epiworld

0.0-1

Generated by Doxygen 1.9.1

1 Main Page	1
1.1 epiworld	1
1.2 Hello world	1
1.2.1 Tools	2
1.2.2 Contagion	2
2 Class Index	3
2.1 Class List	3
3 Class Documentation	5
3.1 Action < TSeq > Struct Template Reference	5
3.2 AdjList Class Reference	6
3.2.1 Constructor & Destructor Documentation	6
3.2.1.1 AdjList()	6
3.3 DataBase < TSeq > Class Template Reference	7
3.3.1 Detailed Description	8
3.3.2 Member Function Documentation	8
3.3.2.1 record_variant()	8
3.4 LFMCMC< TData > Class Template Reference	8
3.4.1 Detailed Description	9
3.5 Location < TSeq > Class Template Reference	10
3.6 Model < TSeq > Class Template Reference	10
3.6.1 Detailed Description	15
3.6.2 Member Function Documentation	15
3.6.2.1 add_global_action()	15
3.6.2.2 reset()	16
3.6.2.3 run_multiple()	16
3.6.2.4 write_data()	16
3.7 Person< TSeq > Class Template Reference	17
3.7.1 Detailed Description	18
3.8 PersonTools < TSeq > Class Template Reference	19
3.8.1 Detailed Description	19
3.9 PersonViruses < TSeq > Class Template Reference	20
3.9.1 Detailed Description	20
3.10 Progress Class Reference	21
3.10.1 Detailed Description	21
3.11 Queue < TSeq > Class Template Reference	21
3.11.1 Detailed Description	21
3.12 RandGraph Class Reference	22
3.13 Tool < TSeq > Class Template Reference	22
3.13.1 Detailed Description	23
3.14 UserData < TSeq > Class Template Reference	23
3.14.1 Detailed Description	24

3 16 Virus < TSeq > Class Template Reference	3.16 Virus < TSeq > Class Template Reference	26
3 16 Virus < TSeq > Class Template Reference	3.16 Virus < TSeq > Class Template Reference	
3.13.1 Detailed Description	3.15.1 Detailed Description	25
2.15.1 Detailed Description	3.15 vecHasher < T > Struct Template Reference	25
3.15 vecHasher < T > Struct Template Reference	3.14.2.1 UserData()	25
	3.14.2 Constructor & Destructor Documentation	25

Chapter 1

Main Page

1.1 epiworld

This C++ template-header-only library provides a general framework for epidemiologic simulation. The main features of the library are:

- 1. Four key classes: Model, Person, Tool, and Virus.
- 2. The model features a social networks of Persons.
- 3. Persons can have multiple Tools as a defense system.
- 4. Tools can reduce contagion rate, transmissibility, death rates, and improve recovery rates.
- 5. Viruses can mutate (generating new variants).
- 6. Models can feature multiple states, e.g., HEALTHY, SUSCEPTIBLE, etc.
- 7. Models can have an arbitrary number of parameters.
- 8. **REALLY FAST** About 6.5 Million person/day simulations per second.

1.2 Hello world

Here is a simple SIRS model implemented with

```
#include "../include/epiworld/epiworld.hpp"
using namespace epiworld;
int main()
{
          // Creating a model
          Model<> model;
          // Adding the tool and virus
          Virus<> virus("covid 19");
          virus.set_post_immunity(1.0);
          model.add_virus_n(virus, 5);

          Tool<> tool("vaccine");
          model.add_tool(tool, .5);
          // Generating a random pop
          model.pop_from_random(1000000);
          // Initializing setting days and seed
          model.init(100, 123);
```

2 Main Page

```
// Running the model
model.run();
model.print();
```

And you should get something like the following:

Running the model...

```
SIMULATION STUDY
Population size
                 : 100000
Days (duration)
                 : 100 (of 100)
Number of variants : 1
Last run elapsed t : 280.00ms
Rewiring
                : off
Virus(es):
 - covid 19 (baseline prevalence: 5 seeds)
Tool(s):
  vaccine (baseline prevalence: 50.00%)
Model parameters:
Distribution of the population at time 100:
- Total healthy (S) : 99995 -> 97390
- Total recovered (S) : 0 -> 2554
- Total infected (I)
                    :
                            5 -> 56
 - Total removed (R)
                            0 -> 0
(S): Susceptible, (I): Infected, (R): Recovered
```

Which took about 0.280 seconds.

1.2.1 **Tools**

1.2.2 Contagion

Susceptible individuals can acquire a virus from any of their infected connections. The probability that susceptible individual i gets the virus v from individual j depends on how three things:

- 1. The transmissibility of the virus, Pv in [0,1],
- 2. The contagion reduction factor of i, Cr in [0,1], and
- 3. The host's transmission reduction factor, Tr [0,1].

