应用统计 2: 时间序列 之 第二次作业

GRU 模型

221870091 蔡如意

指导老师:刘帆

南京大学 - 工程管理学院

目录

第一部分

GRU 的提出背景

背景 1: RNN 的局限性

• RNN 的核心原理

$$h_t = f_W(h_{t-1}, x_t)$$

- 即对于每个时间步, 隐藏层的净输入 $z_t = Uh_{t-1} + Wx_t + b$
- 隐藏层的状态为 $h_t = f(z_t)$, 其中 f 为非线性激活函数。
- 更新参数: 时间反向传播 (BPTT)
 - 损失函数为 L_t ,定义误差项 $\sigma_{t,k} = \frac{\partial L_t}{\partial z_k}$ 为第 t 时刻损失对第 k 时刻隐藏神经层净输入的导数,即

$$\sigma_{t,k} = \frac{\partial L_t}{\partial z_k} = \frac{\partial h_k}{\partial z_k} \frac{\partial z_{k+1}}{\partial h_k} \frac{\partial L_t}{\partial z_{k+1}} = diag(f'(z_k)) U^T \sigma_{t,k+1}$$

• 整个序列的损失函数 L 关于参数 U, 权重 W 和偏置 b 的梯度分别为

$$\frac{\partial L}{\partial U} = \sum_{t=1}^{T} \sum_{k=1}^{t} \sigma_{t,k} h_{k-1}^{T} \quad \frac{\partial L}{\partial W} = \sum_{t=1}^{T} \sum_{k=1}^{t} \sigma_{t,k} x_{k}^{T} \quad \frac{\partial L}{\partial b} = \sum_{t=1}^{T} \sum_{k=1}^{t} \sigma_{t,k}$$

背景 1: RNN 的局限性

- 梯度爆炸或消失: RNN 通过时间反向传播(BPTT)更新参数时,梯度会随着时间步 呈指数级衰减或爆炸,导致远距离依赖难以捕捉。
 - 梯度爆炸: 当 $diag(f'(z_k))U^T > 1$ 时,如果时间间隔过大, $\sigma_{t,k}$ 会趋向无穷,产生梯度爆炸问题
 - 梯度消失: 当 $diag(f'(z_k))U^T < 1$ 时,如果时间间隔过大, $\sigma_{t,k}$ 会趋向 0,产生梯度消失问题
- 记忆容量有限: RNN 的隐藏状态 (Hidden State) 需同时承担"记忆历史信息"和"生成当前输出"的双重任务,难以长期保留关键信息。

背景 2: LSTM **的局限性**

- LSTM 采用两大机制解决 RNN 的缺点
 - 梯度消失或爆炸的问题: 采用门控机制(输入门、遗忘门、输出门)解决
 - 遗忘门: $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$

 - 输出门: $o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$
 - 短期记忆覆盖长期记忆的问题:采用记忆单元(Cell State)来保存长期记忆
 - 记忆的更新: $\tilde{c}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$ $c_t = f_t * c_{t-1} + i_t * \tilde{c}_t$

背景 2: LSTM 的局限性

图 1.1: LSTM 原理图

- LSTM 解决了梯度问题,但结构复杂。
 - 参数量大: LSTM 包含 3 个门控和 1 个记忆单元, 计算复杂度高。
 - 训练效率低:复杂的结构导致训练速度较慢,尤其在长序列场景下。

第二部分

GRU 的原理

GRU 的核心

- GRU (Gated Recurrent Unit) 由 Cho 等人在 2014 年提出,目标是简化 LSTM 结构,同时保留其门控机制的优势:
 - 合并门控:将 LSTM 的输入门和遗忘门合并为更新门,减少参数数量。
 - 统一隐藏状态:取消记忆单元,直接通过隐藏状态传递信息,简化计算流程。
- GRU 的核心是两个门控机制: 更新门 (Update Gate) 和重置门 (Reset Gate), 通过 动态控制信息流动解决长程依赖问题。

