ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра общей физики

Лабораторная работа 1.2.5

Исследование прецессии уравновешенного гироскопа

Преподаватель: к.ф.-м.н., доц. Яворский В.А.

Обучающийся: Глотов А.А.

Введение

Цели работы

- Исследовать вынужденную прецессию гироскопа
- Установить зависимость скорости вынужденной прецессии гироскопа от величины момента сил, действующих на ось гироскопа
- Определить сокрость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии

Приборы и материалы

- 1. Гироскоп в кардановом подвесе
- 2. Секундомер
- 3. Набор грузов
- 4. Отдельный ротор гироскопа
- 5. Цилиндр известной массы (Цилиндр + весы)
- 6. Крутильный маятник
- 7. Штангенциркуль
- 8. Линейка

Теоретические сведения

Уравнения движения твёрдого тела можно записать в виде

$$\frac{d\vec{p}}{dt} = \vec{F} \tag{1}$$

$$\frac{d\vec{L}}{dt} = \vec{M} \tag{2}$$

Уравнений 1 и 2 достаточно для описания движения твердого тела Момент импульса твердого тела по главным осям x, y, z равен

$$\vec{L} = \vec{i}I_x\omega_x + \vec{j}I_y\omega_y + \vec{k}I_z\omega_z \tag{3}$$

где I_x, I_y, I_z - главные моменты инерции, $\omega_x, \omega_y, \omega_z$ - компоненты вектора угловой скорости. Для гироскопа справедливо, что

$$I_z\omega_z\gg I_x\omega_x,I_y\omega_y$$

В силу 2, приращение момента импульса определяется интегралом

$$\Delta \vec{L} = \int \vec{M} dt \tag{4}$$

Если момент внешних сил действует в течение короткого промежутка времени, то

$$|\Delta \vec{L}| \ll |\vec{L}|$$

С этим связана устойчивость быстро вращающегося гироскопа. В случае, если центр масс неподвижен, гироскоп называют уравновешенным

Рис. 1: Маховик

Рассмотрим маховик, изображенный на рис.1, вращающийся вокруг оси Оz, перпендикулярной к плоскости маховика. Будем считать, что

$$\omega_z = \omega_0, \quad \omega_x = \omega_y = 0$$

Пусть ось повернулась в плоскости хОz по направлению к Оx на бесконечно малый угол $d\phi$. Такой поворот означает добавочное вращение маховика вокруг оси Оy, так что

$$d\phi = \Omega dt$$

где Ω - угловая скорость такого вращения. Будем предполагать, что

$$L_{\Omega} \ll L_{\omega_0} \tag{5}$$

Это означает, что момент импульса маховика, равный $I_z\omega_z$ до приложения внешних сил, только повернутся в плоскости хOz по направлению к оси Ox не изменяя своей величины. Таким образом,

$$|d\vec{L}| = Ld\phi = L\Omega dt$$

Изменение направлено вдоль Ох, поэтому

$$d\vec{L} = [\vec{\Omega}, \vec{L}]dt$$

В силу 2 имеем:

$$\vec{M} = [\vec{\Omega}, \vec{L}] \tag{6}$$

Для гироскопа массой m, у которого ось собственного вращения наклонена на угол α от вертикали, скорость прецессии равна

$$\Omega = \frac{M}{I_z \omega_z \sin \alpha} = \frac{mgl \sin \alpha}{I_z \omega_0 \sin \alpha} = \frac{mgl}{I_z \omega_0}$$
(7)

l - расстояние от точки подвеса до центра масс гироскопа

Для изучения регулярной прецессии гироскопа используют к его оси подвешивают дополительные грузы. Тогда скорость прецессии

$$\Omega = \frac{mgl}{I_z \omega_0} \tag{8}$$

m - масса груза, l - расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа рис.2

Рис. 2: Схема экспериментальной установки

Рис. 3: Гироскоп в кардановом подвесе

Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора (с помощью формулы 9). Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям копии ротора, подвешенной вдоль оси симметрии на проволоке. Период считается по формуле

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}} \tag{9}$$

Для исключения неизвестной величины - модуля кручения проволоки, - к той же проволоке подвешивают цилиндр с известными массой и диаметром сечения, для которого легко считается момент инерции $I_{\rm q}$. Тогда момент инерции ротора I_0 определяется по формуле

$$I_0 = I_{\pi} \frac{T_0^2}{T^2} \tag{10}$$

Ход работы

1)