The last two are computed from i and j's tools. Ultimately, the probability of i getting virus v from j equals: $P(Virus \ v) = Pv \ \star \ (1 - Cr) \ \star (1 - Tr)$

Nonetheless, the default behavior of the simulation model is to assume that individuals can acquire only one disease at a time, if any. This way, the actual probability is:

```
P(Virus \ v | at most one virus) = Prcond(i, v, j)
```

```
The latter is calculated using Bayes' rule
```

This way, viruses with higher transmissibility will be more likely to be acquired when competing with other variants.

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Action < TSeq >	 5
AdjList	
DataBase < TSeq >	
Statistical data about the process	 7
LFMCMC< TData >	
Likelihood-Free Markov Chain Monte Carlo	 8
Location < TSeq >	 10
Model < TSeq >	
Core class of epiworld	 10
Person < TSeq >	
Person (agents)	 17
PersonTools < TSeq >	
List of tools available for the individual to	 19
PersonViruses < TSeq >	
Set of viruses in host	 20
Progress	
A simple progress bar	 21
Queue < TSeq >	
Controls which agents are verified at each step	 21
RandGraph	 22
Tool< TSeq >	
Tools for defending the host against the virus	 22
UserData < TSeq >	
Personalized data by the user	 23
vecHasher< T >	
Vector hasher	 25
Virus< TSeq >	
Virus	 26

4 Class Index

Chapter 3

Class Documentation

3.1 Action < TSeq > Struct Template Reference

Collaboration diagram for Action< TSeq >:

Public Attributes

- Person< TSeq > * person
- epiworld_fast_uint new_status
- ActionFun< TSeq > call
- · epiworld_fast_int queue

The documentation for this struct was generated from the following file:

• include/epiworld/config.hpp

3.2 AdjList Class Reference

Public Member Functions

AdjList (const std::vector< unsigned int > &source, const std::vector< unsigned int > &target, bool directed, int min_id=-1, int max_id=-1)

Construct a new Adj List object.

- void read_edgelist (std::string fn, int skip=0, bool directed=true, int min_id=-1, int max_id=-1)
- std::map< unsigned int, unsigned int > operator() (unsigned int i) const
- void print (unsigned int limit=20u) const
- · unsigned int get_id_max () const
- unsigned int get_id_min () const
- size_t vcount () const
- size_t ecount () const
- std::map< unsigned int, std::map< unsigned int, unsigned int > > & get_dat ()
- · bool is directed () const

3.2.1 Constructor & Destructor Documentation

3.2.1.1 AdjList()

Construct a new Adj List object.

It will create an adjacency list object with maxid - minid + 1 nodes. If min_id and max_id are not specified (both < 0), then the program will try to figure them out automatically by looking at the range of the observed ids.

Parameters

source	Unsigned int vector with the source
target	Unsigned int vector with the target
directed	Bool true if the network is directed
min_id	int min id.
max_id	int max id.

The documentation for this class was generated from the following files:

- include/epiworld/adjlist-bones.hpp
- · include/epiworld/adjlist-meat.hpp

3.3 DataBase < TSeq > Class Template Reference

Statistical data about the process.

#include <database-bones.hpp>

Public Member Functions

- DataBase (int freg=1)
- void record_variant (Virus< TSeq > *v)

Registering a new variant.

- void record_tool (Tool < TSeq > *t)
- void set_seq_hasher (std::function< std::vector< int >(TSeq)> fun)
- void set_model (Model < TSeq > &m)
- Model < TSeq > * get_model ()
- · void record ()
- const std::vector< TSeq > & get_sequence () const
- const std::vector< int > & get_nexposed () const
- · size t size () const
- void write_data (std::string fn_variant_info, std::string fn_variant_hist, std::string fn_tool_info, std::string fn_tool_hist, std::string fn_transmission, std::string fn_transition) const
- void record_transmission (int i, int j, int variant)
- size_t get_nvariants () const
- · void reset ()
- void set user_data (std::vector< std::string > names)
- void add_user_data (std::vector< epiworld_double > x)
- void **add_user_data** (unsigned int j, epiworld_double x)
- UserData < TSeq > & get_user_data ()

Get recorded information from the model

Parameters

what std::string, The status, e.g., 0, 1, 2, ...

Returns

In get_today_total, the current counts of what.

In get_today_variant, the current counts of what for each variant.

In get_hist_total, the time series of what

In get_hist_variant, the time series of what for each variant.

