

TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)

416 Rec'd PCT/PTO 29 FEB 2000

INTERNATIONAL APPLICATION NO.
PCT/EP99/03723INTERNATIONAL FILING DATE
May 28, 1999PRIORITY DATE CLAIMED
May 28, 1998

TITLE OF INVENTION

Method and Device For Producing Plastic Hollow Bodies, and Plastic Hollow Bodies Produced Therewith

APPLICANT(S) FOR DO/EO/US

Dietmar PRZYTULLA and William LIMA

Applicant herewith submits to the United States Designated/ Elected Office (DO/EO/US) the following items under 35 U.S.C. 371:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the international Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureaus.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern document(s) or information included:

11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13. A **FIRST** preliminary amendment.
14. A **SECOND** or **SUBSEQUENT** preliminary amendment.
15. A substitute specification.
16. Other items or information:
 - a) International Search Report, dated September 30, 1999, in English and German (2 pages each) (with IDS, item 11)
 - b) First page of published application, WO 99/61219
 - c) Formal Drawings (9 sheets, Figs. 1-18)

17. The U.S. National Fee (35 U.S.C. 371(c)(1)) and other fees as follows:

CLAIMS				
(1)FOR	(2)NUMBER FILED	(3)NUMBER EXTRA	(4)RATE	(5)CALCULATIONS
TOTAL CLAIMS	19 - 20	0	X \$ 18.00	\$ 0.00
INDEPENDENT CLAIMS	3 - 3	0	X \$ 78.00	0.00
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+ \$ 260.00	\$ 260.00
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):				
CHECK ONE BOX ONLY				
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) \$ 670				
<input type="checkbox"/> No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)) \$ 760				
<input type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$ 970				
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2) to (4) \$ 96				
<input checked="" type="checkbox"/> Filing with EPO or JPO search report \$ 840				
Surcharge of \$130.00 for furnishing the National fee or oath or declaration later than 20 30 mos. from the earliest claimed priority date (37 CFR 1.492(e)).				
TOTAL OF ABOVE CALCULATIONS				
Reduction by 1/2 for filing by small entity, if applicable. Affidavit must be filed also. (Note 37 CFR 1.9, 1.27, 1.28).				
SUBTOTAL				
Processing fee of \$130.00 for furnishing the English Translation later than 20 30 mos. from the earliest claimed priority date (37 CFR 1.492(f)).				
TOTAL FEES ENCLOSED				

- a. A check in the amount of \$__ to cover the above fees is enclosed.
- b. Please charge Deposit Account No. 16-1150 in the amount of \$ 1,100.00 to cover the above fees. A copy of this sheet is enclosed.
- c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 16-1150. A copy of this sheet is enclosed.

18. Other instructions

n/a

19. All correspondence for this application should be mailed to

PENNIE & EDMONDS LLP
1667 K STREET, N.W.
WASHINGTON, D.C. 20006

20. All telephone inquiries should be made to (202) 496-4720

Harry C. Jones, III
NAME

Harry C. Jones, III
SIGNATURE

20,280
REGISTRATION NUMBER

Feb. 29, 2000
DATE

09/486540
430 Rec'd PCT/PTO 29 FEB 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

U.S. National Phase of
International Application
No. PCT/EP99/03723

Int. Filing Date:
May 28, 1999

Serial No.: to be assigned

Filed: Herewith

Inventors: Dietmar PRZYTULLA et al.

Attorney Docket No.:
2511-089

Group Art Unit: to be assigned

Examiner: to be assigned

For: METHOD AND DEVICE FOR
PRODUCING PLASTIC HOLLOW
BODIES AND PLASTIC HOLLOW
BODIES PRODUCED THEREWITH

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

Please amend the above-identified application as follows, with reference to the English translation, with line numbering added.

IN THE SPECIFICATION:

Page 1, line 4, delete "Prior Art" and insert --BACKGROUND OF THE INVENTION--.

Page 2, line 18, delete "The Objective" and insert --SUMMARY OF THE INVENTION--.

line 25, delete "The Solution".

Page 4, line 12, delete “The Benefits of Ribbing”;
before line 29, insert --BRIEF DESCRIPTION OF THE
DRAWINGS--.

Page 5, line 18, insert --DETAILED DESCRIPTION OF THE INVENTION--.

IN THE CLAIMS

Please amend the claims as follows.

1.[]] (Once Amended) Method for producing blow-molded plastic hollow bodies, whereby a moldable, hot tubular parison blank of a thermoplastic material is extruded from the adjustable circular nozzle of an extruder system and is introduced between the open blow-mold halves of a blow-mold in which, upon closing of the blow-mold, the parison blank is expanded into a finished hollow body with the aid of a gaseous pressure medium [(compressed air)], while during the extrusion of the parison blank [-] the wall thickness of the extruded parison is increased over its length by means of a first control element on the adjustable circular nozzle of the extruder system, [-] and a partly differing wall thickness of the extruded parison over its circumference is obtained in at least two different longitudinal zones [(]near the ultimate pinch-off edges perpendicular to the parison[)] by means of a second control element on the adjustable circular nozzle of the extruder system,

[characterized in that] wherein:

[-] custom profile contouring in the form of a third thick/thin wall-thickness setting of the extruded parison is obtained at preselectable points along its length and/or its circumference by means of a third control element on the adjustable circular nozzle of the extruder system.

2.[]] (Once Amended) Method as in claim 1, wherein:

[characterized in that]

[-] the wall thickness of the extruded parison is progressively increased over its length by the slow and progressive widening of the cross section of the nozzle with the aid of the first said control element[,] ;

[-] the wall thickness of the extruded parison in at least two different longitudinal regions [()near the ultimate pinch-off edges perpendicular to the parison()] is partially increased over its circumference, with the aid of the second control element, by a corresponding enlargement of the cross section of the nozzle, whereby additional plastic material is fed in [(no displacement),]; and

[-] the thick/thin contouring of the parison wall thickness, producing longitudinal ribs, is obtained with the aid of the third control element by the engagement of an adjustable nozzle gate valve DS II, having a serrated tooth/interstitial-gap profile, for a partial, lateral displacement of the plastic material in the nozzle gap.

3.D] (Once Amended) Method as in claim 1, wherein

[characterized in that]

[-] the wall thickness of the extruded parison is progressively increased over its length by the slow, progressive widening, with the aid of the first control element, of the cross section of the nozzle[.];

[-] the wall thickness of the extruded parison in at least two different longitudinal regions [()near the ultimate pinch-off edges perpendicular to the parison()] is partially increased over its circumference, with the aid of the second control element, by a corresponding enlargement of the cross section of the nozzle, whereby additional plastic material is fed in [(no displacement),]; and

[-] the parison wall thickness is partially increased by means of an additional thickening capability whereby, with the aid of the third control element opening an adjustable nozzle gate valve DS II with a custom-contoured profile, the cross section of the nozzle is partially enlarged so as to feed in additional plastic material [(no displacement)], forming at least one additional thick spot in at least one preselectable location along the length and/or circumference of the parison.

