Pattern Matching

© 2004 Goodrich, Tamassia

Pattern Matching

Brute-Force Pattern Matching

- The brute-force pattern matching algorithm compares the pattern P with the text Tfor each possible shift of P relative to T, until either
 - a match is found, or
 - all placements of the pattern have been tried
- Brute-force pattern matching runs in time O(nm)
- Example of worst case:
 - T = aaa ... ah
 - P = aaah
 - may occur in images and **DNA** sequences
 - unlikely in English text

Algorithm BruteForceMatch(T, P)

Input text **T** of size **n** and pattern P of size m

Output starting index of a substring of T equal to P or -1if no such substring exists

for $i \leftarrow 0$ to n - m

{ test shift *i* of the pattern }

 $i \leftarrow 0$

while $j < m \land T[i+j] = P[j]$

 $j \leftarrow j + 1$

if j = m

return *i* {match at *i*}

else

Pattern Matching

break while loop {mismatch}

return -1 {no match anywhere}

Strings

- A string is a sequence of characters
- Examples of strings:
- Java program
 - HTML document
 - DNA sequence
- Digitized image
- An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
 - ASCII
 - Unicode
 - **(0, 1)**

© 2004 Goodrich, Tamassia

{A, C, G, T}

- Applications: Text editors
 - Search engines
 - Biological research

Let P be a string of size m

between *i* and *i*

the type P[0..i]

Given strings T (text) and P

substring of T equal to P

• A substring P[i...i] of P is the subsequence of *P* consisting of

the characters with ranks

A prefix of P is a substring of

 A suffix of P is a substring of the type P[i..m-1]

(pattern), the pattern matching

problem consists of finding a

Pattern Matching

2

Boyer-Moore Heuristics

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare P with a subsequence of T moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] = c

- If P contains c_i , shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

© 2004 Goodrich, Tamassia

Pattern Matching

Last-Occurrence Function

- lacktrianglet Boyer-Moore's algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where L(c) is defined as
 - the largest index i such that P[i] = c or
 - -1 if no such index exists
- Example:
 - $\Sigma = \{a, b, c, d\}$ P = abacab

c	a	b	c	d
L(c)	4	5	3	-1

- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time O(m+s), where m is the size of P and s is the size of Σ

© 2004 Goodrich, Tamassia

Pattern Matching

5

The Boyer-Moore Algorithm

© 2004 Goodrich, Tamassia

Pattern Matching

Example

Analysis

- \bullet Boyer-Moore's algorithm runs in time O(nm + s)
- Example of worst case:
 - $T = aaa \dots a$
 - P = baaa
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore's algorithm is significantly faster than the brute-force algorithm on English text

The KMP Algorithm

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the **most** we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of P[0..i] that is a suffix of P[1..i]

© 2004 Goodrich, Tamassia

Pattern Matching

11

KMP Failure Function

- Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself
- \bullet The failure function F(i) is defined as the size of the largest prefix of P[0.j] that is also a suffix of P[1..i]
- Knuth-Morris-Pratt's algorithm modifies the bruteforce algorithm so that if a mismatch occurs at $P[i] \neq T[i]$ we set $j \leftarrow F(j-1)$

 \boldsymbol{b} $a \mid a$ |b| \boldsymbol{x} $b \mid a \mid a$ |b| $a \mid a \mid b \mid a$

F(i-1)

© 2004 Goodrich, Tamassia

Pattern Matching

10

The KMP Algorithm

- The failure function can be represented by an array and can be computed in O(m) time
- At each iteration of the whileloop, either
 - i increases by one, or
 - the shift amount i-iincreases by at least one (observe that F(j-1) < j)
- Hence, there are no more than 2n iterations of the while-loop
- Thus, KMP's algorithm runs in optimal time O(m+n)

```
Algorithm KMPMatch(T, P)
F \leftarrow failureFunction(P)
i \leftarrow 0
i \leftarrow 0
while i < n
     if T[i] = P[j]
         if j = m - 1
               return i - i { match }
         else
              i \leftarrow i + 1
              i \leftarrow i + 1
     else
         if i > 0
              j \leftarrow F[j-1]
         else
              i \leftarrow i + 1
return -1 { no match }
```

Computing the Failure **Function**

- The failure function can be represented by an array and can be computed in O(m) time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
 - *i* increases by one, or
 - the shift amount i jincreases by at least one (observe that F(i-1) < j)
- Hence, there are no more than 2m iterations of the while-loop

Pattern Matching © 2004 Goodrich, Tamassia

