



## **Computer Graphics 1**

#### IV.1 Optimization I

**Basics** 

Singular Value Decomposition

Solving Linear Least Squares Problems

**Plane Fitting** 

Registration of 3D Data Sets



Introduction to Mathematical Optimization

# **BASICS**

### **Optimization Problems**



#### **Parameterization**

• vector of *n* optimization variables  $\mathbf{x} = (x_1, ..., x_n)$ 

#### Goal

- $\bullet$  find optimum  $x^*$  that minimizes objective function f
- subject to

 $\emph{m}$  equality constraints  $\emph{c}_\emph{i}$  and

M inequality constraints  $h_j$ 

over all  $x \in \mathbb{R}^n$ 

$$\mathbf{x}^* = \underset{\substack{\mathbf{x} \in \mathbf{R}^n \mid \\ c_i(\mathbf{x}) = 0, i = 1...m \\ h_j(\mathbf{x}) \leq 0, j = 1...M}}{\mathbf{x} \in \mathbf{R}^n \mid}$$

maximization problems can be cast

into minimization problems:

$$\max f(\mathbf{x}) = \min - f(\mathbf{x})$$

### Examples from CG



fit plane to set of points by minimizing sum of possibly weighted squared plane distances



rigidly align shapes based on point correspondences



 $\min_{\substack{\mathbf{R}, \overline{\mathbf{t}} | \\ \mathbf{R}^T \mathbf{R} = \mathbf{I}}} \sum_{i} \left\| \underline{\mathbf{p}}_{i} - \left( \mathbf{R} \underline{\mathbf{q}}_{i} + \overline{\mathbf{t}} \right) \right\|^{2}$ 

embed 3d surface patches with low distortion into 2d plane for texture mapping



#### **Properties of Problems**



- optimization variables are continuous or discrete or a mixture of both
- optimization variables are constrained or unconstrained
- objective function / constraints are convex or not convex
- objective function is differentiable (pointwise function, gradient and or Hessian evaluation is possible)
- instances of mathematical programming
   ( = solution strategies, term was chosen already 1940)
  - Iinear least squares and non linear least squares
  - linear programming
  - quadratic programming
  - convex optimization
  - (mixed) integer [linear] programming,...

### **Properties of Optimization methods**



- deterministic (always return same result) vs. stochastic
- local vs. global (are able to find local/global optimum (sometimes))
- closed form solution vs. iterative methods (start at initial guess and improve until (local) optimum is found
- derivative-free methods vs. methods which rely on the pointwise evaluation of first or second derivatives of objective functions with respect to objective variables

#### **Different Minima**



one distinguishes minima

(strict if not equal) global minimizer:

$$\forall x : f(x^*) < f(x)$$

(strict if not equal) local minimizer:

$$\forall \mathbf{x} \in N(\mathbf{x}^*) : f(\mathbf{x}^*) < f(\mathbf{x})$$

isolated if local minimizer is unique in arbitrarily small neighborhood



### Convexity



lacktriangle a function is convex iff for all lpha,  $oldsymbol{x}_1$  and  $oldsymbol{x}_2$  :

$$f((1-\alpha) \cdot \mathbf{x}_1 + \alpha \cdot \mathbf{x}_2)$$

$$< (1-\alpha) \cdot f(\mathbf{x}_1) + \alpha \cdot f(\mathbf{x}_2)$$









#### **Derivatives**



The gradient vector of f is denoted by:

$$f_{x}(\mathbf{x}) = \nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial f}{\partial x_{n}} \end{pmatrix}^{T}$$

The Hessian of second derivatives is denoted by:

$$f_{xx}(x) = \nabla^2 f(x) =$$

For twice continuously differentiable functions the Hessian is symmetric

$$\frac{\partial^{2} f}{\partial x_{1}^{2}} \cdots \frac{\partial^{2} f}{\partial x_{1} \partial x_{j}} \cdots \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}$$

$$\vdots \cdots \vdots \cdots \vdots$$

$$\frac{\partial^{2} f}{\partial x_{i} \partial x_{1}} \cdots \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \cdots \frac{\partial^{2} f}{\partial x_{i} \partial x_{n}}$$

$$\vdots \cdots \vdots \cdots \vdots$$

$$\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \cdots \frac{\partial^{2} f}{\partial x_{n} \partial x_{j}} \cdots \frac{\partial^{2} f}{\partial x_{n}^{2}}$$

