

RESILIENT CONTROL: COMPROMISING TO ADAPT

L.F.O. Chamon

A. Amice

S. Paternain

A. Ribeiro

CDC 2020 December 14–18, 2020

Dealing with uncertainty

- ► Sources of uncertainty:
 - Initial condition
 - Disturbances
 - Model mismatch
- ► Effects of uncertainty:
 - Deteriorate performance
 - Violate constraints

► Design the system to achieve its objective regardless of the operating conditions

► Design the system to achieve its objective regardless of the operating conditions

Robust = hard to break

► Design the system to achieve its objective regardless of the operating conditions

Robust = hard to break

► Methods: \mathcal{H}_{∞} [DP'13], tube MPC [BBM'17], robust system-level synthesis [ADLM, ARC'19]

✓ Guaranteed to operates under specifications

Chamon et al.

✓ Guaranteed to operates under specifications

× Poor nominal performance

✓ Guaranteed to operates under specifications

× Poor nominal performance

× Infeasibility

Resilience

► Ecology: ability to adapt and recover from disruptions by modifying underlying behavior

Resilience

► Ecology: ability to adapt and recover from disruptions by modifying underlying behavior

 $Resilience = easy \ to \ fix$

Resilience

► Ecology: ability to adapt and recover from disruptions by modifying underlying behavior

Resilience = easy to fix

► Methods: ad hoc [RPS IROS 19], robustness [CKM TAC'18, TGJP CDC'17, GPK RAL'17]

The lazy shepherd problem

Robust shepherd

The lazy shepherd problem

Robust shepherd

The lazy shepherd problem

Robust shepherd

The lazy shepherd problem

The lazy shepherd problem

Robust shepherd

Problem (LQR with disturbances)

$$P^{\star} = \min_{oldsymbol{x}_k, oldsymbol{u}_k} \quad oldsymbol{x}_N^T oldsymbol{P} oldsymbol{x}_N + \sum_{k=0}^{N-1} oldsymbol{x}_k^T oldsymbol{Q} oldsymbol{x}_k + oldsymbol{u}_k^T oldsymbol{R} oldsymbol{u}_k$$
 subject to $|oldsymbol{x}_k| \leq ar{oldsymbol{x}}, \quad |oldsymbol{u}_k| \leq ar{oldsymbol{u}}$ $oldsymbol{x}_{k+1} = oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{u}_k$

Problem (LQR with disturbances)

$$P^\star(oldsymbol{\Xi}) = \min_{oldsymbol{x}_k, oldsymbol{u}_k} oldsymbol{x}_N^T oldsymbol{P} oldsymbol{x}_N + \sum_{k=0}^{N-1} oldsymbol{x}_k^T oldsymbol{Q} oldsymbol{x}_k + oldsymbol{u}_k^T oldsymbol{R} oldsymbol{u}_k \ ext{subject to} \quad |oldsymbol{x}_k| \leq ar{oldsymbol{x}} \ oldsymbol{x}_{k+1} = oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{u}_k \ ext{}$$

► **Ξ** is a random variable describing the disturbances

Problem (LQR with disturbances)

$$P^{\star}(\mathbf{\Xi}) = \min_{oldsymbol{x}_k, \, oldsymbol{u}_k} \quad oldsymbol{x}_N^T oldsymbol{P} oldsymbol{x}_N + \sum_{k=1}^{N-1} oldsymbol{x}_k^T oldsymbol{Q} oldsymbol{x}_k + oldsymbol{u}_k^T oldsymbol{R} oldsymbol{u}_k \ ext{subject to} \quad |oldsymbol{x}_k| \leq ar{oldsymbol{x}} - oldsymbol{\Xi}_{oldsymbol{u},k} \ oldsymbol{x}_{k+1} = oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{u}_k \end{aligned}$$

▶ **Ξ** is a random variable describing the disturbances

Problem (LQR with disturbances)

$$P^{\star}(\mathbf{\Xi}) = \min_{oldsymbol{x}_k, \, oldsymbol{u}_k} oldsymbol{x}_N^T oldsymbol{P} oldsymbol{x}_N + \sum_{k=0}^{N-1} oldsymbol{x}_k^T oldsymbol{Q} oldsymbol{x}_k + oldsymbol{u}_k^T oldsymbol{R} oldsymbol{u}_k \ ext{subject to} \quad |oldsymbol{x}_k| \leq ar{oldsymbol{u}} - oldsymbol{\Xi}_{u,k} \ oldsymbol{x}_{k+1} \equiv oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{u}_k + oldsymbol{\Xi}_{d,k} \ ext{}$$

