Introduction to Machine Learning

Simon Andrews, Laura Biggins

simon.andrews@babraham.ac.uk

Agenda for the day

- What is machine learning
- Different types of machine learning model
- [Exercise] Running different models
- How to evaluate models
- [Exercise] Evaluating Models
- Preparing Input Data
- Running Models with tidymodels
- [Exercise] Building your first model
- Automation with Recipes and Workflows
- [Optimising models]

What is Machine Learning?

Data Analysis Workflow

Machine Learning Builds a **Model** to make **Predictions**

Sample	Weight	Age	Sex
Α	27	4.5	Male
В	28	2	Female
С	19	6.7	Female

Classification

Sample	Healthy
А	No
В	Yes
С	No

Regression

Sample	Height
А	18
В	22
С	12

Biological Examples

Input: DNA Methylation from genomic CpGs

Output: Estimated biological age

OPEN ACCESS Freely available online

Epigenetic Predictor of Age

Sven Bocklandt¹, Wen Lin², Mary E. Sehl³, Francisco J. Sánchez^{1,5}, Janet S. Sinsheimer^{1,2,4}, Steve Horvath^{1,2}, Eric Vilain^{1,5}*

Biological Examples

Input: DAPI stained cell images

Output: Predicted Cell Cycle Stage

scientific reports

Check for updates

Visual

OPEN

A machine learning approach for single cell interphase cell cycle staging

Hemaxi Narotamo^{1,6}, Maria Sofia Fernandes^{2,3,6}, Ana Margarida Moreira^{2,3,4}, Soraia Melo^{2,3}, Raquel Seruca^{2,3,5™}, Margarida Silveira¹ & João Miguel Sanches¹

Automatic Labels

Total S/G2 G₁ Analysis 1371 16 1387 G1 S/G₂ 5 1289 1294 Total 1305 2681 1376

Biological Examples

Input: Histopathology slide images

Cancer likelihood score **Output:**

SCIENTIFIC REPORTS

OPEN Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis

Received: 28 January 2016 Accepted: 27 April 2016 Published: 23 May 2016

Geert Litjens¹, Clara I. Sánchez², Nadya Timofeeva¹, Meyke Hermsen¹, Iris Nagtegaal¹, Iringo Kovacs³, Christina Hulsbergen - van de Kaa¹, Peter Bult¹, Bram van Ginneken² & Jeroen van der Laak¹

Steps in Machine Learning

Different machine learning models

Model Name	Model Type
Linear Regression	Regression
Logistic Regression	Regression or Classification
K-nearest neigbours	Regression or Classification
Naïve Bayes	Classification
Decision Tree	Classification
Random Forest	Classification
Support Vector Machine	Regression or Classification
Neural Networks	Regression or Classification

Differences between models

Outcome type

- Regression models for quantitative predictions
- Classification models for categorical predictions
- Some model types can do both

Input type

- Some models require all of their variables to be numeric
- May need to convert categorical values to numbers
- Expected behaviour of input data
- Variation in the number of viable measures

K-Nearest Neighbours (KNN) models

K-nearest neighbours

Add a new point

 Find the K (5 in this case) closest points

Count the categories in the closest points

The highest vote wins

Distance Measures

- Euclidean Distance
- Manhattan Distance
- Hamming Distance
- Jaccard Distance

• ...

Sample 1

Sample 2

Hamming = 2 differences

Support Vector Machines

- Projects data into a multi-dimensional space
- Divides the space into areas representing different categories

Clever Support Vector Machines

Hyperplane positions generated after multiple runs with different subsets to optimise positions

Naïve Bayes Models

Naïve Bayesian

Bayes' Theorem states that the conditional probability of an event, based on the occurrence of another event, is equal to the likelihood of the second event given the first event multiplied by the probability of the first event.

