Теоремы и определения

Definition: Высказывания и n-местные предикаты

Высказывание - это упрощённая модель повествования предложения, такая что каждое высказывание либо истинно, либо ложно, но не одновременно

n-местные предикат (n-арный предикат) - это выражение, которое превращается в высказывание, если в нём заменить $x_1, x_2, ..., x_n$ на подходящие имена, где $x_1, x_2, ..., x_n$ - переменные в предикате

Definition: Логические операции

Отрицание: $\bullet \neg A$ (также обозначают \bar{A}) означает "не A"

Логическое и: • $A \wedge B$ означает "верно A и верно B"

Логическое или: • $A \lor B$ означает "верно A, или верно B, или верны A и B вместе"

Исключающее или: • $A \oplus B$ означает "верно ровно одно из высказываний A, B"

Импликация: $\bullet A \Longrightarrow B$ означает "если верно A, то верно B"

ullet Эквивалентность: ullet $A \iff B$ означает "A верно тогда и только тогда, когда верно B"

\mathbf{Note}

Пусть $A \Longrightarrow B$

Если A верно, то B тоже верно, но если A ложно, то B может быть и истинным, и ложным

Пусть $A \iff B$

Если A ложно, то ложно B. Если B верно, то верно A

\mathbf{Note}

Логические операции можно выражать через другие логические операции, например, $(A \longrightarrow B) \longleftrightarrow (A \lor B)$

 $(A \Longrightarrow B) \Longleftrightarrow (\neg A \lor B)$

Definition: Кванторы

Квантор всеобщности обозначается как ∀ и означает "для любого"

Квантор существования обозначается как В и означает "существует"

Квантор едиственности обозначается как! и означает "едиственный, такой что ..."

Example

Всеобщность: $\bullet \ \forall x \in \mathbb{R} : \phi(x)$ означает

"Для любого x из \mathbb{R} выполняется предикат $\phi(x)$ "

Существование: • $\exists x (x \in \mathbb{Q} \implies \psi(x))$ означает

"Существует x, такой что если x из \mathbb{Q} , то выполняется предикат $\psi(x)$ "

Единственность: • $\forall n \in \mathbb{N} \exists ! k \in \mathbb{N} \cup \{0\} : 2^k \le n < 2^{k+1}$ означает

"Для любого натурального числа существует и едиственно такое

целое неотрицательное число k, что $2^k \le n < 2^{k+1}$ "

Note

На практике квантор едиственности часто используется вместе с квантором существования т.е. часто используют связку ∃!, "существует и единственно"

Note

Вместо "¬∃" пишут "∄"

Claim Правило обращения кванторов

При обращении кванторов квантор существования меняется на квантор всеобщности, квантор всеобщности меняется на квантор существования, а утверждение под кванторами меняется на противоположное

Example

Пусть дано высказывание:

$$\forall n \in \mathbb{N} \exists m_1 \in \mathbb{Z} \exists m_2 > m_1 \, \forall q \in \mathbb{Q} : |m_1| > n \land \neg \psi(q \cdot m_1 \cdot m_2 - n)$$

Тогда отрицание к этому высказыванию будет:

$$\exists n \in \mathbb{N} \, \forall m_1 \in \mathbb{Z} \, \forall m_2 > m_1 \, \exists q \in \mathbb{Q} : \, |m_1| \leq n \vee \psi(q \cdot m_1 \cdot m_2 - n)$$

Claim Метод математической индукции

Пусть есть предикат $\phi(n)$, который выполняется или не выполняется при различных $n \in \mathbb{N}$ Тогда, если $\exists k \in \mathbb{N} : \phi(k)$ и $\forall n \geq k : (\phi(n) \implies \phi(n+1))$, то по методу математической индукции получаем $\forall n \geq k : \phi(n)$

Этапы доказательства:

База индукции: • Проверка истинности $\phi(k)$

Предположение индукции: • Пусть для некоторого $n \in \mathbb{N} \land n \ge k$ верно $\phi(n)$

Шаг индукции: • Докажем, что $\phi(n+1)$, используя предположение индукции

Вывод: $\bullet \ \forall n \geq k : \phi(n)$

Theorem Неравенство Бернулли

Если $n \in \mathbb{N}$ и $x \ge -1$, то $(1+x)^n \ge 1+xn$

Proof:

Докажем неравенство при помощи метода математической индукции

1. База индукции:

Пусть
$$n = 1 \implies (1+x)^n = 1+x \ge 1+x$$

2. Предположение индукции:

Пусть для некоторого $n \ge 1$ верно, что $(1+x)^n \ge 1+xn$

3. Шаг индукции: Рассмотрим неравенство, подставив в него n+1:

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$

$$1 + x \ge 0 \implies (1 + x)^n \cdot (1 + x) \ge (1 + xn) \cdot (1 + x) = 1 + xn + x + n \cdot x^2 \ge 1 + nx + x = 1 + n(x + 1)$$

Следовательно, $(1+x)^{n+1} > 1 + n(x+1)$

4. Обозначим доказываемое высказывание как предикат $\phi(n)$, тогда получаем:

$$\phi(1) \land \forall n \in \mathbb{N} : (\phi(n) \implies \phi(n+1))$$

Тогда по принципу математической индукции $\forall n \in \mathbb{N} : \phi(n)$

Definition: Перестановки, размещения и сочетания

Пусть дано множество из n элементов

• Если все элементы попарно различны (т.е. при решении задачи мы считаем, что два любых элемента множества различны), то количество попарно различных перестановок этого множества обозначается как P_n и равно n!

