位、整数类型与浮点数 Bits, Integers & Floating Points

课程 名: 计算机系统

第 1 讲(2025年4月23日)

主 讲:华栋

本课内容

- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示,指针,字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

一切都是比特bit

- Bit 就是 0 或 1
- 将一组 bit 按不同的方法进行编码或解析
 - 然后由计算机决定该对其做什么(指令)
 - 实现数值、集合、字符串、···的表示和运算
- 为何选用 bit? 方便用电子技术加以实现
 - 容易用双稳态元件存储
 - 可在充斥噪声的不精确线路上实现稳定传输

举例:利用二进制进行计数

- 二进制数值表示
 - 10213₁₀ 表示为 10 0111 1110 0101₂
 - 1.2010 表示为 1.0011001100110011[0011]...2
 - 1.0213 x 10⁴ 表示为 1.0011 1111 00101₂ x 2¹³

对字节的编码

- 1字节Byte = 8 bits
 - 二进制binary: 000000002 to 111111112
 - 十进制decimal: 010 to 25510
 - 十六进制hexadecimal: 0016 to FF16
 - 以16为基数的数制
 - 使用字符 '0' 到 '9' 以及 'A' 到 'F'
 - 数值 FA1D37B16 用 C 语言表示为:
 - 0xFA1D37B
 - 0xfa1d37b

v	ettil .	機以制
XXX	D'X	
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	1 2 3 4 5 6 7 8	1000
9	a	1001
A	10 11 12 13	1010
В	11	1011
С	12	1100
0 1 2 3 4 5 6 7 8 9 A B C D E	13	1101
E	14 15	1110
F	15	1111

数据表示举例

c 语言数据类型	典型 32 位机	典型 64 位机	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
指针类型	4	8	8

- 使用 GCC 的 -m32 / -m64 选项进行编译, 查看 long 的位宽
 - gcc –m64 checkLong.c

本课内容

- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示、指针、字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

布尔代数

- 由 George Boole 于 19 世纪创立
 - 逻辑的代数表示
 - 1代表 "True", 0代表 "False"

AND

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

NOT

■ ~A = 1 when A=0

~	
0	1
1	0

OR

 \blacksquare A | B = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

Exclusive-OR (XOR)

■ A^B = 1 when either A=1 or B=1, but not both

^	0	1
0	0	1
1	1	0

布尔代数的推广

- 对位向量进行操作
 - 按位进行操作

■ 布尔代数的所有性质均适用

举例:集合的表示与运算

- 表示
 - 用 w 位宽的向量表示 { 0, ..., w-1 } 的子集
 - $a_i = 1$ if $j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - **•** 01010101 { 0, 2, 4, 6 }
 - **76543210**
- 运算

- &	交intersection	01000001	{ 0, 6 }
•	并union	01111101	{ 0, 2, 3, 4, 5, 6 }
• ^	对称差symmetric difference	00111100	{ 2, 3, 4, 5 }
- ~	补complement	10101010	{ 1, 3, 5, 7 }

C语言的按位运算

- C提供 &、|、~、^等位运算符
 - 可用于对任意"整数"类型数据的操作
 - long, int, short, char, unsigned
 - 将操作数视作位向量
 - 逐位进行运算
- 举例(下列数据均为 char 型)
 - $\sim 0 \times 41 \rightarrow 0 \times BE$
 - $\sim 01000001_2 \rightarrow 10111110_2$
 - $\sim 0 \times 000 \rightarrow 0 \times FF$
 - $\sim 000000000_2 \rightarrow 111111111_2$
 - $0x69 \& 0x55 \rightarrow 0x41$
 - $01101001_2 & 01010101_2 \rightarrow 01000001_2$
 - $0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 01111101_2$

对比: C语言的逻辑运算

- 逻辑操作符
 - &&. | | , !
 - 将数值 0 视为 "False"
 - 一切非零值视为 "True"
 - 结果只能是0或1
 - 提前终止early termination(短路式操作)
- 举例(下列数据均为 char 型)
 - $!0x41 \rightarrow 0x00$
 - $\bullet \ !0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 \mid \mid 0x55 \rightarrow 0x01$
 - p && *p++(避免对空指针解引用)

