TRAVAIL PERSONNEL Processus Stochastiques en Physique PHYS-F446

Extinctions dans un modèle de prédation cyclique de type "pierre papier ciseaux"

Cédric Schoonen

27 mai 2020

Table des matières

1	Présentation du modèle étudié	2
2	Dynamique macroscopique	2
3	Dynamiques micro et mésoscopiques	3
4	Développement de Kramers-Moyal de l'équation maîtresse	4
5	Réduction à un processus radial	6
6	Problème d'échappement d'un intervalle	6
7	Temps moyen d'extinction	6
8	Simulation du système	6

1 Présentation du modèle étudié

Dans ce travail, nous nous intéressons à un modèle de prédation de type "pierre papier ciseaux". Dans ce modèle, trois espèces A,B,C cohabitent et forment un réseau de prédation cyclique. Nous pouvons représenter les interactions du modèles par les réactions

$$A + B \xrightarrow{k} 2A,$$

$$B + C \xrightarrow{k} 2B,$$

$$C + A \xrightarrow{k} 2C.$$
(1)

où le paramètre k est la fréquence des interactions entre deux individus. Le nombre total d'individus N=A+B+C est conservé dans cette dynamique. Nous avons ici symbolisé le nombre d'individus de chanque espèce par le même symbole A,B ou C employé pour désigner l'espèce.

2 Dynamique macroscopique

Dans limite macroscopique, i.e. $N \to \infty$, le système obéit aux équations dynamiques montrer limite eq maîtresse/FP?

$$\dot{a} = ka(b-c),
\dot{b} = kb(c-a),
\dot{c} = kc(a-b),$$
(2)

où nous avons noté en lettre minuscule la fraction d'individus de chaque espèce, i.e. a=A/N. La conservation du nombre d'individus montre que l'espace des phases est contenu dans le plan : a+b+c=1. Les trajectoires engendrées par les équations 2 sont représentées sur la figure figure.

La dynamique macroscopique possède deux invariants, ce qui le rend intégrable exactement. Le premier est trivial et est donné par la loi de conservation a+b+c=1. Le second est le produit $\rho=abc$, en effet

$$\frac{d\rho}{dt} = \dot{a}bc + a\dot{b}c + ab\dot{c}$$

$$= ka(b-c) + kb(c-a) + kc(a-b)$$

$$= 0$$
(3)

Généralisation d espèces

Deux hamiltoniens H0 et H1??

3 Dynamiques micro et mésoscopiques

La dynamique microscopique est un processus de Markov pour lequel un état du système $\{A, B, C\}$ subit les transitions

$$\{A, B, C\} \longrightarrow \{A+1, B-1, C\}$$
 fréquence = $k AB$,
 $\{A, B, C\} \longrightarrow \{A, B+1, C-1\}$ fréquence = $k BC$,
 $\{A, B, C\} \longrightarrow \{A-1, B, C+1\}$ fréquence = $k CA$. (4)

L'équation maîtresse associée est

$$\frac{\mathrm{d}}{\mathrm{d}t} P_t(A, B, C) = k (A - 1)(B + 1) P_t(A - 1, B + 1, C) - k AB P_t(A, B, C)
+ k (B - 1)(C + 1) P_t(A, B - 1, C + 1) - k BC P_t(A, B, C)
+ k (C - 1)(A + 1) P_t(A + 1, B, C - 1) - k CA P_t(A, B, C).$$
(5)

En développant l'équation maîtresse en puis sances de $\epsilon=1/N,$ on déduit l'équation de Fokker-Planck

$$\partial_t \Psi_t = -\partial_i (\mu_i \Psi_t) + \partial_i \partial_j (D_{ij} \Psi_t), \tag{6}$$

où $\Psi_t(a,b,c)$ est la densité de probabilité pour les fractions a,b,c,

$$\Psi_t(a,b,c) = N^3 P_t(A,B,C) = \epsilon^{-3} P_t(a/\epsilon,b/\epsilon,c/\epsilon). \tag{7}$$

