\RiA

Machine-Learning Lifecycle and Workflows

Iterative Stages/Steps for Developing an Operational/Production ML System

Workflows and Metrics Associated with each Stage and Cutting Across Multiple Stages

Iterative Process:

- I. Scope and Objectives
- II. Data Engineering
- III. Model Development
- IV. Deployment
- V. Monitoring
- VI. Analysis

Consensus ML lifecycle derived from

- Chip Huyen, Designing Machine Learning Systems, O'Reilly, 2022
- "Well-Architected machine learning lifecycle" https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/well-architected-machine-learning-lifecycle.html accessed 31 JUL 2023 (other elements of this resource, but not this page, cited in original CDAO personna documents)
- H. Veeradhi and K. Abdo, "Your guide to the Red Hat Data Science Model Lifecycle" 09 MAY 2022, https://cloud.redhat.com/blog/your-guide-to-the-red-hat-data-science-model-lifecycle (cited in original CDAO personna documents)

Competition Lifecycle

Operational Stages/Steps of the Machine-Learning Lifecycle

Operational/Production Lifecycle

Competition Lifecycle

Operational Stages/Steps of the Machine-Learning Lifecycle

Operational/Production ML System Development:

- not a linear, sequential process
- roles and responsibilities across stages and personnel are dynamic
- "mind" (models) and "data" are both important

The competition is between near-peer nations for superior operational capability, not between model developers for a better metric in a Kaggle-style AI competition

I. Scope and Objectives

- define the scope of the problem and the goals for the solution
- specify operational requirements (performance metrics):
 - materiel release
 - safety analysis
 - o doctrine
 - human factors
 - 0 ...
- specify operational constraints
 - restrictions on generative factors for evaluating completeness
 - o access to labels/groundtruth
 - restrictions on lifetime learning
 - o ...

II. Data Engineering

- develop data pipelines
 - data linting
- develop labeling protocols and pipelines
 - label-error detection
- formulate sampling protocols
 - coverage assessment
 - ensure relevance, completeness, balance, and accuracy
- curate static training and test datasets
 - coverage assessment
 - ensure relevance, completeness, balance, and accuracy
 - assess leakage
 - train/test shift
- perform exploratory data analysis
 - data complexity / metafeatures to evaluate achievability of objectives

III. Model Development

- model selection
 - metafeatures
 - model/data complexity matching
 - sufficiency assessment
- model training
 - training-data partitioning
 - training-data augmentation
 - leakage, bias, and label errors
- model evaluation
 - performance
 - calibration
 - o fairness and generalization
 - robustness and fault tolerance

IV. Deployment

- online or batch prediction?
- online or streaming features?
- model update cycle?
- model compression
- model optimization

Deployment decisions can impact model performance metrics and these impacts need to be assessed.

V. Monitoring

- data shifts
 - covariate shift data monitoring
 - o label shift prediction monitoring
 - o concept drift
- data monitoring
 - data distribution-shift
- feature monitoring
 - feature distribution-shift
- model monitoring
 - prediction distribution-shift
 - uncertainty/confidence shifts
 - accuracy/performance metrics

VI. Analysis

- determine whether model achieves specified goal and objective requirements
- refine data engineering and model development stages as needed to achieve objective requirements
- perform analysis on model predictions to generate operational insight that drive refinement of scope and objectives for future iterations

"Always we begin again"

- developing and deploying an ML system is a never-ending cyclical process
- the world changes and models must change to adapt to the changing world
- modern ML deployment is approaching DevOps timelines
 - Weibo, Alibaba, and ByteDance deploy new ML models on a 10 minute update cycle
- "People tend to ask me: 'How often should I update my models?'...The right question to ask should be: 'How often can I update my models?'" - Chip Huyen

ARiA

Data-Analysis Metrics Library

characterizing image data and its impact on model performance across classification and object-detection tasks

Model-agnostic metrics that bound real-world performance:

- relevance/completeness/coverage
- metafeatures (data complexity)

Model-specific metrics that guide model selection and training:

- dataset sufficiency
- data/model complexity mismatch

Metrics for post-deployment monitoring of data with bounds on model performance to guide retraining:

- dataset-shift metrics
- model performance bounds under covariate shift
- guidance on sampling to assess model error and model retraining

AI/ML lifecycle

premodel / exploratory

model selection / training

post-deployment / monitoring

Sampling Protocols: Coverage Assessment

- coverage and completeness for Al/ML assurance can be defined in terms of a matrix of generative factors [cf. Nagy, NAWCWD TP 8864, April 2022 and Hawkins et al., AMLAS v1.1, March 2021] that should be recorded as part of the data card and should drive sampling protocols (e.g., stratified sampling)
- model- and label-independent outlier detection identifies samples that are not near the manifold of sampled data
- when detected outliers represent combinations of generative factors that should be sampled for completeness, the data pipeline or sampling protocol is undersampling that region of the manifold
- the data pipeline and sampling protocol should be refined together with the matrix of generative factors until data required for completeness are no longer characterized as outliers

Sampling Protocols: Coverage Assessment

Metrics

Unsupervised Anomaly/Outlier/Out-of-Distribution(OOD) Detection

- Auto-Encoder (AE) Reconstruction Error
- Variational Auto-Encoder (VAE) Reconstruction Error
- Auto-Encoding Gaussian Mixture Model (AEGMM) Zong et al. (2018)
- Variational Auto-Encoding Gaussian Mixture Model (VAEGMM) Zong et al. (2018)
- Log Likelihood Ratio (LLR) between Generative Models Ren et al. (2019)

Example

Outlier Detection for Coverage Assessment

- ML system for ground-vehicle detection and classification from aerial LWIR sensor
- matrix of generative factors includes (1) variable backgrounds, (2) variable pixels on target, (3) variable grazing angle, etc.
- outlier detection identifies samples in dataset with grazing angle away from nadir and few pixels on target
- updates to data pipeline and/or sampling protocol required for assurance over desired range of generative factors

ML model developers will often discard outliers during training to gain robustness and enhance generalization

Exploratory Data Analysis: Data Complexity

- operational requirements for an ML model should specify performance requirements determined by such factors as safety (e.g., based on a hazard assessment and determination of acceptable risk for the ML model component of a system) as part of the model-card authoring carried out through the ML lifecycle
- the minimum achievable error for a classifier the Bayes Error Rate (BER) can be estimated directly from the data
- if the overlap between class distributions is too great, the BER may exceed operational requirements
- when BER exceeds operational requirements, no model can consistently achieve the required performance
- in such cases, the requirements must be refined and/or the task for the ML model reposed potentially identifying the specific samples that result in distribution overlap

Exploratory Data Analysis: Data Complexity

Metrics

Bounds on BER from empirical estimates of $D_{_{D}}$ divergence or other f-divergences

Nonparametric estimation of D_p divergence from minimum spanning trees - Berisha et al. (2015)

Example

BER estimation to refine operational requirements

- ML system for multiclass ground-vehicle classification from helicopter-based FLIR sensor (SWIR band)
- BER estimate bounds maximum accuracy at 85%, which is below the specified operational requirement for the ML system as determined by functional-hazard assessment of the tactical system
- error can be reduced by combining nontarget overlapping classes as shown by iterative BER estimation
- refinement of operational requirements in terms of target/nontarget classes enables problem to be reposed in a manner that can be achieved by realizable ML models

Use of model-independent metafeatures in the initial stage of the ML lifecycle can refine objectives early, eliminating wasted effort and decreasing overall development time