Пусть зафиксировано $k \in \mathbb{N} \cup \{0\}$, такое что $k \leq n$, тогда:

- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, что элементы попарно различны, обозначается как A_n^k и равно $\frac{n!}{(n-k)!}$
- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, элементы равны, обозначается как C_n^k и равно $\frac{n!}{k!(n-k)!}$

Theorem Бином Ньютона

 $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$ (формально, перед равенством необходимо написать $\forall a,b \in \mathbb{R} \forall n \in \mathbb{N}$)

Proof:

Докажем это утверждение при помощи метода математической индукции

1. База индукции:
$$n=1 \implies (a+b)^n = a+b = \sum_{k=0}^1 C_n^k a^k b^{n-k}$$

- 2. Предположение индукции: пусть для некоторого $n \ge 1$: $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$
- 3. Рассмотрим равенство и докажем, что оно верно при подстановке n+1:

$$(a+b)^{n+1} = (a+b)(a+b)^{n} = (a+b)\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} =$$

$$= a\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} + b\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} = \sum_{k=0}^{n} C_{n}^{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=1}^{n+1} C_{n}^{k-1} a^{k} b^{n-(k-1)} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k} = C_{n}^{n} a^{n+1} b^{0} + \sum_{k=1}^{n} C_{n}^{k-1} a^{k} b^{n+1-k} + C_{n}^{0} a^{0} b^{n+1} \sum_{k=1}^{n} C_{n}^{k} a^{k} b^{n+1-k} =$$

$$= a^{n+1} + b^{n+1} + \sum_{k=1}^{n} (C_{n}^{k-1} + C_{n}^{k}) a^{k} b^{n+1-k} = C_{n+1}^{n+1} a^{n+1} + C_{n+1}^{0} b^{n+1} + \sum_{k=1}^{n} C_{n+1}^{k} a^{k} b^{n+1-k} =$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

4. Получили:

Равенство верно при n=1, а из верности равенства для n следует верность равенства для n+1 (при $n \ge 1$), тогда по методу математической индукции получим, что равенство верно $\forall n \in \mathbb{N}$

Definition: Числовая последовательность

Числовая последовательность - это счётно бесконечный проиндексированный набор чисел

Definition: Ограниченная сверху числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной сверху, если

 $\exists C \in \mathbb{R} \, \forall n \in \mathbb{N}: \, a_n < C$

Definition: Ограниченная снизу числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной снизу, если

 $\exists C \in \mathbb{R} \, \forall n \in \mathbb{N}: \, a_n > -C$

Definition: Ограниченная числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной, если

 $\exists C > 0 \, \forall n \in \mathbb{N} : \, |a_n| < C$

Note

Числовая последовательность ограничена ⇔ она ограничена сверху и ограничена снизу

Definition: Неограниченная числовая последовательность

Числовая последовательность $\{a_n\}$ называется неограниченной, если она не является ограниченной, то есть

 $\forall C > 0 \,\exists n \in \mathbb{N} : |a_n| \ge C$

Definition: Отделимая от нуля числовая последовательность

Числовая последовательность $\{a_n\}$ называется отделимой от нуля, если

 $\exists \epsilon > 0 \, \forall n \in \mathbb{N} : \, |a_n| > \epsilon$

Definition: Эпсилон окрестность

Эпсилон окрестностью вещественного числа x_0 (элемента поля вещественных чисел) называется множество $(x_0 - \epsilon; x_0 + \epsilon)$ и обозначается $U_{\epsilon}(x_0)$.

Обычно говорят "Эпсилон окрестность точки x_0 "

Example

$$U_1(\pi) = (\pi - 1; \pi + 1)$$

 $U_e(e) = (0; 2e)$

Definition: Проколотая эпсилон окрестность

Проколотой эпсилон окрестностью вещественного числа x_0 (элемента поля вещественных чисел) называется множество $(x_0 - \epsilon; x_0 + \epsilon) \setminus \{x_0\}$ и обозначается $\dot{U}_{\epsilon}(x_0)$.