移位运算

- 左移: x << y
 - 将位向量 x 左移 y 位,将左侧多出的位 丢弃
 - 右侧空位补 0
- 右移: x >> y
 - 将位向量 x 右移 y 位
 - 将右侧多出的位丢弃
 - 逻辑右移(unsigned 一定采用)
 - 左侧空位补 0
 - 算术右移(signed 大多采用)
 - 左侧空位补原最高位(符号位)
- 未定义行为
 - 移位位数 < 0 或 ≥ 字长

Х	01100010
<< 3	00010000
逻辑 >> 2	00011000
算术 >> 2	00011000

Х	10100010
<< 3	00010000
逻辑 >> 2	00101000
算术 >> 2	11101000

本课内容

- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示、指针、字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

整型数的编码

无符号数unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

补码Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
3;
3;

short int x = 10213; short int y = -10213;

• C 的 short 类型占 2 字节

	十进制	十六进制	二进制
х	10213	27 E5	00100111 11100101
У	-10213	D8 1B	11011000 00011011

- 符号位
 - 对于补码数而言,最高位MSB(most significant bit)表示正负
 - 0 为非负
 - 1为负

补码表示举例 (续)

x = 10213: 00100111 11100101

y = -10213: 11011000 00011011

Weight	102	13	-102	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	0	0	1	8
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	1	128	0	0
256	1	256	0	0
512	1	512	0	0
1024	1	1024	0	0
2048	0	0	1	2048
4096	0	0	1	4096
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 10213 -10213

表数范围

■ 无符号数

•
$$UMax = 2^w - 1$$

111...1

■ 补码数

■
$$TMin = -2^{w-1}$$

100...0

TMax =
$$2^{w-1} - 1$$
 011...1

■ 其它(特殊值)

W = 16 时对应的值

	十进制	十六进制	二进制
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

表数范围

	位宽 W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

■ 结论

- |TMin| = TMax + 1
 - 范围正负不对称
- UMax = 2 * TMax + 1

■ C 语言

- #include <limits.h>
- 定义边界点的宏,如:
 - ULONG MAX
 - LONG MAX
 - LONG_MIN
- 具体值因不同平台而异

无符号数与带符号数

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

相同点

- 对于非负区间的值,两种编码相同
- 唯一性(位串与真值——对应)
 - 每个位串表示唯一的整数值
 - 此范围内的每个整数都有唯一的位 串表示
- ⇒ Can Invert Mappings
 - U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

本课内容

- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示,指针,字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

带符号数与无符号数之间的转换

■ 无符号数unsigned和带符号数signed之间的转换 保持位串不变,重新解析得到真值

$signed \leftrightarrow unsigned$

位串
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

$signed \leftrightarrow unsigned$

位串
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

signed 和 unsigned 二者间的关系

Maintain Same Bit Pattern

Large negative weight becomes

Large positive weight

转换关系可视化

■ 补码 → 无符号数

无符号数 范围

UMax

带符号数范围

C语言的 signed与 unsigned 类型

- 常量
 - 默认为带符号数(补码数)
 - 若带有 U 后缀,则按无符号数处理 0U, 4294967259U
- 类型转换casting
 - 显式类型转换,方法同 U2T 和 T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

■ 隐式类型转换,在赋值和过程调用时发生

```
tx = ux;
uy = ty;
```

类型转换之坑

- 表达式求值
 - 如果表达式中既有 signed 又有 unsigned,则 C 会默认将 signed 转换成 unsigned
 - 包括关系运算: <, >, ==, <=, >=
 - 以 W = 32 为例: TMIN = -2,147,483,648 TMAX = 2,147,483,647

■ 常量₁	常量2	大小关系	类型
0	ΟU	相等	unsigned
-1	0	小于	signed
-1	0U	大于	unsigned
2147483647	-2147483647-1	大于	signed
2147483647U	-2147483647-1	小于	unsigned
-1	-2	大于	signed
(unsigned)-1	-2	大于	unsigned
2147483647	2147483648U	小于	unsigned
2147483647	(int)2147483648	30 大于	signed

小结:

signed ↔ unsigned 转换的基本规则

- 保持位串bit pattern不变
- 但要对其重新解析
- 会产生意外的效果:加上或减去 2~
- 表达式中同时含有 int 和 unsigned 时
 - 默认将 int 转换成 unsigned!

