Глава 1. Элементы теории формальных языков и грамматик

1.8. Свойство самовложения КС-грамматик

Если в КС-грамматике существует нетерминал A, для которого $A \stackrel{+}{\Rightarrow} \alpha A \beta$, α , $\beta \in (V_T \cup V_N)^+$, то о такой грамматике говорят, что она содержит *самовложение*. Отметим, что строки α и β являются непустыми.

Свойство самовложения позволяет эффективно различать КС (нерегулярные) и регулярные языки. Теоретически любая КС-грамматика, не содержащая самовложения, эквивалентна регулярной грамматике и генерирует регулярный язык. Регулярная грамматика не может содержать самовложения.

Пример грамматики, содержащей самовложение $S \to aSb$, $S \to \varepsilon$

Грамматика арифметических выражений

$$E \rightarrow E + T \mid T$$

$$T \to T \times F \mid F$$

$$F \rightarrow (E) \mid i$$

также содержит самовложение, поскольку, например, существует вывод $E \Rightarrow T \Rightarrow F \Rightarrow (E)$. В таких случаях говорят, что нетерминал E проявляет свойство самовложения. Нетерминалы T и F также проявляют свойство самовложения

$$T \Rightarrow F \Rightarrow (E) \Rightarrow (T)$$

$$F \Rightarrow (E) \Rightarrow (T) \Rightarrow (F)$$

1.9. Лемма Огдена и лемма о разрастании для КС-языков

Лемма Огдена. Для любой КС-грамматики $G = (V_T, V_N, P, S)$ существует такая константа $k \ge 1$, что если $z \in L(G)$, $|z| \ge k$ и для любых выделенных в z не менее k позиций, строку z можно записать в виде z = uvwxy, причем:

- 1) w содержит хотя бы одну выделенную позицию;
- 2) либо и u, и v содержат выделенные позиции, либо её содержат и x, и y;
- 3) vwx содержит не более k выделенных позиций;
- 4) существует такой нетерминал $A \in V_N$, что

$$S \stackrel{+}{\Rightarrow} uAy \stackrel{+}{\Rightarrow} uvAxy \stackrel{+}{\Rightarrow} \cdots \stackrel{+}{\Rightarrow} uv^i Ax^i y \stackrel{+}{\Rightarrow} uv^i wx^i y$$
 для всех $i \ge 0$.

Следствием леммы Огдена является **лемма о разрастании (лемма о накачке, лемма о подкачке; англ. pumping lemma)** для КС-языков.

Для любого КС-языка L существует такая константа $k \ge 1$, что любую строку $z \in L$, $|z| \ge k$ можно записать в виде z = uvwxy, где $|vwx| \le k$, $vx \ne \varepsilon$, и для любого $i \ge 0$ справедливо $uv^iwx^iy \in L$.

Леммы Огдена и о разрастании для КС-языков полезны для доказательства утверждений о том, что некоторые языки не являются КС.

Для примера рассмотрим язык $L = \{\alpha\alpha \mid \alpha \in \{a,b\}^*\}$. Доказательство проведем методом от противного, используя лемму о разрастании.

Предположим, что L – КС-язык. Рассмотрим строку $z = a^k b^k a^k b^k$, где k – константа из леммы о разрастании. Поскольку $z \in L$, ее можно представить в виде z = uvwxy, где $|vwx| \le k$, тогда строка $uv^i wx^i y$ ($i \ge 0$) также должна принадлежать языку. Проверим для i = 0, т. е. будет ли uwy принадлежать языку. Возможны следующие варианты:

- 1. v и x находятся либо в первой половине z, либо во второй. В этом случае строка uwy образуется путем исключения символов a и b из первой или второй половины z, но не из обеих. Следовательно, $uwy \notin L$.
- 2. v содержит символы b из первой половины z, x содержит символы a из второй половины z. В этом случае uwy образуется путем исключения символов b из первой половины и символов a из второй половины, t. t. t. t. t.

Таким образом, данная строка не может быть представлена в виде uvwxy, чтобы uwy тоже принадлежала языку. Поэтому язык $L = \{\alpha\alpha \mid \alpha \in \{a,b\}^*\}$ не является КС-языком.