Thursday, January 24, 2019

10:49 PM

THE PHYSICAL LAYER

Physical: The way bits are transported: Makes up a link layer frame across media

Accepts frames/encodes them as signals transmitted onto media

3 media forms: Governed by: IETF/ISO/IEEE/TIA/EIA/ITU/ANSI

- 1. Copper: Electrical
- 2. Fiber: Light
- 3. Wireless: Radio transmission

The physical layer standards address 3 areas:

- 1. Components
- 2. Encoding
- 3. Signaling

Components	Hardware/connectors (transmits signals to represent bits)
Encoding	Conversion of streaming bits into predefined codes
Code	Groupings of bits: Provides patterns recognized by sender/receiver
Encoding	Pattern of voltage/current used to represent bits: 0 1

Manchester encoding: Used in versions of Ethernet/RFID/NFC

0 == High-to-low voltage transition

1 == Low-to-high voltage transition

NRZ: Non-Return to Zero: Encoded data has 0 and 1 but no neutral or rest position

0 == One voltage level on media

1 == Different voltage

Signal transmission done one of 2 ways:

- 1. Asynchronous: Signals transmitted without an associated clock signal
 - Time spacing between characters/blocks can be arbitrary
 - Frames require START/STOP indicator flags
- 2. Synchronous: Signals sent along a clock signal that occurs at bit time
 - Bit time: Evenly spaced duration

Modulation: Process which characteristics of 1 wave (signal) modifies another (carrier) **Modulation techniques widely used in transmitting data:**

	· · · · · · · · · · · · · · · · · · ·
FM	Frequency Modulation: Carrier frequency varies in accordance w/signal
AM	Amplitude Modulation: Amplitude varies in accordance with signal
PCM	 Pulse-Coded Modulation: Analog signals (voice) converted to digital by sampling amplitude/expressing diff amplitudes as bin nums Sampling rate must be at least 2x highest frequency

Nature of signals representing bits depends on signaling method:

• Some may use one attribute of signaling to represent a 0: Another to represent 1

Bandwidth: The capacity of a medium to carry data:

Measures data flow from one place to another in a given time

Bandwidth determined partially by:

- 1. Media properties
- 2. Tech chosen for signaling/detecting signals

Throughput/Goodput: Measures transfer of bits across media in given time

Factors that influence throughput: Amount of traffic || Type of traffic

- · Latency created by num of devices encountered bet source/dest
- Throughput can't be faster than slowest link from source/dest
- Even if segments have high bandwidth:
 - Creates bottleneck via 1 segment in path with low throughput

Goodput: Measures usable data transferred over given period of time

Throughput: Overhead (established sessions/acknowledgements, encapsulations)

Copper Media: Low resistance to current (limited by distance/interference)

· Data transmitted as electrical pulses can successfully decode to match sent signals

Attenuation: The longer a signal travels, the more it deteriorates

Interference from 2 sources:

- 1. EMI: Electromagnetic Interference
- 2. RFI: Radio Frequency Interference

EMI/RFI: Distorts/corrupts signals carried by copper

• Radio waves/electromagnetic devices/fluorescent lights etc..

Crosstalk: Disturbance caused by electric/magnetic fields of a signal on one wire to another

• Current/circular magnetic fields created around wires that can be picked up by other wires **Countering**:

EMI/RFI Copper cables: Wrapped in metallic shielding that require groundings **Crosstalk** Copper cables: Opposing circuit wire pairs twisted together (cancels)

Electronic noise reduction:

- Cable/category most suited to network environment
- Design infrastructure to avoid potential sources of interference
- Use cabling techniques that include proper handling/termination

Copper Media:

- Interconnects nodes on LAN/devices (switches/routers/access points)
- Each type/device has requirements stipulated by physical standards
- A single physical connector may be used for many types of connections

UTP: Unshielded Twisted Pair STP: Shielded twisted pair Coaxial

UTP Unshielded Twisted-Pair Cable:

- Terminated with ISO 8877 RJ-45's
- Interconnects network hosts with intermediate devices (switches/routers)
- 4 pairs of color-coded wires twisted together/encased in plastic sheath
- · Twisting wires helps protect against signal interference
- 22 or 24 gauge copper wire
- External diameter of approximately .43cm or .17in

