2005, *109,* 18226–18229 Published on Web 09/13/2005

A New Polymorph of FeAlO₃ at High Pressure

Takaya Nagai,*,† Daisuke Hamane,† P. Sujatha Devi,‡ Nobuyoshi Miyajima,§ Takehiko Yagi,§ Takamitsu Yamanaka, and Kiyoshi Fujino†

Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Electroceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700-032, India, Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan, and Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Received: August 8, 2005; In Final Form: August 29, 2005

Synchrotron X-ray diffraction measurements confirmed that a new polymorph of FeAlO₃ could be synthesized at about 1800 K and 72 GPa. This phase can be indexed on an orthorhombic cell and transforms into the trigonal form on release of pressure. The c/a ratio of about 2.71 of the trigonal phase suggests corundum structure of FeAlO₃ rather than LiNbO₃ or ilmenite structure. This conclusion also suggests that the high-pressure orthorhombic phase could be the Rh₂O₃(II) structure rather than the GdFeO₃-type perovskite structure.

1. Introduction

The Al_2O_3 —Fe $_2O_3$ system is important not only in nature but also in industry. It is well-known that the solid solution of $(Al,Fe)_2O_3$ is limited at ambient pressure, although α - Al_2O_3 (corundum) and α -Fe $_2O_3$ (hematite) are isostructural, and the ionic radii of Al^{3+} and Fe $^{3+}$ are quite similar in an octahedral site. Fe AlO_3 , an intermediate composition of Al_2O_3 /Fe $_2O_3$ = 1:1, appears to be isomorphous with the Fe GaO_3 form at high temperature.¹

Preliminary reports have said that FeAlO₃ with the FeGaO₃ form transforms to the tetragonal garnet form and then the GdFeO₃-type perovskite form at high pressures.^{2,3} However, further details have been unclear so far, and our preliminary experiments using a Kawai-type multianvil apparatus showed that the FeGaO₃-type of FeAlO₃ decomposes into Fe-bearing corundum and Al-bearing hematite up to 25 GPa at about 1300—1500 K (See Figure 1).

Recently, the solubility of Al³⁺ into MgSiO₃ perovskite has been focused on. The bulk modulus of Al-bearing MgSiO₃ perovskite is significantly smaller than that for Al-free MgSiO₃ perovskite at lower mantle conditions.^{4,5} It was also pointed out that the electrical conductivity of Al-bearing silicate perovskite is much greater than that of Al-free silicate perovskite.⁶ The substitution mechanism of Al³⁺ into Fe-free MgSiO₃ perovskite could be understood in the MgSiO₃–MgAlO_{2.5} system.⁷ On the other hand, some studies pointed out that the MgSiO₃–FeAlO₃ system could be important in understanding the substitution mechanism of Al³⁺ into (Mg, Fe)SiO₃ perovskite with higher Al content.⁸⁻¹⁰ Thus, clarification of the existence of FeAlO₃ perovskite at high pressure and high temperature should give important information to understand the correlation of Al³⁺ and Fe³⁺ solubility in silicate perovskite.

Figure 1. A backscattered image of a recovered sample from 25 GPa at about 1300—1500 K. Bright gray colored grains are Al-bearing hematite and dark gray colored grains are Fe-bearing corundum.

FeAlO₃ is reported to be ferromagnetic, magnetoelectric, and piezoelectric. Existence of corundum and hematite in the orthorhombic FeAlO₃ phase makes it difficult to synthesize FeAlO₃ in the pure form by conventional methods. Devaux et al.¹¹ reported the synthesis of impurity-free FeAlO₃ by oxalate precipitation. We have carried out high-pressure and high-temperature experiments with the pure FeGaO₃ type of FeAlO₃ powder prepared by a citrate—nitrate gel combustion process using a double-sided laser-heated diamond anvil cell technique.¹² We report here a new high-pressure polymorph of FeAlO₃ that has been identified by synchrotron X-ray diffraction measurements and a structural transition exhibited by the same during decompression.

2. Experimental Section

The FeGaO₃ type of FeAlO₃ powder was used as a starting material and was synthesized as follows. An amorphous citrate—nitrate gel combustion process was followed to prepare FeAlO₃ precursor powder. For a typical batch preparation, 0.5 M solutions each of Al(NO₃)₃*8H₂O and Fe(NO₃)₃*8H₂O were

^{*} Corresponding author. E-mail: nagai@ep.sci.hokudai.ac.jp.

[†] Hokkaido University.

[‡] Central Glass and Ceramic Research Institute.

[§] University of Tokyo.

[□] Osaka University.