Cette équation décrit la dynamique du système à une échelle intermédiaire, que l'on pourrait qualifier de "mésoscopique". L'équation de Fokker-Planck s'obtient dans la limite de grand N, mais nous gardons encore des puissances de 1/N dans le terme de diffusion. Cette description garde donc le caractère aléatoire des trajectoires microscopiques. Ce niveau de description est approprié pour étudier des phénomènes d'origine stochastique, comme l'extinction d'une des espèces du modèle, en ayant la possibilité d'employer les outils de calcul différentiel, qui s'appliquent à une description en variables continues.

pas meme temps

Les quantités μ_i et D_{ij} sont respectivement les vecteurs de dérive et la matrice de diffusion. Le vecteur de dérive est donné par

$$\boldsymbol{\mu}^T = \begin{bmatrix} a(b-c) & b(c-a) & c(a-b) \end{bmatrix} \tag{8}$$

et la matrice de diffusion est

$$\mathbf{D} = \frac{\epsilon}{2} \begin{bmatrix} a(b+c) & -ab & -ac \\ -ab & b(c+a) & -bc \\ -ac & -bc & c(a+b) \end{bmatrix}. \tag{9}$$

L'équation différentielle stochastique associée est, selon la convention de Itô,

$$d\mathbf{r}_t = \boldsymbol{\mu}(\mathbf{r}_t) dt + \boldsymbol{\sigma}(\mathbf{r}_t) d\mathbf{W}_t, \tag{10}$$

où $\mathbf{r}_t = (a, b, c)$, $\mathbf{D} = \frac{1}{2}\boldsymbol{\sigma}\boldsymbol{\sigma}^T$, et \mathbf{W}_t est un processus de Wien de moyenne nulle et de variance unité.

4 Développement de Kramers-Moyal de l'équation maîtresse

On commence par exprimer l'équation maîtresse (eq 5) avec les variables "mésoscopiques" Ψ_t , a, b, c et $\epsilon = 1/N$. On obtient

$$\epsilon^{3} \partial_{t} \Psi_{t}(a, b, c) = k \left(\frac{a}{\epsilon} - 1\right) \left(\frac{b}{\epsilon} + 1\right) \epsilon^{3} \Psi_{t}(a - \epsilon, b + \epsilon, c)$$

$$- k \frac{a}{\epsilon} \frac{b}{\epsilon} \epsilon^{3} \Psi_{t}(a, b, c) + p.c. ,$$
(11)

où nous avons symbolisé par p.c. les termes issus de permutations cycliques par rapport à a,b,c dans les termes déjà notés. Cette équation peut être réarrangée en

$$\frac{\epsilon^2}{k} \partial_t \Psi_t(a, b, c) = (a - \epsilon)(b + \epsilon) \Psi_t(a - \epsilon, b + \epsilon, c) - ab \Psi_t(a, b, c) + p.c.$$
 (12)

On développe ensuite en puissance de ϵ , en ne gardant que les termes d'ordre inférieur ou égal à deux. On commence par développer le produit $(a - \epsilon)(b + \epsilon)$,

$$\frac{\epsilon^2}{k} \partial_t \Psi_t(a, b, c) = ab \,\Psi_t(a - \epsilon, b + \epsilon, c) + (a - b)\epsilon \,\Psi_t(a - \epsilon, b + \epsilon, c) - \epsilon^2 \,\Psi_t(a - \epsilon, b + \epsilon, c) - ab \,\Psi_t(a, b, c) + p.c.$$
(13)

