Generative Adversarial Networks

IKHAN CHOI

The AI paradigm changes when a new approximating method is discovered.

1. Maximum likelihood estimate

Definition 1.1. Let f be a distribution function on a measure space X. Let $\{f_{\theta}\}_{\theta}$ be a parametrized family of distribution functions on X. The *likelihood* $L_n(\theta): \Omega^n \to \mathbb{R}_{\geq 0}$ for a fixed parameter θ is a random variable defined by

$$L_n(\theta) := \prod_{i=1}^n f_{\theta}(x_i)$$

where $\{x_i\}_i$ is a family of i.i.d. X-valued random variables with a distribution f.

The objective of the likelihood function is to find θ such that f_{θ} approximates the unknown distribution f. Write

$$\frac{1}{n}\log L_n(\theta) = \frac{1}{n}\sum_{i=1}^n \log f_{\theta}(x_i).$$

By the law of large numbers, $\frac{1}{n} \log L_n(\theta)$ converges to a constant function

$$\mathbb{E}(\log f_{\theta}(x)) = \int_{X} f \log f_{\theta}$$

in measure as $n \to \infty$.

By the Jensen inequality,

$$\int_{X} f \log f_{\theta} - \int_{X} f \log f = \int_{X} f \log \frac{f_{\theta}}{f} \le \log \left(\int_{X} f \frac{f_{\theta}}{f} \right) = 0.$$

Exclude the region f = 0 from the integration region. In other words, bigger $L_n(\theta)$ is, closer f_{θ} and f are.

2. Gradient descent method

ascending stochastic gradient

3. Minimax game

Minimax is a decision policy in a competitive game.

Last Update: May 25, 2019.

4. Generative adversarial networks

Let X be the set of all images having a given pixel size. Suppose the data distribution p_{data} on X which embodies learning materials is given. If $x \in X$ is an image that looks like a real human face, then the distribution(mass) function p_{data} has nonnegligible values near the point x. We cannot describe the distribution function p_{data} completely, but only can sample from it.

Let p_g be a distribution on X. The generator $G:\Omega\to X$ is just an arbitrarily taken random variable satisfying p_g for sampling. The discriminator $D:X\to [0,1]$ is a function Our purpose is to construct a new method for approximating $p_g\to p_{data}$ by simultaneously updating the discriminator function D.

Let $x_i \sim p_{data}$ and $z \sim p_g$ be random variables $\Omega \to X$. Let D maximize

$$\log D(x) + \log(1 - D(z))$$

and p_g minimize

$$\log(1 - D(z)).$$

Balancing the convergence rates between p_g and D is important.