

MARCONI COMMUNICATIONS GMBH, 71522 BACKNANG

G. 81680

5

Optische Schaltstation und Vermittlungsverfahren dafür

- Die vorliegende Erfindung betrifft das Gebiet der optischen Nachrichtenübertragung und zwar insbesondere eine optische Schaltstation und ein Verfahren zum Vermitteln eines Nachrichtensignals in einer optischen Schaltstation.
- Optische Schaltstationen dienen als Knoten von optischen Netzwerken. Sie sind paarweise untereinander durch optische Fasern verbunden, auf denen Nachrichtensignale in Form modulierter Lichtsignale von einer Schaltstation zur anderen übertragen werden. Eine optische Faser kann eine große Zahl von Nachrichtensignalen gleichzeitig jeweils in Form von modulierten Trägerwellen mit unterschiedlicher Wellenlänge übertragen.
- Bei einem optischen Netzwerk, das mit Wellenlängenmultiplex 25 ist es wünschenswert, in einer Schaltstation Nachrichtensignale, die auf unterschiedlichen Trägerwellenlängen eines gleichen Multiplex moduliert sind, unabhängig voneinander vermitteln zu können. Es kann daher zu Situati-30 onen kommen, wo zwei Nachrichtensignale, die an einer optischen Schaltstation über verschiedene Eingangskanäle eintreffen und die gleiche Trägerwellenlänge haben, an einen gleichen Ausgangskanal vermittelt werden sollen. Es ist jedoch nicht möglich, beide Nachrichtensignale mit der gleichen Trägerwellenlänge auf dem gleichen Ausgangskanal zu 35 übertragen. Daher benötigen die optischen Schaltstationen in einem solchen optischen Netzwerk Wellenlängenwandler, die es erlauben, die Wellenlänge eines dieser beiden Nachrichtensignale auf eine auf dem Ausgangskanal noch unbe-40 legte Wellenlänge zu verschieben. Zwei Beispiele für eine solche Schaltstation sind in R. Sabella et al. "Impact of

Transmission Performance on Path Routing in All-Optical Transport Networks", EEE Journal of Lightwave Technology, Vol. 16, p. 1965 et seq., 1998, beschrieben. Die Schaltstation aus Fig. 1(a) dieses Dokuments weist eine Mehrzahl von Schaltmatrizen auf, von denen jede einen mit einem Block von Wellenlängenwandlern ver-5. bundenen Ausgang und Eingang hat. Als Demultiplexer zum Verteilen der einzelnen Nachrichtensignale auf die Schaltmatrizen dienen abstimmbare Filter, was vermuten lässt, dass eine gegebene Wellenlängenkomponente eines eintreffenden Wellenlängenmultiplex an verschiedene Schaltmatrizen weitergeleitet werden kann. Bei der Schaltstation aus Fig. 1(b) dieses Dokuments werden die gedemultiplexten Nachrichtensignale sämtlich über eine einzige Schaltmatrix vermittelt, die offensichtlich in der Lage sein muss, unterschiedliche Wellenlängen zu verarbeiten. gibt mehrere Wellenlängenwandler, die jeweils einen Ausgang mit einem Eingang der Schaltmatrix verbinden. Die Zahl der Schalter in einer solchen Schaltmatrix ist sehr hoch, da jeder Eingang mit jedem Ausgang verbindbar sein muss.

20

25

30

35

40

10

15

Aufgabe der Erfindung ist, eine optische Schaltstation und ein Verfahren zum Vermitteln eines Nachrichtensignals in einer optischen Schaltstation anzugeben, die eine Wellenlängenkonversion mit geringem technischen Aufwand ermöglichen.

