Energy Affluent Mobile Ad-Hoc Networks

Mikkel Kjær Jensen August 20, 2011

Abstract

A Mobile Ad-Hoc Network (MANET) is a network of moving nodes that without human intervention can crate its own topology and ensure successful routing of messages between nodes.

In this thesis I will give an overview of the elements required to create a MANET and several already existing solutions that fulfil these requirements.

Furthermore, I will give a performance evaluation of my own implementation of the GOAFR algorithm [23] compared to several other algorithms. I will also perform a comparison between the average distance of two nodes in randomly generated non-planar graphs, compared to the Gabriel Graph (GG) [10, 28] and the Relative Neighbourhood Graph (RNG) [33], compared to the average number of neighbours in the graph.

CONTENTS CONTENTS

Contents

A	\mathbf{App}	pendix	6
	A.1	Limited-range spanner distance results	6
	A.2	Limited-range spanner neighbour results	9

CONTENTS CONTENTS

Figure 1: test

A Appendix

A.1 Limited-range spanner distance results

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	2028995.47	40.58	87.23	3.74	20.54
Eucldian Distance	GG	2225467.95	44.51	95.82	3.80	22.52
	RNG	2556437.92	51.13	110.35	3.84	26.27
	NML	140168	2.80	5.81	1.00	1.33
Unit Distance	GG	248359	4.97	10.67	1.00	2.46
	RNG	322897	6.46	13.94	1.01	3.28
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	109.68 %	177.19 %	GG	0	
normal graph	RNG	126.00 %	230.36 %	RNG	0	
# Connected		·	·	<u> </u>	·	

Connected Components: 1.078

Table 1: The distance results for 50 nodes

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	2843864.90	56.88	120.69	5.07	27.67
Eucldian Distance	GG	3111039.29	62.22	131.66	5.25	30.15
	RNG	3555742.22	71.11	151.05	5.44	34.61
	NML	190687	3.81	7.90	1.00	1.77
Unit Distance	GG	339200	6.78	14.27	1.04	3.21
	RNG	443490	8.87	18.80	1.09	4.26
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	109.39 %	177.88 %	GG	0	
normal graph	RNG	125.03 %	232.57 %	RNG	0	
# Connected						

Components: 1.084

Table 2: The distance results for 100 nodes

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	4417569.54	88.35	186.93	7.80	42.02
Eucldian Distance	GG	4815616.44	96.31	202.88	8.28	45.57
	RNG	5468182.38	109.36	229.61	8.91	51.47
	NML	287706	5.75	11.89	1.00	2.63
Unit Distance	GG	507061	10.14	21.13	1.23	4.64
	RNG	670397	13.41	28.02	1.45	6.20
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	109.01 %	176.24 %	GG	0	
normal graph	RNG	123.78 %	233.01 %	RNG	0	

Connected Components: 1

1.096

Table 3: The distance results for 250 nodes

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	6273997.77	125.48	263.96	12.07	58.93
Eucldian Distance	GG	6811420.32	136.23	285.41	13.16	63.60
	RNG	7693137.02	153.86	320.84	14.61	71.18
	NML	401448	8.03	16.55	1.11	3.65
Unit Distance	GG	696197	13.92	28.71	1.66	6.27
	RNG	921640	18.43	38.18	2.02	8.33
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	108.57 %	173.42 %	GG	0	
normal graph	RNG	122.62 %	229.58 %	RNG	0	

Connected Components: 1.134

Table 4: The distance results for 500 nodes

	Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
NML	8769730.56	175.39	369.88	16.58	82.56
GG	9504069.51	190.08	399.69	18.13	89.02
RNG	10682855.03	213.66	447.23	20.58	99.12
NML	553064	11.06	22.88	1.33	5.06
GG	955784	19.12	39.41	2.19	8.63
RNG	1265833	25.32	52.28	2.77	11.44
	Distance:	Unit Distance:		# Missing paths	
NML	100.00 %	100.00 %	NML	0	
GG	108.37 %	172.82 %	GG	0	
RNG	121.82 %	228.88 %	RNG	0	
	GG RNG NML GG RNG NML GG	GG 9504069.51 RNG 10682855.03 NML 553064 GG 955784 RNG 1265833 Distance: NML 100.00 % GG 108.37 %	GG 9504069.51 190.08 RNG 10682855.03 213.66 NML 553064 11.06 GG 955784 19.12 RNG 1265833 25.32 Distance: Unit Distance: NML 100.00 % 100.00 % GG 108.37 % 172.82 %	GG 9504069.51 190.08 399.69 RNG 10682855.03 213.66 447.23 NML 553064 11.06 22.88 GG 955784 19.12 39.41 RNG 1265833 25.32 52.28 Distance: Unit Distance: NML 100.00 % 100.00 % NML GG 108.37 % 172.82 % GG	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Connected Components: 1.136

