A solutions manual for Set Theory by Thomas Jech

https://github.com/9beach

In December 2017, for no special reason I started studying mathematics and writing a solutions manual for Set Theory by Thomas Jech.

GitHub repository here, HTML versions here, and PDF version here.

Contents

Part I: Basic Set Theory

- 1. Axioms of Set Theory
- 2. Ordinal Numbers
- 3. Cardinal Numbers
- 4. Real Numbers wip
- 5. The Axiom of Choice and Cardinal Arithmetic
- 6. The Axiom of Regularity
- 7. Filters, Ultrafilters and Boolean Algebras
- 8. Stationary Sets
- 9. Combinatorial Set Theory
- 10. Measurable Cardinals
- 11. Borel and Analytic Sets
- 12. Models of Set Theory

Part II: Advanced Set Theory

- 13. Constructible Sets
- 14. Forcing
- 15. Applications of Forcing
- 16. Iterated Forcing and Martin's Axiom
- 17. Large Cardinals
- 18. Large Cardinals and L
- 19. Iterated Ultrapowers and L[U]
- 20. Very Large Cardinals
- 21. Large Cardinals and Forcing
- 22. Saturated Ideals
- 23. The Nonstationary Ideal
- 24. The Singular Cardinal Problem
- 25. Descriptive Set Theory
- 26. The Real Line

Part III: Selected Topics

- 27. Combinatorial Principles in L
- 28. More Applications of Forcing
- 29. More Combinatorial Set Theory
- 30. Complete Boolean Algebras
- 31. Proper Forcing
- 32. More Descriptive Set Theory
- 33. Determinacy
- 34. Supercompact Cardinals and the Real Line
- 35. Inner Models for Large Cardinals
- 36. Forcing and Large Cardinals
- 37. Martin's Maximum
- 38. More on Stationary Sets

Part I: Basic Set Theory

1. Axioms of Set Theory

1.1. Verify (1.1) (a, b) = (c, d) if and only if a = c and b = d.

Proof. If a = c and b = d, then $(a, b) = \{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\} = (c, d)$. Assume that (a, b) = (c, d) and a = b. Then $\{\{c\}, \{c, d\}\} = \{\{a\}\}\}$; thus $\{c, d\} \in \{\{a\}\}\}$ and $\{c\} \in \{\{a\}\}\}$, so $\{c, d\} = \{a\} = \{c\}$. Hence c = d = a. Since it was assumed that a = b, a = c and b = d. Assume that (a, b) = (c, d) and $a \neq b$. Since $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\}$ and $\{a\} \neq \{a, b\}$, $\{c\} = \{a\}$ and $\{a, b\} = \{c, d\}$; thus c = a and d = b. \square

1.2. There is no set X such that $P(X) \subset X$.

Proof. Suppose $P(X) \subset X$, then we have a function f from X onto P(X). But the set $Y = \{x \in X : x \notin f(x)\}$ is not in the range of f: If $z \in X$ were such that f(z) = Y, then $z \in Y$ if and only if $z \notin Y$, a contradiction. Thus f is not a function of X onto P(X); also a contradiction. \square

Let

$$\mathbb{N} = \bigcap \{X : X \text{ is inductive}\}.$$

 \mathbb{N} is the smallest inductive set. Let us use the following notation:

$$0=\emptyset, \quad 1=\{0\}, \quad 2=\{0,1\}, \quad 3=\{0,1,2\}, \quad \dots$$

If $n \in \mathbb{N}$, let $n+1 = n \cup \{n\}$. Let us define < (on \mathbb{N}) by n < m if and only if $n \in m$. A set T is transitive if $x \in T$ implies $x \subset T$.

1.3. If X is inductive, then the set $\{x \in X : x \subset X\}$ is inductive. Hence \mathbb{N} is transitive, and for each $n, n = \{m \in \mathbb{N} : m < n\}$.

Proof. Let $Y = \{x \in X : x \subset X\}$. Since $\emptyset \subset X$, and $\emptyset \in X$, $\emptyset \in Y$. Now let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, i.e., $\{y\} \subset X$, and $y \cup \{y\} \in X$, and since $y \subset X$, $y \cup \{y\} \subset X$; thus $y \cup \{y\} \in Y$. Therefore, Y is inductive.

Let $Y_{\mathbb{N}} = \{x \in \mathbb{N} : x \subset \mathbb{N}\}$, then $Y_{\mathbb{N}} \subset \mathbb{N}$, and since $Y_{\mathbb{N}}$ is inductive, $\mathbb{N} \subset Y_{\mathbb{N}}$; thus $\mathbb{N} = Y_{\mathbb{N}}$, and so we have that $x \in \mathbb{N}$ implies $x \subset \mathbb{N}$. Therefore, \mathbb{N} is transitive.

It's obvious that $k \in n \cup \{n\}$ if and only if $k \in n$ or k = n. So it follows that for all $k, n \in \mathbb{N}, k < n + 1$ if and only if k < n or k = n. Now we show that for each $n, n = \{m \in \mathbb{N} : m < n\}$ by induction. Let P(x) be the property " $x = \{m \in \mathbb{N} : m < x\}$ ". P(0) holds, and assume that P(n) holds. $n + 1 = n \cup \{n\}$ $= \{m \in \mathbb{N} : m < n\} \cup \{n\} = \{m \in \mathbb{N} : m < n\} \cup \{n\} = \{m \in \mathbb{N} : m < n\}$. \square

1.4. If X is inductive, then the set $\{x \in X : x \text{ is transitive}\}$ is inductive. Hence every $n \in \mathbb{N}$ is transitive.

Proof. Let $Y = \{x \in X : x \text{ is transitive}\}$. Since $\emptyset \in X$, and \emptyset is transitive, $\emptyset \in Y$. Now let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, and $y \cup \{y\} \in X$. Let $z \in y \cup \{y\}$, then either $z \in y$ or z = y; since y is transitive, in any case, $z \subset y \cup \{y\}$. Thus $y \cup \{y\}$ is transitive, and so $y \cup \{y\} \in Y$. Therefore, Y is inductive.

