利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 → 触发器激励 触发器特征 → 無发器激励
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

例: 利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

S₀——初始状态,表示收到1位数据:"0"

S₁──表示收到1位数据: "1"

S₂——表示收到2位数据: "11"

S₃——表示收到3位数据: "110",此时输出标志 Z=1.

(2) 分析状态转换情况

(3) 原始状态图(Mealy型)

(4) 原始状态表

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ /0	S ₁ / 0	
S ₁	S ₀ / 0	S ₂ /0	
S ₂	S ₃ /1	S ₂ / 0	
S ₃	S ₀ /0	S ₁ /0	

2. 状态化简

现态	Q ⁿ⁺¹ / Z		
Q ⁿ	X=0	X=1	
S _o	S ₀ / 0	S ₁ / 0	√
S ₁	S ₀ / 0	S ₂ /0	
S ₂	S ₃ /1	S ₂ / 0	
S ₃	S ₀ /0	S ₁ /0	√

	现态	Q ⁿ⁺¹ / Z			
	Qn	X=0	X=1		
	S ₀	S ₀ / 0	S ₁ / 0		
>	S ₁	S ₀ / 0	S ₂ / 0		
	S ₂	S ₀ / 1	S ₂ / 0		

3. 状态分配

使用 2个JK触发器

 y_2y_1 S_0 — 00 S_1 — 10 S_2 — 11

4. 状态转换真值表

输入	现	态	次	态		触炎)器		输出
X	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J ₂	K ₂	J ₁	k ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	X	1	1
0	1	0	0	1	X	1	0	X	0
1	0	1	0	1	1	X	0	X	0
1	1	1	1	0	X	0	X	0	0
1	_1_	1	1	0	Х	0	1	Χ	0
0	0	X	Х	X	X	X	X	X	X
1	0	X	X	Χ	X	X	X	X	X

4. 状态转换真值表

输入	现	态	次	态		触炎		ļ	输出
X	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J ₂	K_2	J_1	\mathbf{k}_{1}	Z
0	0	0	0	0	0	Χ	0	Х	0
0	1	0	0	0	Х	1	X	1	1
0	1	0	0	1	Х	1	0	X	0
1	0	1	0	1	1	X	0	X	0
1	1	1	1	0	Х	0	X	0	0
1	1	1	1	0	Х	0	1	Χ	0
0	0	Χ	Х	Χ	Х	Χ	Χ	Χ	Х
1	0	X	Х	Χ	X	X	X	Χ	Х

6. 电路实现

7. 检查无关项

$$\begin{cases} J_{1} = XY_{2}^{n} \\ K_{1} = \overline{X} \\ J_{2} = X \\ K_{2} = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_{1}^{n+1} = XY_{2}^{n} \overline{Y_{1}}^{n} + XY_{1}^{n} \\ = X(Y_{1}^{n} + Y_{2}^{n}) \\ Y_{2}^{n+1} = X\overline{Y_{2}}^{n} + XY_{2}^{n} \\ = X \end{cases}$$

电路可以自启动

利用触发器设计时序逻辑_构造原始状态图和状态表

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

直接构图法

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,每加入一个输入取值,就可 确定其次态和输出:
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4)这个过程持续下去,直至每一个现态向其次态、的转换都已被考虑,并且不再构成新的状态。

例1: 给出同步模5可逆计数器的状态表

X=0: 加计数

X=1: 减计数

Z: 进位、借位输出标志

现态 Q ⁿ	Q ⁿ⁺¹ / Z X=0 X=1		
а	b/0	e/1	
b	c/0	a / 0	
С	d/0	b/0	
d	e/0	c/0	
е	a/1	d/0	

例2: 给出同步二进制串行加法器的状态表

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,每加入一个输入取值,就可确定其次态和输出;
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4)这个过程持续下去,直至每一个现态向其次态。 的转换都已被考虑,并且不再构成新的状态。

现态	Q ⁿ⁺¹ / Z					
Qn	X ₁ X ₂ =00	$X_1X_2=00$ $X_1X_2=01$ $X_1X_2=10$ $X_1X_2=11$				
а	a/ <mark>0</mark>	a/1	a/1	b/0		
b	a/1	b/0	b/0	b/1		

例2: 给出同步二进制串行加法器的状态表

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,每加入一个输入取值,就可确定其次态和输出;
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4)这个过程持续下去,直至每一个现态向其次态。 的转换都已被考虑,并且不再构成新的状态。

现态	Q ⁿ⁺¹ / Z					
Qn	X ₁ X ₂ =00	$X_1X_2=00$ $X_1X_2=01$ $X_1X_2=10$ $X_1X_2=11$				
а	a/ <mark>0</mark>	a/1	a/1	b/0		
b	a/1	b/0	b/0	b/1		

利用触发器设计时序逻辑_构造原始状态图和状态表

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

例3: 序列检测——给出同步Mealy型101序列检测器的状态表

Z: 000101001

(1) 状态设定

 S₀——初始状态,表示收到1位数据: "0"

 S₁——表示收到1位数据: "1"
 只标记感兴趣的子串

 S₂——表示收到2位数据: "10"

S₃——表示收到3位数据: "101",此时输出标志 Z=1.

$$S_{0} \begin{cases} X=0 \longrightarrow S_{0} \\ X=1 \longrightarrow S_{1} \end{cases} \begin{cases} X=0 \longrightarrow S_{2} \\ X=1 \longrightarrow S_{1} \end{cases} \begin{cases} X=0 \longrightarrow S_{0} \\ X=1 \longrightarrow S_{3} \end{cases} \begin{cases} X=0 \longrightarrow S_{2} & \text{可重叠 } \\ X=1 \longrightarrow S_{3} \end{cases} \begin{cases} X=1 \longrightarrow S_{1} \end{cases} \begin{cases} X=1 \longrightarrow S_{2} \end{cases} \begin{cases} X=1 \longrightarrow S_{2} \end{cases} \begin{cases} X=1 \longrightarrow S_{2} \end{cases} \end{cases}$$

$$S_{0} \begin{cases} X=0 \longrightarrow S_{0} \\ X=1 \longrightarrow S_{1} \end{cases} \begin{cases} X=0 \longrightarrow S_{2} \end{cases} \begin{cases} X=0 \longrightarrow S_{2} \end{cases} \begin{cases} X=1 \longrightarrow S_{1} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{1} \end{cases} \begin{cases} X=1 \longrightarrow S_{2} \end{cases} \begin{cases} X=1 \longrightarrow S_{2} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{1} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{1} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{2} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{1} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{2} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{1} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{2} \end{cases}$$

$$X=1 \longrightarrow S_{1} \end{cases} \end{cases}$$

$$X=1 \longrightarrow S_{2} \end{cases}$$

$$X=1 \longrightarrow S_{2}$$

$$X=1 \longrightarrow S_{2} \end{cases}$$

$$X=1 \longrightarrow S_{2}$$

$$X$$

X/Z
0/0 1/0
S_0 S_1 $1/0$
0,0
0/0 0/0
可重奏
S ₃ 0/0 S ₂ 可重叠 检测
C111305117

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ /0	S ₁ / 0	
S ₁	S ₂ / 0	S ₁ /0	
S ₂	S ₀ /0	S ₃ / 1	
S ₃	S ₀ /0	S ₁ /0	

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ /0	S ₁ / 0	
S ₁	S ₂ / 0	S ₁ /0	
S ₂	S ₀ /0	S ₃ / 1	
S ₃	S ₂ /0	S ₁ /0	

序列检测的原始状态图构造方法总结 ------

- (1)检测器输入端收到1位数据时,有两种可能:0或1,分别用 S_0 和 S_1 标记这两个状态,通常用 S_0 表示初始状态。
- (2) 收到2位数据时,只标记我们感兴趣的子串,用 S_2 表示(例如 10)
- (3) 同理,收到3位数据时,只标记我们感兴趣的子串,用S₃表示(例如 101)……,直到把我们感兴趣的完整子串也已标记为止。
- (4) 从初始状态开始,采用直接构图法,将每一个当前状态在 所有取值下的次态转换及输出情况已都考虑到,并且没有 遗漏为止。

利用触发器设计时序逻辑_构造原始状态图和状态表

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

例4: 码制检测——建立一个余3码误码检测器的原始状态图和原始状态表要求:

- 余3码高位在前、低位在后串行地加到检测器的输入端。
- 电路每接收一组代码(即在收到第4位代码时)判断。若是错误代码, 则输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码。

原始状态图

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ /0	S ₁ / 0	
S ₁	S ₃ / 0	S ₁ /0	
S ₂	S ₉ /0	S ₃ / 0	
S ₃	S ₅ /0	S ₁ /0	
S ₄	S ₇ /0	S ₆ /0	
S ₅	S ₀ / 1	S ₈ /1	
S ₆	S ₀ / 1	S ₀ /0	
S ₇	S ₀ / 0	S ₀ /0	
S ₈	S ₀ / 0	S ₀ /0	
S ₉	S ₁₁ / 0	S ₀ /0	
S ₁₀	S ₁₃ /1	S ₁₂ / 0	
S ₁₁	S ₀ / 0	S ₁₄ / 0	
S ₁₂	S ₀ /0	S ₀ /0	
S ₃	S ₀ /0	S ₀ /0	
S ₁₄	S ₀ / 0	S ₀ / 1	
S ₁₅	S ₀ / 1	S ₀ /1	

N位码制检测电路的原始状态图构造方法总结

- (1) 从初始状态S₀开始(这个初始状态没有特殊含义,仅仅代表一个起点),每来一个输入,次态总是分成左右两种情况。
- (2) 状态图由上至下分为N层:第一层代表起点;第二层代表检测器收到1位数据时,电路的状态情况;第三层代表检测器收到2位数据时,电路的状态情况。而来一位输入数据,则第N层,代表检测器收到 N-1位数据时,电路的状态情况。再来一位输入数据,则构成了N位待检测码制。此时,检测器可以给出判读,该码制正确还是错误。
- (3) 一轮检测结束,回到初始状态,等待下一组输入。

只标记感兴

趣的子串

设计一个引爆装置的原始状态表。装置不引爆时,输入总为0: 装置引爆时,则一定连续输入四个1,其间肯定不再输入0。

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
S ₀	S ₀ /0	S ₁ / 0
S ₁	X/X	S ₂ /0
S ₂	X/X	S ₃ / 0
S_3	X/X	X/1

状态设定

-初始状态,表示收到1位数据: **"0"**

表示收到1位数据:

表示收到2位数据:

表示收到3位数据: **"111"**

此时再收到一个"1",输出标志 Z=1.

