

Exploring Sign Language Recognition Through LSTM and Cosine Similarity Modeling

Github Link



#### **Team Members**





Nafisa Maliyat

ID: 200042133



Shanta Maria

ID: 200042172



#### Contents

O1 Problem Statement

**04** Dataset

**02** Solution

FeatureEngineering

O3 Model Architecture

**06** Training





#### Contents

**07** Result

09 Challenges

**08** Analysis

10 Future Work





## O1 Problem Statement





#### Human Translator Expensive











## Communication Barrier



## 02 Solution



Word Level Translation

Deep Learning, MediaPipe, Cosine Similarity

Focus on Interpretation of Fine-Grained Gestures





## O3 Model Architecture



- Input Layer:
  - Masking Layer = ignores padded values
- Reshape Layer:
  - Convert to 3D format
- LSTM Layers:
  - 3 Layers
  - ReLu Activation
  - First 2 Layers have return sequences



- Dense Layers:
  - 2 Layers
  - ReLu Activation
- Output Layer:
  - Dense Layer
  - Linear activation
- Techniques:
  - Batch Normalization
  - Dropout (rate=0.5) = Regularization
  - Applied after each hidden layer



#### **Dataset**



#### **WLASL**

- 21,083 videos corresponding to 2,000 common ASL words
- Metadata provided



# Feature 05 Engineering





### **Landmark Extraction**

- Hands:
  - 42 (21 on each hand)
- Pose:
  - 6 landmarks
  - For the upper body
  - Excluding the face
- Face:
  - 132 out of the 478
  - Focusing on the lips, eyes, eyebrows, and the outline of the face

Total Landmarks: 180 Landmarks Centered





### **Landmark Extraction**

| Body                                                                                      | Hands (Left and Right)                                                                                                                                                                                                                                                                                                                                                                              | Face                                     |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Left Shoulder<br>Right Shoulder<br>Left Elbow<br>Right Elbow<br>Left Wrist<br>Right Wrist | Wrist Thumb CMC Thumb MCP Thumb IP Thumb Tip Index Finger MCP Index Finger DIP Index Finger Tip Middle Finger MCP Middle Finger DIP Middle Finger DIP Middle Finger DIP Middle Finger DIP Middle Finger Tip Ring Finger MCP Ring Finger DIP Ring Finger Tip Pinky MCP Pinky DIP Pinky DIP Pinky Tip | Face Outline<br>Lips<br>Eyes<br>Eyebrows |





### Preprocessing







### Augmentation

Rotation

Zoom

Shift



Mask

**HFlip** 

Speedup





### **Padding**

X=74 (example)



X=76 (expected)

Padding
value = -80
for (76-74=)
2 frames
each with
180
landmarks





### Label Encoding

Labels

**FastText** 

Encoded to word vectors



## 06 Training





Epochs = 100

**Validation** 









### Early Stopping

```
early_stopping = tf.keras.callbacks.EarlyStopping(
    monitor='val_accuracy',
    patience=10,
    restore_best_weights=True
)
```

#### Patience = 10





### **Model Checkpoint**



```
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
    filepath=os.path.join(checkpoint_filepath, 'model_{epoch:02d}.h5'),
    save_weights_only=True,
    save_best_only=True,
    monitor='val_accuracy',
    mode='max',
)
```



#### **Optimizer**

Adam Optimizer (∝ = 0.05, 0.9 decay every 1000 steps)

```
lr_scheduler = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate=0.05,
    decay_steps=1000, # decrease learning rate at an expotential rate
    decay_rate=0.9
)
```





#### Loss

#### Cosine Similarity Loss

```
model.compile(
    loss=tf.keras.losses.cosine_similarity,
    optimizer=tf.keras.optimizers.Adam(learning_rate=lr_scheduler),
    metrics=['accuracy']
)
```







### 16.68%

Test Accuracy on

2000

labels i.e. the entire dataset







#### **Prediction**

Confusion Loss ROC Accuracy **Matrix** Total Loss VS Total For each unique label Total Accuracy VS Total For first 50 samples Validation Accuracy Validation Loss with AUC





| Subset Sample Size | Test Accuracy (%) |  |
|--------------------|-------------------|--|
| 50                 | 22.378            |  |
| 200                | 21.154            |  |
| 1000               | 17.964            |  |
| 2000               | 16.678            |  |



Fig. 5: For 50 samples

Fig. 6: For 200 samples



Fig. 7: For 1000 samples

Fig. 8: For 2000 samples

Fig. 9: Total Accuracy vs Total Validation Accuracy



Fig. 10: For 50 samples

Fig. 11: For 200 samples



Fig. 12: For 1000 samples

Fig. 13: For 2000 samples

Fig. 14: Total Loss vs Total Validation Loss

















## Challenges 09





#### Small epoch

## Computational resource constraint

Time constraint

Padding & Augmentation





Larger Epoch

More Augmentation Real-Time Translation

Diverse & Larger Dataset

Sentence Level Translation

## Thank You For Your Patience

