

AD A103823

CNS 1156 / May 1981

LEVEL
12

DTIC
SEP 4 1981
H

THE DETERMINANTS OF BASE OPERATING SUPPORT COSTS

Daniel B. Levine
James M. Jondrow

ONE FILE COPY

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

CENTER FOR NAVAL ANALYSES

81 8 04 021

**APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED**

Work conducted under contract N00014-76-C-0001

The work reported here was conducted under the direction of the Center for Naval Analyses and represents the opinion of the Center for Naval Analyses at the time of issue. It does not necessarily represent the opinion of the Department of the Navy except to the extent indicated by the comments of the Chief of Naval Operations.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

14) REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. GRT NUMBER CNS-1156	2. GOVT ACCESSION NO. AD-A103 823	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) The Determinants of Base Operating Support Costs		5. TYPE OF REPORT & PERIOD COVERED
6. AUTHORITY Daniel B. Levine James M. Jondrow		7. PERFORMING ORG. REPORT NUMBER
8. PERFORMING ORGANIZATION NAME AND ADDRESS Center for Naval Analyses 2000 No. Beauregard Street Alexandria, Virginia 22311		9. CONTRACT OR GRANT NUMBER(S) 15 NO 0014-76-C-0001
10. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217		11. REPORT DATE May 1981
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Office of the Chief of Naval Operations (Op96) Department of the Navy Washington, D.C. 20350		13. NUMBER OF PAGES 59
14. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15. SECURITY CLASS. (of this report) Unclassified
16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		17. DECLASSIFICATION/DOWNGRADING SCHEDULE
18. SUPPLEMENTARY NOTES The work reported here was conducted under the direction of the Center for Naval Analyses and represents the opinion of the Center for Naval Analyses at the time of issue. It does not necessarily represent the opinion of the Department of the Navy except to the extent indicated by the comments of the Chief of Naval Operations.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Base Operating Support (BOS), Cost Estimating Relationship (CER), costs, fund allocation, military facilities, naval bases, regression analysis		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The study analyzes spending on base operating support (BOS) activities at 144 domestic naval installations. Statistical regression techniques are used to derive a cost-estimating relationship (CER) that relates BOS spending to such base characteristics as the number of military personnel and the total building area. The CER is then applied to several issues concerning the management of the naval shore establishment: whether there are economies of		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 403542

7 Participants: Deborah L. Hasson, Kevin B. Garvey, Robert M. Burke

20 scale in BOS spending that could be captured through base consolidation; how a given total BOS budget should be allocated across bases that differ in characteristics; and whether statistically-derived cost estimating relationships are better tools for analysis of BOS spending than simple ratios, such as BOS cost per mission person, that are favored by OSD.

Accession #

NTIS	<input checked="" type="checkbox"/>
DTIC	<input type="checkbox"/>
Unap	<input type="checkbox"/>
JUL	
B	
D	
A	Codes /or 1

A

CNS 1156 / May 1981

THE DETERMINANTS OF BASE OPERATING SUPPORT COSTS

Daniel B. Levine
James M. Jondrow

Enclosure (1) to CNO ltr Ser 964C6/333332 dated 23 July 1981

Institute of Naval Studies

CENTER FOR NAVAL ANALYSES

2000 North Beauregard Street, Alexandria, Virginia 22311

DEPARTMENT OF THE NAVY
OFFICE OF THE CHIEF OF NAVAL OPERATIONS
WASHINGTON, D.C. 20350

IN REPLY REFER TO
Ser 964C6/333332

JUL 23 1981

From: Chief of Naval Operations
To: Distribution List

Subj: Base Operating Support (BOS) Study Report, promulgation of

Encl: (1) CNA Study CNS 1156, "The Determinants of Base Operating Support Costs"

1. The Base Operating Support Study set out to develop algorithms to estimate base operating support (BOS) costs, utilizing an existing historical data base and statistical regression analysis, as a function of the characteristics of individual installations.

2. The study analyzed data from the Domestic Base Factors Report (1979) describing 144 domestic naval installations in CONUS, Hawaii, and Alaska, categorized by primary mission (e.g., naval air stations). The BOS cost estimating relationships (CERs) that finally evolved from the statistical regression analysis included five explanatory variables: number of active military personnel, number of civilian personnel, building area, land area, and energy consumption. For the CER derived, the standard statistical measure for goodness of fit, coefficient of correlation, was 0.90. This favorably contrasts with the 0.11 coefficient of correlation for BOS cost as a linear function of number of mission persons on the base, a CER currently used in some DOD offices.

3. Because of the goodness of fit of this CER, it will be worthwhile to examine more closely those bases whose costs depart significantly from the predictions. The Shore Activities Planning and Programming Division (OP-44) has begun a detailed evaluation of these base outliers to the regression line to determine in each case whether special circumstances explain the BOS cost deviation from the CER prediction.

4. Based on a statistical regression analysis of the Domestic Base Factors Report (1979), this study indicates that, for analytical purposes, the CERs derived herein are better estimators of BOS cost than the simple, one variable equations in common use.

5. Enclosure (1) is forwarded.

M. S. Holcomb

M. S. HOLCOMB
Vice Admiral, U.S. Navy
Director, Navy Program Planning

Distribution:
(See next page)

Distribution:

A1 Immediate Office of the Secretary (ASSTSECNAV MRAL,
 ASSTSECNAV FM only)
A2 Department of the Navy Staff Offices (NAVCOMPT,
 OPA, CNR only)
A4A Chief of Naval Material
A6 Headquarters, U.S. Marine Corps (DC/S I&L only)
B3 College and University (National Defense
 University, Armed Forces Staff College only)
21A Fleet Commanders in Chief
FF38 U.S. Naval Academy (Nimitz Library)
FF44 Naval War College
FKA1C Facilities Engineering Command Headquarters
FKA1F Supply Systems Command Headquarters
FT73 Naval Postgraduate School
OPNAV OP-09BH, OP-90, OP-92, OP-96, OP-964, OP-966,
 OP-96D, OP-093, OP-094, OP-095, OP-098, OP-009,
 OP-11, OP-22, OP-32, OP-40, OP-44, OP-51)

Other

Navy Tactical Support Activity
Under Secretary of Defense, Research and Engineering
Ass't Sec'y of Defense, Program Analysis & Evaluation (2 copies)
Ass't Sec'y of Defense, Manpower, Reserve Affairs & Logistics
Dep Ass't Secretary, Installations & Housing (Perry J. Fliakas)
OASD, MRA&L
Director, Installations Management & Planning (E.A. Rogner)
OASD, MRA&L
Military Ass't for Special Projects (LTC Christopher Tragakis)
OASD, MRA&L
Defense Logistics Studies Information Exchange (2 copies)
Defense Technical Information Center (12 copies)
Department of the Army (Adj Gen'l) (6 copies)
Department of the Army Library
Department of the Air Force (SAMI)
Institute for Defense Analyses
Logistics Management Institute

EXECUTIVE SUMMARY

A naval shore base requires many resources that are not specific to the particular missions supported by the base. Such Base Operating Support (BOS) resources include: maintenance and repair of real property; financial, legal and other administrative services; specific services such as base transportation and security; and community support functions such as medical clinics and commissary. These activities account for about \$2 billion annually in the Department of Navy budget.

The Navy needs a model of BOS costs to help manage the shore establishment. This study develops such a model -- a cost estimating relationship, or CER -- and applies it to the policy questions of whether consolidating bases would save on BOS cost, and whether BOS funds are being wisely allocated across installations during the yearly budget process. The CER is derived from data in the FY 1979 Domestic Base Factors Report (DBFR), and verified using data in the FY 1980 DBFR. Statistical regression techniques are used to relate BOS spending to such variables as the number of military and civilian personnel at the base, the size of the base as measured by total acreage and building area, and the base's energy consumption.

The CER implies that the Navy could save about 15 percent in annual BOS cost by halving the number and doubling the size of its bases. This finding does not mean that consolidation would save on total cost. Consolidation could require spending for new land, new construction and re-settlement (fixed costs). Consolidation might also affect direct, mission-related operating costs and operational readiness. By ignoring these factors, we can make no overall judgments about the desirability of consolidation.

To help in the yearly budget process, the CER is used to estimate an "expected" level of BOS funds for each base in the sample. Those bases spending more than "expected" are offered as candidates for more detailed analysis by the Navy. We are not claiming that these bases are inefficient; their higher spending could be for activities not captured by our aggregate data. The higher spending, moreover, could be contributing significantly to mission readiness and personnel retention -- benefits of BOS spending that are not measured in this analysis of cost.

Other findings of the study are: 1) BOS decisions should not be based on simple performance ratios such as BOS cost per mission person that are favored by OSD, and 2) the DBFR is a unique source of BOS data, but it could be reduced in size to

ease the reporting burden and still provide enough data for statistical analysis of BOS cost.

TABLE OF CONTENTS

	<u>Page</u>
List of illustrations	v
List of tables	vii
Introduction	1
Issues for analysis	3
Methodology	5
Data	7
Regression analysis	15
Choice of explanatory variables	15
Choice of functional form	16
Results	16
Policy implications	21
Economies of scale	21
Efficiency of individual bases	21
Best technique for comparing BOS spending among bases	26
Marginal cost of base expansion	28
Reporting systems	32
Uniqueness of the DBFR	32
Level of detail	33
Robustness of the study findings	34
Appendix A: Inputs and selected outputs of regression analysis	A-1 - A-18

LIST OF ILLUSTRATIONS

	<u>Page</u>
1 Residual vs. ratio measure of BOS spending (30 Naval air stations)	29
2 Relative residual vs. ratio measure of BOS spending (30 Naval air stations)	30

-v-

PRECEDING PAGE BLANK-NOT FILMED

LIST OF TABLES

	Page
1 Examples of BOS resources	2
2 Naval installations analyzed	8
3 Definitions of variables	9
4 Major regression	17
5 Other regressions	20
6 Sample residual analysis: NSA New Orleans	23
7 Bases with BOS spending more than 50% above predicted	24
8 Bases with BOS spending more than 50% below predicted	25
9 Statistical tests of BOS cost per mission person	27
10 Stability of relative residuals: Bases spending more than 50% above predicted	35
11 Stability of relative residuals: Bases spending more than 50% below predicted	36
12 Comparison of regressions using 1979 and 1980 DBFR data	37
A-1 Descriptions of variables	A-2
A-2 Data	A-3
A-3 Comparison of relative residuals using 1979 and 1980 data	A-15
A-4 Correlation matrix	A-18

INTRODUCTION

The resources to maintain a Naval shore installation are of two types. Some resources directly support the missions carried out by the base. At a naval air station, for example, the direct costs pay for the military personnel who maintain and fly the squadron aircraft, the fuel to operate these aircraft, and the civilians employed at a Naval Air Rework Facility (NARF) that may be located at the base.

This study is concerned, however, with the indirect costs of operating bases. Such Base Operating Support (BOS) costs are not specific to missions, but would be required to maintain any shore installation, whether it is a naval air station, a naval station, a naval supply center, a laboratory, a hospital, or another type of installation. Maintaining and repairing the buildings is one example. How much you have to do does not usually depend on what missions the buildings support. Transportation and security maintained by the host of the base are also BOS functions, as are legal, medical, and administrative services performed by the base. Table 1 shows the four functional categories into which BOS resources are often grouped.

A major reason for studying BOS cost is that large expenditures are involved: the Navy spends about two billion dollars annually on these resources. A more immediate reason is the recent Congressional interest in BOS. Using data supplied by OSD, the Senate Appropriations Committee in 1977 compared BOS spending by 18 installations. The Committee took direct budget action based on these findings: Bases with high BOS cost per mission person received cuts in BOS funds. (Some of the cuts were subsequently removed through re-programming.)

For use in future budget reviews, the Senate Appropriations Committee also asked OSD to develop and submit a yearly reporting system for BOS cost and its determinants. The resulting Domestic Base Factors Report (DBFR) is a unique source of data, and its analysis is the subject of this study. We will present, in turn, the policy issues to be addressed, the method of analysis, a description of the data, the numerical results, and the implications of these results for the policy issues.

TABLE 1
EXAMPLES OF BOS RESOURCES

Facility Services

Maintenance and repair of all real property
Minor construction
Utilities
Custodial and janitorial services

Administrative Services

Base administration
Base comptroller
Base legal services

Specific Services

Base transportation
Base security, fire and police
Base communications

Community Support Services

Medical and dental clinics
Commissary
Recreation

ISSUES FOR ANALYSIS

This study derives a statistical Cost Estimating Relationship (CER) that relates BOS spending at a naval base to the characteristics of the base. This CER provides insight into five issues concerning management of the Naval shore establishment. The first is economics of scale. The Navy's domestic shore establishment is somewhat spread out across the country, and this raises the question of whether consolidating small bases into larger ones would save money. This analysis measures the economies of scale in BOS spending. BOS cost is only one part of the picture, however. Consolidation can also affect direct operating costs and operational efficiency. Any savings in yearly costs would have to be balanced against possible fixed costs for new land, new military construction, and re-settlement. These fixed costs would depend, in turn, on how much excess capacity we have at existing bases and how much of our original investment we could recoup by selling off unneeded land. Our analysis of BOS cost thus provides only one input to the consolidation decision.