不完全定义状态 表:包含任意项

完全定义状态表

状态表

不完全定义状态表

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

状态表的化简

时序电路的两个状态 S_i 和 S_j ,如果它们对每一个输入所产生的输出完全相同,且它们的次态等价,则这两个状态是等价的(可以合并为一个状态)——状态化简

(一)完全定义状态表的化简方法——隐含(蕴含)表法

- 俩俩比较原始状态表中的所有状态,找出能合并、不能合并、能否 合并待定的状态对。
- 追踪能否合并待定的状态对,直至确定它们能合并或不能合并,从 而找到原始状态表中的所有等价状态对。
- 基于这些等价状态对确定最大等价状态类,获得原始状态表的最小 覆盖集,建立最简状态表

等价状态的判定条件

必要条件

状态表中的任意两个状态 S_i 和 S_j 同时满足下列两个条件,它们可以合并为一个状态

- 1. 在所有不同的现输入下,现输出分别相同
- 2. 在所有不同的现输入下,次态分别为下列情况之一
 - (1) 两个次态完全相同
 - (2) 两个次态为其现态本身或交错
 - (3) 两个次态为状态对封闭链中的一个状态对
 - (4) 两个次态的某一后续状态对可以合并

隐含表(蕴含)法

------ 等价状态的判定条件

状态表中的任意两个状态 S_i 和 S_i 同时满足下列两个条件,它们可以合并为一个状态

- 1. 在所有不同的现输入下,现输出分别相同
- 状态合并的 必要条件
- 2. 在所有不同的现输入下, 次态分别为下列情况之一
 - (1) 两个次态完全相同
 - (2) 两个次态为其现态本身或交错
 - (3) 两个次态为状态对封闭链中的一个状态对
 - (4) 两个次态的某一后续状态对可以合并
- ① 建立隐含表
- ② 比较
- ③ 追踪

例1: 化简如下状态表

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	c/0	b/1
b	f / 0	a/1
С	d/0	g / 0
d	d/1	e/0
е	c/0	e/1
f	d / 0	g/ <mark>0</mark>
g	c/1	d/0

④ 获得最大等价状态类

等价状态类的定义——

If: $S_i \equiv S_j$, $S_j \equiv S_m$

Then: $S_i \equiv S_j \equiv S_m$, 即 { S_i , S_j , S_m }

最大等价状态类——

某一等价状态类不属于其他任何 等价状态类

等价状态对:

{a,b}, {a,e} {b,e}, {c,f}

{a,b,e}, {c,f}

Let
$$\begin{cases} q_1 = \{ a, b, e \} \\ q_2 = \{ c, f \} \\ q_3 = d \\ q_4 = q \end{cases}$$

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	c/0	b/1
b	f / 0	a/1
С	d/0	g / 0
d	d/1	e/ 0
е	c/0	e/ 1
f	d/0	g/0
g	c/1	d/0

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
q_1	q ₂ / 0	q ₁ / 1
q_1	q ₂ /0	q ₁ / 1
q_{2}	q ₃ /0	q ₄ / 0
q_3	q ₃ /1	q ₁ / 0
q_1	$q_2/0$	q ₁ / 1
q_2	$q_3/0$	q ₄ /0
la₄	g ₂ /1	g ₂ / 0

化简后的状态表

现态	Q ⁿ⁺¹ / Z	
Qn	X=0 X=1	
q_1	$q_2/0$	q ₁ / 1
q_2	$q_3/0$	q ₄ / 0
q_3	$q_3/1$	$q_1/0$
$q_{\scriptscriptstyle{4}}$	$q_2/1$	$q_3/0$

最小覆盖集: {q₁,q₂,q₃,q₄}

例2: 化简如下状态表

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2 = 00$	X ₁ X ₂ =01	X ₁ X ₂ =10	X ₁ X ₂ =11
а	b/0	c/0	b/1	a/0
b	e/ 0	c/0	b/ 1	d/1
С	a/ 0	b/0	c/1	d / 1
d	c/1	d/0	a/1	b/0
е	c/0	c/0	c/1	e/0

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2 = 00$	X ₁ X ₂ =01	$X_1X_2=10$	X ₁ X ₂ =11
\mathbf{q}_1	$q_2/0$	q ₂ / 0	q ₂ /1	q ₁ / 0
q_2	q ₁ / 0	$q_2/0$	q ₂ / 1	q ₃ /1
q_2	q ₁ /0	$q_2/0$	q ₂ /1	$q_3 / 1$
q_3	q ₂ /1	$q_3 / 0$	q ₁ / 1	$q_2/0$
q₁	$q_2/0$	$q_2/0$	$q_2 / 1$	$q_1/0$

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2 = 00$	$X_1X_2=01$	$X_1X_2=10$	$X_1X_2=11$
q_1	$q_2/0$	$q_2/0$	q ₂ /1	q ₁ / 0
q_2	q ₁ / 0	q ₂ / 0	q ₂ /1	q ₃ / 1
q_3	$q_{2}/1$	$q_3 / 0$	q ₁ / 1	q ₂ / 0

(二)不完全定义状态表的化简方法——隐含(蕴含)表法

完全定义状态表化简: 寻找等价状态; 不完全定义状态表化简: 寻找相容状态;

相容状态——输出与次态的确定部分满足合并条件的两个状态(如a和b) 称为相容状态,或称相容状态对,记为(a,b)。

相容状态无传递性—— 若状态 S_i 和 S_j 相容,状态 S_j 和 S_m 相容,则状态 S_i 和 S_m 不一定相容,即相容状态无传递性。

a和b相容, a 和c相容,但b 和c不相容

	现态	Qn+1/Z	
	Qn	X=0	X=1
	а	a/X	X/X
١_	b	c/1	b/0
	С	d/0	X / 1
	d	X/X	b/X
	е	a/ <mark>0</mark>	c/1

相容状态类——俩俩相容的状态集合

If: (S_i, S_j) , (S_j, S_m) , (S_i, S_m)

Then: (S_i, S_j, S_m)

最大相容状态类—— 某一相容状态类不 属于其他任何相容状态类

例: 化简如下状态表

现态	Qn+1/ Z	
Qn	X=0	X=1
а	a/ X	X/X
b	c/1	b/0
С	d/0	X / 1
d	X/X	b/X
е	a/ <mark>0</mark>	c/1

① 建立隐含表

② 比较

③ 追踪

④ 相容状态对

⑤ 最大相容类

直观法

$$(ab)$$
, (ad) , $(bd) \rightarrow (abd)$

$$(ac)$$
, (ad) , $(cd) \rightarrow (acd)$

$$(ac)$$
, (ae) , $(ce) \rightarrow (ace)$

图形法

(abd)

(acd)

(ace)

•圆周上的点:代表状态

•点与点之间的连线:表示

两个状态之间的相容关系

所有点之间都有连线的多 边形构成一个最大相容类

⑥ 确定原始状态表的最小闭合覆盖集

最小闭合覆盖集应满足的三个条件

- 1. 满足覆盖性:覆盖全部原始状态, 不得遗漏, 即原始状态中的每个 状态至少包含于该集的一个相容类(或最大相容类)
- 2. 满足闭合性:该集的任一个相容类(或最大相容类)在任何输入下所产生的次态应属于该集的某个相容类(或最大相容类)
- 3. 满足最小性:在满足上述两个要求的前提下,该集的相容类(或 最大相容类)应为最少

现态	Qn+1/ Z	
Qn	X=0	X=1
а	a/X	X/X
b	c / 1	b/0
С	d/0	X / 1
d	X/X	b/X
е	a/ 0	c/1

最大相容类

(abd), (acd), (ace)

相容状态对

(ab), (ac), (ad), (ae), (bd), (cd), (ce) ▶找出覆盖集,方案很多,如:

[abd, ace] [abd, ce] [acd, ab, ae]......

