Importing the dependencies

```
In [20]: import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
    import warnings
    warnings.filterwarnings("ignore", message="X does not have valid feature names")
```

Data collection and data processing

```
In [21]:
          sonar_data = pd.read_csv("sonar.mine.csv")
          sonar_data.head()
Out[21]:
             Freq_1 Freq_2 Freq_3 Freq_4 Freq_5 Freq_6 Freq_7 Freq_8 Freq_9 Freq_10 ...
                                                                                            Freq_52
          0 0.0200 0.0371 0.0428
                                   0.0207
                                           0.0954
                                                  0.0986 0.1539
                                                                 0.1601
                                                                         0.3109
                                                                                 0.2111
                                                                                             0.0027
             0.0453 0.0523 0.0843
                                   0.0689
                                                 0.2583 0.2156 0.3481
                                                                         0.3337
                                                                                 0.2872 ...
                                                                                             0.0084
                                           0.1183
             0.0262 0.0582 0.1099
                                   0.1083
                                           0.0974
                                                 0.2280 0.2431 0.3771
                                                                         0.5598
                                                                                 0.6194
                                                                                             0.0232
             0.0100 0.0171
                            0.0623
                                   0.0205
                                           0.0205
                                                  0.0368
                                                          0.1098 0.1276
                                                                         0.0598
                                                                                 0.1264 ...
                                                                                             0.0121
                                                                                 0.4459 ...
             0.0762 0.0666
                            0.0481
                                   0.0394
                                           0.0590 0.0649 0.1209 0.2467 0.3564
                                                                                             0.0031
```

5 rows × 61 columns

Number of rows and Columns

```
In [22]: sonar_data.shape
Out[22]: (208, 61)
In [23]: sonar_data.describe()
```

	count	208.000000	208.000	000 208.	000000	208.000000	208.000000	208.00000	00 208.00	00000 2	208.000
	mean	0.029164	0.038	437 0.	043832	0.053892	0.075202	0.10457	70 0.12	21747	0.134
	std	0.022991	0.032	960 0.	038428	0.046528	0.055552	0.05910	0.06	51788	0.085
	min	0.001500	0.000	600 0.	001500	0.005800	0.006700	0.01020	0.00	03300	0.005
	25%	0.013350	0.016	450 0.	018950	0.024375	0.038050	0.06702	25 0.08	30900	0.080
	50%	0.022800	0.030	800 0.	034300	0.044050	0.062500	0.09215	0.10	06950	0.112
	75%	0.035550	0.047	950 0.	057950	0.064500	0.100275	0.13412	25 0.15	54000	0.169
	max	0.137100	0.233	900 0.	305900	0.426400	0.401000	0.38230	0.37	72900	0.459
	8 rows × 60 columns										
In [24]:	<pre>sonar_data["Label"].value_counts()</pre>										
Out[24]:	Label M 111 R 97 Name: count, dtype: int64 M> Mine R> Rock										
In [25]:	<pre>sonar_data.groupby("Label").mean()</pre>										
Out[25]:		Freq_1	Freq_2	Freq_3	Freq_	4 Freq_5	Freq_6	Freq_7	Freq_8	Freq	_9 Fı
	Label										
	М	0.034989).045544	0.050720	0.06476	0.086715	0.111864	0.128359	0.149832	0.2134	92 0.2
	R	0.022498	0.030303	0.035951	0.04144	7 0.062028	0.096224	0.114180	0.117596	0.1373	92 0.
2 rows × 60 columns											
In [26]:	<pre># separating data and Labels x =sonar_data.drop(columns="Label", axis =1) y = sonar_data["Label"]</pre>										

Training and test data

Out[23]:

Freq_1

Freq_2

Freq_3

Freq_4

Freq_5

Fr€

Model Evaluation

```
In [31]: # accuracy on training data
    x_train_pred = model.predict(x_train)
    training_data_accu = accuracy_score(x_train_pred, y_train)

In [32]: print('accuracy on training data :',training_data_accu)
    accuracy on training data : 0.8342245989304813

In [33]: x_test_pred = model.predict(x_test)
    test_data_accu = accuracy_score(x_test_pred, y_test)

In [34]: print('accuracy on training data :',test_data_accu)
    accuracy on training data : 0.7619047619047619
```

Making predictive system