 E+08	3 E+05	10	
Tm-166	7.70 h	$\varepsilon, \beta^+, \gamma$	2.8 E-10	2.8 E-10	0.270	200	0.4	4 E+04	2 E + 07	3 E+04	10	
Tm-167	9.24 d	ε, γ.	1.0 E-09	5.6 E-10	0.029	2000	1.1	2 E + 04	5 E + 06	8 E + 03	33	
Tm-170	128.6 d	$\varepsilon, \beta^-, \gamma$	5.2 E-09	1.3 E-09	0.001	1000	1.6	8 E + 03	1 E + 06	2E+03	æ	
Tm-171	1.92 a	β-, γ	9.1 E - 10	1.1 E-10	<0.001	abla	<0.1	9 E + 04	5 E + 06	9 E + 03	1000	
Tm-172	63.6 h	β-, γ	1.4 E-09	1.7 E - 09	0.069	1000	1.5	6 E + 03	4 E+06	6 E + 03	3	
Tm-173	8.24 h	β-, γ	2.6 E-10	3.1 E-10	0.063	1000	1.6	3 E + 04	2 E + 07	3 E+04	3	
Tm-175	15.2 m	β-, γ	3.1 E-11	2.7 E-11	0.160	2000	2.0	4 E+05	2 E + 08	3 E + 05	Ċ	$3 \rightarrow \text{Yb-175}$
Yb-162	18.9 m	ε, γ	2.3 E-11	2.3 E-11	0.027	09	0.1	4 E+05	2 E+08	4 E+05	100	$100 \rightarrow \text{Tm-162} [6]$
Yb-166	56.7 h	ε, λ	9.5 E-10	9.5 E-10	0.022	10	0.1	1 E + 04	5 E + 06	9 E + 03	100	→ Tm-166 [6]
Yb-167	17.5 m	$\epsilon, \beta^+, \gamma$	9.5 E-12	6.7 E-12	0.053	200	0.4	1 E + 06	5 E + 08	9 E + 05	$10 \rightarrow$	→Tm-167
Yb-169	32.01 d	ε, γ	2.4 E - 09	7.1 E-10	0.061	1000	1.0	1 E + 04	2E+06	3 E + 03	10	
Yb-175	4.19 d	β-, γ	7.0 E - 10	4.4 E - 10	0.007	1000	1.1	2 E + 04	7 E + 06	1 E + 04	3	
Yb-177	1.9 h	β-, γ	9.4 E - 11	9.7 E-11	0.028	1000	1.5	1 E + 05	5 E + 07	9 E+04	Ġ	$3 \rightarrow \text{Lu-177}$
Yb-178	74 m	β-, γ	1.1 E-10	1.2 E-10	900.0	1000	1.3	8 E+04	5 E + 07	8 E+04	Ċ	$3 \rightarrow \text{Lu-178}$
Lu-169	34.06 h	$\epsilon, \beta^+, \gamma$	4.9 E-10	4.6 E-10	0.154	100	0.2	2 E+04	1 E + 07	2 E+04	30	\rightarrow Yb-169
Lu-170	2.00 d	$\varepsilon, \beta^+, \gamma$	9.5 E-10	9.9 E - 10	0.281	09	0.3	1 E + 04	5 E + 06	9 E + 03	10	10
Lu-171	8.22 d	ε, γ	9.3 E-10	6.7 E-10	0.115	30	0.1	1 E + 04	5 E + 06	9 E + 03	100	
Lu-172	6.70 d	$\varepsilon, \beta^+, \gamma$	1.8 E - 09	1.3 E-09	0.283	300	0.5	8 E + 03	3 E + 06	5 E + 03	10	
Lu-173	1.37 a	ε, γ	1.5 E-09	2.6 E - 10	0.028	30	0.1	4 E+04	3E+06	6 E + 03	100	
Lu-174	3.31 a	$\varepsilon, \beta^+, \gamma$	2.9 E - 09	2.7 E - 10	0.024	10	<0.1	4 E + 04	2E+06	3 E + 03	100	
Lu-174m	142 d	ε, γ	2.6 E-09	5.3 E-10	0.015	30	<0.1	2 E + 04	2E+06	3 E + 03	300	$300 \rightarrow \text{Lu-}174$
Lu-176	$\overline{}$	а β-, γ	4.6 E-08	1.8 E - 09	0.081	2000	2.3	6 E + 03	1 E + 05	2E+02	3	
Lu-176m	3.68 h	β-, γ	1.6 E-10	1.7 E-10	0.003	1000	1.8	6 E + 04	3 E + 07	5 E+04	æ	
Lu-177	6.71 d	β-, γ	1.1 E-09	5.3 E-10	900.0	1000	1.3	2 E + 04	5 E + 06	8 E + 03	3	
Lu-177m	160.9 d	β-, γ	1.2 E-08	1.7 E-09	0.166	2000	5.6	6 E + 03	4 E+05	7 E + 02	Ŕ	$3 \rightarrow \text{Lu-177}$
Lu-178	28.4 m	β-, γ	4.1 E-11	4.7 E-11	0.022	1000	1.8	2 E + 05	1 E + 08	2E+05	3	
Lu-178m	22.7 m	β-, γ	5.6 E-11	3.8 E-11	0.182	2000	2.8	3 E + 05	9 E+07	1 E + 05	33	

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBc in 1 m Abstand	h10 h0,07 h0,07 mSv/h)/GBq (mSv/h)/GBq (mSv/h)/m in 1 m in 10 cm (kBq/cm Abstand Abstand	hco.07 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Lu-179	4.59 h	β^-, γ	1.6 E-10	2.1 E-10	0.005	1000	1.6	5 E+04	3 E+07	5 E+04	3	
Hf-170	16.01 h	ε, γ	4.3 E-10	4.8 E-10	0.091	200	0.3	2 E+04	1 E+07	2 E+04	30	→Lu-170 [6]
Hf-172	1.87 a	ς, - - - -	3.7 E-08	1.0 E-09	0.030	100	0.1	1 E+04	1 E+05	2 E+02	100.	$100 \rightarrow \text{Lu-}172 [6]$
HI-1/3 Hf 175	24.0 n	ε, ρ , γ	2.2 E-10 8 8 E 10	2.3 E-10	0.0/1	200	0.5	4 E+04	2 E+0 / 6 E+0 /	9 E+04	500	÷11.3
Hf-177m	51.4 m	∽ ა≻	1.5 E-10	8.1 E-11	0.370	4000	4.5 4.5	1 E+05	3 E+07	6 E+04	1	
Hf-178m	31 a	- >-	3.1 E - 07	4.7 E-09	0.378	2000	2.1	2 E+03	2 E+04	3 E+01	3	
Hf-179m	25.1 d	- ج	3.2 E-09	1.2 E-09	0.149	1000	1.6	8 E+03	2E+06	3 E + 03	3	
Hf-180m	5.5 h	-ج.	2.0 E-10	1.7 E-10	0.166	700	1.1	6 E+04	3 E + 07	4 E+04	33	
Hf-181	42.4 d	β-, γ	4.1 E-09	1.1 E-09	0.089	2000	1.9	9 E + 03	1 E + 06	2 E + 03	33	
Hf-182	9 E6 a	β-, γ	3.6 E - 07	3.0 E-09	0.039	500	9.0	3 E + 03	1 E + 04	2E+01	10	$0 \to \text{Ta-182}[6]$
Hf-182m	61.5 m	β-, γ	7.1 E-11	4.2 E-11	0.150	1000	1.8	2 E + 05	7 E+07	1 E + 05	κ'n	$3 \rightarrow \text{Ta-182}$ [6], Hf-
	Ţ	d	,	,	,	0	,	,	ļ	,		182
Hf-183	64 m	ار در ک	8.3 E-11	7.3 E-11	0.116	1000	$\frac{1.6}{2.2}$	1 E+05	6 E+07	1 E+05	ώc	3 → Ta-183
Hf-184	4.12 h	β', γ	4.5 E-10	5.2 E-10	0.043	2000	2.2	2 E+04	1 E + 07	2 E+04	Ġ	3 → Ta-184
Ta-172	36.8 m	$\epsilon, \beta^+, \gamma$	5.7 E-11	5.3 E-11	0.244	700	1.5	2E+05	9 E + 07	1 E+05	κ̈	$3 \rightarrow \text{Hf-}172 [6]$
Ta-173	$3.65 \mathrm{h}$	$\varepsilon, \beta^+, \gamma$	1.6 E-10	1.9 E-10	0.098	200	0.7	5 E+04	3 E + 07	5 E+04	10	→ HF-173
Ta-174	1.2 h	$\varepsilon, \beta^+, \gamma$	6.6 E-11	5.7 E-11	0.106	700	1.2	2 E + 05	8 E + 07	1 E + 05	Ġ	$3 \rightarrow \text{Hf-}174$
Ta-175	$10.5 \mathrm{h}$	$\epsilon, \beta^+, \gamma$	2.0 E-10	2.1 E-10	0.137	200	0.3	5 E+04	3 E + 07	4 E+04	30.	$30 \rightarrow \text{Hf-}175$
Ta-176	$8.08\mathrm{h}$	$\varepsilon, \beta^+, \gamma$	3.3 E-10	3.1 E-10	0.280	100	0.5	3 E + 04	2 E + 07	3 E + 04	10	
	56.6 h	ε, γ	1.3 E-10	1.1 E-10	0.015	100	0.2	9 E+04	4 E+07	6 E+04	30	
Ta-178-1 [2]	9.31 m	ε, γ			0.021	10	0.2				30	
	2.2 h	ε, γ	1.1 E-10	7.8 E-11	0.172	700	1.2	$^{1}_{E+05}$	5 E + 07	8 E+04	3	
Ta-179	664.9 d	ဆ	2.9 E-10	6.5 E-11	0.008	900	<0.1	2 E+05	2 E+07	3 E+04	1000	
Ta-180	1.0 E13 a	ε, ς 	1.4 E-08	8.4 E-10	0.094	000	1.0	1 E+04	4 E+05	6 E+02	10	
Ta-180m	8.1 h	ε, β , γ _β -	6.2 E-11	5.4 E-11	0.011	200	0.4 4.0	2 E+05	8 E+0 /	1 E+05	10	
Ta-182 Ta-182m	15.84 m	ح ہ ج	3.6 E-11	1.2 E-11	0.044	3000	2.7	× E+05	1 E+03	2 E+05	ب در	3 → Ta-182 [6]
		-					i		3	1)	

