Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1^{-}}^{\#2\alpha} + 2 i k \sigma_{1^{-}}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1^{-}}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1^{+}}^{\#1\alpha\beta} + i k \sigma_{1^{+}}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}) == 0$	
Total constraints/gau	16	

T.	$+\alpha\beta\chi$ 0 $\frac{2}{}$ "1	0	(8)	$\frac{rk_{1}}{\sqrt{2}} k^{2} t_{1} 0$ $0 0 \frac{t_{1}}{2}$			
	$\begin{aligned} & \int_{t_{\beta}}^{\theta} -4t_{3}\omega^{\alpha'}_{a}\omega^{\kappa}_{r}+ \\ & \int_{t_{\beta}}^{\theta} -4t_{3}\omega^{\alpha'}_{a}\omega^{\kappa}_{r}+ \\ & \int_{t_{\beta}}^{\theta} -4t_{3}\omega^{\alpha'}_{a}\omega^{\kappa}_{r}+ \\ & \int_{t_{\beta}}^{\theta} -4t_{3}\omega^{\alpha'}_{a}\omega^{\kappa}_{r}+ \\ & \int_{t_{\beta}}^{\theta} -4t_{1}\omega^{\theta}_{r}\partial^{r}_{a}+ \\ & \int_{t_{\beta}}^{\theta} -2t_{1}\partial_{r}f^{\alpha}_{a}\partial^{r}_{a}+ \\ &$	$\sigma_{0}^{\#1} \dagger {(1+2)}$	σ_{+}^{0+} σ_{+}^{0}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{1}^{\#1} = \alpha \beta$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1}^{ ext{#2}}{}_{lpha}$
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0
	$\frac{1}{0, \frac{\theta}{\theta} - 4t_3}$ $6 f^{\alpha\beta} t_{\alpha_i}$ $8 t_3 \omega_{\alpha}^{\kappa}$ $2 t_1 \partial_i f^{\theta}$ $4 t_1 \partial_i f^{\alpha}$ $4 t_1 \partial_i f_{\alpha}$ $4 t_1 \partial_i f_{\alpha}$ $4 t_1 \partial_i f_{\alpha}$ $4 t_1 \partial_i f_{\alpha}$ $4 t_1 \partial_i f_{\alpha_i}$ $4 t_1 \partial_i f_{\alpha_i}$ $4 t_1 \partial_i f_{\alpha_i}$ $2 \omega_{\alpha \theta_i} (()$ $8 r_2 \partial_i \omega_{\alpha}$ $4 r_2 \partial_i \omega_{\alpha}$ $4 r_2 \partial_i \omega_{\alpha}$ $4 t_3 \partial_i f^{\alpha_i}$	$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	<u>t1+t2</u> 3	$\frac{1}{3}ik(t_1+t_2)$	0	0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{i}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0
	$(2t_1 \omega^{\alpha\prime})$	$\omega_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	<u>t₁-2t₃</u> 3 √2
	Quadratic (Tree) action $S == \iiint (\frac{1}{6} (2 t_1 \omega^{\alpha \prime} \omega))$	$\omega_1^{\#2} \uparrow^{lpha}$	0	0	0	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	<u>t1+t3</u> 3
	= []	$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0
	S Cua	$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{l} k (t_1 - 2t_3)$	$-\frac{1}{2} i \sqrt{2} k (t_1 +$

$ au_1^{\#2}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0 0		0	0	0	0	
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	
$\tau_1^{\#1}{}_+\alpha\beta$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	
$\sigma_1^{\#2}_{+}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\!$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$t_1^{\#1} + \alpha \beta = \frac{i \sqrt{2} k(t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	0	0	0	0	
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{*1} + ^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$	

 $f_{1-\alpha}^{\#2}$

0

0

 $\frac{1}{3}$ i k $(t_1 - 2t_3)$

 $\frac{2}{3}k^2(t_1+t_3)$

 $0 \quad \boxed{\frac{1}{3} i \sqrt{2} k (t_1 + t_3)}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$