符号扩展运算

- 任务:
 - 给定某 w 位的带符号整数 x
 - 将其转换成 w+k 位的整数,要求真值不变
- 运算规则:
 - 将符号位复制 k 份:

符号扩展举例

```
short int x = 10213;
int         ix = (int) x;
short int y = -10213;
int         iy = (int) y;
```

	十进制	十六进制	二进制
x	10213	27 E5	00100111 11100101
ix	10213	00 00 27 E5	00000000 00000000 00100111 11100101
У	-10213	D8 1B	11011000 00011011
iy	-10213	FF FF D8 1B	11111111 11111111 11011000 00011011

- 由位数较少的整型向位数较多的整型转换
- C 自动完成符号扩展

小结:

扩展与截断的基本规则

- 扩展(例如由 short 型向 普通整型 转换)
 - unsigned: zeros added(零扩展)
 - signed: sign extension (符号扩展)
 - 结果都很合理
- 截断(如由 普通整型 向 short 型转换)
 - unsigned/signed: 多出的位直接丢弃
 - 对结果重新解析
 - unsigned: 求余运算mod
 - signed: 与求余运算类似
 - 对于较小的数、结果符合预期
 - 例: (short) 32768 与 (short) -32768 各自的结果?

本课内容

- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示,指针,字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

无符号数加法

操作数: w bits

真正的和: w+1 bits

丢弃进位: w bits

- 标准的 C 加法函数
 - 最高位产生的进位直接忽略
- 实行的是模运算

 $s = UAdd_w(u, v) = (u + v) \mod 2^w$

整数加法可视化

■ 整数的加法

- 4-bit integers u, v
- Compute true sum Add₄(u, v)
- Values increase linearly with u and v
- Forms planar surface

 $Add_4(u, v)$

unsigned 型加法可视化

- 模计数
 - 若真正的 sum ≥ 2^w
 - 则发生且最多发生 一次环绕wrap around

True Sum

- 无符号数加法溢出判定
 - 充要条件:结果小于 任一加数
 - 练习题 2.27

补码加法

操作数: w bits

真正的和: w+1 bits

丢弃进位: w bits

 $TAdd_{w}(u, v)$

- TAdd 和 UAdd 在 bit 层面上的运算方法完全一致
 - C的 signed 与 unsigned 加法对比

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

■ 对于上述代码, s == t 一定为真

TAdd 溢出

- 功能
 - 真正的 sum 需要 w+1 位才能保证容纳
 - 而 MSB 被丢弃
 - 剩余的位视作补码数
- c 语言带符号数加法 溢出判定
 - 充要条件:两加数 同号,结果与其异号
 - 练习题 2.30

37

补码加法可视化

- 取值
 - 4位补码
 - 范围 -8~+7
- 模计数
 - 若真正的 sum ≥ 2^{w-1}
 - 变为负数(正溢)
 - 最多发生一次
 - 若真正的 sum < -2^{w-1}
 - 变成正数(负溢)
 - 最多发生一次

乘法

- 目标: 计算两个位宽为 w 的数 x 和 y 的积
 - 二者可能为带符号数或无符号数
- 但是,真正的结果有可能超出 w 位的表数范围
 - 无符号数: 最多 2w 位可容纳
 - 乘积范围: 0≤x*y≤(2w-1)² = 2²w-2w+1+1
 - 带符号数最小值(为负): Up to 2w-1 bits
 - 乘积范围: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - 带符号数最大值(为正): Up to 2w bits, but only for (TMin_w)²
 - 乘积范围: x*y≤(-2^{w-1})² = 2^{2w-2}
- 因此,若要保证得到正确的结果:
 - 每次计算乘法都要进行位数扩展
 - 有必要的话,由软件负责完成
 - 例如:使用"任意精度"算术运算包

