Viện Vật lý

Kỷ yếu hội nghị các nhà khoa học trẻ

Tiểu ban: Vật lý hạt nhân và ứng dụng

Spectroscopic information about a hypothetical tetrahedral configuration in ^{156}Gd

Q. T. Doanⁱ, O. Stezowski^{i,j}, D. Guinet^{i,j}, J. Dudek^k, D. Curien^k, N. Schunck^{l,3}

^aInstitut de Physique Nucléaire de Lyon, France

^bUniversité de Lyon, Université Lyon 1, Lyon, France

^cDepartement de Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France

^dInstitute of Nuclear Physics PAN, PL-31-342 Kraków, Poland

Abstract

A detailed γ -ray spectroscopy of the lowest two negative-parity bands in 156 Gd has been performed ...

Keywords: γ-ray spectroscopy, ¹⁵⁶Gd

1. Introduction

Theoretical studies based on the nuclear meanfield approach and group theory considerations suggest [1, 2] that some atomic nuclei may exhibit tetrahedral and/or octahedral symmetries. To the lowest order, tetrahedral symmetry is realized through octupole deformation $Y3\pm2$ of the nuclear surface. Previous research[3] has determined magic numbers for which tetrahedral deformation should be the easiest to observe leading to tetrahedral proton and neutron "magic" numbers Zt/Nt = 32, 40, 56, 64, 70, 90, and112, with extra gaps at Nt = 136 and 142. The authors of Refs. [1, 2, 3] have furthermore demonstrated that nuclei with an exact tetrahedral symmetry have all multipole moments $Q_{\lambda} < 7$, $\nu = 0$ except for Q_{32} thus, in particular, the corresponding quadrupole moments Q_2 vanish.

The radiation intensity can be written down using the standard expression in the Equation B.1.

$$I(\theta) = 1 + A_2 P_2(\cos \theta) + A_4 P_4(\cos \theta) \tag{1}$$

Email addresses: qtdoan@gmail.com(Q. T. Doan), qtdoan@gmail.com(Q. T. Doan)

¹Present address: Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

2. Experiment setup

Hình 1: Partial level scheme of 156Gd.

3. Spectroscopy information

Transition intensities are presented in the Figure C.2 ...

4. Acknowledgements

......

Thiswork benefited from the TNT2-D cards, developed and financed by CNRS/IN2P3 for the GABRIELA project ...

Phụ lụcA. Experiment data

Experiment data are shown in the Table A.2 ...

Ngày 22 tháng 4 năm 2016

^{*}Corresponding author

Bảng A.1: Data γ ray detection.

Bung 11.1. Buta / Tay detection.		
Interaction	Clover	Cluster
1	74.5	79.8
2	22.4	18.3
≥3	<3.3	< 2.8

References

- [1] J. Dudek, et al., Phys. Rev. Lett. 97 (072501).[2] N. Schunck, et al., Acta Phys. Pol. B 36 (1071).
- [3] J. Dudek, et al., Phys. Rev. Lett. 88 (252502).

Spectroscopic information about a hypothetical tetrahedral configuration in ^{156}Gd

Q. T. Doanⁱ, O. Stezowski^{i,j}, D. Guinet^{i,j}, J. Dudek^k, D. Curien^k, N. Schunck^{1,3}, Q. T. Doanⁱ, O. Stezowski^{i,j}, D. Guinet^{i,j}, J. Dudek^k, D. Curien^k, N. Schunck^{1,3}

e Institut de Physique Nucléaire de Lyon, France
f Université de Lyon, Université Lyon 1, Lyon, France
g Departement de Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
h Institute of Nuclear Physics PAN, PL-31-342 Kraków, Poland
i Institut de Physique Nucléaire de Lyon, France
j Université de Lyon, Université Lyon 1, Lyon, France
b Departement de Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
I Institute of Nuclear Physics PAN, PL-31-342 Kraków, Poland

Abstract

A detailed γ -ray spectroscopy of the lowest two negative-parity bands in 156 Gd has been performed ...

Keywords: γ -ray spectroscopy, ¹⁵⁶Gd

Phu lucB. Introduction

Theoretical studies based on the nuclear mean-field approach and group theory considerations suggest [1, 2] that some atomic nuclei may exhibit tetrahedral and/or octahedral symmetries. To the lowest order, tetrahedral symmetry is realized through octupole deformation $Y3\pm2$ of the nuclear surface. Previous research[3] has determined magic numbers for which tetrahedral deformation should be the easiest to observe leading to tetrahedral proton and neutron "magic" numbers Zt/Nt = 32, 40, 56, 64, 70, 90, and 112, with extra gaps at Nt = 136 and 142. The authors of Refs. [1, 2, 3] have furthermore demonstrated that nuclei with an exact tetrahedral symmetry have all multipole moments $Q_{\lambda} < 7$, v = 0 except for Q_{32} -

thus, in particular, the corresponding quadrupole moments Q_2 vanish.

.....

The radiation intensity can be written down using the standard expression in the Equation B.1.

$$I(\theta) = 1 + A_2 P_2(\cos \theta) + A_4 P_4(\cos \theta)$$
 (B.1)

.....

......

Phụ lụcC. Experiment setup

Hình C.2: Partial level scheme of 156Gd.

**Corresponding author

Corresponding author

Email addresses: qtdoan@gmail.com(Q.T.Doan), qtdoan@gmail.com(Q.T.Doan)

²Present address: Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

³Present address: Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

Phụ lụcD. Spectroscopy information

Transition intensities are presented in the Figure $C.2 \dots$

Phu lucE. Acknowledgements

Thiswork benefited from the TNT2-D cards, developed and financed by CNRS/IN2P3 for the GABRIELA project ...

Phụ lụcA. Experiment data

Experiment data are shown in the Table A.2 ...

Bảng A.2: Data γ ray detection.

Interaction	Clover	Cluster
1	74.5	79.8
2	22.4	18.3
≥3	<3.3	<2.8

References

- [1] J. Dudek, et al., Phys. Rev. Lett. 97 (072501).
- [2] N. Schunck, et al., Acta Phys. Pol. B 36 (1071).
- [3] J. Dudek, et al., Phys. Rev. Lett. 88 (252502).