4.D] (Once Amended) Device for producing blow-molded plastic hollow bodies, incorporating an extrusion die for extruding a tubular parison blank and an adjustable annular parison exit nozzle with circular nozzle/mandrel-gap control elements (D 0, DS I) which permit a specifically targeted setting of the nozzle gap for modifying the wall thickness of the exiting parison blank, comprising:

[characterized in that]

at least three separate, differently contoured, exchangeable nozzle/nozzle-gap control elements (D 0 = mandrel, DF, DS I, DS II) [are provided] which, from within and/or from outside the nozzle gap, can be individually and/or simultaneously caused to engage in the extruded parison, with at least two of the control elements (D 0 = mandrel, DS I, DS II) being adjustable for which purpose they are equipped with separate adjustment drives.

5.10] (Once Amended) Device as in claim 4, wherein

[characterized in that]

the third, additional control element (DS II) serving to produce a custom-contoured profile, [(such as a serration or a thick spot)], is situated underneath the control element (DS I) and engages in the exiting parison [als] along the last element modulating the wall thickness.

6.0] (Once Amended) Extrusion die as in claim 4 or 5, wherein

[characterized in that]

the bottom-most inner edge of the third control element (DS II) which can be engaged in the exiting parison, is positioned at approximately the same level or slightly above the bottom-most outer edge of the central mandrel (D 0).

7.D] (Once Amended) Hollow body, consisting of a thermoplastic material comprising:

[characterized in that]

at least in the axial wall regions, as measured [(in the direction of the parison)], multiple, mutually spaced ribs [are formed] only on the inside of the wall while the outside of the wall retains [its] a uniformly smooth surface

8.[]] (Once Amended) Hollow body as in claim 7, wherein:

[characterized in that]

mutually neighboring wall zones are of an alternatingly different wall thickness, with [the] transitions from the thinner to the thicker wall zones and vice versa [are] formed on the inside of the wall in undulating fashion in a uniformly increasing and decreasing wave pattern.

9.[]] (Once Amended) Hollow body as in claim 7 or 8, wherein:

[characterized in that]

[it] the body is produced by the blow-molding method, whereby a tubular parison blank extruded from an extrusion nozzle is expanded in a blow mold, with an appropriate nozzle-control setting progressively and uniformly increasing the wall thickness of the parison blank in its axial direction, while by means of a corresponding nozzle control the parison sections exposed to the highest stress factors are provided with a greater wall thickness for the container regions of the top and bottom panels extending at a 90° angle to the mold-parting plane, and that, by means of an appropriate nozzle control, internal and/or external longitudinal ribs are produced on the tubular parison blank in such fashion that the finished blow-molded container, obtained in a blow-mold with a smooth surface for the lateral or vertical wall sections, is provided with parallel, mutually neighboring, strip-like wall zones of a varying wall thickness at least on the vertical container walls extending in the axial direction.

10.[]] (Once Amended) Hollow body as in claim 7 or 8, wherein

[characterized in that]

[it] the body is produced by the blow-molding method, whereby a tubular parison blank extruded from an annular extrusion nozzle is expanded in a blow-mold, with an appropriate nozzle-control setting progressively and uniformly increasing the wall thickness of the parison blank in its axial direction, while by means of a corresponding nozzle control the parison sections exposed to the highest stress factors are provided with a greater wall thickness for the container regions of the top and bottom panels extending at a 90° angle to the mold-parting plane so as to obtain in the finished blow-molded hollow body a virtually identical wall thickness, and that by means of an appropriate third nozzle control element the parison blank is provided at least in part with an additional augmentation of the wall thickness so as to obtain in the axial or vertical wall of the finished blow-molded hollow body, through the introduction of an additional amount of plastic material, a thick region for instance for a lateral bung fitting on a plastic fuel container (KKB) or, in the case of an upright-format canister (Fassett), for a lateral handle or carrying-handle attachment.

11.[]] (Once Amended) Hollow body as in claim 7, [8, 9 or 10,] wherein:
[characterized in that]

the thicker, strip-shaped wall regions are equally thick and the thinner, strip-shaped wall regions are equally thin.

12.[]] (Once Amended) Hollow body as in [one of the preceding claims 7 to 11,] claim 7,
wherein:

[characterized in that]

the thinner wall region between two ribs is at least about twice or several times as wide as a rib.

13.[]] (Once Amended) Hollow body as in [one of the preceding claims 7 to 12,] claim 7,
wherein:

[characterized in that]

the ratio between the height (= wall thickness) of the raised areas A (= rib, wave crest) and the thinner wall regions B (wave trough) is $A(H) : B(H) = 1.1 : 1$ to $1.5 : 1$.

14.[]] (Once Amended) Hollow body as in [one of the preceding claims 7 to 13,] claim 7,
wherein:

[characterized in that]

the number of ribs for a container diameter of approximately 23" (590 mm) is between 20 and 60 and is preferably about 32.

15.[]] (Once Amended) Hollow body as in [one of the preceding claims 7 to 14,] claim 7,
wherein:

[characterized in that]

for rectangular containers, [(such as canisters)], each corner is provided with at least one or several ribs, with such ribs preferably extending upwards and/or downwards beyond the vertical wall toward and into the horizontal top and/or, respectively, bottom panels of the container.

16.[]] (Once Amended) Hollow body as in [one of the preceding claims 7 to 14,] claim 7,
wherein:

[characterized in that]

for rectangular containers, [(such as canisters)], at least one or several ribs are formed into each straight wall section with the exception of the corners, with such ribs preferably extending upwards and/or downwards beyond the vertical wall toward and into the horizontal top and/or, respectively, bottom panels of the container.

IN THE ABSTRACT

Add the attached Abstract, as page 17, to the application.

REMARKS

The specification and claims have been amended to conform to U.S. practice. An action on the merits is respectfully requested.

Respectfully submitted,

Date February 29, 2000

 20,280
Harry C. Jones, III (Reg. No.)
PENNIE & EDMONDS LLP
1667 K Street, N.W.
Washington, DC 20006
(202) 496-4400

ABSTRACT

This invention relates to a method and a device for producing blow-molded plastic hollow bodies (60). The device is of an enhanced design which avoids the shortcomings of traditional blow-molding technology. The extrusion die according to this invention is adjustable for different settings to produce different, partly overlapping wall thicknesses of the parison blank in order to compensate for the insufficiencies inherent in blow-molding and to obtain a finished blow-molded product with as consistent and uniform a wall thickness as possible, with an overlay, for instance in vertical wall sections, of evenly spaced longitudinal ribs (68). A technical concept is introduced whereby, as a novel process, the two conventional measures used to achieve a uniform wall thickness in the finished blow-molded hollow body are complemented by an additional, third step which makes it possible to produce containers whose hollow bodies (60) are provided with targeted, intentional and reproducible irregular wall-thickness patterns.

DRAFT - DO NOT CITE

Method and Device for Producing Plastic Hollow Bodies, and Plastic Hollow Bodies Produced Therewith

This invention relates to a method and a device for producing plastic hollow bodies, and to a plastic hollow body produced therewith.