Let $Y_{\mathbb{N}} = \{x \in \mathbb{N} : x \text{ is transitive}\}$, then $Y_{\mathbb{N}} \subset \mathbb{N}$, and since $Y_{\mathbb{N}}$ is inductive, $\mathbb{N} \subset Y_{\mathbb{N}}$; thus $\mathbb{N} = Y_{\mathbb{N}}$. Therefore, every $n \in \mathbb{N}$ is transitive. \square

1.5. If X is inductive, then the set $\{x \in X : x \text{ is transitive and } x \notin x\}$ is inductive. Hence $n \notin n$ and $n \neq n+1$ for each $n \in \mathbb{N}$.

Proof. Let $Y = \{x \in X : x \text{ is transitive and } x \notin x\}$. Since $\emptyset \in X$, and \emptyset is transitive and $\emptyset \notin \emptyset$, $\emptyset \in Y$. Now let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, and $y \cup \{y\} \in X$. We already have that $y \cup \{y\}$ is transitive. Suppose $y \cup \{y\} \in y \cup \{y\}$, then $y \cup \{y\} = y$ or $y \cup \{y\} \in y$, i.e., $y \cup \{y\} \subset y$; in any case, $\{y\} \subset y$, i.e., $y \in y$; a contradiction. Thus $y \cup \{y\} \notin y \cup \{y\}$, and so $y \cup \{y\} \in Y$. Therefore, Y is inductive.

Let $Y_{\mathbb{N}} = \{x \in \mathbb{N} : x \text{ is transitive and } x \notin x\}$, then $Y_{\mathbb{N}} \subset \mathbb{N}$, and since $Y_{\mathbb{N}}$ is inductive, $\mathbb{N} \subset Y_{\mathbb{N}}$; thus $\mathbb{N} = Y_{\mathbb{N}}$, and so $n \notin n$. Suppose n+1=n, i.e., $n \cup \{n\} = n$, then $\{n\} \subset n$, i.e., $n \in n$; a contradiction. Therefore, $n \notin n$ and $n \neq n+1$ for each $n \in \mathbb{N}$. \square

1.6. If X is inductive, then $\{x \in X : x \text{ is transitive and every nonempty } z \subset x \text{ has an } \in \text{-minimal element}\}$ is inductive $(t \text{ is } \in \text{-minimal in } z \text{ if there is no } s \in z \text{ such that } s \in t).$

Proof. Let P(x) be the property "every nonempty $z \subset x$ has an \in -minimal element"; let $Y = \{x \in X : x \text{ is transitive and } P(x)\}$. $\emptyset \in X$, and is transitive, and has no nonempty subset, thus $\emptyset \in Y$. Let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, and $y \cup \{y\} \in X$. We already have that $y \cup \{y\}$ is transitive. Now we show that $P(y \cup \{y\})$ holds. $y \notin y$; otherwise $\{y\} \subset y$ does not have an \in -minimal element $(\cdots y \in y \in y \cdots)$, a contradiction. There is no $a \in y$ such that $y \in a$; otherwise $y \in a \in y \Rightarrow y \in a \subset y \Rightarrow y \in y$. Hence for every nonempty $z \subset y$ if m is an \in -minimal element in z then so is in $z \cup \{y\}$; otherwise $y \in m$, a contradiction. Similarly, $P(\{y\})$ holds; otherwise $\cdots y \in y \in y \cdots$. Therefore, $P(y \cup \{y\})$ holds, and so Y is inductive. \square

1.7. Every nonempty $X \subset \mathbb{N}$ has an \in -minimal element. [Pick $n \in X$ and look at $X \cap n$.]

Proof. Since $\mathbb N$ is the smallest inductive set, from 1.6, we have that every $n \in \mathbb N$ has an \in -minimal element. Let $n \in X$. If $n \cap X = \emptyset$, then n is an \in -minimal element. Suppose not. There exists $m \in X \setminus n$ such that $m \in n$, but then since $n = \{m \in \mathbb N : m < n\}, \ n \cap X \neq \emptyset$; a contradiction. If $n \cap X \neq \emptyset$, then $n \cap X \subset n$ has an \in -minimal element, and it's an \in -minimal element of X; otherwise similarly to the previous, a contradiction. \square

1.8. If X is inductive then so is $\{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$. Hence each $n \neq 0$ is m+1 for some m.

Proof. Let $A = \{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$; let $a \neq \emptyset \in A$. Since $a = y \cup \{y\}$ for some y , so is $a \cup \{a\}$ for a ; thus $a \cup \{a\} \in A$. Therefore, A is inductive, and each $n \neq 0$ is $m+1$ for some m . \square
1.9 (Induction). Let A be a subset of $\mathbb N$ such that $0 \in A$, and if $n \in A$ then $n+1 \in A$. Then $A = \mathbb N$.
Proof. By definition, A is an inductive subset of \mathbb{N} . Therefore, $A = \mathbb{N}$. \square
A set X has n elements (where $n \in \mathbb{N}$) if there is a one-to-one mapping of n onto X . A set is <i>finite</i> if it has n elements for some $n \in \mathbb{N}$, and <i>infinite</i> if it is not finite. A set S is T -finite if every nonempty $X \subset P(S)$ has a \subset -maximal element, i.e., $u \in X$ such that there is no $v \in X$ with $u \subset v$ and $u \neq v$. S is T -infinite if it is not

1.10. Each $n \in \mathbb{N}$ is T-finite.

T-finite. (T is for Tarski.)

Proof. Let $A = \{n \in \mathbb{N} : n \text{ is T-finite}\}$. We show that $A = \mathbb{N}$ by induction. $P(\emptyset) = \{\emptyset\}$ has the only nonempty subset $\{\emptyset\}$ which has a \subset -maximal element \emptyset .