▶为满足最小性,选取相容类(或最大相容类)个数最少的集合:

[abd, ace][abd, ce][ace, bd]

➢ 讨论闭合性: 分别考察[abd , ace], [abd , ce], [ace , bd]

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	a/X	X / X
b	c/1	b/0
C	d/0	X / 1
d	X/X	b/X
е	a/0	c/1

▶ 讨论闭合性: 分别考察[abd, ace], [abd, ce], [ace, bd]

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
а	a/X	X/X			
b	c / 1	b/0			
С	d/0	X / 1			
d	X/X	b/X			
е	a/ <mark>0</mark>	c/1			

所以:最小闭合覆盖集为—— [abd, ace]✓

⑦ 建立状态表

	: -	i
设:	$q_1 = (abd)$	
	$q_2 = (ace)$)

现态	Qn+	Qn+1/ Z					
Qn	X=0	X=1					
q₁	q ₂ /1	q ₁ /0					
۵۰	g ₄ / 0	g _a /1					

	 	
现态	Qn+	¹ / Z
Qn	X=0	X=1
\mathbf{q}_1	q_1/X	X/X
\mathbf{q}_1	$q_2/1$	$q_1/0$
q_2	$q_1/0$	X / 1
\mathbf{q}_1	X/X	q_1/X
q_2	$q_1/0$	$q_2/1$

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 } → 触发器激励表
- (6) 电路实现 (7) 检查无关状态

化简110 序列检测器的原始状态表

现态	Q ⁿ⁺¹ / Z					
Qn	X=0	X=1				
S ₀	S ₀ /0	S ₁ / 0	√			
S ₁	S ₀ / 0	S ₂ /0				
S ₂	S ₃ /1	S ₂ / 0				
S ₃	S ₀ / 0	S ₁ /0	√			

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
S _o	S ₀ / 0	S ₁ / 0			
S₁	S ₀ / 0	S ₂ /0			
S ₂	S ₀ / 1	S ₂ / 0			

状态分配:

 现态
 次态
 触发器
 输出

 Y₂n Y₁n Y₂n+1 Y₁n+1 J₂ K₂ J₁ k₁ Z

Y2	ηΥ ₁ η	04	44	40		
^ \	00	01	11	10		
0	0	Х	Х	0		
1	0	Х	X	1		
$J_4 = XY_2^n$						

Y ₂ '	¹Y ₁ n			
x /	00	01	11	10
0	X	Χ	1	X
1	Χ	Х	0	Х

Y ₂ r	Y ₁ n			
	00	01	11	10
0	0	X	1	0
1	0	X	0	0

	J	₁ =	XY	n
Y ₂ r	Y ₁ n	01	11	10
0	0	Х	Х	Х
1	1	Х	Х	X
-				

 $J_2 = X$

v												
Х	0	U	0	0	0	0	0	0	Χ	0	X	0
			0	1	0	0	0	X		X		1
= X	$\mathbf{Y_1}^{\mathbf{n}}$		0	1	0	0	1	X	1	0	X	0
			1	0	1	0	1	1			X	0
			1	1	1	1	0	X		X	0	0
			1	1	1	1	0	X	0	1	Χ	0
			0	0	X	Х	X	X	Χ	X	Χ	Х
			1	0	\mathbf{X}	Χ	X	X	X	X		Х

$$S_0$$
 — 00

$$S_1 - 10$$

$$S_2$$
—— 11

$$J_2 = X$$

$$K_2 = \overline{X}$$

$$Z = \overline{X}Y_1^n$$

分配方案(2)

$$S_0 - 00$$

$$S_2$$
— 10

$\mathbf{J}_1 = \mathbf{X} \overline{\mathbf{Y}}_2^{\mathbf{n}}$

$$K_1 = 1$$

$$J_2 = X$$

$$K_2 = \overline{X} + \overline{Y}_1^n$$

$$Z = \overline{X} Y_2^n \overline{Y}_1^n$$

状态分配

需要解决两个问题:

①确定需要的触发器数量K

$$2^{K-1} \leq N \leq 2^K$$

K —— 触发器数量

N —— 最简状态数量

② 为状态表中的每一个状态分配二进制编码

力图获得一个最小代价的实现方案

电路实现代价与状态分配密切相关

状态分配

经验法

- 1.同一输入下,相同的次态所对应的现态应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

注意:

- 初始状态一般可以放在卡诺图的 0号单元格里
- 优先满足规则1和规则2
- 状态编码尽量按照相邻原则给予
- 对于多输出函数. 规则3可以适当调高优先级

诺图中更多的 (或"0")

▶ 规则1: 次态相同,现态编码应相邻

规则2: 同一现态对应的次态应给予相邻编码

现态 次态

$$a \rightarrow (c,d)$$

 $b \rightarrow (c,a)$
 $c \rightarrow (b,d)$
 $d \rightarrow (a,b)$

cd,ca,bd,ab应相邻

规则 ------

- 1.同一输入下,相同的次态所对应的现态应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

福码 很难找到一 个最佳的状 态分配方案

Q ⁿ⁺¹ / Z	
X=0	X=1
c/0	d/0
c/0	a/ <mark>0</mark>
b/0	d / 0
a/1	b/1
	X=0 c/0 c/0 b/0

规则3:输出相同,现态编码应相邻

现态 输出 a ,b ,c 0

ab,ac,bc应相邻

(a,b), (a,c) 应相邻, 满足规则1,2,3

a — 00, b — 01 c — 10, d — 11

\	0	1
0	а	b
1	С	d

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配) → 获得状态转移表
- (4) 状态转移表 → 触发器激励表 触发器特征 →
- (6) 电路实现 (7) 检查无关状态

例: 利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

(2) 分析状态转换情况

(3) 原始状态图(Mealy型)

(4) 原始状态表

现态	Q ⁿ⁺¹ / Z			
Qn	X=0	X=1		
So	S ₀ /0	S ₁ / 0		
S ₁	S ₀ / 0	S ₂ / 0		
S ₂	S ₃ /1	S ₂ / 0		
S_3	S ₀ /0	S ₁ /0		

2. 状态化简

现态	Q ⁿ⁺¹ / Z			
Qn	X=0	X=1		
S _o	S ₀ / 0	S ₁ / 0	~	
S ₁	S ₀ / 0	S ₂ /0		
S ₂	S ₃ /1	S ₂ / 0		
S_3	S ₀ / 0	S ₁ /0	~	

现态	Q ⁿ⁺¹ / Z			
Qn	X=0	X=1		
S ₀	S ₀ / 0	S ₁ / 0		
S ₁	S ₀ / 0	S ₂ /0		
S ₂	S ₀ / 1	S ₂ / 0		

3. 状态分配

使用2个JK触发器

	y_2y_1
S ₀ —	— 00
S ₁ —	— 10
S ₂ —	— 11 —

JK触发器驱动表

Q _n	\rightarrow	Q _{n+1}	J	K
0	\rightarrow	0	0	X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	X	0

4. 状态转换真值表

输入	现	态	次	态	触发器	输出
X	Y ₂ n	Y ₁ n	Y_2^{n+1}	Y ₁ n+1	$J_2 K_2 J_1 k_1$	Z
0	0	0	0	0	0 X 0 X	0
0	1	0	0	0	X 1 0 X	0
0	1	1	0	0	X 1 X 1	1
1	0	0	1	0	1 X 0 X	0
1	1	0	1	1	X 0 1 X	0
1	1	1	1	1	X O X O	0
0	0	1	X	X	X X X X	X
1	0	1	X	X	X X X X	X

J₂K₂:看Q₂ⁿ→Q₂ⁿ⁺¹

规 则

- 1.同一输入下,相同的次态所对应的<mark>现态</mark>应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

4. 状态转换真值表

输入	现	杰	次	杰	1	触	计器	Į.	输出
X	Y ₂ n	Y ₁ n	Y ₂ n+1	Υ ₁ n+1	J_2	K ₂	~⊪ J₁	k ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	0	X	0
0	1	1	0	0	X	1	X	1	1
1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	Х	0	1	X	0
1	1	1	1	1	Х	0	X	0	0
0	0	1	Χ	Χ	Х	Χ	Χ	Χ	Х
1	0	1	X	X	X	X	X	X	X

5. 卡诺图化简

$$J_2 = X$$

$$K_2 = \overline{X}$$

X ^{Y21}	¹ Y ₁ ⁿ	01	11	10		
0	X	Χ	1	X		
1	Х	Х	0	х		

$$Z = \overline{X}Y_1^n$$

6. 电路实现

7. 检查无关项

$$\begin{cases} J_{1} = XY_{2}^{n} \\ K_{1} = \overline{X} \\ J_{2} = X \\ K_{2} = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_{1}^{n+1} = XY_{2}^{n} \overline{Y_{1}}^{n} + XY_{1}^{n} \\ = X(Y_{1}^{n} + Y_{2}^{n}) \\ Y_{2}^{n+1} = X\overline{Y_{2}}^{n} + XY_{2}^{n} \\ = X \end{cases}$$

电路可以自启动

Some examples

- □模8可逆计数器
- □自动售卖机
- □时序锁
- □二进制串行加法器
- □ 串行输入的8421BCD码检测器
- □ 奇偶校验器
- □ 码制转换器
- □ 序列信号发生器

