대한통운 미래기술 챌린지

1. 과제 개요

1. 개요

본 과제는 최소한의 비용으로 주어진 배송 주문을 모두 처리할 수 있는 물량 할당 조합과 최적 배송 라우트를 찾아내는 vehicle routing problem 계열의 과제입니다. 본 과제의 목적은 차량 운영 비용의 최소화입니다. 또한 차량의 최대적재량, 최대방문가능 착지 수, 방문가능시간 등의 여러 제약조건을 만족시켜야 합니다.

본 과제의 목표는 총 차량 운영비용을 최소화하는 결과를 찾는 것입니다. 차량 운영비용은 다음과 같이 계산됩니다.

차량 기본 비용 + 회전 추가 비용 + (이동거리 x km당 유류비)

참가자들은 주어진 6일 분량의 주문을 각각의 날 이내에 모두 배송하는 배송 계획을 수립해야 합니다. 총 차량 운영비용은 6일간의 차량 사용 비용의 총합입니다.

라우팅 결과는 반드시 과제정의서에 명시된 포맷에 맞춰서 저장되어 제출해야 합니다.

- 2. 개발 관련 사항
- 대한통운 Github ID: InsuHongCJLogistics
- Docker download: ubuntu Official Image | Docker Hub (우분투 공식 이미지)
- Ⅱ. 제공 데이터 설명
- 1. 차량 테이블
- * 차량은 각 톤급 별로 기준정보가 주어지며, 응시자는 필요한 만큼의 차량을 사용할 수 있음
- * 생성한 차량을 구분할 수 있도록 임의의 ID를 반드시 부여해야 하며 이를 기준으로 결과를 생성
- * 운행 간 휴게시간, 급유 등의 현실적 조건은 문제의 단순화를 위해 모두 무시하는 것으로 가정함
- * 각 차량은 최대 적재량 (PLT) 및 최대 적재 중량 (kg) 이하로만 주문을 적재할 수 있으며, 둘 중하나라도 초과시 제약조건 위배로 적재 불가능

- 필드 설명 (기준정보 테이블)

필드명	내용
VehTon	차량 톤급 (kg)
BusinessStartTM	차량 운행 시작시각
BusinessEndTM	차량 운행 종료시각
FixedCost	차량 고정비 (1회라도 운영하면 발생함)
RoundCost	회전 추가 비용 (2회전부터 발생함)
VariableCost	1km 당 차량 운영비
MaxCapaPLT	최대 적재 가능 PLT
MaxCapaWeight	최대 적재 가능 무게 (kg)
MaxRound	최대 운행 가능 회전 수
MaxCount	회전별 최대 방문 가능 착지 수 (주문수 아님)

- 테이블 예시

VehT	BusinessS	Business	Fixed	Round	Variabl	MaxCa	МахСара	MaxR	MaxC
on	tartTM	EndTM	Cost	Cost	eCost	paPLT	Weight	ound	ount
1	0500	2200	1454	50000	173	2.8	1000	2	25
			00						
2.5	0500	2200	1732	50000	173	4	2500	2	15
			00						
3.5	0500	2200	2000	60000	237	8	3500	2	15
			00						
5	0500	2200	2340	60000	355	10	5000	2	10
			00						
11	0500	2200	1852	70000	421	16	11000	2	5
			00						

2. 센터 테이블

- 필드 설명

필드명	설명
X	경도 좌표
Υ	위도 좌표
ID	터미널ID
Start_time	업무 시작 시간
End_time	업무 종료 시간

- 테이블 예시

Υ	Х	ID	Start_time	End_time	loading_time
37.33187	126.9356	Terminal	0500	2400	30

3. 착지 테이블

- 필드 설명

필드명	설명
Χ	착지 경도 좌표
Υ	착지 위도 좌표
Stop_ID	착지 ID
Start_time	배송 가능 시작 시각
End_time	배송 가능 종료 시각
Access_restriction	차량 진입제한
	- 1000: 1톤 차량만 진입 가능
	- 3500: 3.5톤 이하 차량만 진입 가능
	- None: 제약 없음
Unloading_time	기본 하역 시간
Unloading_time_per_plt	PLT 단위 하역 시간

- 테이블 예시

Υ	Х	ID	Start_ti	End_ti	Access_restric	Unloading_ti	Unloading_time_pe
			me	me	tion	me	r_plt
37.584	126.97	S_1	1400	1700	None	5	10
09	06						
37.576	126.96	S_2	500	1000	None	5	10
07	89						
37.585	126.98	S_3	500	2200	None	5	10
01	19						
37.592	126.96	S_4	500	1000	None	5	10
41	41						
37.606	126.96	S_5	500	2200	3500	5	10
37	84						
37.576	126.95	S_6	500	1000	None	5	10

