autogluon_each_location

October 19, 2023

```
[1]: # config
     label = 'y'
     metric = 'mean_absolute_error'
     time_limit = 60*30
     presets = 'best_quality'
     do_drop_ds = True
     # hour, dayofweek, dayofmonth, month, year
     use_dt_attrs = []#["hour", "year"]
     use_estimated_diff_attr = False
     use_is_estimated_attr = True
     use_groups = False
     n_groups = 8
     auto_stack = False
     num_stack_levels = 0
     num_bag_folds = 8
     num_bag_sets = 20
     use_tune_data = True
     use_test_data = True
     tune_and_test_length = 0.5 # 3 months from end
     holdout_frac = None
     use_bag_holdout = True # Enable this if there is a large gap between score_val_
     →and score_test in stack models.
     sample_weight = None#'sample_weight' #None
     weight_evaluation = False#
     sample_weight_estimated = 1
     sample_weight_may_july = 1
     run_analysis = True
     shift_predictions_by_average_of_negatives_then_clip = False
```

```
clip_predictions = True
shift_predictions = False
```

```
[2]: import pandas as pd
     import numpy as np
     import warnings
     warnings.filterwarnings("ignore")
     def feature_engineering(X):
         # shift all columns with "1h" in them by 1 hour, so that for index 16:00, \sqcup
      we have the values from 17:00
         # but only for the columns with "1h" in the name
         \#X \ shifted = X. filter(regex="\dh").shift(-1, axis=1)
         #print(f"Number of columns with 1h in name: {X_shifted.columns}")
         columns = ['clear_sky_energy_1h:J', 'diffuse_rad_1h:J', 'direct_rad_1h:J',
            'fresh_snow_12h:cm', 'fresh_snow_1h:cm', 'fresh_snow_24h:cm',
            'fresh_snow_3h:cm', 'fresh_snow_6h:cm']
         X_shifted = X[X.index.minute==0][columns].copy()
         # loop through all rows and check if index + 1 hour is in the index, if so_{\square}
      ⇔get that value, else nan
         count1 = 0
         count2 = 0
         for i in range(len(X shifted)):
             if X_shifted.index[i] + pd.Timedelta('1 hour') in X.index:
                 count1 += 1
                 X_shifted.iloc[i] = X.loc[X_shifted.index[i] + pd.Timedelta('1__
      ⇔hour')][columns]
             else:
                 count2 += 1
                 X_shifted.iloc[i] = np.nan
         print("COUNT1", count1)
         print("COUNT2", count2)
         X_old_unshifted = X[X.index.minute==0][columns]
         \# rename X_{-} old_unshifted columns to have \_ not\_ shifted at the end
         X_old_unshifted.columns = [f"{col}_not_shifted" for col in X_old_unshifted.
      ⇔columns]
         # put the shifted columns back into the original dataframe
```

```
\#X[columns] = X_shifted[columns]
   date_calc = None
   if "date_calc" in X.columns:
        date_calc = X[X.index.minute == 0]['date_calc']
    # resample to hourly
   print("index: ", X.index[0])
   X = X.resample('H').mean()
   print("index AFTER: ", X.index[0])
   X[columns] = X_shifted[columns]
    #X[X_old_unshifted.columns] = X_old_unshifted
   if date_calc is not None:
        X['date_calc'] = date_calc
   return X
def fix_X(X, name):
   # Convert 'date_forecast' to datetime format and replace original columnu
 ⇔with 'ds'
   X['ds'] = pd.to_datetime(X['date_forecast'])
   X.drop(columns=['date_forecast'], inplace=True, errors='ignore')
   X.sort_values(by='ds', inplace=True)
   X.set_index('ds', inplace=True)
   X = feature_engineering(X)
   return X
def handle_features(X_train_observed, X_train_estimated, X_test, y_train):
   X_train_observed = fix_X(X_train_observed, "X_train_observed")
   X_train_estimated = fix_X(X_train_estimated, "X_train_estimated")
   X_test = fix_X(X_test, "X_test")
   if weight_evaluation:
        # add sample weights, which are 1 for observed and 3 for estimated
```

```
X_train_observed["sample_weight"] = 1
        X_train_estimated["sample_weight"] = sample_weight_estimated
        X_test["sample_weight"] = sample_weight_estimated
   y_train['ds'] = pd.to_datetime(y_train['time'])
   y_train.drop(columns=['time'], inplace=True)
   y_train.sort_values(by='ds', inplace=True)
   y_train.set_index('ds', inplace=True)
   return X_train_observed, X_train_estimated, X_test, y_train
def preprocess_data(X_train_observed, X_train_estimated, X_test, y_train, __
 →location):
    # convert to datetime
   X_train_observed, X_train_estimated, X_test, y_train =_
 whandle_features(X_train_observed, X_train_estimated, X_test, y_train)
   if use_estimated_diff_attr:
       X_train_observed["estimated_diff_hours"] = 0
        X_train_estimated["estimated_diff_hours"] = (X_train_estimated.index -__

¬pd.to_datetime(X_train_estimated["date_calc"])).dt.total_seconds() / 3600
        X_test["estimated_diff_hours"] = (X_test.index - pd.

→to_datetime(X_test["date_calc"])).dt.total_seconds() / 3600

        X_train_estimated["estimated_diff_hours"] = ___
 →X_train_estimated["estimated_diff_hours"].astype('int64')
        # the filled once will get dropped later anyways, when we drop y nans
        X_test["estimated_diff_hours"] = X_test["estimated_diff_hours"].

¬fillna(-50).astype('int64')
    if use_is_estimated_attr:
       X_train_observed["is_estimated"] = 0
       X train estimated["is estimated"] = 1
       X_test["is_estimated"] = 1
    # drop date calc
   X_train_estimated.drop(columns=['date_calc'], inplace=True)
   X_test.drop(columns=['date_calc'], inplace=True)
   y_train["y"] = y_train["pv_measurement"].astype('float64')
   y_train.drop(columns=['pv_measurement'], inplace=True)
```

```
X_train = pd.concat([X_train_observed, X_train_estimated])
    # clip all y values to 0 if negative
   y_train["y"] = y_train["y"].clip(lower=0)
   X_train = pd.merge(X_train, y_train, how="inner", left_index=True,_
 →right_index=True)
   # print number of nans in y
   print(f"Number of nans in y: {X_train['y'].isna().sum()}")
   X_train["location"] = location
   X_test["location"] = location
   return X_train, X_test
# Define locations
locations = ['A', 'B', 'C']
X trains = []
X tests = []
# Loop through locations
for loc in locations:
   print(f"Processing location {loc}...")
   # Read target training data
   y_train = pd.read_parquet(f'{loc}/train_targets.parquet')
    # Read estimated training data and add location feature
   X train_estimated = pd.read_parquet(f'{loc}/X train_estimated.parquet')
    # Read observed training data and add location feature
   X_train_observed= pd.read_parquet(f'{loc}/X_train_observed.parquet')
   # Read estimated test data and add location feature
   X_test_estimated = pd.read_parquet(f'{loc}/X_test_estimated.parquet')
   # Preprocess data
   X_train, X_test = preprocess_data(X_train_observed, X_train_estimated,__

¬X_test_estimated, y_train, loc)
   X_trains.append(X_train)
   X_tests.append(X_test)
# Concatenate all data and save to csv
X_train = pd.concat(X_trains)
X_test = pd.concat(X_tests)
```

Processing location A...

COUNT1 29667

COUNT2 1

index: 2019-06-02 22:00:00

index AFTER: 2019-06-02 22:00:00

COUNT1 4392 COUNT2 2

index: 2022-10-28 22:00:00

index AFTER: 2022-10-28 22:00:00

COUNT1 702 COUNT2 18

index: 2023-05-01 00:00:00

index AFTER: 2023-05-01 00:00:00

Number of nans in y: 0 Processing location B...

COUNT1 29232

COUNT2 1

index: 2019-01-01 00:00:00

index AFTER: 2019-01-01 00:00:00

COUNT1 4392 COUNT2 2

index: 2022-10-28 22:00:00

index AFTER: 2022-10-28 22:00:00

COUNT1 702 COUNT2 18

index: 2023-05-01 00:00:00

index AFTER: 2023-05-01 00:00:00

Number of nans in y: 4 Processing location C...

