APPROACH

Data Analysis

- The first step of the process is to analyze the given data for any error and Null values and deal with them.
 - This is done by using "<u>Sklearn-SimpleImputer</u>" with "Most Frequent" strategy which places the most repeated values instead of the nulls.
- The next process is check if there are any "Categorical Values" and convert them into "Numerical values"
 - This is done my using "Sklearn-OrdinalEncoder", it changes the categorical values into numerical values. (Ex. A,B,C \rightarrow 0,1,2)
- ❖ After that, the "Correlation" between the data and the target class is checked to find if there useful information that is needed in order to Proceed with "Feature Engineering"

Feature Engineering

- ❖ After Analyzing the Correlation data its found the target data "<u>CLTV</u>" has high positive correlation with "<u>Claim Amount</u>".
 - Now that data that highly correlates with Claim Amount are "<u>Area</u>" and "Num_Policies".
 - With the help of these to data a new data "<u>Claim_Prob</u>" which denotes the chances of claiming amount from the company is newly created.

Data Splitting

❖ Now the Data is split into Training and Validation set from the existing Training data that is provided. (Training set − 99.95% and Validation set − 0.05%.

Model Selection

- The models chosen for this dataset are,
 - o XG Boost
 - Light Boost
 - Cat Boost

Hyper Parameter Tuning

- ❖ Hyper parameter tuning is done the help of "<u>HyperOPT</u>" Library which searches best parameters in the given range of options provided by user.
- ❖ After finding the Optimal Hyper Parameters, we are moving to the next step that is "Fine Tuning of Hyper parameter"

Fine-Tuning Hyper Parameters

❖ After finding the optimal parameters, we use "<u>AutoML</u>" Library to further optimize the parameters we got from the previous step to get the best results.

Voting Regressor

- ❖ After Training the models with the hyper parameters we got now, we are using the "<u>Voting Regressor</u>" to get even more accuracy instead of just using one Model.
 - XG Boost, Light Boost as well as Cat Boost is provided to the Voting Regressor to find the final Result.

Test Data Predication

Now with the help of Voting regressor we are predicting the test data provided and writing the results as ".CSV" in the submission format.

Prepared by: Sairam H

Email: 26thofficial.creator@gmail.com

GitHub: https://github.com/26th-Official/

LinkedIn: https://www.linkedin.com/sairam-h/