Рассмотрим реакцию гироскопа на воздействие внешних сил. Согласно теории, описывающей поведение гироскопа, направление отклонения должно совпадать с направдлением действия момента прикладываемой силы. Прикладывая силы перпендикулярно рычагу (очевидно, что в таком случае они также будут перпендикулярны плечу силы), отметим, что гироскоп действительно отколняется перпендикулярно рычагу и направлению действия силы. Несложно подтвердить, что направление отклонения совпадает с направлением вектора $[\vec{r}, \vec{F}]$, т.е. удовлетворяет теоретическим данным

2)

Подвесим к рычагу груз. Отметим начавшуюся прецессию гироскопа, а также медленное горизонтальное (вниз) движение гироскопа из-за трения в оси карданвого подвеса (аа на рис.3)

3)

Измерим скорость прецессии гироскопа в зависимости от массы груза, подвешенного на рычаг, параллельно замеряя скорость опускания рычага гироскопа.

Будем считать период прецессии гироскопа как время, необходимое для опускания на 10-12 градусов, за которое он совершит целое число оборотов, деленное на число оборотов

$$l=12.2~{
m cm}$$
 $\Delta l=0.1{
m cm}$

т, г	n	T, c	t, c	Ω, c^{-1}	$\Omega_{ m onyck}, c^{-1}$	М, Н*м
341	7	208	29.7	0.2114	0.053	0.408
273	6	229	37.7	0.1656	0.048	0.326
219	5	230	46.0	0.1376	0.048	0.212
180	4	223	55.8	0.1137	0.049	0.215
142	3	212	70.7	0.0899	0.052	0.170
116	2	173	86.5	0.0736	0.073	0.139
92	2	219	109.5	0.0574	0.050	0.110
74	2	271	135.5	0.0464	0.041	0.088
57	1	177	177.0	0.0355	0.062	0.068

$$\Delta T=0.03c$$
 $\Delta m=1$ г (по разряду последней цифры измеренных значений) Тогда $\varepsilon_{\Omega}=\varepsilon_{t}=\varepsilon_{\omega}=\varepsilon_{T}=\frac{\Delta T}{< T>}=0.2\%$ $\Omega_{\text{опуск}}$ - угловая скорость опускания рычага гироскопа По данным таблицы посчитаем $<\Omega_{\text{опуск}}>$; $<\Omega_{\text{опуск}}>=0.052~c^{-1}$

По результатам эксперимента построим график зависимости и определим коэффициент наклона и свободный член графика $\Omega(m)$

Рис. 4: График 1

$$\alpha = \frac{<\Omega M> -<\Omega> < M>}{< M^2> - } = 0.512 \frac{1}{c*{\rm kf}}$$

$$\sigma_{\alpha} = \sqrt{\frac{1}{7} \left(\frac{<\Omega^2> -<\Omega>^2}{<\Omega^2> -<\Omega>^2} - \alpha^2\right)} = 0,005 \frac{1}{c*{\rm kf}}$$

$$b = <\Omega> -\alpha < M> = 0,00128c^{-1}$$

$$\sigma_b = \sigma_{\alpha} \sqrt{< M^2>} = 0,00211c^{-1}$$
 5)

Снимем характеристики цилиндра и посчитаем его момент инерции по формуле (10)

$$M_{
m II}=1617.8\$$
г $\Delta M_{
m II}=0.3\$ г $m d=78.4\$ мм $\Delta d=0.1\$ мм

где m - масса цилиндра, d - его диаметр

Тогда момент инерции цилиндра $I_{\rm II}=\frac{M_{\rm II}R^2}{2}=\frac{M_{\rm II}d^2}{8}$ $I_0=I_{\rm II}\frac{T_0^2}{T_{\rm II}^2}=\frac{M_{\rm II}d^2T_0^2}{8T_{\rm II}^2}$

$$I_0 = I_{\text{II}} \frac{T_0^2}{T_{\text{II}}^2} = \frac{M_{\text{II}} d^2 T_0^2}{8 T_{\text{II}}^2}$$

 T_0 — период колебаний ротора, $T_{\rm II}$ — период колебаний цилиндра

$$N = 10$$
 $\Delta t = 0.3c$

t_0, c	$t_{\scriptscriptstyle m II},$	T_0 ,	$T_{\text{\tiny LI}},$
31.7	40.4	3.17	4.04
31.8	40.2	3.18	4.02
31.8	40.3	3.18	4.03

$$< T_0> = 3.18c$$
 $< T_{\text{II}}> = 4.03c$ $I_0 = 7.7*10^{-4} \text{kg} * \text{m}^2$

$$\sigma_{I_0} = I_0 \sqrt{(\frac{\Delta M_{\rm II}}{M_{\rm II}})^2 + 4(\frac{\Delta d}{d})^2 + 4(\frac{\Delta t_0}{t_0})^2 + 4(\frac{\Delta t_{\rm II}}{t_{\rm II}})^2} = 0.2*10^{-4} \rm kg * m^2$$

$$\varepsilon_{I_0} = 2.6\%$$

6)