COUNT1 29206

COUNT2 1

index: 2019-01-01 00:00:00

index AFTER: 2019-01-01 00:00:00

COUNT1 4392 COUNT2 2

index: 2022-10-28 22:00:00

index AFTER: 2022-10-28 22:00:00

COUNT1 702 COUNT2 18

index: 2023-05-01 00:00:00

index AFTER: 2023-05-01 00:00:00

Number of nans in y: 6059

1 Feature enginering

```
[3]: import numpy as np
     import pandas as pd
     X_train.dropna(subset=['y', 'direct_rad_1h:J', 'diffuse_rad_1h:J'],
      →inplace=True)
     for attr in use_dt_attrs:
         X_train[attr] = getattr(X_train.index, attr)
         X_test[attr] = getattr(X_test.index, attr)
     \#print(X_train.head())
     # If the "sample_weight" column is present and weight_evaluation is True, \sqcup
      →multiply sample_weight with sample_weight_may_july if the ds is between
     _{\circ}05-01 00:00:00 and 07-03 23:00:00, else add sample_weight as a column to
      \hookrightarrow X train
     if weight_evaluation:
         if "sample_weight" not in X_train.columns:
             X_train["sample_weight"] = 1
         X_train.loc[((X_train.index.month >= 5) & (X_train.index.month <= 6)) | __</pre>
      →((X train.index.month == 7) & (X train.index.day <= 3)), "sample weight"] *=[]

¬sample_weight_may_july

     print(X_train.iloc[200])
     print(X_train[((X_train.index.month >= 5) & (X_train.index.month <= 6)) |
      →((X_train.index.month == 7) & (X_train.index.day <= 3))].head(1))
     if use_groups:
         # fix groups for cross validation
         locations = X_train['location'].unique() # Assuming 'location' is the name_
      ⇔of the column representing locations
         grouped_dfs = [] # To store data frames split by location
         # Loop through each unique location
         for loc in locations:
             loc_df = X_train[X_train['location'] == loc]
             # Sort the DataFrame for this location by the time column
             loc_df = loc_df.sort_index()
```

```
# Calculate the size of each group for this location
        group_size = len(loc_df) // n_groups
        # Create a new 'group' column for this location
        loc_df['group'] = np.repeat(range(n_groups),__
  repeats=[group_size]*(n_groups-1) + [len(loc_df) - group_size*(n_groups-1)])
        # Append to list of grouped DataFrames
        grouped_dfs.append(loc_df)
    # Concatenate all the grouped DataFrames back together
    X_train = pd.concat(grouped_dfs)
    X_train.sort_index(inplace=True)
    print(X_train["group"].head())
to_drop = ["snow_drift:idx", "snow_density:kgm3", "wind_speed_w_1000hPa:ms", __
 →"dew_or_rime:idx", "prob_rime:p", "fresh_snow_12h:cm", "fresh_snow_24h:cm", "

¬"wind_speed_u_10m:ms", "wind_speed_v_10m:ms", "snow_melt_10min:mm",
□

¬"rain_water:kgm2", "dew_point_2m:K", "precip_5min:mm", "absolute_humidity_2m:
 ogm3", "air_density_2m:kgm3", "msl_pressure:hPa", "pressure_100m:hPa", □

¬"pressure_50m:hPa", "clear_sky_rad:W"]

X_train.drop(columns=to_drop, inplace=True)
X_test.drop(columns=to_drop, inplace=True)
X_train.to_csv('X_train_raw.csv', index=True)
X_test.to_csv('X_test_raw.csv', index=True)
absolute_humidity_2m:gm3
                                        7.825
                                        1.245
air_density_2m:kgm3
ceiling_height_agl:m
                                  2085.774902
clear_sky_energy_1h:J
                                 1685498.875
clear_sky_rad:W
                                  452.100006
cloud base agl:m
                                  2085.774902
dew_or_rime:idx
                                          0.0
dew_point_2m:K
                                   280.549988
diffuse rad:W
                                  140.800003
diffuse_rad_1h:J
                                   538581.625
direct_rad:W
                                  102.599998
direct_rad_1h:J
                                  439453.8125
effective_cloud_cover:p
                                   71.849998
elevation:m
                                          6.0
```

```
fresh_snow_12h:cm
                                           0.0
                                           0.0
fresh_snow_1h:cm
fresh_snow_24h:cm
                                           0.0
fresh_snow_3h:cm
                                           0.0
fresh snow 6h:cm
                                           0.0
is_day:idx
                                           1.0
is in shadow:idx
                                           0.0
msl_pressure:hPa
                                  1026.349976
precip_5min:mm
                                          0.0
precip_type_5min:idx
                                           0.0
pressure_100m:hPa
                                  1013.325012
pressure_50m:hPa
                                  1019.450012
prob_rime:p
                                          0.0
rain_water:kgm2
                                          0.0
relative_humidity_1000hPa:p
                                    77.099998
sfc_pressure:hPa
                                  1025.550049
snow_density:kgm3
                                          NaN
snow_depth:cm
                                          0.0
snow_drift:idx
                                          0.0
snow melt 10min:mm
                                          0.0
snow_water:kgm2
                                          0.0
sun azimuth:d
                                    93.415253
sun_elevation:d
                                    27.633499
super_cooled_liquid_water:kgm2
                                        0.025
t_1000hPa:K
                                      282.625
total_cloud_cover:p
                                    71.849998
                                    44177.875
visibility:m
                                        2.675
wind_speed_10m:ms
wind_speed_u_10m:ms
                                         -2.3
wind_speed_v_10m:ms
                                         -1.4
wind_speed_w_1000hPa:ms
                                          0.0
is_estimated
                                            0
                                      2991.12
У
location
Name: 2019-06-11 06:00:00, dtype: object
                     absolute_humidity_2m:gm3 air_density_2m:kgm3 \
ds
2019-06-02 22:00:00
                                           7.7
                                                            1.22825
                     ceiling_height_agl:m clear_sky_energy_1h:J \
ds
2019-06-02 22:00:00
                                                              0.0
                              1728.949951
                     clear_sky_rad:W cloud_base_agl:m dew_or_rime:idx \
ds
2019-06-02 22:00:00
                                 0.0
                                           1728.949951
                                                                     0.0
                     dew_point_2m:K diffuse_rad:W diffuse_rad_1h:J ... \
```

```
ds
    2019-06-02 22:00:00
                             280.299988
                                                    0.0
                                                                      0.0 ...
                         t_1000hPa:K total_cloud_cover:p visibility:m \
    ds
    2019-06-02 22:00:00
                          286.225006
                                                     100.0 40386.476562
                         wind_speed_10m:ms wind_speed_u_10m:ms \
    2019-06-02 22:00:00
                                        3.6
                                                          -3.575
                         wind_speed_v_10m:ms wind_speed_w_1000hPa:ms \
    ds
    2019-06-02 22:00:00
                                         -0.5
                                                                   0.0
                                         y location
                         is_estimated
    ds
    2019-06-02 22:00:00
                                    0.0
                                                    Α
    [1 rows x 48 columns]
[4]: # Create a plot of X_train showing its "y" and color it based on the value of \Box
     → the sample_weight column.
     #import matplotlib.pyplot as plt
     #import seaborn as sns
     #sns.scatterplot(data=X train, x=X train.index, y="y", hue="sample_weight", ___
     ⇔palette="deep", size=3)
     #plt.show()
[5]: def normalize sample weights per location(df):
         for loc in locations:
             loc df = df[df["location"] == loc]
             loc_df["sample_weight"] = loc_df["sample_weight"] /_
      →loc_df["sample_weight"].sum() * loc_df.shape[0]
             df[df["location"] == loc] = loc_df
         return df
     import pandas as pd
     import numpy as np
     def split_and_shuffle_data(input_data, num_bins, frac1):
         Splits the input_data into num_bins and shuffles them, then divides the __
      ⇒bins into two datasets based on the given fraction for the first set.
         Args:
             input_data (pd.DataFrame): The data to be split and shuffled.
```

```
num_bins (int): The number of bins to split the data into.
       frac1 (float): The fraction of each bin to go into the first output \sqcup
\hookrightarrow dataset.
  Returns:
      pd.DataFrame, pd.DataFrame: The two output datasets.
  # Validate the input fraction
  if frac1 < 0 or frac1 > 1:
      raise ValueError("frac1 must be between 0 and 1.")
  if frac1==1:
      return input_data, pd.DataFrame()
  # Calculate the fraction for the second output set
  frac2 = 1 - frac1
  # Calculate bin size
  bin_size = len(input_data) // num_bins
  # Initialize empty DataFrames for output
  output_data1 = pd.DataFrame()
  output_data2 = pd.DataFrame()
  for i in range(num_bins):
       # Shuffle the data in the current bin
      np.random.seed(i)
       current_bin = input_data.iloc[i * bin_size: (i + 1) * bin_size].
⇔sample(frac=1)
       # Calculate the sizes for each output set
      size1 = int(len(current_bin) * frac1)
       # Split and append to output DataFrames
       output_data1 = pd.concat([output_data1, current_bin.iloc[:size1]])
       output_data2 = pd.concat([output_data2, current_bin.iloc[size1:]])
  # Shuffle and split the remaining data
  remaining_data = input_data.iloc[num_bins * bin_size:].sample(frac=1)
  remaining_size1 = int(len(remaining_data) * frac1)
  output_data1 = pd.concat([output_data1, remaining_data.iloc[:
→remaining_size1]])
  output_data2 = pd.concat([output_data2, remaining_data.iloc[remaining_size1:
→]])
  return output_data1, output_data2
```

```
[6]: from autogluon.tabular import TabularDataset, TabularPredictor
     from autogluon.timeseries import TimeSeriesDataFrame
     import numpy as np
     data = TabularDataset('X_train_raw.csv')
     # set group column of train_data be increasing from 0 to 7 based on time, the
      ⇔first 1/8 of the data is group 0, the second 1/8 of the data is group 1, etc.
     data['ds'] = pd.to datetime(data['ds'])
     data = data.sort_values(by='ds')
     # # print size of the group for each location
     # for loc in locations:
          print(f"Location {loc}:")
          print(train_data[train_data["location"] == loc].qroupby('qroup').size())
     # get end date of train data and subtract 3 months
     #split time = pd.to datetime(train data["ds"]).max() - pd.
      → Timedelta(hours=tune_and_test_length)
     # 2022-10-28 22:00:00
     split_time = pd.to_datetime("2022-10-28 22:00:00")
     train_set = TabularDataset(data[data["ds"] < split_time])</pre>
     test_set = TabularDataset(data[data["ds"] >= split_time])
     \# shuffle test_set and only grab tune_and_test_length percent of it, rest goes\sqcup
      ⇔to train_set
     test_set, new_train_set = split_and_shuffle_data(test_set, 40,_
     →tune and test length)
     print("Length of train set before adding test set", len(train set))
     # add rest to train_set
     train_set = pd.concat([train_set, new_train_set])
     print("Length of train set after adding test set", len(train set))
     print("Length of test set", len(test_set))
     if use_groups:
         test_set = test_set.drop(columns=['group'])
     tuning_data = None
     if use_tune_data:
         if use_test_data:
             # split test_set in half, use first half for tuning
             tuning_data, test_data = [], []
```

```
for loc in locations:
            loc_test_set = test_set[test_set["location"] == loc]
            # randomly shuffle the loc_test_set
            loc_tuning_data, loc_test_data =_
 ⇒split_and_shuffle_data(loc_test_set, 40, 0.5)
            tuning data.append(loc tuning data)
            test_data.append(loc_test_data)
        tuning_data = pd.concat(tuning_data)
        test_data = pd.concat(test_data)
        print("Shapes of tuning and test", tuning data.shape[0], test data.
 ⇒shape[0], tuning_data.shape[0] + test_data.shape[0])
    else:
        tuning_data = test_set
        print("Shape of tuning", tuning_data.shape[0])
    \# ensure sample weights for your tuning data sum to the number of rows in
 ⇔the tuning data.
    if weight_evaluation:
        tuning_data = normalize_sample_weights_per_location(tuning_data)
else:
    if use_test_data:
        test_data = test_set
        print("Shape of test", test_data.shape[0])
train_data = train_set
# ensure sample weights for your training (or tuning) data sum to the number of \Box
⇔rows in the training (or tuning) data.
if weight evaluation:
    train_data = normalize_sample_weights_per_location(train_data)
    if use test data:
        test_data = normalize_sample_weights_per_location(test_data)
train_data = TabularDataset(train_data)
if use_tune_data:
    tuning_data = TabularDataset(tuning_data)
if use_test_data:
    test_data = TabularDataset(test_data)
```

