声明:本文源于相关英文资料并加入了本人理解,旨在使读者对EDID DATA结构有一大概了解。所有内容仅供参考,勿作标准。

一、基本概念

EDID: Extended Display Identification Data(扩展显示标识数据).

VESA: Video Electronics Standards Association(视频电子协会).

DDC: Display Data Chennal(显示数据通道)

VESA 所规划出来的一种标准,DDC所定义的是一个在PC和监视器间的传输界面,其目的也就是要让PC知道监视器所具备的能力,而使之充分利用Monitor的效能,另一方面PC也能利用控制讯号改变Monitor的显示状态。

Monitor内部利用128 Bytes 记录Monitor生产公司机种名,制造日期,序号,可变频率Mode等基本资料。目前Windows状态下,因DDC解码问题还需向微软提出每个机种的申请。

DDC 2B则开放至直接用软体改变Monitor的使用功能。

若Monitor设计有相关电路并烧录了EDID DATA,则此Monitor具备DDC功能(即插即用),每次开机时,装有兼容DDC功能操作系统(Win95/98系列)的主机会通过SDA,SCL自动读取EDID DATA 至注册表并对Monitor进行优化设置。此时,在显示属性中会显示既插既用监视器(Windows安装默认的INF驱动文件)或生产厂商机种名(用户安装了厂商提供的INF文件或在\Windows\inf目录下有与EDID DATA对应的INF文件),且用户可自己选择合适的刷新率。

注:显示器无DDC功能时,显示属性中会显示无法识别的监视器且用户无法选择刷新率,此时也可只装机种的INF文件达到选择不同刷新率的目的,但要注意INF中的设置不要超过显示器的能力。

二、EDID DATA 结构

EDID有三个版本: Version 1(包括Reversion 0、1、2), 128字节; Version 2(Reversion 0), 256字节; Version 3, 包含以前所有不同EDID数据结构。

解说: 1、EDID DATA 文件头, 为固定格式。

- 2、厂商名称,2个字节,可表三个大写英文字母。每个字母有5位,共15位不足一位,在第一个字母代码最高位补"0",字母"A"至"Z"对应的代码为00001至11010。 例如,"MAG"三个字母,M代码为01101,A代码为00001,G代码为00111,在M代码前补0为001101,自左向右排列得2字节:001101 00001 00111,转化为十六进制数即为34 27。
 - 3、2字节机种代码,直接进行十六进制与十进制转化即可。(低位在前,高位在后)
 - 4、4字节,生产流水序号。(低位在前,高位在后)
 - 5、1字节,生产周(范围,1—53周)。若不用,设为0。
- 6、1字节,生产年份,具体年份为此字节内容加1990,例如,2000=1990+10,此处即为十六进制的0A。
 - 7、1字节EDID版本号。
 - 8、1字节修订次数号。
 - 9、1字节输入信号定义。

i	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
ı	位	描述	具体描述				
	7	模拟/数字信号电平	模拟=0 数字=1				
ŀ			若定义为0,则参看以下0-6位,否则需EDID VER2				
ı			格式: white above blank、level of sync、 tip below blank				
		信号电平标准	0 0 0.700 0.300 1.000V p-p				
	6, 5		0 1 0.714 0.286 1.000V p-p				
			1 1 1.000 0.400 1.400V p-p				
			1 1 0.700 0.000 0.700V p-p				
ĺ	4	设置	若设为1,则在每一标准信号电平间须有一遮没至黑				
	4		色的设置或消隐脉冲信号				
ĺ	3	同步输入支持[3]	若设为1,支持分离式同步信号				
ĺ	2	同步输入支持[2]	若设为1,支持复合式同步信号(附在Hsync. 线上)				
ĺ	1	同步输入支持[1]	若设为1,支持同步信号附在绿色视频信号上				
I	0	同步输入支持[0]	若设为1,当为上两种同步输入时需锯齿波同步脉冲				

- 10、1字节图象最大水平尺寸,单位cm。若不用,则设为0。
- 11、1字节图象最大垂直尺寸,单位cm。若不用,则设为0。
- 12、显示传输特性(Gamma值)。Gamma值的范围为1.00---3.55。此字节值算法为:存储值=(实际gamma值*100)-100,例如,gamma值为2.2应存为120。
 - 13、DPMS特性支持。DPMS为Display Power Management Signaling(显示电源管理信号)

的缩写,每位具体含义见下表:

	J . J	7 THE TOTAL CO.	
	位	特性支持	具体描述
	7	Stand-by	参见VESA DPMS规范
	6	Suspend	参见VESA DPMS规范
	5	Active Off	参见VESA DPMS规范
Γ			Bit4 Bit3 解释
		显示类型	0 0 单色/灰阶显示
	43		0 1 R/G/B 色彩显示
l			1 0 非R/G/B多色显示,例如,R/G/Y
			1 1 未定义
	2	标准缺省颜色空间	若设为1,将使用一标准缺省颜色空间作为基本颜色
	2		空间。在EDID Version 1 Revisions 0、1为保留位,设0
	1	预设时序模式	若设为1,显示预设时序模式为第一个详细时序描述
	0	GTF支持	若设为1,则显示支持时序基于GTF标准。在EDID
l			Version 1 Revisions 0、1为保留位,设为0。

