DESKRIPSI MATERI

PERTEMUAN KE: 11. POKOK BAHASAN: Uji Normalitas

Mata Kuliah : Statistika Lanjut

A. PENGANTAR

B. TUJUAN

Setelah mempelajari materi ini diharapkan mahasiswa dapat :

- 1. Mengetahui Peran penting dari uji normalitas
- 2. Mengetahui prosedur pengujian normalitas data

C. MATERI

1. Pengertian Uji Normalitas

Uji Normalitas data adalah bentuk pengujian tentang kenormalan distribusi data. Tujuan dari uji ini adalahuntuk mengetahui apakah data yang terambil merupakan data terdistribusi normal atau bukan. Maksud dari data berdistribusi normal adalah data akan mengikuti bentuk distribusi normal di mana data memusat pada nilai rata – rata dan median. Rumus yang digunakan adalah rumus kai kuadrat (chi – kuadrat).Prosedur Pengujian Normalitas data.

2. Prosedur Pengujian Normalitas Data

a. Merumuskan Hipotesis

H₀: data berdistribusi normal

H₁: data tidak berdistribusi normal

b. Menentukan nilai uji statistic

- Rata rata ()
- Simpangan Baku
- c. Menentukan taraf nyata ()
- d. Menentukan Chi-kuadrat table ()
- e. Menentukan derajat bebas (dk)

$$Dk = k - 3$$

K = banyaknya kelas interval

f. Menentukan kriteria pengujian hipotesis

Contoh:

Berikut adalah data skor mahasiswa dalam menyelesaikan soal – soal kalkulus 2 dalam bentuk table distribusi frekuensi.

Data	Xi	f_i	$f_i x_i$		
30-40	35	4	140	1225	4900
41-51	46	5	230	2116	10580
52-62	57	7	399	3249	22743
63-73	68	8	544	4624	36992
74-84	79	5	395	6241	31205
85-95	90	3	270	8100	24300
jumlah		32	1978		130720

Ujilah normalitas data di atas!

Jawab:

Langkah 1.

Merumuskan hipotesis

 H_0 : data berdistribusi normal

 H_1 : data tidak berdistribusi normal

Langkah 2:

Menentukan nilai uji statistic

Rata-rata

= -----

_ ___

= 61,81

Standar Deviasi

= $\overline{264,21}$

= 16,25

Selanjutnya membuat daftrar table frekuensi observasi dan frekuensi ekpektasi.

Langkah-langkah:

Data	Batas Kelas
30-40	29,5-40,5
41-51	40,5-51,5
52-62	51,5-62,5
63-73	62,5-73,5
74-84	73,5-84,5
85-95	84,5-95,5

Mencari nilai z-score untuk batas kelas interval

Untuk 29,5 – 40,5

$$Z = \frac{}{Z} = \frac{}{Z}$$

Dan seterusnya untuk batas – batas kelas lainnya, sehingga diperoleh:

Data	Batas Kelas	Nilai z
30 - 40	29,5 – 40,5	-1,98 dan 1.31
41 - 51	40,5 – 51,5	-1,31 dan -0,63
52 - 62	51,5 – 62,5	-0,63 dan 0,04
63 - 73	62,5 – 73,5	0,04 dan 0,72
74 - 84	73,5 – 84,5	0,72 dan1,39
85 - 95	84,5 – 95,5	1,39 dan 2,13

Mencari luas 0 – z dari table kurva normal

Untuk nilai z = -1,98, lihat di table z didapat 0,4761

Z	0	1	•••••	8	3
0,0					
••••					
1,5	0,4332	0,4345		0,44	129
1,6					
1,7					
1,8					
1,9	0,4713	0,4719		0,47	61

Untuk nilai z = -1,31, lihat table z didapat 0,4049, dan seterusnya untuk nilai z - score lainnya.

Mencari luas tiap kelas interval

Apabila tandanya sama dikurangi, apabila tandanya berbeda maka ditambahkan. Contoh:

Untuk nilai z = -1,98 didapat 0,4761

$$Z = -1,31 \text{ didapat } 0,4049$$

Tandanya sama (+) maka luastiap kelas intervalnya 0,4761 - 0,4049 = 0,0612

Lakukan untuk nilai z yang lainnya.

Mencari frekuensi yang diharapkan (E_i)

E_i = Luas tiap kelas interval X

Mencari (Chi-kuadrat)

Membuat tabelfrekuensi ekspektasi dan pengamatan

Data	O _i	Batas Kelas	Nilai z	Luas tiap	E_{i}	(-)
				Kelas		
				interval		
30 - 40	4	29,5 – 40,5	-1,98 dan -1,31	0,0612	1,9584	2,1283
41 - 51	5	40,5 – 51,5	-1,31 dan -0,63	0,1692	5,4144	0,0317
52 - 62	7	51,5 – 62,5	-0,63 dan 0,04	0,2517	8,0544	0,1380
63 - 73	8	62,5 – 73,5	0,04 dan 0,72	0,2482	7,9424	0,0004
74 - 84	5	73,5 – 84,5	0,72 dan 1,39	0,1535	4,9120	0,0015
85 - 95	3	84,5 – 95,5	1,39 dan 2,13	0,0657	2,1024	0,3832
	32		_	_ (_)	2,6831
			-	- (,	

Menentukan

Menentukan derajat bebas (dk)

$$Dk = banyaknya kelas - 3$$

$$Dk = 6 - 3$$

$$=3$$

Menentukan X²_{tabel}

$$X^{2}_{tabel} = X^{2}_{(1\%, 3)}$$

= 11,3 (lihat table
$$X^2$$
), Kolom 5% baris 3

Menentukan kriteria pengujian hipotesis

 H_0 ditolak jika X^2_{hitung} X^2_{tabel} dan sebaliknya.

Kesimpulan:

Karena X^2_{hitung} < X^2_{tabel} , maka H_0 diterima, artinya data berdistribusi normal

TUGAS PEMAHAMAN DAN REVIEW

1. Ujilah data di bawah ini apakah berdistribusi normal atau tidak

Nilai	f_i
50 - 59	22
60 - 69	16
70 - 79	7
80 - 89	2
90 - 99	3
jumlah	50

- 2. Buatlag rangkuman dari materi di atas
- 3. Kumpulkan print outnya.