ρ
Ħ
뎦
510
Š

					Beurteilungsgrössen	sgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte	
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GB in 1 m Abstand	hto ho,07 ho,07 hc,007 mSv/h)/GBq (mSv/h)/GBq (mSv/h)/m in 1 m in 10 cm (kBq/cm Abstand Abstand	hc0.07 iq (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	$\frac{\mathbf{CS}}{\mathbf{Bq/cm}^2}$ Instabiles $\mathbf{Bq/cm}^2$
1	2	3	4	5	9	7	8	6	10	11	12 13
Ta-183	5.1 d	β_ ν	2.0 E-09	1.3 E-09	0.051	2000	2.3	8 E+03	3 E±06	4 E+03	3
Ta-184	8.7.4	3 <u>-</u> , ->	6.3 E-10	6.8 E-10	0.247	2000	. «	1 E+04	8 E+06	1 E+04) (r)
Ta-185	49 m	B_, 7	7.2 E-11	6.8 E-11	0.033	2000	2.3	1 E+05	7 E+07	1 E+05	$3 \rightarrow \text{W-}185$
Ta-186	10.5 m	β-, γ	3.1 E-11	3.3 E-11	0.252	2000	2.5	3 E + 05	2 E + 08	3 E + 05	ю
W-176	2.3 h	ε, γ	7.6 E-11	1.1 E-10	0.036	20	0.1	9 E+04	7 E+07	1 E + 05	$30 \rightarrow \text{Ta-}176 [6]$
	135 m	$\varepsilon, \beta^+, \gamma$	4.6 E-11	6.1 E-11	0.140	300	0.4	2 E + 05	1 E + 08	2 E + 05	$10 \rightarrow \text{Ta-}177$
W-178 / Ta-178-1	21.7 d	ε, γ	1.2 E-10	2.5 E-10	0.024	20	0.2	4 E+04	4 E + 07	7 E+04	30
W-179	37.5 m	ε, λ	1.8 E-12	3.3 E-12	0.019	10	<0.1	3 E + 06	3 E + 09	5 E + 06	$300 \rightarrow \text{Ta-}179$
W-181	121.2 d	ε, χ	4.3 E-11	8.2 E-11	0.00	7	<0.1	1 E + 05	1 E + 08	2 E + 05	1000
W-185	75.1 d	β-, γ	2.2 E-10	5.0 E-10	<0.001	1000	1.1	2 E + 04	2 E + 07	4 E+04	3
W-187	23.9 h	β-, γ	3.3 E-10	7.1 E-10	0.075	2000	1.6	1 E+04	2 E + 07	3 E + 04	$3 \rightarrow \text{Re-}187$
W-188	69.4 d	β-, γ	8.4 E-10	2.3 E-09	<0.001	1000	1.0	4 E + 03	6 E+06	1 E+04	$10 \rightarrow \text{Re-}188$
	14.0 m	$\varepsilon, \beta^+, \gamma$	2.2 E-11	2.2 E-11	0.100	300	0.8	5 E+05	2 E + 08	4 E+05	$10 \to W-177 [6]$
	13.2 m	$\varepsilon, \beta^+, \gamma$	2.4 E-11	2.5 E-11	0.256	700	1.6	4 E+05	2 E + 08	3 E + 05	$3 \rightarrow W-178$
	20 h	$\varepsilon, \beta^+, \gamma$	3.7 E-10	4.2 E-10	0.124	200	9.0	2 E+04	1 E + 07	2 E + 04	$10 \rightarrow W-181$
Re-182-1 [2]	12.7 h	$\varepsilon, \beta^+, \gamma$	3.0 E-10	2.7 E-10	0.282	006	1.7	4 E+04	2 E + 07	3 E+04	ю
[2]	64.0 h	ε, γ	1.7 E-09	1.4 E-09	0.177	80	9.0	7 E + 03	3 E + 06	5 E + 03	10
Re-183	71 d	ε, γ	1.8 E - 09	7.6 E-10				1 E + 04	3 E + 06	5 E + 03	10
Re-184	38.0 d	ε, γ	1.8 E - 09	1.0 E-09	0.138	300	9.0	1 E + 04	3 E + 06	5 E + 03	10
Re-184m	165 d	ε, γ	4.8 E - 09	1.5 E-09	0.063	300	8.0	7 E + 03	1 E + 06	2 E + 03	$10 \to \text{Re-}184 [6]$
Re-186	90.64 h	$\varepsilon, \beta^-, \gamma$	1.2 E-09	1.5 E-09	0.004	2000	1.6	7 E+03	4 E+06	7 E + 03	8
Re-186m	2.0 E5 a	- ح	7.9 E-09	2.2 E - 09	0.004	10	0.1	5 E + 03	6E+05	1 E + 03	$100 \rightarrow \text{Re-}186$
Re-187	5 E10 a	β_	4.6 E - 12	5.1 E-12	<0.001	$\overline{\lor}$	<0.1	2E+06	1 E+09	2E+06	100
Re-188	16.98 h	β-, γ	7.4 E-10	1.4 E - 09	0.010	1000	1.8	7 E + 03	7 E+06	1 E+04	3
Re-188m	18.6 m		2.0 E-11	3.0 E-11	0.016	40	0.2	3 E + 05	3 E + 08	4 E+05	$30 \rightarrow \text{Re-}188$
Re-189	24.3 h	β-, γ	6.0 E-10	7.8 E-10	0.011	2000	1.6	1 E+04	8 E + 06	1 E+04	$3 \rightarrow \text{Os-189m}$
Os-180 / Re-180	22 m	$\epsilon, \beta^+, \gamma$	2.5 E-11	1.7 E-11	0.199	300	1.0	6 E+05	2 E+08	3 E+05	10
Os-181	105 m	ε, β΄, γ	1.0 E-10	8.9 E-11	0.186	400	0.0	1 E+05	5 E+07	8 E+04	$10 \to \text{Re-}181 [6]$

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte	
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBç in 1 m Abstand	h10 h0,07 hc,07 hc,07 hc,07 mc,07 msv/h)/GBq (mSv/h)/GBq (min 1 m in 10 cm (kE) h5stand Abstand	hc _{0,07} I (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Instabiles Bq/cm ² Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12 13
Os-182	22 h	ε, γ	5.2 E-10	5.6 E-10	0.071	100	0.2	2 E+04	1 E+07	2 E+04	$30 \rightarrow \text{Re-}182-1[6]$
Os-185	94 d	ε, γ	1.4 E-09	5.1 E-10	0.112	40	0.1	2E+04	4 E+06	6 E+03	100
Os-189m	6.0 h		7.9 E-12	1.8 E-11	<0.001	S	<0.1	6 E + 05	6 E + 08	1 E+06	1000
Os-191	15.4 d	β-, γ	1.5 E-09	5.7 E-10	0.015	400	0.4	2 E + 04	3 E + 06	6 E + 03	10
Os-191m	13.03 h	. >-	1.4 E-10	9.6 E-11	0.002	S	0.1	1 E + 05	4 E + 07	6 E+04	$100 \rightarrow 0s-191$
Os-193	$30.0\mathrm{h}$	β-, γ	6.8 E-10	8.1 E-10	0.012	1000	1.6	1 E + 04	7 E + 06	1 E+04	3
Os-194	6.0 a	β^-, γ	4.2 E-08	2.4 E - 09	0.001	2	<0.1	4 E+03	1 E + 05	2 E+02	$30 \rightarrow \text{Ir-}194$
Ir-182	15 m	$\varepsilon, \beta^+, \gamma$	4.0 E-11	4.8 E-11	0.584	1000	1.9	2 E + 05	1 E+08	2 E+05	$3 \rightarrow \text{Os-}182$
Ir-184	$3.02 \mathrm{h}$	$\epsilon, \beta^+, \gamma$	1.9 E-10	1.7 E-10	0.296	1000	1.5	6 E+04	3 E + 07	4 E+04	3
Ir-185	14.0 h	$\varepsilon, \beta^+, \gamma$	2.6 E-10	2.6 E-10	0.091	300	0.5	4 E+04	2 E + 07	3 E+04	$10 \to \text{Os-}185 [6]$
Ir-186-1 [2]	1.75 h	$\epsilon, \beta^+, \gamma$	7.1 E-11	6.1 E-11	0.152	006	6.0	2 E + 05	7 E + 07	1 E + 05	10
Ir-186-2 [2]	15.8 h	$\varepsilon, \beta^+, \gamma$	5.0 E-10	4.9 E-10	0.243	1000	1.0	2 E + 04	1 E + 07	2 E+04	10
Ir-187	$10.5 \mathrm{h}$	ε, ζ	1.2 E-10	1.2 E-10	0.059	100	0.1	8 E+04	4 E + 07	7 E+04	30
Ir-188	41.5 h	$\varepsilon, \beta^+, \gamma$	6.2 E-10	6.3 E-10	0.223	200	0.5	2 E + 04	8 E + 06	1 E+04	10
Ir-189	13.3 d	ε, γ	4.6 E-10	2.4 E - 10	0.016	50	0.1	4 E+04	1 E + 07	2 E+04	100
Ir-190	12.1 d	ε, γ	2.5 E-09	1.2 E-09	0.228	800	1.3	8 E + 03		3 E + 03	co
Ir-190m-1 [2]	3.1 h	ε, γ	1.4 E-10	1.2 E-10	0.247	006	6.0	8 E+04		6 E+04	$10 \rightarrow \text{Ir-}190$
Ir-190m-2 [2]	1.2 h	۸.	1.1 E-11	8.0 E - 12	<0.001	S	<0.1	1 E + 06		8 E + 05	$100 \rightarrow \text{Ir} - 190 [6]$
Ir-192	74.02 d	ε, β ⁻ , γ	4.9 E-09	1.4 E-09	0.131	2000	1.6	7 E + 03		2 E+03	co.
Ir-192m	241 a	۲-	1.9 E-08	3.1 E-10	0.025	7	<0.1	3 E + 04	3 E + 05	4 E+02	$300 \rightarrow \text{Ir-}192 [6]$
Ir-193m	10.6 d	٨	1.0 E-09	2.7 E - 10				4 E+04	5 E+06	8 E + 03	100
Ir-194	19.15 h	β-, γ	7.5 E-10	1.3 E-09	0.017	1000	1.6	8 E + 03	7 E+06	1 E+04	co.
Ir-194m	171 d	β-, γ	8.2 E-09	2.1 E - 09	0.367	1000	1.5	5 E + 03	6 E + 05	1 E + 03	æ
Ir-195	2.5 h	β-, γ	1.0 E-10	1.0 E-10	0.012	1000	1.7	1 E + 05	5 E + 07	8 E+04	ĸ
Ir-195m	3.8 h	β^-, γ	2.4 E - 10	2.1 E-10	0.073	2000	2.6	5 E+04	2 E + 07	3 E+04	$3 \rightarrow \text{Ir-}195$
Pt-186	2.0 h	α, ε, γ	6.6 E-11	9.3 E-11	0.115	20	0.1	1 E + 05	8 E+07	1 E+05	$100 \rightarrow \text{Ir-}186-1 [6],$
D+ 100	10.01	2	6 2 E 10	76010	0.035	000	0	1 0	90.5	<u>Б</u>	Os-182
rt-100	10.7 u	ر. -	0.3 E-10	7.0 E-10	0.035	900	0.0	1 E+0+	0 E+00	1 E+0+	10-7 11-100 [0]

מעווע	H	
arore,	?	
>	•	

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBc in 1 m Abstand	hto ho,07 ho,07 hc,007 mSv/h)/GBq (mSv/h)/GBq (mSv/h)/m in 1 m in 10 cm (kBq/cm Abstand Abstand	hco.07 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS I Bq/cm ² 7	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Pt-189	10.87 h		7.3 E-11	1.2 E-10	0.054	200	0.2	8 E+04	7 E+07	1 E+05	30-	$\stackrel{30}{\rightarrow}$ Ir-189
R-190 P-191	0.1 E11 a 2.8 d	ح ئى ئ	2.5 E-U/ 1.9 E-10	8.2 E-09 3.4 E-10	0.053	200	0.3	3 E+04	3 E+07	4 E+01 4 E+04	30	
Pt-193	50 a	· ω	2.7 E-11	3.1 E-11	0.001	4	<0.1	3 E + 05	2 E+08	3 E + 05	1000	
Pt-193m	4.33 d	٨	2.1 E-10	4.5 E-10	0.003	2000	1.8	2 E + 04	2 E + 07	4 E+04	3.	→ Pt-193
Pt-195m	4.02 d	~	3.1 E-10	6.3 E-10	0.016	2000	2.1	2 E+04	2 E+07	3 E+04	m (
Pt-197	18.3 h	β., - -, -	1.6 E-10	4.0 E-10	0.005	1000	1.5	3 E+04	3 E+07	5 E+04	m c	
Pt-197m Pc 199	94.4 m	β,'≺	4.3 E-11	8.4 E-11	0.015	2000	J.6	1 E+05	1 E+08	2 E+05	ώ,	$3 \rightarrow \text{Pt-}197$
R-199 P-200	30.8 m 12.5 h	ص د '- د خ	2.2 E-11 4.0 E-10	3.9 E-11 1.2 E-09	0.031	1000	 	× E+03	2 E+08 1 E+07	2 E+03 2 E+04	γ (ς	3 → Au-199 3 → Au-200
A:: 102	17 65 1-	. ;	1.01.10	1 2 1 2	0000	900	3 6		0 11 0		, 5	. De 102
Au-193	17.65 h	ა გ. გ.	1.6 E-10	1.3 E-10	0.029	004	C.O.	× H+04	3 E+0/	0 E+04	10-	$10 \rightarrow \text{Pt-}193$
Au-194 Au-195	183 d	ر ر د د د	3.0 E-10 1.2 E-09	7.5 E-10 2.5 E-10	0.137	200 40	0.0	4 E+04 4 E+04	1 E+0 /	2 E+04 7 E+03	30	
Au-196	6.2 d	ε. β. . γ.	3.7 E-10	4.4 E-10	0.017	ř	3	2 E+04	1 E+07	2 E+04	10	
Au-198	2.696 d	β.γ.	1.1 E-09	1.0 E-09	0.065	1000	1.6	1 E+04	5 E+06	8 E+03	3	
Au-198m	2.30 d	. ~	2.0 E-09	1.3 E-09	0.094	3000	3.9	8 E + 03	3 E + 06	4 E+03	÷	→ Au-198
Au-199	3.139 d	β-, γ	7.6 E-10	4.4 E-10	0.015	2000	1.5	2 E+04	7 E+06	1 E+04	3	
Au-200	48.4 m	β ⁻ , γ	5.6 E-11	6.8 E-11	0.044	1000	1.6	1 E + 05	9 E+07	1 E + 05	33	
Au-200m	18.7 h	β., - 	1.0 E-09	1.1 E-09	0.323	2000	2.1	9 E+03	5 E+06	8 E+03	ώı	→ Au-200
Au-201	26.4 m	β,γ	2.9 E - 11	2.4 E - 11	0.008	1000	1.6	4 E+05	7 F+08	3 E+05	3	
Hg-193	3.5 h	$\varepsilon, \beta^+, \gamma$	1.0 E-10	8.2 E-11	0.037	800	1.1	1 E + 05	5 E+07	8 E+04	3-	$3 \rightarrow \text{Au-193}$
Hg-193m	11.1 h	$\varepsilon, \beta^+, \gamma$	3.8 E-10	4.0 E-10	0.162	1000	0.9	3 E + 04	1 E + 07	2 E+04	10-	$10 \rightarrow \text{Hg-193}$
Hg-194	260 a	ω	1.9 E-08	5.1 E-08	0.001	4	<0.1	2 E + 02	3 E + 05	4 E+02	÷	→ Au-194 [6]
Hg-195	9.9 h	ε, γ	9.2 E-11	9.7 E-11	0.034	09	0.1	1 E + 05	5 E + 07	9 E+04	100	$0.00 \rightarrow \text{Au-}195$
Hg-195m	41.6 h	ε, γ	6.5 E-10	5.6 E-10	0.037	1000	1.3	2 E + 04	8 E + 06	1 E + 04	Э	$3 \rightarrow \text{Hg-}195, \text{Au-}195$
Hg-197	64.1 h	ε, γ	2.8 E - 10	2.3 E-10	0.014	20	0.1	4 E+04	2 E + 07	3 E+04	100	
Hg-197m	$23.8 \mathrm{h}$	ε, γ	6.6 E-10	4.7 E-10	0.017	3000	2.7	2 E + 04	8 E + 06	1 E + 04	÷	$3 \rightarrow \text{Hg-}197$
Hg-199m	42.6 m	٨	5.2 E-11	3.1 E-11	0.032	2000	2.3	3 E + 05	1 E + 08	2 E+05	3	