## **Computing derivatives**



- Analytically (symbolic toolboxes can do that for you!)
- $\odot$  finite differences with epsilon related to machine precision  $\pi$ .

$$\frac{\partial f}{\partial x}(x) = \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

$$\frac{\partial f}{\partial x}(x) = \frac{f(x+\varepsilon) - f(x-\varepsilon)}{2\varepsilon}$$

forward differences

$$\varepsilon = \sqrt{\pi}$$

central differences

$$\varepsilon = \sqrt[3]{\pi}$$

std::numeric\_limits<float>::epsilon()

- automatic differentiation
  - lacktriangle overload number type to jointly compute  $[f(x), \nabla f(x)]$
  - all functions and operators are overloaded to jointly compute their derivatives
  - backward substitution mode can reuse computations in f(x) for  $\nabla f(x)$  allowing for computation of  $\nabla f(x)$  without significant overhead

#### **Positive Definitness**



a matrix A is called positive semi-definite / definite iff

$$\forall x : x^T A x \ge 0 / x^T A x > 0$$

we denote briefly:

$$A \ge 0/A > 0$$

geometrically this implies that no vector is mapped to a direction opposite to itself



## **Detecting Minima using Derivatives**



Use Taylor expansion in case of continuously differentiable functions

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}) \mathbf{h} + \cdots$$

necessary conditions: 1st order
2nd order

$$\mathbf{x}^*$$
 minimizer  $\Rightarrow \nabla f(\mathbf{x}^*) = \mathbf{0}$  and  $\nabla^2 f(\mathbf{x}^*) \geq 0$ 

- A point x with  $\nabla f(x) = 0$  is called stationary. Stationary points can also be saddle points
- 2nd order sufficient condition

$$\nabla f(x^*) = \mathbf{0}$$
 and  $\nabla^2 f(x^*) > 0 \Rightarrow x * \text{ is strict minimizer}$   
not true for example for  $f(x) = x^4$ 



Mathematical Optimization

# SINGULAR VALUE DECOMPOSITION

#### **Linear Transformations**



- a linear transformation can be represented by a matrix A
- lacktriangle a vector  $m{x}$  can be transformed to  $m{y}$  by matrix vector multiplication

#### **Geometric Interpretation**

- restriction to unit vectors as  $A(\alpha x) = \alpha(Ax)$
- any matrix maps unit sphere to hyper-ellipsoid

#### **Understanding**

find vectors that map to major axes of ellipsoid





## **Symmetric Matrices**



- In case of symmetric matrices, the eigenvectors of A are the axes of the ellipsoid
- the Eigen-decomposition V,  $\Lambda$  of  $\Lambda$  tells us in the columns of V, which orthogonal axes it scales, and the entries of the diagonal matrix  $\Lambda$  by how much.

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \ \mathbf{V}^T$$

$$\boldsymbol{A} = \begin{pmatrix} \vec{\boldsymbol{v}}_1 & \dots & \vec{\boldsymbol{v}}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & & O \\ & \ddots & \\ O & & \lambda_n \end{pmatrix} \begin{pmatrix} \vec{\boldsymbol{v}}_1^T \\ \vdots \\ \vec{\boldsymbol{v}}_n^T \end{pmatrix}$$



$$\lambda_i \vec{v}_i = A \vec{v}_i$$

#### **General Quadratic Case**



- In the general case A also contains a rotation and maps the right singular vectors in columns of V to the left singular vectors U that also correspond to the axes of the ellipsoid, whose lengths are called singular values
- The change of bases between V and U can be used to ensure that all singular values are positive and to permute the major axes such that the singular values decrease in size.