Table 5: The distance results for 1000 nodes

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	13674233.94	273.48	575.30	26.58	128.40
Eucldian Distance	GG	14773056.90	295.46	619.76	29.17	138.14
	RNG	16520167.71	330.40	689.07	33.35	153.05
	NML	850137	17.00	35.26	1.94	7.80
Unit Distance	GG	1452255	29.05	59.84	3.33	13.16
	RNG	1922688	38.45	79.21	4.33	17.40
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	108.04 %	170.83 %	GG	0	
normal graph	RNG	120.81 %	226.16 %	RNG	0	
# Connected						
Components:	1.198					

Table 6: The distance results for 2500 nodes

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	19298656.69	385.97	817.69	38.67	182.23
Eucldian Distance	GG	20814836.25	416.30	880.48	42.49	195.82
	RNG	23201190.73	464.02	976.18	48.45	216.53
	NML	1189019	23.78	49.70	2.63	11.01
Unit Distance	GG	2018675	40.37	84.16	4.65	18.47
	RNG	2674346	53.49	111.21	6.09	24.43
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	107.86 %	169.78 %	GG	0	
normal graph	RNG	120.22 %	224.92 %	RNG	0	
# Connected						

Components: 1.244

Table 7: The distance results for 5000 nodes

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	23517511.18	470.35	992.48	47.83	221.32
Eucldian Distance	GG	25338291.02	506.77	1067.82	52.25	237.67
	RNG	28200744.98	564.01	1182.81	59.64	262.70
	NML	1443294	28.87	60.19	3.21	13.35
Unit Distance	GG	2441861	48.84	101.50	5.69	22.31
	RNG	3231995	64.64	133.99	7.41	29.49
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	107.74 %	169.19 %	GG	0	
normal graph	RNG	119.91 %	223.93 %	RNG	0	
# Connected						

Components:

Table 8: The distance results for 7500 nodes

		Length of graph:	Avg node-pair	Max node-pair:	Min node-pair:	Std Deviation:
	NML	27229847.01	544.60	1150.55	54.05	256.45
Eucldian Distance	GG	29322041.31	586.44	1236.26	59.32	275.21
	RNG	32590894.46	651.82	1369.27	67.47	303.88
	NML	1666688	33.33	69.71	3.58	15.45
Unit Distance	GG	2811085	56.22	116.92	6.44	25.74
	RNG	3720550	74.41	154.50	8.41	34.00
		Distance:	Unit Distance:		# Missing paths	
Percentage	NML	100.00 %	100.00 %	NML	0	
compared to the	GG	107.68 %	168.66 %	GG	0	
normal graph	RNG	119.69 %	223.23 %	RNG	0	
# Connected						

Connected Components:

Table 9: The distance results for 10000 nodes

A.2 Limited-range spanner neighbour results

		Avg Neighbours	Max Neighbours	Min Neighbours	Std. Deviation
	NML	9.26	15.99	2.24	0.86
Neighbours	GG	3.19	5.76	1.06	0.20
	RNG	2.31	3.83	1.00	0.09

