Neural Networks

Enthusiasm • Leadership • Innovation • Teamwork • Excellence

What Is Neural Networks?

- Consists of simple operation elements operating in parallel
 - Elements are inspired by biological nervous systems
 - Network function is determined by the connections between elements
- A neural network is trained to perform a particular function
 - Adjust the values of the connections (weights) between elements
 - Based on a comparison of the output and the target, until the network output matches the target
 - Many such input/target pairs are needed to train a network
 - ◆ Training data set

Neural Networks

- **†** Topics
 - Introduction
 - Perception
 - Adaline
 - Backpropagation MLPs
 - Discussion

Biological Neuron and Artificial Neuron

Supervised NN

- Supervised training methods
 - Batch training
 - Change weight and bias based on an entire set (batch) of input vectors
 - Incremental training
 - Change the weights and biases after each individual input vector
 - On line training
 - Adaptive training
 - Application fields
 - ◆Pattern recognition, identification, classification, speech, vision, and control system
 - Solve problems that are difficult for conventional computers or human beings
 - Engineering, financial, and other practical applications.

Unsupervised NN

- Unsupervised training techniques
 - Identify groups of data
- Direct design methods
 - Training is not required
 - Certain kinds of linear networks and Hopfield networks

History

- History of some seven decades
 - Solid application only in the past thirty years
 - The field turns to deep learning now from 2010
- McCulloch an Pitts (1943)
 - A biological brain neuron model
- Hebb (1949)
 - Learning rule
- Rosenblatt (1957,1962)
 - Perceptron; the first neural network model
 - Delta rule (LMS, Least Mean Square rule)
- **Widrow** (1960)
 - Adaline (Adaptive Linear Element)
- Minsky and Papert (1969)
 - Book "Perceptrons": kills the NN research
 - **10-15 blackness years (for supervised NNs)**

- Grossberg (1972)
 - ART (Adaptive Resonance Theory) NN
- **%** Kohonen (1978)
 - SOM (Self-Organizing Map) NN
- **#** Hopfield (1982)
 - HNN, Hopfield NN
- **#** Hinton (1984)
 - Boltzmann machine
- Hopfield and Tank (1985)
 - HTN, Hopfield-Tank NN for optimization

- Rumelhart (1985)
 - BPN, Back Propagation NN
 - Generalized Delta Rule
- Grossberg (1988)
 - ART2
- ICNN, International Conference on NN (1988)
- Specht (1988)
 - PNN, Probabilistic NN
- **%** Kohonen (1988)
 - LVQ, Learning Vector Quantization NN
- Den Bout and Miller (1988)
 - ANN, Annealed NN

- Cortes and Vapnik (1995)
 - Support-Vector network
- LeCun and Bengio (1995)
 - Convolutional networks
 - ◆A special MLP
- **2010-**
 - Deep neural networks
 - Deep Learning

Neuron Model

Simple Neuron without bias

- A neuron with a single scalar input and no bias
- Input x is transmitted through a connection that multiplies its strength by the scalar weight w to form the product wx

$$a = f(wx) = f(v)$$

Simple Neurons

- Simple Neuron with bias
 - Bias can be added to the product wx
 - Bias is much like a weight, except that it has a constant input of 1
 - Net *v* is the sum of the weighted input *wx* and the bias *b*

$$a = f(wx+b) = f(v)$$

Transfer Function and Parameters

- Transfer function (Activation function)
 - A step function or a sigmoid function
 - The only input is the net value
 - **■** Takes the argument *v* and produces the output *a*
- Adjustable scalar parameters of the neuron
 - Weights *w* and bias *b*
 - Adjusted so that the network exhibits some desired or interesting behavior
 - One can train the network to do a particular job
 - Adjusting the weight or bias parameters

Supervised Learning Neural Networks

- Problems with known desired input-output data sets
- Adjustable parameters
- Has a supervised learning rule
- Supervised Learning or Mapping networks

