1 Data Storage and I/O

1.1 Data storage and I/O

1.2 File Formats

- Binary Formats
 - Numeric values stored encoded in binary representation
 - * 32 bi float
 - * 16 but integer
 - Properties
 - * Compact
 - * High Performance I/O
 - * Not Human Readable
 - * Worry about int size, endiness, un/signed
- Plain text formats (ASCII/Unicode)
 - Numeric values encoded as ASCII/Unicode strings
 - * float \rightarrow "3.1415926"
 - * int \rightarrow "44"
 - Peroperties:
 - * Human Readable
 - * Self-documenting
 - * Slower I/O
 - * Less compact
- Choice depends on app
 - Smaller files \rightarrow Plain Text
 - Larger files \rightarrow Binary

1.3 ASCII Formats for Tabular Data

- Two common formats:
 - CSV: Comma Separated Values
 - FWF: Fixed Width Format

1.4 CSV

- Plain txt format
- Rows on Lines
- Column sep by commas
- Not only commas (Tabs: TSV)

- Strins Containing commas are quoted
- Advantages
 - Read by multiple apps e.g. Excel
 - Fast to parse/generate
 - can be compressed (.csv.gz)
 - Do not need to load all into mem. (Streamable)
- Disadvantages:
 - Not standardised
 - Bulkier than binary formats (esp. if not compressed)
 - No types

1.5 FWF

- Plain text format
- Rows on Lines
- Columns of fixed width (fixed no. of chars)
- Colum,ns padded using padding char (usually space)
- Advantages:
 - Easier to read in plain txt
 - Can be read by most apps
 - Fast to parse
 - Can be compressed (.fwf.gz)
 - Streamable
- Disadvantages:
 - Not standardised
 - Bulkier than CSV (padding chars)
 - Need to establish field width before can write first row
 - No types

1.6 Binary formats for tabular data

Binary formats are more compact and performant. Not human readable! Common binary formats:

- HDF5
- MATLAB
- NumPy
- Apache Arrow and Feather
- Excel

1.7 HDF5

- Hierarchical Data Format Version 5
- Industry standard for numeric structured tab. data
- Used in scientific community
- Can store mult. datasets in single file
- organize datasets into hierarchical struct. like filesys
- Metadata using ättributes"
- Memory mapping so entire dataset not need to be loaded into memory. Mem. can be shared between processes
- Library suppor in many langs.
- Advantages:
 - High performance
 - Compact
 - Mult. datasets in one file
 - Include type info
 - Metadata
 - Parallel reads, share mem
 - Optional compression
- Disadvantages:
 - Not human readable
 - Can be cumbersome when table size not known in advance

1.8 MATLAB Files

- Proprietary format used by MATLAB
- Common for data exchange in industry/academia
- Store mult named arrays and various other structs
- Newer versions of MATLAB (2006+) use HDF5

1.9 NumPy

- NumPy has builtin support for 2 bin formats
 - .npy contains single numpy arrays
 - .npz contains multiple arrays
- Format supports compression
- Advantages/Disadvantages

- Fast, compact
- Supports mem. mapping
- Built in support for numPy
- No metadata
- Not standardized
- Main use store temporary results

1.10 Excel Format

- Common proprietary format used in Excel
 - XLS/XLSX files
- Advantage:
 - Works with MS products
 - Keeps formatting (colours etc.
- Disadvantages:
 - Keeps formatting
 - Not portable
 - Proprietary

1.11 Common formats for structured data

More complex structures than plain tables (although can be reduced to tables) Structure: encode data types, attributes, relationships, hierarchies.

