Álgebra / Álgebra II Clase 15 - Transformaciones lineales. Núcleo e imagen

FAMAF / UNC

28 de mayo de 2024

Definición

Una transformación lineal entre dos espacios vectoriales V y W es una función $T:V\longrightarrow W$ tal que

(1) Preserva la suma:

$$T(v+v') = T(v) + T(v') \quad \forall v, v' \in V$$

(2) Preserva el producto por escalares

$$T(\lambda v) = \lambda T(v) \quad \forall v \in V, \lambda \in \mathbb{R}$$

Observación

 $T: V \longrightarrow W$ es transformación lineal \Leftrightarrow

$$T(v + \lambda v') = T(v) + \lambda T(v') \quad \forall v, v' \in V, \lambda \in \mathbb{K}.$$

Ya conocemos transformaciones lineales muy importantes.

Observación

Sea $A \in \mathbb{R}^{m \times n}$ y consideramos la función

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$v \mapsto Av.$$

Entonces T es una transformación lineal.

Demostración

Debemos ver que T respeta suma y producto por escalares.

Sean $v_1,v_2\in\mathbb{R}^n$ y $\lambda\in\mathbb{R}$ entonces

$$T(v_1 + \lambda v_2) = A(v_1 + \lambda v_2) = Av_1 + \lambda Av_2 = T(v_1) + \lambda T(v_2).$$

Ejemplo

Sea $D(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : \exists f'(x), \forall x \in \mathbb{R} \}$ el espacio vectorial de todas las funciones reales derivables.

Entonces la derivada es una transformación lineal de $D(\mathbb{R})$ a $F(\mathbb{R})$, el espacio vectorial de funciones de \mathbb{R} en \mathbb{R} , pues

$$(f+cg)'=f'+cg'$$

Ejemplo

La integral indefinida es una transformación lineal de funciones continuas en funciones continuas, pues

$$\int (f+cg)\,dx = \int f\,dx + c\int g\,dx.$$

Ejemplos de transformaciones lineales

Ejemplo

Sea $\mathcal{T}:\mathbb{K}^3 o \mathbb{K}^2$ definida por

$$T(x_1, x_2, x_3) = (2x_1 - x_3, -x_1 + 3x_2 + x_3).$$

Entonces, T es una transformación lineal, pues observar que si

$$A = \begin{bmatrix} 2 & 0 & -1 \\ -1 & 3 & 1 \end{bmatrix},$$

entonces

$$\begin{bmatrix} 2 & 0 & -1 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - x_3 \\ -x_1 + 3x_2 + x_3 \end{bmatrix}.$$

Luego por el resultado de la p. 3, T es una transformación lineal.

Observación

Sea $T:\mathbb{K}^n o \mathbb{K}^m$ definida por

$$T(x_1,...,x_n) = (a_{11}x_1 + \cdots + a_{1n}x_n,...,a_{m1}x_1 + \cdots + a_{mn}x_n)$$

con $a_{ii} \in \mathbb{K}$, entonces

$$T(x) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Es decir, si $A = [a_{ij}]$, entonces T es la transformación lineal inducida como en la p. 3 por la matriz A.

(contra) Ejemplos

Ejemplo

No todas las funciones son transformaciones lineales. La función $f(x) = x^2$ de \mathbb{R} no es lineal.

Probamos esto dando un ejemplo concreto donde no se verifique algunas de las propiedades. Por ejemplo:

$$(1+1)^2 = 4 \neq 2 = 1^2 + 1^2$$
.

Observación

Sea $T:V\longrightarrow W$ una transformación lineal. Entonces T(0)=0.

Demostración

$$T(0) = T(0+0)$$
 $T(0) = T(0) + T(0)$ (linealidad de T)
 $-T(0) + T(0) = -T(0) + T(0) + T(0)$
 $0 = 0 + T(0) = T(0)$.

Entre otras cosas esta propiedad, es útil como "test" para verificar si una función *no* es transformación lineal.

Ejemplo

Sea V un espacio vectorial y $v_0 \in V$ un vector no nulo. Entonces la función $f:V\longrightarrow V$ dada por

$$f(v) = v + v_0 \quad \forall v \in V$$

no es lineal dado que

$$f(0) = 0 + v_0 = v_0 \neq 0.$$

Observación

Las transformaciones lineales preservan combinaciones lineales, es decir si $T:V\longrightarrow W$ es una transformación lineal, $v_1,...,v_k\in V$ y $\lambda_1,...,\lambda_k\in\mathbb{R}$, entonces

$$T(\lambda_1 v_1 + \cdots + \lambda_k v_k) = \lambda_1 T(v_1) + \cdots + \lambda_k T(v_k)$$

Esquema de la demostración

La demostración sigue por inducción y aplicando la definición de t. lineal.

