#### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06228824 A

(43) Date of publication of application: 16.08.94

(51) Int. CI

D01F 9/12 B01D 61/14 C01B 31/02 C30B 33/00

(21) Application number: 05014387

(22) Date of filing: 01.02.93

(71) Applicant:

**NEC CORP** 

(72) Inventor:

HIURA HIDEFUMI **EBUSON TOOMASU** 

## (54) METHOD FOR PURIFYING CARBON-NANOTUBE

#### (57) Abstract:

PURPOSE: To obtain a carbon nanotube having a uniform molecular weight and size by dispersing a crude product containing the carbon nanotube in a liquid with ultrasonic waves, passing the resultant dispersion through a chromatographic column and separating the carbon.nanotube.

CONSTITUTION: A crude product containing a carbon.nanotube is dispersed in a liquid with ultrasonic

waves. When a surfactant is added, the dispersion state is improved and preferred for preventing the condensation. The dispersion is further passed through a chromatographic column to separate carbonaceous substances other than the nanotube and nanoparticles. Thereby, the carbon nanotube is separated by a difference in developing speed in the column. The nanotube uniform in regard to electric conductivity can be obtained by electrostatic separation.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平6-228824

(43)公開日 平成6年(1994)8月16日

| (51) Int.Cl. <sup>5</sup> D 0 1 F 9/12 B 0 1 D 61/14 C 0 1 B 31/02 C 3 0 B 33/00 | 識別記号<br>500<br>101 Z | 庁内整理番号<br>7199-3B<br>8014-4D<br>8216-4G | FI.     | 技術表示箇所                                               |
|----------------------------------------------------------------------------------|----------------------|-----------------------------------------|---------|------------------------------------------------------|
|                                                                                  |                      |                                         | 審査請     | 求 有 請求項の数5 OL (全 7 頁)                                |
| (21)出願番号                                                                         | <b>特顯平5-14387</b>    |                                         | (71)出願人 | 000004237<br>日本電気株式会社                                |
| (22)出願日                                                                          | 平成5年(1993)2月         | ₹1日                                     | (72)発明者 | 東京都港区芝五丁目7番1号<br>日浦 英文<br>東京都港区芝五丁目7番1号日本電気株式<br>会社内 |
| ·                                                                                |                      |                                         | (72)発明者 | エブソン トーマス<br>東京都港区芝五丁目7番1号日本電気株式<br>会社内              |
|                                                                                  |                      |                                         | (74)代理人 | 弁理上 京本 直樹 (外2名)                                      |
| •,                                                                               | ·                    |                                         |         |                                                      |

## (54)【発明の名称】 カーボン・ナノチューブの精製法

## (57)【要約】

【目的】 炭素アーク放電によって生成するカーボン・ナノチューブの精製法の改良し、工業的、特に電気産業分野のために、良質のカーボン・ナノチューブを提供する。

【構成】 カラム・クロマトグラフィ、膜、超遠心、静電的帯電、界面活性剤を利用することによって、カーボン・ナノチューブ間、カーボン・ナノチューブとカーボンナノ粒子間、カーボン・ナノチューブと無定型炭素間の分子量、形状、立体的大きさ、比重、電気的特性の差異に基づいて分離する精製法であり、直径、アスペクト比、電気伝導度が均一で良質のカーボン・ナノチューブを得ることが可能である。

#### 【特許請求の範囲】

【請求項1】 カーボン・ナノチューブを含む粗生成物 を溶媒中に超音波を用いて分散させ、その溶液をクロマ トグラフィ用カラムに通すことによりナノチューブとナ ノ粒子以外の炭素物質を分離し、さらに、ナノチュープ とナノ粒子の分子量、形状の差によるカラム中での展開 速度の相違により、カーボン・ナノチューブを分離する カラム・クロマトグラフィを用いたことを特徴とするカ ーポン・ナノチューブの精製法。

【請求項2】 カーボン・ナノチューブを含む粗生成物 10 合、ナノチューブの収率は最も高くなる。 を溶媒中に超音波を用いて分散させ、その溶液をマイク ロメートルからナノメートルオーダーの所望の孔径を有 する膜でろ過することを特徴とするカーボン・ナノチュ ープの精製法。