Die Aufgabe wird zum einen gelöst durch eine optische Schaltstation mit einer ersten Mehrzahl von Eingangskanälen für Durchgangsdatenverkehr, einer zweiten Mehrzahl von Ausgangskanälen für Durchgangsdatenverkehr, einer Mehrzahl von ersten optischen Schaltmatrizen, die eine erste Gruppe von Eingangsanschlüssen, die mit den Eingangskanälen Schaltstation verbunden sind, und eine erste Gruppe von Ausgangsanschlüssen, die mit den Ausgangskanälen der Schaltstation verbunden sind, aufweist, zum Verbinden von Eingangs- und Ausgangskanälen untereinander, Gruppe von einer oder mehreren als Wellenlängenwandler ausgebildeten Signalformereinheiten, sowie mit Mitteln zum Verbinden einer zweiten Gruppe von Ausgangsanschlüssen der ersten optischen Schaltmatrizen mit jeweils einem Eingang einer Signalformereinheit der Gruppe und Mitteln zum Ver-

binden einer zweiten Gruppe von Eingangsanschlüssen der ersten optischen Schaltmatrizen mit jeweils einem Ausgang dieser Signalformereinheiten, wobei die ersten Schaltmatrizen jeweils zum Schalten von Nachrichtensignalen einer gleichen, der betreffenden ersten Schaltmatrix zugeordneten 5 Wellenlänge vorgesehen sind und die Mittel zum Verbinden queignet sind, den Eingang und den Ausgang eines Wellenlängenwandlers mit jeweils verschiedenen ersten Schaltmatrizen zu verbinden Diese optische Schaltstation erlaubt es, ein Nachrichtensignal, das nicht unmittelbar auf einen Ausgangskanal ausgegeben werden kann, weil auf dem gewünschten Ausgangskanal die Wellenlänge des betreffenden Nachrichtensignals besetzt ist, auf einen Ausgangsanschluss der zweiten Gruppe durchzuschalten, so dass das Nachrichtensignal der benötigten Wellenlängenwandlung unterzogen 15 werden kann, und anschließend das geformte Signal einem Eingangsanschluss der zweiten Gruppe einer ersten optischen Schaltmatrix zuzuführen, von wo aus die betreffende erste Schaltmatrix dieses Signal zum ursprünglich gewünschten Ausgangsanschluss weiterleiten kann. 20

10

25

30

Als Mittel zum Verbinden der Signalformereinheiten mit der wenigstens einen ersten optischen Schaltmatrix können fest verdrahtete Leitungen zwischen einem Ausgang oder Eingang einer Signalformereinheit und einem Eingangs- bzw. Ausgangsanschluss der ersten Schaltmatrix vorgesehen werden. Diese einfache Lösung ist vollauf ausreichend, wenn die Signalformereinheiten Regeneratoren sind, da diese als untereinander identisch aufgefaßt werden können und es ohne Belang ist, über welchen unter eventuell mehreren verfügbaren Regeneratoren ein zu regenerierendes Nachrichtensignal geleitet wird.

Die Mittel zum Verbinden können jedoch auch als Schaltele-35 mente zum wahlweisen Verbinden eines Ausgangs oder Eingangs einer Signalformereinheit mit einem von mehreren Eingangsbzw. Ausgangsanschlüssen der ersten Schaltmatrix ausgebildet sein. Dies ist insbesondere dann zweckmäßig, wenn die Schaltstation eine Mehrzahl von ersten Schaltmatrizen um-40 fasst, um die Signalformereinheiten je nach Bedarf einer

Wellenlängenwandler besteht.

schenswert, wenn die Signalformereinheiten Wellenlängenwandler sind, von denen nicht notwendigerweise jeder in der
Lage ist, sämtliche auf den Ein- und Ausgangskanälen übertragenen Wellenlängen zu erzeugen, und die daher zweckmäßigerweise immer mit denjenigen ersten Schaltmatrizen verbindbar sein sollten, bei denen Bedarf nach einem solchen

10

15

20

5

Die Mittel zum Verbinden umfassen vorzugsweise wenigstens eine zweite Schaltmatrix, die die Ausgangsanschlüsse der zweiten Gruppe der ersten Schaltmatrizen wahlweise mit einem der Wellenlängenwandler verbindet. Dies erlaubt es, einfache Wellenlängenwandler zu verwenden, die zwar in einem breiten Wellenlängenintervall empfindlich sind, welches alle Wellenlängen des Multiplex umfasst, die aber nur auf einer einzigen Wellenlänge dieses Multiplex senden können. Hier ist die zweite Schaltmatrix hilfreich, um jedes Nachrichtensignal, dessen Trägerwellenlänge gewandelt werden muss, mit dem genau benötigten Wellenlängenwandler zu verbinden, egal, an welchem Ausgangsanschluss welcher ersten Schaltmatrix das zu wandelnde Signal ausgegeben wird.

