

План

Линейная регрессия
Решение проблемы вырожденности
Регуляризация, гребневая регрессия, LASSO, Elastic Net
Устойчивая регрессия
Градиентный метод обучения

Линейная регрессия

Гипотеза о линейной зависимости целевой переменной, ищем решение в виде:

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

Практика:

- часто неплохо работает и при монотонных зависимостях
- хорошо работает, когда есть много «однородных» зависимостей:

цель - число продаж

признак 1 – число заходов на страницу продукта

признак 2 – число добавлений в корзину

признак 3 – число появлений продукта в поисковой выдачи

$$a(X_1) = w_0 + w_1 X_1$$

обучение: $\{(x_1, y_1), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}$

хотели бы...

$$\begin{cases} w_0 + w_1 x_1 = y_1 \\ \cdots \\ w_0 + w_1 x_m = y_m \end{cases}$$

невязки / отклонения (residuals):

$$\begin{cases} e_1 = y_1 - w_0 - w_1 x_1 \\ \cdots \\ e_m = y_m - w_0 - w_1 x_m \end{cases}$$

Задача минимизации суммы квадратов отклонений (residual sum of squares)

$$RSS = e_1^2 + \ldots + e_m^2 \rightarrow \min$$

~ задача описания данных гиперплоскостью (но тут конкретная ф-я ошибки) потом вероятностное обоснование, пока... довольно логично

Francis Galton, 1877

Линейная регрессия от одной переменной: геометрический смысл ошибки

$$a(X_1) = w_0 + w_1 X_1$$

$$\sum_{i=1}^{m} (y_i - w_0 + w_1 x_i)^2$$

Отличается от суммы расстояний до поверхности!

Нетрудно показать (Д3):

$$w_{1} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{m} (x_{i} - \overline{x})^{2}} = \frac{\text{cov}(\{x_{i}\}, \{y_{i}\})}{\text{var}(\{x_{i}\})},$$

$$w_0 = \overline{y} - w_1 \overline{x},$$

где
$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_i.$$

Общий случай (многих переменных)

$$a(X_1,\ldots,X_n)=w_0+w_1X_1+\cdots+w_nX_n=x^{^{\mathrm{T}}}w$$
 веса (параметры) – $w=(w_0,w_1,\ldots,w_n)^{^{\mathrm{T}}}$ объект – $x=(X_0,X_1,\ldots,X_n)^{^{\mathrm{T}}}$

для удобства записи вводим фиктивный признак $X_0\equiv 1$

обучение:
$$\{(x_1, y_1), \dots, (x_m, y_m)\}$$
, $x_i \in \mathbf{R}^{n+1}$,

опять хотим решить Xw = y:

$$\begin{cases} x_1^{\mathrm{T}} w = y_1 \\ \dots \\ x_m^{\mathrm{T}} w = y_m \end{cases}$$

как решать?

Общий случай (многих переменных): в матричной форме

$$Xw = y$$

в матрице X по строкам записаны описания объектов, в векторе y значения их целевого признака

(здесь есть коллизия в обозначении у)

будем решать так:

$$||Xw - y||_2^2 \rightarrow \min_{w}$$

почему?

Общий случай (многих переменных): геометрический смысл

Кстати, полученная задача оптимизации выпукла, единственный глобальный минимум

(кроме вырожденного случая)

Решение задачи минимизации: прямой метод

$$||Xw - y||_2^2 \rightarrow \min_w$$

$$||Xw - y||_2^2 = (Xw - y)^{\mathrm{T}}(Xw - y) = w^{\mathrm{T}}X^{\mathrm{T}}Xw - w^{\mathrm{T}}X^{\mathrm{T}}y - y^{\mathrm{T}}Xw + y^{\mathrm{T}}y$$

$$\nabla ||Xw - y||_2^2 = 2X^TXw - 2X^Ty = 0$$

$$X^{\mathrm{T}}Xw = X^{\mathrm{T}}y$$

 $W = (X^{T}X)^{-1}X^{T}y$

решение существует, если столбцы л/н

помним, что
$$\operatorname{rg}(X^{\mathsf{\scriptscriptstyle T}}X) = \operatorname{rg}(X)$$

 $(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}$ – псевдообратная матрица Мура-Пенроуза обобщение обратной на неквадратные матрицы