Prior Art:

In the production of plastic hollow bodies such as cylindrical bung-equipped barrels or lid-top drums with an essentially circular lid or top surface, it is usually desirable to obtain a finished container with a consistent, uniform wall thickness, given that a thin or starved area will always constitute a weak spot of the container. This is a particular problem in blow-molding where the hot parison blank exiting from the extruder nozzle is automatically elongated or stretched as a function of its progressively greater length and weight, leading to a thinning of the wall thickness of the blank during the extrusion, while in the blow-forming process it is exposed to strongly varied stretch forces especially in the areas near the flash and shear edges perpendicular to the blank and at a 90° angle to the plane of separation of the blow mold. These inevitable phenomena are typically compensated for by correspondingly controlling the rate at which the parison blank exits the extruder nozzle. This, however, requires special ancillary equipment for the extruder, with dual adjustments for the annular extrusion nozzle as well as special techniques and control programs for sectional wall-thickness adjustment of the extruded parison in adaptation to the specific, varying container shape to be produced. A number of nozzle-control systems for sectional or partial wall-thickness control (PWDS) have been on the market.

The British patent 1.107.628 already describes a method and a device by means of which rib-shaped protrusions or, viewed in the circumferential direction, varying wall thicknesses can be molded into the extruded parison blank. The inside of the finished blow-molded hollow body is thus provided with reinforcing ribs extending in an axial direction. However, that earlier extrusion system does not permit other adjustments such as a progressive increase in the wall thickness of the parison as a function of its length.

Plastic containers intended for industrial use for the storage and transportation especially of hazardous substances require a special permit for which they must pass appropriate quality tests (such as cold drop tests, internal pressure tests, stacking load tests etc.). In the stacking load test the plastic containers are exposed to a progressively increasing pressure up to the point where the hollow-body buckles. The compressive load on the hollow body creates compression stress in the vertical side walls. That compression stress leads initially to a certain circumferential expansion and then, if there is excessive stress in the areas which cannot expand outwards, to an inward buckling.

5 The stacking load will cause the wall areas close to the bottom to bulge (so-called elephant foot), changing the transitional radius between the vertical wall and the horizontal bottom. In practice, these manifestations of inadequate stacking strength in the form of buckling and bulging are often encountered when plastic barrels are stacked and especially when these are filled with hot liquids and immediately stacked in layers of three or four or when stacked for an extended time period.

10 The US patent 4.257.527 already describes a large-volume plastic barrel (having a capacity of 55 US gallons or about 208 liters) where the vertical wall area of the cylindrical body is reinforced by several longitudinal ribs (see fig. 4 thereof). These longitudinal ribs are produced in the blow-molding of a parison blank, having a constant, uniform wall thickness, merely by providing the blow mold with axial grooves. The thickness of the container wall in the circumferential direction remains unchanged. Where the longitudinal ribs, molded relatively deep into the container wall, transition into the upper and/or lower perimeter, this configuration causes deep pockets or nests from which highly viscous materials can be removed only with great difficulty, making the barrel unsuitable for multiple reuse. Moreover, these transition points at the perimeter constitute structurally weak spots in the event the barrel is exposed to a mechanical load.

15 **The Objective:**

20 It is the objective of this invention to provide an improved method and a corresponding device for producing plastic hollow bodies, and especially plastic containers which, while retaining their smooth external wall surface and an unchanged operational container weight, i.e. without increasing the net material weight compared to that of a corresponding conventional container, offer greater stacking-load strength especially when filled with hot liquids.

25 **The Solution:**

30 The method applied according to this invention for producing blow-molded plastic hollow bodies in a blow molding tool incorporating an extruder, an extrusion die with a circular runner and an appropriate blow mold proper, whereby during the extrusion of the parison from the extrusion die the nozzle and mandrel gap are adjusted for a specifically targeted wall thickness of the extruded blank, is particularly characterized in that, through the sequential or simultaneous action of three differently profiled, separately adjustable nozzle/mandrel-gap control elements, it is possible to obtain thickness/thinness settings which vary in controlled, selectable fashion over the circumference and length of the parison blank. This multiple adjustability of the extrusion is of great significance for large-volume industrial containers (for instance 220-liter barrels), it is unique at this juncture and unmatched in terms of the quality of the containers.

35
40
45
50
55
60
65
70
75
80
85
90
95

The containers thus produced, having vertical walls, an essentially horizontal top panel or clampable lid, including at least one filler and drain opening, and a corresponding bottom panel, are provided exclusively on the inside of their vertical walls with multiple, mutually spaced ribs, leaving the exterior wall surface uniformly smooth and unchanged. Plastic barrels configured in this fashion offer visibly improved stacking strength while not in any way complicating their handling (e.g. gripping by barrel loaders, or lateral rolling of the barrel).

The implementation of this invention provides for alternating variations of the thickness of neighboring wall sections, with the transitions from thinner to thicker wall sections and vice versa being in the form of uniformly decreasing and increasing waveforms on the inside of the wall. In a preferred embodiment the wall thickness of all the thicker, strip-like wall regions is the same and the thinner, strip-like wall regions are of an identically reduced thickness.

The plastic container according to this invention is produced by blow molding, a process in which a parison blank extruded through a circular nozzle is expanded in a blow mold, whereupon, by means of correspondingly controlled nozzle settings, the blank is adjusted for a consistently increasing wall thickness in the axial direction while, again by appropriate nozzle control, the blank sections exposed to the highest stretch factors at the points of the top and bottom panels of the container which are located at a 90° angle relative to the separation plane are adjusted for a greater wall thickness and, again by appropriate nozzle control, the parison is provided on the inside and/or outside with longitudinally protruding ribs in such fashion that the finished product completed in a blow mold, having a smooth surface for the lateral i.e. vertical wall sections, is provided at least axially on the container wall with parallel, neighboring, strip-like wall regions alternating between a larger and a lesser thickness (a ribbed drum).

The new triple or multiple nozzle/mandrel-gap control elements according to this invention permit in advantageous fashion numerous new applications for large-volume, blow-molded plastic components of all types (e.g. motor-vehicle accessories and the like). When the third nozzle/gap control element DS II is suitably configured, the invention will lend itself particularly well to the production of industrial blow-molded components, including for instance top-quality plastic fuel tanks (KKBs) for the automotive industry.

The plastic container with reinforced vertical wall sections per this invention may be produced as an essentially sealed hollow body (for instance a bung-equipped barrel with two lateral bung holes, or a drum with screw-on lid = "L-ring HOT" with a larger screw-on cover), or an open-top hollow body with a cover lid and clamping ring (e.g. a standard lid-top barrel or a Vanguard FRH drum).

With the design per this invention, incorporating internal reinforcement ribs without otherwise changing the wall thickness obtained using two conventional control elements, it has been possible with great success for instance in the USA to fill hot liquids into lid-top barrels (Vanguard FRH drums, filling temperature of content about 180°F) having a barrel weight of about 22 lbs, to store the barrels

5

10

15
20
25
30
35

for three days in a heat chamber at temperatures between 140 and 160°F and then stack them four-high, without observing any of the traditional signs of deformation.

