

AD-A063 094 OGDEN AIR LOGISTICS CENTER HILL AFB UTAH PROPELLANT L--ETC F/G 21/9.2  
PROPELLANT SURVEILLANCE REPORT ANB-3066 PROPELLANT. (U)  
JUL 78 E M DALABA  
UNCLASSIFIED MANCP-398(78)

1 OF 4  
AD  
A063 094

NL



FILED

OF 4

AD  
A063 094



**LEVEL**

HEADQUARTERS  
OGDEN AIR LOGISTICS CENTER  
UNITED STATES AIR FORCE  
HILL AIR FORCE BASE, UTAH 84406

(2)  
NW

**ADA063094**

*JULY 13 1978*  
PROPELLANT  
SURVEILLANCE REPORT  
ANB-3066 PROPELLANT

**DDC FILE COPY**

PROPELLANT LABORATORY SECTION

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.  
THE COPY FURNISHED TO DDC CONTAINED A  
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT  
REPRODUCE LEGIBLY.

MANCP REPORT NR 398(78)

JULY 1978

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

79 01 10 058

## **DISCLAIMER NOTICE**

**THIS DOCUMENT IS BEST QUALITY  
PRACTICABLE. THE COPY FURNISHED  
TO DDC CONTAINED A SIGNIFICANT  
NUMBER OF PAGES WHICH DO NOT  
REPRODUCE LEGIBLY.**

MANCP REPORT NR 398(78)  
MMWRM PROJECT M82937C/M82938C

PROPELLANT SURVEILLANCE REPORT  
ANB-3066 PROPELLANT

Author

*Elizabeth M. Dalaba*  
ELIZABETH M. DALABA, Chemist  
Component & Combustion Test Unit

Engineering & Statistical Review By

*Glenn S. Porter*  
GLENN S. PORTER, Project Engineer  
Service Engineering

*Gary V. Redmond*  
GARY V. REDMOND, Statistician  
Data Analysis Unit

Recommended Approval By

*Leonidas A. Brown*  
LEONIDAS A. BROWN, Chief  
Component & Combustion Test Unit

*Ronald F. Larsen*  
RONALD F. LARSEN, Chief  
Physical & Mechanical Test Unit

Approved By

*Don F. Woods*  
DON F. WOODS, Chief  
Propellant Laboratory Section

July 1978

Industrial Products & Ldg Gear Division  
Directorate of Maintenance  
Ogden Air Logistics Center  
United States Air Force  
Hill Air Force Base, Utah 84406

ABSTRACT

This report contains test results on ANB-3066 propellant manufactured by Aerojet Solid Propulsion Company and Thiokol Corporation. Statistical comparison of all types was made on the basis of similar ages.

Propellants were analyzed with respect to the type of polymer used in the manufacturing process and by carton type.

Regressions are given for very low rate tensile, high rate biaxial tensile under pressure, stress relaxation and case liner bonds.

The test results indicate dissimilarity between Minuteman II, Stage II and Minuteman III, Stage III propellant as described by the linear regression analysis.

|                                 |                  |
|---------------------------------|------------------|
| ACCESSION NO.                   |                  |
| NTIS                            | Y 10-10000       |
| DDC                             | U. S. GOVERNMENT |
| UNANNOUNCED                     |                  |
| JUSTIFICATION                   |                  |
| BY                              |                  |
| DISTRIBUTION/AVAILABILITY CODES |                  |
| B                               | REF ID: A61001   |
| A                               | 23               |
| B                               | 94               |
| C                               | 67               |

## TABLE OF CONTENTS

| <u>Section</u> |                                                 | <u>Page</u> |
|----------------|-------------------------------------------------|-------------|
|                | <b>Abstract</b>                                 | ii          |
|                | <b>List of Tables</b>                           | iv          |
|                | <b>List of Figures</b>                          | v           |
|                | <b>List of References</b>                       | x           |
|                | <b>Glossary of Terms and Abbreviations</b>      | xii         |
| I              | <b>Introduction</b>                             | 1-1         |
| II             | <b>Test Program</b>                             | 2-1         |
| III            | <b>Statistical Summary and Conclusions</b>      | 3-1         |
| IV             | <b>Very Low Rate Tensile</b>                    | 4-1         |
| V              | <b>High Rate Triaxial Tensile</b>               | 5-1         |
| VI             | <b>Stress Relaxation</b>                        | 6-1         |
| VII            | <b>Thermal Coefficient of Thermal Expansion</b> | 7-1         |
| VIII           | <b>Case Liner Bonds</b>                         | 8-1         |
| IX             | <b>Hardness</b>                                 | 9-1         |
| X              | <b>Other Tensile Tests</b>                      | 10-1        |
|                | <b>Distribution List</b>                        | 11-1        |
|                | <b>DD 1473</b>                                  | 11-2        |

**LIST OF TABLES**

| Table Nr |                                                                                        | Page  |
|----------|----------------------------------------------------------------------------------------|-------|
| 3-1      | <b>Regression Analysis, Summary of Significance</b>                                    | 3-6   |
| 3-2      | <b>Comparison of Standard Deviation</b>                                                | 3-7   |
| 5-1      | <b>High Rate Triaxial Tensile, Significance of 't'</b>                                 | 5-2   |
| 6-1      | <b>Stress Relaxation Significance of "t"</b>                                           | 6-2   |
| 8-1      | <b>Summary of Regression Analysis, Stress vs Time to Failure</b>                       | 8-3   |
| 8-2      | <b>Mini-DPT Stage II Data</b>                                                          | 8-8   |
| 8-3      | <b>MiniDPT Stage III Data</b>                                                          | 8-10  |
| 9-1      | <b>Hardness, GTR and Phillips Unlined Polymer Data</b>                                 | 9-2   |
| 9-2      | <b>Hardness, GTR and Phillips Lined Polymer Data</b>                                   | 9-3   |
| A-1      | <b>Lined Carton Cutting Plan</b>                                                       | 9-4   |
| A-2      | <b>Unlined Carton Cutting Plan</b>                                                     | 9-5   |
| A-3      | <b>ANB-3066 Unlined Thiokol Cutting Plan</b>                                           | 9-6   |
| 10-1     | <b>ANB-3066 Regression Comparison, Tensile Max Stress</b>                              | 10-4  |
| 10-2     | <b>ANB-3066 Regression Comparison, Tensile Strain at Rupture</b>                       | 10-7  |
| 10-3     | <b>ANB-3066 Regression Comparison, Tensile Modulus</b>                                 | 10-10 |
| 10-4     | <b>ANB-3066 Regression Comparison, High Rate Hydrostatic Tensile Maximum Stress</b>    | 10-13 |
| 10-5     | <b>ANB-3066 Regression Comparison, High Rate Hydrostatic Tensile Strain at Rupture</b> | 10-16 |
| 10-6     | <b>ANB-3066 Regression Comparison, High Rate Hydrostatic Tensile Modulus</b>           | 10-19 |

LIST OF FIGURES

| <u>Figure Nr</u>                         |                                                      | <u>Page</u> |
|------------------------------------------|------------------------------------------------------|-------------|
| <b>Data Plots, Very Low Rate Tensile</b> |                                                      |             |
| 4-1                                      | ANA 'G' Maximum Stress, Unlined Cartons              | 4-3         |
| 4-2                                      | ANA 'G' Strain at Rupture, Unlined Cartons           | 4-6         |
| 4-3                                      | ANA 'G' Modulus, Unlined Cartons                     | 4-9         |
| 4-4                                      | ANB 'G' Maximum Stress, Unlined Cartons              | 4-12        |
| 4-5                                      | ANB 'G' Strain at Rupture, Unlined Cartons           | 4-17        |
| 4-6                                      | ANB 'G' Modulus, Unlined Cartons                     | 4-22        |
| 4-7                                      | ANB 'G' Maximum Stress, Lined Cartons                | 4-27        |
| 4-8                                      | ANB 'G' Strain at Rupture, Lined Cartons             | 4-29        |
| 4-9                                      | ANB 'G' Modulus, Lined Cartons                       | 4-31        |
| 4-10                                     | ANB 'P' Maximum Stress, Unlined Cartons              | 4-33        |
| 4-11                                     | ANB 'P' Strain at Rupture, Unlined Cartons           | 4-38        |
| 4-12                                     | ANB 'P' Modulus, Unlined Cartons                     | 4-43        |
| 4-13                                     | ANB 'P' Maximum Stress, Lined Cartons                | 4-48        |
| 4-14                                     | ANB 'P' Strain at Rupture, Lined Cartons             | 4-50        |
| 4-15                                     | ANB 'P' Modulus, Lined Cartons                       | 4-52        |
| 4-16                                     | ANT Maximum Stress, Unlined Cartons                  | 4-54        |
| 4-17                                     | ANT Strain at Rupture, Unlined Cartons               | 4-57        |
| 4-18                                     | ANT Modulus, Unlined Cartons                         | 4-60        |
| 4-19                                     | ANT 'P' Maximum Stress, Lined Cartons                | 4-63        |
| 4-20                                     | ANT 'P' Strain at Rupture, Lined Cartons             | 4-65        |
| 4-21                                     | ANT 'P' Modulus, Lined Cartons                       | 4-67        |
| 4-22                                     | ANA 'G' & ANB 'G' Maximum Stress, Unlined Cartons    | 4-69        |
| 4-23                                     | ANA 'G' & ANB 'G' Strain at Rupture, Unlined Cartons | 4-74        |
| 4-24                                     | ANA 'G' & ANB 'G' Modulus, Unlined Cartons           | 4-79        |
| 4-25                                     | ANB 'G' & 'P' Maximum Stress, Unlined Cartons        | 4-84        |
| 4-26                                     | ANB 'G' & 'P' Strain at Rupture, Unlined Cartons     | 4-89        |
| 4-27                                     | ANB 'G' & 'P' Modulus, Unlined Cartons               | 4-94        |
| 4-28                                     | ANB 'G' & 'P' Maximum Stress, Lined Cartons          | 4-99        |
| 4-29                                     | ANB 'G' & 'P' Strain at Rupture, Lined Cartons       | 4-101       |
| 4-30                                     | ANB 'G' & 'P' Modulus, Lined Cartons                 | 4-103       |

LIST OF FIGURES (cont)

| <u>Figure Nr</u>                       |                                                      | <u>Page</u> |
|----------------------------------------|------------------------------------------------------|-------------|
| 4-31                                   | ANT 'P' & ANB 'P' Maximum Stress, Unlined Cartons    | 4-105       |
| 4-32                                   | ANT 'P' & ANB 'P' Strain at Rupture, Unlined Cartons | 4-110       |
| 4-33                                   | ANT 'P' & ANB 'P' Modulus, Unlined Cartons           | 4-115       |
| 4-34                                   | ANT 'P' & ANB 'P' Maximum Stress, Lined Cartons      | 4-120       |
| 4-35                                   | ANT 'P' & ANB 'P' Strain at Rupture, Lined Cartons   | 4-123       |
| 4-36                                   | ANT 'P' & ANB 'P' Modulus, Lined Cartons             | 4-126       |
| Data Plots, High Rate Triaxial Tensile |                                                      |             |
| 5-1                                    | ANA Maximum Stress, Unlined Cartons                  | 5-3         |
| 5-2                                    | ANA Strain at Rupture, Unlined Cartons               | 5-5         |
| 5-3                                    | ANA Modulus, Unlined Cartons                         | 5-7         |
| 5-4                                    | ANB 'G' Maximum Stress, Unlined Cartons              | 5-9         |
| 5-5                                    | ANB 'G' Strain at Rupture, Unlined Cartons           | 5-12        |
| 5-6                                    | ANB 'G' Modulus, Unlined Cartons                     | 5-15        |
| 5-7                                    | ANB 'G' Maximum Stress, Lined Cartons                | 5-18        |
| 5-8                                    | ANB 'G' Strain at Rupture, Lined Cartons             | 5-20        |
| 5-9                                    | ANB 'G' Modulus, Lined Cartons                       | 5-22        |
| 5-10                                   | ANB 'P' Maximum Stress, Unlined Cartons              | 5-24        |
| 5-11                                   | ANB 'P' Strain at Rupture, Unlined Cartons           | 5-28        |
| 5-12                                   | ANB 'P' Modulus, Unlined Cartons                     | 5-32        |
| 5-13                                   | ANB 'P' Maximum Stress, Lined Cartons                | 5-36        |
| 5-14                                   | ANB 'P' Strain at Rupture, Lined Cartons             | 5-38        |
| 5-15                                   | ANB 'P' Modulus, Lined Cartons                       | 5-40        |
| 5-16                                   | ANT Maximum Stress, Unlined Cartons                  | 5-42        |
| 5-17                                   | ANT Strain at Rupture, Unlined Cartons               | 5-45        |
| 5-18                                   | ANT Modulus, Unlined Cartons                         | 5-48        |
| 5-19                                   | ANT 'P' Maximum Stress, Lined Cartons                | 5-51        |
| 5-20                                   | ANT 'P' Strain at Rupture, Lined Cartons             | 5-53        |
| 5-21                                   | ANT 'P' Modulus, Lined Cartons                       | 5-55        |
| 5-22                                   | ANA 'G' & ANB 'G' Maximum Stress, Unlined Cartons    | 5-57        |
| 5-23                                   | ANA 'G' & ANB 'G' Strain at Rupture, Unlined Cartons | 5-61        |
| 5-24                                   | ANA 'G' & ANB 'G' Modulus, Unlined Cartons           | 5-65        |
| 5-25                                   | ANB 'G' & 'P' Maximum Stress, Unlined Cartons        | 5-69        |
| 5-26                                   | ANB 'G' & 'P' Strain at Rupture, Unlined Cartons     | 5-74        |

LIST OF FIGURES (cont)

| <u>Figure Nr</u>                                        |                                                    | <u>Page</u> |
|---------------------------------------------------------|----------------------------------------------------|-------------|
| 5-27                                                    | ANB 'G' & 'P' Modulus, Unlined Cartons             | 5-79        |
| 5-28                                                    | ANB 'G' & 'P' Maximum Stress, Lined Cartons        | 5-84        |
| 5-29                                                    | ANB 'G' & 'P' Strain at Rupture, Lined Cartons     | 5-86        |
| 5-30                                                    | ANB 'G' & 'P' Modulus, Lined Cartons               | 5-88        |
| 5-31                                                    | ANT 'P' & ANB 'P' Maximum Stress, Unlined Cartons  | 5-90        |
| 5-32                                                    | ANT 'P' & ANB 'P' Strain at Rup, Unlined Cartons   | 5-94        |
| 5-33                                                    | ANT 'P' & ANB 'P' Modulus, Unlined Cartons         | 5-98        |
| 5-34                                                    | ANT 'P' & ANB 'P' Maximum Stress, Lined Cartons    | 5-102       |
| 5-35                                                    | ANT 'P' & ANB 'P' Strain at Rupture, Lined Cartons | 5-104       |
| 5-36                                                    | ANT 'P' & ANB 'P' Modulus, Lined Cartons           |             |
| <b>Data Plots, Stress RElaxation Master Plot</b>        |                                                    |             |
| 6-1                                                     | ANA Unlined Cartons                                | 6-3         |
| 6-2                                                     | 'G' Polymer Unlined Cartons                        | 6-4         |
| 6-3                                                     | 'G' Polymer Lined Cartons                          | 6-5         |
| 6-4                                                     | 'P' Polymer Unlined Cartons                        | 6-6         |
| 6-5                                                     | 'P' Polymer Lined Cartons                          | 6-7         |
| 6-6                                                     | ANT 'P' Polymer Unlined Cartons                    | 6-8         |
| 6-7                                                     | ANT Polymer Lined Cartons                          | 6-9         |
| <b>Data Plots, Stress Relaxation Modulus, 1% Strain</b> |                                                    |             |
| 6-8                                                     | ANA 'G' Polymer Unlined Cartons, 10 sec            | 6-10        |
| 6-9                                                     | ANA 'G' Polymer Unlined Cartons, 1000 sec          | 6-12        |
| 6-10                                                    | 'G' Polymer Unlined Cartons, 10 sec                | 6-14        |
| 6-11                                                    | 'G' Polymer Unlined Cartons, 1000 sec              | 6-17        |
| 6-12                                                    | ANB 'G' Polymer Lined Cartons, 10 sec              | 6-20        |
| 6-13                                                    | ANB 'G' Polymer Lined Cartons, 1000 sec            | 6-22        |
| 6-14                                                    | ANB 'P' Polymer Unlined Cartons, 10 sec            | 6-24        |
| 6-15                                                    | ANB 'P' Polymer Unlined Cartons, 1000 sec          | 6-26        |
| 6-16                                                    | ANB 'P' Polymer Lined Cartons, 10 sec              | 6-28        |
| 6-17                                                    | ANB 'P' Polymer Lined Cartons, 1000 sec            | 6-30        |
| 6-18                                                    | ANT 'P' Polymer Unlined Cartons, 10 sec            | 6-32        |
| 6-19                                                    | ANT 'P' Polymer Unlined Cartons, 1000 sec          | 6-34        |
| 6-20                                                    | ANT 'P' Polymer Lined Cartons, 10 sec              | 6-36        |
| 6-21                                                    | ANT 'P' Polymer Lined Cartons, 1000 sec            | 6-38        |

LIST OF FIGURES (cont)

| <u>Figure Nr</u>                           |                                                       | <u>Page</u> |
|--------------------------------------------|-------------------------------------------------------|-------------|
| 6-22                                       | ANA 'G' & ANB 'G' Polymer, Unlined, 10 sec            | 6-40        |
| 6-23                                       | ANA 'G' & ANB 'G' Polymer, Unlined, 1000 sec          | 6-43        |
| 6-24                                       | ANB 'G' & 'P' Polymer Unlined Cartons, 10 sec         | 6-46        |
| 6-25                                       | ANB 'G' & 'P' Polymer Unlined Cartons, 1000 sec       | 6-49        |
| 6-26                                       | ANB 'G' & 'P' Polymer Lined Cartons, 10 sec           | 6-52        |
| 6-27                                       | ANB 'G' & 'P' Polymer Lined Cartons, 1000 sec         | 6-54        |
| 6-28                                       | ANT 'P' & ANB 'P' Polymer, Unlined, 10 sec            | 6-56        |
| 6-29                                       | ANT 'P' & ANB 'P' Polymer, Unlined, 1000 sec          | 6-59        |
| 6-30                                       | ANT 'P' & ANB 'P' Polymer, Lined, 10 sec              | 6-62        |
| 6-31                                       | ANT 'P' & ANB 'P' Polymer, Unlined, 1000 sec          | 6-64        |
| 6-32                                       | ANB & ANT Gradient Stress Relaxation Modulus, 6 sec   | 6-66        |
| 6-33                                       | ANB & ANT Gradient Stress Relaxation Modulus 60 Sec   | 6-67        |
| 6-34                                       | ANB & ANT Gradient Stress Relaxation Modulus 120 sec  | 6-68        |
| 6-35                                       | ANB & ANT Gradient Stress Relaxation Modulus 1000 sec | 6-69        |
| Data Plots, Case Bond Tensile              |                                                       |             |
| 8-1                                        | ANB Log Time vs Log Stress                            | 8-4         |
| 8-2                                        | ANT Log Time vs Log Stress                            | 8-5         |
| Data Plots, Case Bond Shear                |                                                       |             |
| 8-3                                        | ANB Log Time vs Log Stress                            | 8-6         |
| 8-4                                        | ANT Log Time vs Log Stress                            | 8-7         |
| Data Plots, Other Tensile Data Comparisons |                                                       |             |
| 10-1                                       | ANB-3066 Tensile Max Stress                           | 10-2        |
| 10-2                                       | ANB-3066 Tensile Max Stress                           | 10-3        |
| 10-3                                       | ANB-3066 Tensile Strain at Rupture                    | 10-5        |
| 10-4                                       | ANB-3066 Tensile Strain at Rupture                    | 10-6        |
| 10-5                                       | ANB-3066 Tensile Modulus                              | 10-8        |
| 10-6                                       | ANB-3066 Tensile Modulus                              | 10-9        |
| 10-7                                       | ANB-3066 High Rate Hydrostatic Tensile Maximum Stress | 10-11       |
| 10-8                                       | ANB-3066 High Rate Hydrostatic Tensile Maximum Stress | 10-12       |

79 81 10 058

LIST OF FIGURES (cont)

| <u>Figure Nr</u> |                                                          | <u>Page</u> |
|------------------|----------------------------------------------------------|-------------|
| 10-9             | ANB-3066 High Rate Hydrostatic Tensile Strain at Rupture | 10-14       |
| 10-10            | ANB-3066 High Rate Hydrostatic Tensile Strain at Rupture | 10-15       |
| 10-11            | ANB-3066 High Rate Hydrostatic Tensile Modulus           | 10-17       |
| 10-12            | ANB-3066 High Rate Hydrostatic Tensile Modulus           | 10-18       |

## REFERENCES

| <u>Report Nr</u>          | <u>Title</u>                                                                          | <u>Date</u> |
|---------------------------|---------------------------------------------------------------------------------------|-------------|
| MAGCP 75 (67)             | Zero Time Test Results<br>LGM-30 Second Stage<br>Wing VI Propellant                   | 13 Jan 67   |
| MAGCP 111 (67)            | ATP Test Results LGM-30 Stage II Propellant<br>Wing VI, Phase I                       | 1 Dec 67    |
| MAGCP 142 (68)            | ATP Test Results LGM-30, Stage II<br>Propellant, Wing VI, Phase I Series II           | Nov 68      |
| MAGCP 188 (70)            | ATP Test Results LGM-30, Stage II<br>Propellant, Wing VI, Phase I Series II           | Jul 70      |
| MAGCP 212 (71)            | Propellant Surveillance Report<br>LGM-30 Stage II (Wing 6 ANB-3066)                   | Jun 71      |
| MAGCP 240 (72)            | Propellant Surveillance Report<br>LGM-30F Stage II ANB-3066                           | May 72      |
| MAGCP 256 (72)            | Propellant Surveillance Report<br>Minuteman III, Stage III                            | Oct 72      |
| MANCP 331 (75)            | Propellant Surveillance Report<br>Minuteman III, Stage III                            | Oct 75      |
| Aerojet<br>0162-AS-6-1A   | Ten Year Aging Program<br>for Wing VI Minuteman<br>Second Stage Motors and Components | Sep 67      |
| Aerojet<br>0162-06-SAAS-7 |                                                                                       | Oct 71      |
| 0162-06-SAAS-8            |                                                                                       | Apr 71      |
| 0162-06-SAAS-9            | Ten Year Aging and Storage Program<br>Wing VI Minuteman Second Stage                  | Oct 71      |
| 0162-06-SAAS-10           | Motors and Components<br>Program Progress                                             | Apr 72      |
| 0162-06-SAAS-11           |                                                                                       | Oct 72      |
| 0162-06-SAAS-12           |                                                                                       | Apr 73      |
| 0162-06-SAAS-13           |                                                                                       | Oct 74      |
| 0162-06-SAAS-14           |                                                                                       | Jul 75      |
| 0162-06-SAAS-15           |                                                                                       | Dec 75      |
| 0162-06-SAAS-16           |                                                                                       | Jul 76      |
| 0162-06-SAAS-17           |                                                                                       | Mar 77      |

REFERENCES (cont)

| <u>Report Nr</u>                      | <u>Title</u>                                                              | <u>Date</u> |
|---------------------------------------|---------------------------------------------------------------------------|-------------|
| Aerojet<br>0162-06-AS-F<br>Appendix E | Final Report, Wing VI Minuteman Second<br>Stage<br>Motor Propellant Aging | Jan 74      |
| MVS-1                                 | Manufacturing Variables, Study of The<br>Minuteman Stage II Motor         | 11 Jun 76   |

## GLOSSARY OF ABBREVIATIONS AND TERMS

|              |                                                                                                                                                                                                                                                                                                             |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aging Trend  | A change in properties of performance resulting from aging of material or component                                                                                                                                                                                                                         |
| ANA          | Aerojet Propellant, Stage III (ANB 3066 Formulation)                                                                                                                                                                                                                                                        |
| ANT          | Thiokol Propellant, Stage III (ANB 3066 Formulation)                                                                                                                                                                                                                                                        |
| ANB          | Aerojet Propellant, Stage II (ANB 3066 Formulation)                                                                                                                                                                                                                                                         |
| ASPC         | Aerojet Solid Propulsion Company                                                                                                                                                                                                                                                                            |
| CSA          | Cross Sectional Area                                                                                                                                                                                                                                                                                        |
| DB           | Dogbone                                                                                                                                                                                                                                                                                                     |
| Degradation  | Gradual deterioration of properties or performance                                                                                                                                                                                                                                                          |
| E            | Modulus (psi), defined as the slope of the line drawn tangent to the initial linear portion of the curve                                                                                                                                                                                                    |
| EB           | End Bonded                                                                                                                                                                                                                                                                                                  |
| EGL          | Effective Gage Length                                                                                                                                                                                                                                                                                       |
| $\epsilon_m$ | Strain at Maximum Stress (in/in)                                                                                                                                                                                                                                                                            |
| $\epsilon_r$ | Strain at Rupture (in/in)                                                                                                                                                                                                                                                                                   |
| "F" ratio    | The ratio of the variance accounted for by the regression function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting significant changes in random variation between succeeding time points. |
| JANNAF       | Joint Army, Navy, NASA, Air Force Committee                                                                                                                                                                                                                                                                 |
| MAGCP        | Propellant Laboratory at OOAMA                                                                                                                                                                                                                                                                              |
| OOALC        | Ogden Air Logistics Command                                                                                                                                                                                                                                                                                 |
| Post Curing  | Period up to 12-16 months after manufacture                                                                                                                                                                                                                                                                 |

GLOSSARY OF ABBREVIATIONS AND TERMS (CONT.)

|                              |                                                                                                                                                                                                                        |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regression                   | The general form of the regression equation is<br>$Y = a + bx$                                                                                                                                                         |
| Regression Line              | Line representing mean test values with respect to time                                                                                                                                                                |
| $s_b$                        | Standard error of estimate of the regression coefficient                                                                                                                                                               |
| $s_e$ or $s_{Y.X}$           | Standard deviation of the data about the regression line                                                                                                                                                               |
| $s_m$                        | Maximum Stress (psi)                                                                                                                                                                                                   |
| $s_r$                        | Stress at Rupture (psi)                                                                                                                                                                                                |
| Standard Deviation ( $s_y$ ) | Square root of variance                                                                                                                                                                                                |
| Strain Rate                  | Crosshead speed divided by the EGL                                                                                                                                                                                     |
| Thiokol                      | Thiokol/Wasatch Division                                                                                                                                                                                               |
| "t" Test                     | A statistical test used to detect significant differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95% confidence level)           |
| Variance                     | The sum of squares of deviations of the test results from the mean of the series after division by one less than the total number of test results                                                                      |
| 3 Sigma Band                 | The area between the upper and lower 3 sigma limit. It can be expected that 99.73% of the inventory represented by the test samples would fall within this range assuming that the population is normally distributed. |
| 90-90 Band                   | It can be stated with 90% confidence that 90% of the inventory represented by the test samples would fall within this range assuming that the population is normally distributed.                                      |

SECTION I  
INTRODUCTION

A. PURPOSE:

The purpose of testing ANB-3066 propellant, used in Minuteman II Stage II and Minuteman III Stage II and Stage III, is to monitor and evaluate aging effects on this propellant which will contribute to the operational motor serviceability prediction. Testing was performed according to General Test Directive GTD-2C, Amendment 1, and MMWRM Project M82937C and M82938C.

B. BACKGROUND:

Service life testing of ANB-3066 carton propellant from Aerojet production began at Ogden ALC in 1966. When production for Minuteman III Stage II was transferred to Thiokol, the propellant samples from both Aerojet and Thiokol were tested. As lined cartons were produced these were tested, adding propellant liner bond specimens to the program. This report contains data from all these sources for propellant aged 13 to 137 months.

Failure criteria for ANB-3066 propellant which were developed from structural stress analysis are reiterated in Aerojet Report 0162-06SAAS-17. Inner bore hoop strain failure is the predicted failure mode. These criteria are shown in Table 1-1.

## SECTION II TEST PROGRAM

Cartons representing raw material combinations were subjected to a random selection process designed to test all material lots within a two year-four test periods interval. When propellant cartons have been aged one year, they are added to the test program.

Propellant cartons are identified by source of manufacture. Stage II and III propellant manufactured by Aerojet Solid Propulsion Company is identified as ANB and ANA respectively. Thiokol Company Stage III propellant is identified as ANT. All regressions used this nomenclature and the additional information as to the type of carton, lined or unlined. Symbols are used on multiple regressions to separate types. There were two suppliers for polymers for Stage II propellant, "G" polymer manufactured by General Tire and Rubber and "P" polymer from Phillips. Until recently, the extremely large variations in data from certain lots had been combined with cartons having negligible standard deviations. In this report the two polymer types have been treated statistically.

Stage II ANB-3066 propellant has been tested for more than 10 years, but in this report only propellant up to 72 months has been used in covariance analysis to coincide with the age span of Stage III propellant. Lined and unlined cartons of ANB have been combined in regression analysis for comparison purposes and cover the time span from 13 through 137 months.

The physical-mechanical tests which relate directly to stress analysis are limited. Very low rate tensile test data is related to storage

conditions, and high rate rails tested under pressure relate to ignition.

Stress relaxation modulus also relates to storage conditions. Thermal coefficient of linear expansion reflects some of the thermal stresses to which the motor is exposed.

Low rate uniaxial tensile tests and hardness are routine tests for all propellant. These data have been subjected to statistical analyses in this report. Poisson's ratio and cohesive tear energy tests have been applied to only a portion of the cartons. Data from these tests will be more rigorously analyzed the next reporting period.

### SECTION III STATISTICAL SUMMARY AND CONCLUSIONS

Data analyses of all propellant tested by MANCP having the ANB 3066 formulation are contained in this report. ANB 3066 propellant is divided into three groups, each group pertaining to a specific rocket motor application. These propellant groups are further classified with regards to the manufacturer of the polymer contained in the propellant. The two manufacturers of ANB 3066 polymer are General Tire and Rubber ('G' type) and Phillips ('P' type). The three propellant groups are designated in this report as follows:

| <u>Code</u> | <u>Polymer Type</u> | <u>Manufacturer and System Application</u> |
|-------------|---------------------|--------------------------------------------|
| ANA         | G                   | Aerojet: MINUTEMAN III, Stage III          |
| ANB         | G and P             | Aerojet: MINUTEMAN II, Stage II            |
| ANT         | P                   | Thiokol: MINUTEMAN III, Stage III          |

Propellant specimens for the ANA group were taken from unlined cartons and contains only "G" type polymer. Specimens for the ANB and ANT groups were taken from unlined cartons and also from cartons having a simulated case liner along one surface of the carton. Propellant from the ANB group contains both "G" and "P" type polymers. ANT propellant contains only "P" type polymer. Each propellant group is further sub-divided into propellant lots.

Test data were analyzed to test for similarities between propellant lots within a given propellant group, as well as polymer type and carton type. The following comparisons, directed by the project engineer, were performed in support of service life estimation:

1. Compare lined and unlined cartons of Minuteman III Stage III propellant manufactured by Thiokol. (ANT lined vs ANT unlined).
2. Compare Aerojet Stage II lined cartons (ANB propellant group) with Thiokol Stage III lined cartons. (ANB lined vs ANT lined).
3. Perform lot-to-lot comparisons for unlined cartons with 'G' type polymer from the ANA and ANB propellant groups (ANA 'G' vs ANB 'G').
4. Perform lot-to-lot comparisons for lined cartons with 'P' type polymer from the ANB and ANT propellant groups (ANB 'P' vs ANT 'P').
5. Compare unlined cartons with 'G' type polymer and unlined cartons with 'P' type polymer from the ANB propellant group. (ANB 'G' unlined vs ANB 'P' unlined).
6. Compare lined cartons with 'G' type polymer and lined cartons with 'P' type polymer from the ANB propellant group. (ANB 'G' lined vs ANB 'P' lined).
7. Perform lot-to-lot comparisons for each propellant group with a given polymer (ANA 'G' lots; ANB 'G' lots; ANB 'P' lots; etc.,)

Propellant age is considered a possible source of bias in laboratory test data. That is, part of the observed differences in a given test response might be ascribed to propellant age. Because of the possible age effect it is necessary to provide a means of analysis where the bias, or age effect, could be removed allowing an unbiased evaluation of the true parameter response.

Analysis of covariance was chosen as the method to determine the effect or "significance" of propellant age on the test response. The general linear regression model,  $Y = a + b(X_{ij})$ , is modified for the analysis of covariance by introducing a "correction term" into the model to adjust the data for the average effect of the variable  $X_{ij}$ . Propellant age was assigned to the variable  $X_{ij}$  in this report.

Similarity among carton types and among propellant groups was determined by comparing regression lines for each of the data sets. The purpose was to examine whether the linear regressions of the test response on propellant age could be regarded as the same. It is possible for the regressions to differ in slope, intercept or residual variance. Differences due to slope could indicate dissimilar aging characteristics among groups while differences due to intercept could indicate bias among the data sets. When the regression lines were statistically similar (slopes and intercepts were not significantly different) the data sets were accepted as being equal and were combined to provide an expanded data base. A "total" or composite regression line was then used to estimate the aging trend for the combined data.

ANB 3066 propellant exhibits incomplete curing and inconsistent test results if aged less than 13 months. All data aged less than 12 months was excluded from analysis in this report.

In those cases where test data from various carton types or propellant groups could be combined, plots of the combined data and regression lines are provided. Carton types or propellant groups are differentiated on these plots with different plotting symbols. These are shown in the applicable test sections. In addition to the combined regression plots, plots of individual group regression lines have been provided for each test parameter where the regression slope is statistically significant.

Test data for JANNAF dogbones tested at 2.0 in/min crosshead speed and short 3/4" dogbones tested under 600 psi N<sub>2</sub> at 1750 in/min crosshead speed were not subjected to analysis of covariance. Data from these tests were compared by plotting regression lines for each group on the same graph to

allow visual comparison of regression lines. In addition to these graphs, Tables 10-1 thru 10-6 show regression statistics for each data group.

The results of the analyses performed are summarized as follows:

1. ANT lined and unlined cartons are significantly different for all observed test parameters.
2. ANB and ANT lined cartons are significantly different for all observed test parameters.
3. ANA and ANB unlined cartons with the 'G' type polymer are significantly different.
4. ANB and ANT lined cartons with 'P' polymer have significantly different regression slopes.
5. ANB and ANT unlined cartons with 'G' polymer, and unlined cartons with 'P' polymer show no similarities for observed test parameters.
6. ANB 'G' lined cartons and ANB 'P' lined cartons are significantly different for all observed parameters.
7. Significant lot-to-lot differences due either to regression slope or intercept are indicated for all propellant groups and tests with the following exception:

Propellant lots are similar for the ANB 'P' propellant from unlined cartons on the tensile test at 0.0002 in/min crosshead speed and stress relaxation modulus at 10 seconds relaxation time. The results are shown in Table 3-1.

A comparison of the standard deviations for three major tests is shown in Table 3-2. The standard deviation is very high for ANB "P" propellant from unlined cartons. ANT "P" unlined cartons show a similar high standard deviation, which is reflected in the combinations of ANB "G" and "P" and ANB and ANT "P" unlined cartons.

A less consistent pattern of standard deviation is shown in the high rate triaxial test. However, the combination of ANB "G" and "P" unlined cartons shows very high standard deviation.

Stress relaxation modulus also shows greater standard deviation for unlined cartons of "P" polymer which was used by Aerojet.

In summary, it may be concluded that the great variability in trend lines shown in previous reports can be related to the fact that two polymer sources were used in the manufacture of ANB-3066 propellant, as well as two manufacturers. The greater variability of "P" polymer is apparent from Table 3-2. Since there are also lot-to-lot differences to reconcile, it is not unreasonable to find that the standard deviation is affected by the lots tested.

TABLE 3-1

Covariance Analysis  
Summary of Significance

| Propellant Group | VLR            |                 |                |                | HR Triaxial Tensile |                |                |                 | Stress Relax<br>1% Strain |                |                   |                 |
|------------------|----------------|-----------------|----------------|----------------|---------------------|----------------|----------------|-----------------|---------------------------|----------------|-------------------|-----------------|
|                  | S <sub>m</sub> | E <sub>er</sub> | E              | S <sub>m</sub> | E <sub>er</sub>     | E              | S <sub>m</sub> | E <sub>er</sub> | E                         | S <sub>m</sub> | E <sub>1000</sub> | E <sub>10</sub> |
| ANA "G" Unlined  | Sig Slopes     | Sig Slopes      | Sig Intercepts | Sig Slopes     | Sig Slopes          | Sig Intercepts | Sig Slopes     | Sig Slopes      | Sig Intercepts            | Sig Slopes     | Sig Slopes        | Sig Slopes      |
| ANB "G" Lined    | Sig Slopes     | Sig Slopes      | Sig Slopes     | Sig Slopes     | Sig Slopes          | Sig Slopes     | Sig Slopes     | Sig Slopes      | Sig Intercepts            | Sig Slopes     | Sig Slopes        | Sig Slopes      |
| ANB "G" Unlined  | Sig Slopes     | Sig Slopes      | Sig Slopes     | Sig Slopes     | Sig Slopes          | Sig Slopes     | Sig Slopes     | Sig Slopes      | Sig Intercepts            | Sig Slopes     | Sig Intercepts    | Sig Intercepts  |
| ANB "P" Lined    | N.S.           | N.S.            | N.S.           | Sig Slopes     | Sig Slopes          | Sig Slopes     | Sig Slopes     | Sig Slopes      | Sig Intercepts            | N.S.           | Sig Intercepts    | Sig Intercepts  |
| ANB "P" Unlined  | Sig Slopes     | Sig Intercepts  | Sig Intercepts | Sig Slopes     | Sig Slopes          | Sig Slopes     | Sig Slopes     | Sig Slopes      | Sig Intercepts            | Sig Slopes     | Sig Intercepts    | Sig Intercepts  |
| ANT "P" Lined    | Sig Intercepts | Sig Slopes      | Sig Slopes     | Sig Slopes     | Sig Slopes          | Sig Slopes     | Sig Slopes     | Sig Slopes      | Sig Intercepts            | Sig Slopes     | Sig Slopes        | Sig Slopes      |
| ANT "P" Unlined  | Sig Slopes     | Sig Slopes      | Sig Intercepts | Sig Slopes     | Sig Intercepts      | Sig Slopes     | Sig Slopes     | Sig Slopes      | Sig Intercepts            | Sig Slopes     | Sig Intercepts    | Sig Slopes      |

TABLE 3-2  
COMPARISON OF STANDARD DEVIATION

| PROPELLANT TYPE     | Very Low Rate |       |        | High Rate    |       |         | Stress Relaxation |          |
|---------------------|---------------|-------|--------|--------------|-------|---------|-------------------|----------|
|                     | Sm            | er    | E      | Sm           | er    | E       | 10 sec            | 1000 sec |
| ANA G Unlined       | <b>6.084</b>  | .0169 | 71.29  | <b>34.86</b> | .0206 | 824.96  | 195.36            | 105,94   |
| ANB G Unlined       | <b>7.949</b>  | .0189 | 98.49  | <b>39.16</b> | .0317 | 1410.95 | 193.85            | 108.94   |
| ANB G Lined         | <b>5.778</b>  | .0204 | 87.75  | <b>27.97</b> | .0132 | 637.80  | 102.53            | 58.23    |
| ANB P Unlined       | <b>8.2149</b> | .0345 | 131.60 | <b>38.95</b> | .0305 | 1435.50 | 230.11            | 141.38   |
| ANB P Lined         | <b>6.257</b>  | .0214 | 81.50  | <b>39.41</b> | .0184 | 610.73  | 106.62            | 67.58    |
| ANT P Unlined       | <b>8.924</b>  | .0199 | 100.87 | <b>33.09</b> | .0304 | 940.36  | 151.93            | 93.88    |
| ANT P Lined         | <b>6.642</b>  | .0148 | 73.95  | <b>27.41</b> | .0253 | 610.53  | 123.05            | 74.20    |
| ANA & ANB G Unlined | <b>7.689</b>  | .0186 | 94.35  | <b>38.74</b> | .0312 | 1341.64 | 190.24            | 116.49   |
| ANB G & P Unlined   | <b>8.253</b>  | .0249 | 116.39 | <b>43.19</b> | .0318 | 1427.03 | 230.11            | 138.25   |
| ANB G & P Lined     | <b>6.316</b>  | .0210 | 84.40  | <b>38.47</b> | .0171 | 632.97  | 104.20            | 62.42    |
| ANB & ANT P Unlined | <b>8.367</b>  | .0286 | 125.02 | <b>37.08</b> | .0340 | 1326.81 | 195.62            | 119.51   |
| ANB & ANT P Lined   | <b>7.041</b>  | .0180 | 79.87  | <b>33.59</b> | .0225 | 608.72  | 118.44            | 72.38    |

SECTION IV  
VERY LOW RATE TENSILE

This test uses a 1/2 inch thick (1.27cm) JANNAF dogbone. The specimens are tested at a crosshead speed of  $2 \times 10^{-4}$  in/min ( $8.5 \times 10^{-2}$  cm/sec) 77°F (250°C) and ambient RH. Very low rate tensile testing is related to strain capability for storage at 60°F.

Lined cartons show a statistically significant decrease in strain at rupture. This holds true for both polymer types and for combinations. (Figures 4-8, 4-14, 4-20, 4-29 and 4-35.) Maximum stress and modulus are statistically increased. (Figures 4-7, 4-13, 4-19, 4-28, 4-34 and 4-9; 4-15, 4-21, 4-30 and 4-36).

Maximum stress shows a statistically significant increase except for the combination ANA and ANBG unlined cartons, where the increase is not significant. (Figures 4-1, 4-4, 4-10, 4-16, 4-25, 4-31 and 4-32).

As previously noted, strain at rupture decreases significantly in lined cartons. Unlined cartons show a statistically significant increase except for ANA where the increase is not significant. (Figures 4-5, 4-11, 4-17, 4-23, 4-26, 4-32 and 4-2).

Modulus is the least consistent of the parameters since unlined cartons show both increases and decreases which may be significant or not significant.

Unlined cartons of "P" polymer have a lower strain at rupture than "G" polymer and show a greater standard deviation. Unlined cartons have a lower strain at rupture than lined cartons regardless of polymer type.

In summary, lined cartons show greater consistency than unlined cartons with lower standard deviations.

TABLE 4-1  
VERY LOW RATE TENSILE

Significance of "t"

| SYSTEM              | Sm      | Fig  | er      | Fig  | E       | Fig  |
|---------------------|---------|------|---------|------|---------|------|
| ANA G Unlined       | Sig inc | 4-1  | NS inc  | 4-2  | NS inc  | 4-3  |
| ANB G Unlined       | Sig inc | 4-4  | Sig inc | 4-5  | Sig dec | 4-6  |
| ANB G Lined         | Sig inc | 4-7  | Sig dec | 4-8  | Sig inc | 4-9  |
| ANB P Unlined       | Sig inc | 4-10 | Sig inc | 4-11 | Sig dec | 4-12 |
| ANB P Lined         | Sig inc | 4-13 | Sig dec | 4-14 | Sig inc | 4-15 |
| ANT P Unlined       | Sig inc | 4-16 | Sig inc | 4-17 | Sig inc | 4-18 |
| ANT P Lined         | Sig inc | 4-19 | Sig dec | 4-20 | Sig inc | 4-21 |
| ANA & ANB G Unlined | NS inc  | 4-22 | Sig inc | 4-23 | Sig dec | 4-24 |
| ANB G & P Unlined   | Sig inc | 4-25 | Sig inc | 4-26 | Sig dec | 4-27 |
| ANB G & P Lined     | Sig inc | 4-28 | Sig dec | 4-29 | Sig inc | 4-30 |
| ANB & ANT P Unlined | Sig inc | 4-31 | Sig inc | 4-32 | NS dec  | 4-33 |
| ANB & ANT P Lined   | Sig inc | 4-34 | Sig dec | 4-35 | Sig inc | 4-36 |

$F = +1.7703667E+01$        $\gamma = (( +7.8247071E+01 ) + ( +7.6788949E-02 )) * X;$   
 $R = +2.4677796E-01$       SIGNIFICANT  
 $t = +4.2075726E+00$       SIGNIFICANT  
 $N = 275$       SIGNIFICANT  
 $Degrees of Freedom = 273$       TEST CONDITIONS = 77 DEG F. AMB RH  
 STORAGE CONDITIONS = AMB TEMP/RH



ANB 3066 PROPELLANT (ANAL C, TENSILE MAX STRESS, .0002 IN/MIN, 77 DEG F., UNLND CTN

Figure 4-1

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMNS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|-----------------------|----------------|-----------------------|-----------------|-----------------|----------------|
| 13.0            | 5                     | +7.8139938E+01 | +3.0443391E+00        | +8.26999996E+01 | +7.43999993E+01 | +7.9245315E+01 |
| 14.0            | 16                    | +7.7899948E+01 | +3.1051766E+00        | +8.2599990E+01  | +7.2699996E+01  | +7.9.22113E+01 |
| 15.0            | 14                    | +7.4685607E+01 | +3.4370309E+00        | +8.1199996E+01  | +6.9299987E+01  | +7.9398895E+01 |
| 16.0            | 5                     | +7.5159957E+01 | +3.2883476E+00        | +7.9199996E+01  | +7.0199996E+01  | +7.9475692E+01 |
| 17.0            | 10                    | +8.0269943E+C1 | +5.1623995E+C0        | +8.8199996E+01  | +7.4799987E+01  | +7.9552474E+01 |
| 18.0            | 15                    | +8.4119918E+01 | +3.8621899E+00        | +9.2899993E+01  | +7.7199996E+01  | +7.9629272E+01 |
| 19.0            | 13                    | +7.8546096E+01 | +6.3249474E+00        | +9.1599990E+01  | +7.1199996E+01  | +7.9706054E+01 |
| 20.0            | 12                    | +8.3733245E+01 | +5.1463979E+00        | +9.2399993E+01  | +7.5000000E+01  | +7.9782836E+01 |
| 21.0            | 15                    | +8.3039901E+01 | +5.6716907E+00        | +9.2599990E+01  | +7.3699996E+01  | +7.9859634E+01 |
| 22.0            | 14                    | +8.0528503E+01 | +5.0799171E+00        | +9.1199996E+01  | +7.2199996E+01  | +7.9936416E+01 |
| 23.0            | 10                    | +7.9339904E+01 | +3.6055262E+00        | +8.7899993E+01  | +7.5199996E+01  | +8.0013214E+01 |
| 24.0            | 10                    | +8.3189941E+01 | +6.0060061E+00        | +8.9299987E+01  | +6.8899993E+01  | +8.0089996E+01 |
| 25.0            | 15                    | +8.1226593E+01 | +3.9112141E+00        | +9.0000000E+01  | +7.6399993E+01  | +8.0166793E+01 |
| 26.0            | 15                    | +8.3493240E+01 | +3.8780009E+00        | +9.1000000E+01  | +7.6599990E+01  | +8.0243576E+01 |
| 32.0            | 5                     | +7.6779922E+01 | +3.9791797E+00        | +8.1000000E+01  | +7.0299987E+01  | +8.0704315E+01 |
| 33.0            | 5                     | +7.7419967E+01 | +2.4452230E+00        | +8.0399993E+01  | +7.3899993E+01  | +8.0781097E+01 |
| 40.0            | 5                     | +7.9505950E+01 | +1.5409702E+00        | +8.0769989E+01  | +7.7250000E+01  | +8.1318618E+01 |
| 42.0            | 5                     | +7.1579925E+01 | +3.8764027E+00        | +7.6649993E+01  | +6.6619995E+01  | +8.1472198E+01 |
| 43.0            | 5                     | +7.8759948E+01 | +1.2004833E+00        | +8.0159988E+01  | +7.7379989E+01  | +8.1548995E+01 |
| 46.0            | 5                     | +8.6717864E+01 | +5.7864520E-01        | +8.7559997E+01  | +8.6239990E+01  | +8.1779357E+01 |
| 48.0            | 3                     | +8.0226654E+01 | +4.2191657E+00        | +8.3079986E+01  | +7.5379989E+01  | +8.1932937E+01 |
| 49.0            | 7                     | +7.9714202E+01 | +1.3715968E+00        | +8.0879989E+01  | +7.7459991E+01  | +8.2009719E+01 |
| 52.0            | 8                     | +7.3221191E+C1 | +2.8677899E+00        | +7.6729995E+01  | +6.9839996E+01  | +8.2240081E+01 |
| 53.0            | 11                    | +7.4310806E+C1 | +2.8911881E+00        | +7.9119995E+01  | +7.0629989E+01  | +8.2316879E+01 |
| 57.0            | 3                     | +8.4439987E+01 | +8.4981377E-01        | +8.5299987E+01  | +8.3599990E+01  | +8.2624038E+01 |
| 59.0            | 5                     | +7.7349945E+01 | +1.114471E+00         | +7.8500000E+01  | +7.5869995E+01  | +8.2777618E+01 |
| 66.0            | 3                     | +9.0196609E+01 | +1.0900035E+00        | +9.0929992E+01  | +8.8949996E+01  | +8.3315139E+01 |
| 68.0            | 3                     | +9.4586578E+01 | +1.0548824E+00        | +9.5539993E+01  | +9.3469985E+01  | +8.3468719E+01 |
| 69.0            | 2                     | +8.7852127E+01 | +4.4864500E+00        | +9.4549987E+01  | +8.0199996E+01  | +8.3545501E+01 |
| 70.0            | 8                     | +9.2936157E+01 | +2.0646839E+00        | +9.6379989E+01  | +9.0099990E+01  | +8.3622223E+01 |
| 71.0            | 13                    | +8.4438888E+01 | +7.0187119E+00        | +9.53299986E+01 | +7.4579986E+01  | +8.3699081E+01 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 72.0            | 3                      | +8.290998E+01  | +1.4826656E+00        | +8.4179992E+01 | +8.1279998E+01 | +8.3775863E+01 |
| 84.0            | 3                      | +7.7796661E+01 | +8.6471586E-01        | +7.8679992E+01 | +7.6949996E+01 | +8.4697341E+01 |

ANB 3066 PROPELLANT(ANAL), TENSILE MAX STRESS. .0002 IN/MIN, 77 DEG F, UNLND CTN

$F = +5.4529437E-02$   
 $R = +1.4131583E-02$   
 $t = +2.3351539E-01$   
 $N = 275$

$\gamma = ((+1.7604229E-01) + (+1.2225357E-05) * X)$   
 $S_{\sigma} = +1.6913620E-02$   
 $S_{\mu} = +5.2353541E-05$   
 $S_b = +1.6942947E-02$

