PROPRIEDADES DA REALIMENTAÇÃO Profa. Cristiane Paim

Propriedades da Realimentação

Os sistemas realimentados (em malha fechada) proporcionam algumas vantagens em relação aos sistemas em malha aberta. Estas "vantagens" podem ser observadas sob alguns aspectos:

- Estabilidade
- Atenuação e/ou Rejeição de Perturbação
- Sensibilidade

Seja o sistema em malha aberta

A função de transferência de malha aberta (FTMA) será dada por:

$$T_{MA}(s) = \frac{Y(s)}{R(s)} = C(s)G(s)$$

Suponha que o processo seja representado por:

$$G(s) = \frac{s+1}{(s+2)(s-1)}$$

Observe que G(s) representa um sistema instável.

Teoricamente, seria possível estabilizar o sistema escolhendo o controlador C(s) de modo a cancelar o polo instável. Por exemplo

$$C(s) = \frac{s-1}{s+1}$$
 $T_{MA}(s) = C(s)G(s) = \frac{1}{s+2}$

Entretanto, tal estratégia de controle pode não funcionar na prática pois devido a imperfeições inevitáveis na modelagem de G(s), não seria possível a obtenção de um cancelamento perfeito, mantendo assim o sistema instável.

$$T_{MA}(s) = C(s)G(s) = \frac{s-1}{\underbrace{s+1}_{C(s)}} \underbrace{\frac{s+1}{(s+2)(s-1,1)}}_{G(s)}$$

$$T_{MA}(s) = \frac{s-1}{(s+2)(s-1,1)}$$
 Resposta instável

Seja agora, um sistema em malha fechada (realimentado)

A função de transferência de malha fechada (FTMF), considerando C(s) = K (constante positiva) será dada por:

$$T_{MF}(s) = \frac{Y(s)}{R(s)} = \frac{KG(s)}{1 + KG(s)}$$

Os polos de malha fechada são as raízes do polinômio característico:

$$\Delta(s) = 1 + KG(s) = 1 + K\frac{s+1}{(s+2)(s-1)} = 0$$

ou seja,

$$\Delta(s) = s^2 + (K+1)s + (K-2)$$

Para que o sistema seja estável, as raízes do polinômio característico devem ter parte real negativa. Assim, para garantir estabilidade tem-se:

$$\begin{cases} K+1>0 \\ K-2>0 \end{cases} \Rightarrow K>2$$

Todos os sistemas de controle reais estão sujeitos à perturbações e ruídos. A reação do sistema a tais perturbações depende de diversos fatores: ponto de entrada, intensidade, duração, etc.

A realimentação pode, em muitos casos, atenuar (ou eliminar completamente) os efeitos das perturbações na operação dos sistemas.

Seja o seguinte sistema em malha aberta:

A saída será dada por:

$$Y(s) = C(s)G(s)R(s) + P(s)G(s)W(s)$$

Observa-se claramente que o ajuste do controlador C(s) não modifica o efeito da perturbação na saída.

Seja agora o sistema em malha fechada:

A saída será dada por:

$$Y(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}R(s) + \frac{P(s)G(s)}{1 + C(s)G(s)}W(s)$$

Neste caso, pode-se projetar o controlador C(s) de modo a reduzir o efeito perturbação na saída do sistema.

$$Y(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}R(s) + \frac{P(s)G(s)}{1 + C(s)G(s)}W(s)$$

Sejam as funções de transferência do processo e perturbação definidas por:

$$G(s) = \frac{10}{(s/60+1)(s/600+1)}$$
 e $P(s) = 5$

Deseja-se aplicar um controle proporcional, ou seja, C(s)=K (constante), de modo que em regime permanente a saída acompanhe uma entrada de referência constante r(t)=100 (degrau de amplitude 100).

O sistema está sujeito a uma perturbação constante w(t)=-0,1 (degrau de amplitude -0,1).

Malha Aberta

$$G(s) = \frac{10}{(s/60+1)(s/600+1)}$$
 $P(s) = 5$ $C(s) = K$

$$Y(s) = C(s)G(s)R(s) + P(s)G(s)W(s)$$

$$= \frac{10K}{(s/60+1)(s/600+1)}R(s) + \frac{50}{(s/60+1)(s/600+1)}W(s)$$

A saída em regime permanente é dada por

$$y_{\infty} = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$

Para fins de projeto a perturbação é desconsiderada uma vez que esta é geralmente desconhecida.

Então,

$$y_{\infty} = \lim_{s \to 0} s \frac{10K}{(s/60+1)(s/600+1)} \times \frac{100}{s} = 1000K$$

Para garantir o seguimento de referência é necessário:

$$y_{\infty}(t) = r(t) = 100$$

Portanto,

$$1000K = 100 \implies K = 0.1$$

A saída do sistema, em regime permanente, incluindo a perturbação será dada por:

$$y_{\infty} = 100 + \lim_{s \to 0} s \frac{50}{(s/60+1)(s/600+1)} \times \frac{-0.1}{s} = 95$$

Assim, observa-se que a perturbação gera um erro em regime permanente de 5%.

