Zad 1

- a) 10.1.2.3/8 adres komputera
 10.0.0.0/8 adres sieci
 10.0.0.1/8 adres innego komputera
 10.255.255.255/8 adres rozgłoszeniowy
- b) 156.17.0.0/16 adres sieci
 156.17.0.0/16 adres sieci
 156.17.0.1/16 adres innego komputera
 156.17.255.255/16 adres rozgłoszeniowy
- c) 99.99.99.99/27 adres komputera
 99.99.99.96/27 adres sieci
 99.99.99.97/27 adres innego komputera
 99.99.99.127/27 adres rozgłoszeniowy
- d) 156.17.64.4/30 adres sieci
 156.17.64.4/30 adres sieci
 156.17.64.5/30 adres innego komputera
 156.17.64.7/30 adres rozgłoszeniowy
- 3) 123.123.123.32 adres sieci, komputera i rozgłoszeniowy

Zad 2

Podsieć 1: 10.0.0.0/17 Podsieć 2: 10.0.128.0/18 Podsieć 3: 10.0.192.0/19 Podsieć 4: 10.0.224.0/20 Podsieć 5: 10.0.240.0/20

Liczba adresów możliwych do użycia przy adresowanie komputera zmalała o 8 adresów, które służą jako adresy sieci i rozgłoszeniowe. Minimalny rozmiar podsieci, będzie dla sieci o masce /20 czyli 4094 unikalnych adresów dla komputerów, rozmiar tej sieci wynika z tego, że tworzymy sieć dwukrotnie mniejszą (patrząc na zakresy adresów) za każdym razem, lecz ostatnia sieć musi być takiej samej wielkości jak poprzednia, aby pokryła cały przedział (przykład u góry).

Wpis	Router Wpisy	Przedziały adresów
1. A	0.0.0.0/0	0.0.0.0 - 255.255.255.255
2. B	10.0.0.0/23	10.0.0.0 - 10.0.1.255
3. B	10.0.2.0/24	10.0.2.0 - 10.0.2.255
4. B	10.0.3.0/24	10.0.3.0 - 10.0.3.255
5. C	10.0.1.0/24	10.0.1.0 - 10.0.1.255
6. B	10.0.0.128/25	10.0.0.128 - 10.0.0.255
7. B	10.0.1.8/29	10.0.1.8 - 10.0.1.15
8. B	10.0.1.16/29	10.0.1.16 - 10.0.1.23
9. B	10.0.1.24/29	10.0.1.24 - 10.0.1.31

Można połączyć przedziały, które mają ten sam priorytet (maskę) i stanowią ciągłość no przedziale adresów wpis 7, 8 i 9, a także 3 i 4

Wpisy	Router	Priorytet	Przedziały adresów				
1. A	0		0.0.0.0 - 255.255.255.255				
2. B	23		10.0.0.0 - 10.0.1.255				
3. 4	В	24	10.0.2.0 - 10.0.3.255				
5	С	24	10.0.1.0 - 10.0.1.255				
6	В	25	10.0.0.128 - 10.0.0.255				
7 8 9	В	29	10.0.1.8 - 10.0.1.31				

Przy okazji można zauważyć, że wpisy 3, 4 i 6 nie pokrywają się z C, a także 6 jest zawarte w wpisie 2, a 3 i 4 można zmniejszyć priorytet o jeden (nie wpływa na A i C) i dzięki temu rozszerzyć przedział dla priorytetu 23.

Wpisy	Router	Priorytet	Przedziały adresów
1. A	0		0.0.0.0 - 255.255.255.255
2.34	6 B	23	10.0.0.0 - 10.0.3.255
5		24	10.0.1.0 - 10.0.1.255
7 8 9	В	29	10.0.1.8 - 10.0.1.31

Na podstawie powyższej tableki otrzymujemy równoważną tablice routingu, która jest ponieżej ostatnie 3 wpisy (7, 8, 9) nie jesteśmy w stanie trzymać za pomocą jednego wpisu (przedziały adresów), dlatego otrzymujemy z nich dwa wpisy.

