[Total No. of Questions: 8]

S.E. (Comp.) (Semester - III) Examination, May 2011 LOGIC DESIGN

Duration: 3 Hours Total Marks: 100 Instructions: 1) Answer five full questions, atleast one full question from each module. Make suitable assumptions wherever necessary. 2) **MODULE - I** Q1) a) Represent the following decimal numbers in eight bit [6] sign magnitude form i) sign 1's complement form and iii) sign 2's complement form +141) 2) -17b) What are self complementing codes? Write two self complementing codes. [4] c) Draw the logic diagram and construct the truth table for the following expression X = A + B + CD. [4] d) Obtain the set of prime implicants using the tabular method for the expression [6] Σm (0, 1, 3, 4, 5, 7, 10, 13, 14, 15). Q2)a) Detect and correct errors, if any in the following even parity Hamming code word 1101010. [6] b) Obtain the minimal SOP expression for Σ m (2, 3, 5, 7, 9, 11, 12, 13, 14, 15) using K-map and implement it in NAND logic. [8] c) Reduce the following Boolean expression [4] $AB + A(B + C) + \overline{B}(B + D)$ d) From positive to negative logic system, what does an OR gate become and what does an AND gate become? [2] **MODULE - II** Q3) a) How does the look ahead carry adder speed up the addition process? [6] b) Construct a 16 to 1 line multiplexer using only 2 to 1 line multiplexers. [8]

c) Convert S-R to J-K flip flop.

[6]

Q4)	a)	Using two 2 to 4 line decoders along with any necessary gates, construct a 3 to 8 decoder.	line [8]
	b)	Explain the operation of edge triggered S-R flip flop with a neat diagram.	[6]
	c)		[6]
		MODULE - III	
Q5)	a)	Design an asynchronous decade counter and sketch the output waveform. What partial decoding?	t is [8]
	b)	How does synchronous counters differ from asynchronous counters?	[4]
	c)	Design synchronous 2 bit up/down counter. Mention some applications of counter	
Q 6)	a)	What are shift registers? Explain with a diagram parallel-in-serial out shift registers	ter. [8]
	b)	How shift register counter differs from a basic shift register. Explain the operation of Johnson sounter for four literatures.	on [7]
	c)	Explain how shift registers can be used to generate a time delay.	[5]
		MODULE - IV	
Q7)	a)	Draw the state diagram, state table and excitation table for J-K flip flop.	[5]
	b)	Design a 2-input, 2 output synchronous sequential circuit which produces an output $Z = 1$, whenever any of the following input sequence -1101 , 1011 or 1001 occurring the circuit resets to the initial state after a 1 output is generated.	out rs. [7]
	c)	What are the advantages of programmable logic devices? Give main steps in t	
Q8)	a)	Show how the PAL circuit is programmed to implement the function. $F = A\overline{B}\overline{C}D + \overline{A}BCD + \overline{A}BC\overline{D} + AB\overline{C}D$	[6]
	b)	Design a FPLA circuit that can be programmed to implement the difference as carry-out outputs of a full subtractor.	nd [8]
	c)	Explain the programmable polarity feature of PAL and FPLA devices.	61