TEST CONDITIONS = 77 DEG F, AMB RH  
 STORAGE CONDITIONS = AMB TEMP/RH



Figure 4-2

## \*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 5                      | +1.7519992E-01  | +1.2773825E-02        | +1.9199997E-01 | +1.5799999E-01 | +1.7620116E-01 |
| 14.0            | 16                     | +1.7043709E-01  | +1.0196974E-02        | +1.8599998E-01 | +1.5199995E-01 | +1.7621344E-01 |
| 15.0            | 14                     | +1.8414264E-01  | +7.3393774E-03        | +1.9999998E-01 | +1.7399996E-01 | +1.7622566E-01 |
| 16.0            | 5                      | +1.7279994E-01  | +1.3534388E-02        | +1.8199998E-01 | +1.5199995E-01 | +1.7623788E-01 |
| 16.0            | 10                     | +1.8819963E-01  | +1.4653152E-02        | +2.199995E-01  | +1.6599994E-01 | +1.7625010E-01 |
| 17.0            | 15                     | +1.6646635E-01  | +1.3262997E-02        | +2.0499998E-01 | +1.5199995E-01 | +1.7626231E-01 |
| 18.0            | 0                      | +1.8115353E-01  | +2.0616690E-02        | +2.1599996E-01 | +1.5399998E-01 | +1.7627453E-01 |
| 19.0            | 13                     | +1.7274963E-01  | +1.9492288E-02        | +2.1699994E-01 | +1.4999997E-01 | +1.7628675E-01 |
| 20.0            | 12                     | +1.7493295E-01  | +1.4203486E-02        | +2.0399999E-01 | +1.5399998E-01 | +1.7629897E-01 |
| 21.0            | 15                     | +1.8871390E-01  | +2.2528999E-02        | +2.3599994E-01 | +1.6399997E-01 | +1.7631119E-01 |
| 22.0            | 0                      | +1.8489980E-01  | +7.6686292E-03        | +1.9399994E-01 | +1.7199999E-01 | +1.7632347E-01 |
| 23.0            | 0                      | +1.7209982E-01  | +9.6669671E-03        | +1.8899995E-01 | +1.5799999E-01 | +1.7633569E-01 |
| 24.0            | 10                     | +1.7326629E-01  | +1.1778330E-02        | +1.9699996E-01 | +1.5599995E-01 | +1.7634791E-01 |
| 25.0            | 15                     | +1.8073290E-01  | +1.2713360E-02        | +2.0899999E-01 | +1.6399997E-01 | +1.7636013E-01 |
| 26.0            | 5                      | +1.7179995E-01  | +1.6589032E-02        | +1.9699996E-01 | +1.5399998E-01 | +1.7643344E-01 |
| 32.0            | 5                      | +1.7899996E-01  | +5.9975435E-03        | +1.8599998E-01 | +1.7399996E-01 | +1.7644572E-01 |
| 33.0            | 5                      | +1.7375993E-01  | +7.5973533E-03        | +1.8319994E-01 | +1.6559994E-01 | +1.7653125E-01 |
| 40.0            | 5                      | +1.7135995E-01  | +4.1703113E-03        | +1.7599996E-01 | +1.6719996E-01 | +1.7655575E-01 |
| 42.0            | 0                      | +1.6631995E-01  | +6.7000328E-03        | +1.8199998E-01 | +1.6559994E-01 | +1.7656797E-01 |
| 43.0            | 5                      | +1.6783994E-01  | +7.2080856E-03        | +1.7679995E-01 | +1.5759998E-01 | +1.7660462E-01 |
| 46.0            | 5                      | +1.4399993E-01  | +4.8671851E-03        | +1.4959996E-01 | +1.4079999E-01 | +1.7662906E-01 |
| 48.0            | 3                      | +1.8431401E-01  | +2.5394721E-02        | +2.0759999E-01 | +1.3999998E-01 | +1.7664128E-01 |
| 49.0            | 7                      | +1.7607992E-01  | +7.9655548E-03        | +1.8499994E-01 | +1.6439998E-01 | +1.7676353E-01 |
| 52.0            | 8                      | +1.7034983E-01  | +8.3069276E-03        | +1.8079996E-01 | +1.5839999E-01 | +1.7667800E-01 |
| 53.0            | 11                     | +1.4792698E-01  | +1.1015020E-02        | +1.7119997E-01 | +1.3439995E-01 | +1.7669022E-01 |
| 57.0            | 3                      | +1.6719990E-01  | +1.0347002E-02        | +1.7639994E-01 | +1.5599995E-01 | +1.7673909E-01 |
| 59.0            | 5                      | +1.7607992E-01  | +7.9655548E-03        | +1.8499994E-01 | +1.6439998E-01 | +1.7676353E-01 |
| 66.0            | 3                      | +1.84899292E-01 | +1.4643095E-02        | +1.9379997E-01 | +1.6799998E-01 | +1.7684912E-01 |
| 68.0            | 3                      | +1.8133330E-01  | +7.6865163E-03        | +1.8959999E-01 | +1.7439997E-01 | +1.7687356E-01 |
| 69.0            | 9                      | +1.9054418E-01  | +1.4302212E-02        | +2.0979994E-01 | +1.6999995E-01 | +1.7688578E-01 |
| 70.0            | 8                      | +1.85899985E-01 | +1.9768573E-02        | +2.0799994E-01 | +1.5359997E-01 | +1.7689806E-01 |
| 71.0            | 10                     | +1.9182968E-01  | +2.4107905E-02        | +2.3399996E-01 | +1.6079998E-01 | +1.7691028E-01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION |                | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|--------------|
|                 |                        |                | Y                     | X              |                |                |              |
| 72.0            | 3                      | +1.7266660E-01 | +8.1462852E-03        | +1.7809998E-01 | +1.6329997E-01 | +1.7692250E-01 |              |
| 84.0            | 3                      | +1.6503328E-01 | +8.5042296E-03        | +1.7369997E-01 | +1.5669995E-01 | +1.706918E-01  |              |

ANB 3066 PROPELLANT(ANAL). TENSILE STN AT RUPT, .0002 IN/MIN, 77 DEG F, UNLND CT



Figure 4-3

\*\*\* \* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* \* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 5                      | +5.3339999E+02  | +4.0525300E+01        | +5.8200000E+02 | +4.9000000E+02 | +5.4778881E+02 |
| 14.0            | 16                     | +5.5587500E+02  | +3.4711909E+01        | +5.9600000E+02 | +4.6200000E+02 | +5.408862E+02  |
| 15.0            | 14                     | +4.8128564E+02  | +4.1586663E+01        | +5.4709000E+02 | +4.1200000E+02 | +5.4638818E+02 |
| 16.0            | 5                      | +5.2379980E+02  | +4.7525782E+01        | +5.7300000E+02 | +4.7100000E+02 | +5.4868798E+02 |
| 17.0            | 10                     | +5.2589990E+02  | +6.2722404E+01        | +6.2500000E+02 | +4.5500000E+02 | +5.4898779E+02 |
| 18.0            | 15                     | +6.1866655E+02  | +5.1422155E+01        | +6.7000000E+02 | +4.9500000E+02 | +5.4928735E+02 |
| 19.0            | 13                     | +5.2192285E+02  | +8.8604421E+01        | +6.5300000E+02 | +3.8300000E+02 | +5.4958715E+02 |
| 20.0            | 12                     | +5.8691650E+02  | +7.5614402E+01        | +6.7500000E+02 | +4.4800000E+02 | +5.4988696E+02 |
| 21.0            | 15                     | +6.0046655E+02  | +7.2628089E+01        | +7.3300000E+02 | +4.9000000E+02 | +5.5018652E+02 |
| 22.0            | 14                     | +5.1200000E+02  | +7.5872362E+01        | +6.3100000E+02 | +3.7700000E+02 | +5.5048632E+02 |
| 23.0            | 10                     | +5.3789990E+02  | +6.2245838E+01        | +6.1800000E+02 | +4.5300000E+02 | +5.5078613E+02 |
| 24.0            | 10                     | +6.0350000E+02  | +7.6664130E+01        | +7.1500000E+02 | +4.6200000E+02 | +5.5108569E+02 |
| 25.0            | 15                     | +5.5926660E+02  | +7.4676891E+01        | +7.0200000E+02 | +4.6200000E+02 | +5.5138549E+02 |
| 26.0            | 15                     | +5.4553320E+02  | +5.7211221E+01        | +6.1100000E+02 | +4.5300000E+02 | +5.5168530E+02 |
| 32.0            | 5                      | +5.38599985E+02 | +5.19162778E+01       | +5.9100000E+02 | +4.5900000E+02 | +5.5348364E+02 |
| 33.0            | 5                      | +5.2959985E+02  | +3.0566321E+01        | +5.6400000E+02 | +4.8000000E+02 | +5.5378344E+02 |
| 40.0            | 5                      | +5.6679980E+02  | +4.3378566E+01        | +6.3800000E+02 | +5.3300000E+02 | +5.5588134E+02 |
| 42.0            | 5                      | +5.0079980E+02  | +5.1939387E+01        | +5.8600000E+02 | +4.5800000E+02 | +5.5648095E+02 |
| 43.0            | 5                      | +5.2379980E+02  | +1.4131525E+01        | +5.3500000E+02 | +5.0000000E+02 | +5.5678051E+02 |
| 46.0            | 5                      | +6.0719995E+02  | +3.5195170E+01        | +6.5800000E+02 | +5.7000000E+02 | +5.5767968E+02 |
| 48.0            | 3                      | +6.3300000E+02  | +7.4276510E+01        | +6.9000000E+02 | +5.4900000E+02 | +5.5827929E+02 |
| 49.0            | 7                      | +5.1142846E+02  | +5.6653493E+01        | +6.1200000E+02 | +4.6500000E+02 | +5.5857885E+02 |
| 52.0            | 9                      | +4.8600000E+02  | +2.5444617E+01        | +5.3400000E+02 | +4.4900000E+02 | +5.5947802E+02 |
| 53.0            | 11                     | +5.7318164E+02  | +2.9946012E+01        | +6.1900000E+02 | +5.2700000E+02 | +5.5977783E+02 |
| 57.0            | 3                      | +5.7366650E+02  | +3.8070110F+01        | +6.1300000E+02 | +5.3700000E+02 | +5.6097680E+02 |
| 59.0            | 5                      | +5.2619995E+02  | +6.6858058E+00        | +5.3500000E+02 | +5.1900000E+02 | +5.6157617E+02 |
| 66.0            | 3                      | +4.8600000E+02  | +4.8538644E+01        | +5.1600000E+02 | +4.3000000E+02 | +5.6367431E+02 |
| 68.0            | 3                      | +6.6066650E+02  | +1.0692675F+01        | +6.7300000E+02 | +6.5400000E+02 | +5.6427368E+02 |
| 69.0            | 9                      | +6.1311109E+02  | +6.5071968E+01        | +6.9300000E+02 | +5.0400000E+02 | +5.6457348E+02 |
| 70.0            | 2                      | +5.8900000E+02  | +8.8272305E+01        | +7.3100000E+02 | +5.0700000E+02 | +5.6487329E+02 |
| 71.0            | 11                     | +5.3609985E+02  | +9.5861532E+01        | +7.1500000E+02 | +4.0300000E+02 | +5.6517285E+02 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 72.0            | 3                      | +6.1966650E+02 | +4.6188021E+00        | +6.2500000E+02 | +6.1700000E+02 | +5.6547265E+02 |
| 84.0            | 3                      | +5.4033325E+02 | +3.0369941E+01        | +5.7400000E+02 | +5.1500000E+02 | +5.6906933E+02 |

ANR 3066 PROPELLANT(ANAL), TENSILE MODULUS, 0.0002 IN/MIN, 77 DEG F, UNLND CTN

$\gamma = (( +7.7974936E+01 ) + ( +1.7456537E-02 ) * X)$   
 $F = +4.0375932E+00$  SIGNIFICANCE OF F = SIGNIFICANT  
 $R = +5.5879911E-02$  SIGNIFICANCE OF R = SIGNIFICANT  
 $\sigma_i = +7.9494190E+00$   
 $s_i = +8.6875399E-03$   
 $\tau = +2.0093763E+00$  SIGNIFICANCE OF  $\tau$  = SIGNIFICANT  
 $s_\tau = +7.9400762E+00$   
 $N = 1291$  DEGREES OF FREEDOM = 1289  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPELLANT (ANB, G) TENSILE MAX STRESS, .0002 IN/MIN. UNLND CTNS, 77 0

Figure 4-4

\*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*  
 ANALYSIS OF VARIANCE

| TEST NUMBER | SPECIMEN NO. | PER CENT | MEAN Y          | STANDARD DEVIATION Y | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y    |   |
|-------------|--------------|----------|-----------------|----------------------|----------------|-----------------|-----------------|---|
|             |              |          |                 |                      |                |                 | B               | C |
| 15.0        | 5            |          | +7.0779922E+01  | +2.5955630E+00       | +7.2939933E+01 | +6.6293987E+01  | +7.8236770E+01  |   |
| 16.0        | 13           |          | +7.0278356E+01  | +9.4024225E+00       | +8.2729795E+01 | +5.4250000E+01  | +7.9254225E+01  |   |
| 17.0        | 2            |          | +5.02999987E+01 | +1.1305464E+00       | +6.1099990E+01 | +5.9500000E+01  | +7.82271682E+01 |   |
| 19.0        | 5            |          | +7.76449948E+01 | +2.6327835E+00       | +7.9500000E+01 | +7.30899965E+01 | +7.9306610E+01  |   |
| 20.0        | 10           |          | +5.3362939E+01  | +3.9661091E+00       | +7.6549987E+01 | +6.2049987E+01  | +7.8324066E+01  |   |
| 21.0        | 23           |          | +7.5465582E+01  | +2.6890391E+00       | +7.9419998E+01 | +7.0769999E+01  | +7.8341522E+01  |   |
| 22.0        | 19           |          | +3.1487670E+01  | +4.8574281E+00       | +9.0799737E+01 | +7.3699996E+01  | +7.9358978E+01  |   |
| 23.0        | 5            |          | +9.3291931E+01  | +5.4161672E+00       | +8.6029993E+01 | +7.4319992E+01  | +7.3376434E+01  |   |
| 24.0        | 11           |          | +7.6660842E+01  | +8.4023971E+00       | +8.7699996E+01 | +6.6000000E+01  | +7.693890E+01   |   |
| 25.0        | 16           |          | +9.2740539E+01  | +4.8647530E+00       | +9.1000000E+01 | +7.3289993E+01  | +7.8411346E+01  |   |
| 26.0        | 8            |          | +8.9951171E+01  | +7.2440368E+00       | +9.0389999E+01 | +7.0799987E+01  | +7.8428602E+01  |   |
| 27.0        | 10           |          | +7.8393920E+01  | +4.7688544E+00       | +8.7799987E+01 | +7.4599990E+01  | +7.8446258E+01  |   |
| 28.0        | 15           |          | +7.4877944E+01  | +9.5369043E+00       | +8.3199996E+01 | +4.4699996E+01  | +7.8463714E+01  |   |
| 29.0        | 12           |          | +8.1480743E+01  | +5.3047124E+00       | +8.9000000E+01 | +6.7839993E+01  | +7.8481170E+01  |   |
| 30.0        | 5            |          | +8.2445938E+01  | +4.0986609E+00       | +8.7799987E+01 | +7.8489990E+01  | +7.8498626E+01  |   |
| 31.0        | 13           |          | +8.1445266E+01  | +4.5739158E+00       | +9.0399993E+01 | +7.6259994E+01  | +7.8516082E+01  |   |
| 32.0        | 13           |          | +7.6358367E+01  | +4.0592962E+00       | +8.3809997E+01 | +6.9299987E+01  | +7.8533538E+01  |   |
| 33.0        | 19           |          | +7.3242004E+01  | +9.4302869E+00       | +9.3500000E+01 | +5.8799987E+01  | +7.8550994E+01  |   |
| 34.0        | 6            |          | +8.7883300E+01  | +1.6930550E+00       | +9.0899993E+01 | +8.6000000E+01  | +7.8568450E+01  |   |
| 35.0        | 7            |          | +3.4271377E+01  | +4.3806900E+00       | +9.1500000E+01 | +8.0399993E+01  | +7.8585906E+01  |   |
| 36.0        | 23           |          | +8.02779556E+01 | +6.0261026E+00       | +9.6799987E+01 | +7.3899993E+01  | +7.8603363E+01  |   |
| 37.0        | 15           |          | +7.7641227E+01  | +7.6167502E+00       | +8.9199996E+01 | +6.6299997E+01  | +7.8520819E+01  |   |
| 38.0        | 17           |          | +7.2939379E+01  | +5.2990577E+00       | +8.0299987E+01 | +6.4000000E+01  | +7.638275E+01   |   |
| 39.0        | 2            |          | +7.2633305E+01  | +3.6731683E+00       | +8.1000000E+01 | +5.7000000E+01  | +7.8555731E+01  |   |
| 40.0        | 17           |          | +7.7482284E+01  | +5.0965129E+00       | +8.5299987E+01 | +7.1000000E+01  | +7.6673197E+01  |   |
| 41.0        | 22           |          | +7.5490829E+01  | +6.0693368E+00       | +8.5799987E+01 | +6.6500000E+01  | +7.6690643E+01  |   |
| 42.0        | 17           |          | +7.5684600E+01  | +5.9474548E+00       | +8.3549987E+01 | +6.8000000E+01  | +7.6708099E+01  |   |
| 43.0        | 8            |          | +6.1514923E+01  | +1.0279936E+01       | +7.9329986E+01 | +5.0599990E+01  | +7.8725555E+01  |   |
| 44.0        | 10           |          | +8.2954349E+01  | +4.39775591E+00      | +8.3389991E+01 | +7.5199396E+01  | +7.8743011E+01  |   |
| 45.0        | 5            |          | +7.5429931E+01  | +7.5791737E+00       | +8.3000000E+01 | +6.5759394E+01  | +7.8604467E+01  |   |
| 46.0        | 27           |          | +3.1937935E+01  | +6.4560571E+00       | +9.3399993E+01 | +7.0199996E+01  | +7.8777923E+01  |   |

AIR INLET PROPELLANT TANK. G) TENSILE MAX STRESS, .0002 IN/IN. UNLND CTNS, 77 D

## STRESS LINEAR REGRESSION ANALYSIS \*\*\*

TEST NUMBER: 10002 TEST SERIES: 10002

SPECIMENS  
TEST NUMBERSTANDARD  
DEVIATION

REGRESSION Y

MINIMUM Y

| TEST NUMBER | SPECIMENS<br>TEST NUMBER | STANDARD<br>DEVIATION | REGRESSION Y    | MINIMUM Y      |
|-------------|--------------------------|-----------------------|-----------------|----------------|
| 47.0        | 12                       | +6.8396345E+01        | +9.3259994E+00  | +7.3199996E+01 |
| 48.0        | 20                       | +6.1214904E+01        | +9.5419999E+00  | +7.3299987E+01 |
| 49.0        | 21                       | +7.422908C2E+01       | +4.0840815E+00  | +8.0500000E+01 |
| 50.0        | 19                       | +7.5479919E+C1        | +6.3176147E+00  | +8.5699976E+01 |
| 51.0        | 32                       | +7.7381484E+01        | +6.5338071E+00  | +8.2699995E+01 |
| 52.0        | 36                       | +7.9250454E+01        | +4.6103541E+00  | +8.8500000E+01 |
| 53.0        | 34                       | +7.6825195E+01        | +6.1123592E+00  | +9.4500200E+01 |
| 54.0        | 16                       | +4.3631130E+01        | +5.2155290E+00  | +9.1799987E+C1 |
| 55.0        | 18                       | +8.2356582E+01        | +6.8381245E+00  | +9.7639996E+01 |
| 56.0        | 17                       | +7.8484634E+01        | +2.9567460E+00  | +8.3399933E+01 |
| 57.0        | 3                        | +7.1199981E+C1        | +2.9457895E+00  | +7.4599990E+01 |
| 58.0        | 11                       | +7.6168136E+01        | +2.8822633E+00  | +8.0000000E+01 |
| 59.0        | 11                       | +9.4802642E+C1        | +7.6777585E+00  | +1.0300000E+02 |
| 60.0        | 20                       | +8.6579870E+C1        | +7.3399614E+C0  | +9.3299987E+01 |
| 61.0        | 31                       | +7.8257514E+01        | +6.3397375E+00  | +9.3099990E+01 |
| 62.0        | 10                       | +8.4089320E+01        | +8.0936007E+00  | +9.3699996E+01 |
| 63.0        | 15                       | +8.4836563E+01        | +1.0319330E+01  | +9.6199996E+01 |
| 64.0        | 29                       | +8.233719E+01         | +9.6051488E+00  | +1.0050000E+02 |
| 65.0        | 18                       | +7.9879379E+01        | +7.4933634E+C0  | +9.0109985E+C1 |
| 66.0        | 13                       | +3.1971466E+C1        | +4.5995584E+00  | +8.8750000E+01 |
| 67.0        | 18                       | +8.5072143E+C1        | +2.5272347E+C0  | +9.5699995E+01 |
| 68.0        | 24                       | +8.0026377E+C1        | +4.8183750E+00  | +8.6489990E+01 |
| 69.0        | 25                       | +6.411117E+C1         | +7.4356479E+C0  | +1.0319393E+C2 |
| 70.0        | 11                       | +6.0776411E+C1        | +7.2761653E+C0  | +9.3032993E+C1 |
| 71.0        | 14                       | +8.1775259E+01        | +1.0649023E+C1  | +9.8079936E+C1 |
| 72.0        | 17                       | +7.8078140E+C1        | +6.4475406E+00  | +8.8679992E+C1 |
| 73.0        | 16                       | +7.4555557E+C1        | +1.0158131E+C1  | +8.7899993E+C1 |
| 74.0        | 10                       | +5.2469883E+C1        | +1.1049076E+01  | +9.9799937E+01 |
| 75.0        | 20                       | +7.6174726E+C1        | +5.5349387E+C0  | +8.4500000E+C1 |
| 76.0        | 9                        | +7.7724362E+C1        | +1.05899865E+C1 | +9.0479995E+C1 |
| 77.0        | 7                        | +5.0372592E+C1        | +6.0542377E+C0  | +8.3607945E+C1 |

LINEAR REGRESSION ANALYSIS  
TESTS AND STATISTICS FOR TIME SERIES \*\*\*

| AGE (YRS) | SPECIMEN PER GROUP | MEAN Y           | STANDARD DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION     |
|-----------|--------------------|------------------|--------------------|-----------------|----------------|----------------|
| 78.0      | 12                 | +2.1493240E+01   | +6.1303927E+00     | +9.1444996E+01  | +7.4599990E+01 | +7.9336532E+01 |
| 79.0      | 5                  | +3.6841934E+01   | +3.3216851E+00     | +9.051995E+01   | +8.2599990E+01 | +7.9353988E+01 |
| 80.0      | 18                 | +7.1279357E+01   | +5.6671215E+00     | +7.911995E+C1   | +6.1C99990E+01 | +7.9371444E+01 |
| 81.0      | 16                 | +7.7076760E+01   | +7.5837279E+00     | +8.7099990E+01  | +6.5CC0000E+01 | +7.9388900E+01 |
| 82.0      | 3                  | +8.1426651E+01   | +4.0496713E+00     | +8.6079986E+01  | +7.9699996E+01 | +7.9406372E+01 |
| 83.0      | 21                 | +7.7823242E+01   | +6.5912915E+00     | +9.2853985E+C1  | +6.4500000E+01 | +7.9423828E+01 |
| 84.0      | 18                 | +8.2314910E+01   | +3.58555796E+C0    | +9.4879989E+01  | +6.7239990E+01 | +7.9441284E+01 |
| 85.0      | 6                  | +7.2274902E+01   | +2.1919453E+00     | +9.4759724E+C1  | +8.9389999E+01 | +7.9458740E+01 |
| 86.0      | 13                 | +7.8067626E+01   | +1.2152393E+01     | +9.4719985E+C1  | +6.3000000E+01 | +7.9476196E+01 |
| 87.0      | 20                 | +8.45510925E+01  | +4.0407910E+00     | +8.8309997E+01  | +7.6CC0000E+C1 | +7.9493652E+01 |
| 88.0      | 7                  | +7.7847061E+01   | +5.0525130E+00     | +8.2699996E+01  | +7.0109985E+C1 | +7.9511108E+01 |
| 89.0      | 18                 | +7.6265457E+01   | +6.6592012E+00     | +8.7079986E+01  | +6.2079986E+01 | +7.9528564E+01 |
| 90.0      | 11                 | +8.0208084E+01   | +1.1467175E+01     | +9.4000000E+01  | +6.5369995E+01 | +7.9546020E+01 |
| 91.0      | 7                  | +7.6691329E+01   | +6.6369056E+00     | +8.6209991E+C1  | +7.0219985E+01 | +7.9563476E+01 |
| 92.0      | 10                 | +7.0219894E+01   | +4.8150228E+00     | +8.0799987E+01  | +6.2699996E+01 | +7.9580932E+01 |
| 93.0      | 5                  | +6.9739929E+01   | +1.0420518E+00     | +7.1099990E+01  | +6.8199996E+01 | +7.9598388E+01 |
| 94.0      | 9                  | +8.6147644E+C1   | +6.3361839E+00     | +9.2899993E+01  | +7.5969985E+01 | +7.9615844E+01 |
| 95.0      | 19                 | +7.9427246E+01   | +7.2660320E+00     | +9.31299989E+01 | +6.6299987E+01 | +7.9633300E+01 |
| 96.0      | 6                  | +8.6426589E+C1   | +9.9862154E-01     | +8.81299889E+C1 | +8.5429992E+01 | +7.9650756E+01 |
| 97.0      | 6                  | +7.9348229E+01   | +5.9631456E+00     | +8.61299889E+C1 | +7.1250000E+01 | +7.9668212E+01 |
| 98.0      | 9                  | +7.3146605E+01   | +2.0215930E+00     | +7.6039993E+01  | +6.9199996E+01 | +7.9685668E+01 |
| 99.0      | 11                 | +7.2500000E+C1   | +0.0000000E+01     | +7.2500000E+87  | +7.2500000E+01 | +7.9703125E+01 |
| 101.0     | 6                  | +6.5492401E+C1   | +4.5200714E+00     | +7.2029998E+C1  | +5.9539993E+01 | +7.9738037E+01 |
| 102.0     | 8                  | +5.4695532E+C1   | +2.1884836E+00     | +7.2159988E+C1  | +6.77E9993E+01 | +7.9755493E+C1 |
| 104.0     | 11                 | +5.1202590E+C1   | +4.0350975E+00     | +5.7209997E+C1  | +7.2899993E+01 | +7.9790405E+C1 |
| 106.0     | 2                  | +3.7000000CCE+C1 | +9.8994949E+00     | +9.4000000E+C1  | +8.0CC0000E+01 | +7.9825317E+01 |
| 107.0     | 2                  | +7.7999984E+C1   | +8.4689085E-01     | +7.8599990E+C1  | +7.3599993E+01 | +7.9842773E+01 |
| 108.0     | 3                  | +3.3196655E+C1   | +1.0757096E+00     | +8.4289999E+C1  | +8.2299987E+01 | +7.9860229E+01 |
| 109.0     | 2                  | +6.5645434E+C1   | +2.3651322E+00     | +6.9000000E+C1  | +6.1989990E+01 | +7.9877685E+01 |
| 111.0     | 6                  | +3.5343261E+C1   | +4.2851501E+00     | +9.0979995E+C1  | +7.9649993E+01 | +7.9912597E+01 |
| 113.0     | 11                 | +3.9506582E+C1   | +2.9786625E+00     | +8.5669192E+C1  | +7.4F69995E+C1 | +7.9947525E+C1 |

ANALYSIS LINEAR REGRESSION ANALYSIS \*\*\*  
 ANALYSTS TIME SPECIES \*\*\*

| AGE<br>(YEARS) | SPECIMEN<br>NUMBER | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|----------------|--------------------|----------------|-----------------------|----------------|----------------|----------------|
| 115.0          | 2                  | +3.0953323E+01 | +6.3414959E-01        | +9.1719985E+01 | +8.0399993E+01 | +7.9982437E+01 |
| 116.0          | 7                  | +7.8035644E+01 | +4.2279791E+00        | +8.4239793E+01 | +7.3919998E+01 | +8.0034805E+01 |
| 119.0          | 9                  | +7.2792144E+01 | +1.1957399E+00        | +7.4459991E+01 | +7.1C59997E+01 | +8.0052261E+01 |
| 120.0          | 2                  | +7.7324996E+01 | +7.8103512E-02        | +7.738999E+01  | +7.7259994E+01 | +8.0069717E+01 |
| 121.0          | 9                  | +8.1381042E+01 | +6.2162600E+00        | +8.9099990E+01 | +7.1939987E+01 | +8.0087173E+01 |
| 122.0          | 3                  | +8.2143310E+01 | +3.9554830E+00        | +8.6129989E+01 | +7.8219985E+01 | +8.0104629E+01 |
| 123.0          | 3                  | +8.0553314E+01 | +2.6901742E+00        | +8.3219985E+01 | +7.7839996E+01 | +8.0122085E+01 |
| 125.0          | 6                  | +5.2309930E+01 | +2.6774723E+00        | +8.6569932E+01 | +7.7799987E+01 | +8.0156997E+01 |
| 137.0          | 1                  | +6.8000000E+01 | +0.0000000E+59        | +6.3000000E+01 | +6.8000000E+01 | +8.0366470E+01 |

AN8 3056, PROPELLANT (ANG, G) TENSILE MAX STRESS, .0002 IN/MIN, UNLND CTNS, 77 D

$F = +1.0853646E+02$   
 $R = +2.7868029E-01$   
 $t = +1.0418083E+01$   
 $N = 1291$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\gamma = (( +1.6436457E-01 ) + ( +2.0725377E-04 ) * X)$   
 $\sigma_F = \text{SIGNIFICANT}$   
 $\sigma_R = \text{SIGNIFICANT}$   
 $\sigma_t = \text{SIGNIFICANT}$   
 $\sigma_N = \text{DEGREES OF FREEDOM} = 1289$   
 $\text{TEST CONDITIONS} = 77 \text{ DEG F. AMB RH}$



## \*\* LINEAR REGRESSION ANALYSIS \*\*

## \*\* ANALYSIS OF TIME SERIES \*\*

| AGE<br>(MONTHS) | SPECIMEN<br>NUMBER | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |    |
|-----------------|--------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|----|
|                 |                    |                 |                       |                 |                 | 5               | 15 |
| 15.0            | 5                  | +1.607992E-01   | +6.6693002E-03        | +1.67709935E-01 | +1.53399985E-01 | +1.6747337E-01  |    |
| 16.0            | 23                 | +1.78062887E-01 | +1.5767338E-02        | +2.1049994E-01  | +1.6399997E-01  | +1.6758062E-01  |    |
| 17.0            | 2                  | +1.8693997E-C1  | +1.4101231E-03        | +1.8799996E-01  | +1.8599998E-01  | +1.6788786E-01  |    |
| 19.0            | 5                  | +1.4971995E-C1  | +4.2320242F-03        | +1.5419995E-01  | +1.4399999E-01  | +1.6830235E-01  |    |
| 20.0            | 10                 | +1.4992976E-C1  | +1.3034907E-02        | +1.7839998E-01  | +1.3399994E-01  | +1.6850960E-01  |    |
| 21.0            | 23                 | +1.5738660E-C1  | +1.9130372E-02        | +1.8799995E-01  | +1.2799996E-01  | +1.6371684E-01  |    |
| 22.0            | 12                 | +1.6225522E-01  | +2.1141323E-02        | +2.0599997E-01  | +1.2479996E-01  | +1.6892415E-01  |    |
| 23.0            | 5                  | +1.9271993E-01  | +1.3118668E-02        | +2.0649976E-01  | +1.7919999E-01  | +1.6913139E-01  |    |
| 24.0            | 11                 | +1.6874527E-01  | +1.6033708E-02        | +2.0289999E-01  | +1.4599996E-01  | +1.6933864E-01  |    |
| 25.0            | 15                 | +1.6952472E-01  | +1.6316647E-02        | +2.0199996E-01  | +1.4399999E-01  | +1.6954588E-01  |    |
| 26.0            | 8                  | +1.6592430E-01  | +1.9932725E-02        | +1.9809997E-01  | +1.4239996E-01  | +1.6975313E-01  |    |
| 27.0            | 10                 | +1.3934969E-01  | +7.8813515E-03        | +1.5119999E-01  | +1.2399995E-01  | +1.6996037E-01  |    |
| 28.0            | 15                 | +1.5450638E-01  | +1.8255351E-02        | +2.0399999E-01  | +1.2799996E-01  | +1.7016762E-01  |    |
| 29.0            | 22                 | +1.7676639E-01  | +1.5399011E-02        | +1.9799995E-01  | +1.5199995E-01  | +1.7037492E-01  |    |
| 30.0            | 5                  | +1.5199992E-01  | +1.6814541E-02        | +1.6999995E-01  | +1.3199996E-01  | +1.7058217E-01  |    |
| 31.0            | 13                 | +1.5116124E-01  | +1.42555979E-02       | +1.9399994E-01  | +1.3999998E-01  | +1.7078942E-01  |    |
| 32.0            | 13                 | +1.6504585E-C1  | +1.8159483E-02        | +1.9599997E-01  | +1.4399999E-01  | +1.7099666E-01  |    |
| 33.0            | 19                 | +1.7084175E-C1  | +9.9671978E-03        | +1.9799995E-01  | +1.5399998E-01  | +1.7120391E-01  |    |
| 34.0            | 6                  | +1.6066656E-C1  | +5.0058743E-03        | +1.6999995E-01  | +1.5599995E-01  | +1.7141115E-01  |    |
| 35.0            | 7                  | +1.88399983E-01 | +1.9537049E-02        | +2.0799994E-01  | +1.5799999E-01  | +1.7161840E-01  |    |
| 36.0            | 26                 | +1.6842037E-01  | +1.5017803E-02        | +1.88999935E-01 | +1.2799996E-01  | +1.7182570E-01  |    |
| 37.0            | 15                 | +1.6955298E-01  | +1.6280998E-02        | +1.9039994E-01  | +1.3869994E-01  | +1.7203295E-01  |    |
| 38.0            | 10                 | +1.9273538E-01  | +1.4978088E-02        | +2.1799999E-01  | +1.6599994E-01  | +1.7224019E-01  |    |
| 39.0            | 0                  | +1.8833315E-01  | +1.68331735E-02       | +2.0499998E-01  | +1.4699997E-01  | +1.7244744E-C1  |    |
| 40.0            | 17                 | +1.8711735E-C1  | +3.9323328E-02        | +3.0599999E-01  | +1.5399998E-01  | +1.7265468E-01  |    |
| 41.0            | 22                 | +1.7872679E-01  | +1.1658593E-02        | +1.9799995E-01  | +1.4799994E-01  | +1.72861935E-01 |    |
| 42.0            | 17                 | +1.74217235E-01 | +1.4734165E-02        | +2.10699975E-01 | +1.5199995E-01  | +1.7306917E-01  |    |
| 43.0            | 2                  | +1.7404325E-01  | +1.233C276E-C2        | +1.9299995E-01  | +1.5199999E-01  | +1.7327649E-01  |    |
| 44.0            | 10                 | +1.5200977E-01  | +9.2519980E-03        | +1.7089998E-01  | +1.4509999E-01  | +1.7348372E-01  |    |
| 45.0            | 5                  | +1.5151929E-01  | +2.5473851E-02        | +1.79299994E-01 | +1.1999994E-01  | +1.7369097E-01  |    |
| 46.0            | 2                  | +1.5710297E-01  | +2.0746223E-02        | +2.35399994E-01 | +1.5999996E-01  | +1.7383622E-01  |    |

LINEAR REGRESSION ANALYSIS \*\*\*  
\*\* ANALYSIS OF TIME SERIES \*\*

| AGE<br>(MONTHS) | STANDARD<br>DEVIATION<br>OF Y | MEAN Y          | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|-------------------------------|-----------------|-----------------|-----------------|-----------------|
| 47.0            | 12                            | +1.7349972E-01  | +1.7237295E-02  | +1.9759936E-01  | +1.4599996E-01  |
| 48.0            | 20                            | +1.7503959E-01  | +2.0194666E-02  | +1.9699935E-01  | +1.1279994E-01  |
| 49.0            | 11                            | +1.8236333E-01  | +1.9203317E-02  | +2.399994E-01   | +1.6699999E-01  |
| 50.0            | 10                            | +1.7089974E-01  | +1.2416400E-02  | +1.8599997E-01  | +1.5099996E-01  |
| 51.0            | 32                            | +1.7586201E-01  | +1.5330907E-02  | +2.1999936E-01  | +1.5039998E-01  |
| 52.0            | 36                            | +1.6939955E-01  | +1.1727611E-02  | +1.9399937E-01  | +1.4199995E-01  |
| 53.0            | 34                            | +1.7104661E-01  | +1.7541228E-02  | +1.9799998E-01  | +1.3269996E-01  |
| 54.0            | 16                            | +1.6537464E-01  | +2.3656608E-02  | +2.1539996E-01  | +1.3689994E-01  |
| 55.0            | 18                            | +1.3529415E-01  | +2.2276501E-02  | +2.2199994E-01  | +1.5319997E-01  |
| 56.0            | 19                            | +1.80225596E-01 | +2.0037599E-02  | +2.0599937E-01  | +1.3719999E-01  |
| 57.0            | 3                             | +1.9133329E-01  | +8.3266263E-03  | +1.9799995E-01  | +1.8199998E-01  |
| 58.0            | 11                            | +1.7365419E-01  | +1.0046851E-02  | +1.8599998E-01  | +1.5729999E-01  |
| 59.0            | 11                            | +1.7763620E-01  | +2.0215738E-02  | +2.0799994E-01  | +1.5799999E-01  |
| 60.0            | 20                            | +1.9389953E-01  | +1.6396725E-02  | +2.1399998E-01  | +1.2999999E-01  |
| 61.0            | 31                            | +1.7919641E-01  | +1.7380676E-02  | +2.1999995E-01  | +1.4239996E-01  |
| 62.0            | 18                            | +1.8874406E-01  | +1.7079645E-02  | +2.1499997E-01  | +1.6199994E-01  |
| 63.0            | 15                            | +1.9399958E-01  | +2.1198272E-02  | +2.3879998E-01  | +1.6599994E-01  |
| 64.0            | 29                            | +1.7836479E-01  | +1.5109030E-02  | +2.1099996E-01  | +1.5399998E-01  |
| 65.0            | 18                            | +1.8730509E-01  | +2.2943147E-02  | +2.4599999E-01  | +1.5399998E-01  |
| 66.0            | 13                            | +1.6755366E-01  | +1.0333806E-02  | +1.80399999E-01 | +1.4299994E-01  |
| 67.0            | 18                            | +1.7701083E-01  | +1.4461920E-02  | +2.03999999E-01 | +1.5199995E-01  |
| 68.0            | 24                            | +1.8256211E-01  | +1.80803305E-02 | +2.1277996E-01  | +1.3799995E-01  |
| 69.0            | 23                            | +1.9427950E-01  | +1.4072166E-02  | +2.0539737E-01  | +1.5399996E-01  |
| 70.0            | 20                            | +1.7743968E-01  | +1.3657357E-02  | +2.0799977E-01  | +1.6159999E-01  |
| 71.0            | 24                            | +1.7303709E-01  | +1.3034011E-02  | +2.1199995E-01  | +1.5679997E-01  |
| 72.0            | 17                            | +1.8434089E-01  | +1.5255425E-02  | +2.0719995E-01  | +1.4669996E-01  |
| 73.0            | 16                            | +1.6044342E-01  | +9.4506101E-03  | +1.7399996E-01  | +1.3599998E-01  |
| 74.0            | 10                            | +1.9509971E-01  | +9.9311049E-03  | +2.0699995E-01  | +1.8199998E-01  |
| 75.0            | 20                            | +1.9059950E-01  | +1.3258142E-02  | +2.1399998E-01  | +1.55999995E-01 |
| 76.0            | 9                             | +1.7754423E-01  | +3.5932095E-03  | +1.8799999E-01  | +1.5999996E-01  |
| 77.0            | 7                             | +1.7378544E-01  | +6.7475860E-03  | +1.8050103E-01  | +1.8032305E-01  |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## ANALYSIS OF TIME SERIES \*\*\*

| TEST  | SPECIES | MEAN Y          | STANDARD DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-------|---------|-----------------|--------------------|----------------|----------------|-----------------|
| 78.0  | 12      | +1.6951639E-01  | +1.3674989E-02     | +1.9999998E-01 | +1.3679999E-01 | +1.8053036E-01  |
| 79.0  | 5       | +1.8319793E-01  | +3.4260890E-03     | +1.9533397E-01 | +1.7679995E-01 | +1.8073761E-01  |
| 80.0  | 16      | +1.7692744E-01  | +9.4187437E-03     | +1.9599997E-01 | +1.6269999E-01 | +1.8094485E-01  |
| 81.0  | 16      | +1.66499667E-01 | +1.2318387E-02     | +1.9199997E-01 | +1.4463999E-01 | +1.8115210E-01  |
| 82.0  | 3       | +1.5796660E-01  | +5.99996405E-03    | +1.7399936E-01 | +1.6199994E-01 | +1.8135935E-01  |
| 83.0  | 21      | +1.7994236E-01  | +9.9481474E-03     | +1.9199997E-01 | +1.6156659E-01 | +1.8156659E-01  |
| 84.0  | 18      | +1.6367740E-01  | +1.5338281E-02     | +2.0799994E-01 | +1.4959996E-01 | +1.8177384E-01  |
| 85.0  | 6       | +1.5176651E-01  | +1.4059324E-02     | +1.7319937E-01 | +1.5129934E-01 | +1.8198108E-01  |
| 86.0  | 13      | +1.8289196E-01  | +1.2950933E-02     | +2.0513995E-01 | +1.5999996E-01 | +1.8218839E-01  |
| 87.0  | 10      | +1.6708964E-01  | +1.1556016E-02     | +1.82C9999E-01 | +1.4419996E-01 | +1.82399563E-01 |
| 88.0  | 7       | +1.7598557E-01  | +9.6932674E-03     | +1.8719995E-01 | +1.5799999E-01 | +1.8260238E-01  |
| 89.0  | 18      | +1.7300522E-01  | +1.3820413E-02     | +1.9399998E-01 | +1.4879995E-01 | +1.8281012E-01  |
| 90.0  | 11      | +1.8250876E-01  | +2.3136175E-02     | +2.1299999E-01 | +1.4999997E-01 | +1.8301737E-01  |
| 91.0  | 7       | +1.8369954E-01  | +1.5430925E-02     | +2.1199999E-01 | +1.6559994E-01 | +1.8322461E-01  |
| 92.0  | 19      | +1.8279981E-01  | +8.6541348E-03     | +1.9799995E-01 | +1.7199999E-01 | +1.8343186E-01  |
| 93.0  | 5       | +1.9059991E-01  | +4.5598979E-03     | +1.9499999E-01 | +1.8399995E-01 | +1.8363916E-01  |
| 94.0  | 9       | +1.92566639E-01 | +9.2701640E-03     | +2.1359997E-01 | +1.8239998E-01 | +1.8384641E-01  |
| 95.0  | 19      | +1.8413650E-01  | +1.9625528E-02     | +2.1519994E-01 | +1.4999997E-01 | +1.8405365E-01  |
| 96.0  | 6       | +1.6059994E-01  | +1.8627281E-02     | +1.8479996E-01 | +1.3439995E-01 | +1.8426090E-01  |
| 97.0  | 6       | +1.9493323E-01  | +1.38999310E-02    | +2.1399998E-01 | +1.7599994E-01 | +1.8446815E-01  |
| 98.0  | 1       | +1.6269968E-01  | +2.1618974E-02     | +2.1199997E-01 | +1.6159999E-01 | +1.8467539E-01  |
| 99.0  | 1       | +2.1199995E-01  | +0.00000005E+87    | +2.1199995E-01 | +2.1199995E-01 | +1.8488264E-01  |
| 100.0 | 3       | +1.7406222E-01  | +1.4432325E-02     | +1.7359999E-01 | +1.5439999E-01 | +1.8529719E-01  |
| 101.0 | 3       | +1.6393325E-01  | +8.7957784E-03     | +1.3359999E-01 | +1.7639994E-01 | +1.9550443E-C1  |
| 102.0 | 11      | +1.7688149E-01  | +5.5665703E-03     | +1.8939995E-01 | +1.7109996E-01 | +1.8591892E-01  |
| 103.0 | 2       | +1.8143995E-01  | +4.4547242E-02     | +2.1299999E-01 | +1.4599997E-01 | +1.8633341E-01  |
| 104.0 | 2       | +1.7059999E-01  | +4.8100599E-03     | +1.7399996E-01 | +1.6719996E-01 | +1.6654072E-01  |
| 105.0 | 10      | +1.8649971E-01  | +4.5216366E-03     | +2.0439998E-01 | +2.0199996E-01 | +1.8674796E-01  |
| 106.0 | 3       | +2.0333325E-01  | +8.3089330E-03     | +1.8199998E-01 | +1.5999996E-01 | +1.8695521E-01  |
| 107.0 | 2       | +1.7246545E-01  | +1.3526279E-02     | +2.2169985E-01 | +1.9209999E-01 | +1.8736970E-01  |
| 108.0 | 3       | +2.0244979E-01  | +1.4674783E-02     | +2.1379998E-01 | +1.6319996E-01 | +1.9778419E-01  |

NIN 2056 PROPELLANT CAIR, G TENSILE STN @ 210P, .0002 IN/MIN, UNLAD CTNS, 77 06

LINEAR REGRESSION ANALYSIS \*\*\*  
 ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>NO. 1012 | MEAN Y         | STANDARD<br>DEVIATION Y | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y |       |       |       |       |       |       |       |       |  |
|-----------------|-----------------------|----------------|-------------------------|----------------|-----------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                 |                       |                |                         |                |                 | 115.0        | 115.0 | 119.0 | 120.0 | 121.0 | 122.0 | 123.0 | 125.0 | 137.0 |  |
| 3               | +1.9290663E+01        | +2.0492708E-03 | +1.9559997E-01          | +1.9029998E-01 | +1.6819674E-01  |              |       |       |       |       |       |       |       |       |  |
| 7               | +1.8632829E-01        | +1.7044378E-02 | +2.0689997E-01          | +1.6599995E-01 | +1.98882048E-01 |              |       |       |       |       |       |       |       |       |  |
| 9               | +1.9741083E-01        | +9.7280928E-03 | +1.9849997E-01          | +1.6799998E-01 | +1.8902772E-01  |              |       |       |       |       |       |       |       |       |  |
| 2               | +1.9394999E-01        | +4.4369543E-04 | +1.9429999E-01          | +1.9359999E-01 | +1.8923497E-01  |              |       |       |       |       |       |       |       |       |  |
| 9               | +1.9717741E-01        | +8.6772273E-03 | +2.1099996E-01          | +1.8699997E-01 | +1.8944227E-01  |              |       |       |       |       |       |       |       |       |  |
| 3               | +1.9433325E-01        | +1.2662043E-02 | +2.0399999E-01          | +1.7699994E-01 | +1.8964952E-01  |              |       |       |       |       |       |       |       |       |  |
| 3               | +1.9099992E-01        | +9.8479904E-01 | +1.9899994E-01          | +1.7699994E-01 | +1.8985676E-01  |              |       |       |       |       |       |       |       |       |  |
| 6               | +1.8783330E-01        | +7.0807657E-03 | +1.9399998E-01          | +1.8099999E-01 | +1.9027125E-01  |              |       |       |       |       |       |       |       |       |  |
| 1               | +1.9299996E-01        | +0.0000000E+09 | +1.8299996E-01          | +1.8299996E-01 | +1.9275832E-01  |              |       |       |       |       |       |       |       |       |  |

ANB 3065 PROPELLANT ( AND, G) TENSILE STN A RUP, .0002 IN/MM, UNLND CTNS, 77 DG

$Y = (( +5.6701397E+02) + (-3.3384603E-01) * X) * X$   
 $F = +9.6050529E+00$   
 $R = -8.6102064E-02$   
 $t = +3.0992019E+00$   
 $N = 1288$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF t = SIGNIFICANT  
 DEGREES OF FREEDOM = 1286  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPELLANT (ANB, G) TENSILE MODULUS. .0002 IN/MIN. UNLND CTNS. 77 DEG

