Stamilton's formulation. Letis take a system with Lagrangian $L \stackrel{\text{def}}{=} L (q_j, \dot{q}_j, t | j = 1 - n)$ n being the degrees of freedom. Then the Lagrange equation of 2nd kind is given by $\frac{d}{dt} \left(\frac{aL}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial \dot{q}_j} = 0 \left| j = 1 - \eta \cdot - \cdot \cdot \cdot (1) \right|$ where $\frac{2L}{3\delta} = \beta$; represents the j-th component of generalized momentum. Let's difine a function $H = H(p_j, q_j, t | j=1-n)$ as H = = b; 9; -L \Rightarrow dH = $\sum_{i=1}^{n} (b_i d_i + \hat{q}_i d_i) - dL$ $\Rightarrow \sum_{i=1}^{1} \left(\frac{\partial H}{\partial q_i} dq_i + \frac{\partial H}{\partial b_i} db_i \right) + \frac{\partial H}{\partial t} dl$ $= \sum_{j=1}^{n} \left(b_{j} d\dot{q}_{j} + \dot{q}_{j} db_{j} \right) - \sum_{j=1}^{n} \left(\frac{\partial L}{\partial q_{j}} dq_{j} + \frac{\partial L}{\partial \dot{q}_{j}} d\dot{q}_{j} \right)$ $-\frac{31}{31}$ at. Comparing the exefficient of $dq_{j}:\Rightarrow \frac{2H}{2q_{j}} = -\frac{2L}{2q_{j}} \left\{ --\frac{2}{2} \left(2 q_{j} b \right) \right\}$ $dp_{j}:\Rightarrow \frac{2H}{2p_{j}} = \dot{q}_{j}.$ $dt: \Rightarrow \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$ Eqn. (2a) can be written as $\frac{\partial H}{\partial q_j} = -\frac{d}{dt} \left(\frac{\partial L}{\partial q_j} \right) \left(\text{from eq}^{n}(1) \right)$ => = -b; ---

Eqn. (25) and (3) gives us stamilton's eqns of motion
$$b_{j} = -\frac{2H}{2q_{j}}$$

$$j = 1 - \eta - -(4)$$

$$q_{j} = \frac{2H}{2p_{j}}$$

Remark: (i) Hamilton's egn determines the trajectory in a 2n dimensional system & q, b; | j=1--? known as phase space.

(ii) by & 9; are called canonically conjugate variables.

(iii) If it is independent of any variable the corresponding conjugate variable in is independent of time.

Now
$$H \doteq H(q_j, b_j, t | j = 1 - n)$$

$$\Rightarrow \frac{dH}{dt} = \sum_{j=1}^{n} \left(\frac{\partial H}{\partial q_j} \cdot q_j + \frac{\partial H}{\partial b_j} \cdot b_j \right) + \frac{\partial H}{\partial t}$$

$$\Rightarrow \frac{dH}{dt} = \sum_{j=1}^{n} \left(\frac{\partial H}{\partial q_j} \cdot \frac{\partial M}{\partial b_j} + \frac{\partial H}{\partial b_j} \cdot \frac{\partial H}{\partial q_j} \right) + \frac{\partial H}{\partial t}$$

$$\Rightarrow \frac{dH}{dt} = \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}$$

Stence if H is not an explicit function of time (i.e.; at =0) then dH =0 i.e.; H is conserved.

Example: Pendulum.

Example: Pendulum.

The Lagrangian
$$1 = \frac{1}{2} mlq_1^2 + mglosq_1$$
 $p_1 = \frac{3L}{3q_1} = ml^2q_1 \Rightarrow q_1 = \frac{p_1}{ml^2}$

Hence $J = p_1q_1 - L = p_1 \frac{p_1}{ml^2} - \frac{1}{2}ml^2(\frac{p_1}{ml^2})^2$
 p_2
 p_3
 p_4
 p_5
 p_5
 p_6
 p_6
 p_7
 p_7
 p_8
 p_9
 $p_$

$$\Rightarrow H = \frac{b^{2}}{2m1^{2}} - mgl \log q_{1}$$
So $\dot{p}_{1} = -\frac{2H}{3q_{1}} = -mg \sin q_{1} & \dot{q}_{1} = \frac{\dot{p}_{1}}{m_{1}^{2}}$

Problem: Find the Hamilton's egns of motion for (a) Particle on inclined plane (b) Atwood machine.