Preliminary

MOS Memories

FUJITSU

MB8464A-10-W, MB8464A-15-W CMOS 65,536-Bit Static Random Access Memory with Data Retention Mode

Description

The Fujitsu MB8464A-W is a 8,192-word by 8-bit static random access memory fabricated with a CMOS silicon gate process.

The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single +5 volt power supply is required.

The MB8464A-W is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost, and high performance.

Features

MMM datasheethu.cof

- Organization: 8,192 words
- x 8-bits Fast access time: TAVQV = TELQV = 100 ns max. ■ Low power standby:
 (MB8464A-10-W) 11 mW max.
 TAVQV = TELQV = 150 ns max. ■ Data retention: 2.0V min. (MB8464A-15-W)
- Completely static operation: No clock required
- TTL compatible input/output
- Three-state output
- Common data input/output
 Single +5V power supply, ±10% tolerance

- 28-pin ceramic package (300 mil width) (600 mil width)
- 32-pad leadless chip carrier
- Pin compatible with MB8464-W

MB8464A-W Block Diagram and Pin Assignment

TRUTH TABLE

E1	E ₂	ā	W	MODE	SUPPLY CURRENT	I/O PIN
Н	X	х	x	NOT SELECTED	I _{SB}	HIGH-Z
X	L	X	x	NOT SELECTED	I _{SB}	HIGH-Z
L	н	H.	Н	OUT DISABLE	lcc	HIGH-Z
L	Н	L	H	READ	lcc	QOUT
L	H	X	L	WRITE	lcc	· IN

Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Storage temperature range	T _{STG}	-65 to +150	•c
Temperature under bias	T _{BIAS}	55 to +125	°C
Supply voltage	V _{cc}	-0.5 to +7.0	· V
Input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	
Output voltage	V _{out}	-0.5 to V _{CC} + 0.5	V

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

FUJITSU

Recommended Operating Conditions (Referenced to GND)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5,5	V
Input low voltage	V _{IL}	-0.3		0.6	
Input high voltage	V _{IH}	2.4		V _{CC} + 0.3	
Ambient temperature	T _A	-55		+125	°C

Capacitance (T_A = 25°C, f = 1 MHz)

Parameter :	Symbol	Min	Тур	Max	Unit
I/O capacitance (V _{I/O} = 0V)	C _{I/O}			. 8	pF
Input capacitance (V _{IN} = 0V)	C _{IN}			6	pF

DC Characteristics (Recommended operating conditions unless otherwise noted.)

ymbol B1 B2 C1	Min	Max 2 5	mA mA	Test Condition $ \begin{split} & \textbf{E}_2 \leqslant 0.2 \text{V, } \textbf{E}_1 \geqslant \textbf{V}_{CC} - 0.2 \text{V} \\ & (\textbf{E}_2 \leqslant 0.2 \text{V or } \textbf{E}_2 \geqslant \textbf{V}_{CC} - 0.2 \text{V}) \\ & \overline{\textbf{E}}_1 = \textbf{V}_{ \textbf{H}} \text{ or } \textbf{E}_2 \approx \textbf{V}_{ \textbf{L}} \end{split} $
B2		5		$(E_2 \le 0.2V \text{ or } E_2 \ge V_{CC} - 0.2V)$ $\overline{E}_1 = V_{IH} \text{ or } E_2 = V_{IL}$
			mA	$\overline{E}_1 = V_{IH} \text{ or } E_2 = V_{IL}$
D1 -				
		70	mA-	$\overline{E}_1 = V_{IL}, E_2 = V_{IH}$ $V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 0 \text{ mA}$
02		90	mA .	Cycle = min., duty = 100%, I _{OUT} = 0 mA
	10	10	μΑ	V _{IN} = 0V to V _{CC}
0	-50	50	μΑ	$V_{I/O} = 0V$ to V_{CC} $\overline{E}_1 = V_{IH}$ or $\overline{E}_2 = V_{IL}$ or $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$
ж	2.4		V	I _{OH} = -1.0 mA
)L		0.4	V	I _{OL} = 2.1 mA
	0	10 о50 н 2.4	10 10 050 50 H 2.4 L 0.4	-10 10 μA 0 -50 50 μA H 2.4 V

AC Characteristics (Recommended operating conditions unless otherwise noted.)

Read Cycle

		MB846	34A-10-W	MB846	34A-15-W	
Parameter	Symbol	Min	Max	Min	Max	Unit
Read cycle time	TAVAX	100		150		ns
Address access time	TAVQV		100	-	150	ns
E ₁ access time	TE1LQV		100		150	ns
E ₂ access time	TE2HQV	··· <u></u>	100		150	ns
Output enable to output valid	TGLQV		45		60	ns
Output hold from address change	TAXQX	10		10		ns
Chip enable to output low-Z*	TE1LQX TE2HQX	10		10		ns
Output enable to output low-Z*	TGLQZ	5		5		ns
Chip enable to output high-Z*	TE1HQZ TE2LQZ		40		50	ns
Output enable to output high-Z*	TGHQZ		40		50	пѕ

Note: * Transition is measured at the point of +500 mV from steady state voltage.

