# Informatik II Skript Sommersemester 2015

# Finn Ickler

# 24. Juni 2015

# Inhaltsverzeichnis

| 14.4.2015 | 3          |
|-----------|------------|
| 16.4.2015 | 4          |
| 21.4.2015 | $\epsilon$ |
| 23.4.2015 | 8          |
| 28.4.2015 | 10         |
| 30.4.2015 | 13         |
| 5.5.2015  | 17         |
| 7.5.2015  | 18         |
| 12.5.2015 | 22         |
| 19.5.2015 | 26         |
| 21.5.2015 | 31         |
| 9.6.2015  | 36         |
| 11.6.2015 | 39         |
| 16.6.2015 | 43         |
| 18.6.2015 | 45         |
| 23.6.2015 | 48         |

# Codebeispiele

| 1    | Arithmetik mit Fließkommazahlen                               | 4  |
|------|---------------------------------------------------------------|----|
| 2    | Schlüsselwort define                                          | 5  |
| 3    | Lambda Abstraktion                                            | 5  |
| 4    | Bilderzusammenstellung am Beispiel einer Uhr                  | 7  |
| 5    | Die one-of Signatur                                           | 10 |
| 6    | Konstruktion eines eigenen Ifs?                               | 10 |
| 7    | Absolutbetrag durch cond                                      | 12 |
| 8    | Boolsche Ausdrücke mit and und or                             | 13 |
| 9    | Record Definitionen                                           | 13 |
| 10   | Check-property                                                | 15 |
| 11   | Übersetzung mathematischer Aussagen in check-property         | 15 |
| 12   | Konstruktoren und Selektoren                                  | 16 |
| 13   | predicate Signaturen am Beispiel von Längen- und Breitengrade | 18 |
| 14   | Ersetzung one-of druch predicate Siganturen                   | 18 |
| 15   | Geocoding                                                     | 20 |
| 16   | cond mit gemischten Daten                                     | 21 |
| 17   | Wrapper und Worker                                            | 22 |
| 18   | make-pair, ein polymorpher Datentyp                           | 24 |
| 19   | Listen mit Signatur list-of                                   | 26 |
| 20   | Geschachtelte Listen                                          | 28 |
| 21   | Rekursion auf Listen: Länge einer Liste                       | 29 |
| 22   | Rekursion: Zusammenfügen zweier Listen                        | 30 |
| 23   | Bildmanipulation mit Listen aus Pixeln                        | 31 |
| 24   | Check-property mit Einschränkungen                            | 34 |
| 25   | Rekursion auf natürlichen Zahlen: Fakultät                    | 34 |
| 26   | Fehlerhafte Rekursionen                                       | 35 |
| End  | rekursion.rkt                                                 | 36 |
| 27   | Umdrehen einer Liste durch lambda Rekursion                   | 37 |
| 28   | Letrec und endrekursives Umdrehen einer Liste                 | 38 |
| High | herOrderProcedures.rkt                                        | 45 |
| 29   | Anwendungsbeispiele foldr                                     | 47 |
| Anir | mationen–und–HOP–Typ2.rkt                                     | 48 |
| 30   | Animation 1: Ein Zähler                                       | 49 |
| 31   | Animation 2: Ein Raumschiff                                   | 49 |
| 32   | Anwendungen von Combined                                      | 51 |
| 33   | + als Higher Order Funktion                                   | 51 |

# 14.4.2015

# **Scheme**

Ausdrücke, Auswertung und Abstraktion

#### **Dr Racket**



Die Anwendung von Funktionen wird in Scheme ausschlieSSlich in Präfixnotation durchgeführt

| Mathematik  | Scheme    |
|-------------|-----------|
| 44-2        | (- 44 2)  |
| f(x, y)     | (f x y)   |
| $\sqrt{81}$ | (sqrt 81) |
| $9^2$       | (! 3)     |

Allgemein: (<funktion><argument1><argument2> ...)

 $(+\ 40\ 2)$  und  $(odd?\ 42)$  sind Beispiele für Ausdr"ucke, die beiAuswertungeinen Wert liefern.

Reduktion

```
(odd? 42) →→ #f
```

Interaktionsfenster:

$$\underbrace{Read \rightarrow Eval \rightarrow Print \rightarrow Loop}_{REPL}$$

*Literale* stehen für einen konstanten Wert (auch: *Konstante*) und sind nicht weiter reduzierbar.

| Literal         |                              | Sorte,Typ |
|-----------------|------------------------------|-----------|
| #f,#t           | (true, false, Wahrheitswert) | boolean   |
| "X"             | (Zeichenketten)              | String    |
| 0 1904 42 -2    | (ganze Zahl)                 | Integer   |
| 0.423.14159     | (FlieSS kommazahl)           | real      |
| 1/2, 3/4, -1/10 | (rationale Zahlen)           | rational  |
|                 | (Bilder)                     | image     |

# 16.4.2015

Auswertung *zusammengesetzter Ausdrücke* in mehreren Schritten (Steps), von "innen nach außen", bis keine Reduktion mehr möglich ist.

Codebeispiel 1: **Achtung:** Scheme rundet bei Arithmetik mit Fließkommazahlen (interne Darstellung ist binär)

Erlaubte konsistente Wiederverwendung, dient der Selbstdokumentation von Programmen

**Achtung:** Dies ist eine sogenannte Spezialform und kein Ausdruck. Insbesondere besitzt diese Spezialform *keinen* Wert, sondern einen Effekt Name  $\langle id \rangle$  wird an den *Wert* von  $\langle e \rangle$  gebunden.

Namen können in Scheme beliebig gewählt werden, solange

- (1) die Zeichen () [] {} ", ' '; # | \nicht vorkommen
- (2) dieser nicht einem numerischen Literal gleicht.
- (3) kein Whitespace (Leerzeichen, Tabulator, Return) enthalten ist.

Beispiel: euro→US\$

*Achtung:* Groß-\Kleinschreibung ist irrelevant.

#### Codebeispiel 2: Bindung von Werten an Namen

```
(define absoluter-nullpunkt -273.15)
(define pi 3.141592653)
(define Gruendungsjahr-SC-Freiburg 1904)
(define top-level-domain-germany "de")
(define minutes-in-a-day (* 24 60))
(define vorwahl-tuebingen (sqrt 1/2))
```

Eine *lambda-Abstraktion* (auch Funktion, Prozedur) erlaubt die Formatierung von Ausrdrücken, in denen mittels *Parametern* von konkreten Werten abstrahiert wird.

```
(lambda (<p1><p2>...) <e>
```

(e)Rumpf: enthält Vorkommen der Parameter  $\langle p_n \rangle$ 

(lambda(...)) ist eine Spezialform. Wert der lambda-Abstraktion ist  $\#\langle procedure \rangle$ . Anwendung (auch Application) des lambda-Aufrufs führt zur Ersetzung aller Vorkommen der Parameter im Rumpf durch die angegebenen Argumente.

#### Codebeispiel 3: Lambda-Abstraktion

```
; Abstraktion: Ausdruck mit "Loch" ⊙
```

```
(* 365 (* 155 minutes-in-a-day)) ***81468000
```

In Scheme leitet ein Semikolon einen Kommentar ein, der bis zum Zeilenende reicht und vom System bei der Auswertung ignoriert wird.

Prozeduren sollten im Programm ein- bis zweizeilige *Kurzbeschreibungen* direkt vorangestellt werden.

