Ivan's Chapter 7 Study Guide

Written by Ivan Petrov (HRB) on 05/22/2019

PLEASE, DO NOT LOSE THIS STUDY GUIDE AND REMEMBER TO STILL STUDY YOUR NOTES! I DO NOT KNOW WHAT IS ON THE TEST AND ALL INFORMATION INSIDE IS INCLUDED BASED ON PURE SPECULATION. I AM NOT RESPONSIBLE FOR ANY IRRELEVANT, MISLEADING OR OTHERWISE FALSE INFORMATION!

Autosomal Genes in Humans

- Autosomes are chromosomes which do not play a role in sex determination
- Your sex is determined by the sex chromosomes that you have
 - \circ XX = Female
 - \circ XY = Male
- Most traits present in sexually reproducing organisms are determined by autosomal genes
 - o Ex: Skin color, eye color, hair shape, etc.
- A good deal of genetic/chromosomal disorders are also caused by autosomal genes

Recessive Genetic Disorders

- Most genetic disorders are caused by recessive alleles
 - o Both copies of the recessive allele must be present for the disorder to occur
- Heterozygous individuals who have an allele for a disorder but do not show symptoms are called **carriers**
- This shows why having a deep gene pool is important, since healthy dominant alleles can mask harmful recessive ones

Dominant Genetic Disorders

- Less common than recessive disorders
 - Only one copy of the dominant allele has to be present in order for symptoms to show

Sex-Linked Genetic Disorders

- Since men only have one X chromosome, they are more susceptible to X-linked genetic diseases than women
 - Since women have two X chromosomes, the normal one can mask over the faulty one
- Besides having sex-linked genes, the X chromosome also contains other genes which are not related to sex
 - 6 However, the Y chromosome does not contain non-sexual genes
- Scientists believe that the Y chromosome is smaller than the X chromosome since over millions of years of meiosis, genes from the Y chromosome could have transferred over to the X chromosome
 - O Since the Y chromosome is smaller than the X chromosome, it contains less genetic information
- Only women can be carriers of sex-linked genetic disorders

- Sex-Linked Genetic Disorders Cont.
- **X chromosome inactivation** is a process in which one of the two X chromosomes in a female cell is randomly inactivated

o One of the X chromosomes coils more tightly than the other to deactivate itself

	Hetero. Carrier		
er		P	р
Hetero. Carrier	P	PP	Рр
Hete	р	Рр	рр

The offspring of two hetero carriers for PKU (which is recessive) would have a 50% of becoming carriers and a 25% chance of having the disease

	Hetero (Diseased)		
ive		H	h
Homo recessive	h	Hh	hh
Нош	h	Hh	hh

The offspring of a Hetero with Huntington's Disease and a healthy homo recessive would have a 50% chance of having the disease and a 50% chance of not

	Bald M	ale	
ro Fem		Xp	Υ
Normal Hetero Fem	X ^B	X ^B X ^b	X ^B Y
Norn	Xp	X ^b X ^b	Χ ^b Υ

The offspring of a man with pattern baldness (sex-linked) and a normal hetero woman would have a 25% chance of being normal female carriers, a 25% chance of being bald females, a 25% chance of being normal males, and a 25% of being bald males

Incomplete Dominance

- The phenotype is in-between
- Red flower x white flower = 100% Pink Flowers

Incomplete vs. Codominance

Codominance: Both equally expressed Red flowers + White flowers =

Incomplete Dominance: alleles blend Red flowers + White flowers =

Incomplete vs Codominance

Codominance

Both phenotypes are equally present

• Homo. red bull x homo. white cow = 100% Roan Cows

	Cr	Cr
Cw	CrCw	CrCw
C ^w	CrCw	CrCw

- Polygenic Traits are traits which are produced by two or more genes
 - o For example, skin color results from four genes which interact
 - o Literally means "many [poly] genes [genic]"
- Eye color is determined by a combination of at least three genes
 - The allele for brown eyes dominates over the allele for green eyes which dominates over the allele for blue eyes
 - \circ Brown > Green > Blue

GENE	DOMINANT	RECESSIVE
BEY1	Brown	Blue
BEY2	Brown	Blue
GEY	Green	Blue

The alleles for brown eyes dominate over those for green and blue

Epistasis

- **Epistatic genes** are genes for polygenic traits which overshadow all of the others
 - A single gene interferes with the other four genes for mouse fur color, causing albinism

