Toward everyday BCI:

Augmented Covariance Method in a reduced dataset setting

Igor CARRARA^{1,2}, <u>Théodore PAPADOPOULO</u>^{1,2}

- ¹ Université Côte d'Azur (UCA), Nice, France,
- ² Inria centre at Université Côte d'Azur, Sophia Antipolis, France

Goals

Improve BCI effectiveness:

- Cost of equipment, setup or comfort
 - → Use less electrodes.
- Efficiency / Usability
 - → Reduce the training time...
 - → ... while keeping a reasonable accuracy.

Study how the <u>augmented covariance approach</u> can help.

- · Within-session.
- Cross-session.

Tests done with MOABB on motor imagery benchmarks.

Augmented Covariance (ACM)

Autoregressive model formulation

$$\mathbf{X}_t = \sum_{i=1}^p \mathbf{A}_i \mathbf{X}_{t-i au} + arepsilon_{\mathbf{t}}$$

Compute the Yule-Walker equations

$$egin{aligned} oldsymbol{\Gamma(0)} & = \sum_{k=1}^p \mathbf{A}_k oldsymbol{\Gamma(-k)} + \mathbf{U} \;\; for \;\; i = 0 \ oldsymbol{\Gamma(i)} & = \sum_{k=1}^p \mathbf{A}_k oldsymbol{\Gamma(i-k)} \;\; for \;\; i
eq 0 \end{aligned}$$

With:

- $oldsymbol{\Gamma}(\mathrm{i}) = \mathrm{E}(\mathrm{X}_t, \mathbf{X}_{t-i au}^T)$ is autocovariance matrix of lag i.
- ullet U is the covariance matrix of the noise.
- lacksquare 2 new parameters p and au .

Autoregressive model formulation

$$\mathbf{X}_t = \sum_{i=1}^p \mathbf{A}_i \mathbf{X}_{t-i au} + arepsilon_{\mathbf{t}}$$

Compute the Yule-Walker equation

$$egin{aligned} oldsymbol{\Gamma(0)} &= \sum_{k=1}^p \mathbf{A}_k oldsymbol{\Gamma}(-k) + \mathbf{U} \;\; for \;\; i = 0 \ oldsymbol{\Gamma(i)} &= \sum_{k=1}^p \mathbf{A}_k oldsymbol{\Gamma}(i-k) \;\; for \;\; i
eq 0 \end{aligned}$$

SPD matrix

$$egin{bmatrix} \Gamma_0 & \Gamma_{-1} & \Gamma_{-2} & \cdots \ \Gamma_1 & \Gamma_0 & \Gamma_{-1} & \cdots \ \Gamma_2 & \Gamma_1 & \Gamma_0 & \cdots \ dots & dots & dots & dots \ \Gamma_{p-1} & \Gamma_{p-2} & \Gamma_{p-3} & \cdots \end{bmatrix} egin{bmatrix} A_1 \ A_2 \ A_3 \ dots \ A_p \end{bmatrix} = egin{bmatrix} \Gamma_1 \ \Gamma_2 \ \Gamma_3 \ dots \ \Gamma_p \end{bmatrix}$$

Two strategies:

- Compute $(\mathbf{A}_i)_{i=1...p}$ and classify.
- Classify the ACM directly.

Augmented Covariance Matrix (ACM)

Riemann distance based classification

Affine Invariant metrics

$$\delta_R(\mathbf{P}_1,\mathbf{P}_2) = \left\|\log\left(\mathbf{P}_1^{-rac{1}{2}}\mathbf{P}_2\mathbf{P}_1^{-rac{1}{2}}
ight)
ight\|_F = \left[\sum_{i=1}^n \log^2\lambda_i
ight]^{1/2}$$

Fréchet mean
 $\mathfrak{G}(\mathbf{P}_1,\ldots,\mathbf{P}_m) = \operatorname*{argmin}_{G\in P(n)} \sum_{i=1}^m \delta_R^2(\mathbf{G},\mathbf{P}_i)$

Alexandre Barachant et al. "Riemannian geometry applied to BCI classification". In: International conference on latent variable analysis and signal separation. Springer. 2010, pp. 629–636.

Maher Moakher. "A differential geometric approach to the geometric mean of symmetric positive-definite matrices". In: *SIAM Journal on Matrix Analysis and Applications* 26.3 (2005), pp. 735–747.

SPD matrix considered

Manifold

$$Cov(X) \, = \, rac{1}{Time-1} \sum_{i=1}^{Time} X_i X_i^T$$

Alternative formulation

$$\Gamma_{aug} = egin{bmatrix} \Gamma_0 & \Gamma_{-1} & \Gamma_{-2} & \cdots \ \Gamma_1 & \Gamma_0 & \Gamma_{-1} & \cdots \ \Gamma_2 & \Gamma_1 & \Gamma_0 & \cdots \ dots & dots & dots & dots \ \Gamma_{p-1} & \Gamma_{p-2} & \Gamma_{p-3} & \cdots \end{bmatrix}$$

Sample Covariance

$$Cov(X) \ = \ rac{1}{Time-1} \sum_{i=1}^{Time} X_i X_i^T$$

Taken's Theorem

Introducing block-Toeplitz covariance matrices to remaster linear discriminant analysis for event-related potential brain–computer interfaces.