#### 21.4.2015

Eine Signatur prüft, ob ein Name an einen Wert einer angegebenen Sorte (Typ) gebunden wird. Signaturverletzungen werden protokolliert.

```
(: <id> <signatur>)
```

Bereits eingebaute Sinaturen

```
\begin{array}{ccc} \text{natural} & \mathbb{N} & \text{boolean} \\ \text{integer} & \mathbb{Z} & \text{string} \\ \text{rational} & \mathbb{Q} & \text{image} \\ \text{real} & \mathbb{R} & \dots \\ \text{number} & \mathbb{C} & \end{array}
```

(: ...) ist eine Spezialform und hat keinen Wert, aber einen Effekt: Signaturprüfung

*Prozedur Signatur* spezifizieren sowohl Signaturen für die Parameter  $P_1, P_2, \dots P_n$  als auch den Ergebniswert der Prozedur,

```
(: <Signatur P1> ... <Signatur Pn> -> <Signatur Ergebnis>)
```

Prozedur Signaturen werden *bei jeder Anwendung* einer Prozedur auf Verletzung geprüft. *Testfälle* dokumentieren das erwartete Ergebnis einer Prozedur für ausgewählte Argumente:

```
(check-expect <e1> <e2>)
```

Werte Ausdruck  $\langle e_1 \rangle$  aus und teste, ob der erhaltene Wert der Erwartung  $\langle e_2 \rangle$  entspricht (= der Wert von  $\langle e_2 \rangle$ ) Einer Prozedur sollte Testfälle direkt vorangestellt werden.

Spezialform: kein Wert, sondern Effekt: Testverletzung protokollieren

Konstruktionsanleitung für Prozeduren:

- (1) Kurzbeschreibung (ein- bis zweizeiliger Kommentar mit Bezug auf Parametername)
- (2) Signaturen
- (3) Testfälle
- (4) Prozedurrumpf

*Top-Down-Entwurf* (Programmieren durch "Wunschdenken") Beispiel: Zeichne Ziffernblatt (Stunden- und Minutenzeiger) zu Uhrzeit h:m auf einer analogen 24h-Uhr



Minutenzeiger legt  $\frac{360^{\circ}}{60}$  Grad pro Minute zurück (also  $\frac{360}{60} \cdot m$ ) Studentenzeiger legt  $\frac{360}{12}$  pro Stunde zurück ( $\frac{360}{12} \cdot h + \frac{360}{12} \cdot \frac{m}{60}$ )

#### Codebeispiel 4: Bauen der Uhr durch Top Down Entwurf

```
; Grad, die Minutenzeiger pro Minute zuruecklegt
  (define degrees-per-minute 360/60)

; Grad, die Stundenzeiger pro voller Stunde zuruecklegt
  (define degrees-per-hour 360/12)

; Zeichne Ziffernblatt zur Stunde h und Minute m
  (: draw-clock (natural natural -> image))
  (check-expect (draw-clock 4 15) (draw-clock 16 15))
  (define draw-clock
  (lambda (h m)
   (clock-face (position-hour-hand h m)
```

```
(position-minute-hand m))))
15 ; Winkel (in Grad), den Minutenzeiger zur Minute m einnimmt
  (: position-minute-hand (natural -> rational))
  (check-expect (position-minute-hand 15) 90)
  (check-expect (position-minute-hand 45) 270)
  (define position-minute-hand
  (lambda (m)
  (* m degrees-per-minute)))
  ; Winkel (in Grad), den Stundenzeiger zur Stunde h einnimmt
  (: position-hour-hand (natural natural -> rational))
  (check-expect (position-hour-hand 3 0) 90)
  (check-expect (position-hour-hand 18 30) 195)
  (define position-hour-hand
  (lambda (h m)
  (+ (* (modulo h 12) degrees-per-hour)
30 ; h mod 12 in {0,1,...,11}
  (* (/ m 60) degrees-per-hour))))
  ; Zeichne Ziffernblatt mit Minutenzeiger um dm und
  ; Stundenzeiger um dh Grad gedreht
  (: clock-face (rational rational -> image))
  (define clock-face
  (lambda (dh dm)
  (clear-pinhole
  (overlay/pinhole
  (circle 50 "outline" "black")
  (rotate (* -1 dh) (put-pinhole 0 35 (line 0 35 "red")))
  (rotate (* -1 dm) (put-pinhole 0 45 (line 0 45
     "blue")))))))
```

#### 23.4.2015

Substitutionsmodell

Reduktionsregeln für Scheme (Fallunterscheidung je nach Ausdrücken) wiederhole, bis keine Reduktion mehr möglich

```
- literal (1, "abc", #t, ...) l ↔
                                                                                     [eval<sub>lit</sub>
- Identifier id(pi, clock-face,...) id ~~ gebundene Wert

    lambda Abstraktion

                                   (lambda (...)...) →→ (lambda (...)...)
- Applikationen (f e_1 e_2 ...)
```

 $\lceil \text{eval}_{id} \rceil$ 

 $[eval_{\lambda}]$ 

```
(1) f, e_1, e_2 reduzieren erhalte: f', e_1', e_2'
```

 $\text{(2)} \begin{cases} \text{Operation } f \text{` auf } e_1 \text{` und } e_2 \text{` [apply}_{prim}] & \text{falls } f \text{` primitiv ist} \\ \text{Argumentenwerte in den Rumpf von } f \text{` einsetzen, dann reduzieren} & \text{falls } f \text{` lambda Abstraktion} \end{cases}$ 

#### Beispiel:

Bezeichnen (lambda (x) (\* x x)) und lambda (r) (\* r r) die gleiche Prozedur?  $\Rightarrow$  JA!

Achtung: Das hat Einfluß auf das Korrekte Einsetzen von Argumenten für Prozeduren (siehe apply)

# Prinzip der Lexikalischen Bindung

Das *bindene Vorkommen* eines Identifiers id kann im Programmtext systematisch bestimmt werden: Suche strikt von innen nach außen, bis zum ersten

```
(1) (lambda (r) <Rumpf>
```

(2) (**define** <e>)

Übliche Notation in der Mathematik: Fallunterscheidung

$$max(x_1, x_2) = \begin{cases} x_1 & \text{falls } x_1 \ge x_2 \\ x_2 & \text{sonst} \end{cases}$$

*Tests* (auch Prädikate) sind Funktionen, die einen Wert der Signatur boolean liefern. Typische primitive Tests.

```
(: = (number number -> boolean))
(: < (real real -> boolean))
auch >, <=, >=
```

```
 \begin{array}{lll} (: & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

## 28.4.2015

Die Signatur *one of* lässt genau einen der ausgewählten Werte zu.

```
(one of \langle e_1 \rangle \langle e_2 \rangle ... \langle e_n \rangle)
```

#### Codebeispiel 5: one-of am Beispiel des Fußballpunktesystems

Reduktion von if:

Codebeispiel 6: Koennen wir unser eigenes 'if' aus 'cond' konstruieren? (Nein!)

