Multifaceted Collaborative Filtering Model

SMAI CSE 471
Spring 2019
Dr. Ravi Kiran Sarvadevabhatla

Team Name: Team Houdini (33)

Mentor: Nikhil Gogate

Outline

- o Problem Statement
- o What are Recommender Systems?
- o Motivation
- o Dataset
- o Models
 - o Neighborhood Model
 - SVD++ Model
 - o Integrated Model
- o Results
- Challenges and Limitations

Problem Statement

- o To use collaborative filtering techniques to apply on Movie dataset that recommends the movies for users based on the reviews and past data.
- Implement baseline CF models
 - Neighborhood model
 - SVD++ model
- Improve them using technique that integrates the two models.

What are Recommender Systems?

- o Information filtering system that seeks to predict the "rating" or "preference" a user would give to an item.
- Two main types of Recommender Systems:
 - Content based
 - Collaborative Filtering
 - Neighborhood Model
 - SVD++(Latent Factor Model)
- o Used in variety of areas:
 - Video and music recommenders (Netflix, YouTube, Spotify)
 - Product recommenders (Amazon, Myntra)

Motivation

- Enhancing user satisfaction and loyalty by matching consumers with appropriate products.
- Netflix Prize Open competition for best CF algorithm to predict user rating for films.
- o "We need to go win a million dollars"

Dataset

- o MovieLens 100k data.
- Collected by the GroupLens Research Project at the University of Minnesota.
- o 100,000 ratings (1-5) from 943 users on 1682 movies.
- o Each user has rated at least 20 movies.

u_data.head()

	user_id	movie_id	rating	timestamp
0	196	242	3	881250949
1	186	302	3	891717742
2	22	377	1	878887116
3	244	51	2	880606923
4	166	346	1	886397596

Fig1: Dataset entries

Fig2: Rating Distribution

Fig3: Rating Distribution

Fig4: PDF of Number of Ratings by user

• PDF graph shows that almost all of the users give very few ratings. There are very few users who's ratings count is high.

Fig5: Number of Ratings per Movie

• Some movies are very popular and rated by many users vs other movies.

Fig6: Day of Week v/s Number of Ratings

Baseline estimate

Baseline estimate for predicting rating for movie i by user u (b_{ui})

$$b_{ui} = \mu + b_u + b_i$$

- O Item bias (b_i)
- O Rating by user u for item i (r_{ui}) .
- o Implicit feedback (N(u)) contains all items for which implicit preference was provided by user u.)
- o In order to estimate bu and bi we can solve the least squares problem:

$$\min_{b_*} \sum_{(u,i)\in\mathcal{K}} (r_{ui} - \mu - b_u - b_i)^2 + \lambda_1 (\sum_u b_u^2 + \sum_i b_i^2)$$

SVD and SVD++ model

- Matrix factorization is a class of <u>collaborative filtering</u> algorithms.
- A popular approach to latent factor models is induced by an SVD-like lower rank decomposition of the ratings matrix.
- Each user u is associated with a user-factors vector $p_u \in R_f$, and each item i with an item-factors vector $q_i \in R_f$.
- o Prediction is done by the rule: $\hat{r}_{ui} = b_{ui} + p_u^T q_i$
- This is the SVD model. An improvement to this model is Asymmetric SVD which uses implicit feedback.
- As we do not really have much independent implicit feedback for the our ml-100k dataset, so we turn towards an improved model.

SVD and SVD++ model

SVD++ model:
$$\hat{r}_{ui} = b_{ui} + q_i^T \left(p_u + |\mathrm{N}(u)|^{-\frac{1}{2}} \sum_{j \in \mathrm{N}(u)} y_j \right)$$

o Its results are more accurate than all previously published methods on the Netflix data and other similar movie datasets which struggles with the same implicit feedback limitation.

Neighborhood model

- o User oriented CF system.
- Estimate unknown ratings based on recorded ratings of like-minded users.
- o Neighborhood model:

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in S^k(i;u)} \theta^u_{ij} (r_{uj} - b_{uj})$$

o Improved Neighborhood model as described by the equation:

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in \mathcal{R}(u)} (r_{uj} - b_{uj}) w_{ij}$$

Neighborhood model

O We can use implicit feedback, which provide an alternative way to learn user preferences. To this end, we add another set of weights, and rewrite the previous equation:

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in R(u)} (r_{uj} - b_{uj}) w_{ij} + \sum_{j \in N(u)} c_{ij}$$

o Final Model:

$$\hat{r}_{ui} = \mu + b_u + b_i + |R(u)|^{-\frac{1}{2}} \sum_{j \in R(u)} (r_{uj} - b_{uj}) w_{ij}$$
$$+ |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} c_{ij}$$

Integrated model

 A combined model which will sum the predictions of previously defined neighborhood and SVD++ model.

