A real-valued function f defined on a convex subset U of $\mathbf{R}^{\mathbf{n}}$ is **concave** if for all \mathbf{x} , \mathbf{y} in U and for all t between 0 and 1,

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \ge tf(\mathbf{x}) + (1-t)f(\mathbf{y}).$$

A real-valued function g defined on a convex subset U of $\mathbf{R}^{\mathbf{n}}$ is **convex** if for all \mathbf{x} , \mathbf{y} in U and for all t between 0 and 1,

$$g(t\mathbf{x} + (1-t)\mathbf{y}) \le tg(\mathbf{x}) + (1-t)g(\mathbf{y}).$$

Let f be a function defined on a convex set U in $\mathbf{R}^{\mathbf{n}}$. Then, the following statements are equivalent to each other:

- (a) f is a quasiconcave function on U.
- (b) For every real number a, $C_a^+ \equiv \{ \mathbf{x} \in U : f(\mathbf{x}) \ge a \}$ is a convex set.
- (c) For all $\mathbf{x}, \mathbf{y} \in U$ and all $t \in [0,1]$,

$$f(\mathbf{x}) \ge f(\mathbf{y}) \Rightarrow f(t\mathbf{x} + (1-t)\mathbf{y}) \ge f(\mathbf{y})$$
.

(d) For all $\mathbf{x}, \mathbf{y} \in U$ and all $t \in [0,1]$,

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \ge \min\{f(\mathbf{x}), f(\mathbf{y})\}.$$

Homogenous & Homothetic Functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **homogeneous of degree 0** if $f(t\mathbf{x}) = f(\mathbf{x}) \ \forall \ t > 0$.

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **homogeneous of degree 1** if $f(t\mathbf{x}) = tf(\mathbf{x}) \ \forall \ t > 0$.

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **homogeneous of degree k** if $f(t\mathbf{x}) = t^k f(\mathbf{x}) \ \forall \ t > 0$.

Euler's Theorem:

Let $f(\mathbf{x})$ be a C^1 homogenous function of degree k on R^n_+ . Then, for all \mathbf{x} ,

$$x_1 \frac{\partial f}{\partial x_1}(\mathbf{x}) + x_2 \frac{\partial f}{\partial x_2}(\mathbf{x}) + \dots + x_n \frac{\partial f}{\partial x_n}(\mathbf{x}) = kf(\mathbf{x}).$$

A function $f(\mathbf{x})$ is **homothetic** if $f(\mathbf{x}) = g(h(\mathbf{x}))$ where g is a strictly increasing function and h is a function which is homogeneous of degree 1.

Implicit Function Theorem

Let $G(x_1, \dots, x_k, y)$ be a C^1 function around the point $(x_1^*, \dots, x_k^*, y^*)$. Suppose further that $(x_1^*, \dots, x_k^*, y^*)$ satisfies

$$G(x_1^*,\cdots,x_k^*,y^*)=c$$

and that

$$\frac{\partial G}{\partial v}(x_1^*,\cdots,x_k^*,y^*)\neq 0.$$

Then, there is a C^1 function $y = y(x_1, \dots, x_k)$ defined on an open ball B about (x_1^*, \dots, x_k^*) so that:

(a)
$$G(x_1, \dots, x_k, y(x_1, \dots, x_k)) = c, \forall (x_1, \dots, x_k) \in B$$

- (b) $y^* = y(x_1^*, \dots, x_k^*)$, and
- (c) for each index i,

$$\frac{\partial y}{\partial x_i}(x_1^*, \dots, x_k^*) = -\frac{\frac{\partial G}{\partial x_i}(x_1^*, \dots, x_k^*, y^*)}{\frac{\partial G}{\partial y}(x_1^*, \dots, x_k^*, y^*)}.$$

Envelope Theorem

Let $f, h_1, \dots, h_k : \mathbf{R}^{\mathbf{n}} \times \mathbf{R}^{\mathbf{1}} \to \mathbf{R}^{\mathbf{1}}$ be C^1 functions. Let $\mathbf{x}^*(a) = (x_1^*(a), \dots, x_n^*(a))$ denote the solution of the problem of maximizing $\mathbf{x} \mapsto f(\mathbf{x}; a)$ on the constraint set

$$h_1(\mathbf{x}, a) = 0, \dots, h_k(\mathbf{x}, a) = 0$$

for any fixed choice of the parameter a. Suppose that $\mathbf{x}^*(a)$ and the Lagrange multipliers $\mu_1(a), \dots, \mu_k(a)$ are C^1 functions of a and that the non-degenerate constraint qualification condition holds. Then,

$$\frac{d}{da}f(\mathbf{x}^*(a);a) = \frac{\partial L}{\partial a}(\mathbf{x}^*(a),\mu(a);a),$$

where L is the natural Lagrangian for this problem.

