BENCHMARK SIMULATION MODEL IN SIMULINK

Michał Bartyś, Salvador de las Heras

- What was done?
- What model?
- Positioner model
- Pneumatic chamber
- Valve
- End remarks

DAMADICS Workshop

ROBUST METHODS IN FAULT DIAGNOSIS HULL

January 25, 2002

What was done?

Concise progress report between September and December 2001

- Improving friction model with stick slip effect
- Tuning control valve model flow coefficient function
- Setting structure of handles for DAMADICS BENCHMARK ACTUATOR LIBRARY
- Preparing draft proposal of DAMADICS BENCHMARK ACTUATOR LIBRARY principles and structure

What model?

- Model of actuator consisting of: positioner, pneumatic motor and control valve
- Model based on physical phenomena description
- Created with many simplifications
- For better use, model general structure reflects hardware of actuator i.e. consists of: Positioner, Pneumatic Servomotor and Control Valve submodels
- Model does not contain: plant, installation and controller modeles
- Integrated with DAMADICS BENCHMARK ACTUATOR LIBRARY as a core of Actuator (Act) block
- Suitable for first phase of testing FDI algorithms prior to testing using process data and pilot industrial implementation
- Upgraded model version introduced in Lisbon Vacation School

What is to be simulated?

(An assembly of positioner, pneumatic servomotor and control valve)

Actuator assembly and installation

Actuator

Actuator general block diagram

Vector of faults **f** is used in DAMADICS BENCHMARK ACTUATOR LIBRARY Vector **f** entries are not further shown in this presentation with some exceptions

Actuator model (3 constituents)

Model was tuned for simulation of power station boiler

Is model tuning possible from real data?

Kv function reconstruction

The valve plug travel range of the of control valve may not be sufficiently enough for proper Kv function reconstruction.

Extrapolation technique may be used for example for Kv approximation

Actuator model

Power station boiler water supply simulation (results)

Input filter structure and properties

Proportional controller

SP

Classical solution
Booster drives electro-pneumatic transducer

Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems, FP5 DAMADICS Project

Electro-pneumatic transducer

Significant non-linearity and asymmetry

Feedback path

Pneumatic diaphragm servo-motor

(Basic equations)

$$F_{pu} = F_s + F_d + F_f + F_{vc} - F_g$$

$$F_{pd} = F_s + F_d - F_f + F_{vc} - F_g$$

k_s - spring constant

k_d - diaphragm constant

Ae - effective diaphragm area

ps - air pressure in chamber

F_n - normal packing force

F_p - active force

F_g - gravity force

F_s - spring compression force

F_d - diaphragm compression force

F_{fv} - viscosity friction force

F_{fC} - Coulomb friction force

F_{vc}- vena-contracta force

F_{dA}- d'Alembert force

x - rod displacement

x_o - initial spring compression stroke

m - mass of rod, valve, diaphragm

Servomotor hysteresis <> friction effect

rod down travel direction

$$\sum_{i=1}^{n} F_i = 0$$

$$F_{pu} - F_{pd} = 2F_f$$

Pneumatic chamber model **Basic equations**

Continuity law

The classical polytropic relationship

From (1) and (2)

$$\dot{m} = \rho \dot{V} + V \dot{\rho} \tag{1}$$

$$\frac{p_1}{\rho_1^n} = \frac{p_2}{\rho_2^n} \qquad \Rightarrow \qquad n = \frac{\dot{p}/p}{\dot{\rho}/\rho} \tag{2}$$

$$\dot{p} = \frac{1}{\left\lceil \frac{np}{\rho V} \right\rceil} \left(\dot{m} - \rho \dot{V} \right) \tag{3}$$

Assumming isothermal evolution and n=1
$$p = \frac{1}{\left\lceil \frac{RT_0}{V} \right\rceil} \int_0^t \dot{m} - \rho \dot{V} dt$$
 (4)

Pneumatic chamber model Simulation model

Model of control pressure valve - servo-motor chamber pressure transducer

Pneumatic diaphragm servomotor model

$$F_{p} = p_{s}A_{e}$$

$$F_{s} = k_{s}(x + x_{0})$$

$$F_{d} = k_{d}(x + x_{0})$$

$$F_{fC} = \operatorname{sgn}(\dot{x})F_{N}\mu_{f}$$

$$F_{fV} = k_{v}\dot{x}$$

$$F_{dA} = m\ddot{x}$$

$$F_{vc} = f(x, P1, P2, F, Kv, \alpha, \rho)$$

$$\sum_{i=1}^n F_i = 0$$

$$k_s >> k_d$$

$$m\ddot{x} + k_{v}\dot{x} + sign(\dot{x})F_{N}\mu + (k_{s} + k_{d})x + F_{vc}(x) + (k_{s} + k_{d})x_{0} - mg = p_{s}A_{e}$$

Force balance equation

Pneumatic diaphragm servo-motor

(simulation model)

Pneumatic diaphragm servo-motor

(Model of stick-slip effect)

Vapor pressure law

$$\log p_{v} = -\frac{a}{T} + b$$

X Y Plot

Approximation of water vapor pressure - temperature function

Water vapor pressure versus temperature

Choked flow

When the fluid pressure in the cross sectional area of flow stream drops below the vapor pressure, the Bernoulli's law is no more valid. The choked flow occurs. Flow is no more dependent on pressure drop.

Bernoulli's flow law

$$Q = K_{v} \sqrt{\frac{\Delta p}{\delta}}$$

Choked flow

$$Q = K_{v} \sqrt{\frac{\Delta p_{all}}{\delta}}$$

where:

$$\Delta p_{all} = K_m (P_1 - r_c p_v)$$

K_m - valve recovery coefficient

rc - critical pressure ratio of the fluid

pv - vapour pressure of the liquid

X Y Plot

K_m curve for typical high recovery valve

r_c critical pressure ratio for water(pressure in [MPa])

Choked flow simulations model

Vena contracta pressure estimation

Control valve simulation model

End remarks

- Presented Simulink actuator simulation model may be used for FDI requirements, however for common use should be provided with appropriate user friendly interface
- To fulfill this requirement the DAMADICS BENCHMARK ACTUATOR LIBRARY draft proposal was developed
- The model is based on physical laws that are are more convenient for fault simulation effects compared to abstractive ones
- The model may be used in free phase of FDI methods verification and development