DIGITAL CIRCUITS

Week-6, Lecture-1 Arithmetic and Codes

Sneh Saurabh 4th September, 2018

Digital Circuits: Announcements/Revision

Diminished radix complement: (r-1)'s complement

- Let the number be P in base r and is represented with n digits
- (r-1)'s complement of N is defined as:

$$\triangleright K = (r^n - 1) - P$$

- Subtract each digit with (r-1):
 - > For binary, subtract with 1
 - > For octal, subtract with 7
 - > For decimal subtract with 9
 - > For hexadecimal subtract with F

Problem: Given n = 4. Find 9's complement of $(1583)_{10}$

Solution:

$$K = (10^4 - 1)_{10} - (1583)_{10} = (9999)_{10} - (1583)_{10}$$

$$\geq$$
 = (8416)₁₀

Problem: Given n = 3. Find 15's complement of $(1A3)_{16}$

Solution:

$$> K = (FFF)_{16} - (1A3)_{16}$$

$$\triangleright = (E5C)_{16}$$

Radix complement: r's complement

- Let the number be P in base r and is represented with n digits
- r's complement of N is defined as:

$$> K = r^n - P \text{ for } P \neq 0$$

$$\succ K = 0$$
 for $P = 0$

• r's complement of N can be found by adding 1 to the (r-1)'s complement of N

Problem: Given n = 4. Find 10's complement of $(1583)_{10}$

Solution:

$$\succ K = (8416)_{10} + 1 = (8417)_{10}$$

Problem: Given n = 4. Find 16's complement of $(1A3)_{16}$

Solution:

$$F K = ((FFFF)_{16} - (01A3)_{16}) + 1$$

$$\triangleright = (FE5D)_{16}$$

r's or (r-1)'s complement

- If the original number *P* contains a radix point (.)
 - \triangleright Temporarily remove the radix point from P and then find the r's or (r-1)'s complement
 - > The radix point is restored to the complemented number in the same relative position

Problem: Given n = 3. Find 10's complement of $(15.1)_{10}$

Solution:

- \gt 10's complement of $(151)_{10} = (848 + 1)_{10} = (849)_{10}$
- > 10's complement of $(15.1)_{10} = (84.9)_{10}$
- Complement of a complement of given number, restores the original number
 - First Complement: $K = r^n P$
 - \triangleright Second complement: $K' = r^n (r^n P) = P$

Radix r: Addition of unsigned numbers

Problem:

- Given two n-digit unsigned numbers M and N in radix r
- To find (M + N)

Steps:

- Add two numbers digit-wise starting with LSB (right) and proceed to MSB (left)
- Carry is generated at a position i if the sum of the i-th digits of the two numbers and the carry-in from (i-1) position is greater than or equal to r

Problem:

Find: $(23)_8 + (56)_8$

Answer: $(101)_8$

Problem:

Find: $(AA)_{16} + (19)_{16}$

Answer: $(C3)_{16}$

Radix r: Subtraction of unsigned number

Problem:

- Given two n-digit unsigned numbers M and N in radix r
- To find (M N)

Steps:

■ Add *M* to the (*r*'s complement of *N*)

$$> S = M + r^n - N = r^n + (M - N)$$

Two cases:

 $> M \ge N$: Result non-negative

> M < N: Result negative

Subtraction of unsigned number: result non-negative

■ Add *M* to the (*r*'s complement of *N*)

$$> S = M + r^n - N = r^n + (M - N)$$

- $M \ge N$:
 - > S will produce overflow r^n at (n + 1) position, which can be discarded.
 - \triangleright The other n-digits contain the result

Problem:

Given n = 5. Using 10's complement find $(72532)_{10} - (3250)_{10}$.

$$M = 72532$$

10's complement of $N = + 96750$
Sum = 169282
Discard end carry $10^5 = -100000$
 $Answer = 69282$

Subtraction of unsigned number: result negative

- Add M to the (r's complement of N) $> S = M + r^n N = r^n + (M N)$
- \blacksquare M < N:
 - \triangleright *S* will contain *n* digits only.
 - > It represents the r's complement of (N-M) because $r^n-(N-M)$.
 - ➤ To get the answer in familiar form, take the *r*'s complement of *S* and place a (–) sign before the number

Problem:

Given n = 5. Using 10's complement find $(3250)_{10} - (72532)_{10}$.

$$M = 03250$$

$$10's complement of N = +27468$$

$$Sum = 30718$$

- 10's complement of (30718)₁₀ is (69282)₁₀
- The final answer is $(-69282)_{10}$

Binary codes: Introduction

- Binary codes are patterns/group of zeros and ones
- Any discrete information that is distinct within a group can be represented using binary codes
- Binary codes merely change the symbol representing data: the meaning of data is not changed
- Motivation for using binary code is ease of manipulation, storage or transmission of data

Binary codes: Number of bits

- An n-bit binary code is a group of n-bits that assumes up to 2^n combination of zeroes and ones
- Each combination represent one element of the set that is being encoded: code should be unique for each element
- Though minimum number of bits required to represent 2^n elements is n, there is no maximum number of bits that can be used in encoding (some bits may be unused)