例1: 利用T触发器设计一个同步模8可逆计数器

确定T₃: 看Q₃ⁿ→Q₃ⁿ⁺¹ 确定T₂: 看Q₂ⁿ→Q₂ⁿ⁺¹ 确定T₄: 看Q₁ⁿ→Q₁ⁿ⁺¹

X=0: 加法; X=1: 减法

Z: 进位及借位

1. 原始状态图及状态表

需要3个T触发器

T触发器驱动表

输入 端T	次态 Q _{n+1}
0	Q _n
1	$\bar{\mathbf{Q}}_{n}$

2. 状态转换真值表

输	λ	顼	!态		次态			输入		输出
X	Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	T_3	T ₂	T ₁	Z
0	0	0	0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0	1	1	0
0	0	1	0	0	1	1	0	0	1	0
0	0	1	1	1	0	0	1	1	1	0
0	1	0	0	1	0	1	0	0	1	0
0	1	0	1	1	1	0	0	1	1	0
0	1	1	0	1	1	1	0	0	1	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0	0	1	0
1	0	1	0	0	0	1	0	1	1	0
1	0	1	1	0	1	0	0	0	1	0
1	1	0	0	0	1	1	1	1	1	0
1	1	0	1	1	0	0	0	0	1	0
1	1	1	0	1	0	1	0	1	1	1
1	1_	1_	1	1	1	0	0	0	1	0

3. 卡诺图化简

4. 电路实现

$$T_3 = \overline{X} Q_2^n Q_1^n + X \overline{Q_2^n} \overline{Q_1^n}$$

$$T_2 = \overline{X} Q_1^n + X \overline{Q_1^n}$$

$$T_1 = 1$$

$$Z = X \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} + \overline{X} \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n}$$

例2: 利用D触发器设计一个自动售卖机

- 只接收硬币: 0.5 Y , 1 Y
- 每次投币只接收一枚硬币
- 机器收到1.5 Y,给出一瓶饮料
- 机器收到2.0 Y,给出一瓶饮料,找回0.5 Y

 $X_1 X_{0.5} = 00: 0 Y$

 $X_1 X_{0.5} = 01: 0.5 Y$

 $X_1 X_{0.5} = 10$: 1Y

Y=1/0: 给/不给 饮料

Z=1/0: 找零/不找零

1. 原始状态图及状态表

① 状态设定

 S_0 —初始状态,无投币

S₁—机器收到0.5Y

S₂—机器收到1.0 字 (2个 0.5 字, or 1个1.0 字)

Solution 1:

Mealy circuit

if (机器又收到1个0.5Y)

then Y=1,且 Z=0, 回到 S₀

Else If (机器又收到1个1Y)

then Y=1, 且Z=1,回到S₀

② 状态转换分析

Solution 1: Mealy circuit

③ Mealy 状态图

④ 状态表

现态		S ⁿ⁺¹ /Z							
Sn	$X_1X_{0.5}=00$	X ₁ X _{0.5} =01	$X_1X_{0.5}=10$	$X_1X_{0.5}=11$					
S ₀	S ₀ / 00	S ₁ /00	S ₂ /00	X/XX					
S ₁	S ₁ / 00	S ₂ /00	S ₀ / 10	X/XX					
S ₂	S ₂ /00	S ₀ / 10	S ₀ / 11	X/XX					

④ 状态表

现态	S ⁿ⁺¹ / Z							
Sn	$X_1X_{0.5}=00$	X ₁ X _{0.5} =01	$X_1X_{0.5}=10$	X ₁ X _{0.5} =11				
S ₀	S ₀ / 00	S ₁ /00	S ₂ /00	X/ XX				
S ₁	S ₁ / 00	S ₂ /00	S ₀ / 10	X/XX				
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX				

2. 状态化简

3. 状态分配

S _o —	— 00
S₁ —	— 01
S ₂ —	 10

 $\begin{array}{c|cccc}
 & 0 & 1 \\
0 & S_0 & S_1 \\
1 & S_2 &
\end{array}$

需要2个D触发器

4. 状态转换真值

	辅	入	现	态	次	态	输	λ	输	出	
	X_1	X _{0.5}	Q_2^n	$\mathbf{Q_1}^{\mathbf{n}}$	Q_2^{n+1}	Q_1^{n+1}	D_2	D_1	Υ	Z	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	1	0	1	0	0	
	0	0	1	0	1	0	1	0	0	0	
	0	0	1	1	Х	Χ	X	Х	Х	Х	
	0	1	0	0	0	1	0	1	0	0	Ī
	0	1	0	1	1	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	
[0	1	1	1	Х	Χ	X	Х	Х	Х	Γ
	1	0	0	0	1	0	1	0	0	0	Ī
	1	0	0	1	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	1	1	
	1	0	1	1	X	Χ	X	X	Χ	X	
	1	1	0	0	Х	Х	Х	Х	Χ	Х	١
	1	1	0	1	Х	Χ	X	X	Х	Х	
	1	1	1	0	Х	X	X	X	Х	Х	
	1	1	1	1	Х	Χ	X	Х	X	X	

确定D₂: 看Q₂ⁿ⁺¹ 确定D₁: 看Q₁ⁿ⁺¹

5. 卡诺图化简

$$\mathbf{D}_2 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{\text{n}} + \mathbf{Q}_1^{\text{n}} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_1^{\text{n}} \overline{\mathbf{Q}}_2^{\text{n}}$$

$$\mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_1^{\ n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{\ n} \overline{\mathbf{Q}}_2^{\ n}$$

$$Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$$

10
0
0
X
1

$$Z = X_1 Q_2^n$$

6. 电路实现

!)电路需要预置

7. 检查无关项

无关状态: Q₂ⁿQ₁ⁿ=11 X₁X_{0.5} 分别为 00 ,01,10时,带入计算 $\bigcap_{n} \mathbf{Q}_{2}^{n+1} = \mathbf{D}_{2} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0.5} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{1} \mathbf{X}_{0.5} + \mathbf{X}_{1} \overline{\mathbf{Q}}_{1}^{n} \overline{\mathbf{Q}}_{2}^{n}$ $\begin{cases} \mathbf{Q}_1^{n+1} = \mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n} \end{cases}$ $Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$ $Z = X_1 Q_2^n$ $X_1X_{0.5} / YZ$ 01/00 00/00 00 10/10 非自 40/00 01/10 01/00 启动 10/11 01110 00/00 00/00

1. 原始状态图及状态表

① 状态设定(标记收到的钱数)

 S_0 —初始状态,机器收到0 Y

S₁—机器收到0.5¥

S。—机器收到1.0 Y

S3-机器收到1.5 Y

S₄—机器收到2.0¥

Solution 2:

Moor circuit

③ Moor 状态表

现态		输出		
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	YZ
S ₀	S ₀	S ₁	S ₂	00
S ₁	S ₁	S ₂	S ₃	00
S ₂	S ₂	S ₃	S ₄	00
S ₃	S ₀	S ₁	S ₂	10
S ₄	S ₀	S ₁	S ₂	11

② Moor 状态图

2. 状态化简

3. 状态分配

$\mathbf{Q}_{2}^{\mathbf{n}}\mathbf{Q}_{1}^{\mathbf{n}}$							
Q_3^n	00	01	11	10			
0	S ₀	S ₃		S ₁			
1	S ₄			S ₂			

需	要3	个	D触	发	器
---	----	---	----	---	---

S ₀ -	— 000 — 010
S ₂ '-	— 110
S ₃ - S ₄ -	001 100

S₄ —— 100

4. 状态转换真值表

辅	入		现	态		次态		输	λ		输出	出
X_1	X _{0.5}	Q_3^n	Q_2^n	$\mathbf{Q_1}^{\mathrm{n}}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	D_3	D_2	D_1	Υ	Z
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	0	1	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0	1	1
1	0	0	0	0	1	1	0	1	1	0	0	0
1	0	0	1	0	0	0	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	1	0	1	1
1	1	X	X	X	X	X	Χ	X	X	X	X	X

5. 卡诺图化简

Q,	n Q 1n	X_1	=0	
$X_{0.5}Q_3$	00	01	11	10
00	0	0	X	0
01	0	X	X	0
11	0	X	X	1
10	0	0	X	0
_		· · ·		
$X_{0.5}Q_3$	nQ ₁ n 00	01	∑₁ =1 11	10 ¹
00	0	0	X	الله
01	0	Х	Х	0
11	Х	Х	Х	Х
10	Х	X	X	Х

$$D_3 = \overline{X}_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_{0.5}Q_2^n + X_1\overline{Q}_2^n$$

$$D_2 = \overline{X}_{0.5}Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5}Q_2^n$$

$$D_1 = X_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_1Q_2^n$$

$$Y = \overline{Q}_2^n Q_3^n + Q_1^n$$

$$Z = \overline{Q}_2^n Q_3^n$$

$$\begin{aligned}
& D_3 = \overline{X}_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_{0.5} Q_2^n + X_1 \overline{Q}_2^n \\
& D_2 = \overline{X}_{0.5} Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5} Q_2^n \\
& D_1 = X_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_1 Q_2^n \\
& Y = \overline{Q}_2^n Q_3^n + Q_1^n \\
& Z = \overline{Q}_2^n Q_3^n
\end{aligned}$$

- 6. 电路实现(略)
- 7. 检查无关项(略)

Moor型电路与Mealy型电路比较

- ➤ Moor型电路中的状态总数相对要多 一些,需要使用较多的触发器资源。
- ➤ Moor型电路的输出只与状态有关, 输出没有毛刺。

利用触发器设计时序逻辑

- ■模8可逆计数器
- ■自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 码制转换器
- 序列信号发生器

