

BES Jean-Baptiste
CARO Thomas
NOYE Valentin

M1 IMAGINE 2023-2024

Sommaire

- 1. Qu'est ce qu'un superpixel?
- 2. Quel est l'intêret?
- 3. Méthodes de segmentation superpixel
 - a. SLIC
 - b. Felzenszwalb
 - c. Quickshift
- 4. Métriques de qualité et comparaison de la segmentation
- 5. Méthodes de compression
 - a. Palette
 - b. Prédictif
 - c. Contour
- 6. Comparaison de la compression
- 7. Conclusion

<u>Ou'est ce qu'un superpixel?</u>

- Regroupement de pixels
- Selon certains critères

Quel est l'intêret?

- Effet de style
- Potentiel pour la décompression

MÉTHODES DE SEGMENTATION SUPERPIXEL

1) SLIC

2) FELZENSZWALB

3) QUICKSHIFT

SLIC

- Approche basée k-means
- Distance spatiale et colorimétrique
- Seuil de convergence sur le nombre de changements de classe

Avantages	Inconvénients
Selection du nombre de superpixels	Dépend de l'initialisation
Simplicité d'implémetation	Difficulté à segmenter des objets de tailles différentes

Felzenszwalb

- Approche basée sur un graphe
- Tri des arêtes par ordre croissant
- Critère de similarité colorimétrique
- Seuil de fusion et taille minimale de superpixels

Avantages	Inconvénients
Rapide	Résultats insatisfaisants pour une forte segmentation
Reconstitution fidèle	Se base sur la moyenne des couleurs des pixels

<u>Quickshift</u>

- Approche basée sur un arbre
- Basé sur la densité de Parzen
- Algorithme Hill-Climbler
- Taille de la fenêtre et variance du noyau

Avantages	Inconvénients
Rapide pour des faibles tailles de fenêtre	Lent pour des grandes tailles de fenêtre
Effet artistique	Perte d'information sur les contours

MÉTRIQUE DE QUALITÉ

• PSNR : Mesure pixel à pixel

• SSIM: Mesure structurelle

COMPARAISON DES MÉTHODES DE SEGMENTATION

Pour un PSNR de 25 dB:

SLIC

SSIM = 0.787

Felzenszwalb

SSIM = 0.704

Quickshift

SSIM = 0.733

MÉTHODES DE COMPRESSION

- 1) PALETTE
- 2) PRÉDICTIF
- 3) CONTOUR

Palette

- Passer du domaine RGB au domaine en niveau de gris à partir d'une image peu segmentée.
- Nécessité d'une entête avec la palette
- Taux de compression de 2 à 4.

Avantages	Inconvénients
Implémentation simple	Image segmentée en 256 superpixels maximum
Traitement rapide en mémoire	Palette en entête à prendre en compte

Prédictif

- Se base sur la variation des valeurs des pixels
- Prédiction MED
- Application d'une compression RLE efficace
- Taux de compression de 2 à 10

Avantages	Inconvénients
Très hauts taux de compréssion	Uniquement sur l'image segmentée

Contour

- Approche par graphe
- Décompression par remplissage
- Très efficace sur de fortes segmentations
- Taux de compression de 2 à 14.

Avantages	Inconvénients
Très hauts taux de compréssion	Uniquement sur l'image segmentée

me when the periodic table does not contain the element of surprise

COMPARAISON DES MÉTHODES DE COMPRESSION

CONCLUSION

MERCI