Length of train set before adding test set 82026 Length of train set after adding test set 87486 Length of test set 5459

train_data dataset summary

train_data dataset summary						
	count	unique		top	freq \	
ceiling_height_agl:m	72280	59980		•	1	
clear_sky_energy_1h:J	87486	46359				
cloud_base_agl:m	81454	61360				
diffuse_rad:W	87486	11092				
diffuse_rad_1h:J	87486	46319				
direct_rad:W	87486	14181				
direct_rad_1h:J	87486	40118				
ds	87486	36794	2021-02-05 14	:00:00	3	
effective_cloud_cover:p	87486	5655				
elevation:m	87486	3				
fresh_snow_1h:cm	87486	39				
fresh_snow_3h:cm	87486	70				
fresh_snow_6h:cm	87486	96				
is_day:idx	87486	5				
is_estimated	87486	2				
is_in_shadow:idx	87486	5				
location	87486	3		Α	31872	
<pre>precip_type_5min:idx</pre>	87486	15				
relative_humidity_1000hPa:p	87486	3799				
sfc_pressure:hPa	87486	3795				
snow_depth:cm	87486	487				
snow_water:kgm2	87486	161				
sun_azimuth:d	87486	83179				
sun_elevation:d	87486	72262				
<pre>super_cooled_liquid_water:kgm2</pre>	87486	53				
t_1000hPa:K	87486	1989				
total_cloud_cover:p	87486	5556				
visibility:m	87486	85949				
wind_speed_10m:ms	87486	596				
У	87486	11321				
	c ·		-			,
		rst NaT	las		mean 61.929806	\
ceiling_height_agl:m		NaT	Na Na		97.395771	
clear_sky_energy_1h:J		NaT NaT	Na Na			
<pre>cloud_base_agl:m diffuse rad:W</pre>		NaT	Na Na		40.241802 40.267497	
diffuse_rad:w diffuse_rad_1h:J		NaT	Na Na		5328.6257	
diriuse_rad_in:J direct_rad:W		NaT	Na Na		51.524847	
direct_rad:w direct_rad_1h:J		NaT	Na Na		338.05854	
direct_rad_in.J		1101	Na	100	550.05054	

ds	2019-01-01 2023	3-04-30 22:	00:00	
effective_cloud_cover:p	NaT		NaT	67.052836
elevation:m	NaT		NaT	11.414718
fresh_snow_1h:cm	NaT		NaT	0.008783
fresh_snow_3h:cm	NaT		NaT	0.026713
fresh_snow_6h:cm	NaT		NaT	0.05322
is_day:idx	NaT		NaT	0.490147
is_estimated	NaT		NaT	0.06241
is_in_shadow:idx	NaT		NaT	0.556952
location	NaT		NaT	
<pre>precip_type_5min:idx</pre>	NaT		NaT	0.084976
relative_humidity_1000hPa:p	NaT		NaT	73.779918
sfc_pressure:hPa	NaT		NaT	1008.035963
<pre>snow_depth:cm</pre>	NaT		NaT	0.197574
snow_water:kgm2	NaT		NaT	0.090839
sun_azimuth:d	NaT		NaT	179.584247
sun_elevation:d	NaT		NaT	-0.705998
<pre>super_cooled_liquid_water:kgm2</pre>	NaT		NaT	0.058256
t_1000hPa:K	NaT		NaT	279.675551
total_cloud_cover:p	NaT		NaT	73.72398
visibility:m	NaT		NaT	32944.238197
wind_speed_10m:ms	NaT		NaT	3.032943
У	NaT		NaT	294.447861
	std		2	5% 50% \
ceiling_height_agl:m	2532.377528	27.8	1082.31	25 1856.075
clear_sky_energy_1h:J	831839.646633	0.0	0	.0 9084.9
cloud_base_agl:m	1808.519208		598.156	
diffuse_rad:W	61.119566	0.0	0	.0 1.35
diffuse_rad_1h:J	218036.296903	0.0	0	.0 12531.2
direct_rad:W	114.236728	0.0	0	.0 0.0
direct_rad_1h:J	406379.39471	0.0	0	.0 0.0
ds				
effective_cloud_cover:p	34.132847	0.0	42.1	25 79.7
elevation:m	7.881545	6.0	6	.0 7.0
fresh_snow_1h:cm	0.110515	0.0	0	.0 0.0
fresh_snow_3h:cm	0.277575	0.0	0	.0 0.0
fresh_snow_6h:cm	0.474579	0.0	0	.0 0.0
is_day:idx	0.486133	0.0	0	.0 0.5
is_estimated	0.2419	0.0	0	.0 0.0
is_in_shadow:idx	0.484138	0.0	0	.0 1.0
location				
<pre>precip_type_5min:idx</pre>	0.32995	0.0	0	.0 0.0
relative_humidity_1000hPa:p	14.200631	19.575	64	.4 76.15
sfc_pressure:hPa	13.038723	941.55	1000.	05 1009.0
snow_depth:cm	1.28439	0.0	0	.0 0.0
snow_water:kgm2	0.240248	0.0	0	.0 0.0
sun_azimuth:d	97.419022	6.983	94.41	35 180.00663

<pre>sun_elevation:d super_cooled_liquid_water:kgm2 t_1000hPa:K total_cloud_cover:p visibility:m wind_speed_10m:ms y</pre>	24.0061 0.1069 6.5516 33.8512 17949.644 1.7587 774.5318	0.0 55 258.025 99 0.0 28 132.375 13 0.025	-17.969875 0.0 275.1 53.475 16564.5125 1.675 0.0	-0.453875 0.0 278.975 92.825 36910.75 2.7 0.0
	75%	max	dtype	s \
ceiling_height_agl:m	3916.78125	12285.775	float6	34
clear_sky_energy_1h:J	831169.675	3006697.2	float6	4
cloud_base_agl:m	2080.39375	11673.725	float6	4
diffuse_rad:W	67.15	334.75	float6	34
diffuse_rad_1h:J	243365.275	1182265.4	float6	4
direct_rad:W	32.225	683.4	float6	4
direct_rad_1h:J	122454.125	2445897.0	float6	4
ds			datetime64[ns	:]
effective_cloud_cover:p	98.5	100.0	float6	34
elevation:m	24.0	24.0	float6	4
fresh_snow_1h:cm	0.0	7.1	float6	34
fresh_snow_3h:cm	0.0	20.6	float6	34
fresh_snow_6h:cm	0.0	34.0	float6	34
is_day:idx	1.0	1.0	float6	34
is_estimated	0.0	1.0	int6	34
is_in_shadow:idx	1.0	1.0	float6	4
location			objec	t
<pre>precip_type_5min:idx</pre>	0.0	5.0	float6	34
relative_humidity_1000hPa:p	85.175	100.0	float6	34
sfc_pressure:hPa	1017.1	1043.725	float6	34
snow_depth:cm	0.0	18.2	float6	4
snow_water:kgm2	0.1	5.65	float6	34
sun_azimuth:d	264.601138	348.48752	float6	34
sun_elevation:d	16.004499	49.94375	float6	4
<pre>super_cooled_liquid_water:kgm2</pre>	0.1	1.375	float6	34
t_1000hPa:K	284.225	303.25	float6	34
total_cloud_cover:p	99.9	100.0	float6	4
visibility:m	48289.05	75326.58	float6	4
wind_speed_10m:ms	4.05	13.275	float6	34
У	183.7125	5733.42	float6	54
	missing_coun	t missing_ra	tio raw_type	: \
<pre>ceiling_height_agl:m</pre>	1520	6 0.173		
clear_sky_energy_1h:J			float	
cloud_base_agl:m	603	2 0.068		
diffuse_rad:W			float	
diffuse_rad_1h:J			float	
direct_rad:W			float	
direct_rad_1h:J			float	;

ds	
effective_cloud_cover:p	float
elevation:m	float
fresh_snow_1h:cm	float
fresh_snow_3h:cm	float
fresh_snow_6h:cm	float
is_day:idx	float
is_estimated	int
is_in_shadow:idx	float
location	object
<pre>precip_type_5min:idx</pre>	float
relative_humidity_1000hPa:p	float
sfc_pressure:hPa	float
snow_depth:cm	float
snow_water:kgm2	float
sun_azimuth:d	float
sun_elevation:d	float
<pre>super_cooled_liquid_water:kgm2</pre>	float
t_1000hPa:K	float
total_cloud_cover:p	float
visibility:m	float
wind_speed_10m:ms	float
У	float

variable_type special_types

	_ 71
ceiling_height_agl:m	numeric
clear_sky_energy_1h:J	numeric
cloud_base_agl:m	numeric
diffuse_rad:W	numeric
diffuse_rad_1h:J	numeric
direct_rad:W	numeric
direct_rad_1h:J	numeric
ds	
effective_cloud_cover:p	numeric
elevation:m	category
fresh_snow_1h:cm	numeric
fresh_snow_3h:cm	numeric
fresh_snow_6h:cm	numeric
is_day:idx	category
is_estimated	category
is_in_shadow:idx	category
location	category
<pre>precip_type_5min:idx</pre>	category
relative_humidity_1000hPa:p	numeric
sfc_pressure:hPa	numeric
<pre>snow_depth:cm</pre>	numeric
snow_water:kgm2	numeric
sun_azimuth:d	numeric

```
sun_elevation:d numeric
super_cooled_liquid_water:kgm2 numeric
t_1000hPa:K numeric
total_cloud_cover:p numeric
visibility:m numeric
wind_speed_10m:ms numeric
y numeric
test_data dataset summary
count unique
```

top freq \ ceiling_height_agl:m clear_sky_energy_1h:J cloud_base_agl:m diffuse_rad:W diffuse_rad_1h:J direct_rad:W direct_rad_1h:J 2023-04-10 19:00:00 ds effective_cloud_cover:p elevation:m fresh snow 1h:cm fresh_snow_3h:cm fresh_snow_6h:cm is_day:idx is_estimated is_in_shadow:idx A 1094 location precip_type_5min:idx relative_humidity_1000hPa:p sfc_pressure:hPa snow_depth:cm snow_water:kgm2 sun_azimuth:d sun_elevation:d super_cooled_liquid_water:kgm2 t_1000hPa:K total_cloud_cover:p visibility:m wind_speed_10m:ms у

	first	last \
ceiling_height_agl:m	NaT	NaT
<pre>clear_sky_energy_1h:J</pre>	NaT	NaT
cloud_base_agl:m	NaT	NaT
diffuse_rad:W	NaT	NaT
diffuse_rad_1h:J	NaT	NaT
direct_rad:W	NaT	NaT

direct_rad_1h:J	0000 10 00	NaT	0000 04 00	NaT	
ds	2022-10-28		2023-04-30		
effective_cloud_cover:p		NaT		NaT	
elevation:m		NaT		NaT	
fresh_snow_1h:cm		NaT		NaT	
fresh_snow_3h:cm		NaT		NaT	
fresh_snow_6h:cm		NaT		NaT	
is_day:idx		NaT		NaT	
is_estimated		NaT		NaT	
is_in_shadow:idx		NaT		NaT	
location		NaT		NaT	
precip_type_5min:idx		NaT		NaT	
relative_humidity_1000hPa:p		NaT		NaT	
sfc_pressure:hPa		NaT		NaT	
snow_depth:cm		NaT		NaT	
snow_water:kgm2		NaT		NaT	
sun_azimuth:d		NaT		NaT	
sun_elevation:d		NaT		NaT	
<pre>super_cooled_liquid_water:kgm2</pre>		NaT		NaT	
t_1000hPa:K		NaT		NaT	
total_cloud_cover:p		NaT		NaT	
visibility:m		NaT		NaT	
wind_speed_10m:ms		NaT		NaT	
У		NaT		NaT	
	m	ıean	std	min	\
ceiling_height_agl:m	3361.682		562.862274	28.0	`
clear_sky_energy_1h:J	285528.142		252.521662	0.0	
cloud_base_agl:m	1685.111		1833.56975	27.5	
diffuse_rad:W	26.230		48.360421	0.0	
diffuse_rad_1h:J	94649.301		723.786046	0.0	
direct_rad:W	32.798		92.244541	0.0	
direct_rad_1h:J	118054.008		301.815692	0.0	
ds	110001.000	202 020	001.010002	0.0	
effective_cloud_cover:p	66.798	8654	36.717964	0.0	
elevation:m	11.193		7.806119	6.0	
fresh_snow_1h:cm	0.023		0.147555	0.0	
fresh_snow_3h:cm	0.069		0.352141	0.0	
fresh_snow_6h:cm	0.13		0.57722	0.0	
is_day:idx	0.378		0.472171	0.0	
is_estimated	0.070	1.0	0.0	1.0	
is_in_shadow:idx	0.677		0.452911	0.0	
location	0.077	100	0.102311	0.0	
precip_type_5min:idx	0.076	3254	0.344931	0.0	
relative_humidity_1000hPa:p	71.631		14.652551	21.7	
sfc_pressure:hPa	1009.397		14.032331	971.15	
snow_depth:cm	0.119		0.56196	0.0	
snow_water:kgm2	0.080		0.30190	0.0	
pmom_marer.v8m7	0.000	,011	0.13413	0.0	