Figure 4-6

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(days) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|---------------|------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|
|               |                        |                 |                       |                 |                 |                 |
| 15.0          | 5                      | +5. 9639990E+02 | +5. 3021693E+01       | +6. 2700000E+02 | +5. 0200000E+02 | +5. 6201367E+02 |
| 16.0          | 13                     | +4. 8046142E+02 | +6. 8842350E+01       | +5. 9000000E+02 | +3. 4400000E+02 | +5. 6168041E+02 |
| 17.0          | 2                      | +4. 1350000E+02 | +6. 3639610E+00       | +4. 1800000E+02 | +4. 0900000E+02 | +5. 6134692E+02 |
| 18.0          | 5                      | +6. 0279980E+02 | +1. 6724233E+01       | +6. 2600000E+02 | +5. 8600000E+02 | +5. 6068017E+02 |
| 19.0          | 10                     | +5. 4419995E+02 | +4. 9694175E+01       | +5. 9400000E+02 | +4. 6900000E+02 | +5. 6034692E+02 |
| 20.0          | 0                      | +5. 6104345E+02 | +6. 3217861E+01       | +6. 5700000E+02 | +4. 4000000E+02 | +5. 6001367E+02 |
| 21.0          | 23                     | +5. 3844433E+02 | +9. 1428675E+01       | +7. 6800000E+02 | +4. 1200000E+02 | +5. 5968017E+02 |
| 22.0          | 18                     | +5. 5619995F+02 | +5. 3001846F+01       | +6. 1600000E+02 | +5. 0230000E+02 | +5. 5934692E+02 |
| 23.0          | 5                      | +5. 5236352E+02 | +6. 3203279E+01       | +6. 6000000E+02 | +4. 6600000E+02 | +5. 5901342E+02 |
| 24.0          | 11                     | +6. 012500E+02  | +4. 6963762E+01       | +7. 0400000E+02 | +5. 2100000E+02 | +5. 5868017E+02 |
| 25.0          | 16                     | +5. 8012500E+02 | +4. 9026049E+01       | +6. 5100000E+02 | +5. 3200000E+02 | +5. 5834692E+02 |
| 26.0          | 8                      | +6. 5189990E+02 | +6. 0881396E+01       | +7. 4700000E+02 | +5. 4500000E+02 | +5. 5801342E+02 |
| 27.0          | 9                      | +5. 9119995F+02 | +6. 7861413E+01       | +6. 6900000E+02 | +3. 8700000E+02 | +5. 5768017E+02 |
| 28.0          | 0                      | +5. 3591650L+02 | +7. 6623588E+01       | +6. 2700000E+02 | +4. 0000000E+02 | +5. 5734692E+02 |
| 29.0          | 12                     | +6. 3039990E+02 | +9. 1308161E+01       | +7. 3600000E+02 | +5. 1800000E+02 | +5. 5701342E+02 |
| 30.0          | 5                      | +6. 0500000E+02 | +6. 8944422E+01       | +7. 3100000E+02 | +5. 1600000E+02 | +5. 5668017E+02 |
| 31.0          | 13                     | +5. 7038452E+02 | +3. 7344205E+01       | +6. 3900000E+02 | +5. 2900000E+02 | +5. 5634667E+02 |
| 32.0          | 0                      | +5. 1763134E+02 | +7. 6146212E+01       | +6. 8600000E+02 | +4. 0400000E+02 | +5. 5601342E+02 |
| 33.0          | 19                     | +6. 5766650F+02 | +2. 3491842E+01       | +6. 9300000E+02 | +6. 2600000E+02 | +5. 5568017E+02 |
| 34.0          | 6                      | +5. 8571411E+02 | +7. 2662953E+01       | +7. 0200000E+02 | +5. 3100000E+02 | +5. 5534667E+02 |
| 35.0          | 7                      | +5. 8278564E+02 | +6. 4552796E+01       | +6. 9300000E+02 | +4. 8400000E+02 | +5. 5501342E+02 |
| 36.0          | 28                     | +5. 6226660E+02 | +9. 2920701E+01       | +7. 5700000E+02 | +4. 2100000E+02 | +5. 5467993E+02 |
| 37.0          | 15                     | +4. 7147363E+02 | +3. 6651153E+01       | +5. 6500000E+02 | +4. 0000000E+02 | +5. 5434667E+02 |
| 38.0          | 13                     | +4. 4379980E+02 | +6. 0432935E+01       | +6. 1400000E+02 | +3. 3700000E+02 | +5. 5401342E+02 |
| 39.0          | 10                     | +3. 2576464E+02 | +4. 9568802E+01       | +5. 9900000E+02 | +4. 6000000E+02 | +5. 5367993E+02 |
| 40.0          | 0                      | +4. 9831811E+02 | +4. 6054198E+01       | +5. 6500000E+02 | +4. 0500000E+02 | +5. 5334667E+02 |
| 41.0          | 22                     | +5. 5300000E+02 | +4. 0689131E+01       | +6. 4600000E+02 | +4. 6400000E+02 | +5. 5301342E+02 |
| 42.0          | 17                     | +4. 2675000E+02 | +1. 0426991E+02       | +6. 0100000E+02 | +3. 3600000E+02 | +5. 5267993E+02 |
| 43.0          | 2                      | +6. 3979980E+02 | +5. 7466511E+01       | +6. 8600000E+02 | +5. 2900000E+02 | +5. 5234667E+02 |
| 44.0          | 10                     | +5. 7959985E+02 | +5. 0510394E+01       | +6. 3200000E+02 | +5. 3700000E+02 | +5. 5201318E+02 |
| 45.0          | 5                      | +5. 3434472E+02 | +5. 4953406E+01       | +6. 4300000E+02 | +4. 4900000E+02 | +5. 5167993F+02 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 47.0            | 12                     | +5.3925000E+C2 | +3.9055031E+C1        | +5.7600000E+02 | +4.7700000E+02 | +5.5134667E+C2  |
| 48.0            | 20                     | +5.6102985E+C2 | +1.1707617E+02        | +9.7400000E+02 | +4.7900000E+02 | +5.5101318E+02  |
| 49.0            | 11                     | +5.812727CE+C2 | +4.739393F+01         | +5.5900000E+02 | +4.1700000E+02 | +5.5067993E+C2  |
| 50.0            | 10                     | +5.4850000E+02 | +8.0184855E+01        | +6.8200000E+02 | +4.4500000E+C2 | +5.5034643E+02  |
| 51.0            | 32                     | +5.7106250E+02 | +1.9650903E+02        | +1.3460000E+03 | +4.3100000E+02 | +5.5001318E+02  |
| 52.0            | 36                     | +5.6719433E+02 | +5.984564E+01         | +6.8000000E+02 | +4.5300000E+02 | +5.4967993E+02  |
| 53.0            | 24                     | +5.3702929E+02 | +5.6539868E+01        | +6.6000000E+02 | +4.1500000E+02 | +5.4934643E+02  |
| 54.0            | 16                     | +5.5012500E+C2 | +6.5029096E+01        | +6.7600000E+02 | +4.5300000E+02 | +5.4901318E+02  |
| 55.0            | 18                     | +5.2644433E+02 | +7.0959990E+01        | +6.4700000E+02 | +4.1300000E+02 | +5.4867993E+02  |
| 56.0            | 19                     | +5.0968404E+02 | +7.2914754E+01        | +6.9300000E+02 | +4.1600000E+02 | +5.4834643E+02  |
| 57.0            | 3                      | +4.3200000E+02 | +1.6999999E+01        | +4.5300000E+02 | +4.1600000E+02 | +5.4801318E+02  |
| 58.0            | 12                     | +5.0766650E+02 | +3.6725847E+01        | +5.5500000E+02 | +4.5300000E+02 | +5.4767968E+02  |
| 59.0            | 11                     | +6.4600000E+02 | +9.2907480E+01        | +7.6000000E+02 | +5.3100000E+02 | +5.4734643E+02  |
| 60.0            | 20                     | +5.7264990E+02 | +4.4530622E+01        | +6.4000000E+02 | +4.7000000E+02 | +5.4701318E+02  |
| 61.0            | 31                     | +5.2609667E+02 | +7.5167526E+01        | +6.7800000E+02 | +3.8500000E+02 | +5.46667968E+02 |
| 62.0            | 18                     | +5.4572216E+02 | +7.1425654E+01        | +7.0400000E+02 | +4.0500000E+02 | +5.4634643E+02  |
| 63.0            | 15                     | +5.2846655E+02 | +5.7949321E+01        | +6.3500000E+02 | +4.4000000E+02 | +5.4601293E+02  |
| 64.0            | 29                     | +5.5131030E+02 | +8.9028929E+01        | +7.8800000E+02 | +3.6700000E+02 | +5.4567968E+02  |
| 65.0            | 18                     | +5.4172216E+02 | +8.0070414E+01        | +6.7500000E+02 | +4.1800000E+02 | +5.4534643E+02  |
| 66.0            | 13                     | +5.8638452E+02 | +6.5294893E+01        | +7.1100000E+02 | +4.9800000E+02 | +5.4501293E+02  |
| 67.0            | 18                     | +5.6183325E+02 | +8.6590483E+01        | +7.4500000E+02 | +4.4800000E+02 | +5.44657968E+02 |
| 68.0            | 24                     | +5.4345825E+02 | +7.5782858E+01        | +7.1700000E+02 | +4.1000000E+02 | +5.4434643E+02  |
| 69.0            | 25                     | +5.4433598E+02 | +5.1376400E+01        | +6.7100000E+02 | +4.5300000E+02 | +5.4401293E+02  |
| 70.0            | 20                     | +5.5550000E+02 | +7.3531590E+C1        | +7.2200000E+02 | +4.5600000E+02 | +5.4367968E+C2  |
| 71.0            | 24                     | +5.6733325E+02 | +9.6674562E+01        | +7.9500000E+02 | +4.3300000E+02 | +5.4334619E+C2  |
| 72.0            | 17                     | +5.1570581E+02 | +4.5452942E+C1        | +5.8300000E+02 | +4.1600000E+02 | +5.4301293E+02  |
| 73.0            | 14                     | +5.7378564E+02 | +4.1873763E+01        | +6.4900000E+02 | +4.9400000E+02 | +5.4267968E+C2  |
| 74.0            | 10                     | +4.3979980E+02 | +1.1647298E+02        | +6.7900000E+02 | +3.7500000E+02 | +5.4234619E+02  |
| 75.0            | 20                     | +4.6073980E+02 | +5.7091431E+01        | +5.8700000E+02 | +3.7300000E+02 | +5.4201293E+C2  |
| 76.0            | 9                      | +5.5255541E+02 | +8.9266610E+C1        | +6.9200000E+02 | +4.5800000E+02 | +5.4167944E+02  |
| 77.0            | 7                      | +5.4400000E+02 | +7.2631489F+01        | +6.1900000E+02 | +4.5600000E+02 | +5.4134619E+02  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TENSILE STRENGTH \*\*\*

| TEST NO. | SPECIMENS<br>NO. TESTED | MEAN Y         | STANDARD DEVIATION Y | MAXIMUM Y      | MINIMUM Y      | REGRESSION     |                |
|----------|-------------------------|----------------|----------------------|----------------|----------------|----------------|----------------|
|          |                         |                |                      |                |                | REGRESSION     | REGRESSION     |
| 78.0     | 11                      | +2.5809982E+02 | +8.46557491E+01      | +6.7790000E+02 | +4.3500000E+02 | +5.4101293E+02 | +5.4067944E+02 |
| 79.0     | 5                       | +5.6319995E+02 | +5.1219725E+01       | +6.4930000E+02 | +5.1300000E+02 | +5.4034619E+02 | +5.4034619E+02 |
| 80.0     | 18                      | +4.8555541E+02 | +6.2924064E+01       | +5.7800000E+02 | +3.8200000E+02 | +5.4034619E+02 | +5.4034619E+02 |
| 81.0     | 15                      | +5.5900000E+02 | +7.9537831E+C1       | +6.7900000E+02 | +4.3200000E+02 | +5.4001293E+02 | +5.4001293E+02 |
| 82.0     | 3                       | +5.7933325E+02 | +4.7056703E+01       | +6.1500000E+02 | +5.2600000E+02 | +5.3967944E+02 | +5.3967944E+02 |
| 83.0     | 21                      | +6.6295214E+02 | +3.0146450E+02       | +1.4150000E+03 | +4.1600000E+02 | +5.3934619E+02 | +5.3934619E+02 |
| 84.0     | 16                      | +5.3505541E+C2 | +2.723C271F+C2       | +1.4100000E+03 | +4.59C0000E+02 | +5.3901259E+02 | +5.3901259E+02 |
| 85.0     | 5                       | +6.2250000E+02 | +1.5996428E+C1       | +6.3500000E+02 | +5.3600000E+02 | +5.3A67944E+02 | +5.3A67944E+02 |
| 86.0     | 13                      | +5.0330761E+02 | +8.2933090E+01       | +5.9500000E+02 | +3.7800000E+02 | +5.3834619E+02 | +5.3834619E+02 |
| 87.0     | 19                      | +6.0899900E+02 | +3.8968505E+01       | +6.9500000E+02 | +5.6000000E+02 | +5.3801269E+02 | +5.3801269E+02 |
| 88.0     | 7                       | +5.2100000E+02 | +1.10522299E+02      | +6.6300000E+02 | +3.0200000E+02 | +5.3767944E+02 | +5.3767944E+02 |
| 89.0     | 17                      | +5.3476464E+02 | +7.2742292E+01       | +6.7800000E+02 | +4.6000000E+02 | +5.3734594E+02 | +5.3734594E+02 |
| 90.0     | 11                      | +5.4127270E+02 | +8.4657062E+01       | +6.6200000E+02 | +4.4350000E+02 | +5.3701269E+02 | +5.3701269E+02 |
| 91.0     | 7                       | +5.1857125E+02 | +4.6877875E+01       | +6.0600000E+02 | +4.4730000E+02 | +5.3667944E+02 | +5.3667944E+02 |
| 92.0     | 10                      | +4.7159985E+02 | +4.5115161E+01       | +5.6700000E+02 | +4.1300000E+02 | +5.3634594E+02 | +5.3634594E+02 |
| 93.0     | 5                       | +4.7059985E+02 | +4.7045722E+01       | +5.4700000E+02 | +4.2000000E+02 | +5.3601269E+02 | +5.3601269E+02 |
| 94.0     | 9                       | +5.3822210E+C2 | +5.6173342E+01       | +6.5900000E+02 | +4.4570000E+02 | +5.3567944E+02 | +5.3567944E+02 |
| 95.0     | 19                      | +5.5626293E+02 | +9.3834918E+01       | +6.9300000E+02 | +4.4170000E+02 | +5.3534594E+02 | +5.3534594E+02 |
| 96.0     | 6                       | +6.5400000E+02 | +7.8714674E+01       | +7.7100000E+02 | +5.4800000E+02 | +5.3501269E+02 | +5.3501269E+02 |
| 97.0     | 6                       | +4.8200000E+C2 | +3.9278492E+C1       | +5.4220000E+02 | +4.39C0000E+02 | +5.3467919E+02 | +5.3467919E+02 |
| 98.0     | 9                       | +4.948867E+02  | +3.1150619E+C1       | +5.5220000E+02 | +4.6200000E+02 | +5.3434594E+02 | +5.3434594E+02 |
| 99.0     | 1                       | +4.910000CF+02 | +0.000000CF+87       | +4.9100000E+C2 | +4.7100000E+02 | +5.3401269E+02 | +5.3401269E+02 |
| 100.0    | 7                       | +4.4357125E+C2 | +2.6881574F+C1       | +4.79C0000E+N2 | +3.9600000E+02 | +5.3334594E+02 | +5.3334594E+02 |
| 102.0    | 3                       | +4.2633325E+C2 | +1.6155307E+01       | +4.7300000E+N2 | +4.4100000E+02 | +5.3301245E+02 | +5.3301245E+02 |
| 104.0    | 11                      | +5.5136352E+C2 | +6.5100000E+C2       | +6.5100000E+C2 | +4.8300000E+02 | +5.3234594E+02 | +5.3234594E+02 |
| 106.0    | 2                       | +5.9750000E+C2 | +2.4748737E+01       | +6.1500000E+N2 | +5.8000000E+C2 | +5.3167919E+02 | +5.3167919E+02 |
| 107.0    | 2                       | +5.0550000E+C2 | +6.5760930E+01       | +6.5200000E+02 | +5.5900000E+02 | +5.3134594E+02 | +5.3134594E+02 |
| 108.0    | 3                       | +5.2366650E+C2 | +1.7616280E+C1       | +5.3900000E+N2 | +5.0400000E+C2 | +5.3101245E+02 | +5.3101245E+02 |
| 109.0    | 9                       | +5.7633325E+C2 | +2.5476852E+02       | +1.0540000E+N3 | +4.1700000E+02 | +5.3067919E+02 | +5.3067919E+02 |
| 111.0    | 6                       | +5.3683325E+C2 | +3.6279011F+01       | +5.8400000E+C2 | +5.0CC0000E+02 | +5.3001245E+02 | +5.3001245E+02 |
| 113.0    | 12                      | +5.0625000P+C2 | +2.8616934F+01       | +5.6400000E+C2 | +4.5300000E+C2 | +5.2934570E+02 | +5.2934570E+02 |

LINEAR REGRESSION ANALYSIS \*\*\*  
\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(YEARS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION |                | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y |
|----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|--------------|
|                |                        |                | Y                     | X              |                |                |              |
| 115.0          | 3                      | +5.1033325E+02 | +1.3051121E+01        | +5.2400000E+02 | +4.9300000E+02 | +5.2867895E+02 |              |
| 116.0          | 7                      | +5.3714282E+C2 | +5.9131721E+01        | +5.3700000E+02 | +4.4200000E+02 | +5.2767895E+02 |              |
| 119.0          | 9                      | +4.6666650E+02 | +2.2901964E+01        | +5.1000000E+02 | +4.3800000E+02 | +5.2734570E+02 |              |
| 120.0          | 2                      | +4.8100000E+C2 | +0.0000003E+33        | +4.8100000E+02 | +4.8100000E+02 | +5.2701220E+02 |              |
| 121.0          | 2                      | +5.0588667E+02 | +6.111555E+C1         | +6.1900000E+02 | +4.3000000E+02 | +5.2667895E+C2 |              |
| 122.0          | 3                      | +4.9300000E+C2 | +6.7756918E+01        | +5.6700000E+02 | +4.3400000E+02 | +5.2634570E+02 |              |
| 123.0          | 3                      | +4.9933325E+02 | +3.8850139F+01        | +5.4200000E+02 | +4.6600000E+02 | +5.2601220E+C2 |              |
| 125.0          | 6                      | +5.2500000E+C2 | +2.6359059E+C1        | +5.6800000F+02 | +4.9600000E+02 | +5.2534570E+C2 |              |
| 137.0          | 1                      | +4.3200000E+C2 | +0.0000000E+59        | +4.3200000E+02 | +4.3200000E+02 | +5.2134545E+02 |              |

AN8 3066 PROPELLANT (ANB, G) TENSILE MODULUS, .0002 IN/MIN, UNLND CTNS, 77 DEG

$F = +8.6419270E+00$   
 $R = +3.6849672E-01$   
 $t = +2.9397154E+00$   
 $N = 57$   
 $\gamma = \text{SIGNIFICANT}$   
 $\alpha = \text{SIGNIFICANT}$   
 $\beta = \text{SIGNIFICANT}$   
 $\text{DEGREES OF FREEDOM} = 55$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{TEST CONDITIONS} = 77 \text{ DEG F, AMB RH}$

UNIT OF MEASURE = PSI  
 PARAMETER = MAXIMUM STRESS



ANB 3066 PROPELLANT (ANG G) TENSILE MAX STRESS, .0002 IN/MIN, 77 DEG F, LINED CTN  
Figure 4-7

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 16.0            | 2                      | +5.3269999E+01 | +8.345371CE-01        | +6.9859985E+01 | +6.8679992E+01 | +6.6827239E+01  |
| 17.0            | 3                      | +6.6776657E+01 | +1.6818924E+00        | +6.8109985E+01 | +6.5179992E+01 | +6.7001332E+01  |
| 18.0            | 8                      | +5.5325171E+01 | +7.6734815E+00        | +7.6259994E+01 | +5.2579986E+01 | +6.7185403E+01  |
| 19.0            | 7                      | +5.5592773E+01 | +2.8658732E+00        | +7.3529995E+01 | +6.1909988E+01 | +6.7364501E+01  |
| 20.0            | 3                      | +6.1343322E+01 | +1.9325363E+00        | +6.3379982E+01 | +5.9539993E+01 | +6.7543579E+01  |
| 21.0            | 3                      | +5.2356658E+01 | +6.6226355E+00        | +6.6259994E+01 | +5.4709991E+01 | +6.7722671E+01  |
| 22.0            | 3                      | +5.7629989E+01 | +1.9618921E+00        | +6.9399993E+01 | +6.5519989E+01 | +6.7901749E+01  |
| 23.0            | 3                      | +7.3233322E+01 | +1.4314742E+00        | +7.9669993E+01 | +7.6709991E+01 | +6.8080841E+01  |
| 26.0            | 6                      | +6.9511627E+01 | +3.0335580E+00        | +7.3119995E+01 | +6.6459991E+01 | +6.8976257E+01  |
| 30.0            | 5                      | +7.1044952E+01 | +5.1315521E+00        | +7.6279998E+01 | +6.5329986E+01 | +6.9334425E+01  |
| 32.0            | 3                      | +6.9155651E+01 | +2.479736JE+00        | +7.2019989E+01 | +6.7699996E+01 | +6.9692595E+01  |
| 33.0            | 3                      | +7.7836654E+01 | +1.6231722E+00        | +7.9019983E+01 | +7.5989990E+01 | +6.9871673E+01  |
| 35.0            | 4                      | +6.3907470E+01 | +1.6810187E+00        | +7.2299987E+01 | +6.8459991E+01 | +7.38811523E+01 |
| 56.0            | 3                      | +7.4319992E+01 | +2.40339584E+00       | +7.6252000E+01 | +7.1619995E+01 | +7.3990615E+01  |

ANS 3066 PROPEL.ANT(ANB), TEVILE MAX STRESS, .0002 IN/MIN, 77 DEG F, LIVED CTN

$\gamma = (+1.8714608E-01) + (-8.0795809E-04) \times x$   
 $F = 1.5666504E+01$  SIGNIFICANCE OF  $F =$  SIGNIFICANT  
 $R = -4.7084639E-01$  SIGNIFICANCE OF  $R =$  SIGNIFICANT  
 $s^2 = +3.9580935E+00$  SIGNIFICANCE OF  $s^2 =$  SIGNIFICANT  
 $N = 57$  DEGREES OF FREEDOM = TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPELLANT (ANB G) TENSILE STN AT RUPT. .0002 IN/MIN, 77 DEG, LINED CTN

Figure 4-8

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y           | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION<br>CURVE |
|-----------------|------------------------|------------------|-----------------------|-----------------|-----------------|---------------------|
| 15.0            | 2                      | +1. 6354995E-01  | +4. 6574327E-03       | +1. 6669994E-01 | +1. 6039997E-01 | +1. 7421871E-01     |
| 17.0            | 3                      | +2. 3279997E-01  | +5. 8556269E-03       | +2. 0879995E-01 | +1. 9709998E-01 | +1. 7341077E-01     |
| 18.0            | 6                      | +1. 7022478E-01  | +9. 3513233E-03       | +1. 8959996E-01 | +1. 5839999E-01 | +1. 7260283E-01     |
| 19.0            | 7                      | +1. 3775689E-01  | +9. 7156540E-03       | +2. 0339995E-01 | +1. 7729997E-01 | +1. 7179483E-01     |
| 20.0            | 3                      | +1. 373327E-01   | +8. 3799139E-03       | +2. 0599997E-01 | +1. 8999999E-01 | +1. 7098689E-01     |
| 21.0            | 3                      | +1. 485652E-01   | +1. 2220201E-02       | +1. 6199994E-01 | +1. 3799995E-01 | +1. 7017894E-01     |
| 22.0            | 3                      | +1. 559995E-01   | +1. 3356537E-02       | +1. 7199996E-01 | +1. 4799994E-01 | +1. 6937100E-01     |
| 23.0            | 3                      | +1. 679992E-01   | +3. 1622252E-03       | +1. 7279994E-01 | +1. 6649997E-01 | +1. 6856300E-01     |
| 28.0            | 6                      | +1. 4939993E-01  | +6. 4276420E-03       | +1. 5839996E-01 | +1. 4159995E-01 | +1. 6452324E-01     |
| 30.0            | 6                      | +1. 5654993E-01  | +2. 1311330E-02       | +1. 7909997E-01 | +1. 3439995E-01 | +1. 6290730E-01     |
| 32.0            | 3                      | +1. 3319993E-01  | +2. 4020249E-03       | +1. 3559997E-01 | +1. 3079994E-01 | +1. 6129142E-01     |
| 33.0            | 3                      | +1. 62899997E-01 | +1. 7959534E-03       | +1. 6469997E-01 | +1. 6109997E-01 | +1. 6048341E-01     |
| 35.0            | 4                      | +1. 5437495E-01  | +7. 4532704E-03       | +1. 6199994E-01 | +1. 4499998E-01 | +1. 4270835E-01     |
| 56.0            | 3                      | +1. 6909994E-01  | +1. 3692575E-03       | +1. 5029995E-01 | +1. 4759999E-01 | +1. 4190042E-01     |

ANB 3066 PROPELANT(ANB), TEVSELE STN AT RUPT, .0002 IN/MIN, 77 DEG, LINED CTW

$F = 1.7662500E+01$   
 $R = +4.9645526E-01$   
 $L = +4.2026778E+00$   
 $N = 56$   
 $\gamma = (( +3.9348148E+02 ) + ( +3.8266646E+00 ) * X) / ( +8.7750443E+01 )$   
 $S_{\alpha} = +8.7750443E+01$   
 $S_{\beta} = +9.1053010E-01$   
 $S_{\epsilon} = +7.6874921E+01$   
 $S_{\delta} = 54$   
 $Degrees of Freedom = 54$   
 $Storage Conditions = Amb Temp/RH$

TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPELLANT (ANB G), TENSILE MODULUS, 0.0002 IN/MIN, 77 DEG F, LINED CTN  
Figure 4-9

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 16.0            | 2                      | +5.265000E+02  | +1.2606601E+01        | +5.1400000E+02 | +4.9900000E+02 | +4.547080E+02  |
| 17.0            | 3                      | +3.7565550E+02 | +1.6862185E+01        | +3.9500000E+02 | +3.6400000E+02 | +4.5853465E+02 |
| 18.0            | 8                      | +4.5212500E+02 | +7.5611147E+01        | +5.5600000E+02 | +3.3100000E+02 | +4.6236132E+02 |
| 19.0            | 7                      | +4.1628564E+02 | +4.4609887E+01        | +4.7200000E+02 | +3.5800000E+02 | +4.6618798E+02 |
| 20.0            | 3                      | +3.5900000E+02 | +1.2999999E+01        | +3.8200000E+02 | +3.5600000E+02 | +4.7001454E+02 |
| 21.0            | 3                      | +5.2065550E+02 | +5.2057167E+01        | +5.6700000E+02 | +4.4400000E+02 | +4.7384130E+02 |
| 22.0            | 3                      | +5.3366650E+02 | +3.8109491E+01        | +5.7000000E+02 | +4.9400000E+02 | +4.7766795E+02 |
| 23.0            | 3                      | +5.1100000E+02 | +1.7521415E+01        | +5.2900000E+02 | +4.9400000E+02 | +4.8149452E+02 |
| 28.0            | 5                      | +5.3600000E+02 | +4.2773527E+01        | +5.8000000E+02 | +4.8500000E+02 | +5.0062792E+02 |
| 30.0            | 6                      | +5.5083325E+02 | +1.3210059E+02        | +6.7500000E+02 | +4.2300000E+02 | +5.0828125E+02 |
| 32.0            | 3                      | +5.9666650E+02 | +1.2897028E+01        | +6.1100000E+02 | +5.8600000E+02 | +5.1593457E+02 |
| 33.0            | 3                      | +5.5200000E+02 | +1.2757145E+01        | +5.7300000E+02 | +5.4800000E+02 | +5.1976123E+02 |
| 55.0            | 3                      | +5.1765650E+02 | +1.3051181E+01        | +5.2800000E+02 | +5.0300000E+02 | +6.0394799E+02 |
| 56.0            | 3                      | +5.3603000E+02 | +2.7784887E+01        | +6.1400000E+02 | +5.6400000E+02 | +6.0777455E+02 |

ANB 3066 PROPELLANT(ANB), TENSILE MODULUS, 0.0002 IN/MIN, 77 DEG F, LINED CTN

$\gamma = (( +8.0385365E+0; ) + ( +3.3482526E-02 ) * X)$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $\epsilon = \text{SIGNIFICANCE OF } \epsilon$   
 $N = \text{DEGREES OF FREEDOM} = 1110$   
 STORAGE CONDITIONS = AMB TEMP/RH

TEST CONDITIONS = 77 DEG F, AMB RH



## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 13.0            | 7                      | +7.0747070E+01 | +4.1623044E+00        | +7.7299987E+01 | +6.6439987E+01 | +8.0820632E+01  |
| 15.0            | 10                     | +8.3819915E+C1 | +3.8597922E+00        | +9.0399993E+01 | +7.8500000E+01 | +8.0887588E+01  |
| 16.0            | 17                     | +7.3008743E+01 | +4.8830510E+00        | +8.9899993E+01 | +7.4C99990E+01 | +8.021081E+01   |
| 17.0            | 13                     | +7.8359130E+01 | +6.5761148E+00        | +9.8299987E+01 | +6.5719985E+01 | +8.0954559E+01  |
| 18.0            | 12                     | +7.2300735E+01 | +7.0548569E+00        | +8.6399993E+01 | +5.9099990E+01 | +8.0988037E+01  |
| 18.0            | 6                      | +7.4619903E+01 | +2.4959304E+00        | +7.8799987E+01 | +7.2599990E+01 | +8.1021530E+01  |
| 19.0            | 11                     | +7.8478088E+01 | +4.7573785E+00        | +8.5347990E+01 | +6.9609985E+01 | +8.1055007E+01  |
| 20.0            | 11                     | +8.2459935E+01 | +2.8942507E+00        | +8.4519989E+01 | +7.6399993E+01 | +8.1088485E+01  |
| 21.0            | 8                      | +7.0319961E+01 | +3.1365726E+00        | +7.4599990E+01 | +6.7C99990E+01 | +8.1121978E+01  |
| 22.0            | 5                      | +8.8819915E+01 | +1.9780267E+00        | +9.1099990E+01 | +8.6599990E+01 | +8.1155456E+01  |
| 23.0            | 5                      | +7.8579956E+01 | +1.7070925E+00        | +8.1020000E+01 | +7.7000000E+01 | +8.1188934E+01  |
| 24.0            | 4                      | +7.8815780E+01 | +6.2413797E+00        | +8.6809997E+01 | +6.8919998E+01 | +8.1222427E+01  |
| 25.0            | 17                     | +7.6367828E+01 | +6.7313489E+00        | +9.0109985E+01 | +6.7829986E+01 | +8.1255905E+01  |
| 26.0            | 19                     | +8.5735748E+01 | +5.5102726E+00        | +9.5399993E+01 | +7.4659988E+01 | +8.12899382E+01 |
| 27.0            | 12                     | +8.8666580E+01 | +6.9666927E+00        | +1.0629998E+02 | +7.5599990E+01 | +8.1322875E+01  |
| 28.0            | 15                     | +8.3499938E+01 | +2.7735915E+00        | +8.5899993E+01 | +7.9199996E+01 | +8.13899831E+01 |
| 29.0            | 5                      | +8.1073699E+01 | +4.1918954E+00        | +8.6799987E+01 | +7.5000000E+01 | +8.1456802E+01  |
| 30.0            | 9                      | +8.3916351E+01 | +6.9854960E+00        | +9.2899993E+01 | +6.8089996E+01 | +8.1490280E+01  |
| 31.0            | 11                     | +7.6564468E+01 | +3.5355466E+00        | +8.3009994E+01 | +7.1500000E+01 | +8.1523757E+01  |
| 32.0            | 14                     | +8.3602981E+01 | +3.5570796E+00        | +8.7019989E+01 | +7.5599990E+01 | +8.1557250E+01  |
| 33.0            | 14                     | +8.3181167E+01 | +7.0837174E+00        | +9.0599990E+01 | +6.6329986E+01 | +8.1590728E+01  |
| 34.0            | 13                     | +8.1827178E+01 | +5.3529492E+00        | +8.8199996E+01 | +7.0199996E+01 | +8.1624206E+01  |
| 35.0            | 16                     | +8.1428477E+01 | +4.5859325E+00        | +8.7394993E+01 | +6.9919938E+01 | +8.1657699E+01  |
| 36.0            | 11                     | +8.3766601E+01 | +1.5027382E+00        | +9.5000000E+01 | +9.2099990E+01 | +8.1691177E+01  |
| 37.0            | 14                     | +8.5189910E+01 | +6.10466924E+00       | +9.2000000E+01 | +7.5239990E+01 | +8.1724655E+01  |
| 38.0            | 3                      | +9.2239990E+01 | +0.0000000E+95        | +9.2239990E+01 | +7.9C00000E+01 | +8.1791625E+01  |
| 39.0            | 10                     | +8.5189910E+01 | +6.8680821E+00        | +8.7899993E+01 | +6.1500000E+01 | +8.1825103E+01  |
| 40.0            | 3                      | +7.9809997E+01 | +1.0521318E+00        | +8.1000000E+01 | +7.9C00000E+01 | +8.1858581E+01  |
| 42.0            | 3                      | +9.2239990E+01 | +0.0000000E+95        | +9.2239990E+01 | +9.2239990E+01 | +8.18792074E+01 |
| 43.0            | 1                      | +7.7590545E+01 | +6.8680821E+00        | +8.3799987E+01 | +6.6799987E+01 | +8.1925552E+01  |
| 44.0            | 15                     | +7.6226562E+01 | +5.3317113E+00        | +8.6199996E+01 | +7.3799987E+01 | +8.1926000E+01  |
| 45.0            | 15                     | +7.9643264E+01 | +3.4158146E+00        | +9.7269989E+01 | +6.3199996E+01 | +8.2026000E+01  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(YRS TH.S) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIAITION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-------------------|------------------------|----------------|------------------------|----------------|----------------|-----------------|
| 50.0              | 19                     | +7.981253E+01  | +7.8606442E+00         | +9.2399942E+01 | +6.5899993E+01 | +8.2059478E+01  |
| 51.0              | 25                     | +8.5123901E+01 | +5.1524250F+00         | +9.6039993E+01 | +7.7199996E+01 | +8.2092971E+01  |
| 52.0              | 14                     | +8.1936325E+01 | +6.2075534E+00         | +9.5799987E+01 | +6.5799987E+01 | +8.2126449E+01  |
| 53.0              | 3                      | +8.7699951E+01 | +6.3713036E+00         | +9.5039993E+01 | +8.3609985E+01 | +8.2159927E+01  |
| 54.0              | 3                      | +7.0766662E+01 | +1.0366433E+01         | +7.700000E+01  | +5.8799987E+01 | +8.2193420E+01  |
| 55.0              | 24                     | +8.3546138E+01 | +5.0205792E+00         | +9.5699996E+01 | +7.6699996E+01 | +8.226898E+01   |
| 56.0              | 40                     | +7.9875137E+01 | +5.1723536E+00         | +9.1399993E+01 | +6.6669998E+01 | +8.2260375E+01  |
| 57.0              | 43                     | +7.8967117E+01 | +6.4682591E+00         | +8.9699996E+01 | +6.9500000E+01 | +8.2293869E+01  |
| 58.0              | 23                     | +8.5711639E+01 | +5.9182130E+00         | +9.5000000E+01 | +7.2869995E+01 | +8.2327346E+01  |
| 59.0              | 9                      | +8.9344360E+01 | +3.9764250E+00         | +9.6199996E+01 | +8.4500000E+01 | +8.2360824E+01  |
| 61.0              | 9                      | +8.0888778E+01 | +1.4535365E+01         | +9.4000000E+01 | +6.1199996E+01 | +8.2427795E+01  |
| 62.0              | 17                     | +8.6275756E+01 | +7.6034459E+00         | +9.5599990E+01 | +7.0049987E+01 | +8.2461273E+01  |
| 63.0              | 30                     | +8.8283569E+01 | +6.3571462E+00         | +9.8599990E+01 | +7.4000000E+01 | +8.2494750E+01  |
| 64.0              | 7                      | +8.6877044E+01 | +8.5737566E+00         | +9.7799987E+01 | +7.4569992E+01 | +8.2528244E+01  |
| 65.0              | 10                     | +8.4559936E+01 | +3.8951016E+00         | +8.9199996E+01 | +7.7059990E+01 | +8.2561721E+01  |
| 66.0              | 15                     | +9.7366561E+01 | +6.2128529F+00         | +1.0559999E+02 | +8.6599990E+01 | +8.2595199E+01  |
| 67.0              | 0                      | +8.7310607E+01 | +7.4849522E+00         | +9.7500000E+01 | +7.4299987E+01 | +8.2628692E+01  |
| 68.0              | 20                     | +8.4189926E+01 | +8.3661801E+00         | +1.0029998E+02 | +6.1399993E+01 | +8.26662170E+01 |
| 69.0              | 7                      | +8.1732757E+01 | +3.5895836E+00         | +8.6599990E+01 | +7.6539993E+01 | +8.2695648E+01  |
| 70.0              | 23                     | +7.7684906E+01 | +8.8956704E+00         | +9.3599990E+01 | +6.6099990E+01 | +8.27229141E+01 |
| 71.0              | 23                     | +8.1577138E+01 | +1.2698729E+01         | +1.0539999E+02 | +6.8399993E+01 | +8.2762619E+01  |
| 72.0              | 17                     | +8.4554580E+01 | +4.7326721E+00         | +9.4279998E+01 | +7.7379998E+01 | +8.2796096E+01  |
| 73.0              | 11                     | +4.7589904E+01 | +5.6764808E+00         | +3.6500000E+01 | +7.7399993E+01 | +8.2829589E+01  |
| 74.0              | 5                      | +8.5013912E+01 | +3.2135109E+00         | +8.7299987E+01 | +8.1599990E+01 | +8.2863067E+01  |
| 75.0              | 10                     | +8.8879929E+01 | +7.0416618E+00         | +1.0250000F+02 | +8.1899993E+01 | +8.2896545E+01  |
| 76.0              | 3                      | +8.0949951E+01 | +4.5146011E+00         | +8.9500000E+01 | +7.5399993E+01 | +8.2930023E+01  |
| 77.0              | 12                     | +8.7608230E+01 | +4.2279051E+00         | +9.6299987E+01 | +8.1599990E+01 | +8.2963516E+01  |
| 78.0              | 16                     | +8.4507431E+01 | +3.8721708E+00         | +8.9899993E+01 | +7.5369995E+01 | +8.2996994E+01  |
| 79.0              | 12                     | +9.2342407E+01 | +1.3520801E+01         | +1.0729998E+02 | +7.5119995E+01 | +8.3030471E+01  |
| 80.0              | 18                     | +8.0212681E+01 | +6.6669509E+00         | +8.9399993E+01 | +7.0269998E+01 | +8.3063964E+01  |
| 81.0              | 10                     | +7.4216888E+01 | +7.8909002E+00         | +8.4119995E+01 | +5.5299987E+01 | +8.3097442E+01  |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|-----------------|----------------|-----------------|
| 82.0            | 12                     | +9.3249893E+01 | +5.3100063E+00        | +9.8599990E+01  | +8.1399993E+01 | +8.3130920E+01  |
| 83.0            | 12                     | +8.6787384E+01 | +4.1935121E+00        | +9.46659988E+01 | +7.7599990E+01 | +8.3164413E+01  |
| 84.0            | 24                     | +8.8729888E+01 | +7.0102647E+00        | +1.0600000E+02  | +7.9209991E+01 | +8.3197891E+01  |
| 85.0            | 12                     | +8.3169876E+01 | +9.1552288E+00        | +9.4099990E+01  | +6.4239990E+01 | +8.3231369E+01  |
| 86.0            | 9                      | +7.5021011E+01 | +4.6528383E+00        | +8.4899993E+01  | +6.9799987E+01 | +8.3264862E+01  |
| 87.0            | 19                     | +8.3685211E+01 | +6.5969502E+00        | +9.7539993E+01  | +7.3199996E+01 | +8.3298339E+01  |
| 88.0            | 25                     | +8.3972702E+01 | +7.7686135E+00        | +9.7519989E+01  | +6.8829986E+01 | +8.3331817E+01  |
| 89.0            | 13                     | +8.5132169E+01 | +6.3294807E+00        | +9.5329986E+01  | +7.4679992E+01 | +8.3365295E+01  |
| 91.0            | 2                      | +7.4500030E+01 | +7.0710678E-01        | +7.5000000E+01  | +7.4000000E+01 | +8.3432266E+01  |
| 92.0            | 7                      | +7.4525665E+01 | +4.6426899E+00        | +7.7979995E+01  | +6.4739990E+01 | +8.3465744E+01  |
| 93.0            | 10                     | +8.5220916E+01 | +6.4264478E+00        | +9.3049987E+01  | +7.4979995E+01 | +8.3499237E+01  |
| 94.0            | 4                      | +7.7774963E+01 | +7.9545742E+00        | +8.6199996E+01  | +6.9799987E+01 | +8.3532714E+01  |
| 95.0            | 5                      | +8.2637939E+01 | +4.5410274E+00        | +8.9500000E+01  | +7.6819992E+01 | +8.3566192E+01  |
| 96.0            | 5                      | +9.1609954E+01 | +4.0274052E+00        | +9.6500000E+01  | +8.6939987E+01 | +8.35999685E+01 |
| 99.0            | 4                      | +8.4627441E+01 | +7.0610128E+00        | +9.3000000E+01  | +7.7009994E+01 | +8.3700134E+01  |
| 100.0           | 2                      | +8.6500000E+01 | +1.2020815E+01        | +9.5000000E+01  | +7.9000000E+01 | +8.3733612E+01  |
| 101.0           | 2                      | +8.7304992E+01 | +9.3408097E+00        | +9.3909988E+01  | +8.0699996E+01 | +8.3767089E+01  |
| 103.0           | 2                      | +8.8000000E+01 | +2.8284271E+00        | +9.0000000E+01  | +8.6000000E+01 | +8.3834060E+01  |
| 104.0           | 2                      | +8.8804992E+01 | +1.6053100E+00        | +8.9939987E+01  | +8.7669998E+01 | +8.3867538E+01  |
| 105.0           | 9                      | +8.6852157E+01 | +6.4330381E+00        | +9.7579986E+01  | +7.8539993E+01 | +8.3901016E+01  |
| 106.0           | 9                      | +7.3585464E+01 | +8.6625471E+00        | +8.7309997E+01  | +6.2679992E+01 | +8.3934509E+01  |
| 108.0           | 3                      | +7.3999984E+01 | +2.0884523F+00        | +7.5969985E+01  | +7.1809997E+01 | +8.4001464E+01  |
| 129.0           | 5                      | +7.6671920E+01 | +2.3890627E+00        | +7.9459991E+01  | +7.2979995E+01 | +8.4034957E+01  |
| 110.0           | 11                     | +7.6852645E+01 | +8.0280570E+00        | +9.2299987E+01  | +6.5479995E+01 | +8.4068435E+01  |
| 111.0           | 5                      | +7.4815963E+01 | +6.3961829E+00        | +8.3419998E+01  | +6.7479995E+01 | +8.4101913E+01  |
| 112.0           | 6                      | +8.4594924E+01 | +1.1615481E+01        | +1.0252999E+02  | +7.2969985E+01 | +8.4135406E+01  |
| 113.0           | 9                      | +6.9286529E+01 | +8.9053441E+00        | +7.7750000E+01  | +4.8799987E+01 | +8.4168884E+01  |
| 114.0           | 3                      | +7.6633331E+01 | +9.1038266E+00        | +8.4199996E+01  | +6.6529998E+01 | +8.4202362E+01  |
| 115.0           | 3                      | +8.5049987E+01 | +4.1254758E+00        | +8.9639999E+01  | +8.1649993E+01 | +8.4235855E+01  |
| 116.0           | 6                      | +8.2041534E+01 | +6.1798626E+00        | +9.2209991E+01  | +7.5779998E+01 | +8.4269332E+01  |
| 117.0           | 3                      | +7.5339996E+01 | +4.9971951E+00        | +7.9279996E+01  | +6.3569992E+01 | +8.4302810E+01  |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| TEST NUMBER | SPECIMEN PERIOD | MEAN Y         | STANDARD DEVIATION | REGRESSION Y   |                |
|-------------|-----------------|----------------|--------------------|----------------|----------------|
|             |                 |                |                    | MAXIMUM Y      | MINIMUM Y      |
| 122.0       | 3               | +8.4193313E+01 | +6.6314665E+00     | +8.8709991E+01 | +7.6579986E+01 |
| 123.0       | 9               | +8.6126571E+01 | +7.4528330E+00     | +9.4019989E+01 | +7.409990E+01  |
| 124.0       | 6               | +8.3243240E+01 | +7.2501275E+00     | +9.1979995E+01 | +7.3059797E+01 |
| 126.0       | 6               | +7.3171585E+01 | +1.2381426E+01     | +9.1099990E+01 | +5.9250000E+01 |
| 127.0       | 3               | +9.3996584E+01 | +3.3926286E+00     | +9.3039993E+01 | +8.6389999E+01 |
| 131.0       | 8               | +8.7409912E+01 | +6.1024950E+00     | +9.5909988E+01 | +7.8309997E+01 |
| 132.0       | 1               | +9.3679992E+01 | +0.0000000E+87     | +9.3679992E+01 | +9.3679992E+01 |

ANR 3066 PROPELLANT (ANB, P) TENSILE MAX STRESS, .00002 IN/MIN, UNLND CTNS, 77 D

$\gamma = (+1.6194665E-01) + (+2.3497448E-04) \gamma$   
 $F = 2560177E+01$  SIGNIFICANCE OF  $F =$  SIGNIFICANT  
 $R = +2.1244545E-01$  SIGNIFICANCE OF  $R =$  SIGNIFICANT  
 $r = +7.2498398E+00$  SIGNIFICANCE OF  $r =$  SIGNIFICANT  
 $N = 1114$  DEGREES OF FREEDOM = 1112  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



ANS 3066 PROPELLANT (ANB, P) TENSILE STN • RUP, .0002 IN/MIN, UNLNO CTNS, 77 OG  
Figure 4-11

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>DEP. GR/UP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|-------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 7                       | +1.8035697E-01  | +1.0419620E-02        | +1.9399934E-01 | +1.6829997E-01 | +1.6500127E-01 |
| 15.0            | 10                      | +1.7799767E-01  | +1.9795903E-02        | +2.0599997E-01 | +1.5199995E-01 | +1.6547125E-01 |
| 16.0            | 17                      | +2.0281732E-01  | +1.3676098E-02        | +2.2399997E-01 | +1.7899996E-01 | +1.6570621E-01 |
| 17.0            | 13                      | +1.7459970E-01  | +1.1763822E-02        | +1.9339994E-01 | +1.4559997E-01 | +1.6594117E-01 |
| 18.0            | 12                      | +1.6291642E-01  | +2.2963534E-02        | +1.9399994E-01 | +1.2689995E-01 | +1.6617614E-01 |
| 19.0            | 6                       | +1.5988326E-01  | +2.4644519E-02        | +1.9539997E-01 | +1.3329994E-01 | +1.6641116E-01 |
| 20.0            | 11                      | +1.4759981E-01  | +1.1039369E-02        | +1.7199996E-01 | +1.2559998E-01 | +1.6664612E-01 |
| 21.0            | 8                       | +1.7409980E-01  | +3.4463648E-02        | +2.0779994E-01 | +1.2399995E-01 | +1.6688108E-01 |
| 22.0            | 5                       | +1.61119992E-01 | +1.5465863E-02        | +1.7199998E-01 | +1.3339994E-01 | +1.6711604E-01 |
| 23.0            | 5                       | +1.5699994E-01  | +3.3157719E-03        | +1.6199994E-01 | +1.5299999E-01 | +1.6735100E-01 |
| 24.0            | 4                       | +1.6859996E-01  | +2.2947752E-02        | +1.9739997E-01 | +1.4199995E-01 | +1.6758602E-01 |
| 25.0            | 17                      | +1.6405260E-01  | +1.7813899E-02        | +1.9759994E-01 | +1.4399999E-01 | +1.6782099E-01 |
| 26.0            | 19                      | +1.7675751E-01  | +1.8749113E-02        | +2.1999996E-01 | +1.4799994E-01 | +1.6805595E-01 |
| 27.0            | 12                      | +1.6594123E-01  | +1.6077155E-02        | +1.9889998E-01 | +1.4959996E-01 | +1.6829091E-01 |
| 28.0            | 15                      | +1.8013298E-01  | +1.8278059E-02        | +2.0999997E-01 | +1.4799994E-01 | +1.6852593E-01 |
| 30.0            | 5                       | +1.6679996E-01  | +1.3006875E-02        | +1.8399995E-01 | +1.4599997E-01 | +1.6899958E-01 |
| 32.0            | 8                       | +1.7372465E-01  | +1.0905742E-02        | +1.8899995E-01 | +1.5599996E-01 | +1.6946578E-01 |
| 33.0            | 14                      | +1.7472821E-01  | +1.9605620E-02        | +2.0869994E-01 | +1.4799994E-01 | +1.6970080E-01 |
| 34.0            | 11                      | +1.8729978E-01  | +1.5596287E-02        | +2.199995E-01  | +1.5799999E-01 | +1.6993576E-01 |
| 35.0            | 13                      | +1.7193043E-01  | +1.7216866E-02        | +2.0479995E-01 | +1.3759994E-01 | +1.7017072E-01 |
| 36.0            | 16                      | +1.7404347E-01  | +2.5574491E-02        | +2.1409994E-01 | +1.4499998E-01 | +1.7040568E-01 |
| 37.0            | 11                      | +1.6372692E-01  | +2.3581599E-02        | +2.199995E-01  | +1.2999999E-01 | +1.7064070E-01 |
| 38.0            | 14                      | +1.8553531E-01  | +1.7675440E-02        | +2.1399998E-01 | +1.5299998E-01 | +1.7087566E-01 |
| 39.0            | 3                       | +1.4733326E-01  | +1.7473590E-02        | +1.6199994E-01 | +1.2799996E-01 | +1.7111063E-01 |
| 40.0            | 10                      | +1.5745979E-01  | +2.9717533E-02        | +1.9999998E-01 | +1.1799997E-01 | +1.7134559E-01 |
| 42.0            | 3                       | +1.9599992E-01  | +1.9998497E-03        | +1.9799995E-01 | +1.9399994E-01 | +1.7181557E-01 |
| 43.0            | 1                       | +1.5839999E-01  | +0.0000000E+95        | +1.5839999E-01 | +1.5839999E-01 | +1.7205053E-01 |
| 44.0            | 15                      | +1.5086638E-01  | +2.2934212E-02        | +1.9679999E-01 | +1.1399996E-01 | +1.7228549E-01 |
| 45.0            | 15                      | +1.5865302E-01  | +2.0422699E-02        | +1.9399994E-01 | +1.2500000E-01 | +1.7252045E-01 |
| 46.0            | 15                      | +1.7422634E-01  | +2.0129375E-02        | +2.0239996E-01 | +1.4199995E-01 | +1.7275542E-01 |
| 47.0            | 11                      | +1.6140864E-01  | +2.5069977E-02        | +1.9999998E-01 | +1.1399996E-01 | +1.7346036E-01 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|-----------------|
| 50.0            | 19                     | +1.5196287E-01  | +3.5636181E-02        | +2.2399997E-01 | +1.0399997E-01 | +1.7369532E-01  |
| 51.0            | 25                     | +1.4199161E-01  | +3.3699536E-02        | +2.0599997E-01 | +9.9999964E-02 | +1.7393034E-01  |
| 52.0            | 14                     | +1.6235691E-01  | +2.7909862E-02        | +2.1959996E-01 | +1.2199997E-01 | +1.716530E-01   |
| 53.0            | 3                      | +1.7759996E-01  | +2.3422542E-02        | +2.0039999E-01 | +1.5359997E-01 | +1.7440026E-01  |
| 54.0            | 3                      | +1.6666662E-01  | +2.1385195E-02        | +1.7999994E-01 | +1.4199995E-01 | +1.7463523E-01  |
| 55.0            | 26                     | +1.8208414E-01  | +2.5043145E-02        | +2.2199994E-01 | +1.2399995E-01 | +1.7487019E-01  |
| 56.0            | 40                     | +1.7675703E-01  | +2.5061506E-02        | +2.3299998E-01 | +1.0999995E-01 | +1.7510521E-01  |
| 57.0            | 43                     | +1.73599948E-01 | +2.0755595E-02        | +2.0799994E-01 | +1.2719994E-01 | +1.7534017E-01  |
| 58.0            | 23                     | +1.7020827E-01  | +2.0157373E-02        | +2.0999997E-01 | +1.2799996E-01 | +1.7557513E-01  |
| 59.0            | 9                      | +1.8065638E-01  | +1.2493528E-02        | +1.9399994E-01 | +1.6199994E-01 | +1.7581009E-01  |
| 61.0            | 9                      | +1.50666629E-01 | +2.9151734E-02        | +1.8799996E-01 | +1.0999995E-01 | +1.7628008E-01  |
| 62.0            | 17                     | +1.8711721E-01  | +3.4398832E-02        | +2.3179996E-01 | +1.0999995E-01 | +1.7651504E-01  |
| 63.0            | 30                     | +1.7414629E-01  | +2.78924662E-02       | +2.3399996E-01 | +1.3119995E-01 | +1.7675000E-01  |
| 64.0            | 7                      | +1.8959981E-01  | +2.2439954E-02        | +2.2799994E-01 | +1.4319998E-01 | +1.7698496E-01  |
| 65.0            | 10                     | +1.97599976E-01 | +2.9103099E-02        | +2.5000000E-01 | +1.6399997E-01 | +1.7721998E-01  |
| 66.0            | 15                     | +1.7826622E-01  | +3.8158148E-02        | +2.3599994E-01 | +1.2599999E-01 | +1.7745494E-01  |
| 67.0            | 28                     | +1.5260678E-01  | +3.4945827E-02        | +2.1999996E-01 | +1.0799998E-01 | +1.7768990E-01  |
| 68.0            | 20                     | +1.7489969E-01  | +4.220750E-02         | +2.5999999E-01 | +1.1999994E-01 | +1.7792487E-01  |
| 69.0            | 7                      | +1.8965703E-01  | +2.0836405E-02        | +2.2399997E-01 | +1.5799999E-01 | +1.7815983E-01  |
| 70.0            | 20                     | +1.8498951E-01  | +2.6880412E-02        | +2.6199996E-01 | +1.2199997E-01 | +1.7839485E-01  |
| 71.0            | 23                     | +1.8265181E-01  | +3.5193766E-02        | +2.5399994E-01 | +1.0599994E-01 | +1.7862981E-01  |
| 72.0            | 17                     | +1.7228782E-01  | +1.6290688E-02        | +1.9749999E-01 | +1.4329999E-01 | +1.7886477E-01  |
| 73.0            | 10                     | +1.6599977E-01  | +2.2382434E-02        | +1.9199997E-01 | +1.1399996E-01 | +1.79099973E-01 |
| 74.0            | 5                      | +1.8519997E-01  | +1.5974771E-02        | +2.0599997E-01 | +1.6799998E-01 | +1.7933475E-01  |
| 75.0            | 10                     | +1.88999965E-01 | +2.5022222E-02        | +2.2199994E-01 | +1.3599998E-01 | +1.7956972E-01  |
| 76.0            | 8                      | +1.8387472E-01  | +1.0859271E-02        | +2.0299994E-01 | +1.6599995E-01 | +1.7980468E-01  |
| 77.0            | 12                     | +2.0049965E-01  | +2.3405736E-02        | +2.4599999E-01 | +1.6599994E-01 | +1.8003964E-01  |
| 78.0            | 16                     | +1.9194972E-01  | +2.3570380E-02        | +2.3299998E-01 | +1.4789998E-01 | +1.8027460E-01  |
| 79.0            | 12                     | +1.7348295E-01  | +2.7154934E-02        | +2.2299998E-01 | +1.2999999E-01 | +1.8050962E-01  |
| 80.0            | 18                     | +1.6902184E-01  | +2.6831849E-02        | +2.1599996E-01 | +1.2189996E-01 | +1.8074458E-01  |
| 81.0            | 10                     | +1.6867971E-01  | +3.4961165E-02        | +2.1599996E-01 | +1.1099994E-01 | +1.8097954E-01  |

