Robert Davidson

BSc Mathematics and Computer Science r.davidson1@universityofgalway.ie

Date: October 17, 2025

1 Why this project?

In my Euclidean and Non Euclidean Geometry class, we learned that if the acceleration vector of a curve is always normal to the tangent plane, then the curve is a geodesic

On the sphere, S^2 , every geodesic is a great circle, which is circle formed a plane through the sphere's center.

I was deeply fascintated by this result, and I wanted to find a way to visualise it, which led me to create the website hosted on GitHub. This brief writeup covers the mathematics I needed in order to creat the website.

2 The Mathematics

In order to explore great circles on S^2 , and the acceleration vector, we need to understand the geometry of the sphere. We first start by defining the plane:

2.1 The 2-Sphere

We define the 2-sphere, S^2 , as the set of all points in \mathbb{R}^3 such that:

$$x^2 + y^2 + z^2 = 1$$

This represents a sphere of radius 1 centered at the origin.

The normal vector at a point $\mathbf{s} = (x, y, z)$ on the 2-sphere is the vector perpendicular to the tangent plane at that point.

It is givn by the gradient of the function $f(x, y, z) = x^2 + y^2 + z^2 - 1$:

$$\nabla f(\mathbf{s}) = (2x, 2y, 2z) = 2\mathbf{s}$$

2.2 The Plane

A plane P can be written as:

$$ax + by + cz = d$$

Where $\mathbf{n} = (a, b, c)$ is the normal vector to the plane, so the equation becomes:

$$P: \mathbf{n} \cdot (x, y, z) = d$$

We normalize \mathbf{n} so it represents direction only:

$$\hat{\mathbf{n}} = \frac{\mathbf{n}}{\|\mathbf{n}\|}$$

We can then write the plane equation as:

$$P: \hat{\mathbf{n}} \cdot (x, y, z) = \frac{d}{\|\mathbf{n}\|}$$

We let $h = \frac{d}{\|\mathbf{n}\|}$ be the distance from the origin to the plane. So the plane equation becomes:

$$P: \hat{\mathbf{n}} \cdot (x, y, z) = h$$

We note that the plane intersects the sphere when $|h| \leq 1$.

2.3 The Intersection of a Plane and the 2-Sphere

We define a line L(t) a line from the origin in the direction of the planes normal vector:

$$L(t) = t\hat{\mathbf{n}}$$

The line intersects the plane when t=h, so the closest point on the plane to the origin is:

$$c = h\hat{\mathbf{n}}$$

Because the sphere is symmetrical, the plane cuts it in a circle centered at c: circle, with center $c=h\hat{\bf n}$ If we let:

- Q : A point on the circumference of the circle formed by the intersection of the plane and the sphere
- C : The center of the circle
- O: The origin

We form a $\triangle OQC$ with sides:

- OC = h: Distance from origin to center of circle
- OP = R: Distance from origin to point on circumference
- CP = r: Distance from center of circle to point on circumference of planes cut

By the Pythagorean theorem, we have:

$$R^2 = h^2 + r^2$$

$$r = \sqrt{R^2 - h^2}$$

$$r = \sqrt{1 - h^2}$$
 Since radius of sphere is 1

So with circle on the sphere, cut by plane has center, c=(0,0,h) and radius $r=\sqrt{1-h^2}$.

For simplicity, in the website, we let $\hat{\mathbf{n}} = (0, 0, 1)$, then we get

$$P: (0,0,1) \cdot (x, y, z) = h$$

$$P: z = h$$

$$c = h\hat{\mathbf{n}} = (0,0,h)$$

$$r = \sqrt{1 - h^2}$$

2.4 Paramertising The Sphere

We choose two vectors, \mathbf{u} and \mathbf{v} , that are on the plane, that is:

$$u, v \perp \hat{\mathbf{n}}$$

If we enforce

$$||u|| = ||v|| = 1$$
 and $u \perp v$

we can define a circle on P:

$$C(t) = \cos(t)u + \sin(t)v$$
 $t \in [0, 2\pi]$

Recognising that we let $\hat{\mathbf{n}} = \hat{k} = (0, 0, 1)$, and using the fact:

$$\hat{i} \perp \hat{j} \perp \hat{k}$$
 and $||\hat{i}|| = ||\hat{j}|| = ||\hat{k}|| = 1$

We can let $u = \hat{i}$ and $v = \hat{j}$, then we get:

$$C(t) = \cos(t)\hat{i} + \sin(t)\hat{j} \quad t \in [0, 2\pi]$$

Finally, scaling to radius r and moving to center c we get:

$$C(t) = c + r \left[\cos(t)\hat{i} + \sin(t)\hat{j} \right]$$

2.5 Velocity and Acceleration Vectors

We can take the first and second derivatives of C(t) to get the velocity and acceleration vectors:

$$v(t) = \frac{d}{dt} [C(t)]$$
$$v(t) = r \left[-\sin(t)\hat{i} + \cos(t)\hat{j} \right]$$

and

$$\begin{split} a(t) &= \frac{d^2}{dt^2} \left[C(t) \right] \\ &= \frac{d}{dt} \left[v(t) \right] \\ &= -r \left[-\cos(t)\hat{i} + \sin(t)\hat{j} \right] \\ &= c - c - -r \left[-\cos(t)\hat{i} + \sin(t)\hat{j} \right] \\ &= c - C(t) \end{split}$$

2.6 Tieing it all together

We see that if h = 0, then the plane cuts the sphere through the origin, which is the definition of a great circle.

We also see that setting h=0 also gives us a circle with center at the origin and radius 1.

$$c = h\hat{\mathbf{n}}$$

$$c = 0\hat{\mathbf{n}}$$

$$c = 0$$
and
$$r = \sqrt{1 - h^2}$$

$$r = \sqrt{1 - 0^2}$$

$$r = 1$$

The aceleration vector also simplifies to:

$$a(t) = c - C(t)$$

$$a(t) = 0 - C(t)$$

$$a(t) = -C(t)$$