The axial ribbing in the vertical wall regions increases the rigidity of the hollow body, i.e. the denting resistance of the barrel shell while the ribs along the axial radii in the transition from the wall to the top or bottom panel prevent a curling of the bottom corners. When hollow bodies with axial, longitudinal ribs per this invention are subjected to an axial load, the circumferential stress is evenly distributed. When filled with hot liquids, and after these have cooled off, Vanguard drums with ribbed wall reinforcement display substantially better resistance to negative pressure conditions. The exterior wall of the barrel, its smoothness unchanged, permits easy marking or labeling. It also allows for easy cleaning of the barrels and thus for multiple reuse.

The Benefits of Ribbing:

The ribs are formed by partially increasing the wall thickness. The thicker the ribs, the disproportionately greater the resistance of the hollow-body shell to kinking, bulging and buckling or to a curling of the bottom edges; indeed, the section modulus is augmented by a power of three as the height or thickness of the ribs increases.

The barrels and drums according to this invention do not have a greater operational net weight than conventional barrels; there is only a redistribution of the container wall material, in each case from a "thin strip" to an adjoining "thick strip" (= rib).

In the past, buckling, bulging or, respectively, the curling of the bottom edges of hollow bodies has been avoided by increasing the overall wall thickness of the container and thus its material net weight. In various embodiments in which the reinforcement ribbing is provided only on the inside of the hollow-body wall, the ribs may be configured as follows:

- in an axial direction over only a specific partial region or
- over the entire length or height of the cylindrical wall;
- along the radii, i.e. transitions from the vertical wall to the horizontal top or bottom panel;
- in the disc-shaped top and/or bottom panels.

This invention is explained in more detail in the following description of implementation examples with the aid of schematic drawings in which

- Figure 1 is a sectional cutoff view of an extrusion die according to this invention;
- Figure 2 is a schematic wall-thickness control program for a specifically targeted wall thickness setting for the extruded parison blank;
- Figure 3 shows a longitudinal section and three cross sections of a blank;
- Figure 4 shows a finished, blow-molded hollow body and its cross section;
- Figure 5 shows a partial cross section of a parison;

Figure 6 shows a partial cross section of a rib-reinforced canister wall;
Figure 7 shows a partial cross section of a rib-reinforced barrel wall;
Figure 8 shows a longitudinal section of a rib-reinforced canister;
Figure 9 is a top view and a partial cross-sectional view of the canister per fig. 8;
Figure 10 shows a longitudinal section of another rib-reinforced canister;
Figure 11 is a top view and a partial cross-sectional view of the canister per fig. 10;
Figure 12 is a lateral view and partial cross-sectional view of a standard lid-top barrel with a rib-reinforced barrel wall;
Figure 13 shows two cross sections of the wall of the barrel per fig. 12;
Figure 14 is a lateral view and partial cross-sectional view of a Vanguard FRH lid-top barrel with a rib-reinforced wall;
Figure 15 shows two cross sections of the wall of the barrel per fig. 14;
Figure 16 is a lateral view and partial cross-sectional view of a sealed L-ring barrel with a rib-reinforced wall;
Figure 17 shows two cross sections of the wall of the barrel per fig. 16; and
Figure 18 is a perspective illustration of a plastic subcontainer for a pallet container, with rib-reinforced walls.

Figure 1 shows part of an extrusion die 10 with three adjustable nozzle/mandrel-gap control elements D0, DS I in conjunction with DF and DF II in the "nozzle gap open" mode, extruding a parison blank 22. Centered in the extrusion die 10 is an axially adjustable mandrel support 12 to the bottom of which a truncated-cone-shaped mandrel 14 is attached, in easily removable i.e. interchangeable fashion, as the first nozzle/mandrel-gap control element D_{null} (D_{zero} = D 0). An enclosure 16 surrounds the extrusion die. The enclosure 16 houses a hollow-cylindrical reservoir 18 in which the molten plastic material fed from one or several extruders into the extrusion die is evenly distributed and stored. The reservoir 18 connects to a circular nozzle gap 20 the inside of which is delimited by the mandrel 14, i.e. by the first nozzle/mandrel-gap control element D 0 while on the outside it is delimited by an enclosure-mounted nozzle/ring DF and two adjustable nozzle/mandrel-gap control elements, the nozzle gate valve 1 = DS I and the nozzle gate valve 2 = DS II. Like the adjustable mandrel 14, the two axially adjustable control elements DS I and DS II are attached to the extrusion-die enclosure in easily detachable and thus interchangeable fashion. The axial setting and precise positioning of the adjustable nozzle/mandrel-gap control elements may be operated for instance by a hydraulic mechanism or by electric motors such as small servo motors. The enclosure-mounted nozzle ring DF as well is attached to the extrusion-die enclosure in easily removable and interchangeable fashion, primarily to permit, at the time of a product changeover with attendant exchange of the blow-mold

5

10

15
20
25

30

35

halves, an equally quick exchange of the appropriately contoured, product-specific circular runners and nozzle-gap control elements.

In the extrusion die 10 illustrated in fig. 1, the nozzle/mandrel-gap control elements are in the "nozzle gap open" mode, meaning that the mandrel D 0 is lowered a certain distance, the nozzle gate valve = control element DS I is in its bottom-most position and the gate valve DS II is not all the way up. Corresponding arrows indicate the respective available path lengths for the adjustment of the control elements. In the extrusion die 10, the surfaces of the gap-delimiting fixed nozzle/circular runner DF and the control element DS II are contoured while the gap-delimiting surfaces of the mandrel D 0 and the control element DS I are completely smooth.

In the operating mode shown, the nozzle gap 20 is delimited on the outside by the lower, inner, smooth edge of the nozzle gate valve DS I and on the inside by the axially adjustable mandrel 14. The extruded parison 22 has a uniformly thin circumference. The contouring profiles of the fixed nozzle/circular runner DF and of the control element DS II are not engaged in their active position. To engage the contouring profile of the nozzle/circular runner DF, one simply moves the gate valve DS I with its smooth lower edge in an upward direction. To fully engage the serrated profile of the gate valve DS II, the gate valve DS II can be lowered a certain distance. The circular serration, in this case with evenly spaced teeth 24 and interstitial spacings 26, is outlined in the marginal illustration. When the serration engages circumferentially in the exiting parison, the teeth 24 displace the extruded plastic material sideways into the adjoining interstitial spaces 26.

