Комплексный анализ

Заблоцкий Данил

4 апреля 2024 г.

Оглавление

1	Голоморфные функции			2
	1.1	Комплексная плоскость		
		1.1.1	Комплексные числа	2
		1.1.2	Топология комплексной плоскости	5
		1.1.3	Пути, кривые и области	8
	1.2	Функции комплексного переменного		10
		1.2.1	Структура функции комплексного переменного	10
		1.2.2	Степенные ряды	12
		1.2.3	Дробно линейные отображения	14
	Спи	сок исі	пользуемой литературы	14

Глава 1

Голоморфные функции

Лекция 1: Начало

от 15 фев 12:45

1.1 Комплексная плоскость

1.1.1 Комплексные числа

Примечание. $\mathbb{R}^2 \coloneqq \mathbb{R} \times \mathbb{R}$

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1)(x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 - x_2y_1)$

Рис. 1.1:
$$x = r \cos \phi$$
, $y = r \sin \phi$

$$\begin{aligned} z &= (x,y) = x + iy \\ \overline{z} &= x - iy \end{aligned}, \quad x,y \in \mathbb{R}$$

$$(1,0) &=: 1, \quad (0,1) =: i, \quad (0,0) =: 0$$

$$x &=: Rez, \quad y =: Imz$$

$$r = \sqrt{x^2 + y^2} =: |z|$$
 $\phi = argz$, $0 \le argz < 2\pi$ главное значение аргумента
$$Argz := argz + 2\pi k, \ k \in \mathbb{Z}$$

$$e^{i\phi} = \cos\phi + i \cdot \sin\phi, \ \forall \phi \in \mathbb{R} - \text{формула Эйлера}$$

$$z = |z|(\cos argz + i \cdot \sin argz) - \text{тригонометрическая форма записи}$$

$$z = |z|e^{iargz} - \text{показательная форма записи}$$

$$e^z = e^{x+iy} = e^x \cdot e^{iy}, \quad e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}$$

$$z^n = |z|^n e^{inargz}, \quad z = re^{ir}$$

$$z^n = r^n(\cos n\phi + i\sin n\phi) - \text{формула Муавра}$$

$$z^n = z_0, \quad \sqrt[n]{z_0} = \sqrt[n]{|z_0|} \cdot e^{i\frac{argz_0+2\pi k}{n}}, \ 0 \le k \le n-1$$

Теорема 1.1.1 (Свойства комплексных чисел). $\forall z,z_1,z_2\in\mathbb{C}$ справедливы равенства:

1.
$$z \cdot \overline{z} = |z|^2$$
.

$$2. \ \overline{(z_1+z_2)}=\overline{z_1}+\overline{z_2}.$$

$$3. \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}.$$

$$A \equiv - \gamma$$

5.
$$\overline{z} = z \Leftrightarrow z \in \mathbb{R}$$
.

6.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
.

7.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
.

8.
$$||z_1| - |z_2|| \le |z_1 - z_2|$$
.

9.
$$arg(z_1 \cdot z_2) = argz_1 + argz_2$$
.
$$(mod \ 2\pi)$$

10.
$$arg\left(\frac{z_1}{z_2}\right) = argz_1 - argz_2$$
.

 $(mod\ 2\pi)$

Примечание.

$$\xi = \frac{x}{1+|z|^2}, \quad \eta = \frac{y}{1+|z|^2}, \quad \zeta = \frac{|z|^2}{1+|z|^2},$$
$$\xi^2 + \eta^2 + \zeta^2 - \zeta = 0.$$

Рис. 1.2: Сфера Римана S

$$\begin{split} P:\mathbb{C} &\xrightarrow{\text{на}} S \backslash \{N\}, \quad P(z) = (\xi,\eta,\zeta) \\ A(x^2+y^2) + Bx + Cy + D = 0, \quad A,B,C,D \in \mathbb{R}, \\ \gamma - \text{ окружность на } \mathbb{C}, \quad P(\Upsilon) - \text{ окружность на } S. \\ |z|^2 = x^2 + y^2 = \frac{\zeta}{1-\zeta}, \quad \left\{ \begin{array}{l} x = \frac{\xi}{1-\zeta} \\ y = \frac{\eta}{1-\zeta} \end{array} \right. \\ A\zeta + B\xi + C\eta + D(1-\zeta) = 0, \\ \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}, \quad P(\infty) := N. \end{split}$$

Топология комплексной плоскости

Примечание. $M_1, M_2 \in \mathbb{R}^3$,

$$dist(M_1, M_2) := \sqrt{(\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2},$$

 $d(z_1,z_2)\coloneqq |z_1-z_2|,\ z_1,z_2\in\mathbb{C}$ – расстояние на комплексной плоскости,

$$\rho(z_1, z_2) := dist(P(z_1), P(z_2)).$$

$$B_{\varepsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}$$

Определение 1.1.2 (Окрестность). Множество называется окрестностью точки, если оно содержит шар с центром в этой точке.

