Compositional Program Synthesis via Two Abstractions A and A^+ : A Short Empirical Note

Abstract

We present a concrete instantiation of a research plan on compositional reasoning via abstraction–refinement. We define two abstraction layers over program synthesis on paired integers: a cross-free factorization A and an interface-augmented A^+ that captures where cross-operations occur. We give embeddings $e:A\to G$ and $e^+:A^+\to G$, algorithms that solve in A and refine in A^+ , complexity bounds, and correctness conditions. Experiments show large efficiency gains over global search: $7\text{--}60\times$ fewer nodes and $8\text{--}180\times$ faster in coupled tasks, with identical accuracy. We conclude that A is a direct instantiation of the original plan; A^+ is a problem-specific refinement of the program search space that fits the spirit of abstraction–refinement even if it is not the exact state-space abstraction emphasized in the original note.

1 Introduction (Intuition First)

Global program synthesis often explores a huge search space. If a task nearly factors into independent pieces with a few "wires" between them, we can:

- 1. Solve the easy factors, ignoring the wires.
- 2. Refine by putting back a small interface that reconnects the factors.

We demonstrate this idea in a tiny DSL on integer pairs (x, y). In separable tasks, solving each coordinate independently is optimal. In coupled tasks (e.g., y must read the current x), a global solver works but is wasteful. Our Compositional+ solver first synthesizes the x-only program, then searches a small space of cross-op placements that wire y to x at just the right moments.

2 Concrete Setting

2.1 Domains, DSL, Semantics

• Concrete state space: $G = \mathbb{Z} \times \mathbb{Z}$.

• Primitives are partitioned

$$\Sigma = \Sigma_X \cup \Sigma_Y \cup \Sigma_{\times}, \tag{1}$$

where Σ_X edits only x, Σ_Y edits only y, and Σ_X are cross-ops (e.g., add_first_to_second: $(x,y) \mapsto (x,y+x)$).

A program is a word $p \in \Sigma^*$ with standard functional semantics $[p]: G \to G$.

• Supervision: dataset $D = \{(s_i, t_i)\} \subseteq G \times G$. Goal: find p with $\forall i$, $[\![p]\!](s_i) = t_i$.

3 Abstraction A: Cross-Free Factorization

3.1 Definition

Let

$$A = \Sigma_X \times \Sigma_Y. \tag{2}$$

An element $a = (p_X, p_Y)$ means "do p_X on x and p_Y on y, with no cross-ops."

3.2 Embedding and Agreement

Because Σ_X commutes with Σ_Y ,

$$e: A \to \Sigma^*, \quad e(p_X, p_Y) = \text{any interleaving of } p_X, p_Y$$
 (3)

is well-defined up to semantic equivalence: all such interleavings produce the same $[e(p_X, p_Y)]$ on G.

3.3 Solve in A

Project the dataset onto coordinates and synthesize independently:

$$\forall i: \ \pi_X([p_X](s_i)) = \pi_X(t_i), \tag{4}$$

$$\forall i: \ \pi_Y([p_Y](s_i)) = \pi_Y(t_i). \tag{5}$$

If both succeed, return $e(p_X, p_Y)$.

Intuition. A "turns off" the wires between coordinates, producing two small searches.

4 Abstraction A^+ : Factorization with a Finite Interface

4.1 Slots and Interfaces

Fix a bound K (number of cross-ops). For a first-coordinate program p_X of length L, define insertion slots $\{0, \ldots, L\}$. Let

$$\Pi_{L,K} = \left\{ \alpha = (\alpha_1 \le \dots \le \alpha_K) \mid \alpha_j \in \{0, \dots, L\} \right\}. \tag{6}$$

Then

$$A^{+} = \bigcup_{L>0} \left(\Sigma_{X}^{L} \times \Pi_{L,K} \right). \tag{7}$$

An element $a^+ = (p_X, \alpha)$ is an abstract program skeleton: use p_X and insert K cross-ops at slots α .

4.2 Embedding to Concrete Programs

Choose $\kappa \in \Sigma_{\times}$ (e.g., add_first_to_second). Define

$$e^+(p_X, \alpha) \in \Sigma^* \tag{8}$$

by interleaving p_X with K copies of κ inserted just before the x-op at each slot index in α . (If needed, Y-only ops that commute with Σ_X can be appended without changing the interface.)

4.3 Solve-then-Refine (Compositional+)

- 1. Solve in A: find p_X satisfying the x-projection of D.
- 2. Refine in A^+ : enumerate $\alpha \in \Pi_{|p_X|,K}$ and test $e^+(p_X,\alpha)$ on full D. Return the first that fits.

4.4 Completeness (Triangular Coupling)

Assume each $\kappa \in \Sigma_{\times}$ is triangular: it updates y by a function of the current x and leaves x unchanged, i.e.,

$$\kappa: (x,y) \mapsto (x, y \oplus h(x)).$$
(9)

If there exists a concrete solution of the form "some $p_X \in \Sigma_X^L$ interleaved with exactly K copies of κ ", then there exists $\alpha \in \Pi_{L,K}$ such that $e^+(p_X,\alpha)$ satisfies D.