To engage the fixed, enclosure-mounted circular runner DF, the control element DS I and the control element DS II are jointly moved upward a certain distance (see arrow), preventing these two control elements from engaging in the extruded parison blank 22. The die gap 20 is now delimited by the mandrel 14 and the fixed, contoured circular runner DF. At this point the parison 22 exiting from the nozzle gap will no longer be of a uniform circumferential thickness but will be somewhat thinner in two mutually opposite regions (mold parting plane of the blow mold) than in the corresponding, 90°-shifted regions of the parison. This type of double-oval setting of the nozzle gap, or oval wall-thickness setting in mutually opposite regions of the parison, is typical for blow-molded blanks with flat top and bottom panels. In the process, the two mutually opposite regions of the parison having thicker walls are positioned between the open blow-mold halves in such fashion that they are formed into the horizontal container wall sections, situated at a 90° angle relative to the mold-parting plane, which are exposed to the largest stretch factors or expansion vectors of the plastic material. In other words, the purpose is to obtain a uniform wall thickness in the finished container, so that the corners of the container wall which are subjected to high stretch and strain levels are no thinner than the other wall sections.

The device (=extrusion die) according to this invention permits the selection of different, partly overlapping settings for varying wall thicknesses of the parison blank, thus compensating for the

5

10

15
20
25

30

35

process-related shortcomings inherent in blow-molding and achieving in the finished product (container or hollow body) as consistent and uniform a wall thickness as possible with an overlay of evenly spaced longitudinal ribs (reinforcing ridges).

5 This invention introduces a novel process whereby the two conventional measures used to achieve a uniform wall thickness in the finished blow-molded hollow body are complemented by an additional, third step which makes it possible to produce containers whose hollow bodies are provided with targeted, intentional and reproducible irregular wall-thickness patterns. Different variations of embodiment of the extrusion die according to this invention are described in more detail in the parallel
10 PCT Application PCT/EP99/01398 filed by the same claimant.

15 Figure 2 is a schematic illustration of a wall-thickness control program for a specifically targeted wall thickness setting over the length of the extruded parison. Shown on the left are the individual programs a), b) and c) for the control elements D 0, DS I and DS II; in the center a parison wall of the
20 extruded blank; and on the far right the blow-molded product in the form of a tilted L-ring barrel 28 with the flash sections 30 not yet removed.

25 In program a), the gate valve D 0 i.e. axially adjustable mandrel 14, serves to slowly and progressively open up the cross section of the nozzle so as to obtain a continuously progressive increase of the wall thickness over the length of the parison blank 22. In program b), the second control element, i.e. the gate valve DS I in conjunction with the contoured, enclosure-mounted circular nozzle ring DF, serves to set a partly larger circumferential wall thickness in the two longitudinal sections of the extruded blank (near the ultimate flash pinch-off perpendicular to the blank) by a corresponding enlargement of the cross section of the nozzle as additional plastic material is fed in (no displacement). In program c), the third control element i.e. adjustable gate valve DS II with the serrated-contour profile serves to select an alternating thick/thin wall-thickness pattern, creating longitudinal ribs by the partial, lateral displacement of the plastic material in the nozzle gap. The result, as illustrated in the center, is a strongly varied wall-thickness pattern over the length of the parison, the pattern being adapted to the respective type of product (in this case an L-ring drum with ribbing in the vertical wall section).

30 In contrast to conventional control elements by means of which the partly thicker parison sections intended for the highest stress points are produced by pushing aside plastic material in the nozzle gap for those parison sections which are moved into the mold-parting plane, whereby the displaced material is pushed into the thick-wall sections at a 90° angle to the mold-parting plane, the design of the extrusion device according to this invention, allowing the gate valve DS I to be moved upward, frees up the double-oval profile of the fixed nozzle ring DF, so that at that point more plastic material can flow where it is really needed. A lateral displacement over great path lengths has its
35

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

disadvantages in that the memory effect of the plastic material will negatively affect the straight flow of the parison, causing the cross section of the blank at its starting point to be out of round. When the initial point of the parison is not cleanly fed over the blowing mandrel and the parison-expanding mandrel, it will lead to frequent jamming of the system.

5

To more clearly illustrate a custom profile, the top part of Figure 3 shows a longitudinal section, the bottom part three cross sections, of a simplified parison blank 22 for a nonstandard blow-molded hollow body in the form of a plastic fuel container (KKB) 34. The parison blank 22 is thicker on top along the line A-A than it is at the bottom along line C-C. For simplicity's sake, the partially thicker, beaded areas obtained in sub-program b) by means of the gate valve DS I are not shown. In the cross-sectional plane B-B, one single, additional bead 32 serves to accommodate a lateral opening and fitting in the finished container. The plastic fuel container 34, with lateral fitting 38, and with the flash sections 36 not yet removed, is illustrated in Figure 4, as a lateral view on the top and a cross-sectional view on the bottom.

10

The extrusion die according to this invention, with three separate adjustment control systems, is particularly suitable for producing these custom configurations with local material accumulations (as along line B-B in fig. 3) such as the one required for the KKB 34 in the area of the fitting (line D-D in fig. 4).

15
20
25

Figure 5 is a partly cross-sectional view of a parison blank 22 with evenly spaced external ribs 40. When this parison is expanded into a finished hollow body, the ribbed parison 22 will lie against the smooth inner wall of the blow-mold and the external ribs 40 will be defined in the inner wall of the finished hollow body. Figure 6 shows a corresponding section of a straight container wall 42 (for instance that of a canister or of the inner container of an IBC pallet container) with internal ribs 44. Figure 7 shows a corresponding partial section of a cylindrical container wall for a Vanguard lid-top barrel 46 with internal ribs 48.

30

Figure 8 is a partial cross-sectional view of an implementation example in the form of a canister 50 with internal ribs 44 along the level i.e. straight walls. The top view of this canister, in Figure 9, shows in the partial, sectional illustration that the axial ribs 44 transition over a short horizontal distance into the bottom of the canister, whereas there are no ribs in the corners of the canister. The axial ribs 44 serve to reinforce the straight wall sections against excessive bulging when there is a buildup of internal pressure in the canister.

35

In contrast thereto, the corners of the canister 52 depicted in Figure 10 are provided with suitable internal ribs 54. These corner ribs 54 can be seen in Figure 11 which is a partly sectional top view of

the corners; they enhance the stacking load capacity and reduce any curling ('elephant feet') of the corners of this type of canister.

5 Figure 12 shows a lid-top barrel 56 of the globally familiar standard type developed by Mauser in 1975. The vertical wall of the barrel body is provided with multiple, mutually spaced, strip-like ribs 58 which extend all the way into the convex areas of the barrel body. In Figure 13 the cross-sectional view in the left half of the diagram shows the barrel wall with the internal ribs 58 and in the right half of the diagram the barrel wall without ribs just above the barrel bottom.

10 Figure 14 is a side view of the preferred embodiment of a Vanguard FRH lid-top barrel 60 with the barrel body 62, the lid 64 and the clamping ring 66. On the inside wall only, the barrel body 62 is provided with multiple, parallel, strip-like ribs 68, while the outer surface of the wall is evenly smooth without any modification. Figure 15 is again a cross-sectional view showing in the left half of the diagram the barrel wall with internal ribs 68 and in the right half of the diagram the wall area without ribs just above the bottom of the barrel. The transversal line indicated in the barrel bottom represents the pinch-off weld 70 of the parison blank in the mold-parting plane of the blow-mold.

