

Linear Independence

A set of vectors v₁, v₂, ..., v_n is linearly independent if

$$\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n = 0$$
 iff $\alpha_1 = \alpha_2 = ... = 0$

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

10/10/

Middle Tennessee State University

Y

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the *dimension* of the space
- In an *n*-dimensional space, any set of n linearly independent vectors form a *basis* for the space
- Given a basis v_1,v_2,\ldots,v_n any vector v can be written as $v=\alpha_1v_1+\alpha_2v_2+\ldots+\alpha_nv_n$

where the $\{\alpha_i\}$ are unique

10/10/1

Middle Tennessee State University

adayayk

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

10/10/14

Middle Tennessee State University

Coordinate Systems

- Consider a basis v_1, v_2, \ldots, v_n
- A vector is written $v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$
- The list of scalars $\{\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n\}$ is the representation of ν with respect to the given basis
- We can write the representation as a row or column array of scalars

$$\mathbf{\alpha} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

10/10/14

ddle Tennessee State University

Example

- $v=2v_1+3v_2-4v_3$
- $\alpha = [2 \ 3 \ -4]^T$
- Note that this representation is with respect to a particular basis
- For example, in WebGL we will start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the origin, to the basis vectors to form a frame

Representation in a Frame

- Frame determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$
- Every point can be written as $P = P_0 + \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$

A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$ $P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$ Thus we obtain the four-dimensional homogeneous coordinate representation

$$\mathbf{v} = [\alpha_1 \alpha_2 \alpha_3 0]^T$$

$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^T$$

Homogeneous Coordinates and **Computer Graphics**

- · Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - For perspective we need a perspective division

Change of Coordinate Systems

· Consider two representations of the same vector with respect to two different bases. The representations are

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3]$$
$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3]$$

$$\begin{aligned} \mathbf{v} &= \alpha_{1} v_{1} + \alpha_{2} v_{2} + \alpha_{3} v_{3} = \left[\alpha_{1} \alpha_{2} \alpha_{3} \right] \left[v_{1} \ v_{2} \ v_{3} \right] ^{T} \\ &= \beta_{1} u_{1} + \beta_{2} u_{2} + \beta_{3} u_{3} = \left[\beta_{1} \beta_{2} \beta_{3} \right] \left[u_{1} \ u_{2} \ u_{3} \right] ^{T} \end{aligned}$$

Representing second basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

Matrix Form

The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

and the bases can be related by

b=Ma

Change of Frames

We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames: (P_0, v_1, v_2, v_3)

- Any point or vector can be represented in either frame
- We can represent $Q_0,\,u_1,\,u_2,\,u_3$ in terms of $P_0,\,v_1,\,v_2,\,v_3$

Affine Transformations

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
- However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4 x 4 linear transformations

10/10/14

Middle Tennessee State University

tv

The World and Camera Frames

- When we work with representations, we work with ntuples or arrays of scalars
- Changes in frame are then defined by 4 x 4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same (M=I)

10/10/1

Tennessee State University

Moving the Camera

If objects are on both sides of z=0, we must move camera frame $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -d \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Objectives

- · Introduce standard transformations
 - Rotation
 - Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation
- Learn to build arbitrary transformation matrices from simple transformations

Affine Transformations

- · Line preserving
- · Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Pipeline Implementation T (from application program) frame T(u) buffer transformation rasterizer T(v) • T(v) • T(u) pixels vertices vertices

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame

- P, Q, R: points in an affine space
- u, v, w: vectors in an affine space
- α , β , γ : scalars
- p, q, r: representations of points
- -array of 4 scalars in homogeneous coordinates
- u, v, w: representations of vectors
 - -array of 4 scalars in homogeneous coordinates

Translation Move (translate, displace) a point to a new location • Displacement determined by a vector d - Three degrees of freedom - P' =P+d

Translation Matrix

We can also express translation using a 4×4 matrix T in homogeneous coordinates p' = Tp where

$$\mathbf{T} = \mathbf{T}(\mathsf{d}_{\mathsf{x'}} \, \mathsf{d}_{\mathsf{y'}} \, \mathsf{d}_{\mathsf{z}}) = \begin{bmatrix} 1 & 0 & 0 & \mathsf{d}_{\mathsf{x}} \\ 0 & 1 & 0 & \mathsf{d}_{\mathsf{y}} \\ 0 & 0 & 1 & \mathsf{d}_{\mathsf{z}} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

10/10/14

Middle Tennessee State University

Y.

