SCALER - Clustering in Learner Profiling

Scaler is an online tech-versity offering intensive computer science & Data Science courses through live classes delivered by tech leaders and subject matter experts. It is a product by InterviewBit.

You are working as a data scientist with the analytics vertical of Scaler, focused on profiling the best companies and job positions to work for from the Scaler database. You are provided with the information for a segment of learners and tasked to cluster them on the basis of their job profile, company, and other features. Ideally, these clusters should have similar characteristics.

Following are the columns in the dataset.

- 'Unnamed 0' Index of the dataset
- Email hash Anonymised Personal Identifiable Information (PII)
- Company_hash This represents an anonymized identifier for the company, which is the current employer of the learner.
- orgyear Employment start date
- CTC Current CTC
- Job position Job profile in the company
- CTC_updated_year Year in which CTC got updated (Yearly increments, Promotions)

Aim is to leverage data science and unsupervised learning, particularly clustering techniques so that Scaler can group learners with similar profiles, especially in terms of their current roles, companies, and experience aiding in delivering a more personalized learning journey.

1. Basic data cleaning and exploration:

a. Importing data and finding the shape.

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        df=pd.read_csv(r"C:\Users\devip\Desktop\Scaler projects\Scaler clustering\scaler_clustering.csv")
        df.head()
Out[1]:
           Unnamed:
                      company_hash
                                                                        email_hash orgyear
                                                                                                ctc job_position ctc_updated_yea
                   0
        0
                   0
                       atrgxnnt xzaxv
                                     6de0a4417d18ab14334c3f43397fc13b30c35149d70c05...
                                                                                     2016.0 1100000
                                                                                                           Other
                                                                                                                          2020
                            atrxvzwt
                                                                                                        FullStack
                                                                                                                          2019
         1
                   1
                           xzegwgbb
                                    b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10...
                                                                                     2018.0
                                                                                             449999
                                                                                                        Engineer
                             rxbxnta
                                                                                                        Backend
         2
                                     4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9...
                                                                                     2015.0 2000000
                                                                                                                          2020
                      ojzwnvwnxw vx
                                                                                                        Engineer
                                                                                                        Backend
        3
                   3
                          ngpgutaxv
                                     effdede7a2e7c2af664c8a31d9346385016128d66bbc58...
                                                                                     2017.0
                                                                                             700000
                                                                                                                          2019
                                                                                                        Engineer
                                                                                                        FullStack
                                     6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520...
         4
                   4
                                                                                     2017.0 1400000
                                                                                                                          2019
                         qxen sqghu
                                                                                                        Engineer
In [2]: df.columns
Out[2]: Index(['Unnamed: 0', 'company_hash', 'email_hash', 'orgyear', 'ctc',
                 'job position', 'ctc updated year'],
               dtype='object')
In [3]: df.shape
Out[3]: (205843, 7)
In [4]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 205843 entries, 0 to 205842
       Data columns (total 7 columns):
            Column
        #
                               Non-Null Count
                                                 Dtype
        0
           Unnamed: 0
                               205843 non-null int64
                               205799 non-null object
            company hash
                               205843 non-null object
            email hash
        2
            orgyear
                               205757 non-null
                                                 float64
                               205843 non-null int64
        4
            ctc
        5
            job position
                               153281 non-null object
        6
            ctc_updated_year 205843 non-null float64
       dtypes: float64(2), int64(2), object(3)
       memory usage: 11.0+ MB
```

Dropping column Unnamed as it affects the model.

```
In [5]: df=df.drop('Unnamed: 0',axis=1)
```

Converting columns orgyear and ctc_updated_year to datetime.

```
In [6]: # df['orgyear'] = df['orgyear'].astype(int)
# df['ctc_updated_year'] = df['ctc_updated_year'].astype(int)

# df['orgyear'] = pd.to_datetime(df['orgyear'], format='%Y')
# df['ctc_updated_year'] = pd.to_datetime(df['ctc_updated_year'], format='%Y')
```

b. Checking for null values.