Równoważna tablica routingu:

```
0.0.0.0/0 -> do routera A

10.0.0.0/22 -> do routera B

10.0.1.0/24 -> do routera C

10.0.1.8/28 -> do routera B

10.0.1.16/29 -> do routera B
```

Wpis	Router Wpisy	Przedziały adresów
1. A	0.0.0.0/0	0.0.0.0 - 255.255.255.255
2. B	10.0.0.0/8	10.0.0.0 - 10.255.255.255
3. C	10.3.0.0/24	10.3.0.0 - 10.3.0.255
4. B	10.3.0.32/27	10.3.0.32 - 10.3.0.63
5. B	10.3.0.64/27	10.3.0.64 - 10.3.0.95
6. B	10.3.0.96/27	10.3.0.96 - 10.3.0.127

Podobnie jak w zadaniu powyżej łączymy wpisy o tym samym priorytecie - 4, 5 i 6

Wpisy	Router	Priorytet	Przedziały adresów
1. A	0	(0.0.0.0 - 255.255.255.255
2. B	8	:	10.0.0.0 - 10.255.255.255
3. C	24		10.3.0.0 - 10.3.0.255
4.56	В	27	10.3.0.32 - 10.3.0.127

Więc moglibyśmy stworzyć na tej podstawie tablice routingu, lecz 4, 5 i 6 musielibyśmy trzymać jako 2 wpisy, a można zauważyć, że 4,5 i 6 pokrywa część przedziału 2 i 3, tak samo 3 pokrywa część przedziału 2. Lepszą opcją jest rozbić wpis 3 na 2 części tak, aby nie pokrywał się z 4,5 i 6, dzięki temu 4,5 i 6 będą już zawarte we wpisie dla wpisu 2, i dodając jeden dodatkowy wpis dla przedziały z wpisu 3, likwidujemy potrzebe przechowywania dwóch wpisów dla wpisów 4,5 i 6, więc oszczędzamy 1 wpis w naszej nowej tablicy routingu.

```
Równoważna tablica routingu:
```

```
0.0.0.0/0 -> do routera A
10.0.0.0/8 -> do routera B
10.3.0.128/25 -> do routera C
10.3.0.0/27 -> do routera C
```

Zad 5

Zasada najlepszego dopasowanie polega na tym, że wybierana jest opcja z najdłuższym pasującym prefiksem, więc jeśli tablica routingu zostanie posortowana malejąco po długościach prefiksów (masek), wtedy pierwszy pasujący wybór będzie równoważny zasadzie najlepszego dopasowania.

Dowód

Załóżmy nie wprost, że rozwiązanie nie daje najlepszej opcji - najdłużczego prefiksu, czyli istnieje dłuższy pasujący prefiks

- a) był przed naszym rozwiązaniem w naszej tablicy sprzeczność, ponieważ wtedy zostałby wybrany ten wcześniejszy
- b) jest po naszym rozwiązaniu w naszej tablicy sprzeczność, ponieważ wtedy elementy w tablicy byłyby nie posortowane Więc nasz algorytm spełnia zasadę najlepszego dopasowania.

	Krok 0						
Do	Z A B C D E F S	A * 1 1 1 1 1 1	B 1 1 1 1 1 1 1 1 1	C 1 * 1 1	D	E	F
Do	Krok 1 Z A B C D E F S	A * 1 2 B 1	B 1 1 1 1 2 C 1 1 1	C 2 B 1 * 2 E 1 1 2 B	D 2 E * 1 2 E	E 2 C 1 1 * 1	F 2 C 1 2 E 1 *
Do	Xrok 2 Z A B C D E F S	A * 1 2 B 3 B 3 B 1	B 1 1 1 3 C 2 C 1 1 1	C 2 B 1 * 2 E 1 1 2 B	D 3 E 2 E 1 2 E	E 3 C 2 C 1 1 * 1 3 C	F 3 C 2 C 1 2 E 1 3 C
Do	Krok 3	A * 1 2 B 4 B 3 B 3 B 1 1	B 1 1 * 1 3 C 2 C 1 1	C 2 B 1 * 2 E 1 1 2 B	D 4 E 3 E 2 E * 1 2 E 4 E	E 3 C 2 C 1 1 * 1 3 C	F 3 C 2 C 1 2 E 1 3 C

W 3 krokach.