The second application of the cost estimating relationship (CER) concerns the Navy's yearly allocation of the BOS budget across bases. Here, too, a CER can provide some help but not the complete answer. The CER presents a picture of what bases with various characteristics have been spending for BOS. It thus estimates what a particular base would spend if it fits the general pattern. If that base is spending much more than this, that suggests a closer, more detailed look is in order. We have used the CER to construct a list of candidate bases for detailed study by the Navy.

The next issue focuses specifically on the methods for allocating BOS. As described above, this study derives a CER from statistical analysis of the data. Lacking anything better, the Navy has for years been allocating BOS by giving a base what it got last year, plus some allowance for inflation, plus some additional funds if the base appeared to have special problems. In the interest of finding a more systematic approach, OSD has recently suggested using simple ratios such as BOS cost per mission person. If one naval air station has much higher BOS cost per mission person than the average for all naval air stations, that base is a potential candidate for a budget cut. The third issue thus considers whether a statistically-derived CER is really better than the OSD method for budget determination.

The fourth issue concerns the cost estimates for ships and aircraft that are listed in the Navy Program Factors Manual. The method for deriving CER's in this study can be used to update the BOS components of these costs.

A major limitation underlies the analysis of these questions. We lack a measure of the benefits of BOS. Consider BOS expenditures for maintenance, for example. Unless the Navy maintains and repairs real property, sooner or later the buildings will crumble and the base will be unable to carry out its missions. But there is no current measure of the relationship between expenditures on maintenance and the level of readiness. The connection is diffuse, and attempts to construct the relationship would take us too far afield.

Other BOS activities provide community services to improve the quality of life and help make the Navy an attractive career. Analyzing the relationship between BOS and retention would also be a study in itself. Re-enlistment depends on the community services at all the shore installations to which a sailor has been assigned during his recent service, and assembling this time-series data for individuals would not be a simple task.

Lacking numerical measures of output, we cannot make ultimate judgments about the "optimal" size of the Navy's BOS budget or its allocation across bases. Consider two naval air stations that are alike in all major respects, but that spend different amounts for BOS. The lower cost base might be spending the ultimately correct amount for BOS, given the benefits of readiness and retention. The more expensive air station would then be regarded as inefficient.

On the other hand, it might be the more expensive base that was spending the ultimately correct amount for BOS. In this case, the cheaper base would be inefficient, even though it was operating on a more parsimonious level with regard to BOS spending.

These considerations will affect how we interpret the results of the quantitative analysis.

METHODOLOGY

This section describes the method of analysis and shows how the numerical results can be applied to the policy issues.

The goal is to explain BOS cost at 144 of the domestic naval installations included in the DBFR.¹ For purposes of this study, to "explain" BOS cost means to relate it to base characteristics that are assumed to determine its value. Statistical regression, or "curve-fitting" techniques are used for this purpose, and the result is an equation that looks as follows (for illustration):

$$\text{BOS cost} = a_0 (\text{MIL})^{a_1} (\text{CIV})^{a_2} (\text{AREA})^{a_3}$$

where

MIL = the number of active military personnel at the base

CIV = the number of civilian personnel

AREA = total building area in thousands of square feet

The coefficients of the equation (a_0 through a_3) will be estimated by fitting the equation to the data.

This is mainly a cross-section study: the statistical analysis is across bases at a fixed point in time (1979). The resulting CER was checked, however, against data in the 1980 DBFR. The statistical fit proved almost as good as for the 1979 data. This gives some confidence in using the CER for future prediction provided the estimated BOS costs are adjusted for inflation.

Various features of the regression equation will provide information on the issues mentioned above. The sum of the exponents will measure the economies of scale, and show how much BOS cost can be saved through consolidation. If $a_1 + a_2 + a_3 = 0.5$, for example, doubling the size of a typical base (doubling the explanatory variables) would multiply BOS cost by a factor of only 1.4 ($2^{0.5}$). Consolidation would thus

¹Twelve other installations were omitted because data were incomplete (e.g., for the new Trident bases) or because the bases appeared unique (e.g., the Washington Navy Yard.)

lower BOS expenditure (but not necessarily total expenditure). Second, the difference between the "observed" BOS cost given by the data and the "predicted" BOS cost given by the regression equation will evaluate the base's spending against the standard of all the bases in the sample as a whole (after adjusting for MIL, CIV, AREA and the other variations at the base in question). Finally, with respect to planning, each exponent will estimate a marginal cost: how much BOS cost will rise, for example, with increases in the number of military personnel.

DATA

The validity of our findings hinges on our ability to obtain a regression equation that meets statistical and common-sense criteria. This depends, in turn, on our having enough good data on the installations of interest. This section of the report describes the variables we have obtained, and comments on their reliability.

The sample of bases consists of 144 domestic naval installations in CONUS, Hawaii, and Alaska. All large naval installations in the continental U.S. are included, along with major bases located in Hawaii and Alaska. The installations are all hosts -- commands that have responsibility for providing BOS services to the tenants that reside on the base. Table 2 describes the sample further.

Each base is categorized by its primary mission: e.g., naval air stations. The classification is not clean: A host naval air station has aircraft squadrons in its list of tenants, but it may also have other tenants whose missions have nothing to do with air operations. This lack of homogeneity does not prove much of a problem: Our findings confirm that BOS cost as defined by the Navy does not depend on the type of mission at a base. The costs of maintenance and repair of real property, for example, depends on the area of the buildings, and little on what those buildings are used for.

Table 3 defines the variables gathered for each base in the sample. Except where noted, the source of the data is the FY 1979 Domestic Base Factors Report (DBFR). (Data from the FY 1980 DBFR became available toward the end of the study. These data were used only as a check on the numerical analysis of the 1979 data.) The DBFR data were "scrubbed" by OP-44 (Shore Activities Planning and Programming Division) in extensive conversations with the bases designed to achieve reporting consistency. Data from the previous two DBFRs (FY 1977 and FY 1978) were not scrubbed. They show major inconsistencies as a result, and were therefore not used in the analysis.

There is a point in listing all the explanatory variables that were assembled, even though only five proved necessary in obtaining a good aggregate predictive model for BOS cost. The point is that most of the variables that are reported by the DBFR because they appear related to BOS cost are not necessary for such a model, and collecting many of these data may add more to the "paperwork burden" than to useful knowledge.

TABLE 2
NAVAL INSTALLATIONS ANALYZED

30	Naval air stations
10	Naval bases, defined in this study to mean either a naval station, amphibious base, or submarine base ¹
6	Public works centers
16	Regional medical centers plus the National Naval Medical Center at Bethesda, Maryland
16	Training centers and schools
6	Naval support activities
8	Naval shipyards
15	Supply and storage facilities including Naval supply centers, weapons stations and ordnance stations
13	Research and development sites
5	Test and evaluation sites
13	Communications stations and security activities
6	Naval facilities, which are used in coastal anti-submarine warfare
144	TOTAL

¹The term "naval base" is often used to mean a complex involving one or more naval stations, amphibious bases or submarine bases located together in one area.

TABLE 3
DEFINITIONS OF VARIABLES

Dependent Variable

BOS COST

Total spending by each installation during FY 79 on base operating support resources (in millions of FY 79 dollars).

Physical Plant Variables

AREA

Total floor area of buildings in square feet.

ACRE

Total acreage of land on base.

CPV

Estimates of the current plant value of the real property on the base. The Naval Facilities Engineering Command (NavFac) made these estimates by taking the original acquisition cost of each building and inflating it to current FY 79 dollars using a construction cost index. Subsequent improvements were assumed to be made at the time of original acquisition because the dates of the improvements have not been kept until recently. The estimated values of CPV are therefore biased upward, and the bias is larger for the older installations.

AGE

The average age of all buildings on the base calculated from data supplied by NavFac. The age of each building was weighted by its size in square feet.

TABLE 3 (continued)

Personnel Variables

MIL

The number of active military personnel, officers plus enlisted, at the base. BOS and mission personnel are both included. The variable refers to the average number of men physically present at the base during the year, not the number authorized. Average transient load is thus included. In addition, OP-44 instructed bases to include the number of men assigned to ships serviced by the base, whether the ships were homeported there or not. The number of men assigned to ships was multiplied by 60 percent to account for the time these ships spent out of port.

CIV

The number of civilian personnel, those assigned to BOS as well as to mission tasks.

RES

The average number of reserve personnel physically on the base during the year.

RET

The number of retired military personnel in the vicinity of the base.

DEP

The number of dependents excluding the sponsor. The number living both on and off the base were regarded as separate variables.

SF

The number of staff and faculty assigned to installations engaged, at least partly, in training.

STUD

The average daily student load at training installations.

TABLE 3 (continued)

BASE

The number of active military personnel at naval bases (naval stations, amphibious bases, and submarine bases) with shore-side assignments.

BOS

The number of military plus civilian personnel assigned to BOS functions.

Operational Variables

PLANES

The average number of aircraft normally stationed at the base. Those aircraft assigned to the base but deployed elsewhere during the year are not counted.

NARF

The number of civilian personnel at naval air stations assigned to a NARF (Naval Air Rework Facility). The Force Distribution Report (FDR) maintained by NavFac is the source for this variable.

DISP

The total displacement (full) of ships assigned to the base. The list of ships assigned was obtained from the FDR, and the displacement of each type was obtained from the Naval Ships Register.

ELEC

The total electrical generating capacity of the ships assigned to the base. See the definition of DISP for the sources of the data.

COMP

The total complement of personnel on ships assigned to the base. See DISP for the sources.

SHP

The total shaft horsepower of ships assigned to the base. See DISP for the sources.

TABLE 3 (continued)

BED

The number of beds at regional medical centers (plus the National Naval Medical Center at Bethesda). OP-96 provided the data. The authorized and capacity number of beds were treated as separate variables.

Climate¹

TEMP

The average daily temperature, calculated over the past 20 years.

COOLDAYS

The number of cooling-degree-days per year, averaged over the past 20 years. A temperature of 85 degrees Fahrenheit is used as the standard. If the average daily temperature on August 20 is 95 degrees, for example, this constitutes 10 cooling-degree days. Daily figures are added to give yearly totals.

HEATDAYS

The reverse of COOLDAYS. If the average daily temperature on December 20 is 45 degrees, for example, this constitutes 40 heating-degree-days.

PRECIP

The average yearly inches of precipitation for the base, averaged over the past 20 years.

SNOW

The yearly inches of snowfall during the year, averaged over the past 20 years.

¹The source for all these variables is Alva L. Wallis, Jr., Comparative Climatic Data Through 1976, National Climatic Center, Asheville, N.C., April 1977.

TABLE 3 (continued)

Other Variables

BTU

The total BTUs of energy consumed by the base during the year. Included are the use of electricity, coal and natural gas. One exception: fuel for aircraft is not included.

WAGE

An estimate of the average wage of civilian DoD employees hired by DoD in the locale. Regional wage scales by step and grade were furnished by the DOD Wage Fixing Authority. We selected the wage corresponding to the average grade of civilian workers at the base (from Office of Civilian Manpower Management), assuming he was at step 4, the Navy-wide average.

Type of Base

The set of "dummy" variables shown below were used. (NAS, for example, is a dummy variable that takes on the value 1 at each of the 30 naval air stations, and the value 0 at each of the 114 other installations.) By using dummy variables, all regressions can be run on the total sample of 144 installations, but with the flexibility to estimate different coefficients at different classes of bases. The dependence of BOS cost on the number of military personnel, for example, will prove higher at naval stations than at other bases.

TABLE 3 (continued)

<u>Dummy Variable</u>	<u>Bases where value = 1</u>
NAS	Naval air stations
NARF	Naval air stations with NARFs
NB	Naval bases, defined in this study to be a naval station, amphibious base, or submarine base
PWC	Public works centers
MED	Regional medical centers plus the National Naval Medical Center at Bethesda, Maryland
TRSCH	Training centers and schools
NSA	Naval support activities
SY	Naval shipyards
SS	Supply and storage facilities, defined in this study to include naval supply centers and naval weapon centers
RD	Research and development sites such as the Naval Research Lab
TE	Test and evaluation sites such as the one at China Lake, California
COMS	Communications stations and security activities
FAC	Naval facilities such as the one at Cape Hatteras, North Carolina, which are used for strategic ASW.

REGRESSION ANALYSIS

Regression analysis is a way to estimate the coefficients of a statistical relationship after the explanatory (independent) variables are chosen and the functional form of the equation (linear, log, etc.) has been selected. Ideally, the selection of explanatory variables should be based on prior knowledge of what factors most affect the dependent variable; and the form of the equation should be chosen according to knowledge about how the explanatory variables interact.

CHOICE OF EXPLANATORY VARIABLES

There is too little understanding of BOS resource use at naval installations, however, to carry out this procedure in ideal form. We were not sure beforehand which variables are most important; many of those listed in table 3 appear closely related to BOS spending. We therefore used statistical criteria to help choose among them. Regressions were run with different combinations of variables, in hopes of finding a combination that met these criteria: (1) The sign of the coefficients should be the ones expected on intuitive grounds (e.g., more personnel means higher BOS cost); and (2) the coefficients of each explanatory variable should be statistically significant at the 10% level (high t-statistics in statistical terms). Meeting the latter criterion accomplishes two things. First, it tends to produce a "parsimonious" model in which a relatively small number of explanatory variables are able to account for a relatively high percentage of the variability in BOS cost (a high value of R^2 , in statistical terms). Second, it ensures that the regression will estimate the independent effect of each explanatory variable, even if the data for these variables are correlated.¹ (See appendix table A-4 for the correlation coefficients.)

These are the explanatory variables that best met the tests of intuitive plausibility and statistical fit. First are two personnel measures. Bases with larger numbers of military personnel (MIL) must provide more legal and medical services, more bachelor housing and commissary, and more support services for dependents. Large numbers of civilians (CIV) are employed by the NARFs and by the research laboratories, and there is lots of equipment to be maintained and repaired.

¹Measuring independent effects requires only that the data show some independent movement of the variables. When the variables become too correlated to separate out their effects on the dependent variable, one or more t-statistics will fall. High t-statistics thus mean that the independent contributions have been estimated.

About half of all BOS cost is for maintenance and repair of real property, and building area (AREA) is a general indicator of the amount of real property that must be maintained and repaired. The total acreage (ACRE) at an installation is an indicator of physical size. Bases with larger amounts of land must spend more for base transportation and security and for maintenance of roads and grounds.

The final variable (BTU) measures the amount of power consumed by the utilities at the base. Energy consumption is a general measure of the tempo of operations at an installation.

Note that these five explanatory variables are measures of resources. BOS cost can also be related to operational variables such as the number of aircraft, and we will discuss this in the section on Marginal Cost of Base Expansion.

CHOICE OF FUNCTIONAL FORM

There is no firm intuition about whether the relationship between these explanatory variables would be linear, exponential, or some other form. The exponential functional form was selected on a statistical basis: among various simple mathematical forms, it gave the best fit with the data.

RESULTS

The estimated relation is shown in table 4. The equation is an extension of simple curve-fitting where you take a two-dimensional scatter diagram and fit a straight line to get an idea of how y relates to x . The equation in table 4 involves 5 x 's instead of one, and an exponential relationship instead of a linear one. The equation says that if you have a base with so many military personnel, so many civilian personnel, and so on, and if you insert these figures into the equation, you get a predicted value of BOS cost that tracks with the actual BOS cost in a statistical sense.

In fact, the equation fits the data to a remarkable degree. In addition to possessing intuitive appeal, the coefficients are all positive (more resources yield higher cost), the coefficients (exponents) of the explanatory variables all have high statistical significance, and the equation as a whole explains 90 percent of the variability in BOS cost.

The five explanatory variables proved best among the 70 we tested. We tried personnel variables like the numbers of dependents, retirees, and reserves. We distinguished between the civilians assigned to NARFs and to research laboratories. We tried operational variables like the number of aircraft at

TABLE 4

MAJOR REGRESSION^a

$$\text{BOS COST} = 0.0405(\text{MIL})^{.034}(\text{CIV})^{.248}(\text{AREA})^{.249}(\text{ACRE})^{.061}(\text{BTU})^{.155}$$

where

MIL = number of active military personnel
 CIV = number of civilian personnel
 AREA = building area (thousand square feet)
 ACRE = land area (acres)
 BTU = energy consumption

R^2 .90^b

t-statistics (level of statistical significance)^c

MIL	1.76 (8%)
CIV	7.29 (.01%)
AREA	4.58 (.01%)
ACRE	3.54 (.05%)
BTU	3.94 (.01%)

Scale elasticity .75^d

^aFor all installations, excluding naval bases, communications stations, and security activities.

^bThe regression was actually estimated in the logarithmic form (\ln stands for natural logarithm):

$$\ln \text{BOS COST} = \ln 0.0405 + .034 \times \ln \text{MIL} + .248 \times \ln \text{CIV} + \dots$$

The R^2 of .90 means that the regression explains 90% of the variability in $\ln \text{BOS COST}$. This is equivalent to explaining about 80% of the variability in BOS COST itself.

^cThe 10 percent level is often used as a minimum criterion in empirical analysis.

^dThis is the sum of the exponents of the explanatory variables. A scale elasticity of .75 implies that a 1 percent increase in all explanatory variables leads to a .75 percent increase in BOS COST. The interpretation is somewhat different for large changes: doubling all explanatory variables multiplies BOS COST by only $(2)^{.75} = 1.7$, which indicates positive economies of scale.

air stations, the total displacement of ships homeported at naval stations, the number of faculty at training installations, and the number of beds at hospitals. None of these yielded a more intuitive and statistically sound CER. (Note, however, that the operational variables are necessary in order to make estimates of marginal cost for use in force level studies, as described later.)

That it is possible to explain cost with so few variables means that these represent, in the aggregate, many of the more detailed determinants. Building area and acreage represent the overall size of the base including roads, fences, etc. The effect of the explanatory variables must therefore be interpreted in a particular way: the measured effect of increasing an included variable is actually the effect of increasing, as well, the broader set of determinants it represents.

This reinforces the point that BOS are general, non-mission related activities. And it also implies that having to construct the full DBFR of about 100 variables may add more to the Navy's reporting burden than to useful knowledge.

The exponential form of equation yields a single estimate of elasticity¹ independent of base size. The exponent of MIL, for example, implies that a one percent increase in the number of military personnel leads to a .034 percent rise in BOS cost.

The coefficient for civilian personnel is much greater than for military personnel, possibly because civilians carry out BOS functions. AREA has a high coefficient because much BOS activity is devoted to the upkeep of buildings (Real Property Maintenance Activities, or RPMA).

The exponential form of equation has the property that the returns to scale (the scale elasticity) is the same regardless of base size. The elasticity of .75 means that doubling the size of a base would increase BOS COST by only 70 percent (see footnote d of table 4). Other functional forms that were rejected by the statistical criterion mentioned earlier do not have this property. The constant scale elasticity is thus a finding, not an assumption.

The major regression equation in table 4 does not distinguish among different types of base. In the process of estimating this equation, we checked to see if the regression

¹The elasticity of y with respect to x is defined as the percentage change in y that results from a 1% change in x.

coefficients would be different for different types of bases.¹ It turned out that the coefficients had to be modified for only 23 installations: the 10 naval bases (a naval base was defined earlier to be a naval station, amphibious base or submarine base) and the 13 communications and security facilities. Table 5 shows the new estimated coefficients.

The elasticity associated with the number of active military personnel nearly doubles in value at the naval bases (but still remains lower than the coefficient on civilian personnel). The increase may be related to the fact that many military personnel associated with naval bases are stationed on ships and submarines serviced by the base. The piers and other shore-side facilities for these ships require maintenance, repair, and other support that may not be "picked up" by AREA, ACRE, and the other explanatory variables. (It is interesting, however, that none of the ship-related variables shown in table 3 increased the explanatory power of the regression.)

At the 13 communications stations and security group activities, the elasticity associated with military personnel also increases sharply. The coefficient of area almost disappears. Despite the large coefficient changes for Naval Bases and communications and security facilities, the scale elasticity remains close to the estimate of .75 found for the other kinds of bases.

It is remarkable that with so few exceptions, a single equation with only five variables is able to predict so well the BOS cost of a wide variety of naval installations: naval air stations, supply centers, weapons stations, research laboratories, weapons test ranges, shipyards, schools and so on. The explanation is the general nature of BOS resources mentioned above. If such highly aggregate variables as total personnel and area can explain BOS cost across different naval air stations, for example, it is plausible that bases with different missions would follow that same pattern. "A building is a building."

A later section will discuss the "robustness" of our findings: whether the findings are sensitive to the choices of explanatory variables, the functional form, and the use of 1980 data.

¹This was done by including dummy variables (shown in table 3) to indicate each type of base. The dummy variables were included linearly and also multiplied by the other variables. In all cases but those described in the text, the dummy variables lacked statistical significance at the 10% level.

TABLE 5
OTHER REGRESSIONS

10 Naval Bases

$$\text{BOS COST} = 0.0405(\text{MIL})^{.066}(\text{CIV})^{.248}(\text{AREA})^{.249}(\text{ACRE})^{.061}(\text{BTU})^{.155}$$

t-statistic

MIL	3.6
Scale elasticity	.78

13 Communications Stations and Security Activities

$$\text{BOS COST} = .0405(\text{MIL})^{.234}(\text{CIV})^{.248}(\text{AREA})^{.0014}(\text{ACRE})^{.061}(\text{BTU})^{.155}$$

t-statistic

MIL	2.3
AREA	.02
Scale elasticity	.70

NOTE: See table 4 for the value of R^2 , and for the t-statistics of those coefficients that did not change from the major regression. For comparison, the coefficient of MIL was .034 in the major regression, and the coefficient of AREA was .249.

POLICY IMPLICATIONS

ECONOMIES OF SCALE

Can the Navy save BOS funds through consolidation? The scale elasticities shown in tables 4 and 5 suggest modest savings. Doubling all the resources at the base increases BOS cost by only 70 percent. (The scale elasticity is about .75, and 2 raised to this power is about 1.7).

Consider, for example, the case of naval air stations, whose BOS cost averages about \$35 million annually. If two "average" stations were combined into one, the total BOS cost would be only about \$60 million ($1.7 \times \35 million). This is an annual saving of about \$10 million, or 15 percent from the \$70 million cost of operating the stations separately.

As we pointed out in the introduction, however, a saving in BOS cost is not a sufficient reason for consolidation. Consolidation might require spending for new land, new construction and re-settlement. Such fixed costs could outweigh the yearly savings in BOS cost (appropriately discounted to the present for comparison with the fixed costs). Readiness could also be affected: The largest organizations are not necessarily the smoothest-running. These effects must all be analyzed before judging the full consequences of consolidation. The scale economies for BOS cost could prove a minor factor.

EFFICIENCY OF INDIVIDUAL BASES

Are some naval bases currently spending too much on BOS? As discussed earlier, a complete answer to this question requires knowing how BOS spending at a base contributes to readiness and retention.

It is possible, for example, that BOS spending is too low at all bases, in the sense that increased spending would bring high returns in improved readiness and retention. Whether this is the case cannot be determined without relating BOS to readiness and retention -- a difficult analytical task. But, whatever total spending level the Navy chooses, there is something to be said for allocating it appropriately across installations. If some bases are spending disproportionately, their expenditures may be reasonable targets for closer study.

The regression equation is a way to determine what is "disproportionate" spending. The equation estimates the average BOS expenditures of bases, adjusted for their specific characteristics. For any given base, the "adjusted average",

or "predicted" level of BOS cost is simply found by substituting the base's characteristics (AREA, ACRE, etc.) into the regression equation.

Subtracting the "predicted" value of BOS from the "observed" value given by the actual data yields the "residual". As a final step, we express the residual as a percentage of the predicted value of BOS cost. A base with a "relative residual" of 10 percent is one that is spending 10 percent more than what the CER predicts for that base. A relative measure seems closer to the intuitive notion of efficiency: a large base with a large residual is no more or less efficient than a small base with a proportionally small residual.

Consider, for example, the Naval Support Activity at New Orleans. Table 6 lists the explanatory variables for this base, and shows the result of substituting these variables into the regression equation. The resulting value of \$24.30 million is the activity's predicted BOS cost, based on the BOS cost of the entire population of bases. Subtracting the actual value of BOS cost at NSA New Orleans yields a residual of -\$16.13 million. This base is spending 66 percent less than predicted.

Unusually large and small residuals are shown in the following tables. Those bases whose relative residual is large and positive are listed in table 7. Those with large negative values are shown in table 8.

It is especially important to be clear about the implications of this kind of analysis. It is not certain that the Bethesda Medical Center, for example, is wasting money or that NSC Oakland is letting its physical plant decay. There could be good and sufficient reasons for these disparities -- reasons other than simple misallocation of resources. There might be reporting errors in the data. A base that is spending less than predicted might be receiving some unreimbursed BOS services from another base. A base that is spending more than predicted could be carrying out missions that are not fully captured by our explanatory variables. No statistical relationship is perfect.

Another important caveat is that as we pointed out earlier, we lack measures of the output of BOS spending: readiness to perform missions, and retention of personnel. This means that even aside from the above factors, we cannot make judgment about the "efficiency" of resource allocation at bases.

