Unit 6 Greedy Algorithms

T.H. Cormen et al., "Introduction to Algorithms", 3rd ed., Chapter 16.

中大資工 何錦文

Greedy Algorithms

Greedy Methods (描述1)

- Algorithms for optimization problems typically go through a sequence of steps, with a set of choices at each step.
- ► A *greedy method* always makes the choice that **looks best** at the moment.
- Greedy methods do not always yield optimal solutions, but for several problems they do.

中大資工 何錦立

Greedy Algorithms

Greedy Methods (描述2)

- Greedy algorithms often lead to very efficient and simple algorithms; however they are harder to prove the correctness (compared to DP algorithms).
- ► Many heuristic algorithms apply greedy methods.

中大資工 何錦文

Greedy Algorithms

3

An Activity-Selection Problem (定義)

Suppose we have a set of *n* proposed **activities** that wish **to use a resource** which can be **used by only one activity at a time**. The problem is to select a max-size subset of activities that can be allowed to use the resource.

Assume activity i, if selected, takes place during the time interval $[s_i, f_i]$ denoted as I_i

中大資工 何錦衣

Greedy Algorithms

An Activity-Selection Problem (設計1)

- Let P(A) denote the problem with A as the given set of proposed activities and S denote an optimal solution of P(A). For any activity i in A, we have
- 1. $i \notin S \Rightarrow S$ is an optimal solution of $P(A \setminus \{i\})$.
- 2. $i \in S \Rightarrow S \setminus \{i\}$ is an optimal solution of $P(A \setminus N[i])$ but not necessary an optima solution of $P(A \setminus \{i\})$.

 $N[i]=\{j\in A:$ $I_j\cap I_i\neq\emptyset\}$

中大資工 何錦文

Greedy Algorithms

5

An Activity-Selection Problem (設計 2)

- What kind of activity i in A will be contained in an optimal solution of P(A): an activity with
- 1. minimum $f_i s_i$ or
- 2. minimum |N[i]| or
- 3. minimum f_i or
- 4. minimum s_i .

Answer: ____.

Proof: Let $f_1 = \min \{f_i\}$ and S be an optimal solution of P(A). If $1 \notin S$ then there is one and only one activity in S, say j, such that $I_j \cap I_1 \neq \emptyset$.

Then, $S \setminus \{j\} \cup \{1\}$ is also an optimal solution.

中大資工 何錦文

Greedy Algorithms


```
An Activity-Selection Problem (p碼1+例子)
                 Greedy-ASP(A)
Input:
          f_i
                    if A == \emptyset return \emptyset
           4
                   i = arg min \{f_k \mid k \in A \}
           5
                    return \{i\} \cup \text{Greedy-ASP}(A \setminus N[i])
           6
           7
           8
6
           9
          10
8
     8
          11
9
          12
                      time
10
     9
          13
          14
                                                   T(n) = ?
                              Greedy Algorithms
```


Elements of the Greedy Strategy

- Optimal substructure (a problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems)
- F ► Greedy-choice property
 - ► Priority queue or sorting

中大資工 何錦文

Greedy Algorithms

9

Knapsack Problem (Greedy vs. DP)

Given n items: weights: w_1 w_2 ... w_n

values: v_1 v_2 ... v_n

a knapsack of capacity K

Find the most valuable load of the items that fit into the knapsack.

Example:

中大資工 何錦文

item	weight	value	Knapsack capacity K=16
1	2	\$20	
2	5	\$30	
3	10	\$50	
4	5	\$10	

Greedy Algorithms

0-1 and Fractional Knapsack Problem

- Constraints of 2 variants of the knapsack problem:
 - **>0-1** *knapsack problem*: each item must either be taken or left behind.
 - > Fractional knapsack problem: the thief can take fractions of items.
- The greedy strategy of taking as mush as possible of the item with greatest v_i / w_i only works for the fractional knapsack problem.

中大資工 何錦文

Greedy Algorithms

1

0-1 Knapsack Problem (設計)

- P[i, k] = the value of the most valuable load of the subproblem: consider only the first i items and a knapsack of size k, for any i, k $0 \le i \le n$, $k \le K$.
- The optimal load either include *i*—th item or not. Hence we have:

$$P[i, k] = \max \{P[i-1, k], P[i-1, k-w_i] + v_i\}$$

$$P[0, k] = 0, k > 0; P[i, 0] = 0, i \ge 0$$
Assume $k \ge w_i$

中大資工 何錦文

Greedy Algorithms

$$P[i, k] = \max \{P[i-1, k], P[i-1, k-w_i] + v_i\}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\$20/2	0	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
\$30/5	0	20	20	20	30	30	50	50	50	50	50	50	50	50	50	50
\$50/10	0	20	20	20	30	30	50	50	50	50	50	70	70	70	80	80
\$10/5	0	20	20	20	30	30	50	50	50	50	50	70	70	70	80	80

ightharpoonup Time:O(nK)

Greedy 解 = ? 最佳解 = ?

► It is possible that $K > 2^n$.

► A pseudo-polynomial time algorithm.

中大資工何錦文

Greedy Algorithms

13

Ę

0-1 Knapsack Problem (另一實做)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\$20/2	0	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
\$30/5																50
\$50/10	0	20	20	20	30	30	50	50	50	50	50	$\overline{70}$	70	70	80	80
\$10/5	0	20	20	20	30	30	50	50	50	50	50	70	70	70	80	80

$$\blacksquare \rightarrow 2, \$20 \rightarrow 5, \$30 \rightarrow 7, \$50 \rightarrow 12, \$70 \rightarrow 15, \$80$$

$$T(n) = O(n \min(K, 2^n)),$$

$$S(n) = O(\min(K, 2^n)).$$
for

The idea can be used for other DP algorithms, such as LCS ...etc.

