MATH H113: Honors Introduction to Abstract Algebra

2016-03-30

- Quotient rings
- Isomorphism theorems

On the homework (extra problem): In general, |x + y| divides lcm |x||y| See Ex. 16 on p. 60

Continuing from last time: let $\phi: R \to S$ be a (ring) homomorphism, and let $I = \ker \phi$. Which subrings can be kernels?

The kernel is an additive subgroup; also:

If $a \in I$ and $r \in R$ then $ar \in I$ and $ra \in I$, because $\phi(ra) = \phi(r)\phi(a) = \phi r \cdot 0 = 0$, so $ra \in I$, likewise $ar \in I$.

Definition: Let R be a ring, and let I be a subring of R. Then a. $r + I = \{r + a : a \in I\}$ (same as the coset of additive groups) b. $rI = \{ra : a \in I\}$ and $Ir = \{ar : a \in I\}$. These are *not* cosets.

Definition: An ideal in a ring R is a subring I of R such that $rI \subseteq I$ and $Ir \subseteq I \ \forall r \in R$. (These are also called *two-sided* ideals. If we leave out $Ir \subset I$ then it's called a left ideal; similarly for right ideals. See the book.)

To check that $I \subseteq R$ is an ideal in R, you only need to check that it's an additive subgroup and $rI \subseteq I$ and $Ir \subseteq I \ \forall r \in R$.

So, every kernel of a homomorphism is an ideal.

Is every ideal in R the kernel of some homomorphism?

Proposition: Let R be a ring and let I be an ideal in R. Let R/I be the quotient group of additive groups. Then:

- a. the formula $(a+I) \cdot (b+I) = (ab+I)$ gives a well-defined binary operation on R/I.
- b. Using this binary operation as multiplication, R/I is a ring; and
- c. The canonical project $\pi: R \to R/I$ (from group theory) $(\pi: a \mapsto a+I)$ is a ring homomorphism, and it's kernel is I.

Proof: Let a+I, $b \in I$ be in R/I, and suppose a+I=a'+I and b+I=b'+I. Then $a'=a+\alpha$ and $b'=b+\beta$ with $\alpha,\beta \in I$. $a'b'=(a+\alpha)(b+\beta)=ab+a\beta+\alpha(b+\beta)$ and $a\beta+\alpha(b+\beta) \in I$, so a'b'+I=ab+I. $\therefore (a+I)(b+I)$ is well defined.

b. We already know that R/I is an additive group, so it remains only to check associativity of multoplication and the two distribution laws.

Associativity:

(a+I)((b+I)(c+I)) = a(bc) + I = (ab)c + I = ((a+I)(b+I))(c+I).Similarly for the distributive laws.

c. Again, we only need to check that $\pi(ab) = \pi(a)\pi(b)$. This is true because $\pi(ab) = ab + I = (a+I)(b+I) = \pi(a)\pi(b)$. The kernel of $\pi = I$: comes from group theory.

Corollary: Every ideal is the kernel of some (ring) homomorphism.

Definition: The ring R/I is called the *quotient ring*. If R is commutative, then so is R/I. If R has 1, then so does R/I.

Example: Let $m \in \mathbb{Z}$

Then $m\mathbb{Z} = \{mn : n \in \mathbb{Z}\}$ is an ideal in \mathbb{Z} (it's an additive subgroup $\langle m \rangle$, and if $mn \in m\mathbb{Z}$ and $k \in \mathbb{Z}$ then k(mn) = (mn)k = m(nk) is in $m\mathbb{Z}$. So it's ideal. Then the quotient ring $\mathbb{Z}/m\mathbb{Z}$ is the same as $\mathbb{Z}/m\mathbb{Z}$ we defined earlier because $\mathbb{Z}/m\mathbb{Z}$ (the quotient ring) is $\mathbb{Z}/m\mathbb{Z}$ as an additive group, and multiplication is the same.

Theorem (First Isomorphism Theorem): Let $\phi: R \to S$ be a ring homomorphism and let $I = \ker \phi$. Then I is an an ideal. Also defined $\psi: R/I \to \operatorname{im} \phi$ by $a+I \mapsto \phi(a)$. This is well defined by group theory, and is bijective by group theory. It is a ring homomorphism because $\psi((a+I)(b+I)) = \psi(ab+I) = \phi(ab) = \phi(a)\phi(b) = \psi(a+I)\psi(b+I)$.

: it's a ring homomorphism. So it's a ring isomorphism.

Then an arbitrary homomorphism $\phi:R\to S$ can be split up as before: let $I=\ker\phi$

 $R \xrightarrow{\pi} R/I \xrightarrow{\sim} \operatorname{im} \phi \xrightarrow{S}$.

Definition: Let A and B be subsets of a ring R. Then

a. $A + B = \{a + b : a \in A \text{ and } b \in B\}$ (as in group theory). b. $AB = \{\sum i = 1^n a_i b_i : n \in \mathbb{N}, a_i \in A \ \forall i = 1, \dots, n, \text{ and } b_i \in B \ \forall i = 1, \dots, n\}$ (don't forget these are *finite sums*!!)

Theorem (Second Isomorphism Theorem): Let R be a ring, let A be a subring of R and let B be an ideal in R. Then A+B is a subring of R, B is an ideal in A+B, $A\cap B$ is an ideal in A, and $A/(A\cap B)\cong (A+B)/B$ (via $a+(A\cap B)\mapsto a+B$).

Proof: A+B is a subgring: it's a subgroup (from group theory), and closed under multiplication because $(a_1+b_1)(a_2+b_2)=a_1a_2+a_1b_2+b_1(a_2+b_2)\in A+B$. B is an ideal in A+B because $B\subseteq A+B$ and B is an ideal in B (so if any $B\in B$ and B is an ideal in B (so if any $B\in B$ and B is an ideal in B (so if any $B\in B$ and B is an ideal in B (so if any $B\in B$ because B is onto and \$\frac{1}{2}\$ and \$A \cdot B\$ is an ideal in A, and we get the isomorphism A A A A A B from the First Isom. Thm.

Theorem (Third Isomorphism Theorem): If I and J are ideal in R and $I \subseteq J$, then J/I is an ideal in R/I, and $\frac{R/I}{J/I} \cong R/J$.

Proof: Map $R/I \to R/J$. It's onto with kernel J/I. As in group theory.

Theorem (Fourth Isomomorphism Theorem): Let R be a ring and let I be an ideal in R. Then \exists a bijection {subrings of R than contain I} \rightarrow {subrings of R/I}. Moreover, this preserves idealness and inclusion.

Proof: that a subgroup of R (under +) that contains I is a subring \iff its counterpart in R/I is a subring is an exercise.