Céu: Uma Linguagem de Programação Voltada ao Mundo Exterior

Francisco Sant'Anna

francisco@ime.uerj.br


```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```

```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```



```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```



```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```



```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```



```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```



```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```



```
int n;
scanf("%d", &n);
int soma = 0;
for (int i=1; i<=n; i++) {
    soma += pow(i,2);
}
printf("soma = %d\n", soma);</pre>
```


Transformam uma entrada em uma saída

- Transformam uma entrada em uma saída
- Origem (razão de existência) da computação

- Transformam uma entrada em uma saída
- Origem (razão de existência) da computação
 - Cálculos pesados

- Transformam uma entrada em uma saída
- Origem (razão de existência) da computação
 - Cálculos pesados
- Base da formação educacional em computação

- Transformam uma entrada em uma saída
- Origem (razão de existência) da computação
 - Cálculos pesados
- Base da formação educacional em computação
 - Algoritmos e estruturas de dados

- Transformam uma entrada em uma saída
- Origem (razão de existência) da computação
 - Cálculos pesados
- Base da formação educacional em computação
 - Algoritmos e estruturas de dados
- Influência no design das linguagens

- Transformam uma entrada em uma saída
- Origem (razão de existência) da computação
 - Cálculos pesados
- Base da formação educacional em computação
 - Algoritmos e estruturas de dados
- Influência no design das linguagens
 - Vocabulário e modelo de execução


```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
        await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```

```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
        await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
        await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
        await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
        await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
    await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
    await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
    await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
    await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
    await 1s;
    emit LED (high);
    await 1s;
    emit LED (off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
    await 1s;
    emit LED (high);
    await 1s;
    emit LED (off);
    end
end
```



```
par/or do
    await BUTTON;
with
    await 1min;
with
    loop do
    await 1s;
    emit LED(high);
    await 1s;
    emit LED(off);
    end
end
```


Sistemas Reativos

 Interagem continuamente e em tempo real com o mundo externo

- Interagem continuamente e em tempo real com o mundo externo
- "Novas" aplicações

- Interagem continuamente e em tempo real com o mundo externo
- "Novas" aplicações
 - GUIs, jogos, apps, robôs, internet das coisas

- Interagem continuamente e em tempo real com o mundo externo
- "Novas" aplicações
 - GUIs, jogos, apps, robôs, internet das coisas
- Negligenciados na formação em computação

- Interagem continuamente e em tempo real com o mundo externo
- "Novas" aplicações
 - GUIs, jogos, apps, robôs, internet das coisas
- Negligenciados na formação em computação
 - Ao menos na base (fundamentos)

- Interagem continuamente e em tempo real com o mundo externo
- "Novas" aplicações
 - GUIs, jogos, apps, robôs, internet das coisas
- Negligenciados na formação em computação
 - Ao menos na base (fundamentos)
- Pouca influência no design das linguagens

- Interagem continuamente e em tempo real com o mundo externo
- "Novas" aplicações
 - GUIs, jogos, apps, robôs, internet das coisas
- Negligenciados na formação em computação
 - Ao menos na base (fundamentos)
- Pouca influência no design das linguagens
 - Vocabulário e modelo de execução

	Transformacional (C)	Reativo (Céu)
Vocabulário		
Modelo de Execução		

	Transformacional (C)	Reativo (Céu)
Vocabulário	scanf() printf() sin()	
Modelo de Execução		

	Transformacional (C)	Reativo (Céu)
Vocabulário	scanf() printf() sin()	<pre>await BUTTON emit LED call Sin()</pre>
Modelo de Execução		

	Transformacional (C)	Reativo (Céu)
Vocabulário	scanf() printf() sin()	<pre>await BUTTON emit LED call Sin()</pre>
Modelo de Execução	Sequencial Von Neumann	

	Transformacional (C)	Reativo (Céu)
Vocabulário	scanf() printf() sin()	<pre>await BUTTON emit LED call Sin()</pre>
Modelo de Execução	Sequencial Von Neumann	Concorrente par/or

	Transformacional (C)	Reativo (Céu)
Vocabulário	scanf() printf() sin()	<pre>await BUTTON emit LED call Sin()</pre>
Modelo de Execução	Sequencial Von Neumann	Concorrente par/or
	"Olhar para dentro"	

	Transformacional (C)	Reativo (Céu)
Vocabulário	scanf() printf() sin()	<pre>await BUTTON emit LED call Sin()</pre>
Modelo de Execução	Sequencial Von Neumann	Concorrente par/or
	"Olhar para dentro"	"Olhar para fora"

- Reativa
 - ambiente no controle: eventos

- Reativa
 - ambiente no controle: eventos
- Imperativa
 - sequências, laços, atribuições

- Reativa
 - ambiente no controle: eventos
- Imperativa
 - sequências, laços, atribuições
- Concorrente
 - múltiplas linhas de execução: *trilhas*

