12주차 3차시 신장트리와 최소비용 신장트리

[학습목표]

- 1. 최소비용 신장트리를 설명할 수 있다.
- 2. Kruskal 알고리즘과 Prime 알고리즘을 구분할 수 있다.

학습내용1 : 신장트리와 최소비용 신장트리의 개요

1. 신장 트리(Spanning tree)

- * n개의 정점으로 이루어진 무방향 그래프 G에서 n개의 모든 정점과 n-1개의 간선으로 만들어진 트리
- * 그래프 G1과 신장 트리의 예

- * 깊이 우선 신장 트리 (depth first spanning tree)
- 깊이 우선 탐색을 이용하여 생성된 신장 트리
- * 너비 우선 신장 트리(breadth first spanning tree)
- 너비 우선 탐색을 이용하여 생성된 신장 트리
- * 그래프 G1의 깊이 우선 신장 트리와 너비 우선 신장 트리

- 신장 트리는 결국 최소의 간선을 이용하여 모든 정점을 연결하는 그래프
- 최소의 도로를 사용하여 모든 도시를 연결해야 하는 도로망 건설이나 최소의 네트워크 선을 사용하여 시스템을 연결해야 하는 통신망 설계 등의 여러 분야에 응용됨

2. 최소 비용 신장 트리(minimum cost spanning tree)

- * 무방향 가중치 그래프에서 신장 트리를 구성하는 간선들의 가중치 합이 최소인 신장 트리
- 가중치 그래프의 간선에 주어진 가중치
 - 비용이나 거리, 시간을 의미하는 값
- * 최소 비용 신장 트리를 만드는 알고리즘
- Kruskal 알고리즘
- Prime 알고리즘

학습내용2: Kruskal 알고리즘

1. Kruskal 알고리즘 I

- * 가중치가 높은 간선을 제거하면서 최소 비용 신장 트리를 만드는 방법
- * Kruskal 알고리즘 I
 - (1) 그래프 G의 모든 간선을 가중치에 따라 <u>내림차순으로 정리한다</u>.
 - (2) 그래프 G에서 **가중치가 가장 높은 간선을 제거한다.** 이때 정점을 그래프에서 분리시키는 간선은 제거할 수 없으므로 이런 경우에는 그 다음으로 가중치가 높은 간선을 제거한다.
 - (3) 그래프 G에 n-1개의 간선만 남을 때까지 (2)를 반복한다.
 - (4) 그래프에 n-1개의 간선이 남게 되면 최소 비용 신장 트리가 완성된다.

2. Kruskal 알고리즘 I 을 이용하여 G10의 최소 비용 신장 트리 만들기

* 초기 상태: 그래프 G10의 간선을 가중치에 따라서 내림차순 정렬

가중치	간선
17	(A, C)
14	(F, G)
12	(B, G)
10	(C, E)
9	(D, E)
8	(C, F)
6	(A, D)
5	(B, D)
4	(E, F)
3	(A, B)
2	(E, G)

간선의 수 : 11개

① 가중치가 가장 큰 간선(A,C) 제거(현재 남은 간선의 수: 10개)

가중치	간선	간선의 수 : 10개
17	(A, C)	
14	(F, G)	
12	(B, G)	
10	(C, E)	
9	(D, E)	
8	(C, F)	
6	(A, D)	
5	(B, D)	
4	(E, F)	
3	(A, B)	
2	(E, G)	

② 남은 간선 중에서 가중치가 가장 큰 간선(F,G) 제거(현재 남은 간선의 수 : 9개)

가중치	간선
17	(A, C)
14	(F, G)
12	(B, G)
10	(C, E)
9	(D, E)
8	(C, F)
6	(A, D)
5	(B, D)
4	(E, F)
3	(A, B)
2	(E, G)

간선의 수: 9개

③ 남은 간선 중에서 가중치가 가장 큰 간선(B,G) 제거(현재 남은 간선의 수 : 8개)