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	hto ho,07 hc,097 (mSv/h)/CBq (mSv/h)/CBq (mSv/h)/in 1 m in 10 cm (kBq/cm² Abstand Abstand	hco.07 (mSv/h)/ (kBq/cm ²)	LE Bg/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Hg-203	46.60 d	β^-, γ	1.9 E-09	1.9 E-09	0.039	800	6.0	5 E+03	3 E+06	4 E+03	10	
TI-194	33 m	ε, γ	8.9 E-12	8.1 E-12	0.125	90	0.1	1 E + 06	6 E+08	9 E+05	30	→Hg-194
Tl-194m	32.8 m	$\varepsilon, \beta^+, \gamma$	3.6 E-11	4.0 E-11	0.368	700	1.3	3 E + 05	1 E + 08	2 E+05	3.	→ Hg-194
TI-195	1.16 h	$\epsilon, \beta^+, \gamma$	3.0 E-11	2.7 E-11	0.159	200	0.3	4 E+05	2 E+08	3 E+05	30	$30 \rightarrow \text{Hg-195}$
TI-197	2.84 h	$\varepsilon, \beta^+, \gamma$	2.7 E-11	2.3 E-11	0.065	300	0.3	4 E+05	2 E + 08	3E+05	30	→Hg-197
TI-198	$5.3 \mathrm{h}$	$\epsilon, \beta^+, \gamma$	1.2 E-10	7.3 E-11	0.280	100	0.2		4 E+07	7 E+04	30)
Tl-198m	1.87 h	$\epsilon, \beta^+, \gamma$	7.3 E-11	5.4 E-11	0.188	2000	1.5	2 E + 05	7 E + 07	1 E + 05	3	→ TI-198 [6]
TI-199	7.42 h	$\epsilon, \beta^+, \gamma$	3.7 E-11	2.6 E-11	0.042	009	0.5	4 E + 05	1 E + 08	2 E+05	10	
TI-200	26.1 h	$\varepsilon, \beta^+, \gamma$	2.5 E-10	2.0 E-10	0.198	100	0.2	5 E+04	2 E + 07	3 E+04	30	
TI-201	3.044 d		7.6 E-11	9.5 E-11	0.018	100	0.2	1 E + 05	7 E + 07	1 E+05	30	
TI-202	12.23 d	$\varepsilon, \beta^+, \gamma$	3.1 E-10	4.5 E-10	0.077	09	0.1	2 E + 04	2 E+07	3 E+04	100	
TI-204	3.779 a	ε, β ⁻ -	6.2 E-10	1.3 E-09	< 0.001	1000	1.4	8 E + 03	8 E + 06	1 E+04	ώ	$3 \rightarrow \text{Pb-204}$
TI-209	2.20 m	β-, γ			0.296	1000	1.9				Ċ	→ Pb-209
Pb-195m	15.8 m	$\varepsilon, \beta^+, \gamma$	3.0 E-11	2.9 E-11	0.254	009	1.9	3 E + 05		3 E+05	3→	→ TI-195 [6]
Pb-198	2.4 h	. λ. . 3	8.7 E-11	1.0 E-10	0.073	009	9.0	1 E + 05		1 E + 05	. 10 →	→ TI-198 [6]
Pb-199	90 m	$\varepsilon, \beta^+, \gamma$	4.8 E-11	5.4 E-11	0.218	200	0.3	2 E + 05		2 E+05	30	→TI-199
Pb-200	21.5 h	ε, γ	2.6 E - 10	4.0 E-10	0.037	1000	1.0	3 E+04		3 E+04	10↑	→ TI-200 [6]
Pb-201	9.4 h	$\epsilon, \beta^+, \gamma$	1.2 E-10	1.6 E-10	0.120	300	0.3	6 E+04	4 E+07	7 E+04	30→	→ TI-201
Pb-202	3 E5 a	3	1.4 E-08	8.7 E-09	0.001	4	<0.1	1 E + 03		6 E+02	$10 \rightarrow$	→ TI-202
Pb-202m	$3.62 \mathrm{h}$	ε, γ	1.2 E-10	1.3 E-10	0.310	006	1.0	8 E+04		7 E+04	10↑	\rightarrow Pb-202, TI-202
Pb-203	52.05 h	ε, γ	1.6 E-10	2.4 E - 10	0.054	200	0.4	4 E+04		5 E+04	10	
Pb-205	1.43 E7 a	ω	4.1 E-10	2.8 E - 10	0.001	4	<0.1	4 E+04		2 E+04	300	
Pb-209	$3.253 \mathrm{h}$	β_	3.2 E-11	5.7 E-11	<0.001	1000	1.4	2 E + 05		3E+05	3	
Pb-210	22.3 a	β-, γ	1.1 E-06	6.8 E-07	0.003	ю	<0.1	1 E + 01		8 E+00	0.3	→ Bi-210
Pb-211 / Bi-211	36.1 m	α, β^-, γ	5.6 E-09	1.8 E-10	0.016	1000	1.7		9 E + 05	1 E + 03	3	3
Pb-212	10.64 h	β-, γ	3.3 ± 0.08	5.9 E-09	0.025	2000	1.8	2 E + 03	2 E+05	3 E+02	÷	$3 \rightarrow \text{Bi-}212 [6]$
Pb-214	26.8 m	β^-, γ	4.8 E-09	1.4 E-10	0.041	2000	1.9	7 E+04	1 E + 06	2 E+03	÷	→ Bi-214 [6]
Bi-200	36.4 m	$\epsilon, \beta^+, \gamma$	5.6 E-11	5.1 E-11	0.371	009	0.7	2 E + 05	9 E+07	1 E+05	10	$10 \rightarrow \text{Pb-}200$

	ıklid		1 [6]	, , 2	33	5				0	9			$3 \rightarrow \text{Po-}214 \rightarrow \text{Pb-}210$	9 [6]	5 [6], Pb-201	<u> </u>	[9]	o 4	2	 200 : G1 151 700 - G1 01	$10 \rightarrow \text{Po-}211, \text{Bi-}207$ [6]	\rightarrow Po-216 \rightarrow Pb-212 \rightarrow Pc-218 \rightarrow Pb-214	117-017-0	22 etc.
	Instabiles n ² Tochternuklid	13	$10 \rightarrow \text{Pb-201} [6]$	$10 \rightarrow \text{Pb-}202$	$10 \rightarrow \text{Pb-}20$	$30 \rightarrow \text{Pb-}205$	10	30	10	$3 \rightarrow \text{Po-}210$	$10 \rightarrow \text{TI-}206$	3	3	$3 \rightarrow \text{Po-}21$	$10 \rightarrow \text{Bi-}203$	30 → Bi-205 [6],	1 → BI-200 [0]	$30 \rightarrow Bi-20/$	$0.5 \rightarrow DI-20$	1.0	10 . 00.00	$10 \rightarrow \text{Fo-}20$ $10 \rightarrow \text{Po-}21$	\rightarrow Po-21	1701/	$3 \rightarrow \text{Ra-}222 \text{ etc.}$
	CS Bq/cm ²	12																							
Richtwerte	CA Bq/m³	11	8 E+04	8 E + 04	2E+04	8 E + 03	4 E + 03	3 E + 03	2 E + 03	1 E + 02	4 E+00	2 E + 02	2 E+02	4 E+02	1 E + 05	9 E+04	2 E+01	6 E+04	3 E+00	4 E+00	20.07	5 E+01	1 E+03	0 1	4 E+02
Bewilligungs- grenze	LA Bq	10	5 E+07	5 E + 07	1 E + 07	5 E + 06	2E+06	2E+06	1 E + 06	8 E+04	2E+03	1 E+05	1 E+05	2 E+05	8 E+07	6 E+07	1 E+04	3 E+0/	2 E+03	2 E+03	20:11	5 E+04			2 E+05
Freigrenze	LE Bq/kg bzw. LE _{abs} Bq	6	8 E+04	1 E + 05	2 E + 04	1 E + 04	5 E + 03	8 E + 03	7 E + 03	8 E + 03	7 E + 02	4 E+04	5 E+04	9 E+04	2E+05	2 E+05	8 E+01	/ E+04	1 5+01	4 E+01		9 E+02			1 E+04
	hco.07 q (mSv/h)/ (kBq/cm ²)	8	0.8	9.0	0.4	0.2	1.0	0.3		1.6	0.4	1.7	1.6	1.7	1.0	0.3	(0.3		0	40	<0.1	0.1	1.0/	1.6
sgrössen	h10 (mSv/h)/GBq (mSv/h)/GBq in 1 m in 10 cm Abstand Abstand	7	500	200	200	100	009	100		1000	500	1000	1000	1000	1000	200	0	200		$\overline{}$	7 02	300	7 √	7	1000
Beurteilungsgrössen	h10 (mSv/h)/GB in 1 m Abstand	9	0.205	0.367	0.310	0.239	0.487	0.233		< 0.001	0.042	0.180	0.027	0.239	0.245	0.233		0.201		<0.001	0 100	0.008	<0.001	100.0/	0.001
	eing Sv/Bq	5	1.2 E-10	8.9 E-11	4.8 E - 10	9.0 E-10	1.9 E - 09	1.3 E-09	1.4 E-09	1.3 E-09	1.5 E-08	2.6 E-10	2.0 E-10	1.1 E-10	5.2 E-11	5.9 E-11	1.3 E-U/	1.4 E-10	7.7 E-0/	2.4 E-07	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.1 E-08			7.1 E-10
	einh Sv/Bq	4	1.1 E-10	1.0 E-10	4.5 E-10	1.0 E-09	2.1 E - 09	3.2 E - 09	4.0 E-09	6.0 E-08	2.1 E-06	3.9 E-08	4.1 E-08	2.1 E-08	6.1 E-11		3.7 E-U/	1.5 E-10	2.4 E-06	2.4 E-00 2.7 E-06		1.7 E-03 1.1 E-07			2.1 E-08
	Zerfallsart/ Strahlenart	3	ε, γ	$\varepsilon, \beta^+, \gamma$		$\varepsilon, \beta^+, \gamma$	ε, γ	$\epsilon, \beta^+, \gamma$		g	ک	α, β^-, γ	α, β^-, γ	β^-, γ	$\epsilon, \beta^+, \gamma$	$\alpha, \epsilon, \beta^+, \gamma$	ჯ გ	ε, β΄, γ	ر ئ ئ ئ	ر ان > د ک	- 0		ζ,	<u>.</u> Š (صم :
	Halbwerts- zeit	2	108 m	1.67 h	11.76 h	15.31 d	6.243 d	38 a	3.68 E5 a	5.012 d	3.0 E6 a	60.55 m	45.65 m	19.9 m	36.7 m	1.80 h	8.8 d	350 m	2.090 a	138 38 d	1 80 h	7.214 h	55.6 s	0.070.0	14.4 m
												Po-212,	200 Po-213, 09												
	Nuklid	1	Bi-201	Bi-202	Bi-203	Bi-205	Bi-206	Bi-207	Bi-208	Bi-210	Bi-210m	Bi-212 / Po-212,	Bi-213 / Po-213, TI-209	Bi-214	Po-203	Po-205	F0-200	Po-207	F0-208	Po-210	200 + 4	At-20/	Rn-220	777-111	Fr-222

