# UNIVERSIDAD DE GUANAJUATO



## Programación en Ingenierías

Manejo de las sentencias de control

#### MANEJO DE LAS SENTENCIAS DE CONTROL



- Manejo de las sentencias de control
  - Sentencias de decisión o bifurcaciones
  - Ciclos o bucles
  - Sentencias de control
  - Anidamientos

#### Sentencias de control



**Sentencias de control.** Las sentencias de control permiten establecer el flujo del algoritmo a lo largo del programa, pueden o no ejecutar un segmento del código o pueden realizar de forma recursiva este segmento.

Tipos de sentencias de control:

- **Bifurcaciones:** instrucciones que permiten cambiar el flujo de las sentencias, realizando o no un segmento del código dependiendo el resultado de una comparación.
- **Bucles o ciclos:** instrucciones que permite repetir un segmento de código de forma especifica

Nota: Una condición es falsa si es cero, en caso contrario es verdadero.

#### **Bifurcaciones**



```
Operador ternario. Sentencia simple de decisión

Sintaxis:
Condición ? Verdadero : Falso

Sentencia if-else. Sentencia de decisión para rangos o valores.

Sintaxis:
if (condición)
verdadera;
else
```

Sentencia switch. Sentencias de decisión para valores de variables.

```
Sintaxis:
switch(variable)
{
    case valor1:
        break;
    case valor2:
        break;
    default:
}
```

falsa;

#### Bifurcaciones / Operador ternario



Suponga que quiere obtener las raices de una ecuación cuadratica:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = x_{1r} + ix_{1i} \quad x_2 = x_{2r} + ix_{2i} = x_{1r} - ix_{1i}$$

$$Si \ b^2 - 4ac \ge 0 \ o \ b^2 \ge 4ac$$

$$x_{1r} = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad x_{1i} = 0$$

$$x_{2r} = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \qquad x_{2i} = 0$$

$$Si \ b^2 - 4ac < 0 \ o \ b^2 < 4ac$$

$$x_{1r} = \frac{-b}{2a} \qquad x_{1i} = \frac{\sqrt{4ac - b^2}}{2a}$$

$$x_{2r} = \frac{-b}{2a} = x_{1r} \qquad x_{2i} = -\frac{\sqrt{4ac - b^2}}{2a} = -x_{1i}$$

Operador ternario. Sentencia simple de decisión

Sintaxis:

Condición ? Verdadero : Falso

## Bifurcaciones / Switch



Suponga que quiere dividir el rango de una variable de temperatura en cinco regiones:

|         | Muy alta |                                | Alta       | Templada |                      | Ba                    | ja                         | Muy    | baja       | Temperatura (T) |
|---------|----------|--------------------------------|------------|----------|----------------------|-----------------------|----------------------------|--------|------------|-----------------|
|         |          | T4                             | Т          |          | T                    | 2                     | T:                         | 1      |            | <b></b>         |
|         |          | T>T4                           |            | =T>T3    | _                    | :T>T2                 | T2>=                       | T>T1   | T1>=       | =T              |
| B1=T1>T | 0        | Baja, Templada, Alta, Muy alta |            |          |                      |                       | B = (B4<<3 B3<<2 B2<<1 B1) |        |            |                 |
| D1-11/1 | 1        | Muy baja                       |            |          |                      |                       | B2<<1 B3<<2 B4<<3          |        |            |                 |
|         | 0        | Templada, Alta, Muy alta       |            |          |                      | 15                    | 5 => 1                     | 111-   | > Muy baja |                 |
| B2=T2>T | 1        | Muy baja, Baja                 |            |          |                      | 14 => 1 1 1 0 -> Baja |                            |        |            |                 |
| B3=T3>T | 0        | Alta, Muy alta                 |            |          |                      |                       | 12 => 1 1 0 0 -> Templada  |        |            |                 |
|         | 1        | Templada, Muy baja, Baja       |            |          |                      |                       |                            |        |            |                 |
| B4=T4>T | 0        | Muy alta                       |            |          | 8 => 1 0 0 0 -> Alta |                       |                            |        |            |                 |
|         | 1        | Alta, T                        | emplada, N | ⁄luy baj | a, Baja              | a                     | 0                          | => 0 0 | 0 0 ->     | Muy alta        |

