INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

3 - Introd. à Análise Combinatória

- 3.1) Arranjos e Combinações
- 3.2) O Princípio do Pombal
- 3.3) Relações de Recorrência

- Quando o problema é encontrar uma fórmula para uma seqüência definida recursivamente, esta fórmula recursiva é chamada de relação de recorrência.
- As definições recursivas de seqüências, que já vimos, são exemplos de relações de recorrência.
- Lembre que, para definir uma seqüência recursivamente, uma fórmula recursiva deve ser acompanhada por informação sobre o início da seqüência.
 - Esta informação é chamada de condição inicial para a sequência.

Exemplo 1:

(a) A relação de recorrência $a_n = a_{n-1} + 3$ com $a_1 = 4$ recursivamente define a seqüência:

$$4, 7, 10, 13, \ldots$$

(b) A relação de recorrência $f_n = f_{n-1} + f_{n-2}$, $f_1 = f_2 = 1$ define recursivamente a **seqüência de Fibonacci**:

$$1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Relações de recorrência aparecem naturalmente em muitos problemas de contagem e na análise de problemas de programação.

Exemplo 2 (1/2): Seja $A = \{0, 1\}$. Forneça uma relação de recorrência para c_n : número de strings de comprimento n em A^* que não contêm 0's adjacentes.

Solução:

- 0 e 1 são as únicas strings de comprimento 1 $\Rightarrow c_1 = 2$
- $c_2 = 3$: as únicas strings deste tipo são 01, 10, 11
- Em geral, toda string w de comprimento n-1 que não contém 00, se concatenada com 1, forma uma string $1 \cdot w$
 - ullet de comprimento n e não contêm 00

Exemplo 2 (2/2): Seja $A = \{0, 1\}$. Forneça uma relação de recorrência para c_n : número de strings de comprimento n em A^* que não contêm 0's adjacentes.

Solução:

- Única outra possibilidade de início para uma string "boa" de comprimento $n\colon\ 01$
 - ou seja, pode até começar com 0, desde que seguido por 1
 - $m{ ilde{}}$ estas strings são da forma $01 \cdot v$
 - ullet onde v é uma string "boa" de comprimento n-2
- Portanto: $c_n = c_{n-1} + c_{n-2}$
 - ullet com as condições iniciais: $c_1=2$ e $c_2=3$

- **Exemplo 3 (1/2):** Suponha que queremos listar todas as seqüências de n elementos sem repetições que podem ser construídas a partir do conjunto $\{1, 2, 3, \ldots, n\}$.
- Uma abordagem para resolver este problema é proceder recursivamente:
 - **Passo 1**: produza uma lista de todas as seqüências sem repetições que podem feitas a partir de $\{1, 2, 3, ..., n − 1\}$
 - ▶ Passo 2: Para cada seqüência do passo 1, insira n em cada um dos n locais possíveis:
 - no início, no final e entre cada par de números na seqüência
 - imprima o resultado e remova n

- **Exemplo 3 (2/2):** Listar seqüências de n elementos sem repetições construídas do conjunto $\{1, 2, 3, \ldots, n\}$.
 - O número de ações do tipo "inserir-imprimir-remover" é o número de seqüências de n elementos.
 - ou: n vezes o número de seqüências produzidas no passo 2
 - logo: $nro de seqs de n elems = n \times (nro de seqs de (n-1) elems)$
 - isto fornece uma fórmula recursiva para o número de seqüências de n elementos
 - condição inicial?

- Uma técnica para encontrar uma fórmula explícita para a seqüência definida por uma relação de recorrência é o backtracking.
- Ilustrado no exemplo a seguir...

