Raport z projektu użycia uczenia wzmocnionego do poprawy klasyfikacji modelu głębokiego na zdjęciach z emocjami

Wprowadzenie	1
Koncepcja rozwiązania	1
Architektura rozwiązania	1
Wyniki eksperymentów	1

Wprowadzenie

Kod projektu znajduje się na repozytorium:

https://github.com/ilonatommy/DLR_FacialEmotionRecognition

Celem projektu jest użycie uczenia ze wzmocnieniem do poprawy skuteczności klasyfikacji emocji na twarzy człowieka na zdjęciach w stosunku do głębokiego modelu konwolucyjnego. Projekt oparty jest na "Image Classification by Reinforcement Learning with Two-State Q-Learning" Abdul Mueed Hafiz, 2020 (ttps://arxiv.org/pdf/2007.01298.pdf) oraz kodzie źródłowym przekazanym przez autora artykułu, gdyż niektórych informacji brakowało w publikacji. Artykuł działał na zdjęciach, na których sieci ResNet i Imagenet były oryginalnie trenowane, więc nie były to zdjęcia z emocjami.

Użyty zbiór danych to FERG-DB (https://grail.cs.washington.edu/projects/deepexpr/ferg-2d-db.html), dlatego że jest łatwo dostępny i posiada bardzo dużo danych treningowych. Wadą zbioru jest "idealność" zdjęć - są one komputerowo generowane. Mimo to do poniższego projektu jest to wystarczająca baza danych.

Koncepcja rozwiązania

Celem projektu było powtórzenie eksperymentu wykonanego w cytowanym artykule na zdjęciach przedstawiających emocje i w razie uzyskania pozytywnych wyników - użycie metody w pracy magisterskiej.

Zdjęciami w rozmiarze 64x64 i 75x75 dla odpowiednio ResNet i Inception nauczono modele głębokie. Wykonano to dla dwóch wariantów: bardzo małej ilości danych (350 zdjęć uczących) oraz dla dużej ilości danych (3500), żeby mieć porównanie jak algorytm działa dla słabo i dobrze wytrenowanej sieci głębokiej.

Mając modele z ustawionymi wagami zdefiniowano na ich podstawie model bez nałożonego klasyfikatora, tak żeby wyjściem z niego był nie wektor prawdopodobieństw przynależności do klasy lecz mapa cech. Będziemy nazywać go modelem bazowym. Model z nałożonym klasyfikatorem będzie modelem pełnym. W celu ustalenia punktu odniesienia zrobiono ewaluację modeli pełnych bez użycia RL na zbiorze testowym.

Według artykułu RL używane jest na zbiorze testowym tylko w sytuacji gdy model głęboki źle przewidzi klasę. To prowadzi do sytuacji, gdzie daje się mu "drugą szansę" klasyfikacji nieco zmienionego zdjęcia (takiego, na którym została wykonana akcja rotacji lub translacji) i przez to wprowadza prawdopodobieństwo warunkowe do procesu ewaluacji. Nie jest to poprawa metoda, jednak początkowo została zastosowana w celu weryfikacji czy uzyska się podobne rezultaty jak w artykule.

Trzecim podejściem jest ewaluacja w poprawny sposób: użycie modelugłebokiego z RL dla każdego elementu ze zbioru testowego bez wyjątku.

Wszystkie trzy ewaluacje wykonano dla dwóch modeli głębokich, uczonych dwoma wariantami liczności zbiorów.

Architektura rozwiązania

Architektura rozwiązania jest tożsama z użytą w artykule, dlatego poniżej załączam obraz skopiowany z niego:

Metryką oceny jakości mapy cech jest odchylenie standardowe. Nagroda przyznawana jest zgodnie ze wzorem:

Stany są definiowane zgodnie z zależnością:

S0 dla r >= 0, S1 dla r < 0.

Jak widać, stan jest bezpośrednią konsekwencją nagrody, nie odwrotnie, co nie stanowi dobrej praktyki.

