Цель работы: получение практических навыков использования моделирования для оценки надежности вычислительных сетей.

Вариант задания: 16

Граф:

Рисунок 1: исходный граф

Вычислить, используя имитационное моделирование, оценку вероятности связности пары вершин в случайном графе $\check{G}(X,Y,P)$, где $X=\{xi\}$ – множество вершин, $Y=\{(xi,xj)\}$ – множество ребер, $P=\{pi\}$ – множество вероятностей существования ребер. Вероятности существования ребер равны между собой и равны р. При моделировании следует использовать те же исходные данные (ту же топологию случайного графа), что и в лабораторной работе N = 1.

Описание программы

Программы выполняет задание 3-мя способами: полный перебор, метод имитационного моделирования и оптимизированным методом имитационного моделирования благодаря снижению временных затрат на проведение некоторых экспериментов.

Результаты работы программы для заданной вероятности существования ребра 0.125:

Рисунок 2: результаты

Результаты работы программы для вероятностей с шагом 0.1:

-	
All N: 22500	
Pr: 0	
Lab1:	0
Lab2Part1:	0 0
Lab2Part2: N:	0
win:	inf
Pr: 0.1	2111
Lab1:	0.02184238
Lab2Part1:	0.02293333333
Lab2Part2:	0.02266666667
N:	4237
win:	5.310361105
Pr: 0.2	
Lab1:	0.09265408
Lab2Part1:	0.09293333333
Lab2Part2:	0.0964
N: win:	11231 2.003383492
win. Pr: 0.3	2.003363492
Lab1:	0.21352158
Lab2Part1:	0.2119111111
Lab2Part2:	0.2112444444
N:	16432
win:	1.369279455
Pr: 0.4	
Lab1:	0.37439488
Lab2Part1:	0.3792
Lab2Part2:	0.3750222222
N:	19005
win:	1.183898974
Pr: 0.5	0 EE4697E
Lab1: Lab2Part1:	0.5546875 0.5574666667
Lab2Part2:	0.5534222222
N:	18587
win:	1.210523484
Pr: 0.6	
Lab1:	0.72753408
Lab2Part1:	0.7275111111
Lab2Part2:	0.7219111111
N:	15250
win:	1.475409836
Pr: 0.7	0.86680018
Lab1: Lab2Part1:	0.86689918 0.8654666667
Lab2Part2:	0.8688888889
N:	10065
win:	2.235469449
Pr: 0.8	
Lab1:	0.95592448
Lab2Part1:	0.9562666667
Lab2Part2:	0.9553777778
N:	4498
win:	5.00222321
Pr: 0.9	0.00400548
Lab1:	0.99409518
Lab2Part1: Lab2Part2:	0.9944888889 0.994222222
Ladzpartz: N:	860
win:	26.1627907
Pr: 1	2071021001
Lab1:	1
Lab2Part1:	1
Lab2Part2:	1

Рисунок 3: результаты

Вычисление дополнительных параметров для оптимизации метода имитационного моделирования

LenMax = 8-3 = 5

LenMin = 2 (кратчайший путь)

По результатам программы видно, что с увеличением существования вероятности ребра увеличивается вероятность существования пути из 2 в 5.

Описание метода полного перебора

Программа перебирает все возможные варианты постановки ребер в граф и определяет для каждого сгенерированного графа существует ли заданный путь.

Описание метода имитационного моделирования

В программе задается точность е, вычисляет число экспериментов N, далее программа N раз генерирует маску для графа с вероятностью появления единицы р и определяет есть пусть для данного набора ребер или нет. Если путь есть, то увеличивается счетчик подсчета существующих путей. Вероятность существования пути определяется по формуле количество подсчитанных существующих / количество экспериментов.

Описание ускорения

В программе задается определенные исходные данные Lmin и Lmax. После того, как сгенерируется маска для нового графа, с начала идет подсчет веса этого вектора. Если вес меньше минимальной длины, то пути точно нет, если вес больше максимальной длины, то путь точно есть, если вес находится между минимальной и максимальной длиной, то нужно определять есть путь или нет. Вероятность существования пути определяется по формуле количество подсчитанных существующих / количество экспериментов.

Графики результатов

Рисунок 4: график результатов

Рисунок 5: график результатов

Выигрыш в количестве проведенных экспериментов с помощью метода ускорения:

Рисунок 6: выигрыш

Выводы: в ходе лабораторной работы результаты алгоритмов сошлись с заданной точностью, что свидетельствует о правильности расчётов и высокой точности вычисления.