【請求項3】 カーボン・ナノチュープを含む粗生成物 を溶媒中に超音波を用いて分散させ、その溶液から遠心 分離機を用いてカーボン・ナノチューブを分離すること を特徴とするカーボン・ナノチューブの精製法。

【請求項4】 請求項1乃至3記載のカーボン・ナノチ ューブの精製法において、カーボン・ナノチューブを含 20 い。 む粗生成物を溶媒中に超音波を用いて分散させる際に、 界面活性剤を添加することを特徴とするカーボン・ナノ チューブの精製法。

【請求項5】 請求項1乃至4記載のカーポン・ナノチ ュープの精製法により分離したカーボン・ナノチューブ を、回転ドラムにばらまき、電子ピームの照射またはコ ロナ放電シャワーを浴びせることによりカーボン・ナノ チューブを帯電させ、回転ドラムを回転させることによ り、帯電しなかった金属タイプのカーボン・ナノチュー プを回転ドラムから除くことにより金属タイプのカーボ 30 ン・ナノチューブと絶縁タイプのカーボン・ナノチュー プとを分離することを特徴とするカーポン・ナノチュー ブの精製法。

### 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、カーボン・ナノチュー ブを他の炭素物質から分離するためのカラム・クロマト グラフィ、超遠心分離、超音波粉砕などの様々な技術的 方法を用いたナノチューブの精製法に関する。本発明は カーポン・ナノチューブという新規の物質を工業的、特 40 に電気産業分野のために製造し、使用する上で有効であ る。

#### [0002]

【従来の技術】カーボン・ナノチューブは1991年 (Nature, 354, 56-58, 1991) に発 見されて以来、1次元細線、触媒など種々の潜在的な応 用が期待される新しい材料として世界中の注目を浴びて いる。最近、我々はカーボン・ナノチューブを大量に合 成できる製造方法(特願平4-172242号)につい て報告している。

【0003】不活性ガスで満たされた容器の中で炭素ア ーク放電を起こさせると、C、C₂、C₃ などの炭素種 を含んだプラズマが発生する。これら小さな炭素種は次 第に凝縮し、煤、フラーレン、ナノチューブ、ナノ粒 子、さらに高密度の固体の炭素物質などのより大きい構 造に成長してゆく。我々は既に、ナノチューブの収率 が、それらを生成させる反応容器内の不活性ガスの圧力 に決定的に依存することを明らかにしている。不活性ガ スの圧力が500から2500torrの範囲にある場

#### [0004]

【発明が解決しようとする課題】しかし、最適条件下で も、ナノ粒子はナノチューブとともに生成してしまい、 時には、ガラス状炭素やアモルファス炭素などの他の炭 素物質も同時に生成する。従って、ナノチューブを利用 するためには、合成後にこれらのナノチューブ以外の炭 素物質を分離する必要がある。

【0005】現在までのところ、ナノチューブをナノ粒 子、他の炭素物質から分離する方法は報告されていな

【0006】本発明は、分離量、大きさおよび電気伝導 度に関して均一である良質のナノチューブ材料を得るこ とを目的とする。

### [0007]

【課題を解決するための手段】本発明はカーボン・ナノ チューブが、カラム・クロマトグラフィ、超遠心分離、 超音波粉砕などの技術、ならびに界面活性剤の利用によ り精製および分離が可能であることを鋭意検討した結果 なされたものである。

【0008】さらに、これらの方法を用いることによ り、ナノチューブのサイズ分布を狭域化することが可能 であり、電気伝導度の異なるナノチューブを分離するこ とが可能である。

