7. Übung zur Physik III

WS 2015/2016

 Ausgabe: 25.11.2015
 Prof. Dr. F. Anders

 Abgabe: 02.12.2015 bis 12:00
 Prof. Dr. M. Bayer

Hausaufgabe 1: Kanonische Transformationen I

5 Punkte

Durch eine kanonische Transformation kann die Hamilton-Jacobi Gleichung hergleitet werden, so dass die neue Hamiltonfunktion ebenfalls mit 0 gleichgesetzt werden kann.

- a) Zeigen Sie, dass für eine Transformation mit der generierenden Funktion $F_3(p_k, Q_k, t)$ ebenfalls die Hamilton-Jacobi-Gleichung gilt. Welche Differentialgleichungen muss F_3 erfüllen?
- b) Die Gleichung aus a) soll nun angewendet werden, um eine generierende Funktion $F_3(p,Q,t)$ für ein Teilchen in einem Gravitationsfeld zu finden. Das Teilchen kann sich nur vertikal in dem homogenen Feld bewegen

$$H = \frac{p^2}{2m} + mgq. \tag{1}$$

q ist die Höhe über der horizontalen Ebene.

Finden Sie die Funktion F_3 , die die kanonische Transformation generiert und das Problem in eine einfach zu lösende Form überführt. Machen Sie den Ansatz $F_3(p,t) = F_{3,1}(p) + F_{3,2}(t)$. Lösen Sie die Bewegungsgleichungen in den neuen kanonischen Variablen. Transformieren Sie diese zurück in die ursprünglichen Koordinaten und bestimmen Sie die Bewegung von $\{q(t), p(t)\}$ für die Anfangsbedingungen $p(t=0) = mv_0$ und q(t=0) = 0.

Hausaufgabe 2: Kanonische Transformationen II

5 Punkte

Ein Teilchen der Masse m bewege sich in einem Potential, das zylindersymmetrisch bezüglich der z-Achse ist:

$$V(r, \varphi, z) = V(r).$$

- a) Stellen Sie die Hamiltonfunktion des Teilchens in Zylinderkoordinaten auf.
- b) Finden Sie die erzeugende Funktion $F_2(\vec{q}, \vec{p}, t)$ der kanonischen Transformation, die das System in ein Bezugssystem überführt, welches mit konstanter Winkelgeschwindigkeit ω um die z-Achse rotiert. Hier sind $\vec{q}=(r,\varphi,z)$ die Koordinaten des Teilchens im Ausgangssystem und $\vec{p}=(p_{\tilde{r}},p_{\tilde{\varphi}},p_{\tilde{z}})$ die kanonischen Impulse im Zielsystem. Insbesondere soll der transformierte Azimuthalwinkel

$$\tilde{\varphi} = \varphi - \omega t$$

sein. F_2 muss

$$p_i = \frac{\partial F_2}{\partial q_i}$$
 sowie $\tilde{q}_i = \frac{\partial F_2}{\partial \tilde{p}_i}$

erfüllen und bestimmt über

$$K = H + \frac{\partial F_2}{\partial t}$$

die Hamiltonfunktion K im rotierenden System.

c) Berechnen Sie K und interpretieren Sie alle neu auftretenden Terme.

Eine Hantel bestehe aus zwei homogenen Kugeln der Masse m mit dem Radius R, die durch eine starre, masselose Stange mit festem Abstand a verbunden sind. Die Hantel sei in ihrem Schwerpunkt aufgehängt. Dies ermögliche ihr freie Rotationen mit konstanter Winkelgeschwindigkeit $\omega_0 = |\vec{\omega}|$.

- a) Bestimmen Sie die Trägheitsmomente I_A bei der Rotation um die Hantelachse und I_S für Rotationen senkrecht dazu. Welcher Kreiseltyp liegt vor?
- b) Im körperfesten Koordinatensystem liege die Achse \vec{e}_3 entlang der Hantelachse. Zeigen Sie, dass die Eulerschen Gleichungen die Form

$$\dot{\omega}_1 - \gamma \omega_2 \omega_3 = 0, \qquad \dot{\omega}_2 + \gamma \omega_3 \omega_1 = 0, \qquad \dot{\omega}_3 = 0 \tag{2}$$

annehmen und bestimmen Sie den Parameter γ . Zeigen Sie außerdem, dass Rotationen um die Hantelachse stabil sind und ω bei kleinen Auslenkungen mit der Frequenz $\gamma\omega_0$ im körperfesten System um \vec{e}_3 oszilliert.