In get_hist_total_date and get_hist_variant_date the corresponding dates

- · int get today total (std::string what) const
- int get_today_total (epiworld_fast_uint what) const
- void get today total (std::vector< std::string > *status=nullptr, std::vector< int > *counts=nullptr) const
- void get_today_variant (std::vector< std::string > &status, std::vector< int > &id, std::vector< int > &counts) const
- void get_hist_total (std::vector< int > *date, std::vector< std::string > *status, std::vector< int > *counts) const
- void get_hist_variant (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &status, std::vector< int > &counts) const

Friends

- class Model < TSeq >
- void default_add_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_add_tool (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_tool (Action < TSeq > &a, Model < TSeq > *m)

3.3.1 Detailed Description

```
template<typename TSeq> class DataBase< TSeq>
```

Statistical data about the process.

Template Parameters

3.3.2 Member Function Documentation

3.3.2.1 record_variant()

Registering a new variant.

Parameters

v Pointer to the new variant. Since variants are originated in the host, the numbers simply move around. From the parent variant to the new variant. And the total number of infected does not change.

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- include/epiworld/database-meat.hpp

3.4 LFMCMC< TData > Class Template Reference

Likelihood-Free Markov Chain Monte Carlo.

```
#include <lfmcmc.hpp>
```

Public Member Functions

- void run (VEC(epiworld_double) param_init, size_t n_samples_, epiworld_double epsilon_)
- · LFMCMC (TData &observed data)
- · void set observed data (TData &observed data)
- void **set_proposal_fun** (FUN< void(VEC(epiworld_double)&, LFMCMC< TData > *)> fun)
- void set simulation fun (FUN< TData(VEC(epiworld double)&, LFMCMC< TData > *)> fun)
- void set summary fun (FUN< VEC(epiworld double)(TData &, LFMCMC< TData > *)> fun)
- void set_kernel_fun (FUN< epiworld_double(VEC(epiworld_double)&, epiworld_double, LFMCMC< TData > *)> fun)
- const size t get n samples ()
- const size_t get_n_statistics ()
- const size_t get_n_parameters ()
- const epiworld double get epsilon ()
- const VEC (epiworld_double) &get_params_now()
- const VEC (epiworld double) &get params prev()
- const VEC (epiworld double) &get params init()
- const VEC (epiworld_double) &get_statistics_obs()
- const VEC (epiworld_double) &get_statistics_hist()
- · const VEC (bool) &get_statistics_accepted()
- const VEC (epiworld double) &get posterior If prob()
- const VEC (epiworld double) &get acceptance prob()
- const VEC (epiworld_double) &get_drawn_prob()
- VEC (TData) *get sampled data()

Random number generation

Parameters

eng

- void set rand engine (std::mt19937 &eng)
- std::mt19937 * get_rand_endgine ()
- void seed (unsigned int s)
- void **set_rand_gamma** (epiworld_double alpha, epiworld_double beta)
- epiworld_double runif ()
- epiworld_double rnorm ()
- epiworld_double **rnorm** (epiworld_double mean, epiworld_double sd)
- epiworld double rgamma ()
- epiworld_double rgamma (epiworld_double alpha, epiworld_double beta)

3.4.1 Detailed Description

template < typename TData > class LFMCMC < TData >

Likelihood-Free Markov Chain Monte Carlo.

Template Parameters

TData Type of data that is generated

The documentation for this class was generated from the following file:

· include/epiworld/math/lfmcmc.hpp

3.5 Location < TSeq > Class Template Reference

Public Member Functions

- add_person (Person < TSeq > &p)
- add_person (Person< TSeq > *p)
- size_t count () const
- · void reset ()

The documentation for this class was generated from the following file:

· include/epiworld/location-bones.hpp

3.6 Model < TSeq > Class Template Reference

Core class of epiworld.

#include <model-bones.hpp>

Public Member Functions

- Model (const Model < TSeq > &m)
- Model (Model < TSeq > &&m)
- Model < TSeq > & operator= (const Model < TSeq > &m)
- void clone_population (std::vector< Person< TSeq > > &p, std::map< int, int > &p_ids, bool &d, Model<
 TSeq > *m=nullptr) const
- void clone_population (const Model < TSeq > &m)
- DataBase < TSeq > & get_db ()
- epiworld_double & operator() (std::string pname)
- size t size () const
- void add_virus (Virus < TSeq > v, epiworld double preval)
- void add_virus_n (Virus < TSeq > v, unsigned int preval)
- void add_tool (Tool < TSeq > t, epiworld_double preval)
- void add_tool_n (Tool < TSeq > t, unsigned int preval)
- void record_variant (Virus< TSeq > *v)
- int get_nvariants () const
- unsigned int **get_ndays** () const
- unsigned int **get_n_replicates** () const
- void set_ndays (unsigned int ndays)
- bool get_verbose () const
- void verbose_off ()
- void verbose_on ()
- int today () const

The current time of the model.

void write_data (std::string fn_variant_info, std::string fn_variant_hist, std::string fn_tool_info, std::string fn_tool_hist, std::string fn_total_hist, std::string fn_transmission, std::string fn_transition) const

Wrapper of DataBase::write_data

- std::map< std::string, epiworld double > & params ()
- · void reset ()

Reset the model.

