G64190069_Rizal Mujahiddan_UAS_AED22.pdf

Rizal Mujahiddan

6/10/2022

Import Library

```
## -- Attaching packages ------ tidyverse 1.3.1 --
## v tibble 3.1.7 v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## Loading required package: MASS
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
      select
## Loading required package: survival
##
## Attaching package: 'bestNormalize'
## The following object is masked from 'package:MASS':
##
##
      boxcox
```

Buka Data terlebih Dahulu

```
data_uas <- read.csv("DATA UAS AED - 2022 - DATA SET.csv")
head(data_uas)
```

Summary

```
summary(data_uas)
```

```
## x y

## Min. : 1.0 Min. : 0.0

## 1st Qu.: 3.0 1st Qu.: 187.8

## Median : 5.5 Median : 1193.5

## Mean : 5.5 Mean : 2189.8

## 3rd Qu.: 8.0 3rd Qu.: 3585.0

## Max. :10.0 Max. :10000.0
```

Check Outlier

 \mathbf{X}

```
ggplot(data_uas,aes(x=x)) + geom_boxplot() +
ggtitle("Boxplot pada variable x")
```

Boxplot pada variable x

- Tidak ada outlier yang perlu dikhawatirkan
- Cenderung mendekati normal dikarenakan garis mediannya membagi panjang boxplot itu sendiri

```
ggplot(data_uas,aes(x=y)) + geom_boxplot() +
ggtitle("Boxplot pada variable y")
```

Boxplot pada variable y

- Ada outlier
- Cenderung tidak normal (Panjang sebelah)

Density Plot

 \mathbf{x}

```
ggplot(data_uas,aes(x=x)) + geom_density() +
ggtitle("Boxplot pada variable x")
```

Boxplot pada variable x

- Bisa Dikatakan mendekati normal saja, dikarenakan masih ada kemungkinan distribusi ${\bf x}$ itu mendekati distribusi ${\bf uniform}$
- kemudian ternyata kurang begitu memuncak distribusinya

descdist(data_uas\$x)

Cullen and Frey graph


```
## summary statistics
## -----
## min: 1 max: 10
## median: 5.5
## mean: 5.5
## estimated sd: 2.908872
## estimated skewness: 0
## estimated kurtosis: 1.774137
```

ullet Sudah dipastikan dengan Cullen and frey graph , bahwa data x merupakan data berdistribusi uniform bukan normal

 \mathbf{y}

```
ggplot(data_uas,aes(x=y)) + geom_density() +
ggtitle("Boxplot pada variable y")
```

Boxplot pada variable y

- distribusinya menjulur kekanan
- distribusi masih membingungkan dikarenakan grafiknya tidak mewakili grafik apapun ya

descdist(data_uas\$y)

Cullen and Frey graph


```
## summary statistics
## -----
## min: 0 max: 10000
## median: 1193.5
## mean: 2189.8
## estimated sd: 2515.642
## estimated skewness: 1.314584
## estimated kurtosis: 4.174921
```

• Membingungkan, dikarenakan data tersebut masuk ke distribusi beta, bukan ke distribusi yang lainnya. maka diperlukan **transformasi data**

Scatterplot

```
ggplot(data_uas,aes(x,y)) + geom_point() +
   ggtitle("Scatterplot X vs Y in data uas")
```

Scatterplot X vs Y in data uas

- JIka Diperhatikan, hubungan antara x dan y bukanlah linear
- kemungkinan hubungan data tersebut merupakan eksponensial maupun polinomial dikarenakan adanya cekung keatas.

Transformasi data

Berdasarkan dari internet dan artikel, dengan menggunakan bestNormalize. maka akan ditunjukkan dengan metode terbaik untuk menormalisasikan data tersebut

```
set.seed(1234)
ytransform <- bestNormalize(data_uas$y,standardize = FALSE)</pre>
ytransform
## Best Normalizing transformation with 40 Observations
   Estimated Normality Statistics (Pearson P / df, lower => more normal):
##
   - arcsinh(x): 1.72
##
   - Log_b(x+a): 1.88
##
   - No transform: 2.56
   - orderNorm (ORQ): 1.56
##
##
   - sqrt(x + a): 1.4
   - Yeo-Johnson: 1.4
##
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
```

```
## Based off these, bestNormalize chose:
## Non-Standardized sqrt(x + a) Transformation with 40 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - mean (before standardization) = 38.06826
## - sd (before standardization) = 27.5608
```

• Normalisasi yang bagus adalah dengan mengakarkan nilai y tersebut, sesuai dengan fungsi tersebut

```
data_uas$y.t <- ytransform$x.t</pre>
ytransform$x.t
          0.000000
##
    [1]
                      3.316625
                                  3.464102
                                              1.732051
                                                         7.745967
                                                                     8.544004
          7.681146
##
    [7]
                                 13.711309
                      7.211103
                                             13.674794
                                                        13.784049
                                                                    13.527749
  [13]
         21.142375
                     21.236761
                                 21.142375
                                             20.024984
                                                        29.461840
                                                                    29.614186
   [19]
         29.614186
                     28.301943
                                 38.923001
                                             38.858718
                                                        38.884444
                                                                    38.910153
         49.000000
                     48.989795
                                 48.989795
                                            49.000000
                                                        59.908263
                                                                    59.874870
##
   [25]
         59.874870
##
   [31]
                     59.874870
                                 71.456280
                                            71.407283
                                                        71.421285
                                                                    71.421285
## [37]
         83.642095
                     83.689904
                                 83.671979 100.000000
```

ggplot(data_uas,aes(x,y.t)) + geom_point() + ggtitle("Scatterpoint X vs Y.t")

