Computer Organization and Architecture Laboratory

Assignment 3 - Group Number 70

Kushaz Sehgal - 20CS30030 Jay Kumar Thakur - 20CS30024

1. Design of a Ripple Carry Adder

(a) Half Adder

A Half Adder is a combinational arithmetic circuit that adds two bits (a and b) and produces a sum bit (S) and a carry bit (S) both as output.

Truth Table

Input		Output		
а	b	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	1	1	

Boolean Expressions

$$S = a \oplus b$$
 $C = a \cdot b$

Module File: HalfAdder.v Test File: HalfAdderTest.v

Circuit Diagram

Figure 1: Half Adder

(b) Full Adder

A **Full Adder** is a combinational arithmetic circuit that takes in 3 bits ('a' , 'b' and previous carry 'c') and produces a sum bit (S) and a carry bit (S) both as output.

Truth Table

Input			Output		
а	b	С	S	С	
0	0	0	0	0	
0	1	0	1	0	
1	0	0	1	0	
1	1	0	1	1	
0	0	1	1	0	
0	1	1	0	1	
1	0	1	0	1	
1	1	1	1	1	

Boolean Expressions

$$S = a \oplus b \oplus c$$
 $C = a \cdot b + b \cdot c + c \cdot a$

Circuit Diagram

Figure 2: Full Adder

Module File : FullAdder.v Test File : FullAdderTest.v

(c) Ripple Carry Adder

A **n-bit Ripple Carry Adder** is a combinational arithmetic circuit that takes in 2 n-bit numbers (a,b) and produces a sum bit (S) and a carry bit (C) both as output.

We first create a **8-bit Ripple Carry Adder** by cascading **8 Full Adders**. We then cascade two 8-bit Ripple Carry Adders to create a 16-bit Ripple Carry Adder. We similarly follow the procedure to create a **32-bit Ripple Carry Adder** and a **64 bit Ripple Carry Adder**.

Module File: RCA_8bit.v Test File: RCA_8bit_Test.v

Figure 3:8-bit RCA

Module File : RCA_16bit.v Test File : RCA_16bit_Test.v

Figure 4: 16-bit RCA

Module File: RCA_32bit.v Test File: RCA_32bit_Test.v

Figure 5: 32-bit RCA

Module File: RCA_64bit.v Test File: RCA_64bit_Test.v

Figure 6: 64-bit RCA

Summary of Synthesis Report

Circuit	Delay (logic, route) in ns	Logic Level	#Slice LUTS	#Bounded IOBS
8BIT_RCA	3.471 ns (0.497, 2.974)	6	12	26
16BIT_RCA	6.167 ns (0.993, 5.174)	10	24	50
32BIT_RCA	11.559 ns (1.985, 9.574)	18	48	98
64BIT_RCA	22.343 ns (3.969, 18.374)	34	96	194

(d) Ripple Carry Adder

Given two n-bit binary numbers a and b, a Ripple Carry Adder calculates a + b.

Also, a - b can be rewritten as a + (-b). (-b) is the 2's complement of b)

 $(-b) = \sim b + 1$. ($\sim b$ is the 1's complement of b)

Consider $RCA(a, \sim b, 1)$ -

$$RCA(a, \sim b, 1) = a + (\sim b) + 1 = a + (\sim b + 1) = a + (-b)$$

So
$$a - b = RCA(a, \sim b, 1)$$

Thus, a-b can be calculated by flipping each bit of b by a XOR operation with 1 and and sending 1 as carry.