Marina Meila - inspired Nonlinear model intro Goals: understand K-NN trees Kernel methods) f(x), decision regions What would logistic regression do? - can only fit one hyperplane NN: many hyperplanes (1 per hidden neuron) 4 red +s

XOR publem

not linearly separable

k-nearest neighbors K-NN, pro: one parameter K (int) cons: all data have to be stored and looked at to make a prediction $f(\vec{x}) = \sum_{i \in N_{\kappa}(\vec{x})} y_i / K$ f(x): Algorithm 1) Find K-NNs of x in training set $N_{k}(\vec{x}) = \{i_{1},...,i_{k}: distance to \times_{i_{1}},...,\times_{i_{k}}\}$ lex than any other point

2) Output label of majority (classification) of neighbors avg. label of neighbors (regression)

 $d(\vec{x}, \vec{x}') = ||\vec{x} - \vec{x}'||_2$ 1-NN Picture w/ 2 pts K>1: Still polygons but don't perfectly fit data bias for k>1 Pick K with cross-validation & variance

Trees

I dea: Split your domain on a single dimension at a time splits (diff. sides of hyperplane) need to be aligned w/ coordinate axes

Kernel methods / Smoothers

$$f(\vec{x}) = \sum_{i=1}^{n} W_i k(\vec{x}, \vec{x}_i) y_i$$

kernel function

Similarity of \vec{x} , \vec{x}_i

ex/ $k(\vec{x}, \vec{x}') = \exp\left(-\frac{||\vec{x} - \vec{x}'||^2}{2h^2}\right)$ Graussian, radial basis

Function

$$\sum_{i=1}^{n} k(\vec{x}, \vec{x}') = \sum_{i=1}^{n} k(\vec{x}, \vec{x}_i) y_i$$

$$\sum_{i=1}^{n} k(\vec{x}, \vec{x}_i) y_i$$

Smoother biased by density of pts - ways to debias
w/ linear regression

Beware: wany frings called kernels hot convolutional kernel not nullspace of a matrix not popcorn

$$\frac{\partial C}{\partial w_i} = 0$$
 in element of ∇C