Package 'crm12Comb'

September 16, 2024

Type Package

Title Phase I/II CRM Based Drug Combination Design

Version 0.1.7

Maintainer Junying Wang <junying.wang@stonybrook.edu>

Description Implements the adaptive designs for integrated phase I/II trials of drug combinations via continual reassessment method (CRM) to evaluate toxicity and efficacy simultaneously for each enrolled patient cohort based on Bayesian inference. It supports patients assignment guidance in a single trial using current enrolled data, as well as conducting extensive simulation studies to evaluate operating characteristics before the trial starts. It includes various link functions such as empiric, one-parameter logistic, two-parameter logistic, and hyperbolic tangent, as well as considering multiple prior distributions of the parameters like normal distribution, gamma distribution and exponential distribution to accommodate diverse clinical scenarios. Method using Bayesian framework with empiric link function is described in: Wages and Conaway (2014) <doi:10.1002/sim.6097>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

VignetteBuilder knitr

Imports dplyr, ggplot2, ggforce

Suggests knitr, rmarkdown

Depends R (>= 3.5.0)

NeedsCompilation no

Author Junying Wang [cre, aut], Song Wu [aut], Jie Yang [aut]

Repository CRAN

Date/Publication 2024-09-16 14:30:01 UTC

2 doseComb_to_mat

Contents

	doseComb_to_mat		2
	efficacy_est		3
	empiric_GammaPriorLikelihood		
	empiric_NormalPriorLikelihood		
	enroll_patient_plot		
	examples_results		
	get_ordering		
	logisticOnePara_GammaPriorLikelihood		
	logisticOnePara_NormalPriorLikelihood		
	logisticTwoPara_GammaPriorLikelihood		
	logisticTwoPara_NormalPriorLikelihood		
	maximization_phase		
	ODC_plot		
	patient_allocation_plot		
	priorSkeletons		
	randomization_phase		
	rBin2Corr		
	sample_plot		
	SIM_phase_I_II		
	tanh_ExpPriorLikelihood		
	toxicity_est		
Index		3	0
			_
doso	Comb_to_mat	erings for toxicity and efficacy for drug com-	
uosec	comp_co_mac	erings for toxicity and efficacy for aring com-	

Title: Get 6 complete orderings for toxicity and efficacy for drug combinations

Description

Step 1: convert dose combinations into matrix

Usage

```
doseComb_to_mat(doseComb, type)
```

Arguments

doseComb Either a numeric matrix or a numeric vector or a numeric list.

type A string. condition 1: detailed dose combinations are directly given in matrix

-> type = "comb" dose combinations dose A dose B condition 2: directly given

the number of levels for the two doses in vector -> type = "matrix"

Step 2: get the 6 orderings

efficacy_est 3

Value

outMat -> Either a list or a matrix. Note: each array refers to the index of drug combinations orderings)

References

Wages NA, Conaway MR. Specifications of a continual reassessment method design for phase I trials of combined drugs. Pharmaceutical statistics. 2013 Jul;12(4):217-24. doi:10.1002/pst.1575

Description

Estimate efficacy using Bayesian inference for each enrolled patient or cohort of patients given the current accumulated data and toxicity estimation.

Usage

Arguments

Dat	A data frame for current data with three columns (DoseLevel, DLT and ORR).
AR	A vector for acceptable set.
I	Number of dose combinations.
K	Number of efficacy orderings.
K_prob	A vector of length K denoting prior probabilities of efficacy orderings (sum is 1).
efficacy_skeleton	
	A list of vector with length K containing efficacy orderings.
Nphase	Number of patients for determination of randomization phase (current number of patients less than Nphase) or maximization phase (current number of patients larger than or equal to Nphase).
model	A character string to specify the model used, must be one of "empiric", "tanh", "logistic" or "logistic2".
para_prior	A character string to specify the prior distribution used for parameters, must be one of "normal" or "gamma" (when model is either "empiric" or "logistic" or "logistic2") or "exponential" (when model is "tanh").

4 efficacy_est

theta_mean The mean of parameter used when prior="exponential" or "normal", otherwise

need to specify NULL.

theta_sd The standard deviation of parameter used when prior="normal", otherwise need

to specify NULL.

theta_intcpt_lgst1

A constant value of intercept from a one-parameter logistic model only used when model="logistic" (suggested value is 3), otherwise need to specify NULL.

theta_shape The shape parameter used when prior="gamma", otherwise need to specify NULL.

theta_inverse_scale

The scale parameter used when prior="gamma", otherwise need to specify NULL.

alphaT_mean The mean of intercept parameter of two-parameter logistic model only used

when model="logistic2" and prior="normal", otherwise need to specify NULL.

alphaT_sd The standard deviation of intercept parameter of two-parameter logistic model

only used when model="logistic2" and prior="normal", otherwise need to spec-

ify NULL.

alphaT_shape The shape parameter of intercept parameter from a two-parameter logistic model

only used when model="logistic2" and prior="gamma", otherwise need to spec-

ify NULL.

alphaT_inverse_scale

The scale parameter of intercept parameter from a two-parameter logistic model only used when model="logistic2" and prior="gamma", otherwise need to spec-

ify NULL.

seed An integer for the seed to generate random numbers used for equal ordering

prior probabilities, default is NULL.

seed_rand An integer for the seed to generate random numbers used in randomization

phase, default is NULL.

seed_max An integer for the seed to generate random numbers used in maximization phase,

default is NULL.

Details

The efficacy estimation is based on Bayesian framework by calculating the likelihood function under each orderings, and select the ordering with maximum posterior probability. Then, estimated parameters can be obtained, which will be used for efficacy estimation based on the corresponding link function (specified in *model* statement).

