

CENTRO DE CIÊNCIAS TECNOLÓGICAS (CCT)

DEPARTAMENTO DE MATEMÁTICA (DMAT)

GRUPO COLABORATIVO DE ENSINO DE ÁLGEBRA LINEAR*

SEGUNDA LISTA DE EXERCÍCIOS DE ALI-001**

ESPAÇOS VETORIAIS

Questões:

1. Seja $V = \mathbb{R}^2$ o conjunto de todos os pares ordenados de números reais, munido das operações de adição (+) e multiplicação por escalar (.) **usuais**, definidas por:

$$(x,y) + (a,b) = (x + a, y + b), \qquad \alpha.(x,y) = (\alpha x, \alpha y).$$

Verifique se os seguintes subconjuntos de *V* são fechados para as operações de adição e/ou de multiplicação por escalar:

- a) $W = \{(x, y) \in \mathbb{R}^2; y \ge 0 \}.$
- b) $W = \{(x, y) \in \mathbb{R}^2, x = 0\}.$
- c) $W = \{(x, y) \in \mathbb{R}^2; x. y \le 0\}$
- d) $W = \{(x, y) \in \mathbb{R}^2; x. y = 0\}$
- e) $W = \{(x, y) \in \mathbb{R}^2; 2x + 3y \ge 0\}$
- f) $W = \{(x, y) \in \mathbb{R}^2; 2x + 3y = 0\}$
- g) $W = \{(x, y) \in \mathbb{R}^2, 2x + 3y = 1\}$
- h) $W = \{(x, y) \in \mathbb{R}^2; y = |x|\}$
- i) $W = \{(x, y) \in \mathbb{R}^2; y \ge x^2 \}.$
- j) $W = \{(x, y) \in \mathbb{R}^2; y = e^x \}.$
- k) $W = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \}$
- 2. Seja V = M(2,2) o conjunto de todas as matrizes quadradas de ordem 2×2 , munido das operações **usuais** de adição entre matrizes e multiplicação de uma matriz por um escalar. Verifique se os seguintes subconjuntos de V são fechados para as operações de adição e/ou de multiplicação por escalar:
 - a) $W = \{A \in M(2,2); A \in invertivel\}.$
 - b) $W = \{A \in M(2,2); A^2 = A\}.$
 - c) $W = \{A \in M(2,2); A.A^T = 3A\}.$
 - d) $W = \{A \in M(2,2); A^T + 2A = I\}$, em que I é a matriz identidade de ordem 2×2 .

^{*} Professores participantes do Grupo Colaborativo no semestre 2023/2: Graciela Moro, Katiani da Conceição Loureiro e Marnei Luis Mandler.

^{**} Este é um material de acesso livre distribuído sob os termos da licença Creative Commons BY-SA 4.0 2.

- e) $W = \{A \in M(2,2); A^T + A = 0\}$, em que 0 é a matriz nula de ordem 2×2 .
- f) $W = \{A \in M(2,2); AB = BA\}$, em que $B \in M(2,2)$ é uma matriz fixada.
- g) $W = \{A \in M(2,2); A^T.C = -C.A\}$, em que $C \in M(2,2)$ é uma matriz fixada.

h)
$$W = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); \ a+b+c+d \ge 0 \}$$

i)
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); \ 2\alpha - b + 3d = 0 \right\}$$

j)
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); \ a = 2b - 3c \ e \ d = -5b + 7c \right\}$$

k)
$$W = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \in M(2,2); \ a, b \in \mathbb{R} \right\}$$

3. Seja $V = \mathbb{R}^2$ o conjunto de todos os pares ordenados de números reais e considere as operações de adição (+) e multiplicação por escalar (.) definidas em V como:

$$(x,y) + (s,t) = (x+s+1,y+t-2),$$

$$\alpha.(x,y) = (\alpha x + \alpha - 1, \alpha y - 2\alpha + 2).$$

- a) Calcule $u + v \in \alpha$. u para $u = (-2, 3), v = (1, -2) \in \alpha = 2$.
- b) Encontre o elemento $\vec{0} \in V$ tal que $u + \vec{0} = u$, para todo $u \in V$.
- c) Dado $u = (x, y) \in V$, determine o elemento -u.
- d) Mostre que $u + (-u) = -u + u = \overrightarrow{0}$ é válido para todo $u \in V$.
- e) Verifique se V é ou não um espaço vetorial com as operações de (+) e (.) dadas acima.
- 4. Seja $V = \mathbb{R}^2$ o conjunto de todos os pares ordenados de números reais e considere as operações de adição (+) e multiplicação por escalar (.) definidas em V como

$$(x,y) + (s,t) = (x+s,0)$$
 e $\alpha \cdot (x,y) = (\alpha x,0)$.