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma} \ \mathbf{V}^T$$

$$\mathbf{A} = \begin{pmatrix} \vec{\boldsymbol{u}}_1 & \dots & \vec{\boldsymbol{u}}_n \end{pmatrix} \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_n \end{pmatrix} \begin{pmatrix} \vec{\boldsymbol{v}}_1^T \\ \vdots \\ \vec{\boldsymbol{v}}_n^T \end{pmatrix}$$



## General Rectangular Case



for rectangular matrices the dimensions of unit sphere and ellipsoid can differ



#### additional dimensions

- singular values are zero
- singular vectors give not unique orthogonalization

#### reduced forms

- lacktriangledown U or  $oldsymbol{V}$  is rectangular
- costs less memory and is faster to compute



### **Matrix Approximation**



Rearranging the SVD, one can decompose a matrix into components of decreasing singular / eigenvalues:

- cutting the decomposition after m terms yields the approximation  $\tilde{\boldsymbol{A}}_m = \boldsymbol{\sigma}_1 \vec{\boldsymbol{u}}_1 \vec{\boldsymbol{v}}_1^T + \ldots + \boldsymbol{\sigma}_m \vec{\boldsymbol{u}}_m \vec{\boldsymbol{v}}_m^T$
- The error of the approximation with respect to the Frobenius norm can be computed from the singular values:  $\| \boldsymbol{A} \widetilde{\boldsymbol{A}}_m \|_2^2 = \| \boldsymbol{\sigma}_{m+1} \vec{\boldsymbol{u}}_{m+1} \vec{\boldsymbol{v}}_{m+1}^T + \ldots + \boldsymbol{\sigma}_n \vec{\boldsymbol{u}}_n \vec{\boldsymbol{v}}_n^T \|_2^2 = \boldsymbol{\sigma}_{m+1}^2 + \ldots + \boldsymbol{\sigma}_n^2$

#### **Discussion**



For symmetric matrices, the SVD can be used to compute the eigenvalue decomposition:

$$A = A^T \Rightarrow A = U\Sigma V^T = V\Lambda V^T$$

- Numerical SVD is an expensive operation
- We always need to pay attention to the dimensions of the matrix we're applying SVD to.
- In some applications one needs only a very limited set of the largest or smallest singular/Eigen value and vectors. More efficient iterative algorithms exist to extract this.



Mathematical Optimization

# SOLVING LINEAR LEAST SQUARES PROBLEMS

## **Least Squares Fitting**



- © Given a model function  $g(\mathbf{p}; \mathbf{x})$ , and a set of m data points  $(\mathbf{x}_i, y_i)$
- lacktrianglet residuals  $r_j$  are signed distances between model function and data points
- Least squares: minimize sum of squared residuals to find best model parameters p\*
- linear least squares (LLS) residuals depend linearly on optimization variables  $p_i$ , such that basis  $\phi_i(x)$  exists

#### Example polynomial fitting:



residual: 
$$r_j(\mathbf{p}) = g(\mathbf{p}; \mathbf{x}_j) - y_j$$
  

$$r_j(\mathbf{p}) = p_1 + p_2 x + p_3 x^2 - y_j$$

least squares fit:

$$p^* = \underset{p}{\operatorname{argmin}} \sum_{j=1}^m r_j^2(p)$$

linear least squares fit:

$$g(\mathbf{p}; \mathbf{x}) = \sum_{i=1}^{n} p_i \cdot \phi_i(\mathbf{x})$$

#### Matrix Form of LLS



Given the following linear least squares (LLS) problem:

$$\boldsymbol{p}^* = \underset{\boldsymbol{p}}{\operatorname{argmin}} \sum_{j=1}^m r_j^2(\boldsymbol{p}), \ r_j(\boldsymbol{p}) = g(\boldsymbol{p}; \boldsymbol{x}_j) - y_j, g(\boldsymbol{p}; \boldsymbol{x}) = \sum_{i=1}^n p_i \cdot \phi_i(\boldsymbol{x})$$

one introduces the matrix notation:

one introduces the matrix notation:

matrix 
$$\mathbf{A} = \begin{pmatrix} \phi_1(\mathbf{x}_1) & \cdots & \phi_n(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_m) & \cdots & \phi_n(\mathbf{x}_m) \end{pmatrix} \in \mathbf{R}^{m \times n} \text{ with } \mathbf{A} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_m & x_m^2 \end{pmatrix}$$

result vector  $\mathbf{b} = (y_1, y_2, \dots y_m)$ 

- result vector  $\boldsymbol{b} = (y_1, y_2, ... y_m)$
- residual vector  $\mathbf{r} = (r_1(\mathbf{p}), \dots, r_m(\mathbf{p})) = A\mathbf{p} \mathbf{b}$
- The objective function can be written as  $f(p) = r^T r = ||Ap - b||_2^2$
- The LLS objective function is convex and has a globally unique minimum if rank(A) = n = dim(p)