Value

A list is returned containing the following components:

di Number of dose level for next enrolled patient or cohort of patients

K_prob A vector for posterier density of efficacy orderings and will be used as prior

information for next enrolled patient or cohort of patients.

References

Wages, N. A., & Conaway, M. R. (2014). Phase I/II adaptive design for drug combination oncology trials. Statistics in medicine, 33(12), 1990-2003. doi:10.1002/sim.6097

See Also

priorSkeletons, get_ordering, toxicity_est, randomization_phase, maximization_phase

```
### follow same steps as the example in function toxicity_est()
# Generate a data including 3 columns: DoseLevel, DLT, ORR (DLT and ORR are binary outcomes)
currDat <- data.frame(sample(1:9, 6, replace=TRUE), rbinom(6, 1, 0.2), rbinom(6, 1, 0.5))</pre>
names(currDat) <- c("DoseLevel", "DLT", "ORR")</pre>
# Generate toxicity and efficacy skeleton
DLT_skeleton_p <- priorSkeletons(updelta = 0.045, target = 0.3, npos= 5, ndose = 9,
                              model = "logistic", prior = "normal", beta_mean = 0, a0 = 3)
eff_skeleton_p <- priorSkeletons(updelta = 0.045, target = 0.5, npos= 5, ndose = 9,
                              model = "logistic", prior = "normal", beta_mean = 0, a0 = 3)
# Obtain 6 complete orderings for toxicity skeleton and efficacy skeleton
orderings <- get_ordering(doseComb_forMat=c(3,3), type_forMat="matrix")</pre>
DLT_skeleton_1 <- lapply(orderings, function(or){DLT_skeleton_p[or]})</pre>
eff_skeleton_l <- lapply(orderings, function(or){eff_skeleton_p[or]})</pre>
# estimate toxicity
tox <- toxicity_est(Dat=currDat, I=9, M=6, M_prob=rep(1/6, 6),</pre>
                    DLT_skeleton=DLT_skeleton_1, DLT_thresh=0.33,
                    model="logistic", para_prior="normal",
                    beta_mean=0, beta_sd=1, intcpt_lgst1=3,
                    beta_shape=NULL, beta_inverse_scale=NULL,
                    alpha_mean=NULL, alpha_sd=NULL,
                    alpha_shape=NULL, alpha_inverse_scale=NULL,
                    seed=42)
### efficacy estimation
eff <- efficacy_est(Dat=currDat, AR=tox$AR, I=9, K=6, K_prob=rep(1/6, 6),
                    efficacy_skeleton=eff_skeleton_l, Nphas=20,
                    model="logistic", para_prior="normal",
                    theta_mean=0, theta_sd=1, theta_intcpt_lgst1=3,
                    theta_shape=NULL, theta_inverse_scale=NULL,
                    alphaT_mean=NULL, alphaT_sd=NULL,
                    alphaT_shape=NULL, alphaT_inverse_scale=NULL,
                    seed=1, seed_rand=2, seed_max=3)
```

Description

empiric model with gamma prior

Usage

```
empiric_GammaPriorLikelihood(beta, beta_shape, beta_inverse_scale, x, y)
```

Arguments

beta parameter.
beta_shape A number.
beta_inverse_scale

A number.

x A numeric vector.y A numeric vector.

Value

1 -> likelihood function

Description

empiric model with normal prior

Usage

```
empiric_NormalPriorLikelihood(beta, beta_mean, beta_sd, x, y)
```

Arguments

beta parameter.
beta_mean A number.
beta_sd A number.

x A numeric vector.y A numeric vector.

Value

enroll_patient_plot 7

Description

This function is used to generate the plot of patient enrollment with toxicity (red) and efficacy (green) outcomes of a single trial.

Usage

```
enroll_patient_plot(data)
```

Arguments

data

A data frame with 3 columns DoseLevel, DLT for toxicity outcome, and ORR for efficacy outcome.

Value

Returns a ggplot object.

```
# input the scenario with pre-defined true toxicity and efficacy probabilities
scenario \leftarrow matrix(c(0.02, 0.05,
                     0.04, 0.10,
                     0.08, 0.15,
                     0.12, 0.32,
                     0.06, 0.10,
                     0.10, 0.15,
                     0.14, 0.25,
                     0.20, 0.35,
                     0.12, 0.18,
                     0.16, 0.22,
                     0.22, 0.35,
                     0.25, 0.40,
                     0.20, 0.24,
                     0.24, 0.35,
                     0.35, 0.45,
                     0.40, 0.50), ncol=2, byrow = TRUE)
# generate skeletons
DLT_skeleton <- priorSkeletons(updelta=0.025, target=0.3, npos=10, ndose=16,
                                model = "empiric", prior = "normal", beta_mean=0)
Efficacy_skeleton <- priorSkeletons(updelta=0.025, target=0.5, npos=10, ndose=16,
                                     model = "empiric", prior = "normal", beta_mean=0)
# simulate 1 trial under the same model and prior distribution
simRes <- SIM_phase_I_II(nsim=1, Nmax=40, DoseComb=scenario, input_doseComb_forMat=c(4,4),</pre>
                          input_type_forMat="matrix", input_Nphase=20,
```

8 get_ordering

```
input_DLT_skeleton=DLT_skeleton,
input_efficacy_skeleton=Efficacy_skeleton,
input_DLT_thresh=0.3, input_efficacy_thresh=0.3,
input_cohortsize=1, input_corr=0,
input_early_stopping_safety_thresh=0.33,
input_early_stopping_futility_thresh=0.2,
input_model="empiric", input_para_prior="normal",
input_beta_mean=0, input_beta_sd=1,
input_theta_mean=0, input_theta_sd=1)
```

enroll_patient_plot(simRes\$datALL[[1]])

examples_results

Output dataset for examples given list of inputs

Description

The dataset contains 1296 rows (6 scenarios, 4 different combinations of link functions and prior distributions, 2 sets of skeletons, 3 maximum number of patients, 3 toxicity and efficacy correlations, and 3 subset number of patients) that represent each condition by 1000 simulations, along with 15 columns that contain 9 operating characteristics, other 6 columns including Scenario, Model for link function and prior distribution, N for maximum number of patients, Skeleton, Nphase for subset number of patients, and corr for toxicity and efficacy correlation to separate each condition.