Обозначение: $O_z, z \in \overline{\mathbb{C}}$.

Примечание.

$$\begin{split} \forall z \in \mathbb{C} \quad d(z, \infty) &\coloneqq +\infty, \\ d : \ \mathbb{C}^2 &\longrightarrow \mathbb{R}, \\ d : \ \mathbb{C}^2 &\longrightarrow \overline{\mathbb{R}}, \\ \rho : \overline{\mathbb{C}^2} &\longrightarrow \mathbb{R}, \quad \rho(z, \infty) \in \mathbb{R}. \end{split}$$

Лекция 2: Продолжение

от 22 фев 12:45

Примечание (Свойства окрестностей).

- 1. $\forall z \in \overline{\mathbb{C}}, \ \forall V \in O_z \quad z \in V$.
- 2. $\forall z \in \overline{\mathbb{C}}, \ \forall U, V \in O_z \quad U \cap V \in O_z$.
- 3. $\forall z \in \overline{\mathbb{C}}, \ \forall U \in O_z, \ \forall V \supset U \quad V \in O_z.$
- 4. $\forall z \in \overline{\mathbb{C}}, \ \forall V \in O_z, \ \exists U \in O_z : \ U \subset V \ \& \ \forall w \in U \ U \in O_w.$

Определение 1.1.3 (Открытое множество). Множество называется *открытым*, если оно является окрестностью каждой своей точки.

Определение 1.1.4 (Окрестность множества). *Окрестностью множесства* называется множество, являющееся окрестностью каждой точки исходного множества.

Примечание. $D \subset \overline{\mathbb{C}}, \ z \in \mathbb{C}$

$$dist(z,D) \coloneqq \inf_{w \in D} d(z,w).$$

$$D_1, D_2 \subset \overline{\mathbb{C}}$$

$$dist(D_1, D_2) := \inf_{\substack{z \in D_1 \\ w \in D_2}} d(z, w).$$

Определение 1.1.5 (Внутренняя точка). $D \subset \overline{\mathbb{C}}, \ z \in D$ называется внутренней точкой множества D, если $D \in O_z$.

Определение 1.1.6 (Внутренность). Множество всех внутренних точек называется *внутренностью* и обозначается:

intD.

Определение 1.1.7 (Предельная точка множества). Точка называется *предельной точкой множества*, если в любой ее окрестности есть точки множества, отличные от данной.

Замечание. Точка является предельной точкой множества на расширенной комплексной плоскости \Leftrightarrow любая ее окрестность содержит бесконечное число точек данного множества.

Определение 1.1.8 (Окрестность бесконечности). $V \subset \overline{\mathbb{C}}$ является $oxpecm-nocmbo бесконечности, если <math>\exists \varepsilon > 0: \{z \in \overline{\mathbb{C}}: |z| > \varepsilon\} \subset V.$

Определение 1.1.9 (Точка прикосновения, замыкание). Точка $z\in \overline{\mathbb{C}}$ называется точкой прикосновения множества D, если $\forall V\in O_z$ $V\cap D\neq \emptyset.$

Множество всех точек прикосновения называется *замыканием* и обозначается:

clD.

Определение 1.1.10 (Замкнутое множество). Множество называется *замкнутым*, если его дополнение открыто.

Определение 1.1.11 (Граничная точка). Точка называется *граничной точкой множества*, если в любой ее окрестности есть как точки множества, так и точки его дополнения.

Обозначение: ∂D .

Примечание. Множество всех замкнутых подмножеств расширенной комплексной плоскости:

 $Cl\overline{\mathbb{C}}.$

Определение 1.1.12 (Компактное множество). Множество $\overline{\mathbb{C}}$ называется *компактным*, если любое его открытое покрытие имеет конечное подпокрытие.

