Deep Learning pro texty a sekvenční data

Pokyny k online schůzce

- Používejte nejlépe desktopovou aplikaci Teams.
- Pokud nekladete dotaz nebo se neúčastníte diskuze, mějte prosím vypnutý mikrofon.
- Pokud jen trochu můžete, mějte puštěnou kameru. Vás výraz tváře pomůže vyučujícímu :)
- 4. Jak můžete položit dotaz:
 - a. Zapněte si mikrofon a rovnou se zeptejte. nebo:
 - b. Napište dotaz do chatu. nebo:
 - c. Použijte tlačítko zvednout ruku. (Po vyvolání ruku sundejte)

Agenda

- Práce s textem a Word Embeddings
- Rekurentní neuronové sítě
- 1D konvoluční sítě
- LSTM a GRU vrstvy
- Generování textu

Deep Learning pro sekvenční data

- co budeme zpracovávat:
 - text
 - tj. sekvence slov nebo sekvence znaků
 - časové řady
 - sekvenční data obecně
- použitelné algoritmy:
 - rekurentní neuronové sítě
 - 1D konvoluční neuronové sítě
- typické úlohy:
 - klasifikace dokumentů a časových řad
 - např. analýza sentimentu, identifikace tématu článku, identifikace autora textu apod.
 - porovnání sekvenčních dat
 - např. jak moc si jsou podobné dokumenty nebo jak moc si je podobný vývoj ceny akcií
 - překlad sekvence na sekvenci
 - např. strojový překlad z angličtiny do češtiny
 - predikce časových řad
 - např. predikce počasí
- pozn.: žádný ze současných přístupů (ani GPT-3) nechápe text v lidském slova smyslu

Práce s textem a Word Embeddings

- zpracování přirozeného jazyka (NLP natural language processing)
 - o rozpoznávání vzorů aplikované na slova, věty a odstavce; obdobně jako počítačové vidění využívá rozpoznávání vzorů při práci s obrazem
- text lze chápat jako sekvence znaků nebo jako sekvence slov
 - většinou ale jako sekvence slov
- modely hlubokého učení nemohou pracovat s textem v surové podobě
 - o nutno převést text na číselné tenzory = vektorizace
 - jednotky, na které se text rozpadá (slova, znaky, n-gramy) = tokeny;
 - převod textu na tokeny = tokenizace
 - o jednotlivé vektory (představující slova, znaky nebo n-gramy) se následně zabalí do sekvenčních tenzorů

One-hot Encoding a Word Embeddings

- jak převést token na vektor:
 - one-hot encoding
 - word embeddings ("vnoření slov")
- one-hot encoding
 - každému slovu se přiřadí celočíselný index
 - kolik je různých slov, tolik je různých indexů a tím pádem také dimenzí vektoru
 - o vektor pro dané slovo obsahuje samé nuly a jednu jedničku v příslušném indexu
 - podobné jako bag-of-words, ale bag-of-words reprezentuje celý dokument, zatímco one-hot encoding reprezentuje jedno slovo
 - celý dokument je pak zakódován jako sekvence těchto slovních vektorů a nikoliv jako jeden vektor

- velmi populární a výkonný způsob, jak převést slovo na vektor
- slovo se zakóduje do tzv. hustého slovního vektoru (dense word vector)
 - one-hot vektory jsou binární a vysoce dimenzionální (sparse vector)
 - word embeddings jsou nízkodimenzionální vektory reálných čísel (dense vector)
- word embeddings jsou natrénované z dat, podobně jako jsou třeba natrénované filtry v konvolučních vrstvách
 - o oproti tomu one-hot encoding je dopředu a napevno

- Sparse
- High-dimensional
- Hardcoded

- Dense
- Lower-dimensional
- Learned from data Zdroj: (Chollet 2019)

- počet dimenzí ve word embeddings je na našem uvážení (hyperparametr)
 - obvykle se volí hodnoty jako 128, 256, 512 nebo případně 1024 pro velmi velké slovníky
 - o proti tomu one-hot encoding může být 10 tisíc nebo také 100 tisíc dimenzí
- jak získat word embeddings:
 - o natrénovat společně s hlavní úlohou, kterou řešíme
 - začne se s náhodnými slovními vektory a ty se postupně učí (upravují) podobně jako se učí jiné parametry v neuronové síti
 - načíst předtrénované word embeddings z jiné úlohy (pretrained word embeddings)