Vorzugsweise umfassen die Mittel zum Verbinden ferner we-25 nigstens eine dritte Schaltmatrix, die die Wellenlängenwandler wahlweise mit einem der Eingangsanschlüsse zweiten Gruppe der ersten Schaltmatrizen verbindet. dritte Schaltmatrix ermöglicht eine dynamische Zuordnung der Wellenlängenwandler zu verschiedenen Eingangsanschlüs-30 sen der zweiten Gruppe, so dass nicht jedem dieser Eingangsanschlüsse ein Wellenlängenwandler fest zugeordnet sein muss. Da die Wellenlängenwandler somit je nach Bedarf verschiedenen Eingangsanschlüssen zugeordnet werden können, ist es nicht notwendig, jedem dieser Eingangsanschlüsse ei-35 nen eigenen Wellenlängenwandler zuzuordnen, und die Zahl der benötigten Wellenlängenwandler wird verringert.

Vorzugsweise ist jeder Eingangskanal mit den ersten Schalt-40 matrizen über einen Wellenlängen-Demultiplexer und/oder die ersten Schaltmatrizen mit dem Ausgangskanal über einen Wellenlängen-Multiplexer verbunden. Dies erlaubt die Nutzung der Eingangs- bzw. Ausgangskanäle im Wellenlängenmultiplex, wohingegen innerhalb der Schaltstation die Nachrichtensignale nach Wellenlängen getrennt gehandhabt werden.

5

Die Ein- und Ausgänge der zweiten Gruppe können nicht nur zum Versorgen der Signalformereinheiten genutzt werden, sondern auch zum lokalen Abzweigen oder Hinzufügen von Nachrichtensignalen aus dem bzw. in den Multiplex.

10

15

Vorzugsweise werden als Wellenlängenwandler solche mit einem wellenlängenabstimmbaren Senderteil eingesetzt. Diese sind zwar technisch aufwendiger als Wellenlängenwandler mit festfrequentem Senderteil, doch wird von ihnen auch nur eine geringere Anzahl benötigt, um ein gegebenes Maß an Verfügbarkeit zu erreichen.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispie-20 len unter Bezugnahme auf die beigefügten Figuren. Es zeigen:

- Fig. 1 ein Blockschaltbild einer nicht erfindungsgemäßen optischen Schaltstation mit einer einzigen Schalt25 matrix für den Betrieb bei einer einzigen Wellenlänge und mit Signalregeneratoren;
 - Fig. 2 eine weiterentwickelte Schaltstation mit Regeneratoren für Wellenlängenmultiplexbetrieb;

30

- Fig. 3 eine erfindungsgemäße optische Schaltstation mit festfrequenten Wellenlängenwandlern; und
- Fig. 4 eine erfindungsgemäße optische Schaltstation mit abstimmbaren Wellenlängenwandlern.

Die in Fig. 1 gezeigte Schaltstation umfasst eine einzige Schaltmatrix S1 mit Eingangsanschlüssen i1, i2, ..., iM, i'1, ..., i'P und Ausgangsanschlüssen o1, o2, ..., oM, o'1, ..., o'P. Eine erste Gruppe i1, ..., iM der Eingangsan-

