

COMP4161: Advanced Topics in Software Verification

HOL

June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola T3/2019

CSIRO

Content

DATA 61	CSIRO
61	CSIRO

→ Intro & motivation, getting started	[1]
 Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic, Isar (part 1) Term rewriting 	[1,2] [3 ^a] [4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction, Isar (part 2) 	$[6, 7^b]$
 Hoare logic, proofs about programs, invariants 	[8]
 C verification 	[9]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

What is Higher Order Logic?

- → Propositional Logic:
 - no quantifiers
 - all variables have type bool

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- · terms and formulas syntactically distinct

→ Higher Order Logic:

- quantification over everything, including predicates
- consistency by types
- formula = term of type bool
- ullet definition built on $\lambda^{
 ightarrow}$ with certain default types and constants

Default types:

Default types:

bool

Default types:

bool $_{-} \Rightarrow _{-}$

Default types:

bool $_{-} \Rightarrow _{-}$ ind

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- \Rightarrow sometimes called *fun*

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- → ⇒ sometimes called *fun*

Default Constants:

Default types:

bool $_{-}$ \Rightarrow _ ind

- → bool sometimes called o
- → ⇒ sometimes called *fun*

Default Constants:

$$\longrightarrow$$
 :: bool \Rightarrow bool \Rightarrow bool

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- → ⇒ sometimes called *fun*

Default Constants:

$$\begin{array}{ccc} \longrightarrow & :: & \mathit{bool} \Rightarrow \mathit{bool} \Rightarrow \mathit{bool} \\ = & :: & \alpha \Rightarrow \alpha \Rightarrow \mathit{bool} \end{array}$$

Default types:

bool \rightarrow ind

- → bool sometimes called o
- → ⇒ sometimes called *fun*

Default Constants:

 $\begin{array}{lll} \longrightarrow & :: & bool \Rightarrow bool \Rightarrow bool \\ = & :: & \alpha \Rightarrow \alpha \Rightarrow bool \\ \epsilon & :: & (\alpha \Rightarrow bool) \Rightarrow \alpha \end{array}$

Problem: Define syntax for binders like \forall , \exists , ε

Problem: Define syntax for binders like \forall , \exists , ε

One approach: \forall :: $var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

Problem: Define syntax for binders like \forall , \exists , ε

One approach: \forall :: $var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

 λ

So: Use λ to encode all other binders.

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow \mathit{bool}) \Rightarrow \mathit{bool}$$

HOAS

usual syntax

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow \mathit{bool}) \Rightarrow \mathit{bool}$$

HOAS

usual syntax

ALL
$$(\lambda x. x = 2)$$

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow \mathit{bool}) \Rightarrow \mathit{bool}$$

HOAS usual syntax

ALL $(\lambda x. x = 2)$ $\forall x. x = 2$

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow \mathit{bool}) \Rightarrow \mathit{bool}$$

HOAS usual syntax ALL $(\lambda x. \ x = 2)$ $\forall x. \ x = 2$ ALL P

Example:

$$ALL :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS	usual syntax
ALL $(\lambda x. \ x = 2)$ ALL P	$\forall x. \ x = 2$ $\forall x. \ P \ x$

Example:

ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS	usual syntax
ALL $(\lambda x. \ x = 2)$ ALL P	$\forall x. \ x = 2$ $\forall x. \ P \ x$

Isabelle can translate usual binder syntax into HOAS.

→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("_-, _ \vdash _")
Legal syntax now: \Gamma, \Pi \vdash F
```


→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("_-,_ \vdash _")
Legal syntax now: \Gamma, \Pi \vdash F
```

→ priorities:

```
pattern can be annotated with priorities to indicate binding strength Example: drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("_,_ \vdash _" [30,0,20] 60)
```


→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("_-,_ \vdash _")
Legal syntax now: \Gamma, \Pi \vdash F
```

→ priorities:

```
pattern can be annotated with priorities to indicate binding strength Example: drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool ("_,_ \_ \_ " [30,0,20] 60)
```

→ infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool ⇒ bool (infixr " ∨ " 30)

→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("\_, \_ \vdash \_")
Legal syntax now: \Gamma, \Pi \vdash F
```

- → priorities:
 - pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_, _ \vdash _" [30, 0, 20] 60)
- → infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool ⇒ bool (infixr " ∨ " 30)
- **→ binders:** declaration must be of the form $c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3$ (binder "B")

Example ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder " \forall " 10)

→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("\_, \_ \vdash \_")
Legal syntax now: \Gamma, \Pi \vdash F
```

- → priorities:
 - pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_, _ \ _ \ _ " [30,0,20] 60)
- → infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool ⇒ bool (infixr " ∨ " 30)
- **→ binders:** declaration must be of the form $c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3$ (binder "B")

 $B \times P \times P$ translated into $C \times P$ (and vice versa)

Example ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder " \forall " 10)

More in Isabelle/Isar Reference Manual (7.2)

Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is

Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is definitions:

True \equiv All P \equiv Ex P \equiv False $\neg P$ \equiv $P \land Q$ \equiv $P \lor Q$ \equiv If $P \times y$ \equiv inj f \equiv surj f \equiv

Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is definitions:

```
True \equiv (\lambda x :: bool. x) = (\lambda x. x)
All P \equiv
Ex P \equiv
False \equiv
\neg P \equiv
P \land Q \equiv
P \lor Q \equiv
If P \times y \equiv
inj f \equiv
surj f
```


Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is definitions:

```
True \equiv (\lambda x :: bool. x) = (\lambda x. x)
All P \equiv P = (\lambda x. \text{ True})
Ex P \equiv
False \equiv
\neg P \equiv
P \land Q \equiv
P \lor Q \equiv
If P \times y \equiv
inj f \equiv
suri f \equiv
```


Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is definitions:

True
$$\equiv (\lambda x :: bool. \ x) = (\lambda x .: x)$$
All $P \equiv P = (\lambda x. \text{ True})$
Ex $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$
False $\equiv \forall P. P$
 $\neg P \equiv P \longrightarrow \text{False}$
 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$
 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$
If $P \times y \equiv \text{SOME } z. (P = \text{True} \longrightarrow z = x) \land (P = \text{False} \longrightarrow z = y)$
inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$
suri $f \equiv \forall y. \ \exists x. \ y = f \ x$

The Axioms of HOL

$$\frac{s=t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{s = t \quad P \quad s}{P \quad t} \text{ subst} \qquad \frac{\bigwedge x. \quad f \quad x = g \quad x}{(\lambda x. \quad f \quad x) = (\lambda x. \quad g \quad x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\frac{s = t \quad P \quad s}{P \quad t} \text{ subst} \qquad \frac{\bigwedge x. \quad f \quad x = g \quad x}{(\lambda x. \quad f \quad x) = (\lambda x. \quad g \quad x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\frac{s = t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{s = t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{P \ ?x}{P \ (\text{SOME} \ x. \ P \ x)} \text{ somel}$$

$$\frac{s = t \quad P \; s}{P \; t} \; \text{subst} \qquad \frac{\bigwedge x. \; f \; x = g \; x}{(\lambda x. \; f \; x) = (\lambda x. \; g \; x)} \; \text{ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \; \text{impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \; \text{mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \; \text{iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \; \text{True_or_False}$$

$$\frac{P \; ?x}{P \; (\text{SOME} \; x. \; P \; x)} \; \text{somel}$$

$$\overline{\exists f :: ind \implies ind. \; \text{inj} \; f \land \neg \text{surj} \; f} \; \text{infty}$$

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y}$$
 eq_reflection $\overline{\text{(THE } x.\ x=a)=a}$ the_eq_trivial

In the following, we will

In the following, we will

→ look at the definitions in more detail

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
lemma [name :] assumes [name<sub>1</sub> :] "< prop >_1" assumes [name<sub>2</sub> :] "< prop >_2" : shows "< prop >" < proof >
```