Our analysis, therefore, only suggests that the Navy should take a more detailed look at such bases. Only where no

TABLE 6

SAMPLE RESIDUAL ANALYSIS: NSA NEW ORLEANS

Characteristics

MIL = 2139
CIV = 1894
AREA = 2579 (Thousand square feet)
ACRE = .225
BTU = 349,520

BOS Cost predicted
\$24.30 million^a

BOS Cost actual
\$ 8.17 million

Residual
-\$16.13 million

Relative residual
-66%^b

^a0.0405(MIL) + 0.34(CIV) + 248(AREA) + 249(ACRE) + 0.61(BTU) + 155

^b Residual x 100
BOS Cost predicted

TABLE 7
BASES WITH BOS SPENDING MORE THAN 50% ABOVE PREDICTED

<u>UIC</u>	<u>Base</u>	<u>Relative Residual</u>
00168	National Naval Medical Center, Bethesda MD	183%
00158	NAS, Willow Grove, Horsham, PA	96
62688	Naval Station, Norfolk, Norfolk, VA	83
00389	Naval Station, Roosevelt Roads, Ceiba, PR	77
60191	NAS, Oceana, Virginia Beach, Virginia	75
60036	Naval Weapons Station, Concord, Concord, CA	67
00314	Naval Submarine Base, Pearl Harbor, Honolulu, HI	63
00197	Naval Ordnance Station, Louisville, Louisville, KY	57
63042	NAS, Lemoore, Lemoore, CA	57
00188	NAS, Norfolk, Norfolk, VA	54
00247	Naval Training Center, San Diego, San Diego, CA	52
62813	Naval Station, Pearl Harbor, Honolulu, HI	51

TABLE 8

BASES WITH BOS SPENDING MORE THAN 50% BELOW PREDICTED

<u>UIC</u>	<u>Base</u>	<u>Relative Residuals</u>
00228	Naval Supply Center, Oakland, Oakland, CA	-51%
00406	Naval Supply Center, Puget Sound, Bremerton, WA	-52
5340A	Nav Pac Missile Range Facility, Kekaha, HI	-52
62741	Naval Supply Corps School Athens, GA	-53
63401	Fleet ASW Training Center Lant, Norfolk, VA	-56
00124	Naval War College, Newport, RI	-58
62271	Naval Postgraduate School Monterey, CA	-60
61414	Naval Amphibious Base Little Creek, Norfolk, VA	-64
00205	Naval Support Activity, New Orleans, New Orleans, LA	-66
61665	Fleet Combat Training Center, PAC, San Diego, CA	-68
00849	Naval Security Group Activity, Skaggs Island, Sonoma, CA	-72
62603	Fleet and Mine Warfare Training Center, Charleston, SC	-76
70240	Naval Communication Station, San Diego, CA	-84

"special cases" are found to exist should the Navy consider shifting BOS funds from "overspenders" to "underspenders."

This examination has already begun, and borne fruit. Working from an earlier version of this report, OP-44 discovered that the Bethesda Medical Center had been including all spending by its medical school under BOS, and the Naval Air Station at Norfolk had been including all spending by the NARF, the Safety Center, and some other tenants. Improvements in the quality of data are thus one of the consequences of cost studies such as this one.

BEST TECHNIQUE FOR COMPARING BOS SPENDING AMONG BASES

This section concerns techniques for analyzing BOS spending -- in particular, for estimating what a base "should" spend for BOS. Lacking measures of output, we have used regression analysis to explain actual spending. The regression equation, or CER relates BOS cost to a variety of explanatory variables acting together. Our CER assumes that bases with more military and civilian personnel, building area, land acreage and energy use have higher expected, or predicted BOS cost.

It is this predicted level that serves as the measure of what a base "should" spend. Bases that spend much more than this (i.e., that have high absolute or relative residuals) are the likely candidates for budget cuts (subject, of course, to the necessary detailed examination).

The OSD analysis of BOS spending, on the other hand, focuses on the simple ratio of BOS spending per mission person (military plus civilian) as an indicator of what a base should spend. Here, it is the bases with higher than average BOS cost per mission person that are the likely candidates for budget cuts.

We recommend the regression approach. It offers three advantages over simple ratios. First, it recognizes that BOS cost might depend on more than one explanatory variable. Using "BOS cost per mission person" as the criterion for "allowed" spending implicitly assumes that the number of mission personnel is the only causative factor. The problem is not avoided by using a variety of simple ratios. Adding "BOS cost per square foot of building area" to the list does provide some information, but not in a form that adds in an obvious way to the understanding obtained from examining BOS cost per mission person: BOS cost per square foot assumes that only building area is the determining factor. We need a way of measuring the combined effect of several explanatory variables, and that is what the regression does: The number of military personnel explains part of BOS cost, building area

explains another part, and so on. No single explanatory variable is forced to account for the effects of all.

Second, the regression technique recognizes that the relationship between BOS cost and an explanatory variable need not be a proportional one. Using BOS cost per mission person as the criterion for allowed spending implicitly assumes that a one percent increase in mission personnel should lead to a one percent (strictly proportional) increase in BOS cost. The regression approach is not limited to proportional relationships.

Finally, regression offers a systematic way of making the selection of explanatory variables and functional form: It allows one to test various choices to see which ones provide the best fit with the data. The ratio of BOS cost per mission person can be subjected to statistical tests of fit, but OSD has not offered such tests as justification for using the simple ratio. And the test results are, in fact, disappointing. We tried a regression equation with mission personnel alone and found an exponential coefficient of .275 (the OSD ratio assumes 1.0) and an R^2 of only .26; moreover, a regression that forces a proportional relationship has an R^2 of only .11 (table 9).

TABLE 9
STATISTICAL TESTS OF BOS COST PER MISSION PERSON

.275
BOS COST = 2.32 MISPERS

R^2 .26

t-statistica

BOS COST = .0037 MISPERS

R^2 .11

^aThe point of this regression is that the exponent of MISPERS is not 1.0, which would indicate a proportional relationship with BOS cost. A statistical test shows that, with high confidence, the exponent is indeed different from 1.0 (t-statistic of 18.6, which implies statistical significance at better than the .01 percent level).

In summary, statistical regression techniques offer the advantages of flexibility in trying combinations of explanatory variables and functional forms, and testing them for goodness of fit at every step. BOS cost per mission person states the model by assertion. Some BOS activities are provided directly to personnel, but there's no a priori reason why the relationship should be a strictly proportional one, or why BOS cost should be related to military personnel alone. Our own CER analysis shows that BOS cost is definitely not proportional to total personnel -- mission plus BOS -- and that other variables also contribute significantly to explanation.

Note that the simple ratio of BOS cost per mission person is not even a good proxy for the regression approach. The two approaches give completely different results (figures 1 and 2): Many bases with high BOS cost per mission person have low absolute or relative residual, and many with low BOS cost per mission person have high absolute or relative residual. Over the 30 naval air stations, the correlation coefficient between the two measures is an entirely negligible .02 (the value for perfect correlation is 1.00).

MARGINAL COST OF BASE EXPANSION

So far, two features of the CER have been applied to resource allocation problems: the scale elasticity revealed the economies of scale in BOS spending, and the residuals indicated which installations spent more or less than predicted (and which therefore deserved a closer look).

The individual coefficients of the CER also have an application. Just as the scale elasticity gives the percentage increase in BOS cost due to a 1 percent increase in all the explanatory variables moving together, each coefficient (exponent) gives the percentage increase in BOS cost due to a 1 percent increase in that variable alone. The coefficient for MIL in the major regression, for example, indicates that a 1 percent increase in the number of military personnel yields a .034 percent increase in BOS cost (holding the other explanatory variables constant).

This relationship can be used to estimate the marginal BOS cost associated with an increase in military personnel at a particular base. Take NAS Alameda, for example. The 1980 DBFR lists 4882 for the number of military personnel and \$42.2 million for BOS cost. A 1 percent increase in military personnel (49 men) should lead to a .034 percent increase in BOS cost (\$14,348). The marginal cost is therefore \$293 per man.

**FIG. 1: RESIDUAL vs. RATIO MEASURE OF BOS SPENDING
(30 NAVAL AIR STATIONS)**

FIG. 2: RELATIVE RESIDUAL vs. RATIO MEASURE OF BOS SPENDING (30 NAVAL AIR STATIONS)

Marginal costs associated with the other explanatory variables can be derived in the same way. These factors might be useful in planning changes to the Navy shore structure -- provided, of course, that these changes are expressed in terms of the resource variables that appear in the CER. (A change will typically involve more than one explanatory variable; the marginal cost calculation will account for all.)

Suppose, however, that an anticipated change in the Navy base structure is not expressed in terms of these resource variables. The Navy might be planning to expand a NARF, for example, and may want a more refined estimate of the marginal cost of additional area of this sort, rather than relying on a general estimate based on a composite for all types of structures (i.e., the AREA variable used in this analysis). To estimate this marginal cost, one could simply construct a new list of explanatory variables that includes the new one and any others that appeared useful as control variables. (The coefficient of an explanatory variables measures the effect of that variable on the dependent variable holding all other explanatory variables constant.)

As another application, the explanatory variables need not be limited to resources such as people and area, but could be operational variables such as the ships and aircraft that create the ultimate demand for resources at naval bases and air stations. (The number of students is the operational variable that generates the need for resources at training installations, the number of beds generates the need for resources at hospitals, etc.). Force level studies typically require estimates of the total marginal cost of ships and aircraft, and one component of these total marginal costs is the BOS cost that bases spend in supporting those ships and aircraft. These marginal costs can be estimated using the above techniques. The analyst first selects some characteristics of ships and aircraft that appear related to BOS cost: the empty weight, thrust, or spotting factor of aircraft, and the displacement and shaft horsepower of ships. One could also include the size of crew. Control variables would then be selected and the resulting regression would be estimated. The coefficients of the equation (CER) would yield the cost per ton of ship displacement or per shipboard person, and the cost per pound of aircraft weight or per aircraft crewman. The marginal cost associated with a given ship or aircraft can then be determined by noting the displacement, empty weight, crew size, etc., for the ship or aircraft being considered.

Some estimates of this sort were carried out and compared with the estimates given in the Navy Program Factors Manual. In general, the regression, or CER approach gave much higher cost

estimates for aircraft and somewhat lower estimates for ships. Work on this "offshoot" of the study is still continuing, and the results will be reported separately.

REPORTING SYSTEMS

The next issue concerns the efficiency of our reporting systems. Does the DBFR add anything to the information already available in Washington? Could the number of variables be reduced to ease the reporting burden on the Navy without lowering the quality of decision making?

Uniqueness of the DBFR

Our analysis suggests that the DBFR is, indeed, unique. The high "goodness of fit" achieved by the CER appears directly related to the comprehensiveness and comparability of the DBFR data. In reporting BOS cost, host commands were asked by the OSD instructions to include not only their own spending, but also BOS spending by all the tenant commands at the base. OP-44 (Shore Activities Planning and Programming Division) deserves the credit for ensuring that the Navy's bases followed this guidance.

Different Navy tenants at a given base can receive BOS funds through different claimants. Some tenants belong to different Services, and their BOS funds are thus not listed in Navy budget accounts. The DBFR is the only system we are aware of that reports total BOS cost on a functional basis -- by installation.

The DBFR also takes a comprehensive view in reporting the manpower and physical predictors of BOS cost. OP-44 ensures that bases report total military personnel, for all Services. Navy personnel assigned to ships and aircraft are included because the base must provide BOS services when the ships and aircraft are physically at the base. Moreover, ships and aircraft (and their personnel) are reported at the bases that actually provide the BOS services. Other reporting systems, such as the Force Distribution Report, list ships by homeport, even if the ships are regularly assigned to tie up elsewhere when in port. For example, two CVs homeported at Naval Station, San Diego normally tie up at Naval Air Station, North Island.

The DBFR thus keeps more complete track of resources, and a more comparable track of BOS cost and its personnel and physical determinants. The proof of the pudding is that we obtained poorer statistical results when we used variables reported by the FDR, rather than by the DBFR.

Level of Detail

The DBFR thus appears to be a worthwhile system for BOS reporting. But it is "overkill." It asks for roughly 100 separate pieces of data, far more than the five variables (number of military personnel, area, etc.) needed for a good aggregate model of BOS cost. As mentioned above, these five variables are able to account for the effect on BOS cost of detailed personnel variables like the numbers of military dependents, retirees, and reserves, and the number of civilians assigned to NARFs and to research laboratories. We also did not need operational variables like the number of aircraft at air stations, the total displacement of ships homeported at naval stations, the number of faculty at training installations, and the number of beds at hospitals. These operational variables are necessary, however, in order to make estimates of marginal cost for use in force level studies, as described earlier.

Our analysis is not definitive enough to suggest collecting the five resource variables plus the operational variables and no others. Different kinds of analysis require different variables. Our analysis does suggest, however that the full DBFR imposes a reporting burden that exceeds the value obtained.

ROBUSTNESS OF THE STUDY FINDINGS

The findings of this study are no more valid than the regression equation on which they are based. This section examines the stability of the regression results to changes in explanatory variables, functional form, and year of the data.

Tables 10 and 11 show the pattern of relative residuals caused by changes in explanatory variables and functional forms. (The relative residuals are an important output of the study, and one that is especially sensitive to these changes: residuals could easily change even if the scale elasticity did not.)

In both tables, regression I is the one derived earlier and shown in tables 4 and 5¹. In regression II, the dependent and explanatory variables are entered in the linear form. Equations III and IV use a somewhat different set of explanatory variables - those that yielded the best fit on purely statistical grounds. (Resource and operational variables are mixed in this "best set," and this creates problems of interpretation.) Regression III uses the exponential form (just like regression I) and IV the linear form (just like regression II).

