Speeding up SNARKs with cached quotients

Ariel Gabizon

4. april 2023

1. A new hope (for SNARKs, not the universe) - [Groth10, GGPR,..., Groth16]

- 1. A new hope (for SNARKs, not the universe) [Groth10,GGPR,...,Groth16]
- 2. The polynomial commitment scheme strikes back [vsql,Sonic,Plonk,Marlin,...]

- 1. A new hope (for SNARKs, not the universe) [Groth10, GGPR,..., Groth16]
- 2. The polynomial commitment scheme strikes back [vsql,Sonic,Plonk,Marlin,...]
- 3. **Return of the pairing** [Caulk,...]

First a short KZG Reminder..

```
srs := [1], [x],..., [x^d], for random x \in \mathbb{F}.
cm(f) := [f(x)]
```

Nice features:

First a short KZG Reminder..

```
srs := [1], [x],..., \lfloor x^d \rfloor, for random x \in \mathbb{F}.
cm(f) := [f(x)]
```

Nice features:

► Linearity: cm(f + g) = cm(f) + cm(g)

First a short KZG Reminder...

```
srs := [1], [x], \dots, [x^d], \text{ for random } x \in \mathbb{F}.
cm(f) := [f(x)]
```

Nice features:

- ► Linearity: cm(f + g) = cm(f) + cm(g)
- ▶ Product checks: Given $cm(f_1), cm(f_2), cm(g_1), cm(g_2)$ can check $f_1(X)f_2(X) \stackrel{?}{\equiv} g_1(X)g_2(X)$ via pairings. (Secure in the Algebraic Group Model)

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $cm(Z_T)$, cm(f) given to verifier.

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $cm(Z_T)$, cm(f) given to verifier. Prover wants to show $f = Z_S$ for some $S \subset T$.

 $Z_T(X) = \prod_{\alpha \in T} (X - \alpha)$ a vanishing polynomial of a subset $T \subset \mathbb{F}$.

 $cm(Z_T)$, cm(f) given to verifier. Prover wants to show $f = Z_S$ for some $S \subset T$.

"Do it in O(|S|) prover operations or be thrown in the pit!" (think $|S| \ll |T|$)

The quotient $Z_{T \setminus S}(X) = \frac{Z_T(X)}{Z_S(X)}$ is a "witness" to $S \subset T$.

The quotient $Z_{T \setminus S}(X) = \frac{Z_T(X)}{Z_S(X)}$ is a "witness" to $S \subset T$.

▶ Enough to compute **commitment** to $Z_{T\setminus S}$.

The quotient $Z_{T \setminus S}(X) = \frac{Z_T(X)}{Z_S(X)}$ is a "witness" to $S \subset T$.

- \triangleright Enough to compute **commitment** to $Z_{T \setminus S}$.
- ► This commitment is a sparse combination of commitments we can precompute.

details in next slide...

For each $i \in T$, let $g_i(X) := Z_{T \setminus \{i\}}(X)$.

For each $i \in T$, let $g_i(X) := Z_{T \setminus \{i\}}(X)$.

We have [Tomescu et. al]

$$Z_{T \setminus S}(X) = \sum_{i \in S} c_i \cdot g_i(X)$$

for some $c_i \in \mathbb{F}$.

For each $i \in T$, let $g_i(X) := Z_{T \setminus \{i\}}(X)$.

We have [Tomescu et. al]

$$Z_{T \setminus S}(X) = \sum_{i \in S} c_i \cdot g_i(X)$$

for some $c_i \in \mathbb{F}$.

We precompute $cm(Z_T)$, $\{cm(g_i)\}_{i \in T}$.

Prover then computes in |S| operations:

$$\pi \coloneqq \text{cm}(Z_{T \setminus S}) = \sum c_i \cdot \text{cm}(g_i)$$

Prover then computes in |S| operations:

$$\pi \coloneqq \text{cm}(Z_{T \setminus S}) = \sum_{i \in S} c_i \cdot \text{cm}(g_i)$$

Verifier checks with pairing that:

$$e(cm(f), \pi) = e(cm(Z_T), [1])$$

parameters $n \ll N$.

parameters $n \ll N$.

 $B = \{B_1(X), \dots, B_N(X)\}$ linearly independent set of polynomials.

parameters $n \ll N$.

 $B = \{B_1(X), \ldots, B_N(X)\}$ linearly independent set of polynomials.