C语言的无符号数乘法

A) W M. W MICS

- 标准的 C 乘法函数
 - 高 w 位被丢弃(截断)
- 实行的是模运算

$$UMult_{w}(u, v) = (u \cdot v) \mod 2^{w}$$

C语言的带符号数乘法

- 标准的 C 乘法函数
 - 高 w 位被丢弃(截断)
 - 其中某些位, signed 和 unsigned 乘法是不同的
 - 低 w 位则是一致的

U2B	000	001	010	011	10	0	10)1	110		11	.1
000	000	000	000	000	00	0	00	00	000		000	
001	000	001	010	011	10	0	10)1	110		111	
010	000	010	100	110	00	0	01	.0	100		110	
011	000	011	110	001	10	0	11	.1	010		101	
100	000	100	000	100	00	0	10	00	00	0	10	00
101	000	101	010	111	10	0	00)1	1 110		011	
110	000	110	100	010	00	0	110		100		01	.0
111	000	111	110	101	10	100 011		010		00)1	
						T	2B	0(00	00	01	0:

■ 以3位为例

- 上表为按无符号数 的乘法保留低3位
- 下表为按带符号数 的乘法保留低 3 位
- 教材图 2-27 可见被 截断舍弃的高 3 位 不尽相同

10	00	01	.1	01	.0	00	1									
	T2	2B	0	00	00	01	0:	10	01	1	100)	101	110	11	1
	00	00	0	00	00	00	0	00	00	0	000)	000	000	000	0
	00	01	0	00 001 010		001		10	01	1	100)	101	110	11	1
	01	10	0	00	010		10	00	11	0	000)	010	100	110	0
	01	11	0	00	011		1	10	00	1	100)	111	010	10	1
	10	00	0	00	100		0(00	10	0	000)	100	000	10	0
	10	01	0	00	10	01	0	10	11	1	100)	001	110	01	1
	13	10	0	00	13	10	10	00	01	0	000)	110	100	01	0
	13	11	0	00	13	11	1	10	10	1	100)	011	010	00	1

Faculty of Computing, HIT Weihai, 2024FA

用移位实现与2的幂的乘积

- 操作
 - u << k 得到 u * 2^k

真正的积: w+k bits

丢弃 k位: w bits

■ 对 signed 和 unsigned 均适用

操作数: w bits

k

■ 举例

- u << 3 == u * 8
- u << 5 u << 3 == u * 24
- 在大多数机器上,移位和加法的速度快于乘法
 - 编译器会自动优化此类代码

用移位实现 unsigned 除以 2 的幂

- unsigned 除以 2 的幂
 - u >> k 得到 [u / 2^k]
 - 使用逻辑移位

	真实商值	运算结果	十六进制	二进制
x	10213	10213	27 E5	00100111 11100101
x >> 1	5106.5	5106	13 F2	00010011 11110010
x >> 4	638.3125	638	02 7E	00000010 01111110
x >> 8	39.89453125	39	00 27	00000000 00100111

算术运算: 基本规则

- 加法
 - unsigned/signed: 先正常完成加法运算,再截断
 - 在 bit 层面上二者完全相同
 - unsigned: 加法 mod 2^w
 - 数学加法,可能会减去 2w
 - signed: modified addition mod 2^w (result in proper range)
 - 数学加法,可能会加上或减去 2w
- 乘法
 - unsigned/signed: 先正常完成乘法,再截断
 - 在 bit 层面上二者完全相同
 - unsigned: 数学乘法 mod 2^w
 - signed: modified multiplication mod 2^w (result in proper range)

何时使用 unsigned 类型?

- 在未理解相关的隐含操作之前不要用
 - 容易出错, 例如:

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

■ 有可能在细节上出问题,例如:

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
...
```

用 unsigned 进行倒计数

■ 用 unsigned 作循环控制变量的正确方法

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];</pre>
```

- 见 Robert Seacord 所著 Secure Coding in C and C++
 - C标准保证:无符号数加法按照模运算进行
 - $0 1 \rightarrow UMax$
- 更好的写法

```
size_t i;
for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];</pre>
```

- size t类型的定义: unsigned int型(追一下)
- 即使 cnt 取到 Umax, 代码依旧正确
- 思考:如果 cnt 为带符号数且 < 0 会发生什么?

