Limiti - Introduzione

• Definizione formale

Consideriamo una funzione y = f(x), di dominio D. Sia x_0 un punto di accumulazione per D.

Si dice che ℓ è il limite per x che tende a x_0 della funzione f(x), e si scrive $\lim_{x \to x_0} f(x) \to \ell$, se: per ogni possibile intorno I di ℓ , esiste un intorno I di x_0 tale che per ogni $x \in I(x_0)$, $f(x) \in J(\ell)$.

Spiegazione:

1) "Sia x_0 un punto di accumulazione per D."

Ovvero: x_0 è un qualsiasi punto (appartenente o "adiacente") a D, tale che fra i valori immediatamente intorno, ne ha almeno uno (oltre eventualmente a sé stesso) che appartiene a D.

Esempio: Con D = $\mathbb{R} - \{0\}$, anche $x_0 = 0$ è un possibile punto di accumulazione per D (in quanto ha attorno valori \in D).

2) "Si scrive $\lim_{x \to x_0} f(x) \to \ell$, Se: per ogni intorno J di ℓ , esiste un intorno I di x_0 tale che per ogni $x \in I(x_0), f(x) \in J(\ell)$ "

Ovvero: $(x - \mathcal{E}) \in I(x_0) \to f(x - \mathcal{E}) \in J(\ell)$. Ovvero: $f(x - \mathcal{E}) \cong \ell$

• Esempi di possibili casi

1)
$$\lim f(x) = \ell$$

$$\lim_{x \to x_0} f(x) = f(x_0)$$

• Limiti funzioni elementari

• Algebra dei limiti

Le regole dell'algebra dei limiti si applicano ESCLUSIVAMENTE al calcolo dei limiti, e non nell'algebra classica.

Somma	$+\infty \pm a = +\infty$	$-\infty \pm a = -\infty$	$+\infty + \infty = +\infty$	$-\infty - \infty = -\infty$
-------	---------------------------	---------------------------	------------------------------	------------------------------

Prodotto	$\pm \infty \cdot a = \pm \infty$ $\cos a > 0$	$\pm \infty \cdot a = \mp \infty$ $\cos a < 0$	$+\infty \cdot +\infty = +\infty$	$(-\infty)\cdot(-\infty)=+\infty$	$+\infty \cdot (-\infty) = -\infty$
----------	--	--	-----------------------------------	-----------------------------------	-------------------------------------

Rapporti	$\frac{a}{0^+} = +\infty$ $\cos a > 0$	$\frac{a}{0^+} = -\infty$ $\cos a < 0$	$\frac{a}{0^{-}} = -\infty$ $\cos a > 0$	$\frac{a}{0^{-}} = +\infty$ $\cos a < 0$
	$\frac{a}{\pm \infty} = 0$	$\frac{\pm \infty}{a} = \pm \infty$	$\frac{\pm \infty}{0} = \pm \infty$	$\frac{0}{\pm \infty} = 0$

Potenza		$(\pm \infty)^a = \frac{1}{(\pm \infty)^{-(a)}} = 0$ $\cot a < 0$ Esempio: $(+\infty)^{-3} = \frac{1}{(+\infty)^3} = 0$	Esempio:	$(-\infty)^a = -\infty$ $\cos a > 0, a \text{ dispari}$ Esempio: $(-\infty)^3 = -\infty \cdot -\infty \cdot -\infty = -\infty$
	$+\infty^{+\infty} = +\infty$	$+\infty^{-\infty} = \frac{1}{+\infty^{+\infty}} = 0$		

• Forme indeterminate

Per risolvere queste forme indeterminate bisogna applicare varie tecniche (mostrate in seguito).