- · void print () const
- Model < TSeq > && clone () const
- void get_elapsed (std::string unit="auto", epiworld_double *last_elapsed=nullptr, epiworld_double *total_
 elapsed=nullptr, std::string *unit abbr=nullptr, bool print=true) const
- $\bullet \ \ \mathsf{void} \ \ \mathsf{add_global_action} \ \ (\mathsf{std}:: \mathsf{function} < \mathsf{void}(\mathsf{Model} < \mathsf{TSeq} > *) > \mathsf{fun}, \ \mathsf{int} \ \mathsf{date}) \\$

Set a global action.

- · void run global actions ()
- void clear status set ()

Set the backup object

backup can be used to restore the entire object after a run. This can be useful if the user wishes to have individuals start with the same network from the beginning.

- void set_backup ()
- void restore_backup ()

Random number generation

Parameters

eng

- void **set_rand_engine** (std::mt19937 &eng)
- std::mt19937 * get_rand_endgine ()
- void **seed** (unsigned int s)
- · void set_rand_gamma (epiworld_double alpha, epiworld_double beta)
- epiworld_double runif ()
- epiworld_double rnorm ()
- epiworld_double **rnorm** (epiworld_double mean, epiworld_double sd)
- epiworld_double rgamma ()
- epiworld_double **rgamma** (epiworld_double alpha, epiworld_double beta)

Accessing population of the model

Parameters

fn	std::string Filename of the edgelist file.
skip	int Number of lines to skip in fn.
directed	bool Whether the graph is directed or not.
min_id	int Minimum id number (if negative, the program will try to guess from the data.)
max_id	int Maximum id number (if negative, the program will try to guess from the data.)
al	AdjList to read into the model.

- void pop_from_adjlist (std::string fn, int skip=0, bool directed=false, int min_id=-1, int max_id=-1)
- void pop_from_adjlist (AdjList al)
- bool is_directed () const

- std::vector< Person< TSeq > > * get_population ()
- void pop_from_random (unsigned int n=1000, unsigned int k=5, bool d=false, epiworld_double p=.01)

Functions to run the model

Parameters

seed	Seed to be used for Pseudo-RNG.
ndays	Number of days (steps) of the simulation.
fun	In the case of run_multiple, a function that is called after each experiment.

- · void init (unsigned int ndays, unsigned int seed)
- void update_status ()
- void mutate_variant ()
- void next ()
- void run ()

Runs the simulation (after initialization)

 void run_multiple (unsigned int nexperiments, std::function< void(Model< TSeq > *)> fun, bool reset, bool verbose)

Rewire the network preserving the degree sequence.

This implementation assumes an undirected network, thus if $\{(i,j), (k,l)\} \rightarrow \{(i,l), (k,j)\}$, the reciprocal is also true, i.e., $\{(j,i), (l,k)\} \rightarrow \{(j,k), (l,i)\}$.

Parameters

pro	portion	Proportion of ties to be rewired.
-----	---------	-----------------------------------

Returns

A rewired version of the network.

- void set_rewire_fun (std::function< void(std::vector< Person< TSeq >> *, Model< TSeq > *, epiworld_double)> fun)
- void set_rewire_prop (epiworld_double prop)
- · epiworld double get rewire prop () const
- void rewire ()

Export the network data in edgelist form

Parameters

fn	std::string. File name.
source	Integer vector
target	Integer vector

When passing the source and target, the function will write the edgelist on those.

- · void write edgelist (std::string fn) const
- void write_edgelist (std::vector< unsigned int > &source, std::vector< unsigned int > &target) const

Manage status (states) in the model

The functions get_status return the current values for the statuses included in the model.

Parameters

lab std::string Name of the status.

Returns

add_status* returns nothing.
get_status_* returns a vector of pairs with the statuses and their labels.

- void add_status (std::string lab, UpdateFun< TSeq > fun)
- const std::vector< std::string > & get_status () const
- const std::vector< UpdateFun< TSeq > > & get_status_fun () const
- · void print_status_codes () const

Set the user data object

Parameters

names string vector with the names of the variables.

- void set_user_data (std::vector< std::string > names)
- void add user data (unsigned int j, epiworld double x)
- void add_user_data (std::vector< epiworld_double > x)
- UserData < TSeq > & get_user_data ()

Queuing system

When queueing is on, the model will keep track of which agents are either in risk of exposure or exposed. This then is used at each step to act only on the aforementioned agents.

