Suites numériques

Tle STMG

Table des matières

1	Suit	es arithmétiques	2
	1.1	Définition : Suite arithmétique	2
	1.2	Rappel : Reconnaître une suite arithmétique	2
	1.3	Méthode : Exprimer une suite arithmétique en fonction de n	2
	1.4	Propriété : Expression du terme général d'une suite arithmétique	3
	1.5	Méthode : Calculer la somme des termes d'une suite arithmétique	3
	1.6	Propriété : Somme des n premiers termes d'une suite arithmétique $\dots \dots \dots \dots$	4
	1.7	Défition : Moyenne arithmétique de deux nombres	6
	1.8	Méthode : Calculer une moyenne arithmétique de deux nombres	6
	1.9	Résumé	7
2	Suit	es géométriques	8
	2.1	Définition : Suite géométrique	8
	2.2	Rappel : Reconnaître une suite géométrique	8
	2.3	Méthode : Exprimer une suite arithmétique en fonction de n	8
	2.4	Propriété : Expression du terme général d'une suite géométrique	9
	2.5	Méthode : Calculer la somme des termes d'une suite géométrique	9
	2.6	Propriété : Somme des n premiers termes d'une suite géométrique $\dots \dots \dots \dots$	10
	2.7	Défition : Moyenne géométrique de deux nombres	11
	2.8	Méthode : Calculer une moyenne géométrique de deux nombres	11
	2.9	Résumé	12
3	Con	nparaison de suites	13
	3.1	Exemple : comparaison de placements proposés par une banque	13

1 Suites arithmétiques

1.1 Définition : Suite arithmétique

Une suite u_n est une suite **arithmétique** s'il existe un nombre r tel que pour tout entier n, on a :

$$u_{n+1} = u_n + r$$

Figure 1 – Suite arithmétique de raison r

1.2 Rappel : Reconnaître une suite arithmétique

Exemple

On considère la liste des trois nombres suivants : -2, 5 et 12. Dans cet ordre, ces nombres peuvent-ils être les termes consécutifs d'une suite arithmétique ?

Pour y répondre, il faut s'assurer que la différence entre deux termes consécutifs reste la même.

$$12-5=7$$
 et $5-(-2)=7$ Cette différence reste égale à 7.

-2, 5 et 12 sont bien les termes consécutifs d'une suite arithmétique de raison 7.

Si on note u_n cette suite, on a : $u_{n+1} = u_n + 7$.

1.3 Méthode : Exprimer une suite arithmétique en fonction de n

Pour préparer une course, un athlète décide de s'entraîner de façon progressive.

Il commence son entraînement au "jour 0" par un petit footing d'une longueur de 3000m. Au "jour 1", il court 3150m. Au "jour 2", il court 3300m puis ainsi de suite en parcourant chaque jour 150m de plus que la veille.

On note u_n la distance parcourue au "jour n" d'entraı̂nement.

- a) Calculer u_3 et u_4 .
- b) Quelle est la nature de la suite u_n ? On donnera son premier terme et sa raison.
- c) Exprimer u_{n+1} en fonction de u_n .
- d) Donner la variation de la suite u_n .
- e) Exprimer u_n en fonction de n.

(a) Calcul de u_3 et u_4

$$u_0 = 3000$$

$$u_1 = u_0 + 150 = 3000 + 150 = 3150$$

$$u_2 = u_1 + 150 = 3150 + 150 = 3300$$

$$u_3 = u_2 + 150 = 3300 + 150 = 3450$$

$$u_4 = u_3 + 150 = 3450 + 150 = 3600$$

- (b) u_n est une suite **arithmétique** de premier terme $u_0 = 3000$ et de raison r = 150. On parle de **croissance linéaire**.
- (c) $u_{n+1} = u_n + 150$
- (d) r = 150 > 0 donc la suite u_n est croissante.
- (e) Expression de u_n en fonction de n

