Lecture 3: Number Theory and Finite Fields (Discrete Mathematics)

COSC362 Data and Network Security

Book 1: Chapter 2

Spring Semester, 2021

Motivation

- Cryptology makes use of mathematics, computer science and engineering.
- Mostly discrete mathematics because cryptology deals with finite objects such as alphabets and blocks of characters.
- ▶ Looking at modular arithmetic which only deals with a finite number of values.
- Understanding the algebraic structure of finite objects helps to build useful cryptographic properties.

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm

Modular Arithmetic

Groups and Fields

Boolean Algebra

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm

Modular Arithmetic

Groups and Fields

Boolean Algebra

Factorisation

- $ightharpoonup \mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$ is the set of integers.
- ▶ Given $a, b \in \mathbb{Z}$, a divides b if there exists $k \in \mathbb{Z}$ s.t. ak = b.
 - a is a factor of b
 - ► ab
- An integer p > 1 is a prime number if its only divisors are 1 and p:
 - **Examples:** 2, 3, 5, 11, 13, 17, 19, etc.
- ► Testing prime numbers p by trial numbers, up to the square root of p (i.e. \sqrt{p}).
- ► There are more efficient ways to check for primality (later in the course).

Basic Properties of Factors

- ▶ If a divides b AND a divides c, then a divides b + c.
- ▶ If p is a prime and p divides ab, then p divides a OR b.

Example:

6|18 and 6|24
$$\Rightarrow$$
 6|42 7 |42 \Rightarrow 7|3 or 7|14

Primes and Factorisation

Division Algorithm

Given $a, b \in \mathbb{Z}$, s.t. a > b, then there exists $q, r \in \mathbb{Z}$ s.t.

$$a = bq + r$$

where *q* is the *quotient* and $0 \le r < b$ is the *remainder*. One can show that r < a/2.

Example:

$$17 = 5 \times 3 + 2$$

Greatest Common Divisor (GCD)

d is the GCD of a and b, written gcd(a, b) = d, if:

- d divides a AND b
- ▶ if c divides a and b then c divides d
- \rightarrow d > 0

a and b are relatively prime when gcd(a, b) = 1.

Euclidean Algorithm

Finding $d = \gcd(a, b)$ as follows:

Hence, $d = r_k = \gcd(a, b)$.

$$a = bq_{1} + r_{1} \text{ for } 0 < r_{1} < b$$

$$b = r_{1}q_{2} + r_{2} \text{ for } 0 < r_{2} < r_{1}$$

$$r_{1} = r_{2}q_{3} + r_{3} \text{ for } 0 < r_{3} < r_{2}$$

$$\vdots$$

$$r_{k-3} = r_{k-2}q_{k-1} + r_{k-1} \text{ for } 0 < r_{k-1} < r_{k-2}$$

$$r_{k-2} = r_{k-1}q_{k} + r_{k} \text{ for } 0 < r_{k} < r_{k-1}$$

$$r_{k-1} = r_{k}q_{k+1} \text{ with } r_{k+1} = 0$$

Euclidean Algorithm

```
Data: a, b
Result: gcd(a, b)
r_{-1} \leftarrow a;
r_0 \leftarrow b;
k \leftarrow 0:
while r_k \neq 0 do
     q_k \leftarrow \lfloor \frac{r_{k-1}}{r_k} \rfloor;
     r_{k+1} \leftarrow r_{k-1} - q_k r_k;

k \leftarrow k+1;
end
k \leftarrow k - 1:
return r_k
```

Back Substitution

Finding integers x, y in:

$$ax + by = d = r_k$$

by using back substitution in the Euclidean algorithm. We have from the previous slide:

$$r_{k-3} = r_{k-2}q_{k-1} + r_{k-1}$$

 $r_{k-2} = r_{k-1}q_k + r_k$

Rewriting:

$$r_{k-1} = r_{k-3} - r_{k-2}q_{k-1}$$

 $r_k = r_{k-2} - r_{k-1}q_k$

Back Substitution

Getting:

$$r_k = r_{k-2} - (r_{k-3} - r_{k-2}q_{k-1})q_k$$

= $r_{k-2}(1 + q_{k-1}q_k) - r_{k-3}q_k$

by replacing r_{k-1} in the next line UP.

Back Substitution

Using
$$r_k = r_{k-2}(1 + q_{k-1}q_k) - r_{k-3}q_k$$
 in the next line UP.

Getting r_k as a multiple of a and a multiple of b by replacing r_1 by $r_1 = a - bq_1$.

