SIFT descriptor to set landmark on biological images

Van Linh LE^{1,3}, Marie BEURTON-AlMAR¹, Adrien KRAHENBUHL¹, Nicolas PARISEY²

¹LaBRI - UMR 5800, Univ. Bordeaux, ²INRA - IGEPP UMR 1349, France ³ IT - DLU, Vietnam van-linh.le, beurton, adrien.krahenbuhl@labri.fr,nparisey@rennes.inra.fr

Context

- Morphometry analysis is a way to characterize the shape variations of the organisms,
- Morphometric characteristics have been used to evaluate the evolution of an organism, by finding new or sharpening definition of old one,
- Morphometrics are also used to classify the objects in different groups.

Manual landmarks

- Morphometric landmarks are points of interest in the biological object,
- Landmarks characterize specificities through the shape most often linked to biological information,
- They are usually defined by biologists manually.
- Images show manual landmarks in beetle mandibles belonging to our sample. How to locate the landmarks automatically?

SIFT

- SIFT[4] is used to extract distinctive features from the images. It includes four steps:
- \rightarrow Scale-space extrema detection
- → Keypoints localization
- → Orientation assigment
- → Keypoint descriptor
- <u>Limitation:</u> The obtained results from original SIFT method set many landamark candidates.
- <u>Solution:</u> Reducing the searching space before computing the SIFT descriptors.

Proposed method

- Input:
- → Model image
- → Model manual landmarks
- → Scene image
- Output: landmarks of scene image
- Steps:
- → Shape identification
- (segmentation and registration)→ SIFT and landmarks

Segmentation

- 1. Converting the image to binary one by applying a threshold determined by histogram analysis[3].
- 2. Contours points are extracted by Canny algorithm[1]. The thresholds ratio in Canny: $T_{lower} = (1/3) \times T_{upper}$, in which T_{lower} equals to the threshold value in step 1.

Registration

Model and scene image are segmented to extract the contours points. The contours points are registered by applying Principal Component Analysis[2, 5] Iteration (PCAI).

- 1. Compute the centroid point and principal axis of each list of contour point,
- 2. Compute the transformation values between two lists of contour points,
- 3. Register two lists of contour points,
- 4. Sort the contour points of scene image followed y-direction,
- 5. Select a subset of contour points of scene image and repeat step 1,
- 6. PCAI stop automatically when the angle difference between two lists of contour points is less than 1.5 degree.

SIFT and landmarks

- 1. A patch P_m is initialized at each manual landmark of model image (size of 9×9),
- 2. Calculate the SIFT descriptor for P_m ,
- 3. At the same position in the scene image, a patch P_s is created (size of 36×36),
- 4. For each pixel in P_s , a patch P_s' is extracted with the same size of P_m ,
- 5. Calculate the SIFT descriptor for all P'_{S} ,
- 6. Compute the distance between the descriptor of P_m and each P_m' ,
- 7. At the end, the pixel that has the minimum distance with P_m is kept.

Results on right mandibles

- Highest accuracy: 1st landmark with 98.62%
- Lowest accuracy: 13^{th} , 14^{th} landmark with app. 75%

Results on left mandibles

- Highest accuracy: 1st landmark with 93.01%
- Lowest accuracy: 11^{th} , 12^{th} and 16^{th} landmark from 60% to app. 63%

Bibliography

- [1] J. Canny. A computational approach to edge detection. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, (6):679–698, 1986.
- [2] I. Jolliffe. *Principal component analysis*. Wiley Online Library, 2002.
- [3] L. Lê Vãnh, M. Beurton-Aimar, J. Salmon, A. Marie, and N. Parisey. Estimating landmarks on 2d images of beetle mandibles. *WSCG*, 2016.
- [4] D. G. Lowe. Distinctive image features from scale-invariant keypoints. *International journal of computer vision*, 60(2):91–110, 2004.
- [5] J. Shlens. A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100, 2014.