Modelo de Gerações Sobrepostas (OLG) Fonte: Capítulo 2 do Romer

22 de maio de 2020

• Modelo descentralizado ou Modelo de Diamond:

- Pressupostos:

- * Principal diferença entre Ramsey e OLG: novos indivíduos estão nascendo continuamente e indivíduos idosos estão continuamente morrendo;
- * Mais simples, então, assumir que o tempo é discreto em vez de contínuo;
- * Assume que cada indivíduo vive por somente dois períodos;
- * L_t indivíduos nascem em t e população cresce à taxa n. Então: $L_t = (1+n)L_{t-1}$;
- * No tempo t, $\exists L_t$ indivíduos no primeiro período de suas vidas, e $L_{t-1} = L_t/(1+n)$ indivíduos no segundo período;
- * Cada indivíduo oferta 1 unidade de trabalho quando jovem e divide a renda do trabalho resultante entre o consumo no primeiro período e a poupança. No segundo período, o indivíduo consome a poupança e os juros que ganhou;
- * c_{1t} e c_{2t} : consumo dos jovens e idosos no período t;
- * A utilidade de um indivíduo nascido em t depende de c_{1t} e c_{2t+1} ;
- * Utilidade CRRA: $U_t = \frac{c_{1t}^{1-\theta}}{1-\theta} + \frac{1}{1+\rho} \frac{c_{2t+1}^{1-\theta}}{1-\theta}$, com $\theta > 0$ e $\rho < -1$. Como os ciclos de vida são finitos, não é mais necessário assumir $\rho < n + (1-\theta)g$;
- * Se $\rho > 0$, maior peso é dado para o primeiro período, e $\rho < 0$, temos o contrário;
- * Temos muitas firmas no modelo; Função de produção: $Y_t = F(K_t, A_t L_t)$ e F(.) apresenta retornos constantes de escala e satisfaz as condições de Inada;
- * A cresce à taxa exógena g e $A_t = (1+g)A_{t-1}$;
- * Mercados competitivos: trabalho e capital ganham seus produtos marginais: $r_t = f'(k_t)$ e $w_t = f(k_t) k_t f'(k_t)$ e firmas têm lucro zero;
- * Não há depreciação. Existe algum estoque de capital inicial k_0 , estritamente maior do que 0, que é possuído igualitariamente por todos os idosos;
- * Em cada período, o capital possuído pelos idosos e o trabalho ofertado pelos jovens são combinados para produzir o produto;
- * O idoso consome sua renda do capital e sua riqueza e o jovem divide sua renda do trabalo $w_t A_t$ entre consumo e poupança;
- * $K_{t+1} = L_t[w_t A_t c_{1t}]$, ou seja, o capital em t+1 será igual ao número de jovens em t multiplicado pela poupança desses jovens;

- O comportamento das famílias:

https://github.com/slgoncalves/notas/blob/main/OLG.pdf

- * O consumo do segundo período de um indivíduo nascido em t é: $c_{2t+1} = (1 + r_{t+1})(w_t A_t c_{1t});$
- * Então, a restrição orçamentária (RO) do indivíduo é: $c_{1t} + \frac{1}{1+r_{t+1}}c_{2t+1} = w_t A_t$. O valor presente do consumo do ciclo de vida é a riqueza inicial (que é zero) somada ao valor presente da renda do trabalho do ciclo de vida;
- * Lagrangeano: $\mathcal{L} = \frac{c_{1t}^{1-\theta}}{1-\theta} + \frac{1}{1+\rho} \frac{c_{2t+1}^{1-\theta}}{1-\theta} + \lambda \left[A_t w_t \left(c_{1t} + \frac{1}{1+r_{t+1}} c_{2t+1} \right) \right];$
- * Condições de primeira ordem: $c_{1t}^{-\theta} = \lambda$ e $\frac{1}{1+\rho}c_{2t+1}^{-\theta} = \frac{1}{1+r_{t+1}}\lambda$. Então, a Equação de Euler é: $\frac{c_{2t+1}}{c_{1t}} = \left(\frac{1+r_{t+1}}{1+\rho}\right)^{\frac{1}{\theta}}$;
- * Se o consumo de um indivíduo é crescente ou decrescente ao longo do tempo depende de se a taxa real de retorno e maior ou menor do que a taxa de desconto. E θ determina quanto o consumo varia em resposta à diferença entre $r \in \rho$;
- * Outra forma de encontrar a Equação de Euler: indivíduo decresce c_{1t} por Δc e usa a poupança adicional e a renda do capital para aumentar c_{2t+1} em $(1+r_{t+1})\Delta c$. Se o indivíduo está otimizando, o custo e benefício de utilidade em mudar devem ser iguais. Contribuições marginais para a utilidade são: $c_{1t}^{-\theta}$ e $\frac{1}{1+\rho}c_{2t+1}^{-\theta}$. Se $\Delta c \to 0$, o custo de utilidade em mudar é $c_{1t}^{-\theta}\Delta c$ e o benefício é $\frac{1}{1+\rho}c_{2t+1}^{-\theta}(1+r_{t+1})\Delta c$, que devem se igualar e chegamos à Equação de Euler;
- * A Equação de Euler e a RO caracterizam o comportamento maximizador de utilidade. Combinando as duas, temos: $c_{1t} + \frac{1}{1+r_{t+1}}c_{1t}\frac{(1+r_{t+1})^{1/\theta}}{(1+\rho)^{1/\theta}} = A_tw_t$, o que implica

