

Presentation Title

A. Author¹ M. Mitarbeiter²

C. Chef 3 **C.** Chef 1,2,3

¹Institute for Advanced Study

²Institute of Automatic Control Engineering
Technische Universität München

³Institute for Whatever University of Wolla Wolla

International Workshop of Couch Potatoes, Munich, 11/16/2012

Motivation

Why are we addressing this problem?

- Aaa
- Bbb
- Ccc

Motivation

Why are we addressing this problem?

- Aaa
- Bbb
- Ccc

This is why!

Overview

Introduction

Approach Definition

Results

Summary

Problem Formulation

Problem

$$x^* = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \int J(x, t) \, \mathrm{d}t$$

Challenges:

- Curse of dimensionality
- Non-linear model/constraints
- No analytical solution
- **Noisy Measurements**
- Real-time capability

Solution

Solve Problem

Related Work

Normal cite: [buss11] Bigger cite: [buss11]

Variable number of authors:

2 authors: [bauer09]4 authors: [bauer09]

Approach

. . .

Introduction

Results

Summary

. . .

References

This work was supported by:

www.cotesys.org

