# **Predicting suitable Location for Restaurants**

# Shashi Kumar Sharma

April 25, 2020

#### 1. Introduction

### 1.1 Background

Despite the substantial risks and the tough hours, owning a restaurant business is one of the most rewarding experiences of one's life for anyone that have nurtured a lifelong ambition of starting up a restaurant. Though the future looks bright for the food-service industry overall, there are no guarantees in this business. A hard reality is that many restaurants fail during their first year, frequently due to a lack of planning. But that doesn't mean your food-service business has to be an extremely complex operation. In fact, the more streamlined you can make it, the better your chances for success.

Some of the factors that affects the success of any restaurants are:

- concept of restaurant
- location of restaurant
- licenses required to start the restaurant business
- availability of workforce for restaurant business
- Arranging vendors and suppliers for restaurant and more.

#### 1.2 Problem

The location is an essential factor to consider while discussing how to start a restaurant business, as it can determine the success of any restaurant. While choosing restaurant's location, it is a good idea to identify ones competitor in that area and gauge their progress and understand their business model. Evaluating the competition would help restaurant understand the customer base that hovers in that area, their pocket size, and their preferences. That's why this Project aims to predict a proper location for success of any restaurant (For this project specifically in Chennai, India).

#### 1.3 Interest

Anyone who interests in starting up a restaurant, and don't know how to go about it, or are currently in the middle of setting up your first restaurant. This may help them with one of the most crucial factor for their Business Success.

## 2. Data Acquisition and Cleaning

#### 2.1 Data Source

Most of the Location data is acquired from online scraping of sites. I got required data from finkado <u>here</u>. The site contains Pin Codes (Specific code to a Location) of many regions of Chennai.

#### 2.2 Data Cleaning

The webpage data was downloaded using inbuilt request package of Python. After which the required table of pin-codes of regions was excluded from the webpage data. This was the first step on data cleaning.

Secondly, table had just pin-codes and location name in it. I needed location's Latitude and Longitude as well so that this can be used in Folium package for plotting the locations on map. So I used geopy package to extract the latitude and longitude data of the given location in the dataset.

While extracting the geo-coordinate data form the dataset, many of the location didn't return any coordinate (None). The reason may be due to closeness of the location to each other or lack of data in Geopy database. So these data rows had to be removed for further processing.

Lastly, I used the dataset in foursquare API for getting popular venue list on each and every location.

#### 2.3 Feature Selection

While getting the location data from the site, the total number of observation was 67 i.e. 67 Location was left after generating the location coordinate with 5 Features (Area, Pin-code, Location, Latitude, and Longitude). Since 'Location and Pin-code' feature was redundant for further processing, these feature was dropped at this stage.

When this dataset w further forwarded to Foursquare API, the final dataset had 1883 observation i.e. Venue objects with 6 Features (Latitude, Longitude, Venue, Venue Latitude, Venue Longitude, and Venue Category). Thus the final Feature had these below mentioned categories.

|   | Area                     | Latitude | Longitude | Venue      | Venue Latitude | Venue Longitude | Venue Category         |
|---|--------------------------|----------|-----------|------------|----------------|-----------------|------------------------|
| 0 | Aminjikarai S.O, Chennai | 13.07214 | 80.220545 | McDonald's | 13.073759      | 80.221388       | Fast Food Restaurant   |
| 1 | Aminjikarai S.O, Chennai | 13.07214 | 80.220545 | PVR        | 13.073799      | 80.221392       | Multiplex              |
| 2 | Aminjikarai S.O, Chennai | 13.07214 | 80.220545 | Westside   | 13.073687      | 80.221380       | Clothing Store         |
| 3 | Aminjikarai S.O, Chennai | 13.07214 | 80.220545 | @home      | 13.071499      | 80.222309       | Furniture / Home Store |
| 4 | Aminjikarai S.O, Chennai | 13.07214 | 80.220545 | Landmark   | 13.073781      | 80.221393       | Bookstore              |

Table 1. Selected Features during Data cleaning

## 3. Exploratory Data Analysis

#### 3.1 Visualizing number of venues and splitting as per categories for each location

Once the required Features was selected, I tried getting the total numbers of Venue for each location. So that the represented data can be understood more easily.

|                                   | Latitude | Longitude | Venue | Venue Latitude | Venue Longitude | Venue Category |
|-----------------------------------|----------|-----------|-------|----------------|-----------------|----------------|
| Area                              |          |           |       |                |                 |                |
| Aminjikarai S.O, Chennai          | 20       | 20        | 20    | 20             | 20              | 20             |
| Anna Nagar S.O (Chennai), Chennai | 2        | 2         | 2     | 2              | 2               | 2              |
| Anna Road H.O, Chennai            | 6        | 6         | 6     | 6              | 6               | 6              |
| Chepauk S.O, Chennai              | 15       | 15        | 15    | 15             | 15              | 15             |
| Chintadripet S.O, Chennai         | 23       | 23        | 23    | 23             | 23              | 23             |
| Choolai S.O, Chennai              | 5        | 5         | 5     | 5              | 5               | 5              |
| Choolaimedu S.O, Chennai          | 15       | 15        | 15    | 15             | 15              | 15             |
|                                   |          |           |       |                |                 |                |