▶ **Ξ** is a random variable describing the disturbances

Problem (LQR with disturbances)

$$P^{\star}(\mathbf{\Xi}) = \min_{oldsymbol{x}_k, oldsymbol{u}_k} \quad oldsymbol{x}_N^T oldsymbol{P} oldsymbol{x}_N + \sum_{k=0}^{N-1} oldsymbol{x}_k^T oldsymbol{Q} oldsymbol{x}_k + oldsymbol{u}_k^T oldsymbol{R} oldsymbol{u}_k$$
 subject to $|oldsymbol{x}_k| \leq ar{oldsymbol{x}}, \quad |oldsymbol{u}_k| \leq ar{oldsymbol{u}} - oldsymbol{\Xi}_{u,k}$ $oldsymbol{x}_{k+1} = oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{u}_k + oldsymbol{\Xi}_{d,k}$

▶ **Ξ** is a random variable describing the disturbances

Problem (Prototypical control with disturbances)

$$P^*(\Xi) = \min_{z \in \mathbb{R}^p} J(z)$$

subject to $g(z,\Xi) \leq 0$

- ▶ **Ξ** is a random variable describing the disturbances
- ightharpoonup J is a control performance measure
- $ightharpoonup g(\cdot,\xi)$ describes the control requirements under the disturbance ξ

Problem (Prototypical control with disturbances)

$$P^*(\Xi) = \min_{z \in \mathbb{R}^p} J(z)$$

subject to $g(z,\Xi) \leq 0$

- ▶ **Ξ** is a random variable describing the disturbances
- ightharpoonup J is a control performance measure
- $ightharpoonup g(\cdot,\xi)$ describes the control requirements under the disturbance ξ

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Chamon et al. Resilient Control 9

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

$$P_{\mathsf{Ro}}^{\star} = \min_{\boldsymbol{z} \in \mathbb{R}^p} J(\boldsymbol{z})$$

subject to
$$\Pr[\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{\Xi}) \leq \boldsymbol{0}] \geq 1 - \delta$$

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

$$P_{\mathsf{Ro}}^{\star} = \min_{\boldsymbol{z} \in \mathbb{R}^p} J(\boldsymbol{z})$$

subject to
$$\Pr[\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{\Xi}) \leq \boldsymbol{0}] \geq 1 - \delta$$

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

$$P_{\mathsf{Ro}}^{\star} = \min_{\boldsymbol{z} \in \mathbb{R}^p} J(\boldsymbol{z})$$

subject to
$$\Pr[\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{\Xi}) \leq \boldsymbol{0}] \geq 1 - \delta$$

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

$$P_{\mathsf{Ro}}^\star = \min_{oldsymbol{z} \in \mathbb{R}^p} J(oldsymbol{z})$$

subject to
$$\Pr[\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{\Xi}) \leq \boldsymbol{0}] \geq 1 - \delta$$

$$\delta_1 > \delta_2 > \delta_3$$

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

$$P_{Ro}^{\star} = \min_{z \in \mathbb{R}^n}$$

subject to
$$\Pr[g(z, \Xi) \leq 0] \geq 1 - \delta$$

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Problem (Resilient optimal control)

$$P_{\mathsf{Re}}^{\star}(s) = \min_{z \in \mathbb{R}^p} J(z)$$

subject to
$$g(z,\xi) \leq s(\xi)$$
, for all ξ

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Problem (Resilient optimal control)

$$P_{\mathsf{Re}}^{\star}(s) = \min_{z \in \mathbb{R}^p} J(z)$$

subject to $g(z,\xi) \leq s(\xi)$, for all ξ

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Problem (Resilient optimal control)

$$P_{\mathsf{Re}}^{\star}(s) = \min_{z \in \mathbb{R}^p} J(z)$$

subject to $g(z,\xi) \leq s(\xi)$, for all ξ

Goal

Find a deterministic z^{\dagger} that is feasible for most (if not all) mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Problem (Resilient optimal control)

$$P_{\mathsf{Re}}^{\star}(s) = \min_{z \in \mathbb{R}^p} J(z)$$

subject to $g(z,\xi) \leq s(\xi)$, for all ξ

Goal

Find a deterministic z^\dagger that is mostly feasible for all realizations ξ and whose performance $J(z^\dagger) \approx P^\star(\xi)$.

