VELOCITY PROFILE, SKIN-FRICTION BALANCE AND HEAT-TRANSFER MEASUREMENTS OF THE TURBULENT BOUNDARY LAYER AT MACH 5 AND ZERO-PRESSURE GRADIENT

By R. E. Lee W. J. Yanta A. C. Leonas

16 JUNE 1969

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

JOLTR 69-106

ATTENTION

This document has been approved for public release and sale, its distribution is unlimited.

VELOCITY PROFILE, SKIN-FRICTION BALANCE AND HEAT-TRANSFER MEASUREMENTS OF THE TURBULENT BOUNDARY LAYER AT MACH 5 AND ZERO-PRESSURE GRADIENT

Prepared by: R. E. Lee W. J. Yanta A. C. Leonas

ABSTRACT: The results of a detailed experimental investigation of a two-dimensional turbulent boundary layer at zero-pressure gradient are presented. The studies were made at the free-stream Mach number of 5, momentum-thickness Reynolds number from 4800 to 56,000 and wall-to-adiabatic-wall temperature ratios from 0.5 to 1.0. The data are in analytical terms of velocity profile, temperature profile, law-of-the-wall, velocity-defect law and incompressible form factor. Comparisons of local skin-friction coefficients obtained by four different experimental methods are shown. An empirical equation was derived from the shear-balance data to calculate the friction coefficient from known values of Mach number, heat transfer and Reynolds number.

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

NOLTR 69-106 16 June 1969

Velocity Profile, Skin-Friction Balance and Heat-Transfer Measurements of the Turbulent Boundary Layer at Mach 5 and Zero-Pressure Gradient

This report presents the results of an extensive investigation of a two-dimensional turbulent boundary layer at Mach 5 with moderate heat transfer in the NOL Boundary Layer Channel. The work was performed under the sponsorship of the Naval Air Systems Command, Task No. A32 320 148/292 1/R009-02-04.

The authors wish to acknowledge the support and assistance of the Aerophysics Division of the U. S. Naval Ordnance Laboratory and in particular, wish to thank Mrs. C. D. Piper and Mr. D. L. Brott for their assistance in obtaining and reducing the data; and Messrs. F. W. Brown and F. C. Kemerer for the efficient operation of the facility and preparation of instrumentation.

E. F. SCHREITER Captain, USN Commander

C. H. Schimter

By direction

CONTENTS

	Page
INTRODUCTION	. 1
EXPERIMENTAL PROCEDURE AND INSTRUMENTATION	. 1
EXPERIMENTAL RESULTS	. 2
SUMMARY AND CONCLUSIONS	. 8
REFERENCES	. 10

	TABLES
Table	Title
1	Boundary-Layer Profile Measurements
2	Summary of Heat-Transfer Data
3	Summary of Friction-Balance Data and Comparison with Empirical Relations
	ILLUSTRATIONS
Figure	
1	NOL Boundary Layer Channel Flexible Nozzle
2	Operating Envelope for the NOL Boundary Layer Channel, Mach 5
3	Reynolds Number per Foot Capability, Mach 5
4	Schematic Showing Overall Layout of the Skin-Friction Balance
5	 a. Velocity Profiles at the 48-inch Station b. Velocity Profiles at the 60-inch Station c. Velocity Profiles at the 72-inch Station d. Velocity Profiles at the 94-inch Station
6	Variation of Velocity Profile Exponent with Momentum- Thickness Reynolds Number
7	 a. Static Temperature-Velocity Distribution at the 48-inch Station b. Static Temperature-Velocity Distribution at the 60-inch Station c. Static Temperature-Velocity Distribution at the 72-inch Station d. Static Temperature-Velocity Distribution at the 14-inch Station
8	 a. Total Temperature Velocity Distribution, 48-inch Station, T_W/T_{aW} = .73 b. Total Temperature Velocity Cistribution, 60-inch Station, T_W/T_{aW} = .73 c. Total Temperature Velocity Distribution, 60-inch Station, ρ_O = 5 atms d. Total Temperature Velocity Distribution, 72-inch Station, T_W/T_{aW} = .73 e. Total Temperature Velocity Distribution, 72-inch Station, ρ_O = 5 atms f. Total Temperature Velocity Distribution, 94-inch
	Station, $T_W/T_{aw} = .73$

Correlation of Experimental Results in Terms of Law-of-the-Wall

Figure	
10	Correlation of Experimental Results in Terms of Velocity Defect Law
11	Variation of Incompressible Form Factor with Momentum- Thickness Reynolds Number
12	 a. Skin-Friction Correlation, 48-inch Station b. Skin-Friction Correlation, 60-inch Station c. Skin-Friction Correlation, 72-inch Station d. Skin-Friction Correlation, 94-inch Station
13	Reynolds Analogy Factor as a Function of Momentum- Thickness Reynolds Number
14	Experimental Reynolds Analogy Correlation
15	Comparison of Friction-Balance Measurements, $T_W/T_{aW} = .73$
16	Illustration of Probable Temperature Distribution of Velocity Profile
17	Linear Portion of Velocity Profile for Three Values of $T_{\rm W}/T_{\rm aW}$ as Computed by the Method of Tetervin for M = 10
18	Effect of Wall Temperature on Local Friction Coefficient $Re_A = 20,000$, $M = 4.7$

LIST OF SYMBOLS

 $C_{f_{-}}$ = local skin-friction coefficient based on balance data

 $C_{f,,}$ = local skin-friction coefficient based on heat-transfer data

c_f = local skin-friction coefficient

D = defined in Fig. 10

 $H_{inc} = incompressible form factor <math>\delta_i^*/\theta_i$

M = Mach number

n = velocity power-profile exponent

p_o = tunnel supply pressure

q = heat-transfer rate

Rea = momentum-thickness Reynolds number

St = Stanton number

T = temperature

 \overline{T} = as defined in Fig. 8

T = adiabatic wall temperature

T_O = tunnel supply temperature

T = local stagnation temperature

 $T_{t_{\delta}}$ = local stagnation temperature at outer edge of boundary layer

 $T_w = wall temperature$

 T_{κ} = temperature at outer edge of boundary layer

u = velocity component in the x direction

 u_{ξ} = velocity at the outer edge of boundary layer

 u^* = shear velocity from shear-balance data $\sqrt{\tau_{\rm b}/\rho_{\rm w}}$

 u^{+} = nondimensional velocity = $\frac{u}{u^{*}}$

= nominal axial distance in flow direction measured from nozzle throat

LIST OF SYMBOLS

- y = distance normal to plate surface
- y^+ = nondimensional distance from surface = $\frac{u^*y}{v_{tt}}$
- $\beta = a \text{ parameter} = T_{\delta} T_{w} / T_{t_{\delta}} \hat{T}_{w}$
- δ = boundary-layer thickness
- δ^* = displacement thickness
- δ_i^* = incompressible displacement thickness
- θ = momentum thickness
- θ_i = incompressible momentum thickness
- $v_{\rm w}$ = kinematic viscosity at wall temperature
- $\rho_{\rm w}$ = density at wall temperature
- $\tau_{\rm b}$ = shear force measured by shear balance

INTRODUCTION

The empirical nature of compressible turbulent boundary-layer theories necessitates high-quality experimental data upon which to base their formulations. Experimental studies of the boundary layer in recent years generally employ techniques such as probing with pressure and temperature probes to define the velocity and density profiles from which the local skin friction can be inferred; direct measurement of the local shear force on a floating element; and various transient and steady-state heat-transfer techniques to measure the heat transfer to the surface. The accuracy in profile measurements is limited by the smallness of the boundarylayer thickness and the relatively large probe sizes. The inference of wall friction from the velocity gradient at the wall can very easily be swayed by errors due to the effect of probe-wall interference. Floating element balances, which have been used very successfully in adiabatic-wall flows, are not as widely used in flows with high heat transfers. In flows with heat transfer, usually profile or heat-transfer measurements are used to compute the friction drag. In the application of the latter, Reynolds analogy is assumed.

The present paper presents the results of employing four different experimental techniques to obtain the friction coefficient in a compressible turbulent boundary layer with heat transfer. These are: skin-friction balance, measurements inferred from velocity and temperature gradients, and local heat-transfer measurements. Correlation of the profile and friction-coefficient data with recent empirical methods are presented.

In addition, the results of detailed measurements of the velocity and temperature profiles are presented. Analysis of the data in terms of velocity-power profile, law-of-the-wall, velocity-defect law and incompressible form factor are given.

EXPERIMENTAL PROCEDURE AND INSTRUMENTATION

The experiments were conducted in the U. S. Naval Ordnance Laboratory's Boundary Layer Channel at tunnel supply pressures between 1 and 10 atmospheres and supply temperatures between 580°R and 1210°R. The momentum-thickness Reynolds number varied from 4800 to 56,000 and wall to adiabatic-wall temperature ratio from 0.5 to 1.0. These temperature ratios were attained by varying the supply temperature and maintaining the wall temperature relatively constant. The main component of the facility is the two-dimensional supersonic nozzle illustrated in Figure 1. One wall of the nozzle is a flat plate and the opposite wall is a flexible plate which may be adjusted to give flow Mach numbers between 3 and 7 at the nozzle exit. For the present investigations the plate contour was

adjusted to prescribe a Mach 5 uniform flow over the flat plate beginning at 55 inches downstream from the nozzle throat. The operating envelope and the Reynolds number per foot capability at the Mach 5 setting are shown in Figures 2 and 3, respectively. Further details on the Channel and its performance are given in Reference (1).

The model used for boundary-layer investigations is the nozzle flat plate. The plate, made of stainless steel, and internally water cooled, is 8 feet long and tapered from 12 inches wide at the nozzle throat to 13.5 inches at the exit. Instrumentation ports, 1.875 inches in diameter, are provided along the center of the plate about every 12 inches apart starting 24 inches downstream of the nozzle throat. For the present investigation the ports located at 48, 60, 72 and 94 inches from the throat were used. Initial nozzle-design calculations using the methods of References (2), (3), and (4) and Stanton-probe measurements indicate the boundary layer to be turbulent at these locations for the operating range described. Typical boundary-layer thicknesses along the plate range from 2 to 4 inches.

The boundary-layer profile surveys were made by traversing independently a Pitot pressure probe and an equilibrium conical temperature probe across the boundary layer. Each probe was aligned with the probe tip located 2.75 inches upstream of the center of the instrumentation port. Each traverse was made from the free stream toward the plate with maximum probe movement of 3.75 inches. The speed of traverse varied during the run to insure that the probe had reached equilibrium conditions.

The profile data are recorded automatically and continuously on NOL's PADRE which is described in Reference (5). This unit provides seven channels with servo-systems and direct digital conversion to permit simultaneous sensing and recording of the data directly on IBM cards.

Pitot-pressure probes were made of 0.125-inch diameter stainless-steel tubing flattened at the tip to a rectangular opening of 0.016 x 0.100 inch. The local Mach number was computed from the Rayleigh Pitot tube formula using the measured Pitot and wall-static pressures.

The basic design of the equilibrium conical temperature probe is described in Reference (6). Essentially the equilibrium temperature of a sharp 10-degree platinum cone was measured by a thermocouple mounted onto its 0.050-inch diameter base. The cone was supported at its base by a 0.050-inch diameter, 0.5-inch long aluminum oxide tube, which also served to insulate the cone from the probe support mechanism. The measured cone temperature together with the measured local Mach number and cone tables provided the necessary information to calculate the local stagnation and static temperatures. A cone recovery factor equal to the square root of the Prandtl number was assumed, based on the cone equilibrium temperature.

The local velocity distribution was computed from the measured Mach number and temperature distributions. In the region of uniform flow, the experimental free-stream edge of the boundary layer is selected as the location where the slope of the velocity gradient becomes zero, $\frac{du}{dy} = 0$. In the 48-inch station where pressure gradient exists in the free stream, the edge is selected where $\frac{du}{dy} =$ constant.

The basic design of the NOL skin-friction balance is described in Reference (7). A schematic diagram illustrating its major components is shown in Figure 4. The instrument measured directly the shear drag on a circular surface floating element mounted flush with the flat plate. The element has an area of 0.5-square-inch. The balance was water-cooled and was designed for measurements in flows with heat transfer and pressure gradient.

Heat-transfer measurements were made by measuring the equilibrium temperature distribution in a stainless-steel rod, insulated around its circumference, and mounted with the axis normal to the plate surface. Four iron-constantan thermocouples were welded to the rod at 0.25-inch intervals, measured from the end face of the rod that was mounted flush with the flat plate. The local skin-friction coefficient was computed from the temperature gradient at the surface and the Colburn form of Reynolds analogy. One-dimensional heat flow along the axis of the rod was assumed.

At the low operating supply pressure range, the boundary layer was sufficiently thick such that temperature probing in the boundary-layer sublayer provides an accurate measurement of the temperature gradient. For these cases, the heat transfer was computed as the product of the temperature gradient at the surface and the thermal conductivity of air at the surface temperature. Reynolds analogy was again used to obtain the friction coefficient.

EXPERIMENTAL RESULTS

Free-stream Pitot-pressure distributions measured with a five-finger rake as reported in Reference (1), showed the flow to be uniform within ±0.75 percent of the free-stream Mach number in the region from the 55-inch station to the end of the flat plate. Static-pressure probe surveys across the boundary layer from 0.5 to 4.0 inches above the plate were made at the 60-inch and 94-inch stations. They showed the static-pressure variation to be within ±2.3 percent of the mean value at that station. Consequently, the static pressure was assumed to be constant.

The profile measurements in terms of local Mach number, static temperature, velocity and density are listed in Table 1. Graphs of the velocity profiles are shown in Figure 5. Because of

the thicker boundary layer at the one atmosphere pressure conditions, it was possible to probe deep into the sublayer region, into the linear portion of the velocity profile. For comparison, Figure 5C shows computed velocity profiles using the numerical solution of Reference (8) for three supply temperatures. The numerical results agree reasonably well with the profile data at the lower temperature, $T_{\rm O} = 775\,^{\circ}{\rm R}$, condition but differ considerably at the two higher temperature surveys.

The dashed lines in Figure 5 show the velocity gradient deduced from the friction balance data. The balance results are also in good agreement with the profile results except at the higher temperature runs.

A portion of the outer region can be readily fitted with a power profile. The variation of the power-profile exponent with momentum-thickness Reynolds number is shown in Figure 6. The data was fitted by the method of least squares by the expression shown. The dependence of n with Re_θ appears to be independent of heat transfer.

The static temperature-velocity profiles are shown in Figure 7. A second order polynominal,

$$\frac{T}{T_{\delta}} = a + b \left(\frac{u}{U_{\delta}}\right) + c \left(\frac{u}{U_{\delta}}\right)^{2} \tag{1}$$

was computed using the following boundary conditions to calculate the coefficients a, b, and c:

$$y = 0, \frac{T}{T_{\delta}} = \frac{T_{w}}{T_{\delta}}, \frac{u}{u_{\delta}} = 0, \frac{d(\frac{T}{T_{\delta}})}{dy} = \frac{(T_{aw}-T_{w})}{T_{\delta}} Pr^{1/3} \frac{d(\frac{u}{u_{\delta}})}{dy}$$

$$y = \delta, \frac{T}{T_{\delta}} = 1, \frac{u}{u_{\delta}} = 1$$
 (2)

Equation 1 is plotted in Figure 7. The polynomial appeared to fit the adiabatic wall temperature data satisfactorily, (see Figure 7C, $T_{\rm O}$ ~ 600°R) but did not give a good fit for the other cases where $T_{\rm W}/T_{\rm aW}$ < 1. For comparison the relations of Walz, Reference (9), and Crocco, Reference (10), are plotted in Figure 7B.

A widely used method of correlating temperature profile data, as suggested by the Crocco energy relation, is in terms of total temperature and velocity, see Reference (9), (11), (12), and (13). This is presented in Figure 8 together with three lines representing the Crocco equation for unit Prandtl number; the zero heat-transfer quadratic equation by Walz:

$$\bar{T} = \left(\frac{u}{u_{\delta}}\right)^2 \tag{3}$$

and the following expression by Danberg, Reference (11):

$$\bar{T} = \beta \left(\frac{u}{u_{\delta}}\right) + (1 - \beta) \left(\frac{u}{u_{\delta}}\right)^{2} \tag{4}$$

where

$$\beta = \frac{T_{aw} - T_{w}}{T_{t_{\delta}} - T_{w}}$$

In general the present results follow the quadratic relation, equation (3), and are consistent with the general conclusion of References (12) and (13) that data on the nozzle wall follow the quadratic rather than the Crocco relation. However, as shown in Figure 8, the data at the lowest Reynolds number at each station show a transition from the quadratic to the Crocco within the sublayer region. This trend was verified by independent measurements with the hot-wire temperature probe, see Reference (14). It has been suggested that the upstream boundary-layer history and heat transfer to the wall can produce deviation from the linear Crocco relation. The details of this deviation and manner of its recovery need further investigation to better the understanding of turbulent boundary-layer flow.

