

CLAIMS

1 1. A method of determining a route for transmitting a signal through a network, the method
2 comprising:

3 obtaining network data, including link type data, spare capacity data, vendor data, and
4 common mileage data;

5 obtaining demand data, including origination node data, termination node data, and
6 diversity requirement data;

7 storing the network data and the demand data;

8 processing the demand data using a shortest path routing method to obtain an initial
9 route;

10 updating the network data by decreasing the spare capacity data in accordance with the
11 initial route;

12 computing an initial cost based on the initial route;

13 updating the network data by increasing the spare capacity data in accordance with
14 deleting the initial route;

15 re-processing the demand data using a constrained diverse shortest path routing method
16 until a stop criterion is satisfied and obtaining a final route;

17 computing a final cost based on the final route; and

18 outputting the final route and the final cost.

1 2. The method of claim 1, wherein the constrained diverse shortest path routing method
2 minimizes use of optical transponders in obtaining the final route.

- 1 3. The method of claim 2, wherein the constrained diverse shortest path routing method
2 minimizes use of optical transponders according to

3
$$\sum_{k \in K} n_k / \max_k \leq 1$$

4 where n_k denotes a cumulative total count of optical transponders along a path $k \in K$, K denotes
5 a set of possible vendor/release combinations and \max_k is a predetermined parameter specified
6 for each $k \in K$.

Docket No. 2000-0392 Express Mail No. EV 007 410 172 US

4. The method of claim 1, wherein the initial cost and the total cost are based on one or
more of a diversity cost, a capacity overload cost and a routing cost.

5. The method of claim 4, wherein the initial cost and the final cost are computed as

Total_Cost(R) as follows:

Total_Cost(R) = Div_Cost(R) + Overload_Cost(R) + Routing_Cost(R).

- 1 6. The method of claim 5, where Div_Cost(R) is as follows:

2 $Div_Cost(R) = \alpha_{div_count} \times Div_Count(R) + \alpha_{div_miles} \times Div_Mileage(R)$,

3 where Div_Count(R) represents a total number of diversity violations, Div_Mileage(R)

4 represents a total violation mileage, and α_{div_count} and α_{div_miles} are predetermined parameters that

5 weigh Div_Count(R) and Div_Mileage(R) respectively.

1 7. The method of claim 6, wherein *Div_Count(R)* and *Div_Mileage(R)* are as follows:

2 $Div_Count(R) = \frac{1}{2} \sum_{T_i \in T} \sum_{T_j \in D_i} 1_{\{Common_miles(R_i, R_j) > max_allowed\}}$ and

3 $Div_Mileage(R) = \frac{1}{2} \sum_{T_i \in T} \sum_{T_j \in D_i} Common_miles(R_i, R_j),$

4 where *Common_miles(R_i, R_j)* measures common fiber span mileage of routes *R_i* and *R_j* and
5 *max_allowed* is a predetermined parameter that allows flexibility to ignore short fiber span
6 diversity violations.

8. The method of claim 5, wherein *Overload_Cost* is as follows:

$Overload_Cost(R) = \alpha_{overload} \times \sum_{e \in E} \sum_{p \in P} \beta_e \max\{0, load(e, p) - cap(e, p)\},$

wherein

$\alpha_{overload}$ is a predetermined parameter denoting relative importance of capacity violation,

β_e is a predetermined parameter denoting relative importance of a link $e \in E$,

$load(e, p)$ denotes a total load on the link e in a period $p \in P$, and

$cap(e, p)$ denotes a total spare capacity of the link e in the period p .

1 9. The method of claim 5, wherein *Routing_Cost* is as follows:

2 $Routing_Cost(R) = \alpha_{route} \times \sum_{R_i \in R} \sum_{e \in R_i} Link_Cost(e)$

3 where α_{route} is a predetermined parameter denoting relative importance of *Routing_Cost* in
4 *Total_Cost* and *Link_Cost* is a constant plus link mileage.

1 10. The method of claim 9, wherein *Link_Cost* is as follows:

2
$$Link_Cost(e) = \begin{cases} 1 + \alpha_{route_miles} \times Mileage(e) \\ : if e is a simple link \\ \alpha_{proj}(No_of_DWDMU_CrossSections + \alpha_{route_miles} \times Mileage(e)) \\ : if e is a composite link \end{cases}$$

3 where α_{route_miles} is a predetermined parameter denoting relative importance of mileage,
4 $Mileage(e)$ is mileage of a link e , α_{proj} is a predetermined parameter denoting a discount value for
5 using an existing project link and *No_of_DWDMU_CrossSections* is a number of dense
6 wavelength division multiplexing unit cross sections.

