

ENPEP-BALANCE:Simple Case Results

ENPEP-BALANCE Training CourseSingapore December 5-9, 2011

Guenter CONZELMANN

Center for Energy, Environmental, and Economic Systems Analysis Decision and Information Sciences Division (DIS)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

guenter@anl.gov; ++1-630-252-7173

Changes in Input Variables: Cases 1 to 8

Case	1	2	3	4	5	6	7	8
Demand Growth (each year)	blank	0.05	blank	blank	blank	blank	blank	blank
Resource Price (Coal) Growth (each year)	blank	blank	0.03	blank	blank	blank	blank	blank
Price Sensitivity	blank	blank	blank	5	2	2	5	2
Lag Parameter	blank	blank	blank	0.5	0.1	0.9	0.5	0.9
Priority Link	blank	O: 2 C: 1						
Premium Multiplier	blank	blank	blank	blank	blank	blank	O: 0.6 C: 1.0	blank

Case 1 Results: QUANTITIES at the Allocation Node

- No demand growth specified over the study period
- The quantities are equally distributed on input links (equal market shares) because of inputs for price sensitivity (0) and lag parameter (0)

Case 1 Results: PRICES at the Allocation Node

- The prices of steam generated using coal (12.5 \$/BOE) and oil (25 \$/BOE) are different
- But because of price sensitivity and lag of 0, the model does not respond to this price signal and leaves the quantities/market shares the same (see previous slide)

Case 2: Demand Growth Rate Specified at 5%

STDEM Demand Node Properties							
Economic Pr	operties Emi	ssions Properties					
	<u>Year</u>	Growth Rate (Fraction)					
	2007	0.050					
	2008	0.050					
	2009	0.050					
	2010	0.050					
	2011	0.050					
	2012	0.050					
	2013	0.050					
	2014	0.050					
	2015	0.050					
	2016	0.050					
	2017	0.050					
	2018	0.050					
	2019	0.050					
	2020	0.050					

Case 3: Coal Price Increase 3% Per Year; No Demand Growth

- Coal price increases 3% per year (and so does coal steam), oil price remains constant
- The quantities of heat produced from both fuels (market shares) remain constant because there is no price sensitivity specified

Case 4: Price Sensitivity = 5 Lag Parameter = 0.5

- With a price sensitivity of 5, the decision between coal-steam and oil-steam is responsive to the (fairly large) price signals
- The model switches heavily to the lower-cost coal steam
- The pace at which the switch occurs is based on the lag parameter; with a lag parameter of 0.5, the response to the price signal is very quick; after about 7-8 years it reaches equilibrium for the constant price signal it receives

Case 5: Price Sensitivity = 2 Lag Parameter = 0.1

- With a price sensitivity of 2, the decision between coal-steam and oil-steam is less responsive to the price signals and the lower-priced coal steam takes less of the market
- A lag parameter of 0.1 means the market responds more slowly to the observed price signal

Case 6: Price Sensitivity = 2 Lag Parameter = 0.9

- If the lag parameter is closer to 1, the response to the price signal is almost immediate and the changes in the market share are achieved much more quickly
 - Equilibrium is reached after about 3 years
- Note that the shift is less than in Case 4 that uses a price sensitivity of 5

Case 7: Premium Multipliers for Coal = 1, Oil = 0.6; Price Sensitivity = 5, Lag Parameter = 0.5

- Because of the premium multiplier of 0.6 for oil steam, the allocation node looks at the oil steam as artificially lower priced (0.6 * \$25 = \$15) and uses that lower price in the market share calculations
- Note that the premium multiplier does NOT affect the price of the coal steam; only the way it is used in the market share calculations
- Oil now maintains a higher market share than under Case 4 which has the same price sensitivity and lag parameter as Case 7

Case 8: Priority Link co-st = 1 (oi-st = 2)