Com essas operações, V é um espaço vetorial? Caso não seja, indique quais axiomas não são satisfeitos.

5. Seja $V = \{(x,y) \in \mathbb{R}^2; \ y > 0\}$ o conjunto de todos os pares ordenados de números reais cujas abscissas são sempre positivas e considere as operações de adição (+) e multiplicação por escalar (.) definidas em V como

$$(x,y) + (a,b) = (x + a, y.b)$$
 e $\alpha.(x,y) = (\alpha x, y^{\alpha}).$

Responda aos itens abaixo:

- a) Verifique se V é fechado para as operações acima definidas.
- b) Encontre o elemento $\overrightarrow{0_V} \in V$ tal que $u + \overrightarrow{0_V} = u$, para todo $u \in V$.
- c) Dado $u = (x, y) \in V$, determine o elemento $-u \in V$ tal que $u + (-u) = \vec{0}_V$.
- d) Verifique se V é ou não um espaço vetorial com as operações de (+) e (.) dadas acima. Caso não seja, indique quais axiomas não são satisfeitos.

6. Seja $V = \{(x, y) \in \mathbb{R}^2; \ x < 0 \ \text{e} \ y < 0\}$ o conjunto de todos os pares ordenados de números reais cujas coordenadas são ambas sempre negativas e considere as operações de adição (+) e multiplicação por escalar (.) definidas em V como

$$(x,y) + (a,b) = (-xa, -yb)$$
 e $\alpha \cdot (x,y) = ((-1)^{\alpha+1}x^{\alpha}, (-1)^{\alpha+1}y^{\alpha}).$

Responda aos itens abaixo:

- a) Verifique se V é fechado para as operações acima definidas.
- b) Encontre o elemento $\overrightarrow{0_V} \in V$ tal que $u + \overrightarrow{0_V} = u$, para todo $u \in V$.
- c) Dado $u = (x, y) \in V$, determine o elemento $-u \in V$ tal que $u + (-u) = \overrightarrow{0_V}$.
- d) Mostre que 1. u = u, para todo $u \in V$.
- e) Verifique se V é ou não um espaço vetorial com as operações de (+) e (.) dadas acima. Caso não seja, indique quais axiomas não são satisfeitos.
- 7. Verifique se o conjunto de todos os polinômios de grau menor ou igual a um, com coeficientes reais, denotado por $P_1 = \{a + bx; \ a, b \in \mathbb{R}\}$, munido das operações de adição e multiplicação por escalar definidas por:

$$p(x) + q(x) = (a + bx) + (c + dx) = (a + d) + (b + c)x,$$

$$\alpha(a + bx) = (\alpha a) + (\alpha b)x$$

é ou não um espaço vetorial. Caso não seja, indique quais axiomas não são satisfeitos.

8. Em $V = \{(x, y) \in \mathbb{R}^2; x > 0 \text{ e } y > 0\}$, considere as operações **não usuais** de adição e multiplicação por escalar definidas por

$$(x,y) + (a,b) = \left(7xa, \frac{1}{2}yb\right)$$
 $k(x,y) = (x^k, y^k).$

- a) Verifique se existe elemento neutro aditivo em V, isto é, se existe $\overrightarrow{0_V} \in V$ tal que $u + \overrightarrow{0_V} = u$, $\forall u \in V$.
- b) Dado $u=(x,y)\in V$, verifique se existe um elemento oposto aditivo para u, ou seja, se existe $-u\in V$ tal que $u+(-u)=\overrightarrow{O_V}$. Caso exista tal oposto, exiba-o.
- c) Verifique se é válida ou não a propriedade k(u+v)=ku+kv para todos $u,v\in V,k\in\mathbb{R}$.
- d) Verifique se é válida ou não a propriedade $(k_1 + k_2)u = k_1u + k_2u$ para todos $u \in V$, $k_1, k_2 \in \mathbb{R}$.
- e) Verifique se o conjunto $W = \{(x, y) \in V; y = 98x^2\}$ é fechado ou não para as operações de adição e/ou de multiplicação por escalar **não usuais** definidas acima.
- 9. Em cada um dos itens abaixo, verifique se o subconjunto W é um subespaço do espaço vetorial V dado, considerando as operações usuais de adição e multiplicação em V:

a)
$$V = \mathbb{R}^3$$
 e $W = \{(x, y, z) \in \mathbb{R}^3; 2x + 3y - z = 0\}.$

b)
$$V = \mathbb{R}^3 \text{ e W} = \{(x, y, z) \in \mathbb{R}^3; 7x - 5y - 9z \ge 0\}.$$

c)
$$V = \mathbb{R}^3$$
 e $W = \{(x, y, z) \in \mathbb{R}^3; x - y + z = 1\}.$

d)
$$V = P_2 = \{a + bx + cx^2; a, b, c \in \mathbb{R}\}\ e\ W = \{a + bx + cx^2 \in P_2; a = -9c\ e\ b = 7c\}.$$

- e) $V = P_n$ (o espaço dos polinômios de grau menor ou igual a n) e $W = \{p \in P_n; p(-1) = -p(1)\}.$
- f) $V = P_n$ (o espaço dos polinômios de grau menor ou igual a n) e $W = \{p \in P_n; p(6) = p(2)p(3)\}$.

g)
$$V = \mathbb{R}^3$$
 e $W = \left\{ (x, y, z) \in \mathbb{R}^3; \ det \begin{bmatrix} x & y & z \\ 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} = 0 \right\}.$

- h) V = M(3,1) e $W = \{X \in M(3,1); AX = 0\}$, em que A é uma matriz de ordem 3×3 fixada.
- i) V = M(3,1) e $W = \{X \in M(3,1); AX = B\}$, em que A é uma matriz de ordem 3×3 fixada e B é uma matriz não nula de ordem 3×1 fixada.

j)
$$V = M(2,2)$$
 e $W = \{X \in M(2,2); \det(X) = 0\}.$

k) V = M(2,2) e $W = \{A \in M(2,2); A \text{ \'e uma matriz antissim\'etrica}\}$.

1)
$$V = M(2,2)$$
 e $W = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); b = a \ e \ d = -a + 6c \}$.

- 10. Em cada item, represente W algebricamente e a seguir verifique se W é um subespaço vetorial do espaço vetorial V dado, considerando as operações usuais nele definido.
 - a) $V = \mathbb{R}^2$, W é o conjunto dos pares ordenados pertencentes à curva $y = x^3$.
 - b) V = M(2,2); W é o conjunto de todas as matrizes simétricas de ordem 2×2 .
- c) $V = F(\mathbb{R})$ (o conjunto de todas as funções reais de uma variável real); W é o conjunto das funções reais pares.
 - d) $V = F(\mathbb{R})$; W é o conjunto dos polinômios de grau exatamente igual a dois.
- 11. Seja $V = \{(x, y) \in \mathbb{R}^2; y > 0\}$, com as operações de adição (+) e multiplicação por escalar (.) definidas em V por

$$(x, y) + (a, b) = (x + a, y, b)$$
 e $\alpha \cdot (x, y) = (\alpha x, y^{\alpha}).$

Verifique se os subconjuntos abaixo são ou não subespaços vetoriais de *V*:

a)
$$W = \{(x, y) \in V; y = e^{-x}\}$$

b)
$$W = \{(x, y) \in V; y = |x|\}$$

c)
$$W = \{(x, y) \in V; y = 5x\}$$

d)
$$W = \{(x, y) \in V : y = x^2\}$$

e)
$$W = \{(x, y) \in V; x = \ln(y)\}$$

12. Em $V=\mathbb{R}^3$, munido com as operações usuais, determine o valor de $k\in\mathbb{R}$ para o qual o elemento v=(k,-105,-k) é escrito como uma combinação linear de $v_1=(3,2,-6)$ e $v_2=(4,7,17)$. A seguir, exiba tal combinação linear.

13. Em V = M(2,2), com as operações usuais, verifique se $B = \begin{bmatrix} 13 & -19 \\ 17 & -5 \end{bmatrix}$ e $C = \begin{bmatrix} -39 & 57 \\ -11 & 18 \end{bmatrix}$ podem ser escritas como uma combinação linear de $A_1 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$ e $A_4 = \begin{bmatrix} 4 & 3 \\ 6 & 1 \end{bmatrix}$. Em caso positivo, exiba todas as combinações lineares possíveis e indique, em cada caso, se alguma das matrizes A_i pode ser descartada, sem causar prejuízo à respectiva combinação linear.

