Tuto 1.1 Discovering Open Data

November 17, 2020

1 Gravitational Wave Open Data Workshop #3

Tutorial 1.1: Discovering open data from GW observatories This notebook describes how to discover what data are available from the Gravitational-Wave Open Science Center (GWOSC).

Click this link to view this tutorial in Google Colaboratory

1.1 Software installation (execute only if running on a cloud platform or haven't done the installation yet!)

First, we need to install the software, which we do following the instruction in Software Setup Instructions:

```
[1]: # -- Uncomment following line if running in Google Colab
#! pip install -q 'gwosc==0.5.3'
```

Important: With Google Colab, you may need to restart the runtime after running the cell above.

```
[1]: #check the version of the package gwosc you are using
import gwosc
print(gwosc.__version__)
```

0.5.4

The version you get should be 0.5.3. If it's not, check that you have followed all the steps in Software Setup Instructions.

1.2 Querying for event information

The module gwosc.catalog provides tools to search for events in a catalog.

The module gwosc.datasets provides tools for searching for datasets, including full run strain data releases.

For example, we can search for events in the GWTC-1 catalog, the catalog of all events from the O1 and O2 observing runs. A list of available catalogs can be seen in the Event Portal

```
[2]: from gwosc.datasets import find_datasets from gwosc import catalog
```

```
#-- Print all the GW events from the GWTC-1 catalog
gwtc1 = catalog.events('GWTC-1-confident')
print('GWTC-1 events:', gwtc1)
print("")

#-- Print all the large strain data sets from LIGO/Virgo observing runs
runs = find_datasets(type='run')
print('Large data sets:', runs)
```

```
GWTC-1 events: ['GW150914', 'GW151012', 'GW151226', 'GW170104', 'GW170608', 'GW170729', 'GW170809', 'GW170814', 'GW170817', 'GW170818', 'GW170823']

Large data sets: ['BKGW170608_16KHZ_R1', 'O1', 'O1_16KHZ', 'O2_16KHZ_R1', 'O2_4KHZ_R1', 'S5', 'S6']
```

catalog.events also accepts a segment and detector keyword to narrow results based on GPS time and detector:

```
[3]: #-- Detector and segments keywords limit search result print(catalog.events('GWTC-1-confident', detector="L1", segment=(1164556817, ⊔ →1187733618)))
```

```
['GW170104', 'GW170608', 'GW170729', 'GW170809', 'GW170814', 'GW170817', 'GW170818', 'GW170823']
```

Using gwosc.datasets.event_gps, we can query for the GPS time of a specific event:

```
[4]: from gwosc.datasets import event_gps
gps = event_gps('GW190425')
print(gps)
```

1240215503.0

All of these times are returned in the GPS time system, which counts the number of seconds that have elapsed since the start of the GPS epoch at midnight (00:00) on January 6th 1980. GWOSC provides a GPS time converter you can use to translate into datetime, or you can use gwpy.time.

We can query for the GPS time interval for an observing run:

```
[5]: from gwosc.datasets import run_segment print(run_segment('01'))
```

(1126051217, 1137254417)

To see only the confident events in O1:

```
[6]: 01_events = catalog.events('GWTC-1-confident', segment=run_segment('01'))
print(01_events)
```

['GW150914', 'GW151012', 'GW151226']

1.3 Querying for data files

The gwosc.locate module provides a function to find the URLs of data files associated with a given dataset.

For event datasets, one can get the list of URLs using only the event name:

```
[7]: from gwosc.locate import get_event_urls
urls = get_event_urls('GW150914')
print(urls)
```

['https://www.gw-openscience.org/eventapi/json/GWTC-1-confident/GW150914/v3/H-H1 _GWOSC_4KHZ_R1-1126259447-32.hdf5', 'https://www.gw-openscience.org/eventapi/json/GWTC-1-confident/GW150914/v3/H-H1_GWOSC_4KHZ_R1-1126257415-4096.hdf5', 'https://www.gw-openscience.org/eventapi/json/GWTC-1-confident/GW150914/v3/L-L1_GWOSC_4KHZ_R1-1126259447-32.hdf5', 'https://www.gw-openscience.org/eventapi/json/GWTC-1-confident/GW150914/v3/L-L1_GWOSC_4KHZ_R1-1126257415-4096.hdf5']

By default, this function returns all of the files associated with a given event, which isn't particularly helpful. However, we can can filter on any of these by using keyword arguments, for example to get the URL for the 32-second file for the LIGO-Livingston detector:

```
[8]: urls = get_event_urls('GW150914', duration=32, detector='L1')
print(urls)
```

['https://www.gw-openscience.org/eventapi/json/GWTC-1-confident/GW150914/v3/L-L1_GWOSC_4KHZ_R1-1126259447-32.hdf5']

2 Exercises

Now that you've seen examples of how to query for dataset information using the gwosc package, please try and complete the following exercise using that interface:

- How many months did S6 last?
- How many GWTC-1-confident events were detected during O1?
- What file URL contains data for V1 4096 seconds around GW170817?

```
[9]: from gwosc.datasets import run_segment
print(run_segment('S6'))
```

(931035615, 971622015)

```
[12]: (971622015 - 931035615)/(3600*24*30)
```

[12]: 15.658333333333333

```
[17]: from gwpy.time import tconvert
t_start = tconvert(931035615)
t_stop = tconvert(971622015)
```

```
print('t_start =',t_start)
      print('t_stop =',t_stop)
     t_start = 2009-07-07 21:00:00
     t_stop = 2010-10-20 15:00:00
[33]: import datetime
      from dateutil.relativedelta import relativedelta
      duration = relativedelta(t_stop, t_start)
      print ('The S6 run lasted for', duration.years, 'years', duration.months,
       →'months', duration.days, 'days and', duration.hours, 'hours')
     The S6 run lasted for 1 years 3 months 12 days and 18 hours
[36]: from gwosc.datasets import run segment
      O1_events = catalog.events('GWTC-1-confident', segment=run_segment('O1'))
      print(01_events)
      101=len(01 events)
      print('There are', 101, 'GWTC-1-confident events during the 01 run')
     ['GW150914', 'GW151012', 'GW151226']
     There are 3 GWTC-1-confident events during the 01 run
[37]: from gwosc.datasets import run_segment
      S6_events = catalog.events('GWTC-1-confident', segment=run_segment('S6'))
      print(S6_events)
      1S6=len(S6_events)
      print('There are', 1S6, 'GWTC-1-confident events during the S6 run')
     There are 0 GWTC-1-confident events during the S6 run
[39]: from gwosc.locate import get_event_urls
      urls GW170817 = get event urls('GW170817')
      #print(urls GW170817)
      urls_GW170817_V1_4096 = get_event_urls('GW170817', duration=4096, detector='V1')
      print('The URL containing the data for V1 for 4096 seconds around GW170817_{\sqcup}
       →is',urls_GW170817_V1_4096)
     The URL containing the data for V1 for 4096 seconds around GW170817 is
     ['https://www.gw-openscience.org/eventapi/json/GWTC-1-confident/GW170817/v3/V-V1
     _GWOSC_4KHZ_R1-1187006835-4096.hdf5']
 []:
```