Gene	Length	GC	Chromsome	Disease Linked
Α	1kb	40	1	Yes
В	5kb	50	2	No
С	2kb	50	2	No
D	3kb	20	X	Yes
E	10kb	30	Χ	No

We calculate a set of probabilities for each variable, based on the "Disease Linked Classification"

Categorical Probabilities

Chromosome	Disease Linked	Non Disease
1	5	6
2	2	20
X	1	50

```
p Chr1 | Disease = 5 / 8 = 0.625 p Chr2 | Disease = 2 / 8 = 0.250 p Chr2 | Disease = 2 / 8 = 0.250 p ChrX | Disease = 1 / 8 = 0.125 p ChrX | Non Disease = 50 / 76 = 0.658
```

Disease genes are more likely to be on Chr1 and Non Disease genes are more likely to be on ChrX

Quantitative Probabilities

GC Content of Genes

State	mean	stdev
Disease	42.3	10.10
Non Disease	65.0	8.99

Probability Densities

Naïve Bayes Predictions

- Predict the state for a new datapoint
 - Chromosome is 1
 - GC content is 40%

	Disease	Non-Disease	
Prior (starting assumption)	(8/84) = 0.095	(76/84) = 0.905	
Probability Chr1	0.625	0.079	
Probability 40% GC	0.038	0.001	
Total	0.0022	0.00007	

New data is predicted to be **Disease**

Decision Trees

Predict Cancer Risk with a Decision Tree

Obese	Smoker	Exercises	Age	Cancer Risk
Yes	Yes	No	64	High
Yes	No	Yes	32	Low
Yes	No	No	58	High
No	Yes	Yes	25	Low
No	No	Yes	66	Low
No	No	Yes	34	Low
No	Yes	No	48	???

How do you build a tree?

- From a population of observations
 - Which variable do you use?
 - [If quantitative] which cutoff do you use?

 Answer: you calculate an 'impurity' score and pick the least 'impure' variable to split the remaining data

 Want to use the most cleanly predictive question to improve the tree

Calculating Categorical Impurity

Node impurity = $1 - (p \text{ High})^2 - (p \text{ Low})^2$

Weighted Average of Node Impurities = 0.18 * (20/100) + 0.255 * (80/100) =**0.24**

Calculating Quantitative Impurity

Age	Cancer Risk
25	Low
32	Low
34	Low
58	High
64	High
66	Low

Age <= 25 = 1 Low 0 High, Age > 25 = 3 Low 2 High, Impurity = 0.40

Age <= 32 = 2 Low 0 High, Age >32 = 2 Low 2 High, Impurity = **0.33**

Age <= 34 = 3 Low 0 High, Age >34 = 1 Low 2 High, Impurity = **0.22**

Age <= 58 = 3 Low 1 High, Age >58 = 1 Low 1 High, Impurity = **0.42**

Age <= 64 = 3 Low 2 High, Age >64 = 1 Low 0 High, Impurity = **0.40**

Pruning Trees

- Lower branches may provide minimal additional information
- Leaves don't need to be completely pure
- Can terminate the tree early and pick the majority answer

Random Forests

Random Forest

- Decision trees can be fragile
- Prone to overfitting
- Many trees are better than one!

Bagging

Bootstrapping

+

Aggregating

Making many predictions and voting

Selecting multiple random subsets of data

Bootstrapping

Two Levels of Randomisation

Random Original **Exercises Exercises** Smoker **Smoker** Age **Cancer Risk** Age **Cancer Risk** Χ Yes No 64 58 High Yes High Yes No No 32 58 Yes No Yes Low Yes No No High Yes 58 No No Yes No No High Low Χ Yes 25 Yes 32 No Yes Low No Yes Low Yes 32 No Yes No Yes No Low Low Χ 34 Yes No 58 No No Yes Low No High

"Out of Bag"

Smoker | Exercises Age | Exercises Age | Smoker

Build tree with random selection of variables at each branch point

Build a Forest

(hundreds of trees)

Evaluate

Run the "out of bag" data through the trees

See how often they predict correctly

Vary random variable number to optimise

Predict

Run new data down all trees

Count the predicted outcomes

Most frequent outcome wins

Feature Selection

Smoker | Exercises

Age | Exercises

Age | Smoker

More informative features will appear higher up the tree.