Perceptrons

- Designed by Rosenblatt (1962)
 - The earliest neural model
 - For pattern recognition (data classification)
 - Single neuron layer and an input layer
 - ◆Input layer is "feature detectors"
 - Neurons classify the given input patterns
 - Derived from a biological brain neuron model
 - ◆McCulloch and Pitts (1943)

Learning Method of Perceptron

Adjust the relevant connection strengths (weights) w_i and a threshold value θ

$$v = \sum_{i=1}^{n} w_i x_i - \theta = \sum_{i=1}^{n} w_i x_i + w_0 x_0 = \sum_{i=0}^{n} w_i x_i, \quad x_0 = 1$$

Perceptron

- **Value** x_i is usually either binary (0,1) or bipolar (-1,1)
 - $\mathbf{x}_i = 1$, active or excitatory
 - $x_i = 0$ or -1, inactive or inhibitory
- \bullet Value x_i can be real number in perceptrons
 - Classification
 - A hyper plane
- Output is a linear threshold element

Perceptron

- f(.) is the activation (transfer) function
 - A signum function (for bipolar output)
 - A hard-limit transfer function

$$f(v) = \operatorname{sgn}(v) = \begin{cases} 1, & \text{if } v > 0 \\ -1, & \text{otherwise} \end{cases}$$

- A step function (for binary output)
- A hard-limit transfer function

$$f(v) = \text{step}(v) = \begin{cases} 1, & \text{if } v > 0 \\ 0, & \text{otherwise} \end{cases}$$

Perceptron Wrongly Correctly **Current Weights** classified (v>0): classified (v **Update Negative** no update Wrongly classified (v<0): **True Separation Line Update Positive** V < 0Correctly V>0classified (v>0):

no update

computer automation

Basic Learning algorithm

- 1. Randomly assign weights and biases
- 2. Select an input vector x with known output
- 3. Compute the computed output from the NN
 - If the output is incorrect, modify all connection weights (including the bias) w_i
 - Applying a learning rate to reduce the update amounts
- 4. Continue Steps 2 and 3 until no weight modifications sustained for all the input vectors

Points (x_1, x_2) are separated by line $L(x_1, x_2) = w_1^* x_1 + w_2^* x_2 + w_0^* = 0$, and with output value $y = \begin{cases} 1, & \text{if } L(x_1, x_2) > 0 \\ 0, & L(x_1, x_2) \le 0 \end{cases}$ $v = \sum_{i=0}^{n} w_i x_i, f(v) = \text{step}(v) = \begin{cases} 1, & \text{if } v > 0 \\ 0, & \text{if } v \le 0 \end{cases},$ $w_i = w_i + \Delta w_i = w_i + \eta (y - f(v)) x_i,$ $y-f(v) = \begin{cases} 1-1=0 \text{ or } 0-0=0, \text{if the training point } \mathbf{x} \\ \text{is correctly classified;} \\ 1-0=1, \text{ wrongly classified with } v<0 \\ 0-1=-1, \text{ wrongly classified } v>0 \end{cases}$

Basic Learning algorithm

- Roughly based on gradient descent
- Perceptron convergence theorem
 - Proved by Rosenblatt (1962)
- Limitation
 - Classification must be linear separable
 - Can not deal with the Exclusive-OR Problem

Limitations of Perceptrons

- Single layer perceptron
 - A principal NN component
 - Non-differentiability of the hard-limiter activation function
 - Signum and step functions
 - **■** The learning strategy is not obvious
- Lack of suitable training methods
 - From 1960s to1980s, until ...
- Backpropagation training method for MLPs
 - Rumelhart et al. (1986)

ADALINE

- Adaptive Linear Element (Adaline)
 - By Widrow and Hoff (1960)
 - A classical example of the simplest intelligent self-learning system

- \clubsuit A linear model with n+1 linear parameters
- Learning method
 - The best method: the least-squares methods
 - All points are subject to computing errors
 - Error minimization algorithm is required
 - ◆Tradeoff: extensive computation
 - Widrow and Hoff introduced "Delta Rule" for adjusting the weights

$$E_{p} = \left(t_{p} - o_{p}\right)^{2}$$

$$\frac{\partial E_{p}}{\partial w_{i}} = -2\left(t_{p} - o_{p}\right) \frac{d\left(\sum_{i=1}^{n} w_{i} x_{i} + w_{0}\right)}{dw_{i}} = -2\left(t_{p} - o_{p}\right) x_{i}$$

