Lovász-Type Theorems and Game Comonads

Tomáš Jakl (join work with Anuj Dawar and Luca Reggio)

13 July 2021

Applied Category Theory 2021 @ University of Cambridge & online

Lovász-Type Theorems

Theorem (Lovász, 1967)

For finite relational structures A and B,

$$A \cong B \iff \mathsf{hom}(C,A) \cong \mathsf{hom}(C,B) \ \forall \textit{finite } C$$

Yoneda lemma implies $A \cong B \iff \mathsf{hom}(-,A) \cong \mathsf{hom}(-,B)$

Generalisations

Theorem (Pultr, 1973)

Every finitely well-powered, locally finite categories with (extremal epi, mono) factorization system is combinatorial, i.e.

$$A \cong B \iff \mathsf{hom}(-,A) \overset{\text{``}}{\underset{\wedge}{\cap}} \mathsf{hom}(-,B)$$

unnatural isomorphism

Other categorical reformulations: (Isbell, 1991), (Lovász, 1972).

Notable refinements

Theorem (Dvořák, 2009)

For finite relational structures A and B,

$$A \equiv_{FO^k(\#)} B \iff \mathsf{hom}(C, A) \cong \mathsf{hom}(C, B)$$

 $\forall finite \ C \ with \ tree-width < k$

Theorem (Grohe, 2020)

For finite relational structures A and B,

$$A \equiv_{\mathrm{FO}_k(\#)} B \iff \mathsf{hom}(C,A) \cong \mathsf{hom}(C,B)$$

 $\forall \textit{finite C with tree-depth} \leq k$

$$FO(\#) = FO + \exists^{\geq n} x + \exists^{\leq n} x$$

Comonads

Kleisli-Manes definition

Comonad $(\mathbb{C}, \varepsilon, \overline{(-)})$ on category \mathcal{A} :

- \mathbb{C} : $\operatorname{obj}(\mathcal{A}) \to \operatorname{obj}(\mathcal{A})$
- counit $\varepsilon_A \colon \mathbb{C}A \to A$, $\forall A \in \text{obj}(A)$,
- lifting $\overline{f}: \mathbb{C}A \to \mathbb{C}B$, $\forall f: \mathbb{C}A \to B$,
- laws:

$$\overline{\varepsilon_A} = \mathrm{id}_{\mathbb{C}A}, \qquad \varepsilon_B \circ \overline{f} = f, \qquad \overline{g \circ \overline{f}} = \overline{g} \circ \overline{f}$$

Example: Lists/words comonad on Sets

 $List_k(A) = \{ [a_1, ..., a_m] \mid a_i \in A, 1 \le m \le k \}$

- $\varepsilon([a_1,\ldots,a_m])=a_m$.
- $f: \operatorname{List}_k(A) \to B$ lifts to $\overline{f}: [a_1, \dots, a_m] \mapsto [b_1, \dots, b_m]$ where $b_i = f([a_1, \dots, a_i])$

Comonad Coalgebras

 $\alpha \colon A \to \mathbb{C}A$ is a coalgebra iff

Example: For a fixed set A,

Ehrenfeucht-Fraissé comonad(s)

Fix a relational signature σ and category $\mathcal{R}(\sigma)$.

Given $A \in \mathcal{R}(\sigma)$, define $\mathbb{E}_k(A)$ on the set $\mathrm{List}_k(A)$ with

$$(w_1, \dots, w_u) \in R^{\mathbb{E}_k(A)}$$
 if $w_s \sqsubseteq w_t$ or $w_s \sqsupseteq w_t$ $(\forall s, t)$
and $(\varepsilon_A(w_1), \dots, \varepsilon_A(w_u)) \in R^A$

Sequence of subcomonads $\mathbb{E}_1 \hookrightarrow \mathbb{E}_2 \hookrightarrow \mathbb{E}_3 \hookrightarrow ...$

Theorem (Abramsky, Shah, 2018)

A coalgebra $A \to \mathbb{E}_k(A)$ exists iff tree-depth of A is $\leq k$.

