Quantum Walks and Applications to Quantum Money

Seyed Ali Mousavi

Supervised by Dr. Jake Doliskani

April 2, 2025

Quantum Computation - Preliminaries and Notation

In this talk, we explore the interplay between quantum computation, group theory, and cryptography through the lens of quantum walks. The presentation is organized as follows:

- 1. Quantum Computation Preliminaries
- 2. Quantum Walks
- 3. Quantum Money Schemes
- 4. Verification of our New Quantum Money scheme using Quantum Walks

Quantum Computation - Preliminaries and Notation

▶ Consider a finite Hilbert space \mathcal{H} with an orthonormal set of basis states $\{|s_i\rangle\}$ for $s \in \mathcal{S}$. The states $s \in \mathcal{S}$ may be interpreted as the possible classical states of the system described by \mathcal{H} .

In general, the state of the system, $|\alpha\rangle$, is a unit vector in the Hilbert space $\mathcal H$ and can be written as $|\alpha\rangle = \sum_{s\in\mathcal S} a_s |s\rangle$, where $\sum_{s\in\mathcal S} |a_s|^2 = 1$.

 $lack \langle \alpha |$ denotes the conjugate transpose of $|\alpha \rangle$. The expression $\langle \beta | \alpha \rangle$ denotes the inner product of $|\alpha \rangle$ and $|\beta \rangle$.

Quantum Computation - Quantum Postulates

- ▶ Unitary evolution: Quantum physics requires that the evolution of quantum states is unitary; that is, the state $|\alpha\rangle$ is mapped to $U|\alpha\rangle$, where U satisfies $U\cdot U^\dagger=I$, and U^\dagger denotes the conjugate transpose of U.
- ▶ **Measurement**: We will describe here only a measurement in the orthonormal basis $|s\rangle$. The output of the measurement of the state $|\alpha\rangle$ is an element $s \in \mathcal{S}$, with probability $|\langle s|\alpha\rangle|^2$. Moreover, the new state of the system after the measurement is $|s\rangle$.
- **Combining two quantum systems**: If \mathcal{H}_A and \mathcal{H}_B are the Hilbert spaces of two systems, A and B, then the joint system is described by the tensor product of the Hilbert spaces, $\mathcal{H}_A \otimes \mathcal{H}_B$. If the basis states for \mathcal{H}_A and \mathcal{H}_B are $\{|a_i\rangle\}$ and $\{|v_i\rangle\}$ respectively, then the basis states of $\mathcal{H}_A \otimes \mathcal{H}_B$ are $\{|a_i\rangle \otimes |v_i\rangle\}$.

Quantum Walks

- Quantum walks are quantum analogs of classical random walks and play a fundamental role in quantum algorithms
- Two types: continuous-time and discrete-time
- Quantum walks leverage interference to explore graphs more efficiently than classical walks
- ightharpoonup For a graph Γ, a continuous-time classical walk on Γ is:

$$\frac{d}{dt}q(t) = Lq(t)$$

► In the quantum setting, the dynamics of the walk is given by the Schrödinger equation:

$$i\frac{d}{dt}|\psi(t)\rangle = L|\psi(t)\rangle$$

Continuous-Time Quantum Walks

► The solution to this differential equation can be written in closed form as:

$$|\psi(t)\rangle = e^{-iLt} |\psi(0)\rangle$$
.

▶ In practice, we often (including this work) use the adjacency matrix A of Γ as the Hamiltonian of the walk

Example of a Continuous Quantum Walk

- ▶ **Graph:** Infinite line with vertices labeled by integers $n \in \mathbb{Z}$.
- ▶ **Adjacency Matrix:** Each vertex is connected to its neighbors $n \pm 1$.

$$A_{i,j} = egin{cases} 1 & ext{if } |i-j| = 1 \ 0 & ext{otherwise} \end{cases}$$

- ▶ **Hilbert Space:** Spanned by basis states $|n\rangle$, representing positions.
- ▶ **Time Evolution:** Governed by Schrödinger equation

$$i\frac{d}{dt}|\psi(t)\rangle = A|\psi(t)\rangle \quad \Rightarrow \quad |\psi(t)\rangle = e^{-iAt}|\psi(0)\rangle$$

