Prof. Marios Savvides

Pattern Recognition Theory

Lecture 7: Parametric & Non Parametric Density Estimation

All graphics from Pattern Classification, Duda, Hart and Stork, Copyright © John Wiley and Sons, 2001

Overview Of Pattern Recognition

Big Picture

Overview

 Previous lectures have shown how to develop classifiers when the underlying statistical structure is known

Parametric Estimation

- This method assumes a particular form of a PDF (e.g. Gaussian) is known so that we only need to determine the parameters (e.g. Mean & Variance)
 - Maximum Likelihood Estimation (MLE)
 - Maximum A Posteriori (Bayesian) Estimation (MAPE)

Non-Parametric Density Estimation

- This method does not assume ANY knowledge about the density
 - Parzen Windows
 - Kernel Density Estimation
 - K-Nearest Neighbor Rule

ML Estimation (MLE)

Maximum Likelihood Estimation

- Assume P(x|ω) has a known parametric form uniquely determined by the parameter vector θ
- The parameters are assumed to be FIXED (i.e. NON RANDOM) but unknown
- Suppose we have a dataset D with the samples in D having been drawn independently according to the probability law P(x|ω)
- The MLE is the value of θ that best explains the data and once we know this value, we know $P(\mathbf{x}|\omega)$

"Choose the value of θ that is the most likely to give rise to the data we observe"

MLE

$$D = \{x_1, x_2, ..., x_N\}$$
 N independent observations

$$P(D \mid \boldsymbol{\theta}) = P(x_1, x_2, ..., x_N \mid \boldsymbol{\theta}) = \prod_{k=1}^{N} P(x_k \mid \boldsymbol{\theta})$$

The likelihood of observing a particular pattern (random variable)

$$\hat{\mathbf{\theta}} = \arg\max_{\theta} \left\{ P(Data \mid \mathbf{\theta}) \right\}$$

"Choose the value of θ that is the most likely to give rise to the data we observe"

MLE contd...

It is convenient to work with the log of the likelihood

$$\hat{\mathbf{\theta}} = \arg\max_{\theta} \left\{ P(D \mid \mathbf{\theta}) \right\} = \arg\max_{\theta} \left\{ \log \left(P(D \mid \mathbf{\theta}) \right) \right\}$$

Four of the infinite number of candidate source distributions

Several training 1D points drawn from a Gaussian of a particular variance but unknown mean

The likelihood $P(Data|\theta)$ as a function of the mean If we had a very large number of training points this likelihood would be very narrow

The log of the likelihood ($I(\theta)$) is maximized at the same theta that maximizes the likelihood since log is a monotonically increasing function

How To Solve For The ML Estimate?

- Let $\boldsymbol{\theta}$ be the p-component parameter vector $\boldsymbol{\theta} = \left[\theta_1, \theta_2, ..., \theta_p\right]^T$
- Let this be the gradient operator $\nabla_{\theta} = \left| \frac{\partial}{\partial \theta_1}, \frac{\partial}{\partial \theta_2}, ..., \frac{\partial}{\partial \theta_p} \right|^{r}$
- We have $P(D \mid \boldsymbol{\theta}) = \prod_{k=1}^{n} P(x_k \mid \boldsymbol{\theta})$
- We define $l(\theta)$ the log-likelihood of the function

$$l(\mathbf{\theta}) = \log(P(D \mid \mathbf{\theta})) = \sum_{k=1}^{n} \log(P(x_k \mid \mathbf{\theta}))$$

And

$$\nabla_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \log(P(D \mid \boldsymbol{\theta})) = \sum_{k=1}^{n} \nabla_{\boldsymbol{\theta}} \log(P(x_k \mid \boldsymbol{\theta}))$$

 A set of necessary condition for the ML estimate can be obtained from the set of p equations:

$$\nabla_{\boldsymbol{\theta}} l\left(\boldsymbol{\theta}\right) = \mathbf{0}$$

- Now assume **neither the mean nor the covariance** matrix are known
- First consider univariate case:

$$\mathbf{\theta} = \begin{bmatrix} \theta_1 = \mu \\ \theta_2 = \sigma^2 \end{bmatrix} \quad P(D \mid \mathbf{\theta}) = \prod_{k=1}^n P(x_k \mid \mathbf{\theta}) \quad \log P(x_k \mid \mathbf{\theta}) = -\frac{1}{2} \log(2\pi\theta_2) - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

Its derivative is:

$$\nabla_{\boldsymbol{\theta}} l = \nabla_{\boldsymbol{\theta}} \log \left(P(\mathbf{x}_{k} \mid \boldsymbol{\theta}) \right) = \begin{vmatrix} \frac{1}{\theta_{2}} (x_{k} - \theta_{1}) \\ -\frac{1}{2\theta_{2}} + \frac{(x_{k} - \theta_{1})^{2}}{2\theta_{2}^{2}} \end{vmatrix} = 0$$

