

TLV2370, TLV2371, TLV2372 TLV2373, TLV2374, TLV2375

SLOS270F - MARCH 2001 - REVISED AUGUST 2016

TLV237x 500-µA/Ch, 3-MHz Rail-to-Rail Input and Output **Operational Amplifiers With Shutdown**

Features

Rail-to-Rail Input and Output

Wide Bandwidth: 3 MHz

High Slew Rate: 2.4 V/µs

Supply Voltage Range: 2.7 V to 16 V

Supply Current: 550 µA/Channel

Low-Power Shutdown Mode

I_{DD(SHDN)}: 25 μA/Channel

Input Noise Voltage: 39 nV/√Hz

Input Bias Current: 1 pA

Specified Temperature Range:

-40°C to +125°C (Industrial Grade)

Ultra-Small Packaging:

5- or 6-Pin SOT-23 (TLV2370, TLV2371)

8- or 10-Pin MSOP (TLV2372, TLV2373)

Applications

- White Goods
- Handheld Test Equipment
- Portable Blood Glucose Systems
- Remote Sensing
- Active Filters
- **Industrial Automation**
- **Battery-Powered Electronics**

Operational Amplifier

3 Description

The TLV237x single-supply operational amplifiers provide rail-to-rail input and output capability. The TLV237x takes the minimum operating supply voltage down to 2.7 V over the extended industrial temperature range while adding the rail-to-rail output swing feature. The TLV237x also provides 3-MHz bandwidth from only 550 µA. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from (±8-V supplies down to ±1.35 V) a variety of rechargeable cells.

The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making an ideal alternative for the TLC227x in battery-powered applications. The rail-to-rail input stage further increases its versatility. The TLV237x is the seventh member of a rapidly growing number of RRIO products available from TI, and it is the first to allow operation up to 16-V rails with good ac performance.

All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and guads in the TSSOP package.

The 2.7-V operation makes the TLV237x compatible with Li-Ion powered systems and the operating supply voltage range of many micro-power microcontrollers available today including TI's MSP430.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
	PDIP (8)	9.81 mm × 6.35 mm	
	PDIP (14)	19.30 mm × 6.35 mm	
	SOIC (8)	4.90 mm × 3.91 mm	
	SOIC (14)	8.65 mm × 3.91 mm	
TI V237x	TSSOP (14)	5.00 mm × 4.40 mm	
ILV23/X	TSSOP (16)	5.00 Milli × 4.40 Milli	
	SOT-23 (6)	2.90 mm × 1.60 mm	
	SOT-23 (5)	2.90 11111 × 1.00 111111	
	VSSOP (8)	2.00 mm v 2.00 mm	
	VSSOP (10)	3.00 mm × 3.00 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1	Features 1		8.3 Feature Description	
2	Applications 1		8.4 Device Functional Modes	
3	Description 1	9	Application and Implementation	25
4	Revision History2		9.1 Application Information	25
5	Device Comparison Tables 3		9.2 Typical Application	25
6	Pin Configuration and Functions	10	Power Supply Recommendations	27
7	Specifications8	11	Layout	27
•	7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	27
	7.1 Australia Maximum Ratings		11.2 Layout Example	27
	7.3 Thermal Information: TLV2370		11.3 Power Dissipation Considerations	28
	7.4 Thermal Information: TLV2371	12	Device and Documentation Support	
	7.5 Thermal Information: TLV2371		12.1 Documentation Support	
	7.6 Thermal Information: TLV2373		12.2 Related Links	29
	7.7 Thermal Information: TLV2374		12.3 Receiving Notification of Documentation Update	es <mark>29</mark>
	7.8 Thermal Information: TLV2375		12.4 Community Resources	
	7.9 Electrical Characteristics		12.5 Trademarks	
	7.10 Typical Characteristics		12.6 Electrostatic Discharge Caution	29
8	3.		12.7 Glossary	
0	Detailed Description	13	Mechanical, Packaging, and Orderable	
	8.1 Overview		Information	30
	8.2 Functional Block Diagram			
	Revision History ges from Revision E (May 2016) to Revision F		F	Page
	<u> </u>	naakaa		
U	hanged names of pins 2 and 3 in TLV2372 D, DGK, and P	package	50 piriout diagram	4

Changes from Revision D (January 2005) to Revision E

Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.
 Deleted TLV2370 and TLV2371 Available Options, TLV2372 AND TLV2373 Available Options, and TLV2374 and TLV2375 Available Options tables
- Deleted Continuous total power dissipation and lead temperature specifications from Absolute Maximum Ratings table ... 8

5 Device Comparison Tables

Table 1. Selection of Signal Amplifier Products⁽¹⁾

DEVICE	V _{DD} (V)	V _{IO} (μV)	l _Q /Ch (μA)	I _{IB} (pA)	GBW (MHz)	SR (V/µs)	SHUTDOWN	RAIL-TO- RAIL	SINGLES, DUALS, QUADS
TLV237x	2.7 to 16	500	550	1	3	2.4	Yes	I/O	S, D, Q
TLC227x	4 to 16	300	1100	1	2.2	3.6	_	0	D, Q
TLV27x	2.7 to 16	500	550	1	3	2.4	_	0	S, D, Q
TLC27x	3 to 16	1100	675	1	1.7	3.6	_	_	S, D, Q
TLV246x	2.7 to 16	150	550	1300	6.4	1.6	Yes	I/O	S, D, Q
TLV247x	2.7 to 16	250	600	2	2.8	1.5	Yes	I/O	S, D, Q
TLV244x	2.7 to 10	300	725	1	1.8	1.4	_	0	D, Q

⁽¹⁾ Typical values measured at 5 V and 25°C.