何时使用 unsigned 类型? (续)

- 进行代数模运算时使用
 - 多精度数值运算
 - 数论、密码学中的应用
- 当希望用位代表开关状态,而非数值时使用
 - 例:标志位、权限位
- 在用位串表示集合时使用
- 逻辑右移,非采用符号位填充

本课内容

- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示, 指针, 字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

基于字节的内存组织

- 程序依据地址访问数据
 - 可将内存视作一个非常大的字节数组
 - 实际上并不是,但仍不妨这样理解
 - 地址即该数组各元素的索引(下标)
 - 每个指针变量存储一个地址
- 注意:系统会给每个进程一个私有的地址空间
 - 进程即运行中的程序
 - 因此,程序仅访问属于自己的数据,而非其它程序的数据

机器字

- 任何一台机器都有其字长
 - 由该机的整数处理能力决定
 - 以及地址处理能力(指针的位数)
 - ▶ 上一代多为 32 位机,即以 32 位为字长(4 字节)
 - 地址范围限定在 4 GB(2³² bytes)以内
 - 越来越多的机型采用 64 位字长
 - 理论上可配备 18 EB(exabytes)的内存
 - 约为 18.4 x 10¹⁸ B
 - 系统能够支持多种数据格式
 - 本机字长的一部分或若干倍
 - 一定是字节的整数倍
 - 由软硬件共同决定

内存的字地址

- 地址是字节的地址(以字节 为单位编地址)
 - "按字编址"是推广的说法
 - 字地址:字内地址最小的字节 的地址
 - 相邻字的地址差 4(32位)或 差 8(64位)
 - CMU 课堂字幕勘误:编译器 尽最大可能work hard to保持数 据对齐(不是难以保持对齐), 以达到更好的性能)

32-bit Words	64-bit Words	Bytes	Addr.
			0000
Addr =			0001
0000			0002
	Addr =		0003
	0000		0004
Addr =			0005
0004			0006
			0007
			0008
Addr –			0009
0008	Addr		A000
	=		000B
	8000		000C
Addr –			000D
000C			000E
			000F

数据表示举例

C 数据类型	典型 32 位机	典型 64 位机	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	_	-	10/16
pointer	4	8	8

字节序

- 字内部各字节如何排序
- 两种约定
 - 大端序Big Endian: Sun、PPC Mac、Internet
 - 低位放在高地址
 - 小端序Little Endian: x86、运行安卓的 ARM 处理器、iOS、 Windows
 - 低位放在低地址

字节序举例

- Example
 - 变量 x 占 4 字节, 其值为 0x01234567
 - &x 算得的地址为 0x100

Big Endian		0x100	0x101	0x102	0x103	
		01	23	45	67	
Little Endiar	า	0x100	0x101	0x102	0x103	
		67	45	23	01	

整型数的表示

Decimal: 10213

Binary: 0010 0111 1110 0101

Hex: 2 7 E 5

int A = 10213;

int B = -10213;

long int C = 10213;

补码表示

查看本机的数据表示

- 显示数据的字节表示的代码
 - 将其它指针转换为 unsigned char * 类型,将该数据 按字节数组处理

```
typedef unsigned char *byte_pointer;

void show_bytes(byte_pointer start, size_t len)
{
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}</pre>
```

%p: 输出指针值

%x: 输出十六进制值

show_bytes 执行举例

```
int a = 10213;
printf("int a = 10213;\n");
show_bytes((byte_pointer) &a, sizeof(int));
```

运行结果(openEuler x86-64):

```
int a = 10213;

0x7ffc338256ec 0xe5

0x7ffc338256ed 0x27

0x7ffc338256ee 0x00

0x7ffc338256ef 0x00
```

