## revisão - Discos

- Tempo médio de acesso
  - = tempo médio de movimentação do braço (seek)
  - + latência rotacional média
  - + tempo de transferência
  - + tempo do controlador
- Cache no controlador para tirar proveito de localidade
  - \* falta de energia durante escrita de metadados corrompe sistema de arquivos
  - \* mesmos problemas que fila de escrita (riscos RAW a WAW)
- RAID usar discos baratos para aumentar desempenho – acessos em paralelo (striping) e
   melhorar confiabilidade – paridade

LIEPR Dento de Informática

ci212 - E/S (ii): barramentos e redes

2007-1

#### Entrada e Saída

- Tipos e Características de Dispositivos
- Arquitetura do Sistema de E/S
- Discos
- Redes
  - \* protocolos
  - \* desempenho
  - \* topologias
- Barramentos, vazão e latência
  - \* síncronos vs assíncronos
  - \* vazão e latência
- Dispositivos, Interfaces com CPU e com Sist Operacional
- Desempenho e projeto

HEPR Dento de Informática

2007-1

# ci212 — E/S (ii): barramentos e redes

### Modelo de rede



nó contém CPU, memória, periféricos enlace (link) conecta nó à "rede" (faz parte dela?) rede interliga os nós

HEPR Dento de Informática

# Modelo de comunicação



- Quem transmite?
- quando transmite?
- como interpreta mensagem?
- como garante que mensagem chegou ao destino?
- como garante que mensagem recebida está correta?
- protocolo determina as respostas

HEPR Nanto de Informática

ci212 — E/S (ii): barramentos e redes

2007-

### **Protocolos**

#### Protocolo deve prover:

- endereçamento máquinas + processos
- tipos de mensagem requisição, resposta, aceitação/recibo
- proteção entre processos na mesma máquina cópias indevidas
- entrega confiável todas msgns recebidas, corretas, em ordem
  - \* conteúdo alterado? paridade/checksum
  - $\star$  mensagem perdida? retransmissão + temporizadores + buffers
  - \* duplicação de mensagens
  - ⋆ ordenação de mensagens
  - ★ controle de fluxo (≠s velocidades de/entre fonte e destino)
- minúcias (mas nem tanto):
  - ★ ordem dos bytes (big/little endian)
  - $\star$  simplex  $(\rightarrow)$ , semi-dúplex  $(\rightarrow \leftarrow)$ , dúplex  $(\rightleftharpoons)$

IIEPR Danto de Informática

ci212 — E/S (ii): barramentos e rede

2007-1

# Anatomia de uma mensagem

ender fonte nome de máquina

ender destino

processo fonte nome de processo ou "porta"

processo destino

tipo de msgm {req, rsp, act, crtlFluxo} núm seqüência seqüenciamento, duplicações controle de fluxo buffer overflow/underflow

checksum detecção de erros

carga É O QUE REALMENTE INTERESSA

HEPR Dento de Informática 6

ci212 — E/S (ii): barramentos e red

2007-1

### Modelo Estratificado

Quantos protocolos distintos são envolvidos na leitura de uma página da Internet? (de casa, com banda-larga)

### Resposta super-simplificada:

**aplicação** HTTP – interpretação dos comandos no código da página, exposição na tela do navegador

**transporte** TCP – transporte confiável através de uma rede de redes precárias

rede IP – transporte precário sobre inúmeras redes físicas ≠s enlace 802.2, PPP – transporte lógico sobre um meio físico físico Ethernet, ADSL – rede física (primeiro e último passos)

 TIEPR Danto de Informática
 7

 ci212 — E/S (ii): barramentos e redes
 2007-1

# Modelo Estratificado - modelo internet

| # | camada     | função                                               | exemplo   |
|---|------------|------------------------------------------------------|-----------|
| 5 | aplicação  | funções típicas da aplicação                         | smtp,http |
| 4 | transporte | entrega confiável de fluxos de bytes                 | tcp       |
| 3 | rede       | interliga e compatibiliza redes ≠s                   | ip        |
| 2 | enlace     | transforma pacotes em quadros $(\rightleftharpoons)$ | 802.*     |
| 1 | físico     | transmite bits pelo fio/fibra                        | Ethernet  |

