Apellidos: Nombre:

Ejercicio 1.-

- 1. Sea k un cuerpo cualquiera, V un k-espacio vectorial, y $L_1, L_2 \subset V$ dos subespacios vectoriales de V:
 - a) Demuestra que $L_1 \cap L_2 \subset V$ es un subespacio vectorial.
 - b) Define el subespacio vectorial suma $L_1 + L_2 \subset V$.
 - c) ¿Es la unión $L_1 \cup L_2 \subset V$ un subespacio vectorial? Demuéstralo o refútalo con un contraejemplo sencillo.
- 2. En el \mathbb{Q} -espacio vectorial \mathbb{Q}^4 se consideran los subespacios vectoriales siguientes:

$$V \colon \begin{cases} 3x_1 & -2x_2 & +x_4 & = & 0, \\ x_1 & -2x_2 & +x_3 & = & 0, \\ x_1 & +2x_2 & -2x_3 & +x_4 & = & 0, \end{cases} \quad W = \langle (-1, 1, 1, -1), (0, 1, -1, a) \rangle,$$

donde $a \in \mathbb{Q}$ es un número indeterminado

- a) Halla los valores de $a \in \mathbb{Q}$ para los cuales la suma V + W es directa.
- b) Para a=4, calcula una base o unas ecuaciones implícitas independientes de V+W y $V\cap W$.
- c) Sean $\mathbf{u} = (1,0,0,0)$ y $\mathbf{v} = (3,3,4,0)$. Son $\mathbf{u} + V$ y $\mathbf{v} + V$ linealmente independientes en \mathbb{Q}^4/V ?
- d) Para a=4, calcula bases de W y de \mathbb{Q}^4/V y obtén la matriz del homomorfismo $f\colon W\to \mathbb{Q}/V$, $f(\mathbf{w})=\mathbf{w}+V$, respecto de dichas bases.

Ejercicio 2.-

- 1. Sea k un cuerpo cualquiera. Demuestra los siguientes enunciados sobre matrices con entradas en k, k-espacios vectoriales y homomorfismos:
 - a) Dados dos homomorfismos $U \xrightarrow{f} V \xrightarrow{g} W$, la composición $g \circ f : U \to W$ es un homomorfismo.
 - b) Si $f: V \to V$ es un endomorfismo tal que $f \circ f = f$ entonces sus posibles autovalores son 0 y 1.
 - c) Si p(x) = k[x] es el polinomio característico de una matriz cuadrada A, entonces p(0) = |A|.
- 2. Sea $f: \mathbb{C}^4 \to \mathbb{C}^4$ el endomorfismo de \mathbb{C} -espacios vectoriales cuya matriz respecto de la base canónica $\mathcal{C} \subset \mathbb{C}^4$ es

$$M_{\mathcal{C}}(f) = A = \left(egin{array}{cccc} 0 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ -1 & -1 & -1 & a \\ 1 & 1 & 1 & 0 \end{array}
ight),$$

donde $a \in \mathbb{C}$ es un número indeterminado.

- a) Estudia si f es diagonalizable para a=0,1,2.
- b) Para a=0, calcula una base $\mathcal{B}\subset\mathbb{C}^4$ tal que $M_{\mathcal{B}}(f)$ sea diagonal.
- c) Para a=0, obtén una matriz diagonal D y una matriz invertible P tales que $D=P^{-1}AP$.

Ejercicio 3.- Sea $X = \mathbb{A}^3(\mathbb{R})$ el espacio afín euclídeo de dimensión 3 sobre \mathbb{R} .

- 1. a) Dar un ejemplo de dos planos que se crucen en X o una prueba de que no es posible (que dos planos se cruzen en X).
 - b) Dar dos planos paralelos en X o una prueba de que no es posible (que dos planos sean paralelos en X).
 - c) Probar que si dos rectas r y s contenidas en X se cruzan, entonces r + s = X.
- 2. Sean R y S los siguientes subespacios afines en X:

$$R = \begin{cases} x_1 + x_2 -2x_3 = 3, \\ x_1 - x_3 = 0, \end{cases}$$
 $S = (3, 2, 2) + \langle \overrightarrow{(1, 1, -1)} \rangle.$

- a) Calculad la posición relativa de R y S, indicando la dimensión de las variedades R, S, $R \cap S$ y R + S.
- b) Dar un plano paralelo a R y S.
- c) Calcular una perpendicular común a los subespacios afines R y S, y razonar si es única.

Ejercicio 4.- Sea $X = \mathbb{A}^3(\mathbb{R})$ el espacio afín euclídeo de dimensión 3 sobre \mathbb{R} .

- 1. a) Definir cuando dos variedades son perpendiculares en X.
 - b) Probar que si tenemos tres puntos A, B, C de X tales que los vectores \overrightarrow{AB} y \overrightarrow{AC} son perpendiculares en D(X), entonces se verifica que $d(A,B)^2 + d(A,C)^2 = d(B,C)^2$ (teorema de Pitágoras).
 - c) Probar que la aplicación inversa $h^{-1}: X \to X$ de un movimiento $h: X \to X$ es también un movimiento.
- 2. Consideramos la aplicación afín $f: X \to X$, cuyas ecuaciones respecto de un sistema de referencia métrico \mathcal{R} de X son

$$M_{\mathcal{R}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

- a) Probar que f es movimiento.
- b) Calcula los puntos dobles, rectas dobles y direcciones dobles de f.
- c) Clasificar el movimiento f, dando sus elementos geométricos.
- d) Clasificar los movimientos $f \circ f : X \to X$ y $f^{-1} : X \to X$.