- Reativa
 - ambiente no controle: eventos
- Imperativa
 - sequências, laços, atribuições
- Concorrente
 - múltiplas linhas de execução: trilhas
- Síncrona
 - trilhas sincronizam em cada evento externo

- Reativa
 - ambiente no controle: eventos
- Imperativa
 - sequências, laços, atribuições
- Concorrente
 - múltiplas linhas de execução: trilhas
- Síncrona
 - trilhas sincronizam em cada evento externo
 - trilhas estão sempre esperando

- Reativa
 - ambiente no controle: eventos
- Imperativa
 - sequências, laços, atribuições
- Concorrente
 - múltiplas linhas de execução: trilhas
- Síncrona
 - trilhas sincronizam em cada evento externo
 - trilhas estão sempre esperando
- Determinística
 - sempre produz o mesmo resultado para uma dada linha de tempo

Eficiência Energética para Software IoT: Uma abordagem no Nível de Linguagem de Programação

Francisco Sant'Anna

francisco@ime.uerj.br

loT e Consumo

loT e Consumo

• 15 bilhões de dispositivos conectados "tradicionais" em 2015 (e.g., celulares, TVs inteligentes).

IoT e Consumo

- 15 bilhões de dispositivos conectados "tradicionais" em 2015 (e.g., celulares, TVs inteligentes).
- 75 bilhões até 2025 com a IoT (e.g., lâmpadas e vestíveis inteligentes.

loT e Consumo

- 15 bilhões de dispositivos conectados "tradicionais" em 2015 (e.g., celulares, TVs inteligentes).
- 75 bilhões até 2025 com a IoT (e.g., lâmpadas e vestíveis inteligentes.
- Maior parte do consumo em modo em espera ("standby").

loT e Consumo

- 15 bilhões de dispositivos conectados "tradicionais" em 2015 (e.g., celulares, TVs inteligentes).
- 75 bilhões até 2025 com a IoT (e.g., lâmpadas e vestíveis inteligentes.
- Maior parte do consumo em modo em espera ("standby").
- Standby de dispositivos conectados é uma das seis frentes do "Plano de Eficiência Energética" da AIE/G20.
 - https://www.iea-4e.org/projects/g20

1. Eficiência energética através do uso rigoroso de standby.

- 1. Eficiência energética através do uso rigoroso de standby.
- 2. Foco em arquiteturas **restritas** que formam a IoT.

- 1. Eficiência energética através do uso rigoroso de standby.
- 2. Foco em arquiteturas **restritas** que formam a IoT.
- 3. Mecanismos de standby no nível de **linguagem de programação** para maior escalabilidade.

Objetivos

- 1. Eficiência energética através do uso rigoroso de standby.
- 2. Foco em arquiteturas **restritas** que formam a IoT.
- 3. Mecanismos de standby no nível de **linguagem de programação** para maior escalabilidade.
- 4. Mecanismos de standby **transparentes**/não intrusivos para reduzir as barreiras de adoção.

(standby, restritos, linguagem, transparente)

Forçar estados ociosos de execução

- Forçar estados ociosos de execução
- Inferir sleep mode mais profundo

- Forçar estados ociosos de execução
- Inferir sleep mode mais profundo
- Colocar o dispositivo para dormir

- Forçar estados ociosos de execução
- Inferir sleep mode mais profundo
- Colocar o dispositivo para dormir
- Acordar somente por interrupções

```
par/or do
    await RadioAvail();
with
    loop do
        await 1s;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

```
par/or do
    await RadioAvail();
with
    loop do
        await 1s;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

```
par/or do
    await RadioAvail();
with
    loop do
        await 1s;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

	Arduino	Céu		OBS	
	Arduino	M1	M2	OB3	
Empty	3.7	0.002		No activity.	
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.	
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.	
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.	
Protocol	19.6	15.9		Consumption dominated by the Radio.	

(Consumption in mA)

	م برارینی م	Céu		ORS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)

	Arduino	Céu		OBS
	Ardullio	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15	5.9	Consumption dominated by the Radio.

(Consumption in mA)

	Arduina	Céu		OBS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)

RocketScream Low-Power Arduino

	Arduino	Céu		OBS
	Aldullo	M1	M2	000
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15	5.9	Consumption dominated by the Radio.

(Consumption in mA)

	Arduino	Céu		OBS	
	Arduino	M1	M2	OB3	
Empty	3.7	0.002		No activity.	
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.	
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.	
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.	
Protocol	19.6	15.9		Consumption dominated by the Radio.	

(Consumption in mA)

	Arduina	Céu		OBS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15	5.9	Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

	Arduino	Céu		OBS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

	Arduina	Céu		ORS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15	.9	Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

	Arduina	Céu		ORS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7	.7	Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15	5.9	Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

	Arduino	Céu		ORS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

	Arduina	Céu		OPS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
   emit PIN(13,high);
   await 1s;
   emit PIN(13,low);
   await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

	Arduino	Céu		ORS
	Ardumo	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
   emit PIN(13,high);
   await 1s;
   emit PIN(13,low);
   await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

	Arduina	Céu		OBS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.


```
loop do
   emit PIN(13,high);
   await 1s;
   emit PIN(13,low);
   await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

	Arduino	Céu		ORS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
   emit PIN(13,high);
   await 1s;
   emit PIN(13,low);
   await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

	Arduino	Céu		OBS
	Aldullo	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
   emit PIN(13,high);
   await 1s;
   emit PIN(13,low);
   await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

	Arduino	Céu		ORS
	Ardumo	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

	Arduino	Céu		ODS
	Ardumo	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.	.7	Most efficient mode b/c of INT2.
Radio	19.5	15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

```
loop do
    await 1s;
    <...>
    await Nrf24l01_TX(...);
    <...>
    await Nrf24l01_RX(...);
    <...>
end
```

	م براریانی م	Céu		ORS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5 —	- 15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

```
loop do
    await 1s;
    <...>
    await Nrf24l01_TX(...);
    <...>
    await Nrf24l01_RX(...);
    <...>
end
```

	Arduino	Céu		OBS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5 —	– 15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
   emit PIN(13,high);
   await 1s;
   emit PIN(13,low);
   await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

```
loop do
    await 1s;
    <...>
    await Nrf24l01_TX(...);
    <...>
    await Nrf24l01_RX(...);
    <...>
end
```

	Arduino	Céu		ORS
	Arduino	M1	M2	OBS
Empty	3.7	0.002		No activity.
Blink	6.0	3.1		Least efficient mode b/c of TIMER1.
Sensor	11.4	7.7		Most efficient mode b/c of INT2.
Radio	19.5 —	- 15.8	3.0	Alternates INT2 <-> TIMER1.
Protocol	19.6	15.9		Consumption dominated by the Radio.

(Consumption in mA)


```
loop do
    emit PIN(13,high);
    await 1s;
    emit PIN(13,low);
    await 1s;
end
```

```
emit PIN(13, _digitalRead(2));
loop do
   var bool v = await Pin(2);
   emit PIN(13, v);
end
```

```
loop do
    await 1s;
    <...>
    await Nrf24l01_TX(...);
    <...>
    await Nrf24l01_RX(...);
    <...>
end
```

```
par/or do
   await RadioAvail();
with
   loop do
      await 1s;
   int v = await AnalogRead();
   await RadioWrite(v);
   end
end
```

(standby, constrained, programming language, transparent)

Enforce idle states of execution

```
par/or do
   await RadioAvail();
with
   loop do
      await 1s;
   int v = await AnalogRead();
   await RadioWrite(v);
   end
end
```

- Enforce idle states of execution
 - Céu enforces a reactive model of execution
- Infer deepest sleeping mode

```
par/or do
   await RadioAvail();
with
   loop do
      await 1s;
   int v = await AnalogRead();
   await RadioWrite(v);
   end
end
```

- Enforce idle states of execution
 - Céu enforces a reactive model of execution
- Infer deepest sleeping mode

```
par/or do
    await RadioAvail();
with
    loop do
    await ls;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

- Enforce idle states of execution
 - Céu enforces a reactive model of execution
- Infer deepest sleeping mode
 - Céu has a semantics amenable to analysis
- Put device to sleep

```
par/or do
    await RadioAvail();
with
    loop do
    await 1s;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

- Enforce idle states of execution
 - Céu enforces a reactive model of execution
- Infer deepest sleeping mode
 - Céu has a semantics amenable to analysis
- Put device to sleep

```
par/or do
    await RadioAvail();
with
    loop do
    await 1s;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

- Enforce idle states of execution
 - Céu enforces a reactive model of execution
- Infer deepest sleeping mode
 - Céu has a semantics amenable to analysis
- Put device to sleep
 - Céu has an energy-aware runtime
- Only awake from interrupts

```
par/or do
    await RadioAvail();
with
    loop do
    await 1s;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

- Enforce idle states of execution
 - Céu enforces a reactive model of execution
- Infer deepest sleeping mode
 - Céu has a semantics amenable to analysis
- Put device to sleep
 - Céu has an energy-aware runtime
- Only awake from interrupts
 - Céu provides interrupt service routines (ISRs)

```
par/or do
    await RadioAvail();
with
    loop do
    await 1s;
    int v = await AnalogRead();
    await RadioWrite(v);
    end
end
```

Eficiência Energética para Software IoT: Uma abordagem no Nível de Linguagem de Programação

Francisco Sant'Anna

francisco@ime.uerj.br