Can aggregate this information across the forest

Neural Networks

Neural Networks

Calculating Node Values

 $(0.1 \times 0.5) + (0.9 \times 3.1) + (0.5 \times -1.9) = 1.89$ Sigmoid output = 0.87

Sigmoid output (bias 2) = 0.47

Training = Calculating Weights and Biases

Neural Network Structure

Using the network

Selecting the number of hidden layers

Number of layers changes the type of relationships modelled

O hidden layers = linear relationship, similar to linear modelling

1 hidden layer = nonlinear relationships

2 hidden layers = nonlinear relationships with arbitrary boundaries

Most problems only require 1 hidden layer. More complex data can benefit from 2. Virtually nothing requires more than two.

Selecting the number of nodes in hidden layers

Too few nodes will not allow enough complexity to model the system effectively **Too many** nodes will overfit – essentially "memorising" the training data

Number of hidden layer nodes should be between the input number and the output number

Simple

Try 2/3 input number plus output number

Complex

Nh = number of hidden nodes Ni = number of input nodes No = number of output nodes Ns = size of training set α = scaling factor (normally 2)

$$N_h = rac{N_s}{(lpha*(N_i+N_o))}$$

Selecting weights and biases

Generate a "cost function" – a numerical value which says how well the model performed on the training data (high = bad, low = good)

Could just be how good the predictions are, but often good to include how complex the connections are

Start by initialising the weights / biases to random numbers

Shuffle the values to gradually minimise the cost function value

Back Propagation

Prediction for a single disease sample

Average across all samples and then adjust

- How do you increase a value?
 - Increase positive weights
 - Tied to high activations upstream
 - Decrease negative weights
 - Tied to high activations upstream
- What doesn't matter?
 - Anything with a low weight
 - Anything with a low upstream activation

Cleaning the network

 Good idea to minimise the network

Remove nodes where all output weights are low

 Having little effect on the rest of the network

Exercise: Trying different models

Evaluating Models

A good model?

In a recent study our new AI model correctly predicted the disease status of 980 out of 1000 patients – that's a 98% success rate!

Non diseased, predicted incorrectly (10)

Diseased, predicted incorrectly (10)

Baseline for comparison

- 1000 patients, 10 have disease
- Assign most common category (healthy) to everyone

- 990 correct = 99% success!
- A good model must do better than this.

Evaluating Qualitative Models

Sample	Prediction	Truth	Correct
D	Healthy	Healthy	\
Е	Diseased	Diseased	✓
F	Diseased	Healthy	X
G	Healthy	Healthy	✓
Н	Healthy	Diseased	X

Evaluating Qualitative Models

	True Healthy	True Diseased
Predicted Healthy	88	4
Predicted Diseased	6	24

Overal	= 92% correct
(4+6)	= 10 incorrect
(88+24)	= 112 correct

	True Healthy	True	Disea	sed
Predicted Healthy	88		4	
Predicted Diseased	1		4	

Overal	I = 95% correct
(4+1)	= 5 incorrect
(88+4)	= 92 correct

	True Healthy	True Diseased
Predicted Healthy	78	0
Predicted Diseased	16	28

Sensitivity vs Specificity

Sensitivity: How likely is the model to identify diseased patients correctly

Specificity: How likely is the model to identify healthy patients correctly

	True Healthy	True Diseased
Predicted Healthy	88	4
Predicted Diseased	6	24

Overall = 92% correct
Sensitivity = 24/28 = 86%
Specificity = 88/94 = 94%

	True Healthy	True	Disea	sed
Predicted Healthy	88		4	
Predicted Diseased	1		4	

Overall = 95% c	orrect		
Sensitivity =	4/8	=	50%
Specificity =	88/89	=	99%

	True Healthy	True Diseased
Predicted Healthy	78	0
Predicted Diseased	16	28

Sensitivity vs Specificity

What matters more?

Overall = 92% correct

Sensitivity = 24/28 = **86%**

Specificity = 88/94 = **94%**

Overall = 95% correct

Sensitivity = 4/8 = 50%

Specificity = 88/89 = **99%**

Overall = 91% correct

Sensitivity = 28/28 = **100%**

Specificity = 78/94 = **83**%

Getting both is ideal – obviously!