14、荧光染色性(10字节)。

这些字节描述比色法和白色点信息。白色点值应与缺省白色点对应(开机正常使用或预设状态。在EDID Version 1 Revisions 1、2中允许重新定义一个详细时序描述区来定义多个白色点。10个字节的含义如下表:

字节	颜色特性	具体描述
1	Red/Green低位字节	Rx1 Rx0 Ry1 Ry0 Gx1 Gx0 Gy1 Gy0
2	Blue/White低位字节	Bx1 Bx0 By1 By0 Wx1 Wx0 Wy1 Wy0
3	Red_x	Red_x bits 9 →2
4	Red_y	Red_y bits 9 →2
5	Green_x	Green_x bits 9 →2
6	Green_y	Green_y bits 9 →2
7	Blue_x	Blue_x bits 9 →2
8	Blue_y	Blue_y bits 9 — 2
9	White_x	White_x bits 9 →2
10	White_y	White_y bits 9 — 2

说明:每个值由10位二进制组成,高8位(bits 9--2)存为一个单独的字节,低2位(1--0) 由4个值合成一个字节。每个值表示的是一个小数色度坐标,实际值、存储值以及由存储 值转换的小数值有+/-0.0005的误差。转换关系如下:

实际值	二进制数值	转换为十进制值
0. 610	1001110001	0. 6103516
0. 307	0100111010	0. 3066406
0. 150	0010011010	0. 1503906

以第一行为例说明,0.610转换为二进制方法为:乘以2,取整数部分,正排。 1001110001转换为十进制方法为:各二进制位数值乘以相应权值再取和。从高位往右 权值依次为2的-1次方、2的-2次方......

15、内建时序(3字节)。

此处3字节是用作标志位,它指示显示器是否支持VESA以及其它一些通用时序,若支持,则在相应位设为1,其时序对应如下表:

字节	位	描述	来源
		内建时序I	
	7	720x400 @ 70Hz	IBM,VGA
	6	720x400 @ 88Hz	IBM,XGA2
	5	640x480 @ 60 Hz	IBM,VGA
1	4	640x480 @ 67 Hz	Apple,MacII
	3	640x480 @ 72 Hz	VESA
	2	640x480 @ 75 Hz	VESA
	1	800x600 @ 56Hz	VESA
	0	800x600 @ 60Hz	VESA
		内建时序II	
	7	800x600 @ 72Hz	VESA
	6	800x600 @ 75Hz	VESA
	5	832x624 @75Hz	Apple,MacII
2	4	1024x768 @87Hz(I)	IBM
	3	1024x768 @60Hz	VESA
	2	1024x768 @70Hz	VESA
	1	1024x768 @75Hz	VESA
	0	1280x1024 @75Hz	VESA
		生产商自定义时序	
3	7	1152x870 @75Hz	Apple,MacII
	60	保留位	

16、标准时序标识(16字节)。

这16个字节是对上面3字节的扩充,可为将来扩充标准时序用。每个时序由两个唯一的字节描述,最多可描述8个时序。每两个字节中的第一个字节用来存储水平可显示点数,若此处值为H,则水平点数为8*H+248,第二个字节用来表示水平与垂直点数之

比及刷新频率。

レレス小り初り	24 1 -				
字节	位	描述	解释		
第一字节		存储值=(水平可显点/8)-31	可描述的可显点数为256至2288 以8个点为单位递增		
		图象外观比例(水平/垂直)			
		Bit 7 Bit 6 比例			
		0 0 1:1	水平线数可根据第一个字节以		
第二字节	7, 6	0 1 4:3	及外观比例计算出来。		
N2 _ 1		1 0 5:4			
		1 1 16:9			
	5 →0	存储值=刷新频率(Hz)-60	范围: 60 →123Hz		

注:不用的区域应设为01h。

17、详细时序描述区域(72字节)。

这个区域分为四块,每块18个字节。在所有EDID版本中,这些区域都可以用来 具体描述显示器支持的时序,在EDID Version 1 Revision 1、Revision 2中这些区域也可 以重新定义。单用作时序描述时,每18个字节时序描述如下表:

以里却止り	义。里用作时序描述时	小,母18个子	卫时序描述如卜表:		
字节数	具体时序描述		存储格式		
2	点频/10000	先存储低位字节。例如:135MHz除以10000为13500即 存为BCh,34h			
1	水平可显点	存低8位			
1	水平遮没点数	存低8位			
1	水平可显:水平遮没	高四位:水平	可显点的高四位;低四位:水平遮没高四位		
1	垂直可显线数	存低8位			
1	垂直遮没线数	存低8位			
1	垂直可显:垂直遮没	高四位:垂直	可显点的高四位;低四位:垂直遮没高四位		
1	水平同步偏移	从遮没开始,	存低8位		
1		存低8位			
1	垂直同步偏移:		效,垂直同步偏移低四位		
•			<u>效,垂直同步脉冲宽度低四位</u>		
-	水平同步偏移	bits 7,6: 存			
1		bits 5, 4: 存			
	垂直同步偏移	bits 3, 2: 存			
	垂直同步脉冲宽度	bits 1,0:存高二位			
1	水平图象尺寸	存低8位,单位: mm。			
1		存低8位,单			
1			尺寸的高四位;低四位:垂直尺寸的高四位		
1	水平边沿	单位:点			
1	垂直边沿	单位:线	<u></u>		
	标志字节	Bit 7	0: 非隔行扫描 1: 隔行扫描		
		Bit 6、5	0 0: 正常显示,无立体模式 x x: 参看后面定义		
1		Bit 4、3	0 0:模拟合成 0 1:有极性模拟合成 1 0:数字合成 1 1:数字分离		
		Bit 2、1	解释须依据Bit 4、3的取值		
		Bit 0	参看后面定义		

注:不用的详细时序描述区域应包含一个支持的标准时序(通常为前面内建时序或标准时序标识区域已定义的时序)详细描述数据。

立体模式位解释如下表:

Bit 6	Bit 5	Bit 0	定义	
0	1	0	汤逐行立体,单立体同步为1时为右边图象	
1	0	0	场逐行立体,单立体同步为1时为左边图象	
0	1	1	方法2隔行立体,右边图象在偶数线上	
1	0	1	方法2隔行立体,左边图象在偶数线上	
1	1	0	方法4隔行立体	
1	1	1	边边隔行立体	

同步信号描述(Bit 2、1)如下表:

Bit 4, 3	Bit 2	Bit 2定义	Bit 1	Bit 1定义
0,0 模拟合成		若设置,控制器须提供锯 齿波(Hsync在Vsync之间)	在RGB上	若设置,同步信号须附在RGB 信号上,若否,同步信号在G
0, 1: 有 极模拟合		若设置,控制器须提供锯齿波(Hsync在Vsync之间)	在RGB上	若设置,同步信号须附在RGB 信号上,若否,同步信号在G
1,0 数字合成	描迈波	若设置,控制器须提供锯齿波(Hsync在Vsync之间)	合成极性	这是水平同步脉冲在同步信号 之外的极性,若设为1,则为正
1, 1 数字分离	垂直极性	因級(Asylic在 Vsylic之间) 若设为1,则同步信号 为正极性	水平极性	若设为1,则水平同步极性为正

A、B、C、D四个18字节的区域均可重新定义,其中前五个字节格式为: $00\ 00\ 00\ xx\ 00$ xx位置不同值指示后面字节的解释方式,见下表:

取值	含义(后13字节)		
FF	存储ASCII码表示的序号(Serial Number)		
FE	存储一个任意字符串		
FD	频率限制		
FC	存储ASCII码表示的机种名称信息(Model No.)		
FB	白平衡点设置		
FA	扩充的标准时序标识		
000F	厂商自定义格式		

取值	后13字节的格式		
FF	依次填如各ASCII码,以0x0A结束,尚余空位填0x20(最多可写12个ASCII码)		
FE	格式同上		
FD	byte05: 场频下限 byte06: 场频上限 byte07: 行频下限 byte08: 行频上限 byte09: 带宽(点频) byte10: 值为0x00 byte11: 值为0x0A byte12byte17: 都填0x20		
FC	格式同值为FF一样		
FB	byte05: 白平衡索引值 byte06: 白平衡低位 byte07: 白平衡x值 byte08: 白平衡y值 byte09: 白色Gamma值 byte10byte14依次对应byte05byte09 byte15: 设为0x0A byte16、17: 设为0x20 注: 若索引值为0x00,表示以下数据不为白平衡点数据		
FA	byte05byte16共12个字节定义了6个时序,表示方法同解释16,byte17设为0Ah		
000F	注:EDID Version 1 Revision 1只保留00h和01h为厂商自定义用		

注: 大写A--Z的ASCII码为0x41--0x5B,小写a--z的ASCII码为0x65--0x7F。

使用 00 00 00 FC 00来写机种ASCII名称时,可多段18字节连用(当然最多四段),以满足存储多于12个ASCII码的需要。多段连用时,若非最后一段,不写0x0A结束符,而代之以正常ASCII码。也可填写汉字内码,在中文WINDOWS系统下可显示汉字名称。有了机种00 00 00 FC 00字段,则WINDOWS侦测到DDC时会报告具体的机种名称,而非笼统地提示"找到即插即用监视器"。

- 18、扩展标志(1字节)。若非256字节版本,此处设0。
- 19、校验和(1字节)。它是用来检验数据是否被非法改动或是否有传输错误。这个字节的设定原则是使128个字节之和为00h,求和计算过程中,若超过一个字节的表示范围,未能表示位则自动丢失。若此字节错误,在Windows下无法找到即插即用监视器。