

TRAVAUX DE RENFORCEMENT DE CAPACITES DES APPRENANTS CANDIDATS AU CAP, DT ET BAC

Classe: $T^{le} F_3$ et EL **Date**: Samedi 28 mars 2025

Exercice 1

Pour le montage de la figure 1 ci-contre on donne : $V_1=0.4+4\sin 10^3 t,~~C=100~nF, R_1=R_2=1~M\Omega~et~~V_2=-0.4~V.$

- 1) Exprimez V_S en fonction de R_1 , R_2 , V_1 , V_2 et C.
- 2) Calculez V_S

Exercice 2

Le montage de la figure 2 est un amplificateur de tension.

- 1. Exprimer E^+ en fonction de u_B (t), R_3 et R_4 .
- 2. Exprimer E^- en fonction de u_A (t), u_C (t), R_1 et R_2 .
- 3. En déduire l'expression de u_c (t) en fonction de u_A (t), u_B (t), R_1 , R_2 , R_3 et R_4 .
- 4. Quelles conditions doivent remplir les résistances pour que u_{C} (t) soit de la forme u_{C} (t) = A u_{AB} (t) avec u_{AB} (t) = u_{A} (t) u_{B} (t)?
- 5. On pose A = 2.
 - a) Quelle est la relation entre les résistances pour que A = 2 ?
 - b) Pour $R_2 = R_3 = 10 \text{ K}\Omega$, calculer R_1 et R_4 .

Exercice 3

Pour déterminer le niveau d'un fluide dans un cuve, on utilise le pont de la figure ci-dessous dans lequel C_0 est de valeur constante et C variable en fonction du niveau de fluide. On donne : $\underline{E} = \begin{bmatrix} 10V, 0^{\circ} \end{bmatrix}$, $C_0 = 20$ nF, $\omega = 50.10^3$ rad/s et $R = 1k\Omega$.

- 1. Quel nom donne-t-on à ce montage?
- 2. Exprimer \underline{U}_C en fonction de R, C, ω et \underline{E} puis \underline{U}_{C0} en fonction de R, C_0 , ω et \underline{E} .
- 3. Montrer que : $\underline{U} = \frac{jR\omega(C-C_0)}{(1+jRC\omega)(1+jRC_0\omega)}\underline{E}$
- 4. Pour quelle valeur de C le pont est-il équilibré ?
- 5. Calculer \underline{U} pour $C = 2 C_0$.

Exercice 4

Dans le laboratoire de Mesures et Essais du Lycée Technique Commercial et Industriel de Djougou, un professeur se sert d'un moteur asynchrone triphasé pour entraîner une génératrice à excitation shunt. Les plaques signalétiques des deux machines indiquent :

Moteur asynchrone	Génératrice
 Tensions: 220 V / 380 V 4 Pôles Fréquence: f = 50 Hz 	 Tension d'induit : U = 220 V Résistance d'induit : R = 0,5 Ω Résistance inducteur : r = 110 Ω

La résistance entre deux bornes du stator, mesurée à chaud est R_S = 1,4 Ω . Ce moteur est alimenté par un réseau de 380 V entre phases et de fréquence f = 50 Hz.

- 1. Déterminer :
 - a) le couplage du moteur ;
 - b) la vitesse de synchronisme.
- 2. A vide, le moteur tournant à une vitesse proche de la vitesse de synchronisme, absorbe une puissance mesurée par la méthode de deux wattmètres : P_A = 1410 W et P_B = 565 W. Déterminer :
 - a) le courant en ligne et le facteur de puissance à vide ;
 - b) les pertes Joule statoriques à vide ;
 - c) les pertes fer statoriques P_{fs} et les pertes mécaniques P_m en les supposant égales.
- 3. Le moteur entraine maintenant la génératrice, le courant statorique est de 16,5 A, le facteur de puissance de 0,83 et la vitesse de rotation de 1400 tr/min.

Calculer:

- 3.1. Pour le moteur :
 - a) la puissance absorbée;
 - b) les pertes Joule statoriques en charge;
 - c) les pertes Joule rotoriques en charge ;
 - d) la puissance utile en bout d'arbre;
 - e) le rendement.
- 3.2. Pour la génératrice :
 - a) le courant d'excitation i ;
 - b) la f.é.m. E pour un courant d'induit I = 30 A;
 - c) le courant I_{ch} fournit par la génératrice à une charge extérieure;
 - d) la puissance utile ;
 - e) le rendement;
- 3.3. le rendement de l'ensemble moteur génératrice.