## Problem KtoMiPizzęZżera

Autorzy: Piotr Czarnik, Paulina Jędrychowska, Oskar Simon, Michał Stefanik

















 $x = (x_1, x_2, \dots, x_k)$  - wektor pojedynczych potrzeb

 $\boldsymbol{x}_i$  - potrzeba ze zbiorami  $L_i$  i  $N_i$ 

 $L_i$  - zbiór składników lubianych dla potrzeby i-tej

 $N_i$  - zbiór składników nielubianych dla potrzeby i-tej

 $y = \{y_1, y_2, \dots, y_n\}$  - zbiór różnych rodzajów pizz

 $y_i$  - rodzaj pizzy ze zbiorem składników  $S_i$ i ceną  $c_i$ 

$$z = (z_1, z_2, \dots, z_k)$$
 - wektor kawałków pizz

 $z \in V(y)$  - zbiór k-elementowych wariacji z powtórzeniami zbioru y

Przestrzeń rozwiązań zatem to V(y), a jej rozmiar to  $n^k$ .

Liczba dopasowań negatywnych:

$$f(z) = \sum_{i=1}^{k} |N_i \cap S_i|$$

Liczba dopasowań pozytywnych:

$$g(z) = \sum_{i=1}^{k} |L_i \cap S_i|$$

Liczba kawałków nie tworzących całej pizzy:

$$h(z) = \sum_{i=1}^n \left[ \left( \sum_{j=1}^k \left( \text{kawałek } z_j \text{ jest rodzaju pizzy } y_i \right) \right) \mod p \right]$$

gdzie p - to liczba kawałków w jednej pizzy

Funkcja kosztu:

$$C(z) = \alpha \cdot f(z) - g(z) + \beta \cdot h(z)$$

Szukane:

$$z^* = \arg\min_{z \in V(y)} C(z)$$

Warunek:

$$\sum_{i=1}^{n} c_i \left[ \frac{1}{p} \sum_{j=1}^{k} (\text{kawałek } z_j \text{ jest rodzaju pizzy } y_i) \right] \leq c_{max}$$

gdzie  $c_{max}$  to maksymalny sumaryczny koszt