Обычно говорят "Проколотая эпсилон окрестность точки x_0 "

Example

$$\dot{U}_1(e) = (e-1; e+1) \setminus \{e\} = (e-1; e) \cup (e; e+1)$$

Definition: Сходящаяся числовая последовательность

Числовая последовательность называется сходящейся, если она имеет конечный предел при $n o + \infty$, т.е. ч.п. $\{a_n\}$ называется сходящейся, если $\exists \lim_{n \to +\infty} a_n = A \in \mathbb{R}$, то есть по определению

$$\exists A \in \mathbb{R} \, \forall \epsilon > 0 \, \exists N = N(\epsilon) \forall n > N : |a_n - A| < \epsilon$$

Note

Сходящаяся ч.п. является ограниченной

Note

Неравенство $|a_n - A|$ < ϵ равносильно тому, что a_n ∈ $U_{\epsilon}(A)$

Definition: Бесконечно большая числовая последовательность

Числовая последовательность $\{a_n\}$ называется бесконечно большой, если она стремится к $+\infty$, к $-\infty$ или к ∞ при $n \to +\infty$, т.е.

- $\bullet \ \lim_{n \to +\infty} a_n = +\infty \iff \forall M > 0 \, \exists N = N(M) \forall n > N : a_n > M$
- $\lim_{n \to +\infty} a_n = -\infty \iff \forall M > 0 \exists N = N(M) \forall n > N : a_n < -M$
- $\bullet \ \lim_{n \to +\infty} a_n = \infty \iff \forall M > 0 \, \exists N = N(M) \forall n > N : |a_n| > M$

Definition: Бесконечно малая числовая последовательность

Числовая последовательность $\{a_n\}$ называется бесконечно малой, если она стремится к 0 при $n \to \infty$

 $\forall \epsilon > 0 \exists N = N(\epsilon) \forall n > N : |a_n| < \epsilon$

Note

Связь числовых последовательностей:

- $\frac{1}{6.6.} = 6.M.$ $\frac{1}{6.M.} = 6.6.$ $\frac{1}{\text{ограниченная}} = \text{отделимая от нуля}$
- $\frac{1}{\text{отделимая от нуля}} = \text{ограниченная}$

Note

Если ч.п. сходится или является б.б., то предел единственный

Theorem Teopema: свойство предельного перехода в неравенствах

$$(\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A) \wedge (\lim_{n \to \infty} c_n = C) \implies C \geq A$$

5

Proof:

1. Распишем, что дано, по определению:

$$\forall \epsilon > 0 \exists N_1(\epsilon) \forall n > N_1(\epsilon) : |c_n - C| < \epsilon$$

Это равносильно
$$\forall \epsilon > 0 \exists N_1(\epsilon) \forall n > N_1(\epsilon) : C - \epsilon < c_n < C + \epsilon$$

$$\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A$$

2. Для любого ϵ рассмотрим $M(\epsilon) = \max(N_1(\epsilon), N) + 1$

Тогда
$$\forall \epsilon > 0 \exists M(\epsilon) = \max(N_1(\epsilon), N) + 1 \, \forall n > M : (C - \epsilon < c_n < C + \epsilon \wedge c_n > A)$$

Следовательно, $\forall \epsilon > 0 \exists M(\epsilon) \forall n > M : C + \epsilon > A$

Выражение под кванторами не зависит от M и $n \implies \forall \epsilon > 0 : C + \epsilon > A$

3. Предположим от противного, что C < A

Положим
$$\epsilon := \frac{A-C}{2} > 0 \implies C+\epsilon = C+\frac{A-C}{2} = \frac{A+C}{2} < A$$

Получили, что $\exists \epsilon > 0 : C + \epsilon < A \implies (\mathbb{W}) \implies$ предположение, что C < A, неверно $\implies C \ge A$

Theorem Теорема о зажатой последовательности (о 2 миллиционерах / 2 полицейских / гамбургерах)

$$a_n,b_n,c_n$$
 - числовые последовательности $\lim_{n\to\infty}a_n=X$ $\lim_{n\to\infty}b_n=X$ $\exists N\in\mathbb{N}\ \forall n\geq N: a_n\leq c_n\leq b_n$ $\Longrightarrow\lim_{n\to\infty}c_n=X$

Proof:

Докажем для случая, когда $X \in \mathbb{R}$. При $X \in \overline{\mathbb{R}} \setminus \mathbb{R}$ доказательство проводится аналогично

1. Распишем по определению пределы.

$$\forall \epsilon > 0 \,\exists N_1(\epsilon) \,\forall n > N_1(\epsilon) : X - \epsilon < a_n < X + \epsilon$$

$$\forall \epsilon > 0 \,\exists N_2(\epsilon) \,\forall n > N_2(\epsilon) : X - \epsilon < b_n < X + \epsilon$$

Рассмотрим $N_3(\epsilon) = \max(N_1(\epsilon), N_2(\epsilon), N)$, тогда

$$\forall \epsilon > 0 \,\exists N_3(\epsilon) \,\forall n > N_3(\epsilon) : X - \epsilon < a_n \le c_n \le b_n < X + \epsilon$$

$$\implies \forall \epsilon > 0 \,\exists N_3(\epsilon) \,\forall n > N_3(\epsilon) : X - \epsilon < c_n < X + \epsilon$$

Theorem Теорема о свойстве предела б.м. ч.п.

$$\lim_{n \to \infty} a_n = a \iff a_n = a + lpha_n$$
, где $lpha_n$ - б.м. ч.п.

