Advanced and algorithmic graph theory

Martina Tscheckl February 29, 2016

Please send feedback to martina@tscheckl.eu.

${\bf Contents}$

1 Introduction and notations

3

1 Introduction and notations

29.02.2016

Let G = (V, E) be a graph. Then V is the vertex set of G and E is the edge set of G. If

$$E \subseteq V \times V$$

then G is called a *directed graph*. And if

$$E \subseteq \{\{a,b\} : a \neq b, a, b \in V\}$$

then G is called an *undirected graph*.

A trivial graph is the empty graph $G = (\emptyset, \emptyset)$.

We will always consider the case of undirected graphs if not specified otherwise.

Definition (Order of G). The order of G is denoted by |G| := |V|. We assume that V is finite if not otherwise specified. And we denote by ||G|| := |E|.

Notation (Edges). Edges are denoted by $\{i, j\}$, (i, j), or ij. If $e = \{i, j\} \in E$, then

- (a) i and j are adjacent,
- (b) i is incident to e (or i and e are incident),
- (c) i and j are neighbours.

Definition (Complete graph). A graph G = (V, E) is called a complete graph if and only if

$$E = \{ \{a, b\} : a \neq b, a, b \in V \}.$$

It is called K_n if |V| = n.

Definition (Independet or stable set). A set of vertices $A \subseteq V$ is called independent or stable if and only if

$$\forall a, b \in A : \{a, b\} \notin E$$

Definition (Isomorphic). Two graphs G = (V, E) and G' = (V', E') are isomorphic if and only if there exists a bijective map $\varphi : V \to V'$ such that for all $a, b \in V$

$$\{a,b\} \in E \iff \{\varphi(a),\varphi(b)\} \in E'.$$

Then φ is called an isomorphism and we write $G \equiv G'$.

Definition (Graph property). A class of graphs that is closed under isomorphisms is called a graph property.

Example (Triangle). Let $G = K_3$. Then $G' \equiv G$ implies that G' is a triangle. Another example would be K_4 .

add pic

Definition (Graph invariant). A mapping taking graphs as arguments is called a graph invariant if and only if it assigns equal images (values) to isomorphic graphs.

Examples. 1. Number of vertices,

- 2. Number of edges,
- 3. Longest number (cardinality of longest clique) of pairwise adjacent vertices.

Definition (Clique). A subset $A \subseteq V$ is called a clique if and only if

$$\forall a, b \in A, \ a \neq b \implies \{a, b\} \in E.$$

Definition (Union and intersection of graphs). Let G and G' be two graphs. Then we define

1. the union of two graphs as

$$G \cup G' := (V \cup V', E \cup E')$$

2. the intersection of two graphs as

$$G \cap G' := (V \cap V', E \cap E')$$

If $G \cap G' = (\emptyset, \emptyset)$, we say G and G' are disjoint.

Definition (Subgraphs). 1. If $V \subseteq V'$ and $E \subseteq E'$, we say G is subgraph of G' and write $G \subseteq G'$.

- 2. If $G \leq G'$ and $G \neq G'$, we say G is a proper subgraph of G'.
- 3. If $G \subseteq G'$ such that

$$\forall a, b \in V(G) : \{a, b\} \in E' \implies \{a, b\} \in E,$$

then G is an induced subgraph. We say V := V(G) induces or spans G in G' and denote it by G'[V].

add pic

Definition (Adding/removing vertices or edges in/from graphs). Let G = (V, E) and G' = (V', E') be graphs.

(a) If $U \subseteq V(G)$, we write

$$G-U\coloneqq G[V\setminus U].$$

If $U = \{v\}$, we write G - v instead of $G - \{v\}$.

add pic

(b) If $G' \subseteq G$, we write G - G' := G - V(G')

add pic

(c) If $F \subseteq E$, we write

$$G + F := (V, E \cup F)$$

and

$$G - F := (V, E \setminus F).$$

If $F = \{e\}$, we write G + e instead of $G + \{e\}$ and G - e instead of $G - \{e\}$.

Definition (Edge maximal with respect to a given graph property). A graph G is called edge maximal with respect to a given graph property if and only if G itself has the property, but no graph

$$G + \{x, y\}$$

has the property for some $x, y \in V(G)$, $x \neq y$ with $\{x, y\} \notin E(G)$.

Example. Let G be a graph with property P, where P = "triangle free".

(a) add pic

(b) add same pic

Both graphs are maximal with respect to P.

Remark. If we call a graph minimal or maximal with respect to some property without any other specification of the order, then it is meant to be according to the subgraph relation.

Definition (Product of graphs). If G and G' are disjoint, define G * G' as a graph obtained from

$$G \cup G' = (V(G) \cup V(G'), E(G) \cup E(G'))$$

by adding all edges $\{x,y\}$ with $x \in V(G)$ and $y \in V(G')$.

add pic

Definition (Complement graph). The complement of G is denoted by G^C or \overline{G} and is defined as

$$\overline{G} := (V(G), \{\{a,b\} : a \neq b, a,b \in V(G)\} \setminus E(G))$$

Definition (Line graph). The line graph of G is denoted by

$$L(G) = (E(G), \{\{e, f\} : e, f \in E, e \neq f, e \cap f \neq \emptyset\})$$

add pic 7

Definition (Degree of G). Denote the set of neighbours of a vertex $v \in V$ by $N_G(v)$. Then we define $\deg_G(v) \equiv d_G(v) := |N_G(v)|$ as the degree of v in G. If $d_G(v) = 0$ we say that v is isolated in G. We define

1. the minimum degree of G as

$$\delta(G) = \min_{v \in V(G)} d_G(v)$$

2. the maximum degree of G as

$$\Delta(G) = \max_{v \in V(G)} d_G(v)$$

3. the average degree of G as

$$d(G) = \frac{1}{|V(G)|} \sum d_G(v)$$

Definition (k-regular graph). A graph G is k-regular if and only if

$$\deg_G(v) = k$$

for all $v \in V$ and for some $k \in \mathbb{N}_*$.