Обобщённая линейная регрессия: вместо Х – что угодно

выражаем целевое значение через л/к базисных функций

(они фиксированы)

$$a(X_1,...,X_n) = w_0 + w_1 \varphi_1(X_1,...,X_n) + \cdots + w_k \varphi_k(X_1,...,X_n)$$

$$w = (w_0, w_1, ..., w_k)^T$$

 $x = (X_0, X_1, ..., X_n)^T$

$$\varphi(x) = (\varphi_0(x), \varphi_1(x), \dots, \varphi_k(x))^{\mathrm{T}}$$

$$a(x) = \sum_{i=1}^k w_i \varphi_i(x) = \varphi(x)^{\mathrm{T}} w$$

$$\|\varphi(X)w - y\|_2^2 \rightarrow \min_{w}$$

$$\varphi(X) = \begin{bmatrix} \varphi_0(x_1) & \cdots & \varphi_k(x_1) \\ \cdots & \cdots & \cdots \\ \varphi_0(x_m) & \cdots & \varphi_k(x_m) \end{bmatrix}$$

Подробности в нелинейных методах...

Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Только ли вырожденность плоха?

Что делать?

Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Проблемы, когда матрица X плохо обусловлена...

Решения:

- 1. Регуляризация здесь и в «сложности»
- 2. Селекция (отбор) признаков «селекция»
- 3. Уменьшение размерности (в том числе, PCA) USL
- 4. Увеличение выборки

если объектов много – то работать с гигантской матрицей невозможно... но выдели как это делается в оптимизации онлайн-методами

Регуляризация: упрощённое объяснение смысла

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

если есть два похожих объекта, то должны быть похожи метки, пусть отличаются в j-м признаке, тогда ответы модели отличаются на

$$\mathcal{E}_j W_j$$

Поэтому не должно быть очень больших весов

(у признаков, по которым могут отличаться похожие объекты)

Поэтому вместе с
$$||Xw - y||_2^2 \rightarrow \min$$
 хотим $||w||_2^2 \rightarrow \min$

Не на все коэффициенты нужна регуляризация! Почему?

Регуляризация: упрощённое объяснение смысла

Пусть есть какая-то зависимость и лишние признаки, например

$$y = X_1 = X_1 + w'X_2 - w'X_3$$
 при $X_2 = X_3$

Если теперь
$$X_2 pprox X_3$$
, тогда $\mathcal{E} = X_2 - X_3$

$$a = X_1 + w'\varepsilon$$

– может быть сколь угодно большим при больших w^{\prime}

аналогично при линейных зависимостях! автоматически, когда объектов мало (сколько?)

Регуляризация

Иванова

Тихонова

$$\begin{cases} ||Xw - y||_2^2 \rightarrow \min \\ ||w||_2^2 \le \lambda \end{cases}$$

$$||Xw - y||_2^2 + \lambda ||w||_2^2 \rightarrow \min$$

Удобнее: безусловная оптимизация

$$||w||_2^2 = w_1^2 + w_2^2 + \dots + w_n^2$$

эти две формы эквивалентны: решение одного можно получить как решение другого

Всё это справедливо и для общих задач минимизации!

$$\begin{cases} L(a) \to \min \\ \text{complexity}(a) \le \lambda \end{cases}$$

$$L(a) + \lambda \operatorname{complexity}(a) \rightarrow \min$$

Есть ещё регуляризация Морозова...

Регуляризация и гребневая регрессия

$$\displaystyle rg\min_{w} \| \ Xw - y \|_2^2 + \lambda \| \ w \|_2^2 = (X^{ \mathrm{\scriptscriptstyle T}} X + \lambda I)^{-1} X^{ \mathrm{\scriptscriptstyle T}} y$$
 Д3 Доказать! $\lambda \geq 0$

Такая регрессия называется гребневой регрессией (Ridge Regression)

Виден другой смысл регрессии: складываем две матрицы Грама, неотрицательно определённая + положительно определённая

- боремся с вырожденностью матрицы потом вернёмся к этому

 $\lambda = 0$ – получаем классическое решение $\lambda \to +\infty$ – меньше «затачиваемся на данные» и больше регуляризуем Матрица очевидно становится обратимой!