### **Normal Equations**



Setting the gradient of the objective function to zero yields the normal equations:

$$A^T A p = A^T b$$

- $0 = f_p(p) = \langle Ap b, Ap b \rangle_p$  $=\langle Ap, Ap\rangle_p - 2\langle Ap, b\rangle_p$  $=2A^{T}Ap-2A^{T}b$
- use the pseudo inverse  $A^+$  to compute the least squares solution in a closed form
- $\bullet$  the sizes of  $\mathbf{A}^T\mathbf{A}$  and  $\mathbf{A}^T\mathbf{b}$  only depend on the number of parameters n and not on the number of data points!

$$A^+$$
: =  $(A^T A)^{-1} A^T \in R^{n \times n}$   
 $p = A^+ b$ 

 $f(p) = r^T r = \langle Ap - b, Ap - b \rangle$ 



#### **Overdetermined case**



- A has more rows than columns
- LLS min  $r^T r$  minimizes squared length of residual vector r = Ap - b, for p.
- Split  $\mathbf{A} = (\mathbf{a}_{.1} \dots \mathbf{a}_{.n})$  into n columns  $\mathbf{a}_{.i}$  and find linear combination that best approximates  $\mathbf{b}$ .
- the shortest length residual r is orthogonal to all columns  $a_{.i}$ .
- This again yields the normal equations





 $0 = \boldsymbol{a}_{1}^{T} \boldsymbol{r} \qquad 0 = \boldsymbol{A}^{T} \boldsymbol{r} \qquad \boldsymbol{\uparrow}^{r = \boldsymbol{A}\boldsymbol{p} - \boldsymbol{b}}$   $0 = \boldsymbol{a}_{2}^{T} \boldsymbol{r} \qquad \boldsymbol{0} = \boldsymbol{A}^{T} (\boldsymbol{A}\boldsymbol{p} - \boldsymbol{b}) \qquad \boldsymbol{\uparrow}$   $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{p} = \boldsymbol{A}^{T} \boldsymbol{b}$ 

#### **Underdetermined Case**



- This can happen if
  - 1. m < n, i.e. there are less data points than parameters, or
  - 2. columns of  $\boldsymbol{A}$  are dependent

 $k = \operatorname{rank}(A) < n$ 

A

$$A = U\Sigma V^T$$

- ② 2<sup>nd</sup> case can be detected ⇒  $\sigma_1 > \sigma_2 > \cdots > \sigma_k > 0 \approx \sigma_{k+1} \approx \cdots \approx \sigma_n$  and handled with SVD:

  - relative epsilon to check whether  $\sigma_i/\sigma_1$  is zero
- $\bullet$  define rank-k pseudo inverse  $A_k^+$  and solve problem with this





#### Illustration of Underdetermined case



Let  $a_1, ..., a_m$  be the rows of A. Each pair of row and result value  $(a_i, b_i)$  corresponds to a plane equation in parameter space:

$$\mathbf{a}_1^T \mathbf{p} - b_1 = 0$$
$$\mathbf{a}_2^T \mathbf{p} - b_2 = 0$$

In the underdetermined case the intersection of all planes forms a space of solutions with n - rank A dimensions.



Figure shows the *n*-dimensional parameter space, with coordinate frame in the middle (origin 0 is grey point). Two linear constraints are visualized by blue and cyan planes. Rows of A are the normal vectors and span of A is yellow plane through origin spanned by normals. All points on red line (plane intersection) are minima, of which the one in the span of A (magenta point) is selected.

#### Reference Point



- To disambiguate the underdetermined case one can specify a reference point  $oldsymbol{p}_{\mathrm{ref}}$ .
- Then the solution closest to the reference point is wanted, which can be computed from the rest of the **V**-matrix of the complete SVD:

$$\boldsymbol{p}^* = \boldsymbol{A}_k^+ \boldsymbol{b} + \boldsymbol{V}_{n-k} \boldsymbol{V}_{n-k}^T \boldsymbol{p}_{\text{ref}}$$

red difference vector moves old solution to the one closest to reference point

components of vector from origin to  $p_{ref}$  that does not change objective function