Après 1 jour, il parcourt : $u_1 = 3000 + 150 \times 1$

Après 2 jours, il parcourt : $u_2 = 3000 + 150 \times 2$

Après 3 jours, il parcourt : $u_3 = 3000 + 150 \times 3$

De manière générale, après n jours, il parcourt : $u_n = 3000 + 150 \times n$

1.4 Propriété : Expression du terme général d'une suite arithmétique

Si u_n est une suite arithmétique de raison r, on a :

$$u_n = u_0 + n \times r$$

$$u_n = u_1 + (n - 1) \times r$$

FIGURE 2 – Suite arithmétique de raison r

1.5 Méthode : Calculer la somme des termes d'une suite arithmétique

Dans l'exemple précédent, u_n représente la distance par courue par le sportif au jour n. Nous avons établit que $u_n = 3000 + 150 \times n$

- a) Quelle distance aura-t-il parcourue au total lorsqu'il sera au "jour 15" de son entraîneent?
- b) Quelle distance aura-t-il parcourue au total entre le "jour 8" et le "jour 12"?
- (a) La distance parcourue au total au "jour 15" d'entraînement est :

$$u_0 + u_1 + u_2 + \ldots + u_{15}$$

Pour l'obtenir, on utilise la calculatrice.

- [Texas Instruments]
 - 1. Pour accéder au catalogue : 2nde puis 0.
 - 2. Appuyer sur ln pour accéder aux fonctionnalités commençant par S.
 - 3. Choisir som (ou somme (ou sum (suivant les modèles).
 - 4. Procéder de même pour afficher suite (ou seq (suivant les modèles).

- 5. Et compléter pour afficher : som(suite(3000+150X,X,0,15))
- [Casio]
 - 1. Pour accéder au catalogue : SHIFT puis 4.
 - 2. Appuyer sur pour accéder aux fonctionnalités commençant par S.
 - 3. Choisir Σ(

4. Et compléter pour afficher : X=0

Somme des termes de u_n avec une TI-84 CE

Somme des termes de u_n avec une Casio Graph 35+

La calculatrice affiche 66000. Ce qui signifie que l'athlète a parcouru 66000m soit 66km au "jour 15" d'entraînement.

Pour noter une telle somme, on peut utiliser le symbole Σ :

$$u_0 + u_1 + u_2 + \ldots + u_{15} = \sum_{k=0}^{15} u_k = 66000$$

(b) La distance parcourue au total entre le "jour 8" et le "jour 12" d'entraînement est :

$$u_8 + u_9 + u_{10} + u_{11} + u_{12} = \sum_{k=8}^{12} u_k$$

On saisit sur la calculatrice :

— [Sur TI :] som(suite(3000+150X,X,8,12))

La calculatrice affiche 22500. Ce qui signifie que l'athlète a parcouru 22,5km au total entre le "jour 8" et le "jour 12 "d'entraînement.

$$u_8 + u_9 + u_{10} + u_{11} + u_{12} = \sum_{k=8}^{12} u_k = 22500$$

1.6 Propriété : Somme des n premiers termes d'une suite arithmétique

Soit u_n une suite arithmétique de raison r et de 1^{er} terme u_0 . La somme des n premiers termes de u_n est :

$$S = n \times \frac{u_0 + u_{n-1}}{2} = \text{nombre de termes} \times \frac{1 \text{er terme} + \text{dernier terme}}{2}$$

Exemple

Soit u_n une suite arithmétique de raison 150 et de 1^{er} terme 3000. La somme des 16 premiers termes de u_n est :

$$S = u_0 + u_1 + u_2 + \dots + u_{15} = \sum_{k=0}^{15} u_k$$

$$S = 16 \times \frac{u_0 + u_{15}}{2} = 16 \times \frac{(3000) + (3000 + 150 \times 15)}{2} = 16 \times \frac{8250}{2} = 66000$$

1.7 Défition : Moyenne arithmétique de deux nombres

En mathématiques, la moyenne arithmétique d'une liste de nombres est la somme des valeurs divisée par le nombre de valeurs.