Примечание. v – покрытие множества D, если $D\subset \bigcup_{V\in v}V,\ v\subset \underbrace{\mathcal{P}(\overline{\mathbb{C}})}_{2^{\overline{\mathbb{C}}}}$

Теорема 1.1.13 (Критерий компактности (первый)). Подмножество \mathbb{C} компактно \Leftrightarrow оно замкнуто и ограниченно.

Примечание. Множество ограниченно, если оно содержится в некотором шаре.

Замечание. $\overline{\mathbb{C}}$ – компактно.

Определение 1.1.14. $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится к $z\in\mathbb{C},$ если $\forall \varepsilon>0$ $\exists n_0\in\mathbb{N}:\ \forall n\geqslant n_0\ |z_n-z|<\varepsilon.$

$$d(z_n, z) \xrightarrow[n \to \infty]{} 0,$$

 $z_n \longrightarrow \infty$, если $\lim_{n \to \infty} |z_n| = \pm \infty$,

$$z = \lim_{n \to \infty} z_n, \quad z_n \xrightarrow[n \to \infty]{} z.$$

Замечание. $z_n \longrightarrow z$ в $\mathbb{C} \Leftrightarrow \left\{ \begin{array}{l} Rez_n \longrightarrow Rez \\ Imz_n \longrightarrow Inz \end{array} \right.$ в \mathbb{R} .

$$|z_n - z| = \sqrt{(Rez_n - Rez)^2 + (Imz_n - Imz)^2} \geqslant |Rez_n - Rez|,$$

 $Re(z_1 \pm z_2) = Rez_1 \pm Rez_2.$

Теорема 1.1.15 (Критерий Коши). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится $\Leftrightarrow \forall \varepsilon>0\ \exists n_0\in\mathbb{N}:\ \forall n,m\geqslant n_0$

$$|z_n - z_m| < \varepsilon.$$

Теорема 1.1.16 (Критерий Коши (в $\overline{\mathbb{C}}$)). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится $\Leftrightarrow \forall \varepsilon>0\ \exists n_0\in\mathbb{N}: \forall n,m\geqslant n_0$

$$\rho(z_n, z_m) < \varepsilon$$

Примечание. $z_n \xrightarrow[n \to \infty]{} z \Leftrightarrow \rho(z_n, z) \xrightarrow[n \to \infty]{} 0.$

Теорема 1.1.17 (Критерий компактности (второй)). $D \subset \overline{\mathbb{C}}, \ \forall \{z_n\}_{n\in\mathbb{N}} \subset D$

 $\exists \{z_{n_k}\}_{k\in\mathbb{N}} \subset \{z_n\}_{n\in\mathbb{N}} :$

$$z_{n_k} \longrightarrow z \in D.$$

Примечание. $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$

$$S_n := \sum_{k=1}^{\infty} z_k, \quad \sum_{n=1}^{\infty} z_n = \lim_{n \to \infty} S_n.$$

Определение 1.1.18 (Числовой ряд). *Числовым рядом* называется формальная сумма членов

Определение 1.1.19 (Абсолютно сходящийся числовой ряд). Числовой ряд называется абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty}|z_n|$.

Теорема 1.1.20 (Критерий Коши сходимости ряда). Ряд $\sum_{n=1}^{\infty} z_n$ сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists m \in \mathbb{N}: \ \forall n \geqslant m \ \forall k \in \mathbb{N}$

$$\underbrace{\left|z_{n+1} + z_{n+2} + \ldots + z_{n+k}\right|}_{|S_{n+k} - S_n|} < \varepsilon.$$

Следствие 1.1.21. Если ряд сходится, то его общий член стремится к нулю.

Следствие 1.1.22. Каждый абсолютно сходящийся числовой ряд – сходится.

1.1.3 Пути, кривые и области

Определение 1.1.23 (Путь). $\gamma: [a;b] \longrightarrow \mathbb{C}, \ \gamma$ – непрерывное отображение [a;b] в \mathbb{C} – это nymb.

