Chapter 6: Introduction to Hypothesis Testing

Modern Clinical Data Science Chapter Guides Bethany Percha, Instructor

How to Use this Guide

- Read the corresponding notes chapter first
- Try to answer the discussion questions on your own
- Listen to the chapter guide (should be 15 min, max) while following along in the notes

Mean SBP for 20 men sampled from a small town in Appalachia

$$x \sim \mathcal{N}(\mu, \sigma)$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$
$$\sim \mathcal{N}(\mu, \sigma/\sqrt{n})$$

If n = 1, what is the standard deviation of the sample mean? If $n = \infty$, what is the standard deviation of the sample mean?

Question 6.2

The sample mean for our 20 sampled Appalachian men is shown as a vertical red dashed line in the figure above. Now that you know what the distribution of the sample mean looks like, do you think the observation from your Appalachian town is "weird"?

Z Test

Null hypothesis:

$$H_0: \mu_c = \mu_0$$

$$H_a: \mu_c \neq \mu_0$$

Test statistic:

where
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

As α gets smaller, are you more or less likely to reject the null for the same value of the test statistic? Hint: What does making α smaller do to the positions of the two black dotted lines in the figure, above?

	AA	Aa	aa	
Х	52	43	5	100
Control	67	27	6	100
	119	70	11	200

Under scenario of independence (E):

	AA	Aa	aa	
Х	59.5	35.0	5.5	100
Control	59.5	35.0	5.5	100
	119	70	11	200

 $H_0: G \perp \!\!\! \perp D$

 $H_a:G\not\perp\!\!\!\!\perp D$

Chi-Squared Test

Test statistic:

$$X^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Null distribution w/critical values:

Using the formula in step 4, above, compute the actual value of the chisquared test statistic for this example. Hint: You should end up with a value that corresponds to the position of the red dashed line in the figure below.

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

	AA	Aa	aa	
x	52	43	5	100
Control	67	27	6	100
	119	70	11	200

Under scenario of independence (E):

	AA	Aa	aa	
х	59.5	35.0	5.5	100
Control	59.5	35.0	5.5	100
	119	70	11	200

 $H_0: \mu_c = \mu_0$

 $H_a: \mu_c \neq \mu_0$

One Sample **T** Test

Test statistic:

$$T = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

$$T = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \qquad s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x^{(i)} - \overline{x})^2}$$

Null distribution (n-1 degrees of freedom):

Compare the formula for the sample standard deviation to the maximum likelihood estimate of the parameter, σ , of a normal distribution (Section 5.3.3). What is the same/different? Note in particular the use of n-1 in the denominator, rather than n. This arises because the MLE for σ , $\hat{\sigma}$, is a **biased** estimate of the population standard deviation (more on this later). For large n, however, the two are nearly identical.

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \hat{\mu})^2}$$
 $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x^{(i)} - \overline{x})^2}$

$$H_0: \mu_x = \mu_y$$

$$H_0: \mu_x = \mu_y$$
$$H_z: \mu_x \neq \mu_y$$

Pearson's Two Sample T Test

Test statistic:

$$T = \frac{\overline{x} - \overline{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

$$s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{m+n-2}$$

$$H_0: \mu_x = \mu_y$$

$$H_0: \mu_x = \mu_y$$
$$H_z: \mu_x \neq \mu_y$$

Welch's Two Sample T Test

Test statistic:

$$T = \frac{\overline{x} - \overline{y}}{s_{xy}}$$

$$s_{xy} = \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}$$

Null hypothesis (one-sample T-test of differences against μ_0 =0):

$$H_0: \mu_c = \mu_0$$

$$H_a: \mu_c \neq \mu_0$$

T-Test for Matched Pairs

Test statistic:

$$T = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x^{(i)} - \overline{x})^2}$$

Null distribution (n-1 degrees of freedom):

for the control group:

Here are some sample data. They come from a study that looked at the effect of ozone, a component of smog, on the weight gain of rats. (Original source: Biometrika 63: 421-434, 1976, reproduced in Rice's Mathematical Statistics and Data Analysis, p. 465.) A group of 22 seventy-day-old rats were kept in an

environment containing ozone for 7 days, and their weight gains were recorded.

Another group of 23 rats of a similar age were kept in an ozone-free environment for a similar time and their weight gains were also recorded. Here are the data

·	group	original_weight	weight_gain			group	original_weight	weight_gain
1	control	340.8	41.0	•	1	ozone	437.4	10.1
2	control	389.1	25.9		2	ozone	275.9	7.3
3	control	355.2	13.1		3	ozone	296.3	-9.9
4	control	421.8	-16.9		4	ozone	295.9	17.9
5	control	377.1	15.4		5	ozone	379.7	6.6
6	control	404.3	22.4		6	ozone	274.1	39.9
7	control	321.2	29.4		7	ozone	360.0	-14.7
8	control	447.5	26.0		8	ozone	331.9	-9.0
9	control	305.9	38.4		9	ozone	531.8	6.1
10	control	335.9	21.9		10	ozone	350.5	14.3
11	control	386.3	27.3		11	ozone	345.7	6.8
12	control	377.0	17.4		12	ozone	268.1	-12.9
13	control	357.2	27.4		13	ozone	339.9	12.1
14	control	441.7	17.7		14	ozone	352.4	-15.9
15	control	383.7	21.4		15	ozone	435.8	44.1
16	control	373.7	26.6				476.9	20.4
17	control	336.0	24.9		16	ozone		
18	control	419.4	18.3		17	ozone	462.5	15.5
19	control	287.1	28.5		18	ozone	368.0	28.2
20	control	602.8	21.8		19	ozone	504.3	14.0
21	control	325.4	19.2		20	ozone	188.0	15.7
22	control	452.4	26.0		21	ozone	466.9	54.6
23	control	398.9	22.7		22	ozone	288.8	-9.0
Mean	control	384.4	22.4		Mean	ozone	365.0	11.0
St.Dev.	control	65.5	10.8		St.Dev.	ozone	88.6	19.0

(a) Imagine that the population weight distribution of rats is known to be normal with $\mu = 350$ (grams) and unknown σ . How would you test the hypothesis that the mean of the control group is equal to the population

group is equal to the population mean? (b) How would you test the hypothesis that the mean original weights of the ozone and control groups are equal? Do not assume equal variance.

mean? How would you test the hypothesis that the mean of the ozone

not assume equal variance. (d) How would your approach in part (c) change if you assumed the weight

(c) How would you test the hypothesis that the mean weight gain in the

ozone group is equal to the mean weight gain in the control group? Do

gains in the two groups had equal variance?

one-sample T-test of control group original weight mean one-sample T-test of ozone group original weight mean

two-sample T-test of ozone vs. control original weight means (Welch's version)

two-sample T-test of mean

weight gain in ozone vs.

control (Welch's version) two-sample T-test of mean weight gain in ozone vs. control (Pearson's version)