#### Ciclos o bucles



**Ciclo for.** Ciclo estructurado que cuenta con inicialización, incremento y comparación. El ciclo inicializa y compara, si la condición es verdadera realiza las instrucciones y el incremento y vuelve a comparara para continuar con el ciclo.

```
Sintaxis:
for(inicialización; comparación; incremento)
instrucciones;
```

**Ciclo while.** Ciclo de control que cuenta con comparación. El ciclo realiza la comparación si es verdadera realiza las instrucciones y vuelve a comparar para repetir el ciclo.

```
Sintaxis:
while(comparación)
instrucciones;
```

**Ciclo do-while.** Ciclo de control que realiza por lo menos en una ocasión las instrucciones. El ciclo realiza las instrucciones y después compara y si es verdadera repite el ciclo.

```
Sintaxis:
do{
    instrucciones;
}while(comparación);
```



$$\pi = 4 \times \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$ln(x) = 2\left\{ \left(\frac{x-1}{x+1}\right) + \frac{1}{3}\left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5}\left(\frac{x-1}{x+1}\right)^5 + \dots \right\} \qquad x > 0$$

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$sen^{-1}(x) = x + \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \frac{3}{4} \frac{x^5}{5} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{x^7}{7} + \cdots \quad |x| < 1$$



$$\pi = 4 \times \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right)$$

$$\pi = 4 \times pi$$

$$pi = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11}$$

$$pi = 1$$

$$i = 0$$

$$pi = pi - \frac{1}{3}$$

$$pi + = -\frac{1}{3}$$

$$s = -1$$

$$s = -1$$

$$2 * (i\%2) - 1$$

$$2 * (0\%2) - 1 = -1$$

$$i = 1$$

$$pi = pi + \frac{1}{5}$$

$$pi + = +\frac{1}{5}$$

$$s = -1 * s = -1$$

$$2 * (1\%2) - 1 = +1$$

$$i = 2$$

$$pi = pi - \frac{1}{7}$$

$$pi + = -\frac{1}{7}$$

$$s = -1 * s = +1$$

$$2 * (2\%2) - 1 = -1$$

$$i = 3$$

$$pi = pi + \frac{1}{9}$$

$$pi + = +\frac{1}{9}$$

$$s = -1 * s = -1$$

$$2 * (3\%2) - 1 = +1$$

$$i = 4$$

$$pi = pi - \frac{1}{11}$$

$$pi + = -\frac{1}{11}$$

$$s = -1 * s = +1$$

$$2 * (4\%2) - 1 = -1$$



$$\pi = 4 \times \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right)$$

$$\pi = 4 \times pi$$

$$pi = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11}$$

$$pi = 1$$

$$i = 0$$
  $pi = pi - \frac{1}{3}$   $pi + = -\frac{1}{3}$ 

$$i = 1$$
  $pi = pi + \frac{1}{5}$   $pi + = +\frac{1}{5}$ 

$$i = 2$$
  $pi = pi - \frac{1}{7}$   $pi + = -\frac{1}{7}$ 

$$i = 3$$
  $pi = pi + \frac{1}{9}$   $pi + = +\frac{1}{9}$ 

$$i = 4$$
  $pi = pi - \frac{1}{11}$   $pi + = -\frac{1}{11}$ 

$$2 * i + 3$$

$$2*0+3=3$$

$$2 * 1 + 3 = 5$$

$$2 * 2 + 3 = 7$$

$$2 * 3 + 3 = 9$$

$$2*4+3=11$$



$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = \sum_{i=0}^{n} \frac{x^i}{i!}$$



Potencia:

$$x^i = x \times x \times x \times \cdots$$

**Factorial** 

$$i! = 1 \times 2 \times 3 \times \cdots i$$

División

$$x^i/_i$$

$$\sum \frac{x^i}{i!}$$



$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = \sum_{i=0}^{n} \frac{x^i}{i!}$$

