CS601: Software Development for Scientific Computing

Autumn 2022

Week6: Motifs – Matrix Computations with Dense and Sparse Matrices, Accelerating computation with FFTs

Last week...

- Three fundamental ways to multiply two matrices
 - Comprising of dot products, linear combination of the left matrix columns, outer product updates
 - Commonly occurring algorithmic patterns / kernels :

Dot product, AXPY and GAXPY, outer product, matrix-vector product, matrix-matrix product

- Linear algebra software (BLAS, LAPACK)
 - BLAS routines and categorization
- Algorithmic costs
 - Arithmetic cost
 - Data movement cost
- Computational intensity (examples: axpy, matvec, matmul)

Last week - Communication Cost

```
//Assume A, B, C are all nxn
for i=1 to n
for j=1 to n
  for k=1 to n
    C(i,j)=C(i,j) + A(i,k)*B(k,j)
```

- loop k=1 to n: read C(i,j) into fast memory and update in fast memory
- End of loop k=1 to n: write C(i,j) back to slow memory
- Reading column j of B
- Suppose there is space in fast memory to hold only one column of B (in addition to one row of A and 1 element of C), then every column of B is read from slow memory to fast memory once in inner two loops.
- Each column of B read n times including outer i loop = n³ words read

- •• n² words read: each row of A read once for each i.
- Assume that row i of A stays in fast memory during j=2, .. J=n
- Reading a row i of A

n² words read and n² words written (each entry of C read/written to memory once).

= 2 n² words read/written

total cost = $3 n^2 + n^3$ (if the cache size is n+n+1)

Last week – Computational Intensity of Matmul (ijk)

- Words moved = $n^3+3n^2 = n^3+O(n^2)$
- Number of arithmetic operations = $2n^3$ (from slide 35)
- computational intensity q≈2n³/n³ = 2. (computation to communication ratio)

Same as q for matrix-vector?
What if the fast memory has more space? more than just two columns + one element space?

Can we do better?

Last week - Blocked Matrix Multiply

• For N=4:

$$\begin{bmatrix} Cj \\ = \end{bmatrix} \begin{bmatrix} Cj \\ + \end{bmatrix} \begin{bmatrix} A \\ \end{bmatrix} * \begin{bmatrix} Bj \\ \end{bmatrix} = \begin{bmatrix} Cj \\ + \sum \\ k=1 \end{bmatrix} * \begin{bmatrix} A(:,k) \\ \end{bmatrix} Bj(k,:)$$

```
for j=1 to N
  //Read entire Bj into fast memory
  //Read entire Cj into fast memory
  for k=1 to n
      //Read column k of A into fast memory
      Cj=Cj + A(*,k) * Bj(k,*)
  Nikhil Heade //Write Cj back to slow memory
```

Last week – Computational Intensity

```
for j=1 to N
//Read entire Bj into fast memory of B read once.
//Read entire Cj into fast memory
for k=1 to n
//Read column k of A into fast memory column of A read N times
C(*,j)=C(*,j) + A(*,k)*Bj(k,*) //outer-product
//Write Cj back to slow memory
• Number of arithmetic operations = <math>2n^3
vords read: each column
Nn^2 words read: each
Nn^2 words read: 2n^2 words read: read/write each entry of C to memory once.
```

Nikhil Hegde

Blocked Matrix Multiply - General

$$\begin{bmatrix} C_{11} & C_{12} & \dots & C_{1r} \\ C_{21} & C_{22} & \dots & C_{2r} \\ \vdots & & & \vdots \\ C_{q1} & C_{q2} & \dots & C_{qr} \end{bmatrix} \qquad \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1p} \\ A_{21} & A_{22} & \dots & A_{2p} \\ \vdots & & & \vdots \\ A_{q1} & A_{q2} & \dots & A_{qp} \end{bmatrix}$$

$$\begin{bmatrix} B_{11} & B_{12} & \dots & B_{1r} \\ B_{21} & B_{22} & \dots & B_{2r} \\ & & \vdots & & \\ B_{p1} & B_{p2} & \dots & B_{pr} \end{bmatrix}$$

- $A, B, C \in \mathbb{R}^{n \times n}$
- We wish to update C block-by-block: $C_{ij} = C_{ij} + \sum_{k=1}^{p} A_{ik}B_{kj}$
 - Assume that blocks of A, B, and C fit in cache. C_{ij} is roughly n/q by n/r, A_{ij} is roughly n/q by n/p, B_{ij} is roughly n/p by n/r.
 - But how to choose block parameters p, q, r such that assumption holds for a cache of size *M*?
 - i.e. given the constraint that $\frac{n}{a} \times \frac{n}{r} + \frac{n}{a} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

Blocked Matrix Multiply - General

• Maximize $\frac{2n^3}{qrp}$ subject to $\frac{n}{q} \times \frac{n}{r} + \frac{n}{q} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

$$-q_{opt} = p_{opt} = r_{opt} \approx \sqrt{\frac{3n^2}{M}}$$

- Each block should roughly be a square matrix and occupy one third of the cache size
- Can we design algorithms that are independent of cache size?