Scatterpoint X vs Y.t

^{*} Jika diperhatikan, nilainya lumayan bagus, tetapi permasalahnnya mengapa ada nilai yang menumpuk pada x yang sama, inilah permasalahannya

Duga Parameter

linear regression

```
linear_reg <- lm('y.t ~ x',data=data_uas)</pre>
summary(linear_reg)
##
## Call:
## lm(formula = "y.t ~ x", data = data_uas)
## Residuals:
     Min
##
             1Q Median
                           3Q
## -5.096 -3.088 -1.350 2.318 19.904
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.2996
                        1.6049 -8.287 4.81e-10 ***
                           0.2586 36.109 < 2e-16 ***
## x
                9.3396
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 4.699 on 38 degrees of freedom
## Multiple R-squared: 0.9717, Adjusted R-squared: 0.9709
## F-statistic: 1304 on 1 and 38 DF, p-value: < 2.2e-16
nilai duga dari suatu linear regresi adalah y = 9.3396 * x - 13.2996
loessku <- loess('y.t ~ x',data=data_uas)</pre>
summary(loessku)
## Call:
## loess(formula = "y.t ~ x", data = data_uas)
## Number of Observations: 40
## Equivalent Number of Parameters: 4.2
## Residual Standard Error: 2.51
## Trace of smoother matrix: 4.58 (exact)
##
## Control settings:
          : 0.75
##
    span
    degree : 2
   family : gaussian
##
    surface : interpolate
                               cell = 0.2
##
   normalize: TRUE
## parametric: FALSE
## drop.square: FALSE
```

optional jika diperlukan suatu transformasi pada X pula

```
set.seed(1234)
xtransform <- bestNormalize(data_uas$x,standardize = FALSE)</pre>
## Best Normalizing transformation with 40 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.72
## - Box-Cox: 1.52
## - Exp(x): 4.28
## - Log_b(x+a): 1.72
## - No transform: 1.68
## - orderNorm (ORQ): 1.56
## - sqrt(x + a): 1.64
## - Yeo-Johnson: 1.56
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
## Based off these, bestNormalize chose:
## Non-Standardized Box Cox Transformation with 40 nonmissing obs.:
## Estimated statistics:
## - lambda = 0.7219552
## - mean (before standardization) = 3.205454
## - sd (before standardization) = 1.886104
data_uas$x.t <- xtransform$x.t</pre>
xtransform$x.t
  ## [8] 0.8995238 1.6764829 1.6764829 1.6764829 2.3832127 2.3832127
## [15] 2.3832127 2.3832127 3.0419262 3.0419262 3.0419262 3.0419262 3.6647414
## [22] 3.6647414 3.6647414 3.6647414 4.2592063 4.2592063 4.2592063 4.2592063
## [29] 4.8304327 4.8304327 4.8304327 4.8304327 5.3820896 5.3820896 5.3820896
## [36] 5.3820896 5.9169252 5.9169252 5.9169252 5.9169252
ggplot(data_uas,aes(x.t,y.t)) + geom_point() + ggtitle("Scatterpoint X.t vs Y.t")
```

Scatterpoint X.t vs Y.t

^{*} bagus

duga parameter transformasi X dan Y

```
linear_reg <- lm('y.t ~ x.t',data=data_uas)</pre>
summary(linear_reg)
##
## Call:
## lm(formula = "y.t ~ x.t", data = data_uas)
## Residuals:
     Min
              1Q Median
                            3Q
##
## -7.444 -5.250 -1.921 2.452 23.427
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.4512
                        2.0718 -3.596 0.000916 ***
## x.t
                14.2006
                           0.5589 25.410 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 6.583 on 38 degrees of freedom
## Multiple R-squared: 0.9444, Adjusted R-squared: 0.943
```

```
## F-statistic: 645.6 on 1 and 38 DF, p-value: < 2.2e-16
nilai duga dari suatu linear regresi adalah y = 14.2006 * x - 7.4512
loessku <- loess('y.t ~ x.t',data=data_uas)</pre>
summary(loessku)
## Call:
## loess(formula = "y.t ~ x.t", data = data_uas)
## Number of Observations: 40
## Equivalent Number of Parameters: 4.36
## Residual Standard Error: 2.535
## Trace of smoother matrix: 4.76 (exact)
##
## Control settings:
    span : 0.75
##
    degree : 2
##
##
   family : gaussian
##
   surface : interpolate
                               cell = 0.2
   normalize: TRUE
##
```

parametric: FALSE
drop.square: FALSE