

Integrated Optimisation of Public Transport System

Dr. Yu Jiang Associate Professor Technical University of Denmark

Introduction of Public Transport

- A passenger trip could rely on both frequency-based service and schedule-based public transport service.
- 2. However, existing studies design frequency and schedule separately.

Most Significant Contribution: A New Framework for Public Transport Network Design

Existing framework since Ceder and Wilson (1987)

RGC Potential Impact

- 1. Reach: commuter, operators
- 2. Significance: services, industry, organisations, government

Overview of the Model

Demand, Travel Time <u>Input</u> Minimise <u>Objective</u> Total Travel Cost + Operation Cost **Operational Constraints for** <u>s.t.</u> Stochastic User Equilibrium with a Bounded Choice Set (BSUE) **Realistic Seating Constraints**

Mixed-integer linear programming formulation

Output

Frequency, Timetable, Flow

Stochastic User Equilibrium with a Bounded Choice Set (BSUE)

Every path will be selected with a probability

Stochastic User Equilibrium with a Bounded Choice Set (BSUE)

Every path will be selected with a probability

Formulation of BSUE

Linearization

Step 1.

$$\frac{p_{r, \text{BSUE}}}{p_{r', \text{BSUE}}} = \frac{\exp\left(-\theta\left(\pi_r - \min\left\{\pi_{r''} : r'' \in \mathcal{R}_{\text{BSUE}}\right\} - \eta\right)\right) - 1}{\exp\left(-\theta\left(\pi_{r'} - \min\left\{\pi_{r''} : r'' \in \mathcal{R}_{\text{BSUE}}\right\} - \eta\right)\right) - 1}$$

Step 2.

Introducing auxiliary variable y_r $y_r = \exp\left(-\theta\left(\pi_r - \min\left\{\pi_{r''}: r'' \in \mathcal{R}_{\text{BSUE}}\right\} - \eta\right)\right) - 1$

$$\ln(p_{r,\text{BSUE}}) - \ln(p_{r',\text{BSUE}}) = \ln(y_r) - \ln(y_{r'})$$

Introducing two more auxiliary variables

$$\chi_{r,\text{BSUE}} = \ln(p_{r,\text{BSUE}})$$
 $z_{r,\text{BSUE}} = \ln(y_r)$

$$\chi_{r,\text{BSUE}} - \chi_{r',\text{BSUE}} = z_{r,\text{BSUE}} - z_{r',\text{BSUE}}$$

Step 4.

Finally apply the techniques to linearize the logarithmic equation

Realistic Seating Behaviour

Seating passengers maintain seated

Standing passengers take a seat when vehicle become uncongested

Stepwise congestion cost

$$\Delta_{l,(i,j)}^{\text{congest}} \begin{cases} = 1, \text{ if } v_{l,(i,j)}^{\text{onboard}} \leq Cap_{l,(i,j)}^{\text{seat}} \\ = 0, \text{ if } v_{l,(i,j)}^{\text{onboard}} > Cap_{l,(i,j)}^{\text{seat}} \end{cases}$$

Binary decision variable = 1, if the number of passengers is less than the number of seat

$$\Delta_{r,l,(i,j)}^{w,\text{seat}}$$
 = 1, if the passenger has a seat = 0, otherwise

Binary decision variable = 1, if passengers can take a seat

Set of Constraints

$$\Delta_{r,l,(i,j)}^{\text{seat}} \leq \Delta_{r,l,(j,k)}^{\text{seat}} \qquad \Delta_{r,l,(j,k)}^{\text{seat}} \geq \Delta_{l,(j,k)}^{\text{congest}}$$

$$\Delta_{r,l,(i,j)}^{\text{seat}} = \Delta_{l,(i,j)}^{\text{congest}} \qquad \Delta_{l,(j,k)}^{\text{congest}} + \Delta_{r,l,(i,j)}^{\text{seat}} \geq \Delta_{r,l,(j,k)}^{\text{seat}}$$

Correctness of the Constraints (I)

