Aprendizado de máquina

Métodos probabilísticos

V.C.Parro Março - 2020

Introdução

Tomada de decisão

Uma decisão era sensata, mesmo que levasse a conseqüências desastrosas, se as evidências disponíveis indicassem que era a melhor decisão a se tomar; e uma decisão foi tola, mesmo que tenha levado às consequências mais felizes possíveis, se não fosse razoável esperar essas consequências.

Herodotus

Regressão linear

Figura 1: Regressão linear - erros aleatórios e sistemáticos.

Separação

Figura 2: Separação de dados.

A variável tempo - processo estocástico

Figura 3: Valores das ações em função do tempo.

Probabilidade

Probabilidade

"...a teoria das probabilidades é basicamente, o senso comum que se reduz ao cálculo: faz-nos apreciar com precisão o que as mentes percebem por um tipo de instinto, sem que elas frequentemente sejam capazes de percebê-lo."

Pierre Simon de Laplace, Sur les probabilités

Moedas, dados, urnas, bolas e cartas

- 1. A Sequência premiada da mega sena.
- 2. Previsão do tempo.
- 3. Prefeitos das capitais em 2020.
- 4. Campeão brasileiro de 2020.
- 5. Número de infectados com o corona virus em Dezembro de 2020.

Vocabulário

Conjuntos	Probabilidade	Notação
Universo	Espaço amostral	S
Elemento	Resultado	s
Subconjunto	Evento	Ε
Conjunto nulo	Evento impossível	Ø
Conjunto simples	Evento isolado	$E = \{s\}$

Explorando o senso comum

Espaço amostral - S : um único lançamento

Espaço amostral

$$S = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

Viés - lançando o dado seis vezes consecutivas

Evento

$$\mathsf{E}_1 = \{ \mathbf{..}, \mathbf{..}, \mathbf{..}, \mathbf{..}, \mathbf{..}, \mathbf{..} \}$$

Evento

$$E_3=\{\blacksquare,\blacksquare,\blacksquare,\blacksquare,\blacksquare,\blacksquare,\blacksquare\}$$

Evento

$$\mathsf{E}_2 = \{ \ensuremath{\mathbf{:}}\ensuremath{\mathbf{:}}, \ensuremath{\mathbf{\cdot}}\ensuremath{\mathbf{,}}, \ensuremath{\mathbf{:}}\ensuremath{\mathbf{:}}, \ensuremath{\mathbf{.}}\ensuremath{\mathbf{:}}\ensuremath{\mathbf{:}}\}$$

Evento

$$\mathsf{E}_4 = \{ \texttt{...}, \texttt{...}, \texttt{...}, \texttt{...}, \texttt{...}, \texttt{...} \}$$

Armadilha:o que se pode afirmar acerca das sequências?

Evento

$$\mathsf{E}_1 = \{ \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C} \}$$

Evento

$$\mathsf{E}_3 = \{ \texttt{.}, \texttt{.}, \texttt{.}, \texttt{.}, \texttt{.}, \texttt{.}, \texttt{.} \}$$

Evento

$$\mathsf{E}_2 = \{ \fbox{...}, \fbox{...}, \fbox{...}, \fbox{...}, \fbox{...} \}$$

Evento

$$\mathsf{E}_4 = \{ \red{\vdots}, \red{\bullet}, \red{\bullet}, \red{\bullet}, \red{\bullet}, \red{\bullet} \}$$

Viés - lançando o dado seis vezes consecutivas

Evento

$$\mathsf{E}_1 = \{ \blacksquare, \blacksquare, \blacksquare, \blacksquare, \blacksquare, \blacksquare, \blacksquare \}$$

Evento

$$E_3 = \{ \blacksquare, \blacksquare, \blacksquare, \blacksquare, \blacksquare, \blacksquare, \blacksquare \}$$

Evento

$$\mathsf{E}_2 = \{ \fbox{\o}, \fbox{\o}, \fbox{\o}, \fbox{\o}, \fbox{\o}, \fbox{\o} \}$$

Evento

$$\mathsf{E}_4 = \{ \blacksquare , \blacksquare , \blacksquare , \blacksquare , \blacksquare , \blacksquare , \blacksquare \}$$

O que podemos dizer acerca da honestidade deste dado?

Formalizando

Axiomas

- 1. *P*[*E*] ≥ 0 ∀ *E*
- 2. P[S] = 1
- 3. $P[E_1 \cup E_2] = P[E_1] + P[E_2]$, considerando eventos mutualmente exclusivos: $E_1 \cap E_2 = \emptyset$.

Conjuntos e lógica

Figura 5: Operações lógicas.

Conjuntos e lógica

Figura 6: Operações lógicas.