Affine Transformations (7)

• When vector **V** is transformed by the same affine transformation as point P, the result is

$$\begin{pmatrix} W_x \\ W_y \\ 0 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} V_x \\ V_y \\ 0 \end{pmatrix}$$

 Important: to transform a point P into a point Q, post-multiply M by P: Q = M P.

10/10/1

Middle Tennessee State University

56

Affine Transformations (8)

• Example: find the image Q of point P = (1, 2, 1) using the affine transformation

$$M = \begin{pmatrix} 3 & 0 & 5 \\ -2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}; Q = \begin{pmatrix} 8 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 5 \\ -2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

10/10/1

Middle Tennessee State University

Translations

To translate a point P by a in the x direction and b in the y direction use the matrix:

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = \begin{pmatrix} P_x + a \\ P_y + b \\ 1$$

- Only using homogeneous coordinates allow us to include translation as an affine transformation.
- · It is meaningless to translate vectors.

Deriving the Rotation Matrix

- *P* is at distance *R* from the origin, at angle Φ: $P = (R \cos(\Phi), R \sin(\Phi)).$
- Q must be at the same distance as P, and at angle $\theta + \Phi$:

$$Q = (R\cos(\theta + \Phi), R\sin(\theta + \Phi)).$$

$$\cos(\theta + \Phi) = \cos(\theta)\cos(\Phi) - \sin(\theta)\sin(\Phi);$$

$$\sin(\theta + \Phi) = \sin(\theta)\cos(\Phi) + \cos(\theta)\sin(\Phi).$$

• Use $P_x = R \cos(\Phi)$ and $P_y = R \sin(\Phi)$.

Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same \boldsymbol{z}
 - Equivalent to rotation in two dimensions in planes of constant z

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$
 $z' = z$

- or in homogeneous coordinates

$$\mathbf{p}' = \mathbf{R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- · Note that matrix on the right is the first applied
- · Mathematically, the following are equivalent p' = ABCp = A(B(Cp))
- Note many references use column matrices to represent points. In terms of column matrices

$$\mathbf{p}'^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \; \mathbf{R}_{v}(\theta_{v}) \; \mathbf{R}_{x}(\theta_{x})$$

 $\theta_{\rm x} \theta_{\rm y} \theta_{\rm z}$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- We apply an instance transformation to its vertices to

Scale Orient

Locate

Shear

- Helpful to add one more basic transformation
- · Equivalent to pulling faces in opposite directions

CTM operations

The CTM can be altered either by loading a new CTM or by postmutiplication

Load an identity matrix: $C \leftarrow I$ Load an arbitrary matrix: $C \leftarrow M$

Load a translation matrix: $C \leftarrow T$ Load a rotation matrix: $C \leftarrow R$ Load a scaling matrix: $C \leftarrow S$

Postmultiply by an arbitrary matrix: $C \leftarrow CM$ Postmultiply by a translation matrix: $C \leftarrow CT$ Postmultiply by a rotation matrix: $C \leftarrow C R$ Postmultiply by a scaling matrix: $C \leftarrow C S$

Reversing the Order

We want $C = T^{-1} R T$ so we must do the operations in the following order

 $C \leftarrow I$ $C \leftarrow CT^{-1}$ $C \leftarrow CR$

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the

CTM in WebGL

- · OpenGL had a model-view and a projection matrix in the pipeline which were concatenated together to form the CTM
- · We will emulate this process

