

60.ª REUNIÓN ANUAL ASOCIACIÓN ARGENTINA DE ASTRONOMÍA

18 al 22 de Septiembre, 2017 – Malargüe, Mendoza

Angel Cancio ¹, Marcelo Colazo ² & Beatriz García ¹

¹ Instituto en Tecnologías de Detección y Astropartíclas (CNEA-CONICET-UNSAM)

² Comisión Nacional de Actividades Espaciales (CONAE)

* angel.cancio@iteda.cnea.gov.ar

Índice: 1. Estación Terrestre & Antena 2. Como se usa? 3. Pipeline de Procesamiento 4. Prueba de Observación Resultados & Más

1. Estación Terrestre & Antena

Desde noviembre de 2012, la red ESTRACK se complementó con una tercera Antena de Espacio Profundo ubicada en Malargüe, Argentina.

DSA-3 / MALARGÜE-1 / MLG1

Cadena de Adquisición

→ Red European Space Tracking (ESTRACK)

^{*} Picture courtesy of ESA

→ Deep Space Antenna 3 - Sitio

Red European Space Tracking (ESTRACK)

Deep Space Antenna 3 - Sitio

→ Deep Space Antenna 3 - Estructura

→ Deep Space Antenna 3 - Estructura

Formaggi, M. (2007) Enhanced Modeling and Design of Ground Station Antennas for Space Applications, Doctoral Thesis, University of Pavia

→ Deep Space Antenna 3 – Parámetros Principales

TERMINAL	MALARGÜE-1 / MLG1
Antenna Diameter [m]	35
X-band Beamwidth [deg]	Rx: 0.064 Tx: 0.074
Ka-band Beamwidth [deg]	Rx: 0.017
Antenna Speed [deg/s]	Az: 1.0 deg/s
	El: 1.0 deg/s
Azimuth Range [deg]	0 to 540
Elevation Range [deg]	0 to 90
DOWNLINK	
X-band RX band [MHz]	8400 - 8500
X-band Polarization	RHC, LHC, LINEAR
X-band G/T [dB/K]	50.8 (at 10 deg El.)
Ka-band RX band [MHz]	31800 - 32300
Ka-band Polarization	RHC, LHC
Modulation Schemes	IFMS compliant
Carrier Freq Search Range	+/- 1.5 MHz
Subcarrier Frequency	2 kHz to 1.2 MHz
1st Downconv. Frequency	640 – 540 MHz X-Band
	620 – 420 MHz Ka-Band
2nd Downconv. Frequency	70 MHz (X & Ka Bands)

1. Estación Terrestre & Antena

Desde noviembre de 2012, la red ESTRACK se complementó con una tercera Antena de Espacio Profundo ubicada en Malargüe, Argentina.

DSA-3 / MALARGÜE-1 / MLG1

Cadena de Adquisición

→ Downlink: Diagrama de bloque

Sampling Rate > Bandwidth
Sampling Rate x 4 (subchannels) x Quantization (bits) x 2 < 36 Mbps

SR < 36 / (4 x 16 x 2) SR < 36 /128

Algunos Destalles

Estructura y formato de datos

^{*} Facilities Manual (EFM) - Section 6.10 Malargüe (MLG) Station

^{*} ESA Desclacificado - Para uso oficial

^{*} Facilities Manual (EFM) - Section 6.10 Malargüe (MLG) Station

^{*} ESA Desclacificado - Para uso oficial

^{*} Facilities Manual (EFM) - Section 6.10 Malargüe (MLG) Station

^{*} ESA Desclacificado - Para uso oficial

^{*} Facilities Manual (EFM) - Section 6.10 Malargüe (MLG) Station

^{*} ESA Desclacificado - Para uso oficial

^{*} Facilities Manual (EFM) - Section 6.10 Malargüe (MLG) Station

^{*} ESA Desclacificado - Para uso oficial

→ Downlink: Diagrama de Bloques Simplificado

→ Downlink: Canales de Frecuencia (Banda X)

Downlink: Diagrama de bloque

Sampling Rate > Bandwidth
Sampling Rate x 4 (subchannels) x Quantization (bits) x 2 < 36 Mbps

SR < 36 / (4 x 16 x 2)

→ Algunos Destalles

Estructura y formato de datos

→ Algunos detalles: Elegir la Frecuencia de Mestreo y la Resolución

Sampling Rate > Bandwidth
Sampling Rate x 4 (subchannels) x Quantization (bits) x 2 < 36 Mbps

 $SR \times 4 \times 16 \times 2 < 36$

 $SR < 36 / (4 \times 16 \times 2)$

SR < 36 /128

SR < 0,281 MHz

SR < 281 kHz

→ Algunos detalles: Retardos entre cada IFMS y dentro de cada IFMS. → Sincronizar

Downlink: Diagrama de bloque

Sampling Rate > Bandwidth
Sampling Rate x 4 (subchannels) x Quantization (bits) x 2 < 36 Mbps

SR < 36 / (4 x 16 x 2)