【0009】合成されたナノチューブを含む粗生成物を 原子間力顕微鏡(AFM)で観測すると、ナノチューブ だけが密に詰まった束状繊維部分、ナノ粒子、ガラス状 炭素やアモルファス炭素などの無定型炭素から構成され ていることが分かる。ナノチューブの束状繊維構造は、 微細であることと比較的強固であるため、通常の力学的 粉砕では破壊できない。束状繊維構造の破壊には超音波 粉砕が有効である。超音波の周波数を28kHz、45 kHz、100kHzの3種類組み合わせて使用するこ とにより、ナノチューブの束状繊維構造を完全に粉砕す ることが可能である(この事実は、AFMの観察から明 らかになった)。溶媒中に超音波で分散させた場合、ナ ノチューブおよびナノ粒子以外の炭素物質は、界面活性 剤を使用してもしなくとも,濾過のみでナノチューブお よびナノ粒子から分離することが可能である。ナノチュ ープの精製において、界面活性剤は次の階段で特別な働 50 きをする。界面活性剤を使用するとナノチューブおよび 3

ナノ粒子を溶媒中に完全に分散させること、すなわち溶 媒和させることが可能となる。もし、界面活性剤を添加 しないと、ナノチューブ(およびナノ粒子)は、超音波 の供給を一旦止めてしまうと同時に凝縮を始めてしま う。従って、界面活性剤の使用は、ナノチューブの可溶 化に不可欠である。

【0010】さらに、カラム・クロマトグラフィ法によ り、ナノ粒子からナノチューブ分離することが可能であ る。この方法の中でも、物質をその大きさの相違により 分離するサイズ排除カラム・クロマトグラフィ法が特に 10 ーブを分離する上で非常に有効である。 有効である。一般にサイズ排除カラム・クロマトグラフ ィ法は、タンパク質、核酸や糖類などの生体高分子の分 離に用いられる。今回初めて、炭素のみで構成される超 微結晶 (ただし、分子量的には巨大) であるナノチュー プの精製にこの方法を適用し、有効であることが証明さ れた。

【0011】また、濃度勾配超遠心分離による方法は、 ナノチューブ、ナノ粒子、その他の炭素物質がそれぞれ 異なった形状、大きさおよび比重を持つことを利用し、 それぞれを分離する。透過型電子顕微鏡 (TEM) およ 20 びAFMによって観察を行うと、ナノチューブはアスペ クト比の大きな針状構造、ナノ粒子は球状構造、ガラス 状炭素、アモルファス炭素は無定型構造と直流アーク放 **電法で合成される粗生成物の各成分は全く異なる形状と** 大きさを有することが認められ、また、それぞれの構造 の相違に由来して比重も異なる(ナノ粒子の比重)ナノ チュープの比重〉無定型炭素の比重≒1.7g・cm - 3)。これらの実験事実に基づき、ナノチュープをナ ノ粒子、無定型炭素から分離することに超遠心を応用す ることを考案し、その有効性を実証した。さらに、分離 30 されたナノチューブの超遠心分離を何度か繰り返すこと により、ナノチュープ自体をその大きさによって分離す ることも可能である。

【0012】理論的な研究によると、カーボン・ナノチ ューブはその直径および螺旋度に応じて、金属もしくは 絶縁体(バンドギャップの大きい半導体)になる(Ph ys. Rev. Letters 68, 1579-15 81,1992)。それで我々は、ナノチューブの電気 的性質に基づくナノチューブ分離の技術を考案した。こ の方法は金属タイプと絶縁体タイプのナノチューブの帯 40

電の仕方の違いを利用している。すなわち、ナノチュー ブを含むサンブルを回転ドラムに乗せ、それに電子ビー ムを照射、もしくはコロナ放電シャワーを浴びせ、サン プルが帯電できる条件にする。このドラムを回転させる と、金属タイプのナノチューブは帯電できないのでドラ ムから滑り落ちる。絶縁体タイプのナノチューブは帯電 した状態にあるのでドラムに静電力で引きつけられ、ド ラムの回転で滑り落ちることはない。従って、この方法

は金属タイプのナノチューブと絶縁休タイプのナノチュ

【0013】さらに、均一性の高い、良質のナノチュー ブを得ることは、ナノチューブを工業的に利用する上で 必要不可欠なことである。前述の分離方法を組み合わせ ることにより、分子量、大きさ、電気伝導性に関して均 一である良質のナノチューブを得ることが可能となる。 従って、本発明の工業的利用価格は非常に大きい。