4-40

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|----------------|-----------------|-----------------|
|                 |                        |                 |                       |                |                 | +1.9016635E-01  |
| 82.0            | 12                     | +1.9016635E-01  | +2.13169088E-02       | +2.3999994E-01 | +1.6469997E-01  | +1.8144953E-01  |
| 83.0            | 12                     | +2.0805799E-01  | +2.4828079F-02        | +2.5089997E-01 | +1.5799999E-01  | +1.8168449E-01  |
| 84.0            | 24                     | +1.9029540E-01  | +2.4828079F-02        | +2.0999997E-01 | +1.4599336E-01  | +1.8191945E-01  |
| 85.0            | 12                     | +1.9234955E-01  | +1.8855970E-02        | +1.9599997E-01 | +1.4799994E-01  | +1.8215441E-01  |
| 86.0            | 9                      | +1.7956638E-01  | +1.6055650F-02        | +2.6999998E-01 | +1.1279994E-01  | +1.8238937E-01  |
| 87.0            | 19                     | +1.8304163E-01  | +3.9073263F-02        | +1.9359999E-01 | +1.4959996E-01  | +1.8356424E-01  |
| 88.0            | 25                     | +1.8446356E-01  | +3.6339346E-02        | +2.6699995E-01 | +8.5199952E-02  | +1.8262439E-01  |
| 89.0            | 13                     | +1.7617672E-01  | +2.4117101E-02        | +2.3039996E-01 | +1.2699997E-01  | +1.8285936E-01  |
| 91.0            | 2                      | +1.8549996E-01  | +1.4848543E-02        | +1.9599997E-01 | +1.7499995E-01  | +1.8332928E-01  |
| 92.0            | 7                      | +1.80399989E-01 | +1.5428788E-02        | +1.9359999E-01 | +1.4959996E-01  | +1.8356424E-01  |
| 93.0            | 10                     | +2.0571964E-01  | +3.5314323E-02        | +2.8319996E-01 | +1.6799998E-01  | +1.83799926E-01 |
| 94.0            | 4                      | +2.0544993E-01  | +3.5150674E-02        | +2.2799998E-01 | +1.5299999E-01  | +1.8403422E-01  |
| 95.0            | 5                      | +1.5891993E-01  | +1.4021155E-02        | +1.7299997E-01 | +1.4039999E-01  | +1.8426918E-01  |
| 96.0            | 5                      | +1.8011993E-01  | +2.4303308E-02        | +2.1299999E-01 | +1.5279996E-01  | +1.8450415E-01  |
| 99.0            | 4                      | +2.0464992E-01  | +3.30999953E-02       | +2.4159997E-01 | +1.68999996E-01 | +1.8520909E-01  |
| 100.0           | 2                      | +1.95999997E-01 | +5.2326007E-02        | +2.3299999E-01 | +1.5899997E-01  | +1.8544405E-01  |
| 101.0           | 2                      | +1.8079996E-01  | +3.0546591E-02        | +2.0239996E-01 | +1.5919995E-01  | +1.8567901E-01  |
| 103.0           | 2                      | +2.0249992E-01  | +1.9091691E-02        | +2.1599996E-01 | +1.8899995E-01  | +1.8614903E-01  |
| 104.0           | 2                      | +1.6639995E-01  | +1.1430024E-03        | +1.6719996E-01 | +1.6559994E-01  | +1.8638396E-01  |
| 105.0           | 9                      | +1.8013304E-01  | +2.7896107E-02        | +2.2199994E-01 | +1.3679999E-01  | +1.8661892E-01  |
| 106.0           | 9                      | +1.6682195E-01  | +5.4799081E-02        | +2.5269997E-01 | +9.32999984E-02 | +1.8685394E-01  |
| 108.0           | 3                      | +1.64699997E-01 | +9.9225311E-03        | +1.7639995E-01 | +1.5799999F-01  | +1.8732386E-01  |
| 109.0           | 5                      | +1.7753396E-01  | +1.4257707E-02        | +1.9599997E-01 | +1.5999996E-01  | +1.8755882E-01  |
| 110.0           | 11                     | +1.7871787E-01  | +3.2342236E-02        | +2.5779998E-01 | +1.6239994E-01  | +1.8779379E-01  |
| 111.0           | 5                      | +1.5747994E-01  | +4.1513829E-02        | +2.2999998E-01 | +1.1C69995E-01  | +1.8802881E-01  |
| 112.0           | 6                      | +1.9066649E-01  | +5.4617228E-02        | +2.5219994E-01 | +1.1819994E-01  | +1.8826377E-01  |
| 113.0           | 0                      | +1.4561098E-01  | +5.4226581E-02        | +2.5099998E-01 | +8.1599957E-02  | +1.8849873E-01  |
| 114.0           | 3                      | +1.8499994E-01  | +4.8507453E-02        | +2.3299998F-01 | +1.3599997E-01  | +1.8873369E-01  |
| 115.0           | 3                      | +2.3976659E-01  | +2.2210892E-02        | +2.5999999E-01 | +2.1599996E-01  | +1.8896865E-01  |
| 116.0           | 6                      | +2.25699972E-01 | +1.5951211E-02        | +2.4799995E-01 | +2.0439994E-01  | +1.8920367E-01  |
| 117.0           | 3                      | +1.8179994E-01  | +3.9222634E-03        | +1.8449997E-01 | +1.7729997E-01  | +1.8943864E-01  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 122.0           | 3                      | +2.0399993E-01 | +2.9430655E-02        | +2.3629979E-01 | +1.7869997E-01 | +1.9061350E-01 |
| 123.0           | 9                      | +2.0031088E-01 | +3.1968413E-02        | +2.5359994E-01 | +1.6199994E-01 | +1.9084846E-01 |
| 124.0           | 6                      | +2.0064973E-01 | +2.7934156E-02        | +2.3499995E-01 | +1.5599995E-01 | +1.9108343E-01 |
| 126.0           | 6                      | +2.2331649E-01 | +5.0069649E-02        | +2.8999997E-01 | +1.5469998E-01 | +1.9155341E-01 |
| 127.0           | 3                      | +1.6163331E-01 | +3.0679355E-02        | +1.8419998E-01 | +1.2669998E-01 | +1.9178837E-01 |
| 131.0           | 8                      | +2.0136237E-01 | +2.3453117E-02        | +2.3829996E-01 | +1.7099994E-01 | +1.9272828E-01 |
| 132.0           | 1                      | +1.4789996E-01 | +0.0000000E+87        | +1.4789998E-01 | +1.4789998E-01 | +1.9296324E-01 |

ANB 3066 PROPELLANT (AN3, P) TENSILE STN @ RUP, .00032 IN/MIN, UNLND CTNS, 77 DG

$F = +5.9771928E+00$   
 $R = -7.315204CE-02$   
 $C = +2.4448298E+00$   
 $N = 1113$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $F = +6.0451974E+02$   
 $R = \text{SIGNIFICANT}$   
 $C = \text{SIGNIFICANT}$   
 $N = 1111$   
 $\text{DEGREES OF FREEDOM} = 1111$   
 $\text{TEST CONDITIONS} = 77 \text{ DEG F, AMB RH}$



ANB 3066 PROPELLANT (AMB, P) TENSILE MODULUS, .0002 IN/MIN, UNLND CTNS, 77 DEG  
Figure 4-12

| AGE AT TEST (YEARS) | 10.00 | 12.00 | 14.00 | 16.00 |
|---------------------|-------|-------|-------|-------|
|                     |       |       |       |       |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(YEARS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0           | 7                      | +4.7828564E+02  | +3.2273385E+01        | +5.1200000E+02 | +4.3200000E+02 | +5.9997387E+02 |
| 15.0           | 10                     | +5.6939900E+02  | +6.7163482E+01        | +6.7300000E+02 | +4.9100000E+02 | +5.927441E+02  |
| 16.0           | 17                     | +4.7517626E+02  | +6.2643071E+01        | +6.2900000F+02 | +4.0800000E+02 | +5.9892480E+02 |
| 17.0           | 13                     | +5.3538452E+02  | +6.7632017E+01        | +7.1300000E+02 | +4.4100000E+02 | +5.9857519E+02 |
| 18.0           | 12                     | +5.2791650E+02  | +9.3672018E+01        | +7.1900000E+02 | +4.2000000E+02 | +5.9822558E+02 |
| 19.0           | 6                      | +5.8566650E+02  | +8.2814652E+01        | +6.7300000E+02 | +4.7100000E+02 | +5.9787573E+02 |
| 20.0           | 11                     | +6.4618164E+02  | +7.0118211E+01        | +8.1400000E+02 | +5.6100000E+02 | +5.9752612E+02 |
| 21.0           | 8                      | +6.3187500E+02  | +1.1014973E+02        | +7.9500000E+02 | +5.3900000E+02 | +5.9717651E+02 |
| 22.0           | 5                      | +5.4939990E+02  | +6.1561351E+01        | +6.5800000E+02 | +5.1100000E+02 | +5.9682690E+02 |
| 23.0           | 4                      | +6.3219995E+02  | +2.3562682E+01        | +7.9700000E+02 | +6.5300000E+02 | +5.9647705E+02 |
| 24.0           | 4                      | +5.4525000E+02  | +6.7009327E+01        | +6.4400000E+02 | +4.9500000E+02 | +5.9612744E+02 |
| 25.0           | 17                     | +5.7617626E+02  | +8.8794872E+01        | +6.8000000E+02 | +4.3700000E+02 | +5.9577783E+02 |
| 26.0           | 19                     | +5.3226293E+02  | +7.3550316E+01        | +6.7500000E+02 | +4.1800000E+02 | +5.9542797E+02 |
| 27.0           | 12                     | +6.2358325E+02  | +7.1461952E+01        | +7.6000000E+02 | +5.2200000E+02 | +5.9507836E+02 |
| 28.0           | 15                     | +6.0806665E+02  | +6.1700273E+01        | +6.9300000E+02 | +4.7000000E+02 | +5.9472875E+02 |
| 29.0           | 5                      | +6.9439990E+02  | +6.0583000E+01        | +7.0700000E+02 | +5.4700000E+02 | +5.9402929E+02 |
| 30.0           | 8                      | +5.3337500E+02  | +6.0681692E+01        | +6.3000000E+02 | +4.8000000E+02 | +5.9333007E+02 |
| 32.0           | 8                      | +5.8464282E+02  | +9.13666217E+01       | +7.3600000E+02 | +4.7400000E+02 | +5.9298046E+02 |
| 33.0           | 14                     | +4.9118164E+02  | +7.3316871E+01        | +5.9400000E+02 | +4.0000000E+02 | +5.9263061E+02 |
| 34.0           | 11                     | +7.07398452E+02 | +2.4201295E+C2        | +1.3240000E+03 | +5.1200000E+02 | +5.9228100E+02 |
| 35.0           | 13                     | +5.9518750E+02  | +1.0736741E+02        | +7.4600000E+02 | +4.1300000E+02 | +5.9193139E+02 |
| 36.0           | 16                     | +6.1172705E+02  | +1.1863228E+02        | +7.7300000E+02 | +4.2000000E+02 | +5.9158178E+02 |
| 37.0           | 11                     | +5.4692846E+02  | +7.6734772E+01        | +6.5700000E+02 | +3.7500000E+02 | +5.9123193E+02 |
| 38.0           | 14                     | +7.6600000E+02  | +9.3952115E+01        | +8.7200000E+02 | +6.9300000E+02 | +5.9088232E+02 |
| 39.0           | 3                      | +8.2050000E+02  | +2.0155570E+02        | +1.2130000E+03 | +4.8400000E+02 | +5.9053271E+02 |
| 40.0           | 10                     | +5.3633325E+02  | +2.8205951E+01        | +5.5303000F+02 | +5.0400000E+02 | +5.8983325E+02 |
| 42.0           | 3                      | +7.1600000E+02  | +0.0000000E+95        | +7.1600000E+02 | +7.1600000E+02 | +5.8948364E+02 |
| 43.0           | 1                      | +6.8813330E+02  | +1.2922232E+02        | +9.6600000E+02 | +4.5800000E+02 | +5.8913403E+02 |
| 44.0           | 15                     | +5.8079780E+02  | +9.4888807E+01        | +7.5200000E+02 | +4.5500000E+02 | +5.8878417E+02 |
| 45.0           | 15                     | +5.5059985E+02  | +4.5257674E+01        | +6.2200000E+02 | +4.8500000E+02 | +5.8843457E+02 |
| 46.0           | 15                     | +5.7918164E+02  | +1.3826772E+02        | +8.0500000E+02 | +4.1700000E+02 | +5.8738549E+02 |

ANB 3066 PROPYLENIC (ANB, PI) TENSILE MODULUS, .0002 IN/MIN., UNLND CTNS, 77 DEC

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| ACT<br>(MONTHS) | DEG GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y   |
|-----------------|-----------|----------------|-----------------------|----------------|-----------------|----------------|
| 50.0            | 19        | +6.3921044E+02 | +1.6296167E+02        | +9.4290000E+02 | +4.0CC0000E+02  | +5.8703588E+02 |
| 51.0            | 25        | +7.2207983E+02 | +1.4536993E+02        | +9.8600000E+02 | +4.5900000E+02  | +5.8668627E+02 |
| 52.0            | 14        | +5.7985693E+02 | +7.1546496E+01        | +6.9000000E+02 | +4.6200000E+02  | +5.8633666E+02 |
| 53.0            | 3         | +5.9700000E+02 | +3.9984998E+01        | +7.1000000E+02 | +5.2CC0000E+02  | +5.8598681E+02 |
| 54.0            | 3         | +5.2433325E+02 | +3.4990474E+01        | +5.5200000E+02 | +4.8500000E+02  | +5.8563720E+02 |
| 55.0            | 26        | +5.7903833E+02 | +1.0727850E+02        | +8.5900000E+02 | +4.2700000E+02  | +5.8528759E+02 |
| 56.0            | 40        | +5.5214990E+02 | +9.1122219E+01        | +8.4800000E+02 | +3.9500000E+02  | +5.8493798E+02 |
| 57.0            | 43        | +5.5330224E+02 | +8.7143973E+01        | +7.3600030E+02 | +4.1700000E+02  | +5.8458813E+02 |
| 58.0            | 23        | +6.3065209E+02 | +9.7734151E+01        | +8.7000000E+02 | +4.9200000E+02  | +5.8423852E+02 |
| 59.0            | 9         | +6.1577758E+02 | +7.0402020E+01        | +7.3100000E+02 | +5.2800000E+02  | +5.8388891E+02 |
| 61.0            | 9         | +4.6100000E+02 | +1.9080814E+02        | +6.4530000E+02 | +1.9700000E+02  | +5.8318945E+02 |
| 62.0            | 0         | +5.8294116E+02 | +1.1805479E+02        | +9.4700000E+02 | +4.3200000E+02  | +5.8283984E+02 |
| 63.0            | 30        | +6.5743310E+02 | +2.2169421E+02        | +1.5150000E+03 | +4.4000000E+02  | +5.8249023E+02 |
| 64.0            | 7         | +5.9857128E+02 | +9.9991428E+01        | +7.0600000E+02 | +4.5400000E+02  | +5.8214038E+02 |
| 65.0            | 13        | +5.3039990E+02 | +7.4415052E+01        | +6.3200000E+02 | +3.9200000E+02  | +5.8179077E+02 |
| 66.0            | 0         | +6.7500000E+02 | +1.4889737E+02        | +8.9500000E+02 | +4.5300000E+02  | +5.8144116E+02 |
| 67.0            | 28        | +7.0128564E+02 | +1.5714509E+02        | +9.4700000E+02 | +4.2400000E+02  | +5.8109155E+02 |
| 68.0            | 25        | +5.9809985E+02 | +1.6036894E+02        | +9.6000000E+02 | +3.6300000E+02  | +5.8074169E+02 |
| 59.0            | 7         | +5.3871411E+02 | +6.3128742E+01        | +6.1303000E+02 | +4.7600000E+02  | +5.8039208E+02 |
| 70.0            | 0         | +5.1739990E+02 | +9.1296740E+01        | +8.0000000E+02 | +4.2200000E+02  | +5.8004248E+02 |
| 71.0            | 23        | +5.5947802E+02 | +1.6999515E+02        | +1.0740000E+03 | +3.8500000E+02  | +5.7969287E+02 |
| 72.0            | 17        | +5.905859E+02  | +8.5580715E+01        | +7.6600000E+02 | +4.6700000E+02  | +5.7934301E+02 |
| 73.0            | 10        | +6.7589990E+02 | +1.2553666E+02        | +9.7300000E+02 | +4.8700000E+02  | +5.7899340E+02 |
| 74.0            | 5         | +5.1919995E+02 | +5.1628162E+01        | +5.8220000E+02 | +4.6700000E+02  | +5.7864379E+02 |
| 75.0            | 10        | +5.6889999E+02 | +9.7689360E+01        | +7.2000000E+02 | +4.4400000E+02  | +5.7829394E+02 |
| 76.0            | 8         | +5.3325000E+02 | +4.7179747E+01        | +6.0000000E+02 | +4.5300000E+02  | +5.7794433E+02 |
| 77.0            | 12        | +5.1750000E+02 | +8.5620197E+01        | +6.4000000E+02 | +4.1360000E+02  | +5.7759472E+02 |
| 78.0            | 16        | +5.2412500E+02 | +6.7561206E+01        | +6.6900000E+02 | +4.4400000E+02  | +5.7724511E+02 |
| 79.0            | 12        | +7.2875000E+02 | +1.2985245E+02        | +9.3300000E+02 | +4.09C0000E+02  | +5.7689526E+02 |
| 80.0            | 18        | +5.6316650E+02 | +9.3777199E+01        | +7.6100000E+02 | +4.15C00000E+02 | +5.7654565E+02 |
| 81.0            | 10        | +5.4409985E+02 | +1.1085771E+02        | +8.2900000E+02 | +4.3300000E+02  | +5.7619604E+02 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 82.0            | 12                     | +5.470000E+32  | +7.2859765E+01        | +6.900000E+02  | +4.660000E+02  | +5.7584643E+02 |
| 83.0            | 12                     | +5.223325E+32  | +6.2349941E+01        | +6.410000E+02  | +4.530000E+02  | +5.7149658E+02 |
| 84.0            | 24                     | +5.6508325E+02 | +9.0368288E+01        | +8.260000E+02  | +4.370000E+02  | +5.7514697E+02 |
| 85.0            | 12                     | +5.2216650E+02 | +7.4072241E+01        | +6.400000E+02  | +4.200000E+02  | +5.7479736E+02 |
| 86.0            | 9                      | +4.924433E+02  | +4.7313082E+01        | +5.510000E+02  | +4.070000E+02  | +5.7444775E+02 |
| 87.0            | 19                     | +5.6468408E+02 | +1.4563426E+02        | +9.520000E+02  | +3.440000E+02  | +5.7409790E+02 |
| 88.0            | 25                     | +5.6663989E+02 | +1.1222220E+02        | +8.710000E+02  | +3.230000E+02  | +5.7374829E+02 |
| 89.0            | 13                     | +5.820000E+02  | +1.0054518E+02        | +8.000000E+02  | +4.200000E+02  | +5.7339868E+02 |
| 91.0            | 2                      | +4.760000E+02  | +7.0710678E+00        | +4.810000E+02  | +4.710000E+02  | +5.7269921E+02 |
| 92.0            | 7                      | +4.9514282E+02 | +1.2785780E+01        | +5.190000E+02  | +4.810000E+02  | +5.7234960E+02 |
| 93.0            | 10                     | +5.6459985E+02 | +5.0929581E+01        | +6.320000E+02  | +4.760000E+02  | +5.720000E+02  |
| 94.0            | 3                      | +4.4533325E+02 | +4.1789153E+01        | +4.840000E+02  | +4.010000E+02  | +5.7165014E+02 |
| 95.0            | 5                      | +6.270000E+02  | +5.8898217E+01        | +7.120000E+02  | +5.630000E+02  | +5.7130053E+02 |
| 96.0            | 5                      | +8.5739990E+02 | +3.6827544E+02        | +1.3230000E+33 | +5.140000E+02  | +5.7095092E+02 |
| 99.0            | 4                      | +5.320000E+02  | +1.1660474E+02        | +6.680000E+02  | +4.990000E+02  | +5.6990185E+02 |
| 100.0           | 2                      | +5.980000E+02  | +1.0182337E+02        | +6.700000E+02  | +5.260000E+02  | +5.6955224E+02 |
| 101.0           | 2                      | +6.010000E+02  | +1.5132085E+02        | +7.080000E+12  | +4.940000E+02  | +5.6920263E+02 |
| 103.0           | 2                      | +6.040000E+02  | +6.2225396E+01        | +6.480000E+02  | +5.600000E+02  | +5.6850317E+02 |
| 104.0           | 2                      | +5.955000E+02  | +3.1819805E+01        | +6.180000E+02  | +5.730000E+02  | +5.6815356E+02 |
| 105.0           | 2                      | +5.794433E+02  | +9.2818529F+01        | +7.290000E+02  | +4.370000E+02  | +5.6780395E+02 |
| 106.0           | 9                      | +5.9777758E+02 | +2.3627355E+02        | +1.0280000E+33 | +3.4200000E+02 | +5.6745410E+02 |
| 108.0           | 3                      | +5.2056650E+02 | +9.4516312E+00        | +5.286000E+02  | +5.100000E+02  | +5.6675488E+02 |
| 109.0           | 5                      | +4.9619950E+02 | +4.1541545E+01        | +5.450000E+02  | +4.300000E+02  | +5.6640502E+02 |
| 110.0           | 11                     | +4.8254541E+02 | +6.5477268E+01        | +6.3230000E+02 | +3.9400000E+02 | +5.6605541E+02 |
| 111.0           | 5                      | +5.8319995E+02 | +1.4635812E+02        | +7.760000E+02  | +3.9200000E+02 | +5.6570581E+02 |
| 112.0           | 6                      | +5.8150000E+02 | +1.7807947E+02        | +8.6900000E+02 | +3.7900000E+02 | +5.6535620E+02 |
| 113.0           | 9                      | +5.8522216E+02 | +1.4922950E+02        | +8.0900000E+02 | +4.1900000E+02 | +5.6500634E+02 |
| 114.0           | 3                      | +5.4266650E+02 | +1.8941312E+02        | +7.4400000E+02 | +3.6800000E+02 | +5.6465673E+02 |
| 115.0           | 3                      | +4.8733325E+02 | +6.0302017E+01        | +5.5630000E+02 | +4.4300000E+02 | +5.6430712E+02 |
| 116.0           | 6                      | +4.6700000E+02 | +6.2555575E+01        | +5.7500000E+02 | +3.8800000E+02 | +5.6395751E+02 |
| 117.0           | 3                      | +5.0366650E+02 | +3.3080729E+01        | +5.2500000E+02 | +4.6300000E+02 | +5.6360766E+02 |

\*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 122.0           | 3                      | +4.950000E+02  | +8.5854528E+01        | +5.760000E+02  | +4.050000E+02  | +5.6185937E+02 |
| 123.0           | 9                      | +5.5244433E+02 | +8.1083461E+01        | +6.690000E+02  | +4.170000E+02  | +5.6150976E+02 |
| 124.0           | 6                      | +5.6416650E+02 | +6.8927256E+01        | +6.850000E+02  | +4.940000E+02  | +5.6115991E+02 |
| 126.0           | 6                      | +4.8300000E+02 | +1.2959012E+02        | +6.920000E+02  | +3.380000E+02  | +5.6046069E+02 |
| 127.0           | 3                      | +6.9866650E+02 | +1.4910510E+C2        | +8.650000E+02  | +5.770000E+02  | +5.6011108E+02 |
| 131.0           | 8                      | +5.3875000E+C2 | +7.4926154E+01        | +6.3600000E+02 | +4.3800000E+02 | +5.5871240E+02 |
| 132.0           | 1                      | +7.4400000E+02 | +3.0000000E+87        | +7.4400000E+02 | +7.4400000E+02 | +5.5836254E+02 |

ANR 3066 PROPELLANT (ANR, P) TENSILE MODULUS, .0002 IN/MIN, UNLND CTNS, 77 DEG

$\gamma = (( +6.2012035E+01) + (+2.0295617E-01) * X)$   
 $F = +6.6570261E+00$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 $R = +6.2827142E-02$   
 SIGNIFICANCE OF R = SIGNIFICANT  
 $t = +6.2595028E+00$   
 SIGNIFICANCE OF t = SIGNIFICANT  
 $N = 73$   
 DEGREES OF FREEDOM = 71  
 TEST CONDITIONS = AMB TEMP/RH  
 STORAGE CONDITIONS = AMB TEMP/RH



Figure 4-13

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|-----------------|-----------------|----------------|
| 15.0            | 6                      | +6.2504913E+01 | +8.3971559E+00        | +7.0469985E+01  | +5.3189987E+01  | +6.5056365E+01 |
| 16.0            | 13                     | +6.4583755E+01 | +9.5351139E+00        | +7.7729995E+01  | +4.4149993E+01  | +6.5259323E+01 |
| 17.0            | 3                      | +5.9543319E+01 | +6.3619688E+00        | +6.4599990E+01  | +5.2399993E+01  | +5.5462280E+01 |
| 18.0            | 8                      | +6.5594909E+01 | +4.3155674E+00        | +7.2259994E+01  | +6.1039993E+01  | +6.5665237E+01 |
| 19.0            | 3                      | +7.1573318E+01 | +3.2763863E+00        | +7.4719985E+01  | +6.8179992E+01  | +6.6071151E+01 |
| 20.0            | 3                      | +7.4813323E+01 | +2.7064430E+00        | +7.7739990E+01  | +7.2399993E+01  | +6.6274108E+01 |
| 21.0            | 3                      | +5.5781021E+01 | +2.5239637E+00        | +6.9769989E+01  | +6.1739990E+01  | +6.6477065E+01 |
| 22.0            | 9                      | +5.4535621E+01 | +1.9392512E+00        | +6.6079985E+01  | +6.1979995E+01  | +6.6680023E+01 |
| 23.0            | 6                      | +7.1913314E+01 | +2.3875279E+00        | +7.4229995E+01  | +6.9459991E+01  | +6.8506622E+01 |
| 32.0            | 3                      | +6.6049987E+01 | +1.4432753E+00        | +6.71299989E+01 | +6.44099988E+01 | +6.8709579E+01 |
| 33.0            | 3                      | +7.4373321E+01 | +3.7853253E+00        | +7.8099990E+01  | +7.0529998E+01  | +6.9115493E+01 |
| 35.0            | 3                      | +7.1596649E+01 | +4.8447194E+00        | +7.7189987E+01  | +6.8699996E+01  | +6.9318450E+01 |
| 36.0            | 3                      | +7.6199996E+01 | +0.3009000E+83        | +7.4199996E+01  | +7.4199996E+01  | +6.9724365E+01 |
| 38.0            | 1                      | +7.1833312E+01 | +3.2073970E+00        | +7.4959991E+01  | +6.85499987E+01 | +7.2159835E+01 |
| 50.0            | 3                      | +6.6749984E+01 | +9.8287130E+00        | +7.3699995E+01  | +5.9799987E+01  | +7.2362792E+01 |
| 51.0            | 2                      | +7.7699996E+01 | +0.0009000E+95        | +7.7699996E+01  | +7.7699996E+01  | +7.2565750E+01 |
| 52.0            | 1                      | +6.8619992E+01 | +2.6153377E+00        | +7.1839996E+01  | +6.7289993E+01  | +7.2768707E+01 |
| 53.0            | 3                      |                |                       |                 |                 |                |

ANB 3066 PRPLNT (ANBP POLYMER) TENSILE SM, .0002 IN/MIN, 77 DEG, LINED CTNS

$F = +7.5496148E+00$   
 $R = -3.1002046E-01$   
 $t = +2.7476562E+00$   
 $N = 73$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{TEST CONDITIONS} = 77 \text{ DEG F. AMB RH}$   
 $\gamma = (( +1.8346394E-01 ) + ( -5.6430302E-04 ) * X) * \bar{x}$   
 $S_x = +2.1372153E-02$   
 $S_R = +2.0537613E-04$   
 $S_t = +2.0461737E-02$   
 $\text{DEGREES OF FREEDOM} = 71$



ANB 3066 PROPELLANT (ANB P POLYMER) TENSILE ER, .0002 IN/MIN, 77 DEG, LINED CTNS

Figure 4-14

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|
| 15.0            | 6                      | +1.7684984E-01  | +2.2637523E-02        | +1.98899998E-01 | +1.41299996E-01 | +1.74999935E-01 |
| 16.0            | 13                     | +1.6111510E-01  | +1.6410564E-02        | +1.89499997E-01 | +1.32999995E-01 | +1.7443507E-01  |
| 17.0            | 3                      | +1.44999992E-01 | +3.6074584E-03        | +1.47999994E-01 | +1.40999997E-01 | +1.7387074E-01  |
| 18.0            | 8                      | +1.3603730E-01  | +2.5432315E-02        | +2.18699999E-01 | +1.46399997E-01 | +1.7330645E-01  |
| 20.0            | 3                      | +1.8906664E-01  | +4.0950505E-03        | +1.9379997E-01  | +1.86699998E-01 | +1.7217785E-01  |
| 21.0            | 3                      | +1.5266661E-01  | +4.7035117E-03        | +1.6799998E-01  | +1.5909999E-01  | +1.7161357E-01  |
| 22.0            | 9                      | +1.7862200E-01  | +2.0851495E-02        | +2.1099996E-01  | +1.4999997E-01  | +1.7104923E-01  |
| 23.0            | 6                      | +1.8398314E-01  | +1.4443911E-02        | +2.0199995E-01  | +1.7009997E-01  | +1.7048496E-01  |
| 32.0            | 3                      | +1.6889995E-01  | +1.0352676E-03        | +1.7009997E-01  | +1.68299997E-01 | +1.6540622E-01  |
| 33.0            | 3                      | +1.8479996E-01  | +6.5086464E-03        | +1.88999995E-01 | +1.7729997E-01  | +1.6484189E-01  |
| 35.0            | 3                      | +1.5406662E-01  | +2.4163953E-02        | +1.68889995E-01 | +1.2619996E-01  | +1.6371333E-01  |
| 36.0            | 3                      | +1.53599997E-01 | +1.2928842E-02        | +1.63599995E-01 | +1.38999999E-01 | +1.6314899E-01  |
| 38.0            | 1                      | +1.56999994E-01 | +0.3000000E+83        | +1.56999994E-01 | +1.56999994E-01 | +1.6202038E-01  |
| 50.0            | 3                      | +1.43699994E-01 | +8.6483720E-03        | +1.52999999E-01 | +1.35899996E-01 | +1.5524876E-01  |
| 51.0            | 2                      | +1.47999994E-01 | +1.1314241E-02        | +1.55999995E-01 | +1.39999998E-01 | +1.5468448E-01  |
| 52.0            | 1                      | +1.32999995E-01 | +0.0000000E+95        | +1.32999995E-01 | +1.32999995E-01 | +1.5412014E-01  |
| 53.0            | 3                      | +1.55299995E-01 | +1.56627560E-02       | +1.8449997E-01  | +1.55699996E-01 | +1.5355587E-01  |

ANS 3066 PROPLNT (ANB P POLYMER) TENSILE ER, .0002 IN/MIN, 77 DEG, LINED CTNS

$F = +1.0502160E+01$   
 $R = +3.7295774E-01$   
 $t = +3.2407036E+00$   
 $N = 67$   
 STORAGE CONDITIONS = AMB TEMP/RH  
 $\gamma = (( +4.1083419E+02 ) + ( +2.8434918E+00 ) * X)$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF t = SIGNIFICANT  
 DEGREES OF FREEDOM = 65

TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPLNT (ANB P POLYMER) TENSILE MODULUS, .00002 IN/MIN, 77 DEG. LINED

Figure 4-15

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>OFR GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y |
|-----------------|-----------------------|-----------------|-----------------------|-----------------|-----------------|--------------|
| 15.0            | 6                     | +4.3400000E+02  | +1.2856406E+C1        | +4.590CCCCE+C2  | +4.5348632E+C2  |              |
| 16.0            | 13                    | +4.7753833E+02  | +6.4133474E+C1        | +5.7600000E+C2  | +4.5632983E+C2  |              |
| 17.0            | 1                     | +5.02C00000E+02 | +6.0CC00000E+11       | +5.0200000E+C2  | +4.5917333E+C2  |              |
| 18.0            | 8                     | +4.0962500E+02  | +7.2194058E+C1        | +5.3900000E+02  | +3.5700000E+C2  |              |
| 20.0            | 3                     | +5.2902000E+02  | +1.1093691E+02        | +6.055n0000E+02 | +4.4600000E+C2  |              |
| 21.0            | 3                     | +6.2033325E+02  | +1.2503272E+C1        | +6.2500000E+02  | +6.0600000E+C2  |              |
| 22.0            | 9                     | +4.6077758E+02  | +7.1257943E+C1        | +5.4500000E+C2  | +3.7200000E+C2  |              |
| 23.0            | 6                     | +4.1150000E+02  | +3.8114301E+C1        | +4.5500000E+02  | +3.6200000E+C2  |              |
| 32.0            | 3                     | +5.1666650E+02  | +1.2503332E+C1        | +5.2100000E+02  | +5.0800000E+02  |              |
| 33.0            | 3                     | +4.0433325E+02  | +2.1501937E+C1        | +4.2600000E+C2  | +3.8300000E+C2  |              |
| 35.0            | 3                     | +5.07600000E+02 | +5.6949130E+C1        | +6.4100n00E+02  | +5.02600000E+02 |              |
| 36.0            | 3                     | +5.7733325E+02  | +1.3576941E+01        | +5.93000000E+C2 | +5.69000000E+02 |              |
| 50.0            | 3                     | +5.9333325E+02  | +1.2662279E+C1        | +6.0700000E+02  | +5.8200000E+02  |              |
| 53.0            | 3                     | +5.05666650E+02 | +2.7300793E+C1        | +5.3700000E+02  | +4.8700000E+C2  |              |

ANR 3766 PROFILANT (ANR P POLYMER) TENSILE MODULUS. .0002 IN/MIN. 77 DEG. LINED

$F = +4.3400609E+01$       SIGNIFICANCE OF  $F$  = SIGNIFICANT  
 $R = +3.3130595E-01$       SIGNIFICANCE OF  $R$  = SIGNIFICANT  
 $t = +6.5879139E+00$       SIGNIFICANCE OF  $t$  = SIGNIFICANT  
 $N = 354$       DEGREES OF FREEDOM = 352

STORAGE CONDITIONS = 4MB TEMP/RH      TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPELLANT (ANT), TENSILE MAX STRESS, .0002 IN/MIN, 77 DEG F, UNLND CTN

Figure 4-16

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 15.0            | 1                      | +6.7769989E+01 | +6.7769989E+01        | +6.7769989E+01 | +6.7769989E+01 | +7.2043121E+01  |
| 16.0            | 3                      | +7.2583328E+01 | +3.0117717E+00        | +7.4729995E+01 | +6.9139999E+01 | +7.2256958E+01  |
| 17.0            | 2                      | +7.2274978E+01 | +4.3344715E-01        | +7.2579986E+01 | +7.1969985E+01 | +7.2470779E+01  |
| 18.0            | 3                      | +6.1303320E+01 | +1.2210218E+00        | +6.3149993E+01 | +6.3709991E+01 | +7.2684600E+01  |
| 21.0            | 3                      | +6.7683317E+01 | +6.6820202E-01        | +6.8399999E+01 | +6.7059997E+01 | +7.3326080E+01  |
| 23.0            | 3                      | +6.4526657E+01 | +4.3857368E-01        | +6.4819992E+01 | +6.4919989E+01 | +7.3753738E+01  |
| 25.0            | 3                      | +7.4303314E+01 | +3.9951819E+00        | +7.8269989E+01 | +7.9279998E+01 | +7.4181381E+01  |
| 26.0            | 17                     | +7.2357543E+01 | +5.7413876E+00        | +8.0369992E+01 | +6.5000000E+01 | +7.4395202E+01  |
| 27.0            | 31                     | +7.4548370E+01 | +5.7867139E+00        | +8.1949996E+01 | +6.3299987E+01 | +7.4609039E+01  |
| 28.0            | 22                     | +7.3977615E+01 | +6.1309863E+00        | +8.5859985E+01 | +6.5500000E+01 | +7.4822860E+01  |
| 29.0            | 8                      | +7.4696197E+01 | +5.3649253E+00        | +8.1269989E+01 | +6.7599990E+01 | +7.5036692E+01  |
| 30.0            | 15                     | +7.4493911E+01 | +7.5192226E+00        | +8.0509994E+01 | +5.5199996E+01 | +7.5250518E+01  |
| 31.0            | 30                     | +7.3151565E+01 | +6.8952917E+00        | +8.2489990E+01 | +5.7439987E+01 | +7.5464340E+01  |
| 32.0            | 22                     | +8.0585815E+01 | +5.7894803E+00        | +9.6339996E+01 | +6.8179992E+01 | +7.5678161E+01  |
| 33.0            | 5                      | +6.9619918E+01 | +2.3188451E+00        | +7.2949996E+01 | +6.7529998E+01 | +7.5891983E+01  |
| 34.0            | 15                     | +7.2813873E+01 | +7.8084926E+00        | +7.9099990E+01 | +5.2289993E+01 | +7.6105819E+01  |
| 35.0            | 11                     | +7.7273559E+01 | +7.2439424E+00        | +9.7429992E+01 | +7.0509994E+01 | +7.6319641E+01  |
| 37.0            | 4                      | +7.7067443E+01 | +9.8086988E+00        | +9.1750000E+01 | +7.1459991E+01 | +7.6747299E+01  |
| 38.0            | 3                      | +7.1873321E+01 | +2.9982869E+00        | +7.3819992E+01 | +6.8419998E+01 | +7.6961120E+01  |
| 39.0            | 3                      | +7.9903320E+01 | +1.9501538E+00        | +8.1863995E+01 | +7.7969985E+01 | +7.7174942E+01  |
| 40.0            | 1                      | +6.7679992E+01 | +0.0000000E+71        | +6.7679992E+01 | +6.7679992E+01 | +7.7388763E+01  |
| 41.0            | 8                      | +7.4188690E+01 | +1.8000392E+00        | +7.6119995E+01 | +7.1389999E+01 | +7.7602600E+01  |
| 43.0            | 1                      | +8.3709701E+01 | +9.6265207E-01        | +8.4479995E+01 | +8.2629989E+01 | +7.8030242E+01  |
| 44.0            | 4                      | +9.4834839E+01 | +5.7951587E+00        | +1.0735998E+02 | +8.9579996E+01 | +7.8244079E+01  |
| 46.0            | 6                      | +8.0673243E+01 | +1.3399882E+01        | +9.3619995E+01 | +6.7479995E+01 | +7.8671722E+01  |
| 47.0            | 10                     | +8.9199890E+01 | +8.439874856E+00      | +9.8439987E+01 | +7.6109985E+01 | +7.8885543E+01  |
| 48.0            | 6                      | +8.7496612E+01 | +1.2865879E+00        | +8.9209991E+01 | +8.6109985E+01 | +7.9099380E+01  |
| 49.0            | 5                      | +9.5171920E+01 | +3.0029755E+00        | +9.8389999E+01 | +9.1119995E+01 | +7.9313201E+01  |
| 50.0            | 9                      | +8.6498767E+01 | +3.7515141E+00        | +9.1739991E+01 | +8.1459991E+01 | +7.9527023E+01  |
| 51.0            | 3                      | +9.5966629E+01 | +1.2263520E+00        | +8.6899993E+01 | +8.4579986E+01 | +7.9740859E+01  |
| 52.0            | 3                      | +7.7333329E+01 | +8.0193958E-01        | +7.8259994E+01 | +7.6869995E+01 | +7.99546681E+01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION<br>Y |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 53.0            | 17                     | +8.6404056E+01 | +5.1156223E+00        | +9.3879789E+01 | +7.7439987E+01 | +8.0168502E+01  |
| 54.0            | 10                     | +7.9613861E+01 | +1.0756948E+01        | +9.3259994E+01 | +6.5C99990E+01 | +8.C382324E+01  |
| 56.0            | 2                      | +8.3862136E+01 | +8.1244655E+00        | +9.3259994E+01 | +6.9469985E+01 | +8.0309982E+01  |
| 57.0            | 9                      | +8.5069931E+01 | +6.7172048E+00        | +9.3500000E+01 | +7.6199996E+01 | +8.1023803E+01  |
| 59.0            | 3                      | +8.8853271E+01 | +1.7234824E+00        | +9.0239991E+01 | +8.6919998E+01 | +8.1451461E+01  |
| 60.0            | 3                      | +7.5003326E+01 | +1.0850442E+00        | +7.6189987E+01 | +7.4059997E+01 | +8.1665283E+01  |
| 61.0            | 3                      | +7.6446655E+01 | +6.3034595E-01        | +7.7149993E+01 | +7.5929992E+01 | +8.1879104E+01  |
| 62.0            | 6                      | +8.4169921E+01 | +2.8139788E+00        | +8.8819992E+01 | +8.1449996E+01 | +8.2092941E+01  |
| 63.0            | 3                      | +8.0643325E+01 | +9.9733463E-01        | +8.1589996E+01 | +7.9599990E+01 | +8.2306762E+01  |
| 64.0            | 2                      | +7.3394363E+01 | +6.7698787E+00        | +7.9089996E+01 | +6.1309997E+01 | +8.2520584E+01  |
| 65.0            | 3                      | +7.7166656E+01 | +7.4381503E-01        | +7.8019989E+01 | +7.6639999E+01 | +8.2734405E+01  |
| 66.0            | 3                      | +5.4293319E+01 | +7.5050824E-01        | +5.5159988E+01 | +5.3849990E+01 | +8.2948242E+01  |
| 68.0            | 6                      | +6.8123291E+01 | +4.4326251E+00        | +7.3139999E+01 | +6.0459991E+01 | +8.3375885E+01  |
| 69.0            | 3                      | +7.9593322E+01 | +1.2389050E+00        | +8.0429992E+01 | +7.8169998E+01 | +8.3589721E+01  |
| 72.0            | 3                      | +7.9486648E+01 | +2.0453798E+00        | +8.1079986E+01 | +7.7179992E+01 | +8.4231185E+01  |

ANB 3066 PROPELLANT(ANT), TENSILE MAX STRESS, .0002 IN/MIN, 77 DEG F, UNLND CTN

TEST CONDITIONS = .77 DEG F, AMB RH  
 STORAGE CONDITIONS = AMB TEMP/RH

PARAMETER = STRAIN AT RUPTURE  
UNIT OF MEASURE = IN/IN  
0.08 0.12 0.16 0.20 0.24 0.28



ANS 3066 PROPELLANT (ANTI) TENSILE SIN AI BUP1 0002 IN/MIN 77 DEC E IND CT

Figure 4-17

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|
|                 |                        |                 |                       |                 |                 | +1.76399994E-01 |
| 15.0            | 1                      | +1.76399994E-01 | +0.0000000F+91        | +1.76399994E-01 | +1.76399994E-01 | +1.5951371E-01  |
| 16.0            | 3                      | +1.7419973E-01  | +8.8459368E-03        | +1.8419998E-01  | +1.6739994E-01  | +1.5767798E-01  |
| 17.0            | 2                      | +1.7069992E-01  | +2.1281275E-03        | +1.7219996E-01  | +1.6919994E-01  | +1.6002225E-01  |
| 18.0            | 3                      | +1.4506661E-01  | +1.9088460E-02        | +1.6639995E-01  | +1.2959998E-01  | +1.6027647E-01  |
| 21.0            | 3                      | +1.3546663E-01  | +2.8113705E-03        | +1.3839995E-01  | +1.3279998E-01  | +1.6103929E-01  |
| 23.0            | 3                      | +1.3786661E-01  | +3.2349407E-03        | +1.4079999E-01  | +1.3439995E-01  | +1.6154783E-01  |
| 25.0            | 3                      | +1.5999996E-01  | +8.4273241E-03        | +1.6799998E-01  | +1.5119999E-01  | +1.6205638E-01  |
| 26.0            | 0                      | +1.6892910E-01  | +1.1318348E-02        | +1.8319994E-01  | +1.3799995E-01  | +1.6231060E-01  |
| 27.0            | 33                     | +1.5507841E-01  | +1.1200248E-02        | +1.7439997E-01  | +1.3199996E-01  | +1.6256487E-01  |
| 28.0            | 22                     | +1.5709960E-01  | +7.6840243E-03        | +1.7799997E-01  | +1.4039999E-01  | +1.6281914E-01  |
| 29.0            | 8                      | +1.5924990E-01  | +7.3804571E-03        | +1.7399996E-01  | +1.5039998E-01  | +1.6307342E-01  |
| 30.0            | 15                     | +1.6165298E-01  | +1.4151503E-02        | +1.8799996E-01  | +1.4559996E-01  | +1.6332769E-01  |
| 31.0            | 30                     | +1.7796283E-01  | +2.2530510E-02        | +2.3449999E-01  | +1.4479994E-01  | +1.6358196E-01  |
| 32.0            | 22                     | +1.5429961E-01  | +1.1200986E-02        | +1.7279994E-01  | +1.3079994E-01  | +1.6383624E-01  |
| 33.0            | 5                      | +1.9893997E-01  | +8.6961213E-03        | +2.0959997E-01  | +1.8569999E-01  | +1.6409051E-01  |
| 34.0            | 15                     | +1.6763287E-01  | +2.3727652E-02        | +1.9769996E-01  | +1.1679995E-01  | +1.6434478E-01  |
| 35.0            | 11                     | +1.7419064E-01  | +1.4474093E-02        | +1.9559997E-01  | +1.4639997E-01  | +1.6459990E-01  |
| 37.0            | 4                      | +1.5734994E-01  | +8.11399909E-03       | +1.6679996E-01  | +1.4699995E-01  | +1.6510754E-01  |
| 38.0            | 3                      | +1.6239994E-01  | +7.7140833E-03        | +1.6799998E-01  | +1.5359997E-01  | +1.6536182E-01  |
| 39.0            | 3                      | +1.5879994E-01  | +4.8498249E-03        | +1.6319996E-01  | +1.5359997E-01  | +1.6561609E-01  |
| 40.0            | 1                      | +1.6919994E-01  | +3.0000000E+71        | +1.6919994E-01  | +1.6919994E-01  | +1.6587036E-01  |
| 41.0            | 8                      | +1.6814994E-01  | +1.2580298E-02        | +1.8719995E-01  | +1.5119999E-01  | +1.6612464E-01  |
| 43.0            | 2                      | +1.6479972E-01  | +4.9952952E-03        | +1.6879999E-01  | +1.5919995E-01  | +1.6663318E-01  |
| 44.0            | 4                      | +1.5264994E-01  | +1.04220758E-02       | +1.6259998E-01  | +1.4339995E-01  | +1.6688740E-01  |
| 46.0            | 6                      | +1.5693330E-01  | +6.3065560E-03        | +1.6799998E-01  | +1.5119999E-01  | +1.6739594E-01  |
| 47.0            | 10                     | +1.7309969E-01  | +1.3812203E-02        | +1.9079995E-01  | +1.5479999E-01  | +1.6765022E-01  |
| 48.0            | 6                      | +1.7991650E-01  | +6.7499202E-03        | +1.9099998E-01  | +1.7299997E-01  | +1.6790449E-01  |
| 49.0            | 5                      | +1.6563973E-01  | +9.9680939E-03        | +1.7839998E-01  | +1.5359997E-01  | +1.6815876E-01  |
| 50.0            | 7                      | +1.8478870E-01  | +6.1775400E-03        | +1.9839996E-01  | +1.7699998E-01  | +1.6841304E-01  |
| 51.0            | 3                      | +1.3816660E-01  | +1.9619674E-03        | +1.3099998E-01  | +1.3609999E-01  | +1.6866731E-01  |
| 52.0            | 3                      | +1.6643327E-01  | +6.7678624E-03        | +1.7419996E-01  | +1.6179996E-01  | +1.6892158E-01  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MATRIX Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 53.0            | 17                     | +1.6729372E-01 | +1.9295611E-02        | +2.0059996E-01 | +1.3219994E-01 | +1.6917580E-01 |
| 54.0            | 10                     | +1.5171974F-01 | +1.6901789E-02        | +1.8239998E-01 | +1.3C69399E-01 | +1.6943007E-01 |
| 56.0            | 9                      | +1.8178862E-01 | +1.5980404E-02        | +2.0089995E-01 | +1.5229994E-01 | +1.6993862E-01 |
| 57.0            | 9                      | +1.6276645E-01 | +6.5242667E-03        | +1.7069995E-01 | +1.5319997E-01 | +1.7019289E-01 |
| 59.0            | 3                      | +1.7586660F-C1 | +1.1997678E-02        | +1.8309996E-01 | +1.6569995E-01 | +1.7070144E-01 |
| 60.0            | 3                      | +2.1369793E-01 | +6.2859281E-03        | +2.1929997E-01 | +2.0689994E-01 | +1.7095571E-01 |
| 51.0            | 3                      | +1.8866664E-01 | +4.3153917E-03        | +1.9349998E-01 | +1.8519997E-01 | +1.7120999E-01 |
| 62.0            | 6                      | +1.4736664E-01 | +5.0796546E-03        | +1.5269994E-01 | +1.3809996E-01 | +1.7146420E-01 |
| 63.0            | 3                      | +1.3903325E-01 | +3.5139618E-03        | +1.4269995E-01 | +1.3569998E-01 | +1.7171847E-01 |
| 64.0            | 9                      | +1.8473291E-01 | +3.4192100E-02        | +2.1839994E-01 | +1.3763996E-01 | +1.7197275E-01 |
| 55.0            | 3                      | +1.7403328E-01 | +2.3050738E-03        | +1.7669999E-01 | +1.7222702E-01 |                |
| 66.0            | 3                      | +2.2969996E-01 | +3.6037357E-03        | +2.3369997E-01 | +2.2669994E-01 | +1.7248129E-01 |
| 68.0            | 6                      | +1.7103329E-01 | +1.5501169E-02        | +1.8669998E-01 | +1.4469999E-01 | +1.7298994E-01 |
| 69.0            | 3                      | +1.2736660E-01 | +3.2168360E-03        | +1.2969994E-01 | +1.2369996E-01 | +1.7324411E-01 |
| 72.0            | 3                      | +1.6069996E-01 | +3.0022788E-03        | +1.6369998E-01 | +1.5769994E-01 | +1.7400687E-01 |

ANR 3066 PROPELLANT(A), TENSILE STN AT RUPT, .0032 IN/MIN, 77 DEG F, UNLND CT

$F = +3.4854159E+01$   
 $R = +3.0016058E-01$   
 $t^4 = +5.9037411E+00$   
 $N = 354$   
 $Y = (( +4.7990484E+02 ) + ( +2.1896181E+00 ) * X)$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF  $t^4$  = SIGNIFICANT  
 DEGREES OF FREEDOM = 352  
 STORAGE CONDITIONS = AMB TEMP/RH



