시스템 프로그래밍을 위한 C언어

 Hardware Memory Allocation to Access On-Chip Hardware via Memory Mapped I/O

> 현대자동차 입문교육 박대진 교수

Real World Interfacing by using MCU

Analog or Digital

Bit or Bus

Discrete

GPIO and Internal Bus

- General Purpose Input/Output
 - Interface Between Internal Bus and Outside world
 - Time-multiplexed Data Path (Input, output)
 - GPIO Port is mapped to registers in Memory Map

Interfacing via PORT Register on Memory Map: Write Mode

Write value on Register -> Control the output voltage

Interfacing via PORT Register on Memory Map: Read Mode

Reading Register Value → Can Identify the input voltage

포인터 변수를 통해 메모리 버스에 접근

- 메모리의 한 영역에 값을 쓰게 되면
- 버스에 값이 실리게 되고
- 그 주소에 매칭되는 회로 (메모리도 그중에 하나)가 반응함
- 온칩에 내장된 회로들이 이렇게 버스에 묶여 있어서 자기 주소에 대응 된다면 SW와 연동된다.

- 보드의 LED, 버튼을 사용하기 위한 하드웨어 회로 파악
 - 4개 LED: LD3~6는 PD12~15에 연결되어 있음 (PD, Port D)
 - 버튼 B1은 PA0에 연결되어 있음 (PA, **Port A**)

LEDs 6.3

- LD1 COM: LD1 default status is red. LD1 turns to green to indicate that communications are in progress between the PC and the ST-LINK/V2.
 - LD2-PWR: red LED indicates that the board is powered. User LD3: olange LED is a user LED connected to the I/O PD13 of the
- STM32F407VGT6. User LD4: green LED is a user LED connected to the I/O PD12 of the
- User LD5: red LED is a user LED connected to the I/O PD14 of the STM32F407VGT6.
- User LD6: blue LED is a user LED connected to the I/O PD15 of the SI M32F407VGT6.
- USB LD7: green LED indicates when VBUS is present on CN5 and is connected to PA9 of the STM32F407VGT6
- USB LD8: red LED indicates an overcurrent from VBUS of CN5 and is connected to the I/O PD5 of the STM32F407VGT6.

6.4

STM32F407 /GT6.

- B1 USER: User and Wake-Up buttons are connected to the I/O PA0 of the

GPIO Port A, Port D를 사용하기 위한 GPIO 레지스터 설정

Table 1. STM32F4xx register boundary addresses (continued)
--

Table 1.	STM32F4xx register	r bound	ary addresses (continued)
Boundary address	Peripheral	Bus	Register map
0x5006 0800 - 0x5006 0BFF	RNG		Section 24.4.4: RNG register map on page 772
0x5006 0400 - 0x5006 07FF	HASH		Section 25.4.9: HASH register map on page 796
0x5006 0000 - 0x5006 03FF	CRYP	AHB2	Section 23.6.13: CRYP register map on page 764
0x5005 0000 - 0x5005 03FF	DCMI	,	Section 15.8.12: DCMI register map on page 476
0x5000 0000 - 0x5003 FFFF	USB OTG FS		Section 34.16.6: OTG_FS register map on page 1326
0x4004 0000 - 0x4007 FFFF	USB OTG HS		Section 35.12.6: OTG_HS register map on page 1469
0x4002 B000 - 0x4002 BBFF	DMA2D		Section 11.5: DMA2D registers on page 352
0x4002 8000 - 0x4002 93FF	ETHERNET MAC		Section 33.8.5: Ethernet register maps on page 1240
0x4002 6400 - 0x4002 67FF	DMA2		Section 10 5 11: DMA register man on page 325
0x4002 6000 - 0x4002 63FF	DMA1		Section 10.5.11: DMA register map on page 335
0x4002 4000 - 0x4002 4FFF	BKPSRAM		
0x4002 3C00 - 0x4002 3FFF	Flash interface register		Section 3.9: Flash interface registers
0x4002 3800 - 0x4002 3BFF	RCC		Section 7.3.24: RCC register map on page 265
0x4002 3000 - 0x4002 33FF	CRC	AHB1	Section 4.4.4: CRC register map on page 115
0x4002 2800 - 0x4002 2BFF	GPIOK	AHBI	Section 8.4.11: GPIO register map on page 286
0x4002 2400 - 0x4002 27FF	GPIOJ		Section 6.4.11. GFIO register map on page 200
0x4002 2000 - 0x4002 23FF	GPIOI		
0x4002 1C00 - 0x4002 1FFF	GPIOH		
0x4002 1800 - 0x4002 1BFF 0x4002 1400 - 0x4002 17 FF	THOSE E	1	
0x4002 1000 - 0x4002 13FF	GPIOE		Section 8.4.11: GPIO register map on page 286
0x4002 0C00 - 0x4002 0FFF	GPIOD		
0x4002 0800 - 0x4002 0BFF	GPIOC		
0x4002 0400 - 0x4002 07FF	GPIOB	•	
0x4002 0000 - 0x4002 03FF	GPIOA	1	
0x4001 6800 - 0x4001 6BFF	LCD-TFT	APB2	Section 16.7.26: LTDC register map on page 510
0x4001680000k001ABFF	J JSAIM E	APB2	Section 29.17.9: SAl register m p on page 966
0x4001 5400 - 0x4001 57FF	SPI6	APB2	Section 28.5.10: SPI register map on page 928
0x4001 5000 - 0x4001 53FF	SPI5	1	1

8.4.11 **GPIO** register map

The following table gives the GPIO register map and the reset values.

