F *Нет верного ответа.*

Теория вероятностей и математическая статистика Экзамен, 21.12.2015 Имя, фамилия и номер группы: Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 & Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попадёт хотя бы один раз из двух равна A 0.8 $\boxed{\text{C}}$ 0.36 E 0.9 B 0.64 0.96 F *Нет верного ответа.* Имеется три монетки. Две «правильных» и одна — с «орлами» по обеим сторонам. Вася выбирает одну монетку наугад и подкидывает её два раза. Вероятность того, что оба раза выпадет орел равна |A| 3/4 $\boxed{\text{C}}$ 2/3 1/2D 1/4 **F** Нет верного ответа. B 1/3 Случайная величина X равномерна на отрезке [0;10]. Вероятность $\mathbb{P}(X>3|X<7)$ Вопрос 3 🌲 равна C 3/10 |A| 3/7E 0.21 4/7 B 7/10 F *Нет верного ответа.* Вопрос 4 🌲 Если события A, B, C попарно независимы, то |A| События A, B, C зависимы в совокупности В События A, B, C независимы в совокупности |C| Событие $A \cup B \cup C$ обязательно произойдёт \overline{D} События A, B, C несовместны $E \mid \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ Нет верного ответа. Вопрос 5 & Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попал оба раза, если известно, что он попал хотя бы один раз из двух, равна \boxed{A} 3/4 |C| 1/4[E] 1/2

2/3

B 1/3

Вопрос 7 \clubsuit В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Пусть X число точек, попавших в круг. Математическое ожидание величины X равно

В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Наиболее вероятное число точек, попавших в круг, равно

В квадрат вписан круг. Последовательно в квадрат наудачу бросают восемь точек. Пусть Y — число точек, попавших в круг, при первых четырех бросаниях, а Z — число точек. попавших в круг, при оставшихся четырех бросаниях. Дисперсия Var(Y-Z) равна

Вопрос 10 🐇 🛮 В квадрат вписан круг. Последовательно в квадрат наудачу бросают восемь точек. Пусть Y — число точек, попавших в круг, при первых четырех бросаниях, а Z — число точек, попавших в круг, при оставшихся четырех бросаниях. Ковариация $\mathrm{Cov}(Y,Z)$ равна

Вопрос 11 \clubsuit В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Пусть X число точек, попавших в круг. Дисперсия величины X равна

Вопрос 12 🛦 Всем известно, что Маша звонит Васе в среднем 10 раз в день. Число звонков, совершенных Машей, имеет распределение Пуассона. Вероятность того, что Маша ни разу не позвонит Васе в течение дня, равна

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

	Α	0
П		_

C -0.2

0.1

 $\overline{D} = -0.1$

F Нет верного ответа.

Вопрос 14 \clubsuit Ковариация Cov(X,Y) равна

$$A - 0.7$$

C 0.1

E 0.4

$$\boxed{\rm B} -0.5$$

0.9

F Нет верного ответа.

Вопрос 15 \clubsuit Вероятность того, что Y=1 при условии, что X>0 равна

0.6

 \boxed{C} 0.2

E 0.4

B 0.5

 \boxed{D} 0.3

F Нет верного ответа.

Вопрос 16 \clubsuit Дисперсия случайной величины X равна

A 0.4

 \boxed{C} 0.2

E 1.04

0.44

D 0.6

F Нет верного ответа.

Вопрос 17 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

4/3

C 2

E 1/2

B 1

 $\boxed{\mathbf{D}}$ 0

F Нет верного ответа.

Вопрос 18 & Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

5/4

C 1/2

E 1/4

B 1

|D| 2

|F| *Нет верного ответа.*

Вопрос 19 & Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

A 0.8

C 0.4

0

B 0.25

 $\boxed{\mathrm{D}}$ 0.5

$$f(x,y) = egin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

$$D f_{X|Y=1}(x) = \begin{cases} (x+2)/2 \text{ если } x \in [0;1] \\ 0, \text{ иначе} \end{cases}$$

$$\boxed{\mathrm{B}} \ f_{X|Y=1}(x) = \begin{cases} (x+4)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$$

$$f_{X|Y=1}(x) = \begin{cases} (2x+2)/5 & \text{сып и } \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

$$\boxed{D} \ f_{X|Y=1}(x) = \begin{cases} (x+2)/2 & \text{сып и } \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

$$\boxed{E} \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 & \text{если } x \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

$$\boxed{C} \ f_{X|Y=1}(x) = \begin{cases} (2x+1)/2 & \text{если } x \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

$$\boxed{F} \ Hem \ sephoro \ omsema.$$

$$\boxed{ \mathbb{C} } \ f_{X|Y=1}(x) = egin{cases} (2x+1)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$$

Вопрос 21 \clubsuit Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией плотности, то константа c равна

A 9

C 5/9

E 1

B 5

9/5

F Нет верного ответа.

Вопрос 22 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

11/9

C 13/7

E 6/5

|B| 4/3

 \boxed{D} 2/3

|F| *Нет верного ответа.*

Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна Вопрос 23 🌲

|A| 3/5

|C| 5/8

 $\boxed{\mathrm{E}}$ 5/6

B 3/8

1/8

F *Нет верного ответа.*

 ${f B}$ вопросах 24-25 известно, что ${\Bbb E}(X)=-1,\,{
m Var}(X)=1,\,{\Bbb E}(Y)=-4,\,{
m Var}(Y)=4,\,{
m Corr}(X,Y)=1$

Корреляция Corr((1-X)/2, (Y+5)/2) равна Вопрос 24 🌲

|A| -0.5

C 1/8

 $E \mid 1$

B - 1/8

0.5

|F| *Нет верного ответа.*

Ковариация Cov(2X + Y, X - 3Y) равна Вопрос 25 🌲

A 5

-5

 \mathbf{B} 0

 $\boxed{\mathrm{D}}$ -1

Вопрос 26 🌲 Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

$$\bar{\mathbf{A}} (\bar{X} - \mu)/\sigma$$

$$\sqrt{n}(\bar{X}-\mu)/\sigma$$

$$\boxed{\mathbf{D}} (\bar{X} - \mu)/(\sqrt{n}\sigma)$$

 $\overline{|F|}$ Hem верного ответа.

Вопрос 27 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X)=1, \, \mathrm{Var}(X)=4.$ Вероятность $\mathbb{P}(X^2 \ge 25)$ обязательно попадает в интервал

$$\boxed{A} [0; 4/625]$$

D [1/25; 1]

$$\boxed{\text{B}} [4/25; 1]$$

[0; 1/5]

$$\boxed{C}$$
 [0; 1/25]

[F] [0; 4/25]

Вопрос 28 🌲 Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \ge 4)$, равен

$$C$$
 [0.5; 1]

$$\boxed{\mathrm{D}} \ [0.0625; 1]$$

 Φ ункция плотности случайной величины X имеет вид Вопрос 29 🌲

$$f(x) = \frac{1}{\sqrt{8\pi}} e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

$$\boxed{\mathbf{A}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$$

$$\boxed{\mathbf{C}} \ \mathbb{E}(X) = 3$$

$$\boxed{\mathbf{E}} \ \mathbb{P}(X > 3) = 0.5$$

$$\boxed{\mathbf{B}} \ \mathbb{P}(X=0) = 0$$

$$\boxed{\mathbf{D}} \ \mathbb{P}(X < 0) > 0$$

$$Var(X) = 8$$

Вопрос 30 . Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

- $\overline{{
 m A}}$ $\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине
- $\bar{\mathbf{B}}$ \bar{X} сходится по вероятности к нулю
- \square Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0
- \bar{X} сходится по распределению к равномерной на (-1,1) величине
- $|E| \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$
- F Вероятность $\mathbb{P}(\bar{X} > 0)$ стремится к 0.5

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1: A B C **E** F

Вопрос 2: A B C D

Вопрос 3: |А| |В| |С|

Вопрос 4: A B C D

Вопрос 5 : [А] [В] [С]

Вопрос 6: А С С

Вопрос 7: **В** В С D Е F

Вопрос 8 : А С С

Вопрос 9:

Вопрос 10: A B C D

Вопрос 11 : А В С

Вопрос 12: А В С

Вопрос 13: А В С D

Вопрос 14: А В |C|

Вопрос 15:

Вопрос 16: А С С

Вопрос 17:

Вопрос 18 :

Вопрос 19: А В С

Вопрос 20:

Вопрос 21 : А В С

Вопрос 22 :

Вопрос 23: А В С

Вопрос 24 : |А| |В| |С|

Вопрос 25 : А В

Вопрос 26 : А В С D

Вопрос 27: АВС В

Вопрос 28 : А С С Б Е Г

Вопрос 29 : А В С D

Вопрос 30: А В С

Экзамен, 21.12.2015

Имя, фамили	ия и номер группы:	
Можно пол	ьзоваться простым калькулятором. В каждера!	цом вопросе единственный верный ответ.
Вопрос 1 🕹 Вероятность, ч	Крошка Джон попадает в яблочко с вероя что он попал оба раза, если известно, что ог	
A 1/4	2/3	E 1/3
B 1/2	D 3/4	F Нет верного ответа.
Вопрос 2 ♣ Вася выбирает выпадет орел	Имеется три монетки. Две «правильных» г одну монетку наугад и подкидывает её д равна	
\boxed{A} 2/3	C 1/4	E 3/4
1/2	D 1/3	F <i>Hem верного ответа.</i>
 A P(A ∩ B) B События C События D События E Событие 	Если события A, B, C попарно независим $(C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ A, B, C зависимы в совокупности (A, B, C) несовместны (A, B, C) независимы в совокупности (A, B, C) обязательно произойдёт ного ответа.	иы, то
Вопрос 4 🖨	Случайная величина X равномерна на отр	езке $[0;10]$. Вероятность $\mathbb{P}(X>3 X<7)$
A 3/10	C 3/7	4/7
B 0.21	D 7/10	F Нет верного ответа.
Вопрос 5 ♣ Вероятность,	Крошка Джон попадает в яблочко с вероя что он попадёт хотя бы один раз из двух р	
0.96	C 0.8	E 0.9
B 0.36	D 0.64	F Нет верного ответа.