```
(else e2))))
  ; Sichere Division x/y, auch fuer y = 0
  (: safe-/ (real real -> real))
  (define safe-/
    (lambda (x y)
      (my-if (= y 0) ; <-- Funktion my-if wertet ihre</pre>
         Argumente
                               vor der Applikation aus: (/ x
                y) wird
             (/ x y)))); in *jedem* Fall reduziert. :-(
15
  (safe-/ 42 0)
                         ; Fuehrt zu Fehlemeldung "division
     by zero"
                         ; (Reduktion mit Stepper
                            durchfuehren)
```

Spezifikation Fallunterscheidung (conditional expression):

Werte die Tests in den Reihenfolge  $t_1, t_2, t_3, \dots, t_n$  aus.

Sobald  $t_i \# t$  ergibt, werte Zweig  $e_i$  aus.  $e_i$  ist Ergebnis der Fallunterscheidung. Wenn  $t_n \# t$  liefert, dann liefert

```
Fehlermeldung "cond: alle Tests ergaben false" falls kein else Zweig \langle e_{n+1} \rangle sonst
```

#### Codebeispiel 7: Absolutwert von x

## Reduktion von cond [eval<sub>cond</sub>]

```
 \begin{array}{ll} (\textbf{cond} & (< t_1 > \ < e_1 >) \ (< t_2 > \ < e_2 >) \dots (< t_n > \ < e_n >) \ ) \\ \hline \textbf{(lond)} & \text{(cond)} & \text{(sond)} & \text{(cond)} & \text{(sond)} & \text{(cond)} & \text{(sond)} & \text{(cond)} & \text{(cond)}
```

cond ist syntaktisches Zucker (auch abgeleitete Form) für eine verbundene Anwendung von if

```
if (<t1>
                     (<t1><e1>)
(cond
                     (<t2><e2>)
                                                                                              <e1>
                                                                                                        if <t2>
                                                                                                        if <e2>
                                                                                                         . . .
                                                                                                              if <tn>
                     (<tn><en>)
                                                                                                                      <en>
                     (else <en+1>)
                             <en+1>))..))
Spezialform 'and' und 'or'
(\text{or } \langle \mathsf{t}_1 \rangle \ \langle \mathsf{t}_2 \rangle \ \dots \ \langle \mathsf{t}_n \rangle) \ \leftrightsquigarrow (\text{if } \langle \mathsf{t}_1 \rangle \ (\text{or } \langle \mathsf{t}_2 \rangle \ \dots \ \langle \mathsf{t}_n \rangle) \ \# \mathsf{t})
(or) →#f
(and \langle t_1 \rangle \langle t_2 \rangle \dots \langle t_n \rangle) \rightsquigarrow (if \langle t_1 \rangle (and \langle t_2 \rangle \dots \langle t_n \rangle) #f)
```

(and) **→→**#t

#### Codebeispiel 8: Konstruktion komplexer Prädikate mittels 'and' und 'or'

```
(and #t #f) ; \( \sim \) #f
                           (Mathematik: Konjunktion)
                           (Mathematik: Disjunktion)
  (or #t #f)
                ; ~~ #t
  ; Kennzeichen am/pm fuer Stunde h
  (: am/pm (natural -> (one-of "am" "pm" "???")))
  (check-expect (am/pm 10) "am")
  (check-expect (am/pm 13) "pm")
  (check-expect (am/pm 25) "???")
  (define am/pm
    (lambda (h)
      (cond ((and (>= h 0) (< h 12))
10
             ((and (>= h 12) (< h 24)) "pm")
             (else "???"))))
```

#### 30.4.2015

#### Zusammengesetze Daten

Ein Charakter besteht aus drei Komponenten

- Name des Charakters (name)
- Handelt es sich um einen Jedi? (jedi?) Datendefinition für zusammengesetzte Daten
- Stärke der Macht (force)

Konkrete Charakter:

| name  | "Luke Skywalker " |
|-------|-------------------|
| jedi? | #f                |
| force | 25                |

#### Codebeispiel 9: Starwars Charakter als Racket Records

```
; Ein Charakter (character) besteht aus
; - Name (name)
; - Jedi-Status (jedi?)
; - Stärke der Macht (force)
(: make-character (string boolean real -> character))
(: character? (any -> boolean))
(: character-name (character -> string))
(: character-jedi? (character -> boolean))
(: character-force (character -> real))
(define-record-procedures character
    make-character
    character?
    (character-name
        character-jedi?
        character-force))
```

```
; Definiere verschiedene Charaktere des Star Wars
    Universums
(define luke
    (make-character "Luke_Skywalker" #f 25))
(define r2d2
    (make-character "R2D2" #f 0))
(define dooku
    (make-character "Count_Dooku" #f 80))
(define yoda
    (make-character "Yoda" #t 85))
```

Zusammengesetzte Daten = *Records* in Scheme Record-Definition legt fest:

- Record-Signatur
- Konstruktor (baut aus Komponenten einen Record)
- Prädikat (liegt ein Record vor?)
- Liste von *Selektoren* (lesen jeweils eine Komponente des Records)

Verträge des Konstruktors der Selektoren für Record- Signatur  $\langle t \rangle$  mit Komponenten namens  $\langle \text{comp}_1 \rangle \dots \langle \text{comp}_n \rangle$ 

```
(: make-<t> (<t1>...<t2>) -> <t>)
(: <t>-<comp1> (<t> -> <t1>))
(: <t>-<compn> (<t> -> <tn>))
```

Es gilt für alle Strings n, Booleans j und Integer f:

```
(character-name (make-character n j f) n)
(character-jedi? (make-character n j f) j)
(character-force (make-character n j f) f )
```

Spezialform check-property:

```
;Bezieht sich auf <id1> ... <idn>
```

Test erfolgreich, falls  $\langle e \rangle$  für beliebig gewählte Bedeutungen für  $\langle id_1 \rangle \dots \langle id_n \rangle$  immer #t ergibt

#### Codebeispiel 10: Interaktion von Selektoren und Konstruktor:

```
(check-property
   (for-all ((n string)
              (j boolean)
              (f real))
      (expect (character-name (make-character n j f)) n)))
  (check-property
   (for-all ((n string)
              (j boolean)
              (f real))
      (expect (character-jedi? (make-character n j f)) j)))
  (check-property
   (for-all ((n string)
             (j boolean)
15
              (f real))
      (expect-within (character-force (make-character n j f))
        f 0.001)))
```

*Beispiel:* Die Summe von zwei natürlichen Zahlen ist mindestens so groß wie jeder dieser Zahlen:  $\forall x_1 \in \mathbb{N}, x_2 \in \mathbb{N} : x_1 + x_2 \ge \max\{x_1, x_2\}$ 

#### Codebeispiel 11: Mathematische ∀-Aussage in Racket

Konstruktion von Funktionen, die bestimmte gesetzte Daten konsumiert.

- Welche Record-Componenten sind relevant für Funktionen?
  - → Schablone:

```
(: sith? (character -> boolean))
```

Konstruktion von Funktionen, die zusammengesetzte Daten konstruieren

- Der konstruktor *muss* aufgerufen werden
  - → Schablone:

- Konkrete Beispiele:

Codebeispiel 12: Abfragen der Eigenschaften von character Records

```
; Könnte Charakter c ein Sith sein?
  (: sith? (character -> boolean))
  (check-expect (sith? yoda) #f)
  (check-expect (sith? r2d2) #f)
  (define sith?
     (lambda (c)
       (and (not (character-jedi? c))
            (> (character-force c) 0))))
10
  ; Bilde den Charakter c zum Jedi aus (sofern c überhaupt
     Macht besitzt)
  (: train-jedi (character -> character))
  (check-expect (train-jedi luke) (make-character "Luke_
     Skywalker" #t 50))
  (check-expect (train-jedi r2d2) r2d2)
  (define train-jedi
     (lambda (c)
       (make-character (character-name c)
                       (> (character-force c) 0)
20
                       (* 2 (character-force c)))))
```

# 5.5.2015



Position Nord/Südwest vom Äquator Position west/östlich vom Nullmeridian Sei ein Prädikat mit Signatur (<t> -> boolean).

Eine Signatur der Form (predicate p gilt für jeden Wert der Signatur t sofern  $(p) \rightarrow \#t$ 

Signaturen des Typs predicate ) sind damit *spezifischer* (restriktiver) als die Signatur  $\langle t \rangle$  selbst.

