Sequence (Lecture-5)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Bounded Sequence

Bounded sequence

A sequence $\{a_n\}$ is said to be **bounded above**, if there exists $M \in \mathbb{R}$ such that $a_n \leq M$ for all $n \in \mathbb{N}$.

Similarly, we say that a sequence $\{a_n\}$ is **bounded below**, if there exists $M_1 \in \mathbb{R}$ such that $a_n \geq M_1$ for all $n \in \mathbb{N}$.

Thus a sequence $\{a_n\}$ is said to be **bounded** if it is both bounded above and below.

Theorem

Every convergent sequence is bounded.

Proof: Let $\{a_n\}$ be a convergent sequence and $\lim_{n\to\infty} a_n = L$. Then there exists $N\in\mathbb{N}$ such that $|a_n-L|<\epsilon$ for all $n\geq N$. It implies that $|a_n-L|<1$ for all $n\geq N$. Further.

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L|, \forall n \ge N.$$

Let $M = \max\{|a_1|, |a_2|, ..., |a_{N-1}|, 1+|L|\}$. Then $|a_n| \le M$ for all $n \in \mathbb{N}$. Hence $\{a_n\}$ is bounded.

Bounded Sequence

Remark

The condition given in previous theorem is necessary but not sufficient.

For example, the sequence $\{(-1)^n\}$ is a bounded sequence but not convergent sequence.

Question: Boundedness + $(??) \Longrightarrow$ Convergence.

Monotone Sequences

Monotone Sequences

A sequence $\{a_n\}$ of real numbers is called an **increasing** sequence if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$ and $\{a_n\}$ is called a **decreasing** sequence if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$.

A sequence that is increasing or decreasing is called a **monotone sequence**.

Examples:

- The sequences $\{1-1/n\}, \{n^3\}$ are increasing sequences.
- The sequences $\{1/n\}$, $\{1/n^2\}$ are decreasing sequences.
- The sequences $\{(-1)^n\}$, $\left\{\cos\left(\frac{n\pi}{3}\right)\right\}$, $\left\{(-1)^n n\right\}$, $\left\{\frac{(-1)^n}{n}\right\}$ are not monotonic sequences.

Monotone convergence theorem

- (i) An increasing sequence which is bounded above is convergent.
 That is, suppose {a_n} is a bounded above and increasing sequence. Then the least upper bound of the set {a_n : n ∈ N} is the limit of {a_n}.
- (ii) A decreasing sequence which is bounded below is convergent. That is, suppose $\{a_n\}$ is a bounded below and decreasing sequence. Then the greatest lower bound of the set $\{a_n : n \in \mathbb{N}\}$ is the limit of $\{a_n\}$.

Example

If 0 < b < 1, then the sequence $\{b^n\}_1^{\infty}$ converges to 0.

Solution: We write $b^{n+1} = b^n b < b^n$. Hence $\{b^n\}$ is decreasing. Since $b^n > 0$ for all $n \in \mathbb{N}$, the sequence $\{b^n\}$ is bounded below. Hence, by the above theorem, $\{b^n\}$ converges. Let $L = \lim_{n \to \infty} b^n$. Further, $\lim_{n \to \infty} b^{n+1} = \lim_{n \to \infty} b \cdot b^n = b \cdot \lim_{n \to \infty} b^n = b \cdot L$. Thus the sequence $\{b^{n+1}\}$ converges to $b \cdot L$. On the other hand, $\{b^{n+1}\}$ is a subsequence of $\{b^n\}$. Hence $L = b \cdot L$ which implies L = 0 as $b \neq 1$.

Example

Show that the sequence $\{a_n\}$, where $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$, for all $n \in \mathbb{N}$ is convergent.

Solution: Now
$$a_{n+1} - a_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{2(n+1)(2n+1)} > 0$$
 for all n .

Therefore the sequence $\{a_n\}$ is monotonically increasing. Again

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} < \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = 1.$$

i.e. $0 < a_n < 1$. Therefore, the sequence a_n is bounded. Hence the sequence being bounded and monotonically increasing, is convergent.

Result

- (i) An increasing sequence which is not bounded above diverges to ∞ .
- (ii) A decreasing sequence which is not bounded below diverges to $-\infty$.

Example: If b > 1, then the sequence $\{b^n\}_1^{\infty}$ diverges to ∞ .