Supongamos x = 2.3 y n = 10 entonces:

| i | $x^i$    | i!     | $x^i/_{i!}$ | $\sum x^i/_{i!}$ |
|---|----------|--------|-------------|------------------|
| 0 | 1.0      | 1      | 1.0000      | 1.0000           |
| 1 | 2.3      | 1      | 2.3000      | 3.3000           |
| 2 | 5.29     | 2      | 2.6450      | 5.9450           |
| 3 | 12.167   | 6      | 2.0278      | 7.9728           |
| 4 | 27.984   | 24     | 1.1660      | 9.1388           |
| 5 | 64.363   | 120    | 0.5363      | 9.6751           |
| 6 | 148.035  | 720    | 0.2056      | 9.8808           |
| 7 | 340.482  | 5040   | 0.0675      | 9.9483           |
| 8 | 783.109  | 40320  | 0.0194      | 9.9677           |
| 9 | 1801.152 | 362880 | 0.0049      | 9.9727           |



$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = \sum_{i=0}^{n} \frac{x^i}{i!}$$

Supongamos x = 2.3 y n = 10 entonces:

#### Potencia:

$$x^i = x \times x \times x \times \cdots$$

#### Factorial

$$i! = 1 \times 2 \times 3 \times \cdots i$$

$$\frac{x^4}{4!} = \frac{x}{1} \frac{x}{2} \frac{x}{3} \frac{x}{4}$$

#### División

$$x^i/_{i!}$$

$$\sum \frac{x^i}{i!}$$



$$ln(x) = 2\left\{ \left(\frac{x-1}{x+1}\right) + \frac{1}{3} \left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1}\right)^5 + \dots \right\} \qquad x > 0$$

Supongamos x = 3.9 y n = 10 entonces:

Potencia:

$$\left(\frac{x-1}{x+1}\right)^i = \left(\frac{x-1}{x+1}\right) \times \left(\frac{x-1}{x+1}\right) \times \left(\frac{x-1}{x+1}\right) \times \cdots$$

Fracción

 $\frac{1}{i}$ 

División

$$x^i/_i$$

$$\sum \frac{x^i}{i}$$



$$ln(x) = 2\left\{ \left(\frac{x-1}{x+1}\right) + \frac{1}{3}\left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5}\left(\frac{x-1}{x+1}\right)^5 + \dots \right\} \qquad x > 0$$

Supongamos x = 3.9 y n = 10 entonces:

| i | $2 \times i$ | $2 \times i + 1$ |
|---|--------------|------------------|
| 0 | 0            | 1                |
| 1 | 2            | 3                |
| 2 | 4            | 5                |
| 3 | 6            | 7                |
| 4 | 8            | 9                |
| 5 | 10           | 11               |
| 6 | 12           | 13               |
| 7 | 14           | 15               |
| 8 | 16           | 17               |
| 9 | 18           | 19               |

$$ln(x) = 2 \times \sum_{i=0}^{n-1} \frac{1}{2 \times i + 1} \left(\frac{x-1}{x+1}\right)^{2 \times i + 1}$$



$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{i=0}^{n} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

| i | 2*i | 2*i+1 |
|---|-----|-------|
| 0 | 0   | 1     |
| 1 | 2   | 3     |
| 2 | 4   | 5     |
| 3 | 6   | 7     |
| 4 | 8   | 9     |
| 5 | 10  | 11    |
| 6 | 12  | 13    |

Índice

$$2i + 1$$

Signo

$$(-1)^{i}$$

Potencia:

$$x^{2i+1} = x \times x \times x \times \cdots$$

**Factorial** 

$$(2i+1)! = 1 \times 2 \times 3 \times \cdots (2i+1)$$

División

$$x^{2i+1}/(2i+1)!$$

$$\sum (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$



$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{i=0}^{n} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

Supongamos x = 1.2 y n = 10 entonces:

| i | 2 * i + 1 | $(-1)^i$ | $x^{2i+1}$ | (2i + 1)!  | $(-1)^{i} \frac{x^{2i+1}}{(2i+1)!}$ | $\sum (-1)^{i} \frac{x^{2i+1}}{(2i+1)!}$ |
|---|-----------|----------|------------|------------|-------------------------------------|------------------------------------------|
| 0 | 1         | 1        | 1.2        | 1          | 1.2                                 | 1.2                                      |
| 1 | 3         | -1       | 1.728      | 6          | -0.288                              | 0.912                                    |
| 2 | 5         | 1        | 2.488      | 120        | 0.020                               | 0.932                                    |
| 3 | 7         | -1       | 3.583      | 5,040      | -7.109e-4                           | 0.931                                    |
| 4 | 9         | 1        | 5.159      | 362,880    | 1.421e-5                            | 0.931                                    |
| 5 | 11        | -1       | 7.430      | 39,916,800 | -1.861e-7                           | 0.931                                    |