Proof: Распишем α_n по определению:

$$\forall \epsilon > 0 \,\exists N(\epsilon) \,\forall n > N(\epsilon) : |\alpha_n| < \epsilon$$

При $a_n = a + \alpha_n$, то $a_n - a = \alpha_n$.

Подставим в выражение под кванторами, этот переход является равносильным, то есть:

$$\forall \epsilon > 0 \,\exists N(\epsilon) \,\forall n > N(\epsilon) : |\alpha_n| < \epsilon \iff \forall \epsilon > 0 \,\exists N(\epsilon) \,\forall n > N(\epsilon) : |a_n - a| < \epsilon$$

Получили, что при α_n - б.м. ч.п. : $a_n = a + \alpha_n \iff \lim_{n \to \infty} a_n = a$

Definition: Монотонность ч.п.

- Ч.п. $\{a_n\}$ называется строго возрастающей, если $\forall n \in \mathbb{N}: a_{n+1} > a_n$
- Ч.п. $\{a_n\}$ называется строго убывающей, если $\forall n \in \mathbb{N} : a_{n+1} < a_n$
- Ч.п. $\{a_n\}$ называется неубывающей, если $\forall n \in \mathbb{N}: a_{n+1} \geq a_n$
- Ч.п. $\{a_n\}$ называется невозрастающей, если $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$

Claim Аксиома непрерывности действительных чисел (принцип полноты)

$$\begin{array}{l} A \subseteq \mathbb{R} \\ A \neq \varnothing \\ B \subseteq \mathbb{R} \\ B \neq \varnothing \\ \forall a \in A \ \forall b \in B : a \leq b \end{array} \right\} \implies \exists c \in \mathbb{R} \ \forall a \in A \ \forall b \in B : a \leq c \leq b$$

Definition: Ограниченное сверху множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным свеху, если $\exists C \in \mathbb{R} \ \forall a \in A : a \leq C$

Definition: Ограниченное снизу множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным снизу, если $\exists C \in \mathbb{R} \ \forall a \in A : a \geq C$

Definition: Ограниченное множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным, если $\exists C > 0 \, \forall a \in A : |a| \leq C$

Definition: Определение верхней грани множества

Пусть дано множество $A\subset \mathbb{R} \wedge A\neq \emptyset$. Тогда верхней гранью множества A называют число $c\in \mathbb{R},$ такое что

 $\forall a \in A : a \leq c$

Definition: Определение нижней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда нижней гранью множества A называют число $c \in \mathbb{R}$, такое что

 $\forall a \in A : a \ge c$

Definition: Определение точной верхней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда точной верхней гранью множества A называют наименьший элемента множества всех верхних граней множества A и обозначают $\sup A$

Definition: Определение точной нижней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда точной нижней гранью множества A называют наибольший элемента множества всех нижней граней множества A и обозначают $\inf A$

Theorem Теорема о существовании точной грани множества

Если множество $A \subset \mathbb{R}, A \neq \emptyset$ ограничено сверху, то $\exists \sup A$

Если множество $A \subset \mathbb{R}, A \neq \emptyset$ ограничено снизу, то $\exists \inf A$

Proof: Докажем для верхней грани, для нижней грани доказательство аналогично

$$A \subseteq \mathbb{R} \land A \neq \emptyset \land (\exists C > 0 \ \forall a \in A \implies a < C) \implies \exists \sup A$$

- 1. Обозначим $S_A = \{c \in \mathbb{R} | \forall a \in A \implies a \leq c\} \neq \emptyset$ множество верхних граней Это множество не пусто, т.к. A ограничено по условию, т.е. $\exists c > 0 \ \forall a \in A \implies a \leq c$
- 2. По построению множества A и S_A удовлетворяют аксиоме непрерывности действительных чисел, тогда $\exists b \in \mathbb{R} \ \forall a \in A \ \forall c \in S_A \implies a \leq b \leq c$

Но из $b \le c \implies b \in S_A$, при этом ($\forall c \in S_A \implies b \le c$), следовательно, b является наименьшим элементом множества верхних граней множества A, т.е. по определению точной верхней грани $b = \sup A$

Theorem Теорема Вейерштрасса (о существовании предела ч.п.)

