

Target Applications

- Wireless charging
- Adapter
- Telecom

Benefits

- Higher power density designs
- Higher switching frequency
- Uses OptiMOS[™]5 Chip
- Reduced parts count wherever 5V supplies are available
- Driven directly from microcontrollers (slow switching)
- System cost reductions

Typical values (unless otherwise specified)

$V_{ t DSS}$	V _{GS}	R _{DS(on)} (max.)
60V min.	± 20V max	17mΩ @ 10V
Q _{g tot}	Q_{gd}	$V_{gs(th)}$
5.3nC	2.1nC	1.7V

Pace part number	Dackago Typo	Standard Pack		Orderable Part Number		
Base part number	Package Type	Form	Quantity	Orderable Part Number		
IRL60HS118	PQFN 2mm x 2mm	Tape and Reel	4000	IRL60HS118		

Figure 1 Typical On-Resistance vs. Gate Voltage

Figure 2 Typical On-Resistance vs. Drain Current

IRL60HS118

Table of Contents

Table of Contents

Target Applications	1
Benefits	
Ordering Table	
Table of Contents	
Table of Contents	
1 Parameters	3
2 Maximum ratings, Thermal, and Avalanche characteristics	4
3 Electrical characteristics	
4 Electrical characteristic diagrams	
Package Information	
Qualification Information	
Revision History	

Parameters

1 Parameters

Table1 Key performance parameters

Parameter	Values	Units
$\overline{V_{DS}}$	60	V
R _{DS(on) max}	17	mΩ
I _D @ T _C = 25°C	18.5	A
I _D @ T _A = 25°C	10	A

infineon

Maximum ratings and thermal characteristics

2 Maximum ratings and thermal characteristics

Table 2 Maximum ratings (at T_J = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Values	Unit
Continuous Drain Current (Silicon Limited) 6 🗇	I _D	$T_{C \text{ (Bottom)}} = 25^{\circ}\text{C}, V_{GS} @ 10\text{V}$	18.5	
Continuous Drain Current (Silicon Limited) 6	I_D	$T_{C \text{ (Bottom)}} = 100^{\circ}\text{C}, V_{GS} @ 10\text{V}$	13	
Continuous Drain Current (Silicon Limited) (Source Bonding Technologies Limited)	I _D	$T_{C \text{ (Bottom)}} = 25^{\circ}\text{C}, V_{GS} @ 10\text{V}$	17	Α
Continuous Drain Current (Silicon Limited) (5)	I_D	$T_A = 25^{\circ}C, V_{GS} @ 10V$	10	
Pulsed Drain Current ①	I _{DM}	$T_{C (Bottom)} = 25^{\circ}C$	56	
Maximum Power Dissipation	P_D	$T_{C (Bottom)} = 25^{\circ}C$	11.5	
Maximum Power Dissipation	P_D	T _{C (Bottom)} = 100°C	5.8	W
Maximum Power Dissipation	P_D	T _A = 25°C	2.5	
Gate-to-Source Voltage	V_{GS}	-	± 20	V
Peak Soldering Temperature	T _P	1	270	
Operating Junction and	T _J ,T _{STG}	_	-55 to + 175	°C
Storage Temperature Range	13,1316		33 (3 / 1/3	

Table 3 Thermal characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Junction-to-Case (Bottom) ④	$R_{ heta JC}$	-	-	-	13	
Junction-to-Case (Top) ④	$R_{ heta JC}$	-	-	-	90	°C/W
Junction-to-Ambient ⑤	$R_{ heta JA}$	-	-	-	60	C/VV
Junction-to-Ambient ⑤	R _{θJA} (<10s)	-	-	-	42	

Table 4 Avalanche characteristics

Parameter	Symbol	Values	Unit
Single Pulse Avalanche Energy ②	E _{AS}	22	mJ
Avalanche Current ②	I _{AR}	11	А

Notes:

- ${\mathcal O}$ Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.36mH, $R_G = 50\Omega$, $I_{AS} = 11$ A.
- ③ Pulse width ≤ 400 μ s; duty cycle ≤ 2%.
- ® R_{θ} is measured at T_{J} of approximately 90°C.
- (3) When mounted on a 1 inch square PCB (FR-4). Please refer to AN-994 for more details.
- © Calculated continuous current based on maximum allowable junction temperature.
- © Current is limited to 17A by source bonding technology.

3 Electrical characteristics

Table 5 Static characteristics

Parameter	Symbol	Conditions	Values			Unit	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Oilit	
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250 \mu A$	60	-	-	V	
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS}/\Delta T_J$	Reference to 25° C, $I_{D} = 1$ mA	ı	28	-	mV/°C	
Static Drain-to-Source On-Resistance	D	$V_{GS} = 10V, I_D = 11A 3$	- 13.3 17		17		
Static Dialii-to-Source Oil-Resistance	$R_{DS(on)}$	V _{GS} = 4.5V, I _D = 5.5A ③	-	18.3	23.5	mΩ	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 10 \mu A$	1.1	1.7	2.3	V	
Gate Threshold Voltage Temp. Coefficient	$\Delta V_{GS(th)}/\Delta T_J$	ν _{DS} – ν _{GS} , η – 10μΑ	-	-6.8	-	mV°/C	
Drain-to-Source Leakage Current	I _{DSS}	$V_{DS} = 48V, V_{GS} = 0V$	-	-	1.0	μA	
Cata to Course Femurard Lockers	I _{GSS}	V _{GS} = 20V	-	-	100	Λ	
Gate-to-Source Forward Leakage	I _{GSS}	V _{GS} = -20V	-	-	100	nA	
Gate Resistance	R _G	-	-	1.2	-	Ω	