Common plain-text formats for structuresd data:

- \bullet XML
- JSON
- YAML

Binary formats:

- MessagePack
- Google Protobuf

1.12 XML

- Extensible Markup Language
- Format for structured data Human and Machine readable
- $\bullet\,$ Self describing No additional documentation
- Hierarchy made up of
 - Elements

- Attributes
- Content
- Advantages:
 - Self-Describing
 - Human Readable
- Disadvantages:
 - High Overhead
 - Verbose
 - Slow parsers
 - Not well duited to big datasets
 - XML namespaces are nightmare
 - Seperate validation and DTD
 - Painful to manually type

1.13 **JSON**

- JS Object Notation
- Subset of JS for desc. data
- Value types:
 - String
 - Number
 - Boolean
 - Object
 - Array
 - Null
- Type implicit in syntax
 - -35 is a number
 - "35"s a string
 - − ä": 1 is an object
 - 1,2,3 is an array
- \bullet Advantages:
 - Has types
 - Hierarchical
 - Human readable
 - Self-describing
 - Easy to write by hand

- More compact
- Faster to parse
- Most languages have parsers
- Disadvantages:
 - Some overhead
 - Not well suited to big datasets

1.14 YAML

- YAML Ain't Markup Language
- Like JSON but easier to write
- Very useful for config/meta files
- Slower than JSON

1.15 MessagePack

- Binary encoded JSON
- More compact than JSON
- Advantages
 - Compact
 - High I/O performance
 - Good for network $\rm I/O$ and DBs
 - Good for bigger data
 - Streamable
- Disadvantages:
 - Not Human readable
 - Less suited to large numerical arrays

1.16 Google Protobuf

- Serializing data over the wire, can be used as file format
- Defines protocol specification language (prototxt) and wire format
- Used for model spec. and distribution by well-known deep learning library developed by Berkeley

1.17 Things to consider when choosing a data format

- \bullet I/O performance
- Structure support
- Streamable
- Scalability
- Appendable
- Portability
- Compactness
- Metadata
- Type support
- Readability
- Write by hand

1.18 Databases

- Common for data acq. and storage
- Advantages
 - Network Access
 - concurrency
 - Enforced consistency
 - Fast indexes
 - Query languages
- Not efficient for large binary data
- Two important types:
 - Relational Databases (SQL)
 - NoSQL Databases

2 Data Wrangling

2.1 Real-World Datasets

Real world datasets often "dirty": messy, inconsistent sources of problems

- $\bullet\,$ Use incomplete standards
- Manyal entry errors
- Measurement errors

- Inconsustent notations
- Redundancies and duplicates
- Missing values
- E.G:
 - Headers needing to be removed
 - Blank Lines
 - Missing Column names
 - Subheadings embedded in table
 - Hierarchy of categories implied using whitespace

2.2 Data Wrangling

- Process of transforming "raw" data into data that can be analysed to generate actionable insights
- AKA:
 - Preprocessing
 - Munging
 - Cleaning
 - Scrubbing
 - Preparation
 - Transformation

2.3 Typical tasks

- Fixing ugly/broken formats
- Handling missing values
- Remoiving redundant attributes and records
- Fixing inconsitencies
- Shaping data
- Fusing data sources
- Scraping and gathering data from external sources
- Extracting info from unstructured sources

2.4 Ugly and Broken Formats

- Examples:
 - Badly formatted tables
 - Broken XML/JSON (Syntax Errors)
 - Hand entered data with syntax errors
 - Log files with strange formatting
- First Step: Transform to more machine friendly parsable format
- Toolbox:
 - Python csv module
 - Text editor like Vim
 - Custom parsing scripts
 - RegEx
 - Tabular
 - Pandas

2.5 Missing Values

- Common, can have significant effects on analysis and conclusions
- Causes
 - Non-response
 - Unobserved or unknown values
 - Sensor or measurement errors
 - Censorship
 - Erros in data collection or data entry
- Often show up in datasets as
 - Special NA values
 - NaN
 - null or None
 - Sentinel values (e.g. age == -1)
 - Blanks
- Three types:
 - 1. Missing completely at random (MCAR): missing values random;ly distributed for all observations
 - 2. Missing at random (MAR): Prob. of value being missing depends on other observed variables
 - 3. Missing not at random (MNAR): Prob. of value being missing depends on value of missing variable or another unobserved variable
 - MCAR and MAR assumption is common
 - If addunp. made when dealing with missing values, make them explicit