Table 2. Family Package Table (1)

	<u> </u>										
	NUMBER OF CHANNELS		PAG		UNIVERSAL						
DEVICE		PDIP	soic	SOT-23	TSSOP	MSOP	SHUTDOWN	EVM BOARD			
TLV2370	1	8	8	6	-	_	Yes				
TLV2371	1	8	8	5	-	_	_				
TLV2372	2	8	8	_	-	8	_	See the EVM Selection			
TLV2373	2	14	14	_	-	10	Yes	Guide			
TLV2374	4	14	14	_	14	_	_				
TLV2375	4	16	16	_	16	_	Yes				

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

6 Pin Configuration and Functions

Pin Functions: TLV2370

	PIN		I/O	DESCRIPTION	
NAME	SOT-23	SOIC, PDIP	1/0	DESCRIPTION	
GND	2	4		Ground connection	
IN-	4	2	I	Negative (inverting) input	
IN+	3	3	1	Positive (noninverting) input	
NC	_	1, 5	_	No internal connection (can be left floating)	
OUT	1	6	0	Output	
SHDN	5	8	I	Shutdown control (active low, can be left floating)	
V_{DD}	6	7	_	Positive power supply	

TLV2371 DBV Package 5-Pin SOT-23 Top View

TLV2371 D and P Packages 8-Pin SOIC and PDIP Top View

Pin Functions: TLV2371

	PIN		1/0	DESCRIPTION
NAME	SOT-23	SOIC, PDIP	I/O	DESCRIPTION
GND	2	4	_	Ground connection
IN-	4	2	I	Negative (inverting) input
IN+	3	3	I	Positive (noninverting) input
NC	_	1, 5, 8	_	No internal connection (can be left floating)
OUT	1	6	0	Output
V_{DD}	5	7	_	Positive power supply

TLV2372 D, DGK, and P Packages 8-Pin SOIC, VSSOP, and PDIP Top View

Pin Functions: TLV2372

PIN			
NAME	SOIC, VSSOP, PDIP	I/O	DESCRIPTION
GND	4	_	Ground connection
1IN-	2	I	Inverting input, channel 1
1IN+	3	1	Noninverting input, channel 1
2IN-	6	I	Inverting input, channel 2
2IN+	5	ı	Noninverting input, channel 2
10UT	1	0	Output, channel 1
2OUT	7	0	Output, channel 2
V_{DD}	8	_	Positive power supply

TLV2373 DGS Package 10-Pin VSSOP Top View

TLV2373 D and N Packages 14-Pin SOIC and PDIP Top View

Pin Functions: TLV2373

	PIN		1/0	DESCRIPTION	
NAME	SOIC, PDIP	VSSOP	I/O	DESCRIPTION	
GND	4	4	_	Ground connection	
1IN-	2	2	I	Inverting input, channel 1	
1IN+	3	3	I	Noninverting input, channel 1	
2IN-	12	8	I	Inverting input, channel 2	
2IN+	11	7	I	Noninverting input, channel 2	
1OUT	1	1	0	Output, channel 1	
2OUT	13	9	0	Output, channel 2	
1SHDN	6	5	I	Shutdown control, channel 1, (active low, can be left floating)	
2SHDN	9	6	I	Shutdown control, channel 2, (active low, can be left floating)	
V_{DD}	14	10	_	Positive power supply	
NC	5, 7, 8, 10	_	_	No internal connection (can be left floating)	

TLV2374 D, N, and PW Packages 14-Pin SOIC, PDIP, and TSSOP Top View

Pin Functions: TLV2374

PIN		1/0	DESCRIPTION	
NAME	SOIC, PDIP, TSSOP	I/O	DESCRIPTION	
GND	11		Ground connection	
1IN-	2	-	Inverting input, channel 1	
1IN+	3	ı	Noninverting input, channel 1	
2IN-	6	ı	Inverting input, channel 2	
2IN+	5	I	Noninverting input, channel 2	
3IN-	9	I	Inverting input, channel 3	
3IN+	10	ı	Noninverting input, channel 3	
4IN-	13	ı	Inverting input, channel 4	
4IN+	12	I	Noninverting input, channel 4	
1OUT	1	0	Output, channel 1	
2OUT	7	0	Output, channel 2	
3OUT	8	0	Output, channel 3	
4OUT	14	0	Output, channel 4	
V_{DD}	4	_	Positive power supply	