```
(define <newt> (signature <t>
Beispiele:
```

#### Codebeispiel 13: Restriktive Signaturen mit predicate

```
; Ist x ein gültiger Breitengrad
; zwischen Südpol (-90°) und Nordpol (90°)?
(: latitude? (real -> boolean))
(check-expect (latitude? 78) #t)
(check-expect (latitude? -92) #f)
(define latitude?
  (lambda (x)
    (within? -90 \times 90))
; Ist x ein gültiger Längengrad westlich (bis -180°)
; bzw. östlich (bis 180°) des Meridians?
(: longitude? (real -> boolean))
(check-expect (longitude? 0) #t)
(check-expect (longitude? 200) #f)
(define longitude?
 (lambda (x)
    (within? -180 \times 180))
; Signaturen für Breiten-/Längengrade basierend auf
; den obigen Prädikaten
(define latitude
  (signature (predicate latitude?)))
(define longitude
  (signature (predicate longitude?)))
```

#### 7.5.2015

Man kann jedes one-of durch ein predicate ersetzen.

#### Codebeispiel 14: Das "große One-of Sterben des Jahres 2015"

```
(: f ((one-of 0 1 2 ) -> natural))
(define f
    (lambda (x)
        x))

5 ; And then the "The Great one-of Extinction" of 2015
```



Geocoding: Übersetze eine Ortsangabe mittels des Google Maps Geocoding API (Application Programm Interface) in eine Position auf der Erdkugel.

```
(: geocoder (string -> (mixed geocode geocode-error)))
Ein geocode besteht aus:
```

Signatur

- Adresse (address) stringOrtsangabe (loc) location
- Nordostecke (northeast) location Ein geocode-error besteht aus:
- Südwestecke (southwest) locationTyp (type) stringGenauigkeit (accuracy) string

```
(: geocode-adress (geocode -> string))
(: geocode-loc (geocode -> location))
(: geocode-... (geocode -> ...))
```

Signatur

- Fehlerart (level) (one-of "TCP" "HTTP" "JSON" "API")
- Fehlermeldung (message) string

Gemischte Daten

Die Signatur

```
(mixed \langle t_1 \rangle \ldots \langle t_n \rangle)
```

ist gültig für jeden Wert, der mindestens eine der Signaturen  $\langle t_1 \rangle \dots \langle t_n \rangle$  erfüllt. *Beispiel*: Data-Definition

Eine Antwort des Geocoders ist entweder

- ein Geocode (geocode) oder
- eine Fehlermeldung (geocode-error)

Beispiel (eingebaute Funktion string-\number)

#### Codebeispiel 15: Die Google Geocode API

```
(define geocoder-response
    (signature (mixed geocode geocode-error)))
  (: sand13 geocoder-response)
  (define sand13
    (geocoder "Sand_13,_Tübingen"))
  (geocode-address sand13)
  (geocode-type sand13)
(location-lat (geocode-loc sand13))
  (location-lng (geocode-loc sand13))
  (geocode-accuracy sand13)
(: lady-liberty geocoder-response)
  (define lady-liberty
    (geocoder "Statue_of_Liberty"))
  (: alb geocoder-response)
  (define alb
    (geocoder "Schwäbische_Alb"))
  (: A81 geocoder-response)
  (define A81
   (geocoder "A81, Germany"))
```

#### Erinnerung:

Das Prädikat  $\langle t \rangle$ ? einer Signatur  $\langle t \rangle$  unterscheidet Werte der Signatur  $\langle t \rangle$  von allen anderen Werten:

```
(: @\sqrt{y} = (any -> boolean))
```

Auch: Prädikat für eingebaute Signaturen

```
number?
complex?
real?
rational?
sinteger?
natural?
string?
boolean?
```

Prozeduren, die gemischte Daten der Signaturen  $\langle t_1 \rangle \dots \langle t_n \rangle$  konsumieren: *Konstruktionsanleitung*:

```
(: \langle \mathsf{t} \rangle ((mixed \langle \mathsf{t}_1 \rangle ... \langle \mathsf{t}_n \rangle) -> ...))

(define \langle \mathsf{t} \rangle

(lambda (x)

(cond

((\langle \mathsf{t}_1 \rangle? x) ...)

...

((\langle \mathsf{t}_n \rangle? x) ...))))
```

Mittels let lassen sich Werte an lokale Namen binden,

```
(let (  (\langle \mathrm{id}_1 \rangle \ \langle \mathrm{e}_1 \rangle)   (\ldots)   (\langle \mathrm{id}_n \rangle \ \langle \mathrm{e}_n \rangle))   \langle \mathrm{e} \rangle
```

Die Ausdrücke  $\langle e_1 \rangle \dots \langle e_n \rangle$  werden *parallel* ausgewertet.  $\Rightarrow \langle id_1 \rangle \dots \langle id_n \rangle$  können in  $\langle e \rangle$  (und nur hier) verwendet werden. Der Wert des let Ausdruckes ist der Wert von  $\langle e \rangle$ .

#### Codebeispiel 16: Liegt der Geocode r auf der südlichen Erdhalbkugel?

#### **ACHTUNG:**

'let' ist verfügbar auf ab der Sprachebene "Macht der Abstraktion".

'let' ist syntaktisches Zucker.

```
(let ( (lambda (\langle id_1 \rangle \dots \langle id_n \rangle)
```

```
 \begin{array}{cccc} (\langle \mathrm{id}_1 \rangle & \langle \mathrm{e}_1 \rangle) & & \langle \mathrm{e} \rangle) \\ (\ldots) & & & \langle \mathrm{e}_1 \rangle \\ (\langle \mathrm{id}_n \rangle & \langle \mathrm{e}_n \rangle)) & & \langle \mathrm{e}_2 \rangle & \ldots \\ & & & \langle \mathrm{e}_n \rangle \end{array}
```

#### 12.5.2015

Abstand zweier geographischer Positionen  $b_1$ ,  $b_2$  auf der Erdkugel in km (lat, lng jeweils in Radian).

#### Codebeispiel 17: Abstand zweier geographischer Positionen

```
; Abstand zweier geographischer Positionen 11, 12 auf der
     Erdkugel in km (lat, lng jeweils in Radian):
  ; dist(11, 12) =
  ; Erdradius in km *
     acos(cos(11.lat) * cos(11.lng) * cos(12.lat) *
     cos(12.lng) +
           cos(l1.lat) * sin(l1.lng) * cos(l2.lat) *
     sin(12.lng) +
          sin(l1.lat) * sin(l2.lat))
  ; \pi
  (define pi 3.141592653589793)
10 ; Konvertiere Grad d in Radian (\pi = 180^{\circ})
  (: radians (real -> real))
  (check-within (radians 180) pi 0.001)
  (check-within (radians -90) (* -1/2 pi) 0.001)
  (define radians
    (lambda (d)
      (* d (/ pi 180))))
  ; Abstand zweier Orte o1, o2 auf Erdkugel (in km)
  ; [Wrapper]
  (: distance (string string -> real))
  (check-within (distance "Tübingen" "Freiburg") (distance
     "Freiburg" "Tübingen") 0.001)
  (define distance
    (lambda (o1 o2)
```

