MM-640 Midsem Project

Preliminary Presentation

Yash Agarwal | 12D110054

Phase field study of grain boundary effects on spinodal decomposition

H. Ramanarayan, T.A. Abinandanan

Department of Metallurgy, IISc, Bangalore 560 012, India

Have developed a phase field model of a **polycrystalline binary alloy** by combining

- 1. The **Cahn-Hilliard** model for a compositionally inhomogeneous alloy
- 2. A model of polycrystals (Fan D, Chen L-Q. Acta Mater. 1997;45:3297) which is governed by the **Cahn-Allen** equation for non-conserved variables

Have used this model to study **grain boundary (GB)** effects on **spinodal decomposition (SD)** in two-

dimensional (2D) systems.

I. Model

I.1. Cahn Hilliard Model

Cahn-Hilliard Model for a compositionally inhomogeneous alloy is used. It is developed using the composition field $\mathbf{c}(\mathbf{r})$ in an alloy.

The local composition **c** used in this model is defined as follows:

$$c = \frac{c' - c'_{\alpha}}{c'_{\beta} - c'_{\alpha}}$$
 where, c' is the local composition,
$$c'_{\alpha}$$
 is the equilibrium composition of A rich α phase,
$$c'_{\beta}$$
 is the equilibrium composition of B rich β phase

I.1. Cahn Hilliard Model (contd.)

$$c = \frac{c' - c'_{\alpha}}{c'_{\beta} - c'_{\alpha}}$$
 where, c' is the local composition,
$$c'_{\alpha}$$
 is the equilibrium composition of A rich α phase,
$$c'_{\beta}$$
 is the equilibrium composition of B rich β phase

all the values are expressed in mole fraction of species B. Thus, for α phase c = 0 and for β phase c = 1

I.2. Cahn Allen Model

Cahn-Allen theory for non-conserved variables (the model of Fan and Chen (1997) belongs to this category) is used. It is developed using a set of **n** 'orientational' (and non-conserved) order parameter fields $\eta_i(r)$ (i = 1,2,...,n) to represent **n** different grain orientations in the microstructure; η_i are continuum analogues of Potts variables in the n-state Potts model

I.2. Cahn Allen Model (contd.)

Each η_i is taken to be 1 within the i^{th} grain and drops to 0 outside it, through a GB region where it varies smoothly.

The schematic profiles of two orientation variables across a flat grain boundary.

I.3. Conclusion

An instantaneous configuration in our model is described in terms of the n+1 position-dependent field variables ($c;\eta_1, \eta_2, \dots, \eta_n$).

II. Mathematical Formulation of the Model

II.1. Energetics

The Total Free energy, \mathbf{F} , of a system with inhomogeneities in both \mathbf{c} and $\mathbf{\eta}_{\mathbf{i}}$ is written as a volume integral:

$$F = N_V \int \left[f(c, \eta_i) + \kappa_c (\nabla c)^2 + \sum_i^n \kappa_i (\nabla \eta_i)^2 \right]$$

$$F=N_V\int \left[f(c,\eta_i) + \kappa_c(\nabla c)^2 + \sum_i^n \kappa_i(\nabla \eta_i)^2\right]$$

where

 $\mathbf{N_{v}}$ is the (constant) number of atoms per unit volume, $\mathbf{f(c,\eta_{i})}$ is the bulk free energy density and, $\mathbf{K_{c}}$ & $\mathbf{K_{i}}$ are the (constant) gradient energy coefficients associated with inhomogeneities in \mathbf{c} and in $\mathbf{\eta_{i}}$, respectively.

It is assumed that $\mathbf{K}_{i} = \mathbf{K}_{n}$ for all i.

Thus, the bulk free energy density $\mathbf{f}(\mathbf{c}, \mathbf{\eta}_i)$ is chosen such that it exhibits a minimum for these $\mathbf{2n}$ possibilities. In other words, \mathbf{f} has $\mathbf{2n}$ degenerate minima (whose value is chosen to be $\mathbf{0}$)

These minima are located at \mathbf{n} grains of $\mathbf{\alpha}$ with a composition of $\mathbf{c} = \mathbf{0}$:

(0;1,0,...,0), (0;0,1,...,0),...,(0;0,0,...,1), and **n** grains of β with a composition of c = 1: (1;1,0,...,0), (1;0,1,...,0),...,(1;0,0,...,1).

$$f(c,\eta_i) = f(c_o) + m(c) \left\{ 0.25 + \sum_{i=1}^{n} \left[-\frac{\eta_i^2}{2} + \frac{\eta_i^4}{4} \right] + \mathcal{E} \sum_{i=1}^{n} \sum_{j>i=1}^{n} \eta_i^2 \eta_j^2 \right\}$$

