Apparatus for making dipolar NaCs molecules

Yichao Yu

Ni Group/Harvard

May 3, 2015

- Trapping Cs single atom
- Cs single atom cooling
- Na MOT
- Looking for trapped single Na atom

- Trapping Cs single atom
- Cs single atom cooling
- Na MOT
- Looking for trapped single Na atom

- Trapping Cs single atom
- Cs single atom cooling
- Na MOT
- Looking for trapped single Na atom

- Trapping Cs single atom
- Cs single atom cooling
- Na MOT
- Looking for trapped single Na atom

2/5

- Trapping Cs single atom
- Cs single atom cooling
- Na MOT
- Looking for trapped single Na atom

Problems

- Sodium laser
- MOT stability

- Trapping Cs single atom
- Cs single atom cooling
- Na MOT
- Looking for trapped single Na atom

Problems

- Sodium laser
- MOT stability

- Trapping Cs single atom
- Cs single atom cooling
- Na MOT
- Looking for trapped single Na atom

Problems

- Sodium laser
- MOT stability

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
- Waveguide doubler

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
- Waveguide doubler

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using doubled diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
- Waveguide doubler

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using doubled diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
- Waveguide doubler

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using doubled diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
- Waveguide doubler

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using doubled diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
 Tunable from ...nm to ...nm
- Waveguide doubler

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using doubled diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
 Tunable from ...nm to ...nm
- Waveguide doubler

Sodium wavelengths

- D lines ≈ 589 nm
- D2 line (Cooling, Imaging)
- D1 line (Pumping, Cooling)
- Off resonance (Raman transition)

Using doubled diode laser

- Diode laser spectrum
- Power requirement for frequency doubling
- Diode laser from Innolume / TimeBase
 Tunable from ...nm to ...nm
- Waveguide doubler

MOT stability

- Interference and stability issue with a small MOT
- Modulating the MOT beams

MOT stability

- Interference and stability issue with a small MOT
- Modulating the MOT beams

Members