10

15

20

25

30

35

40

JESOFAL

schlüsse ist mit Eingangskanälen I1, ..., IM, hier in Form von jeweils ein festfrequentes Nachrichtensignal führenden optischen Fasern, verbunden. Entsprechend ist eine erste Gruppe ol, ..., oM der Ausgangsanschlüsse mit monochromatischen Ausgangskanälen O1, ..., OM verbunden. Ausgangsanschlüsse o'1, ..., o'P sind jeweils über Regeneratoren R mit Eingangsanschlüssen i'l, ..., i'P über optische Fasern f fest verdrahtet verbunden. Eine Steuerschaltung C empfängt in an sich bekannter und hier nicht dargestellter Weise Leitweginformation, die für jeden der Eingangsanschlüsse i1 bis iM festlegt, mit welchem der Ausgangsanschlüsse o1, oM der ersten Gruppe dieser verbunden werden soll. Die Steuerschaltung C ist ferner mit vor jedem Eingangsanschluss i1, i2, ..., iM der ersten Gruppe angeordneten Detektoren D1, D2, ..., DM zum Erfassen der Qualität eines an dem Eingangsanschluss eintreffenden Nachrichtensignals verbunden. Wenn das Erfassungsergebnis eines dieser Detektoren angibt, dass die Qualität zum Beispiel des Nachrichtensignals am Eingangsanschluss i2 schlecht ist und einer Regenerierung bedarf, so steuert die Steuerschaltung C die Schaltmatrix S1 abweichend von der ihr zugeführten, das Signal am Eingangsanschluss i2 betreffenden Leitweginformation so an, dass dieses Nachrichtensignal an einen Ausgangsanschluss der zweiten Gruppe, zum Beispiel den Ausgangsanschluss o'1, ausgegeben wird. So durchläuft Nachrichtensignal einen der Regeneratoren R und tritt am Eingangsanschluss i'l wieder in die Schaltmatrix S1 ein. Dieser Eingangsanschluss i'l wird nun mit den der Leitweginformation zufolge als Ausgangsanschluss für das Nachrichtensignal vorgesehenen Ausgangsanschluss verbunden. Das zu regenerierende Nachrichtensignal durchläuft Schaltmatrix S1 zweimal, vor bzw. nach dem Regenerieren.

Nachrichtensignale, bei denen festgestellt wird, dass keine Regenerierung erforderlich ist, durchlaufen die Schaltmatrix S1 nur einmal. Die Leistungsverluste, die diese Nachrichtensignale in der Schaltstation erfahren, sind (unter Vernachlässigung eventueller Verluste durch die Detektoren D1, ..., Dn) die gleichen wie bei einer Schaltstation ohne Regenerierungsfunktion. Die Schaltstation ermöglicht also

15

eine selektive Regenerierung ohne Einfügungsverluste nicht regenerierten Nachrichtensignalen.

Bei der Schaltstation der Fig. 1 verarbeitet die Schaltmatrix Sl nur Nachrichtensignale einer gleichen Wellenlänge, 5 die jeweils von verschiedenen Eingangskanälen herrühren. Selbstverständlich ist es alternativ auch möglich, mehrere Nachrichtensignale im Wellenlängenmultiplex auf einem Eingangskanal zu befördern, sie über einen Demultiplexer verschiedenen Eingangsanschlüssen der Schaltmatrix zuzuführen und in der Schaltmatrix vermittelte Nachrichtensignale unterschiedlicher Wellenlänge über Multiplexer einem gemeinsamen Ausgangskanal zuzuführen. Da bei einem solchen Aufbau die Größe der Schaltmatrix mit dem Quadrat der Zahl der zu vermittelnden Signale anwächst, ist für die Vermittlung von wellenlängengemultiplexten Nachrichtensignalen ein Aufbau wie in Fig. 2 gezeigt bevorzugt.

Fig. 2 zeigt eine Schaltstation mit Regenerierungsfunktion für ein optisches Netzwerk mit Wellenlängenmultiplexüber-20 tragung. Die Eingangskanäle I1, ..., IM sind hier jeweils von einer (nicht gezeigten) entfernten Schaltstation kommende optische Fasern, auf denen ein Multiplex von auf unterschiedliche Trägerwellenlängen $\lambda 1$, ..., λN aufmodulierten Nachrichtensignalen übertragen wird. Die Eingangskanäle 25 münden jeweils auf Wellenlängen-Demultiplexer D1, ..., DM, die den Multiplex spektral zerlegen und die darin enthaltenen Nachrichtensignale an N Schaltmatrizen S1, ..., SN verteilen, die jeweils einer der Wellenlängen $\lambda 1$, ..., λN zugeordnet sind. Diese Schaltmatrizen S1, ..., SN entsprechen 30 jeweils der monochromatischen Schaltmatrix S1 aus Fig. 1: sie haben eine erste Gruppe von Eingangsanschlüssen il, ..., iM, die jeweils über einen der Demultiplexer D1, ..., DM mit einem der Eingangskanäle I1, IM verbunden sind, Eingangsanschlüsse i'1, ..., i'P, die jeweils mit dem Ausgang 35 eines Regenerators R verbunden sind, Ausgangsanschlüsse ol, ..., oM einer ersten Gruppe und Ausgangsanschlüsse o'l bis o'P, die jeweils mit den Eingängen der Regeneratoren R verbunden sind. An jeden Ausgangsanschluss der ersten Gruppe ol, ..., oM ist ein Wellenlängenmultiplexer M1, ..., MM mit 40 je N Eingängen, einem für jede Schaltmatrix S1, ..., SN,