1 11. The method of claim 1 wherein the demand data includes project integrity data.

1 12. A method of determining routes for transmitting signals through a network, the method
2 comprising:

3 obtaining a plurality of demands T , each demand T_i having diversity requirements D_i ;
4 processing each demand T_i consecutively using a shortest path routing method to obtain a
5 corresponding initial route R_i which satisfy the diversity requirements D_i if network parameters
6 permit;
7 updating the network parameters based upon the initial routes R ;
8 computing an initial cost solution based on the initial routes R ;
9 re-processing each demand T_i using a constrained diverse shortest path method to obtain
10 a corresponding final route R'_i until a stop criterion is satisfied;
11 computing a final cost solution based on the final routes R' ; and

12 outputting the final routes R' and the final cost solution.

1 13. The method of claim 12, wherein the constrained diverse shortest path method includes:

2 assigning a cost c_e to each of a plurality of links in the network;

3 determining a shortest route R_i' from an origination node A_i to a termination node Z_i

4 based on link costs c_e ;

5 determining if route R_i' satisfies an optical transponder constraint; and

6 determining if route R_i' satisfies the diversity requirements.

1 14. The method of claim 12, wherein the constrained diverse shortest path method includes:

2 creating an initial partial path pn having parameters $node(pn)$, $cost(pn)$, $violation_set(pn)$

3 and $parent(pn)$ wherein

4 $node(pn)$ is set equal to A_i ,

5 $cost(pn)$ is set equal to zero,

6 $violation_set(pn)$ is set equal to null, and

7 $parent(pn)$ is set equal to null;

8 storing initial partial path pn in memory;

9 initializing a value $Heap$ that indicates whether there is an established pathway to Z_i ; and

10 determining whether the established pathway is compliant with an optical transponder

11 constraint, if $Heap$ is equal to null.

1 15. The method of claim 12, wherein the constrained diverse shortest path method includes:

2 creating a partial path pn having parameters $node(pn)$, $cost(pn)$, $violation_set(pn)$ and

3 $parent(pn)$ wherein

4 $node(pn)$ is set equal to a termination node of a previous partial path $pre-pn$,

5 $cost(pn)$ is equal to a current total cost of the partial path pn ,

6 $violation_set(pn)$ is a collection of violated diversity requirements of the partial

7 path pn and

8 $parent(pn)$ is the previous partial path $pre-pn$.

1 16. The method of claim 12, wherein the constrained diverse shortest path method includes:

2 selecting a partial path pn_i , having parameters $node(pn_i)$, $cost(pn_i)$, $violation_set(pn_i)$ and

3 $parent(pn_i)$ from one or more partial paths, where $cost(pn_i)$ is minimal in comparison to costs

4 associated with other partial paths, when a *Heap* value is not equal to null; and

5 equating partial path pn_i with a route A_i-Z_i if $node(pn_i)$ is equal to Z_i .

1 17. The method of claim 12, wherein the constrained diverse shortest path method includes:

2 selecting a partial path pn_i , having parameters $node(pn_i)$, $cost(pn_i)$, $violation_set(pn_i)$ and

3 $parent(pn_i)$ from one or more partial paths, where $cost(pn_i)$ is minimal in comparison to costs

4 associated with other partial paths, when a *Heap* value is not equal to null;

5 if $node(pn_i)$ is not equal to a termination node Z_i , identifying a link adjacent to $node(pn_i)$;

6 creating a new partial path pn_i' from $node(pn_i)$ to the identified link;

7 determining if the new partial path pn_i' satisfies an optical transponder constraint; and

8 updating the *Heap* value with the new partial path pn_i' if the new partial path pn_i' does
9 satisfy the optical transponder constraint.

1 18. The method of claim 17 further comprising:

2 discarding the new partial path pn_i' if the new partial path pn_i' does not satisfy the optical
3 transponder constraint.

1 19. The method of claim 17, wherein the determining step includes determining whether the
2 cumulative jitter noise along the new partial path pn_i' from an origination node A_i to $node(pn_i')$
3 plus cumulative jitter noise from $node(pn_i')$ to the termination node Z_i is below a predetermined
4 threshold.

1 20. A method of determining routes for transmitting signals through a network, the method
2 comprising:

3 obtaining a plurality of demands T , each demand T_i having diversity requirements D_i ;
4 processing each demand T_i consecutively using a shortest path routing method to obtain a
5 corresponding initial route R_i considering the diversity requirements D_i ; and
6 re-processing demands T using a constrained diverse shortest path method to obtain
7 corresponding final routes R' until a stop criterion is satisfied.