NectarCAM MC meeting

Thomas Tavernier

IRFU / CEA

thomas.tavernier@cea.fr

13 février 2020

reminder

- We had non negligible disagreement for the noise induced by NSB
- Pulse shape was estimated neglecting time spread from the LED and the TTS.
- new pulse shape from spe run
- changes go to the good direction
- remaining disagreement is maybe understood

pulse shape events selection

Charge selection

- 1 p.e. +/- 10 %
- ullet < 1% of pedestal evt
- \bullet < 1% of 3 p.e. evt
- ullet \sim 10 % of 2 p.e. evt

5000 events from all pixels -> rescaled in time

SPE pulse shape comparison

- 1 p.e. +/- 10 %
- Good agreement between MC and NectarCAM data.

5000 events from all pixels

electronic noise

- Electronic noise in not poissonian in the Camera.
- according to Konrad's suggestion, we defined it in a way it match the integrated std (on 16 samples)

FADC_NOISE : $2.8 \rightarrow 3.6$

SPE comparison

New spe pdf parameters (Taken from Sami's work)

SES spectrum

 Good agreement between MC and NectarCAM data.

Ses comparison

- Good agreement for the mean reconstructed gain
- wider dispersion in the gain distribution in the MC gain distribution

$\frac{G_{\text{reco}}}{G_{\text{sim}}}$ distribution (?)

- how one ca recover the "True" gain in the simulation files?
- what does the parameter gain_variation exactly refer to?
- statistic error $\sigma \sim 3.7 \%$ (?)

MES fitted parameters

results from the MC Flat fields run

- comparing the MC FF run and a FF run at similar intensity:
 - statistical dispersion seems to agree very well
 - as well as the channel to channel dispersion.

charge resolution 0 NSB

charge resolution \sim 100 MHz NSB

Simulations are performed for 80-120 MHz NSB due to the uncertainty of the NSB in the lab

timing resolution

Trigger efficiency

Strategy here was to start the comparison between the MC and the Camera data with one module

- Well describe by a normal cumulative distribution.
- Agreement is rather good

Still ongoing work

L1 scaler of only one module (6 pixels)

Overview

- Updates since last call :
 - electronic noise
 - pulse shape
 - pulse amplitude
 - spe pdf
 - ...
- Freezing most of the parameters in the actual state seems reasonable.
- We should provide an official list of the updated parameters to the MC team as soon as possible
- Few more iterations might be needed to fine tune some parameters.

Summary

ID	Parameter/Algorithm	Value	MC description	Hardware description Specifical	tion Status
7.P-CAM.11	pm_photoelectron spectrum	spe_afterpulse_pdf NectarCam 14032019.dat	File name for single p.e. response distribution.	spe_afterpulse_pdf_NectarC am_18122019.dat	In WP review
7.P-CAM.12	pm_average_gain	40000	Photodetector average gain, used only for DC currents from NSB pixel rates.		Agreed
7.P-CAM.13	pm_gain_index	5.8	Gain rises as given power to the photodetector voltage.		Agreed
7.P-CAM.14	gain_variation	0.03	Fractional gain variation between different photodetectors after adjusting the voltage to have approximately the same gain in all channels.	0.02	Agreed
7.P-CAM.15	pm_voltage variation	0.04	Fractional high voltage variation, used to adjust the transit times $(\propto 1/\sqrt(V))$.		Agreed
7.P-CAM.16	pm_transit_time	20 [ns]	Total transit time of the photodetector at the average voltage.		Agreed
7.P-CAM.17	transit_time_jitter	0.64 [ns]	Jitter (Gaussian r.m.s. spread of random fluctuations) of individual photo-electrons in nanoseconds.	+ transit_error = 0.5	Agreed
7.P-CAM.18	quantum_efficiency	qe_R12992-100- 05.dat	File name for the quantum efficiency curve.		In WP review
7.P-CAM.19	qe_variation	0.035	Photoelectron collection efficiency variation (Gaussian r.m.s. spread of random fluctuations) between photodetectors.		In WP review

Summary

ID	Parameter/Algorithm	Value	MC description	Hardware description	Specification Status
7.P-MIX.20	disc_bins	100 [Time bins]	Number of time bins used for the discriminator simulation.		In WP revie
7.P-MIX.21	disc_start	5 [Time bins]	Number of time bins by which the discriminator simulation is ahead of the FADC readout.		In WP revie
7.P-MIX.22	default_trigger	Majority	Parameter to set the trigger algorithm used.		In WP revie
7.P-MIX.23	discriminator pulse_shape	Pulse_template nectarCam 22112018.dat	File name for pule shape at the discriminator of an individual pixel.	PTSPE.dat	In WP revie
7.P-MIX.24	discriminator amplitude	20	Signal amplitude after amplifier per mean p.e. at the input of the discriminators.		Agreed
7.P-MIX.25	discriminator threshold	146	Discriminator threshold.		In WP revie
7.P-MIX.26	trigger_pixels	3	Number of pixels required for single telescope trigger.		In WP revie
7.P-MIX.27	teltrig_min_time	1 [ns]	Minimum time of sector trigger over threshold. Used before telescope trigger.		Agreed
7.P-MIX.28	teltrig_min_sigsum	0	Minimum signal sum at sector trigger over threshold.		Agreed
7.P-MIX.29	discriminator sigsum_over threshold	0	Integrated signal required over threshold.		Agreed
7.P-MIX.30	discriminator_var sigsum_over threshold	0	Gaussian r.m.s. spread of discriminator.sigsum.over threshold (Pixel-to-pixel variation).		Agreed

Summary

ID	Parameter/Algorithm	Value	MC description	Hardware description	Specification	Status
7.P-MIX.42	fadc.mhz	1024 [MHz]	FADC sampling rate.		ı	n WP revie
7.P-MIX.43	fadc_bins	90 [Time bins]	Typically the number of FADC bins to be simulated.			Agreed
7.P-MIX.44	fadc.sum.bins	64 [Time bins]	Number of bins read out in sampled data, corresponding to the experimental length of the readout window.	60		Agreed
7.P-MIX.45	fadc.sum.offset	8 [Time bins]	Number of bins before telescope trigger where summing/reading of sampled data starts.			Agreed
7.P-MIX.46	fadc.pedestal	250	Nominal (F)ADC pedestal value per time slice.			Agreed
7.P-MIX.47	fadc_amplitude	14	Maximum amplitude above pedestal for a photo-electron with average signal.	19.56	I	n WP revie
7.P-MIX.48	fadc_noise	2.8	Gaussian r.m.s. spread of white noise per time bin in digitisation.	3.6	ı	n WP revi
7.P-MIX.49	fadc.max.signal	4095	The maximum value of the digitized signal per sample.			Agreed
7.P-MIX.50	fadc.pulse_shape	Pulse_template nectarCam 22112018.dat	File name for (F)ADC pulse shape (amplitude vs time).	PTSPE.dat	I	n WP revie
7.P-MIX.51	num_gains	2	Number of different gains the input signal gets digitized.			Agreed
7.P-MIX.52	fadc_lg_pedestal	250	Nominal (F)ADC pedestal value per time slice for low-gain channels.			Agreed
ID	Parameter/Algorithm	Value	MC description	Hardware description Spec	cification State	us
7.P-MIX.53	fadc.lg.amplitude	1	Maximum amplitude for low-gain channels above pedestal for a photo-electron with average signal.	1.41	In WP n	eview
7.P-MIX.54	fadc.lg.noise	2.5	Gaussian r.m.s. spread of white noise per time bin in digitisation for low-gain channels.	3.62	In WP r	eview