```
In [7]: df.isna().sum(axis=0)
Out[7]: company_hash
        email hash
                            0
       orgyear
                            86
       ctc
                            0
        job_position
                         52562
        ctc_updated_year
                             0
       dtype: int64
In [8]: (df.isna().sum(axis=0)/len(df))*100
Out[8]: company_hash
email_hash
                          0.021376
                        0.000000
0.041779
       orgyear
       dtype: float64
```

Columns 'job_position' is having 25% missing values. 'orgyear' and 'company_hash' are also having null values.

c. Describing the dataset

In [9]:	df.des	cribe()				
Out[9]:		orgyear	ctc	ctc_updated_year		
	count	205757.000000	2.058430e+05	205843.000000		
	mean	2014.882750	2.271685e+06	2019.628231		
	std	63.571115	1.180091e+07	1.325104		
	min	0.000000	2.000000e+00	2015.000000		
	25%	2013.000000	5.300000e+05	2019.000000		
	50%	2016.000000	9.500000e+05	2020.000000		
	75%	2018.000000	1.700000e+06	2021.000000		
	max	20165.000000	1.000150e+09	2021.000000		
n [10]:	df.des	cribe(include	e=['object',	'category'])		
ut[10]:	company_hash		npany_hash		email_hash	
	count		205799		205843	
	unique		37299		153443	
	top	nvnv wgzohrnv	zwj otącxwto b	bace3cc586400bbc657	765bc6a16b77d8913836cfc98b7	
	freq		8337		10	

d. Checking for duplicate rows.

Out[11]:	company_hash	email_hash	orgyear ctc	job_position	ctc_updated_year

	7		- 3,		, <u>_</u> ,	
97138	wtqtzwt xzw	bb8e4b09544daf1bfc8c7bb9a9ae1fee35490cf3f321b8	2014.0	1000000	FullStack Engineer	2019.0
98085	2020	6ad3e6ab27462c2c7428fa5d51405933335341d4d969b5	2020.0	720000	NaN	2019.0
102600	voxvz uvxzno	c7fac937a34f7ae432ff1d77466eb7ea6cf25dfd5ebcca	2020.0	1280000	NaN	2019.0
109324	wgbwvon mhoxztoo	0442a51ef5080d7d40721c007131a1d5bdeabae2c1b153	2016.0	700000	NaN	2019.0
111354	uyxrxuo xzzgcvnxgz wvbuho	704d69965035d1c341b06fc5d83bf1b714f1625c0cf271	2017.0	850000	iOS Engineer	2019.0
111521	aqggb ntwyzgrgsj	df81dac132d66a42a0c71a4799e1040731738e542c81ff	2017.0	1270000	FullStack Engineer	2019.0
115241	rgfto wgbuvzxto xzw	ea363e930dabe0fbb63438e07775af3cb3b32639947c47	2017.0	1100000	Backend Engineer	2019.0
117246	xatbxv	f451ceee50b1bfa3dc749c6aa8634ab3851a4ab961b003	2019.0	640000	NaN	2019.0
117549	exzdtqv	e7df851527dd6f8ec95d5e13d9fb2a7255380245b808e3	2020.0	1500000	NaN	2020.0
120371	avnvbtnxwv ogrhnxgzo uqxcvnt rxbxnta	15d7dd6801fb7cb980e77c420dd9bef5773e7ef57f510c	2016.0	1300000	Backend Engineer	2020.0
121946	oguqv ontqxv	f48d4cd35091adb89c8e82b8bc39b68416e2e954e406fd	2016.0	1250000	Data Scientist	2019.0
122316	eqtoytq	567e7ff3ad74ce235a75b1feea224204d35cd698922e59	2018.0	900000	Backend Engineer	2019.0
130495	xatbxv	80a04f3eb89aa385e32b6e1c9a0b564730274632fad4c4	2017.0	409999	Backend Engineer	2020.0
138371	xicxv	d0e72d551c69a2f9d96914515aeef797f4989b54c90ef0	2014.0	1200000	FullStack Engineer	2019.0
141686	uhmrxwxo ovuxtzn	f27a6a759a02e90ebd17041fb26b72d13420d53edcdc99	2020.0	940000	NaN	2019.0
143061	vwwtznhqt ogrhnxgzo uqxcvnt rxbxnta	bf09ce2b61e3bba0846412cf76b2e408c92384b373f709	2014.0	800000	Android Engineer	2019.0
146097	axvouvqp xzw	8e5fe3154be66d7cd8730224318d913ecd10ec5197e20a	2017.0	1000000	Backend Engineer	2021.0
151473	rgfto wgbuvzxto xzw	f67d3be9653bca997a75c81a88e851bcf0368fd83255aa	2017.0	1265000	Backend Engineer	2019.0
157950	ti ntwyzgrgsxw	843a5216e56e06b9d31d35e0c3820beec3af19dc4978af	2019.0	850000	FullStack Engineer	2020.0
161251	avnvftvct ucn rna	5083a995fa1623fd7d329766f8e7adbe5497a8c3c826f9	2018.0	800000	Backend Engineer	2019.0
164554	ng nyt ztf	7b47ee99ce695d48d18dea36d3c6cc73e3b5b40ed477cf	2019.0	450000	NaN	2020.0
165326	uhmrxwxo ovuxtzn	d40b483baf912b9f21cd1952e8b79388ce88ed5222d3d8	2019.0	1200000	NaN	2019.0
171421	fyvnexd	7e2ac7c6b9051177ea51af3f7c8e934d6d3ce15a5cb587	2020.0	1300000	FullStack Engineer	2020.0
175942	tdnqvbvqpo	82b93606127fa5ed0d28cb32469d7ba177b8e70088608c	2019.0	350000	NaN	2020.0
179858	buyvoxo rna	bd443574985b2f72a4a382b6be392db2358158761f38de	2016.0	750000	FullStack Engineer	2020.0
180630	uhmrxwxo ovuxtzn	59e67f9f149ede96889afacb1a70645fd3f309e3a1fa43	2019.0	1620000	NaN	2019.0
182531	xznqvrxzp	c2c34a82a91169e2523727f7f15a4cc64f973ccb895b69	2016.0	6730000	Backend Engineer	2019.0
195375	souvzz ntwyzgrgsxto xzw	31fefa78a0f32b56c8f0d60d2355d92c480b4ba95fcd83	2018.0	600000	Support Engineer	2020.0
196492	2020	b6a63b76c3a1a395f7c3d509f2760d83aeb6e8c53db2b1	2020.0	2700000	NaN	2019.0
196971	2020	77a5cecd2ed9bb764df8bf6da78a0ae2aef97fc87e913e	2020.0	1000000	NaN	2019.0
201165	xzzgcvwwtq	5d00f5560a82d5ed91708273f9190499a6405abff35ab1	2020.0	1300000	NaN	2019.0
203257	uhmrxwxo ovuxtzn	9efbaf1f3740b6661adb699ed5ee03ba10c51f6185e681	2015.0	1500000	NaN	2019.0
205733	uhmrxwxo ovuxtzn	da614aea4d5dfacac3a2a6523e7e94b485fa3ba803db79	2020.0	990000	NaN	2019.0

Removing the duplicate columns by keeping the first occurance.

```
In [12]: df.drop_duplicates(keep='first', inplace=True)
In [13]: df[df.duplicated()]
Out[13]: company_hash email_hash orgyear ctc job_position ctc_updated_year
```

2. Aggregating the dataset on email_hash .

We aggregate data on column email_hash in order to remove multiple occurrences of same learner.

```
In [14]: df['email hash'].value counts().sort values(ascending=False)
Out[14]: bbace3cc586400bbc65765bc6a16b77d8913836cfc98b77c05488f02f5714a4b
                                                                              10
         6842660273f70e9aa239026ba33bfe82275d6ab0d20124021b952b5bc3d07e6c
                                                                               9
         298528ce3160cc761e4dc37a07337ee2e0589df251d73645aae209b010210eee
         3e5e49daa5527a6d5a33599b238bf9bf31e85b9efa9a94f1c88c5e15a6f31378
                                                                               9
         b4d5afa09bec8689017d8b29701b80d664ca37b83cb883376b2e95191320da66
                                                                               8
         9dacdf828a4eed8fb8c78b65344262187024155793336423e2d52eb88010e5fc
                                                                               1
         81ef3c26c45912a491ec164c79e6bef426af9b9acc6175a7dc647ee3bd4ca0bf
                                                                               1
          c54186b3ff22353234e42a65e9bdf9435be3edf493ec207eb446865f3184b97b
         f8ac4ef80618f6c618941689ce3c67e06edfb93d5423abfc49df5c6497e54968
                                                                               1
         \tt 0bcfc1d05f2e8dc4147743a1313aa70a119b41b30d4a1f7e738a6a87d3712c31
         Name: email_hash, Length: 153443, dtype: int64
In [15]: from scipy.stats import mode
         def mode data(series):
             filtered_series = series.dropna()
             if not filtered series.empty:
                 return filtered_series.mode()[0]
             return np.nan
         if __name__ == "__main__":
             df_agg = df.groupby('email_hash').agg({
                 'ctc': 'max'
                 'company hash': mode data,
                 'job position': mode data,
                 'orgyear': 'min',
                 'ctc_updated_year': 'max'
             })
In [16]: df agg=df agg.reset index()
         df_agg
```

Out[16]:				email_hash	ctc	company_hash	job_position	orgyear	ctc_updated_year
	0	00003288036a4	4374976948c327f246fd	bdf0778546904	3500000	bxwqgogen	Backend Engineer	2012.0	2019.0
	1	0000aaa0e6b6 ²	lf7636af1954b43d29448	4cd151c9b3cf6	250000	nqsn axsxnvr	Backend Engineer	2013.0	2020.0
	2	0000d58fbc180	12bf6fa2605a7b0357d12	26ee69bc41032	1300000	gunhb	FullStack Engineer	2021.0	2019.0
	3	000120d0c8aa	304fcf12ab4b85e21feb8	0a342cfea03d4	2000000	bxwqgotbx wgqugqvnxgz	FullStack Engineer	2004.0	2021.0
	4	00014d71a38917	'0e668ba96ae8e1f9d99	1591acc899025	3400000	fvrbvqn rvmo	NaN	2009.0	2018.0
	153438	fffc254e627e4	bd1bc0ed7f01f9aebbba	7c3cc56ac914e	3529999	tqxwoogz ogenfvqt wvbuho	QA Engineer	2004.0	2019.0
	153439	fffcf97db1e9c	13898f4eb4cd1c2fe8623	58480e104535	1600000	trnqvcg	NaN	2015.0	2018.0
	153440	fffe7552892f8d	a5fb8647d49ca805b72e	ea0e9538b6b01	900000	znn avnv srgmvr atrxctqj otqcxwto	Devops Engineer	2014.0	2019.0
	153441	ffff49f963e449	93d8bbc7cc15365423d8	4a767259f7200	700000	zwq wgqugqvnxgz	FullStack Engineer	2020.0	2020.0
	153442	ffffa3eb3575f4	3b86d986911463dce7bd	cadcea227e5a4	1500000	sgrabvz ovwyo	FullStack Engineer	2018.0	2021.0
	153443 r	rows × 6 columns							
In [17]:	df_agg	.info()							
F	RangeInd Data col	•	rame.DataFrame'> tries, 0 to 153442 columns): Non-Null Count	Dtype					
,	0 ema 1 ctc 2 con 3 job 4 orc 5 ctc dtypes:	npany_hash o_position gyear c_updated_year	153443 non-null 153443 non-null 153411 non-null 133219 non-null 153365 non-null 153443 non-null nt64(1), object(3)	int64 object object float64					
In [18]:	(df_ag	g.isna().sum(a	xis=0)/len(df_agg))*100					
Out[18]:		y_hash sition	0.000000 0.000000 0.020855 13.180139 0.050833 0.000000						

- 3. Feature Engineering steps.
 - a. Creating column Experience .

As the column orgyear is having very extreme values, so dropping rows having extreme values.

