

derivatives recap

derivatives recap

Before: assume f(x) with derivative $\frac{df}{dx}$. What does this mean?

$$\frac{df}{dx} = \lim_{h \to \infty} \frac{f(a+h) - f(a)}{h}$$

partia derivatives

Now: assume
$$f(x, y)$$
 with $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

not a graphical function!

$$\frac{\partial f}{\partial y}(1,2)$$

$$\frac{\partial f}{\partial x} = \lim_{h \to \infty} \frac{f(a+h,b) - f(a,b)}{h}$$

$$\frac{\partial f}{\partial y} = \lim_{h \to \infty} \frac{f(a, b + h) - f(a, b)}{h}$$

• for
$$f(x, y, z, ...)$$

