HW #8; date: Sept. 26, 2017 MATH 110 Linear Algebra with Professor Stankova

Section 2.4

Exercise 2.4.1:

(a) False: it should be $([T]^{\beta}_{\alpha})^{-1} = [T^{-1}]^{\alpha}_{\beta}$.

(b) True: this follows easily from the definition.

(c) False; $T: V \to W$ while $L_A: \mathbb{F}^{\dim(V)} \to \mathbb{F}^{\dim(W)}$.

(d) False: $\dim(M_{2\times 3}(F)) = 6 \neq 5 = \dim(F^5)$.

(e) True: two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.

(f) False: this could happen when A and B are not square matrices.

(g) True: by definition.

(h) True: by Theorem 2.18 of the textbook.

(i) True: otherwise it will fails to be one-to-one or onto.

Exercise 2.4.2:

(b) T cannot be invertible as $\dim(\mathbb{R}^2) = 2 \neq 3 = \dim(\mathbb{R}^3)$.

(d) T cannot be invertible as $\dim(P_3(\mathbb{R})) = 4 \neq 3 = \dim(P_2(\mathbb{R}))$.

(f) T is invertible as it is one-to-one; as the domain and co-domain spaces have the same dimension, it follows that it is invertible. To see it is one-to-one, suppose $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \ker(T)$; then, $\begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow a=0, \ a+b=0 \Rightarrow b=0, \ c=0, \ c+d=0 \Rightarrow d=0.$ Thus, T has a trivial kernel.

Exercise 2.4.3:

Recall that two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension. By checking dimensions, we deduce that:

1

(a) is not isomorphic: $\dim(F^3) = 3 \neq 4 = \dim(P_3(F))$.

(b) is isomorphic: $\dim(F^4) = 4 = \dim(P_3(F))$.

(c) is isomorphic: $\dim(M_{2\times 2(\mathbb{R})}) = 4 = \dim(P_3(\mathbb{R})).$

(d) is not isomorphic: $\dim(V) = 3 \neq 4 = \dim(\mathbb{R}^4)$.

Exercise 2.4.4: Let A and B be $n \times n$ invertible matrices. Prove that AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Proof. We first note that the matrices AB and $B^{-1}A^{-1}$ are $n \times n$ matrices so we only need to prove that

$$(AB)(B^{-1}A^{-1}) = I,$$

where I denotes the $n \times n$ identity matrix. We can readily check this by using the associativity of matrix multiplication (Theorem 2.16) and the fact that IC = CI = C for all $C \in \mathcal{M}_{n \times n}(\mathbb{R})$ (Theorem 2.12(c)):

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$$

Exercise 2.4.5: Let A be invertible. Prove that A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.

Proof. We know that $A \cdot A^{-1} = I$, where I is the identity matrix. Taking transpose on both sides, we get $(A \cdot A^{-1})^t = (A^{-1})^t \cdot A^t = I^t = I$. As A^t is a square matrix, we conclude that A^t is invertible with inverse $(A^{-1})^t$.

Exercise 2.4.6: Prove that if A is invertible and AB = O, then B = O.

Proof. Multiplying both sides of the equation AB = O on the left by the inverse A^{-1} of A, we obtain

$$A^{-1}AB = A^{-1}O \implies IB = B = O$$

as desired; here I denotes the identity matrix of the same dimensions as A.

Exercise 2.4.7:

(a) Suppose that $A^2 = O$. Prove that A is not invertible.

Proof. Suppose A is invertible, then by Exercise 6 (with B=A), we get A=O. This is a contradiction, since O is not invertible. Therefore, A cannot be invertible.

(b) Suppose that AB = O for some non-zero $n \times n$ matrix B. Could A be invertible? Explain.

Proof. If A were invertible, then, by Exercise 6, we would have B = O. This is a contradiction and therefore A cannot be invertible.

Exercise 2.4.9: Let A and B be $n \times n$ matrices such that AB is invertible. Prove that A and B are invertible. Give an example to show that arbitrary matrices A and B need not be invertible if AB is invertible.