Example of a Continuous Quantum Walk

Initial State: Particle starts at the origin:

$$|\psi(0)\rangle = |0\rangle$$

Evolved State:

$$|\psi(t)
angle = \sum_{n\in\mathbb{Z}} \psi_n(t) |n
angle \quad ext{where } \psi_n(t) = i^n J_n(2t)$$

- Key Features:
 - Probability: $|\psi_n(t)|^2$
 - ► Wave-like, oscillatory distribution due to interference
 - Faster spread than classical walk: standard deviation grows linearly in t
 - ▶ No coin space needed evolution depends only on graph structure

Discrete-Time Quantum Walks

- ▶ If the Γ has N vertices, the discrete time quantum walk on Γ is defined by a unitary operator on the finite Hilbert space $\mathbb{C}^N \times \mathbb{C}^N$ as follows:
- Define the states:

$$|\phi_j
angle = rac{1}{\sqrt{\mathsf{deg}(j)}} \sum_{k=1}^{N} \sqrt{P_{jk}} \ket{j,k},$$

project and swap operators:

$$\Pi = \sum_{j=1}^{N} |\phi_j\rangle \langle \phi_j|, \quad S = \sum_{j,k=1}^{N} |j,k\rangle \langle k,j|.$$

Then, a step of the quantum walk is defined by the unitary:

$$W = S(2\Pi - 1)$$

Example of a Discrete-Time Quantum Walk

- ▶ Hilbert Space: $\mathcal{H} = \mathcal{H}_C \otimes \mathcal{H}_P$
 - $ightharpoonup \mathcal{H}_C$: 2D coin space with basis $\{|0\rangle, |1\rangle\}$
 - ▶ \mathcal{H}_P : Infinite-dimensional position space with basis $\{|n\rangle : n \in \mathbb{Z}\}$
- **Coin Operator:** Apply a unitary C (e.g., Hadamard) to \mathcal{H}_C

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

▶ **Shift Operator:** Moves the walker based on coin state:

$$S|0\rangle|n\rangle = |0\rangle|n+1\rangle, \quad S|1\rangle|n\rangle = |1\rangle|n-1\rangle$$

▶ One Step: Apply the unitary operator

$$U = S \cdot (C \otimes I)$$

Example of a Discrete-Time Quantum Walk

- ▶ Initial State: $|\psi(0)\rangle = |0\rangle \otimes |0\rangle$
- ► After One Step:

$$|\psi(1)
angle = rac{1}{\sqrt{2}}\left(|0
angle|1
angle + |1
angle|-1
angle
ight)$$

- Key Properties:
 - Superposition leads to parallel exploration of paths.
 - Repeated application of *U* creates interference patterns.
 - ▶ Spread is faster than classical: $\sigma(t) \sim t$ vs. \sqrt{t} .
- Measurement:
 - Measuring after each step yields a classical random walk.
 - Quantum behavior requires delaying measurement.

Continuous vs Discrete Quantum Walks

- ► CTQW: Easier to analyze due to direct spectral decomposition.
- **CTQW**: Harder to implement on quantum circuits (requires simulating e^{-iAt}).
- ▶ DTQW: More complex to analyze (involves coin and shift operators).
- ▶ DTQW: Easier to implement on gate-based quantum hardware.

Quantum Walks on Cayley Graphs

Cayley Graphs:

Let G be an abelian group and let $Q=\{q_1,q_2,\ldots,q_k\}\subset G$ be a symmetric set, i.e., $q\in Q$ if and only if $-q\in Q$. The Cayley graph associated to G and Q is a graph $\Gamma=(V,E)$, where the vertex set is V=G, and the edge set E consists of pairs $(a,b)\in G\times G$ such that there exists $q\in Q$ with b=q+a.

An Example of a Cayley Graph

Figure: Cayley graph of \mathbb{Z}_N with generators $\{\pm 1\}$

Quantum Walks on Cayley Graphs

Cayley Graphs:

The adjacency matrix of the Cayley graph $\Gamma = (V, E)$ can be expressed as:

$$A = \sum_{a \in G} \lambda_a \left| \hat{a} \right\rangle \left\langle \hat{a} \right|,$$

where $|\hat{a}\rangle = QFT_G |a\rangle$ is the *Quantum Fourier transform (QFT)* of $|a\rangle$.