Table 39. GPIO register map and reset values

Offset	Register	31	39	28	27	25	24	23	22	21	19	18	41	16	15	14	13	12	7	10	6 8	7	9	2	4	3	2	1	,
0x00	GPIOA_ MODER	MODER15[1:0]		MODER14[1:0]	MODER13[1:0]		MODER12[1:0]	MODED 4414 :01	WODEN III.	MODER10[1:0]	MODER9(1:0)		MODER8[1:0]		MODER7[1:0]		MODER6[1:0]		MODER5[1:0]		MODER4[1:0]	MODED 3(1-0)	- Indiana	MODER2[1:0]		MODER1[1:0]		MODER0[1:0]	
	Reset value	1 0	1	0	1 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	
0x00	GPIOB_ MODER	MODER15[1:0]		MODER14[1:0]	MODER13[1:0]		MODER12[1:0]	MODED 44 14:01	MODEN III.0	MODER10[1:0]	MODERatt-01	in control in the con	MODER8[1:0]	la l	MODER7[1:0]		MODER6[1:0]		MODER5[1:0]		MODER4[1:0]	MODED371-01	in correction	MODER2[1:0]		MODER1[1:0]		MODER0[1:0]	
	Reset value	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	1 0	1	0	0	0	0	0	0 0	
0x00	GPIOx_MODER (where x = Cl/J/K)	MODER15[1:0]		MODER14[1:0]	MODER13[1:0]		MODER12[1:0]	MODED4414-01	WODEN I I'V	MODER10[1:0]	MODER9(1:01	for long and	MODER8(1:01	Tour loss a com-	MODER7[1:0]		MODER6[1:0]		MODER5[1:0]		MODER4[1:0]	MODED311:01	incorrection.	MODER2[1:0]		MODER1[1:0]		MODER0[1:0]	
	Reset value	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0]

전체 레지스터 map에서 base address를 찾아 GPIO 모듈의 세부 레지스터 map으로 이동

- 레지스터 설정 값을 결정하기 위한 스펙 문서 이해
 - GPIO의 여러 레지스터 중, 1개의 예시

GPIO port mode register (GPIOx_MODER) (x = A..I/J/K) 8.4.1

Address offset: 0x00

Reset values:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
MODER	DER15[1:0] MODER14[1:0]		R14[1:0]	MODER13[1:0]		MODER12[1:0]		MODE	R11[1:0]	MODER	R10[1:0]	MODE	R9[1:0]	MODER8[1:0]		
rw	rw	rw	rw	rw	rw	rw rw		rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9 8		7 6		5 4		3	2	1	0	
MODE	MODER7[1:0]		R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]	
rw	rw rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
												,				

2. 사용하려는 component를 위해서 전체 레지스터 중, 어디에 write해야 하는지 파악

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

- 00: Input (reset state)
- 01: General purpose output mode
- 10: Alternate function mode
- 11: Analog mode

1. 원하는 동작을 위해서 어떤 값을 사용해야 하는지 파악

GPIO 레지스터를 설정하는 코드

```
31 int main (void) {
      clk();
      RCC CFGR |= 0x046000000;
      RCC AHB1ENR
                    |= 1<<0; //RCC clock enable register
      GPIOA MODER
                    |= 0<<0; // input mode
      GPIOA OTYPER |= 0<<0; // output push-pull
      GPIOA PUPDR
                    |= 0<<0; // no pull-up, pull-down
      RCC AHB1ENR
                    l= 1<<3:
      GPIOD MODER
                   |= 1<<24:
      GPIOD MODER
                    |= 1<<26;
                    |= 1<<28;
      GPIOD MODER
      GPIOD MODER
                    |= 1<<30;
      GPIOD OTYPER |= 0x000000000;
      GPIOD PUPDR
                    = 0x000000000;
      GPIOD ODR |= 1<<12;
      while(1) {
          if( GPIOA IDR & 0x00000001 ) {
               GPIOD ODR ^= 1 << 13;
              GPIOD ODR ^= 1 << 14;
               GPIOD ODR ^= 1 << 15;
```