- pokud bychom zvolili vektory náhodně, nebude mít výsledný prostor vnoření žádnou strukturu
 - významově podobná slova by např. byla prostorově daleko od sebe, ačkoliv ve větě by třeba byla zaměnitelná
- proto se word embeddings trénuje tak, aby podobná slova byla blízko u sebe a aby geometrické vztahy mezi slovními vektory reflektovaly významové vztahy mezi slovy

- významové vztahy mezi slovy mohou být zakódované jako geometrické transformace
- např. abychom se z kočky dostali k tygrovi by měl být stejný vektor transformace jako od psa k vlkovi
 - vektor "od domácího zvířete k divokému"
 - vektor "od psovité šelmy ke kočkovité"
- příklady geometrických transformací v reálných word embeddings:
 - vektor pohlaví (muž žena)
 - vektor množného čísla
 - příklady:
 - král + vektor pohlaví + vektor množného čísla = královny
 - Bill Clinton USA + ČR = Václav Havel

- zatím ale neexistuje nic jako "perfektní" prostor pro word embeddings
 - pro každou úlohu se totiž hodí jiný prostor
 - např. ideální word embeddings pro model analýzy sentimentu anglických hodnocení filmů bude patrně vypadat jinak než pro úlohu klasifikace právních dokumentů, protože důležitost různých sémantických vztahů bude v obou úlohách jiná
- word embeddings se tedy typicky trénují pro každou úlohu od začátku
 - o keras.layers.Embedding(1000, 64)
 - maximálně 1000 různých tokenů
 - 64 dimenzí
- jak chápat vrstvu Embedding v keras modelech:
 - o slovník, který mapuje celočíselný index (tedy jedno konkrétní slovo) na hustý vektor
 - o vstup: 2D tenzor čísel (samples, sequence_length), každý jeden příklad tedy sekvence čísel
 - všechny sekvence v jedné dávce musejí mít stejnou délku (buď doplnění nulami nebo oříznutí)
 - výstup: 3D tenzor tvaru (samples, sequence_length, embedding_dimensionality)
 - toto už lze použít jako vstup do rekurentní nebo 1D konvoluční neuronové sítě

ukázka viz jupyter imdb_embedding

Předtrénovaná word embeddings

- pokud máme příliš málo dat na to, abychom si natrénovali word embeddings pro naši úlohu, můžeme využít předtrénovaného modelu
 - o předpokladem je, že předtrénovaný model reprezentuje obecné charakteristiky v textu
 - o přelomový model Tomáše Mikolova word2vec z roku 2013
 - od té doby celá řada dostupných předtrénovaných modelů
 - Glove https://nlp.stanford.edu/projects/glove/ (korpus z Wikipedie)
 - NNLM https://tfhub.dev/google/tf2-preview/nnlm-en-dim50 (korpus z Google News)

Rekurentní neuronové sítě

Úvod do rekurentních neuronových sítí

- sítě, které jsme viděli doteď, neměly žádnou formu paměti
 - o sekvence se takové síti musí předat jako jeden datový bod
 - "sítě s dopředným chodem" (feedforward networks)
- naproti tomu biologická inteligence zpracovává informace inkrementálně a udržuje si interní model, který je vytvořen z minulých informací a průběžně aktualizován
- rekurentní neuronové sítě (RNN recurrent neural network) používají podobný princip, nicméně velmi zjednodušeně:
 - o zpracovávají sekvence postupně po prvcích a udržují stav o tom, co viděly doposud
 - RNN tedy mají vnitřní cyklus
 - o stav se udržuje pouze pro konkrétní instanci; jakmile je instance zpracovaná, stav se resetuje

Zdroj: (Chollet 2019)

Rekurentní neuronové sítě

- RNN tedy využívá výstupy z předchozí iterace ve svém vnitřním cyklu
- jednoduchá RNN rozbalená v čase:
 - finální výstup této sítě: (timesteps, output_features), tedy pro každý timestep máme výstup
 (většinou nám ale stačí až poslední výstup, tedy (output_features))

Zdroj: (Chollet 2019)