Expressing logic fragments

- Define $\sigma^{\mathrm{I}} = \sigma \cup \{I\}$ and $\mathcal{R}(\sigma^{\mathrm{I}}) \stackrel{\longleftarrow}{\longrightarrow} \mathbb{E}_{k}^{\mathrm{I}}$ as before.
- $\mathcal{R}(\sigma) \stackrel{J}{\longrightarrow} \mathcal{R}(\sigma^{\mathrm{I}}) \stackrel{F}{\longrightarrow} \mathtt{CoAlg}(\mathbb{E}_k^{\mathrm{I}})$ where

$$J \colon A \mapsto (A, I^A)$$
 and $I^A = \{(a, a) \mid a \in A\}$

Theorem (Abramsky, Shah, 2018)

$$A \equiv_{\mathrm{FO}_k(\#)} B \iff FJ(A) \cong FJ(B) \text{ in } \mathrm{CoAlg}(\mathbb{E}_k^{\mathrm{I}})$$

Remark:

 $A \equiv_{FO_k} B$ captured by span of "open pathwise embeddings"

$$FJ(A) \leftarrow R
ightarrow FJ(B)$$
 in $\mathtt{CoAlg}(\mathbb{E}_k^{\mathrm{I}})$

The framework

"Theorem" (Dawar, Jakl, Reggio, 2021)

Assuming

- 1. \mathbb{C} classifies $\equiv_{\mathcal{L}}$ and a class of finite structures Δ , (regardless of signature) combinatorial
- 2. $\mathbb C$ restricts to finite structures, and
- 3. for every (A, I) in Δ , also $A/I \in \Delta$.

Then,

$$A \equiv_{\mathcal{L}} B \iff \mathsf{hom}(C,A) \cong \mathsf{hom}(C,B) \quad \forall C \in \Delta$$

Applies to \mathbb{E}_k , $\mathbb{P}_{k,n}$ (... also \mathbb{P}_k), \mathbb{M}_k

Candidate comonads: $\mathbb{H}_{n,k}$ (Ó Conghaile, Dawar, 2020), $\mathbb{G}^{\mathfrak{g}}$ (Abramsky, Marsden, 2021), \mathbb{PR}_k (Shah, 2021)

core

equality

elimination

Ingredients

Theorem

Any locally finite category with pushouts and a weak factorisation system $(\mathcal{E}, \mathcal{M})$ with $\mathcal{E} \subseteq \mathrm{Epis}$ and $\mathcal{M} \subseteq \mathrm{Monos}$ is combinatorial.

Because $U \colon \mathtt{CoAlg}(\mathbb{C}) \to \mathcal{R}(\sigma)$ creates colimits and isomorphisms:

Corollary

For any comonad $\mathbb C$ on $\mathcal R(\sigma)$, the category of finite coalgebras $\operatorname{CoAlg}_f(\mathbb C)$ is combinatorial.

Theorem

Any locally finite category with pushouts and a weak factorisation system $(\mathcal{E}, \mathcal{M})$ with $\mathcal{E} \subseteq \mathrm{Epis}$ and $\mathcal{M} \subseteq \mathrm{Monos}$ is combinatorial.

Proof sketch:

• Given $F,G:\mathcal{A}^{\mathrm{op}}\to\mathsf{FinSet}$ which send $\mathcal{E}\text{-pushout}$ squares to pullbacks. Then F " \cong " G implies \widehat{F} " \cong " \widehat{G} where

$$\widehat{F}(z) = F(z) \setminus \bigcup \{im(E(f)) \mid f \colon z \to z' \in \mathcal{E} \setminus \mathcal{M}\}.$$

- If E = hom(-, x) then $\widehat{E}(z) = \mathcal{M}(z, x)$.
- hom(-,x) "\(\text{"}\)" hom(-,y) $\implies \mathcal{M}(-,x)$ "\(\text{"}\)" $\mathcal{M}(-,y)$ $\implies x \(\text{?}\) <math>y$

Thank you!