

NAVEGACIÓN AEROESPACIAL PARA INVESTIGACIÓN ANDINA

TALLER DE CONTROL 2023-2

CONTENIDO

01	Nombre de la misión	0
02	Necesidades de usuario	0
03	Objetivo de la misión	
04	Criterio de éxito	
05	Secuencia de la misión	
06	Diagrama físico de bloques	
07	Especificación de componentes	

Manejo de costos

Manejo de horario

NECESIDADES DE USUARIO

- Implementar sistemas electrónicos que logren suplir las necesidades de automatización, despegue y medición de variables durante los despegues y vuelos de las diferentes misiones aeroespaciales.
- Desarrollo de habilidades en diversas áreas, como diseño electrónico, programación y mecánica.
- Trabajo en equipo, desarrollo de habilidades y obtención de experiencia en la gestión de proyectos, estableciendo hitos, asignando tareas y gestionando plazos.
- Caracterizar los cohetes con el fin de verificar su vida útil.
- Impulsar la investigación en el sector aeroespacial en Colombia.

ANTECEDENTES

IEEE-AESS. Aerospace and Electronic Systems Society COLOMBIA Chapter, realizó una competencia de CANSAT en 2020, en la cual los participantes debían realizar el diseño y construcción de un modelo de mini satélite para la medición de variables como temperatura, presión, localización; y debía contar con componentes electrónicos, sensores, transmisores y energía. Apto para volar a 1000 metros de altura (mínimo) y luego caer libremente y aterrizar con un paracaídas.

Los ganadores de la competencia en la clasificación de educación media dijeron que : "Nuestro objetivos es presentar un prototipo de mini satélite, diseñado y estructurado, para integrar un sistema electrónico complejo, compuesto de diferentes tarjetas electrónicas; entre los cuales incluyen sensores, micro controladores, sistemas de posición, sistemas de seguimiento, sistemas de control, sistemas de alimentación (panel solar), sistemas de vigilancia y rastreo". . Recibieron una PLACA DE HONOR AL MÉRITO INNOVADOR de IEEE-AESS Colombia y suvenires de los patrocinadores.

https://aesscolombia.blogspot.com/p/cansat-colombia-2020.html

https://aesscolombia.blogspot.com/2020/10/asi-fue-el-reto-de-innovacion-cansat.html

OBJETIVOS GENERALES DE LA MISIÓN

- Despegue exitoso del CANSAT, aceleración hasta alcanzar la altura solicitada.
- Acción de desacople de etapas.
- Medición, análisis y recuperación de datos de las variables a monitorear.
- Descenso y recuperación de CANSAT.
- Adquirir conocimientos en áreas de diseño electrónico, mecánico y programación.
- Realizar el diseño de pruebas para las etapas de diseño con el fin de verificar su correcto funcionamiento.

CRITERIO DE ÉXITO

ÉXITO	Número	Condición de éxito	Método de verificación	
Fracaso	Condición 1 Condición 2 Condición 3	 La operación de lanzamiento no transcurre debido a fallos en planeación. Se realiza una toma de datos incorrectos. El dispositivo no aterriza correctamente. 	 Registro fotográfico en donde se evidencian los fallos en el lanzamiento. Almacenamiento en memoria de la toma de datos donde se evidencia una falta de coherencia respecto de la toma de datos Evaluación deficiente de la integridad de los componentes. 	
Regular	Condición 1 Condición 2 Condición 3	 La operación de lanzamiento se realiza con dificultades. Las mediciones de datos son correctas pero carecen de precisión. El dispositivo aterriza con dificultades. 	 Registro fotográfico en donde se muestre el proceso de lanzamiento. Almacenamiento en memoria de la toma de datos en donde se evidencian las mediciones. Evaluación regular de la integridad de los componentes. 	
Excelente	Condición 1 Condición 2 Condición 3	 La operación de lanzamiento se realiza correctamente. Se realiza una toma de datos robusta y con información confiable El dispositivo aterriza sin dificultades. 	 Registro fotográfico donde se muestra el correcto lanzamiento del mecanismo. Almacenamiento en memoria de la toma de datos en donde se evidencia una información confiable. Evaluación excelente de la integridad de los componentes. 	

SECUENCIA DE LA MISIÓN

- 1. Configure CANSAT en un cohete/globo, encienda el interruptor.
- 2. Lado del cohete, preparar el lanzamiento (no predecible).
- 3. Lanzamiento por alta aceleración.
- 4. Medición de sensórica, guardado en memoria.

SECUENCIA DE LA MISIÓN

- 5. El dispositivo CANSAT inicia su funcionamiento mediante un interruptor en el momento del lanzamiento del cohete.
- 6. Descargar misión.
- 7. Comando de enlace ascendente.

8. Aterrizaje.

DIAGRAMA DE BLOQUES

ESPECIFICACIONES DE LOS COMPONENTES

- Raspberry PI 4
- Servo motores
- Sensor altura, temperatura y presion barométrico Gy-63 Ms5611
- Mini rastreador Gps
- Acelerometro y giroscopio MPU 6050
- Componentes no electronicos: paracaidas, caparazón con protección anti-choque.
- Bateria
- PCB que contenga todos los sensores

MANEJO DE COSTOS

componente	cantidad	precio
Servo motores	2	\$ 32.000,000
sensor altura, presion y temperatura	1	\$ 41.000,000
acelerometro y giroscopio	1	\$ 10.000,000
rastreador GPS	1	\$ 15.000,000
Paracaidas	1	\$ 50.000,000
Caparazón	1	\$ 30.000,000
PCB	1	costo por universidad
Batería	1	\$ 20.000,000
MANO DE OBRA (PERSONA)	4	\$ 300.000,000
Total		\$ 498.000,000

Gestión de horarios