sun_azimuth:d	180.9759	98 94.	222121 14.	914	
sun_elevation:d	-8.9454	72 22.	095926 -49.	887	
super_cooled_liquid_water:kgm2	0.0350	88 0.	082444	0.0	
t_1000hPa:K	275.529	87 4.	271781 259.	975	
total_cloud_cover:p	72.320	56 37.	085445	0.0	
visibility:m	34504.9480	17 17242.	154257 27	70.3	
wind_speed_10m:ms	3.1096	76 1.	782531 0.	125	
у	179.3794	21 641.	546947	0.0	
	25%	50%	75%	max	\
ceiling_height_agl:m	1245.55625	2784.275	4919.18125	12294.9	
clear_sky_energy_1h:J	0.0	0.0	220909.2	2551917.2	
cloud_base_agl:m	516.7625	1000.8	2066.9875	10813.7	
diffuse_rad:W	0.0	0.0	32.0	280.5	
diffuse_rad_1h:J	0.0	0.0	116208.0	986147.0	
direct_rad:W	0.0	0.0	4.7625	511.7	
direct_rad_1h:J	0.0	0.0	24326.65	1844204.9	
ds					
effective_cloud_cover:p	36.3125	83.05	99.825	100.0	
elevation:m	6.0	7.0	24.0	24.0	
fresh_snow_1h:cm	0.0	0.0	0.0	2.3	
fresh_snow_3h:cm	0.0	0.0	0.0	4.8	
fresh_snow_6h:cm	0.0	0.0	0.0	6.3	
is_day:idx	0.0	0.0	1.0	1.0	
is_estimated	1.0	1.0	1.0	1.0	
is_in_shadow:idx	0.0	1.0	1.0	1.0	
location					
<pre>precip_type_5min:idx</pre>	0.0	0.0	0.0	3.0	
relative_humidity_1000hPa:p	61.775	73.55	82.9625	99.775	
sfc_pressure:hPa	999.1	1009.5	1020.275	1040.6	
snow_depth:cm	0.0	0.0	0.0	4.9	
snow_water:kgm2	0.0	0.0	0.1	2.15	
sun_azimuth:d	101.047372	179.89075	260.65412	347.81226	
sun_elevation:d	-26.72725	-8.178	6.393625	41.09175	
<pre>super_cooled_liquid_water:kgm2</pre>	0.0	0.0	0.0	0.75	
t_1000hPa:K	272.6625	275.45	278.5	285.825	
total_cloud_cover:p	44.5875	96.775	100.0	100.0	
visibility:m	20902.55	36141.85	48867.949	73937.67	
wind_speed_10m:ms	1.6	2.8	4.2375	9.9	
У	0.0	0.0	40.397706	5043.72	
	•	-	_count missi	-	\
ceiling_height_agl:m	floa		631	0.231051	
clear_sky_energy_1h:J	floa		0.5-	0.465=5:	
cloud_base_agl:m	floa		357	0.130721	
diffuse_rad:W	floa				
diffuse_rad_1h:J	floa				
direct_rad:W	floa	t64			

direct_rad_1h:J	float64
ds	datetime64[ns]
effective_cloud_cover:p	float64
elevation:m	float64
fresh_snow_1h:cm	float64
fresh_snow_3h:cm	float64
fresh_snow_6h:cm	float64
is_day:idx	float64
is_estimated	int64
is_in_shadow:idx	float64
location	object
<pre>precip_type_5min:idx</pre>	float64
relative_humidity_1000hPa:p	float64
sfc_pressure:hPa	float64
<pre>snow_depth:cm</pre>	float64
snow_water:kgm2	float64
sun_azimuth:d	float64
sun_elevation:d	float64
<pre>super_cooled_liquid_water:kgm2</pre>	float64
t_1000hPa:K	float64
total_cloud_cover:p	float64
visibility:m	float64
wind_speed_10m:ms	float64
У	float64

	raw_type	variable_type	special_types
ceiling_height_agl:m	float	numeric	
clear_sky_energy_1h:J	float	numeric	
cloud_base_agl:m	float	numeric	
diffuse_rad:W	float	numeric	
diffuse_rad_1h:J	float	numeric	
direct_rad:W	float	numeric	
direct_rad_1h:J	float	numeric	
ds	datetime		
effective_cloud_cover:p	float	numeric	
elevation:m	float	category	
fresh_snow_1h:cm	float	category	
fresh_snow_3h:cm	float	numeric	
fresh_snow_6h:cm	float	numeric	
is_day:idx	float	category	
is_estimated	int	category	
is_in_shadow:idx	float	category	
location	object	category	
<pre>precip_type_5min:idx</pre>	float	category	
relative_humidity_1000hPa:p	float	numeric	
sfc_pressure:hPa	float	numeric	
<pre>snow_depth:cm</pre>	float	numeric	
snow_water:kgm2	float	numeric	

sun_azimuth:d	float	numeric
sun_elevation:d	float	numeric
<pre>super_cooled_liquid_water:kgm2</pre>	float	numeric
t_1000hPa:K	float	numeric
total_cloud_cover:p	float	numeric
visibility:m	float	numeric
wind_speed_10m:ms	float	numeric
У	float	numeric

1.0.1 Feature Distance

The following feature groups are considered as near-duplicates:

Distance threshold: <= 0.01. Consider keeping only some of the columns within each group:

- elevation:m, location distance 0.00
- diffuse_rad:W, diffuse_rad_1h:J distance 0.00

Feature interaction between diffuse_rad:W/diffuse_rad_1h:J


```
[8]: if run_analysis:
    auto.target_analysis(train_data=train_data, label="y", sample=None)
```

1.1 Target variable analysis

count mean std min 25% 50% 75% max dtypes \ y 87486 294.447861 774.531815 -0.0 0.0 0.0 183.7125 5733.42 float64

1.1.1 Distribution fits for target variable

• none of the attempted distribution fits satisfy specified minimum p-value threshold: 0.01

1.1.2 Target variable correlations

train_data - spearman correlation matrix; focus: absolute correlation for y >= 0.5

Feature interaction between clear_sky_energy_1h:J/y in train_data

Feature interaction between diffuse_rad:W/y in train_data

Feature interaction between $diffuse_rad_1h:J/y$ in $train_data$

Feature interaction between direct_rad_1h:J/y in train_data

Feature interaction between direct_rad:W/y in train_data

Feature interaction between sun_elevation:d/y in train_data

Feature interaction between is_day:idx/y in train_data

Feature interaction between $is_in_shadow:idx/y$ in train_data

2 Starting

```
[9]: import os
      # Get the last submission number
      last_submission_number = int(max([int(filename.split('_')[1].split('.')[0]) for__
       ofilename in os.listdir('submissions') if "submission" in filename]))
      print("Last submission number:", last_submission_number)
      print("Now creating submission number:", last_submission_number + 1)
      # Create the new filename
      new_filename = f'submission_{last_submission_number + 1}'
      hello = os.environ.get('HELLO')
      if hello is not None:
          new_filename += f'_{hello}'
      print("New filename:", new_filename)
     Last submission number: 100
     Now creating submission number: 101
     New filename: submission 101
[10]: predictors = [None, None, None]
 []: def fit predictor for location(loc):
          print(f"Training model for location {loc}...")
          # sum of sample weights for this location, and number of rows, for both _{f L}
       ⇔train and tune data and test data
          if weight evaluation:
              print("Train data sample weight sum:", ___
       strain_data[train_data["location"] == loc]["sample_weight"].sum())
              print("Train data number of rows:", train_data[train_data["location"]_
       \Rightarrow = loc].shape[0])
              if use_tune_data:
                  print("Tune data sample weight sum:", __
       otuning_data[tuning_data["location"] == loc]["sample_weight"].sum())
                  print("Tune data number of rows:", u
       stuning_data[tuning_data["location"] == loc].shape[0])
              if use_test_data:
                  print("Test data sample weight sum:", __
       stest_data[test_data["location"] == loc]["sample_weight"].sum())
                  print("Test data number of rows:", test_data[test_data["location"]_
       \rightarrow = loc].shape[0])
          predictor = TabularPredictor(
              label=label,
```

```
eval_metric=metric,
        path=f"AutogluonModels/{new_filename}_{loc}",
        # sample_weight=sample_weight,
        # weight_evaluation=weight_evaluation,
        # groups="group" if use_groups else None,
    ).fit(
        train_data=train_data[train_data["location"] == loc].

drop(columns=["ds"]),
        time_limit=time_limit,
        # presets=presets,
        num_stack_levels=num_stack_levels,
        num_bag_folds=num_bag_folds if not use_groups else 2,# just put_
  ⇔somethin, will be overwritten anyways
        num_bag_sets=num_bag_sets,
        tuning_data=tuning_data[tuning_data["location"] == loc].
  oreset_index(drop=True).drop(columns=["ds"]) if use_tune_data else None,
        use_bag_holdout=use_bag_holdout,
        # holdout_frac=holdout_frac,
    )
    # evaluate on test data
    if use_test_data:
        # drop sample weight column
        t = test_data[test_data["location"] == loc]#.
  →drop(columns=["sample_weight"])
        perf = predictor.evaluate(t)
        print("Evaluation on test data:")
        print(perf[predictor.eval_metric.name])
    return predictor
loc = "A"
predictors[0] = fit_predictor_for_location(loc)
Beginning AutoGluon training ... Time limit = 1800s
AutoGluon will save models to "AutogluonModels/submission_101_A/"
AutoGluon Version: 0.8.2
Python Version:
                    3.10.12
Operating System:
                   Linux
Platform Machine: x86_64
Platform Version: #1 SMP Debian 5.10.197-1 (2023-09-29)
Disk Space Avail: 137.83 GB / 315.93 GB (43.6%)
Train Data Rows:
                    31872
Train Data Columns: 28
Tuning Data Rows:
                    1093
Tuning Data Columns: 28
Label Column: y
```

Preprocessing data ... AutoGluon infers your prediction problem is: 'regression' (because dtype of label-column == float and many unique label-values observed). Label info (max, min, mean, stddev): (5733.42, 0.0, 649.68162, 1178.37671) If 'regression' is not the correct problem_type, please manually specify the problem type parameter during predictor init (You may specify problem type as one of: ['binary', 'multiclass', 'regression']) Using Feature Generators to preprocess the data ... Fitting AutoMLPipelineFeatureGenerator... 132236.17 MB Available Memory: Train Data (Original) Memory Usage: 9.03 MB (0.0% of available memory) Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features. Stage 1 Generators: Fitting AsTypeFeatureGenerator... Note: Converting 1 features to boolean dtype as they only contain 2 unique values. Stage 2 Generators: Fitting FillNaFeatureGenerator... Stage 3 Generators: Fitting IdentityFeatureGenerator... Stage 4 Generators: Fitting DropUniqueFeatureGenerator... Stage 5 Generators: Fitting DropDuplicatesFeatureGenerator... Useless Original Features (Count: 2): ['elevation:m', 'location'] These features carry no predictive signal and should be manually investigated. This is typically a feature which has the same value for all rows. These features do not need to be present at inference time. Types of features in original data (raw dtype, special dtypes): ('float', []) : 25 | ['ceiling_height_agl:m', 'clear_sky_energy_1h:J', 'cloud_base_agl:m', 'diffuse_rad:W', 'diffuse_rad_1h:J', ...] ('int', []) : 1 | ['is_estimated'] Types of features in processed data (raw dtype, special dtypes): ('float', []) : 25 | ['ceiling_height_agl:m', 'clear_sky_energy_1h:J', 'cloud_base_agl:m', 'diffuse_rad:W', 'diffuse_rad_1h:J', ...] ('int', ['bool']) : 1 | ['is_estimated'] 0.1s = Fit runtime 26 features in original data used to generate 26 features in processed data.