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	hto hcoor hcor hc	hco.07 1 (mSv/h)/ (kBq/cm ²)	LE Bg/kg bzw. LE _{abs} Bq	LA Bq	CA Bq∕m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Ra-223	11.434 d	α, γ	5.7 E-06	1.0 E-07	0.024	009	0.5	1 E+02	9 E+02	1 E+00	Ė	\rightarrow Rn-219 \rightarrow Po-215
Ra-224 Ra-225 Ra-226 Ra-226	3.66 d 14.8 d 1600 a 1600 a	$\begin{array}{c} \alpha, \gamma \\ \beta^-, \gamma \\ \alpha, \gamma \\ \alpha, \gamma \\ \alpha, \beta, \gamma \end{array}$	2.4 E-06 4.8 E-06 2.2 E-06	6.5 E-08 9.5 E-08 2.8 E-07	0.002 0.007 0.001 0.283	30 1000 50 5000	<pre><0.1 <0.9 <0.1 5.2</pre>	2 E+02 1 E+02 4 E+01 4 E+01	2 E+03 1 E+03 2 E+03 2 E+03	3 E+00 2 E+00 4 E+00 4 E+00	· 66 66 4 4	$ \begin{array}{l} $
mci. 1 ochter Ra-227 Ra-228 Ac-224	42.2 m 5.75 a 2.9 h	β^{-}, γ β^{-}, γ α, ϵ, γ	2.1 E-10 1.7 E-06 9.9 E-08	8.4 E-11 6.7 E-07 7.0 E-10	0.038 <0.001 0.038	2000 <1 100	1.8 <0.1 0.2	1 E+05 1 E+01 1 E+04	2 E+07 3 E+03 5 E+04	4 E+04 5 E+00 8 E+01	3. 30.	$3 \rightarrow \text{Ac-}227$ $0.3 \rightarrow \text{Ac-}228$ $30 \rightarrow \text{Ra-}224, \text{Fr-}220$
Ac-225 Ac-226	10.0 d 29 h	$\begin{matrix} \alpha, \gamma \\ \alpha, \epsilon, \beta^-, \gamma \end{matrix}$	6.5 E-06 1.0 E-06	2.4 E-08 1.0 E-08	0.005	20 1000	0.1	4 E+02 1 E+03	8 E+02 5 E+03	1 E+00 8 E+00	ັຕ ຕົ	etc. $3 \to \text{Fr-}221 \text{ etc.}$ $3 \to \text{Th-}226, \text{Ra-}226,$
Ac-227 Ac-228	21.773 a 6.13 h	α, β^-, γ β^-, γ	6.3 E-04 2.9 E-08	1.1 E-06 4.3 E-10	<0.001 0.145	<1 2000	<0.1	9 E+00 2 E+04	9 E+00 [5] 2 E+05	1 E-02 3 E+02	0.1.	$10.1 \rightarrow 10.227, Fr-223$ $3 \rightarrow 10.228$
Th-226 Th-227 Th-228 Th-239 Th-231 Th-231 Th-234 / Pa-234m Th nat incl. Töchter	30.9 m 18.718 d 1.9131 a 7340 a 7.7 E4 a 25.52 h 1.4E10 a 24.10 d	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.8 E-08 7.6 E-06 3.2 E-05 6.9 E-05 2.8 E-05 4.0 E-10 2.9 E-05 5.8 E-09	3.6 E-10 8.9 E-09 7.0 E-08 4.8 E-07 2.1 E-07 3.4 E-10 3.4 E-07 3.4 E-09	0.002 0.023 0.002 0.027 0.001 0.019 0.008	100 200 3 300 700 1000 6000	0.3 0.2 0.1 0.5 0.8 0.8 0.8 1.9 1.9 2.4	3 E+04 1 E+03 1 E+02 2 E+01 5 E+01 3 E+04 5 E+01 3 E+03 6 E+00	[5]	1 E+02 1 E+00 3 E-01 1 E-01 3 E-01 2 E+04 3 E-01 1 E+03 4 E-02	30. 10. 0.1. 0.1. 10. 0.1. 3.	$30 \rightarrow \text{Ra-}222 \text{ etc.}$ $10 \rightarrow \text{Ra-}223$ $0.1 \rightarrow \text{Ra-}224$ $0.1 \rightarrow \text{Ra-}226$ $0.1 \rightarrow \text{Ra-}226$ $0.1 \rightarrow \text{Ra-}231$ $0.1 \rightarrow \text{Ra-}238$ $3 \rightarrow \text{Pa-}234$ 0.1
Pa-227 Pa-228	38.3 m 22 h	α, ϵ, γ $\alpha, \epsilon, \beta^+, \gamma$	9.7 E-08 5.1 E-08	4.5 E-10 7.8 E-10	0.007	5 400	<0.1	2 E+04 1 E+04	5 E+04 1 E+05	9 E+01 2 E+02	100	100 → Ac-223 10 → Th-228, Ac-224

ρı)
ung	
豆	
eroi	
>	

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBc in 1 m Abstand	h10 h0,07 h0,07 mSv/h)/GBq (mSv/h)/GBq (mSv/h)/m in 1 m in 10 cm (kBq/cm/Abstand Abstand	hco.07 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	- Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Pa-230	17.4 d	$\alpha, \epsilon, \beta^-, \gamma$	5.7 E-07	9.2 E-10	0.108	200	0.3	1 E+04	1 E+04 [5]	1 E+01	30	$30 \rightarrow \text{Th-}230, \text{U-}230,$
Pa-231	3.3 E4 a	α, γ	8.9 E-05	7.1 E-07	0.020	40	0.1	1 E+01	6 E+01	9 E-02	0.3	$0.3 \rightarrow \text{Ac-}227$
Fa-232 Pa-233	1.31 d 27.0 d	3°, 4	3.2 E-09	7.2 E-10 8.7 E-10	0.041	2000	c: 1	1 E+04 1 E+04	/ E+05 2 E+06	3 E+03	o m	3 → U-232 3 → U-233
Pa-234	6.70 h	β_', γ	5.8 E-10	5.1 E - 10	0.281	2000	2.9	2 E+04	9 E+06	1 E+04	m	$3 \rightarrow U-234$
U-230	20.8 d	α, γ	1.2 E-05	5.5 E-08	0.003	9	<0.1	2 E+02	4 E+02	7 E-01	1	1 → Th-226
U-231 U-232	4.2 d 72.a	α, ε, γ γ	4.0 E-10 2.6 E-05	2.8 E-10 3.3 E-07	0.032	10	0.1	4 E+04 3 E+01	1 E+07 2 E+02	2 E+04 3 E-01	100	$100 \rightarrow Pa-231$, $Th-227$ 0.3 $\rightarrow Th-228$
0.233	1.6 E5 a	ά,	6.9 E-06	5.0 E-08	0.001	2	<0.1	2 E+02	7 E+02	1 E+00	1	→ Th-229
U-234	2.4 E5 a	α, γ	6.8 E-06	4.9 E-08	0.002	ю	<0.1	2 E + 02	7 E + 02	1 E+00		→ Th-230
U-235	7.0 E8 a	α, γ	6.1 E-06	4.6 E-08	0.028	100	0.2	2 E+02	8 E+02	1 E+00	33	\rightarrow Th-231
U-236	2.3 E7 a	ζ, γ	6.3 E-06	4.6 E-08	0.002	1000	<0.1	2 E+02	8 E+02	1 E+00	(→ Th-232
U-23/ 11-238	6.75 d 4.5 F9 a	ر ک د ک	1.7 E-09 5.7 E-06	7.7 E-10 4.4 E-08	0.037	1000	0.1 0.1	2 F+07	3 E+06 9 E+02	2 E+03 1 E+00	s –	→ NP-23/ → Th-234
U-239	23.54 m	β', γ	3.5 E-11	2.8 E-11	0.012	1000	1.6	4 E+05	1 E+08	2 E+05	· co	→ Np-239
U-240 U nat incl. Töchter	14.1 h er	β-, γ α, Β, γ	8.4 E-10	1.1 E-09	0.009 0.296	1000	1.0 7.1	9 E+03 4 E+02	6 E+06 4 E+02	1 E+04 3 E-01	1	→ Np-240
Np-232		ε, β ⁺ , γ	3.5 E-11	9.7 E-12	0.199	400	9.0	1 E+06	1 E+08	2 E+05	10	10 → U-232
Np-233	36.2 m	ε, γ	3.0 E-12	2.2 E-12	0.022	40	<0.1	5 E+06	2 E + 09	3 E+06	100	$100 \rightarrow U-233$
Np-234	4.4 d	$\epsilon, \beta^+, \gamma$	7.3 E-10	8.1 E-10	0.219	80	0.5	1 E+04	7 E+06	1 E+04	30↑	$30 \rightarrow U-234$
	1.15 E5 a	ი ეე ⊱.	2.0 E-16	1.7 E-08	0.046	1000	1.8	6 E+02	3 E+03	4 E+00	3	
Np-236S [2]		$\varepsilon, \beta^{-}, \gamma$	3.6 E-09	1.9 E-10	0.013	009	9.0	5 E+04	1 E + 06	2 E+03	10	$10 \rightarrow U-236$, Pu-236
Np-237	2.14 E6 a	ά, γ	1.5 E-05	1.1 E-07	0.018	30	0.1	9 E+01	3 E+02	6 E-01	0.3	$0.3 \rightarrow \text{Pa-}233$
Np-238	2.117 d	β.'.' γ	1.7 E-09	9.1 E-10	0.089	1000	1.1	1 E+04	3 E+06	5 E+03	m ($3 \rightarrow \text{Pu-}238$
Np-239 Np-240	2.355 d 65 m	σ∝ ,,'>	1.1 E-09 1.3 E-10	8.0 E-10 8.2 E-11	0.039	3000	3.3	1 E+04 1 F+05	5 E+06 4 E+07	8 E+03 6 F+04	–	. → Pu-239 → Pu-240
0t7 dv	H 60		27.7	11.7	611.0		r i	60 17 1	5	5	•	0.7.5

					Beurteilungsgrössen	grössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBq in 1 m Abstand	ho.07 1 (mSv/h)/GBq in 10 cm Abstand	hco.07 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Np-240m	7.4 m	β^-, γ			0.060	1000	1.6				3	$3 \rightarrow \text{Pu-}240$
Pu-234	8.8 h	α, ε, γ	1.8 E-08	1.6 E-10	0.018	9	<0.1	6 E+04	3 E+05	5 E+02	300→	Np-234,
Pu-235	25.3 m	α, ε, γ	2.6 E-12	2.1 E - 12	0.026	∞	<0.1	5 E + 06	2 E + 09	3 E+06	300→	\rightarrow Np-235, U-231
Pu-236	2.851 a	α, γ, φ	1.3 E-05	8.6 E - 08	0.003	_	<0.1	1 E + 02	4 E+02	6 E-01	1	U-232
Pu-237	45.3 d	α, ε, γ	3.0 E-10	1.0 E-10	0.018	9	<0.1	1 E + 05	2 E + 07	3 E+04	300→	→ Np-237, U-233
Pu-238	87.74 a	α, γ, φ	3.0 E-05	2.3 E-07	0.002	∇	<0.1	4 E+01	2 E + 02	3 E-01	0.3	$0.3 \rightarrow U-234$
Pu-239	2.4 E4 a	α, γ	3.2 E-05	2.5 E-07	0.001	$^{\vee}$	<0.1	4 E + 01	2 E + 02	3 E - 01	0.3	→ U-235
Pu-240	6537 a	α, γ, φ	3.2 E - 05	2.5 E-07	0.002	$\overline{\lor}$	<0.1	4 E+01	2 E + 02	3 E - 01	0.3	→ U-236
Pu-241	14.4 a	α, β^-, γ	5.8 E - 07	4.7 E-09	<0.001	$\overline{\lor}$	<0.1	2E+03	9 E+03	1 E + 01	10	$10 \rightarrow \text{Am-}241, \text{U-}237$
Pu-242	3.76 E5 a	α, γ, φ	3.1 E - 05	2.4 E - 07	0.002	7	<0.1	4 E+01	2E+02	3 E - 01	0.3→1	→ U-238
Pu-243	4.956 h	β-, γ	1.1 E-10	8.5 E-11	0.007	1000	1.3	1 E + 05	5 E + 07	8 E+04	Ŕ	$3 \rightarrow \text{Am-}243$
Pu-244 [9]	8.26 E7 a	α, γ, φ	3.0 E-05	2.4 E - 07	0.053	1	0.1	4 E + 01	2 E + 02	3 E-01	0.3	$0.3 \rightarrow U-240$
Pu-245	10.5 h	β-, γ	6.5 E-10	7.2 E-10	0.070	2000	2.0	1 E+04	8 E+06	1 E+04	Ċ,	$3 \rightarrow \text{Am-}245$
Pu-246	10.85 d	β^-, γ	7.0 E-09	3.3 E-09	0.034	200	0.7	3 E + 03	7 E+05	1 E+03	10	10 → Am-246
Am-237	73.0 m	α, ε, γ	3.6 E-11	1.8 E-11	0.073	800	0.7	6 E + 05	1 E + 08	2 E + 05	10	$10 \rightarrow \text{Pu-}237, \text{Np-}233$
Am-238	98 m	α, ε, γ	6.6 E-11	3.2 E-11	0.145	09	0.1	3 E+05	8 E + 07	1 E+05	30	$30 \rightarrow \text{Pu-}238, \text{Np-}234$
Am-239	11.9 h	α, ϵ, γ	2.9 E - 10	2.4 E - 10	0.059	1000	1.4	4 E+04	2 E + 07	3 E+04	œ́.	$3 \rightarrow \text{Pu-}239, \text{Np-}235$
Am-240	50.8 h	α, ε, γ	$5.9 ext{ E-}10$	5.8 ± 10	0.171	50	0.3	2 E+04	8 E+06	1 E+04	30↑	\rightarrow Pu-240, Np-236
Am-241	432.2 a	ر کر	2.7 E - 05	2.0 E - 0.7	0.019	9	<0.1	5 E+01	2E+02	3 E-01	0.3	→ Np-237
Am-242	16.02 h	$\varepsilon, \beta^-, \gamma$	1.2 E-08	3.0 E-10	0.00	1000	1.1	3 E + 04	4 E + 05	7 E + 02	Ċ	$3 \rightarrow \text{Cm-}242, \text{Pu-}242$
Am-242m	152 a	α, γ	2.4 E - 05	1.9 E - 07	900.0	2	<0.1	5 E + 01	2 E + 02	3 E-01	0.3→	→ Am-242, Np-238
Am-243	7380 a	α, γ	2.7 E - 05	2.0 E - 07	0.014	7	<0.1	5 E+01	2E+02	3 E - 01	0.3→	→ Np-239
Am-244	$10.1 \mathrm{h}$	β-, γ	1.5 E-09	4.6 E-10	0.145	3000	2.9	2 E+04	3 E + 06	6 E + 03	Ċ	$3 \rightarrow \text{Cm-}244$
Am-244m	26 m	β-, γ	6.2 E-11	2.9 E - 11	0.002	1000	1.6	3 E + 05	8 E + 07	1 E + 05	Ŕ	$3 \rightarrow \text{Cm-}244$
Am-245	$2.05 \mathrm{h}$	β-, γ	7.6 E-11	6.2 E-11	0.007	2000	1.8	2 E + 05	7 E + 07	1 E + 05	Ŕ	$3 \rightarrow \text{Cm-245}$
Am-246	39 m	β-, γ	1.1 E-10	5.8 E-11	0.135	4000	4.5	2 E+05	5 E + 07	8 E+04	_	→ Cm-246
Am-246m	$25.0 \mathrm{m}$	β^-, γ	3.8 E-11	3.4 E-11	0.154	1000	1.7	3 E + 05	1 E + 08	2 E+05	Ċ	$3 \rightarrow \text{Cm-246}$
Cm-238	2.4 h	α, ε	4.8 E-09	8.0 E-11	0.021	7	<0.1	1 E + 05	1 E + 06	2 E+03	300	$300 \rightarrow \text{Am-}238, \text{Pu-}234$