 Table 6
 Dynamic characteristics

Davamatav	Cumbal	Conditions		Values			
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Forward Trans conductance	gfs	$V_{DS} = 10V, I_{D} = 11A$	17	-	-	S	
Total Gate Charge	Qg		-	5.3	8.0		
Pre-Vth Gate-to-Source Charge	Q_{gs1}	I _D = 11A	-	1.5	-		
Post-Vth Gate-to-Source Charge	Q_{gs2}	$V_{DS} = 30V$	-	0.6	-	nC	
Gate-to-Drain Charge	Q_{gd}	$V_{GS} = 4.5V$	-	2.1	-	110	
Gate Charge Overdrive	Q_{godr}	- See Fig.8	-	1.1	-		
Switch Charge (Qgs2 + Qgd)	Q_{sw}		-	2.7	-		
Output Charge	Qoss	$V_{DS} = 30V, V_{GS} = 0V$	-	11	-	nC	
Turn-On Delay Time	t _{d(on)}	V _{DD} = 30V	-	8.4	-		
Rise Time	t _r	$I_D = 11A$	-	21	-		
Turn-Off Delay Time	$t_{\text{d(off)}}$	$R_G = 2.7\Omega$	-	9.0	-	ns	
Fall Time	t _f	V _{GS} = 4.5V ③	-	5.0	-		
Input Capacitance	C _{iss}	$V_{GS} = 0V$	-	660	-		
Output Capacitance	Coss	V _{DS} = 25V	-	180	-		
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz	-	14	-	pF	
Output Capacitance	C _{oss}	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$	-	550	-		
Output Capacitance	Coss	$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$	-	110	-		

Table 7 Reverse Diode

Parameter	Symbol	Symbol Conditions		Values			
Parameter	Syllibot	Conditions	Min.	Тур.	Max.	Unit	
Continuous Source Current		MOSFET symbol			17		
(Body Diode) ⑥⑦	Is	showing the (🗖 🛦	_	-	17		
Pulsed Source Current		integral reverse Subject			56	^	
(Body Diode) ①	I _{SM}	p-n junction diode.	_	_	36		
Diode Forward Voltage	V_{SD}	$T_J = 25^{\circ}C$, $I_S = 11A$, $V_{GS} = 0V$ ③	-	-	1.2	V	
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = 11A$, $V_{DD} = 30V$	-	21	-	ns	
Reverse Recovery Charge	Qrr	di/dt = 100A/μs	-	12	-	nC	

4 Electrical characteristic diagrams

Figure 3 Typical Output Characteristics

Figure 4 Typical Output Characteristics

Figure 5 Typical Transfer Characteristics

Figure 6 Normalized On-Resistance vs. Temperature

Electrical characteristic diagrams

Figure 7 Typical Capacitance vs. Drain-to-Source Voltage

Figure 8 Typical Gate Charge vs. Gate-to-Source Voltage

Figure 9 Typical Source-Drain Diode Forward Voltage

Figure 10 Maximum Safe Operating Area

Figure 11 Maximum Drain Current vs. Case Temperature

Figure 12 Typical Threshold Voltage vs. Junction Temperature

Figure 13 Maximum Avalanche Energy vs. Drain Current

Figure 14 Typical Avalanche Current vs. Pulse Width

Figure 15 Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 16 Peak Diode Recovery dv/dt Test Circuit for N-Channel Power MOSFETs

Figure 17a Gate Charge Test Circuit

Figure 17b Gate Charge Waveform

Figure 18a Unclamped Inductive Test Circuit

Figure 18b Unclamped Inductive Waveforms

Figure 19a Switching Time Test Circuit

Figure 19b Switching Time Waveforms

5 Package Information

PQFN 2 x 2 Outline Package Details

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.infineon.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.infineon.com/technical-info/appnotes/an-1154.pdf

PQFN 2 x 2 Part Marking

Note: For the most current drawing please refer to website at: www.irf.com/package/

Package Information

PQFN 2 x 2 Tape and Reel

NOTE: The Surface Resistivity is $10^4 - 10^8$ OHM/SQ

Note: For the most current drawing please refer to website at: www.irf.com/package/

11.9 Min 15.4 Max

6 Qualification Information

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †				
Moisture Sensitivity Level	PQFN 2 mm x 2 mm (per JEDEC J-STD-020D) [†]				
RoHS Compliant	Yes				

[†] Applicable version of JEDEC standard at the time of product release.

Revision History

Revision History

Major changes since the last revision

Page or Reference	Revision	Date	Description of changes
All pages	1.0	2016-09-16	First release data sheet as Provisional.
All pages	1.1	2016-10-17	Added Switch Time test data.Datasheet released as Provisional.
All page	2.0	2017-03-29	 Parts tested as Unique datasheet with revised current and all other tests Updated datasheet in new Infineon Template .
All page	2.1	2018-05-08	 Corrected typo on part marking from "60HS118" to "S118" to matched actual marking on the devices –page12.
All page	2.2	2019-12-13	 Features-Corrected from "IR MOSFET /OptiMOS™5" to "OptiMOS™5" to in line with the technology positioning of product –page 1.

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithiC™, OPTIGA™, OptiMOS™, ORIGA™, PowiRaudio™, PowiRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE

Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.