Using the ModelView Matrix

- · In WebGL, the model-view matrix is used to
 - Position the camera
 - · Can be done by rotations and translations but is often easier to use the lookAt function in MV.js
 - Build models of objects
- The projection matrix is used to define the view volume and to select a camera lens
- Although these matrices are no longer part of the OpenGL state, it is usually a good strategy to create them in our own applications

q = P*MV*p

Rotation, Translation, Scaling

Create an identity matrix:

```
var m = mat4();
```

Multiply on right by rotation matrix of theta in degrees where $({\bf v}{\bf x}\,,\ {\bf v}{\bf y}\,,\ {\bf v}{\bf z})$ define axis of rotation

var r = rotate(theta, vx, vy, vz)m = mult(m, r);

Also have rotateX, rotateY, rotateZ Do same with translation and scaling:

var s = scale(sx, sy, sz) var t = translate(dx, dy, dz); m = mult(s, t);

11

Example

Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```
var m = mult(translate(1.0, 2.0, 3.0),
    rotate(30.0, 0.0, 0.0, 1.0));
m = mult(m, translate(-1.0, -2.0, -3.0));
```

• Remember that last matrix specified in the program is the first applied

Arbitrary Matrices

- · Can load and multiply by matrices defined in the application program
- Matrices are stored as one dimensional array of 16 elements by MV.js but can be treated as 4 x 4 matrices in row major order
- OpenGL wants column major data
- gl.uniformMatrix4f has a parameter for automatic transpose by it must be set to false.
- flatten function converts to column major order which is required by WebGL functions

Matrix Stacks

- In many situations we want to save transformation matrices for use later
 - Traversing hierarchical data structures (Chapter 9)
- Pre 3.1 OpenGL maintained stacks for each type of matrix
- · Easy to create the same functionality in JS - push and pop are part of Array object stack.push(modelViewMatrix); modelViewMatrix = stack.pop();

Using Transformations

- · Example: Begin with a cube rotating
- · Use mouse or button listener to change direction of
- Start with a program that draws a cube in a standard way
 - Centered at origin
 - Sides aligned with axes
 - Will discuss modeling in next lecture

Where do we apply transformation?

- Same issue as with rotating square
 - in application to vertices
 - in vertex shader: send MV matrix
 - in vertex shader: send angles
- · Choice between second and third unclear
- Do we do trigonometry once in CPU or for every vertex in shader
 - GPUs have trig functions hardwired in silicon

Smooth Rotation

- From a practical standpoint, we are often want to use transformations to move and reorient an object smoothly
 - Problem: find a sequence of model-view matrices $M_0,\!M_1,\!\dots,\!M_n$ so that when they are applied successively to one or more objects we see a smooth transition
- For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere
 - Find the axis of rotation and angle
 - Virtual trackball (see text)

103

Incremental Rotation

- Consider the two approaches
 - For a sequence of rotation matrices R_0,R_1,\ldots,R_n , find the Euler angles for each and use R_i = R_{iz} R_{iy} R_{ix}
 - · Not very efficient
 - Use the final positions to determine the axis and angle of rotation, then increment only the angle
- · Quaternions can be more efficient than either

0/10/14 Middle Tennessee State I

104

Quaternions

- Extension of imaginary numbers from two to three dimensions
- Requires one real and three imaginary components i, j, k

$$q=q_0+q_1\mathbf{i}+q_2\mathbf{j}+q_3\mathbf{k}$$

- Quaternions can express rotations on sphere smoothly and efficiently. Process:
 - Model-view matrix \rightarrow quaternion
 - Carry out operations with quaternions
 - Quaternion \rightarrow Model-view matrix

10/10/14

Middle Tennessee State University

105

Interfaces

- One of the major problems in interactive computer graphics is how to use a two-dimensional device such as a mouse to interface with three dimensional objects
- Example: how to form an instance matrix?
- · Some alternatives
 - Virtual trackball
 - 3D input devices such as the spaceball
 - Use areas of the screen
 - Distance from center controls angle, position, scale depending on mouse button depressed

10/10/14

Middle Tennessee State University

100