					Beurteilungsgrössen	sgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	e inh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GBo in 1 m Abstand	hto hoo7 hoo7 hoo97 (mSvh)/GBq (mSvh)/GBq (mSvh)/m in 1 m in 10 cm (kBq/cm² Abstand Abstand	hco.o7 q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS I	Instabiles Tochternuklid
-	2	3	4	5	9	7	8	6	10	11	12 1	13
Cm-240	27 d	Ω, γ	2.3 E-06	7.6 E-09	0.003	\ 	<0.1	1 E+03	2 E+03	4 E+00	10-	0 → Pu-236
Cm-241	32.8 d	α, ε, γ	2.6 E-08	9.1 E-10	0.100	009	0.7	1 E+04	2 E+05	3 E+02	10-	$10 \rightarrow \text{Am-}241, \text{Pu-}237$
Cm-242	162.8 d	ά, γ,	3.7 E-06	1.2 E-08	0.002	$\overline{\lor}$	<0.1	8 E+02	1 E + 03	2 E+00	10-	$10 \rightarrow \text{Pu-}238$
Cm-243	28.5 a		2.0 E-05	1.5 E-07	0.033	1000	1.1	7 E + 01	3 E+02	4 E-01	$0.3 \rightarrow I$	→ Pu-239, Am-243
Cm-244	18.11 a	α, γ, φ	1.7 E-05	1.2 E-07	0.002	$\stackrel{\sim}{\sim}$	<0.1	8 E + 01	3 E + 02	5 E-01	0.3	→ Pu-240
Cm-245	8500 a	α, γ	2.7 E - 05	2.1 E-07	0.028	400	0.4	5 E + 01	2 E + 02	3 E-01	0.3	→ Pu-241
Cm-246 [9]	4370 a	α, γ, φ	2.7 E - 05	2.1 E - 07	0.013	7	<0.1	5 E + 01		3 E-01	0.3	→ Pu-242
Cm-247	1.56 E7 a	ά, γ	2.5 E-05	1.9 E-07	0.053	100	0.1	5 E + 01		3 E - 01	0.3→1	→ Pu-243
Cm-248 [9]	3.39 E5 a	α, γ, φ	9.5 E-05	7.7 E-07	3.8	abla	<0.1	1 E + 01		9 E-02	0.1	→ Pu-244
Cm-249	64.15 m	β-, γ	5.1 E-11	3.1 E-11	0.003	1000	1.5	3 E + 05	1 E + 08	2E+05	3↑	→ Bk-249
Cm-250 [9]	6900 a	α, β-, φ	5.4 E-04	4.4 E-06	36	7	<0.1	2E+00		2 E-02	$0.03 \rightarrow$	\rightarrow Pu-246, Bk-250
Bk-245	4.94 d	α, ε, γ	1.8 E-09	5.7 E-10	0.054	2000	1.6	2 E + 04	3 E+06	5 E+03	3 → 0	→ Cm-245, Am-241
Bk-246	1.83 d	ε, γ	4.6 E-10	4.8 E-10	0.161	30	0.1	2 E + 04	1 E + 07	2E+04	30→	→ Cm-246
Bk-247	1380 a	α, γ	4.5 E-05	3.5 E-07	0.021	800	0.7	3 E + 01	1 E + 02	2 E-01	0.3→	→ Am-243
Bk-249	320 d	$\alpha, \beta^-, \gamma, \phi$	1.0 E - 07	9.7 E-10	<0.001	20	<0.1	1 E+04	5 E+04	8 E+01	100 ←	→ Cf-249, Am-245
Bk-250	3.222 h	β^-, γ	7.1 E-10	1.4 E-10	0.137	1000	1.5	7 E+04	7 E+06	1 E+04	3	→ Cf-250
Cf-244	19.4 m	α, γ	1.8 E-08	7.0 E-11	0.003	7	<0.1	1 E + 05	3 E + 05	5 E+02	300→	→ Cm-240
Cf-246	35.7 h	α, γ, φ	3.5 E-07	3.3 E - 09	0.002	$\overline{\lor}$	<0.1	3 E + 03	1 E + 04	2E+01	30-	$30 \rightarrow \text{Cm-}242$
Cf-248 [9]	333.5 d	α, γ, φ	6.1 E-06	2.8 E - 08	0.003	∇	<0.1	4 E + 02	8 E + 02	1 E + 00	έ	$3 \rightarrow \text{Cm-}244$
Cf-249	350.6 a	α, γ, φ	4.5 E-05	3.5 E-07	0.060	200	0.2	3 E + 01	1 E + 02	2 E - 01	0.3	→ Cm-245
Cf-250 [9]	13.08 a	α, γ, φ	2.2 E - 05	1.6 E - 07	0.035	∇	<0.1	6 E + 01	2E+02	4 E-01	0.3 → (→ Cm-246
Cf-251	898 a	α, γ	4.6 E - 05	3.6 E - 07	0.037	1000	1.8	3 E + 01	1 E + 02	2 E - 01	0.3	→ Cm-247
Cf-252 [9]	2.638 a	α, γ, φ	1.3 E-05	9.0 ± 0.8	1.3	$\overline{\lor}$	<0.1	1 E + 02	4 E+02	6 E-01	<u></u>	→ Cm-248
Cf-253	17.81 d	α, β^-, γ	1.0 E-06	1.4 E-09	<0.001	800	0.8	7 E+03	7 E+03 [5]	8 E+00	10→	\rightarrow Es-253, Cm-249
Cf-254 [9]	60.5 d	α, γ, φ	2.2 E-05	4.0 E-07	42	ightharpoons	<0.1	3E+01	2 E + 02	4 E-01	0.3→(→ Cm-250
Es-250	2.1 h	ε, γ	4.2 E-10	2.1 E-11	0.071	20	0.1	5 E + 05	1 E+07	2 E+04	100→	Cf-250
Es-251	33 h	α, ε, γ	1.7 E-09	1.7 E-10	0.028	200	0.5	6 E+04	3 E+06	5 E+03	30 ←	\rightarrow Cf-251, Bk-247
ES-233	20.47 d	ς, γ, ÷	2.1 E-00	0.1 E-09	0.001	-	<0.1	2 E+03	7 E+03	4 E+00	↑ OI	→ DK-249

	ίZ	
	SE	
	ens	
	rah	
Į	ぇ	

					Beurteilungsgrössen	sgrössen		Freigrenze	Bewilligungs- grenze	Richtwerte		
Nuklid	Halbwerts- zeit	Zerfallsart/ Strahlenart	einh Sv/Bq	eing Sv/Bq	h10 (mSv/h)/GB in 1 m Abstand	ho,07 8q (mSv/h)/GB in 10 cm Abstand	hc _{0.07} 8q (mSv/h)/ (kBq/cm ²)	LE Bq/kg bzw. LE _{abs} Bq	LA Bq	CA Bq/m³	CS Bq/cm ²	Instabiles Tochternuklid
1	2	3	4	5	9	7	8	6	10	11	12	13
Es-254	275.7 d	α, γ	6.0 E-06	2.8 E-08	0.021	9	<0.1	4 E+02	8 E+02	1 E+00	3	$3 \rightarrow Bk-250$
Es-254m	39.3 h	α, β^-, γ	3.7 E-07	4.2 E-09	0.077	1000	1.4	2 E + 03	1 E+04	2 E + 01	m	$3 \rightarrow \text{Fm-}254, \text{Bk-}250$
Fm-252	22.7 h	α, γ	2.6 E-07	2.7 E-09	0.002	$\stackrel{\sim}{\sim}$	<0.1	4E+03	2 E+04	3 E+01	30	$30 \rightarrow \text{Cf-}248$
Fm-253	3.00 d	α, ε, γ	3.0 E - 07	9.1 E-10	0.023	200	0.2	1 E + 04	2E+04	3 E+01	30	$30 \rightarrow \text{Es-}253, \text{Cf-}249$
Fm-254	$3.240 \mathrm{h}$	α, γ	7.7 E-08	4.4 E-10	0.002	7	<0.1	2E+04	6 E+04	1 E + 02	300	000 → Cf-250
Fm-255	20.07 h	α, γ	2.6 E-07	2.5 E-09	0.016	5	0.1	4 E + 03	2 E+04	3 E + 01	30	$30 \rightarrow \text{Cf-}251$
Fm-257	100.5 d	α, γ	5.2 E-06	1.5 E-08	0.032	009	0.8	7 E + 02	1 E + 03	2E+00	m	$3 \rightarrow \text{Cf-}253$
Md-257	5.2 h	α, ε, γ	2.0 E-08	1.2 E-10	0.027	30	<0.1	8 E+04	3 E+05	4 E+02	100	\rightarrow Fm-257, Es-253
Md-258	55 d	α, γ	4.4 E-06	1.3 E-08	0.007	7	<0.1	8 E + 02	1 E + 03	2 E + 00	10	$10 \rightarrow \text{Es-}254$

Erläuterungen zu den einzelnen Spalten

- 1-3 Allgemeine Angaben über das Radionuklid [Quelle: International Commission on Radiological Protection, ICRP 38]. Tochternuklide mit einer Halbwertszeit von weniger als 10 Minuten sind nicht separat aufgeführt; ihre Eigenschaften sind in der Zeile des Mutternuklids integriert.
- 1 Radionuklid; m: metastabil. Ein Tochternuklid mit einer Halbwertszeit von weniger als 10 Minuten ist nach dem Schrägstrich angegeben. [2]: Zwei Nuklide mit gleicher Anzahl Protonen und Neutronen aber mit verschiedener Konfiguration und Halbwertszeit.
- 2 Halbwertszeit: s: Sekunde; m: Minute; h: Stunde; a: Jahr; E: Exponentialdarstellung.
- 3 Zerfallsart/Strahlenart: α: Alphastrahlung; β+, β-: Betastrahlung; γ: Gammastrahlung; ε: Elektroneneinfang; Φ: spontane Spaltung.
- 4,5 Dosisfaktoren für Inhalation (Einatmen) und Ingestion (Essen, Trinken) für Erwachsene [Quelle: Richtlinie 96/29/Euratom vom 13. Mai 1996, (Tabelle C1, Spalte $h(g)_{5\mu m}$ für Inhalation, Spalte h(g) für Ingestion). Dort nicht aufgeführte, einzelne Nuklide: International Commission on Radiological Protection, Oak Ridge, data base for ICRP 61, K. F. Eckerman, february 1993 oder National Radiological Protection Board, UK; NRPB-R245, 1991].
- 4 Beurteilungsgrösse für Inhalation. Die Inhalation von 1 Bq führt höchstens zur angegebenen effektiven Folgedosis in Sv.
- 5 Beurteilungsgrösse für Ingestion. Die Ingestion von 1 Bq führt höchstens zur angegebenen effektiven Folgedosis in Sv.
- 6-8 Beurteilungsgrössen für externe Bestrahlung [Quelle: Petoussi et al., GSF-Bericht 7/93, Forschungszentrum für Umwelt und Gesundheit GmbH, Neuherberg]. Falls das Tochternuklid eine Halbwertszeit von weniger als 10 Minuten hat, ist die Summe der Beurteilungsgrössen von Mutter und Tochter angegeben.
- Dosisleistung in 10 mm Gewebetiefe (Umgebungs-Äquivalentdosisleistung) in 1 m Abstand von einer Strahlenquelle mit einer Aktivität von 1 GBq (109 Bq).
- Dosisleistung in 0,07 mm Gewebetiefe (Richtungs-Äquivalentdosisleistung) in 10 cm Abstand von einer Strahlenquelle mit einer Aktivität von 1 GBq (109 Bq).
- 8 Beurteilungsgrösse für Hautkontamination. Eine Hautkontamination von 1 kBq/cm² (gemittelt über 100 cm²) führt zur angegebenen Dosisleistung (Richtungs-Äquivalentdosisleistung).