Let $n \in A$; let $X \subset P(n+1)$. For some $Y \subset P(n)$, X is either Y or $Z = \{x \cup \{n\} : x \in Y\}$. For the latter case, let a be a \subset -maximal element of Y. Then it's obvious that $a \cup \{n\}$ is a \subset -maximal element of Z; thus X is T-finite. \square

1.11. \mathbb{N} is T-infinite; the set $\mathbb{N} \subset P$ (\mathbb{N}) has no \subset -maximal element.

Proof. For any $n \in \mathbb{N}$, there exists n+1 such that $n \subsetneq n+1$; thus $\mathbb{N} \subset P(\mathbb{N})$ has no \subset -maximal element. \square Note that $\mathbb{N} \in P(\mathbb{N})$, $\mathbb{N} \subset P(\mathbb{N})$, and $\mathbb{N} = \mathbb{N}$.

1.12. Every finite set is T-finite.

Proof. Let F be a finite set, then there is a one-to-one mapping f of F onto $n \in \mathbb{N}$. Let $A \subset P(F)$ be a nonempty set. Then $B = \{f(X) \subset P(n) : X \in A\}$ is nonempty, and has a \subset -maximal element. It's obvious that $\forall X, Y \in A(X \subset Y \iff f(X) \subset f(Y))$; A has a \subset -maximal element. \square

1.13. Every infinite set is T-infinite. [If S is infinite, consider $X = \{u \subset S : u \text{ is finite}\}.$]

Proof. Since $\emptyset \in X$, X is nonempty. Suppose X has a \subset -maximal element m. Then $S \setminus m \neq \emptyset$; otherwise S is a subset of a finite set; a contradiction, and so there exists $x \in S \setminus m$. Then $m \subsetneq m \cup \{x\} \in X$; a contradiction. \square

1.14. The Separation Axioms follow from the Replacement Schema. [Given ϕ , let $F = \{(x, x) : \phi(x)\}$. Then $\{x \in X : \phi(x)\} = F(X)$, for every X.]

Proof. Let $\varphi(x,y)$ be $x=y \wedge \phi(x)$. Then $F=\{(x,x):\phi(x)\}=\{(x,y):\varphi(x,y)\}$. Since $\forall x \forall y \forall z (\varphi(x,y) \wedge \varphi(x,z) \to y=z)$ holds, $\varphi(x,y)$ is a functional formula. Therefore, we have that The Separation Axioms follow from the Replacement Schema.

$$F(X) = \{ y : (\exists x \in X) \varphi(x, y) \} = \{ y : (\exists x \in X) x = y \land \phi(x) \} = \{ x : (\exists x \in X) \phi(x) \} = \{ x \in X : \phi(x) \}. \quad \Box$$

- **1.15.** Instead of Union, Power Set, and Replacement Axioms consider the following weaker versions:
 - (1.8) $\forall X \exists Y \bigcup X \subset Y$, i.e., $\forall X \exists Y (\forall x \in X) (\forall u \in x) u \in Y$,
 - $(1.9) \ \forall X \exists Y P(X) \subset Y$, i.e., $\forall X \exists Y \forall u (u \subset X \to u \in Y)$,
 - (1.10) If a class F is a function, then $\forall X \exists Y F(X) \subset Y$.

Then axioms 1.4, 1.5, and 1.7 can be proved from (1.8), (1.9), and (1.10), using the Separation Schema (1.3).

Proof. Using the Separation Schema,

- $(1.8) \implies \{x \in Y : (\exists a \in X) x \in a\} = \bigcup X,$
- $(1.9) \implies \{x \in Y : x \subset X\} = P(X),$
- $(1.10) \implies \{y \in Y : (\exists x \in X)\varphi(x, y, p)\} = F(X). \quad \Box$

Proof. Given $\alpha_0 \in Ord$, we define $\alpha_{n+1} = \alpha_n + 1$, and $\beta = \lim_{n \to \omega} \alpha_n$, i.e., $\beta = \bigcup \{\alpha_n : n < \omega\} = \sup \{\alpha_n : n < \omega\}$. Then since the union of ordinals is an ordinal, β is an ordinal. And for every $\gamma < \beta$, there exists α_n such that $\alpha_n > \gamma$; otherwise $\gamma \geq \sup \{\alpha_n : n < \omega\}$, a contradiction. Thus $\gamma + 1 < \alpha_n + 1 = \alpha_{n+1} < \beta$, and so β is a limit ordinal. Therefore, there are arbitrarily large limit ordinals. \square

2.7. Every normal sequence $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ has arbitrarily large *fixed points*, i.e., α such that $\gamma_{\alpha} = \alpha$.

[Let $\alpha_{n+1} = \gamma_{\alpha_n}$, and $\alpha = \lim_{n \to \omega} \alpha_n$.]

Proof. Since $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ is increasing, for $\beta \in Ord$, there exists $m \in Ord$ such that $\gamma_m > \beta$. Let $\alpha_0 = \gamma_m$, $\alpha_{n+1} = \gamma_{\alpha_n}$. Then $\langle \alpha_n : n \in \omega \rangle$ is increasing, so we let $\alpha = \lim_{n \to \omega} \alpha_n$; similarly to 2.6, α is a limit ordinal. Hence we have that $\alpha = \lim_{n \to \omega} \alpha_{n+1} = \lim_{n \to \omega} \gamma_{\alpha_n} = \lim_{\xi \to \alpha} \gamma_{\xi} = \gamma_{\lim_{\xi \to \alpha} \xi} = \gamma_{\alpha}$. Therefore, $\gamma_{\alpha} = \alpha$

- **2.8.** For all α, β and γ ,
 - (i) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$,
 - (ii) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$,
 - (iii) $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$.