Setting it to zero leads to:

$$\sum_{k=1}^{n} \frac{1}{\theta_2} (x_k - \theta_1) = 0$$
 and

$$\sum_{k=1}^{n} \frac{1}{\theta_2} (x_k - \theta_1) = 0 \quad \text{and} \quad -\sum_{k=1}^{n} \frac{1}{\theta_2} + \sum_{k=1}^{n} \frac{(x_k - \theta_1)^2}{\theta_2^2} = 0$$

Rearranging:

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

$$\hat{\sigma} = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$$
ML Estimate

Sample Mean

Sample Variance

$$P(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

$$l(\theta) = \log(P(D \mid \boldsymbol{\theta})) = \sum_{k=1}^{n} \log(P(\mathbf{x}_{k} \mid \boldsymbol{\theta}))$$

Consider only the mean is unknown:

$$\log P(\mathbf{x}_{\mathbf{k}} \mid \boldsymbol{\mu}) = -\frac{1}{2} \log \left(\left(2\pi \right)^{d} \left| \boldsymbol{\Sigma} \right| \right) - \frac{1}{2} \left(\mathbf{x}_{\mathbf{k}} - \boldsymbol{\mu} \right)^{T} \boldsymbol{\Sigma}^{-1} \left(\mathbf{x}_{\mathbf{k}} - \boldsymbol{\mu} \right)$$

Derivative of log likelihood must be set to 0 to obtain the MLE

$$\nabla_{\boldsymbol{\mu}} \log(P(D \mid \boldsymbol{\mu})) = \sum_{k=1}^{n} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu}) = \mathbf{0}$$

The ML estimate must satisfy:

$$\hat{\mathbf{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x_k}$$

Sample Mean -> ML Estimate

Neither the mean nor the covariance matrix are known

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_1 = \boldsymbol{\mu} \\ \theta_2 = \boldsymbol{\Sigma} \end{bmatrix} \quad \log P(\mathbf{x}_k \mid \boldsymbol{\theta}) = -\frac{1}{2} \log \left(\left(2\pi \right)^d \left| \boldsymbol{\Sigma} \right| \right) - \frac{1}{2} \left(\mathbf{x}_k - \boldsymbol{\mu} \right)^T \boldsymbol{\Sigma}^{-1} \left(\mathbf{x}_k - \boldsymbol{\mu} \right)$$

Derivative of log likelihood is:
$$\nabla_{\theta} l = \nabla_{\theta} \log \left(P(\mathbf{x}_{k} \mid \boldsymbol{\theta}) \right) = \begin{bmatrix} \boldsymbol{\Sigma}^{-1} \left(\mathbf{x}_{k} - \boldsymbol{\mu} \right) \\ ? \end{bmatrix}$$

How to take the gradient of a determinant of a matrix?

$$P(\mathbf{x} \mid \mathbf{\Sigma}) = \prod_{k=1}^{n} P(\mathbf{x}_{k} \mid \mathbf{\Sigma}) = \prod_{k=1}^{n} \left\{ \frac{1}{\sqrt{(2\pi)^{d} |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2} (\mathbf{x}_{k} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu})\right) \right\}$$

$$= \frac{1}{\left[(2\pi)^{d} |\mathbf{\Sigma}|\right]^{n/2}} \exp\left(-\frac{1}{2} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu})\right)$$

$$P(\mathbf{x} \mid \mathbf{\Sigma}) = \prod_{k=1}^{n} P(\mathbf{x}_{k} \mid \mathbf{\Sigma}) = \prod_{k=1}^{n} \left\{ \frac{1}{\sqrt{(2\pi)^{d} |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2} (\mathbf{x}_{k} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu})\right) \right\}$$

$$= \frac{1}{\left[(2\pi)^{d} |\mathbf{\Sigma}|\right]^{n/2}} \exp\left(-\frac{1}{2} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu})\right)$$

