线性代数期中试卷

(2023.4.22)

简答与计算(每小题8分, 共40分)

2. 设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
,计算 A^{2023} .

3. 已知线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 &= 1 \\ x_1 + \lambda x_2 + x_3 &= \lambda \end{cases}$$
 无解,求 λ 的值.
$$x_1 + x_2 + \lambda x_3 &= \lambda^2$$

4. 求矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 的逆矩阵.

5. 举例说明下列命题是错误的.

- (1) 若 A 为 n 阶方阵, $A^2 = A$,则 A = E 或 A = O.
- (2) 若 A 为 n 阶方阵, $A^2 = O$,则 A = O.

二、(12分) 设 A,B 分别为 m,n 阶可逆矩阵,C 为 $m\times n$ 矩阵

(1) 求
$$X = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$$
 的伴随矩阵 X^* . (2) 求 $G = \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 2 & 0 \end{pmatrix}$ 的伴随矩阵 G^* .

三、(12分) 设向量 $\beta_1 = \alpha_2 + \alpha_3 + \dots + \alpha_n, \beta_2 = \alpha_1 + \alpha_3 + \dots + \alpha_n, \dots, \beta_n = \alpha_1 + \alpha_2 + \dots + \alpha_{n-1}, n \ge 2.$ 证明向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 与 $\beta_1, \beta_2, \cdots, \beta_n$ 有相同的秩.

1

四、(12分) 设 $\alpha_1 = (1,1,1,1)^T$, $\alpha_2 = (1,-1,1,-1)^T$, $\alpha_3 = (1,1,-1,-1)^T$, 线性方程组 Ax = b 的通解 为 $\xi = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3, k_1 + k_2 + k_3 = 1.$

(1) 求方程组 Ax = 0 的通解. (2) 求 rank(A).

五、(12分) 解线性方程组
$$Ax=b$$
,其中 $A=\begin{pmatrix}1&2&-1&1\\2&2&1&0\\1&4&-4&3\\4&6&-1&2\end{pmatrix}, b=\begin{pmatrix}6\\6\\12\\18\end{pmatrix}.$

六、(12分) 设 A 为 n 阶方阵 $(n \ge 3)$,证明 $(A^*)^* = |A|^{n-2}A$.

线性代数期中试卷 答案 (2023.4.22)

简答与计算(每小题8分, 共40分)

2. 设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
,计算 A^{2023} .

解:
$$A^2 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, A^3 = \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}, A^4 = \begin{pmatrix} 1 & 4 & 6 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}, \cdots, A^n = \begin{pmatrix} 1 & n & \frac{1}{2}n(n-1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$
所以 $A^{2023} = \begin{pmatrix} 1 & 2023 & 1011 \times 2023 \\ 0 & 1 & 2023 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2023 & 2045253 \\ 0 & 1 & 2023 \\ 0 & 0 & 1 \end{pmatrix}.$
解法二: 用数学归纳法证明 $A^n = \begin{pmatrix} 1 & n & \frac{1}{2}n(n-1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$ 然后得到 $A^{2023} = \begin{pmatrix} 1 & 2023 & 2045253 \\ 0 & 1 & 2023 \\ 0 & 0 & 1 \end{pmatrix}.$

3. 已知线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 &= 1 \\ x_1 + \lambda x_2 + x_3 &= \lambda \end{cases}$$
 无解,求 λ 的值.
$$x_1 + x_2 + \lambda x_3 &= \lambda^2$$

$$(A,b) = \begin{pmatrix} \lambda & 1 & 1 & 1 \\ 1 & \lambda & 1 & \lambda \\ 1 & 1 & \lambda & \lambda^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \lambda & 1 & \lambda \\ 0 & 1-\lambda & \lambda-1 & (\lambda-1)\lambda \\ 0 & 0 & (1-\lambda)(\lambda+2) & (1-\lambda)(1+\lambda)^2 \end{pmatrix}.$$

方程组无解等价于 $\mathbf{r}(A) < \mathbf{r}(A,b)$,即 $\mathbf{r}(A) = 2$, $\mathbf{r}(A,b) = 3$,于是 $\lambda = -2$.