ANB 3066 PROPELLANT (ANT), TENSILE MODULUS, 0.0002 IN/MIN, 77 DEG F, UNLND CIN

Figure 4-18

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\*\* ANALYSIS OF TIME SERIES \*\*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
|                 |                        |                |                       |                |                | +5.1274902E+02  |
| 15.0            | 1                      | +4.4400000E+91 | +4.4400000E+02        | +4.4400000E+02 | +4.4400000E+02 | +5.1274902E+02  |
| 16.0            | 3                      | +4.9600000E+02 | +2.6057628E+01        | +5.2600000E+02 | +4.7900000E+02 | +5.1493872E+02  |
| 17.0            | 2                      | +4.8550000E+02 | +1.3435028E+01        | +4.9500000E+02 | +4.7600000E+02 | +5.1712817E+02  |
| 16.0            | 3                      | +5.0233325E+02 | +5.0292477E+01        | +5.3700030E+02 | +4.4500000E+02 | +5.1931787E+02  |
| 21.0            | 3                      | +5.8133325E+02 | +1.3650396E+01        | +5.9700030E+02 | +5.7200000E+02 | +5.2588671E+02  |
| 23.0            | 3                      | +5.3666650E+02 | +3.1021497E+01        | +5.6700000E+02 | +5.0500000E+02 | +5.3026586E+02  |
| 25.0            | 3                      | +5.3400000E+02 | +5.2373657E+01        | +5.9300000E+02 | +4.9300000E+02 | +5.3464526E+02  |
| 26.0            | 17                     | +4.9011743E+02 | +7.2367881E+01        | +6.5200000E+02 | +4.0800000E+02 | +5.3683471E+02  |
| 33.0            | 33                     | +5.4575756E+02 | +7.9142683E+01        | +6.6000000E+02 | +4.0300000E+02 | +5.3902441E+02  |
| 27.0            | 22                     | +5.3102082E+02 | +7.5431886E+01        | +6.8600000E+02 | +3.9200000E+02 | +5.4121411E+02  |
| 28.0            | 8                      | +5.3850000E+02 | +5.6089214E+01        | +5.9700000E+02 | +4.4500000E+02 | +5.4340356E+02  |
| 30.0            | 15                     | +5.3353320E+02 | +9.0406120E+01        | +6.4100000E+02 | +3.8100000E+02 | +5.4559326E+02  |
| 31.0            | 30                     | +5.0579980E+02 | +5.2074482E+01        | +6.2200000E+02 | +3.8200000E+02 | +5.4778295E+02  |
| 32.0            | 22                     | +6.2627270E+02 | +6.5824573E+01        | +8.2200000E+02 | +5.3800000E+02 | +5.4997241E+02  |
| 29.0            | 5                      | +4.6219995E+02 | +2.8490349E+01        | +4.9800000E+02 | +4.3300000E+02 | +5.5216210E+02  |
| 30.0            | 15                     | +5.3053320E+02 | +7.7927499E+01        | +6.8000000E+02 | +4.4400000E+02 | +5.5435180E+02  |
| 11              | +5.5000000E+02         | +9.3614101E+01 | +7.8200000E+02        | +4.4000000E+02 | +5.5654125E+02 |                 |
| 37.0            | 4                      | +5.5925000E+02 | +1.3119546E+02        | +7.5500000E+02 | +4.7700000E+02 | +5.6092065E+02  |
| 33.0            | 3                      | +4.9333325E+02 | +1.3316656E+01        | +5.0800000E+02 | +4.8200000E+02 | +5.6311010E+02  |
| 38.0            | 3                      | +5.6166650E+02 | +3.0664855E+01        | +5.9700000E+02 | +5.4200000E+02 | +5.6529980E+02  |
| 39.0            | 3                      | +4.6900000E+02 | +0.0000000E+71        | +4.6900000E+02 | +4.6900000E+02 | +5.6748950E+02  |
| 40.0            | 1                      | +5.1500000E+02 | +3.2000000E+01        | +5.6200000E+02 | +4.7600000E+02 | +5.6967895E+02  |
| 41.0            | 8                      | +6.0166650E+02 | +2.2477620E+01        | +6.2100000E+02 | +5.7700000E+02 | +5.7405834E+02  |
| 43.0            | 2                      | +7.5475000E+02 | +1.3879811E+02        | +9.2800000E+02 | +6.3900000E+02 | +5.7624804E+02  |
| 44.0            | 4                      | +6.0433325E+02 | +1.3954019E+02        | +7.4700000E+02 | +4.4200000E+02 | +5.80622719E+02 |
| 46.0            | 6                      | +6.2759985E+02 | +1.0916368E+02        | +7.5300000E+02 | +4.6500000E+02 | +5.8281689E+02  |
| 47.0            | 10                     | +6.2616650E+02 | +4.2976350E+01        | +6.9600000E+02 | +5.8100000E+02 | +5.8500634E+02  |
| 48.0            | 6                      | +6.9700000E+02 | +5.7480431E+01        | +7.7000000E+02 | +6.3900000E+02 | +5.8719604E+02  |
| 49.0            | 5                      | +6.2577758E+02 | +5.0751299E+01        | +6.9700000E+02 | +5.4300000E+02 | +5.8938574E+02  |
| 50.0            | 9                      | +7.6366650E+02 | +5.5075755E+00        | +7.6900000E+02 | +7.5800000E+02 | +5.9157519E+02  |
| 51.0            | 3                      | +6.0966650E+02 | +7.7125348E+00        | +6.0900000E+02 | +5.9000000E+02 | +5.9376489E+02  |

AN4 3066 PROPELLANT(ANT), TENSILE MODULUS, 0.0002 IN/MIN, 77 DEG F, UNLND CTN

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|----------------|----------------|
| 53.0            | 17                     | +6.4911743E+02  | +9.6211929E+01        | +7.9300000E+02  | +5.0900000E+02 | +5.9595458E+02 |
| 54.0            | 10                     | +6.45229980E+02 | +8.1006241E+01        | +7.7000000E+02  | +5.5200000E+02 | +5.9814404E+02 |
| 56.0            | 9                      | +6.2766652E+02  | +8.5290679E+01        | +7.6600000E+02  | +5.2700000E+02 | +6.052343E+02  |
| 57.0            | 9                      | +6.7500000E+02  | +6.1777827E+01        | +7.6000000E+02  | +5.9500000E+02 | +6.0471289E+02 |
| 59.0            | 3                      | +6.2633325E+02  | +2.1962088E+01        | +6.4000000E+02  | +6.0100000E+02 | +6.0909228E+02 |
| 60.0            | 3                      | +4.4900000E+02  | +8.1853527E+00        | +4.56J0.000E+02 | +4.4000000E+02 | +6.1128173E+02 |
| 51.0            | 3                      | +5.3833325E+02  | +1.2342339E+01        | +5.5200000E+02  | +5.2800000E+02 | +6.1347143E+02 |
| 62.0            | 6                      | +6.8283325E+02  | +5.1191470E+01        | +7.3600000E+02  | +6.3100000E+02 | +6.1566113E+02 |
| 63.0            | 3                      | +6.8833325E+02  | +1.4364307E+01        | +6.9900000E+02  | +6.7200000E+02 | +6.1785058E+02 |
| 64.0            | 9                      | +4.7744433E+02  | +3.2023862E+01        | +5.1300000E+02  | +4.2400000E+02 | +6.2004028E+02 |
| 55.0            | 3                      | +5.4333325E+02  | +1.1015141E+01        | +5.5400000E+02  | +5.3200000E+02 | +6.2222998E+02 |
| 66.0            | 3                      | +3.1200000E+02  | +3.6055512E+00        | +3.1600000E+02  | +3.0900000E+02 | +6.2441943E+02 |
| 68.0            | 6                      | +4.7383325E+02  | +1.9250108E+01        | +4.9100000E+02  | +4.3800000E+02 | +6.2879882E+02 |
| 69.0            | 3                      | +8.1600000E+02  | +1.6643316E+01        | +8.2800000E+02  | +7.9700000E+02 | +6.3098828E+02 |
| 72.0            | 3                      | +5.9433325E+02  | +1.3503086E+01        | +6.0800000E+02  | +5.8100000E+02 | +6.3755712E+02 |

ANB 3066 PROPELLANT(ANT), TENSILE MODULUS, 0.0002 IN/MIN, 77 DEG F, UNLND CTN

$\gamma = (( +6.5250539E+01) + (+2.0017057E-01) * X)$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $L = \text{SIGNIFICANCE OF } L$   
 $N = \text{DEGREES OF FREEDOM} = 109$   
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH

UNIT OF MEASURE = PSI  
 PARAMETER = MAXIMUM STRESS

4-63



ANB 3066 PROPLNT (ANT P POLYMER) TENSILE SM. .0002 IN/MIN, 77 DEG. LINED CTNS

Figure 4-19

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>OF 3 GROUP | MEAN Y           | STANDARD<br>DEVIATION | MAXIMUM Y         | MINIMUM Y         | REGRESSION Y      |
|-----------------|-------------------------|------------------|-----------------------|-------------------|-------------------|-------------------|
| 15.0            | 6                       | +6.4869985E+01   | +5.4030527E+00        | +7.0.C526998E+01  | +5.6229955E+C1    | +6.E253C97E+C1    |
| 17.0            | 3                       | +7.2546646E+01   | +1.5121149E+00        | +7.0.4266989E+01  | +7.0.1439987E+C1  | +6.8653427E+01    |
| 18.0            | 6                       | +6.7296606E+01   | +2.4632025E+00        | +7.0.1399999E+01  | +6.0.2959951E+C1  | +6.E853EC7E+C1    |
| 19.0            | 3                       | +6.9566650E+01   | +1.2912032E+00        | +7.0.0619995E+01  | +6.0.5053771E+01  | +6.0.8139999E+C1  |
| 20.0            | 3                       | +7.1366653E+01   | +1.6946830E+00        | +7.0.3319992E+01  | +7.0.0289932E+C1  | +6.0.5263936E+01  |
| 21.0            | 6                       | +6.7696609E+01   | +6.6774821E+00        | +7.0.4926992E+01  | +5.0.8709991E+C1  | +6.0.9454116E+01  |
| 23.0            | 3                       | +7.0803327E+01   | +7.6119503E-01        | +7.0.1659988E+01  | +7.0.01399999E+C1 | +6.0.9854461E+01  |
| 24.0            | 3                       | +7.7356643E+01   | +1.2399162E+00        | +7.0.8359985E+01  | +7.0.5965985E+C1  | +7.0.00544626E+01 |
| 26.0            | 3                       | +7.4032325E+01   | +1.9071157E+00        | +7.0.5299987E+01  | +7.0.1839995E+01  | +7.0.0454571E+C1  |
| 28.0            | 3                       | +7.0126647E+01   | +1.5980501E+00        | +7.0.1689987E+C1  | +6.0.8675992E+01  | +7.0.0855300E+01  |
| 29.0            | 3                       | +8.C103317E+01   | +1.0411269E+00        | +8.0.2219985E+01  | +7.0.8869995E+C1  | +7.0.1055480E+01  |
| 30.0            | 6                       | +7.1486602E+01   | +9.1663089E+00        | +8.0.3819992E+C1  | +6.0.2239950E+C1  | +7.0.12555645E+C1 |
| 31.0            | 3                       | +5.7733322E+01   | +2.0791314E+01        | +7.0.0449996E+01  | +3.0.3739950E+C1  | +7.0.1455825E+01  |
| 32.0            | 3                       | +6.6263327E+01   | +1.7331658E+00        | +6.0.8285993E+01  | +6.0.4929992E+01  | +7.0.1655500E+01  |
| 33.0            | 3                       | +7.7373321E+01   | +1.71032952E+00       | +7.0.8759954E+01  | +7.0.54499956E+01 | +7.0.1856155E+01  |
| 34.0            | 3                       | +7.1786651E+01   | +9.9662111E-01        | +7.0.2559997E+01  | +7.0.0659988E+01  | +7.0.2056335E+01  |
| 35.0            | 3                       | +7.1966659E+01   | +1.3120042E+00        | +7.0.3059997E+01  | +7.0.0509994E+01  | +7.0.2256500E+01  |
| 37.0            | 3                       | +7.8466644E+01   | +8.0.1946285E-01      | +7.0.89669985E+01 | +7.0.7519989E+01  | +7.0.2656845E+01  |
| 38.0            | 6                       | +7.08299910CE+01 | +7.0.7737572E+00      | +7.0.8079986E+01  | +6.0.3539993E+C1  | +7.0.2857009E+C1  |
| 39.0            | 3                       | +8.0855985E+01   | +2.0.7336840E-01      | +8.0.1259994E+01  | +8.0.0519989E+C1  | +7.0.2057189E+01  |
| 40.0            | 3                       | +6.7522315E+01   | +1.7950196E+00        | +6.0.8609985E+01  | +6.0.54499956E+C1 | +7.0.3257354E+C1  |
| 43.0            | 9                       | +7.1511932E+01   | +1.7750930E+00        | +7.0.3800997E+01  | +6.0.9179992E+01  | +7.0.3857664E+C1  |
| 44.0            | 3                       | +7.2226654E+01   | +9.0.4874155E-01      | +7.0.2579995E+C1  | +7.0.1159988E+C1  | +7.0.4058299E+01  |
| 47.0            | 3                       | +7.7466659E+01   | +2.0.1928479E+00      | +7.0.9579995E+01  | +7.0.5939967F+C1  | +7.0.46582554E+C1 |
| 49.0            | 3                       | +7.0225986E+01   | +7.0.948980E-01       | +7.0.87659989E+C1 | +7.0.7509994E+C1  | +7.0.4858710E+01  |
| 50.0            | 3                       | +7.1623316E+01   | +2.0.58259227E+00     | +7.0.43899999E+01 | +6.0.9269989E+01  | +7.0.5259963E+01  |
| 54.0            | 3                       | +7.0603319E+01   | +1.0.4105442E+00      | +8.0.0305997E+01  | +7.0.7799987E+C1  | +7.0.6059738E+01  |
| 55.0            | 3                       | +7.9733222E+01   | +1.0.4273652E+00      | +8.0.0829986E+01  | +7.0.8114995E+01  | +7.0.6259918E+01  |
| 56.0            | 2                       | +7.0.8126663E+01 | +1.0.5159144E+00      | +8.0.0289993E+01  | +7.0.6639999E+C1  | +7.0.6460083E+01  |
| 57.0            | 3                       | +7.0.1373321E+01 | +0.0.8227604E-01      | +7.0.2469995E+C1  | +7.0.0565992E+C1  | +7.0.666CC247E+C1 |

ANALYSIS PCPFLNT (ANT B POLYMER) TENSILE SW. .000C2 IN/MIN. 77 DEG. LINEC CTNS

$\gamma = (+1.7609359E-01)^2 + (-4.1744972E-04) \times X$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $t = \text{SIGNIFICANCE OF } t$   
 $D = \text{DEGREES OF FREEDOM} = 109$   
 $N = \text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\sigma = +1.4816968E-02$   
 $S = +1.0772212E-04$   
 $S_2 = +1.3954496E-02$

PARAMETER = STRAIN AT RUPTURE

UNIT OF MEASURE = IN/IN

0.00 0.12 0.15 0.16 0.20 0.24 0.28



ANB 3066 PROPELLANT (ANT P POLYMER) TENSILE ER. .0002 IN/MIN, 77 DEG, LINED CTNS

Figure 4-20

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|
| 15.0            | 5                     | +1.7018318E-01 | +2.3057754E-C2        | +1.9859999E-01 | +1.3599997E-C1 | +1.6983181E-01 |
| 17.0            | 3                     | +1.6293329E-01 | +2.5183535E-03        | +1.6559994E-C1 | +1.6059994E-C1 | +1.699693E-01  |
| 18.0            | 6                     | +1.6518330E-01 | +1.3459464E-02        | +1.7649996E-01 | +1.4849996E-C1 | +1.687945E-C1  |
| 19.0            | 3                     | +1.6769993E-01 | +6.1568142E-C3        | +1.7289996E-01 | +1.6086999E-C1 | +1.6816204E-01 |
| 20.0            | 3                     | +1.6209995E-01 | +5.6940502E-C3        | +1.6709995E-01 | +1.5569995E-C1 | +1.6774457E-C1 |
| 21.0            | 6                     | +1.7579984E-01 | +1.7125674E-C2        | +1.9569998E-01 | +1.5469998E-01 | +1.6732710E-01 |
| 23.0            | 3                     | +1.5489997E-01 | +1.0204350E-C2        | +2.0529997E-01 | +1.8489998E-01 | +1.6649222E-01 |
| 24.0            | 3                     | +1.6009998E-01 | +2.4955282E-03        | +1.6209995E-01 | +1.5729998E-01 | +1.6607475E-01 |
| 25.0            | 3                     | +1.7569994E-01 | +1.3508482E-03        | +1.7649996E-01 | +1.7409998E-01 | +1.6523987E-01 |
| 28.0            | 3                     | +1.6609996E-01 | +6.6102383E-03        | +1.7289996E-C1 | +1.5669997E-01 | +1.6440498E-01 |
| 29.0            | 3                     | +1.4283329E-01 | +4.5059995E-03        | +1.4759599E-01 | +1.3779997E-01 | +1.398751E-01  |
| 30.0            | 6                     | +1.5128326E-01 | +1.2319588E-02        | +1.6929996E-01 | +1.3599997E-01 | +1.6357004E-01 |
| 31.0            | 3                     | +1.6769993E-01 | +2.0656898E-02        | +1.6086996E-01 | +1.5129995E-C1 | +1.6315263E-01 |
| 32.0            | 3                     | +1.5209996E-01 | +5.04104013E-03       | +1.5729999E-01 | +1.4649999E-01 | +1.6272516E-01 |
| 33.0            | 3                     | +1.5383327E-01 | +4.0680505E-C3        | +1.5739995E-01 | +1.4939995E-01 | +1.6231769E-01 |
| 34.0            | 3                     | +1.6669994E-01 | +1.0420559E-02        | +1.7419999E-01 | +1.5479995E-01 | +1.615002EE-01 |
| 35.0            | 3                     | +1.5556667E-01 | +3.0638024E-03        | +1.5599996E-01 | +1.5289995E-01 | +1.6148281E-01 |
| 37.0            | 3                     | +1.6929996E-01 | +9.3604663E-03        | +1.7889994E-01 | +1.6019995E-01 | +1.6064792E-01 |
| 38.0            | 6                     | +1.6393327E-01 | +5.06388109E-03       | +1.7189997E-01 | +1.5869995E-01 | +1.6022045E-01 |
| 39.0            | 3                     | +1.7426663E-01 | +2.02338322E-C3       | +1.7689996E-01 | +1.7249995E-01 | +1.5981304E-01 |
| 40.0            | 3                     | +1.6123330E-01 | +5.5228477E-C3        | +1.6719996E-01 | +1.5629994E-C1 | +1.5939557E-C1 |
| 43.0            | 9                     | +1.6142195E-01 | +2.0841332E-C2        | +1.9259995E-C1 | +1.3779997E-C1 | +1.5814222E-C1 |
| 44.0            | 5                     | +1.4493328E-01 | +1.1631360E-C3        | +1.4619554E-C1 | +1.4386997E-C1 | +1.5772575E-C1 |
| 47.0            | 3                     | +1.5493327E-01 | +3.02131604E-C3       | +1.5859997E-01 | +1.5259995E-C1 | +1.5647339E-C1 |
| 48.0            | 3                     | +1.5893328E-01 | +1.0692462E-C2        | +1.6559994E-01 | +1.4659994E-C1 | +1.605598E-C1  |
| 50.0            | 3                     | +1.6053325E-01 | +7.7669491E-03        | +1.6959995E-C1 | +1.5459995E-C1 | +1.5522110E-C1 |
| 54.0            | 3                     | +1.3693326E-01 | +1.5535174E-C2        | +1.4959596E-01 | +1.1559995E-C1 | +1.5355128E-C1 |
| 55.0            | 3                     | +1.5426659E-01 | +4.1634161E-03        | +1.5759998E-01 | +1.4959996E-C1 | +1.5313380E-01 |
| 56.0            | 3                     | +1.5226662E-01 | +2.5147250E-03        | +1.5459995E-01 | +1.4959995E-01 | +1.5271639E-01 |
| 57.0            | 3                     | +1.5993326E-01 | +3.21453CBE-03        | +1.6359996E-01 | +1.5759995E-01 | +1.5229892E-01 |

$F = +3.2686965E+01$   
 $R = +4.8031079E-01$   
 $t = +5.7172515E+00$   
 $N = 111$   
 $Y = (( +4.2920493E+02 ) + ( +2.8756333E+00 ) * X) / 10^3$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $t = \text{SIGNIFICANCE OF } t$   
 $N = \text{DEGREES OF FREEDOM} = 109$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{TEST CONDITIONS} = 77 \text{ DEG F, AMB RH}$



\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
|                 |                        |                |                       |                |                |                |
| 152             | 6                      | +4.8016650E+02 | +2.7520295E+01        | +4.900000E+02  | +4.220000E+02  | +4.7222925E+02 |
| 170             | 3                      | +5.233325E+02  | +1.5035055E+01        | +5.430000E+02  | +5.050000E+02  | +4.7809157E+02 |
| 180             | 6                      | +4.6516650E+02 | +3.82696657E+01       | +5.650000E+02  | +4.290000E+02  | +4.8056620E+02 |
| 190             | 1                      | +4.6266650E+02 | +1.6258221E+01        | +4.810000E+02  | +4.500000E+02  | +4.8384179E+02 |
| 200             | 1                      | +4.220000E+02  | +2.4515301E+01        | +5.460000E+02  | +4.970000E+02  | +4.6671752E+02 |
| 210             | 6                      | +4.5523325E+02 | +9.1953611E+01        | +5.660000E+02  | +3.560000E+02  | +4.8959301E+02 |
| 220             | 6                      | +4.173325F+02  | +2.7646579E+01        | +4.450000E+02  | +3.980000E+02  | +4.9534448E+02 |
| 230             | 6                      | +5.600000E+02  | +7.5372539E+00        | +5.650000E+02  | +5.540000E+02  | +4.5821997E+02 |
| 240             | 6                      | +4.6566650E+02 | +2.08166559E+00       | +4.6800000E+02 | +4.6400000E+02 | +5.0397119E+02 |
| 250             | 3                      | +4.8423325E+02 | +8.22666639E+00       | +4.9100000E+02 | +4.7500000E+02 | +5.0972265E+02 |
| 260             | 3                      | +6.0966650E+02 | +2.4785748E+01        | +6.920000E+02  | +6.430000E+02  | +5.1259814E+02 |
| 270             | 6                      | +5.6216650E+02 | +1.2268564E+02        | +6.760000E+02  | +4.390000E+02  | +5.1547387E+02 |
| 280             | 3                      | +4.9700000E+02 | +1.7058722E+01        | +5.160000E+02  | +4.820000E+02  | +5.1834936E+02 |
| 290             | 3                      | +4.9466650E+02 | +1.4843629E+01        | +5.110000E+02  | +4.820000E+02  | +5.2122509E+02 |
| 300             | 3                      | +6.173325E+02  | +8.0208062E+00        | +6.250000E+02  | +6.050000E+02  | +5.2410083E+02 |
| 310             | 3                      | +5.133325E+02  | +4.0216083E+01        | +5.580000E+02  | +4.800000E+02  | +5.2697631E+02 |
| 320             | 3                      | +5.223325E+02  | +2.107935E+01         | +5.430000E+02  | +5.010000E+02  | +5.2985205E+02 |
| 330             | 3                      | +5.863325E+02  | +3.4268547E+01        | +6.230000E+02  | +5.560000E+02  | +5.3560327E+02 |
| 340             | 6                      | +5.1950000E+02 | +6.3597955E+01        | +5.860000E+02  | +4.576000E+02  | +5.3847900E+02 |
| 350             | 3                      | +5.333325E+02  | +8.0208062E+00        | +5.410000E+02  | +5.250000E+02  | +5.4135449E+02 |
| 360             | 3                      | +5.623325E+02  | +2.4976491E+01        | +5.340000E+02  | +4.850000E+02  | +5.4423022E+02 |
| 370             | 3                      | +5.163325E+02  | +5.7801384E+01        | +5.300000E+02  | +4.490000E+02  | +5.285693E+02  |
| 380             | 6                      | +5.863325E+02  | +6.65832281E+00       | +5.940000E+02  | +5.820000E+02  | +5.5573266E+02 |
| 390             | 3                      | +5.333325E+02  | +8.0208062E+00        | +5.410000E+02  | +5.250000E+02  | +5.4135449E+02 |
| 400             | 3                      | +5.623325E+02  | +2.4976491E+01        | +5.340000E+02  | +4.850000E+02  | +5.4423022E+02 |
| 410             | 3                      | +5.163325E+02  | +5.7801384E+01        | +5.300000E+02  | +4.490000E+02  | +5.285693E+02  |
| 420             | 3                      | +5.863325E+02  | +6.65832281E+00       | +5.940000E+02  | +5.820000E+02  | +5.5573266E+02 |
| 430             | 3                      | +5.333325E+02  | +8.0208062E+00        | +5.410000E+02  | +5.250000E+02  | +5.4135449E+02 |
| 440             | 3                      | +5.623325E+02  | +2.4976491E+01        | +5.340000E+02  | +4.850000E+02  | +5.4423022E+02 |
| 450             | 3                      | +5.163325E+02  | +5.7801384E+01        | +5.300000E+02  | +4.490000E+02  | +5.285693E+02  |
| 460             | 3                      | +5.863325E+02  | +6.65832281E+00       | +5.940000E+02  | +5.820000E+02  | +5.5573266E+02 |
| 470             | 3                      | +5.333325E+02  | +8.0208062E+00        | +5.410000E+02  | +5.250000E+02  | +5.4135449E+02 |
| 480             | 3                      | +5.623325E+02  | +2.4976491E+01        | +5.340000E+02  | +4.850000E+02  | +5.4423022E+02 |
| 490             | 3                      | +5.163325E+02  | +5.7801384E+01        | +5.300000E+02  | +4.490000E+02  | +5.285693E+02  |
| 500             | 3                      | +5.863325E+02  | +6.65832281E+00       | +5.940000E+02  | +5.820000E+02  | +5.5573266E+02 |
| 510             | 3                      | +5.333325E+02  | +8.0208062E+00        | +5.410000E+02  | +5.250000E+02  | +5.4135449E+02 |
| 520             | 3                      | +5.623325E+02  | +2.4976491E+01        | +5.340000E+02  | +4.850000E+02  | +5.4423022E+02 |
| 530             | 3                      | +5.163325E+02  | +5.7801384E+01        | +5.300000E+02  | +4.490000E+02  | +5.285693E+02  |
| 540             | 3                      | +5.863325E+02  | +6.65832281E+00       | +5.940000E+02  | +5.820000E+02  | +5.5573266E+02 |
| 550             | 3                      | +5.333325E+02  | +8.0208062E+00        | +5.410000E+02  | +5.250000E+02  | +5.4135449E+02 |
| 560             | 3                      | +5.623325E+02  | +2.4976491E+01        | +5.340000E+02  | +4.850000E+02  | +5.4423022E+02 |
| 570             | 3                      | +5.163325E+02  | +5.7801384E+01        | +5.300000E+02  | +4.490000E+02  | +5.285693E+02  |



Figure 4-22

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|-----------------|----------------|----------------|
| 13.0            | 5                      | +7.8139938E+01 | +3.0443391E+00        | +8.2699996E+01  | +7.4399993E+01 | +7.8946563E+01 |
| 14.0            | 16                     | +7.7893948E+01 | +3.1051766E+00        | +8.2599990E+01  | +7.2695996E+01 | +7.8956268E+01 |
| 15.0            | 14                     | +7.2949890E+01 | +3.2588234E+00        | +7.8099999E+01  | +6.6299987E+01 | +7.8965972E+01 |
| 16.0            | 13                     | +7.1634353E+01 | +8.3669015E+00        | +8.2729995E+01  | +5.425C000E+01 | +7.8975692E+01 |
| 17.0            | 12                     | +7.6341604E+01 | +9.0744489E+00        | +8.199996E+01   | +5.950000E+01  | +7.8985397E+01 |
| 18.0            | 15                     | +8.4119918E+01 | +3.8621899E+00        | +9.2899993E+01  | +7.719996E+01  | +7.8995101E+01 |
| 19.0            | 18                     | +7.8297149E+01 | +5.4805040E+00        | +9.1599990E+01  | +7.1199996E+01 | +7.9004821E+01 |
| 20.0            | 22                     | +7.7428543E+01 | +8.4050749E+00        | +9.2399993E+01  | +6.2049987E+01 | +7.9014526E+01 |
| 21.0            | 38                     | +7.8457244E+01 | +5.5854917E+00        | +9.2599990E+01  | +7.0769989E+01 | +7.9024230E+01 |
| 22.0            | 32                     | +6.1068023E+01 | +4.8977120E+00        | +9.1199996E+01  | +7.2199996E+01 | +7.9033950E+01 |
| 23.0            | 15                     | +7.9657226E+01 | +4.1167675E+00        | +8.7899993E+01  | +7.4319992E+01 | +7.9043655E+01 |
| 24.0            | 21                     | +7.9769927E+01 | +7.9172164E+00        | +8.9299987E+01  | +6.600C000E+01 | +7.9053359E+01 |
| 25.0            | 31                     | +8.2007965E+01 | +4.4220129E+00        | +9.1000000E+01  | +7.3289993E+01 | +7.9063064E+01 |
| 26.0            | 23                     | +8.2609024E+01 | +5.2718700E+00        | +9.1000000E+01  | +7.0799987E+01 | +7.9072784E+01 |
| 27.0            | 10                     | +7.8393920E+01 | +4.7688544E+00        | +8.7799987E+01  | +7.4595990E+01 | +7.9082489E+01 |
| 28.0            | 15                     | +7.4877944E+01 | +9.5369043E+00        | +8.3199996E+01  | +4.4699996E+01 | +7.9092193E+01 |
| 29.0            | 12                     | +8.1480743E+01 | +5.8047124E+00        | +8.9000000E+01  | +6.7899993E+01 | +7.9101913E+01 |
| 30.0            | 5                      | +8.2445939E+01 | +4.0986609E+00        | +8.7799987E+01  | +7.8489990E+01 | +7.9111618E+01 |
| 31.0            | 13                     | +8.1445266E+01 | +4.5739158E+00        | +9.0399993E+01  | +7.6259994E+01 | +7.9121322E+01 |
| 32.0            | 18                     | +7.6475448E+01 | +3.9227767E+00        | +8.3809997E+01  | +6.9299987E+01 | +7.9131042E+01 |
| 33.0            | 24                     | +7.4112396E+01 | +8.5814300E+00        | +9.3500000E+01  | +5.8799987E+01 | +7.9140747E+01 |
| 34.0            | 6                      | +8.7683300E+01 | +1.8930550E+00        | +9.0899993E+01  | +8.600C000F+01 | +7.9150451E+01 |
| 35.0            | 7                      | +8.4271377E+01 | +4.3806900E+00        | +9.1500000E+01  | +8.0399993E+01 | +7.9160156E+01 |
| 36.0            | 28                     | +8.0279556E+01 | +6.0261026E+00        | +9.6799987E+01  | +7.3899993E+01 | +7.9169876E+01 |
| 37.0            | 15                     | +7.7541229E+01 | +7.6167502E+00        | +8.9199996E+01  | +6.6299987E+01 | +7.9179580E+01 |
| 38.0            | 13                     | +7.2989379E+01 | +5.2990577E+00        | +8.0299987E+01  | +6.4000000E+01 | +7.9189285E+01 |
| 39.0            | 9                      | +7.2633300E+01 | +3.8731683E+00        | +8.1000000E+01  | +6.700C000E+01 | +7.9199005E+01 |
| 40.0            | 22                     | +7.7942199E+01 | +4.5817473E+00        | +8.5299987E+01  | +7.100C000E+01 | +7.9208709E+01 |
| 41.0            | 22                     | +7.5490829E+01 | +6.0693368E+00        | +8.5799987E+01  | +6.6500000E+01 | +7.9218414E+01 |
| 42.0            | 22                     | +7.4751708E+01 | +5.7366515E+00        | +8.8549987E+01  | +6.6619995E+01 | +7.9228134E+01 |
| 43.0            | 13                     | +6.8147598E+01 | +1.1763601E+01        | +8.01599988E+01 | +5.0595990E+01 | +7.9237838E+01 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
|                 |                        |                 |                       |                |                | +7.9247543E+01 |
| 44.0            | 10                     | +8.2854949E+01  | +4.3977591E+00        | +8.9389999E+01 | +7.5199999E+01 | +7.9247543E+01 |
| 45.0            | 5                      | +7.5429931E+01  | +7.5791737E+00        | +8.3000000E+01 | +6.5755994E+01 | +7.9257247E+01 |
| 46.0            | 34                     | +8.2640762E+01  | +6.1234280E+00        | +9.3399993E+01 | +7.0199996E+01 | +7.9266967E+01 |
| 47.0            | 12                     | +8.1101577E+01  | +6.8396346E+00        | +9.3259994E+01 | +7.3199996E+01 | +7.9276672E+01 |
| 48.0            | 23                     | +8.1585978E+01  | +5.8545901E+00        | +9.5419998E+01 | +7.3299987E+01 | +7.9286376E+01 |
| 49.0            | 18                     | +7.6399902E+01  | +4.2271099E+00        | +6.0877989E+01 | +6.7599990E+01 | +7.9296096E+01 |
| 50.0            | 10                     | +7.5479919E+01  | +6.9178147E+00        | +8.5699996E+01 | +6.2899993E+01 | +7.9305801E+01 |
| 51.0            | 32                     | +7.7381484E+01  | +6.5338071E+00        | +8.8699996E+01 | +6.5019989E+01 | +7.9315505E+01 |
| 52.0            | 44                     | +7.8726943E+01  | +5.0530175E+00        | +8.8500000E+01 | +6.7299987E+01 | +7.9325225E+01 |
| 53.0            | 45                     | +7.7721664E+01  | +5.8109139E+00        | +9.4500000E+01 | +7.0159988E+01 | +7.9334930E+01 |
| 54.0            | 16                     | +8.3831130E+01  | +5.2155290E+00        | +9.1799987E+01 | +7.7099990E+01 | +7.9344635E+01 |
| 55.0            | 18                     | +8.2356582E+01  | +6.8381246E+00        | +9.7699996E+01 | +7.2299987E+01 | +7.9354339E+01 |
| 56.0            | 19                     | +7.8484634E+01  | +2.9567480E+00        | +8.3399993E+01 | +7.1000000E+01 | +7.9364059E+01 |
| 57.0            | 6                      | +7.78119946E+01 | +7.5071816E+00        | +8.5299987E+01 | +6.9399993E+01 | +7.9373764E+01 |
| 58.0            | 11                     | +7.6168136E+01  | +2.8829633E+00        | +8.0000000E+01 | +7.0909988E+01 | +7.9383468E+01 |
| 59.0            | 16                     | +8.9348678E+01  | +1.0460698E+01        | +1.0300000E+02 | +7.5869995E+01 | +7.9353188E+01 |
| 60.0            | 20                     | +8.6679870E+01  | +7.3399614E+00        | +9.3299987E+01 | +6.0899993E+01 | +7.9402893E+01 |
| 61.0            | 31                     | +7.8257614E+01  | +6.3387376E+00        | +9.3099990E+01 | +6.6489990E+01 | +7.9412597E+01 |
| 62.0            | 18                     | +8.4089920E+01  | +8.0936007E+00        | +9.3699976E+01 | +6.4899993E+01 | +7.9422317E+01 |
| 63.0            | 15                     | +8.4836563E+01  | +1.0319330E+01        | +9.6199996E+01 | +6.5599990E+01 | +7.9432022E+01 |
| 64.0            | 29                     | +8.2233718E+01  | +9.6051488E+00        | +1.0050000E+02 | +6.1500000E+01 | +7.9441726E+01 |
| 65.0            | 13                     | +7.98793779E+01 | +7.4933634E+00        | +9.0109985E+01 | +6.6500000E+01 | +7.9451431E+01 |
| 66.0            | 16                     | +8.35113656E+01 | +5.22990190E+00       | +9.0929992E+01 | +7.5799987E+01 | +7.9461151E+01 |
| 67.0            | 19                     | +8.5072143F+01  | +5.5272347E+00        | +9.5699996E+01 | +7.5500000E+01 | +7.9470855E+01 |
| 68.0            | 27                     | +8.1644699E+01  | +6.0089164E+00        | +9.5539993E+01 | +7.3969985E+01 | +7.9480560E+01 |
| 69.0            | 34                     | +8.5321960E+01  | +6.8889148E+00        | +1.0319999E+02 | +7.0599990E+01 | +7.9490280E+01 |
| 70.0            | 78                     | +6.4252029E+01  | +8.3413820E+00        | +9.6377989E+01 | +6.7699996E+01 | +7.9499984E+01 |
| 71.0            | 34                     | +5.2560791E+01  | +9.6944555E+00        | +9.8077986E+01 | +5.7599990E+01 | +7.9509689E+01 |
| 72.0            | 77                     | +7.6802917E+01  | +6.1942415E+00        | +8.8677992E+01 | +7.0399993E+01 | +7.9519409E+01 |
| 73.0            | 16                     | +7.4555557E+01  | +1.0158131E+01        | +8.7899993E+01 | +6.0799987E+01 | +7.9529113E+01 |
| 74.0            | 33                     | +6.7669683E+01  | +1.1049076E+01        | +9.9799987E+01 | +7.2000000E+01 | +7.9538818E+01 |

AD-A063 094      OGDEN AIR LOGISTICS CENTER HILL AFB UTAH PROPELLANT L--ETC F/G 21/9.2  
PROPELLANT SURVEILLANCE REPORT ANB-3066 PROPELLANT.(U)  
JUL 78 E M DALABA  
MANCP-398(78)

UNCLASSIFIED

NL

2 OF 4

AD  
A063094



FILED  
2 OF 4

AD  
AO63094



## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|----------------|-----------------|-----------------|
| 75.0            | 20                     | +7.6174926E+01  | +5.6349387E+00        | +8.4500000E+01 | +6.4500000E+01  | +7.9548522E+01  |
| 76.0            | 9                      | +7.7324362E+01  | +1.05699988E+01       | +9.0479995E+01 | +6.5899993E+01  | +7.9558.42E+01  |
| 77.0            | 7                      | +8.0372802E+01  | +8.6595377E+00        | +8.9509994E+01 | +6.9455991E+01  | +7.9567947E+01  |
| 78.0            | 12                     | +8.1493240E+01  | +6.1303927E+00        | +9.1449996E+01 | +7.4599990E+01  | +7.9577651E+01  |
| 79.0            | 5                      | +8.6841934E+01  | +3.3216851E+00        | +9.0619995E+01 | +8.2599990E+01  | +7.9587371E+01  |
| 80.0            | 18                     | +7.1279357E+01  | +5.6671216E+00        | +7.9119995E+01 | +6.1095990E+01  | +7.9597076E+01  |
| 81.0            | 16                     | +7.776766E+01   | +7.5837079E+00        | +8.7099990E+01 | +6.5000000E+01  | +7.96067781E+01 |
| 82.0            | 3                      | +8.1426651E+01  | +4.0496713E+00        | +8.6079986E+01 | +7.8695996E+01  | +7.9616485E+01  |
| 83.0            | 21                     | +7.7823242E+01  | +6.5912915E+00        | +9.2859985E+01 | +6.4500000E+01  | +7.9626205E+01  |
| 84.0            | 21                     | +8.2098007E+01  | +8.1220499E+00        | +9.4879989E+01 | +6.7239990E+01  | +7.9635910E+01  |
| 85.0            | 6                      | +9.2274902E+01  | +2.1919459E+00        | +9.4759994E+01 | +8.8389999E+01  | +7.9645614E+01  |
| 86.0            | 13                     | +7.80367626E+01 | +1.2152393E+01        | +9.4719985E+01 | +6.3000000E+01  | +7.9655334E+01  |
| 87.0            | 10                     | +8.4510925E+01  | +4.0407910E+00        | +8.8309997E+01 | +7.6000000E+01  | +7.9665039E+01  |
| 88.0            | 7                      | +7.7847061E+01  | +5.0525130E+00        | +8.2699996E+01 | +7.0109985E+01  | +7.9674743E+01  |
| 89.0            | 18                     | +7.6265457E+01  | +6.6592012E+00        | +8.7079986E+01 | +6.2079986E+01  | +7.9684463E+01  |
| 90.0            | 11                     | +8.0208084E+01  | +1.1467175E+01        | +9.4000000E+01 | +6.5366995E+01  | +7.9694168E+01  |
| 91.0            | 7                      | +7.6691329E+01  | +6.369056E+00         | +8.6209991E+01 | +7.0219985E+01  | +7.9703872E+01  |
| 92.0            | 10                     | +7.0219894E+01  | +4.8150228E+00        | +8.0799987E+01 | +6.2699996E+01  | +7.9713577E+01  |
| 93.0            | 5                      | +6.9739922E+01  | +1.0420518E+00        | +7.1099990E+01 | +6.8195996E+01  | +7.9723297E+01  |
| 94.0            | 9                      | +8.6147644E+01  | +6.3361839E+00        | +9.2899993E+01 | +7.5969985E+01  | +7.9733001E+01  |
| 95.0            | 19                     | +7.9427246E+01  | +7.2660320E+00        | +9.3129989E+01 | +6.62299987E+01 | +7.9742706E+01  |
| 96.0            | 6                      | +8.6426589E+01  | +9.9862154E-01        | +8.8129989E+01 | +8.5425992E+01  | +7.9752426E+01  |
| 97.0            | 6                      | +7.9348297E+01  | +5.9631456E+00        | +8.6129989E+01 | +7.1250000E+01  | +7.9762130E+01  |
| 98.0            | 9                      | +7.3146606E+01  | +2.0215930E+00        | +7.6039993E+01 | +6.9199996E+01  | +7.9771835E+01  |
| 99.0            | 1                      | +7.2500000E+01  | +0.0000000E+39        | +7.2500000E+01 | +7.2500000E+01  | +7.9781555E+01  |
| 101.0           | 8                      | +6.6492401E+01  | +4.8200714E+00        | +7.2029998E+01 | +5.9539993E+01  | +7.9800964E+01  |
| 102.0           | 3                      | +6.9896652E+01  | +2.1884838E+00        | +7.2159988E+01 | +6.7789993E+01  | +7.9810668E+01  |
| 104.0           | 11                     | +8.1202590E+01  | +4.6350996E+00        | +8.7309997E+01 | +7.289993E+01   | +7.9830093E+01  |
| 106.0           | 2                      | +8.7000000E+01  | +9.8994949E+00        | +9.4000000E+01 | +8.0000000E+01  | +7.9849517E+01  |
| 107.0           | 2                      | +7.7999984E+01  | +8.4689085E-01        | +7.8599990E+01 | +7.3999993E+01  | +7.9859222E+01  |
| 108.0           | 3                      | +8.3196655E+01  | +1.0757096E+00        | +8.4389999E+01 | +8.2299987E+01  | +7.9868927E+01  |

$y = (( +5.6380607E+02) + (-2.7759139E-01) * x)$   
 $F = +9.5640143E+00$  SIGNIFICANT OF F = SIGNIFICANT  
 $R = -7.8160026E-02$  SIGNIFICANT OF R = SIGNIFICANT  
 $\beta = +3.0925740E+00$  SIGNIFICANT OF  $\beta$  = SIGNIFICANT  
 $N = 1558$  DEGREES OF FREEDOM = 1556  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

ANA  
 ANB



ANB 3066 PROPELLANT (ANA & ANB UNLND. G POLYMER) TENSILE MODULUS. .0002 IN/MIN

Figure 4-24

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
|                 |                        |                 |                       |                |                | +5.3339990E+02 |
| 13.0            | 5                      | +5.3339990E+02  | +4.0525300E+01        | +5.8200000E+02 | +4.9000000E+02 | +5.6019726E+02 |
| 14.0            | 16                     | +5.5587550E+02  | +3.4711909E+01        | +5.9600000E+02 | +4.6200000E+02 | +5.5991967E+02 |
| 15.0            | 14                     | +5.2178564E+02  | +7.3742982E+01        | +6.2700000E+02 | +4.1200000E+02 | +5.5964208E+02 |
| 16.0            | 18                     | +4.9250000E+02  | +6.5389556E+01        | +5.9000000E+02 | +3.4400000E+02 | +5.5936550E+02 |
| 17.0            | 12                     | +5.0966650E+02  | +7.2389518E+01        | +6.2500000E+02 | +4.0900000E+02 | +5.59C8691E+02 |
| 18.0            | 15                     | +6.1866650E+02  | +5.1422155E+01        | +6.7900000E+02 | +4.9500000E+02 | +5.5880932E+02 |
| 19.0            | 18                     | +5.4438867E+02  | +8.3647818E+01        | +6.5300000E+02 | +3.8300000E+02 | +5.5853173E+02 |
| 20.0            | 22                     | +5.6750000E+02  | +6.7284576E+01        | +6.7500000E+02 | +4.4800000E+02 | +5.5825415E+02 |
| 21.0            | 33                     | +5.7662522E+02  | +6.8945940E+01        | +7.3300000E+02 | +4.4000000E+02 | +5.5797655E+02 |
| 22.0            | 32                     | +5.6062500E+02  | +9.4320917E+01        | +7.6800000E+02 | +3.7790000E+02 | +5.5769897E+02 |
| 23.0            | 15                     | +5.4900000E+02  | +5.8078764E+01        | +6.1800000E+02 | +4.5300000E+02 | +5.5742138E+02 |
| 24.0            | 21                     | +5.7671411E+02  | +7.2986397E+01        | +7.1500000E+02 | +4.6200000E+02 | +5.5714379E+02 |
| 25.0            | 31                     | +5.8354738E+02  | +6.5053592E+01        | +7.0400000E+02 | +4.6200000E+02 | +5.5686621E+02 |
| 26.0            | 23                     | +5.5756518E+02  | +5.5959259E+01        | +6.5100000E+02 | +4.5300000E+02 | +5.5658862E+02 |
| 27.0            | 10                     | +6.5189992E+02  | +6.0881396E+01        | +7.4770000E+02 | +5.4500000E+02 | +5.5631103E+02 |
| 28.0            | 15                     | +5.8919995E+02  | +6.7861413E+01        | +6.6900000E+02 | +3.8700000E+02 | +5.5603344E+02 |
| 29.0            | 12                     | +5.3591650E+02  | +7.6623588E+01        | +6.2700000E+02 | +4.0000000E+02 | +5.5575585E+02 |
| 30.0            | 5                      | +6.3039990E+02  | +9.1308816E+01        | +7.3600000E+02 | +5.1800000E+02 | +5.5547827E+02 |
| 31.0            | 13                     | +6.9500000E+02  | +6.8944222E+01        | +7.3100000E+02 | +5.1600000E+02 | +5.5520068E+02 |
| 32.0            | 18                     | +5.6155541E+02  | +4.2815915E+01        | +6.3900000E+02 | +4.5900000E+02 | +5.5492309E+02 |
| 33.0            | 24                     | +5.2012500E+02  | +6.8737884E+01        | +6.8600000E+02 | +4.0400000E+02 | +5.5464550E+02 |
| 34.0            | 6                      | +6.5766659E+02  | +2.3491842E+01        | +6.9300000E+02 | +6.2600000E+02 | +5.5436771E+02 |
| 35.0            | 7                      | +5.8571411E+02  | +7.2662953E+01        | +7.0200000E+02 | +5.3100000E+02 | +5.5409033E+02 |
| 36.0            | 28                     | +5.8278564E+02  | +6.45527796E+01       | +6.9300000E+02 | +4.8400000E+02 | +5.5381274E+02 |
| 37.0            | 15                     | +5.6226660E+02  | +7.53207701E+01       | +7.5770000E+02 | +4.2100000E+02 | +5.5353515E+02 |
| 38.0            | 19                     | +4.7147363E+02  | +3.6661163E+01        | +5.6500000E+02 | +4.0000000E+02 | +5.5325756E+02 |
| 39.0            | 10                     | +4.48779780F+02 | +6.8432935E+01        | +6.1400000E+02 | +3.8700000E+02 | +5.5297998E+02 |
| 40.0            | 22                     | +5.3509082E+02  | +5.0401161E+01        | +6.3800000E+02 | +4.6000000E+02 | +5.5270239E+02 |
| 41.0            | 22                     | +4.9831811E+02  | +4.6054198E+01        | +5.6500000E+02 | +4.0500000E+02 | +5.5242480E+02 |
| 42.0            | 22                     | +5.4113623E+02  | +5.1730340E+01        | +6.4600000E+02 | +4.5800000E+02 | +5.5214721E+02 |
| 43.0            | 13                     | +4.6407690E+02  | +9.3734783E+01        | +6.0100000E+02 | +3.3600000E+02 | +5.5186962E+02 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| 109.0           | 9                      | +6.5445434E+01  | +2.3651322E+00        | +6.9000000E+01  | +6.1989990E+01  | +7.9878646E+01 |
| 111.0           | 6                      | +8.6343261E+01  | +4.2851501E+00        | +9.0979995E+01  | +7.9649993E+01  | +7.9898056E+01 |
| 113.0           | 12                     | +8.3606582E+01  | +2.8978625E+00        | +8.5569992E+01  | +7.4865995E+01  | +7.9917480E+01 |
| 115.0           | 3                      | +8.0753323E+01  | +6.8414959E-01        | +8.1719985E+01  | +8.0395993E+01  | +7.9936889E+01 |
| 118.0           | 7                      | +7.8035644E+01  | +4.299791E+00         | +8.4289993E+01  | +7.3919998E+01  | +7.9966018E+01 |
| 119.0           | 9                      | +7.2792144E+01  | +1.1957399E+00        | +7.4459991E+01  | +7.1056997E+01  | +7.9975738E+01 |
| 120.0           | 2                      | +7.7324936E+01  | +7.8103512E-02        | +7.7389999E+01  | +7.7259994E+01  | +7.9985443E+01 |
| 121.0           | 9                      | +8.1381042E+01  | +6.2162600E+00        | +8.9099990E+01  | +7.1939987E+01  | +7.9995147E+01 |
| 122.0           | 3                      | +8.02143310E+01 | +3.9554880E+00        | +8.6129989E+01  | +7.8219985E+01  | +8.0004852E+01 |
| 123.0           | 3                      | +8.0553314E+01  | +2.6901742E+00        | +8.3219985E+01  | +7.7839996E+01  | +8.0014572E+01 |
| 125.0           | 6                      | +8.2809936E+01  | +2.6774723E+00        | +8.6569992E+01  | +7.9799987E+01  | +8.0033981E+01 |
| 137.0           | 1                      | +6.80000000E+01 | +0.00000000E+11       | +6.80000000E+01 | +6.80000000E+01 | +8.0150497E+01 |

ANH 3066 PROPELLANT IANA & ANB UNLND. G POLYMER) TENSILE SM .0002 IN/MIN 77 DEG

$\gamma = (( +1.6767825E-01) + (+1.6338529E-04) * X)$   
 $F = \text{SIGNIFICANCE OF } F$   
 $F = \text{SIGNIFICANT}$   
 $R = \text{SIGNIFICANCE OF } R$   
 $R = \text{SIGNIFICANT}$   
 $S = \text{SIGNIFICANCE OF } S$   
 $S = \text{SIGNIFICANT}$   
 $D = \text{DEGREES OF FREEDOM} = 1559$   
 $N = \text{STORAGE CONDITIONS = AMB TEMP/RH}$

