A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 7EG

Bookmark

Show all steps: (

ON

Problem

In any integral domain, if $x^2 = 1$, then $x^2 - 1 = (x + 1)(x - 1) = 0$; hence $x = \pm 1$. Thus, an element $x \neq \pm 1$ cannot be its own multiplicative inverse. As a consequence, p in p the integers p in p, the integers p in p in p, the integers p in p, the integers p in p in p, the integers p in p in p.

Prove the following:

If $p \equiv 3 \pmod{4}$, then (p + 1)/2 is even. (Why?) Conclude that

$$\left(\frac{p-1}{2}\right)!^2 \equiv 1 \pmod{p}$$

Step-by-step solution

Step 1 of 4

The objective is to prove that if $p \equiv 3 \pmod{4}$, then $\left(\frac{p-1}{2}\right)!^2 \equiv 1 \pmod{p}$.

Comment

Step 2 of 4

Let $p \equiv 3 \pmod{4}$.

Then, for some $k \in \mathbb{Z}^+$, p = 4k + 3.

$$\frac{p+1}{2} = \frac{4k+3+1}{2}$$

= 2k + 2, is even.

Therefore, if $p \equiv 3 \pmod{4}$, then $\frac{p+1}{2}$ is even.

Comment

Step 3 of 4

By Wilson's theorem, $(p-1)! \equiv -1 \pmod{p}$.

$$1 \cdot 2 \cdot \dots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \dots \cdot (p-1) \equiv -1 \pmod{p}$$

Now,

$$\frac{p+1}{2} \equiv -\frac{p-1}{2} \pmod{p}$$

$$\frac{p+3}{2} \equiv -\frac{p-3}{2} \pmod{p}$$

$$\vdots$$

$$(p-1) \equiv -1 \pmod{p}$$

Using this,

$$1 \cdot 2 \cdot \dots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \dots \cdot (p-1) \equiv -1 \pmod{p}$$

$$1 \cdot 2 \cdot \dots \cdot \frac{p-1}{2} \cdot (-1)^{\frac{p-1}{2}} \cdot 1 \cdot 2 \cdot \dots \cdot \frac{p-1}{2} \equiv -1 \pmod{p}$$

$$(-1)^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)!^2 \equiv -1 \pmod{p}$$

Multiply both sides by $\left(-1\right)^{\frac{p-1}{2}}$.

$$\left(\frac{p-1}{2}\right)!^2 \equiv -1^{\frac{p+1}{2}} \pmod{p}$$

As
$$\frac{p+1}{2}$$
 is even, $\left(\frac{p-1}{2}\right)!^2 \equiv 1 \pmod{p}$.

Comment

Therefore, it is proved that if $p \equiv 3 \pmod{4}$, then	$\left(\frac{p-1}{2}\right)!^2 \equiv 1 \pmod{p}$

Comment