14. Em V = M(2,2), munido com as operações usuais, mostre que qualquer matriz simétrica pode ser escrita como combinação linear de $A_1 = \begin{bmatrix} -5 & 0 \\ 0 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$ e $A_3 = \begin{bmatrix} 0 & 0 \\ 0 & 9 \end{bmatrix}$.

15. Em $V=P_3$, munido com as operações usuais, considere os elementos $p_1(x)=1+x-x^2+x^3$, $p_2(x)=1-2x+3x^3$, $p_3(x)=-1+2x^2-x^3$ e $p_4(x)=3-x-3x^2+5x^3$. Verifique se os elementos $p(x)=5+7x-9x^2+2x^3$ e $q(x)=6-4x-x^2+8x^3$ podem ser escritos como combinação linear de p_1 , p_2 , p_3 e p_4 . Em caso positivo, determine tais combinações lineares.

16. Em um espaço vetorial V genérico, verifique se u e v são combinações lineares de $v_1, v_2, v_3 \in V$, então w = -5u + 8v também é uma combinação linear de v_1, v_2, v_3 .

17. Determine se os elementos u, v, w de \mathbb{R}^3 exibidos nas figuras abaixo são linearmente dependentes ou linearmente independentes. Explique por que.

18. Verifique se o conjunto $\beta = \{(1, 2, 3), (1, 3, 1), (0, 3, 1), (1, 4, 5)\}$ é LI ou LD.

19. Dados os elementos $v_1 = (2, -1, 3)$, $v_2 = (-1, 0, -2)$ e $v_3 = (2, -3, 1)$, verifique se $\beta = \{v_1, v_2, v_3\}$ é LI ou LD. Caso seja LD, escreva um dos elementos como uma combinação linear dos demais.

20. Dado o conjunto $\beta = \{(1, 1, 3), (1, 2, 1), (0, 1, 3), (1, 4, 5)\}$, extraia um subconjunto LI de β .

21. Determine se as colunas da matriz
$$A = \begin{bmatrix} 3 & 4 & 3 \\ -1 & -7 & 7 \\ 1 & 3 & -2 \\ 0 & 2 & -6 \end{bmatrix}$$
 formam um conjunto linearmente

dependente ou independente. A seguir, determine o número de soluções do sistema homogêneo AX = 0. Existe alguma relação entre a dependência ou independência linear das colunas da matriz A e o número de soluções de um sistema homogêneo?

22. Seja $\beta = \{u, v, w\}$ um subconjunto LI de um espaço vetorial V. Verifique se os subconjuntos abaixo são LI ou LD:

a)
$$\alpha = \{u + v - 3w, u + 3v - w, v + w\}.$$

b)
$$\alpha = \{u - 2v + 5w, 3u - 7v - 8w, 2u - 3v + 33w\}.$$

c)
$$\alpha = \{u + 3v - 4w, -2u - 5v - w, 5u - v + 125w\}.$$

d)
$$\alpha = {\vec{0}, u, v, w}$$
.

23. Em
$$V = M(2,2)$$
, com as operações usuais, determine se os elementos $A_1 = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$ e $A_4 = \begin{bmatrix} 4 & 3 \\ 6 & 1 \end{bmatrix}$ são LI ou LD.

24. Em
$$V = P_3$$
, munido das operações usuais, determine se os elementos $p_1(x) = 1 + x - x^2 + x^3$
 $p_2(x) = 1 - 2x + 3x^3$, $p_3(x) = -1 + 2x^2 - x^3$ e $p_4(x) = 3 - x - 3x^2 + 5x^3$ são LI ou LD.

25. Considere o subespaço vetorial $H = \{(x, x, z); x, z \in \mathbb{R} \}$ para responder aos itens abaixo:

- a) interprete geometricamente o conjunto H.
- b) determine um conjunto de geradores para *H*.
- c) verifique se o subespaço vetorial H é gerado pelos elementos (2, 2, 0) e (-1, 1, 0).

26. Verifique se as igualdades abaixo são verdadeiras ou falsas:

a)
$$\mathbb{R}^3 = ger\{(1,2,3), (-1,-1,0), (2,1,-1)\}.$$

b)
$$P_2 = ger\{1 + x, x + x^2, 1 + x^2\}.$$

27. Determine o subespaço de
$$V = M(2,2)$$
 que é gerado por $A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ e $A_3 = \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix}$.