例3: 利用JK触发器设计一个时序锁

- □ 输入: X₁X₂,输出: Z
- □该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11,时序锁从状态 R→B→C, 并开锁(Z=1)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00,都将返回状态 R

1. 原始状态图及状态表

① 状态设定

R—初始状态,输入00

B—输入00后,再输入01

C—输入00、01后,再输入11,且Z=1

E—错误状态

塺	尔	丑
	/J >	_

现态	态 次态 <i>S</i> _{n+1}						
S _n	$X_1X_2 = 00$	$X_1 X_2 = 01$	$X_1 X_2 = 11$	$X_1X_2 = 10$	Z		
R	R	В	E	E	0		
В	R	E	С	E	0		
С	R	E	E	E	1		
E	R	E	E	E	0		

现态		次态	S _{n+1}		输出
S _n	$X_1X_2 = 00$	$X_1 X_2 = 01$	$X_1 X_2 = 11$	$X_1 X_2 = 10$	Z
R	R	В	E	E	0
В	R	E	С	E	0
С	R	E	E	E	1
E	R	E	E	E	0

2. 状态化简

3. 状态分配

需要2个JK触发器

R: 00, B: 01

E: 10, C: 11

			• • • •	•			\neg				
输	λ_	玖	态	次态		输入			输出		
X_1	X_2	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{\mathbf{n}}$	Q_2^{n+1}	$\mathbf{Q_1}^{n+1}$	J ₂	K ₂	J₁	K₁	Z	
0	0	0	0	0	0	0	Х	0	Х	0	
0	0	0	1	0	0	0	Х	X	1	0	
0	0	1	0	0	0	Х	1	0	Х	0	
0	0	1	1	0	0	X	1	X	1	1	
0	1	0	0	0	1	0	Х	1	Х	0	
0	1	0	1	1	0	1	Х	X	1	0	
0	1	1	0	1	0	Х	0	0	Х	0	
0	1	1	1	1	0	X	0	X	1	1	
1	0	0	0	1	0	1	Х	0	Х	0	
1	0	0	1	1	0	1	Х	X	1	0	
1	0	1	0	1	0	X	0	0	Х	0	
1	0	1	1	1	0	Х	0	X	1	1	
1	1	0	0	1	0	1	Х	0	Х	0	
1	1	0	1	1	1	1	Х	X	0	0	
1	1	1	0	1	0	Х	0	0	Х	0	
1	1	1	1	1	0	X	0	X	1	1	

5. 卡诺图化简

$$J_2 = X_2 Q_1^n + X_1$$

$$K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1$$

$$K_2 = \overline{X}_2 \overline{X}_1$$

$Q_2^{n}Q_1^{n}$ $X_1Q_2 00 01 11 10$										
X_1Q_2	00	01	11	10						
00	0	0	1	0						
01	0	0	1	0						
11	0	0	1	0						
10	0	0	1	0						

$$Z = Q_2^n Q_1^n$$

$$\mathbf{J}_1 = \overline{\mathbf{X}}_1 \mathbf{X}_2 \overline{\mathbf{Q}}_2^{\mathbf{n}}$$

6. 电路实现

$$\begin{cases}
J_2 = X_2 Q_1^n + X_1 \\
K_2 = \overline{X}_2 \overline{X}_1 \\
J_1 = \overline{X}_1 X_2 \overline{Q}_2^n \\
K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1 \\
Z = Q_2^n Q_1^n
\end{cases}$$

密码锁

- ■一维开锁:密码正确
- ■二维开锁:有限时间+密码正确
- ■三维开锁:

有限时间+有限按键次数+密码正确

例4: 利用JK触发器设计一个同步二进制串行加法器

1. 原始状态图及状态表

① 设加法器内部状态

a—— 无进位

b---- 有进位

② Mealy 状态图

③ Mealy 状态表

现态	Q ⁿ⁺¹ / Z									
Qn	$X_1X_2 = 00$	$X_1X_2 = 01$	$X_1X_2=10$	$X_1X_2=11$						
а	a/ <mark>0</mark>	a/1	a/1	b/0						
b	a/1	b/0	b/0	b/1						

- 2. 状态化简 3. 状态分配 a=0, b=1
- 4. 状态转换真值表

输入 现态			次态	输	入〔	输出
X ₁	X ₂	Qn	Qn+1	J	K	Z
0	0	0	0	0	X	0
0	0	1	0	X	1	1
0	1	0	0	0	X	1
0	1	1	1	X	0	0
1	0	0	0	0	X	1
1	0	1	1	X	0	0
1	1	0	1	1	X	0
1	1	1	1	X	0	1

5. 卡诺图化简

6. 电路实现

方案2: 如何用一位全加器实现?

利用触发器设计时序逻辑

- ■模8可逆计数器
- ■自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 码制转换器
- 序列信号发生器

例5: 用D触发器设计一个串行输入的8421BCD码误码检测器要求:

- 8421BCD码低位在前、高位在后串行地加到检测器的输入端。
- 电路每接收一组代码,即在收到第4位代码时判断。若是错误代码,则 输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码。

1. 原始状态图及状态表

现态	Qn+	⁻¹ / Z	
Qn	X=0	X=1	
Α	B/0	C/0	
В	D/0	E/0	
С	F/0	G / 0	
D	H/0	1/0	
Е	J/0	K/0	
F	L/0	M / 0	
G	N/0	P/0	
-	A/0	A/0	
-	A/0-	A/1	L
J	A/0-	A/4	Ļ
- K	A/ 0	A/1	
	A/0	A/0	
- M-	A/0	A/1	
Ņ	A/ 0	A/1	L
P	A/0	A/1	L

2. 状态化简

	现态	Qn+		
	Qn	X=0	X=1	
>	Α	B/0	C/0	
	В	D/0	E/0	
	C	F/0	G/ <mark>0</mark>	
	D	- H/O-	- I/ 0	
_		1/0	-1/0	
	F	-H/0-	- I / 0 -	-
	G	1/0		
	Н	A/0	A/0	
	I	A/0	A / 1	
				-

现态	Q ⁿ⁺¹ / Z			
Qn	X=0	X=1		
Α	B/0	C/0		
В	D/0	E/0		
С	D/0	E/0		
D	H/0	1/0		
Е	1/0	1/0		
Н	A/0	A/0		
	A/0	A/1		

2. 状态化简

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
Α	B/0	B/0			
В	D/0	E/0			
D	H/0	1/0			
E	1/0	1/0			
Н	A/0	A/0			
	A/0	A/1			

3. 状态分配

[']规则1:次态相同,现态编码应相邻

HI, DE 应相邻

规则2: 同一现态对应的次态应给予相邻编码

DE, HI 应相邻

规则3:输出相同,现态编码应相邻

ABDEH应相邻

A: 000; B: 001 D: 011; I: 010 E: 111; H: 110

4	4.	犬态等	传换	真值	直表		;	确定[确定[确定[) ₂ :	TQ ₃ n+′ Q ₂ n+′ Q ₁ n+′	1
	输入及现态					次态			输	输出	
	X	Q_3^n	$\mathbf{Q_2}^{\mathrm{n}}$	$\mathbf{Q_1}^{\mathrm{n}}$	Q_3^{n+1}	$\mathbf{Q_2}^{n+1}$	Q_1^{n+1}	D_3	D_2	D_1	Z
	0	0	0	0	0	0	1	0	0	1	0
	0	0	0	1	0	1	1	0	1	1	0
	0	0	1	0	0	0	0	0	0	0	0
	0	0	1	1	1	1	0	1	1	0	0
	0	1	0	0	X	X	X	X	X	X	X
	0	1	0	1	X	X	X	X	X	X	X
									ı		

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
Α	B/0	B/0			
В	D/0	E/0			
D	H/0	1/0			
E	1/0	1/0			
Н	A/0	A/0			
I	A/0	A / 1			

01 11 10

D

Ε

Н

В

 $Q_3^{Q_2^{n}Q_1^{n}}$

0 A

	^	\mathbf{u}_3	\mathbf{u}_{2}	Q ₁	\mathbf{Q}_3	\mathbf{Q}_{2}^{-1}	Q ₁	3	D_2	D_1		ı
	0	0	0	0	0	0	1	0	0	1	0	
	0	0	0	1	0	1	1	0	1	1	0	
	0	0	1	0	0	0	0	0	0	0	0	
	0	0	1	1	1	1	0	1	1	0	0	
	0	1	0	0	X	X	X	X	X	X	X	
	0	1	0	1	X	X	Х	X	X	X	X	
	0	1	1	0	0	0	0	0	0	0	0	
	0	1	1	1	0	1	0	0	1	0	0	
	1	0	0	0	0	0	1	0	0	1	0	
	1	0	0	1	1	1	1	1	1	1	0	
	1	0	1	0	0	0	0	0	0	0	1	١
	1	0	1	1	0	1	0	0	1	0	0	
	1	1	0	0	X	X	X	X	X	X	X	١
	1	1	0	1	X	X	Х	X	X	X	Х	١
	1	1	1	0	0	0	0	0	0	0	0	١
Į	1	1	1	1	0	1	0	0	1	0	0	