Table 10: The neighbour results for 50 nodes

Neighbours	NML GG RNG	Avg Neighbours 10.20 3.33 2.39	Max Neighbours 18.42 6.23 4.01	Min Neighbours 2.19 1.01 0.96	Std. Deviation 0.60 0.16 0.07
		Table 11: T	he neighbour	results for 10	00 nodes
Neighbours	NML GG RNG	Avg Neighbours 11.09 3.48 2.46	Max Neighbours 20.93 6.77 4.11	Min Neighbours 1.88 0.96 0.95	Std. Deviation 0.38 0.10 0.05
		Table 12: T	he neighbour	results for 25	60 nodes
Neighbours	NML GG RNG	Avg Neighbours 11.47 3.57 2.50	Max Neighbours 22.26 7.19 4.21	Min Neighbours 1.63 0.92 0.92	Std. Deviation 0.26 0.07 0.03
		Table 13: T	he neighbour	results for 50	00 nodes
Neighbours	NML GG RNG	Avg Neighbours 11.84 3.62 2.52	Max Neighbours 23.71 7.44 4.43	Min Neighbours 1.50 0.92 0.92	Std. Deviation 0.19 0.05 0.02
		Table 14: T	he neighbour	results for 10	00 nodes
Neighbours	NML GG RNG	Avg Neighbours 12.08 3.67 2.55	Max Neighbours 25.30 7.86 4.80	Min Neighbours 1.28 0.88 0.88	Std. Deviation 0.11 0.03 0.01
		Table 15: T	he neighbour	results for 250	00 nodes
Neighbours	NML GG RNG	Avg Neighbours 12.23 3.69 2.56	Max Neighbours 26.26 8.16 4.95	Min Neighbours 1.06 0.85 0.85	Std. Deviation 0.07 0.02 0.01
		Table 16: T	he neighbour	results for 50	00 nodes
Neighbours	NML GG RNG	Avg Neighbours 12.28 3.70 2.57	Max Neighbours 26.84 8.26 5.01	Min Neighbours 0.98 0.80 0.80	Std. Deviation 0.06 0.02 0.01
		Table 17: T	he neighbour	results for 750	00 nodes
Neighbours	NML GG RNG	Avg Neighbours 12.32 3.71 2.57	Max Neighbours 27.28 8.38 5.02	Min Neighbours 0.88 0.77 0.77	Std. Deviation 0.05 0.02 0.01

Table 18: The neighbour results for 10000 nodes

References

[1] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3):325 – 349, 2005.

- [2] Nils Aschenbruck, Elmar Gerhards-Padilla, and Peter Martini. Modeling mobility in disaster area scenarios. *Perform. Eval.*, 66:773–790, December 2009.
- [3] Young bae Ko and Nitin H. Vaidya. Location-aided routing (lar) in mobile ad hoc networks. pages 66–75, 1998.
- [4] Marshall Bern, David Eppstein, and Frances Yao. The expected extremes in a delaunay triangulation, 1991.
- [5] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models for ad hoc network research. WIRELESS COMMUNICA-TIONS & MOBILE COMPUTING (WCMC): SPECIAL ISSUE ON MOBILE AD HOC NETWORKING: RESEARCH, TRENDS AND APPLICATIONS, 2:483-502, 2002.
- [6] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models for ad hoc network research. WIRELESS COMMUNICA-TIONS & MOBILE COMPUTING (WCMC): SPECIAL ISSUE ON MOBILE AD HOC NETWORKING: RESEARCH, TRENDS AND APPLICATIONS, 2:483-502, 2002.
- [7] David Cavin, Yoav Sasson, and André Schiper. On the accuracy of manet simulators. In Proceedings of the second ACM international workshop on Principles of mobile computing, POMC '02, pages 38–43, New York, NY, USA, 2002. ACM.
- [8] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, April 2008.
- [9] L Devroye, J Gudmundsson, and P Morin. On the expected maximum degree of gabriel and yao graphs. *Arxiv preprint* arXiv:0905.3584, 2009.
- [10] Ruben K. Gabriel and Robert R. Sokal. A New Statistical Approach to Geographic Variation Analysis. *Systematic Zoology*, 18(3):259–278, September 1969.
- [11] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric spanner for routing in mobile networks. pages 45–55, 2001.

[12] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric spanner for routing in mobile networks. In *Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing*, MobiHoc '01, pages 45–55, New York, NY, USA, 2001. ACM.