Malha Fechada

$$G(s) = \frac{10}{(s/60+1)(s/600+1)} \qquad P(s) = 5 \qquad C(s) = K$$

$$Y(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}R(s) + \frac{P(s)G(s)}{1 + C(s)G(s)}W(s)$$

$$= \frac{10K}{(s/60+1)(s/600+1) + 10K}R(s) + \frac{50}{(s/60+1)(s/600+1) + 10K}W(s)$$

A saída em regime permanente é dada por

$$y_{\infty} = \lim_{s \to 0} s \frac{10K}{(s/60+1)(s/600+1)+10K} \times \frac{100}{s} + \lim_{s \to 0} s \frac{50}{(s/60+1)(s/600+1)+10K} \times \frac{-0.1}{s}$$

ou

$$y_{\infty} = \frac{10K}{1+10K} \times 100 \left(-\frac{50}{1+10K} \times 0, 1 \right)$$

Observa-se que quanto maior o valor de K menor será o efeito da perturbação na saída do sistema.

Para garantir o seguimento de referência, desprezando-se a perturbação, é necessário que:

$$\frac{10K}{1+10K} \approx 1$$

Quanto maior o valor de K, mais o termo acima se aproxima da unidade.

Escolhendo K=10, tem-se:

$$y_{\infty} = \frac{10 \times 10}{1 + 10 \times 10} \times 100 - \frac{50}{1 + 10 \times 10} \times 0, 1 = 98,96$$

correspondendo a um erro de 1,04% na saída.

Escolhendo K=100, tem-se:

$$y_{\infty} = \frac{10 \times 100}{1 + 10 \times 100} \times 100 - \frac{50}{1 + 10 \times 100} \times 0, 1 = 99,895$$

representando um erro de 0,1% na saída.

Sensibilidade

A sensibilidade de um sistema é uma medida da mudança no seu comportamento em função da variação em um de seus parâmetros.

A função de sensibilidade (da função de transferência) é definida como

$$S = \frac{\partial T}{\partial G} \times \frac{G}{T}$$

A função de sensibilidade mede a variação da função de transferência T (em malha aberta ou fechada) em função da variação dos parâmetros do processo (G).

Sensibilidade

Malha Aberta

A função sensibilidade da F.T.M.A. será dada por:

$$S_{MA} = \frac{\partial T_{MA}}{\partial G} \times \frac{G}{T_{MA}}$$

Como $T_{MA} = C(s)G(s)$, obtém-se

$$S_{MA} = C(s) \times \frac{G(s)}{C(s)G(s)} = 1$$

Portanto, o sistema responde com uma variação de 100% a qualquer variação em G(s).

Sensibilidade

Malha Fechada

A função sensibilidade da F.T.M.F. será dada por:

$$S_{MF} = \frac{\partial T_{MF}}{\partial G} \times \frac{\partial}{T_{MF}}$$

Como
$$T_{MF} = \frac{C(s)G(s)}{1 + C(s)G(s)}$$
, obtém-se

$$S_{MF} = \frac{1}{1 + C(s)G(s)}$$

Assim, é possível reduzir a sensibilidade do sistema através da relação C(s)G(s).

Seja o sistema do exemplo 1, desconsiderando a perturbação.

$$G(s) = \frac{10}{(s/60+1)(s/600+1)}$$
 e $R(s) = \frac{100}{s}$

Os valores obtidos para o ganho K, de modo a obter o seguimento de referência foram:

- ☐ Malha Aberta: K=0,1
- ☐ Malha Fechada: K=10 e K=100

A função de sensibilidade, em regime permanente, é definida por:

- figspace Malha Aberta: $S_{MA}=1$ (variação de 100%)
- ☐ Malha Fechada:

$$K = 10 \implies S_{MF} = \frac{1}{1 + C(0)G(0)} = \frac{1}{1 + 10 \times 10} = 0,00999$$

$$K = 100 \implies S_{MF} = \frac{1}{1 + C(0)G(0)} = \frac{1}{1 + 100 \times 10} = 0,000999$$

A variação da saída será 1% e 0,1%, respectivamente, para K=10 e K=100.

Considere agora que o ganho estático do processo, G(0), sofre uma variação de 10%, de modo que

$$\overline{G}(s) = \frac{11}{(s/60+1)(s/600+1)}$$

Em malha aberta:

$$y_{\infty} = \lim_{s \to 0} s \frac{11 \times 0,1}{(s/60+1)(s/600+1)} \times \frac{100}{s} = 110$$

Portanto, gerando um erro de 10% na saída.

Em malha fechada, para K=10:

$$y_{\infty} = \lim_{s \to 0} s \frac{C(s)\overline{G}(s)}{1 + C(s)\overline{G}(s)} R(s) = \frac{C(0)\overline{G}(0)}{1 + C(0)\overline{G}(0)} \times 100$$
$$= \frac{10 \times 11}{1 + 10 \times 11} \times 100 = 99,099$$

Portanto, gerando um erro menor do que 1% na saída.