Periodic task scheduling

Static priorities

- **★**Better utilization bounds
- **★**Deadlines less than periods
- **★**Exact test for schedulability

Quick review

- Why is rate monotonic scheduling optimal (among static priority policies)?
 - **Critical instant theorem:** The worst-case execution time of a job when tasks are scheduled with fixed priorities occurs when jobs belonging to all tasks release at the same instant
 - It is sufficient, then, to verify that the job that is released at the critical instant meets its
 deadline
 - In this worst case, rate monotonic scheduling is optimal (easy to see; if tasks are feasibly scheduled in any other order, swap based on deadlines)
- Utilization bound and optimality of EDF
 - The utilization bound is 1 (or 100%)
 - EDF is optimal because no policy can do better (may do as well but not better)

Exercise

Know Your Worst Case Scenario

- Consider a periodic system of two tasks
- Let $U_i = C_i/P_i$ (for i = 1, 2)
- What is the maximum value of $\prod_i (1 + U_i)$ for a schedulable system?
- **Motivation:** There may be other functions of a task set rather then just utilization that also indicate schedulability.

Hyperbolic bound for RM

worst case conditions for schedulability of **2** tasks under RM

Critically schedulable

$$C_1 = P_2 - P_1$$

$$C_2 = P_1 - C_1 = 2P_1 - P_2$$

$$U_1 + 1 = \frac{C_1}{P_1} + 1 = \frac{C_1 + P_1}{P_1} = \frac{P_2}{P_1}$$

$$U_2 + 1 = \frac{C_2}{P_2} + 1 = \frac{C_2 + P_2}{P_2} = 2\frac{P_1}{P_2}$$

$$\prod (U_i + 1) = 2$$

Schedulable

$$\prod (U_i + 1) \le 2$$

Hyperbolic bound

Solutions

 $C_1 = P_2 - P_1$ $C_2 = P_1 - C_1 = 2P_1 - P_2$ $U_1 + 1 = \frac{C_1}{P_1} + 1 = \frac{C_1 + P_1}{P_1} = \frac{P_2}{P_1}$ Critically schedulable sets with n tasks

Schedulable

$$\prod_{i} (U_i + 1) \le 2$$

Hyperbolic bound

Hyperbolic bound for rate monotonic scheduling

• A set of periodic tasks is schedulable if

$$\prod_{i} (U_i + 1) \le 2$$

Hyperbolic bound for rate monotonic scheduling

• A set of periodic tasks is schedulable if

$$\prod_{i} (U_i + 1) \le 2$$

- ullet It is a better bound than the Liu and Layland bound $U \leq n(2^{1/n}-1)$?
- ullet Example: consider a system with two tasks such that $U_1=0.8$ and $U_2=0.1$
- U = 0.9 > 0.83 (unschedulable according to the Liu and Layland bound)
- $(1 + U_1)(1 + U_2) = (1.8)(1.1) = 1.98 < 2$ (schedulable according to the hyperbolic bound)

• Question: What happens to the hyperbolic bound if task utilizations are equal?

Feasibility regions in U-space

Hyperbolic bound is *tight*

- It is the best possible bound with only knowledge of utilization factors and the number of jobs
- A utilization-based condition $C(u_1,\ldots,u_n)$ for a scheduling algorithm is **tight** if for every utilization set (u_1,\ldots,u_n) with $0\leq u_i\leq 1$ for which $C(u_1,\ldots,u_n)$ does **not** hold, there exists a task set T_1,\ldots,T_n with utilizations u_1,\ldots,u_n that is **not** schedulable by the scheduling algorithm
 - We can construct a task set with the prescribed utilizations (which violate the schedulability condition) that is *infeasible* under the given algorithm
- Tightness was proved for H-bound \rightarrow With the algorithm being RM and $C(u_1, ..., u_n) \equiv \prod_{i=1}^n (1 + u_i) \leq 2$
- Q: Is the LL bound tight?

How much better is Hyperbolic bound relative LL?

- How do we measure the gain of H-bound over LL-bound?
- Consider the utilization space
 - **U-space:** Subset of n-dimensional Euclidean space consisting of vectors $(u_1, ..., u_n) \in [0,1]^n$
- Fix number of jobs n
- Volume $\operatorname{vol}^n(A)$: n-dimensional Lebesgue measure of (measurable) set $A \subset \mathbb{R}^n$

- Take volume of H-bound region
 - Here need to find $vol^n(H)$, $H = \{u \in \mathbb{R}^n : u_i \in [0, 1], \prod_{i=1}^n (1 + u_i) \le 2\}$
- Take volume of LL-bound region
 - need to find $vol^n(LL)$, $LL = \{u \in \mathbb{R}^n : u_i \in [0,1], \sum_{i=1}^n u_i \le n(2^{1/n} 1)\}$

Asymptotic Gain:
$$\rho_n = \frac{\operatorname{vol}^n(H)}{\operatorname{vol}^n(LL)} = \sqrt{2} + O(n^{-1})$$

• Consider a set of periodic tasks where each task, i, has a computation time, C_{i} , a period, P_{i} , and a relative deadline $D_{i} < P_{i}$.

• Consider a set of periodic tasks where each task, i, has a computation time, C_{i} , a period, P_{i} , and a relative deadline $D_{i} < P_{i}$.

- What is the schedulability condition?
- Can not be worse than when the period of each task is reduced to Di.

• Consider a set of periodic tasks where each task, i, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

- What is the schedulability condition?
- Can not be worse than when the period of each task is reduced to Di.

$$\sum_{i} \frac{C_i}{D_i} \le n(2^{1/n} - 1)$$

• Consider a set of periodic tasks where each task, i, has a computation time, C_{i} , a period, P_{i} , and a relative deadline $D_{i} < P_{i}$.