- Caso base. $T(\lambda_1 v_1) = \lambda_1 T(v_1)$. Lo cual es cierto porque es una de las condiciones de la definición de transformación lineal.
- Paso inductivo.

$$T(\lambda_1 v_1 + \dots + \lambda_k v_k) = T(\lambda_1 v_1) + T(v_2 + \dots + \lambda_k v_k) \quad (T \text{ es t.l.})$$
$$= \lambda_1 T(v_1) + \dots + \lambda_k T(v_k) \quad (C.B. \text{ e HI})$$

Definición

Sea $T: V \longrightarrow W$ una transformación lineal.

 \circ La $imagen\ de\ T$ es el subconjunto de W

$$Im(T) = \{ T(v) \mid v \in V \} = \{ w \in W \mid T(v) = w \}$$

o El *núcleo de T* es el subconjunto de *V*

$$Nu(T) = \{v \in V \mid T(v) = 0\}$$

Observación

- \circ Im(T) se define como la imagen de cualquier función.
- Nu(T) serían las raíces de la transformación.
- o Nu(T) es definido de forma implícita al igual que la segunda expresión de Im(T).
- La primera expresión de Im(T) es de forma explícita o paramétrica, donde el parámetro es un vector.

Notación

Si $T: V \rightarrow W$ transformación lineal denotamos

$$T(V) := \{T(v) : v \in V\} = Im(T).$$

El núcleo y la imagen son importante entre otras cosas por lo siguiente.

Teorema

Sea $T:V\longrightarrow W$ una transformación lineal. Entonces

- \circ Im(T) es un subespacio vectorial de W.
- \circ Nu(T) es un subespacio vectorial de V.

A continuación haremos la demostración.

Demostración: Nu(T) es subespacio

- $Nu(T) \neq \emptyset$ pues T(0) = 0 y por lo tanto $0 \in Nu(T)$.
- Si $v, w \in V$ tales que T(v) = 0 y T(w) = 0, entonces,
 - $T(v+w) = T(v) + T(w) = 0 \Rightarrow v+w \in Nu(T)$.
 - Si $\lambda \in \mathbb{K}$, entonces $T(\lambda v) = \lambda T(v) = \lambda.0 = 0 \Rightarrow \lambda v \in Nu(T)$.

Demostración: Im(T) es subespacio

- ∘ $Im(T) \neq \emptyset$, pues $0 = T(0) \in Im(T)$.
- \circ Si $T(v_1), T(v_2) \in \operatorname{Im}(T)$ y $\lambda \in \mathbb{K}$, entonces
 - $T(v_1) + T(v_2) = T(v_1 + v_2) \in Im(T)$.
 - $\lambda T(v_1) = T(\lambda v_1) \in \operatorname{Im}(T)$.

Lema

Sea $T:V\longrightarrow W$ una transformación lineal con V de dimensión finita. Sea $\{v_1,...,v_k\}$ una base de V. Entonces $\{T(v_1),...,T(v_k)\}$ genera a Im(T) y por lo tanto Im(T) es de dimensión finita.

Demostración

Por hipotesis:
$$V = \langle v_1, ..., v_k \rangle = \{\lambda_1 v_1 + \cdots + \lambda_k v_k \mid \lambda_1, ..., \lambda_k \in \mathbb{K}\}.$$

Luego,
$$\operatorname{Im}(T) = \{ T(v) \mid v \in V \}$$

$$= \{ T(\lambda_1 v_1 + \dots + \lambda_k v_k) \mid \lambda_1, \dots, \lambda_k \in \mathbb{K} \}$$

$$= \{ \lambda_1 T(v_1) + \dots + \lambda_k T(v_k) \mid \lambda_1, \dots, \lambda_k \in \mathbb{K} \}$$

$$= \langle T(v_1), \dots, T(v_k) \rangle.$$

Entonces Im(T) es generado por $S = \{T(v_1), ..., T(v_k)\}$. Por Teorema 3.3.9, existe un subconjunto \mathcal{B} de S que es base de Im(T). En particular, Im(T) es de dimensión finita.

Sea $T:V\longrightarrow W$ una transformación lineal y supongamos que V es de dimensión finita.

Como Nu(T) es un subespacio de un espacio dimensión $<\infty\Rightarrow\dim(\operatorname{Nu}T)<\infty.$

Por el lema anterior $\dim(\operatorname{Im} T) < \infty$.

Definición

Sea $T:V\longrightarrow W$ una transformación lineal y supongamos que V es de dimensión finita. Entonces

- \circ El rango de T es la dimensión de Im(T).
- o La nulidad de T es la dimensión de Nu(T).

Vimos en la p. 3 que toda matriz $m \times n$ induce una transformación lineal de \mathbb{R}^n en \mathbb{R}^m .

Observación

Toda transformación lineal entre \mathbb{R}^n y \mathbb{R}^m es de la forma "multiplicar por una matriz".

Demostración

La demostración es parte de un resultado más general, por ahora solo decimos que si $\{e_i\}$ es la base canónica,

$$T(e_i)=a_{1i}e_1+a_{2i}e_2+\cdots+a_{mi}e_m, ext{ para } i=1,\ldots,n,$$
 y $A=[a_{ii}], ext{ entonces } Tv=Av.$

Así que analicemos un poco más en detalle las transformaciones lineales inducidas por matrices.

