4.3.34 (a) Find the area of the triangle having vertices A(1,0,1), B(0,2,3), and C(2,1,0). (b) use the result of part (a) to find the length of the altitude from vertex C to side AB.

Solution. We first calculate the cross product of \overrightarrow{AB} and \overrightarrow{AC} :

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 2 \\ 1 & 1 & -1 \end{vmatrix} = -4\mathbf{i} + \mathbf{j} - 3\mathbf{k}.$$

Then the area of triangle can be calculated as follows:

area
$$\Delta ABC = \frac{1}{2} ||\overrightarrow{AB} \times \overrightarrow{AC}|| = \frac{\sqrt{26}}{2}.$$

(b) Let h be a length of required altitude from vertex C to side AB. Then, by (a),

area
$$\Delta ABC = \frac{1}{2} \|\overrightarrow{AB}\| h = \frac{3}{2} h \iff h = \frac{\sqrt{26}}{3}.$$

4.3.50 Consider the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ in \mathbb{R}^3 .

The expression $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is called the *scalar triple product* of \mathbf{u} , \mathbf{v} , and \mathbf{w} .

(a) Show that

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

(b) Give a geometric interpretation of $|\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})|$ (vertical bars denote absolute value).

Solution. (a) We have
$$\mathbf{v} \times \mathbf{w} = \begin{pmatrix} \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix}, - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix}, \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \end{pmatrix}$$
, thus

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = u_1 \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

(b) We claim that $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$ is equal to the volume of the parallelepiped having the vectors \mathbf{u} , \mathbf{v} , \mathbf{w} as adjacent edges.

By the definition of scalar product, $|\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})| = |\mathbf{u}||\mathbf{v}\times\mathbf{w}|\cos\phi$ where ϕ is the angle between vector \mathbf{u} and plane $\mathbf{v}\times\mathbf{w}$ (which is both normal to \mathbf{v} and \mathbf{w}). Therefore $|\mathbf{v}\times\mathbf{w}|$ is the area of parallelogram and $|\mathbf{u}|\cos\phi$ is the height of parallelepiped with respect to $\mathrm{span}(\mathbf{v},\mathbf{w})$, i.e., $|\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})|$ is the volume of the parallelepiped.

4.3.57 Use Cramer's rule to find a polynomial of degree 3 that passes through the points (0,1), (1,-1), (2,-1), and (3,7).

Solution. The polynomial $p(x) = ax^3 + bx^2 + cx + d$ passes through the points (0,1), (1,-1), (2,-1), and (3,7) if and only if

$$\begin{cases} d = 1 \\ a+b+c+d = -1 \\ 8a+4b+2c+d = -1 \\ 27a+9b+3c+d = 7 \end{cases}$$

which corresponds to the augmented matrix $\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 \\ 8 & 4 & 2 & 1 & -1 \\ 27 & 9 & 3 & 1 & 7 \end{bmatrix}. \text{ Let } A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 27 & 9 & 3 & 1 \end{bmatrix}.$

By Cramer's rule, the solution of this system is given by

$$a = \frac{\begin{vmatrix} 1 & 0 & 0 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 4 & 2 & 1 \\ \hline{7 & 9 & 3 & 1} \end{vmatrix}}{\det(A)} = \frac{12}{12} = 1 \qquad b = \frac{\begin{vmatrix} 0 & 1 & 0 & 1 \\ 1 & -1 & 1 & 1 \\ 8 & -1 & 2 & 1 \\ \hline{27 & 7 & 3 & 1} \end{vmatrix}}{\det(A)} = \frac{-24}{12} = -2$$

$$c = \frac{\begin{vmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 8 & 4 & -1 & 1 \\ \hline{1 & 1 & -1 & 1} \\ 8 & 4 & -1 & 1 \\ \hline{27 & 9 & 7 & 1} \end{vmatrix}}{\det(A)} = \frac{-12}{12} = -1 \qquad d = \frac{\begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 8 & 4 & 2 & -1 \\ \hline{27 & 9 & 3 & 7} \end{vmatrix}}{\det(A)} = \frac{12}{12} = 1.$$

Thus the interpolating polynomial is $p(x) = x^3 - 2x^2 - x + 1$.

