Circuits II

Ch10 Additional Problems Solution

AP 10.1 [a]
$$\mathbf{V} = 100/\underline{-45^{\circ}}\,\mathrm{V}$$
, $\mathbf{I} = 20/\underline{15^{\circ}}\,\mathrm{A}$
Therefore $P = \frac{1}{2}(100)(20)\cos[-45 - (15)] = 500\,\mathrm{W}$, $\mathbf{A} \to \mathbf{B}$
 $Q = 1000\sin-60^{\circ} = -866.03\,\mathrm{VAR}$, $\mathbf{B} \to \mathbf{A}$
[b] $\mathbf{V} = 100/\underline{-45^{\circ}}$, $\mathbf{I} = 20/\underline{165^{\circ}}$
 $P = 1000\cos(-210^{\circ}) = -866.03\,\mathrm{W}$, $\mathbf{B} \to \mathbf{A}$
 $Q = 1000\sin(-210^{\circ}) = 500\,\mathrm{VAR}$, $\mathbf{A} \to \mathbf{B}$
[c] $\mathbf{V} = 100/\underline{-45^{\circ}}$, $\mathbf{I} = 20/\underline{-105^{\circ}}$
 $P = 1000\cos(60^{\circ}) = 500\,\mathrm{W}$, $\mathbf{A} \to \mathbf{B}$
 $Q = 1000\sin(60^{\circ}) = 866.03\,\mathrm{VAR}$, $\mathbf{A} \to \mathbf{B}$
[d] $\mathbf{V} = 100/\underline{0^{\circ}}$, $\mathbf{I} = 20/\underline{120^{\circ}}$
 $P = 1000\cos(-120^{\circ}) = -500\,\mathrm{W}$, $\mathbf{B} \to \mathbf{A}$
 $Q = 1000\sin(-120^{\circ}) = -866.03\,\mathrm{VAR}$, $\mathbf{B} \to \mathbf{A}$

AP 10.2
pf =
$$\cos(\theta_v - \theta_i) = \cos[15 - (75)] = \cos(-60^\circ) = 0.5$$
 leading
rf = $\sin(\theta_v - \theta_i) = \sin(-60^\circ) = -0.866$

AP 10.4 [a]
$$Z = (39 + j26) \| (-j52) = 48 - j20 = 52 / - 22.62^{\circ} \Omega$$

Therefore $\mathbf{I}_{\ell} = \frac{250 / 0^{\circ}}{48 - j20 + 1 + j4} = 4.85 / 18.08^{\circ} \text{ A (rms)}$
 $\mathbf{V}_{L} = Z\mathbf{I}_{\ell} = (52 / - 22.62^{\circ})(4.85 / 18.08^{\circ}) = 252.20 / - 4.54^{\circ} \text{ V (rms)}$
 $\mathbf{I}_{L} = \frac{\mathbf{V}_{L}}{39 + j26} = 5.38 / - 38.23^{\circ} \text{ A (rms)}$

[b]
$$S_{\rm L} = \mathbf{V}_L \mathbf{I}_L^* = (252.20 / -4.54^{\circ})(5.38 / +38.23^{\circ}) = 1357 / 33.69^{\circ}$$

= $(1129.09 + j752.73) \, \text{VA}$

$$P_{\rm L} = 1129.09 \,\rm W; \qquad Q_{\rm L} = 752.73 \,\rm VAR$$

[c]
$$P_{\ell} = |\mathbf{I}_{\ell}|^2 1 = (4.85)^2 \cdot 1 = 23.52 \,\text{W};$$
 $Q_{\ell} = |\mathbf{I}_{\ell}|^2 4 = 94.09 \,\text{VAR}$

- [d] $S_g(\text{delivering}) = 250 \mathbf{I}_{\ell}^* = (1152.62 j376.36) \text{ VA}$ Therefore the source is delivering 1152.62 W and absorbing 376.36 magnetizing VAR.
- [e] $Q_{\text{cap}} = \frac{|\mathbf{V}_{L}|^2}{-52} = \frac{(252.20)^2}{-52} = -1223.18 \text{ VAR}$ Therefore the capacitor is delivering 1223.18 magnetizing VAR.

Check:
$$94.09 + 752.73 + 376.36 = 1223.18 \text{ VAR}$$
 and $1129.09 + 23.52 = 1152.62 \text{ W}$

AP 10.5 Series circuit derivation:

$$S = 250$$
I* = $(40,000 - j30,000)$
Therefore **I*** = $160 - j120 = 200/-36.87$ ° A (rms)
$$\mathbf{I} = 200/36.87$$
° A (rms)
$$Z = \frac{\mathbf{V}}{\mathbf{I}} = \frac{250}{200/36.87}$$
° = $1.25/-36.87$ ° = $(1 - j0.75)$ Ω

Therefore $R = 1 \Omega$, $X_{\rm C} = -0.75 \Omega$

Parallel circuit derivation

$$P = \frac{(250)^2}{R}$$
; therefore $R = \frac{(250)^2}{40,000} = 1.5625 \,\Omega$

$$Q = \frac{(250)^2}{X_{\rm C}};$$
 therefore $X_{\rm C} = \frac{(250)^2}{-30,000} = -2.083 \,\Omega$