

Capacitor Failure Investigation Results for the NEXT Ion Thruster Power Processing Unit (PPU)

James F. Soeder, Luis Pinero, Robert Scheidegger NASA Glenn Research Center John Dunning – Alpha-port Inc., Art Birchenough – QinetiQ-NA Inc.

April 17, 2012

Discussion Topics

- PPU background
- Failure #3 Investigation
- Key Findings
 - Beam module testing and analysis
 - Capacitor testing and analysis
- Electrical Testing to Mimic in Circuit Phenomena
- Failure Conclusions and Corrective Actions
- Summary

NASA's Evolutionary Xenon Thruster (NEXT) Background

- 7.0 kW ion propulsion system
- Leverages elements from NSTAR (DEEP Space I)
- Designed to meet propulsion requirements of Jupiter/Saturn DRMs
- PPU was constructed with the objective of flight-like form/fit/function
- Multiple functional test cycles conducted in ambient/vacuum with resistive load/thruster
- Environmental qualification-level testing planned until string of failures occurred

NEXT Thruster

NEXT PPU

NEXT Power Processing Unit

- Modular design featuring 7 power supplies
 - Discharge supply
 - Quad supply containing
 - -Accelerator
 - Neutralizer keeper
 - Discharge cathode heater
 - Neutralizer heater
 - Housekeeping power
 - Beam supply
 - Processes 93% total power
 - Up to 96% efficient
 - Contains 6 parallel modules
 - Input Voltage: 80 to 160 V
 - Output voltage: 275 to 1800 V

National Aeronautics and

BEAM MODULE

POWER PWB

Background MLC Capacitor Failures

1st failure Module #1 March 2008

3rd failure Module #4 **April 2010**

2nd failure Module #6 Feb 2009

Failure #3 Investigation

Module #4 PC Board (Post Failure)

Module #4 failure

- Top capacitor
- 50°C baseplate temp.
- Operating at 3.5kW
- 4 modules @ 820W/module
- Failed during forced recycle
- 160 V input
- < 136 hrs operating in vacuum

PPU Capacitor Failure Tree

Clear

Key Findings

Beam module testing and analysis

Beam Supply Simplified Schematic

Circulating Current

16Ap-p @ 200kHz

Ripple Current Failures #1 &# 2 20Ap-p @ 200kHz

Failure #3

Circulating Current between Two Capacitors In Phase Shift Mode

Cap Current and Circulating Current

Capacitor Current and Voltage During a Fault

Key Findings

Capacitor testing and analysis

Ceramic Capacitors

- A ceramic capacitor is constructed of alternating layers of <u>metal</u> and <u>ceramic</u>, with the ceramic material acting as the <u>dielectric</u>.
- A typical dielectric material is X7R a form of Barium Titanate
 - Minor Dopants change the electrical and mechanical properties
- Barium Titanate can be highly piezoelectric based on the additives used

Ceramic Capacitor Used in the Beam Supply

- Custom Part 9uf; 300 Volt ceramic capacitor; case code #3
- This custom dielectric formulation is highly piezoelectric
 - Easily polarized by applied voltage at elevated temperature
 - Internal mechanical resonances a function of case dimensions
 - Frequency = (Velocity of Sound in Dielectric)/
 2* (Length Dimension)
 - Electrical behavior is a strong function of frequency near resonances
 - Capacitance drops with applied voltage

Piezoelectricity

Piezoelectricity is a form of electricity created when certain crystals are bent or otherwise deformed. These same crystals can also be made to bend slightly when a small current is run through them,

GRC Measured
Data on Custom
Capacitor

Barium Titanate (the capacitor dielectric) is piezoelectric

Displacement = f (Electric Field)

NASA

New Custom Caps from Stock

Not subjected to temperature or voltage

Custom Caps Burned-In @ 125°C and 600 V_{DC}

- •Temperature and voltage polarizes the dielectric creating the piezoelectric effect.
- Spike in the impedance indicate piezoelectric resonant frequencies.
- Resonant frequencies are function of ceramic slab dimensions and material.

Electrical Testing to Mimic in Circuit Phenomena

Test Circuits

Growler 2

Growler

- Provides 7.5 amps rms of sinusoidal circulating current @ 170 to 220 kHz

Growler / V-Thumper

- Augment the growler circuit with a 75 volt transient 3 times / second to simulate recycle conclusion

- 200kHz
- 5.47 degree phase lag

FRB Cap Failure #3

Failure Specifics

- 345 total hours
- In Vacuum & Air
- Exercised at 192-205 kHZ (90sec sweep)

Day of Failure Recorded Temp & Current

Failure Conclusions and Corrective Action

Summary of Failure Mechanism

Capacitor
Piezoelectric
Resonance
@ 200kHz

Input Filter Resonance @ 200kHz

Switching
Bridge Driven
@ 200kHz in
Phase Control
Mode

The confluence of 3 independent design elements is responsible for the capacitor failure

0 volt Bias

Custom 9µF/300V

Reduce Circulating Current

Summary

- Piezo-electric characteristics of the custom capacitor at the operating frequency of the beam power supply led to its failure in this application
- Circulating currents at the operating frequency within the bridge aggravated the problem
- Recycle of the beam supply may be final trigger of the failure but is not the primary cause
- Replace capacitors with a non-piezoelectric capacitor
- Add MPP Core to eliminate circulating current

Capacitor problem has been solved