The data in Figure 8 are presented in two groupings; for a constant heat-transfer rate where $T_{\rm w}/T_{\rm aw}=0.73$ and for a constant tunnel supply pressure of five atmospheres. Little effect is noted at the outer region of the boundary layer due to Reynolds number variation. A systematic shift from the quadratic to the linear relation is noted as heat transfer increases or as the ratio $T_{\rm w}/T_{\rm aw}$ decreases.

Comparisons of the profile results with the Law of the Wall and Velocity Defect Law are shown in Figures 9 and 10, respectively. The shear velocity was computed from shear balance data. The solid line in the outer turbulent zone of Figure 9 is that reported by Baronti and Libby, Reference (15), for adiabatic wall flows.

$$u^+ = 2.43 \ln(7.5 y^+)$$
 (5)

In the Velocity Defect Law correlation of Figure 10, the solid lines represent empirical fits by Clauser and Hama, respectively, of incompressible flow data as reported in Reference (16). The equations for these lines are:

$$\frac{u_{\delta}^{-u}}{u^{*}} = 2.44 \ln \frac{y}{\delta} + 2.5 \text{ for } \frac{y}{\delta} \le 0.15$$
 (6)

$$\frac{u_{\delta} - u}{u^*} = 9.6 (1 - \frac{y}{\delta})^2 \text{ for } \frac{y}{\delta} > 0.15$$
 (7)

It appeared that the correlations of the data in both Law of the Wall and Velocity Defect Law showed a stronger dependency on heat transfer as expressed in $T_{\rm W}/T_{\rm aw}$ ratio rather than on Reynolds number.

Correlation of the data in terms of the incompressible form factor is shown in Figure 11. The present results and also the results of Winkler-Cha, Reference (17), as shown are parallel to the Tetervin-Lin fit of incompressible flow data, see Reference (18). The dotted line was drawn parallel to the Tetervin-Lin curve but displaced to go through the present data. The third line drawn was obtained by use of power profiles and Figure 6.

where
$$H_{inc} = \frac{\delta_{inc}^{*}}{\theta_{inc}} = \frac{2}{n} + 1$$
 (8)

The data did not show any trend due to heat transfer.

The skin-friction coefficient obtained by the four experimental methods at the four test stations are shown in Figure 12. For comparison, predictions shown were those of Spalding-Chi. Reference (19); Falkner and Blasius, Reference (20); Persh, Reference (21); and Winkler-Cha, Reference (17). These predicted values represented by the lines were computed for $T_{\rm W}/T_{\rm aW}=.73$ where most of the experimental data were taken. Generally, the shear balance data are about 20 percent lower than the widely accepted prediction of Spalding-Chi. The velocity profile data showed more scatter than the balance data, reflecting the difficulty of obtaining accurate friction coefficients from profile measurements.

Friction coefficients obtained from heat-transfer data as shown in Figures 12B and 12C and tabulated in Table 2 indicate a marked deviation from those based on balance measurements with increasing Reynolds number. This may be a consequence of assuming a constant turbulent flow recovery factor of 0.89 and the acceptance of the Colburn form of Reynolds analogy.

$$\frac{2St}{c_f} = Pr^{-2/3} \tag{9}$$

The present data show a Reynolds number effect on the Reynolds analogy factor which is stronger than indicated by Tetervin, Reference (22). This is shown in Figure 13. Figure 14 is a comparison of the present results with those of Danberg, Reference (11) for similar heat-transfer range. It appears that further studies are needed in this area to relate heat transfer to skin friction.

The balance data from the four measuring stations for $T_W/T_{aW}=$.73 are replotted in Figure 15. Very good agreement was obtained between the measurements at the 60, 72, and 94-inch stations. The measurements at the 48-inch station were higher than the others because they were in the pressure drop region of the nozzle. The good agreement of the data at the three downstream stations indicated that pressure gradient history at the upstream end of the plate was "forgotten" and the local flow was similar to zero pressure gradient flat plate flow. The data from the downstream three measuring stations were fitted by the least-square method to obtain the following relation:

$$c_{\rm f} = 0.0211 \, \text{Re}_{\theta}^{-0.10}$$
 (11)

which fits the experimental data to 7.5 percent. In contrast, the similar balance data at the 48-inch station, which was in the pressure drop region, resulted in a parallel line with higher friction coefficients.

Further analysis of the experimental data in Figure 12 indicated that at decreasing values of $T_{\text{W}}/T_{\text{aW}}$, both the balance and heat-transfer results showed cf to increase slightly whereas the velocity-profile measurements showed the opposite trend. It can be speculated that the cooling of the wall can introduce curvature of the velocity profile very near the wall as illustrated in Figure 16. Figure 16A represents a typical temperature distribution in the boundary layer with wall cooling. If it is assumed that the coefficient of viscosity is proportional to the temperature and the shear is constant some distance past the peak of the temperature curve then the velocity gradient most complement the temperature distribution as shown in Figure 16B for the equation shown in the figure to be true. Integrating the curve of Figure 16B will result in the velocity distribution of Figure 16C where a hump would exist near the wall. The interpretation of the data outside this hump would lead to the slope shown by the dotted line and result in a lower value of the shear force. Unfortunately the size of probes used in the present investigation made it difficult to distinguish between probe interference and temperature distortion of the boundary layer. Numerical calculations of the turbulent boundary layer by the method of Tetervin, Reference (8) add some support to this theory. The calculations were made for

Mach 10 flow with three assumed values of $T_{\rm W}/T_{\rm aW}$ and is shown in Figure 17. Although no hump appeared, the curved portion of the velocity profile extends closer to the wall as $T_{\rm W}/T_{\rm aW}$ is decreased and consequently the error in estimating the slope of the velocity profile at the wall when obtained by a fairing of experimental points not very near the wall becomes larger. Figure 17 indicates that the size limitation of present probing techniques renders this method of obtaining friction coefficients inaccurate for very cold walls.

Further correlation of the wall temperature effect on friction coefficients as obtained by the velocity profile technique and direct force measurement are shown in Figure 18 for one value of Reynolds number. The balance results showed a slight increase in c_f due to wall temperature and the friction coefficients were lower than predicted by the Spalding-Chi method. The velocity-profile results reflected the above analysis and were in general agreement with the results of Winkler-Cha which were based on profile measurements at $T_{\rm W}/T_{\rm aW}$ greater than 0.61.

The present data was fitted by the method of least squares by the equation shown in Figure 18. The basic form of the equation was adapted from Reference (17) and the coefficient and exponents for the heat transfer and Reynolds number terms adjusted to fit the present data. The Mach number dependency term, $(T_{\rm O}/T_{\rm R})$, was carried over from Reference (17). This equation describes the present data to within 6.6 percent as shown in Table 3.

CONCLUSION

The turbulent boundary layer in the NOL Boundary Layer Channel at Mach 5; 4800 < Re $_{\rm 0}$ < 56,000; .48 < $T_{\rm w}/T_{\rm aw}$ < 1.0; was studied with pressure and temperature probes, a shear balance, and a heat-transfer gage.

The structure of the boundary layer was examined in terms of velocity and temperature profiles, law of the wall, velocity-defect law and incompressible form factor. Data was obtained to $y^+=1.4$; this is much closer to the wall than previously obtained. The outer portion of the velocity profile can be fitted by a power profile. A relation between power-profile exponent and momentum-thickness Reynolds number was derived. Correlation of the incompressible form factor showed similarity with subsonic flow results. An expression relating the form factor with momentum-thickness Reynolds number was given.

Local skin-friction coefficients obtained from shear-balance measurements, velocity-profile data, temperature-profile data and heat-transfer data were compared. The balance results were the most consistent of the four and were about 20 percent lower than the prediction of Spalding-Chi. Heat-transfer measurements showed

a marked disagreement with shear-balance measurements at high Reynolds numbers. The Reynolds analogy factor is strongly affected by Reynolds number. The local skin-friction coefficient as measured with shear balance and a heat-transfer gage increased slightly as $T_{\rm w}/T_{\rm aw}$ decreased. Velocity-profile measurements indicated the opposite trend. The distortion of the velocity profile very close to the wall by heat transfer was a suggested cause. This was supported by calculations by Tetervin's method. An equation was obtained by the least-square fit of the data to compute the local friction coefficient. This equation accounts for variations in Mach number, heat transfer and Reynolds number and represents the present data to within 6.6 percent.

The data showed some evidence of the upstream boundary-layer history and the heat transfer on boundary-layer profiles. The results indicate that both the friction drag and velocity profile will quickly adjust to local flat-plate conditions while the temperature profile will retain a memory of the upstream conditions for a long time. Additional analytical and experimental studies are needed to verify these findings and to better the understanding of turbulent boundary-layer flow.

REFERENCES

- Lee, R. E., Yanta, W. J., Leonas, A. C. and Carner, J.,
 "The NOL Boundary Layer Channel," NOLTR 66-185, Nov 1966
- Persh, J., "A Procedure for Calculating the Boundary Layer Development in the Region of Transition from Laminar to Turbulent Flow," NAVORD Report 4438, Mar 1957
- 3. Squires, K., Roberts, R., and Fisher, E., "A Method for Designing Supersonic Nozzles Using the Centerline Mach Number Distribution," NAVORD Report 3995, Oct 1956
- 4. Persh, J. and Lee, R., "A Method for Calculating Turbulent Boundary Layer Development in Supersonic and Hypersonic Nozzles Including the Effects of Heat Transfer," NAVORD Report 4200, 7 Jun 1956
- 5. Kendall, J. M., "Portable Automatic Data Recording Equipment (PADRE)," NAVORD Report 4207, Aug 1959
- 6. Danberg, J. E., "The Equilibrium Temperature Probe, a Device for Measuring Temperatures in a Hypersonic Boundary Layer," NOLTR 61-2, Dec 1961
- 7. Durgin, F. H., "The Design and Preliminary Testing of a Direct Measuring Skin Friction Meter for Use in the Presence of Heat Transfer," MIT Aerophysics Laboratory Tech. Report 93, Jun 1964
- Tetervin, N., "An Analytical Investigation of the Flat Plate Turbulent Boundary Layer in Compressible Flow," NOLTR 67-39, May 1967
- 9. Walz, A., "Compressible Turbulent Boundary Layers,"
 The Mechanics of Turbulence, New York, Science Publishers
 Inc., 1964 (Proceedings of Colloque International sur
 "La Méchanique de la Turbulence," Marseille, Aug 28 to
 Sep 2, 1961)
- 10. Schlichting, H., "Boundary Layer Theory," Sixth Edition, McGraw-Hill, 1968
- 11. Danberg, I. E., Winkler, E. M., Chang, P. K., "Heat and Mass Transfer in a Hypersonic Turbulent Boundary Layer," Proceedings of the 1965 Heat Transfer and Fluid Mechanics Institute, Paper No. 8, Jun 1965
- 12. Bertram, M. H. and Neal, L., Jr., "Recent Experiments in Hypersonic Turbulent Boundary Layers," NASA TMS-56335, 1965

- 13. Wellace, J. E., "Hypersonic Turbulent Boundary Layer Studies at Cold Wall Conditions," Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, Paper No. 22, Jun 1967, pp 427-451
- 14. Yanta, W. J., "A Hot-Wire Stagnation Temperature Probe," NOLTR 68-60, Jun 1968
- Barconti, P. O. and Libby, P. A., "Velocity Profiles in Turbulent Compressible Boundary Layers," AIAA Journal, Vol. 4, No. 2, Feb 1966, p 193
- 16. Daily, J. W. and Harleman, D. R. F., "Fluid Dynamics,"
 Addison-Wesley Publishing Company, Inc., Mass., 1966, p 236
- 17. Winkler, E. M. and Cha, M. H., "Investigation of Flat Plate Hypersonic Turbulent Boundary Layers with Heat Transfer at a Mach Number of 5.2," NAVORD Report 6631, Sep 1959
- 18. Tetervin, N. and Lin, C. C., "A General Integral Form of the Boundary Layer Equation for Incompressible Flow with an Application to the Calculation of the Separation Point of Turbulent Boundary Layers," NACA Report 1046, 1951
- 19. Spalding, D. B. and Chi, S. W., "The Dray of a Compressible Turbulent Boundary Layer on a Smooth Flat Plate With and Without Heat Transfer," J. Fluid Mechanics, Vol. 18, Pt. 1, Jan 1964, pp 117-143
- 20. Thwaites, B., "Incompressible Aerodynamics," Oxford University Press, 1960
- 21. Persh, J., "A Theoretical Investigation of Turbulent Boundary Layer Flow with Heat Transfer at Supersonic and Hypersonic Speed," NAVORD 3854, 1954
- 22. Tetervin, N., "An Analytical Investigation of the Flat Plate Turbulent Boundary Layer in Compressible Flow," NOLTR 67-39, 15 May 1967

FIG. 1 BOUNDARY LAYER CHANNEL FLEXIBLE NOZZLE

FIG. 3 REYNOLDS NUMBER PER FOOT CAPABILITY, MACH 5

one of the property of the pro

FIG. 4 SCHEMATIC SHOWING OVERALL LAYOUT OF THE SKIN FRICTION BALANCE

North and a complete the second and the second and seco

FIG. 5a VELOCITY PROFILES AT THE 48 INCH STATION

FIG. 56 (1) VELOCITY PROFILES AT THE 60 INCH STATION

FIG. 5b (2) (CONT.)

FIG. 5c(1) VELOCITY PROFILE AT THE 72 INCH STATION

FIG. 5c (2) (CONT.)

The state of the second second

FIG. 5c (3) (CONT.)

FIG. 5d VELOCITY PROFILES AT THE 94 INCh STATION

FIG. 6 VARIATION OF VELOCITY PROFILE EXPONENT WITH MOMENTUM THICKNESS REYNOLDS NUMBER

3.0-

TEMP RATIO (T/T_o)

如果我们是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们们的人,我们们的人,我们们们的人,我们们们的人,我们们们们的人,我们们们们的人,我们

enter the second of the second second

FIG. 72 STATIC TEMPERATURE - VELOCITY DISTRIBUTION AT THE 48 INCH STATION

٦٥

1.0

FIG. 7b(1) STATIC TEMPERATURE - VELOCITY DISTRIBUTION AT THE 60 INCH STATION

A STATE OF THE STA

FIG. 7c (1) STATIC TEMPERATURE - VELOCITY DISTRIBUTION AT THE 72 INCH STATION

FIG. 7c(2) (CONT.)

FIG. 74 STATIC TEMPERATURE - VELOCITY DISTRIBUTION AT THE 94 INCH STATION

FIG. 8a TOTAL TEMPERATURE - VELOCITY DISTRIBUTION, 48 INCH STATION, Tw/Taw = .73

FIG. 8b TOTAL TEMPERATURE - VELOCITY DISTRIBUTION, 60 INCH STATION, Tw/Taw = .73

FIG. & TOTAL TEMPERATURE - VELOCITY DISTRIBUTION, 60 INCH STATION, P =5 atm.

