Министерство образования и науки Российской Федерации Федеральное агентство по образованию Дальневосточный государственный университет

А.Г. КОЛОБОВ, Л.А. МОЛЧАНОВА

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Методические указания и задания для студентов математических специальностей

Владивосток Издательство Дальневосточного университета 2008 Рецензент:

Т.В. Пак, к.ф.-м.н.; ИМКН ДВГУ

Колобов А.Г., Молчанова Л.А.

К61 **Ч**исленные методы линейной алгебры. Учебно-методическое пособие. - Владивосток: Изд-во Дальневост. ун-та, 2008. - 36 с.

Численные методы линейной алгебры содержат теоретический материал и задания для самостоятельного выполнения лабораторного практикума. Темы: "Методы решения систем линейных алгебраических уравнений", "Вычисление обратных матриц и определителей", "Вычисление собственных значений и собственных векторов матриц". Приводятся примеры использования этих методов и даются варианты заданий для группы студентов.

Для студентов математических специальностей.

$$K\frac{1702030000}{180(03) - 2008}$$

ББК 22.143

[©]Молчанова Л.А., 2008

Содержание

1	Чис	сленное решен	ние систем линейных алгебраических уравнений
	1.1	Точные методы	ы решения
		1.1.1 Схема I	Гаусса с выбором главного элемента
		1.1.2 Метод е	единственного деления
		1.1.3 Метод с	оптимального исключения
		1.1.4 Метод в	квадратного корня
			Халецкого
			отражений. Вариант 1
			отражений. Вариант 2
	1.2	Итерационные	е методы
		1.2.1 Метод г	простой итерации
		1.2.2 Метод З	Зейделя
		1.2.3 Метод р	релаксации
	1.3	Задания	
•	ъ	_	
2			твенных значений и собственных векторов матриц
	2.1		ения характеристического многочлена
			Леверье
		2.1.2 Метод (Фадеева
	2.2	Частичная про	облема собственных значений
		2.2.1 Метод г	простой итерации
		2.2.2 Метод г	прямых итераций
		2.2.3 Метод с	обратных итераций
	2.3	Полная пробле	ема собственных значений
		2.3.1 Метод н	вращения с преградами
	2.4	Зэлэния	3

1 Численное решение систем линейных алгебраических уравнений

Пусть дана система n линейных алгебраических уравнений с n неизвестными, записанная в матричной форме

$$A\overline{x} = \overline{b},\tag{1}$$

где A - матрица коэффициентов при неизвестных системы (1), \overline{b} - вектор- столбец ее свободных членов, \overline{x} - столбец неизвестных (искомый вектор):

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot & a_{2n} \\ \cdot \cdot \cdot & \cdot \cdot & \cdot & a \cdot \cdot \cdot \\ a_{n1} & a_{n2} & \cdot & a_{nn} \end{bmatrix}, \ \overline{b} = \begin{bmatrix} b_1 \\ b_2 \\ \cdot \cdot \cdot \\ b_n \end{bmatrix}, \ \overline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \cdot \cdot \cdot \\ x_n \end{bmatrix}.$$

Система (1) в развернутом виде может быть выписана так:

Пусть далее известно, что определитель матрицы A

$$det A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \Delta \neq 0$$

Требуется найти решение этой системы, т.е. совокупность чисел x_1, x_2, \dots, x_n , обращающих (1) в систему тождеств. В силу того, что $\Delta \neq 0$, по теореме о единственности решения системы линейных алгебраических уравнений такое решение существует и единственно.

Методы решения систем линейных алгебраических уравнений делятся на две большие группы: так называемые точные методы и методы последовательных приближений [2].

Точные методы характеризуются тем, что с их помощью принципиально возможно, проделав конечное число операций, получить точные значения неизвестных. При этом, конечно, предполагается, что коэффициенты и правые части системы известны точно, а все вычисления производятся без округлений. Чаще всего они осуществляются в два этапа. На первом этапе преобразуют систему к тому или иному простому виду. На втором этапе решают упрощенную систему и получают значения неизвестных.

Методы последовательных приближений (итерационные методы) характеризуются тем, что с самого начала задаются какими-то приближенными значениями неизвестных. Из этих приближенных значений тем или иным способом получают новые "улучшенные"приближенные значения. С новыми приближенными значениями поступают точно так же и т.д. При выполнении определенных условий можно придти, вообще говоря, после бесконечного числа шагов к точному решению.

1.1 Точные методы решения

Эти методы просты и универсальны, однако вследствие неизбежных округлений результаты являются приближенными, причем оценка погрешности корней в общем случае затруднительна. К ним относятся: метод исключения (варианты метода Гаусса), метод квадратного корня, метод Халецкого, метод отражений и другие.

1.1.1 Схема Гаусса с выбором главного элемента

Процесс решения системы линейных алгебраических уравнений по методу Гаусса с выбором главного элемента сводится к построению системы с треугольной матрицей, эквивалентной исходной системе.

Рассмотрим расширенную прямоугольную матрицу, состоящую из коэффициентов при неизвестных и свободных членов системы (1):

$$M = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} \cdots & a_{1q} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2j} \cdots & a_{2q} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pj} \cdots & a_{pq} & \cdots & a_{pn} & b_p \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} \cdots & a_{nq} & \cdots & a_{nn} & b_n \end{bmatrix}$$

$$(3)$$

Выберем наибольший по модулю элемент a_{pq} , не принадлежащий столбцу свободных членов матрицы M. Этот элемент называется <u>главным элементом</u>. Строка матрицы M, содержащая главный элемент, называется <u>главной строкой</u>. Столбец матрицы M. содержащий главный элемент, называется <u>главным столбцом</u>. Далее, производя некоторые операции, построим матрицу $M^{(1)}$ с меньшим на единицу числом строк и столбцов. Матрица $M^{(1)}$ получатся преобразованием из M, при котором главная строка и главный столбец матрицы M исключается. Над матрицей $M^{(1)}$ повторяем те же операции, что и над матрицей M, после чего получаем матрицу $M^{(2)}$, и т.д. Таким образом, мы построим последовательность матриц

$$M, M^{(1)}, M^{(2)}, \cdots, M^{(n-1)},$$
 (4)

последняя из которых представляет собой двухэлементную матрицу - строку; ее также считаем главной строкой.

Для получения системы с треугольной матрицей, эквивалентной системе (1), объединяем все <u>главные</u> строки матриц последовательности (4), начиная с последней $M^{(n-1)}$.

Рассмотрим подробнее эту схему для системы четырех уравнений с четырьмя неизвестными.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_n = b_3$$

$$a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_n = b_4$$

Вычисления удобно записать на расчетном бланке.

В таблице 1 показан процесс построения последовательности матриц (4). Главные элементы отмечены рамкой. В III столбце помещены значения m_i , равные отношению соответствующего элемента главного столбца к главному элементу с противоположным знаком. В строках, отмеченных звездочкой, выписываем элементы соответствующих главных строк,

I	II	III	IV	V	VI	VII	VIII
M	Ν	m_i	a_{i1}	a_{i2}	a_{i3}	a_{i4}	b_i
	1	$m_1 = -\frac{a_{13}}{a_{23}}$	a_{11}	a_{12}	a_{13}	a_{14}	b_1
	2		a_{21}	a_{22}	a_{23}	a_{24}	b_2
$M^{(0)}$	3	$m_3 = -\frac{a_{33}}{a_{23}}$	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	4	$m_4 = -\frac{a_{23}}{a_{23}}$	a_{41}	a_{42}	a_{43}	a_{44}	b_4
	2*		$\alpha_{21} = \frac{a_{21}}{a_{23}}$	$\alpha_{22} = \frac{a_{22}}{a_{23}}$	$\alpha_{23} = 1$	$\alpha_{24} = \frac{a_{24}}{a_{23}}$	$\beta_2 = \frac{b_2}{a_{23}}$
	1	$m_1^{(1)} = -\frac{a_{12}^{(1)}}{a_{22}^{(1)}}$	$a_{11}^{(1)} = a_{11} + a_{21}m_1$	$a_{12}^{(1)} = a_{12} + a_{22}m_1$	0	$a_{14}^{(1)} = a_{14} + a_{24}m_1$	$b_1^{(1)} = b_1 + b_2 m_1$
$M^{(1)}$	9	52	$a^{(1)} - a + a + m$	$a_{32}^{(1)} = a_{32} + a_{22}m_3$	0	$a_{34}^{(1)} = a_{34} + a_{24}m_3$	$b_3^{(1)} = b_3 + b_2 m_3$
	4	$m_4^{(1)} = -\frac{a_{43}^{(1)}}{a_{23}^{(1)}}$		$a_{42}^{(1)} = a_{42} + a_{22}m_4$	0	$a_{44}^{(1)} = a_{44} + a_{24}m_4$	$b_4^{(1)} = b_4 + b_2 m_4$
	3*		$\alpha_{31} = \frac{a_{31}^{(1)}}{a_{32}^{(1)}}$	$\alpha_{32} = 1$	0	$\alpha_{34} = \frac{a_{34}^{(1)}}{a_{32}^{(1)}}$	$\beta_3 = \frac{b_3^{(1)}}{a_{32}^{(1)}}$
	1	$m_1^{(2)} = -\frac{a_{11}^{(2)}}{a_{41}^{(2)}}$	$a_{11}^{(2)} = a_{11}^{(1)} + a_{31}^{(1)} m_1^{(1)}$	0	0	$a_{14}^{(2)} = a_{14}^{(1)} + a_{34}^{(1)} m_1^{(1)}$	$b_1^{(2)} = b_1^{(1)} + b_3^{(1)} m_1^{(1)}$
$M^{(2)}$	4	41	$a_{41}^{(2)} = a_{41}^{(1)} + a_{31}^{(1)} m_4^{(1)}$	0	0	$a_{44}^{(2)} = a_{44}^{(1)} + a_{34}^{(1)} m_4^{(1)}$	$b_4^{(2)} = b_4^{(1)} + b_3^{(1)} m_4^{(1)}$
	4*		$\alpha_{41} = 1$	0	0	$\alpha_{44} = \frac{a_{44}^{(2)}}{a_{41}^{(2)}}$ $a_{14}^{(3)} = a_{14}^{(2)} + a_{44}^{(2)} m_1^{(2)}$	$\beta_4 = \frac{b_4^{(2)}}{a_{41}^{(2)}}$
$M^{(3)}$	1		0	0	0	$a_{14}^{(3)} = a_{14}^{(2)} + a_{44}^{(2)} m_1^{(2)}$	$b_4^{(3)} = b_1^{(2)} + b_4^{(2)} m_1^{(2)}$
	1*		0	0	0	1	$\beta_4 = \frac{b_4^{(3)}}{a_{14}^{(3)}} = x_4$
			1				$x_1 = \beta_4 - \alpha_{44} x_4$
				1			$x_2 = \beta_3 - \alpha_{34}x_4 - \alpha_{31}x_1$
					1		$x_3 = \beta_2 - \alpha_{24}x_4 - \alpha_{22}x_2 - \alpha_{21}x_1$

поделенных на их главные элементы. Объединив уравнения, отмеченные звездочкой, мы получим систему

$$\begin{pmatrix}
(1^*) \\
(4^*) \\
(3^*) \\
(2^*)
\end{pmatrix}
\begin{cases}
x_4 = \beta_4 \\
x_1 + \alpha_{44}x_4 = \beta_1 \\
\alpha_{31}x_1 + x_2 + \alpha_{34}x_4 = \beta_3 \\
\alpha_{21}x_1 + \alpha_{22}x_2 + x_3 + \alpha_{24}x_4 = \beta_2
\end{cases}$$

с треугольной матрицей, эквивалентную исходной системе. Из этой системы последовательно находим значения компонент искомого вектора \overline{x} по формулам

$$\begin{array}{rcl} x_4 & = & \beta_4 \\ x_1 & = & \beta_1 - \alpha_{44} x_4 \\ x_2 & = & \beta_3 - \alpha_{31} x_1 - \alpha_{34} x_4 \\ x_3 & = & \beta_2 - \alpha_{21} x_1 - \alpha_{22} x_2 - \alpha_{24} x_4 \end{array}$$

Эту часть процесса отражают последние четыре строки таблицы 1.

Сам процесс исключения неизвестных называют прямым ходом, а решение системы с треугольной матрицей - обратным ходом.

<u>Пример</u>. Решить систему линейных алгебраических уравнений методом исключения по схеме Гаусса с выбором главного элемента.

$$A\overline{x} = \overline{b}$$
, где $A = \begin{bmatrix} 2,1 & -4,5 & -2,0 \\ 3,0 & 2,5 & 4,3 \\ -6,0 & 3,5 & 2,5 \end{bmatrix}$; $b = \begin{bmatrix} 19,07 \\ 3,21 \\ -18,25 \end{bmatrix}$

Расчетный бланк решения.