Algunos Destalles

→ Estructura y formato de datos

→ Estructura y formato de datos

→ Sincronización

Índice: 1. Estación Terrestre & Antena 2. Como se usa? 3. Pipeline de Procesamiento 4. Prueba de Observación Resultados & Más

Como usar la antena? Método de Observación Actualmente, no hay acceso al sistema de referencia de temperatura del instrumento. Usaremos fuentes de radio estándares como calibradoras. Ejemplo

Método de observación

Existen varios procedimientos de observación para realizar mediciones ON / OFF, es decir, mediciones de la diferencia entre las potencias de salida en un punto definido (ON) y una posición de referencia cercana (OFF). La antena se mueve entre las posiciones de la fuente ON y OFF en un patrón difinido (ON-OFF-ON-OFF o OFF-ON-ON-OFF).

Nota: La terminología ON/ON, ON/OFF no es completamente estandar!

Position switching o Conmutación de posición

Seleccionar una fuente estándar, seleccionar una fuente desconocida, y una posición de referencia próxima (OFF) para cada fuente respectivamente.

Se requieren:

- * Archivo de Catálogo y archivo de tareas
- * Un dispositivo de almacenamiento vacío (formateado) para grabar los datos

Comprobar siempre la desponibilidad de la antena para seleccionar la ventana de tiempo de observación.

Solicitar modo de adquisición EOLP, ganancia fija y AGC deshabilitado.

Método de Observación Ejemplo

MLG ESTRACK STATION ALLOCATION FILE

ESAF (eventfile: /home/eps1user/eps-2.5/environment/Generation_Area/stations/mlg/PLNVIEW_20170112T000000_20180103T000000_20170112T145618_v01-00.MLG-O)

Método de Observación Ejemplo

MLG ESTRACK STATION ALLOCATION FILE

ESAF (eventfile: /home/eps1user/eps-2.5/environment/Generation_Area/stations/mlg/PLNVIEW_20170112T000000_20180103T000000_20170112T145618_v01-00.MLG-O)

Método de Observación Ejemplo

Archivo de Catalogo:

```
0521-365

C0521OFF

1934-638

C1934OFF

05:22:57.984651 -36:27:30.850920

19:39:25.026000 -63:42:45.630000

19:39:25.026000 -64:42:45.630000
```

Archivo de tareas:

```
#Objeto: 1934-638
#setup frec de muestreo: 100KHz; resolución:
16-bits
2017/02/07/16:40:00
                      55 1934-638
2017/02/07/16:43:00 55 C1934OFF
2017/02/07/16:50:00
                    55 1934-638
                    55 C1934OFF
2017/02/07/16:53:00
2017/02/07/17:00:00
                    55 1934-638
                    55 C1934OFF
2017/02/07/17:03:00
2017/02/07/17:10:00
                    55 1934-638
                    55 C1934OFF
2017/02/07/17:13:00
2017/02/07/17:20:00
                      55 1934-638
                    55 C1934OFF
2017/02/07/17:23:00
2017/02/07/17:30:00
                      55 1934-638
2017/02/07/17:33:00
                      55 C1934OFF
2017/02/07/17:40:00
                      55 1934-638
2017/02/07/17:43:00
                    55 C1934OFF
2017/02/07/17:50:00
                      55 1934-638
2017/02/07/17:53:00
                      55 C1934OFF
2017/02/07/18:00:00
                      55 1934-638
2017/02/07/18:03:00
                    55 C1934OFF
2017/02/07/18:10:00
                      55 1934-638
2017/02/07/18:13:00
                      55 C1934OFF
2017/02/07/18:20:00
                      55 1934-638
2017/02/07/18:23:00
                      55 C1934OFF
```


Índice: 1. Estación Terrestre & Antena 2. Como se usa? 3.
Pipeline de
Procesamiento 4. Prueba de Observación Resultados & Más

Núcleo de Procesamiento 3.
Pipeline de procesamiento

Archivo Tareas

Datos Grabados Selector de Archivos

> Selecciona archivos con datos válidos utilizando el archivo de tareas.

Sincronizar & Extraer

Identifica la
primera muestra
con timestamp
que se
encuentra en
todos los
archivos

seleccionados.

Núcleo de Procesami<u>ento</u>

> Calcula la intensidad de la señal Demultiplexión Obtención pares (I, Q)

> > Calculo:

 $\frac{\sum A}{N}$ donde A = I² + Q²

Post Proceso

(ON – OFF) & Análisis estadístico

Pipeline Procesamiento

Núcleo de procesamiento: Conversión de formato y cálculo de intensidad.

Núcleo de Procesamiento 3.
Pipeline de procesamiento

Archivo Tareas

Datos Grabados Selector de Archivos

> Selecciona archivos con datos válidos utilizando el archivo de tareas.

Sincronizar & Extraer

Identifica la
primera muestra
con timestamp
que se
encuentra en
todos los
archivos

seleccionados.