Eventos não mutuamente exclusivos

Figura 7: Eventos não mutuamente exclusivos.

$$P[E_1 \cup E_2] = P[E_1] + P[E_2] - P[E_1 \cap E_2]$$
 (2)

Moedas

Figura 8: Tabela verdade.

s ₁	<i>S</i> ₂
V	V
V	F
F	V
F	F

Árvore: moedas

Figura 9: Assumindo que as faces são equiprováveis.

Árvore: urnas e bolas

Figura 10: Duas urnas - eventos dependentes.

Árvore: urnas e bolas

Figura 11: Única urna - eventos dependentes.

Eventos independentes

Independência

- 1. **Para o primeiro caso:** $P(W_2|W_1) = P(W_2)$ a probabilidade de retirar uma bola branca da segunda urna, sendo que uma branca foi retirada da primeira é igual a probabilidade de retirar uma bola branca da segunda urna.
- Para o segundo caso: P(W₂|W₁) ≠ P(W₂) a
 probabilidade de retirar uma bola branca da urna, sendo
 que uma branca foi retirada na primeira tentativa é
 diferente da probabilidade de retirar uma bola branca na
 primeira tentativa.

Estudo de caso: cartas

Poker

- Qual a probabilidade de recebermos um Às?
- Qual a probabilidade de recebermos um Às de espadas?

Royal Flush?

- Qual a probabilidade de obtermos um *Royal Flush*?
- Qual a probabilidade recebermos um novo Ás?

Permutação e combinatória

- Qual a probabilidade de obtermos um Royal Flush?
- Qual a probabilidade recebermos um novo Ás?

Espaços discretos e finitos

Espaço amostral: dois lançamentos de dados

$$S = (i, j) : i = 1...6; j = 1...6$$

O espaço amostral ($6^2 = 36$ número de elementos) pode ser determinado como segue:

Probabilidade: para um determinado evento

$$P[E] = \sum_{(i,j): s_{ij} \in E} P[s_{ij}]$$

$$= \frac{N_E}{N_S}$$

$$\frac{\text{Número de resultados no evento } \mathbf{E}}{\text{Número total de resultados em } \mathbf{S}}$$

Para o caso equiprovável:

$$P[s_{ij}] = \frac{1}{36}$$

Modelagem matemática

Permutação: arranjos possíveis dos resultados.

Para o caso de três "labels" que podem acontecer:

Temos um total de 6 permutações possíveis:

Permutações =
$$3! = 3x2x1 = 6$$

Permutação: generalizando.

Retirada sem reposição:

$$(N)_r = N(N-1)...(N-r+1) = \frac{N!}{(N-r)!}$$

considerando r-tuplas

Para o caso do espaço amostral S:

$$(N)_N = N(N-1)...1 = N!$$

Combinatória: k arranjos em N elementos.

Retirada sem reposição:

$$\binom{N}{k} = \frac{(N)_k}{k!} = \frac{N!}{(N-k)!k!}$$

Um exemplo: quatro bolas, duas vermelhas e duas pretas

- 1. Supondo que o sucesso seja atingido quando tenhamos uma bola vermelha **seguida** de uma bola preta.
- 2. Neste caso temos $\binom{4}{2} = \frac{\binom{4}{2}}{2!} = \frac{4!}{(4-2)!2!} = 6$ combinações possíveis.
- 3. Para cada evento temos duas permutações possíveis: 2!.
- Desta forma, se as bolas n\u00e3o forem repostas, teremos 12 tuplas de dois elementos no total.

Um exemplo: abordagem exaustiva

Considerando para uma única tentativa T o espaço amostral $S = \{R_1, R_2, B_1, B_2\}$ - duas bolas vermelhas (R_i) e duas pretas (P_i) . ¹

T_1	T_2	T_1	T_2
R_1	B_1	R_1	R_2
R_1	B_2	R_2	B_1
R_2	B_1	B_1	B_2
R_2	B_2	B_2	B_1

/1	12
<i>B</i> ₁	R_1
B_1	R_2
B_2	R_1
B_2	R_2

¹O caso em amarelo representa as possibildaides quando as bolas são repostas.

Generalizando

Considerando que o sucesso é alcançado quando a primeira bola é vermelha e a segunda é preta.

Com reposição (independente):

Sem reposição:

$$P[E] = \frac{N_E}{N_S}$$

$$= \frac{k(N-k)}{N^2}$$

$$= \frac{k(N-k)}{N} = \frac{(N-k)}{N} \frac{(k)}{N} \frac{(N)}{(N-1)}$$

$$= \frac{k}{N} (1 - \frac{k}{N})$$

$$= p(1-p) \frac{(N)}{(N-1)}$$

Lançamento de um moeda

34

Binomial: k sucessos em M tentativas independentes.

$$P[E] = P[X = k] = {N \choose k} p^k (1-p)^k$$

Distribuição binomial

Função massa de probabilidade