Color coding:

Orange-white Orange	Blue-White	Blue	Green-white	Green	Brown-white	Brown

UTP Cabling/Cabling Standards: Crosstalk limited by:

Cancellation	Wires paired in a circuit		
Number of twists per pair	Twists of each pair vary:		
	 O/orange-white less than b/white-blue pairs 		

TIA/EIA-568A stipulates commercial cabling standards for LAN installations

Some elements defined: Types/lengths/connectors/terminations/methods of testing

IEEE: Characteristics of copper cabling/placed into categories based on ability to carry bandwidth

	11 01 0
Cat3	 Voice communication/phone lines
Cat5/5e	Data transmission: 568 standardSupports: 100 Mbps & 1000 Mbps (Gigabit)
Cat6	 Data transmission: 568 standard Separator added bet each pair of wires: Allows higher speeds Supports 1000 Mbps & up to 10 Gbps
Cat7 (ScTP)	• Individual pairs wrapped in shield: 4 pairs wrapped in another shield

UTP Connectors:

- TIA/EIA 568 standard describes wire colors to pin-outs for Ethernet
- Male component: RJ-45 (socket female)
- · Each time cabling terminated: Chance of signal loss/introduction of noise

Cable types for specific wiring conventions:

Straight-Through	Connect a host to switch/switch to routerBoth ends: Either 568A/568B
Crossover	 Connect similar devices: Switch to switch/host to host/router to router Also used to directly connect host to router One end: 568A One end: 568B
Rollover	Cisco-proprietary cable: Router/switch console portPin 1 is Pin 6 on other end

Testing UTP Cables: Wire map/length/sig loss b/c of attenuation/crosstalk **STP Shielded Twisted-Pair Cable:**

- Better noise protection than UTP: More expensive: Diff to install
- Combines shielding to counter EMI/RFI: Wire twisting to counter crosstalk
- Gain benefit: STP cables terminated with shielded STP data connectors
- Improperly grounded shields: Can act like antennas/pick up unwanted signals

Uses 4 pairs of wires:

- Each wrapped in foil shield: Then wrapped in overall metallic braid/foil
- 10GB: Standard Ethernet has provision for STP

2 most common variations of STP cables:

- 1. Cable shields entire bundle of wires with foil (no interference)
- 2. Cable shields entire bundle of wires and individual pairs with foil (no interference)

Coaxial: Derived name because 2 conductors share the same axis

- Copper conductor transmits electronic signals and is surrounded by plastic insulation **Insulating material woven copper braid/metallic foil:**
 - Acts as second wire in circuit/shield for inner conductor

- Second layer/shield reduces electromagnetic interference
- Different connector types: F//N types/BNC

COAXIAL CABLE

UTP: Mostly replaced coax in modern Ethernet installations: Still adapted for:

Wireless	Cables attached to antennas/wireless devices: • RF's between antennas/radio equipment
Cable	Portions of coax/elements replaced w/fiber: Final connections coax • HFC: Hybrid Fiber Coax: Combined use of fiber/coax

Copper safety: All types susceptible to fire/electrical hazards

Cable insulation/sheaths: Flammable/produce toxic fumes/conduct electricity in bad ways **Cabling practices to avoid hazards**:

- 1. Maintain separation of data/electrical power
- 2. Connect cables properly/Inspect for damage
- 3. Properly ground equipment

Fiber-Optic Cabling

- Flexible/extremely thin transparent strands of glass (silica): Like human hair
- · Bits encoded as light impulses
- · Cable acts as wave guide to transmit light between 2 ends with minimal loss of signal
- Less attenuation/immunity to EFI/RFI

Fiber-optic cabling now used in 4 industry network types:

	-		•	71	
Enterprise	Backbone cablin	g applications	s/interconi	necting in	nfrastructure
FTTH	Networks	me etworks to cor range from fe bps-based sy	w dozen-t		
Submarine	High-speed/capa	acity solutions	s capable	of survivi	ng harsh undersea environments

Cable Design:

Core	Pure glass/where light carried
Cladding	Glass that surrounds core: Acts as mirror • Light pulses propagate down core: Cladding reflects pulses • Keeps pulses contained in core: Total internal reflection
Jacket	 PVC jacket protects core/cladding Can include strengthening materials/buffer (coating) to protect glass from scratches/moisture