значение параметра регуляризации можно выбрать на скользящем контроле

Минутка кода: регуляризация и гребневая регрессия


```
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.0) # ридж-регрессия
# обучение
model.fit(x_train[:, np.newaxis], y_train)
# обратите внимание: np.newaxis
# контроль
a_train = model.predict(x_train[:, np.newaxis])
a_test = model.predict(x_test[:, np.newaxis])
```

Кажется, что при регуляризации отклоняемся к выбросам, но дело не в этом

Регуляризация и гребневая регрессия

$$\sum_{i=1}^{m} (y_i - a(x_i))^2 + \lambda \sum_{j=1}^{n} w_j^2 \to \min$$

$$\lambda \ge 0$$

добавление shrinkage penalty (регуляризатора)

параметр регуляризации может подбираться с помощью скользящего контроля

Регуляризация и гребневая регрессия

Для ridge-регрессии нужна правильная нормировка признаков! Нет инвариантности (в отличие от линейной) от умножения признаков на скаляры

Перед регуляризацией – стандартизация!!!

LASSO (Least Absolute Selection and Shrinkage Operator)

Попробуем другой «штраф за сложность» (сейчас поймём название)

$$\sum_{i=1}^{m} (y_i - a(x_i))^2 + \lambda \sum_{j=1}^{n} |w_j| \to \min$$

$$\lambda \ge 0$$

Здесь коэффициенты интенсивнее зануляются при увеличении $\lambda \geq 0$

здесь была задача

зависит от масштаба признаков,

но из-за предварительной нормировки этот эффект не наблюдается

Масштаб очень важен! см. дальше


```
np.random.seed(10)
X = np.random.rand(1000, 6)
X[:,1] = X[:,0]
X[:,2] = X[:,3]
X[:,0] = 1 * X[:,0]
X[:,1] = 2 * X[:,1]
X[:,2] = 1 * X[:,2]
X[:,3] = 3 * X[:,3]
X[:,4] = 1 * X[:,4]
X[:,5] = 2 * X[:,5]
y = 1.5 * X[:,0] + 2*X[:,2] +
0.5*np.random.randn(1000)
```

$$Y = 1.5X_1 + 2X_3 = 0.75X_2 + 0.66X_4$$

$$\lambda = 1$$

$$Y = 0.31X_1 + 0.61X_2 + 0.19X_3 + 0.58X_4 + 0.01X_5 + 0.0X_6$$

$$\lambda \sim 10500$$

$$Y = 0.06X_1 + 0.12X_2 + 0.06X_3 + 0.19X_4 + 0.05X_5 + 0.1X_6$$

$$\lambda = 10^{-5}$$

$$Y = 1.53X_1 + 1.94X_3$$

$$\lambda \sim 0.01 Y = 0.76X_2 + 0.65X_4$$

веса зависят от масштаба признаков

при сильной регуляризации меняется распределение весов зависимых признаков

Пусть
$$Y = 4X_1$$
, $X_1 = X_2$

w_1	W_2	$ w _1$	$ w _2^2$
5	- 1	6	26
4	0	4	16
3	1	4	10
2	2	4	8

Эксперименты с одинаковыми и зависимыми признаками: L₂-регуляризация

Эксперименты с одинаковыми и зависимыми признаками: L₂-регуляризация

Эксперименты с одинаковыми и зависимыми признаками: L₁-регуляризация

10°

10°

10¹

Эксперименты с одинаковыми и зависимыми признаками: L₁-регуляризация

10¹

Часто важно

- использовать свободный член
- предварительно нормировать данные

Семейство регуляризированных линейных методов

Ridge

$$||y - Xw||_2^2 + \lambda ||w||_2^2 \rightarrow \min_{w}$$

LASSO (Least Absolute Selection and Shrinkage Operator)

$$||y - Xw||_{2}^{2} + \lambda ||w||_{1} \rightarrow \min_{w}$$

Elastic Net = LASSO + Ridge

$$||y - Xw||_2^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2 \rightarrow \min_{w}$$

Геометрический смысл Ridge, LASSO и Elastic Net

$$\sum_{i=1}^{m} \left(y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} w_j^2 \le s$$

Геометрический смысл Ridge, LASSO и Elastic Net

на практике часто модель и не может зависеть от небольшого числа переменных

Эффект разреженности

если линии уровня оптимизируемой функции - концентрические окружности...

David S. Rosenberg «Foundations of Machine <u>Learning</u>» https://bloomberg.github.io/foml/

Почему L1-норма ⇒ разреженность

1. Больше вероятность, что линии уровней функции ошибки касаются области ограничений в точках с нулевыми координатами, см. рис.