angeschlossen, der die von den verschiedenen Schaltmatrizen empfangenen Nachrichtensignale unterschiedlicher Wellenlänge zu einem Multiplexsignal überlagert und auf einen Ausgangskanal O1, ..., OM ausgibt. Detektoren zum Erfassen der Signalqualität sind auch hier auf den die Demultiplexer mit den Schaltmatrizen verbundenen Leitungsstücken vorgesehen, doch sind sie, genauso wie die Steuerschaltung, der Übersichtlichkeit halber nicht dargestellt. Die Arbeitsweise der einzelnen Schaltmatrizen ist die gleiche wie im Falle der Fig. 1: nicht zu regenerierende Nachrichtensignale mit einer Trägerwellenlänge λn , n=1, ..., N durchlaufen die ihnen zugeordnete Schaltmatrix Sn einmal, ein zu regenerierendes Signal wird in der Schaltmatrix zu einem Regenerator R abgezweigt, und anschließend wird das regenerierte Signal in der gleichen Schaltmatrix an den vorgesehenen Ausgangskanal vermittelt.

Bei der Schaltstation der Fig. 2 können Kollisionen auftreten, wenn eine Schaltmatrix von zwei Demultiplexern Nachrichtensignale empfängt, die für den gleichen Ausgangskanal bestimmt sind. Es steht nämlich nur ein Ausgangsanschluss an der Schaltmatrix zur Verfügung, der zu dem gewünschten Ausgangskanal führt. In einer solchen Situation kann nur eines der zwei Signale vermittelt werden.

25

30

35

40

5

10

15

20

zeigt ein Blockdiagramm einer erfindungsgemäßen Fig. 3 Schaltstation, die dieses Problem löst. Eingangs- und Ausgangskanäle, Multiplexer, Demultiplexer und Schaltmatrizen S1, ..., SN sind die gleichen wie bei der Ausgestaltung der Fig. 2 und werden nicht erneut erläutert. Die Ausgangsanschlüsse o'1, ..., o'P der zweiten Gruppe der Schaltmatrizen S1, ..., SN sind auf Eingangsanschlüsse einer weiteren optischen Schaltmatrix S' geführt, deren Ausgangsanschlüsse wiederum mit Eingängen von Wellenlängenwandlern T1, ..., TQ verbunden sind. Die Wellenlängenwandler umfassen hier jeweils eine für alle Wellenlängen $\lambda 1$, ..., λN des Multiplex empfindliche Fotodiode, die das von der Schaltmatrix S' kommende optische Nachrichtensignal in ein elektrisches Signal wandelt, daran angeschlossene elektrische Schaltungen zur Impulsformung und -verstärkung sowie eine mit dem Ausgangssignal dieser elektrischen Schaltungen an-

- Die Schaltmatrix S' ist in der Lage, alle ihre Eingangsund Ausgangsanschlüsse wahlfrei paarweise miteinander zu
 verbinden. Ein zu formendes Nachrichtensignal kann somit
 über die Matrix S' einem Wellenlängenwandler mit jeder beliebigen Ausgangswellenlänge des Multiplex, einschließlich
 der gegenwärtigen Wellenlänge des Nachrichtensignals zugeführt werden. Dieser letztere Fall entspricht einer einfachen Regenerierung des Nachrichtensignals, ohne gleichzeitige Wellenlängenwandlung.
- Die Schaltmatrizen S1, ..., SN sind hier mit jeweils zwei Eingangs- bzw. Ausgangsanschlüssen der zweiten Gruppe dargestellt, doch liegt auf der Hand, dass die Zahl dieser Anschlüsse zwischen 1 und M beliebig gewählt werden kann.
- 25 Fig. zeigt eine weiterentwickelte Ausgestaltung Schaltstation. Die Schaltstation aus Fig. 4 unterscheidet sich von der der Fig. 3 dadurch, dass bei ersterer die Wellenlängenwandler T1, ..., TQ anstelle einer Laserdiode mit fester Wellenlänge eine Laserdiode enthalten, die auf die verschiedenen Wellenlängen λ1, ..., λN des Multiplex oder 30 zumindest auf eine Mehrzahl dieser Wellenlängen abstimmbar ist. Um ein in einem solchen Wellenlängenwandler gewandeltes Nachrichtensignal an die der Wellenlänge des gewandelten Signals zugeordnete Matrix unter den Schaltmatrizen S1, 35 ..., SN weiterleiten zu können, ist eine dritte Schaltmatrix S" zwischen den Ausgängen der Wellenlängenwandler T1, ..., TQ und den Eingangsanschlüssen der zweiten Gruppe der Schaltmatrizen S1, ..., SN erforderlich. Die Zahl der abstimmbaren Wellenlängenwandler, die benötigt wird, um ein 40 vorgegebenes Maß an Sicherheit vor Wellenlängenkollisionen in der Schaltstation zu erreichen, ist kleiner als bei der