If never missing disease is the main concern favour sensitivity

If not incorrectly false predictions is important favour specificity

Need to consider the frequency of true positives

Cohen's Kappa Score

- Measures whether the predictions are correct more often that you'd expect if the model was just guessing
- Takes into account the proportion of predictions and observations in each class

Карра	Agreement
<0	Less than chance agreement
0.01-0.20	Slight agreement
0.21-0.40	Fair agreement
0.41-0.60	Moderate agreement
0.61-0.80	Substantial agreement
0.81-0.99	Almost perfect agreement

Evaluating Quantitative Models

- How close are the predictions to the true values?
- Doesn't matter if the mistake is high or low

Need a single value to summarise the total error

Evaluating Quantitative Models

Differences (+ and -)

Square differences (all positive)

Sum differences = single value

Sum of Squared Differences **SSD**

Making best use of your data when building and testing models

Data is Precious

Sample	Truth
Α	Healthy
В	Diseased
С	Diseased
D	Healthy
Е	Healthy
F	Healthy
G	Healthy
Н	Healthy
- 1	Healthy
J	Healthy
K	Healthy
L	Healthy
М	Healthy
N	Healthy
0	Healthy
Р	Healthy
Q	Healthy
R	Healthy
S	Healthy
Т	Healthy

Training the model

Model sensitivity = 95%

Model specificity = 98%

Overfitting

Has my model learned useful trends from the data, or just 'memorised' the training data?

Person	Weight	Age	Sex	
Α	27	4.5	Male	
В	28	2	Female	
С	19	6.7	Female	

Model:

If weight is >=28 or weight <=19 Sex is **FEMALE**Otherwise Sex is **MALE**

- Rules are too specific
 - Works brilliantly on the training data
 - Won't work well on new data

You can't evaluate a model using the same data used to train it

Data is Precious

Sample	Truth
Α	Healthy
В	Diseased
С	Diseased
D	Healthy
Е	Healthy
F	Healthy
G	Healthy
Н	Healthy
I	Healthy
J	Healthy
K	Healthy
L	Healthy
М	Healthy
N	Healthy
0	Healthy
Р	Healthy
Q	Healthy
R	Healthy
S	Healthy
Т	Healthy

Majority of Data for **Training** the model

Minority of Data for **Testing** the model

Weighted Training Selection

Sample

Sample	Truth
Α	Healthy
В	Diseased
С	Diseased
D	Healthy
Е	Healthy
F	Healthy
G	Healthy
Н	Healthy
I	Healthy
J	Healthy
K	Healthy
L	Healthy
М	Healthy
N	Healthy
0	Healthy
Р	Healthy
Q	Healthy
R	Healthy
S	Healthy
Т	Healthy

Training Data

Α	Healthy
В	Diseased
С	Diseased
D	Healthy
Sample	Truth
E	Healthy
F	Healthy
G	Healthy
Н	Healthy
- 1	Healthy
J	Healthy
K	Healthy
L	Healthy
М	Healthy
N	Healthy
0	Healthy
Р	Healthy
Q	Healthy
R	Healthy
S	Healthy
Т	Healthy

All disease samples are in the testing set Nothing left to train on.

Biased selection maintains a balance of outcomes in each group

Performance could depend on data split

Sample	Truth
Α	Healthy
В	Diseased
С	Diseased
D	Healthy
Е	Healthy
F	Healthy
G	Diseased
Н	Healthy
I	Diseased
J	Healthy
K	Diseased
L	Healthy
М	Healthy
N	Healthy
0	Healthy
Р	Diseased
Q	Healthy
R	Diseased
S	Healthy
Т	Healthy

80% Accurate Model

Cross Validation

Cross Validation

10-Fold Cross Validation

Exercise: Evaluating Models

Input Data

Garbage in = Garbage out

Noisy Variables

Outliers

Poorly Scaled Variables

Duplicates

Conflated Signals Poorly Constructe d Features

Missing Data

Data Leakage

Data Cleaning, Filtering, Scaling and Feature Construction

Common Data Problems

Data Leakage

Accidentally including something unintentional which reveals the true prediction for the case

- Audio clips from right whales were shorter than those from other species.
- The right whale clips were next to each other in the dataset

- Healthy scans came from children
- Healthy scans came from people lying down

• Models recognised the font on the scan pictures

Hundreds of AI tools have been built to catch covid. None of them helped.