Zad 7

Przed Z						
Do	A * 1 2 B 4 B 3 B 3 B 1 1	B 1 1 1 1 1 1 1 1 1	C 2 B 1 * 2 E 1 1 2 B	D 4 E 3 E 2 E 1 2 E 4 E	E 3 C 2 C 1 1 * 1 3 C	F 3 C 2 C 1 2 E 1 * 3 C
Po Krok 0						
DO A B C D E F S	A * 1 2 B 1 3 B 3 B 1 1	B 1 1 1 1 1 1 1 1 1	C 2 B 1 * 2 E 1 1 2 B	D 1 3 E 2 E * 1 2 E 4 E	E 3 C 2 C 1 1 1 1 3 C	F 3 C 2 C 1 2 E 1 4 3 C
Krok 1 Z Do	A * 1 2 B 1 3 B 1 1 1	B 1 1 1 2 A 2 C 2 1 1	C 2 B 1 * 2 E 1 1 2 B	D 1 2 A 2 E 1 2 E 2 A	E 2 D 2 C 1 1 * 1 3 C	F 3 C 2 C 1 2 E 1 * 3 C

Odległości pomiędzy poszczególbymi routerami się zmniejszyły.

Tablica odległości do E, b. s. o. załóżmy, że droga z A do E przebiega przez B (symetryczny przypadek jeśli przebiega przez C)

i - infinity

| A | B | C | D | | 3 B | 2 D | 2 D | i |

D wysyła informacje o nieskończonej odlwgłości (do E) do B i C

| A | B | C | D | | 3 B | i | i | i |

A wysyła do B zatrutą ścieżke bo droga z A do E przebiega przez B i wysyła też informacje do C o swojej drodze

| A | B | C | D | | 3 B | i | 4 A | i |

C wysyła do A zatrutą ścieżke bo droga z C do E przebiega przez A i wysyła też informacje do D o swojej drodze

| A | B | C | D | | 3 B | i | 4 A | 5 C |

D wysyła do C zatrutą ścieżke bo droga z D do E przebiega przez C i wysyła też informacje do B o swojej drodze

| A | B | C | D | | 3 B | B | 4 A | 5 C |

Powstał cykl.

Zad 9

Dla sieci z 5 routerami, które przed awarią są połączone w cykl A<->B<->C<->D<->E<->A. i wszystkie routery oprócz C dowiedziały się, że krawędź pomiędzy A i B przestała istnieć. Przykładowo C będzie chciała wysłać informację do A i wysyła ją do B, ponieważ ma starą informację, że B jest połączone z A, zaś B ma już aktualną wesję grafu, więc odsyła wiadomość do C i w taki sposób powstaje cykl.

Z treści zadania rozumiem, że jeśli router w tym samym czasie dostanie dwa komunikaty to wysyła oba.

Ponumerujmy routery od 1 do n. Routery będą mieć krawędzie do każdego routera o mniejszym numerze. Oczywiste jest, że nie mają cykl bo wtedy oznaczałoby to, że istniałaby krawędź z routera o niższym numerze do takiego z większym. Krytyczna jest krawędź pomiędzy routerem 0 i 1. Router n jest routerem, który rozpoczyna wysyłanie komunikatu. Można stworzyć zależność rekurencyjną S(n) = suma dla i od 1 do n-1 <math>S(i), gdzie S(1) = 1 i (teza) jest to liczba wygenerowanych komunikatów przez wierzchołek n, które muszą przejść przez krawędź krytyczną. Dowód indukcyjny wzoru:

Dla n = 1 jeśli router 1 wysyła komunikat to przesyła go do 0.

ZI zachodzi dla n <= k</pre>

TI Czy zachodzi dla n = k + 1?

n+1 wysyła komunikat dla wszystkich wierzchołków o mniejszym numerze, więc suma wygenerowanych komunikatów przez jego "synów" będzie równa wygenerowanych komunikatów przez n.

Komunikaty z i do 0 nie wpływają na komunikaty przesłane pomiędzy 0, a 1 ponieważ z 0 nie wychodzą krawędzie.

Więc na mocy indukcji zachodzi teza.

 $S(n) = 2^{(n-2)} \sim dowód indukcyjny (trywialny) S(1) = 1 S(2) = 1 Suma S(n) = S(n-1) + S(n-2) + ... = S(n-1) + S(n-1) = 2*S(n-1) i z korzystająć z założenia indukcyjnego otrzymujemy wzór.$

Więc skoro przez krawędź 1->0 musi przejść 2^(n-2) komunikatów to przesyłanie zakóńczy się przynajmniej po czasie 2^(OMEGA(n)).