

به نام خدا دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر

درس الكترونيك ااا

نيمسال دوم (01-00)

استاد درس: دکتر شعاعی

پروژه نهایی :

طراحی و شبیه سازی تقویت کننده دو طبقه در محیط کیدنس

محمدمهدی عبدالحسینی 810 محمدمهدی

Electronics III

فهرست مطالب

1	بخش اول : طراحی تقویت کننده
1	محاسبات و تحلیلهای دستی :
6	بخش دوم: شبیهسازی تقویت کننده طراحی شده
6	سوال 1 : گوشه tt27
9	سوال 2 : گوشه tt27
9	سوال 3 : گوشه tt27
10	سوال 1 : گوشه SS85
12	سوال 2 : گوشه SS85
12	سوال 3 : گوشه SS85
13	سوال 1 : گوشه ff-20
15	سوال 2 : گوشه ff-20
15	سوال 3 : گوشه ff-20
	سوال 4 : گوشه tt27
16	سوال 5 : گوشه tt27
17	سوال 6 : گوشه tt27
17	سوال 7 : گوشه tt27
18	سوال 8 : گوشه 1+27

بخش اول: طراحي تقويت كننده

محاسبات و تحلیلهای دستی:

DC Gain (dB) > 75 \rightarrow $A_0 > 10^{75/20} = 5625$

بیره A. ما بوج به سما تیک تقویت کننده دو طبقه به صورت زیر محاسب می شود.

A. = 9m, Ro 9mis Rout

Ro : مفاومت ديره ستره در گره O

out of soin our croster : Rout

Ro = 9ms rdss (rds7 || rds9) || 9m3 rds3 rds1

Rout = rds 11 | rds 13

$$g_{m} = \sqrt{2 \mu C_{ox}(\frac{\omega}{L}) I_{D}} = \mu C_{ox}(\frac{\omega}{L}) V_{ov} = \frac{2 I_{D}}{V_{ov}}$$

$$r_{ds} = \frac{1}{\lambda I_D}$$
 ; $\lambda . L = 0.08 \ \mu m / V \xrightarrow{L = 0.18 \ \mu m} 1/\lambda = 2.25$

$$r_{ds_1} = r_{ds_3} = r_{ds_5}$$
; $g_{m_1} = g_{m_3} = \sqrt{\frac{M_n C_{ox}}{M_b C_{ox}}} g_{m_5} = 2g_{m_5}$

* أ ابن مرحد، لما ترانزيستورهاى M1 تا M6 و كيسان درنظ كرفتيم.

$$UGBW = W_t = A_0 W_{P_1} = \frac{g_{m_1}}{C_c}$$
 $\left(W_{P_1} = \frac{1}{g_{m_1}} R_0 R_{out} C_c\right)$

مى خواهيم UGBW بزرگتر از 800MHz سنود. فرض مى كنيم Cc برابر با 1pF باسد. داريم:

بنامراس عامل اصلی درطراحی مرای تعیس WGBW و افزایش آن ، ایس می باشد.

Phase Margin = 68°

$$\Phi_{\mathcal{M}} = 180^{\circ} - \tan^{-1}\left(\frac{\omega_t}{\omega_{P_1}}\right) - \tan^{-1}\left(\frac{\omega_t}{\omega_{P_2}}\right) + \tan^{-1}\left(\frac{\omega_t}{\varkappa}\right)$$

اذ آن حب که گره های o د high impedance ، out ، o مستند ، نسبت به سایر قطب ها غالب ص بیسند بنا برایس تنب کان ها دا برای محاسبه به م نوشتم .

$$\omega_{P_2} = \frac{q_{m_{13}}}{C_0 + C_{out}}$$

o خان های مقمل برگره cout متعمل برگره Cout

با بوج بدانیکه CL برابر با 1pF می باسد ، در مفایسه با مصوم خاذن های پادادیتی ترانزیستودها ، خیلی نزرگتر است. بنا برای از تقریب زیر استفاده می کنیم.

