Purdue CS555 Cryptography Lecture 1: Introduction

August 26, 2025

Introduction

The course focuses on Cryptography's **Primitives**, **Toolkits**, **Applications**, and **Methodology**.

Misconceptions

Cryptography is often narrowly perceived, but its true scope is broad:

- Crypto ≠ Cryptocurrencies.
- Crypto \neq Encryption/Secure Communication.

It includes applications like proof of work (integrity), anonymous communication (onion network), and identifiable LLM generated data (watermark).

0.1 Crypto Research - High Level Picture

Cryptographic research sits at the intersection of two key areas:

- 1. Theoretical Computer Science & Math: Deals with assumptions and security proof via reduction
- 2. System & Hardware: Focuses on performance so on accelerating cryptography related computation

1 Information Leakage and Privacy Foundations

1.1 Information Leakage

- **Definition**: Leakage is any information statistically correlated to the secret X.
- Any process involving a secret X can lead to leakage, modeled by a **leakage function** F(X).
- Examples:
 - Sensitive training data $(X) \to \text{Model response } (F(X)).$
 - Password (X) \rightarrow Power consumption or timing (side-channel F(X)).

1.2 Privacy Risk Quantification

The main concern is an informed adversary (with full knowledge of F) observing F(X). The goal is to prevent the adversary from reconstructing features of X.

- Quantification: Measures the risk via the **posterior probability** that the adversary can achieve a satisfactory reconstruction of X.
- The risk depends on the secret's **entropy** (objective randomness) and the adversary's **belief** (subjective prior).
- Worst-Case Analysis: Privacy guarantees often remove assumptions on the secret distribution by performing worst-case analysis, meaning guarantees hold for an arbitrary distribution of X.

2 Perfect Secrecy and Indistinguishability

2.1 Definition of Perfect Secrecy

A leakage function $F(\cdot)$ satisfies perfect secrecy if, for a computationally-unbounded and rational adversary with an arbitrary prior belief on secret input X, their posterior belief after observing the leakage F(X) is **identical to their prior belief**. This initializes privacy risk measurement from the **worst-case posterior advantage** angle (the difference between prior and posterior).

2.2 Equivalence to Indistinguishability

Perfect secrecy is equivalent to input-independent indistinguishability:

$$\forall Y, Y', c: \Pr[F(Y) = c] = \Pr[F(Y') = c]$$

If the leakage c is equally likely for any two input candidates Y and Y', the output is indistinguishable, and therefore reveals nothing about the specific input. This implies no additional advantage for any adversarial inference.

3 Two Types of Leakage

The course differentiates two main contexts for leakage:

3.1 Intermediate Secrecy (Cryptography)

- Tradeoff: A "free lunch" in terms of accuracy/utility is possible under additional assumptions, aiming for perfect indistinguishability.
- Goal: Achieving security with weaker assumptions and better computational efficiency.

3.2 Output Secrecy (Information Theory and Statistics)

- **Tradeoff**: There is **no free lunch** in terms of accuracy/utility. There is an inherent tradeoff between utility and privacy.
- Goal: Finding the optimal utility-privacy tradeoff (e.g., minimal randomization for required guarantees). This model generally accepts a non-zero posterior advantage.