Types of fiber media:

- 1. Lasers
- 2. LED: Light Emitting Diodes
 - Photodiodes (electronic semiconductors) detect light pulses/convert them to voltages
 - These voltages can be reconstructed into data frames

Fiber broadly classified into 2 types: SMF/MMF

Single-Mode	Single light beam down center • Small core: Uses expensive laser tech to send ray of light • Good: Long-distance spanning 100's of kilometers (telephony/ cable TV applications)
Multimode	Reflection of light bouncing inside fiber (many paths/modes) • Larger core: Uses LED emitters to send light pulses • Light from LED enters MMF at different angles • Good for LANS: Can be powered by low cost LEDS • Bandwidth up to 10Gbps over lengths up to 550 meters

Dispersion: Spreading out of a light pulse over time The major difference between SMF/MMF cabling

- Use of 1 laser in SMF: Less dispersion
- The more dispersion: The greater signal loss/less distance of signal over fiber

Network Fiber Connectors: Connector terminates end of optical fiber

• Main diff among connector types: Dimensions/methods of mechanical coupling 3 most popular network fiber connectors

ST: Straight-tip	Older bayonet style connector: MMF/SMF
SC: Subscriber Connector	Square/standard connector: MMF/SMF • LAN/WAN uses push-pull mechanism for positive insertion
LC: Lucent Connector	Little/local connector: SMF/supports MMF

Other connectors:

- FC: Ferrule Connector
- SMA: Sub Miniature A

Obsolete connectors: Biconic, D4

- Light tends to travel in 1 direction over fiber: 2 fibers required to support full-duplex
- Cables bundle together: Terminate with pair of standard single fiber connectors
- Some connectors accept both transmitting/receiving fibers: Duplex connector

Simplex: 1 strand: 1 way communication (telephony)

Full duplex: Both parties communicate with each other simultaneously **Half duplex:** Transmission of signals in both directions: Not simultaneously

Common patch cords:

- SC-SC (multimode), LC-LC (single-mode), ST-LC (multimode), SC-ST (single-mode)
- · Cables should be protected with plastic cap when not in use
- TIA-598 standard is yellow jackets for SMF and orange (or aqua) for MMF cables

3 most common types of fiber termination/splicing errors:

	· · · · · · · · · · · · · · · · · · ·
Misalignment	Fiber-optic media isn't aligned to one another when joined
End Gap	Media doesn't completely touch at the splice/connection
End Finish	Media ends aren't well polished/Dirt is present at the termination

OTDR: Optical Time Domain Reflectometer: Used to test fiber-optic cable segments

Flashlight: Can also be used

Fiber vs. Copper

- Fiber: More expensive over the same distance: Higher capacity
- Different skills/equipment required to terminate/splice
- More careful handling than copper

Wireless Media: Carries electromagnetic signals that represent binary digits of data using radio/microwave frequencies

• Not restricted to conductors or pathways, as copper/fiber

Areas of concern in wireless:

Coverage	Good in open environments/Certain materials can limit coverage		
Interference	Susceptible to interference/can be disrupted by common devices		
Security	Fairly open/unauthorized users can gain access to transmissions		

Types of wireless media (IEEE):

802.11	WLAN: Wi-Fi: Contention/nondeterministic system with • Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
802.15	WPAN: Wireless Personal Area Network: BT:Device pairing processes to communicate over distances 1-100 meters
802.16	WiMAX: Worldwide Interoperability for Microwave Access: • Point-to-multipoint topology to provide wireless broadband access

Physical layer specifications applied to areas include:

- · Data-to-radio signal encoding
- Frequency/power of transmission
- · Signal reception/decoding requirements
- Antenna design/construction

WiFi Standards:

Standard	Max Speed	Frequency	Backward Compatibility
802.11a	54Mbps	5Ghz	No
802.11b	11Mbps	2.4Ghz	No
802.11g	54Mbps	2.4Ghz	802.11b
802.11n	600Mbps	2.4Ghz/5Ghz	802.11a/b/g
802.11ac	1.3Gbps	2.4Ghz/5Ghz	802.11a/b/g/n
802.11ad	7Gbps	2.4Ghz/5Ghz/60Ghz	802.11a/b/g/n/ac