1.8 Méthode : Calculer une moyenne arithmétique de deux nombres

- a) Calculer la moyenne arithmétique des nombres -3 et 19.
- b) Peut-on affirmer que chaque terme d'une suite arithmétique est la **moyenne arithmétique** du terme qui le précède et du terme qui le suit ?
- (a) La moyenne arithmétique d'une suite de valeurs est donc la moyenne que l'on connait depuis le collège.

$$m = \frac{-3+19}{2} = \frac{16}{2} = 8$$

(b) Si on note u_n le terme d'une suite arithmétique, on a :

 $u_{n+1} = u_n + r$, où r est la raison de la suite.

Et on a également : $u_n = u_{n-1} + r$ donc $u_{n-1} = u_n - r$

La moyenne arithmétique du terme qui précède u_n et du terme qui le suit est égale à :

$$m = \frac{u_{n-1} + u_{n+1}}{2}$$

$$= \frac{u_n - r + u_n + r}{2}$$

$$= \frac{2 \times u_n}{2}$$

$$= u_n$$

Donc u_n est la moyenne arithmétique du terme qui le précède et du terme qui le suit.

1.9 Résumé

	u_n une suite arithmétique de	
Résumé	raison r et de 1 ^{er} terme u_0	Exemple : $r = -0.5 \text{ et } u_0 = 4$
Définition		
	$u_{n+1} = u_n + r$	$u_{n+1} = u_n - 0.5$
Propriété		
	$u_n = u_0 + n \times r$	$u_n = 4 + n \times 0.5$
	$u_n = u_1 + (n-1)r$	$u_n = 3.5 + (n-1) \times 0.5$
Variation		
	$r > 0 \Rightarrow u_n$ croissante	$r = 0.5 < 0 \Rightarrow u_n$ décroissante
	$r < 0 \Rightarrow u_n$ décroissante	
Représentation graphique		
	Les points de la représentation graphique sont alignés.	
	On parle de croissance linéaire.	
	on parie de crossance inicare.	4
		3
		2
		1
		0
		0 1 2 3 4 5 6 7 8 9

2 Suites géométriques

2.1 Définition : Suite géométrique

Une suite u_n est une suite **géométrique** s'il existe un nombre q tel que pour tout entier n, on a :

$$u_{n+1} = u_n \times q$$

FIGURE 3 – Suite géométrique de raison q

2.2 Rappel : Reconnaître une suite géométrique

Exemple

On considère la liste des trois nombres suivants : 4, 12 et 36. Dans cet ordre, ces nombres peuvent-ils être les termes consécutifs d'une suite géométrique ?

Pour y répondre, il faut s'assurer que le rapport entre deux termes consécutifs reste la même.

$$\frac{36}{12} = 3$$
 et $\frac{12}{4} = 3$ Ce rapport reste égale à 3.

4, 12 et 36 sont bien les termes consécutifs d'une suite géométrique de raison 3.

Si on note u_n cette suite, on a : $u_{n+1} = u_n \times 3$.

2.3 Méthode : Exprimer une suite arithmétique en fonction de n

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4% par an.

On note u_n la valeur du capital après n années.

- a) Calculer u_2 et u_3 .
- b) Quelle est la nature de la suite u_n ? On donnera son premier terme et sa raison.
- c) Exprimer u_{n+1} en fonction de u_n .
- d) Donner la variation de la suite u_n .
- e) Exprimer u_n en fonction de n.

(a) Calcul de u_2 et u_3

Une augmentation de 4% correspond à un coefficient multiplicateur de 1.04

$$u_0 = 500$$

$$u_1 = u_0 \times 1.04 = 500 \times 1.04 = 520$$

$$u_2 = u_1 \times 1.04 = 520 \times 1.04 = 540.8$$

$$u_3 = u_2 \times 1.04 = 540.8 \times 1.04 \approx 562.4$$

(b) u_n est une suite **géométrique** de premier terme $u_0 = 500$ et de raison q = 1.04. On parle de **croissance exponentielle**.

