*** Applied Machine Learning Fundamentals *** Evaluation of ML Models

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2023/2024

Find all slides on GitHub (DaWe1992/Applied ML_Fundamentals)

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Regression

Unit V Classification I

Unit VI Evaluation

Unit VII Classification II

Unit VIII Clustering

Unit IX Dimensionality Reduction

Agenda for this Unit

- Evaluation Methods and Data Splits
- 2 Evaluation Metrics for Classifiers

- 3 Evaluation Metrics for Regressors
- Miscellaneous
- 6 Wrap-Up

Section:

Evaluation Methods and Data Splits

Introduction Cross-Validation / LOO-Validation Data Splits

Evaluation of trained Models

- 1 Validation through experts: A domain expert checks plausibility
 - Subjective, time-intensive, costly
 - Often the only option
- 2 Validation on data: Evaluate performance on a separate (!) test set
 - Labeled data is scarce, could be better used for training
 - Fast and simple, no domain knowledge needed
- 3 On-line validation: Test model in a fielded application
 - Bad models may be costly
 - Gives the best estimate for the overall utility

Out-of-Sample Testing

- The performance cannot be measured on the training data (⇒ overfitting!)
- Usually, a portion of the available data is reserved for testing
 - 2/3 for training, 1/3 for testing (evaluation)
 - The model is trained on the training set and evaluated on the test set
- Problems:
 - Waste of data
 - Labeling may be expensive
- Solution: Cross-Validation (X-Val)

Cross-Validation (X-Val)

- Split the data set into k equally sized partitions $P = \{p_1, p_2, \dots, p_k\}$
- For each partition p_i do: use p_i for testing and $P \setminus \{p_i\}$ for training
- Average the results; e. g. 4-fold X-Val:

p_1	p_2	p_3	p_4

Leave-One-Out Cross-Validation (LOO X-Val)

- n-fold X-Val
 - *n* is the number of examples
 - Use n-1 examples for training, one example for testing

- Properties
 - Makes best use of the data
 - Very expensive for large data sets (large n)

If *k*-fold X-Val is performed, we get *k* trained models!

- Which model is used in production?
- **Answer:** None. X-Val is only used for error estimation. The final model is trained on the entire data set

Three Splits: Train, Dev/Validation, Test

In practice it is common to split the data into three portions:

- **1** Training set (used for training as before)
- Dev/Validation set
 - Used for hyper-parameter tuning of the model
 - Using the test set for that would be cheating
- Test set
 - The final model is tested on the test set.
 - Test set is used to estimate the generalization error

Stratified splits have the same class dist, as the entire data set

Section:

Evaluation Metrics for Classifiers

Confusion Matrices Drawback of Accuracy Precision, Recall and F1-Score ROC and AUC

Types of Errors

- Type I Error: False negatives
 - ullet An instance which is labeled \oplus is classified as \ominus
 - E.g. a spam e-mail is not detected

a. k. a. α/β error

- Type II Error: False positives
 - An instance which is labeled \ominus is classified as \oplus
 - E. g. a non-spam (ham) e-mail is classified as spam

Depending on the context the costs of false negatives and false positives can be different!

Confusion Matrices (two Classes)

- How often is class C_i confused with class C_j ?
- Calculate accuracy:

	Classified \oplus	Classified \ominus
ls ⊕	true positives (tp)	false negatives (fn)
ls ⊖	false positives (fp)	true negatives (tn)

$$accuracy = rac{tp+tn}{tp+tn+fp+fn}$$
 $error = 1-accuracy$

Confusion Matrices (multiple Classes)

	Α	В	С	D	Σ
Α	$n_{A,A}$	$n_{B,A}$	$n_{C,A}$	$n_{D,A}$	n_A
В	$n_{A,B}$	$n_{B,B}$	$n_{C,B}$	$n_{D,B}$	n_B
С	$n_{A,C}$	$n_{B,C}$	$n_{C,C}$	$n_{D,C}$	n _C
D	$n_{A,D}$	$n_{B,D}$	$n_{C,D}$	$n_{D,D}$	n_D
$oldsymbol{\Sigma}$	$\overline{n_A}$	$\overline{n_B}$	$\overline{n_C}$	$\overline{n_D}$	n

$$accuracy = \frac{n_{A,A} + n_{B,B} + n_{C,C} + n_{D,D}}{n}$$

Drawback of Accuracy

- Real-world data sets are usually imbalanced, i. e. some classes appear more frequently than others
- Example:
 - A data set \mathcal{D} contains two classes \mathcal{C}_1 and \mathcal{C}_2
 - C_1 appears 99 % of the time, C_2 1 % of the time
 - It is easy to reach 99 % accuracy by always predicting the majority class
 - Is this useful? Probably not...