5. 卡诺图化简

$$\mathbf{D}_3 = \mathbf{Q}_3^n \mathbf{Q}_2^n \mathbf{Q}_1^n \overline{X} + X \mathbf{Q}_2^n \mathbf{Q}_1^n$$

$$D_1 = \overline{Q_2^n}$$

 $Z = X Q_3^n Q_2^n Q_1^n$

6. 电路实现

7. 无关项检查

将无关状态 $Q_3^nQ_2^nQ_1^n=100和101分别代入次态方程和输出方程计算$

电路可以自启动

例6: 利用T触发器设计一个串行输入的奇校验检测器

② Moor 状态图

③状态表

现态	次态	输出	
Qn	X=0	Z	
So	S ₀	S ₁	0
S ₁	S ₁	S ₀	1

1. 原始状态图及状态表

① 状态设定

S₀——表示收到偶数个 "1" ,初始为0个 "1"

S₁──表示收到奇数个"1"

- 2. 状态化简
- 3. 状态分配 S₀: 0; S₁: 1

4. 状态转换真值表

			_	
输入	现态	次态	输入	输出
Х	Qn	Qn+1	T	Z
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1

5. 卡诺图化简

 $T=X; Z=Q^n$

6. 电路实现

更复杂的同步时序设计_例7

例7:利用D触发器设计一个同步时序的码制转换器,将串行输入的8421BCD码转换为余3码。

■ 转换器的输入和输出都是最低位优先

X Input (BCD)				<i>Z</i> Outp			
t_3	t_2	t_1	t_0	t_3	t_2	t_1	t_0
	0	0	0		0	1	1
	0	0	1		1	0	0
	0	1	0		1	0	1
	0	1	1		1	1	0
	1	0	0		1	1	1
	1	0	1		0	0	0
	1	1	0		0	0	1
	1	1	1		0	1	0
	0	0	0		0	1	1
	0	0	1		1	0	0

更复杂的同步时序设计_例7

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	<i>t₁ t₀时刻</i> 输出
00	1 1
01	00
10	0 1
11	<mark>1</mark> 0

t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
000	011
001	100
010	101
011	110
100	111
101	000
110	001
111	010

t ₃ t ₂ t ₁ t ₀ 时刻 输入	t ₃ t ₂ t ₁ t ₀ 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100

X Input (BCD)				<i>Z</i> Out exce			
t_3	t_2	t_1	t_0	t_3	t_2	t_1	t_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

更复杂的同步时序设计_例7

1. 原始状态图及状态表

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	<i>t₁ t₀时刻</i> 输出
00	11
01 10	00 01
11	10

1	t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
	000	<mark>01</mark> 1
	001	10 0
	010	101
	011	110
	100	111
	101	000
	110	001
	111	<mark>01</mark> 0

	$t_0 = 0$	set 1 ₀		
$t_1 \stackrel{0}{\sim}_1$	1/0	%	1,	
t_2 0	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0/1/20	9,10	
		7	K	P
$\frac{1}{1} = \frac{0}{0}$	$\downarrow \frac{0}{0}$ $\downarrow \frac{0}{1}$	$\sqrt{\frac{0}{0}}\sqrt{\frac{1}{1}}$ $\sqrt{\frac{0}{1}}$	√ %	1

t ₃ t ₂ t ₁ t ₀ 时刻 输入	<i>t₃t₂t₁t₀</i> 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1 011
1001	1 100

2. 状态化简

	Input Sequence Received				Preser	
	(Least Significant	Present	Next Sta	ate	Output	(Z)
Time	Bit First)	State	X = 0	1	X = 0	1
$\overline{t_0}$	reset	A	В	C	1	0
_	0	В	D	F	1	0
<i>t</i> ₁	1	C	E	G	0	1
	00	D	Н	L	0	1
	01	E	1	M	1	0
t ₂	10	F	J	N	1	0
	11	G	K	Ρ	1	0
	000	Н	A	A	0	1
	001	1	A	A	0	1
	010	J	A	_	0	_
_	011	K	A	_	0	_
t_3	100	L	A	_	0	_
I	101	M	A	_	1	_
l	110	N	A	_	1	_
	111	P	Α	_	1	_

		Next		Prese	nt
	Present	Stat	e	Output (Z	
Time	State	X = 0	1	X = 0	1
t_0	Α	В	C	1	0
$\overline{t_1}$	В	D	Ε	1	0
	С	Ε	Ε	0	1
t_2	D	Н	Н	0	1
	Ε	Н	Μ	1	0
$\overline{t_3}$	Н	Α	Α	0	1
	М	Α	_	1	_

3. 状态分配

		Next		Prese	nt
	Present	Stat	e	Output	(<i>Z</i>)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	С	1	0
t_1	В	D	Ε	1	0
	С	Ε	Ε	0	1
t_2	D	Н	Н	0	1
	Ε	Н	Μ	1	0
t ₃	Н	Α	Α	0	1
	M	Α	_	1	_

4. 状态转换真值表

		Q ₁ +Q) ₂ +Q ₃ +	Z	
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	<i>X</i> = 1
A	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	1 1 1	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	0 1 1	000	000	0	1
Μ	010	000	X X X	1	Х
_	0 0 1	XXX	XXX	Х	Х

4. 状态转换真值表

		$Q_1^+Q_2^+Q_3^+$		Z	
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	<i>X</i> = 1
Α	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	0 1 1	000	000	0	1
Μ	010	000	X X X	1	Х
_	0 0 1	XXX	XXX	Х	Χ

5. 卡诺图化简

10

Χ

Χ

10

X

Χ

0

 $Z = X'Q'_3 + XQ_3$

01, 11

0

0

10

$$D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2'$$

Χ

11

10

6. 电路实现

7. 无关项检查

 $\begin{cases} D_1 = Q_1^+ = Q_2' \\ D_2 = Q_2^+ = Q_1 \\ D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2' \\ Z = X' Q_3' + X Q_3 \end{cases}$

将无关状态 $Q_3Q_2Q_1=100$ 代入次态方程和输出方程计算

电路可以自启动

例8: 迭代电路设计——利用D触发器设计一个比较器,能对两个n位

1. 原始状态图及状态表

对于第 i 个单元,设状态——

 $S_0: X = Y$ 时

S₁: X > Y 时

S₂: X < Y 时

Z₂、Z₃、Z₃分别取值为1

- □由n个比较子单元(cell)构成
- □ 从高位到低位,逐位对应比较,并将前一位比 较的结果传送给下一位
- □ 第i个单元的比较结果: X = Y, X > Y, or X < Y.

1. 原始状态图及状态表

			<i>S</i> _{<i>i</i>+1}			
	S_i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
X = Y	S_0	<i>S</i> ₀	S ₂	S ₀	S ₁	0 1 0
X > Y	S_1	S ₁	S_1	S_1	S_1	0 0 1
X < Y	S_2	S_2	S_2	S_2	S_2	1 0 0

在第i个(前一个)单元 有比较结果的前提下,根据输入取值,可以确定第 i+1个单元的比较结果

对于第 i 个单元,设状态

S₀: X = Y时 S₁: X > Y时 S₂: X < Y时

Z₁ 、Z₂ 、 Z₃ 分别取值为1

2. 状态化简

3. 状态分配

 $S_0: 00$

 $S_1: 01$

需要两个触发器, 用 a,b来表示

 $S_2: 10$

4. 状态转换真值表

	а	$_{i+1}b_{i}$	+1		
a _i b _i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
0 0	00	10	00	01	0 1 0
0 1	01	01	01	01	0 0 1
1 0	10	10	10	10	1 0 0

5. 卡诺图化简

6. 电路实现

7. 无关项检查

(略)

例9:利用D触发器设计一个同步时序电路,当输入序列以010或1001 结尾时(允许重叠检测),输出Z为1,否则Z=0.

1. Mealy型原始状态图构建

(1) 子序列010检测的状态设定

S₀——初始复位状态,表示没有任何输入

S₁──表示序列以"0"结束

S。——表示序列以"10"结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

(1) 010检测的局部状态图

(2) 子序列1001检测的状态设定

 S_0 ——初始复位状态,表示没有任何输入

S₁──表示序列以 "0" 结束

S₂——表示序列以"10"结束

S。——表示序列以"010"结束,此时输出标志 Z=1。

S』——表示接收到1001序列的第一个"**1**"

S₅——表示序列以"100"结束。

重叠检测: 010中的10

可以被1001检测重用

- (2) 子序列1001检测的状态设定
 - S_0 —初始复位状态,表示没有任何输入
 - S₁——表示序列以 "0" 结束
 - S₂——表示序列以"10"结束
 - S₃——表示序列以"010"结束,此时输出标志 Z=1。
 - S_{a} ——表示接收到1001序列的第一个"1"
 - S₅——表示序列以"100"结束。

- 2. 状态化简(略)
- 3.状态分配(略)
- 4.状态转换真值表(略)
- 5.卡诺图化简(略)
- 6. 电路实现(略)

重叠检测: 010中的10

可以被1001检测重用

重叠检测: 1001中的 01可以被010检测重用

(3)010及1001检测的完整状态图

例10:某同步时序电路如下所示,按图接线后,试验得到如下的循环状态。经检查:触发器工作正常,试分析故障所在。

1. 获得正确状态图

① 输入方程

$$J_0 = \overline{Q_2}^n$$
, $K_0 = 1$
 $J_1 = K_1 = Q_0^n$
 $J_2 = Q_0^n Q_1^n$, $K_2 = 1$

