Ecotoxicological Effect Prediction Using Knowledge Graph Embedding

Erik B. Myklebust^{1,2}, Ernesto Jimenez-Ruiz^{2,3}, Jiaoyan Chen⁴, Raoul Wolf¹, and Knut Erik Tollefsen¹

¹Norwegian Institute for Water Research (NIVA), Oslo, Norway

²Department of Informatics, University of Oslo, Oslo, Norway

³Alan Turing Institute, London, United Kingdom

⁴Department of Computer Science, University of Oxford, United Kingdom

SETAC Helsinki, May 27th, 2019

contact: ebm@niva.no

Background

Lack of sufficient effect data for one or more species are currently limiting hazard and risk assessment.

Research question

Needs

Develop robust approaches to perform gap filling using the available information across species and compounds.

Objective

Complement traditional approaches (e.g. QSARs) for predicting ecotoxicological effects.

Proposed solution

- i. Materialize a knowledge graph (KG) from disparate sources.
- ii. Embed the KG with well proven models (embedding ⇔ vector space representation).
- iii. Embeddings are used to train a model.

Data sources in blue. Details found in [1].

Prediction problem

Gap filling problem. Solid known and dashed unknown.

The normalized effect of c_i on s_j is modeled as a function

$$f\colon C,S\mapsto (0,1)\subset \mathbb{R}$$

 $C \equiv \text{all}$ entities in compound hierarchy, $S \equiv \text{all}$ entities in taxonomy.

Models

The objective of the models is to learn function f. We compare three models with varying complexity.

Baseline

A compound-species pair inherit effects from the *most similar* compound-species pairs.

Multilayer perceptron

Learning strictly from effect data.

Knowledge graph embedding and multilayer perceptron

Learning embeddings from knowledge graph and using these to train a multilayer perceptron model.

Example

Two settings:

- i. Only samples for zincsulfate and coppersulfate.
- ii. Use all available additional data to train models.

Example results

Figure: Setting i. results. Higher is better.

Example results

Figure: Setting ii. results.

General results

Figure: Random train/test sets (0.7/0.3 split).

Abstraction

Figure: Effects on family of ladybugs (Coccinellidae).

Conclusion

- Models with background knowledge generally predicts effects with higher metrics.
- We have to sacrifice precision to improve recall, but not linearly proportional.
- ► The knowledge graph enables prediction on higher taxonomic levels.
- ▶ Near future work: Integrate the knowledge graph and prediction models with NIVA's risk assessment system.

Thank you for listening.

contact: ebm@niva.no

Acknowledgements

This work is supported by the grant 272414 from the Research Council of Norway (RCN), the MixRisk project (RCN 268294), the AlDA project (UK Government's Defence & Security Programme in support of the Alan Turing Institute), the SIRIUS Centre for Scalable Data Access (RCN 237889), the Royal Society, EPSRC projects DBOnto, MaSI³ and ED³. We would also like to thank Martin Giese and Zofia C. Rudjord for their contribution in early stages of this project. This work is organized under NCTP (www.niva.no/nctp).

Related work

- [1] Myklebust, E. B., Jimenez-Ruiz, E., Chen, J., Wolf, R., Tollefsen, K. E. Knowledge Graph Embedding for Ecotoxicological Effect Prediction Submitted, 2019. Contact ebm@niva.no for preprint.
- [2] Additional Resources https://github.com/Erik-BM/NIVAUC

