FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Apunts de Fonaments de les Matemàtiques (Primer curs del Grau de Matemàtiques)

Àlex Batlle Casellas

$\mathbf{\acute{I}ndex}$

1			2
2	Con	ajunts i aplicacions.	3
	2.1	Operacions amb conjunts	3
	2.2	Conjunt de les parts	5
	2.3	Aplicacions	6
		2.3.1 Injectivitat, exhaustivitat i bijectivitat	7
		2.3.2 Composició d'aplicacions	8
3	Rela	acions, operacions i estructures.	9
	3.1	Relacions d'equivalència	9
		3.1.1 Descomposició canònica d'una aplicació	10
	3.2	Relacions d'ordre	10

2 Conjunts i aplicacions.

Axioma 2.1. Axioma d'extensionalitat.

$$A = B \iff \forall x (x \in A \leftrightarrow x \in B).$$

Definició 2.1. Relació d'inclusió.

$$B \subseteq A \iff \forall x (x \in B \to x \in A).$$

PROPIETATS:

- 1. $A \subseteq A$;
- 2. $A \subseteq B \land B \subseteq C \implies A \subseteq C$;
- 3. $A \subseteq B \land B \subseteq A \iff A = B$;
- $4. \ \forall A, \ \emptyset \subseteq A.$

Inclusió estricta:

- 1. $A \not\subset A$;
- 2. $B \subset A \implies A \not\subset B$;
- 3. $A \subset B \land B \subset C \implies A \subset C$;
- 4. $A \neq \emptyset \iff \emptyset \subset A$.

2.1 Operacions amb conjunts.

Definició 2.2. Unió d'A i B $(A \cup B)$.

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

- 1. $A \cup A = A$;
- 2. $A \cup B = B \cup A$;
- 3. $(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$;
- 4. $A \cup \emptyset = A$;
- 5. $A \subseteq A \cup B$, $B \subseteq A \cup B$;
- 6. $A \subseteq B \iff A \cup B = B$;
- 7. $A \cup B \subset C \iff A \subseteq C \land B \subseteq C$.

Definició 2.3. Intersecció d'A i B $(A \cap B)$.

$$A \cap B = \{x : x \in A \land x \in B\}.$$

PROPIETATS:

- 1. $A \cap A = A$;
- 2. $A \cap B = B \cap A$;
- 3. $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$;
- 4. $A \cap \emptyset = \emptyset$;
- 5. $A \cap B \subseteq A$, $A \cap B \subseteq B$;
- 6. $A \subseteq B \iff A \cap B = A$;
- 7. $C \subset A \cap B \iff C \subseteq A \land C \subseteq B$.

Definició 2.4. Diferència d'A i B $(A - B \ o \ A \setminus B)$.

$$A \backslash B = \{ x : x \in A \land x \not\in B \}.$$

PROPIETATS:

- 1. $A \emptyset = A, \emptyset A = \emptyset, A A = \emptyset$:
- 2. $A B \subseteq A$:
- 3. $(A B) \cap B = \emptyset$;
- 4. $A \subseteq B \iff A B = \emptyset$;
- 5. $C \subseteq A B \iff (C \subseteq A) \land (C \cap B = \emptyset)$.

Propietats de la unió i la intersecció:

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
- 3. $A \cap (A \cup B) = A$;
- 4. $A \cup (A \cap B) = A$.

Definició 2.5. Conjunt complementari. Fixem un conjunt Ω i considerem només subconjunts d' Ω . El complementari d'un subconjunt A d' Ω és el conjunt de tots els elements d' Ω que no pertanyen a A. (Notació: A^c o \bar{A}):

$$A^c = \{x \in \Omega : x \not \in A\} = \Omega - A.$$

- 1. $\emptyset^c = \Omega$, $\Omega^c = \emptyset$;
- 2. $(A^c)^c = A$;
- 3. $A \cap A^c = \emptyset$; $A \cup A^c = \Omega$;
- 4. $A \subseteq B \iff B^c \subseteq A^c$:
- 5. $A \cap B = \emptyset \iff A \subseteq B^c \iff B \subseteq A^c$;
- 6. $A \cup B = \Omega \iff A^c \subseteq B \iff B^c \subseteq A$;
- 7. $A B = A \cap B^c$:
- 8. $(A \cup B)^c = A^c \cap B^c$.