15 Figure 16 shows another implementation example in the form of a closed bung-type barrel 72 with two lateral bung fittings in the top panel and internal ribs 74 along the vertical walls. In L-ring barrels of this type, the internal ribs 74 shown in Figure 17 enhance the stacking-load strength of the barrel body especially when filled with hot liquids.

20 As the last implementation example, Figure 18 illustrates a plastic inner container 76 as used in pallet containers. The internal ribs 78 outlined on the flat walls reinforce these walls and prevent the walls of empty containers from caving in.

25 In a comparison for instance between a conventional plastic barrel having a net weight of 10 kg and a plastic barrel according to this invention, likewise with a net weight of 10 kg, the cross-sectional mass of the extruded parison will be identical for both. The only difference in the case of the plastic barrel according to this invention is that the plastic material is displaced from a thin section to the right and left and redistributed into the two neighboring thick sections or ribs. A key benefit of this invention lies in the fact that for a plastic barrel according to this invention the blow-mold employed in each case need not be modified in any way, retaining its smooth inner surface.

30 The diameter of a 55-gallon Vanguard lid-top barrel is approximately 23" (590 mm). The width of the thick strips or ribs is about 1" (25 mm), their wall thickness about 0.2" (5.0 mm); the thin strips, i.e.

35
40
45
50
55
60
65
70
75
80
85
90
95
100

those of a regular wall thickness, are about 2" (50 mm) wide and about 1/8" (3.2 mm) thick. The spacing or thin strip between two neighboring ribs should be at least twice or several times the width of a rib.

For a barrel diameter of 23" (590 mm) the preferred number of ribs is around 32. Containers with a smaller diameter should have fewer, containers with a larger diameter should have a larger number of internal reinforcing ribs. Optimal parameter selection can result in an improvement of the stacking load strength of the containers according to this invention, especially when filled with hot liquids, compared to conventional containers, by as much as 5% to 20%.

10 This invention is equally applicable to containers with a circular cross section and to containers with a rectangular cross section (such as large canisters and square containers).

95 In sealed bung-type barrels (such as L-ring barrels) where the upper perimeter of the barrel wall is provided with a solid handling ring (i.e. L-ring), the strip-like ribs along the vertical wall preferably extend only to just below the handling ring rather than into the L-ring or the top panel. The distance between the end of the ribs (i.e. tapering off of the thick region) and the handling ring should be between about 3/4" (20 mm) and 2-1/3" (60 mm).

20 For a large-capacity container, for instance a 58-gallon L-ring barrel, the wall thickness in the thin wall regions between the ribs should be about 0.078" (2 mm) to 0.14" (3.5 mm); the wall thickness of the ribs should be between about 1/8" (3 mm) and 1/4" (6 mm). At no point should the wall thickness be less than 0.078" (2 mm).

25 Viewed in the circumferential direction, the width of a rib should be about 0.2" (5 mm) to 0.8" (20 mm); the width of the thinner wall regions between the ribs should be about 0.8" (20 mm) to 3.2" (80 mm).

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
252100
252101
252102
252103
252104
252105
252106
252107
252108
252109
252110
252111
252112
252113
252114
252115
252116
252117
252118
252119
252120
252121
252122
252123
252124
252125
252126
252127
252128
252129
252130
252131
252132
252133
252134
252135
252136
252137
252138
252139
252140
252141
252142
252143
252144
252145
252146
252147
252148
252149
252150
252151
252152
252153
252154
252155
252156
252157
252158
252159
252160
252161
252162
252163
252164
252165
252166
252167
252168
252169
252170
252171
252172
252173
252174
252175
252176
252177
252178
252179
252180
252181
252182
252183
252184
252185
252186
252187
252188
252189
252190
252191
252192
252193
252194
252195
252196
252197
252198
252199
252200
252201
252202
252203
252204
252205
252206
252207
252208
252209
252210
252211
252212
252213
252214
252215
252216
252217
252218
252219
252220
252221
252222
252223
252224
252225
252226
252227
252228
252229
252230
252231
252232
252233
252234
252235
252236
252237
252238
252239
252240
252241
252242
252243
252244
252245
252246
252247
252248
252249
252250
252251
252252
252253
252254
252255
252256
252257
252258
252259
252260
252261
252262
252263
252264
252265
252266
252267
252268
252269
252270
252271
252272
252273
252274
252275
252276
252277
252278
252279
252280
252281
252282
252283
252284
252285
252286
252287
252288
252289
252

List of Reference Numbers

10	Extrusion die	50	Canister, straight	
12	Mandrel support D 0	52	Canister corner	
5	14	Mandrel, centered	54	Corner ribs (52)
	16	Enclosure	56	Lid-top barrel, standard
	18	Reservoir	58	Internal ribs (56)
10	20	Nozzle gap	60	Vanguard lid-top barrel
	22	Parison blank	62	Barrel body
	24	Serration tooth	64	Barrel lid
45	26	Interstitial space	66	Clamping ring
20	28	L-ring barrel	68	FRH ribs
	30	Flash sections	70	Pinch-off weld
	32	Thick region	72	Bung-type barrel
	34	Plastic fuel container KKB	74	Internal ribs (72)
	36	Flash sections	76	IBC inner container
	38	Fittings	78	Internal ribs (76)
	40	External ribs (22)		
	42	Straight wall		
	44	Internal ribs (42)		<u>Nozzle/mandrel-gap control elements:</u>
	46	Lid-top barrel body	D 0	Central mandrel
25	48	Internal ribs (46)	D F	Enclosure-mounted contoured circular runner
			DS I	Gate valve I with smooth edge
			DS II	Gate valve II with contoured profile

Patent Claims

5 1.) Method for producing blow-molded plastic hollow bodies, whereby a moldable, hot tubular parison blank of a thermoplastic material is extruded from the adjustable circular nozzle of an extruder system and is introduced between the open blow-mold halves of a blow-mold in which, upon closing of the blow-mold, the parison blank is expanded into a finished hollow body with the aid of a gaseous pressure medium (compressed air), while during the extrusion of the parison blank

10 - the wall thickness of the extruded parison is increased over its length by means of a first control element on the adjustable circular nozzle of the extruder system,

- a partly differing wall thickness of the extruded parison over its circumference is obtained in at least two different longitudinal zones (near the ultimate pinch-off edges perpendicular to the parison) by means of a second control element on the adjustable circular nozzle of the extruder system,

characterized in that

- custom profile contouring in the form of a third thick/thin wall-thickness setting of the extruded parison is obtained at preselectable points along its length and/or its circumference by means of a third control element on the adjustable circular nozzle of the extruder system.