- Except for the base year, for which the quantities are predefined, the decision node will try to take all the supply it can get from priority link 1 first before taking anything from the second priority link
- Only if the priority link (or a node that is connected to it) runs into a capacity limit, will the decision node switch to the other links
- Note: Entering 2 for oi-st is optional

Cases 9-17: For Exercise

- Prepare the network structure
 - Draw the network
 - Label the network (each link and node has a name and abbreviation
- Prepare the input data
- Prepare (run/check) the node visitation sequence
- Run BALANCE
- Check/printout the results (tables, graphs, text files)

Changes in Input Variables: Case 9 to 17

Case	9	10	11	12	13	14	15	16	17
Priority Link	blank	blank	Blank						
Premium Multiplier	blank	blank	Blank						
Price Sensitivity	5	5	5	5	5	5	5	5	5
Lag factor	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Resource Price Growth (every year)	blank	blank	O: 0.02 C: 0.04						
Conversion Process Capacity Factor	O: 0.8 C: 0.8	O: 0.8 C: 0.8	O: 0.8 C: 0.4	O: 0.8 C: 0.8	O: 0.8 C: 0.8				
Conversion Process O-I Ratio (efficiency)	O: 0.8 C: 0.8	O: 0.8 C: 0.8	O: 0.8 C: 0.8	O: 0.8 C: 0.6	O: 0.8 C: 0.6	O: 0.8 C: 0.6	O: 0.8 C: 0.6	O: 0.8 C: 0.8	O: 0.8 C: 0.8
Conversion Process O&M Cost	O: 0 C: 2	O: 0 C: 0	O: 0 C: 0						
Conversion Process Investment Cost (\$1000)	O: 0 C: 0	O: 0 C: 5000	O: 0 C: 5000 (2007) 10000 (2012)	O: 0 C: 0	O: 0 C: 0				
Conversion Process Lifetime	O: 30 C: 30	O: 30 C: 40	O: 30 C: 40	O: 30 C: 30	O: 30 C: 30				
Conversion Process Interest Rate	O: 0.1 C: 0.1	O: 0.1 C: 0.1	O: 0.1 C: 0.1	O: 0.1 C: 0.1	O: 0.1 C: 0.05	O: 0.1 C: 0.05	O: 0.1 C: 0.05	O: 0.1 C: 0.1	O: 0.1 C: 0.1
Capacitated Link (Steam Links)	O: blank C: blank	O: blank C: blank 200 (2012) 300 (2017)	O: blank C: blank						

Case 9: Coal Boiler O&M Cost Changed from 0 to 2 \$/BOE starting in the Base Year

Case 10: Single Plant Investment Cost Changed from 0 to 5 Million Dollars in the Base Year; O&M =

Case 11: CBOIL Capacity Factor Changed from 0.8 to 0.4 in the Base Year

Case 11: CBOIL Capacity Factor Changed from 0.8 to 0.4 in the Base Year (continued)

- The price on link co-st is now higher than the price on link oi-st
- Because of the price sensitivity of 5 and lag parameter of 0.5, the market share of coal steam decreases and oil steam increases

Case 12: CBOIL Efficiency Changed from 0.8 to 0.6 in the Base Year Case 12; Capacity Factor = 0.4

Case 13: CBOIL Interest Rate Changed from 10% to 5% in the Base Year

Case 14: CBOIL Economic Lifetime Changed from 30 to 40 Years in the Base Year

Case 15: CBOIL Investment Cost Changed from 5 to 10 Million Dollars in 2012 (e.g., Retrofit)

Case 15: CBOIL Investment Cost Changed from 5 to 10 Million Dollars in 2012 (e.g., Retrofit)

 Because the price on the co-st link increases in 2012, its market share begins to decline

Case 16: Link co-st Capacity Changed from Unlimited in Base Year to 200 kBOE in 2012 and to 300 kBOE in 2017

Case 17: Change of Price Growth Rate of Resources in all Years from Blank (0) to 2%/yr for Oil and 4%/yr for Coal

