11/22/23, 2:41 PM mai

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates

今天介绍的论文是Sina Faraji和Florian Kerschbaum发表在PoPETS'23上的Trifecta,该工作着眼于三方计算下的布尔电路计算通信开销,提出了新的分享语义支持无需预处理的多输入与门计算,从而减少布尔电路中的AND门深度以减少和交互轮数和通信开销。论文链接如下: https://petsymposium.org/popets/2023/popets-2023-0107.pdf

本文的相关背景是关于三方计算下的电路深度和通信开销问题,相关的工作专栏之前介绍过,可以参考。

1. 关联随机数

和之前的方案类似,Trifecta也需要生成关联随机数来支撑计算中的分享形式转化。具体来说,本文提出了利用伪随机函数来构造共享随机数,具体的协议如下:

Preprocessing:

- (1) **Init**: Each party P_i
 - Samples $S_{i,i-1}, S_{i,i+1} \in \{0,1\}^{\kappa}$
 - Sends $S_{i,i-1}$ to P_{i-1} and $S_{i,i+1}$ to P_{i+1} .
- (2) **Setup**: Each party P_i
 - Sets $R_{i-1}(x) = F_{S_{i+1,i}}(x) \oplus F_{S_{i,i+1}}(x)$
 - Sets $R_{i+1}(x) = F_{S_{i-1,i}}(x) \oplus F_{S_{i,i-1}}(x)$

Online:

- (3) **GenNextRandom**: Parties P_i and P_j
 - Party P_i computes $r_{i,j} = \mathbf{R}_{i-1}(id_{i,j})$
 - Party P_j computes $r_{i,j} = \mathbf{R}_{j+1}(id_{i,j})$ (without loss of generality j = i+1)

Figure 1: Correlated randomness functionality

基于上述关联随机数生成的预处理方法, P_i 还可以构造两对关联伪随机函数 (R_{i-1},R_{i+1}) 和 (R'_{i-1},R'_{i+1}) ,并定义如下掩码函数:

$$M_{i o i+1} = R_{i+1}$$
 $M_{i o i-1} = R_{i-1}$
 $M_{i+1 o i-1} = R_{i-1}$
 $M_{i-1 o i+1} = R'_{i+1}$

如此,本文定义了如下两方传输协议:

11/22/23, 2:41 PM mai

Mask: To send a value v from P_i to P_j

- (1) P_i invokes $M_{i \to j}$ to get $m_{i \to j}$.
- (2) P_i computes $c = v + m_{i \to j}$ and sends it to P_j .

Figure 2: Message passing with correlated randomness

因为 P_k 也知道 $m_{i o j}$,所以v在经过上述掩码隐藏并传输之后在 (P_i, P_k) 之间是两方加法秘密分享。

2. 2-out-of-3秘密分享(π_2^3 -sharing)

给定 $x\in\mathbb{Z}_{2^n}$,本文提出了一种新的三方秘密分享方案 π_2^3 -sharing:dealer(在本文中是 P_3)随机选取lpha,eta,然后令三方的分享为:

- P_1 : $(x + \alpha, \beta)$;
- P_2 : $(x + \beta, \alpha)$;
- P_3 : (α, β) .

图示表示如下:

	$ \pi_2^3$ -sharing	Rand	Mask
P_1	$ (x+\alpha,\beta) $	$ R_3,R_2 $	$ M_{1\to 2}, M_{1\to 3}, M_{2\to 3}, M_{3\to 2}$
P_2	$ (x+\beta,\alpha) $	$ R_1,R_3 $	$ M_{2\to 3}, M_{2\to 1}, M_{3\to 1}, M_{1\to 3}$
P_3	$ (\alpha,\beta) $	$ R_3,R_1 $	$ M_{3\to 1}, M_{3\to 2}, M_{1\to 2}, M_{2\to 1}$