Common Data Problems

- Outliers
 - Extreme values, or just mistakes, will skew summary metrics
- Missing values
 - Handled poorly by many models, either remove, or impute
- Noisy variables
 - Variables with no connection to the question. Slow modelling and make results worse
- Different scales
 - Quantitative models benefit from having variables with similar ranges of values

Preprocessing

Converting to Numbers

- Some models require all data to be numeric
 - Linear Models, SVM, Neural Nets
- Some don't care
 - Decision trees, Random Forest

Blue	Red	Purple	Orange	Green
0	1	2	3	4

Blue	Red	Purple	Orange	Green
1	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	1

Preprocessing

Converting to Numbers

Preprocessing Infrequent Categories

Biotype	Count
protein_coding	19986
IncRNA	16828
snRNA	1910
miRNA	1879
TEC	1064
snoRNA	942
rRNA_pseudogene	499
IG_V_pseudogene	188
IG_V_gene	144
TR_V_gene	106
TR_J_gene	79
rRNA	58
scaRNA	49
IG_D_gene	37
pseudogene	22
Mt_trna	22
IG_J_gene	18
IG_C_gene	14
ribozyme	8
TR_C_gene	6
sRNA	5
TR_D_gene	4
Mt_rRNA	2
scRNA	1
vaultRNA	1
IG_pseudogene	1

Biotype	Count
protein_coding	19986
IncRNA	16828
IG	596
Small RNA	5880
Pseudogenes	710
Structural RNA	82

Biotype	Count
protein_coding	19986
IncRNA	16828
OTHER	7059

Preprocessing

Feature Engineering

31	-07	-20	23
----	-----	-----	----

- Monday
- July
- 2023
- Summer
- Q3
- End of month

Gene	H3K4me3	H3K27me3	H3K4me1	H3K9me3	H2AK119Ub
Α	20	2	23	6	2
В	18	5	2	2	10
С	1	14	7	18	11
D	4	16	3	18	19
E	12	2	1	2	4

Preprocessing

Scaling and Normalising

- Some models expect numerical data which behaves in a roughly normal manner
 - Naïve Bayes, Linear Modelling, Neural Nets
- Transformations make data more usable
 - Log transformation
 - Mean centering
 - Z-score normalisation
 - Converting to ranks
- More advanced transformations
 - PCA to remove noise

Preprocessing

Data Filtering

- Good idea to reduce the data complexity
 - Remove noise
 - Reduce size (runs quicker)
- Remove variables or cases which aren't helpful
 - Outlier values
 - Poorly measured features
 - Redundant features
 - Features with no variability

Practical Machine Learning using R and tidymodels

Baseline R

Come on an R Course!

https://www.bioinformatics.babraham.ac.uk/training.html#rintrotidy

https://www.bioinformatics.babraham.ac.uk/training.html#advancedrtidy

https://www.bioinformatics.babraham.ac.uk/training.html#ggplot

R Syntax

A 'pipe' Passes data from left to right forest_fit(%>%) predict(data) %>% bind_cols(data) (->) prediction_results Function 'arguments' Assignment arrow Options for the function Saves data to a variable

Variables (data structures)

Functions (do stuff and give something back)

Packages for machine learning in R

- 1m
- nnet
- rpart
- brulee
- kknn
- ranger
- h2o
- mboost

- spark
- glmnet
- keras
- partykit
- aorsf
- stan
- kernlab
- thief

- tbats
- survival
- xrf
- hurdle
- aorsf
- gee
- lmer
- mgcv

All have their own conventions for preparing data and building models

TidyModels https://www.tidymodels.org/

Provides a consistent interface to prepare data, construct models and evaluate results.

Easy to move between different modelling packages with minimal code changes.

tidymodels

recipes

yardstick

Input Data

- Tibble of data (2D Spreadsheet)
 - rows are observations (cases) columns are variables

Classification variables must be factors (not text)

Standard exploration / plotting should happen before modelling

Code Structure

1. Create a model

No data yet, just the type of model and the settings to use

2. Create your data

- Prepare and filter the input data
- Split off training / testing data, or set up cross validation

3. Train the model

Pass the data to the model and define the variable to predict

4. Test / Use the model

Use the trained model to predict new values

Create a Model

- You need
 - 1. A model type
 - 2. An engine
 - 3. A mode
 - 4. Options

Search parsnip models

Find model types, engines, and arguments to fit and predict in the tidymodels framework.

