3	(a)	State what is meant by the centre of gravity of an object.
		Г

(b) A uniform beam AB is attached by a frictionless hinge to a vertical wall at end A. The beam is held so that it is horizontal by a metal wire CD, as shown in Fig. 3.1.

Fig. 3.1 (not to scale)

The beam is of length $0.96\,\mathrm{m}$ and weight $23\,\mathrm{N}$. A block of weight W rests on the beam at a distance of $0.20\,\mathrm{m}$ from end B. The wire is attached to the beam at point D which is a distance of $0.40\,\mathrm{m}$ from end B. The wire exerts a force on the beam of $45\,\mathrm{N}$ at an angle of 37° to the horizontal. The beam is in equilibrium.

(i) Calculate the vertical component of the force exerted by the wire on the beam.

vertical component of the force = N [1]

(ii) By taking moments about A, calculate the weight W of the block.

(iii)	The hinge exerts a force on the beam at end A.
	Calculate the horizontal component of this force.
	horizontal component of force =
(iv)	The block is now placed closer to point D on the beam.
	State whether this change will increase, decrease or have no effect on the tension in the wire.
	[1]
(v)	The stress in the wire is $5.3 \times 10^7 \text{Pa}$. The wire is now replaced by a second wire that has a radius which is three times greater than that of the original wire. The tension in the wire is unchanged.
	Calculate the stress in the second wire.
	stress = Pa [2]
	[Total: 9]