Proof. We first prove that A and B are invertible under the original hypotheses. We shall do this by considering the corresponding left-multiplication transformations L_A , $L_B : F^n \to F^n$ and using Corollary 2 on page 102 of the text: A and B are invertible matrices if and only if L_A and L_B are invertible linear transformations.

By the same Corollary, our assumption that AB is invertible tells us that $L_{AB} = L_A L_B$ is an invertible linear transformation. It follows from Exercise 2.3.12 that L_A is onto and L_B is one-one. As the dimensions of the domain and co-domain are the same, we infer that both L_A and L_B are invertible. By the discussion above, we conclude that A and B are invertible matrices.

To wrap up this exercise, we construct an example to show that for arbitrary (i.e., not necessarily square) matrices A and B with AB invertible, A and B need not be invertible. Take

$$A = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Then A and B are not square matrices, so they cannot be invertible; on the other hand, $AB = (1) = I_1$, the 1×1 identity matrix, which is invertible.

Exercise 2.4.13: Let \sim mean "is isomorphic to". Prove that \sim is an equivalence relation on the class of vector spaces over F.

Proof. We need to show that the isomorphism relation \sim between vector spaces is reflexive, symmetric, and transitive:

- First, we have that $V \sim V$ by identity map.
- Next, if $V \sim W$, then there exists a linear isomorphism $T: V \to W$. As T^{-1} exists and is an isomorphism map from W to V, we have $W \sim V$.
- Finally, if $V \sim W$ and $W \sim Z$, there exist linear isomorphism $T: V \to W$ and $U: W \to Z$. Then $U \circ T: V \to Z$ is a linear isomorphism so that $V \sim Z$.

Exercise 2.4.14: Let $V = \left\{ \begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} : a,b,c \in F \right\}$. Construct an isomorphism from V to F^3 .

To construct an isomorphism between two vector spaces of the same finite dimension, it suffices to construct a bijective map between their bases.

Note that V is three-dimensional and $\alpha = \left\{ v_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is a basis of V. Let $\beta = \{e_1, e_2, e_3\}$ denote the standard basis of \mathbb{F}^3 .

Let $T: V \to \mathbb{F}^3$ be the map $T(v_i) = e_i, i = 1, 2, 3$. For any $v \in V$, v is a linear combination of the basis elements in α , i.e. $v = a_1v_1 + a_2v_2 + a_3v_3$ for some scalars a_1, a_2, a_3 . Then $T(v) = a_1e_1 + a_2e_2 + a_3e_3$. This linear map is one-to-one and onto.

Exercise 2.4.15: Let V and W be n-dimensional vector spaces, and let $T: V \to W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.

Proof. We first prove the "only if" implication. So assume that $T:V\to W$ is an isomorphism; we first claim that then $T(\beta)$ must be a linearly independent set of n vectors in W. To that end, write $\beta=\{v_1,\ldots,v_n\}$. Because T is one-to-one, the vectors $T(v_k)$ are distinct for $1\leq k\leq n$, and thus $T(\beta)=\{T(v_1),\ldots,T(v_n)\}$ is a set of n vectors in W. Now suppose that some linear combination of these vectors is equal to the zero vector of W:

$$a_1T(v_1) + \ldots + a_nT(v_n) = 0$$

for some scalars $a_1, \ldots, a_n \in \mathbb{R}$. It suffices to prove that $a_k = 0$ for all k. Now, again because T is a one-to-one linear transformation, we have $\ker(T) = \{0\}$; thus,

$$a_1T(v_1) + \ldots + a_nT(v_n) = T(a_1v_1 + \ldots + a_nv_n) = 0 \implies a_1v_1 + \ldots + a_nv_n = 0.$$

Since β is assumed to be a basis, in particular the v_k are mutually linearly independent; thus, we must have $a_k = 0$ for all k as desired. So $T(\beta)$ is a linearly independent set of n vectors in W; because $\dim(W) = n$, $T(\beta)$ is a basis for W.

Now let us prove the "if" implication. To that end, assume that $T(\beta) = \{T(v_1), \dots, T(v_n)\}$ is a basis for W. Let $y \in W$ be arbitrary. Using the assumed linearity of T, we can find scalars $b_1, \dots, b_n \in \mathbb{R}$ such that

$$y = b_1 T(v_1) + \ldots + b_n T(v_n) = T(b_1 v_1 + \ldots + b_n v_n) = T(x),$$

where $x = b_1v_1 + \ldots + b_nv_n \in V$. So we've shown that for all $y \in W$, $y \in \text{Im}(T)$. In other words, T is onto. By the Dimension Theorem, because $\dim(V) = \dim(W)$, T must also be one-to-one; thus, T is an isomorphism.

Exercise 2.4.16: Let B be an $n \times n$ invertible matrix. Define $\Phi : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.

Proof. We first show that Φ is a *linear* transformation. Let $A_1, A_2 \in M_{n \times n}(\mathbb{R})$ and $c \in \mathbb{R}$ be arbitrary. Then

$$\Phi(cA_1 + A_2) = B^{-1}(cA_1 + A_2)B = (cB^{-1}A_1 + B^{-1}A_2)B = cB^{-1}A_1B + B^{-1}A_2B = c\Phi(A_1) + \Phi(A_2),$$

so Φ is linear. Next, let $C \in M_{n \times n}(\mathbb{R})$ be any $n \times n$ matrix. Then

$$\Phi(BCB^{-1}) = B^{-1}(BCB^{-1})B = (B^{-1}B)C(B^{-1}B) = I_n C I_n = C,$$

where I_n denotes the $n \times n$ identity matrix. In particular, $C \in \text{Im}(\Phi)$; as C was arbitrary, Φ is onto. Since Φ is a linear transformation from the finite-dimensional vector space $M_{n \times n}(\mathbb{R})$ to itself, by the Dimension Theorem Φ must also be one-to-one. Thus, Φ is an isomorphism.

Exercise 2.4.17: Let V and W be finite-dimensional vector spaces and $T: V \to W$ be an isomorphism. Let V_0 be a subspace of V.

(a) Prove that $T(V_0)$ is a subspace of W.

Proof. We need only use the fact that T is a linear transformation here; i.e., we do not need to use the full fact that T is an isomorphism. Because V_0 is a subspace of V, the zero vector θ_V of V is an element of V_0 . So $\theta_W = T(\theta_V) \in T(V_0)$. To see that $T(V_0)$ is closed under addition and scalar multiplication in W, let $w_1, w_2 \in T(V_0)$ and $c \in \mathbb{R}$ be arbitrary. Then there exist $v_1, v_2 \in V_0$ such that $T(v_1) = w_1$ and $T(v_2) = w_2$. Furthermore, because V_0 is a subspace of V, we have $cv_1 + v_2 \in V_0$. Thus,

$$cw_1 + w_2 = cT(v_1) + T(v_2) = T(cv_1 + v_2) \in T(V_0).$$

As c, w_1 , and w_2 were arbitrary, $T(V_0)$ is closed under addition and scalar multiplication in W. Thus, $T(V_0)$ is a subspace of W.

(b) Prove that $\dim(V_0) = \dim(T(V_0))$.

Proof. Here we need to use the full fact that T is an isomorphism. Consider the restriction T_R of T to the subspace V_0 . The restriction of a linear transformation to a subspace of its domain was defined in a previous homework; in this case we may view it as the linear transformation

$$T_R: V_0 \longrightarrow T(V_0)$$

defined by $T_R(x) := T(x)$ for all $x \in V_0$. By definition, $\operatorname{Im}(T_R) = T(V_0)$, so T_R is onto. Moreover, if $x \in \ker(T_R)$, then

$$\theta_W = T_R(x) = T(x) \implies x = \theta_V,$$

because T is an isomorphism, hence one-to-one. Thus, T_R is one-to-one; since we also noted that it's onto, $T_R: V_0 \to T(V_0)$ is an isomorphism. In other words, V_0 and $T(V_0)$ are isomorphic vector spaces and, by Theorem 2.19, $\dim(V_0) = \dim(T(V_0))$.