28. Considere o subespaço vetorial de P_3 dado por

$$W = \{a + bx + cx^2 + dx^3; c + 3d = 0 e a + b - 7d = 0\}$$

- a) Verifique se W é um subespaço vetorial de P_3 , considerando as operações usuais.
- b) Encontre os geradores de W.

- 29. Considere o subespaço S de \mathbb{R}^4 dado por $S = ger\{(1, -1, 0, 0), (0, 0, 1, 1), (-2, 2, 1, 1), (1, 0, 0, 0)\}$
 - a) O elemento $v = (2, -3, 2, 2) \in S$? Justifique sua resposta.
 - b) Determine a condição algébrica que deve ser satisfeita para que $v=(x,y,z,t) \in S$.
 - c) Encontre uma base e a dimensão para S.
 - d) $S = \mathbb{R}^4$? Por quê?
- 30. Encontre os geradores para os subespaços vetoriais de M(3,1) que são formados por todas as soluções dos seguintes sistemas lineares homogêneos:

a)
$$\begin{cases} x - 3y + z = 0 \\ 2x - 6y + 2z = 0 \\ 3x - 9y + 3z = 0 \end{cases}$$
 b)
$$\begin{cases} x - y + 5z = 0 \\ 3x - 4y - 7z = 0 \\ -2x + 9y + 144z = 0 \\ 5x - 3y + 69z = 0 \end{cases}$$
 c)
$$\begin{cases} x + 3y - 2z = 0 \\ -x - 2y + 6z = 0 \\ 4x - y - 59z = 0 \end{cases}$$

- 31. Sejam $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); a+b+c=0 \right\}$ e $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); b+2d=0 \right\}$ dois subespaços vetoriais de M(2,2). Determine os geradores para U,W e $U \cap W$.
- 32. Para quais valores de $k \in \mathbb{R}$ os elementos $\{(1, 2, 0, k), (0, -1, k, 1), (0, 2, 1, 0), (1, 0, 2, 3k)\}$ geram um subespaço tridimensional em \mathbb{R}^4 ?
- 33. Determine a interseção entre os subespaços $U = \{a + bx + cx^2 + dx^3 \in P_3; \ a + b c + 3d = 0\}$ e $W = \{a + bx + cx^2 + dx^3 \in P_3; \ b 2c + 3d = 0\}.$
- 34. Determine uma base e a dimensão para o subespaço

$$W = \{(x, y, z, w, t) \in \mathbb{R}^5; \ x - 5z + 2w = 0, y + 2z - 3t = 0, 4x + 10y - 7w = 0\}.$$

35. Seja W o subespaço vetorial de M(2,2) dado por

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); \ a + 6d = 0 \ \text{e} \ c - 2a - 5b = 0 \right\}.$$

- a) Determine uma base e a dimensão de W.
- b) Verifique se o conjunto $\alpha = \{\begin{bmatrix} -6 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 12 & 0 \\ 24 & -2 \end{bmatrix}\}$ também é uma base para W.
- 36. Considere W o subespaço vetorial de P_3 dado por

$$W = ger\{1 - 2x^2, 3 + x, 1 - x + x^3, 4 - x + 2x^2 + 2x^3\}.$$

- a) Determine a condição algébrica do subespaço gerado W.
- b) Exiba uma base e determine a dimensão de W.

37. Exiba:

- a) um contraexemplo que comprove que a união de dois subespaços vetoriais de um mesmo espaço vetorial não é, necessariamente, um subespaço vetorial.
- b) dois subespaços W_1 e W_2 de \mathbb{R}^3 tais que $W_1+W_2=\mathbb{R}^3$. A seguir, analise se essa soma é direta.
- 38. Sejam U e W subespaços de \mathbb{R}^4 de dimensão 2 e 3, respectivamente. Mostre que a dimensão de $U \cap W$ é pelo menos igual a 1. O que ocorre se a dimensão de $U \cap W$ for 2? Essa dimensão pode ser igual a 3? Justifique suas respostas.
- 39. Sejam U e W subespaços de P_9 de dimensões iguais a 7 e 6, respectivamente. Mostre que U e W possuem, obrigatoriamente, pelo menos um subespaço tridimensional em comum.
- 40. Seja $B \in M(n, n)$ uma matriz não nula fixada e considere $W = \{A \in M(n, n); A^T + AB = 0\}$.
 - a) Mostre que W é subespaço de M(n, n).
 - b) Considerando n = 2 e $B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$, determine uma base e a dimensão de W.
- 41. Em $V = \mathbb{R}^3$, munido das operações usuais de adição e de multiplicação por escalar, considere os seguintes subespaços vetoriais:

$$U = ger\{(1, -2, 0), (1, 1, 1)\}$$
 e $W = ger\{(0, 3, 1), (-1, 1, 2)\}$.