Пример. $\gamma(t) = e^{it}, \quad o \leq t \leq 2\pi.$

Определение 1.1.24 (Эквивалентные пути).

$$\gamma_1: [a_1; b_1] \longrightarrow \mathbb{C},
\gamma_2: [a_2; b_2] \longrightarrow \mathbb{C}.$$

 $\gamma_1 \sim \gamma_2,$ если \exists возрастающая непрерывная функция $\phi:[a_1;b_1] \longrightarrow [a_2;b_2]:$

$$\gamma_1(t) = \gamma_2(\phi(t)), \quad \forall t \in [a_1, b_1].$$

Пример.

$$\gamma_1(t) = t, \qquad 0 \leqslant t \leqslant 1
\gamma_2(t) = \sin t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}
\gamma_3(t) = \sin t, \quad 0 \leqslant t \leqslant \pi
\gamma_4(t) = \cos t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}$$

$$\phi(t) = \arcsin t, \quad \gamma_1(t) = \gamma_2(\phi(t)).$$

Определение 1.1.25 (Жорданов путь). Путь называется *жордановым*, если он является взаимно однозначной функцией.

Лемма 1.1.26. Для каждого жорданова пути $\exists \delta > 0$: для любой не кольцевой точки пути окружность с центром в этой точке с радиусом δ пересекает путь не более чем в двух точках (δ – стандартный радиус жорданова пути).

Определение 1.1.27 (Кривая). *Кривой* называется класс эквивалентных между собой путей.

Лекция 3: Продолжение

от 29 фев 12:45

Определение 1.1.28 (Связное множество). $A \subset \overline{\mathbb{C}}$ называется *связным*, если $\nexists U, V \in O_P \overline{\mathbb{C}}: U \cap A \neq \emptyset, \ U \cap V = \emptyset.$

 $O_P\overline{\mathbb{C}}$ – совокупность всех открытых множеств

Пример.
$$A = \left\{ (0,y): \ -1 \leqslant y \leqslant 1 \right\} \cup \left\{ \left(x, \sin \frac{1}{x} \right): \ 0 < x \leqslant 1 \right\}$$
 — связное.

Определение 1.1.29 (Линейно связное множество). Множество называется *линейно связным*, если любые его точки можно соединить путем, значения которого лежат в этом множестве.

Замечание. В пространстве \mathbb{R}^n , и в частности $\overline{\mathbb{C}}$, любое открытое множество связно \Leftrightarrow оно линейно связно.

Определение 1.1.30 (Область). *Областью* в $\overline{\mathbb{C}}$ называется любое непустое открытое связное множество.

Определение 1.1.31 (Замкнутая область). *Замкнутой областью* будем называть замыкание области.

1.2 Функции комплексного переменного

1.2.1 Структура функции комплексного переменного

Примечание. $f:\mathbb{C}\longrightarrow\mathbb{C}$

dom f — область определения функции im f — область значения функции

Определение 1.2.1 (Предел отображения). $D \subset dom f, \ z_0 \in \overline{\mathbb{C}}$ — предельная точка D. Тогда $w_0 \in \overline{\mathbb{C}}$ называется пределом отображения f,

$$w_0:=\lim_{D\circ z\to z_0}f(z),$$
 если $\forall V\in O_{w_0}\ \exists U\in O_{z_0}:\ f(\mathring{U}\cap D)\subset V,$

$$U \in O_{z_0}, \quad \mathring{U} = U \backslash \{z_0\}.$$

Примечание. В случае, когда $z_0, w_0 \in \mathbb{C}$ следует, что $\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall z \in D$

$$0 < |z - z_0| < \delta \Rightarrow |f(z) - w_0| < \varepsilon.$$

Определение 1.2.2 (Непрерывная функция в точке). Функция f называется непрерывной в точке $z_0 \in \mathbb{C}$, если:

- 1. $z_0 \in dom f$.
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall z \in D$

$$0 < |z - z_0| < \delta \Rightarrow |f(z) - w_0| < \varepsilon.$$

Определение 1.2.3 (Непрерывная функция на множестве). Функция $f:\mathbb{C}\longrightarrow\mathbb{C}$ непрерывна на $D\subset\mathbb{C},$ если

- 1. $D \subset dom f$.
- 2. $\forall z_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall z \in D$

$$|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \varepsilon.$$

Примечание (Функция Дирихле). $D(x) = \left\{ \begin{array}{ll} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q} \end{array} \right.$, непрерывна на $\mathbb{R} \backslash \mathbb{Q}$.

