Fall 2020 EE 236A Prof. Christina Fragouli TAs Mine Dogan and Kaan

EE236A Linear Programming Solutions of Quiz 1 Tuesday October 13, 2020

This quiz has 3 questions, for a total of 20 points.

Open book.

The exam is for a total of 1:00 hour. Please, write your name and UID on the top of each sheet.

Good luck!

Problem	Mark	Total
P1		6
P2		7
P3		7
Total		20

<u>Problem 1</u> (6 points) Let x be a real-valued random variable which takes values in $\{a_1, a_2, \ldots, a_n\}$ where $0 < a_1 < a_2 < \cdots < a_n$, and $\Pr(x = a_i) = p_i$.

Consider the problem of determining the probability distribution that maximizes the expected value $\mathbf{E}x$ subject to the constraint that $\Pr(x \ge \alpha) = b$, i.e.,

maximize
$$\mathbf{E}x$$

subject to $\Pr(x \ge \alpha) = b$ (1)

where α and b are given $(a_1 < \alpha < a_n, \text{ and } 0 \le b \le 1)$. Write (1) as an LP.

Solution: Given $a_i's$ and α select $k = \operatorname{argmin}_i\{a_i : a_i \ge \alpha\}$. Then problem can be formulated as an LP as follows:

maximize
$$p^T a$$

subject to $\mathbf{1}^T p = 1$
 $\sum_{i=k}^n p_i = b$
 $p_i \ge 0, \quad \forall i = 1, \dots, n$ (2)

Problem 2 (7 points): Can the following problem be expressed using an LP? Explain your approach or why not possible. Consider the n dimensional real vectors $x = [x_1, x_2, \dots x_n]$ and $z = [z_1, z_2, \dots z_n]$, we want to

minimize
$$||\alpha x||_2^2 - ||z||_1$$

subject to $\max_i x_i^2 \le \beta$, $i = 1 \dots n$
 $-1 \le z_i \le 1$, $i = 1 \dots n$ (3)

where α and β are given real nonnegative constants.

<u>Solution</u>: First, we can change variables x_i^2 to t_i . Also note that $\max_i x_i^2 \leq \beta$ implies that $x_i^2 \leq \beta$. As a result we would have $0 \leq t_i \leq \beta$. Then we can note that in the optimal solution z_i 's would be positive so we can get rid of the l_1 -norm and use lower bound $0 \leq z_i$. Another equivalent way is to define a new variable $0 \leq k_i \leq 1$ and use it instead of $|z_i|$. In the end we can solve the following LP:

minimize
$$\alpha^2 \sum_{i=1}^n t_i - \sum_{i=1}^n z_i$$

subject to $0 \le z_i \le 1, \quad i = 1 \dots n$
 $0 \le t_i \le \beta, \quad i = 1 \dots n$ (4)

Problem 3 (7 points) Formulate the following problem as an LP. Four wireless basestations n_1 , n_2 , n_3 and n_4 are placed on the circumference of a circle, as depicted in Figure 1. When node i transmits, the two nodes closest to it cannot transmit, because they would cause interference. For example, when basestation 1 transmits, basestations 2 and 4 cannot transmit. Each basestation i transmits at a rate of r_i (the rates r_i are given constants) per time unit; moreover, each basestation needs to

Figure 1: Wireless basestations positioned on the circumference of a circle

transmit for at least 1/8 of each time unit. Write an LP that maximizes the total amount of rate, transmitted from all four basestations during a time unit.

Solution: Let t_i (i = 1, 2, 3, 4) be the fraction of unit time during which basestation i transmits. Then the LP can be formulated as follows.

Since $t_1 = t_3$ and $t_2 = t_4$ in the optimal solution, we can also formulate the problem as follows.

maximize
$$t_1(r_1 + r_3) + t_2(r_2 + r_4)$$

subject to $t_i \ge \frac{1}{8}$, $i = 1, 2$
 $t_1 + t_2 \le 1$ (6)

The solution of the LP can be found as follows.

If
$$r_1 + r_3 \ge r_2 + r_4$$
, then $t_1^* = t_3^* = \frac{7}{8}$ and $t_2^* = t_4^* = \frac{1}{8}$.

If
$$r_1 + r_3 < r_2 + r_4$$
, then $t_1^* = t_3^* = \frac{1}{8}$ and $t_2^* = t_4^* = \frac{7}{8}$.