TD5 - Réductions, NP-difficulté, NP-complétude

Rappel 1 : Une reduction many-one polynomiale de L_1 à L_2 , est donnée par un algo f en temps poly qui transforme chaque mot sur L_1 en un mot sur L_2 , et préserve l'acceptation :

$$x \in L_1 \iff f(x) \in L_2.$$

On note alors $L_1 \leq_m^p L_2$, car le problème L_2 est au moins aussi difficile que le problème L_1 .

Rappel 2 : L_2 est NP-difficile si et seulement si pour tout $L_1 \in NP$ on a $L_1 \leq_m^p L_2$.

Rappel 3 : L_2 est NP-complet si et seulement si $L_2 \in \mathsf{NP}$ et L_2 est NP-difficile.

Rappel 4 : Si L_1 est NP-difficile et $L_1 \leq_m^p L_2$ alors L_2 est NP-difficile.

Donc, pour répondre à un exercice de la forme

« montrer que le problème Toto est NP-complet »,

on pourra remplir le texte à trou suivant :

<	ici soit on donne un algo dans <code>NP</code> pour décider <code>Toto</code> , soit on utilise la char. exist. de <code>NP</code> $ angle \dots$
	Pour le problème Tata que l'on sait déjà être NP-difficile, on a Tata \leq_m^p Toto , car il existe a transformation $f: \Sigma_{\mathbf{Tata}}^* \to \Sigma_{\mathbf{Toto}}^*$ définie par
<	ici on explique comment transformer les instances de Tata en des instances de Toto $\rangle \dots$
	, qui est
	i. calculable en temps polynomial, car
	(ici on peut en général argumenter simplement : objets de taille poly faciles à générer)
i	ii. et telle que, pour tout $x \in \Sigma^*_{\mathbf{Tata}}$ on a $x \in \mathbf{Tata} \iff f(x) \in \mathbf{Toto}$. En effet :
	i. pour tout $x \in \Sigma^*_{\mathbf{Tata}}$ on a $x \in \mathbf{Tata} \implies f(x) \in \mathbf{Toto}$, car
	⟨ici se trouve le cœur de la démonstration – ventricule gauche⟩
	ii. pour tout $x \in \Sigma^*_{\mathbf{Tata}}$ on a $f(x) \in \mathbf{Toto} \implies x \in \mathbf{Tata}$, car
	⟨ici se trouve le cœur de la démonstration – ventricule droit⟩

Les définitions des problèmes sont données ci-après. On supposera acquis que

3-SAT et Clique sont NP-complets.

Pour répondre à une question on pourra supposer que l'on a déjà répondu aux précédentes.

- 1. Montrer que Ensemble indépendant est NP-complet. Indice : réduire depuis Clique.
- 2. Montrer que Node cover est NP-complet. Indice : réduire depuis Clique.
- 3. Montrer que **Set packing** est NP-complet. *Indice* : réduire depuis **Clique**.
- 4. Montrer que Set covering est NP-complet. Indice : réduire depuis Node cover.
- **5.** Montrer que **Feedback node set** est NP-complet. *Indice : réduire depuis* **Node cover**.
- **6.** Montrer que **Exactly-1 3-SAT** est NP-complet. *Indice : réduire depuis 3-SAT*.
- 7. Montrer que **0-1 integer programming** est NP-complet. *Indice : réduire depuis* Exactly-1 **3-SAT**.

3-SAT

entrée : une formule propositionnelle ϕ en forme normale conjonctive, dont toutes les clauses sont de taille exactement trois.

question : y a-t-il une affectation qui satisfait ϕ ?

Clique

entrée : un graphe non-orienté G = (V, E) et un entier $k \in \mathbb{N}$.

question : G contient-il une clique de taille k?

Ensemble indépendant

entrée : un graphe non-orienté G = (V, E) et un entier $k \in \mathbb{N}$. question : G contient-il un ensemble indépendant de taille k?

Node cover

entrée : un graphe G = (V, E) et un entier $\ell \in \mathbb{N}$.

question : existe-t-il un sous ensemble $V' \subseteq V$ tel que $|V'| \le \ell$ et toute arête de E a l'une de ses extrémités dans V'?

Set packing

entrée : une famille $\{S_j\}_{j\in\{1,\ldots,m\}}$ d'ensembles tels que $S_j\subseteq\{1,\ldots,n\}$ pour tout $j\in\{1,\ldots,m\}$, et un entier $\ell\in\mathbb{N}$.

question : $\{S_i\}$ contient-elle ℓ ensembles mutuellement disjoints?

Set covering

entrée : une famille $\{S_j\}_{j\in\{1,\ldots,m\}}$ d'ensembles tels que $S_j\subseteq\{1,\ldots,n\}$ pour tout $j\in\{1,\ldots,m\}$, et un entier $k\in\mathbb{N}$.

question : $\{S_j\}$ contient-elle k ensembles $\{S_{j_i}\}_{i\in\{1,\dots,k\}}$ tels que $\bigcup_{i\in\{1,\dots,k\}} S_{j_i} = \bigcup_{j\in\{1,\dots,m\}} S_j$?

Feedback node set

entrée : un graphe orienté G = (V, A) et un entier $k \in \mathbb{N}$.

 $\mathit{question}$: existe-t-il un sous ensemble $V'\subseteq V$ tel que $|V'|\le k$ et tout cycle dirigé de

G contienne un sommet dans V'?

Exactly-1 3-SAT

 $\it entr\'ee$: une formule propositionnelle ϕ en forme normale conjonctive, dont toutes les clauses sont de taille exactement trois.

 $\it question$: y a-t-il une affectation qui satisfait exactement un littéral pour chaque clause de ϕ ?

0-1 integer programming

entrée : Une matrice M de taille $m \times n$ avec $M_{i,j} \in \mathbb{Z}$ pour tout i, j, et un vecteur d de taille m avec $d_i \in \mathbb{Z}$ pour tout i.

question : existe-t-il un vecteur x de taille n avec $x_j \in \{0,1\}$ pour tout j et Mx = d?