Tables 10 and 11 show that bases with large relative residuals (positive and negative) using regression I also have large relative residuals (positive and negative) using the alternate regressions. In other words, the pattern of residuals is stable and we thus have more confidence that our findings are not accidents of analytical technique.

Another check on the regression equation is to see if it yields stable predictions over time. If it does, we can have greater confidence in the scale elasticity shown in table 4, and in using the equation for residual analysis in the future. Data from the 1980 DBFR became available toward the end of the study, and we used it to re-estimate the regression equation (table 12). (The same explanatory variables and functional form were used, but the coefficients were re-calculated with the later data.) Several of the coefficients changed somewhat, and the level of statistical significance for the number of military personnel fell substantially. However, the other levels of statistical significance and the value of R^2 remained high. The scale elasticity changed little in practical terms: Combining two naval air stations would save 20 percent on BOS cost (1980 data) rather than 15 percent (1979

¹The three equations for the three categories of bases come from a single regression that includes dummy variables.

TABLE 10
STABILITY OF RELATIVE RESIDUALS:
BASES SPENDING MORE THAN 50% ABOVE PREDICTED

UIC	Base	Relative Residuals for Regressions:			
		I	II	III	IV
00168	National Naval Medical Center, Bethesda MD	183%	198%	150%	84%
00158	NAS, Willow Grove, Horsham, PA	96	103	70	68
62688	Naval Station, Norfolk, Norfolk, VA	83	39	85	37
00389	Naval Station, Roosevelt Roads, Ceiba, PR	77	108	74	130
60191	NAS, Oceana, Virginia Beach, Virginia	75	40	49	10
60036	Naval Weapons Station, Concord, Concord, CA	67	86	104	158
00314	Naval Submarine Base, Pearl Harbor, Honolulu, HI	63	52	61	63
00197	Naval Ordnance Station, Louisville, Louisville, KY	57	40	46	46
63042	NAS, Lemoore, Lemoore, CA	57	79	39	45
00188	NAS, Norfolk, Norfolk, VA	54	54	27	52
00247	Naval Training Center, San Diego, San Diego, CA	52	54	75	82
62813	Naval Station, Pearl Harbor, Honolulu, HI	51	63	46	57

TABLE 11

STABILITY OF RELATIVE RESIDUALS:
BASES SPENDING MORE THAN 50% BELOW PREDICTED

UIC	Base	<u>Relative Residuals for Regressions:</u>			
		<u>I</u>	<u>II</u>	<u>III</u>	<u>IV</u>
00228	Naval Supply Center, Oakland, Oakland, CA	-51%	-48%	-48%	-52%
00406	Naval Supply Center, Puget Sound, Bremerton, WA	-52%	-56%	-50%	-52%
5340A	Nav Pac Missile Range Facility, Kekaha, HI	-52%	-61%	-46%	-53%
62741	Naval Supply Corps School Athens, GA	-53%	-77%	-48%	-71%
63401	Fleet ASW Training Center Lant, Norfolk, VA	-56%	-91%	-47%	-88%
00124	Naval War College, Newport, RI	-58%	-75%	-55%	-69%
62271	Naval Postgraduate School Monterey, CA	-60%	-57%	-53%	-46%
61414	Naval Amphibious Base Little Creek, Norfolk, VA	-64%	-44%	-62%	-45%
00205	Naval Support Activity, New Orleans, New Orleans, LA	-66%	-67%	-62%	-58%
61665	Fleet Combat Training Center, PAC, San Diego, CA	-68%	-81%	-63%	-75%
00849	Naval Security Group Activity, Skaggs Island, Sonoma, CA	-72%	-83%	-71%	-80%
62603	Fleet and Mine Warfare Training Center, Charleston, SC	-76%	-96%	-73%	-94%
70240	Naval Communication Station, San Diego, CA	-84%	-95%	-83%	-94%

TABLE 12
COMPARISON OF REGRESSIONS USING 1979 AND 1980 DBFR DATA

	<u>1979 Data^a</u>	<u>1980 Data</u>
Coefficient (Level of Statistical Significance)		
MIL	.036 (.9%)	.030 (24%)
CIV	.247 (.02%)	.272 (.01%)
AREA	.253 (.01%)	.205 (.10%)
ACRE	.061 (.05%)	.070 (.10%)
BTU	.156 (.01%)	.116 (.31%)
Scale Elasticity	.75	.69
R ²	.90	.85

^aThese coefficients are slightly different from those shown in table 4 because two bases had to be deleted from the 1979 list in order to compare results with 1980 (one 1979 base was closed, and one was made a tenant of another.)

data). More importantly, the list of bases with especially high and especially low relative residuals shows considerable stability from one year to the other (see page A-1, second paragraph).

APPENDIX A

INPUTS AND SELECTED OUTPUTS OF REGRESSION ANALYSIS

APPENDIX A
INPUTS AND SELECTED OUTPUTS OF REGRESSION ANALYSIS

Tables A-1 and A-2 define and list the data used to derive the regression equation discussed in the text. Table A-2 also presents some statistics generated by the regression. Except where noted, the data are from the 1979 DBFR (the listing is a computer printout that gives more digits than needed.) There is no value of "relative residual (1980)" for two bases, UICs 70024 and 00743. One was closed in 1980, and one was made a tenant of another host.

An impression of the stability of the results can be obtained from table A-3. In this table, the observations are ordered by the value of the relative residual in 1979. The first page of the table shows that those bases with large positive relative residuals in 1979 also tend to have large positive relative residuals in 1980. The third page of the table illustrates a similar point for negative relative residuals.

Table A-4 lists the correlations among the variables used in the central regression.

TABLE A-1
DESCRIPTIONS OF VARIABLES

<u>Abbreviation</u>	<u>Description</u>
UIC	Uniform Installation Code
MIL	The number of active military personnel
CIV	The number of civilian personnel
AREA	Building area in square feet
ACRE	Total land area in acres
BTU	Energy consumption in BTUs
BOS COST ACTUAL	BOS Cost actually spent, in millions of 1979 dollars
BOS COST PREDICTED	BOS cost predicted from regression equation, in millions of 1979 dollars
ABSOLUTE RESIDUAL	$\text{ABSOLUTE RESIDUAL} = (\text{BOS COST ACTUAL}) - (\text{BOS COST PREDICTED})$
RELATIVE RESIDUAL	$\text{RELATIVE RESIDUAL} = \frac{\text{ABSOLUTE RESIDUAL}}{\text{BOS COST PREDICTED}}$
RELATIVE RESIDUAL (1980)	Same as relative residual, but using 1980 data

TABLE A-2

DATA

NAVAL AIR STATIONS

		UIC	MOS.	COST	MIL	CIV	AREA	ACRE	BLU
00173	VA NAS, NORFOLK	198	96-895	7246	5837	7522		3200	1330830.6
00207	FL NAS, INDIANAPOLIS	207	46-399	8550	4558	7012		4614	1275519.4
02213	FL NAS, KEY WEST	213	32-197	1547	659	5742		5247	296400.8
00213	FL NAS, ALLENDALE	236	42-191	4862	7051	8645		2697	2525348.2
00216	CA NAS, NORTH ISLAND	246	141-740	22770	9310	41086		46031	362351.4
00295	CA NAS, HOFFEIT FIELD	296	38-422	5110	2437	3321		3909	397968.8
00295	CA NAS, BARBERS POINT	334	23-541	3270	504	2363		32779	84277.8
00254	HI NAS, PEARL STATION, ROOSEVELT ROADS	367	64-372	3123	1285	6249		36861	277079.0
00329	PR NAVF STATION, ROOSEVELT ROADS	626	51-139	6577	989	4353		71042	693751.4
00629	BK NAS, WISBURY ISLAND	6097	24-375	3213	510	2476		7259	539899.2
00462	DE NAS, REINHOLDICK	60191	56-294	9626	926	3924		8872	631466.4
00191	VI NAS, JECTARA	69209	32-714	7709	727	2930		20648	387191.0
00209	FL NAS, CECIL FIELD	65259	33-462	10256	1041	3692		22972	471401.8
00255	CA NAS, KIRKHAM	60462	19-538	1655	164	2643		5348	696602.6
00161	AK NAVAL STATION, ADCK	x							
40495	NJ NAS, FAIRPORT	60495	16-796	1119	276	1270		152304	66702.6
63242	GA NAS, LEHOODRE	63642	56-275	4559	904	4679		39173	649732.6
68723	CA NAVAL AIR FACILITY, EL CENTRICO	6-196	7-562	377	193	1220		621711	68071.2
00161	MA NAS, SOUTHERN WEYMOUTH	101	10-596	2667	248	996		2320	17444.8
00156	PA NAS, WILLOW GROVE	158	29-713	875	980	851		853	20865.6
00156	FL NAS, ATLANTA	196	7-917	555	141	387		163	45671.4
00194	GA NAS, MEMPHIS	206	12-758	1010	486	1275		4924	125474.6
00195	LA NAS, NEW ORLEANS	215	12-519	1058	529	917		795	141124.2
00215	TX NAS, DALLAS	275	11-241	977	293	1283		1285	382651.2
00276	IL NAS, GLENVIEW	294	62-564	5020	6076	5864		2869	1315619.8
00264	FL NAS, FORT MEADE	316	57-644	2229	4354	5954		4373	1249840.0
00215	TX NAS, CORPUS CHRISTI	539	35-266	3126	1278	6121		3498	1411224.6
00259	TX NAS, MEMPHIS	60241	13-566	1648	492	1564		5582	162257.8
00241	TX NAS, KINGSVILLE	60376	14-049	1542	528	1601		9633	170393.4
60376	TX NAS, CHASE FIELD	60508	14-713	2080	496	2079		11029	338383.0
60508	FL WHITING FIELD	63043	13-683	1444	448	2092		13495	2688953.2
63043	MS NAS, MERIDIAN								

TABLE A-2 (Cont'd)

NAVAL AIR STATIONS

	BOS COST ACTUAL (1979)	BOS COST PREDICTED - (1979)	RELATIVE ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1980)
00150 VA NAS, ANTHONY K. FL 177 FI NAS, JACKSONVILLE	96.895	63.018596	33.8764042	0.55343076
00212 FL NAS, KEY WEST	46.399	59.571587	-13.1725866	-0.20433544
00213 FL NAS, ALBUQUERQUE	32.199	26.215548	5.9834517	0.26638587
00214 FL NAS, ALBUQUERQUE	42.191	73.675114	-31.4841156	-0.41376405
00215 FL NAS, ALBUQUERQUE	141.740	102.118444	33.6215559	0.32021878
00216 FL NAS, ALBUQUERQUE	38.422	34.366131	4.1158687	-0.0430078
00217 FL NAS, ALBUQUERQUE	73.541	18.704914	4.83e0852	0.31200818
00218 FL NAS, ALBUQUERQUE	64.372	36.329498	28.0513924	0.7995976
00219 FL NAVFAC STATION, EASTON, MD	51.139	38.211876	12.9271242	0.36447109
00220 MA NAS, WINSTON-SALEM	24.575	22.955695	1.6193049	0.111416262
00221 MT NAS, PINEY FLICK	56.294	32.147316	24.1466840	0.78223277
00222 MA NAS, OCEANA	32.714	27.283176	5.4306237	0.23569751
00223 FL NAS, CIVETTE, LEBANON	33.402	33.204343	0.1976566	0.03666927
00224 MA NAS, KIRKHAM, ENGLAND	19.638	20.073398	-0.4373980	0.02802445
00225 AX NAVFAC STATION, ANAK, RAIJAH	16.796	14.049853	2.7461471	0.26663248
00226 FL NAS, KIRKHAM	56.275	35.827723	20.4472775	0.59862241
00227 CA NAVFAC FACILITY, FL CENTRO	7.562	13.461978	-5.8999776	-0.36398646
00228 CA NAVFAC, SMITH LEYMUTH	10.590	11.916175	-1.3261752	-0.02737247
00229 MA NAS, LIMA, PERU	29.713	15.126823	14.5861774	1.030356691
00230 AX NAVFAC STATION, ATLANTA	7.917	5.377991	2.5390088	0.65805403
00231 LA NAS, NEW ORLEANS	12.758	14.460359	-1.7023587	-0.04857132
00232 TX NAS, BROWNsville	12.519	12.434770	0.0842298	0.03719359
00233 TX NAS, MURRAY	11.241	13.903380	-2.6622903	-0.11956030
00234 FL NAS, FRANCIA, A.	62.564	58.627548	3.9364525	0.08420022
00235 TX NAS, CORINTH, CHRISTIAN	57.644	53.518132	4.1258678	0.09577815
00236 TN NAS, MEMPHIS	35.206	40.108093	-4.9030934	-0.69731193
00237 TX NAS, KNOXVILLE	13.566	16.253641	-2.6926411	-0.10410717
00238 TX NAS, CHAFFEE FIELD	14.049	17.353225	-3.2542250	-0.13027774
00239 FL WHITING FLD, NC	14.713	20.544239	-5.8312391	-0.23516272
00240 NC NAS, MERIDIAN	13.683	19.352701	-5.6707014	-0.24133375
				-0.34057294

TABLE A-2 (Cont'd)