FIG. 8d TOTAL TEMPERATURE - VELOCITY DISTRIBUTION, 72 INCH STATION, Tw/Taw = .73

FIG. 8e TOTAL TEMPERATURE - VELOCITY DISTRIBUTION, 72 INCH STATION, P = 5atm

FIG. 8F TOTAL TEMPERATURE - VELOCITY DISTRIBUTION, 94 INCH STATION, Tw/Taw = .73

THE PROPERTY OF THE PROPERTY O

FIG 9a CORRELATION OF EXPERIMENTAL RESULTS IN TERMS OF LAW OF THE WALL

FIG % (CONT.)

was the said

FIG 10a CORRELATION OF EXPERIMENTAL RESULTS IN TERMS OF VELOCITY DEFECT LAW

FIG. 11 VARIATION OF INCOMPRESSIBLE FORM FACTOR WITH MOMENTUM THICKNESS REYNOLDS NUMBER

FIG. 12a FRICTION COEFFICIENT CORRELATION, 48" STATION

FIG. 12b FRICTION COEFFICIENT CORRELATION, 60 INCH STATION

FIG. 12c FRICTION COEFFICIENT CORRELATION, 72 INCH STATION

FIG. 12d FRICTION COEFFICIENT CORRELATION, 94" STATION

FIG. 13 REYNOLDS ANALOGY FACTOR AS A FUNCTION OF MOMENTUM THICKNESS REYNOLDS NUMBER

skin friction coefficient, $c_f \, x \, \, 10^4$

FIG. 14 EXPERIMENTAL REYNOLDS ANALOGY CORRELATION

FIG. 15 COMPARISON OF FRICTION BALANCE MEASUREMENTS, T $_{\rm w}/$ T $_{\rm aw}$ = .73

FIG. 16 ILLUSTRATION OF PROBABLE TEMPERATURE DISTORTION OF VELOCITY PROFILE

FIG. 17 LINEAR PORTION OF VELOCITY PROFILE FOR THREE VALUES OF T_W/T_{AW} AS COMPUTED BY THE METHOD OF TETERVIN FOR M = 10

FIG. 18 EFFECT OF WALL TEMPERATURE ON LOCAL FRICTION COEFFICIENT, $R_{e_{\theta}}$ = 20,000, M_{δ} = 4.7

TABLE 1(a) BOUNDARY LAYER PROFILE MEASUREMENTS

		
Run 12196	X = 45.25 inches	Re ₀ = 4855
P _O = 14.7 psia	$T_{\infty} = 145.0 {}^{\circ}R$	$\delta^* = 0.616 \text{ inch}$
T = 783.9 °R	U _m = 2770 ft/sec	$\theta = 0.104$ inch
T _w = 517 °R	M _∞ = 4.69	

No.	Y(inches)	X	T/T.	U/U_	ρ/ρ
1	0•	0.	3.564	0•	0.281
1 2	0.014	0.302	3.726	0.124	0.268
3	0.020	0.424	3.752	0.175	0.267
4	0.026	0.513	3.781	0.213	0.264
5	0.034	0.751	3.696	0.308	0.271
6	0.061	1.362	3.103	0.511	0.322
7	0.078	1.578	∠.874	0.570	0.348
8	0.089	1.713	2.733	0.604	0.366
9	0.108	1.883	2.562	0.642	0.390
10	0.125	1.986	2.459	0.664	0.407
11	0.147	2.064	2.305	0.679	0.419
12	0.163	2.133	2.323	0.693	0.431
13	0.180	183	2.277	0.702	0.439
14	0.205	2.247	2.220	0.713	0.450
15	0.229	2.318	2.160	0.726	0.463
16	0.235	2.252	2.130	0.732	0.469
17	0.265	2.410	2 • 985	0.742	0.480
18	0.301	2.489	2.024	0.755	0.494
19	0.326	2.548	1.979	0.764	0.505
20	0.353	2.626	1.924	0.776	0.520
21	U•381	2.688	1.883	0.786	0.531
22	0.414	2.772	1.824	0.798	0.548
23	0.441	2.845	1.775	C+808	0.563
24	0.475	2.915	1.730	0.817	0.578
25	0.505	2.980	1.690	0.825	0.592
26	0.527	3.035	1.655	0.832	0.604
_27	0.560	3.087	1.624	0.838	0.616
28	0.585	3.162	1.579	0.847	نے 0 - 0
29	0.612	3.218	1.547	0.853	0.646
30	0.640	3.272	1.518	0.859	0.659
31	0.673	3.332	1.487	0.866	0.673
32	0.703	3+406	1.448	0.874	0.691
33	0.736	3.478	1.412	0.881	0.708
34	0.778	3.545	1.381	0.888	0.7.4
35	0.813	3.309	1.352	0.894	0.740
36	0.855	3.673	1.325	0.901	0.755
37	0.879	3.731	1.300	0.907	0.769
38	0.907	3.780	1.279	0.911	0.782
39	0.937	3.824	1.262	0.915	0.792
40	0.976	3.881	1.238	0.920	0.808
41	1.003	3.933	1.217	0.925	0.822
42	1.039	3.979	1.199	0.929	0.834
43	1.061	4.014	1.186	0.932	0.843
44	1.097	4.049	1.175	0.935	0.851
45	1.114	4.082	1.163	0.938	0.860
46 47	1.147	4.130 4.162	1.147 1.137	0•942 0•946	0+872 0+880
48	1.177	4.194	1.127	0.949	0.887
48	1 • 205 1 • 232	4.221	1.127	0.951	0.894
50	1.276	4.265	1.105	0.956	0.094
51	1.320	4.303	1.096	0.960	0.913
52	1.356	4.340	1.086-	0.964	0.921
53	1.389	4.371	1.078	0.967	0.928
54	1.439	4.402	1.066	0.970	0.938
55	1.480	4.439	1.056	0.072	0.947
56	1.527	4.469	1.048	0.975	0.955
57	1.574	4.501	1.039	0.978	0.963
58	1.626	4.534	1.033	0.982	0.968
59	1.673	4.561	1.028	0.985	0.973
60	1.714	4.580	1.025	0.988	0.976
61	1.778	4.615	1.019	0.993	0.981
62	1.811	4.628	1.016	0.994	0.984
63	1.846	4.642	1.012	0.995	0.988
64	1.885	4.661	1.005	0.996	0.995
65	1.924	4.669	1.003	0.996	0.997
66	1.959	4.685	1.000	0.998	1.000
67	1.990	4.692	1.000	1.000	1.000
	1.4990	₩• 072	1 + 000	1.000	¥+000

NC LTR 69-106

TABLE 1(b)(CONT.)

Run 12195	X = 45.25 inches	Re ₆ = 19211
$P_{O} = 75.0 \text{ psia}$	$T_{\infty} = 149.4 ^{\circ}R$	$\delta^* = 0.465$ inch
T = 783.2 °R	U _w = 2759 ft/sec	$\theta = 0.0771$ inch
Tw = 514 °R	M _∞ = 4.60	

Xo,	Y(inches)	X	T/T.	u/u _e	p/p .
1 2	0.009	0. 0.806	3-440 3-240	0. 0.314	0.291 0.311
2 3		0.806 1.150	3.240 2.981	0.314 0.431	0.311 0.335
	0.014	1.284	2.882	0.473	0.347
5	0.021	1.412	2.815	0.514	0.355
6	0.026	1.503	2.778	0.544	0.360
7 8	0.034 9.044	1.635 1.762	2•688 2•562	0•582 0•612	0•372 0•390
9	0.046	1.783	2.542	0.617	0.393
10	0.049	1.809	-2.515	0.623	0.398
11	0.061	1.906	2.422	0.644	0.413
12	0.069	1.931	2.399	0.649	0•417 0•428
13 14	0.084 0.101	1•998 2•062	2 • 338 2 • 280	0•663 0•676	0.428
15	0.119	2.130	2.228	0.691	0.449
16	0.136	2.218	2.188	0.712	0.457
17	0.154	2.265	2.156	0.722	0.464
18	0.174	2.337	2.103	0.736	0.475
19 20	0.191 0.204	2•402 2•446	2∙057 2∙026	0•748 0•756	0•486 0•494
21	0.224	2.515	1.979	0.768	0.505
22	0.241	2.575	1.937	ີ ≎•778	0.516
23	0.259	2.639	1.893	0.788	0.528
24	0.276	2.701	1.851	0.798	0 • 5 4 0 0 • 5 5 2
25 26	0•294 0•309	2•75ช 2•797	1.813 1.789	0.806 0.812	0.559
27	0.319	2.835	1.764	0.817	0.567
28	0.336	2.888	1.730	0.825	0.578
29	0.346	2.921	1.710	0.829	0.585
30	0.376	2.989	1.672 1.612	0•839 0•8>3	0•598 0•621
31 32	0•409 0•436	3•095 3•180	1.564	0.863	0.639
33	0.461	3.235	1.554	0.876	0.654
34	0+486	3.297	1.502	0.877	0.666
35	0.513	3.365	1.467	0.885	0.682
36	0.558	3•476 3•571	1•411 1•368	0•897 0•907	0•709 0•731
37 38	0.601 0.643	3.659	1.329	0.916	0.752
39	0.668	3.710	1.308	0.921	0.765
40	0.696	3.761	1.286	0.926	0.777
41	0.721	3.811	1.255	0•931 0•934	0•790 0•7 9 9
42 43	0•738 0•763	3•843 3•889	1.252 1.233	0.934	0.755
44	0.783	3.916	1.223	0.941	0.817
45	0.805	3.956	1.209	0.944	0.827
46	0.833	3.997	1.192	0.948	0.839
47	0.858	4.033	1.18¢ 1.165	0•951 0•955	0•847 0•858
46 49	0.886 0.911	4•074 4•106	1.154	0.958	0.867
50	0.946	4.146	1.139	0.961	0.878
51	0.985	4.192	1 • 124	0+965	0.890
52	1.028	4.237	1.110	0.969	0.901
53 54	1.965 1.120	4•276 4•323	1•097 1•082	0•973 0•976	0∙911 0∙924
55	1.175	4.364	1.069	0.980	0.955
56	1.245	4.413	1.055	0.984	0.948
57	1.305	4.453	1.041	0.986	0+961
58	1.360	4.480	1.031	0+988 0+996	0•970 0•984
59 60	1.470 1.517	4.522 4.540	1.015 1.012	0.992	0.988
61	1.560	4.551	1.012	0.997	C+988
62	1.610	4.564	1.009	0.995	0.952
63	1.657	4,574	1.005	0.996	0.995
64	1.705	4.579	1.003	0.996	0+997 1+002
65 66	1.817 1.890	4•592 4•598	0•998 0•999	0∙996 0∙998	1.002
67	1.909	4.605	1.000	1.000	1.000
-					

TABLE 1(c) (CONT.)

Run 12194	X = 45.25 inches	Re ₉ = 36760
P _o = 149.1 psia	T _m = 138.3 °R	$\delta^* = 0.410$ inch
T - 749.6 °R	U_ = 2710 ft/sec	6 = 0.0726 inch
T _w = 523 °R	M _{so} = 4.71	

No.	Y(inches)	X	T/T _e	ช/ช.	p/p.
1 2	0•	0•	3.782	0.	G. 20*
	0.009	0.995	3.320	0.385	0.301
3	0.012	1.101	3.239	0.4/2	0.309
4	0.017	1.368	2.965	0.510	0.335 0.337
5 6	0.019	1.426	2.966	0•522 0•594	0.363
7	0.027	1.682	2•753 2•686	0.622	0.374
á	0•034 0•039	1•785 1•886	2.583	0.645	0.387
Š	0.039	1 967	2.504	0.662	0.399
10	0.057	2.055	2.422	0.680	0.413
ii	0.072	2.128	4.364	0.696	0.423
12	0.085	2,181	4.341	0.707	0.431
13	0.097	2.225	2.284	0.715	0.438
14	0.107	2.267	2.248	0.723	0.445
15	0.120	2.337	2.190	0.736	0.457
16	0.125	2.367	2.165	0.741	0.462
17	0.155	2.489	2.069	0.762	0.483
18	0.188	2.602	1.978	0.778	0.506
19	0.208	2.687	1.918	0.791	0.521
20	0.223	2.762	1.866	0.803	0.536
21	0-241	2.811	1.824	0.810	0.545
22	0.276	2.952	1.741	0.828	0.574
23	0.304	3.056	1.675	0.841	0.597
24	じ∙337	3.148	1.622	0.853	0.617
25	0.357	3.215	1.584	0.861	0.631
26	0.433	3.430	1.471	0.885	0.680
27	0.468	3.205	1.434	0.893	0.698
28	0.544	3.687	1.346	0.910	0.743
29	0.569	3.748	1.318	0.915	0.759
30	0.594	3.799	1.295	0.920	0.772
31	0.639	3.887	1.259	0.928	0•794 0•813
32	0.670	3.954	1.230	0.933	
_33	0.715	4•028	1.199	0.638	0.834
34	0.753	4.067	1.177	0.943	0.850
35	0.786	4.135	1.160	0.947	0•86∠ 0•871
36	0.813	4.168 4.222	1.149	0•9>0 0•954	0.886
37 38	0.854 0.874	4.254	1.129 1.117	0.956	0.895
39	Qe914	4, 295	1.104	0.960	0.906
40	0.947	4.331	1.092	0.963	0.916
41	1.000	4.369	1.083	0.967	0.924
42	1.136	4.479	1.046	0.974	0.956
43	1.176	4.509	1.057	0.977	0.96%
44	1.441	4.651	1.006	0.992	0.994
45	1.464	4.659	1.004	0.993	0.996
46	1.504	4.667	1.002	0.994	0.998
47	1.542	4.675	1.000	0.994	1.000
48	1.58C	4.683	0.999	0.996	1.001
49	1.607	4.683	1.001	0.996	0.999
50	1.640	4.691	0.999	0.997	1.001
51	1.681	4.696	0.998	0.998	1.002
52	1.703	4.699	0.997	0.998	1.003
53	1.789	4.701	1.000	1+000	1.000

TABLE 1(d) (CONT.)

Run 12091	X = 57.25 inches	Re _A = 5080
P _o = 14.4 psia	T _m = 143.0 °R	$\delta^* = 0.743 \text{ inch}$
T _o = 774.2 °R	U_ = 2754 ft/sec	$\theta = 0.109$ inch
T _w = 520 °R	H = 4.70	

No.	Y(inches)	М	T/T _e	V/U.	p/p.
1	0•	0•	3.635	0.	0.275
ž	0.009	0.179	3.740	0.074	0.267
3	0.014	0.2>5	3.785	0.106	0.264
4	0.021	0.484	3.777	0.200	0.265
5 6	0.028 0.031	0•6>6 0•709	3.754 3.738	0+271 0+292	0•266 0•267
7	0.033	0.757	3.099	0.310	0.270
ė.	0.036	0.841	3.643	0.333	0.275
9	0.041	0.914	3.557	0.367	0.281
10	0.050	1.138	3.333	0.442	0.300
11	0•062 0•070	1.309 1.386	3.202 3.130	0•499 0•522	0∙31∠ 0∙320
12 13	0.079	1.407	2.024	0.546	0.347
14	0.092	1.527	3.012	0.564	0.334
. 15	0.101	1.599	2.944	0.584	0.340
16	0.111	1.640	2.902	0.595	0.345
17	0.126	1•714 1•7>0	4•843 4•784	0+613 0+622	0.354 0.359
18 19	0•140 0•147	1.789	2.743	0.631	0.365
20	0.152	1.803	2.728	0.634	0.367
21 .	0.167	1.832	2.697	0.640	0.371
22	0.179	1.871	4.656	0.649	0.377
23	0.194	1.908 1.944	2•580 2•618	0•657 0•665	0•384 0•388
24 25	0•203 0•223	1.986	2.538	0.674	0.394
26	0.237	2.015	2.509	0.680	0.399
27 .	0.252	2.059	2.466	0.688	0.406
28	3.274	2.098	2.428	0.696	0.412
29	0.280	2.122	2.406	0.701	0.416
30 _1	0•301 0•305	2•158 2•168	2•372 2•344	0•708 0•713	0•42∠ 0•427
32	0.318	2.242	2.311	0.719	0.433
33	0.330	2.257	2.280	0.725	0.439
34	0.342	2.274	2.26!	0.728	0.442
35	0.359	2.313	2.230	0.735	0.446
36 37	0.373 0.383	2•348 2•333	2+200 2+214	0•741 0•739	0.454 0.452
38	0.398	2.404	2.1>2	0.751	0.465
39	0.415	2.432	2.149	0.756	0.470
40	0.434	2.466	2.104	0.761	0.475
41	0.441	2.503	2.073	0.767	0.482
42 43	0•456 0•480	2•526 2•560	2•057 2•032	0+771 0+777	0•486 0•492
44	0.495	2.588 2.588	4.009	0.781	0.498
45	0.495	2.028	1.978	0.787	0.006
46	0.512	2+656	1.957	0.791	0.511
47	0.524	2.688	1.934	0.796	0.517
48 49	0•531 0•543	2•719 2•740	(•910 1•896	0•800 0•803	0•523 0•527
50	0.550	2.775	1.872	0.808	0.534
51	0.568	2.810	1.846	0.813	0.544
52	0.592	2.844	1.824	0.818	0.548
53	0.599	2.877	1.800	0.822	0.556
54 55	0.616 0.629	2•909 2•938	1•779 1•760	0•826 0•830	0+568
56	0.646	2.960	1.747	0.833	0.573
57	0.658	2.991	1.747	0.837	0.579
56	0.670	3.031	1.701	0.842	0.588
59	0.689	3.067	1.680	0.846	0.595
60	0.704	3.094	1.663 1.644	0.849	0.608 0.601
61 62	0.718 0.735	3.125 3.126	1.026	0.853 0.857	0.615
62	0.750	3,194	1.604	0.861	0.624
64	0.769	3.229	1.584	0+865	0.634
65	0.784	3.263	1.564 1.548	0•869 0•872	0+639 0+646
66 67	0.799 0.813	3•291 3•320	1.531	0.875	0.653
65	0.825	3.348	1.516	0.878	0.660
69	0.835	3.377	1.>00	0.880	0.667
70	0.847	3.398	1.489	0.863	0+671 0+676
71	0.867	3.419 3.451	1.460 1.463	0•885 0•889	0.683
72_	0.879	36457	10707	04.707	

TABLE 1(e) (CONT.)

