Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 21: June 16th, 2017

Lecturer: Alan Arroyo Guevara

Notes By: Harsh Mistry

Definition 21.1 Let $X \subseteq V(G)$, $(\emptyset \subset X \subset V(G))$ and let $y = V(G) \setminus X$

The cut induced by X (denoted as $\delta(x)$)1 is the set of edges that have one end in X and the other end in y.

Theorem 21.2 A graph is not connected if and only if there exists $X \subseteq V(G)$ with $\emptyset \subset X \subset V(G)$, such that $\delta(X)$ is not empty.

Proof:

 \leftarrow Suppose G is connected. Let $X \subseteq V(G)$ and $\emptyset \subset X \subset V(G)$ Let $y = V \setminus X$. Pick $u \in X$ and $v \in y$. Since G is reconnected there is a path

$$P: ux_1, x_2, \dots, x_{n-1}V$$

As $u \in X$ and $v \in y$, there is a first $i \in \langle 1, 2, \dots, n \rangle$, such that

$$x_{i+1} \in y$$

$$x_i \in X \implies X_i X_{i+1} \in \delta(X)$$

 \rightarrow Suppose G is disconnected. Let C be a component of G and Let X = V(C). Since, G is not connected, it has at least two components $\emptyset \subset X1 \subset V(G)$. Now, let $y = V \setminus X$. Every edge with $x \in X$, has $y \in X$ has x and y are in the same component

21.1 Bridges

Notation : If $e \in E(G)$ we denote G - e (or $G \setminus e$) the graph whose vertex if V(G) and whose edge set is $E(G) \setminus \{e\}$. (So G - e is the graph obtained from G by deleting the edge e.)

Definition 21.3 A Bridge is an edge $e \in E(G)$ such that G - e has more components than G.

Lemma 21.4 Let G be a connected graph and $e = xy \in E(G)$ a bride. Then G - e has two components one including x and the others including y.

Proof: Let $z \in V(G - e) = V(G)$ Since G is connected, there is a path $P: zv_1, v_2, \dots v_{n-1}X$.

Case 1: In this case, P is also a path in G-e, so z and x are in the same components of G, r

Case 2: In this case $z - V_{n-1}X$, so $V_{n-1} = y$. As a result, $P' = Zv_1v_2..., V_{n-2}y$ is a path

In any case $z \in C_x$ or $z \in C_y$. Where C_x is the component including x and C_y is the component including y. Since G - e is disconnected $C_x \neq C_y$