Usage

examples_results

get_ordering

Complete orderings for combinations of two drugs

Description

This function is to obtain complete orderings of both toxicity and efficacy for all drug combinations when considering the partial ordering issue for two combined drugs.

Usage

```
get_ordering(doseComb_forMat, type_forMat)
```

get_ordering 9

Arguments

doseComb_forMat

For 2 drugs, either a matrix with columns for all combinations and rows for two drugs when type_forMat is "comb", or a vector of length 2 indicating the number of levels of each drug when type_forMat is "matrix" should be input. For more than 2 drugs, a list of all possible orderings should be input when type_forMat is "self".

type_forMat

A character string to indicate the input type of dose combinations. The type_forMat is either "comb" for inputting all tested dose combinations for 2 drugs, "matrix" for entering number of levels of two drugs so that a matrix of combinations can be constructed, or "self" for more than 3 drugs with directly input of all possible orderings.

Details

Dose-toxicity and dose-efficacy curves for single drug are assumed as monotonically increasing as drug increases. After combined two drugs and traversing all combinations, the number of possible orderings exponentially expands when increasing dose levels for single drug or the dimensions of drug combinations, which will mask the information provided from orderings. Here, 6 typical complete orderings are utilized from practical design.

Take the 3×3 matrix as an example so that there are total of 9 does combination.

Across rows:

$$\pi_T(d_1) \le \pi_T(d_2) \le \pi_T(d_3) \le \pi_T(d_4) \le \pi_T(d_5) \le \pi_T(d_6) \le \pi_T(d_7) \le \pi_T(d_8) \le \pi_T(d_9)$$

Up columns:

$$\pi_T(d_1) \le \pi_T(d_4) \le \pi_T(d_7) \le \pi_T(d_2) \le \pi_T(d_5) \le \pi_T(d_8) \le \pi_T(d_3) \le \pi_T(d_6) \le \pi_T(d_9)$$

Up diagonals:

$$\pi_T(d_1) \le \pi_T(d_2) \le \pi_T(d_3) \le \pi_T(d_5) \le \pi_T(d_7) \le \pi_T(d_6) \le \pi_T(d_8) \le \pi_T(d_9)$$

Down diagonals:

$$\pi_T(d_1) \le \pi_T(d_4) \le \pi_T(d_2) \le \pi_T(d_7) \le \pi_T(d_5) \le \pi_T(d_3) \le \pi_T(d_8) \le \pi_T(d_6) \le \pi_T(d_9)$$

Alternating down-up diagonals:

$$\pi_T(d_1) \le \pi_T(d_2) \le \pi_T(d_4) \le \pi_T(d_7) \le \pi_T(d_5) \le \pi_T(d_3) \le \pi_T(d_6) \le \pi_T(d_8) \le \pi_T(d_9)$$

Alternating up-down diagonals:

$$\pi_T(d_1) \le \pi_T(d_4) \le \pi_T(d_2) \le \pi_T(d_3) \le \pi_T(d_5) \le \pi_T(d_7) \le \pi_T(d_8) \le \pi_T(d_6) \le \pi_T(d_9)$$

Finally, obtain the unique orderings if there are any duplicates.

Value

A list of vectors are returned, with each vector representing a specific order of dose combinations in ascending order (dose combinations are denoted by natrual numbers).

References

Wages, N. A., & Conaway, M. R. (2013). Specifications of a continual reassessment method design for phase I trials of combined drugs. Pharmaceutical statistics, 12(4), 217-224. doi:10.1002/pst.1575

Examples

```
# Input all dose combinations
doseComb <- matrix(c(10, 3, 20, 3, 30, 3, 40, 3, 20, 5, 20, 7), byrow=FALSE, nrow=2)
orderings <- get_ordering(doseComb_forMat = doseComb, type_forMat = "comb")

# Input number of dose levels
doseLevels <- c(2,3)
orderings <- get_ordering(doseComb_forMat = doseLevels, type_forMat = "matrix")

# Input customized orderings
orders <- list(c(1,2,3,4,5), c(2,1,4,3,5), c(1,2,4,3,5), c(2,1,3,4,5))
orderings <- get_ordering(doseComb_forMat = orders, type_forMat = "self")

# Extreme case: only one ordering will be input
orders <- list(c(1,2,3,4,5,6,7))
orderings <- get_ordering(doseComb_forMat = orders, type_forMat = "self")</pre>
```

logisticOnePara_GammaPriorLikelihood

one-parameter logistic model with gamma prior

Description

one-parameter logistic model with gamma prior

Usage

```
logisticOnePara_GammaPriorLikelihood(
  alpha1,
  alpha1_shape,
  alpha1_inverse_scale,
  intcpt,
  x,
  y
)
```

Arguments

```
alpha1 parameter.

alpha1_shape A number.

alpha1_inverse_scale
 A number.

intcpt A number.

x A numeric vector.

y A numeric vector.
```