Run 12091 (Cont'd)

No.	Y(inches)	×	T/T.	U/U_	ρ/ρ.
73	0.896	3.484	1.447	0.892	0.691
74 75	0.920	3.516	1.434	0.896	0.698
76	Q•925 0•937	3.536	1.423 - 1.408 -	. 0.898	0.703
77	0.952	2.590	1.396	0•901 0•903	0•710 0•717
78	0.966	3.613	1.384	0.905	0.722
79	0.976	3.640	1.371	0.907	0.730
80	0.991	3.667	1.357	0.910	0.737
	1.003	3.684	1.350	0.911	0.741
82 83	1.015	3.710	1.337	0.913	0.748
84	1.032 1.046	3.733	1.327	0.916	0.753
85	1.059	3•759 3•785	1.316 1.304	0.918 0.920	0.760
86	1.076	3.811	1.294	0.923	0•767 0•773
87	1.090	3.333	i.<06_	0.925	0.778
88	1.107	3.856	1.276	0.927	0.784
89	1.119	3.878	1.266	0.929	0+790
90	1.136	3.903	1.255	0.931	0.797
91	1.151	3.928	1.244	0.933	0.804
92	1.165	3.953	1.233	0.934	0.811
93	1.180	3.974	1.224	0.936	0.817
94 95	1.190 1.204	3.986	1.219	0.937	0.850
96	1.216	4•005 4•026	1.212 1.203	0.938 0.940	0.825
97	1.229	4.038	1.199	0.940	0.831 0.834
98	1.243	4.063	1.189	0.943	0.841
99	1.258	4.075	1.185	0.945	0.844
100	1.472	4.096	1.178	0.946	0.849
101	1.289	4.111	1.173	0.948	0.853
102	1.304	4.129	1.167	0.949	0.857
103	1.316	4+150	1.159	0.951	0.863
104	1.333	4.165	1.154	0.952	0.867
105	1_348	4.185	1.146	0.954	0.872
106 107	1.362 1.374	4.200 4.221	1.141	0.955	0.876
108	1.391	4.232	1.134 1.130	0•957 0•958	0.882
109	1.404	4.249	1.14	0.959	0•885 0•390
110	1.421	4.264	1.119	0.960	0.893
111	1.433	4.275	1.116	0.961	0.896
112	1.462	4.300	1.108	0.964	0.903
113	1.491	4.333	1.097	0.966	0.911
114	1.525	4.357	1.090	0.969	0.917
115	1.554	4.382	1.084	0.971	0.923
116 117	1.581 1.603	4.404 4.413	1.078	0.973	0.928
118	1.625	4.429	1•076 1•070	0•974 0•976	0•930 0•934
119	1.649	4.439	1.067	0.976	0.934
120	1.673	4.458	1.060	0.977	0.944
121	1.700	4.471	1.057	0.978	0.946
122	1.727	4.486	1.056	0.981	0.947
123	1.751	4.496	1.054	0.983	0.949
124	1.778	4.512	1.050	0.984	0.952
125	1.804	4-518	1.048	0.984	0.954
126	1.826	4.529	1.044	0.985	0.958
127 128	1•858 1•885	4.543 4.555	1.041	0.987	0.961
129	1.005	4•522 4•574	1.048	0.988	0.963
130	1.933	4.583	l.033 l.031	0•990 0•991	0.968 0.970
131	1.962	46598	1.027	0-992	0.973
132	1.982	4.607	1.025	0.993	0.976
133	2.008	4.615	1.023	0.993	0.978
134	2.028	4.624	1.040	0.994	0.981
135	2.055	4.636	1.016	0.995	0.984
136	2•259	4.697	1.000	1.000	1.000

TABLE 1(f) (CONT.)

Run 12902	x = 57.25 inches	$Re_A = 21798$
P _o = 75.7 psia	T_ = 140.9 °R	$\delta^* = 0.672 inch$
T = 781.6 °R	U_ = 2775 ft/sec	$\theta = 0.0935$ inch
T = 520 °R	H_ = 4.77	

No.	T(inches)	<u> </u>	T/T	U/U 	P/P=
,					
2	0. 0.015	7• 0•948	3.691 3.409	0. 0.367	0.271 0.293
3	0.022	1.338	3.106	0.494	0.324
5	0+027 0+032	1.388	3+113 3+105	0•51 <i>3</i> 0•534	0.351
6	0.037	1.492	3.060	0.547	0+322 0+327
7	0.042	1.520	3.044	0.556	0.329
. <u> 9</u>	0•050 0•060\	1.58½ 1.624	2•978 2•9>0	0+572 0+583	0.336
10	0.065	1.649	4.902	0.589	0.341 0.345
11	0.070	1.680	2.868	0-597	0.349
12 13	0•082 0•090	1•729 1•767	2.817 2.776	0.60# 0.617	0.355
14	0.100	1.797	2.745	0.624	0•360 0•364
15	Qa129	1.877	2.676	0.644	0.374
16 17	0•162 0•169	1•962 1•995	2.600 2.569	0•663 0•670	0.385 0.389
18	0.194	2.062	2.510	0.685	0.398
19 20	0.227	2.162	2.420	0.705	G+413
21	0.231 0.254	2•169 2•248	2•414 2•343	0•707 0•721	0.414
22	0.271	2.287	2.310	0.729	0.427 0.433
23	0.309	2.391	2.226	0.748	0.449
24 25	0.321 0.333	2•435 2•456	2•190 ∠•176	0•756 0•760	0.457 0.460
26	0.346	2.500	2.140	0.767	0.467
27	0.368	2.546	∠•103	0.774	0.475
28 29	0•398 0•423	2.612 2.677	2.052	0.784	0-487
30	0.433	2.714	2+003 1+974	0•794 0•800	0•499 0•507
31	0.455	2.758	1.943	0.806	0.515
32	0.483	2.830	1.892	0-816	0.529
<u>33</u>	0.488 0.518	2.844 2.918	1.852 1.801	0.818 0.828	0.531
35	0.530	2.947	1.811	0.655	0•546 0•554
36	0.547	2.992	1.702	0.838	0.561
37 38	0•575 0•580	3•051 3•065	1.759 1.737	0+843 0+847	0•569 0•576
39	0.592	3.107	1.709	0.852	0.585
40	0.605	3.1.3	1.694	0.855	0 - 590
41 42	0•607 0•647	3•141 3•253	1.689 1.634	0•856 0• 8 67	0.594 0.614
43	0.659	3.261	1.618	0.870	0.618
44	0.689	3.321	1.584	0.877	0.631
45	0.692	3.398	1•>79 1•542	0•877 0•8 8 5	Q+633 Q+648
_ 47	0.739	3.431	1.525	0.888	0.656
_ 48	0.779	3.515	1.482	0.897	0.675
- <u>49</u>	0.789 0.824	3•532 3•608	1.475 1.438	0• 8 99 0•907	0•67 8 0•695
51	0.863	3.681	1.406	0.915	0.711
52	0.928	3.192	1.357	0.926	0.737
53 54	0•985 1•013	3•895 3•953	1.310 1.294	0•935 0•938	0.763
55	1.080	4.044	1.246	0.947	0.77 <i>3</i> 0.804
56	1.120	4.100	1.223	0.951	0.817
<u>57</u> 58	1.152 1.199	4.142	. 1•207 3 44	0.954	0.828
59	1.242	4.249		0•959 0•962	0.84> 0.858
60	1.294	4.299	1.148	0.966	0.871
61 62	1.326 1.346	4.332	1.136	0.968	0.880
63	1.386	4+358 4+398	1•126 1•112	0+970 0+972	0 • 8 8 8 0 • 8 9 9
64	1.421	4.428	1.101	0.974	0.908
65	1.478	4.454	1.092	0.976	0.916
66 67	1.508 1.543	4.478 4.510	1.082 1.072	0•977 0•979	0.925 0.93 <i>5</i>
68	1.568	4.534	1.063	0.980	0.941
69	1.575	40531	1.064	0.980	0.940
70 71	1.607 1.612	4.547	1.059	0.981 0.982	0.944
72	1.625	4.>61	1.054	0.982	0.949 0.948

TABLE 1(g)(CONT.)

Run 12092 (Cont'd)

No.	Y(inches)	×	T/T _e	U/U _e	P/P=
73	1.662	4.589	1.046	0.984	0.956
74	1.675	4.588	1.047	0.984	0.955
75	1.692	4.606	1.042	0.986	0.960
76	1.714	4.600	1.043	0.987	0.959
77	1.742	4.622	1.042	0.989	0.960
78	1.754	4.635	1.039	0.991	0.96
79	1.787	4.642	1.041	0.993	0.951
80	1.819	4.667	1.034	0.995	0.967
81	1.844	4.673	1.033	0.996	0.968
82	1.866	4.690	1.047	0.997	0.974
83	1.891	4.698	1.025	0.997	0.976
84	1.906	4.702	1.023	0.997	0.977
85	1.919	4.709	1.021	0.993	0.979
86	1.943	4.720	1.017	0.998	0.98
67	1.983	4.731	1.014	0.999	0.986
88	2+023	4.742	1.010	0.999	0.990
89	2.090	4.758	1+004	1.000	0.996
90	2.125	4.769	1.000	1.000	1.000

TABLE 1(h) (CONT.)

Run 2021	X = 57.25 inches	Re _A = 37367
$P_o = 150.9$	T _w = 131.0 °R	$\delta^* = 0.584$ inch
T _o = 749.3 °R	υ _∞ = 2725 ft/sec	$\theta = 0.0781$ inch
T _w = 520 °R	M _m = 4.86	

No.	Y(inches)	¥	T/T_	ט/ט_	p/p.
1	0•	0.	3.968	0•	0+2>4
. 3	0+009	1.042 1.293	3.444 3.285	0+398	0+490
- 3	0.020 0.025	1.339	3.287	0•483 0•500	0+30+ 0+304
5	0.042	1.590	3.101	0.576	0.322
6	0.061	1.769	4.896	0.620	0.345
7 8	0.080 0.096	1.881 1.963	2•780 2•698	0+646 0+664	0•360 0•371
. 9	0-110	4.005	4.658	0.673	0+376
10	0.121	2.041	2.623	0.680	0.381
11	0.132	2.070	2.596	0.687	0.385
12 13	0.153 0.172	2•127 2•222	2.556 2.466	0.700 0.718	0.391 0.406
14	0.227	2.380	2.324	0.747	0.430
15	0.303	2.531	4.203	0.773	0.454
16	0.306	2.610	4.133	0.785	0.469
17 18	0•322 0•344	2•660 2•7 <i>5</i> 2	2•093 2•0#8	0•79 <i>3</i> 0•803	0•478 0•491
19	0.360	2.775	4.007	0.809	0.498
20	0.377	2.839	1.959	0.818	0.511
21	0.401	2.893	1.921	0.326	0.521
22 23	0•420 0•439	2.943 2.999	1.856	0•832 0•839	0+530 0+541
24	0.464	3.074	1.797	0.848	0.557
25	0.488	3.139	1.755	0.856	0.570
26	0.510	3.188	1.724	0.862	0.580
<u>27</u>	0.526	3.233	1.657	0•867 0•874	0•590 0•603
29	0.567	3.342	1.632	0.879	0.613
30	0.589	3.388	1.60>	0.884	0.623
31	0.608	3.443	1.574	0+889	0.635
32 33	0•641 0•649	3.502 3.550	1.543 1.516	0.896 0.900	0•648 0•660
34	0.673	3.600	1.469	0.904	0.674
35	0.698	3.662	1.456	0.910	0.687
36	0.717	3.701	1.437	0.913	0.696
37 38	0•739 0•758	3.743 3.769	1.417 1.405	0.917 0.920	0.706 0.712
39	0.780	3.810	1.385	0.923	0.744
40	0.793	3.841	1.371	0.926	0.729
41	0.818	3.893	1.347	0.930	0•743 0•750
42 43	0+837 0+856	3.921 3.967	1.334 1.313	0.932 0.936	0.750 0.761
44	0.875	3.988	1.305	0.938	0.766
45_	0.894	4.024	1.269	0.940	0.776
46	0.910	4.059	1.274	0.943	0•785 0•795
_ 47 _ 48	0•943 0•951	4.100 4.124	1.258 1.247	0.947 0.948	0.795
49	0.976	4.101	1.222	0.951	0.814
50	0.995	4.179	1.245	0.952	0.816
<u>-51</u>	1.014	4.213 4.233	1.205	0.955 0.957	0+825 0+830
52 53	1.036 1.055	4.263	1.194	0.959	0.837
54	1.076	4.297	1.181	0.961	0.847
_ 55	1.098	4.327	1.169	0.963	0.855
56 57	1.120 1.139	4.344	1.164	0•965 0•967	0.859 0.867
58	1.155	4.396	1.145	0.968	0.874
59	1.177	4.417	1.137	0.970	0.880
60	1.199	4.425	1.135	0.971	0.881 0.895
61 62	1.221 1.242	4.474 4.492	1.118	0.974 0.975	0.895
63	1.264	4.509	1.106	0.976	0.90>
64	1.283	4.545	1-100	0.977	0.909
65	1.302	4•546 4•557	1.093	0.979	0.915
66 67	1.324 1.343	4.578	1.090 1.04	0.980 0.981	0•917 0•923
68	1.362	4.599	1.077	0.983	0.928
69	1.379	4.612	1.073	0.984	0.934
70 71	1.400 1.419	4.625	1.068	0.984 0.985	0•936 0•939
72	1.419	4.659	1.058	0.987	0.945

TABLE 1(i) (CONT.)

Run 2021 (Cont'd)

No.	Y(inches)	M	1/T.	V/V _	p/p.
73	1.458	4.666	1.056	0.987	0.947
74	1.477	4.669	1.056	0.988	0.947
75	1.498	4.692	1.049	5.989	0.953
76	1.520	4.695	1.049	0.990	0.954
77	1.534	4.700	1.047	0.990	0.955
78	1.561	4.745	1.039	0.992	0.962
79	1.583	4.748	1.001	0.993	0.970
80	1.605	4. 7/0	1.042	0.994	0.976
91	1.901	1.857	1.000	1.000	1.000

TABLE 1(j)(CONT.)

Run 3141	X = 57.25 inches	$Re_{A} = 19213$
P _O = 75.1 psia	T_ = 187.0 °R	$\delta^* = 0.656$ inch
T = 1022.8 °R	U_ = 3169 ft/sec	$\theta = 0.124$ inch
Tw = 517.5°R	H _m = 4.73	

No.	Y(inches)	M	T/T _e	u/u.	p/P.
1	0.000	0.000	4.767	0+000	0.361
2	0.009	0.472	4.029	0.169	00000
3	0.014	0.765	4.807	0.271	0000
4	0.050	0.948	2.702	C-++0	0.334
>	0.030	1.204	2.094	0.440	0.3/1
6	0.041	1.439	2.662	0.497	0.376
7 8	0.049 0.068	1.481	2.574	0.526	0.169
9	0.079	1.669 1.718	2.487 2.447	0•557 0•568	0•402 0•409
1ó	0.090	1.757	4.414	0.578	0.414
ii	0.103	1.788	2.394	0.565	U-418
12	0.116	1.840	4.376	0.593	0.421
13	0.133	1.876	2.335	0.506	0.428
14	0.146	1.909	2+308	0.614	0.432
15	0.159	1.953	4.277	0.623	0.439
16	0.194	2.045	2.211	0+643	0.452
17 18	0.216	2-109	2.173	0.65ê	0.460
19	0.235 0.253	2.164 2.218	4•134 4•094	0.669 0.679	0•469 0•478
20	0.278	2.272	4-0>7	0.019	0.400
21	0.296	20202	4.040	0.595	0.490
22	0.318	2.370	1.987	0.709	0.502
23	0.339	2.432	1.9>0	0.719	0.512
24	0.358	2.477	1.922	0.727	0.520
25	0.385	2.534	1.000	0.736	0.530
26	0.406	2.597	1.845	0.746	0.544
27	0.431	2.659	1.006	0.756	0.554
48	0.449	2.699	1.783	0.702	0.501
29 30	0•517 0•543	2.860 2.945	1.669	0.786	0.594
31	0.568	2.923	1.628 1.628	0•796 0•804	0.614
32	0.600	3.060	1.026	0.815	0.651
33	0.632	3.148	1.250	0.824	0.645
34	0.653	3.1/8	1.046	0.03	0.655
35	0.678	3.222	1.>06	0.836	0.664
36	0.699	30272	1.483	0.843	U•674
37	0.723	3.331	1.476	0.850	0.007
38	0.761	3.406	1.425	0.400	0.704
39	0.812	3.492	1.393	0.872	0.718
40	0.847	3.562	1.363	0.880	0.734
41 42	0.882 0.911	3.622 3.681	1.339	0.887	0.747 0.760
43	0.944	3.726	1.315	0•89 <i>5</i> 0•899	0.774
44	0.961	3.796	1.271	0.90>	0.787
45	1.019	3.8>6	1.249	0.912	0.801
46	1.048	3.905	1.231	0.917	0.814
47	1.099	3.952	1.216	0.922	0.822
48	1.110	3.996	1.198	0.925	0.835
49	1.140	4.033	1.186	0.929	0.843
50	1.169	4.080	1.170	0.933	0.625
51	1.199	4-106	1.163	0.936	0.460
52 53	1•217 1•252	4.128 4.170	1.155 1.145	0•938 د•94ء	0.866 0.875
54	1.282	4.176	1.1.7	0.947	0.679
55	1.311	4.232	1.1<3	0.949	0.690
56	1.352	4.277	1.106	0.954	0.904
57	1.392	4.312	1.098	0.956	0.911
58	1.430	4.347	1.006	0.9>8	0.920
>9	1.464	40373	1.000	0.901	0.920
60	1.515	4.418	1.068	0.966	0.936
61	1.558 1.599	4.445 4.489	1.062	0.969	U•942 U•953
62 63	1.636	4.551	1.0>0 1.0>8	0•973 0•977	0.963
64	1.682	4.592	1.022	0.982	0.978
65	1.714	4.621	1.015	0.985	0.985
66	1.747	4.641	1.011	U-987	0.989
67	1.787	4.653	1.008	0.988	0.994
68	1.835	4.670	1.006	0.991	0.994
69	1.873	4.004	1.004	0.993	0.996
70	1.916	4.693	1.004	0.994	0.996
71	1.940	4.695	1.004	0.995	0.996
72	1.967	4.703	1.003	0.997	0.997
73 74	2.007	4.715 4.714	1.002 1.004	0+998 0+999	0•998 0•996
/-	2.045	40116	1.000	1.000	U0770

TABLE 1(k) (CONT.)

