Exam 1

ISE 453: Design of PLS Systems

Fall 2018

Name (print):	2 Oct
Format: Closed computer, one $8\frac{1}{2} \times 11$ in. double-sided page of notes, and a calculator.	
1. (8 pts) Explain why the geometric mean is usually more appropriate for estimating parameters in a Fermi problem as compared to the use of the arithmetic mean.	
2 (9 ma) Franking relative to the contract of the first terms of the f	:4.
2. (8 pts) Explain why it is not necessary to know the fixed cost of establishing a NF at a when solving the p-median problem, while it is necessary for solving the UFL problem	
3. (8 pts) When one is determining the number of shipments per year from a DC to each different customer for use as part of a location analysis, explain why it is appropriate t a fractional as opposed to an integral value.	

4. (15 pts) What is the difference in the transport charge to ship 25 cartons of a product LTL from Raleigh to Detroit using the undiscounted tariff given below as compared to using the LTL rate estimation formula with a PPI of 182.9? Each carton weighs 70 pounds and occupies twenty cubic feet.

Tariff (in \$/cwt) from Raleigh, NC (27606) to Detroit, MI (48234) (691 mi, CzarLite DEMOCZ02 04-01-2000, minimum charge = \$95.71)

Tons (q_i^B)

Table 2.3. Class-Density Relationship (italics indicate value at capacity)

	D (D) (0										Load Dens	ity (lb/ft³)	Max Physical	Max Effective
Freight		Rate Breaks (i)							Class	Minimum	Average	Weight (tons)	Cube (ft ³)	
Class	1	2	3	4	5	6	7	8	9&10	500	_	0.52	0.72	2,750
500	370.20	307.27	233.24	188.82	134.52	97.85	50.50	50.50	50.5	400	1	1.49	2.06	2,750
400	298.34	247.63	187.97	152.17	108.41	78.86	40.77	40.77	40.77	300	2	2.49	3.43	2,750
300	228.40	189.58	143.91	116.50	83.00	60.37	31.23	31.23	31.23	250	3	3.49	4.80	2,750
250	200.17	166.15	126.12	102.10	72.74	52.91	27.38	27.38	27.38	200	4	4.49	6.17	2,750
200	155.90	129.40	98.23	79.52	56.65	41.21	21.29	21.29	21.29	175	5	5.49	7.55	2,750
										150	6	6.49	8.92	2,750
175	140.51	116.63	88.53	71.66	51.06	37.14	19.16	19.16	19.16	125	7	7.49	10.30	2,750
150	120.62	100.12	76.00	61.52	43.83	31.89	16.53	16.53	16.53	110	8	8.49	11.67	2,750
125	102.66	85.20	64.67	52.36	37.31	27.13	14.10	14.10	14.10	100	9	9.72	13.37	2,750
110	89.18	74.02	56.19	45.49	32.41	23.57	12.37	12.37	12.37	92.5	10.5	11.22	15.43	2,750
100	83.41	69.23	52.55	42.54	30.30	22.05	11.56	8.96	7.79	85	12	12.72	17.49	2,750
92	78.91	65.50	49.73	40.25	28.68	20.86	11.15	8.65	7.52	77.5	13.5	14.22	19.55	2,750
85	73.14	60.71	46.08	37.31	26.58	19.34	10.75	8.33	7.24	70	15	18.01	24.76	2,750
										65	22.5	25.50	25	1,961
77	68.01	56.45	42.85	34.69	24.71	17.98	10.44	8.10	7.03	60	30	32.16	25	1,555
70	64.16	53.25	40.42	32.72	23.31	16.96	10.14	7.86	6.83	55	35	39.68	25	1,260
65	61.52	51.07	38.77	31.38	22.15	16.26	10.04	7.79	6.76	50	50	56.18	25	890
60	58.90	48.89	37.11	30.04	21.22	15.57	9.94	7.70	6.69					
55	55.68	46.22	35.09	28.40	20.05	14.72	9.84	7.62	6.62					
50	52.48	43.56	33.07	26.77	18.88	13.87	9.73	7.55	6.56					

 ∞

5. (26 pts) On average, 300 tons of frozen foods are shipped 650 miles from your packaging plant to your distribution center each year. The foods are packaged and consumed at a constant rate throughout the year. Currently, each truckload shipment of foods is 1,250 ft³, which is the maximum cube of the freezer available at the distribution center for storage. How much should the freezer cube capacity increase in order to reduce total logistics costs? The PPI for TL is 138.6; a truck's cubic and weight capacities are 2,750 ft³ and 25 tons, respectively; each ton of foods is valued at \$15,000 and has a density of 9 lb per ft³; the annual inventory carrying rate is 0.3; and in-transit inventory costs can be ignored.

6. (35 pts) Traveling east, I-40 passes through or near the following cities: Albuquerque, NM; Amarillo, TX; Memphis, TN; Nashville, TN; and Greensboro, NC. It is expected that 24,000 and 2,500 cartons of products A and B, respectively, will be shipped each year from your DC to four customers located in Greensboro, Memphis, Albuquerque, and Amarillo, with each customer receiving 15, 30, 35, and 20 percent of the total demand, respectively. Full P2P truckloads of A and B will be shipped FOB origin to the DC from suppliers located in Nashville and Amarillo, respectively, and full P2P truckloads containing a mix of both products will be shipped FOB destination to each customer, with deliveries at least every month. Each carton of A and B weighs 25 and 80 lb, respectively, and occupies 5 and 4 ft³, respectively. Each truck's cubic and weight capacity is 2,750 ft³ and 25 tons, respectively. Assuming that I-40 will be used for all travel, where should the DC be located in order to minimize transportation costs?