Proof. Case (i). We show by induction on γ . $\alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + \alpha \cdot 0$. $\alpha \cdot (\beta + (\gamma + 1)) = \alpha \cdot ((\beta + \gamma) + 1) = \alpha \cdot (\beta + \gamma) + \alpha = \alpha \cdot \beta + \alpha \cdot \gamma + \alpha = \alpha \cdot \beta + \alpha \cdot (\gamma + 1)$. For all limit $\gamma > 0$, $\alpha \cdot (\beta + \gamma) = \alpha \cdot \lim_{\xi \to \gamma} (\beta + \xi) = \lim_{\xi \to \gamma} \alpha \cdot (\beta + \xi) = \lim_{\xi \to \gamma} (\alpha \cdot \beta + \alpha \cdot \xi) = \alpha \cdot \beta + \lim_{\xi \to \gamma} (\alpha \cdot \xi) = \alpha \cdot \beta + \alpha \cdot \lim_{\xi \to \gamma} \xi = \alpha \cdot \beta + \alpha \cdot \gamma$ Case (ii) and (iii). Similarly to the previous. \square

- **2.9.** (i) Show that $(\omega + 1) \cdot 2 \neq \omega \cdot 2 + 1 \cdot 2$.
 - (ii) Show that $(\omega \cdot 2)^2 \neq \omega^2 \cdot 2^2$.

Proof. Case (i). $(\omega+1)\cdot 2 = \omega+1+\omega+1 = \omega+\omega+1 = \omega\cdot 2+1 < \omega\cdot 2+2 = \omega\cdot 2+1\cdot 2$ Case (ii). $(\omega\cdot 2)^2 = \omega\cdot 2\cdot \omega\cdot 2 = \omega\cdot (2\cdot \omega)\cdot 2 = \omega\cdot \omega\cdot 2 < \omega\cdot \omega\cdot 4 = \omega^2\cdot 2^2$

2.10. If $\alpha < \beta$ then $\alpha + \gamma \leq \beta + \gamma$, $\alpha \cdot \gamma \leq \beta \cdot \gamma$, and $\alpha^{\gamma} \leq \beta^{\gamma}$.

Proof. We show that if $\alpha < \beta$ then $\alpha + \gamma \leq \beta + \gamma$ by induction on γ . $\alpha + 0 \leq \beta + 0$. $\alpha + \gamma + 1 \leq \alpha + 1 + \gamma + 1 \leq \beta + \gamma + 1$. Let a limit ordinal > 0 be γ . For all $\xi < \gamma$, if $\alpha + \xi < \beta + \xi$ then sup $\{\alpha + \xi : \xi < \gamma\} \leq \sup\{\beta + \xi : \xi < \gamma\}$. Therefore, $\alpha + \gamma \leq \beta + \gamma$.

Similarly to the previous, $\alpha \cdot \gamma \leq \beta \cdot \gamma$, and $\alpha^{\gamma} \leq \beta^{\gamma}$. \square

- **2.11.** Find α, β, γ such that
 - (i) $\alpha < \beta$ and $\alpha + \gamma = \beta + \gamma$,
 - (ii) $\alpha < \beta$ and $\alpha \cdot \gamma = \beta \cdot \gamma$,
 - (iii) $\alpha < \beta$ and $\alpha^{\gamma} = \beta^{\gamma}$.

Proof. Case (i). $0 + \omega = 1 + \omega$ Case (ii). $1 \cdot \omega = 2 \cdot \omega$ Case (iii). $2^{\omega} = 3^{\omega}$ **2.12.** Let $\varepsilon_0 = \lim_{n \to \omega} \alpha_n$ where $\alpha_0 = \omega$ and $\alpha_{n+1} = \omega^{\alpha_n}$ for all n. Show that ε_0 is the least ordinal ε such that $\omega^{\varepsilon} = \varepsilon$.

Proof. $\varepsilon_0 = \sup \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\} = \sup \{\omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \ldots\} = \omega^{\sup \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\}} = \omega^{\varepsilon_0}.$

Suppose that there exists $\varepsilon < \varepsilon_0$ such that $\omega^{\varepsilon} = \varepsilon$. Then since for every finite number $a, a \neq \omega^a, \varepsilon \geq \omega$, and so there exists the least n such that $n > 0, n \in \omega$, and $\alpha_n > \varepsilon$. Then $\alpha_n = \omega^{\alpha_{n-1}} > \varepsilon = \omega^{\varepsilon}$. But since $\alpha_{n-1} < \varepsilon$, a contradiction. \square

A limit ordinal $\gamma > 0$ is called *indecomposable* if there exist no $\alpha < \gamma$ and $\beta < \gamma$ such that $\alpha + \beta = \gamma$.

2.13. A limit ordinal $\gamma > 0$ is indecomposable if and only if $\alpha + \gamma = \gamma$ for all $\alpha < \gamma$ if and only if $\gamma = \omega^{\alpha}$ for some α .

Proof. $\gamma > 0$ is indecomposable if and only if $\alpha + \beta < \gamma$ for all $\alpha < \gamma$ and $\beta < \gamma$; otherwise $\alpha < \gamma < \alpha + \beta$, and so there is δ such that $\alpha + \delta = \gamma$ and $\delta < \gamma$; a contradiction. Hence for all $\alpha < \gamma$, $\alpha + \gamma = \sup \{\alpha + \xi : \xi < \gamma\} \le \gamma$, but we know that $\sup \{\alpha + \xi : \xi < \gamma\} \ge \sup \{\xi : \xi < \gamma\} = \gamma$. Thus $\alpha + \gamma = \gamma$. Conversely, if $\alpha + \gamma = \gamma$ for all $\alpha < \gamma$ then $\sup \{\alpha + \xi : \xi < \gamma\} = \gamma$. It follows that for all $\alpha < \gamma$ and $\beta < \gamma$, $\alpha + \beta < \gamma$.

