TỐI ƯU KHÔNG CÓ RÀNG BUỘC THUẬT TOÁN

Khoa công nghệ thông tin Đại học PHENIKAA

Hà Nội - 2023

1. Phương pháp gradient

2. Phương pháp Newton

3. Phương pháp hướng gradient liên hợp

Phương pháp gradient

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- ullet Giải phương trình abla f(x)=0 tìm điểm dừng
- ullet Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- ullet Giải phương trình abla f(x)=0 tìm điểm dùng
- ullet Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- ullet Giải phương trình abla f(x)=0 tìm điểm dừng
- Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- ullet Giải phương trình abla f(x)=0 tìm điểm dừng
- ullet Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Thuật toán lặp đi tìm điểm dừng

$$x_{k+1} = x_k + t_k d_k$$

- $ightharpoonup d_k$: hướng (direction)
- ▶ t_k: bước lặp (stepsize)

Hướng giảm I

Definition

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục. Một vécto $d \in \mathbb{R}^n$ được gọi là một hướng giảm (descent direction) của f tại x nếu đạo hàm theo hướng f'(x;d) < 0, tức là

$$f'(x;d) = \nabla f(x)^{\mathsf{T}} d < 0.$$

Tính chất của hướng giảm

Lemma

Cho f là là hàm số khả vi liên tục trên \mathbb{R}^n và $x \in \mathbb{R}^n$. Giả sử rằng d là một hướng giảm của f tại x. Khi đó, tồn tại $\epsilon > 0$ sao cho

$$f(x + td) < f(x)$$

với mọi $t \in (0, \epsilon]$.

A general descent directions method

Khởi tạo: Chọn $x_0 \in \mathbb{R}^n$ bất kỳ

- Ó mỗi bước: k = 0, 1, 2, ...
- (a) Chọn một hướng giảm (descent direction) d_k .
- (b) Tîm bước lặp (stepsize) t_k sao cho

$$f(x_k + t_k d_k) < f(x_k).$$

- (c) Dặt $x_{k+1} = x_k + t_k d_k$.
- (d) Nếu tiêu chuẩn dừng thỏa mãn thì STOP và x_{k+1} là

A general descent directions method

Khởi tạo: Chọn $x_0 \in \mathbb{R}^n$ bất kỳ

- $\mathring{\mathsf{O}}$ mỗi bước: $k=0,1,2,\ldots$
- (a) Chọn một hướng giảm (descent direction) d_k .
- (b) Tîm bước lặp (stepsize) t_k sao cho

$$f(x_k + t_k d_k) < f(x_k).$$

- (c) Dặt $x_{k+1} = x_k + t_k d_k$.
- (d) Nếu tiêu chuẩn dừng thỏa mãn thì STOP và x_{k+1} là

A general descent directions method

Khởi tạo: Chọn $x_0 \in \mathbb{R}^n$ bất kỳ

 \mathring{O} mỗi bước: $k = 0, 1, 2, \dots$

- (a) Chọn một hướng giảm (descent direction) d_k .
- (b) Tim bước lặp (stepsize) t_k sao cho

$$f(x_k + t_k d_k) < f(x_k).$$

- (c) Dặt $x_{k+1} = x_k + t_k d_k$.
- (d) Nếu tiêu chuẩn dừng thỏa mãn thì STOP và x_{k+1} là

A general descent directions method

Khởi tạo: Chọn $x_0 \in \mathbb{R}^n$ bất kỳ

- \mathring{O} mỗi bước: $k = 0, 1, 2, \dots$
- (a) Chọn một hướng giảm (descent direction) d_k .
- (b) Tîm bước lặp (stepsize) t_k sao cho

$$f(x_k + t_k d_k) < f(x_k).$$

- (c) Đặt $x_{k+1} = x_k + t_k d_k$.
- (d) Nếu tiêu chuẩn dừng thỏa mãn thì STOP và x_{k+1} là

A general descent directions method

Khởi tạo: Chọn $x_0 \in \mathbb{R}^n$ bất kỳ

- \mathring{O} mỗi bước: $k = 0, 1, 2, \dots$
- (a) Chọn một hướng giảm (descent direction) d_k .
- (b) Tîm bước lặp (stepsize) t_k sao cho

$$f(x_k + t_k d_k) < f(x_k).$$

- (c) Đặt $x_{k+1} = x_k + t_k d_k$.
- (d) Nếu tiêu chuẩn dừng thỏa mãn thì STOP và x_{k+1} là

A general descent directions method

Khởi tạo: Chọn $x_0 \in \mathbb{R}^n$ bất kỳ

- \mathring{O} mỗi bước: $k = 0, 1, 2, \dots$
- (a) Chọn một hướng giảm (descent direction) d_k .
- (b) Tîm bước lặp (stepsize) t_k sao cho

$$f(x_k + t_k d_k) < f(x_k).$$

- (c) Đặt $x_{k+1} = x_k + t_k d_k$.
- (d) Nếu tiêu chuẩn dừng thỏa mãn thì STOP và x_{k+1} là

A general descent directions method

Khởi tạo: Chọn $x_0 \in \mathbb{R}^n$ bất kỳ

- Ó mỗi bước: k = 0, 1, 2, ...
- (a) Chọn một hướng giảm (descent direction) d_k .
- (b) Tìm bước lặp (stepsize) t_k sao cho

$$f(x_k + t_k d_k) < f(x_k).$$

- (c) Dặt $x_{k+1} = x_k + t_k d_k$.
- (d) Nếu tiêu chuẩn dừng thỏa mãn thì STOP và x_{k+1} là

???????????

