

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ДОМАШНЕГО ЗАДАНИЯ ПО КУРСУ«АНАЛИТИЧЕСКИЕ МОДЕЛИ И ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕНА СИСТЕМНОМ УРОВНЕ»

Студент	Ника	Никатов Владислав Алексеевич		
Группа	РК6-8	РК6-84б		
Тип задания	Дома	Домашнее задание		
Вариант	7			
Студент	_		Никатов В.А.	
		подпись, дата	фамилия, и.о.	
Преподаватель			Берчун Ю.В.	
1	_	подпись, дата	фамилия, и.о.	
Оценка				

Москва, 2020 г.

Оглавление

1 Задание	3
2 Решение	3
Приложение 1	7

1 Задание

Для многоканальной системы с неограниченной очередью, описанной в предыдущей лабораторной работе, построить таблицу отражающую состояния цепи текущих событий (ЦТС) и цепи будущих событий (ЦБС) по модельному времени. Решение задачи должно быть представлено в виде программного кода с использованием любого языка программирования, по усмотрению студента. В программе требуется реализовать алгоритм дискретно-событийного моделирования.

2 Решение

При решении задачи был реализован объект типа Transaction, хранящий в себе следующие значения:

- номер транзакта;
- время движения;
- номер текущего блока;
- уровень приоритета;
- номер следующего блока.

Под блоками понимаются объекты, которые в определенный момент времени содержат в себе транзакты, а так же выполняют над ними какие-либо действия. К объектам данного типа относятся:

- 1. **Generate.** При прохождении транзактом данного объекта, при входе транзакт обновляет значения текущего и следующего блоков на блок Generate и следующий за ним блок соответственно, а так же время движения на КМР (Как можно раньше). При выходе транзакта из блока создается новый транзакт в ЦБС, который попадет в блок через заданное функцией-генератором количество времени. Используется для генерации заявок на обслуживание, а так же транзакта, завершающего моделирование. В первом случае функция-генератор возвращает число, заданное экспоненциальным распределением со средним значением 39, во втором время моделирования.
- 2. **Queue.** Объект может вмещать в себя ограниченное или неограниченное число объектов. При входе транзакта в очередь значение счетчиков объектов внутри увеличивается, при выходе уменьшается.

- 3. **Storage.** Объект, исполняющий задачу многоканального обслуживания. Может иметь ограничение на число каналов. Транзакт может войти в объект только если счетчик внутри объекта меньше максимального заданного размера. При входе транзакта в объект значение счетчика увеличивается на 1, а сам транзакт перемещается в ЦБС, будущим событием является выход из объекта Storage, а время, через которое это произойдет, задается генератором, возвращающим числа, заданные экспоненциальным распределением со средним значением 229. Через указанный промежуток времени, транзакт вернется в ЦТС и будет готов выйти из объекта Storage. При выходе, счетчик объектов уменьшается.
- 4. **Terminate.** При входе транзакта в объект, значение счетчика модели уменьшается на заданное заранее число, а сам транзакт удаляется из модели.

Основным объектом является Model, в котором используются экземпляры перечисленных выше классов, хранятся ЦТС, ЦБС и ТМБ, а так же реализованы фазы ввода, коррекции таймера и просмотра. Используемые для моделирования объекты представлены и пронумерованы в порядке их вызова в таблице 2.1.

№	Объект	
0	Generate	
1	Queue	
2	Storage	
3	Terminate	
4	Generate	
5	Terminate	

Состояния ЦТС и ЦБС сразу после стадии ввода, коррекции таймера и просмотра, а так же значение таймера модельного времени (ТМВ) отражены в таблице 2.2.2.

Таблица 2.2.2 а. Состояния ТМВ, ЦТС и ЦБС после каждой стадии.

TMB	Стадия	ЦТС	ЦБС
0.0	до ввода	Пусто	Пусто
0.0	посла ввода	Пусто	[1,1,нет,0,0], [2,240,нет,0,4]
1.0	после кор. тайм.	[1,КМР,нет,0,0]	[2,240,нет,0,4]
1.0	после просмотра	Пусто	[3,25.1387,нет,0,0], [1,190.2625,2,0,3], [2,240,нет,0,4]
25.1387	после кор. тайм.	[3,КМР,нет,0,0]	[1,190.2625,2,0,3], [2,240,нет,0,4]
25.1387	после просмотра	Пусто	[4,103.5584,нет,0,0], [3,154.9645,2,0,3], [1,190.2625,2,0,3], [2,240,нет,0,4]
103.5584	после кор. тайм.	[4,КМР,нет,0,0]	[3,154.9645,2,0,3], [1,190.2625,2,0,3], [2,240,нет,0,4]
103.5584	после просмотра	[4,KMP,1,0,2]	[5,133.3050,нет,0,0], [3,154.9645,2,0,3], [1,190.2625,2,0,3], [2,240,нет,0,4]
133.3050	после кор. тайм.	[4,КМР,1,0,2], [5,КМР,нет,0,0]	[3,154.9645,2,0,3], [1,190.2625,2,0,3], [2,240,нет,0,4]
133.3050	после просмотра	[4,KMP,1,0,2], [5,KMP,1,0,2]	[3,154.9645,2,0,3], [6,181.6222,нет,0,0], [1,190.2625,2,0,3], [2,240,нет,0,4]
154.9645	после кор. тайм.	[4,KMP,1,0,2], [5,KMP,1,0,2], [3,KMP,2,0,3]	[6,181.6222,нет,0,0], [1,190.2625,2,0,3], [2,240,нет,0,4]
154.9645	после просмотра	[5,KMP,1,0,2]	[6,181.6222,нет,0,0], [1,190.2625,2,0,3], [2,240,нет,0,4], [4,768.6171,2,0,3]
181.6222	после кор. тайм.	[5,КМР,1,0,2], [6,КМР,нет,0,0]	[1,190.2625,2,0,3], [2,240,нет,0,4], [4,768.6171,2,0,3]
181.6222	после просмотра	[5,KMP,1,0,2], [6,KMP,1,0,2]	[1,190.2625,2,0,3], [7,201.0180,нет,0,0], [2,240,нет,0,4], [4,768.6171,2,0,3]