 $V_k^T$ 

## Pseudo Code to solve any LLS with SVD



Robust least squares solver using SVD and reference point for ambiguous cases:

```
 \begin{array}{l} \textbf{solve\_ls\_svd}(A,\ b,\ p_{ref},\ \epsilon_{glob},\ \epsilon_{loc})\ \ ->\ p \\ [U,\ \sigma_i,\ V]\ =\ svd(A,\ sort\ \sigma_i = decreasing); \\ if\ \sigma_1 <\ \epsilon_{glob}\ then\ return\ p_{ref}; \\ p\ =\ 0; \\ for\ i=1\ to\ A.nr\_cols()\ do \\ if\ \sigma_i/\sigma_1 >\ \epsilon_{loc}\ then \\ p\ +=\ V.col(i)\ *\ (dot(U.col(i),\ b)/\sigma_i); \\ else \\ p\ +=\ V.col(i)\ *\ dot(V.col(i),\ p_{ref}); \\ return\ p; \\ \end{array}
```

$$oldsymbol{p}^* = \overbrace{oldsymbol{V}_k oldsymbol{\Sigma}_k^{-1} oldsymbol{U}_k^T}^{oldsymbol{A}_k^+} oldsymbol{b} + oldsymbol{V}_{n-k} oldsymbol{V}_{n-k}^T oldsymbol{p}_{ ext{ref}}$$

Function can be called with  $A^T A$  and  $A^T b$  as well and yields in both cases the least squares solution corresponding to Ap = b which is closest to  $p_{ref}$ .

## **Weighted Least Squares Fitting**



- In a lot of applications, one can express the validity of each data point  $(x_i, y_i)$  through a weight  $\omega_i > 0$ .
- Extension of least squares to weighted least squares:

$$f(\boldsymbol{p}) = \sum_{j=1}^{m} \omega_j r_j^2(\boldsymbol{p})$$

• One can also extend the matrix form of LLS to weighted linear least squares (WLLS) by introducing the diagonal matrix  $\mathbf{W} = \operatorname{diag}(\omega_1, ..., \omega_m)$ :

$$f(\mathbf{p}) = \mathbf{r}^T \mathbf{W} \mathbf{r} = \left\| \sqrt{\mathbf{W}} (\mathbf{A} \mathbf{p} - \mathbf{b}) \right\|_2^2$$

- And the normal equations become:  $A^TWAp = A^TWb$
- If rank(A) = n, one can define weighted pseudo inverse:

$$A_W^+$$
: =  $(A^TWA)^{-1}A^TW \in R^{n \times n} \Rightarrow p^* = A_W^+b$ 

## Some Remarks to Linear Least Squares



- Linear Least squares is a useful technique to solve overdetermined systems of linear equations
- If residuals correspond to measurements with errors distributed according to normal distribution, LLS is maximum likelihood estimator.



## Surface Denoising and Surface Normal Estimation

## **PLANE FITTING**

#### **Normal Estimation in 3D Scans**



- Input: set of 3D points sampled from surface
- Output: set of denoised 3D points with normal
- Approach:
  - for each point collect neighborhood
  - define distance-based weight function
  - estimate local tangent plane from weighted least squares problem
  - orthogonally project input point onto local tanget plane
  - assign tangent plane normal to output point





integrated normal estimation and denoising

## Weighted Plane Fitting Problem



- for each point x of point cloud collect m points  $x_j$  with knn-query sorted by distance, typically 10 < m < 50.
- $\bullet$  estimate reference radius:  $h = ||x_{10} x||$
- assign pre-weights:  $\omega_j' = \exp\left(-\frac{\|x_j x\|^2}{h^2}\right)$  and normalize:  $\omega_j = \frac{\omega_j'}{\Omega'}$ ,  $\Omega' = \sum_{j=1}^m {\omega_j}'$ .
- lacktriangledown residuals:  $r_j = \widehat{m{n}}^T m{x}_j + d = \widetilde{m{p}}^T \widetilde{m{x}}_j$  with  $\widetilde{m{x}}_j = \left( m{x}_j, 1 \right)$
- $oldsymbol{\omega}$  parameters:  $\widetilde{\boldsymbol{p}}=(\widehat{\boldsymbol{n}},d)$  with  $\|\widehat{\boldsymbol{n}}\|=1$
- As b = 0 the normalization constraint is essential to avoid the trivial solution  $\tilde{p}^* = A_W^+ b = 0$ . The constrained LLS is:

$$\underset{\widetilde{\boldsymbol{p}} = (\widehat{\boldsymbol{n}}, d) | \|\widehat{\boldsymbol{n}}\| = 1}{\text{minarg}} f(\widetilde{\boldsymbol{p}}), f(\widetilde{\boldsymbol{p}}) = \left\| \sqrt{\boldsymbol{W}} \boldsymbol{A} \widetilde{\boldsymbol{p}} \right\|_{2}^{2} = \widetilde{\boldsymbol{p}}^{T} \boldsymbol{A}^{T} \boldsymbol{W} \boldsymbol{A} \widetilde{\boldsymbol{p}} = \widetilde{\boldsymbol{p}}^{T} \boldsymbol{M}_{W} \widetilde{\boldsymbol{p}}$$

 $\bullet$  For brevity we define a weighted cov. matrix  $M_W$ 

## **Reduced Plane Fitting Problem**



Theorem: if  $\tilde{p}^* = (\hat{n}^*, d^*)$  is the solution to the plane fitting problem, then the weighted center of mass

$$\overline{x} = \sum_{j=1}^{m} \omega_j x_j$$

is on  $\widetilde{p}^*$ , i.e.  $\widehat{n}^{*T}\overline{x} + d^* = 0$ . [Proof by setting  $\partial_d f(\widetilde{p}) = 0$ ]

We can enforce d=0 by considering a coordinate system with  $\overline{x}$  in the origin, a reduced parameter vector p' and reduced weighted cov. matrix:

$$p' = \widehat{n}, \qquad x'_j = x_j - \overline{x}, \qquad M'_W \coloneqq A'^T W A' = \sum_{j=1}^n \omega_j x'_j x'_j^T$$

The plane fitting problem reduces to

$$\widehat{\boldsymbol{n}}^* = \underset{\widehat{\boldsymbol{n}} | \|\widehat{\boldsymbol{n}}\| = 1}{\operatorname{minarg}} \widehat{\boldsymbol{n}}^T \boldsymbol{M}_{\boldsymbol{W}}' \widehat{\boldsymbol{n}}$$

## Reduced Plane Fitting Problem



- Eigenvalue decomposition of the symmetric matrix  $M_W'$  $M_W' = V \Lambda V^T = \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T + \lambda_3 v_3 v_3^T$ ,  $\lambda_1 \leq \lambda_2 \leq \lambda_3$
- plugged into the objective function yields  $\widehat{\boldsymbol{n}}^T \boldsymbol{M}_W' \widehat{\boldsymbol{n}} = \lambda_1 (\boldsymbol{v}_1^T \widehat{\boldsymbol{n}})^2 + \lambda_2 (\boldsymbol{v}_2^T \widehat{\boldsymbol{n}})^2 + \lambda_3 (\boldsymbol{v}_3^T \widehat{\boldsymbol{n}})^2$
- $oldsymbol{\circ}$  From the increasing ordering of the  $\lambda_i$  it follows that the optimal normal is given by

$$\widehat{\boldsymbol{n}}^* = \pm \boldsymbol{v}_1$$

- Note that the sign of the normal direction (plane orientation) is not unique. A globally consistent orientation is typically achieved by
  - knowledge of an exterior point (scanner location)
  - a region growing normal orientation algorithm

## **Summary of Plane Fitting Problem**



- 1. normalize weights:  $\omega_j = \frac{\omega_j'}{\Omega'}$ ,  $\Omega' = \sum_{j=1}^m \omega_j'$
- 2. compute weighted center of mass  $\overline{x} = \sum_{j=1}^m \omega_j x_j$
- 3. transform points:  $x_i' = x_i \overline{x}$
- 4. compute weighted cov. matrix:  $M_W' = \sum_{j=1}^m \omega_j x_j' x_j'^T$
- 5. compute Eigenvector  $oldsymbol{v_1}$  of smallest Eigenvalue of  $oldsymbol{M'_W}$
- lacktrianglet Output: return plane through  $\overline{x}$  orthogonal to  $\widehat{n}^* = \pm v_1$ .



