

ACTIVIDAD EN CLASE 1

Instrucciones

Responda de manera clara y justifique cada respuesta. Use notación adecuada y, en los ejercicios numéricos, incluya las unidades correspondientes.

Parte I: Preguntas conceptuales (Valor: 2.0)

- 1. ¿Cuál es la diferencia entre la carga eléctrica fundamental y la carga neta de un cuerpo?
- 2. ¿Por qué se dice que la fuerza eléctrica es una fuerza de acción a distancia? ¿Cómo cambia la magnitud de la fuerza si la distancia entre dos cargas puntuales se reduce a la mitad?
- 3. Explique el significado de la expresión "un átomo neutro". Explique el significado de "un átomo con carga negativa".
- 4. Mencione un ejemplo físico donde se modele el sistema como una distribución continua de carga. ¿Por qué en ese caso no sería adecuado tratarlo como un conjunto de cargas puntuales?
- 5. Tres cargas están colocadas en los vértices de un cuadrado, como muestra la figura. ¿Cuál es la dirección de la fuerza electrostática sobre la carga en el vértice superior derecho?(Justifique)

Parte II: Ejercicios de aplicación (Valor: 3.0)

Ejercicio 1: Ley de Coulomb

Dos cargas puntuales $q_1 = +3 \,\mu\text{C}$ y $q_2 = -2 \,\mu\text{C}$ se encuentran separadas una distancia de 0,4 m.

- a) Calcule la magnitud de la fuerza eléctrica entre ellas.
- b) Indique la dirección de la fuerza sobre cada carga.

Ejercicio 2: Campo eléctrico de una distribución continua

Una varilla delgada y recta de longitud $L=2\,\mathrm{m}$ está uniformemente cargada con densidad lineal $\lambda=+5\,\mu\mathrm{C/m}$. La varilla yace sobre el eje x, centrada en el origen, ocupando el intervalo [-L/2, +L/2]. Considere un punto P situado sobre el mismo eje en $x=x_0$.

- 1. Planteamiento del proceso: Describa con claridad los pasos para calcular el campo eléctrico $\vec{E}(x_0)$ en el punto P debido a la varilla:
 - a) Elija un elemento diferencial de carga $dq = \lambda dx$ y escriba el $d\vec{E}$ que produce en P.
 - b) Indique la dirección y el sentido de \vec{E} (justifique por qué el campo queda en una sola dirección sobre el eje).
 - c) Establezca los **límites de integración** correctos y la integral para el $\vec{E}(x_0)$.
 - d) Discuta el **signo** del resultado final (para $\lambda > 0$) de acuerdo con la posición de P (por ejemplo, $x_0 > L/2$ o $x_0 < -L/2$).
- 2. Cálculo: Evalúe la integral y escriba una expresión cerrada para $E_x(x_0)$ en el caso $x_0 > L/2$.
- 3. Casos límite y verificación: Analice el comportamiento de su resultado en los siguientes límites y explique si son físicamente razonables:
 - a) $x_0 \to +\infty$ (lejos de la varilla, debe recuperar el comportamiento de una carga total equivalente).
 - b) $L \to 0$ con $\lambda L = \text{constante}$ (la varilla se aproxima a una carga puntual).
- 4. Cambio de signo de la carga: ¿Cómo cambia la dirección del campo si $\lambda < 0$? Explique sin recalcular la integral.