detect_wells() — One■Page Spec

Purpose: Identify and label canonical wells (stable signal geometries) in per \blacksquare primitive residual traces for NGF Stage \blacksquare 11 (Warp \rightarrow Detect \rightarrow Denoise).

API

Signature

detect_wells(traces: Dict[str, np.ndarray], *, jitter: int = 3, z_abs: float = 2.5, overlap_delta: float = 0.8) -> List[WellDescriptor]

Inputs

- traces: dict[primitive_id → 1■D float array] residual energy signals (length T).
- jitter: number of stochastic resamples for stability checking (small input perturbations).
- **z_abs**: absolute **z**■score threshold to consider a peak significant.
- overlap_delta: minimum z■gap to suppress overlapping weaker peaks (lateral inhibition).

Outputs

• List of WellDescriptor: {primitive_id, well_type, center_t, width, z, stability, features, notes}.

Preconditioning

- 1) **Normalize** per channel (z**■**normalize or robust MAD).
- 2) **Smooth/band■limit** (e.g., 5–11 sample moving average). Preserve both raw and smoothed versions.
- 3) **Span complement** to remove common mode energy across channels if available.

Prototype kernels (matched filtering)

Use a compact family $K_{\alpha}(t)$:

- Unimodal (half
 sine / Gaussian) axis pull.
- Skewed unimodal quadrant well (off
 — center rise/decay).
- Mexican hat (two■lobe) ring/oscillation well.
- Broad hill shallow origin.
- Narrow spike (edge

 biased) deep edge.

For each channel, sweep θ (width, skew) and take the best correlation score and peak time.

Null calibration → z∎scores

For each channel, build a **null** distribution via time permutations / phase shifts of the trace. Convert the best matched filter score into a **zescore** relative to the null. Keep the tuple (best kernel, z, t peak).

Feature vector ϕ (measured at winning peak)

- Height (z), width (FWHM), skewness, lobe ratio (two■lobe vs one),
- location (early/mid/late window), area under bump, pre/post slope symmetry,

Labeling rule (tiny decision tree)

If $z < z_{abs} \rightarrow reject$ (no well). Else:

- Axis■Pull: unimodal, low skew, mid width.
- Quadrant: unimodal, high skew, off ■center peak.
- Ring: two lobes with central dip; balanced lobe ratio.
- Shallow Origin: broad width, low height.
- Deep Edge: very narrow, peak near boundary.

Lateral inhibition & stability

Overlap suppression: if two peaks (same channel or neighbors) overlap in time/shape and differ by \geq overlap_delta in z, keep the stronger, suppress the weaker.

Jitter test: rerun detection on *jitter* perturbed inputs; compute stability = fraction of runs with same label $\pm \Delta t$. Require stability $\geq 0.67-0.8$.

Acceptance criteria

Criterion	Default
Significance (z)	$z \ge 2.5$ (tune 2.3–3.0 from validation)
Exclusivity (Δz to next overlap)	≥ 0.8
Stability (jitter)	≥ 0.67 (2/3) — prefer ≥ 0.8
False discovery rate on synthetic nulls	≤ 1%

WellDescriptor schema

```
WellDescriptor = {
primitive_id: str,
well_type: Literal['Axis-Pull','Quadrant','Ring','Shallow-Origin','Deep-Edge'],
center_t: int, width: int, z: float, stability: float,
features: Dict[str,float],
notes: Optional[str]
}
```