Let $\gamma = \omega^{\beta_1} \cdot k_1 + \ldots + \omega^{\beta_n} \cdot k_n$ be Cantor's normal form. If a limit ordinal $\gamma \neq \omega^{\alpha}$ for all α , i.e., n > 1 or $k_n > 1$ for some n then clearly not indecomposable, i.e., decomposable. Conversely, let $\beta_1, \beta_2 < \gamma = \omega^{\alpha}$ for all $\alpha > 0$. There exist $\alpha' < \alpha$ and $k < \omega$ such that $\beta_1, \beta_2 < \omega^{\alpha'} \cdot k$ (Consider Cantor's normal forms of β_1 and β_2). Hence $\beta_1 + \beta_2 < \omega^{\alpha'} \cdot (k + k) < \omega^{\alpha} = \gamma$. \square

2.14. If E is a well-founded relation on P, then there is no sequence $\langle a_n : n \in \mathbb{N} \rangle$ in P such that $a_1 E a_0, a_2 E a_1, a_3 E a_2, \ldots$

Proof. Otherwise, $\cdots E \ a_3 E \ a_2 E \ a_1 E \ a_0$; there is no E-minimal elements. \square

2.15. (Well-Founded Recursion). Let E be a well-founded relation on a set P, and let G be a function. Then there exists a function F such that for all $x \in P$, $F(x) = G(x, F \mid \{y \in P : y \in X\})$.

Proof. A set $B \subset A$ is called E-transitive in A if $\{y \in A : y E x\} \subset B$ holds for all $x \in B$. Let $T = \{g : g \text{ is a function. } \text{dom}(g) \text{ is a } E$ -transitive in P, and $(\forall x \in \text{dom}(g))g(x) = G(x,g \upharpoonright x)\}$. T is nonempty, since for every E-miminal element $m \in P$, $\{m\}$ is E-transitive, and a function g of $\{m\}$ is given by $m \mapsto G(m,\emptyset)$.

We claim that $\bigcup T$ is a function. Suppose not. There is a E-minimal element m of the set $\{x \in \text{dom}(g_1) \cap \text{dom}(g_2) : g_1(x) \neq g_2(x) \text{ for some } g_1, g_2 \in T\}$. Then $g_1(m) = G(m, g_1 \upharpoonright \{y \in \text{dom}(g_1) : y E m\}) = G(m, g_1 \upharpoonright \{y \in \text{dom}(g_2) : y E m\}) = G(m, g_2 \upharpoonright \{y \in \text{dom}(g_2) : y E m\}) = g_2(m)$, a contradiction. Similarly, $\text{dom}(\bigcup T) = P$. Therefore, $\bigcup T = F$. \square

3. Cardinal Numbers

- **3.1.** (i) A subset of a finite set is finite.
 - (ii) The union of a finite set of finite sets is finite.
 - (iii) The power set of a finite set is finite.
 - (iv) The image of a finite set (under a mapping) is finite.
- **Proof.** (i) Let X be a finite set, and $Y \subset X$. Suppose that Y is infinite. Then Y is T-infinite, so there is $S \subset P(Y)$ such that S has no \subset -maximal element. But by definition, $P(Y) \subset P(X)$, and so $S \subset P(X)$, a contradiction.
- (ii) For p such that $0 , let <math>S_i$ be a finite set, and f_i be a function of S_i onto a finite ordinal n_i for each i < p. Let $S = \bigcup_{i < p} S_i$; let $f : S \to \sum_{i < p} n_i$ given by $x \mapsto \sum_{i < k} n_i + f_k(x)$ where k is the least number such that $x \in S_k$. Then f is one-to-one function of S into $\sum_{i < p} n_i$ which is bounded. Thus S is finite.
 - (iii) Let X be a finite set. $|P(X)| = 2^{|X|} < \aleph_0$.
- (iv) Let f be a function of a finite set X onto Y. Then there is a one-to-one function g of X onto $n < \omega$. Clearly, a function h of f(X) into n given by $y \mapsto \bigcap g_{-1} \circ f_{-1}(y)$ exists. \square
- **3.2.** (i) A subset of a countable set is at most countable.
 - (ii) The union of a finite set of countable sets is countable.
 - (iii) The image of a countable set (under a mapping) is at most countable.
- **Proof.** (i) Let X be a countable set, and $Y \subset X$. Then there is a one-to-one function f of X onto ω . Let id_Y be a function of Y into X given by $x \mapsto x$. Clearly the function $f \cdot id_Y$ is a function of Y into ω , and so $|Y| \leq \aleph_0$. Therefore, by definition of \aleph_0 , Y is at most countable.
- (ii) For some n such that $0 < n < \omega$, Let $S = \bigcup_{i < n} S_i$ where S_i is a countable set; for each I < n, let f_i be a function of S_i onto ω . Let $S = \bigcup_{i < n} S_i$; let $f: S \to \omega$ given by $x \mapsto 2^i 3^{f_i(x)}$ where i is the least number $x \in S_i$. Then f is one-to-one function of S into ω . Thus S is countable.
- (iii) Let f be a function of a countable set X onto Y. Then there is a one-to-one function g of X onto ω . Clearly, a function h of f(X) into ω given by $y \mapsto \bigcap g_{-1} \circ f_{-1}(y)$ exists. \square
- **3.3.** $\mathbb{N} \times \mathbb{N}$ is countable.

$$[f(m,n) = 2^m(2n+1) - 1.]$$

- **Proof.** (i) Let f be a function of $\mathbb{N} \times \mathbb{N}$ into \mathbb{N} given by $(m,n) \mapsto 2^m (2n+1) 1$. Let $x \in \omega$, and $m = \sup \{a \in \omega : 2^a \text{ divides } x+1\}$. Then $(x+1)/2^m$ is odd, so there is $n \in \omega$ such that $2n+1=(x+1)/2^m$. Thus f is a function onto \mathbb{N} . Suppose that $2^{m_1}(2n_1+1)=2^{m_2}(2n_2+1)$. Since $2x+1 \neq 2y$ for all $x,y \in \mathbb{N}$, the prime factorization of 2x+1 does not have 2 as a factor. Thus $m_1=m_2$ and $n_1=n_2$, and so f is a one-to-one function onto \mathbb{N} . Therefore, $\mathbb{N} \times \mathbb{N}$ is countable. \square
- **3.4.** (i) The set of all finite sequences in \mathbb{N} is countable.
 - (ii) The set of all finite subsets of a countable set is countable.