4. 求矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 的逆矩阵.

$$(A,E) = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 1 & 0 \\ 3 & 4 & 3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -2 & -5 & -2 & 1 & 0 \\ 0 & -2 & -6 & -3 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 3 & -2 \\ 0 & 1 & 0 & -\frac{3}{2} & -3 & \frac{5}{2} \\ 0 & 0 & 1 & 1 & 1 & -1 \end{pmatrix}.$$
所以 $A^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ -\frac{3}{2} & -3 & \frac{5}{2} \\ 1 & 1 & -1 \end{pmatrix}.$

解法二: 对 $\binom{A}{E}$ 用初等列变换.

解法三:利用伴随矩阵.
$$|A|=2$$
. $A^*=\begin{pmatrix}2&6&-4\\-3&-6&5\\2&2&-2\end{pmatrix}$,所以 $A^{-1}=\frac{1}{|A|}A^*=\begin{pmatrix}1&3&-2\\-\frac{3}{2}&-3&\frac{5}{2}\\1&1&-1\end{pmatrix}$.

- 5. 举例说明下列命题是错误的.
 - (1) 若 A 为 n 阶方阵, $A^2 = A$,则 A = E 或 A = O.
 - (2) 若 A 为 n 阶方阵, $A^2 = O$,则 A = O.

解: (1) 取
$$A = \begin{pmatrix} -1 & -2 & -3 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E - \alpha \alpha^{\mathrm{T}} (\alpha^{\mathrm{T}} \alpha = 1)$$
 等. (2) 取 $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 等.

二、(12分) 设 A,B 分别为 m,n 阶可逆矩阵, C 为 $m \times n$ 矩阵

(1)
$$\vec{x} X = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$$
 的伴随矩阵 X^* . (2) $\vec{x} G = \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 2 & 0 \end{pmatrix}$ 的伴随矩阵 G^* .

解: (1) 由于 A, B 可逆,所以 $|A| \neq 0, |B| \neq 0$. $|X| = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = |A| \cdot |B| \neq 0$,即 X 可逆. 由 $XX^* = |X|E$ 可得 $X^* = |X|X^{-1}$. 不妨设 $X^{-1} = \begin{pmatrix} P & Q \\ M & N \end{pmatrix}$,由 $XX^{-1} = E$ 得

$$\begin{cases} AP + CM &= E \\ AQ + CN &= O \\ BM &= O \\ BN &= E \end{cases}$$
$A^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix}$.

所以 $X^* = |X|X^{-1} = |A| \cdot |B| \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix}$. (或= $\begin{pmatrix} |B|A^* & -A^*CB^* \\ O & |A|B^* \end{pmatrix}$) (2) 取 $A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, 则 $A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix}$, $B^{-1} = \frac{1}{-6} \begin{pmatrix} 0 & -3 \\ -2 & -1 \end{pmatrix}$,

所以
$$G^* = |A| \cdot |B| \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix} = \begin{pmatrix} -12 & 18 & -6 & -9 \\ 0 & -6 & 2 & 1 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & -4 & -2 \end{pmatrix}.$$

 Ξ 、(12分) 设向量 $\beta_1=\alpha_2+\alpha_3+\cdots+\alpha_n, \beta_2=\alpha_1+\alpha_3+\cdots+\alpha_n, \cdots, \beta_n=\alpha_1+\alpha_2+\cdots+\alpha_{n-1}$, $n\geq 2$. 证明向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 与 $\beta_1, \beta_2, \dots, \beta_n$ 有相同的秩.

证明: 由条件知 $\beta_1, \beta_2, \dots, \beta_n$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示,

用金件和
$$\beta_1, \beta_2, \cdots, \beta_n$$
 可用 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示,
$$\begin{cases} \beta_1 &= \alpha_2 + \alpha_3 + \cdots + \alpha_n, \\ \beta_2 &= \alpha_1 + \alpha_3 + \cdots + \alpha_n, \\ \cdots, & \end{cases}$$
 可得 $\sum_{i=1}^n \beta_i = (n-1) \sum_{i=1}^n \alpha_i$,即 $\frac{1}{n-1} \sum_{i=1}^n \beta_i = \sum_{i=1}^n \alpha_i$,
$$\beta_n &= \alpha_1 + \alpha_2 + \cdots + \alpha_{n-1},$$
可得 $\alpha_n = \alpha_1 + \alpha_2 + \cdots + \alpha_{n-1}$,

可得 $\alpha_k = \frac{1}{n-1} \sum_{i=1}^n \beta_i - \beta_k, i = 1, 2, \cdots, n$. 这表明 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 可以被 $\beta_1, \beta_2, \cdots, \beta_n$ 线性表示, 从而两个向量组等价,有相同的秩.