```
In [19]: df_agg[(df_agg['orgyear'] < 1980) | (df_agg['orgyear'] > 2024)]
Out[19]:
                                                       email_hash
                                                                          ctc company_hash job_position orgyear ctc_updated_year
                                                                                                  Devops
            3018
                   050a5f7e04009ad2554fe374e4512d9dbfd30450410666...
                                                                      150000
                                                                                     lvj vbmt
                                                                                                           2025.0
                                                                                                                            2021.0
                                                                                                 Engineer
                                                                                                    Data
                                                                                 vaxniv mxgrv
                                                                                                                            2019.0
            3991
                  069308440811d578c817c05392f97e8919baac6aa12aa3...
                                                                     2900000
                                                                                                              1.0
                                                                                                 Scientist
                                                                                     wvuxnvr
            6402
                    0a5e691a0f8c2c06862ef19d43dc11c22f462f800db26b...
                                                                      800000
                                                                                                    NaN
                                                                                                              0.0
                                                                                                                            2019.0
                                                                                     vxqvoxv
            7927
                    0ceab34736c0ba43f541a9d62f5f8ffe33f4c306ea73a5...
                                                                      270000
                                                                                 otwhqt mrxzp
                                                                                                   SDET
                                                                                                           2026.0
                                                                                                                            2021.0
                                                                                     vzshrva
                                                                                                  Devops
           15444
                  1978da71c14333352d051bfb6054904770b70cecce389d...
                                                                      400000
                                                                                                             91.0
                                                                                                                            2021.0
                                                                                    atcqrgutq
                                                                                                 Engineer
                                                                                hzxctqoxnj ge
                                                                                              Engineering
          138035
                  e66b927f4ee3bd0d7202bbd35486d23d68555fc03dcd54
                                                                      140000
                                                                                                           1970 0
                                                                                                                            2020 0
                                                                                               Leadership
                                                                                 zgqny ntdvo
                                                                                                 Backend
                                                                                   bvzyvnnvz
          138492
                   e725ad631cdc4c57a354f59c98b6441f0672c6b7bb8adb...
                                                                                                             83.0
                                                                                                                            2019.0
                                                                      730000
                                                                                  voogwxvnto
                                                                                                 Engineer
          144306
                   f0c712df5b5e6698a7558311dff87d2b2b4aaa12839915... 100000000
                                                                                  otre tburgjta
                                                                                                   Other
                                                                                                           2029.0
                                                                                                                            2021.0
                   f648fa217922f5a36b510df6346a2041a3483e21289069
                                                                                                           2101 0
                                                                                                                            2021 0
          147725
                                                                     1200000
                                                                                 mrvwpmhwp
                                                                                                    NaN
                                                                                                 Backend
          152821
                    fee9df1faa9d4a38bb97185bb9af6687cba48b514f5d04...
                                                                      880000
                                                                                                           2026.0
                                                                                                                            2021.0
                                                                                     vbagwo
                                                                                                 Engineer
         80 rows × 6 columns
In [20]: df = agg = df = agg \cdot loc[(df = agg['orgyear'] >= 1980) & (df = agg['orgyear'] <= 2024)].copy()
          df_agg.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 153285 entries, 0 to 153442
         Data columns (total 6 columns):
              Column
                                 Non-Null Count
          #
                                                    Dtype
              -----
                                  -----
             email_hash
          0
                                 153285 non-null object
          1
              ctc
                                 153285 non-null int64
                                 153253 non-null object
          2
              company_hash
          3
              job_position
                                  133102 non-null
                                 153285 non-null
              orgyear
                                                    float64
              ctc_updated_year 153285 non-null
                                                    float64
         dtypes: float64(2), int64(1), object(3)
         memory usage: 8.2+ MB
In [21]: df_agg['orgyear'].describe()
                    153285.000000
Out[21]: count
                      2014.808109
          mean
          std
                         4.357146
                      1981.000000
          min
          25%
                      2013.000000
                      2016.000000
          75%
                      2018.000000
                      2024.000000
          max
          Name: orgyear, dtype: float64
In [22]: df agg.loc[:,'Experience']=2024-df agg['orgyear']
In [23]: df_agg['Experience'].describe()
                    153285.000000
Out[23]: count
          mean
                         9.191891
          std
                          4.357146
          min
                         0.000000
          25%
                         6.000000
          50%
                         8.000000
          75%
                        11.000000
          max
                        43.000000
          Name: Experience, dtype: float64
```

b. Creating column Income bins .

