

#### Christian Butcher

# Mini Course - LabVIEW - Basics 1

OIST





# The Taylor-Couette Experiment An Overview





#### **Cooler Unit**

#### HRSH150-W-20

- 15.7kW cooling capacity
- 3.5kW heating capacity
- ±0.1°C stability
- Serial communication using MODBUS







#### **Torque Measurement**











#### Dataflow!!

- The most important part of LabVIEW is not hardware connectivity
- It is Dataflow!
- Nodes can be executed as soon as their inputs are available





# Let's take a look at the "palettes"

- Palettes
- Front Panel + Block Diagram
- Controls
- Indicators

Project files



#### **Datatypes**

- LabVIEW is "statically typed" type-checked at compile-time
- In most cases, you won't notice it being compiled!
- There is a "variant" type for dynamic types, but you can mostly avoid it ©
- Different types are shown with different wire colours



2 0 2 2 / 0 2 / 1 8 © Okinawa Institute of Science and Technology Graduate University 2020



#### **Arrays**

- An array is a list of values of a specific type
- Arrays can be empty
- The number of displayed elements is not the same as the size!
- The order of elements in an array is preserved - they are not automatically sorted





# Volunteers?

- Create a numeric array control
- Connect it to an "Array Size" node
- Connect the output of that function to an Indicator
- Demonstrate that the display size doesn't change the array size!



#### **Key "Structures"**

- For Loop
- While Loop
- Case Structure









#### **For Loops**

- Execute a 'known' number of times
- Can automatically iterate over array elements
- Can automatically create arrays with an element per iteration output





## Exercise

Create an array using a For loop, output the values 0 to 10.

- 2. Output values 2 to 20.
  - a) Use one For loop
  - b) Use two For loops

In each case, put the result in a Numeric Array Indicator



#### **Aside: Quick Drop**

- The palettes are quite slow for programming...
- Ctrl + Space brings up "Quick Drop"
- You can type the name of the function you want (or some shortcut letters) and get it more quickly!







#### **Comparisons**





### Exercise

Create an array using a While loop, output the values 0 to 10.

To create an indexing tunnel with a While loop, wire the value out of the side, and then right click on the tunnel, choose "Tunnel Mode" > "Indexing"



#### **Charts and Graphs**

- Charts have history
- Graphs display only their current value!
- Charts can take one value at a time







# **Chart Demo**



2 0 2 2 / 0 2 / 1 8 © Okinawa Institute of Science and Technology Graduate University 2020



# Chart Exercise

#### Create a VI like the previous demo

Plot a new value every 500ms - use the Timing palette's "Wait (ms)" node

Have values randomly\* distributed between 1 and 5

(\*Algorithm Used by the LabVIEW Random Number (0 - 1) Function)



# Chart Demo 2 Adding limits



2 0 2 2 / 0 2 / 1 8 © Okinawa institute of Science and Technology Graduate University 2020