Scenarios			Congestion status		Seating status	
No.	Description	$\Delta_{l,(i,j)}^{ ext{congest}}$	$\Delta_{l,(j,k)}^{ ext{congest}}$	$\Delta_{r,l,(i,j)}^{w,\mathrm{seat}}$	$\Delta^{w, { m seat}}_{r,l,(j,k)}$	
I	Both (i, j) (j, k) are congested, passengers do not have seat on the two links	0	0	0	0	
II	Both (i, j) (j, k) are not congested, passengers stay seated on the two links	1	1	1	1	
III	(i, j) is congested, passengers do not have a seat.(j, k) becomes uncongested and passengers take a seat.	0	1	0	1	
IV	(i, j) is not congested and passengers take a seat.(j, k) become congested. Seating passengers main seated.	1	0	1	1	

All satisfy the constraints

Correctness of the Constraints (II)

4 decision variables, $2^4 = 16$ possible combinations

No.	$\Delta_{l,(i,j)}^{ ext{congest}}$	$\Delta_{l,(j,k)}^{ ext{congest}}$	$\Delta^{\scriptscriptstyle{\mathrm{W}},seat}_{r,l,(i,j)}$	$\Delta^{w,\mathrm{seat}}_{r,l,(j,k)}$	Violated Constraint
1	0	0	0	0	None. Scenario I
2	0	0	0	1	$\Delta_{l,(j,k)}^{\text{congest}} + \Delta_{r,l,(i,j)}^{\text{iv,seat}} \ge \Delta_{r,l,(j,k)}^{\text{iv,seat}} (0+0 \ge 1)$
3	0	0	1	0	$\Delta_{r,l,(i,j)}^{\text{\tiny MF,seat}} \leq \Delta_{r,l,(j,k)}^{\text{\tiny MF,seat}} \left(1 \leq 0\right)$
4	0	0	1	1	$\Delta_{r,l,(i,j)}^{\text{tr,seat}} = \Delta_{l,(i,j)}^{\text{congest}} \ (1=0)$
5	0	1	0	0	$\Delta^{w,\text{seat}}_{r,l,(j,k)} \ge \Delta^{\text{congest}}_{l,(j,k)} \ (1 \ge 0)$
6	0	1	0	1	None. Scenario III
7	0	1	1	0	$\Delta_{r,l,(i,j)}^{\text{\tiny Mr,seat}} \leq \Delta_{r,l,(j,k)}^{\text{\tiny Mr,seat}} \ (1 \leq 0)$
8	0	1	1	1	$\Delta_{r,l,(i,j)}^{w,\text{seat}} = \Delta_{l,(i,j)}^{\text{congest}} \ (1=0)$
9	1	0	0	0	$\Delta_{r,l,(i,j)}^{\text{W},\text{seat}} = \Delta_{l,(i,j)}^{\text{congest}} (0=1)$
10	1	0	0	1	$\Delta_{r,l,(i,j)}^{\text{\tiny NF,seat}} = \Delta_{l,(i,j)}^{\text{congest}} (0=1)$
11	1	0	1	0	$\Delta^{\text{\tiny{Mr,seat}}}_{r,l,(i,j)} \leq \Delta^{\text{\tiny{Mr,seat}}}_{r,l,(j,k)} (1 \leq 0)$
12	1	0	1	1	None. Scenario IV
13	1	1	0	0	$\Delta_{r,l,(i,j)}^{\text{\tiny MF,seat}} = \Delta_{l,(i,j)}^{\text{congest}} (0=1)$
14	1	1	0	1	$\Delta_{r,l,(i,j)}^{\text{W,seat}} = \Delta_{l,(i,j)}^{\text{congest}} (0=1)$
15	1	1	1	0	$\Delta_{r,l,(i,j)}^{\text{\tiny NF,seat}} \leq \Delta_{r,l,(j,k)}^{\text{\tiny NF,seat}} \left(1 \leq 0\right)$
16	1	1	1	1	None. Scenario II

Except the four scenarios, all other combinations violate one or more constraints

Solution: Overview

Results: Schedule Synchronisation "Paradox"

Figure 1 Network and data for demonstrating the paradox phenomenon

Table 1 Results of the before and after study

Cases	Paths	Used Path	Path Flow	Path Cost	Total Travel Cost	
Before	Path 1	Yes	150.00	32.50	4875.00	
	Path 2	No	-	(51.00)		
After	Path 1	Yes	142.48	32.12	4885.34	
	Path 2	Yes	7.52	41.00		

Comprehensive discussions of Paradoxes will be presented in another **single author** paper under preparation

A Variational Inequality Formulation for the Stochastic User Equilibrium with a Bounded Choice Set