An interesting case for us is when $r_k = d = 1$.

Example

- $ightharpoonup \gcd(17,3) = ?$
- Euclidean algorithm:

$$17 = 3 \times 5 + 2$$
 $3 = 2 \times 1 + 1$
 $2 = 1 \times 2$

So
$$gcd(17, 3) = 1$$

Back substitution:

$$1 = 3 - 2 \times 1 \text{ from the second to last line}$$

$$= 3 - (17 - 3 \times 5) \times 1 \text{ from } 2 = 17 - 3 \times 5$$

$$= 17 \times (-1) + 3 \times 6 \text{ by reordering}$$

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm

Modular Arithmetic

Groups and Fields

Boolean Algebra

Modular Arithmetic

Definition:

b is a residue of a mod n if a - b = kn for some integer k:

$$a \equiv b \pmod{n} \iff a - b = kn$$

(One can also write a = kn + b where n is seen as the quotient and b as the remainder.)

Given $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then:

- ▶ $ac \equiv bd \pmod{n}$
- $ightharpoonup ka \equiv kb \pmod{n}$

N.B.: one can always reduce the inputs modulo *n* BEFORE performing multiplication and addition.

Notation: a mod n

 $b \mod n$ denotes the unique value a in the complete set $\{0, 1, \dots, n-1\}$ of residues such that:

$$a \equiv b \pmod{n}$$

 $b \mod n$ is the remainder after dividing a by n.

Residue Class

Definition:

The set $\{r_0, r_1, \dots, r_{n-1}\}$ is a complete set of residues modulo n if for every integer a, then $a \equiv r_i \pmod{n}$ for EXACTLY one r_i :

- Numbers $0, 1, \dots, n-1$ form a complete set of residues modulo n since a = qn + r for any a (where 0 < r < n).
- ▶ $\{0, 1, \dots, n-1\}$ is denoted as \mathbb{Z}_n .

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm

Modular Arithmetic

Groups and Fields

Boolean Algebra

Groups

Definition:

A group \mathbb{G} is a set with *binary operation* \cdot and:

- ▶ *Closure:* $a \cdot b \in \mathbb{G}$ for $a, b \in \mathbb{G}$
- ▶ *Identity:* there is an element 1 s.t. $a \cdot 1 = 1 \cdot a = a$ for $a \in \mathbb{G}$
- ▶ *Inverse:* there is an element b s.t. $a \cdot b = 1$ for $a \in \mathbb{G}$
- ▶ Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for $a, b, c \in \mathbb{G}$

A group \mathbb{G} is said to be *abelian* when:

▶ *Commutativity:* $a \cdot b = b \cdot a$ for $a, b \in \mathbb{G}$

Cyclic Groups

- ▶ The order $|\mathbb{G}|$ of a group \mathbb{G} is the number of elements in \mathbb{G} .
- $igwedge g^k$ denotes the repeated application of $g\in \mathbb{G}$ using the group operation \cdot

Example: $g^3 = g \cdot g \cdot g$

- ▶ The order |g| of $g \in \mathbb{G}$ is the smallest integer k s.t. $g^k = 1$.
- ▶ g is a generator for \mathbb{G} if $|g| = |\mathbb{G}|$.
- A group is cyclic if it has a generator.

Cyclic groups are important in cryptography: if we construct a group \mathbb{G} with a large order, then we can be sure that a generator g can also take on the same large number of values.

Computing Inverses modulo n

The inverse of a (if it exists!) is a value x s.t. $ax = 1 \pmod{n}$ and is written $a^{-1} \mod n$. In cryptosystems, finding inverses enables to decrypt (or undo)

In cryptosystems, finding inverses enables to decrypt (or undo certain operations.

Theorem: Let 0 < a < n, then a has an inverse modulo n IF AND ONLY IF gcd(a, n) = 1.

Modular Inverses using the Euclidean Algorithm

Using the Euclidean algorithm (very efficient) to find the inverse of a.

Given a, we want to find the value x s.t.:

$$ax \equiv 1 \pmod{n}$$

Thus, there is an integer y s.t. ax = 1 + yn.

From gcd(a, n) = 1, we write ax + ny = 1 and find the integers x, y using back substitution.

Group of prime modulus: \mathbb{Z}_p^*

 $\mathbb{Z}_p^* = \{1, 2, \cdots, p-1\}$ is a complete set of residues modulo the prime p with the value 0 removed.