Math Tidbits

$$\ln[1 - \exp(n_t)] \approx \ln[1 - \exp(\overline{n})] - \exp(\overline{n})[1 - \exp(\overline{n})]^{-1}(n_t - \overline{n})$$

Log Linearization:
$$ln(exp(x)) = x$$

$$x \approx 0 \Rightarrow \ln(x+1) \approx x$$

L'Hôpital's Rule:
$$\lim_{x \to a} \frac{m(x)}{n(x)} = \lim_{x \to a} \frac{m'(x)}{n'(x)}$$

Integration by Parts:
$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

Geometric Series:
$$IF|x| < 1$$
 THEN

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \qquad \sum_{k=1}^{\infty} x^k = \frac{x}{1-x}$$

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \qquad \sum_{k=1}^{n} x^{k} = \frac{x(1 - x^{n})}{1 - x}$$

Monotone Likelihood Ratio Property:

The family of densities $f(\bullet | \theta)$ satisfies the MLRP if, for all $x_1 \ge x_0$ and $\theta_1 \ge \theta_0$,

$$f(x_1 \mid \theta_1) \ge f(x_0 \mid \theta_1)$$

$$f(x_1 \mid \theta_0) \ge f(x_0 \mid \theta_0)$$

Intermediate Value Theorem:

If f is continuous on a closed interval [a, b], and c is any number between f(a) and f(b) inclusive, then there is at least one number x in the closed interval such that f(x) = c.

Leibniz' Rule:

Let $\phi(t) = \int_{\alpha(t)}^{\beta(t)} f(x,t) dx$ for $t \in [c,d]$ Assume that f and f_t are continuous and that α, β are differentiable on [c,d] Then

$$\phi'(t) = f[\beta(t), t]\beta'(t) - f[\alpha(t), t]\alpha'(t) + \int_{\alpha(t)}^{\beta(t)} f_t(x, t) dx.$$

The **total differential** of F(x,y) at (x^*, y^*) is $dF = \frac{\partial F}{\partial x}(x^*, y^*)dx + \frac{\partial F}{\partial y}(x^*, y^*)dy$.

Let *A* be an $n \times n$ matrix. Let A_{ij} be the $(n-1) \times (n-1)$ submatrix obtained by deleting row *i* and column *j* from A. Then, the scalar

$$M_{ii} \equiv \det A_{ii}$$

is called the (*i,j*)th **minor** of A and the scalar

$$C_{ii} \equiv (-1)^{i+j} M_{ii}$$

is called the (i,j)th **cofactor** of A.

The **determinant** of an $n \times n$ matrix A is given by

$$\det A = |A| = \sum_{i=1}^{n} a_{1i} C_{1i} .$$

A square matrix is nonsingular if and only if its determinant is nonzero.

IF A and B are $k \times k$, nonsingular matrices THEN

$$(AB)' = B'A'$$

$$AA^{-1} = A^{-1}A = I_k$$

$$(A^{-1})' = (A')^{-1}$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A+B)^{-1} = A^{-1}(A^{-1}+B^{-1})B^{-1}$$

$$A^{-1} - (A+B)^{-1} = A^{-1}(A^{-1}+B^{-1})A^{-1}$$

If A and B are $k \times 1$ vectors THEN A'B = B'A.

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$.

The following is true about a partitioned matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} E^{-1} & -E^{-1}BD^{-1} \\ -D^{-1}CE^{-1} & F^{-1} \end{bmatrix}$$

where
$$E^{-1} = (A - BD^{-1}C)^{-1}$$
 and $F^{-1} = (D - CA^{-1}B)^{-1}$.

Cramer's Rule

Let *A* be a nonsingular matrix. Then, the unique solution $\mathbf{x} = (x_1, \dots, x_n)$ of the $n \times n$ system $A\mathbf{x} = \mathbf{b}$ is

$$x_i = \frac{\det B_i}{\det A}$$
, for $i = 1, \dots, n$

where B_i is the matrix A with the right-hand side **b** replacing the *i*th column of A.