... But, What is QFT??

Quantum Fourier Transform (QFT)

Let G be an abelian group. The set of characters of G, denoted by \hat{G} , is the set of homomorphisms $\chi(a,\cdot):G\to\mathbb{C}$ where $a\in G$. If $G\cong\mathbb{Z}_{N_1}\oplus\cdots\oplus\mathbb{Z}_{N_k}$ then the character $\chi(a,\cdot)$ can be explicitly written as

$$\chi(a,x) = \omega_{N_1}^{a_1 x_1} \cdots \omega_{N_k}^{a_k x_k}$$

where $\omega_M = \exp(2\pi i/M)$ is a primitive M-th root of unity. The Fourier transform of a function $f: G \to \mathbb{C}$ is given by

$$\hat{f}(a) = \frac{1}{\sqrt{|G|}} \sum_{x \in G} \chi(a, x) f(x).$$

The quantum Fourier transform:

$$\sum_{g \in G} f(g) |g\rangle \mapsto \sum_{x \in G} \hat{f}(x) |x\rangle$$

Quantum Walks on Cayley Graphs

Cayley Graphs:

The adjacency matrix of the Cayley graph $\Gamma = (V, E)$ can be expressed as:

$$A = \sum_{a \in G} \lambda_a \ket{\hat{a}} \bra{\hat{a}},$$

Where
$$|\hat{a}\rangle = \mathsf{QFT}_G(|a\rangle) = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \chi(a,g) |g\rangle$$
.

The eigenvalues λ_a are given by:

$$\lambda_{\mathsf{a}} = \sum_{\mathsf{q} \in \mathsf{Q}} \chi(\mathsf{a}, \mathsf{q}).$$

Note that the eigenvectors $|\hat{a}\rangle$ of A depend only on G and not on the set Q.

Quantum Walks on Cayley Graphs

Cayley Graphs:

Proof:

$$A |\hat{a}\rangle = A. \frac{1}{\sqrt{|G|}} \sum_{y \in G} \chi(a, y) |y\rangle = \frac{1}{\sqrt{|G|}} \sum_{y \in G} \chi(a, y). A |y\rangle$$
$$= \frac{1}{\sqrt{|G|}} \sum_{y \in G} \chi(a, y). \sum_{q \in Q} |qy\rangle$$

Consider $\beta = qy$. Then:

$$= \frac{1}{\sqrt{|G|}} \sum_{q \in Q} \chi(a, q) \sum_{\beta} \chi(a, \beta) |\beta\rangle = \sum_{q \in Q} \chi(a, q). |\hat{a}\rangle$$
$$= \lambda_{a} |\hat{a}\rangle$$

Group Actions

Cayley graphs can also be constructed using group actions.

Group Actions:

For a group G and a set X, we say that G acts on X if there is a mapping $*: G \times X \to X$ that satisfies the following properties:

- 1. Compatibility: for every $a, b \in G$ and every $x \in X$, g * (h * x) = (gh) * x,
- 2. Identity: for the identity $1 \in G$ and every $x \in X$, 1 * x = x.
- We use the notation (G, X, *) to denote a group G acting on a set X through the action *.
- A group action is called *regular* if for every $x, y \in X$ there exists a unique $g \in G$ such that g * x = y.

Cayley Graphs with Group Actions

Figure: Cayley graph of a group G with generators $\{q_1, q_2, ..., q_k\}$

Cayley Graphs with Group Actions

Given a regular group action (G,X,*) with a fixed element $x\in X$ and a set $Q=\{q_1,q_2,\ldots,q_k\}\subset G$, let $\Gamma=(X,E)$ be a graphs with vertex set X and edge set consisting of pairs $(x,y)\in X\times X$ such that y=q*x for some $q\in Q$. The adjacency matrix of Γ is

$$A = \sum_{h \in G} \lambda_h |G^{(h)} * x\rangle \langle G^{(h)} * x|,$$

Where:

$$|G^{(h)} * x\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \chi(g, h) |g * x\rangle$$

And $\lambda_h = \sum_{q \in Q} \chi(h, q)$.

