Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

Abstract

- Large language transformers improve image generation
- Increasing size of LM >> Increasing size of generator
- Zero-Shot SotA on CoCo 7.27 FID
- DrawBench new comprehensive benchmark for text2img models
- dynamic thresholding sampling technique for generating more photorealistic and detailed images
- Efficient U-Net simpler, converges faster,more memory efficient

Введение в Classifier Free Guidance

1.Classifier Guidance - техника сэмплирования для улучшения качества получаемых изображений, путем снижения многообразия генерируемых изображений диффузионной моделью в задаче условной генерации, используя градиент предобученной модели $p(\mathbf{c}|\mathbf{z}_t)$

$$\mathbb{E}_{\boldsymbol{\epsilon},\lambda} \left[\| \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}) - \boldsymbol{\epsilon} \|_{2}^{2} \right] \quad \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda} | \mathbf{c})$$

$$\epsilon_{\theta}(\mathbf{z}_{\lambda}) \longrightarrow \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}).$$

Classifier-Free Guidance

$$\mathbb{E}_{\boldsymbol{\epsilon},\lambda} \big[\| \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}) - \boldsymbol{\epsilon} \|_2^2 \big] \qquad \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}) \longrightarrow \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}).$$

$$\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda} | \mathbf{c})$$

Введение в Classifier Free Guidance

1.Classifier Free Guidance - вместо предобученной модели $p(\mathbf{c}|\mathbf{z}_t)$ обучаем нашу диффузионную модель с использованием двух функционалов: условного и безусловного. Во время обучения с некой вероятностью (10%) отбрасывается класс изображения.

$$\mathbb{E}_{\boldsymbol{\epsilon},\lambda} \left[\| \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}) - \boldsymbol{\epsilon} \|_{2}^{2} \right] \ \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda} | \mathbf{c})$$

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_t, \mathbf{c}) = w \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t, \mathbf{c}) + (1 - w) \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t).$$

Проблемы связанные с CFG:

Повышение CFG scale способствует большему согласованию между запросом и изображением, однако при высоком значении параметра появляются артефакты в виде засветов, глитчей, тёмных пятен

Static thresholding and dynamic thresholding

(a) No thresholding.

(b) Static thresholding.

(c) Dynamic thresholding.

Upscalers noise conditioning augmentation Unmodified Oil Painting Illustration Unmodified Oil Painting Illustration

Архитектура модели

- Base model U-net -> 64x64
- Super resolution models модифицированная U-net. Увеличена скорость сходимости, инференса, лучше эффективность по памяти - Efficient U-net.

Efficient U-net

- Перенос параметров модели с блоков с высоким разрешением к low res блокам.
- Масштабируем skip-connections на 1/sqrt(2)
- Операции апсемплинга\даунсемплинга выполняются в обратном порядке для повышения скорости

Evaluating text2image models

- СОСО базовый бенчмарк для text2img моделей
- Тестируем на 30к сэмплах

FID имеет свои недостатки как метрика. Хотим тестировать качество на

реальных людях.

A brown bird and a blue bear.

One cat and two dogs sitting on the grass.

A sign that says 'NeurIPS'.

A small blue book sitting on a large red book.

A blue coloured pizza.

A wine glass on top of a dog.

A pear cut into seven pieces arranged in a ring.

A photo of a confused grizzly bear in calculus class.

A small vessel propelled on water by oars, sails, or an engine.

DrawBench

- СОСО ограничен по промптам, поэтому не позволяет протестировать модель на все 100.
- 11 категорий промптов
- Тестируем модель на способность генерации конкретных цветов объектов, определенного количества, отношений между предметами, текста на изображении
- Длинные промпты
- Промпты со словами, которые редко используются
- Промпты, в которых отсутсвует часть слов

Figure 3: Comparison between Imagen and DALL-E 2 [54], GLIDE [41], VQ-GAN+CLIP [12] and Latent Diffusion [57] on DrawBench: User preference rates (with 95% confidence intervals) for image-text alignment and image fidelity.

Model	FID-30K	Zero-shot FID-30K	Model	Photorealism ↑	Alignment ↑
AttnGAN [76] DM-GAN [83] DF-GAN [69] DM-GAN + CL [78] XMC-GAN [81] LAFITE [82] Make-A-Scene [22]	35.49 32.64 21.42 20.79 9.33 8.12 7.55	FID-30K	Original Original Imagen No people Original Imagen	50.0% $39.5 \pm 0.75\%$ 50.0% $43.9 \pm 1.01\%$	91.9 ± 0.42 91.4 ± 0.44 92.2 ± 0.54 92.1 ± 0.55
DALL-E [53] LAFITE [82] GLIDE [41] DALL-E 2 [54] Imagen (Our Work)		17.89 26.94 12.24 10.39 7.27	-		

Figure 4: Summary of some of the critical findings of Imagen with pareto curves sweeping over different guidance values. See Appendix D for more details.

Выводы:

- Scaling text encoder size is extremely effective
- Scaling text encoder size is more important than U-Net size
- Dynamic thresholding is critical
- Human raters prefer T5-XXL over CLIP on DrawBench
- Noise conditioning augmentation is critical
- Text conditioning method is critical
- Efficient U-Net is critical