Sketch. Every valid interleaving corresponds to inserting κ at specific slots w.r.t. p_X ; these slots are exactly α . Hence enumerating $\Pi_{L,K}$ is complete for this family.

5 Algorithms and Complexity

- Global BFS (baseline). Branching b over Σ ; minimal solution length $L_X + K$. Cost: $O(b^{L_X+K})$ (modulo semantic memoization).
- Compositional+.
 - (i) Synthesize p_X with branching b_X over Σ_X .
 - (ii) Enumerate $\binom{L_X+K}{K}$ interfaces (combinations with repetition).

Cost:

$$O(b_X^{L_X}) + O\left(\binom{L_X + K}{K}\right).$$
 (10)

For small K and moderate L_X , the second term is tiny relative to the global exponential.

6 Examples and Results (All Executed)

6.1 Separable Task (fits A)

Target: $(x, y) \mapsto (2(x+3), y^2 + 1)$.

 $\label{eq:minimal_program: inc1_first} \mbox{Minimal program: inc1_first} \times 3 \rightarrow \mbox{double_first and square_second} \rightarrow \mbox{inc1_second}.$

- Global BFS: found length 6, 343 nodes, 0.0119 s.
- Compositional (A): found length 6, 23 nodes, 0.00029 s.
- Both perfectly match held-out tests.

Intuition. Perfect factorization; solving coordinates independently is optimal.

6.2 Coupled Task (needs A^+)

Target: $(x,y)\mapsto (2(x+3),\ y+(x+3))$ using cross-op $\kappa=\mathtt{add_first_to_second}$.

- Global BFS: found length 5, 187 nodes, 0.0367 s.
- Naïve split: fails (cannot express y's dependence on x).
- Compositional+ $(A \to A^+)$: found (equivalent) program, 25 nodes, 0.00032 s.

Intuition. Solve x first, then place a single wire where y must read x.

6.3 Scaling Study (vary $L_X \in \{4, 6, 8\}, K \in \{0, 1, 2, 3\}, b_X \in \{2, 3, 4\}$)

Geometric-mean speedups (Global / Compositional+) across the grid:

- K = 0: 4.2× fewer nodes, 8.1× faster.
- $K = 1: 19.3 \times, 44.3 \times.$
- K = 2: $29.2 \times$, $87.2 \times$.
- K = 3: $58.7 \times$, $183 \times$.

Hardest slice ($L_X = 8, b_X = 4$): Global nodes $1609 \rightarrow 32061$ as $K: 0 \rightarrow 3$; Compositional+ stays near 372–387.

Figure 1: Node exploration scaling: Global search (exponential growth) vs. Compositional+ (nearly constant) as the number of cross-operations K increases. The compositional approach maintains low node counts even for complex coupling scenarios.

7 Conclusion

Distinguishing two abstraction layers crystallizes the method:

- A: cross-free factorization—cheap, complete for separable tasks.
- A⁺: finite interface refinement—tiny extra search that restores necessary couplings.

Figure 2: Speedup analysis: Performance improvement of Compositional+ over Global BFS across different parameter configurations. Speedups increase dramatically with coupling complexity, reaching $180 \times$ faster for K=3.

On coupled tasks, $A \to A^+$ achieves the same solutions as global search at a fraction of the cost, validating the core thesis: solve in a simpler world, then refine only what must be coupled.

8 End-to-End Example: Solve in A, Refine to A^+ , Embed to G

This section gives a concrete, self-contained walkthrough that makes precise what it means to solve in A, then refine to A^+ , and finally embed to G.

8.1 Example setup (DSL and hidden target)

Primitives. We work on states $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ with the following primitives:

- X-only: inc_x: $(x,y) \mapsto (x+1,y)$; double_x: $(x,y) \mapsto (2x,y)$.
- Y-only: inc_y: $(x, y) \mapsto (x, y + 1)$.
- Cross (triangular): $\kappa: (x,y) \mapsto (x,y+x)$.

Hidden target structure. Let the X-part length be $L_X = 4$, the Y-part length $L_Y = 2$, and the number of cross ops K = 1. Choose

$$\begin{split} p_X^\star &= [\texttt{inc_x}, \ \texttt{inc_x}, \ \texttt{double_x}, \ \texttt{inc_x}], \\ p_Y^\star &= [\texttt{inc_y}, \ \texttt{inc_y}], \\ \alpha^\star &= 2 \quad (\texttt{insert} \ \kappa \ \texttt{after the first two X-ops}). \end{split}$$

The resulting function is

$$x' = 2x + 5, y' = y + x + 4.$$

Training set *D***.** Generated from the target:

input
$$(x,y)$$
 | $x' = 2x + 5$ | $y' = y + x + 4$ | $(-1,0)$ | 3 | 3 | $(0,1)$ | 5 | 5 | $(3,-2)$ | 11 | 5

8.2 Level 1: Solve in A (no couplings)

The abstraction $A = \Sigma_X^* \times \Sigma_Y^*$ removes cross-ops and treats coordinates independently.