Properties:

- ▶ $|\mathbb{Z}_p^*| = p 1$
- \triangleright \mathbb{Z}_p^* is cyclic
- $ightharpoonup \mathbb{Z}_p^*$ has many generators (in general)

One can see \mathbb{Z}_p^* as the multiplicative group of integers

 $1, 2, \cdots, p-1$ which have inverses modulo p.

Example: \mathbb{Z}_5^*

- 5 is prime
- $ightharpoonup \mathbb{Z}_5^*$ is a group and all numbers less than 5 are in the group
- ▶ Obtaining $\mathbb{Z}_5^* = \{1, 2, 3, 4\}$
- ▶ There are indeed 5 1 = 4 elements

Finding a Generator of \mathbb{Z}_p^*

- ▶ A generator of \mathbb{Z}_p^* is an element of order p-1.
- ▶ Lagrange theorem: the order of any element must exactly divide p-1.
- ▶ Finding a generator of \mathbb{Z}_p^* as follows:
 - 1. Compute all the distinct prime factors f_1, f_2, \dots, f_r of p-1.
 - 2. g is a generator if and only if $g^{(p-1)/f_i} \neq 1 \mod p$ for $i = 1, 2, \dots, r$.

Group of composite modulus: \mathbb{Z}_n^*

For any n (not prime), \mathbb{Z}_n^* is a group of residues which have an inverse under multiplication.

Properties:

- $ightharpoonup \mathbb{Z}_n^*$ is a group
- $ightharpoonup \mathbb{Z}_n^*$ is NOT cyclic in general
- ► Finding its order is difficult in general (when *n* is big)

Example: \mathbb{Z}_6^*

- Writing out the numbers less than 6
- Removing all of those which are not coprime to 6
- ▶ Obtaining $\mathbb{Z}_6^* = \{1, 5\}$

Fields

Definition:

A field \mathbb{F} is a set with *binary operations* + and ·, and:

- ightharpoonup Is an abelian group under the operation +, with identity element 0
- ▶ $\mathbb{F} \setminus \{0\}$ is an *abelian group* under the operation \cdot , with identity element 1
- ▶ *Distributivity:* $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for $a, b, c \in \mathbb{F}$

Finite Fields

- Setting up secure communications requires fields with a finite number of elements.
- ▶ (famous) Theorem: finite fields exist of size p^n for any prime p and positive integer n, and no finite field exists of other sizes.
- ► Interesting cases for us: fields of size p for a prime p and fields of size 2ⁿ for some integer n.

Finite Field GF(p)

- $ightharpoonup GF(p) = \mathbb{Z}_p$
- Multiplication and addition done modulo p
- ▶ Its multiplicative group is exactly Z_p*
- Some public key encryption and digital signature schemes use GF(p) (see later)

Finite Field *GF*(2)

- ightharpoonup GF(2) is the simplest field, with 2 elements 0 and 1
- Addition modulo 2: the same as the logical XOR (exclusive-OR) operation
- Only one non-zero element: trivial multiplicative group with the single element 1
- ➤ XOR is often used in crypto, written ⊕:
 - ► For bit strings $a, b, a \oplus b$
 - ► Example: 101 ⊕ 011 = 110

Finite Field GF(28)

- ► Field used for calculations in AES (block cipher)
- Arithmetic in this field considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
 - Equating any 8-bit string with a polynomial in a natural way
 - **Example:** 00101101 $\leftrightarrow x^5 + x^3 + x^2 + 1$
- Polynomial division can be done very efficiently in hardware using shift registers

Arithmetic in $GF(2^8)$

- Adding 2 strings by adding their coefficients modulo 2 (XOR)
- Multiplication done with respect to a generator polynomial
 - ightharpoonup for AES, $m(x) = x^8 + x^4 + x^3 + x + 1$
- Multiplying 2 strings by multiplying them as polynomials and taking their remainder after dividing by m(x)

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm

Modular Arithmetic

Groups and Fields

Boolean Algebra

Boolean Values

- ▶ Boolean variable *x* takes values 0 or 1 (representing *false* and *true* respectively)
- ▶ Boolean function has its output in the set {0, 1}
- ► Truth table used to represent boolean function

Truth Tables

Logical AND (equivalent to multiplication modulo 2):

<i>X</i> ₁	<i>X</i> ₂	$x_1 \wedge x_2$
1	1	1
1	0	0
0	1	0
0	0	0

Negation:

. togation				
	X	$\neg x$		
	1	0		
	0	1		

Logical OR:

_0g.0a. 0				
<i>X</i> ₁	<i>X</i> ₂	$x_1 \vee x_2$		
1	1	1		
1	0	1		
0	1	1		
0	0	0		