Jan Sosulski and Michael Tangermann. JNE, 2022.

Takens Theorem

Let M to be a compact manifold of dimension m. For pairs (Φ, Y) , $\Phi: M \to M$ a smooth diffeomorphism and $Y: M \to \mathbb{R}$ a smooth function, it is a generic property that the map $\varphi_{(\Phi,Y)}: M \to \mathbb{R}^{2m+1}$, defined by

$$\varphi_{(\Phi,Y)}(x) = (Y(x), Y(\Phi(x)), ..., Y(\Phi^{2m}(x)))$$

is an embedding; by "smooth" we mean at least \mathbb{C}^2 . We refer to the function Y as measurement function. By embedding we mean that the reconstructed system and the original system have the same dynamic invariants.

$$s_{R(n)} = \left[s(n),\, s(n- au),\, \ldots,\, s(n-(D-1) au)
ight]^T$$

s(n)

Javier de Pedro-Carracedo et al. "Phase space reconstruction from a biological time series: A photoplethysmographic signal case study". In: *Applied Sciences* 10.4 (2020), p. 1430.

Floris Takens. "Detecting strange attractors in turbulence". In: *Dynamical systems and turbulence, Warwick 1980.* Springer, 1981, pp. 366–381.

Experiments

ID	subjects	channels	sampling rate	sessions	tasks	trials/class	Epoch (s)
Zhou2016	3	14	250 Hz	3	3	160	[0, 5]
BNCI2014001	9	22	250 Hz	2	4	144	[2, 6]
BNCI2015001	12	13	512 Hz	1	2	200	[0, 5]
BNCI2014002	14	15	512 Hz	5	2	80	[3, 8]
BNCI2014004	9	3	$250~\mathrm{Hz}$	1	2	360	[3, 7.5]

Bandpass [8, 35]Hz

Classification of different task

- Right hand vs Left hand.
- Right hand vs Feet.
- Right Hand vs Left Hand vs Feet.

Different evaluation

- Within-session (5 folds Cross Validation).
- Cross-session (LOOCV),

Classification Algorithm

- On Riemann Surface (MDM).
- On Tangent Space (using SVM),

Hyper-parameters

Grid search.

Carrara, I., & Papadopoulo, T. (2023). Classification of BCI-EEG based on augmented covariance matrix. arXiv preprint arXiv:2302.04508.

Vinay Jayaram and Alexandre Barachant. "MOABB: trustworthy algorithm benchmarking for BCIs". In: *Journal of neural engineering* 15.6 (2018), p. 066011.

Classification results on **Right Hand vs Left Hand** task w.r.t the **state of the art** using a **within-session** evaluation procedure.

Dataset	CSP+LDA	AUG+TANG+SVM (Grid Search)	$_{\mathrm{COV}+\mathrm{EN}}$	FgMDM
BNCI2014001	0.85 ± 0.14	0.93 ± 0.09	0.88 ± 0.11	0.88 ± 0.11
BNCI2014004	0.80 ± 0.15	0.83 ± 0.15	0.80 ± 0.15	0.79 ± 0.15
Zhou2016	0.91 ± 0.09	0.95 ± 0.06	0.93 ± 0.07	0.91 ± 0.08

Classification results on **Right Hand vs Left Hand** task w.r.t the **state of the art** using a **within-session** evaluation procedure.

Dataset	CSP+LDA	AUG+TANG+SVM (Grid Search)	COV+EN	FgMDM
BNCI2014001	0.85 ± 0.14	$\boldsymbol{0.93 \pm 0.09}$	0.88 ± 0.11	0.88 ± 0.11
BNCI2014004	0.80 ± 0.15	0.83 ± 0.15	0.80 ± 0.15	0.79 ± 0.15
Zhou2016	0.91 ± 0.09	$\boldsymbol{0.95 \pm 0.06}$	0.93 ± 0.07	0.91 ± 0.08

- 2% to 5% over the second best method !!!
- Easily obtained.

Reduced Dataset setting

1. Reduced Number of Electrodes

Only use the "motor" electrodes: C3, Cz, C4

1. Reduced Number of Electrodes (c3, c4, cz)

Different datasets, different tasks and evaluation procedures.

2. Reduced Training Set

Different datasets, tasks in the Within-Session evaluation framework.

Conclusion

- Augmented Covariance Method is an "easy" way to improve BCI MI classification.
- Introduces only 2 hyper-parameters.
- Classification improvements can be used to reduce the number of channels or the number of training sample, while maintaining an accuracy comparable to the non-ACM state of the art.
 - → More classification improvements.

Future Directions

- Explore different distances.
- Investigate what makes the Riemannian distance so effective.
- Find better ways than Grid Search to estimate hyper-parameters.
- Use the tools of AR models or dynamical system theory.

Thanks for the Attention

To know more, see Igor demo at the end of the session...

And also poster 1-F-51

We are looking for 1 (2) postdocs and 1 engineer \rightarrow Contact me for details.