

Introduction aux Réseaux de Télécommunications

André-Luc BEYLOT
ENSEEIHT
Département Sciences du Numérique

Introduction

Un réseau longue distance (transmission de données)

Les applications

- Parole téléphonique :
 - Débit faible (et constant)
 - Contraintes de délai et de variation de délai
- Besoin d'un fonctionnement simple et rapide
- Données informatiques :
 - Débit variable potentiellement élevé
 - Contraintes sur la perte
 - Contraintes faibles sur le délai et la gigue

Besoin d'une fiabilité/fiabilisation élevée

Plan Général

- Introduction générale
- Réseaux de transmission de données
 - X.25
 - Frame Relay
 - ◆ ATM
- Réseaux à commutation de circuit
 - ◆ Le RTC et la signalisation
 - Augmentation des débits : Les hiérarchies (PDH)/SDH
- Réseaux d'accès Télécom
 - Le réseau d'accès RNIS
 - ADSL
 - FTTH
 - (réseaux d'accès mobiles : 58)

Introduction

Un réseau téléphonique

Fonctionnement entre extrémités

- Mode connecté :
 - On prévient le destinataire avant
 - On dialogue avec lui
 - On ferme le dialogue
 - A ce niveau : Marquage/choix du chemin source/destination
- Mode non connecté :
 - On dialogue
 - A ce niveau : pas de marquage des chemins
- Dans les réseaux télécoms => mode connecté
- Dans les réseaux informatiques
 - Mode connecté = circuit virtuel
 - Mode non-connecté = mode datagramme

Mode connecté/non-connecté

- Avantages/inconvénients:
 - Mode non connecté: rapidité, évolutivité en fonction pannes/ pointes de trafic
 - Mode connecté: plus lent mais fiabilisation plus simple; une fois que le chemin est choisi, plus rapide
- C'est naturellement le mode retenu par les opérateurs car
 - Une grande partie de l'intelligence est mise dans le réseau (surtout pour les réseaux informatiques)
 - Cela facilite la gestion du réseau et de ses ressources

Commutation de circuit

- Fonctionnement synchrone
- Allocation fixe de ressources
- Frequency Division Multiplexing (FDM)

Time Division Multiplexing

8

Remarques

- On peut aussi faire un mélange des deux
- Sur des fibres optiques : multiplexage en longueur d'onde (éq. Multiplexage fréquentiel)
- Ressources constantes mais éventuellement plusieurs granularités (plusieurs débits possibles)
- Applications : réseau téléphonique, PDH, SDH, RNIS, GSM

Commutateurs de circuit

Temps de commutation constant et faible

10

Commutation de paquet

- Fonctionnement asynchrone
- Pas d'Allocation fixe de ressources
- Multiplexage statistique (Statistical Multiplexing)
- Plus performant que les multiplexages statiques

Trafic sur un lien

Commutateurs de paquet

Temps de traversée du commutateur variable ; Files d'attente

Avantages/inconvénients

Commutation de circuit

- Simple à mettre en œuvre
- Pas de traitement compliqué possible
- Ne permet que des débits constants
- Pas besoin d'(auto)-identifier les flux

Commutation de paquet

- Plus compliqué à mettre en œuvre
- Absorbe les variations de trafic
- Permet de mettre en œuvre des mécanismes:
 - Reprise sur erreur/perte
 - Contrôle de flux/congestion
- Nécessité d'identifier les paquets (pas de relation temporelle entre instant où l'on reçoit et émetteur)

Signalisation

- Ensemble des messages qui permettent de gérer les communications
 - Ouverture/fermeture des connexions
 - Gestion (des paramètres) de la connexion
- Indispensable pour les réseaux ayant fait le choix du mode connecté
- Attention, les besoins en qualité de service de ces flux ne sont pas forcément les mêmes que ceux des flux de données véhiculés
 - Problème de perte/erreur
 - délai moins crucial
 - Ces flux doivent être routés (adresses)
- Traitement spécifique de ces messages ?

Qualité de service

Commutation de circuit

- Une fois que les connexions sont établies, plus de problème de performance
- Fonctionnement à appels perdus : taux de rejet de connexion

Commutation de paquet

- Plus compliqué à mettre en œuvre
- Premiers réseaux: il fallait que cela fonctionne sans perte/ erreurs
- Par la suite: distinction de la qualité de service par flux
 - Délai, gigue, perte ...

Adressage

- Adressage structuré vs. Adressage non structuré
 - Adressage structuré : facilite le routage
 - Adressage non structuré : taille des adresses plus faibles
- Adressage structuré hiérarchique :
 - Permet de localiser le destinataire de façon simple:
 - + Adressage téléphonique
 - + Adressage postal
 - + Adressage des Réseaux Longue Distance
 - A ses limites : "numéro vert", mobilité, portabilité

15

Routage

- La fonction de routage a pour objectif de trouver un chemin entre la source et la destination
 - Echelle connexions (connecté) ou paquets (non connecté)
 - Le plus souvent on cherche le plus court chemin MAIS le problème des réseaux est que l'état du réseau et donc la valuation du graphe évolue au cours du temps :
 - Minimisation du nombre de sauts
 - + Trouver le chemin sur lequel le débit minimal est maximal
 - Le chemin le moins encombré...
 - Solution centralisée ou distribuée
 - Par la source ou saut par saut
- Pour dérouler l'algorithme de routage, on a besoin d'un protocole de routage:
 - Découverte topologique + état d'encombrement, pannes.17

16