Value

1 -> likelihood function

```
logistic One Para\_Normal Prior Likelihood \\ one-parameter\ logistic\ model\ with\ normal\ prior
```

Description

one-parameter logistic model with normal prior

Usage

```
logisticOnePara_NormalPriorLikelihood(
  alpha1,
  alpha1_mean,
  alpha1_sd,
  intcpt,
  x,
  y
)
```

Arguments

```
alpha1 parameter.
alpha1_mean A number.
alpha1_sd A number.
intcpt A number.
x A numeric vector.
y A numeric vector.
```

Value

 $logistic Two Para_Gamma Prior Likelihood\\$

two-parameter logistic model with gamma prior

Description

two-parameter logistic model with gamma prior

Usage

```
logisticTwoPara_GammaPriorLikelihood(
  alpha0,
  alpha1,
  alpha0_shape,
  alpha0_inverse_scale,
  alpha1_shape,
  alpha1_inverse_scale,
  x,
  y
)
```

Arguments

```
alpha0 parameter.

alpha1 parameter.

alpha0_shape A number.

alpha0_inverse_scale
 A number.

alpha1_shape A number.

alpha1_inverse_scale
 A number.

x A numeric vector.

y A numeric vector.
```

Value

logisticTwoPara_NormalPriorLikelihood

two-parameter logistic model with normal prior

Description

two-parameter logistic model with normal prior

Usage

```
logisticTwoPara_NormalPriorLikelihood(
  alpha0,
  alpha1,
  alpha0_mean,
  alpha0_sd,
  alpha1_mean,
  alpha1_sd,
  x,
  y
)
```

Arguments

```
alpha0 parameter.

alpha1 parameter.

alpha0_mean A number.

alpha0_sd A number.

alpha1_mean A number.

alpha1_sd A number.

x A numeric vector.

y A numeric vector.
```

Value

ODC_plot

 $maximization_phase$ M

Maximization phase

Description

This function is used to perform maximization to select the dose level with maximum efficacy probability for next patient or cohort of patients allocation when the current sample size is greater than or equal to a pre-specified number.

Usage

```
maximization_phase(pE_est, seed_m=NULL)
```

Arguments

pE_est A vector of estimated efficacy probability in the acceptable set.

seed_m An integer for the seed to generate random numbers used in maximization phase,

default is NULL.

Details

If several dose combinations have the same maximum estimated efficacy probability, then randomly select one dose level for next enrolled patient or cohort of patients.

Value

A number is returned indicating the dose level for next patient or cohort of patients allocation.

Examples

```
# Assume the estimated prbabilities for each dose combination in the acceptable set as: p_est <- c(0.1, 0.2, 0.3, 0.4) # Dose level for next enrolled patient or cohort of patients is: d <- maximization_phase(p_est)
```

ODC_plot

Plot optimal combination dose selections

Description

This function is used to generate the plot of optimal combination dose (ODC) selections among a number simulation trials.

Usage

```
ODC_plot(SimsRes)
```

ODC_plot

Arguments

SimsRes

A S4 class stores simulation results obtained from function SIM_phase_I_II.

Value

Returns a ggplot object.

```
# input the scenario with pre-defined true toxicity and efficacy probabilities
scenario <- matrix(c(0.02, 0.05,
                     0.04, 0.10,
                     0.08, 0.15,
                     0.12, 0.32,
                     0.06, 0.10,
                     0.10, 0.15,
                     0.14, 0.25,
                     0.20, 0.35,
                     0.12, 0.18,
                     0.16, 0.22,
                     0.22, 0.35,
                     0.25, 0.40,
                     0.20, 0.24,
                     0.24, 0.35,
                     0.35, 0.45,
                     0.40, 0.50), ncol=2, byrow = TRUE)
# generate skeletons
DLT_skeleton <- priorSkeletons(updelta=0.025, target=0.3, npos=10, ndose=16,
                               model = "empiric", prior = "normal", beta_mean=0)
Efficacy_skeleton <- priorSkeletons(updelta=0.025, target=0.5, npos=10, ndose=16,
                                    model = "empiric", prior = "normal", beta_mean=0)
# simulate 1 trial under the same model and prior distribution
simRes <- SIM_phase_I_II(nsim=1, Nmax=40, DoseComb=scenario, input_doseComb_forMat=c(4,4),</pre>
                         input_type_forMat="matrix", input_Nphase=20,
                         input_DLT_skeleton=DLT_skeleton,
                         input_efficacy_skeleton=Efficacy_skeleton,
                         input_DLT_thresh=0.3, input_efficacy_thresh=0.3,
                         input_cohortsize=1, input_corr=0,
                         input_early_stopping_safety_thresh=0.33,
                         input_early_stopping_futility_thresh=0.2,
                         input_model="empiric", input_para_prior="normal",
                         input_beta_mean=0, input_beta_sd=1,
                         input_theta_mean=0, input_theta_sd=1)
ODC_plot(simRes)
```

```
patient_allocation_plot
```

Plot patient allocation for a single trial

Description

This function is used to generate the plot of patient allocation by dose combinations of a single trial.

Usage

```
patient_allocation_plot(data)
```

Arguments

data

A data frame with 3 columns DoseLevel, DLT for toxicity outcome, and ORR for efficacy outcome.