Recursive Matrix Multiply

- Cache-oblivious algorithm
 - No matter what the size of the cache is, the algorithm performs at a near-optimal level
- Divide-conquer approach

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- Apply the formula recursively to $A_{11}B_{11}$ etc.
 - Works neat when n is a power of 2.
- What layout format is preferred for this algorithm?
 - Row-major or Col-major? Neither.

Recursive Matrix Multiply

Cache-oblivious Data structure

```
      1
      2
      5
      6
      17
      18
      21
      22

      3
      4
      7
      8
      19
      20
      23
      24

      9
      10
      13
      14
      25
      26
      29
      30

      11
      12
      15
      16
      27
      28
      31
      32

      33
      34
      37
      38
      49
      50
      53
      54

      35
      36
      39
      40
      51
      52
      55
      56

      41
      42
      45
      46
      57
      58
      61
      62

      43
      44
      47
      48
      59
      60
      63
      64
```

- Matrix entries are stored in the order shown
 - E.g. row-major would have 1-8 in the first row, followed by 9-16 in the second and so on.

Nikhil Hegde

Summary- matmul

 Unblocked Matrix Multiplication - Loop Orderings and Properties

Loop Order	Inner Loop	Inner Two Loops	Inner Loop Data Access
i j k	dot	Vector x Matrix	A by row, B by column
jki	saxpy	gaxpy	A by column, C by column
kji	saxpy	Outer product	A by column, C by column
(3 more rows here)			

Ref: Matrix Computations, 4th Ed., Golub and Van Loan

- Blocked matrix multiplication
 - Column blocking, row blocking, tiling
- Recursive matrix multiplication
 - Divide-conquer, Strassen's
- Many more?

Efficiency Considerations for a High-Performing Implementation

- Cache details (size)
- Data movement overhead
- Storage layout
- Parallel and 'special' functional Units (e.g. Vector units and fused multiply-add)

Nikhil Hegde 12

Parallel Functional Units

- IBM's RS/6000 and Fused Multiply Add (FMA)
 - Fuses multiply and an add into one functional unit (c=c+a*b)
 - The functional unit consists of 3 independent subunits : Pipelining
 - Example: Suppose the FMA unit takes 3 cycles to complete,

```
sum=0.0
for (i=0;i<n;i++)
   sum=sum+a[i]*b[i]</pre>
```

how many cycles do you need to execute this code snippet?

```
sum=0.0
for (i=0;i<n;i+=4)
  sum=sum+a[i]*b[i]
  sum=sum+a[i+1]*b[i+1]
  sum=sum+a[i+2]*b[i+2]
  sum=sum+a[i+3]*b[i+3]</pre>
```

how many cycles do you need to execute this code snippet?

Matrix Structure and Efficiency

- Sparse Matrices
- Admit optimizations w.r.t.
- E.g. banded matrices
- Diagonal
- Tridiagonal etc.
- Symmetric Matrices

- Storage
- Computation

Sparse Matrices - Motivation

 Matrix Multiplication with Upper Triangular Matrices (C=C+AB)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_{11} & b_{12} & b_{13} \\ 0 & a_{22} & a_{23} & 0 & b_{22} & b_{23} \\ 0 & 0 & a_{33} & 0 & 0 & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{13} & a_{14} & a_{15} & a_{15}$$

$$\begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} + a_{12} b_{22} & a_{11}b_{13} + a_{12} b_{23} + a_{13} b_{13} \\ 0 & a_{22}b_{22} & a_{22}b_{23} + a_{23} b_{33} \\ 0 & 0 & a_{33}b_{33} \end{bmatrix}$$

AB

The result, A*B, is also upper triangular.

The non-zero elements appear to be like the result of *inner-product*

Sparse Matrices - Motivation

 C=C+AB when A, B, C are upper triangular for i=1 to N

- Cost = $\sum_{i=1}^{N} \sum_{j=i}^{N} 2(j-i+1)$ flops (why 2?)
- Using $\Sigma_{i=1}^{N} i \approx \frac{n^2}{2}$ and $\Sigma_{i=1}^{N} i^2 \approx \frac{n^3}{3}$
- $\sum_{i=1}^{N} \sum_{j=i}^{N} 2(j-i+1) \approx \frac{n^3}{3}$, 1/3rd the number of flops required for dense matrix-matrix multiplication