- \$11		
الاسم:	مسابقة في مادة الرياضيات	عددالمسائل: اربع
-1 m		Ç
الرقم:	المدة ساعتان	
<i>'ح</i> ب	J—	

ملاحظة : يسمح بإستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات للمسابقة) يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (4 points)

Le tableau suivant donne le pourcentage des récoltes endommagées dans un certain village durant les années paires 1982, 1984...1994

Année	1982	1984	1986	1988	1990	1992	1994
Rang de l'année x _i	1	2	3	4	5	6	7
Pourcentage y _i	3,5	3,8	4,6	6,5	6,9	7,8	9

- 1- Calculer les moyennes \overline{X} et \overline{Y} des variables x et y.
- 2- Représenter graphiquement le nuage des points $(x_i; y_i)$ ainsi que le point moyen $G(\overline{X}; \overline{Y})$ dans un repère orthogonal.
- 3- Calculer le coefficient de corrélation r et donner une interprétation à la valeur ainsi trouvée.
- 4- Déterminer une équation de la droite de régression $D_{y/x}$, de y en x, et tracer cette droite dans le repère précédent.
- 5- On suppose que le modèle précédent reste vrai jusqu'à l'an 2010. Estimer le pourcentage des récoltes endommagées en l'an 2002.
- 6- En réalité le pourcentage des récoltes endommagées en l'an 2002 est 13. Calculer, en pourcentage, l'erreur dans l'estimation précédente.

II - (4 points)

Le propriétaire d'un centre sportif constate que, chaque année, le centre garde 75% de ses membres et qu'il y a 800 nouveaux membres.

En 2005, ce centre comptait 1600 membres.

On note u_n le nombre des membres en l'année (2005 + n).

- 1- Vérifier que $u_1 = 2000$ et calculer u_2 .
- 2- Montrer que $u_{n+1} = \frac{3}{4}u_n + 800$, pour tout entier naturel n.
- 3-On considère la suite (v_n) définie par : $v_n = 3200 u_n$, pour tout entier naturel n.
 - a) Montrer que (v_n) est une suite géométrique. Préciser sa raison et son premier terme.
 - b) Exprimer v_n puis u_n en fonction de n.
- 4-En supposant que l'évolution du nombre des membres se poursuit de la même façon, le nombre des membres peut-il doubler ?

III – (4 points)

Une urne contient quatre boules blanches portant chacune le numéro 5 et trois boules noires portant chacune le numéro 2. Un jeu consiste à tirer au hasard une boule de l'urne. Si elle est blanche le jeu s'arrête ;si elle est noire on tire de l'urne une deuxième boule sans avoir remis la première dans l'urne ; on continue ainsi jusqu'à l'apparition d'une boule blanche et le jeu s'arrête.

1- Calculer la probabilité que le jeu s'arrête au deuxième tirage.

Soit X la variable aléatoire qui est égale à la somme des nombres portés par les boules tirées.

- 2- Justifier que les valeurs de X sont 5, 7, 9 et 11
- 3- Démontrer que P(X = 9) = $\frac{4}{35}$.
- 4- Déterminer la loi de probabilité de X.
- 5- Calculer l'espérance mathématique E(X).

IV – (8 points)

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = 6(x-2)e^{-0.5x} -1.$ (C) est la courbe représentative de f dans un repère orthonormé.

- (C) est la courbe representative de 1 dans un repere orthonorme
- A)1- Calculer $\lim_{x\to +\infty} f(x)$ et déduire une asymptote à (C).
 - 2- Vérifier que $f'(x) = 6e^{-0.5x}(2-0.5x)$ et dresser le tableau de variations de f.
 - 3- Tracer (C).
 - 4- Démontrer que l'équation f(x) = 0 admet deux solutions α et β telles que : $2,6 < \alpha < 2,7$ et $6,6 < \beta < 6,7$.

B) Dans ce qui suit on prend $\alpha = 2,65$

Une entreprise fabrique un produit chimique.

La fonction du coût total de production est donnée par $g(x) = \frac{5}{1+12e^{-0.5x}}$, où x est exprimée en tonnes et g(x) est exprimé en millions de LL $(0.5 \le x \le 6)$.

2

- 1- Préciser les coûts fixes.
- 2- Déterminer la fonction du coût moyen et celle du coût marginal.
- 3- On admet que le coût moyen est minimum lorsqu'il est égal au coût marginal. Déterminer le niveau de production pour lequel le coût moyen est minimum et préciser ce minimum.