Analysis of the Simulation Data from Saddle-Node Bifurcation

```
clearvars;
addpath(genpath('../'))
```

Generating simulation data

```
rng(1)
%{
lambda_0 = -3;
x_0 = 2.1038;
par.T_max = 6;
par.dt = 1e-5;
sigma = 40;
[x_out, t_out, lambda_out] = generating_simulation_data (@V_potential, sigma, x_0, lambda_0, page 1.5)
figure;
plot(t_out,x_out)
sample_id = abs(t_out-3.257)<0.02;
x_out_sample = x_out(sample_id);
t_out_sample = t_out(sample_id);
figure;
plot(t_out_sample,x_out_sample)
N_cell = length(x_out_sample);
sub_sample_id = 1:2:N_cell;
N_cell = length(sub_sample_id);
data = x out sample(sub sample id )';
true_labs = t_out_sample (sub_sample_id );
%save
save('../Data/saddlenode new.mat','x out sample','t out sample','sample id','x out','t out','la
```

Load the Data and Estimate Number of Clusters by EPI

From EPI plot, we intend to seek for the index where peak occurs, which serves as the candidate for the choice of cluster numbers

```
load saddlenode.mat
% parameter and option settings
par.choice_distance = 'euclid';
out = EstClusterNum(data,par);

Computed P-values 500 of 2000 datapoints...
Computed P-values 1000 of 2000 datapoints...
Computed P-values 1500 of 2000 datapoints...
Computed P-values 2000 of 2000 datapoints...
Mean value of sigma: 0.62417
```

Minimum value of sigma: 0.54639 Maximum value of sigma: 0.75299

```
plot(out.ratio(1:30), 'linewidth',2.0)
xlabel('k', 'FontSize', 24);
ylabel('EPI', 'FontSize', 24);
xticks(0:30);
```


Dynamical Analysis and Output

J_new = 1.2227 J_new = 1.2227 J_new = 1.2726

```
tic;
par.choice_distance = 'euclid';
par.K_cluster = 2; %selected based on EPI
par.trials = 20; % number of random trails in MuTrans, increase this to guaratee more robustness
% the main function of MuTrans
Output = DynamicalAnalysis (data, par);
Computed P-values 500 of 2000 datapoints...
Computed P-values 1000 of 2000 datapoints...
Computed P-values 1500 of 2000 datapoints...
Computed P-values 2000 of 2000 datapoints...
Mean value of sigma: 0.62417
Minimum value of sigma: 0.54639
Maximum value of sigma: 0.75299
J \text{ new} = 2.0186
J_{new} = 1.9458
J \text{ new} = 1.7978
J new = 1.2289
J \text{ new} = 1.2248
J new = 1.2228
```

- $J_{new} = 1.2064$
- $J_{new} = 1.2029$
- $J_new = 1.2022$
- $J_new = 1.2014$
- $J_{\text{new}} = 1.2012$
- J = 1.2012
- J = 1.2039
- J_IIEW 1.2033
- $J_{new} = 1.2013$
- $J_new = 1.2012$
- $J_new = 1.2012$
- $J_{new} = 1.9314$
- $J_new = 1.3082$
- $J_{new} = 1.2736$
- $J_{new} = 1.2414$
- $J_{new} = 1.2271$
- J new = 1.2238
- J new = 1.2228
- J = 1.2227
- J new = 1.2227
- $J_{\text{new}} = 1.7034$
- $J_{new} = 1.5456$
- $J_{\text{new}} = 1.3847$
- 5_11CW = 1.50+7
- $J_new = 1.2039$
- $J_new = 1.2013$
- $J_new = 1.2012$
- $J_{new} = 1.2012$
- $J_{\text{new}} = 2.0398$
- J_new = 1.9975
- J new = 1.9374
- 5_11011 213371
- $J_new = 1.8711$
- $J_{new} = 1.8338$
- $J_new = 1.7806$
- $J_new = 1.7073$
- $J_{new} = 1.6795$
- $J_{new} = 1.6351$
- $J_{new} = 1.5776$
- $J_{new} = 1.4679$
- $J_{new} = 1.2018$
- J_new = 1.2013
- $J_new = 1.2012$ $J_new = 1.2012$
- $J_{\text{new}} = 1.7439$
- $J_{new} = 1.2251$
- $J_{new} = 1.2064$
- $J_new = 1.2029$
- $J_new = 1.2022$
- $J_{new} = 1.2014$
- $J_new = 1.2012$
- $J_{new} = 1.2012$
- $J_new = 1.4074$ $J_new = 1.2198$
- J new = 1.2138
- $J_{\text{new}} = 1.2047$
- J_new = 1.2022
- $J_{\text{new}} = 1.2012$
- $J_new = 1.2012$
- $J_{new} = 1.2566$
- $J_new = 1.2138$
- $J_new = 1.2031$ $J_new = 1.2022$
- $J_{\text{new}} = 1.2022$ $J_{\text{new}} = 1.2014$
- $J_{new} = 1.2012$
- $J_{new} = 1.2012$
- $J_{new} = 1.9787$
- $J_new = 1.9039$