		отани решени				
M	N	m	a_{i1}	a_{i2}	a_{i3}	b_i
	1	$m_1 = 0.35$	2,1	-4,5	-2,0	19,07
$M^{(0)}$	2	$m_2 {=} 0.5$	3,0	2,5	4,3	3,21
	3		-6, 0	3,5	2,5	-18,25
	3*		1	-0,58333	-0,41667	3,04167
$M^{(1)}$	1	$m_1^{(1)} = 0.20270$	0	-3,275	-1,125	12,6825
	2		0	$4,\!25$	5,55	-5,915
	2*		0	0,76576	1	-1,06576
$M^{(2)}$	1		0	-2,41353	0	11,48353
	1*		0	1	0	$x_2 = -4,75798$
						$x_3 = 2,7771$
						$x_1 = 1,34025$

Решением системы является вектор-столбец

$$\bar{x} = \begin{bmatrix} 1,34025 \\ -4,75798 \\ 2,5771 \end{bmatrix}$$

1.1.2 Метод единственного деления.

Выразим следующую систему в форме расширенной матрицы, найдем эквивалентную ей верхнюю треугольную систему линейных уравнений и ее решение.

$$x_1 + 2x_2 + x_3 + 4x_4 = 13$$

$$2x_1 + 0x_2 + 4x_3 + 3x_4 = 28$$

$$4x_1 + 2x_2 + 2x_3 + x_4 = 20$$

$$-3x_1 + x_2 + 3x_3 + 2x_4 = 6$$

Расширенная матрица имеет вид

гл. эл.
$$\rightarrow$$
 $m_{21} = 2$
 $m_{31} = 4$
 $m_{41} = -3$
 $\begin{bmatrix} \underline{1} & 2 & 1 & 4 & | & 13 \\ 2 & 0 & 4 & 3 & | & 28 \\ 4 & 2 & 2 & 1 & | & 20 \\ -3 & 1 & 3 & 2 & | & 6 \end{bmatrix}$

Первая строка используется, чтобы исключить элементы под диагональю в первом столбце. Мы обращаемся к первой строке, как к главной, и называем элемент a_{11} главным. Значение m_{k1} является множителем строки 1, которую вычитаем из k строк, k=2,3,4. Результатом первого исключения будет

гл. эл.
$$\rightarrow$$
 $m_{32} = 1, 5$
 $m_{42} = -1, 75$

$$\begin{bmatrix} 1 & 2 & 1 & 4 & | & 13 \\ 0 & \underline{-4} & 2 & -5 & | & 2 \\ 0 & \overline{-6} & -2 & -15 & | & -32 \\ 0 & 7 & 6 & 14 & | & 45 \end{bmatrix}$$

Вторая строка используется, чтобы исключить элементы под диагональю во втором столбце. Эта строка является главной, и значение m_{k1} является множителем строки 2, которую вычитаем из k строк, k=3,4. Результатом исключения будет

гл. эл.
$$\rightarrow$$

$$m_{43} = -1, 9$$

$$\begin{bmatrix} 1 & 2 & 1 & 4 & | & 13 \\ 0 & -4 & 2 & -5 & | & 2 \\ 0 & 0 & \underline{-5} & -7, 5 & | & -35 \\ 0 & 0 & 9, 5 & 5, 25 & | & 48.5 \end{bmatrix}$$

Наконец, умножаем m_{43} =-1,9 на третью строку, вычитаем из четвертой строки и в результате получаем верхнюю треугольную систему линейных уравнений

$$\begin{bmatrix} 1 & 2 & 1 & 4 & | & 13 \\ 0 & -4 & 2 & -5 & | & 2 \\ 0 & 0 & -5 & -7, 5 & | & -35 \\ 0 & 0 & 0 & -9 & | & -18 \end{bmatrix}$$
 (5)

Для решения системы линейных алгебраических уравнений (5) воспользуемся алгоритмом обратной подстановки и получим

$$x_4 = 2$$
, $x_3 = 4$, $x_2 = -1$, $x_1 = 3$.

Если $a_{kk}=0$, то строку k нельзя использовать для исключения элементов столбца k и строку k следует заменить такой же строкой под диагональю, чтобы получить не равный нулю главный элемент. Если этого сделать нельзя, значит, матрица, коэффициентов системы линейных уравнений является вырожденной и система не имеет единственного решения.

1.1.3Метод оптимального исключения

Пусть дана система уравнений $A\bar{x}=\bar{b}$. Обозначив b_i через a_{in+1} , преобразуем эту систему к эквивалентной системе более простого вида. Допустим, что $a_{11} \neq 0$. Разделим все коэффициенты первого уравнения системы на a_{11} , который назовем ведущим элементом первого шага, тогда

$$x_1 + a_{12}^{(1)} \cdot x_2 + \dots + a_{1n}^{(1)} \cdot x_n = a_{1n+1}^{(1)}$$

Здесь $a_{1j}^{(1)}=a_{1j}/a_{11},\ j=2,3,\cdots,n+1.$ Предположим, что после преобразования первых $k\ (k\ge 1)$ уравнений система приведена к эквивалентной системе

$$\begin{cases} x_1 + \dots + a_{1k+1}^{(k)} x_{k+1} + \dots + a_{1n}^{(k)} x_n &= a_{1n+1}^{(k)} \\ x_2 + \dots + a_{2k+1}^{(k)} x_{k+1} + \dots + a_{2n}^{(k)} x_n &= a_{2n+1}^{(k)} \\ \dots & \dots & \dots \\ x_k + a_{kk+1}^{(k)} x_{k+1} + \dots + a_{kn}^{(k)} x_n &= a_{kn+1}^{(k)} \\ a_{k+11} x_1 + a_{k+12} x_2 + \dots + a_{k+1n+1} x_k + \dots + a_{k+1n} x_n &= a_{k+1n+1} \\ \dots & \dots & \dots \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nk+1} x_k + \dots + a_{nn} x_n &= a_{nn+1} \end{cases}$$

Исключим неизвестные x_1, x_2, \cdots, x_k из (k+1) уравнения посредством вычитания из него первых k уравнений, умноженных соответственно на числа $a_{k+11}, a_{k+12}, \cdots, a_{k+1k}$, и разделив вновь полученное уравнение на коэффициенты при x_{k+1} . Теперь (k+1) уравнение примет вид:

$$x_{k+1} + a_{k+1}^{(k+1)} \cdot x_{k+2} + \dots + a_{k+1n}^{(k+1)} \cdot x_n = a_{k+1n+1}^{(k+1)}$$

Исключая с помощью этого уравнения неизвестное x_{k+1} из первых k уравнений (3), получаем опять систему вида (3), но с заменой индекса k на k+1, причем

$$a_{i1}^{(1)} = \frac{a_{1i}}{a_{11}}, i = 2, 3, ..., n + 1.$$

$$a_{k+1p}^{(k+1)} = \frac{a_{k+1p} - \sum_{r=1}^{k} a_{rp}^{(k)} a_{k+1r}}{a_{k+1k+1} - \sum_{r=1}^{k} a_{rk+1}^{(k)} a_{k+1r}};$$

$$a_{ip}^{(k+1)} = a_{ip}^{(k)} - a_{k+1p}^{(k+1)} a_{ik+1}^{(k)}, i = 1, 2, \dots, k;$$

$$p = k + 2, k + 3, \dots, n + 1; k = 0, 1, \dots, n - k;$$

После преобразования всех уравнений находим решение исходной системы $x_i = a_{in+1}^{(n)}, i =$ $1, 2, \cdots, n$.

Указанная схема оптимального исключения работает в случае неравенства нулю ведущих элементов. Наилучшим вариантом методом оптимального исключения является вариант с выбором максимального по модулю элемента в строке. В этом случае структура исключения сохраняется, меняется лишь порядок исключения неизвестных. Теперь в качестве ведущего элемента будем брать максимальный по модулю элемент того уравнения, который получается из (k+1)-го уравнения исходной системы после исключения первых k шагов. Ведущим элементом первого шага будет максимальный по модулю элемент первого уравнения системы (3). При проведении расчетов удобно пользоваться следующей вычислительной схемой:

Матрица k-го шага

$\begin{array}{c} 1 \ 0 \dots 0 \\ 0 \ 1 \dots 0 \end{array}$	$a_{1k+1}^{(k)} \\ a_{2k+1}^{(k)}$	$a_{1k+2}^{(k)} \cdot \dots \cdot a_{1n+1}^{(k)} a_{2k+2}^{(k)} \cdot \dots \cdot a_{2n+1}^{(k)}$
0 0 1	$a_{kk+1}^{(k)}$	$a_{kk+2}^{(k)} \cdot \dots \cdot a_{kn+1}^{(k)}$
$a_{k+11}a_{k+12}\dots a_{k+1k}$	a_{k+1k+1}	$a_{k+1k+2}\dots a_{k+1n+1}$
$a_{k+21}a_{k+22}\cdots a_{k+2k}$	a_{k+2k+1}	$a_{k+2k+2}\dots a_{k+2n+1}$
$a_{n1}a_{n2}\dots a_{nk}$	a_{nk+1}	$a_{nk+2}\ldots a_{nn+1}$

Матрица (k+1)-го шага после преобразования:

111a1p111qa (10 + 1) 10	one upcoopasobanini.	
1 0 0 0 1 0	0	$a_{ip}^{(k+1)} = a_{ip}^{(k)} + a_{k+1p}^{(k+1)} a_{ik+1}$ $i = 1, 2, \dots, k$
0 0 1	0	$p = k + 2, \dots, n + 1$
0 0 0	1	$p = k + 2, \dots, n + 1$ $a_{k+1p}^{(k+1)} = \frac{a_{k+1p} - \sum_{r=1}^{k} a_{rp}^{(k)} a_{k+1r}}{a_{k+1k+1} - \sum_{r=1}^{k} a_{rk+1}^{(k)} a_{k+1r}}$
$a_{k+21} a_{k+22} \dots a_{k+2k}$	a_{k+2k+1}	$a_{k+2k+2}\dots a_{k+2n+1}$
$a_{n1} a_{n2} \ldots a_{nk}$	a_{nk+1}	$a_{nk+2} \dots a_{nn+1}$

Пример. Решить методом оптимального исключения систему

$$\begin{cases} 5x_1 + 2x_2 + 3x_3 = 3\\ x1 + 6x_2 + x_3 = 5\\ 3x_1 - 4x_2 - 2x_3 = 8 \end{cases}$$

Вычислительная схема

k	$a_{i1}^{(k)}$	$a_{i2}^{(k)}$	$a_{i3}^{(k)}$	$a_{i4}^{(k)}$	k	$a_{i1}^{(k)}$	$a_{i2}^{(k)}$	$a_{i3}^{(k)}$	$a_{i4}^{(k)}$
	5	2	3	3		1	5/2	3/5	3/5
0	1	6	1	5	1	1	6	1	5
	3	-4	-2	8		3	-4	-2	8
k	$a_{i1}^{(k)}$	$a_{i2}^{(k)}$	$a_{i3}^{(k)}$	$a_{i4}^{(k)}$	k	$a_{i1}^{(k)}$	$a_{i2}^{(k)}$	$a_{i3}^{(k)}$	$a_{i4}^{(k)}$
	1	0	4/7	2/7		1	0	0	2
2	0	1	1/14	1/14	3	0	1	0	1
	3	-4	-2	8		0	0	1	-3

Other: $x_1 = 2$, $x_2 = 1$, $x_3 = -3$.

1.1.4 Метод квадратного корня

Этот метод используется для решения систем, у которых матрица A симметрична. В этом случае матрицу A можно разложить в произведение двух транспонированных друг

другу треугольных матриц

$$A = S'S,$$

$$S = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ 0 & s_{22} & \cdots & s_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & s_{nn} \end{bmatrix}.$$

Формулы для определения s_{ij} :

$$s_{11} = \sqrt{a_{11}} \quad , s_{1j} = \frac{a_{1j}}{s_{11}}, \quad (j > 1),$$

$$s_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} s_{ki}^2} \quad (i > 1), \quad s_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} s_{ki} s_{kj}}{s_{ii}} \quad (j > i),$$

$$s_{ij} = 0 \quad (i > j).$$

После того как матрица S найдена, решают систему

$$S'y = b$$
,

а затем находят неизвестные $x_1, x_2, ..., x_n$ из системы

$$Sx = y$$

Так как обе системы имеют треугольную форму, то они легко решаются.

$$y_1 = \frac{b_1}{s_{11}}, \quad y_i = \frac{b_i - \sum_{k=1}^{i-1} s_{ki} y_k}{s_{ii}}, \quad (i > 1).$$

$$x_n = \frac{y_n}{s_{nn}}, \quad x_i = \frac{y_i - \sum_{k=i+1}^n s_{ik} x_k}{s_{ii}}, \quad (i < n).$$

При практическом применении метода последовательно *прямым ходом* вычисляются коэффициенты s_{ij} и y_i (i=1,2,...,n), а затем *обратным ходом* находятся неизвестные x_i (i=n,n-1,...,1).