- **Proof.** (i) Let f be a function of all finite sequences in \mathbb{N} into \mathbb{N} given by, for some $k \in \mathbb{N}$, $\langle s_i \in \mathbb{N} : i < k \rangle \mapsto \prod_{i < k} p_{i+1}^{s_i+1} 1$ where p_i is the i-th prime number. Clearly, f is a one-to-one function onto \mathbb{N} .
- (ii) Let X be a countable set; let Y be a set of all finite subsets of X. Then there is a one-to-one function f of X onto \mathbb{N} given by $x \mapsto n$ for some $n < \omega$, and so for $S \in Y$, there is a unique increasing finite sequence $\langle f(x) : x \in S \rangle$. Thus there is a one-to-one function of Y into all finite sequences in \mathbb{N} ; $Y \leq \aleph_0$, and $\aleph_0 = |X| = \{S \in Y : S \text{ is singleton}\} \subset Y$; thus $\aleph_0 \leq Y$. Therefore, $Y = \aleph_0$. \square
- **3.5.** Show that $\Gamma(\alpha \times \alpha) \leq \omega^{\alpha}$.
- **Proof.** We show this by induction of α . $\Gamma(0 \times 0) \leq \omega^0$. $\Gamma(\alpha \times \alpha) \leq \omega^{\alpha} \Leftrightarrow \Gamma((\alpha+1)\times(\alpha+1)) = \Gamma(\alpha\times\alpha) + \alpha\cdot2 + 1 \leq \omega^{\alpha} + \omega^{\alpha}\cdot2 + \omega^{\alpha} = \omega^{\alpha}\cdot4 \leq \omega^{\alpha+1}$. For a limit ordinal $\gamma > 0$, by definition $\Gamma(\gamma \times \gamma) = \sup \{\Gamma(\alpha \times \alpha) : \alpha < \gamma\} \leq \omega^{\gamma}$. \square
- **3.6.** There is a well-ordering of the class of all finite sequences of ordinals such that for each α , the set of all finite sequences in ω_{α} is an initial segment and its order-type is ω_{α} .

Proof. We define:

$$\langle \alpha_0, \ldots \rangle \prec \langle \beta_0, \ldots \rangle \leftrightarrow$$
there is k such that
$$\alpha_k < \beta_k \text{ and } \alpha_i = \beta_i \text{ for all } i < k,$$

$$\langle \alpha_i : i < m \rangle < \langle \beta_i : i < n \rangle \leftrightarrow$$
either $\sum_{i < m} \alpha_i + m < \sum_{i < n} \beta_i + n$
or $\sum_{i < m} \alpha_i + m = \sum_{i < n} \beta_i + n$
and $\langle \alpha_i : i < m \rangle \prec \langle \beta_i : i < n \rangle.$

Let X be the class of all finite sequences of ordinals. The relation < defined above is a linear ordering of X. Moreover, if $S \subset X$ is nonempty, then S has a least element. If we let $\Gamma(\alpha) =$ the order-type of the set $\{\beta \in X : \beta < \alpha\}$ for $\alpha \in X$, then Γ is a one-to-one mapping of X onto Ord. Note that for a finite sequence α in ω , $\Gamma(\alpha) \in \omega$, and so $\langle \omega \rangle$ is the least element α of X such that α is not a finite sequence in ω ; thus $\Gamma(\langle \omega \rangle) = \omega$.

Let $\gamma(\alpha) = \Gamma(\langle \alpha \rangle)$. Note that $\gamma(\alpha)$ is an increasing function of α , and also that since each infinite cardinal is indecomposable, by definition of (X, <), $\gamma(\omega_{\alpha})$ is the set of all finite sequences in ω_{α} . Let $\eta(\alpha) =$ the order-type of the set of all finite sequences in α . Then $\gamma(\alpha) \leq \eta(\alpha)$ and $\gamma(\omega_{\alpha}) = \eta(\omega_{\alpha})$ for each α . We show that $\gamma(\omega_{\alpha}) = \omega_{\alpha}$ by induction of α . This is true for $\alpha = 0$. Thus let α be the least ordinal such that $\gamma(\omega_{\alpha}) \neq \omega_{\alpha}$. Since γ is increasing, $\gamma(\omega_{\alpha}) \geq \omega_{\alpha}$; thus $\gamma(\omega_{\alpha}) > \omega_{\alpha}$, and so there is a sequence β such that $\Gamma(\beta) = \omega_{\alpha}$ and $\beta < \langle \omega_{\alpha} \rangle$. Then there is an ordinal δ such that $\beta < \langle \delta \rangle < \langle \omega_{\alpha} \rangle$; thus $\Gamma(\beta) = \omega_{\alpha} < \gamma(\delta) \leq \eta(\delta)$

 $\Leftrightarrow \aleph_{\alpha} \leq |\eta(\delta)| = |\eta(|\delta|)| \leq \eta(|\delta|)$. But since $\delta < \omega_{\alpha}$, by the minimality of α , $\eta(|\delta|) = |\delta| < \aleph_{\alpha}$. A contradiction. Finally, by definition of γ , for each nonzero limit ordinal α , $\gamma(\omega_{\alpha}) = \sup \{\gamma(\omega_{\xi}) : \xi < \alpha\} = \omega_{\alpha}$. \square

We say that a set B is a projection of a set A if there is a mapping of A onto B. Note that B is a projection of A if and only if there is a partition P of A such that |P| = |B|. If $|A| \ge |B| > 0$, then B is a projection of A. Conversely, using the Axiom of Choice, one shows that if B is a projection of A, then $|A| \ge |B|$. This, however, cannot be proved without the Axiom of Choice.

3.7. If B is a projection of ω_{α} , then $|B| \leq \aleph_{\alpha}$.

Proof. Let f be a function of ω_{α} onto B. Then a one-to-one function g of B into ω_{α} is given by $x \mapsto \min f_{-1}(x)$. \square

3.8. The set of all finite subsets of ω_{α} has cardinality \aleph_{α} . [The set is a projection of the set of finite sequences.]