- ▶ Bước lặp (stepsize) chọn như thế nào?
- ► Tiêu chuấn dừng thuật toán là gì?

???????????

- ▶ Bước lặp (stepsize) chọn như thế nào?
- ► Tiêu chuẩn dừng thuật toán là gì?

Chọn bước lặp (stepsize)

- Bước lặp hằng $t_k = t$ với mọi k
- ▶ Bước lặp theo "exact line search" t_k là cực tiếu dọc theo tia $x_k + td_k$:

$$t_k = \operatorname{argmin}_{t \ge 0} f(x_k + td_k)$$

Backtracking

Chọn bước lặp (stepsize)

- Bước lặp hằng $t_k = t$ với mọi k
- Bước lặp theo "exact line search" t_k là cực tiếu dọc theo tia $x_k + td_k$:

$$t_k = \operatorname{argmin}_{t \geqslant 0} f(x_k + td_k)$$

Backtracking

Chọn bước lặp (stepsize)

- Bước lặp hằng $t_k = t$ với mọi k
- Bước lặp theo "exact line search" t_k là cực tiếu dọc theo tia $x_k + td_k$:

$$t_k = \operatorname{argmin}_{t \geqslant 0} f(x_k + td_k)$$

Backtracking

Tiêu chuẩn dùng thuật toán:

$$\|\nabla f(x_{k+1})\| < \epsilon$$

 ϵ là một số dương đủ bé được chọn trước (input) (Thông thường, cho $\epsilon=10^{-6}$ hoặc $\epsilon=10^{-5}$)

Nhắc lại: Chuẩn của một vécto $x = (a_1, a_2, ..., a_n)$ trong \mathbb{R}^n được định nghĩa là

$$||x|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Tiêu chuẩn dùng thuật toán:

$$\|\nabla f(x_{k+1})\| < \epsilon$$

 ϵ là một số dương đủ bé được chọn trước (input) (Thông thường, cho $\epsilon=10^{-6}$ hoặc $\epsilon=10^{-5}$)

Nhắc lại: Chuẩn của một véctơ $x=(a_1,a_2,\ldots,a_n)$ trong \mathbb{R}^n được định nghĩa là

$$||x|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

► Tiêu chuẩn dừng thuật toán:

$$\|\nabla f(x_{k+1})\| < \epsilon$$

 ϵ là một số dương đủ bé được chọn trước (input) (Thông thường, cho $\epsilon=10^{-6}$ hoặc $\epsilon=10^{-5}$)

Nhắc lại: Chuẩn của một vécto $x=(a_1,a_2,\ldots,a_n)$ trong \mathbb{R}^n được định nghĩa là

$$||x|| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}.$$

Hướng giảm: ngược hướng gradient

 $d_k = -
abla f(x_k)$ là một hướng giảm tại x_k nếu $abla f(x_k)
eq 0$. Thất vâv

$$f'(x_k; -\nabla f(x_k)) = -\nabla f(x_k)^T \nabla f(x_k) = -\|\nabla f(x_k)\|^2 < 0.$$

Hướng giảm: ngược hướng gradient

 $d_k = -
abla f(x_k)$ là một hướng giảm tại x_k nếu $abla f(x_k)
eq 0$. Thất vây

$$f'(x_k; -\nabla f(x_k)) = -\nabla f(x_k)^T \nabla f(x_k) = -\|\nabla f(x_k)\|^2 < 0.$$

Thuật toán gradient (gradient method) I

Input: $\epsilon > 0$ - tham số dung sai (tolerance parameter) . Khởi tạo: $x_0 \in \mathbb{R}^n$ bất kỳ.

Với $k = 0, 1, 2, \dots$, thực hiện các bước sau:

• Chọn bước lặp (stepsize) t_k là hằng số, backtracking, hay line search bằng một chương trình trên hàm số

$$g(t) = f(x_k - t_k \nabla f(x_k)).$$

ightharpoonup Đặt $x_{k+l} = x_k - t_k \nabla f(x_k)$.

Thuật toán gradient (gradient method) II

Nếu $\|\nabla f(x_{k+1})\| < \epsilon$ thì **STOP**, và x_{k+1} là output (nghiệm xấp xỉ)

Thuật toán gradient (gradient method) III

Bước lặp	x_k	$\ \nabla f(x_k)\ $
k=0		
k=1		
k=2		
k=3		
:	:	:

Thuật toán gradient (gradient method) IV

Hình: Gradient Method

Thuật toán gradient (gradient method) V

Ví dụ: Xây dựng dãy lặp theo phương pháp gradient cho bài toán

$$\{\min f(x, y) = x^2 + 2y^2 : (x, y) \in \mathbb{R}^2\}$$

Diểm bắt đầu: $(x_0, y_0) = (2, 1)$

Stepsize: t = 0.1

Phương pháp Newton

Phương pháp Newton I

Phương pháp Newton cũng là một phương pháp hướng giảm, trong đó stepsize

$$t_k = \frac{1}{\|\nabla^2 f(x_k)\|}$$

- ightharpoonup Điểm bắt đầu: $x_0 \in \mathbb{R}^n$
- $x_{k+1} = x_k (\|\nabla^2 f(x_k)\|)^{-1} \nabla f(x_k)$

Phương pháp Newton II

Ví dụ: Xây dựng dãy lặp theo phương pháp Newton cho bài toán

$$\{\min f(x,y) = x^2 + 2y^2 : (x,y) \in \mathbb{R}^2\}$$

Diểm bắt đầu:
$$(x_0, y_0) = (2, 1)$$

Phương pháp hướng gradient liên hợp