2. L1-норма больше похожа на L0, чем L2

При увеличении коэффициента регуляризации веса стремятся к нулю Обеспечивается автоматическая селекция признаков!

Регуляризация ⇒ **упрощение**

Соблюдение принципа Оккама

регуляризация \Rightarrow зануление коэффициентов \Rightarrow упрощение модели

В целом, неверно, что чем меньше коэффициентов, тем проще модель, но у нас линейная модель..

потом будет обоснование регуляризации с помощью вероятностных предположений

Проблема вырожденности / плохой обусловленности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

- 1. Регуляризация
- 2. Селекция (отбор) признаков
- 3. Уменьшение размерности (в том числе, РСА)
- 4. Увеличение выборки

Селекция признаков в линейной регрессии отдельная тема

Какие признаки включить в модель

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

Маленький обзор стратегий:

1 стратегия – перебор – умный перебор подмножества признаков 2 стратегий – оценка – оценка качества признаков (фильтры) 3 стратегия – автомат – встроенные методы (ex: LASSO)

Обоснование необходимости селекции

- Проблема вырожденности в линейной регрессии
 - Проблема «почти дубликатов»
 - Уменьшение модели и интерпретация
 - Уменьшение стоимости данных

Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

- 1. Регуляризация
- 2. Селекция (отбор) признаков
- 3. Уменьшение размерности (в том числе, РСА)
- 4. Увеличение выборки

обоснование необходимости аналогично селекции

Линейная регрессия: градиентный метод обучения

недостатки прямого...

работа с большими матрицами (тем более обращение)

В лекции «оптимизация»...

$$\frac{1}{2} \sum_{i=1}^{m} (a(x_i \mid w) - y_i)^2 \rightarrow \min$$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) \frac{\partial a(x_i \mid w^{(t)})}{\partial w}$$

$a(x \mid w) = w^{\mathrm{T}} x$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) x_i$$

Stochastic Gradient Descent

$$w^{(t+1)} = w^{(t)} - \eta_t (a(x_i \mid w^{(t)}) - y_i) x_i$$

Линейная регрессия: градиентный метод обучения

Реализация в scikit-learn

sklearn.linear model.Ridge

alpha=1.0	Коэффициент регуляризации, больше – сильнее
	(в отличие от других функций)
fit_intercept=True	Использовать ли свободный член
normalize=False	Нормализация данных
	Игнорируется без свободного члена
solver="auto"	Метод оптимизации
	"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag",
	"saga"
copy X=Tr	ue, max iter=None, tol=0.001, random state=None

sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True,
normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=0.0001,
warm_start=False, positive=False, random_state=None, selection="cyclic")

Две регрессии

Чем отличаются модели 1 и 2?

Две регрессии: y(x) vs x(y)

разные задачи y(x) и x(y), хотя зависимость линейная

$$X_{1} = w_{0} + w_{1}Y$$

$$\begin{bmatrix} y_{1} & 1 \\ \vdots & \vdots \\ y_{m} & 1 \end{bmatrix} \begin{pmatrix} w_{1} \\ w_{0} \end{pmatrix} - \begin{pmatrix} x_{1} \\ \vdots \\ x_{m} \end{pmatrix} \Big|_{2}^{2} \rightarrow \min$$

$$\begin{bmatrix} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 1.0 \end{bmatrix} \xrightarrow{-0.5} \begin{bmatrix} 0.0 \\ 0.5 \end{bmatrix} \xrightarrow{0.5} \begin{bmatrix} 1.0 \\ 0.5 \end{bmatrix} \xrightarrow{1.5} \begin{bmatrix} 2.0 \\ 0.5 \end{bmatrix}$$

есть и «промежуточная стратегия» - дальше РСА

Линейная регрессия – неустойчивость к выбросам

Ошибка с весами

Если у каждого объекта есть цена ошибки...

$$\sum_{i=1}^{m} v_i \left(y_i - w^{\mathsf{T}} x_i \right)^2 + \dots = \sum_{i=1}^{m} \left(\sqrt{v_i} y_i - w^{\mathsf{T}} \left(\sqrt{v_i} x_i \right) \right)^2 + \dots \to \min$$