 \clubsuit Decrease E_p to descent the error,

$$\Delta_p w_i = -k \frac{\partial E_p}{\partial w_i} = \eta \left(t_p - o_p \right) x_i$$

- Delta Rule
 - Minimize squared errors for a single input
 - Widrow-Hoff Learning Rule
 - Simplicity
 - Distributed learning
 - Support on-line learning (pattern-by-pattern)

Adaline and Madaline

- Adaline+delta rule
 - **1960s**
 - Suitable for simple hardware implementation
- Two or more Adaline components are integrated
 - Used for adaptive noise cancellation
 - Adaptive inverse control

A Backpropagation MLP

- MLP (Multiple Layer Perceptron)
- Node (Neuron) function
 - A composite of the weighted sum and a differentiable nonlinear activation function
- Three of the most commonly used activation functions
 - Logistic function, Hyperbolic tangent function, Identity function

Transfer Functions for Back Propagation MLPs

Logistic and Hyperbolic tangent functions

- Approximate the signum and step functions
- Smooth, nonzero derivatives with respect to input signals
- Referred to as "Squashing Functions"
- Also called "Sigmoidal Functions"
 - ◆Hyperbolic tangent → Bipolar sigmoidal
 - ◆Logistic → Binary sigmoidal
- Identity function
 - Continuous valued function not limited to [0,1] or [-1,1]
 - No squashing function
 - Linear node

computer automation

Transfer Functions in Deep Learning NNs

Backpropagation Learning Rule

- Assume logistic transfer function is used
- ♣ A net input v of a node is defined as the weighted sum of the incoming signals plus a bias

$$v_{j} = \sum_{i} w_{ij} x_{i} + \theta_{j}, \quad x_{j} = f(v_{j}) = \frac{1}{1 + e^{-v_{j}}}$$

Sample MLP Neural Network

- Two-layer backpropagation
 - Input layer is not counted as a physical layer
 - However, it is usually identified as 3-layer NN Node 4

Backward Error Propagation

- Backward error propagation=Backprogagation (BP)=Generalized Delta Rule (GDR)
 - $E = \sum_{k=1}^{\infty} (d_k x_k)^2, k = 1,...,$ number of output neurons
- \bullet E: squared error measure, d_k : the desired output for node k, x_k : actual output of node k
- The gradient vector of E with respect to the neuron values and weights are

$$\nabla E = \left[\frac{\partial E}{\partial x_k}\right] = \left[\frac{\partial E}{\partial x_1}\frac{\partial E}{\partial x_2}\cdots\right] \quad \nabla E = \left[\frac{\partial^+ E}{\partial w_{ki}}\right] = \left[\frac{\partial^+ E}{\partial w_{11}}\frac{\partial^+ E}{\partial w_{12}}\cdots\right]$$

The partial gradient vector of E with respect to the net input v_j is $\nabla E = \left[\frac{\partial^+ E}{\partial v_1} \right] = \left[\frac{\partial^+ E}{\partial v_1} \frac{\partial^+ E}{\partial v_2} \cdots \right]$

Ordered Derivative

$$z = g\left(x, y\right)$$

if x and y are independent

$$\nabla g = \left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \right], \frac{\partial z}{\partial x} = \frac{\partial g(x, y)}{\partial x}, \frac{\partial z}{\partial y} = \frac{\partial g(x, y)}{\partial y}$$

if
$$y = f(x)$$

$$\frac{\partial z}{\partial y} = \frac{\partial g(x, y)}{\partial y}, \text{ yet}$$

$$\frac{\partial z}{\partial x} = \frac{\partial^{+} z}{\partial x} = \frac{\partial g(x, y)}{\partial x} \bigg|_{y=f(x)} + \frac{\partial g(x, y)}{\partial y} \bigg|_{y=f(x)} \cdot \frac{\partial y}{\partial x}$$

$$= \frac{\partial g(x,y)}{\partial x} \bigg|_{y=f(x)} + \frac{\partial g(x,y)}{\partial y} \bigg|_{y=f(x)} \cdot \frac{\partial f(x)}{\partial x}$$

