PSTAT 130

SAS BASE PROGRAMMING

- Lecture 9 -

Objectives

Summarize Data

- PROC REPORT
 - Selecting variables
 - **x** List reports
 - **▼** Define statement
 - Summary reports
- PROC GCHART
 - **X** Bar charts
 - **×** Pie charts

PROC REPORT Output

Job Code	Home Base	Salary
FLTAT1	CARY	\$131,000
	Frankfurt	\$100,000
	LONDON	\$128,000
FLTAT2	CARY	\$245,000
	Frankfurt	\$181,000
	LONDON	\$206,000
FLTAT3	CARY	\$217,000
	Frankfurt	\$134,000
	LONDON	\$180,000
PILOT1	CARY	\$211,000
	Frankfurt	\$135,000
	LONDON	\$210,000
PILOT2	CARY	\$323,000
	FRANKFURT	\$240,000
	LONDON	\$158,000
PILOTS	CARY	\$300,000
	Frankfurt	\$205,000
	LONDON	\$294,000

The REPORT Procedure

- PROC REPORT allows you to
 - Create list reports
 - Create summary reports
 - Enhance reports
 - Request separate subtotals and grand totals

PROC REPORT vs. PROC PRINT

FEATURE	REPORT	PRINT
Detail Report	Yes	Yes
Summary Report	Yes	No
Crosstabular Report	Yes	No
Grand Totals	Yes	Yes
Subtotals	Yes	Yes, but not without Grand Total
Labels used automatically	Yes	No
Sort data for report	Yes	No

Create a List Report


```
PROC REPORT DATA=SAS-data-set <options>;
RUN;
```

Example:

```
proc report data=data1.admit;
run;
```

ID	Name	Sex	Age	Date	Height	Weight	ActLevel	Fee
2458	Murray, W	М	27	1	72	168	HIGH	85.20
2462	Almers, C	F	34	3	66	152	HIGH	124.80
2501	Bonaventure, T	F	31	17	61	123	LOW	149.75
2523	Johnson, R	F	43	31	63	137	MOD	149.75
2539	LaMance, K	М	51	4	71	158	LOW	124.80
2544	Jones, M	М	29	6	76	193	HIGH	124.80
2552	Reberson, P	F	32	9	67	151	MOD	149.75
2555	King, E	М	35	13	70	173	MOD	149.75
2563	Pitts, D	М	34	22	73	154	LOW	124.80
2568	Eberhardt, S	F	49	27	64	172	LOW	124.80
2571	Nunnelly, A	F	44	19	66	140	HIGH	149.75
2572	Oberon, M	F	28	17	62	118	LOW	85.20
2574	Peterson, V	М	30	6	69	147	MOD	149.75
2575	Ouidov M	⊏	10	Ω	60	160	ПСП	10/ 20

The REPORT Procedure

- The default list report displays
 - Each data value as it is stored in the data set, or formatted values if a format is stored with the data
 - Variable names or labels as report column headings
 - A default width for the report columns
 - Character values left-justified
 - Numeric values right-justified
 - Observations in the order in which they are stored in the data set

Print Selected Variables

• General form of the COLUMN statement:

COLUMN SAS-variables;

Sample List Report

```
title 'Salary Analysis';
proc report data=data1.crew;
  column JobCode Location Salary;
run;
```

Partial SAS Output

JobCode	Location	Salary
PILOT1	LONDON	72000
FLTAT3	CARY	41000
PILOT2	FRANKFURT	81000
PILOT2	FRANKFURT	83000
FLTAT2	LONDON	36000
PILOT1	LONDON	65000
FLTAT2	FRANKFURT	35000
FLTAT2	FRANKFURT	38000
FLTAT1	LONDON	28000
FLTAT3	LONDON	44000
FLTAT2	CARY	37000

The DEFINE Statement

- You can enhance the report by using DEFINE statements to
 - Define how each variable is used in the report
 - Assign formats to variables
 - Specify report column headers and column widths
 - Change the order of the rows in the report.