Definició 2.6. Parell ordenat. El parell ordenat de x i y és un objecte que denotem per (x, y) que compleix:

$$(x,y) = (z,t) \iff x = z \land y = t.$$

Definició de Kuratowski:

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Definició 2.7. Producte cartesià. El producte cartesià de dos conjunts A, B és el conjunt format per tots els parells ordenats (x, y) tals que $x \in A$ i $y \in B$. (Notació: $A \times B$)

$$A \times B = \{(x, y) : x \in A \land y \in B\};$$

anàlogament,

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \dots, x_n) : x_i \in A_i \forall i\}.$$

PROPIETATS:

- 1. $A \times \emptyset = \emptyset = \emptyset \times A$:
- $2. \ A \times B = B \times A \iff A = B \vee A = \emptyset \vee B = \emptyset.$

2.2 Conjunt de les parts.

Definició 2.8. Conjunt de les parts. Anomenem el conjunt de les parts d'A el conjunt que té per elements tots els subconjunts d'A. Notació: $\mathcal{P}(A)$.

$$\mathcal{P}(A) = \{X : X \subseteq A\}$$

- 1. $X \in \mathcal{P}(A) \iff X \subseteq A$;
- 2. $\emptyset \in \mathcal{P}(A), A \in \mathcal{P}(A)$.

2.3 Aplicacions.

Definició 2.9. Correspondència. Una correspondència és una terna (A, B, G) on A i B són conjunts i $G \subseteq A \times B$.

Definició 2.10. Aplicació. Una aplicació és una correspondència (A, B, f) on $f \subseteq A \times B$:

$$\forall x \in A \ \exists ! y \in B : (x, y) \in f.$$

Anomenem a f(x) = y la imatge d'x per f.

Notació:

$$f: A \mapsto B.$$

$$A \xrightarrow{f} B.$$

Al conjunt A l'anomenem domini, i al conjunt B codomini.

Definició 2.11. Restricció. Donada una aplicació $f: A \mapsto B$ i un subconjunt $A' \subseteq A$, anomenem la restricció d'f per A' a l'aplicació $f_{|A'}: A' \mapsto B$.

Definició 2.12. Aplicació identitat. L'aplicació identitat en un conjunt A està definida per

$$I_A: A \mapsto A \quad I_A(x) = x \ \forall x \in A.$$

Definició 2.13. Conjunt imatge. Si $f: A \mapsto B$ i $A' \subseteq A$, aleshores

$$f(A') = \{ y \in B : \exists a \in A'(y = f(a)) \} = \{ f(a) : a \in A' \}$$

és el conjunt imatge d'A' per f.

Definició 2.14. Conjunt antiimatge. Si $f: A \mapsto B$ i $B' \subseteq B$, aleshores

$$f^{-1}(B') = \{x \in A : f(x) \in B'\} \subseteq A$$

és el conjunt antiimatge de B' per f.

Una qüestió de notació: notem per f^{-1} tant el conjunt antiimatge com la funció inversa. És important saber distingir entre aquests dos significats:

- $f^{-1}(\{b\})$ és el conjunt antiimatge del conjunt $\{b\}$ per f.
- $f^{-1}(b)$ pot ser (fent un abús de notació) el conjunt antiimatge del conjunt que té per únic element a b, com s'indica a 1., però també pot ser l'aplicació inversa (definida més endavant), que no sempre existeix.

2.3.1 Injectivitat, exhaustivitat i bijectivitat.

Definició 2.15. Injectivitat. $f: A \mapsto B$ és injectiva si i només si

$$\forall a_1, a_2 \in A(a_1 \neq a_2 \implies f(a_1) \neq f(a_2)).$$

Se sol utilitzar el recíproc,

$$\forall a_1, a_2 \in A(f(a_1) = f(a_2) \implies a_1 = a_2).$$

Definició 2.16. Exhaustivitat. $f: A \mapsto B$ és exhaustiva si i només si

$$\forall b \in B \exists a \in A : f(a) = b.$$

Observació:

- 1. |A| > |B|: no hi ha aplicacions injectives $A \mapsto B$. Si n'hi hagués, $|A| \le |B|$.
- 2. |B| > |A|: no hi ha aplicacions exhaustives $A \mapsto B$. Si n'hi hagués, $|A| \ge |B|$.