```
(let ((dist (lambda (11 12)
                                                ; Abstand
25
         zweier Positionen 11, 12 (in km) [Worker]
                     (let ((earth-radius 6378); Erdradius
                        (in km)
                           (lat1 (radians (location-lat l1)))
                           (lng1 (radians (location-lng l1)))
                           (lat2 (radians (location-lat 12)))
                           (lng2 (radians (location-lng 12))))
                       (* earth-radius
                          (acos (+ (* (cos lat1) (cos lng1)
                             (cos lat2) (cos lng2))
                                    (* (cos lat1) (sin lng1)
                                       (cos lat2) (sin lng2))
                                    (* (sin lat1) (sin
                                      lat2))))))))
             (gc1 (geocoder o1))
             (gc2 (geocoder o2)))
         (if (and (geocode? gc1)
                  (geocode? gc2))
             (dist (geocode-loc gc1) (geocode-loc gc2))
             (violation "Unknown_location(s)"))))
  ; ... einmal quer durch die schöne Republik
  (distance "Konstanz" "Rostock")
```

PARAMETRISCH POLYMORPHE PROZEDUREN

Beobachtung: Manche Prozeduren arbeiten unabhängig von den Signaturen ihrer Argumente : *parametrisch polymorphe Funktion* (griechisch : vielgestaltig).

Nutze Signaturvariablen %a, %b,...

Beispiel:

```
; die Identität
(: id (%a -> %a))
(define id
    (lambda (x) x))

; die konstante Funktion
  (: const (%a %b -> %a))
  (define const
          (lambda (x y) x))

; die Projektion
```

Eine polymorphe Signatur steht für alle Signaturen, in denen die Signaturvariablen durch konkrete Signaturen ersetzt werden.

Beispiel: Wenn eine Prozedur (: number %a %b -> %a) erfüllt, dann auch:

```
(: number string boolean -> string)
(: number boolean natural -> boolean)
(: number number number -> number)
```





```
; Ein polymorphes Paar (pair-of %a %b) besteht aus
; - einer ersten Komponente (first)
; - einer zweiten Komponente (rest)
(: make-pair (%a %b -> (pair-of %a %b)))

5 (: pair? (any -> boolean))
(: first ((pair-of %a %b) -> %a))
(: rest ((pair-of %a %b) -> %b))
(define-record-procedures-parametric pair pair-of make-pair
pair?
    (first
    rest))
```

(pair-of  $\langle t1 \rangle \langle t2 \rangle$ ) ist eine Signatur für Paare deren erster bzw. zweiter Komponente die Signaturen  $\langle t_1 \rangle$  bzw.  $\langle t_2 \rangle$  erfüllen.

```
;→ pair-of Signatur mit (zwei) Parametern
(: make-pair (%a %b -> (pair-of % a %b)))
(: pair? (any -> boolean))
(: first ((pair-of %a %b ) -> %a))
5 (: rest ((pair-of %a %b ) -> %b))
```

#### Codebeispiel 18: Paare aus verschiedenen Datentypen

```
; Ein paar aus natürlichen Zahlen
; FIFA WM 2014
(: deutschland-vs-brasilien (pair-of natural natural))
(define deutschland-vs-brasilien
```

Eine *Liste* von Werten der Signatur  $\langle t_t \rangle$  ist entweder

- leer (Signatur empty-list) oder:
- ein Paar (Signatur pair-of) aus einem Wert der Signatur  $\langle t \rangle$  und einer Liste von Werten der Signatur  $\langle t \rangle$ .

Signatur empty-list bereits in Racket vordefiniert.

Ebenfalls vordefiniert:

```
(:empty empty-list)
(: empty? (any -\zu boolean))
```

Operatoren auf Listen

```
Konstruktoren (: empty-list) leere liste
    (: make-pair (% a (list-of % a)) Konstruiert Liste aus Kopf und Rest

Predikate: (: empty (any -> boolean) liegt leere Liste vor?
    (: pair? (any -> boolean)) Nicht leere Liste?
```

```
Selektoren: (: first (list-of %a)-> %a) Kopf-Element (: rest (list-of %a)-> (list-of %a)) Rest Liste
```

## Codebeispiel 19: Listen aus einem oder verschiedenen Datentypen

```
; Noch einmal (jetzt mit Signatur): Liste der natürlichen
     Zahlen 1,2,3,4
  (: one-to-four (list-of natural))
  (define one-to-four
    (make-pair 1
                (make-pair 2
                           (make-pair 3
                                       (make-pair 4
                                                  empty)))))
  ; Eine Liste, deren Elemente natürliche Zahlen oder
     Strings sind
  (: abstiegskampf (list-of (mixed number string)))
  (define abstiegskampf
    (make-pair "SCF"
                (make-pair 96
15
                           (make-pair "SCP"
                                       (make-pair "VfB"
                                          empty)))))
```

# 19.5.2015

```
(make-pair 1 (make-pair 2 empty))
Visualisierung Listen

1 2 empty
```



## Spine (Rückgrat)



```
(: jedis-and-siths (list-of (list-of string)))
```



#### Codebeispiel 20: Jedis und Siths in einer geschachtelten Liste

# Prozeduren, die Liste konsumieren Konstruktionsanleitung: Beispiel:

```
(lambda (xs)
(cond ((empty? xs) 0)
((pair? xs) (+ (first xs)
(list-sum (rest xs)))))))
```



(rest xs) mit Signatur (list-of number) ist selbst wieder eine kürzere Liste von Zahlen.

(list sum (rest
xs)) erzielt Fortschritt

#### Konstruktionsanleitung für Prozeduren:

Neue Sprachebene "Macht der Abstraktion"

```
- Signatur (list-of \% a) eingebaut 

(list \langle e_1 \rangle \langle e_2 \rangle \dots \langle e_n \rangle) 

\equiv 

(make-pair (\langle e_1 \rangle) 

(make-pair \langle e_2 \rangle) 

... (make-pair \langle e_n \rangle) empty) ...)
```

- Ausgabeformat für nicht leere Listen:

```
{#<list x1x2... xn>
```

#### Codebeispiel 21: Länge einer Liste

```
; Länge der Liste xs
(: list-length ((list-of %a) -> natural))

(check-expect (list-length empty) 0)
(check-expect (list-length (list 1 1 3 8)) 4)
```

Füge Listen xs , ys zusammen (con*cat*ination) Zwei Fälle (xs leer oder nicht leer)

#### Beobachtung:

- Die Längen von xs bestimmt die Anzahl der rekursiven Aufrufe von cat
- Auf xs werden Selektoren angewendet

#### Codebeispiel 22: Zusammenfügen zweier Listen

## 21.5.2015

#### Codebeispiel 23: Ausflug: Bluescreen Berechnung wie in Starwars mit Listen:



(**define** yoda



```
(define dagobah
;
;
;Zugriff auf die Liste der Bildpunkte (Pixel) eines Bildes:

;(: image->color-list (image -> (list-of rgb-color)))
;(: color-list->bitmap ((list-of rgb-color) natural natural -> image))

;Breite/Höhe eines Bildes in Pixeln:

;(: image-width (image -> natural))
; (: image-height (image -> natural))

; Eine Farbe (rgb-color) besteht aus ihrem
; - Rot-Anteil 0..255 (red)
; - Grün-Anteil 0..255 (green)
; - Blau-Anteil 0..255 (blue)
```