Phenotypes, genotypes, and the Environment

- Height can be influenced by genes
- Height can also be influenced by the environment
 - Ex: Getting more nutrients in the uterus, healthcare, chemicals, etc.
- Hair color is determined by genes, but can also become lighter after prolonged exposure to sunlight
- Skin color is also determined by your genes, but can also darken (tan) after prolonged exposure to sunlight

Despite being born with a paler complexion, this person's skin has darkened due to repeated UV exposure

Genetic Linkage and Fruit Flies

- Thomas Hunt Morgan worked with fruit flies (*Drosophila melanogaster*)
 - Observed easily identifiable characteristics such as eye color, body color, and wing shape
- A wild type is the most common natural phenotype of a species
- Morgan bred wild type fruit flies with mutant ones
 - o Didn't always follow 9:3:3:1 ratio but still differed in a noticeable pattern
- The crosses showed that some traits seemed to be inherited together
 - o Morgan called these "linked traits"
 - Appeared to fall into four groups
 - Corresponds to the four chromosome pairs of a fruit fly
- Morgan concluded that linked genes were on the same chromosome
- Also concluded that chromosomes exchange homologous genes during meiosis

Linkage Maps

- Linkage maps are maps of the locations of loci (genes) on the chromosome
 - One map unit = 1 cross-over for each 100 offspring or 1% point
- The probability of two genes being inherited is related to their distance
 - o Closer genes are more likely to be inherited together
- Hypothesized by Alfred Sturtevant
 - Identified three linked traits in fruit flies
 - Body color, eye color, and wing size
 - Sturtevant performed many crosses on the flies
- Sturtevant recorded the % of times that the phenotypes didn't appear in the offspring
 - Represented by frequency of cross-overs between chromosomes

Making a Linkage Map

- Suppose that you performed a few crosses and this data was your result;
 - o Gene A and B cross over 3% of the time
 - o Gene B and C cross over 13.5% of the time
 - o Gene A and C cross over 23.5% of the time
- On a linkage map, genes A and B would be 3 units apart since they cross over 3% of the time
- Genes B and C would be 13.5 units apart since they cross over 13.5% of the time
- Genes A and C would be 23.5 units apart since they cross over 23.5% of the time
- From this data, we can conclude that gene B would be between genes A and C

A wild type fruit fly vs a wingless mutant

Pedigrees and Tracing Genes

- Pedigree charts are used to trace the genotypes/phenotypes which run in a family
 - o Determines which family members carried recessive alleles
- Boxes represent males and circles represent females
- A shaded shape indicates that the person shows the trait
- An unshaded shape indicates that the person didn't show the trait
- A half-shaded shape indicates that the person is a carrier
- If a trait occurs in similar numbers among males and females then it is likely an autosomal trait
- However, if it occurs mostly in males then it is likely a gene on the X chromosome

Karyotypes

- **Karyotypes** are maps of all the chromosomes in a cell
- Chemicals are used to stain the chromosomes
 - o This produces a banded pattern
- Chromosomes are paired by similarities between their size, shape, and bands
 - Cut and pasted according to size (largest => smallest)
- Karyotypes tell us about an organism's...
 - o Sex
 - Possible genetic disorders
 - o Species

An example of a breast & ovarian cancer pedigree

Genetic Mutations

• Genes give the correct order of amino acids to be assembled into proteins

- Nucleotides (DNA) are made from
 - o Bases
 - Adenine, thymine, guanine, and cytosine
 - Sugars
 - Phosphate groups
- Nucleotides are changed when bases are added, removed, or swapped
- Examples of Genetic mutations include PKU, Tay-Sachs, Hemophilia, Cystic Fibrosis, and Huntington's disease

<u>Genetic Disorders – PKU (Phenylketonuria)</u>

- Caused by a recessive gene
- Babies are born without the protein needed to synthesize an enzyme needed to degrade the amino acid called phenylalanine
- Phenylalanine builds up in the brain where it can lead to intellectual disability
- Requires a special diet to prevent the intake on phenylalanine
- Incurable but treatable

Genetic Disorders – Tay-Sachs Syndrome

- An enzyme which breaks down lipids in the brain is missing
- The accumulation of these lipids leads to death
- More common in central European Jews
 - Due to central European Jews having a shallow gene pool
- Also caused by a recessive gene
- Since there is no treatment, patients usually die early in childhood

<u>Genetic Disorders – Hemophilia</u>

- Another recessive gene
- Associated with sex chromosomes
- Individuals with hemophilia lack the proteins required to create clots
 - **Platelets**
- Common in nobility
 - Shallow gene pool