指针的表示

```
int B = -10213;
int *P = &B;
```


不同编译器-处理器组合为对象分配的地址不尽相同即使在同一台机器上,程序每次运行时的地址也可能不同

字符串的表示

$$char S[6] = "18213";$$

- C 语言的字符串
 - 表示为字符数组
 - 每个字符以 ASCII 编码表示
 - Standard 7-bit encoding of character set
 - Character '0' has code 0x30
 - Digit '*i'* has code 0x30 + *i*
 - 字符串必以空字符结束
 - 最后一个字符值为 0('\0')
- 兼容性
 - 字节序不影响字符串的存储

练习: C 整型数迷题

初始化

```
• x < 0 \rightarrow ((x*2) < 0)
• ux >= 0
• x \& 7 == 7 \rightarrow (x << 30) < 0 
• ux > -1
\cdot x > y \rightarrow -x < -y
• x * x >= 0
• x>0 && y>0 \rightarrow (x+y) > 0
\cdot x >= 0 \rightarrow -x <= 0
\cdot x \ll 0 \rightarrow -x \gg 0
• (x | -x) >> 31 == -1
• ux >> 3 == ux/8
• x >> 3 == x/8
• x \& (x-1) != 0
```

本课内容

- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示,指针,字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

二进制小数

• What is 1011.101₂?

二进制小数

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i} b_k \times 2$

二进制小数举例

■ 真值 二进制表示

53/4 101.11₂

27/8 10.111₂

17/16 1.01112

■规律

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... → 1.0$$

Use notation 1.0 – ε

可表示的数

- 局限#1
 - 只能精确表示形如 x/2k 的有理数
 - Other rational numbers have repeating bit representations
 - 真值 二进制表示
 - **1/3** 0.01010101[01]...2
 - **1/5** 0.001100110011[0011]...2
 - **1/10** 0.0001100110011[0011]...2
- 局限 #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

本课内容

- 信息的二进制表示
- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示,指针,字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

IEEE 浮点数标准

- IEEE 754 标准
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- 由数值计算需求驱动
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

浮点表示

■ 数值形式:

$$(-1)^s M 2^E$$

- 符号Sign s determines whether number is neg or pos
- 尾数Significand M normally a fractional value in range [1.0,2.0)
- 指数Exponent *E* weights value by power of two
- 二进制编码
 - 符号位 s is sign s
 - 阶码 exp field encodes E (but is not equal to E)
 - 尾数 frac field encodes M (but is not equal to M)

精度种类

■ 单精度: 32 bits

■ 双精度: 64 bits

■ 扩展精度: 80 bits (仅限 Intel)

规格化部Normalized Values

$$v = (-1)^s M 2^E$$

- exp ≠ 000...0 且 exp ≠ 111...1 的部分
- 指数的编码: 满足 *E* = exp bias
 - exp: unsigned value of exp field
 - bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (exp: 1 ... 254, E: -126 ... 127)
 - Double precision: 1023 (exp: 1 ... 2046, E: -1022 ... 1023)
- 尾数的编码(**隐含前置 1**): *M* = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Minimum when frac = 000...0 (M = 1.0)
 - Maximum when frac = 111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

规格化部数据编码实例

```
v = (-1)^s M 2^E

E = \exp - bias
```

```
• 真值: float F = 10213.0;
• 10213 = 10011111100101
```

 $= 10213_{10} = 10011111100101_{2}$ $= 1.0011111100101_{2} \times 2^{13}$

■ 尾数

```
M = 1.0011111100101_2
frac = 0011111100101000000000002
```

■ 阶码

$$E = 13$$
bias = 127
exp = 140 = 10001100₂

■ 结果:

 0
 10001100
 00111111001010000000000

 s
 exp
 frac

非规格化部Denormalized Values

- 条件: exp = 000...0
- 指数 E = 1 bias (instead of E = 0 bias)
- $v = (-1)^s M 2^E$ E = 1 - bias
- 尾数无隐含前置 1, Significand coded with implied leading 0:
 M = 0.xxx...x₂
 - xxx...x: bits of frac
- 实例
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - 最接近零的一批数
 - 在实数轴上离散、均匀分布Equispaced

