Assignment 3

ID: 120037910002 Name: Xingguo Jia Email: jiaxg1998@sjtu.edu.cn

1. Prove or disprove the following statement. If all capacities in a network are distinct, then there exists a unique flow function that gives the maximum flow.Solution:
•
2. An edge of a flow network is called critical if decreasing the capacity of this edge results in a decrease in the maximum flow value. Present an efficient algorithm that, given an s-t network G finds any critical edge in a network(assuming one exists). Solution:
•
•
3. Let $G=(V,E)$ be an undirected weighted graph with two distinguished vertices $s,t\in V$. Give an efficient algorithm to find a minimum weight cut that separates s from t . Solution:
•
•
4. You are given a matrix with fractional elements between 0 and 1. The sum of all numbers in each row and in each column is integer. Prove that we can always round each element to 0 or 1 so that the sum of each row and each column remains unchanged and design a polynomial time algorithm to find such a rounding result. Solution:
•
•

5. Suppose that, in addition to edge capacities, a flow network has **vertex capacities**. That is each vertex has a limit on how much flow can pass though. Show how to transform a flow network G = (V, E) with vertex capacities into an equivalent flow network G' = (V', E') without vertex capacities, such that a maximum flow in G' has the same value as a maximum flow in G. How many

Solution:

vertices and edges does G' have?

6. Consider a bipartite graph $G=(X\cup Y,E)$ with parts X and Y . Each part contains $2k$ vertices (i.e. $ X = Y =2k$). Suppose that $deg(u)\geq k$ for every $u\in X\cup Y$. Prove that G has a perfect matching. Solution:
•
7. You are designing a experiment in which you want to measure certain properties p_1, \ldots, p_n of a yeast culture. You have a set of tools t_1, \ldots, t_m that can each measure a subset S_i of the properties. For example, tool t_i measures S_i may equal $\{p_7, p_8\}$. To be sure that your results are not due to noise or other artifact, you must measure every property at least k times using k different tools.
• Give a polynomial-time algorithm that decides whether the tools you have are sufficient to measure the desired properties the desired number of times.
• Suppose each tool t_i comes from manufacturer M_i and we have the additional constraint that the tools to test any property p_i can't all come from the same manufacturer. Give a polynomial-time algorithm to solve this problem.
Solution:
•
•
8. Consider a flow network $G=(V,E)$ with positive edge capacities $\{c(e)\}$. Let $f:E\to\mathbb{R}_{\geq 0}$ be a maximum flow in G , and G_f be the residual graph. Denote by S the set of nodes reachable from S in G_f and by T the set of nodes from which t is reachable in G_f . Prove that $V=S\cup T$ if and only if G has a unique S - t minimum cut. Solution:
•