814.501 Strahlenschutz

9-12 Freigrenze, Bewilligungsgrenze und Richtwerte

9 Freigrenze für die spezifische Aktivität in Bq/kg und Freigrenze für die absolute Aktivität in Bq. Die Freigrenzen sind aus Spalte 5 abgeleitet. Die Ingestion von 1 kg eines Stoffes der spezifischen Aktivität LE, d. h. der Aktivität Le_{abs} führt zu einer effektiven Folgedosis von 10 μSv.

- Bewilligungsgrenze für den täglichen Umgang. Die Werte für die Bewilligungsgrenzen sind aus Spalte 4 abgeleitet, da beim Umgang mit Radionukliden im Labor die Inhalationsgefahr dominiert. Die einmalige Inhalation einer Aktivität LA führt zu einer effektiven Folgedosis von 5 mSv. Der abgeleitete Wert für LA liegt in einigen Fällen unter dem Wert für LE, was nicht konsistent ist: Der Wert von LA wurde durch den von LE ersetzt [5]. Für Edelgase entspricht die Bewilligungsgrenze der Aktivität eines Raums von 1000 m³ Inhalt und einer Konzentration CA nach Spalte 11.
- 11 Richtwert für Daueraktivität in der Luft für beruflich strahlenexponierte Personen. Der Aufenthalt in Luft mit einer Aktivitätskonzentration CA während 40 Stunden pro Woche und 50 Wochen pro Jahr führt zu einer effektiven Folgedosis von 20 mSv.

Für Inhalation gilt: CA [Bq/m³] = $0.02 \text{ Sv} / (e_{inh} \cdot 2400 \text{ m}^3/a)$.

Für Edelgase führt der Aufenthalt in einer halbkugelförmigen Wolke grosser Ausdehnung während 40 Stunden pro Woche und 50 Wochen pro Jahr zu einer effektiven Dosis von 20 mSv (Gase und Edelgase: D. C. Kocher, Oak Ridge National Laboratory, TN Jnl. 1981, NUREG/ CR-1918). In den meisten Fällen bezieht sich der CA-Wert auf das Mutternuklid. Die Ausnahmen, bei denen der CA-Wert des Tochternuklids angegeben ist, sind speziell gekennzeichnet. Ebenso mit der entsprechenden Fussnote gekennzeichnet sind Fälle, bei denen die Immersion zu einer Bestrahlung der Haut bzw. aller Organe führt und die Dosis durch Immersion bedeutender ist als diejenige durch Inhalation. [1]: Bei Kr-88 wurden die Werte des Tochternuklids für Immersion angegeben. [3]: Abgeleitet aus der effektiven Dosis bei Immersion. [4]:

- 12 Richtwert für die Oberflächenkontamination ausserhalb kontrollierter Zonen, gemittelt über 100 cm². Für die Ableitung der Werte wurden die Bestrahlung der Haut, eine Inkorporation sowie die Bewilligungsgrenze (Bezug zur Inhalation) in Betracht gezogen und der jeweils ungünstigste Fall berücksichtigt:
 - Bestrahlung der Haut während 8760 Stunden pro Jahr, Ausschöpfung eines Zehntels des Grenzwertes für die Haut, entsprechend einer effektiven Dosis von 0,5 mSv pro Jahr.
 - Tägliche Ingestion der Aktivität, welche sich auf einer Fläche von 10 cm² (Teile der Hand) befinden kann, entsprechend einer effektiven Dosis von 0,5 mSv pro Jahr.
 - $-CS_{inh} = LA / 100 \text{ cm}^2 = (5 \text{ mSv} / [1000 \cdot \text{mSv/Sv} \text{ e}_{inh}]) / 100 \text{ cm}^2$

13 Instabiles Tochternuklid

13 Instabiles Tochternuklid; → bedeutet: zerfällt in ...; bei einer Verzweigung in mehrere Nuklide sind diese durch ein Komma getrennt; ein zweiter Pfeil deuVerordnung 814.501

tet auf eine Zerfallsreihe hin. [6]: Der Wert h_{10} des Tochternuklids überschreitet 0,1 (mSv/h/GBq in 1 m Abstand (je nachdem Tochternuklid beachten!).

Zusammenstellung der Fussnoten:

- [1] Bei Kr-88 wurden die Werte des Tochternuklids für Immersion angegeben (Spalte 11).
- [2] Zwei Nuklide mit gleicher Anzahl Protonen und Neutronen aber mit verschiedener Konfiguration und Halbwertszeit (Spalte 1).
- [3] Abgeleitet aus der effektiven Dosis bei Immersion (Spalte 11).
- [4] Abgeleitet aus der Hautdosis bei Immersion (Spalte 11).
- [5] Der Wert von LA wurde durch den von LE ersetzt (Spalte 10).
- [6] Der Wert h₁₀ des Tochternuklids überschreitet 0,1 (mSv/h)/GBq in 1 m Abstand (je nachdem Tochternuklid beachten! Spalte 13).
- [7] Der Anteil H-3, HTO ist auch zu berücksichtigen.
- [8] Für Kr-85 wurde LA so gewählt, dass die Dosisleistung in 10 cm Abstand bei $1 \,\mu$ Sv/h liegt.
- [9] In h₁₀ ist die Spontanspaltung mitberücksichtigt. Der Anteil Spontanspaltung stammt aus Tables of Isotopes (eighth edition, 1996, John Wiley & Sons) und aus der ENDF Datenbank des Brookhaven National Laboratory. Für die mittlere Anzahl Neutronen pro Spaltung und den Dosisfaktor wurden die Werte von Cf-252 übernommen. Nicht berücksichtigt ist der Photonenanteil bei der Kernspaltung und die Photonenemission der entstehenden Spaltprodukte.

Nuklidgemische

Bei Nuklidgemischen gilt für die Spalten 9, 11 und 12 die Summenregel nach Anhang 1.

Anhang 4 73 (Art. 44 Abs. 3)

Dosisfaktoren bei Einzelpersonen der Bevölkerung

1. Inhalation

Nuklid	Kleinkind (1a)			Kind (10 a)			Erwachsene		
	einh Sv/Bq	hinh, Organ Sv/Bq	Organ	einh Sv/Bq	h inh, Organ Sv/Bq	Organ	einh Sv/Bq	hinh, Organ Sv/Bq	Organ
H-3, HTO [1]	4.8 E-11	4.8 E-11	GK	2.3 E-11	2.3 E-11	GK	1.8 E-11	1.8 E-11	GK
H-3, OBT [2]	1.1 E-10	1.1 E-10	GK	5.5 E-11	5.5 E-11	GK	4.1 E-11	4.1 E-11	GK
C-14 Org.	1.6 E-09	1.6 E-09	GK	7.9 E-10	7.9 E-10	GK	5.8 E-10	5.8 E-10	GK
Na-22	7.3 E-09	6.4 E-08	ET	2.4 E-09	2.0 E-08	ET	1.3 E-09	9.2 E-09	ET
Na-24	1.8 E-09	4.3 E-08	ET	5.7 E-10	1.3 E-08	ET	2.7 E-10	6.0 E-09	ET
Sc-47	2.8 E-09	1.4 E-08	Lu	1.1 E-09	6.7 E-09	Ξ	7.3 E-10	5.1 E-09	Ę
Cr-51	1.9 E-10	8.2 E-10	ET	6.4 E-11	2.6 E-10	ET	3.2 E-11	1.4 E-10	ī
Mn-54	6.2 E-09	2.5 E-08	ET	2.4 E-09	9.1 E-09	Ξ	1.5 E-09	6.3 E-09	Ľ
Fe-59	1.3 E-08	6.7 E-08	Ľ	5.5 E-09	3.1 E-08	Ξ	3.7 E-09	2.3 E-08	ī
Co-57	2.2 E-09	1.2 E-08	Ē	8.5 E-10	4.8 E-09	፫	5.5 E-10	3.3 E-09	ī
Co-58	6.5 E-09	3.0 E - 08	ET	2.4 E-09	1.2 E-08	፫	1.6 E-09	8.9 E - 09	Ę
Co-60	3.4 E-08	1.6 E-07	Ľ	1.5 E-08	7.3 E-08	Ξ	1.0 E-08	5.2 E-08	Ľ
Zn-65	6.5 E-09	1.9 E-08	ET	2.4 E-09	7.5 E-09	Ę	1.6 E-09	5.1 E-09	Ę
Se-75	6.0 E-09	2.4 E-08	ïZ	2.5 E-09	9.2 E-09	ïZ	1.0 E-09	5.4 E-09	ïZ
Br-82	3.0 E-09	5.0 E-08	ET	1.1 E-09	1.5 E-08	ET	6.3 E-10	7.0 E-09	ET
Sr-89	2.4 E-08	1.5 E-07	Ę	9.1 E-09	6.3 E-08	Ę	6.1 E-09	4.5 E-08	Ľ
Sr-90	1.1 E-07	7.0 E-07	Ę	5.1 E-08	2.9 E - 07	፫	3.6 E-08	2.1 E - 07	ī
Y-91	3.0 E-08	1.7 E-07	Lu	1.1 E-08	6.9 E-08	Ę	7.1 E-09	5.0 E-08	Ľ
Zr-95	1.6 E-08	9.1 E-08	Ľn	6.8 E - 09	4.2 E-08	Ę	4.8 E-09	3.1 E-08	Ľ
Nb-95	5.2 E-09	2.8 E - 08	Ę	2.2 E-09	1.3 E-08	Ę	1.5 E-09	9.5 E - 09	Ę
Mo-99	4.4 E-09	1.8 E-08	DD	1.5 E-09	7.2 E-09	Γ'n	8.9 E-10	5.3 E-09	Ľn

Fassung gemäss Ziff. III der V vom 15. Nov. 2000, in Kraft seit 1. Jan. 2001 (AS 2000 2894). 73

	bD
	ľ
	=
	☲
	ਰ
	∺
	0
	∺
	~
•	_

Nuklid	Kleinkind (1a)			Kind (10 a)			Erwachsene		
	einh Sv/Bq	hinh, Organ Sv/Bq	Organ	einh Sv/Bq	hinh, Organ Sv/Bq	Organ	einh Sv/Bq	hinh, Organ Sv/Bq	Organ
Tc-99m		1.4 E-09	ET	3.4 E-11	4.3 E-10	ET	1.9 E-11	2.1 E-10	ET
Ru-103		5.3 E-08	7	3.5 E-09	2.4 E-08	Ľ	2.4 E-09	1.8 E-08	7
Ru-106		7.1 E-07	Ę	4.1 E-08	2.8 E-07	Ľ	2.8 E-08	2.0 E-07	Ę
Ag-110m		1.1 E-07	Ľ	1.2 E-08	5.1 E-08	Ľ	7.6 E-09	3.6 E-08	7
Sn-125		6.5 E-08	Ľ	5.0 E-09	2.7 E-08	Ľ	3.1 E-09	2.0 E - 08	Ę
Sb-122		2.7 E-08	DD	1.8 E-09	7.5 E-09	Ľ	1.0 E-09	5.5 E-09	Ľ
Sb-124	2.4 E-08	1.4 E-07	Ľ	9.6 E-09	6.1 E-08	ŗ	6.4 E-09	4.4 E-08	Ľ
Sb-125		1.0 E-07	Ľ	6.8 E - 09	4.5 E-08	Ľ	4.8 E - 09	3.2 E-08	Ľ
Sb-127		3.1 E-08	Ľ	2.7 E-09	1.4 E-08	ŗ	1.7 E-09	1.1 E-08	Ľ
Te-125m		7.4 E-08	Ľ	4.8 E-09	3.5 E-08	Ľ	3.4 E - 09	2.6 E - 08	Ľ
Te-127m		1.7 E-07	Ľ	1.1 E-08	7.7 E-08	Ľ	7.4 E-09	5.6 E - 08	Ľ
Te-129m		1.5 E-07	Ľ	9.8 E - 09	6.6 E-08	Ę	6.6 E-09	4.8 E - 08	Ľ
Te-131m		3.2 E-08	ET	1.9 E-09	9.8 E-09	ET	9.4 E-10	4.6 E-09	Ľ
Te-132		5.6 E-08	ET	4.0 E-09	1.7 E-08	ET	2.0 E-09	1.0 E-08	Ę
I-125		4.5 E-07	SD	1.1 E-08	2.2 E-07	SD	5.1 E-09	1.0 E-07	SD
I-129		1.7 E-06	SD	6.7 E - 08	1.3 E-06	SD	3.6 E-08	7.1 E-07	SD
I-131		1.4 E-06	SD	1.9 E-08	3.7 E - 07	SD	7.4 E - 09	1.5 E-07	SD
I-133		3.5 E-07	SD	3.8 E - 09	7.4 E-08	SD	1.5 E-09	2.8 E-08	SD
I-135		7.0 E-08	SD	7.9 E-10	1.5 E-08	SD	3.2 E-10	5.7 E-09	SD
Cs-134	7.3 E-09	4.9 E-08	ET	5.3 E-09	1.8 E-08	ET	6.6 E-09	1.2 E-08	ET
Cs-136		5.9 E-08	ET	2.0 E-09	1.9 E-08	ET	1.2 E-09	8.8 E - 09	ET
Cs-137		2.5 E-08	ET	3.7 E-09	9.7 E-09	ET	4.6 E-09	7.4 E-09	ET
Ba-140		1.1 E-07	ī	7.6 E-09	4.8 E-08	Γn	5.1 E-09	3.5 E-08	Ľ
La-140		4.4 E-08	ET	2.0 E-09	1.3 E-08	ET	1.1 E-09	6.2 E-09	ET
Ce-141		6.9 E - 08	Ē	4.6 E - 09	3.2 E-08	Γn	3.2 E - 09	2.4 E-08	፫
Ce-144		6.5 E-07	Ē	5.5 E-08	2.6 E-07	Ľ	3.6 E-08	1.9 E-07	፫
Pr-143		4.6 E-08	Ľ	3.2 E-09	2.1 E-08	Ľ	2.2 E-09	1.5 E-08	Ľ
Pb-210		2.2 E-05	Ľ	1.5 E-06	1.1 E-05	KH	1.1 E-06	1.3 E-05	KH
Bi-210		2.4 E-06	Ę	1.3 E-07	1.1 E-06	Γn	9.3 E-08	7.7 E - 07	Ľ
Po-210		8.1 E-05	Ľ	4.6 E-06	3.5 E-05	ŗ	3.3 E-06	2.6 E - 05	Ľ
Ra-224	8.2 E-06	6.7 E - 05	Ę	3.9 E - 06	3.2 E-05	Ľn	3.0 E-06	2.5 E-05	Ľ
Ra-226			Ē	4.9 E-06		Ľ	3.5 E-06	2.8 E - 05	Ę
Th-227	3.0 E-05	2.5 E-04	Ę	1.4 E-05	1.2 E-04	Ξ	1.0 E-05	$8.7 ext{ E-}05$	Ľ