TLV2375 D, N, and PW Packages 16-Pin SOIC, PDIP, and TSSOP Top View

Pin Functions: TLV2375

	PIN	1/0	DECORPORTION	
NAME	SOIC, PDIP, TSSOP	I/O	DESCRIPTION	
GND	13	_	Ground connection	
1IN-	2	I	Inverting input, channel 1	
2IN-	6	I	Inverting input, channel 2	
3IN-	11	I	Inverting input, channel 3	
4IN-	15	I	Inverting input, channel 4	
1IN+	3	I	Noninverting input, channel 1	
2IN+	5	I	Noninverting input, channel 2	
3IN+	12	I	Noninverting input, channel 3	
4IN+	14	I	Noninverting input, channel 4	
10UT	1	0	Output, channel 1	
2OUT	7	0	Output, channel 2	
3OUT	10	0	Output, channel 3	
4OUT	16	0	Output, channel 4	
1/2SHDN	8	I	Shutdown control, channels 1 and 2, (active low, can be left floating)	
3/4SHDN	9	I	Shutdown control, channels 3 and 4, (active low, can be left floating)	
V_{DD}	4	_	Positive power supply	

TYPICAL PIN 1 INDICATORS

If there is not a Pin 1 indicator, turn device to enable reading the symbol from the left to right. Pin 1 is at the lower left corner of the device.

Figure 1. Typical Pin 1 Indicators

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Voltage	Supply voltage, V _{DD} ⁽²⁾		16.5	
	Differential input voltage, V _{ID}	-V _{DD}	V_{DD}	V
	Input voltage, V _I ⁽²⁾	-0.2	V _{DD} + 0.2	
Current	Input current, I _{IN}	-10	10	A
	Output current, I _O	-100	100	mA
	Operating free-air temperature, T _A : I-suffix	-40	125	
Temperature	Maximum junction temperature, T _J		150	°C
	Storage temperature, T _{stg}	-65	150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted).

		MIN	MAX	UNIT
Cumply walkens \/	Single supply	2.7	16	W
Supply voltage, V _{DD}	Split supply	±1.35	±8	V
Common-mode input voltage, V _{CM}		0	V_{DD}	V
Operating free-air temperature, T _A	I-suffix	-40	125	°C
Turnon voltage (shutdown pin voltage level), $V_{(ON)}$	_{I)} , relative to GND pin voltage		2	V
Turnoff (shutdown pin voltage level), V _(OFF) , relati	ve to GND pin voltage	0.8		V

⁽²⁾ All voltage values, except differential voltages, are with respect to GND.

7.3 Thermal Information: TLV2370

	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	D (SOIC)	P (PDIP)	UNIT
		6 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	228.5	138.4	49.2	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	99.1	89.5	39.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	54.6	78.6	26.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	7.7	29.9	15.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	53.8	78.1	26.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.4 Thermal Information: TLV2371

	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	D (SOIC)	P (PDIP)	UNIT
		5 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	228.5	138.4	49.2	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	99.1	89.5	39.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	54.6	78.6	26.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	7.7	29.9	15.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	53.8	78.1	26.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Thermal Information: TLV2372

	THERMAL METRIC ⁽¹⁾	D (SOIC)	DGK (VSSOP)	P (PDIP)	UNIT
		8 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	138.4	191.2	49.2	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	89.5	61.9	39.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	78.6	111.9	26.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	29.9	5.1	15.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	78.1	110.2	26.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.6 Thermal Information: TLV2373

	THERMAL METRIC (1)	DGS (VSSOP)	D (SOIC)	P (PDIP)	UNIT
		10 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	166.5	67	66.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	41.8	24.1	20.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	86.1	22.5	26.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.5	2.2	2.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	84.7	22.1	26.2	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.7 Thermal Information: TLV2374

	THERMAL METRIC (1)	D (SOIC)	N (PDIP)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	67	66.3	121	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	24.1	20.5	49.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	22.5	26.8	62.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	2.2	2.1	5.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	22.1	26.2	62.2	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.8 Thermal Information: TLV2375

	THERMAL METRIC (1)	D (SOIC)	N (PDIP)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	83	55.8	115.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	44	43.1	50.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	40.5	35.8	60.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	11.5	27.9	7.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	40.2	35.7	60.1	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.9 Electrical Characteristics

