8. Álgebra Relacional

A Álgebra Relacional é uma linguagem de consulta procedural. Ela consiste em um conjunto de operações que usam uma ou mais relações como entrada e produzem uma nova relação como resultado.

As operações fundamentais na álgebra relacional são:

- Selecionar;
- Projetar;
- Produto cartesiano;
- Renomear;
- União e
- Diferença.

Além das operações fundamentais, existem diversas outras operações a saber:

- Interseção de conjuntos;
- Junção natural;
- Divisão e
- Atribuição.

8.1. Exemplo de Banco de Dados

Controle de Estoque segundo Peter Chen.

Controle de estoque segundo James Martin.

Tabela 2 – Fornecedor.

Cód_Forn	Nome	Cidade	Estado
F01	Pedro	Porto Alegre	RS
F02	Eliana	Botucatu	SP
F03	Olacyr	Curitiba	PR
F04	João	Pelotas	RS
F05	Ernesto	Anápolis	GO
F06	Mário	Limeira	SP
F07	Hans	Bento Gonçalves	RS
F09	Antônio	Anápolis	GO
F10	Mário	Curitiba	PR

Tabela 3 - Produto

Cód_Prod	Nome	Qualidade
P01	Laranja	1a
P02	Laranja	2a
P03	Soja	1a
P04	Arroz	1a
P05	Arroz	2a
P06	Cacau	1a
P07	Trigo	2a
P08	Pêssego	1a
P09	Pêssego	2a
P10	Uva	1a
P11	uva	2a

Tabela 4 – Estoque

Cod_Forn	Cod_Prod	Qtde	Procedencia
F01	P01	100	Araraquara
F01	P02	150	Limeira
F01	P10	200	Bento Gonçalves
F01	P11	130	Vinhedo
F02	P07	240	Maringá
F02	P08	260	Pelotas
F02	P09	190	Bento Gonçalves
F03	P03	320	Maringá
F03	P07	210	Maringá
F03	P06	200	Ilhéus
F05	P04	150	Catalão
F05	P05	270	Uberlândia
F06	P01	80	Bebedouro

Tabela 5 – Pedido.

Cod_Forn	Cod_Prod	Qtde	Loc_Armaz
F06	P02	120	Limeira
F07	P10	110	Bento Gonçalves
F07	P11	130	Pelotas
F09	P04	100	Catalão
F09	P07	80	Maringá
F10	P03	220	Maringá

8.2. Seleção

Seleciona tuplas (linhas) que satisfazem um dado predicado (uma condição lógica) nos valores dos atributos.

$\sigma_{Cidade = "Curitiba"}$ (Fornecedor)

Cod_Forn	Nome	Cidade	Estado
F03	Olacyr	Curitiba	PR
F10	Mário	Curitiba	PR

$\sigma_{Qtde \leq 100}$ (Estoque)

Cod_Forn	Cod_Prod	Qtde	Procedência
F01	P01	100	Araraquara
F06	P01	80	Bebedouro

$\sigma_{\text{Qtde} > 100 \text{ ^{^{\wedge}}Loc_Armaz = "Maringá"}}$ (Pedido)

Cod_Forn	Cod_Prod	Qtde	Loc_Armaz
F10	P03	220	Maringá

8.3. Projeção

Copia a relação dada como argumento, deixando alguns atributos (colunas) de lado.

$\pi_{_{Nome,Cidade}}(\sigma_{_{Estado\,=\,\text{``RS''}}}(\text{Fornecedor}))$

Nome
laranja
soja arroz
cacau
trigo pêssego
uva

Nome	Cidade
Pedro	Porto Alegre
João	Pelotas
Hans	Bento Gonçalves

8.4. Produto Cartesiano

Combinar as informações de duas relações. Exemplo: Fornecedor X Produto.

 O esquema resultante é a concatenação dos esquemas das duas relações fornecidas como argumento.

(Cod_ Forn, Nome, Cidade, Estado) X (Cod_ Prod, Nome, Qualidade) = (
Fornecedor. Cod_ Forn, Fornecedor. Nome,
Fornecedor. Cidade, Fornecedor. Estado,
Produto. Cod_ Prod, Produto. Nome, Produto. Qualidade)

 As linhas são obtidas combinando- se cada linha da primeira tabela com todas as linhas da segunda tabela. Permite combinar informações de duas relações.O resultado final pode ser observado na tabela 6.

Tabela 6 – Produto Cartesiano.

Cod_Forn	F.Nome	Cidade	Estado	Cod_Prod	P.Nome	Qual.
F01	Pedro	Porto Alegre	RS	P01	Laranja	1a
F01	Pedro	Porto Alegre	RS	P02	Laranja	2a
F01	Pedro	Porto Alegre	RS	P03	Soja	1a
F01	Pedro	Porto Alegre	RS	P04	Arroz	1a
:	:	:	:	:	:	:
F01	Pedro	Porto Alegre	RS	P09	Pêssego	2a

Cod_Forn	F.Nome	Cidade	Estado	Cod_Prod	P.Nome	Qual.
F01	Pedro	Porto Alegre	RS	P10	Uva	1a
F01	Pedro	Porto Alegre	RS	P11	Uva	2a
F02	Eliana	Botucatu	SP	P01	Laranja	1a
F02	Eliana	Botucatu	SP	P02	Laranja	2a
:	:	:	:	:	:	:
F02	Eliana	Botucatu	SP	P11	Uva	2a
:	:	:	:	:	:	:
:	:	:	:	:	:	:
F10	Mário	Curitiba	PR	P01	Laranja	1a
F10	Mário	Curitiba	PR	P02	Laranja	2a
:	:	:	:	:	:	:
F10	Mário	Curitiba	PR	P11	Uva	2a

8.4. União

Requer que as duas relações fonecidas como argumento tenham o mesmo esquema. Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é a união dos conjuntos de linhas das relações dadas como argumento.

$$\pi_{\text{Cod_Forn}} \left(\ \sigma_{\text{Cod_Prod} = \text{``P07''}} \left(\text{Estoque} \right) \right) \ \textbf{U}$$

$$\pi_{\text{Cod_Forn}} \left(\ \sigma_{\text{Cod_Prod} = \text{``P07''}} \left(\text{Pedido} \right) \right)$$

$$\frac{\text{Cod_Forn}}{\text{F02}}$$

8.5. Diferença de Conjuntos

Requer que as duas relações fornecidas como argumento tenham o mesmo esquema. Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é o conjunto de linhas da primeira relação menos as linhas existentes na segunda.

 $\pi_{\mathsf{Cod_Forn}}$ (Pedido) - $\pi_{\mathsf{Cod_Forn}}$ (Estoque)

Cod_FornF07
F09
F10