NAVAL STATIONS

		UIC BOS COST	MIL	CIV	AREA	ACRE	BTU
00129	CT NAVAL SUB BASE, NEW LONDON	129	21,923	11524	1081	5536	1136
00145	CA NAVAL STATION, SAN DIEGO	245	88,704	44155	2756	4298	1164
00314	HI NAVAL SUB BASE, PEARL HARBOR	314	19,354	2503	285	1671	103
00314	FL NAVAL STATION, MAYPORT	60201	31,184	12895	742	1880	3515
66261	FL NAVAL STATION, CHARLESTON	61165	51,710	20911	11782	2847	1155
61165	SC NAVAL STATION, LITTLE CREEK	61414	17,762	6903	856	1245	11813
61414	VA NAVAL AMPHIB BASE, CORONADO	62021	18,030	2990	388	1694	4044
62021	CA NAVAL AMPHIB BASE, NORFOLK	62638	91,241	38508	1787	3635	1450
62688	V4 NAVAL STATION, PEARL HARBOR	62813	54,917	11829	1537	4162	838
62813	HI NAVAL STATION, PEARL HARBOR	63406	6,613	5882	115	431	289
63406	CA NAV SUB SUPPORT FAC, SAN DIEGO						49955.2

PUBLIC WORK CENTERS

		UIC BOS COST	MIL	CIV	AREA	ACRE	BTU
00117	VA NAV PUBLIC WKS CTR, NORFOLK	187	24,389	17	1843	4394	474
62755	HI NAV PUR WKS CTR, PEARL HARBOR	40,306	13	1558	1099	2116	34905.0
63387	CA NAV PUBLIC WKS CTR, SAN DIEGO	63387	27,886	3	675	8068	1518
63113	IL NAV PUE WKS CTR, G. LAKES	63113	14,240	11	666	3501	540
65113	IL NAV PUE WKS CTR, PENSACOLA	65114	14,918	9	797	1556	297
65114	FL NAV PUBLIC WKS CTR, S FRAN	65378	33,721	13	1117	10165	696
65378	CA NAV PUBLIC WKS CTR						651476.0

TABLE A-2 (Cont'd)

NAVAL STATIONS

	RNS COST ACTUAL (1979)	RNS COST PREDICTED (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
00139 PT NAVFAC "C", NEW IRELAND	31.923	51.675346	-19.7523457	-0.3628876
00245 FA NAVAL STATION, SAN FRANCISCO	88.704	83.916247	4.7937533	0.40924599
00714 HT NAVAL SHIP BASE, PEARL HARBOR	19.354	11.872943	7.4810573	0.71431806
66201 PT NAVAL STATION, MAYPORT	31.184	33.516129	-2.3321292	-0.03974591
61165 SF NAVAL STATION, CHICAGO	51.710	60.647917	-9.9379167	-0.1308523
61414 FA NAVAL AMPHIBIAN BASE, LITTLE E CREEK	17.762	49.070538	-31.3025383	-0.61765245
62621 FA NAVAL AMPHIBIAN BASE, CORONADO	18.050	20.092587	-2.0635870	-0.05293167
62680 FA NAVAL STATION, NORFOLK	91.241	49.837112	41.4038979	0.85084962
63812 HT NAVAL STATION, PEARL HARBOR	54.917	36.269450	18.6478503	0.54172349
63406 FA NAV SUB SUPPORT FAC, SAN DIEGO	6.613	7.897426	-1.2844263	-0.03601567
				-0.27249758

FIRE IC WORK CENTERS

	RNS COST ACTUAL (1979)	RNS COST PREDICTED (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
00137 FA NAU FIRE IC WKS CTR, MORTON K 6.27-65 HT NAV FIRE IC WKS CTR, PEARL HARBOR	24.389	25.031045	-0.6420446	0.01430046	0.15510682
6.27-65 FA NAU FIRE IC WKS CTR, SAN MIGUEL	40.396	31.691530	8.6144201	0.30337459	-0.33439408
6.27-67 FA NAU FIRE IC WKS CTR, LAKE C	27.886	24.260638	3.6253521	0.19065295	2.87141763
6.5113 FA NAU FIRE IC WKS CTR, PENSACOLA	14.240	18.450464	-4.210642	-0.17400452	-0.19704267
6.5114 PT NAU FIRE IC WKS CTR, S FRAZ	14.918	20.663800	-5.7458005	-0.22966736	0.40853462
6.5122 FA NAU FIRE IC WKS CTR, S FRAZ	33.721	29.345061	4.3539393	0.18239156	0.79396639

TABLE A-2 (Cont'd)

	PRINCIPAL CENTERS			
	MIL	CIV	AREA	ACRE
				STU
60140 10 NATIONAL MED CIR 2 REG MED CTR, PENSACOLA	163	88.729	2391	2133
60141 11 NAV REG MED CIR, FORT LEE, VA	203	4.722	453	325
60142 12 NAV REG MED CTR, JACKSONVILLE	285	2.376	224	89
60143 13 NAV REG MED CTR, NEW ORLEANS	285	2.352	478	119
60144 14 NAV REG MED CTR, SAN DIEGO	68082	7.702	1064	1196
60145 15 NAV REG MED CTR, CHAMPSVILLE	68082	7.702	1064	1196
60146 16 NAV REG MED CTR, NEWPORT	68070	6.947	943	1416
60025 17 NAV REG MED CTR, LONG BEACH	68092	9.698	863	772
60036 18 NAV REG MED CTR, G. LAKES	68093	6.152	561	626
60037 19 NAV REG MED CTR, CAMP LEJEUNE	68094	9.772	661	702
60038 20 NAV REG MED CTR, C. FLETCHER	68095	3.921	309	173
60039 21 NAV REG MED CTR, BREMERTON	68097	10.098	1247	609
60040 22 NAV REG MED CTR, OAKLAND	68101	9.924	575	361
	TRAINING CENTERS			
	MIL	CIV	AREA	ACRE
				STU
60147 1 IL NAVAL TRAINING CTR, N. CHICAGO	210	53.360	3022	1353
60148 2 CA NAVAL TRAINING CTR, SAN DIEGO	247	36.864	2187	765
60149 3 CA NAVAL TRAINING CTR, LANT	281	10.254	3228	300
60150 4 CA NAVAL TRAINING CTR, PAC	948	5.516	952	128
60151 5 CA NAVAL TRAINING CTR, ASY TNG CTR, PAC	61665	2.046	630	620
60152 6 CA NAVAL TRAINING CTR, PAC	42603	6.330	175	10
60153 7 CA NAVAL TRAINING CTR, ASY TNG CTR, PAC	28.911	2641	1507	855
60154 8 CA NAVAL TRAINING CTR, PAC	62661	7.046	2478	180
60155 9 CA NAVAL TRAINING CTR, PAC	63082	1.159	259	19
60156 10 SC NAVAL TRAINING CTR, CORRY STA	63322	0.683	236	9
60157 11 SC NAVAL TRAINING CTR, CORRY STA	63401	0.683	2385	1977
60158 12 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	206	1018
60159 13 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	216	164
60160 14 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1909	5
60161 15 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60162 16 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60163 17 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	10
60164 18 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60165 19 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60166 20 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60167 21 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60168 22 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60169 23 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60170 24 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60171 25 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60172 26 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60173 27 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60174 28 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60175 29 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60176 30 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60177 31 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60178 32 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60179 33 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60180 34 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60181 35 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60182 36 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60183 37 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60184 38 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60185 39 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60186 40 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60187 41 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60188 42 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60189 43 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60190 44 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60191 45 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60192 46 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60193 47 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60194 48 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60195 49 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60196 50 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60197 51 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60198 52 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60199 53 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60200 54 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60201 55 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60202 56 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60203 57 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60204 58 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60205 59 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60206 60 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60207 61 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60208 62 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60209 63 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60210 64 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60211 65 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60212 66 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60213 67 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60214 68 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60215 69 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60216 70 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60217 71 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60218 72 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60219 73 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60220 74 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60221 75 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60222 76 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60223 77 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60224 78 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60225 79 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60226 80 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60227 81 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60228 82 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60229 83 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60230 84 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60231 85 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60232 86 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60233 87 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60234 88 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60235 89 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60236 90 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60237 91 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60238 92 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60239 93 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60240 94 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60241 95 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60242 96 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60243 97 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60244 98 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60245 99 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60246 100 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60247 101 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60248 102 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60249 103 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60250 104 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60251 105 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60252 106 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60253 107 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60254 108 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60255 109 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60256 110 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60257 111 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60258 112 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60259 113 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60260 114 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60261 115 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60262 116 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60263 117 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60264 118 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60265 119 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60266 120 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60267 121 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60268 122 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60269 123 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60270 124 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60271 125 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60272 126 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60273 127 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60274 128 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60275 129 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60276 130 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60277 131 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60278 132 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60279 133 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60280 134 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60281 135 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60282 136 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60283 137 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60284 138 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068
60285 139 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	1657	114
60286 140 FL NAVAL TRAINING CTR, CORRY STA	65928	28.984	792	2068

TABLE A-2 (Cont'd)

ARMED FORCES

ARMED FORCES

	BPS COST ACTUAL (1979)	BPS COST PREDICTED (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
00170 MAU MAUAI HTR CTR	88.729	31.341429	57.387706	1.86295174	3.66759689
00203 FL NAV AFBN & TAC HTR CTR, POMONA CAL	4.722	6.209134	-1.44671538	-6.67845459	6.44141043
00205 TX NAV FRC HTR CTR, CTR, LANT	2.576	3.689862	-1.5178623	-0.08506070	-0.07700747
00207 TN NAV FRC HTR CTR, MEMPHIS	2.752	4.539249	-1.8872485	-0.30543765	
00209 TN NAV FRC HTR CTR, PHOENIX	12.519	16.243119	-3.7241195	-0.162770911	-0.19265068
00213 VA NAV FRC HTR CTR, SAN DIEGO	14.327	14.200775	0.1262245	0.07930725	0.03315432
00205 CA NAV AFBN HTR CTR, PHOENIX	5.686	6.646466	-1.5604660	-0.08432542	0.03646077
00205 FL NAV FRC HTR CTR, JACKSONVILLE	7.702	7.224137	0.4778110	0.20456427	0.05972589
00208 FL NAV FRC HTR CTR, MIAMI	3.894	5.228355	-1.3343545	-0.06395024	-0.05924133
00209 GA NAV FRC HTR CTR, LONG BEACH	6.947	8.648278	-1.7012778	-0.08108872	0.2254211
00209 GA NAV FRC HTR CTR, G. LAKES	9.698	10.225562	-0.5275621	0.04620165	0.04269439
00202 FL NAV FRC MED CTR, CAMP LEJEUNE	6.192	7.752477	-1.5604770	-0.07229651	-0.14561140
00207 NC NAV FRC MED CTR, CAMP LEJEUNE	6.192	7.752477	-1.5604770	-0.07229651	-0.14561140
00204 CA NAV FRC AFBN CTR, C. PENN STATION	9.772	10.065390	-0.2931899	0.07020196	-0.25304628
00205 WA NAV FRC MED CTR, BETHLEHEM	3.921	4.963339	-1.0423372	-0.00853039	0.39218011
00207 CA NAV FRC MED CTR, DARTMOUTH	10.098	12.658655	-2.5608549	-0.12328758	-0.03519938
00201 PA NAV FRC MED CTR, PHILADELPHIA	9.924	10.840626	-0.9166238	0.06769090	0.08854336

TRAINING CENTERS

	BPS COST ACTUAL (1979)	BPS COST PREDICTED (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
00210 HI MAUAI TAC CTR, H. CHICAGO	53.360	40.563447	12.7963532	0.34011610	0.33328257
00247 CA NAVAI TRAINING CTR, SAN ANTONIO	36.864	24.304308	12.5596920	0.55776131	0.63679504
00201 FL NAVI TRAINING CTR, LANT	10.256	20.1222166	-9.8681861	-0.44011689	-0.27614284
00201 FL NAVI TRAINING CTR, PAC	5.516	4.884418	0.6115816	0.3340305	0.28939258
01225 CA FRTT COMBAT TRAINING CTR, PAC	2.640	6.352265	-4.3122652	-0.52143056	-0.46648041
02263 CA FRTT AND MFTT WARFARE TRAINING CTR	0.330	1.389378	-1.0	-0.04273635	-0.53679610
02261 FL NAVI TRAINING & TRAINING CTR	28.911	44.432319	-15.5213194	-0.32261185	-0.95574623
02082 FL NAVI TRAINING CTR, OCEAN STA.	7.066	10.209697	-3.1606972	-0.21181858	-0.14485218
02262 SC FRTT SHOOTING TRAINING CTR	1.159	2.130082	-0.9710816	0.01357218	-0.08143535
02261 VA FRTT AND TRAINING CTR, LANT	0.683	1.547983	-0.8649834	0.08722093	-0.08999468
02260 FL NAVI TRAINING CENTER, ORLANDO	26.984	38.622675	-9.6386748	-0.22366648	-0.19042527
00124 FL NAVI WAR COLLEGE	2.311	5.538830	-3.278701	-0.40222214	-0.23765761
00161 HI NAVI NAVAL ACADEMY	32.155	26.053927	-3.898265	-0.08040529	-0.10389104
42271 CA NAVAL POST GRADUATE SCHOOL	8.194	29.307638	-12.1136378	-0.54726394	-0.39525915
42241 GA NAVY SUPPLY & CRAFTS SCHOOL	1.864	3.950114	-2.1161140	-0.288042261	-0.33433649
642746 VA AGENTS FORCES STAFF COR LEGT	2.382	4.054477	-1.6724772	-0.16586439	0.1927020