AC Characteristics (Continued) (Recommended operating conditions unless otherwise noted)

Read Cycle Timing Diagrams

Read Cycle I*1,2

Read Cycle II'1

AC Characteristics (Continued) (Recommended operating conditions unless otherwise noted)

Write Cycle

FUJITSU MICROELECTRONICS 78

_		MB84	64A-10-W	MB84	64A-15-W	
Parameter	Symbol	Min	Max	Min	Max	Unit
Write cycle time	TAVAX	100		150		ns
Address valid to end of write	TAVWH, TAVE1L, TAVE2H	80		100		ns
Chip enable to end of write	TE1LE1H, TE2H2EL	80		100		ns
Data valid to end of write	TDVWH, TDVE1L, TDVE2H	40		50	1	ns
Data hold time	TWHDX, TE1HDX, TE2LDX	5		5		ns
Write pulse width	TWLWH	60		70		ns
Address setup time	TAVWL, TAVE1L, TAVE2H	0		10		ris
Write recovery time	TWHAX, TE1HAX, TE2LAX	10		.10		ns
Write enable to output low-Z*	TWHQX	5		5		ns
Write enable to output high-Z*	TWLQZ	•	40	·	50	ns

^{*}TRANSITION IS MEASURED AT THE POINT OF $\pm 500\,\mathrm{mV}$ STEADY STATE VOLTAGE.

AC Characteristics (Continued) (Recommended operating conditions unless otherwise noted)

Write Cycle Timing Diagrams Write Cycle I (W Controlled)

*2 TRANSITION IS MEASURED AT THE POINT OF $\pm 500~\mathrm{mV}$ FROM STEADY STATE VOLTAGE.

AC Characteristics

(Continued) (Recommended operating conditions unless otherwise noted)

Write Cycle II (E₁ Controlled)

NOTE: *1. IF \overline{G} , E_2 and \overline{W} are in the read mode during this period, D/Q pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

'2 TRANSITION IS MEASURED AT THE POINT OF $\pm 500~\mathrm{mV}$ FROM STEADY STATE VOLTAGE.

DON'T CARE UNDEFINED

AC Characteristics

(Continued) (Recommended operating conditions unless otherwise noted)

Write Cycle III (E2 Controlled)

NOTE: "1 IF \overline{G} , E_2 , AND \overline{W} ARE IN THE READ MODE DURING THIS PERIOD, DO PINS ARE IN THE OUTPUT STATE SO THAT THE INPUT SIGNALS OF OPPOSITE PHASE TO THE OUTPUTS MUST NOT BE APPLIED.

12 TRANSITION IS MEASURED AT THE POINT OF ± 500 mV FROM STEADY STATE VOLTAGE.

DON'T CARE UNDEFINED

Data Retention Characteristics

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Max	Unit	
Data retention supply voltage*1		V _{DR}	2.0	5.5	۷
Data retention supply current'2	Standard	I _{DR}		0.5	mA
Data retention setup time	-	TE1HVL, TE2LVL	0		ns
Operation recovery time		TVHE1L, TVHE2H	TAVAX		

Notes: "1 E_2 controlled: $E_2 \le 0.2V$ E_1 controlled: $E_1 \Rightarrow V_{DR} - 0.2V$ ($E_2 \le 0.2V$ or $E_2 \Rightarrow V_{DR} - 0.2V$)

"2. E_2 controlled: $V_{DR} = 3.0V$, $E_2 \le 0.2V$ E_1 controlled: $V_{DR} = 3.0V$, $E_1 \Rightarrow V_{DR} - 0.2V$ ($E_2 \le 0.2V$ or $E_2 \Rightarrow V_{DR} - 0.2V$)

Data Retention Characteristics (Continued)

(Recommended operating conditions unless otherwise noted)

Data Retention Timing

Data Retention I (E₂ Controlled)

Data Retention II (E, Controlled)

AC Test Conditions

Input Pulse Levels: 0.4V to 2.6V Input Pulse Rise and Fall Times: 5 ns (Transition time between 0.6V and 2.4V) Timing Reference Levels: Input: $V_{IL}=0.6V$, $V_{IH}=2.4V$ Output: $V_{OL}=0.8V$, $V_{OH}=2.0V$

i		R ₁ R ₂		CL	PARAMETERS MEASURED
	LOADI	1.8 ΚΩ	990 Ω	100 pF	EXCEPT TEHQX, TGLQZ, TE1HQZ, TGHQZ, TWHQX AND TWLQZ
	LOAD II	1.8 ΚΩ	990 Ω	5 pF	TE1LOX, TGLQZ, TE1HQZ, TGHQZ, TWHQX AND TWLQZ

*INCLUDING PROBE AND STRAY CAPACITANCE

<OUTPUT LOAD >

Package Dimensions Dimensions in inches (millimeters)

28-Lead Ceramic Dual-In-Line Package (Case No.: DIP-28C-A07)

32-PAD Ceramic (Metal Seal) Leadless Chip Carrier (Case No. LCC-32C-A02)

Package Dimensions (Continued) Dimensions in inches (millimeter)

28-Lead Ceramic (Metal Seal) Dual In-Line Package (Case No.: DIP-28C-A08)