- [13] Tirthankar Ghosh, Niki Pissinou, and Kami Makki. Towards designing a trusted routing solution in mobile ad hoc networks. *Mob. Netw. Appl.*, 10:985–995, December 2005.
- [14] Zygmunt J. Haas, Senior Member, Ben Liang, and Student Member. Ad hoc mobility management with uniform quorum systems. IEEE/ACM Transactions on Networking, 7:228–240, 1999.
- [15] Tian He, John A. Stankovic, Chenyang Lu, and Tarek F. Abdelzaher. A spatiotemporal communication protocol for wireless sensor networks. *IEEE Transactions on Parallel and Distributed Systems*, 16:995–1006, 2005.
- [16] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: a scalable and robust communication paradigm for sensor networks. In *Proceedings of the 6th annual international conference on Mobile computing and networking*, MobiCom '00, pages 56–67, New York, NY, USA, 2000. ACM.
- [17] Brad Karp and H. T. Kung. Gpsr: Greedy perimeter stateless routing for wireless networks. In *MOBICOM*, pages 243–254, 2000.
- [18] Wolfgang Kiess. Hierarchical Location Service for Mobile Ad-Hoc Networks. Master's thesis, Department of Mathematics and Computer Science, University of Mannheim, 2003.
- [19] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Geographic routing made practical. In *Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation Volume 2*, NSDI'05, pages 217–230, Berkeley, CA, USA, 2005. USENIX Association.
- [20] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing on geometric networks. In IN PROC. 11 TH CANADIAN CONFERENCE ON COMPUTATIONAL GEOMETRY, pages 51–54, 1999.
- [21] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc routing: of theory and practice.

- In Proceedings of the twenty-second annual symposium on Principles of distributed computing, PODC '03, pages 63–72, New York, NY, USA, 2003. ACM.
- [22] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal geometric mobile ad-hoc routing. pages 24–33. ACM Press, 2002.
- [23] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case optimal and average-case efficient geometric ad-hoc routing. In *Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing*, MobiHoc '03, pages 267–278, New York, NY, USA, 2003. ACM.
- [24] Fabian Kuhn and Aaron Zollinger. Ad-hoc networks beyond unit disk graphs. In *Proceedings of the 2003 joint workshop on Foundations of mobile computing*, DIALM-POMC '03, pages 69–78, New York, NY, USA, 2003. ACM.
- [25] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach (4th Edition). Addison Wesley, 4 edition, 2007.
- [26] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris. A scalable location service for geographic ad hoc routing. In *Proceedings of the 6th annual international conference on Mobile computing and networking*, MobiCom '00, pages 120–130, New York, NY, USA, 2000. ACM.
- [27] Li Liu, Bin Hu, and Lian Li. Algorithms for energy efficient mobile object tracking in wireless sensor networks. *Cluster Computing*, 13:181–197, June 2010.
- [28] David W. Matula and Robert R. Sokal. Properties of gabriel graphs relevant to geographic variation research and the clustering of points in the plane. *Geographical Analysis*, 12(3):205–222, 1980.
- [29] Martin Mauve, Jörg Widmer, and Hannes Hartenstein. A survey on position-based routing in mobile ad-hoc networks. *IEEE Network*, 15:30–39, 2001.
- [30] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-vector routing (dsdv) for mobile computers. SIGCOMM Comput. Commun. Rev., 24:234–244, October 1994.

[31] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance vector routing. In *IN PROCEEDINGS OF THE 2ND IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS*, pages 90–100, 1997.

- [32] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ion Stoica. Geographic routing without location information. In *Proceedings of the 9th annual international conference on Mobile computing and networking*, MobiCom '03, pages 96–108, New York, NY, USA, 2003. ACM.
- [33] Godfried T. Toussaint. The relative neighbourhood graph of a finite planar set. *Pattern Recognition*, 12:261–268, 1980.
- [34] Guojun Wang, Tian Wang, Weijia Jia, Minyi Guo, and Jie Li. Adaptive location updates for mobile sinks in wireless sensor networks. *The Journal of Supercomputing*, 47:127–145, 2009. 10.1007/s11227-008-0181-5.
- [35] Ya Xu, John Heidemann, and Deborah Estrin. Geographyinformed energy conservation for ad hoc routing. In *Proceedings* of the 7th annual international conference on Mobile computing and networking, MobiCom '01, pages 70–84, New York, NY, USA, 2001. ACM.
- [36] Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang. A two-tier data dissemination model for large-scale wireless sensor networks. In *Proceedings of the 8th annual international conference on Mobile computing and networking*, MobiCom '02, pages 148–159, New York, NY, USA, 2002. ACM.