8

(c) $u_{n+1} = u_n \times 1.04$

(d) q = 1.04 > 1 donc la suite u_n est croissante.

(e) Expression de u_n en fonction de n

Après 1 an, le capital est : $u_1 = 500 \times 1.04$

Après 2 ans, le capital est : $u_2 = 500 \times 1.04 \times 1.04 = 500 \times 1.04^2$

Après 3 ans, le capital est : $u_3 = 500 \times 1.04^2 \times 1.04 = 500 \times 1.04^3$

De manière générale, après n années, le capital est : $u_n = 500 \times 1.04^n$

2.4 Propriété : Expression du terme général d'une suite géométrique

Si u_n est une suite géométrique de raison q, on a :

$$u_n = u_0 \times q^n$$

$$u_n = u_1 \times q^{(n-1)}$$

2.5 Méthode : Calculer la somme des termes d'une suite géométrique

Soit u_n une suite géométrique de raison q=2 et de $1^{\rm er}$ terme $u_1=5$.

- a) Exprimer u_n en fonction de n.
- b) A l'aide de la calculatrice, calculer la somme des termes de u_5 à u_{20} .
- (a) u_n est une suite géométrique de raison q=2 et de 1^{er} terme $u_1=5$ donc $u_n=5\times 2^{(n-1)}$.
- (b) Calcul de $\sum_{k=5}^{20} u_k$

$$\sum_{k=5}^{20} u_k = \sum_{k=5}^{20} 5 \times 2^{(k-1)} = u_5 + u_6 + \dots + u_{20} = 5 \ 242 \ 800$$

2.6 Propriété : Somme des n premiers termes d'une suite géométrique

Soit u_n une suite géométrique de raison q et de 1^{er} terme u_0 . La somme des n premiers termes de u_n est :

$$S = \sum_{k=0}^{n-1} u_k = u_0 + u_1 + \dots + u_{n-1} = u_0 \times \frac{1 - q^n}{1 - q}$$
$$S = 1 \text{er terme} \times \frac{1 - \text{raison}^{\text{(nombre de terme)}}}{1 - \text{raison}}$$

Exemple

Soit u_n une suite géométrique de raison q=2 et de $1^{\rm er}$ terme $u_1=5$.

— La somme des 20 premiers termes de u_n est :

$$S_1 = u_1 + u_2 + \dots + u_{20}$$

$$= \sum_{k=1}^{20} u_k$$

$$= u_1 \times \frac{1 - q^{20}}{1 - q}$$

$$= 5 \times \frac{1 - 2^{20}}{1 - 2}$$

$$= 5 \cdot 242 \cdot 875$$

— La somme des termes de u_5 à u_{20} est :

$$S_2 = u_5 + \dots + u_{20} = \sum_{k=5}^{20} u_k$$

$$= (u_1 + \dots + u_{20}) - (u_1 + \dots + u_4)$$

$$= \sum_{k=1}^{20} u_k - \sum_{k=1}^{4} u_k$$

$$= S_1 - 5 \times \frac{1 - 2^4}{1 - 2}$$

$$= 5 \ 242 \ 875 - 75 = 5 \ 242 \ 800$$

2.7 Défition : Moyenne géométrique de deux nombres

En mathématiques, la moyenne géométrique de deux nombres a et b est :

$$m = \sqrt{a \times b}$$

2.8 Méthode : Calculer une moyenne géométrique de deux nombres

- a) Calculer la moyenne géométrique des nombres 4 et 36.
- b) Peut-on affirmer que chaque terme d'une suite géométrique est la **moyenne géométrique** du terme qui le précède et du terme qui le suit ?
- (a) La moyenne géométrique de 4 et de 36 est :

$$m = \sqrt{4 \times 36} = \sqrt{144} = 12$$

(b) Si on note u_n le terme d'une suite géométrique de raison q>0 et $u_n>0$, on a :

$$u_{n+1} = u_n \times q$$

On a également :
$$u_n = u_{n-1} \times q$$
 donc $u_{n-1} = \frac{u_n}{q}$

La moyenne géométrique du terme qui précède u_n et du terme qui le suit est égale à :

$$m = \sqrt{u_{n-1} \times u_{n+1}}$$

$$= \sqrt{\left(\frac{u_n}{q}\right) \times (u_n \times q)}$$

$$= \sqrt{u_n^2}$$

$$= u_n$$

Donc u_n est la moyenne géométrique du terme qui le précède et du terme qui le suit.