We need some more sophisticated evaluation metrics!

Precision and Recall

Precision: Ratio of tp to all instances predicted as \oplus

$$Precision (P) = \frac{tp}{tp + fp} \tag{1}$$

Recall (Sensitivity): Ratio of tp to all instances actually labeled as \oplus

$$Recall (R) = \frac{tp}{tp + fn}$$
 (2)

Precision-Recall-Trade-Off

There is a trade-off between precision and recall:

It is very easy to get 100 % precision:

- Simply classify one instance as ⊕ where you are absolutely sure
- But recall is bad... (many ⊕-instances are not detected)

It is also quite easy to achieve 100 % recall:

- Classify all instances as ⊕
- But precision is bad... (many ⊖-instances are detected)

Precision-Recall Curves / P-R-Curves

- Visualization of the Precision-Recall-trade-off
- Influence precision and recall by changing thresholds
- Example:
 - Consider a ranker, e.g. a logistic regression classifier
 - It outputs probabilities for each class
 - ullet The threshold when to predict \oplus can be changed
 - This has an influence on precision and recall

A P-R-curve plots precision and recall for all possible thresholds.

Precision-Recall Curves / P-R-Curves (Ctd.)

Combining Precision and Recall: F1-Score

- When to use precision, when recall?
- This depends on the cost of fp and fn
 - If fp are expensive ⇒ use precision!
 - If fn are expensive \Rightarrow use recall!
- F1-score (harmonic mean of precision and recall)

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$
 $F_\beta = (1 + \beta^2) \cdot \frac{P \cdot R}{(\beta^2 \cdot P) + R}$ $(\beta \in \mathbb{R}^+)$ (3)

• Large β emphasizes recall

Why the harmonic mean?

Calculation for multiple Classes (Example Precision)

- Precision must be calculated for each class separately
- For $|\mathcal{C}|$ classes we get $|\mathcal{C}|$ results. How to combine?
 - Macro average: Calculate P for each class and average the result

$$P_{macro} = \frac{P_A + P_B + P_C + P_D}{|\mathcal{C}|} \tag{4}$$

Micro average: Sum all tp and fp for all classes and calculate P

$$P_{micro} = \frac{tp_A + tp_B + tp_C + tp_D}{(tp_A + tp_B + tp_C + tp_D) + (fp_A + fp_B + fp_C + fp_D)}$$
(5)

 $P_A = \frac{40}{40 + 48} = 0.45$

Calculation for multiple Classes (Example Precision)

	Α	В	С	D	$oldsymbol{\Sigma}$
Α	40	12	4	8	64
В	7	51	2	0	60
С	2	17	27	11	57
D	39	4	15	8	66
$oldsymbol{\Sigma}$	88	84	48	27	247

Cols: Prediction Rows: Gold label

$$P_B = 0.61$$
 $P_C = 0.56$
 $P_D = 0.30$
 $P_{macro} = \frac{0.45 + 0.61 + 0.56 + 0.30}{4} = 0.48$
 $P_{micro} = \frac{40 + ... + 8}{(40 + ... + 8) + (48 + ... + 19)} = 0.51$

ROC-Curves

- ROC = Receiver Operating Characteristic
- Borrowed from signal theory (hence the name)
- Uses true positive rate (recall) and false positive rate $=\frac{fp}{fp+tn}$

General procedure:

- Rank test instances by decreasing certainty of class ⊕
- Start at the origin (0,0)
- If the next instance in the ranking is ⊕: move 1/|⊕| up
- If the next instance in the ranking is ⊖: move 1/|⊖| right

Sample ROC-Curve I

Rank	Prob.	True class
1	0.95	\oplus
2	0.85	\ominus
3	0.78	\oplus
4	0.75	\oplus
5	0.62	\ominus
6	0.41	\ominus
7	0.37	\oplus
8	0.22	Θ
9	0.15	\oplus
10	0.05	Θ

Sample ROC-Curve II

ROC-Curve Interpretation

- AUC can be interpreted as the probability of a positive example always being listed before a negative example
- A high AUC value entails a good class separation:

```
AUC = 1.0: All \oplus listed before all \ominus (desiderata)
```

```
AUC = 0.5: Random ordering
```

AUC = 0.0: All \ominus listed before all \oplus (not the worst case \Rightarrow Invert classification)

Analogy: It is like a quiz. But you can answer those questions first where you feel the most certain (ranking). If you answer the first questions wrong, you don't perform well ⇒ small AUC.

