

## Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

## Отчёт по заданию в рамках курса

## "Суперкомпьютерное моделирование и технологии"

Численное решение задачи Дирихле для уравнения Пуассона в криволинейной области

Выполнил: Морозов М.Г.

608 группа

Вариант 6

#### Введение

Требуется приближенно решить задачу Дирихле для уравнения Пуассона в криволинейной области. Задание необходимо выполнить на ПВС Московского университета IBM Polus.

Исследуемая область D = |x| + |y| < 2, y < 1

#### Математическая постановка задачи

В области  $D \subset \mathbb{R}^2$ , ограниченной контурому, рассматривается дифференциальное уравнение Пуассона

$$-\Delta u = f(x, y)$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Функция f(x, y) = 1. Для выделения единственного решения уравнение дополняется граничным условием Дирихле:

$$u(x, y) = 0, (x, y) \in \gamma$$

Требуется найти функцию u(x, y), удовлетворяющую уравнению в области D и краевомуусловию на ее границе.

#### Численный метод решения уравнения

Для решения был выбран предложенный метод наименьших невязок. Этот метод позволяет получить последовательность сеточных функций  $w^{(k)} \in H$ , k=1,2,..., сходящуюся по норме пространства H к решению разностной схемы,т.е.

$$\left|\left|w-w^{(k)}\right|\right|_{E}\to 0, k\to\infty$$

Начальное приближение  $w^{(0)}$  можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки. Метод является одношаговым. Итерация  $w^{(k+1)}$  вычисляется по итерации  $w^k$  согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}$$

где невязка  $r^k = Aw^{(k)} - B$ , итерационный параметр

$$\tau_{k+1} = \frac{\left(Ar^{(k)}, r^{(k)}\right)}{\left|\left|Ar^{(k)}\right|\right|_{E}^{2}}$$

В качестве условия остановки итерационного процесса следует использовать неравенство

$$\left| \left| w^{(k+1)} - w^{(k)} \right| \right|_E < \sigma$$

Где  $\sigma$  — положительное число, определяющее точность итерационного метода.

## Краткое описание проделанной работы по созданию OpenMP-программы

Для реализации поставленной задачи была использована технология OpenMP.

При подсчете площадей пересечения данной в 6 варианте фигуры с областью  $\Pi_{ij}$  на каждом узле сетки  $w_1 = \{x_i = A1 + ih_1, i = \overline{0,M}\}$ ,  $w_2 =$  $\{y_i = A_2 + jh_2, j = \overline{0, N}\}$ 

$$h_1 = (B_1 - A_1)/M$$
,  $h_2 = (B_2 - A_2)/N$ 

 $h_1=(B_1-A_1)/M,\,h_2=(B_2-A_2)/N$  был использован Метод Монте-Карло для полуцелых узлов  $x_{i\pm\frac{1}{2}}=x_i\pm$  $0.5h_1, y_{j\pm\frac{1}{2}} = y_j \pm 0.5h_2.$ 

Количество случайно-сгенерированных точек npoints = 1000. Размер сетки:  $\{A_1 = A_2 = -4.0, B_1 = B_2 = 4.0\}$  был увеличен, для корректного подсчета на сетке 160Х160.

Для реализации распараллеливания использовались директивы: #pragma omp parallel for для арифметических операций #pragma omp parallel for reduction(+:res) для скалярного произведения

# Результаты расчетов для разных размеров задачь и на разном числе процессов.

| Число<br>OpenMP-нитей | Число точек<br>Сетки<br>М×N | Время<br>Решения (c) | Ускорение |
|-----------------------|-----------------------------|----------------------|-----------|
| 2                     | 80*80                       | 169.702              | 1.98      |
| 4                     | 80*80                       | 122.639              | 2.74      |
| 8                     | 80*80                       | 91.922               | 3.65      |
| 16                    | 80*80                       | 68.688               | 4.89      |
| 2                     | 160*160                     | 1009.849             | 2.03      |
| 4                     | 160*160                     | 621.171              | 3.30      |
| 8                     | 160*160                     | 377.322              | 5.43      |
| 16                    | 160*160                     | 226.383              | 9.05      |

Ускорение считалось как отношение времени выполнения последовательной программы к времени выполнения программы на определённой конфигурации программы для заданного числа точек сетки M\*N и числа нитей OpenMP.

Время выполнения последовательной программы для 80\*80: 336.032 с. Время выполнения последовательной программы для 160\*160: 2049.994

# Графики результатов для сетки размером 160\*160.



Рис 1. Полученное решение



Рис 2. Макс. Отклонение от решения



Рис 3. График модуля невязки



Рис 4. Зависимость ускорения по оси ординат и числа OpenMP-нитей по оси абсцисс для параметров M, N = 80(желтый) и M, N (синий) = 160.