Dfn: $A \in \mathbb{F}[X]$ is n-sparse in base B, if we can write

$$A(X) = \sum_{i \in [N]} \alpha_i \cdot B_i(X)$$

where only \mathbf{n} $\mathbf{a_i}$'s are non-zero.

parameters $n \ll N$.

 $B = \{B_1(X), \ldots, B_N(X)\}$ linearly independent set of polynomials.

Dfn: $A \in \mathbb{F}[X]$ is **n**-sparse in base **B**, if we can write

$$A(X) = \sum_{i \in [N]} \alpha_i \cdot B_i(X)$$

where only \mathbf{n} $\mathbf{a_i}$'s are non-zero.

Default case: **B** is Lagrange base of subgroup of size **N**.

Committing to sparse polynomials

We can precompute the KZG commitments for **B**: $srs_B := \{cm(B_1), ..., cm(B_N)\}$

Committing to sparse polynomials

We can precompute the KZG commitments for **B**: $srs_B := \{cm(B_1), ..., cm(B_N)\}$

Later, for n-sparse A(X) we can compute

$$\text{cm}(A) = \sum_{i \in [N], \alpha_i \neq 0} \alpha_i \cdot \text{cm}(B_i)$$

in n operations.

Scenario: T(X), Z(X) preprocessed polys. deg(Z) = N.

Scenario: T(X), Z(X) preprocessed polys. deg(Z) = N.

Input: n-sparse A(X), and some R(X) of deg $\langle N \rangle$. V has cm(A), cm(R).

Scenario: T(X), Z(X) preprocessed polys. deg(Z) = N.

Input: n-sparse A(X), and some R(X) of deg $\langle N$. V has cm(A), cm(R).

Want to prove to V that:

$$A(X)T(X) \equiv R(X) \mod Z(X)$$

using O(n) prover operations.

There exists quotient Q(X) such that $A \cdot T = Z \cdot Q + R$.

There exists quotient Q(X) such that $A \cdot T = Z \cdot Q + R$.

We'll compute cm(Q) in n operations:

There exists quotient Q(X) such that $A \cdot T = Z \cdot Q + R$.

We'll compute cm(Q) in n operations:

preprocessing: For each $i \in [N]$, compute $cm(Q_i)$ such that for some $R_i(X) \in \mathbb{F}_{\langle N}[X]$

$$B_{i}(X) \cdot T(X) = Q_{i}(X) \cdot Z(X) + R_{i}(X)$$

There exists quotient Q(X) such that $A \cdot T = Z \cdot Q + R$.

We'll compute cm(Q) in n operations:

preprocessing: For each $i \in [N]$, compute $cm(Q_i)$ such that for some $R_i(X) \in \mathbb{F}_{\langle N}[X]$

$$B_{i}(X) \cdot T(X) = Q_{i}(X) \cdot Z(X) + R_{i}(X)$$

Also precompute cm(Z), cm(T)

Q "inherits" A's sparseness

$$A(X) = \sum_{i} a_{i}B_{i}(X)$$

After preprocessing, prover can compute and send

$$\text{cm}(\,Q\,) = \sum_{i \in [\,N\,], \, \alpha_i \neq 0} \alpha_i \cdot \text{cm}(\,Q_i\,)$$

Q "inherits" A's sparseness

$$A(X) = \sum_{i} \alpha_{i} B_{i}(X)$$

After preprocessing, prover can compute and send

$$\text{cm}\!\left(\,Q\,\right) = \sum_{i \in [N], \, \alpha_i \neq 0} \alpha_i \cdot \text{cm}\!\left(\,Q_i\right)$$

Verifier can then check with pairings:

$$AT \stackrel{?}{=} QZ + R$$

Application 1: lookups

Preprocessed table T of size N, witness f of size n, $n \ll N$. Want to check $f_i \in T$ for each $i \in [n]$

Application 1: lookups

Preprocessed table T of size N, witness f of size n, n << N. Want to check $f_i \in T$ for each $i \in [n]$

[Caulk,..., \mathfrak{cq}]: Can be done in prover time $O(n \log n)$. (improved plookup's $O(N \cdot \log N)$)

Application 1: lookups

Preprocessed table T of size N, witness f of size n, $n \ll N$. Want to check $f_i \in T$ for each $i \in [n]$

[Caulk,..., \mathfrak{cq}]: Can be done in prover time $O(n \log n)$. (improved plookup's $O(N \cdot \log N)$)

proof sketch: In log-derivative lookup [Eagen, Haböck,...] prover multiplies **n**-sparse poly with a preprocessed poly representing the table - *good fit for cached quotients method.*

Fixed $n \times n$ matrix M.