А несовместны удовлетворяют соотношению $\mathbb{P}(A|B)$ >

[E] удовлетворяют соотношению $\mathbb{P}(A \cap B) =$ $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(A \cup B)$

С образуют полную группу событий

|F| *Нет верного ответа.*

Вопрос 7 🐇 В квадрат вписан круг. Последовательно в квадрат наудачу бросают восемь точек. Пусть Y — число точек, попавших в круг, при первых четырех бросаниях, а Z — число точек, попавших в круг, при оставшихся четырех бросаниях. Ковариация Cov(Y, Z) равна

 Λ π^2

 $\boxed{\mathrm{B}}$ -2π

F Нет верного ответа.

Всем известно, что Маша звонит Васе в среднем 10 раз в день. Число звонков, совершенных Машей, имеет распределение Пуассона. Вероятность того, что Маша ни разу не позвонит Васе в течение дня, равна

 $\frac{1}{10!}e^{-10}$

 $\begin{array}{|c|c|}\hline C & 1 - e^{-10}\\\hline D & 1 - e^{10}\\\hline \end{array}$

 $[E] 10 e^{-10}$

 e^{-10}

F Нет верного ответа.

В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Наиболее вероятное число точек, попавших в круг, равно

|A| 6

 $D 2\pi$

F *Нет верного ответа.*

Вопрос 10 🐇 В квадрат вписан круг. Последовательно в квадрат наудачу бросают восемь точек. Пусть Y — число точек, попавших в круг, при первых четырех бросаниях, а Z — число точек, попавших в круг, при оставшихся четырех бросаниях. Дисперсия $\mathrm{Var}(Y-Z)$ равна

 Λ π^2

 $C 3\pi^2 - 4$

 $\boxed{\mathrm{B}} \pi^2 - 2\pi$

 $2\pi - \pi^2/2$

В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Пусть X число точек, попавших в круг. Математическое ожидание величины X равно

 Λ

 $\boxed{\text{C}} \pi/4$

 $B 4\pi$

 2π

F *Нет верного ответа.*

Вопрос 12 \clubsuit В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Пусть X число точек, попавших в круг. Дисперсия величины X равна

 $\boxed{A} \ 3\pi^2 - 2$

 $C 3\pi^2 - 4$

 $\boxed{\mathrm{E}} \pi^2 - 2\pi$

 $2\pi - \pi^2/2$

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 🌡	Ковариация	Cov	(X,Y)	равна

_		
ı	٨	0.5
1.	$\boldsymbol{\pi}$	-0.5

 $\boxed{\mathrm{C}}$ 0.1

0.9

$$\boxed{\text{B}} -0.7$$

D 0.4

F Нет верного ответа.

Вопрос 14 \clubsuit Вероятность того, что Y=1 при условии, что X>0 равна

0.6

E 0.2

B 0.3

D 0.4

F Нет верного ответа.

Вопрос 15 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

 $\mathbf{A} = 0$

 \boxed{C} 0.2

[E] -0.2

0.1

D -0.1

F Нет верного ответа.

Вопрос 16 \clubsuit Дисперсия случайной величины X равна

0.44

C 0.4

E 0.2

B 0.6

D 1.04

|F| *Нет верного ответа.*

Вопрос 17 & Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

A 0.25

C 0.5

E 0.4

B 0.8

0

F *Нет верного ответа.*

Вопрос 18 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

4/3

C 2

E 1

 $\mathbf{B} = 0$

D 1/2

F *Нет верного ответа.*

Вопрос 19 \clubsuit Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A 2

5/4

E 1

B 1/2

D 1/4

В вопросах 20-23 совместная функция плотности пары X и Y имеет вид

$$f(x,y) = \begin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

11/9

C | 4/3

 $\boxed{\mathrm{E}}$ 2/3

B 13/7

 $\boxed{D} \ 6/5$

F Нет верного ответа.

Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна Вопрос 21 🌲

 \boxed{A} 3/8

1/8

[E] 3/5

B 5/8

 $\boxed{D} \ 5/6$

F *Нет верного ответа.*

Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией Вопрос 22 🌲 плотности, то константа c равна

A 5/9

 \boxed{C} 1

9/5

D 9

F Нет верного ответа.

Вопрос 23 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

 ${f B}$ вопросах 24-25 известно, что ${\Bbb E}(X)=-1,\,{\rm Var}(X)=1,\,{\Bbb E}(Y)=-4,\,{\rm Var}(Y)=4,\,{\rm Corr}(X,Y)=1$

Вопрос 24 🌲 Корреляция Corr((1-X)/2, (Y+5)/2) равна

A 1

0.5

[E] -0.5

B 1/8

 $\boxed{D} - 1/8$

F Нет верного ответа.

Вопрос 25 ♣ Ковариация Cov(2X + Y, X - 3Y) равна

 $|\mathbf{A}| - 1$

C 1

 $|\mathbf{E}| 0$

-5

D 5

Вопрос 26 🌲 Φ ункция плотности случайной величины X имеет вид

$$f(x) = \frac{1}{\sqrt{8\pi}}e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

 $A \mathbb{P}(X=0)=0$

 $\boxed{\mathrm{E}} \ \mathbb{P}(X < 0) > 0$

 $\boxed{\mathbf{B}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

Var(X) = 8

Вопрос 27 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X) = 1$, Var(X) = 4. Вероятность $\mathbb{P}(X^2 \ge 25)$ обязательно попадает в интервал

[A] [0; 1/25]

D [0; 4/25]

[0; 1/5]

E [0:4/625]

 \boxed{C} [4/25; 1]

F [1/25; 1]

Вопрос 28 \clubsuit Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \ge 4)$, равен

[A] [0; 0.25]

[C] [0.5; 1]

[0; 0.0625]

B [0.25; 1]

D [0.0625; 1]

F Нет верного ответа.

Вопрос 29 . Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

 $\boxed{\mathbf{A}} \ \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$

 \bar{X} сходится по распределению к равномерной на (-1,1) величине

 \square Вероятность $\mathbb{P}(\bar{X}>0)$ стремится к 0.5

 $\overline{\mathrm{D}}$ \bar{X} сходится по вероятности к нулю

[E] Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0

 $|F|\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине

Вопрос 30 \clubsuit Величины X_1, X_2, \dots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $\mathrm{Var}(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

 $\sqrt{n}(\bar{X}-\mu)/\sigma$

 $\begin{array}{c|c} \hline \textbf{A} & (\bar{X}-\mu)/\sigma & \hline \hline \textbf{C} & (\bar{X}-\mu)/(\sqrt{n}\sigma) \\ \hline \textbf{B} & (\bar{X}-n\mu)/(\sqrt{n}\sigma) & \hline \textbf{D} & \bar{X} \\ \end{array}$

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1: A B **В** D E F

Вопрос 2: А С С Б Е Г

Вопрос 3: A B C D E

Вопрос 4: АВСВСББ

Вопрос 5: В В С D E F

Вопрос 7: АВСЕЕ

Вопрос 9: А 🔳 С D Е F

Вопрос 10: A B C E F

Вопрос 11 : А В С Е Е

Вопрос 12: А 🔳 С 🖸 Е F

Вопрос 13: А В С D F

Вопрос 14 : А В ■ D Е F

Вопрос 15: |A| | | | |C| |D| |E| |F

Вопрос 16: В В С D E F

Вопрос 17: А В С Е Е

Вопрос 18: 📕 В С D Е F

Вопрос 19: А В В Б Б F

Вопрос 20:

Вопрос 21 : А В В Б Б Е

Вопрос 22 : А 🔳 С D Е F

Вопрос 23: АВВ В БЕ Б

Вопрос 24 : А В П Б Б Г

Вопрос 25 : А С С Б Е Г

Вопрос 26 : A B C D E В Вопрос 27 : A В C D E F

Вопрос 28 : А В С Б Т

Вопрос 29 : А 🔳 С D Е F

Вопрос 30: АВСВЕ

B 7/10 Вопрос 3 \clubsuit Если события A, B, C попарно независимы, то

- \overline{A} События A, B, C несовместны
- [B] События A, B, C зависимы в совокупности
- \square Событие $A \cup B \cup C$ обязательно произойдёт
- [E] События A, B, C независимы в совокупности
- Нет верного ответа.

равна

Вопрос 4 & Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попал оба раза, если известно, что он попал хотя бы один раз из двух, равна

E 1/3 $\boxed{\text{C}}$ 3/4 |A| 1/2D 1/4 **F** Нет верного ответа. 2/3

Имеется три монетки. Две «правильных» и одна — с «орлами» по обеим сторонам. Вася выбирает одну монетку наугад и подкидывает её два раза. Вероятность того, что оба раза выпадет орел равна

A 1/4 $\boxed{\mathrm{E}}$ 2/3 1/2 D 1/3 B 3/4 |F| *Нет верного ответа.*

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Воп	ooc 1	3	Математическое ожидание	величины У п	ри условии.	что $X=0$,	равно

	0.1
--	-----

$$C -0.1$$

$$\overline{D} = -0.2$$

F Нет верного ответа.