```
; (define-record-procedures rgb-color
     make-color
     color?
     (color-red color-green color-blue))
  ; Signatur für color-Records nicht in image2.rkt
     eingebaut. Roll our own...
  (define rgb-color
    (signature (predicate color?)))
  ; Ist Farbe c bläulich?
  (: bluish? (rgb-color -> boolean))
  (define bluish?
    (lambda (c)
      (< (/ (+ (color-red c) (color-green c) (color-blue c))</pre>
         (color-blue c))))
40 |; Worker:
  ; Pixel aus Hintergrund bg scheint durch, wenn der
  ; entsprechende Pixel im Vordergrund fg bläulich ist.
  ; Arbeite die Pixellisten von fg und bg synchron ab
  ; Annahme: fg und bg haben identische Länge!
  (: bluescreen ((list-of rgb-color) (list-of rgb-color) ->
     (list-of rgb-color)))
  (define bluescreen
    (lambda (fg bg)
      (cond ((empty? fg)
             empty)
            ((pair? fg)
             (make-pair
              (if (bluish? (first fg))
                  (first bg)
```

```
(first fq))
               (bluescreen (rest fg) (rest bg)))))))
  ; Wrapper:
  ; Mische Vordergrund fg und Hintergrund bg nach
     Bluescreen-Verfahren
  (: mix (image image -> image))
  (define mix
     (lambda (fg bg)
       (let ((fg-h (image-height fg))
             (fg-w (image-width fg))
             (bg-h (image-height bg))
             (bg-w (image-width bg)))
65
         (if (and (= fg-h bg-h)
                  (= fg-w bg-w))
             (color-list->bitmap
              (bluescreen (image->color-list fg)
                          (image->color-list bg))
              fg-w
              fg-h)
             (violation "Dimensionen_von_Vorder-/Hintergrund_
                verschieden")))))
75 ; Yoda vor seine Hüte auf Dagobah setzen
```



(mix yoda dagobah) ~~>

Generierung aller natürlichen Zahlen (vgl. gemischte Daten) Eine natürliche Zahl (natural) ist entweder

- die 0 (zero)
- der Nachfolge (succ) einer natürlichen Zahl

```
\mathbb{N} = \{0, (succ(0)), (succ(succ(0))), \ldots\}
Konstruktoren
```

```
(: zero natural)
(define zero 0)
(: succ (natural -> natural))
(define succ (lambda (n) (+ n 1)))
Vorgänger (pred), definiert für n > 0
(: pred (natural -> natural))
(define pred
           (lambda (n) (- n 1)))
Bedingte algebraische Eigenschaft (für check-property):
(==>  <t>)
Nur wenn \langle p \rangle \sim \# t ist, wird Ausdruck \langle t \rangle ausgwertet und getestet \langle t \rangle \sim \# t
```

#### Codebeispiel 24: ==> als Einschränkungsoperator

```
; Eigenschaft nur auswerten, wenn n > 0 (==>)
(check-property
 (for-all ((n natural))
   (==> (> n 0)
       (= (succ (pred n)) n))))
```

#### Beispiel für Rekursion auf natürlichen Zahlen: Fakultät

```
0! = 1
n! = n \cdot (n-1)!
3! = 3 \cdot 2!
     = 3 \cdot 2 \cdot 1!
      = 3 \cdot 2 \cdot 1 \cdot 0!
     = 3 \cdot 2 \cdot 1 \cdot 1
     = 6
10 = 3628800
```

#### Codebeispiel 25: Fakultät rekursiv

```
: Berechne n!
(: factorial (natural -> natural))
(check-expect (factorial 0) 1)
(check-expect (factorial 3) 6)
(check-expect (factorial 10) 3628800)
(define factorial
  (lambda (n)
```

```
(cond ((= n 0) 1)
((> n 0) (* n (factorial (- n 1))))))
```

Konstruktionsanleitung für Prozeduren über natürlichen Zahlen:

#### Beobachtung:

- Im letzten Zweig ist n > 0  $\rightarrow$  pred angewandt
- $(\langle f \rangle (-n 1))$  hat die Signatur  $\langle t \rangle$

#### Satz:

Eine Prozedur, die nach der Konstruktionsanleitung für Listen oder natürliche Zahlen konstruiert wurde *terminiert immer* (= liefert immer ein Ergebnis). (Beweis in Kürze)

#### Codebeispiel 26: Fehlerhafte Rekursionen

```
\overbrace{(3\cdot(2\cdot(1\cdot0!)))}^{\text{merken}}
```

Die Größe eines Ausdrucks ist proportional zum Platzverbrauch des Reduktionsprozesses im Rechner

⇒ Wenn möglich Reduktionsprozesse, die *konstanten* Platzverbrauch - unabhängig von Eingabeparametern - benötigen

## 9.6.2015

→ Multiplikationen können vorgezogen werden :-)

Idee: Führe Multiplikation sofort aus. Schleife des Zwischenergebnis (*akkumulierendes Argument*) durch die ganze Berechnung. Am Ende erhält der Akkumulatoren das Endergebnis.

Beispiel: Berechne 5!

```
(: fac-worker (natural natural -> natural)) 

n | acc

-1 \checkmark 5 | 1 \searrow 5 | neutrales Element

-1 \checkmark 4 | 5 \searrow · 4

-1 \checkmark 3 | 20 \searrow · 3

-1 \checkmark 2 | 60 \searrow · 2

-1 \checkmark 1 | 120 \searrow · 1

-1 \checkmark 0 | 120
```

```
((> n 0) (fac-worker (- n 1) (* n acc))))))
```

Ein Berechnungsprozess ist *iterativ*, falls seine Größe konstant bleibt. Damit:

```
factorial nicht iterativ fac-worker iterativ
```

Wieso ist fac-worker iterativ?

Der Rekursive Aufruf ersetzt den aktuell reduzierten Aufruf *vollständig*. Es gibt keinen *Kontext* (umgebenden Ausdruck), der auf das Ergebnis des rekursiven Aufrufs "wartet"

Kontext des rekursiven Aufrufs in:

```
- factorial: (* n □)
- fac-worker: keiner
```

Eine Prozedur ist *endrekursiv* (tail call), wenn sie keinen Kontext besitzt. Prozeduren, die nur endrekursive Prozeduren beinhalten, heißen selber endrekursiv. Endrekursive Prozeduren generieren *iterative* Berechnungsprozesse

```
(: rev ((list-of %a))-> (list-of %a))
```

## Codebeispiel 27: Liste xs umdrehen

```
Beobachtung: von (rev (from-to 11000))

1000·make-pair
```

```
(cat (list 1000 ... 2) (list 1))

Aufrufe von make-pair: 1000+999+998+...+1
\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2} Quadratische Aufrufe :-(
```

### Konstruiere iterative Listenumkehrfunktion backwards:

Mittels letrec lassen sich Werte an lokale Namen binden.

