

2018.10.19-20 北京丽亭华苑酒店

基于QoE的实时视频编码优化

吴晓然

- 实时视频通讯的QoE
- Agora的探索与实践
- 视频质量评分系统
- 未来编码器

1 实时视频通讯的QoE

LiveVideo StackCon 音视频技术大会

理想情况

采集

前处理

编码

解码

后处理

渲染

清晰度

流畅度

提高分辨率 减小QP 增加算法复杂度

提高fps

实际情况

带宽变化 延时抖动 网络丢包

提高分辨率 减小QP 增加算法复杂度 提高fps

增加带宽占用 增加处理时间 增加功耗

网络拥塞 实时性差 移动端体验差

基于QoE的实时视频编码优化目标

- 。 终端显示高质量
- 接收端低延时
- 发送端低功耗

2 Agora的探索与实践

- 基于机器学习的带宽估计
- 帧率及分辨率自适应调整
- 图片内容检测

编解码

- ●ROI编码
- 码率控制算法优化
- 软硬件编码动态切换

后处理

超分辨率

场景	直播	通讯	教育	游戏
清晰度	****	****	****	****
流畅度	***	****	****	****

LiveVideo StackCon 音柳頻技术大会

Just Noticeable Difference

	软件编码器	硬件编码器
编码模块	CPU	GPU/VPU/DSP/FPGA
编码速度	慢	快
编码质量	好	较好
功耗	大	小
带宽要求	无	有
GOP结构	灵活	固定
参数调整	立即响应	需要重启
可移植性	强	弱
可维护性	强	弱

设备平台 CPU性能 CPU负荷 剩余电量 目标码率 帧率 分辨率 丢包率

a. 为一个花瓶,b 为含有文字区域的放大图,c 为用超大分辨率技术处理 后得到的效果图

3 视频质量评分系统

MSE: Mean Square Error

PSNR: peak signal to noise ratio

SSIM: structural similarity index

- 依赖原始码流
- ●主观一致性低
- 基于单张图片

MSE=0, SSIM=1

MSE=309, SSIM=0.641

MSE=309, SSIM=0.987

MSE=309, SSIM=0.730

MSE=309, SSIM=0.580

LiveVideo StackCon 音视頻技术大会

VMAF: video multi method assessment fusion

- 。视觉信息保真度
- 细节丢失指标
- 。运动量

DMOS

http://blog.csdn.net/yue_huang

未来编码器

H.261

Video codec generations

FOUNDING MEMBERS

Apple

PROMOTER MEMBERS

Adobe Adobe

VVC/H.266 Development Schedule

- Standardization process has started
- Target >50 per cent over HEVC
- Oct 2017, Call for Proposals
- Feb 2018, Responses evaluation
- Oct 2018, First test models due
- Oct 2019, First versions of Standard
- End 2020, Final Standard
- June 2021, First hardware Codecs

Thank you