2.) Method as in claim 1,

characterized in that

- the wall thickness of the extruded parison is progressively increased over its length by the slow and progressive widening of the cross section of the nozzle with the aid of the first said control element,

- the wall thickness of the extruded parison in at least two different longitudinal regions (near the ultimate pinch-off edges perpendicular to the parison) is partially increased over its circumference, with the aid of the second control element, by a corresponding enlargement of the cross section of the nozzle, whereby additional plastic material is fed in (no displacement), and

- the thick/thin contouring of the parison wall thickness, producing longitudinal ribs, is obtained with the aid of the third control element by the engagement of an adjustable nozzle gate valve DS II, having a serrated tooth/interstitial-gap profile, for a partial, lateral displacement of the plastic material in the nozzle gap.

35 3.) Method as in claim 1,

characterized in that

95
96
97
98
99
20
21
22
23
24
25

- the wall thickness of the extruded parison is progressively increased over its length by the slow, progressive widening, with the aid of the first control element, of the cross section of the nozzle.
- the wall thickness of the extruded parison in at least two different longitudinal regions (near the ultimate pinch-off edges perpendicular to the parison) is partially increased over its circumference, with the aid of the second control element, by a corresponding enlargement of the cross section of the nozzle, whereby additional plastic material is fed in (no displacement).
- the parison wall thickness is partially increased by means of an additional thickening capability whereby, with the aid of the third control element opening an adjustable nozzle gate valve DS II with a custom-contoured profile, the cross section of the nozzle is partially enlarged so as to feed in additional plastic material (no displacement), forming at least one additional thick spot in at least one preselectable location along the length and/or circumference of the parison.

4.) Device for producing blow-molded plastic hollow bodies, incorporating an extrusion die for extruding a tubular parison blank and an adjustable annular parison exit nozzle with circular nozzle/mandrel-gap control elements (D 0, DS I) which permit a specifically targeted setting of the nozzle gap for modifying the wall thickness of the exiting parison blank,

characterized in that

at least three separate, differently contoured, exchangeable nozzle/nozzle-gap control elements (D 0 = mandrel, DF, DS I, DS II) are provided which, from within and/or from outside the nozzle gap, can be individually and/or simultaneously caused to engage in the extruded parison, with at least two of the control elements (D 0 = mandrel, DS I, DS II) being adjustable for which purpose they are equipped with separate adjustment drives.

5.) Device as in claim 4,

characterized in that

the third, additional control element (DS II) serving to produce a custom-contoured profile (such as a serration or a thick spot) is situated underneath the control element (DS I) and engages in the exiting parison as the last element modulating the wall thickness.

30 6.) Extrusion die as in claim 4 or 5,

characterized in that

the bottom-most inner edge of the third control element (DS II) which can be engaged in the exiting parison, is positioned at approximately the same level or slightly above the bottom-most outer edge of the central mandrel (D 0).

35 7.) Hollow body, consisting of a thermoplastic material,

5

10

15

20

25

30

35

characterized in that

at least in the axial wall regions (in the direction of the parison), multiple, mutually spaced ribs are formed only on the inside of the wall while the outside of the wall retains its uniformly smooth surface.

5 8.) Hollow body as in claim 7,

characterized in that

mutually neighboring wall zones are of an alternatingly different wall thickness, with the transitions from the thinner to the thicker wall zones and vice versa are formed on the inside of the wall in undulating fashion in a uniformly increasing and decreasing wave pattern.

10 9.) Hollow body as in claim 7 or 8,

characterized in that

it is produced by the blow-molding method, whereby a tubular parison blank extruded from an extrusion nozzle is expanded in a blow mold, with an appropriate nozzle-control setting progressively and uniformly increasing the wall thickness of the parison blank in its axial direction, while by means of a corresponding nozzle control the parison sections exposed to the highest stress factors are provided with a greater wall thickness for the container regions of the top and bottom panels extending at a 90° angle to the mold-parting plane, and that, by means of an appropriate nozzle control, internal and/or external longitudinal ribs are produced on the tubular parison blank in such fashion that the finished blow-molded container, obtained in a blow-mold with a smooth surface for the lateral or vertical wall sections, is provided with parallel, mutually neighboring, strip-like wall zones of a varying wall thickness at least on the vertical container walls extending in the axial direction.

15 10.) Hollow body as in claim 7 or 8,

characterized in that

it is produced by the blow-molding method, whereby a tubular parison blank extruded from an annular extrusion nozzle is expanded in a blow-mold, with an appropriate nozzle-control setting progressively and uniformly increasing the wall thickness of the parison blank in its axial direction, while by means of a corresponding nozzle control the parison sections exposed to the highest stress factors are provided with a greater wall thickness for the container regions of the top and bottom panels extending at a 90° angle to the mold-parting plane so as to obtain in the finished blow-molded hollow body a virtually identical wall thickness, and that by means of an appropriate third nozzle control element the parison blank is provided at least in part with an additional augmentation of the wall thickness so as to obtain in the axial or vertical wall of the finished blow-molded hollow body, through the introduction of an additional amount of plastic material, a thick region for instance for a lateral

15
20
25
30
35

bung fitting on a plastic fuel container (KKB) or, in the case of an upright-format canister (Fassett), for a lateral handle or carrying-handle attachment.

11.) Hollow body as in claim 7, 8, 9 or 10,

5 characterized in that

the thicker, strip-shaped wall regions are equally thick and the thinner, strip-shaped wall regions are equally thin.

12.) Hollow body as in one of the preceding claims 7 to 11,

10 characterized in that

the thinner wall region between two ribs is at least about twice or several times as wide as a rib.

13.) Hollow body as in one of the preceding claims 7 to 12,

15 characterized in that

the ratio between the height (= wall thickness) of the raised areas A (= rib, wave crest) and the thinner wall regions B (wave trough) is $A(H) : B(H) = 1.1 : 1$ to $1.5 : 1$.

14.) Hollow body as in one of the preceding claims 7 to 13,

20 characterized in that

the number of ribs for a container diameter of approximately 23" (590 mm) is between 20 and 60 and is preferably about 32.

15.) Hollow body as in one of the preceding claims 7 to 14,

25 characterized in that

for rectangular containers (such as canisters) each corner is provided with at least one or several ribs, with such ribs preferably extending upwards and/or downwards beyond the vertical wall toward and into the horizontal top and/or, respectively, bottom panels of the container.

16.) Hollow body as in one of the preceding claims 7 to 14,

30 characterized in that

for rectangular containers (such as canisters) at least one or several ribs are formed into each straight wall section with the exception of the corners, with such ribs preferably extending upwards and/or downwards beyond the vertical wall toward and into the horizontal top and/or, respectively, bottom panels of the container.

Fig. 2

Fig. 3

Fig. 4

09/486540

Fig. 5

Fig. 6

Fig. 7

09/486540

Fig. 8

Fig. 9

09/486540

Fig. 10

Fig. 11

Fig. 12

Fig. 13

09/486540

Fig. 14

Fig. 15

09/486540

PRINTED IN U.S.A. - GOVERNMENT PROPERTY

Fig. 16

Fig. 17

09/486540

Fig. 18

0943540 - 022900

**DECLARATION
AND POWER OF ATTORNEY**

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below at 201 et seq. underneath my name.