- **Exemplo 4 (1/2):** A relação de recorrência $a_n = a_{n-1} + 3$ com $a_1 = 2$ define a seqüência: $2, 5, 8, \ldots$
 - Fazemos o "backtracking" de a_n substituindo a definição de a_{n-1}, a_{n-2} e assim por diante
 - até que um padrão fique claro:

$$a_n = a_{n-1} + 3$$
 ou $a_n = a_{n-1} + 3$
= $(a_{n-2} + 3) + 3$ = $a_{n-2} + 2 \cdot 3$
= $((a_{n-3} + 3) + 3) + 3$ = $a_{n-3} + 3 \cdot 3$

- **Exemplo 4 (2/2):** A relação de recorrência $a_n = a_{n-1} + 3$ com $a_1 = 2$ define a seqüência: $2, 5, 8, \ldots$
 - eventualmente, chegaremos a:

$$a_n = a_{n-(n-1)} + (n-1) \cdot 3$$

= $a_1 + (n-1) \cdot 3$
= $2 + (n-1) \cdot 3$

logo, uma fórmula explícita para a seqüência é:

$$a_n = 2 + (n-1)3$$

П

Exemplo 5 (1/2): Use o backtracking para encontrar uma fórmula explícita para a sequência definida pela relação de recorrência $b_n = 2.b_{n-1} + 1$ com condição inicial $b_1 = 7$.

Solução:

Começamos substituindo a definição do termo anterior na fórmula:

$$b_n = 2b_{n-1} + 1$$

$$= 2(2b_{n-2} + 1) + 1$$

$$= 2[2(2b_{n-3} + 1) + 1] + 1$$

$$= 2^3b_{n-3} + 4 + 2 + 1$$

$$= 2^3b_{n-3} + 2^2 + 2^1 + 1$$

Exemplo 5 (2/2): Use o backtracking para encontrar uma fórmula explícita para a sequência definida por $b_n = 2.b_{n-1} + 1$ com condição inicial $b_1 = 7$.

Solução:

- Note que um padrão está aparecendo com as re-escritas de b_n .
 - Nota: não há regras feitas para esta "re-escrita".
 - Pode ser necessário experimentar um pouco.
- O backtracking terminará em:

$$b_n = 2^{n-1}b_{n-(n-1)} + 2^{n-2} + 2^{n-3} + \dots + 2^2 + 2^1 + 1$$
 $= 2^{n-1}b_1 + 2^{n-1} - 1$ (ver exerc. de indução)
 $= 7 \cdot 2^{n-1} + 2^{n-1} - 1$ (usando $b_1 = 7$)
 $= 8 \cdot 2^{n-1} - 1 = 2^{n+2} - 1$

Nota 1: duas somas muito úteis, que já foram provadas:

S1)
$$1 + a + a^2 + a^3 + \dots + a^{n-1} = \frac{a^n - 1}{a - 1}$$

S2)
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

- Nota 2: o backtracking pode não revelar um padrão explícito para a sequência definida por uma relação de recorrência.
 - Em seguida, veremos uma técnica mais geral para resolver uma relação de recorrência...

- Antes uma definição útil...
- Uma relação de recorrência é uma relação homogênea linear de grau k se for da forma:

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_k a_{n-k}$$

- aonde os r_i 's são constantes
- De maneira informal:
 - cada parcela é construída do mesmo ("homogêneo") modo:
 - cada parcela é um múltiplo de um dos k ("grau k") termos que antecedem a_n ("linear")

Exemplo 6:

- (a) A relação $c_n = (-2)c_{n-1}$ é uma relação de recorrência homogênea linear de grau 1.
- (b) A relação $a_n = a_{n-1} + 3$ não é uma relação de recorrência homogênea linear.
- (c) A relação $f_n = f_{n-1} + f_{n-2}$ é uma relação de recorrência homogênea linear de grau 2.
- (d) A relação $g_n = g_{n-1}^2 + g_{n-2}$ não é uma relação homogênea linear.

Seja uma relação de recorrência homogênea linear de grau k:

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_k a_{n-k}$$

A sua equação característica é dada pelo polinômio de grau k a ela associado:

$$x^k = r_1 x^{k-1} + r_2 x^{k-2} + \dots + r_k$$

- as raízes desta equação têm um papel chave na fórmula explícita para a seqüência definida pela relação de recorrência e as condições iniciais
- O caso geral pode ser resolvido, mas veremos apenas o grau 2
 - neste caso, é comum escrever a equação característica como:

$$x^2 - r_1 x - r_2 = 0$$

Teorema 1:

(a) Se a equação característica $x^2 - r_1x - r_2 = 0$, da relação de recorrência $a_n = r_1a_{n-1} + r_2a_{n-2}$, tem duas raízes distintas s_1 e s_2 , então a fórmula explícita para a seqüência é dada por:

$$a_n = us_1^n + vs_2^n$$

(b) Se a equação característica $x^2 - r_1x - r_2 = 0$ tem uma raíz única s, a fórmula explícita é dada por:

$$a_n = us^n + vns^n$$

 $m{\wp}$ onde u e v dependem das condições iniciais.