Таблица 2.2.2 б. Состояния ТМВ, ЦТС и ЦБС после каждой стадии.

ТМВ	Стадия	ЦТС	ЦБС
190.2625	после кор. тайм.	[5,KMP,1,0,2], [6,KMP,1,0,2], [1,KMP,2,0,3]	[7,201.0180,нет,0,0], [2,240,нет,0,4], [4,768.6171,2,0,3]
190.2625	после просмотра	[6,KMP,1,0,2]	[7,201.0180,нет,0,0], [2,240,нет,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
201.0180	после кор. тайм.	[6,КМР,1,0,2], [7,КМР,нет,0,0]	[2,240,нет,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
201.0180	после просмотра	[6,KMP,1,0,2], [7,KMP,1,0,2]	[8,217.2184,het,0,0], [2,240,het,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
217.2184	после кор. тайм.	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,нет,0,0]	[2,240,нет,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
217.2184	после просмотра	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,1,0,2]	[9,226.2480,нет,0,0], [2,240,нет,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
226.2480	после кор. тайм.	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,1,0,2], [9,KMP,нет,0,0]	[2,240,нет,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
226.2480	после просмотра	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,1,0,2], [9,KMP,1,0,2]	[10,238.9538,HeT,0,0], [2,240,HeT,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
238.9538	после кор. тайм.	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,1,0,2], [9,KMP,1,0,2], [10,KMP,нет,0,0]	[2,240,нет,0,4], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
238.9538	после просмотра	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,1,0,2], [9,KMP,1,0,2], [10,KMP,1,0,2]	[2,240,нет,0,4], [11,249.9901,нет,0,0], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
240.0	после кор. тайм.	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,1,0,2], [9,KMP,1,0,2], [10,KMP,1,0,2], [2,KMP,нет,0,4]	[11,249.9901,нет,0,0], [5,319.7421,2,0,3], [4,768.6171,2,0,3]
240.0	после просмотра	[6,KMP,1,0,2], [7,KMP,1,0,2], [8,KMP,1,0,2], [9,KMP,1,0,2], [10,KMP,1,0,2]	[11,249.9901,нет,0,0], [5,319.7421,2,0,3], [12,480,нет,0,4], [4,768.6171,2,0,3]

Приложение 1

```
main.py
from Model import Model
if __name__ == '__main__':
 model = Model()
 model.init()
 model.run()
Model.py
from Generate import Generate
from Terminate import Terminate
from Queue import Queue
from Storage import Storage
import random
def time_generator(avg, first_one=False):
 if first_one:
   vield 1
 while True:
   yield random.expovariate(1./avg)
def const_generator(number):
 while True:
   yield number
class Model:
 def __init__(self):
   self._cec = [] # Current Events Chain (цепь текущих событий)
   self._fec = [] # Future Events Chain (цепь будущих событий)
   self._mtc = [0] # Model Time Counter (счетчик времени моделирования)
    self. count = [1]
   self._blocks = []
 def init(self):
   self._blocks.append(Generate(fec=self._fec,
```

