Compiled Biological Knowledge

James Woodward Weis

$\mathrm{May}~8,~2014$

Contents

1	Hal	lmarks of cancer	1
	1.1	Six original hallmarks of cancer	1
	1.2	Additional "enabling" and "emerging" hallmarks	2
2	Inti	racellular circuitry of relevance in cancer	2
	2.1	Wnt signaling pathway	3
	2.2		3
	2.3	DNA Damage sensing pathway	4
	2.4	Death factor pathway	5
	2.5	Cytokine Pathway	5
	2.6	Survival Factor Pathway	6
	2.7	Hormone Pathway	6
	2.8	1 0	7
	2.9	ECM Pathway	8
3	Ref	erences	9
1	Н	allmarks of cancer	
1.	1 5	Six original hallmarks of cancer	
	1. St	ustain Proliferative Signaling	
	2. E	vading Growth Suppressors	
	3. R	esisting Cell Death	
	4. E	nabling Replicative Immorality	

- 5. Inducing Angiogenesis
- 6. Activating Invasion and Metastasis

1.2 Additional "enabling" and "emerging" hallmarks

- 1. Enabling: Genome instability and mutation
- 2. Enabling: Tumor-promoting inflammation
- 3. Emerging: Reprogramming energy metabolism
- 4. Emerging: Evading immune destruction

2 Intracellular circuitry of relevance in cancer

Figure 1: Diagram of biological knowledge dataset.o

Circuit 'outputs' or results:

- Gene Expression
- Cell Proliferation (Cell cycle)

• Cell Death (Apoptosis)

Circuit non-molecular inputs:

- DNA Damage Sensor
- Abnormality Sensor
- Other cells

Note that in the following subsections, an <u>underline</u> indicates an alias for a family of molecules, while **bold** indicates a non-molecular input or output.

2.1 Wnt signaling pathway

Relations:

- WNT + Frizzled -> WNT:Frizzled
- WNT:Frizzled -> Dishevelled
- Dishevelled -> GSK-3Beta
- GSK-3Beta -> APC
- \bullet APC -> Beta-Cetenin
- ullet Other-cell + E-Cadherin -> Beta-Catenin
- \bullet Beta-Catenin + TCF -> Beta-Catenin:TCF
- Beta-Catenin:TCF -> Changes-in-Gene-Expression

2.2 TGF-Beta Pathway

- \bullet TGF-Beta + TGF-Beta-R -> TGF-Beta:TGF-Beta-R
- SMADs -> p15
- Cyclin-D + CDK4 -> Cyclin-D:CDK4
- p16 Cyclin-D:CDK4

- p15 Cyclin-D:CDK4
- Cyclin-D:CDK4 | Rb
- HPV-E7 | Rb
- Rb E2Fs
- E2Fs Changes-in-gene-expression
- SMADs \rightarrow p27
- Cyclin-E + CDK2 -> Cyclin-E:CDK2
- p27 Cyclin-E:CDK2
- Cyclin-E:CDK2 -> Cell-Proliferation
- Changes-in-gene-expression -> Cyclin-E:CDK2
- SMADs \rightarrow p21
- Cyclin-E + CDK2 -> Cyclin-E:CDK2
- p21 Cyclin-E:CDK2

2.3 DNA Damage sensing pathway

- p53 -> p21
- p53 -> Bax
- p53 -> Changes-in-gene-expression
- Changes-in-gene-expression -> ARF
- ARF | MDM2
- MDM2 p53
- Bax -> Mitochondria
- Mitochondria + (not Bcl2) -> **Apoptosis**

2.4 Death factor pathway

Relations:

- FasL + Fas + (not FAP) + (not Decoy-Fas) -> FADD
- FADD -> Caspase8
- Caspase8 -> Bid
- Caspase8 -> **Apoptosis**
- Bid -> Mitochondria
- Abnormality-sensor -> Bim
- Bim -> Mitochondria
- Mitochondria + (not Bcl2) + (not BclXL) -> CytochromeC
- CytochromeC -> Caspase9
- Caspase9 -> **Apoptosis**

2.5 Cytokine Pathway

- \bullet Cytokines + Cytokine-R -> Jaks
- \bullet Jaks -> Stat3
- Jaks -> Stat5
- Stat3 -> BclXL
- Stat5 -> BclXL
- Stat3 -> Changes-in-gene-expression
- Stat5 -> Changes-in-gene-expression

2.6 Survival Factor Pathway

Relations:

- \bullet Survival-factors + RTK -> P13K
- \bullet Survival-factors + RTK -> Ras
- \bullet P13K -> Akt
- PTEN Akt
- Akk-alpha | IkB
- IkB -> NF-KB
- P13K -> PKC
- PKC -> NF-KB
- ullet NF-KB -> Changes-in-gene-expression

2.7 Hormone Pathway

- \bullet Estrogen -> ER
- ullet ER -> Changes-in-gene-expression
- Bombesin + 7-TMR -> G-Protein
- G-Protein -> Ad-Cyclin
- Ad-Cyclin -> PKA
- PKA -> CREB
- CREB -> Changes-in-gene-expression

2.8 Growth factor pathway

- TGF-alpha + RTK -> Grb2
- \bullet TGF-alpha + RTK -> Src
- \bullet TGF-alpha + RTK -> SOS
- $Grb2 \rightarrow Ras$
- $SOS \rightarrow Ras$
- NF1 -| Ras
- Abl Ras
- Fyn \rightarrow Ras
- Shc \rightarrow Ras
- $Src \rightarrow Ras$
- Ras \rightarrow Raf
- Ras -> CdC42
- \bullet PLC -> PKC
- \bullet PKC -> Raf
- $CdC42 \rightarrow Rac$
- Rac \rightarrow Rho
- ullet Rho -> Changes-in-gene-expression
- Raf \rightarrow MEK
- Mos -> MEK
- \bullet MEK -> MEKK
- MEK -> MAPK
- MAPK \rightarrow EIK

- EIK \rightarrow Fos
- ullet Fos -> Changes-in-gene-expression
- MAPK -> Myc:Max
- MEKK -> Myc:Max
- Myc + Max -> Myx:Max
- $\bullet \ \operatorname{Mad} + \operatorname{Max} -> \operatorname{Mad:Max}$
- Myc:Max | Mad:Max
- Mad:Max Myc:Max
- \bullet MKKs -> MAPK
- $\underline{MKKs} \rightarrow \underline{JNKs}$
- JNKs -> Jun
- Jun -> Changes-in-gene-expression
- \bullet MAPK -> Jun

2.9 ECM Pathway

- \bullet ECM + Integrins -> FAK
- ECM + Integrins -> CdC42
- \bullet ECM + Integrins -> Fyn
- CdC42 -> P13K
- P13K -> Rac
- $\bullet \ \operatorname{Rac} -> \operatorname{JKKs}$
- FAK -> P13K
- \bullet FAK -> Cas
- \bullet Cas -> Crk
- \bullet Crk -> JKKs

3 References

- Hanahan, D., and Weinberg, R.A. (2000). The Hallmarks of Cancer. Cell 100, 57-70.
- Hanahan, D., and Weinberg, R.A. (2011). The Hallmarks of Cancer: The Next Generation. Cell 144, 646-674.
- Heldin, C., Miayazono, K., and Dijke, P. (1997). TGF-Beta signalling from cell membreane to nucleus through SMAD proteins.
- Huelsken, J., and Juergen, B. (2000). The Wnt signalling pathway. J. Cell Sci. 113, 3545.
- Muller, H., et al. (2001). E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev., 15(3): 257-285.