```
(letrec  ((\langle id_1 \rangle \langle e_1 \rangle) \dots (\langle id_n \rangle \langle e_n \rangle)) \langle e \rangle)
```

Die Ausdrücke  $\langle e_1 \rangle, ..., \langle e_n \rangle$  und  $\langle e \rangle$  dürfen sich auf die Namen  $\langle id_1 \rangle ... \langle id_n \rangle$  beziehen

### Codebeispiel 28: Effizientere Variante eine Liste umzudrehen

```
; Wrapper
(: backwards ((list-of %a) -> (list-of %a)))
(check-expect (backwards empty) empty)
(check-expect (backwards (list 1 2 3 4)) (list 4 3 2 1))
(define backwards
  (lambda (xs)
    ; Liste xs umdrehen (mit Akkumulator acc, endrekursiv)
    ; Worker
    ; Aufwand: n Aufrufe von make-pair, wenn xs die Länge
    (letrec ((backwards-worker
              (lambda (xs acc)
                (cond ((empty? xs) acc)
                      ((pair? xs)
                        (backwards-worker (rest xs)
                           (make-pair (first xs) acc))))))
      (backwards-worker xs empty))))
```

# 11.6.2015

*Induktive Definition* 

Konstante Definition der natürlichen Zahlen N.

Definition: (Peamo Axiome)

- (P1)  $0 \in \mathbb{N}$
- $(P2) \qquad \forall n \in \mathbb{N} : succ(n) \in \mathbb{N}$
- (P3)  $\forall n \in \mathbb{N} : succ(n) \neq 0$
- (P4)  $\forall n, m \in \mathbb{N} : succ(n) = succ(m) \Leftrightarrow n = m$

TODO: "Plot"mit punkten und Pfeilen

(P5) Für jede Menge  $M \subset N$  mit  $0 \in M$ 

und 
$$\forall n : (n \in M \Rightarrow succ(n) \in M)$$
, gilt  $M = \mathbb{N}$ 

"N enthält nicht mehr als die 0 und die durch succ() generierten Elemente "Nicht ist sonst in  $\mathbb{N}$ ,

TODO: Plot von zwei kreisen ineinander Beweisschema der *vollständigen Induktion* 

Sei P(n) eine Eigenschaft einer Zahl  $n \in \mathbb{N}$ 

```
(: P (natural -> boolean))
```

Ziel:  $\forall n \in \mathbb{N} : P(n)$ 

Definiere  $M = \{n \in \mathbb{N} | P(n)\} \subset \mathbb{N}$ 

M enthält die Zahlen n für die P(n) gilt

Induktionsaxiom

**Falls** 

 $0 \in M$ 

und

$$\forall n : (n \in M \Rightarrow succ(n) \in M)$$

dann

 $M \in \mathbb{N}$ 

Induktionsstart Falls P(0) und  $\forall (P(n) \Rightarrow P(succ(n))$ 

Induktionsschritt

dann

 $\forall n \in \mathbb{N}P(n)$ 

Beispiel:

```
1
                 = 1
 1 + 3
                 = 4
 1 + 3 + 5
                 =9
 1+3+5+7 = 16
                 = \sum_{i=0}^{n} (2i+1) = (n+1)^{2}
 P(n)
                      Summe der
                   ungeraden Zahlen
Induktions schluss P(0)
\sum_{0}^{0} (2i+1) = 2 \cdot 0 + 1 = (0+1)^{2} \checkmark
Induktionsschritt \forall n(P(n)) = P(n+1)
\sum_{i=0}^{n+1} (2i+1) = \sum_{i=0}^{n} (2i+1) + (2(n+1)+1)
\stackrel{iv.}{=} (n+1)^2 + 2n + 3
                = n^2 + 4n + 4
                =((n+1)+1)^2 \checkmark
Beispiel:
             (define factorial
                          (lambda (k)
                                       (if
                                                    (= k 0) 1
                                                    (* k (factorial (- k 1
                                                        ))))))
P(x) \equiv (factorial n) = |n!|
                                                   x:(Racket Repräsentation für x \in \mathbb{N})
Zeige: \forall n \in \mathbb{N} : P(n)
Induktionsbasis P(0)
(factorial(0))
* ((lambda (k)...) 0)
⋯ (if (= 0 0)1 ...)
(if #t 1 ...)
\longrightarrow 1 = \boxed{0}! \checkmark
Induktionsschritt: \forall n : (P(n) \rightarrow P(n+1))
(factorial n+1)
```

### Beispiel:

Jede durch die Konstruktionsanleitung für Funktionen über natürliche Zahlen konstruierte Funktion liefert ein Ergebnis (*terminiert immer*)

```
(define f
          (lambda (n)
                     (if
                               (= n 0) base
                               (step (f (n-1)) n)))
(: base natural)
(: step (natural natural \rightarrow natural)) Bsp: step \rightarrow (lambda (x y) (*
Dann gilt P(n) = (f n) terminiert (Mit Ergebnis der Signatur natural)
Zeige \forall n \in \mathbb{N} : P(n)
Induktionsbasis P(0):
(f \mid 0 \mid)
→→ (if (= 0 0) base ...)
(if #tbase
>>> base √
Induktionsschritt \forall n : (P(n) \rightarrow P(n+1))
(f n+1)
\longrightarrow (if (= |n+1| 0) base ... (step ...))
→→ (if #f base ... (step ...))
```

```
→ (step (f (- n+1 1)) n+1)
\Rightarrow (step (f \boxed{n}) \boxed{n+1}) terminiert
```

*Definition*:(Listen.endliche Folge)

Die Menge  $M^*$  (= Listen mit Elementen aus M + list-of M ist *induktiv* definiert

```
empty \in M^*
Nicht leere Liste (L1)
                                                          \forall x \in M, xs \in M^*
            \in M^* (L2)
                                               Nichts sonst in M^*
                   (L3)
(make-pair
                   Beweisschema Listeninduktion
```

x xs)

So P(xs) eine Eigenschaft von Listen über M.

```
(: P ((list-of M) -> boolean))
```

```
Falls P(empty)
Induktionsan-
            fang
                           \forall x \in M, xs : P(xs) \Rightarrow (P(xs) \Rightarrow (P(make-pair \times xs)))
                       dann
                           \forall xs \in M^* : P(xs)
  Indukstions-
          schritt
```

## 16.6.2015

```
Beispiel:
```

```
(define cat
           (lambda (xs ys)
                      (cond
                                 ((empty? xs ) ys)
                                 ((pair? xs) (make-oair (first xs)
                                    (cat (rest xs) ys))))))
    (1) cat empty ys = ys
    (2) (cat xs = mpty) = xs
                                                                  Beweise:
                                                                                   (M^*, cat, empty)
                                                                                   ist ein Monoid)
          (cat (cat xs ys)ys) = (cat xs (cat ys zy))
(1) (cat empty ys) \stackrel{\star}{\leadsto}ys\checkmark
(2) P(xs) = (cat xs empty) = xs
Induktionsanfang P(empty)
(cat empty empty) \stackrel{\text{(1)}}{=} empty \checkmark
Induktionsschritt \forall x \in M : P(xs) \Rightarrow P((make-pair x xs))
(define make-pair mp)
(cat (mp x xs)empty)
(mp (first (mp x xs)) (cat (rest (mp x xs)) empty))
(mp x (cat xs empty))
 \stackrel{iv.}{=} (mp x xs) \checkmark
(3) Listeninduktion über xs (ys,zs \in M^* beliebig)
    P(xs) \equiv (\text{cat (cat xs ys)zs}) = (\text{cat xs (cat ys zs)})
Induktionsanfang P(empty)
(cat (cat empty ys)zs)
\longrightarrow (1) (cat ys zs)
\leftarrow \sim (1) = (cat empty (cat ys zs))\checkmark
Induktionsschritt \forall x \in M : P(xs) \Rightarrow P((make-pair \times xs))
(cat (cat (mp x xs)ys)zs))
```

