Intro to Generative Al

Thanos Tagaris

What is Generative Al?

Teddy bears swimming at the Olympics 400m Butterfly event.

A blue jay standing on a large basket of rainbow macarons.

An art gallery displaying Monet paintings. The art gallery is flooded. Robots are going around the art gallery using paddle boards.

A transparent sculpture of a duck made out of glass. The sculpture is in front of a painting of a landscape.

Imagen

Scope

This session has 1 main goal: to go beyond the hype, the buzzwords and the success stories and understand 3 main things

- What do Generative ML models try to learn?
- What are Generative Neural Networks and how do they differ from NN for classification?
- What architectures and training schemes are used to produce Generative Neural Networks?

Contents

1. Theoretical background

- Data generating distribution
- Generative vs discriminative ML models

2. Neural Network Architectures & Training Schemes

- Discriminative Neural Nets
- Autoencoder
- VAE
- GAN
- Diffusion models

Theoretical Background

Data Generating Distribution

A very important concept in Machine Learning is that of the **data-generating distribution**.

Say we are given a dataset

We consider these instances to be samples drawn from a data generating distribution

Data Generating Distribution

- This distribution is a theoretical notion. We have no concrete evidence on how the distribution actually looks like.
- E.g. "cat vs dog image classification"
- What is the underlying distribution of the cat class?
- It should consist of everything that makes a cat, a cat.
 Any conceivable cat image will be drawn from that distribution.
- Besides this, the samples are also accompanied by noise.
- For example the "cat images" class this could be a tree, a table or any object that is not related to the cat.

Discriminative vs Generative Models

Depending on how Machine Learning models approach the process of "learning" we can make two main distinctions:

- Generative models
 - \circ These attempt to predict the target y by learning the joint probability distribution p(x, y).
- Discriminative models
 - \circ These attempt to predict the target y by learning conditional probability $p(y \mid x)$ directly.

Discriminative models

- Discriminative models try to learn what features distinguish each class from the other.
- To predict a previously unseen example it looks at what the distinguishing features have to say about the class.

Generative models

- Generative models try to "learn" the underlying distribution behind each class.
- To predict a previously unseen example it looks at what distribution that example is more likely to have come from.

Question time

- Which of the two tasks do you think is easier?
- Which of the two do you think us humans learn?
- Challenge:

draw a 20€ bill

Discriminative vs Generative Neural Networks

- Discriminative Neural Networks try to solve their task by learning what features distinguish each class from the other.
 - e.g. Neural Networks for classification
- Generative Neural Networks try to solve their task by learning the underlying data generating distribution
 - o e.g. Autoencoders
- It all comes down to (a) the architecture of the Neural Network and (b) the training scheme to determine if it will be trained in a **generative** or **discriminative** way.

Neural Network Architectures and Training Schemes

Discriminative Neural Networks

Neural Networks for classification

- Typical type of Neural Network we are familiar with.
- Are trained with Maximum Likelihood Estimation.
- This leads to a discriminative training

Neural Networks for classification

So what do these types of networks actually learn?

Class activation maps of top 5 predictions

Class activation maps for one object class

discriminative features, i.e. how to distinguish from one class to another

Generative Neural Networks: AutoEncoders

AutoEncoders (AE)

- A Neural Network architecture that has the same shape for its input and output
- Trained in an unsupervised manner
- This leads to a generative training

AutoEncoders (AE)

AutoEncoders (AE)

- One thing was inaccurate in the previous depictions
- Autoencoders need to shrink the input dimensions to compress the input information
- Else they could just learn to copy the information from input directly to output

Encoding

- The task of the autoencoder is to essentially reconstruct the original input
- The encoder compresses the most useful information on how to do this
- Due to the information shrinkage, it can't capture all the details.

Decoding

- The decoder takes the compressed vector as its input and needs to fill in all the missing details.
- To do this it needs to understand some fundamental properties about how the input data's underlying distribution.
- This is what makes it generative.

Input Reconstruction

- An autoencoder can work on any modality (images, audio, text, etc.)
- Again, to be able to reconstruct its input, it needs to learn the distribution of its inputs
- ... it needs to be generative

Denoising Autoencoders

Denoising Autoencoders

even harder examples...

This process forces the autoencoder to look beyond the input noise and learn the true underlying distribution

Using Autoencoders for Generative tasks

- So, we know that the decoding part of the AE is generative.
- What do we need to do to make it generate something?
 - supply it with a latent vector
- How do we know what values to choose in the latent vector?
 - ➤ we can't
 - can we randomly choose a vector?

Variational AutoEncoders (VAE)

- Idea: instead of learning the latent vectors deterministically, learn the distribution from which they are sampled.
- Encoder will learn the parameters of this distribution (e.g. μ , σ in normal distribution)
- Decoder will reconstruct output from a latent vector, sampled from this distribution

Using VAEs for Generative tasks

- So, how does a VAE help us with our generative tasks?
 - In deterministic AEs we didn't know how to select the latent vector
 - In VAEs, we know the distribution from which latent vectors can be sampled
- Generative process:
 - > Step 1: sample a latent vector from the distribution
 - > Step 2: supply latent vector to the decoder
- VAE's training objective leads them to have a more continuous latent space

VAE: training details

- Trained with ELBO loss function. Two terms:
 - Reconstruction loss
 - Regularization term to constrain latent distribution to "follow" a prior (e.g. gaussian)

More Advanced Examples

Language Models

Are language models generative?

- Yes!
- They are trained in an unsupervised fashion to **predict the next word in a sequence**.
- This allows them to learn how words are conditioned upon one another in language.
- During inference they generate the output words, conditioned upon their inputs.

Language Models

Generative Adversarial Networks (GAN)

- Framework for training a NN in an unsupervised manner to achieve generative capabilities
- Consists of two NNs:
 - Generator: learns to generate realistic samples
 - Discriminator: learns to discriminate between real and fake samples
- These contest with each other in the form of a zero-sum game, where one agent's gain is another agent's loss

Generative Adversarial Networks

Diffusion Models

- Process for training generative models
- Consider a diffusion process iteratively adding gaussian noise to the input samples
- Model is trained to reverse this process
- After training model is capable of generating realistic sample completely from random noise