特殊数值部Special Values

- 条件: exp = 111...1
- 实例: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- 实例: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

可视化: 浮点数编码

举例:缩小版浮点数模型

- 8-bit 浮点数表示
 - the sign bit is in the MSB (most significant bit)
 - the next four bits are the exponent, with bias = 7
 - the last three bits are the frac
- 与 IEEE 格式类似,仅位数不同
 - normalized, denormalized
 - representation of 0, NaN, infinity

 $v = (-1)^s M 2^E$

表数枚举(仅正数区间)

	- +	•				规: <i>E</i> = 1 – bias
	S	ехр	frac	指数	真值	非: $E = \exp - \text{bias}$
	0	0000	000	-6	0	
	0	0000	001	-6	1/8*1/64 = 1/51	2 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/51	.2
numbers			••	•••	•••	
	0	0000	110	-6	6/8*1/64 = 6/51	.2
	0	0000	111	-6	7/8*1/64 = 7/51	2 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/51	.2 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/51	.2
			••			
	0	0110	110	-1	14/8*1/2 = 14/1	.6
	0	0110	111	-1	15/8*1/2 = 15/1	6 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1	
numbers	0	0111	001	0	9/8*1 = 9/8	closest to 1 above
	0	0111	010	0	10/8*1 = 10/8	S
						
	0	1110	110	7	14/8*128 = 224	
	0	1110	111	7	15/8*128 = 240	largest norm
	0	1111	000	n/a	inf	

数值分布

- 6-bit 类 IEEE 格式
 - exp = 3 exponent bits
 - frac = 2 fraction bits
 - bias is $2^{3-1}-1=3$

■ 注意观察: 越是趋近 0, 数值分布越是密集

数值分布(放大观察)

- 6-bit 类 IEEE 格式
 - exp = 3 exponent bits
 - frac = 2 fraction bits
 - bias is $2^{3-1}-1=3$

IEEE 浮点格式的特殊性质

- 浮点数 0 同整数 0
 - 所有位均为 0
- 方便比较: 几乎可以照搬无符号整型数比较的结果
 - 必须首先比较符号位,且注意 -0 = 0
 - NaNs 是例外
 - Will be greater than any other values
 - What should comparison yield?
 - 其它数(规格化、非规格化、∞)均适用
 - 正数区间:与相同位串的无符号数大小关系一致
 - 负数区间:与相同位串的无符号数大小关系相反
 - 一正一负: s=1 的 $\leq s=0$ 的 (相等发生在二者均为 0)

本课内容

- 信息的二进制表示
- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示,指针,字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

浮点运算:基本思想

• $x +_f y = Round(x + y)$

- $x \times_f y = Round(x \times y)$
- 基本思想
 - 首先计算精确结果
 - 再作精度适配(修正):将此结果在所要求的精度框架 之内表示
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

舍入rounding

■ 舍入方式(以¥舍入作比)

	¥1.40	¥1.60	¥1.50	¥2.50	- ¥1. 50
■ 向 0 舍入	¥ 1	¥ 1	¥ 1	¥ 2	- ¥ 1
■ 向下 (-∞) 舍入	¥ 1	¥ 1	¥ 1	¥ 2	- ¥ 2
- 向上 (+∞) 舍入	¥ 2	¥ 2	¥ 2	¥ 3	- ¥ 1
■ 向最近偶数舍入 (默认)	¥1	¥2	¥2	¥ 2	- ¥2

向偶数舍入round-to-even

- 默认采取的舍入方式
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- 同样适用于其它十(二)进制位
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

二进制数的舍入

- 二进制小数
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2
- 例: 向最近的整 1/4 舍入(小数点右第 2 位)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2—up)	3
2 5/8	10.10100 ₂	10.102	(1/2—down)	2 1/2

浮点数乘法

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- 精确结果: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent *E*: *E1* + *E2*
- 精度适配
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- 实现
 - Biggest chore is multiplying significands

浮点数加法

- - **A**ssume *E1* > *E2*

对齐小数点(对阶)

- 精确结果: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

- If $M \ge 2$, shift M right, increment E
- •If M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

浮点加法的数学性质

- 相比阿贝尔群Abelian Group
 - 封闭性closed under addition?