2.6 Strategies for handling missing values

- Three common approaches:
 - 1. Ignore
 - Drop missing values when computiong summary stats. (mean, variance)
 - 2. Remove
 - If plenty of data available, may be possible to ignore rows with missing values
 - 3. Impute
 - Try to fill in blanks
 - Common imputation techniques
 - * Mean/mode sub
 - * Predict from other attrib.
 - * Interpolation (e.g. time series)
- May introduce bias for MNAR values

2.7 Redundant attributes

- For example:
 - Useless attribs
 - Duplicated attribs
 - Attribs easily derived from other attribs
- Can cause problems for some stat analysis
- Eliminate redundancy where possible

2.8 Inconsistent Categories (Nominal Attributes)

- E.G:
 - Misspellings
 - Inconsistent Spellings
 - Hyphenation
 - Inconsistent case
 - Inconsistent abbreviations
- Techniques:
 - Print unique vals and try to detect outliers and splits
 - Normalize case and spelling
- Tools:
 - Unix: sort | uniq
 - Py: sort, set()
 - str.lower, str.replace,
 - regex

2.9 Dates and Times

- Variation in ways can be represented
- Cleaning should be standardized to single format
- Preferably include timezone info.

2.10 Parsing dates and times

parsedatetime library will parse almost anything Consider arrow library if a lot of date and time amnipulatio

2.11 Outlliers

- Data points extremely unlikely under data distribution
- Causes:
 - Measurement Error
 - Recording Error
 - Statistical anomalies
- Oftern want to identify prior to further analysis
 - Measure quantity of outliers
 - label outlier
 - Completely remove

2.12 Detecting Outliers

- Can detect by plotting data/visual inspection
 - Boxplots, jitter plots, histograms
- Alt. can make assumptions about distrib. of attrib. and find items unlikelyt under distrib
- e.g.assume data normally distributed
 - Estimate sample mean and std. dev from data, compute Z scores

$$z = \frac{z - \mu}{\delta}\mu = Samplemean\delta = samplestd.dev.$$

2.13 Data shaping

- Data often stored in "stacked/record format
- Sometimes more convenient to have one öbservation" per row with mult.
- Achieved by reshapoing or pivot operations

2.14 Dealing wit unstructured data

So far looked at cleaning structured data. Whar about semi/unstructured data

- Natural language plain text
- HTML files

Usually want to extract some features from data for analysis One way of encoding text features: bag-of-words

2.15 Web scraping: getting data from webpages

• Idea: extract structured info from unstructured web pages by auto downloading and parsing

Task	Issues	
Getting the data	HTTP requests, cookies, headers, download, JS, timing	wget, curl, requ
Figuring out which data to get	Link crawling and spidering	
Extracting structured info	Robust parsing, DOM querying	PyQuery,

2.16 Web scraping

- wget, curl
 - Convenient cmd line tools
- requests
 - Easily make HTTP req. directly in Py
- mechanize
 - Stateful programmatic web browsing
 - Pretend to be a browser (cookies, headers, and all)
- selenium
 - Remote control an actual browser

2.17 PyQuery

• Parsing and querying HTML with PyQuery

2.18 Processing log files

- Good example of semi-structured data
- Log analysis: making sense and extracting info from log files
- Regex and string partitioning are useful tools:
 - Built-in python re module
 - Python string function
 - Unix tools: sed, awk, grep, vim

2.19 Data wrangling best practices

- Keep raw data separate from cleaned data
 - Never overwrite raw data
- Script data wrangling steps as much as possible
 - Need to change something later on, easier if steps are scripted
- Document all transforms, all assumptions made
 - Distribute documentation with cleaned dataset
 - $-\,$ Make wrangling process as reproducable as possible
- \bullet For large datasets, start with small random sample
 - Iterate faster: once perfected cleaning steps, apply to full datasets