② 次态方程

$$\begin{aligned} \mathbf{Q}_0^{n+1} &= \overline{\mathbf{Q}}_0^n \overline{\mathbf{Q}}_2^n \\ \mathbf{Q}_1^{n+1} &= \mathbf{Q}_1^n \oplus \mathbf{Q}_0^n \\ \mathbf{Q}_2^{n+1} &= \mathbf{Q}_0^n \mathbf{Q}_1^n \overline{\mathbf{Q}}_2^n \end{aligned}$$

③ 正确的状态转换图

④ 电路功能:模5加法计数器,可自启动

2. 故障分析

① 触发器工作正常: 说明——电源和地线接触良好、时钟信号CP正常送入 故障只可能在进位链或驱动回路中

 $Q_2^{n+1} = Q_0^n Q_1^n \overline{Q_2}^n$

② 分析各触发器状态: 次态方程 $Q_0^{n+1} = \overline{Q_0}^n \, \overline{Q_2}^n$ 触发器FF1 $Q_1^{n+1} = Q_1^n \oplus Q_0^n$ $Q_2^{n+1} = Q_1^n \oplus Q_0^n$ $Q_1^{n+1} = Q_1^n \oplus Q_0^n$ $Q_2^{n+1} = Q_1^n \oplus Q_0^n$

2. 故障分析

② 分析各触发器状态:

结论:接入,

2. 故障分析

③ 针对触发器0分析:

?

K₀接触不良?

J₀接触不良?

TTL电路管脚悬空 等效为高电平1

 Q₂没有接入, J₀悬

 空等效为高电平1

➡ 触发器变成T', 符合故障现象

Ko没问题

Q₂Q₁Q₀
001
010
011

Q₂没有

J₀悬空

异步时序逻辑设计的特点

- 异步时序电路中,没有统一的时钟脉冲
- 异步时序电路中要求每次输入信号发生变化后,必须等电路 进入稳定状态,才允许输入信号再次发生改变
- 时钟脉冲作为一个输入变量考虑
- 为避免电路中出现竞争冒险,异步时序电路中每一时刻仅允许一个输入信号发生变化,不允许两个脉冲同时输入。n 个、输入端有n+1个输入组合

如:异步时序中, X₁X₂X₃是三个输入端, 有四种输入组合: 000、001、010、100。

000——表示没有脉冲输入。

011、101、110、111是不允许出现的组合

例1:用D触发器设计一个 X_1 - X_2 - X_2 脉冲序列检测器,其中 X_1 、 X。为不同时出现的脉冲。

1. 建立原始状态表

① 设状态

S₀:初始状态,X₁X₂=00

S₁: 收到X₁, X₁X₂=10

S₂: 收到X₁-X₂,即10→01

S₃: 收到X₁-X₂-X₂, 即10→01→01, 且Z=1。

只标记感兴 趣的子序列

② 状态转换情况

③ Mealy 状态图

④ 状态表

现态	Q ⁿ⁺¹ / Z				
Qn	$X_1X_2=00$	$X_1X_2=01$	$X_1X_2=10$		
S ₀	S ₀ /0	S ₀ /0	S ₁ /0		
S ₁	S ₁ / 0	S ₂ /0	S ₁ /0		
S ₂	S ₂ /0	S ₃ /1	S ₁ /0		
S_3	S ₃ /0	S ₀ /0	S ₁ / 0		

2. 状态表化简

现态	Q ⁿ⁺¹ / Z					
Qn	$X_1X_2=00$	X ₁ X ₂ =01	X ₁ X ₂ =10			
S ₀	S ₀ /0	S ₀ /0	S ₁ /0	1		
S₁	S ₁ / 0	S ₂ /0	S ₁ /0			
S ₂	S ₂ /0	S ₃ /1	S ₁ /0			
S_3	S ₃ /0	S ₀ /0	S ₁ / 0	√		

现态	Q ⁿ⁺¹ / Z				
Qn	X ₁ X ₂ =00	X ₁ X ₂ =01	X ₁ X ₂ =10		
S ₀	S ₀ / 0	S ₀ /0	S ₁ /0		
S ₁	S ₁ /0	S ₂ /0	S ₁ /0		
S ₂	S ₂ /0	S ₀ /1	S ₁ /0		

3. 状态编码

原则1: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

原则2: S₀S₁ 、 S₁S₂ 、 S₀S₂ 应取相邻编码 ➡

原则3: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

\	0	1
0	So	S ₁
1	S ₂	

S₀: 00 S₁: 01 S₂: 10

4、D触发器的激励表

将CP看作控制函数,D触发器的特征表达式为:

| 本文文 エレノジ・

 $Q^{n+1} = D.CP + Q^n.\overline{CP}$

 $CP=1, Q^{n+1} = D$ $CP=0, Q^{n+1} = Q$

驱动表

Q _n	\rightarrow	Q_{n+1}	СР	D
0	\rightarrow	0	0	X
0	\rightarrow	1	1	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	X

\	0	1
0	So	S ₁
1	S ₂	
•		

 $S_0: 00$ $S_1: 01$ $S_2: 10$

现态	Q^{n+1}/Z							
Qn	$X_1X_2 = 00$	$X_1X_2=01$	$X_1X_2=10$					
So	S ₀ /0	S ₀ / 0	S ₁ /0					
S ₁	S ₁ /0	S ₂ /0	S ₁ /0					
S ₂	S ₂ /0	S ₀ / 1	S ₁ /0					

确定 CP_2 : 看 $Q_2^{n} \rightarrow Q_2^{n+1}$

确定 CP_1 : 看 $Q_1^{n} \rightarrow Q_1^{n+1}$

确定 D_2 : 看 CP_2 和 Q_2^{n+1} 确定 D_1 : 看 CP_1 和 Q_1^{n+1}

						\sim				┓゚.	
	输	入	又现	态	次	态			输入	1	输出
	X ₁	X ₂	Q ₂ n	Q ₁ n	Q_2^{n+1}	Q ₁ ⁿ⁺¹	CP ₂	D ₂	CP ₁	D_1	Z
	0	0	0	0	0	0	0	Х	0	X	0
	0	0	0	1	0	1	0	X	0	X	0
	0	0	1	0	1	0	0	X	0	X	0
	0	0	1	1	X	X	X	X	X	X	X
	0	1	0	0	0	0	0	X	0	X	0
	0	1	0	1	1	10	1	1	1	0	0
	0	1	1	0	0	0	1	0	0	X	1
٨	0	1	1	1	X	X	X	X	X	X	X
7	1	0	0	0	0	1	0	X	1	1	0
	1	0	0	1_	0	1	0	X	0	X	0
	1	0	1	Ó	Q	1	1	0	1	1	0
	1	0	1	1	X	X	X	X	X	X	X
	1	1	0	0	X	X	X	X	X	X	X
	1	1	0	1	X	X	X	X	X	X	X
	1	1	1	0	X	X	X	X	X	X	X
	1	1	1	1	X	X	X	X	X	X	Χ

5. 卡诺图化简

$$CP_2 = X_2Q_1^n + Q_2^n X_2 + X_1Q_2^n$$

$$D_2 = Q_1^n$$

$$\mathbf{CP_1} = \overline{\mathbf{Q}_1}^{\mathbf{n}} \mathbf{X}_1 + \mathbf{Q}_1^{\mathbf{n}} \mathbf{X}_2$$

X_1X_2	ⁿ Q ₁ ⁿ 00	Λ1	11	10
X_1X_2	UU	01	11	10
00	0	0	X	0
01	0	0	X	1
11	X	X	X	X
10	0	0	X	0

$$Z = X_2 Q_2^n$$

X_1X_2 Q_2	ⁿ Q ₁ ⁿ 00	01	11	10_
00	X	X	X	X
01	X	0	X	X
11	X	X	X	X
10	1	X	X	1

$$D_1 = \overline{Q}_1^n$$

6. 逻辑图

7. 检查无关项

无关状态: $Q_2^nQ_1^n=11$

X₁X₂分别为 00, 01,10时,带入计算

$$\begin{cases} Q_2^{n+1} = D_2 = Q_1^n ; & CP_2 = X_2Q_1^n + Q_2^n X_2 + X_1Q_2^n \\ Q_1^{n+1} = D_1 = \overline{Q}_1^n ; & CP_1 = \overline{Q}_1^n X_1 + Q_1^n X_2 \\ Z = X_2Q_2^n \end{cases}$$

例2:用D触发器设计一个 X_1 - X_2 - X_3 异步脉冲序列检测器,其中 X_1 、 X_2 、 X_3 为不同时出现的脉冲

1. 建立原始状态表

①设状态

S₀: 初始状态, X₁X₂X₃=000

S₁: 收到X₁, X₁X₂X₃=100

S₂: 收到X₁-X₂, 即100 →010

S₃: 收到X₁-X₂-X₃,即100→010→001,且Z=1。

③ Mealy 状态图

状态表

现态	Q ⁿ⁺¹ / Z							
Qn	$X_1X_2X_3 = 000$	$X_1X_2X_3=100$	$X_1X_2X_3 = 010$	$X_1X_2X_3=001$				
So	S ₀ /0	S ₁ /0	S ₀ /0	S ₀ /0				
S₁	S ₁ / 0	S ₁ /0	S ₂ /0	S ₀ / 0				
S ₂	S ₂ /0	S ₁ /0	S ₀ / 0	S ₃ / 1				
S_3	S ₃ /0	S ₁ /0	S ₀ / 0	S ₀ / 0				

