CS 4342: Class 4

Jacob Whitehill

Linear regression

Linear regression

 Linear regression is built as a linear combination of all the inputs x:

$$\hat{y} = g(\mathbf{x}; \mathbf{w}) = \sum_{j=1}^{m} \mathbf{x}_j \mathbf{w}_j = \mathbf{x}^{ op} \mathbf{w}_j$$

 Vector w represent an "overlay image" that weights the different pixel intensities of x.

Solving for w

The gradient of f_{MSE} is thus:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$

Solving for w

 By setting to 0, splitting the sum apart, and solving, we reach the solution:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)}^{\top} \mathbf{w} - y^{(i)} \right)$$

$$0 = \sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} \mathbf{w} - \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$
$$\sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} \mathbf{w} = \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$
$$\mathbf{w} = \left(\sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}}\right)^{-1} \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$

- To compute w, do not use np.linalg.inv.
- Instead, use np.linalg.solve, which avoids explicitly computing the matrix inverse.
- Show age_demo.py.

Let's define a matrix X to contain all the training images:

$$\mathbf{X} = \left[egin{array}{cccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \ & & \end{array}
ight]$$

- In statistics, X is called the design matrix.
- Let's define vector y to contain all the training labels:

$$\mathbf{y} = \left[egin{array}{c} y^{(1)} \ dots \ y^{(n)} \end{array}
ight]$$

Using summation notation, we derived:

$$\mathbf{w} = \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} \mathbf{x}^{(i)}^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} y^{(i)}\right)$$

Using matrix notation, we can write the solution as:

$$\mathbf{w} =$$

Using summation notation, we derived:

$$\mathbf{w} = \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} \mathbf{x}^{(i)}^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} y^{(i)}\right)$$

Using matrix notation, we can write the solution as:

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{X}\mathbf{y}$$

- Once we've "trained" the weights w, we can estimate the y-value (label) for any x.
- We can compute the $\{\hat{y}^{(i)}\}$ for a set of images $\{\mathbf{x}^{(i)}\}$ in one-fell-swoop using matrix operations.
- Let's define our design matrix X as before:

$$\mathbf{X} = \left[egin{array}{cccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ & & & \end{array}
ight]$$

Then our estimates of the labels is given by:

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}$$

• Suppose we have *n* images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}$$

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \dots & \mathbf{x}_{1}^{(n)} \\ \mathbf{x}_{2}^{(1)} & \dots & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

This is the index of the *image*.

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w} \\
= \begin{bmatrix} \mathbf{x}_1^{(1)} & \dots & \mathbf{x}_1^{(n)} \\ \mathbf{x}_2^{(1)} & \dots & \mathbf{x}_2^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

This is the index of the *pixel*.

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}
= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \dots & \mathbf{x}_{1}^{(n)} \\ \mathbf{x}_{2}^{(1)} & \dots & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}
= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \mathbf{x}_{2}^{(1)} \\ \vdots & \vdots \\ \mathbf{x}_{1}^{(n)} & \mathbf{x}_{2}^{(n)} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \dots & \mathbf{x}_{1}^{(n)} \\ \mathbf{x}_{2}^{(1)} & \dots & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \mathbf{x}_{2}^{(1)} \\ \vdots & \vdots \\ \mathbf{x}_{1}^{(n)} & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{(1)} w_{1} + \mathbf{x}_{2}^{(1)} w_{2} \\ \vdots & \vdots \\ \mathbf{x}_{1}^{(n)} w_{1} + \mathbf{x}_{2}^{(n)} w_{2} \end{bmatrix}$$

1-d example

• Linear regression finds the weight vector \mathbf{w} that minimizes the f_{MSE} . Here's an example where each \mathbf{x} is just 1-d...

The best **w** is the one such that $f_{MSE}(\mathbf{y}, \, \hat{\mathbf{y}})$ is as small as possible, where each $\hat{y} = \mathbf{x}^{T}\mathbf{w}$.

 In order to account for target values y with non-zero mean, we could add a bias term b to our model:

$$\hat{y} = \mathbf{x}^{\top} \mathbf{w} + b$$

We could then compute the gradient w.r.t. both w and b and solve.