Пример. Методом квадратного корня решить систему уравнений

Расчетный бланк решения.

a_{i1}	a_{i2}	a_{i3}	a_{i4}	a_{i5}	b_i
1	3	-2	0	-2	0,5
3	4	-5	1	-3	5,4
-2	-5	3	-2	2	5,0
0	1	-2	5	3	7,5
-2	-3	2	3	4	3,3
s_{i1}	s_{i2}	s_{i3}	s_{i4}	s_{i5}	y_i
1	3	-2	0	-2	0,5
	$2,\!2361i$	-0,4472i	-0,4472i	-1,3416i	-1,7471i
		0,8944i	2,0125i	1,5653i	-7,5803i
			3,0414i	2,2194	-2,2928
				0,8221i	0,1643i
-6,0978	-2,2016	-6,8011	-8,8996	0,1998	x_i

1.1.5 Схема Халецкого

Дана система $A\bar{x}=\bar{b}$, где

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}, \quad \bar{b} = \begin{pmatrix} a_{1n+1} \\ \dots \\ a_{nn+1} \end{pmatrix}$$

Представляем матрицу A в виде произведения двух матриц B и C, т.е. A = BC

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix} \begin{pmatrix} 1 & c_{12} & \dots & c_{1n} \\ 0 & 1 & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Элементы b_{ij}, c_{ij} определяются по формуле:

$$\begin{cases} b_{i1} = a_{i1}, & c_{1j} = \frac{a_{1j}}{b_{11}}, \\ b_{ij} = a_{ij} - \sum_{k=1}^{j-1} b_{ik} c_{kj}, & c_{ij} = \frac{1}{b_{ii}} (a_{ij} - \sum_{k=1}^{i-1} b_{ik} c_{kj}), \\ (i \ge j > 1), & (1 < i < j). \end{cases}$$

Вектор решения \bar{x} может быть найден из последовательного решения уравнений

$$B\bar{y} = \bar{b}, \qquad C\bar{x} = \bar{y}.$$

Tак как B и C матрицы треугольные, то

$$y_1 = \frac{a_{1n+1}}{b_{11}}; \quad y_i = \left(a_{in+1} - \sum_{k=1}^{i-1} b_{ik} y_k\right) / b_{ii}, \quad (i > 1),$$

И

$$x_n = y_n;$$
 $x_i = y_i - \sum_{k=i+1}^n c_{ik} x_k,$ $(i < n).$

Пример. Методом Халецкого решить систему уравнений

Расчетный вид бланка и схема решения системы.

x_1	x_2	x_3	x_4		x_1	x_2	x_3	x_4	
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	3	1	-1	2	6
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	-5	1	3	-4	-12
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	2	0	1	-1	1
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	1	-5	3	-3	3
$b_{11} 1$	c_{12}	c_{13}	c_{14}	c_{15}	3 1	1/3	-1/3	2/6	2
b_{21}	$b_{22} 1$	c_{23}	c_{24}	c_{25}	-5	8/3 1	0, 5	-0,25	-0,75
b_{31}	b_{32}	$b_{33} 1$	c_{34}	c_{35}	2	-2/3	2 1	-1,25	-1,75
b_{41}	$b_{42} 1$	b_{43}	$b_{44} 1$	c_{45}	1	-16/3	6	2,5 1	3
				x_1					1
				x_2					-1
				x_3					2
				x_4					3

Other: $x_1 = 1, x_2 = -1, x_3 = 2, x_4 = 3.$

1.1.6 Метод отражений. Вариант 1

Метод отражений решения системы уравнений Ax = f состоит в выполнении n-1 шагов (n - порядок матрицы), в результате чего матрица A системы приводится к верхней треугольной форме, и последующем решении системы с верхней треугольной матрицей.

Пусть в результате выполнения k-1 шагов матрица A привелась к виду

Опишем k-й шаг процесса. Цель k-го шага - обнулить все поддиагональные элементы k-го столбца. Для этого определим вектор нормали $p^{(k)}=(0,...,0,p_k^{(k)},p_{k+1}^{(k)},...,p_n^{(k)})^T$, положив

$$p_k^{(k)} = a_{kk}^{(k-1)} + \sigma_k \sqrt{\sum_{l=k}^n (a_{lk}^{(k-1)})^2}, \quad \sigma_k = \begin{cases} 1, a_{kk}^{(k-1)} \ge 0, \\ -1, a_{kk}^{(k-1)} < 0, \end{cases}$$
 (6)

$$p_l^{(k)} = a_{lk}^{(k-1)}, l = k+1, ..., n.$$
(7)

Определим теперь матрицу отражения P_k с элементами $p_{ij}^{(k)} = \sigma_{ij} - 2p_i^{(k)}p_j^{(k)}/\sum_{l=k}^n(p_l^{(k)})^2$, где σ_{ij} — символ Кронеккера.

Легко проверить, что матрица $A_k = P_k A_{k-1}$ имеет вид

т.е. поддиагональные элементы ее k-ого столбца равны нулю, а первые k-1 строк и столбцов ее совпадают, с соответствующими строками и столбцами матрицами A_{k-1} . Кроме того, можно показать, что остальные элементы вычисляются по формулам

$$a_{kk}^{(k)} = -\sigma_k \sqrt{\sum_{l=k}^n (a_{lk}^{(k-1)})^2}, \quad a_{ij}^{(k)} = a_{ij}^{(k-1)} - 2p_i^{(k)} \frac{\sum_{l=k}^n (p_l^{(k)} a_{lj}^{(k-1)})}{\sum_{l=k}^n (p_l^{(k)})^2},$$
(8)

$$i = k, k + 1, \dots, n, \quad j = k + 1, \dots, n.$$

В результате выполнения всех n-1 шагов матрица A приведется к верхней треугольной матрице

$$A_{n-1} = P_{n-1}P_{n-2}...P_2P_1A$$

которую мы в дальнейшем будем обозначать через $R:R=A_{n-1}$. Обозначив еще $Q=P_1P_2...P_{n-1}$, приходим к равенству A=QR, которое удобно использовать для получения решения системы Ax=f.

Обратимся теперь к решению системы Ax = f. Если мы получили разложение A = QR, то для решения этой системы нам, очевидно, достаточно решить систему $Rx = Q^*f$ с треугольной матрицей R и правой частью $g = Q^*f$. Решение этой системы находится по простым явным формулам:

$$x_n = g_n/r_{nn}, \quad x_i = \frac{g_i - \sum_{j=i+1}^n r_{ij}x_j}{r_{ij}}, \quad i = n-1, n-2, ..., 1.$$

Однако прежде чем находить решение по этим формулам, нам необходимо сначала вычислить правую часть преобразованной системы, т.е. вектор $g = P_{n-1} \dots P_2 P_1 f$. Обозначим $f^{(k)} = P_k P_{k-1} P_1 f$. Тогда $f^{(k)} = P_k f^{(k-1)}$. Предположим, что вектор $f^{(k-1)}$ имеет вид

$$f^{(k-1)} = (f_1^{(1)}, f_2^{(2)}, \dots, f_{k-1}^{(k-1)}, f_k^{(k-1)}, f_{k+1}^{(k-1)}, \dots, f_n^{(k-1)})^T.$$

В силу определения матрицы P_k и определяющего ее вектора $p^{(k)}$ легко проверить, что вектор $f^{(k)}$ будет иметь вид

$$f^{(k)} = (f_1^{(1)}, f_2^{(2)}, ..., f_{k-1}^{(k-1)}, f_k^{(k)}, f_{k+1}^{(k)}, ..., f_n^{(k)})^T,$$

где элементы $f_i^{(k)}$ вычисляются по формулам

$$f_i^{(k)} = f_i^{(k-1)} - 2p_l^{(k)} \frac{\sum_{l=k}^n p_l^{(k)} f_l^{(k-1)}}{\sum_{l=k}^n (p_l^{(k)})^2}, \quad i = k, k+1, ..., n.$$

Пример. Решить систему методом отражения

$$\begin{cases}
6,03x_1 + 13x_2 - 17x_3 = 2,0909 \\
13x_1 + 29,03x_2 - 38x_3 = 4,1509 \\
-17x_1 - 38x_2 + 50,03x_3 = -5,1191
\end{cases}$$

Расчетный бланк

k	a_1	a_2	a_3	a_4	p	$z^{(2)}$	$z^{(3)}$	$z^{(4)}$
	a_{11}	a_{12}	a_{13}	a_{14}	p_1	$2r_2p_1/s$	$2r_3p_1/s$	$2r_4p_1/s$
k	a_{21}	a_{22}	a_{23}	a_{24}	p_2	$2r_2p_2/s$	$2r_3p_2/s$	$2r_4p_2/s$
	a_{31}	a_{32}	a_{33}	a_{34}	p_3	$2r_2p_3/s$	$2r_3p_3/s$	$2r_4p_3/s$
					$s = p ^2$	$r_2 = (p, a_2)$	$r_3 = (p, a_3)$	$r_4 = (p, a_4)$
	6,03	13	-17	2,0909	28,2642	62,5533	-82,0807	8,9989
0	13	29,03	-38	4,1509	13	28,7711	-37,7526	4,1390
	-17	-38	50,03	-5,1191	-17	-37,6238	49,3688	-5,4126
					1256,867	1390,825	-1825,002	200,084
	-22,2342	-49,5533	65,0807	-6,9080	0		0	0
1	0	$0,\!2589$	-0,2473	0,0119	0,7156		-0,9322	-0,2231
	0	-0,3762	0,6611	0,2934	-0,3762		0,4901	0,1173
					0,6536		-0,4257	-0,1019
	$a^{(1)}$	$a^{(2)}$	$a^{(3)}$	$a^{(4)}$	x			
	-22,2342	-49,5533	65,0807	-6,9080	1,03			
2	0	-0,4567	0,6849	0,2350	1,03			
	0	0	0,1710	0,1761	1,03			

Other: $x_1 = 1,03, x_2 = 1,03, x_3 = 1,03.$

1.1.7 Метод отражений. Вариант 2

Метод отражений применяется для решения системы уравнений Ax=f с комплексно неособенной матрицей. В этом методе матрица A раскладывается на произведение двух матриц: унитарной матрицы и правой треугольной.

При реализации данного метода необходимо воспользоваться следующими соотношениями:

$$\bar{\omega} = \chi(\bar{s} - \alpha \bar{e}), \alpha = |\alpha| e^{arg\alpha}, |\alpha| = \sqrt{(\bar{s}, \bar{s})}, arg\alpha = arg(\bar{s}, \bar{e}) - \pi,$$

$$\chi = \frac{1}{\sqrt{2[|\alpha|^2 + |\alpha||(\bar{s}, \bar{e})|]}}.$$
(9)

Разложение комплексной матрицы A в произведение унитарной и правой треугольной происходит за несколько шагов.

Шаг 1.

В качестве вектора \bar{s} выберем первый столбец матрицы A, т.е. $\bar{s}=(a_{11},a_{21},\ldots,a_{n1}),$ а за \bar{e} возьмем вектор $\bar{e} = (1, 0, \dots, 0)'$. Воспользуемся соотношениями (9) для нахождения $\alpha, \chi, \bar{\omega}_1$. Построим матрицу $C_1 = E - 2\bar{\omega}_1\bar{\omega}_1^*$. Обозначим $A_1 = C_1A$. Матрица A_1 имеет вид

$$A = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdot & a_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & \cdot & a_{2n}^{(1)} \\ \cdot \cdot \cdot & \cdot \cdot & \cdot & a \cdot \cdot \cdot \\ 0 & a_{n2}^{(1)} & \cdot & a_{nn}^{(1)} \end{bmatrix}$$

Шаг 2.

В качестве вектора \bar{s} выберем $\bar{s}=(0,a_{21}^{(1)},\ldots,a_{n1}^{(1)})',$ а за \bar{e} возьмем вектор $\bar{e}=(0,1,\ldots,0)'.$ Затем находим $\bar{\omega}_2$ и строим матрицу $C_2=E-2\bar{\omega}_2\bar{\omega}_2^*.$ Обозначим $A_2=C_2A.$ Матрица A_2 имеет вид

$$A = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & a_{31}^{(2)} & \cdot & a_{1n}^{(2)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdot & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(2)} & \cdot & a_{3n}^{(2)} \\ \cdot \cdot \cdot & \cdot \cdot & \cdot & a \cdot \cdot \cdot \\ 0 & a_{n2}^{(2)} & a_{n3}^{(2)} & \cdot & a_{nn}^{(2)} \end{bmatrix}$$

Продолжая этот процесс, получаем в итоге матрицу A_{n-1} , имеющую правотреугольный вид.