Scalar

$$\mathbf{b}^{\mathrm{T}}\mathbf{B}\mathbf{b} = trace(\mathbf{b}^{\mathrm{T}}\mathbf{B}\mathbf{b}) = trace(\mathbf{B}\mathbf{b}\mathbf{b}^{\mathrm{T}})$$

$$trace(A + B) = trace(A) + trace(B)$$

$$trace(C(A+B)) = trace(CA) + trace(CB)$$

$$\sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu})$$

$$= (\mathbf{x}_{1} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{1} - \boldsymbol{\mu}) + \dots + (\mathbf{x}_{N} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu})$$

$$= trace (\boldsymbol{\Sigma}^{-1} (\mathbf{x}_{1} - \boldsymbol{\mu}) (\mathbf{x}_{1} - \boldsymbol{\mu})^{T}) + \dots + trace (\boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T})$$

$$= trace (\boldsymbol{\Sigma}^{-1} (\mathbf{x}_{1} - \boldsymbol{\mu}) (\mathbf{x}_{1} - \boldsymbol{\mu})^{T} + \dots + \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T})$$

$$= trace (\boldsymbol{\Sigma}^{-1} (\mathbf{x}_{1} - \boldsymbol{\mu}) (\mathbf{x}_{1} - \boldsymbol{\mu})^{T} + \dots + \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T})$$

 $\mathbf{A} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu}) (\mathbf{x}_{k} - \boldsymbol{\mu})^{T}$

We can now rewrite:

$$\sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu}) (\mathbf{x}_{k} - \boldsymbol{\mu})^{T} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu}) (\mathbf{x}_{k} - \boldsymbol{\mu})^{T} = trace \left(\boldsymbol{\Sigma}^{-1} \boldsymbol{\Lambda} \right) = n.trace \left(\boldsymbol{\Sigma}^{-1} \boldsymbol{\Lambda} \right)$$

$$p(\mathbf{x} \mid \boldsymbol{\Sigma}) = \prod_{k=1}^{n} p(\mathbf{x}_{k} \mid \boldsymbol{\Sigma}) = \frac{1}{\left[(2\pi)^{d} \mid \boldsymbol{\Sigma} \mid \right]^{n/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

$$= \frac{1}{\left[(2\pi)^{dn/2} \mid \boldsymbol{\Sigma} \mid \right]^{-n/2}} \exp \left[-\frac{n}{2} trace(\boldsymbol{\Sigma}^{-1} \boldsymbol{\Lambda}) \right]$$

Now define **B** = Σ^{-1} **A** and let $\lambda_1, \lambda_2, ..., \lambda_d$ be its eigenvalues

$$p(\mathbf{x} \mid \mathbf{\Sigma}) = \frac{1}{\left[(2\pi)^{dn/2} \mid \mathbf{\Sigma} \mid \right]^{-n/2}} \exp \left[-\frac{n}{2} trace(\mathbf{B}) \right]$$

$$det(AB) = det(A) det(B)$$

 $det(A^{-1}) = det(A)^{-1}$
 $trace(A)$ Sum of eigenvalues

det(A) **Product of eigenvalues**

$$= \frac{1}{(2\pi)^{dn/2}} \left[\frac{|\mathbf{B}|}{|\mathbf{A}|} \right]^{n/2} \exp \left[-\frac{n}{2} trace(\mathbf{B}) \right]$$

$$= \frac{1}{(2\pi)^{dn/2}} |\mathbf{A}|^{-n/2} \left(\prod_{i=1}^{d} \lambda_i \right)^{n/2} \exp \left[-\frac{n}{2} \sum_{i=1}^{d} \lambda_i \right]$$

Now consider the log likelihood

$$P(\mathbf{x} \mid \mathbf{\Sigma}) = (2\pi)^{-dn/2} |\mathbf{A}|^{-n/2} \left(\prod_{i=1}^{d} \lambda_i \right)^{n/2} \exp\left(-\frac{n}{2} \sum_{i=1}^{d} \lambda_i \right)$$
$$\log P(\mathbf{x} \mid \mathbf{\Sigma}) = -\frac{dn}{2} \log(2\pi) - \frac{n}{2} \log|\mathbf{A}| + \frac{n}{2} \sum_{i=1}^{d} \log(\lambda_i) - \frac{n}{2} \sum_{i=1}^{d} \lambda_i$$

Remember that **A** is fixed, and taking the gradient with respect to **Σ** is now equivalent to taking the derivatives with respect to the eigenvalues of B

$$\frac{\partial}{\partial \lambda_i} \log P(\mathbf{x} \mid \mathbf{\Sigma}) = \frac{n}{2\lambda_i} - \frac{n}{2} = 0 \implies \lambda_i = 1 \text{ for } i = 1,...,d$$

Thus B must have all eigenvalues of 1 and is equivalent to I. This means that the likelihood is maximized if $\Sigma^{-1}A=I$ or $\Sigma=A$

$$\hat{\Sigma}_{ML} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}})^{T}$$
 MLE - Sample Covariance

MLE vs The Bayesian Approach

Maximum Likelihood Estimation (MLE)