- $J_{new} = 1.8986$
- $J_new = 1.8913$
- $J_new = 1.8793$
- $J_{new} = 1.8363$
- $J_{new} = 1.6907$
- J new = 1.6654
- J new = 1.6276
- J_IIEW 1.02/0
- $J_{new} = 1.5695$
- J new = 1.4416
- J new = 1.2014
- $J_new = 1.2012$
- $J_{\text{new}} = 1.2012$
- $J_{new} = 1.4496$
- $J_{\text{new}} = 1.2050$
- $J_new = 1.2024$
- J new = 1.2016
- J = 1.2012
- J = 1.2012
- $J_{new} = 1.9824$
- $J_{\text{new}} = 1.9375$
- $J_{new} = 1.9336$
- $J_{\text{new}} = 1.9305$
- $J_{new} = 1.9276$
- 5_new = 1.5270
- $J_{new} = 1.9196$
- J_new = 1.9075
- $J_{new} = 1.8997$
- $J_{new} = 1.8934$
- $J_{new} = 1.8835$
- $J_new = 1.8584$
- $J_new = 1.6937$
- $J_{new} = 1.6728$
- $J_{\text{new}} = 1.6341$
- $J_{\text{new}} = 1.5790$
- $J_{\text{new}} = 1.4702$
- J_new = 1.2014
- $J_{\text{new}} = 1.2012$
- $J_{new} = 1.2012$
- $J_{\text{new}} = 1.2012$
- J new = 1.2031
- $J_{\text{new}} = 1.2022$
- J new = 1.2014
- $J_{new} = 1.2012$
- $J_new = 1.2012$ $J_new = 1.2270$
- $J_{new} = 1.2235$
- J new = 1.2233
- J new = 1.2227
- $J_{new} = 1.7183$
- J new = 1.2072
- $J_new = 1.2031$
- J new = 1.2022
- $J_new = 1.2014$
- $J_new = 1.2012$
- J_new = 1.2012
- J_new = 1.2220 J_new = 1.2057
- $J_{\text{new}} = 1.2024$
- $J_{new} = 1.2016$
- $J_{\text{new}} = 1.2012$
- $J_{\text{new}} = 1.2012$
- J = 1.9753
- $J_{new} = 1.9521$
- $J_{new} = 1.9035$
- J_new = 1.8986
- $J_new = 1.8833$

```
J_{new} = 1.8606
J_new = 1.8512
J_new = 1.8470
J_{new} = 1.8458
J_{new} = 1.8448
J new = 1.8441
J new = 1.8414
J_{new} = 1.8297
J new = 1.7931
J_{new} = 1.6386
J_{new} = 1.2334
J_{new} = 1.2262
J_{new} = 1.2235
J_{new} = 1.2227
J_{new} = 1.2227
J new = 1.7555
J_{new} = 1.2307
J_{new} = 1.2275
J_new = 1.2241
J_new = 1.2234
J_{new} = 1.2209
J_new = 1.2157
J_new = 1.2083
J_{new} = 1.2039
J_new = 1.2013
J_{new} = 1.2012
J_new = 1.2012
J_new = 1.2070
J_new = 1.2026
J_new = 1.2021
J_new = 1.2014
J_new = 1.2012
J_new = 1.2012
J_new = 1.2866
J_new = 1.2247
J_new = 1.2232
J_{new} = 1.2227
J_new = 1.2227
J new = 1.2227
E_{best} = 0.0375
```