Table 1: Different shares and PRFs held by the parties

针对布尔电路(即n=1),本文接下来构造了各种优化电路。为了方便起见,后续的符号"+"表示XOR,·或者省略乘法表示AND。

3. 基础协议构造

首先介绍基础的XOR和2-输入AND计算。给定 x_1 的分享 $\{(x_1+\alpha_1,\beta_1),(x_1+\beta_1,\alpha_1),(\alpha_1,\beta_1)\}$ 和 x_2 的秘密分享 $\{(x_2+\alpha_2,\beta_2),(x_2+\beta_2,\alpha_2),(\alpha_2,\beta_2)\}$,相关协议构造如下。

3.1 XOR 计算

XOR门的计算不需要交互,三方可以计算各自的计算流程如下:

- P_1 : 计算并输出 $\{(x_1+x_2)+(\alpha_1+\alpha_2),(\beta_1+\beta_2)\}$;
- P_2 : 计算并输出{ $(x_1 + x_2) + (\beta_1 + \beta_2), (\alpha_1 + \alpha_2)$ };
- P_3 : 计算并输出{ $(\alpha_1 + \alpha_2), (\beta_1 + \beta_2)$ }

很容易验证上述输出可以构成 x_1+x_2 的 π_2^3 -sharing。

3.2 2-输入 AND 计算

2输入-AND门的计算则稍微复杂一些,需要1轮交互。具体计算需要分三步展开:

- 1. Step 1: 三方计算3-out-of-3 sharing如下:
 - P_1 计算 $v_1 = (x_1 + \alpha_1)(x_2 + \alpha_2)$;

11/22/23, 2:41 PM main

- P_2 计算 $v_2 = (x_1 + \beta_1)\alpha_2 + (x_2 + \beta_2)\alpha_1$;
- P_3 计算 $v_3 = \alpha_1\beta_1 + \alpha_2\beta_2 + \alpha_1\alpha_2$
- 2. 有了上述3-out-of-3 sharing, 三方通信如下:
 - P_1 发送 $c_1 = v_1 + m_{1\to 2}$ 给 P_2 ;
 - P_2 发送 $c_2 = v_2 + m_{2 \to 1}$ 给 P_1 ;
 - P_3 发送 $c_3 = v_3 + m_{3\to 1}$ 给 P_1 .
- 3. 最后,三方构造 x_1x_2 的 π_2^3 -sharing如下:
 - P_1 计算 $(t + \alpha_t, \beta_t) = (v_1 + c_2 + c_3, c_3 + m_{1\rightarrow 2});$
 - P_2 计算 $(t+eta_t, lpha_t) = (v_2 + c_1 + m_{3 o 1}, m_{2 o 1} + m_{3 o 1});$
 - P_3 计算 $(\alpha_t, \beta_t) = (m_{2 \to 1} + m_{3 \to 1}, c_3 + m_{1 \to 2}).$

可以验证, $(t+\alpha_t)+\alpha_t=(t+\beta_t)+\beta_t=x_1x_2$,因此最终结果是 π_2^3 -sharing的形式。

4. 多输入 AND 计算

对于多输入AND门的计算,之前的ABY2.0和Meteor分别在两方、三方下进行了探索,但是这些工作都需要大量的预计算开销。本文提出的方案不需要预计算(除了关联伪随机函数构造)。

4.1 3-输入 AND

给定 x_1, x_2, x_3 的秘密分享,在本文的秘密分享语义下求 $t = x_1x_2x_3$ 的关键在于在 P_1 和 (P_2, P_3) 之间求的两方加法秘密分享 $(t + \alpha_t, \alpha_t)$;对称的,也需要在 P_2 和 (P_1, P_3) 之间求的两方加法秘密分享 $(t + \beta_t, \beta_t)$ 。为了构造出上述的秘密分享形式,本文首先提出了构造两方加法秘密分享 $(t + \alpha_t, \alpha_t)$ 的协议如下:

11/22/23, 2:41 PM mair

• Compute (2,2)-sharing of $x_1x_2x_3$

(1) P_2 computes

$$\mathbf{v}_{2} = \begin{cases} v_{2}^{1} = (x_{1} + \beta_{1})(x_{2} + \beta_{2})(x_{3} + \beta_{3}) \\ v_{2}^{2} = (x_{1} + \beta_{1})(x_{2} + \beta_{2}) \\ v_{2}^{3} = (x_{1} + \beta_{1})(x_{3} + \beta_{3}) \\ v_{2}^{4} = (x_{2} + \beta_{2})(x_{3} + \beta_{3}) \end{cases}$$

- (2) P_2 sends $c_2^i = v_2^i + m_{2 \to 1}^i$ to P_1 for all v_2^i .
- (3) P_1 computes

$$t + \alpha_t = c_2^1$$

$$+ c_2^2 \beta_3 + c_2^3 \beta_2 + c_2^4 \beta_1$$

$$+ (x_1 + \alpha_1) \beta_2 \beta_3 + \beta_1 (x_2 + \alpha_2) \beta_3$$

$$+ \beta_1 \beta_2 (x_3 + \alpha_3)$$

$$+ m_{3 \to 2}^1$$

(4) P_3 computes

$$v_3^1 = m_{2\to 1}^1 + m_{2\to 1}^2 \beta_3 + m_{2\to 1}^3 \beta_2 + m_{2\to 1}^4 \beta_1 + \alpha_1 \beta_2 \beta_3 + \beta_1 \alpha_2 \beta_3 + \beta_1 \beta_2 \alpha_3$$

- (5) P_3 sends $c_3^1 = v_3^1 + m_{3\to 2}^1$ to P_2 and sets $\alpha_t = c_3^1$.
- (6) P_2 sets $\alpha_t = c_3^1$.

Figure 3: Computing (2,2)-sharing of the product $x_1x_2x_3$

上述协议只需要在第(2)和(5)两步进行通信,且两次通信可以并行。同时,对于 $(t+\beta_t,\beta_t)$ 也可以并行执行,因此计算3输入与门本文只需要1轮通信。

4.2 ℓ-输入 AND

上述3输入的计算方式可以自然推广到对于多输入AND门的计算。本文也是具体描述了求 $(t+lpha_t,lpha_t)$ 的子协议如下:

11/22/23, 2:41 PM mair

• Compute (2,2)-sharing $x_1...x_\ell$

(1) P_2 computes

$$v_{\phi(I)} = \prod_{x_i \in I} (x_i + \beta_i)$$

for $I \subseteq \mathcal{P}(X)$ and |I| > 1,

- (2) P_2 sends $c_2^{\phi(I)} = v_2^{\phi(I)} + m_{2\to 1}^{\phi(I)}$ to P_1 for all $v_2^{\phi(I)}$.
- (3) P_1 computes

$$t + \alpha_t = \sum_{I \subseteq X, |I| > 1} c_2^{\phi(I)} \prod_{x_j \notin I} \beta_j$$

$$+ \sum_{x_i \in X, I = \{x_i\}} (x_i + \alpha_i) \prod_{x_j \notin I} \beta_j$$

$$+ b \prod_{i \in \mathbb{L}} \beta_i + m_{3 \to 2}^1$$

where b = 1 if n is even o.w. b = 0.

(4) P_3 computes

$$v_3^1 = \sum_{I \subseteq X, |I| > 1} m_{2 \to 1}^{\phi(I)} \prod_{x_j \notin I} \beta_j$$

$$+ \sum_{x_i \in X, I = \{x_i\}} \alpha_i \prod_{x_j \notin I} \beta_j$$

- (5) P_3 sends $c_3^1 = v_3^1 + m_{3\to 2}^1$ to P_2 and sets $\alpha_t = c_3^1$.
- (6) P_2 sets $\alpha_t = c_3^1$.