Proof. Let X be the set of all finite sequences in ω_{α} ; let Y be the set of all finite subsets of ω_{α} . Then there is a function of X onto Y given by $\langle \alpha_0, \ldots \alpha_n \rangle \mapsto \{\alpha_0, \ldots \alpha_n\}$. Thus $\aleph_{\alpha} = |X| \geq |Y|$. But there is a one-to-one mapping of $S \subset Y$ such that each $x \in S$ is singleton onto a set of cardinality \aleph_{α} . Thus $Y \geq \aleph_{\alpha}$. Therefore, $|Y| = \aleph_{\alpha}$. \square

3.9. If B is a projection of A, then $|P(B)| \leq |P(A)|$. [Consider $g(X) = f_{-1}(X)$, where f maps A onto B.]

Proof. Since for each $S \subset B$, there is unique $f_{-1}(S) \subset A$, there is a one-to-one function of P(B) into P(A) given by $S \mapsto f_{-1}(S)$. \square

3.10. $\omega_{\alpha+1}$ is a projection of $P(\omega_{\alpha})$.

[Use $|\omega_{\alpha} \times \omega_{\alpha}| = \omega_{\alpha}$ and project $P(\omega_{\alpha} \times \omega_{\alpha})$: If $R \subset \omega_{\alpha} \times \omega_{\alpha}$ is a well-ordering, let f(R) be its order-type.]

Proof. Since $\omega_{\alpha+1}$ is a set of possible well-orderings of subsets of X such that $|X| = \aleph_{\alpha}$, there is $R \in P(\omega_{\alpha} \times \omega_{\alpha})$ such that $f(R) = \beta$ for each $\beta \in \omega_{\alpha+1}$. Let g(R) = f(R) if R is a well-ordering; otherwise g(R) = 0. Then we have a mapping of $P(\omega_{\alpha} \times \omega_{\alpha})$ onto $\omega_{\alpha+1}$ given by $R \mapsto g(R)$. \square

3.11. $\aleph_{\alpha+1} < 2^{2^{\aleph_{\alpha}}}$. [Use Exercises 3.10 and 3.9.]

Proof. By exercises 3.10 and 3.9, $\aleph_{\alpha+1} \leq 2^{\aleph_{\alpha}}$, and by Cantor's theorem, $\aleph_{\alpha+1} < 2^{2^{\aleph_{\alpha}}}$. \square

3.12. If \aleph_{α} is an uncountable limit cardinal, then cf $\omega_{\alpha} = \text{cf } \alpha$; ω_{α} is the limit of a cofinal sequence $\langle \omega_{\xi} : \xi < \text{cf } \alpha \rangle$ of cardinals.

Proof. cf $\omega_{\alpha} = \text{cf cf } \alpha = \text{cf } \alpha$. \square

3.13 (**ZF**). Show that ω_2 is not a countable union of countable sets.

[Assume that $\omega_2 = \bigcup_{n < \omega} S_n$ with S_n countable and let α_n be the order-type of S_n . Then $\alpha = \sup_n \alpha_n \le \omega_1$ and there is a mapping of $\omega \times \alpha$ onto ω_2 .]

Proof. We can assume that S_n is disjoint for each $n \leq \omega$. Then we have a one-to-one function of $\omega \times \alpha$ onto ω_2 given by $(n,\beta) \mapsto$ the β -th element of S_n if $\beta \in \alpha_n$ otherwise 0. Thus $\aleph_2 = |\omega_2| \leq |\omega \times \alpha| \leq \aleph_0 \cdot \aleph_1 = \aleph_1$. A contradiction. \square

A set S is Dedekind-finite (D-finite) if there is no one-to-one mapping of S onto a proper subset of S. Every finite set is D-finite. Using the Axiom of Choice, one proves that every infinite set is D-infinite, and so D-finiteness is the same as finiteness. Without the Axiom of Choice, however, one cannot prove that every D-finite set is finite.

The set \mathbb{N} of all natural numbers is D-infinite and hence every S such that $|S| \ge \aleph_0$, is D-infinite.

3.14. S is D-infinite if and only if S has a countable subset.

[If S is D-infinite, let $f: S \to X \subset S$ be one-to-one. Let $x_0 \in S - X$ and $x_{n+1} = f(x_n)$. Then $S \supset \{x_n : n < \omega\}$.]

Proof. If S is D-infinite, since f is one-to-one, for each m and n such that $0 \le m < n < \omega$, $x_m \ne x_n$. Thus we have a countable set $X = \{x_n : n < \omega\} \subsetneq S$.

Conversely, if S has a countable subset $X = \{x_n : n < \omega\}$. We have a one-to-one mapping of S onto $S \setminus \{x_0\}$ given by $x \mapsto x$ if $x \notin X$; otherwise $x_n \mapsto x_{n+1}$. \square

