Corey Kipp (Student ID: 57723335)

kippc@uci.edu

CS 161

Homework 1

R-1.3

$$10n \log_2 n = n^2$$
$$10 \log_2 n = n$$
$$n \approx 58.77$$

Algorithm A and Algorithm B intersect at the point $n \approx 58.7701$ and after this point Algorithm A is faster than Algorithm B.

R-1.4

$$10n \log_2 n = n\sqrt{n}$$

$$10 \log_2 n = \sqrt{n}$$

$$(10 \log_2 n)^2 = n$$

$$n \approx 20519.8$$

Algorithm A and Algorithm B intersect at the point $n \approx 20519.8$ and after this point Algorithm A is faster than Algorithm B.

R-1.7- NOTE: The colored text shows the groups of functions that are big-Theta of one another

1.
$$1/n => O(1/n)$$

2.
$$2^{100} \Rightarrow O(1)$$

3.
$$log log n \Rightarrow O(log log n)$$

$$4. \quad \sqrt{\log n} \implies O((\log n)^{1/2})$$

$$5. \quad log^2n \implies O((log n)^2)$$

6.
$$n^{0.01} \Rightarrow O(n^{0.01})$$

7.
$$ceiling(\sqrt{n}) \Rightarrow O(n^{1/2})$$

8.
$$3n^{0.5} => O(n^{1/2})$$

9.
$$2^{\log n} = n^{\log_2 2} => O(n)$$

10.
$$5n => O(n)$$

11.
$$n \log_4 n \Rightarrow O(n \log_4 n)$$

12.
$$6n \log n => O(n \log n)$$

13.
$$floor(2n log^2n) => O(n (log n)^2)$$

14.
$$4n^{3/2} \implies O(n^{3/2})$$

15.
$$4^{\log n} = n^{\log_2 4} => O(n^2)$$

16.
$$n^2 log n => O(n^2 log n)$$

17.
$$n^3 => O(n^3)$$

18.
$$2^n => O(2^n)$$

19.
$$4^n => O(4^n)$$

20.
$$2^{2^n} \Rightarrow O(2^{2^n})$$

R-1.10

Base case:

$$n = 1$$

So T(1) = 4, which means that 4n = 4 is true when n = 1

Therefore T(n) = 4n

Induction Step:

Assume that T(k) = 4k where $k \ge 1$

Meaning that T(k+1) = T(k) + 4

So
$$T(k+1) = 4k + 4 = 4(k+1)$$

Since T(n) = 4n hold true when n = k and n = k+1 it will hold true for all $n \ge 1$