# encapsulamento m



HEPR Dento de Informática

# Parâmetros de Desempenho



IIEPR Dento de Informática

# Equação do desempenho

#### latência total

= overhead\_transmissão proc 100% ocupado com envio + tempo\_de\_vôo veloc da luz + atrasos hw + |mensagem| / largura\_de\_banda [bits / bits/s]=[s] + overhead\_recepção proc 100% ocupado recebendo

largura de banda medida no fio (inclui cabeçalhos) [bit/s]
 tempo de vôo é aprox 20cm/ns + atrasos nos repetidores [s]
 ovhead TX inclui tempo nos componentes de SW e HW [s]
 ovhead RX geralmente maior que de TX (interrupção) [s]
 tamanho da mensagem inclui cabeçalhos [bit]

TIEPR Danto de Informático 10

ci212 — E/S (ii): barramentos e redes

2007-1

### Meios Físicos



HEPR Danto de Informática

Fibra ótica

transmissor

elétricos

ci212 — E/S (ii): barramentos e rede

• ondas de rádio

2007-1

elétricos

# Meio Compartilhado vs Comutado

Meio compartilhado (Ethernet em cabo coaxial)



Meio comutado (Ethernet comutada, par trançado)



IIEPR Dento de Informática

# Redes com Conexão Estática - topologias



#### **Exemplos:**

ponto-a-ponto – conexão via modem de terminal a computador estrela – Ethernet comutada *(switches)* malha – Internet anel – FDDI, Token Ring (IBM)

TIEPR Danto de Informática 13

ci212 — E/S (ii): barramentos e redes

2007-1

# Redes com Conexão Dinâmica – topologias

- barramento
  - \* conexão entre mestre e escravo estabelecida a cada transação
- crossbar
  - \* rede mais cara  $\rightarrow$  custo  $O(n^2)$
  - \* rede mais eficaz  $i, j \in \{0..n\}, i \neq j \Rightarrow P_i \rightleftharpoons P_j$



- redes multi-estágio (ômega, delta, ...)
  - \* custo menor que crossbar O(n log n)

TIEPR Danto da Informática 1

ci212 — E/S (ii): barramentos e redes

# Redes com Conexão Dinâmica - rede Delta



IIFPR Dento de Informática 1

# Redes com Conexão Dinâmica - rede Delta (cont)



HEPR Dento de Informática

2007-1

#### ci212 — E/S (ii): barramentos e redes

# Escopo e Tipos de Redes

| escopo              | tipo                              |     |  |
|---------------------|-----------------------------------|-----|--|
| interna em CI       | crossbar, completamente conectada |     |  |
| motherboard         | barramento                        |     |  |
| System Area Network | barramento, anel, malha, cubo     | SAN |  |
| Local Area Network  | barramento, anel                  | LAN |  |
| Wide Area Network   | malha esparsa, ponto-a-ponto      | WAN |  |

- \* comutador centralizado
  - ★ crossbar
- \* comutador distribuído
  - ★ barramento
  - ★ anel
  - ★ malha

mais detalhes em Redes I,II

- \* enlaces ponto-a-ponto
  - \* Ethernet comutada
  - ★ Internet (WAN)
  - \* anel, malha
- \* enlaces multi-ponto
  - \* Ethernet coaxial
  - ★ barramento

HEPR Dento de Informática

17

#### ci212 — E/S (ii): barramentos e redes

2007-1

# revisão: Arquitetura do Sistema de E/S

# Hierarquia de vias:

largura de banda é menor a medida em que desce na hierarquia barramentos distintos em cada nível

# Processamento de E/S:

controlado por programa ADM processadores de E/S



LIEPR Dento de Informática

### Características dos Barramentos

| Opção                               | alto desemp | baixo custo |
|-------------------------------------|-------------|-------------|
| linhas de dados $\neq$ de endereços | sim         | não         |
| largura do barram de dados          | largo       | estreito    |
| tamanho das transferências          | rajadas     | palavra     |
| número de mestres                   | mais de um  | um          |
| barramento em pipeline              | sim         | não         |
| operação                            | síncrona    | assíncrona  |