- The parameters are assumed to be FIXED (i.e. NON RANDOM) but unknown
- The ML seeks the solutions that best explains the data

$$\hat{\mathbf{\theta}} = \arg\max_{\theta} \left\{ P(Data \mid \mathbf{\theta}) \right\}$$

Bayesian Estimation (BE)

- The parameters are assumed to be RANDOM VARIABLES with some known PRIORI DISTRIBUTION
- Bayesian approach aims at estimating the posterior density $P(\theta|Data)$
- The MAPE (Maximum A Posteriori Estimate) of 0 is the value of 0 that maximizes the posterior density (i.e. it is the mode of the posterior)

Bayesian Estimation

- In the Bayesian approach, our uncertainty about the parameters is represented by a PDF
- The parameters are described by a prior density P(0) which indicates which parameters are more likely than others
- We make use of Bayes theorem to find the posterior $P(\theta|D)$
- Ideally, we want the training data to "sharpen" the posterior $P(\theta|D)$ or reduce our uncertainty about the parameters

Bayesian Estimation

• We ideally want to estimate a PDF - P(x). Best we can do is estimate it by observing the training data to obtain P(x|D). We also assume that is has a known parametric form. So $P(x|\theta)$ is completely known. But θ is random (unlike in MLE) and has its own PDF.

MAP Estimation (MAPE)

• MLE aims at determining the value $\theta = \theta_{MLE}$ that maximizes the likelihood

$$\theta_{\text{MLE}} = \arg \max_{\mathbf{a}} \{P(D \mid \mathbf{\theta})\}$$

MAPE assumes that θ is not a fixed, but is an RV with a PDF given by P(θ) and it aims at maximizing the posterior

$$\theta_{\text{MAP}} = \underset{\theta}{\text{arg max}} \left\{ P(\theta \mid D) \right\}$$
where
$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} = \frac{P(D \mid \theta)P(\theta)}{\int P(D \mid \theta)P(\theta)d\theta} = \frac{P(\theta) \prod_{k=1}^{N} P\left(x_k \mid \theta\right)}{\int P(D \mid \theta)P(\theta)d\theta}$$

Since P(D) is constant we can also view MAP estimate as

$$\theta_{MAP} = \arg \max_{\theta} \left\{ P(D \mid \theta) P(\theta) \right\}$$

• Thus the MAPE of $\boldsymbol{\theta}$ is simply the mode of the posterior $P(\boldsymbol{\theta}|D)$ and MAPE differs from MLE as it determines a value of $\boldsymbol{\theta}$ which maximizes the posterior instead of the likelihood

- Compute $P(\theta|D)$ and the desired PDF P(x|D) where $p(\mu) = N(\mu_0, \sigma_0^2)$
- σ (the uncertainty about μ) is known and fixed.
- Assume the known prior knowledge about the mean can be expressed by a known prior density assumed to be normal:

$$p(\mu) = N(\mu_0, \sigma_0^2) \quad \text{Known!}$$

$$P(\mu \mid D) = \frac{P(D \mid \mu)P(\mu)}{\int P(D \mid \mu)P(\mu)d\mu} = \alpha \prod_{k=1}^n P(x_k \mid \mu)P(\mu)$$

$$P(\mu \mid D) = \alpha \prod_{k=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x_k - \mu}{\sigma}\right)^2\right] \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2}\left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right]$$

$$= \alpha ' \exp \left[-\frac{1}{2} \left(\sum_{k=1}^{n} \left(\frac{x_k - \mu}{\sigma} \right)^2 + \left(\frac{\mu - \mu_0}{\sigma_0} \right)^2 \right) \right]$$

$$= \alpha \operatorname{"exp} \left[-\frac{1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 - 2 \left(\frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2} \right) \mu \right] \right]$$
 GAUSSIAN!

Gaussian Likelihood && Gaussian Prior → Gaussian Posterior

$$P(\mu \mid D) = \alpha \operatorname{"exp} \left[-\frac{1}{2} \left[\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right] \mu^2 - 2 \left(\frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2} \right) \mu \right]$$

$$P(\mu \mid D) = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp \left[-\frac{1}{2} \left(\frac{\mu - \mu_n}{\sigma_n} \right)^2 \right] = \alpha \exp \left[-\frac{1}{2} \left[\frac{\mu^2}{\sigma_n^2} \right] - 2\mu \left(\frac{\mu_n}{\sigma_n^2} \right) + \left(\frac{\mu_n}{\sigma_n} \right)^2 \right]$$