небольшая переформулировка задачи:

$$\{(x_{1}, y_{1}), \dots, (x_{m}, y_{m})\} \rightarrow \{(\sqrt{v_{1}}x_{1}, \sqrt{v_{1}}y_{1}), \dots, (\sqrt{v_{m}}x_{m}, \sqrt{v_{m}}y_{m})\}$$

$$(y - Xw)^{\mathsf{T}}V(y - Xw) \sim ||V^{1/2}y - V^{1/2}Xw||_{2}^{2} \rightarrow \min_{w}$$

$$w = (X^{\mathsf{T}}VX)^{-1}X^{\mathsf{T}}Vy$$

Ошибка с весами

$$\{(x_1, y_1), \dots, (x_m, y_m)\} \rightarrow \{(\sqrt{v_1}x_1, \sqrt{v_1}y_1), \dots, (\sqrt{v_m}x_m, \sqrt{v_m}y_m)\}$$

Как реализовать:

- 1) перейти к новым данным («испорченными весам»)
- 2) если веса целые числа можно продублировать объекты
- 3) если веса из отрезка [0, 1] при численном градиентном решении можно выбирать следующий объект с соответствующей вероятностью

Устойчивая регрессия (Robust Regression)

0. Инициализация весов объектов

$$v = (v_1, ..., v_m) = (1/m, ..., 1/m)$$

1. Цикл

1.1. Настроить алгоритм, учитывая веса объектов

$$a = fit(\{x_i, y_i, v_i\})$$

1.2. Вычислить ошибки на обучении

$$\varepsilon_i = a(x_i) - y_i$$

1.3. Пересчитать веса объектов

$$v_i = \exp(-\varepsilon_i^2)$$

нормировать на сумму

можно использовать любую регрессионную модель

при пересчёте весов можно использовать другую невозрастающую функцию; можно (иногда нужно) нормировать

RANdom SAmple Consensus (RANSAC)

•несколько раз

- о выбрать случайное подмножество точек базовое (inliers)
- о обучить модель на базовом подмножестве
- найти все точки, которые хорошо предсказываются моделью например, ошибка не больше ε
- о пополнить ими базовое множество
- (если добавили много) переобучить модель на новом множестве
- •выбрать модель с наименьшей ошибкой

Минутка кода: RANSAC в scikit-learn


```
from sklearn.linear_model import RANSACRegressor
# Robustly fit linear model with RANSAC algorithm
ransac = RANSACRegressor()
ransac.fit(x[:, np.newaxis], y)
inlier_mask = ransac.inlier_mask_
outlier mask = np.logical not(inlier_mask)
```

Минутка кода: RANSAC в scikit-learn

sklearn.linear_model import RANSACRegressor

base_estimator=None	Базовый алгоритм (по умолчанию – линейная регрессия)
min_samples=None	Число / доля базовых объектов (<i>n</i> +1)
residual_threshold=None	Порог для пополнения базового множества (MAD(y))
max_trials=100	Число итераций
stop_n_inliers	Остановить вычисления, если найдено столько базовых точек
loss="absolute_loss"	Как оценивать ошибку

is_data_valid=None, is_model_valid=None, max_skips=inf,
stop_score=inf, stop_probability=0.99, lossrandom_state=None

Реализация в scikit-learn немного отличается от некоторых описаний:

Качество = число базовых (inliers) объектов; лучшая модель выбирается по числу базовых, если у нескольких моделей число совпадает, тогда сравнивается ошибка на всей выборке.

Плюсы и минусы линейных алгоритмов

- + простой, надёжный, быстрый, популярный метод
- + интерпретируемость (\Rightarrow нахождение закономерностей)
 - + интерполяция и экстраполяция
- + может быть добавлена нелинейность, с помощью генерации новых признаков

(дальше – это можно автоматизировать)

- + хороши для теоретических исследований (в Rldge есть явная формула)
 - + коэффициенты асимптотически нормальны

(можно тестировать гипотезы о влиянии признаков)

- + глобальный минимум в оптимизируемом функционале
 - линейная гипотеза вряд ли верна
- в теоретическом обосновании ещё предполагается нормальность **ошибок**

(зависит от функции ошибок)

- «страдает» из-за выбросов
- признаки в одной шкале и однородные (см. успешные примеры)
 - проблема коррелированных признаков
 - ⇒ необходимость регуляризации, селекции, РСА, data↑