Goal

Find a deterministic z^{\dagger} that is mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Resilient optimal control

Goal

Find a deterministic z^{\dagger} that is mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

Resilient optimal control

Goal

Find a deterministic z^{\dagger} that is mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

▶ Resilience cost: h(s)

 $h(\boldsymbol{s})$

 $P^{\star}(s)$

Resilient optimal control

Goal

Find a deterministic z^{\dagger} that is mostly feasible for all realizations ξ and whose performance $J(z^{\dagger}) \approx P^{\star}(\xi)$.

ightharpoonup Resilience cost: h(s)

$$\left. \nabla P_{\mathrm{Re}}^{\star}(s) \right|_{s^{\star},\,\xi} = -\nabla h(s^{\star}(\xi)) f_{\Xi}(\xi)$$
 Trade-off

h(s)

 $P^{\star}(s)$

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} \ J(oldsymbol{z})$$

subject to
$$g(z, \xi) \leq s^{\star}(\xi)$$

for
$$\nabla P_{\mathsf{Re}}^{\star}(s)|_{s^{\star}, \xi} = -\nabla h(s^{\star}(\xi)) f_{\Xi}(\xi)$$

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} \ J(oldsymbol{z})$$
 subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}^{\star}(oldsymbol{\xi})$

for
$$\nabla P_{\mathsf{Re}}^{\star}(s)\big|_{s^{\star},\, \boldsymbol{\xi}} = -\nabla h(s^{\star}(\boldsymbol{\xi}))f_{\Xi}(\boldsymbol{\xi})$$

Questions

What are the effects of disturbances?

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} \ J(oldsymbol{z})$$
 subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}^{\star}(oldsymbol{\xi})$

for $\nabla P_{\mathsf{Re}}^{\star}(s)|_{s^{\star},\xi} = -\nabla h(s^{\star}(\xi))f_{\Xi}(\xi)$

Questions

What are the effects of disturbances?

What (if any) is the relation with robustness?

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} J(oldsymbol{z})$$
 for $\nabla P_{\mathsf{Re}}^{\star}(oldsymbol{s})|_{oldsymbol{s}^{\star}, oldsymbol{\xi}} = -\nabla h(oldsymbol{s}^{\star}(oldsymbol{\xi}))f_{\Xi}(oldsymbol{\xi})$ subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}^{\star}(oldsymbol{\xi})$

Questions

What are the effects of disturbances?

What (if any) is the relation with robustness?

Is there a practical way to find s^* ?

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} \ J(oldsymbol{z})$$
 subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}^{\star}(oldsymbol{\xi})$

for $\nabla P_{\mathsf{Re}}^{\star}(s) \big|_{s^{\star}, \, \boldsymbol{\xi}} = - \nabla h(s^{\star}(\boldsymbol{\xi})) f_{\Xi}(\boldsymbol{\xi})$

Questions

What are the effects of disturbances?

What (if any) is the relation with robustness?

Is there a practical way to find s^* ?

Proposition

Let $(z_{Re}^{\star}, \lambda^{\star})$ be a primal-dual pair of the resilience-by-compromise control problem. Then,

$$oldsymbol{s^{\star}} = \left(\nabla h\right)^{-1} \left[rac{oldsymbol{\lambda^{\star}}(oldsymbol{s^{\star}})}{f_{\Xi}}
ight]$$

Depends on...

requirement difficulty (λ^*) disturbance likelihood (f_Ξ) resilience cost (h)

Proposition

Let $(z_{Re}^{\star}, \lambda^{\star})$ be a primal-dual pair of the resilience-by-compromise control problem. Then,

$$oldsymbol{s}^\star = \left(
abla h
ight)^{-1} \left[rac{oldsymbol{\lambda}^\star(oldsymbol{s}^\star)}{f_\Xi}
ight]$$

Depends on...

requirement difficulty (λ^{\star})

disturbance likelihood (f_{Ξ})

resilience cost (h)