Typeset by $\ensuremath{\mathbb{L}} \ensuremath{\mathsf{T}} \ensuremath{\mathsf{E}} \ensuremath{\mathsf{X}}$

4.3.P1 Prove that if **u** and **v** are nonzero, nonorthogonal vectors in \mathbb{R}^3 , and θ is the angle between them, then

$$\tan \theta = \frac{\|\mathbf{u} \times \mathbf{v}\|}{(\mathbf{u} \cdot \mathbf{v})}.$$

Solution. Recall Theorem 1.2.8 and Theorem 4.3.10(a). We know that

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta.$$

Then $\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{\|\mathbf{u} \times \mathbf{v}\|}{(\mathbf{u} \cdot \mathbf{v})}$ follows directly.

4.3.P2 Prove that if **u** and **v** are nonzero vectors in \mathbb{R}^2 and α and β are the angles in the accompanying figure, then

$$\cos\left(\alpha - \beta\right) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

Figure Ex-P2

Solution. The angle between the vectors is $\theta = \alpha - \beta$; thus

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\alpha - \beta) \quad \Leftrightarrow \quad \cos(\alpha - \beta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

4.4.26 For what value(s) of x, if any, will the matrix

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & x & 2 \\ 0 & 2 & x \end{bmatrix}$$

have at least one repeated eigenvalue?

Solution. The characteristic polynomial of A is

$$p(\lambda) = \begin{vmatrix} \lambda - 3 & 0 & 0 \\ 0 & \lambda - x & -2 \\ 0 & -2 & \lambda - x \end{vmatrix} = (\lambda - 3)(\lambda^2 - 2\lambda x + x^2 - 4).$$

Note that the second factor in this polynomial cannot have a double root (for any value of x) since the discriminant $(-2x)^2 - 4(x^2 - 4) = 16 \neq 0$. Thus the only possible repeated eigenvalue of A is $\lambda = 3$, and this occurs if and only if $\lambda = 3$ is a root of the second factor of $p(\lambda)$, i.e., if and only if $9 - 6x + x^2 - 4 = 0$. The roots of this quadratic equation are x = 1 or x = 5. For these values of x, $\lambda = 3$ is an eigenvalue of multiplicity 2.

Show that if A is a 2×2 matrix such that $A^2 = I$ and if **x** is any vector in \mathbb{R}^2 , then $\mathbf{y} = \mathbf{x} + A\mathbf{x}$ and $\mathbf{z} = \mathbf{x} - A\mathbf{x}$ are eigenvectors of A. Find the corresponding eigenvalues.

Solution. If $A^2 = I$, then $A(\mathbf{x} + A\mathbf{x}) = A\mathbf{x} + A^2\mathbf{x} = A\mathbf{x} + \mathbf{x} = \mathbf{x} + A\mathbf{x}$; thus $\mathbf{y} = \mathbf{x} + A\mathbf{x}$ is an eigenvector of A corresponding to $\lambda = 1$. Similarly, $A(\mathbf{x} - A\mathbf{x}) = A\mathbf{x} - A^2\mathbf{x} = A\mathbf{x} - \mathbf{x} = -(\mathbf{x} - A\mathbf{x})$ implies $\mathbf{z} = \mathbf{x} - A\mathbf{x}$ is an eigenvector of A corresponding to $\lambda = -1$.

