Topologia Geral 0º /2019 Turma A

LISTA DE EXERCÍCIOS 1 24/01/2019

PROBLEMA 1 (INFINITUDE DOS PRIMOS): Considere o conjunto dos números inteiros \mathbb{Z} . Defina para cada par de números inteiros m, n, onde $m \neq 0$ o conjunto

$$A_{m,k} = \{mn + k, n \in \mathbb{Z}\}.$$

- a) Prove que intersecções de dois conjuntos da forma $A_{m,k}$ é um conjunto da forma $A_{m',k'}$. Conclua que a família $\{A_{m,k}, m, n \in \mathbb{Z}, m \neq 0\}$ é uma base para uma topologia em \mathbb{Z} (chamada de topologia de Furstenberg);
- b) Prove que cada $A_{m,k}$ é simultaneamente fechado e aberto (clopen) na topologia de Furstemberg;
- c) Prove que cada conjunto aberto n\u00e3o vazio na topologia de Furstenberg \u00e9
 infinito;
- d) Considere $P \subset Z$ o conjunto dos números primos (1 não é primo!). Seja $B = \bigcup_{p \in P} A_{p,0}$, quem é B?
- e) Mostre que se P for finito então B é aberto
- f) Conclua que P é infinito.

Problema 2(Axiomas de Kuratowski):

- a) Seja (Ω, τ) um espaço topológico. Prove que o operador fecho $A \mapsto \overline{A}$ tem as seguintes propriedades:
 - i) $\overline{\varnothing} = \varnothing$, ii) $A \subset \overline{A}$ iii) $\overline{\overline{A}} = \overline{A}$ e iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- b) Seja Ω um conjunto. Suponha que uma aplicação $F: \mathscr{P}(\Omega) \to \mathscr{P}(\Omega)$ tem as propriedades i)-iv) listadas acima, i.e. i) $F(\varnothing) = \varnothing$, ii) $A \subset F(A)$ iii) F(F(A)) = F(A) e iv) $F(A \cup B) = F(A) \cup F(B)$. Mostre que existe uma única topologia τ tal que F seja o operador fecho para τ .

- c) Considere $\Omega = \mathbb{N}$ e $F : \mathscr{P}(\mathbb{N}) \to \mathscr{P}(\mathbb{N})$ dada por $F(A) = \overline{A} = \{k \cdot A, k \in \mathbb{N}\}$. Mostre que F satisfaz as propriedades i)-iv) listadas no item anterior. Sendo τ a também a topologia referida no item anterior, descreva os conjuntos fechados e os conjuntos abertos de (\mathbb{N}, τ) .
- d) Considere em $\mathbb N$ a topologia dada pelo item anterior. Mostre que uma função $f:\mathbb N\to\mathbb N$ é contínua, se e somente se, cada vez que m|n tem-se que f(m)|f(n).

PROBLEMA 3(NÚMEROS DE LIOUVILLE): Diremos que um número real ξ é de Liouville quando, para cada $n\geq 1$ existe um racional $p/q,\ q>1$ tal que

$$0 < \left| \frac{p}{q} - \xi \right| < \frac{1}{q^n}.$$

- a) Mostre que o conjunto L dos números de Liouville é um G_{δ} ;
- b) Conclua que L é não enumerável.