가중치	간선
17	(A, C)
14	(F, G)
12	(B, G)
10	(C, E)
9	(D, E)
8	(C, F)
6	(A, D)
5	(B, D)
4	(E, F)
3	(A, B)
2	(E, G)

간선의 수: 8개

④ 남은 간선 중에서 가중치가 가장 큰 간선 (C,E) 제거(현재 남은 간선의 수: 7개)

⑤ 남는 간선 중에서 가중치가 가장 큰 간선(D,E)를 제거하면, 그래프가 분리되어 단절 그래프가 되므로, 그 다음으로 가중치가 큰 간선 (C,F)를 제거해야 한다. 그런데 간선 (C,F)를 제거하면 정점 C가 분리되므로 제거할 수 없으므로, 다시 그 다음으로 가중치가 큰 간선 (A,D)를 제거한다(현재 남은 간선의 수 : 6개)

- 현재 남은 간선의 수가 6개 이므로 알고리즘 수행을 종료하고 신장 트리 완성
- * G10의 최소 비용 신장 트리

가중치	간선
17	(A, C)
14	(F, G)
12	(B, G)
10	(C, E)
9	(D, E)
8	(C, F)
6	(A, D)
5	(B, D)
4	(E, F)
3	(A, B)
2	(E, G)

간선의 수 : 7개

	A 3 B
0	9
8 F	E 2

가중치	간선
17	(A, C)
14	(F, G)
12	(B, G)
10	-(C, E)
9	(D, E)
8	(C, F)
6	(A, D)
5	(B, D)
4	(E, F)
3	(A, B)
2	(E, G)

간선의 수 : 6개

(A) 3 (B)
© 5
9
4 (E) 2 (G)
[그림 9-15] Kruskal 알고리즘 I 을 이용하여 완성된 G10의 최소 비용 신장 트리

3. Kruskal 알고리즘Ⅱ

- * 가중치가 낮은 간선을 삽입하면서 최소 비용 신장 트리를 만드는 방법
- * Kruskal 알고리즘 II
 - (1) 그래프 G의 모든 간선을 가중치에 따라 <u>오름차순</u>으로 정리한다.
 - (2) 그래프 G에 가중치가 가장 작은 간선을 삽입한다. 이때 사이클을 형성하는 간선은 삽입할 수 없으므로 이런 경우에는 그 다음으로 가중치가 작은 간선을 삽입한다.
 - (3) 그래프 G에 n-1개의 간선을 삽입할 때까지 (2)를 반복한다.
 - (4) 그래프 G의 간선이 n-1개가 되면 최소 비용 신장 트리가 완성된다.

4. Kruskal 알고리즘 II를 이용하여 G10의 최소 비용 신장 트리 만들기

* 초기 상태 : 그래프 G10의 간선을 가중치에 따라서 오름차순 정렬

① 나머지 중치가 가장 작은 간선 (E,G) 삽입. (현재 삽입한 간선의 수 : 1개)

②나머지 간선 중에서 가중치가 가장 작은 간선(A,B) 삽입(현재 삽입한 간선의 수 : 2개)

③ 나머지 간선 중에서 가중치가 가장 작은 간선(E,F) 삽입(현재 삽입한 간선의 수 : 3개)

④ 나머지 간선 중에서 가중치가 가장 작은 간선 (B,D) 삽입(현재 삽입한 간선의 수 : 4개)

⑤ 나머지 간선 중에서 가중치가 가장 작은 간선 (A,D)를 삽입하면 A-B-D의 사이클이 생성되므로 삽입할 수 없다. 그 다음으로 가중치가 가장 작은 간선 (C,F) 삽입. (현재 삽입한 간선의 수 : 5개)

- ⑥ 나머지 간선 중에서 가중치가 가장 작은 간선 (D,E) 삽입(현재 삽입한 간선의 수 : 6개)
- 현재 삽입한 간선의 수가 6개 이므로 알고리즘 수행을 종료하고 신장 트리 완성.