```
In [24]: df_agg['job_position']=df_agg['job_position'].str.lower()
df_agg['Income_bin']=df_agg['ctc'].apply(lambda x: 'Low' if x<1000000 else ('Medium' if x<3000000 else 'High'))</pre>
```

If CTC is below 1000000 it is marked as category 'Low', if income is below 3000000 its 'Medium' and employees having income greater than 3000000 is included in income bin 'High'.

c. Creating column Job_position_prominance .

If mean CTC of the job_position is below 1500000 it is marked as category 'Less_prominant', if income is below 4000000 its 'Medium_prominant' and job positions having income greater than 4000000 is included in bin 'Highly prominant'.

```
In [25]: job_ctc_mean = df_agg.groupby('job_position').ctc.mean()
          df_agg['Job_prominance'] = df_agg['job_position'].map(job_ctc_mean)
          df agg['Job prominance'] = df agg['Job prominance'].apply(lambda x: 'Less prominant' if pd.notna(x) and x < 1500
                         ('Medium prominant' if pd.notna(x) and x < 4000000 else ('Highly prominant' if pd.notna(x) else
          df_agg.head()
Out[25]:
                                                  email_hash
                                                                  ctc company_hash job_position orgyear ctc_updated_year Experien
                                                                                          backend
             00003288036a44374976948c327f246fdbdf0778546904 3500000
                                                                                                   2012 0
                                                                          bxwqgogen
                                                                                                                    2019 0
                                                                                                                                  1:
                                                                                         engineer
                                                                                          backend
              0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6...
                                                               250000
                                                                                                   2013.0
                                                                                                                    2020.0
                                                                         ngsn axsxnvr
                                                                                          engineer
                                                                                          fullstack
              0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032... 1300000
                                                                                                   2021.0
                                                                                                                    2019.0
                                                                               gunhb
                                                                                         engineer
                                                                           bxwqgotbx
                                                                                          fullstack
              000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4... 2000000
                                                                                                   2004 0
                                                                                                                    2021.0
                                                                         wgqugqvnxgz
                                                                                          engineer
          4 00014d71a389170e668ba96ae8e1f9d991591acc899025... 3400000
                                                                         fyrbyan rymo
                                                                                             NaN
                                                                                                   2009.0
                                                                                                                     2018.0
In [26]: df_agg[df_agg['Job_prominance']=='Less_prominant']
```

0.0			

	email_hash	ctc	company_hash	job_position	orgyear	ctc_updated_year	E
8	00037a2e4fcfe2830d91270102aaaf105a324a3ce17075	1800000	ko	sdet	2012.0	2021.0	
20	000abcc4ba53bffb10a940bbb1a02dbd641ac9248849ac	1400000	yxpt btootzstq	sdet	2015.0	2018.0	
41	001061f980d1ac33489c1f85b1587af347bf0203ee5321	720000	ftrro evqsg	sdet	2015.0	2019.0	
105	002c8de23775649daec5935d73d82100ae46b594c2531a	620000	exzvonqv mvzsvrgqt	sdet	2014.0	2019.0	
109	002f81f3350685a057d429b173fca3589384be9338e163	320000	wvustbxzx	sdet	2016.0	2017.0	
153131	ff6d5467e9abf203252ac540e360fe87239efb3a3d47d5	640000	qtertdxo ojontbo xzw	sdet	2016.0	2019.0	
153139	ff70bb2130aeb865572574048d01d14b5da1fde50c5c67	2000000	vagmt	sdet	2011.0	2020.0	
153286	ffb57767385843c9b24b1122d7daf807afab1add9df31f	610000	ftrro evqsg wtznqt	sdet	2014.0	2019.0	
153392	ffe7dca601ec396d1dba95854a7b8554539eab53a77751	300000	w tast ntwyzgrgsj ucn rna	sdet	2014.0	2017.0	
153433	fffa648871d5cd698ed19605344181ad80bb19d3cf4e99	450000	vaatwg	sdet	2014.0	2019.0	
5162 row	vs × 9 columns						
4							

d. Creating column current_year_ctc_updated .

Flag is 1 for employees having ctc updated in the latest year in dataset which is 2021 else 0.

```
In [27]: df_agg['current_year_ctc_updated']=df_agg['ctc_updated_year'].apply(lambda x: 1 if x==2021 else 0)
```

- 4. Use Non-graphical and graphical analysis for getting insights about variables.
 - a. Categorical columns analysis.

```
In [28]: from IPython.display import display
no=1
    cat_cols=['company_hash', 'job_position', 'orgyear', 'ctc_updated_year','Income_bin','Job_prominance','current_year_ctc_updated'
#, 'Income_bin', 'Job_prominance', 'current_year_ctc_updated'
```

```
plt.figure(figsize=(20,20))
for i in cat_cols:
    plt.subplot(4,2,no)

plt.title(i)
    datacol=df_agg.groupby(i).size().sort_values(ascending=False).head(10)

plt.pie(x=datacol,labels=datacol.index,autopct='%1.1f%%')

#display(datacol.to_frame(name='count').reset_index())
#print('\n\n')
    no+=1

plt.tight_layout()
plt.show()
```



```
for col in cat_cols:
    groupcol=df_agg.groupby(col).size().sort_values(ascending=False).head(10)

    plt.figure(figsize=(8,6))
    #plt.title(i)
    #plt.subplot(4,1,n)
    sns.barplot(x=groupcol.index,y=groupcol.values, order=groupcol.index)
    for index,value in enumerate(groupcol):
        plt.text(index,value,value)
    display(groupcol.to_frame(name='count').reset_index())
    plt.xticks(rotation=90)
    plt.tight_layout()
    plt.show()
```

	company_hash	count
0	nvnv wgzohrnvzwj otqcxwto	5330
1	xzegojo	3458
2	vbvkgz	2458
3	wgszxkvzn	2183
4	zgn vuurxwvmrt vwwghzn	2163
5	vwwtznhqt	1964
6	gqvwrt	1766
7	fxuqg rxbxnta	1753
8	bxwqgogen	1570
9	wvustbxzx	1348

	job_position	count
0	backend engineer	40068
1	fullstack engineer	20039
2	other	14752
3	frontend engineer	9389
4	engineering leadership	6133
5	qa engineer	6104
6	android engineer	5111
7	data scientist	4914
8	devops engineer	4328
9	sdet	4317

	orgyear	count
0	2016.0	17332
1	2018.0	16828
2	2017.0	16557
3	2015.0	15982
4	2019.0	15000
5	2014.0	13281
6	2013.0	10013
7	2020.0	9180
8	2012.0	8555
9	2011.0	6446
3 4 5 6 7 8	2015.0 2019.0 2014.0 2013.0 2020.0 2012.0	15982 15000 13281 10013 9180 8555

	ctc_updated_year	count
0	2019.0	53188
1	2021.0	42121
2	2020.0	36943
3	2017.0	7025
4	2018.0	6464
5	2016.0	4993
6	2015.0	2551

	Income_bin	count
0	Low	76213
1	Medium	61763
2	High	15309

	Job_prominance	coun
0	Medium_prominant	99638
1	Highly_prominant	28302
2	Less prominant	5162

	current_year_ctc_updated	count
0	0	111164
1	1	42121

Analysis of categorical columns

• The dataset has 153443 unique learners.

- Majority of the learners (22%) are employed at the company 'nvnv wgzohrnvzwj otqcxwto' while 14% work at 'xzegojo' and 10% at 'vbvkgz'.
- 35% of students are having the current job position as Backend Engineering followed by 16% who are Fullstack Engineers.
- The joining year of 13.5% employees at their current company is 2016 closely followed by 2018 an 2017.
- Amost 35% of learners has their CTC updated in the year 2019 and 27% and 24% got their ctc updated in 2021 and 2020 respectively. A total of only 13% students had their ctc updated before the year 2018.
- 50% students are of low income bin, 40% in medium and only 10% learners are of high income bin.
- 74% employees are in job_positions having medium prominance

b. Numerical columns analysis.

