Bandits on Stochastic Blockmodel Graphs

Arthur Mensch, Michael Weiss

Reinforcement Learning

January 2015

Introduction

Erdos Renyi Graph

Other random graph

Problem

Multi arm bandit problem with side information to exploit

1 Exp3 on Erdös-Rényi Graph

2 Exp3 on Stochastic Block-Model Graphs

Results

Table of contents

- 1 Exp3 on Erdös-Rényi Graph
- 2 Exp3 on Stochastic Block-Model Graphs
- Results

Problem definition

N arms, T steps.

- The environment chooses losses for every arm noted $l_{t,i}$ for the arm i at the step t.
- 2 Following the algorithm we hope would minimize as much as possible the regret the player draws an arm I_t .
- **3** The player receives the loss I_{t,l_t} .
- We define $(O_t)_{i \in [N]}$ as the indicative function of observed loss at step t. We have:

$$O_{t,I_t} = 1$$
 $\forall i \neq I_t, O_{t,i} \sim B(r)$

- $(O_t)_{i \in [N]}$ corresponds to the value of the logic expression i is neighbor of I_t in the Erdös-Rényi random graph drawn at step t.
- **5** For all i such that $O_{t,i} = 1$ the player can observe the loss $I_{t,i}$.

Duplex tricks

Ideally,

$$\hat{l}_{t,i} = \frac{O_{t,i} l_{t,i}}{p_{t,i} + (1 - p_{t,i})r}.$$

Definition geometrical random variables

$$M_t^* = \min\{1 \le i < N : O'_{t-1,i} = 1\} \cup \{N\}$$

 $G_{t,i} = \min(K_{t,i}, M_t)$

Independence

 $p_{t+2,i}$ estimated at the end of the step t.

So we can compute,

$$\hat{I}_{t,i} = G_{t,i}O_{t,i}I_{t,i}$$

Generalizing

ESTIMATE_R gives a safe lower bounding on r.

If
$$r = 0$$
, we run vanilla Exp3.

If
$$\underline{r} \ge \frac{\log T}{N}$$
, we run vanilla DUPLEX.

If
$$0 < \underline{r} < \frac{\log T}{N}$$
, $A = \left\lceil \frac{\log T}{Nr} \right\rceil$ and run DUPLEX grouping A steps.

Table of contents

- 1 Exp3 on Erdös-Rényi Graph
- 2 Exp3 on Stochastic Block-Model Graphs

Results

Random graph with Stochastic Block-Model

Neighbor communities

Probability of side information

- N clusters
- Labeled vertices
- $R = (r_{ij})_{1 \le i,j \le n}$ the matrix representing the probability of having side information.
- r_{ij} represents the probability that a vertex of the cluster j reveals his loss to a given vertex of the cluster i

Adapt M_t sampling

Unbiased estimator

$$\hat{l}_{t,i}^* = \frac{O_{t,i}l_{t,i}}{p_{t,i} + (1 - p_{t,i})r_{C(l_t),C(i)}}$$

Using data...

$$\hat{l}_{t,i} = G_{t,i}O_{t,i}l_{t,i} \tag{1}$$

- Estimator $G_{t,i} \sim G(p_{t,i} + (1-p_{t,i})r_{l_t,i})$
- M_t^i truncated geometric law of parameter $p_{t,i}$
- $\rightarrow G_{t,i} = \min(K_{t,i}, M_t^i)$

Sampling M_t^i

Algorithm adaptation

- Using previous observations
- Ensure independence of M_t and O_t
- Find the last $O_{t'}$, with $t'-t\equiv 1[2]$ in which C(I(t'))=C(I(t))
- Average the distance between two observation within cluster C(I(t)).

Keeping track of last time we picked I in cluster i

Lower bounding R

- We adapt ESTIMATE_R so that it returns \underline{R} where $\underline{r}_{ij} \leq r_{ij}$ with high probability.
- This is done at the relatively low cost

$$\mathbb{E}(\tau) \leq \sum_{i,j \in [N]^2} \frac{4 \log T}{N_i} \mathbf{1}_{r_{ij} > \frac{1}{N_j}} + \sqrt{T} \mathbf{1}_{r_{ij} < \frac{1}{N_j}} + \text{Cste}$$

Generalized algorithm with stochastic blockmodel graphs

$$\begin{aligned} &\text{If } \underline{R} = 0, \\ &\text{If } \min_{i,j,\ \underline{r}_{i,j} > 0} \left(\underline{r}_{ij} \ N_j\right) \geq \log T, \end{aligned}$$

Else,

we run vanilla Exp3.

we run adapted DUPLEX .

$$A = \left\lceil \frac{\log T}{r_N *} \right\rceil$$
 where

$$r_{N}* = \min_{i,j,\ \underline{r}_{i,j}>0} \left(\underline{r}_{ij}\ N_{j}\right)$$

and run DUPLEX grouping A steps.

Table of contents

- EXP3 on Erdös-Rényi Graph
- 2 Exp3 on Stochastic Block-Model Graphs

Results

Test graphs

Weakly assossiative

Neighbours

Unbalanced

Erdos-Rényi

Unbalanced

Easy problem

Unbalanced

Hard problem

Neighbours

Easy problem

Neighbours

Hard problem

Adversarial on unbalanced