图 2.1: GRU 原理图

GRU 的原理: 更新门

• 更新门: 决定当前时刻隐藏状态应保留多少历史信息, 并融合多少新信息。

$$z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$$

- 其中,
 - x_t 为第 t 个时间步的输入向量。
 - W_t 为权重矩阵。
 - h_{t-1} 为上一时刻的隐藏状态,即 t-1 时间步的信息。
 - σ 为 Sigmoid 函数,将输出压缩到 0 1 之间。
- z_t : 更新门的输出(取值 0-1),控制历史信息的保留比例。

GRU 原理: 重置门

• 重置门: 决定是否忽略历史信息以生成新的候选状态, 即到底遗忘过去的多少信息。

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$$

- 其中,
 - x_t 为第 t 个时间步的输入向量。
 - W_r 为权重矩阵。
 - h_{t-1} 为上一时刻的隐藏状态,即 t-1 时间步的信息。
 - σ为 Sigmoid 函数,将输出压缩到 0-1 之间。
- r_t : 重置门的输出(取值 0 1),接近 0 时表示忽略历史信息。

GRU 原理: 候选隐藏状态和隐藏状态更新

• 候选隐藏状态:结合重置门和历史信息,生成当前时刻的候选状态

$$\tilde{h}_t = tanh(W \cdot [r_t * h_{t-1}, x_t])$$

- $r_t * h_{t-1}$: 重置门控制历史信息的过滤,若 $r_t \approx 0$ 则丢弃历史信息,仅依赖当前输入。
- 隐藏状态更新:通过更新门融合历史状态和候选状态

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_{t-1}$$

- $z_t \approx 1$: 隐藏状态主要由候选状态更新(关注新信息)。
- $z_t \approx 0$: 保留大部分历史信息 (忽略当前输入)。

目录

第三部分

GRU 的应用

GRU 的应用场景

- 自然语言处理 (NLP)
 - 机器翻译: 捕捉源语言和目标语言的上下文依赖(如 Google 的早期翻译模型)。
 - 文本生成: 生成连贯的对话或文章(如聊天机器人、自动摘要)。
 - 情感分析:分析长文本中的情感倾向。
- 时间序列预测
 - 股票价格预测:基于历史价格序列预测未来趋势。
 - 气象预测: 处理时间相关的气象数据(如温度、湿度序列)。
- 语音识别
 - 声学建模:将语音信号映射为文本序列,捕捉语音中的时序特征。
- 推荐系统
 - 用户行为建模:根据用户历史行为序列(点击、购买记录)预测兴趣。

GRU 的优缺点

• 优势:

- 简洁高效: GRU 的结构相对简单,参数较少,训练速度快。
- 解决梯度问题:通过引入门机制,GRU 有效地解决了传统RNN 中的梯度消失和 爆炸问题,从而能够更好地捕捉序列数据中的长期依赖关系。
- 适应性强:可以用于处理各种类型的序列数据,包括文本、音频、图像等。

• 限制:

- 对于非常长的序列,GRU 可能无法完全捕捉所有的长期依赖关系。因为尽管门机 制帮助控制信息的传递,但在非常长的序列中信息的传递仍会受到一定的限制。
- GRU 难以显式建模序列中的层次结构。如,在自然语言处理任务中,词语的含义可能取决于它在句子中的位置,而句子的含义可能取决于它在段落中的位置。这种层次结构是 GRU 难以处理的。

LSTM VS GRU

对比维度	LSTM	GRU
门控机制	3 个门:输入门、遗忘门、输出门	2 个门: 更新门、重置门
记忆单元	独立细胞状态 (Cell State)	无独立细胞状态,通过更新门和重置门联合控制
参数量	较多(多一个门控和细胞状态)	较少 (参数更精简)
计算复杂度	较高 (需维护细胞状态)	较低 (合并门控和状态)
训练速度	较慢 (参数多)	较快 (参数少)
长依赖捕捉	更强(显式控制记忆遗忘)	稍弱(隐式记忆更新)
适用场景	超长序列、复杂时序依赖(如机器翻译)	中等序列、实时性要求高(如语音识别)
梯度消失问题	缓解 (通过细胞状态)	缓解 (通过更新门)
主流框架实现	广泛支持	广泛支持

表 3.1: GRU 和 LSTM 对比

谢谢倾听!