```
In [30]: from scipy.stats import skew, kurtosis
        hist_cols=[ 'ctc', 'orgyear', 'Experience']
        n=1
        plt.figure(figsize=(10,20))
        for i in hist_cols:
           plt.subplot(5,1,n)
           sns.histplot(data=df agg.dropna(subset=[i]), x=i, kde=True,
                   f'50% of values lie below {round(np.percentile(df agg[i].dropna(), 50), 2)}\n\n'
                         f'75% of values lie below {round(np.percentile(df_agg[i].dropna(), 75), 2)}\n\
                         f'Skewness: {np.round(skew(df_agg[i].dropna()), 2)}\n\n'
                         f'Kurtosis: {round(kurtosis(df_agg[i].dropna()), 2)}')
           plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
           n+=1
        plt.tight_layout()
        plt.show()
```



```
In [32]: df agg['Experience'].describe()
Out[32]: count
                   153285.000000
          mean
                        9.191891
          std
                        4.357146
          min
                        0.000000
          25%
                        6.000000
          50%
                        8.000000
          75%
                       11.000000
                       43.000000
          max
          Name: Experience, dtype: float64
```

Analysis of numerical columns

- It is clear from the plot that the column ctc is extremely right-skewed. This means that the majority of the data points are concentrated on the left which are lower values, but there are a few outliers or extreme values on the right. The column in also having very high value for kurtosis which means it has heavier tails and a sharper peak around the mean compared to a normal distribution.
- The values in the column range from 2 to 1.0e+9. Upon removing the outliers in column ctc, we can see 75% of values lie before 1739999.
- The column orgyear is left skewed with leptokurtic distribution. The values in the column ranges from 1970 to 2024 where 87% of employees joined their current company between 2010 and 2020.
- Experience of employees ranges from 0 to 54 years where the data is rght skewed and

```
\label{eq:df_agg['ctc_clipped']=np.clip} \\ (df_agg['ctc'], np.percentile(df_agg['ctc'], dropna(), 0), np.percentile(df_agg['ctc'], dropna(), drop
In [33]:
                                   top comp=df agg.groupby('company hash').size().sort values(ascending=False).head(10).index
                                   top_job=df_agg.groupby('job_position').size().sort_values(ascending=False).head(10).index
                                   viol_nums=['ctc_clipped','Experience']
                                   viol_cat=[top_comp,top_job]
                                   viol_cat_cols=['company_hash', 'job_position']
                                   n=1
                                   plt.figure(figsize=(10, 20))
                                   for i in viol_nums:
                                                   for j in range(len(viol_cat)):
                                                                  filtered df=df agg[df agg[viol cat cols[j]].isin(viol cat[j])]
                                                                  plt.subplot(4, 1, n)
                                                                 sns.violinplot(x=filtered_df[viol_cat_cols[j]],y=filtered_df[i])
plt.title(f'{i} vs {viol_cat_cols[j]}')
                                                                 n += 1
                                                                  plt.xticks(rotation=90)
                                   plt.tight_layout()
                                   plt.show()
```


Out[34]: <Axes: xlabel='orgyear', ylabel='ctc_clipped'>

The top 10 employers and job positions are taken for analysis of ctc clipped value and Experience.

- Most companies give a ctc of below 2000000 to the learners. Companies like 'bxwqgogen' and 'vbvkgz' are seen to give higher ctc to more employees.
- Higher ctc is given to employees in Engineering Leadership position. All other job positions are given an average ctc of below 3000000.
- Most learners from all companies are showing an experience of below 20 years. Here learners in Engineering Leadership position seems to have more experience compared to others.

```
In [35]: sns.pairplot(df_agg.sample(5000,random_state=30).iloc[:,2:])
plt.tight_layout()
plt.show()
```


In [36]: plt.figure(figsize=(8,6))
 sns.heatmap(df_agg.iloc[:,2:].corr(), annot=True,fmt='.2f')
 plt.tight_layout()
 plt.show()

C:\Users\devip\AppData\Local\Temp\ipykernel_20724\2486540480.py:2: FutureWarning: The default value of numeric_o
nly in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or
specify the value of numeric_only to silence this warning.
sns.heatmap(df_agg.iloc[:,2:].corr(), annot=True,fmt='.2f')

- Experience and orgyear are having high negative correlation as experience increases when the learner has joined the company earlier.
- There is a positive correlation between ctc and Experience. With increase in experience, employee can demand more ctc.
- The negative correlation between experience and ctc is because the earlier the employee joins the company, the salary will be more.

5. Detecting and treating outliers in the data.

```
In [38]:
          df_agg.columns=df_agg.columns.str.strip()
          num_cols=df_agg.select_dtypes(include=['number']).columns
          no=1
          plt.figure(figsize=(12,20))
          for col in num cols:
               plt.subplot(6,2,no)
               plt.title('Column : ' +col)
               sns.boxplot(y=df_agg[col])
               no+=1
          plt.tight_layout()
          plt.show()
                                      Column : ctc
                                                                                                      Column: orgyear
             1.0
                                            0
                                                                             2020
             0.8
                                                                             2010
             0.6
                                                                          orgyear
0000
          g
                                                                                                             0.4
                                                                             1990
             0.2
             0.0
                                                                             1980
                                Column: ctc_updated_year
                                                                                                    Column: Experience
           2021
                                                                              40
           2020
        ctc_updated_year
2018
2017
                                                                              30
                                                                            Experience
0
                                                                              10
           2016
           2015
                            Column: current_year_ctc_updated
            1.0
          current_year_ctc_updated
             0.0
In [39]: total=len(df agg)
          for col in num_cols:
               q1=np.percentile(df_agg[col].dropna(),25)
               q3=np.percentile(df_agg[col].dropna(),75)
               l_{\text{limit}}=q1-(1.5*(q3-q1))
               u_limit=q3+(1.5*(q3-q1))
               count=len(df_agg[(df_agg[col]>u_limit) | (df_agg[col]<l_limit)])</pre>
               print(f"Column: {col}\nlower limit: {l limit}\nupper limit : {u limit}\nPercentage of outliers: {round((course))
```