Table 2. Number of venues for each Location

After this, it was time to view the mean of each venue categories for each location. The mean was taken to understand the data more correctly and to normalize it. This resulted in 165 columns of unique Venue.

|     | Area                                       | ATM    | African<br>Restaurant | Airport | American<br>Restaurant | Amphitheater | Antique<br>Shop |     | &<br>Crafts<br>Store | Asian<br>Restaurant |     | Thai<br>Restaurant | Theater | Toy /<br>Game<br>Store | Train<br>Station | Vegetarian<br>/ Vegan<br>Restaurant |
|-----|--------------------------------------------|--------|-----------------------|---------|------------------------|--------------|-----------------|-----|----------------------|---------------------|-----|--------------------|---------|------------------------|------------------|-------------------------------------|
| 0   | Aminjikarai<br>S.O,<br>Chennai             | 0.0    | 0.0                   | 0.0     | 0.0                    | 0.0          | 0.0             | 0.0 | 0.0                  | 0.0                 |     | 0.0                | 0.0     | 0.0                    | 0.000000         | 0.000000                            |
| 1   | Anna Nagar<br>S.O<br>(Chennai),<br>Chennai | 0.0    | 0.0                   | 0.0     | 0.0                    | 0.0          | 0.0             | 0.0 | 0.0                  | 0.0                 |     | 0.0                | 0.0     | 0.0                    | 0.500000         | 0.000000                            |
| 2   | Anna Road<br>H.O,<br>Chennai               | 0.0    | 0.0                   | 0.0     | 0.0                    | 0.0          | 0.0             | 0.0 | 0.0                  | 0.0                 |     | 0.0                | 0.0     | 0.0                    | 0.166667         | 0.000000                            |
| 3   | Chepauk<br>S.O,<br>Chennai                 | 0.0    | 0.0                   | 0.0     | 0.0                    | 0.0          | 0.0             | 0.0 | 0.0                  | 0.0                 |     | 0.0                | 0.0     | 0.0                    | 0.066667         | 0.066667                            |
| 4   | Chintadripet<br>S.O,<br>Chennai            | 0.0    | 0.0                   | 0.0     | 0.0                    | 0.0          | 0.0             | 0.0 | 0.0                  | 0.0                 | ••• | 0.0                | 0.0     | 0.0                    | 0.086957         | 0.086957                            |
| 5 r | ows × 166 co                               | olumns | <b>;</b>              |         |                        |              |                 |     |                      |                     |     |                    |         |                        |                  |                                     |

Table 3. Mean for each Venue per location

Now, I viewed each location along with the top 5 most common venues. For understanding how much cluster I should take for proper clustering of data. For the data it was pre-assumed, that there will be two clusters with Restaurants in it. One would be having majority of Indian Themed Restaurants and other will be with other venues as well.

When we made a new dataset for arranging top 10 venues for each location, It became more clear that the above assumption is going to effect the clustering pattern.

|   | Area                                    | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue         | 6th Most<br>Common<br>Venue     | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue        |
|---|-----------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------|
| 0 | Aminjikarai S.O,<br>Chennai             | Fast Food<br>Restaurant     | Pizza Place                 | Event Space                 | Furniture /<br>Home Store   | Clothing Store                      | Men's Store                     | Bakery                      | Playground                  | Burger Joint                | Electronics<br>Store                |
| 1 | Anna Nagar S.O<br>(Chennai),<br>Chennai | Burmese<br>Restaurant       | Train Station               | Yoga Studio                 | Farmers<br>Market           | Food Court                          | Food & Drink<br>Shop            | Food                        | Flower Shop                 | Flea Market                 | Field                               |
| 2 | Anna Road H.O,<br>Chennai               | Indian<br>Restaurant        | Department<br>Store         | Train Station               | Movie<br>Theater            | Farmers<br>Market                   | Food & Drink<br>Shop            | Food                        | Flower Shop                 | Flea Market                 | Field                               |
| 3 | Chepauk S.O,<br>Chennai                 | Indian<br>Restaurant        | Memorial<br>Site            | Beach                       | Music Store                 | Platform                            | Middle<br>Eastern<br>Restaurant | Light Rail<br>Station       | Seafood<br>Restaurant       | Cricket<br>Ground           | Vegetarian /<br>Vegan<br>Restaurant |
| 4 | Chintadripet S.O,<br>Chennai            | Hotel                       | Indian<br>Restaurant        | Movie<br>Theater            | Bookstore                   | Vegetarian /<br>Vegan<br>Restaurant | Train Station                   | Sandwich<br>Place           | Flea Market                 | Fast Food<br>Restaurant     | Farmers<br>Market                   |

Table 4. Top 10 Venues for each location

#### 3.2 Predictive model used

As the project was to use Foursquare API along with Clustering algorithm for clustering data. Hence I used K-means clustering algorithm with number of clusters to be 5.