$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{i=0}^{n} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

Supongamos x = 1.2 y n = 10 entonces:

$$1! = 1$$

$$i = 0$$
  $3! = 1 \times 2 \times 3 = 1! \times 2 \times 3$   $2 \times i + 2 = 2$   $2 \times i + 3 = 3$ 

$$i = 1$$
 5! =  $1 \times 2 \times 3 \times 4 \times 5 = 3! \times 4 \times 5$   $2 \times i + 2 = 4$   $2 \times i + 3 = 5$ 

$$i = 2$$
  $7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 = 5! \times 6 \times 7$   $2 \times i + 2 = 6$   $2 \times i + 3 = 7$ 



$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{i=0}^{n} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

Supongamos x = 1.2 y n = 10 entonces:

| i | s *= (-1) | px *= (x * x)         | (2i + 1)!  | $(-1)^{i} \frac{x^{2i+1}}{(2i+1)!}$ | $\sum (-1)^{i} \frac{x^{2i+1}}{(2i+1)!}$ |
|---|-----------|-----------------------|------------|-------------------------------------|------------------------------------------|
| 0 | 1         | 1.2                   | 1          | 1.2                                 | 1.2                                      |
| 1 | -1        | 1.2*(1.2*1.2)=1.728   | 6          | -0.288                              | 0.912                                    |
| 2 | 1         | 1.728*(1.2*1.2)=2.488 | 120        | 0.020                               | 0.932                                    |
| 3 | -1        | 2.488*(1.2*1.2)=3.583 | 5,040      | -7.109e-4                           | 0.931                                    |
| 4 | 1         | 3.583*(1.2*1.2)=5.159 | 362,880    | 1.421e-5                            | 0.931                                    |
| 5 | -1        | 5.159*(1.2*1.2)=7.430 | 39,916,800 | -1.861e-7                           | 0.931                                    |



$$sen^{-1}(x) = x + \frac{1}{2}\frac{x^3}{3} + \frac{1}{2}\frac{3}{4}\frac{x^5}{5} + \frac{1}{2}\frac{3}{4}\frac{5}{6}\frac{x^7}{7} + \dots \quad |x| < 1$$

$$|x| < 1$$
  $-1 < x < 1$   $-1 < x & x < 1$   $-1 \ge x | |x \ge 1|$ 

$$2 \times i + 1$$

$$fct = x$$
  $asinx = 0$ 

$$\boldsymbol{\mathcal{X}}$$

$$1 - 0 = 1$$

$$asinx += fct$$

$$\frac{1}{2}\frac{x^3}{3}$$

$$fct \times = \left(\frac{2 \times i + 1}{2 \times i + 2} \frac{2 \times i + 1}{2 \times i + 3} x^2\right)$$

$$\frac{2}{3}$$

$$\frac{3.0}{4} \frac{3.0}{5}$$
 3

$$\begin{array}{ccc}
245 & 5 \\
 & \frac{135}{246} & 7
\end{array}$$

$$x^2 = \frac{5.0}{6} \frac{5.0}{7}$$



$$(1+x)^{\alpha} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} \alpha \\ 1 \end{pmatrix} x + \begin{pmatrix} \alpha \\ 2 \end{pmatrix} x^2 + \begin{pmatrix} \alpha \\ 3 \end{pmatrix} x^3 + \cdots \quad |x| < 1$$

$$\binom{n}{m} = \frac{n!}{(n-m)! \, m!} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-m) \cdot (n-m+1) \cdot \dots \cdot n}{(n-m)! \, *m!} = \frac{(n-m)! \cdot (n-m+1) \cdot \dots \cdot n}{(n-m)! \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot m}$$

$$\binom{n}{m} = \frac{(n-m+1)\cdots n}{1\cdot 2\cdot 3\cdot \cdots m} = \frac{n-m+1}{1}\cdot \frac{n-m+2}{2}\cdot \frac{n-m+3}{3}\cdot \cdots \cdot \frac{n}{m}$$

$$|x| < 1 \rightarrow -1 < x < 1 \rightarrow -1 < x & x < 1 \rightarrow -1 \ge x | |x \ge 1|$$

