Section 4.9 : Applications to Markov Chains

Chapter 4 : Vector Spaces

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. Markov chains
- 2. Steady-state vectors
- 3. Convergence

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Construct stochastic matrices and probability vectors.
- 2. Model and solve real-world problems using Markov chains (e.g. find a steady-state vector for a Markov chain)
- 3. Determine whether a stochastic matrix is regular.

- A small town has two libraries, A and B.
- After 1 month, among the books checked out of A,
 - \triangleright 80% returned to A
 - ightharpoonup 20% returned to B
- After 1 month, among the books checked out of B,
 - ▶ 30% returned to *A*
 - ightharpoonup 70% returned to B

If both libraries have 1000 books today, how many books does each library have after 1 month? After one year? After n months? A place to simulate this is http://setosa.io/markov/index.html

Example 1 Continued

The books are equally divided by between the two branches, denoted by $\vec{x}_0 = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$. What is the distribution after 1 month, call it \vec{x}_1 ? After two months?

After k months, the distribution is \vec{x}_k , which is what in terms of \vec{x}_0 ?

Markov Chains

A few definitions:

- A **probability vector** is a vector, \vec{x} , with non-negative elements that sum to 1.
- A **stochastic matrix** is a square matrix, P, whose columns are probability vectors.
- A **Markov chain** is a sequence of probability vectors \vec{x}_k , and a stochastic matrix P, such that:

$$\vec{x}_{k+1} = P\vec{x}_k, \quad k = 0, 1, 2, \dots$$

• A steady-state vector for P is a vector \vec{q} such that $P\vec{q} = \vec{q}$.

Determine a steady-state vector for the stochastic matrix

$$\begin{pmatrix}
.8 & .3 \\
.2 & .7
\end{pmatrix}$$

Convergence

We often want to know what happens to a process,

$$\vec{x}_{k+1} = P\vec{x}_k, \quad k = 0, 1, 2, \dots$$

as $k \to \infty$.

Definition: a stochastic matrix P is **regular** if there is some k such that P^k only contains strictly positive entries.

$\mathsf{Theorem}$

If P is a regular stochastic matrix, then P has a unique steady-state vector \vec{q} , and $\vec{x}_{k+1} = P\vec{x}_k$ converges to \vec{q} as $k \to \infty$.

A car rental company has 3 rental locations, A, B, and C. Cars can be returned at any location. The table below gives the pattern of rental and returns for a given week.

		rented from		
		Α	В	С
returned to	Α	.8	.1	.2
	В	.2	.6	.3
	C	.0	.3	.5

There are 10 cars at each location today.

- a) Construct a stochastic matrix, P, for this problem.
- b) What happens to the distribution of cars after a long time? You may assume that P is regular.

$$P = \begin{bmatrix} .8 & .1 & .2 \\ .2 & .6 & .3 \\ .0 & .3 & .5 \end{bmatrix}$$

Section 5.1 : Eigenvectors and Eigenvalues

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. Eigenvectors, eigenvalues, eigenspaces
- 2. Eigenvalue theorems

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Verify that a given vector is an eigenvector of a matrix.
- 2. Verify that a scalar is an eigenvalue of a matrix.
- 3. Construct an eigenspace for a matrix.
- 4. Apply theorems related to eigenvalues (for example, to characterize the invertibility of a matrix).

Eigenvectors and Eigenvalues

If $A \in \mathbb{R}^{n \times n}$, and there is a $\vec{v} \neq \vec{0}$ in \mathbb{R}^n , and

$$A\vec{v} = \lambda \vec{v}$$

then \vec{v} is an **eigenvector** for A, and $\lambda \in \mathbb{C}$ is the corresponding **eigenvalue**.

Note that

- We will only consider square matrices.
- If $\lambda \in \mathbb{R}$, then
 - when $\lambda > 0$, $A\vec{v}$ and \vec{v} point in the same direction
 - \blacktriangleright when $\lambda < 0$, $A\vec{v}$ and \vec{v} point in opposite directions
- Even when all entries of A and \vec{v} are real, λ can be complex (a rotation of the plane has no **real** eigenvalues.)
- We explore complex eigenvalues in Section 5.5.

Which of the following are eigenvectors of $A=\begin{pmatrix}1&1\\1&1\end{pmatrix}$? What are the corresponding eigenvalues?

a)
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

b)
$$\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

c)
$$\vec{v}_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Confirm that $\lambda=3$ is an eigenvalue of $A=\begin{pmatrix}2&-4\\-1&-1\end{pmatrix}$.

Eigenspace

Definition

Suppose $A \in \mathbb{R}^{n \times n}$. The eigenvectors for a given λ span a subspace of \mathbb{R}^n called the λ -eigenspace of A.

Note: the λ -eigenspace for matrix A is $Nul(A - \lambda I)$.