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}, b) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} + b - y^{(i)} \right)^{2} \right]$$

$$\nabla_{b} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}, b) = \nabla_{b} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} + b - y^{(i)} \right)^{2} \right]$$

 Alternatively, we can implicitly include a bias term by augmenting each input vector x with a 1 at the end:

$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

 Correspondingly, our weight vector w will have an extra component (bias term) at the end.

$$\tilde{\mathbf{w}} = \left[egin{array}{c} \mathbf{w} \\ b \end{array} \right]$$

To see why, notice that:

$$\hat{y} = \tilde{\mathbf{x}}^{\top} \tilde{\mathbf{w}}$$

$$= \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

$$= \mathbf{x}^{\top} \mathbf{w} + b$$

- We can find the optimal w and b based on all the training data using matrix notation.
- First define an augmented design matrix:

$$\tilde{\mathbf{X}} = \begin{bmatrix} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ 1 & \dots & 1 \end{bmatrix}$$

• Then compute:

$$ilde{\mathbf{w}} = \left(ilde{\mathbf{X}} ilde{\mathbf{X}}^ op
ight)^{-1} ilde{\mathbf{X}} \mathbf{y}$$

Fairness in ML

Fairness in ML

- Consider the following definition of ML fairness:
 - The machine's accuracy should be equal across all demographic subgroups on which it is tested.

Exercise

- Suppose we have trained a classifier to perceive whether a person is smiling based on their face image, and suppose its test accuracy (PC) on male & female faces is:
 - Male: 42%; female: 55%
 (You may assume that people from both genders smile with 50% probability.)
- Describe 3 possible reasons for why the test accuracy may differ between male and female faces.

Iterative solution to linear regression

Linear regression

 Linear regression is one of the few ML algorithms that has an analytical solution:

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{X}\mathbf{y}$$

 Analytical solution: there is a closed formula for the answer.

Linear regression

- Alternatively, linear regression can be solved numerically using gradient descent.
- Numerical solution: need to iterate (according to some algorithm) many times to approximate the optimal value.
- Gradient descent is more laborious to code than the oneshot solution, but it generalizes to a wide variety of ML models.

 Gradient descent is a hill climbing algorithm that uses the gradient (aka slope) to decide which way to "move" w to reduce the objective function (e.g., f_{MSE}).

- Suppose we just guess an initial value for w (e.g., -2.1).
- How can we make it better increase it or decrease it?

- Suppose we just guess an initial value for w (e.g., -2.1).
- How can we make it better increase it or decrease it?
 - What does the slope of f_{MSE} tell us to do?

The slope at f_{MSE} (-2.1) is negative, i.e., we can decrease our cost by increasing w.

- Or maybe our initial guess for w was 3.9.
- How can we make it better increase it or decrease it?
 - What does the slope of f_{MSE} tell us to do?

The slope at $f_{MSE}(3.9)$ is positive, i.e., we can decrease our cost by decreasing w.

 How do we know the slope? Compute the gradient of f_{MSE} w.r.t. w:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$

$$= \frac{1}{n} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{w} - \mathbf{y} \right)$$

 How do we know the slope? Compute the gradient of f_{MSE} w.r.t. w:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)$$

$$= \frac{1}{n} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{w} - \mathbf{y} \right)$$

Then plug in the current value of w.
 (Note that X and y are computed from the data and are constant.)

- How far do we "move" left or right?
 - Notice that, in the graph below, the magnitude of the slope (aka gradient) gives an indication of how far we need to go to reach the optimal w.

Set w to random values; call this initial choice w⁽⁰⁾.

```
Python: w = 0.01 * np.random.randn(M) # Just an example!
```

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update \mathbf{w} by moving opposite the gradient, multiplied by a step size $\mathbf{\epsilon}$. $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update \mathbf{w} by moving opposite the gradient, multiplied by a step size $\mathbf{\epsilon}$. $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Repeat...

$$\mathbf{w}^{(2)} \leftarrow \mathbf{w}^{(1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(1)})$$

$$\mathbf{w}^{(3)} \leftarrow \mathbf{w}^{(2)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(2)})$$

...

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(t-1)})$$

Python: w = w - EPS * gradient(w, X, y)

- How many iterations to run?
- Two alternative strategies:
 - Train for a fixed number of iterations T.

- How many iterations to run?
- Two alternative strategies:
 - Train for a fixed number of iterations T.
 - Train until the difference in training cost diminishes below a threshold δ :

$$|f(\mathbf{w}^{(t-1)}) - f(\mathbf{w}^{(t)})| < \delta$$

Gradient descent demos

- 1-d
- 2-d