Experience Gauge Experiment

As a test of your experience with Linux distributions and ability to read documentation, we need you to perform these three tasks.

Task 0 (NSCC login)

Login to NSCC and explore the modules available.

NSCC uses the Environment Modules system for providing access to software. Explore NSCC's module system ('module av') and figure out:

- How environment modules work
- Module loading
- Which modules provide a basic C compiler ('gcc' / 'icc').
- Which modules provide OpenMP-compatible C compilers ('gcc' / 'icc').
- Which modules provide MPI functionality ('mpicc').

Task 1

```
PI/4 = integrate(sqrt(1 - x^2), x, 0, 1)
```

Write a serial program that uses this property to calculate the value of Pi.

Benchmark the execution time of this program against increasing numerical integration step count.

Must be done in C.

Task 2 (OpenMP)

Parallelize Task 1 using OpenMP. Benchmark with an additional variable in addition to the one already mentioned - thread count.

You'll need to use the module providing an OpenMP-compatible compiler that you should have found in Task 0.

Must be done in C.

Hint: ('omp parallel for reduce')

Task 3 (MPI)

Parallelize the algorithm in Task 1 using MPI. Benchmark with an additional variable in addition to the one already mentioned - process count.

You'll need to use the module providing a MPI toolchain that you should have found in Task 1.

Must be done in C.

Hints: (`MPI_Init`, `MPI_Reduce`, `MPI_Finalize`, `MPI_Comm_rank`, `MPI_Comm_size`, `mpicc` & `mpirun`).

Benchmarking requirements

- Integration step counts from 1e2 to 1e9, increasing by a factor of 10 each time.
- Thread / Process counts from 1 to 3.

Bonus tasks.

- Write GNU-Make compatible Makefiles for Task 2 and 3.
- Explore compiler options for general and architecture-specific optimizations.