DEVOIR SURVEILLÉ N°09

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 –

Partie I -

Soit ℓ un réel. On note f l'application de \mathbb{R}_+ dans \mathbb{R} définie par $f(x) = \frac{\sin x}{x}$ si x > 0 et $f(0) = \ell$. Pour $n \in \mathbb{N}$, on note I_n l'intervalle $[n\pi, (n+1)\pi]$.

- 1. Quelle valeur faut-il donner à ℓ pour que f soit continue en 0 ? On suppose désormais que ℓ a cette valeur.
- 2. Montrez que f est de classe \mathscr{C}^1 (c'est-à-dire : dérivable, et à dérivée continue) sur l'intervalle $[0, +\infty[$ et explicitez la dérivée de f en 0.
- 3. Soit $n \in \mathbb{N}^*$. Montrez que, dans l'intervalle I_n , l'équation $x \cos x = \sin x$ possède une et une seule solution, que l'on notera x_n .
- **4.** Déterminez un équivalent *très simple* de x_n , lorsque n tend vers l'infini.
- **5.** Déterminez les variations de f dans l'intervalle I_0 , puis dans les intervalles I_{2n-1} et I_{2n} pour $n \in \mathbb{N}^*$.
- **6.** Donnez l'allure de la courbe représentative de f sur l'intervalle $[0,4\pi]$.

Partie II -

Il est clair que la restriction g de f à l'intervalle $]0,+\infty[$ est de classe \mathscr{C}^{∞} sur cet intervalle; on pourrait d'ailleurs prouver que f est de classe \mathscr{C}^{∞} sur l'intervalle $[0,+\infty[$ mais ce n'est pas notre objectif. On se propose simplement d'établir quelques résultats concernant la dérivée n-ième de g, notée $g^{(n)}$. En particulier, $g^{(0)}$ désigne g elle-même.

On identifie un polynôme P et la fonction polynôme $x \mapsto P(x)$ qui lui est naturellement associée. Chaque polynôme sera écrit selon les puissances décroissantes de X.

1. Explicitez g''(x) pour x > 0.

Au vu des expressions de g(x), g'(x) et g''(x), on se propose d'établir que l'assertion $\mathcal{A}(n)$ suivante est vraie pour tout $n \in \mathbb{N}$:

Il existe deux polynômes
$$P_n$$
 et Q_n tels que, pour tout $x > 0$: $g^{(n)}(x) = \frac{P_n(x)\sin^{(n)}x + Q_n(x)\sin^{(n+1)}x}{x^{n+1}}$

Dans les deux questions suivantes, vous allez raisonner par récurrence sur n.

- 2. Il est clair que $\mathcal{A}(n)$ est vraie pour $n \in \{0,1,2\}$; vous dresserez simplement un tableau donnant les expressions de P_n et Q_n pour ces valeurs de n.
- 3. On fixe $n \in \mathbb{N}$, et on suppose l'assertion $\mathscr{A}(n)$ acquise. Établissez l'assertion $\mathscr{A}(n+1)$; vous déterminerez des expressions de P_{n+1} et Q_{n+1} en fonction de P_n et Q_n . Il résulte donc des questions **II.2** et **II.3** que l'assertion $\mathscr{A}(n)$ est vraie pour tout $n \in \mathbb{N}$.
- **4.** Montrez que P_n et Q_n ont tous leurs coefficients dans \mathbb{Z} ; précisez le degré, la parité, et le coefficient dominant de ces polynômes.
- 5. Utilisez les formules établies à la question II.3 pour expliciter P_3 et Q_3 .
- **6.** Deux polynômes U et V vérifient $U(x)\sin x + V(x)\cos x = 0$ pour tout x > 0. Montrez que U et V sont tous deux égaux au polynôme nul.
- 7. En partant de la relation $xg(x) = \sin x$ et en appliquant la formule de Leibniz, ainsi que le résultat de la question précédente, mettez en évidence deux nouvelles relations liant P_n , Q_n , P_{n+1} et Q_{n+1} .
- **8.** Justifiez alors la relation $P'_n = Q_n$, et montrez que P_n est solution d'une équation différentielle du second ordre *très simple*, que l'on notera \mathcal{E}_n .
- 9. Il est clair que l'application $\Psi: T \mapsto T + T''$ est un endomorphisme du \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients réels.