Train Data (Processed) Memory Usage: 6.63 MB (0.0% of available memory) Data preprocessing and feature engineering runtime = 0.15s ... AutoGluon will gauge predictive performance using evaluation metric:

```
'mean_absolute_error'
        This metric's sign has been flipped to adhere to being higher_is_better.
The metric score can be multiplied by -1 to get the metric value.
        To change this, specify the eval_metric parameter of Predictor()
use bag holdout=True, will use tuning data as holdout (will not be used for
early stopping).
User-specified model hyperparameters to be fit:
        'NN TORCH': {},
        'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {},
'GBMLarge'],
        'CAT': {},
        'XGB': {},
        'FASTAI': {},
        'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}},
{'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
Training model for location A...
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif BAG_L1 ... Training model for up to 1799.85s of
the 1799.85s of remaining time.
                         = Validation score (-mean absolute error)
        -140.7607
        0.03s
                = Training
                              runtime
        0.37s
                = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 1799.34s of
the 1799.34s of remaining time.
        -140.9568
                         = Validation score (-mean absolute error)
        0.03s
                = Training
                             runtime
                = Validation runtime
        0.37s
Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 1798.88s of the
1798.88s of remaining time.
        Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                         = Validation score (-mean_absolute_error)
        -95.4279
        30.28s
                = Training
                             runtime
        12.83s
                 = Validation runtime
Fitting model: LightGBM_BAG_L1 ... Training model for up to 1759.26s of the
```

1759.26s of remaining time.

Fitting 8 child models (S1F1 - S1F8) | Fitting with

ParallelLocalFoldFittingStrategy

-98.3654 = Validation score (-mean_absolute_error)

23.39s = Training runtime

3.38s = Validation runtime

Fitting model: RandomForestMSE_BAG_L1 ... Training model for up to 1732.6s of the 1732.6s of remaining time.

-109.0003 = Validation score (-mean absolute error)

6.33s = Training runtime

1.19s = Validation runtime

Fitting model: CatBoost_BAG_L1 ... Training model for up to 1723.76s of the 1723.75s of remaining time.

Fitting 8 child models (S1F1 - S1F8) | Fitting with

ParallelLocalFoldFittingStrategy

-105.2989 = Validation score (-mean_absolute_error)

190.92s = Training runtime

0.11s = Validation runtime

Fitting model: ExtraTreesMSE_BAG_L1 ... Training model for up to 1531.67s of the 1531.66s of remaining time.

-113.7193 = Validation score (-mean_absolute_error)

1.45s = Training runtime

1.18s = Validation runtime

Fitting model: NeuralNetFastAI_BAG_L1 ... Training model for up to 1527.68s of the 1527.68s of remaining time.

Fitting 8 child models (S1F1 - S1F8) | Fitting with

ParallelLocalFoldFittingStrategy

-108.1271 = Validation score (-mean_absolute_error)

38.92s = Training runtime

0.56s = Validation runtime

Fitting model: XGBoost_BAG_L1 ... Training model for up to 1486.97s of the 1486.97s of remaining time.

Fitting 8 child models (S1F1 - S1F8) | Fitting with

ParallelLocalFoldFittingStrategy

-102.6135 = Validation score (-mean_absolute_error)

8.73s = Training runtime

0.34s = Validation runtime

Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 1476.11s of the 1476.11s of remaining time.

Fitting 8 child models (S1F1 - S1F8) | Fitting with

ParallelLocalFoldFittingStrategy

-95.0881 = Validation score (-mean_absolute_error)

107.54s = Training runtime

0.37s = Validation runtime

Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 1367.18s of the 1367.17s of remaining time.

Fitting 8 child models (S1F1 - S1F8) | Fitting with

ParallelLocalFoldFittingStrategy

```
-97.7935
                             = Validation score (-mean_absolute_error)
            90.77s = Training runtime
            17.6s
                    = Validation runtime
    Repeating k-fold bagging: 2/20
    Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 1266.0s of the
    1265.99s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -95.1885
                             = Validation score (-mean absolute error)
            61.78s
                   = Training
                                  runtime
            23.97s = Validation runtime
    Fitting model: LightGBM_BAG_L1 ... Training model for up to 1228.88s of the
    1228.88s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -97.9718
                             = Validation score (-mean_absolute_error)
            46.17s = Training
                                  runtime
            8.24s
                    = Validation runtime
    Fitting model: CatBoost_BAG_L1 ... Training model for up to 1201.53s of the
    1201.53s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -105.2287
                             = Validation score (-mean absolute error)
            383.15s = Training
                                  runtime
                    = Validation runtime
    Fitting model: NeuralNetFastAI BAG L1 ... Training model for up to 1007.86s of
    the 1007.85s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -108.1618
                             = Validation score (-mean_absolute_error)
            78.38s = Training
                                  runtime
                     = Validation runtime
    Fitting model: XGBoost_BAG_L1 ... Training model for up to 965.99s of the
    965.98s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
                             = Validation score (-mean absolute error)
            -102.2023
            17.15s = Training
                                  runtime
                    = Validation runtime
    Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 955.96s of the
    955.96s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
[]: import matplotlib.pyplot as plt
    leaderboards = [None, None, None]
```

```
def leaderboard_for_location(i, loc):
          if use_test_data:
              lb = predictors[i].leaderboard(test_data[test_data["location"] == loc])
              lb["location"] = loc
             plt.scatter(test_data[test_data["location"] == loc]["y"].index,__
       stest_data[test_data["location"] == loc]["y"])
              if use tune data:
                  plt.scatter(tuning_data[tuning_data["location"] == loc]["y"].index,__
       stuning_data[tuning_data["location"] == loc]["y"])
             plt.show()
             return 1b
          else:
             return pd.DataFrame()
      leaderboards[0] = leaderboard_for_location(0, loc)
[13]: loc = "B"
      predictors[1] = fit_predictor_for_location(loc)
      leaderboards[1] = leaderboard_for_location(1, loc)
             -16.3215
                              = Validation score
                                                   (-mean absolute error)
             385.35s = Training
                                  runtime
                      = Validation runtime
     Fitting model: NeuralNetFastAI_BAG_L1 ... Training model for up to 854.02s of
     the 854.02s of remaining time.
             Fitting 8 child models (S2F1 - S2F8) | Fitting with
     ParallelLocalFoldFittingStrategy
             -14.193 = Validation score
                                           (-mean absolute error)
             77.43s = Training runtime
                      = Validation runtime
     Fitting model: XGBoost_BAG_L1 ... Training model for up to 812.89s of the
     812.88s of remaining time.
             Fitting 8 child models (S2F1 - S2F8) | Fitting with
     ParallelLocalFoldFittingStrategy
             -15.1244
                              = Validation score (-mean_absolute_error)
             152.45s = Training
                                  runtime
             48.94s
                      = Validation runtime
     Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 728.57s of the
     728.57s of remaining time.
             Fitting 8 child models (S2F1 - S2F8) | Fitting with
     ParallelLocalFoldFittingStrategy
             -11.751 = Validation score
                                           (-mean_absolute_error)
             351.21s = Training runtime
                      = Validation runtime
     Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 550.0s of the
     550.0s of remaining time.
             Fitting 8 child models (S2F1 - S2F8) | Fitting with
```

```
ParallelLocalFoldFittingStrategy
        -14.2513
                         = Validation score (-mean_absolute_error)
        186.52s = Training
                              runtime
        41.83s
                = Validation runtime
Completed 2/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble_L2 ... Training model for up to 360.0s of the
442.77s of remaining time.
        -11.6597
                         = Validation score
                                              (-mean absolute error)
        0.43s
                = Training
                             runtime
                 = Validation runtime
        0.0s
AutoGluon training complete, total runtime = 1357.68s ... Best model:
"WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor =
TabularPredictor.load("AutogluonModels/submission_101 B/")
Evaluation: mean_absolute_error on test data: -14.547869225363064
        Note: Scores are always higher_is_better. This metric score can be
multiplied by -1 to get the metric value.
Evaluations on test data:
{
    "mean absolute error": -14.547869225363064,
    "root mean squared error": -44.85425668975588,
    "mean_squared_error": -2011.90434319051,
    "r2": 0.909051782885076,
    "pearsonr": 0.9548156385330459,
    "median_absolute_error": -0.37705013155937195
}
Evaluation on test data:
-14.547869225363064
                     model score_test score_val pred_time_test pred_time_val
fit time pred time test marginal pred time val marginal fit time marginal
stack_level can_infer fit_order
    NeuralNetTorch_BAG_L1 -14.489736 -11.751021
                                                         0.351410
                                                                        0.662124
351.210851
                           0.351410
                                                   0.662124
                                                                    351.210851
        True
                     10
       WeightedEnsemble_L2 -14.547869 -11.659718
                                                         1.207992
                                                                        2.057405
738.400992
                           0.003429
                                                   0.000540
                                                                      0.426711
2
        True
                     12
   NeuralNetFastAI_BAG_L1 -16.326178 -14.193033
                                                                        1.049720
                                                         1.020282
                                                                    77.426473
77.426473
                          1.020282
                                                  1.049720
1
        True
                      8
      LightGBMLarge_BAG_L1 -16.867807 -14.251304
                                                         8.466552
                                                                       41.832313
186.524971
                           8.466552
                                                  41.832313
                                                                    186.524971
1
        True
                     11
                                                         4.588538
            XGBoost_BAG_L1 -17.886484 -15.124446
                                                                       48.941980
152.446251
                           4.588538
                                                  48.941980
                                                                    152.446251
                      9
1
        True
5
           LightGBM_BAG_L1 -18.015132 -15.396378
                                                         2.733061
                                                                       25.483243
```