Если ч.п. $\{a_n\}$ неубывает и ограничена сверху, то она сходится

Если ч.п. $\{a_n\}$ невозрастает и ограничена снизу, то она сходится

Proof: Докажем для неубывающей ч.п., для невозрастающей ч.п. доказательство аналогично

1. Обозначим множество значений ч.п. $A = \{a_n\}$

Т.к. a_n - числовая последовательность, то множество A счётно или конечно

(т.е. существует инъекция между A и $\mathbb{N}, A \lesssim \mathbb{N}$)

Также $A \neq \emptyset$ и множество A ограничено сверху \implies по теореме о существовании точной верхней грани $\exists \sup A = a$

2. Докажем, что $\lim_{n\to +\infty} a_n = a$, т.е. $\forall \epsilon \exists N = N(\epsilon) \, \forall n > N(\epsilon) : |a_n - a| < \epsilon$

 a_n неубывает и ограничена сверху $a \implies |a_n - a| = a - a_n$, тогда

 $|a_n - a| < \epsilon \iff a - a_n < \epsilon \iff a_n > a - \epsilon$

T.к. последовательность a_n неубывает, то следующие 2 высказывания равносильны:

 $\forall \epsilon \, \exists N = N(\epsilon) \, \forall n > N(\epsilon) : a_n > a - \epsilon \, (\#)$

 $\forall \epsilon \, \exists N = N(\epsilon) : a_N > a - \epsilon \ (*)$

3. Докажем второе высказывание (*) методом от противного.

Предположим, что $\exists \epsilon_0 \forall n \in \mathbb{N} : a_n \leq a - \epsilon_0$

Тогда число $a-\epsilon_0$ - верхняя грань множества A, но a само является точной верхней гранью, но $a-\epsilon_0 < a \implies \bot \implies$ неверно предположение, что высказывание (*) неверно \implies высказывание (#) верно

Definition: Число е

Рассмотрим ч.п. $a_n = (1 + \frac{1}{n})^n$

Докажем, что у ч.п. есть конечный предел и обозначим его е

Proof: 1. Докажем, что a_n ограничена сверху числом 3

$$a_{n} = \sum_{k=0}^{n} C_{n}^{k} \left(\frac{1}{n}\right)^{k} = 1 + C_{n}^{1} \cdot \frac{1}{n} + C_{n}^{2} \cdot \frac{1}{n^{2}} + \dots + C_{n}^{n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{n}{1!} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} + \dots + \frac{n(n-1)(n-2) \cdot \dots \cdot 2 \cdot 1}{1 \cdot 2 \cdot \dots \cdot (n-1)n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right) \le$$

$$\leq 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + \frac{1}{1!} + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} =$$

$$= 2 + \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} = 2 + \frac{1}{1} - \frac{1}{n} = 3 - \frac{1}{n} < 3$$

2. Докажем, что a_n - возрастающая ч.п.

Рассмотрим a_{n+1}

$$\begin{aligned} a_{n+1} &= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots \\ &+ \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) + \\ &+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) \cdot \left(1 - \frac{n}{n+1} \right) \\ \text{T.K. } \forall m \in \{1, \dots, n\} \ 1 - \frac{m}{n} < 1 - \frac{m}{n+1}, \text{ To} \\ a_{n+1} \geq a_n + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) \cdot \left(1 - \frac{n}{n+1} \right) > a_n \end{aligned}$$

3. $\{a_n\}$ ограничена сверху и возрастает $\implies \exists \lim_{n\to\infty} a_n \in \mathbb{R}$

Definition: Подпоследовательность

Пусть дана ч.п. $\{a_n\}$, тогда подпоследовательностью называется ч.п., полученная последовательным выбором некоторых членов исходной ч.п. и обозначается $\{a_{n_k}\}$

Definition: Частичный предел

Частичный предел ч.п. $\{a_n\}$ - число, являющееся пределом какой-либо сходящейся ч.п. последовательности $\{a_n\}$

Definition: Верхний предел ч.п.

Верхним пределом ч.п. $\{a_n\}$ называется предел

$$\overline{\lim}_{n \to +\infty} a_n = \lim_{k \to +\infty} \sup \{a_n\}_{n \ge k}$$

9

Definition: Нижний предел ч.п.

Нижним пределом ч.п. $\{a_n\}$ называется предел

$$\underline{\lim}_{n \to +\infty} a_n = \lim_{k \to +\infty} \inf \{a_n\}_{n \ge k}$$

Definition: Предельная точка ч.п.

Предельной точкой ч.п. $\{a_n\}$ называется число a, такое что в любой окрестности точки a находится бесконечно много членов ч.п. $\{a_n\}$

Theorem Определение предельной точки ч.п. эквивалентно определению частичного предела ч.п.

Proof:

1. a - частичный предел $\implies a$ - предельная точка $\{a_n\}$

$$\forall \epsilon > 0 \exists N = N(k) \forall k > N : |a_{n_k} - a| < \epsilon$$

 \iff

$$\forall \epsilon > 0 \exists N = N(k) \forall k > N : a_{n_k} \in U_{\epsilon}(a)$$

Следовательно, $\forall \epsilon$ в $U_{\epsilon}(a)$ попадает бесконечно много членов $\{a_n\}$

2. a - предельная точка $\{a_n\} \implies a$ - ч.п. $\{a_n\}$

По определению предельной точки $\forall \epsilon$ в $U_{\epsilon}(a)$ попадает бесконечно много членов $\{a_n\}$

Предъявим ч.п. $\{a_{n_k}\}\subseteq\{a_n\}$, такую что $\exists\lim_{k\to\infty}a_{n_k}=a$

