Wintersemester 2023/2024

Physische Geographie 1

(Grundkursvorlesung PG 1 – Vorlesungsteil Klimatologie)

Prof. Dr. Christoph Beck

Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung

Institut für Geographie

Universität Augsburg

Ansammlung winziger, sichtbarer, schwebender
 Wasser- und Eisteilchen

Wolkenklassifikationen:

Erste morphologische Wolkenklassifikation (Cirrus, Cumulus, Stratus)

- ← L. Howard (1803)
- nach Wolkenstockwerken (tiefes, mittleres, hohes)
- nach der physikalischen Zusammensetzung (Wasser-, Eis-, Mischwolken)
- nach der Genese
 - Konvektionswolken (Quellwolken)
 - Aufgleitwolken (Schichtwolken)
 - Ausstrahlungswolken (Nebel, Hochnebel)

unter Berücksichtigung der Vertikalerstreckung: → Wolkengattungen

Höhenlage der Wolkenstockwerke in km:

•	Polargebiete	Mittelbreiten	Tropen
hohe Wolken	3-8	5-13	6-18
mittelhohe Wolken	2-4	2-7	2-8
tiefe Wolken	0-2	0-2	0-2

Wolkenfamilien und Wolkengattungen:

hohe Wolken mittelhohe Wolken tiefe Wolken Wolken großer vert. Erstreckung (Cirro) (Alto) (Strato) Cirrus <u>Altocumulus</u> Stratus <u>Nimbostratus</u> Cirrocumulus <u>Altostratus</u> <u>Stratocumulus</u> <u>Cumulus</u> <u>Cumulonimbus</u> <u>Cirrostratus</u>

4 Wolkenfamilien → 10 Wolkengattungen

→ Wolkenarten, -unterarten, Sonderformen

Wolkenfamilien und Wolkengattungen:

Aus Gebhardt/Glaser/Radtke/Reuber: Geographie. 1. Aufl., © 2007 Elsevier GmbH

Wolkenfamilien und Wolkengattungen:

Wolkenfamilien und Wolkengattungen und Wolken(unter)arten:

Karlsruher Wolkenatlas

http://www.wolkenatlas.de/wolken/class.htm

NubiScope ist ein Messsystem zur Bestimmung des Wolkenbedeckungsgrades und der Wolkenbasishöhe

Erfassung:

- Bedeckungsgrad (in Achteln)
 - "Augenbeobachtung"
 - Wolkenkameras
 - NubiScope
- Angabe der Wolkengattungen
- Schätzung der Wolkenuntergrenze
- Sichtweite (insbes. bei Nebel)

NubiScope ist ein Messsystem zur Bestimmung des Wolkenbedeckungsgrades und der Wolkenbasishöhe

Erfassung:

- Bedeckungsgrad (in Achteln)
 - "Augenbeobachtung"
 - Wolkenkameras
 - NubiScope
- Angabe der Wolkengattungen
- Schätzung der Wolkenuntergrenze
- Sichtweite (insbes. bei Nebel)

Niederschlagsbildende Prozesse:

1) Niederschlagsbildung in Wasserwolken:

Warmregenprozess, Bowen-Lundlam-Prozess,

"Koaleszenztheorie"

Anwachsen von Wassertropfen durch

Koagulationsvorgänge

Niederschlag bei Überwindung der vertikalen

Aufwärtsbewegung der Wolkenluft

(nur in Tropen relevant)

(McKnight & Hess 2009)

Niederschlagsbildende Prozesse:

2) Niederschlagsbildung in Mischwolken

Bergeron-Findeisen-Prozess

- über Sublimationswachstum
- Verdunsten unterkühlter Wassertröpfchen und (Re)Sublimation an Eiskristallen
 - (← Dampfdruckerniedrigung über Eis!)
- ab bestimmter Größenordnung der Eiskristalle
 (ca. 1mm) Übergang zu:

(McKnight & Hess 2009)

- Vergraupelung: Zusammenstoß und Gefrieren von unterkühlten Wassertröpfchen an Eiskristallen
- Schneeflockenbildung: Aneinanderkopplung von Eiskristallen durch unterkühlte Wassertröpfchen

Beim Ausfallen eventuell noch Schmelzen und Zerstäuben

Niederschlagsbildende Prozesse:

- 3) Niederschlagsbildung in Eiswolken
- ← ausschließlich rasches Wachstum von Eiskristallen durch Resublimation von

Wasserdampf (Diffusionswachstum) und Koagulation der Eiskristalle

- Häufig Verdunstung des Niederschlags vor Erreichen der EOF Virgae (Fallstreifen)
- "Seeding"-Effekt für tiefere Wolken

Charakteristika versch. Niederschlagsarten:

	Intensität mm/h	Durchmesser mm	Fall- geschwindigkeit m / s	Kinetische Energie kJ / (m²ῗh)
Nebel	0,1	0,01	0,003	10-6
Sprühregen	0,2	0,10	0,200	10-3
Nieselregen	0,5	1,00	4,200	100
Leichter Regen	1,0	1,20	4,900	10 ¹
Mittlerer Regen	4,0	1,60	5,800	10 ²
Starker Regen	15,0	2,10	6,900	10 ³
Gewitterregen	100,0	3,00	8,400	104

Intensität, Tropfendurchmesser, mittlere Fallgeschwindigkeit und kinetische Energie bei unterschiedlichen Arten des Niederschlags. (nach: Auerswald, 1998)

Hauptniederschlagstypen:

(Land-) Regen:

- gebunden an großräumige Aufgleitvorgänge
- fällt aus Schichtwolken
- gekennzeichnet durch
 - flächenhafte Erstreckung
 - lange Andauerzeit
 - Gleichmäßigkeit
 - geringe Intensität

Hauptniederschlagstypen:

Schauer(niederschlag):

- gebunden an labile Schichtung und konvektive Bewegungen
- fällt aus Quellwolken
- gekennzeichnet durch
 - begrenzte r\u00e4umliche Ausdehnung
 - kurze Andauerzeit
 - kurzfristige Schwankungen
 - relativ große Intensität

Niederschlagserfassung:

Maßeinheit: mm

Messung:

- Niederschlagsmesser nach Hellmann
- Ott Pluvio
- OptischeNiederschlagsmessung

(www.lfu.bayern.de)

- Abschätzung mittels Fernerkundungsverfahren (Radar, Radolan, ...)

Niederschlagserfassung:

Klimaelemente allg.

Das globale Messnetz:

ECMWF data coverage (all observations) - SYNOP-SHIP-METAR 2022110121 to 2022110203 Total number of obs = 246749

(https://www.ecmwf.int)

Klimaelemente allg.

zusätzliche Datenquellen:

Radiosonden-Aufstiege

Ermittlung von Lufttemperatur, Luftfeuchte, Luftdruck und Höhenwind

Wettersatelliten (geostationär und polarumlaufend)

Erfassung von Wolken, Temperatur- u. Wasserdampfverteilungen,
Strahlungs- und Wärmehaushaltsgrößen,
zahlreichen Spurengasen in der Atmosphäre,
Temperatur, Salzgehalt und Strömungen
an der Meeresoberfläche u.a.m.

Weitere luftgestützte und bodengebundene Fernerkundungsverfahren

Radar, Lidar, Sodar, RASS, ...