We get
$$\frac{1}{\sigma_n^2} = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}$$
 and $\frac{\mu_n}{\sigma_n^2} = \frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2} = \frac{n}{\sigma^2} \hat{\mu}_n + \frac{\mu_0}{\sigma_0^2}$

where $\hat{\mu}_n = \frac{1}{n} \sum_{k=1}^n x_k$ and is the sample mean

$$\sigma_n^2 = \frac{\sigma^2 \sigma_0^2}{n\sigma_0^2 + \sigma^2}$$

So
$$\left[\sigma_{n}^{2} = \frac{\sigma^{2}\sigma_{0}^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\right] \left[\mu_{n} = \left(\frac{n\sigma_{0}^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\right)\hat{\mu}_{n} + \left(\frac{\sigma^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\right)\mu_{0}\right]$$

$$\mu_{n} = \left(\frac{n\sigma_{0}^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\right)\hat{\mu}_{n} + \left(\frac{\sigma^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\right)\mu_{0}$$

$$\sigma_{n}^{2} = \frac{\sigma^{2}\sigma_{0}^{2}}{n\sigma_{0}^{2} + \sigma^{2}}$$

$$\sigma_n^2 = \frac{\sigma^2 \sigma_0^2}{n\sigma_0^2 + \sigma^2}$$
Uncertainty for μ

Best guess for μ

- μ_n is a linear combination of $\hat{\mu}_n$ and μ_0 (always lies between them)
 - For small samples -> More weights on prior $(\hat{\mu}_0)$
 - For large samples -> More weights on observation $(\hat{\mu}_n)$
- If $\sigma_n \neq 0$, then $\mu_n \rightarrow \hat{\mu}_n$ as $n \rightarrow \infty$ (MLE = MAPE)
- If $\sigma_0 = 0$, then $\mu_n = \mu_0$
- If $\sigma_0 >> \sigma$ then $\mu_n = \hat{\mu}_n (MLE = MAPE)$

• μ_n represents our best guess for μ after observing n samples, and σ_n^2 measures our uncertainty about this guess.

$$\mu_{n} = \left(\frac{n\sigma_{0}^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\right)\hat{\mu}_{n} + \left(\frac{\sigma^{2}}{n\sigma_{0}^{2} + \sigma^{2}}\right)\mu_{0}$$

$$ML \qquad PRIOR_{KNOWLEDGE}$$

$$\sigma_n^2 = \frac{\sigma^2 \sigma_0^2}{n\sigma_0^2 + \sigma^2}$$

Decreases as *n*->∞

- Each additional observation decreases our uncertainty and $P(\mu|D)$ becomes narrower and sharply peaked around the true value of μ and becomes a Dirac delta function. This is called **Bayesian Learning**.
- A class of PDF $P(\theta)$ is said to be **conjugate** to a class of likelihood functions $P(x|\theta)$ if the resulting posterior distributions $P(\theta|x)$ are in the same family as $P(\theta)$.
 - The Gaussian family is conjugate to itself if the likelihood function is Gaussian, choosing a Gaussian prior will ensure that the posterior distribution is also Gaussian

MAPE Example: Gaussians

- Assume that the true mean of the P(x) is N(0.8, 0.09).
 - In reality this is something we cannot know
- We generate a number of examples from this distribution
- We don't know where the mean will be, so we assume a Gaussian prior $-P_0(\mu)=N(0, 0.09)$
- As the number of training examples increases, the estimates μ_N approaches its true value of 0.8 and the spread decreases

- Compute $P(\mu|D)$ and the desired PDF $P(\mathbf{x}|D)$ where $P(\mathbf{x}|\mu) = N(\mu, \Sigma)$
- Assume the known prior knowledge about the mean can be expressed by a known prior density assumed to be normal:

$$P(\mathbf{\mu}) = N(\mathbf{\mu_0}, \mathbf{\Sigma_0}) \quad \text{Known!}$$

$$P(\mathbf{\mu} \mid \mathbf{D}) = \frac{P(D \mid \mathbf{\mu}) P(\mathbf{\mu})}{\int P(D \mid \mathbf{\mu}) P(\mathbf{\mu}) d\mathbf{\mu}} = \alpha \prod_{k=1}^{n} P(\mathbf{x_k} \mid \mathbf{\mu}) P(\mathbf{\mu})$$

$$P(\mathbf{\mu} \mid D) = \alpha \prod_{k=1}^{n} P(\mathbf{x}_{k} \mid \mathbf{\mu}) P(\mathbf{\mu})$$

$$= \alpha' \exp \left[-\frac{1}{2} \left(\boldsymbol{\mu}^T \left(n \boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}_{\mathbf{0}}^{-1} \right) \boldsymbol{\mu} - 2 \boldsymbol{\mu}^T \left(\boldsymbol{\Sigma}^{-1} \sum_{k=1}^n \mathbf{X}_{\mathbf{k}} + \boldsymbol{\Sigma}_{\mathbf{0}}^{-1} \boldsymbol{\mu}_0 \right) \right] \right]$$