Example 3

Construct a basis for the eigenspaces for the matrix whose eigenvalues are given, and sketch the eigenvectors.

$$\begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix}, \quad \lambda = -1, 2$$

Theorems

Proofs for the most these theorems are in Section 5.1. If time permits, we will explain or prove all/most of these theorems in lecture.

- 1. The diagonal elements of a triangular matrix are its eigenvalues.
- 2. A invertible $\Leftrightarrow 0$ is not an eigenvalue of A.
- 3. Stochastic matrices have an eigenvalue equal to 1.
- 4. If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are eigenvectors that correspond to distinct eigenvalues, then $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are linearly independent.

Warning!

We can't determine the eigenvalues of a matrix from its reduced form.

Row reductions change the eigenvalues of a matrix.

Example: suppose $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. The eigenvalues are $\lambda = 2, 0$, because

$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

$$A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} =$$

- ullet But the reduced echelon form of A is:
- The reduced echelon form is triangular, and its eigenvalues are:

Section 5.2 : The Characteristic Equation

 $Chapter \ 5: \ Eigenvalues \ and \ Eigenvectors$

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. The characteristic polynomial of a matrix
- 2. Algebraic and geometric multiplicity of eigenvalues
- 3. Similar matrices

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Construct the characteristic polynomial of a matrix and use it to identify eigenvalues and their multiplicities.
- 2. Characterize the long-term behaviour of dynamical systems using eigenvalue decompositions.

The Characteristic Polynomial

Recall:

 λ is an eigenvalue of $A \Leftrightarrow (A - \lambda I)$ is not _____

Therefore, to calculate the eigenvalues of A, we can solve

$$\det(A - \lambda I) =$$

The quantity $det(A - \lambda I)$ is the **characteristic polynomial** of A.

The quantity $\det(A-\lambda I)=0$ is the characteristic equation of A.

The roots of the characteristic polynomial are the $___$ of A.

The characteristic polynomial of $A=\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$ is:

So the eigenvalues of \boldsymbol{A} are:

Characteristic Polynomial of 2×2 Matrices

Express the characteristic equation of

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

in terms of its determinant. What is the equation when ${\cal M}$ is singular?

Algebraic Multiplicity

Definition

The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

Example

Compute the algebraic multiplicities of the eigenvalues for the matrix

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Geometric Multiplicity

Definition

The **geometric multiplicity** of an eigenvalue λ is the dimension of $\mathrm{Null}(A-\lambda I)$.

- 1. Geometric multiplicity is always at least 1. It can be smaller than algebraic multiplicity.
- 2. Here is the basic example:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

 $\lambda=0$ is the only eigenvalue. Its algebraic multiplicity is 2, but the geometric multiplicity is 1.

Give an example of a 4×4 matrix with $\lambda=0$ the only eigenvalue, but the geometric multiplicity of $\lambda=0$ is one.

Section 5.2 Slide 16

Recall: Long-Term Behavior of Markov Chains

Recall:

We often want to know what happens to a Markov Chain

$$\vec{x}_{k+1} = P\vec{x}_k, \quad k = 0, 1, 2, \dots$$

as $k \to \infty$.

ullet If P is regular, then there is a ______

Now lets ask:

- If we don't know whether P is regular, what else might we do to describe the long-term behavior of the system?
- What can eigenvalues tell us about the behavior of these systems?

Example: Eigenvalues and Markov Chains

Consider the Markov Chain:

$$\vec{x}_{k+1} = P\vec{x}_k = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{pmatrix} \vec{x}_k, \quad k = 0, 1, 2, 3, \dots, \quad \vec{x}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

This system can be represented schematically with two nodes, A and B:

Goal: use eigenvalues to describe the long-term behavior of our system.

What are the eigenvalues of P?

What are the corresponding eigenvectors of P?

Use the eigenvalues and eigenvectors of P to analyze the long-term behaviour of the system. In other words, determine what \vec{x}_k tends to as $k\to\infty.$

Similar Matrices

Definition

Two $n \times n$ matrices A and B are **similar** if there is a matrix P so that $A = PBP^{-1}$.

Theorem

If A and B similar, then they have the same characteristic polynomial.

If time permits, we will explain or prove this theorem in lecture. Note:

- Our textbook introduces similar matrices in Section 5.2, but doesn't have exercises on this concept until 5.3.
- ullet Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Additional Examples (if time permits)

- 1. True or false.
 - a) If A is similar to the identity matrix, then A is equal to the identity matrix.
 - b) A row replacement operation on a matrix does not change its eigenvalues.
- 2. For what values of k does the matrix have one real eigenvalue with algebraic multiplicity 2?

$$\begin{pmatrix} -3 & k \\ 2 & -6 \end{pmatrix}$$