Solve the X-projection. From D, the X-projection is $\{-1 \mapsto 3, 0 \mapsto 5, 3 \mapsto 11\}$, which fits x' = 2x + 5. In our DSL, a minimal p_X that realizes this is

$$p_X^\star = [\texttt{inc_x}, \; \texttt{inc_x}, \; \texttt{double_x}, \; \texttt{inc_x}].$$

Y in A. The Y-projection alone cannot be matched by any Y-only program (it depends on x), so we defer Y to refinement (we keep p_Y as two increments to be placed later).

8.3 Level 2: Refine to A^+ (add a finite interface)

 A^+ augments p_X with a finite *interface*: the placement α of K cross-ops among the L_X+1 slots. With $L_X=4$, the slots are $\{0,1,2,3,4\}$ and the value of x available at each slot (i.e., what κ would add to y) is:

slot 0:
$$x$$

slot 1: $x + 1$
slot 2: $x + 2$
slot 3: $2(x + 2) = 2x + 4$
slot 4: $2x + 5$.

We choose $\alpha \in \{0, ..., 4\}$ and fix two Y-increments so that for all $(x, y) \in D$, $y' = y + \text{slot_value}(\alpha) + 2$ matches the observed y'. Testing shows $\alpha^* = 2$ satisfies all rows:

$$y' = y + (x+2) + 2 = y + x + 4.$$

8.4 Level 3: Embed to G (concrete program)

Embedding $e^+(p_X^*, \alpha^*)$ instantiates a concrete word over the full DSL. Any interleaving that preserves the X order, places κ at slot 2, and includes the two inc_y is semantics-equivalent. A canonical choice is

[inc_x, inc_x,
$$\kappa$$
, double_x, inc_x, inc_y, inc_y].

It computes for all (x,y): x'=2x+5, y'=y+x+4, matching the ground truth.

8.5 One-sentence summaries

- Solve in A: find the factor p_X^* that matches the X-projection; Y cannot be solved without couplings.
- Refine to A^+ : choose the finite interface α^* (cross placement) and the Y-only count to explain y'.
- Embed to G: realize any concrete interleaving consistent with $(p_X^{\star}, \alpha^{\star}, p_Y^{\star})$; all such words are semantics-equivalent here.

8.6 Size comparison on this example

With
$$m_X = 2$$
, $m_Y = 1$, $m_X = 1$, $(L_X, L_Y, K) = (4, 2, 1)$,

$$|A| = m_X^{L_X} m_Y^{L_Y} = 2^4 \cdot 1^2 = 16,$$

$$|A^+| = m_X^{L_X} m_Y^{L_Y} {L_X + K \choose K} = 16 \cdot {5 \choose 1} = 80,$$

$$|G_{\text{family}}| = {L_X + L_Y + K \choose L_X, L_Y, K} m_X^{L_X} m_Y^{L_Y} m_X^K = {7 \choose 4, 2, 1} \cdot 16 = 105 \cdot 16 = 1680.$$

Thus A^+ compresses the concrete family by a factor $1680/80 = 21 = \binom{7}{2}$, the number of purely Y-interleavings that are semantically redundant under the commutation assumptions.

9 Extension: Parity as a Third Abstraction Level (A^{++})

After solving in A and refining in A^+ , we can add a lightweight third layer that enforces parity constraints. This extension demonstrates how domain-specific properties can be layered onto the core abstraction-refinement framework.

9.1 Motivation

Many program synthesis tasks exhibit structural invariants beyond cross-coupling patterns. For integer domains, parity (even/odd) constraints are common: programs that preserve evenness, maintain sign patterns, or respect modular arithmetic. Rather than encoding these constraints into the DSL primitives, we can add them as a post-synthesis verification step.

9.2 Informal Definition

Let $A^{++} \subseteq A^+$ be the subset of interface-refined programs that preserve even parity when executed on even inputs. Formally, a program $(p_X, \alpha) \in A^+$ belongs to A^{++} if all intermediate values during execution remain even whenever the initial state is even.

9.3 Verification Procedure

Given a candidate program from A^+ :

- 1. Execute the program on a synthetic even input (e.g., (0,0)).
- 2. Track the parity of both coordinates after each primitive operation.
- 3. Accept the program if parity is preserved throughout; reject otherwise.

This verification requires no modification to the core synthesis algorithm—it operates as a filter on A^+ candidates.

9.4 Example: Even-Preserving Synthesis

Consider a DSL extended with both even-preserving operations (inc2_x, double_x) and parity-flipping operations (inc1_x). The target function x' = 2x + 10, y' = y + x + 4 can be realized using only even-preserving primitives.

The A^{++} filter would accept programs that exclusively use $inc2_x$ and $double_x$, while rejecting any program containing $inc1_x$ —even if such programs are functionally correct on the training data.

This extension demonstrates that the abstraction-refinement approach can accommodate domain-specific constraints without compromising the core algorithmic structure.