Yes

- But may generate infinity or NaN
- 交换律commutative?

Yes

■ 结合律associative?

No

- Overflow and inexactness of rounding
- (3.14+1e10)-1e10=0 3.14+(1e10-1e10)=3.14
- 以 0 为单位元additive identity?

Yes

■ 每个元素都有逆元additive inverse?

Almost

- Yes, except for infinities & NaNs
- 单调性

Almost

a ≥ b ⇒ a+c ≥ b+c? (Yes, except for infinities & NaNs)

浮点乘法的数学性质

■ 相比交换环commutative ring

■ 封闭性closed under multiplication? Yes

But may generate infinity or NaN

交换律commutative?

结合律associative?

Possibility of overflow, inexactness of rounding

• E.g.: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

■ 乘法以 1.0 为单位元multiplicative identity? Yes

■ 对加法分配律distribute over addition? No

Possibility of overflow, inexactness of rounding

 \blacksquare 1e20*(1e20-1e20) = 0.0, 1e20*1e20 - 1e20*1e20 = NaN

■ 单调性

■ $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$? Almost

Except for infinities & NaNs

本课内容

- 信息的二进制表示
- 位操作
- 整型数
 - 表示方法: signed 与 unsigned
 - 类型转换casting, 扩展expanding 与截断truncating
 - 加法、乘法、移位
- 内存中的数据表示,指针,字符串
- 浮点数
 - 背景知识: 二进制小数
 - IEEE 浮点数标准: 定义、举例与性质
 - 舍入,加法,乘法
 - C 语言的浮点类型

C语言的浮点类型

- C提供两种浮点类型: float 和 double
 - ■但 C 不规定必须使用 IEEE 754
 - ■支持 754 的机器, float 对应单精度, double 为双精度
- 类型转换
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

浮点数迷题

- 以下 C 表达式是否一定为真? 若否请解释(尽量给出反例)
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

假定d和f均不为NaN

```
• x == (int)(float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
\cdot 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d + f) - d == f
```

小结

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

对浮点数编码

s exp frac

1 4-bits 3-bits

- 步骤
 - Normalize to have leading 1
 - 2. Round to fit within fraction
 - 3. Postnormalize to deal with effects of rounding
- 实例
 - Convert 8-bit unsigned numbers to tiny floating point format
 Example Numbers

128	1000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

规格化

s exp frac

1 4-bits 3-bits

- 要求
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	0011111	1.1111100	5

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

后规格化

- 问题
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

■ 试用 GDB 检查 (int)(float) Tmax 的值并思考原因

有意思的数

{single, double}

	ехр	frac	Numeric Value
• 0	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	2 ^{-{23,52}} x 2 - {126, 1022}
■ Single \approx 1.4 x 10 ⁻⁴⁵			
Double ≈ 4.9 x 10 ⁻³²⁴			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126, 1022\}}$
■ Single \approx 1.18 x 10 ⁻³⁸			
Double ≈ 2.2 x 10 ⁻³⁰⁸			
Smallest Pos. Normalized	0001	0000	1.0 x 2 $-{126, 1022}$
Just larger than largest denorr	nalized		
1	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127, 1023\}}$

■ Double $\approx 1.8 \times 10^{308}$

Single ≈ 3.4 x 10^{38}

有意思的题目

- 测试 C 语言计算 1/0 和 1.0/0.0 会产生什么结果
- float/double 能够精确表示的最大非整数是? 其对应的二进制编码为?
- 练习题 2.46,美军爱国者导弹拦截伊军飞毛腿导弹 失败原因分析
- 练习题 2.84, 借用无符号数比较浮点数
- 设 DMax、Dmin 分别为双精度浮点数规格化部中的 最大、最小数
 - 写出 DMax 和 DMin 的值
 - 在区间 [DMax, DMin] 之内是否有双精度格式无法 精确表示的整数?如果有,请举一例