Bases de données avancées

Introduction aux Bases de Données Réparties

Pr. Omar El Beqqali

Omar.el-beqqali@insa-lyon.fr oelbeqqali@fsdmfes.ac.ma http://www710.univ-lyon1.fr/~obekkali

Plan

- -Introduction
- -BDR: avantages
- -Fragmentation
- -Réplication: vues matérialisées
- -Mise en œuvre: TPs

Bases de données distribuées : Définitions

(Distributed Database)

- Ensemble de bases de données sockées sur plusieurs sites (machines) communicant via un réseau.
- Chaque nœud est une BD gérée par un SGBD local ou serveur de base de donnée.

Bases de données distribuées (suite)

(Distributed Database)

- ✓ La BD à laquelle un utilisateur est directement connecté, est la BD *locale*.
- ✓ Les autre BD accédées par l'utilisateur sont dites distantes.
- **✓** Apparence d 'une unique BD
- ✓ Les BD peuvent être simultanément accédées et mises à jour

BD-R: Avantages (1)

- placement des données dans un site proche de leur utilisation: simplicité, transparence aux réseaux
- données locales traitées localement
- Fiabilité plus grande (plusieurs machines indépendantes)
- sécurité, performance (traitements effectués en parallèle)
- couplage de données appartenant à diverses institutions.

Avantages (2)

- Partage des responsabilités
- •Construction progressives, disponibilité accrue si duplication sur plusieurs sites.

<u>Cas</u>: Entreprises ou organismes ayant des agences géographiquement distribuées:

- banques
- fabrication (plusieurs usines)
- systèmes de réservation de compagnie aériennes...

Décomposition d'un schéma 1/2

(bases de données distribuées)

CONCEPTION ASCENDANTE OU BOTTUM UP DESIGN: allocation fragments/sites

Décomposition d'un schéma 2/2

(bases de données distribuées)

CONCEPTION DESCENDANTE OU TOP DOWN DESIGN: allocation fragments/sites

Data Warehouse : Entrepôt de données

(OLAP: On Line Analytical Processing)

Data Warehouse : Collection de données historisées, intégrées à partir de BD, organisées Pour offrir les informations nécessaires à la prise de décision

Conception de bases de données réparties

Etapes

- 1. Normalisation
- 2. Fragmentation horizontale et verticale
- 3. Duplication (réplication)

Fragmentation

Les données distribuées peuvent correspondre à une fragmentation (résultat d'une requête SQL)

- <u>Fragmentation horizontale</u> (F.H) d'une relation se fait par une opération de sélection qui place chacun de ses n-uplets dans un site. Par exemple une relation <u>Employés</u> peut être fragmentée selon la localisation de ses employés,
- <u>Fragmentation verticale</u> (F.V) divise une relation en fragments par projection sur ses attributs. Exemple la relation <u>Employés</u> peut être fragmentée de la façon

suivante: farg1 (numéro d'employé, le nom d'employé et son adresse) frag2 (numéro d'employé, son salaire et son directeur).

• Fragmentation mixte (F.M): FH & F.V

Fragmentation (suite) F.H. F.M. Site A Site E Site B Site F clé Site C Site G Site D

Les clés sont présentes sur les 2 sites

12

O. El Beqqali

Réplication

La réplication permet de favoriser l'accessibilité aux données

Réplication => données dupliquées en plusieurs endroits.

Avantages:

- > disponibilité, performance, coût
- > organisation/adaptation/déconcentration
- > multiplie l'accès local (disponibilité et temps de réponse)
- > accroît la sûreté des données en autorisant :

des accès alternatifs, des sous-ensembles sélectionnés de données

- > réduit la charge du réseau
- > décharge sites maîtres et sites de vues matérialisées maîtres

O. El Beqqali

La réplication dans les bases de données réparties : Vue matérialisée

-Les copies ou réplicats (partiels ou totaux) sont appelées des vues matérialisées / clichés / snapshots.

-Les vues matérialisées peuvent être à leur tour répliquées. Les tables (respectivement vues matérialisées) origines sont appelées *tables maîtres* (respectivement *vues matérialisées maîtres*).

Le SGBD doit assurer la **convergence des copies** vers un même état et offrir la **transparence de gestion** aux utilisateurs. Les clients doivent croire à l'existence d'une seule table.

En résumé : le SGBD doit assurer la diffusion des mises à jour aux copies et le choix de la meilleure copie lors des accès (rafraîchissements de vue matérialisée)

Nomination des BD et des objets

- Nom de service SERVICE_NAMES pouvant intégrer plusieurs instances et/ou nœuds égal par défaut au nom global de base de données
- Nom global de BD = nom de la BD + nom du domaine [réseau] DB_NAME + DB_DOMAIN

(Descripteur de connexion)

Nom global d'objet

Schéma.Objet@NomGlobBD

Ex: Scott.Dept@Sales.ACME.com

• Nom de service / identificateur de connexion sales :

DATABASE LINKS

Pour pouvoir transférer des données au travers d'une base de données distribuée, un administrateur doit créer tous les DATABASE LINKS

(liens de base de données nécessaires, ou chemins de communication d'une base de données à une autre base de données)

CREATE PUBLIC DATABASE LINK......(voir TPs)

Accès aux liens BD créés:

SELECT * FROM USER_DB_LINKS;

Accès aux données distantes :

Schéma.Objet@NomGlobalBD

Ex: select * from scott.emp@bd1.miage.com

VUES MATERIALSEES

Création

CREATE MATERILIZED VIEW **EmpCasa**REFRESH FAST NEXT SYSDATE + 7
AS SELECT * FROM **Employe**@bdCasa

```
Ex : CREATE SNAPSHOT PersDepts REFRESH NEXT SYSDATE + 1/480
AS SELECT Nom, Prenom, NomDept
FROM Personnes@BD2 P, Departements@BD2 D
WHERE P.NoDept = D.NoDept AND NOT NomDept = 'AAA';
```

REFRESH

spécifie comment et quand la vue matérialisée est rafraîchie

Transparence de l'accès :exemple CREATE VIEW BLOCK AS

SELECT * FROM TATA.table1@bd1.gis1.com UNION

_SELECT * FROM TOTO.table2@bd2.gis2.com

Requête distribuée

SNAPSHOTS / Vues matérialisées (suite)

Mode de rafraîchissement:

- > Fast : Snapshot log utilisé
- Complete : toute la table est transférée
- Force : rafraîchissement rapide tenté sinon Complet est exécuté

```
*A explorer les vues du DD utiles :
```

User_jobs[....failures....]

User_mviews user_db_links....

Architecture

TPs

- -Gestion des transactions réparties (voir atelier en TP)
- -Conception de bases de données réparties

Références:

- G. Gardarin, "Bases de données : objet et relationnel", Eyrolles, 1999
- P. Valduriez, C. Oszu, "Principles of Distributed Database Systems", *Prentice Hall*,
- -Web: http://www.oracle.com.....divers