Рассмотрим, как находится решение системы линейных алгебраических уравнений мето-

Обозначим через $A_0 = \{a_1^{(0)}, \dots, a_{n+1}^{(0)}\}$ расширенную матрицу системы Ax = f, где $a_{n+1}^{(0)} = (b_1, b_2, \dots, b_n)', \ a_k^{(0)} = (a_{1k}, a_{2k}, \dots, a_{1n})', \ k = 1, \dots, n.$ Данная матрица преобразуется к правой треугольной с помощью матриц отражения

$$A_{k+1} = C_{k+1}A_k$$
 или $\bar{a}_i^{(k+1)} = C_{k+1}\bar{a}_i^{(k)}, \quad k = 0, ..., n-1, \ i = 1, ..n+1.$

При построении матрицы C_{k+1} в качестве векторов \bar{e} и \bar{s} возьмем векторы $\bar{e}=(0,...,0,1,...,0)',$ $ar{s}=(0,...,0,a_{k+1k+1}^{(k)},a_{k+2k+1}^{(k)},...,a_{nk+1}^{(1)})'.$ После n-1 шага система Ax=f имеет вид

Решение системы (10) находится по формулам

$$x_n = \frac{a_{nn+1}^{(n-1)}}{a_{nn}^{(n-1)}}, \quad x_k = \frac{a_{kn+1}^{(n-1)} - \sum_{i=k+1}^n a_{ni}^{(n-1)} x_i}{a_{kk}^{(n-1)}}.$$
 (11)

Пример. Решить систему линейных алгебраических уравнений методом отражений.

$$\begin{cases} 2x_1 + (-9+4i)x_2 + (4-3i)x_3 = 15 - i \\ -(9+4i)x_1 + 6x_2 + (-1+2i)x_3 = -22 + 26i \\ -(4+5i)x_1 - (1+2i)x_2 - 3x_3 = -12 + 10i \end{cases}$$

Решение. Пользуясь приведенным алгоритмом, находим:

$$A = \begin{bmatrix} 2 & -9+4i & 4-3i & 15-i \\ -9-4i & 6 & -1+2i & -22+26i \\ -4-5i & -1-2i & -3 & -12+10i \end{bmatrix}$$

Шаг первый прямого хода.

$$\overline{s} = (2, -9 - 4i, -4 - 5i), \quad \overline{e} = (1, 0, 0)$$

$$\alpha = -11, 9164; \quad \chi = 0, 05491$$

$$\bar{\omega}_1 = \begin{bmatrix} 0, 7641 \\ -0, 4942 - 0, 2196i \\ -0, 2196 - 0, 2746i \end{bmatrix} \quad \bar{\omega}_1^* = \begin{bmatrix} 0, 7641, -0, 4942 + 0, 2196i, -0, 2196 + 0, 2746i \end{bmatrix}$$

$$V_1 = \begin{bmatrix} -0, 1678 & 0, 7553 - 0, 3357i & 0, 3357 - 0, 4196i \\ 0, 7553 + 0, 3357i & 0, 4151 & -0, 3377 + 0, 1749 \\ 0, 3357 + 0, 4196 & -0, 3377 - 0, 1749i & 0, 528 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} -11, 9163 & 4, 8671 - 2, 9371i & -1, 7622 + 3, 6084i & -10, 2378 + 35, 581i \\ 0 & -4, 9621 + 0, 5005i & 4, 626 - 0, 6176i & 4, 8363 + 9, 5965i \\ 0 & -7, 4783 - 4, 98837i & 1, 0306 + 0, 1708i & 8, 3972 + 8, 5532i \end{bmatrix}$$

Шаг второй прямого хода

$$\bar{s} = (0, -4, 9621 + 0, 5005 i, -7, 4783 - 4, 9884 i), \quad \bar{e} = (0, 1, 0)$$

$$arg\alpha = -\pi + 3, 0411; \quad \alpha = 10, 2282 - 1, 0316 i; \quad \chi = 0, 05644$$

$$\bar{\omega}_2 = \begin{bmatrix} 0 \\ -0, 8574 + 0, 08648 i \\ -0, 4221 - 0, 2816 i \end{bmatrix} \quad \bar{\omega}_2^* = \begin{bmatrix} 0, -0, 8574 - 0, 08648 i, -0, 4221 + 0, 2816 i \end{bmatrix}$$

$$V_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0, 4851 & -0, 6751 + 0, 5558 i \\ 0 & -0, 6751 - 0, 5558 i & 0, 4851 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} -11, 9163 & 4.8671 - 2, 9371 i & -1, 7622 + 3, 6084 i & -10, 2378 + 35, 581 i \\ 0 & 10, 2283 - 1, 0317 i & -3, 0349 + 0, 7571 i & -12, 7689 - 5, 7625 i \\ 0 & 0 & -2, 9662 - 2, 0714 i & 6, 1426 - 5, 017 i \end{bmatrix}$$

Обратный ход.

$$\bar{x} = \begin{bmatrix} -0,214 - 3,1751 i \\ -1,2676 - 0,0212 i \\ -0,5981 + 2,1091 i \end{bmatrix}$$

1.2 Итерационные методы

Пусть дана система n линейных алгебраических уравнений с n неизвестными

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n
\end{cases}$$
(12)

Итерационные методы дают решение системы линейных алгебраических уравнений в виде предела последовательности некоторых векторов, построение которых осуществляется при помощи единообразного процесса, называемого процессом итерации. Для решения системы линейных алгебраических уравнений итерационными методами предварительно приводят систему к виду удобному для итерации

$$\bar{x} = \bar{\beta} + \alpha \bar{x}. \tag{13}$$

Сделать это можно несколькими способами. Например, если в матрице $A |a_{ii}| > \sum_{j \neq i} |a_{ij}|$ для каждого i = 1, ..., n, то удобно разрешить каждое из уравнений системы относительно диагонального неизвестного, поделив обе части i-го уравнения на a_{ii} и перенеся все члены его, кроме x_i , вправо.

Можно также привести систему (12) к виду (13), если прибавить к обеим частям i-го уравнения x_i , а затем перенести свободные члены влево.

Сходящийся процесс обладает важным свойством самоисправляемости, т.е. отдельная ошибка в вычислениях не отразится на окончательном результате, так как ошибочное приближение можно рассматривать как новый начальный вектор.

Обычно итерации продолжаются до тех пор, пока $\|\bar{x}^{(k+1)} - \bar{x}^{(k)}\| \le \varepsilon$, где ε - заданная точность.

1.2.1 Метод простой итерации

В методе простой итерации в качестве начального приближения берем произвольный вектор $\bar{x}^{(0)}$ и подставляем в правую часть системы, приведенной к виду, удобному для итерации. Получаем некоторый вектор $\bar{x}^{(1)}$. Продолжая этот процесс, получим последовательность векторов

$$\bar{x}^{(1)} = \bar{\beta} + \alpha \bar{x}^{(0)}$$

$$\bar{x}^{(2)} = \bar{\beta} + \alpha \bar{x}^{(1)}$$

$$\vdots$$

$$\bar{x}^{(k)} = \bar{\beta} + \alpha \bar{x}^{(k-1)}$$

Если при $k \to \infty$ $\bar{x}^{(k)} \to \bar{x}$, то вектор $\bar{x}^{(k)}$ будет решением системы (13), т. е. системы (12).

Достаточные условия сходимости метода простой итерации устанавливаются теоремой 1. Для сходимости процесса простой итерации достаточно, чтобы какая-либо из норм матрицы α была меньше единицы

$$\|\alpha\|_{\infty} = \max_{i} \sum_{j=1}^{n} |\alpha_{ij}| < 1,$$
 (14)

$$\|\alpha\|_1 = \max_j \sum_{i=1}^n |\alpha_{ij}| < 1, \tag{15}$$

$$\|\alpha\|_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |\alpha_{ij}|^2} < 1.$$
 (16)

Следствие. Для системы $A\bar{x} = \bar{b}$ метод простой итерации сходится, если

$$|a_{ii}| > \sum_{i \neq j} |a_{ij}| \ (i = 1, 2, ..., n)$$

или

$$|a_{jj}| > \sum_{i \neq j} |a_{ij}| \ (j = 1, 2, ..., n).$$

<u>Пример</u>. Методом простой итерации решить систему уравнений с точностью $\varepsilon = 10^{-3}$:

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 10 \\ x_1 + 10x_2 + 2x_3 = 12 \\ x_1 + x_2 + 10x_3 = 8 \end{cases}$$

<u>Решение</u>. Так как диагональные элементы матрицы A данной системы по модулю превосходят сумму модулей остальных элементов соответствующих строк, то метод простой итерации в этом случае сходится [Положий].

Разрешая систему относительно неизвестных, стоящих на диагонали, получаем:

$$\begin{cases} x_1 = -0, 2x_2 - 0, 1x_3 + 1 \\ x_2 = -0, 1x_1 - 0, 2x_3 + 1, 2 \\ x_3 = -0, 1x_1 - 0, 1x_2 + 0, 8 \end{cases}$$

Принимая начальное приближение $\bar{x}^{(0)}=0,$ получаем следующие результаты вычислений:

k	x_1	x_2	x_3	$ x^{(k+1)} - x^{(k)} _1$
1	1	1,2	0,8	
2	0,68	0,94	$0,\!58$	0,32
3	0,754	1,016	0,638	0,076
4	0,733	0,997	0,623	0,021
5	0,7383	1,0021	0,6270	0,0053
6	0,73688	1,00077	0,62596	0,00142
7	0,73725	1,00112	0,62624	0,00037

Сравнивая эти результаты с точным решением

$$x_1 = \frac{704}{955} = 0,73717, \ x_2 = \frac{956}{955} = 1,00105, \ x_3 = \frac{598}{955} = 0,62618,$$

видим, что метод простой итерации в данном случае сходится довольно быстро [8].

1.2.2 Метод Зейделя

Метод Зейделя представляет собой модификацию метода простой итерайции. Основная его идея состоит в том, что при вычислении (k+1)-го приближения неизвестной x_i учитывается уже вычисленное ранее (k+1)-е приближения неизвестных $x_1, x_2, ..., x_k$.

Пусть система, приведенная к виду удобному для итерации, записана так:

$$x_i = \beta_i + \sum_{j=1}^{n} \alpha_{ij} x_i, \quad (i = 1, ..., n)$$

Выберем произвольно начальные приближения корней $x_1^{(0)},\ x_2^{(0)},...,x_n^{(0)}.$ Далее, предполагая, что k-е приближения $x_i^{(k)}$ корней известны, согласно Зейделю будем строить (k+1)-е приближение корней по следующим формулам:

$$x_1^{(k+1)} = \beta_1 + \sum_{j=1}^n \alpha_{ij} x_j^{(k)}$$

$$x_2^{(k+1)} = \beta_2 + \alpha_{21} x_1^{(k+1)} \sum_{j=2}^n \alpha_{ij} x_j^{(k)}$$

$$\dots \dots \dots \dots$$

$$x_i^{(k+1)} = \beta_i + \sum_{j=1}^{i-1} \alpha_{ij} x_j^{(k+1)} + \sum_{j=i}^n \alpha_{ij} x_j^{(k)}$$

$$\dots \dots \dots \dots$$

$$x_n^{(k+1)} = \beta_n + \sum_{j=1}^{n-1} \alpha_{ij} x_j^{(k+1)} + \alpha_{nn} x_n^{(k)}, \quad (k = 0, 1, 2, \dots)$$

Указанная ранее теорема сходимости для метода простой итерации остается верной для итерации по методу Зейделя.

Пример. Методом Зейделя решить следующую систему с точностью $\varepsilon=10^{-3}$:

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 10 \\ x_1 + 10x_2 + 2x_3 = 12 \\ x_1 + x_2 + 10x_3 = 8 \end{cases}$$

Разрешая систему относительно неизвестных, стоящих на диагонали, получаем:

$$\begin{cases} x_1 = -0, 2x_2 - 0, 1x_3 + 1 \\ x_2 = -0, 1x_1 - 0, 2x_3 + 1, 2 \\ x_3 = -0, 1x_1 - 0, 1x_2 + 0, 8 \end{cases}$$

Достаточные условия сходимости метода Зейделя здесь выполнены.

