End-sem: CS 754, Advanced Image Processing, 4th May

Instructions: There are 180 minutes for this exam. This exam is worth 10% of your final grade. Attempt all eight questions. Write brief answers - lengthy answers are not expected. Each question carries 10 points.

- 1. Briefly explain any two applications of robust principal components analysis (RPCA). For each application, make sure to explain why the underlying matrix can be expressed as the sum of a low rank matrix L and sparse matrix S. [5 + 5 = 10 points]
- 2. Clearly define the problem of compressive low rank matrix recovery, with clear definition of all mathematical terms. Give a mathematical definition of the matrix restricted isometry property. [6 + 4 = 10 points]
- 3. In blind compressed sensing, recall that we consider N compressive measurements of the form $\mathbf{y_i} = \mathbf{\Phi_i} \mathbf{\Psi} \boldsymbol{\theta_i} + \mathbf{\eta_i}, 1 \leq i \leq N$. For each $i, \mathbf{y_i}$ is the compressive measurement for the signal $\mathbf{x_i} \triangleq \mathbf{\Psi} \boldsymbol{\theta_i}$. We want to infer $\boldsymbol{\theta_i}$ as well as $\mathbf{\Psi}$ from the compressive measurements. The objective function that is optimized in this application is $J(\mathbf{\Psi}, \{\boldsymbol{\theta_i}\}_{i=1}^N) = \sum_{i=1}^N \|\mathbf{y_i} \mathbf{\Phi_i} \sum_{k=1}^K \mathbf{\Psi_k} \boldsymbol{\theta_{ik}}\|^2$ subject to the constraints $\forall i, \|\boldsymbol{\theta_i}\|_0 \leq T_0; \forall k \mathbf{\Psi_k}^t \mathbf{\Psi_k} = 1$. Why does the update of the dictionary columns $\{\mathbf{\Psi_k}\}_{k=1}^K$ require that the sensing matrices $\{\mathbf{\Phi_i}\}_{i=1}^N$ for the different signals $\{\mathbf{x_i}\}_{i=1}^N$ be different from each other? You may write an equation to support your answer. [10 points]
- 4. We have seen the following theorem for compressed sensing in class: Consider compressive measurements of the form $\mathbf{y} = A\boldsymbol{\theta} + \boldsymbol{\eta}$ where $\mathbf{y} \in \mathbb{R}^m$, $\boldsymbol{\theta} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $m \ll n$. Suppose A obeys the Restricted isometry property with restricted isometry constant δ_{2s} (of order 2s) such that $\delta_{2s} < \sqrt{2} 1$. Let $\boldsymbol{\theta}^*$ be the solution to the following optimization problem (P1): $\min \|\boldsymbol{\theta}\|_1$ such that $\|\mathbf{y} A\boldsymbol{\theta}\|_2 \le \varepsilon$ where $\|\boldsymbol{\eta}\|_2 \le \varepsilon$. Then, we have the following error bound: $\|\boldsymbol{\theta} \boldsymbol{\theta}^*\|_2 \le \frac{C_1}{\sqrt{s}} \|\boldsymbol{\theta} \boldsymbol{\theta}_s\|_1 + C_2\varepsilon$ where C_1, C_2 are monotonically increasing functions of δ_{2s} (in the domain [0,1]). Also the vector $\boldsymbol{\theta}_s$ is defined such that $\forall i \in \mathcal{S}, \theta_s(i) = \theta_i, \forall i \notin \mathcal{S}, \theta_s(i) = 0$ where the set \mathcal{S} consists of indices of the s largest absolute-value elements of $\boldsymbol{\theta}$. If the elements of the noise vector $\boldsymbol{\eta}$ are i.i.d. random variables from the uniform distribution $\mathcal{U}(-r, +r)$ for known r > 0, the value of ε would be equal to $r\sqrt{m}$. This seems to imply that the upper bound on the recovery error increases with \sqrt{m} , which is counter-intuitive as simulations show that the recovery error decreases with m. Can you reconcile this apparent contradiction? Also the bounds seem to imply that as s increases, the first term of the error decreases, whereas we would expect signals that are sparser (i.e. have fewer number of high-valued components) to allow for better recovery. Can you reconcile this apparent contradiction? [5+5=10 points]
- 5. Suppose you wanted to compute the coherence $\mu(\Phi, \Psi)$ between a Radon sensing matrix Φ of size $m \times n$, m < n and a $n \times n$ 2D-DCT representation matrix Ψ . In applications in tomography, we deal with large images and hence n and m will be large in value. Hence it is impossible to store Φ or Ψ in memory. How will you compute $\mu(\Phi, \Psi)$ in such a case? Recall that $\mu(\Phi, \Psi) \triangleq \max_{i,j} \frac{|\Phi^i \Psi_j|}{\|\Phi^i\|_2 \|\Psi_j\|_2}$ where Ψ_j is the j^{th} column-vector of Ψ ($1 \le j \le n$), and Φ^i is the i^{th} row-vector of Φ ($1 \le i \le m$). Assume you have access to a MATLAB function handle which efficiently computes the Radon transform of an image at specified angles. [10 points]
- 6. Explain the relative advantages and disadvantages of overcomplete dictionary representations as compared to orthonormal basis representations. [5 + 5 = 10 points]
- 7. Apart from sparsity of DCT or wavelet coefficients, briefly state any two statistical properties of natural images. We know that the negative log likelihood of a Laplacian random variable gives rise to an ℓ_1 term. Do the theoretical guarantees provided by the theorems for compressed sensing (refer to question 4) require the values in the unknown vector $\boldsymbol{\theta}$ to be Laplacian distributed? Explain. [5 + 5 = 10 points]

- 8. Consider that you learned a dictionary D to sparsely represent a certain class S of images say handwritten alphabet or digit images. How will you convert D to another dictionary which will sparsely represent the following classes of images? Note that you are not allowed to learn the dictionary all over again, as it is time-consuming.
 - (a) Class S_1 which consists of images obtained by applying motion blur to the images in S. Assume that the motion blur is represented as convolution with an oriented Gaussian kernel of a fixed known standard deviation σ and a fixed known blur direction d.
 - (b) Class S_2 which consists of images obtained by applying an affine intensity transform to the images in S. The affine transform has the form $I_{new}^i(x,y) = \alpha_i I_{old}^i(x,y) + \beta_i$ for unknown α_i and β_i (but constant throughout a given image, i.e. independent of x, y).
 - (c) Class S_3 which consists of images obtained by applying an intensity transformation $I_{new}^i(x,y) = (I_{old}^i(x,y))^2$ to the images in S. [3 + 3 + 4 = 10 points]