	82						
37.571	126.96	S_7	900	1100	None	5	10
91	2						
37.580	126.98	S_8	900	1100	None	5	10
05	48						
37.570	126.98	S_9	500	2200	None	5	10
71	9						

4. 주문 테이블

- * 월 ~ 토요일의 6일 분량의 주문 데이터
- * 각 요일별로 배차가 이루어져야 함
- * 동일한 착지에 여러 개의 주문이 위치할 수 있으며, 그 주문들을 다수의 차량이 배송할 수 있음. 그 경우 각 차량의 하역 시간의 계산은 아래와 같은 방식으로 수행

착지 기본 하역 시간 + (해당 차량이 배송하는 해당 착지 주문 PLT 총합 * PLT 단위 하역 시간)

예를 들어 아래와 같은 주문이 V1, V2 총 2대의 차량에 의해 배송되고, 착지 S_1069 의 기본 하역시간이 10분이라 할 때,

Υ	Х	Stop_ID	plt	weight	Order_ID	Veh
37.51619	127.1617	S_1069	0.2	200	O_765	V1
37.51619	127.1617	S_1069	1.2	544.67	O_2329	V1
37.51619	127.1617	S_1069	0.17	46.3	O_2330	V1
37.51619	127.1617	S_1069	0.43	307	O_2331	V1
37.51619	127.1617	S_1069	0.42	239.6	O_2332	V2
37.51619	127.1617	S_1069	3.23	1796.19	O_2333	V2
37.51619	127.1617	S_1069	6	3840	O_2334	V2
37.51619	127.1617	S_1069	0.23	117.35	O_2335	V2

V1의 총 하역시간은:

5분 + 2 * 10분 = 25분

V2의 총 하역시간은:

5분 + 9.88 * 10분 = 103.8분

과 같이 계산된다.

- 필드 설명

필드명	설명
Χ	주문 경도 좌표
Υ	주문 위도 좌표
Stop_ID	주문에 해당하는 착지 ID
Order_ID	주문 ID (매일 독립적으로 부여)
plt	주문 용량 (PLT)
weight	주문 무게 (kg)

- 테이블 예시

Υ	Χ	Stop_ID	plt	weight	Order_ID
37.58409	126.9706	S_1	1.58	482.88	O_1
37.576	126.9582	S_6	0.18	81.92	O_2
37.57191	126.962	S_7	0.11	40	O_3
37.58005	126.9848	S_8	2.16	788.26	O_4
37.57206	127.005	S_10	0.81	539.66	O_5
37.58685	127.0006	S_12	0.21	93.14	O_6
37.57072	127.0163	S_13	0.15	22.52	O_7
37.57445	127.0109	S_14	0.1	43.64	O_8
37.57488	127.02	S_17	3.44	1788.91	O_9
37.56242	126.977	S_18	0.12	69	O_10

5. OD Matrix

- 필드 설명

필드명	설명
OriginID	출발지 ID
DestinationID	도착지 ID
Total_Time	이동 시간 (분)
Total_Distance	이동 거리 (km)

Ⅲ. 결과 테이블 정의 및 설명

1. 주문 결과 테이블

필드 이름	내용	포맷	비고
Order_ID	주문 ID	Text	
VehicleID	할당된 차량 ID	Text	
Sequence	할당된 배송 시	Long	
	퀀스		
Stop_ID	착지 ID	Text	
ArrivalTime	도착시각	Date	
WaitingTime	대기시간	Float	
UnloadingTime	하차시간	Float	
DepartureTime	출발시각	Date	

2. 차량 결과 테이블

필드 이름	내용	단위	포맷	비고
VehicleID	차량ID		Text	
Round	회전 차수		Long	
OrderCount	해당 회전에서 배달한		Long	
	주문 수			
StopCount	해당 회전에서 방문한		Long	
	착지 수			
Plt	총 적재량 (PLT)	PLT	Float	
TravelDistance	총 주행 거리	Kilometer	Float	
WorkTime	총 작업 시간	Minute	Float	
TravelTime	총 이동 시간	Minute	Float	
UnloadingTime	총 하역 시간	Minute	Float	
WaitingTime	총 대기 시간	Minute	Float	
TotalCost	총 비용		Float	
FixedCost	차량 고정비		Float	
VariableCost	차량 거리 운영비		Float	