Принимая начальное приближение $\bar{x}^{(0)}=0$, из первого уравнения найдем $x_1=1$. При $x_1=1$ и $x_3=0$ второе уравнение дает $x_2=1,1.$ Наконец, при $x_1=1$ и $x_2=1,1$ находим из третьего уравнения $x_3 = 0,59$. Таким образом, первое приближение будет:

$$x_1 = 1$$
, $x_2 = 1, 1$, $x_3 = 0, 59$.

Аналогично вычисляем последующие приближения. Получаем следующие результаты

вычислений:

<u> </u>	110010111111.			
k	x_1	x_2	x_3	$ x^{(k+1)} - x^{(k)} _1$
1	1	1,1	0,59	
2	0,721	1,00990	0,62691	0,279
3	0,73533	1,00109	0,62636	0,01433
4	0,73715	1,00101	0,62618	0,00182
5	0,73718	1,00105	0,62618	0,00003

Если сравнить полученные результаты с точным решением

$$x_1 = \frac{704}{955} = 0,73717, \ x_2 = \frac{956}{955} = 1,00105, \ x_3 = \frac{598}{955} = 0,62618,$$

то видно, что метод Зейделя в данном случае сходится быстро, так как уже пятое приближение совпадает с точным решением до пятого знака [8].

1.2.3 Метод релаксации

При решении системы линейных алгебраических уравнений методом релаксации поступают следующим образом.

Систему $A\bar{x} = \bar{b}$ преобразуем к виду

$$-\bar{x} + \bar{\beta} + \alpha \bar{x} = 0,$$

т.е.

$$-x_i + \beta_i + \sum_{\substack{j=1\\j \neq i}}^n \alpha_{ij} x_j = 0, (i = \overline{1, n})$$

$$\tag{1}$$

Взяв в качестве начального приближения $\bar{x}^{(0)}$ и подставив его в систему (1), получим невязки

$$\delta_i^{(0)} = -x_i + \beta_i + \sum_{\substack{j=1\\j \neq i}}^n \alpha_{ij} x_j = 0.$$
 (2)

Если одной из неизвестных $x_k^{(0)}$ дать приращение $\Delta x_k^{(0)}$, то соответствующая невязка $\delta_k^{(0)}$ уменьшиться на величину $\Delta x_k^{(0)}$, а все остальные невязки $\Delta x_i^{(0)} (i \neq k)$ увеличатся на величину $\alpha_{ik}\Delta x_k^{(0)}$. Таким образом, чтобы обратить невязку $\delta x_k^{(0)}$ в нуль, достаточно величине $x_k^{(0)}$ дать приращение $\Delta x_k^{(0)} = \delta_k^{(0)}$, тогда

$$\delta_k^{(1)} = 0,$$

а все

$$\delta_i^{(1)} = \delta_i^{(0)} + \alpha_{ik} \delta_k^{(0)} \quad (i \neq k).$$

Обращаем в нуль максимальную по модулю невязку путем изменения соответствующей компоненты на величину, равную этой невязке, т.е. мы получаем невязки $\delta_i^{(1)}$. С ними поступаем аналогично и т.д. Процесс заканчивается на N шаге, когда все невязки будут равны нулю с заданной степенью точности ε .

Суммируя все приращения $\Delta x_i^{(m)}(i=\overline{1,n},m=\overline{1,N})$ с $x_i^{(0)}$, получим значения корней

$$x_i^{(N+1)} = x_i^{(0)} + \sum_{m=1}^N \Delta x_i^{(m)} \quad (i = \overline{1, n}).$$

Пример. Решить систему методом релаксации с точностью $\varepsilon = 10^{-3}$

$$\begin{cases} 15, 21x_1 + 1, 11x_3 = 9, 01 \\ 1, 32x_1 + 14, 82x_2 - 0, 61x_3 = 8, 52 \\ 0, 75x_1 - 1, 26x_2 - 15, 44x_3 = 8, 33 \end{cases}$$

Решение. Исходная система, подготовленная к релаксации, имеет вид:

$$\begin{cases}
-x_1 - 0,0730x_3 + 0,5924 = 0 \\
-x_2 - 0,0891x_1 + 0,0412x_3 + 0,5790 = 0 \\
-x_3 + 0,048x_1 - 0,081x_2 - 0,5395 = 0
\end{cases}$$

Выбрав в качестве $x^{(0)}=0$, находим вектор невязки $\bar{\delta}^{(0)}=(0,5924;0,5790;-0,5395)$. Норма этого вектора больше 10^{-3} , поэтому будем улучшать "пробное"решение с целью уменьшения невязок $\delta_i^{(0)}$. Выбираем одну из них, которая имеет наибольшее по модулю численное значение. Это $\delta_1^{(0)}=0,5924$. Будем приводить ее к нулю, путем соответствующего изменения значения переменной x_1 на величину $\Delta x_1^{(0)}=\delta_1^{(0)}=0,5924$.

Для удобства выписываем матрицу α :

$$\alpha = \begin{bmatrix} 0 & 0 & -0,0730 \\ -0,0890 & 0 & 0,0412 \\ 0,0486 & -0,0816 & 0 \end{bmatrix},$$

Возьмем $x^{(0)}=(0,0,0)$. Тогда $\delta^{(0)}=(0,5924;0,5790;-0,5395)$. Расчетный бланк дальнейших вычислений

k	$\Delta x_k^{(m)}$	$\delta_1^{(m)}$	$\delta_2^{(m)}$	$\delta_3^{(m)}$	m
1	0,5924	0	0,5263	-0,5107	1
2	$0,\!5263$	0	0	-0,5536	2
3	-0,5536	0,0404	-0,0228	0	3
1	0,0404	0	-0,0264	0,0019	4
2	0,0264	0	0	0,0040	5
3	0,0040	-0,0002	0,0001	0	6
1	-0,0002	0	0	0	7

Решение $x^{(8)}=(0,6326;0,5000;-0,5496)$, невязка $\delta^{(8)}=(-0,0001;0;0)$.

1.3 Задания

- 1. Решить системы методом Гаусса с выбором главного элемента.
- 2. Решить системы методом единственного деления.
- 3. Решить системы методом оптимального исключения.
- 4. Решить системы методом отражения (вариант 1).

$$\begin{cases} -6,45x_1+7,11x_2-9,34x_3+7,78x_4=-36;\\ 8,45x_1+6,23x_2+4,68x_3+0,91x_4=2,1;\\ -4,41x_1+6,51x_2-7,89x_3+0,63x_4=-0,2;\\ 9,26x_1+9,37x_2-9,89x_3+9,49x_4=35,6. \end{cases} \begin{cases} 2.\\ 6,54x_1+4,37x_2+0,92x_3-4,71x_4=96,1;\\ 6,21x_1-8,49x_2+7,72x_3+9,24x_4=91,0;\\ 6,96x_1+6,21x_2+3,18x_3-0,61x_4=87,2;\\ -7,43x_1+1,96x_2+4,53x_3-3,51x_4=78,2. \end{cases}$$

```
3.
   -5,38x_1-9,31x_2-4,68x_3-3,99x_4=-89,8;
                                                  4,92x_1+4,25x_2-0,84x_3-6,60x_4=18,7;
  1,33x_1+7,35x_2-1,31x_3-3,96x_4=-24,8;
                                                  2,56x_1+5,96x_2-1,48x_3-5,53x_4=-62,7;
  4,73x_1-9,22x_2+5,52x_3+6,31x_4=-14,5;
                                                  2,99x_1+7,46x_2+0,44x_3-2,11x_4=56;
  1,83x_1-1,85x_2+9,99x_3-1,86x_4=60,7.
                                                  8,32x_1-3,80x_2-5,48x_3+0,71x_4=93,3.
  1,77x_1-5,31x_2+6,46x_3-8,85x_4=-52,3;
                                                  -5,87x_1-7,28x_2-3,15x_3-0,42x_4=25,1;
                                                  6,43x_1-3,98x_2-7,55x_3-1,53x_4=30,3;
  7,62x_1+8,77x_2+6,40x_3+5,17x_4=40,7;
  1,58x_1-3,24x_2+8,34x_3-4,90x_4=88,5;
                                                  0,93x_1+9,41x_2+0,35x_3-0,23x_4=-44,6;
  -6,56x_1-1,46x_2+1,98x_3-9,48x_4=29,2.
                                                  -9,87x_1-0,09x_2+0,04x_3+9,96x_4=85,8.
  -0.07x_1+9.89x_2-0.17x_3-0.28x_4=0.1;
                                                  6,61x_1+5,03x_2+1,64x_3-3,32x_4=79,8;
  9,55x_1-0,72x_2-1,16x_3+8,13x_4=-0,3;
                                                  8,33x_1-4,99x_2-6,66x_3-1,65x_4=-97,9;
  3,03x_1-4,90x_2+2,08x_3+7,19x_4=99,8;
                                                  1,69x_1-9,95x_2+1,75x_3+1,80x_4=82;
  -0,72x_1-3,53x_2+5,75x_3-7,77x_4=-0,5.
                                                  -6,45x_1+5,36x_2+8,92x_3+4,29x_4=84,1.
                                               10
9.
  -1,03x_1+7,21x_2-3,28x_3-6,61x_4=32,1;
                                                  5,97x_1+3,33x_2-0,70x_3-7,38x_4=98,7;
  -0,43x_1+2,97x_2-7,46x_3+5,51x_4=-24,9;
                                                  1,92x_1+4,54x_2-3,55x_3-0,01x_4=87,5;
  8,06x_1+3,58x_2+1,65x_3-4,77x_4=-92,8;
                                                  -2,57x_1-1,59x_2+5,84x_3-5,75x_4=86,2;
  6,88x_1-7,88x_2+9,00x_3-8,88x_4=-17,6.
                                                  -9,91x_1-5,66x_2-5,57x_3-1,24x_4=73,6.
11.
                                               12
  -3,64x_1+4,65x_2-8,99x_3+5,66x_4=-21,5;
                                                  1,4x_1+7,68x_2-0,92x_3-3,23x_4=-60,4;
  6,68x_1+2,35x_2-0,97x_3-8,61x_4=2,1;
                                                  5,85x_1-7,38x_2+8,48x_3-8,89x_4=-88,5;
                                                  9,6x_1-9,28x_2-9,67x_3-8,95x_4=-48,8;
  0,43x_1+1,82x_2-7,75x_3+4,08x_4=80,7;
                                                  -8,61x_1-7,55x_2-6,16x_3-3,71x_4=-37,2.
  6,34x_1+0,42x_2-3,24x_3+7,19x_4=-17,1.
13.
                                               14.
   -0,44x_1+2,56x_2-7,87x_3+4,7x_4=1,3;
                                                  9,86x_1+8,75x_2+8,61x_3+7,36x_4=-69,3;
                                                  5,98x_1+3,35x_2-0,67x_3-7,31x_4=79;
  6,84x_1+1,55x_2-1,6x_3+9,95x_4=64,3;
  -1,65x_1-1,7x_2+6,66x_3-5,03x_4=-34,4;
                                                  2,03x_1+4,72x_2-3,24x_3-8,52x_4=-90,3;
   -8,37x_1-3,4x_2-1,77x_3+4,83x_4=-70.
                                                  -1,75x_1-0,26x_2+7,99x_3-2,27x_4=88,8.
                                               16.
15.
  1,8x_1-5,57x_2+6,24x_3-9,33x_4=-42,8;
                                                  0,68x_1-5,55x_2+5,13x_3+9,59x_4=-99,8;
  6,92x_1+7,59x_2+4,51x_3+2,11x_4=34,5;
                                                  4,73x_1+4,33x_2-0,94x_3-6,61x_4=68,7;
  -3,37x_1+8,75x_2-4,62x_3-5,87x_4=91,7;
                                                  2,46x_1+5,85x_2-1,69x_3-5,83x_4=69;
                                                  2,49x_1+6,67x_2-0,83x_3-4,16x_4=37,7.
  -0,48x_1+3,66x_2-6,82x_3+6,84x_4=26,2.
17.
                                               18.
  2,62x_1-0,64x_2-8,02x_3+1,35x_4=50,1;
                                                  -9,21x_1-2,61x_2-1,81x_3+5,59x_4=-82,1;
  3,33x_1-5,32x_2+8,02x_3-7,3x_4=-91,4;
                                                  6,21x_1+9,38x_2-6,83x_3-7,45x_4=24;
  -9,27x_1-6,56x_2-5,83x_3-2,39x_4=58,7;
                                                  -4,27x_1-1,71x_2+4,02x_3-7,68x_4=41,9;
  1,79x_1+9,4x_2+1,19x_3+0,6x_4=67,4.
                                                  6,35x_1+8,67x_2+5,02x_3+3,69x_4=-34,1.
                                               20.
19.
  -5,31x_1+8,25x_2-7,05x_3-8,79x_4=-12,8;
                                                  9,96x_1+7,68x_2+7,64x_3+5,33x_4=-32,5;
   -5,83x_1-4,62x_2-0,45x_3+4,94x_4=-75,9;
                                                  2,97x_1-1,69x_2-8,71x_3-0,4x_4=54,8;
                                                  0,89x_1-9,51x_2+1,39x_3+1,89x_4=-77,7;
  -5,51x_1+9,44x_2-6,06x_3-6,62x_4=11,4;
   -2,68x_1+0,7x_2+8,02x_3-1,28x_4=35,5.
                                                  -6,71x_1+5,18x_2+6,47x_3+3,66x_4=77,2.
```