Rekurentní vrstvy v Kerasu

- nejjednodušší vrstva SimpleRNN, která odpovídá uvedenému popisu
 - vstupy: (batch_size, timesteps, input_features)
 - výstup: stejně jako jiné RNN vrstvy, může vracet buď celou sekvenci (batch_size, timesteps, output_features) nebo jen poslední výstup pro každou sekvenci (batch_size, output_features)
 - parametr return_sequences v konstruktoru
- vrstvy lze stohovat stejně jako v případě Dense nebo Conv vrstev
 - o může se tím zvýšit reprezentační síla sítě
 - všechny mezivrstvy pak musejí vracet plné sekvence, aby další vrstva mohla pracovat s jednotlivými timestepy
 - o nejdřív se zpracuje celá nižší vrstva a ta pak předá všechny výstupy vyšší vrstvě

Rekurentní vrstvy v Kerasu

```
>>> model.summary()
```

Layer (type)		Output	Shape		Param #
embedding_24	(Embedding)	(None,	None,	32)	320000
simplernn_12	(SimpleRNN)	(None,	None,	32)	2080
simplernn_13	(SimpleRNN)	(None,	None,	32)	2080
simplernn_14	(SimpleRNN)	(None,	None,	32)	2080
simplernn_15	(SimpleRNN)	(None,	32)	======	2080

Total params: 328,320

Trainable params: 328,320

Non-trainable params: 0

Ukázka rekurentní sítě

viz jupyter imdb_rnn

Lepší typy rekurentních vrstev v Kerasu

- SimpleRNN bývá příliš jednoduchá pro reálné použití, proto se výhradně používají některé z pokročilejších vrstev: LSTM a GRU
 - SimpleRNN mají problém s mizejícím gradientem, díky čemu se paměť nedaří zachovat na dostatečně dlouhé sekvence

LSTM

- Long Short-Term Memory
- o rozšiřuje architekturu SimpleRNN o způsob, jak nést informaci napříč mnoha časovými kroky
 - "dopravní pás", který běží paralelně se sekvencí; informace na něj mohou v libovolném místě "naskočit" a v libovolném místě být zase neporušeně "vyloženy"
 - LSTM tedy umožňuje uložit libovolné informace na pozdější použití

GRU - Gated Recurrent Unit

- zjednodušená a rychlejší varianta LSTM
- ukázka viz jupyter

Obousměrné RNN

- RNN jsou obecně zcela závislé na pořadí, v jakém danou sekvenci zpracovávají
 - o podle toho se také učí veškeré reprezentace
- pokud pro danou úlohu nezáleží na tom, zda je sekvence zpracovávaná zleva nebo zprava, můžeme zkusit použít obousměrnou vrstvu
 - např. v oblasti zpracování přirozeného jazyka je důležité, že jsou slova u sebe, ale moc nezáleží na tom, z jaké strany
 - díky tomu se při průchodu zleva i zprava může síť naučit odlišné reprezentace, které dohromady mohou být užitečnější
 - analogie ensemble learningu

Rekurentní neuronové sítě a GPU

- rychlé zpracování na GPU lze využít pouze pro určité kombinace hyperparametrů rekurentních vrstev
 - o typicky výchozí hodnoty fungují, viz dokumentace

1D konvoluční neuronové sítě

Zpracování sekvencí pomocí konvolučních sítí

- princip konvolučních sítí lze aplikovat i na sekvenční data
 - o na čas lze nahlížet jako na prostorovou dimenzi
- 1D konvoluční sítě mohou soupeřit s RNN při řešení určitých úloh a to za využití menšího výpočetního výkonu
- konvoluční vrstvy v případě zpracování obrazu extrahovaly 2D oblasti z obrazu
 - o 1D konvoluční vrstvy dělají to samé extrahují 1D oblasti vstupních dat
- 1D konvoluční vrstva dokáže rozpoznat lokální vzor v sekvenci
 - stejná transformace je použita pro každou oblast, proto vzor, který se síť naučí na určitém místě,
 lze aplikovat i kdekoliv jinde