Вопрос 14 \clubsuit Вероятность того, что Y=1 при условии, что X>0 равна

A 0.2

 $\boxed{\text{C}}$ 0.3

E 0.4

0.6

 $\boxed{\mathrm{D}}$ 0.5

F Нет верного ответа.

Вопрос 15 \clubsuit Дисперсия случайной величины X равна

A 0.4

C 0.6

0.44

B 0.2

D 1.04

F Нет верного ответа.

Вопрос 16 \clubsuit Ковариация Cov(X,Y) равна

$$\boxed{\rm B} -0.7$$

$$D = -0.5$$

F | *Нет верного ответа.*

Вопрос 17 Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

$$\bigcirc$$
 0.25

B 0.4

 $\boxed{\mathrm{D}}$ 0.5

F *Нет верного ответа.*

Вопрос 18 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

4/3

C 1

E 1/2

B 2

D 0

F *Нет верного ответа.*

Вопрос 19 \clubsuit Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A 1/2

C 1/4

E 1

5/4

 $\boxed{\mathbf{D}}$ 2

В вопросах 20-23 совместная функция плотности пары X и Y имеет вид

$$f(x,y) = egin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 🌲 Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна

1/8

|C| 3/5

E 5/6

B 5/8

 $\boxed{D} \ 3/8$

F Нет верного ответа.

Вопрос 21 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

|A| 4/3

C 6/5

[E] 13/7

11/9

D 2/3

F *Нет верного ответа.*

Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией Вопрос 22 🌲 плотности, то константа c равна

 \boxed{A} 5/9

C 1

B 5

9/5

F Нет верного ответа.

Вопрос 23 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

 ${f B}$ вопросах 24-25 известно, что ${\Bbb E}(X)=-1,\,{\rm Var}(X)=1,\,{\Bbb E}(Y)=-4,\,{\rm Var}(Y)=4,\,{\rm Corr}(X,Y)=1$

Ковариация Cov(2X + Y, X - 3Y) равна Вопрос 24 🌲

 $\mathbf{A} = 0$

E 5

B 1

F Нет верного ответа.

Вопрос 25 \clubsuit Корреляция Corr((1-X)/2, (Y+5)/2) равна

|A| - 1/8

C 1/8

 \mathbf{E} 1

0.5

D = -0.5

 Φ ункция плотности случайной величины X имеет вид Вопрос 26 🕹

$$f(x) = \frac{1}{\sqrt{8\pi}} e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

 $\boxed{\mathbf{A}} \ \mathbb{E}(X) = 3$

 $\boxed{\mathbf{C}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

 $E \mid \mathbb{P}(X=0) = 0$

 $\boxed{\mathrm{B}} \ \mathbb{P}(X > 3) = 0.5$

Var(X) = 8

F $\mathbb{P}(X < 0) > 0$

Вопрос 27 🌲 Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

- $|A|\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине
- В Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0
- |C| \bar{X} сходится по вероятности к нулю
- $\boxed{\mathbf{D}} \ \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$
- |E| Вероятность $\mathbb{P}(\bar{X}>0)$ стремится к 0.5
- \bar{X} сходится по распределению к равномерной на (-1,1) величине

Вопрос 28 \clubsuit Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

 $\boxed{\mathbf{A}} \ (\bar{X} - \mu)/(\sqrt{n}\sigma) \qquad \boxed{\mathbf{C}} \ (\bar{X} - n\mu)/(\sqrt{n}\sigma) \qquad \boxed{\mathbf{M}} \ \sqrt{n}(\bar{X} - \mu)/\sigma$

 $\bar{\mathbf{B}}$ \bar{X}

 $\boxed{\mathrm{D}} (\bar{X} - \mu)/\sigma$

F Нет верного ответа.

Вопрос 29 \clubsuit Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| > 4)$, равен

[A] [0; 0.25]

[0; 0.0625]

E [0.0625; 1]

B [0.25; 1]

 $\boxed{D} [0.5; 1]$

F *Нет верного ответа.*

Вопрос 30 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X) = 1$, Var(X) = 4. Вероятность $\mathbb{P}(X^2 \geq 25)$ обязательно попадает в интервал

A [4/25; 1]

D [0; 4/25]

[B] [1/25; 1]

[E] [0; 1/25]

[0; 1/5]

[F] [0; 4/625]

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : А В С Е Е

Вопрос 2: АВВ БЕБ

Вопрос 3: A B C D E

Bonpoc $4: A \square C D E F$

Вопрос 5: [A] [B] [D] [E] [F]

Вопрос 6: АВВ В Б

Вопрос 7: **В** В С D Е F

Вопрос 8 : А С С Б Е Г

Вопрос 9:

Вопрос 10: A B C E F

Вопрос 11 : **В** В С D Е F

Вопрос 12: А В С D 🖪 F

Вопрос 13: В С D Е F

Вопрос 14: А С С Б Е Г

Вопрос 15 : A B C D **F**

Вопрос 16: А В С D 🖪 F

Вопрос 17: А В С D Б Е

Вопрос 18: В С D Е F

Вопрос 19: А С С Б Е Г

Вопрос 20: В В С D Е F

Вопрос 21 : А С С Б Е F

Вопрос 22 : А В С Е Е

Вопрос 23: В В С Б Е

Вопрос 24 : А В П Б Б Б

Вопрос 25 : А 🔳 С D Е F

Bonpoc 29: II

C D E I

Вопрос 27 : АВВСВ

Вопрос 26: А В С

Bonpoc 21. In D C D D =

Вопрос 28: A B C D F

Вопрос 29: АВВ В БЕБ

Вопрос 30: А В В Б Б Е

Теория вероятностей и математическая статистика

Нет верного ответа.

Экзамен, 21.12.2015

zeepiin sepeiimeere		3 13 an i 9 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Имя, фамилия и ном	ер группы:	
Можно пользовать Ни пуха, ни пера!	я простым калькулятором. В каж	кдом вопросе единственный верный ответ
-		» и одна— с «орлами» по обеим сторонам два раза. Вероятность того, что оба раза
A 2/3	C 1/4	E 3/4
B 1/3	1/2	F Нет верного ответа.
		оятностью 0.8. Его выстрелы независимы он попал хотя бы один раз из двух, равна
2/3	C 3/4	E 1/2
B 1/3	D 1/4	F Нет верного ответа.
Вопрос 3 🌲 Случай равна	ная величина X равномерна на от	грезке $[0;10]$. Вероятность $\mathbb{P}(X>3 X<7)$
A 3/7	C 7/10	E 0.21
B 3/10	4/7	F <i>Нет верного ответа.</i>
	а Джон попадает в яблочко с верс опадёт хотя бы один раз из двух	оятностью 0.8. Его выстрелы независимы равна
A 0.9	C 0.64	E 0.36
0.96	D 0.8	F Нет верного ответа.
Вопрос 5 🌲 Если с	обытия A,B,C попарно независт	имы, то
$oxed{A}$ Событие $A \cup B \cup$	${\cal C}$ обязательно произойдёт	
\blacksquare События A, B, C	независимы в совокупности	
$\overline{\mathbb{C}}$ События A, B, C	зависимы в совокупности	
	$\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$	
[E] События A, B, C	' несовместны	

Вопрос 12 ♣ Всем известно, что Маша звонит Васе в среднем 10 раз в день. Число звонков, совершенных Машей, имеет распределение Пуассона. Вероятность того, что Маша ни разу не позвонит Васе в течение дня, равна

 $\underline{\underline{\mathbf{A}}} \ 1 - e^{10}$

$$\boxed{\text{C}} 1 - e^{-10}$$

$$[E] 10 e^{-10}$$

 $\frac{1}{10!}e^{-10}$

$$e^{-10}$$

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 \clubsuit Вероятность того, что Y = 1 при условии, что X > 0 равна

A 0.5

0.6

 $\boxed{\mathrm{E}}$ 0.2

B 0.3

D 0.4

F Нет верного ответа.

Вопрос 14 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

A - 0.2

0.1

E 0.2

 $\boxed{\rm B} -0.1$

 $\boxed{\mathbf{D}}$ 0

F Нет верного ответа.

Вопрос 15 \clubsuit Дисперсия случайной величины X равна

A 0.2

C 0.6

0.44

B 1.04

D 0.4

F *Нет верного ответа.*

Вопрос 16 \clubsuit Ковариация Cov(X,Y) равна

A - 0.7

C -0.5

0.9

B 0.4

D 0.1

F Нет верного ответа.

Вопрос 17 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

A 1

C 2

4/3

B 1/2

D 0

F *Нет верного ответа.*

Вопрос 18 \clubsuit Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

0

C 0.25

E 0.8

B 0.4

 \boxed{D} 0.5

|F| *Нет верного ответа.*

Вопрос 19 \clubsuit Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A 2

5/4

 $\boxed{E} \ 1/2$

B 1

D 1/4

$$f(x,y) = egin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

 \boxed{A} 2/3

11/9

E 13/7

|B| 4/3

 \boxed{D} 6/5

F Нет верного ответа.

Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна Вопрос 21 🌲

 \boxed{A} 5/6

1/8

E 5/8

B 3/5

D | 3/8

F Нет верного ответа.

Вопрос 22 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

Вопрос 23 \clubsuit Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией плотности, то константа c равна

 $|\mathbf{A}| 1$

C | 5/9

9/5

D 9

F Нет верного ответа.

 ${f B}$ вопросах 24-25 известно, что ${\Bbb E}(X)=-1,\ {
m Var}(X)=1,\ {\Bbb E}(Y)=-4,\ {
m Var}(Y)=4,\ {
m Corr}(X,Y)=1$

Ковариация Cov(2X + Y, X - 3Y) равна Вопрос 24 🌲

A 1

 $|\mathbf{E}| - 1$

-5

F Нет верного ответа.