Ensuite, on développe les densités de probabilité en série de Taylor,

$$\frac{\epsilon^{2}}{k} \partial_{t} \Psi_{t}(a,b,c) = \underline{ab} \Psi_{t}(a,b,c) - ab \epsilon \partial_{a} \Psi_{t}(a,b,c) + ab \epsilon \partial_{b} \Psi_{t}(a,b,c)
+ \frac{\epsilon^{2}}{2} \partial_{a}^{2} \Psi_{t}(a,b,c) + \frac{\epsilon^{2}}{2} \partial_{b}^{2} \Psi_{t}(a,b,c) + \epsilon^{2} \partial_{a} \partial_{b} \Psi_{t}(a,b,c)
+ (\underline{a-b}) \epsilon \Psi_{t}(a,b,c) - (\underline{a-b}) \epsilon^{2} \partial_{a} \Psi_{t}(a,b,c)
+ (\underline{a-b}) \epsilon^{2} \partial_{b} \Psi_{t}(a,b,c) - \epsilon^{2} \Psi_{t}(a,b,c) - \underline{ab} \Psi_{t}(a,b,c)
+ \underline{p.c.}$$
(14)

Remarquons que le terme coloré en brun s'annule avec ses homologues issus des permutations cycliques en a, b, c.

La dernière étape consiste à redéfinir l'échelle de temps en absorbant ϵ et k dans t, de sorte que

$$\frac{k}{\epsilon} t \to t, \tag{15}$$

nous obtenons ainsi

$$\partial_{t}\Psi_{t}(a,b,c) = ab \partial_{a}\Psi_{t}(a,b,c) + ab \partial_{b}\Psi_{t}(a,b,c) + \frac{\epsilon}{2} \partial_{a}^{2}\Psi_{t}(a,b,c) + \frac{\epsilon}{2} \partial_{b}^{2}\Psi_{t}(a,b,c) + \epsilon \partial_{a}\partial_{b}\Psi_{t}(a,b,c) - (a-b) \epsilon \partial_{a}\Psi_{t}(a,b,c) + (a-b) \epsilon \partial_{b}\Psi_{t}(a,b,c) - \epsilon \Psi_{t}(a,b,c) + p.c.$$
(16)

Pour voir que ce développement mène à l'équation de Fokker-Planck (eq 6), il est plus facile de partir de cette dernière équation et développer les expressions de μ_i et D_{ij} . Cela donne

$$\partial_{t}\Psi_{t} = -\partial_{i}\mu_{i}\Psi_{t} - \mu_{i}\partial_{i}\Psi_{t} + \partial_{i}\partial_{j}D_{ij}\Psi_{t} + 2\partial_{i}D_{ij}\partial_{j}\Psi_{t} + D_{ij}\partial_{i}\partial_{j}\Psi_{t}$$

$$= -(b-c)\Psi_{t} - p.c. - a(b-c)\partial_{a}\Psi_{t} - p.c. + \frac{\epsilon}{2}\left[0 - \Psi_{t} - \Psi_{t}\right] + p.c.$$

$$+ \epsilon\left[(b+c)\partial_{a}\Psi_{t} - b\partial_{b}\Psi_{t} - c\partial_{c}\Psi_{t}\right] + p.c.$$

$$+ \frac{\epsilon}{2}\left[a(b+c)\partial_{a}^{2}\Psi_{t} - ab\partial_{a}\partial_{b}\Psi_{t} - ac\partial_{a}\partial_{c}\Psi_{t}\right] + p.c.$$

$$(17)$$

La correspondance entre les termes violets, vert et bleus des équations 15 et 17 est assez facile à voir, en tenant compte des permutations cycliques. Pour les termes cyan, il faut employer la relation de conservation a+b+c=1. Par example, les termes en $\partial_a \Psi_t$ dans l'équation 17 peuvent être écrits comme

$$\epsilon (b+c) \partial_a \Psi_t - 2\epsilon a \partial_a \Psi_t = \epsilon (b-a) \partial_a \Psi_t + \epsilon (c-a) \partial_a \Psi_t.$$
 (18)

dev termes cyan pour mieux voir

- 5 Réduction à un processus radial
- 6 Problème d'échappement d'un intervalle
- 7 Temps moyen d'extinction
- 8 Simulation du système