· void queuing on ()

Activates the queuing system (default.)

void queuing_off ()

Deactivates the queuing system.

• bool is_queuing_on () const

Query if the queuing system is on.

Queue < TSeq > & get_queue ()

Retrieve the Queue object.

Public Attributes

- std::vector< epiworld double > array double tmp
- std::vector< Virus< TSeq > * > array_virus_tmp

Friends

- class Person < TSeq >
- class DataBase < TSeq >
- class Queue < TSeq >

Setting and accessing parameters from the model

Tools can incorporate parameters included in the model. Internally, parameters in the tool are stored as pointers to an std::map<> of parameters in the model. Using the unsigned int method directly fetches the parameters in the order these were added to the tool. Accessing parameters via the std::string method involves searching the parameter directly in the std::map<> member of the model (so it is not recommended.)

The function set_param() can be used when the parameter already exists in the model.

The par() function members are aliases for $get_param()$.

Parameters

initial_val	
pname	Name of the parameter to add or to fetch

Returns

The current value of the parameter in the model.

- epiworld_double * p0
- epiworld double * p1
- epiworld double * p2
- epiworld_double * p3
- epiworld_double * p4
- epiworld_double * p5
- epiworld_double * p6
- epiworld_double * p7
- epiworld_double * p8
- epiworld_double * p9
- epiworld_double * p10
- epiworld_double * p11
- epiworld_double * p12epiworld_double * p13
- op....a_acab.c . p.16
- epiworld_double * p14
- epiworld_double * p15
- epiworld_double * p16
- epiworld_double * p17
- epiworld_double * p18
- epiworld_double * p19
- epiworld_double * **p20**
- epiworld_double * p21
- epiworld_double * p22
- epiworld_double * p23
- epiworld double * p24
- epiworld_double * p25
- epiworld_double * p26
- epiworld_double * p27
- epiworld_double * p28epiworld_double * p29
- epiworld_double * p29epiworld_double * p30
- epiworld double * p31
- epiworld_double * p32

- epiworld_double * p33
- epiworld_double * p34
- epiworld double * p35
- epiworld_double * p36
- epiworld_double * p37
- epiworld_double * p38
- epiworld_double * p39
- unsigned int **npar_used** = 0u
- epiworld_double add_param (epiworld_double initial_val, std::string pname)
- epiworld_double **set_param** (std::string pname)
- epiworld_double get_param (unsigned int k)
- epiworld_double **get_param** (std::string pname)
- epiworld_double par (unsigned int k)
- epiworld_double **par** (std::string pname)

3.6.1 Detailed Description

```
template<typename TSeq = bool> class Model< TSeq >
```

Core class of epiworld.

The model class provides the wrapper that puts together Person, Virus, and Tools.

Template Parameters

TSeq Type of sequence. In principle, users can build models in which virus and human sequence is represented as numeric vectors (if needed.)

3.6.2 Member Function Documentation

3.6.2.1 add_global_action()

Set a global action.

Parameters

fun	A function to be called on the prescribed dates
date	Integer indicating when the function is called (see details)

When date is less than zero, then the function is called at the end of every day. Otherwise, the function will be called

only at the end of the indicated date.

3.6.2.2 reset()

```
template<typename TSeq = bool>
void Model< TSeq >::reset ( )
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

3.6.2.3 run_multiple()

Parameters

nexperiments | Multiple runs of the simulation

3.6.2.4 write data()

Wrapper of DataBase::write_data

Parameters

fn_variant_info	Filename. Information about the variant.
fn_variant_hist	Filename. History of the variant.
fn_tool_info	Filename. Information about the tool.
fn_tool_hist	Filename. History of the tool.
fn_total_hist	Filename. Aggregated history (status)
fn_transmission	Filename. Transmission history.
fn_transition	Filename. Markov transition history.

The documentation for this class was generated from the following files:

- · include/epiworld/config.hpp
- include/epiworld/model-bones.hpp

3.7 Person < TSeq > Class Template Reference

Person (agents)

