A 12	B 23	C 30	D 35				
0	0	0	0	0	0	0	0
0	0	0	1	1	0	35	35
0	0	1	0	2	0	30	30
0	0	1	1	3	1	30+35	65
0	1	0	0	4	0	23	23
0	1	0	1	5	1	23+35	58
0	1	1	0	6	1	23+30	53
0	1	1	1	7	1	23+30+35	88
1	0	0	0	8	0	12	12
1	0	0	1	9	0	12+35	47
1	0	1	0	10	0	12+30	42
1	0	1	1	11	1	12+30+35	77
1	1	0	0	12	0	12+23	35
1	1	0	1	13	1	12+23+35	70
1	1	1	0	14	1	12+23+30	65
1	1	1	1	15	1		100

Las acciones de una compañía están repartidas en poder de cuatro accionistas de la siguiente forma: A, 12%; B, 23%; C, 30%; D, 35%. Las decisiones se toman por mayoría y cada uno de los accionistas tiene un botón particular de la mesa de juntas que se utiliza para las votaciones. Diseñe un circuito combinacional mínimo en forma AND/OR y OR/AND que indique si se aprueban las propuestas presentadas por la junta de accionistas.

A 12	B 23	C 30	D 35		
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	2	0
0	0	1	1	3	1
0	1	0	0	4	0
0	1	0	1	5	1
0	1	1	0	6	1
0	1	1	1	7	1
1	0	0	0	8	0
1	0	0	1	9	0
1	0	1	0	10	0
1	0	1	1	11	1
1	1	0	0	12	0
1	1	0	1	13	1
1	1	1	0	14	1
1	1	1	1	15	1

AND/OR F = BD + CD + BC

A 12	B 23	C 30	D 35		
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	2	0
0	0	1	1	3	1
0	1	0	0	4	0
0	1	0	1	5	1
0	1	1	0	6	1
0	1	1	1	7	1
1	0	0	0	8	0
1	0	0	1	9	0
1	0	1	0	10	0
1	0	1	1	11	1
1	1	0	0	12	0
1	1	0	1	13	1
1	1	1	0	14	1
1	1	1	1	15	1

a1	a0	b1	b0		Z	Z 4	Z 3	Z 2	Z 1	Z 0	
0	0	0	0	0	2x0					0	
0	0	0	1	1	2x0					0	
0	0	1	0	2	2x0					0	
0	0	1	1	3	2x0					0	
0	1	0	0	4	2x0					0	
0	1	0	1	5	2x1					0	
0	1	1	0	6	2x2					0	
0	1	1	1	7	2x3					0	
1	0	0	0	8	2x0					0	
1	0	0	1	9	2x2					0	
1	0	1	0	10	2x4					0	
1	0	1	1	11	2x6					0	
1	1	0	0	12	2x0					0	
1	1	0	1	13	2x3					0	
1	1	1	0	14	2x6					0	
1	1	1	1	15	2x9					0	

Diseñe un circuito combinacional mínimo en forma AND/OR y OR/AND que opere con dos datos de dos bits, $A = a_1 a_0$ y $B = b_1 b_0$, y realice la función Z = 2*A*B.

2x3x3=18 =>> 5 salidas Z= z4 z3 z2 z1 z0

¡Siendo z0=0 siempre!

a1	a0	b1	b0		Z	Z 4	Z 3	Z 2	Z 1	Z 0	
0	0	0	0	0	2x0	0	0	0	0	0	
0	0	0	1	1	2x0	0	0	0	0	0	
0	0	1	0	2	2x0	0	0	0	0	0	
0	0	1	1	3	2x0	0	0	0	0	0	
0	1	0	0	4	2x0	0	0	0	0	0	
0	1	0	1	5	2x1	0	0	0	1	0	
0	1	1	0	6	2x2	0	0	1	0	0	
0	1	1	1	7	2x3	0	0	1	1	0	
1	0	0	0	8	2x0	0	0	0	0	0	
1	0	0	1	9	2x2	0	0	1	0	0	
1	0	1	0	10	2x4	0	1	0	0	0	
1	0	1	1	11	2x6	0	1	1	0	0	
1	1	0	0	12	2x0	0	0	0	0	0	
1	1	0	1	13	2x3	0	0	1	1	0	
1	1	1	0	14	2x6	0	1	1	0	0	
1	1	1	1	15	2x9	1	0	0	1	0	

Diseñe un circuito combinacional mínimo en forma AND/OR y OR/AND que opere con dos datos de dos bits, $A = a_1 a_0$ y $B = b_1 b_0$, y realice la función Z = 2*A*B.

2x3x3=18 =>> 5 salidas Z= z4 z3 z2 z1 z0

¡Siendo z0=0 siempre!

Z4 = Σ m(15) Z3 = Σ m(10, 11, 14) Z2 = Σ m(6, 7, 9, 11, 13, 14) Z1 = Σ m(5, 7, 13, 15) Z0 = 0

Estos son los mapas de las funciones a realizar y los cubos para la realización AND/OR, continuar el problema para obtener el circuito AND/OR. También hacerlo para OR/AND.

Analice el circuito de la figura y obtenga la tabla de verdad de la función de conmutación resultante.