Корреляция Corr((1-X)/2, (Y+5)/2) равна Вопрос 25 🌲

|A| -0.5

0.5

|E| 1/8

 $|\mathbf{B}| 1$

D - 1/8

[A] [0; 1/25]

 $\boxed{D} [0; 4/625]$

 $\boxed{\mathrm{B}} \ [4/25;1]$

[E] [1/25; 1]

 \boxed{C} [0; 4/25]

[0; 1/5]

Вопрос 27 🌲 Если $\mathbb{E}(X) = 0$, Var(X) = 1, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \ge 4)$, равен

[A] [0.5; 1]

C [0.0625; 1]

[E] [0.25; 1]

[B] [0; 0.25]

[0; 0.0625]

F Нет верного ответа.

Функция плотности случайной величины X имеет вид Вопрос 28 🌲

$$f(x) = \frac{1}{\sqrt{8\pi}}e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

Var(X) = 8

 $E \ \mathbb{P}(X > 3) = 0.5$

 $\boxed{\mathbf{B}} \ \mathbb{P}(X < 0) > 0$

 $F \mid \mathbb{P}(X=0) = 0$

Вопрос 29 🕹 Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

 $\overline{\mathbf{A}}$ \bar{X} сходится по вероятности к нулю

B $\mathbb{P}(|\bar{X}| < 1/\sqrt{n}) < 1/3$

 $C \sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине

 \bar{X} сходится по распределению к равномерной на (-1,1) величине

E Вероятность $\mathbb{P}(\bar{X} > 0)$ стремится к 0.5

F Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0

Вопрос 30 \clubsuit Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

 $\boxed{\mathbf{A}} \ (\bar{X} - n\mu)/(\sqrt{n}\sigma)$

 $\sqrt{n}(\bar{X}-\mu)/\sigma$

 $\boxed{\mathrm{E}} (\bar{X} - \mu)/(\sqrt{n}\sigma)$

 $\boxed{\mathrm{B}} (\bar{X} - \mu)/\sigma$

 $\overline{\mathrm{D}}$ \bar{X}

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1: A B C **E** F

Вопрос 2:

Вопрос 3: |А| |В| |С|

Вопрос 4: |А| | С| |D|

Вопрос 5: |A| |B| |C| |D|

Вопрос 6: \mathbf{E}

Вопрос 7: А В [D] [E] [F]

Вопрос 8 : А В С

Вопрос 9: А В С

Вопрос 10: А В

Вопрос 11 : A B C D

Вопрос 12: А В С

Вопрос 13: А В

Вопрос 14: |А| |В|

Вопрос 15: A B C D

Вопрос 16: A B C D

Вопрос 17: АВС Д

Вопрос 18:

Вопрос 19 : А В

Вопрос 20: А В В Б Е

Вопрос 21 : А В

Вопрос 22 : А В \mathbf{D}

Вопрос 23 : А |C| |D|

Вопрос 24: |А| |C||D|

Вопрос 25 : А В

Вопрос 26 : А В С D

Вопрос 27: А В С

Вопрос 28:

Вопрос 29 : А В С

Вопрос 30 : А В В Б Е

Вопрос 4 \clubsuit Случайная величина X равномерна на отрезке [0;10]. Вероятность $\mathbb{P}(X>3|X<7)$

Вопрос 5 ♣ Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попал оба раза, если известно, что он попал хотя бы один раз из двух, равна

C 0.21

4/7

C 1/2

D 1/4

 $\boxed{\mathrm{E}}$ 3/7

 $[E] \ 3/4$

F *Нет верного ответа.*

F Нет верного ответа.

Вопрос 3 \clubsuit Если события A, B, C попарно независимы, то

В События A, B, C зависимы в совокупности С События A, B, C независимы в совокупности С Событие $A \cup B \cup C$ обязательно произойдёт

 $\boxed{\mathbf{A}} \ \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$

[E] События A, B, C несовместны

Нет верного ответа.

равна

A 7/10

B 3/10

2/3

B 1/3

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопт	oc 13 🏝	Вероятность т	гого, что $Y =$	1 при условии	X>0	равна
וונטע	JOC TO WE	Бероліность і	1010, 1101	I HOM YOUNDHIN	, 110 /1 / 0	pabna

A	0.2

C 0.4

E 0.5

0.6

F Нет верного ответа.

Вопрос 14 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

C -0.2

E 0.2

 $\boxed{\rm B}$ -0.1

0.1

F Нет верного ответа.

Вопрос 15 \clubsuit Дисперсия случайной величины X равна

A 0.4

C 1.04

[E] 0.6

0.44

 \boxed{D} 0.2

F *Нет верного ответа.*

Вопрос 16 \clubsuit Ковариация Cov(X,Y) равна

$$|A| -0.7$$

C 0.4

E 0.1

|B| -0.5

0.9

F Нет верного ответа.

Вопрос 17 & Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

5/4

 \boxed{C} 1/2

E 2

B 1

D 1/4

F Нет верного ответа.

Вопрос 18 \clubsuit Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

0

 $\boxed{\text{C}}$ 0.5

|E| 0.8

B 0.25

D 0.4

F Нет верного ответа.

Вопрос 19 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

A 0

C 1

E 1/2

4/3

D 2

$$f(x,y) = \begin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

 \boxed{A} 2/3

11/9

 $\boxed{\mathrm{E}}$ 4/3

B 13/7

D 6/5

F Нет верного ответа.

Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией плотности, то константа c равна

A = 5/9

C 5

9/5

B 1

D 9

F Нет верного ответа.

Вопрос 22 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

 $\boxed{ \textbf{A} } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases} \qquad \boxed{ \textbf{D} } \ f_{X|Y=1}(x) = \begin{cases} (x+4)/2 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{E} } \ f_{X|Y=1}(x) = \begin{cases} (x+2)/2 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{E} } \ f_{X|Y=1}(x) = \begin{cases} (2x+2)/3 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{E} } \ f_{X|Y=1}(x) = \begin{cases} (2x+2)/3 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{E} } \ Hem \ sephoro \ omsema.$

F Нет верного ответа.

Вопрос 23 Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна

|A| 3/5

 $\boxed{\text{C}}$ 5/8

1/8

B 5/6

 \boxed{D} 3/8

F *Нет верного ответа.*

В вопросах 24-25 известно, что $\mathbb{E}(X) = -1$, $\mathrm{Var}(X) = 1$, $\mathbb{E}(Y) = -4$, $\mathrm{Var}(Y) = 4$, $\mathrm{Corr}(X,Y) = -4$

Ковариация Cov(2X + Y, X - 3Y) равна Вопрос 24 🌲

A 5

 $\mathbf{E} = 0$

B 1

|F| *Нет верного ответа.*

Корреляция Corr((1-X)/2, (Y+5)/2) равна Вопрос 25 🌲

|A| 1

|C| - 1/8

|E| 1/8

|B| -0.5

0.5

Вопрос 26 🌲 Φ ункция плотности случайной величины X имеет вид

$$f(x) = \frac{1}{\sqrt{8\pi}}e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

Var(X) = 8

 $\boxed{\mathbf{C}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

 $\boxed{\mathbf{E}} \ \mathbb{P}(X > 3) = 0.5$

 $\boxed{\mathbf{B}} \ \mathbb{P}(X < 0) > 0$

 $\boxed{\mathbf{D}} \ \mathbb{P}(X=0) = 0$

 $F \ \mathbb{E}(X) = 3$

Вопрос 27 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X)=1, \, \mathrm{Var}(X)=4.$ Вероятность $\mathbb{P}(X^2 \ge 25)$ обязательно попадает в интервал

A [4/25; 1]

D [1/25; 1]

[0; 1/5]

[E] [0; 1/25]

C [0; 4/25]

F [0; 4/625]

Вопрос 28 \clubsuit Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $\operatorname{Var}(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

 $\begin{array}{ccc} \boxed{\mathbf{A}} & (\bar{X} - n\mu)/(\sqrt{n}\sigma) & \boxed{\mathbf{C}} & (\bar{X} - \mu)/(\sqrt{n}\sigma) \\ \boxed{\mathbf{B}} & \bar{X} & \boxed{\mathbf{m}} & \sqrt{n}(\bar{X} - \mu)/\sigma \\ \end{array}$

 $\mathbb{E}[\bar{X} - \mu)/\sigma$

F Нет верного ответа.

Вопрос 29 🕹 Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

 $\overline{\mathbf{A}}$ \bar{X} сходится по вероятности к нулю

 $\boxed{\mathrm{B}} \ \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$

 $|C|\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине

 \square Вероятность $\mathbb{P}(\bar{X}>0)$ стремится к 0.5

[E] Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0

 \bar{X} сходится по распределению к равномерной на (-1,1) величине

Вопрос 30 \clubsuit Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \geq 4)$, равен

[A] [0.25; 1]

 $\boxed{\text{C}} [0.0625; 1]$

[0; 0.0625]

[B] [0.5; 1]

 $\boxed{D} [0; 0.25]$

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 2 : А В 🔳 D Е F

Вопрос 3: A B C D E

Вопрос 4: АВВСВЕБ

Вопрос 5: **В** В С D Е F

Вопрос 6: **В** В С D Е F

Вопрос 7: А В С D 🖪 F

Вопрос 8: А 🔳 С D Е F

Bопрос 9: \blacksquare \to \to \to \to \to \to \to

Вопрос 11 : А В С D ■ F

Вопрос 12: АВСЕ Б

Вопрос 13 : АВСЕ

Вопрос 14: АВС ■ Е Е

Bonpoc 15: $A \square C \square E$

Вопрос 16: А В С Е Е

Вопрос 17 : **В** В С D Е F

Вопрос 18:

Вопрос 19: А С С Б Е Е

Вопрос 20: АВВ БЕБ

Вопрос 21 : A B C D **F**

Вопрос 22: АВС БЕ

Вопрос 23: А В С Б Е

Вопрос 24: АВВ ПО Е Е

Вопрос 25: АВСЕ Б

Вопрос 26:

Вопрос 27: А 🔳 С D Е F

Вопрос 28: АВСЕЕ

Вопрос 29: АВСБЕ

Вопрос 30: АВС БЕ

Экзамен, 21.12.2015

Теория вероятностей и математическая статистика Имя, фамилия и номер группы: Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! **Вопрос 1** . Случайная величина X равномерна на отрезке [0;10]. Вероятность $\mathbb{P}(X>3|X<7)$ равна A 0.21 C 3/10 4/7D 7/10 |B| 3/7F Нет верного ответа.

Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вопрос 2 🌲 Вероятность, что он попал оба раза, если известно, что он попал хотя бы один раз из двух, равна

 \boxed{A} 3/4 2/3[E] 1/2B 1/3 D 1/4 **F** Нет верного ответа.

Вопрос 3 \clubsuit Если события A, B, C попарно независимы, то

- A Событие $A \cup B \cup C$ обязательно произойдёт
- В События A, B, C зависимы в совокупности
- |C| События A, B, C несовместны
- |D| События A, B, C независимы в совокупности
- $|E| \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$
- Нет верного ответа.

Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попадёт хотя бы один раз из двух равна

C 0.64 E 0.36 0.96B 0.8 $\boxed{\mathrm{D}}$ 0.9 |F| *Нет верного ответа.*

Имеется три монетки. Две «правильных» и одна — с «орлами» по обеим сторонам. Вася выбирает одну монетку наугад и подкидывает её два раза. Вероятность того, что оба раза выпадет орел равна

 \boxed{C} 2/3 [E] 1/31/2B 1/4 $\boxed{D} \ 3/4$ |F| *Нет верного ответа.*

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

C -0.1

[E] -0.2

 $\boxed{\mathbf{B}}$ 0

 \overline{D} 0.2

F Нет верного ответа.

Вопрос 14 \clubsuit Дисперсия случайной величины X равна

0.44

C 0.4

E 0.6

B 1.04

 $\boxed{\mathrm{D}}$ 0.2

F Нет верного ответа.

Вопрос 15 \clubsuit Вероятность того, что Y=1 при условии, что X>0 равна

A 0.5

 \boxed{C} 0.4

0.6

B 0.3

D 0.2

F Нет верного ответа.

Вопрос 16 \clubsuit Ковариация Cov(X,Y) равна

A - 0.5

0.9

 $\boxed{\mathrm{E}} -0.7$

B 0.1

D 0.4

F Нет верного ответа.

Вопрос 17 & Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A 2

C 1/2

E 1/4

B 1

5/4

F Нет верного ответа.

Вопрос 18 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

4/3

C 2

 $\boxed{\mathrm{E}}$ 1/2

B 1

|D| (

|F| *Нет верного ответа.*

Вопрос 19 & Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

A 0.25

C 0.5

 $\boxed{\mathrm{E}}$ 0.8

0

 $\boxed{\mathrm{D}}$ 0.4

$$f(x,y) = \begin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 🌲 Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна

A 5/8

|C| 3/5

E 5/6

1/8

 $\boxed{D} \ 3/8$

F Нет верного ответа.

Вопрос 21 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

 \boxed{A} 2/3

C 13/7

11/9

B 6/5

D | 4/3

F *Нет верного ответа.*

Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией Вопрос 22 🌲 плотности, то константа c равна

A 1

 $\boxed{\text{C}}$ 5/9

9/5

B 5

D 9

|F| *Нет верного ответа.*

Вопрос 23 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

 $\boxed{ \textbf{A} } \ f_{X|Y=1}(x) = \begin{cases} (2x+1)/2 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{D} } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{E} } \ f_{X|Y=1}(x) = \begin{cases} (x+2)/2 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{E} } \ f_{X|Y=1}(x) = \begin{cases} (2x+2)/3 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{C} } \ f_{X|Y=1}(x) = \begin{cases} (x+4)/2 \ \text{если } x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ \textbf{E} } \ \text{Hem верного ответа.}$

В вопросах 24-25 известно, что $\mathbb{E}(X) = -1$, $\mathrm{Var}(X) = 1$, $\mathbb{E}(Y) = -4$, $\mathrm{Var}(Y) = 4$, $\mathrm{Corr}(X,Y) = -4$

Вопрос 24 🌲 Корреляция Corr((1-X)/2, (Y+5)/2) равна

|A| -0.5

C 1

E 1/8

0.5

 $\boxed{D} -1/8$

F *Нет верного ответа.*

Вопрос 25 \clubsuit Ковариация Cov(2X + Y, X - 3Y) равна

|A| 1

-5

B 5

 $\boxed{\mathrm{D}}$ -1

Вопрос 26 \clubsuit Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

$$\bar{\mathbf{A}} \ (\bar{X} - \mu)/\sigma$$

 $\boxed{\mathrm{E}} (\bar{X} - n\mu)/(\sqrt{n}\sigma)$

$$\sqrt{n}(\bar{X}-\mu)/\sigma$$

$$\begin{array}{|c|c|} \hline C & \bar{X} \\ \hline D & (\bar{X} - \mu)/(\sqrt{n}\sigma) \end{array}$$

F Нет верного ответа.

Вопрос 27 🌲 Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

$$\boxed{\mathbf{A}} \ \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$$

 $\boxed{\mathrm{B}}\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине

C \bar{X} сходится по вероятности к нулю

 \bar{X} сходится по распределению к равномерной на (-1,1) величине

[E] Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0

F Вероятность $\mathbb{P}(\bar{X} > 0)$ стремится к 0.5

Вопрос 28 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X) = 1$, Var(X) = 4. Вероятность $\mathbb{P}(X^2 \geq 25)$ обязательно попадает в интервал

[0; 1/5]

D [0:4/625]

[B] [0; 1/25]

[E] [1/25; 1]

C [0; 4/25]

F [4/25; 1]

Вопрос 29 \clubsuit Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \ge 4)$, равен

[A] [0; 0.25]

[C] [0.25; 1]

E [0.0625; 1]

[0; 0.0625]

D [0.5; 1]

F *Нет верного ответа.*

Вопрос 30 🌲 Φ ункция плотности случайной величины X имеет вид

$$f(x) = \frac{1}{\sqrt{8\pi}} e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

 $A \mathbb{P}(X < 0) > 0$

 $\boxed{\mathbf{C}} \ \mathbb{P}(X=0) = 0$ $\boxed{\mathbf{Var}(X) = 8}$

 $E \mid \mathbb{E}(X) = 3$

 $\boxed{\mathbf{B}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

F $\mathbb{P}(X > 3) = 0.5$

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D **F**

Вопрос 2 : А В 🔳 D Е F

Вопрос 3: A B C D E

Вопрос 4 : **В** В С D Е F

Вопрос 6: АВСЕБ

Вопрос 7: А 🔳 С D Е F

Вопрос 8: АВСБББ

Вопрос 9: А ■ С D Е F

Вопрос 10: A B C E F

Вопрос 11 : АВСБББ

Вопрос 12 : А С С Б Е Е

Вопрос 13 : В С D E F

Вопрос 14: В В С D Е F

Вопрос 15 : A B C D **F**

Вопрос 16: АВВ БЕБ

Вопрос 17 : A B C **E** F

Вопрос 18 : <u>В С D Е F</u>

Вопрос 19: А 🔳 С D Е F

Вопрос 20: А С С Б Е Е

Вопрос 21 : A B C D **■** F

Вопрос 22: АВС БЕ

Вопрос 23: АВСБЕ

Вопрос 24 : А 🔳 С D Е F

Вопрос 25: АВВ В БЕ Б

Вопрос 26: А С С Б Е Е

Вопрос 27: АВСЕЕ

Вопрос 28:

Вопрос 29: А 🔳 С D Е F

Вопрос 30: АВСЕЕ

Вопрос 5 & Случайная величина X равномерна на отрезке [0; 10]. Вероятность $\mathbb{P}(X > 3 | X < 7)$

 \boxed{D} 3/7

E 0.21

F *Нет верного ответа.*

равна

A 3/10 B 7/10

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 🌲	Ковариация	Cov(X, Y	равна

0.9	
-----	--

B 0.1

$$C -0.7$$

D 0.4

$$[E] -0.5$$

F Нет верного ответа.

Вопрос 14 🌲 Дисперсия случайной величины X равна

A 0.2 B 1.04 0.44

 \boxed{D} 0.4

E 0.6

F *Нет верного ответа.*

Вопрос 15 🌲 Математическое ожидание величины Y при условии, что X=0, равно

 $\mathbf{A} = 0$

C -0.2

[E] -0.1

0.1

 \boxed{D} 0.2

F Нет верного ответа.

Вероятность того, что Y=1 при условии, что X>0 равна Вопрос 16 🕹

0.6

 \boxed{C} 0.2

[E] 0.5

B 0.4

 \boxed{D} 0.3

F Нет верного ответа.

Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, Вопрос 17 🌲 равна

A 0.8

C 0.5

E 0.4

B 0.25

F *Нет верного ответа.*

Вопрос 18 👫 Φ ункция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A 2

C 1

|E| 1/2

5/4

 $\boxed{D} 1/4$

F Нет верного ответа.

Вопрос 19 🌲 Величина X имеет функцию плотности f(x) = x/2 на отрезке [0, 2]. Значение $\mathbb{E}(X)$ равно

A 1

 $\boxed{\mathbb{C}}$ 2

4/3

 $\boxed{D} 1/2$

$$f(x,y) = egin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 \clubsuit Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией плотности, то константа c равна

|A| 5/9

9/5

B 1

 \boxed{D} 5

|F| *Нет верного ответа.*

Вопрос 21 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

A 13/7

 \boxed{C} 2/3

 $\boxed{\mathrm{E}}$ 4/3

11/9

D 6/5

F *Нет верного ответа.*

Условная функция плотности $f_{X|Y=1}(x)$ равна

 $\boxed{ A } \ f_{X|Y=1}(x) = \begin{cases} (x+4)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases} \qquad \boxed{ D } \ f_{X|Y=1}(x) = \begin{cases} (x+2)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (2x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ C } \ f_{X|Y=1}(x) = \begin{cases} (2x+1)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ F } \ \textit{Hem верного ответа}.$

Вопрос 23 ♣ Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна

1/8

 $\boxed{\text{C}}$ 3/8

 $\boxed{\mathrm{E}}$ 5/8

B 5/6

 $\boxed{D} \ 3/5$

F *Нет верного ответа.*

В вопросах 24-25 известно, что $\mathbb{E}(X) = -1$, $\mathrm{Var}(X) = 1$, $\mathbb{E}(Y) = -4$, $\mathrm{Var}(Y) = 4$, $\mathrm{Corr}(X,Y) = -4$

Вопрос 24 🌲 Корреляция Corr((1-X)/2, (Y+5)/2) равна

A 1

0.5

[E] -0.5

B 1/8

 $\boxed{D} - 1/8$

F Нет верного ответа.

Ковариация Cov(2X + Y, X - 3Y) равна Вопрос 25 🌲

A 5

-5

B 1

D 0

Если $\mathbb{E}(X) = 0$, Var(X) = 1, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \ge 4)$, равен

[0; 0.0625]

[C] [0.5; 1]

E [0; 0.25]

B [0.25; 1]

D [0.0625; 1]

F Нет верного ответа.

Вопрос 27 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X) = 1$, Var(X) = 4. Вероятность $\mathbb{P}(X^2 \geq 25)$ обязательно попадает в интервал

[A] [0; 1/25]

 $\boxed{D} [0; 4/25]$

[B] [1/25;1]

[E] [4/25; 1]

[C] [0; 4/625]

[0; 1/5]

Вопрос 28 \clubsuit Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

 $\boxed{\mathrm{E}} (\bar{X} - n\mu)/(\sqrt{n}\sigma)$

F Нет верного ответа.

Вопрос 29 . Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

 $\overline{\mathbf{A}}$ Вероятность $\mathbb{P}(\overline{X}=0)$ стремится к 0

B $\mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$

 \bar{X} сходится по распределению к равномерной на (-1,1) величине

 $\overline{\mathbf{D}}$ \bar{X} сходится по вероятности к нулю

 $|E|\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине

F Вероятность $\mathbb{P}(\bar{X}>0)$ стремится к 0.5

Вопрос 30 🌲 Φ ункция плотности случайной величины X имеет вид

$$f(x) = \frac{1}{\sqrt{8\pi}}e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

Var(X) = 8

 $\boxed{\mathbf{C}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

 $\boxed{\mathbf{E}} \ \mathbb{P}(X=0) = 0$

B $\mathbb{P}(X > 3) = 0.5$

 $D \mid \mathbb{P}(X < 0) > 0$

 $F \mid \mathbb{E}(X) = 3$

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1: A B C D

Вопрос 2 : А 🔳 С 🖸

Вопрос 3: |А| |В| | |D|

Вопрос 4: |A| |B| |C| |D|

Вопрос 5 : |А| |В|

Вопрос 6:

Вопрос 7: АВС Д

Вопрос 8 : А В С

Вопрос 9: |А| |В| |С|

Вопрос 10 : А В С

Вопрос 11 :

Вопрос 13:

Вопрос 14 : [А] [В]

Вопрос 15 : А С О

Вопрос 16:

Вопрос 17: А В С

Вопрос 18 : А |C||D

Вопрос 19 : А |C|

Вопрос 20 : А В |D||E|

|C| D

Вопрос 21 : А

Вопрос 22 : А С С

Вопрос 23:

Вопрос 24: |А| |В|

Вопрос 25 : А В

Вопрос 26:

Вопрос 27: АВС В

Вопрос 28: В В С D Е F

Вопрос 29 : А В

Вопрос 30:

+8/1/18+ Теория вероятностей и математическая статистика Экзамен, 21.12.2015 Имя, фамилия и номер группы: Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 & Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попадёт хотя бы один раз из двух равна $\boxed{\text{C}}$ 0.8 E 0.9 D 0.64 F *Нет верного ответа.* Вопрос 2 👫 Имеется три монетки. Две «правильных» и одна — с «орлами» по обеим сторонам. Вася выбирает одну монетку наугад и подкидывает её два раза. Вероятность того, что оба раза выпадет орел равна |C| 1/3 $\boxed{\mathrm{E}}$ 2/3 $\boxed{D} \ 3/4$ F *Нет верного ответа.* Вопрос 3 🌲 Если события A, B, C попарно независимы, то \overline{A} События A, B, C несовместны $\boxed{\mathbf{B}} \ \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ С События A, B, C независимы в совокупности

Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы.

 $\boxed{\mathrm{E}}$ 3/4

4/7

F *Нет верного ответа.*

F Нет верного ответа.

Вероятность, что он попал оба раза, если известно, что он попал хотя бы один раз из двух, равна

Вопрос 5 \clubsuit Случайная величина X равномерна на отрезке [0;10]. Вероятность $\mathbb{P}(X>3|X<7)$

C 1/4

 \boxed{D} 1/2

 $\boxed{\text{C}}$ 3/7

D 7/10

0.96

B 0.36

A 1/4

1/2

|A| 1/3

равна

2/3

|A| 3/10

B 0.21

 \square События A, B, C зависимы в совокупности [E] Событие $A \cup B \cup C$ обязательно произойдёт

В вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

0.1

C -0.1

E 0.2

B 0

 $\overline{D} = -0.2$

F Нет верного ответа.

Вопрос 14 \clubsuit Ковариация Cov(X,Y) равна

A 0.1

C -0.5

0.9

 $\boxed{\mathrm{B}} -0.7$

D 0.4

F Нет верного ответа.

Вопрос 15 \clubsuit Вероятность того, что Y=1 при условии, что X>0 равна

A 0.3

 \boxed{C} 0.5

E 0.4

0.6

 $\boxed{\mathrm{D}}$ 0.2

F Нет верного ответа.

Вопрос 16 \clubsuit Дисперсия случайной величины X равна

0.44

 $\boxed{\text{C}}$ 0.6

E 1.04

B 0.2

 \boxed{D} 0.4

F Нет верного ответа.

Вопрос 17 Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

A 0.25

 $\boxed{\mathbf{C}}$ 0.5

B 0.8

D 0.4

F *Нет верного ответа.*

Вопрос 18 \clubsuit Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A 1/2

C 2

E 1/4

B 1

5/4

F Нет верного ответа.

Вопрос 19 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

A 2

4/3

 $\mathbf{E} = 0$

B 1/2

D 1

$$f(x,y) = egin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

$$D f_{X|Y=1}(x) = \begin{cases} (x+4)/2 & \text{если } x \in [0;1] \\ 0, & \text{иначе} \end{cases}$$

$$\boxed{\mathbf{B}} \ f_{X|Y=1}(x) = \begin{cases} (x+2)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$$

$$f_{X|Y=1}(x) = \begin{cases} (2x+2)/3 & \text{если } x \in [0; 1] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 21 \clubsuit Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна

A 5/8

1/8

 $\boxed{\mathrm{E}}$ 3/8

|B| 3/5

D 5/6

F Нет верного ответа.

Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией плотности, то константа c равна

A 9

9/5

B = 5/9

 \boxed{D} 5

|F| *Нет верного ответа.*

Вопрос 23 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

|A| 13/7

11/9

[E] 4/3

|B| 6/5

 \boxed{D} 2/3

F Нет верного ответа.

 ${f B}$ вопросах 24-25 известно, что ${\Bbb E}(X)=-1,\,{
m Var}(X)=1,\,{\Bbb E}(Y)=-4,\,{
m Var}(Y)=4,\,{
m Corr}(X,Y)=1$

Корреляция Corr((1-X)/2, (Y+5)/2) равна Вопрос 24 🌲

|A| -0.5

C 1

0.5

B 1/8

 $\overline{D} - 1/8$

Нет верного ответа.

Ковариация Cov(2X + Y, X - 3Y) равна Вопрос 25 🌲

 $|\mathbf{A}| 0$

B 5

 $\boxed{\mathrm{D}}$ -1

Вопрос 26 . Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

- $|A| \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$
- В Вероятность $\mathbb{P}(\bar{X}>0)$ стремится к 0.5
- $C \sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине
- lack X сходится по распределению к равномерной на (-1,1) величине
- $\bar{\mathbf{E}}$ \bar{X} сходится по вероятности к нулю
- \overline{F} Вероятность $\mathbb{P}(\overline{X}=0)$ стремится к 0

Вопрос 27 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X) = 1$, $\mathrm{Var}(X) = 4$. Вероятность $\mathbb{P}(X^2 \ge 25)$ обязательно попадает в интервал

[0; 1/5]

D [0; 4/25]

[B] [1/25;1]

[E] [0; 1/25]

C [0; 4/625]

 $\boxed{\mathrm{F}}$ [4/25; 1]

Вопрос 28 \clubsuit Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $\operatorname{Var}(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

- $\sqrt{n}(\bar{X}-\mu)/\sigma$
- $\boxed{\mathbf{C}} \ (\bar{X} \mu)/(\sqrt{n}\sigma)$ $\boxed{\mathbf{C}} \ (\bar{V} \dots)/\sigma$
- $\boxed{\mathrm{E}} (\bar{X} n\mu)/(\sqrt{n}\sigma)$

 $\bar{\mathbf{B}}$ \bar{X}

 $\boxed{\mathrm{D}} (\bar{X} - \mu)/\sigma$

F Нет верного ответа.

Вопрос 29 🗘 Функция плотности случайной величины X имеет вид

$$f(x) = \frac{1}{\sqrt{8\pi}} e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

- \overline{A} $\mathbb{P}(X < 0) > 0$
- $\boxed{\mathbf{C}} \ \mathbb{E}(X) = 3$

 $\boxed{\mathrm{E}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

- $\boxed{\mathbf{B}} \ \mathbb{P}(X=0) = 0$
- Var(X) = 8
- F $\mathbb{P}(X > 3) = 0.5$

Вопрос 30 \clubsuit Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \ge 4)$, равен

A [0.5; 1]

[C] [0.25; 1]

[0; 0.0625]

B [0: 0.25]

D [0.0625; 1]

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 :

Вопрос 2 : А С С Б Е Г

Вопрос 3 : A B C D E

Вопрос 4 : A **II** C D E F

Вопрос 5: [A] [B] [С] [D] **[F**]

Вопрос 6: АВСЕ

Вопрос 7: А В С Е Е

Вопрос 8: АВВСВЕБ

Вопрос 9: А 🔳 С D Е F

Вопрос 10: В В С В Е Е

Вопрос 11 : А 🔳 С D Е F

Вопрос 12: А В С D Е Е

Вопрос 13: В В С В Е Е

Вопрос 14: A B C D F

Вопрос 17 : A B C D **F**

Вопрос 18 : A B C ■ E F

Вопрос 19 : АВВ ПО Е Г

Вопрос 20 : А В Т Д Е Г

Вопрос 21 : A B D E F

Вопрос 22 : А В 🔳 D Е F

Вопрос 23 : А В 🔳 D Е F

Вопрос 24: АВС БЕ

Вопрос 25 : А В С Б Т

Вопрос 26 : А В С Е Е

Вопрос 27 : ■ B C D E F

Вопрос 28 :

Вопрос 29: АВС ■ Е Е

Вопрос 30 : АВСБББ

Теория вероятностей и математическая статистика

 $oxed{E}$ События $A,\,B,\,C$ несовместны

Нет верного ответа.

Экзамен, 21.12.2015

теория вероятноет	ей и математическая статист	AKA OKSAMEN, 21.12.2010
Имя, фамилия и но	мер группы:	
Можно пользоват Ни пуха, ни пера!	ься простым калькулятором. В ках	ждом вопросе единственный верный ответ.
Вопрос 1 ♣ Случа равна	йная величина X равномерна на о	трезке $[0;10]$. Вероятность $\mathbb{P}(X>3 X<7)$
A 3/7	C 3/10	E 7/10
B 0.21	4/7	F Нет верного ответа.
-		х» и одна— с «орлами» по обеим сторонам. два раза. Вероятность того, что оба раза
A 3/4	C 2/3	E 1/3
1/2	D 1/4	F Нет верного ответа.
	ка Джон попадает в яблочко с вер попадёт хотя бы один раз из двух	оятностью 0.8. Его выстрелы независимы. г равна
A 0.9	C 0.36	0.96
B 0.8	D 0.64	F Hem верного ответа.
		оятностью 0.8. Его выстрелы независимы, он попал хотя бы один раз из двух, равна
$\boxed{\text{A}}$ 1/2	C 1/4	2/3
B 3/4	D 1/3	F Нет верного ответа.
Вопрос 5 🌲 Если	события A, B, C попарно независ	симы, то
$\boxed{\mathbf{A}}$ События $A, B,$	C независимы в совокупности	
\blacksquare События $A, B,$	C зависимы в совокупности	
$\boxed{\mathbb{C}} \ \mathbb{P}(A \cap B \cap C) =$	$\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$	
\square Событие $A \cup B$	$\cup C$ обязательно произойдёт	

F *Нет верного ответа.*

 $\boxed{\text{B}} \ 3\pi^2 - 2$

В вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 🌲	Дисперсия	случайной	величины	X	равна
-------------	-----------	-----------	----------	---	-------

A	0.2
---	-----

C 1.04

E 0.6

0.44

F Нет верного ответа.

Вопрос 14 \clubsuit Вероятность того, что Y=1 при условии, что X>0 равна

0.6

E 0.4

B 0.2

D 0.5

F Нет верного ответа.

Вопрос 15 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

$$\overline{A} -0.2$$

0.1

 $\boxed{\mathrm{E}}$ 0.2

|B| -0.1

 $\boxed{\mathbf{D}}$ 0

F Нет верного ответа.

Вопрос 16 \clubsuit Ковариация Cov(X,Y) равна

$$|A| -0.5$$

C -0.7

E 0.4

B 0.1

0.9

F Нет верного ответа.

Вопрос 17 & Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A
$$1/4$$

C 1/2

 \mathbb{E} 2

B 1

5/4

F Нет верного ответа.

Вопрос 18 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

A 1

 \bigcirc 0

 $|\mathbf{E}|$ 2

|B| 1/2

4/3

F *Нет верного ответа.*

Вопрос 19 \clubsuit Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

A 0.25

C 0.4

0

B 0.5

 \boxed{D} 0.8

$$f(x,y) = egin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 🌲 Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна

 \boxed{A} 5/6

1/8

E 5/8

B 3/8

 $\boxed{D} \ 3/5$

F Нет верного ответа.

Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией плотности, то константа c равна

A = 5/9

C 5

9/5

D 1

F Нет верного ответа.

Вопрос 22 🌲 Математическое ожидание $\mathbb{E}(Y)$ равно

|A| 6/5

|C| 13/7

 $\boxed{\mathrm{E}}$ 4/3

11/9

D 2/3

F Нет верного ответа.

Вопрос 23 🌲 Условная функция плотности $f_{X|Y=1}(x)$ равна

 $\boxed{ A } \ f_{X|Y=1}(x) = \begin{cases} (x+4)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases} \qquad \boxed{ D } \ f_{X|Y=1}(x) = \begin{cases} (2x+1)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (2x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ C } \ f_{X|Y=1}(x) = \begin{cases} (x+2)/2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$ $\boxed{ E } \ f_{X|Y=1}(x) = \begin{cases} (4x+2)/3 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$

 ${f B}$ вопросах 24-25 известно, что ${\Bbb E}(X)=-1,\,{\rm Var}(X)=1,\,{\Bbb E}(Y)=-4,\,{\rm Var}(Y)=4,\,{\rm Corr}(X,Y)=1$

Вопрос 24 🌲 Корреляция Corr((1-X)/2, (Y+5)/2) равна

A - 1/8

0.5

[E] -0.5

B 1/8

 \boxed{D} 1

F Нет верного ответа.

Вопрос 25 \clubsuit Ковариация Cov(2X + Y, X - 3Y) равна

 $|\mathbf{A}| 0$

|C|-1

B 5

Вопрос 26 \clubsuit Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

- $\boxed{\mathrm{B}}\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине
- \bar{X} сходится по распределению к равномерной на (-1,1) величине
- $oxed{D}$ $ar{X}$ сходится по вероятности к нулю
- [E] Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0
- $\boxed{\mathbf{F}} \ \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$

Вопрос 27 Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \ge 4)$, равен

[0; 0.0625]

 $\boxed{\text{C}} [0.0625; 1]$

[E] [0.5; 1]

B [0.25; 1]

 $\boxed{D} [0; 0.25]$

F Нет верного ответа.

Вопрос 28 🌲 Функция плотности случайной величины X имеет вид

$$f(x) = \frac{1}{\sqrt{8\pi}} e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

- Var(X) = 8
- $\boxed{\mathbf{C}} \ \mathbb{E}(X) = 3$

 $\boxed{\mathrm{E}} \ \mathbb{P}(X < 0) > 0$

- B $\mathbb{P}(X > 3) = 0.5$
- $\boxed{\mathbf{D}} \ \mathbb{P}(X=0) = 0$
- $\boxed{\mathbf{F}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

Вопрос 29 \clubsuit Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu,$ $\mathrm{Var}(X_i) = \sigma^2.$ К стандартному нормальному распределению сходится последовательность случайных величин

- $\boxed{\mathbf{A}} \ (\bar{X} n\mu)/(\sqrt{n}\sigma)$
- $\sqrt{n}(\bar{X}-\mu)/\sigma$
- $ar{\mathrm{E}}$ \bar{X}

- $\boxed{\mathrm{B}} (\bar{X} \mu)/(\sqrt{n}\sigma)$
- $\boxed{\mathrm{D}} (\bar{X} \mu)/\sigma$
- F Нет верного ответа.

Вопрос 30 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X)=1, \, \mathrm{Var}(X)=4.$ Вероятность $\mathbb{P}(X^2\geq 25)$ обязательно попадает в интервал

 $\boxed{A} [1/25; 1]$

[0; 1/5]

 $\boxed{\text{B}} [0; 4/25]$

E [4/25; 1]

C [0; 4/625]

[F][0;1/25]

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1: A B C **E** F

Вопрос 2 : А 🔳 С 🖸

Вопрос 3: |A| |B| |C| |D|

Вопрос 4: A B C D

Вопрос 5 : [A] [B] [С] [D]

Вопрос 6: А 🔳 С D

Вопрос 7: А В С E F

Вопрос 8 : А В С

Вопрос 9: |А| | |С| |D|

Вопрос 10:

Вопрос 11 : А В В О

Вопрос 12:

Вопрос 13: А В С

Вопрос 14: |А| |В|

Вопрос 15 : А В

Вопрос 16: А В С

Вопрос 17: А В С

Вопрос 18 : А В С

Вопрос 19 : А В С

Вопрос 20 : А В

Вопрос 21 : А |C| D

Вопрос 22 : А С С

Вопрос 23 : А |C| |D|

Вопрос 24: |А| |В|

Вопрос 25 : А В С |

Вопрос 26 : А В

Вопрос 27 : D

Вопрос 28: В В С Б Е Г

Вопрос 29 : А В

Вопрос 30: А В С

+10/1/6+ Теория вероятностей и математическая статистика Экзамен, 21.12.2015 Имя, фамилия и номер группы: Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 & Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попал оба раза, если известно, что он попал хотя бы один раз из двух, равна C 1/2 $\boxed{\mathrm{E}}$ 3/4 D 1/4 F Нет верного ответа. Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы. Вероятность, что он попадёт хотя бы один раз из двух равна $\boxed{\text{C}}$ 0.9 $\boxed{\mathrm{E}}$ 0.8 \boxed{D} 0.36 **F** Нет верного ответа. Имеется три монетки. Две «правильных» и одна — с «орлами» по обеим сторонам. Вася выбирает одну монетку наугад и подкидывает её два раза. Вероятность того, что оба раза выпадет орел равна C 1/3 $\boxed{\mathrm{E}}$ 2/3

F Нет верного ответа.

F *Нет верного ответа.*

[E] 0.21

1/2

 $\boxed{\text{C}}$ 3/7

D 7/10

Вопрос 5 & Случайная величина X равномерна на отрезке [0; 10]. Вероятность $\mathbb{P}(X > 3 | X < 7)$

Вопрос 4 \clubsuit Если события A, B, C попарно независимы, то

 $|\mathbf{A}|$ Событие $A \cup B \cup C$ обязательно произойдёт [B] События A, B, C независимы в совокупности

|D| События A, B, C зависимы в совокупности

 $\boxed{\mathbb{C}} \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$

[E] События A, B, C несовместны

Нет верного ответа.

|A| 1/3

2/3

A 0.64

 \boxed{A} 3/4

B 1/4

равна

4/7

B 3/10

0.96

Вопрос 12 🌲 В квадрат вписан круг. Последовательно в квадрат наудачу бросают восемь точек. Пусть Y — число точек, попавших в круг, при первых четырех бросаниях, а Z — число точек, попавших в круг, при оставшихся четырех бросаниях. Дисперсия Var(Y-Z) равна

 $2\pi - \pi^2/2$

7

D 5

 $\boxed{D} \pi^2 - 2\pi$

 $E = 3\pi^2 - 4$

F Нет верного ответа.

 ${f B}$ вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -2	Y = 1
X = -1	0.1	0
X = 0	0.1	0.3
X = 1	0.2	0.3

Вопрос 13 👃 Дисперсия случайной величины	X	равна
--	---	-------

Α	0.6
$ \Lambda $	0.0

C 1.04

0.44

D 0.4

F *Нет верного ответа.*

Вопрос 14 \clubsuit Вероятность того, что Y=1 при условии, что X>0 равна

0.6

 \boxed{C} 0.2

E 0.5

B 0.4

D 0.3

F Нет верного ответа.

Вопрос 15 \clubsuit Математическое ожидание величины Y при условии, что X=0, равно

A 0

C -0.1

0.1

|B| -0.2

 $\boxed{\mathrm{D}}$ 0.2

F Нет верного ответа.

Вопрос 16 \clubsuit Ковариация Cov(X,Y) равна

A 0.1

C -0.7

E -0.5

0.9

 \boxed{D} 0.4

F | *Нет верного ответа.*

Вопрос 17 \clubsuit Функция распределения абсолютно непрерывной случайной величины X имеет вид

$$F(x) = \begin{cases} a, x < 0, \\ bx^2 + c, x \in [0, 2], \\ d, x > 2. \end{cases}$$

Выражение a+b+c+d равно

A 1/4

C 1

E 1/2

5/4

 $\boxed{\mathrm{D}}$ 2

F Нет верного ответа.

Вопрос 18 & Величина X равномерна от 0 до 4. Вероятность того, что X примет значение 1, равна

A 0.8

 $\boxed{\mathbb{C}}$ 0.4

E 0.5

B 0.25

0

F Нет верного ответа.

Вопрос 19 \clubsuit Величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2]. Значение $\mathbb{E}(X)$ равно

A 1/2

 $\boxed{\mathbf{C}}$ 0

E 2

B 1

4/3

В вопросах 20-23 совместная функция плотности пары X и Y имеет вид

$$f(x,y) = \begin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 \clubsuit Если функция $h(x,y) = c \cdot x \cdot f(x,y)$ также является совместной функцией плотности, то константа c равна

|A| 9 9/5

C 5D 5/9

F Нет верного ответа.

Вопрос 21 \clubsuit Вероятность $\mathbb{P}(X < 0.5, Y < 1)$ равна

A 5/8

1/8

|E| 3/5

B 3/8

 $\boxed{D} \ 5/6$

F Нет верного ответа.

Вопрос 22 \clubsuit Условная функция плотности $f_{X|Y=1}(x)$ равна

 $f_{X|Y=1}(x) = egin{cases} (2x+2)/3 & ext{если } x \in [0;1] \ 0, & ext{иначе} \end{cases}$

 $\boxed{\mathrm{D}} \ f_{X|Y=1}(x) = egin{cases} (x+4)/2 \ \text{если} \ x \in [0;1] \ 0, \ \text{иначе} \end{cases}$

Вопрос 23 \clubsuit Математическое ожидание $\mathbb{E}(Y)$ равно

|A| 6/5

 $\boxed{\text{C}}$ 4/3

11/9

B 13/7

 \boxed{D} 2/3

|F| *Нет верного ответа.*

В вопросах 24-25 известно, что $\mathbb{E}(X) = -1$, $\mathrm{Var}(X) = 1$, $\mathbb{E}(Y) = -4$, $\mathrm{Var}(Y) = 4$, $\mathrm{Corr}(X,Y) = -4$

Вопрос 24 🌲 Ковариация Cov(2X + Y, X - 3Y) равна

A 5

 $\boxed{\mathrm{B}}$ -1

F | *Нет верного ответа.*

Корреляция Corr((1-X)/2, (Y+5)/2) равна Вопрос 25 🌲

0.5

C - 1/8

E 1

B 1/8

D = -0.5

Вопрос 26 🌲 Величины X_1, X_2, \ldots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

 $\boxed{\mathrm{E}} (\bar{X} - \mu)/\sigma$

F Нет верного ответа.

Вопрос 27 \clubsuit Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \geq 4)$, равен

[0; 0.0625]

 \boxed{C} [0.25; 1]

[E] [0.5; 1]

B [0.0625; 1]

D [0; 0.25]

F Нет верного ответа.

Вопрос 28 🌲 Φ ункция плотности случайной величины X имеет вид

$$f(x) = \frac{1}{\sqrt{8\pi}}e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

 $\boxed{\mathbf{A}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

 $\boxed{\mathbf{C}} \ \mathbb{P}(X > 3) = 0.5$ $\boxed{\mathbf{D}} \ \mathbb{E}(X) = 3$

Var(X) = 8

 $\boxed{\mathrm{B}} \ \mathbb{P}(X < 0) > 0$

F $\mathbb{P}(X=0)=0$

Вопрос 29 \clubsuit У неотрицательной случайной величины X известны $\mathbb{E}(X)=1, \, \mathrm{Var}(X)=4.$ Вероятность $\mathbb{P}(X^2 > 25)$ обязательно попадает в интервал

[0; 1/5]

D [0; 4/25]

[B] [0; 4/625]

[E] [1/25; 1]

C [4/25; 1]

[F] [0; 1/25]

Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

 $|A| \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \le 1/3$

 $\bar{\mathbf{B}}$ \bar{X} сходится по вероятности к нулю

 $|C|\sqrt{3n}\bar{X}$ сходится по распределению к стандартной нормальной величине

 \square Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0

[E] Вероятность $\mathbb{P}(\bar{X}>0)$ стремится к 0.5

 \bar{X} сходится по распределению к равномерной на (-1,1) величине

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A С Б Е F

Вопрос 2: А С С Б Е Г

Вопрос 3: A B C E F

Вопрос 4: A B C D E

Вопрос 5: В В С D E F

Вопрос 6: A B C E F

Вопрос 7: АВСВЕБ

Вопрос 8: АВСБББ

Вопрос 9: АВВСВ Б

Вопрос 10: A B D E F

Вопрос 11 : А С С Б Е Г

Вопрос 12: A С Б F

Вопрос 13: A B C D **F**

Вопрос 14: В В С Б Е Г

Вопрос 15: A B C D F

Вопрос 17: А С С Б Е Г

Вопрос 18: АВСЕЕ

Вопрос 19: А В С Е Е

Вопрос 21 : А В В Б Б Е

Вопрос 22:

Вопрос 23: АВСББ

Вопрос 24: АВС БЕ

Вопрос 25 :

Вопрос 26 :

Вопрос 27 :

Вопрос 28 : А В С Б F

Вопрос 29 :

Вопрос 30 : A B C D E