In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
\label{eq:lemma_name:} \begin{array}{l} \textbf{lemma} \; [\textit{name}:] \;\; "<\textit{prop}>_1" \\ \textbf{assumes} \; [\textit{name}_1:] \;\; "<\textit{prop}>_2" \\ \vdots \\ \textbf{shows} \;\; "<\textit{prop}>" \;\; <\textit{proof}> \end{array}
```

proves:
$$\llbracket \langle prop \rangle_1; \langle prop \rangle_2; \dots \rrbracket \implies \langle prop \rangle$$

True

consts True :: bool

True $\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$

Intuition:

right hand side is always true

True

consts True :: bool

True $\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$

Intuition:

right hand side is always true

Proof Rules:

 $\frac{}{\mathsf{True}}$ Truel

Proof:

$$\frac{ \overbrace{(\lambda x :: bool. \ x) = (\lambda x. \ x)}}{\mathsf{True}} \ \underset{\mathsf{unfold}}{\mathsf{refl}} \ \mathsf{True_def}$$

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

Intuition:

 \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. \ P \ x.$

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

- → ALL *P* is Higher Order Abstract Syntax for $\forall x$. *P* x.
- \rightarrow P is a function that takes an x and yields a truth value.

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

- \rightarrow ALL P is Higher Order Abstract Syntax for $\forall x. P x.$
- \rightarrow P is a function that takes an x and yields a truth value.
- \rightarrow ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

Intuition:

- → ALL *P* is Higher Order Abstract Syntax for $\forall x. Px$.
- \rightarrow P is a function that takes an x and yields a truth value.
- → ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x} \text{ all} \qquad \frac{\forall x. \ P \ x}{R} \Rightarrow R \text{ all}$$

Proof: Isabelle Demo

False

consts False :: *bool* False $\equiv \forall P.P$

False

consts False :: *bool* False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

False

consts False :: *bool* False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

Proof Rules:

$$\frac{\mathsf{False}}{P} \; \mathsf{FalseE} \qquad \overline{\mathsf{True} \neq \mathsf{False}}$$

Proof: Isabelle Demo

Negation

consts Not :: $bool \Rightarrow bool (\neg _)$ $\neg P \equiv P \longrightarrow \mathsf{False}$

Negation

consts Not ::
$$bool \Rightarrow bool (\neg _)$$

 $\neg P \equiv P \longrightarrow \mathsf{False}$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Negation

consts Not ::
$$bool \Rightarrow bool (\neg _)$$

 $\neg P \equiv P \longrightarrow False$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Proof Rules:

$$\frac{A \Longrightarrow \textit{False}}{\neg A} \ \, \mathsf{notI} \qquad \frac{\neg A \quad A}{P} \ \, \mathsf{notE}$$

Proof: Isabelle Demo

$$\begin{array}{lll} \textbf{consts} \ \mathsf{EX} :: (\alpha \Rightarrow \mathit{bool}) \Rightarrow \mathit{bool} \\ \mathsf{EX} \ P & \equiv & \forall Q. \ (\forall x. \ P \ x \longrightarrow Q) \longrightarrow Q \\ \end{array}$$

$$\begin{array}{lll} \textbf{consts} \ \mathsf{EX} :: (\alpha \Rightarrow bool) \Rightarrow bool \\ \mathsf{EX} \ P & \equiv & \forall Q. \ (\forall x. \ P \ x \longrightarrow Q) \longrightarrow Q \\ \end{array}$$

Intuition:

 \rightarrow EX *P* is HOAS for $\exists x. P x$. (like \forall)

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

EX $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$

- \rightarrow EX P is HOAS for $\exists x. P x.$ (like \forall)
- ightharpoonup Right hand side is characterization of \exists with \forall and \longrightarrow

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

EX $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$

- \rightarrow EX *P* is HOAS for $\exists x. P x.$ (like \forall)
- ightharpoonup Right hand side is characterization of \exists with \forall and \longrightarrow
- → Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

EX $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$

- \rightarrow EX P is HOAS for $\exists x. P x.$ (like \forall)
- ightharpoonup Right hand side is characterization of \exists with \forall and \longrightarrow
- → Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- → Remember lemma from last time: $(\forall x. \ P \ x \longrightarrow Q) = ((\exists x. \ P \ x) \longrightarrow Q)$

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

EX $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$

Intuition:

- \rightarrow EX *P* is HOAS for $\exists x. P x$. (like \forall)
- ightharpoonup Right hand side is characterization of \exists with \forall and \longrightarrow
- → Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- → Remember lemma from last time: $(\forall x. P x \longrightarrow Q) = ((\exists x. P x) \longrightarrow Q)$

Proof Rules:

$$\frac{P?x}{\exists x. Px} \text{ exl} \qquad \frac{\exists x. Px \quad \bigwedge x. Px \Longrightarrow R}{R} \text{ exE}$$

Proof: Isabelle Demo

Conjunction

consts And :: $bool \Rightarrow bool \Rightarrow bool (_ \land _)$ $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Conjunction

consts And :: $bool \Rightarrow bool \Rightarrow bool (_ \land _)$ $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

→ Mirrors proof rules for ∧

Conjunction

consts And ::
$$bool \Rightarrow bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

Conjunction

consts And ::
$$bool \Rightarrow bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \land B} \text{ conjl} \qquad \frac{A \land B \quad \llbracket A; B \rrbracket \Longrightarrow C}{C} \text{ conjE}$$

Proof: Isabelle Demo

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

→ Mirrors proof rules for ∨ (case distinction)

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \vee B} \ \frac{B}{A \vee B} \ \mathrm{disjl1/2} \qquad \frac{A \vee B}{C} \ \frac{A \Longrightarrow C}{C} \ \mathrm{disjE}$$

Proof: Isabelle Demo


```
consts If :: bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha (if_ then _ else _)
If P \times y \equiv \mathsf{SOME} \ z. (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)
```



```
consts If :: bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha (if_ then _ else _)
If P \times y \equiv \mathsf{SOME}\ z. (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)
```

Intuition:

 \rightarrow for P = True, right hand side collapses to SOME z. z = x


```
consts If :: bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha (if then else SOME z. (P = \text{True} \longrightarrow z = x) \land (P = \text{False} \longrightarrow z = y)
```

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

consts If ::
$$bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha$$
 (if_ then _ else _)
If $P \times y \equiv \mathsf{SOME}\ z$. $(P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)$

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

$$\overline{\text{if True then } s \text{ else } t = s}$$
 $\overline{\text{if True}}$ $\overline{\text{if False then } s \text{ else } t = t}$ $\overline{\text{if False then } s \text{ else } t = t}$

Proof: Isabelle Demo

Last time: safe and unsafe, heuristics: use safe before unsafe

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Example:

declare attribute globally declare conjl [intro!] allE [elim]

remove attribute gloably declare allE [rule del]

use locally apply (blast intro: somel) delete locally apply (blast del: conjl)

→ Defining HOL

- → Defining HOL
- → Higher Order Abstract Syntax

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation