Probability

Notation

Intersection of A and B: $A \cap B$ Intersection of A and B: $A \cap B$ Sample space: $A \cup \overline{A} = S$ Disjoint example: $A \cap \overline{A} = \emptyset$

Useful Laws and Theorems Derived from Set Notation

De Morgan's laws: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Addition laws for probabilities: $P(A) + P(B) - P(A \cap B) = P(A \cup B)$

Total probability law: $\Sigma_i P(A_i \cap B) = P(B)$ where A_i exhausts the sample space

Conditional probability: $\frac{P(A \cap B)}{P(B)} = P(A|B)$

Bayes' theorem: P(A|B)P(B) = P(B|A)P(A)

Note: $P(B) = P(B|A)P(A) + P(B|\overline{A})P(\overline{A})$, which gives the alternative form $P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\overline{A})P(\overline{A})}$

Permutations and Combination

Permutations of k objects from n: ${}^{n}P_{k} = \frac{n!}{(n-k)!}$

Combinations of k objects from n: ${}^{n}C_{k} = \frac{n!}{k!(n-k)!}$ Otherwise known as the binomial coefficient

Distribution Basics

Moment of distribution X: $\mu_k = E[X^k] = \int x^k f(x) dx$

Variance of distribution X: $V[X] = E[(X - \mu)^2] = E[X^2] - 2\mu E[X] + \mu^2 = E[X^2] - \mu^2$

Central moment of distribution X: $\nu_k = E[(X - \mu)^k] = \int (x - \mu)^k f(x) dx$

Normalised central moment: $\gamma_k = \frac{\nu_k}{\nu_k^2} = \frac{\nu_k}{\sigma^k}$

where γ_3 is the skewness and γ_4 is the kurtois of a distribution

Random Variables

Discrete Random Variables

Define X to be a discrete RV which takes only the values $x_i = 1, 2, ..., n$, then Y is discretely defined to be $y_i = Y(x_i)$

Probability function of Y: $g(y) = \begin{cases} \Sigma_j f(x_j) & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

where the sum extends over j for which $y_i = Y(x_j)$

If Y(x) has a single-valued inverse then we have the closed form expression for g(y)

Probability function of Y: $g(y) = \begin{cases} f(x(y_i)) & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

Continuous Random Variables

If X is a continuous RV then so to is Y(X)

Probability of Y for $y \to y + dy$: $g(y)dy = \int_{dS} f(x)dx$

If X(Y) is single-valued we have: $g(y)dy = |\int_{x(y)}^{x(y+dy)} f(x')dx'| = \int_{x(y)}^{x(y)+|\frac{dx}{dy}|dy} f(x')dx' = f(x(y))|\frac{dx}{dy}|dy$

Functions of Several Random Variables

Probability function of Z(X,Y): $p(z) = \sum_{i,j} f(x_i, y_i)$ where the sum extends over i, j such that $z = Z(x_i, y_i)$

For the continuous case: $p(z)dz = \int \int_{dS} f(x,y)dxdy$ where dS is the infinitesimal area between Z(x,y) = z and Z(x,y) = z + dz

Expectation of Z: $E[Z] = \int zp(z)dz = \int \int Z(X,Y)f(x,y)dxdy$

Taylor expansion of Z(X,Y): $Z \approx Z(\mu_x, \mu_y) + (X - \mu_x)(\frac{\partial Z}{\partial x})_{x=\mu_x} + (Y - \mu_y)(\frac{\partial Z}{\partial y})_{y=\mu_y}$ where the expansion is taken around the means of x and y

Expectation of Taylor expansion: $E[Z] \approx Z(\mu_x, \mu_y) + (E[X] - \mu_x)(\frac{\partial Z}{\partial x})_{x=\mu_x} + (E[Y] - \mu_y)(\frac{\partial Z}{\partial y})_{y=\mu_y}$ $E[Z] \approx Z(\mu_x, \mu_y)$

Variance of Z(X,Y): $V[Z] = \int (z - \mu_z)^2 p(z) dz = \int \int [Z - \mu_z]^2 f(x,y) dxdy$ Hence if x and y are two independent random variables, ie f(x,y) = g(x)h(y)setting Z = aX + BY + c yields: $V[Z] = a^2V[X] + b^2V[X]$

Variance can be approximated as: $V[Z] \approx V[X] (\frac{\partial Z}{\partial x})_{x=\mu_x}^2 + V[Y] (\frac{\partial Z}{\partial y})_{y=\mu_y}^2$

Generating Functions

Probability Generating Functions

The probability of X taking value $\sum_{n=0}^{\infty} f_n = 1$ n can be written as f_n , such that:

Probability generating function: $\Phi_X(t) = \sum_{n=0}^{\infty} f_n t^n = E[t^X]$

Sums of Random Variables

Define the sum as: $S_2 = X + Y$

The PGF of the sum has coefficients for t^n that are the probability that X + Y = n, this is equivalent to X = r and Y = n - r for $0 \le r \le n$.

Hence we have: $P(S_2 = n) = \sum_{r=0}^{n} P(X = r)P(Y = n - r)$

This leads to the PGF: $\Phi_{S_2}(t) = \sum_{r=0}^{\infty} \sum_{n=r}^{\infty} P(X=r)t^r P(Y=n-r)t^{n-r}$

Setting
$$n = r + s$$
 yields:
$$\Phi_{S_2}(t) = \sum_{r=0}^{\infty} P(X = r)t^r \sum_{s=0}^{\infty} P(Y = s)t^s = \Phi_X(t)\Phi_Y(t)$$

This result can be seen from:
$$E[t^{X+Y}] = E[t^X]E[t^Y]$$

The sum of a variable length of random numbers, ie $S_N = X_1 + X_2 + ... + X_N$, where N is defined to have $P(N = n) = h_n$ with PGF $\chi_N(t) = \sum_n h_n t^n$, can be predicted using:

Probability that
$$S_N = k$$

$$\zeta_k = \sum_{n=0}^{\infty} P(N=n)P(S_N = k) = \sum_{n=0}^{\infty} h_n \text{ x coeff of } t^k in[\Phi_X(t)]^n$$