Determine:

- a) a condição algébrica para que u = (x, y, z) pertença a U.
- b) a condição algébrica para que u = (x, y, z) pertença a W.
- c) uma base e a dimensão para $U \cap W$ e U + W.
- d) $U + W = \mathbb{R}^3$? Essa soma é direta?
- 42. Em V = M(2,2), munido das operações usuais de adição e de multiplicação por escalar, considere o subespaço vetorial $S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); \ a+b=0 \ \text{e} \ c+d=0 \right\}.$
 - a) Determine uma base e indique a dimensão de S.
 - b) Construa uma base para M(2, 2) que contenha a base de S obtida no item anterior.
- 43. Em $V = \mathbb{R}^4$, munido das operações usuais de adição e de multiplicação por escalar, considere os seguintes subespaços vetoriais:

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4; \ -6x - 2y + 3z + t = 0\}$$

$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4; \ 3x + y - 5t = 0 \quad \text{e} \quad x + 5y - 3z = 0\}.$$

Determine uma base e a dimensão para:

- a) W_1 .
- b) W_2 .
- c) $W_1 \cap W_2$.
- d) $W_1 + W_2$.

44. Em V = M(2,2), munido das operações usuais de adição e de multiplicação por escalar, considere os seguintes subconjuntos:

$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2) ; b = c \text{ e } a = -b \right\} \qquad W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2) ; b = d \right\}$$

- a) Verifique se W_1 e W_2 são subespaços vetoriais de M(2,2).
- b) Determine uma base e a dimensão para:
 - $i) W_1$.
- ii) W_2 .
- iii) $W_1 \cap W_2$.
- iv) $W_1 + W_2$.

45. Em $V = P_3$, munido das operações usuais de adição e de multiplicação por escalar, considere os seguintes subespaços vetoriais:

$$W_1 = \{ p \in P_3; \ p(-1) + 2p(1) = 0 \}$$
 e $W_2 = \{ p \in P_3; \ p(2) = p(0) \}.$

- a) Determine uma condição algébrica para que $p(x) = a + bx + cx^2 + dx^3 \in W_1$.
- b) Determine uma condição algébrica para que $p(x) = a + bx + cx^2 + dx^3 \in W_2$.
- c) Determine uma base e a dimensão para W_1 , W_2 , $W_1 \cap W_2$ e $W_1 + W_2$.

46. Em $V = P_3$, munido das operações usuais de adição e de multiplicação por escalar, considere os seguintes subespaços vetoriais

$$W_1 = \{p(x) \in P_3; \ p(0) + p(-1) = 0\}$$
 e $W_2 = \{a + bx + cx^2 + dx^3 \in P_3; \ b + 3c - 4d = 0\}$. Determine uma base e a dimensão para: a) W_1 b) W_2 c) $W_1 \cap W_2$ d) $W_1 + W_2$.

47. Em $V = \mathbb{R}^5$, munido das operações usuais de adição e de multiplicação por escalar, considere os seguintes subespaços vetoriais:

$$W_1 = \{(x, y, z, t, w) \in \mathbb{R}^5; -x + z + w = 0, \quad x + w = 0\}$$

$$W_2 = \{(x, y, z, t, w) \in \mathbb{R}^5; -y + z + t = 0\}$$

$$W_3 = \{(x, y, z, t, w) \in \mathbb{R}^5; -2x + t + 2w = 0\}.$$

- a) Determine uma base e a dimensão para $W_1 \cap W_2 \cap W_3$.
- b) Determine uma base e a dimensão para $W_1 + W_3$.
- c) $W_1 + W_2 = \mathbb{R}^5$? Essa soma é direta?