Example

$$z = g(x, y) = 3x^2y$$

if x and y are independent

$$\frac{\partial z}{\partial x} = \frac{\partial \left(3x^2y\right)}{\partial x} = 6xy \iff \text{Right!} \frac{\partial z}{\partial y} = \frac{\partial \left(3x^2y\right)}{\partial y} = 3x^2 \iff \text{Right!}$$

if
$$y = f(x) = (4x + 2)$$
, $z' \equiv 3x^2(4x + 2) = 12x^3 + 6x^2$, $\frac{\partial z'}{\partial x} = 36x^2 + 12x$

$$\left. \frac{\partial z}{\partial x} = \frac{\partial \left(3x^2 y \right)}{\partial x} \right|_{y=f(x)} = 6xy \Big|_{y=f(x)} = 6x(4x+2) = 24x^2 + 12x \neq 36x^2 + 12x \Leftarrow \text{Wrong!}$$

$$\frac{\partial^{+} z}{\partial x} \Leftarrow \text{Right!} \quad \frac{\partial^{+} z}{\partial x} = \frac{\partial^{+} (3x^{2}y)}{\partial x} = \frac{\partial (3x^{2}y)}{\partial x} \bigg|_{y=f(x)} + \frac{\partial (3x^{2}y)}{\partial y} \bigg|_{y=f(x)} \cdot \frac{\partial f(x)}{\partial x}$$

$$= 6xy\big|_{y=f(x)} + 3x^2\big|_{y=f(x)} \frac{\partial (4x+2)}{\partial x}$$

$$= 6x(4x+2) + 3x^2 \cdot 4 = 24x^2 + 12x + 12x^2 = 36x^2 + 12x$$

x is independent; y_i depends on x

$$z = g(x, y_1, y_2, ..., y_n)$$
$$y_i = f_i(x)$$

$$\frac{\partial^{+} z}{\partial x} = \frac{\partial g}{\partial x}\Big|_{y_{i} = f_{i}(x)} + \frac{\partial g}{\partial y_{1}}\Big|_{y_{i} = f_{i}(x)} \cdot \frac{\partial f_{1}(x)}{\partial x} + \dots + \frac{\partial g}{\partial y_{n}}\Big|_{y_{i} = f_{i}(x)} \cdot \frac{\partial f_{n}(x)}{\partial x}$$

$$= \frac{\partial g}{\partial x}\bigg|_{y_i = f_i(x)} + \sum_{i=1}^n \frac{\partial g}{\partial y_i}\bigg|_{y_i = f_i(x)} \cdot \frac{\partial f_i(x)}{\partial x}$$

 $x_{l,k} = f(v_{l,k}), v_{l,k} = \sum_{i=0}^{n_{l-1}} w_{l,k,i} \cdot x_{l-1,i}$

 n_l : The number of neurons in layer l

l = 0: input layer; l = L: output layer

Output neuron values depends on neuron values of the previous layers

Learning Method

- Adjustable parameters
 - $W_{l,k,i} \leftarrow W_{l,k,i} + \Delta W_{l,k,i}$
- Objectives
 - Are different in various learning methods
- The Least Square of the Error
 - The steepest descent approach
 - lackbox Find the gradient of the error with respect to $w_{l,k,i}$
 - Update $w_{l,k,i}$ with $w_{l,k,i}$ + $\Delta w_{l,k,i}$
 - $\Delta w_{l,k,i}$ = -Step size x gradient

Square of the Error

Derivative of Errors

$$E = \sum_{k=1}^{n_L} (d_k - x_{L,k})^2, \rightarrow \text{find } \frac{\partial E}{\partial w_{L,k,i}}$$
 Output neuron values depends on neuron values of the previous layers

Since the computed values are $x_{l,k}$, find $\frac{\partial E}{\partial v_{l,k}}$ and $\frac{\partial^+ E}{\partial v_{l,k}}$ first.