Proposition

Let $(z_{\rm Re}^{\star}, \lambda^{\star})$ be a primal-dual pair of the resilience-by-compromise control problem. Then,

$$oldsymbol{s}^\star = \left(
abla h
ight)^{-1} \left[rac{oldsymbol{\lambda}^\star(oldsymbol{s}^\star)}{f_\Xi}
ight]$$

Depends on...

requirement difficulty (λ^{\star})

disturbance likelihood (f_{Ξ})

resilience cost (h)

Proposition

Let (z_{Re}^*, λ^*) be a primal-dual pair of the resilience-by-compromise control problem. Then,

$$oldsymbol{s}^\star = \left(
abla h
ight)^{-1} \left[rac{oldsymbol{\lambda}^\star(oldsymbol{s}^\star)}{f_{oldsymbol{\Xi}}}
ight].$$

Depends on...

requirement difficulty (λ^*)

disturbance likelihood (f_{Ξ})

resilience cost (h)

Linear cost:
$$h(s) = oldsymbol{\gamma}^T s \;\; \Rightarrow \;\; [s^\star]_i = [oldsymbol{\gamma}]_i^{-1}$$

$$h(s) = s^T \Gamma s =$$

Quadratic cost:
$$h(s) = s^T \Gamma s \Rightarrow s^\star = \frac{\Gamma^{-1} \lambda^\star}{f_\Xi}$$

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} J(oldsymbol{z})$$
 for $\nabla P_{\mathsf{Re}}^{\star}(oldsymbol{s}) \Big|_{oldsymbol{s}^{\star}, oldsymbol{\xi}} = -\nabla h(oldsymbol{s}^{\star}(oldsymbol{\xi})) f_{\Xi}(oldsymbol{\xi})$ subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \le oldsymbol{s}^{\star}(oldsymbol{\xi})$

Questions

What are the effects of disturbances? Depends on the requirement difficulty

What (if any) is the relation with robustness?

lack Is there a practical way to find s^* ?

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} J(oldsymbol{z})$$
 for $\nabla P_{\mathsf{Re}}^{\star}(oldsymbol{s}) \Big|_{oldsymbol{s}^{\star}, oldsymbol{\xi}} = -\nabla h(oldsymbol{s}^{\star}(oldsymbol{\xi})) f_{\Xi}(oldsymbol{\xi})$ subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \le oldsymbol{s}^{\star}(oldsymbol{\xi})$

Questions

What are the effects of disturbances? Depends on the requirement difficulty

What (if any) is the relation with robustness?

Is there a practical way to find s^* ?

Robustness vs. Resilience revisited

Proposition

Let z_{Re}^{\dagger} be a solution the resilience-by-compromise control problem with

$$h_{\mathsf{Ro}}(oldsymbol{s}) = -\gamma \prod_{i=1}^{m} \mathbb{I}\left[oldsymbol{s}_{i} \leq 0\right]$$

For each $\gamma \geq 0$ there exists a δ^\dagger such that $\mathbf{z}_{\mathrm{Re}}^\dagger$ is an optimal solution of the δ^\dagger -robust problem.

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} \ J(oldsymbol{z})$$
 subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}^{\star}(oldsymbol{\xi})$

for
$$\left.
abla P_{\mathsf{Re}}^{\star}(oldsymbol{s}) \right|_{oldsymbol{s}^{\star},oldsymbol{\xi}} = -
abla h(oldsymbol{s}^{\star}(oldsymbol{\xi})) f_{\Xi}(oldsymbol{\xi})$$

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^\star = \min_{oldsymbol{z} \in \mathbb{R}^p} \ J(oldsymbol{z})$$
 for subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}^\star(oldsymbol{\xi})$

$$h(s) = - \underbrace{\gamma \prod_{i \in \mathcal{H}} \mathbb{I} \left[s_i \leq 0 \right]}_{\mathcal{H}: \text{ hard (critical)}}$$

requirements

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} J(oldsymbol{z})$$
 for $\nabla P_{\mathsf{Re}}^{\star}(oldsymbol{s}) \Big|_{oldsymbol{s}^{\star}, oldsymbol{\xi}} = -\nabla h(oldsymbol{s}^{\star}(oldsymbol{\xi})) f_{\Xi}(oldsymbol{\xi})$ subject to $g(oldsymbol{z}, oldsymbol{\xi}) \le oldsymbol{s}^{\star}(oldsymbol{\xi})$