```
Column: ctc
lower_limit: -1234998.5
upper_limit : 3524997.5
Percentage of outliers: 6.43%
Column: orgyear
lower limit: 2005.5
upper limit: 2025.5
Percentage of outliers: 4.28%
Column: ctc updated year
lower_limit: 2016.0
upper_limit : 2024.0
Percentage of outliers: 1.66%
Column: Experience
lower_limit: -1.5
upper limit: 18.5
Percentage of outliers: 4.28%
Column: current year ctc updated
lower_limit: -1.5
upper limit: 2.5
Percentage of outliers: 0.0%
```

All numerical columns are having outliers with ctc having 6.4% outlier data. Clipping the outliers

```
In [40]: \# df_{agg['ctc']=np.clip(df_{agg['ctc'],np.percentile(df_{agg['ctc'].dropna(),0),np.percentile(df_{agg['ctc'].dropna(),0)})
         # df_agg['Experience']=np.clip(df_agg['Experience'],np.percentile(df_agg['Experience'],0),np.percentile(df_agg[
         # df_agg['ctc_updated_year']=np.clip(df_agg['ctc_updated_year'],np.percentile(df_agg['ctc_updated_year'],5),np.
         # df_agg['orgyear']=np.clip(df_agg['orgyear'],np.percentile(df_agg['orgyear'].dropna(),5),np.percentile(df_agg[
In [41]: for col in num_cols:
             q1=np.percentile(df_agg[col].dropna(),25)
             q3=np.percentile(df_agg[col].dropna(),75)
             l limit=q1-(1.5*(q3-q1))
             u_limit=q3+(1.5*(q3-q1))
             df_agg[col]=np.clip(df_agg[col],l_limit,u_limit)
In [42]: total=len(df_agg)
         for col in num cols:
             q1=np.percentile(df_agg[col].dropna(),25)
             q3=np.percentile(df_agg[col].dropna(),75)
             l_{\text{limit}}=q1-(1.5*(q3-q1))
             u_limit=q3+(1.5*(q3-q1))
             count=len(df_agg[(df_agg[col]>u_limit) | (df_agg[col]<l_limit)])</pre>
             print(f"Column: {col}\nlower_limit: {l_limit}\nupper_limit : {u_limit}\nPercentage of outliers: {round((cour)
```

Column: ctc

lower_limit: -1234998.5 upper_limit: 3524997.5 Percentage of outliers: 0.0%

Column: orgyear lower_limit: 2005.5 upper_limit : 2025.5

Percentage of outliers: 0.0%

Column: ctc_updated_year lower_limit: 2016.0 upper_limit : 2024.0 Percentage of outliers: 0.0%

Column: Experience lower_limit: -1.5 upper_limit : 18.5

Percentage of outliers: 0.0%

Column: current_year_ctc_updated lower_limit: -1.5

upper_limit : 2.5 Percentage of outliers: 0.0%

6. Encoding categorical values.

In [43]:	df_agg.	<pre>select_dtypes(include=['object','datetime'])</pre>				
Out[43]:		email_hash	company_hash	job_position	Income_bin	Job_prominance
	0	00003288036a44374976948c327f246fdbdf0778546904	bxwqgogen	backend engineer	High	Medium_prominant
	1	0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6	nqsn axsxnvr	backend engineer	Low	Medium_prominant
	2	0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032	gunhb	fullstack engineer	Medium	Medium_prominant
	3	000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4	bxwqgotbx wgqugqvnxgz	fullstack engineer	Medium	Medium_prominant
	4	00014d71a389170e668ba96ae8e1f9d991591acc899025	fvrbvqn rvmo	NaN	High	NaN
	153438	fffc254e627e4bd1bc0ed7f01f9aebbba7c3cc56ac914e	tqxwoogz ogenfvqt wvbuho	qa engineer	High	Medium_prominant
	153439	fffcf97db1e9c13898f4eb4cd1c2fe862358480e104535	trnqvcg	NaN	Medium	NaN
	153440	fffe7552892f8ca5fb8647d49ca805b72ea0e9538b6b01	znn avnv srgmvr atrxctqj otqcxwto	devops engineer	Low	Medium_prominant
	153441	ffff49f963e4493d8bbc7cc15365423d84a767259f7200	zwq wgqugqvnxgz	fullstack engineer	Low	Medium_prominant
	153442	ffffa3eb3575f43b86d986911463dce7bcadcea227e5a4	sgrabvz ovwyo	fullstack engineer	Medium	Medium_prominant

153285 rows × 5 columns

Dropping column email_hash as it is a unique identifier.

```
In [45]: df_agg_processed.drop('email_hash',axis=1,inplace=True)
```

Implementing Target Encoding for company hash and job position.

In [46]:	<pre>import category_encoders as ce</pre>												
		<pre>target_enc = ce.TargetEncoder(cols=['job_position', 'company_hash'], smoothing=0.3) df_agg_processed[['job_position_encoded', 'company_hash_encoded']] = target_enc.fit_transform(df_agg[['job_position_encoded']])</pre>											
In [47]:	<pre>df_agg_processed.head()</pre>												
Out[47]:		ctc	company_hash	job_position	orgyear	ctc_updated_year	Experience	Income_bin	Job_prominance	current_year_cto			
	0	3500000.0	bxwqgogen	backend engineer	2012.0	2019.0	12.0	High	Medium_prominant				
	1	250000.0	nqsn axsxnvr	backend engineer	2013.0	2020.0	11.0	Low	Medium_prominant				
	2	1300000.0	gunhb	fullstack engineer	2021.0	2019.0	3.0	Medium	Medium_prominant				
	3	2000000.0	bxwqgotbx wgqugqvnxgz	fullstack engineer	2005.5	2021.0	18.5	Medium	Medium_prominant				
	4	3400000.0	fvrbvqn rvmo	NaN	2009.0	2018.0	15.0	High	NaN				
	4									þ.			
In [48]:	df	_agg_proce	essed.drop([ˈj	ob_position'	,'compai	ny_hash'],axis=1	,inplace= T r	ue)					

Dropping columns Income bin,job prominance and current_year_ctc_updated as it may generalise the data.

7. Scaling data and Filling missing values.

Columns 'job_position' is having 25% missing values. 'orgyear' and 'company_hash' are also having null values. Using Standard Scalar to scale the data and KNN Imputer to fill the missing values.