Show that if λ is an eigenvalue of a matrix A and \mathbf{x} is a corresponding eigenvector, then

$$\lambda = \frac{(A\mathbf{x}) \cdot \mathbf{x}}{\|\mathbf{x}\|^2}.$$

Solution. If $A\mathbf{x} = \lambda \mathbf{x}$ where $\mathbf{x} \neq 0$, then

$$(A\mathbf{x}) \cdot \mathbf{x} = (\lambda \mathbf{x}) \cdot \mathbf{x} = \lambda (\mathbf{x} \cdot \mathbf{x}) = \lambda ||\mathbf{x}||^2$$

so
$$\lambda = \frac{(A\mathbf{x}) \cdot \mathbf{x}}{\|\mathbf{x}\|^2}$$
.

4.4.33 (a) Show that the characteristic polynomial of the matrix

$$C = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & 0 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -c_{n-1} \end{bmatrix}$$

is $p(\lambda) = c_0 + c_1\lambda + \cdots + c_{n-1}\lambda^{n-1} + \lambda^n$. [Hint: Evaluate all required determinants by adding a suitable multiple of the second row to the first to introduce a zero at the top of the first column, and then expand by cofactors along the first column. Then repeat the process].

(b) The matrix in part (a) is called the *companion matrix* of the polynomial

$$p(\lambda) = c_0 + c_1 \lambda + \dots + c_{n-1} \lambda^{n-1} + \lambda^n.$$

Thus we see that if $p(\lambda)$ is any polynomial whose highest power has a coefficient of 1, then there is some matrix whose characteristic polynomial is $p(\lambda)$, namely its companion matrix. Use this observation to find a matrix whose characteristic polynomial is $p(\lambda) = 2 - 3\lambda + \lambda^2 - 5\lambda^3 + \lambda^4$.

Solution. (a) The characteristic polynomial of the matrix C is

$$p(\lambda) = \det(\lambda I - C) = \begin{vmatrix} \lambda & 0 & 0 & \cdots & 0 & c_0 \\ -1 & \lambda & 0 & \cdots & 0 & c_1 \\ 0 & -1 & \lambda & \cdots & 0 & c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & \lambda + c_{n-1} \end{vmatrix}.$$

Add λ times the second row to the first row, then expand by cofactors along the first column:

$$p(\lambda) = \begin{vmatrix} 0 & \lambda^2 & 0 & \cdots & 0 & c_0 + c_1 \lambda \\ -1 & \lambda & 0 & \cdots & 0 & c_1 \\ 0 & -1 & \lambda & \cdots & 0 & c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & \lambda + c_{n-1} \end{vmatrix} = \begin{vmatrix} \lambda^2 & 0 & \cdots & 0 & c_0 + c_1 \lambda \\ -1 & \lambda & \cdots & 0 & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & \lambda + c_{n-1} \end{vmatrix}.$$

Add λ^2 times the second row to the first row, then expand by cofactors along the first column:

$$p(\lambda) = \begin{vmatrix} 0 & \lambda^3 & \cdots & 0 & c_0 + c_1 \lambda + c_2 \lambda^2 \\ -1 & \lambda & \cdots & 0 & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & \lambda + c_{n-1} \end{vmatrix} = \begin{vmatrix} \lambda^3 & \cdots & 0 & c_0 + c_1 \lambda + c_2 \lambda^2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & -1 & \lambda + c_{n-1} \end{vmatrix}.$$

Continuing in this fashion for n-2 steps, we obtain

$$p(\lambda) = \begin{vmatrix} \lambda^{n-1} & c_0 + c_1 \lambda + \dots + c_{n-2} \lambda^{n-2} \\ -1 & \lambda + c_{n-1} \end{vmatrix}$$
$$= c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{n-1} \lambda^{n-1} + \lambda^n.$$

(b) The matrix $C = \begin{bmatrix} 0 & 0 & 0 & -2 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 5 \end{bmatrix}$ has $p(\lambda) = 2 - 3\lambda + \lambda^2 - 5\lambda^3 + \lambda^4$ as its characteristic

polynomial.

4.4.D4 If $p(\lambda) = (\lambda - 3)^2 (\lambda + 2)^3$ is the characteristic polynomial of a matrix A, then $\det(A) =$ _____ and $\operatorname{tr}(A) =$ _____.