The DEFINE Statement: Options

- **DISPLAY** option specifies a variable to be a display variable.
 - Character variables are assumed to be display variables
- ANALYSIS option specifies a variable to be an analysis variable
 - Numeric variables are assumed to be analysis variables
- **FORMAT**= option assigns a format to a variable
- WIDTH= option controls width of report column
- 'report-column-header' defines the column header for a variable (similar to a label)

Enhanced List Report

```
proc report data=data1.crew;
  column JobCode Location Salary;
  define JobCode / width=8 'Job Code';
  define Location / 'Home Base';
  define Salary / format=dollar10.;
run;
```

Partial SAS Output

```
Job Code
          Home Base
                                  Salary
 PILOT1
           LONDON
                                  $72,000
                                  $41,000
FLTAT3
           CARY
PILOT2
           FRANKFURT
                                  $81,000
 PILOT2
           FRANKFURT
                                  $83,000
FLTAT2
           LONDON
                                  $36,000
PILOT1
           LONDON
                                  $65,000
FLTAT2
           FRANKFURT
                                  $35,000
           FRANKFURT
                                  $38,000
FLTAT2
                                 $28,000
FLTAT1
           LONDON
                                 $44,000
 FLTAT3
           LONDON
```

ORDER Usage Type

• **ORDER** option identifies the variable(s) used to order the rows of the report

```
proc report data=data1.crew;
  column JobCode Location Salary;
  define JobCode / order width=8 'Job Code';
  define Location / 'Home Base';
  define Salary / format=dollar10.;
run;
```

ORDER Usage Type

Partial SAS Output

Job Code	Home Base	Salary
FLTAT1	LONDON	\$28,000
	FRANKFURT	\$25,000
	CARY	\$23,000
	CARY	\$21,000
	CARY	\$28,000
	FRANKFURT	\$22,000
	LONDON	\$29,000
FLTAT2	LONDON	\$36,000
	FRANKFURT	\$35,000
	FRANKFURT	\$38,000
	CARY	\$37,000
	CARY	\$34,000
	LONDON	\$34,000
	CARY	\$36,000
FLTAT3	CARY	\$41,000
	LONDON	\$44,000
	FRANKFURT	\$48,000
	FRANKFURT	\$45,000
	CARY	\$44,000

Individual
Values
(not Summary
Stats)

Define Group Variables

 All observations whose group variables have the same values are collapsed into a single row in the report.

Group Variables

- If you have a group variable, there must be <u>no</u> <u>display or order variables</u>.
 - Group variables produce summary reports (observations collapsed into groups).
 - Display and order variables produce list reports (one row for each observation).

Analysis Variables

- Default usage for numeric variables is ANALYSIS with a default statistic of SUM.
 - If the report contains group variables, the report displays the sum of the analysis variables' values for each group.
 - If the report contains at least one display or order variable and no group variables, the report displays all of the values of the analysis variables.
 - If the report contains only numeric variables, the report displays grand totals for the numeric variables.

Define Analysis Variables

SUM	sum (default)
N	number of non-missing values
MEAN	Average
MAX	Maximum Value
MIN	Minimum Value

Example:

```
define Salary / mean format=dollar10.;
```

Summarize the Data

Example

```
proc report data=data1.crew;
   title 'Salary Analysis';
   column JobCode Location Salary;
   define JobCode / group width=8 'Job Code';
   define Location / group 'Home Base';
   define Salary / analysis mean format=dollar10.;
run;
```

Optional specification

Summarize the Data

Salary Analysis

Job Code	Home Base	Salary
FLTAT1	CARY	\$26,200
	FRANKFURT	\$25,000
	LONDON	\$25,600
FLTAT2	CARY	\$35,000
	FRANKFURT	\$36,200
	LONDON	\$34,333
FLTAT3	CARY	\$43,400
	FRANKFURT	\$44,667
	LONDON	\$45,000
PILOT1	CARY	\$70,333
	FRANKFURT	\$67,500
	LONDON	\$70,000
PILOT2	CARY	\$80,750
	FRANKFURT	\$80,000
	LONDON	\$79,000
PILOT3	CARY	\$100,000
	FRANKFURT	\$102,500
	LONDON	\$98,000

Mean Salary for Flight Attendant 1's at London Base

BREAK & RBREAK Statements

• Use the RBREAK statement to display the grand total at the beginning or end of the report.

Print Subtotals

General form of the BREAK statement:

BREAK BEFORE | AFTER < BREAK-VARIABLE > / < options > ;

Selected options:

SUMMARIZE	Prints the total.
OL	Prints a single line above the total.
DOL	Prints a double line above the total.
UL	Prints a single line below the total.
DUL	Prints a double line below the total.

BREAK Example

Example

```
proc report data=data1.crew;
  column JobCode Location Salary;
  define JobCode / group width=8 'Job Code';
  define Location / group 'Home Base';
  define Salary / format=dollar10.;
  break after JobCode / summarize dol dul;
run;
```

BREAK Example Output

			_
Job Code	Home Base	Salary	
FLTAT1	CARY	\$131,000	DDEAK
	FRANKFURT	\$100,000	BREAK
	LONDON	\$128,000	(Summarize)
=======		========	
FLTAT1		\$359,000	
======		========	
FLTAT2	CARY	\$245,000	
	FRANKFURT	\$181,000	
	LONDON	\$206,000	DOL - Double
=======		========	
FLTAT2		\$632,000	Overline
=======		=========	
FLTAT3	CARY	\$217,000	DUL - Double
	FRANKFURT	\$134,000	Underline
	LONDON	\$180,000	Under mic
=======		=======	
FLTAT3		\$531,000	
=======		=======	
			_

Print Grand Totals

• General form of the RBREAK statement:

RBREAK BEFORE | AFTER / <options>;

Selected options:

SUMMARIZE	Prints the total.
OL	Prints a single line above the total.
DOL	Prints a double line above the total.
UL	Prints a single line below the total.
DUL	Prints a double line below the total.

RBREAK Example

Example

```
proc report data=data1.crew;
  column JobCode Location Salary;
  define JobCode / group width=8 'Job Code';
  define Location / group 'Home Base';
  define Salary / format=dollar10.;
  rbreak after / summarize dol;
run;
```

RBREAK Example Output

Job Code	Home Base	Salary
FLTAT1	CARY	\$131,000
	FRANKFURT	\$100,000
	LONDON	\$128,000
FLTAT2	CARY	\$245,000
	FRANKFURT	\$181,000
	LONDON	\$206,000
FLTAT3	CARY	\$217,000
	FRANKFURT	\$134,000
	LONDON	\$180,000
PILOT1	CARY	\$211,000
	FRANKFURT	\$135,000
	LONDON	\$210,000
PILOT2	CARY	\$323,000
	FRANKFURT	\$240,00
	LONDON	\$158,00
PILOT3	CARY	\$300,00
	FRANKFURT	\$205,00 0

LONDON

DOL - Double Overline

RBREAK (Summarize)

ΦΩ 500 000

\$294,000

\$3,598,000

Enhance the Report

- We can further enhance our reports with the headline and headskip options
 - Headline places a line underneath the column headers
 - Headskip places a blank line underneath the column headers

Example

```
proc report data=data1.crew headline headskip;
  column JobCode Location Salary;
  define JobCode / group width=8 'Job Code';
  define Location / group 'Home Base';
  define Salary / format=dollar10.;
  rbreak after / summarize dol;
run;
```

Example Output

Job Code	Home Base	Salary —
FLTAT1	CARY	\$131,000
. = .,	FRANKFURT	\$100,000
	LONDON	\$128,000
FLTAT2	CARY	\$245,000
	FRANKFURT	\$181,000
	LONDON	\$206,000
FLTAT3	CARY	\$217,000
	FRANKFURT	\$134,000
	LONDON	\$180,000
PILOT1	CARY	\$211,000
	FRANKFURT	\$135,000
	LONDON	\$210,000
PILOT2	CARY	\$323,000
	FRANKFURT	\$240,000
	LONDON	\$158,000
PILOT3	CARY	\$300,000
	FRANKFURT	\$205,000
	LONDON	\$294,000
		#0 F00 000
		\$3,598,000

Head Line

Head Skip (Blank Line)

PROC REPORT vs. PROC TABULATE

FEATURE	REPORT	TABULATE
Detail Report	Yes	No
Summary Report	Yes	Yes
Crosstabular Report	Yes	Yes
Grand Totals	Yes	Yes
Dividing Lines	Yes	Yes
Labels used automatically	Yes	Yes
Ability to create computed columns	Yes	No

Summarize with Charts

- In the GCHART procedure, you can do the following:
 - Specify the physical form of the chart.
 - Specify a chart variable that determines the number of bars or pie slices to create.
 - Optionally specify an analysis variable to use for calculating statistics that determine the height (or length) of the bar or the size of the slice.

The GCHART Procedure


```
PROC GCHART DATA=SAS-data-set;
RUN;
```

 Use one of these statements to specify the desired type of chart:

```
VBAR chart-variable . . . </options>;
HBAR chart-variable . . . </options>;
PIE chart-variable . . . </options>;
```

Chart Variable

- Determines the number of bars or slices produced within a graph
- Can be character or numeric

Vertical Bar Chart

Vertical Bar Chart Example

Example

• Using the crew data set in data1, produce a vertical bar chart that displays the number of employees in each job code.

Solution

```
proc gchart data=data1.crew;
    vbar JobCode;
run;
```

Vertical Bar Chart Example Output

Horizontal Bar Chart

FREQUENCY

Horizontal Bar Chart

• Using the crew data set in data1, produce a horizontal bar chart that displays the number of employees in each job code.

Solution

```
proc gchart data=data1.crew;
    hbar JobCode;
run;
```

Horizontal Bar Chart

FREQUENCY

11 12 13 14 15 16 17 18

Chart Numeric Variables

- GCHART can graph character or numeric variables.
- When graphing numeric variables, by default, the values are grouped together to create a smaller number of lines.
- To override the default behavior for numeric chart variables, use the DISCRETE option in the VBAR, HBAR, or PIE statement.

Numeric Chart: Default Grouping

```
proc gchart data=data1.crew;
    vbar salary;
run;
```


Numeric Chart: DISCRETE Option

proc gchart data=data1.crew;
 vbar salary / discrete;
run;

Analysis Variables

• An analysis variable can be used to chart summary statistics.

• Example:

• Produce a vertical bar chart that displays the average salary of employees in each job code.

```
proc gchart data=data1.crew;
    vbar JobCode / sumvar=Salary type=mean;
run;
```

Chart An Analysis Variable

Chart Summary Statistics

• General form:

SUMVAR=*analysis-variable*TYPE=MEAN | SUM

Description:

SUMVAR =	specifies the analysis variable to use for the sum or mean calculation.
TYPE=	specifies that the height or length of the bar or size of the slice represents a mean or sum of the analysis-variable values.

Pie Chart

Pie Chart Example

- Use the crew data set in the data1 folder
- Produce a pie chart that displays the sum of the salaries for each job code
- Format the salaries appropriately
- o Fill the pie chart with a grid pattern

Fill Option

SUM of Salary by JobCode

Pie Chart Example

- Use the crew data set in the data1 folder
- Produce a pie chart that displays sum of the salaries for each job code
- Format the salaries appropriately
- o Fill the pie chart with a solid pattern
- o Bring the slice for 'PILOT3' out to emphasize it

Explode Option

SUM of Salary by JobCode

Class Exercise 1

- Use the employees data set in the data1 folder
 - Create a report using the REPORT procedure
 - ➤ Display the following variables
 - Country
 - o LastName
 - Salary
 - ➤ Display the observations sorted by Country
 - Change the column header of LastName to 'Last Name'
 - Format the Salary appropriately

Class Exercise 2

- Use the heart data set in the data1 folder
 - Use the REPORT procedure
 - O Display the following variables:
 - ▼ Survive
 - × Sex
 - ▼ Arterial
 - Create a summary report grouped by Survive and Sex for the mean Arterial values
 - Use the following column headers
 - Survived
 - × Gender
 - ▼ Mean Arterial Pressure

Class Exercise 2 - continued

- Format the Sex variable as follows:
 - × 1=Female
 - × 2=Male
- Keep 2 decimal places for the mean arterial values
- o Specify a column width of 8 for Survive and Arterial
- Place a header line below the column headers
- O Display the subtotal mean Arterial value at the end of each Survive group; place a double line above this value and a single line below this value
- Display the total mean Arterial value at the end of the report