- 5. Решить системы (D + kC)x = b методом квадратного корня.
- 6. Решить системы (D + kC)x = b методом Халецкого.
- 1. k = 0, 1(0, 1)1, 5.

$$D = \begin{bmatrix} 5 & 7 & 6 & 5 \\ 7 & 10 & 8 & 7 \\ 6 & 8 & 10 & 9 \\ 5 & 7 & 9 & 10 \end{bmatrix}, C = \begin{bmatrix} 0, 1 & 0 & 0 & 0, 1 \\ 0 & 0, 1 & 0 & 0 \\ 0 & 0 & 0, 1 & 0 \\ 0, 1 & 0 & 0 & 0, 1 \end{bmatrix}, \overline{b} = \begin{bmatrix} 23 \\ 32 \\ 33 \\ 31 \end{bmatrix}$$

2. k = 0, 1(0, 1)1, 5.

$$D = \begin{bmatrix} 1,28 & 2,32 & 4,14 & -3,24 & ,-5,15 \\ 2,32 & 1,49 & 5,26 & 1,56 & 3,92 \\ 4,14 & 5,26 & 4,06 & 2,44 & 4,39 \\ -3,24 & 1,56 & 2,44 & 5,42 & 1,94 \\ -5,15 & 3,92 & 4,39 & 1,94 & 4,63 \end{bmatrix}, C = \begin{bmatrix} 0,1 & 0 & 0 & 0 & 0 \\ 0 & 0,1 & 0 & 0 & 0 \\ 0 & 0 & 0,1 & 0 & 0 \\ 0 & 0 & 0 & 0,1 & 0 \\ 0 & 0 & 0 & 0,1 & 0 \\ 0 & 0 & 0 & 0,1 \end{bmatrix}, \overline{b} = \begin{bmatrix} -3,02 \\ 3,26 \\ 0,83 \\ -8,20 \\ -6,45 \end{bmatrix}$$

- 7. Решить системы методом простой итерации и методом Зейделя с точностью $\varepsilon = 10^{-4}$.
- 8. Решить системы методом релаксации с точностью $\varepsilon = 10^{-3}$.

$$D = \begin{bmatrix} 6,22 & 1,42 & -1,72 & 1,91 \\ 1,42 & 5,33 & 1,11 & -1,82 \\ -1,72 & 1,11 & 5,24 & 1,42 \\ 1,91 & -1,82 & 1,42 & 6,55 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \overline{b} = \begin{bmatrix} 7,53 \\ 6,06 \\ 8,05 \\ 8,06 \end{bmatrix} \ k = 0(1)15.$$

9. Решить системы методом отражения (вариант 2).

1.
$$\begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 16 + 38i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 17 + 25i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = 1 + 25i. \end{cases}$$
 2.
$$\begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 30 - 12i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 21 + 15i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = 21 + 11. \end{cases}$$

$$3. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 61 - i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 51 - 3i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = 21 + 21i. \end{cases} 4. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 26 + 34i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 13 + 17i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = -1 + 23i. \end{cases}$$

$$5. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 15 + 35i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 35 + 25i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = 4 + 28i. \end{cases} 6. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 55i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = -8 + 21i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = -16 + 40i. \end{cases}$$

$$7. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 40 + 67i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 15 + 33i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = -8 + 41i. \end{cases} \\ 8. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = -40 - 67i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = -15 - 33i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = 8 - 41i. \end{cases}$$

$$9. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = 68 + 16i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 40 + 18i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = 37 + 17i. \end{cases}$$

$$10. \begin{cases} (1+2i)x_1 + (4-5i)x_2 + (7+4i)x_3 = -6 + 23i; \\ (8+i)x_1 + (2-i)x_2 + (1+i)x_3 = 10i; \\ (3+i)x_1 + (1+i)x_2 + (2+3i)x_3 = -16 + 3i. \end{cases}$$

2 Вычисление собственных значений и собственных векторов матриц

Собственным значением квадратной матрицы A называется такое число λ , для которого выполняется соотношение

$$A\bar{x} = \lambda \bar{x},\tag{17}$$

если \bar{x} - некоторый не нулевой вектор, называемый собственным вектором матрицы A, соответствующий собственному значению λ .

Это соотношение можно переписать в виде:

$$(A - \lambda E)\bar{x} = \bar{0}. (18)$$

Условием существования ненулевого решения однородной системы (18) является требование

$$|A - \lambda E| = \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix} = (-1)^n [\lambda^n - p_1 \lambda^{n-1} - \cdots - p_n] = 0.$$
 (19)

Определение компонент собственного вектора требует решения системы n однородных уравнений с n неизвестными; для вычисления всех собственных векторов матрицы требуется решать n систем вида

$$(A - \lambda_i E)X_i = 0,$$

где $X_i = (x_{1i}, x_{2i}, \dots, x_{ni})$ - собственный вектор матрицы A, принадлежащий собственному значению λ_i .

Под полной проблемой собственных значений понимается проблема нахождения всех собственных значений матрицы A, так же как и принадлежащих этим собственным значениям собственных векторов.

2.1 Методы получения характеристического многочлена

2.1.1 Метод Леверье.

Метод Леверье основан на формулах Ньютона для сумм степеней корней алгебраического уравнения (19).

Пусть

$$Q_n(\lambda) = (-1)^n \left[\lambda^n - p_1 \lambda^{n-1} - \dots - p_n \right]$$
(20)

характеристический полином матрицы A и $\lambda_1, \ldots, \lambda_n$ его корни, среди которых могут быть равные.

Тогда характеристический полином можно разложить на множители:

$$Q_n(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n). \tag{21}$$

Перемножая скобки, стоящие справа в (21), а затем приведя подобные члены и сравнивая с коэффициентами из (20) получим, так называемые формулы Виета, выражающие коэффициенты многочлена через его корни:

$$p_{1} = \sigma_{1}, \ p_{2} = -\sigma_{2}, \dots, \ p_{n-1} = (-1)^{n-2}\sigma_{n-1}, \ p_{n} = (-1)^{n-1}\sigma_{n},$$

$$\sigma_{1} = \lambda_{1} + \lambda_{2} + \dots + \lambda_{n},$$

$$\sigma_{2} = \lambda_{1}\lambda_{2} + \lambda_{1}\lambda_{3} + \dots + \lambda_{n-1}\lambda_{n},$$

$$\sigma_{3} = \lambda_{1}\lambda_{2}\lambda_{1} + \dots + \lambda_{n-2}\lambda_{n-1}\lambda_{n},$$

 $\sigma_n = \lambda_1 \lambda_2 \cdots \lambda_n$ — элементарные симметрические функции корней характеристического уравнения. Рассмотрим еще следующие симметрические функции корней:

$$S_k = \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k, \quad k = 1, 2, \dots, n.$$

Теорема единственности, известная из курса высшей алгебры, утверждает: любой симметрический многочлен можно единственным образом представить в виде многочлена от элементарных симметрических многочленов. Это представление выражается для степенных сумм по формуле Ньютона

$$S_k - p_1 S_{k-1} - p_2 S_{k-2} - \dots - p_{k-1} S_1 - k p_k = 0, \quad (k = 1, \dots, n).$$
(22)

Отсюда получаем

$$\begin{cases}
 p_1 = S_1, \\
 p_2 = \frac{1}{2}(S_2 - p_1 S_1), \\
 \dots \\
 p_k = \frac{1}{k}(S_k - p_1 S_{k-1} - \dots - p_{k-1} S_1),
\end{cases}$$
(23)

и можно найти все p_k , если будут известны S_k .

Эти суммы вычисляются следующим образом:

$$S_1 = \lambda_1 + \lambda_2 + \ldots + \lambda_n = SpA,$$

т.е.

$$S_1 = a_{11} + a_{22} + \ldots + a_{nn}$$
.

Как известно, $\lambda_1^k, \lambda_2^k, \cdots, \lambda_n^k$ являются собственными значениями матрицы A^k . Поэтому

$$S_k = \lambda_1^k + \lambda_2^k + \ldots + \lambda_n^k = SpA^k,$$

т. е. если $A^k = [a_{ij}^{(k)}]$, то

$$S_k = a_{11}^{(k)} + a_{22}^{(k)} + \ldots + a_{nn}^{(k)}$$

Таким образом, схема раскрытия векового определителя по методу Леверье весьма простая, а именно: сначала вычисляются A^k ($k=1,2,\ldots n$) - степени матрицы A, затем находятся соответствующие S_k - суммы элементов главных диагоналей матриц A^k и, наконец, по формулам (23) определяются искомые коэффициенты p_k ($k=1,2,\ldots,n$).

Пример. Раскрыть характеристическое уравнение, найти собственные значения заданной матрицы

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2.5 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

k		A^k	SpA^k	p_k		
	2	1	1			
1	1	2,5	1	7,5	7,5	
	1	1	3			
	6	5,5	6			
2	5,5 8,25		6,5	$25,\!25$	-15,5	
	6	6,5	11			
	23,5	25,75	29,5			
3	25,75	32,625	$33,\!25$	101,625	9,5	
	29,5	$33,\!25$	45,5			

Otbet:
$$Q_3(\lambda) = -(\lambda^3 - 7, 5\lambda^2 + 15, 5\lambda - 9, 5); \ \lambda_1 = 1, 185; \ \lambda_2 = 1, 76; \ \lambda_3 = 4, 555.$$

2.1.2 Метод Фадеева

Метод Д.К. Фадеева является видоизменением метода Леверье. Помимо упрощений при вычислении коэффициентов характеристического полинома он позволяет определить обратную матрицу и собственные вектора матрицы.

Будем вместо последовательности A, A^2, \ldots, A^n вычислять последовательность матриц A_1, A_2, \ldots, A_n , построенную следующим образом:

$$A_{1} = A,$$
 $SpA_{1} = p_{1},$ $B_{1} = A_{1} - p_{1}E,$ $A_{2} = AB_{1},$ $\frac{SpA_{2}}{2} = p_{2},$ $B_{2} = A_{2} - p_{2}E,$... $A_{n-1} = AB_{n-2},$ $\frac{SpA_{n-1}}{n-1} = p_{n-1},$ $B_{n-1} = A_{n-1} - p_{n-1}E,$ $A_{n} = AB_{n-1},$ $\frac{SpA_{n}}{n} = p_{n},$ $B_{n} = A_{n} - p_{n}E.$

Можно доказать, что

- 1) B_n -нулевая матрица,
- 2) если A неособенная матрица, то $A^{-1} = B_{n-1}/p_n$,
- 3) каждый столбец матрицы

$$R_k = \lambda_k^{n-1} E + \lambda_k^{n-2} B_1 + \dots + B_{n-1}$$

состоит из компонент собственного вектора, принадлежащего собственному числу λ_k . Пример. Построить характеристическое уравнение матрицы по методу Д.К. Фадеева

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2.5 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

k		A_k		$p_k = q_k$	B_k		
	2	1	1		-5,5	1	1
1	1	2,5	1	7,5	1	-5	1
	1	1	3		1	1	-4,5
	-9	-2	-1,5		6,5	-2	-1,5
2	-2	-10,5	-1	-15,5	-2	5	-1
	-1,5	-1	-11,5		-1,5	-1	4
	9,5	0	0		0	0	0
3	0	9,5	0	9,5	0	0	0
	0	0	9,5		0	0	0

Ответ:
$$Q_3(\lambda) = -(\lambda^3 - 7, 5\lambda^2 + 15, 5\lambda - 9, 5); \ \lambda_1 = 1, 185; \ \lambda_2 = 1, 76; \ \lambda_3 = 4, 555.$$
 Попутно получилась обратная матрица $A^{-1} = \begin{bmatrix} 0,68421 & -0,21053 & -0,15789 \\ -0,21053 & 0,52632 & -0.10526 \\ -0,15789 & -0,10526 & 0,42105 \end{bmatrix}$

2.2 Частичная проблема собственных значений.