Value

Returns a ggplot object.

```
# input the scenario with pre-defined true toxicity and efficacy probabilities
scenario \leftarrow matrix(c(0.02, 0.05,
                     0.04, 0.10,
                     0.08, 0.15,
                     0.12, 0.32,
                     0.06, 0.10,
                     0.10, 0.15,
                     0.14, 0.25,
                     0.20, 0.35,
                     0.12, 0.18,
                     0.16, 0.22,
                     0.22, 0.35,
                     0.25, 0.40,
                     0.20, 0.24,
                     0.24, 0.35,
                     0.35, 0.45,
                     0.40, 0.50), ncol=2, byrow = TRUE)
# generate skeletons
DLT_skeleton <- priorSkeletons(updelta=0.025, target=0.3, npos=10, ndose=16,
                                model = "empiric", prior = "normal", beta_mean=0)
Efficacy_skeleton <- priorSkeletons(updelta=0.025, target=0.5, npos=10, ndose=16,
                                     model = "empiric", prior = "normal", beta_mean=0)
# simulate 1 trial under the same model and prior distribution
simRes <- SIM_phase_I_II(nsim=1, Nmax=40, DoseComb=scenario, input_doseComb_forMat=c(4,4),</pre>
                          input_type_forMat="matrix", input_Nphase=20,
```

priorSkeletons 17

```
input_DLT_skeleton=DLT_skeleton,
input_efficacy_skeleton=Efficacy_skeleton,
input_DLT_thresh=0.3, input_efficacy_thresh=0.3,
input_cohortsize=1, input_corr=0,
input_early_stopping_safety_thresh=0.33,
input_early_stopping_futility_thresh=0.2,
input_model="empiric", input_para_prior="normal",
input_beta_mean=0, input_beta_sd=1,
input_theta_mean=0, input_theta_sd=1)
```

patient_allocation_plot(simRes\$datALL[[1]])

priorSkeletons

Generate the skeletons of toxicity and efficacy

Description

This function is used to generate skeletons of toxicity and efficacy. This is a modifed version based on <code>getprior</code>, which keep the same procedure using empiric and one-parameter logistic models assumed normal priors with mean=0 and further add multiple models with various prior distributions including hyperbolic tangent model with exponential prior, empiric/one-parameter logistic models with normal prior and self-input mean values as well as with gamma prior, and two-parameter logistic model with normal/gamma priors.

Usage

Arguments

updelta The half-width of the indifference intervals.

target The target DLT rate.

npos The prior guess of the position of MTD.

ndose The number of testing doses.

model A character string to specify the model used. The default model is "empiric".

Other models include hyperbolic tangent model specified by "tanh", one-parameter logistic model specified by "logistic", and two-parameter logistic model speci-

fied by "logistic2".

prior A character sting to specify the prior distribution of parameter. The default prior

is "normal" used together with the model="empiric". Other prior distributions include "exponential" when model="tanh", "gamma" when model="empiric",

"normal" and "gamma" when model="logistic" and "logistic2".

18 randomization_phase

alpha_mean	The mean of intercept parameter of two-parameter logistic model only used when model="logistic2" and prior="normal", otherwise will be ignored.	
beta_mean	The mean of parameter used when prior="exponential" or "normal", otherwise will be ignored.	
a0	A constant value of intercept from a one-parameter logistic model only used when model="logistic" with default value 3, otherwise will be ignored.	
alpha_shape	The shape parameter of intercept parameter only used when model="logistic2" and prior="gamma", otherwise will be ignored.	
alpha_inverse_scale		
	The scale parameter of intercept parameter only used when model="logistic2" and prior="gamma", otherwise will be ignored.	
beta_shape	The shape parameter used when prior="gamma", otherwise will be ignored.	
beta_inverse_scale		

The scale parameter used when prior="gamma", otherwise will be ignored.

Value

A vector of length *ndose* is returned.

Note

The skeletons can be either specified by clinical researchers based on history information or directly generated based on this function given specific model and prior distribution.

References

Lee, S. M., & Cheung, Y. K. (2009). Model calibration in the continual reassessment method. Clinical Trials, 6(3), 227-238. doi:10.1177/1740774509105076

Examples

randomization_phase

Adaptive randomization

Description

This function is used to perform adaptive randomization for next patient or cohort of patients allocation when the current sample size is less than a pre-specified number.

rBin2Corr

Usage

```
randomization_phase(pE_est, seed_r=NULL)
```

Arguments

pE_est A vector of estimated efficacy probability in the acceptable set.

seed_r An integer for the seed to generate random numbers used in randomization

phase, default is NULL.

Details

The dose combination for next patient or cohort of patients allocation is d_i with probability

$$R_i = \frac{\hat{\pi}_E(d_i)}{\sum_i \hat{\pi}_E(d_i)}.$$

Value

A number is returned indicating the dose level for next patient or cohort of patients allocation.

Examples

```
# Assume the estimated prbabilities for each dose combination in the acceptable set as: p_est <- c(0.1, 0.2, 0.3, 0.4) # Dose level for next enrolled patient or cohort of patients is: d <- randomization_phase(p_est)
```

rBin2Corr

Generate correlated binary variables

Description

Generate correlated bivariate binary outcomes of toxicity and efficacy for a cohort number of patients.

Usage

```
rBin2Corr(cohortsize, pT, pE, psi, seed=NULL)
```

Arguments

cohortsize	Number of patients in each cohort.
рТ	Toxicity probability.
pE	Efficacy probability.
psi	Association parameter for efficacy and toxicity, where psi=0 means toxicity and efficacy is independent.
seed	An integer for the seed to generate random numbers, default is NULL.

20 sample_plot

Details

The formula for generating correlated binary variables is

$$\pi_{i,j} = (\pi_E)^i (1 - \pi_E)^{1-i} (\pi_T)^j (1 - \pi_T)^{1-j} + (-1)^{i+j} \pi_E (1 - \pi_E) \pi_T (1 - \pi_T) \left(\frac{e^{\psi} - 1}{e^{\psi} + 1} \right),$$

where i,j=0,1, so that four probabilities can be calculated for the possible combinations of (toxicity, efficacy) including (1,1),(0,0),(0,1),(1,0) given π_T and π_E . Multinomial distribution rmultinom is further used to generate bivariate binary outcomes (number equals to cohortsize) based on the four calculated probabilities.