- **Prova de (a):** (duas raízes distintas: $a_n = us_1^n + vs_2^n$)
 - ullet já que s_1 e s_2 são raízes de $x^2-r_1x-r_2=0$, temos:

$$s_1^2 - r_1 s_1 - r_2 = 0$$
 e $s_2^2 - r_1 s_2 - r_2 = 0$

- $m{\omega}$ vamos mostrar que: $a_n = us_1^n + vs_2^n, \quad n \geq 1$ define a mesma seqüência que: $a_n = r_1a_{n-1} + r_2a_{n-2}$
- ullet primeiro, note que as condições iniciais são satisfeitas, pois u e v vêm de:

$$a_1 = us_1 + vs_2$$
 e $a_2 = us_1^2 + vs_2^2$

- **Prova de (a):** (duas raízes distintas: $a_n = us_1^n + vs_2^n$)
 - ullet já que s_1 e s_2 são raízes de $x^2-r_1x-r_2=0$, temos:

$$s_1^2 - r_1 s_1 - r_2 = 0$$
 e $s_2^2 - r_1 s_2 - r_2 = 0$

- $m{\square}$ vamos mostrar que: $a_n = us_1^n + vs_2^n, \quad n \geq 1$ define a mesma seqüência que: $a_n = r_1 a_{n-1} + r_2 a_{n-2}$
- ullet primeiro, note que as condições iniciais são satisfeitas, pois u e v vêm de:

$$a_1 = us_1 + vs_2$$
 e $a_2 = us_1^2 + vs_2^2$

• então:
$$a_n = us_1^n + vs_2^n$$

$$= us_1^{n-2}s_1^2 + vs_2^{n-2}s_2^2$$

$$= us_1^{n-2}(r_1s_1 + r_2) + vs_2^{n-2}(r_1s_2 + r_2)$$

$$= r_1us_1^{n-1} + r_2us_1^{n-2} + r_1vs_2^{n-1} + r_2vs_2^{n-2})$$

$$= r_1(us_1^{n-1} + vs_2^{n-1}) + r_2(us_1^{n-2} + vs_2^{n-2})$$

$$= r_1a_{n-1} + r_2a_{n-2}$$

Prova de (b): totalmente similar.

Exemplo 7: Encontre uma fórmula explícita para a seqüência:

$$c_n = 3c_{n-1} - 2c_{n-2}$$

• condições iniciais: $c_1 = 5$ e $c_2 = 3$

Solução:

a relação dada é homogênea linear de grau 2

• equação associada:
$$x^2 = 3x - 2$$

• ou:
$$x^2 - 3x + 2 = 0$$
, raízes: 1 e 2

ullet o teorema 1 mostra que u e v vêm da solução de:

$$c_1 = u.(1) + v.(2)$$
 e $c_2 = u.(1)^2 + v.(2)^2$

$$ightharpoonup$$
 levando a: $u=7$ e $v=-1$

daí, pelo teorema 1, temos:

$$c_n = 7 \cdot 1^n + (-1) \cdot 2^n = 7 - 2^n$$

Exemplo 8: Resolva a relação de recorrência $d_n = 2d_{n-1} - d_{n-2}$, com condições iniciais $d_1 = 1.5$ e $d_2 = 3$.

Solução:

- equação associada para esta rel. homog. linear: $x^2 2x + 1 = 0$
 - com uma raíz múltipla: 1
- pelo teorema 1(b): $d_n = u.(1)^n + v.n.(1)^n$
- usando esta fórmula e as condições iniciais, temos que:

$$d_1 = 1.5 = u + v.(1)$$
 e $d_2 = 3 = u + v.(2)$

- ho cuja solução é: u=0 e v=1.5
- logo: $d_n = 1.5n$

Nota: apesar da seqüência de Fibonacci ser bem conhecida, a sua forma explícita levou mais de 200 anos para ser encontrada...

