1/1 /x1/1 = Luch.

MTL 411 - FUNCTIONAL ANALYSIS - MINOR 1

DEPT. OF MATHEMATICS, IIT DELHI MAX MARKS - 25

1. Answer the following [10 Marks(4 + 6)]

- (1) Let V be a vector space and suppose that $\| \|_1$ and $\| \|_2$ are norms on V whose corresponding topologies are T_1 and T_2 . Show that if V is complete with respect to both norms and if $T_1 \supset T_2$, then $T_1 = T_2$.
- (2) Give an example of:
 - (a) A normed linear space that is a Banach Space and,
 - (b) A normed linear space that is NOT a Banach Space. Justify your assertions.
 - 2. Answer the following [8 Marks(2+3+3)]

Let $(X_i, \|\cdot\|_i), i = 1, 2, \dots n$ be real normed spaces, and $X = X_1 \times X_2 \times X_3 \times X_4 \times X_4 \times X_5 \times$

(a) Define $\|\cdot\|: X \to \mathbb{R}^+$ as

 $\parallel x \parallel = \max_{i=1,2,...n} \parallel x_i \parallel_i, x = (x_1, x_2, ..., x_n) \in X$ Prove that $\parallel . \parallel$ defines a norm on X.

Let $\phi_{ik}: X_k \to X_i$ be linear operators. Define $\phi: X \to X$ as $(\phi x)_i = \sum_{k=1}^n \phi_{ik} x_k, i = 1, 2, \dots n$ Prove that ϕ is bounded if and only if each ϕ_{ik} is bounded.

- 3. Answer the following [7 Marks(5+2)]
- (X) Prove that the unit closed ball B(X) is compact for any finite dimensional normed linear space X.
 - (2) Hence prove that any linear functional on a finite dimensional normed linear space X is bounded.

 $(\phi \gamma)_i = \sum_{k=1}^{\infty} \phi_{ik} \chi_k \leq M$ $\phi(\chi_1 \chi_1 - \chi_n) \leq M$

The Royal Control of the Party of the Party