Analice el circuito de la figura y obtenga la tabla de verdad de la función de conmutación resultante.

$$f = \overline{(A \cdot B \cdot C)} \cdot (\overline{\overline{B} \cdot \overline{C}}) = (\overline{A} + \overline{B} + \overline{C}) \cdot (B + C)$$

$$f = \overline{(A \cdot B \cdot C)} \cdot (\overline{\overline{B} \cdot \overline{C}}) = (\overline{A} + \overline{B} + \overline{C}) \cdot (B + C)$$

A	В	С		(/A + /B + /C)	(B+C)	f
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	2	1	1	1
0	1	1	3	1	1	1
1	0	0	4	1	0	0
1	0	1	5	1	1	1
1	1	0	6	1	1	1
1	1	1	7	0	1	0

•Analice el circuito de la figura y obtenga la tabla de verdad de la función de conmutación resultante.

 Analice el circuito de la figura y obtenga la tabla de verdad de la función de conmutación resultante.

$$f = (\overline{X \cdot Y}) \oplus (\overline{X} + Y)$$

X	Y		$\overline{X \cdot Y}$	$\overline{X} + Y$	$f = (\overline{X \cdot Y}) \oplus (\overline{X} + Y)$
0	0	0	1	1	0
0	1	1	1	1	0
1	0	2	1	0	1
1	1	3	0	1	1

¡ La función es f = X!

$$f = (\overline{X \cdot Y}) \oplus (\overline{X} + Y)$$
 $a \oplus b = \overline{a}b + \overline{a}\overline{b}$

$$\begin{array}{l}
\lambda = (\overline{x}, \overline{y}) \cdot (\overline{x} + \overline{y}) + (\overline{x}, \overline{y}) \cdot (\overline{x} + \overline{y}) \\
= (x, y) \cdot (\overline{x} + \overline{y}) + (\overline{x} + \overline{y}) \cdot (x, \overline{y}) \\
0 + xy + 0 + x\overline{y} \\
\downarrow = x \cdot (y + \overline{y}) = x
\end{array}$$

PROBLEMA 14. Planteamiento: Un "codificador" de posición de un eje proporciona una señal de 4 bits que indica la posición del eje en incrementos de 30°, utilizando el código que se da en la siguiente tabla. Diseñar un circuito combinacional mínimo con dos niveles de puertas NAND/NAND y NOR/NOR tal que a su salida detecte si la posición del eje corresponde al primer cuadrante (entre 0° y 90°).

Posición del eje (en grados)	Salida del codificador			
(en grados)	X	у	Z	u
0-30	0	0	1	1
30-60	0	0	1	0
60-90	0	1	1	0
90-120	0	1	1	1
120-150	0	1	0	1
150-180	0	1	0	0
180-210	1	1	0	0
210-240	1	1	0	1
240-270	1	1	1	1
270-300	1	1	1	0
300-330	1	0	1	0
330-360	1	0	1	1

 PROBLEMA 14

X	Y	Z	U		F
0	0	0	0	0	-
0	0	0	1	1	-
0	0	1	0	2	1
0	0	1	1	3	1
0	1	0	0	4	0
0	1	0	1	5	0
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	-
1	0	0	1	9	-
1	0	1	0	10	0
1	0	1	1	11	0
1	1	0	0	12	0
1	1	0	1	13	0
1	1	1	0	14	0
1	1	1	1	15	0

•Un "codificador" de posición de un eje proporciona una señal de 4 bits que indica la posición del eje en incrementos de 30°, utilizando el código que se da en la siguiente tabla. Diseñar un circuito combinacional mínimo con dos niveles de puertas NAND/NAND y NOR/NOR tal que a su salida detecte si la posición del eje corresponde al primer cuadrante (entre 0° y 90°).

$$F = \Sigma m(2, 3, 6) + d(0, 1, 8, 9)$$

PROBLEMA 14

Posición del eje	Salida del				
(en grados)	codificador				
(en grados)	X	у	Z	u	
0-30	0	0	1	1	
30-60	0	0	1	0	
60-90	0	1	1	0	
90-120	0	1	1	1	
120-150	0	1	0	1	
150-180	0	1	0	0	
180-210	1	1	0	0	
210-240	1	1	0	1	
240-270	1	1	1	1	
270-300	1	1	1	0	
300-330	1	0	1	0	
330-360	1	0	1	1	

Posición del eje	Salida del					
(en grados)	codificador					
(en grados)	X	у	Z	u		
0-30	0	0	1	1		
30-60	0	0	1	0		
60-90	0	1	1	0		
90-120	0	1	1	1		
120-150	0	1	0	1		
150-180	0	1	0	0		
180-210	1	1	0	0		
210-240	1	1	0	1		
240-270	1	1	1	1		
270-300	1	1	1	0		
300-330	1	0	1	0		
330-360	1	0	1	1		

Un "codificador" de posición de un eje proporciona una señal de 4 bits que indica la posición del eje en incrementos de 30°, utilizando el código que se da en la siguiente tabla. Diseñar un circuito combinacional mínimo con dos niveles de puertas NAND/NAND y NOR/NOR tal que a su salida detecte si la posición del eje corresponde al primer cuadrante (entre 0° y 90°).

$$F(xyzu) = \Sigma m(2, 3, 6) + d(0, 1, 8, 9)$$

Esta es la función a realizar, continuar el problema para la síntesis NAND/NAND Y NOR/NOR.

Fin