I believe I am the original, first and sole inventor if only one name is listed at 201 below, or an original, first and joint inventor if plural names are listed at 201 et seq. below, of the subject matter which is claimed and for which a patent is sought on the invention entitled

METHOD AND DEVICE FOR PRODUCING PLASTIC HOLLOW BODIES, AND PLASTIC HOLLOW BODIES PRODUCED THEREWITH

and for which a patent application:

is attached hereto and includes amendment(s) filed on *(if applicable)*
 was filed in the United States on as Application No. *(for declaration not accompanying application)*
 with amendment(s) filed on *(if applicable)*
 was filed as PCT international Application No. PCT/EP99/03723 on 28 May 1999 and was amended under PCT Article 19 on *(if applicable)*

I hereby state that I have reviewed and understand the contents of the above identified application, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

EARLIEST FOREIGN APPLICATION(S), IF ANY, FILED PRIOR TO THE FILING DATE OF THE APPLICATION			
APPLICATION NUMBER	COUNTRY	DATE OF FILING (day, month, year)	PRIORITY CLAIMED
DE 298 09 489.4	Germany	28 May 1998	YES <input checked="" type="checkbox"/> NO <input type="checkbox"/>
			YES <input type="checkbox"/> NO <input type="checkbox"/>

I hereby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional application(s) listed below

APPLICATION NUMBER	FILING DATE
60/111,893	10 December 1998

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

APPLICATION SERIAL NO.	FILING DATE	STATUS		
		PATENTED	PENDING	ABANDONED

POWER OF ATTORNEY: As a named inventor, I hereby appoint S. Leslie Misrock (Reg. No. 18872), Harry C. Jones, III (Reg. No. 20280), Berj A. Terzian (Reg. No. 20060), David Weild, III (Reg. No. 21094), Jonathan A. Marshall (Reg. No. 24614), Barry D. Rein (Reg. No. 22411), Stanton T. Lawrence, III (Reg. No. 25736), Charles E. McKenney (Reg. No. 22795), Philip T. Shannon (Reg. No. 24278), Francis E. Morris (Reg. No. 24615), Charles E. Miller (Reg. No. 24576), Gidon D. Stern (Reg. No. 27469), John J. Lauter, Jr. (Reg. No. 27814), Brian M. Poissant (Reg. No. 28462), Brian D. Coggio (Reg. No. 27624), Rory J. Radding (Reg. No. 28749), Stephen J. Harbulak (Reg. No. 29166), Donald J. Goodell (Reg. No. 19766), James N. Palik (Reg. No. 25510), Thomas E. Friebel (Reg. No. 29258), Laura A. Coruzzi (Reg. No. 30742), Jennifer Gordon (Reg. No. 30753), Allan A. Fanucci (Reg. No. 30256), Geraldine F. Baldwin (Reg. No. 31232), Victor N. Balancia (Reg. No. 31231), Samuel B. Abrams (Reg. No. 30605), Steven L. Wallach (Reg. No. 35402), Marcia H. Sundeen (Reg. No. 30893), Paul J. Zegger (Reg. No. 33821), Edmond R. Bannon (Reg. No. 32110), Bruce J. Barker (Reg. No. 33291), Adriane M. Antler (Reg. No. 32605), Thomas G. Rowan (Reg. No. 34419), James G. Markey (Reg. No. 31636), Thomas D. Kohler (Reg. No. 32797), Scott D. Stimpson (Reg. No. 33607), Gary S. Williams (Reg. No. 31066), William S. Galliani (Reg. No. 33885), Ann L. Gisolfi (Reg. No. 31956), Todd A. Wagner (Reg. No. 35399), Scott B. Familarant (Reg. No. 35514), Kelly D. Talcott (Reg. No. 39582), Francis D. Cerrito (Reg. No. 38100), Anthony M. Insogna (Reg. No. 35203), Brian M. Rothenberg (Reg. No. 35340), Brian D. Siff (Reg. No. 35679), and Alan Tenenbaum (Reg. No. 34939), all of Pennie & Edmonds LLP, whose addresses are 1155 Avenue of the Americas, New York, New York 10036, 1667 K Street N.W., Washington, DC 20006 and 3300 Hillview Avenue, Palo Alto, CA 94304, and each of them, my attorneys, to prosecute this application, and to transact all business in the Patent and Trademark Office connected therewith.

SEND CORRESPONDENCE TO:		PENNIE & EDMONDS LLP 1667 K Street, N.W. Washington, D.C. 20006		DIRECT TELEPHONE CALLS TO: PENNIE & EDMONDS LLP DOCKETING (202) 496-4721	
2 0 1	FULL NAME OF INVENTOR	LAST NAME <u>PRZYTULLA</u>	FIRST NAME <u>DIETMAR</u>	MIDDLE NAME	
	RESIDENCE & CITIZENSHIP	CITY <u>Kerpen</u>	STATE OR FOREIGN COUNTRY Germany <u>DEX</u>	COUNTRY OF CITIZENSHIP Germany	
	POST OFFICE ADDRESS	STREET <u>Gustav-Heinemann-Strasse 64</u>	CITY <u>Kerpen</u>	STATE OR COUNTRY Germany	ZIP CODE D-50170
2 0 2	FULL NAME OF INVENTOR	LAST NAME <u>LIMA</u>	FIRST NAME <u>WILLIAM</u>	MIDDLE NAME	
	RESIDENCE & CITIZENSHIP	CITY <u>Monmouth Beach</u>	STATE OR FOREIGN COUNTRY New Jersey <u>NJ</u>	COUNTRY OF CITIZENSHIP United States	
	POST OFFICE ADDRESS	STREET <u>19 Lori Road</u>	CITY <u>Monmouth Beach</u>	STATE OR COUNTRY New Jersey	ZIP CODE 07750
2 0 3	FULL NAME OF INVENTOR	LAST NAME	FIRST NAME	MIDDLE NAME	
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP	
	POST OFFICE ADDRESS	STREET	CITY	STATE OR COUNTRY	ZIP CODE
2 0 4	FULL NAME OF INVENTOR	LAST NAME	FIRST NAME	MIDDLE NAME	
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP	
	POST OFFICE ADDRESS	STREET	CITY	STATE OR COUNTRY	ZIP CODE
2 0 5	FULL NAME OF INVENTOR	LAST NAME	FIRST NAME	MIDDLE NAME	
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP	
	POST OFFICE ADDRESS	STREET	CITY	STATE OR COUNTRY	ZIP CODE
2 0 6	FULL NAME OF INVENTOR	LAST NAME	FIRST NAME	MIDDLE NAME	
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP	
	POST OFFICE ADDRESS	STREET	CITY	STATE OR COUNTRY	ZIP CODE

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon

SIGNATURE OF INVENTOR 201 	SIGNATURE OF INVENTOR 202 	SIGNATURE OF INVENTOR 203
DATE <u>6. FEBR. 2000</u>	DATE <u>Feb. 25, 2000</u>	DATE
SIGNATURE OF INVENTOR 204	SIGNATURE OF INVENTOR 205	SIGNATURE OF INVENTOR 206
DATE	DATE	DATE