Value

Return a $cohortsize \times 2$ matrix with columns corresponding to toxicity and efficacy, and rows for each observations of binary outcome with 0 for no toxicity (no efficacy) and 1 for toxicity (efficacy) at the first (second) column.

References

Murtaugh, P. A., & Fisher, L. D. (1990). Bivariate binary models of efficacy and toxicity in doseranging trials. Communications in Statistics-Theory and Methods, 19(6), 2003-2020. doi:10.1080/03610929008830305

Thall, P. F., & Cook, J. D. (2004). Dose-finding based on efficacy–toxicity trade-offs. Biometrics, 60(3), 684-693. doi:10.1111/j.0006341X.2004.00218.x

Examples

```
rBin2Corr(cohortsize = 1, pT = 0.2, pE = 0.4, psi = 0, seed=12)
```

sample_plot

Sample plot for a given output results

Description

This function is used to generate the plot of relationships between outcomes and total average sample size, number of patients for determination of randomization phase, skeleton, and Association parameter for efficacy and toxicity binary outcome by different scenarios and link functions.

Usage

```
sample_plot(dat, outcome, outname, N = NULL, nR = NULL, Skeleton = NULL, corr = NULL)
```

Arguments

dat Input data used for plot.

outcome Column name for the outcome used in the plot.

outname A string for the name of outcome.

N Maximum sample size, if not fixed, use the default value NULL.

nR Number of patients for determination of randomization phase, if not fixed, use

the default value NULL.

Skeleton Two skeletons with number 1 and 2, if not fixed, use the default value NULL.

corr Association parameter for efficacy and toxicity, if not fixed, use the default value

THI

NULL.

Details

4 settings with multiple inputs: need to fix three and plot each outcome vs. the remaining one by 6 scenarios:

- 1. N: maximum sample size -> 40, 50, 60
- 2. nR: subset sample size -> 10, 20, 30
- 3. Skeleton: two sets of skeletons for toxicity and efficacy
- 4. corr: correlation between toxicity and efficacy binary outcomes -> 0, -2.049, 0.814

Value

Returns a ggplot object.

Examples

```
# load the data stored in the crm12Comb package
data(examples_results, package = "crm12Comb")

# fix the number of patients for determination of randomization phase, skeleton,
# and Association parameter for efficacy and toxicity binary outcome
# plot the relationship between
# "Probability of ODC as target combinations" vs. total average sample size
sample_plot(examples_results, outcome = "prob_target",
    outname = "Probability of ODC as target combinations",
    N = NULL, nR = 20, Skeleton = 1, corr = 0)
```

SIM_phase_I_II

Single simulation of phase I/II adaptive design for drug combinations based on CRM design

Description

This function is to realize the simulations of whole process of combined phase I and phase II design for drug combinations with early stopping rules and flexible user-defined model or prior distribution, returning operating characters for performace evaluations and comparisons.

Usage

```
SIM_phase_I_II(nsim, Nmax, DoseComb, input_doseComb_forMat,
               input_type_forMat, input_Nphase,
               input_DLT_skeleton, input_efficacy_skeleton,
               input_DLT_thresh=0.3, input_efficacy_thresh=0.3,
               input_M_prob=NULL, input_K_prob=NULL,
               input_cohortsize=1, input_corr=0,
               input_early_stopping_safety_thresh=0.33,
               input_early_stopping_futility_thresh=0.2,
               input_model="empiric", input_para_prior="normal",
               input_beta_mean=0, input_beta_sd=1,
               input_intcpt_lgst1=3,
               input_beta_shape=1, input_beta_inverse_scale=1,
               input_theta_mean=0, input_theta_sd=1,
               input_theta_intcpt_lgst1=3,
               input_theta_shape=1, input_theta_inverse_scale=1,
               input_alpha_mean=3, input_alpha_sd=1,
               input_alpha_shape=1, input_alpha_inverse_scale=1,
               input_alphaT_mean=3, input_alphaT_sd=1,
               input_alphaT_shape=1, input_alphaT_inverse_scale=1,
               random_seed=42)
```

Arguments

nsim Number of simulation trials.

Nmax Number of maximum enrolled patients for each trial.

DoseComb

A matrix with rows of length equaling number of dose combinations and columns of length equaling number of drugs for pre-defined true toxicity and true efficacy probabilities corresponding to each dose combinations.

input_doseComb_forMat

For 2 drugs, either a matrix with columns for all combinations and rows for two drugs when input_type_forMat is "comb", or a vector of length 2 indicating the number of levels of each drug when input_type_forMat is "matrix" should be input. For more than 2 drugs, a list of all possible orderings should be input when input_type_forMat is "self".

input_type_forMat

A character string to indicate the input type of dose combinations. The type_forMat is either "comb" for inputting all tested dose combinations for 2 drugs, "matrix" for entering number of levels of two drugs so that a matrix of combinations can be constructed, or "self" for more than 3 drugs with directly input of all possible orderings.

input_Nphase

Number of patients for determination of randomization phase (current number of patients less than Nphase) or maximization phase (current number of patients larger than or equal to Nphase).

input_DLT_skeleton

A vector with same length of dose combinations for toxicity skeleton for each dose combination.

input_efficacy_skeleton

A vector with same length of dose combinations for efficacy skeleton for each dose combination.

input_DLT_thresh

DLT threshold to define acceptable set.

input_efficacy_thresh

Efficacy threshold to define target combinations.