```
#include <person-bones.hpp>
```

Public Member Functions

- · void init (epiworld_fast_uint baseline_status)
- int get_id () const

Id of the individual.

• unsigned int get_index () const

Location (0, ..., n-1).

- std::mt19937 * get_rand_endgine ()
- Model < TSeq > * get_model ()
- Virus < TSeq > & get_virus (int i)
- PersonViruses < TSeq > & get_viruses ()
- Tool < TSeq > & get_tool (int i)
- PersonTools < TSeq > & get_tools ()
- void mutate_variant ()
- void add_neighbor (Person< TSeq > *p, bool check_source=true, bool check_target=true)
- std::vector< Person< TSeq > * > & get_neighbors ()
- void **change_status** (epiworld_fast_uint new_status, epiworld_fast_int queue=0)
- · const epiworld_fast_uint & get_status () const
- · void reset ()
- bool has_tool (unsigned int t) const
- bool has_tool (std::string name) const
- · bool has_virus (unsigned int t) const
- · bool has_virus (std::string name) const

Add/Remove Virus/Tool

Calling any of these functions will lock the agent (person) until the action is applied at the end of the iteration. Calling any of this functions when the agent is locked will cause an error.

Parameters

tool	Tool to add
virus	Virus to add
status_new	Status after the change
queue	

- void add_tool (std::shared_ptr< Tool< TSeq > > tool, epiworld_fast_int status_new=-1, epiworld_fast
 _int queue=0)
- void add_virus (std::shared_ptr< Virus< TSeq > > virus, epiworld_fast_int status_new=-1, epiworld_←
 fast_int queue=0)
- void rm tool (epiworld fast uint tool idx, epiworld fast int status new=-1, epiworld fast int queue=0)
- void rm_virus (epiworld_fast_uint virus_idx, epiworld_fast_int status_new=-1, epiworld_fast_int queue=0)

Get the rates (multipliers) for the agent

Parameters

v A pointer to a virus.

Returns

epiworld_double

- epiworld double get_susceptibility_reduction (Virus < TSeq > *v)
- epiworld double get transmission reduction (Virus < TSeq > *v)
- epiworld double get_recovery_enhancer (Virus < TSeq > *v)
- epiworld_double get_death_reduction (Virus< TSeq > *v)

Friends

- class Model < TSeq >
- class Tool < TSeq >
- class Queue < TSeq >
- void default_add_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_add_tool (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_tool (Action< TSeq > &a, Model< TSeq > *m)

3.7.1 Detailed Description

template<typename TSeq = bool> class Person< TSeq >

Person (agents)

Template Parameters

TSeq | Sequence type (should match TSeq across the model)

The documentation for this class was generated from the following files:

- · include/epiworld/config.hpp
- include/epiworld/person-bones.hpp

3.8 PersonTools < TSeq > Class Template Reference

List of tools available for the individual to.

```
#include <persontools-bones.hpp>
```

Public Member Functions

- void add_tool (int date, Tool < TSeq > tool)
- epiworld_double get_susceptibility_reduction (Virus< TSeq > *v)
- epiworld double get_transmission_reduction (Virus< TSeq > *v)
- epiworld_double get_recovery_enhancer (Virus< TSeq > *v)
- epiworld_double get_death_reduction (Virus< TSeq > *v)
- void set_susceptibility_reduction_mixer (MixerFun< TSeq > fun)
- void set_transmission_reduction_mixer (MixerFun < TSeq > fun)
- void set_recovery_enhancer_mixer (MixerFun < TSeq > fun)
- void set_death_reduction_mixer (MixerFun < TSeq > fun)
- · size t size () const
- Tool < TSeq > & operator() (int i)
- Person < TSeq > * get_person ()
- Model < TSeq > * get_model ()
- · void reset ()
- bool has_tool (unsigned int t) const
- bool has_tool (std::string name) const

Friends

- class Person < TSeq >
- class Model < TSeq >

3.8.1 Detailed Description

template<typename TSeq = bool> class PersonTools< TSeq >

List of tools available for the individual to.

Template Parameters

The documentation for this class was generated from the following files:

include/epiworld/config.hpp

- · include/epiworld/persontools-bones.hpp
- include/epiworld/persontools-meat.hpp

3.9 PersonViruses < TSeq > Class Template Reference

Set of viruses in host.

```
#include <personviruses-bones.hpp>
```

Public Member Functions

- void add_virus (epiworld_fast_uint new_status, Virus < TSeq > v)
- size_t size () const
- int size active () const
- Virus < TSeq > & operator() (int i)
- · void mutate ()
- void reset ()
- void deactivate (Virus < TSeq > &v)
- Person< TSeq > * get_host ()
- bool has_virus (unsigned int v) const
- bool has_virus (std::string vname) const

Friends

- class Person < TSeq >
- class Model < TSeq >

3.9.1 Detailed Description

```
template<typename TSeq = bool> class PersonViruses< TSeq >
```

Set of viruses in host.

Template Parameters

```
TSeq Type of sequence
```

The documentation for this class was generated from the following files:

- include/epiworld/person-bones.hpp
- include/epiworld/personviruses-bones.hpp
- include/epiworld/personviruses-meat.hpp

3.10 Progress Class Reference

A simple progress bar.