mtc=self. mtc,

```
time_generator=time_generator(39, first_one=True)))
    self._blocks.append(Queue())
    self._blocks.append(Storage(cec=self._cec,
                  fec=self. fec,
                  mtc=self._mtc,
                  time_generator=time_generator(229),
                  max_len=2))
    self._blocks.append(Terminate(cec=self._cec,
                   counter=self._count))
    self._blocks.append(Generate(fec=self._fec,
                   mtc=self._mtc,
                  time_generator=const_generator(240)))
    self._blocks.append(Terminate(cec=self._cec,
                   counter=self. count,
                   decrement=1))
  def run(self):
    self.print_info('До стадии ввода')
    self._insert()
    self.print_info('После стадии ввода')
    while self._count[0] != 0:
      self._timer_correction()
      self.print_info('После стадии коррекции таймера')
      self. view()
      self.print_info('После стадии просмотра')
  def _insert(self):
    for i, block in enumerate(self._blocks):
      if isinstance(block, Generate):
        block.generate(cur_block=i)
  def _timer_correction(self):
    if len(self._fec) == 0:
      exit('Произошла ошибка. Цепь будущих событий опустела раньше
окончания программы.')
    t = self. fec[0]
    self._mtc[0] = t.transition_time
    self._fec.remove(t)
    t.transition_time = -1
    self._cec.append(t)
    while len(self._fec) != 0 and self._fec[0].transition_time == self._mtc[0]:
      t = self. fec[0]
      self._fec.remove(t)
      t.transition time = -1
      self._cec.append(t)
```

```
def _view(self):
    f_change = True
    while f change:
      f_change = False
      for t in self. cec:
        while self._blocks[t.current_block].can_exit() and
self._blocks[t.next_block].can_enter():
          f_change = True
          # print('Переход транзакта', t.num, 'из блока', t.current_block, 'в блок',
t.next_block)
          if t.current block != -1:
             self._blocks[t.current_block].exit()
          self._blocks[t.next_block].enter(t)
          if len(self._cec) == 0:
            return
          t = self._cec[0]
  def print_info(self, stage: str):
    print(stage + ':')
    print('TMB:', self._mtc[0])
    print('LTC:', self._cec)
    print('LLGC:', self._fec)
    print()
Generate.py
from Transaction import Transaction
from operator import attrgetter
class Generate:
  counter = 1
  def __init__(self,
         fec: list,
         mtc: list,
         time_generator,
         priority: int = 0):
    self. fec = fec
    self._mtc = mtc
    self._priority = priority
    self._time_generator = time_generator
    self.cur_transaction = None
```

```
def generate(self, cur_block):
    self._fec.append(Transaction(num=Generate._counter,
                   transition_time=self._mtc[0] + next(self._time_generator),
                   current block=-1,
                   priority=self._priority,
                   next_block=cur_block))
    Generate._counter += 1
    self._fec.sort(key=attrgetter('transition_time'))
  def can_enter(self):
    return True
  def can_exit(self):
    return True
  def enter(self, t):
    if self.cur_transaction is not None:
      print('Потеря транзакта', t)
      return
    t.current_block = t.next_block
    t.next_block = t.next_block + 1
    t.transition time = -1
    self.cur_transaction = t
  def exit(self):
    t = self.cur_transaction
    self.generate(t.current_block)
    self.cur transaction = None
    return t
Storage.py
from operator import attrgetter
class Storage:
  def __init__(self,
        cec: list.
        fec: list.
        mtc: list,
        time_generator,
        max_len: int = None):
```

```
self._cec = cec
    self. fec = fec
    self._mtc = mtc
    self._time_generator = time_generator
    self._m_len = max_len
    self. s = 0
  def can_enter(self):
    if self._m_len is None:
      return True
    return self._s < self._m_len
  def can_exit(self):
    return True
  def enter(self, t):
    self. s += 1
    t.current block = t.next block
    t.next_block = t.next_block + 1
    t.transition_time = self._mtc[0] + next(self._time_generator)
    self._fec.append(t)
    self._cec.remove(t)
    self._fec.sort(key=attrgetter('transition_time'))
  def exit(self):
    self. s = 1
Queue.py
from collections import deque
class Queue:
  def __init__(self, max_len: int = None):
    self._m_len = max_len
    self._q = deque()
  def can_enter(self):
    if self. m len is None:
      return True
    return len(self._q) < self._m_len
  def can_exit(self):
```

```
return True
```

```
def enter(self, t):
    t.current block = t.next block
    t.next_block = t.next_block + 1
    t.transition time = -1
    self._q.appendleft(t)
  def exit(self):
    return self._q.pop()
Terminate.py
class Terminate:
  def __init__(self,
         counter: list,
         cec: list,
         decrement: int = 0):
    self._cec = cec
    self. counter = counter
    self._decrement = decrement
  def can_enter(self):
    return True
  def can_exit(self):
    return True
  def enter(self, t):
    self._cec.remove(t)
    self._counter[0] -= self._decrement
  def exit(self, t):
    pass
```

Transaction.py

```
class Transaction:
    def __init__(self,
```

```
num: int,
       transition_time: float,
       current_block: int,
       priority: int,
       next_block: int):
  self.num = num
  self.transition_time = transition_time
  self.current_block = current_block
  self.priority = priority
  self.next_block = next_block
def __str__(self):
  string = '[' + str(self.num) + ','
  if self.transition_time == -1:
    string += 'KMP'
  else:
    string += str(self.transition_time)
  string += ','
  if self.current_block == -1:
    string += 'HeT'
  else:
    string += str(self.current_block)
  string += ',' + str(self.priority) + ',' + str(self.next_block) + ']'
  return string
def __repr__(self):
  return str(self)
```