Run 3142	X = 57.25 inches	Rea = 17004
P _o = 75.4 psia	T_ = 216.7 °R	6* = 0.659 inch
T = 1175.8 *R	U_ = 3395 ft/sec	$\theta = 0.134$ inch
T = 519.0 °R	H_ = 4.70	

Ж.	Y(inches)	¥	T/T.	Ū/Ŭ _æ .	0/0.
1 2	0.	0.	2+395	0.	0.418
3	0.014 0.017	0.531	2•617 2•627	0.183 0.220	0•382 0•381
	0.019	108.0	2.594	0.274	0.386
5	0.025	1.008	2.568	0.343	0.389
6	0+027	1.173 1.363	2•497 2•463	0.394 0.455	0•401 0•406
7 8	0+035 0+044	1.471	2.470	0.492	0.405
ğ	0.049	1.563	2-404	0.515	0.416
10	0.057	1.523	2.364	0.531	0.423
11	0.068	1.698	2.312	0.549	0•43 <i>3</i> 0•437
12 13	0.081 0.092	1.738 1.769	2•289 2•269	0•559 0•566	0.441
14	0.103	1.800	2.251	0.574	0.444
15	0.116	1.832	2.241	0.583	0.446
16	0.125	1.878	2.214	0.594	0.452
17	0.143	1.928	2.180	0.605	0.459
18 19	0.164 0.183	1•976 2•037	2.155 2.116	0•617 0•630	0•464 0•473
20	0.202	2.097	2.077	J-642	0.481
21	0.234	2.173	2.031	0.658	0.494
Zā	0.261	2.229	1.998	J-670	0.500
23	0.277	2.284	1.96; 1.923	0.680	0.510
24 25	0.296 0.315	2•34 <u>2</u> 2•389	1.895	0•691 0•699	0•520 0•528
26	0.344	2.456	1.857	0.711	0.539
27	0.363	2.505	1.829	0.720	0.547
28	0.385	2.554	1.805	0.729	0.554
29 30	0.419 0.462	2•627 2•699	1•768 1•7 <i>5</i> 5	0•743 C•756	0•566 0•576
31	0.476	2.764	1-694	0.765	0.596
32	0.527	2.875	1.634	0.781	0.612
33	0.564	2.968	1.585	0.794	0.631
34	0.594	3.091	1.554	0.803	0.644
35 36	0•621 0•645	3.089 3.146	1.527 1.500	0-811 0-819	0.655 0.666
37	0.672	3.193	1.400	0.826	0.676
38	0.704	3.260	1.450	0.835	0.689
39	0.731	3.318	1.425	0.842	0.702
40	0.761	3.375	1.400	0.849	0•714 0•722
41 42	0.782 0.820	3.411 3.482	1.386 1.358	0-854 0-863	0.736
43	0.860	3.546	1.332	0.870	0.751
44	0.990	3.616	1.306	0.878	0.766
% 5	0.959	3.716	1.271	0.890	0.787
46	1.008	3.788	1.246 1.224	0•899 0•905	0.802 0.817
47 48	1.040 1.104	3•848 3•928	1.199	0.914	0.834
49	1.153	3.990	1.179	0.921	0.848
50	1.196	. 4.044	1.163	0.927	0.860
51 -	1.222	4.081	1.152	0.931	0.868
52 53	1.263 1.303	4.117 4.166	1.142 1.127	0.935 0.940	0•875 0•887
54	1.330	4.195	1.119	0.943	0.894
55	1.375	4.244	1.105	0.948	0.905
56	1.410	4.284	1.093	0.952	0.915
<u>57</u> 58	1.451	4.312	1.087	0•956 0•959	0•920 0•927
59	1.518	4.365	1.075	0.962	0.931
60	1.566	4.406	1.065	0.967	0.939
. 61	1.596	4.421	1.063	0.969	0.940
62	1.631	4.439	1.055	0.972	0+942 0+948
63	1.668	4.470	- 1.055 1.048	0•976 0•978	0-954
65	1,730	4.521	1.041	0.981	0.961
66	1.762	4.554	1.052	0.983	0.969
67	1.802	4.608	1.016	0.987	0.984
68 60	1.845	4•632 4•649	1+011 1+007	0•990 0•992	0•989 0•993
<u>69</u>	1.883 1.918	4.660	1.007 - ·	0.992	0.995
71	1.966	4.672	1.004	0.995	0.996
72	2.007	4.678	1.004	0.997	0.996
. 73	2.041	4.698	0.999	0.998	1.001
74 75	2.068	4.704	0.999	0.999	1.000
13	2.101	4.704	1.000	1.000	1.000

TABLE 1(f) (CONT.)

Run 12292 X = 69.25 inches Re₀ = 6580
P_O = 14.1 psia T_o = 112.3 °R 6* = .930 inch
T_O = 608.1 °R U_o = 2441 ft/sec 8 = .6982
T_W = 526 °R H_o = 4.70

No.	T(inches)	×	T/T	U/U	0/0-
1	0.	0.	4.684	0.	0.214
1 2	0.017	0.292	4.616	0.134	0.217
3	0.023	0.436	4.774	0.184	0.440
4	0.029	0.488	4.449	0.240	0.222
5	0.037	0.030	4.304	0.401	0.220
6	0.050	0.876	4-130	0.379	0.242
7	0.073	1.188	3.773	0.491	0.265
à	0.094	1.395	3.507	0.558	0.285
<u>, , , , , , , , , , , , , , , , , , , </u>	0.116	1.473	402 و402	0.578	0.294
10	0.139	1.582	3.262	0.608	0.3C7
ii	0.165	1.647	3.190	0.626	د31،0
12	0.223	1.776	3.046	0.657	0.330
13	0.270	1.892	2.867	0.684	G.346
14	0.315	1.943	4.852	0.691	0.351
15	0.351	1.977	4.790	0.703	0.358
16	0.367	2.011	2.753	0.710	0.363
17	0.385	2.095	2.662	0.727	0.376
18	0.404	2.147	2.607	0.738	0.384
19	0.431	2.184	4.569	0.745	0.389
20	0.470	2.247	4.06	0.757	0.399
21	0.498	2.299	4.423	0.766	0.408
21	0.543	2.304	4.399	0.776	0.417
		2.418	2.336	0.786	0.428
23	0.565	2.449	2.305	0.792	0.434
24	0.581	2.489	4.269	0.798	0.441
25	0.603		2.231	0.805	0.448
26	0.622	2.532	2.231	0.811	0.456
_ 27	0.639	2.573		0.845	0.474
28	0.683	2.000	2.110	0.833	0.486
29	0.713	2.730	2.027	0.835	0.494
30	0.742	2.767	4.026		0.511
31	0.790	2.824	1.957	0.850	0.525
32	0.822	2.922	1.905	0.858	0.525
33	0.864	3.004	1-844	0.868	0.575
34	0.940	3.154	8د7-1	0.885	
35	0.963	3.203	1.705	0.890	0.586
36	1.047	3.343	1.634	0.704	0.612
37	1.117	3.443	1.262	0.7.6	0-640
38	1.144	3.511	1.521	0.755	0-658
39	1.184	3.587	1.478	0.928	0+677
40	1.218	3-641	1.448	0.933	0.690
41	1.321	3.840	1.326	0.951	0.754
42	1.485	4.102	1.224	0.966	0.817
43	1.668	4.236	1.168	0.974	0.856
44	1.725	4.278	1-1:0	0.976	0+869
45	2.085	4.595	1.034	0.994	0.967
46	2.326	4.698	000+1	1.000	1.000

TABLE 1(m) (CONT.)

Run 11221	X = 69.25 inches	$Re_A = 280(i)$
$P_{o} = 74.7 \text{ psia}$	T_ = 112.8 *R	6* = .708 inch
T = 596.7 °R	U_ = 2411 ft/sec	$\theta = .0742$ inch
T = 530 °R	H_ = 4.63	

No.	Y(inches)	¥	T/T_	IJ/U .	0/0.
1	c.	0•	4.699	0+	0.213
2	0.010	0.482	4.518	0.221	0.221
3	0.012	0.591	4.432	0.269	0.226
4	0.016	0.702	4.331	0.316	0.231
>	0.017	0.712	4.201	0.344	0.235
6	0.020	0.872	4.155	0.384	0.241
7	0.021	0.919	4.080	0.410	0.245
8	0.024	0.984	4.028	0.427	0.248
y	. 0 • 026,	_1.055	3.946	0.452	0.253
10	0.028	1.091	3.901	0.465	0•256 0•260
11	0.032	130	3.852 5.343	0.482	0.266
12	0.034	1.205	3.763	0.505 0.521	0.271
13	0.040	1.257	3.690 3.636	0.534	0.275
14	0.043	1.296	3.367	0.584	0.295
15. 16	0•071 0•095	1.469 1.559	J.264	0.608	0.306
17	0.121	1.637	3.168	0.629	0.316
18	0.142	1.682	3.113	0.641	0.321
19	0.142	1.739	3.045	0.655	0.328
20	0.194	1.801	2.970	0.670	0.337
.21	0.225	1.882	2.876	0.689	0.348
22	0.248	1.933	4.831	0.702	0.353
23	0.274	2.002	4.742	0.716	0.365
24	0.328	2.138	2.595	0.743	C - 385
25	0.355	2,211	2.521	0.758	0.397
26	0.388	2.287	4.444	0.772	0.409
27	0.412	2.344	∠•388	0.782	0.419
28	0.448	2.426	2.301	0.798	0.435
29	0.497	2+262	4.105	0.818	0.458
30	0.527	2.647	2.111	0.830	0.474
31	0.575	2.784	1.997	0.849	0.501
32	0.610	2.876	1.924	0.861	0.520
33	0.649	2.978	1.847	0.874	0.541
34	0.695	3.096	1.762	0.867	0.557
35	0.752	3.242	1.663	0.903	0-601
36	0.803	3.345	1.597	0.913	0.626
37	0.835	3.431	1.545	0.921	0.647
38	0.885	3.500	1.470	0.931	0.677
39	C+942	3.676	1.407	0.941	0+711
40	0.968	3.718	1.385	0.945	0.72
41	0.997	3.801	1.343	0.951	0.745
42	1.010	3.815	1.3.5	0.952	0.749
43	1.019	3.847	1.319	0.954	0.758
44	1.096	3.983	1.224	0.903	0.797
45	1.230	4-168	1.173	0.975	0.423
46	1.270	4.218	1.152	0.977	0.868
47	1.323	4.278	1.128	0.981	0.887 0.900
48	1.369	4.320	1.111	0•983 0•986	0.900
49	1,932	4•365 4•439	1.067	0.990	0.937
50	1.521	4.469	1.057	0.992	0.947
51 52	1.668	4.510	1.057	0.992	0.959
53	1.648 1.732	4.542	1.042	0.774	0.970
54	1.809	4.574	1.040	0.997	0.980
55	1.859	4.587	1.015	0.998	0.985
56	2.014	4.614	1.006	0.999	0.994
90 97	2.088	4.621	1.004	1.000	0.996
58	2.132	4.624	1.003	1.000	0.997
59	2.191	4.629	1.001	1.000	0.999
60	2-265	4.632	i.000	1.000	1.000

TABLE 1(n) (CONT.)

Ruu 11283	X = 69.25 inches	Re ₀ = 49430
P ₂ = 148.7 psia	T = 107.1 *R	$\delta^* = .62$? inch
To = 573.5 °R	U_ = 2367 ft/sec	$\theta = .0625$ inch
T _W = 531 °R	M _m = 4.67	

Fo.	Y(inches)	×	T/T _e	v/v.,	p/ p_
1	0.	0.	4.957	0.	0.404
1 2	0.008	0.828	4.355	0.370	0.230
3	0.010	0.949	4.178	0.416	0.239
4	0.014	1.076	4.008	0.462	0.250
5	0.016	1.132	3.900	0.481	0.254
6	C+920	1.264	3.831	0.505	0.251
7	0.028	1.338	3.657	0.548	0.273
8	0+037	1.409	3.761	0.570	0.501
9	0 • 0 4 5	1,457	3.499	0.584	0.286
10	04054	1.487	3.467	0.593	1.288
11	0.059	1.587	36 ف	0.625	0.296
12	0.083	i+642	3.264	0.636	0.306
13	0.098	1.701	3.186	0.651	0.314
14	0.127	1.775	091ءد	0.669	0.324
15	0.139	1.824	3.027	0.680	0.330
16	0.153	1.865	4.977	0.690	0.336
17	0.196	1.988	4.035	0.718	9.353
18	0.218	2.057	2.760	0.732	0.364
19	0.236	2.106	2.708	0.743	0.369
20	G•265	2.198	Z•611	0.761	0.383
21	0.291	2.263	2.545	0.774	0.393
22	0.357	2.431	4.380	0+80+	0.420
23	0.381	2.486	c.368	0.813	0.429
24	0.422	2.611	2.212	0.832	0.452
25	0.449	2.700	2•135	0.845	0.468
26	0•489	2.821	2.031	0.862	0•494
27	0.532	2.946	1.950	0.877	0.518
28	0.584	3.079	1.845	0.896	0+542
29	0.606	3.1.2	1.781	0.899	0.562
30	0.638	3-204	1.725	0.905	0+576
31	0.706	3.359	1.623	0.940	0+614
32	0.817	3.569	1.425	0.947	0.697
33	0.868	3.778	1.386	د95ء0	0.721
34	0.954	3.929	1.310	0.964	0.763
35	1.002	4.047	1.252	0.971	0•798
36	1.002	4.051	1.251	0.971	0•799
37	1.005	4.047	1.249	0.969	0.801
38	1.089	4.192	1.181	0.977	0.845
39	1.150	4.281	1 • 1 4 2	0.980	0•876
40	1.212	4.340	1.116	0.983	0.896
41	1.314	4.429	1.001	0•987	0.925
42	1.391	4.506	1.022	0.991	0.950
43	1.440	4+515	1.048	0.991	0.954
44	1.496	4.552	1.036	0.993	0+965
44	1.554	4.582	1.025	90 ي. 0	0.975
-4E -	1.681	4.621	1.012	0.996	0.988
47	1.758	4.032	1.008	0.997	0.994
48	1.853	4.653	1.003	0.999	0.997
49	1.921	4.658	1.000	U•998	1.000
50	1.983	4.648	1.005	0+999	0.995
					1 000

TABLE 1(6) (CONT.)

