Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

17 de março de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Autômatos Finitos Determinísticos
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômatos Finitos Determinísticos
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Pensamento

Pensamento

Frase

Se A é o sucesso, então A = X + Y + Z.O trabalho é X;
Y é o lazer; e
Z é manter a boca fechada.

Quem?

Albert Einstein (1879 - 1955): Físico teórico alemão.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômatos Finitos Determinísticos
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Avisos

Questão Avaliada 01 no Canvas

É necessária a avaliação pelos pares!

Toorio	A > T > T > O
Teoria	♠ > Teoria > Tarefas > Questão Avaliada 01
Página inicial	
Anúncios	Questão Avaliada 01
Páginas	Encontre o erro na seguinte prova de que $2=1$. Considere a equação $a=b$. Multiplique ambos os lados por a para obter $a^2=ab$. Subtraia b^2 de ambos os lados para obter $a^2-b^2=ab-b^2$. Agora fatore cada lado, obtendo $(a-b)$ ($a+b$) $=b$ ($a-b$), e divida cada lado por $(a-b)$, para chegar em $a+b=b$. Finalmente, faça a e b iguais a 1, o que mostra que $2=1$.
Tarefas	
Testes	
Notas	
Discussões	
Pessoas	
Programa	
Módulos	

Avisos

SANTA ESTREIA NA ARENA PERNAMBUCO COM GOLEADA DIANTE DO PORTO-PE

Léo Gamalho assume papel de protagonista ao abrir o placar e participar diretamente do segundo gol; Jefferson Maranhão marcou outros dois gols

Sumário

- Pensamento
- Avisos
- Revisão
 - Autômatos Finitos Determinísticos
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Um autômato finito determinístico (AFD) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- Q é um conjunto finito conhecido como os estados,
- Σ é um conjunto finito chamado o alfabeto,
- **3** $\delta: Q \times \Sigma \rightarrow Q$ é a função de transição,
- $F \subseteq Q$ o conjunto de estados de aceitação.

Computação e Linguagem Regular

Computação

Seja M um autômato finito e $w=w_1w_2...w_n$ seja uma cadeia em que w_i é um membro do alfabeto Σ . Então M aceita w se existe uma sequência de estados $r_0, r_1, ..., r_n$ em Q com três condições:

- $0 r_0 = q_0$
- ② $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, 1, ..., n-1, e
- \circ $r_n \in F$.

Linguagem Regular (Definição 1.16)

Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Autômatos Finitos Determinísticos
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Operações Regulares

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

- **União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$.
- Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\}.$
- Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e } x_i \in A\}.$

Operações Regulares

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

- **União**: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$.
- Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\}.$
- Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e } x_i \in A\}.$

Teorema 1.25

A classe de linguagens regulares é **fechada** sob a operação de união.

Um autômato finito não-determinístico (AFN) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $oldsymbol{\delta}: Q imes \Sigma_\epsilon o \mathcal{P}(Q)$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial, e
- ullet $F\subseteq Q$ é o conjunto de estados de aceitação.

Qual linguagem este AFN reconhece?

Computação em um AFN

Seja N um autômato finito não-determinístico e w uma cadeia sobre o alfabeto Σ . Então N aceita w se podemos escrever w como $w=y_1y_2\ldots y_m$, em que cada y_i é um membro de Σ_ϵ e existe uma sequência de estados r_0, r_1, \ldots, r_n em Q com três condições:

- $0 r_0 = q_0$
- ② $r_{i+1} \in \delta(r_i, y_{i+1})$, para i = 0, 1, ..., m-1, e
- \circ $r_m \in F$.

Qual linguagem este AFN reconhece?

Qual linguagem este AFN reconhece?

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Corolário 1.40

Uma linguagem é regular se e somente se algum autômato finito não-determinístico a reconhece.

Expressões Regulares

Digamos que R é uma expressão regular (ER) se R for:

- \bullet a, para algum $a \in \Sigma$,
- $\mathbf{2} \epsilon$,
- **③** ∅,
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares,
- \circ (R_1^*) , em que R_1 é uma expressão regular.

Exemplos de ER

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Estratégia

Utilizar para realizar a prova um autômato finito não-determinístico generalizado.

Autômato Finito Não-Determinístico Generalizado

Um autômato finito não-determinístico generalizado (AFNG) é uma 5-upla ($Q, \Sigma, \delta, q_{inicio}, q_{aceita}$), de forma que

- Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $\delta: (Q \{q_{aceita}\}) \times (Q \{q_{inicio}\}) \rightarrow R$ é a função de transição,
- $q_{inicio} \in Q$ é o estado inicial, e
- $ullet q_{aceita} \in Q$ é o estado de aceitação.

Autômatos Finitos Não-Determinístico Generalizado

Linguagens Não-Regulares

Existem linguagens que não são regulares como

$$A=\{0^n1^n\mid n\geq 0\}.$$

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n > 0\}.$

Lema do Bombeamento

Se A é uma linguagem regular, então existe um número p (o comprimento do bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s=xyz, satisfazendo as seguintes condições:

- \bullet para cada $i \geq 0, xy^i z \in A$,
- |y| > 0, e
- $|xy| \le p.$

Lista de Exercícios 02

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 1.4 (a, d, g);
- 1.7 (a, d, g);
- 1.15;
- 1.31.

Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

17 de março de 2014