Núcleo de Procesami<u>ento</u>

> Calcula la intensidad de la señal Demultiplexión Obtención pares (I, Q)

> > Calculo:

 $\frac{\sum A}{N}$ donde A = I² + Q²

Post Proceso

(ON – OFF) & Análisis estadístico Índice: 1. Estación Terrestre & Antena 2. Como se usa? 3. Pipeline de Procesamiento 4. Prueba de Observación Resultados & Más

4. Prueba de Observación

Preparando Observación

Fuentes de Radio Estándares Calibradoras

PKS 1934-638

PKS 1934-638,una galaxia con un núcleo de Seyfert 2 (Fosbury et al. 1987)

Imagen VLBI de PKS 1934-638 at 8.4 GHz (Tzioumis et al. 1997). Resolución de 5 mas. (Tzioumis et al. 1997)

PKS 0521-365

Objeto BL Lac. Falomo et al. (2009) and Leon et al. (2016) PKS 0521–365 tiene corrimiento al rojo de z = 0.056 (D'Ammando et al. 2015)

PKS 0521-365 observado por MAD en la banda Ks. Los contornos representan el mapa de radio VLA a 15 GHz. Los niveles de contorno son: -1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 mJy/beam (0.6x0.6 arcsec) R. Falomo (2009)

Ambas fuentes de radio son bien conocidos y ampliamente estudiadas. PKS 1934-638. Reynolds, J. (1994); Sault, R.J. (2003); Partridge, B. (2016). PKS 0521-365. R. Falomo (2009), Leon, S. (2015); Roesch, F. (2016).

Prueba de Observación

Preparando Observación: Selección de ventana de tiempo

MLG ESTRACK STATION ALLOCATION FILE

ESAF (eventfile: /home/eps1user/eps-2.5/environment/Generation_Area/stations/mlg/PLNVIEW_20170112T000000_20180103T000000_20170112T145618_v01-00.MLG-O)

Prueba de Observación

Preparando Observación: Visibilidad de las fuentes

Prueba de Observación

Preparando Observación: Redacción de archivos

Archivo Catálogo:

```
      0521-365
      05:22:57.984651
      -36:27:30.850920

      C05210FF
      05:22:57.984651
      -37:27:30.850920

      1934-638
      19:39:25.026000
      -63:42:45.630000

      C19340FF
      19:39:25.026000
      -64:42:45.630000
```

Archivo Tareas:

```
#Objeto: 1934-638
#setup frec de muestreo: 100KHz; resolución:
16-bits
2017/02/07/16:40:00
                      55 1934-638
2017/02/07/16:43:00
                      55 C19340FF
2017/02/07/16:50:00
                      55 1934-638
2017/02/07/16:53:00
                      55 C19340FF
2017/02/07/17:00:00
                      55 1934-638
2017/02/07/17:03:00
                      55 C19340FF
2017/02/07/17:10:00
                      55 1934-638
2017/02/07/17:13:00
                      55 C1934OFF
2017/02/07/17:20:00
                      55 1934-638
2017/02/07/17:23:00
                      55 C1934OFF
2017/02/07/17:30:00
                      55 1934-638
2017/02/07/17:33:00
                      55 C1934OFF
2017/02/07/17:40:00
                      55 1934-638
                      55 C1934OFF
2017/02/07/17:43:00
                      55 1934-638
2017/02/07/17:50:00
2017/02/07/17:53:00
                      55 C1934OFF
2017/02/07/18:00:00
                      55 1934-638
2017/02/07/18:03:00
                      55 C1934OFF
2017/02/07/18:10:00
                      55 1934-638
2017/02/07/18:13:00
                      55 C1934OFF
2017/02/07/18:20:00
                      55 1934-638
2017/02/07/18:23:00
                      55 C1934OFF
```


Evaluación

Evaluar los datos registrados comparando con los datos y modelos publicados.

RAJ2000 "h:m:s"	DEJ2000 "d:m:s"	Bname	Ident	Mag mag	Z	S80 Jy	S408 Jy	S1410 Jy	S2700 Jy	S5000 Jy	S8400 Jy
05 22 58.010	-36 27 31.90	B0521-365	N	16.8	55	89	36.1	16.3	12.5	9.23	6.4
19 39 25.010	-63 42 45.70	B1934-638	G	18.4	185		6.24	16.4	11.5	6.13	3

2000,A&AS,143,9 , "The SIMBAD astronomical database", Wenger et al.

Datos & Modelos Publicados

Datos & Modelos Publicados

Datos & Modelos Publicados vs. Datos Grabados Evaluación de Elevación y Ruido

Trabajo futuro ...

- Observaciones con mayor frecuencia de muestreo y menor resolución.
- Disminuir tiempo entre posiciones ON/OFF.
- Corregir sistemáticos mediante ajuste con los modelos y observaciones a diferentes alturas por mas de un día seguido.
- Acceso al diodo de ruido u otra referencia de temperatura del sistema.
- Instrumento propio para la comunidad científica argentina.

Gracias ...

■ ITeDA - CONAE

ESA, especialmente personal de la estación.

Colaboradores y compañeros

¿Preguntas?