Conv1D

Conv1D a MaxPooling1D

- Conv1D
 - 1D konvoluční sítě umožňují použít větší "okna" než v případě 2D
 - 3x3 ve 2D = 9 feature vektorů
 - v 1D si tedy můžeme dovolit okna velikosti 7 nebo 9 bez větších problémů
- MaxPooling1D
 - stejně jako se maxpooling používá při zpracování obrazu, použije se i u sekvenčních dat, aby se zmenšila velikost mapy příznaků a aby vyšší vrstvy viděly větší část vstupních dat
- Con1D lze použít zejména tam, kde sice záleží na lokálním pořadí, ale globální pořadí nehraje takovou roli
 - analýza textu, kde řešíme např. sousedící slova, ale nezáleží na celkovém pořadí ve větě, je vhodná úloha
 - naopak časové řady je lepší řešit pomocí RNN

Ukázka Conv1D

• viz jupyter

Časové řady

Časové řady

- úloha predikce časové řady: předpověď teploty
 - máme k dispozici údaje z meteostanice o teplotě, tlaku, vlhkosti, ... a budeme predikovat, jaká bude teplota za 24 hodin
 - úlohu lze ale modifikovat a místo jedné hodnoty (teplota za 24 hod), můžeme predikovat třeba teploty po hodinách na příštích 24 hodin nebo cokoliv jiného
 - není tedy nutné predikovat jen jednu hodnotu
- v rámci této úlohy si ukážeme některé pokročilejší koncepty RNN:
 - rekurentní výpadek (recurrent dropout)
 - stohování rekurentních vrstev
- viz jupyter

Generování textu

Generování textu

- použijeme předtrénovaný model a necháme ho generovat další text
 - alternativně bychom si mohli na textovém korpusu natrénovat vlastní model, nicméně je to výpočetně hodně náročné (řádově hodiny na jednu epochu)
 - trénování probíhá tak, že jedna instance je sada několika po sobě jdoucích slov a cílová hodnota je další slovo v textu
 - takto se model natrénuje, jaká slova predikovat po jiných slovech

- vyzkoušíme si OpenAl GPT-2 model
 - využívá architekturu nazvanou Transformer
 - moderní architektura, která je založená na principu encoder-decoder, přičemž nevyužívá rekurentní vrstvy
 - podařilo se díky ní zlepšit kvalitu strojových překladů a úloh generování textu
 - více případně formou samostudia

Strojový překlad

Strojový překlad

- zatím jsme sekvence převáděli na vektor
 - IMDB: text na třídu
 - Jena: časová řada na číslo / vektor

- sekvence jdou ale převádět opět na sekvence
 - Ize využít jak rekurentní neuronové sítě (zejména LSTM a GRU vrstvy), tak velmi moderní architektury založené na Transformer architektuře
 - o viz např. DeepL https://www.deepl.com/translator (dle ohlasů citelně lepší než Google Translate)
 - viz https://www.tensorflow.org/tutorials/text/nmt_with_attention
 - viz <u>https://www.tensorflow.org/tutorials/text/transformer</u>

Úkoly

- zkuste natrénovat model, který bude predikovat teploty pro příštích 24 hodin (tedy 24 údajů)
 - o jak na to:
 - jako cílové hodnoty předejte modelu ne jednu teplotu, ale všech 24
 - upravte strukturu sítě, aby na výstupu měla 24 hodnot

- zkuste porovnat různé přístupy k analýze sentimentu textu podle počtu trénovacích instancí
 - o porovnejte čisté word embedding, předtrénované word embedding, původní bag-of-words
 - pokud to výpočetní výkon dovolí, zkuste porovnat modely GRU, Conv1D a Dense
 - o zkuste např. 100, 200, 500, 1000, 2000, 5000, 10000, 20000 trénovacích instancí
 - o jak se vyvíjí správnost jednotlivých modelů podle počtu instancí?
- projděte si tutoriály Attention a Transformer na TensorFlow (viz předchozí slide)

Zdroje

- Coelho, L. P.; Richert, W. (2013) Building machine learning systems with Python. Birmingham: Packt Publishing. ISBN 978-1-78216-140-0.
- Géron, A. (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition. O'Reilly Media, Inc. ISBN 9781492032649.
- Chollet, F. (2019) Deep Learning v jazyku Python. Knihovny Keras, TensorFlow. Grada Publishing, a.s. ISBN 978-80-247-3100-1.
- Segaran, T. (2007) Programming collective intelligence: building smart web 2.0 applications. Beijing: O'Reilly Media. ISBN 0-596-52932-5.