[0014]

### 【実施例】

1) カラム・クロマトグラフィ法によるナノチューブの 分離精製

クロマトグラフィ用カラムにSepharose C1 (Pharmacia社製) クロマトグラフィ・ゲルを エタノールとともに充填する。ナノチューブとナノ粒子 を含む試料をエタノール中で超音波分散により懸濁さ せ、その懸濁溶液をカラムに通す。その時、ナノチュー ブとナノ粒子以外の炭素物質はゲル上部に残り、ナノチ ューブとナノ粒子ときれいに分散できる。ナノチューブ とナノ粒子は展開液とともにゲル中に展開する。そし て、分子量、形状に由来する展開速度の相違により、ナ ノチューブはナノ粒子から分離される。さらに、この方 法を用いることにより、分子量の異なるナノチューブを 分離することができる。結果の一部を表1に示す。ま た、東ソー製のTSKgelセルロースCWまたはメタ ノール、アセトンナドをゲル濾過クロマトグラフィの充 填剤として用い、ドデシル硫酸ナトリウム (SDS) な どの界面活性剤を展開液として用いても、上記と同様に ナノチューブの分離を行うことが出来る。

[0015]

【表1】

5

ナノチューブとナノ粒子のカラム・クロマトグラフィによる分離の一例

| 展開時間の区分(分) | 区分に含まれる炭素物質                   | 分子量   |
|------------|-------------------------------|-------|
| 0~30       | <del>分子</del> 量の大きい<br>ナノチューブ | 10"以上 |
| 30~60      | 分子量の比較的小さい<br>ナノチューブ          | 10°以下 |
| 60~90      | 分子量の比較的大きい<br>ナノ粒子            | 107以上 |
| 90以上       | 分子量の比較的小さい<br>ナノ粒子            | 10°以下 |

【0016】2) 超音波粉砕、分離膜を用いたナノチュ ープの分離精製

ナノチューブ・ナノ粒子を含む試料をエタノールに懸濁 比較的粒子径の大きな炭素物質はガラスフィルター(孔 径10 μm) で予備的に分離する。次に、得られたナノ チュープ・ナノ粒子のエタノール溶液はメンプランフィ ルター (Milipore社製) に通す。この時、ま ず、ポアサイズ (孔径) が8μmのフィルターを用いて ナノチューブ・ナノ粒子の膜分離を行い、その後、濾過 された溶液を順次ポアサイズが3 μm、1.2 μm、  $0.45 \mu m$ 、 $0.22 \mu m$ のフィルターで濾過してゆ く。この一連の膜分離に基づく濾過操作により、ナノチャ

 $*ュープ(サブ<math>\mu$ mから十数 $\mu$ m)とナノ粒子(直径数 n mから数十nm)を選択的に分離することが可能であ る。各々の操作で分離膜上に残ったナノチューブ、ナノ させ、超音波粉砕する。ナノチューブ・ナノ粒子以外の 20 粒子について、表2に記す。さらに、長さの短いナノチ ューブと長いナノチューブも分離できる。一連の濾過操 作に用いるフィルターのポアサイズの間隔を細かくする ことにより、より選択的な分離もあ可能である。

【0017】フィルターとしては、ミクロフィルター (富士フィルム社製)、メンプランフィルター(東洋社) 製)等を用いることができる。

[0018]

【表2】

ナノチューブの分離膜による分離の一例

| 分離膜の孔径 (μm)                                 | 分離される炭素固体 | 長さ(μm) |
|---------------------------------------------|-----------|--------|
| 8. 0                                        | ナノチューブ    | 5以上    |
| 3. 0                                        | ナノチューブ    | 2~5    |
| 1. 2                                        | ナノチューブ    | 1 ~ 2  |
| 0.45                                        | ナノチューブ    | 0.5~1  |
| 0.22                                        | ナノチューブ    | 0.5以下  |
| <ol> <li>0.22μmの分離<br/>膜を通り抜けた濾液</li> </ol> | ナノ粒子      | 0.1以下  |