- **3.15.** (i) If A and B are D-finite, then $A \cup B$ and $A \times B$ are D-finite.
 - (ii) The set of all finite one-to-one sequences in a D-finite set is D-finite.
 - (iii) The union of a disjoint D-finite family of D-finite sets is D-finite.
- **Proof.** (i) Suppose that $X \subset A \cup B$ is countable. Then since a subset of a countable set is at most countable, $X \cap A$ and $X \cap B$ are at most countable. Since $X = (X \cap A) \cup (X \cap B)$, and the union of a finite set of finite sets is finite, $X \cap A$ or $X \cap B$ are countable. Thus A or B are D-infinite. A contradiction. Suppose that $X = \{(x_i, y_i) : i < \omega\} \subset A \times B$ is countable. Consider $C = \{x \in A : (x, y) \in X \text{ for some } y\}$ and $D = \{y \in A : (x, y) \in X \text{ for some } x\}$. Since $\aleph_0 = |X| \leq |C| \times |D|$, $|C| \leq |X| = \aleph_0$, and, $|D| \leq |X| = \aleph_0$, C or D are countable. But $C \subset A$ and $D \subset B$, a contradiction.
- (ii) Let A be a D-finite set; let $X = \{X_i : i < \omega\}$ be a subset of all finite one-to-one sequences in A. Suppose that X is countable. Consider the cardinality of $S = \bigcup_{i < \omega} \operatorname{ran}(X_i)$. Since X_i is a finite one-to-one sequence for all $i < \omega$, $|S| \le |\omega| \cdot |\omega| = \aleph_0$. So suppose that $|S| = n < \omega$. then $X_i \in \bigcup \{S^1, S^2, \dots S^n\}$ for all $i < \omega \Leftrightarrow X \subset \bigcup \{S^1, S^2, \dots S^n\}$. By (i), and induction of n, the union of a finite family of D-finite sets is D-finite, and a finite product of D-finite sets is D-finite, thus $\bigcup \{S, S^2, \dots S^n\}$ is D-finite. But $X \subset \bigcup \{S, S^2, \dots S^n\}$, a contradiction. Thus S is countable. But $S \subset A$, also a contradiction.
- (iii) Let $X = \bigcup_{i \in I} X_i$ for some D-finite I be a union of a disjoint D-finite family of D-finite sets. Suppose that $S = \{\alpha_n : n < \omega\} \subset X$ is countable. Consider the

cardinality of $T = \{i \in I : i \text{ such that } \alpha \in X_i \text{ for some } \alpha \in S\}$. Since X_i is disjoint for each $i \in I$, $|T| \leq |S| = \aleph_0$. Now suppose that $|T| = n < \omega$. Then S is a union of a finite family of D-finite set, thus finite; a contradiction. So T is countable. But $T \subset I$, also a contradiction. \square

On the other hand, one cannot prove without the Axiom of Choice that a projection, power set, or the set of all finite subsets of a D-finite set is D-finite, or that the union of a D-finite family of D-finite sets is D-finite.

3.16. If A is an infinite set, then PP(A) is D-infinite. [Consider the set $\{\{X \subset A : |X| = n\} : n < \omega\}.$]

Proof. The set $\{X \subset A : |X| = n\} : n < \omega\} \subset PP(A)$ is countable. \square

4. Real Numbers

4.1. The set of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ has cardinality \mathfrak{c} (while the set of all functions has cardinality $2^{\mathfrak{c}}$).

[A continuous function on \mathbb{R} is determined by its values at rational points.]

4.2. There are at least \mathfrak{c} countable order-types of linearly ordered sets.

[For every sequence $a = \langle a_n : n \in \mathbb{N} \rangle$ of natural numbers consider the order-type

$$\tau_a = a_0 + \xi + a_1 + \xi + a_2 + \dots$$

where ξ is the order-type of the integers. Show that if $a \neq b$, then $\tau_a \neq \tau_b$.

A real number is algebraic if it is a root of a polynomial whose coefficients are integers. Otherwise, it is transcendental.

- **4.3.** The set of all algebraic reals is countable.
- **4.4.** If S is a countable set of reals, then $|\mathbb{R} S| = \mathfrak{c}$. [Use $\mathbb{R} \times \mathbb{R}$ rather than \mathbb{R} (because $|\mathbb{R} \times \mathbb{R}| = 2^{\aleph_0}$).]
- **4.5.** (i) The set of all irrational numbers has cardinality \mathfrak{c} .
 - (ii) The set of all transcendental numbers has cardinality \mathfrak{c} .
- **4.6.** The set of all open sets of reals has cardinality \mathfrak{c} .
- **4.7.** The Cantor set is perfect.
- **4.8.** If P is a perfect set and (a,b) is an open interval such that $P \cap (a,b) \neq \emptyset$, then $|P \cap (a,b)| = \mathfrak{c}$.
- **4.9.** If $P_2 \not\subset P_1$ are perfect sets, then $|P_2 P_1| = \mathfrak{c}$. [Use Exercise 4.8.]

If A is a set of reals, a real number a is called a *condensation point* of A if every neighborhood of a contains uncountably many elements of A. Let A^* denote the set of all condensation points of A.

- **4.10.** If P is perfect then $P^* = P$. [Use Exercise 4.8.]
- **4.11.** If F is closed and $P \subset F$ is perfect, then $P \subset F^*$. $[P = P^* \subset F^*]$
- **4.12.** If F is an uncountable closed set and P is the perfect set constructed in Theorem 4.6, then $F^* \subset P$; thus $F^* = P$.

[Every $a \in F^*$ is a limit point of P since $|F - P| \leq \aleph_0$.]

4.13. If F is an uncountable closed set, then $F = F^* \cup (F - F^*)$ is the unique partition of F into a perfect set and an at most countable set.

[Use Exercise 4.9.]

- **4.14.** \mathbb{Q} is not the intersection of a countable collection of open sets. [Use the Baire Category Theorem.]
- **4.15.** If B is Borel and f is a continuous function then $f_{-1}(B)$ is Borel.
- **4.16.** Let $f: \mathbb{R} \to \mathbb{R}$. Show that the set of all x at which f is continuous is a G_{δ} set.
- **4.17.** (i) $\mathbb{N} \times \mathbb{N}$ is homeomorphic to \mathbb{N} .
 - (ii) \mathbb{N}^{ω} is homeomorphic to \mathbb{N} .
- **4.18.** The tree T_F in (4.6) has no maximal node, i.e., $s \in T$ such that there is no $t \in T$ with $s \subset t$. The map $F \mapsto T_F$ is a one-to-one correspondence between closed sets in \mathbb{N} and sequential trees without maximal nodes.
- **4.19.** Every perfect Polish space has a closed subset homeomorphic to the Cantor space.
- **4.20.** Every Polish space is homeomorphic to a G_{δ} subspace of the Hilbert cube. [Let $\{x_n : n \in \mathbb{N}\}$ be a dense set, and define $f(x) = \langle d(x, x_n) : n \in \mathbb{N} \rangle$.]