60.669254		2	2.733061		25.483243	
1	True	4				
6	CatBo	ost_BAG_L1	-18.516337	-16.321547	0.191183	0.214026
385.354122			0.191183		0.214026	385.354122
1	True	6				
7	LightGB	MXT_BAG_L1	-19.090083	-15.743320	2.770541	29.846826
58.484428		2	2.770541		29.846826	58.484428
1	True	3				
8	ExtraTrees	MSE_BAG_L1	-19.373523	-15.172927	0.661969	1.180715
1.409308		0.	0.661969		1.180715	
1	True	7				
9	RandomForest	MSE_BAG_L1	-20.019074	-15.782449	0.560164	1.152136
7.220658		0.	560164	1	. 152136	7.220658
1	True	5				
10	KNeighborsD	ist_BAG_L1	-30.089573	-23.622609	0.017341	1.242610
0.026984		0.	0.017341		1.242610	
	True					
					0.019941	
0.028449		0.	019941	O	.452281	0.028449
1	True	1				


```
[14]: loc = "C"
      predictors[2] = fit_predictor_for_location(loc)
      leaderboards[2] = leaderboard_for_location(2, loc)
     Beginning AutoGluon training ... Time limit = 1800s
     AutoGluon will save models to "AutogluonModels/submission 101 C/"
     AutoGluon Version: 0.8.2
     Python Version:
                         3.10.12
     Operating System:
                         Linux
     Platform Machine:
                         x86 64
     Platform Version: #1 SMP Debian 5.10.197-1 (2023-09-29)
     Disk Space Avail: 129.79 GB / 315.93 GB (41.1%)
     Train Data Rows:
                         24594
     Train Data Columns: 28
     Tuning Data Rows:
                          737
     Tuning Data Columns: 28
     Label Column: y
     Preprocessing data ...
     AutoGluon infers your prediction problem is: 'regression' (because dtype of
     label-column == float and label-values can't be converted to int).
             Label info (max, min, mean, stddev): (999.6, -0.0, 79.8926, 168.407)
             If 'regression' is not the correct problem_type, please manually specify
     the problem_type parameter during predictor init (You may specify problem_type
     as one of: ['binary', 'multiclass', 'regression'])
     Using Feature Generators to preprocess the data ...
     Fitting AutoMLPipelineFeatureGenerator...
             Available Memory:
                                                   130059.28 MB
             Train Data (Original) Memory Usage: 6.94 MB (0.0% of available memory)
     Training model for location C...
             Inferring data type of each feature based on column values. Set
     feature_metadata_in to manually specify special dtypes of the features.
             Stage 1 Generators:
                     Fitting AsTypeFeatureGenerator...
                             Note: Converting 1 features to boolean dtype as they
     only contain 2 unique values.
             Stage 2 Generators:
                     Fitting FillNaFeatureGenerator...
             Stage 3 Generators:
                     Fitting IdentityFeatureGenerator...
             Stage 4 Generators:
                     Fitting DropUniqueFeatureGenerator...
             Stage 5 Generators:
                     Fitting DropDuplicatesFeatureGenerator...
             Useless Original Features (Count: 2): ['elevation:m', 'location']
                     These features carry no predictive signal and should be manually
     investigated.
                     This is typically a feature which has the same value for all
```

```
rows.
```

```
These features do not need to be present at inference time.
        Types of features in original data (raw dtype, special dtypes):
                ('float', []) : 25 | ['ceiling_height_agl:m',
'clear_sky_energy_1h:J', 'cloud_base_agl:m', 'diffuse_rad:W',
'diffuse_rad_1h:J', ...]
                ('int', [])
                            : 1 | ['is estimated']
        Types of features in processed data (raw dtype, special dtypes):
                ('float', [])
                                  : 25 | ['ceiling height agl:m',
'clear_sky_energy_1h:J', 'cloud_base_agl:m', 'diffuse_rad:W',
'diffuse_rad_1h:J', ...]
                ('int', ['bool']) : 1 | ['is_estimated']
        0.1s = Fit runtime
        26 features in original data used to generate 26 features in processed
data.
        Train Data (Processed) Memory Usage: 5.09 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.13s ...
AutoGluon will gauge predictive performance using evaluation metric:
'mean_absolute_error'
        This metric's sign has been flipped to adhere to being higher is better.
The metric score can be multiplied by -1 to get the metric value.
        To change this, specify the eval metric parameter of Predictor()
use_bag_holdout=True, will use tuning_data as holdout (will not be used for
early stopping).
User-specified model hyperparameters to be fit:
{
        'NN_TORCH': {},
        'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {},
'GBMLarge'],
        'CAT': {},
        'XGB': {},
        'FASTAI': {},
        'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name suffix': 'Entr', 'problem types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem types': ['regression', 'quantile']}}],
        'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}},
{'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif_BAG_L1 ... Training model for up to 1799.87s of
the 1799.87s of remaining time.
```

```
0.02s = Training runtime
       0.27s
                = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 1799.52s of
the 1799.52s of remaining time.
        -23.7005
                        = Validation score (-mean absolute error)
       0.02s = Training runtime
       0.34s
                = Validation runtime
Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 1799.1s of the
1799.1s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -12.464 = Validation score
                                     (-mean_absolute_error)
       27.71s
                = Training
                             runtime
                = Validation runtime
       9.72s
Fitting model: LightGBM_BAG_L1 ... Training model for up to 1767.42s of the
1767.42s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -13.7205
                        = Validation score (-mean absolute error)
       26.49s = Training
                            runtime
       6.44s
                = Validation runtime
Fitting model: RandomForestMSE_BAG_L1 ... Training model for up to 1737.52s of
the 1737.52s of remaining time.
       -16.4245
                        = Validation score (-mean absolute error)
       3.86s = Training
                            runtime
                = Validation runtime
       0.76s
Fitting model: CatBoost_BAG_L1 ... Training model for up to 1732.26s of the
1732.25s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -13.4305
                        = Validation score (-mean_absolute_error)
       184.47s = Training
                            runtime
              = Validation runtime
Fitting model: ExtraTreesMSE BAG L1 ... Training model for up to 1546.52s of the
1546.52s of remaining time.
       -16.1959
                        = Validation score (-mean absolute error)
       0.93s = Training
                             runtime
       0.78s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ... Training model for up to 1544.1s of
the 1544.1s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -14.7987
                        = Validation score (-mean absolute error)
        31.64s = Training
                             runtime
                = Validation runtime
Fitting model: XGBoost_BAG_L1 ... Training model for up to 1510.79s of the
1510.79s of remaining time.
```

(-mean_absolute_error)

-23.649 = Validation score

```
ParallelLocalFoldFittingStrategy
       -13.5135
                        = Validation score (-mean_absolute_error)
       43.75s
               = Training
                             runtime
       2.49s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 1463.86s of
the 1463.86s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -13.2172
                        = Validation score (-mean_absolute_error)
       92.48s = Training
                             runtime
       0.26s = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 1369.98s of the
1369.98s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -12.8764
                        = Validation score (-mean_absolute_error)
       88.53s
               = Training
                            runtime
       12.53s = Validation runtime
Repeating k-fold bagging: 2/20
Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 1273.04s of the
1273.03s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -12.3868
                        = Validation score (-mean absolute error)
       57.27s = Training
                            runtime
       22.75s = Validation runtime
Fitting model: LightGBM_BAG_L1 ... Training model for up to 1238.28s of the
1238.27s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -13.5816
       52.39s = Training
                            runtime
       11.54s = Validation runtime
Fitting model: CatBoost BAG L1 ... Training model for up to 1207.83s of the
1207.83s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -13.3746
                        = Validation score (-mean_absolute_error)
       370.14s = Training
                            runtime
                = Validation runtime
       0.18s
Fitting model: NeuralNetFastAI BAG L1 ... Training model for up to 1020.81s of
the 1020.81s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -14.7932
                        = Validation score (-mean_absolute_error)
       62.91s = Training
                             runtime
       0.87s = Validation runtime
```

Fitting 8 child models (S1F1 - S1F8) | Fitting with

Fitting model: XGBoost_BAG_L1 ... Training model for up to 987.16s of the 987.16s of remaining time. Fitting 8 child models (S2F1 - S2F8) | Fitting with ParallelLocalFoldFittingStrategy = Validation score (-mean absolute error) -13.657481.56s = Training runtime 4.68s = Validation runtime Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 945.57s of the 945.57s of remaining time. Fitting 8 child models (S2F1 - S2F8) | Fitting with ParallelLocalFoldFittingStrategy -13.3958 = Validation score (-mean_absolute_error) 164.59s = Training runtime = Validation runtime Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 871.89s of the 871.89s of remaining time. Fitting 8 child models (S2F1 - S2F8) | Fitting with ParallelLocalFoldFittingStrategy -12.8074= Validation score (-mean_absolute_error) 176.26s = Training runtime 22.76s = Validation runtime Repeating k-fold bagging: 3/20 Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 772.19s of the 772.19s of remaining time. Fitting 8 child models (S3F1 - S3F8) | Fitting with ParallelLocalFoldFittingStrategy -12.3667 = Validation score (-mean_absolute_error) 84.13s = Training runtime 34.2s = Validation runtime Fitting model: LightGBM_BAG_L1 ... Training model for up to 738.9s of the 738.9s of remaining time. Fitting 8 child models (S3F1 - S3F8) | Fitting with ParallelLocalFoldFittingStrategy -13.555 = Validation score (-mean_absolute_error) 76.32s = Training runtime 16.14s = Validation runtime Fitting model: CatBoost BAG L1 ... Training model for up to 709.54s of the 709.54s of remaining time. Fitting 8 child models (S3F1 - S3F8) | Fitting with ParallelLocalFoldFittingStrategy -13.3762 = Validation score (-mean_absolute_error) 555.1s = Training runtime 0.27s = Validation runtime Fitting model: NeuralNetFastAI_BAG_L1 ... Training model for up to 523.16s of the 523.16s of remaining time. Fitting 8 child models (S3F1 - S3F8) | Fitting with ParallelLocalFoldFittingStrategy

= Validation score (-mean_absolute_error)