- What is the schedulability condition?
- Can not be worse than when the period of each task is reduced to Di.

$$\sum_{i} \frac{C_{i}}{D_{i}} \leq n(2^{1/n}-1)^{\text{What is the problem?}}$$

• Worst case interference from a higher priority task, j?

Worst case <u>interference</u> from a higher priority task, j?

Worst case Interference task *j* exercises on task *i*

 \rightarrow upper bound on total workload *requested* by task *j* during D_i at the critical instant

$$LI_i(j) = \left\lfloor \frac{D_i}{P_j} \right\rfloor C_j$$

Number of execution requests of task j in duration of length D_i assuming critical instant

Worst case interference from a higher priority task, j?

Worst case interference from a higher priority task, j?

Worst case interference from a higher priority task, j?

- Interference exists only till a job completes execution, i.e., up to the response time Ri
- Not necessarily up to the relative deadline D_i

(1) $\left\lceil \frac{R_i}{P_j} \right\rceil C_j$: the exact workload interfering with task i in an interval of length R_i starting at the latest critical instant

But $\left\lceil \frac{R_i}{P_j} \right\rceil C_j$ is the workload requested by higher priority task τ_j in an interval of length R_i starting at the latest critical instant

And (1) is saying that this workload indeed *completes* by R_i . Why?

Because task j has higher priority than task i so all instances of task j that arrive in interval of length R_i finish before task i

- Interference exists only till a job completes execution, i.e., up to the response time Ri
- Not necessarily up to the relative deadline D_i

$$I_i = \sum_{j \in \text{hp}(i)} I_i(j) = \sum_{j \in \text{hp}(i)} \left\lceil \frac{R_i}{P_j} \right\rceil C_j$$

Interference on task *i* from all higher priority tasks

- Interference exists only till a job completes execution, i.e., up to the response time Ri
- Not necessarily up to the relative deadline Di

$$I_i = \sum_{j \in \text{hp}(i)} \left\lceil \frac{R_i}{P_j} \right\rceil C_j$$

- Interference exists only till a job completes execution, i.e., up to the response time Ri
- Not necessarily up to the relative deadline Di

What is a solution to this recurrence?

- What is a solution to this recurrence?
 - The smallest t>0 such that $t=\sum_{j\in \mathrm{hp}(i)}\left\lceil \frac{t}{P_j}\right\rceil C_j+C_i$ \longrightarrow called *fixed-point*

- What is a solution to this recurrence?
 - The smallest t>0 such that $t=\sum_{j\in \mathrm{hp}(i)}\left\lceil \frac{t}{P_j}\right\rceil C_j+C_i$ \longrightarrow called *fixed-point*
- Does a solution always exist?
- If so, how can a solution be computed in a finite number of steps? (convergence)

Finding Response Times in a Real-Time System M. Joseph P. Pandya. *The Computer Journal*, Volume 29, Issue 5, 1 January 1986, Pages 390–395.

Recurrence:
$$R_i^{(n+1)} = \sum_{j \in \text{hp}(i)} \left\lceil \frac{R_i^{(n)}}{P_j} \right\rceil C_j + C_i$$

- What is a proper initial value $R_i^{(0)}$?
 - Any *lower* bound on the response time \rightarrow take $R_i^{(0)} = C_i$ or $R_i^{(0)} = \sum_{j \in \mathrm{hp}(i)} C_j$
 - Affects the rate of convergence

Exact Response Time: Solution Existence

- It was shown that recurrence converges if $\sum_{j \in hp(i)} u_j \leq 1$
- Easy to see that $R_i^{(n+1)} \ge R_i^{(n)} \rightarrow$
 - Induction on n + reason about $(R_i^{n+1} R_i^n)$ + use fact that $x \mapsto [x]$ is increasing
- Stop at first n for which $R_i^{(n+1)} = R_i^{(n)}$
- Recurrence might not converge if $\sum_{j \in \mathsf{hp}(i)} u_j > 1$
 - If only want to know whether or not taskset is schedulable \rightarrow Terminate as soon as $R_i^{(n)} > D_i$ or $R_i^{(n)} > P_i$

Consider a system of two tasks:

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5

Consider a system of two tasks:

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5

Consider a system of two tasks:

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5

Consider a system of two tasks:

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5

$$R_2^{(2)} = I^{(1)} + C_2 = 3$$

 $R_2^{(2)} = R_2^{(1)}$

RTA Algorithm

```
DM_guarantee (\Gamma) {
      for (each \tau_i \in \Gamma) {
            I_i = \sum_{k=1}^{i-1} C_k;
            do {
                   R_i = I_i + C_i;
                  if (R_i > D_i) return(UNSCHEDULABLE);
                  I_i = \sum_{k=1}^{i-1} \left[ \frac{R_i}{T_k} \right] C_k;
            } while (I_i + C_i > R_i);
      return(SCHEDULABLE);
```

Response Time Analysis: Complexity

- Is this test efficient?
- Assuming all instance parameters are integers:
 - Inner loop adds at most 1 to interference until deadline is reached
- Runs in time $O(nP_{\text{max}})$, where P_{max} is the largest period
 - test runs in **pseudo-polynomial** time, not efficient as periods become larger
 - Not suitable for online admission control

Lecture summary

- There are better utilization bounds than the Liu & Layland utilization bound: the hyperbolic bound
- When the relative deadline of a task is less than its period, we can apply utilization bounds
 - But such tests are even more pessimistic than normal
- We can apply exact tests for schedulability when deadlines are less than or equal to periods
 - Such tests require more computation
 - Iterative process