Fixed $n \times n$ matrix M.

Prover has poly $f \in \mathbb{F}_{n}[X]$. Verifier cm(f). $a := f|_{H}$ for subgroup H of size n.

Fixed $n \times n$ matrix M.

Prover has poly $f \in \mathbb{F}_{n}[X]$. Verifier $\mathbf{cm}(f)$. $\mathfrak{a} := f|_{H}$ for subgroup H of size \mathfrak{n} .

Prover wants to show $\mathbf{M} \cdot \mathbf{a} = \mathbf{0}$ in $\mathbf{O}(\mathbf{n})$ operations.

Fixed $n \times n$ matrix M.

Prover has poly $f \in \mathbb{F}_{n}[X]$. Verifier $\mathbf{cm}(f)$. $\mathfrak{a} := f|_{H}$ for subgroup H of size \mathfrak{n} .

Prover wants to show $\mathbf{M} \cdot \mathbf{a} = \mathbf{0}$ in $\mathbf{O}(\mathbf{n})$ operations.

Let L_1, \ldots, L_n be a Lagrange basis for H.

Represent M by degree $\sim n^2$ polynomial

$$M(X) \coloneqq \sum_{i,j \in [n]} M_{i,j} L_i(X^n) L_j(X)$$

Let
$$Z(X) := X^{n^2} - 1$$
.

Represent M by degree $\sim n^2$ polynomial

$$M(X) := \sum_{i,j \in [n]} M_{i,j} L_i(X^n) L_j(X)$$

Let
$$Z(X) := X^{n^2} - 1$$
.

Let
$$A(X) := f(X^n)$$
, $R := A \cdot M \mod Z$.

Represent M by degree $\sim n^2$ polynomial

$$M(X) := \sum_{i,j \in [n]} M_{i,j} L_i(X^n) L_j(X)$$

Let $Z(X) := X^{n^2} - 1$.

Let $A(X) := f(X^n)$, $R := A \cdot M \mod Z$.

We have

$$R(X) = \sum_{i \in [n]} L_j(X) \sum_{i \in [n]} \alpha_i \cdot M_{i,j} L_i(X^n).$$

Represent M by degree $\sim n^2$ polynomial

$$M(X) := \sum_{i,j \in [n]} M_{i,j} L_i(X^n) L_j(X)$$

Let
$$Z(X) := X^{n^2} - 1$$
.

Let
$$A(X) := f(X^n)$$
, $R := A \cdot M \mod Z$.

We have

$$R(X) = \sum_{i \in [n]} L_i(X) \sum_{i \in [n]} \alpha_i \cdot M_{i,j} L_i(X^n).$$

So $M \cdot \alpha = 0$ iff $R(X) \equiv 0 \mod X^n$.

Note that A is n-sparse in the basis $\{L_i(X^n)\}$

Note that A is n-sparse in the basis $\{L_i(X^n)\}$

Use cached quotients twice to show

- 1. $A(X) \cdot M(X) \equiv R(X) \mod Z(X)$.
- 2. $R(X) \equiv 0 \mod X^n$.

Note that **A** is **n**-sparse in the basis $\{L_i(X^n)\}$

Use cached quotients twice to show

- 1. $A(X) \cdot M(X) \equiv R(X) \mod Z(X)$.
- 2. $R(X) \equiv 0 \mod X^n$.

Important point: R(X) is sparse in appropriate base of remainders in multiplication of M modulu Z.

Generalizing: The "cached commitments methodology"

Given a polynomial IOP using prover poly f that

- has high degree, but
- low sparsity in a preknown basis of polynomials B_1, \ldots, B_d
- ► Is only used in degree ≤ 2 verifier equations. we can

Generalizing: The "cached commitments methodology"

Given a polynomial IOP using prover poly f that

- has high degree, but
- low sparsity in a preknown basis of polynomials B_1, \ldots, B_d
- ► Is only used in degree ≤ 2 verifier equations.

we can

- 1. Precompure the KZG commitments to B_1, \ldots, B_d .
- In protocol time, only compute commitment to f from pre-computed commitments
- 3. Use pairings to directly check verifier equations between commitments.