Akcje to rotacja o 90 stopni, 180 stopni oraz translacja diagonalna o 15 pikseli w prawy dół. Mając 2 stany i 3 akcje budowana jest macierz Q 2x3. Zgodnie z losową polityką wybierana jest akcja, stosowana na zdjęciu i oceniana według nagrody. Do tablicy Q dodaje się nową nagrodę po skończonej iteracji w odpowiedniej kolumnie/wierszu. Proces ten powtarzany jest kilkadziesiąt razy, co także nie jest dobrą praktyką - za każdym razem startujemy z tego samego miejsca - od oryginalnego zdjęcia z bazy. Przez to i losową politykę możemy doprowadzić do sytuacji, że akcja 0 poprawia std o 90%, ale zostanie wybrana tylko raz i będzie miała wartość 1 w tabeli Q a akcja 1, poprawiająca std o 10% zostanie wybrana 10 razy i będzie miała wartość 10 w Q. Po kilkudziesięciu

iteracjach wybierane jest argmax z Q, więc to akcja 1 wygra. Lepsze byłoby przeszukanie wprost przestrzenii akcji (jednokrotnie) i stwierdzenie która najlepiej poprawia std. Nie jest to już jednak LR.

Po zastosowaniu optymalnej akcji mapa cech przechodzi przez klasyfikator i uzyskujemy wektor prawdopodobieństw.

W eksperymentach dokumentowano: częstość wyboru danej akcji, skuteczność klasyfikacji, wskaźnik F1, czułość, macierz pomyłek zbioru testowego.

Wyniki eksperymentów

Wersja zgodna z artykułem (pierwsza wartość acc to wartość uzyskana bez stosowania RL, punkt odniesienia opisany w "Koncepcja rozwiązania").

Wersja zgodna z metodami ewaluacji modeli AI:

Inception, 350 samples, Acc: 74 -> 19%

rotation 180 deg, rotation 90 deg, diag. translation

anger

disgust

neutral

sadness

surprise

Poszukiwanie odpowiedniego zestawu akcji:

Actions	ResNet 350	ResNet 3500	Inception 350	Inception 3500
	samples,	samples,	samples,	samples,
	Acc 21%	Acc 94%	Acc 74%	Acc 89%
0: rotation 180 deg,	Acc: 21 %	Acc: 20%	Acc: 19%	Acc: 12%
1: rotation 90 deg,	Optimal actions:	Optimal actions:	Optimal actions:	Optimal actions:
2: diag. translation	0: 100%	0: 100%	0: 90%, 1: 10%	0: 95% 1: 5%
0: rotation +10 deg	Acc: 23% Optimal actions: 0: 90% 1: 10%	Acc: 20 %	Acc: 47 %	Acc: 49 %
1: rotation -10 deg,		Optimal actions:	Optimal actions:	Optimal actions:
2: diag. translation		0: 100%	0: 95% 1: 5%	0: 99% 1: 1%
0: rotation +10 deg	Acc: 23%	Acc: 52%	Acc: 67% Optimal actions: 0: 80% 1: 20%	Acc: 49 %
1: rotation -10 deg,	Optimal actions:	Optimal actions:		Optimal actions:
2: no action	0: 85% 1: 15%	0: 98% 1: 2%		0: 99% 1: 1%
0: rotation +5 deg 1: rotation -5 deg, 2: rotation +10 deg, 3: rotation -10 deg	Acc: 23 % Optimal actions: 0: 85% 1: 10% 3: 10%	Acc: 71% 0: 98% 1: 1% 3: 1%	Acc: 64% 0: 85% 1: 10% 3: 5%	Acc: 68% Optimal actions: 0: 95% 1: 5%
Action space search +5/-5/+10/-10/no change	Acc: 21%	Acc: 54%	Acc: 51%	Acc: 62%

Wnioski:

Należy sprawdzić eksperymentalnie wyniki badań w publikacjach, których planujemy użyć, szczególnie jeśli nie jest wydana w naukowym czasopiśmie tylko w wersji preprint albo jest zbyt nowa (tak jak w tym wypadku - z tego samego roku) i jeszcze nie zweryfikowana.

Nie ma korelacji między odchyleniem standardowym w macierzy cech a jakością klasyfikacji głębokiego modelu konwolucyjnego na zasadzie: większe std -> lepsza skuteczność.