Figure 4: Computing (2,2)-sharing of the product $x_1...x_\ell$

其中, P_2 的计算量和通信量均是输入个数的组合数($2^\ell-\ell-1$)。

上述方案的正确性和安全性均很容易验证。

11/22/23, 2:41 PM mai

5. 常见电路协议优化

基于上述对于多输入AND门的优化,本文提出了针对布尔电路加法器、乘法器和比较电路的优化。为了平衡通信轮数和通信量,本文令 $\ell \leq 8$ 。可以从下表的理论分析结果看出,本文提出的方案大大提升了现有布尔电路的运行效率。

Algorithm		de	pth		size			
111601111111	16	32	64	128	16	32	64	128
Ripple-Carry	16	32	64	128	31	63	127	255
Sklansky	5	6	7	8	65	161	385	897
$\ell \leq 4$ -fan-in	3	4	5	8	73	177	433	993
$\ell \leq 8$ -fan-in	3	3	3	4	87	213	561	1249

Table 2: Comparison of adder circuit depth and size for different constructions and bit-widths

Algorithm	depth				size				
111601111111	16	32	64	128	16	32	64	128	
Standard	45	93	189	381	496	2016	8128	32640	
Wallace	13	15	18	21	512	2058	8226	32836	
$\ell \leq 4$ -fan-in	7	9	9	11	1229	5304	21997	89416	
<i>ℓ</i> ≤8-fan-in	6	6	8	11	1422	6612	24834	96679	

Table 3: Comparison of multiplier circuit depth and size for different constructions and bit-widths

11/22/23, 2:41 PM main

Algorithm		d	epth		size			
111901111111		32	64	128	16	32	64 12	28
Standard	5	6	7	8	63	143	319 70)3
$\ell \leq 4$ -fan-in	3	4	4	5	39	95	207 47	79
ℓ ≤8-fan-in	3	3	3	4	37	83	175 41	15

Table 4: Comparison of comparator circuit depth and size for different constructions and bit-widths

6. 实验评估

本文对布尔电路下的加法、乘法和比较,已经AES安全计算等任务,基于本文的秘密分享进行实现,并和之前的方案进行了对比。结果显示,本文在多种任务上都优于之前的方案。

	 Work		Batcl	h = 1		Batch = 100				
Func.		Sim.		WAN		Sim.		WAN		
		32 64		32	64	32	64	32	64	
Add.	[4] This	0.150 0.212	0.150 0.213	0.150 0.152	0.207 0.204	0.583 0.252	0.652 0.252	1.211 0.252	1.37 0.253	
Mult.	[4] This	0.586 0.767	0.639 0.925	1.179 0.461	1.316 0.628	7.493 0.960	11.375 1.422	20.35 0.727	24.64 1.174	
Comp.	[4] This	0.150 0.211	0.199 0.212	0.200 0.154	0.351 0.155	0.651 0.251	0.874 0.252	1.448 0.251	3.279 0.249	

Table 8: Comparison of online running time (sec) of our protocol and Beaver et al.'s protocol [4] for addition, multiplication and comparison circuits

11/22/23, 2:41 PM mair

Param.	 Work 	AES	-128	AES	-192	AES-256		
		Sim.	WAN	Sim.	WAN	Sim.	WAN	
	[42]	2.006	2.052	2.408	2.455	2.810	2.856	
Runtime	[1]	1.964	2.071	2.417	2.520	2.720	2.885	
(sec)	[4]	0.651	1.147	0.673	1.120	0.677	1.124	
	This	1.056	0.655	1.258	0.747	1.458	0.858	
	[42]	2.64		3.16		3.69		
Comm	[1]	2.	2.04		2.42		2.85	
(KB)	[4]	11680		13080		16110		
	This	165.7		198.2		230.8		

Table 11: Comparison of online running time and communication cost of our protocol and [1, 4] for AES. Results of our protocol and [1, 42] are reported for 100 parallel instances

本篇博客只介绍了协议的设计思路和部分实验结果。协议的具体正确性推导和更多实验评估请参考原文。