$$h(s) = -\gamma \prod_{i \in \mathcal{H}} \mathbb{I}\left[s_i \leq 0\right] + \sum_{i \in \mathcal{S}} h_i[s_i(\Xi)]$$

$$\mathcal{H}: \text{hard (critical)}$$
requirements
requirements

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} \ J(oldsymbol{z})$$
 for $\nabla P_{\mathsf{Re}}^{\star}(oldsymbol{s})|_{oldsymbol{s}^{\star}, oldsymbol{\xi}} = -\nabla h(oldsymbol{s}^{\star}(oldsymbol{\xi})) f_{\Xi}(oldsymbol{\xi})$ subject to $g(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}^{\star}(oldsymbol{\xi})$

Questions

What are the effects of disturbances? Depends on the requirement difficulty

What (if any) is the relation with robustness? Hard violation cost

Is there a practical way to find s^* ?

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} J(oldsymbol{z})$$
 for $\nabla P_{\mathsf{Re}}^{\star}(oldsymbol{s}) \Big|_{oldsymbol{s}^{\star}, oldsymbol{\xi}} = -\nabla h(oldsymbol{s}^{\star}(oldsymbol{\xi})) f_{\Xi}(oldsymbol{\xi})$ subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \le oldsymbol{s}^{\star}(oldsymbol{\xi})$

Questions

What are the effects of disturbances? Depends on the requirement difficulty

What (if any) is the relation with robustness? Hard violation cost

Is there a practical way to find s^* ? Modified Arrow-Hurwicz

Problem (Resilience-by-compromise)

$$P^{\star}_{\mathsf{Re}} = \min_{oldsymbol{z} \in \mathbb{R}^p} \quad J(oldsymbol{z})$$

subject to
$$g(z, \xi) \leq s(\xi)$$

Problem (Resilience-by-compromise)

$$egin{aligned} P_{\mathsf{Re}}^{\star} &= \min_{oldsymbol{z} \in \mathbb{R}^p} & J(oldsymbol{z}) \ \end{aligned}$$
 subject to $oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq s(oldsymbol{\xi})$

► Update the primal:

$$\mathbf{z}^{+} = \mathbf{z} - \eta \left[\nabla_{\mathbf{z}} J(\mathbf{z}) - \int \boldsymbol{\lambda}(\boldsymbol{\xi})^{T} \nabla_{\mathbf{z}} g(\mathbf{z}, \boldsymbol{\xi}) d\boldsymbol{\xi} \right]$$

Problem (Resilience-by-compromise)

$$egin{aligned} P_{\mathsf{Re}}^{\star} &= \min_{oldsymbol{z} \in \mathbb{R}^p} & J(oldsymbol{z}) \ & ext{subject to} & oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) \leq oldsymbol{s}(oldsymbol{\xi}) \end{aligned}$$

► Update the primal:

$$\mathbf{z}^{+} = \mathbf{z} - \eta \left[\nabla_{\mathbf{z}} J(\mathbf{z}) - \int \boldsymbol{\lambda}(\boldsymbol{\xi})^{T} \nabla_{\mathbf{z}} g(\mathbf{z}, \boldsymbol{\xi}) d\boldsymbol{\xi} \right]$$

Update the dual:

$$oldsymbol{\lambda}^+(oldsymbol{\xi}) = \prod_{R_+^m} igg[oldsymbol{\lambda}(oldsymbol{\xi}) + \eta igg[oldsymbol{g}(oldsymbol{z}, oldsymbol{\xi}) - oldsymbol{s}(oldsymbol{\xi}) \ igg]$$

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{\boldsymbol{z} \in \mathbb{R}^{p}} J(\boldsymbol{z}) \qquad \text{for} \qquad \nabla P_{\mathsf{Re}}^{\star}(\boldsymbol{s})|_{\boldsymbol{s}^{\star},\boldsymbol{\xi}} = -\nabla h(\boldsymbol{s}^{\star}(\boldsymbol{\xi}))f_{\Xi}(\boldsymbol{\xi})$$
subject to $g(\boldsymbol{z},\boldsymbol{\xi}) \leq \boldsymbol{s}^{\star}(\boldsymbol{\xi})$