Again, the eigenvectors $|G^{(h)} * x\rangle$ depend only on G.

Cayley Graphs with Group Actions

Proof:

$$A|G^{(h)} * x\rangle = \frac{1}{\sqrt{|G|}} \cdot \sum_{g \in G} \chi(g, h) A. |g * x\rangle$$
$$= A|G^{(h)} * x\rangle = \frac{1}{\sqrt{|G|}} \cdot \sum_{g \in G} \chi(g, h) \sum_{g \in Q} |g * (g * x)\rangle$$

Consider $\beta = qg$. Then:

$$==\frac{1}{\sqrt{|G|}}\sum_{q\in Q}\sum_{\beta\in G}\chi(\beta,h)\chi(q,h)|\beta*x\rangle$$
$$=\sum_{q\in Q}\chi(q,h).|G^{(h)}*x\rangle=\lambda_h|G^{(h)}*x\rangle$$

Simulating continuous-time walks

Abelian Groups:

- $ightharpoonup e^{-iAt} = \mathsf{QFT}_G\left(\sum_{a \in G} e^{-i\lambda_a t} |a\rangle\langle a|\right) \mathsf{QFT}_G^*$
- ► Efficient since:
 - ▶ QFT_G and QFT $_G^*$ run in poly(log |G|) time.
 - $ightharpoonup \lambda_a$ computable to high precision classically.

Group Actions:

- No efficient QFT-like decomposition.
- Can express:

$$e^{-iAt} = \sum_{h \in G} e^{-i\lambda_h t} |G^{(h)} * x\rangle \langle G^{(h)} * x|$$

▶ But still approximable for $t = \text{poly}(\log |G|)$ due to structure in A.

Simulating group action quantum walks

Goal: Efficiently simulate $W = e^{-iAt}$ for $t = \text{poly}(\log |G|)$.

Approach: Use discrete-time quantum walk framework proposed by Andrew. M. Childs in 2009:

$$W = iS(2TT^* - 1)$$

- lsometry T and its adjoint T^* are efficiently implemented via simple unitaries U_0 , U_1 .
- ▶ These unitaries prepare/refactor states $|\varphi_{yb}\rangle$ using a small symmetric set $Q \subset G$.
- Efficient due to:
 - Bounded degree Cayley graph.
 - ▶ Polynomial-size *Q* allows brute-force mapping.
- ▶ Full walk operator W simulated via reflection trick using T, T^* , and ancilla control.

Conclusion: Group-action quantum walks can be simulated efficiently

Application: Quantum Money

A public-key quantum money scheme consists of two QPT algorithms:

▶ Gen(1^λ): This algorithm takes a security parameter λ as input and outputs a pair (s, ρ_s) , where s is a binary string called the serial number, and ρ_s is a quantum state called the banknote. The pair (s, ρ_s) , or simply ρ_s , is sometimes denoted by \$.

Ver(s, ρ_s): This algorithm takes a serial number and an alleged banknote as input and outputs either 1 (accept) or 0 (reject).

Quantum Money From Group Actions

Proposed by Zhandry in 2023:

▶ Gen(1 $^{\lambda}$). Begin with the state $|0\rangle |x_{\lambda}\rangle$, and apply the quantum Fourier transform over G_{λ} to the first register producing the superposition

$$\frac{1}{\sqrt{|X_{\lambda}|}} \sum_{g \in G_{\lambda}} |g\rangle |x_{\lambda}\rangle.$$

Next, apply the unitary transformation $|h\rangle\,|y\rangle\mapsto|h\rangle\,|h*y\rangle$ to this state, followed by the quantum Fourier transform on the first register. This results in

$$\frac{1}{|G_{\lambda}|} \sum_{h \in G_{\lambda}} \sum_{g \in G_{\lambda}} \chi(g, h) |h\rangle |g * x_{\lambda}\rangle = \frac{1}{\sqrt{|G_{\lambda}|}} \sum_{h \in G_{\lambda}} |h\rangle |G^{(h)} * x_{\lambda}\rangle$$

