BackerTracker

Backers Count Prediction System for Kickstarter

BUDT 768T – Data Mining & Predictive Analytics

Group: 4 Drishti Jain, Nishi Morbia, Nisarg Patel, Priyank Shah, Nishit Salot

Data Mining & Predictive Analytics	Group - 4	
Contents		
Executive Summary	2	
Exploratory Data Analysis	3	
What types of projects are most popular?	3	
Distribution of Backers for each project category?	3	
How does social identity of creators affect the number of backers count?	4	
Data Processing	5	
Modeling Process & Specification Comparison	5	
Modeling Process	5	
Model Specification	6	
Model evaluation and selection methodology	6	
Takeaways & Conclusion	6	
Appendix: A	7	
Appendix : Variable Importance	10	

Random Forest

Gaussian Boosting

10

10

Executive Summary

Kickstarter is an American public-benefit corporation based in Brooklyn, New York, that maintains a global crowdfunding platform focused on creativity The company's stated mission is to "help bring creative projects to life". Kickstarter has reportedly received more than \$1.9 billion in pledges from 9.4 million backers to fund 257,000 creative projects, such as films, music, stage shows, comics, journalism, video games, technology, and food-related projects.

People who back Kickstarter projects are offered tangible rewards or experiences in exchange for their pledges. This model traces its roots to subscription model of arts patronage, where artists would go directly to their audiences to fund their work. We wanted to develop a solution where we will be going to look at the different features of Kickstarter campaigns and how they correspond to the likelihood that a campaign will succeed, getting prediction of how many people will back the project as well as classify if the project would be a big hit!

That is why we created a model that predicts the count of backers a project can expect depending upon the parameters like goal (USD), deadline, project category and other necessary variables. And we name it **BackerTracker!**. We wanted to give creators a way to estimate their final funding amount raised sooner so that they can start thinking about how they can ramp up production and fulfillment even earlier. Additionally, we also determine how social-identity factors like race, color, gender is statistically important for the projects listed on the Kickstarter.

Predicting collective human behavior is a very difficult task because the causes at the individual level (reciprocal influences, groups of individuals with similar behavior) are often not directly recognizable from the systemic outcome.

Previous works uncovered a series of feedback mechanisms amplifying "microscopic"/individual inputs to the level of systemic transformations: multiplicative dynamics (Levy and Solomon, 1996), social percolation (Solomon et al., 2000), herding (Levy et al., 1994). Surprisingly, our findings for Kickstarter campaigns do not display such effects. We found that the success of a Kickstarter campaign depends on the arousal of project factors which can be inferred from the analysis of the statistical distribution of pledges.

Exploratory Data Analysis

Our original dataset had 58 training variables and 3 target variables with 97420 data points for each variable. To significantly improve the work efficiency, we selected a small data set with 10000 data points for each variable. We will explore some visualizations of important parameters in our data set to see a clear picture before Data Processing

What types of projects are most popular?

Film & Video appears to be the most popular project category with over 25% of all 10000 projects in the selected dataset and Photography the least popular.

Distribution of Backers for each project category?

Games category has an incredibly high upper quartile and median. Although not nearly as high, Design and Technology also have relatively high upper quartile and median values as well. The average backers count for these two categories was lower than that of Comics and Film & Video, but they have higher median and upper quartile values.

How does social identity of creators affect the number of backers count?

It is evident from the above charts that projects that are created by Male creators tend to get more attention from funders and subsequently get more backers than that of females.

Similarly, comparing the backers count for white and black creators specifically, we can see a dramatic difference in the number of projects backed by public. Though, this shouldn't be the case, it is always important to understand how bias plays an important role in prediction models.

Data Processing

Getting known to our dataset, we can now further process the data with cleaning the data, text featurization, outlier treatment and engineering of features that we believe would be important parameters for the model to make better predictions. For more information, please refer to *Appendix: A*

To summarize, we:

- ✓ Replaced NULL values with appropriate values or categories
- ✓ Converted all strings uniformly to lower case to easily do featurization and text mining on them
- ✓ Binned several counters for easy usage in modelling techniques
- ✓ Created new flag variables to divide certain values
- ✓ Created new variables based on our understanding by dividing current values
- ✓ Created new variables by extracting data from other variables
- ✓ Trimmed variables based on requirements
- ✓ Split strings to have concise understanding and usability of variables
- ✓ Rescaled variables to have a normalized range for simplified usage

Modeling Process & Specification Comparison

Modeling Process

Model Specification

Model	Cross Validation	Control	RMSE
Linear Regression	-	-	389.4611
Ridge Regression	10-fold	-	394.5368
Lasso Regression	10-fold	-	394.9642
Random Forest	5-fold	mtry = 2, ntree = 1000	391.2901
Gaussian Boosting	5-fold	n.trees = 2300	407.4053
Ensemble Modeling (Weighted Average)	-	(Linear Regression * 0.20) + (Boosting * 0.20) + (Random Forest * 0.45) + (Ridge * 0.10) + (Lasso * 0.05)	388.2901

Instead of fitting curves, we will be comparing the models based on their RMSE performance; since for all our tree-based model, we have different trees – in that case it is not advisable to evaluate on the basis of fitting curves.