If k = 3, we call G cubic.

We define

$$\varepsilon(G) \coloneqq \frac{|E|}{|V|}.$$

Definition (Path). A path is a nonempty graph P = (V, E) of the form

$$V = \{x_0, x_1, \dots, x_k\}$$

and

$$E = \{x_0 x_1, x_1 x_2, \dots, x_{k-1} x_k\}$$

where all edges are all pairwise distinct. The vertices x_0 and x_k are the end vertices of P. And the vertices x_i for $1 \le i \le k-1$ are the inner vertices of P.

Definition (Length of path). Let P = (V, E) be a path. The length of the path is defined as the number of edges |E|. A path of length k is denoted by P^k . (Notice that k = 0 is possible)

add pic

Remark. We often refer to a path P^k as $x_0x_1...x_k = P^k$.

Notation. Let $P = x_0 x_1 \dots x_k$. We write

$$Px_i := x_0 \dots x_i$$
$$x_i P := x_i \dots x_k$$
$$x_i Px_j := x_i \dots x_j$$

Let $\mathring{P} := x_1 x_2 \dots x_{k-1}$. Then we write

$$\mathring{P}x_i \coloneqq x_0 \dots x_{i-1}
x_i \mathring{P} \coloneqq x_{i+1} \dots x_k
x_i \mathring{P}x_j \coloneqq x_{i+1} \dots x_{j-1} \equiv x_{i+1} P x_{j-1} \text{ for } i+1 \le j$$

add pic

Definition (A-B-path). Let $A, B \subseteq V(G)$. A path $P = x_0x_1 \dots x_k$ is callled an A-B-path if

$$V(P) \cap A = \{x_0\}$$

and

$$V(P) \cap B = \{x_k\}.$$

If $A = \{a\}$ and $B = \{b\}$ write a-b-path instead of $\{a\}-\{b\}$ -path.

add pic

Definition (Independent path). Two or more paths are independent if and only if none of them contains as inner vertex an inner vertex of some other path.

Example. The paths $P_1 = x_0x_1x_2x_3$ and $P_2 = y_0y_1y_2y_3$ are independent. If the radd pic path $P_3 = x_0x_2y_2$ is added, they are not an independent set of paths anymore.

Definition (H-path). Let H be a given graph. We call a path P an H-path if P is non-trivial and

$$V(P) \cap V(H) = \{x_0, x_k\}$$

where x_0 and x_k are the end vertices of P.

Definition (Cycle). If $P = (x_0, x_1, \dots, x_{k-1})$ is a path and $k \geq 3$, then C = $P + \{x_{k-1}, x_0\}$ is called a cycle. Its length is k and we denoted it by C^k .

Definition (Girth and circumference). Let G be a graph.

- (a) The minimal length of a cycle in G is the girth (german: Taillenweite) g(G) of G.
- (b) The maximal length of a cycle in G is the circumference c(G) of G.

If G has no cycle at all then $g(G) = \infty$ and c(G) = 0.

Definition (Chord). Let $C^k = x_0 x_1 \dots x_{k-1}$ be a cycle in a graph G. An edge $\{x_i, x_j\}$ with $1 \leq i \neq j \leq k-1$ joining two vertices of C^k such that $\{x_i,x_i\} \notin E(C^k)$ is called a chord. An induced cycle in G is a cycle without chords.

Proposition 1.1. Every graph contains a path of length $\delta(G)$ and a cycle of length $\delta(G) + 1$, provided that $\delta(G) \geq 2$.

Proof. Homework: Consider longest path

add pic

Definition (Distance and diameter). Let G be a graph.

- (a) The distance of two vertices $x, y \in V(G)$ is the length of the shortest xy-path denoted by $\operatorname{dist}_G(x,y)$. Set $\operatorname{dist}_G(x,y)=\infty$ if there is no x-y-path in G.
- (b) The diameter of G is defined as

$$diam(G) := \max_{x,y \in V(G)} dist_G(x,y).$$

Proposition 1.2. Every graph containing a cycle satisfies

$$g(G) \le 2 \operatorname{diam}(G) + 1.$$

Proof. Let C be a shortest cycle in G. If

add pic

$$g(G) \ge 2 \operatorname{diam}(G) + 2,$$

then there exist $x, y \in V(C)$ such that

$$\operatorname{dist}_{G}(x, y) > \operatorname{diam}(G) + 1.$$

In G the condition $\operatorname{dist}_G(x,y) \leq \operatorname{diam}(G)$ holds, so any shortest path P between x, y is not a subgraph of C. Thus P contains a C-path x'Py'. Use x'Py' and the shortest x'-y'-path in C to construct a cycle C' strictly shorter than $C \not = \emptyset$.

04.02.2016