48. Em $V = P_3$, munido das operações usuais de adição e de multiplicação por escalar, considere os seguintes subespaços vetoriais $W = \{p \in P_3; \ p(0) = 0\}$ e

$$U = ger\{1 + 2x + x^2, -1 + 2x^2 + 3x^3, -1 + 4x + 8x^2 + 9x^3\}$$

- a) Determine a condição algébrica para que $p(x) = a + bx + cx^2 + dx^3$ pertença a U.
- b) Exiba uma base e a dimensão para:
 - i) U
- ii) W
- iii) $U \cap W$
- iv) U + W

49. Em V = M(2,2), munido das operações usuais de adição e multiplicação por escalar, considere os subespaços

$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); \ a - 3b + 5c + 4d = 0 \quad \text{e} \quad 3a - 8b + 2c - 7d = 0 \right\}$$

$$W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2) \ ; \ -2a + 5b + 4c + d = 0 \right\}.$$

Determine uma base e a dimensão para:

a) W_1 .

e

- b) W_2 . c) $W_1 \cap W_2$. d) $W_1 + W_2$.

50. Considere os subespaços vetoriais de M(2,2) dados por $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); a+d=0 \right\}$ e

i) *U*.

$$W = ger\left\{\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix}\right\}.$$

- a) Determine uma condição algébrica para que $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ pertença a W.
- b) Exiba uma base e a dimensão para:
- ii) W.
- iii) $U \cap W$. iv) U + W.

51. Sejam $\beta = \{(1,0),(0,1)\}, \ \beta_1 = \{(-1,1),(1,1)\}, \ \beta_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\} \ e \ \beta_3 = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 .

- a) Encontre a matrizes que efetuam a mudança:
 - i) da base β_1 para a base β .
- iii) da base β para a base β_2 .
- ii) da base β para a base β_1 . iv) da base β para a base β_3 .

b) Determine as coordenadas do elemento v=(3,-2) em relação às bases β , β_1 , β_2 e β_3 .

c) Se as coordenadas de um elemento u em relação à base β_1 são dadas por $[u]_{\beta_1} = {4 \brack 0}$, determine ii) β_2 .

- as coordenadas de *u* em relação às bases:
- i) β.

iii) β_3 .

52. Sejam $\alpha = \{u_1, u_2\}$ e $\beta = \{v_1, v_2\}$ bases de \mathbb{R}^2 , em que $v_1 = -u_1 + 2u_2$ e $v_2 = 3u_1 - 5u_2$.

a) Determine a matriz mudança de base de α para β .

b) Suponha que $v, w \in \mathbb{R}^2$ sejam tais que $[v]_{\alpha} = \begin{bmatrix} -4 \\ 7 \end{bmatrix}$ e $2w = 9u_1 - 17u_2$. Encontre $[v]_{\beta}$ e $[w]_{\beta}$, a seguir, represente os vetores v, w e v + w no referencial dado abaixo:

- 53. Considere $\alpha=\{v_1,v_2\}$ e $\beta=\{-v_1+4v_3,2v_1-7v_2\}$ duas bases ordenadas de \mathbb{R}^2 .
 - a) Determine a matriz mudança de base de β para α .
 - b) Determine a matriz mudança de base de α para β .
- c) Encontre as coordenadas, em relação às bases α e β , dos vetores cujas extremidades são os vértices do quadrilátero *CDEF* exibido na Figura 1.
- d) Represente geometricamente (no referencial dado na Figura 2), o triângulo de vértices K, L e M, sabendo que as coordenadas, em relação à base β , dos vetores posição desses pontos são, respectivamente, $[K]_{\beta} = \begin{bmatrix} -9 \\ -5 \end{bmatrix}$, $[L]_{\beta} = \begin{bmatrix} 25 \\ 14 \end{bmatrix}$ e $[M]_{\beta} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$.

- 54. Em P_4 , considere as bases $\alpha = \{1, x, x^2, x^3, x^4\}$ e $\beta = \{2, 2x, 4x^2, 8x^3, 16x^4\}$.
 - a) Determine a matriz mudança de base de α para β .

b) Sejam
$$[p]_{\alpha} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$
 e $[q]_{\beta} = \begin{bmatrix} -1 \\ 3 \\ -5 \\ 7 \\ 4 \end{bmatrix}$. Encontre $[p]_{\beta}$ e $[q]_{\alpha}$.

55. Sejam $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2); d = 0 \right\}$ um subespaço vetorial de M(2,2). Considere as bases α e β para W dadas por

$$\alpha = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -11 & 0 \end{bmatrix} \right\} \qquad \text{e} \qquad \beta = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$$

- a) Determine as matrizes mudança de base $[I]^{\alpha}_{\beta}$ e $[I]^{\beta}_{\alpha}$.
- b) Se $[A]_{\beta} = \begin{bmatrix} \pi \\ e \\ 0 \end{bmatrix}$, determine $[A]_{\alpha}$.
- c) Se $[B]_{\alpha} = \begin{bmatrix} 4 \\ -20 \\ 10 \end{bmatrix}$, determine $[B]_{\beta}$.