Quantum Money From Group Actions

▶ Ver $(h, |\psi\rangle)$. First, check whether $|\psi\rangle$ has support in X_{λ} . If not, return 0. Then, apply *cmpIndex* to the state $|\psi\rangle|0\rangle$, and measure the second register to obtain some $h' \in G_{\lambda}$. If h' = h, return 1; otherwise return 0.

cmpIndex Algorithm:

▶ Given a state $|G^{(h)}*x\rangle$, there is an efficient algorithm for computing h. Specifically, there is a unitary operator that performs the transformation $|G^{(h)}*x\rangle|0\rangle \mapsto |G^{(h)}*x\rangle|h\rangle$:

Quantum Money With The Hartley Transform

Hartley Transform:

item Let N be a positive integer, and let \mathbb{Z}_N be the additive cyclic group of integers modulo N. The Hartley transform of a function $f: \mathbb{Z}_N \to \mathbb{R}$ is the function $H_N(f): \mathbb{Z}_N \to \mathbb{R}$ defined by

$$H_N(f)(a) = \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) f(y),$$

where cas(x) = cos(x) + sin(x)

For a single basis element of the cyclic group \mathbb{Z}_N , the quantum Hartly transform simplifies to

$$QHT_N: |a\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle. \tag{1}$$

Quantum Money With The Hartley Transform

▶ Gen. Begin with the state $|0\rangle |x\rangle$, and apply the quantum Hartley transform over \mathbb{Z}_N to the first register producing the superposition

$$\frac{1}{\sqrt{N}}\sum_{g\in\mathbb{Z}_N}|g\rangle\,|x\rangle\,.$$

Next, apply the unitary $|h\rangle\,|y\rangle\mapsto|h\rangle\,|h*y\rangle$ to this state, followed by a QHT_N on the first register. This results in

$$\frac{1}{N} \sum_{h \in \mathbb{Z}_N} \sum_{g \in \mathbb{Z}_N} \cos\left(\frac{2\pi gh}{N}\right) |h\rangle |g * x\rangle = \frac{1}{\sqrt{N}} \sum_{h \in \mathbb{Z}_N} |h\rangle |\mathbb{Z}_N^{(h)} * x\rangle_H$$

Measure the first register to obtain a random $h \in \mathbb{Z}_N$, collapsing the state to $|\mathbb{Z}_N^{(h)} * x\rangle_H$. Return the pair $(h, |\mathbb{Z}_N^{(h)} * x\rangle_H)$.

Quantum Money With The Hartley Transform

▶ In the original scheme, using the quantum Fourier transform, we could directly obtain h from the money state $|\mathbb{Z}_N^{(h)} * x\rangle$ and compare it to the given h. However, this approach does not work exactly the same when we use the Hartley transform.

► To extract *h* directly, we design an algorithm for computing *h* that utilizes quantum walks.

Computing the serial Number

- ▶ Given a state $|\mathbb{Z}_N^{(h)} * x\rangle_H$, we show how to compute h using continuous-time quantum walks.
- ▶ For any $q \in \mathbb{Z}_N$, define a Cayley graph $\Gamma = (\mathbb{Z}_N, E)$ with the generating set $Q = \{-u, u\}$.
- Let *A* denote the adjacency matrix of Γ. The eigenvectors and corresponding eigenvalues of *A* are $|\mathbb{Z}_N^{(h)}*x\rangle$ and $\lambda_h = 2\cos(2\pi u h/N)$, respectively, for $h \in \mathbb{Z}_N$.
- the unitary $W = e^{iAt}$ can be efficiently simulated to exponential accuracy.