Figure 2. Synchrotron X-ray diffraction patterns (a) measured at 72 GPa and 300 K after heating and (b) measured at ambient conditions after decompression. Asterisks in (a) represent peaks from the B2 phase of NaCl, and asterisks in (b) represent peaks from the B1 phase of NaCl.

mixed in such a way so that the molar ratio of Fe/Al = 1:1 was maintained. The mixed solution was continuously stirred while heated on a hot plate. An accurately weighed amount of citric acid (with citrate/nitrate mole ratio of 0.75) dissolved in water was added to the above mixture during stirring. The dark brown colored solution thus obtained was allowed to evaporate on a hot plate at 85-90 °C (solution temperature). The homogeneously mixed solution became viscous and turned into a gel during heating. The gel slowly foamed, swelled, and finally burnt on its own with glowing flints, and once ignited, it slowly propagated to the entire volume of the gel container. The brownblack ash powder thus obtained was calcined at 1673 K. After holding for an hour at 1673 K, the sample was quenched in water. The red powder thus obtained was confirmed as a singlephase orthorhombic FeGaO3-type FeAlO3 phase by X-ray powder diffraction.

High pressures were generated by a diamond anvil cell (DAC) with a 300 μm culet of diamonds. The FeGaO₃ type of FeAlO₃ powder sandwiched by NaCl powder was loaded into a 120um-diameter sample chamber, which was drilled into a preindented rhenium gasket. NaCl powder works as a pressure transmitting medium and also as a thermal insulator. The sample was compressed to 70 GPa at room temperature and then heated at 1800 K for half an hour by using a YLF laser. The sample of FeAlO₃ itself works as a laser absorber. Temperature was measured on one side of the sample using the spectroradiometric technique.¹² After heating treatment, the laser power was switched off, and the temperature was quenched at the pressure.

Angle-dispersive X-ray diffraction measurements were performed on the sample in DAC at BL13A in Photon Factory, Japan. A monochromatic incident beam at a wavelength of about 0.42 Å was used and was collimated to a diameter of 30 μ m. A diffraction image was recorded on an imaging plate. The recorded two-dimensional image data were integrated along each Debye-Scherrer ring and converted to a one-dimensional diffraction pattern by the software PIP.¹³

3. Results and Discussion

An X-ray diffraction pattern obtained at 72 GPa and 300 K after heating at about 1800 K was totally different from that of the FeGaO₃ type of FeAlO₃ (See Figure 2a). Characteristic triplet

TABLE 1: Observed and Calculated X-ray Diffraction Pattern of the Orthorhombic Phase at 72 GPa and 300 Ka

h	k	l	d (obsd)	d (calcd)	d (obsd)/d (calcd) - 1
0	1	1	3.6991	3.6964	0.0007
0	2	0	3.2689	3.2674	0.0004
1	1	1	2.9256	2.9252	0.0001
2	0	0	2.3897	2.3925	-0.0012
1	2	1	2.3205	2.3118	0.0038
0	0	2	2.2379	2.2412	-0.0015
1	3	1	1.8180	1.8131	0.0027
2	2	1	1.7757	1.7729	0.0016
1	2	2	1.7250	1.7241	0.0005
0	4	0	1.6303	1.6337	-0.0021
2	1	2	1.5852	1.5867	-0.0009
3	1	1	1.4640	1.4645	-0.0003

^a Indexed by an orthorhombic symmetry with a = 4.785(5) Å, b =6.535(7) Å, c = 4.482(7) Å, and V = 140.2(3) Å³. Standard deviations are shown in parentheses. The unit of d is Å.

TABLE 2: Observed and Calculated X-ray Diffraction Pattern of the Trigonal Phase at Ambient Conditions^a

h	k	l	d (obsd)	d (calcd)	d (obsd)/d (calcd) - 1
0	1	2	3.5872	3.5884	-0.0003
1	0	4	2.6247	2.6255	-0.0003
1	1	0	2.4599	2.4576	0.0009
1	1	3	2.1501	2.1510	-0.0004
0	2	4	1.7943	1.7942	0.0000
1	1	6	1.6487	1.6489	-0.0001
2	1	4	1.4497	1.4491	0.0004
3	0	0	1.4185	1.4189	-0.0003

^a Indexed by a trigonal symmetry with a = 4.915(1) Å, c = 13.34(7)Å, and V = 279.2(1) Å³. Standard deviations are shown in parentheses. The unit of d is Å.

of diffraction peaks appeared between 2.2 and 2.4 Å, and at first sight, the features of the diffraction pattern appeared quite similar to those of the GdFeO₃-type orthorhombic perovskite, such as MgSiO₃ perovskite. Indeed, all peaks could be indexed on an orthorhombic cell in Table 1. The unit cell parameters are a = 4.785(5) Å, b = 6.535(7) Å, c = 4.482(7) Å, and V =140.2(3) Å³. Rietveld refinement on the basis of the GdFeO₃type perovskite structure has failed, partly because some NaCl peaks overlap some sample peaks, and in addition, peak profiles measured are a little broad. Further identification of this orthorhombic structure will be discussed later in this com-