input_M_prob A vector with same length of possible toxicity orderings denoting prior probabilities of toxicity orderings (sum is 1).

input_K_prob A vector with same length of possible efficacy orderings denoting prior probabilities of efficacy orderings (sum is 1).

input_cohortsize

Number of patients in each cohort.

input_corr Association parameter for efficacy and toxicity, where 0 means toxicity and efficacy is independent.

input_early_stopping_safety_thresh

Safety threshold for early stopping condition.

input_early_stopping_futility_thresh

Futility threshold for early stopping condition.

input_model A character string to specify the model used, must be one of "empiric", "tanh", "logistic" or "logistic2".

input_para_prior

A character string to specify the prior distribution used for parameters, must be one of "normal" or "gamma" (when input_model is either "empiric" or "logistic" or "logistic") or "exponential" (when input_model is "tanh").

input_beta_mean

The mean of parameter used when input_para_prior="exponential" or "normal", otherwise will be ignored.

input_beta_sd The standard deviation of parameter used when input_para_prior="normal", otherwise will be ignored.

input_intcpt_lgst1

A constant value of intercept from a one-parameter logistic model only used when input_model="logistic" (suggested value is 3), otherwise will be ignored.

input_beta_shape

The shape parameter used when input_para_prior="gamma", otherwise will be ignored.

input_beta_inverse_scale

The scale parameter used when input_para_prior="gamma", otherwise will be ignoredL.

input_theta_mean

The mean of parameter used when input_para_prior="exponential" or "normal", otherwise will be ignored.

input_theta_sd The standard deviation of parameter used when input_para_prior="normal", otherwise will be ignored.

input_theta_intcpt_lgst1

A constant value of intercept from a one-parameter logistic model only used when input_model="logistic" (default value is 3), otherwise will be ignored.

input_theta_shape

The shape parameter used when input_para_prior="gamma", otherwise will be ignored.

input_theta_inverse_scale

The scale parameter used when input_para_prior="gamma", otherwise will be ignored.

input_alpha_mean

The mean of intercept parameter of two-parameter logistic model only used when model="logistic2" and input_para_prior="normal", otherwise will be ignored.

input_alpha_sd The standard deviation of intercept parameter of two-parameter logistic model only used when input_model="logistic2" and input_para_prior="normal", otherwise will be ignored.

input_alpha_shape

The shape parameter of intercept parameter from a two-parameter logistic model only used when input_model="logistic2" and input_para_prior="gamma", otherwise will be ignored.

input_alpha_inverse_scale

The scale parameter of intercept parameter from a two-parameter logistic model only used when input_model="logistic2" and input_para_prior="gamma", otherwise will be ignored.

input_alphaT_mean

The mean of intercept parameter of two-parameter logistic model only used when model="logistic2" and input_para_prior="normal", otherwise will be ignored.

input_alphaT_sd

The standard deviation of intercept parameter of two-parameter logistic model only used when input_model="logistic2" and input_para_prior="normal", otherwise will be ignored.

input_alphaT_shape

The shape parameter of intercept parameter from a two-parameter logistic model only used when input_model="logistic2" and input_para_prior="gamma", otherwise will be ignored.

input_alphaT_inverse_scale

The scale parameter of intercept parameter from a two-parameter logistic model only used when input_model="logistic2" and input_para_prior="gamma", otherwise will be ignored.

random_seed An integer for the start seed to generate random numbers, default is 42.

Details

This function is to realize the whole process of combined phase I and phase II adaptive design for drug combinations based on CRM amonng number of simulation trials. For each trial, basic steps include starting the trial for first patient or cohor of patients allocation, toxicity and efficacy

estimations by current data, adaptive randomization or maximization phase for next patient or cohort of patients allocation, updating current data of patients enrollment, determining early stoppings for safety or fuility, and selecting optimal dose combination (ODC) after reaching maximum sample size or stopping early.

Value

A list of operating characteristics is returned containing the following components:

prob_safe	Probability of simulation trials with ODC identified as safe/ineffective combinations.	
prob_target	Probability of simulation trials with ODC identified as target combinations.	
prob_toxic	Probability of simulation trials with ODC identified as toxic combinations.	
mean_SS	Average number of patients enrolled.	
mean_ODC	Average proportion of patients allocated to target ODS(s).	
prob_stop_safety		
	Probability of simulation trials stopping early for safety.	
<pre>prob_stop_futility</pre>		
	Probability of simulation trials stopping early for futility.	
mean_DLT	Average observed DLT rate.	
mean_ORR	Average observed response rate.	
Npatient	A vector of number of patients enrolled for all simulation trials.	
ODC	A vector of ODC for all simulation trials.	
prop_ODC	A list of vectors storing dose levels for each patients allocation.	
datALL	A list of data frames storing data of (doselevel, toxicity, efficacy) for each patient.	

References

Wages, N. A., & Conaway, M. R. (2014). Phase I/II adaptive design for drug combination oncology trials. Statistics in medicine, 33(12), 1990-2003. doi:10.1002/sim.6097