 $\mathbf{f_o}(\mathbf{c})$ is the free energy per atom in a bulk single crystal of composition \mathbf{c} given by:

$$f(c_o) = A_c c^2 (1-c)^2$$

$$f(c_o) = A_c c^2 (1-c)^2$$

The constant $\mathbf{A}_{\mathbf{c}}$ determines the height of the free energy barrier between the equilibrium phases within a single grain, $\mathbf{m}(\mathbf{c})$ is a composition dependent factor which couples $\mathbf{c} \ \mathbf{\&} \ \mathbf{\eta}_{\mathbf{i}}$ and $\mathbf{\varepsilon}$ is a constant.

$$f(c,\eta_i) = f(c_o) + m(c) \left\{ 0.25 + \sum_{i=1}^{n} \left[-\frac{\eta_i^2}{2} + \frac{\eta_i^4}{4} \right] + \varepsilon \sum_{i=1}^{n} \sum_{j>i=1}^{n} \eta_i^2 \eta_j^2 \right\}$$

Note that the terms within the curly braces are even functions of η_i ; therefore, $f(c,\eta_i)$ has additional degenerate minima at 2n more locations with negative values of η_i such as $\{c;\eta_i\} = (0;-1,0,...,0),...$ In this case, these extra degenerate equilibrium states are excluded by working only with $\eta_i>=0$.

II.2. Kinetics

The evolution of the composition field **c** is governed by the **Cahn–Hilliard equation** for conserved variables:

$$\frac{dc}{dt} = M \nabla^2 \left[\frac{\delta(F/N_V)}{\delta c} \right]$$

where $d(F/N_v)/dc=\mu$ is the chemical potential whose gradient drives diffusion, and M is the atomic mobility.

II.2. Kinetics (contd.)

The evolution of order parameter fields η_i is governed by the **Cahn-Allen equation** for non-conserved variables:

$$\frac{d\eta_i}{dt} = -L_i \left[\frac{\delta(F/N_V)}{\delta\eta_i} \right]$$

where $\partial(F/N_V)/\partial\eta_i$ is the total free energy (per atom) with respect to η_i , and L_i are the relaxation coefficients for η_i . Here, M and $L_i = L$ (i = 1,2,...,n) are assumed to be constants.

II.3. Numerical Implementation

$$\frac{dc}{dt} = M \nabla^2 [g(c) - 2\kappa_c \nabla^4 c]$$

where $g(c) = \partial f/\partial c$

The numerical method used in our simulations is based on the **semi-implicit Fourier spectral method**

$$\tilde{c}(\mathbf{k},t+\Delta t) = \frac{\tilde{c}(\mathbf{k},t) - \Delta t M k^2 \tilde{g}(\mathbf{k},t)}{1 + 2\Delta t M \kappa_c k^4},$$

II.3. Numerical Implementation (contd.)

Similarly for the Cahn-Allen equation

$$\tilde{\eta}_i(\mathbf{k},t+\Delta t) = \frac{\tilde{\eta}_i(\mathbf{k},t) - \Delta t L_i \tilde{h}_i(\mathbf{k},t)}{1 + 2\Delta t L_i \kappa_{\eta} k^2},$$

where $\mathbf{h}_{i} = \partial \mathbf{f}/\partial \mathbf{h}_{i}$

III. Settings for Simulation

III.1. The values of the parameters

Model parameter	Value
A	1.0
κ_c	1.0
M	1.0
ε	2.0
$\kappa_i = \kappa_n$	1.0
$\kappa_i = \kappa_{\eta} \\ L_i = L$	1.0
Simulation parameter	Value
$\Delta x = \Delta y$	1.0
Δt	0.1
$N_x \times N_y$	512×256 (two-grain case)
,	512×512 (polycrystalline case)

III.2. Variation of m(c) & ∂_c(disturbance)

The Initial Profile is set by $c_o = 0.5 \pm \partial_c$ ∂_c is varied from 0.01 to 0.04

System index	m(c)	κ_{η}
Ia	$1 + 0.5c^2$	1.0
Ib	$1 + 0.5c^2 - 2.5c^2(1-c)^2$	1.0
Ic	$2 + c^2$	0.5
IIa	$1 + 0.1c^2$	1.0

IV. Pseudo Code

Take input from file input.dat

n_x, delta_x, n_y, delta_y, T, delta_t, T_write(after how many steps do we print the output in a file)

Declare composition,n1,n2,g,h1 & h2 matrix and **Allocate memory Declare** the **Fourier Transform's** respectively

Calculate half_nx, half_ny, delta_kx & delta_ky

Make the Initial Profile

```
Traverse the matrix

Generate Random Number R=[-1,1]

composition=0.5 +- R*0.04

IF i<half_nx

n1=1 & n2=0

ELSE
```

n1=0 & n2=1

Start time loop

Traverse Matrix

Calculate g,h1,h2

Take composition,n1,n2,g,h1 & h2 **to Fourier space**

Evolve composition

Traverse Matrix

Calculate kx,ky

Calculate new composition,n1 & n2 --

Take composition,n1 & n2 back to real space

Traverse Matrix

Normalise the values and **Set** imaginary part to zero for composition,n1 &

After every T_write time steps **write** composition profile **to file** end time loop

Free all memory

n2

Thank You