For logistic sigmoidal activation $f(\cdot)$:

$$\frac{\partial f(v)}{\partial v} = \frac{\partial \left(\frac{1}{1+e^{-v}}\right)}{\partial v} = \left(\frac{1}{1+e^{-v}}\right) \left(1 - \frac{1}{1+e^{-v}}\right) = f(v)\left(1 - f(v)\right)$$

Define
$$\varepsilon_{L,k} = \frac{\partial E}{\partial v_{L,k}} = \frac{\partial \left(\sum_{k=1}^{n_L} \left(d_k - x_{L,k}\right)^2\right)}{\partial v_{L,k}} = -2\left(d_k - x_{L,k}\right) \frac{\partial x_{L,k}}{\partial v_{L,k}}$$

$$= -2(d_{k} - x_{L,k}) \frac{\partial f(v_{L,k})}{\partial v_{L,k}} = -2(d_{k} - x_{L,k}) f(v_{L,k}) (1 - f(v_{L,k}))$$

$$= -2(d_{k} - x_{L,k}) (x_{L,k}) (1 - x_{L,k})$$

$$= -2(d_k - x_{L,k})(x_{L,k})(1 - x_{L,k})$$

Derivatives Derivation Details

$$\frac{\partial f(v)}{\partial v} = \frac{\partial}{\partial v} \left(\frac{1}{1 + e^{-v}} \right) = \frac{-\frac{d}{dv} (1 + e^{-v})}{(1 + e^{-v})^2} = \frac{-\left(e^{-v} \frac{d(-v)}{dv}\right)}{(1 + e^{-v})^2} = \frac{-\left(-e^{-v} \frac{d(-v)}{dv}\right)}{(1 + e^{-v})^2} = \frac{-\left(-e^{-v} \frac{d(-v)}{dv}\right)}{(1 + e^{-v})(1 + e^{-v})} = \left(\frac{1}{1 + e^{-v}}\right) \left(\frac{e^{-v}}{1 + e^{-v}}\right) = \left(\frac{1}{1 + e^{-v}}\right) \left(\frac{1 + e^{-v} - 1}{1 + e^{-v}}\right) = \left(\frac{1}{1 + e^{-v}}\right) \left(1 - \frac{1}{1 + e^{-v}}\right) = f(v)(1 - f(v))$$

$$\frac{d}{dv}\left(\frac{1}{X}\right) = \frac{-\frac{d}{dv}X}{X^2},$$

$$X = 1 + e^{-v}, -\frac{d}{dv}X = -\frac{d}{dv}(1 + e^{-v}) = -e^{-v}\frac{d(-v)}{dv} = e^{-v} = 1 + e^{-v} - 1 = X - 1$$

$$\frac{d}{dv}\left(\frac{1}{X}\right) = \frac{X-1}{X^2} = \frac{1}{X}\frac{X-1}{X} = \frac{1}{X}\left(1 - \frac{1}{X}\right) = \frac{1}{1 + e^{-v}}\left(1 - \frac{1}{1 + e^{-v}}\right)$$

Derivatives Derivation Details

For full hyperbolic tangent activation $f(v) = \frac{e^{v} - e^{-v}}{e^{v} + e^{-v}}$:

$$\frac{\partial f(v)}{\partial v} = \frac{\partial}{\partial v} \left(\frac{e^{v} - e^{-v}}{e^{v} + e^{-v}} \right) = \frac{\left(e^{v} + e^{-v} \right) \cdot \frac{d}{dv} \left(e^{v} - e^{-v} \right) - \left(e^{v} - e^{-v} \right) \cdot \frac{d}{dv} \left(e^{v} + e^{-v} \right)}{\left(e^{v} + e^{-v} \right)^{2}} = \frac{\left(e^{v} + e^{-v} \right) - \left(e^{v} - e^{-v} \right) \left(e^{v} - e^{-v} \right)}{\left(e^{v} + e^{-v} \right)^{2}} = \frac{\left(e^{v} + e^{-v} \right)^{2} - \left(e^{v} - e^{-v} \right)^{2}}{\left(e^{v} + e^{-v} \right)^{2}} = \frac{A^{2} - B^{2}}{A^{2}} = \frac{\left(A - B \right) \left(A + B \right)}{A \cdot A} = \left(\frac{A - B}{A} \right) \left(\frac{A + B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 + \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 + \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right) = \left(1 - \frac{B}{A} \right) \left(1 - \frac{B}{A} \right$$

$$\varepsilon_{L-1,k} = \frac{\partial^{+} E}{\partial v_{L-1,k}} = \frac{\partial E}{\partial v_{L-1,k}} \bigg|_{v_{L,k} = \varphi(v_{L-1,k})} + \sum_{i=1}^{n_{L}} \frac{\partial E}{\partial v_{L,i}} \frac{\partial v_{L,i}}{\partial v_{L-1,k}}$$

$$= 0 + \sum_{i=1}^{n_{L}} \varepsilon_{L,i} \frac{\partial v_{L,i}}{\partial v_{L-1,k}} = \sum_{i=1}^{n_{L}} \varepsilon_{L,i} \frac{\partial \sum_{j=0}^{n_{L-1}} w_{L,i,j} \cdot x_{L-1,j}}{\partial x_{L-1,k}} \frac{\partial x_{L-1,k}}{\partial v_{L-1,k}}$$

$$= \sum_{i=1}^{n_{L}} \varepsilon_{L,i} w_{L,i,k} \left(\frac{\partial x_{L-1,k}}{\partial v_{L-1,k}} \right) = \frac{\partial f(v_{L-1,k})}{\partial v_{L-1,k}} \sum_{i=1}^{n_{L}} \varepsilon_{L,i} w_{L,i,k}$$

$$= (x_{L-1,k}) (1 - x_{L-1,k}) \sum_{i=1}^{n_{L}} \varepsilon_{L,i} w_{L,i,k}$$

Therefore, for sigmoidal activation, in general

$$\varepsilon_{L,k} = -2(d_k - x_{L,k})(x_{L,k})(1 - x_{L,k}), k = 1, 2, ..., n_L$$

$$\varepsilon_{l'-1,k} = (x_{l'-1,k})(1-x_{l'-1,k})\sum_{i=1}^{n_{l'}} \varepsilon_{l',i} w_{l',i,k}; k = 1, 2, ..., n_{l'-1}; l' = 2, ..., L \quad \text{or}$$

$$\varepsilon_{l,k} = (x_{l,k})(1-x_{l,k})\sum_{i=1}^{n_{l+1}} \varepsilon_{l+1,i} w_{l+1,i,k}, \ k=1,2,...,n_l; l=1,...,L-1$$

Omputer automation © Feng-Cheng Yan

Parameter Update

$$\Delta w_{l,k,i} = -\eta \frac{\partial E}{\partial w_{l,k,i}} = -\eta \frac{\partial^+ E}{\partial v_{l,k}} \frac{\partial v_{l,k}}{\partial w_{l,k,i}} = -\eta \varepsilon_{l,k} \frac{\partial v_{l,k}}{\partial w_{l,k,i}}$$

$$= -\eta \varepsilon_{l,k} \frac{\partial \sum_{j=0}^{n_{l-1}} w_{l,k,j} \cdot x_{l-1,j}}{\partial w_{l,k,i}} = -\eta \varepsilon_{l,k} x_{l-1,i}, \quad i = 0, 1, 2, \dots, n_l$$

Practical Implementation

$$w_{l,k,i} \leftarrow w_{l,k,i} - \eta \varepsilon_{l,k} x_{l-1,i}; \forall l = 1, 2, ..., L; \forall k = 1, ..., n_l; i = 0, 1, 2, ..., n_{l-1};$$