Montrez que Ψ induit un automorphisme Ψ_n du sous-espace $\mathbb{R}_n[X]$ constitué des polynômes de degré n au plus.

Montrez ensuite que Ψ est un automorphisme de $\mathbb{R}[X]$.

Il résulte de ceci que P_n est l'unique solution polynomiale de l'équation différentielle \mathcal{E}_n .

10. $n \in \mathbb{N}$ est fixé, et p désigne la partie entière de $\frac{n}{2}$.

Justifiez l'existence d'une famille $(a_k)_{0 \le k \le p}$ de réels vérifiant $P_n = \sum_{k=0}^p a_k X^{n-2k}$ et déterminez une expression de a_k faisant intervenir des factorielles et/ou des puissances, mais débarrassée de tout signe \prod .

11. Soit $n \in \mathbb{N}$. Déterminez les solutions réelles de l'équation différentielle $y'' + y = x^n$.

Problème 2 –

On définit deux suites de polynômes $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ en posant $P_0=0$, $Q_0=1$ et pour tout $n\in\mathbb{N}$

$$\begin{aligned} \mathbf{P}_{n+1} &= \mathbf{P}_n + \mathbf{X} \mathbf{Q}_n \\ \mathbf{Q}_{n+1} &= -\mathbf{X} \mathbf{P}_n + \mathbf{Q}_n \end{aligned}$$

Il est évident que $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ sont des suites de polynômes à coefficients *réels*, ce que l'on ne demande pas de montrer. On pose enfin $R_n = \frac{P_n}{Q_n}$ et $Z_n = Q_n + iP_n$ pour tout $n \in \mathbb{N}$.

Dans une première partie, on étudiera certains cas particuliers puis on étudiera le cas général dans la partie suivante.

Il est fortement conseillé de vérifier si les résultats obtenus dans le cas général sont cohérents avec ceux obtenus dans les cas particuliers.

Partie I - Etude de cas particuliers

- **1.** Calculer P₁, Q₁, P₂, Q₂, P₃, Q₃, P₄, Q₄.
- 2. Donner la décomposition en facteurs irréductibles de P_2 , Q_2 , P_3 , Q_3 , P_4 , Q_4 dans $\mathbb{R}[X]$.
- **3.** Donner la décomposition en éléments simples de R_2 , R_3 , R_4 dans $\mathbb{R}(X)$.

Partie II - Etude du cas général

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $Z_n = (1 + iX)^n$.
- **2.** Soit $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Montrer que pour tout $n \in \mathbb{N}$.

$$P_n(\tan \alpha) = \frac{\sin(n\alpha)}{\cos^n(\alpha)} \qquad Q_n(\tan \alpha) = \frac{\cos(n\alpha)}{\cos^n(\alpha)}$$

A partir de maintenant, on suppose n non nul. On sera amené dans plusieurs questions à distinguer des cas selon la *parité* de n.

- 3. Donner une expression développée de Z_n à l'aide de la formule du binôme de Newton et en déduire des expressions de P_n et Q_n .
- 4. Déterminer la parité, le degré et le coefficient dominant des polynômes P_n et Q_n .
- 5. A l'aide de la question II.2, déterminer les racines de P_n et Q_n . Montrer en particulier que toutes les racines de P_n et Q_n sont réelles et simples.
- **6.** Factoriser P_n et Q_n sous forme de produits de facteurs irréductibles de $\mathbb{R}[X]$.
- 7. Calculer la partie entière de la fraction rationnelle R_n .
- **8.** Calculer P'_n et Q'_n en fonction de P_{n-1} et Q_{n-1} .
- 9. Déterminer la décomposition en éléments simples de la fraction rationnelle R_n .
- **10.** Calculer les produits suivants

$$A_n = \prod_{0 < 2k < n} \tan \frac{k\pi}{n}$$

$$B_n = \prod_{0 < 2k + 1 < n} \tan \frac{(2k+1)\pi}{2n}$$