TEST CONDITIONS = AMB TEMP/RH

PARAMETER = STRAIN AT RUPTURE  
 UNIT OF MEASURE = IN/IN  
 0.00 0.06 0.12 0.16 0.20 0.24 0.28



Figure 4-23

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 5                      | +1.719992E-01  | +1.2773825E-02        | +1.919997E-01  | +1.579599E-01  | +1.6980224E-01 |
| 14.0            | 16                     | +1.7343709E-01 | +1.0196974E-02        | +1.859998E-01  | +1.519995E-01  | +1.6956562E-01 |
| 15.0            | 14                     | +1.7471390E-01 | +1.2496188E-02        | +1.939994E-01  | +1.539998E-01  | +1.7012900E-01 |
| 16.0            | 18                     | +1.7560510E-01 | +1.4985082E-02        | +2.104994E-01  | +1.519995E-01  | +1.7029237E-01 |
| 17.0            | 12                     | +1.8799972E-01 | +1.3269568E-02        | +2.119995E-01  | +1.659994E-01  | +1.7045575E-01 |
| 18.0            | 15                     | +1.6646635E-01 | +1.3262997E-02        | +2.049998E-01  | +1.519995E-01  | +1.7061918E-01 |
| 19.0            | 18                     | +1.7242193E-01 | +2.2675190E-02        | +2.159996E-01  | +1.4395999E-01 | +1.7078256E-01 |
| 20.0            | 22                     | +1.6237688E-01 | +2.0177663E-02        | +2.169994E-01  | +1.3395994E-01 | +1.7094594E-01 |
| 21.0            | 38                     | +1.6431272E-01 | +1.9222272E-02        | +2.0393999E-01 | +1.2795996E-01 | +1.7110931E-01 |
| 22.0            | 32                     | +1.7383086E-01 | +2.5215253E-02        | +2.359994E-01  | +1.2475996E-01 | +1.7127269E-01 |
| 23.0            | 15                     | +1.8750637E-01 | +1.0078854E-02        | +2.0849996E-01 | +1.7195999E-01 | +1.7143607E-01 |
| 24.0            | 21                     | +1.7034262E-01 | +1.3174569E-02        | +2.0289999E-01 | +1.4599996E-01 | +1.7159944E-01 |
| 25.0            | 31                     | +1.7133504E-01 | +1.4195078E-02        | +2.0199996E-01 | +1.4399999E-01 | +1.7176288E-01 |
| 26.0            | 23                     | +1.7558217E-01 | +1.6772554E-02        | +2.0899999E-01 | +1.4235996E-01 | +1.7192625E-01 |
| 27.0            | 10                     | +1.3934963E-01 | +7.8813515E-03        | +1.5119999E-01 | +1.2399995E-01 | +1.7208963E-01 |
| 28.0            | 15                     | +1.5450638E-01 | +1.8255351E-02        | +2.0399999E-01 | +1.2799996E-01 | +1.7225301E-01 |
| 29.0            | 12                     | +1.7676639E-01 | +1.5399011E-02        | +1.979995E-01  | +1.519995E-01  | +1.7241638E-01 |
| 30.0            | 5                      | +1.519995E-01  | +1.8814541E-02        | +1.699995E-01  | +1.3195996E-01 | +1.7257976E-01 |
| 31.0            | 13                     | +1.6116124E-01 | +1.4255979E-02        | +1.939994E-01  | +1.3999998E-01 | +1.7274314E-01 |
| 32.0            | 19                     | +1.6692185E-01 | +1.7528955E-02        | +1.969996E-01  | +1.4399999E-01 | +1.7290657E-01 |
| 33.0            | 24                     | +1.7254126E-01 | +9.7718909E-03        | +1.979995E-01  | +1.5395998E-01 | +1.7306995E-01 |
| 34.0            | 6                      | +1.6066658E-01 | +5.0058743E-03        | +1.699995E-01  | +1.5559995E-01 | +1.7323333E-01 |
| 35.0            | 7                      | +1.8899983E-01 | +1.9537949E-02        | +2.079994E-01  | +1.5795995E-01 | +1.7339670F-01 |
| 36.0            | 28                     | +1.6842097E-01 | +1.5017803E-02        | +1.889995E-01  | +1.2795996E-01 | +1.7356008E-01 |
| 37.0            | 15                     | +1.6755238E-01 | +1.6280998E-02        | +1.9039994E-01 | +1.3869994E-01 | +1.7372345E-01 |
| 38.0            | 19                     | +1.9273638E-01 | +1.4978088E-02        | +2.1799999E-01 | +1.6599994E-01 | +1.7388689E-01 |
| 39.0            | 9                      | +1.8833315E-01 | +1.6031735E-02        | +2.049998E-01  | +1.4995997E-01 | +1.7405027E-01 |
| 40.0            | 22                     | +1.8408149E-01 | +3.4957066E-02        | +3.0599999E-01 | +1.5399998E-01 | +1.7421364E-01 |
| 41.0            | 22                     | +1.7872679E-01 | +1.1688693E-02        | +1.979995E-01  | +1.4799994E-01 | +1.7437702E-01 |
| 42.0            | 22                     | +1.7356777E-01 | +1.3049034E-02        | +2.1069997E-01 | +1.5199995E-01 | +1.7454040E-01 |
| 43.0            | 13                     | +1.7492276E-01 | +1.0248823E-02        | +1.929995E-01  | +1.5115995E-01 | +1.7470377E-01 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|-----------------|----------------|
| 44.0            | 10                     | +1.6230977E-01  | +9.2519980E-03        | +1.7089998E-01 | +1.4509999E-01  | +1.7486715E-01 |
| 45.0            | 5                      | +1.5151095E-01  | +2.8473851E-02        | +1.7999994E-01 | +1.1995994E-01  | +1.7503058E-01 |
| 46.0            | 34                     | +1.8427514E-01  | +2.0480993E-02        | +2.3597994E-01 | +1.5759998E-01  | +1.7519.96E-01 |
| 47.0            | 12                     | +1.7349970E-01  | +1.7237205E-02        | +1.9769996E-01 | +1.4599996E-01  | +1.7535734E-01 |
| 48.0            | 23                     | +1.7399094E-01  | +2.1647623E-02        | +1.9699996E-01 | +1.1275994E-01  | +1.7552071E-01 |
| 49.0            | 13                     | +1.8312174E-01  | +2.1486107E-02        | +2.3999994E-01 | +1.3999998E-01  | +1.7568409E-01 |
| 50.0            | 10                     | +1.7389974E-01  | +1.2416400E-02        | +1.8699997E-01 | +1.5099996E-01  | +1.7584747E-01 |
| 51.0            | 32                     | +1.7586201E-01  | +1.5330907E-02        | +2.1999996E-01 | +1.5035998E-01  | +1.7601084E-01 |
| 52.0            | 44                     | +1.6957223E-01  | +1.1162083E-02        | +1.9599997E-01 | +1.4199995E-01  | +1.7617428E-01 |
| 53.0            | 45                     | +1.6539514E-01  | +1.8953818E-02        | +1.9999998E-01 | +1.3269996E-01  | +1.7633775E-01 |
| 54.0            | 16                     | +1.8337464E-01  | +2.38566808E-02       | +2.1599996E-01 | +1.3689994E-01  | +1.7650103E-01 |
| 55.0            | 18                     | +1.8529415E-01  | +2.2276501E-02        | +2.2199994E-01 | +1.5319997E-01  | +1.7666441E-01 |
| 56.0            | 19                     | +1.80322596E-01 | +2.0037599E-02        | +2.059997E-01  | +1.3719999E-01  | +1.7682778E-01 |
| 57.0            | 6                      | +1.79226657E-01 | +1.5661261E-02        | +1.9799995E-01 | +1.5599995E-01  | +1.7699116E-01 |
| 58.0            | 11                     | +1.7365419E-01  | +1.0046851E-02        | +1.8599998E-01 | +1.5725999E-01  | +1.7715460E-01 |
| 59.0            | 16                     | +1.7714965E-01  | +1.7029935E-02        | +2.0799994E-01 | +1.5799999E-01  | +1.7731797E-01 |
| 60.0            | 20                     | +1.8369958E-01  | +1.6396725E-02        | +2.1399998E-01 | +1.2999999E-01  | +1.7748135E-01 |
| 61.0            | 31                     | +1.7919641E-01  | +1.7380676E-02        | +2.1999996E-01 | +1.4235996E-01  | +1.7764472E-01 |
| 62.0            | 18                     | +1.8874406E-01  | +1.7079645E-02        | +2.1499997E-01 | +1.6199994E-01  | +1.7780810E-01 |
| 63.0            | 15                     | +1.9399958E-01  | +2.1198272E-02        | +2.3879998E-01 | +1.6599994E-01  | +1.7797148E-01 |
| 64.0            | 29                     | +1.7836499E-01  | +1.5109030E-02        | +2.1099996E-01 | +1.53959398E-01 | +1.7813485E-01 |
| 65.0            | 18                     | +1.8730509E-01  | +2.2943147E-02        | +2.4599999E-01 | +1.53999998E-01 | +1.7829829E-01 |
| 66.0            | 16                     | +1.7180599E-01  | +1.2765502E-02        | +1.9379997E-01 | +1.4299994E-01  | +1.7846167E-01 |
| 67.0            | 18                     | +1.7701083E-01  | +1.4461920E-02        | +2.0399999E-01 | +1.5195995E-01  | +1.7862504E-01 |
| 68.0            | 27                     | +1.8247552E-01  | +1.7142996E-02        | +2.1279996E-01 | +1.3795995E-01  | +1.7878842E-01 |
| 69.0            | 34                     | +1.8593782E-01  | +1.4190732E-02        | +2.0979994E-01 | +1.5999996E-01  | +1.7895179E-01 |
| 70.0            | 28                     | +1.7385671E-01  | +1.5740763E-02        | +2.0999997E-01 | +1.5359997E-01  | +1.7911517E-01 |
| 71.0            | 34                     | +1.8279951E-01  | +1.9303856E-02        | +2.3399996E-01 | +1.5675997E-01  | +1.7927861E-01 |
| 72.0            | 20                     | +1.8258965E-01  | +1.4877044E-02        | +2.0719999E-01 | +1.46699996E-01 | +1.7944198E-01 |
| 73.0            | 16                     | +1.6344342E-01  | +9.4506101E-03        | +1.7399996E-01 | +1.3999998E-01  | +1.7960536E-01 |
| 74.0            | 10                     | +1.9509971E-01  | +9.9311049E-03        | +2.0699995E-01 | +1.8199998E-01  | +1.7976874E-01 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 75.0            | 20                     | +1.9059950E-01 | +1.3258145E-02        | +2.1399998E-01 | +1.5599995E-01 | +1.7993211E-01 |
| 76.0            | 9                      | +1.7754423E-01 | +8.5992095E-03        | +1.8999999E-01 | +1.5999996E-01 | +1.809549E-01  |
| 77.0            | 7                      | +1.7878544E-01 | +6.7475860E-03        | +1.8959999E-01 | +1.7009997E-01 | +1.8025887E-01 |
| 78.0            | 12                     | +1.6951638E-01 | +1.9674989E-02        | +1.9999998E-01 | +1.3679999E-01 | +1.8042230E-01 |
| 79.0            | 5                      | +1.8819993E-01 | +8.4560890E-03        | +1.9599997E-01 | +1.767995E-01  | +1.8058568E-01 |
| 80.0            | 18                     | +1.7692744E-01 | +9.4187437E-03        | +1.9599997E-01 | +1.6269999E-01 | +1.8074905E-01 |
| 81.0            | 16                     | +1.6649967E-01 | +1.2318387E-02        | +1.9199997E-01 | +1.4469999E-01 | +1.8091243E-01 |
| 82.0            | 3                      | +1.6796660E-01 | +5.9999640E-03        | +1.7399996E-01 | +1.6199994E-01 | +1.8107581E-01 |
| 83.0            | 21                     | +1.7394236E-01 | +3.9481474E-03        | +1.9199997E-01 | +1.6159999E-01 | +1.8123918E-01 |
| 84.0            | 21                     | +1.8118530E-01 | +1.5902542E-02        | +2.0799994E-01 | +1.4959996E-01 | +1.8140256E-01 |
| 85.0            | 6                      | +1.8176651E-01 | +1.4069324E-02        | +1.9919997E-01 | +1.6129994E-01 | +1.8156599E-01 |
| 86.0            | 13                     | +1.8289196E-01 | +1.2950933E-02        | +2.0519995E-01 | +1.5999996E-01 | +1.8172937E-01 |
| 87.0            | 10                     | +1.6708964E-01 | +1.1556016E-02        | +1.8209999E-01 | +1.4419996E-01 | +1.8189275E-01 |
| 88.0            | 7                      | +1.7598557E-01 | +9.8932674E-03        | +1.8719995E-01 | +1.5799999E-01 | +1.8205612E-01 |
| 89.0            | 18                     | +1.7300522E-01 | +1.3820413E-02        | +1.9999998E-01 | +1.4879995E-01 | +1.8221950E-01 |
| 90.0            | 11                     | +1.8259876E-01 | +2.3136175E-02        | +2.1299999E-01 | +1.4999997E-01 | +1.8238288E-01 |
| 91.0            | 7                      | +1.8369984E-01 | +1.5490926E-02        | +2.1119999E-01 | +1.6559994E-01 | +1.8254631E-01 |
| 92.0            | 10                     | +1.8279981E-01 | +8.6541348E-03        | +1.9799995E-01 | +1.7199999E-01 | +1.8270969E-01 |
| 93.0            | 5                      | +1.9059991E-01 | +4.5598979E-03        | +1.9499999E-01 | +1.8399995E-01 | +1.8287307E-01 |
| 94.0            | 9                      | +1.9256639E-01 | +9.2701640E-03        | +2.1359997E-01 | +1.8239998E-01 | +1.8303644E-01 |
| 95.0            | 19                     | +1.8413650E-01 | +1.9625528E-02        | +2.1519994E-01 | +1.4999997E-01 | +1.8319982E-01 |
| 96.0            | 6                      | +1.6059994E-01 | +1.8627281E-02        | +1.8479996E-01 | +1.3439995E-01 | +1.8336319E-01 |
| 97.0            | 6                      | +1.9493323E-01 | +1.3899310E-02        | +2.1399998E-01 | +1.7999994E-01 | +1.8352657E-01 |
| 98.0            | 7                      | +1.8269968E-01 | +2.1618974E-02        | +2.1119999E-01 | +1.6159999E-01 | +1.8369001E-01 |
| 99.0            | 1                      | +2.1199995E-01 | +0.0000000E+3.9       | +2.1199995E-01 | +2.1199995E-01 | +1.8385338E-01 |
| 101.0           | 8                      | +1.7406225E-01 | +1.4493252E-02        | +1.9359999E-01 | +1.5439999E-01 | +1.8418014E-01 |
| 102.0           | 3                      | +1.8393325E-01 | +8.7957784E-03        | +1.9359999E-01 | +1.7639994E-01 | +1.8434351E-01 |
| 104.0           | 11                     | +1.7688149E-01 | +5.5665703E-03        | +1.8939995E-01 | +1.7109996E-01 | +1.8467026E-01 |
| 106.0           | 2                      | +1.8149995E-01 | +4.4547242E-02        | +2.1299999E-01 | +1.4999997E-01 | +1.8499708E-01 |
| 107.0           | 2                      | +1.7059993E-01 | +4.8100599E-03        | +1.7399996E-01 | +1.6719996E-01 | +1.8516045E-01 |
| 108.0           | 3                      | +2.0333325F-01 | +1.5216366E-03        | +2.0499998E-01 | +2.0195996E-01 | +1.8532383E-01 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION |                | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|
|                 |                        |                |                       |                |                |                |                |
| 109.0           | 9                      | +1.7246645E-01 | +8.3089330E-03        | +1.8199998E-01 | +1.8548721E-01 | +1.5999996E-01 | +1.8548721E-01 |
| 111.0           | 6                      | +2.0024979E-01 | +1.3528279E-02        | +2.2119998E-01 | +1.8209999E-01 | +1.8581402E-01 | +1.8581402E-01 |
| 113.0           | 12                     | +1.8649971E-01 | +1.4674783E-02        | +2.1399998E-01 | +1.6319996E-01 | +1.8614177E-01 | +1.8614177E-01 |
| 115.0           | 3                      | +1.9296663E-01 | +2.6492708E-03        | +1.9559997E-01 | +1.9029998E-01 | +1.8646752E-01 | +1.8646752E-01 |
| 118.0           | 7                      | +1.8632829E-01 | +1.7044378E-02        | +2.0889997E-01 | +1.6995995E-01 | +1.8695771E-01 | +1.8695771E-01 |
| 119.0           | 9                      | +1.8741083E-01 | +9.7280928E-03        | +1.9849997E-01 | +1.6795998E-01 | +1.8712109E-01 | +1.8712109E-01 |
| 120.0           | 2                      | +1.9394999E-01 | +4.4369543E-04        | +1.9429993E-01 | +1.9359999E-01 | +1.8728446E-01 | +1.8728446E-01 |
| 121.0           | 9                      | +1.9717741E-01 | +8.6772273E-03        | +2.1099996E-01 | +1.8699997E-01 | +1.8744784E-01 | +1.8744784E-01 |
| 122.0           | 3                      | +1.9433325E-01 | +1.2662043E-02        | +2.0399999E-01 | +1.7995994E-01 | +1.8761122E-01 | +1.8761122E-01 |
| 123.0           | 3                      | +1.9099992E-01 | +9.8479904E-03        | +1.9899994E-01 | +1.7999994E-01 | +1.8777459E-01 | +1.8777459E-01 |
| 125.0           | 6                      | +1.8783330E-01 | +7.0807657E-03        | +1.9999998E-01 | +1.8099999E-01 | +1.8810141E-01 | +1.8810141E-01 |
| 137.0           | 1                      | +1.8299996E-01 | +0.0000000E+11        | +1.8299996E-01 | +1.8299996E-01 | +1.9006198E-01 | +1.9006198E-01 |

ANB 3066 PROPELLANT IANA & ANB UNLND, G POLYMER! TENSILE ER .0002 IN/MIN 77 DEG

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 44.0            | 10                     | +6.0379980E+02 | +5.7466511E+01        | +6.8600000E+02 | +5.290000E+02  | +5.5159204E+02 |
| 45.0            | 5                      | +5.7959985E+02 | +5.0510394E+01        | +6.3200000E+02 | +5.0700000E+02 | +5.5131445E+02 |
| 34              | +5.4505859E+02         | +5.8295974E+01 | +6.5807000E+02        | +4.4900000E+02 | +5.5103686E+02 |                |
| 46.0            | 12                     | +5.3325000E+02 | +3.9055031E+01        | +5.7600000E+02 | +4.7700000E+02 | +5.5075903E+02 |
| 47.0            | 23                     | +5.7047802E+02 | +1.1380800E+02        | +9.7400000E+02 | +4.790C000E+02 | +5.5048144E+02 |
| 48.0            | 18                     | +5.0522216E+02 | +4.9769534E+01        | +6.1000000E+02 | +4.1700000E+02 | +5.5020385E+02 |
| 49.0            | 10                     | +5.3850000E+02 | +8.0184855E+01        | +6.8200000E+02 | +4.4500000E+02 | +5.4992626E+02 |
| 50.0            | 32                     | +5.7106250E+02 | +1.9650903E+02        | +1.3460000E+03 | +4.3100000E+02 | +5.4964868E+02 |
| 51.0            | 44                     | +5.5243164E+02 | +6.3465573E+01        | +6.8000000E+02 | +4.4900000E+02 | +5.4937109E+02 |
| 52.0            | 45                     | +5.4586645E+02 | +5.3369041E+01        | +6.6000000E+02 | +4.1500000E+02 | +5.4909350E+02 |
| 53.0            | 16                     | +5.5012500E+02 | +6.5029096E+01        | +6.7800000E+02 | +4.5300000E+02 | +5.4881591E+02 |
| 54.0            | 18                     | +5.264433E+02  | +7.0959990E+01        | +6.4700000E+02 | +4.1300000E+02 | +5.4853833E+02 |
| 55.0            | 19                     | +5.0068408E+02 | +7.2914754E+01        | +6.9300000E+02 | +4.1600000E+02 | +5.4826074E+02 |
| 56.0            | 6                      | +5.0283325E+02 | +8.2127746E+01        | +6.1300000E+02 | +4.1600000E+02 | +5.4798315E+02 |
| 57.0            | 12                     | +5.0765650E+02 | +3.6725847E+01        | +5.5500000E+02 | +4.5300000E+02 | +5.4770556E+02 |
| 58.0            | 16                     | +6.0856250E+02 | +9.5160193E+01        | +7.6000000E+02 | +5.1900000E+02 | +5.4742797E+02 |
| 59.0            | 20                     | +5.7264990E+02 | +4.4530622E+01        | +6.4000000E+02 | +4.7000000E+02 | +5.4715039E+02 |
| 60.0            | 31                     | +5.2609667E+02 | +7.5167526E+01        | +6.7800000E+02 | +3.8500000E+02 | +5.4687280E+02 |
| 61.0            | 18                     | +5.4572216E+02 | +7.1425654E+01        | +7.0400000E+02 | +4.0500000E+02 | +5.4659521E+02 |
| 62.0            | 15                     | +5.2846655E+02 | +5.7949321E+01        | +6.3500000E+02 | +4.4000000E+02 | +5.4631762E+02 |
| 63.0            | 29                     | +5.5131030E+02 | +8.9028929E+01        | +7.8800000E+02 | +3.6700000E+02 | +5.4604003E+02 |
| 64.0            | 18                     | +5.4172216E+02 | +8.0070414E+01        | +6.7500000E+02 | +4.1800000E+02 | +5.4576245E+02 |
| 65.0            | 16                     | +5.6756250E+02 | +7.3228381E+01        | +7.1100000E+02 | +4.3000000E+02 | +5.4548486E+02 |
| 66.0            | 18                     | +5.6183325E+02 | +8.6590483E+01        | +7.4500000E+02 | +4.4800000E+02 | +5.4520727E+02 |
| 67.0            | 27                     | +5.5648144E+02 | +8.0611304E+01        | +7.1700000E+02 | +4.1000000E+02 | +5.4492968E+02 |
| 68.0            | 34                     | +5.6255859E+02 | +6.2403472E+01        | +6.9300000E+02 | +4.5300000E+02 | +5.4465209E+02 |
| 69.0            | 28                     | +5.6507128E+02 | +7.7862142E+01        | +7.3100000E+02 | +4.5800000E+02 | +5.4437451E+02 |
| 70.0            | 34                     | +5.5814697E+02 | +9.6066306E+01        | +7.9500000E+02 | +4.0300000E+02 | +5.4409692E+02 |
| 71.0            | 29                     | +5.3123980E+02 | +5.6502538E+01        | +6.2500000E+02 | +4.1600000E+02 | +5.4381933E+02 |
| 72.0            | 14                     | +5.7378564E+02 | +4.1873763E+01        | +6.4900000E+02 | +4.9400000E+02 | +5.4354174E+02 |
| 73.0            | 10                     | +4.9979980E+02 | +1.1647298E+02        | +6.7900000E+02 | +3.7500000E+02 | +5.4326416E+02 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 75.0            | 20                     | +4.6079980E+02 | +5.7091431E+01        | +5.8700000E+02 | +3.7300000E+02 | +5.4298657E+02 |
| 76.0            | 9                      | +5.5255541E+02 | +8.9266610E+01        | +6.9200000E+02 | +4.5800000E+02 | +5.4270898E+02 |
| 77.0            | 7                      | +5.4430000E+02 | +7.2631489E+01        | +6.1900000E+02 | +4.5600000E+02 | +5.424339E+02  |
| 78.0            | 11                     | +5.6809082E+02 | +8.4657491E+01        | +6.9700000E+02 | +4.3500000F+02 | +5.4215380E+02 |
| 79.0            | 5                      | +5.6319995E+02 | +5.2121972E+01        | +6.4900000E+02 | +5.1300000E+02 | +5.4187622E+02 |
| 80.0            | 18                     | +4.8555541E+02 | +6.2924064E+01        | +5.7800000E+02 | +3.8200000E+02 | +5.4159863E+02 |
| 81.0            | 16                     | +5.5900000E+02 | +7.9537831E+01        | +6.7900000E+02 | +4.3200000E+02 | +5.4132104E+02 |
| 82.0            | 3                      | +5.733325F+02  | +4.7056703E+01        | +6.1500000E+02 | +5.2600000E+02 | +5.4104345E+02 |
| 83.0            | 21                     | +6.6235214E+02 | +3.0146450E+02        | +1.4153300E+03 | +4.1600000E+02 | +5.4076586E+02 |
| 84.0            | 21                     | +6.2152368E+02 | +2.5351994E+02        | +1.4100000E+03 | +4.5900000E+02 | +5.4048828E+02 |
| 85.0            | 6                      | +6.2250000E+02 | +1.3996428E+01        | +6.3500000E+02 | +5.9600000E+02 | +5.4021069E+02 |
| 86.0            | 13                     | +5.0330761E+02 | +8.2933070E+01        | +5.9500000E+02 | +3.7800000E+02 | +5.3953310E+02 |
| 87.0            | 19                     | +6.0889990E+02 | +3.8968505E+01        | +6.9500000E+02 | +5.6000000E+02 | +5.3965551E+02 |
| 88.0            | 7                      | +5.2100000E+02 | +1.1052299E+02        | +6.6800000E+02 | +3.0200000E+02 | +5.3937792E+02 |
| 89.0            | 17                     | +5.3476464E+02 | +7.2742292E+01        | +6.7800000E+02 | +4.6000000E+02 | +5.3910034E+02 |
| 90.0            | 11                     | +5.4127270E+02 | +8.4657062E+01        | +6.6200000E+02 | +4.3500000E+02 | +5.3882275E+02 |
| 91.0            | 7                      | +5.1857128E+02 | +4.6878769E+01        | +6.0600000E+02 | +4.7300000E+02 | +5.3854516E+02 |
| 92.0            | 10                     | +4.7159985E+02 | +4.5115161E+01        | +5.6700000E+02 | +4.1300000E+02 | +5.3826757E+02 |
| 93.0            | 5                      | +4.7059985E+02 | +4.7045722E+01        | +5.4700000E+02 | +4.2000000E+02 | +5.3798999E+02 |
| 94.0            | 9                      | +5.3822216F+02 | +5.6173342E+01        | +6.5900000E+02 | +4.6700000E+02 | +5.3771240E+02 |
| 95.0            | 19                     | +5.5626293E+02 | +9.0834918E+01        | +6.9300000E+02 | +4.1700000E+02 | +5.3743481E+02 |
| 96.0            | 6                      | +6.5400000E+02 | +7.8714674E+01        | +7.7100000E+02 | +5.4800000E+02 | +5.3715722E+02 |
| 97.0            | 6                      | +4.8000000E+02 | +3.9278492E+01        | +5.4200000E+02 | +4.3900000E+02 | +5.3687963E+02 |
| 98.0            | 9                      | +4.9488867E+02 | +3.1150619E+01        | +5.5200000E+02 | +4.6200000E+02 | +5.3660205E+02 |
| 99.0            | 1                      | +4.9100000E+02 | +0.0000000E+02        | +4.9100000E+02 | +4.9100000E+02 | +5.3632446E+02 |
| 101.0           | 7                      | +4.4857128E+02 | +2.6881574E+01        | +4.7900000E+02 | +3.9600000E+02 | +5.3576928E+02 |
| 102.0           | 3                      | +4.5833325E+02 | +1.6165807E+01        | +4.7300000E+02 | +4.4100000E+02 | +5.3549169E+02 |
| 104.0           | 11                     | +5.5136352E+02 | +4.5893948E+01        | +6.5100000E+02 | +4.8300000E+02 | +5.3493652E+02 |
| 106.0           | 2                      | +5.9750000E+02 | +2.4748737E+01        | +6.1590000E+02 | +5.8000000E+02 | +5.3438134E+02 |
| 107.0           | 2                      | +6.0550000E+02 | +6.5760930E+01        | +6.5200000E+02 | +5.5900000E+02 | +5.3410375E+02 |
| 108.0           | 3                      | +5.2366650E+02 | +1.7616280E+01        | +5.3800000E+02 | +5.0400000E+02 | +5.3382617E+02 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 109.0           | 9                      | +5.7633325E+02 | +2.5476852E+02        | +1.0540000E+03 | +4.1700000E+02 | +5.3354858E+02 |
| 111.0           | 6                      | +5.3683325E+02 | +3.6279011E+01        | +5.8400000E+02 | +5.0000000E+02 | +5.3299340E+02 |
| 113.0           | 12                     | +5.0625003E+02 | +2.8616984E+01        | +5.6400000E+02 | +4.5300000E+02 | +5.3243823E+02 |
| 115.0           | 3                      | +5.1033325E+02 | +1.3051181E+01        | +5.2400000E+02 | +4.9800000E+02 | +5.3188305E+02 |
| 118.0           | 7                      | +5.0714282E+02 | +5.9181721E+01        | +5.8700000E+02 | +4.4200000E+02 | +5.3105004E+02 |
| 119.0           | 9                      | +4.5666650E+02 | +2.2901964E+01        | +5.1000000E+02 | +4.3800000E+02 | +5.3077246E+02 |
| 120.0           | 2                      | +4.8100000E+02 | +0.0000000E+00        | +4.8100000E+02 | +4.8100000E+02 | +5.3049487E+02 |
| 121.0           | 9                      | +5.0588867E+02 | +6.1115555E+01        | +6.1900000E+02 | +4.3000000E+02 | +5.3021728E+02 |
| 122.0           | 3                      | +4.9300000E+02 | +6.7756719E+01        | +5.6700000E+02 | +4.3400000E+02 | +5.2953969E+02 |
| 123.0           | 3                      | +4.9933325E+02 | +3.8850139E+01        | +5.4200000E+02 | +4.6600000E+02 | +5.2966210E+02 |
| 125.0           | 6                      | +5.2500000E+02 | +2.6359059E+01        | +5.6800000E+02 | +4.8600000E+02 | +5.2910693E+02 |
| 137.0           | 1                      | +4.3200000E+02 | +0.0000000E+11        | +4.3200000E+02 | +4.3200000E+02 | +5.2577587E+02 |

ANB 3C66 PROPELLANT (ANA & ANB UNLND, S POLYMER) TENSILE MODULUS, .0002 IN/MIN

$F = +1.9114922E+01$   
 $R = +8.8872679E-02$   
 $I_1 = +4.3720E+00$   
 $N = 2403$   
 $\gamma = (( +7.89208155E+01 ) + ( +2.7725828E-02 )) * X$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $I_1 = \text{SIGNIFICANCE OF } I_1$   
 $N = \text{DEGREES OF FREEDOM} = 2401$

STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS =

$\triangle$  G  
 $\times$  P



ANB 3066 PROPELLANT TANS UNLINED. G & P POLYMER) TENSILE MAX STRESS. .0002 IN/MIN.

Figure 4-25

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>P/N GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|-----------------------|----------------|-----------------------|-----------------|-----------------|-----------------|
| 13.0            | 7                     | +7.1747070E+01 | +4.1623044E+00        | +7.299987E+01   | +6.6439987E+01  | +7.9261250E+01  |
| 15.0            | 15                    | +7.9473236E+01 | +7.2098152E+00        | +9.0399993E+01  | +6.6299987E+01  | +7.9336700E+01  |
| 15.0            | 30                    | +7.5225555E+01 | +8.3122729E+00        | +8.9899953E+01  | +5.4250000E+01  | +7.9364425E+01  |
| 17.0            | 15                    | +7.5651232E+01 | +8.8055137E+00        | +8.8299987E+01  | +5.9500000E+01  | +7.9392150E+01  |
| 18.0            | 12                    | +7.2300735E+01 | +7.2548569E+00        | +8.6399953E+01  | +5.90999950E+01 | +7.9419876E+01  |
| 19.0            | 11                    | +7.5997177E+01 | +2.8374313E+00        | +7.9500000E+01  | +7.25999900E+01 | +7.9447601E+01  |
| 20.0            | 21                    | +7.4375625E+01 | +6.1558646E+00        | +8.534999CE+01  | +6.2049987E+01  | +7.9475326E+01  |
| 21.0            | 31                    | +7.7272791E+01 | +4.2121273E+00        | +8.45119989E+01 | +7.0769989E+01  | +7.9503051E+01  |
| 22.0            | 23                    | +7.9059875E+01 | +6.4963950E+00        | +9.0799987E+01  | +6.7099990CF+01 | +7.9520776E+01  |
| 23.0            | 19                    | +8.4555923E+01 | +5.9137795E+00        | +9.1099990E+01  | +7.4311992E+01  | +7.9558502E+01  |
| 24.0            | 15                    | +7.7172607E+01 | +7.1984867E+00        | +8.7699996E+01  | +6.6000000E+01  | +7.9586227E+01  |
| 25.0            | 33                    | +8.0718698E+01 | +5.8763760E+00        | +9.1000000E+01  | +6.89119298E+01 | +7.9613952E+01  |
| 26.0            | 27                    | +7.7725845E+01 | +7.0739860E+00        | +9.03899999E+01 | +6.7829986E+01  | +7.9641677E+01  |
| 27.0            | 22                    | +8.2358529E+01 | +6.2963343E+00        | +9.5399993E+01  | +7.45999900E+01 | +7.9669403E+01  |
| 28.0            | 30                    | +8.1772247E+01 | +1.0763815E+01        | +1.0629998E+02  | +4.6999996E+01  | +7.9697128E+01  |
| 29.0            | 12                    | +8.1480743E+01 | +5.8047124E+00        | +8.9000000E+01  | +6.78999993E+01 | +7.9724853E+01  |
| 30.0            | 10                    | +8.2972915E+01 | +3.3458C98E+00        | +8.7799987E+01  | +7.84899990E+01 | +7.9752578E+01  |
| 31.0            | 13                    | +8.1445266E+01 | +4.5739158E+00        | +9.0399993E+01  | +7.6259994E+01  | +7.9780303E+01  |
| 32.0            | 21                    | +7.8154663E+01 | +4.6407963E+00        | +8.6799987E+01  | +6.92999987E+01 | +7.9800029E+01  |
| 33.0            | 33                    | +7.7770507E+01 | +9.9267234E+00        | +9.3500000E+01  | +5.8799987E+01  | +7.9835754E+01  |
| 34.0            | 17                    | +8.0559326E+01 | +6.3254912E+00        | +9.0899993E+01  | +7.1500000E+01  | +7.9863479E+01  |
| 35.0            | 20                    | +8.3826914E+01 | +3.7618186E+00        | +9.1500000E+01  | +7.5599990E+01  | +7.986512C4E+01 |
| 36.0            | 44                    | +9.0243774E+01 | +6.3455013E+00        | +9.6799987E+01  | +6.6329986E+01  | +7.9918945E+01  |
| 37.0            | 26                    | +7.9754522E+01 | +6.8717611E+00        | +8.9199996E+01  | +6.5299987E+01  | +7.946670E+01   |
| 38.0            | 33                    | +7.6662595E+01 | +6.5017563E+00        | +8.7399993E+01  | +6.4000000E+01  | +7.9574395E+01  |
| 39.0            | 12                    | +7.7916625E+01 | +1.9132610E+01        | +9.5000000E+01  | +6.7000000E+01  | +8.00C2120E+01  |
| 40.0            | 27                    | +8.1336959E+01 | +6.5775144E+00        | +9.2000000E+01  | +7.1000000E+01  | +8.0029846E+01  |
| 41.0            | 22                    | +7.5450829E+01 | +6.1693368E+00        | +8.5799987E+01  | +6.6500000E+01  | +8.0057571E+01  |
| 42.0            | 20                    | +7.6303405E+01 | +5.6731970E+00        | +8.8649987E+01  | +6.9000000E+01  | +8.0085296E+01  |
| 43.0            | 9                     | +6.4928817E+01 | +1.4048470E+01        | +9.2239990E+01  | +5.0599990E+01  | +8.0113021E+01  |
| 44.0            | 25                    | +7.3656324E+01 | +6.4566581E+00        | +8.0380999E+01  | +6.1500000E+01  | +8.0140747E+01  |

A412 3366 PROPELLANT (ANB UNLINED, G S P POLYMER) TENSILE MAX STRESS, .00012 IN/MIN

\*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| 4-86<br>(MONTHS) | SPECIAMS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|------------------|-----------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|
|                  |                       |                 |                       |                 |                 | +8.07581135E+00 |
| 45.0             | 23                    | +7.5027399E+01  | +5.07581135E+00       | +8.37999987E+01 | +6.57599954E+01 | +8.07581135E+00 |
| 46.0             | 44                    | +8.1155593E+01  | +5.66989955E+00       | +9.3399993E+01  | +7.01999956E+01 | +8.0196197E+01  |
| 47.0             | 12                    | +8.1101577E+01  | +6.8256346E+00        | +9.32599954E+01 | +7.31999956E+01 | +8.0223921E+01  |
| 48.0             | 20                    | +8.1214934E+01  | +6.1387259E+00        | +9.5419998E+01  | +7.32999987E+01 | +8.0251647E+01  |
| 49.0             | 22                    | +7.6722982E+01  | +5.0653830E+00        | +9.7269989E+01  | +6.3199996E+01  | +8.0279373E+01  |
| 50.0             | 29                    | +7.8318522E+01  | +7.07131338E+00       | +9.2399937E+01  | +6.28999953E+01 | +8.0307098E+01  |
| 51.0             | 57                    | +8.0777130E+01  | +7.0749497E+00        | +9.6039993E+01  | +6.5019989E+01  | +8.0324823E+01  |
| 52.0             | 53                    | +8.0506484E+01  | +5.1222490E+00        | +9.5799987E+01  | +6.5799987E+01  | +8.0362548E+01  |
| 53.0             | 37                    | +7.9544769E+01  | +6.5216908E+00        | +9.50399933E+01 | +7.0159988F+01  | +8.0390274E+01  |
| 54.0             | 19                    | +8.1768310E+01  | +7.6527933E+00        | +9.1799987E+01  | +5.8799987E+01  | +8.0417999E+01  |
| 55.0             | 42                    | +8.36346F+01    | +5.9205029E+00        | +9.7699996E+01  | +7.2299987E+01  | +8.045724E+01   |
| 56.0             | 59                    | +7.9427169E+01  | +4.56996208E+00       | +9.1399993E+01  | +6.66699958E+01 | +8.0473449E+01  |
| 57.0             | 46                    | +7.8460556E+01  | +6.5721989E+00        | +8.9699996E+01  | +6.9399993E+01  | +8.0501174E+01  |
| 58.0             | 34                    | +8.2624023E+01  | +6.8118161E+00        | +9.5000300E+01  | +7.0909988E+01  | +8.0528900E+01  |
| 59.0             | 20                    | +9.2346405E+01  | +6.7407129E+00        | +1.0300000E+02  | +7.6729995E+01  | +8.0556625E+01  |
| 60.0             | 29                    | +8.6679870E+01  | +7.3399614E+00        | +9.3299987E+01  | +6.0899993E+01  | +8.0584350E+01  |
| 61.0             | 40                    | +7.8849624E+01  | +8.6878910E+00        | +9.4000000E+01  | +6.01199996E+01 | +8.0612091E+01  |
| 62.0             | 35                    | +8.5151611E+01  | +7.8219771E+00        | +9.5599990E+01  | +6.4899993E+01  | +8.0639816E+01  |
| 63.0             | 45                    | +8.7134567E+01  | +7.9508711E+00        | +9.8599990E+01  | +6.5599990E+01  | +8.0667541E+01  |
| 64.0             | 36                    | +8.3136581E+01  | +9.4823437E+00        | +1.0050000E+02  | +6.0150000E+01  | +8.0655266E+01  |
| 65.0             | 28                    | +8.1550979E+01  | +6.7546801E+00        | +9.0109985E+01  | +6.0650000E+01  | +8.0722991E+01  |
| 66.0             | 28                    | +9.0218826E+01  | +9.5155226E+00        | +1.0559999E+02  | +7.5799987E+01  | +8.0750717E+01  |
| 67.0             | 46                    | +8.6434692E+01  | +6.8096820E+00        | +9.7500000E+01  | +7.4299987E+01  | +8.0778442E+01  |
| 68.0             | 44                    | +8.16192104E+01 | +6.620106E+00         | +1.00209998E+02 | +6.01399993F+01 | +8.0806167E+01  |
| 69.0             | 52                    | +8.7825225E+01  | +6.8233374E+00        | +1.0315999F+02  | +7.05999990E+01 | +8.083892E+01   |
| 70.0             | 43                    | +7.9231643E+01  | +8.1734518F+00        | +9.3599990E+01  | +6.6099990E+01  | +8.0861618E+01  |
| 71.0             | 47                    | +8.1680114E+01  | +1.15668504E+01       | +1.0539999E+02  | +5.07599990E+01 | +8.0889343E+01  |
| 72.0             | 34                    | +8.1316360E+01  | +6.4662732E+00        | +9.4279958E+01  | +7.0399993E+01  | +8.0917068E+01  |
| 73.0             | 26                    | +7.9568771F+01  | +1.0738964F+01        | +9.6500000F+01  | +6.0799987E+01  | +8.0944793E+01  |
| 74.0             | 15                    | +8.3323206E+01  | +9.1077112E+00        | +9.9799987E+01  | +7.2000000E+C1  | +8.0972518E+01  |
| 75.0             | 70                    | +8.06099627E+01 | +9.5612448F+00        | +1.0250000E+02  | +6.7999993E+C1  | +8.1000244E+C1  |

AMR 3166 POLYPLNT (ANH UNLINED) G F P POLYMER TENSILE MAX STRESS, .0002 IN/MIN

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|-----------------|-----------------|----------------|
| 75.0            | 17                     | +7.9348144E+01 | +3.2102625E+00        | +9.0479995E+01  | +6.50999993E+01 | +8.1027969E+01 |
| 77.0            | 19                     | +8.4942535E+01 | +6.9837817E+00        | +9.6299987E+01  | +6.94599951E+01 | +8.1055654E+01 |
| 78.0            | 29                     | +8.3215621E+01 | +5.0936395E+01        | +9.1449596E+01  | +7.4599990E+01  | +8.1063419E+C1 |
| 79.0            | 17                     | +9.0724509E+01 | +1.1623707E+01        | +1.0C729958E+02 | +7.5119995E+01  | +8.1111145E+C1 |
| 80.0            | 36                     | +7.5745712E+01 | +7.5957475E+00        | +8.9399953E+01  | +6.1099990E+01  | +8.1138870E+C1 |
| 81.0            | 26                     | +7.5976806E+01 | +7.6764801E+00        | +8.7099990E+01  | +5.5299987E+01  | +8.1166595E+C1 |
| 82.0            | 15                     | +8.9485244E+01 | +6.1514958E+00        | +9.85999990E+01 | +7.8699995E+01  | +8.1194320E+01 |
| 83.0            | 33                     | +8.1082916E+01 | +7.2366760E+00        | +9.4659998E+01  | +6.4500000E+01  | +8.1222045E+C1 |
| 84.0            | 42                     | +8.6154835E+01 | +8.1756871E+00        | +1.0600000E+02  | +6.7239990E+01  | +8.1249771E+01 |
| 85.0            | 18                     | +8.6204879E+01 | +8.6688603F+00        | +9.4759994E+01  | +6.4239990E+01  | +8.1277496E+01 |
| 86.0            | 22                     | +7.7230361E+01 | +9.7165916E+00        | +9.4719985E+01  | +6.3000000E+01  | +8.1305236E+01 |
| 87.0            | 29                     | +8.3969924E+01 | +5.7772462E+00        | +9.7539993E+01  | +7.3199996E+01  | +8.1322962E+C1 |
| 88.0            | 32                     | +8.2632705E+01 | +7.6340653E+00        | +9.7511989E+01  | +6.8829986E+01  | +8.1360687E+C1 |
| 89.0            | 31                     | +8.0088995E+01 | +7.8229211E+00        | +9.5329986E+01  | +6.2079986E+01  | +8.1388412E+C1 |
| 90.0            | 11                     | +8.0208084E+01 | +1.1467175E+01        | +9.4000000E+01  | +6.5369995E+01  | +8.1416137E+C1 |
| 91.0            | 9                      | +7.6204360E+01 | +5.8337466E+00        | +8.62099951E+01 | +7.0219985E+01  | +8.143862E+C1  |
| 92.0            | 17                     | +7.1952643E+01 | +5.0863257E+00        | +8.0799987E+01  | +6.2699996E+01  | +8.1471588E+C1 |
| 93.0            | 15                     | +8.0060577E+01 | +9.1609782E+00        | +9.3049987E+01  | +6.8199995E+01  | +8.1499313E+C1 |
| 94.0            | 13                     | +8.3571395E+01 | +7.6654421E+00        | +9.28999993E+01 | +6.9799987E+01  | +8.1527038E+C1 |
| 95.0            | 24                     | +8.0096130E+01 | +6.8316720E+00        | +9.31299989E+01 | +6.6299987E+01  | +8.1584763E+C1 |
| 96.0            | 11                     | +8.8782669E+01 | +3.7825149E+00        | +9.6500000E+01  | +8.5429992E+01  | +8.1522489E+C1 |
| 97.0            | 6                      | +7.9348297E+01 | +5.9631456E+00        | +8.6129989E+01  | +7.1250000E+01  | +8.1610214E+C1 |
| 98.0            | 9                      | +7.3146606E+01 | +2.0215930E+00        | +7.6035993E+01  | +6.9199996E+01  | +8.1637939E+C1 |
| 99.0            | 5                      | +8.2231950E+01 | +8.1736401E+00        | +9.3000000E+01  | +7.2500000E+01  | +8.1665664E+C1 |
| 100.0           | 2                      | +8.6510000E+01 | +1.2020815E+01        | +9.5000000E+01  | +7.8000000E+01  | +8.1693289E+C1 |
| 101.0           | 10                     | +7.0654907E+01 | +1.0235895E+01        | +9.3905988E+01  | +5.9539993E+01  | +8.1721115E+C1 |
| 102.0           | 5                      | +6.9856652E+01 | +2.1864838E+00        | +7.2159988E+01  | +6.7789993E+01  | +8.1748840E+C1 |
| 103.0           | 2                      | +8.8010000E+01 | +2.8264271E+00        | +9.0000000E+01  | +8.6000000E+01  | +8.1776565E+C1 |
| 104.0           | 13                     | +8.2372177E+01 | +5.1251430E+00        | +8.9939987E+01  | +7.2899993E+01  | +8.1804290E+C1 |
| 105.0           | 9                      | +8.6852157E+01 | +6.4330381E+00        | +9.7579986E+01  | +7.8539993E+01  | +8.1832015E+C1 |
| 106.0           | 11                     | +7.5024644E+01 | +9.05640234E+00       | +9.4000000E+01  | +6.2679992E+01  | +8.1A59741E+C1 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>OF GROUP | MEAN Y           | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|-----------------------|------------------|-----------------------|-----------------|-----------------|----------------|
| 117.0           | 2                     | +7.79599984E+01  | +8.4689085E-01        | +7.85599990E+01 | +7.7399953E+01  | +8.1887466E+01 |
| 123.0           | 5                     | +7.8598266E+01   | +5.2528251E+00        | +8.43899995E+01 | +7.1809997E+01  | +8.1975191E+01 |
| 129.0           | 14                    | +6.9454879E+01   | +6.0320546E+00        | +7.94559951E+01 | +6.19899950E+01 | +8.1942916E+01 |
| 116.0           | 11                    | +7.6852645E+01   | +8.0280570E+00        | +9.2299987E+01  | +6.5479955E+01  | +8.1970642E+01 |
| 111.0           | 11                    | +3.1103546E+01   | +7.8662577E+00        | +9.0979995F+01  | +6.7479955E+01  | +8.1998382E+01 |
| 112.0           | 6                     | +2.4594924E+01   | +1.1615481E+01        | +1.02529999E+02 | +7.2969985E+01  | +8.2026107E+01 |
| 113.0           | 21                    | +7.5755126E+01   | +8.3237252E+00        | +8.55699922E+01 | +4.8799987E+01  | +8.2053833E+01 |
| 114.0           | 3                     | +7.6623331E+01   | +9.1638266E+00        | +9.4199996E+01  | +6.6529995AE+01 | +8.2081558E+01 |
| 115.0           | 6                     | +8.3021586E+01   | +3.4704524E+00        | +8.9625999E+01  | +8.0399993E+01  | +8.2109283E+01 |
| 116.0           | 6                     | +8.2041534E+01   | +6.1798626E+00        | +9.2209991E+01  | +7.5779998E+01  | +8.2137008E+01 |
| 117.0           | 3                     | +7.5339996E+01   | +4.9971951E+00        | +7.8275998E+01  | +6.9569992E+01  | +8.2164733E+01 |
| 118.0           | 7                     | +7.8035644E+01   | +4.2299791E+00        | +8.4289993E+01  | +7.3919998E+01  | +8.2152459E+01 |
| 119.0           | 3                     | +7.2752144E+01   | +1.1957399E+00        | +7.4459991E+01  | +7.1059997E+01  | +8.2220164E+01 |
| 120.0           | 2                     | +7.7324996E+01   | +7.8103512E-02        | +7.7389999E+01  | +7.7259994E+01  | +8.2247909E+01 |
| 121.0           | 9                     | +8.1381042E+01   | +5.2162600E+00        | +8.9099990E+01  | +7.1939987E+01  | +8.2275634E+01 |
| 122.0           | 6                     | +8.3168243E+01   | +5.0123201E+00        | +8.8709991E+01  | +7.6579986E+01  | +8.2303359E+01 |
| 123.0           | 12                    | +8.4733230E+01   | +6.9329271E+00        | +9.4019989E+01  | +7.4099990E+01  | +8.2331065E+01 |
| 124.0           | 6                     | +8.3243240E+01   | +7.2501275E+00        | +9.1979995E+01  | +7.3059997E+01  | +8.2358910E+01 |
| 125.0           | 6                     | +8.2809936E+01   | +2.6774723E+00        | +8.65699922E+01 | +7.9799987E+01  | +8.2386535E+01 |
| 126.0           | 6                     | +7.3171595E+01   | +1.2381426E+01        | +9.1099990E+01  | +5.9250000E+01  | +8.2414260E+01 |
| 127.0           | 3                     | +5.009656588E+01 | +3.3926286E+00        | +9.3039993E+01  | +8.6389999E+01  | +8.2441986E+01 |
| 131.0           | 3                     | +8.7409912E+01   | +6.1924950E+00        | +9.5909998E+01  | +7.8309997E+01  | +8.2552886E+01 |
| 132.0           | 1                     | +9.3679992E+01   | +6.0020000E+23        | +9.3679992E+01  | +9.3679992E+01  | +8.2580612E+01 |
| 137.0           | 1                     | +6.8908000E+01   | +6.0020000E+27        | +6.8000000E+01  | +6.8000000E+01  | +8.2719253E+01 |

ANA 3066 PROPELLANT (AIA UNLINED. C & P POLYMER) TENSILE MAX STRESS. • 0002 IN/MIN

$F = +1.3935376E+02$   
 $R = +2.3412153E-01$   
 $t = +1.1804819E+01$   
 $N = 2405$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$

$\sigma_F = +1.6321749E-01$   
 $\sigma_R = +2.2073330E-04$   
 $\sigma_t = +2.4932354E-02$   
 $S_F = +1.8698575E-05$   
 $S_R = +2.4244460E-02$   
 $S_t = +2.403$