Run 12086	X = 69.25 inches	Rea = 6030
Po = 14.7 paia	T_ = 143.6 °R	6* = .869 inch
To = 762 *R	U_ = 2726 ft/sec	
T. = 516 *R	N_ = 4.64	8 = .121 inch

Mọ.	Y(inches)	×	7/1_	U/U_	. /.
1	0.	0.			0/0_
2	0.013	0.232	3.592 3.71 8	0. 0.096	0.278
	0.016	0.304	3.754	0.146	0•265
5	0.032	0.519	3.812	0.219	0.505
6	0.045 0.052	0.786	3.662	0.324	0.273
ž	0.066	0•907 1•153	3.571	0.369	0.280
8	0.081	1.349	3.333 3.129	0.454	0+300
10	0.096	1.485	2.984	0.514 0.553	0.350
10 11	0.122	1.602	2.860	0.584	0•335 0•350
12	0.144	1.697	2.760	0.608	0.364
13	0.154 0.166	1.7.29	4.715	0.614	0.366
14	0.193	1•765 1•815	2.636	0.625	0.372
15	0.220	1.868	2.638 2.584	0.635	0+379
16	0.256	1.920	2.534	0.647 0.659	0.387
17 18	0.283	1-980	2.477	0.672	0.395 0.404
19	0.317	2.027	2.433	0.681	0.411
20	0.343 0.368	2.074	2.340	0.691	0.410
21	0.387	2+124	2.344	0.701	0.427
	0.409		2.304 2.279	0.710	0.434
23	0.431	2.237	4.247	0.716	0.439
24	0.455	2.28%	2.208	0•723 0•732	0.445 0.453
25 26	0.475	2.319	2.177	0.738	0.459
_27	0.494	2.369	c.l 34	0.746	0.449
28	0.516 0.538	2•386	2.122	0.749	0.471
29	0.567	2.43b 2.491	<.081	0.758	0.481
30	0.601	2.550	∠•040 1•995	0.767	0.490
31	0.623	2.584	1.970	0.777	0.501
32	0.654	2.661	1.914	0•782 0•793	0+50 8 0+523
- 3,3 34	0.681	2.708	1.881	0.800	0.534
35	0•71E 0•749	2.768	1.837	0.809	0.544
36	0.778	2•8 2 6	1.794	0.816	0.>>7
37	0.803	5.859	1•756 1•7 2 5	0.823	0.569
38	0+827	2.905	1.088	0•829 0•836	0.540
-39 - 40 -	-0-851	3.031	1.660	0.842	0+602
41	0.878	3.082	1.629	0.848	0.614
42	0.902 0.924	3.134 3.169	1.598	0.854	0.626
43	0.951	3.226	1.578 1.548	0.858	0.634
44	0.980	3.273	1-527	0.865	0.546
- 45	1.012	3.329	1.501	0•872 0•879	0.655
46	1.038	3.375	1.481	0.845	0+646 0+675
48	1.057 1.094	3.433	1.424	0.692	0.688
49	1.118	3•478 3•517	1.433	0-897	0-498
50	1-150	3.573	1.412 1.388	0.901	0.708
51	_1-1.79	3.665	1.367	0.907 0.913	0.721
52 53	1.206	3.665	1.345	0.913	0+73∠ 0+743
54	1.237	3+723	1.320	0.922	0•738 0•738
55	1+276 1+301	3•775 3•818	1.299	0.927	0 < 770
56	1.335	3.869	1.283 1.263	0.932	0.779
57	1.361	3.913	1.263	0.937 0.941	0+792
58 59	1.391	3.754	1.247	0.944	0+803 0+815
60	1.422 1.461	3.997	1-210	0.947	0.847
		4.045	1.193	0.954	0+838
61 62	1.485 1.507	4.073 4.101	1-184	0.955 0.95 8	0+845
63	1.548	4.140	1.175		
64	1.573	4.170	1.150	0.962	0-861
65 66	1.592	4.194	1.140	0.965	0+870 0+877
67	1.616 1.641	4.212	1.194	0.967	0.884
68	1.675	4.242	1.124	0.969	0.490
69	1.699	4.264	1.117	0.971	0-895
70	1.731	4.314	1.108	0.974	0.903
71	1.757	4+335	1.096	0•97 6 0•97 8	0.907
72	1.784	4+350	1.092	0-978	0.912

TABLE 1(p) (CONT.)

Run 12085 (Cont'd)

*	0.	Y(inches)	¥	T/T.	U/U _∞	9/0.
7	3	1.811	4.370	1.086	0.982	0.921
ż		1.038	4.385	1.082	0.983	0.924
7		1.867	4.403	1.077	0.985	0.929
	6	1.889	4.417	1.073	0.987	0.932
7		1.943	4.440	1.067	0.988	0.938
	8	1.957	4.454	1.063	0.990	0.941
	9	1.981	4.469	1.058	0.991	0.945
	ó	2.010	4.477	1.057	0.992	0.946
	i	2.042	4.496	1.0>1	0.994	0.951
	2	2.068	4.504	1.049	0.994	د د 9 • 0
	3	2.110	4.240	1.044	0.995	Q•956
	4	2.141	4.530	1.041	0.996	0.961
	5	2.166	4.537	1.027	0.996	0.964
	6	2.197	4.545	1.033	0.995	0.968
	17	2.219	4.546	1.031	0.995	0.970
	8	2.238	4.560	1.025	0.995	0.976
		2.260	4.574	1.019	0.995	0.984
	19		4.671	0.987	1.000	1.012
	0	2.513		0.994	0.999	1.006
	21	2.518	446>0	0.993	1.000	1.007
	2	2.532	4.024		1.000	1.006
)3	2.545	4.602	0.994	1.000	1.005
	4	2.552	4.650	0.995		
9	75	2.566	4.645	0.998	1.000	1.002
	AC	2.581	4.639	1.000	1.000	1.000

JABLE 1(q) (CONT.)

_	The state of the s	
Run 12085	X = 69.25 inches	Re _a = 23881
P _o = 75.0 psia	T_ = 143.6 °R	6* = .676 inch
To = 775.4 *R	U_ = 2755 ft/sec	$\theta = .0986$ inch
T _w = 520 °R	H, = 4.69	

1 2 3 4 5	0. 0.011 0.016	0• 0•786	3.622	C.	
3 4	0.016				0.276
4			3.442	Ų, 110	0.292
		j+019	3.276	0+373	0.305
	0.018 0.023	1.150	3.177	0.437	0.315
6	0.028	1•263 1•325	3.118	0.4.5	0.321
7	0.031	1.395	3•109 3•058	0-493	0.322
Ą	0.036	1.451	3.007	0•52(0•536	0•327 0•335
9	0.048	1.514	2.944	0.554	0.340
10 11	0.056	1.557	2.900	0.565	0.345
12	0.066	1.590	2.867	0.574	0.349
13	0•078 0•108	1•639 1•716	5-818	0.286	0.355
14	0.133	1.790	2•744 2•672	0+006	0.364
15	0.186	1.910	2.564	0.624	0.374
16	0.228	2.000	2.454	0•652 0•678	0.390
17	0.266	2.110	4.388	0.695	0•408 0•419
18	0.291	2.102	2.330	0.710	0-429
19 20	0.318	2.275	2.206	0.729	0.443
21	0.348	2.326	4.242	0.759	0+450
22	0.391	2.417	2.156	0.757	0.454
23	0.451	2•491 2•557	2.098	0.769	0.477
24	0.488	2.656	2 • 053 • 1 • 9 • 0	0.781	0.467
25	0.523	2.747	1.914	0.797 0.810	0.505
26	0.560	2.835	1.052	0.823	0+523 0+540
27	0.59C	2.940	1.795	0.834	0.557
28	0.620	3.005	1.739	0.845	0.575
29 30	0.658	3.096	1.602	0.856	0.595
31	0.678	3.141	1.624	0.861	0.605
32	0•700 0•723	3.198	1.619	0+868	0.618
33	0.750	3.250 3.313	1.508	0.873	0.636
34	0.768	3.356	1.553 1.549	0•880 0•880	0.644
35	0.798	3.426	1.491	0.003	0+654 0+671
36	0.843	3.526	1.439	0.902	0.695
37	0.860	3.572	1.415	0.906	0.706
38 39	0.910	3.668	1.369	0.915	0.731
40	0•938 0•962	3.720	1.343	0.919	0.744
41	0.990	3•767 3•822	1.321	0.923	0.757
42	1.017	3.854	1.295 1.282	0.927	0.772
43	1.035	3.884	1.268	0•930 0•933	0•780 0•7øs
44	1.060	3.931	1.248	0.936	0.401
45	1.097	4.012	1.215	0.943	0.823
46	1.155	4.076	1.194	0.949	0.838
47 48	1.172	4-111	1.181	0.953	0.846
49	1.210 1.242	4•167 4•210	1.163	0.958	0.860
50	1.277	4.420	1.150 1.158	0•963 0•966	0.869
. 51	1.355	4.338	1.100	0.973	0.880
52	1.422	4+395	1.085	0.976	0•904 0•921
53	1.487	4.420	1.066	0.980	0.938
54 55	1.544	4.497	1.051	0.983	0.952
56	1.602 1.632	4.537	1.037	0.985	0.964
57	1.664	4.554 4.574	1.032	0.986	0.969
	1.704	4.508	1.0<>	0.987	0+97>
59	1.737	4.000	1.015	0•988 0•985	0•980 0•98>
60	1.764	4.611	1.013	0.989	0.987
61 62	1.854	4.633	1.005		
62 63		4.645	1.001	0.990 0.991	0•995 0•999
64	2.019	4.659	1.008	0.997	0.992
65	2.073	4.670	1.006	0.999	0.994
66	7.251	4•672 4•083	1.005 1.002	0.999	0.995
67	2.334	4.009	1.002	0.999	0 • 99¢
68	2.384	4.691	1.000	1.000 1.000	0•999 1•000

TABLE 1(r) (CONT.)

Run 6211	X = 69.25 inches	Re _A = 56737
P _o = 149.7 paia	T = 138.1 °R	$\delta^{\pm} = .706$ inch
T = 741.5 °R	U_ = 2692 ft/sec	$\theta = .108$ inch
T = 534 *R	H _m = 4.67	

No.	Y(inches)	M	T/T _e	u/u,	p/pm
1	0•	0.	3.865	Q•	0.2>9
1 2	0.008	0.707	3.604	0.287	0.277
3	0.012	0.85	3.462	0.357	0.289
4	0.017	1.06.	3.342	012	0.301
5	0.025	1.218	3.203	0.466	0.314
6	0.034	1.378	3.154	0.524	0.317
ž	0.038	1.423	2.109	0.537	0.524
8	0.042	1.466	3.064	0.549	0.326
	0.047	1.492	3.039	0.557	0.329
10	0.060	1.534	3.002	0.569	0.333
īĭ	0.073	1.591	2.945	0.584	0.340
12	0.090	1.039	4.695	0.597	0.345
13	0.107	1.685	4.845	0.608	U.354
14	0.120	1.723	2.803	0.618	0.357
15	0.142	1.760	2.764	0.626	0.362
16	0.155	1.788	2.733	0.633	0.366
17	0.172	1.820	4.608	0.642	0.374
18	0.193	1.879	2.637	0.653	0.379
19	0.215	1.940	4.789	0.663	0.386
20	0.237	1.977	4.736	0.674	0.394
21	0.258	2.020	4.483	0.685	0.402
22	0.284	2.104	2.414	0.699	0.414
23	0.327	2.197	2.325	0.717	0.430
24	0.344	2.270	2.258	0.730	0.443
25	0.422	2.423	2.125	0.756	0.470
26	0.474	4.544	4.046	0.775	0.494
27	0.530	2.688	1.918	0.797	0.521
28	0.586	2.818	1.043	0.814	0.248
29	0.638	2.903	. 1.732	0.834	0.577
30	0.672	3.033	1.680	0.841	0.595
31	0.750	3.192	1.586	0.860	0.630
32	0.840	3.440	1.462	0.885	0.684
33	0.931	3.590	1.380	0.902	0.725
34	1.021	3.754	1.305	0.918	0.766
35	1.107	3.901	1.242	0.930	0.805
36	1.181	4.008	1.198	0.939	G. 53>
37	1.250	4.109	1.160	0.947	0-864
38	1.323	4.193	1.150	0.954	0.86>
39	4.392	4.267	1.104	0.959	0.906
40	1.457	4.348	1.086	0.965	0.921
41	1.521	4.385	1.069	0.970	0.935
42	1.577	4.461	1.044	0.975	U•958
43	1.664	4.523	1.027	0.981	U•973
44	1.746	4.529	1.041	0.986	0.979
45	1.823	4.597	1.012	0.990	0.988
46	1.879	4.016	1.009	0.992	0-991
47	1.961	4.638	1.005	0.995	0.995
48	2.035	4.659	1.000	0.997	1.000
49	2.095	4.675	0.997	0.999	1.002
50	2.160	4.673	1.000	1.000	1.000

TABLE 1(s)(CONT.)

Run 3131	X = 69.25 inches	Re ₀ = 19040
$P_o = 74.6 \text{ psia}$	T _e = 180.6 °R	6* = .657 inch
$T_0 = 1004.6 ^{\circ}R$	U_ = 3146 ft/sec	$\theta_{1} = .123$ inch
T = 509 *R	$M_{\infty} = 4.78$	} '

	_				
Xo.	Y(inches)		T/T	0/0_	0/0.
1	0.	0•	4.819	0.	0.355
1 2	0.022	0.738	2.912	0.264	0.343
3	0.025	0.633	2.886	0.296	0•346 0•355
4	0.033	1.135	2.814 2.703	0•399 0•436	0.370
5 6	0.035	1.265 1.421	2.633	0.483	0.380
7	0.043	1.531	2.596	0.517	0.385
é	0•051 0•059	1.603	2.545	0.535	0.393
9	0.070	1.687	2.478	0.556	0.404
10	0.084	1.735	2.445	0.568	0.409
ii	0.097	1.774	2.423	0.578	0.413
12	0.108	1.806	2.409	0.587	0.415
13	0.118	1.833	2.389	10.593	0.419
14	0.132	1.861	2.370	0.600	0.422
15	0.143	1.897	2.343	0.608	0.427
16	0.156	1.934	2.318	0.616	0.431
17	0.164	1.949	2.308	0-620	0.433 0.441
18	0.183	2.005	2.268	0•632 0•643	0.449
19	0.204	2.058	2.230 2.197	0.653	0.455
20	0.223	2.104 2.181	2.197	0.669	0.466
- 21	0•255 0•276	2.212	2.129	0.676	0.470
23	0.278	2.267	2.091	0.686	0.476
24	0.317	2.340	4.023	0.696	0.487
25	C•343	2.378	2.016	0.707	0.496
26	0.373	2.451	1.967	0.720	0.508
27	0.400	2.517	1.925	0.731	0.519
28	0.429	2.581	1.887	0.742	0.530
29	0.453	2.650	1.844	0.753	0.542
30	0.483	2.716	1.807	. 0.764	0.553
31	0.507	2.785	1.765	0.775	0.567
32	0.533	2.839	1.736	0.783	0.576
. 33	0.560	2.900	1.702	0•792 0•802	0.600
34	0.587	2+965	1.668 1.632	0.810	0.613
35	0.611	3.029 3.100	1.594	. 0.819	0.627
36 37	0.638 0.673	3.178	1.555	0.830	0.645
38	0.697	3.233	1.528	0.837	0.655
39	0.721	3.290	1.500	0.844	0.667
40	0.753	3.363	1.465	0.852	0.682
41	0.774	3.419	1.439	0.858	0.695
42	0.801	3.466	1.418	0.864	0.705
43	0.825	3.524	1.392	0.870	0.719
44	0.849	3.573	1.370	0.876	0.730
45	0.882	3.635	1.345	0.882	0.744
46	0.911	3.712	1.312	0.890	0•762 0•781
47	0.954	3.790	1.281	0.898	0.605
48	1.013	3.896	1.242 1.216	0.909 0.914	0.823
49	1.048	3.962	1.180	0.924	0.847
50	1.107 1.147	4.060 4.134	1.156	0.930	0.865
51 52	- 1.192	4.207	1.132	0.937	0.883
53	1.254	4.287	1.110	0.945	0.901
54	1.294	4.334	1.097	0.950	0.911
55	1.353	4.405	1.079	0.958	0.927
56	1.396	4.447	1.069	0.962	0.936
57	1.439	4.483	1.060	. 0.966	0.944
58	1.492	4.526	1.048	0.970	0.955
59	1.551	4.556	1.042	0-973	0.960
60	1.578	4.576	1.037	J.977	0.965
. 61	1.615	4.597	1.032	0.978 0.980	0.959 0.971
62	1.655	4.613	1•029 1•024	0.983	0.977
63	1.706	4•641 4•690	1.011	0.987	0.989
64	1.830	4.701	1.009	0.989	0.991
65 66	1.875	4.718	1.000	0.991	0.994
67	1.926	4.732	1.005	0.993	0.995
68	1.990	4.760	1.000	0.996	1.000
69	2.068	4.765	1.001	0.998	0.999
7ó	2.135	4.771	1.000	0.999	1.000
71	2.191	4.777	1.000	1.000	1.000

TABLE 1(t) (CONT.)