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
DC PERF	ORMANCE							
		At T _A = 25°C,	$V_{IC} = V_{DD}/2, V_O = V_{DD}/2, R_S = 50 \Omega$		2	4.5	mV	
V _{OS}	Input offset voltage	At $T_A = -40^{\circ}C$ $R_S = 50 \Omega$	C to +125°C, $V_{IC} = V_{DD}/2$, $V_O = V_{DD}/2$,			6	mV	
dV _{OS} /dT	Offset voltage drift	At T _A = 25°C,	$V_{IC} = V_{DD}/2, V_O = V_{DD}/2, R_S = 50 \Omega$		2		μV/°C	
			V _{IC} = 0 to V _{DD}	50	68			
		V _{DD} = 2.7 V,	At $T_A = -40$ °C to +125°C, $V_{IC} = 0$ to V_{DD}	49				
		$R_S = 50 \Omega$	V_{IC} = 0 to V_{DD} - 1.35 V	56	70			
			At $T_A = -40^{\circ}\text{C}$ to +125°C, $V_{IC} = 0$ to $V_{DD} - 1.35 \text{ V}$	54				
			$V_{IC} = 0$ to V_{DD}	55	72			
CMRR	Common made rejection ratio	V _{DD} = 5 V,	At $T_A = -40^{\circ}$ C to +125°C, $V_{IC} = 0$ to V_{DD}	54			٩D	
CIVIRR	Common-mode rejection ratio	$R_S = 50 \Omega$	V_{IC} = 0 to V_{DD} - 1.35 V	67	80		dB	
			At $T_A = -40^{\circ}\text{C}$ to +125°C, $V_{\text{IC}} = 0$ to $V_{\text{DD}} - 1.35 \text{ V}$	64				
			V _{IC} = 0 to V _{DD}	64	82			
		V_{DD} = 15 V, R _S = 50 Ω	At $T_A = -40^{\circ}$ C to +125°C, $V_{IC} = 0$ to V_{DD}	63				
			V _{IC} = 0 to V _{DD} - 1.35 V	67	84			
			At $T_A = -40^{\circ}\text{C}$ to +125°C, $V_{\text{IC}} = 0$ to $V_{\text{DD}} - 1.35 \text{ V}$	66				
		$V_{DD} = 2.7 V,$		98	106			
		$V_{O(PP)} = V_{DD}/2,$ $R_L = 10 \text{ k}\Omega$	At T _A = -40°C to +125°C	76				
		V _{DD} = 5 V,		100	110		dB	
A_{VD}	Large-signal differential voltage amplification	$V_{O(PP)} = V_{DD}/2,$ $R_L = 10 \text{ k}\Omega$	At T _A = -40°C to +125°C	86				
		V _{DD} = 15 V,		81	83			
		$V_{O(PP)} = V_{DD}/2,$ $R_L = 10 \text{ k}\Omega$	At T _A = -40°C to +125°C	79				
INPUT CH	ARACTERISTICS							
		V _{DD} = 15 V,			1	60		
los	Input offset current	$V_{IC} = V_{O} =$	At T _A = 70°C			100	pA	
		V _{DD} /2	At T _A = 125°C			1000	<u></u>	
		V _{DD} = 15 V, V _{IC} = V _O =			1	60		
I_B	Input bias current	$V_{IC} = V_{O} =$	At T _A = 70°C			100	рA	
		V _{DD} /2	At T _A = 125°C			1000		
	Differential input resistance				1000		GΩ	
	Common-mode input capacitance	f = 21 kHz			8		pF	

Electrical Characteristics (continued)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OUTPUT	CHARACTERISTICS							
			At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OH} = -1$ mA	2.55	2.58			
		V _{DD} = 2.7 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OH} = -1$ mA	2.48				
			At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OH} = -1$ mA	4.9	4.93			
		V _{DD} = 5 V	At $T_A = -40^{\circ}$ C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OH} = -1$ mA	4.85				
			At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OH} = -1$ mA	14.92	14.96			
,	High lovel output voltage	V _{DD} = 15 V	At $T_A = -40^{\circ}$ C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OH} = -1$ mA	14.9				
/он	High-level output voltage		At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OH} = -5 \text{ mA}$	1.9	2		V	
		V _{DD} = 2.7 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OH} = -5$ mA	1.6				
			At $T_A = 25$ °C, $V_{IC} = V_{DD}/2$, $I_{OH} = -5$ mA	4.6	4.68			
		V _{DD} = 5 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OH} = -5$ mA	4.5				
			At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OH} = -5 \text{ mA}$	14.7	14.8	3		
		V _{DD} = 15 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OH} = -5$ mA	14.6				
			At $T_A = 25$ °C, $V_{IC} = V_{DD}/2$, $I_{OL} = 1$ mA		0.1	0.15		
		V _{DD} = 2.7 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OL} = 1$ mA			0.22		
			At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OL} = 1 \text{ mA}$		0.05	0.1		
		V _{DD} = 5 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OL} = 1$ mA			0.15		
			At $T_A = 25$ °C, $V_{IC} = V_{DD}/2$, $I_{OL} = 1$ mA		0.05	0.08		
/ _{OL}	Low level output voltage	V _{DD} = 15 V	At T_A = -40°C to +125°C, V_{IC} = $V_{DD}/2$, I_{OL} = 1 mA			0.1		
OL.	Low-level output voltage		At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OL} = 5 \text{ mA}$		0.52	0.7	V	
		V _{DD} = 2.7 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OL} = 5$ mA			1.1		
			At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OL} = 5 \text{ mA}$		0.28	0.4		
		V _{DD} = 5 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OL} = 5$ mA			0.5		
			At $T_A = 25^{\circ}C$, $V_{IC} = V_{DD}/2$, $I_{OL} = 5 \text{ mA}$		0.19	0.3		
		V _{DD} = 15 V	At $T_A = -40$ °C to +125°C, $V_{IC} = V_{DD}/2$, $I_{OL} = 5$ mA			0.35		
		$V_{DD} = 2.7 V$	Positive rail		4		· <u> </u>	
		$V_O = 0.5 V$ from rail	Negative rail		5			
	Outract seems 1	$V_{DD} = 5 V$	Positive rail		7			
0	Output current	$V_O = 0.5 V$ from rail	Negative rail	8 16			mA	
		$V_{DD} = 15 V$	Positive rail					
		$V_O = 0.5 V$ from rail	Negative rail		15			

