Sequence Analysis - RNA-Seq 1

The Transcriptome

- Complete set of RNA transcripts in the cell
- Many types of RNA, e.g.:
 - o mRNA
 - lincRNA
 - Anti-sense
 - o rRNA
 - Small molecules:
 - tRNA, snoRNA, miRNA, piRNA, etc

Transcriptome Studies

From abundance

- Gene expression
- Transcriptional regulatory networks
- Biological pathway discovery

From sequence

- Alternative splicing
- Amino acid sequence
- Fusion transcripts
- RNA editing
- Gene discovery
- Coding variants

RNA-Seq

- Identify sequence of RNA molecules
- "Unbiased" possible to sequence any molecule in sample
- Molecules sequenced in proportion to relative abundance in sample
- Most often used for gene abundance estimation

RNA-Seq Library Construction

Design Choices & Considerations

- Single vs paired end
- Read length
- Ribosomal Depletion Strategy
- Fragment length
- RNA Integrity
- Stranded vs Unstranded
- Library size
- Multiplexing

Design Choice: Single vs Paired End

- Single end vs paired end
 - 2x more distinct molecules sequenced
 - Harder to find reads spanning splice junctions
- For RNA-Seq, use paired end

Design Choice: Read Length

- Read length determines mappability
- Longer reads:
 - o more unique sequence → more uniquely mappable
 - more likely to span splice junction
- Shorter paired reads better than longer single end (why?)
- 2 x 75bp enough for hg, 2 x 150bp overkill

Design Choice: poly-A or Ribo-depletion

- ~95% of RNA in cell is ribosomal RNA
- 5S, 5.8S, 18S, 28S in humans
- Two removal strategies:
 - poly-A selection (positive)
 - poly-A capture
 - Only poly-A transcripts (mRNA)
 - Ribo-depletion (negative)
 - Probe-based rRNA capture
 - Leaves all other RNA sequence

Removing rRNA: poly-A

poly-A (mRNA-Seq)

- Enriched for mRNA (protein coding)
- Little pre-mRNA/ lincRNA/etc
- Splicing analysis
- Sensitive to low RIN
- \(\bar{7}\)3' degradation bias

Removing rRNA: Ribo-depletion

Ribo-depletion (RNA-Seq)

- Removes rRNA with probes
- <u>b</u>Diverse RNA sequences
- Relatively less protein coding
- Little to no 3' bias
- Fewer spliced/exonic reads
- <u>b</u>Effective for degraded RNA
- Harder to interpret protein effects

Large RNA Size Selection

- Gel cut (old method):
 - Size select with gel electrophoresis
 - Fragment size distribution may indicate RNA quality
 - Select ~300nt fragments by gel cut
- SPRI Beads (current method)

Small RNA Size Selection

https://www.researchgate.net/publication/231742684_Preparation_of_Small_RNA_Libraries_for_High-Throughput_Sequencing/figures

Batch effect: Fragment Length Distribution

 Inner mate distance: unsequenced length between read pair

Inner Mate Distance

Design Consideration: RIN

- RNA Integrity Number
- Measurement of RNA quality
- 10 best, 0 worst
- Transcripts
 - o degrade $5' \rightarrow 3'$
 - At different rates!
- Rules of thumb
 - o >8 <u>/</u>
 - 6-8 is ok if necessary
 - 3-6 is ok only if very necessary

Design Choice: Stranded vs Unstranded

- Stranded libraries maintain strand of molecule in reads
- Unstranded do not
- Important to resolve:
 - Bi-directional transcription
 - Anti-sense transcripts
 - Overlapping genes
- Modern RNA-Seq library prep kits are stranded

Design Choice: Library Size & Multiplexing

- Library size: # of reads per sample
- Depending on who you ask, a read is:
 - A RNA fragment (same for single/paired end)
 - One FASTQ record (not same for single/paired end)
- Library size is target, # reads will vary
- Rules of thumb for human transcriptome:
 - o poly-A: 30M for expression, 80M alternative splicing
 - o ribo: 50M for expression, 100M alternative splicing

Design Choice: Multiplexing

- Add unique barcode (index) to each sample library
- Multiplexed samples pooled and sequenced together → avoid lane batch effects
- Data will usually be demultiplexed for you

Design Choices & Recommendations

- Fragment length: ~300nt (large RNA)
- RNA Integrity: >86, >6 ok, >3 if need be
- Ribosomal Depletion Strategy: depends
- Single vs paired end: paired
- Read length: 2 x 75bp
- Stranded vs Unstranded: stranded
- Library size: poly-A 30-80M, ribo 50-100M
- Multiplexing