

Mercury Method of Moments: AFRL Quick Start Guide

Daniel Topa

ERT Inc.

daniel.topa@ertcorp.com

July 7, 2020

Scope: A Snapshot of Progress

- 1. AFRL Use
- 2. Configuration
- 3. Execution
- 4. Inputs
- 5. Outputs

Precursor Mercury MoM AFRL Simulations AFRL Quick Start

Starting Points

- We have a FreeCAD model
- We sealed the mesh with FreeCAD
- We used a Python tool to convert *.obj to *.facet
- We are ready to run Mercury MoM

Precursor
Mercury MoM
AFRL Simulations
AFRL Quick Start

What Mercury MoM is

Mercury Method of Moments (MoM) is an electromagnetic simulation package

- Highly-capable
- Efficient
- Versatile

Precursor
Mercury MoM
AFRL Simulations
AFRL Quick Start

What Mercury MoM Does

Mercury Method of Moments (MoM) in a nutshell

- Uses Maxwell's Equations in Integral Form
- Solves Discretized Equations using the Method of Moments
- Solves for Polarization States of Scattered Electric Field
- Reduces Integral Equation to Linear System

Precursor Mercury MoM AFRL Simulations AFRL Quick Start

Using Mercury MoM at AFRL

AFRL use case is very restricted...

- Far field
- Monostatic radar
- Target = Perfect electrical conductor
- Behavior driven by surface excitations

Precursor Mercury MoM AFRL Simulations AFRL Quick Start

Using Mercury MoM at AFRL

- ► Mercury MoM is well documented...
- But focus on AFRL special cases

Precursor Mercury MoM AFRL Simulations AFRL Quick Start

Using Mercury MoM at AFRL

Focus on AFRL application...

- How to configure
- How to execute
- How to create input files
- How to harvest output files

Precursor Mercury MoM AFRL Simulations AFRL Quick Start

Using Mercury MoM at AFRL

Demonstration tarball Hg-MoM-4.1.12.tar.gz runs simple cases

- 1. Untar
- 2. Run bash script

Sequence of Minimum Working Examples

Precursor Mercury MoM AFRL Simulations AFRL Quick Start

Using Mercury MoM at AFRL

Tarball + Executable + 10 minutes = results for 3 CAD models

On Your DREN Box

What Files Go Where?

- 1. Executable
- 2. Configuration
- 3. CAD models

MMoM.4.1.12 is Portable

- 1. Mercury MoM is a standalone executable
 - **1.1** NO QT
 - 1.2 NO Intel MKL
 - 1.3 NO Intel Fortran
 - 1.4 NO Intel Math Library
- 2. MMViz requires extensive libraries— Not MoM
- 3. System requirements for MMoM.4.1.12 follow...

Executable Default Configuration Configuration Complexity

Mercury MoM 4.1.12 Dependencies

\$ ldd MMoM_4.1.12

Dependency		Location
libpthread.so.0	=>	/lib/x86_64-linux-gnu/libpthread.so.0
libm.so.6	=>	/lib/x86_64-linux-gnu/libm.so.6
libdl.so.2	=>	/lib/x86_64-linux-gnu/libdl.so.2
libc.so.6	=>	/lib/x86_64-linux-gnu/libc.so.6
libgcc_s.so.1	=>	/lib/x86_64-linux-gnu/libgcc_s.so.1
ld-linux-x86-64.so.2	=>	/lib64/ld-linux-x86-64.so.2

B-20A Bomber

B-20A Bomber: From FreeCAD to MoM

1 B-52 dimensions (wingspan, fuselage)

2 Created in FreeCAD B-20A.FCStd

3 Mesh created in FreeCAD

4 Mesh repaired in FreeCAD (frmly MMViz)

5 Mesh exported B-20A.obj

6 Mesh converted (Python) B-20A.facet (MATLAB/ALPINE)

7 Create geometry file (vim) B-20A.geo

8 Create materials library (vim) Materials.lib

Input files

- 1. B-20A.geo
- 2. B-20A.facet
- 3. Materials.lib

Input files

1 B-20A.geo: points to CAD model, materials

2 B-20A.facet: CAD model from *.obj file

3 Materials.lib: empty file

*.geo Purpose

- 1. Geometry file *.geo controls simulation
- 2. Points to CAD model, materials library
- 3. Describes radar configuration
- 4. Establishes perspectives for azimuth and elevation
- 5. Determines integral domain (Volume or Surface)
- 6. Establishes boundary conditions
- 7. Specifies length units