Обозначим $\epsilon_k = \frac{1}{k}$

Рассмотрим ϵ_1 , в $U_{\epsilon_1}(a)$ попадает бесконечно много членов $\{a_n\}$, выберем какой-то член a_{n_1}

Рассмотрим ϵ_2 , в $U_{\epsilon_2}(a)$ попадает бесконечно много членов $\{a_n\}$, поэтому $\exists n_2 > n_1 : a_{n_2} \in U_{\epsilon_2}(a)$

Рассмотрим ϵ_k , в $U_{\epsilon_k}(a)$ попадает бесконечно много членов $\{a_n\}$, поэтому $\exists n_k > n_{k-1} : a_{n_k} \in U_{\epsilon_k}(a)$

Таким образом, построена ч.п. $\{a_{n_k}\}$, такая что $\forall k \in \mathbb{N}: a-\frac{1}{k} < a_{n_k} < a+\frac{1}{k} \Longrightarrow$

 \Longrightarrow по теореме о зажатой последовательности $\lim_{k\to\infty} a_{n_k} = a$

Note

Свойства частичных пределов ч.п.

 $\{a_n\}$ сходится $\iff \lim_{n\to+\infty} a_n = \underline{\lim}_{n\to+\infty} a_n$

 $\lim_{n\to+\infty} a_n = \sup\{$ множества предельных точек $\{a_n\}\}$

 $\lim_{n\to+\infty} a_n = \inf\{$ множества предельных точек $\{a_n\}\}$

 $\overline{\lim}_{n \to +\infty} a_n$ и $\underline{\lim}_{n \to +\infty} a_n$ - частичные пределы

Theorem Система вложенных отрезков

Системой вложенных отрезков называют счётно бесконечное множество отрезков, каждый из которых содержит следующий отрезок как подмножество

Обозначение: $\{I_k\}_{k\in\mathbb{N}}$, где $\forall k\in\mathbb{N}:I_{k+1}\subseteq I_k$

Example

```
Рассмотрим S = \{[1 - \frac{1}{k}; 2 + \frac{1}{k}]\}_{k \in \mathbb{N}}, тогда S = \{[0; 3], [0.5; 2.5], [\frac{2}{3}; 2\frac{1}{3}], ...\} Рассмотрим S = \{[\pi; \pi - \frac{1}{k^k}]\}_{k \in \mathbb{N}}, тогда S = \{[\pi; \pi - 1], [\pi; \pi - \frac{1}{4}], [\pi; \pi - \frac{1}{27}], ...\}
```

Theorem Теорема Больцано-Вейерштрасса

Из любой ограниченной ч.п. можно выделить сходящуюся подпоследовательность

Proof:

По определению ограниченной ч.п. $\exists C \forall n \in \mathbb{N} | a_n | < C$ Построим искому подпоследовательность при помощи системы вложенных отрезков $I_1 = [-c;c], \forall n \in \mathbb{N} a_n \in I_1$, выберем какой-то член ч.п. $a_{n_1} \in I_1$ Т.к. $\{a_n\}$ - ч.п., то в какой-то половине точно есть бесконечно много членов $\{a_n\}$ Выберем эту половину и обозначим I_2 , выберем в нём какой-то член ч.п. $a_{n_2} \in I_2$ Пусть построен I_k и a_{n_k} . Делим I_k пополам и выбираем половину, в которой бесконечно много членов $\{a_n\}$, обозначим эту половину как I_{k+1} и выберем $a_{n_{k+1}}: n_{k+1} > n_k$ Построили последовательность $\{I_k\}_{k \in \mathbb{N}}$, где $I_k = [b_k; d_k]$ $\forall k \in \mathbb{N}: I_{k+1} \subset I_k \implies \{b_k\}$ неубывает и ограничена сверху C $\implies \exists \lim_{n \to \infty} b_k = b, b \ge b_k$ $\forall k \in \mathbb{N}: I_{k+1} \subset I_k \implies \{d_k\}$ невозрастает и ограничена снизу -C $\implies \exists \lim_{n \to \infty} d_k = d, d \le d_k$

При этом $|d_k-b_k|=rac{2\cdot C}{2^{k-1}}\to 0$ при $k\to\infty$ $ADDPROOF[d\ge b]($ пока что см. консультацю 2) $d-b\le d_k-b_k\to 0$ при $k\to\infty\implies d\le b\implies d=b$

Definition: Фундаментальная ч.п.

Ч.п. $\{a_n\}$ называется фундаментальной, если

$$\forall \epsilon > 0 \,\exists N(\epsilon) \forall n, m > N(\epsilon) : |a_n - a_m| < \epsilon$$

Theorem Критерий сходимости ч.п. по Коши

Ч.п. $\{a_n\}$ сходится \iff $\{a_n\}$ - Фундаментальная ч.п.

