A METHOD FOR MAKING PHOTOSENSITIVE FIBER SUITABLE FOR WAVELENGTH STABILIZATION GRATINGS

BACKGROUND OF THE INVENTION

Field of Invention

The present invention is generally directed to devices for optical communications, and more particularly to a method for making photosensitive fiber suitable for wavelength stabilization gratings.

Description of the Related Art

Wavelength stabilization gratings (also referred to as laser stabilization gratings) are weak fiber Bragg gratings used to lock a semiconductor laser to a particular emission wavelength. They are typically a few tenths of a nanometer wide and reflect a small percentage of the incident light, e.g. 1 to 10% of the guided power in the fiber.

Generally, wavelength stabilization gratings are fabricated using UV-induced index changes in a host fiber, such as a standard telecommunications type fiber. For 980-nm pump laser applications, these gratings are typically written in a 980-type fiber, such as Corning® CS-980TM fiber or Corning® FlexcorTM 1060 fiber. For 1480-nm pump laser applications, Raman amplifier pump applications, or signal laser applications, they may be fabricated in a fiber such as Corning® SMF-28TM fiber. Additionally, gratings may be written in a polarization-maintaining (PM) fiber such as Corning® PureModeTM PM Engineered fiber, PM 980 or PM 1550.

Hydrogen loading must be used with in standard telecommunications type fibers

15

20