$$C_0 + C_{04}t = C_L + C_{G_{1}}$$

$$W_{P_2} = \frac{g_{M_{13}}}{C_L}$$

$$Z = \frac{-1}{C_c \left(\frac{1}{9_{mB}} - R_c\right)}$$

$$\Rightarrow \Phi_{M} = 180^{\circ} - 90^{\circ} - \tan^{-1}\left(\frac{\frac{g_{m_{I}}}{C_{c}}}{\frac{g_{m_{I3}}}{C_{L}}}\right) + \tan^{-1}\left(\frac{\frac{g_{m_{I}}}{C_{c}}}{\frac{-1}{C_{c}\left(\frac{1}{g_{m_{I3}}} - R_{c}\right)}}\right)$$

$$\Phi_{M} = 90^{\circ} - \tan^{-1}\left(\frac{g_{m_{I}}}{g_{m_{I3}}}\right) + \tan^{-1}\left(-g_{m_{I}}\left(\frac{1}{g_{m_{I3}}} - R_{c}\right)\right)$$

فرض می کنیم مقدار ۱۹ مرای برآورده ساختن شرط set ، UGBW ، مدیم . مرای سادش کار ۱۸۱۱ را نزدیک به ۱۹۱۱ و رفطر می کنیم . معنی فرض می کنیم حریان و که کیسال دانسته باشند.

بنامراس عامل انتركذار در مير Re ، De خواهد مود ، كه با افزايش آن مل افزايش ، و با كاهش آن مل كاهش من يامد.

$$W_Z = \alpha W_t$$
 $\longrightarrow \frac{-1}{C_c \left(\frac{1}{9m_{13}} - R_c\right)} = \alpha \frac{g_{m_1}}{C_c} \Rightarrow R_c = \frac{1}{9m_{13}} + \frac{1}{\alpha g_{m_1}}$

با توجه به مدار بالا و مقایسه آن با شماتیک مدار بایاس داده شده ، میتوان گفت اگر W/L ترانزیستورهای MB6 ، MB1 و MB1 تقریباً بین 1/4 تا 1/6 مقدار W/L سایر ترانزیستورهای مدار بایاس باشد، به مقادیر مطلوبی برای ولتاژهای بایاس 1 تا 4 میرسیم.

اگر W/L ترانزیستور MB1 ، 1/6 ، MB1 مقدار W/L سایر ترانزیستورهای مدار بایاس باشد ، جریان آینه شده بر روی آنها ، 6 برابر جریان MB1 ، که همان جریان منبع جریان میباشد، خواهد بود. (دقت شود که منبع جریان میباشد.) 0.1mA

تا این مرحله ابعاد ترانزیستورهای مدار تقویت کننده دو طبقه بصورت زیر خواهد بود.

M1	M2	М3	M4	M5	M6	M7	M8	M9	M10
2*W/L	2*W/L	2*W/L	2*W/L	2*W/L	2*W/L	?	?	2*W/L	2*W/L
M11	M12	M13	M14	M15	M16				

تا این مرحله ابعاد ترانزیستورهای مدار بایاس بصورت زیر خواهد بود.

MB1	MB2	MB3	MB4	MB5	MB6	MB7	MB8	MB9	MB10
1/6*W/L	W/L	W/L	W/L	W/L	1/5*W/L	W/L	W/L	W/L	W/L

MB11	MB12	MB13	MB14	MB15	MB16
1/4*W/L	W/L	W/L	W/L	W/L	W/L

2*W/L 2*W/L

علت دو برابر قرار دادن W/Lها در مدار تقویت کننده دو طبقه نسبت به مدار بایاس، کاملا شهودی میباشد. ما میخواهیم gm ترانزیستورهای مدار تقویت کننده دو طبقه زیاد باشد به گونهای که شرط Gain و UGBW برآورده شود. بنابراین جریان بیشتری را در مدار تقویت کننده دو طبقه درایو میکنیم. همچین به دلیل مشابه برای عملکرد بهتر مدار فیدبک ، مقادیر آنها را نیز بصورت زیر وارد میکنیم.

مدار فيدبک طبقه اول :

Mf0	Mf1	Mf2	Mf3	Mf4	Mf5	Mctrl	Mdum
1/4*W/L	1/4*W/L	2*W/L	2*W/L	2*W/L	2*W/L	2*W/L	2*W/L

مدار فيدبك طبقه دوم:

Mf0	Mf1	Mf2	Mf3	Mf4	Mf5	Mctrl	Mdum
4*W/L	4*W/L	2*W/L	2*W/L	2*W/L	2*W/L	2*W/L	2*W/L

ابعاد نهایی ترانزیستورهای مدار تقویت کننده دو طبقه بصورت زیر خواهد بود.

M1	M2	М3	M4	M5	M6	M7	M8	M9	M10
2*W/L	2*W/L	2*W/L	2*W/L	2*W/L	2*W/L	1/4*W/L	1/4*W/L	2*W/L	2*W/L

M11	M12	M13	M14	M15	M16
W/L	W/L	2*W/L	2*W/L	3*W/L	2*W/L

ابعاد ترانزیستور M15 جهت افزایش جریان آینه شده، 3 برابر ابعاد مدار بایاس قرار گرفته است. همچنین ابعاد ترانزیستور M7 و M17 جهت افزایش بهره و تنظیم UGBW ، برابر با ابعاد مدار بایاس، و ابعاد ترانزیستور M8 یک چهارم ابعاد مدار بایاس درنظر گرفته شده است.

با توجه به اینکه لازم است جریانی مناسبی را به مدار بدهیم، مقدار W/L را به اندازه کافی بزرگ درنظر میگیریم. به ازای Vov = 0.15V و جریان I = 0.5mA و جریان Vov = 0.15V

 $I = %.uCox.W/L.Vov^2 \Rightarrow (W/L)pmos > 95$: W/L = 100

بخش دوم: شبیهسازی تقویت کننده طراحی شده

سوال 1: گوشه tt27

۱) مدار مورد نظر را در محیط Cadence شبیه سازی DC کرده و نقطه کار ترانزیستورها، ولتاژ تمامی گره ها و جریان تمام شاخه های مدار را گزارش کنید.

مدار بایاس :

با توجه به نتایج شبیهسازی، ولتاژهای بایاس بصورت b1=0.65,b2=0.92,b3=0.54,b4=0.94 ولت میباشد. مدار تقویت کننده دو طبقه :

مطابق شبیهسازی همانگونه که در تحلیل دستی به آن اشاره شد، میخواهیم gm ترانزیستورها، به خصوص ترانزیستورهای m (m و m و m و m و m و m اندازه کافی بزرگ باشد تا شرط m و m و m و m به توضیحات بخش اول برقرار باشد. m همانطور که مشاهده میشود و انتظار داشتیم، m و

همچنین همانطور که میبینیم، مقادیر gm1 و gm13 را نزدیک به هم رساندیم تا برقراری شرط حاشیه فاز، بیشتر وابسته به مقدار Rc را هم مطابق تحلیل دستی برابر با (1/gm13 + 1/a.gm1) قرار میدهیم.

Rc = (1/gm13 + 1/a.gm1) = 1/8.56 + 1/(1*8.02) = 242 ohm
O مقدار OUT گره خروجی OUT و گره 0 را نیز با استفاده از مدار فیدبک، تقریبا روی set ، 0.9۷ کردهایم. مقدار OUT برابر با OUT برابر با OUT برابر با 0.877mV شده است.

مدار فيدبك طبقه اول :

مدار فيدبك طبقه دوم :

سوال 2: گوشه tt27

رد.) توان مصرفی تقویت کننده را گزارش کنید. (شکل موج جریان کشیده شده از منبع تغذیه را در گزارش خود بیاورید.) $P=iv=8.8 \times 1.8=15.84~mWatt$

متاسفانه در طراحی به کاهش توان توجه لازم نشده است و توان مصرفی بالاتر از حد مجاز 10mWatt میباشد. جهت کاهش توان مصرفی لازم است جریانهای درایو شده در ترانزیستورهای مدار تقویت کننده دو طبقه و مدار فیدبک ، مقداری کاهش یابد. اما توجه شود این کاهش مقدار باید به گونهای باشد که همچنان شرط Gain و UGBW برقرار باشد.

نمودار جریان کشیده شده از منبع ولتاژ 1.8Vdc بصورت زیر میباشد.

سوال 3: گوشه tt27

۳) تقویت کننده طراحی شده را در محیط Cadence شبیه سازی AC کرده و بهره UGBW، ac و حاشیه فاز را گزارش کنید. پاسخ فرکانسی (هر دو نمودار بهره و فاز) به دست آمده از شبیه سازی را با مشخص کردن بهره ac کنید. پاسخ فرکانسی (هر دو نمودار بهره و فاز) به دست آمده از شبیه سازی را با مشخص کردن بهره حاشیه فاز در گزارش خود بیاورید.

1 Gain	75.1371
2 PM	69.3964
3 UGBW	1.16462G

سوال **1** : گوشه ss85

۱) مدار مورد نظر را در محیط Cadence شبیه سازی DC کرده و نقطه کار ترانزیستورها، ولتاژ تمامی گره ها و جریان تمام شاخه های مدار را گزارش کنید.

مدار بایاس :

مدار تقویت کننده دو طبقه:

مدار فيدبك طبقه اول :

مدار فيدبك طبقه دوم :

سوال 2 : گوشه 8585

(۳) توان مصرفی تقویت کننده را گزارش کنید. (شکل موج جریان کشیده شده از منبع تغذیه را در گزارش خود بیاورید.) $P=iv=7.5\times1.8=13.5~mWatt$

متاسفانه در طراحی به کاهش توان توجه لازم نشده است و توان مصرفی بالاتر از حد مجاز 10mWatt میباشد. جهت کاهش توان مصرفی لازم است جریانهای درایو شده در ترانزیستورهای مدار تقویت کننده دو طبقه و مدار فیدبک ، مقداری کاهش یابد. اما توجه شود این کاهش مقدار باید به گونهای باشد که همچنان شرط Gain و UGBW برقرار باشد.

نمودار جریان کشیده شده از منبع ولتاژ 1.8Vdc بصورت زیر میباشد.

سوال 3 : گوشه 5885

۳) تقویت کننده طراحی شده را در محیط Cadence شبیه سازی AC کرده و بهره UGBW، ac و حاشیه فاز را گزارش کنید. پاسخ فرکانسی (هر دو نمودار بهره و فاز) به دست آمده از شبیه سازی را با مشخص کردن بهره ac کنید. پاسخ فرکانسی (هر دو نمودار بهره و فاز) به دست آمده از شبیه سازی را با مشخص کردن بهره حاشیه فاز در گزارش خود بیاورید.

1 Gain	69.9024
2 PM	60.3308
3 UGBW	776.52M

سوال 1: گوشه ff-20

۱) مدار مورد نظر را در محیط Cadence شبیه سازی DC کرده و نقطه کار ترانزیستورها، ولتاژ تمامی گره ها و جریان تمام شاخه های مدار را گزارش کنید.

مدار بایاس :

مدار تقویت کننده دو طبقه:

مدار فيدبك طبقه اول :

مدار فيدبك طبقه دوم:

سوال 2 : گوشه ff-20

رد.) توان مصرفی تقویت کننده را گزارش کنید. (شکل موج جریان کشیده شده از منبع تغذیه را در گزارش خود بیاورید.) $P=iv=9.7\times 1.8=17.46~mWatt$

متاسفانه در طراحی به کاهش توان توجه لازم نشده است و توان مصرفی بالاتر از حد مجاز 10mWatt میباشد. جهت کاهش توان مصرفی لازم است جریانهای درایو شده در ترانزیستورهای مدار تقویت کننده دو طبقه و مدار فیدبک ، مقداری کاهش یابد. اما توجه شود این کاهش مقدار باید به گونهای باشد که همچنان شرط Gain و UGBW برقرار باشد.

نمودار جریان کشیده شده از منبع ولتاژ 1.8Vdc بصورت زیر میباشد.