When an epoch is completed:

$$\eta \leftarrow \alpha \eta, 0 < \alpha \le 1.0; \alpha = 0.9$$
is suggested

Speeding Up Training

Use momentum term

$$\Delta w_{l,k,i} = -\eta \nabla_{w_{l,k,i}} E + \alpha \Delta w_{l,k,i}^{prev}, 0.1 \le \alpha \le 1.0$$

 $\Delta w_{l,k,i}^{prev}$ is the previous update amount

- Smooth weight updating
- Resist erratic weight changes
 - Changes from gradient noises or high error frequencies
- Not guaranteed
 - Usually problem dependent

Weight update normalization

$$\Delta \mathbf{w}_{l,k} = -\gamma \frac{\nabla_{w_{l,k}} E}{\left\| \nabla_{w_{l,k}} E \right\|},$$

- Unified the moving distance of the weight vector to γ
 - $\bullet \gamma$ is set from history or error measure
 - No learning rate is applied
- Others
 - Quick-propagation algorithm, delta-bar-delta approach, extended Kalman filter method, second-order optimization, optimal filtering approach

Discussion about MLPs

- Different Activation Functions
- Using Hyperbolic tangent function
 - Learning speed is faster than logistic functions, in general
 - Output scaling should be applied
 - **♦** Not using [-1,1]
 - ◆Using [-0.9, 0.9] to avoid an infinite value changed in the weight update
 - Input scaling should be applied to restrict the input within the corresponding range

$$f(v) = \tanh(v) = \frac{e^{v} - e^{-v}}{e^{v} + e^{-v}}$$

$$\frac{df(v)}{dv} = (1+f(v))(1-f(v))$$

Neuron Saturation

Output value of a neuron is too large

- Consequents
 - Derivative of the activation function is zero
 - Amount of parameter value change is too small
 - No contribution to the weight update

Causes

- Net value is too large
- Learning rate is too large
- Moment factor is too large
- Non-extreme range of the activation function is too narrow

Overcome Neuron Saturation

- Rescale the activation values
 - -0.9[-1,1]=[-0.9, 0.9]
- Add a minimal value to the derivative of the activation function, to have non-zero weight changes

$$\varepsilon_{L,k} = -2(d_k - x_{L,k})((x_{L,k})(1 - x_{L,k}) + 0.01), k = 1, 2, ..., n_L$$

$$\varepsilon_{l-1,k} = (x_{l-1,k} (1-x_{l-1,k}) + 0.01) \sum_{i=1}^{n_l} \varepsilon_{l,i} w_{l,i,k}, k = 1, 2, ..., n_l; \text{ or }$$

$$\mathcal{E}_{l,k} = \left(x_{l-1,k}\left(1 - x_{l-1,k}\right) + 0.01\right) \sum_{i=1}^{n_{l+1}} \mathcal{E}_{l+1,i} w_{l+1,i,k}, \ k = 1, 2, ..., n_l; l = 1, ..., L-1$$

Initial Weights and Learning Rates

- Initial weight and bias setting
 - Should be uniformly distributed across a small range, usually [-1,1] (for both binary and bipolar NN)
 - A too large parameter will easily make a neuron saturated
 - Small error
 - A too small parameter generates small gradient
 - Small initial learning rate
- Learning rate rescaling
 - Learning rate in front layers should be larger than rear ones
 - Error signals are propagated from the rear ones.

Number of Hidden Layers

- One hidden layer
 - With a sigmoidal nonlinear function can approximate any continuous function
- Two hidden layers
 - Can form arbitrary complex decision regions to separate different classes
- Large number of hidden layers
 - Deep learning in dealing with large scale of problem; e.g., image classification or recognition

Variants: Different Error Measures

Cubic values of errors

$$E_{p} = \sum_{k} (d_{k} - x_{k})^{3}$$

$$\varepsilon_{L,k} = -3(d_{k} - x_{L,k})^{2} \frac{\partial f(v_{L-1,k})}{\partial v_{L-1,k}}$$

