

Lab Opamps

Juan Pimentel
Mecatrónica
ITLA
La Caleta, Santo Domingo Este
202010312

Resumen— Practica en la que analizamos el comportamiento del opamp en sus distintas configuraciones.

Keywords— OP-AMP.

I. MARCO TEORICO

Su principal función es amplificar el voltaje con una entrada de tipo diferencial para tener una salida amplificada y con referencia a tierra.

Dependiendo de sus comfiguraciones se pueden utilizar para otras aplicaciones.

II. INTRODUCCION

Realizamos una analisis del comportamiento que generan las distantas configuraciones en lazo cerrado del opamp, la señal que entra y que señal resultante nos devuelve este.

III. EJERCICIOS

Figura 1.3: amplificador en configuración no inversora

- Elegir los valores para que R₂>R₁
- Ganancia en la zona lineal: 1+ R₂/R₁.

PROCEDIMIENTO EXPERIMENTAL

- Poner en la entrada una señal sinusoidal con el generador de señal a 1 kHz de frecuencia y una amplitud grande (>10 V).
- Colocar la sonda del CH1 del osciloscopio a la entrada y la CH2 a la salida y poner el osciloscopio en modo de medida X-Y (en la base tiempos).
- En esa gráfica que representa V _o en función de V _{ii} medir la pendiente que será la ganancia del circuito (-R₂/R₁) y los puntos exactos donde la respuesta es plana por saturación.
- 4. Representar gráficamente estos datos comparándolos con la teoría

$$m = \frac{13.5 V + 13.5 V}{0.00013 S + 0000135} S \&$$

$$m = -101886$$

A. #2

CIRCUITO

Figura 1.4: amplificador en configuración inversora

- Elegir los valores para que R₂>R₁.
- Ganancia en la zona lineal: -R₂/R₁.

PROCEDIMIENTO EXPERIMENTAL

Idéntico al apartado anterior

$$m = \frac{-13.5V + 13.5V}{-0.000135S + 0000130S}$$
$$m = -102641$$

B. #3

1.1.3. Amplificador sumador inversor:

OBJETIVO

Medida con el osciloscopio de la característica de transferencia del circuito, $V_{o}=f(V_{i})$, calculando su ganancia.

CIRCUITO

Figura 1.5: amplificador sumador inversor

- Elegir los valores para que R₃=R₁ <R₂
- Ganancia en la zona lineal: $-R_2 \left[\frac{V_1}{R_1} + \frac{V_2}{R_3} \right]$
- Tomar para V₁ una señal sinusoidal y para V₂ una tensión continua de la fuente ajustable.

PROCEDIMIENTO EXPERIMENTAL

Medir en el osciloscopio algunos puntos de la tensión de salida en la zona lineal para poder comprobar que la ecuación de la ganancia se cumple:

- 1. Poner el osciloscopio en el modo normal (amplitud frente a tiempo) y visualizar la entrada V_1 y la salida V_6 .
- Medir con los cursores la amplitud de ambas señales en varios puntos: (máximo y mínimo por ejemplo de las ondas) y verificar la expresión de la ganancia.
- Cambiar la tensión de entrada V₂ de la fuente ajustable y volver a medir.
 Comprobar que incrementando esta entrada se entra en saturación y se recorta la señal de salida.

Voltaie V2 =10V

		Voltaje VZ –10V			
	max	min	amplitud		
V1	10,8	-10,8	21,6		
Vo	2.5	-13,3	15.8		

Voltaje V2 =5V

	101tajo 12 01		
	max	min	amplitud
V1	10,8	-10,8	21,6
Vo	11,7	-13,6	25,3

C. #4

UDJE HVU

Comprobar en el dominio del tiempo la respuesta del circuito derivador con amplificador operacional.

CIRCUITO

Figura 1.6; circuito derivador.

Tomar R·C= 10^{-4} (por ejemplo C = 100 nF y R = 1 k Ω)

Este circuito, tal y como se ha demostrado en clase, tiene la siguiente tensión de salida:

$$v_o(t) = -R \cdot C \cdot \frac{dv_i(t)}{dt}$$
 (1.1)

FTC.6

IGENIERIA INFORMATICA FUNDAMENTOS TECNOLOGICOS DE LOS COMPUTADORES

PROCEDIMIENTO EXPERIMENTAL

- 1. Introducir a la entrada una señal sinusoidal de amplitud 10V y f = 1 kHz.
- Calcular teóricamente el resultado de la ecuación 1 con esa señal de entrada.
- Comprobar con el osciloscopio el punto anterior: midiendo la amplitud de la señal de salida y compararla con la dada por la ecuación 1. Dibuje lo observado.
- Introducir una señal triangular, medir y representar la señal de salida obtenida
 Introducir una señal triangular, medir y representar la señal de salida obtenida

$$Vo = (10*10^{3})*(100*10^{-9})*(10*\sin(2\pi*f*t))$$

$$Vo = (10*10^{3})*(100*10^{-9})*(20*10^{3})\pi*\cos((2*10^{3})\pi t)$$

$$Vo = -2\pi*\cos(2000\pi t) \approx -6,28\cos(2000\pi t)$$