2. 状态表化简

现态	Q ⁿ⁺¹ / Z							
Qn	$X_1X_2X_3=000$	$X_1X_2X_3=100$	$X_1X_2X_3 = 010$	$X_1X_2X_3=001$				
S ₀	S ₀ /0	S ₁ /0	S ₀ /0	S ₀ /0				
S ₁	S ₁ / 0	S ₁ /0	S ₂ /0	S ₀ /0				
S ₂	S ₂ /0	S ₁ /0	S ₀ / 0	S ₃ / 1				
S ₃	S ₃ /0	S ₁ /0	S ₀ / 0	S ₀ / 0				

现态	Q ⁿ⁺¹ / Z						
Qn	$X_1X_2X_3=000$	$X_1X_2X_3=100$	$X_1X_2X_3=010$	$X_1X_2X_3=001$			
S ₀	S ₀ /0	S ₁ /0	S ₀ /0	S ₀ /0			
S ₁	S₁/ 0	S ₁ /0	S ₂ /0	S ₀ / 0			
S ₂	S ₂ /0	S ₁ /0	S ₀ / 0	S ₀ / 1			

3. 状态编码

原则1: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

原则2: S_0S_1 、 S_1S_2 、 S_0S_2 应取相邻编码

原则3: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

S_0 :	00
S ₁ :	01
S_2 :	10

4、 状态转换真值表

D触发器驱动表

Q _n	\rightarrow	Q_{n+1}	СР	D
0	\rightarrow	0	0	X
0	\rightarrow	1	1	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	Х

S₀: 00 S₁: 01 S₂: 10

状态转换真值表?

例1: 试用JK触发器设计异步模5加法计数器

- ① 确定触发器个数:需要3个JK触发器,↓触发
- ② 画状态转换图
- ③ 确定触发器CP的接法

CP	Q_3	Q_2	Q ₁
↓	Q ₃	0	0
↓	0	0	1 \
↓	0	1	0 🗸
↓	0	1	1)
	1	0/	0 1
↓	0	0	0

设计原则

- 时序图中,凡是触发器状态翻转的地方,都必须为其提供时钟脉冲。
- 在满足翻转的前提下, 时钟脉冲越少越好

Q₁——由CP提供下降沿, CP₁=CP

 Q_2 ——翻转两次,需两个下降沿,恰好此时 Q_1 有两个下降沿, $CP_2 = Q_1 \downarrow$

 Q_3 ——翻转两次,需两个下降沿,此时 Q_2 、 Q_1 都不能提供, CP_3 只能接CP

对触发器而言: 只要提供时钟, 状态的保持就必须依靠输入端 (如J、K)的控制来实现。

④ 状态转换真值表

 $CP_1 = CP_3 = CP \downarrow$, $CP_2 = Q_1 \downarrow$

确定 J_3K_3 : 看 $Q_3^{n} \rightarrow Q_3^{n+1}$ 确定 J_1K_1 : 看 $Q_1^{n} \rightarrow Q_1^{n+1}$

	现态	<u> </u>		次态				输	<u>入</u>	\		输出
Q_3^r	$^{q}Q_{2}^{n}$	Q ₁ n	Q_3^{n+1}	$\mathbf{Q_2^{n+1}}$	$\mathbf{Q_1}^{n+1}$	J_3	K ₃	J ₂	K ₂	J₁	K ₁	Z
0	0	0	0	0	1	0	X	X	X)	1	X	0
0	0	1	0	1	0	0	X (1	X	X	1	0
0	1	0	0	1	1	0	X	X	X	1	X	0
0	1	1	1	0	0	1	X	X	1	X	1	0
1	0	0	0	0	0	X	1	X	X	0	X	1

此时 Q_1 无下降沿, J_2 K_2 为任意

确定J₂K₂: 看Q₁ⁿ→Q₁ⁿ⁺¹

⑤ 卡诺图化简

$$\mathbf{J_3} = \mathbf{Q_2}^{\mathsf{n}} \mathbf{Q_1}^{\mathsf{n}}$$

$$J_1 = \overline{Q}_3^n$$

$$\begin{cases} J_3 = Q_2^n Q_1^n, K_3 = 1 \\ J_2 = 1, K_2 = 1 \end{cases}$$

$$J_1 = \overline{Q}_3^n, K_1 = 1$$

$$Z = Q_3^n, CP_2 = Q_1 \downarrow, CP_3 = CP_1 = CP$$

⑥ 逻辑图

⑦检查无关项

	现态 次态						输出		
Q_3^{l}	$^{n}Q_{2}^{n}$	$\mathbf{Q_1}^n$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	CP ₃	CP ₂	CP ₁	Z
1	0	1	0	1	0	+	↓	+	1
1	1	0	0	1	0	↓	0	↓	1
1	1	1	0	0	0	↓	↓ ↓	↓	1

$$\begin{cases} J_3 = Q_2^n Q_1^n, K_3 = 1 \\ J_2 = 1, K_2 = 1 \\ J_1 = \overline{Q}_3^n, K_1 = 1 \\ Z = Q_3^n, CP_2 = Q_1 \downarrow, CP_3 = CP_1 = CP \end{cases}$$

例2: 用D触发器设计实现十进制异步加法计数器

- ① 确定触发器个数:需要4个D触发器, 1 触发
- ② 画状态转换图

输出方程: $C = Q_3^n Q_0^n$

③ 确定触发器CP的接法

$$\begin{cases}
CP_0 = CP \\
CP_1 = \overline{Q}_0 \\
CP_2 = \overline{Q}_1 \\
CP_3 = \overline{Q}_0
\end{cases}$$

选择时钟脉冲的基本原则:在满足翻转要求的条件下,触发沿越少越好。

ᇑᄎ

④ 状态转换真值表

$$\begin{cases} CP_0 = CP \\ CP_1 = \overline{Q}_0 \\ CP_2 = \overline{Q}_1 \\ CP_3 = \overline{Q}_0 \end{cases}$$

⑤ 卡诺图化简

		- 現	<u> </u>			次	心					制ク	•			
	Q_3^n	$\mathbf{Q_2}^{n}$	Q ₁ n	Q ₀ n	Q_3^{n+1}	Q ₂ n+1	Q ₁ n+1	Q_0^{n+1}	CP ₃	CP ₂	CP₁	CP ₀	D_3	D ₂	D ₁	D_0
	0	0	0	0	0	0	0	1	0	0	0	1	Х	Х	Х	1
	0	0	0	1	0	0	1	0	†	0	†	†	0	Х	1	0
	0	0	1	0	0	0	1	1	0	0	0	†	X	Х	X	1
	0	0	1	1	0	1	0	0	†	†	†	†	0	1	0	0
	0	1	0	0	0	1	0	1	0	0	0	†	X	Х	X	1
	0	1	0	1	0	1	1	0	†	0	†	†	0	Х	1	0
	0	1	1	0	0	1	1	1	0	0	0	†	X	Х	X	1
	0	1	1	1	1	0	0	0	†	†	†	†	1	0	0	0
	1	0	0	0	1	0	0	1	0	0	0	†	X	Х	X	1
	1	0	0	1	0	0	0	0	†	0	†	†	0	X	0	0
ر آم	n					O ₁ nO	n					$\sqrt{O_1}^nC$) ₀ n			

ソカ 太

$D_3 =$	Q_2^nC) ₁ r
---------	----------	------------------

-	_
$D_2 = 0$	\mathbf{Q}_2^{r}

$Q_3^nQ_2^n$	80	01	11	10
00	X	1	0	X
01	X	1	0	X
11	X	X	X	X
10	X	0	X	X
•				

$$D_1 = Q_3^n Q_1^n$$

$Q_3^n Q_2^n$	1 ¹ 00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X

te \

$$D_0 = \overline{Q}_0^r$$

$$\begin{cases} CP_0 = CP \\ CP_1 = \overline{Q}_0 \\ CP_2 = \overline{Q}_1 \\ CP_3 = \overline{Q}_0 \end{cases} \begin{cases} D_3 = Q_2^n Q_1^n \\ D_2 = \overline{Q}_2^n \\ D_1 = \overline{Q}_3^n \overline{Q}_1^n \\ D_0 = \overline{Q}_0^n \\ C = Q_3^n Q_0^n \end{cases}$$

⑦检查无关项

将无效状态1010~1111分。 别代入状态方程,可以验证 该电路能够自启动。

		现る	法		次态				输入			
	Q_3^n	$\mathbf{Q_2}^{\mathrm{n}}$	$\mathbf{Q_1}^{\mathbf{n}}$	Q_0^n	Q_3^{n+1}	Q ₂ n+1	Q ₁ n+1	Q_0^{n+1}	CP ₃	CP ₂	CP₁	CP ₀
Γ	1	0	1	0	0	0	0	1	0	0	0	1
	1	0	1	1	0	1	0	0	†	†	†	↑
	1	1	0	0	1	1	0	1	0	0	0	†
ľ	1	1	0	1	0	1	0	0	†	0	†	↑
	1	1	1	0	1	1	1	1	0	0	0	†
	1	1	1	1	0	0	0	0	†	†	†	†