Для решения частичной проблемы собственных значений, состоящей в определении одного или нескольких собственных значений и соответствующих им собственных векторов, обычно используются итерационные методы. Строится такой итерационный процесс, который сходится к одному собственному значению и собственному вектору, причем используемые алгоритмы обычно весьма экономичны.

2.2.1 Метод простой итерации

Построим итерационный процесс, применяя метод простой итерации к решению системы уравнений

$$\lambda \vec{x} = A\vec{x}.\tag{24}$$

Запишем (24), введя вспомогательный вектор y:

$$\vec{y} = A\vec{x},\tag{25}$$

$$\lambda \vec{x} = \vec{y}. \tag{26}$$

Пусть $\vec{x}^{(0)}$ - начальное приближение собственного вектора \vec{x} , причем собственные векторы на каждой итерации нормированы, так что $|\vec{x}|=1(k=1,1,\ldots)$. Используем соотношение (25) для вычисления $\vec{y}^{(1)}$:

$$\vec{y}^{(1)} = A\vec{x}^{(0)}.$$

Соотношение (26) используем для вычисления первого приближения $\lambda^{(1)}$, применяя умножение обеих частей равенства скалярно на $\vec{x}^{(0)}$:

$$\lambda = \frac{\vec{y} \cdot \vec{x}^{(0)}}{\vec{x}^{(0)} \cdot \vec{x}^{(0)}} = \vec{y}^{(1)} \cdot \vec{x}^{(0)}.$$

Здесь учтено, что вектор $\vec{x}^{(0)}$ нормирован. Следующее приближение собственного вектора $\vec{x}^{(1)}$ можно вычислить, нормируя вектор $\vec{y}^{(1)}$.

Окончательно итерационный процесс записывается в виде

$$\vec{y}^{(k+1)} = A\vec{x}^{(k)},$$

$$\lambda^{(k+1)} = \vec{y}^{(k+1)} \cdot \vec{x}^{(k)},$$

$$\vec{x}^{(k+1)} = \frac{\vec{y}^{(k+1)}}{|\vec{y}^{(k+1)}|}, \quad k = 0, 1, \dots,$$
(27)

и продолжается до установления постоянных значений λ и \vec{x} . В качестве критерия завершения итераций следует проверять близость векторов $(sign\lambda^{(k+1)})\vec{x}^{(k+1)}$ и $\vec{x}^{(k)}$.

Найденное в результате итерационного процесса (27) число λ является наибольшим по модулю собственным значением данной матрицы A, а \vec{x} - соответствующим ему собственным вектором. Скорость сходимости этого итерационного процесса зависит от удачного выбора начального приближения. Если начальный вектор близок к истинному собственному вектору, то итерации сходятся быстро.

Пример. Найти максимальное собственное значение и собственный вектор матрицы A

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2, 5 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

За начальный вектор примем $\vec{x} = (1, 1, 1)$. Итерации дадут:

k 1		2	3	4	5			
x_1	0,5111	0,4913	0,4855	0,4837	0,4831			
x_2	$0,\!5750$	0,5686	0,5648	0,5631	0,5623			
x_3	0,6389	0,6598	0,6673	0,6701	0,6711			
λ	13,5000	4,5490	4,5543	4,5549	4,5550			
y_1	4,0000	2,2361	2,2110	2,2031	2,2005			
y_2	4,5000	2,5875	2,5725	2,5648	2,5615			
y_3	5,0000	3,0027	3,0393	3,0522	3,0570			
y	7,8262	4,5510	4,5545	4,5550	4,5550			
$\max_{i} \vec{x}^{k+1} - \vec{x}^k $	0,4889	0,0209	0,0075	0,0028	0,0010			
$ \lambda^{(k+1)} - \lambda^{(k)} $		8,951	0,0053	0,0007	0,0001			

Otbet: $\lambda_{max} = 4,555, \vec{x} = (0,4831; 0,5623; 0,6711).$

2.2.2 Метод прямых итераций

Предположим, что матрица A имеет только вещественные различные по модулю собственные значения. Занумеруем их в порядке убывания модулей:

$$|\lambda_1| > |\lambda_2| > \dots |\lambda_n| > 0.$$

Метод прямых итераций предназначен для вычисления наибольшего по модулю собственного значения λ_1 и отвечающего ему собственного вектора $u^{(1)}$ и состоит в следующем. Выберем произвольный вектор $x^{(0)}$ и построим последовательность векторов $x^{(k)}$ по правилу

$$x^{(k)} = A(x^{(k-1)}/\alpha_{k-1}), \quad k = 1, 2, \dots,$$

где α_{k-1} - наибольшая по модулю компонента вектора $x^{(k-1)}$, т.е. $|\alpha_{k-1} = \max_{1 \leq i \leq n} |x_i^{(k-1)}|$. Известно, что при $k \to \infty$

$$\alpha_k = \lambda_1, \quad x^{(k)} \to u^{(1)}.$$

На практике вычисления продолжают до тех пор, пока не будет выполнено неравенство

$$|\alpha_k - \alpha_{k-1}| < \varepsilon,$$

где ε - заданная точность вычисления собственного значения λ_1 . При этом α_k принимают за приближение значение λ_1 , а $x^{(k)}$ - за приближение к $u^{(1)}$. Если за M итераций (M - предельно допустимое число итераций, задаваемое программистом), заданная точность не достигается, вычисления прекращаются.

Пример. Найти наибольшее собственное значение матрицы

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2, 5 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

и соответствующий ему собственный вектор.

Решение. Выберем начальный вектор y = (1, 1, 1) и составим таблицу:

k	1	2	3	4	5	6
y	Ay	A^2y	A^3y	A^4y	A^5y	A^6y
1	4	17,5	78,75	357,375	1625,93	7403,34
1	4,5	20,25	91,625	416,062	1892,65	8616,39
1	5	23,5	$108,\!25$	495,125	2258,81	10295,03
$c_1^{(k)} = y_1^{(k+1)} / y_1^{(k)}$	4	4,375	4,5	4,5381	4,5500	4,5533
$c_2^{(k)} = y_2^{(k+1)} / y_2^{(k)}$	4,5	4,5	4,5247	4,5409	4,5490	4,5525
$c_3^{(k)} = y_3^{(k+1)} / y_3^{(k)}$	5	4,7	4,6064	4,5739	4,5621	4,5577
$\lambda^{(k)} = \frac{1}{3}(c_1^{(k)} + c_2^{(k)} + c_3^{(k)})$	4,5	4,525	4,5437	4,5510	4,5536	4,5545
$\lambda^{(k+1)} - \lambda^{(k)}$	0,025	0,0187	0,0073	0,0026	0,0009	

В качестве собственного вектора матрицы A можно взять

$$A^6y = \begin{bmatrix} 7403, 34\\ 8616.39\\ 10295.03 \end{bmatrix}$$

Нормируя его $(|z| = \sqrt{z_1^2 + z_2^2 + z_3^2})$, окончательно получаем

$$\vec{x} = \begin{bmatrix} 0,4829\\0,5620\\0,6715 \end{bmatrix}, \quad \text{a} \quad \lambda_{max} = 4,5545.$$

2.2.3 Метод обратных итераций

Предположим, что матрица A имеет только вещественные различные по модулю собственные значения. Занумеруем их в порядке убывания модулей:

$$|\lambda_1| > |\lambda_2| > \dots |\lambda_n| > 0.$$

Метод обратных итераций предназначен для вычисления наименьшего по модулю собственного значения λ_n и отвечающего ему собственного вектора $u^{(n)}$ и состоит в следующем. Выберем произвольный вектор $x^{(0)}$ и построим последовательность векторов $x^{(k)}$, каждый из которых является решением системы уравнений

$$Ax^{(k)} = x^{(k-1)}/\alpha_{k-1}, \quad k = 1, 2, \dots,$$

где α_{k-1} - наибольшая по модулю компонента вектора $x^{(k-1)}$, т.е. $|\alpha_{k-1} = \max_{1 \le i \le n} |x_i^{(k-1)}|$. Известно, что при $k \to \infty$

$$1/\alpha_k = \lambda_n, \quad x^{(k)} \to u^{(n)}.$$

На практике вычисления продолжают до тех пор, пока не будет выполнено неравенство

$$|1/\alpha_k - 1/\alpha_{k-1}| < \varepsilon$$
,

где ε - заданная точность вычисления собственного значения λ_n . При этом $1/\alpha_k$ принимают за приближенное значение λ_n , а $x^{(k)}$ - за приближение к $u^{(n)}$. Если за K итераций (K - предельно допустимое число итераций, задаваемое программистом), заданная точность не достигается, вычисления прекращаются.

Для решения систем уравнений $Ax^{(k)}=x^{(k-1)}/\alpha_{k-1}$ на каждом шаге можно воспользоваться методом Гаусса. Поскольку матрица у всех систем одна и та же, то ее треугольное разложение U+MA следует выполнить только один раз. Решение каждой системы $Ax^{(k)}=x^{(k-1)}/\alpha_{k-1}$ сводится, следовательно, к получению преобразованной правой части $g^{(k)}=M(x^{(k-1)}/\alpha_{k-1})$ и последующему решению системы с треугольной матрицей

$$Ux^{(k)} = q^{(k)}.$$

2.3 Полная проблема собственных значений

2.3.1 Метод вращения с преградами

Метод вращения предназначен для решения полной проблемы собственных значений невырожденной симметричной матрицы, т. е. для нахождения собственных значений и собственных векторов исходной матрицы. Эта проблема решается с помощью сходящихся итерационных процессов. Для симметричных матриц эти процессы состоят в цепочке преобразований подобия, в результате которых в пределе получается диагональная матрица так, что ее собственные значения определяются непосредственно. Впервые этот процесс был предложен Якоби в 1976 г., однако практическое применение стало возможным лишь с развитием быстродействующих счетных устройств. В настоящее время имеется целый ряд модификаций метода Якоби. Одной из модификаций является метод вращений с преградами.

Элементарный шаг каждого эрмитова процесса заключается в преобразовании подобия посредством матрицы вращения

где $c^2+s^2=1$. Эти матрицы принадлежат к классу ортогональных матриц, т.е. $T_{ij}\cdot T_{ij}^*=E$. Процесс состоит в построении последовательности матриц $A_o=A,A_1,...$, каждая из которых получается из предыдущей с помощью элементарного шага. Эти элементарные шаги должны быть подобраны так, чтобы A^{n+1} безгранично приближалась к диагональной матрице при $m\to\infty$. Дадим расчетные формулы (m+1) шага (при котором $A^{m+1}=T_{ij}^*A^mT_{ij}$). Для удобства введем обозначения $C=A^{m+1}$, тогда

$$C_{kl} = a_{kl}^{(m)} \quad \text{при} \quad k \neq i, k \neq j, l \neq i, l \neq j$$

$$C_{ki} = C_{ik} = ca_{ki}^{(m)} + sa_{kj}^{(m)} \quad \text{при} \quad k \neq i, k \neq j,$$

$$C_{kj} = C_{jk} = -sa_{ki}^{(m)} + ca_{kj}^{(m)} \quad \text{при} \quad k \neq i, k \neq j,$$

$$C_{ii} = c^2 a_{ii}^{(m)} + 2csa_{ij}^{(m)} + s^2 a_{jj}^{(m)}, \quad C_{jj} = s^2 a_{ii}^{(m)} - 2csa_{ij}^{(m)} + c^2 a_{jj}^{(m)}$$

$$C_{ij} = C_{ji} = 0$$

Числа c, s определяются по формулам

$$c = \sqrt{\frac{1}{2} \left(1 + \frac{|a_{ii}^{(m)} - a_{jj}^{(m)}|}{d}\right)},$$

$$s = sgn[a_{ij}^{(m)} (a_{ii}^{(m)} - a_{jj}^{(m)})] \sqrt{\frac{1}{2} \left(1 - \frac{|a_{ii}^{(m)} - a_{jj}^{(m)}|}{d}\right)}, \quad d = \sqrt{(a_{ii}^{(m)} - a_{jj}^{(m)})^2 + 4a_{ij}^{(m)2}}$$

Матрица вращения выбирается на (m+1) шаге так, чтобы элемент a_{ij} стал нулем. При этом пара индексов (ij) выбирается так, чтобы аннулировался наибольший по модулю внедиагональный элемент матрицы $A^{(m)}$, а именно $|a_{ij}^{(m)}| \geq \sigma_k$, где $\sigma_1, \sigma_2, ...$ монотонно убывающая к нулю последовательность чисел, называемых "преградами". Один из способов задания "преград" состоит в нахождении σ_k по формуле $\sigma_k = \sqrt{max|a_{ii}^{(m)}|} \cdot 10^{-k}$, где k=1,2,...,p. Число p зависит от разрядности машины и требуемой точности решения поставленной задачи. После того как все внедиагональные элементы станут по модулю не больше σ_k , то "преграда" σ_k заменяется на σ_{k+1} и т.д. k=1,2,...p. Процесс заканчивается, когда все внедиагональные элементы станут меньше по модулю σ_p . Известно, что процесс с "преградами" сходится.

