8. Class

Python: For lopp

A **for loop** is a **repetition structure** that iterates over each element in a sequence (like a list, dictionary, or string) one by one.

Key Idea: It allows you to work with each element individually.

For loop — bu takrorlash operatori, u ma'lum bir toʻplam yoki ketma-ketlik (masalan, roʻyxat, lugʻat, qator) ichidagi har bir elementni navbatma-navbat oʻtib chiqish uchun ishlatiladi.

Scaling qilishdan oldin dataga quyidagi ishlovlar berilishi kerak.

SCALING

- Data preprocessing
- missing values
- encoding
- scaling

Scaling bo'lishi uchun raqamli bo'lishi kerak hamma data

Feature Scaling

Types of Scaling

Here are three common ways to scale data:

- 1. Min-Max Scaling (Normalization)
 - What it does: Changes all numbers to fit between 0 and 1 (or another range you want).
 - How it works: It finds the smallest and largest numbers in your data, then adjusts every number so the smallest becomes 0, and the largest becomes 1.
- 2. Standardization (Z-Score Scaling)
 - What it does: Adjusts the numbers so they have a mean of 0 and a standard deviation of 1.
 - How it works: Subtracts the average (mean) of all numbers, then divides by how spread out the numbers are (standard deviation).

3. Robust Scaling

- What it does: Similar to
 Standardization but focuses on
 the middle range of numbers
 (median) instead of the mean.
 This is good if your data has
 outliers (extreme values).
- How it works: It subtracts the median and divides by the interquartile range (IQR – the range between the 25th and 75th percentiles).
- Why Use It: It's not affected by very large or very small numbers like Min-Max and Standardization.

4. Misol bilan tushuntirish

Scalingdan oldin:

- Haqiqiy qiymatlar: y=[10,20,30], bashoratlar: $\hat{y}=[12,19,28]$.
- $MSE = \frac{(10-12)^2 + (20-19)^2 + (30-28)^2}{3} = 3.67.$
- $R^2=1-rac{ ext{SS}_{ ext{residual}}}{ ext{SS}_{ ext{total}}}=0.9.$

Scalingdan keyin:

- Haqiqiy qiymatlar: y' = [0, 0.5, 1], bashoratlar: $\hat{y}' = [0.067, 0.467, 0.933]$.
- $MSE = \frac{(0-0.067)^2 + (0.5-0.467)^2 + (1-0.933)^2}{3} = 0.0067.$
- Lekin \mathbb{R}^2 oʻzgarmaydi! Chunki \mathbb{R}^2 nisbiy baholash usuli.

5. Xulosa

- ullet MSE va R^2 bir-biri bilan bogʻliq, lekin ular turli maqsadlarda ishlatiladi:
 - MSE: Absolyut xatolarni oʻlchaydi va hajmga sezgir.
 - ullet R^2 : Modelning ishlashini foizda baholaydi va scale-dan ta'sirlanmaydi.

1. Regression va Classification uchun mos metrikalar

Vazifa	Metrika	Ma'nosi	Foydalanish sohasi
Regression	MSE (Mean Squared Error)	Bashorat va haqiqiy qiymatlar oʻrtasidagi kvadrat xatolarning oʻrtacha qiymatini oʻlchaydi.	Regression modellari.
	MAE (Mean Absolute Error)	Bashorat va haqiqiy qiymatlar orasidagi oʻrtacha modul xatosi.	Regression modellari.
	R^2 (Determination Coefficient)	Modelning natijalardagi umumiy oʻzgarishni qanchalik tushuntira olganini foizlarda koʻrsatadi.	Regression modellari.
Classification	Accuracy	Toʻgʻri tasniflangan sinflar ulushini oʻlchaydi.	Classification modellari.
	Precision va Recall	Muvozanatsiz datasetlarda toʻgʻri va notoʻgʻri ajratilgan sinflarni oʻlchaydi.	lmbalanced classification.
	F1-Score	Precision va Recall oʻrtasidagi balansni oʻlchaydi.	Imbalanced classification.
	ROC-AUC	Modelning tasniflash aniqligini baholaydi (toʻgʻri/notoʻgʻri sinflar uchun).	Classification modellari.

2. r va R^2 oʻrtasidagi farqlar

Xususiyat	r: Korrelatsiya Koeffitsienti	R^2 : Determinatsiya Koeffitsienti
Nima oʻlchanadi?	lkki oʻzgaruvchi orasidagi bogʻliqlik.	Regression modelning umumiy mosligini (qanchalik yaxshi ishlashini) baholaydi.
Qiymat oraliq	-1 dan $+1$ gacha.	0 dan 1 gacha.
Musbat qiymat	r=+1: Mukammal musbat bogʻliqlik.	$R^2=1$: Model barcha oʻzgarishni tushuntiradi.
Manfiy qiymat	r=-1: Mukammal manfiy bogʻliqlik.	$oldsymbol{R}^2$: Manfiy boʻlmaydi, faqat 0 dan 1 oraligʻida boʻladi.
Bogʻliqlik	$R^2=r^2$ (faqat oddiy regressiyada).	$R^2 eq r^2$ (murakkab regressiyada).
Foydalanish sohasi	Korrelatsiya tahlili uchun.	Regression modellarning natijalarini baholash uchun.

Quyidagi jadvalda **scaling kerak boʻlgan** va **kerak boʻlmagan** algoritmlar qisqacha, sodda sabablari bilan keltirilgan:

Scaling Kerakmi?	Algoritmlar	Nega?	
Kerak	KNN (K-Nearest Neighbors)	Masofa asosida ishlaydi, katta diapazon xatolikka olib keladi.	
	SVM (Support Vector Machines)	Hyperplane ajratishda katta diapazon muvozanatsizlik keltiradi.	
	PCA (Principal Component Analysis)	Dispersiyani hisoblashda katta qiymatlar asosan ta'sir qiladi.	
	Gradient Descent (Neural Networks)	Gradient optimallashtirishda katta qiymatlar sekinlashuv va xatoga olib keladi.	
Kerak emas	Decision Tree	Xususiyatlarning oʻlchami ta'sir qilmaydi, faqat qiymatlarni solishtiradi.	
	Random Forest	Har bir daraxt mustaqil ishlaydi va xususiyat diapazonlariga bogʻliq emas.	
	Gradient Boosting	Daraxt tuzilmasi asosida ishlaydi, ma'lumot hajmi qaror qabul qilishga ta'sir qilmaydi.	