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Erwachsene		
1.3 E-04 1.1 E-03 Lu 5.5 E-05 5.0 E-05 3.5 E-04 KH 1.6 E-05 5.0 E-05 3.5 E-04 Lu 2.6 E-05 2.3 E-04 Lu 2.6 E-05 2.3 E-04 1.0 E-02 Lu 4.8 E-05 1.0 E-05 Lu 4.0 E-05 1.0 E-05 Lu 4.0 E-05 4.0 E-05 Lu 4.0 E-05 4.0 E-05 Lu 4.0 E-05 4.0 E-05 Lu 4.0 E-05 1.2 E-05 Lu 4.0 E-05 1.2 E-05 Lu 4.0 E-05 1.3 E-04 KH 2.2 E-05 1.3 E-05 1.3 E-03 KH 4.8 E-05 1.3 E-05 1.3 E-05 KH 4.8 E-05 1.3 E-05 1.4 E-05 1.3 E-05 KH 4.8 E-05 1.3 E-05 1.4 E-05 1.3 E-05 KH 1.3 E-05 1.4 E-	Organ	hinh, Organ Sv/Bq	Organ	einh Sv/Bq	hinh, Organ Sv/Bq	Organ
3.5 E-05	Lu	4.5 E-04	Lu	4.0 E-05	3.3 E-04	Ľ
5.0 E-05 2.3 E-04 1.1 E-05 1.1 E-05 1.1 E-05 1.0	KH	2.4 E-04	KH	1.4 E-05	2.8 E-04	KH
2.3 E-04	Lu	2.6 E-04	KH	2.5 E-05	2.9 E-04	KH
1.1 E-05 9.0 E-05 Lu 4.8 E-06 1.0 E-05 8.1 E-05 Lu 4.3 E-06 9.4 E-06 7.5 E-05 Lu 4.0 E-06 4.0 E-05 8.3 E-04 KH 2.2 E-05 4.2 E-09 1.8 E-08 ET 1.4 E-09 7.4 E-05 1.3 E-03 KH 4.8 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.4 E-03 KH 4.0 E-05 1.8 E-04 KH 7.3 E-06 6.9 E-05 1.4 E-04 KH 7.3 E-05 6.5 E-04 KH 7.3 E-06 6.9 E-05 1.5 E-04 KH 7.3 E-06 6.9 E-05 6.5 E-04 KH 7.3 E-05 6.5 E-04 KH 7.3 E-06 6.9 E-05 6.5 E-04 KH 7.3 E-05 E-05 E-04 KH 7.3 E-05 E-05 E-04 K	KH	7.5 E-03	KH	1.4 E-04	6.8 E-03	KH
1.0 E-05 8.1 E-05 Lu 4.3 E-06 9.4 E-06 7.5 E-05 Lu 4.0 E-05 4.0 E-05 4.0 E-05 4.2 E-05 4.2 E-09 1.8 E-08 ET 1.4 E-09 7.4 E-05 1.3 E-03 KH 4.4 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.4 E-04 KH 7.3 E-05 5.7 E-05 6.5 E-04 KH 7.3 E-05 5.7 E-05 6.5 E-04 KH 7.3 E-06 5.7 E-05 6.5 E-04 KH 7.3 E-05 6.5 E-04 KH 7.3 E-06 5.7 E-05 6.5 E-04 KH 7.3 E-06 6.5 E-04 KH 7.3 E-06 6.5 E-04 KH 7.3 E-06 6.5 E-04 KH 7.3 E-05 6.5 E-04 KH 7.3 E-06 6.5 E-04 KH 7.3 E-06 6.5 E-04 KH 7.3 E-05 6.5 E-04 KH 7.3 E-06 6.5 E-04 KH 7.3 E-05 6.5 E-04 KH 7.3 E-05 6.5 E-04 KH 7.3 E-06 6.5 E-04 KH 7.3 E-05	ī	3.8 E-05	Ľ	3.5 E-06	2.7 E-05	፫
9.4 E-06 7.5 E-05 Lu 4.0 E-06 4.0 E-05 8.3 E-04 KH 2.2 E-05 4.2 E-09 1.8 E-08 ET 1.4 E-09 7.4 E-05 1.2 E-03 KH 4.4 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 7.7 E-07 2.2 E-05 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.2 E-04 KH 7.3 E-06 5.7 E-05 6.5 E-04 KH 7.3 E-06	Ľ	3.4 E-05	Ľ	3.1 E-06	2.4 E-05	Ę
4.0 E-05 8.3 E-04 KH 2.2 E-05 4.2 E-09 1.8 E-08 ET 1.4 E-09 7.4 E-05 1.2 E-03 KH 4.8 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 7.7 E-05 1.3 E-05 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.4 E-03 KH 7.3 E-06 5.7 E-05 6.6 E-04 KH 7.3 E-06 5.7 E-05 6.6 E-04 KH 7.3 E-06	ī	3.1 E-05	Ľ	2.9 E-06	2.2 E-05	፫
4.2 E-09 1.8 E-08 ET 1.4 E-09 7.4 E-05 1.2 E-03 KH 4.8 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.4 E-04 KH 7.3 E-06 5.7 E-05 6.6 E-04 KH 7.7 E-05 6.6 E-04	KH	6.7 E-04	KH	2.3 E-05	1.0 E-03	KH
7.4 E-05 1.2 E-03 KH 4.8 E-05 7.7 E-05 1.3 E-03 KH 4.4 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.2 E-04 KH 7.3 E-05 5.7 E-05 6.6 E-04 KH 7.3 E-06	ET	8.4 E-09	Ľ	9.3 E-10	6.3 E-09	፫
7.7 E-05 1.3 E-03 KH 4.4 E-05 7.7 E-05 1.3 E-03 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.4 E-03 KH 4.0 E-05 1.8 E-05 1.2 E-04 KH 7.3 E-06 5.7 E-05 0.5 E-04 KH 7.3 E-06	KH	9.8 E-04	KH	4.6 E-05	1.4 E-03	KH
7.7 E-05 1.3 E-03 KH 4.8 E-05 9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.4 E-03 KH 4.0 E-05 1.8 E-05 1.2 E-04 KH 7.3 E-06 5.7 E-05 0.5 E-04 KH 7.3 E-06	KH	1.1 E-03	KH	5.0 E-05	1.5 E-03	KH
9.7 E-07 2.2 E-05 KH 8.3 E-07 6.9 E-05 1.4 E-03 KH 4.0 E-05 1.8 E-05 1.2 E-04 KH 7.3 E-06 5.7 E-05 6.6 E-04 KH 7.7 E-05	KH	1.1 E-03	KH	5.0 E-05	1.5 E-03	KH
6.9 E-05 1.4 E-03 KH 4.0 E-05 1.8 E-05 1.2 E-04 KH 7.3 E-06 5.7 E-04 KH 7.7 E-05 6.7	KH	2.4 E-05	KH	9.0 E-07	3.1 E-05	KH
1.8 E-05 1.2 E-04 KH 7.3 E-06 5.7 E-05 0.6 E-04 KH 7.3 E-05	KH	1.2 E-03	KH	4.2 E-05	1.7 E-03	KH
57E05 06E04 KH 27E05	KH	4.8 E-05	Lu	5.2 E-06	3.5 E-05	Ę
1.7. L.O	KH	6.4 E-04	KH	2.7 E-05	9.2 E-04	KH

Dosisfaktoren aus ICRP-CD-ROM (AMAD = 1µm)
Folgedosis im meistbetroffenen Organ (GK: Ganzkörper, Go: Gonaden, KM: Knochenmark (rot), DD: Dickdarm, Lu: Lunge, Ma: Magen, BI: Blase, Br: Brust, Le: Leber, SR: Speiseröhre, SD: Schilddrüse, Ha: Haut, KH: Knochenhaut, Übrige (ET: Extrathorakale Atemwege, Ut: Uterus Ni: Niere, Mi: Milz, ...)) h_{inh, Organ}:

Dosisfaktoren aus ICRP-CD-ROM (AMAD = 1μm) In Form von verdunstetem Wasser Organisch gebundenes Tritium $\Xi\Xi$

2. Ingestion

Nuklid	Kleinkind (1a)			Kind (10a)			Erwachsene		
	eing Sv/Bq	hing, Organ Sv/Bq	Organ	eing Sv/Bq	hing, Organ Sv/Bq	Organ	eing Sv/Bq	hing, Organ Sv/Bq	Organ
Н-3, НТО	4.8E-11	4.8E-11	GK	2.3E-11	2.3E-11	GK	1.8E-11	1.8E-11	GK
H-3, OBT [2]	1.2E-10	1.6E-10	Ma	5.7E-11	6.7E-11	Ma	4.2E-11	4.7E-11	Ma
C-14	1.6E-09	1.9E-09	Ma	8.0E-10	8.9E-10	Ma	5.8E-10	6.3E-10	Ma
Na-22	1.5E-08	2.8E-08	KH	5.5E-09	1.1E-08	KH	3.2E-09	6.3E-09	KH
Na-24	2.3E-09	6.7E-09	Ma	7.7E-10	2.1E-09	Ma	4.3E-10	1.2E-09	Ma
Sc-47	3.9E-09	3.0E-08	DD	1.2E-09	9.0E-09	DD	5.4E-10	4.1E-09	DD
Cr-51	2.3E-10	1.4E-09	DD	7.8E-11	4.5E-10	DD	3.8E-11	2.1E-10	DD
Mn-54	3.1E-09	8.3E-09	DD	1.3E-09	3.3E-09	DD	7.1E-10	1.8E-09	DD
Fe-59	1.3E-08	3.5E-08	DD	4.7E-09	1.2E-08	DD	1.8E-09	5.8E-09	DD
Co-57	1.6E-09	5.6E-09	DD	5.8E-10	1.8E-09	DD	2.1E-10	9.4E-10	DD
Co-58	4.4E-09	1.4E-08	DD	1.7E-09	4.9E-09	DD	7.4E-10	2.8E-09	DD
Co-60	2.7E-08	5.1E-08	DD	1.1E-08	2.0E-08	Le	3.4E-09	8.7E-09	DD
Zn-65	1.6E-08	2.2E-08	KH	6.4E-09	8.9E-09	KH	3.9E-09	5.4E-09	KH
Se-75	1.3E-08	5.1E-08	ï	6.0E-09	2.2E-08	ïZ	2.6E-09	1.4E-08	ïZ
Br-82	2.6E-09	4.0E-09	DD	9.5E-10	1.5E-09	DD	5.4E-10	8.3E-10	Ma
Sr-89	1.8E-08	9.2E-08	DD	5.8E-09	2.7E-08	DD	2.6E-09	1.4E-08	DD
Sr-90	7.3E-08	7.3E-07	KH	6.0E-08	1.0E-06	ΚΉ	2.8E-08	4.1E-07	ΚΉ
Y-91	1.8E-08	1.4E-07	DD	5.2E-09	4.2E-08	DD	2.4E-09	1.9E-08	DD
Zr-95	5.6E-09	3.4E-08	DD	1.9E-09	1.1E-08	DD	9.5E-10	5.1E-09	DD
Nb-95	3.2E-09	1.6E-08	DD	1.1E-09	5.6E-09	DD	5.8E-10	2.8E-09	DD
Mo-99	3.5E-09	1.6E-08	P.	1.1E-09	5.5E-09	Le/Ni	6.0E-10	3.1E-09	ïZ
Tc-99m	1.3E-10	4.7E-10	SD	4.3E-11	1.4E-10	DD	2.2E-11	6.7E-11	DD
Ru-103	4.6E-09	2.9E-08	DD	1.5E-09	9.2E-09	DD	7.3E-10	4.3E-09	DD
Ru-106	4.9E-08	3.3E-07	DD	1.5E-08	1.0E-07	DD	7.0E-09	4.5E-08	DD
Ag-110m	1.4E-08	4.6E-08	DD	5.2E-09	1.7E-08	DD	2.8E-09	8.5E-09	DD
Sn-125	2.2E-08	1.8E-07	DD	6.7E-09	5.2E-08	DD	3.1E-09	2.4E-08	DD
Sb-122	1.2E-08	9.1E-08	DD	3.7E-09	2.7E-08	DD	1.7E-09	1.2E-08	DD
Sb-124	1.6E-08	9.6E-08	DD	5.2E-09	3.0E-08	<u> </u>	2.5E-09	1.4E-08	00
Sb-125	6.1E-09	3.3E-08	¥ 2	2.1E-09	1.3E-08	포	1.1E-09	9.0E-09	¥ 2
20-17/	1.2E-08	8.4E-08	חח	3.0E-09	2.3E-U8	חח	1./E-09	1.2E-U8	חח

