On the Subject of the Gamepad

Oh, the layout of the buttons on this thing takes me back to my childhood! Except I didn't expect to see that on a time bomb, even. Play time is over, I suppose.

See Appendix MathConcepts: Mathematical Concepts for more information.

- Two 2-digit numbers will appear on the top LCD display.
 The bottom has eight keys: the input keys (◄▲▼►AB), Return, and Backspace.
- Determine the correct command, made of two subcommands, to input, depending on the properties of the two numbers. Use the first match.
- The two numbers are notated x and y. Individual digits are notated as abcd. A number followed by n means a multiple of that number.

Global Overrides	• If x = lln, switch the first keypress with the
Apply all matches <u>after</u> determining the two commands.	 second, and the fifth with the seventh. If a = 1 + d, switch the third and fourth keypresses, as well as the sixth and eighth. If x or y is a highly composite number, switch the order of the subcommands. If x and y are perfect squares, flip the entire sequence.

First Subcommand		
▲A◀◀		
AB◀▶		
▼ ∢A▶		
◄▲ B		
A▲◀◀		
►►A▼		
►AB▲		
ВВ▶◀		
ABA►		
**		
A◀B▶		

Second Subcommand		
y is prime	4>4>	
y = 8n	▼ ▶B▲	
c-d = 4 AND bomb has a Stereo RCA	►A▼▼	
y = 4n + 2 OR bomb has lit ind. labeled FRQ	B▲►A	
$y = 7n \text{ AND } x \neq 7n$	◄◄▼ A,	
y is a perfect square	▲▼ B▶	
$y = a \times b$	A▲◀▼	
y = 4n - 1 OR bomb has a PS/2 port	▲BBB	
c > d AND bomb has 2 or more batteries	AA \	
y = 5n	BAB◀	
y = 3n		
else	B▲A▼	

Appendix MathConcepts: Mathematical Concepts

This appendix contains a brief overview of some mathematical concepts used in the Gamepad module.

Prime Numbers

A prime number is a counting number (positive whole number) that can only be divided by 1 and itself. In other words, there is no way to share a prime number of donuts equally among any number of friends (unless you have as many friends as donuts!).

The prime numbers below 100 are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Perfect Squares

A perfect square is any whole number multiplied by itself.

The perfect squares below 100 are: 1, 4, 9, 16, 25, 36, 49, 64, 81.

Highly Composite Numbers

A highly composite number (HCN) has more divisors than any smaller positive integer. For example, 6 can be divided by 1, 2, 3, and 6, which is more than the last HCN, 4, which has 1, 2, and 4. 8 can be divided by 1, 2, 4, and 8, but a smaller number (6) has an equal number of divisors, so it is not a HCN.

The highly composite numbers below 100 are: 1, 2, 4, 6, 12, 24, 36, 48, 60.