Probability

IF X & Y are stochastic and A & B are not THEN

$$E(AX + B) = E(X)A + B$$

$$Var(X) = E(X^{2}) - E(X)^{2}$$

$$Var(AX + B) = Var(X)\sqrt{A}$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Cov(X, Y) = E(X - E(X)(Y - E(Y)))$$

$$= E(XY) - E(X)E(Y)$$

IF X & Y are independent THEN

$$E(XY) = E(X)E(Y)$$

$$Cov(X,Y) = 0$$

$$Var(X+Y) = Var(X) + Var(Y)$$

Conditional probability: $P(A | B) = \frac{P(A \cap B)}{P(B)}$

Baye's Rule:
$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum_{j=1}^{\infty} P(B \mid A_j)P(A_j)}$$

Conditional density: $f_{Y|X}(y \mid x) = \frac{f(x, y)}{f_X(x)}$

Law of Iterated Expectations: E(E(Y|X,Z)|X) = E(Y|X)Simple Law of Iterated Expectations: E(E(Y|X)) = E(Y)Conditioning Theorem: E(g(X)Y|X) = g(X)E(Y|X) Weak Law of Large Numbers: If $X_i \in \mathbb{R}^k$ is iid and $E|X_i| < \infty$, then as $n \to \infty$

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} E(X)$$

Central Limit Theorem: If $X_i \in \mathbb{R}^k$ is iid and $E[X_i]^2 < \infty$, then as $n \to \infty$

$$\sqrt{n}(\overline{X}_n - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu) \xrightarrow{d} N(0, V)$$

Continuous Mapping Theorem:

Slutzky's Theorem:

$$a_n \xrightarrow{p} a$$
If and as $n \to \infty$ and $g(\cdot)$ is continuous, then as $n \to \infty$

$$b_n \xrightarrow{p} b$$

$$g(a_n, b_n) \xrightarrow{p} g(a, b)$$

S(n,n)

$$a_n \xrightarrow{p} a$$

If and as $n \to \infty$ and $g(\cdot)$ is continuous, then as $n \to \infty$

$$b_n \xrightarrow{d} N(0,V)$$

$$g(a_n,b_n) \xrightarrow{d} g(a,N(0,V))$$

Delta Method: If $\sqrt{n}(\theta_n - \theta_0) \xrightarrow{d} N(0, V)$, where θ is $m \times 1$ and V is $m \times m$, and $g(\theta): R^m \to R^k$, $k \le m$, then

$$\sqrt{n}(g(\theta_n)-g(\theta_0)) \xrightarrow{d} N(0,g_\theta V g'_\theta)$$

where
$$g_{\theta} = \frac{\partial g(\theta)}{\partial \theta'} g_{\theta}$$

Taylor Polynomials

Let $f: U \to R^1$ be a C^{N+1} function defined on a (connected) interval U in R^1 . For any points a and a + x in U, there exists a point c^* between a and a + x such that

$$f(a+x) = \sum_{n=0}^{N} \frac{x^n}{n!} f^{(n)}(a) + \frac{x^{N+1}}{(N+1)!} f^{(N+1)}(c^*) \qquad \text{(note that } 0! = 1)$$

$$g(x) = g(x_0) + (x - x_0)g'(x) + \frac{1}{2}(x - x_0)^2 g''(x) + \frac{1}{3!}(x - x_0)^3 g'''(x) + \dots$$

Stochastic Dominance

First-Order:

(a) The random variable X first-order stochastically dominates the random variable Y if, for all a,

$$P[X > a] \ge P[Y > a].$$

(b) If the distribution of X is F and the distribution of Y is G, then X first-order stochastic dominates Y if, for all a,

$$F(a) \leq G(a)$$
.

Second-Order:

Suppose the random variables X and Y have support on [l, u]. Then X second-order stochastically dominates Y if, for all a,

$$\int_{l}^{a} P[X > t] dt \ge \int_{l}^{a} P[Y > t] dt.$$

Let A be an $n \times n$ matrix.

A $k \times k$ submatrix of A formed by deleting n - k columns, say columns i_1, i_2, \dots, i_{n-k} and the same n - k rows, rows i_1, i_2, \dots, i_{n-k} , from A is called a kth order **principal submatrix** of A. The determinant of a $k \times k$ principal submatrix is called a kth order **principal minor** of A.

The kth order principal submatrix of A obtained by deleting the last n - k rows and the last n - k columns from A is called the kth order **leading principal submatrix** of A. Its determinant is called the kth order **leading principal minor** of A. Denote the kth order leading principal submatrix by A_k and the corresponding leading principal minor by $|A_k|$

Let B be an $n \times n$ matrix. The definiteness or semidefiniteness of B can be determined by:

- (a) B is **positive definite** iff all its n leading principal minors are strictly positive.
- (b) *B* is **positive semidefinite** iff every principal minor of *A* is ≥ 0 .
- (c) *B* is **negative definite** iff its *n* leading principal minors alternate in sign as follows: $|A_1| < 0$, $|A_2| > 0$, $|A_3| < 0$, etc. The *k*th order leading principal minor should have the same sign as $(-1)^k$.
- (d) *B* is **negative semidefinite** iff every principal minor of odd order is \leq and every principal minor of even order is \geq 0.