Definició 2.17. Bijectivitat. $f: A \mapsto B$ és exhaustiva si i només si f és injectiva i exhaustiva.

Observació: A, B finits i existeix una bijecció.

$$A \mapsto B \implies (|A| \le |B|) \land (|A| \ge |B|) \implies |A| = |B|.$$

Aleshores, f és bijectiva si i només si |A| = |B|. Donat un $y \in B$,

- f és injectiva $\Longrightarrow \exists x \in A : f(x) = y$.
- f és exhaustiva $\implies \exists! x \in A : f(x) = y$.

Definició 2.18. Aplicació inversa. L'aplicació inversa d'una bijecció f és aquella aplicació que a cada membre del codomini li assigna l'antiimatge per f.

$$\forall y \in B \exists ! x \in A : f(x) = y$$

Es nota $f^{-1}: B \mapsto A$. Si f bijectiva, aleshores

$$f(x) = y \iff f^{-1}(y) = x$$

- 1. L'aplicació inversa és única;
- 2. f bijectiva $\iff f^{-1}$ bijectiva $\wedge (f^{-1})^{-1} = f$;
- 3. Si $f: A \mapsto B$ i $g: B \mapsto C$ són bijectives, aleshores $g \circ f$ és bijectiva i $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$;
- 4. f bijectiva, aleshores $f \circ f^{-1} = I_B$, $f^{-1} \circ f = I_A$;
- 5. $f: A \mapsto B$ és bijectiva $\iff \exists ! \ g: B \mapsto A$ tal que $g \circ f = I_A$ i $f \circ g = I_B$. En tal cas, f i g són inverses mútuament.

2.3.2 Composició d'aplicacions.

Definició 2.19. Composició d'aplicacions. Si $f: A \mapsto B$ i $g: B \mapsto C$ són aplicacions, la composició de f i g és l'aplicació $g \circ f: A \mapsto C$ tal que $(g \circ f)(a) = g(f(a))$, per a tot $a \in A$.

$$A \xrightarrow{f} B \xrightarrow{g} C$$
$$a \to f(a) \to g(f(a))$$

PROPIETATS:

1. Associativitat. Si $f: A \mapsto B, g: B \mapsto C$ i $f: C \mapsto D$, aleshores

$$h \circ (g \circ f) = (h \circ g) \circ f;$$

2. No commutativitat. En general, la composició d'aplicacions no és commutativa. Si $f: A \mapsto A$ i $g: A \mapsto A$, no sempre és cert que

$$f \circ g = g \circ f;$$

3. Si $f: A \mapsto B$, aleshores $I_B \circ f = f = f \circ I_A$.

Propietats de la composició d'aplicacions: relació amb la injectivitat i l'exhaustivitat.

- 1. f i g injectives $\implies g \circ f$ injectiva;
- 2. $g \circ f$ injectiva $\implies f$ injectiva;
- 3. $g \circ f$ injectiva i f exhaustiva $\implies g$ injectiva;
- 4. f i g exhaustives $\implies g \circ f$ exhaustiva;
- 5. $g \circ f$ exhaustiva $\implies g$ exhaustiva;
- 6. $g \circ f$ exhaustiva i g injectiva $\Longrightarrow f$ exhaustiva;
- 7. f i g bijectives $\implies g \circ f$ bijectiva;
- 8. $g \circ f$ bijectiva $\implies g$ exhaustiva i f injectiva.

Definició 2.20.

3 Relacions, operacions i estructures.

Definició 3.1. R és una relació binària en un conjunt A si $R \subseteq A \times A$.