Proof:

$$" \implies "$$

Распишем, что дано: $\exists A \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N_1(\epsilon) \ \forall n > N_1 : |a_n - A| < \epsilon$

Хотим доказать: $\forall \epsilon > 0 \,\exists N_2(\epsilon) \,\forall n,m > N_2 : |a_n - a_m| < \epsilon$

$$|a_n - a_m| < \epsilon \iff |a_n - a + a - a_m| < \epsilon \iff |a_n - a| + |a - a_m| < \epsilon \iff |a_n - a| + |a_m - a| < \epsilon$$

Положим
$$N_2(\epsilon) := N_1(\frac{\epsilon}{2}) \implies$$

$$\forall \epsilon > 0 \,\exists N_2(\epsilon) \,\forall n, m > N_2 : |a_n - a| + |a_m - a| < \epsilon \implies$$

$$\forall \epsilon > 0 \,\exists N_2(\epsilon) \,\forall n, m > N_2 : |a_n - a_m| < \epsilon$$

Распишем, что дано: $\forall \epsilon > 0 \exists N_2(\epsilon) \forall n, m > N_2(\epsilon) : |a_n - a_m| < \epsilon$

Покажем, что $\{a_n\}$ ограничена: положим $\epsilon=1$

$$\exists N_2(1) \, \forall n, m > N_2 : |a_n - a_m| < 1 \implies$$

$$\exists N_2(1) \, \forall n > N_2 : |a_n - a_{N_2(1)+1}| < 1 \implies$$

$$\exists N_2(1) \, \forall n > N_2 : a_{N_2(1)+1} - 1 < a_n < a_{N_2(1)+1} + 1$$

Положим
$$C := \max(|a_1|, |a_2|, ..., |a_{N_2(1)}|, |a_{N_2(1)+1}|) + 1 \implies$$

$$\forall n \in \mathbb{N} |a_n| \leq C$$

Тогда по теореме Больцано-Вейерштрасса

$$\exists a \in \mathbb{R} \exists \{a_{n_k}\} : \lim_{k \to +\infty} a_{n_k} = a$$

Докажем, что
$$\lim_{n\to+\infty} a_n = a$$

Перепишем, что дано:

$$\forall \epsilon > 0 \,\exists N_2(\epsilon) \,\forall n, m > N_2(\epsilon) : |a_n - a_m| < \epsilon$$

$$\forall \epsilon > 0 \,\exists N_3(\epsilon) \,\forall k > N_3(\epsilon) : |a_{n_k} - a| < \epsilon$$

Распишем, что хотим доказать:

$$\forall \epsilon > 0 \,\exists N_1(\epsilon) \,\forall n > N_1(\epsilon) : |a_n - a| < \epsilon$$

$$|a_n - a| < \epsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \epsilon \iff |a_n - a_{n_k}| + |a_{n_k} - a| < \epsilon$$

Т.к. при выборе членов в подпоследовательности $n_k \geq k$, то при $k > N_3(\epsilon) \implies n_k > N_3(\epsilon)$

Положим
$$N_1(\epsilon) = max(N_2(\frac{\epsilon}{2}), N_3(\frac{\epsilon}{2})) \implies$$

$$\forall \epsilon > 0 \,\exists N_1(\epsilon) \,\forall n > N_1(\epsilon) : |a_n - a_{n_k}| + |a_{n_k} - a| < \epsilon \implies$$

$$\forall \epsilon > 0 \,\exists N_1(\epsilon) \,\forall n > N_1(\epsilon) : |a_n - a| < \epsilon$$

Definition: Постоянная Эйлера

Рассмотрим ч.п. $\gamma_n=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n$ Докажем, что у ч.п. есть конечный предел и обозначим его γ

Proof:

$$\gamma_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$

$$\exists \lim_{n \to \infty} \gamma_n = \gamma$$

 γ_n убывает

$$\gamma_{n+1} - \gamma_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln(1+\frac{1}{n}) = \frac{1}{n+1} (1 - (n+1)\ln(1+\frac{1}{n})) = \frac{1}{n+1} (1 - \ln((1+\frac{1}{n})^{n+1}))$$

 $b_n = (1 + \frac{1}{n})^{n+1}$ сходится к e и убывает. Докажем убывание

$$\frac{b_n}{b_{n+1}} = \frac{(1 + \frac{1}{n})^{n+1}}{(1 + \frac{1}{n+1})^{n+2}} = (\frac{(n+1)^2}{n(n+2)})^{n+1} \cdot (\frac{n+1}{n+2}) = (1 + \frac{1}{n^2 + 2n})^{n+1} (\frac{n+1}{n+2})$$

$$\geq (1 + \frac{n+1}{n^2 + 2n})(\frac{n+1}{n+2}) = \frac{(n+1)(n^2 + 3n + 1)}{n^3 + 4n^2 + 4n} = \frac{n^3 + 4n^2 + 4n + 1}{n^3 + 4n^2 + 4n} > 1$$

$$\gamma_{n+1} - \gamma_n = \frac{1}{n+1} (1 - \ln b_n)$$

 b_n убывает к $e \implies b_n > e \implies \ln b_n > 1 \implies \gamma_{n+1} - \gamma_n < 0$