Electrical Characteristics (continued)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	SUPPLY	1					
		V _{DD} = 2.7 V, V	$V_O = V_{DD}/2$		470	560	
	Cumply augrent (nor shannel)	$V_{DD} = 5 \text{ V}, V_{C}$	$_{\rm D} = V_{\rm DD}/2$		550	660	
I _{DD}	Supply current (per channel)	V _{DD} = 15 V,	At T _A = 25°C		750	900	μA
		$V_O = V_{DD}/2$	At $T_A = -40$ °C to $+125$ °C			1200	
		$V_{DD} = 2.7 \text{ V}$	At T _A = 25°C	70	80		
PSRR	Power-supply rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	to 15 V, $V_{IC} = V_{DD}/2$, no load At $T_A = -40^{\circ}\text{C}$ to +125°C		65			dB
DYNAMI	C PERFORMANCE						
		V _{DD} = 2.7 V	$R_L = 2 \text{ k}\Omega$, $C_L = 10 \text{ pF}$		2.4		
UGBW	Unity gain bandwidth	V _{DD} = 5 V to 15 V	$R_L = 2 \text{ k}\Omega$, $C_L = 10 \text{ pF}$		3		MHz
			At $T_A = 25^{\circ}C$, $V_{O(PP)} = V_{DD}/2$, $C_L = 50 \text{ pF}$, $R_L = 10 \text{ k}\Omega$	1.4	2		
		V _{DD} = 2.7 V	At $T_A = -40^{\circ}C$ to +125°C, $V_{O(PP)} = V_{DD}/2$, $C_L = 50$ pF, $R_L = 10$ k Ω	1			
			At $T_A = 25^{\circ}C$, $V_{O(PP)} = V_{DD}/2$, $C_L = 50 \text{ pF}$, $R_L = 10 \text{ k}\Omega$	1.6	2.4		
SR	Slew rate at unity gain	V _{DD} = 5 V	At $T_A = -40^{\circ}C$ to +125°C, $V_{O(PP)} = V_{DD}/2$, $C_L = 50$ pF, $R_L = 10$ k Ω	1.2			V/µs
			At $T_A = 25^{\circ}C$, $V_{O(PP)} = V_{DD}/2$, $C_L = 50 \text{ pF}$, $R_L = 10 \text{ k}\Omega$	1.9	2.1		
		V _{DD} = 15 V					
φm	Phase margin	$R_L = 2 k\Omega, C_L$	= 100 pF		65		0
	Gain margin	$R_L = 2 k\Omega, C_L$	= 10 pF		18		dB
ŧ	Settling time		V_{DD} = 2.7 V, $V_{(STEP)PP}$ = 1 V, A_V = -1, C_L = 10 pF, R_L = 2 k Ω , 0.1% V_{DD} = 5 V, 15 V, $V_{(STEP)PP}$ = 1 V, A_V = -1, C_L = 47 pF, R_L = 2 k Ω , 0.1%				ше
t _s	Security time						μs

Electrical Characteristics (continued)

