ALGORITMICA GRAFURILOR **Săptămâna 4**

C. Croitoru

croitoru@info.uaic.ro FII

October 22, 2014

OUTLINE

Probleme de drum în (di)grafuri (ag 14-15 allinone.pdf pag. 94 → ...)

Problemele pentru seminarul 4

Probleme de drum

Drumuri de cost minim

P1 Date
$$G$$
 digraf; $a: E(G) \to \mathbb{R}$; $s, t \in V(G)$, $s \neq t$. Să se determine $D_{st}^* \in \mathcal{D}_{st}$, astfel încît $a(D_{st}^*) = \min\{a(D_{st}) \mid D_{st} \in \mathcal{D}_{st}\}.$

P2 Date G digraf;
$$a: E(G) \rightarrow \mathbb{R}$$
; $s \in V(G)$.
Să se determine $D_{si}^* \in \mathcal{D}_{si} \ \forall i \in V(G)$, a.î. $a(D_{si}^*) = \min\{a(D_{si}) \mid D_{si} \in \mathcal{D}_{si}\}.$

P3 Date *G* digraf;
$$a: E(G) \rightarrow \mathbb{R}$$
.
Să se determine $D_{ij}^* \in \mathcal{D}_{ij} \ \forall i,j \in V(G)$, a.î. $a(D_{ij}^*) = \min\{a(D_{ij}) \mid D_{ij} \in \mathcal{D}_{ij}\}.$

Rezolvarea problemei P2

Teorema 1. Fie G = (V, E) digraf, $V = \{1, ..., n\}$, $s \in V$ și $a : E \to \mathbb{R}$, astfel încît

(1)
$$\forall C \text{ circuit în } G, a(C) > 0.$$

Atunci (u_1, \ldots, u_n) este o soluție a sistemului

(*)
$$\begin{cases} u_s = 0 \\ u_i = \min_{j \neq i} (u_j + a_{ji}) \quad \forall i \neq s. \end{cases}$$

dacă și numai dacă

 $\forall i \in V$, $\exists D_{si}^* \in \mathcal{D}_{si}$ astfel încît $a(D_{si}^*) = u_i$ și $a(D_{si}^*) = \min\{a(D) \mid D \in \mathcal{D}_{si}\}.$

Rezolvarea problemei P2 dacă $\forall ij \in E(G)$ avem $a_{ij} \geq 0$!!!

Algoritmul lui Dijkstra

```
1. S \leftarrow \{s\}; u_s \leftarrow 0; \hat{i} inainte[s] \leftarrow 0;
    for i \in V \setminus \{s\} do
     \{ u_i \leftarrow a_{si}; \ \text{inainte}[i] \leftarrow s \}
         // după aceste inițializări (D) are loc
2. while S \neq V do
          determină j^* \in V \setminus S: u_{j^*} = \min\{u_j \mid j \in V \setminus S\};
          S : \leftarrow S \cup \{i^*\}:
          for i \in V \setminus S do
               if u_i > u_{i^*} + a_{i^*i} then
```

Complexitatea timp a algoritmului, în descrierea dată este $O(n^2)$.

Algoritmul lui Dijkstra

Este posibilă organizarea unor cozi cu prioritate (de exemplu heap-urile) pentru obținerea unui algoritm cu complexitatea $O(m \log n)$ (unde m = |E|) Johnson ,1977).

Cea mai bună implementare se obține utilizând **heap-uri Fibonacci**, ceea ce conduce la o complexitate timp de $O(m + n \log n)$ (*Fredman și Tarjan, 1984*).

Strategii de implementare

- Estimator consistent
- PSP

Rezolvarea problemei P2 în cazul general.

Algoritmul lui Bellman, Ford, Moore (~ 1960)

- 1. $u_s^1 \leftarrow 0$; for $i \in V \setminus \{s\}$ do $u_i^1 \leftarrow a_{si}$; // evident (BM) are loc
- 2. for m := 1 to n-2 do

 for i := 1 to n do $u_i^{m+1} \leftarrow \min(u_i^m, \min_{j \neq i}(u_j^m + a_{ji}))$

Complexitatea $O(n^3)$, dacă determinarea minimului din pasul 2 necesită O(n) operații.

Testarea în $O(n^3)$ a existenței unui circuit C de cost negativ în digraful G !