Ввиду малости b, будем считать подтвержденной теоеретическую зависимость (8). Тогда
$$\alpha = \frac{gl}{I_0\omega}$$
 и $\omega = \frac{mgl}{I_0\Omega} = \frac{gl}{I_0\alpha} = \frac{8glT_{\rm L}^2}{M_{\rm L}d^2T_0^2\alpha}$ $\omega = 2524c^{-1}$ $\sigma_{\omega}^{\rm приб} = \omega \sqrt{(\frac{\Delta m}{m})^2 + (\frac{\Delta g}{g})^2 + (\frac{\Delta l}{l})^2 + (\varepsilon_{I_0})^2 + (\varepsilon_{\Omega})^2} = 70c^{-1}$ $\sigma_{\omega}^{\rm случ} = \omega \frac{\sigma_{\alpha}}{\alpha}$ $\varepsilon_w = \frac{\sqrt{(\sigma_{\omega}^{\rm случ})^2 + (\sigma_{\omega}^{\rm приб})^2}}{\omega} = 2.9\%$ $\nu = \frac{\omega}{2\pi} = 402c^{-1}$ $\varepsilon_{\nu} = \varepsilon_{\omega} = 2.9\%$ $\sigma_{\nu} = 12c^{-1}$ 7)

Включим осциллограф и источник, а затем настроим такую частоту, чтобы на экране осциллографа получился эллипс, тем самым определим искомую частоту вращения ротора гироскопа.

$$\nu = 400 \Gamma$$
ц

8)

Определим момент сил трения в оси

ν, Гц	380	370	360	350	340	330	320	310	300	290	280	270
t, c	20.8	46.6	72.4	99.8	127.0	154.6	183.0	212.9	244.1	274.8	305.4	338.3
$\Delta t = 0.3c$												

Рис. 5: График 1

Из (2) и (3)получим следующее соотношение

$$\begin{split} \vec{M} &= \frac{dI_0\vec{\omega}}{dt} \\ \text{Тогда справедливо:} \\ M_{\text{тр}} &= \frac{2\pi I_0\nu}{t} = 2\pi I_0\beta \\ \beta &\text{- коэффициент наклона графика } \nu(t) \\ \beta &= \frac{<\nu t> -<\nu>< t>}{< t^2> -< t>^2} = -0.343c^{-1} \\ \sigma_{\beta} &= \sqrt{\frac{1}{11}(\frac{<\nu^2> -<\nu>^2}{< t^2> -< t>^2} - \beta^2)} = 0.004c^{-1} \\ M_{\text{тр}} &= 1.66*10^{-3}H*\text{м} \\ \sigma_{M_{\text{тр}}}^{\text{приб}} &= M_{\text{тр}}\sqrt{(\frac{\Delta t}{< t>})^2 + (\frac{d\nu}{<\nu>})^2 + (\varepsilon_{I_0})^2} = M_{\text{тр}}\varepsilon_{I_0} \\ \sigma_{M_{\text{тр}}}^{\text{случ}} &= M_{\text{тр}}\frac{\sigma_{\beta}}{\beta} \\ \sigma_{M_{\text{тр}}} &= 0.05*10^{-3}H*\text{м} \\ \varepsilon_{M_{\text{тр}}} &= 2,8\% \end{split}$$

Выводы

В ходе работы были получены значения фезических величин, описывающих процесс прецессии уравновешенного гироскопа. Значения получены с приемлемой точностью: максимальная относительная погрешность составила 2.9% при определении частоты вращения оси гироскопа. Значительный вклад в нее внесла погрешность измерения времени крутильных колебаний ротора и цилиндра.

Наряду с погрешность значительный вклад в погрешность измерения $M_{\rm TP}$ внесла случайная погрешность. Это может говорить о том, что хотя момент сил трения в оси и угловое ускорение вращения можно считать постоянным при большой частоте вращения, при затухании вращения, уменьшается и значение момента сил трения, из-за чего зависимость при дальнейших измерениях уже нельзя считать линейной.

Установлено, что момент сил трения действительно много меньше моментов внешних сил, исследуемых в данной работе. В частности, момент сил трения в среднем на 2 порядка меньше момента силы тяжести подвешенных грузов

В ходе работы были эксперементально подтверждены теоретические зависимости, описывающие процесс прецессии уравновешенного гироскопа.