```
#include progress.hpp>
```

Public Member Functions

- Progress (int n_, int width_)
- · void start ()
- void next ()
- void **end** ()

3.10.1 Detailed Description

A simple progress bar.

The documentation for this class was generated from the following file:

· include/epiworld/progress.hpp

3.11 Queue < TSeq > Class Template Reference

Controls which agents are verified at each step.

```
#include <queue-bones.hpp>
```

Public Member Functions

- void operator+= (Person< TSeq > *p)
- void operator-= (Person < TSeq > *p)
- epiworld_fast_int operator[] (unsigned int i) const
- void set_model (Model < TSeq > *m)
- void update ()

3.11.1 Detailed Description

```
template<typename TSeq = bool> class Queue< TSeq >
```

Controls which agents are verified at each step.

The idea is that only agents who are either in an infected state or have an infected neighbor should be checked. Otherwise it makes no sense (no chance to recover or capture the disease).

Template Parameters

TSeq	
,	

The documentation for this class was generated from the following files:

- include/epiworld/model-bones.hpp
- · include/epiworld/queue-bones.hpp

3.12 RandGraph Class Reference

Public Member Functions

- RandGraph (int N_)
- void init (int s)
- void set_rand_engine (std::mt19937 &e)
- epiworld double runif ()

The documentation for this class was generated from the following file:

• include/epiworld/random_graph.hpp

3.13 Tool < TSeq > Class Template Reference

Tools for defending the host against the virus.

#include <tools-bones.hpp>

Public Member Functions

- Tool (std::string name="unknown tool")
- void set_sequence (TSeq d)
- void set_sequence_unique (TSeq d)
- void set_sequence (std::shared_ptr< TSeq > d)
- std::shared ptr< TSeq > get_sequence ()
- TSeq & get_sequence_unique ()
- void set_name (std::string name)
- std::string get_name () const
- Person < TSeq > * get_person ()
- unsigned int get_id () const
- void set_id (int id)
- void set date (int d)
- void **set_status** (epiworld_fast_int init, epiworld_fast_int end)
- void set_queue (epiworld_fast_int init, epiworld_fast_int end)

Get and set the tool functions

Parameters

٧	The virus over which to operate
fun	the function to be used

Returns

epiworld_double

- epiworld double get_susceptibility_reduction (Virus< TSeq > *v)
- epiworld double **get transmission reduction** (Virus< TSeq > *v)
- epiworld_double get_recovery_enhancer (Virus < TSeq > *v)
- epiworld_double get_death_reduction (Virus < TSeq > *v)
- void set_susceptibility_reduction_fun (ToolFun < TSeq > fun)
- void set_transmission_reduction_fun (ToolFun < TSeq > fun)
- void set_recovery_enhancer_fun (ToolFun< TSeq > fun)
- void set_death_reduction_fun (ToolFun < TSeq > fun)
- void set_susceptibility_reduction (epiworld_double *prob)
- void set_transmission_reduction (epiworld_double *prob)
- void set_recovery_enhancer (epiworld_double *prob)
- void set death reduction (epiworld double *prob)
- void set_susceptibility_reduction (epiworld_double prob)
- void set transmission reduction (epiworld double prob)
- void set recovery enhancer (epiworld double prob)
- void set_death_reduction (epiworld_double prob)

Friends

- class PersonTools < TSeq >
- class Person < TSeq >
- class Model < TSeq >

3.13.1 Detailed Description

template < typename TSeq = bool> class Tool< TSeq >

Tools for defending the host against the virus.

Template Parameters

TSeq Type of sequence

The documentation for this class was generated from the following files:

- · include/epiworld/config.hpp
- · include/epiworld/tools-bones.hpp
- include/epiworld/tools-meat.hpp

3.14 UserData < TSeq > Class Template Reference

Personalized data by the user.

#include <userdata-bones.hpp>

Public Member Functions

UserData (std::vector< std::string > names)

Construct a new User Data object.

- std::vector< std::string > & get_names ()
- std::vector< int > & get_dates ()
- std::vector< epiworld_double > & get_data ()
- void **get_all** (std::vector< std::string > *names=nullptr, std::vector< int > *date=nullptr, std::vector< epiworld_double > *data=nullptr)
- · unsigned int nrow () const
- unsigned int ncol () const
- void write (std::string fn)
- · void print () const

Append data

Parameters

Х	A vector of length ncol() (if vector), otherwise a epiworld_double.
j	Index of the data point, from 0 to ncol () - 1.

- void add (std::vector< epiworld_double > x)
- void add (unsigned int j, epiworld_double x)

Access data

Parameters

i	Row (0 through ndays - 1.)
j	Column (0 through ncols()).

Returns

epiworld_double&

- epiworld_double & operator() (unsigned int i, unsigned int j)
- epiworld_double & operator() (unsigned int i, std::string name)

Friends

- class Model < TSeq >
- class DataBase< TSeq >

3.14.1 Detailed Description

template<typename TSeq> class UserData< TSeq>

Personalized data by the user.

Template Parameters

3.14.2 Constructor & Destructor Documentation

3.14.2.1 UserData()

Construct a new User Data object.

Parameters

names A vector of names. The length of the vector sets the number of columns to record.

The documentation for this class was generated from the following files:

- include/epiworld/database-bones.hpp
- include/epiworld/userdata-bones.hpp
- include/epiworld/userdata-meat.hpp

3.15 vecHasher < T > Struct Template Reference

Vector hasher.