-14.7958

```
94.98s = Training
                             runtime
        1.28s = Validation runtime
Fitting model: XGBoost_BAG_L1 ... Training model for up to 488.47s of the
488.47s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -13.612 = Validation score
                                      (-mean absolute error)
        124.68s = Training
                             runtime
                = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 440.97s of the
440.97s of remaining time.
        Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
                         = Validation score (-mean absolute error)
        -13.3421
        251.81s = Training
                             runtime
                = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 352.05s of the
352.04s of remaining time.
        Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -12.8232
                         = Validation score (-mean absolute error)
       262.66s = Training
                             runtime
        33.03s = Validation runtime
Completed 3/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble_L2 ... Training model for up to 360.0s of the
250.2s of remaining time.
        -11.6491
                         = Validation score (-mean_absolute_error)
        0.43s
                = Training
                             runtime
        0.0s
                 = Validation runtime
AutoGluon training complete, total runtime = 1550.25s ... Best model:
"WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor =
TabularPredictor.load("AutogluonModels/submission_101_C/")
Evaluation: mean_absolute_error on test data: -11.584846974967073
       Note: Scores are always higher is better. This metric score can be
multiplied by -1 to get the metric value.
Evaluations on test data:
    "mean_absolute_error": -11.584846974967073,
    "root_mean_squared_error": -33.28157104597867,
    "mean_squared_error": -1107.662971288526,
    "r2": 0.9119603983629877,
    "pearsonr": 0.9553301989877001,
    "median_absolute_error": -0.5380167663097382
}
Evaluation on test data:
-11.584846974967073
```

model score_test score_val pred_time_test pred_time_val fit_time pred_time_test_marginal pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order WeightedEnsemble_L2 -11.584847 -11.649102 15.890272 68.017162 599.024821 0.003410 0.000649 2 True 12 0.426667 1 LightGBMXT_BAG_L1 -12.414818 -12.366686 5.450568 34.196357 84.132116 5.450568 34.196357 84.132116 1 True 3 LightGBMLarge_BAG_L1 -12.543343 -12.823171 9.914580 33.028136 262.660037 9.914580 33.028136 262.660037 1 True 11 3 NeuralNetTorch_BAG_L1 -12.844010 -13.342115 0.521714 0.79201 251.806001 0.521714 0.792019 251.806001 0.792019 True 10 4 LightGBM_BAG_L1 -13.018393 -13.555035 4.026720 16.1357 76.315174 4.026720 16.135706 76.315174 16.135706 1 True 4 5 XGBoost_BAG_L1 -13.618762 -13.612037 1.837001 6.100511 1.837001 6.100511 124.681797 124.681797 True 9 6 CatBoost_BAG_L1 -13.908382 -13.376167 0.210222 0.273467 555.101594 0.210222 0.273467 1 True 6 7 NeuralNetFastAI_BAG_L1 -14.484465 -14.795795 1.373520 1.280287 94.977746 1.373520 1.280287 94.977746 1 True 8 8 ExtraTreesMSE_BAG_L1 -15.827128 -16.195930 0.396986 0.775828 0.931813 0.396986 0.775828 0.931813 7 9 RandomForestMSE_BAG_L1 -16.451605 -16.424500 0.334966 0.761000 3.862862 0.334966 0.761000 3.862862 1 True 5

 10
 KNeighborsDist_BAG_L1
 -23.919280
 -23.700527
 0.013227
 0.338

 0.021528
 0.013227
 0.338030
 0.021528

 0.338030 1 True 11 KNeighborsUnif_BAG_L1 -24.102600 -23.649027 0.028486 0.269659 0.020741 0.028486 0.269659 0.020741 1 True 1


```
[]: # save leaderboards to csv pd.concat(leaderboards).to_csv(f"leaderboards/{new_filename}.csv")
```

3 Submit

```
[]: import pandas as pd
import matplotlib.pyplot as plt

future_test_data = TabularDataset('X_test_raw.csv')
future_test_data["ds"] = pd.to_datetime(future_test_data["ds"])
#test_data
#test_data
```

Loaded data from: X_test_raw.csv | Columns = 29 / 29 | Rows = 4608 -> 4608

```
[]: test_ids = TabularDataset('test.csv')
  test_ids["time"] = pd.to_datetime(test_ids["time"])
  # merge test_data with test_ids
  future_test_data_merged = pd.merge(future_test_data, test_ids, how="inner", useright_on=["time", "location"], left_on=["ds", "location"])

#test_data_merged
```

```
[]: # predict, grouped by location
     predictions = []
     location_map = {
         "A": 0,
         "B": 1,
         "C": 2
     }
     for loc, group in future_test_data.groupby('location'):
         i = location map[loc]
         subset = future_test_data_merged[future_test_data_merged["location"] ==_
      ⇒loc].reset index(drop=True)
         #print(subset)
         pred = predictors[i].predict(subset)
         subset["prediction"] = pred
         predictions.append(subset)
         # get past predictions
         train_data.loc[train_data["location"] == loc, "prediction"] = __
      opredictors[i].predict(train_data[train_data["location"] == loc])
         if use_tune_data:
             tuning_data.loc[tuning_data["location"] == loc, "prediction"] = ___
      predictors[i].predict(tuning_data[tuning_data["location"] == loc])
         if use test data:
             test_data.loc[test_data["location"] == loc, "prediction"] = __
      predictors[i].predict(test data[test data["location"] == loc])
[]: | # plot predictions for location A, in addition to train data for A
```

```
for loc, idx in location_map.items():
    fig, ax = plt.subplots(figsize=(20, 10))
    # plot train data
    train_data[train_data["location"] == loc].plot(x='ds', y='y', ax=ax,__
 ⇔label="train data")
    if use tune data:
        tuning_data[tuning_data["location"] == loc].plot(x='ds', y='y', ax=ax,__
 ⇔label="tune data")
    if use test data:
        test_data[test_data["location"] == loc].plot(x='ds', y='y', ax=ax,__
 ⇔label="test data")
    # plot predictions
    predictions[idx].plot(x='ds', y='prediction', ax=ax, label="predictions")
    # plot past predictions
    \#train\_data\_with\_dates[train\_data\_with\_dates["location"] == loc].plot(x='ds', \_
 ⇒y='prediction', ax=ax, label="past predictions")
```

```
train_data[train_data["location"] == loc].plot(x='ds', y='prediction', ax=ax, u)
shabel="past predictions train")
if use_tune_data:
    tuning_data[tuning_data["location"] == loc].plot(x='ds', y='prediction', u)
shax=ax, label="past predictions tune")
if use_test_data:
    test_data[test_data["location"] == loc].plot(x='ds', y='prediction', u)
shax=ax, label="past predictions test")

# title
ax.set_title(f"Predictions for location {loc}")
```



```
[]: temp_predictions = [prediction.copy() for prediction in predictions]
     if clip_predictions:
         # clip predictions smaller than 0 to 0
         for pred in temp_predictions:
             # print smallest prediction
             print("Smallest prediction:", pred["prediction"].min())
             pred.loc[pred["prediction"] < 0, "prediction"] = 0</pre>
             print("Smallest prediction after clipping:", pred["prediction"].min())
     # Instead of clipping, shift all prediction values up by the largest negative
      \rightarrownumber.
     # This way, the smallest prediction will be 0.
     elif shift_predictions:
         for pred in temp_predictions:
             # print smallest prediction
             print("Smallest prediction:", pred["prediction"].min())
             pred["prediction"] = pred["prediction"] - pred["prediction"].min()
             print("Smallest prediction after clipping:", pred["prediction"].min())
     elif shift_predictions_by_average_of_negatives_then_clip:
         for pred in temp_predictions:
             # print smallest prediction
             print("Smallest prediction:", pred["prediction"].min())
             mean_negative = pred[pred["prediction"] < 0]["prediction"].mean()</pre>
             # if not nan
             if mean_negative == mean_negative:
```

```
pred["prediction"] = pred["prediction"] - mean_negative
             pred.loc[pred["prediction"] < 0, "prediction"] = 0</pre>
             print("Smallest prediction after clipping:", pred["prediction"].min())
     # concatenate predictions
     submissions_df = pd.concat(temp_predictions)
     submissions_df = submissions_df[["id", "prediction"]]
     submissions df
    Smallest prediction: -16.878181
    Smallest prediction after clipping: 0.0
    Smallest prediction: 0.07609784
    Smallest prediction after clipping: 0.07609784
    Smallest prediction: -3.4177196
    Smallest prediction after clipping: 0.0
[]:
           id prediction
     0
            0
                 0.000000
                 0.000000
     1
            1
     2
            2
                 0.000000
     3
            3 61.788113
     4
            4 296.051880
     715 2155
               70.078865
    716 2156
                43.007858
    717 2157
               10.200218
     718 2158
                 4.401361
     719 2159
                 0.849800
     [2160 rows x 2 columns]
[]: # Save the submission DataFrame to submissions folder, create new name based on
     alast submission, format is submission_<last_submission_number + 1>.csv
     # Save the submission
     print(f"Saving submission to submissions/{new_filename}.csv")
     submissions_df.to_csv(os.path.join('submissions', f"{new_filename}.csv"),__
     →index=False)
     print("jall1a")
    Saving submission to submissions/submission_101.csv
    jall1a
[]: train_data_with_dates = TabularDataset('X_train_raw.csv')
     train_data_with_dates["ds"] = pd.to_datetime(train_data_with_dates["ds"])
```

Loaded data from: X_train_raw.csv | Columns = 30 / 30 | Rows = 92945 -> 92945 These features in provided data are not utilized by the predictor and will be ignored: ['ds', 'elevation:m', 'location']

Computing feature importance via permutation shuffling for 26 features using 4392 rows with 10 shuffle sets... Time limit: 600s...

1858.07s = Expected runtime (185.81s per shuffle set)
564.33s = Actual runtime (Completed 5 of 10 shuffle sets) (Early stopping due to lack of time...)

```
[]:
                                   importance
                                                 stddev
                                                             p value n
    direct_rad_1h:J
                                   174.758804 1.385776 4.744175e-10
                                   120.681118 1.767450 5.519356e-09
    clear_sky_energy_1h:J
    diffuse_rad_1h:J
                                    91.116242 1.237380 4.080410e-09 5
    diffuse_rad:W
                                    84.881611 1.184729 4.552924e-09 5
    direct_rad:W
                                    80.238447 1.949325 4.176824e-08 5
                                    61.935056 1.761940 7.851108e-08 5
    sun_elevation:d
                                    51.658621 3.061597 1.473570e-06 5
    sun_azimuth:d
                                    29.954183 1.199781 3.081984e-07
    effective_cloud_cover:p
    sfc_pressure:hPa
                                    20.717220 2.138205 1.342484e-05 5
    total_cloud_cover:p
                                    19.316892 0.960869 7.322466e-07
    is_in_shadow:idx
                                    15.526777 0.518693 1.492284e-07 5
                                    14.541732 0.706230 6.654835e-07 5
    snow_water:kgm2
                                    13.896670 0.740659 9.646449e-07
    relative_humidity_1000hPa:p
    t 1000hPa:K
                                    13.122288 1.133759 6.620869e-06 5
                                    12.813578  0.989004  4.225220e-06  5
    visibility:m
    ceiling_height_agl:m
                                    12.175750 0.728600 1.531388e-06 5
    cloud_base_agl:m
                                    12.174280 0.614288 7.752191e-07 5
    wind_speed_10m:ms
                                     9.728451 0.535143 1.094294e-06 5
    is_day:idx
                                     8.864305 0.477792 1.008965e-06 5
                                     8.810844 0.434730 7.088907e-07 5
    fresh_snow_6h:cm
                                     5.405043 0.792973 5.403276e-05 5
    super_cooled_liquid_water:kgm2
                                     5.397076 0.817897 6.139860e-05 5
    precip_type_5min:idx
    fresh_snow_3h:cm
                                     2.969766 0.446444 5.948215e-05 5
    snow_depth:cm
                                     2.947989 0.649037 2.646037e-04
    fresh_snow_1h:cm
                                     2.447736  0.362044  5.579644e-05  5
    is_estimated
                                     0.000000 0.000000 5.000000e-01 5
                                     p99_high
                                                 p99_low
    direct_rad_1h:J
                                   177.612136 171.905472
```

```
clear_sky_energy_1h:J
                                124.320322 117.041914
diffuse_rad_1h:J
                                 93.664025
                                             88.568460
diffuse_rad:W
                                 87.320985
                                             82.442237
direct_rad:W
                                 84.252133
                                             76.224761
                                             58.307197
sun_elevation:d
                                 65.562914
sun_azimuth:d
                                 57.962491
                                             45.354751
effective_cloud_cover:p
                                             27.483818
                                 32.424548
sfc_pressure:hPa
                                 25.119813
                                             16.314627
total cloud cover:p
                                 21.295334
                                             17.338449
is in shadow:idx
                                             14.458781
                                 16.594773
snow water:kgm2
                                 15.995870
                                             13.087594
relative_humidity_1000hPa:p
                                             12.371643
                                 15.421696
t 1000hPa:K
                                 15.456713
                                             10.787864
visibility:m
                                 14.849950
                                             10.777206
ceiling_height_agl:m
                                 13.675948
                                             10.675552
cloud_base_agl:m
                                 13.439108
                                             10.909451
wind_speed_10m:ms
                                              8.626585
                                 10.830317
is_day:idx
                                  9.848084
                                              7.880525
fresh_snow_6h:cm
                                  9.705959
                                              7.915730
                                               3.772300
super_cooled_liquid_water:kgm2
                                  7.037786
precip_type_5min:idx
                                  7.081137
                                              3.713015
fresh snow 3h:cm
                                  3.889001
                                              2.050532
snow_depth:cm
                                  4.284365
                                               1.611613
fresh snow 1h:cm
                                  3.193190
                                               1.702281
is_estimated
                                  0.000000
                                               0.00000
```

