

Introduction

(Data Mining: Method and Application)

徐华

xuhua@tsinghua.edu.cn

1

Motivation - Background

- The Explosive Growth of Data: from TeraBytes (TB) to PetaBytes (PB):
 B,KB,MB,GB,TB,PB(Big Data),EB,ZB,YB,DB,NB
 - Data collection and data availability
 - Ex. The changing flow of WebPages in China (2020-12)

The Webpage Flow in China from CNNIC(2020-12)

Motivation - Background About Big Data → > 1PB "Big Data" is data whose scale, diversity, and complexity require new architecture, techniques, algorithms, and analytics to manage it and extract value and hidden knowledge from it... 2018-2022年中国互联网典型媒介类型广告市场份额分布 ♦ Features: "5V" ■ 資訊平台广告 ■搜索引擎广告 ■社交广告 ■综合投版广告 ■組収版广告 ■其他广告 ・ Volume (规模大) Variety (种类繁多) 14.8% ・ Velocity (速度快) ・ Veracity (不确定性) Value (价值) Source: QuestMobie AD INSIGHT广告洞察数据库。营销研究院 2020年4月

Motivation-Commercial Viewpoints

Commercial Viewpoints

- Data Sources: Web data, e-commerce, purchases at department/grocery stores, Bank/Credit Card, transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
- Provide better, customized services for an edge (e.g. in Customer Relationship Management)

5

Motivation – Scientific Viewpoints

Scientific Viewpoints

- Data collected and stored at enormous speeds (GB/hour)
 - · remote sensors on a satellite
 - · telescopes scanning the skies
 - microarrays generating gene expression data
 - scientific simulations generating terabytes of data
- ♦ Traditional techniques infeasible for raw data
- Data mining may help scientists
 - · in classifying and segmenting data
 - · in Hypothesis Formation

Motivation: Why Data mining?

- There is often information "hidden" in the data that is not readily evident
- Human analysts may take weeks to discover useful information
- Much of the data is never analyzed at all. " We are drowning in data, but starving for knowledge!"
- "Necessity is the mother of invention" —Data mining—Automated analysis of massive data sets

tions"

7

Evolution of Database Technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- 2000s
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems

What is data mining?

- Data mining (knowledge discovery from data)
 - ◆ Extraction of interesting (<u>non-trivial</u>(非平凡的)<u>, implicit</u>(隐含的), <u>previously unknown</u>(事先未知) and <u>potentially useful(</u>潜在用途)) patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge Discovery (mining) in databases (KDD)
 - Knowledge Extraction
 - Data/pattern Analysis
 - ◆ Data Archeology (数据考古)
 - ◆ Data Dredging (数据捕捞/挖掘)
 - Information Harvesting
 - Business Intelligence
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Data Mining v.s. KDD

- Knowledge Discovery in Databases (KDD): process of finding useful information and patterns in data.
- Data Mining: Use of algorithms to extract the information and patterns derived by the KDD process.

Why not traditional data analysis?

- Tremendous amount of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Multi-Dimensional View of Data Mining

- Data to be mined
 - Relational, data warehouse, transactional, stream, object-oriented/relational, active, spatial, timeseries, text, multi-media, heterogeneous, legacy, WWW
- Knowledge to be mined
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
 - Multiple/integrated functions and mining at multiple levels
- Techniques utilized
 - Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, etc.
- Applications adapted
 - Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text-mining, Web mining, etc.

15

Data Mining: Classification Schemes

- General functionality
 - Descriptive data mining
 - Predictive data mining
- Different views lead to different classifications
 - ♦ Data view: Kinds of data to be mined
 - Knowledge view: Kinds of knowledge to be discovered
 - Method view: Kinds of techniques utilized
 - Application view: Kinds of applications adapted

Data Mining Functionalities(1)

- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., Dry v.s. Wet regions
- Frequent patterns, association, correlation vs. causality
 - Diaper → Beer [0.5%, 75%] (Correlation or causality?)
- Classification and prediction
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown or missing numerical values

17

Data Mining Functionalities(2)

- Cluster analysis
 - Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
 - Maximizing intra-class similarity & minimizing interclass similarity
- Outlier(离群点) analysis
 - Outlier: Data object that does not comply with the general behavior of the data
 - Noise or exception? Useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation: e.g., regression analysis
 - Sequential pattern mining: e.g., digital camera -> large SD memory
 - Periodicity analysis
 - Similarity-based analysis
- Other pattern-directed or statistical analysis

About Top-10 DM Algorithms(1)

Classification

- #1. C4.5: Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann., 1993.
- #2. CART: L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, 1984.
- #3. K Nearest Neighbours (kNN): Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest Neighbor Classification. TPAMI. 18(6)
- #4. Naive Bayes Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All? Internat. Statist. Rev. 69, 385-398.

Statistical Learning

- #5. SVM: Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag.
- #6. EM: McLachlan, G. and Peel, D. (2000). Finite Mixture Models. J. Wiley, New York. Association Analysis
- #7. Apriori: Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In VLDB '94.
- #8. FP-Tree: Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In SIGMOD '00.

19

About Top-10 DM Algorithms(2)

Link Mining

- #9. PageRank: Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine. In WWW-7, 1998.
- #10. HITS: Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked environment. SODA, 1998.