	PARAMETER		TEST CONDITIONS	MIN TY	P MAX	UNIT	
NOISE, DI	STORTION PERFORMANCE						
			$V_{O(PP)} = V_{DD}/2 \text{ V}, R_L = 2 \text{ k}\Omega,$ f = 10 kHz, A _V = 1	0.029	%		
		V _{DD} = 2.7 V	$V_{O(PP)} = V_{DD}/2 \text{ V}, R_L = 2 \text{ k}\Omega,$ f = 10 kHz, A _V = 10	0.059	%		
THD + N	Total harmonic distortion plus		$V_{O(PP)} = V_{DD}/2 \text{ V}, R_L = 2 \text{ k}\Omega,$ f = 10 kHz, A _V = 100	0.189	%		
111B · 14	noise		$V_{O(PP)} = V_{DD}/2 \text{ V}, R_L = 2 \text{ k}\Omega,$ f = 10 kHz, A _V = 1	0.029	%		
		V _{DD} = 5 V, 15 V	$V_{O(PP)} = V_{DD}/2 \text{ V}, R_L = 2 \text{ k}\Omega,$ f = 10 kHz, $A_V = 10$	0.099	%		
			$V_{O(PP)} = V_{DD}/2 \text{ V}, R_L = 2 \text{ k}\Omega,$ f = 10 kHz, A _V = 100	0.59	%		
\ /	Equivalent input noise	f = 1 kHz		39		nV/√Hz	
V _n	voltage	f = 10 kHz		3	35	IIV/VIIZ	
In	Equivalent input noise current	f = 1 kHz		0.	.6	fA/√Hz	
SHUTDOV	VN CHARACTERISTICS	11					
		$V_{DD} = 2.7 V,$	At T _A = 25°C	2	25 30		
I _{DD(SHDN)}	Supply current in shutdown mode (TLV2370, TLV2373,	$\frac{5 \text{ V},}{\text{SHDN}} = 0 \text{ V}$	At $T_A = -40^{\circ}\text{C}$ to +125°C		35	μA	
יטט(SHDN)	TLV2375) (per channel)	<u>V_{DD}</u> = 15 V,	At T _A = 25°C	4	0 45		
	,	SHDN = 0 V	At $T_A = -40^{\circ}$ C to +125°C		50		
t _(on)	Amplifier turnon time ⁽¹⁾	$R_L = 2 k\Omega$	•	0.	.8	μs	
t _(off)	Amplifier turnoff time ⁽¹⁾	$R_L = 2 k\Omega$			1	μs	

⁽¹⁾ Disable time and enable time are defined as the interval between application of the logic signal to the SHDN terminal and the point at which the supply current has reached one half of its final value.

7.10 Typical Characteristics

Table 3. Table of Graphs

			FIGURE
V _{IO}	Input offset voltage	vs Common-mode input voltage	Figure 2, Figure 3, Figure 4
CMRR	Common-mode rejection ratio	vs Frequency	Figure 5
	Input bias and offset current	vs Free-air temperature	Figure 6
V _{OL}	Low-level output voltage	vs Low-level output current	Figure 7, Figure 9, Figure 11
V _{OH}	High-level output voltage	vs High-level output current	Figure 8, Figure 10, Figure 12
V _{O(PP)}	Peak-to-peak output voltage	vs Frequency	Figure 13
I _{DD}	Supply current	vs Supply voltage	Figure 14
PSRR	Power supply rejection ratio	vs Frequency	Figure 15
A _{VD}	Differential voltage gain and phase	vs Frequency	Figure 16
	Gain-bandwidth product	vs Free-air temperature	Figure 17
CD	Classinata	vs Supply voltage	Figure 18
SR	Slew rate	vs Free-air temperature	Figure 19
φ m	Phase margin	vs Capacitive load	Figure 20
V _n	Equivalent input noise voltage	vs Frequency	Figure 21
	Voltage-follower large-signal pulse response		Figure 22, Figure 23
	Voltage-follower small-signal pulse response		Figure 24
	Inverting large-signal response		Figure 25, Figure 26
	Inverting small-signal response		Figure 27
	Crosstalk	vs Frequency	Figure 28
	Shutdown forward & reverse isolation	vs Frequency	Figure 29
I _{DD(SHDN)}	Shutdown supply current	vs Supply voltage	Figure 30
I _{DD(SHDN)}	Shutdown pin leakage current	vs Shutdown pin voltage	Figure 31
I _{DD(SHDN)}	Shutdown supply current, output voltage	vs Time	Figure 32, Figure 33

8 Detailed Description

8.1 Overview

The TLV237x single-supply CMOS operational amplifiers provide rail-to-rail input and output capability with 3-MHz bandwidth. Consuming only 550 μ A the TLV237x is the perfect choice for portable and battery-operated applications. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from (±8-V supplies down to ±1.35 V) a variety of rechargeable cells. The rail-to-rail inputs with high input impedance make the TLV237x ideal for sensor signal-conditioning applications.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Rail-to-Rail Input Operation

The TLV237x input stage consists of two differential transistor pairs, NMOS and PMOS, that operate together to achieve rail-to-rail input operation. The transition point between these two pairs can be seen in Figure 2, Figure 3, and Figure 4 for a 2.7-V, 5-V, and 15-V supply. As the common-mode input voltage approaches the positive supply rail, the input pair switches from the PMOS differential pair to the NMOS differential pair. This transition occurs approximately 1.35 V from the positive rail and results in a change in offset voltage due to different device characteristics between the NMOS and PMOS pairs. If the input signal to the device is large enough to swing between both rails, this transition results in a reduction in common-mode rejection ratio (CMRR). If the input signal does not swing between both rails, it is best to bias the signal in the region where only one input pair is active. This is the region in Figure 2 through Figure 4 where the offset voltage varies slightly across the input range and optimal CMRR can be achieved. This has the greatest impact when operating from a 2.7-V supply voltage.

8.3.2 Driving a Capacitive Load

When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, TI recommends that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 34. A minimum value of 20 Ω should work well for most applications.