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	1	1.20181		1.83e-05
1	11	1.17728	168199	0.00031
2	13	1.17708	0.1	0.000334
3	14	1.17143	1	0.00031
4	15	1.16935	1	0.000237
5	16	1.16811	1	0.000192
6	17	1.16574	1	0.000122
7	18	1.16484	1	0.000138
8	19	1.16393	1	6.32e-05
9	20	1.16347	1	6.29e-05
10	21	1.16293	1	0.000139
11	22	1.16238	1	0.000276
12	23	1.16147	1	0.000109
13	24	1.16084	1	5.13e-05
14	25	1.16049	1	9.18e-05
15	26	1.16029	1	9.94e-05
16	27	1.15977	1	4.86e-05
17	28	1.15947	1	4.86e-05
18	29	1.1593	1	4.19e-05
19	31	1.15915	0.487773	8.1e-05
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	32	1.15903	1	7.84e-05

21	33	1.15891	1	3.4e-05	
22	34	1.15881	1	9.82e-05	
23	35	1.15873	1	3.35e-05	
24	36	1.15864	1	3.12e-05	
25	38	1.15857	0.444354	0.000106	
26	39	1.15848	1	8.83e-05	
27	41	1.15832	0.47393	0.000129	
28	42	1.15818	1	0.000118	
29	43	1.15804	1	6.79e-05	
30	44	1.15792	1	6.74e-05	
31	45	1.15782	1	9.52e-05	
32	46	1.15773	1	3.66e-05	
	47	1.15775	1		
33				0.000128	
34	48	1.15757	1	3.84e-05	
35	49	1.15751	1	2.4e-05	
36	50	1.15743	1	0.000149	
37	51	1.15735	1	3.36e-05	
38	52	1.15729	1	3.15e-05	
39	53	1.15722	1	6.24e-05	
				First-order	
Iteration	Func-count	f(x)	Step-size	optimality	
40	54	1.15718	1	3.82e-05	
41	55	1.1571	1	5.86e-05	
42	56	1.15704	1	6.87e-05	
43	57	1.15698	1	4.89e-05	
44	58	1.15688	1	5.25e-05	
45	59		1		
		1.1568		3.5e-05	
46	60	1.15674	1	7.43e-05	
47	61	1.15666	1	5.69e-05	
48	62	1.1566	1	3.66e-05	
49	63	1.15657	1	2.86e-05	
50	64	1.15655	1	2.3e-05	
51	65	1.15654	1	2.43e-05	
52	66	1.15652	1	1.6e-05	
53	67	1.15652	1	9.58e-06	
54	68	1.15651	1	7.84e-06	
55	69	1.15651	1	6.93e-06	
56	70	1.1565	1	6e-06	
57	71	1.1565	1	6.79e-06	
58	72	1.1565	1	6.78e-06	
59	73	1.1565	1	7e-06	
39	73	1.1505	1	First-order	
Iteration	Func count	٤(٧)	Cton cito		
	Func-count	f(x)	Step-size	optimality	
60	74	1.15649	1	6.09e-06	
61	75	1.15649	1	5.87e-06	
62	76	1.15649	1	5.49e-06	
63	77	1.15649	1	5.67e-06	
64	78	1.15649	1	6.04e-06	
65	79	1.15648	1	5.02e-06	
66	80	1.15648	1	4.98e-06	
67	81	1.15648	1	4.55e-06	
68	82	1.15648	1	5e-06	
69	83	1.15648	1	3.7e-06	
70	84	1.15648	1	3.09e-06	
71	85	1.15648	1	3.56e-06	
72	86	1.15647	1	3.76e-06	
73	87	1.15647	1	4.83e-06	
74	88	1.15647	1	4.57e-06	
75 75	89	1.15647	1	2.92e-06	
			1		
76 77	90	1.15647		2.76e-06	
77	91	1.15647	1	2.82e-06	
78	92	1.15647	1	3e-06	
79	93	1.15647	1	3.07e-06	
				First-order	
Iteration	Func-count	f(x)	Step-size	optimality	