Quartic values of errors

$$E_{p} = \sum_{k} (d_{k} - x_{k})^{4}$$

$$\varepsilon_{L,k} = -4(d_{k} - x_{L,k})^{3} \frac{\partial f(v_{L-1,k})}{\partial v_{L-1,k}}$$

Batch Training

- Weights are updated when the set of all the input vectors are fed and the update amounts are cumulated
 - Since the change amounts are large, they should be reduced

$$\Delta w_{l,k,i} = \frac{\sum_{p=1}^{N} \Delta w_{l,k,i}^{p}}{\sqrt{N}}$$

The value of learning rate is also decreased batch by batch

Customized Learning Rate Adjustments

- Delta-Bar-Delta
 - Increase the learning rate when weight changes are in the same direction
 - Each weight has its learning rate

Importance Differentials of the Training Data

- The training influences are different for different training data
 - Order sorting method
 - ◆ Data are sorted in an importance increasing order
 - ◆The weight change is multiplied by the importance factor of the training data

$$\Delta w_{l,k,i} = \left(\frac{p}{N}\right)^{\alpha} \Delta w_{l,k,i},$$
p is the sorting order of the training data

p is the sorting order of the training data N is the total number of training data α is a curve factor, $\alpha > 0$

Local Minimum Convergence Problem

- The deepest descent error minimization approach can not avoid local convergence
- Small perturbation is added to the weight change

$$w_{l,k,i} = w_{l,k,i} + \Delta w_{l,k,i} + \upsilon$$
, υ is a randomly generated perturbation

Speed Up Training

- Avoid backpropagation for small error
 - Set an small error tolerance
 - When a training datum produces a error smaller than the tolerance, no computation for weights adjustment
- Scale the real number computation to integral computation

Advanced Training Algorithm

- Threat the training as an optimization problem
- To minimize the defined error function with respect to the weights
 - Weights are the optimization variables
 - Error function is the objective function which is to minimize

Derivative-based or Derivative-free optimization techniques can be applied

Derivative-based Methods

- Newton's Method
 - Classical Newton
 - Modified Newton
 - Quasi-Newton
- Conjugate Gradient Method

Derivative-free Methods

- ◆Genetic Algorithm
- Simulated Annealing
- Random Search
- Downhill Simplex Search
- Other Heuristic Algorithms

Computing Assignment 005

- Design a general back-propagation MLP that allows different transfer functions, different numbers of layers and neurons implementations
 - Use data from UCI machine intelligence repository to train and test your NNs
 - Or use data in cal format
 - Provide possible visualization support

- Each attribute of the input data set should be preprocessed first before training
 - Either linearly map the values within [0, 1] or [-1,
 1] depending on the transfer function used
- Batch-training or on-line training can be specified
- Number of output neurons is depended on the number of classes, if a UCI data set (classification data set) is used
- Root Mean Squared Error can be computed and used for stop condition

Programming Notes

In-line Elapsed RMS of error

Average square root of error square for each output neuron on each training instance up to now

C: number of training instances executed so far

 $e^{(c)}$: sum of error square on output neurons of training instance c

e: cumulated error square

$$e^{(c)} = \sum_{k=1}^{n_L} \left(d_k^{(c)} - x_{L,k}^{(c)} \right)^2$$

$$e = \sum_{c=1}^{C} e^{(c)}$$

$$E^{elasped} = \sqrt{\frac{e}{C \cdot n_L}}$$

Programming Notes

Epoch RMS of error

The average square root of error square for each output neuron on each training instance within an epoch *J*: number of training data

 $e^{(j)}$: sum of error squares on output neurons of training instance j

 $e_{(p)}$: cumulated error square in epoch p,

initialized to 0 at the beginning of each epoch

$$e^{(j)} = \sum_{k=1}^{n_L} \left(d_k^{(j)} - x_{L,k}^{(j)} \right)^2$$

$$e_{(p)} = \sum_{j=1}^{J} e^{(j)}$$

$$E^{epoch} = \sqrt{\frac{e_{(p)}}{J_{s} \cdot n_{L}}}$$
, evaluated at the end of an epoch