#### 4. Result

After applying the K-means algorithm on the dataset, Data was split into 5 clusters. As pre-assumed, two clusters resulted in containing maximum restaurant in them. One cluster had majority of Indian themed restaurants while other cluster had mix of each restaurants along with public facilities as well. In the below figure, the Purple circles are for location having majority of Indian themed restaurants while red circles are for the other one.



Figure 1. Map showing Clusters

Cluster 1

| In [29]: | Cheni | nai_merged.loc                             | [Chenn | ai_merged             | ['Labels']              | == 0, Che            | nnai_merged             | .columns[[            | 1] + list(r                | ange(5, Che           | nnai_merged        | l.shape[1]                    | ))]]                     |
|----------|-------|--------------------------------------------|--------|-----------------------|-------------------------|----------------------|-------------------------|-----------------------|----------------------------|-----------------------|--------------------|-------------------------------|--------------------------|
|          | 46    | Kilpauk Medical<br>College S.O,<br>Chennai | 0      | Indian<br>Restaurant  | Bakery                  | Café                 | Fast Food<br>Restaurant | Italian<br>Restaurant | Juice Bar                  | Frozen<br>Yogurt Shop | Food Truck         | South<br>Indian<br>Restaurant | Multiple:                |
|          | 47    | Kilpauk S.O,<br>Chennai                    | 0      | Café                  | Indian<br>Restaurant    | Juice Bar            | Ice Cream<br>Shop       | Frozen<br>Yogurt Shop | Gym /<br>Fitness<br>Center | Daycare               | Food               | Coffee<br>Shop                | Fast Foo<br>Restaurar    |
|          | 48    | Kodambakkam<br>S.O, Chennai                | 0      | Indian<br>Restaurant  | Juice Bar               | Jewelry<br>Store     | Electronics<br>Store    | Clothing<br>Store     | Chinese<br>Restaurant      | Food Court            | Lounge             | Bakery                        | Furniture<br>Hom<br>Stor |
|          | 49    | Kodungaiyur<br>S.O, Chennai                | 0      | Ice Cream<br>Shop     | Fast Food<br>Restaurant | Coffee<br>Shop       | Currency<br>Exchange    | Farmers<br>Market     | Food Court                 | Food & Drink<br>Shop  | Food               | Flower<br>Shop                | Flea<br>Marke            |
|          | 52    | Kotturpuram<br>S.O, Chennai                | 0      | Bakery                | Department<br>Store     | Park                 | Sandwich<br>Place       | Café                  | Convenience<br>Store       | Chinese<br>Restaurant | College<br>Library | College<br>Cafeteria          | Boat o                   |
|          | 60    | Madras Medical<br>College S.O,<br>Chennai  | 0      | Indian<br>Restaurant  | Train<br>Station        | Bookstore            | Market                  | Historic Site         | Fast Food<br>Restaurant    | Electronics<br>Store  | Museum             | Nightclub                     | Platforr                 |
|          | 61    | Madras<br>University S.O,<br>Chennai       | 0      | Chinese<br>Restaurant | Park                    | College<br>Cafeteria | Department<br>Store     | Sandwich<br>Place     | Café                       | Clothing<br>Store     | Market             | Field                         | Light Ra<br>Statio       |

Figure 2. Cluster having other themed restaurants with public facilities near them



Figure 3. Cluster having majority of Indian themed restaurants

#### 5. Discussion

In this study, I analyzed the location data and pre-assumed surety of two cluster in the result, and the predictive model also suggested the same. I analyzed with the above cluster that major Indian themed restaurants are near the railway station. As this seems fair since many people from various cities in India migrate to Chennai for job opportunities.

Apart from these, different location has various themed restaurant around them. This is all because of diversity in citizen of these places.

#### 6. Conclusion

Coming back to the result. The owner of the restaurant may choose any of the location in two cluster depending on his/her requirements. If he choose to open another themed restaurant with public facilities near them. Then he/she can go with cluster with different themed restaurant.

If he choose to open specifically Indian themed restaurant. Then he/she can go with cluster with Majority of Indian themed restaurant.