DEGREES OF FREEDOM = 2403

TEST CONDITIONS = AMB TEMP/RH

UNIT OF MEASURE = IN/IN  
 PARAMETER = STRAIN AT RUPTURE



ANB 3066 PROPLNT (ANB UNLINED, G & P POLYMER) TENSILE STN ♦ RUPT. .00002 IN/MIN

Figure 4-26

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>DFO GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| 13.0            | 7                      | +1.80355697E-01 | +1.0419620E-02        | +1.92999994E-01 | +1.68299997E-01 | +1.6608657E-01 |
| 15.0            | 15                     | +1.7226630E-01  | +1.8727043E-02        | +2.0CF99997E-01 | +1.5199995E-01  | +1.6652846E-C1 |
| 16.0            | 30                     | +1.92C9205E-01  | +1.9316196E-02        | +2.2399997E-01  | +1.63999997E-01 | +1.664917E-C1  |
| 17.0            | 15                     | +1.7625296E-01  | +1.1744243E-02        | +1.9399994E-01  | +1.49999997E-01 | +1.6656995E-01 |
| 18.0            | 12                     | +1.6291642E-01  | +2.2962594E-C2        | +1.6399994E-01  | +1.2689995E-01  | +1.6719067E-01 |
| 19.0            | 11                     | +1.5526336E-01  | +1.8414152E-C2        | +1.9599997E-01  | +1.3329994E-C1  | +1.6741138E-C1 |
| 20.0            | 21                     | +1.4870917E-01  | +1.1783641E-C2        | +1.7839998E-01  | +1.2559998E-01  | +1.6763210E-C1 |
| 21.0            | 31                     | +1.6169959E-01  | +2.4511490E-C2        | +2.0799994E-01  | +1.2399995E-C1  | +1.6785287E-C1 |
| 22.0            | 23                     | +1.6202569E-01  | +1.9725422E-02        | +2.0599997E-01  | +1.2479996E-01  | +1.6807359E-C1 |
| 23.0            | 10                     | +1.7485976E-01  | +2.0877204E-02        | +2.0849996E-01  | +1.5299999E-01  | +1.6829431E-C1 |
| 24.0            | 15                     | +1.6870635E-01  | +1.7220176E-C2        | +2.0289999E-01  | +1.4199995E-01  | +1.6851508E-C1 |
| 25.0            | 33                     | +1.6670566E-01  | +1.7064438E-02        | +2.0199996E-01  | +1.4399999E-01  | +1.6873580E-C1 |
| 26.0            | 27                     | +1.7354780E-01  | +1.9364709E-02        | +2.1999996E-01  | +1.4239996E-01  | +1.6895651E-01 |
| 27.0            | 22                     | +1.5385407E-01  | +1.8593063E-02        | +1.9889998E-01  | +1.2399995E-01  | +1.6517723E-01 |
| 28.0            | 30                     | +1.6731959E-01  | +2.2181957E-02        | +2.0999997E-01  | +1.2799996E-01  | +1.6939800E-01 |
| 29.0            | 12                     | +1.7676639E-01  | +1.5399011E-02        | +1.9799995E-01  | +1.5199995E-01  | +1.6961872E-01 |
| 30.0            | 12                     | +1.5639974E-01  | +1.7129421E-02        | +1.8399995E-01  | +1.3199996E-01  | +1.6983944E-01 |
| 31.0            | 13                     | +1.6116124E-01  | +1.4255979E-02        | +1.9399994E-01  | +1.3999998E-01  | +1.7006021E-01 |
| 32.0            | 21                     | +1.68352200E-01 | +1.6067091E-02        | +1.9599997E-01  | +1.4399999E-01  | +1.7028093E-01 |
| 33.0            | 33                     | +1.7249047E-01  | +1.4692224E-02        | +2.0869994E-01  | +1.4799994E-01  | +1.7050164E-C1 |
| 34.0            | 17                     | +1.7789971E-01  | +1.9221263E-02        | +2.1199995E-01  | +1.5599995E-01  | +1.7072242E-01 |
| 35.0            | 20                     | +1.7790450E-01  | +1.9430862E-02        | +2.0799994E-01  | +1.3759994E-01  | +1.7094314E-01 |
| 36.0            | 44                     | +1.7046546E-01  | +1.9420839E-02        | +2.1409994E-01  | +1.2799996E-01  | +1.7116385E-01 |
| 37.0            | 26                     | +1.67C8903F-01  | +1.9481163E-02        | +2.1199995E-01  | +1.2999999E-01  | +1.7138457E-01 |
| 38.0            | 33                     | +1.8968129E-01  | +1.6402884E-02        | +2.1799999E-01  | +1.52999998E-01 | +1.7160524E-01 |
| 39.0            | 12                     | +1.7908306E-01  | +2.4213908E-C2        | +2.0499998E-01  | +1.2799996E-C1  | +1.7182606E-C1 |
| 40.0            | 27                     | +1.7613297E-01  | +3.8344764E-02        | +3.0599999E-01  | +1.1799997E-01  | +1.7204678E-C1 |
| 41.0            | 22                     | +1.7872679E-01  | +1.1688693E-02        | +1.9799995E-01  | +1.4799994E-01  | +1.7226755F-C1 |
| 42.0            | 20                     | +1.7748463E-01  | +1.5714440E-02        | +2.1069997E-01  | +1.5199995E-01  | +1.7248827E-01 |
| 43.0            | 9                      | +1.7231089E-01  | +1.2659257E-02        | +1.9299995E-01  | +1.5119999E-01  | +1.7270898E-C1 |
| 44.0            | 25                     | +1.5632762E-01  | +1.9235538E-02        | +1.9679999E-01  | +1.1999996E-01  | +1.7292970E-01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| 45.0            | 20                     | +1.5696964E-01  | +2.2052980E-02        | +1.939994E-01   | +1.199994E-01   | +1.7315047E-01 |
| 46.0            | 44                     | +1.8271321E-01  | +2.121574E-02         | +2.3599954E-01  | +1.4199995E-01  | +1.7337119E-01 |
| 47.0            | 12                     | +1.7349670E-01  | +1.7237205E-02        | +1.9765956E-01  | +1.4599996E-01  | +1.7359191E-01 |
| 48.0            | 20                     | +1.7503958E-01  | +2.0194668E-02        | +1.9699996E-01  | +1.1279994E-01  | +1.7381268E-01 |
| 49.0            | 22                     | +1.7188596E-01  | +2.4555455E-02        | +2.3999954E-01  | +1.1399996E-01  | +1.7403340E-01 |
| 50.0            | 29                     | +1.5849262E-01  | +3.0820549E-02        | +2.2399997E-01  | +1.0399997E-01  | +1.7425411E-01 |
| 51.0            | 57                     | +1.5109651E-01  | +3.0768970E-02        | +2.1999996E-01  | +9.9999964E-02  | +1.7447483E-01 |
| 52.0            | 53                     | +1.6742753E-01  | +1.7791341E-02        | +2.1959996E-01  | +1.2199997E-01  | +1.7469561E-01 |
| 53.0            | 37                     | +1.7157793E-01  | +1.7770668E-02        | +2.00339999E-01 | +1.32699956E-01 | +1.7491632E-01 |
| 54.0            | 19                     | +1.8073642E-01  | +2.3755339E-02        | +2.1599996E-01  | +1.36899994E-01 | +1.7513704E-01 |
| 55.0            | 44                     | +1.8339735E-01  | +2.3732915E-02        | +2.2199954E-01  | +1.23999955E-01 | +1.7535781E-01 |
| 56.0            | 59                     | +1.7787408E-01  | +2.3440449E-02        | +2.3299998E-01  | +1.0999995E-01  | +1.7557853E-01 |
| 57.0            | 46                     | +1.7475599E-01  | +2.0609052E-02        | +2.0799994E-01  | +1.2719994E-01  | +1.7579925E-01 |
| 58.0            | 34                     | +1.7132306E-01  | +1.7442396E-02        | +2.0999957E-01  | +1.2799996E-01  | +1.7601956E-01 |
| 59.0            | 20                     | +1.7899960E-01  | +1.6830866E-02        | +2.0799994E-01  | +1.5799999E-01  | +1.7624074E-01 |
| 60.0            | 20                     | +1.8389958E-01  | +1.6396725E-02        | +2.1399998E-01  | +1.2999999E-01  | +1.7646145E-01 |
| 61.0            | 40                     | +1.7277705E-01  | +2.3499183E-02        | +2.1999996E-01  | +1.0999995E-01  | +1.7668217E-01 |
| 62.0            | 35                     | +1.8795377E-01  | +2.6520363E-02        | +2.3179996E-01  | +1.09999955E-01 | +1.7690294E-01 |
| 63.0            | 45                     | +1.8076401E-01  | +2.7298190E-02        | +2.3879998E-01  | +1.3119995E-01  | +1.7712366E-01 |
| 64.0            | 36                     | +1.8054950E-01  | +1.7066843E-02        | +2.1099996E-01  | +1.4319998E-01  | +1.7734438E-01 |
| 65.0            | 28                     | +1.9098169E-01  | +2.5278459E-02        | +2.5000000E-01  | +1.5399998E-01  | +1.776515E-01  |
| 66.0            | 28                     | +1.7329245E-01  | +2.8945798E-02        | +2.3599994E-01  | +1.2999999E-01  | +1.7778587E-01 |
| 67.0            | 46                     | +1.6215610E-01  | +3.0929775E-02        | +2.1999996E-01  | +1.07999985E-01 | +1.7800658E-01 |
| 68.0            | 44                     | +1.7007911E-01  | +3.1261386E-02        | +2.5999999E-01  | +1.1999994E-01  | +1.7822730E-01 |
| 69.0            | 32                     | +1.9545579E-01  | +1.5569560E-02        | +2.2399997E-01  | +1.5799999E-01  | +1.7844808E-01 |
| 70.0            | 42                     | +1.8121457E-01  | +2.1388109E-02        | +2.6199996E-01  | +1.2199997E-01  | +1.7866879E-01 |
| 71.0            | 47                     | +1.8080592E-01  | +2.6909214E-02        | +2.5399994E-01  | +1.05999994E-01 | +1.7888951E-01 |
| 72.0            | 34                     | +1.7821426E-01  | +1.7676768E-02        | +2.0719999E-01  | +1.43299999E-01 | +1.7911028E-01 |
| 73.0            | 26                     | +1.6258037E-01  | +1.5802635E-02        | +1.9199997E-01  | +1.13999956E-01 | +1.7933100E-01 |
| 74.0            | 15                     | +1.9179958E-01  | +1.2628456E-02        | +2.6999995E-01  | +1.67999998E-01 | +1.7955172E-01 |
| 75.0            | 37                     | +1.90966609E-01 | +1.7629359E-02        | +2.2199994E-01  | +1.1999996E-01  | +1.7977243E-01 |

4-91

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| TEST<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIAITION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|------------------|------------------------|-----------------|------------------------|-----------------|-----------------|-----------------|
|                  |                        |                 |                        |                 |                 |                 |
| 75,0             | 17                     | +1.8052339E-01  | +9.9617969E-03         | +2.0299994F-01  | +1.5999996E-01  | +1.7959321E-01  |
| 77,0             | 19                     | +1.9249951E-01  | +2.1523039E-02         | +2.4599999E-01  | +1.6599994E-01  | +1.8021392E-01  |
| 78,0             | 23                     | +1.8233537E-01  | +2.46375740F-02        | +2.3299998E-01  | +1.3679959E-01  | +1.8041464E-01  |
| 79,0             | 17                     | +1.7781144E-01  | +2.3929570E-02         | +2.2299998E-01  | +1.2999999E-01  | +1.8065541E-01  |
| 80,0             | 36                     | +1.7297458E-01  | +2.0218982E-02         | +2.1599996E-01  | +1.2189996E-01  | +1.8087613E-01  |
| 81,0             | 26                     | +1.6733801E-01  | +2.3071049E-02         | +2.1599996E-01  | +1.1099954E-01  | +1.8109685E-01  |
| 82,0             | 15                     | +1.8572640E-01  | +1.9253662E-02         | +2.2799998E-01  | +1.6199954E-01  | +1.8131756E-01  |
| 83,0             | 33                     | +1.9016617E-01  | +2.0165094E-02         | +2.3999994E-01  | +1.5159959E-01  | +1.8153634E-01  |
| 84,0             | 42                     | +1.9268763E-01  | +2.2423647E-02         | +2.5089997E-01  | +1.4959996E-01  | +1.8175605E-01  |
| 85,0             | 18                     | +1.8882179E-01  | +1.7738492E-02         | +2.0999997E-01  | +1.4599996E-01  | +1.8197977E-01  |
| 86,0             | 22                     | +1.9153142E-01  | +1.4031314E-02         | +2.0519996E-01  | +1.4799954E-01  | +1.8220055E-01  |
| 87,0             | 29                     | +1.7754069E-01  | +3.2923453E-02         | +2.6999998E-01  | +1.12799954E-01 | +1.8242126E-01  |
| 88,0             | 32                     | +1.82260896E-01 | +3.2464717E-02         | +2.6699995E-01  | +8.5199952E-02  | +1.8264198E-01  |
| 89,0             | 31                     | +1.7433512F-01  | +1.8532494E-02         | +2.3039996E-01  | +1.2699997E-01  | +1.82866269E-01 |
| 90,0             | 11                     | +1.82250876E-01 | +2.3126175E-02         | +2.01299998E-01 | +1.4999997E-01  | +1.8308347E-01  |
| 91,0             | 9                      | +1.8409967E-01  | +1.4430450E-02         | +2.01119996E-01 | +1.6559994E-01  | +1.8330415E-01  |
| 92,0             | 17                     | +1.8181139E-01  | +1.05309091E-02        | +1.9799995E-01  | +1.4959996E-01  | +1.8352490E-01  |
| 93,0             | 15                     | +2.0067960E-01  | +2.9361918E-02         | +2.8319996E-01  | +1.6799998E-01  | +1.8374566E-01  |
| 94,0             | 13                     | +1.9653946E-01  | +2.0113183E-02         | +2.2799998E-01  | +1.5299999E-01  | +1.8396639E-01  |
| 95,0             | 24                     | +1.78882295E-01 | +2.1097116F-02         | +2.01519994E-01 | +1.4039999E-01  | +1.8418711E-01  |
| 96,0             | 11                     | +1.66947239E-01 | +2.2666287E-02         | +2.01299996E-01 | +1.3439995E-01  | +1.8440788E-01  |
| 97,0             | 6                      | +1.94933235E-01 | +1.3899310E-02         | +2.01399998E-01 | +1.7999994E-01  | +1.8462860E-01  |
| 98,0             | 9                      | +1.8269058E-01  | +2.1618974E-02         | +2.01119996E-01 | +1.6159995E-01  | +1.8484932E-01  |
| 99,0             | 5                      | +2.0611999E-01  | +2.8245961E-02         | +2.04159967E-01 | +1.6899995E-01  | +1.8507003E-01  |
| 00,0             | 2                      | +1.9599997E-01  | +5.2326007E-02         | +2.03299958E-01 | +1.5899997E-01  | +1.8529081E-01  |
| 01,0             | 10                     | +1.7549967E-01  | +1.6587961F-02         | +2.02399956E-01 | +1.5439999E-01  | +1.8551152E-01  |
| 02,0             | 3                      | +1.8393325E-01  | +3.7957784E-03         | +1.9359999E-01  | +1.7639954E-01  | +1.8573224F-01  |
| 03,0             | 2                      | +2.02499992E-01 | +1.9091691E-02         | +2.01599996E-01 | +1.8899995E-01  | +1.8595302E-01  |
| 04,0             | 13                     | +1.7526888E-01  | +6.4209754E-03         | +1.89399955E-01 | +1.6559994E-01  | +1.8617373E-01  |
| 05,0             | 9                      | +1.80123344E-01 | +2.07896107E-02        | +2.02199994E-01 | +1.3679999E-01  | +1.8639445E-01  |
| 06,0             | 11                     | +1.6600063F-01  | +5.1242709E-02         | +2.05269997E-01 | +0.3299984E-02  | +1.8661516F-01  |

4-92

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| 1.07            | 2                      | +1.7059993E-01  | +4.8100599E-03        | +1.73959926E-C1 | +1.6719956E-01  | +1.8683594E-01 |
| 1.09            | 6                      | +1.9401652E-01  | +2.2092907E-02        | +2.0499999E-01  | +1.5799999E-01  | +1.8705666E-C1 |
| 1.09            | 14                     | +1.7429971E-01  | +1.0564348E-02        | +1.95959997E-01 | +1.5999996E-01  | +1.8727737E-C1 |
| 1.10            | 2                      | +1.6871789E-01  | +3.02342236E-02       | +2.5779998E-01  | +1.6239994E-01  | +1.8749815E-01 |
| 1.11            | 11                     | +1.8080884E-01  | +3.5774345E-02        | +2.2299998E-01  | +1.069995E-01   | +1.8771886E-C1 |
| 1.11            | 11                     | +1.8080884E-01  | +3.5774345E-02        | +2.2299998E-01  | +1.069995E-01   | +1.8771886E-C1 |
| 1.12            | 6                      | +1.9066649E-01  | +5.4617228E-02        | +2.5219954E-01  | +1.819994E-01   | +1.8793958E-C1 |
| 1.13            | 21                     | +1.6897583E-01  | +4.01528430E-02       | +2.5099998E-01  | +8.0199957E-C2  | +1.8816030E-C1 |
| 1.14            | 3                      | +1.8499954E-01  | +4.8507453F-02        | +2.3299998F-C1  | +1.3599997E-01  | +1.8828107E-C1 |
| 1.15            | 6                      | +2.1636641E-01  | +2.9279800E-02        | +2.5999999E-01  | +1.9C29958E-01  | +1.8860179E-01 |
| 1.16            | 6                      | +2.2569672E-01  | +1.0951211E-02        | +2.4799956E-01  | +2.0439954E-01  | +1.8862250E-01 |
| 1.17            | 3                      | +1.8179994E-01  | +3.9222634E-03        | +1.8449997E-01  | +1.7729997E-01  | +1.8904320E-01 |
| 1.18            | 7                      | +1.8632829E-01  | +1.7044378E-02        | +2.0889997E-01  | +1.6999995E-01  | +1.8926399E-C1 |
| 1.19            | 9                      | +1.8741083E-01  | +9.7280928E-03        | +1.9849997E-01  | +1.67999998E-01 | +1.8948471E-C1 |
| 1.20            | 2                      | +1.9394999E-01  | +4.4369543E-04        | +1.9429999E-01  | +1.9359999E-01  | +1.8970543E-01 |
| 1.21            | 9                      | +1.9717741E-01  | +8.6772273E-03        | +2.1099996E-01  | +1.86999997E-01 | +1.8952620E-01 |
| 1.22            | 6                      | +1.9916641E-01  | +2.0545245E-02        | +2.3629999E-01  | +1.7869997E-01  | +1.9014692E-01 |
| 1.23            | 12                     | +1.9798302E-01  | +2.7904987E-02        | +2.53599954E-01 | +1.6109994E-01  | +1.9036763E-01 |
| 1.24            | 6                      | +2.0064973E-01  | +2.7934156E-02        | +2.3499955E-01  | +1.5599995E-01  | +1.9058841E-01 |
| 1.25            | 6                      | +1.8783230E-01  | +7.0807657E-03        | +1.9999998E-01  | +1.8099999E-01  | +1.9080913E-01 |
| 1.26            | 6                      | +2.2331649E-01  | +5.00069549E-C2       | +2.8899957E-01  | +1.5469958E-01  | +1.9102984F-01 |
| 1.27            | 3                      | +1.6163331E-01  | +3.0679355E-02        | +1.8419958E-01  | +1.2669958E-01  | +1.9125062E-01 |
| 1.31            | 8                      | +2.0136237E-01  | +2.3453117E-02        | +2.3829996E-01  | +1.7099994E-01  | +1.9213354E-C1 |
| 1.32            | 1                      | +1.47899999E-01 | +0.09000000E+23       | +1.47899998E-C1 | +1.4789998E-01  | +1.9225426E-C1 |
| 1.37            | 1                      | +1.8299996E-01  | +0.0000000E+27        | +1.8299996E-01  | +1.8299996E-01  | +1.934579CE-C1 |

AND 3166 PROPLNT (ANB UNLINED). GEP POLYMER) TENSIL STN & RUPT. .0002 IN/MIN

$\gamma = (( +5.8291023E+02) + (-3.1697589E-01)) * X$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF L = SIGNIFICANT  
 DEGREES OF FREEDOM = 2399  
 N = 2401  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH



RNB 3066 PROPELLNT (ANB UNLINEO. G & P POLYMERS) TENSILE MODULUS, .0002 IN/MIN

Figure 4-27

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| 4-95<br>(MCHT45) | SPECIMENS<br>PER GROUP | STANDARD<br>DEVIATION |                 | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|------------------|------------------------|-----------------------|-----------------|----------------|----------------|----------------|
|                  |                        | MEAN Y                |                 |                |                |                |
| 13.0             | 7                      | +4.7828554E+02        | +3.2273385E+C1  | +5.1200C0CE+C2 | +4.3200C0CE+C2 | +5.7878930E+02 |
| 15.0             | 15                     | +5.7839990F+C2        | +6.2262036E+C1  | +6.73CC0CE+C2  | +4.910020E+C2  | +5.7815551E+C2 |
| 16.0             | 30                     | +4.7746655E+C2        | +6.4250146E+C1  | +6.290C0CE+C2  | +3.440C0CE+C2  | +5.7783837E+C2 |
| 17.0             | 15                     | +5.191333CE+C2        | +7.5913359E+C1  | +7.13000CE+C2  | +4.09C00CE+C2  | +5.7752148E+C2 |
| 18.0             | 12                     | +5.2791652E+C2        | +9.3672018E+C1  | +7.19000CE+C2  | +4.20000CE+C2  | +5.7720458E+C2 |
| 19.0             | 11                     | +5.9345434E+C2        | +6.0175349E+C1  | +6.72000CE+C2  | +4.7100020E+C2 | +5.7688745E+C2 |
| 20.0             | 21                     | +5.9761889E+C2        | +7.9321252E+C1  | +8.145000E+C2  | +4.6900005E+C2 | +5.7657055E+C2 |
| 21.0             | 31                     | +5.7932250E+C2        | +8.2182474E+C1  | +7.85000CE+C2  | +4.4000000E+C2 | +5.7625366E+C2 |
| 22.0             | 23                     | +5.8778247E+C2        | +8.7041764E+C1  | +7.680000E+C2  | +4.120000E+C2  | +5.7593652E+C2 |
| 23.0             | 10                     | +6.2419995E+C2        | +8.1443641E+C1  | +7.07000CE+C2  | +5.3200020E+C2 | +5.7561962E+C2 |
| 24.0             | 15                     | +5.5046655E+C2        | +6.1855669E+C1  | +6.60000CE+C2  | +4.6600020E+C2 | +5.7530273E+C2 |
| 25.0             | 33                     | +5.8778784E+C2        | +7.2206629E+C1  | +7.040000E+C2  | +4.370000CE+C2 | +5.7458559E+C2 |
| 26.0             | 27                     | +5.4644433E+C2        | +6.9916066E+C1  | +6.750000E+C2  | +4.1800000E+C2 | +5.7466870E+C2 |
| 27.0             | 22                     | +6.3645434E+C2        | +6.6871395E+C1  | +7.60000CE+C2  | +5.2200000E+C2 | +5.743518CE+C2 |
| 28.0             | 30                     | +5.9863330E+C2        | +6.4443000E+C1  | +6.93000CE+C2  | +3.8700000E+C2 | +5.7403466E+C2 |
| 29.0             | 12                     | +5.3551650E+C2        | +7.6623588E+C1  | +6.27000CE+C2  | +4.0000000E+C2 | +5.737177E+C2  |
| 30.0             | 19                     | +6.1729990E+C2        | +7.4226905E+C1  | +7.360000E+C2  | +5.1800000E+C2 | +5.7340087E+C2 |
| 31.0             | 13                     | +6.050000CE+C2        | +6.8944422E+C1  | +7.310000E+C2  | +5.1600000E+C2 | +5.7308374E+C2 |
| 32.0             | 21                     | +5.5628564E+C2        | +4.9645888E+C1  | +6.390000E+C2  | +4.8000000E+C2 | +5.7276684E+C2 |
| 33.0             | 37                     | +5.46600054E+C2       | +8.8226604E+C1  | +7.360000E+C2  | +4.0400000E+C2 | +5.7244995E+C2 |
| 34.0             | 17                     | +5.4954116E+C2        | +1.012796CE+C2  | +6.930000E+C2  | +4.0000000E+C2 | +5.7213281E+C2 |
| 35.0             | 26                     | +6.6479980E+C2        | +2.0543729E+C2  | +1.324000E+C3  | +5.1200000E+C2 | +5.7181591E+C2 |
| 36.0             | 44                     | +5.3729541E+C2        | +8.1636141E+C1  | +7.460000E+C2  | +4.1300000E+C2 | +5.7149902E+C2 |
| 37.0             | 26                     | +5.8219213E+C2        | +1.0678427E+C2  | +7.73000CE+C2  | +4.2100000E+C2 | +5.7118166E+C2 |
| 38.0             | 13                     | +5.0348461E+C2        | +6.7652374E+C1  | +6.67000CE+C2  | +3.9500000E+C2 | +5.7066499E+C2 |
| 39.0             | 13                     | +5.220000CE+C2        | +1.5599831E+C2  | +8.720000E+C2  | +3.8700000E+C2 | +5.7054809E+C2 |
| 40.0             | 27                     | +6.3492578E+C2        | +2.1501054E+C2  | +1.0213000E+C3 | +A.6000000E+C2 | +5.7023095E+C2 |
| 41.0             | 22                     | +4.9821811E+C2        | +4.6054198E+C1  | +5.650000E+C2  | +4.0500000E+C2 | +5.6991406E+C2 |
| 42.0             | 20                     | +5.550000CE+C2        | +4.4221333E+C1  | +6.460000E+C2  | +4.6400000E+C2 | +5.6959716E+C2 |
| 43.0             | 9                      | +4.6888867E+C2        | +1.3714722E+C2  | +7.160000E+C2  | +3.3600000E+C2 | +5.6928002E+C2 |
| 44.0             | 25                     | +6.5675994E+C2        | +1.11P62266F+C2 | +9.6600000E+C2 | +4.5800000E+C2 | +5.6896313E+C2 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>DEB GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
|                 |                        |                 |                       |                |                | +5.6864624E+02 |
| 45.0            | 20                     | +8.4666729E+01  | +7.5200000E+C2        | +4.4900000E+02 | +4.4900000E+02 | +5.6832910E+02 |
| 45.0            | 44                     | +5.3688623E+02  | +5.1924301E+01        | +5.4300000E+02 | +4.7700000E+C2 | +5.6812200E+C2 |
| 47.0            | 12                     | +5.3925000CE+02 | +3.9555031E+01        | +5.7600000E+02 | +4.7900000E+02 | +5.6769531E+02 |
| 48.0            | 20                     | +5.6109985E+02  | +1.1707617E+02        | +9.7400000E+02 | +4.1700000E+02 | +5.6737817E+02 |
| 49.0            | 22                     | +5.4022705E+02  | +1.0844657E+02        | +8.0500000E+02 | +4.1700000E+02 | +5.6737817E+02 |
| 50.0            | 29                     | +6.0448266E+02  | +1.4666960E+02        | +9.4200000E+02 | +4.0000000E+02 | +5.6706127E+02 |
| 51.0            | 57                     | +6.3729809E+02  | +1.9012551E+02        | +1.3460000E+C3 | +4.3100000E+02 | +5.6674438E+02 |
| 52.0            | 50                     | +5.7073999E+02  | +6.2869742E+01        | +6.9000000E+02 | +4.5300000E+02 | +5.6642724E+02 |
| 53.0            | 37                     | +5.4189184E+02  | +6.1328253E+01        | +7.1000000E+02 | +4.1500000E+02 | +5.6611035E+02 |
| 54.0            | 19                     | +5.4605249E+02  | +6.1264883E+01        | +6.7800000E+02 | +4.5300000E+02 | +5.6579345E+02 |
| 55.0            | 44                     | +5.5220434E+02  | +9.5665497E+01        | +8.5900000E+02 | +4.1300000E+02 | +5.6547631E+C2 |
| 56.0            | 59                     | +5.3847436E+02  | +8.7368296E+01        | +8.4800000E+02 | +3.9500000E+02 | +5.6515942E+02 |
| 57.0            | 46                     | +5.4539111E+02  | +8.9556308E+01        | +7.3600000E+02 | +4.1600000E+02 | +5.6484252E+02 |
| 58.0            | 35                     | +5.8848559E+02  | +1.0662375E+02        | +8.7000000E+02 | +4.5300000E+02 | +5.6452539E+C2 |
| 59.0            | 20                     | +6.3239990E+02  | +8.2873016E+01        | +7.6000000E+02 | +5.2800000E+02 | +5.6420849E+02 |
| 60.0            | 20                     | +5.7264990E+02  | +4.4530522E+01        | +6.4000000E+02 | +4.7000000E+02 | +5.6389160E+02 |
| 61.0            | 49                     | +5.1144995E+02  | +1.1212674E+02        | +6.7800000E+02 | +1.9700000E+02 | +5.6357446E+02 |
| 62.0            | 35                     | +5.6379980E+02  | +9.7291194E+01        | +9.4700000E+02 | +4.0500000E+02 | +5.6325756E+02 |
| 63.0            | 45                     | +6.1444433E+02  | +1.9298063E+02        | +1.5150000E+03 | +4.4000000E+02 | +5.6294067E+02 |
| 64.0            | 36                     | +5.6050000E+02  | +9.1732063E+01        | +7.8800000E+02 | +3.6700000E+02 | +5.6262353E+C2 |
| 65.0            | 28                     | +5.3767846E+02  | +7.6896781E+01        | +6.7500000E+02 | +3.9200000E+02 | +5.623064E+02  |
| 66.0            | 28                     | +6.3385693E+02  | +1.2416169E+02        | +8.9500000E+02 | +4.5300000E+02 | +5.6198974E+02 |
| 67.0            | 46                     | +6.4671729E+02  | +1.4961196E+02        | +9.4700000E+02 | +4.2400000E+02 | +5.6167260E+02 |
| 68.0            | 44                     | +5.6829541E+02  | +1.2326065E+02        | +9.6000000E+02 | +3.6300000E+02 | +5.6135571E+C2 |
| 69.0            | 32                     | +5.4312500E+02  | +5.3109594E+01        | +6.7100000E+02 | +4.5300000E+02 | +5.6103881E+C2 |
| 70.0            | 40                     | +5.2644995E+02  | +9.46655587E+01       | +8.0000000E+02 | +4.2200000E+02 | +5.6072167E+02 |
| 71.0            | 47                     | +5.6348925E+02  | +1.3605032E+02        | +1.0740000E+03 | +3.8500000E+02 | +5.6040478E+02 |
| 72.0            | 34                     | +5.5288232E+02  | +7.7309203E+01        | +7.6600000E+02 | +4.1600000E+02 | +5.6008789E+02 |
| 73.0            | 24                     | +6.1633225E+02  | +1.1446384E+02        | +9.7300000E+02 | +4.8700000E+02 | +5.5977075E+02 |
| 74.0            | 15                     | +5.06266660E+02 | +9.7847889E+C1        | +6.7900000E+02 | +3.7500000E+02 | +5.5945385E+02 |
| 75.0            | 30                     | +4.9683325E+02  | +8.8224276E+C1        | +7.2000000E+02 | +3.7300000E+02 | +5.591369EE+C2 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>IN P. GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|--------------------------|-----------------|-----------------------|----------------|----------------|----------------|
|                 |                          |                 |                       |                |                | +5.43097C0E+C2 |
| 76.0            | 17                       | +7.1110932E+01  | +6.9200003E+C2        | +4.53097C0E+C2 | +5.5881982E+C2 | +5.5881982E+C2 |
| 77.0            | 19                       | +8.1067917E+01  | +6.4000000E+C2        | +4.1300000E+C2 | +5.5850292E+02 | +5.5850292E+02 |
| 78.0            | 27                       | +7.6645277E+01  | +6.9700000E+02        | +4.3500000E+C2 | +5.5818603E+02 | +5.5818603E+02 |
| 79.0            | 17                       | +1.3534099E+C2  | +9.3300000E+02        | +4.0900000E+02 | +5.5766889E+02 | +5.5766889E+02 |
| 80.0            | 36                       | +8.6455654E+01  | +7.6100000E+02        | +3.8200000E+C2 | +5.5755200E+C2 | +5.5755200E+C2 |
| 81.0            | 26                       | +5.5326004E+02  | +8.2500000E+02        | +4.3200000E+C2 | +5.5723510E+02 | +5.5723510E+02 |
| 82.0            | 15                       | +5.5346655E+02  | +6.8312168E+01        | +4.6600000E+C2 | +5.5691756E+02 | +5.5691756E+02 |
| 83.0            | 33                       | +6.1181811E+02  | +2.5071017E+02        | +1.4150000E+03 | +5.5660107E+02 | +5.5660107E+02 |
| 84.0            | 42                       | +5.9507128E+02  | +1.9119130E+02        | +1.4100000E+03 | +4.3700000E+C2 | +5.5628417E+02 |
| 85.0            | 18                       | +5.5561108E+02  | +7.7307741E+01        | +6.4000000E+02 | +4.2600000E+C2 | +5.5596704E+02 |
| 86.0            | 22                       | +4.9886352E+02  | +6.9374961E+01        | +5.9500000E+02 | +3.7800000E+C2 | +5.5665014E+02 |
| 87.0            | 29                       | +5.7993090E+02  | +1.2074824E+02        | +9.5200000E+02 | +3.4400000E+C2 | +5.5633325E+C2 |
| 88.0            | 32                       | +5.5665625E+02  | +1.1172189E+02        | +8.7100000E+02 | +3.6200000E+C2 | +5.5501611E+02 |
| 89.0            | 30                       | +5.5523315E+02  | +8.7574857E+01        | +8.0000000E+02 | +4.2200000E+C2 | +5.5469921E+02 |
| 90.0            | 11                       | +5.4127270E+02  | +8.4657062E+01        | +6.6200000E+02 | +4.3500000E+C2 | +5.5438232E+C2 |
| 91.0            | 9                        | +5.0911108E+02  | +4.4798003E+01        | +6.0600000E+02 | +4.7100000E+02 | +5.5406518E+02 |
| 92.0            | 17                       | +4.8129394E+02  | +3.6726333E+01        | +5.6700000E+C2 | +4.1300000E+C2 | +5.5374829E+02 |
| 93.0            | 15                       | +5.326660E+02   | +6.6359913E+01        | +6.3200000E+02 | +4.2000000E+C2 | +5.5343139E+C2 |
| 94.0            | 12                       | +5.1500000E+02  | +6.6160960E+01        | +6.5900000E+02 | +4.0100000E+C2 | +5.5211425E+02 |
| 95.0            | 24                       | +5.7102090E+02  | +8.9004152E+01        | +7.1200000E+02 | +4.1700000E+C2 | +5.5279736E+02 |
| 96.0            | 11                       | +7.4645434E+02  | +2.6197685E+C2        | +1.3200000E+03 | +5.1400000E+C2 | +5.5248046E+C2 |
| 97.0            | 6                        | +4.8050000E+02  | +3.9278492E+01        | +5.4200000E+02 | +4.3900000E+C2 | +5.5216333E+C2 |
| 98.0            | 9                        | +4.94888967E+02 | +3.1150619E+01        | +5.5200000E+02 | +4.6200000E+C2 | +5.5184643E+C2 |
| 99.0            | 5                        | +5.2779580E+02  | +1.0267381E+02        | +6.6800000E+02 | +4.0900000E+C2 | +5.5152954E+C2 |
| 100.0           | 2                        | +5.9410000E+02  | +1.0192337E+02        | +6.7000000E+C2 | +5.2600000E+C2 | +5.5121240E+C2 |
| 101.0           | 9                        | +4.8244433E+02  | +8.9705773E+C1        | +7.0800000E+02 | +3.9600000E+C2 | +5.509550E+C2  |
| 102.0           | 3                        | +4.5832325E+02  | +1.615807E+C1         | +4.7300000E+C2 | +4.4100000E+C2 | +5.5057861E+C2 |
| 103.0           | 2                        | +6.0400000E+02  | +6.2225396E+C1        | +6.4800000E+02 | +5.6000000E+C2 | +5.5026147E+C2 |
| 104.0           | 13                       | +5.5815380E+02  | +4.5981601E+C1        | +6.5190000E+02 | +4.8300000E+C2 | +5.4994458E+C2 |
| 105.0           | 9                        | +5.7944433E+02  | +9.2918520E+C1        | +7.2900000E+02 | +3.7000000E+C2 | +5.4962768E+C2 |
| 106.0           | 11                       | +5.9772705E+C2  | +2.1147439E+C3        | +1.0280000E+C3 | +3.4200000E+C2 | +5.4931054E+C2 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PFP GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
|                 |                        |                |                       |                |                | +5.4899365E+02 |
| 107.0           | 2                      | +6.365E+00E+02 | +6.576C930E+01        | +6.520000E+02  | +5.590000E+02  | +5.4899365E+02 |
| 108.0           | 0                      | +5.2216650E+02 | +1.275C163E+C1        | +5.380000E+02  | +5.045000E+02  | +5.4867675E+02 |
| 109.0           | 14                     | +5.4771411E+02 | +2.0528888E+02        | +1.0540000E+03 | +4.170000E+C2  | +5.425961E+02  |
| 110.0           | 11                     | +4.8254541E+02 | +6.5477269E+01        | +6.320000E+02  | +3.940000E+02  | +5.4804272E+02 |
| 111.0           | 11                     | +5.5790893E+02 | +9.9059027E+C1        | +7.760000E+02  | +3.920000E+C2  | +5.4772583E+02 |
| 112.0           | 5                      | +5.8150600E+02 | +1.7807947E+02        | +8.690000E+02  | +3.790000E+C2  | +5.4740865E+02 |
| 113.0           | 21                     | +5.4009521E+02 | +1.0469904E+02        | +8.090000E+02  | +4.190000E+02  | +5.4709179E+02 |
| 114.0           | 3                      | +5.4266650E+02 | +1.8941312E+02        | +7.440000E+C2  | +3.680000E+02  | +5.467745CE+02 |
| 115.0           | 6                      | +4.9883225E+02 | +4.104471E+01         | +5.560000E+02  | +4.043000E+02  | +5.445776E+02  |
| 116.0           | 6                      | +4.6700000E+02 | +6.255575E+01         | +5.750000E+02  | +3.880000E+02  | +5.4614086E+02 |
| 117.0           | 3                      | +5.0066650E+02 | +3.3060779E+C1        | +5.250000E+02  | +4.630000E+C2  | +5.4582397E+02 |
| 118.0           | 7                      | +5.0714282E+02 | +5.9181721E+01        | +5.870000E+02  | +4.0420000E+02 | +5.4550683F+02 |
| 119.0           | 9                      | +4.6666650E+02 | +2.2901964E+01        | +5.100000E+02  | +4.380000E+02  | +5.4518994E+02 |
| 120.0           | 2                      | +4.8100000E+02 | +0.0000000E+87        | +4.810000E+02  | +4.810000E+02  | +5.4487304E+02 |
| 121.0           | 9                      | +5.0588867E+02 | +6.1115555E+01        | +6.190000E+02  | +4.300000E+02  | +5.4455559E+02 |
| 122.0           | 5                      | +4.9400000E+02 | +6.9180922E+01        | +5.760000E+02  | +4.050000E+02  | +5.4423901E+02 |
| 123.0           | 12                     | +5.3916650E+02 | +7.5052506E+01        | +6.690000E+02  | +4.170000E+02  | +5.4392211E+02 |
| 124.0           | 5                      | +5.6416650E+02 | +6.8927256E+C1        | +6.850000E+C2  | +4.940000E+02  | +5.4360498E+02 |
| 125.0           | 6                      | +5.2500000E+02 | +2.6359059E+C1        | +5.6800000E+C2 | +4.8600000E+02 | +5.4328808E+02 |
| 126.0           | 6                      | +4.8200000E+02 | +1.2959012E+02        | +6.920000E+02  | +3.380000E+02  | +5.4227119E+02 |
| 127.0           | 3                      | +6.9866650E+02 | +1.4910510E+C2        | +8.650000E+C2  | +5.770000E+02  | +5.4265405E+02 |
| 131.0           | 8                      | +5.3875000E+02 | +7.4926154E+01        | +6.360000E+02  | +4.380000E+02  | +5.4138623E+02 |
| 132.0           | 1                      | +7.4400000E+02 | +0.000000E+23         | +7.440000E+02  | +7.440000E+02  | +5.4106933F+02 |
| 137.0           | 1                      | +4.3200000E+02 | +0.000000E+27         | +4.320000E+02  | +4.320000E+C2  | +5.3948437E+02 |

$F = +1.9856930t^{+01}$  SIGNIFICANCE OF  $F$  = SIGNIFICANT  
 $R = +3.6646728t^{+01}$  SIGNIFICANCE OF  $R$  = SIGNIFICANT  
 $t = +4.4561115t^{+00}$  SIGNIFICANCE OF  $t$  = SIGNIFICANT  
 $N = 130$  DEGREES OF FREEDOM = TEST CONDITIONS =  
 STORAGE CONDITIONS = AMB TEMP/RH

$\gamma = ((+6.2756472t^{+01}) + (+1.9632509t^{-01})) \times X$   
 $\sigma_t = +6.3154514t^{+00}$   
 $S_u = +4.4057491t^{-02}$   
 $S_t = +5.8999342t^{+00}$



ANB 3066 PROPELLANT (ANB LINED

G & P POLYMERS) TENSILE MAX STRESS, .00002 IN/MIN

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| TEST<br>(NUMBER) | SPECIMEN<br>CER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------------------|-----------------------|----------------|-----------------------|-----------------|----------------|----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                  |                       |                |                       |                 |                | 15.0           | 16.0 | 17.0 | 18.0 | 19.0 | 20.0 | 21.0 | 22.0 | 23.0 | 24.0 | 30.0 | 32.0 | 33.0 | 35.0 | 36.0 | 38.0 |
| 6                | 6                     | +6.2504913E+01 | +6.3971558E+00        | +7.0469985E+01  | +5.3189987E+01 | +6.5701339E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 15.              | 15                    | +5.5208572E+01 | +3.0842392E+00        | +7.7723995E+01  | +4.4149933E+01 | +6.5897659E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 6                | 6                     | +5.3159942E+01 | +5.7244729E+00        | +6.8100985E+01  | +5.2379933E+01 | +6.6013994E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 16.              | 16                    | +6.5460510E+01 | +6.0159264E+00        | +7.6259994E+01  | +5.2579986E+01 | +6.6230313E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7                | 7                     | +5.5592773E+01 | +2.8668732E+00        | +7.0529998E+01  | +6.1909988E+01 | +6.6486648E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 6                | 6                     | +6.6458251E+01 | +6.0986645E+00        | +7.4719985E+01  | +5.9539933E+01 | +6.6682968E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 6                | 6                     | +6.8584960E+01 | +8.1871379E+00        | +7.773990E+01   | +5.4705991E+01 | +6.6879287E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 12               | 12                    | +6.6793240E+01 | +2.3417498E+00        | +6.9769989E+01  | +6.1735990E+01 | +6.7075622E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7                | 7                     | +6.9102127E+01 | +7.3574457E+00        | +7.36699938E+01 | +6.1979995E+01 | +6.7271942E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 6                | 6                     | +6.9511627E+01 | +3.035580E+00         | +7.3119995E+01  | +6.6459991E+01 | +6.8253570E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 6                | 6                     | +7.1044952E+01 | +5.1315521E+00        | +7.627998E+01   | +6.5329986E+01 | +6.8646224E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 5                | 5                     | +7.0534942E+01 | +2.6507238E+00        | +7.422995E+01   | +6.7699996E+01 | +6.9038864E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 6                | 6                     | +7.1943267E+01 | +6.6006662E+00        | +7.9019989E+01  | +6.4409988E+01 | +6.9235198E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 3                | 3                     | +7.4373321E+01 | +3.7863253E+00        | +7.809990E+01   | +7.0529998E+01 | +6.9627738E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 3                | 3                     | +7.1596649E+01 | +4.8447194E+00        | +7.7189987E+01  | +6.8695996E+01 | +6.9824172E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1                | 1                     | +7.4199996E+01 | +0.00000000E+01       | +7.4199996E+01  | +7.4199996E+01 | +7.0216812E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 3                | 3                     | +7.1833312E+01 | +3.02078970E+00       | +7.4959991E+01  | +6.8549987E+01 | +7.2572723E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2                | 2                     | +6.6749984E+01 | +9.8267130E+00        | +7.3699996E+01  | +5.979987E+01  | +7.2769042E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1                | 1                     | +7.7692996E+01 | +0.00000000E+03       | +7.7699996E+01  | +7.7699996E+01 | +7.2965362E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 3                | 3                     | +6.8819992E+01 | +2.6153377E+00        | +7.1839996E+01  | +6.7289993E+01 | +7.3161697E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 4                | 4                     | +6.990747CE+01 | +1.6810187E+00        | +7.2297987E+01  | +6.8459991E+01 | +7.3554351E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 3                | 3                     | +7.4319992E+01 | +2.4089684E+00        | +7.6250000E+01  | +7.1619995E+01 | +7.3750671E+01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

ANALYSIS OF POLYMER TENSILE MAX STRESS, .0002 IN/MIN

$\gamma = (+1.8522799E-01) + (-6.8068588E-04) * X$   
 $F = \text{SIGNIFICANCE OF } F = \text{SIGNIFICANT}$   
 $R = -3.8287305E-01$   
 $S = \text{SIGNIFICANCE OF } R = \text{SIGNIFICANT}$   
 $t = +4.6890123E+00$   
 $S_t = \text{SIGNIFICANCE OF } t = \text{SIGNIFICANT}$   
 $N = 130$   
 $D = \text{DEGREES OF FREEDOM} = 128$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{TEST CONDITIONS} = \text{AMB TEMP/RH}$



Figure 4-29

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| MONTHS<br>(MONTHS) | PEAK FLOW | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|--------------------|-----------|----------------|-----------------------|----------------|----------------|----------------|
|                    |           |                |                       |                |                | SPECIES        |
| 15.0               | 6         | +1.7584984E-01 | +2.2687529E-02        | +1.9889998E-01 | +1.4129998E-01 | +1.7501765E-01 |
| 16.0               | 15        | +1.6143959E-01 | +1.5265309E-02        | +1.8949997E-01 | +1.3299995E-01 | +1.7433696E-01 |
| 17.0               | 5         | +1.7389994E-01 | +3.1955616E-02        | +2.0879995E-01 | +1.4095997E-01 | +1.7355628E-01 |
| 18.0               | 16        | +1.7813086E-01 | +2.0952382E-02        | +2.1869999E-01 | +1.4639997E-01 | +1.7237559E-01 |
| 19.0               | 7         | +1.8775689E-01 | +9.7196649E-03        | +2.0339995E-01 | +1.7729997E-01 | +1.7229491E-01 |
| 20.0               | 6         | +1.9319993E-01 | +7.3034406E-03        | +2.0599997E-01 | +1.8665998E-01 | +1.7161422E-01 |
| 21.0               | 5         | +1.5566658E-01 | +1.12866419E-02       | +1.6799998E-01 | +1.3795995E-01 | +1.7093354E-01 |
| 22.0               | 12        | +1.7296648E-01 | +2.1349542E-02        | +2.1099996E-01 | +1.4799994E-01 | +1.7025285E-01 |
| 23.0               | 9         | +1.7325524E-01 | +1.3539914E-02        | +2.0199996E-01 | +1.6649997E-01 | +1.6957217E-01 |
| 24.0               | 6         | +1.4339993E-01 | +6.4276420E-03        | +1.5839999E-01 | +1.4159995E-01 | +1.6616874E-01 |
| 25.0               | 6         | +1.5654993E-01 | +2.1211330E-02        | +1.7909997E-01 | +1.3439995E-01 | +1.6480737E-01 |
| 26.0               | 6         | +1.5124997E-01 | +1.9623439E-02        | +1.7099997E-01 | +1.3079994E-01 | +1.6344600E-01 |
| 27.0               | 5         | +1.7384988E-01 | +1.2733233E-02        | +1.8899995E-01 | +1.6109997E-01 | +1.6276532E-01 |
| 28.0               | 3         | +1.5436662E-01 | +2.4149363E-02        | +1.6889995E-01 | +1.2619996E-01 | +1.6140395E-01 |
| 29.0               | 3         | +1.5359997E-01 | +1.2928842E-02        | +1.6359996E-01 | +1.3899999E-01 | +1.6072326E-01 |
| 30.0               | 1         | +1.5599994E-01 | +0.0000009E+01        | +1.5699994E-01 | +1.5699994E-01 | +1.5936189E-01 |
| 31.0               | 3         | +1.4369994E-01 | +8.6463729E-03        | +1.5299999E-01 | +1.3589996E-01 | +1.5119367E-01 |
| 32.0               | 2         | +1.4799994E-01 | +1.1314241E-02        | +1.5599995E-01 | +1.3999998E-01 | +1.5051299E-01 |
| 33.0               | 1         | +1.3299995E-01 | +0.9000000E+03        | +1.3299995E-01 | +1.3299995E-01 | +1.4983230E-01 |
| 34.0               | 3         | +1.6529995E-01 | +1.6627560E-02        | +1.8449997E-01 | +1.5569996E-01 | +1.4915162E-01 |
| 35.0               | 4         | +1.5437495E-01 | +7.4682794E-03        | +1.6199994E-01 | +1.4439998E-01 | +1.4779025E-01 |
| 36.0               | 3         | +1.4339994E-01 | +1.3692575E-03        | +1.5029996E-01 | +1.4759999E-01 | +1.4710956E-01 |

444 3066 PRINTED (AND LINED, b, a POLYMER) TENSILE STRAIN AT RUPT., .0002 IN/MIN

$\gamma = (( +4.0179540E+02 ) + ( +3.3576748E+00 ) * X) /$   
 $F = +2.8817883E+01$  SIGNIFICANCE OF F = SIGNIFICANT  
 $R = +4.3858039E-01$  SIGNIFICANCE OF R = SIGNIFICANT  
 $t = +5.3682290E+00$  SIGNIFICANCE OF t = SIGNIFICANT  
 $N = 123$  DEGREES OF FREEDOM = 121  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

$\Delta$  G  
 $X$  P



ANB 3066 PROPELLANT (ANB LINED, G & P POLYMER) TENSILE MODULUS. .0002 IN/MIN  
Figure 4-30

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| TEST | NO. OF POINTS | TEST GROUP      | MEAN Y          | STANDARD DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y |
|------|---------------|-----------------|-----------------|--------------------|----------------|----------------|--------------|
| 15.0 | 6             | +4.3400000E+02  | +1.3856406E+01  | +4.5900000E+02     | +4.2300000E+02 | +4.5216040E+02 |              |
| 16.0 | 15            | +4.8139990E+02  | +6.0310861E+01  | +5.7600000E+02     | +3.6600000E+02 | +4.5551806E+02 |              |
| 17.0 | 4             | +4.0725000E+02  | +6.4649697E+01  | +5.0200000E+02     | +3.6400000E+02 | +4.5847573E+02 |              |
| 18.0 | 16            | +4.3287500E+02  | +7.5185880E+01  | +5.5600000E+02     | +3.3100000E+02 | +4.6223339E+02 |              |
| 19.0 | 7             | +4.1628564E+02  | +4.4409887E+01  | +4.7200000E+02     | +3.5800000E+02 | +4.6559106E+02 |              |
| 20.0 | 6             | +4.4900000E+02  | +1.1256287E+02  | +6.5500000E+02     | +3.5600000E+02 | +4.6894873E+02 |              |
| 21.0 | 6             | +5.6250000E+02  | +7.6608202E+01  | +6.2900000E+02     | +4.4400000E+02 | +4.7230639E+02 |              |
| 22.0 | 12            | +4.7700000E+02  | +7.1018563E+01  | +5.7252000E+02     | +3.7200000E+02 | +4.7566406E+02 |              |
| 23.0 | 9             | +4.4466650E+02  | +5.38119639E+01 | +5.2900000E+02     | +3.6200000E+02 | +4.7902172E+02 |              |
| 24.0 | 6             | +5.3500000E+02  | +4.2703629E+01  | +5.8000000E+02     | +4.8500000E+02 | +4.9581030E+02 |              |
| 25.0 | 6             | +5.5283325E+02  | +1.3210059E+02  | +6.7502000E+02     | +4.2300000E+02 | +5.0252563E+02 |              |
| 26.0 | 6             | +5.5666650E+02  | +4.5266617E+01  | +6.1100000E+02     | +5.0800000E+02 | +5.0924096E+02 |              |
| 27.0 | 6             | +4.83116650E+02 | +8.7793887E+01  | +5.7300000E+02     | +3.8300000E+02 | +5.1259863E+02 |              |
| 28.0 | 3             | +5.7500000E+02  | +5.83491130E+01 | +6.4100000E+02     | +5.2600000E+02 | +5.1931396E+02 |              |
| 29.0 | 3             | +5.7733325E+02  | +1.3576941E+01  | +5.9300000E+02     | +5.6900000E+02 | +5.2267163E+02 |              |
| 30.0 | 3             | +5.9333325E+02  | +1.2662279E+01  | +6.0700000E+02     | +5.8200000E+02 | +5.6967895E+02 |              |
| 31.0 | 3             | +5.0566650E+02  | +2.7300793E+01  | +5.3700000E+02     | +4.8700000E+02 | +5.7975195E+02 |              |
| 32.0 | 3             | +5.1766650E+02  | +1.3051181E+01  | +5.2800000E+02     | +5.0300000E+02 | +5.8646728E+02 |              |
| 33.0 | 3             | +5.9600000E+02  | +2.7784887E+01  | +6.1400000E+02     | +5.6400000E+02 | +5.8982519E+02 |              |

