Physics Department

Optical Electronics (PHL 792); II Semester 2007-08: Major

ALL QUESTIONS ARE COMPULSORY

M Marks: 40

1. Give brief answers to the following:

(8x1.5=12)

- a) A plane wave propagates along a direction with unit vector $\hat{\kappa} = \sqrt{3}/2 \,\hat{y} + 1/2 \,\hat{z}$ in a uniaxial medium. Give an expression for the unit vector along \vec{D} for the extraordinary wave.
- b) A uniaxial crystal has the following non-zero electro-optic coefficients: r_{12} , r_{22} and r_{61} . Obtain the principal refractive indices of the crystal in the presence of an electric field of magnitude E pointing along the y-axis.
- c) Consider collinear codirectional interaction in lithium niobate ($n_0 = 2.26$, $n_e = 2.20$) of a light wave at $\lambda_0 = 0.6$ µm propagating along the x-direction with an acoustic wave also propagating along the x-direction. Draw a vector diagram showing generation of -1 order diffraction specifying the polarization states of the input and output light waves.
- d) The refractive indeices of a medium at wavelengths of 1 μ m and 0.5 μ m are given by 2.16 and 2.27 respectively. What is the velocity of the nonlinear polarization generated at the frequency corresponding to the wavelength of 1 μ m?
- e) The phase matched SHG efficiency of a 5 cm long KDP crystal is 1 %. For what value of Δk will the SHG efficiency become zero?
- f) Using $\chi^{(2)}$ nonlinearity, I wish to generate a wavelength of 3 μm from a laser beam of wavelength 1 μm . What process can lead to this and what other input wave you would need.
- g) Light waves at frequencies ω_0 and ω_0 - $\Delta\omega$ with propagation constants k_1 and k_2 and electric fields E_1 and E_2 respectively, are incident in an optical fiber. Calculate the nonlinear polarization generated at a frequency ω_0 + $\Delta\omega$.
- h) What is the change in phase at the output of a 1 km long fiber when the power is changed from 10 μ W to 100 mW. Assume the area of the light beam propagating in the fiber to be 50 μ m² and $n_2 = 3 \times 10^{-20}$ m²/W. Neglect fiber loss.
- 2. An electric field E_z is applied along the z axis of LiNbO₃ crystal of length L.
 - a) Write down the equation of the index ellipsoid in the presence of the electric field.
 - b) For light polarized along x and propagating along z, obtain an expression for the voltage required to induce a phase shift of π .
 - c) If the input wave is circularly polarized, will the output polarization state change as we change the applied voltage? (5)
- 3. I wish to design an acousto optic tunable filter using LiNbO₃ for which $n_0 = 2.27$, $n_e = 2.16$ and $v_a = 3.6$ km/s; the operating wavelength being 1 μ m.
 - a) What frequency of the acoustic wave would you choose?
 - b) What is the required Δn and the interaction length for efficient operation with a filter bandwidth of 1 nm?
 - c) For what input polarization state/states will the device work efficiently? (6)
- 4. The ordinary and extraordinary refractive indices of lithium niobate for 1 μm and 0.5 μm are given below:

$$n_0(1.0 \ \mu \text{m}) = 2.236;$$

$$n_{\rm e} (1.0 \ \mu {\rm m}) = 2.160$$

$$n_0 (0.5 \ \mu m) = 2.341;$$

$$n_{\rm e} (0.5 \ \mu {\rm m}) = 2.270$$

- a) If the ω wave is an ordinary wave and the 2ω wave is an extraordinary wave propagating along the x-direction, what period Λ_0 would you choose for QPM to generate SHG most efficiently?
- b) Obtain the nonlinear polarization P_{nl} responsible for second harmonic generation. (6)
- 5. Starting from the following coupled wave equations and assuming no pump depletion approximation, show that difference frequency generation process can lead to amplification of the signal.

$$\frac{dE_s}{dz} = -i \kappa_s E_p E_i^*$$

$$\frac{dE_i}{dz} = -i \kappa_i E_p E_s^*$$

$$\frac{dE_p}{dz} = -i \kappa_p E_s E_i$$

$$\kappa_i = \frac{\omega_i d}{cn_i}$$
(6)

1.

- 6. Consider sum frequency generation as shown below:
 - a) If $n(\lambda_t)$ represents the refractive index of the medium at λ_t , what is the period for first order quasi phase matching that you would choose for maximum conversion?
 - b) Obtain the maximum power at the sum frequency that can be generated.
 - c) Plot schematic variations of the power at the three wavelengths as a function of propagation distance when the phase matching condition is satisfied. (5)

Some useful formulas:

$$P_{+} = \frac{\sigma^{2}}{\sigma^{2} + \frac{\Delta \beta^{2}}{4}} \sin^{2} \sqrt{\sigma^{2} + \frac{\Delta \beta^{2}}{4}} \quad z \qquad ; \qquad \qquad \sigma = \frac{\pi \Delta n}{\lambda_{0}}; \qquad \delta \lambda = \sqrt{3} \frac{\Lambda}{L} \lambda_{0}$$

For lithium niobate:
$$[r] = \begin{pmatrix} 0 & -r_{22} & r_{13} \\ 0 & r_{22} & r_{13} \\ 0 & 0 & r_{33} \\ 0 & r_{51} & 0 \\ r_{51} & 0 & 0 \\ -r_{22} & 0 & 0 \end{pmatrix}; \qquad d = \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & -d_{22} \\ -d_{22} & d_{22} & 0 & d_{15} & 0 & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 \end{pmatrix}$$

$$\eta = K \frac{P_1}{A} L^2 \left(\frac{\sin \beta}{\beta} \right)^2;$$

$$\beta = \frac{\Delta k L}{2}$$

$$h = 6.63 \times 10^{-34} \text{ J.s}$$