MATU9D2: Practical Statistics

Spring 2016

Solutions to Practical 4

Question 1 (i)

Males Only Are TV Viewing and Age associated?

Subjective Impression From the plot below of the percentages within each age group we can see wildly differing % of those watching less than 21 hours of TV a week. This suggests an association between Age and TV Viewing for Males

Chi-Square Test: <18 years, 18-50 years, >50 years

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

1	<18 years	18-50 years 20	>50 years	Total
-	12.19	14.63 1.975	12.19 0.834	
2	10 7.81 0.613	9.38 3.082	11 7.81 1.301	25
otal	20	24	20	64

Chi-Sq = 8.196, DF = 2, P-Value = 0.017

Formal Test : χ^2 Test of Independence

H₀: TV Viewing and Age Independent

H₁:TV Viewing and Age associated

Test Statistic $X^2 = 8.196$ p=0.017

Can reject Ho in favour of H1 at 5% level (p<0.05) so evidence of an association between Age and TV Viewing for Males

Females Only Are TV Viewing and Age associated?

Subjective Impression From the plot below of the percentages within each age group we can see more similar % for those watching less than 21 hours of TV a week. This suggests no association between Age and TV Viewing for Females

Chi-Square Test: <18 years., 18-50 years., >50 years.

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

1	<18 years. 18 20.00 0.200	18-50 years. 18 14.67 0.758	>50 years. 12 13.33 0.133	Total 48
2	12 10.00 0.400	7.33 1.515	8 6.67 0.267	24
Total	30	22	20	72

Chi-Sq = 3.273, DF = 2, P-Value = 0.195

Formal Test: χ^2 Test of Independence

Ho: TV Viewing and Age Independent

H₁:TV Viewing and Age associated

Test Statistic $X^2 = 3.273$ p=0.195

Cannot reject Ho in favour of H1 at 5% level (p>0.05) so insufficient evidence of an association between Age and TV Viewing for Females

(ii) Combined i.e. Males & Females Together

Are TV Viewing and Age associated?

Subjective Impression From the plot below of the percentages within each age group we can see wildly differing % of those watching less than 21 hours of TV a week. This suggests an association between Age and TV Viewing.

Chi-Square Test: < 18 years, 18 - 50 years, > 50 years

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

1	< 18 years 28 31.99	years 38	> 50 years 21 25.59	Total 87	
	0.497	2.498	0.823		
2	22 18.01 0.882	8 16.57 4.435	19 14.41 1.461	49	
Total	50	46	40	136	

Chi-Sq = 10.595, DF = 2, P-Value = 0.005

Formal Test : χ^2 *Test* of Independence

Ho: TV Viewing and Age Independent

H₁:TV Viewing and Age associated

Test Statistic $X^2 = 10.595$ p=0.005

Can reject Ho in favour of H1 at 1% level (p<0.01) so sufficient evidence of an association between Age and TV Viewing.

- (iii) Part (ii) shows that if the data is a representative sample of the population then there is a statistically significant association between Age and amount of TV views for adults. However, part (i) shows that this association is only reflected in the results for adult males and that there is insufficient evidence of an association amongst the females.
- (iv) Question asked for a 95% confidence interval for the proportion of the population who watched more than 21 hours of TV per week. 49 males and females watched more than 21 hours out of a total of 136 people sampled. So from output below, 95% confident that the proportion of people who watch more than 21 hours of TV per week lies between 0.28 and 0.45.

Test and CI for One Proportion

```
Sample X N Sample p 95% CI
1 49 136 0.360294 (0.279805, 0.447011)
```

Question 2 Are Number of Claims and Insurance Group associated?

Subjective Impression From the plot below of the percentages within each insurance group we can see differing % of those making 0, 1 or 2 or more claims. This suggests an association between Number of Claims and Insurance Group.

Chi-Square Test: I, II, III, IV

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

	I	II	III	IV	Total	
1	900	2000	1500	30	4430	
	840.06	2036.95	1516.56	36.43		
	4.277	0.670	0.181	1.134		
2	200	700	500	15	1415	
	268.33	650.63	484.41	11.64		
	17.398	3.746	0.502	0.973		
3	30	40	40	4	114	
	21.62	52.42	39.03	0.94		
	3.250	2.942	0.024	10.006		
tal	1130	2740	2040	49	5959	

Chisquared Test invalid because of low expected value so must combine rows and/or columns to increase expected values

 $\texttt{Chi-Sq} = 45.104, \; \texttt{DF} = 6$

WARNING: 1 cells with expected counts less than 1. Chi-Square approximation probably invalid.

1 cells with expected counts less than 5.

Are Number of Claims and Insurance Group associated?

Combine rows/columns to increase expected values: chose to add those making 1 and 2 or more claims

Subjective Impression From the plot below of the percentages within each insurance group we can see differing % of those making no claims. This suggests an association between whether you make a claim or not and Insurance Group.

Chi-Square Test: I., II., III., IV.

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

1	I. 900 840.06 4.277	II. 2000 2036.95 0.670	111. 1500 1516.56 0.181	IV. 30 36.43 1.134	Total 4430
2	230 289.94 12.393	740 703.05 1.942	540 523.44 0.524	19 12.57 3.286	1529
Total	1130	2740	2040	49	5959

Chi-Sq = 24.407, DF = 3, P-Value = 0.000

Formal Test : χ^2 Test of Independence

H_o: Insurance Group and making a claim are independent

H₁: Insurance Group and making a claim are associated

Test Statistic $X^2 = 24.407 \text{ p} < 0.001$

Can reject Ho in favour of H1 at 1% level (p<0.01) so sufficient evidence of an association between Insurance Group and making a claim

Question 3

Question asked whether the Number of Defective Items was due to chance. This is more formally described as: Are the Number of Defective Items Uniformly distributed?

If Uniformly distributed we would expect the same number each day.

Subjective Impression The number (in blue) look fairly different each day. However, this may not be statistically significant.

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Defectives

Using category names in Day

		Test		Contribution
Category	Observed	Proportion	Expected	to Chi-Sq
Monday	15	0.2	9	4.00000
Tuesday	8	0.2	9	0.11111
Wednesday	5	0.2	9	1.77778
Thursday	5	0.2	9	1.77778
Friday	12	0.2	9	1.00000

N DF Chi-Sq P-Value 45 4 8.66667 0.070 Formal Test: χ^2 Test: Goodness of Fit

H_o: Number of defectives follow a Uniform Distribution

 H_1 : Number of defectives follow some other distribution

Test Statistic $X^2 = 8.667 \text{ p} = 0.070$

Cannot reject Ho in favour of H1 at 5% level (p>0.05) so insufficient evidence that number of defectives follow some other distribution.

So can assume Data follows a Uniform distribution