(i) Put X=1 on (1+X)^ → 2°= ~ C+C+ ·· + C X = -1 on $(1+x)^{\wedge} \rightarrow 0 = C_{\circ} - C_{\circ} + \cdots + (-1)^{\wedge} C_{\circ}$

Adding to results and dividing by 2, we get €+ €+ ·· = 2ⁿ⁻¹ (- € + € + ··)

(ii) For a polynomial $p(x) = a_n x^n + \cdots + a_1 x + a_0$, and & (imaginary root of x3=1),

 $|P(1)| = |O_1| + |O_{N-1}| + |O_1| + |O_0| +$

Since 3 is prime, m(0,1,2) mod 3 = (0,1,2)for m = 0 (mod 3)

and since (+ \$+ \$2 = 0,

 $P(1)+P(3)+P(3^2) = 0.0+0.3+\cdots$

for the other two, we can to the same thing

 $\chi p(\chi)$ and $\chi^2 p(\chi)$.

Let $p(x) = (1+x)^n$. $p(1) = 2^n$, $p(\frac{1}{5}) = (1+5)^n = (-1)^n \frac{1}{5}^{2n}$

which produces the tesired result.