THIS PAGE IS WEST QUALITY PRACTICABLE
COPY IS FURNISHED TO DDCI

TABLE A-2 (Cont'd)

NAVAL SUPPLY STATIONS						SHIPYARDS		
	UTC BOS COST	MIL	CIV	AREA	ACRE		BTU	
00102 VA NAVAL WEAPONS STA, YORKTOWN 18 HAV WEAPONS SUPPORT CTR, CRANE	40.143	1103	1826	3120	10038	461315.3		
102 VA NAVAL WEAPONS STA, INDIAN HEAD	23.675	57	3390	5235	62539	664466.6		
164 VA NAV WEAPONS STA, NORFOLK	31.274	282	2242	2365	3381	1554655.9		
172 VA NAV WEAPONS STA, NORFOLK	29.146	485	3732	10596	2672	451580.0		
189 VA NAVAL SUPPLY CTR, NORFOLK	34.852	4688	1286	4221	16589	587477.4		
193 VA NAVAL WEAPONS STA, CHARLESTON	26.796	8	2431	1369	129	275416.2		
197 VA NAVAL WEAPONS STA, CHARLESTON	26.796	8	2431	1369	1053	386636.6		
228 SC NAVAL WEAPONS STA, LOUISVILLE	20.463	955	3094	10199	1053	185213.0		
244 SC NAVAL WEAPONS STA, OMAHA	16.641	374	1193	1422	70	77610.6		
00193 HI NAV WEAPONS STA, OAHU					758			
00197 HI NAV WEAPONS STA, OAHU					838	41603.6		
00226 CA NAVAL SUPPLY CTR, SAN DIEGO	4.733	61	493	1092				
00244 CA NAVAL SUPPLY CTR, PUGET SOUND	8.028	70	724	3712				
00405 HI NAVAL SUPPLY CTR, PEARL HARBOR	5.04	9	125	1465				
00406 HI NAVAL SUPPLY CTR, PEARL HARBOR	6.12	9	125	1073	195	45736.2		
00604 HI NAVAL SUPPLY CTR, CHARLESTON	60035	33.116	1727	1121	1193	162916.6		
00612 SC NAVAL WEAPONS STA, CONCORD	60478	13.986	725	674	1163	13756		
00636 CA NAVAL WEAPONS STA, EARL	60701	20.646	377	2117	3299	13975		
60478 NJ NAVAL WEAPONS STA, SEAL BEACH	6.169	247	169	1510	12604	148450.2		
60701 CA NAVAL MAGAZINE, LUALUALEI								
68297 HI NAVAL MAGAZINE, LUALUALEI								
00159 VA NAVAL WEAPONS STA, CHARGE								
00174 VA NAVAL WEAPONS STA, NORFOLK								
00191 SC NAVAL WEAPONS STA, CHARLESTON								
00221 CA NAVAL WEAPONS STA, LONG BEACH								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD								
00161 VA NORFOLK NAVAL SHIPYARD								
00161 VA CHARLESTON NAVAL SHIPYARD								
00191 SC MARE ISLAND NAVAL SHIPYARD								
00221 CA MARE ISLAND NAVAL SHIPYARD								
00251 WA PUGET SOUND NAVAL SHIPYARD								
00311 HI PEARL HARBOR NAVAL SHIPYARD								
60259 CA LONG BEACH NAVAL SHIPYARD								
00152 HI FORT MONMOUTH NAVAL SHIPYARD								
00153 VA PHILADELPHIA NAVAL SHIPYARD</								

TABLE A-2 (Cont'd)

NAVAL SUPPLY STATIONS

	BOS COST ACTUAL (1979)	BOS COST FURNISHED (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
00102 UN HAWAII AIR FORCE STA. YERKES	43.143	32.639530	7.5044760	0.26054535	0.16229693
00124 IN HAWAII AIR FORCE STA. LEWIS FIELD	28.675	45.766449	-17.0914495	-0.35159725	-0.3975472
00124 IN HAWAII MARINE STA. LEONARD HEAD	31.274	35.788248	-4.5142479	-0.09819559	-0.26913136
00129 UN HAWAII COMPTY STA. MELTON K	29.148	46.744349	-17.5963495	-0.35504504	-0.37895107
00127 IN HAWAII MARINES STA. CHINA FORT	34.892	35.573546	-0.6815460	0.00893199	-0.63296503
00127 NY HAW GUARDIAN STA. LEXINGTON	26.796	17.664152	9.7318483	0.62891191	0.00387894
00228 IN HAWAII COMPTY STA. OAK AM	20.463	41.702716	-21.2397161	-0.48533323	-0.55321396
00244 IN HAWAII COMPTY STA. SAN BIRCH	18.641	13.750934	4.8906655	0.42833929	0.41673447
00401 WA HAWAII COMPTY STA. PHILLY SOUTN	4.733	9.852261	-5.1922605	-0.41810309	-0.52692135
00504 IN HAWAII COMPTY STA. PT ARH HARBOR	8.028	14.421690	-6.3934604	-0.37399849	-0.35253198
00612 SC HAWAII COMPTY STA. CHARLESTON	9.286	11.998507	-2.7125075	-0.14272671	-0.23908074
00673 FA HAWAII DEFENSE STA. CORCORAN	33.116	19.853405	13.2625954	0.71833945	0.68138603
00478 NJ HAWAII DEFENSE STA. EAGLE	13.7888	17.594797	-3.6067968	-0.14815726	-0.43103779
00701 CM HAWAII DEFENSE STA. SEAL BEACH	20.646	28.078520	-7.4325197	-0.22908041	-0.22427445
103277 HI NAVAL MAGAZINE - IWAHALI FT	4.169	9.821190	-3.65221895	-0.27004769	-0.36434693

SHIPYARDS

	BOS COST ACTUAL (1979)	BOS COST FURNISHED (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
00107 HI PEARL HARBOR NAVAL SHIPYARD	25.713	47.214665	-21.5016652	-0.43422240	-0.30737758
00151 FA PEARL HARBOR STA. NAVAL SHIPYARD	60.741	67.069314	-6.3282141	-0.07944489	-0.08188281
00151 WA PEARL HARBOR STA. NAVAL SHIPYARD	54.367	77.273181	-22.9061815	-0.28349009	-0.36680733
00191 SC CHINA FORT NAVAL SHIPYARD	64.135	47.594109	1.6.54008906	0.36855171	0.42537280
00221 GA HAWAII STA AND SHIPYARD	105.156	80.543049	24.6129506	0.31890324	0.19595670
00251 WA PHILLY SOUTN NAVAL SHIPYARD	76.972	65.845577	11.1264233	0.18416458	0.42750113
00311 HI PEARL HARBOR NAVAL SHIPYARD	39.570	29.654264	9.91573461	0.36810065	0.56634530
00253 GA LONG BEACH NAVAL SHIPYARD	49.573	35.993499	13.5795005	0.40505927	0.21030695

TABLE A-2 (Cont'd)

NAVAL SUPPORT ACTIVITIES

	UIC BOS COST	MIL	CIV	AREA	ACRE	BTU
00105 LA NAVAL SUPPORT ACT, NEW ORLEANS	205	8.168	2139	1894	2579	225
00105 LA NAVAL SUPPORT ACT, SEATTLE	255	5.570	1630	738	2021	228271.6
00105 MA NAVAL SUPPORT ACT, TREASURE IS	60028	26.824	1214	606	2985	1087
00105 MA NAVAL SUPPORT ACT, BROOKLYN	61174	18.382	2296	482	2018	516057.8
00105 CA NAVAL SUPPORT ACT, PHILADELPHIA	61189	12.152	4775	1277	3393	133
00105 NY NAVAL SUPPORT ACT, LOS ANGELES	69311	24.361	1442	457	3640	522
00105 CA NAV SUPPORT ACT, LOS ANGELES	68311				1154	22B486.8

RESEARCH & TESTING CENTERS

	UIC BOS COST	MIL	CIV	AREA	ACRE	BTU
00163 IN NAVAL AVIATION CENTER	163	15.938	8	2258	857	167
00167 ND 5 W TAYLOR NAV SHIP RD CTR	167	18.331	22	1660	1459	211
00173 NC NAVAL RESEARCH LABORATORY	173	39.561	39	3481	2985	862
00178 VA NAVAL SURFACE WEAPONS CTR	178	24.707	121	2681	1361	4321
00253 UN NAV UNDERSEA WEAPONS ENGR STA	253	15.625	301	2856	2030	4078
00253 UN NAV SURFACE WEAPONS CTR, WH OAK	60921	23.763	50	2136	1717	1059
00253 UN NAV COASTAL SYSTEMS LABORATORY	61351	10.011	254	840	631	665
00253 UN NAV SURFACE WEAPONS LABORATORY	61533	11.158	5	894	576	112
00253 FL NAV COASTAL SYSTEMS LABORATORY	66001	33.031	315	3385	1533	3843
00253 ND NAVAL SHIP R&D CENTER, HAMPTON	66604	19.828	89	2665	1250	215
00253 ND NAVAL OCEAN SYSTEMS CTR	66604	66.895	3335	4573	4816	6638
00253 CA NAVAL UNDERWATER SYS CTR	421	66.895	127	416	312	2399
00254 FL NAVAL AIR TEST CTR, FAX RIVER	1609	3.599	932	4470	6529	1122015
00254 HI NAVAL FAC MISSILE RANGE FACILITY	60530	63.060	317	2499	1778	921
00254 HI NAVAL FAC MISSILE RANGE FACILITY	62269	25.551	317	2499	1778	307382.2
00254 HI NAVAL DEPOT CTR, CHINA LAKE	62276	7.916	9	587	570	73
00254 CT NAVAL DEVELOPMENT CENTER	62276	7.916	9	587	570	73
00254 PR NAVAL AIR DEVELOPMENT CENTER	63126	53.928	1036	1662	4825	27684
00254 NJ NAVAL AIR FEDORULSION TEST CENTER	63335	29.468	865	2046	2862	7399
00254 CA PACIFIC MISSILE TEST CENTER	63335	40	1415	637	152	584503.0
00254 NJ NAV AIR ENG CTR, LAKEHURST	70024					132898.0

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

TABLE A-2 (Cont'd)

NAVAL SUPPORT ACTIVITIES

	BOS COST ACTUAL (1979)	BOS COST FREIGHTED (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1980)
00265 LA NAVAL SUPPORT ACT. NEW ORLEANS	9.168	24.182161	-16.0143609	-0.56426752
00275 WA NAVAL SUPPORT ACT. SEATTLE	5.570	16.889285	-11.3192850	-0.61099597
00276 CA NAVAL SUPPORT ACT. TREASURE IS	26.824	21.435925	5.3880652	0.29800731
6117A NY NAVAL SUPPORT ACT. BROOKLYN	18.382	15.332716	3.0492839	0.26409436
6117B PA NAV SUPPORT ACT. PHILADELPHIA	12.152	23.730727	-11.5787272	-0.44578184
63311 CA NAV SUPPORT ACT. LOS ANGELES	24.361	19.479761	4.8812386	0.30191533
				-0.16195347

RESEARCH & TESTING CENTERS

	BOS COST ACTUAL (1979)	BOS COST FREIGHTED (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1980)
00105 IN NAVAL AUTOMOTIVE CENTER	15.788	14.414734	1.5712664	0.17835291
00105 MI D U TAYON NAV CTR. GEN CTR	18.331	15.945364	2.3653361	0.21683360
00173 NC NAVAL RESEARCH LABORATORY	39.561	31.963793	7.5976966	0.26897909
00173 WA NAVAL SUPPORT WEAPONS TEST CTR	24.707	22.412309	2.2946911	0.14700365
00353 US NAVY HANCOCK WEAPONS TEST CTR	15.835	27.300267	-11.4652670	0.10107559
00707 MI NAVY CHEMICAL WEAPONS CTR. MI DAK	23.767	21.480747	2.2812529	0.15277976
01171 CA NAVY MARITIME CYBERNETIC LABORATORY	10.011	10.394897	-0.3838966	0.05926580
01173 MI NAVY CTR. FOR SYSTEMS RESEARCH IS	11.158	9.486997	1.6710031	0.28154359
02001 CA NAVY DEFENSE CYBERNETICS CTR	33.031	24.871274	8.1597258	0.23951368
02004 RI NAVY INFORMATION SYSTEMS CTR	19.828	19.351186	0.4768136	0.29838964
02021 MI NAVY AIR TEST CTR. FOX RIVER	66.895	50.903689	15.991313	0.30636460
02744 MI NAVY PACIFIC RESEARCH FACILITY	3.599	7.533612	-3.9240118	0.38948722
02744 MI NAVY PACIFIC RESEARCH FACILITY	63.680	73.475034	-10.3950340	0.52927625
02770 CA NAVY WEAPONS CTR. CHINA LAK	25.551	23.665346	1.8665539	0.12788702
02779 CA NAVY AIR TESTS OF WEAPONS SYSTEMS	7.916	9.567414	-1.6514135	0.14098679
02779 MI NAVY AIR PROFESSIONAL SYSTEMS	53.928	38.520729	15.407213	0.06566539
02785 CA PACIFIC ELECTRONIC TEST CENTER	29.488	32.825434	-3.3374344	0.30533275
02785 NJ NAV AIR ENG CTR. LAKEWOOD	14.832	11.699157	3.1328427	0.09864459
70024 CT NAV UNDERWATER SYS INFO CTR. N.L.				0.35325987