[]: # feature importance

These features in provided data are not utilized by the predictor and will be ignored: ['ds', 'elevation:m', 'location']

Computing feature importance via permutation shuffling for 26 features using 5000 rows with 10 shuffle sets... Time limit: 600s...

2130.12s = Expected runtime (213.01s per shuffle set) 569.03s = Actual runtime (Completed 4 of 10 shuffle sets) (Early stopping due to lack of time...)

```
[]:
                                     importance
                                                       stddev
                                                                   p_value n
    direct_rad_1h:J
                                   2.979640e+02 7.742726e+00 2.417003e-06 4
    clear_sky_energy_1h:J
                                   2.209681e+02 9.822432e+00 1.208502e-05 4
    diffuse_rad_1h:J
                                   1.407333e+02 7.063642e+00 1.738850e-05 4
    diffuse rad:W
                                   1.374164e+02 7.932426e+00 2.643334e-05 4
    sun elevation:d
                                   1.086858e+02 7.045457e+00 3.740413e-05 4
    direct rad:W
                                   1.079841e+02 3.567674e+00 4.965927e-06 4
    sun_azimuth:d
                                   1.000221e+02 4.298227e+00 1.091969e-05 4
```

```
effective_cloud_cover:p
                               5.132260e+01
                                             1.807393e+00
                                                           6.013092e-06
t_1000hPa:K
                               4.585019e+01
                                             9.698193e-01
                                                           1.303842e-06
                                                                        4
ceiling_height_agl:m
                               3.442258e+01 1.177199e+00
                                                           5.506973e-06
                                                                        4
sfc_pressure:hPa
                               3.296733e+01
                                             1.655336e+00
                                                           1.740897e-05
                                                                        4
                               3.234283e+01 1.613807e+00 1.708438e-05 4
visibility:m
relative_humidity_1000hPa:p
                               3.163136e+01
                                             1.637891e+00
                                                           1.908995e-05
                                                                        4
wind speed 10m:ms
                               2.991173e+01
                                             1.924733e-01
                                                          3.672161e-08 4
cloud_base_agl:m
                               2.981524e+01
                                             1.391653e+00
                                                          1.398871e-05 4
total cloud cover:p
                               2.653299e+01
                                             1.212222e+00
                                                           1.311967e-05 4
snow water:kgm2
                               2.382866e+01
                                             1.286464e+00 2.163251e-05
precip type 5min:idx
                               2.226013e+01
                                             1.505111e+00 4.243157e-05
                                                                        4
super_cooled_liquid_water:kgm2
                               2.057215e+01 7.752532e-01 7.366942e-06 4
is in shadow:idx
                               1.950323e+01 2.203955e+00
                                                          1.966394e-04 4
is_day:idx
                               1.233222e+01
                                             1.283926e+00 1.540374e-04 4
fresh_snow_6h:cm
                               2.728599e+00
                                             3.015600e-01
                                                           1.840345e-04 4
snow_depth:cm
                               1.646735e+00 3.652632e-01
                                                           1.440103e-03 4
fresh_snow_3h:cm
                               6.826377e-01 3.024028e-01 1.015541e-02 4
fresh_snow_1h:cm
                                                           2.073566e-02
                               4.674250e-01
                                             2.723762e-01
                                                                        4
is_estimated
                               5.015735e-09 1.799561e-08
                                                          3.080590e-01 4
                                   p99_high
                                                  p99_low
direct rad 1h:J
                               3.205763e+02 2.753517e+02
clear_sky_energy_1h:J
                               2.496540e+02 1.922821e+02
diffuse rad 1h:J
                               1.613624e+02 1.201043e+02
diffuse rad:W
                               1.605827e+02 1.142501e+02
sun elevation:d
                               1.292618e+02 8.810988e+01
direct_rad:W
                               1.184033e+02 9.756485e+01
sun_azimuth:d
                               1.125748e+02 8.746929e+01
effective_cloud_cover:p
                               5.660100e+01 4.604419e+01
t_1000hPa:K
                               4.868250e+01 4.301788e+01
                               3.786053e+01 3.098462e+01
ceiling_height_agl:m
sfc_pressure:hPa
                               3.780166e+01
                                             2.813300e+01
visibility:m
                               3.705588e+01 2.762978e+01
relative_humidity_1000hPa:p
                               3.641475e+01 2.684798e+01
wind_speed_10m:ms
                               3.047384e+01 2.934962e+01
cloud_base_agl:m
                               3.387950e+01 2.575098e+01
total cloud cover:p
                               3.007323e+01 2.299276e+01
snow_water:kgm2
                               2.758572e+01 2.007160e+01
precip type 5min:idx
                               2.665574e+01 1.786453e+01
super_cooled_liquid_water:kgm2
                               2.283625e+01 1.830806e+01
is in shadow:idx
                               2.593978e+01 1.306668e+01
is_day:idx
                               1.608187e+01 8.582576e+00
fresh_snow_6h:cm
                               3.609291e+00 1.847907e+00
snow_depth:cm
                               2.713470e+00 5.800004e-01
fresh_snow_3h:cm
                               1.565791e+00 -2.005158e-01
fresh_snow_1h:cm
                               1.262887e+00 -3.280375e-01
is_estimated
                               5.757109e-08 -4.753962e-08
```

```
[]: # save this running notebook
     from IPython.display import display, Javascript
     import time
     # hei123
     display(Javascript("IPython.notebook.save_checkpoint();"))
     time.sleep(3)
    <IPython.core.display.Javascript object>
[]: # save this notebook to submissions folder
     import subprocess
     import os
     #subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output", os.path.
      \rightarrow join("notebook\_pdfs", f"{new\_filename}.pdf"), "autogluon\_each\_location.
      ⇔ipynb"])
    [NbConvertApp] Converting notebook autogluon_each_location.ipynb to pdf
    /opt/conda/lib/python3.10/site-packages/nbconvert/utils/pandoc.py:51:
    RuntimeWarning: You are using an unsupported version of pandoc (2.9.2.1).
    Your version must be at least (2.14.2) but less than (4.0.0).
    Refer to https://pandoc.org/installing.html.
    Continuing with doubts...
      check_pandoc_version()
    [NbConvertApp] Support files will be in notebook_pdfs/submission_101_files/
    [NbConvertApp] Making directory
    ./notebook_pdfs/submission_101_files/notebook_pdfs
    [NbConvertApp] Writing 183909 bytes to notebook.tex
    [NbConvertApp] Building PDF
    [NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.tex', '-quiet']
    [NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
    [NbConvertApp] WARNING | bibtex had problems, most likely because there were no
    citations
    [NbConvertApp] PDF successfully created
    [NbConvertApp] Writing 1904761 bytes to notebook_pdfs/submission_101.pdf
[]: CompletedProcess(args=['jupyter', 'nbconvert', '--to', 'pdf', '--output',
     'notebook_pdfs/submission_101.pdf', 'autogluon_each_location.ipynb'],
    returncode=0)
[]: # display(Javascript("IPython.notebook.save_checkpoint();"))
     # time.sleep(3)
     # subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output". os.path.
      \rightarrow join('notebook\_pdfs', f''\{new\_filename\}\_with\_feature\_importance.pdf''),
      → "autogluon each location.ipynb"])
```

```
[]: # import subprocess
           # def execute_git_command(directory, command):
                         """Execute a Git command in the specified directory."""
           #
                         try:
                                  result = subprocess.check_output(['qit', '-C', directory] + command,__
             ⇔stderr=subprocess.STDOUT)
                                  return result.decode('utf-8').strip(), True
                         except subprocess.CalledProcessError as e:
                                  print(f"Git command failed with message: {e.output.decode('utf-8').
             →strip()}")
                                  return e.output.decode('utf-8').strip(), False
           # git repo path = "."
           # execute_git_command(git_repo_path, ['config', 'user.email',_
             → 'henrikskog01@gmail.com'])
           \# execute_git_command(git_repo_path, ['config', 'user.name', hello if hello is_\subseteq is_\
             ⇔not None else 'Henrik eller Jørgen'])
           # branch_name = new_filename
           # # add datetime to branch name
           # branch_name += f''_{pd}.Timestamp.now().strftime('%Y-%m-%d_%H-%M-%S')}"
           # commit_msq = "run result"
           # execute_git_command(git_repo_path, ['checkout', '-b',branch_name])
           # # Navigate to your repo and commit changes
           # execute_qit_command(qit_repo_path, ['add', '.'])
           # execute_git_command(git_repo_path, ['commit', '-m',commit_msq])
           # # Push to remote
           # output, success = execute_git_command(git_repo_path, ['push',_
              → 'origin', branch name])
           # # If the push fails, try setting an upstream branch and push again
           # if not success and 'upstream' in output:
                        print("Attempting to set upstream and push again...")
                         execute_git_command(git_repo_path, ['push', '--set-upstream',_
             → 'origin', branch_name])
                         execute_git_command(git_repo_path, ['push', 'origin', 'henrik_branch'])
           # execute_qit_command(qit_repo_path, ['checkout', 'main'])
```

[]:

[]:	
[]:	
[]:	