The X-ray diffraction pattern was also measured after the pressure was fully released in Figure 2b. This diffraction pattern appeared to be significantly different from the diffraction pattern measured at 72 GPa (See Figure 2a). Surprisingly, the diffraction peaks could neither be indexed by the high-pressure orthorhombic phase nor by the FeGaO₃-type structure. The diffraction peaks could be assigned as a trigonal cell in Table 2. We can propose candidate structures including (i) LiNbO₃ (R3c), (ii) corundum (R-3c), and (iii) ilmenite (R-3), which are difficult to distinguish only from the powder diffraction data. However, since systematic data on the c/a ratio of these structures has been known, 14 the possible structure would be discussed on the basis of the c/a ratio. The c/a ratio is about 2.63 for the LiNbO₃ structure (cf. LiNbO₃, MnTiO₃) and about 2.73 for the corundum structure (cf. Al₂O₃, Fe₂O₃). The c/a ratios of the ilmenite structure vary around 2.8 (cf. FeTiO₃, 2.77; ZnGeO₃, 2.80; MgSiO₃, 2.87), and the scattering of the c/a ratios for the ilmenite structure is possibly due to the different disordered state of cations. Thus, it is clear that the c/a ratio of 2.71 for the trigonal phase observed in this study is close to that for the corundum structure. To compare with the corundum and

Figure 3. Unit cell edge dimensions and volumes of the trigonal phase are plotted in comparison with those of corundum (Al₂O₃) and hematite (Fe₂O₃). Dotted lines were just to connect the values between corundum and hematite.

hematite structures, unit cell dimensions and volume of the trigonal phase are plotted in Figure 3. These values could be plotted almost on the line between corundum and hematite. This evidence supports the corundum type of FeAlO3. It is important that Fe³+ and Al³+ should occupy a single cation site in the corundum structure of FeAlO3 in disorderly manner, since there is a single cation site in corundum structure. However, disorder of Fe³+ and Al³+ is not so trivial from the viewpoint of their similar ionic radii. Their ionic radii in an octahedral site are 0.63 Å for Fe³+ and 0.61 Å for Al³+.¹5 In addition, it may be noted that Fe³+ has no crystal field stabilization energy. At this moment, since another interesting issue is whether the corundum type of FeAlO3 is a thermodynamically stable phase, it will be necessary to perform more detailed study of the P–T phase diagram on FeAlO3.

It was recently reported that corundum and hematite transform into the Rh₂O₃(II) structure at high pressure and high temperature. 16,17 It is known that the powder diffraction pattern for the Rh₂O₃(II) structure is quite similar to that for the GdFeO₃type orthorhombic perovskite structure. Both the Rh₂O₃(II) structure of Al₂O₃ and Fe₂O₃ could not be recovered and backtransformed into the corundum structure on release of pressure. On the other hand, some oxides with the GdFeO₃-type orthorhombic perovskite structure, which are stabilized at high pressure and high temperature, transform into the LiNbO₃ structure during decompression. 14,18,19 From this evidence, it could be pointed out that the order-disorder-type transition of cations would not occur during decompression at room temperature, since there is a single cation site in corundum and the Rh₂O₃(II) structure and two cation sites in perovskite and the LiNbO₃ structure. Thus, our conclusion that the recovered

trigonal phase could have the corundum structure suggests the high-pressure orthorhombic phase to probably be the $Rh_2O_3(II)$ structure rather than the $GdFeO_3$ -type orthorhombic perovskite structure

Frost and Langenhorst¹⁰ measured the Fe³⁺ solubility into (Mg, Fe)SiO₃ perovskite in the Al-bearing system and showed that increasing the Al₂O₃ content of silicate perovskite only increases the Fe³⁺ solubility. The variation in Fe³⁺ solubility with the Al₂O₃ content is close to linear at higher Al₂O₃ content, and this implies that the substitution mechanism involved in the incorporation of Fe³⁺ and Al³⁺ into the silicate perovskite plays an important role at higher Al₂O₃ content. An atomic computer simulation study also suggested the FeAlO₃-MgSiO₃ type of substitution mechanism to be energetically favorable at lower mantle conditions.⁸ Although the maximum solubility of the FeAlO₃ component into MgSiO₃ perovskite at lower mantle conditions has been hitherto unknown, it is expected that a substantial amount of the FeAlO3 component can dissolve in MgSiO₃ perovskite, or in an extreme case, a continuous solid solution of (Mg, Fe³⁺)(Al³⁺, Si)O₃ may appear, if the isostructural FeAlO₃ perovskite is stabilized at lower mantle conditions. However, since our conclusion indicates that the FeAlO₃ component would be stabilized with the Rh₂O₃(II) structure rather than the MgSiO₃ perovskite structure at lower mantle conditions, it is reasonable that there is a maximum solubility of the FeAlO₃ component into MgSiO₃ perovskite at lower mantle conditions.20