Exemplo 9: Encontre uma fórmula explícita para a sequência de

Fibonacci: $f_n = f_{n-1} + f_{n-2}$, onde $f_1 = f_2 = 1$

Solução:

relação de recorrência homogênea linear de grau 2

• equação característica: $x^2 - x - 1 = 0$

 $m{ ilde \omega}$ cujas raízes são: $s_1=rac{1+\sqrt{5}}{2}$ e $s_2=rac{1-\sqrt{5}}{2}$

ullet O u e o v do teorema 1 vêm da solução de:

$$\begin{cases} 1 = u.(\frac{1+\sqrt{5}}{2}) + v.(\frac{1-\sqrt{5}}{2}) \\ 1 = u.(\frac{1+\sqrt{5}}{2})^2 + v.(\frac{1-\sqrt{5}}{2})^2 \end{cases}$$

Exemplo 9: Encontre uma fórmula explícita para a seqüência de

Fibonacci: $f_n = f_{n-1} + f_{n-2}$, onde $f_1 = f_2 = 1$

Solução:

relação de recorrência homogênea linear de grau 2

• equação característica: $x^2 - x - 1 = 0$

 $m{\square}$ cujas raízes são: $s_1=rac{1+\sqrt{5}}{2}$ e $s_2=rac{1-\sqrt{5}}{2}$

ullet O u e o v do teorema 1 vêm da solução de:

$$\begin{cases} 1 = u.(\frac{1+\sqrt{5}}{2}) + v.(\frac{1-\sqrt{5}}{2}) \\ 1 = u.(\frac{1+\sqrt{5}}{2})^2 + v.(\frac{1-\sqrt{5}}{2})^2 \end{cases}$$

ullet o que leva a: $u=rac{1}{\sqrt{5}}$ e $v=-rac{1}{\sqrt{5}}$

e a fórmula explícita para a seqüência de Fibonacci fica:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

RELAÇÃO DE RECORRÊNCIA X INDUÇÃO

- Algumas vezes é útil conhecer algumas propriedades de uma relação de recorrência com a qual estamos trabalhando.
- Em virtude da forte conexão entre recorrência (recursão) e indução matemática, são comuns as provas para estas propriedades utilizarem indução.

RELAÇÃO DE RECORRÊNCIA X INDUÇÃO

- **Exemplo:** Uma propriedade dos números de Fibonacci: $f_n \leq (\frac{5}{3})^n$
 - (um limite superior para a rapidez de crescimento dos nros)

Prova (por indução forte):

- ▶ Passo básico: P(1) é $1 \le \frac{5}{3}$, o que, evidentemente, é V.
- Passo indutivo:
 - usar $P(j), j \leq k$, para mostrar $P(k+1): "f_{k+1} \leq (\frac{5}{3})^{k+1}"$
 - $f_{k+1} = f_k + f_{k-1} \le (\frac{5}{3})^k + (\frac{5}{3})^{k-1}$

RELAÇÃO DE RECORRÊNCIA X INDUÇÃO

- **Exemplo:** Uma propriedade dos números de Fibonacci: $f_n \leq (\frac{5}{3})^n$
 - (um limite superior para a rapidez de crescimento dos nros)

Prova (por indução forte):

- ▶ Passo básico: P(1) é $1 \le \frac{5}{3}$, o que, evidentemente, é V.
- Passo indutivo:
 - usar P(j), $j \leq k$, para mostrar P(k+1): " $f_{k+1} \leq (\frac{5}{3})^{k+1}$ "

$$f_{k+1} = f_k + f_{k-1} \le \left(\frac{5}{3}\right)^k + \left(\frac{5}{3}\right)^{k-1}$$

$$= \left(\frac{5}{3}\right)^{k-1} \left(\frac{5}{3} + 1\right)$$

$$= \left(\frac{5}{3}\right)^{k-1} \left(\frac{8}{3}\right)$$

$$< \left(\frac{5}{3}\right)^{k-1} \left(\frac{5}{3}\right)^2$$

$$= \left(\frac{5}{3}\right)^{k+1}$$