Ausgestaltung der Fig. 3 mit festfrequenten Wellenlängenwandlern. Dabei ist die Einsparung um so größer, je größer die Zahl N der Wellenlängen des Multiplex ist. Daher kann eine Schaltstation nach Fig. 4 trotz der zusätzlichen Schaltmatrix und der aufwendigeren Wellenlängenwandler kompakter und preiswerter realisierbar sein als eine Schaltstation nach Fig. 3.

Außerdem sind die zweite und dritte Schaltmatrix S', S"

10 auch brauchbar, um Nachrichtensignale am Ort der Schaltstation selbst zu Empfängern RX abzuzweigen oder von Sendern
TX einzuspeisen.

G. 81680

Patentansprüche

5

10

- 1. Optische Schaltstation mit:
 - einer ersten Mehrzahl von Eingangskanälen ..., IM) für Durchgangsdatenverkehr,
 - einer zweiten Mehrzahl von Ausgangskanälen (01, ..., OM) für Durchgangsdatenverkehr
 - einer Mehrzahl von ersten optischen Schaltmatrizen (S1, ..., SN), die eine erste Gruppe von Eingangsanschlüssen(i1, i2, ..., iM), die mit Eingangskanälen (I1, ..., IM) der Schaltstation verbunden sind, und eine erste Gruppe von Ausgangsanschlüssen (o1, o2, ..., oM), die mit Ausgangskanälen (O1, ..., OM) der Schaltstation verbunden sind, aufweisen, zum Verbinden von Eingangs- und Ausgangskanälen untereinander,
- 20 einer Gruppe von einer oder mehreren als Wellenlängenwandler ausgebildeten Signalformereinheiten (T1, ..., TQ),
- Mitteln (f, S') zum Verbinden einer zweiten Gruppe von Ausgangsanschlüssen (o1, o2, ..., oM) der ersten otpischen Schaltmatrizen (S1, ..., SN) mit 25 jeweils einem Eingang einer Signalformereinheit der Gruppe und Mitteln (f, S") zum Verbinden einer zweiten Gruppe (i'1, ..., i'P) von Eingangsanschlüssen der ersten optischen Schaltmatrizen SN) mit jeweils einem Ausgang einer 30 (S1, ..., Signalformereinheiten, dieser dadurch gekenndass die ersten Schaltmatrizen zeichnet, ..., SN) jeweils zum Schalten von Nachrichtensignalen einer gleichen, der betreffenden ersten 35 Schaltmatrix zugeordneten Wellenlänge vorgesehen sind, und dass die Mittel zum Verbinden (S', S', S") geeignet sind, den Eingang und den Ausgang eines Wellenlängenwandlers (T1, ..., TQ) mit jeweils verschiedenen ersten Schaltmatrizen (S1, ..., SN) zu verbinden. 40