Fitting rigid transformations to a set of point-to-point correspondences

# REGISTRATION OF 3D DATA SETS

### **3D Dataset Registration**



- Registration is the process of bringing two data sets into a joint coordinate system based on feature correspondences.
  - common features are points, lines and planes
  - common correspondences are point-topoint, point-to-plane or line-to-line
  - one distinguishes between rigid and nonrigid registration
- For registration of 3D scans we consider rigid registration with point-topoint or point-to-plane correspondences.
- © Given two scans A & B we want to find a rigid transformation T s.t. A = T(B)
- Standard approach: ICP algorithm



for acquisition of a 3D Model several 3D-Scans from different view points need to be transformed into a common coordinate system and then fused

## Iterative Closest Points (ICP) Algorithm



- Input: two point clouds and coarse initial alignment
- ICP alternates between generation of correspondences based on closeness according to some distance function and the alignment according to correspondences.
- algorithm is iterative and assumes a coarse initial alignment of the 3D scans, as well as an overlap of the scans
- Pseudo-Code:
  - 1. find coarse initial alignment  $T_0$  (you can use markers, geometry features or do it manually)

until convergence:  $T_{i+1} \approx T_i$ 

- find correspondences: subsample A and B to  $S_A$  and  $S_B$  and find  $\forall a \in S_A$  closest point  $b_a \in B$  and define  $(a, b_a)$  as correspondence (similarly  $\forall b \in S_B$ ). Filter correspondences, for example only symmetric ones where a is closest point to  $b_a$ .
- compute  $T_{i+1}$  such that squared distance of all corresponding point pairs with respect to  $T_i$  is minimized (Kabsch Algorithm)

## Kabsch Algorithm



- Goal: find rigid transformation  $(\mathbf{R}, \mathbf{t})$  (rotation matrix  $\mathbf{R}$  and translation vector  $\mathbf{t}$ ) that minimizes the squared distances between all point-to-point correspondences:

$$(\mathbf{R}^*, \vec{t}^*) = \underset{\mathbf{R}, \vec{t} \mid \mathbf{R}\mathbf{R}^T = 1}{\operatorname{minarg}} \sum_{i=1}^{n} ||\mathbf{p}_i - (\mathbf{R}\mathbf{q}_i + \vec{t})||^2$$



## Kabsch Algorithm - optimal translation



- Similarly to plane fitting it turns out that we can solve the translation separately.
- Theorem: if  $(\mathbf{R}^*, \vec{t}^*)$  is the optimal transformation, then the points  $\{ m{p}_i \}$  and  $\{ m{R}^* m{q}_i + \vec{m{t}}^* \}$  have the same centers of mass.
- Centers of mass:

$$\overline{p} = \frac{1}{n} \sum_{i=1}^{n} p_i$$
,  $\overline{q} = \frac{1}{n} \sum_{i=1}^{n} q_i$ 

Plugging into theorem yields:

$$\overline{\boldsymbol{p}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{R}^* \boldsymbol{q}_i + \overrightarrow{\boldsymbol{t}}^*) = \boldsymbol{R}^* \overline{\boldsymbol{q}} + \overrightarrow{\boldsymbol{t}}^*$$

s Finally, solving for translation:  $\overrightarrow{t}^* = \overline{p} - R^* \overline{q}$ 

$$|\vec{t}^*| = \overline{p} - R^* \overline{q}$$

## Kabsch Algorithm – optimal rotation



Translate the input points to the centroids:

$$oldsymbol{p}_i' = oldsymbol{p}_i - \overline{oldsymbol{p}}, \qquad oldsymbol{q}_i' = oldsymbol{q}_i - \overline{oldsymbol{q}}$$

$$\boldsymbol{H} = \sum_{i=1}^{n} \boldsymbol{q}_{i}^{\prime} \boldsymbol{p}_{i}^{\prime^{T}}$$

Compute the "covariance matrix"  $H = \sum_{i=1}^{n} q_i' p_i'^T$  more details and proofs can be found in Olga Sorkine's note: igl.ethz.ch/projects/ARAP/svd\_rot.pdf

Compute the SVD of H:

$$H = U\Sigma V^T$$

The optimal rotation is

$$\mathbf{R}^* = \mathbf{V} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(\mathbf{V}\mathbf{U}^T) \end{pmatrix} \mathbf{U}^T$$

(avoid reflections)

The translation vector is:  $\vec{t}^* = \overline{p} - R^* \overline{q}$