```
In [51]: from sklearn.impute import KNNImputer
          \textbf{from} \ \text{sklearn.preprocessing} \ \textbf{import} \ \text{StandardScaler}
          num cols = df agg processed.select dtypes(include=[np.number])
          stdscaler = StandardScaler()
          num_cols_std = stdscaler.fit_transform(num_cols)
          imputer = KNNImputer(n neighbors=5)
          num_cols_imp = imputer.fit_transform(num_cols_std)
          #num cols imp= stdscaler.inverse transform(num cols imp)
          num cols imp df = pd.DataFrame(num cols imp, columns=num cols.columns)
          df_agg_processed = num_cols_imp_df
          df_agg_processed.head()
Out[51]:
                  ctc orgyear ctc_updated_year Experience job_position_encoded company_hash_encoded
          0 2.316688 -0.767619
                                                                                               2.564056
                                        -0.384918
                                                   0.767619
                                                                        0.513360
          1 -1.066698 -0.508776
                                        0.371141
                                                   0.508776
                                                                        0.513360
                                                                                               -0.107703
          2 0.026396 1.561971
                                        -0.384918
                                                   -1.561971
                                                                        -0.396470
                                                                                               0.295069
          3 0.755125 -2.450101
                                        1.127200
                                                 2.450101
                                                                        -0.396470
                                                                                               -0.107703
          4 2.212584 -1.544149
                                                                                               2.510274
                                        -1.140976
                                                  1.544149
                                                                        -0.134507
In [52]: (df agg processed.isna().sum(axis=0)/len(df agg processed))*100
Out[52]: ctc
                                    0.0
          orgyear
                                    0.0
          ctc_updated_year
                                    0.0
          Experience
                                    0.0
          job position encoded
                                    0.0
          company_hash_encoded
                                    0.0
          dtype: float64
```

8. Data Preprocessing.

a. Train-test split.

9. K means clustering

Elbow method is used to assess the optimum number of clusters. Here at 3 or 4 clusters, inertia starts to slow down So this may be the optimum number.

```
In [57]: kmeans = KMeans(n_clusters=4, random_state=42, n_init=10)
         kmeans.fit(X_train)
Out[57]:
                               KMeans
         KMeans(n clusters=4, n init=10, random state=42)
In [58]: kmlabels = kmeans.labels
         inertia = kmeans.inertia
         print(f"Inertia : {inertia}")
        Inertia : 380400.65121601307
In [59]: from sklearn.metrics import silhouette score
         silhouette avg = silhouette score(X train, kmlabels)
         print(f"Silhouette Score: {silhouette_avg}")
        Silhouette Score: 0.28438734858170817
In [60]: overall_mean = np.mean(X_train.values.flatten())
         tss = np.sum((X_train.values.flatten() - overall_mean) ** 2)
         wcss = kmeans.inertia
         bcss = tss - wcss
         print(f"Between-Cluster Sum of Squares (BCSS): {bcss}")
        Between-Cluster Sum of Squares (BCSS): 356842.2091513528
In [61]: from sklearn.decomposition import PCA
         pca = PCA(2)
         X pca = pca.fit transform(X train)
         plt.figure(figsize=(8, 6))
         plt.scatter(X_pca[:, 0], X_pca[:, 1], c=kmlabels, s=50, alpha=0.7)
         plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', marker='.', s=200, label='Ce
         plt.title('K-Means Clustering Result using PCA')
         plt.xlabel('PCA Component 1')
         plt.ylabel('PCA Component 2')
         plt.legend()
         plt.show()
```

K-Means Clustering Result using PCA


```
In [62]: # from sklearn.manifold import TSNE

# tsne = TSNE(n_components=2, random_state=42)
# X_tsne = tsne.fit_transform(X_train)

# plt.figure(figsize=(8, 6))
# plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=kmlabels, s=50, alpha=0.7, cmap='viridis')
# plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', marker='.', s=200, label='0'
# plt.title('K-Means Clustering Result using t-SNE')
# plt.xlabel('t-SNE Component 1')
# plt.ylabel('t-SNE Component 2')
# plt.legend()
# plt.show()
```



```
In [63]: # import umap

# reducer = umap.UMAP(n_components=2)
# X_umap = reducer.fit_transform(X_train)

# plt.figure(figsize=(8, 6))
```

```
# plt.scatter(X_umap[:, 0], X_umap[:, 1], c=kmlabels, s=50, alpha=0.7, cmap='viridis')
# plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', marker='.', s=200, label='(
# plt.title('K-Means Clustering Result using UMAP')
# plt.xlabel('UMAP Component 1')
# plt.ylabel('UMAP Component 2')
# plt.legend()
# plt.show()
```



```
In [64]: kmeans.fit(df_agg_processed)

df_agg['Kmeans_clusters']=kmeans.labels_
    df_agg.head()
```

Out[64]:		email_hash	ctc	company_hash	job_position	orgyear	ctc_updated_year	Experie
	0	00003288036a44374976948c327f246fdbdf0778546904	3500000.0	bxwqgogen	backend engineer	2012.0	2019.0	
	1	0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6	250000.0	nqsn axsxnvr	backend engineer	2013.0	2020.0	
	2	0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032	1300000.0	gunhb	fullstack engineer	2021.0	2019.0	
	3	000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4	2000000.0	bxwqgotbx wgqugqvnxgz	fullstack engineer	2005.5	2021.0	
	4	00014d71a389170e668ba96ae8e1f9d991591acc899025	3400000.0	fvrbvqn rvmo	NaN	2009.0	2018.0	

```
In [65]: df_agg['Kmeans_clusters'].value_counts()
```

```
Out[65]: 1 77847
3 41734
2 25494
0 8210
```

Name: Kmeans_clusters, dtype: int64

```
In [66]: sns.boxplot(data=df_agg,x='Kmeans_clusters',y='ctc')
```

Out[66]: <Axes: xlabel='Kmeans_clusters', ylabel='ctc'>

In [67]: sns.boxplot(data=df_agg,x='Kmeans_clusters',y='Experience')

Out[67]: <Axes: xlabel='Kmeans_clusters', ylabel='Experience'>

plt.title(f'Top 10 {col} Categories by Cluster')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()

- Kmeans could not produce meaningful clusters. Relatively low silhouette score indicates that the clusters are not well-separated. BCSS score is moderately high.
- Clusetr having low ctc and low experience is highest number of values followed by cluster with moderate ctc and higher experience. Cluster having high ctc and Experience has least

values.

- In the Cluster having high ctc and moderate experience (7 to 10 years). Most of the employees work as Backend Engineers
- Next Cluster has employees with Low ctc and low experience. Most of them work as Backend and Fullstack engineers. High number of cluster employees work at company 'nvnv wgzohrnvzwj otqcxwto'.
- Cluster with employees have moderate ctc and higher experience mostly work as Backend and full stack engineeers.
- Cluster employees have very high ctc and Experience. They work in mostly Engineering Leadership roles.

10. Using Agglomerative Clustering.

Visualization using Dendogram to determine number of clusters.