سوال 3: گوشه ff-20

۳) تقویت کننده طراحی شده را در محیط Cadence شبیه سازی AC کرده و بهره UGBW، ac و حاشیه فاز را گزارش کنید. پاسخ فرکانسی (هر دو نمودار بهره و فاز) به دست آمده از شبیه سازی را با مشخص کردن بهره ac کنید. پاسخ فرکانسی (هر دو نمودار بهره و فاز) به دست آمده از شبیه سازی را با مشخص کردن بهره حاشیه فاز در گزارش خود بیاورید.

1 Gain	68.2966
2 PM	74.2191
3 UGBW	1.70181G

سوال 4: گوشه tt27

۴) دیاگرام Bode را برای CMRR رسم کنید.

مطابق نتايج بدست آمده، CMRR تقريبا برابر با 330dB ميباشد.

سوال 5: گوشه tt27

۵) با توجه به تعریف +PSRR و -PSRR ، مقدار آنها را برای مدار طراحی شده به دست آورید. *تعریف PSRR به صورت

$$PSRR = \frac{A_{diff}}{A_{\sup ply}}$$

می باشد.

مطابق نتایج بدست آمده، PSRR تقریبا برابر با همان مقدار 330dB در CMRR میباشد.

سوال 6: گوشه tt27

۶) با استفاده از بلوک VCVS (منبع ولتاژ کنترل شده با ولتاژ) خروجی تفاضلی را به خروجی تک انتهایی تبدیل کرده و سپس تقویت کننده را در حلقه فیدبک واحد ببندید، ورودی پالس را با جهش اولت و Vcm=0.9V به مدار اعمال کنید، سپس زمان نشست تقویت کننده را برای دقت ۱/۰ درصد، بر روی نمودار زمانی اندازه گیری و گزارش کنید. دقت کنید که فرکانس ورودی به گونه ای تنظیم شود که خروجی زمان کافی برای رسیدن به دقت مورد نظر را داشته باشد.

زمان نشست بسیار ناچیز است و درحدود همانطور سیگنال ورودی میباشد.

متاسفانه با متصل کردن خروجی تک سر به ورودی منفی، و اعمال یک ورودی پالس 1 ولت ، یکی از ترانزیستورهای مدار فیدبک خاموش میشود و مقدار dc به هم میریزد.

اما اگر از ساختار بیرونی به قضیه نگاه کنیم، اگر به یک op-Amp ایدهآل با دو ورودی و یک خروجی، فیدبک واحد بدهیم، انتظار میرود خروجی دقیقاً با ورودی یکسان شود. در شبیهسازی نیز همین اتفاق افتاده است.

سوال 7: گوشه tt27

۷) روش دیگر اندازه گیری زمان نشست، استفاده از ماشین حساب کیدنس (Calculator -> Settling Time) است که پنجره تنظیمات آن در شکل (۵) نشان داده شده است. با استفاده از این روش نیز زمان نشست را به دست آورده و با مقدار به دست آمده از روش قبلی مقایسه کنید.

سوال 8: گوشه tt27

۸) میزان Slew Rate تقویت کننده را گزارش کنید.

$$I_{b_{2}} < I_{b_{1}} \left(1 + \frac{C_{1}}{C_{c}}\right) \stackrel{I_{\mu_{7}=0}}{\Rightarrow} SR^{+} = \frac{I_{b_{2}}}{C_{c} + C_{L}}$$

$$SR^{-} = \frac{I_{b_{1}}}{C_{c}}$$

$$O.W. SR^{+} = \frac{I_{b_{1}}}{C_{c}}$$

مطاق مایع تسبیسازی ، Ib حریان عبودی از ترانزیستور M15 برابر با Iba و Iba و یون عبودی از ترانزیستود M13 و مایت.

$$SR^{+} = \frac{I_{b2}}{C_{c} + C_{L}} = \frac{0.7 \, mA}{1 \rho F + 1 \rho F} = 0.35$$

$$SR^- = \frac{I_{bl}}{C_c} = \frac{1.4mA}{1pF} = 1.4$$