PAO (Port A의 pin 0)을 입력으로 사용하기 위한 설정

- Port A 모듈에 clock 인가
- 핀 입출력 방향 설정

PD12~15 (Port D의 pin 12~15)을 입력으로 사용하기 위한 설정

- Port D 모듈에 clock 인가
- 핀 입출력 방향 설정

출력 핀에 원하는 값 인가

코드 설명 – 전체 동작

버튼으로 입력되는 값에 따라 LED toggle 여부를 결정

```
31 int main (void) {
     clk();
     RCC CFGR |= 0x046000000;
     RCC AHB1ENR
                 |= 1<<0; //RCC clock enable register
     GPIOA MODER
                 |= 0<<0; // input mode
     GPIOA OTYPER |= 0<<0; // output push-pull
     GPIOA PUPDR
                 |= 0<<0; // no pull-up, pull-down
      RCC AHB1ENR
                 |= 1<<3;
                                                                 버튼으로 입력되는 값이 1이라면,
     GPIOD MODER |= 1<<24;
      GPIOD MODER
                 |= 1<<26;
      GPIOD MODER
                 |= 1<<28:
      GPIOD MODER
                 |= 1<<30;
      GPIOD OTYPER
                 = 0x000000000;
      GPIOD PUPDR
                 = 0x000000000;
                                                                 3개의 LED (PD13, PD14, PD15)의
     GPIOD ODR |= 1<<12;
                                                                 상태를 toggle
     while(1) {
                                                                  - on되어 있으면 off
         if( GPIOA IDR & 0x000000001 ) {
            GPIOD ODR ^= 1 << 13;
            GPIOD ODR ^= 1 << 14;
                                                                  - off되어 있으면 on
            GPIOD ODR ^= 1 << 15;
```


여러가지 SFR 접근 방법

Memory Mapped된 하드웨어 영역의 특정 주소를 직접 지정

struct, union이용한 하드웨어 영역 표현

```
struct REG_BITS {
    unsigned int F0: 8;
    unsigned int F1 : 8;
    unsigned int F2: 8;
    unsigned int F3 : 8;
};
union ADC_CONTROL {
    unsigned int U;
    struct REG BITS B;
```

물리적인 메모리를 다음의 4개 바이트 혹은 32비트 unsigned int로 볼수 있다

포인터 타입을 이용하여 해당 영역의 주소를 표현

물리적인 메모리를 다음의 4개 바이트 혹은 32비트 unsigned int로 볼수 있다

```
struct REG BITS {
   unsigned int F0 : 8;
   unsigned int F1 : 8;
   unsigned int F2 : 8;
   unsigned int F3 : 8;
};
union ADC CONTROL {
    unsigned int U;
    struct REG BITS B;
```

```
0xFFB00000
0xFFB00001
                                  F2
                                             F2
                                                       F1
                                                                  F0
0xFFB00002
0xFFB00003
                                             unsigned int
```

```
#define HW EMULATION 1
#ifdef HW EMULATION
  union ADC CONTROL adc control1;
  #define ADCC (*(volatile union ADC CONTROL*)&adc control1)
#else
  #define ADCC (*(volatile union ADC CONTROL*)0xFFB00000)
//#define P (*(
                                         int*)0xFFCC0000)
#endif
```


해당주소영역에 값을 쓰기

```
struct REG BITS {
    unsigned int F0: 8;
    unsigned int F1 : 8;
    unsigned int F2: 8;
    unsigned int F3 : 8;
};
union ADC CONTROL {
    unsigned int U;
    struct REG BITS B;
};
```

물리적인 메모리를 다음의 4개 바이트 혹은 32비트 unsigned int로 볼수 있다

#define ADCC (*(volatile union ADC_CONTROL*)0xFFB00000)

ADCC.U = 0x12345678;

해당주소영역을 구조체기반 해당 bit slice에 접근

물리적인 메모리를 다음의 4개 바이트 혹은 32비트 unsigned int로 볼수 있다

```
struct REG BITS {
    unsigned int F0 : 8;
   unsigned int F1: 8;
   unsigned int F2 : 8;
   unsigned int F3 : 8;
};
union ADC CONTROL {
    unsigned int U;
    struct REG BITS B;
};
```


#define ADCC (*(volatile union ADC_CONTROL*)0xFFB00000)

ADCC.B.F2 = 0x5A;

해당주소영역을 masking통한 bit slice에 접근

물리적인 메모리를 다음의 4개 바이트 혹은 32비트 unsigned int로 볼수 있다

```
struct REG BITS {
   unsigned int F0 : 8;
   unsigned int F1 : 8;
   unsigned int F2 : 8;
   unsigned int F3 : 8;
};
union ADC CONTROL {
    unsigned int U;
    struct REG BITS B;
};
```


#define ADCC (*(volatile union ADC_CONTROL*)0xFFB00000)

```
#define F2 IDX 16
```

```
ADCC.U = 0x12345678;
ADCC.U &= ~(0xFF << F2_IDX); // clear bit slide using mask pattern generation
ADCC.U = 0x5A << F2 IDX; // then we can set bit slice
```


버스에 연결된 HW에 접근시 온칩 버스

#define ADCC (*(volatile union ADC_CONTROL*)0xFFB00000)

HW 상태를 지속적으로 채크


```
// wait here until ADCC[3] is 1
while( (ADCC.U & (1<<EOC IDX)) == 0);
// check hardare via bus with memory-mapped hardware
// ADCC[3] is 1, go through here
printf("End of conversion\n");
```