```
(cat (mp x (cat xs ys))zs)
  (mp (cat (cat xs ys))zs)
    iv. = (mp (cat (cat xs ys)zs))
  \leftarrow (cat (mp x xs ) (cat ys zs))\checkmark
 Beispiel: Interaktion von length und cat (Distributivität)
  (define length
            (lambda (xs)
                       (cond
                                  ((empty? xs)0)
                                  ((pair? xs) (+ 1
                                            (length (rest xs))))))
 P(xs): (length (cat xs ys)) = (+(length xs)(length ys)),
 ys \in M^* beliebig.
 Induktionsbasis:
  (length (cat empty ys))
    \stackrel{\text{(1)}}{=} (length ys)
    + (+ 0(length ys))
  ← (+ (length empty) (length ys)) ✓
 Induktionsschritt
  (length (mp x xs)ys)
   cat \stackrel{\star}{\leadsto} (length (mp x (cat xs ys)))
length \overset{*}{\longleftrightarrow} (+ 1(length (rest (mp x (cat xs ys)))))
  rest \overset{*}{\longleftrightarrow} (+ 1(length (cat xs ys)))
       iv. = (+ 1(+ (length xs)(length ys)))
  ass. \stackrel{(+)}{=} (+ (+ 1(length xs)(length ys)))
length \stackrel{\star}{\longleftarrow} (+ (length (mp x xs) (length ys))) \checkmark
```

#### Prozeduren höherer Ordnung

(higher-order procedures)

Wert des Parameters p? ist Prozedur  $\Rightarrow$  kann angewendet werden

# 18.6.2015

Zwei Arten von Higher Order Prozeduren (H.O.P)

- (1) akzeptieren, Prozeduren als Parameter oder/und
- (2) liefern Prozeduren als Ergebnis

```
filter ist vom Typ (1).
```

H.O.P vermeiden Duplizierung von Code und führen zu kompakteren Programmen, verbesserte Lesbarkeit und verbesserte Wartbarkeit.

Beispiel: (map f x)



Allgemeine Transformation von Listen *Listenfaltung* (list folding)

Idee: Ersetze die Listenkonstruktoren make-pair und empty systematisch.



(foldr z c xs) wirkt als Spinetransformer

- empty  $\longrightarrow$ Z
- make-pair  $\leadsto c$
- Eingabe: Liste (list-of %a)
- Ausgabe : im Allgemeinen keine Liste mehr: %b

Beispiele: Listenreduktion mit foldr

TODO: Großes Bild von foldr Funktionen

```
(: sum ((list-of number) -> number))
(define sum(lambda (xs)(foldr 0 + xs)))
```

## Beispiel: Länge einer Liste durch Listenreduktion TODO: Bild Plotten

#### Codebeispiel 29: Fold und seine Anwendungen

```
; Listenreduktion via foldr: Summe der Liste xs
  (: my-sum ((list-of number) -> number))
  (define my-sum
    (lambda (xs)
      (foldr 0 + xs)))
  ; Listenreduktion via foldr: Produkt der Liste xs
  (: my-product ((list-of number) -> number))
  (define my-product
    (lambda (xs)
      (foldr 1 * xs)))
  ; Listenreduktion via foldr: Maximum der Liste xs
  (: my-maximum ((list-of number) -> number))
  (define my-maximum
    (lambda (xs)
      (foldr -inf.0 max xs)))
  ; Identität (auf Listen), implementiert via foldr
20 (: my-id ((list-of %a) -> (list-of %a)))
  (define my-id
    (lambda (xs)
      (foldr empty make-pair xs)))
25 ; Reimplementation von append via foldr
  (: my-append ((list-of %a) (list-of %a) -> (list-of %a)))
  (define my-append
    (lambda (xs ys)
      (foldr ys make-pair xs)))
  ; Reimplementation von map via foldr
  (: my-map ((%a -> %b) (list-of %a) -> (list-of %b)))
  (define my-map
    (lambda (f xs)
      (foldr empty
```

```
(lambda (y ys) (make-pair (f y) ys))
             xs)))
  ; Reimplementation von reverse via foldr
  (: my-reverse ((list-of %a) -> (list-of %a)))
  (define my-reverse
    (lambda (xs)
      (foldr empty
              (lambda (y ys) (append ys (list y)))
             xs)))
45
  ; Listenreduktion via foldr: Länge der Liste xs
  (: my-length ((list-of %a) -> natural))
  (define my-length
    (lambda (xs)
      (foldr 0 (lambda (x 1) (+ 1 1)) xs)))
  ; Reimplementation von filter mittels foldr
  (: my-filter ((%a -> boolean) (list-of %a) -> (list-of
     %a)))
  (define my-filter
    (lambda (p? xs)
      (foldr empty
              (lambda (y ys) (if (p? y)
                                 (make-pair y ys)
                                 ys))
             xs)))
```

# 23.6.2015

Teachpack 'universe' nutzt H.O.P Animationen (Sequenzen von Bildern/Szenen) zu definieren.

```
(big bang
  ((init))
  (ontick (tock))
  (todraw (render)(w)(h)))
- ((init) %a) Startzustand
```

- (: \(\tau \) (%a -> %a)) Funktion, die einen neuen Zustand aus alten Zustand berechnet

- (: ⟨render⟩ (%a -> image)) Funktio, die aus dem aktuellen eine Szene berechnet (wird in Fenster mit Dimension ⟨w⟩·⟨h⟩ Pixel angezeigt)
- Beim Schließen der Animation wird der letzte Zustand zurückgegeben

# Codebeispiel 30: Ein animierter Zähler

### Codebeispiel 31: Ein animiertes Raumschiff

```
; Erstellung von Animationen mit Teachpack "universe"
; (2) X-Wing Fighter + Scrolling Death Star

(define death-star
```



49



Ausgabe der römischen Episoden nummern für Film f: (roman (film-episode f))

Gesuchte Funktion ist *Komposition* von zwei existierenden Funktionen:

- (1) Erst film-episode anwenden, dann
- (2) Wende roman auf das Ergebnis von (1) an

Komposition von Prozeduren allgemein:

#### Codebeispiel 32: Zweites und Drittes Element durch Combined

repeat: n-fache Komposition von f auf sich selbst (n-fache Anwendung von f, Exponentation)

```
f^0 = \mathrm{id} \qquad \qquad \left(\mathrm{id} \equiv (\mathbf{lambda} \, (\mathbf{x}) \, \mathbf{x})\right)
f^n = f \circ f^{n-1}
(: repeat (natural (%a -> %a) -> (%a -> %a)))
(define repeat
  (lambda (n f)
        (cond
            ((= n 0) (lambda (x) x)
            ((> n 0) (compose f (repeat (- n 1) f)))))))
;Greife auf das n-te Element der Liste xs zu
(: nth (natural (list-of %a) -> %a))
(define nth
        (lambda (n xs)
            (compose first (repeat (- n 1) rest))xs)))
```

#### Codebeispiel 33: Gibt die Funktion + zurück

```
; Funktionen, die ihre Argument schrittweise konsumieren
```

```
; Konsumiert Argumente x,y in einem Schritt (eine
       Reduktion von apply_)
   (: plus (number number -> number))
    (define plus
      (lambda (x y)
        (+ x y)))
 10 ; Konsumiert Argumente x, y in zwei Schritten (zwei
      Reduktionen von apply_).
   ; Nach dem ersten Schritt ist nur Argument x festgelegt,
      Ergebnis ist eine
   ; Funktion, die das zweite Argument y erwartet.
    (: add (number -> (number -> number)))
    (define add
      (lambda (x)
        (lambda (y)
          (+ x y))))
    (map (add 1) (list 1 2 3 4 5 6 7 8 9 10))
    (map (add 10) (list 1 2 3 4 5 6 7 8 9 10))
      Reduktion: ((add 1)41)
    ⋯ ((lambda (x) (lambda (y) (+ x y))1)41)
   \mathrm{eval}_{id}
  ~~>
         ((lambda (y) (+ 1 y) 41)
 apply_{\lambda}
             Funktion die 1 auf
[lambda(x)]
           ihr Argument anwenden
         (+141)
 apply<sub>\lambda</sub>
[lambda(y)]
```