Rezolvarea problemei P3

P3 Date *G* digraf; $a: E(G) \to \mathbb{R}$. Să se determine $D_{ij}^* \in \mathcal{D}_{ij} \ \forall i,j \in V(G)$, a.î. $a(D_{ij}^*) = \min\{a(D_{ij}) \mid D_{ij} \in \mathcal{D}_{ij}\}.$

Rezolvarea problemei P3

P3 Date *G* digraf; $a: E(G) \to \mathbb{R}$. Să se determine $D_{ij}^* \in \mathcal{D}_{ij} \ \forall i,j \in V(G)$, a.î. $a(D_{ij}^*) = \min\{a(D_{ij}) \mid D_{ij} \in \mathcal{D}_{ij}\}.$

$O(n^4)$

Iterarea algoritmului lui Bellman-Ford pentru $s=\overline{1,n}$

Rezolvarea problemei P3

P3 Date *G* digraf; $a: E(G) \to \mathbb{R}$. Să se determine $D_{ij}^* \in \mathcal{D}_{ij} \ \forall i,j \in V(G)$, a.î. $a(D_{ij}^*) = \min\{a(D_{ij}) \mid D_{ij} \in \mathcal{D}_{ij}\}.$

$O(n^4)$

Iterarea algoritmului lui Bellman-Ford pentru $s=\overline{1,n}$

$O(n^3)$

Iterarea algoritmului lui Dijkstra, după preprocesare!

Rezolvarea problemei P3

P3 Date *G* digraf; $a: E(G) \to \mathbb{R}$. Să se determine $D_{ij}^* \in \mathcal{D}_{ij} \ \forall i,j \in V(G)$, a.î. $a(D_{ij}^*) = \min\{a(D_{ij}) \mid D_{ij} \in \mathcal{D}_{ij}\}.$

$O(n^4)$

Iterarea algoritmului lui Bellman-Ford pentru $s=\overline{1,n}$

$O(n^{3})$

Iterarea algoritmului lui Dijkstra, după preprocesare!

$O(n^3 \log n)$

Înmulțiri matriciale!

Rezolvarea problemei P3

P3 Date G digraf; $a: E(G) \rightarrow \mathbb{R}$.

Să se determine $D_{ij}^* \in \mathcal{D}_{ij} \ \forall i,j \in V(G)$, a.î. $a(D_{ij}^*) = \min\{a(D_{ij}) \mid D_{ij} \in \mathcal{D}_{ij}\}.$

$O(n^4)$

Iterarea algoritmului lui Bellman-Ford pentru s = 1, n

$O(n^3)$

Iterarea algoritmului lui Dijkstra, după preprocesare!

$O(n^3 \log n)$

Înmulțiri matriciale!

$O(n^3)$

Algoritmul lui Floyd-Warshal

Rezolvarea problemei P3

Algoritmul lui Floyd-Warshal

```
1: for i := 1 to n do
    for j := 1 to n do
       \hat{i}nainte(i, j) \leftarrow i;
         if i = j then \{a_{ii} \leftarrow 0; \hat{i} nainte(i, i) \leftarrow 0\}
2: for m := 1 to n do
    for i := 1 to n do
    for j := 1 to n do
         if a_{ij} > a_{im} + a_{mj} then
          \{a_{ij} \leftarrow a_{im} + a_{mi};
              \hat{i}nainte(i, j) \leftarrow \hat{i}nainte(m, j)
              if (i = j \land a_{ii} < 0) then
                   return "circuit negativ"
```

Teorema lui Menger

Fie G = (V, E) (di)graf și $X, Y \subseteq V$. Atunci numărul maxim de XY-drumuri disjuncte este egal cu cardinalul minim al unei mulțimi XY-separatoare.

Fie G = (V, E) un (di)graf și $s, t \in V$, astfel încît $s \neq t$, st $\notin E$. Există k drumuri intern disjuncte de la s la t în G dacă și numai dacă îndepărtînd mai puțin de k vîrfuri diferite de s și t, în (di)graful rămas există un drum de la s la t.

Consecință Un graf G este p-conex dacă $G = K_p$ sau $\forall st \in E(\overline{G})$ există p drumuri intern disjuncte de la s la t în G.

Determinarea numărului k(G) de conexiune a grafului G (cea mai mare valoare a lui p pentru care G este p-conex) se reduce la determinarea lui

$$\min_{st\in E(\overline{G})}p(\{s\},\{t\};G)$$

(care se poate obține în timp polinomial.)

Teorema lui König

Dacă G = (S, R; E) este un graf bipartit, atunci cardinalul maxim al unui cuplaj este egal cu cardinalul minim al unei mulțimi de vîrfuri incidente cu toate muchiile grafului.

Consecință: Dacă G e graf bipartit, atunci :

$$\nu(G) = |G| - \alpha(G).$$

Teorema lui Hall

Dacă $\mathcal{A}=(A_i;i\in I)$ este o familie de submulțimi ale lui S, o funcție $r_{\mathcal{A}}:I\to S$ cu proprietatea că $r_{\mathcal{A}}(i)\in A_i,\ \forall i\in I$ se numește funcție de reprezentare pentru familia \mathcal{A} . În acest caz, $(r_{\mathcal{A}}(i);i\in I)$ formează un sistem de reprezentanți ai familiei A.

