1	
Rec	$yp: . Find \frac{d^2y}{dx^2} / given . $
•	Water flows from a tank of constant cross-sectional.
	area 50 sq ft through an prifice of constant
	Water flows from a tank of constant cross-sectional. Other flows from a tank of constant cross-sectional. Choss-sectional area 1.4 ft 2 located at the
	bottom of the tank
	l l
	I gritially the height of the water
	9 nitially the height of the water in the tank was 20 ft, and its height t was later is given by the equation.
	height t was later is given by the
	equation:
	e gracus.
	$2\sqrt{h} + \frac{1}{25}t - 2\sqrt{20} = 0 \left(0 < t < 50\sqrt{20}\right)$
	How fast was height of water decreacing when ite
	How fast was height of water decreasing when its
Soln.	Need to find dh a h = 8 6
	dt.

Coffee pot shaped like a cylinder of hading 4 in u being filled with water flowing at a constant nate of the water level is rising at the nate of 0-4 in/s, what is the nate at which water is flowing into the coffee pot? coffee pot? at time t be V in3. John: Let volume $V = \pi h^2 h$. where h = 4, $\frac{dh}{dh} = 0.4$. = 16Th. dV = 16 T dh = 16 T (0.4) = 6.4 T. a man observes a holicopter taking off.

from a heliport of the helicopter lifts off ventically and is nising at a speed of. 44 ft/s when it is at an altitude of 120 ft, how fast is the distance between the helicopter and the man changing at that constant?

•	Inother example would be a sopres spheres example	
Faci	$V = \frac{4\pi \pi^2}{3} \frac{dV}{dt} = \frac{4\pi 2\hbar \frac{d\hbar}{dt}}{dt}.$	-
	dt 3 dt	1
	$A = 4\pi \pi^2. \qquad dA - 8\pi \pi dn$	
	dt dt	
		_
	e	
		_
11		