Definición

Sea $A \in \mathbb{R}^{m \times n}$ y sea T la transformación lineal

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$v \mapsto Av.$$

Diremos que T es la transformación lineal asociada a A o la transformación lineal inducida por A.

Muchas veces denotaremos a esta transformación lineal con el mismo símbolo que la matriz, es decir, en este caso con A.

Ejemplo

Consideremos la matriz
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
.

Entonces si v = (x, y, z),

$$A(v) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y+z \\ 2x+2y+2z \end{bmatrix}$$

En particular, $(1, -1, 0) \in Nu(A)$ pues

$$A(1,-1,0) = (1+(-1)+0,2\cdot 1+2\cdot (-1)+2\cdot 0) = (0,0)$$

у

$$A(1,0,0) = (1,2) \in Im(A)$$

 $A(0,1,\pi) = (1+\pi,2+2\pi) \in Im(A)$

Proposición

Sea $A \in \mathbb{R}^{m \times n}$ y $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ la transformación lineal asociada. Entonces

- \circ El núcleo de T es el conjunto de soluciones del sistema homogéneo AX=0
- o La imagen de T es el conjunto de los $b \in \mathbb{R}^m$ para los cuales el sistema AX = b tiene solución

Demostración

Se demuestra fácilmente escribiendo las definiciones de los respectivos subconjuntos.

$$v \in Nu(T) \Leftrightarrow Av = 0 \Leftrightarrow v$$
 es solución de $AX = 0$.

 $b \in \text{Im}(T) \Leftrightarrow \exists v \in \mathbb{R}^n$ tal que $Av = b \Leftrightarrow AX = b$ tienen solución.

Ejemplo

Sea $T: \mathbb{R}^3 \to \mathbb{R}^4$, definida

$$T(x, y, z) = (x + y, x + 2y + z, 3y + 3z, 2x + 4y + 2z).$$

- (1) Describir Nu(T) en forma paramétrica y dar una base.
- (2) Describir Im(T) en forma paramétrica y dar una base.

Solución

La matriz asociada a esta transformación lineal es

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & 3 \\ 2 & 4 & 2 \end{bmatrix}$$

Debemos encontrar la descripción paramétrica de

$$Nu(T) = \{v = (x, y, z) : A.v = 0\}$$

$$Im(T) = \{y = (y_1, y_2, y_3, y_4) : \text{tal que } \exists v \in \mathbb{R}^3, A.v = y\}$$

En ambos casos, la solución depende de resolver el sistema de ecuaciones cuya matriz asociada es A:

$$\begin{bmatrix} 1 & 1 & 0 & y_1 \\ 1 & 2 & 1 & y_2 \\ 0 & 3 & 3 & y_3 \\ 2 & 4 & 2 & y_4 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 1 & 0 & y_1 \\ 0 & 1 & 1 & -y_1 + y_2 \\ 0 & 3 & 3 & y_3 \\ 0 & 2 & 2 & -2y_1 + y_4 \end{bmatrix}$$

$$F_1 - F_2 \xrightarrow{F_3 - 3F_2} F_{3 - 3F_2} F_{4 - 2F_2} \begin{bmatrix} 1 & 0 & -1 & 2y_1 - y_2 \\ 0 & 1 & 1 & -y_1 + y_2 \\ 0 & 0 & 0 & 3y_3 \\ 0 & 0 & 0 & -2y_1 + y_2 \end{bmatrix},$$

$$T(x,y,z) = (y_1, y_2, y_3, y_4) \Leftrightarrow \begin{cases} x-z &= 2y_1 - y_2 \\ y+z &= -y_1 + y_2 \\ 0 &= 3y_1 - 3y_2 + y_3 \\ 0 &= -2y_2 + y_4 \end{cases}$$

Si hacemos $y_1 = y_2 = y_3 = y_4 = 0$, entonces las soluciones del sistema describen el núcleo de T, es decir

$$Nu(T) = \{(x, y, z) : x - z = 0, y + z = 0\} = \{(s, -s, s) : s \in \mathbb{R}\}$$
$$= \{s(1, -1, 1) : s \in \mathbb{R}\}$$

que es la forma paramétrica.

Una base del núcleo de T es $\{(1,-1,1)\}$.

Luego,

$$Im(T) = \{(y_1, y_2, y_3, y_4) : \text{ tal que } 0 = 3y_1 - 3y_2 + y_3 \text{ y } 0 = -2y_2 + y_4\}$$

Resolviendo este sistema, obtenemos

$$\begin{aligned} \mathsf{Im}(T) &= \{ (-\frac{1}{3}s + \frac{1}{2}t, \frac{1}{2}t, s, t) : s, t \in \mathbb{R} \} \\ &= \{ s(-\frac{1}{3}, 0, 1, 0) + t(\frac{1}{2}, \frac{1}{2}, 0, 1) : s, t \in \mathbb{R} \} \end{aligned}$$

Luego $\{(-\frac{1}{3},0,1,0),(\frac{1}{2},\frac{1}{2},0,1)\}$ es una base de Im(T).