$$c_{1t} + \frac{(1+r_{t+1})^{\frac{1-\theta}{\theta}}}{(1+\rho)^{1/\theta}}c_{1t} = A_t w_t \text{ e, portanto, } c_{1t} = \frac{(1+\rho)^{1/\theta}}{(1+\rho)^{1/\theta} + (1+r_{t+1})^{\frac{1-\theta}{\theta}}}A_t w_t;$$

- * Como $\frac{c_{1t}}{A_t w_t}$ é a fração da renda consumida, $s(r_{t+1}) = 1 \frac{c_{1t}}{A_t w_t}$ é a fração da renda poupada e $s(r) = \frac{(1+r)^{\frac{1-\theta}{\theta}}}{(1+\rho)^{1/\theta} + (1+r)^{\frac{1-\theta}{\theta}}}$;
- * Então: $c_{1t} = [1 s(r_{t+1})]A_t w_t;$
- * A poupança dos jovens é crescente em r se, e somente se, $(1+r)^{\frac{1-\theta}{\theta}}$ é crescente em r. A derivada de $(1+r)^{\frac{1-\theta}{\theta}}$ é $[\frac{1-\theta}{\theta}](1+r)^{\frac{1-2\theta}{\theta}}$ e s é crescente em r se $\theta<1$ e decrescente se $\theta>1$;
- * Um aumento em r tem um efeito substituição (é mais favorável o consumo no segundo período, o que tende a aumentar a poupança) e efeito renda (uma dada quantidade de poupança resulta em um maior consumo no segundo período e a poupança tende a diminuir);
- * Se θ é baixo, efeito substituição domina, pois indivíduos desejam substituir consumo entre os períodos. Se θ é alto, efeito renda domina, pois indivíduos tem forte preferência por níveis similares de consumo. Se $\theta = 1$, os dois efeitos são balanceados e a taxa de poupança independe de r.

A dinâmica da economia:

- * A equação de movimento de k:
 - · Estoque de capital em t + 1: $K_{t+1} = s(r_{t+1})L_tA_tw_t$, ou seja, poupança em t depende da renda do trabalho em t e do retorno do capital esperado para t + 1;

https://github.com/slgoncalves/notas/blob/main/OLG.pdf

- · Dividindo ambos os lados por $L_{t+1}A_{t+1}$, temos: $\frac{K_{t+1}}{L_{t+1}A_{t+1}} = s(r_{t+1})\frac{L_t}{L_{t+1}}\frac{A_t}{A_{t+1}}w_t$;
- Como $L_{t+1} = L_t(1+n) e A_{t+1} = A_t(1+g)$, temos: $k_{t+1} = s(r_{t+1}) \frac{1}{(1+n)} \frac{1}{(1+g)} w_t$;
- · Substituindo r_{t+1} e w_t , temos: $k_{t+1} = s(f'(k_{t+1})) \frac{1}{(1+n)} \frac{1}{(1+g)} [f(k_t k_t) f'(k_{t+1})]$, ou seja, k_{t+1} como função de k_t ;
- * A evolução de k:
 - · Valor de k_t , tal que $k_{t+1} = k_t$: é o valor de Balanced-Growth Path (BGP) de k uma vez que k alcança esse valor, continua lá;
- * Com utilidade logarítmica e produção Cobb-Douglas, temos:

$$\theta = 1 : s(r) = \frac{(1+r)^{\frac{1-1}{1}}}{(1+\rho)^{1/1} + (1+r)^{\frac{1-1}{1}}} = \frac{1}{1+\rho+1} = \frac{1}{\rho+2};$$