Замечание. Если множество является открытым или совпадает с областью определения функции, то непрерывность функции на этом множестве равносильно ее непрерывности в каждой точке.

$$f_n: \mathbb{C} \to \mathbb{C}(n \in \mathbb{N}), \quad D := \bigcap_{n \in \mathbb{N}} dom f_n.$$

Определение 1.2.4. $A\subset D,\ f:A\to\mathbb{C},\ f_n\rightrightarrows f$ на A, если $\forall \varepsilon>0$ $\exists n_0\in\mathbb{N}:\ \forall z\in A\ \forall n\geqslant n_0$

$$|f_n(z) - f(z)| < \varepsilon.$$

 $(\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall n \ge n_0 \quad \sup_{z \in A} |f_n(z) - f(z)| < \varepsilon, \ |z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \varepsilon).$

Теорема 1.2.5 (Вейерштрасса). Если $\{f_n\}_{n\in\mathbb{N}}\subset C(A),\ f_n\rightrightarrows f,\ {\rm To}\ f\in C(A).$

Определение 1.2.6 (Функциональный ряд). *Функциональным рядом* называется формальная сумма членов последовательности функции.

Обозначение:
$$\sum_{n=1}^{\infty} f_n$$
.

Определение 1.2.7 (Числовой ряд). $\forall z \in D \ \sum_{n=1}^{\infty} f_n(z)$ называется $\mathit{чис-}$ ловым рядом $\{f_n(z)\}_{n \in \mathbb{N}}.$

$$S_n \coloneqq \sum_{k=1}^n f_k$$
 – частичная сумма.

Теорема 1.2.8 (Признак Вейерштрасса). $\sum_{n=1}^{\infty} f_n$ таков, что $\forall n \in \mathbb{N} \ \forall z \in A \ |f_n| \leqslant c_n$, причем $\sum_{n=1}^{\infty} c_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} f_n$ равномерно абсолютно сходится на A.

Теорема 1.2.9 (Критерий Коши (равномерная сходимость)). $\{f_n\}_{n\in\mathbb{N}}$ равномерно сходится на $A \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall n,m \geqslant n_0$

$$\sup_{z \in A} |f_n(z) - f_n(z_0)| < \varepsilon.$$

Определение 1.2.10 (Линейная функция). Функция $f:\mathbb{C}\longrightarrow\mathbb{C}$ называется линейной, если $\forall \alpha,\beta\in\mathbb{C}\ \forall z_1,z_2\in\mathbb{C}$

$$f(\alpha z_1 + \beta z_2) = \alpha f(z_1) + \beta f(z_2).$$

Замечание. Функция $f:\mathbb{C}\longrightarrow\mathbb{C}$ является линейной $\Leftrightarrow\exists a\in\mathbb{C}:\forall z\in\mathbb{C}$

$$f(z) = az$$

1.2.2 Степенные ряды

Примечание. $\sum_{n=0}^{\infty}a_n(z-z_0)^n$, где $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C},\ z,z_0\in\mathbb{C}.$

Теорема 1.2.11 (1-я теорема Абеля). Если ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ сходится в точке $z_1 \in \mathbb{C}$, то он абсолютно сходится при $|z-z_0| < |z_1-z_0|$. А если ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ расходится в точке $z_1 \in \mathbb{C}$, то он расходится и при \vdots $|z-z_0| > |z_1-z_0|$.

Доказательство.

1.
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 сходится $\Rightarrow \left| a_n (z_1 - z_0)^n \right| \xrightarrow[n \to \infty]{} 0.$ $c := \sup_{n \in \mathbb{N}} \left| a_n (z_1 - z_0)^n \right| < +\infty, \quad |z - z_0| < |z_1 - z_0|.$

Рассмотрим

$$\sum_{n=0}^{\infty} \left| a_n (z - z_0)^n \right| = \sum_{n=0}^{\infty} \left| a_n (z_1 - z_0)^n \right| \cdot \left| \frac{z - z_0}{z_1 - z_0} \right|^n \leqslant c \cdot \sum_{n=0}^{\infty} \left| \frac{z - z_0}{z_1 - z_0} \right|^n < +\infty.$$

2. добавить

Определение 1.2.12 (Радиус сходимости). Элемент $R \in [0; +\infty]$ называется радиусом сходимости ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, если при $|z-z_0| < R$ исходный ряд абсолютно сходится, а при $|z-z_0| > R$ исходный ряд расходится.