80	94	1.15647	1	3.96e-06
81	95	1.15647	1	4.51e-06
82	96	1.15647	1	4.26e-06
83	97	1.15647	1	2.2e-06
84	98	1.15647	1	1.86e-06
85	99	1.15647	1	2.09e-06
86	100	1.15647	1	2.75e-06
87	101	1.15646	1	2.81e-06
88	102	1.15646	1	3.33e-06
89	103	1.15646	1	2.27e-06
90	104	1.15646	1	1.58e-06
91	105	1.15646	1	1.71e-06
92	106	1.15646	1	1.87e-06
93	107	1.15646	1	2.18e-06
94	108	1.15646	1	3.47e-06
95	109	1.15646	1	4.49e-06
96	110	1.15646	1	4.47e-06
97	111	1.15646	1	2.79e-06
98	112	1.15646	1	1.68e-06
99	113	1.15646	1	1.73e-06
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
100	114	1.15646	1	2.1e-06
101	115	1.15646	1	2.18e-06
102	116	1.15646	1	2.08e-06
103	117	1.15646	1	1.82e-06
104	118	1.15646	1	1.22e-06
105	119	1.15646	1	1.4e-06
106	120	1.15646	1	1.19e-06
107	121	1.15646	1	1.12e-06
108	122	1.15646	1	1.07e-06
109	123	1.15646	1	1.08e-06
110	124	1.15645	1	1.32e-06
111	125	1.15645	1	1.27e-06
112	126	1.15645	1	1.58e-06
113	127	1.15645	1	1.71e-06
114	128	1.15645	1	1.15e-06
115	129	1.15645	1	9.26e-07

Optimization completed: The first-order optimality measure, 9.256173e-07, is less than options.OptimalityTolerance = 1.000000e-06.

Elapsed time is 77.902009 seconds.

toc;

Elapsed time is 77.917476 seconds.

```
class_order = Output.class_order;
rho_class = Output.rho_class;
perm_class = Output.perm_class;
P_perm = Output.P_perm;
P_hat = Output.P_hat;
P_appr_perm = Output.P_appr_perm;
P_rho = Output.P_rho;
labs_perm = Output.labs_perm;
data_perm = Output.data_perm;
mu_hat = Output.mu_hat;
k = Output.k;
H = Output.H;
```

Plot the Cell-Cell Scale rwTPM

```
max_P = 0.2* max(max(P_rho));
c_lim = [0 max_P];
cmp = 'ylgn';

figure('rend','painters','pos',[10 10 500 450])
colormap(brewermap([],cmp))
imagesc(P_perm);
axis off
set(gca,'xtick',[],'ytick',[]);
caxis(c_lim)
```



```
%colorbar;
```

Plot the Cluster-Cluster Scale rwTPM

```
figure('rend','painters','pos',[10 10 500 450])
colormap(brewermap([],cmp))
imagesc(P_appr_perm);
axis off
set(gca,'xtick',[],'ytick',[]);
caxis(c_lim)
```



```
%colorbar;
```

Plot the Cell-Cluster Scale rwTPM

```
figure('rend','painters','pos',[10 10 500 450])
colormap(brewermap([],cmp))
imagesc(P_rho);
axis off
set(gca,'xtick',[],'ytick',[]);
caxis(c_lim)
%colorbar;
box off
```


Plot Transition Cell Score (TCS)

```
figure;
plot(labs_perm, rho_class(:,1),'LineWidth',2)
xlabel('Time', 'FontSize', 24);
ylabel('TCS', 'FontSize', 24);
```


Plot Actual Simulation Trajectory (Gene Expression)

```
figure;
plot(labs_perm, data_perm,'LineWidth',2)
xlabel('Time', 'FontSize', 24);
ylabel('Gene Expression', 'FontSize', 24);
```