Nuklid	Kleinkind (1a)			Kind (10a)			Erwachsene		
	eing Sv/Bq	hing, Organ Sv/Bq	Organ	eing Sv/Bq	hing, Organ Sv/Bq	Organ	eing Sv/Bq	hing Organ Sv/Bq	Organ
Te-125m	6.3E-09	9.0E-08	KH	1.9E-09	3.4E-08	KH	8.7E-10	2.0E-08	KH
Ie-12/m	1.8E-08	1.4E-0/	¥ 2	5.2E-09	5.5E-08	¥ 2	2.3E-09	3.2E-08	¥ 2
Ie-129m	2.4E-08	1.1E-0/	UÜ Žį	6.6E-09	3.2E-08	OO S	3.0E-09	1.4E-08	aa S
Te-131m	1.4E-08	1.5E-07	SD	4.3E-09	4.5E-08	SD	1.9E-09	1.8E-08	SD
Te-132	3.0E-08	3.2E-07	SD	8.3E-09	7.5E-08	SD	3.8E-09	3.1E-08	SD
I-125	5.7E-08	1.1E-06	SD	3.1E-08	6.2E-07	SD	1.5E-08	3.0E-07	SD
I-129	2.2E-07	4.3E-06	SD	1.9E-07	3.8E-06	SD	1.1E-07	2.1E-06	SD
I-131	1.8E-07	3.6E-06	SD	5.2E-08	1.0E-06	SD	2.2E-08	4.3E-07	SD
I-133	4.4E-08	8.6E-07	SD	1.0E-08	2.0E-07	SD	4.3E-09	8.2E-08	SD
I-135	8.9E-09	1.7E-07	SD	2.2E-09	3.9E-08	SD	9.3E-10	1.6E-08	SD
Cs-134	1.6E-08	2.4E-08	DD	1.4E-08	1.7E-08	DD	1.9E-08	2.1E-08	DD
Cs-136	9.5E-09	1.3E-08	DD	4.4E-09	5.3E-09	DD	3.0E-09	3.4E-09	DD
Cs-137	1.2E-08	2.3E-08	DD	1.0E-08	1.3E-08	DD	1.3E-08	1.5E-08	DD
Ba-140	1.8E-08	1.2E-07	DD	5.8E-09	3.5E-08	DD	2.6E-09	1.7E-08	DD
La-140	1.3E-08	8.7E-08	DD	4.2E-09	2.7E-08	DD	2.0E-09	1.3E-08	DD
Ce-141	5.1E-09	4.0E-08	DD	1.5E-09	1.2E-08	DD	7.1E-10	5.5E-09	DD
Ce-144	3.9E-08	3.1E-07	DD	1.1E-08	9.2E-08	DD	5.2E-09	4.2E-08	DD
Pr-143	8.7E-09	7.0E-08	DD	2.6E-09	2.1E-08	DD	1.2E-09	9.3E-09	DD
Pb-210	3.6E-06	3.8E-05	KH	1.9E-06	4.4E-05	ΚΉ	6.9E-07	2.3E-05	ΕΉ
Bi-210	9.7E-09	7.6E-08	DD	2.9E-09	2.3E-08	DD	1.3E-09	1.0E-08	DD
Po-210	8.8E-06	7.6E-05	Mi	2.6E-06	2.5E-05	Mi	1.2E-06	1.3E-05	ïZ
Ra-224	6.6E-07	2.3E-05	KH	2.6E-07	1.1E-05	KH	6.5E-08	1.7E-06	KH
Ra-226	9.6E-07	2.9E-05	KH	8.0E-07	3.9E-05	Ξ	2.8E-07	1.2E-05	ΕX
Th-227	7.0E-08	8.0E-07	KH	2.3E-08	3.9E-07	KH	8.8E-09	8.8E-08	KH
Th-228	3.7E-07	8.4E-06	KH	1.4E-07	4.3E-06	KH	7.2E-08	2.5E-06	KH
Th-230	4.1E-07	1.3E-05	KH	2.4E-07	1.1E-05	KH	2.1E-07	1.2E-05	KH
Th-232	4.5E-07	1.3E-05	KH	2.9E-07	1.2E-05	ΚΉ	2.3E-07	1.2E-05	KH
Pa-231	1.3E-06	6.0E-05	KH	9.2E-07	4.6E-05	KH	7.1E-07	3.6E-05	KH
U-234	1.3E-07	1.8E-06	KH	7.4E-08	1.5E-06	KH	4.9E-08	7.8E-07	KH
U-235	1.3E-07	1.7E-06	ΗX	7.1E-08	1.4E-06	Ξį	4.7E-08	7.4E-07	ΕŽ
U-238	1.2E-07	1.6E-06	KH	6.8E-08	1.4E-06	KH H	4.5E-08	7.1E-07	EZ I
Np-23/ Nr 230	2.1E-0/	5.0E-06	H C	1.1E-0/	4.1E-06	¥ 2	1.1E-0/ 8.0E-10	5.4E-06	¥ 2
145-239	J./ L-U)	1:1	27	1.71-02	1.35-00	2	0.0L-10	0.00.0	OO.

Nuklid	Kleinkind (1a)			Kind (10a)			Erwachsene		
	eing Sv/Bq	hing, Organ Sv/Bq	Organ	eing Sv/Bq	hing, Organ Sv/Bq	Organ	eing Sv/Bq	hing Organ Sv/Bq	Organ
Pu-238	4.0E-07	6.9E-06	KH	2.4E-07	5.9E-06	KH	2.3E-07	7.4E-06	KH
Pu-239	4.2E-07	7.6E-06	KH	2.7E-07	6.8E-06	ΚΉ	2.5E-07	8.2E-06	ΚΉ
Pu-240	4.2E-07	7.6E-06	KH	2.7E-07	6.8E-06	KH	2.5E-07	8.2E-06	KH
Pu-241	5.7E-09	1.2E-07	KH	5.1E-09	1.4E-07	ΚΉ	4.8E-09	1.6E-07	ΚΉ
Am-241	3.7E-07	8.3E-06	KH	2.2E-07	7.3E-06	KH	2.0E-07	9.0E-06	KH
Cm-242	7.6E-08	9.7E-07	KH	2.4E-08	3.5E-07	KH	1.2E-08	1.9E-07	KH
Cm-244	2.9E-07	5.8E-06	KH	1.4E-07	3.9E-06	KH	1.2E-07	4.9E-06	KH

Dosisfactors of Sections, The Figure 1 of Section 2 of Section 3 of Se hing, Organ:

[2]

814.501 Strahlenschutz

Anhang 5⁷⁴ (Art. 1 Abs. 2, 42 und 44)

Methode für die Ermittlung der Strahlendosis

1. Grundsatz

Die effektive Dosis und die Organdosen werden in der Regel mit Hilfe von operationellen Grössen bestimmt.

2. Operationelle Grössen

Die operationellen Grössen für die Personendosimetrie bei externer Bestrahlung sind

- a. die Personen-Tiefendosis H_p(10) mit der Kurzbezeichnung H_p;
- b. die Personen-Oberflächendosis H_p(0,07) mit der Kurzbezeichnung H_s.

Die operationellen Grössen für die Ortsdosimetrie sind

- a. die Umgebungs-Äquivalentdosis H*(10);
- b. die Richtungs-Äquivalentdosis H'(0,07).

Die operationelle Grösse für die interne Bestrahlung ist die mit Standardmodellen und den Dosisfaktoren nach den Anhängen 3 und 4 berechnete effektive Folgedosis Eso.

3. Personendosen unterhalb der entsprechenden Dosisgrenzwerte

Die Äquivalentdosis für ein Organ wird bei externer Bestrahlung der Personen-Tiefendosis $H_p(10)$, beziehungsweise der Umgebungs-Äquivalentdosis $H^*(10)$ gleichgesetzt für alle Gewebe und Organe mit Ausnahme der Haut.

Die Äquivalentdosis für die Haut wird bei externer Bestrahlung der Personen-Oberflächendosis $H_p(0,07)$, resp. der Richtungs-Äquivalentdosis $H^{*}(0,07)$. gleichgesetzt.

Die effektive Dosis wird gleichgesetzt der Summe aus

- a. der Personendosis $H_p(10)$, beziehungsweise der Umgebungs-Äquivalentdosis $H^*(10)$ und
- b. der effektiven Folgedosis E₅₀.

4. Personendosen oberhalb der entsprechenden Dosisgrenzwerte

Liegen die nach Ziffer 3 ermittelten Dosiswerte über den entsprechenden Grenzwerten, so sind von einem Sachverständigen in Zusammenarbeit mit der Aufsichtsbehörde die effektive Dosis oder die Organdosen für die betroffene Person mit Berechnungsmethoden und Dosisfaktoren nach dem Stand von Wissenschaft und Technik individuell zu ermitteln. Der so ermittelte Wert ist entscheidend, ob tatsächlich ein Dosisgrenzwert überschritten ist.

Fassung gemäss Ziff. II der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).

Verordnung 814.501

5. Ortsdosimetrie

Wird in dieser Verordnung die Ortsdosis limitiert, so gilt als Ortsdosis

 die Grösse H*(10) (Umgebungs-Äquivalentdosis) bei durchdringungsfähiger Strahlung;

 b. die Grösse H'(0,07) (Richtungs-Äquivalentdosis) bei Strahlung geringer Eindringtiefe. 814.501 Strahlenschutz

Anhang 6⁷⁵ (Art. 30 und 58)

Kennzeichnung von kontrollierten Zonen

Kontrollierte Zonen sind je nach den verwendeten Strahlenquellen wie folgt zu kennzeichnen:

1. Offene radioaktive Strahlenquellen:

- a. das radiotoxischste Nuklid und dessen maximale Aktivität;
- b. die Klassierung des Arbeitsbereichs (Typ A, B oder C);
- c. der maximale Kontaminationsgrad durch lose Kontamination an Oberflächen in Bq/cm² oder als Anzahl Richtwerte für das betreffende Nuklid;
- d. die Ortsdosisleistung in mSv pro Stunde im begehbaren Bereich, wenn sinnvoll:
- e. Angaben über die erforderliche Schutzkleidung sowie Schutzmassnahmen;
- f. das Gefahrenzeichen.

2. Geschlossene radioaktive Strahlenquellen:

- a. das radiotoxischste Nuklid und dessen maximale Aktivität oder Aktivität und Nuklid mit der höchstenergetischen Gammastrahlung;
- die Ortsdosisleistung in mSv pro Stunde im begehbaren Bereich, wenn sinnvoll;
- c. das Gefahrenzeichen.

3. Anlagen (z. B. Röntgenanlagen, Beschleuniger):

- a. die Bezeichnung der Anlage;
- b. die Strahlenart (z. B. Elektronen, Röntgenstrahlung, Neutronen, sofern nicht schon aus der Anlagebezeichnung ersichtlich);
- die Ortsdosisleistung in mSv pro Stunde im begehbaren Bereich, wenn sinnvoll;
- d. das Gefahrenzeichen.

Gefahrenzeichen:

Verhältnis der Radien: 1:1, 5:5

⁷⁵ Fassung gemäss Ziff. II der V vom 17. Nov. 1999, in Kraft seit 1. Jan. 2000 (AS 2000 107).