Exercise 2.4.19(a):

We first show that T is a linear isomorphism. T is linear because of the properties of the transpose operation. T is an isomorphism as T is one-to-one and onto.

Next we compute (a) the matrix $[T]_{\beta}$. $T(E^{11}) = E^{11}, T(E^{12}) = E^{21}, T(E^{21}) = E^{12}, T(E^{22}) = E^{22}$.

Therefore, we get
$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

Exercise 2.4.23: Let V denote the vector space defined in Example 5 of Section 1.2, and let $W = P(\mathbb{R})$. Define

$$T: V \to W$$
 by $T(\sigma) = \sum_{i=0}^{n} \sigma(i)x^{i}$,

where n is the largest integer such that $\sigma(n) \neq 0$. Prove that T is an isomorphism.

Remark 1: To be utterly pedantic, the statement of the exercise does not define $T(\theta_V)$. (The zero vector θ_V of V is the sequence σ_0 defined by $\sigma_0(m) = 0$ for all m, so it does not make sense to say "n is the largest integer such that $\sigma_0(n) \neq 0$.") So if we want to be completely precise, we should further define $T(\theta_V) = \theta_W$, where θ_W is the zero polynomial in $P(\mathbb{R})$. This exercise is also confusing as stated because Example 5 in Section 1.2 defines V to be the space of functions from the positive integers to \mathbb{R} ; thus, " $\sigma(0)$ " does not make sense for $\sigma \in V$ under that definition. The natural thing to do is to modify the definition of V slightly, taking V to be the vector space of functions from the nonnegative integers to \mathbb{R} . (N.B.: The two definitions yield isomorphic vector spaces. To check your understanding, find a reasonably obvious isomorphism from "the new V" to "the old V.") We'll use that modified definition of V for the following proof.

Remark 2: Note that V and W here are *infinite-dimensional* vector spaces; accordingly, we cannot hope to make any use of the Dimension Theorem or other finite-dimensional techniques.

Proof. We first show that T is a linear transformation. Let $c \in \mathbb{R}$ and $\sigma, \eta \in V$ be arbitrary. Let N be the largest integer such that either $\sigma(N) \neq 0$ or $\eta(N) \neq 0$; if $\sigma = \eta = \theta_V$, then set N = 0. Then

$$T(c\sigma + \eta) = \sum_{i=0}^{N} (c\sigma + \eta)(i)x^{i} = c\sum_{i=0}^{N} \sigma(i)x^{i} + \sum_{i=0}^{N} \eta(i)x^{i} = cT(\sigma) + T(\eta),$$

so T is linear.

Next, we show T is one-to-one. Indeed, suppose $T(\sigma) = \theta_W$, the zero polynomial. Then by definition of the zero polynomial and the map T, we know that:

- $\sigma(n) = 0$ for all integers n > 0, and
- $\sigma(0) = 0$.

In other words, $\sigma(n) = 0$ for all nonnegative integers n, and thus $\sigma = \theta_V$. So $\ker(T) = \{\theta_V\}$, and T is one-to-one.

Finally, let $f \in W = P(\mathbb{R})$ be an arbitrary polynomial, and write

$$f(x) = \sum_{i=0}^{n} a_i x^i,$$

so that deg(f) = n. Define a sequence $\sigma \in V$ by

$$\sigma(k) = \begin{cases} a_k & \text{for } k \le n \\ 0 & \text{for } k > n. \end{cases}$$

Then $T(\sigma) = f$; since $f \in W$ was arbitrary, T is onto.

Thus, we've shown that T is a linear transformation that is both one-to-one and onto; in other words, T is an isomorphism.