To learn about the parsnip package, see *Get Started*: *Build a Model*. Use the tables below to find model types and engines.

Create a Model

```
library(tidymodels)
          tidymodels prefer()
                                                   Model Options
          rand forest(trees=100, min n=5)
               set mode("classification")
The model
                                                       Model Type
               set engine("ranger")
 function
           The back end engine
```


Examine the model

model %>% translate()

```
Random Forest Model Specification (classification)
Main Arguments:
 trees = 100
 min n = 5
Computational engine: ranger
Model fit template:
ranger::ranger(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
    num.trees = 100, min.node.size = min_rows(\sim5, x), num.threads = 1,
    verbose = FALSE, seed = sample.int(10^5, 1), probability = TRUE)
```


Creating Data

```
read_delim("development_gene_expression.txt") -> data

data %>%
    mutate(Development=factor(Development)) -> data

set.seed(123)
data %>%
    sample_frac() -> data
```


Splitting Data

```
data %>%
    initial split(prop=0.8) -> split data
training(split data)
# A tibble: 992 × 93
testing(split_data)
# A tibble: 249 × 93
```


Splitting Data

```
data %>%
     vfold cv(v = 10) \rightarrow cv data
               10-fold cross-validation
            # A tibble: 10 × 2
                splits
                                   id
              1 <split [1116/125]> Fold01
              2 <split [1117/124]> Fold02
              3 <split [1117/124]> Fold03
              4 <split [1117/124]> Fold04
              5 <split [1117/124]> Fold05
              6 <split [1117/124] > Fold06
              7 <split [1117/124]> Fold07
              8 <split [1117/124]> Fold08
              9 <split [1117/124] > Fold09
             10 <split [1117/124]> Fold10
```


Training the Model

Create a formula

Variable to predict ~ Variables to use

Variable to predict ~ VarA + VarB + VarC

Variable to predict ~ . (dot = everything else)

OOB prediction error (Brier s.): 0.2412714

Training the Model

Performing a single fit

```
model %>%
       fit(Development ~ ., data=training(split data)) -> model fit
model fit
parsnip model object
Ranger result
Call:
ranger::ranger(x = maybe data frame(x), y = y, num.trees = \sim100, min.node.size = min rows(\sim5, x), num.threads = 1,
verbose = FALSE, seed = sample.int(10^5, 1), probability = TRUE)
                              Probability estimation
Type:
Number of trees:
                              100
Sample size:
                              992
Number of independent variables:
Mtry:
Target node size:
Variable importance mode:
                              none
Splitrule:
                              gini
```


Evaluating / Using the Model

```
model_fit %>%
    predict(new_data=testing(split_data)) %>%
    bind_cols(testing(split_data))
```

.pred_class <fctr></fctr>	Development <fctr></fctr>	AdrenalCortex <dbl></dbl>	Appendix «dbl»
Development	Not_Development	6.787032	6.557910
Development	Not_Development	7.599913	7.794741
Not_Development	Not_Development	9.914123	8.784308
Development	Development	5.608809	6.809286
Not_Development	Development	8.634448	8.676486
Not_Development	Not_Development	6.692790	7.963474
Not_Development	Development	8.275368	7.859379
Development	Not_Development	8.375908	9.510962
Not_Development	Not_Development	2.867896	4.776104
Not_Development	Not_Development	9.104730	7.590587

Evaluating / Using the Model

```
model_fit %>%
predict(new_data=testing(split_data)) %>%
bind_cols(testing(split_data)) %>%
group_by(.pred_class, Development) %>% count()
```

.pred_class <fctr></fctr>	Development <fctr></fctr>	n <int></int>
Development	Development	27
Development	Not_Development	35
Not_Development	Development	67
Not_Development	Not_Development	120

Evaluating / Using the Model

```
model_fit %>%
predict(new_data=testing(split_data)) %>%
bind_cols(testing(split_data)) %>%
sens(Development,.pred_class)
spec(Development,.pred_class)
metrics(Development,.pred_class)
```