PROPIETATS:

- Reflexiva: $\forall x \in A(xRx)$.
- Simètrica: $\forall x, y \in A(xRy \rightarrow yRx)$.
- Antisimètrica: $\forall x, y \in A(xRy \land yRx \rightarrow x = y)$.
- Transitiva: $\forall x, y, z \in A(xRy \land yRz \rightarrow xRz)$.
- Connexa: $\forall x, y \in A(xRy \vee yRx)$.

3.1 Relacions d'equivalència.

Definició 3.2. Una relació R en un conjunt $A \neq \emptyset$ s'anomena d'equivalència si compleix les propietats reflexiva, simètrica i transitiva.

Definició 3.3. Definim la classe d'equivalència d'un element $x \in A$ com:

$$[x]_R = \{ y \in A | yRx \}.$$

També escrivim [x] o \bar{x} quan no hi ha risc de confusió.

PROPIETATS:

- 1. $\forall x \in A(x \in [x])$.
- 2. $\forall x, y \in A(xRy \iff [x] = [y])$.
- 3. $A = \bigcup_{x \in A} [x]$.

Definició 3.4. Anomenem una partició d'un conjunt a una família Π de subconjunts d'A i diferents del buit, disjunts dos a dos, tals que la seva unió és tot A. És a dir, $\Pi \subseteq \mathcal{P}(A)$.

PROPIETATS:

- 1. $X \neq \emptyset \ \forall X \in \Pi$.
- 2. $X \cap Y = \emptyset$ si $X, Y \in \Pi, X \neq Y$.
- 3. $A = \bigcup_{X \in \Pi} X$.

Els subconjunts $X \in \Pi$ s'anomenen les parts o blocs de la partició.

Definició 3.5. Anomenem el conjunt quocient d'un altre conjunt A respecte la relació R al conjunt format per totes les classes d'equivalència definides a partir d'R.

$$A/R = \{\alpha | \exists x \in A([x] = \alpha)\}.$$

Proposició 3.1. El conjunt quocient A/R és una partició d'A.

Demostració:

PENDENT D'ACABAR.

PROPIETATS:

- 1. Tota relació d'equivalència definida en un conjunt A indueix una partició d'A: el conjunt quocient A/R;
- 2. Recíprocament, associada a tota partició Π d'A definim una relació R_{Π} en A:

$$xR_{\Pi}y \iff \exists B \in \Pi : x \in B \land y \in B;$$

3. La relació R_{Π} és d'equivalència.

Proposició 3.2. Relacions i particions.

- 1. Si R és una relació d'equivalència en A, llavors $R_{A/R} = R$;
- 2. Si Π és una partició d'A, llavors $A/R_{\Pi} = \Pi$.

3.1.1 Descomposició canònica d'una aplicació.

Sigui $f: A \mapsto B$ una aplicació. Definim a A la relació:

$$xR_f y \iff f(x) = f(y).$$

Proposició 3.3. R_f és una relació d'equivalència a A.

Definim les aplicacions:

$$\pi: A \mapsto A/R_f, \quad \pi(x) = [x]_{R_f}. \tag{1}$$

$$\bar{f}: A/R_f \mapsto f(A), \quad \bar{f}([x]_{R_f}) = f(x).$$
 (2)

$$i: f(A) \mapsto B, \quad i(y) = y.$$

$$\implies f = i \circ \bar{f} \circ \pi.$$
(3)

3.2 Relacions d'ordre.

Sigui \leq una relació binària en un conjunt A.

- La relació \leq és un preordre si és reflexiva i transitiva. Es diu que (A, \leq) és un conjunt preordenat.
- La relació ≤ és un ordre parcial si és un preordre amb la propietat antisimètrica. Es diu que (A, ≤) és un conjunt parcialment ordenat.
- La relació \leq és un ordre total si és un ordre parcial amb la propietat connexa. Es diu que (A, \leq) és un conjunt totalment ordenat.

PENDENT D'ACABAR. Falten definicions de mínim, màxim, minimal i maximal.

Definició 3.6. Un conjunt parcialment ordenat (A, \leq) està **ben ordenat** si tot subconjunt $X \subseteq A, X \neq \emptyset$ té un mínim.