10.3 Parameter Estimation in the Binomial SIR Epidemic Model

Consider the system of difference equations in the binomial SIR model:

$$\begin{cases} S(j+1) = S(j) - X, \\ I(j+1) = I(j) + X - Y, &, j = 0, 1, 2, \dots, \\ R(j+1) = R(j) + Y. \end{cases}$$

where $X \sim Bi(S(j), \beta I(j)/N)$ and $Y \sim Bi(I(j), \gamma)$. Taking expected values, we arrive at the same system of difference equations as in the deterministic SIR model:

$$\begin{cases} S(j+1) = S(j) - \beta \frac{S(j) I(j)}{N}, \\ I(j+1) = I(j) + \beta \frac{S(j) I(j)}{N} - \gamma I(j), &, \quad j = 0, 1, 2, \dots \\ R(j+1) = R(j) + \gamma I(j). \end{cases}$$

Denoting the increments by $\Delta S(j) = S(j+1) - S(j)$, $\Delta I(j) = I(j+1) - I(j)$, and $\Delta R(j) = R(j+1) - R(j)$, we can rewrite the equations as

$$\begin{cases} \frac{\Delta S(j)}{S(j)I(j)} = -\frac{\beta}{N}, \\ \frac{\Delta I(j)}{I(j)} = \frac{\beta}{N}S(j) - \gamma, & j = 0, 1, 2, \dots \\ \frac{\Delta R(j)}{I(j)} = \gamma. \end{cases}$$

From these equations, it follows that we have two ways to estimate the parameters β and γ . The first one is the **method of moments**, according to which

$$\widehat{\beta}_{MM} = -N \left(\text{sample mean of } \frac{\Delta S(j)}{S(j)I(j)} \right),$$

and

$$\widehat{\gamma}_{MM} = \text{sample mean of } \frac{\Delta R(j)}{I(j)}.$$

The second method of estimation is the **regression method** where we regress $\frac{\Delta I(j)}{I(j)}$ on S(j). The estimators of the parameters can be obtained as

$$\widehat{\beta}_R = N \widehat{\text{slope}}, \text{ and } \widehat{\gamma}_R = -\widehat{\text{intercept}}.$$

Remark. In the deterministic SIR model, these estimators are always exactly equal to the true values of the parameters. \Box

Below we show how to estimate the parameters in SAS and R.

In SAS: Here we use the data simulated above (with seed=809197, N=1000, beta=0.7, gamma=0.2, and time=30).

```
data SIR;
set SIR;
lag_S=lag(S);
beta_est=(S-lag(S))/(lag(S)*lag(I));
gamma_est=(R-lag(R))/lag(I);
response_var=(I-lag(I))/lag(I);
if beta_est ne .;
run;

proc sql;
select -1000*mean(beta_est) as beta_hatMM,
    mean(gamma_est) as gamma_hatMM
    from SIR;
quit;
```

beta_hatMM	gamma_hatMM
0.685137	0.185146

```
proc glm data=SIR;
model response_var=lag_S;
run;
```

Paramete	Estimate	Standard Error	t Value	Pr > t
Intercept	2151709787	0.05347189	-4.02	0.0004
lag_S	0.0007667129	0.00007969	9.62	<.0001

```
From this output, \beta_R = 1000 \cdot \widehat{\text{slope}} = 0.76506 and \gamma_R = -\widehat{\text{intercept}} =
0.21517.
In R: Here we use the data simulated earlier (with seed=191962, N=1000,
beta=0.7, gamma=0.2, and time=30).
simdata<- data.frame(time, S, I, R)
simdata$S.delta<- c(simdata$S[-1],0)-simdata$S
simdata I.delta < -c(simdata I[-1], 0) - simdata I
simdata$R.delta<- c(simdata$R[-1],0)-simdata$R
simdata<- simdata[-nrow(simdata),]
for (j in 1:nrow(simdata)) {
simdata$beta.est[j]<- simdata$S.delta[j]/(simdata$S[j]*simdata$I[j])
   simdata$gamma.est[j]<- simdata$R.delta[j]/simdata$I[j]
    simdata$response.var[j]<- simdata$I.delta[j]/simdata$I[j]
}
#estimating using the method of moments
print(beta.hatMM<- -1000*mean(simdata$beta.est))
0.6978012
print(gamma.hatMM<- mean(simdata$gamma.est))
0.1924247
#estimating using the regression method
reg<- glm(response.var \sim S, data=simdata)
reg.summary <- summary(reg)
```

```
print(beta.hatR<- N*reg.summary$coefficients[2,1])

0.7587301

print(gamma.hatR<- -reg.summary$coefficients[1,1])

0.2220625
```