证法二: 由条件知 $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)P$,其中 $P = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & & 0 \end{pmatrix}$,

则有
$$|P| = \begin{vmatrix} n-1 & 1 & \cdots & 1 \\ 0 & -1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 \end{vmatrix} = (-1)^{n-1}(n-1) \neq 0$$
,即 P 可逆,

 $(\beta_1, \beta_2, \cdots, \beta_n)P^{-1}$,即两个向量组可以相互表示,故等价,有相同的秩.

四、(12分) 设 $\alpha_1 = (1,1,1,1)^{\mathrm{T}}, \alpha_2 = (1,-1,1,-1)^{\mathrm{T}}, \alpha_3 = (1,1,-1,-1)^{\mathrm{T}}$,线性方程组 Ax = b 的通解 为 $\xi = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3, k_1 + k_2 + k_3 = 1$.

(1) 求方程组 Ax = 0 的通解. (2) 求 $\operatorname{rank}(A)$.

解: (1) 由条件知 $\alpha_1, \alpha_2, \alpha_3$ 均为 Ax = b 的特解,方程组 Ax = b 的通解为 $\xi = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = k_1(\alpha_1 - \alpha_3) + k_2(\alpha_2 - \alpha_3) + \alpha_3$.

于是方程组 Ax = 0 的通解为 $\eta = k_1(\alpha_1 - \alpha_3) + k_2(\alpha_2 - \alpha_3)$.

注意到 $\beta_1 = \alpha_1 - \alpha_3 = (0,0,2,2)^T$, $\beta_2 = \alpha_2 - \alpha_3 = (0,-2,2,0)^T$ 是线性无关的,

因此方程组 Ax = 0 的基础解系为 $\beta_1 = \alpha_1 - \alpha_3 = (0,0,2,2)^T$, $\beta_2 = \alpha_2 - \alpha_3 = (0,-2,2,0)^T$.

(2) 方程组的变量是4维向量,所以 r(A) = 4 - 2 = 2.

五、(12分) 解线性方程组 Ax=b,其中 $A=\begin{pmatrix}1&2&-1&1\\2&2&1&0\\1&4&-4&3\\4&6&-1&2\end{pmatrix}, b=\begin{pmatrix}6\\6\\12\\18\end{pmatrix}.$

于是非齐次方程组的解可表示为 $\begin{cases} x_1 &= -2x_3 + x_4 \\ x_2 &= \frac{3}{2}x_3 - x_4 + 3 \end{cases}, \Leftrightarrow x_3 = x_4 = 0$ 可得一个特解 $\eta = (0, 3, 0, 0)^{\mathrm{T}}$.

分别令 $(x_3,x_4)=(1,0),(0,1)$ 可得齐次方程组 Ax=0 的一个基础解系为 $\alpha_1=(-2,\frac{3}{2},1,0)^{\mathrm{T}},\alpha_2=$

 $(1,2,0,1)^{\mathrm{T}}. \ \ \mp 是原方程组的通解为 \ x = k_1\alpha_1 + k_2\alpha_2 + \eta = k_1 \begin{pmatrix} -2 \\ \frac{3}{2} \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \end{pmatrix}, \forall k_1,k_2 \in \mathbf{R}.$

六、(12分) 设 A 为 n 阶方阵 $(n \ge 3)$,证明 $(A^*)^* = |A|^{n-2}A$.

证明: 当 $|A| \neq 0$ 时(当 $\mathbf{r}(A) = n$ 时), 由 $AA^* = |A|E$ 得 $A^* = |A|A^{-1}$,

所以 $(A^*)^* = (|A|A^{-1})^* = |(|A|A^{-1}|(|A|A^{-1})^{-1}) = |A|^{n-2}A$.

当 |A| = 0 时分类讨论:

若 $\mathbf{r}(A)=n-1, AA^*=|A|E=O$,即 A^* 的列向量均为方程组 Ax=0 的解,于是 A^* 的秩不超过 Ax=0 的基础解系的向量个数, $\mathbf{r}(A^*)\leq n-\mathbf{r}(A)=1$. 从而 A^* 的任意一个 $n-1(\geq 2)$ 阶的子式均为0,即 $(A^*)^*=O=|A|^{n-2}A$.

若 $\mathbf{r}(A) \le n-2$,则 A 的任意一个 n-1 阶的子式均为0, $A^* = O$,仍然有 $(A^*)^* = O = |A|^{n-2}A$. 综上,命题得证.