Model evaluation and selection methodology

Ensemble Modeling having highest performance, we select this predictor as our final model to work with the test data. From our evaluation we found that Random Forest and Boosting show different *important features*, implying that those models are capturing different aspects of the data. To get the final model, we ensembled different predictors based on majority voting. Boosting, Linear Regression and Random Forest are given larger weights due to their better performance.

Takeaways & Conclusion

Coming to the end of this project, we could analyze and support our findings on Kickstarter data We worked well together as a team since we were aware of our individual strengths and divided the work accordingly. We focused our efforts on feature engineering during the first few weeks which resulted in a good baseline model. One of the challenges we faced was deciding whether to continue our efforts on improving the classification model we had already built or to switch to regression modeling. Changing the target variable close to the contest submission was a risk but we decided to take it up as a challenge. We believe that we made a very good regression model given the time constraints. If we had more time on the project we would have tried Decision Tree Regressor or spent more time to improve our final Ensemble model. Our advice for the future batch of students would be to focus on feature engineering even if it seems time consuming.

Appendix: A

Sr. No.	Variables	Changes / New Variable Description
1	Goal	Normalize the Goal variable to a range from 0 to 1
2	location_slug	Extracted and cleaned the city names from the
		combination of city-state
3	category_parent	Changed the values to lower scale and Replaced
		NAs with "other" (factorized)
4	category_name	Changed the values to lower scale and Grouped to
		"other" if frequency less than 500 (factorized)
5	smiling_project	Replaced NA with mean and Normalize the values
		to a range from 0 to 1
6	smiling_creator	Replaced NA with mean and Normalize the values
		to a range from 0 to 1
7	minage_project	Replaced NA with mean and Normalize the values
		to a range from 0 to 1
8	minage_creator	Replaced NA with mean and Normalize the values
		to a range from 0 to 1
9	maxage_project	Replaced NA with mean and Normalize the values
		to a range from 0 to 1
10	maxage_creator	Replaced NA with mean and Normalize the values
		to a range from 0 to 1
11	tag_names	Replaced NA with "None" and separated the
		tagnames, taking only first image tag
12	num_words	Normalize the values to a range from 0 to 1
13	sentence_counter	Normalize the values to a range from 0 to 1
14	Avgsentencelength	Normalize the values to a range from 0 to 1
15	first_quartile	To get the atmost 25th percentile values from the
		data
16	third_quartile	To get the atleast 75th percentile values from the
		data
17	lqr	To get the values between 25th & 75th percentile
		range to remove outliers

18	binned_num_words	Binned the values within 5 groups of "VShort",
		"Short", "Med", "Long", "VLong"
19	flag_num_words_long	Flag for records having number of words greater
		than the mean value.
20	binned_sentence_counter	Binned the values within 5 groups of "VShort",
		"Short", "Med", "Long", "VLong"
21	category_name_freq	To get the frequency of occuring category for
		further processing
22	deadline_year	Extracted "Year" from deadline variable
23	flag_female	Flag for records having either a female creator or
		not
24	Gender	Processed gender of creator using flag_female
25	Race	Race of the creator extracted with "predict_race"
		function. Replaced NAs with "Unknown"
26	deadline_month	Extracted "Month" from deadline variable
27	deadline_season	Extracted "Season" from deadline_month, using
		casewhen
28	State	Extracted "State" from location_slug
29	flag_color_foreground	1 if foreground color of the image is either black,
		white or grey otherwise 0
30	flag_color_background	1 if background color of the image is either black,
		white or grey otherwise 0
31	dead_creat	Difference between deadline and created in DAYS
32	launch_creat	Difference between Launch and created in DAYS
33	launch_deadline	Difference between Launch and deadline in DAYS
34	goal_bin4	Groups the goal values into 4 equally distributed
		bins
35	goal_bin10	Groups the goal values into 10 equally distributed
		bins
36	flag_overall_pos	Flag for records who have Positive AFINN
		Sentiment score greater than Negative AFINN
		Sentiment score

37	rate_adv	Rate of Adverb from total number of words for each record
38	rate_noun	Rate of Noun from total number of words for each record
39	rate_adp	Rate of Adpositions from total number of words for each record
40	rate_prt	Rate of particles from total number of words for each record
41	rate_det	Rate of determiners from total number of words for each record
42	rate_pron	Rate of pronouns from total number of words for each record
43	rate_verb	Rate of verbs from total number of words for each record
44	rate_num	Rate of numerals from total number of words for each record
45	rate_conj	Rate of coordinating conjunctions from total number of words for each record
46	rate_adj	Rate of adjectives from total number of words for each record
47	count_creator_id	Count of all creators in dataset
48	quartile_rank_creator_id	Groups the creators in 4 bins depending upon the number of projects they submitted
49	ntile_rank_creator_id	Groups the creators in 10 bins depending upon the number of projects they submitted
50	top_creator_ids	Top Creator Flag if the creator is in 10th bin of "ntile_rank_creator_id"
51	all_rewards	Splitted list of all rewards
52	count_rewards	Count of rewards from "all_rewards"
53	min_reward	Minimum collaboration amount (USD) to get a lowest reward enlisted
54	max_reward	Minimum collaboration amount (USD) to get a highest reward enlisted

Appendix: Variable Importance

Random Forest

Gaussian Boosting