Which has a Gaussian Form

$$= \alpha \operatorname{"exp} \left[-\frac{1}{2} (\boldsymbol{\mu} - \boldsymbol{\mu}_n)^T \boldsymbol{\Sigma}_n^{-1} (\boldsymbol{\mu} - \boldsymbol{\mu}_n) \right]$$

• Thus $P(\mu|D)$ is $N(\mu_n, \Sigma_n)$. Equating coefficients, we obtain:

$$\begin{split} \boldsymbol{\Sigma}_n^{-1} &= n \boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}_0^{-1} \qquad \text{and} \qquad \boldsymbol{\Sigma}_n^{-1} \boldsymbol{\mu}_{\mathbf{n}} = n \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\mu}}_{\mathbf{n}} + \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 \end{split}$$
 where
$$\hat{\boldsymbol{\mu}}_{\mathbf{n}} = \frac{1}{n} \sum_{k=1}^n \mathbf{x}_k \qquad \text{is the sample mean}$$

After some manipulation (which we don't prove) we get:

$$\boldsymbol{\mu}_{\mathbf{n}} = \boldsymbol{\Sigma}_{0} \left(\boldsymbol{\Sigma}_{0} + \frac{1}{n} \boldsymbol{\Sigma} \right)^{-1} \hat{\boldsymbol{\mu}}_{\mathbf{n}} + \frac{1}{n} \boldsymbol{\Sigma} \left(\boldsymbol{\Sigma}_{0} + \frac{1}{n} \boldsymbol{\Sigma} \right)^{-1} \boldsymbol{\mu}_{0}$$

$$\boldsymbol{\Sigma}_{n} = \boldsymbol{\Sigma}_{0} \left(\boldsymbol{\Sigma}_{0} + \frac{1}{n} \boldsymbol{\Sigma} \right)^{-1} \frac{1}{n} \boldsymbol{\Sigma}$$

Finally, it can be shown that

$$P(\mathbf{x} \mid D) = N(\boldsymbol{\mu}_{\mathbf{n}}, \boldsymbol{\Sigma} + \boldsymbol{\Sigma}_{\mathbf{n}})$$

MAPE Example: Gaussians

FIGURE 3.2. Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Recap: ML vs Bayesian Estimation

- BE assumes that the parameters come from a distribution with known priors
- BE provides a distribution for 6 rather than point values. BE provides more information, but is in general much more difficult to compute (integration)
- For most times, if the assumptions are correct, MLE gives good enough results

Recap: ML vs Bayesian Estimation

- Amount of Training data
 - The two methods are equivalent assuming infinite training samples.
 - They differ for smaller training data
- Computational Complexity
 - ML uses differential calculus or gradient search
 - Bayesian estimation needs complex multidimensional integration techniques
- Solution Complexity
 - ML solution is easy to interpret
 - A Bayes Estimation solution might not be of the parametric form assumed
- Prior distribution
 - If the prior $P(\theta)$ is **uniform (flat)**, BE solutions are equivalent to ML solutions

- Problems with parametric techniques
 - Most forms of distributions are unimodal
 - Most of the time we assumed that features are independent
- In non-parametric approach we don't need these assumtions
 - We have to attempt to estimate the density directly from the data without making any parametric assumptions about the true density

The Histogram

- The simplest form of non-parametric density estimation
 - Divide the sample space into a number of bins and approximate the density at the center of each bin using the fraction of training samples that fall into the corresponding bin.

$$P_H(x) = \frac{1}{n} \frac{\left[\text{number of samples in the same bin as } x\right]}{\left[\text{width of bin containing } x\right]}$$

- The histogram requires two tuning options to be defined:
 - Bin width
 - · Starting position of the first bin

The Histogram

- The histogram is simple, but has flaws
 - The bin location can introduce discontinuity artifacts that are not due to the true underlying density
 - The histogram approach becomes impractical when the number of dimensions increases. The number of bins needed grows exponentially.
- Histograms are useful for visualizations in one or two dimensions

Let's estimate distribution at this point x

Consider a region R around the point $x \rightarrow$ analogous to the bin in a histogram

- From basic probability, we know that
 - The probability that a vector x, drawn from some distribution p(x), will fall in a given region R of the sample space is:

$$P = \int_{R} p(x')dx'$$
 (i.e. a space averaged value)

– Suppose now that n vectors $\{x_1, x_2, ..., x_n\}$ are drawn from the distribution. The probability that k of these n vectors fall in R is given by the binomial distribution

