Assignment 4

U21546216

Scott Bebington

Task 1

- 1.1) D
- 1.2) A
- 1.3) C
- 1.4) D
- 1.5) C

Task 2

2.1)

		All Values are in Kb					
1 Megabyte block	1024						
	3x	3x Internal Fregmentation					
Request A: 200Kb	A = 256		256			512	
	3x Internal Fregmentation						
Request B: 40Kb		A = 256	B = 64	64	128	512	
	3x Internal Fregmentation						
Request C: 120Kb		A = 256	B = 64	64	C = 128	512	
	Ox Internal Fregmentation						
Return A		256	B = 64	64	C = 128	512	
	Ox Internal Fregmentation						
Request D: 60Kb		256	B = 64	D = 64	C = 128	512	
	0x Internal Fregmentation						
Return B		256	64	D = 64	C = 128	512	
	1x Internal Fregmentation						
Return D		256	12	28	C = 128	512	
	3x	3x Internal Fregmentation					
Return C		1024					

Task 3

- 3.1) 350 is greater than 148 therefor a segment fault occurs.
- 3.2) 220 is greater than 122 therefor a segment fault occurs.
- 3.3) 762 is less than 812 therefor the physical address is: 770 + 762 = 1532.
- 3.4) 300 is less than 408 therefor the physical address is: 1582 + 300 = 1882.
- 3.5) 237 is less than 510 therefor the physical address is: 1990 + 237 = 2227.

Task 4

4.1) proportional allocation algorithm states that for each process there must be "A" amount of frames allocated.

The formula for this is A = (si / S)*m

si = size of process pi

S = sum of all the sizes of all the processes

M = number of frames in the system

P1: Number of frames required is: A= (30 / (30 + 90 + 60 + 120))*256 = 25.6, rounded up to 26 frames

P2: Number of frames required is: A= (90 / (30 + 90 + 60 + 120))*256 = 76.8, rounded up to 77 frames

P3: Number of frames required is: A=(60 / (30 + 90 + 60 + 120))*256 = 51.2, rounded down to 51 frames

P4: Number of frames required is: A = (120 / (30 + 90 + 60 + 120))*256 = 102.4, rounded down to 102 frames

Task 5

- 5.1) 16 entries x 4KB per page = 64KB
- 5.2) 64KB x 4 segments per task = 256KB
- 5.3) The physical address occupies a total of 24 bits

Converting the hexadecimal value 012ABC to binary gives us: 0000 0001 0010 1010 1011 1100

The maximum physical address space is = 2^24 = 16MB