Álgebra Linear – Vetor Coordenado

Definição – Se $V = (\vec{v_1}, \vec{v_2}, ..., \vec{v_n})$ for uma base de um espaço vetorial V e se :

$$\vec{v} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_n \vec{v_n}$$

É a expressão de um vetor \vec{v} em termos da base S, então as escalares $c_1, c_2, ..., c_n$ são denominados coordenadas de \vec{v} em relação à base S. O vetor $(c_1, c_2, ..., c_n)$ é denominado vetor de coordenadas de \vec{v} em relação a S e denotado por: $(\vec{v})_s = (c_1, c_2, ..., c_n)$.

(Espaço vetorial [
$$\mathbb{R}^3$$
] \rightarrow Base $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$) \leftarrow (\vec{v}_4) \rightarrow

$$\vec{v}_4 = a \vec{v}_1 + b \vec{v}_2 + c \vec{v}_3 \rightarrow (\vec{v}_4)_{base} = (a,b,c) \rightarrow \text{Sempre teremos solução.}$$

Exemplo

a) Encontre o vetor de coordenadas de \vec{v} =(5,-1,9) em relação a base S, onde S={(1,2,1),(2,9,0),(3,3,4)}

Solução

$$(5,-1,9) = a(1,2,1) + b(2,9,0) + c(3,3,4) \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 9 \end{bmatrix}$$

Para a linha (3), temos:

$$a+4c=9$$

$$a = 9 - 4c$$

Para a linha (1), temos:

$$a+2b+3c=5$$

$$9-4c+2b+3c=5$$

$$2b-c=-4c=4+2b$$

Para a linha (2), temos:

$$2a+9b+3c=-1$$

$$18-8c+9b+3c=-1$$

$$-5c+9b=-19$$

$$-20-10b+9b=-19$$

$$-b=1$$

$$b=-1$$

Sabemos que: $c=4+2b \rightarrow c=4-2 \rightarrow c=2$ Também sabemos que: $a=9-4c \rightarrow a=9-8 \rightarrow a=1$

Portanto: $(\vec{v})_s = (1, -1, 2)$

b) Encontre o vetor em \mathbb{R}^3 cujo vetor de coordenadas em relação à base S é $(\vec{v})_s = (-1,5,2)$

$$(x,y,z)=-1(1,2,1)+3(2,9,0)+2(3,3,4)$$

 $(x,y,z)=(-1+6+6,-2+27+6,-1+0+8)$
 $(x,y,z)=(11,31,17)$

Base B'
$$\leftrightarrow$$
 Espaço Vetorial \leftrightarrow **Base B** $(\vec{v}_4)_B$ ' \leftrightarrow $(\vec{v}_4)_B$

Mudança de Base

Problema da mudança de base:

- Se V for um vetor num espaço vetorial V e se mudarmos a base de V de uma base B para uma base B', qual a relação entre os vetores coordenados $[\vec{v}]_b$ e $[\vec{v}]_b'$?

Se mudarmos a base de um espaço vetorial V de alguma base B' = $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ para uma base nova B = $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$, então, dado qualquer \vec{v} em V, o vetor velho de coordenadas $[\vec{v}]_b$ ' está relacionada com o novo vetor de coordenadas $[\vec{v}]_b$ pela equação:

$$[\vec{v}]_b = P[\vec{v}]_b$$

Onde as colunas de P são os vetores coordenadas dos vetores da base nova em relação a base velha.

 $PB \rightarrow B'$ (Mudança de B para B'). $PB' \rightarrow B$ (Mudança de B' para B).

Exemplo

Considerando as bases $B = \{\vec{u}_1, \vec{u}_2\}$, $B' = \{\vec{u}'_1, \vec{u}'_2\}$ de R³, onde:

$$\vec{u}_1 = (1,0), \vec{u}_2 = (0,1), \vec{u}'_1 = (1,1)\vec{u}'_2 = (2,1)$$

a) Encontre a matriz de transição de B' para B.

 $PB' \rightarrow B$

$$(1,1)=a(1,0)+b(0,1)$$
 $(2,1)=c(1,0)+d(0,1)$
 $a=1,b=1$ $c=2,d=1$

$$P_b' \rightarrow B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

b) Encontre a matriz de transição de B para B'.

$$PB \rightarrow B'$$

$$(1,0)=a(1,1)+b(2,1)$$
 $a+2b=1$ Subtraindo a linha 1 pela 2, temo b = 1. a+b=0 \rightarrow a=-1 $a+b=0$

$$\begin{bmatrix} (0,1) = c(1,1) + d(2,1) \\ c + 2d = 0 & d = -1 \\ c + d = 1 & c - 1 = 1 \rightarrow c = 2 \end{bmatrix} P_b' \rightarrow B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$