Теорема 1.2.13 (Коши-Адамара). Для степенного ряда $\sum_{n=0}^\infty a_n (z-z_0)^n$ положим $l:=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}$. Тогда:

- 1. Если l=0, то исходный ряд сходится $\forall z \in \mathbb{C}$.
- 2. Если $l=\infty$, то исходный ряд сходится только в точке z_0 .
- 3. Если $l \in (0; +\infty)$, то при $|z-z_0| < \frac{1}{l}$, а при $|z-z_0| > \frac{1}{l}$ исходный ряд расходится.

Доказательство.

1.
$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|} = 0,$$

$$z \in \mathbb{C}, \sum_{n=0}^{\infty} \left| a_n (z - z_0)^n \right|.$$

$$\lim_{n\to\infty} \sqrt[n]{\left|a_n(z-z_0)^n\right|} = \lim_{n\to\infty} \sqrt[n]{\left|a_n\right|} \cdot |z-z_0| = 0 \Rightarrow \text{ряд сходится}.$$

$$2. \ \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty,$$

$$\exists \{a_{n_k}\}_{k \in \mathbb{N}} \subset \{a_n\}_{n \in \mathbb{N}}, \quad \sqrt[n_k]{|a_{n_k}|} \to +\infty.$$

$$\sqrt[n_k]{|a_{n_k}|} \cdot |z - z_0| \to +\infty \Rightarrow |a_{n_k}|.$$

3.
$$|z - z_0| < \frac{1}{l} \Rightarrow l|z - z_0| < 1$$
.

Лекция 4: Продолжение

Лекция 5: Продолжение

от 7 мар 12:45 от 14 мар 12:45

Теорема 1.2.14 (Единственности). Если ряды $\sum_{n=0}^{\infty} a_n z^n$ и $\sum_{n=0}^{\infty} b_n z^n$ сходятся в круге $|z| \in R \neq 0$ и в

Лекция 5: Продолжение

от 21 мар 12:45

Теорема 1.2.15. $f = u_i v$ у и в вещественные мнимые части комлиексной функции ф, если у и в непрерывно дифференцируемы в функции и в этой области в точке консерватизм угло

Теорема 1.2.16. f=u+iv если функции у и в непрерывно дифференцируемы в области и в этой области функция ф обладает свойством постоянства искажения масштаба, то фунцкия ф голоморфна или антиголоморфна.

Функция антиголоморфна, если голоморфны ее сопряженные.

Определение 1.2.17. Говорят, что фунцкия f голоморфна (моногенна) в бесконечно удаленной точке, если функция $g(z):=f\left(\frac{1}{z}\right)$ голоморфна (моногенна) в нуле.

$$f(z) = \frac{1}{z}$$
, $g(z) = f\left(\frac{1}{z}\right) = z$.

Примечание.

$$df(z_0): \mathbb{C} \ni h \to f^{(z_0)} \cdot h \in \mathbb{C}.$$

$$df(z_0) = f^{(z_0)} dz,$$

$$f(z) = z, \quad \mathbb{C} \ni h \to h \in \mathbb{C},$$

$$\forall z \in \mathbb{C} f^{(z)} \ f^{(z)} = 1,$$

$$df(z_0)(h) = f^{(z_0)} \cdot h,$$

Примечание (Правила дифференцирования).

1.
$$\forall \alpha, \beta \in \mathbb{C} \quad (\alpha f + \beta g)' = \alpha \cdot f' + \beta \cdot g';$$

1.2.3 Дробно линейные отображения

Лекция 7: Написать

Примечание. $u: \mathbb{R}_+ \to \mathbb{R}^n$,

$$\begin{cases} u' = Au \\ u(0) = u_0 \end{cases}$$

от 4 апр 12:45

Литература

- [1] Шабат «Введение в комплексный анализ, 1976» (том 1)
- [2] Привалов «Введение в ТФКП, 1967»
- [3] Бицадзе «Основы теории аналитических функций комплексного переменного, 1984»
- [4] Волковыский, Лунц, Араманович «Сборник задач по ТФКП», 1975»
- [5] Гилев В.М. «Основы комплексного анализа. Ч.1», 2000»
- [6] Исапенко К.А. «Комплексный анализ в примерах и упражнениях (Ч.1, 2017, Ч.2, 2018)»
- [7] Мещеряков Е.А., Чемеркин А.А. «Комплексный анализ. Практикум»
- [8] Боярчук А.К. «Справочное пособие по высшей математике» (том 4)