4. Summary

Synchrotron X-ray diffraction measurements were carried out on FeAlO₃ prepared under high-pressure and high-temperature experiments using a double-sided YLF laser-heated diamond anvil cell technique. A new polymorph of FeAlO₃ could be synthesized at 72 GPa and 1800 K that exhibited a Rh₂O₃(II)-type structure. This phase further transformed into FeAlO₃ with corundum structure during decompression.

Acknowledgment. We thank T. Kikegawa and T. Tanimoto for their help at the Photon Factory. The synchrotron X-ray diffraction studies at BL-13A were performed with the approval of the Photon Factory Advisory Committee (proposal nos. 2002G044, 2002G210). This work was partly carried out by the joint research in the Institute for Solid State Physics, the University of Tokyo. This work is partly supported by a Grantin-Aid for Scientific Research (nos. 13440162, 15340187) from the Ministry of Education, Science and Culture of Japan.

References and Notes

- (1) Bouree, F.; Baudour, J. L.; Elbadraui, E.; Musso, J.; Laurent, C.; Rousset, A. Acta Crystallogr. 1996, B52, 217.
- (2) Gramsch, S. A.; Prewitt, C. T. In *High Pressure Crystal Chemistry of FeAlO₃*; *EOS Trans. AGU*, **2002**, *83*(19), Spring Meeting Supplement, Abstract M22A-07.
- (3) Gramsch, S. A.; Prewitt, C. T. In *High Pressure Structural Properties of FeAlO*₃; *EOS Trans. AGU*, **2002**, 83(46), Fall Meeting Supplement, Abstract MR62B-1084.
 - (4) Zhang, J.; Weidner, D. J. Science 1999, 284, 782.
- (5) Daniel, I.; Bass, J. D.; Fiquet, G.; Cardon, H.; Zhang, J. Z.; Hanfland, M. *Geophys. Res. Lett.* **2001**, 28(19), 3789.
 - (6) Xu, Y.; McCammon, C.; Poe, B. T. Science 1998, 282, 922.
- (7) Stebbins, J. F.; Kroeker, S.; Andrault, D. Geophys. Res. Lett. 2001, 28, 615.
 - (8) Richmond, N. C.; Brodholt, J. P. Am. Mineral. 1998, 83, 947.
- (9) Lauterbach, S.; McCammon, C. A.; van Aken, P.; Langenhorst, F.; Seifert, F. Contrib. Mineral. Petrol. 2000, 138, 17.
- (10) Frost, D. J.; Langenhorst, F. Earth Planet. Sci. Lett. 2002, 199, 227.

- (11) Devaux, X.; Rousset, A.; Broto, J. M.; Rakoto, H.; Askenazy, S. J. Mater. Sci. Lett. 1990, 9(3), 371.
- (12) Shen, G.; Mao, Hk.; Hemley, R. J. In *Proceedings of the 3rd NIRIM International Symposium on Advanced Materials*; Tsukuba, Japan, March 4–8, 1996, p 149.
- (13) Fujihisa, H.; Aoki, K. Rev. High Pressure Sci. Technol. 1998, 8,
- (14) Funamori, N.; Yagi, T.; Miyajima, N.; Fujino, K. Science 1997, 275, 513.
 - (15) Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. 1969, B25, 925.
- (16) Rozenberg, G. Kh.; Dubrovinsky, L. S.; Pasternak, M. P.; Naaman, O.; Le Bihan, T.; Ahuja, R. *Phys. Rev. B* **2002**, *65*, 064112–1.
- (17) Lin, J-F.; Degtyareva, O.; Prewitt, C. T.; Dera, P.; Sata, N.; Gregoryanz, E.; Mao, Hk.; Hemley, R. J. *Nat. Mater.* **2004**, *3*, 389.
- (18) Leinenweber, K.; Wang, Y.; Yagi, T.; Yusa, H. Am. Mineral. 1994, 79, 197.
 - (19) Ko, J.; Prewitt, C. T. Phys. Chem. Miner. 1988, 15, 355.
- (20) Hamane, D.; Nagai, T.; Fujino, K.; Seto, Y.; Takafuji, N. *Geophys. Res. Lett.* **2005**, *32*, L16306.