Run 3132	X = 69.25 inches	Re _A = 15083
P _o = 75.0 psia	T_ = 187.7 °R	6* = .680 inch
T = 1094.2 °R	U_ = 3300 ft/sec	$\theta = .1174$ inch
T _w = 515 °R	H _{ee} = 4.91	

1	0.	0•	4.743	0.	0.365
2	0.020	0.836	2.825	0.586	0.354 0.356
3	0.023 0.025	0.922 1.044	2.812 2.763	0•315 0•353	0.304
5	0.025	1.224	2.701	0.410	0.370
6	0.033	1.362	2.603	0.447	0.384
7	0.039	1.466	4.525	0.474	0.396
ė	0.044	1.563	4.423	0.498	0.408
-9	0.047	1.628	2.402	0.514	0.416
10	0.057	1.716	< • 406	0.542	0.416
11	0.063	1.783	2.388	0.561	0.419
12	0.074	1.823	2.437	0.579	0.410
13	0.084	1.855	2.432	0+589	0.411 0.417
-14 15	0.111	1.932	2•398 2•344	0.609	0.427
15	0.146	2•021 2•065	2.344	0+630 .)+640	0.430
16 17	0.165 0.167	2.005	2.307	0.645	0.433
18	0.197	2.148	2.266	0.661	0.437
19	0.213	2.201	2.247	0.672	0.445
20	0.240	2.266	2.206	0.685	0.453
- 21	0.266	2.342	2.154	0.700	0.464
22	0.293	2+385	2.131	0.709	0.469
23	0.328	2.481	2.066	0.726	0.484
24	0.347	2.516	2.046	0.732	0.489
25	0.368	2.567	2.014	0.741	0.497
26	0.395	2.623	1.950	0.751	0.514
27	0.411	2.667 2.721	1.952 1.923	0.758 0.768	0.520
28 29	0•435 0•454	2.763	1.901	0.775	0.526
30	0.473	2.800	1.880	0.781	0.534
31	0.483	2.826	1.864	0.785	0.536
32	0.505	2.892	1.822	0.794	0.549
33	0.521	2.927	1.801	0.799	0.555
34	0.539	2.961	1.784	0.805	0.561
35	0.556	3.000	1.763	0.811	0.567 0.578
36	0.574	3.058	1.730	0.819 0.823	0.584
37	0.588	3.091 3.119	1.712 1.698	0.827	0.589
_38 39	0•601 0•620	3,165	1.673	0.833	0.598
40	0.633	3.201	1.653	0.838	0.605
41	C-647	3.233	1.657	0.842	0.611
42	0.660	3.260	1-624	0.846	0.616
43	0.706	3.373	1.>67	0.860	0.638
44	0.730	3.431	1.540	0.867	0.649
45	0.764	3.506	1.506	0.876	0-664
46	0.810	3.628	1.450	0.889	0.690
47	0.842	3.684	1.427	0.896 0.904	0.717
48	0.677	3.761 3.851	1.395 1.359	0.914	0.736
49 50	0.914 0.955	3.936	1.325	0.944	0.755
-51	0.989	3.994	1.304	0.928	0.767
52	1.054	4.112	1.263	0.941	0.792
53	1.096	4.172	1.244	0.947	0.804
54	1.129	4.237	1.222	0.953	0.818
55	1.161	4.280	1.208	0.958	0.828
56	1+201	4.341	1.139	0.963 0.967	0-841 0-847
51	1.241	4.427	1.180 1.153	0.972	0.860
58 59	1•273 1•308	4.462	1.153	0.975	0.866
60	1.346	4.506	1.140	0.979	0.877
61	1.364	4.525		0.961	0.881
62	ì.399	4.554	1.136 1.128	0.984	0.887
63	1.431		1.121	0.987	0.894
64	1.463	4.605	1.114	0.989	0.898
65	1.487	4.626	1.107	0.990	0•903 0•909
66	1.530	4.663	1.100	0•995 0•998	0.909
67	1-570	4.691	1.092 1.090	1.600	0.916
_68	1.600	4.708 4.724	1.090	1.003	0.919
69	1.632	4.746	1.083	1.005	0.923
70 71	1.723	4.758	1.084	1.008	0.923
72	1.753	4.788	1.076	1.011	0.949

TABLE 1(u) (CONT.)

Run 3132 (Cent'd)

73	1.787	4.807	1.071	1.013	0.934
74	1.870	4.845	1.046	1.009	0.956
75	1.937	4.869	12053	1.017	G-9>0
76	1.983	4.869	1.049	1.015	0.953
77	2.031	4.892	1.017	1.004	0.983
78	2.074	4.898	0.980	0.987	1.020
79	2.125	42907	0.983	0.990	1.017
80	2.157	4.913	1.014	1.007	0.986
81	2,189	7.916	1.017	1.009	0.963
82	2.213	4.913	1.000	1.000	1.000

TABLE 1(v) (CONT.)

Run 12201	X = 91.25 inches	Re ₆ = 8938
$P_{o} = 14.9 \text{ psia}$	$T_{\infty} = 148.3 {}^{\circ}R$	$\delta^* = 1.199$ inch
T = 772.6 °R	U_ = 2739 ft/sec	$\theta = .176$ inch
T = 517 °R	M _m = 4.59	

No.	Y(inches)	ĸ	T/T	U/U .	p/p.
1	0• .	0•	3.487	0.	0.407
1 2	0.020	0.306	3.615	0.127	0.277
3	0.024	0.400	3.615	0.100	0.277
4	0.024	0.388	3.621	0.161	0.276
5	0.033	0.499	2.635	0.208	0.275
6	0.033	0.499	3.635	0.208	0.275
7 -	0.037	0.559	3.017	0.232	0.276
8	0.042	0.657	3.574	0.271	0.280
9	0.051	<u>-0.776</u>	3.444	0.317	0.485
10	0.059	0.873	3.275	0.353	0+490 0+305
11	0.068	1.065	3.188	0.452	0.314
12	0.081	1.248	3.105	0.479	0.322
13 14	0.090 0.103	1.328	3.025	0.503	0.331
15	0.112	1.390	4.961	0.521	0.338
16	0.129	1.492	2.857	0.550	0.350
17	0.160	1.598	4.720	0.577	0.304
18	0.2	1.003	2.005	0.599	0.375
19	0.241	1.718	2.631	0.607	0.380
20	0.265	1.750	2.599	0.615	0.385
21	0.326	1.824	2.531	0.632	0.395
22	0.374	1.874	2.485	0.644	0.402
23	0.466	2.007	2.357	0.672	0.424
24	0.523	2.075	2.303	0.686	0.434
25	0.554	2.088	4.297	0+690	0 • 435
26	0.593	2.125	2.208	0.698	0.441
27	<u>0</u> .628	2.163	4.528	0.765	0.447
28	0.680	2.226	2+186	0.717	0.457
29	0.742	2.294	2.130	0.730	0.469
30	0.825	2.380	2.005	0.745	0.484
31	0.890	2.459	2+003	0.759	0.499
32	0.921	2.498	1.977	0.766	0.506
33 .	0.943	2.53]	1.954	0.771	0.514
34	1.039	2.048	1.890	0.768	0.529
35	1.109	2.736	1.817	0.804	0.550
36	1.170	2•799 2•873	1.778 1.734	0.814 0.825	0•564 0•577
37 38	1.236 1.314	2.978	1.673	0.839	0.598
39	1.398	3.096	1.605	0.622	0.623
40		3.194	1.550	0.866	0.645
41	1.538	3.302	1.491	0.879	0.671
42	1.612	3.413	1.434	0.891	0.697
43	1.682	3.547	1.379	0.904	0.725
44	1.796	3.689	1 305	0.919	0.766
	1.857	3.788	1.263	0.928	0.794
45	1.927	3.881	1.227	0.937	0.815
47	1.997	3.991	1.183	0.946	0.846
48	2.062	4.078	1.148	0.952	v-871
49	2.150	4.185	1.106	0.959	0.904
50	2.425	4-413	1.073	0.981	0.962
51	2.487	4.446	1.001	0.984	0.970
52	2.561	4.465	1.023	0.989	U.977
53	2.640	4.517	1.019	0.994	0.981
54	2.766	4.558	1+005	0.996	0.995
55	2.622	4.568	0.999	0.995	1.001
56 57	2.906	4.578	1.001	0.998	0.999
	2.963 3.020	4•587 - 4•568	1.001	1.000 1.000	0•999 1•000
70					

TABLE 1(w) (CONT.)

是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个

No.	Y(inches)	N	T/T,	U/U _e	9/00
1	0.	0.	3.710	0.	0.275
-3-	0.011	0.853	3.450	0.330 0.363	0-296
3	0.014 0.019	1.082	3.327	0.411	0.307
5	0.026	1.274	3.213	0.476	0.318
6	0.031	1.368	3.167	0.507	0.322
7	0.041	1.436	3.100 3.001	0•527 0•551	0•329 0•340
	0.056	1.579	2.949	0.565	0.344
10	0.084	1.579	2.956	0.566	0.345
11	0.094	1.662	2.868	0.587	0.356
12	0.096	1.662	2.869 2.828	0•587 0•596	0.356 0.361
13	0.106 Qall4	1.702	2,812	0.600	0.363
15	0.126	1.757	2.772	0.610	0.368
16	0.131	1.748	2.783	0.608	0.367
17	0.144	1.795	2.757 2.712	0.619 0.626	0•373 0•376
18 19	0+159 0+161	1.823 1.832	2.704	0.628	0.377
20	0.176	1.853	2.685	0.633	0.380
21	0.181	1.867	2.671	0.636	0.382
22	0.196	1.896	2.641	0.642	0.386
23 24	0•226 0•256	1.952 2.012	2.592 2.538	0+655 0+668	0+394 0+404
25	0.276	2.058	2.495	0.677	0.409
26	0.302	2.115	2.442	0.689	0-416
27	0.344	2.183	2.383	0.702	0.428
28	0.374	2•237 2•279	2.341 2.306	0•713 0•721	0•436 0•442
29 30	0.394 0.426	2.342	2.306 2.255	0.733	0.453
31	0.456	2.387	2.218	0.741	0-460
32	0.491	2.458	2.161	0.753	0.472
33	0.524	2.522	2-111	0.764 0.768	0.483 0.488
34	0•539 0•574	2.548 2.598	2•092 2•056	0.776	0.496
35 36	0.594	2.664	2.006	0.786	0.509
37	0.619	2.713	1.972	0.794	0.517
38	0.649	2.766	1.936	0.802	0.527
39	0.669	2.821 2.882	1.896 1.855	0-809 0-818	0+53 8 0+550
40 41	0•699 0•719	2.923	1.829	0.823	0.558
42	0.741	2.972	1.796	0.830	0.568
43	0.756	3.007	1.773	0.835	0.575
- <u>44.</u>	0.781 0.806	3 <u>•064</u>	1.737	0-841 0-847	0•5 8 7 0•599
46	Q+834	3.177	1.667	0-855	0.614
47	0.851	3.210	1.648	0-859	0.619
48	0.891	3.303	1.595	0-869	0•640 0•655
49 50	0.919 0.944	3.370 3.417	1.557 1.532	Ç∙876 Q•881	0.666
51		3.471		0.667	0.679
52	0.989	3.524	1.476	0.892	G-692
53	1.014	3.568	1.452 1.424	0-896 0-901	0•703 0•717
54 55	1.034 1.059	3.623 3.678	1.398	0.906	0.730
56.	1.076	3.713	1.382	0.909	0.739
57	1.104	3.763	1.360	0.914	0.750
58	1.119	3.805	1.341	0.918	0.761
59 &0	1.135 1.151	3.839 3.870	1.324 l.311	0.921 0.923	0•770 0•77 8
61	1.174	3.911	1.294	0.927	0.75
48	1.194	3.948	1.278	0.930	0.798
63	1.214	3.996	1.257	0.933	0.812
64 65	1•239 1•256	4•039 4•078	1.239 1.222	0•937 0•939	0.835
66	1.279	4.117	1.207	0.942	0.845
67	1.306	4.155	1.193	0.945	0.856
68	1,324	4.193	1-178	0.948	0.866
69 70	1.341 1.351	4.221 4.234	1.167 1.162	0•950 0•951	0.874 0.878
71	1.374	4.268	1.1>0	0.954	0.447
72	1.399	4.305	1.137	0-956	0.497

TABLE 1(x) (CONT.)

Run 12198 (Cont'd)

No.	Y(inches)	¥	T/T.	Ū/U .	0/0.
73	1.419	4.339	1.124	0.959	0.907
74	1,444	4.366	1.115	0.961	0.915
75	1.471	4.399	1.104	0.963	0.924
76	1.491	4.420	1.097	0.965	0.930
77	1,524	4.449	1.087	0.966	0.939
78	1.559	4.491	1.072	0.969	0.951
79	1.589	4.540	1.063	0.971	0.960
80	1.611	4.540	1.057	0.972	0.966
81	1.641	4.555	1.052	0.974	0.970
82	1.691	4.598	1.039	0.977	0.984
83	1.731	4.618	1.034	0.978	0.988
84	1.769	4.635	1.029	0.980	0.992
85	1.601	4.655	1.022	0.981	0.998
86	1.826	4.664	1.020	0.992	1.000
87	1.856	4.681	1.016	0.983	1.004
88	1.899	4.692	1.012	0.984	1.008
89	1.956	4.709	1.008	0.985	1.012
90	1.981	4.712	1.008	0.986	1.012
91	2.016	4.721	1.006	0.987	1.014
92	2.074	4.727	1.005	0.987	1.015
93	2.159	4.740	1.001	0.988	1,020
94	2.229	4.743	1.000	0.988	1.020
95	2.279	4.743	1.000	0.988	1.020
96	2.326	4.743	1.000	0.991	1.015
97	2.369	4.740	1.000	0.995	1.005
98 .	2 . 449	4.740	14000	1.000	0.996
99 .	2.451	4.751	1.000	1.000	1.000

TABLE 1(y)(CONT.)

Run 12197	X = 91.25 inches	Re _e = 51518
$P_{o} = 150.3 \text{ psia}$	$T_{\infty} = 133.9 ^{\circ}\text{R}$	$\delta^* = .799$ inch
T = 735.2 °R	$U_{\infty} = 2688 \text{ ft/sec}$	$\theta = .111$ inch
T _w = 517 °R	$M_{\infty} = 4.74$	

No.	Y(inches)	x	T/T_	บ/บ•	ρ/ρ
1	0•	0•	3.861	0.	0+259
2	0.008	0.941	3.407	0.367	د29ء
3	0.008	0.977	3.374	0.379	0.296
4	0.012	1.041	3.359	0.402	0•299
5	0.017	1.127	3.281	0.431	0.305
δ	0.017	1.204	3.200	0.455	0.313
7	0.021	1.275	3.152	0.478	0.317
8	0.025	1.320	3.131	0.493	0.319
9	0.025	1.385	3.060	0.511	0.327
10	0.030	1.436	0 ≥ 0 • و	0.528	0.330
11	0.034	1.485	J•002	0.543	0.333
12	0.043	1.533	2•972	0.558	C•336
13	0.052	1.597	2.905	0.574	0.344
14	0.065	1.632	∠•872	0.584	0.348
15	0.074	1.666	2.837	0.592	0.352
16	C•109	1.757	2.752	0.615	0.363
17	0.144	1.844	2+678	0.637	U•373
18	0.174	1.896	2.654	0.649	0.380
19	0.205	1.954	2.580	0.662	0.388
20	0.231	2.011	2.527	0.675	0.396
21	0.262	2.047	2.497	0.683	0.401
22	0.292	2.107	2.443	0.695	0.409
23	0.314	2.146	2.408	0.703	0.415
24	0.367	2.206	2.360	0.715	0.424
25	0.358	2-230	2.335	0.719	0.428
26	0.393	2.286	2.208	0.730	0.437
27	0.428	2 • 340	2.244	0.740	0.446
28	0.463	2.406	2.192	0.752	0.456
29	0.498	2.463	2.149	0+762	0.465
30	0.537	2.547	2.083	0.776	0 • 480
31	0.581	2.618	2.032	0.788	0.492
32	0.612	2.671	1.993	0.796	0•504 0•516
33 34	0.646	2.748	1.957 1.904	0.807 0.815	0.525
35	0.681 0.721	2•799 2•883	1.847	0.827	0.541
36	0.765	2.964	1.793	0.638	0.558
37	0.804	3.039	1.744	0.847	0.573
38	0.835	3.098	1.707	0.854	0.586
39	0.856	3.174	1.660	0.863	د0 ٠ 60
40	0.900	3.235	1.627	0.871	0.615
41	0.940	3.300	1.591	0.878	0.629
42	0.974	3.383	1.543	0.887	0.648
43	1.005	3.445	1.510	0.893	0.662
44	1.053	3.545	1.457	0.903	0.686
45	1.079	3.604	1.447	0.939	0.701
46	1.141	3.726	1.367	0.920	0.731
47	1.198	3.837	1.316	0.929	0.760
48	1.254	3.945	1.268	0.937	0.789
49	1.311	4.054	1.222	0.946	0.818
50	1.346	4.106	1.200	0∙950	0.833
51	1,407	4.166	1.160	0.955	0.848
52	1.486	4.321	1.120	0.965	0.893
53	1.552	4.442	1.077	0.973	0.928
54	1.731	4.557	1.046	0.98÷	0.956
55	1.875	4.649	1.018	0.990	0.982
56	1.954	4.676	1.013	0.993	0.988
57	2.033	4.703	1.00â	0.996	0.994
58	2.112	4.723	1.005	U•999	0.995
59	2.190	4.726	1.006	i.001	0.994
60	2.256	4.732	1.006	1.002	0.994
61	2.330	4.738	1.000	00	1.000
					000

TABLE. 2

				SUMMARY OF HEAT TRANSFER DATA	AT TRANSE	FER DATA			
x inches	P _O psia	ਜ ਼ ੦ ਕ	ን ር ን ር	g Btu/ft ² -sec	Re _θ	St x 10 ⁴	$c_{ m f_H}^{ m x}$ 10 4	C _{fB} * 10 ⁴	2 St C _f B
09	15	785	530	.052	0915	5.56	8.85	8.9	1.249
				.053	2160	5.71	80.6	8.9	1.283
	75	160	536	.161	22730	4.19	99.9	7.5	j.117
	75	1211	558	.585	15030	6.13	9.72	8.8	1.393
			260	.568	15030	5.97	9.47	8.8	1.356
•		•	503	.566	15030	5.96	9.45	8.8	1.354
			561	.564	15030	5.95	9.43	8.8	1.352
72	15	092	528	.063	2960	7.56	12.03	6.6	1.625
				.057	2960	6.91	11.00	9.3	1.486
	75	761	534	.163	24380	4.00	6.36	7.8	1.025
				.157	24380	3.84	6.11	7.8	0.984
	150	734	538	.206	56570	3.05	4.85	7.0	0.871
	15	1031	546	.370	18530	4.48	7.11	9.5	0.973
			547	.384	18530	4.65	7.39	9.2	1.011
	75	1206	559	.513	13850	5.00	7.94	6.6	1.010
			260	.521	13850	5.09	8.07	6.6	1.028

