MAT0236 - Funções Diferenciáveis e Séries Lista 3 - 2019

1. Decidir se a série converge absolutamente, condicionalmente ou diverge.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\frac{3}{2}}}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n^2 + 1}{n^3 + 3}$$

$$(d) \sum_{n=2}^{\infty} (-1)^n \frac{1}{\ln n}$$

(e)
$$\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$$

(f)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$$

(g)
$$\sum_{n=2}^{n-1} (-1)^n \frac{\sqrt{n}}{\ln n}$$

(h)
$$\sum_{n=1}^{\infty} (-1)^{2n+1} \frac{1}{\sqrt{n}}$$

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\frac{3}{2}}}$ (c) $\sum_{n=1}^{\infty} (-1)^n \frac{2n^2 + 1}{n^3 + 3}$ (d) $\sum_{n=2}^{\infty} (-1)^n \frac{1}{\ln n}$ (e) $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$ (f) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$ (g) $\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n}}{\ln n}$ (h) $\sum_{n=1}^{\infty} (-1)^{2n+1} \frac{1}{\sqrt{n}}$ (i) $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^2}$ (k) $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$ (l) $\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n+5}$

$$(j) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

(k)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n+5}$$

- 2. Se $\sum a_n$ e $\sum b_n$ convergem absolutamente, mostre que $\sum (a_n \pm b_n)$ e $\sum a_n b_n$ também conver-
- 3. Se $\sum a_n^2$ e $\sum b_n^2$ convergem, mostre que $\sum a_n b_n$ converge absolutamente. [Dica: $(a \pm b)^2 \ge 0$.]
- 4. Mostre que se $\sum a_n^2$ converge, então $\sum \frac{a_n}{n}$ converge.
- 5. Verifique que $1 + \frac{1}{3} \frac{1}{2} + \frac{1}{5} + \frac{1}{7} \frac{1}{4} + \dots = \frac{3}{2} \ln 2$.
- 6. Mostre que $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ converge absolutamente para todo $x \in \mathbb{R}$. Deduza que $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ para todo $x \in \mathbb{R}$
- 7. Determine os valores de $x \in \mathbb{R}$ para os quais as séries convergem.

(a)
$$\sum_{n=1}^{\infty} x^n (1 + x^n)$$

(b)
$$\sum_{n=1}^{\infty} x^n \cos\left(\frac{n\pi}{2}\right)$$

(a)
$$\sum_{n=1}^{\infty} x^n (1+x^n)$$
 (b) $\sum_{n=1}^{\infty} x^n \cos\left(\frac{n\pi}{2}\right)$ (c) $\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{n^{\ln x}}$ (d) $\sum_{n=1}^{\infty} n! x^n$ (e) $\sum_{n=1}^{\infty} \left(x^n + \frac{1}{2^n x^n}\right)$ (f) $\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n \operatorname{sen} x}$ (g) $\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^5} x^{2n}$

(d)
$$\sum_{n=1}^{\infty} n! x^n$$

(e)
$$\sum_{n=1}^{\infty} \left(x^n + \frac{1}{2^n x^n} \right)$$

(f)
$$\sum_{n=0}^{\infty} (-1)^{n+1} e^{-n \text{sens}}$$

(g)
$$\sum_{n=0}^{\infty} \frac{2n+1}{(n+1)^5} x^{2n}$$

8. Determine o intervalo máximo de convergência de cada uma das séries de potências abaixo:

(a)
$$\sum_{n=1}^{\infty} \frac{n}{4^n} x^n$$

(b)
$$\sum_{n=0}^{\infty} n! x^n$$

$$(c) \sum_{n=1}^{\infty} \frac{x^n}{n^3 + 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{(2n)!} x^n$$

(e)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-5)^n}{n3^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{(n+1)\ln^2(n+1)}$$

