Вступительный экзамен по физике 2015

2 вариант

- 1. Дайте определение равномерного движения материальной точки по окружности. Каково по величине и направлению ускорение материальной точки при ее равномерном движении по окружности.
- 2. Сформулируйте основные положения молекулярно-кинетической теории. Какова масса и размер молекул по порядку величины.
- 3. Дайте определение потенциала электростатического поля. Запишите формулу для потенциала электростатического поля точечного заряда.
- 4. Какие линзы называются тонкими? Приведите примеры построения изображений в собирающей и рассеивающей линзах.
- 5. Задача. Маленький груз, подвешенный к потолку на невесомой, нерастяжимой нити, вращается в горизонтальной плоскости, отстоящей от потолка на расстоянии h=1,1 м. Найдите частоту v вращения груза. Ускорение свободного падения примите равным $g=10\frac{M}{c^2}$.

6. Задача.

С одним молем идеального одноатомного газа проводят цикл, показанный на рисунке. На участке 1–2 объем газа увеличивается в m=2 раза. Процесс 2–3 — адиабатическое расширение, процесс 3–1 — изотермическое сжатие при температуре $T_0=300~K$. Найдите работу A на участке 2–3. Универсальную газовую постоянную примите равной $R=8, 3\frac{\mathcal{A} \mathcal{H}}{MOAD-K}$.

- 7. Задача. Пластины плоского воздушного конденсатора расположены горизонтально. Верхняя пластина сделана подвижной и удерживается в начальном состоянии на высоте h=1 мм над верхней пластиной, которая закреплена. Конденсатор зарядили до разности потенциалов U=1000 B, отключили от источника и освободили верхнюю пластину. Какую скорость v приобретет падающая пластина к моменту соприкосновения с нижней пластиной? Масса верхней пластины m=4,4 s, площадь каждой из пластин S=0,01 м², электрическая постоянная $\varepsilon_0=8,85\cdot 10^{-12}\frac{\phi}{m}$. Ускорение свободного падения примите равным $g=10\frac{M}{c}$. Сопротивлением воздух можно пренебречь.
- 8. Задача. На стеклянный шар радиуса R=10~cm с показателем преломления n=1,41 падает узкий пучок света, образуя угол $\alpha=30^{\circ}$ с осью, проведенной через точку падения и центр шара. На каком расстоянии d от этой оси пучок выйдет из шара?
 - Задача.

На рисунке представлена схема энергетических уровней электронной оболочки атом и указаны частоты фотонов, излучаемых и поглощаемых при переходах между этими уровнями. Какова минимальная длина волны фотонов, излучаемых атомом при любых возможных переходах между уровнями E_1 , E_2 , E_3 и E_4 , если $v_{13}=7\cdot 10^{14}~\Gamma u$, $v_{24}=5\cdot 10^{14}~\Gamma u$, $v_{32}=3\cdot 10^{14}~\Gamma u$? Скорость света $c=3\cdot 10^{8}\frac{M}{c}$.

10. Задача. Радиоактивный препарат с большим периодом полураспада помещен в медный контейнер массой $M=0,5~\kappa z$. За $\tau=2$ часа температура контейнера повысилась на $\Delta T=5,2~K$. Известно, что данный препарат испускает α -частицы с энергией $E=5,3~M \ni B~(1~\ni B=1,6\cdot 10^{-19}~\mathcal{Д})$, причем энергия всех испущенных α -частиц полностью переходит во внутреннюю энергию контейнера. Определите активность препарата A, т.е. количество α -частиц, рождающихся в нем за 1 с. Удельная теплоемкость меди $c=0,385\frac{\kappa\mathcal{J})}{\kappa z\cdot K}$. Теплоемкостью препарата и теплообменом с окружающей средой пренебречь.