*Interpolated for corresponding $ext{Re}_{ heta}$

	SUMMARY OF FRICTION BALANCE DATA AND COMPARISON WITH EMPIRICAL RELATIONS
	EMPIRICA
	WITH
	COMPARISON
m	AND
TABLE	DATA
	BALANCE
	FRICTION
	OF
	SUMMARY

X inches	o d o si se	to €	x°	9 inches*	Re	F	Cf x 104	~ " "	C _E × 10 ⁴ (1)	of O	C _E × 10 ⁴ (2)	o#	c _f × 10 ⁴	(3	C _f × 10 ⁴ (4)	. J	C _f × 10 ⁴ (5)	u j	C _f × 10 ⁴ (6)
8.4	150	740	4.73	\$170.	36500		8.85	7.04	(20.4)	8.03	(8.3)	7.70	(13.0)	8.50	(4.0)	9.18	(-3.7)	7.22	(18.4)
₩	135	755	4.72	.0718	32000	.75	8.95	7.25	(18.9)	8.31	(7.1)	8.04	(10.11)	8.76	(2.1)	•	ı	7.38	(17.5)
8	120	758	4.71	.0735	29000	.75	90.6	7.44	(17.9)	8.49	(6.3)	8.28	(8.6)	8.93	(1.4)	•	ı	7.47	(17.5)
8	105	762	4.71	1920.	25500	.75	9.34	7.68	(17.8)	8.71	(6.8)	8.58	(8.2)	9.15	(3.0)	•	ı	7.59	(18.8)
80	90	762	4.71	.0756	22300	.75	9.45	7.94	(16.0)	8.90	(8.8)	8.87	(6.2)	9.37	(6.9)	ı	'	7.69	(18.6)
8	75	762	4:73	2770.	19100	.75	19.6	8.28	(13.9)	9.17	(4.7)	9.24	(3.8)	9.65	(~0.4)	10.28	(-6.9)	7.83	(18.6)
87	9	760	4.69	.0806	16000	.75	9.91	8.66	(12.6)	9.44	(4.7)	99.6	(2.5)	96.6	(-0.5)	•	,	7.97	(19.6)
4	45	762	4.68	.0845	12600	.75	10.38	9.21	(11.3)	98.6	(8.0)	10.29	(0.8)	10.43	(-0.5)	•	1	8.18	(21.2)
8	30	762	4.64	.0913	9250	.74	10.61	10.02	(2.6)	10.50	(1.1)	11.22	(-5.7)	11.14	(-5.0)		1	8.50	(19.9)
84	15	762		.1037	5470	.74	11.34	11.62	(-2.5)	11.76	(-3.7)	13.09	(-15.5)	12.58	(-10.9)	13.92	(-22.8)	9.11	(19.7)
8	75	1032	4.79	.1071	15800	. 56	10.98	7.94	(27.73)	10.56	(3.8)	10.66	(5.9)	10.44	(4.8)	1	1	8.67	(21.0)
\$	75	1208	4.79	.1200	14000	84.	11.25	7.88	(30.0)	11.54	(-2.6)	11.65	(-3.5)	11.02	(5.0)	•	1	9.28	(17.5)
																	-		
09	150	762	4.75	6220.	37500	.74	7.14	6.91	(3.2)	8.10	(-13.5)	7.73	(-8.4)	8.51	(-19.7)	8.82	(-23.6)	7.27	(-1.8)
09	135	759	4.7	0080.	35000	.74	7.23	7.04	(3.6)	8.19	(-13.3)	7.87	(-8.8)	8.61	(-19.1)	1	1	7.32	(-1.2)
09	120	762	4:74	.0822	31800	.74	7.17	7.22	(-0.6)	8.34	(-16.3)	8.07	(-12.6)	8.76	(-22.2)	1	1	7.40	(-3.2)
9	105	762	4.73	. 0849	28500	ξ.	7.29	7.41	(-1.6)	8.50	(-16.6)	8.29	(-13.7)	8.93	(-22.5)	ı	,	7.48	(-2.6)
09	8	762	4.72	.0875	25600	.7.	7.26	7.64	(-5.3)	8.70	(-19.9)	8.57	(-18.0)	9.14	(-25.9)	•	ı	7.59	(-4.5)
9	75	762	4.71	.0916	22500	.74	7.46	7.91	(-6.1)	8.92	(-19.6)	8.88	(-19.0)	9.37	(-25.7)	9.88	(-32.5)	7.70	(-3.3)
9	9	762	4.7	.0940	18400	.74	7.61	8.31	(-9.1)	9.22	(-21.2)	9.33	(-22.6)	9.70	(-27.4)	•	1	7.86	(-3.2)
9	45	160	4.69	.0970	14500	.74	7.96	8.87	(-11.4)	9.65	(-21.2)	9.95	(-25.9)	10.18	(-27.8)	ı	•	8.08	(-1.5)
9	30	762	4.64	8660.	10100	.74	8.31	9.18	(-17.6)	10.39	(-25.0)	11.02	(-32.6)	10.98	(-32.1)		1	8.45	(-1.6)
09	15	762		.1060	\$550	.7	8.59	11.50	(-33.9)	11.73	(-36.6)	13.04	(-51.8)	12.50	(-45.7)	13.32	(-55.1)	9.10	(-5.9)
09	75	1032	.80	.1223	18000	.55	8.43	7.65	(1.6)	10.38	(-23.2)	10.35	(-22.9	10.23	(-21.4)	•		8.59	(-1.9)
9	75	1212	*. *	376.	15600	.47	8.84	7.84	(11.3)	11.50	(-30.1) 11.65	11.63	(-31.8) 10.98	10.98	(-24.2)	'	1	9.15	(-3.5)
(T) MT	! Winkler-Cha	- 4	_	(e) Spa	Spalding-Chi	, 11 (1964)	-	= à	INTERPOLATED FROM	ED FROM	PROFILE X	MEASURE	PROFILE MEASUREMENTS FOR CORRESPONDING	R CORRE	SPONDING				
(2) Pa	Palkner (ref. enth.)	ref. er	th.)	(5) Persh	ď.			•		! :	:			J. S.					
3	mlasins (ref. enth.)	700	, ,	(e)	ean. in Fig	38		*	**NUMBERS IN PARENTHESES ARE FOR VALUES OF (CE	PARENTH	IESES ARI	E FOR VA	NLUES OF	R S S	× 10+)				
	,																		

(6) eqn. in Fig. 18

(3) Blasius (ref. enth.)

									IABLE 3 CONTO	T NOO	_								
inches	Po pain	eo &	r°	θ inches*	Re ₀	T.T.a.v	C _{f,x} 104	น์ ป	C _f × 10 ⁴ (1)	χ (δ) (δ)	C _f × 10 ⁴ (2)	, <u></u>	C _f × 10 ⁴ .	× ₹	$c_{\underline{\ell}} \times 10^4$ (4)	ر _و ،	C _f × 10 ⁴ (5)	(9)	C _f × 10 ⁴ (6)
72	150	762	4.72	.0875	42800	.73	7.22	6.71	(1.0)	8.03	(-11.2)	77	(-4.9)	8.40	(-16.5)	8.70	(-20.6)	7.23	[-0.2
72	135	755	4.72	8880.	39700	.7.	7.36	6.85	(6.9)	8.09	(-10.0)	7.68	(+.4.4)	8.49	(-15.4)	•	,	7.26	(1.2)
72	120	769	4.72	6060.	35000	.72	7.73	7.03	(9.1)	8.35	(-8.0)	8.00	(-3.5)	8.71	(-12.8)	1	ı	7.41	(4.1)
72	105	992	4.72	.0928	31500	.73	7.68	7.23	(8.9)	8.49	(-10.4)	8.20	(-6.8)	8.37	(-15.4)	1	,	7.48	(3.6)
72	06	763	4.71	.0955	28000	.73	7.73	7.46	(3.46)	99.8	(-12.1)	8.45	(+.6-)	90.6	(-17.2)	ı	,	7.57	(2.0)
72	75	762	4.71	7260.	24000	.73	7.79	7.76	(0.3)	88.8	(-14.0)	8.78	(-12.8)	9.30	(-19.4)	9.72	(-24.8)	7.69	(1.3)
72	09	762	4.71	. 1018	19900	.73	8.04	8.12	(-1.0)	9.17	(-14.0)	9.21	(-14.5)	9.60	(-19.4)	•	,	7.84	(2.5)
72	45	762	4.72	.1064	15600	.73	8.18	8.62	(-5.4)	9.53	(-16.5)	9.77	(-19.4)	10.01	(-22.4)	•	,	8.02	(2.0)
72	30	762	4.69	.1132	11200	.73	8.89	9.41	(6.5.9)	10.17	(-14.5)	10.70	(-20.4)	10.71	(-20.5)	1	•	8.34	(6.1)
72	14.7	765	4.63	.1253	6200	27.	8.50	11.01	(-29.5)	11.43	(-34.4) 12.60	12.60	(-48.2) 12.13	12.13	(-42.6)	13.08	(-53.8)	96.8	(-5.3
72	75	1032	3.76	.1330	19900	.54	9.15	7.46	(18.4)	10.41	(-13.8)	10.27	(-12.3)	10.18	(-11.3)	1	1	8.63	(5.7)
72	7.5	1212	4.77	.1493	17500	.47	9.63	7.43	(22.9)	11.25	(-16.8)	11.13	(-15.5) 10.69	10.69	(-10.9)	•	,	9.16	(4.9)
72	75	290	4.75	.0740	28000	1.00	7.23	8.01	(-10.8)	7.26	(-0.4)	7.26	(-0.4)	8.22	(-13.8)	•	1	6.75	(9.9)
3 6	150	755	4.66	.0997	50200	.74	7.19	6.52	(6.3)	7.92	(-10.1)	7.35	(-2.2)	8.28	(-15.2)	8.52	(-18.5)	7.17	(0.2)
7 6	135	762	4.68	.1025	45800	.73	7.26	6.63	(8.8)	8.03	(-10.5)	7.51	(-3.4)	8.39	(-15.4)	1	1	7.24	(0.4)
6	120	762	4.68	.1058	42000	*7.	7.30	6.78	(7.2)	8.12	(-11.2)	7.66	(=-4.8)	8.49	(-16.3)		•	7.29	(0.3)
96	105	758	4.68	.1084	38100	.74	7.36	6.97	(8.3)	8.24	(-12.0)	7.83	(-6.5)	8.63	(-17.3)	•	1	7.35	(0.1)
94	06	760	4.68	.1129	33800	.74	7.33	7.18	(2.1)	8.40	(-14.6)	8.07	(-70.1)	8.80	(-20.0)	1	ı	7.43	(-1.4
*	75	762	4.68	.1185	29500	.74	7.60	7.43	(2.3)	8.61	(-13.2)	8.36	(-10.0)	9.01	(-18.6)	9.52	(-25.2)	7.55	(0.8)
7 6	9	762	4.69	.1248	24700	.73	7.72	7.73	(-0-1)	8.88	(-15.1)	8.75	(-13.4)	9.29	(-20.4)	١	ı	7.69	(0.4)
6	45	762	4.69	.1348	20000	.74	1.71	8.16	(-5.9)	9.16	(-18.9)	9.19	(-19.3)	9.61	(-24.7)	•	•	7.83	(-1.6
76	30	762	4.67	.1480	14800	.73	7.85	8.82	(-12.4)	5.73	(-24.0)	10.00	(-27.4)	10.22	(-30.1)	•	,	8.13	(-3.5
7 6	14.7	762	4.51	.1749	8800	.73	9.02	10.15	(-12.6)	10.81	(-19.8)	11.57	(-28.3)	11.39	(-26.3)	12.72	(-41.0)	8.66	6.9
*6	75	1032	4.73	.1670	25400	.55	8.54	7.10	(16.8)	9.97	(-16.7)	9.64	(-12.9)	9.19	(-14.6)	•	,	8.39	(1.7)
16	75	1216	4.75	.1925	22700	.4.	9.31	7.01	(24.7)	10.78	(-15.8) 10.44	10.44	(-12.1) 10.26	10.26	(-16 2)	•	1	8.92	(4.2)

UNCLASSIFIED						
Security Classification						
DOCUMENT CONT	ROL DATA - R	& D				
(Security classification of title, body of abstract and indexing	annotation must be e					
1 ORIGINATING ACTIVITY (Corporate author)		1 .	CURITY CLASSIFICATION			
U. S. Naval Ordnance Laboratory		UNCLASSIFIED				
White Oak, Silver Spring, Maryland		26. GROUP				
]				
3. REPORT TITLE						
Velocity Profile, Skin-Friction Bal of the Turbulent Boundary Layer at						
4. DESCRIPTIVE NOTES (Type of report end inclusive dates) final			·			
		·				
5. AUTHOR(S) (First name, middle initial, last name)		_				
Roland E. Lee, William J. Yanta and	Annette C	. Leonas				
6. REPORT DATE	78. TOTAL NO. O	F PAGES	76. NO. OF REFS			
16 June 1969	14 plus	illus.	22			
86. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S		<u> </u>			
	NOLTR 69					
b. PROJECT NO.	MODIA 03	100				
NASC AIRTASK No.						
• A32 320 148/292 1/R009-02-04	SA OTHER REPO	RT NO(S) (Any of	her numbers that may be assigned			
" A32 320 148/292 1/R009-02-04	this report)	it it it it is it	not manocit grat may be actigated			
d.			ŧ			
10. DISTRIBUTION STATEMENT	<u> </u>					
This document has been approved for distribution is unlimited.	public re	lease and	l sale, its			
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTIV	WITY			
TI SUFFEEMENTART NOTES	12. SPONSORING	MILITARI ACTI	****			
	İ					
	<u> </u>					
The results of a detailed end two-dimensional turbulent boundary presented. The studies were made a momentum-thickness Reynolds number adiabatic-wall temperature ratios for analytical terms of velocity profil wall, velocity-defect law and income of local skin-friction coefficients experimental methods are shown. And from the shear-balance data to calcal known values of Mach number, heat the	layer at z t the free from 4800 rom 0.5 to e, tempera pressible obtained empirical	ero-press- stream No. 100 1.0. The ture pro- form fact by four contraction friction	sure gradient are Mach number of 5, 0 and wall-to- he data are in file, law-of-the- tor. Comparisons different n was derived coefficient from			
Į.						

DD FORM 1473 5/N 0101-807-6801 PAGE 1)

UNCLASSIFIED
Security Classification

UNCLASSIFIED

	NCLASSIFIED ecurity Classification	LINK A			LINK. B		LINK C	
4. KEY WORDS	ROLE WT		ROLE WT		ROLE WT			
				1				
_	1 1	1			1	1		
1. H	Soundary layer	i		1			ļ	
	Compressible	<u> </u>	l	1	1			
3. 1	Turbulent				ł	1		
4. 1	Profile	1		1		1		
5. 1	Pressure gradient	ı	ì		1	1		
6 1	Velocity	1	ĺ	1	1	1	}	
7	Skin friction		ł	- {	1		1	
/• ·	Mach number	1	i	1	ì	1	1	
0. (Temperature ratio	1	1	-	1	1		
9.	nemperature racio	\	}	Í	1	\	1	
10.	Reynolds number	- 1	ĺ	1	Į.	Į.	ĺ	
		1	1	1	1	1	1	
		ł	ſ	[1	· [
		1	1	1	1	1	1	
			1	1	1	1	1	
			1	l	1		1	
			1	1	1		1	
		İ			1	1	1	
		j	1		1		1	
		l	1	1	1	-	1	
			1				ļ	
		İ	1			1	1	
		j	1		1			
		}	1	1	1	}	ì	
		1	1	1	1	1		
				1	1	1	1	
		ļ	1		1	į	1	
		1	Ì	ĺ	1	1	1	
		i		- 1	1	-		
				1				
		Ţ		į	- [- {	-	
		j		1	1	1	1	
			-		- (ı	j	
				j	1	1	1	
		}	1	1	1	1	1	
				l	- 1	1	1	
				1	1	ł		
		l	1	{	- [i	{	
						- 1	1	
				ļ	1	1	ļ	
		ļ .			į.	i	ļ	
	<i>'</i>	- 1	- 1			- 1	1	
		[Į.	i	- 1	i i	1	
		1	i	1	1	1	١	
				ı	i	- 1	1	
		j	1	1	1	Ì)	
		1	- [1	l	1	
		ļ	ļ	l	1		1	
l		1		1	-	l	ı	
l			-	1	- {	1	1	
		1	1		-			
i			1	1	- 1	1	1	
ł				1	- 1			
i		1	1	1	1	- 1	1	
•		ı		1		1	1	

DD FORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED
Security Classification