Computing the serial Number

Lemma: The money state $|\mathbb{Z}_N^{(h)} * x\rangle_H$ is an eigenstate of W with eigenvalue $e^{i\lambda_h t}$.

$$e^{iAt} \left| \mathbb{Z}_N^{(h)} * x \right\rangle_H = e^{i\lambda_h t} \left| \mathbb{Z}_N^{(h)} * x \right\rangle_H$$

If we choose $t = \text{poly}(\log N)$, it follows from Lemma that we can run the phase estimation algorithm with the unitary W and the eigenstate $|\mathbb{Z}_N^{(h)} * x\rangle_H$ to compute an estimate $\tilde{\lambda}_h$ of λ_h such that

$$|\tilde{\lambda}_h - \lambda_h| \le \frac{1}{\mathsf{poly}(\log N)}$$

Now, let us briefly explain how the algorithm for QFT_N works:

$$\begin{aligned}
\mathsf{QFT}_{N} | a \rangle &= \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \omega_{N}^{ay} | y \rangle \\
&= \frac{1}{\sqrt{N}} \sum_{y=0}^{N/2-1} \omega_{N}^{ay} | y \rangle + (-1)^{a} \sum_{y=0}^{N/2-1} \omega_{N}^{ay} | y + N/2 \rangle \\
&= \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \omega_{N}^{ay} \frac{1}{\sqrt{2}} (|0\rangle + (-1)^{a} |1\rangle) | y \rangle ,
\end{aligned} (2)$$

$$\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle \tag{3}$$

$$= \frac{1}{\sqrt{N}} \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle + \frac{1}{\sqrt{N}} \sum_{y=N/2}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle. \tag{4}$$

The second sum in the right-hand side can be written as

$$\sum_{y=N/2}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle = \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N} + \pi a\right) |y + N/2\rangle$$
$$= (-1)^a \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N}\right) |y + N/2\rangle,$$

$$= \frac{1}{\sqrt{N/2}} \sum_{v=0}^{N/2-1} \cos\left(\frac{2\pi a y}{N}\right) \frac{1}{\sqrt{2}} (|0\rangle + (-1)^a |1\rangle) |y\rangle, \tag{5}$$

We now show how to compute QHT_N recursively.

$$\begin{aligned} |0\rangle |a\rangle &= |0\rangle |t\rangle |b\rangle \mapsto \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ty}{N/2}\right) |0\rangle |y\rangle |b\rangle \\ &= \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \cos\left(\frac{4\pi ty}{N}\right) |0\rangle |y\rangle |b\rangle \\ &\mapsto \frac{1}{\sqrt{N}} \sum_{z=0}^{N/2-1} \cos\left(\frac{4\pi ty}{N}\right) (|0\rangle + |1\rangle) |y\rangle |b\rangle \,. \end{aligned}$$

Algorithm (QHT_N)

- ▶ Input: quantum state $|\psi\rangle \in \mathbb{C}^N$, where $N=2^n$
- lackbox Output: quantum state QHT_N $|\psi
 angle$
- 1- Initialize an ancilla qubit to 0 to obtain the state $|0\rangle\,|\psi\rangle$
- 2- Compute $1 \otimes \mathsf{QHT}_{N/2} \otimes 1$ recursively.
- 3- Apply $H \otimes 1$.
- 4- Apply the controlled negation $|0\rangle |y\rangle \mapsto |0\rangle |y\rangle, |1\rangle |y\rangle \mapsto |1\rangle |N/2 y\rangle$ to the first two registers.
- 5- Apply the unitary U_R .
- 6- Apply $H\otimes 1$
- 7- Apply CNOT to the first and last qubits.
- 8- Apply $1 \otimes H$.
- 9- Trace out the first qubit

References

S. Aaronson and P. Christiano,

Quantum Money from Hidden Subspaces,

In Theory of Cryptography Conference, pp. 3–25, Springer, 2012. https://arxiv.org/abs/1203.4740

M. Zhandry,

Quantum Lightning Never Strikes the Same State Twice,

In EUROCRYPT 2019, pp. 408-438. https://arxiv.org/abs/1701.03137

A. M. Childs,

On the Relationship Between Continuous- and Discrete-Time Quantum Walks, https://arxiv.org/abs/0810.0312

A. M. Childs,

Lecture Notes on Quantum Algorithms, University of Maryland, 2022. https://arxiv.org/abs/quant-ph/0012090v2

J. M. Arrazola and N. Lütkenhaus,

Quantum Walks and Graph Isomorphism,

