Moto di rotolamento

[Rotazioni #2]

4F - 22 settembre 2022

Condizione di rotolamento

Consideriamo un corpo circolare di raggio r che rotola (senza strisciare) lungo un piano.

Condizione di rotolamento

Consideriamo un corpo circolare di raggio r che rotola (senza strisciare) lungo un piano.

Indichiamo con

- v la velocità di traslazione del corpo
- $ightharpoonup \omega$ la velocità angolare di *rotazione* rispetto al centro

Condizione di rotolamento

Consideriamo un corpo circolare di raggio r che rotola (senza strisciare) lungo un piano.

Indichiamo con

- v la velocità di traslazione del corpo
- lacktriangle ω la velocità angolare di *rotazione* rispetto al centro

È valida la seguente relazione (condizione di rotolamento):

$$v = \omega \cdot r$$

Paradosso della ruota di Aristotele

Due circonferenze di raggio diverso con lo stesso perimetro [GIF]

Paradosso della ruota di Aristotele

Due circonferenze di raggio diverso con lo stesso perimetro [GIF]

- Si tratta di un'illusione ottica
- La ruota più piccola si muove strisciando

- $> 2\pi r = 1.9 \text{ m}$
- v = 18 km/h = 5.0 m/s

Svolgimento

- $> 2\pi r = 1.9 \text{ m}$
- v = 18 km/h = 5.0 m/s

Svolgimento

Supponendo che la ruota rotoli senza strisciare $(v = \omega \cdot r)$, la frequenza di rotazione è

$$f = \frac{\omega}{2\pi} = \frac{v}{2\pi r} = \frac{5.0 \text{ m/s}}{1.9 \text{ m}} = 2.6 \text{ Hz}$$

Cinghie di trasmissione e ingranaggi

Cinghie di trasmissione e ingranaggi

Se due o più ingranaggi sono collegati e ruotano senza slittare, la condizione di rotolamento diventa

$$\omega_1 \cdot r_1 = \omega_2 \cdot r_2 = \cdots$$

Cinghie di trasmissione e ingranaggi

Se due o più ingranaggi sono collegati e ruotano senza slittare, la condizione di rotolamento diventa

$$\omega_1 \cdot r_1 = \omega_2 \cdot r_2 = \cdots$$

- \blacktriangleright La stessa relazione vale sostituendo ω con f
- ► In altri termini: la velocità angolare (o la frequenza di rotazione) è inversamente proporzionale al raggio dell'ingranaggio

Dati: R = 0.36 m (raggio della ruota), $v = \frac{10}{3}$ m/s Svolgimento

Dati: R = 0.36 m (raggio della ruota), $v = \frac{10}{3}$ m/s Svolgimento

La velocità angolare è $\omega = v/r = 9.3$ rad/s, che corrisponde a una frequenza f = 1.5 Hz.

Dati: R = 0.36 m (raggio della ruota), $v = \frac{10}{3}$ m/s Svolgimento

- La velocità angolare è $\omega = v/r = 9.3$ rad/s, che corrisponde a una frequenza f = 1.5 Hz.
- ▶ Il rapporto di trasmissione è $r_1/r_2 = 54/16$.

Dati: R = 0.36 m (raggio della ruota), $v = \frac{10}{3}$ m/s Svolgimento

- La velocità angolare è $\omega = v/r = 9.3$ rad/s, che corrisponde a una frequenza f = 1.5 Hz.
- ▶ Il rapporto di trasmissione è $r_1/r_2 = 54/16$.

$$f_1 \cdot r_1 = f \cdot r_2 \longrightarrow f_1 = \frac{r_2}{r_1} \cdot f = \frac{16}{54} \cdot 1,5 \text{ Hz} = 0,44 \text{ Hz}$$