(g)
$$\sum_{n=1}^{\infty} \frac{10^n}{(2n)!} (x-7)^n$$

$$\text{(h) } \sum_{n=1}^{\infty} \frac{\ln n}{e^n} (x - e)^n$$

(i)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} (x+3)^n$$

(a)
$$\sum_{n=1}^{\infty} \frac{n}{4^n} x^n$$
 (b) $\sum_{n=1}^{\infty} n! \ x^n$ (c) $\sum_{n=1}^{\infty} \frac{x^n}{n^3 + 1}$ (d) $\sum_{n=1}^{\infty} \frac{(3n)!}{(2n)!} x^n$ (e) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-5)^n}{n3^n}$ (f) $\sum_{n=1}^{\infty} \frac{(x+1)^n}{(n+1) \ln^2(n+1)}$ (g) $\sum_{n=1}^{\infty} \frac{10^n}{(2n)!} (x-7)^n$ (h) $\sum_{n=1}^{\infty} \frac{\ln n}{e^n} (x-e)^n$ (i) $\sum_{n=1}^{\infty} \frac{n!}{n^n} (x+3)^n$ (j) $\sum_{n=1}^{\infty} (-1)^n \frac{(x-3)^n}{(2n+1)\sqrt{n+1}}$ (k) $\sum_{n=0}^{\infty} \frac{n^2}{4^n} (x-4)^{2n}$ (l) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2} x^n$ (m) $\sum_{n=1}^{\infty} 2^n x^{n^2}$ (n) $\sum_{n=1}^{\infty} \frac{3^n}{n4^n} x^n$

(k)
$$\sum_{n=0}^{\infty} \frac{n^2}{4^n} (x-4)^{2n}$$

(1)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2} x^n$$

$$(m) \sum_{n=1}^{\infty} 2^n x^n$$

$$(n) \sum_{n=1}^{\infty} \frac{3^n}{n4^n} x^n$$

9. Obtenha o raio de convergência para as séries seguintes.

(a)
$$\sum_{n=1}^{\infty} x^n \frac{(2n)!}{(n!)^2}$$

(b)
$$\sum_{n=1}^{\infty} x^{2n} \frac{(2n)}{(n!)^2}$$

(a)
$$\sum_{n=1}^{\infty} x^n \frac{(2n)!}{(n!)^2}$$
 (b) $\sum_{n=1}^{\infty} x^{2n} \frac{(2n)!}{(n!)^2}$ (c) $\sum_{n=1}^{\infty} x^{n^2} \frac{(2n)!}{(n!)^2}$ (d) $\sum_{n=1}^{\infty} x^n \frac{n!}{n^n}$ (e) $\sum_{n=1}^{\infty} x^{3n} \frac{n!}{n^n}$ (f) $\sum_{n=1}^{\infty} x^{n!} \frac{n!}{n^n}$

$$(d) \sum_{n=1}^{\infty} x^n \frac{n!}{n^n}$$

$$(e) \sum_{n=1}^{\infty} x^{3n} \frac{n!}{n^n}$$

(f)
$$\sum_{n=1}^{\infty} x^{n!} \frac{n!}{n^n}$$

10. Determine o intervalo de convergência de:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{(2+(-1)^n)^n}$$
 (b) $\sum_{n=1}^{\infty} \left(\frac{3n+2}{5n+7}\right)^n x^n$ (c) $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+2}\right) x^n$ (d) $\sum_{n=2}^{\infty} \frac{x^n}{\ln n}$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{3n+2}{5n+7} \right)^n x^n$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{2^n + 3}{3^n + 2} \right) x^n$$

(d)
$$\sum_{n=0}^{\infty} \frac{x^n}{\ln n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{a^n + b^n}$$
, com $b > a > 0$.

RESPOSTAS

1. (a) converge condicionalmente, (b) converge absolutamente, (c) converge condicionalmente, (d) converge condicionalmente, (e) converge condicionalmente, (f) converge absolutamente, (g) diverge, (h) diverge, (i) converge absolutamente se p > 1 e converge condicionalmente se p < 1, (j) converge absolutamente, (k) converge condicionalmente, (l) diverge.

7. (a)
$$\{x \in \mathbb{R} : |x| < 1\}$$
, (b) $\{x \in \mathbb{R} : |x| < 1\}$, , (c) $\{x \in \mathbb{R} : x > 1\}$, (d) $\{x = 0\}$, (e) $\{x \in \mathbb{R} : 1/2 < |x| < 1\}$, (f) $\{x \in \mathbb{R} : 2k\pi < x < (2k+1)\pi, k \in \mathbb{Z}\}$, (g) $\{x \in \mathbb{R} : |x| \le 1\}$.

8. (a)]
$$-4.4[$$
; (b) $\{0\}$; (c) $[-1,1]$; (d) $\{0\}$; (e)]2,8]; (f) $[-2,0]$; (g) \mathbb{R} ; (h)]0,2 $e[$; (i)] $-3-e$, $-3+e[$; (j) [2,4]; (k)]2,6[; (l) [-1,1]; (m)] $-1,1[$; (n) $[-4/3,4/3[$.

9. (a)
$$R = 1/4$$
; (b) $R = 1/2$; (c) $R = 1$; (d) $R = e$; e) $R = \sqrt[3]{e}$; f) $R = 1$.

10. (a)
$$]-1,1[;$$
 (b) $]-5/3,5/3[;$ (c) $]-3/2,3/2[;$ (d) $[-1,1[;$ (e) $]-b-1,b-1[.$