- c) Zeigen Sie durch allgemeine Lösung der Kreiselgleichungen, dass die Hantel Nutationsbewegungen ausführt. Nehmen Sie dazu an, dass bei t=0 der Drehvektor im körperfesten Koordinatensystem in der $\vec{e}_2 \vec{e}_3$ -Ebene um den Winkel α von der Hantelachse ausgelenkt und $\omega_2(0) = 0$ ist.
- d) Zeigen Sie mit Hilfe der Ergebnisse aus c), dass der Drehimpulsevektor in der von Rotationsvektor und Hantelachse aufgespannten Ebene liegt. Rechnen Sie im körpereigenen System der Hantelachse.
- e) Skizzieren Sie die Lage der Hantelachse, der Drehimpulsevektors und der Drehvektors. Zeigen Sie mit Hilfe der Skizze und Ihrer Ergebnisse, dass die Hantelachse im Laborsystem einen Kegel mit der Nutationsfrequenz $\omega_{\rm N} = \omega_0 \sqrt{1 + \gamma(\gamma 2)\cos\alpha}$ um \vec{L} beschreibt.
- f) Welche Frequenz erhält man nun im Laborsystem für die Bewegung der Drehachse um die stabile Drehachse bei kleinen Störungen (kleine α)? Vergleichen Sie mit dem Resultat aus b) und interpretieren Sie den Unterschied.

Hausaufgabe 4: Störungstheorie mit kanonischen Transformationen 5 Punkte

Wir wollen eine scheinbar einfache Erweiterung des harmonischen Oszillators mit einem zusätzlichen, anharmonischen Term betrachten, dessen Hamilton-Funktion durch

$$H(p,q) = \frac{1}{2}p^2 + \frac{1}{2}q^2 + \frac{g}{4}q^4 \tag{3}$$

gegeben ist, wobei wir fordern $0 < g \ll 1$.

a) Als Vorüberlegung überführen Sie die bekannte Hamiltonfunktion des harmonischen Oszillators

$$\tilde{H}_0(\tilde{p}, \tilde{q}) = \frac{1}{2m}\tilde{p}^2 + \frac{m\omega^2}{2}\tilde{q}^2 = \omega \left[\frac{1}{2m\omega}\tilde{p}^2 + \frac{m\omega}{2}\tilde{q}^2 \right]$$
(4)

durch geeignete Transformation der Koordinaten \tilde{q} und \tilde{p} und der Zeit t in die dimensionslose Form

$$H_0(p,q) = \frac{1}{2}p^2 + \frac{1}{2}q^2.$$
 (5)

b) Stellen Sie die Hamilton-Bewegungsgleichungen von H(p,q) auf. Nähern Sie in linearer Ordnung von q mit dem Ansatz

$$q(t) = q_0(t) + gq_1(t) + O(g^2)$$
(6)

$$p(t) = p_0(t) + gp_1(t) + O(g^2), (7)$$

und zeigen Sie, dass

$$q_1(t) = \frac{a^3}{32} (\cos(3t) - \cos t) - \frac{3a^3}{8} t \cdot \sin t \tag{8}$$

die gesuchte Lösung ist. Warum ist diese Lösung unbefriedigend?

Tipp: Die entstehenden Bewegungsgleichungen müssen für beliebige g gelten. Auch gilt $\cos^3 t = \frac{1}{4}(\cos 3t + 3\cos t)$.

c) Nun versuchen wir eine Lösung mithilfe von kanonischen Transformationen zu finden. Wir wollen in eine Hamiltonfunktion H(Q, P) transformieren, die man auf die Form

$$H(Q,P) = H_0 + g\alpha H_0^2 \tag{9}$$

$$H_0 = \frac{1}{2} \left(P^2 + Q^2 \right) \tag{10}$$

bringen kann. Benutzen Sie dazu die Erzeugende

$$F_3(p,Q) = -pQ + g\left(c_1Qp^3 + c_2Q^3p\right),$$
 (11)

die die Differentialgleichungen

$$q = -\frac{\partial F_3}{\partial p}$$
 und $p = -\frac{\partial F_3}{\partial Q}$ (12)

erfüllt. Transformieren Sie die Hamiltonfunktion und bestimmen Sie α , c_1 und c_2 . Nähern Sie konsequent in jedem Rechenschritt linear in g!

d) Stellen Sie die Hamilton-Bewegungsgleichungen auf und lösen Sie diese. Bestimmen Sie durch Rücktransformation q und p unter den Anfangsbedingungen p(0) = 0 und q(0) = a. Was fällt Ihnen im Vergleich zur Lösung aus b) auf?