56. Sejam α e β bases de \mathbb{R}^3 . Determine a base β sabendo que $\alpha = \{(1, -1, 0), (0, 1, 0), (0, 0, -1)\}$ e que a matriz mudança de base de α para β é dada por

$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$

57. Seja $\alpha = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ -2 & 0 \end{bmatrix} \right\}$ uma base para um subespaço vetorial de M(2,2) e β outra base para esse mesmo subespaço tal que

$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 2 & -1 & 2 \end{bmatrix}.$$

a) Determine a base β .

b) Se
$$[A]_{\beta} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
, determine $[A]_{\alpha}$.

58. Sejam V um espaço vetorial qualquer, munido das operações usuais de adição e multiplicação por escalar, e $\alpha = \{v_1, v_2, v_3\}$ uma base de V. Considere os elementos $u_1 = v_1 + v_2$, $u_2 = 2v_1 + v_2 - v_3$ e $u_3 = -v_2$.

- a) Determine a matriz $[I]^{\alpha}_{\alpha}$.
- b) Mostre que $\beta = \{u_1, u_2, u_3\}$ também é uma base para V.
- c) Determine a matriz mudança de base de β para α .
- d) Encontre as coordenadas do elemento $w=u_1+u_2-u_3$ em relação à base α .

59. Em $V = \mathbb{R}^3$ considere as bases $\beta = \{(1, 2, 3), (0, -1, 2), (-1, 0, 5) \in \alpha = \{(1, 1, 1), (-1, 1, 0), (0, 1, 1)\}.$

- a) Determine a matriz $[I]_{\alpha}^{\beta}$.
- b) Se $[v]_{\beta} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$, determine $[v]_{\alpha}$.

c) Determine a matriz $[I]^{\alpha}_{\beta}$.

d) Se $[v]_{\alpha} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$, determine $[v]_{\beta}$.

60. Determine se as afirmações abaixo são verdadeiras ou falsas. Justifique sua resposta com argumentos consistentes:

- a) A interseção entre dois subespaços vetoriais nunca é vazia.
- b) A matriz $\begin{bmatrix} -1 & 2 \\ 0 & 3 \end{bmatrix}$ pertence ao subespaço $W = ger \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix} \right\}$.
- c) Se $\{u, v, w\}$ é LI, então $\{u v, v w, u w\}$ é LD.
- d) O subespaço $W = ger\{(1, 2, 0), (2, 4, 0)\}$ é um plano em \mathbb{R}^3 que passa pela origem.
- e) Em $V = P_2$, o elemento $p(x) = 7 9x + 52x^2$ pode ser escrito como uma combinação linear de $p_1(x) = 1 3x + 4x^2$ e $p_2(x) = 2 5x + 10x^2$.
- f) Em $V = \mathbb{R}^3$, o conjunto $\beta = \{(1, 2, 0), (3, 5, -1), (-1, 4, 6)\}$ é linearmente independente.

g) Se $\beta = \{v_1, v_2, v_3\}$ é uma base de um espaço vetorial V, então o conjunto

$$\alpha = \{v_1 + v_3, v_1 + v_2, v_1 + v_2 + v_3\}$$

também é uma base para V.

- h) O subespaço $W = \{p(x) \in P_3; \ p(-3) + p(2) = 0\}$ é gerado pelos elementos $p_1(x) = 1 + 2x$; $p_2(x) = 13x + x^2$ e $p_3(x) = x^3 19x$.
- i) O conjunto $\beta = \{v_1, v_2, v_3\}$ é sempre uma base para o subespaço gerado $W = ger\{v_1, v_2, v_3\}$.
- j) O conjunto $\beta = \{2, x^2, x + x^2\}$ é uma base para P_2 .
- k) Seja $\alpha = \{2, 1 + x, x + x^2, x^2 + x^3\}$ uma base de P_3 . A matriz de coordenadas do elemento

$$p(x) = 3 + x - x^2 - x^3$$
, em relação à base α , é dada por $[p]_{\alpha} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$.

l) Se α e β são bases de um espaço vetorial V qualquer então $\det\left([I]_{\beta}^{\alpha}, [I]_{\alpha}^{\beta}\right) = 1$.