Section:

Evaluation Metrics for Regressors

R², RMSE and MAE An Example

R^2 , RMSE and MAE

• Coefficient of determination R²:

$$R^{2} = \frac{\sum_{i=1}^{n} (h_{\theta}(\mathbf{x}^{(i)}) - \overline{\mathbf{y}})^{2}}{\sum_{i=1}^{n} (y^{(i)} - \overline{\mathbf{y}})^{2}} = \frac{\text{Variance explained by model}}{\text{Total variance}} \qquad R^{2} \in [0, 1]$$
 (6)

Root mean square error (RMSE):

$$RMSE = \left(\frac{1}{n} \cdot \sum_{i=1}^{n} \left(h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}\right)^{2}\right)^{1/2}$$
 (7)

Mean absolute error (MAE):

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}|$$
 (8)

Evaluation of Regressors (Ctd.)

$\boldsymbol{x}^{(i)}$	$\mathbf{y}^{(i)}$	$h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})$		
0.47	1.10	1.28		
0.58	1.50	1.35		
1.00	1.67	1.60		
1.50	1.75	1.90		
3.07	2.55	2.84		
3.67	3.63	3.20		
3.72	3.25	3.23		
4.01	3.30	3.41		
4.16	3.49	3.50		
4.25	3.63	3.55		
	$\overline{y} = 2.59$			

Evaluation of Regressors (Ctd.)

Coefficient of determination:

$$R^{2} = \frac{(1.28 - 2.59)^{2} + \dots + (3.55 - 2.59)^{2}}{(1.10 - 2.59)^{2} + \dots + (3.63 - 2.59)^{2}} = \frac{7.97}{8.89} = 0.90$$
(9)

Root mean square error:

$$RMSE = \left(\frac{1}{10} \cdot \left[(1.28 - 1.10)^2 + \dots + (3.55 - 3.63)^2 \right] \right)^{1/2} = 0.19$$
 (10)

Mean absolute error:

$$MAE = \frac{1}{10} \cdot (|1.28 - 1.10| + \dots + |3.55 - 3.63|) = 0.15$$
 (11)

Section:

Miscellaneous

Grid Search and Random Search Bias and Variance

Grid Search

- Grid search is applied to find optimal parameter settings
- For the optimization the dev data set is used
- We have to specify the search space / ranges of parameter values
- Grid search will try all parameter combinations to find the best model
 - Computationally very expensive
 - Scikit-learn provides parameters to parallelize the search (n_jobs=-1 ⇒ use all cores available)
 - May not find the optimal setting ⇒ random search

Grid Search vs. random Search

Bias and Variance

Model 1... Model 2... Model 3... ...on Training data. ...on Training data. 2 ...on Training data. ■ 30 ■ 10 error: 22.5% ■ 37 ■ 3 error: 7.5% ■ 37 ■ 0 error: 0% ■ 37 ■ 0 acc.: 100% • 32 • 8 acc.: 77.5% • 37 • 3 acc.: 92.5% ...on Test data. 4 ...on Test data. 🚯 ...on Test data. 6 ■ 32 ■ 8 error: 23.8% * 34 * 6 error: 21.3% • 29 • 11 acc.: 78.7% ■ 37 ■ 3 error: 11.3% • 29 • 11 acc.: 76.2% • 34 • 6 acc : 88.7% Model 2 good model prediction error Model 3 overfitting high variance low bias Model underfitting low variance high bias high

model complexity

Use early stopping!

Section:

Wrap-Up

Summary Self-Test Questions Lecture Outlook

Summary

- Out-of-sample testing: Split data into train, dev and test sets
- Cross-validation makes maximum use of the data
- Confusion matrices reveal which classes are frequently confused
- Precision, recall and F1 are more robust w.r.t. imbalanced data sets
- ROC curves are used for the evaluation of rankers
- Hyper-parameters are optimized using grid search or random search
- Keep the bias-variance trade-off in mind!

Self-Test Questions

- Why should you split the data into train, dev and test sets?
- 2 You perform 10-fold cross validation. How many models do you have to learn? Which one do you use in production?
- 3 What is the problem with accuracy?
- 4 Why do we apply the harmonic mean to compute the F1 score?
- 5 Your model gets an AUC value of 0. What does this mean?
- 6 Random search is usually preferred to optimize hyper-parameters. Why?
- 7 Your model does not perform well due to its high bias. Your boss suggests adding more training data. How would you respond?

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Regression

Unit V Classification I

Unit VI Evaluation

Unit VII Classification II

Unit VIII Clustering

Unit IX Dimensionality Reduction

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Evaluation of ML Models

Term: Winter term 2023/2024

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?