From the properties of the binomial pmf, we have that

$$P_{k} = \binom{n}{k} P^{k} (1-P)^{n-k}$$

$$E[k] = nP \qquad Var[k] = nP(1-P)$$

$$E[k/n] = P \qquad Var[k/n] = P(1-P)/n$$

$$E[k/n] = P$$
 $Var[k/n] = P(1-P)/n$

As n → ∞, the distribution becomes sharper and hence a good estimate
of the probability P can be obtained from the mean fraction of the points
that fall within R

$$P = \int_{R} p(x')dx' \cong \frac{k}{n}$$

- If we now assume that R is so small that p(x) is almost constant within it, then $\int_{\mathbb{R}} p(x')dx' \cong p(x)V$

where V is the volume enclosed by the region R

For this one dimensional example, V will just be the length of the region

$$P = \int_{R} p(x') dx' \cong \frac{k}{n}$$

 $\int_R p(x')dx' \cong p(x)V$ - Merging the two results we obtain:

$$p(x) = \frac{k}{nV}$$

What we get is a space averaged value depending on V

Example:

 If we observe a large number of fish, count those whose length fall within the range defined by R, k/n can be used as an estimate of P when n→∞

What are the Assumptions Here?

$$p(x) \cong \frac{k}{nV}$$

- 1. V is so small that p(x) is constant in R.
- But if V is really small, then it may not contain any samples! Then (k/n)=0
- 2. V is sufficiently large so that we get enough number of samples (k) such that $P \cong \frac{k}{n}$
- Two contradictory assumptions! So we'll have to accept
 - A certain amount of variance in (k/n)
 - A space averaged value for p(x) (since V will not be very small)

Approaches

$$p(x) \cong \frac{k}{nV}$$

- Two basic approaches can be used:
 - Choose a fixed value of V around the point x and determine k from the data. Then determine p(x)from above. This is called Kernel Density Estimation (KDE).
 - Choose a fixed value of k and determine the corresponding volume V around x that includes k samples. This is called k Nearest Neighbor (kNN) approach.

Approaches

$$p(x) \cong \frac{k}{nV}$$

- $p(x) \cong \frac{k}{nV}$ Two basic approaches can be used:
 - Choose a fixed value of V around the point x and determine k from the data. Then determine p(x)from above. This is called Kernel Density Estimation (KDE).
 - Choose a fixed value of k and determine the corresponding volume V around x that includes k samples. This is called k Nearest Neighbor (kNN) approach.

Parzen Windows

 Suppose that the region R that encloses k examples is a d-dimensional hypercube with sides of length h centered at the estimation point x.

• To the find the number of instances that fall within this

region we define a Kernel Function

$$\varphi(u_j) = \begin{cases} 1 & \text{if } |u_j| < 1/2 \quad \forall j = 1, ...d \\ 0 & \text{otherwise} \end{cases}$$

Emanuel Parzen

$$\varphi\left(\frac{(x-x_i)}{h}\right) = \begin{cases} 1 & \text{if } x_i \text{inside hypercube of side h centered on x} \\ 0 & \text{otherwise} \end{cases}$$

Parzen Windows

The total number of points inside the hypercube is then

$$k = \sum_{i=1}^{n} \varphi \left(\frac{\left(x - x_i \right)}{h} \right)$$

Substitute back into the expression for the density estimate:

Parzen Windows Example

 Given the dataset below, use Parzen windows of bandwidth h=4 to estimate the density p(x)

Smooth Kernels

- The Parzen window has several issues
 - Errors due to discontinuities at window edges (same problem as with histograms)
 Weights all points equally regardless of their distance to the estimation point x
- We can do better by generalizing to a smooth kernel function ϕ such that $\int_{\mathbb{R}^d} \varphi(x) dx = 1 \quad \text{and} \quad \varphi(x) \ge 0$
 - Usually but not necessarily, $\varphi(u)$ will be a radially symmetric and unimodal PDF, such as the multivariate Gaussian

$$p_{KDE}(x) = \frac{1}{nh^d} \sum_{n=1}^{n} \varphi\left(\frac{(x - x_n)}{h}\right) = \frac{1}{nh^d} \sum_{n=1}^{n} \frac{1}{(2\pi)^{d/2}} \exp\left\{-\frac{\|x - x_n\|^2}{2h^2}\right\}$$

The expression of the density estimate remains the same as with Parzen windows

Kernel Density Estimation

Commonly Used Kernels

Boxcar:
$$K(x) = \frac{1}{2}I(x)$$

Gaussian:
$$K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$I(x) = \begin{cases} 1 & \text{if } |x| \le 1 \\ 0 & \text{else} \end{cases}$$