```
#include <misc.hpp>
```

Public Member Functions

• std::size_t operator() (std::vector< T > const &dat) const noexcept

3.15.1 Detailed Description

```
template<typename T> struct vecHasher< T>
```

Vector hasher.

Template Parameters

T

The documentation for this struct was generated from the following file:

· include/epiworld/misc.hpp

3.16 Virus < TSeq > Class Template Reference

Virus.

```
#include <virus-bones.hpp>
```

Public Member Functions

- Virus (std::string name="unknown virus")
- · void mutate ()
- void set mutation (MutFun < TSeq > fun)
- const TSeq * get_sequence ()
- void **set_sequence** (TSeq sequence)
- Person< TSeq > * get_host ()
- Model < TSeq > * get_model ()
- void set_date (int d)
- int get_date () const
- void set_id (int idx)
- int get_id () const
- void set_name (std::string name)
- std::string get_name () const
- $std::vector < epiworld_double > \& get_data ()$
- void **set_status** (epiworld_fast_int init, epiworld_fast_int end)

Get and set the tool functions

Parameters

V	The virus over which to operate
fun	the function to be used

Returns

epiworld_double

- epiworld_double get_prob_infecting ()
- epiworld_double get_prob_recovery ()
- epiworld double get prob death ()
- void post recovery ()
- void set_post_recovery (PostRecoveryFun< TSeq > fun)
- void set_post_immunity (epiworld_double prob)
- void set_post_immunity (epiworld_double *prob)

- void set_prob_infecting_fun (VirusFun< TSeq > fun)
- void set_prob_recovery_fun (VirusFun < TSeq > fun)
- void set_prob_death_fun (VirusFun < TSeq > fun)
- void set_prob_infecting (epiworld_double *prob)
- void set_prob_recovery (epiworld_double *prob)
- void set_prob_death (epiworld_double *prob)
- void set prob infecting (epiworld double prob)
- void set_prob_recovery (epiworld_double prob)
- void set_prob_death (epiworld_double prob)

Friends

- class Person < TSeq >
- class Model < TSeq >
- class PersonViruses < TSeq >
- class DataBase< TSeq >

3.16.1 Detailed Description

template<typename TSeq = bool> class Virus< TSeq >

Virus.

Template Parameters

TSeq	
------	--

Raw transmisibility of a virus should be a function of its genetic sequence. Nonetheless, transmisibility can be reduced as a result of having one or more tools to fight the virus. Because of this, transmisibility should be a function of the host.

The documentation for this class was generated from the following files:

- · include/epiworld/config.hpp
- include/epiworld/virus-bones.hpp
- include/epiworld/virus-meat.hpp

Index

```
Action < TSeq >, 5
add_global_action
      Model < TSeq >, 15
AdjList, 6
     AdjList, 6
DataBase < TSeq >, 7
     record_variant, 8
LFMCMC < TData >, 8
Location < TSeq >, 10
\mathsf{Model} \! < \mathsf{TSeq} >, \textcolor{red}{\mathbf{10}}
     add_global_action, 15
     reset, 16
     run multiple, 16
     write_data, 16
Person< TSeq >, 17
PersonTools < TSeq >, 19
PersonViruses < TSeq >, 20
Progress, 21
Queue < TSeq >, 21
RandGraph, 22
record variant
      {\sf DataBase}\!<{\sf TSeq}>, {\color{red}8}
reset
     \mathsf{Model} \! < \mathsf{TSeq} >, \textcolor{red}{\textbf{16}}
run_multiple
     Model < TSeq >, 16
Tool < TSeq >, 22
UserData
      UserData < TSeq >, 25
UserData < TSeq >, 23
      UserData, 25
vecHasher< T>, 25
Virus < TSeq >, 26
write_data
     \mathsf{Model} \! < \mathsf{TSeq} >, \textcolor{red}{\mathbf{16}}
```