Genetic Disorders – Sickle Cell Anemia

- Caused by a recessive gene which codes for hemoglobin
- Most common in African populations
 - Reduces severity of malaria infections
- Causes blood cells to curve into crescent shapes
 - Mutation to protect against malaria
- Carriers have little symptoms and tend to live normal lives
- Individuals with SCA tend to make it to age 40
- Panama Canal story

Normal red blood cell (RBC) Abnormal sickle red blood cell section RBCs flow freely whitin blood vesse

Sickle-Cell Anemia

Normal red blood cell section

ickle cells blocking blood flo Symptoms of SCA

<u>Genetic Disorders – Cystic Fibrosis</u>

- Caused by a recessive gene on chromosome #7
- Causes a thick mucus to be produced around the lungs, liver, and pancreas
 - Damages these organs
 - Makes breathing difficult
- No cure, often die at a young age

Genetic Disorders – Huntington's Disease

- Caused by a dominant gene
- Brought to the colonies in 1630 by three men whose families had been persecuted in England for witchcraft

Sticky sickle cells

- Displayed strange behavior
- Results in mental and physical deterioration
 - Causes uncontrollable trembling
- Starts at ages 30-40
- Eventually the person dies

Basal Ganglia and Related Structures of the Brain

Huntington's mainly affects the basal ganglia

Chromosomal Mutations

• Chromosomal mutations are changes in a chromosome's structure or the number of chromosomes

- Can be caused by mutagens
 - o Agents which alter the genes of an organism
- Can also be caused by improper separation of chromosomes during meiosis
 - o This is known as a nondisjunction
 - o Gametes receive more or less than appropriate
- Deletions
 - ABCDEFGH => ABCDGH
- Inversion
 - ABCDEFGH => ABDCEFGH
- Duplication
 - o ABCDEFGH => ABABCDEFGH
- Translocation
 - [1] <u>ABC</u>DEFGH [2] ZYXWVUTS => [2] <u>ABC</u>ZYXWVUTS

A chart of chromosomal mutations

Chromosomal Disorders – Down Syndrome

- Caused by three copies of the 21st chromosome (trisomy 21)
- Caused by a nondisjunction of chromosomes
 - Chromosomes didn't pull apart during meiosis
- Individuals display intellectual disability and physical differences
- Frequency of down syndrome increases with the mother's age

Notice how the karyotype has a third copy of the 21st chromosome

A man with Down Syndrome showing common facial characteristics

<u>Chromosomal Disorders – Turner Syndrome</u>

- Genotype XO = X
 - 45 chromosomes
 - Sterile females
- Sex organs are not mature
- No pubic hair
- Immature ovaries
- Caused by a nondisjunction of chromosomes

Notice how there is only one X chromosome

A girl with Turner syndrome showing characteristic neckwebbing

Chromosomal Disorders – Klinefelter's Syndrome

- Genotype XXY
 - 47 chromosomes
- Nondisjunction
- Sterile males
- Several physical defects
 - Immature sex organs
 - Taller than normal
 - Weaker muscles
 - Increased breast tissue
- Some degree of cognitive impairment may be present

Notice the inclusion of two X chromosomes <u>and</u> a Y chromosome

A man with Klinefelter's

<u>Chromosomal Disorders – XYY "Super male" Syndrome</u>

- Genotype XYY
 - 47 chromosomes
- Nondisjunction
- Sterile males
- Besides being taller than average, most men with the syndrome tend to look normal
- Many are in prisons and mental facilities
 - Increased aggression from higher levels of testosterone
- Don't have abnormal sex organs

Notice the presence of an extra Y chromosome in this man's karyotype

<u>Chromosomal Disorders – Triple-X "Metafemale" Syndrome</u>

- Also known as trisomy X
 - o Inclusion of three X chromosomes
 - 47 chromosomes in total
- Often taller than average women
- Occasionally born with increased eye distance and epicanthal folds
- Some experience learning difficulties

Detecting Chromosomal Abnormalities

- Ultrasonography
 - Uses sounds above our range of hearing to create an image of the fetus

- Fetoscopy
 - Uses a fetoscope pushed through a hole in the abdomen to capture an image of the fetus
- Chorionic Villus Sampling
 - o Involves the removal of a small amount of tissue from the placenta
- Amniocentesis
 - A syringe is pushed through the abdomen and into the amniotic sac where a small sample of amniotic fluid is drawn
- Karyotyping
 - See the section on page 5

<u>ivansworld.me</u> 10

A fetoscopy

Amniocentesis

Chorionic Villus Sampling

PRANKED BOI

The wonderful message which somebody left in my notes while I was away from my computer