Multi-objective Optimization

Features:

- Distributed Data Flow
- Fog nodes mobility
- IoT devices mobility
- Migration support
- $\bullet\,$ Partitioning techniques
- $\bullet\,$ Data placement optimization
- Migration Optimization

Variables:

- \bullet QoS
 - latency
- \bullet Cost
 - CPU
 - RAM
 - MEM
 - BW
- Energy
 - busyPower
 - idlePower
- Bandwidth

Notations:

- $N \text{fog nodes } S = \{s_1, ..., s_n\}$
- $M \text{modules } U = \{u_1, ..., u_m\}$
- fP^{Mips} matrix $1 \times N$ representing the MIPS price of each fog node per unit
- fP^{Ram} matrix $1 \times N$ representing the memory price of each fog node per unit
- fP^{Strg} matrix $1 \times N$ representing the storage price of each fog node per unit
- fP^{Bw} matrix $1 \times N$ representing the bandwidth price of each fog node per unit
- f^{Mips} matrix $N \times 1$ representing the MIPS capacity of each fog node
- f^{Ram} matrix $N \times 1$ representing the memory capacity of each fog node
- f^{Strg} matrix $N \times 1$ representing the storage capacity of each fog node
- $f^{bPw} = \text{matrix } N \times 1$ representing the busy power consumption of each fog node per unit
- f^{iPw} matrix $N \times 1$ representing the idle power consumption of each fog node per unit
- m^{Mips} matrix $M \times 1$ representing the MIPS needed for each application's module
- \bullet m^{Ram} matrix $M \times 1$ representing the memory needed for each application's module
- m^{Strg} matrix $M \times 1$ representing the storage needed for each application's module
- \bullet K total number of dependencies/edges
- e^{Cpu} matrix $1 \times K$ representing the tuple CPU size (MI) needed to be processed
- e^{Nw} matrix $1 \times K$ representing the tuple network size (MB) needed to be sent
- e^{Prob} matrix $1 \times K$ representing the probability of sending the tuple
- e^{Pe} matrix $1 \times K$ representing the periodicity of the producer (i.e., periodic sources)
- e^S matrix $1 \times K$ representing the edge source
- e^D matrix $1 \times K$ representing the edge destination
- \bullet Z total number of dependencies/edges between different pairs of nodes
- l^S matrix $N \times 1$ representing the starting nodes of each pair of nodes
- l^D matrix $N \times 1$ representing the ending nodes of each pair of nodes
- mD matrix $M \times M$ representing the dependencies between modules
- mB matrix $M \times M$ representing the bandwidth needed between modules
- fL matrix $N \times N$ representing the latency between each two direct nodes
- \bullet fB matrix $N \times N$ representing the bandwidth between each two direct nodes
- ullet D matrix $N \times M$ representing the nodes where each module can be deployed
- P matrix $N \times M$ representing the placement mapping between modules and nodes
- R matrix $Z \times N \times N$ representing the routing map between modules
- e matrix 1xN, with all entries to 1
- \bullet h matrix NxN, with all entries to 1 except for diagonal which is filled with zeros
- α operational weight
- β energetic weight
- γ processing weight
- δ transmission weight

Preliminary computations:

$$\begin{split} m_i^{Mips} &= \sum_{k \in K} \left(\frac{e_k^{Prob} e_k^{Cpu}}{e_k^{Pe}} \right), e_k^D = i \\ mB_{i,j} &= \sum_{k \in K} \left(\frac{e_k^{Prob} e_k^{Nw}}{e_k^{Pe}} \right), e_k^S = i, \ e_k^D = j \\ mD_{i,j} &= \sum_{k \in K} \left(\frac{e_k^{Prob}}{e_k^{Pe}} \right), e_k^S = i, \ e_k^D = j \end{split}$$

Problem formulation:

The cost function is mainly characterized by two components: Operational Cost and Service Quality Cost.

Operational Cost (C_O) is characterized by the resources allocated in each fog node to support all users' computations, namely: CPU, memory, storage, and bandwidth.

$$C_O = fP^{Mips} \times P \times m^{Mips} + fP^{Ram} \times P \times m^{Ram} + fP^{Strg} \times P \times m^{Strg} + \left(fP^{Bw} \times h. * \sum_{z \in Z} mB_{l_z^S, l_z^D} \times R_z \right) e'$$

Power Cost (C_{Pw}) is characterized by the busy/idle power in each fog node to support all users' computations as well as the willing to wast energy to prevent clients to process the whole application.

$$C_{Pw} = \sum_{n \in N} \left(f_n^{iPw} + (f_n^{bPw} - f_n^{iPw}) \times \frac{P_n \times m^{Mips}}{f_n^{Mips}} \right)$$

Processing Cost (C_P) is characterized by the percentage of unused MIPS using the Jain's fairness index.

$$C_P = \frac{\left(\sum_{n \in N} \frac{P_n \times m^{Mips}}{f_n^{Mips}}\right)^2}{N \times \sum_{n \in N} \left(\frac{P_n \times m^{Mips}}{f_n^{Mips}}\right)^2} - OR - C_P = \sum_{n \in N} \frac{P_n \times m^{Mips}}{f_n^{Mips}}$$

Transmission Cost (C_T) is characterized by the total latency on the tuple transmission $(Total_{lat} = lat + \frac{tuple_size}{Bw})$.

$$C_T = e \left(fL. * \sum_{z \in Z} \left(mD_{l_z^S, l_z^D} \times R_z \right) + 1./(fB + \epsilon) . * \sum_{z \in Z} \left(mB_{l_z^S, l_z^D} \times R_z \right) \right) e', \epsilon = 1^{-9}$$

Bandwidth Cost (C_B) is characterized by the percentage of unused MIPS using the Jain's fairness index.

$$C_B = \sum_{i \in N} \sum_{j \in N} \frac{\sum_{z \in Z} \left(mB_{l_z^S, l_z^D} \times R_{z, i, j} \right)}{fB_{i, j}}$$

Final problem:

$$\begin{split} & \underset{P,R}{\text{minimize}} & \quad C = \alpha C_O + \beta C_{Pw} + \gamma C_P + \delta C_T + \zeta C_B \\ & \text{subject to} & \quad P \times m^{Mips} \leq f^{Mips}, \\ & \quad P \times m^{Ram} \leq f^{Ram}, \\ & \quad P \times m^{Strg} \leq f^{Strg}, \\ & \quad P \leq D \\ & \quad P_{i,j} \in \{0,1\}, \forall i \in [0,N], \forall j \in [0,M] \\ & \quad \sum_{i \in N} P_{i,j} = 1, \forall j \in [0,M] \\ & \quad R_{z,i,j} \in \{0,1\}, \forall z \in [0,Z], \forall i \in [0,N], \forall j \in [0,N] \\ & \quad \sum_{j \in N} R_{z,i,j} - \sum_{j \in N} R'_{z,i,j} = P_{i,l_z^S} - P_{i,l_z^D} \quad, \forall z \in [0,Z], \forall i \in [0,N] \\ & \quad \sum_{z \in Z} m B_{l_z^S, l_z^D} \times R_{z,i,j} \leq f B_{i,j} \quad, \forall i \in [0,N], \forall j \in [0,N] \end{split}$$