*.geo Structure

- 1. B-20A.geo
 - **1.1** Points to facet file
 - 1.2 Configure linear algebra solver
 - 1.3 Radar frequency range
 - 1.4 Angular sampling ranges
 - 1.5 Boundary conditions
 - 1.6 Mono- or Bistatic
 - 1.7 Surface or Volume integral elements
 - 1.8 Length units
- 2. B-20A.facet
 - **2.1** Vertex list
 - 2.2 Face list
- 3. Materials.lib
 - 3.1 Permeability
 - **3.2** Permittivity

Executable

Default Configuration

Configuration Complexity

*.geo Example

```
B-20
                              ! stem for output file names
!Mercury MoM input file, VIE/SIE Version 4.x compatible (VIE/Dual Sided SIE)
FREQUENCY
                              ! AFRL special case 3-30 MHz
0.003000 0.030000 28
                              ! Freq Start, Freq Stop, Num Frequencies
Excitation
                                 vaw angle
Angle Cut
0.000000 359.000000 360
90.000000
Boundary Conditions
Materials.lib
V_FREE_SPACE => Free_Space
V_PEC => PEC
V_PMC => PMC
V_NULL => NULL
O BC_PEC V_FREE_SPACE
B-20A facet
                                 CAD model
                                 units: meters
Geometry_End
```


Executable

Default Configuration

Configuration Complexity

Radar Frequencies

```
FREQUENCY ! OTHR
```

ghz

0.003000 0.030000 28 ! 3, 4, 5, ... 30 MHz

Executable Default Configuration Configuration Complexity

Sampling Aspect View

```
Angle Cut

1

0.000000 359.000000 360 ! stop at 359

AZIMUTH

90.000000
```


Executable

Default Configuration

Configuration Complexity

Monostatic or Bistatic Radar

Excitation ! Radar type MONOSTATIC

Executable

Default Configuration

Configuration Complexity

Boundary Conditions

```
Boundary Conditions
B-20-Materials.lib
4
V_FREE_SPACE => Free_Space
V_PEC => PEC
V_PMC => PMC
V_NULL => NULL
1
0 BC_PEC V_FREE_SPACE
```


Executable

Default Configuration

Configuration Complexity

Final settings

SIE

surface integral elements

B-20A.facet

CAD description

m

meters

Configuration Complexity

- 1. Default configuration is trivial
- 2. Complicated scenarios may demand complicated adjustments
- 3. Respond to error messages
- 4. Adjustments are set in *.geo
- **5.** Survey of settings follows...
 - **5.1** Linear algebra adjustments
 - 5.2 Memory usage
 - **5.3** Quadrature (integration)

Executable
Default Configuration
Configuration Complexity

Mercury MoM Presents Many Controls

Executable
Default Configuration
Configuration Complexity

Linear algebra (don't alter)

&MM MOM

```
bUseACA = .TRUE.,
bSolve_ACA = .TRUE.,
bOutOfCore = .TRUE.,
bNormalizeToWaveLength = .FALSE.,
bNormalize = .FALSE.,
dCloseLambda = 0.100000,
ACA_Factor_Tol = 0.000100,
ACA_RHS_Tol = 0.000100,
Point_Tolerance = 0.001000,
nLargestBlockSize = -1,
MemorySize_GB = -1.0000000,
stackSize_GB = -1.0000000,
```

```
nFillThreads = -1,
nFillMKLThreads = 1,
nLUThreads = -1,
nLUMKLThreads = 1,
nRHSThreads = 1,
nRHSMKLThreads = 1,
bOutputACAGrouping = .FALSE.,
bOutputRankFraction = .FALSE.,
bLimitLUColumns = .FALSE.,
Lop_Admissibility = WEAK,
Kop_Admissibility = CLOSE
```


Memory management (don't alter)

&Scratch_Memory

```
Scratch.RankFraction_Z = 0.300000,
Scratch.RankFraction_LU = 0.600000,
Scratch.RankFraction_RHS = 2.000000,
Scratch.RankFraction_Solve = 1.000000,
MemoryFraction_Z = 0.950000,
MemoryFraction_Scratch_LU = 0.500000,
MemoryFraction_LU = 1.000000,
MemoryFraction_RHS = 0.500000,
MemoryFraction_Solve = 0.900000,
```


Executable
Default Configuration
Configuration Complexity

Quadrature (don't alter)

&QUADRATURE

```
NTRISELF = 7,
NTRINEAR = 3,
NTRIFAR = 3,
NTETSELF = 11,
NTETNEAR = 4,
NTETFAR = 4,
NQGAUSS = 4
```


Essential Files

Checklist:

- 1. B-20.geo
- 2. B-20.facet
- 3. Materials.lib

Essential Files

- 1. B-20.geo discussed in previous section
- 2. Materials.lib is an empty file
- 3. B-20.facet discussion follows

CAD Model

- 1. *.facet contains CAD Model
- Generated from *.obj
- **3.** Provides vertex locations in \mathbb{R}^3
- 4. Describes triangular facets in terms of vertex indices
- 5. Provides census count of faces and vertices
- 6. See Appendix B of Users Manual
- 7. Files can be MB size, but...
- 8. Large files may not work
- 9. Sample file follows...

AFRL Use

Outputs

Standard Meshing, 50 cm resolution

Structure

- 1. Vertex header
- 2. Vertex points: x, y, z
- 3. Face header
- 4. Face vertices by index: kx, ky, kz
- 5. Ensuing sample file
 - **5.1** 601 vertices
 - **5.2** 1,198 faces
 - **5.3** 1,807 lines
- 6. highest resolution tolerated

Facet File: Beginning

ERT

```
facet-maker.f08 2020-04-07 1:13:26
  1
<B20 MeshModel>
0
601
```

```
6000.000000 -250.000000 1984.313477

0.000000 -250.000000 8000.000000

0.000000 -250.000000 1984.313477

6000.000000 -250.000000 8000.000000

: : : : :
```


Facet File: Start of Face List

0.000000

Checklist Running Mercury MoM Runtime Enviroments Common errors

Checklist

Run directory contains

Ingredient	Example
Executable	\$./MMoM_4.1.12
Geometry file	b20.geo
CAD file	b20.facet
Material library	Materials.lib

Checklist
Running Mercury MoM
Runtime Environments
Common errors

Minimal Run Command

\$./MMoM_4.1.12 b20.geo

Checklist
Running Mercury MoM
Runtime Enviroments
Common errors

Better Run Command

Avoid 20,000 lines of screen output...

\$./MMoM_4.1.12 b20.geo > b20-runtime.txt

Output

- 1. Results are in *.4112.txt
- 2. 10s of thousands of lines
- 3. ASCII format
- 4. Text and numbers
- 5. Electric field results
 - **5.1** For each yaw angle

 - **5.2** For each frequency
- **6.** Complete configuration settings
- 7. Summary of CAD model
- 8. Lots of linear algebra data

Checklist
Running Mercury MoM
Runtime Enviroments
Common errors

Survey of common errors

- 1. Tarball trivializes runs in different environments
- 2. Test environments
 - 2.1 Centos
 - 2.2 Fedora
 - 2.3 Ubuntu
 - 2.4 Debian
 - 2.5 Scientific Linux
- **3.** MoM is very portable
- 4. Specific case follows...

Checklist Running Mercury MoM Runtime Enviroments Common errors

Linux Environment

\$ lsb_release -a

Distributor ID: Ubuntu

Description: Ubuntu Focal Fossa

Release: 20.04 Codename: focal

Checklist Running Mercury MoM **Runtime Environments** Common errors

Hardware

\$ lscpu

Architecture: x86 64 CPU op-mode(s):

32-bit, 64-bit Byte Order: Little Endian

Address sizes 39 bits physical, 48 bits virtual

CPU(s):

Thread(s) per core: Core(s) per socket:

Vendor ID: GenuineIntel

Model name: Intel(R) Core(TM) i7-8700B CPU @ 3.20GHz

Stepping: CPU MHz: 3200.000

BogoMIPS: 6384.00 L1d cache: 384 KiB L1i cache: 384 KiB

L2 cache: 3 MiB L3 cache: 144 MiB

Checklist Running Mercury MoM Runtime Enviroments Common errors

Memory

\$ cat /proc/meminfo

MemTotal:	57613160	kB
MemFree:	3451612	kB
MemAvailable:	56550388	kB
Buffers	2078208	kB
Cached:	40111904	kB
SwapCached:	104	kB
Active:	21875712	kB
Inactive:	20779868	kR

Checklist Running Mercury MoM Runtime Enviroments Common errors

MoM Efficiently Uses Cores

Checklist
Running Mercury MoM
Runtime Enviroments
Common errors

Common Runtime Errors

- 1. Triangle area = 0
 - **1.1** Limited by single precision
 - **1.2** Difference between target and smaller triangles
 - 1.3 Mitigation: increase mesh resolution
- 2. Failure to converge
 - 2.1 Right Hand Side of linear system does not converge
 - 2.2 Observed for Netgen, Mefisto mesh methods
 - 2.3 Mitigation: avoid mesh method

Checklist Running Mercury MoM Runtime Enviroments Common errors

Triangles Too Small

Checklist
Running Mercury MoM
Runtime Environments
Common errors

Convergence Failure

MoM Produces Copious Output

- 1. Output *.4112.txt is an admixture of results and diagnostics (slide 41)
- 2. Cumbersome to work with
- 3. We want electric field measurements
- 4. Primary information blocks
 - **4.1** Environment characterization
 - **4.2** Performance description
 - 4.3 Simulation results

MoM Produces Copious Output

- 1. Slides are admixture of results and diagnostics (slides 41)
- 2. Cumbersome to work with
- 3. Will show how to harvest electric field measurements
- 4. Primary information blocks
 - 4.1 Environment characterization
 - **4.2** Performance description
 - 4.3 Simulation results

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

Run sequence - launch

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

Run sequence - sample output

```
Freq = 30.00E+00 \text{ MHz}
Lambda = 9.99E+00 m
      = 628.75E-03 m-1
subroutine Solve_SetUp( Surface, bk, pSys, pD, Nodes ) : ...Finished
--- | Time : Time total for RHS solve
--- | Twall = 0.0004168 ; Tcpu = 0.0002319 ; Ratio = 1.80
--- Out Of Core Times: Diagonal Blocks
--- | nWrites..... 2.
--- | GigaBytes Write..... 0.
--- | Average Write Rate (MBytes/sec).:
--- | nReads.....
--- | GigaBytes Read....:
--- | Average Read Rate (MBytes/sec)..: 48.
Z Column Summary IO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
```

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Namelist Data

```
&MM_MOM
NLARGESTBLOCKSIZE
NSMALLESTREGIONSIZE
BUSEACA
BSOLVE_ACA
BOUTOFCORE
ACA_FACTOR_TOL
                                 9.999997E-06,
ACA_RHS_TOL
                                 9.9999997E-05,
LOP_ADMISSIBILITY
DCLOSELAMBDA
                                 CLOSE,
BEMCCDATAFILE
BNORMALIZE
BNORMALIZETOWAVELENGTH
CMYPLOTPROGRAM
POINT_TOLERANCE
                                 1.0000000E-03.
BDIAG
BPRINTHISTOGRAM
BCIRPOL
```

Name List Data | ---

BOUTPUTACAGROUPING BOUTPUTRANKFRACTION BLIMITLUCOLUMNS BOPTIMIZELUTHREADS BRESTART

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Namelist Data

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Surface Coupling

--- | Creating Surface coupling |---

- ---| Using Riverside Research algorithm based character string sort approach.

 Checking for duplicate Nodes within 0.9993082E-01, tightest is 1E-9

 Note: If seg fault here, may be due to single precision.

 Try loosening the POINT_TOLERANCE from iE-9.

 Tolerance is in Integer Powers of 10: Significant Digits = 1

 Number of Nodes in File: 601

 No colocated nodes found.
 ---| Finding Common & Free Edges using Riverside Research binarySearch...
 ---| Starting Quick CoupleFinding for Surface 1 of 1
 ---| Finished Quick CoupleFinding

 ---| Surface couples created |--
 ---| Time : Surface Couples Create Time
 ---| Twall = 0.0000103 ; Tcpu = 0.0000047 ; Ratio = 2.21

