

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2022 Variance reduction

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Recap

- Exact methods
 - Inversion/transformation methods
 - Rejection sampling
- Approximate methods
 - Sampling importance resampling
 - Sequential Monte Carlo
 - Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
 - Importance sampling
 - Antithetic sampling
 Today
 - Control variates
 - Rao-blackwellization
 - Common random numbers Exercise

Monte Carlo methods

• Aim (following notation from book):

$$\mu = E^{f(\mathbf{X})}[h(\mathbf{X})] = \begin{cases} \int_{\mathbf{X}} h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} & \mathbf{x} \text{ continuous} \\ \sum_{\mathbf{X}} h(\mathbf{x}) f(\mathbf{x}) & \mathbf{x} \text{ discrete} \end{cases}$$

- Monte Carlo:
 - \bigcirc Simulate $\mathbf{X}_i \sim f(\mathbf{x}), i = 1, ..., n$
 - Approximate μ by

$$\hat{\mu}_{MC} = \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}_i)$$

- Properties:

 - Unbiased E[μ̂_{MC}] = μ
 If X₁, ..., X_n are independent

 - Variance: $var[\hat{\mu}_{MC}] = \frac{1}{n} var[h(\mathbf{X})]$ Consistent: $\hat{\mu}_{MC} \to \mu$ as $n \to \infty$ if $var[h(\mathbf{X})] < \infty$
 - Estimate of variance:

$$\widehat{\text{var}}[\hat{\mu}_{MC}] = \frac{1}{n-1} \sum_{i=1}^{n} (h(\mathbf{x}_i) - \hat{\mu}_{MC})^2$$

Can we do better than this?

Last time

- Sequential Monte Carlo
- Importance sampling (normalized or not)
- Control variates
 - We know something about the distribution
 - $\cos[\hat{\mu}_{MC}]$

 $\hat{\mu}_{ extit{CV}} = \hat{\mu}_{ extit{MC}} + \lambda (\hat{ heta}_{ extit{MC}} -$

 Formalizes the correlation argument from importance sampling

$$\operatorname{var}[\hat{\mu}_{CV}] = \operatorname{var}[\hat{\mu}_{MC}] + \lambda^{2} \operatorname{var}[\hat{\theta}_{MC}] + 2\lambda \operatorname{cov}[\hat{\mu}_{MC}, \hat{\theta}_{MC}]$$

- Rao-Blacwellization
 - We know something about a conditional distribution
 - We can make a part of the computation analytically
 - Particular useful with hyper parameters

$$\operatorname{var}[h(\mathbf{X}_i)] = E[\operatorname{var}[h(\mathbf{X}_i)|\mathbf{X}_2]] + \operatorname{var}[E[h(\mathbf{X})|\mathbf{X}_2]] \ge \operatorname{var}[E[h(\mathbf{X})|\mathbf{X}_2]]$$

Antithetic sampling

Things that are **antithetic** to one another contradict or oppose each other.

- Assume available $\hat{\mu}_1$ and $\hat{\mu}_2$, identically distributed with $var[\hat{\mu}_j] = \sigma^2/n$
- Assume $cov[\hat{\mu}_1, \hat{\mu}_2] < 0$.
- Define $\hat{\mu}_{AS} = \frac{1}{2}(\hat{\mu}_1 + \hat{\mu}_2)$

$$\operatorname{var}[\hat{\mu}_{AS}] = \frac{1}{4} (\operatorname{var}[\hat{\mu}_1] + \operatorname{var}[\hat{\mu}_2]) + \frac{1}{2} \operatorname{cov}[\hat{\mu}_1, \hat{\mu}_2] \\
= \frac{(1+\rho)\sigma^2}{2n}$$

where $\rho = \text{cor}[\hat{\mu}_1, \hat{\mu}_2]$.

• Gain by including $\hat{\mu}_2$ a factor of $\frac{1+\rho}{2}$!

Possible to construct such $\hat{\mu}_1$, $\hat{\mu}_2$?

Antithetic sampling

- Main idea: Most simulation procedures for generating $\mathbf{X} \sim f(\mathbf{x})$ is based on some transformation $X = h(\mathbf{U})$ where $\mathbf{U} = (U_1, ..., U_m)$ are iid uniform variables
- If U_j is uniform[0,1], then also $1 U_j$ is uniform[0,1]
- $h(\mathbf{U})$ and $h(\mathbf{1} \mathbf{U})$ will typically have negative correlation.
- Choose $X_i = h(U_i), Y_i = h(1 U_i)$

$$\hat{\mu}_1 = n^{-1} \sum_{i=1}^{n} h(\mathbf{U}_i)$$

$$\hat{\mu}_2 = n^{-1} \sum_{i=1}^{n} h(\mathbf{1} - \mathbf{U}_i)$$

- Can be generalized to other settings as well.
- The following slides:
 - Proof of $cor[h(\mathbf{U}_i), h(\mathbf{1} \mathbf{U}_i)] \le 0$ for h monotone function in each U_j .

Antithetic sampling-theoretical derivations

- Assume $\mathbf{X} = (\mathbf{X}_1, ..., \mathbf{X}_n)$ iid sample
- Assume $\hat{\mu}_j = n^{-1} \sum_{i=1}^n h_j(\mathbf{x}_i)$ with $E[h_j(\mathbf{x}_i)] = \mu$.
- Assume $h_i(\mathbf{X}_i)$ is increasing in each argument
- Result: $\operatorname{cor}[h_1(\mathbf{X}_i), h_2(\mathbf{X}_i)] \geq 0$.

