L1 and L2 regularization for feature selection

Week 05 Advanced Topic 2

Overview

- Motivation
- Theoretical part
- Examples
- Discussion
- Conclusions

Overfitting

Motivation

Underfitted

Good Fit/Robust

Overfitted

- Generalization Problems
- High Variance
- Captures Noise

Common Solutions to Overfitting

Motivation

Train with more data

- Use more, accurate training data → more accurate and well-fitted model
- Challenges:
 - o Expensive and impractical.
 - Data quality matters (noisy or irrelevant data can worsen performance)

Early Stopping

- o For iterative models, stops training when validation error stops improving
- Challenges:
 - Requires separate validation dataset
 - "Stopping point" not always clear

L1/L2 Regularization

Prevents overfitting by controlling model complexity and reducing large coefficients (model weights).

How?

- During training, the **loss function** measures how well the model fits the data, and the goal is to minimize this.
- **Regularization adds a penalty to the loss function** to discourage the model from becoming too complex.

Regularization = Loss Function + Penalty

- This **penalty pushes less important weights closer to zero**, simplifying the model and preventing overfitting.

L1/L2 - What does the penalty represent?

- Recap: The bias-variance tradeoff
 - o **High bias:** Simpler model
 - High variance: Higher chance of overfitting
- What is penalty
 - The penalty **adds slight bias** to the loss function.
 - This reduces variance and simplifies the model, preventing overfitting.

L1 Regularization

L1 Regularization

Theoretical part

• Selection Operator (Lasso).

• Adds a penalty term to the cost function.

strength of

regularization

parameters

Let's make a unit "ball":

$$\sum_{\{j=1\}}^{m} |\beta_j| = 1$$

$$|\beta_1| + |\beta_2| = 1$$

$$|1| + |0| = 1$$

 $|0.5| + |0.5| = 1$

• • •

L1 Regularization

Theoretical part

• Selection Operator (Lasso).

Adds a penalty term to the cost function.

regularization

L2 Regularization

L2 Regularization

Theoretical part

Ridge Regression

Let's make a unit "ball":

$$\sum_{\{j=1\}}^m \beta_j^2 = 1$$

$$\beta_1^2 + \beta_2^2 = 1$$

$$1^{2} + 0^{2} = 1$$

$$\left(\frac{1}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} = 1$$

• • •

L2 Regularization

Theoretical part

- Parameters of bigger value are more effected
- Not sparsifying
- Emphasize model's essential features, by making some coefficients (parameters) close to zero.

Ridge Regression Cost Function = Loss Function + $\lambda \sum_{j=1}^{m} (\beta_j^2)$

Controls the strength of regularization

Elastic net regression

Theoretical part

- Combine l1 and l2 regularization
- Model with many useless variables -> use l-1
- Many useful variables -> use l-2
- Good when there are correlations between parameters

Elastic net regression Cost Function = Loss Function + $\lambda_1 \sum_{\{j=1\}}^m |\beta_j| + \lambda_2 \sum_{\{j=1\}}^m |\beta_j|^2$

Regression example

Experiments

- Want to find line that fits the data
- Optimize for β
- See how the λ for L1 and L2 regularization affects the slope of the fitted line

$$y = \beta x + c$$

loss function move towards slope = 0, and eventually

become zero, the regression line is flat

to slope = $0 \rightarrow$ slope $\neq 0 \rightarrow$ we preserve the variable x

Another Example: L1 feature selection on real data sets

Results

- Ships movement dataset recorded in the Outer Port of Puntea Langosteira (A Coruña, Spain) from 2015 until 2020.
- Source: https://github.com/aalvarell/ship-movement-dataset
- Variables:
 - h_s (m): significant wave height.
 - t_p(s): peak wave period.
 - dir (deg): mean wave direction.
 - wind_speed (km/h): mean wind speed.
 - wind_dir (deg): mean wind direction.
 - h_0 (m): sea level with respect to the zero of the port.
 - h_sm (m): significant wave height measured by a tide gauge.
 - length (m): ship length.
 - breadth (m): ship breadth.
 - dwt (tonnes): deadweight tonnage
 - zone: . The port is divided into 12 berthing zones (the port operator provides it).
- Purposes:

To study the influence of different predictors on the heave motion model for ship

Results

Notable results:

- significant wave, height h_s, has the highest correlation with heave movement y, which is to be expected.
- Some features that can be stripped (low correlation):
 - Mean wave direction, dir,
 - Sea level with respect to the port, h_0,
 - Peak wave period, t_p,
 - Ship length, length,
 - Mean wind speed, wind_speed,
 - Mean wind direction, wind_dir.

Choosing Between the methods

Discussion

• Use L1 Regularization (Lasso) when:

- You have many features but expect only a few to be important
- o Feature selection is important, as L1 can reduce irrelevant features to zero

Use L2 Regularization (Ridge) when:

O You have multicollinearity in your data

Use Elastic Net when

- When you want benefits of both
 - > Feature selection (L1)
 - Multicollinearity Handling (L2)

Thank you!