Epanechnikov:
$$K(x) = \frac{3}{4}(1-x^2)I(x)$$

Importance of Bandwidth

- A good compromise is needed for the bandwidth parameter

 A large bandwidth will over smooth the density and erode the true structure of the data
 - A small bandwidth will yield a spiky density estimate

Importance of Bandwidth

Large $V_n \rightarrow too$ little resolution

Small V_n → too much statistical variability

Choosing the Bandwidth

- We would like to get a value of the smoothing parameter that minimizes the error between the estimated density and the true density
 - A natural measure is the MSE at the estimation point x, given by:

$$MSE(p_{KDE}) = E\left[\left(p_{KDE}(x) - p(x)\right)^{2}\right] = \left\{E\left[p_{KDE}(x) - p(x)\right]\right\}^{2} + var\left(p_{KDE}(x)\right)$$

$$\because var\left(p_{KDE}(x)\right) = E\left[\left(p_{KDE}(x) - p(x)\right)^{2}\right] - \left\{E\left[p_{KDE}(x) - p(x)\right]\right\}^{2}$$

MSE
$$(p_{KDE}) = \{E[p_{KDE}(x) - p(x)]\}^2 + \text{var}(p_{KDE}(x))$$

MSE $(p_{KDE}) = (\text{Bias})^2 + \text{Variance}$

- Bias can be reduced at the expense of variance and vice versa
 - The bias of an estimate is the systematic error incurred in the estimation
 - The variance of an estimate is the random error incurred in the estimation

- The bias-variance dilemma of the bandwidth means that:
 - A large bandwidth will reduce the differences among the estimates of $p_{KDE}(x)$ for different datasets (i.e. the variance) but will increase the bias of $p_{KDE}(x)$ with respect to the true density p(x)
 - A small bandwidth will reduce the bias of p_{KDE}(x) at the expense of a large variance in the estimates of p_{KDE}(x)

The bias increases and the variance decreases with the amount of smoothing

Density Estimation

- $p(x) \cong \frac{k}{nV}$ Two basic approaches can be used:
 - Choose a fixed value of V around the point x and determine k from the data. Then determine p(x)from above. This is called Kernel Density Estimation (KDE).
 - Choose a fixed value of k and determine the corresponding volume V around x that includes k samples. This is called k Nearest Neighbor (kNN) approach.

kNN Density Estimation

 In the kNN method we grow the volume surrounding the estimation point x until it encloses a total of k data points.

kNN Estimate of Bayes Probabilities

- kNN can be used to estimate the prior, posterior, and likelihoods.
 - Assume that we have n total samples, and c total classes, and n_i samples inside each class such that $n = n_1 + n_2 + ... + n_c$
 - To classify an unknown data point x, we draw a hyper-sphere V around x.
 Assume that this volume contains a total of k samples, k, of which come from class ωi, then,

$$p(\mathbf{x} \mid \omega_i) \cong \frac{k_i}{n_i V}$$
 $p(\mathbf{x}) \cong \frac{k}{n V}$ $p(\omega_i) \cong \frac{n_i}{n}$

Put them all together using Bayes formula

$$P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i) p(\omega_i)}{p(\mathbf{x})} \cong \frac{\frac{k_i}{n_i V} \cdot \frac{n_i}{n}}{\frac{k}{n V}} = \frac{k_i}{k}$$

• For k = 1, this is called the Nearest Neighbor rule

kNN Classification Rule

kNN Rule is a simple and intuitive method that classifies unlabeled instances based on their proximity to examples in the training set.

$$p(\omega_i \mid \mathbf{x}) = \frac{k_i}{k}$$

- $p(\omega_i \mid \mathbf{x}) = \frac{k_i}{k}$ Given an unlabeled test sample, find the k "closest" labeled examples in the training set and assign it to the class that appears the most frequently in this k-subset.
- kNN rule requires:
 - An integer k
 - A set of labeled training instances
 - A metric to measure proximity.
- In this example:
 - Use k = 4
 - Euclidian distance
 - The test point is assigned to class 2

kNN Classification Rule

- •3-class problem unimodal non-linearly separable.
- Use k =5 and euclidian distance
- •The resulting boundaries and decision regions are shown below

kNN Classification Rule

- •3-class problem unimodal non-linearly separable.
- Use k = 5 and euclidian distance
- •The resulting boundaries and decision regions are shown below

kNN Decision Boundary

The nearest neighbor rule leads to a Voronoi Tesselation

Georgy Voronoy 1868-1908

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the category of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Johann Peter Gustav Lejeune Dirichlet

1805-1859

Recap

- Non-Parametric Density Estimation
 - Problem Formulation
 - Different Approaches
- Histograms
- Kernels and Kernel Density Estimation
 - Parzen Windows
- kNN Density Estimation and Classification