Докажем ограниченность γ_n

$$(1+\frac{1}{n})^n < e \implies n \ln(1+\frac{1}{n}) < 1 \implies \ln(1+\frac{1}{n}) < \frac{1}{n} \implies \frac{1}{n} > \ln(\frac{n+1}{n})$$

$$\gamma_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > \ln \frac{2}{1} + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n} - \ln n = \frac{1}{n}$$

$$= \ln 2 - \ln 1 + \ln 3 - \ln 2 + \ln 4 - \ln 3 + \dots + \ln(n+1) - \ln n - \ln n =$$

$$= -\ln 1 + \ln(n+1) - \ln n = \ln \frac{n+1}{n} > \ln 1 = 0$$

Definition: Определение предела функции по Коши

$$\lim_{x \to x_0} f(x) = A \iff \forall \epsilon > 0 \exists \delta = \delta(\epsilon) \forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : f(x) \in \mathcal{U}_{\epsilon}(A)$$

Definition: Определение предела функции по Гейне

$$\lim_{x \to x_0} f(x) = A \iff \forall \{x_n\} : (x_n \neq x_0 \land \lim_{n \to +\infty} x_n = x_0 \implies \lim_{n \to +\infty} f(x_n) = A)$$

Definition: Односторонний предел функции

Левосторонним пределом функции называют предел функции по Коши f при $x \to x_0$ слева, то есть

$$\lim_{x \to x_0 -} f(x) = A \iff \forall \epsilon > 0 \exists \delta = \delta(\epsilon) \forall x \in (x_0 - \delta; x_0) : f(x) \in U_{\epsilon}(A)$$

Правосторонним пределом функции называют предел функции по Коши f при $x \to x_0$ справа, то есть

$$\lim_{x \to x_{0+}} f(x) = A \iff \forall \epsilon > 0 \exists \delta = \delta(\epsilon) \forall x \in (x_0; x_0 + \delta) : f(x) \in U_{\epsilon}(A)$$

Note

 $\lim_{x\to x_0} f(x) = A \iff \lim_{x\to x_0+} f(x) = \lim_{x\to x_0-} f(x) = A$, где $A\in \bar{\mathbb{R}}$

Definition: Бесконечные пределы

- $\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : f(x) > M$
- $\bullet \ \lim_{x \to x_0} f(x) = -\infty \iff \forall M > 0 \, \exists \delta(M) > 0 \, \forall x \in \dot{U}_\delta(x_0) : f(x) < -M$
- $\lim_{x \to x_0} f(x) = \infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : |f(x)| > M$

Definition: Бесконечно малая функция

Функция называется б.м. при $x \to x_0$, если $\lim x \to x_0 f(x) = 0$, при этом $x_0 \in \mathbb{R}$

Definition: Бесконечно большая функция

Функция называется б.б. при $x \to x_0$, если $\lim x \to x_0 f(x) = \infty$, при этом $x_0 \in \bar{\mathbb{R}}$

Theorem Теорема о пределе сложной функции

$$\lim_{x \to x_0} f(x) = y_0$$

$$\lim_{y \to y_0} g(y) = g(y_0)$$

$$\implies \lim_{x \to x_0} g(f(x)) = g(y_0)$$

Proof:

Распишем, что дано, по определению:

$$\forall \epsilon > 0 \exists \delta_1(\epsilon) \forall x \in \dot{U}_{\delta_1(\epsilon)}(x_0) : |f(x) - y_0| < \epsilon (1)$$

$$\forall \lambda > 0 \exists \delta_2(\lambda) \forall y \in \dot{U}_{\delta_2(\lambda)}(y_0) : |g(y) - g(y_0)| < \lambda (2)$$

Распишем, что хотим доказать:

$$\forall \eta > 0 \exists \delta_3 = \delta(\eta) \forall x \in \dot{U}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$$

Положим $\delta_3(\eta) = \delta_1(\delta_2(\eta))$, :

$$x \in \dot{\mathcal{U}}_{\delta_3(\eta)}(x_0) \iff x \in \dot{\mathcal{U}}_{\delta_1(\delta_2(\eta))}(x_0) \implies \text{по } (1) |f(x) - y_0| < \delta_2(\eta)$$

$$|f(x) - y_0| < \delta_2(\eta) \iff f(x) \in U_{\delta_2(\eta)}(y_0)$$

По (2) знаем, что если $f(x) \in \dot{U}_{\delta_2(\eta)}(y_0)$, то $|g(f(x)) - g(y_0)| < \eta$

Если
$$f(x) = y_0$$
, то $|g(f(x)) - g(y_0)| = 0 < \eta$

Иначе, если $f(x) \neq y_0 \iff f(x) \in \dot{\mathcal{U}}_{\delta_2(\eta)}(y_0)$, то $|g(f(x)) - g(y_0)| = 0 < \eta$

Получили: $\forall \eta > 0 \exists \delta_3 = \delta_1(\delta_2(\eta)) \forall x \in \dot{U}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$

При нахождении опечаток просьба написать https://t.me/i8088_t, на момент компиляции ник в тг: vova kormilitsyn