Importing & Exporting Data
Low Level Functions
GUI & App Designer
LAB 8

Lab 8 Objectives

- Be able to read, write and manipulate data from files
- Use low-level functions to manipulate data
- Use MATLAB's App Designer to solve problems

Importing & Exporting Data

Spreadsheets:

Command	Purpose
xlsinfo	Determine if file contains MS Excel spreadsheet
xlsread	Read MS Excel spreadsheets
xlswrite	Write to MS Excel spreadsheet

Comma-seperated values (CSV):

Command	Purpose
csvread	Read csv file
csvwrite	Write to csv file
readmatrix	Create an array by reading column-oriented data from a file
dlmwrite	Write matrix to ASCII-delimited file
textscan	Read formatted data from text file or string
type	Display contents of the file

TASK 1 - SCRIPT

- Create a magic square of size 20x20 and using the **xlswrite** function, export the data from the matrix to an excel spreadsheet (.xlsx)
- Use the csvwrite function to export the data to a comma separated variable file (.csv)
- Then use the **dlmwrite** function to export the data to a text time (.txt) using the "pipe" delimiter I (vertical bar), instead of a comma
- For your report attach all 3 files OR screenshots (excel, csv, text), along with the code to your submission

Low Level I/O Functions

• Sometimes, we might not have standard format for files, and we may need to read the file character by character

Command	Purpose
fclose	Close one or all open files
feof	Test for end-of-file
ferror	Information about file I/O errors
fgetl	Read line from file, removing newline characters
fgets	Read line from file, keeping newline characters
fileread	Read contents of file into string
fopen	Open file, or obtain information about open files
fprintf	Write data to text file
fread	Read data from binary file
frewind	Move file position indicator to beginning of open file
fscanf	Read data from text file
fseek	Move to specified position in file
ftell	Position in open file
fwrite	Write data to binary file

TASK 2 - SCRIPT

- For Task 2, you will need to output the same 20x20 matrix created in Task 1 to a text file, but you will need to use low-level File I/O functions so that you can incorporate three plus signs between each value
- You can read through the low-level file I/O documentation for functions such as fopen, fclose and fprintf using MATLAB docs/help
- For your report: Show your code and the text file that contains your magic square

```
Magic Square
400+++21+++41+++340+++320+++101+++121+++260+++240+++181+++20
```

TASK 3 - SCRIPT

- Create a 100x100x100 numerical 3D multidimensional array where each value in each array corresponds to the multiplication of its indices multiplied by 0.001 (use nested for loops)
- Create a MATLAB GUI that asks the user from a pop-up menu, which of the three dimensions they would like to display. This refers to the third axes of the array (user can choose from 1,2 or 3; referring to Array(:,:,X), where X is the chosen number
- Display the array in an axes as a grayscale image example of the GUI shown here —>
- For your report show a screenshot of your code view & all 3 figures for 1,2 and 3

TASK 4 - SCRIPT

- Create a GUI that uses a function created for a projectile launched from a canon above
- The user should input various variables for x0, y0, v0x and v0y, then the user clicks on "redraw plot", and the figure should update in the GUI
- Your GUI should use the following components:
 - Edit Text
 - Static Text
 - Axes
 - Push Button
- An example of what your GUI should look like is shown —>