中大資工 何錦文

Greedy Algorithms

Huffman Codes

- ► A very effective technique for compressing data.
- Consider the problem of designing a binary character code.
- Fixed length code vs. variable-length code, e.g.:

Alphabet:	a	b	C	d	е	£
Frequency in a file	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codewo	rd <mark>0</mark>	101	100	111	1101	1100

file length 1 = 300; file length 2 = 224Compression ratio = $(300-224)/300\cdot100\% \approx 25\%$

中大資工 何錦文

Greedy Algorithms

15

Prefix Codes & Coding Trees

- we consider only codes in which no codeword is also a *prefix* of some other codeword.
- From The assumption is crucial for decoding variable-length code (using a binary tree). E.g. if we use "01" for 'a' and "011" for 'b', then ...

中大資工 何錦文

Greedy Algorithms

Optimal Coding Trees

- For a alphabet C, and its corresponding coding tree T, let f(c) denote the frequency of $c \in C$ in a file, and let $d_T(c)$ denote the depth of c's leaf in T. $(d_T(c)$ is also the length of the codeword for c.)
- The size required to encode the file is thus: $B(T) = \sum_{c \in C} f(c) d_T(c)$
- ▶ We want to find a coding tree with minimum B(T).

中大資工 何錦文

Greedy Algorithms

1

Observation 1

Any optimal coding tree for C, |C| > 1, must be a <u>full binary tree</u>, in which every nonleaf node has two children. E.g.: for the fixed-length code:

中大資工 何錦文

Greedy Algorithms

Assume $C = \{c_1, c_2, \dots, c_n\}$, and $f(c_1) \le f(c_2)$ $\le \dots \le f(c_n)$. Then there exists an optimal coding tree T such that :

Observation 3 (optimal substructure)

If T is an optimal coding tree for C, then T' is an optimal coding tree for $C \setminus \{c_1, c_2\} \cup \{c'\}$ with $f(c') = f(c_1) + f(c_2)$.

Huffman's Algorithm (pseudo-code) Huffman(C)

```
Q \leftarrow C // Q :priority queue
while(|Q| > 1)
z \leftarrow Allocate-Node()
x \leftarrow left[z] \leftarrow Extract-Min(Q)
y \leftarrow right[z] \leftarrow Extract-Min(Q)
f[z] \leftarrow f[x] + f[y]
insert(Q, z)
return Extract-Min(Q)
```

Time efficiency:

Greedy Algorithms

25

A Task-Scheduling Problem

Schedule *n* unit-time tasks for a single processor with:

deadlines: d_1 d_2 ... d_n

profits: $p_1 p_2 \dots p_n$ (or penalties)

Find a schedule for these tasks that maximize (or minimize) the total profit (or penalty).

- A set **S** of tasks is **feasible** (**independent**) if there is a schedule for these tasks such that no tasks are late.
- The problem is equivalent to find a feasible task (sub-)set with maximum profit sum.

中大資工 何錦文

Greedy Algorithms

	The second secon		The second of th	CONTRACT OF THE PARTY OF THE PA
A	Tool Too	had III ma	Diagonal	100 (LI)
A	1 45K = 5C	heduling		141
				(N1)

task	Deadline	Profit
1	2	30
2	1	35
3	2	25
4	1	40

Schedule	Total Profits
[1, 3]	30 + 25 = 55
[2, 1]	35 + 30 = 65
[2, 3]	35 + 25 = 60
[3, 1]	25 + 30 = 55
[4, 1]	40 + 30 = 70
[4, 3]	40 + 25 = 65

中大資工 何錦文 Greedy Algorithms

A Greedy-Choice Property

► What kind of task *i* will be contained in an optimal schedule : a task with

1. minimum d_i ,

2. maximum d_i ,

3. minimum p_i ,

4. maximum p_i .

Answer: ____.

Proof: Assume task 1 is a task with maximum profit, and S is an optimal schedule. If $1 \not\in S$ then we can replace any task in S that is scheduled before or at d_1 with task 1 and obtain a schedule without decreasing the total profit.

甲八貝工 門鉀汉

Oreedy Argoriums

A Greedy Algorithm

```
Sort the tasks in nonincreasing order by profit; S = \emptyset; while(there are tasks unprocessed) { select next task; if(S is feasible with this task added) add it to S; }
```

► How to check that S is feasible?

中大資工 何錦文

Greedy Algorithms

29

Feasibility Testing Method 1

Lemma 16.12: The 3 statements are equivalent:

- 1. S is feasible
- 2. $|\{i \in S : d_i \le t\}| \le t$ for $t = 1, 2, ..., \max_i d_i$.
- 3. If the tasks in *S* are scheduled in order of non-decreasing deadlines, then no task is late.

Example: tasks 1 2 3 4 5 6 7

Deadlines 3 1 1 3 1 3 2

Assume that profits $p_1 \ge p_2 \ge ... \ge p_7$

A naive implementation of the lemma needs $O(n^2)$ time.

中大資工 何錦文

Greedy Algorithms

Feasibility Testing Method 2 (see Problem 16-4)

tasks: 1 2 3 4 5 6 7 8 deadlines: 7 7 7 10 11 9 10 11

 $T_8 T_3 T_2 T_1 T_7 T_6 T_4 T_5$

1 2 3 4 5 6 7 8 9 10 11 12 13 14

The implementation based on union-find operations (or disjoint set unions) needs $O(n\alpha(n))$ time (not including sorting time.)

$$\alpha(n) = 4$$
 even for $n = 2^{2048}$ (p.574).

中大資工 何錦文

Greedy Algorithms