Clustering

20

- #11. K-Means: MacQueen, J. B., Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, 1967.
- #12. BIRCH: Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient data clustering method for very large databases. In SIGMOD '96.

Bagging and Boosting

#13. AdaBoost: Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization of on-line-learning and an application to boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.

About Top-10 DM Algorithms(3)

Sequential Patterns

- #14. GSP: Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns: Generalizations and Performance Improvements. In Proceedings of the 5th International Conference on Extending Database Technology, 1996
- #15. PrefixSpan: J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In ICDE '01.

Integrated Mining

◆ #16. CBA: Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and association rule mining. KDD-98.

Rough Sets

 #17. Finding reduct: Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992

Graph Mining

• #18. gSpan: Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern Mining. In ICDM '02/

21

About Top-10 DM Algorithms(4)

Selected at ICDM2007

- #1: C4.5 (61 votes)
- #2: K-Means (60 votes)
- #3: SVM (58 votes)
- #4: Apriori (52 votes)
- #5: EM (48 votes)
- #6: PageRank (46 votes)
- #7: AdaBoost (45 votes)
- #7: kNN (45 votes)
- #7: Naive Bayes (45 votes)
- #10: CART (34 votes)

Major Issues in Data Mining

Mining methodology

- Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web
- Performance: efficiency, effectiveness, and scalability
- Pattern evaluation: the interestingness problem
- Incorporation of background knowledge
- Handling noise and incomplete data
- Parallel, distributed and incremental mining methods
- Integration of the discovered knowledge with existing one: knowledge fusion

User interaction

- Data mining query languages and ad-hoc mining
- Expression and visualization of data mining results
- Interactive mining of knowledge at multiple levels of abstraction

Applications and social impacts

- Domain-specific data mining & invisible data mining
- Protection of data security, integrity, and privacy

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD' 95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD Conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
 - PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
- ACM Transactions on KDD starting in 2007

Conferences

- KDD: ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining
 - ★ KDD08, KDD09, KDD10, KDD11, KDD12, KDD13, KDD14, KDD15
- SDM: SIAM Data Mining Conf.
 - ◆ SDM08, SDM09, SDM10, SDM11, SDM12, SDM13, SDM14, SDM15
- ICDM: IEEE Int. Conf. on Data Mining
 - ◆ ICDM08, ICDM09, ICDM10, ICDM11, ICDM12, ICDM13, ICDM14, ICDM15
- PKDD: Conf. on Principles and Practices of Knowledge Discovery and Data Mining
 - ◆ PKDD08, PKDD09, PKDD10, PKDD11, PKDD12, PKDD13, PKDD14, PKDD15
- PAKDD: Pacific-Asia Conf. on Knowledge Discovery and Data Mining
 - PAKDD08, PAKDD09, PAKDD10, PAKDD11, PAKDD12, PAKDD13, PAKDD14, PAKDD15

Internet Resources(1)

UCI数据集: http://kdd.ics.uci.edu/

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

● 时序数据集: http://www.stat.wisc.edu/~reinsel/bjr-data/

金融数据集: http://lisp.vse.cz/pkdd99/Challenge/chall.htm

● 癌症基因数据集: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi

综合数据集: http://www.cs.nyu.edu/~roweis/data.html

● 数据集列表: http://www.kdnuggets.com/datasets/index.html

中国地方政府开放数据:北京 http://www.bjdata.gov.cn/

上海 http://datashanghai.gov.cn

Internet Resources(2)

● UCI机器学习网站 http://archive.ics.uci.edu/ml/

● DBMiner官方网站 http://ddm.cs.sfu.ca/

● SVM代码 <u>http://www.csie.ntu.edu.tw/~cjlin/libsvm/</u>

● 代码与数据集开源社区 https://github.com/

◎ 其它开源软件包: NB(朴素贝叶斯网络), NN(神经网络), DT(决策树)

◎ 相关软件: Matlab, StatSoft等商用软件; SQL Server 2008中也提供了相应的Data Analysis数据分析工具

31

Relative Courses

- Arizona
- Australian
- Bilkent
- CMU
- Central Connecticut
- Central Washington
- Cornel
- Depaul
- Georgia
- HKUST
- III, Indian

- McMaster
- Nanjing
- NUAA
- New York
- Pennsylvania
- Purdue
- RPI
- Rutgers
- Standford
- Alberta, Canada
- Wright State
- MIT

- Berkeley
- Helsinki, Finland
- Illinois
- Illinois at UC
- Massachusetts
- Minnesota
- Austin (1)(2)
- Toronto
- Washington
- VirginiaTech, USA

Summary

- Data mining: Discovering interesting patterns from large amounts of data
- A natural evolution of database technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of information repositories
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
- Data mining systems and architectures
- Major issues in data mining

33

Recommended Reference Books

- S. Chakrabarti. Mining the Web: Statistical Analysis of Hypertex and Semi-Structured Data. Morgan Kaufmann, 2002
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003
- U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996
- U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2nd ed., 2006
- D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press, 2001
- T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2001
- B. Liu, Web Data Mining, Springer 2006.
- T. M. Mitchell, Machine Learning, McGraw Hill, 1997
- G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press, 1991
- P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
- S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2nd ed. 2005