► Update the primal:

$$z^+ = z - \eta \left[\nabla_z J(z) - \int \lambda(\xi)^T \nabla_z g(z, \xi) d\xi \right]$$

► Update the dual:

$$\boldsymbol{\lambda}^+(\boldsymbol{\xi}) = \prod_{R_+^m} \left[\boldsymbol{\lambda}(\boldsymbol{\xi}) + \eta \bigg(\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{\xi}) - \boldsymbol{s^{\star}(\boldsymbol{\xi})} \bigg) \right]$$

Problem (Resilience-by-compromise)

$$P_{\mathsf{Re}}^{\star} = \min_{oldsymbol{z} \in \mathbb{R}^p} \quad J(oldsymbol{z}) \qquad \qquad \text{for} \qquad \qquad oldsymbol{s}^{\star} = (\nabla h)^{-1} \left[\frac{oldsymbol{\lambda}^{\star}(oldsymbol{s}^{\star})}{f_{\Xi}} \right]$$
 subject to $g(oldsymbol{z}, oldsymbol{\xi}) \le oldsymbol{s}^{\star}(oldsymbol{\xi})$

► Update the primal:

$$\mathbf{z}^{+} = \mathbf{z} - \eta \left[\nabla_{\mathbf{z}} J(\mathbf{z}) - \int \boldsymbol{\lambda}(\boldsymbol{\xi})^{T} \nabla_{\mathbf{z}} g(\mathbf{z}, \boldsymbol{\xi}) d\boldsymbol{\xi} \right]$$

► Update the dual:

$$\boldsymbol{\lambda}^+(\boldsymbol{\xi}) = \prod_{R_+^m} \left[\boldsymbol{\lambda}(\boldsymbol{\xi}) + \eta \bigg(\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{\xi}) - \boldsymbol{s^{\star}(\boldsymbol{\xi})} \bigg) \right]$$

Problem (Resilience-by-compromise)

► Update the primal:

$$z^{+} = z - \eta \left[\nabla_{z} J(z) - \int \lambda(\xi)^{T} \nabla_{z} g(z, \xi) d\xi \right]$$

► Update the dual for resilient slacks:

$$\boldsymbol{\lambda}^+(\boldsymbol{\xi}) = \prod_{R_+^m} \left[\boldsymbol{\lambda}(\boldsymbol{\xi}) + \eta \bigg(\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{\xi}) - (\nabla h)^{-1} \bigg[\frac{\boldsymbol{\lambda}(\boldsymbol{\xi})}{f_\Xi(\boldsymbol{\xi})} \bigg] \bigg) \right]$$

Robust waypoint navigation

- ► Robustness ≠ Resilience
 - Robustness: feasible for most disturbances
 - Resilient: mostly feasible for all disturbances

- ► Robustness ≠ Resilience
 - Robustness: feasible for most disturbances
 - Resilient: mostly feasible for all disturbances

- ▶ Formal definition of resilience in optimal control
 - Resilience-by-compromise

- ► Robustness ≠ Resilience
 - Robustness: feasible for most disturbances
 - Resilient: mostly feasible for all disturbances

- Formal definition of resilience in optimal control
 - Resilience-by-compromise
- ► Analysis of the behavior of resilience-by-compromise

- ► Robustness ≠ Resilience
 - Robustness: feasible for most disturbances
 - Resilient: mostly feasible for all disturbances

- Formal definition of resilience in optimal control
 - Resilience-by-compromise
- Analysis of the behavior of resilience-by-compromise

- ► Robustness ⊊ Resilience
 - Robustness: feasible for most disturbances
 - Resilient: mostly feasible for all disturbances

- Formal definition of resilience in optimal control
 - Resilience-by-compromise
- Analysis of the behavior of resilience-by-compromise

- ► Robustness ⊊ Resilience
 - Robustness: feasible for most disturbances
 - Resilient: mostly feasible for all disturbances

- ▶ Formal definition of resilience in optimal control
 - Resilience-by-compromise

- Analysis of the behavior of resilience-by-compromise
 - In the paper: online resilience using MPC

RESILIENT CONTROL: COMPROMISING TO ADAPT

L.F.O. Chamon

A. Amice

S. Paternain

A. Ribeiro

https://arxiv.org/abs/2004.03726 http://www.seas.upenn.edu/~luizf