HEPR Danto de Informático

ci212 — E/S (ii): barramentos e redes

2007-1

# Características dos Barramentos

 Barramento ≡ meio de comunicação compartilhado comunicação por difusão através do meio

broadcast

- Barramento de E/S: dispositivos com ampla faixa de valores de vazão e latência
  - \* Mestre é capaz de iniciar transferência
  - \* Escravo responde aos comandos do mestre
- Num barramento segmentado, há dois tipos de transações:

comandos/requisições e respostas

transação = requisição  $\rightarrow processamento \rightarrow$  resposta

| req | prc | rsp |     |     |
|-----|-----|-----|-----|-----|
|     | req | prc | rsp |     |
|     |     | req | prc | rsp |

split transactions

HEPR Dente de Informática

ci212 — E/S (ii): barramentos e redes

2007-1

# Barramento Síncrono vs Assíncrono

- Barramento Síncrono
  - \* maior velocidade de operação → maior vazão
  - \* projeto elétrico complexo
  - \* todos os eventos são sincronizados com sinal de relógio protocolo de sinalização define rigidamente todos os eventos
  - \* maior desempenho porque não tem realimentação sinais percorrem barramento em somente um sentido:  $mestre(cmd) \rightarrow processa \rightarrow escravo(rsp)$
  - \* sequência: cmd; proc; rsp
- Barramento Assíncrono

\* ...

IIFPR Dento de Informática 21

## Barramento Síncrono

Todos os eventos são sincronizados com sinal de relógio



LIEPR Dento de Informática

ci212 - E/S (ii): barramentos e redes

2007-1

# Barramento Síncrono vs Assíncrono

- Barramento Síncrono
  - \* ..

#### • Barramento Assíncrono

- \* menor velocidade de operação → menor vazão
- \* projeto elétrico simples
- \* pior desempenho porque tem realimentação sinais percorrem todo o barramento em dois sentidos: mestre(cmd) $\rightarrow$  escravo ; processa ; escravo(rsp) $\rightarrow$  mestre
- \* sequência: cmd; act; proc; rsp; act
- \* a cada evento, sinais devem ser sincronizados aos relógios internos dos dispositivos
  - → relógios ≠s em dispositivos distintos (freqüência e fase)
- Detalhes no Cap 6 de www.inf.ufpr.br/roberto/microprocessadores.pdf

HEPR Dento de Informática

23

ci212 — E/S (ii): barramentos e rede

2007-1

### Barramento Assíncrono

### Transação de Endereçamento



1: mestre inicia transação endPronto Seqüência escravo responde com endAceito de eventos 2: mestre responde com endPronto 3: escravo completa transação com endAceito

IIEPR Dento de Informática

## Vazão e Latência

**Vazão:** taxa de transferência [bytes/segundo] depende de:

- largura da via (largura do barramento: 8, 32 ou 256 bits)
- taxa de sinalização (velocidade do relógio)
- tipo de sinalização (síncrona ou assíncrona)

Latência: lapso entre comando e resposta [segundo] depende de:

- tipo de sinalização (síncrona ou assíncrona)
- tipo dos dispositivos (memória dinâmica ou estática)
- organização (entrelaçamento, segmentação)

```
TIEPR Danto da Informática 2
```

ci212 - E/S (ii): barramentos e redes

2007-1

### resumo - Redes e Barramentos

- Redes
  - \* protocolos nomes e endereçamento, proteção, confiabilidade
  - \* latência total

```
= {\sf overhead\_transmiss\~ao} \qquad {\sf proc~100\%~ocupado~com~envio} \\ + {\sf tempo\_de\_v\^oo} \qquad {\sf veloc~da~luz~+~atrasos~hw} \\ + |{\sf mensagem}| \ / \ |{\sf largura\_de\_banda} \qquad [{\sf bits~/sl} = [{\sf s}]]
```

- + overhead\_recepção
- proc 100% ocupado recebendo
- \* topologias estáticas: ponto-a-ponto, estrela, anel, malha dinâmicas: crossbar, barramento, redes Delta & família
- Barramentos características de vazão e latência

```
* síncronos cmd ; proc ; rsp
```

\* assíncronos cmd; act; proc; rsp; act

HEPR Danto de Informática 91