【0019】3) 超遠心分離によるナノチューブの分離 まず、水にナノチューブ・ナノ粒子を含む試料を懸濁さ せる。この時、ナノチューブ・ナノ粒子以外の比較的粒 子径が大きい炭素物質をガラスフィルターで取り除いて おく。遠心管に密度勾配をつけたショ糖水溶液もしくは 塩化セシウム水溶液を入れ、その上に試料水溶液を乗せ る。この遠心管を遠心分離機に入れ、遠心を行う。超遠 50 の超遠心で、まず、ナノチューブ、ナノ粒子以外の炭素

心は回転数500rpm(毎分500回転)から500 00 r pm, 遠心時間は30分から96時間の間で行っ た。分離された区画部分はピペットで慎重に採取する方 法、もしくは遠心管内部を液体窒素で冷却凍結させ輪切 りにして分離する方法で、遠心管から試料を取り出し た。例えば、低速(500rpm)、短時間(30分)

物質を取り除き、次に、中速(1000 r pm)の超遠 心でナノチューブとナノ粒子を分離する。さらに、分取 されたナノチューブを適当な回転数、遠心時間のもとで

\*り、分離することが出来る。この結果を表3-1、表3

- 2 に示す。 [0020]

【表3-1】

超遠心を行うと、ナノチューブを直径と長さの違いによ\*

ナノチューブの超遠心による分離結果の例1

(超遠心回転数:500rpm, 超遠心時間:30分)

| 分取区分          | 分取される炭素物質   |  |
|---------------|-------------|--|
| 遠心管の底         | 無定形炭素       |  |
| 遠心管の底より上部上澄み液 | ナノチューブ、ナノ粒子 |  |

[0021]

※ ※ 【表3-2】

ナノチューブの超遠心による分離結果の例 2

(超遠心回転数:1000rpm,超遠心時間:30分)

| 分取区分                 | 分取される炭素物質 | サイズ:直径と長さ         |
|----------------------|-----------|-------------------|
| 遠心管の底                | ナノチューブ    | 5μm, 10nm以上       |
| 遠心管の底~<br>上部 1 cmの部分 | ナノチューブ    | 5 μm, 10 n m以下    |
| 上部1cm以上<br>の上澄み部分    | ナノ粒子      | 20 nm (粒子径)<br>以下 |

[0022]

## 4) ナノチューブの電気的特性による分離精製

静電分離に用いる装置は自作した。この装置は、図1に 示すように排気装置1、ガス導入装置2、電子ビームま たはコロナ放電装置3、回転ドラム4とその周辺部品、 およびそれら可動部分の制御装置 5、試料室 6、分離試 30 ころで試料を掻き落とす。分離されたナノチューブ各々 料受け入れ室7、8で構成される。分離するサンプルは 予備的に高温、高真空下で脱気乾燥する。そのサンプル を試料室6に入れ、回転ドラム4上に均一にばらまく。 そして、試料に電子ビームの照射またはコロナ放電シャ ワーを浴びせ、ドラム4を回転させる。この時、金属タ

イプのナノチューブは帯電していないので90°回転さ せたところで真下の試料受け入れ室に滑り落ちてゆく。 一方、絶縁体タイプのナノチューブは帯電しているの で、ドラムに精電引力で引きつけられ滑り落ちない。絶 緑タイプのナノチューブはドラムが270。回転したと について上記操作を順次繰り返すと、より電気伝導度に 関して分離度の高いナノチューブが得られる。表4に分 離されたナノチューブの電気伝導度を示す。

[0023]

【表4】

# 静電分離装置で分離されたナノチューブの電気伝導度

| ナノチューブの種類       | 電気伝導度<br>(Ω <sup>-1</sup> c m <sup>-1</sup> ) |
|-----------------|-----------------------------------------------|
| 金属タイプ           | 約1 * 1 0 <sup>2</sup>                         |
| 金属タイプ(5サイクル)    | 約1*103                                        |
| 金属タイプ(10サイクル)・  | 約5×10 <sup>3</sup>                            |
| 絶縁体タイプ          | 約1 * 1 0 - 1                                  |
| 絶縁体タイプ(5サイクル)   | 約1 * 10-3                                     |
| 絶縁体タイプ (10サイクル) | 約1 * 1 0 <sup>- 5</sup>                       |

