EIGENVALUES AND EIGENVECTORS CONTINUED, DIAGONALIZATION

- 1) For each the following matrices:
 - Find the eigenvalues and a basis for the eigenspace of each eigenvalue.
 - What are the geometric and algebraic multiplicities?
 - Is the matrix diagonizable? If so, find invertible matrix P, and diagonal matrix D so that $A = P^{-1}DP$.

a.
$$\begin{pmatrix} 7 & -1 & -4 \\ 14 & 1 & -12 \\ 8 & -1 & -5 \end{pmatrix}$$
 $over \ \mathbb{R}$ b. same matrix as in c, but $over \ \mathbb{C}$

2) For the following linear transformation find the eigenvalues and a basis for the eigenspace of each eigenvalue. Determine whether the transformation is diagonizable.

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

$$T(x, y, z) - (2x + y, y - z, 2y + 4z)$$

- 3) Let A be a 3×3 matrix that fulfills det(A I) = 0, rank(A + I) = 2 and let there exist a nonzero vector x so that Ax = 3x.
 - a) What is the characteristic polynomial of A?
 - *hint: If (A I) is not invertible then for some nonzero vector (A I)v = 0. If you write this in another way, what do you get? What does it mean about the invertibility of (A+I) if the rank is 2?
 - b) What is the trace of A?
 - c) What is the determinant of A?
 - c) Is (A + 3I) an invertible matrix?

ORTHOGONALITY

1) Which of the following vector spaces is an inner product space?

a.
$$V = R^2$$
, $v_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $v_2 = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $\langle v_1, v_2 \rangle = x_1 x_2 + 7 y_1 y_2$

b.
$$V = R^2$$
, $v_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $v_2 = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $\langle v_1, v_2 \rangle = x_1 y_1 + 7x_2 y_2$

$$c. \quad A,B \in V = M_2(R), \qquad (A,B) = tr(AB)$$

Good luck!