2.9 Résumé

-	u_n une suite géométrique de	
Résumé	raison q et de 1^{er} terme u_0	Exemple: $q = 2$ et $u_0 = 4$
Définition		
	$u_{n+1} = u_n \times q$	$u_{n+1} = u_n \times 2$
	$\omega_{n+1}=\omega_n \wedge q$	$\omega_{n+1} = \omega_n \wedge z$
D ''.'		
Propriété		
	$u_n = u_0 \times q^n$	$u_n = 4 \times 2^n$
	$u_n = u_1 \times q^{n-1}$	$u_n = 8 \times 2^{n-1}$
	$a_1 \sim q$	<i>∞</i> n
Variation		
		0 . 1
	$q > 1 \Rightarrow u_n$ croissante	$q=2>1 \Rightarrow u_n \text{ croissante}$
	$0 < q < 1 \Rightarrow u_n$ décroissante	
Représentation graphique		
	Les points de la représentation graphique ne sont pas alignés.	
	On parle de croissance	
	exponentielle.	
		120-
		100-
		80-
		60-
		40-
		20-
		0 1 2 3 4 5

3 Comparaison de suites

3.1 Exemple : comparaison de placements proposés par une banque

Une banque propose deux options de placement :

- Placement A : On dépose un capital de départ. Chaque année, la banque nous reverse 6% du capital de départ.
- Placement B : On dépose un capital de départ. Chaque année, la banque nous reverse 4% du capital de l'année précédente.

On suppose que le placement initial est de 200€.

L'objectif est de savoir à partir de combien d'années un placement est plus intéressant que l'autre.

On note:

- u_n la valeur du capital après n années pour le placement A
- v_n la valeur du capital après n années pour le placement B.
 - a) Calculer u_1 , u_2 et u_3 .
 - b) Calculer v_1 , v_2 et v_3 .
 - c) Quelle est la nature des suites u_n et v_n ? On donnera le premier terme et la raison.
 - d) Exprimer u_n et u_n en fonction de n.
 - e) Déterminer le plus petit entier n, tel que $v_n > u_n$. Interpréter ce résultat.
- (a) Avec le placement A, on gagne chaque année 6% de 200€= 12€.

$$u_0 = 200$$

$$u_1 = u_0 + 12 = 200 + 12 = 212$$

$$u_2 = u_1 + 12 = 212 + 12 = 224$$

$$u_3 = u_2 + 12 = 224 + 12 = 236$$

(b) Avec le placement B, chaque année le capital est multiplié par 1.04.

$$v_0 = 200$$

$$v_1 = v_0 \times 1.04 = 200 \times 1.04 = 208$$

$$v_2 = v_1 \times 1.04 = 208 \times 1.04 = 216.32$$

$$v_3 = v_2 \ times 1.04 = 216.32 \times 1.04 \approx 225$$

(c) Nature de u_n et v_n

 u_n est une suite **arithmétique** de premier terme 200 et de raison 12.

 v_n est une suite **géométrique** de premier terme 200 et de raison 1.04.

(d) Terme général de u_n et v_n

$$u_n = u_0 + r \times n = 200 + 12 \times n$$

$$v_n = v_0 \times q^n = 200 \times 1.04^n$$

(e) Tableau de valeurs de u_n et v_n

Saisir l'expression du terme général, comme pour une fonction et paramétrer avec un pas de 1.

Le plus petit entier n, tel que $v_n > u_n$ est 21.

Cela signifie qu'à partir de 21 années, le placement B devient plus rentable que le placement A.

FIGURE 4 – Représentation de l'évolution du capital pour le placement A et B