Dacă funcția de reprezentare $r_{\mathcal{A}}$ este injectivă atunci $r_{\mathcal{A}}(I) \subseteq S$ se numește *sistem de reprezentanți distincți* ai familiei \mathcal{A} , sau transversală.

Teorema lui Hall Familia $A = (A_i; i \in I)$ de submulțimi ale lui S admite o transversală dacă și numai dacă

$$|\mathcal{A}(J)| \ge |J| \quad \forall J \subseteq I.$$

- Problema 1, Setul 3"
- Problema 3, Setul 6
- Problema 2, Setul 20
- **3**-4 probleme din lista următoare :)

1

Să se construiască o funcție care să recunoască un turneu. La intrare aceasta va primi un digraf $G=(\{1,...,n\},E)$ reprezentat cu ajutorul listelor de adiacență și va returna true sau false. Complexitatea timp?

2

Să se construiască o funcție care primind la intrare un digraf $G = (\{1,...,n\},E)$ reprezentat cu ajutorul listelor de adiacență să returneze inversul lui G reprezentat cu ajutorul listelor de adiacență. Complexitatea timp trebuie să fie $\mathcal{O}(n+|E|)$.

3

Se consideră un graf $G=(\{1,...,n\},E)$ reprezentat cu ajutorul matricii de adiacență. Mulțimea de n-1 muchii A este astfel ca T=(V,A) este arbore parțial al lui G. Construiți un algoritm care să listeze circuitele care se formează prin adăugarea muchiilor din E-A la T. Reprezentarea lui T trebuie să permită depistarea fiecărui astfel de circuit în timpul $\mathcal{O}(n)$.

4

Să se construiască o funcție care să determine gradul maxim al unui vârf al unui graf. La intrare aceasta va primi un graf $G=(\{1,...,n\},E)$ reprezentat cu ajutorul listelor de adiacență și va returna $\Delta(G)$. Stabiliți complexitatea timp a algoritmului folosit.

5

Construiți o funcție care primind la intrare graful G=(V,E) reprezentat cu ajutorul listelor de adiacență și k, un număr întreg pozitiv, returnează graful $G^{(k)}$ cu aceeași mulțime de virfuri ca și G, în care două virfuri distincte sunt adiacente dacă și numai dacă în graful inițial sunt conectate printr-un drum de lungime cel mult k. Care este complexitatea timp?

6

Graful conex G=(V,E) cu n vârfuri și m muchii, este reprezentat cu ajutorul listelor de adiacență. Dați un algoritm care să construiască în timpul O(n+m) listele de adiacență ale unui arbore parțial al lui G.

7

Fie G=(V,E) un graf cu ordinul $|V|\geq 2$ și $T=(V,E_T)$ un arbore parțial al lui G, dat de tabloul $(p[v])_{v\in V}$, unde p[v] este părintele lui v în T: vârful dinaintea lui v de pe drumul unic de la o rădăcină fixată r, la v, în T (p[r]=r). Dați un algoritm care să determine, în timpul $\mathcal{O}(|V|)$, un vârf v_0 pendant (frunză) în T și apoi demonstrați că $G-v_0$ este conex.

8

Digraful G = (V, E) este dat prin listele de adiacență. Să se decidă în O(|V| + |E|) dacă se pot ordona vârfurile sale: $v_{i_1}, \ldots, v_{i_{|V|}}$, astfel încât dacă v_{i_j} apare în lista de adiacență a lui v_{i_k} atunci k < j.

ç

Fie $T=(\{1,\ldots,n\},E_T)$ un arbore $(n\geq 2)$, dat de tabloul $(p[v])_{v\in V}$, unde p[v] este părintele lui v în T: vârful dinaintea lui v de pe drumul unic de la o rădăcină fixată r, la v, în T (p[r]=r). Descrieți un algoritm care să construiască , în timpul $\mathcal{O}(n)$, listele de adiacență ale lui T.

10

Se consideră un graf G = (V, E) ($V = \{1, ..., n\}$), izomorf cu graful circuit (cu cel puțin 3 vârfuri), $G \cong C_n$. Fiecare muchie $e \in E$ are asociat un cost real c(e). Aceste informații sunt disponibile în tablourile *dreapta* și *cost* de dimensiune n cu semnificația: dreapta[v] = vecinul din dreapta al lui <math>v, iar costul muchiei $\{v, dreapta(v)\}$ este cost[v]. Descrieți un algoritm cât mai eficient pentru aflarea unui arbore parțial al lui G de cost minim.

11

Se consideră un graf G=(V,E) $(V=\{1,\ldots,n\})$, reprezentat cu ajutorul listelor de adiacență. Se știe că graful are gradul minim $\delta(G)$ mărginit de o constantă $c\in \mathbf{N}$. Descrieți un algoritm cu complexitatea timp O(n) pentru determinarea lui $\delta(G)$ și a unui vârf $v_0\in V$ cu gradul în G egal cu $\delta(G)$.