* G10의 최소 비용 신장 트리

학습내용3 : Prime 알고리즘

- 1. Prime 알고리즘의 개요
- * 간선을 정렬하지 않고 하나의 정점에서 시작하여 트리를 확장해 나가는 방법
- * Prime 알고리즘
- 2. Prime 알고리즘을 이용하여 G10의 최소 비용 신장 트리 만들기
- * 초기 상태 : 그래프 G10의 정점 중에서 정점 A를 시작 정점으로 선택
- ① 정점 A에 부속된 간선 중에서 가중치가 가장 작은 간선 (A,B)을 삽입하여 트리 확장(현재 삽입한 간선의 수 : 1개)
- ② 현재 확장된 트리의 정점 A, B에 부속된 간선 중에서 가중치가 가장 작은 간선 (B,D)를 삽입하여 트리 확장(현재

- (1) 그래프 G에서 시작 정점을 선택한다.
- (2) 선택한 정점에 <u>부속된 모든 간선 중에서 가중치가 가장 작은 간선</u>을 연결하여 트리를 확장한다.
- (3) 이전에 선택한 정점과 새로 확장된 정점에 부속된 모든 간선 중에 서 가중치가 가장 작은 간선을 삽입한다.
 - 이때 사이클을 형성하는 간선은 삽입할 수 없으므로
 - 그 다음으로 가중치가 작은 간선을 선택한다.
- (4) 그래프 G에 n-1개의 간선을 삽입할 때까지 (3)을 반복한다.
- (5) 그래프 G의 간선이 n-1개가 되면 최소 비용 신장 트리가 완성된다.

삽입한 간선의 수 : 2개)

③ 현재 확장된 트리의 정점 A, B, D에 부속된 간선 중에서 가중치가 가장 작은 간선 (A,D)를 삽입하면 A-B-D-A의 사이클이 생성되므로 삽입할 수 없다. 따라서 그 다음으로 가중치가 가장 작은 간선 (D,E) 삽입(현재 삽입한 간선의 수 : 3개, 삽입 불가능한 간선 : (A,D))

④ 현재 확장된 트리의 정점 A, B, D, E에 부속된 간선 중에서 가중치가 가장 작은 간선 (E,G)를 삽입하여 트리확장(현재 삽입한 간선의 수: 4개, 삽입 불가능한 간선: (A,D))

⑤ 현재 확장된 트리의 정점 A, B, D, E, G에 부속된 간선 중에서 가중치가 가장 작은 간선 (E,F)를 삽입하여 트리확장(현재 삽입한 간선의 수 : 5개, 삽입 불가능한 간선 : (A,D))

- ⑥ 현재 확장된 트리의 정점 A, B, D, E, F, G에 부속된 간선 중에서 가중치가 가장 작은 간선 (C,F)를 삽입하여 트리확장(현재 삽입한 간선의 수 : 6개, 삽입 불가능한 간선 : (A,D))
- 현재 남은 간선의 수가 6개 이므로 알고리즘 수행을 종료하고 신장 트리 완성

* G10의 최소 비용 신장 트리

[학습정리]

- 1. n개의 정점으로 이루어진 무방향 그래프 G에서 n개의 모든 정점과 n-1개의 간선으로 만들어져 사이클이 없는 단순 연결 그래프를 신장 트리라고 한다.
- 깊이 우선 탐색을 이용하여 생성된 깊이 우선 신장 트리와 너비 우선 탐색을 이용하여 생성된 너비 우선 신장 트리가 있다.
- 2. 무방향 가중치 그래프에서 가중치의 합이 최소인 신장 트리를 최소 비용 신장 트리라고 한다.
- 최소 비용 신장 트리를 만드는 방법으로 Kruskal 알고리즘과 Prime 알고리즘을 주로 사용한다.