35

- Optische Schaltstation nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel zum Verbinden fest verdrahtete Leitungen (f) zwischen einem Ausgang oder Eingang einer Signalformereinheit und einem Eingangsbzw. Ausgangsanschluss (i'1, ..., i'P; o'1, ..., o'P) der ersten Schaltmatrizen (S1, ..., SN) umfassen.
- Schaltstation nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mittel zum Verbinden Schaltelemente (S', S") zum wahlweisen Verbinden eines Ausgangs oder Eingangs einer Signalformereinheit mit einem von mehreren Eingangs- bzw. Ausgangsanschlüssen der ersten Schaltmatrizen umfassen.
- 15 4. Optische Schaltstation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede Signalformereinheit (R, T1, ..., TQ) zum Formen eines einzelnen Nachrichtensignals ausgelegt ist.
- Optische Schaltstation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zum Verbinden wenigstens eine zweite Schaltmatrix (S') umfassen, die die Ausgangsanschlüsse (o'1, ..., o'P) der zweiten Gruppe der ersten Schaltmatrizen (S1, ..., SN) wahlweise mit einem der Wellenlängenwandler (T1, ..., TQ) verbindet.
- 6. Optische Schaltstation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zum Verbinden wenigstens eine dritte Schaltmatrix (S") umfassen, die die Wellenlängenwandler (T1, ..., TQ) wahlweise mit einem der Eingangsanschlüsse (i'1, ..., i'P) der zweiten Gruppe der ersten Schaltmatrizen (S1, ..., SN) verbindet.
 - 7. Optische Schaltstation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Eingangskanal (II, ..., IM) mit den ersten Schaltmatrizen (S1, ..., SN) über einen Wellenlängen-Demultiplexer (D1, ..., DM) und/oder die ersten Schaltmatrizen (S1, SN) mit jedem Ausgangskanal (O1 OM) über

- 8. Optische Schaltstation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie Einund/oder Ausgänge (IE, OE) für Abzweig-Datenverkehr und Mittel (f, SE) zum Verbinden dieser Ein- bzw. Ausgänge mit Eingangs- bzw. Ausgangsanschlüssen (i'1, ..., i'P; o'1, ..., o'P) der zweiten Gruppe der ersten Schaltmatrizen (S1, ..., SN) aufweist.
 - 9. Optische Schaltstation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellenlängenwandler (T1, ..., TQ) jeweils einen wellenlängenabstimmbaren Senderteil aufweisen.

20

- 10. Optische Schaltstation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Eingangsanschlüsse (il, ..., iM) der ersten Gruppe mit den Eingangskanälen (Il, ..., IM) und/oder die Ausgangsanschlüsse (ol, ..., oM) der ersten Gruppe mit den Ausgangskanälen (Ol, ..., OM) jeweils ohne Zwischenschaltung einer Schaltmatrix verbunden sind.
- 25 11. Verfahren zum Vermitteln eines Nachrichtensignals in einer optischen Schaltstation, insbesondere in einer optischen Schaltstation nach einem der vorhergehenden Ansprüche, mit einer Mehrzahl von parallel zueinander zwischen eine Mehrzahl von Eingangskanälen und eine Mehrzahl von Ausgangskanälen verbundenen Schaltmatrizen (S1, ..., SN), von denen jede zum Schalten von Nachrichtensignalen einer gleichen, ihr zugeordneten Wellenlänge vorgesehen ist, mit den Schritten:
 - a) Empfangen des Nachrichtensignals über einen Eingangskanal (I1, ..., IM) der Schaltstation,
 - b) Zuordnen eines Ausgangskanals (01, ..., OM) zu dem Nachrichtensignal,
 - c) Entscheiden, ob eine Wellenlängenwandlung an dem Nachrichtensignal durchgeführt werden muss,

- d) Eingeben des Nachrichtensignals in die seiner Wellenlänge zugeordnete Schaltmatrix (S1, ..., SN),
- e) wenn in Schritt c) eine Wellenlängenwandlung für notwendig befunden wurde:
 - e1) Ausgeben des Signals an einem Ausgangsanschluss (o'1, ..., o'P) der Schaltmatrix (S1, ..., SN), der mit einem Wellenlängenwandler (T1, ..., TQ) verbunden ist,
 - e2) Durchführen der Wellenlängenwandlung,
 - e3) Eingeben des Nachrichtensignals in eine andere, der gewandelten Wellenlänge des Nachrichtensignals zugeordnete Schaltmatrix aus der Mehrzahl der parallelen Schaltmatrizen (S1, ..., SN),
- f) Ausgeben des Nachrichtensignals aus der Schaltmatrix (S1, ..., SN) auf den zugeordneten Ausgangskanal (O1, ..., OM).