```
In [69]: # from scipy.cluster.hierarchy import dendrogram, linkage

# np.random.seed(42)
# sample_size = 5000
# random_indices = np.random.choice(X_train.shape[0], size=sample_size, replace=False)
# X_sample = X_train.iloc[random_indices, :]
# linked = linkage(X_sample, method='ward')

# plt.figure(figsize=(10, 7))
# dendrogram(linked,
# orientation='top',
# distance_sort='descending',
# show_leaf_counts=False)
# plt.title('Dendrogram for Agglomerative Clustering')

# plt.ylabel('Distance')
# plt.show()
```



```
print(f"Silhouette Score: {silhouette_avg}")
Silhouette Score: 0.23645064654367803

In [72]: from sklearn.manifold import TSNE

    tsne = TSNE(n_components=2, random_state=42)
    X_tsne = tsne.fit_transform(X_sample)

plt.figure(figsize=(8, 6))
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=agglabels, s=50, alpha=0.7, cmap='viridis')
```


plt.title('Agglomerative Clustering Result using t-SNE')

plt.xlabel('t-SNE Component 1')
plt.ylabel('t-SNE Component 2')

```
In [73]: label_map = pd.Series(agglabels, index=X_sample.index)

df_agg['Agg_Cluster_Labels'] = df_agg.index.map(label_map)

df_agg.head()
```

t[73]:		email_hash	ctc	company_hash	job_position	orgyear	ctc_updated_year	Experie
	0	00003288036a44374976948c327f246fdbdf0778546904	3500000.0	bxwqgogen	backend engineer	2012.0	2019.0	
	1	0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6	250000.0	nqsn axsxnvr	backend engineer	2013.0	2020.0	
	2	0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032	1300000.0	gunhb	fullstack engineer	2021.0	2019.0	
	3	000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4	2000000.0	bxwqgotbx wgqugqvnxgz	fullstack engineer	2005.5	2021.0	
	4	00014d71a389170e668ba96ae8e1f9d991591acc899025	3400000.0	fvrbvqn rvmo	NaN	2009.0	2018.0	
	4							

```
In [74]: df_agg['Agg_Cluster_Labels'].value_counts()
```

```
Out[74]: 1.0 4906
0.0 2627
2.0 1920
3.0 539
Name: Agg_Cluster_Labels, dtype: int64
```

Out

In [75]: sns.boxplot(data=df_agg,x='Agg_Cluster_Labels',y='ctc')


```
In [76]: sns.boxplot(data=df_agg,x='Agg_Cluster_Labels',y='Experience')
```

Out[76]: <Axes: xlabel='Agg_Cluster_Labels', ylabel='Experience'>

Top 10 job_position Categories by Cluster

Agglomerative clustering also has low silhouette score of 0.18 indicates that the clusters are not well-separated. Couldnot see distinction between clusters while analysing using ctc, experience and other columns.

Insights

- The dataset has 153443 unique learners.
- Majority of the learners (22%) are employed at the company 'nvnv wgzohrnvzwj otqcxwto' while 14% work at 'xzegojo' and 10% at 'vbvkgz'.
- 35% of students are having the current job position as Backend Engineering followed by 16% who are Fullstack Engineers.
- The joining year of 13.5% employees at their current company is 2016 closely followed by 2018 an 2017.
- Amost 35% of learners has their CTC updated in the year 2019 and 27% and 24% got their ctc updated in 2021 and 2020 respectively. A total of only 13% students had their ctc updated before the year 2018.
- 50% students are of low income bin, 40% in medium and only 10% learners are of high income bin.
- 74% employees are in job_positions having medium prominance
- It is clear from the plot that the column ctc is extremely right-skewed. This means that the majority of the data points are concentrated on the left which are lower values, but there are a few outliers or extreme values on the right. The column in also having very high value for kurtosis which means it has heavier tails and a sharper peak around the mean compared to a normal distribution.
- The values in the column range from 2 to 1.0e+9. Upon removing the outliers in column ctc, we can see 75% of values lie before 1739999.
- The column orgyear is left skewed with leptokurtic distribution. The values in the column ranges from 1970 to 2024 where 87% of employees joined their current company between 2010 and 2020.
- Experience of employees ranges from 0 to 54 years where the data is rght skewed and

leptokurtic. 75% of employees are hving experience of below 11 years.

- Most companies give a ctc of below 2000000 to the learners. Companies like 'bxwqgogen' and 'vbvkgz' are seen to give higher ctc to more employees.
- Higher ctc is given to employees in Engineering Leadership position. All other job positions are given an average ctc of below 3000000.
- Most learners from all companies are showing an experience of below 20 years. Here learners in Engineering Leadership position seems to have more experience compared to others.
- Experience and orgyear are having high negative correlation as experience increases when the learner has joined the company earlier.
- There is a positive correlation between ctc and Experience. With increase in experience, employee can demand more ctc.
- The negative correlation between experience and ctc is because the earlier the employee joins the company, the salary will be more.

The clustering algorithms were not able to produce clearly seperated clusters.

K Means Clustering Outcome

- Kmeans could not produce meaningful clusters. Relatively low silhouette score indicates that the clusters are not well-separated. BCSS score is moderately high.
- Clusetr having low ctc and low experience is highest number of values followed by cluster with moderate ctc and higher experience. Cluster having high ctc and Experience has least values.
- In the Cluster having high ctc and moderate experience (7 to 10 years). Most of the employees work as Backend Engineers
- Next Cluster has employees with Low ctc and low experience. Most of them work as Backend and Fullstack engineers. High number of cluster employees work at company 'nvnv wgzohrnvzwj otqcxwto'.

- Cluster with employees have moderate ctc and higher experience mostly work as Backend and full stack engineeers.
- Cluster employees have very high ctc and Experience. They work in mostly Engineering Leadership roles.

Recommendations

- Students of Cluster having Low CTC and Moderate Experience will be freshers or of young demography. They be can offered specialized training on emerging technologies and domains having future opportunities that will help them to transition their career to fields having higher compensation.
- Cluster members having Moderate CTC and High Experience can be helped to achieve job roles in leadership positions or senior technical roles and train them to gain technical expertise. As they are of older demography aligning them with recent market trends and latest technologies is very important. They also need to be mentored on effectively communicating their experience and skills to negotiate higher salaries
- Segment with High CTC and Moderate Experience can be given programs on Advanced technical skills which can help these learners to take more leadership roles.
- Cluster having very High CTC and high Experience can be provided training on leadership programs, technical decision-making courses and management courses. Mentoring roles could be introduced for this highly experienced group. They need to be taught programs on latest technologies related to the course they have opted for.
- As Companies like 'vbvkgz' and 'bxwqgogen' offer higher CTC to their employees. Scaler can strengthen partnerships with these companies, providing learners with more internship and job placement opportunities.
- With 50% of learners in the low-income bin, Scaler can offer lessons or mentorship on how to negotiate for better salary and provide resources to transition into higher-paying roles. They can also connect learners to companies known for offering higher compensation, like 'bxwqgogen'

and 'vbvkgz'.

• Since a significant portion of learners are Backend Engineers and Fullstack Engineers, Scaler can create highly specialized tracks focused on Backend and Fullstack development. Offering advanced topics and very latest technical knowledge can help these learners further their careers.

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js