[0024]

5) 界面活性剤を用いたナノチューブの分離精製

アーク放電で得られるナノチューブ、ナノ粒子を含む生 成物は、一般に知られているどの溶媒にも全く溶解しな い。この性質はナノチューブの分離精製を困難なものに している。しかし、溶媒に界面活性剤を添加することに より、溶媒に対してナノチューブ、ナノ粒子を可溶化す ることが可能である。この可溶化はナノチューブもしく はナノ粒子と界面活性剤分子がミセルを形成することに より、親溶媒コロイドとして溶媒中に分散することがで 10 きることに基づいている。この界面活性剤によるナノチ ュープの可溶化を利用して、ナノチューブをナノ粒子や 他の炭素物質との分離を行う。例を挙げると、水では界 面活性剤としてドデシルスルホン酸ナトリウム(SD S) が利用できる。水1000cm³ に対して、ナノチ ュープを含む試料を100mgを入れ、SDSを2×1 0-2 モル (約5.77g) を添加し、超音波粉砕を施 す。ナノチュープとナノチュープ以外の粒子径の比較的 大きな炭素物質をガラスフィルターで除去することによ り、試料は親水コロイドとして水に完全に溶ける。SD 20 S、トリーn-オクチルフォスフィンオキシド、アルキ ルベンゼンスルフォン酸ナトリウム、2-スルホコハク 酸ジアルキルアミド、アルキルトリメチルアンモニウム ハライド、アルキルポリオキシエチレンエーテル、脂肪 酸多価アルコールエステル、p-アルキルフェニルポリ オキシエチレンエーテルなどの適当な界面活性剤を選択 すれば、他の溶媒でもナノチューブを可溶化できる。

【0025】また、ポリビニアルコールなどの高分子液体は、それ自身が界面活性剤としての性質を持つ。従って、高分子液体中に、他の界面活性剤を添加することな 30 く、ナノチューブ、ナノ粒子をコロイドとして分散させることが可能である。

6) 上記1から5までの精製法を組み合わせた分離方法

10

以上1)から5)の分離精製法を組み合わすと、ナノチューブをより選択的に分離精製することが可能である。 次に組み合わせ例をいくつか挙げる。

【0026】上記6の界面活性剤を用いる方法でナノチューブのコロイド溶液を準備し、2)の超音波粉砕、膜分離による精製法と1)のカラム・クロマトグラフィによる精製法を組み合わすと、ナノチューブを他の炭素物質から分離できるばかりでなく、ナノチューブを大きさと分子量に関して分離精製することができる。さらに、1)、2)、3)、5)の精製法を組み合わせれば、選択性はより向上する。

【0027】上記1)、2)、3)の精製法を用いてナノチューブを大きさと分子量に関して分離精製を行った後、4のナノチューブの電気的性質を用いた方法で精製分離を行えば、大きさと分子量に関して均一な絶縁体タイプもしくは金属タイプのナノチューブを得ることができる。

[0028]

【発明の効果】本発明により、分子量、大きさおよび電 の 気伝導度に関して均一である良質のカーボン・ナノチュ ーブを分離精製することができる。

【図面の簡単な説明】

【図1】本発明の静電分離に用いる装置を示す図である。

【符号の説明】

- 1 排気装置
- 2 ガス導入装置
- 3 電子ビームまたはコロナ放電装置
- 4 回転ドラム
- 30 6 試料室
  - 7 分離試料受け入れ室1
  - 8 分離試料受け入れ室2
  - 9 試料落とし

【図1】



- 1. 排気装置
- 2. ガス導入装置 3. 電子ビームまたはコロナ放電装置
- 4. 回転ドラム・
- 5. 可動部分の制御装置
- 6. 試料室 7. 分離試料受け入れ室1
- 8. 分離試料受け入れ第2
- 9: 試料落とし