If $h_1(x)$, $h_2(x)$ is non decreasing in each argument $x = (x_1, ..., x_m)$ $h_j(x) > h_j(x - h)$, for all h such that $h_i > 0$, i = 1, ..., m then $cor(h_1(X_i), h_2(X_i)) \ge 0$

Proof by induction on dimension:

- 1) Prove that it is true in dimension 1
- 2) Prove that if it is true for dimension m-1 then it is true for dimension m

Note slightly confusing the way we use the index on X_i

Could have had $E\left(h_j(X)\right) = \mu_j$ but this is not the case in question In antithetic sampling

Antithetic sampling-theoretical derivations

First: dimension 1

$$[h_{1}(X) - h_{1}(Y)][h_{2}(X) - h_{2}(Y)] \geq 0 \quad \text{Same sign} \\ \downarrow \\ E[[h_{1}(X) - h_{1}(Y)][h_{2}(X) - h_{2}(Y)]] \geq 0 \quad \text{For any X and Y} \\ \downarrow \\ E[h_{1}(X) - \mu - (h_{1}(Y) - \mu)][h_{2}(X) - \mu - (h_{2}(Y) - \mu)] \geq 0 \\ \downarrow \quad \text{Assuming } X, Y \text{ ind} \\ \hline elect joint \quad \text{cov}[h_{1}(X), h_{2}(X)] + \text{cov}[h_{1}(Y), h_{2}(Y)] \geq 0$$

Select joint distribution of X and Y to suit us

$$\operatorname{cov}[h_1(X), h_2(X)] \geq 0$$

Assuming X, Y iid

X and Y is selected to have the same distribution as X_i and X and Y are selected to be independent

Antithetic sampling-theoretical derivations

- Practical application in dimension 1
 - If h_1 increasing, h_2 decreasing:

$$cor[h_1(X), h_2(X)] = -cor[h_1(X), -h_2(X)] \le 0$$

• If X uniform: Then choose $h_1(X) = h(X)$, $h_2(X) = h(1 - X)$

$$Var[\frac{1}{2}(h_1(X) + h_2(X))] = \frac{1}{4}Var[h_1(X)] + \frac{1}{4}Var[h_2(X)] + \frac{1}{2}Cov[h_1(X), h_2(X)]$$

$$\leq \frac{1}{2}Var[h_1(X)]$$

• If X Gaussian: Then choose $h_1(X) = h(X)$, $h_2(X) = h(-X)$

Works the same way, since:
$$\Phi(\cdot)$$
 is monotone and $\Phi(x) = u \Leftrightarrow \Phi(-x) = 1 - u$

Warm up computations

 $h_i(\mathbf{X}_i)$ is increasing in each argument

$$E[h_j(\mathbf{X})|X_m] = \tilde{h}_j(X_m)$$

 $E[h_i(\mathbf{X})|X_m] = \tilde{h}_i(X_m)$ is an increasing function in X_m .

For any $(x_1, x_2, ..., x_{m-1})$, we have that

$$h_j(x_1, ..., x_{m-1}, x_m) \ge h_j(x_1, ..., x_{m-1}, x_m - h), \text{ for } h > 0$$

$$E\{h_j(X_1, ..., X_{m-1}, x_m)\} \ge E\{h_j(X_1, ..., X_{m-1}, x_m - h)\} \text{ for } h > 0$$

The relation is valid for any distribution, we select: $f(x|x_m)$ which gives the result

•
$$(E[\tilde{h}_j(X_m)] = E[E[h_j(\mathbf{X})|X_m]] = E[h_j(\mathbf{X})] = \mu)$$

law of: Total Expectation

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

• Assume $cor[h_1(\mathbf{X}), h_2(\mathbf{X})] \ge 0$ for $\mathbf{X} (m-1)$ dimensional. Then

$$cov[h_1(\mathbf{X}), h_2(\mathbf{X})|X_m] \ge 0$$

Use result for m-1 for $f(x|x_m)$

Taking expectations gives

$$0 \leq E[\operatorname{cov}[h_{1}(\mathbf{X}), h_{2}(\mathbf{X})|X_{m}]]$$

$$= E[E[h_{1}(\mathbf{X})h_{2}(\mathbf{X})|X_{m}]] - E[E[h_{1}(\mathbf{X})|X_{m}] \cdot E[h_{2}(\mathbf{X})|X_{m}]]$$

$$= E[E[h_{1}(\mathbf{X})|X_{m}] \cdot E[h_{2}(\mathbf{X})|X_{m}]]$$

$$= E[\tilde{h}_{1}(X_{m})\tilde{h}_{2}(X_{m})]$$

$$= \operatorname{cov}[\tilde{h}_{1}(X_{m})\tilde{h}_{2}(X_{m})] + E[\tilde{h}_{1}(X_{m})]E[\tilde{h}_{2}(X_{m})]$$

$$\geq E[\tilde{h}_{1}(X_{m})]E[\tilde{h}_{2}(X_{m})] = \mu^{2}$$

which gives

$$0 \le E[h_1(\mathbf{X})h_2(\mathbf{X})] - \mu^2 = \text{cov}[h_1(\mathbf{X}), h_2(\mathbf{X})]$$

UiO • Matematisk institutt

x1 = x[1:N2]

Det matematisk-naturvitenskapelige fakultet

Example

- $\mu = E[x/(2^x 1)]$ for $x \sim N(0, 1)$
- Note: $x \sim N(0, 1)$ imply $-x \sim N(0, 1)$

```
set.seed(231171)
N = 2e5
x = rnorm(N)
N2 = N/2

Example_6_10.R
```

```
plot(1:N, cumsum(h(x))/(1:N),type='l',col='red' lines(1:N, cumsum(h(x12))/(1:N) , col='blue')
```

x12=matrix(t(cbind(x1,-x1)), 1,N)

