Глава 1

Практическое занятие 6. Коллигативные свойства растворов

1.1 Задачи для самостоятельного решения

Задача 1 Рассчитать минимальную осмотическую работу, совершаемую почками для выделения мочевины при $36,6^{\circ}$ C, если концентрация мочевины в плазме 0,005 моль/л, а в моче 0,333 моль/л.

Задача 2 10 г полистирола растворено в 1 л бензола. Высота столбика раствора (плотностью 0.88 г/см^3) в осмометре при 25° С равна 11.6 см. Рассчитать молярную массу полистирола.

Задача 3 Белок сывороточный альбумин человека имеет молярную массу 69 кг/моль. Рассчитать осмотическое давление раствора 2 г белка в 100 см³ воды при 25° С в Па и в мм столбика раствора. Считать плотность раствора равной 1,0 г/см³.

Задача 4 При 30° С давление пара водного раствора сахарозы равно 31,207 мм рт. ст. Давление пара чистой воды при 30° С равно 31,824 мм рт. ст. Плотность раствора равна 0,99564 г/см³. Чему равно осмотическое давление этого раствора?

Задача 5 Плазма человеческой крови замерзает $npu - 0,56^{\circ}C$. Каково ее осмотическое давление $npu 37^{\circ}C$, измеренное с помощью мембраны, проницаемой только для воды?

Задача 6 Молярную массу фермента определяли, растворяя его в воде и измеряя высоту столбика раствора в осмометре при 20°C, а затем экстраполируя данные к нулевой концентрации. Получены следующие данные:

C , MR/cM^3	3,211	4,618	5,112	6,722
h, cM	5,746	8,238	9,119	11,990

Рассчитать молярную массу фермента.

Задача 7 Молярную массу липида определяют по повышению температуры кипения. Липид можно растворить в метаноле или в хлороформе. Температура кипения метанола $64,7^{\circ}C$, теплота испарения 262,8 кал/г. Температура кипения хлороформа $61,5^{\circ}C$, теплота испарения 59,0 кал/г. Рассчитайте эбулиоскопические постоянные метанола и хлороформа. Какой растворитель лучше использовать, чтобы определить молярную массу с максимальной точностью?

Задача 8 Рассчитать температуру замерзания водного раствора, содержащего 50,0 г этилен-гликоля в 500 г воды.

- **Задача 9** Раствор, содержащий 0,217 г серы и 19,18 г CS_2 , кипит при 319,304 К. Температура кипения чистого CS_2 равна 319,2 К. Эбулиоскопическая постоянная CS_2 равна 2,37 К кг/моль. Сколько атомов серы содержится в молекуле серы, растворенной в CS_2 ?
- Задача 10 68,4 г сахарозы растворено в 1000 г воды. Рассчитать: а) давление пара, б) осмотическое давление, в) температуру замерзания, г) температуру кипения раствора. Давление пара чистой воды при 20°С равно 2314,9 Па. Криоскопическая и эбулиоскопическая постоянные воды равны 1,86 и 0,52 К кг/моль соответственно.
- **Задача 11** Раствор, содержащий 0,81 г углеводорода H(CH2)nH и 190 г бромистого этила, замерзает при 9,47° C. Температура замерзания бромистого этила 10,00° C, криоскопическая постоянная 12,5 K. кг/моль. Рассчитать n.
- Задача 12 При растворении 1,4511 г дихлоруксусной кислоты в 56,87 г четыреххлористого углерода точка кипения повышается на 0,518 град. Температура кипения CCl_4 76,75° C, теплота испарения 46,5 кал/г. Какова кажущаяся молярная масса кислоты? Чем объясняется расхождение c истинной молярной массой?
- **Задача 13** Некоторое количество вещества, растворенное в 100 г бензола, понижает точку его замерзания на $1,28^{\circ}$ С. То же количество вещества, растворенное в 100 г воды, понижает точку ее замерзания на $1,395^{\circ}$ С. Вещество имеет в бензоле нормальную молярную массу, а в воде полностью диссоциировано. На сколько ионов вещество диссоциирует в водном растворе? Криоскопические постоянные для бензола и воды равны 5,12 и 1,86 К кг/моль.
- **Задача 14** Рассчитать идеальную растворимость антрацена в бензоле при 25° С в единицах моляльности. Энтальпия плавления антрацена при температуре плавления (217° С) равна 28.8 кДж/моль.
- **Задача 15** Рассчитать растворимость n-дибромбензола в бензоле $npu\ 20\ u\ 40^{\circ}C$, считая, что образуется идеальный раствор. Энтальпия n-дибромбензола npu температуре его n-давления $(86,9^{\circ}C)$ равна $13,22\ \kappa Дж/моль$.
- **Задача 16** Рассчитать растворимость нафталина в бензоле при 25° С, считая, что образуется идеальный раствор. Энтальпия плавления нафталина при температуре его плавления $(80,0^{\circ}$ С) равна 19,29 кДж/моль.
- **Задача 17** Рассчитать растворимость антрацена в толуоле при 25° C, считая, что образуется идеальный раствор. Энтальпия плавления антрацена при температуре плавления (217° C) равна 28,8 кДж/моль.
- Задача 18 Рассчитать температуру, при которой чистый кадмий находится в равновесии с раствором Cd-Bi, мольная доля Cd в котором равна 0,846. Энтальпия плавления кадмия при температуре плавления (321,1°C) равна 6,23 кДж/моль.