Feature Description (continued)

Figure 34. Driving a Capacitive Load

8.3.3 Offset Voltage

The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. Figure 35 can be used to calculate the output offset voltage:

$$V_{OO} = V_{IO} \left[1 + \left| \frac{R_F}{R_G} \right| \right] \pm I_{IB+} R_S \left[1 + \left| \frac{R_F}{R_G} \right| \right] \pm I_{IB-} R_F$$

Figure 35. Output Offset Voltage Model

8.3.4 General Configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 36).

Figure 36. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier must have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

Feature Description (continued)

Figure 37. 2-Pole Low-Pass Sallen-Key Filter

8.3.5 Shutdown Function

Three members of the TLV237x family (TLV2370, TLV2373, and TLV2375) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 25 μ A/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, take care to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown.

8.4 Device Functional Modes

The TLV2371, TLV2372, and TLV2374 have a single functional mode. These devices are operational as long as the power-supply voltage is between 2.7 V $(\pm 1.35 \text{ V})$ and 16 V $(\pm 8 \text{ V})$.

The TLV2370, TLV2373, and TLV2375 are likewise operational as long as the power-supply voltage is between 2.7 V (±1.35 V) and 16 V (±8 V), additionally these devices also have a shutdown capability. When the shutdown control pin is driven below 0.8 V above ground, the device is in shutdown. If the shutdown control pin voltage is driven to greater than 2 V above ground, the device is in its normal operating mode. See *Shutdown Function* for additional information regarding shutdown operation.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

When designing for low power, choose system components carefully. To minimize current consumption, select large-value resistors. Any resistors can react with stray capacitance in the circuit and the input capacitance of the operational amplifier. These parasitic RC combinations can affect the stability of the overall system. Use of a feedback capacitor assures stability and limits overshoot or gain peaking.

9.2 Typical Application

A typical application for an operational amplifier is an inverting amplifier, as shown in Figure 38. An inverting amplifier takes a positive voltage on the input and outputs a signal inverted to the input, making a negative voltage of the same magnitude. In the same manner, the amplifier also makes negative input voltages positive on the output. In addition, amplification can be added by selecting the input resistor R_I and the feedback resistor R_F.

Figure 38. Application Schematic

9.2.1 Design Requirements

The supply voltage must be chosen to be larger than the input voltage range and the desired output range. The limits of the input common-mode range (V_{CM}) and the output voltage swing to the rails (V_O) must also be considered. For instance, this application scales a signal of ± 0.5 V (1 V) to ± 1.8 V (3.6 V). Setting the supply at ± 2.5 V is sufficient to accommodate this application.

9.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{V} = \frac{V_{OUT}}{V_{IN}}$$

$$A_{V} = \frac{1.8}{-0.5} = -3.6$$
(2)

When the desired gain is determined, choose a value for R_I or R_F . Choosing a value in the $k\Omega$ range is desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This milliamp current range ensures the device does not draw too much current. The trade-off is that very large resistors (100s of $k\Omega$) draw the smallest current but generate the highest noise. Very small resistors (100s of Ω) generate low noise but draw high current. This example uses 10 $k\Omega$ for R_I , meaning 36 $k\Omega$ is used for R_F . These values are determined by Equation 3:

Typical Application (continued)

$$A_{V} = -\frac{R_{F}}{R_{I}} \tag{3}$$

9.2.3 Application Curve

Figure 39. Inverting Amplifier Input and Output

10 Power Supply Recommendations

The TLV237x family is specified for operation from 2.7 V to 15 V (± 1.35 V to ± 7.5 V); many specifications apply from -40° C to $+125^{\circ}$ C. The *Typical Characteristics* presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

CAUTION

Supply voltages larger than 16 V can permanently damage the device (see the *Absolute Maximum Ratings* table).

Place $0.1-\mu F$ bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement; see *Layout*.

11 Layout

11.1 Layout Guidelines

To achieve the levels of high performance of the TLV237x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes—TI highly recommends using a ground plane on the board to provide all components with a
 low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane
 can be removed to minimize the stray capacitance.
- Proper power supply decoupling—Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor must be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is
 the best implementation.
- Short trace runs and compact part placements—Optimum high performance is achieved when stray series
 inductance has been minimized. To realize this, the circuit layout must be made as compact as possible,
 thereby minimizing the length of all trace runs. Pay particular attention to the inverting input of the amplifier.
 Its length must be kept as short as possible. This helps to minimize stray capacitance at the input of the
 amplifier.
- Surface-mount passive components—Using surface-mount passive components is recommended for high
 performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
 inductance and capacitance. If leaded components are used, TI recommends that the lead lengths be kept as
 short as possible.