$\frac{0}{0} (\neq \pm \infty)$	$\frac{\pm \infty}{\pm \infty}$ (\neq 1)	0 · ±∞ (≠ 0)	$+\infty-\infty \ (\neq 0)$	0° (≠ 1)	1 ^{±∞} (≠ 1)	$\pm \infty^0 \ (\neq 1)$
----------------------------------	--	--------------	-----------------------------	----------	-----------------------	---------------------------

Risolvere limiti che NON sono in forma indeterminata

1) In caso di x che tende ad un numero finito, calcolare sia il limite sx che il limite dx

Ovvero, Esempio:

Nel $\lim_{x \to 0} f(x)$, vanno calcolati:

- il limite sx, ovvero x che si avvicina a 0 da sx (-0.0008, -0.0007, ...), che si scrive $\lim_{x\to 0^-} f(x)$,
- il limite dx, ovvero x che si avvicina a 0 da dx, ed è quindi positivo
- 2) Sostituire, nel testo della funzione, al posto della x, il valore a cui tende x, e levare la scritta "lim"
- 3) Si sviluppano i calcoli usando l'algebra tradizionale e le regole dell'algebra dei limiti
- 4) Controllare, in caso di $\lim_{x \to x_0} f(x)$, che i limiti sx e dx coincidano, ovvero $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$ (Se il limite sx è diverso dal limite dx, allora il limite complessivo NON esiste)

Esempio 1

$$\lim_{x \to 0} \left(\frac{x^2 - 4}{x + 2} \right) \to \lim_{x \to 0^-} \left(\frac{x^2 - 4}{x + 2} \right) = \frac{(0^-)^2 - 4}{(0^-) + 2} = -\frac{4}{2} = -2 \; ; \quad \lim_{x \to 0^+} \left(\frac{x^2 - 4}{x + 2} \right) = \frac{(0^+)^2 - 4}{(0^+) + 2} = -\frac{4}{2} = -2 \; ; \quad \ell = -2$$

Esempio 2:

$$\lim_{x \to -\infty} (\log_5(\sin(2^x + \pi))) = \log_5(\sin(2^{-\infty} + \pi)) = \log_5\left(\sin\left(\frac{1}{2^{+\infty}} + \pi\right)\right) = \log_5(\sin(0 + \pi)) = \log_5(\sin(\pi)) = \log_5(0) \to Ovvero: 5^{\log_5(0)} = 0 \to \log_5(0) = -\infty \to \ell = -\infty$$

Esempio 3

$$\lim_{x \to 2} \left(\frac{7}{4 - 2^x} \right) \to \lim_{x \to 2^-} \left(\frac{7}{4 - 2^{2^-}} \right) = \frac{7}{4 - 2^{2^-}} = \frac{7}{4 - 3.999} = \frac{7}{+0.001} = +\infty ;$$

$$\to \lim_{x \to 2^+} \left(\frac{7}{4 - 2^{2^+}} \right) \to \frac{7}{4 - 4.001} = \frac{7}{-0.001} = -\infty \to i \text{ limiti sx } e \text{ dx non combaciano } \to \ell = \emptyset$$

• Errori comuni sul calcolo dei limiti

1) Dimenticarsi di ri-scrivere il limite fino a quando non si esce dal limite

Esempio:

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1} \neq \frac{(x - 1) \cdot (x - 2)}{(x - 1) \cdot (x + 1)} = \frac{(x - 2)}{(x + 1)} = \frac{(1) - 2}{(1) + 1} = -\frac{1}{2}$$

$$\to \lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1) \cdot (x - 2)}{(x - 1) \cdot (x + 1)} = \lim_{x \to 1} \frac{(x - 2)}{(x + 1)} = \frac{(1) - 2}{(1) + 1} = -\frac{1}{2}$$

2) Dimenticarsi di controllare sia il limite sx sia il limite dx

Esempio:

$$\lim_{x \to 2} \left(\frac{7}{4 - 2^x} \right) \neq \frac{7}{4 - 2^2} = \frac{7}{4 - 4} = \frac{7}{0} = +\infty$$

$$\lim_{x \to 2} \left(\frac{7}{4 - 2^x} \right) \Rightarrow \begin{cases} \lim_{x \to 2^+} \left(\frac{7}{4 - 2^x} \right) = \frac{7}{4 - 2^{2^+}} = \frac{7}{4 - 4^+} = \frac{7}{0^-} = -\infty \\ \lim_{x \to 2^-} \left(\frac{7}{4 - 2^x} \right) = \frac{7}{4 - 2^{2^-}} = \frac{7}{4 - 4^-} = \frac{7}{0^+} = +\infty \end{cases} \Rightarrow \ell_1 \neq \ell_2 \Rightarrow \ell \text{ non esiste}$$