

DERIVATA BELLA FUNZIONE INVERSA

3.3.15 Teorema (sulla derivata di funzione inversa). Siano I un intervallo di \mathbb{R} , $c \in I$, $f: I \to \mathbb{R}$ continua e invertibile. Se f è derivabile in c e $f'(c) \neq 0$, allora f^{-1} è derivabile in f(c) e

$$(f^{-1})'(f(c)) = \frac{1}{f'(c)}.$$

$$(f^{-1})'(d) = \frac{1}{f'(f^{-1}(d))}$$

In pretice role & formula
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

APPLICAZIONE

$$-1 < x \le 1$$

$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$2^{1}(x) = \cos x$$

$$\sqrt{1-\sin^2(a\sin x)} = \sqrt{1-x^2}$$

 $f(x) = \sin x$

auccos' (x) =
$$\frac{1}{-\sin(\arccos(x))} = \frac{1}{-\sqrt{1-\cos^2(\arccos(x))}} = \frac{1}{-\sqrt{1-x^2}}$$

antan' (x) = $\frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+x^2}$

$$\frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+x^2} = \frac{1}{1+x^2}$$

antan' (x) = $\frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+x^2}$

$$\frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+x^2}$$

$$\frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+x^2}$$