A-11

THIS PAGE IS PLASTIC QUALITY PLASTIC
FROM COPY FURNISHED TO DDO

TABLE A-2 (Cont'd)

NAVAL COMMUNICATION STATIONS

		UIC BOS COST	MIL	CIV	AREA	ACRE	BTU
05762	NE NAV SECURITY GP ACT, WINTER HA	762	3.295	341	68	320	583
06743	FR NAV COMM STA, PUERTO RICO	743	3.523	368	199	592	2580
50783	RD NAVAL COMM UNIT, WASHINGTON	788	2.940	161	176	297	76407.2
06849	CA NAV SECURITY GP ACT, SHAGGS IS	849	0.952	292	45	173	216
06935	CA NAVAL COMM STA, STOCKTON	886	5.008	392	373	6244	72620.0
06950	HI NAV COMM AREA MASTER STA, EPAC	956	8.414	1136	201	580	3109
62972	FL NAVAL SECURITY GROUP, HOMESTEAD	62972	2.389	2400	395	45	60474.2
53035	ME NAVAL COMM UNIT, CUTLER	63638	3.239	115	163	290	1331.4
63086	AK NAVAL SECURITY GROUP, ADAK	63686	4.423	550	53	309	2999
66754	FR NAV SECURITY GRP, SABANA SECA	66754	3.709	273	63	428	10857.5
75592	DC NAVAL SECURITY STA, WASHINGTON	70092	5.539	580	614	569	2251
70240	CA NAVAL COMM STA, SAN DIEGO	70240	0.280	246	10	94	44894.0
70272	VA NAVCOMM AREA MASTER STA, LANST	70272	2.705	190	476	1471	155135.0

NAVAL FACILITIES

		UIC BOS COST	MIL	CIV	AREA	ACRE	BTU
57040	DE NAVAL FACILITY, LEWES	57040	1.420	104	18	100	364
57041	NC NAVAL FACILITY, CAPE HATTERAS	57041	0.994	140	2	110	20587.6
57053	CA NAVAL FAC, CEMSEVILLE BEACH	57053	2.236	223	20	145	58
57054	CA NAVAL FACILITY, PT SPUR	57054	1.185	97	17	93	33526.2
57055	OR NAVAL FACILITY, COOS HEAD	57055	0.949	118	14	95	48
57056	WA NAVAL FACILITY, PACIFIC BEACH	57056	1.202	127	16	121	47635.0
							53
							19668.2

THIS PAGE IS BEST QUALITY PRACTICABLE
DO NOT DISTRIBUTE TO DDC

TABLE A-2 (Cont'd)

NAVAL COMMUNICATION STATIONS

	BOS COST ACTUAL (1979)	BOS COST FREIGHT (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
60700 NE NAVAL COMM SECURITY STA. WINTH. HA	5.275	3.671196	-0.3761963	6.1697133	0.20135176
60743 PG NAVAL COMM STA. PIRATE RICO	3.523	5.242159	-1.7191694	-0.13713927	
60750 MI NAVAL COMM UNIT. WACHMUTON	2.920	3.386510	-0.4465098	0.15530336	
60749 FO NAVAL SECURITY STA. ACT. SKAPOS RS	0.952	3.413585	-2.4616853	-0.42818396	-0.47917979
60751 FA NAVAL COMM STA. STOCKTON	5.008	6.402835	-1.3948347	-0.061665561	-0.24738373
60750 FT NAU COMM AREA MASTER STA. SFAC	8.414	8.255378	0.15862220	0.14034754	0.04368080
60752 FL NAVAL SECURITY FACIL. ISMFCITAD	2.400	2.753224	-0.3532239	0.23491591	-0.15084760
60739 MI NAVAL COMM UNIT. CINLFR	3.238	4.444860	-1.2068595	-0.046533905	0.31241392
60754 AK NAVAL SECURITY GROUP. ALASKA	4.423	4.898195	-0.4751947	0.10714261	0.53443627
60754 PR NAVAL SECURITY STA. SARANA SFCA	3.709	3.529913	0.1790870	0.33402723	0.43354465
76032 PG NAVAL SECURITY STA. WASHINGTON	5.539	5.960123	-0.09712497	-0.05040288	
76240 CA NAVAL COMM STA. SAN DIEGO	0.280	1.719914	-1.4399137	-0.25577659	-0.11353825
76272 VA NAVCOMM AREA MASTER STA. LANT	2.705	3.995301	-1.2903006	-0.07266051	-0.19693942

NAVAL FACILITIES

	BOS COST ACTUAL (1979)	BOS COST FREIGHT (1979)	ABSOLUTE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1979)
77640 PR NAVAL FACIL ITY. ITFTS	1.420	2.030497	-0.6104969	0.19182648	0.14161701
77041 PR NAVAL FACIL ITY. COAST HATTERAS	0.904	1.265581	-0.3615814	0.50444587	0.34712103
77057 FA NAVAL FAC. EMERGENCY DFCH	2.236	2.355280	-0.1192798	0.37393441	0.03640669
77054 FA NAVAL FACILITY. PT. SPUR	1.185	2.025556	-0.805544	0.07871593	-0.03088770
77055 CR NAVAL FACILITY. COAST HEAN	0.949	1.671238	-0.7222382	0.16626124	0.05073949
77056 FA NAVAL FACILITY. PACIFIC PT. ACTH	1.202	1.840536	-0.6385364	0.19639033	0.02718555

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDO

TABLE A-3
COMPARISON OF RELATIVE RESIDUALS
USING 1979 AND 1980 DATA

UTC	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1980)
168	1.05924249	1.09659680
158	1.04936197	0.43089862
62688	0.42476326	0.43407362
389	0.79323254	0.77594619
60191	0.76970263	0.64894111
60036	0.71314549	0.60118603
314	0.70076628	0.60998296
196	0.66646140	1.00617347
197	0.69609147	0.03367894
61042	0.58707741	0.80298936
188	0.75293276	0.77150242
247	0.94441064	0.63679504
62813	0.52436487	0.52162342
57041	0.42119311	0.34712103
244	0.43683077	0.41673447
60250	0.42660647	0.21030695
63126	0.42446580	0.30533279
63001	0.39097398	0.29838964
311	0.30785446	0.36634339
191	0.30534660	0.42937280
37053	0.37157120	0.03640669
620	0.35561122	0.72361257
421	0.33821719	0.36431480
948	0.33742109	0.32939250
210	0.32524080	0.38322257
221	0.32042697	0.19595670
66794	0.31391107	0.41334485
246	0.31328932	-0.22095583
354	0.31155699	0.21024160
61533	0.30421394	0.23951368
62755	0.30134576	-0.33439408
68311	0.29152305	-0.16195347
60028	0.29010485	-0.23601693
173	0.28082559	0.30301675
60495	0.26923310	2.05672961
109	0.26469259	0.16299693
61174	0.25789315	-0.43378257
213	0.25627567	0.32208142
62892	0.23743363	-0.15084760
60200	0.22969331	0.29938018
167	0.22643473	0.28994378
68083	0.21314226	0.06972589
163	0.20257472	0.16034362
57056	0.19796863	0.02718955
37040	0.19684388	0.14101701
251	0.19294575	0.42750115
63387	0.18365364	2.87141763
68378	0.17565233	0.73396639
57055	0.17093763	0.05073949
60921	0.16706296	0.08596440

TABLE A-3 (Cont'd)

111C	RELATIVE RESIDUAL (1977)	RELATIVE RESIDUAL (1980)
178	0.16609343	0.16107659
788	0.15671632	0.15580336
702	0.15456906	0.20135176
296	0.13262692	-0.04310078
62269	0.1333797	0.14098679
950	0.12170395	0.04368080
60087	0.10673464	0.14488487
216	0.09667695	-0.28739297
70092	0.09318669	-0.05040284
219	0.09202360	0.63185696
66804	0.09264348	0.30997097
63886	0.08956169	0.63443627
204	0.08693001	-0.01216293
63076	0.08477079	0.01315432
63401	0.07994481	-0.08999488
57054	0.07945438	-0.03088770
68094	0.07637412	-0.25304628
61331	0.07597650	0.00935709
243	0.04759329	0.40924509
68092	0.04131594	0.04269439
60259	0.03119768	0.18738021
187	0.01925599	0.15516682
63462	0.01249520	0.21127777
63322	0.01025122	-0.09143515
68101	0.00714124	0.04854336
193	0.00514157	-0.03296503
68095	0.00032691	0.89218011
101	-0.02966206	0.08609745
63406	-0.04396160	-0.27249758
62603	-0.04425920	-0.51679610
206	-0.04546359	-0.11945340
60201	-0.05275341	-0.11244556
62376	-0.05746794	0.02143350
68086	-0.05786613	-0.05724133
63038	-0.05874919	0.31241392
62021	-0.06213727	-0.60088431
68093	-0.06716963	-0.14561140
68335	-0.06736602	-0.098864459
203	-0.07126973	0.44141093
68090	-0.07448467	0.27594211
151	-0.07622737	-0.03159281
68084	-0.07918011	0.03648077
285	-0.07950204	-0.07700747
161	-0.08253706	-0.10389104
70272	-0.08988411	-0.19693942
886	-0.08993304	-0.24718373
174	-0.09576322	-0.26913136
60241	-0.10355160	-0.20720732
639	-0.10564668	0.70476771
68097	-0.11936023	-0.03519938
273	-0.12532964	-0.27797112

TABLE A-3 (Cont'd)

HTC	RELATIVE RESIDUAL (1979)	RELATIVE RESIDUAL (1980)
63530	-0.12466891	-0.12904188
61165	-0.12567823	-0.130172474
60376	-0.12932950	-0.16286839
612	-0.13192234	-0.23908074
60478	-0.14373255	-0.643103778
64356	-0.16269501	-0.19927020
66818	-0.16383098	-0.19205048
63113	-0.17433617	-0.19704267
60302	-0.18740194	-0.30543765
207	-0.20559560	0.00928845
63032	-0.21630193	-0.14465216
60701	-0.22251455	-0.22427445
65928	-0.22672443	-0.13042527
63116	-0.22974295	0.40853482
60308	-0.23788246	-0.19339958
63043	-0.24373669	-0.34057294
70240	-0.26308394	-0.11353825
63297	-0.27040534	-0.16494693
62741	-0.28026943	-0.33413649
181	-0.28031769	-0.36030713
125	-0.29752490	-0.01617658
62661	-0.33186864	-0.15574623
180	-0.34710409	-0.39705472
189	-0.35483433	-0.37595107
60296	-0.36298063	-0.31144688
607	-0.37114451	-0.33251158
251	-0.37588415	-0.41634144
100	-0.37886104	-0.32227625
121	-0.39881452	-0.23765761
406	-0.413335504	-0.32692135
231	-0.41459172	-0.39596919
102	-0.42970716	-0.30737758
849	-0.43301606	-0.47917979
28	-0.44091448	-0.27614284
61169	-0.44627642	-0.27327965
228	-0.48506978	-0.53321198
61665	-0.51152946	-0.45648041
62271	-0.54028139	-0.39523970
255	-0.6132978	-0.53239770
203	-0.61932195	-0.38420732
61414	-0.62463197	-0.29174909

TABLE A-4
CORRELATION MATRIX

	<u>BOS</u>	<u>MIL</u>	<u>CIV</u>	<u>AREA</u>	<u>ACRE</u>	<u>BTU</u>	<u>NB x MIL</u>	<u>CS x MIL</u>
<u>BOS</u>	1							
<u>MIL</u>	.39	1						
<u>AREA</u>	.89	.35	.83	1				
<u>ACRE</u>	.55	.36	.39	.56	1			
<u>BTU</u>	.83	.29	.77	.80	.41	1		
<u>NB x MIL</u>	.21	.43	.09	-.11	.03	.15	1	
<u>CS x MIL</u>	-.38	-.10	-.34	-.33	-.03	-.30	-.09	1
<u>CS x AREA</u>	-.37	-.11	-.32	-.29	.03	-.28	-.08	.98

Note: Except for NB and CS, all variables are in logarithmic form, the form they have in the regression. NB is a dummy variable with value 1 for Naval bases, and 0 otherwise. Recall that our definition of Naval bases includes Naval stations, amphibious bases and submarines bases. CS is a dummy variable for communications stations and security activities.