Так как характеристические полиномы подобных матриц совпадают, следовательно,

$$det(A - \lambda E) = det(D - \lambda E) = (d_{11} - \lambda)(d_{22} - \lambda)...(d_{nn} - \lambda) = 0,$$

где D - есть диагональная матрица, полученная в результате выполнения описанного выше итерационного процесса.

Скажем несколько слов о нахождении собственных векторов матрицы A. Пусть итерационный процесс, описанный выше, доведен до того, что матрица

$$D = \prod_{m} T'_{i_{m}i_{m}} \cdot A \cdot \prod_{m} T_{i_{m}j_{m}}$$

оказалась практически диагональной. Тогда столбцы матрицы $\prod_m T_{i_m j_m}$ будут собственными векторами исходной матрицы A. Домножив матрицу слева на $W=\prod_m T_{i_m j_m}$ и справа на

W', получим A = WDW'. Из этого равенства получаем, что AW = WD. Если расписать это равенство по столбцам, то окажется, что каждый i-ый столбец матрицы W является собственным вектором, соответствующим собственном значению λ_i .

В отличие от прямых методов, алгоритмы которых состоят из разнородных частей: преобразования исходной матрицы, вычисления корней многочлена, нахождения собственных векторов, метод вращения позволяет в результате выполнения итерационного процесса найти собственные значения и собственные вектора.

Хотя количество умножений в этом методе весьма значительно, ошибки округления на-капливаются медленно, так как умножения происходит на коэффициенты c и s по модулю меньше единицы.

Пример. Решить полную проблему собственных значений методом вращения с преградами для матрицы A.

$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2, 5 & 1 \\ 1 & 1 & 3 \end{bmatrix} \sigma = (10^{-1}, 10^{-2}, 10^{-3}, 10^{-1})$									
$k \mid a_{i1}^{(k)} \mid a_{i1}^{(k)} \mid a_{i1}^{(k)} \mid c \mid s \mid (ij)$									
2 1 1									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
1 1 3									
T_{ij} σ									
0,788205 0,615412 0									
$\begin{bmatrix} -0.615112 & 0.788205 & 0 & 10^{-1} \\ 0 & 0 & 1 & 10^{-1} \end{bmatrix}$									
		(**)							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S	(ij)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	670000	(9.9)							
$\begin{bmatrix} 1 & 0 & 3,280773 & 1,403617 & 0,741458 & 0, \\ 0,172793 & 1,403617 & 3 & \end{bmatrix}$	0,670999	(2,3)							
T_{ij} σ									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{bmatrix} 0 & 0.741458 & -0.670999 & 10^{-1} \end{bmatrix}$									
0 0,670999 0,741458									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S	(ij)							
1,219223 0,115944 0,128119		()							
	230488	(1,3)							
0,128119 0 1,729769									
T_{ij} σ									
0,973075 0 0,230488									
$\begin{bmatrix} 0 & 1 & 0 & 10^{-1} \\ 0.220488 & 0.0072075 \end{bmatrix}$									
-0,230488 0 0,973075 (k) (k)		(11)							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S	(ij)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	033501	(1.9)							
0 0,112022 4,001000 0,020724 0,999439 0,	000001	(1,2)							

T_{ij}			σ						
0,999439 0,033501 0									
	-0,	033501 0,9	999439 0	10^{-1}					
		0	0 1						
	k	$a_{i1}^{(k)}$	$a_{i1}^{(k)}$	$a_{i1}^{(k)}$		c	S	(ij)	
		1,185091	0	0,0008	95		0,009555	(2,3)	
	4	0	4,554774	0,0267	09	0,999954			
		-0,000895	0,026709	1,7601	14				
	T_{ij}	i		σ					
	1	0	0						
	0	0,999954	-0,009555	$5 \mid 10^{-2}$					
	0	0,009555							
	k	$a_{i1}^{(k)}$	$a_{i1}^{(k)}$	$a_{i1}^{(k)}$		c	S	(ij)	
		1,185091	-0,000009	0,0008	95				
	5	0,000009	1,555030	0		0,999999	-0,001549	(1,3)	
		0,000895	0	1,7598	58				
		T_{ij}		σ					
	0,9	999995 0	0,001549						
		0 1	0	10^{-3}					
	-0,	001549 0	0,999999						
	k	$a_{i1}^{(k)}$	$a_{i1}^{(k)}$	$a_{i1}^{(k)}$)	c s (ij)		
		1,185089	-0,000008	0					
	6	-0,000008	4,555030	0					
		0	0	1,759					
	Оте	BET: $\lambda_1 = 1$,	$185089 \lambda_2$	$_{2}=4,55$	5503	$\lambda_3 = 1,$	759839		
	$W = T_{12}T_{23}T_{13}T_{12}T_{23}T_{13} = \begin{bmatrix} 0,846727 & 0,482795 & -0,223458 \\ -0,495220 & 0,561790 & -0,662646 \\ -0,194385 & 0,671789 & 0,714802 \end{bmatrix}$								
		W	$-T_{10}T_{00}T_{1}$	$_{10}T_{10}T_{00}$	T_{10}	_ 0,040	5220 0, 4 02	790 –	0, 223436
		,,,	1121231	15 + 12 + 23	± 13	$\begin{bmatrix} -0.192 \\ -0.192 \end{bmatrix}$	4385 0.671	789 (). 714802
						_			-,
			\bar{x}	$s_1 = (0,$	846'	727; -0,495	5220; -0, 19	94385)	

2.4 Задания

1. Раскрыть вековые определители методами Леверье и Фадеева, найти собственные значения следующих матриц.

 $\bar{x}_2 = (0, 482795; 0, 561790; 0, 671789)$

 $\bar{x}_3 = (-0, 223458; -0, 662646; 0, 714802)$

- 2. Решить частную проблему нахождения собственных значений методом прямой или обратной итерации.
- 3. Найти методом вращения собственные значения и собственные вектора матриц с точностью 10^{-3} .

$$1. \begin{bmatrix} -0.755 & 0.392 & 0.562 & 3.599 \\ 6.968 & -3.273 & 4.121 & 2.521 \\ -1.374 & 2.456 & -1.507 & 7.163 \\ -0.359 & 6.148 & 2.542 & 0.783 \end{bmatrix}$$

$$2. \begin{bmatrix} -3.916 & -2.795 & -1.392 & 2.993 \\ -1.719 & -0.860 & 3.906 & 2.613 \\ -0.581 & -0.773 & -0.063 & -4.53 \\ 1.878 & 1.123 & -0.802 & 1.331 \end{bmatrix}$$

$$3. \begin{bmatrix} -1.204 & 3.147 & 6.296 & -4.55 \\ -4.206 & 0.885 & 2.589 & 2.095 \\ -1.497 & 0.679 & 2.993 & 0.353 \\ 3.8953, 732 & 5.577 & 0.704 \end{bmatrix}$$

$$4. \begin{bmatrix} -1.814 & 1.843 & -2.626 & -6.011 \\ 1.922 & 0.199 & -4.987 & -2.687 \\ -1.254 & -1.423 & 4.205 & -0.785 \\ -1.469 & -8.239 & -1.221 & -0.276 \end{bmatrix}$$

$$5. \begin{bmatrix} -7.519 & 1.042 & -4.896 & -0.873 \\ 6.831 & 2.969 & 6.192 & -5.857 \\ 0.137 & -1.21 & 1.881 & 4.47 \\ -0.689 & 13.012 & 0.622 & -2.331 \end{bmatrix}$$

$$6. \begin{bmatrix} -3.921 & 6.24 & -0.052 & 2.524 \\ 13.926 & -0.506 & 10.705 & -1.52 \\ 3.702 & -2.802 & -1.267 & 4.394 \\ -4.707 & -1.599 & -1.157 & 0.717 \end{bmatrix}$$

$$7. \begin{bmatrix} 3.76 & 2.631 & 5.601 & -6.291 \\ 1.149 & -2.53 & 0.497 & -0.05 \\ 2.981 & 5.613 & 0.345 & 0.281 \\ 6.624 & 2.021 & -4.508 & 4.243 \end{bmatrix}$$

$$8. \begin{bmatrix} -3.432 & -0.2 & 3.443 & -1.696 \\ -13.427 & -0.508 & 3.298 & 8.875 \\ -2.85 & 4.398 & 06.323 & -0.33 \\ -6.696 & 0.205 & -7.817 & -1.419 \end{bmatrix}$$

$$9. \begin{bmatrix} -2.071 & -3.107 & 3.08 & -2.49 \\ 2.85 & 1.658 & 0.007 & 11.607 \\ 1.108 & 8.249 & 0.964 & -2.536 \\ 0.239 & 3.139 & -4.587 & 4.513 \end{bmatrix}$$

$$10. \begin{bmatrix} -6.834 & 0.61 & -2.941 & -11.302 \\ -1.292 & 2.357 & 3.539 & -4.173 \\ 3.241 & 10.977 & -1.337 & -1.444 \\ 3.882 & 1.769 & 2.233 & -0.797 \end{bmatrix}$$

В следующих вариантах матрица A = D + kC, где C, D - матрицы, а k - параметр.

11.
$$D = \begin{bmatrix} 9,9 & 8,8 & 7,7 & 6,6 \\ 8,8 & 5,5 & 4,4 & 3,3 \\ 7,7 & 4,4 & 2,2 & 1,1 \\ 6,6 & 3,3 & 1,1 & 0,0 \end{bmatrix}, \quad C = \begin{bmatrix} 0,5 & 0 & 0 & 0,5 \\ 0 & 0,5 & 0 & 0 \\ 0 & 0 & 0,5 & 0 \\ 0,5 & 0 & 0 & 0,5 \end{bmatrix}, \quad k=0(1)10.$$
12.
$$D = \begin{bmatrix} 1,111 & 1,222 & 0,333 \\ 1,222 & 1,444 & 0,555 \\ 0,333 & 0,555 & 1,666 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad k=0(1)15.$$
13.
$$D = \begin{bmatrix} 1,4 & 1,2 & -1,3 \\ 1,2 & 0.9 & 0,4 \\ -1,3 & 0,4 & 0,8 \end{bmatrix}, \quad C = \begin{bmatrix} 0,2 & 0 & 0,2 \\ 0 & 0,2 & 0,2 \\ 0,2 & 0,2 & 0 \end{bmatrix}, \quad k=0(1)7.$$

Список литературы

- 1. Бахвалов Н.С.Жидков Н.П., Кобельков Г.М. Численные методы. -М.: Наука, 1987.
- 2. Березин И.С., Жидков Н.П. Методы вычислений. Том II. -М.: Физматгиз, 1962. 640 с.
- 3. Волков Е.А. Численные методы.-М.: Наука, 1987. 248 с.
- 4. Демидович Б.П., Марон И.А. Основы вычислительной математики. -М.: Наука, 1966.

- 5. Калиткин Н.Н. Численные методы.-М.: Наука, 1978. 512 с.
- 6. Крылов В.И., Бобков В.В., Монастырный П.И. Вычислительные методы: В 2-х т. -М.: Наука, 1976-1977.
- 7. Митченко А.Д. Численные методы линейной алгебры. -Владивосток, ДВГУ, 1991. 142 с.
- 8. Митченко А.Д., Хайрутдинова Г.З. Алгоритмы линейной алгебры. Методические указания (для студентов математического факультета). Владивосток, ДВГУ, 1993. 32 с.
- 9. Положий Г.Н., Пахарева Н.А. и др. Математический практикум. -М.: ГИФМЛ, 1960. 512 с.
- 10. Самарский А.А., Гулин А.В. Численные методы.-М.: Наука, 1989. 432 с.
- 11. Фадеев Д.К., Фадеев В.Н. Вычислительные методы линейной алгебры. -М.-Л.: Γ ИФМЛ, 1963. 735 с.

Учебное издание

Александр Георгиевич Колобов Лилия Александровна Молчанова

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Методические указания и задания для студентов математических специальностей

В авторской редакции Технический редактор Л.М. Гурова Компьютерный набор и верстка Л. А. Молчановой

Подписано в печать 16.05.2008 Формат 60×84 1/16. Усл. печ. л. 2,3. Уч.-изд. л. 2,1 Тираж 100 экз.

Издательство Дальневосточного университета 690950, Владивосток, ул. Октябрьская, 27. Отпечатано в лаборатории кафедры компьютерных наук ИМКН ДВГУ 690950, Владивосток, ул. Октябрьская, 27, к. 132.