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T \left(p_u + |\mathcal{N}(u)|^{-\frac{1}{2}} \sum_{j \in \mathcal{N}(u)} y_j \right)$$

$$+ |\mathcal{R}^k(i; u)|^{-\frac{1}{2}} \sum_{j \in \mathcal{R}^k(i; u)} (r_{uj} - b_{uj}) w_{ij} + |\mathcal{N}^k(i; u)|^{-\frac{1}{2}} \sum_{j \in \mathcal{N}^k(i; u)} c_{ij}$$

Integrated model

o Backprop for Integrated model:

•
$$b_u \leftarrow b_u + \gamma_1 \cdot (e_{ui} - \lambda_6 \cdot b_u)$$

•
$$b_i \leftarrow b_i + \gamma_1 \cdot (e_{ui} - \lambda_6 \cdot b_i)$$

•
$$q_i \leftarrow q_i + \gamma_2 \cdot (e_{ui} \cdot (p_u + |\mathcal{N}(u)|^{-\frac{1}{2}} \sum_{j \in \mathcal{N}(u)} y_j) - \lambda_7 \cdot q_i)$$

•
$$p_u \leftarrow p_u + \gamma_2 \cdot (e_{ui} \cdot q_i - \lambda_7 \cdot p_u)$$

•
$$\forall j \in \mathcal{N}(u)$$
:

$$y_j \leftarrow y_j + \gamma_2 \cdot (e_{ui} \cdot |\mathcal{N}(u)|^{-\frac{1}{2}} \cdot q_i - \lambda_7 \cdot y_j)$$

•
$$\forall j \in \mathbf{R}^k(i; u)$$
:

$$w_{ij} \leftarrow w_{ij} + \gamma_3 \cdot \left(|\mathbf{R}^k(i;u)|^{-\frac{1}{2}} \cdot e_{ui} \cdot (r_{uj} - b_{uj}) - \lambda_8 \cdot w_{ij} \right)$$

•
$$\forall j \in \mathcal{N}^k(i;u)$$
:

$$c_{ij} \leftarrow c_{ij} + \gamma_3 \cdot \left(|\mathcal{N}^k(i;u)|^{-\frac{1}{2}} \cdot e_{ui} - \lambda_8 \cdot c_{ij} \right)$$

Implementation Insights

- We've implemented all three models mentioned
 - Neighborhood Model
 - SVD++ Model
 - Integrated Model
- o Datasets was around 99% sparse, so we used Sparse Matrix (CSR format) instead of Dense Matrix.
- o One assumption made was that every user who have watched the movie has rated it.
- o Number of Latent factors for user and item used were 20 and Epoch count was 30

Implementation Insights

- o Parameters used :
- O Meta parameters: γ1 = γ2 = 0.007, γ3 = 0.001, λ6 = 0.005, λ7 = λ8 = 0.015.
 - We decrease step sizes (the γ 's) by a factor of 0.9 after each iteration.
 - o All results are measured for Epochs of 30.
 - o Epoch time for running the models on Kaggle/Laptop(Mac) were:
 - Neighborhood Model: 2.30 mins (Mac)
 - o SVD++ model : 2.13 mins (Kaggle)
 - o Integrated model: 3.03 mins (Kaggle)

Results

```
processing epoch 28
Time For Epoch :: 0:02:41.989238
Err = 1.775769004502983
Time For Error :: 0:00:08.660341
  processing epoch 29
Time For Epoch :: 0:02:24.828145
Err = 1.775727153704525
Time For Error :: 0:00:08.595317
1.775727153704525
```

```
processing epoch 28
Time For Epoch :: 0:02:13.639239
Err = 0.9411261391466791
Time For Error :: 0:00:04.046057
processing epoch 29
Time For Epoch :: 0:02:13.121249
Err = 0.941076217885924
Time For Error :: 0:00:04.004687
0.941076217885924
```

RMSE Error (Neighborhood Model)

RMSE Error (SVD++ Model)

Results

processing epoch 28
Time For Epoch :: 0:03:02.497476
Err = 0.9283700156796918
Time For Error :: 0:00:06.288783
processing epoch 29
Time For Epoch :: 0:03:02.442041
Err = 0.928305834760709
Time For Error :: 0:00:06.636619
0.928305834760709

RMSE Error (Integrated Model)

Neighborhood Model	SVD++	Integrated Model
1.7757	0.941	0.9283

Error in RMSE (root mean square error)

Predictions

```
print("Watched movies by user: "+usr)
print()
for i in seen movie str list:
    print(i)
Watched movies by user: 203
Hercules (1997):: Adventure Animation Childrens Comedy
                                                           Musical
Starship Troopers (1997):: Action Adventure Sci-Fi
One Fine Day (1996):: Drama Romance
Nixon (1995):: Drama
Mother (1996):: Comedy
Star Trek: First Contact (1996):: Action Adventure Sci-Fi
Emma (1996):: Drama Romance
Ransom (1996):: Drama Thriller
Fly Away Home (1996):: Adventure Childrens
Playing God (1997):: Crime Thriller
```

```
Predicted movies for user: 203
Fargo (1996):: Crime Drama Thriller
Return of the Jedi (1983):: Action Adventure Romance Sci-Fi War
Michael Collins (1996):: Drama War
Willy Wonka and the Chocolate Factory (1971):: Adventure Childrens Comedy
Scream (1996):: Horror Thriller
Saint:: Adventure Sci-Fi War
Liar Liar (1997):: Comedy
```

Limitations

- Insufficient hardware support to run large dataset (Netflix dataset), even in CSR format.
- Better sources needed for implicit feedback.
- Data sparsity
- Scalability
- Cold Start is genuine problem for Recommender Models. It's relevant for both new users and new movies which the model encounters.
- o For our model:
 - o If the { User , Movie } pair is new to the model, we predict the global mean of all the movies.

Thank You.