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Global Geometry Information

B20-standard-0.05.geo

```
--- | Run Date: April 7, 2020; Time: 21:10:02
--- MMoM runs on WAVENUMBER in 1/meters: 0.0628754
--- | SURFACE SIE |---:
--- | SIE File :B20-standard-0.05.facet
--- | SIE File Type : ACAD
--- | Input SIE Units : METERS
--- | Number of Triangles : 1198
--- | Area : 1.555E+09
--- | Surface Area in square lambda : 155.714E+03
--- | Edge Length in lambda (average) : 27.31117
--- RWG Edges per square lambda : 0
--- | Model Size :
--- | vMin(x,v,z):-0.400E+04-0.280E+05-0.200E+04
--- vMax (x,y,z): 0.520E+05 0.280E+05 0.800E+04
--- vCenter(x,y,z): 0.240E+05 0.00 0.300E+04
--- | BoxDiagonal : 0.798E+05
```

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Global Geometry Information

```
--- | Model Size in Lambda:
--- vMin (x,y,z): -40.0 -280. -20.0
--- \mid vMax (x,y,z) : 520. 280.
                                80.1
--- | BoxDiagonal : 799.
--- | SIE Surface Information |---
--- | Number of Surfaces : 1
--- | iCoat User Index (from *.geo)
--- | Current Support
--- | Boundary Condition Type
                                       BC_PEC
--- | EM Volumes(INT|EXT)
                                  V_NULL V_FREE_SPACE
--- nRWG Edges
--- | nFree Edges This_Surface
--- | nTri This Surface
                                 1198
    Area This Surface :
                                 1.555E+09
```

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Unknown Evaluation

```
--- | Unknown Evaluation |---
--- | Number of Unknown Blocks Total : 1
--- | SIE : 1
--- | VIE : 0
--- | Total Number Unknowns : 1797
--- | SIE : 1797
--- | VIE : 0
--- | ... nJp.Vol : 0
--- | ... nJp : 1797
--- | ... nMp : 0
--- | ... nJm : 0
--- | ... nJunc Jp : 0
--- | ... nJunc Mp : 0
```


Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt ACA Factorization

```
ACA_FactorMatrix : ...Start

Start of Diagonal Blocks Computation...

nOMP_Threads = 1
nMKL_Threads = 1
---| Time : Diag Blk Parallel Fill
---| Twall = 0.0005463 ; Tcpu = 0.0009756 ; Ratio = 0.56
```

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt **Z Block**

Start of Z Block Columns Computation...

```
...kmp_get_stacksize_s = 4194304
```

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Subroutine Solve

```
subroutine Solve_SetUp( Surface, bk, pSys, pD, Nodes ) : ...Start
--- | Angle Cut is : AZIMUTH
--- | Fixed Angle is : 90.00000
--- | Number of Pattern points : 360
--- | Var angle (min, max) : 0.00000
--- | MONOSTATIC RHS = nAng * 2 : 720
--- | Memory Available for RHS : 51925.
--- | Memory Estimate for ALL RHS : 10. MB
Computing RHS Block Loop: 1 of 1
--- | nBlockRHS_Ang : 360
--- | from iAng : 1 to iAng = 360
Solve_System : ... Starting Forward solution
Solve_System : ... Starting backward solution
Solve_System : ... Starting Forward solution
Solve_System : ... Starting backward solution
```

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

*.4112.txt Electric Fields

```
Freq = 3.00E+00 MHz
Lambda = 99.93E+00 m
k = 62.88E-03 m-1

BACKSCATTER RCS RESULTS ....

Theta, Phi, Theta-Theta (complex efield), Phi-Theta (complex efield), Theta-Phi (complex efield),...

90.0000, 0.0000, (-0.1238511E+06, -0.5511971E+06), (-0.4439931E+06, -0.3857693E+06),...
90.0000, 1.0000, (-0.6807091E+05, 0.1494042E+06), (0.4671754E+05, -0.4308930E+05),...
90.0000, 2.0000, (0.9131244E+05, 0.1021946E+06), (-0.5654139E+05, 0.2114485E+06),...
90.0000, 3.0000, (0.2310044E+06, -0.7692039E+05), (-0.1079327E+06, 0.3446281E+06),...
90.0000, 359.0000, (0.6986329E+05, 0.3586468E+05), (-0.1790911E+04, -0.6904529E+05),...
```


Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

Special Thanks to...

Special Thanks to Capt. Joe Sciacca for blazing the trail forward.

Environment characterization Performance characterization Model characterization Sweep in Yaw Angle

Mercury Method of Moments: AFRL Quick Start Guide

Daniel Topa

ERT Inc.

daniel.topa@ertcorp.com

July 7, 2020