.metric <chr></chr>	.estimator <chr></chr>	.estimate <dbl></dbl>
sens	binary	0.3085106
.metric <chr></chr>	.estimator <chr></chr>	.estimate <dbl></dbl>
spec	binary	0.7548387

.metric <chr></chr>	.estimator <chr></chr>	.estimate <dbl></dbl>
accuracy	binary	0.58634538
kap	binary	0.06714436

Write Code

Often multi-line statements joined with pipes

Run Code

Cursor on last line Control + Run or Run button

Examine Output

You should see a copy of the code, along with the output it generated

Exercise: Building a model in tidymodels

Automation with Recipes and Workflows

- Preprocessing often has multiple steps
- Need to apply these to training, testing and future data
- Manually preprocessing is tedious and potentially inconsistent

Recipes let you automate this

Automation with Recipes and Workflows

- Create a recipe
 - Specify formula and optionally data
- Add processing steps
 - Filtering, Transformation etc.
- Create a model
 - Same as we did before
- Create a workflow
 - Combine the recipe and model together

Creating a Recipe

```
recipe(
    var_to_predict ~ .,
    data=training(split_data)
) -> my_recipe
```

You add data here but it's only used to list and type the variables. You still need to provide it when you train or use the model

Recipe Preprocessing Steps

- step_rm: Remove one or more variables
- step_log: Log transform variables
- step_normalize: Convert values to z-scores
- step_dummy: Create numerical dummy variables from text
- step_other: Combine infrequent categories into an 'other'
- step_corr: Remove variables which are highly correlated
- step_naomit: Remove rows/columns with missing values

Full list of steps at https://recipes.tidymodels.org/reference/index.html

Applying Steps to Variables

```
Individually named variables
```

```
step_rm(Unsued1, Unused2)
```

Role selectors

```
step_normalize(all_numeric_predictors())
step_dummy(all_nominal_predictors())
```


Adding Preprocessing Steps

```
my_recipe %>%
    step_rm(Unsued1, Unused2) %>%
    step_log(expression, gene_length) %>%
    step_normalize(all_numeric_predictors()) %>%
    step_dummy(all_nominal_predictors()) -> my_recipe
```


Creating a workflow

- Workflows bring together
 - Recipe (training data, preprocessing, formula)
 - Model

```
workflow() %>%
   add_recipe(my_recipe) %>%
   add_model(my_model) -> my_workflow
```


Training via a workflow

```
my_workflow %>%
    fit(training(my_data)) -> my_workflow
```

Fits the model, but also finalises choices in the recipe inside the workflow

Testing via a workflow

```
my_workflow %>%
    predict(new_data=testing(my_data)) %>%
    bind_cols(testing(my_data)) %>%
    select(.pred_class, var_to_predict)
```

Predict will automatically pull the trained model out of the workflow and will run the recipe on the new data

Exercise: Automating models with workflows

Optimising Models

- We manually selected some parameters for models
 - Number of hidden nodes / layers (neural net)
 - Number of random variables to select (random forest)

How do we know we picked the best values?

We perform a search of the parameters.

Adding tuneable parameters

```
mlp(
    epochs = 1000,
    hidden_units = 200;(),
    penalty = 0.01,
    learn_rate = 0.01
)
```


Extract tuneable parameters from workflow

```
workflow %>%
    extract_parameter_set_dials()
Collection of 1 parameters for tuning
  identifier
                   type
                         object
 hidden_units hidden_units nparam[+]
workflow %>%
   extract parameter set dials() %>%
   extract parameter dials("hidden units")
# Hidden Units (quantitative)
Range: [1, 10]
```


Customise tuneable parameters

```
workflow %>%
    extract_parameter_set_dials() %>%
    update(
        hidden_units = hidden_units(c(10,500))
    ) -> tune_parameters
```


Grid Search

 Generates evenly spaced search parameters over one or more tuneable parameters

```
grid_regular(tune_parameters, levels=5)
# A tibble: 5 × 1
  hidden_units
         <int>
            10
           132
           255
           377
           500
```


Running a grid search

Needs data from a cross validation split

```
workflow %>%
   tune_grid(
     vdata,
     grid = grid_regular(tune_parameters, levels=5),
     metrics = metric_set(kap)
   ) -> tune_results
```


Viewing Search Results

autoplot(tune_results)

