Neural network back propagation

Exercise: calculate a simple net by hand

Data

Rating	Distance	Price
3.5	0.2	157
2.4	6.5	92
3.6	19.8	207

 $/n p^{t}$ (4:30em)

feed forward

$$a_1 = \text{Rel}_U\left(\mathcal{Z}_1\right)$$

$$a_2 = \text{Rel}_U\left(\mathcal{Z}_1\right)$$

$$a_2 = \text{Rel}_U\left(\mathcal{Z}_2\right)$$

$$a_3 = \text{Rel}_U\left(\mathcal{Z}_3\right)$$

$$a_4 = \text{Rel}_U\left(\mathcal{Z}_3\right)$$

$$a_5 = \text{Rel}_U\left(\mathcal{Z}_4\right)$$

$$a_4 = \text{Rel}_U\left(\mathcal{Z}_4\right)$$

$$a_5 = \text{Rel}_U\left(\mathcal{Z}_4\right)$$

$$a_5 = \text{Rel}_U\left(\mathcal{Z}_5\right)$$

$$a_5 = \text{Rel}_U\left(\mathcal{Z}_4\right)$$

$$a_6 = \text{Rel}_U\left(\mathcal{Z}_5\right)$$

$$a_7 = \text{Rel}_U\left(\mathcal{Z}_4\right)$$

$$a_8 = \text{Rel}_U\left(\mathcal{Z}_5\right)$$

Rating	Distance	Price	
--------	----------	-------	--

3.5	0.2	157
2.4	6.5	92
3.6	19.8	207

Epoch 1

W1	W2	W3	W4	W5	W6	W7	W8	W9	W10
0.3	0.4	0.5	2	0.8	4	0.1	0.4	0.9	3

B1		B2		В3		B4		B5	
2		6		0		0.5		1	
Z1	A1	Z2	A2	Z3	А3	Z4	A4	Z5	A5
3.13	3.13	8.15	8.15	35.10	35.10	4.07	4.07	44.81	44.81
				4	4	3	3	26	26

Cost function sum of squares (A5 - Price)^2

Index	С	dC/dW1
1	12586.0127	

$$\frac{\partial C}{\partial w_{q}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial w_{q}}$$

$$\frac{\partial C}{\partial w_{0}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial w_{10}}$$

$$\frac{\partial C}{\partial b_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial b_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial b_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial C}{\partial w_{S}} = \frac{\partial C}{\partial \alpha_{S}} \cdot \frac{\partial \alpha_{S}}{\partial z_{S}} \cdot \frac{\partial z_{S}}{\partial z_{S}}$$

$$\frac{\partial \mathcal{L}}{\partial W_{6}} = \frac{\partial \mathcal{L}}{\partial \alpha_{3}} \frac{\partial \alpha_{3}}{\partial \alpha_{1}} \frac{\partial \mathcal{L}_{3}}{\partial W_{6}}$$

$$\frac{\partial \mathcal{L}}{\partial \omega_{3}} = W_{5} \frac{\partial \mathcal{L}_{3}}{\partial \alpha_{1}} = W_{6}$$

$$\frac{\partial \mathcal{L}}{\partial \omega_{3}} = \frac{\partial \mathcal{L}}{\partial \alpha_{3}} \frac{\partial \mathcal{L}_{3}}{\partial W_{5}}$$

$$\frac{\partial \mathcal{L}}{\partial \omega_{2}} = \frac{\partial^{1}(\mathcal{L}_{1})}{\partial \mathcal{L}_{2}} \frac{\partial \mathcal{L}_{1}}{\partial \mathcal{L}_{2}} = 6^{1}(\mathcal{L}_{2})$$

$$\frac{\partial \mathcal{L}_{1}}{\partial \mathcal{L}_{2}} = \frac{\partial^{1}(\mathcal{L}_{1})}{\partial \mathcal{L}_{2}} \frac{\partial \mathcal{L}_{1}}{\partial \mathcal{L}_{2}} = 6^{1}(\mathcal{L}_{2})$$

$$\frac{\partial \mathcal{L}_{1}}{\partial \mathcal{L}_{2}} = \frac{\partial \mathcal{L}_{1}}{\partial \mathcal{L}_{2}} = \frac{\partial \mathcal{L}_{2}}{\partial \mathcal{L}_{2}$$

$$\frac{\partial C}{\partial w_{4}} = \frac{\partial C}{\partial \alpha_{3}} \frac{\partial \alpha_{1}}{\partial \alpha_{1}} \left(\frac{\partial z_{3}}{\partial \alpha_{1}} \frac{\partial \alpha_{1}}{\partial z_{2}} \frac{\partial z_{1}}{\partial w_{4}} + \frac{\partial z_{3}}{\partial \alpha_{2}} \frac{\partial \alpha_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial w_{4}} \right)$$

$$= 2(\alpha_{3} - \gamma) 6'(z_{3}) \left(W_{5} 6'(z_{1}) \times_{2} + W_{6} 6(z_{2}) \times_{2} \right)$$