11.2 Layout Example

Figure 40. Schematic Representation

Layout Example (continued)

Copyright © 2016, Texas Instruments Incorporated

Figure 41. Operational Amplifier Board Layout for Noninverting Configuration

11.3 Power Dissipation Considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 42 and is calculated by Equation 4:

$$P_{D} = \left[\frac{T_{MAX} - T_{A}}{\theta_{JA}} \right]$$

where

- P_D = Maximum power dissipation of TLV237x IC (watts)
- T_{MAX} = Absolute maximum junction temperature (150°C)
- T_A = Free-ambient air temperature (°C)
- $\theta_{JA} = \theta_{JC}$ (Thermal coefficient from junction to case) + θ_{CA} (Thermal coefficient from case to ambient air (°C/W)) (4)

Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 42. Maximum Power Dissipation vs Free-Air Temperature

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

EVM Selection Guide (SLOU060)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

TOOLS & SUPPORT & PRODUCT FOLDER **PARTS SAMPLE & BUY** COMMUNITY **DOCUMENTS SOFTWARE** TLV2370 Click here Click here Click here Click here Click here TLV2371 Click here Click here Click here Click here Click here TLV2372 Click here Click here Click here Click here Click here TLV2373 Click here Click here Click here Click here Click here TLV2374 Click here Click here Click here Click here Click here TLV2375 Click here Click here Click here Click here Click here

Table 4. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7-Jun-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLV2370ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23701	Samples
TLV2370IDBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBFI	Samples
TLV2370IDBVRG4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBFI	Samples
TLV2370IDBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBFI	Samples
TLV2370IDBVTG4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBFI	Samples
TLV2370IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23701	Samples
TLV2370IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23701	Samples
TLV2370IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23701	Samples
TLV2370IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23701	Samples
TLV2371ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23711	Samples
TLV2371IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBGI	Samples
TLV2371IDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBGI	Samples
TLV2371IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBGI	Samples
TLV2371IDBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBGI	Samples
TLV2371IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23711	Samples
TLV2371IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23711	Samples
TLV2371IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23711	Samples

www.ti.com

7-Jun-2016

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV2371IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23711	Samples
TLV2371IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23711	Samples
TLV2372ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23721	Samples
TLV2372IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23721	Samples
TLV2372IDGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU I CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	APG	Samples
TLV2372IDGKG4	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	APG	Samples
TLV2372IDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU I CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	APG	Samples
TLV2372IDGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	APG	Samples
TLV2372IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23721	Samples
TLV2372IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23721	Samples
TLV2372IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23721	Samples
TLV2372IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23721	Samples
TLV2373ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23731	Samples
TLV2373IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23731	Samples
TLV2373IDGS	ACTIVE	VSSOP	DGS	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU I CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	API	Samples
TLV2373IDGSG4	ACTIVE	VSSOP	DGS	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	API	Samples
TLV2373IDGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU I CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	API	Samples
TLV2373IDGSRG4	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	API	Samples

www.ti.com

7-Jun-2016

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV2373IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23731	
TLV2373IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23731	Samples
TLV2373IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2373I	Samples
TLV2374-W	ACTIVE	WAFERSALE	YS	0		TBD	Call TI	Call TI			Samples
TLV2374ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2374IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2374IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2374IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2374IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23741	Samples
TLV2374INE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23741	Samples
TLV2374IPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2374IPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2374IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2374IPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23741	Samples
TLV2375ID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples
TLV2375IDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples
TLV2375IDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples
TLV2375IDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples

PACKAGE OPTION ADDENDUM

7-.lun-2016

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV2375IN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	23751	Samples
TLV2375IPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples
TLV2375IPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples
TLV2375IPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples
TLV2375IPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	23751	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

7-Jun-2016

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV2371, TLV2372, TLV2374:

Automotive: TLV2371-Q1, TLV2372-Q1, TLV2374-Q1

• Enhanced Product: TLV2371-EP, TLV2374-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Jun-2016

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2370IDBVR	SOT-23	DBV	6	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TLV2370IDBVT	SOT-23	DBV	6	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TLV2370IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2371IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TLV2371IDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV2371IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2372IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2372IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2372IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2373IDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2373IDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2373IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLV2374IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLV2374IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV2375IDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TLV2375IPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Jun-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2370IDBVR	SOT-23	DBV	6	3000	182.0	182.0	20.0
TLV2370IDBVT	SOT-23	DBV	6	250	182.0	182.0	20.0
TLV2370IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2371IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV2371IDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV2371IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2372IDGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TLV2372IDGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TLV2372IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2373IDGSR	VSSOP	DGS	10	2500	364.0	364.0	27.0
TLV2373IDGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TLV2373IDR	SOIC	D	14	2500	333.2	345.9	28.6
TLV2374IDR	SOIC	D	14	2500	333.2	345.9	28.6
TLV2374IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
TLV2375IDR	SOIC	D	16	2500	333.2	345.9	28.6
TLV2375IPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DBV (R-PDSO-G6)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

DGS (S-PDSO-G10)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Products	Applications

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

Security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

www.ti.com/security

Microcontrollers www.ti.com/video microcontroller.ti.com Video and Imaging

www.ti-rfid.com

Logic

OMAP Applications Processors TI E2E Community www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity