ECE 659

Assignment: 3

Group 27 Dhairya Ajitkumar Patel - 20906076 Krishna Kanth Mutta - 20919166 Yash Tiwari - 20911298

Question: 1 The figure below shows a network topology with three anchor nodes. The distances between anchors A1 and A2, anchors A1 and A3, and anchors A2 and A3 are 40 m, 110 m, and 35 m, respectively. Use the Ad Hoc Positioning System to estimate the location of the gray sensor node (show each step of your process).

Question 2: For the IoT network given in the figure below,

- Find out the location of each node based on multilateration with the information of anchor node coordinates and the distance between nodes given in the figure.
- Show how the DV-HOP ad-hoc positioning technique can be used to estimate the location of each node. The codes to solve the matrix equation to find the co-ordinates are shown below after the hand-written answers

02	- Fer node Fe
(a)	Find locat of each node.
	5=12, " = -16, (13=1=)
	A B C. T.
	Bensons: D, E, G, F
->	To find the local of nom the slide we get
	this equal? Est
	An -t Dhaya
	$A = 2(x_n - x_1) \qquad 2(y_n - y_1) \qquad b = 3(-x_n - x_1 - y_1 + x_n + y_n)$
	$A = \begin{bmatrix} 2(x_{n} - x_{1}) & 2(y_{n} - y_{1}) \\ 2(x_{n} - x_{2}) & 2(y_{n} - y_{2}) \end{bmatrix} = \begin{bmatrix} x_{1} - x_{n} - x_{1} \\ x_{2} - x_{n} - x_{2} \\ x_{3} - x_{2} \\ x_{4} - x_{2} \end{bmatrix}$
	2 13 25 25 20
	2 (xn->(n-1) 2 (yn-yn-1)
	2 (xn-x(n-1) 2 (yn-yn-1)
	Henre solving for x we get
	$pc = (A^TA)^{-1}A^Tb = $
	-> Fer mode of
->	For node D:
	h = 10, = 16 h = 120.
-, 5	Dis connected to canchors: A, B, C 1- = 00
0	A = -4 20 b= [18] from eq (1)
20	A = -4 20 b= 18 from eq ()
	$x_1 = 4, x_2 = 1, x_0 = 2$ $\frac{1}{2}$ $$
	1 St. 5 L M. G. 1 SH
	91=-2, 92=3, 4n = 8
	81=43 18273 8n=7 [N-01]
(. 🗨	-> Computing repuain Dy in MATHER python we get
	D. co-oxiden also a la succión
	D.co-ordinates 3-3 [1-3125] (strong) (0.3)
	Pg 3

->	For anode find be got VI ant mass was (18)
	U. 5 -2 01 - 7 10 03/03/03
	1 4 2 3 72 1603
	(24y) +10 10 yy & 6 7 8y 5 31, milione)
->	solving &O we get
7	7
	(d.1)
	$A = \begin{bmatrix} 12 & 16 \\ 22 & 6 \\ 8 & 2 \end{bmatrix} + \begin{bmatrix} 16 \\ 389 & 25 \\ 389 & 25 \end{bmatrix} $
	E16, 1-450 -575 (11-6,203 (1,1))
	01 = 5(0+3)+5(1-0)) / = (E(A))
	TO THE STATE - (T)
->	Solving ep nc=s(ATA) -(T)
	5 000 [15·485] e ²
	co-ordinates of node F are [15.485]
	Phored 9
	Cerred Jes N = H. introvers
	5+5+2
	k5.kl =
	£3>x45
	mul 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	24943
	: 2.113
	Comco for B = 1 + 7 + 10 = 1 + 5 + 3 + 11 + 4 = 2 + 2 + 31
	18 2-2
	EU-9, = 1, = 3;
3 8	Pgs
3 G	

Show how the DV-HOP ad-hoc positioningi
Clarker to the Delating adapted registroning
Show the DV-1101 ad-noc positive
technique and he used to estimate the
location of each pode?
500 1 192 3 15 1605
Ed = 66 5 5 66 6 - 52
Correction distance (1 = E (xi-xj)2+ (yi-yj)2
10g our 2hi privos -
el(A,B) = (4+1)2+(3+2)2 37 7.07
d(B()= ((2+1)2+(8-3)2 = 5.83
el(A,() = ((2-4)2+(8+2)2 = 10.19
d(A,J) = \[(10-4)^2 + (6+2)^2 = 10
d((,J)= J687/6/8/2400 0 miv/32 c
d(B,J)= \(\begin{align*} \text{130} = \text{11.4} \end{align*}
wording of the E out 18 Age
1, 3 9120 0-
Corred 10x A = 7.07+10.19+10
2+2+2
= 4.54
Concert
coment for 6= 5.83+10.19+8.24
2+2+2
= 3.43
Comed for B = 7.07 + + 19 + 10 + 5.83 + 11.40
2+2+24
= 3.03
Pg 6

		Correction of J= 10+8.24+11.47) 623.29-1 4.
		2+3+4
		delance to Abe = 1x2.43 = 3.03
		(a) (A) (A) (A)
	\rightarrow	For NodeD 5 mary Mamon et las 3
		(((((((((((((((((((
		D calculates ; ts corned from B.
		D calculates its corned from B.
-		2
		Distance to APERSPEXISOS =13.03 AND INC.
		Distance to B) = 15 = 1 x 3.03 = 13.03
		· Dist to 60.8 = 130 8 XB. 03 2 3.03
		Dist to J : 3 x 3 · 03 = 19.09 :
		· · · · · · · · · · · · · · · · · · ·
		9(1 = 4 19 = 13-52 S 81 = 13.03 1)
	: # ₂	N2 = -1 192 = 13.03 00
		23 = 2 33 318 83 = 3.03 25
		From eq (1) we
		A = [-4 20] b= [48] & get
		6 10 58
		Solving SCIFT (AT A) -1 AT b or in python we get
		solving of the H) H is an python we get
		co-ordinates of D as 4.25 Attention of 3(25) 2430
	1	5 3m rought in 9 13(527 + 20
		· 20 11 1 2000 7 10 0 togeton 00
		G 3 SIMON)
	T.	
)		
4	- 9	^
	0.	· Pg 7
)	()	

-4>	For node B'll +uc. o +ol -7. pr mothemes
	11+81-6
	distance to ABC = 1X3.47 = 3.43
	E cal. Its correct from C assor col
	Eis connected to A and c wholes a
	*
	distance 800 A = 8X3146 = 3.416 01 0 moteral
	En 8 to B 0=8 2 x 3. 46 = 6 920+ subtrict
	EO to CE SIXB. 46 = 3.46 1 +210.
	2 2 2 2 2 2 1 5710
	99 = 04 = 1= 2 (3.46 = 11 1) = 100 92 = 0-1 = 33 6.92 (52 1- = 500)
	22 20-1-23 6-12 22 1-32
	23 402 18 38 46 203 5 600
	Found coll
-9	Weiget 811 =d 00 11- =A
1	1 1 1 2 1 1 2 2 1
e get	a montegene 10 d A (ALM3.41)g privios
	a stall and a la estacha a
	composting 25.11 as a lo standard of school of a the second of the secon
	oc = (A A) A S in python we get
	co-ordinates of E are 8.74 < x
	W-08ainates of L 4.6 4

	Fox Node (4)
	2C1 C1 13 16
	-> Node Par Solicity Comments
	For Node Gi' Node Par cal. it of corner from Act
	Distance to A = 1x 4.54 = 4.54
	to B = 3x434 = 113.62 .00
	: x12 4820 4, = -2 3 x52 454
	0(2=P=1.451 40= 3 1- x3=1 13.62
	73 = 2
	254 of 11 gg 11 yd 20 6 (A TA) mis disuns
	We get #=2. [12 160] 9 b= 1 1d (60, 150) - 0) 121 (22 6) 290.8928 16 -4 129.834
	121 22 6 0= 290.8928
	16 -4 129.834
	solving epm oc= (ATA-1)-1 ATB in python we g
	Co-ordinates of Grave [10.936] × 2
	0.774 4
->	Node F
	> F calculates its cornect of nom J
	Distance from A = 1×3.29 = 3.29
	B = 4 x 3.29 = 13.14
	C = 3×3·29 = 9·87 T = 1×3·29 = 3·29
	J= 1×3·29 = 3·29
2	

	; Th
	29 = 4 4 = -2 80 = 3.29 == =
	90 = 4 $y = -2$ $90 = 3.29$ $92 = -13.16$
	nc3 = 2
	24 = 10 yy = 6 24 = 3.29
	Distance to A - IV yell . 459
->	we get A & B as
	50.6 = 15.0x6 - 2 24
	A = 2 112 1161
	167-4 154.59
	753 = 9 40 = 8 9 - 9 - 0 V
٠	Solving x= (AT A) - AT b in pythons
	Co-ordinates! 01. Fave! (11.593 100 06.
	THE 8.631
top 30	selving in delata TA Doc ma suiviss
Ų	
	prositional of Grave 10-936 12
	F. S Lice o
	→ NOTA - C-
	F colcilates its correct from J Distance from A = 1x3.29 = 3.29
	11.61 = 4 x 3.24 = 13.10
	£3-6 = 10-8×8 = 7
	- 20 EV 1 - 1
	D= 1×3.29 = 3 K
	LE TRESTEXT - U

Python codes to find co-ordinates by solving matrix equation: Question 2: Part 1:

Coordinates of D:

```
File
         Edit Selection View Go Run Terminal
                                                Help
仚
                  X
      Q3.py
       C: > Spring22 > ECE659 > Assignments > a3 > 🕏 Q3.py > 💅 C
              import numpy as np
              b = np.array([[15],[18]])
              A = np.array([[-4, 20], [6, 10]])
              A transponse = np.transpose(A)
              C = np.matmul(A_transponse,A)
              A_inv = np.linalg.inv(C)
              D = np.matmul(A_inv,A_transponse)
              x = np.matmul(D, b)
品
              print("Co-ordinates of D are: ", x)
               OUTPUT TERMINAL JUPYTER DEBUG CONSOLE
      [Done] exited with code=w in w.451 Seconds
      [Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
      Co-ordinates of D are: [[1.3125]
       [1.0125]]
      [Done] exited with code=0 in 0.438 seconds
```

Coordinates of E:

```
File Edit Selection View Go Run Terminal Help
      Q3.py
      C: > Spring22 > ECE659 > Assignments > a3 > ♥ Q3.py > ...
             import numpy as np
             b = np.array([[104],[123.25]])
             A = np.array([[-4, 20], [6, 10]])
             A_transponse = np.transpose(A)
             C = np.matmul(A_transponse,A)
             A inv = np.linalg.inv(C)
             D = np.matmul(A inv,A transponse)
             x = np.matmul(D, b)
print("Co-ordinates of E are: ", x)
                 OUTPUT TERMINAL JUPYTER DEBUG CONSOLE
       [nois] extrem mirii cons-A III A'430 Secoline
       [Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
       Co-ordinates of E are: [[8.90625]
        [6.98125]]
       [Done] exited with code=0 in 0.47 seconds
```

Coordinates of G:

```
File Edit Selection View Go Run
                                      Terminal
                                              Help
       Q3.py
                  ×
       C: > Spring22 > ECE659 > Assignments > a3 > ♥ Q3.py > Ø b
             b = np.array([[75.75],[252], [92.75]])
          2
              A = np.array([[12, 16], [22, 6], [16, -4]])
              A transponse = np.transpose(A)
             C = np.matmul(A transponse,A)
              A inv = np.linalg.inv(C)
              D = np.matmul(A inv,A transponse)
              x = np.matmul(D, b)
              print("Co-ordinates of G are: ", x)
[Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
Co-ordinates of G are: [[8.95489368]
 [0.08028455]]
[Done] exited with code=0 in 0.441 seconds
```

Coordinates of F are:

```
File Edit Selection View Go Run
                                      Terminal Help
                 X
仚
      Q3.py
      C: > Spring22 > ECE659 > Assignments > a3 > ♥ Q3.py > ...
             import numpy as np
             b = np.array([[156],[389.25], [203]])
             A = np.array([[12, 16], [22, 6], [16, -4]])
             A_transponse = np.transpose(A)
             C = np.matmul(A transponse,A)
             A_inv = np.linalg.inv(C)
             D = np.matmul(A inv,A transponse)
             x = np.matmul(D, b)
品
             print("Co-ordinates of F are: ", x)
                 OUTPUT
       [Done] exited with code-v in v.441 Seconds
       [Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
       Co-ordinates of F are: [[15.48549875]
        [-0.02184959]]
       [Done] exited with code=0 in 0.436 seconds
```

Python codes to find co-ordinates by solving matrix equation: Question 2: Part 2:

Coordinates for D:

```
File Edit Selection View Go Run
                                      Terminal Help
      Q3.py
                  ×
D
       C: > Spring22 > ECE659 > Assignments > a3 > ♥ Q3.py > ...
             import numpy as np
              b = np.array([[48],[58]])
             A = np.array([[-4, 20], [6, 10]])
             A_transponse = np.transpose(A)
             C = np.matmul(A transponse,A)
             A inv = np.linalg.inv(C)
             D = np.matmul(A inv,A transponse)
             \sqrt{2} = np.matmul(D, b)
品
             print("Co-ordinates of D are: ", x)
       [Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
       Co-ordinates of D are: [[4.25]
        [3.25]]
       [Done] exited with code=0 in 0.859 seconds
```

Coordinates for E:

```
File Edit Selection View
                              Go
                                  Run
                                        Terminal Help
凸
       Q3.py
                   X
       C: > Spring22 > ECE659 > Assignments > a3 > 🕏 Q3.py > ...
              import numpy as np
              b = np.array([[48],[93.91]])
              A = np.array([[-4, 20], [6, 10]])
              A transponse = np.transpose(A)
              C = np.matmul(A transponse,A)
              A inv = np.linalg.inv(C)
              D = np.matmul(A_inv,A_transponse)
              \sqrt{n} = np.matmul(D, b)
留
              print("Co-ordinates of E are: ", x)
                 OUTPUT
       |Done | exited with code=w in w.490 Seconds
       [Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
       Co-ordinates of E are: [[8.73875]
        [4.14775]]
(Q)
       [Done] exited with code=0 in 1.008 seconds
```

Coordinates of G are:

```
File
    Edit Selection View Go Run
                                  Terminal
                                           Help
              ×
  Q3.py
  C: > Spring22 > ECE659 > Assignments > a3 > ♥ Q3.py > ...
         import numpy as np
         b = np.array([[116],[290.8928], [129.834]])
         A = np.array([[12, 16], [22, 6], [16, -4]])
         A transponse = np.transpose(A)
         C = np.matmul(A transponse,A)
         A inv = np.linalg.inv(C)
         D = np.matmul(A inv,A transponse)
         x = np.matmul(D, b)
         print("Co-ordinates of G are: ", x)
     9
```

```
PROBLEMS OUTPUT TERMINAL JUPYTER DEBUG CONSOLE
[DOINE] EXITED WITH CODE-0 IN 0.334 SECONDS

[Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
Co-ordinates of G are: [[10.9361425]

[ 0.77475244]]

[Done] exited with code=0 in 0.86 seconds
```

Coordinates of F are:

```
Q3.py
фŋ
      C: > Spring22 > ECE659 > Assignments > a3 > ♥ Q3.py > Ø b
             b = np.array([[116],[288.3615], [154.59]])
         2
             A = np.array([[12, 16], [22, 6], [16, -4]])
             A_transponse = np.transpose(A)
             C = np.matmul(A_transponse,A)
            A inv = np.linalg.inv(C)
            D = np.matmul(A_inv,A_transponse)
            x = np.matmul(D, b)
品
             print("Co-ordinates of F are: ", x)
       [Running] python -u "c:\Spring22\ECE659\Assignments\a3\Q3.py"
       Co-ordinates of F are: [[11.5934896]
        [-0.1509685]]
(2)
       [Done] exited with code=0 in 0.495 seconds
```

Question 3:

Consider the case of the interior of a building of a rectangular shape 100mx60mx5m.

It is desired that objects moving around inside this building be located by means of the wireless signals propagating inside the building. These signal are produced by three wireless devices: one

device is located at (x=0.0m,y=30.0,z=3.0m), one device is located at (x=50.0m,y=60.0m,z=4.0m), one device is located at (x=100.0m,y=30.0m,z=3.0m). The floor of the building is a grid of equal size square-tiles. It suffices to locate the device roaming inside the building in terms of a tile index.

Assuming the average measured RSSI at one meter away from the transmitter to be -50dbm; the

average path-loss to be 4dB; and a standard deviation of 5.1dB.

- 1. Using the model in Equation 2, generate an RSSI profile as a function of the distance d, for d=1 to 140m.
- 2. Generate the fingerprint for the tile grid. Each grid tile fingerprint is the RSSI readings from the three devices measured at that particular tile. Use the center of the tile for your calculations.
- 3. Consider a roaming device, placed at the centre of tile indexed by (30 on the x dimension, 45 on the y-dimension,0 on the z-dimension). Estimate the RSSI readings using the same model.
- 4. Compute the tile location of the roaming device by matching its RSSI readings as in 3 above, with that stored in the grid fingerprint. Repeat this ten times and compute the mean location value.
- 5. Compute the location error, i,e, the distance between the true tile location and the mean location value.
- 6. Using the estimated reading in 3 above and the RSSI model, compute the distance

estimate the three	ng device and each dimensional locatio		
location.			

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import distance
```

Setting up the parameters and equations for RSSI calculations

```
In [2]:
         # Dimensions of the building
         x = 100
         y = 60
         z = 5
         tile_index = 1
         #Device 1 coordinates
         d1_coord = np.array([0,30,3])
         #Device 2 coordinates
         d2_{coord} = np.array([50,60,4])
         #Device 3 coordinates
         d3_coord = np.array([100,30,3])
         #path Loss parameter
         n = 4
         # Average RSSI at one meter from transmitter
         A = -50
         # Standard Deviation
         sd = 5.1
         # Function for eugation 1
         def equation_1(d):
             RSSI = round(-10*n*np.log10(d) + A + np.random.normal(loc=0,scale=sd),4)
             return RSSI
         #Function for equation 2
         def equation_2(d):
             RSSI = round(-10*n*np.log10(d) + A,4)
```

1. Creating RSSI profile from d = 1 to 140m using equation 2

```
In [3]:

RSSI = [0]*140 # initialize empty array of size 140 to store 140 RSSI values for d in range(1,141): # d ranges from 1-140

RSSI[d-1] = equation_2(d) # using equation 2

In [4]:

plt.plot(RSSI)
plt.title("RSSI Profile")
plt.ylabel("RSSI values (db)")
plt.xlabel ("Distance (meters)")

Out[4]:

Text(0.5, 0, 'Distance (meters)')
```


Thus from the above plot it can be inferred that the RSSI value logarithmically decreases with distance

2. Generating fingerprint for TileGrid

Given Instructions

- 1. The floor of the building is a grid of equal size square-tiles, thus there are 100*60 = 6000 tiles
- 2. Since the tiles are on the floor, the value is Z = 0 for each tile
- 3. Using centre of tile for RSSI computation. Thus the coordinates for 1st tile is (0.5,0.5,0) and last tile is (99.5,59.5,0)

```
In [5]:
         # Generating the coordinates of the tiles
         z = 0
         tiles_coordinates = [0]*6000
         count = 0
         for i in range(1,101):
             for j in range(1,61):
                 # calculating the centre coordinate of each tile
                 x = i - 0.5
                 y = j - 0.5
                 tiles_coordinates[count] = np.array([x,y,z])
                 count +=1
         print("last tile center coordinates are", tiles_coordinates[5999])
         print("Thus the centers of all the tiles are computed")
        last tile center coordinates are [99.5 59.5 0.]
        Thus the centers of all the tiles are computed
```

```
In [6]:

# Calculating RSSI values for all the tiles

RSSI_values_per_tile = [0]*6000 #since there are 600 tiles

RSSI_Device_1 = [0]*6000

RSSI_Device_2 = [0]*6000

RSSI_Device_3 = [0]*6000

for t in range(1,len(tiles_coordinates)+1):

#RSSI from device 1

d1 = distance.euclidean(tiles_coordinates[t-1],d1_coord)

RSSI_Device_1[t-1] = equation_1(d1)

#RSSI from device 2

d2 = distance.euclidean(tiles_coordinates[t-1],d2_coord)
```

3. Estimating RSSI readings for co-ordinate(30,45,0) from all the 3 devices

```
In [8]:
    loc = np.array([30,45,0])
    d1 = distance.euclidean(loc,d1_coord)
    rs1 = equation_1(d1) # R551 from device 1
    d2 = distance.euclidean(loc,d2_coord)
    rs2 =equation_1(d2)#R551 from device 2
    d3 = distance.euclidean(loc,d3_coord)
    rs3 = equation_1(d3)# R55i from device 3
    RSSI_Detect = np.array([rs1,rs2,rs3])
    print("The RSSI Value from device 1 is :",rs1)
    print("The RSSI Value from device 2 is :",rs2)
    print("The RSSI Value from device 3 is :",rs3)

The RSSI Value from device 1 is : -111.5573
The RSSI Value from device 2 is : -110.1501
The RSSI Value from device 3 is : -121.7626
```

Computing the mean location of the by using RSSI values of tiles fingerprint

```
In [9]:
         mean_location = []
         tiles_loc = [0]*10
         #iterating 10 times
         for i in range(1,11):
             d1 = distance.euclidean(loc,d1_coord)
             rs1 = equation_1(d1) # RSSI from device 1
             dev_1 = np.reshape(np.abs(RSSI_Device_1-rs1),(100,60))
             #Searching for min difference in RSSI values w.r.t Device 1
             loc_1 = np.where(dev_1==np.min(dev_1))
             mean_location.append([loc_1[0][0],loc_1[1][0]])
             d2 = distance.euclidean(loc,d2_coord)
             rs2 =equation_1(d2)#R5SI from device 2
             dev_2 = np.reshape(np.abs(RSSI_Device_2-rs2),(100,60))
             #Searching for min difference in RSSI values w.r.t Device 2
             loc_2 = np.where(dev_2==np.min(dev_2))
             mean_location.append([loc_2[0][0],loc_2[1][0]])
             d3 = distance.euclidean(loc,d3_coord)
             rs3 = equation_1(d3)# RSS1 from device 3
             dev_3 = np.reshape(np.abs(RSSI_Device_3 - rs3),(100,60))
```

```
#Searching for min difference in RSSI values w.r.t Device 3
loc_3 = np.where(dev_3==np.min(dev_3))
mean_location.append([loc_3[0][0],loc_3[1][0]])

In [10]:

#Calculating the mean location value by taking the averages of the coordinates
final_location = (np.sum(np.array(mean_location),axis=0)/30).astype(int)
final_location=np.append(final_location,0)
print("The approximate x-coordinates are:",final_location[0])
print("The approximate y-coordinates are:",final_location[1])
print("The approximate z-coordinates are:",final_location[2])

The approximate x-coordinates are: 36
The approximate y-coordinates are: 34
The approximate z-coordinates are: 0
```

Calculating the Location Error

```
In [11]:
    location_error = np.round(np.linalg.norm(loc-final_location),3)
    print("The location error is:",location_error,"meters")

The location error is: 12.53 meters
```

From the above values it can be seen that the location is not very accurate. The accuracy can be improved by using the trangulation technique

6. Triangulation Method to estimate the location of the Roaming Device

In this method we use simple trignometry to find the intersection of the 3 circles to estimate the best location of our roaming device. The iteration is done 10 times to compute the average. It can be illustrated as follows:


```
In [68]:
          index_per_iteration = []
          for 1 in range(1,11):
              d1 = distance.euclidean(loc,d1_coord)
              rs1 = equation_1(d1) # RSSI from device 1
              dev_1 = np.reshape(np.abs(RSSI_Device_1-rs1),(100,60))
              d2 = distance.euclidean(loc,d2_coord)
              rs2 =equation_1(d2)#RSSI from device 2
              dev_2 = np.reshape(np.abs(RSSI_Device_2-rs2),(100,60))
              d3 = distance.euclidean(loc,d3_coord)
              rs3 =equation_1(d3)#RSSI from device 2
              dev_3 = np.reshape(np.abs(RSSI_Device_3-rs3),(100,60))
              dev = dev 1+dev 2+dev 3
              index_per_iteration.append(np.unravel_index(np.argmin(dev,axis=None),dev_1.shape
          #Calculating the estimated Location
          estimated_location = (np.sum(np.array(index_per_iteration),axis=0)/10).astype(int)
          estimated_location = np.append(estimated_location,0)
          print("Estimated LOcation of X-coordinate is:",estimated_location[0])
          print("Estimated LOcation of Y-coordinate is:",estimated_location[1])
          print("Estimated LOcation of Z-coordinate is:",estimated_location[2])
          estimated_error = np.round(np.linalg.norm(loc-estimated_location),3)
          print("Estimated Error is:",estimated_error,"meters")
         Estimated LOcation of X-coordinate is: 33
```

Estimated LOcation of Y-coordinate is: 42

Estimated LOcation of Z-coordinate is: 0 Estimated Error is: 4.243 meters

Thus from the above results it can be seen that triangulation method yields better results

```
In [71]: efficiency_comparision = (np.abs(location_error-estimated_error)/location_error)*100

In [75]: print("The triangulation method is efficient by:",np.round(efficiency_comparision,2)
```

The triangulation method is efficient by: 66.14 %

Question 4:

Suppose we have two sensors with known (and different) variances v_x and v_y , but unknown (and the same) mean μ . Suppose we observe n_x observations from the first sensor and n_y observations from the second sensor. Call these \mathcal{D}_x and \mathcal{D}_y . Assume all distributions are Gaussian.

- 1. What is the posterior $p(\mu|\mathcal{D}_x,\mathcal{D}_y)$, assuming a non-informative prior for μ ? Give an explicit expression for the posterior mean and variance. Hint: use Bayesian updating twice, once to get from $p(\mu) \to p(\mu|\mathcal{D}_x)$ (starting from a non-informative prior, which we can simulate using a precision of 0), and then again to get from $p(\mu|\mathcal{D}_x) \to p(\mu|\mathcal{D}_x,\mathcal{D}_y)$.
- 2. Suppose the y sensor is very unreliable. What will happen to the posterior mean estimate? Give a simplified approximate expression.

Assignment - 3 Question 4 Sensor & has observations Of = (x, x, ... xn) Sensor y has observations Dy = (y, y ... Ju) mean for sensor 3, 4 = 4 Vasiance of Sensos '8' = Vx Variance of Sensor 'y' 2 Vy According to Bayes theorem P(4 D8) x P(D8 (4) , P(4) P(U | O x) & M. [= (Ox-M)2 P(H toy) = 1 e dry To find P(4 Dx Dy). On applying Baye's theorem P(u | Dx, Dy) a P(Dy | u. 8x). P(u | Dx)

2 1 - Oy-W, 4. 1 = O8-4) $\frac{2\pi \sqrt{v_{x}v_{y}}}{2\pi \sqrt{v_{x}v_{y}}} = \frac{\left[\frac{D_{y}^{2}-u^{2}-2\mu D_{y}}{2v_{y}} + \frac{D_{x}^{2}+\mu^{2}-2D_{x}\mu}{2v_{x}}\right]}{2v_{x}}$ $\frac{\mu}{2\pi \sqrt{v_{x}v_{y}}} = \frac{\left[\frac{D_{y}^{2}v_{x}-\mu^{2}v_{x}-2\mu D_{y}v_{x}}{2v_{x}v_{y}} + \frac{D_{x}^{2}v_{y}+\mu^{2}v_{y}-2D_{x}v_{y}}{2v_{x}v_{y}}\right]}{2v_{x}v_{y}}$ 27 (V&Uy) = [12 (V*+Vy)-24 (0*Vy+0*V8)+02 V*+12/4) P (u| DxDy) x M e [-u2 + 2m(0y0x+Dx0y) (0y0x+Dx0y) Vx+vy

2(vx vy) Vx+vy

Vx+vy The above equation is the posterior probability (b) From the above equation py 20 if 'y' is an unschable Sensor. Thus the equation becomes 20 (VzVy 200xVy + Dx Vy Vx+Vy Vx+Vy Vx+Vy Vx+Vy

Question 5 [10 pts]:

Given that the sensors provide the following assessment in the form of mass functions as in the table below, use DS evidence fusion to compute the evidence on each potential identity. Calculate the conflict factor.

Identity	Sensor D1	Sensor D2
F	0.3	0.4
M	0.15	0.1
Α	0.03	0.02
Animal	0.42	0.45
Unknown	0.1	0.03
Total	1	1

Solution:

Here, Animal = {F,M}; Unknown = {F,M,A}

Here we are given with the mass functions from two sensors D1, D2. For finding the combined mass assessment, the below table represents the data with {F}, {M}, {A}, {F,M}, {F,M,A}

Sensor		Sensor D2					
		Identity	{F}	{M}	{A}	{F,M}	{F,M,A}
	Identity		0.4	0.1	0.02	0.45	0.03
	{F}	0.3	{F}	{Ø}	{Ø}	{ F }	{F}
			0.12	0.03	0.006	0.135	0.009
	{M}	0.15	{Ø}	{M}	{Ø}	{M}	{M}
			0.06	0.015	0.003	0.0675	0.0045
Sensor D1	{A}	0.03	{Ø}	{Ø}	{A}	{Ø}	{A}
			0.012	0.003	0.0006	0.0135	0.0009
	Animal (F,M)	0.42	{ F }	{M}	{Ø}	{F,M}	{F,M}
			0.168	0.042	0.0084	0.189	0.0126
	Unknown (F,M,A)	0.1	{ F }	{M}	{A}	{F,M}	{F,M,A}
			0.04	0.01	0.002	0.045	0.003

From the above table, we can calculate the mass for each identity. Below are the details regarding the same –

- 1. $\{F\} = 0.12 + 0.168 + 0.04 + 0.135 + 0.009 = 0.472$
- 2. $\{M\} = 0.015 + 0.042 + 0.01 + 0.0675 + 0.0045 = 0.139$
- 3. $\{A\} = 0.0006 + 0.002 + 0.0009 = 0.0035$
- 4. Animal $\{F,M\} = 0.189 + 0.045 + 0.0126 = 0.2466$
- 5. Unknown $\{F,M,A\} = 0.003$
- 6. Null $\{\emptyset\}$ = 0.06 + 0.012 + 0.03 + 0.003 + 0.006 + 0.003 + 0.0084 + 0.0135 = 0.1359

So here, since we have few instances where we have interaction as NULL, so it creates a conflict factor. Here, the conflict factor $\mathbf{K} = \mathbf{0.1359}$

So, here if we allocate 0.1359 to $\{\emptyset\}$, then we are left with (1-K) = 0.8641 for the focal elements. Hence the allocations would be as follows –

	{F}	{M}	{A}	{F,M}	{F,M,A}
Mass	0.472	0.139	0.0035	0.2466	0.003
Mass/(1-K)	0.5462	0.1609	0.004	0.2854	0.0035

Here we can have a verification done of the above values by summing all those and the sum should be 1.

Hence the final values are -

Identity	{F}	{M}	{A}	Animal {F,M}	Unknown {F,M,A}
Value	0.5462	0.1609	0.004	0.2854	0.0035

Question 6 [10 pts]:

Compressed Sensing:

- a) Create a sparse vector of 512 random sensory values. Plot this vector
- b) Create a random measurement matrix to compress the sensory vector in a) to a compressed version consisting of 128 values. Plot this vector.
- c) Use the Matlab function l1eq_pd function to recover the 512 sensory data. Plot the recovered signal and compare to the original one in (a) by computing the correlation factor between the two signals).

Solution -

Matlab code -

h ▶ OneDrive ▶ Documents ▶ MATLAB

```
Editor - C:\Users\krish\OneDrive\Documents\MATLAB\A3_Q6.m
   A3_Q6.m × +
   1
            clc;
   2
            close all;
            n = 512;
   3
            s = 30;
   4
   5
            v = 128;
   6
            x_initial = zeros(n,1);
   7
   8
            % Original signal
  9
            z = randperm(n);
            x_{initial}(z(1:s)) = sign(randn(s,1));
  10
  11
            figure;
  12
            subplot(3,1,1);
            plot(1:n, x_initial); title('Original signal'); axis([0 512 -1 1])
  13
  14
            A = randn(v, 512);
  15
  16
            A = A/\max(\max(abs(A)));
            b = A*x_{initial} + 0.005 * randn(v,1);
  17
  18
  19
            % Compressed signal
            subplot(3,1,2);
  20
  21
            plot(1:v,b);
  22
            title("Compressed signal");
  23
            axis([0 v -1 1]);
  24
  25
            % Reconstructed signal
  26
            x_recon = l1eq_pd(x_initial,A,[],b);
  27
            subplot(3,1,3);
  28
            plot(1:n,x_recon);
  29
            title("Reconstructed signal");
  30
            axis([0 n -1 1]);
  31
            % Correlation factor
  32
  33
            corr = corrcoef(x_initial,x_recon)
Command Window
```

Output Signals -

- a) Sparse Vector of 512 random sensory values -
- b) Compressed version consisting of 128 values –
- c) Recovered signal using l1eq_pd function -

From the above signals, it can be observed that the reconstructed or the recovered signal is very accurate.

Iterations: MATLAB results -

```
A3 Q6.m
                                                                                                                        A
          close all;
          n = 512:
                                                                                                                           (\pi)
Command Window
  Iteration = 1, tau = 3.428e+01, Primal = 3.046e+02, PDGap = 2.987e+02, Dual res = 2.558e+01, Primal res = 5.783e-04
                    H11p condition number = 1.725e-02
  Iteration = 2, tau = 1.596e+02, Primal = 8.006e+01, PDGap = 6.415e+01, Dual res = 3.097e+00, Primal res = 7.001e-05
                   H11p condition number = 1.645e-02
  Iteration = 3, tau = 3.196e+02, Primal = 5.510e+01, PDGap = 3.204e+01, Dual res = 1.373e+00, Primal res = 3.103e-05
                    H11p condition number = 2.005e-03
  Iteration = 4, tau = 6.249e+02, Primal = 4.310e+01, PDGap = 1.639e+01, Dual res = 6.272e-01, Primal res = 1.418e-05
                    H11p condition number = 1.674e-04
  Iteration = 5, tau = 1.209e+03, Primal = 3.687e+01, PDGap = 8.469e+00, Dual res = 2.904e-01, Primal res = 6.565e-06
                    H11p condition number = 6.160e-05
  Iteration = 6, tau = 2.174e+03, Primal = 3.388e+01, PDGap = 4.710e+00, Dual res = 1.472e-01, Primal res = 3.327e-06
                    H11p condition number = 2.099e-05
  Iteration = 7, tau = 3.356e+03, Primal = 3.254e+01, PDGap = 3.051e+00, Dual res = 8.958e-02, Primal res = 2.025e-06
                    H11p condition number = 8.288e-06
  Iteration = 8, tau = 5.993e+03, Primal = 3.146e+01, PDGap = 1.709e+00, Dual res = 4.578e-02, Primal res = 1.035e-06
                   H11p condition number = 4.618e-06
  Iteration = 9, tau = 9.205e+03, Primal = 3.098e+01, PDGap = 1.112e+00, Dual res = 2.803e-02, Primal res = 6.337e-07
                   H11p condition number = 2.577e-06
  Iteration = 10, tau = 1.821e+04, Primal = 3.053e+01, PDGap = 5.623e-01, Dual res = 1.263e-02, Primal res = 2.855e-07
                    H11p condition number = 1.668e-06
  Iteration = 11, tau = 2.318e+04, Primal = 3.042e+01, PDGap = 4.418e-01, Dual res = 9.622e-03, Primal res = 2.175e-07
                    H11p condition number = 7.709e-07
  Iteration = 12, tau = 2.544e+04, Primal = 3.039e+01, PDGap = 4.025e-01, Dual res = 8.672e-03, Primal res = 1.960e-07
                    H11p condition number = 5.619e-07
  Iteration = 13, tau = 3.457e+04, Primal = 3.029e+01, PDGap = 2.962e-01, Dual res = 6.126e-03, Primal res = 1.385e-07
                    H11p condition number = 6.944e-08
f_{x} Tteration = 14 tan = 5 906e+04 Primal = 3 017e+01
                                                       PDGan = 1 734e-01 Dual res = 3 304e-03 Primal res = 7 468e-08
                                                                            Zoom: 100% UTF-8
                                                                                                      CRLF script
A3_Q6.m × +
          clc:
          close all;
          n = 512;
                     H11p condition number =
  Iteration = 15, tau = 1.276e+05, Primal = 3.008e+01, PDGap = 8.023e-02, Dual res = 1.331e-03, Primal res = 3.010e-08
                    H11p condition number = 4.568e-09
  Iteration = 16, tau = 1.661e+05, Primal = 3.006e+01, PDGap = 6.164e-02, Dual res = 9.887e-04, Primal res = 2.235e-08
                    H11p condition number = 1.168e-08
  Iteration = 17, tau = 2.737e+05, Primal = 3.004e+01, PDGap = 3.741e-02, Dual res = 5.569e-04, Primal res = 1.259e-08
                    H11p condition number = 7.620e-09
  Iteration = 18, tau = 4.648e+05, Primal = 3.002e+01, PDGap = 2.203e-02, Dual res = 3.025e-04, Primal res = 6.837e-09
                    H11p condition number = 4.895e-09
  Iteration = 19, tau = 7.924e+05, Primal = 3.001e+01, PDGap = 1.292e-02, Dual res = 1.636e-04, Primal res = 3.698e-09
                    H11p condition number = 2.421e-09
  Iteration = 20, tau = 1.251e+06, Primal = 3.001e+01, PDGap = 8.182e-03, Dual res = 9.689e-05, Primal res = 2.190e-09
                    H11p condition number = 9.252e-10
  Iteration = 21, tau = 2.053e+06, Primal = 3.001e+01, PDGap = 4.987e-03, Dual res = 5.484e-05, Primal res = 1.246e-09
                    H11p condition number = 4.916e-10
  Iteration = 22, tau = 3.753e+06, Primal = 3.001e+01, PDGap = 2.728e-03, Dual res = 2.725e-05, Primal res = 6.508e-10
                    H11p condition number = 2.674e-10
  Iteration = 23, tau = 6.716e+06, Primal = 3.000e+01, PDGap = 1.525e-03, Dual res = 1.389e-05, Primal res = 3.930e-10
                    H11p condition number = 1.443e-10
  Iteration = 24, tau = 1.571e+07, Primal = 3.000e+01, PDGap = 6.519e-04, Dual res = 5.055e-06, Primal res = 5.608e-10
                    H11p condition number = 5.629e-11
      1.0000
                0.9991
      0.9991
                1.0000
```

Here, we got a **correlation coefficient** of <u>0.9991</u> between the original and the recovered signal. So, we can conclude that the recovered signal, using l1eq pd function, from the original signal is very accurate.