See Also

```
priorSkeletons, get_ordering, toxicity_est, efficacy_est, rBin2Corr, binom.test
```

```
0.12, 0.18,
                     0.16, 0.22,
                     0.22, 0.35,
                     0.25, 0.40,
                     0.20, 0.24,
                     0.24, 0.35,
                     0.35, 0.45,
                     0.40, 0.50), ncol=2, byrow = TRUE)
# generate skeletons
DLT_skeleton <- priorSkeletons(updelta=0.025, target=0.3, npos=10, ndose=16,
                               model = "empiric", prior = "normal", beta_mean=0)
Efficacy_skeleton <- priorSkeletons(updelta=0.025, target=0.5, npos=10, ndose=16,
                                     model = "empiric", prior = "normal", beta_mean=0)
# simulate 1 trial under the same model and prior distribution
simRes <- SIM_phase_I_II(nsim=1, Nmax=40, DoseComb=scenario, input_doseComb_forMat=c(4,4),</pre>
                         input_type_forMat="matrix", input_Nphase=20,
                         input_DLT_skeleton=DLT_skeleton,
                         input_efficacy_skeleton=Efficacy_skeleton,
                         input_DLT_thresh=0.3, input_efficacy_thresh=0.3,
                         input_cohortsize=1, input_corr=0,
                         input_early_stopping_safety_thresh=0.33,
                         input\_early\_stopping\_futility\_thresh=0.2,
                         input_model="empiric", input_para_prior="normal",
                         input_beta_mean=0, input_beta_sd=1,
                         input_theta_mean=0, input_theta_sd=1)
```

tanh_ExpPriorLikelihood

Title: Bayesian likelihood inference

Description

Title: Bayesian likelihood inference

Usage

```
tanh_ExpPriorLikelihood(beta, beta_mean, x, y)
```

Arguments

beta parameter.
beta_mean A number.

x A numeric vector.
y A numeric vector.

toxicity_est 27

Value

1 -> likelihood function

References

: R package dfcrm Hyperbolic tangent model with exponential prior

toxicity_est	toxicity_est
--------------	--------------

Description

Estimate toxicity using Bayesian inference for each enrolled patient or cohort of patients given the current accumulated data.

Usage

Arguments

Dat	A data frame for current data with three columns (DoseLevel, DLT and ORR).
I	Number of dose combinations.
М	Number of toxicity orderings.
M_prob	A vector of length ${\cal M}$ denoting prior probabilities of toxicity orderings (sum is 1).
DLT_skeleton	A list of vector with length M containing toxicity orderings.
DLT_thresh	DLT threshold to define acceptable set.
model	A character string to specify the model used, must be one of "empiric", "tanh", "logistic" or "logistic2".
para_prior	A character string to specify the prior distribution used for parameters, must be one of "normal" or "gamma" (when model is either "empiric" or "logistic" or "logistic2") or "exponential" (when model is "tanh").
beta_mean	The mean of parameter used when prior="exponential" or "normal", otherwise need to specify NULL.
beta_sd	The standard deviation of parameter used when prior="normal", otherwise need to specify NULL.
intcpt_lgst1	A constant value of intercept from a one-parameter logistic model only used when model="logistic" (suggested value is 3), otherwise need to specify NULL.
beta_shape	The shape parameter used when prior="gamma", otherwise need to specify NULL.

28 toxicity_est

beta_inverse_scale

The scale parameter used when prior="gamma", otherwise need to specify NULL.

alpha_mean The mean of intercept parameter of two-parameter logistic model only used

when model="logistic2" and prior="normal", otherwise need to specify NULL.

alpha_sd The standard deviation of intercept parameter of two-parameter logistic model

only used when model="logistic2" and prior="normal", otherwise need to spec-

ify NULL.

alpha_shape The shape parameter of intercept parameter from a two-parameter logistic model

only used when model="logistic2" and prior="gamma", otherwise need to spec-

ify NULL.

alpha_inverse_scale

The scale parameter of intercept parameter from a two-parameter logistic model only used when model="logistic2" and prior="gamma", otherwise need to spec-

ify NULL.

seed An integer for the seed to generate random numbers used for equal ordering

prior probabilities, default is NULL.

Details

The toxicity estimation is based on Bayesian framework by calculating the likelihood function under each orderings, and select the ordering with maximum posterior probability. Then, estimated parameters can be obtained, which will be used for toxicity estimation based on the corresponding link function (specified in model statement).

Value

A list is returned containing the following components:

AR A vector for dose levels belonging to acceptable set (estimated DLT rate less

than pre-specified DLT threshold).

M_prob A vector for posterier density of toxicity orderings and will be used as prior

information for next enrolled patient or cohort of patients.

References

Wages, N. A., & Conaway, M. R. (2014). Phase I/II adaptive design for drug combination oncology trials. Statistics in medicine, 33(12), 1990-2003. doi:10.1002/sim.6097

See Also

```
priorSkeletons, get_ordering
```

```
# Generate a data including 3 columns: DoseLevel, DLT, ORR (DLT and ORR are binary outcomes) currDat <- data.frame(sample(1:9, 6, replace=TRUE), rbinom(6, 1, 0.2), rbinom(6, 1, 0.5)) names(currDat) <- c("DoseLevel", "DLT", "ORR")
```

```
# Generate toxicity skeleton
```

toxicity_est 29

Index

```
* datasets
    examples_results, 8
binom.test, 25
doseComb_to_mat, 2
efficacy_est, 3, 25
empiric_GammaPriorLikelihood, 5
empiric_NormalPriorLikelihood, 6
enroll_patient_plot, 7
examples_results, 8
get_ordering, 5, 8, 25, 28
getprior, 17
logisticOnePara_GammaPriorLikelihood,
logistic One Para\_Normal Prior Likelihood,\\
        11
logistic Two Para\_Gamma Prior Likelihood,\\
logisticTwoPara\_NormalPriorLikelihood,
maximization\_phase, 5, 14
ODC_plot, 14
patient_allocation_plot, 16
priorSkeletons, 5, 17, 25, 28
randomization_phase, 5, 18
rBin2Corr, 19, 25
rmultinom, 20
sample_plot, 20
SIM_phase_I_II, 15, 21
tanh_ExpPriorLikelihood, 26
toxicity_est, 5, 25, 27
```