Solution. The eigenvalues of A (with multiplicity) are 3, 3 and -2, -2, -2. Thus, from Theorem 4.4.12, we have

$$\det(A) = (3)(3)(-2)(-2)(-2) = -72$$

$$\operatorname{tr}(A) = 3 + 3 + (-2) + (-2) + (-2) = 0.$$

- 4.4.D8 Indicate whether the statement is true (T) or false (F). Justify your answer. In each part, A is assumed to be square.
 - (a) The eigenvalues of A are the same as the eigenvalues of the reduced row echelon form of A.
 - (b) If eigenvectors corresponding to distinct eigenvalues are added, then the resulting vector is not an eigenvector of A.
 - (c) A 3×3 matrix has at least one real eigenvalue.
 - (d) If the characteristic polynomial of A is $p(\lambda) = \lambda^n + 1$, then A is invertible.
- Solution. (a) False. For example, the reduced row echelon form of $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ is $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ which has the only eigenvalue 1 while A has 1 and 2.
- (b) True. We have $A(\mathbf{x}_1 + \mathbf{x}_2) = \lambda \mathbf{x}_1 + \lambda \mathbf{x}_2$, and if $\lambda_1 \neq \lambda_2$ it can be shown (since \mathbf{x}_1 and \mathbf{x}_2 must be linearly independent) that $\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 \neq \beta(\mathbf{x}_1 + \mathbf{x}_2)$.
- (c) True. The characteristic polynomial of A is a cubic polynomial, and every cubic polynomial has at least one real root.
 - (d) True. If $p(\lambda) = \lambda^n + 1$, then $\det(A) = (-1)^n p(0) = \pm 1 \neq 0$; thus A is invertible.

- 4.4.P2 (a) Prove that if A is a square matrix, then A and A^T have the same characteristic polynomial. [Hint. Consider the characteristic equation $\det(\lambda I A) = 0$ and use properties of the determinant.]
 - (b) Show that A and A^T need not have the same eigenspaces by considering the matrix.

$$\begin{bmatrix} 2 & 0 \\ 2 & 3 \end{bmatrix}$$

Solution. (a) Using previously established properties, we have

$$\det(\lambda I - A^T) = \det(\lambda I^T - A^T) = \det((\lambda I - A)^T) = \det(\lambda I - A).$$

Thus A and A^T have the same characteristic polynomial.

(b) The eigenvalues are 2 and 3 in each case. The eigenspace of A corresponding to $\lambda=2$ is obtained by solving the system $\begin{bmatrix} 0 & 0 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix};$ whereas the eigenspace of A^T corresponding to $\lambda=2$ is obtained by solving $\begin{bmatrix} 0 & -2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$ Thus the eigenspace of A corresponding to $\lambda=2$ is the line y=-2x, whereas the eigenspace of A^T corresponding to $\lambda=2$ is y=0. Similarly, for $\lambda=3$, the eigenspace of A is x=0, whereas the eigenspace of A^T is $y=\frac{1}{2}x$. \square

4.4.P3 Prove that if λ is an eigenvalue of an invertible matrix A, and \mathbf{x} is a corresponding eigenvector, then $1/\lambda$ is an eigenvalue of A^{-1} , and \mathbf{x} is a corresponding eigenvector. [Hint: Begin with the equation $A\mathbf{x} = \lambda \mathbf{x}$.]

Solution. Suppose that $A\mathbf{x} = \lambda \mathbf{x}$ where $\mathbf{x} \neq 0$ and A is invertible. Then $\mathbf{x} = A^{-1}A\mathbf{x} = A^{-1}\lambda\mathbf{x} = \lambda A^{-1}\mathbf{x}$ and since $\lambda \neq 0$ (because A is invertible), it follows that $A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$. Thus $1/\lambda$ is an eigenvalue of A^{-1} and \mathbf{x} is a corresponding eigenvector.

TA: Kim, Seonggeun