Recapi
· Carbonyl compounds are acidic (slightly pka's!)
· β-dicarbonyl cpds can be completely deprotonated by OH or OR, but monocarbonyl cpds can't.
· Enols and envlates are nucleophilic at C
E+" — E
· Halogenation at α -carbons
~ monohalogehation in Ht ~ complete halogenation in base
$A \cap A$
Solv DH > D
·CLAISEN
RO POET E ROUTE E ROUTE
RO H+ D 30 :base

Putting it Together: Synthesis Using Enolates

Putting it Together: Synthesis Using Enolates

Provide a multi-step synthesis of the desired product from any organic reagents

Putting it Together: Synthesis Using Enolates

Provide a multi-step synthesis of the desired product from any organic reagents containing **3 or fewer carbons**.

Putting it Together: Synthesis Using Enolates

Provide a multi-step synthesis of the desired product from the indicated starting material; you may use any inorganic reagents you desire.

97

Lithium Enolates

In our last lecture, we emphasized that enolates are generally present in only *small* concentrations at equilibrium. How might we be able to actually *make* an enolate?

What base can we use to make a lithium enolate?

What types of enolates can we form using this technique?

Lithium Enolates:

Kinetic vs. Thermodynamic Enolates

Explain why the following two reactions give different enolates:

Reading: Section 22.7

Kinetic vs. Thermodynamic Control Enolates

Thermodynamic — long rxn, allows equilibration higher temp

Kinetic - short rxn times, no equil., cold

rxn coord

LDA: allowing equilibration (excess/subcess)

Lithium Enolates: Alkylation

Last lecture, we said the following transformation couldn't be done as written. Why?

$$\begin{array}{c}
0 \\
\text{NaOMe}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3}I
\end{array}$$

$$\begin{array}{c}
\text{(+/-)}
\end{array}$$

Now, can you figure out how to carry out the same transformation (without using a "phantom ester")?

How could you carry out the following synthesis?

Reading: Section 22.7

open opoxidas v/ ester enalates (not ketone)

100

Lithium Enolates:

Application to "Crossed" Aldol & Claisen

Last lecture, we hinted that "crossed" aldol and Claisen reactions are problematic; now you can do them! How could you synthesize the following products? Why would you have had trouble with these syntheses before?

Why do we need H+ W/up after this reaction?

obscure!

Week 5 July 23, 2014

Zinc Enolates: The Reformatsky Reaction