AIR 3066 PROPELLANT AND LINED, G &amp; P POLYMER) TENSILE MODULUS, • 0002 IN/MIN



ANR 3066 PROPLNT (ANT & ANB UNLND, P POLYMER) TENSILE MAX STRESS, .0002 IN/MIN

Figure 4-31

## \*\*\*\* LINFAK REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|-----------------|-----------------|
| 13.0            | 7                      | +7.0747070E+01 | +4.1623044E+00        | +7.7299987E+01 | +6.6439987E+01  | +7.8122985E+01  |
| 15.0            | 11                     | +8.2360839E+01 | +6.0682589E+00        | +9.039993E+01  | +6.776989E+01   | +7.8264129E+01  |
| 16.0            | 20                     | +7.8044906E+01 | +5.1549873E+00        | +8.989973E+01  | +6.913999E+01   | +7.8334716E+01  |
| 17.0            | 15                     | +7.7547897E+01 | +6.4547030E+00        | +8.8299987E+01 | +6.6719985E+01  | +7.805288E+01   |
| 18.0            | 15                     | +7.0221237E+01 | +7.6059718E+00        | +8.6399993E+01 | +5.9095990E+01  | +7.8475875E+01  |
| 19.0            | 6                      | +7.4619903E+01 | +2.4959304E+00        | +7.8799987E+01 | +7.2599990E+01  | +7.8546447E+01  |
| 20.0            | 11                     | +7.8478088E+01 | +4.7573785E+00        | +8.5349990E+01 | +6.9609985E+01  | +7.8617034E+01  |
| 21.0            | 11                     | +7.8423901E+01 | +7.3211498E+00        | +8.4519989E+01 | +6.7059997E+01  | +7.8687606E+01  |
| 22.0            | 5                      | +7.0313261E+01 | +3.1365726E+00        | +7.4599990E+01 | +6.7099990E+01  | +7.8758178E+01  |
| 23.0            | 8                      | +7.9709960E+01 | +1.2663632E+01        | +9.1099990E+01 | +6.4019989E+01  | +7.8828765E+01  |
| 24.0            | 4                      | +7.8579956E+01 | +1.7070925E+00        | +8.100000E+01  | +7.7000000E+01  | +7.88999337E+01 |
| 25.0            | 20                     | +7.8138900E+01 | +6.1005143E+00        | +8.6809977E+01 | +6.8915998E+01  | +7.8969924E+01  |
| 26.0            | 36                     | +7.4474075E+01 | +6.5183992E+00        | +9.0109985E+01 | +6.5000000E+01  | +7.9040496E+01  |
| 27.0            | 45                     | +7.7531661E+01 | +7.5479675E+00        | +9.5399993E+01 | +6.3299987F+01  | +7.9111083E+01  |
| 28.0            | 37                     | +7.9932586E+01 | +9.7084840E+00        | +1.0629998E+02 | +6.5500000E+01  | +7.9181655E+01  |
| 29.0            | 8                      | +7.4696197E+01 | +5.3649253E+00        | +8.1269989E+01 | +6.7599990E+01  | +7.9252243E+01  |
| 30.0            | 20                     | +7.6745407E+01 | +7.6994203E+00        | +8.5899993E+01 | +5.5199996E+01  | +7.9322814E+01  |
| 31.0            | 30                     | +7.3151565E+01 | +6.8952917E+00        | +8.2489990E+01 | +5.74399987E+01 | +7.9393386E+01  |
| 32.0            | 30                     | +8.0715896E+01 | +5.3439344E+00        | +9.6339996E+01 | +6.8179992E+01  | +7.9463973E+01  |
| 33.0            | 19                     | +8.0154129E+01 | +8.84668652E+00       | +9.2899993E+01 | +6.7529998E+01  | +7.9534545E+01  |
| 34.0            | 26                     | +7.3246795E+01 | +6.8941217E+00        | +8.3009994E+01 | +5.2289993E+01  | +7.9605133E+01  |
| 35.0            | 24                     | +8.0701995E+01 | +6.3075912E+00        | +9.7429992E+01 | +7.0509994E+01  | +7.9675704E+01  |
| 36.0            | 16                     | +8.0181167E+01 | +7.0837174E+00        | +9.0599990E+01 | +6.6329986E+01  | +7.9746292E+01  |
| 37.0            | 15                     | +8.0557922E+01 | +6.7694552E+00        | +9.1750000E+01 | +7.0195996E+01  | +7.9816864E+01  |
| 38.0            | 17                     | +7.9742263E+01 | +5.6841277E+00        | +8.7399993E+01 | +6.8419998E+01  | +7.9987435E+01  |
| 39.0            | 6                      | +8.6834960E+01 | +7.7512681E+00        | +9.5003000E+01 | +7.7969985E+01  | +7.9958023E+01  |
| 40.0            | 11                     | +8.3598098E+01 | +7.8365915E+00        | +9.2000000E+01 | +6.7679992E+01  | +8.0028594E+01  |
| 41.0            | 8                      | +7.4188690E+01 | +1.8000392E+00        | +7.6119995E+01 | +7.1389999E+01  | +8.0099182E+01  |
| 42.0            | 3                      | +7.9809997E+01 | +1.0521318E+00        | +8.1000000E+01 | +7.9000000E+01  | +8.0169754E+01  |
| 43.0            | 4                      | +8.5842468E+01 | +4.3373886E+00        | +9.2239990E+01 | +8.2629989E+01  | +8.0240341E+01  |
| 44.0            | 19                     | +8.1220932E+01 | +9.7185359E+00        | +1.0035998E+02 | +6.150C000E+01  | +8.0310913E+01  |

ANB 3066 PROPYLENE ANHYDRIDE UNLND, P POLYMER) TENSILE MAX STRESS. • 0002 IN/MIN

## \*\*\*\* LINPAC REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 45.0            | 15                     | +7.6226562E+01  | +5.3317113E+00        | +8.379987E+01  | +6.679987E+01  | +8.0381484E+01 |
| 46.0            | 21                     | +7.9337530E+01  | +7.2991467E+00        | +9.361995E+01  | +6.747595E+01  | +8.0452072E+01 |
| 47.0            | 10                     | +8.9193890E+01  | +8.4874856E+00        | +9.8439987E+01 | +7.6109985E+01 | +8.0522644E+01 |
| 48.0            | 6                      | +8.7496612E+01  | +1.2865879E+00        | +8.9209991E+01 | +8.6109985E+01 | +8.0593231E+01 |
| 49.0            | 16                     | +8.4161773E+01  | +1.2511451E+01        | +9.8389999E+01 | +6.3199996E+01 | +8.0663803E+01 |
| 50.0            | 28                     | +8.1332739E+01  | +7.4296257E+00        | +9.239993E+01  | +6.5899993E+01 | +8.0734390E+01 |
| 51.0            | 28                     | +8.5214172E+01  | +4.8761079E+00        | +9.6039993E+01 | +7.7199996E+01 | +8.0804962E+01 |
| 52.0            | 17                     | +8.1124008E+01  | +5.8874473E+00        | +9.5799987E+01 | +6.5799987F+01 | +8.0875549E+01 |
| 53.0            | 20                     | +5.6598388E+01  | +5.1510427E+00        | +9.5039993E+01 | +7.743987E+01  | +8.0946121E+01 |
| 54.0            | 13                     | +7.7572189E+01  | +1.0942913E+01        | +9.3259994E+01 | +5.8799987E+01 | +8.1016693E+01 |
| 55.0            | 24                     | +8.3546188E+01  | +5.0205792E+00        | +9.5699996E+01 | +7.6699996E+01 | +8.1087280E+01 |
| 56.0            | 42                     | +8.0507437E+01  | +5.9300628E+00        | +9.3259994E+01 | +6.6669998E+01 | +8.1157852E+01 |
| 57.0            | 52                     | +8.0023361E+01  | +6.8532003E+00        | +9.3500000E+01 | +6.9500000E+01 | +8.1228439E+01 |
| 58.0            | 23                     | +8.57116399E+01 | +5.9182130E+00        | +9.5000000E+01 | +7.2869935E+01 | +8.1299011E+01 |
| 59.0            | 12                     | +8.9221572E+01  | +3.4763200E+00        | +9.6199996E+01 | +8.4500000E+01 | +8.1369598E+01 |
| 60.0            | 3                      | +7.5003326E+01  | +1.0850442E+00        | +7.6189987E+01 | +7.4059997E+01 | +8.1440170E+01 |
| 61.0            | 12                     | +7.9778213E+01  | +1.2560236E+01        | +9.4000000E+01 | +6.1199996E+01 | +8.1510742E+01 |
| 62.0            | 23                     | +8.5726394E+01  | +6.6884889E+00        | +9.5599990E+01 | +7.0049987E+01 | +8.1581329E+01 |
| 63.0            | 33                     | +8.7589004E+01  | +6.4543923E+00        | +9.8599990E+01 | +7.4000000E+01 | +8.1651901E+01 |
| 64.0            | 16                     | +7.9293029E+01  | +1.0077315E+01        | +9.7799987E+01 | +6.1309997E+01 | +8.1722488E+01 |
| 65.0            | 13                     | +8.2853759E+01  | +4.6887134E+00        | +8.9199996E+01 | +7.6639999E+01 | +8.1793060E+01 |
| 66.0            | 18                     | +7.0187683E+01  | +1.7455511E+01        | +1.0559999E+02 | +5.3845990E+01 | +8.1863647E+01 |
| 67.0            | 28                     | +8.7310607E+01  | +7.4849522E+00        | +9.7500000E+01 | +7.4299987E+01 | +8.1934219E+01 |
| 58.0            | 26                     | +8.0482223E+01  | +1.0236257E+01        | +1.0029998E+02 | +6.0459991E+01 | +8.2004806E+01 |
| 59.0            | 19                     | +7.1390911E+01  | +3.1623695E+00        | +8.6599930E+01 | +7.6535993E+01 | +8.2075378E+01 |
| 70.0            | 20                     | +7.7684906E+01  | +8.8956704E+00        | +9.3599990E+01 | +6.6099990E+01 | +8.2145950E+01 |
| 71.0            | 23                     | +8.1577713E+01  | +1.2698729E+01        | +1.0539999E+02 | +6.8399993E+01 | +8.2216537E+01 |
| 72.0            | 20                     | +8.3794372E+01  | +4.7694705E+00        | +9.4279998E+01 | +7.7175992E+01 | +8.2287109E+01 |
| 73.0            | 10                     | +8.7589904E+01  | +5.6764808E+00        | +9.6500000E+C1 | +7.7399993E+01 | +8.2357696E+01 |
| 74.0            | 5                      | +8.5019912E+01  | +3.2135109E+00        | +8.9299987E+01 | +8.1599990E+01 | +8.2428268E+01 |
| 75.0            | 15                     | +8.8279928E+01  | +1.0416618E+01        | +1.0250000E+02 | +8.1899993E+01 | +8.2498855E+01 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\* ANALYSIS OF TIME SERIES \*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION<br>Y |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 76.0            | 8                      | +8.0943951E+01 | +4.5146011E+00        | +8.9500000E+01 | +7.5399993E+01 | +8.2569427E+01  |
| 77.0            | 12                     | +8.7698230F+01 | +4.2279051E+00        | +9.6299987E+01 | +8.1599990E+01 | +8.2639999E+01  |
| 78.0            | 16                     | +8.4507431E+01 | +3.8721708E+00        | +8.9899993E+01 | +7.5369995E+01 | +8.210586E+01   |
| 79.0            | 12                     | +9.2342407E+01 | +1.3520801E+01        | +1.0729998E+02 | +7.5119995E+01 | +8.2781158E+01  |
| 80.0            | 18                     | +8.0212081E+01 | +6.6669509E+00        | +8.9399993E+01 | +7.0269989E+01 | +8.2851745E+01  |
| 81.0            | 10                     | +7.4216882E+01 | +7.8909002E+00        | +8.4119995E+01 | +5.5299987E+01 | +8.2922317E+01  |
| 82.0            | 12                     | +9.0249893E+01 | +5.3100063E+00        | +9.8599990E+01 | +8.1399993E+01 | +8.2992904E+01  |
| 83.0            | 12                     | +8.6787384E+01 | +4.1935121F+00        | +9.4659988E+01 | +7.7599990E+01 | +8.3063476E+01  |
| 84.0            | 24                     | +8.8729888E+01 | +7.0102647E+00        | +1.0600000E+02 | +7.9205991E+01 | +8.3134063E+01  |
| 85.0            | 12                     | +8.3169876E+01 | +9.1552288E+00        | +9.4099990E+01 | +6.4239990E+01 | +8.3204635E+01  |
| 86.0            | 9                      | +7.6021011E+01 | +4.8528383E+00        | +8.4899993E+01 | +6.9799987E+01 | +8.3275207E+01  |
| 87.0            | 19                     | +8.3685211E+01 | +6.5969502E+00        | +9.7539993E+01 | +7.3199996E+01 | +8.3345794E+01  |
| 88.0            | 25                     | +8.3972702E+01 | +7.7686135E+00        | +9.7519989E+01 | +6.8829986E+01 | +8.3416366E+01  |
| 89.0            | 13                     | +8.5192169E+01 | +6.3294807E+00        | +9.5329986E+01 | +7.4679992E+01 | +8.3486953E+01  |
| 91.0            | 2                      | +7.4500000E+01 | +7.0710678E-01        | +7.5000000E+01 | +7.4000000E+01 | +8.3628112E+01  |
| 92.0            | 7                      | +7.4525665E+01 | +4.6426899E+00        | +7.7979995E+01 | +6.473990E+01  | +8.3698684E+01  |
| 93.0            | 10                     | +8.5220916E+01 | +6.4264478E+00        | +9.3049987E+01 | +7.4979995E+01 | +8.3769256E+01  |
| 94.0            | 4                      | +7.7774963E+01 | +7.9545742E+00        | +8.6199996E+01 | +6.9799987E+01 | +8.3839843E+01  |
| 95.0            | 5                      | +8.2637939E+01 | +4.5410274E+00        | +8.9500000E+01 | +7.6819992E+01 | +8.3910415E+01  |
| 96.0            | 5                      | +9.1609954E+01 | +4.0274052E+00        | +9.6500000E+01 | +8.6939987E+01 | +8.3981002E+01  |
| 97.0            | 4                      | +8.4627441E+01 | +7.0610128E+00        | +9.3000000E+01 | +7.7009994E+01 | +8.4192733E+01  |
| 100.0           | 2                      | +8.6500000E+01 | +1.2020815E+01        | +9.5000000E+01 | +7.8000000E+01 | +8.4263320E+01  |
| 101.0           | 2                      | +8.7304992E+01 | +9.3403097E+00        | +9.3909988E+01 | +8.0699996E+01 | +8.4333892E+01  |
| 103.0           | 2                      | +8.8000000E+01 | +2.8284271E+00        | +9.0000000E+01 | +8.6000000E+01 | +8.4475051E+01  |
| 104.0           | 2                      | +8.8804992E+01 | +1.6023100E+00        | +8.9939287E+01 | +8.7669998E+01 | +8.4545623E+01  |
| 105.0           | 0                      | +8.6852157E+01 | +6.4330381E+00        | +9.7579986E+01 | +7.8539993E+01 | +8.4616210E+01  |
| 106.0           | 2                      | +7.3585464E+01 | +8.6625471E+00        | +8.7309997E+01 | +6.2679992E+01 | +8.46866782E+01 |
| 108.0           | 3                      | +7.3999984E+01 | +2.0884523E+00        | +7.5969985E+01 | +7.1809997E+01 | +8.4827941E+01  |
| 109.0           | 5                      | +7.6671920E+01 | +2.3890627E+00        | +7.9459991E+01 | +7.2979995E+01 | +8.4898513E+01  |
| 110.0           | 11                     | +7.6852645E+01 | +8.3285570E+00        | +9.2299987E+01 | +6.5479995E+01 | +8.4969100E+01  |
| 111.0           | 5                      | +7.4815963E+01 | +6.3961329E+00        | +8.3419998E+01 | +6.7479995F+01 | +8.5039672E+01  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 112.0           | 6                      | +8.4594924E+01 | +1.1615481E+01        | +1.3252999E+02 | +7.2969985E+01 | +8.5110260E+01 |
| 113.0           | 9                      | +6.9286529E+01 | +8.9053441E+00        | +7.7750000E+01 | +4.8799987E+01 | +8.5180831E+01 |
| 114.0           | 3                      | +7.6633331E+01 | +9.1038266E+00        | +8.4199996E+01 | +6.6525998E+01 | +8.5251419E+01 |
| 115.0           | 3                      | +8.5049987E+01 | +4.1254758E+00        | +8.9639999E+01 | +8.1649993E+01 | +8.5321990E+01 |
| 116.0           | 6                      | +8.2041534E+01 | +6.1798626E+00        | +9.2209991E+01 | +7.5775998E+01 | +8.5392578E+01 |
| 117.0           | 3                      | +7.5339996E+01 | +4.9971951E+00        | +7.8277998E+01 | +6.9565992E+01 | +8.5463150E+01 |
| 122.0           | 3                      | +8.4193313E+01 | +6.6314665E+00        | +8.8709991E+01 | +7.6579986E+01 | +8.5816040E+01 |
| 123.0           | 9                      | +8.6126571E+01 | +7.4528330E+00        | +9.4019989E+01 | +7.4099990E+01 | +8.5886627E+01 |
| 124.0           | 6                      | +8.3243240E+01 | +7.2501275E+00        | +9.1979995E+01 | +7.3059997E+01 | +8.5957199E+01 |
| 126.0           | 6                      | +7.3171565E+01 | +1.2381426E+01        | +9.1099990E+01 | +5.9250000E+01 | +8.6098358E+01 |
| 127.0           | 3                      | +9.0096588E+01 | +3.3926286E+00        | +9.3039993E+01 | +8.6389999E+01 | +8.6168930E+01 |
| 131.0           | 8                      | +8.7409912E+01 | +6.1024950E+00        | +9.5909988E+01 | +7.8309997E+01 | +8.6451248E+01 |
| 132.0           | 1                      | +9.3679992E+01 | +0.0000000E+01        | +9.3679992E+01 | +9.3679992E+01 | +8.6521835E+01 |

ANB 3066 PROPLNT (ANT E ANB UNLND, P POLYMER) TENSILE MAX STRESS, .00002 IN/MIN

$F = +9.8666178E+01$   
 $R = +2.5111537E-01$   
 $t = +9.9330850E+00$   
 $N = 1468$   
 Y =  $( +1.5870923E-01 ) + ( +2.6836654E-04 ) * X_1$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF t = SIGNIFICANT  
 DEGREES OF FREEDOM = 1466

STORAGE CONDITIONS = AMB TEMP/RH

Z ANT  
○ ANB



ANB 3066 PROPLNT (ANT & ANB UNLD, P POLYMER) TENSILE STN • Rupt., .0302 IN/MIN

Figure 4-32

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 7                      | +1.8035697E-01 | +1.0419620E-02        | +1.9399994E-01 | +1.6829997E-01 | +1.6219794E-01 |
| 15.0            | 11                     | +1.7785418E-01 | +1.8786811E-02        | +2.0599997E-01 | +1.5199995E-01 | +1.6273468E-01 |
| 16.0            | 20                     | +1.9852471E-01 | +1.6603121E-02        | +2.2399997E-01 | +1.6739994E-01 | +1.6300308E-01 |
| 17.0            | 15                     | +1.7407965E-01 | +1.0997223E-02        | +1.9399994E-01 | +1.4999997E-01 | +1.6327142E-01 |
| 18.0            | 15                     | +1.5934628E-01 | +2.826383E-02         | +1.9399994E-01 | +1.2689995E-01 | +1.6353982E-01 |
| 19.0            | 6                      | +1.5989326E-01 | +2.6644519E-02        | +1.9599997E-01 | +1.3329994E-01 | +1.6380816E-01 |
| 20.0            | 9                      | +1.4759981F-01 | +1.039369E-02         | +1.7199999E-01 | +1.2559998E-01 | +1.6407656E-01 |
| 21.0            | 11                     | +1.6356337E-01 | +3.4039303E-02        | +2.0799994E-01 | +1.2399995E-01 | +1.6434490E-01 |
| 22.0            | 5                      | +1.6119992E-01 | +1.5465868E-02        | +1.7199999E-01 | +1.3399994E-01 | +1.6461324E-01 |
| 23.0            | 8                      | +1.4982485E-01 | +1.0361364E-02        | +1.6199994E-01 | +1.3439995E-01 | +1.648164E-01  |
| 24.0            | 4                      | +1.6859996E-01 | +2.947752E-02         | +1.9739997E-01 | +1.4199995E-01 | +1.651498E-01  |
| 25.0            | 20                     | +1.6344463E-01 | +1.6641213E-02        | +1.9759994E-01 | +1.4399999E-01 | +1.6541838E-01 |
| 26.0            | 36                     | +1.7306071F-01 | +1.5970246E-02        | +2.1999996E-01 | +1.3799995E-01 | +1.6568672E-01 |
| 27.0            | 45                     | +1.5797507E-01 | +1.3394357E-02        | +1.9889998E-01 | +1.3199996E-01 | +1.6596512E-01 |
| 28.0            | 37                     | +1.6643738E-01 | +1.7199347E-02        | +2.0999997E-01 | +1.4039999E-01 | +1.6622346E-01 |
| 29.0            | 8                      | +1.5924990E-01 | +7.3804571E-03        | +1.7399996E-01 | +1.503998E-01  | +1.6649186E-01 |
| 30.0            | 20                     | +1.6293962E-01 | +1.3727398E-02        | +1.8799996E-01 | +1.4559996E-01 | +1.6676020E-01 |
| 31.0            | 30                     | +1.7796283E-01 | +2.2530510E-02        | +2.3449999E-01 | +1.4479994E-01 | +1.6702854E-01 |
| 32.0            | 30                     | +1.5947961E-01 | +1.3996512E-02        | +1.8899995E-01 | +1.3075994E-01 | +1.6729694E-01 |
| 33.0            | 13                     | +1.8109959E-01 | +2.0357892E-02        | +2.0959997E-01 | +1.4799994E-01 | +1.6756528E-01 |
| 34.0            | 26                     | +1.7595344E-01 | +2.2600602E-02        | +2.1199995E-01 | +1.1679995E-01 | +1.678368E-01  |
| 35.0            | 24                     | +1.7296630E-01 | +1.5727202E-02        | +2.0479995E-01 | +1.3759994E-01 | +1.6810202E-01 |
| 36.0            | 16                     | +1.7404347E-01 | +2.5574491E-02        | +2.1409994E-01 | +1.4499998E-01 | +1.6837042E-01 |
| 37.0            | 15                     | +1.6202642E-01 | +2.0490154E-02        | +2.1199995E-01 | +1.2999999E-01 | +1.663876E-01  |
| 38.0            | 17                     | +1.8145251E-01 | +1.8703886E-02        | +2.1399998E-01 | +1.5359997E-01 | +1.6890716E-01 |
| 39.0            | 6                      | +1.5306657E-01 | +1.3075640E-02        | +1.6319996E-01 | +1.2799996E-01 | +1.6917550E-01 |
| 40.0            | 11                     | +1.5952701E-01 | +2.8414459E-02        | +1.9999998E-01 | +1.1799997E-01 | +1.6944384E-01 |
| 41.0            | 8                      | +1.6814994E-01 | +1.2580298E-02        | +1.8719995E-01 | +1.5119999E-01 | +1.6971224E-01 |
| 42.0            | 3                      | +1.9599992E-01 | +1.9998497E-03        | +1.9799995E-01 | +1.9399994E-01 | +1.6998058E-01 |
| 43.0            | 4                      | +1.6319996E-01 | +5.1827129E-03        | +1.6879999E-01 | +1.5839999E-01 | +1.7024893E-01 |
| 44.0            | 19                     | +1.5125226E-01 | +2.0633875E-02        | +1.9679999E-01 | +1.1309996E-01 | +1.7051732E-01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 45.0            | 15                     | +1.5365302E-01  | +2.0422699E-02        | +1.9399994E-01 | +1.2500000E-01 | +1.7078572E-01 |
| 46.0            | 21                     | +1.6928541E-01  | +1.8912582E-02        | +2.0239996E-01 | +1.4199995E-01 | +1.7105406E-01 |
| 47.0            | 10                     | +1.7303969F-01  | +1.3812203E-02        | +1.9079995E-01 | +1.5479999E-01 | +1.7132246E-01 |
| 48.0            | 6                      | +1.7991650E-01  | +6.7499202E-03        | +1.9399998E-01 | +1.7299997E-01 | +1.7159080E-01 |
| 49.0            | 16                     | +1.6273093E-01  | +2.1204944E-02        | +1.9999998E-01 | +1.1399996E-01 | +1.7185914E-01 |
| 50.0            | 28                     | +1.6251385E-01  | +3.3192132E-02        | +2.2399997E-01 | +1.0399997E-01 | +1.7212754E-01 |
| 51.0            | 28                     | +1.4158177E-01  | +3.1799602E-02        | +2.0599997E-01 | +9.9999964E-02 | +1.7239588E-01 |
| 52.0            | 17                     | +1.6307616E-01  | +2.5322531E-02        | +2.1959996E-01 | +1.2199997E-01 | +1.7266428E-01 |
| 53.0            | 20                     | +1.6883963E-01  | +1.9635654E-02        | +2.0059996E-01 | +1.3219994E-01 | +1.7293262E-01 |
| 54.0            | 13                     | +1.5516889E-01  | +1.8261393E-02        | +1.8239998E-01 | +1.3066999E-01 | +1.7320102E-01 |
| 55.0            | 26                     | +1.8208414E-01  | +2.5043145E-02        | +2.2199994E-01 | +1.2399995E-01 | +1.7346936E-01 |
| 56.0            | 49                     | +1.7768114E-01  | +2.3593952E-02        | +2.3299998E-01 | +1.0999995E-01 | +1.7373776E-01 |
| 57.0            | 52                     | +1.7172449E-01  | +1.9455744E-02        | +2.0799994E-01 | +1.2719994E-01 | +1.7400610E-01 |
| 58.0            | 23                     | +1.7020827E-01  | +2.0157373E-02        | +2.0999997E-01 | +1.2799996E-01 | +1.7427444E-01 |
| 59.0            | 12                     | +1.7946624E-01  | +1.2020084E-02        | +1.9399994E-01 | +1.6199994E-01 | +1.7454284E-01 |
| 60.0            | 3                      | +2.1369993E-01  | +6.2859281E-03        | +2.1929997E-01 | +2.0686994E-01 | +1.7481118E-01 |
| 61.0            | 12                     | +1.6016626E-01  | +3.0279722E-02        | +1.9349998E-01 | +1.0999995E-01 | +1.7507958E-01 |
| 62.0            | 23                     | +1.7674738E-01  | +3.4423736E-02        | +2.3179996E-01 | +1.0999995E-01 | +1.7534792E-01 |
| 63.0            | 33                     | +1.7095416E-01  | +2.8476712E-02        | +2.3399996E-01 | +1.3119995E-01 | +1.7561632E-01 |
| 64.0            | 16                     | +1.8686205E-01  | +2.8830982E-02        | +2.1839994E-01 | +1.3769996E-01 | +1.7588466E-01 |
| 65.0            | 13                     | +1.9216126E-01  | +2.7257617E-02        | +2.5000000E-01 | +1.6399997E-01 | +1.7615300E-01 |
| 66.0            | 18                     | +1.8683844E-01  | +3.9870833E-02        | +2.3599994E-01 | +1.2999999E-01 | +1.7642140E-01 |
| 67.0            | 28                     | +1.5260678E-01  | +3.4945827E-02        | +2.1999996E-01 | +1.0795998E-01 | +1.7668974E-01 |
| 68.0            | 26                     | +1.7400735E-01  | +3.7491512E-02        | +2.5999999E-01 | +1.1999994E-01 | +1.7695814E-01 |
| 69.0            | 10                     | +1.7096972E-01  | +3.4599848E-02        | +2.2399997E-01 | +1.2369996E-01 | +1.7722648E-01 |
| 70.0            | 20                     | +1.84988951E-01 | +2.6880412E-02        | +2.6199996E-01 | +1.2199997E-01 | +1.7749488E-01 |
| 71.0            | 23                     | +1.8265181E-01  | +3.5193766E-02        | +2.5399994E-01 | +1.0599994E-01 | +1.7776322E-01 |
| 72.0            | 20                     | +1.7054957E-01  | +1.7341270E-02        | +1.9749999E-01 | +1.4329999E-01 | +1.7803162E-01 |
| 73.0            | 10                     | +1.6599977E-01  | +2.2882434E-02        | +1.9199997E-01 | +1.1399996E-01 | +1.7829996E-01 |
| 74.0            | 5                      | +1.8519997E-01  | +1.5974771E-02        | +2.0599997E-01 | +1.6799998E-01 | +1.7856830E-01 |
| 75.0            | 13                     | +1.8699965F-01  | +2.5022222E-02        | +2.2199994E-01 | +1.3999998E-01 | +1.7883670E-01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|-----------------|-----------------|
| 76.0            | 8                      | +1.8387472E-01 | +1.0859271E-02        | +2.0299994E-01 | +1.6999995E-01  | +1.7910504E-01  |
| 77.0            | 12                     | +2.0349965E-01 | +2.3405736E-02        | +2.4599999E-01 | +1.6599994E-01  | +1.7937344E-01  |
| 78.0            | 16                     | +1.914972E-01  | +2.3570380E-02        | +2.3299998E-01 | +1.4789998E-01  | +1.794178E-01   |
| 79.0            | 12                     | +1.7348295E-01 | +2.7154934E-02        | +2.2299998E-01 | +1.2999999E-01  | +1.7951018E-01  |
| 80.0            | 19                     | +1.6932184E-01 | +2.6831840E-02        | +2.1599996E-01 | +1.2189996E-01  | +1.8017852E-01  |
| 81.0            | 10                     | +1.6867971E-01 | +3.4961165E-02        | +2.1599996E-01 | +1.1099994E-01  | +1.8044692E-01  |
| 82.0            | 12                     | +1.9016635E-01 | +1.8965362E-02        | +2.2799998E-01 | +1.6795998E-01  | +1.8071526E-01  |
| 83.0            | 12                     | +2.0805799E-01 | +2.1316088E-02        | +2.3999994E-01 | +1.6465997E-01  | +1.8098360E-01  |
| 84.0            | 24                     | +1.9929540E-01 | +2.4828079E-02        | +2.5089997E-01 | +1.5795999E-01  | +1.8125200E-01  |
| 85.0            | 12                     | +1.9234955E-01 | +1.8855970E-02        | +2.0999997E-01 | +1.4595996E-01  | +1.8152034E-01  |
| 86.0            | 9                      | +1.7756638E-01 | +1.6055850E-02        | +1.9599997E-01 | +1.4795994E-01  | +1.8178874E-01  |
| 87.0            | 19                     | +1.8304163E-01 | +3.9073263E-02        | +2.6999998E-01 | +1.1279994E-01  | +1.9205708E-01  |
| 88.0            | 25                     | +1.8446356E-01 | +3.6339346E-02        | +2.6699995E-01 | +8.5199952E-02  | +1.8232548E-01  |
| 89.0            | 13                     | +1.7617672E-01 | +2.4117101E-02        | +2.3039996E-01 | +1.2699997E-01  | +1.8259382E-01  |
| 90.0            | 2                      | +1.8549996E-01 | +1.4848543E-02        | +1.9599997E-01 | +1.7499995E-01  | +1.8313056E-01  |
| 92.0            | 7                      | +1.8039989E-01 | +1.5428788E-02        | +1.9359999E-01 | +1.4959996E-01  | +1.8339890E-01  |
| 93.0            | 10                     | +2.0571964E-01 | +3.5314323E-02        | +2.8319996E-01 | +1.6799998E-01  | +1.83666730E-01 |
| 94.0            | 4                      | +2.0544993E-01 | +3.5150674E-02        | +2.2799998E-01 | +1.5299999E-01  | +1.8393564E-01  |
| 95.0            | 5                      | +1.5891993E-01 | +1.4021155E-02        | +1.7729997E-01 | +1.4039999E-01  | +1.8420404E-01  |
| 96.0            | 5                      | +1.8011993E-01 | +2.4303308E-02        | +2.1299999E-01 | +1.5275996E-01  | +1.8447238E-01  |
| 97.0            | 4                      | +2.0464992E-01 | +3.3090953E-02        | +2.4159997E-01 | +1.6899996E-01  | +1.8527752E-01  |
| 98.0            | 2                      | +1.9599997E-01 | +5.2326007E-02        | +2.3299998E-01 | +1.5899997E-01  | +1.8554586E-01  |
| 99.0            | 2                      | +1.8079996E-01 | +3.0546591E-02        | +2.0239996E-01 | +1.5919995E-01  | +1.8581420E-01  |
| 100.0           | 2                      | +2.0249392E-01 | +1.9091691E-02        | +2.1599996E-01 | +1.8899995E-01  | +1.8635094E-01  |
| 101.0           | 2                      | +1.6639995E-01 | +1.1430024E-03        | +1.6719996E-01 | +1.65599934E-01 | +1.8661934E-01  |
| 102.0           | 9                      | +1.8013304E-01 | +2.7896107E-02        | +2.2199994E-01 | +1.3679999E-01  | +1.8688768E-01  |
| 103.0           | 9                      | +1.6682195E-01 | +5.4799081E-02        | +2.5269997E-01 | +9.3299984E-02  | +1.8715608E-01  |
| 104.0           | 3                      | +1.6469997E-01 | +9.9225311E-03        | +1.7609995E-01 | +1.5799999E-01  | +1.8769282E-01  |
| 105.0           | 5                      | +1.7759996E-01 | +1.4257707E-02        | +1.9599997E-01 | +1.5999996E-01  | +1.8796116E-01  |
| 106.0           | 11                     | +1.9871789E-01 | +3.2342236E-02        | +2.5779998E-01 | +1.6239994E-01  | +1.88222950E-01 |
| 107.0           | 5                      | +1.5747994F-01 | +4.1513829E-02        | +2.2299998E-01 | +1.1069995E-01  | +1.8849790E-01  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 112.0           | 6                      | +1.9266649E-01 | +5.4617228E-02        | +2.5219994E-01 | +1.1819994E-01 | +1.8876624E-01 |
| 113.0           | 9                      | +1.4561098E-01 | +5.4226581E-02        | +2.5099998E-01 | +8.1999957E-02 | +1.8903464E-01 |
| 114.0           | 3                      | +1.8499994E-01 | +4.8507453E-02        | +2.3299998E-01 | +1.3599997E-01 | +1.8530298E-01 |
| 115.0           | 3                      | +2.3976659E-01 | +2.2210882E-02        | +2.5999999E-01 | +2.1595596E-01 | +1.8957138E-01 |
| 116.0           | 6                      | +2.2569972E-01 | +1.5951211E-02        | +2.4799996E-01 | +2.0439994E-01 | +1.8983972E-01 |
| 117.0           | 3                      | +1.8179094E-01 | +3.9222634E-03        | +1.8449997E-01 | +1.7729997E-01 | +1.9010812E-01 |
| 122.0           | 3                      | +2.0399993E-01 | +2.9430655E-02        | +2.3629999E-01 | +1.7865597E-01 | +1.9144994E-01 |
| 123.0           | 9                      | +2.0031088E-01 | +3.1968413E-02        | +2.5359994E-01 | +1.6199994E-01 | +1.9171828E-01 |
| 124.0           | 6                      | +2.0164973F-01 | +2.7934156E-02        | +2.3499995E-01 | +1.5595995E-01 | +1.9198668E-01 |
| 126.0           | 6                      | +2.2331649E-01 | +5.0069649E-02        | +2.8899997E-01 | +1.5465998E-01 | +1.9252341E-01 |
| 127.0           | 3                      | +1.6163331F-01 | +3.0679355E-02        | +1.8419998E-01 | +1.2669998E-01 | +1.9279175E-01 |
| 131.0           | 8                      | +2.0136237E-01 | +2.3453117E-02        | +2.3829996E-01 | +1.7099994E-01 | +1.9386523E-01 |
| 132.0           | 1                      | +1.4789998E-01 | +0.0000000E+07        | +1.4789998E-01 | +1.4789998E-01 | +1.9413357E-01 |

ANB 3066 PROPLNT (ANT & ANB UNLND, P POLYMER) TENSILE STN @ RUPT, .00002 IN/MIN

$F = +1.7094084E-01$   
 $R = -1.0801368E-02$   
 $I = +4.1344992E-01$   
 $N = 1467$   
 Y =  $( ( +5.8173952E+02 ) + ( -5.0396603E-02 ) * X )$   
 SIGNIFICANCE OF F = NOT SIGNIFICANT  
 SIGNIFICANCE OF R = NOT SIGNIFICANT  
 SIGNIFICANCE OF I = NOT SIGNIFICANT  
 DEGREES OF FREEDOM = 1465

STORAGE CONDITIONS = AMB TEMP/RH

TEST CONDITIONS = AMB TEMP/RH

Z ANT  
O ANB

UNIT OF MEASURE = PSI  
 $\times 10^1$

PARAMETER = MODULUS



ANB 3066 PROPYLENE (ANT & ANB UNLND, P POLYMER) TENSILE MODULUS. .0002 IN/MIN

Figure 4-33

## \*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
|                 |                        |                 |                       |                |                | +5.81C8422E+02 |
| 13.0            | 7                      | +4.7828564E+02  | +7.4090485E+01        | +5.1200000E+02 | +4.3200000E+02 | +5.8098339E+02 |
| 15.0            | 11                     | +5.5200000E+02  | +7.4090485E+01        | +6.7300000E+02 | +4.4400000E+02 | +5.8098339E+02 |
| 16.0            | 20                     | +4.7829980E+02  | +5.8602227E+01        | +6.2900000E+02 | +4.0800000E+02 | +5.8093310E+02 |
| 17.0            | 15                     | +5.2673315E+02  | +6.5127859E+01        | +7.1300000E+02 | +4.4100000E+02 | +5.8088256E+02 |
| 18.0            | 15                     | +5.2279980E+02  | +8.5835557E+01        | +7.1900000E+02 | +4.2000000E+02 | +5.8083227E+02 |
| 19.0            | 6                      | +5.8566650E+02  | +8.2814652E+01        | +6.7300000E+02 | +4.7100000E+02 | +5.8078198E+02 |
| 20.0            | 11                     | +6.4618164E+02  | +7.0118211E+01        | +8.1400000E+02 | +5.6100000E+02 | +5.8073144E+02 |
| 21.0            | 11                     | +6.1809082E+02  | +9.5322037E+01        | +7.8500000E+02 | +5.3900000E+02 | +5.8068115E+02 |
| 22.0            | 5                      | +5.4939990E+02  | +6.1561351E+01        | +6.5800000E+02 | +5.1100000E+02 | +5.8063061E+02 |
| 23.0            | 8                      | +6.3387500E+02  | +8.4094228E+01        | +7.0700000E+02 | +5.0500000E+02 | +5.8058032E+02 |
| 24.0            | 4                      | +5.4525000E+02  | +6.7009327E+01        | +6.4400000E+02 | +4.9500000E+02 | +5.8052978E+02 |
| 25.0            | 20                     | +5.6984985E+02  | +8.4658617E+01        | +6.8000000E+02 | +4.3700000E+02 | +5.8047949E+02 |
| 26.0            | 36                     | +5.1236108E+02  | +7.5043664E+01        | +6.7500000E+02 | +4.0800000E+02 | +5.8042919E+02 |
| 27.0            | 45                     | +5.6551098E+02  | +8.3924918E+01        | +7.6000000E+02 | +4.0300000E+02 | +5.8037866E+02 |
| 28.0            | 37                     | +5.6229711E+02  | +7.915912E+01         | +6.9300000E+02 | +3.9200000E+02 | +5.8032836E+02 |
| 29.0            | 8                      | +5.3850000E+02  | +5.6089214E+01        | +5.9700000E+02 | +4.4500000E+02 | +5.8027783E+02 |
| 30.0            | 20                     | +5.5125000E+02  | +8.8240028E+01        | +7.0700000E+02 | +3.8100000E+02 | +5.8022753E+02 |
| 31.0            | 30                     | +5.0579980E+02  | +5.2074482E+01        | +6.2200000E+02 | +3.8200000E+02 | +5.8017700E+02 |
| 32.0            | 30                     | +6.0150000E+02  | +7.5975381E+01        | +8.2200000E+02 | +4.8000000E+02 | +5.8012670E+02 |
| 33.0            | 19                     | +5.5242089E+02  | +9.6321980E+01        | +7.3600000E+02 | +4.3300000E+02 | +5.8007641E+02 |
| 34.0            | 26                     | +5.13884552E+02 | +7.7096991E+01        | +6.8000000E+02 | +4.0000000E+02 | +5.8002587E+02 |
| 35.0            | 24                     | +6.3525000E+02  | +2.0195484E+02        | +1.3240000E+03 | +4.4000000E+02 | +5.7997558E+02 |
| 36.0            | 16                     | +5.9518750F+02  | +1.0736741E+02        | +7.4600000E+02 | +4.1300000E+02 | +5.7992504E+02 |
| 37.0            | 15                     | +5.9773315E+02  | +1.1965752E+02        | +7.7300000E+02 | +4.2200000E+02 | +5.7987475E+02 |
| 38.0            | 17                     | +5.3747045F+02  | +7.2456122F+01        | +6.6700000F+02 | +3.9500000F+02 | +5.7982421E+02 |
| 39.0            | 6                      | +6.6383325E+02  | +1.2818957E+02        | +8.7200000E+02 | +5.4200000E+02 | +5.7977392E+02 |
| 40.0            | 11                     | +7.8854541E+02  | +2.6981896E+02        | +1.2130000E+03 | +4.6900000E+02 | +5.7972363E+02 |
| 41.0            | 8                      | +5.1500000E+02  | +3.2000000E+01        | +5.6200000E+02 | +4.7900000E+02 | +5.7967309E+02 |
| 42.0            | 3                      | +5.3633325E+02  | +2.8005951E+01        | +5.5300000E+02 | +5.0400000E+02 | +5.7962280E+02 |
| 43.0            | 4                      | +6.3025000E+02  | +6.0040958E+01        | +7.1600000E+02 | +5.7700000E+02 | +5.7957226E+02 |
| 44.0            | 19                     | +7.0321044E+02  | +1.3076341E+02        | +9.6600000E+02 | +4.5800000E+02 | +5.7952197E+02 |

ANR 3066 PROPYLENIC ANHYDRIDE, P POLYMER) TENSILE MODULUS, • 0002 IN/MIN

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| Age<br>(months) | Specimens<br>per Group | Mean Y         | Standard<br>Deviation | Maximum Y      | Minimum Y      | Regression Y   |                |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|
|                 |                        |                |                       |                |                |                |                |
| 45.0            | 15                     | +5.8079980E+02 | +9.4888807E+01        | +7.5200000E+02 | +4.5500000E+02 | +5.7947143E+02 | +5.7942114E+02 |
| 46.0            | 21                     | +5.6595214E+02 | +8.3168626E+01        | +7.4700000E+02 | +4.4200000E+02 | +5.7937084E+02 | +5.7932031E+02 |
| 47.0            | 10                     | +6.2752985E+02 | +1.0916368E+02        | +7.5300000E+02 | +4.6500000E+02 | +5.7937084E+02 | +5.7932031E+02 |
| 48.0            | 6                      | +6.2616650E+02 | +4.2976350E+01        | +6.9600000E+02 | +5.8100000E+02 | +5.7927001E+02 | +5.7927001E+02 |
| 49.0            | 16                     | +6.1600000E+02 | +1.2964361E+02        | +8.0500000E+02 | +4.1700000E+02 | +5.7927001E+02 | +5.7927001E+02 |
| 50.0            | 29                     | +6.3489282E+02 | +1.3664529E+02        | +9.4200000E+02 | +4.0090000E+02 | +5.7921948E+02 | +5.7921948E+02 |
| 51.0            | 28                     | +7.2553564E+02 | +1.3768872E+02        | +9.8600000E+02 | +4.5900000E+02 | +5.7916918E+02 | +5.7916918E+02 |
| 52.0            | 17                     | +5.8252929E+02 | +6.5098115E+01        | +6.9020000E+02 | +4.6200000E+02 | +5.7911889E+02 | +5.7911889E+02 |
| 53.0            | 20                     | +6.4129980E+02 | +9.5979219E+01        | +7.9300000E+02 | +5.0900000E+02 | +5.7906835E+02 | +5.7906835E+02 |
| 54.0            | 13                     | +6.1738452E+02 | +8.9104375E+01        | +7.7000000E+02 | +4.8500000E+02 | +5.7901806E+02 | +5.7901806E+02 |
| 55.0            | 26                     | +5.7003833E+02 | +1.0727850E+02        | +8.5900000E+02 | +4.2700000E+02 | +5.7896752E+02 | +5.7896752E+02 |
| 56.0            | 49                     | +5.6602026E+02 | +9.3977056E+01        | +8.4800000E+02 | +3.9500000E+02 | +5.7891723E+02 | +5.7891723E+02 |
| 57.0            | 52                     | +5.7436523E+02 | +9.4937446E+01        | +7.6000000E+02 | +4.1700000E+02 | +5.7886669E+02 | +5.7886669E+02 |
| 58.0            | 23                     | +6.3065209E+02 | +9.7734151E+01        | +8.7000000E+02 | +4.9200000E+02 | +5.7881640E+02 | +5.7881640E+02 |
| 59.0            | 12                     | +6.1841650E+02 | +6.0952229E+01        | +7.3100000E+02 | +5.2800000E+02 | +5.7876611E+02 | +5.7876611E+02 |
| 60.0            | 3                      | +4.4900000E+02 | +8.1853527E+00        | +4.5600000E+02 | +4.4000000E+02 | +5.7871557E+02 | +5.7871557E+02 |
| 61.0            | 12                     | +4.8033325E+02 | +1.6652126E+02        | +6.4500000E+02 | +1.9700000E+02 | +5.7866528E+02 | +5.7866528E+02 |
| 62.0            | 23                     | +6.0900000F+02 | +1.1288489E+02        | +9.4700000E+02 | +4.3200000E+02 | +5.7861474E+02 | +5.7861474E+02 |
| 63.0            | 33                     | +6.6024218E+02 | +2.1126982E+02        | +1.5150000E+03 | +4.4000000E+02 | +5.7856445E+02 | +5.7856445E+02 |
| 64.0            | 16                     | +5.3043750E+02 | +9.1638397E+01        | +7.0600000E+02 | +4.2400000E+02 | +5.7851391E+02 | +5.7851391E+02 |
| 65.0            | 13                     | +5.3338452E+02 | +6.4850518E+01        | +6.3200000E+02 | +3.9200000E+02 | +5.7846362E+02 | +5.7846362E+02 |
| 66.0            | 18                     | +6.1450000E+02 | +1.9400341E+02        | +8.9500000E+02 | +3.0900000E+02 | +5.7841333E+02 | +5.7841333E+02 |
| 67.0            | 28                     | +7.3128564E+02 | +1.5714509E+02        | +9.4700000E+02 | +4.2400000E+02 | +5.7836279E+02 | +5.7836279E+02 |
| 68.0            | 26                     | +5.6942285E+02 | +1.4990268E+02        | +9.6000000E+02 | +3.6300000E+02 | +5.7831250E+02 | +5.7831250E+02 |
| 69.0            | 17                     | +6.2189990E+02 | +1.4373157E+02        | +8.2800000E+02 | +4.7600000E+02 | +5.7826196E+02 | +5.7826196E+02 |
| 70.0            | 20                     | +5.1739990E+02 | +9.1296740E+01        | +8.0000000E+02 | +4.2200000E+02 | +5.7821166E+02 | +5.7821166E+02 |
| 71.0            | 23                     | +5.5347802E+02 | +1.6999515E+02        | +1.0740000E+03 | +3.8500000E+02 | +5.7816113E+02 | +5.7816113E+02 |
| 72.0            | 21                     | +5.9369995E+02 | +7.8671937E+01        | +7.6600000E+02 | +4.6700000E+02 | +5.7811083E+02 | +5.7811083E+02 |
| 73.0            | 13                     | +6.7589990E+02 | +1.5553666E+02        | +9.7300000E+02 | +4.8700000E+02 | +5.7806054E+02 | +5.7806054E+02 |
| 74.0            | 5                      | +5.1919995E+02 | +5.1698162E+01        | +5.8200000E+02 | +4.6700000E+02 | +5.7801000E+02 | +5.7801000E+02 |
| 75.0            | 10                     | +5.6389990E+02 | +9.7689360E+01        | +7.2700000E+02 | +4.4400000E+02 | +5.7795971E+02 | +5.7795971E+02 |

## \*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

## \*\*\*\*\* ANALYSIS OF TIME SERIES \*\*\*\*\*

| AGE<br>(MONTHS) | SPECIES<br>DFA GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|----------------------|----------------|-----------------------|----------------|----------------|-----------------|
|                 |                      |                |                       |                |                | +5.3325000E+02  |
| 76.0            | 8                    | +5.1750000E+02 | +4.7179747E+01        | +6.0000000E+02 | +4.5300000E+02 | +5.7790917E+02  |
| 77.0            | 12                   | +5.2412500E+02 | +3.5620197E+01        | +6.4200000E+02 | +4.1300000E+02 | +5.7785888E+02  |
| 78.0            | 16                   | +7.7561206E+01 | +6.7561206E+01        | +6.6900000E+02 | +4.4400000E+02 | +5.7780834E+02  |
| 79.0            | 12                   | +7.2675000E+02 | +1.2985245E+02        | +9.3300000E+02 | +4.0900000E+02 | +5.77175805E+02 |
| 80.0            | 19                   | +5.6316650E+02 | +9.0777199E+01        | +7.6100000E+02 | +4.1500000E+02 | +5.7770776E+02  |
| 81.0            | 15                   | +5.4409985E+02 | +1.1085771E+02        | +8.2900000E+02 | +4.3300000E+02 | +5.7765722E+02  |
| 82.0            | 12                   | +5.4700000E+02 | +7.2859765E+01        | +6.8000000E+02 | +4.6600000E+02 | +5.7760693E+02  |
| 83.0            | 12                   | +5.2233325E+02 | +6.2349941E+01        | +6.4100000E+02 | +4.5300000E+02 | +5.7755639E+02  |
| 84.0            | 24                   | +5.6508325E+02 | +9.33682388E+01       | +8.2600000E+02 | +4.3700000E+02 | +5.7750610E+02  |
| 85.0            | 12                   | +5.2216650E+02 | +7.4072241E+01        | +6.4000000E+02 | +4.2000000E+02 | +5.7745581E+02  |
| 86.0            | 9                    | +4.9244433E+02 | +4.7313082E+01        | +5.5100000E+02 | +4.0700000E+02 | +5.7740527E+02  |
| 87.0            | 19                   | +5.6468408E+02 | +1.4563426E+02        | +9.5200030E+02 | +3.4400000E+02 | +5.7735498E+02  |
| 88.0            | 25                   | +5.6663989E+02 | +1.1222220E+02        | +8.7100000E+02 | +3.2300000E+02 | +5.7730444E+02  |
| 89.0            | 13                   | +5.8200000E+02 | +1.0054518E+02        | +8.0000000E+02 | +4.2200000E+02 | +5.7725415E+02  |
| 91.0            | 2                    | +4.7600000E+02 | +7.0710678E+00        | +4.8100000E+02 | +4.7100000E+02 | +5.7715332E+02  |
| 92.0            | 7                    | +4.9514282E+02 | +1.2785780E+01        | +5.1900000E+02 | +4.8100000E+02 | +5.7710302E+02  |
| 93.0            | 10                   | +5.6459985E+02 | +5.0929581E+01        | +6.3200000E+02 | +4.7600000E+02 | +5.7705249E+02  |
| 94.0            | 3                    | +4.4533325E+02 | +4.1789153E+01        | +4.8400000E+02 | +4.0100000E+02 | +5.7700219E+02  |
| 95.0            | 5                    | +6.2700000E+02 | +5.8898217E+01        | +7.1200000E+02 | +5.6300000E+02 | +5.7695166E+02  |
| 96.0            | 5                    | +8.5739990E+02 | +3.6827544E+02        | +1.3200000E+03 | +5.1400000E+02 | +5.7690136E+02  |
| 99.0            | 4                    | +5.3200000E+02 | +1.1660474E+02        | +6.6800000E+02 | +4.0900000E+02 | +5.7675024E+02  |
| 100.0           | 2                    | +5.9800000E+02 | +1.0182337E+02        | +6.7000000E+02 | +5.2600000E+02 | +5.7669970E+02  |
| 101.0           | 2                    | +6.0100000E+02 | +1.5132055E+02        | +7.0800000E+02 | +4.9400000E+02 | +5.7664941E+02  |
| 103.0           | 2                    | +6.0400000E+02 | +6.2225396E+01        | +6.4800000E+02 | +5.6000000E+02 | +5.7654858E+02  |
| 104.0           | 2                    | +5.9550000E+02 | +3.18119805E+01       | +6.1800000E+02 | +5.7300000E+02 | +5.7649804E+02  |
| 105.0           | 2                    | +5.7944433E+02 | +9.24118520E+01       | +7.2900000E+02 | +4.3700000E+02 | +5.7644775E+02  |
| 106.0           | 2                    | +5.9777758E+02 | +2.3627355E+02        | +1.0280000E+03 | +3.4200000E+02 | +5.7639746E+02  |
| 108.0           | 3                    | +5.2066650E+02 | +9.4516312E+01        | +5.2800000E+02 | +5.1000000E+02 | +5.7629663E+02  |
| 109.0           | 5                    | +4.961995E+02  | +4.1541545E+01        | +5.4500000E+02 | +4.3000000E+02 | +5.7624609E+02  |
| 110.0           | 11                   | +4.8254541E+02 | +6.5477268E+01        | +6.3200000E+02 | +3.9400000E+02 | +5.7619580E+02  |
| 111.0           | 5                    | +5.9319995E+02 | +1.4535812E+02        | +7.7600000E+02 | +3.9200000E+02 | +5.7614526E+02  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|-----------------|----------------|
| 112.0           | 6                      | +5.8150000E+02 | +1.7807947E+02        | +8.69C0000E+02 | +3.790C0000E+02 | +5.76C9497E+02 |
| 113.0           | 9                      | +5.6522216E+02 | +1.4222950E+02        | +8.0300000E+02 | +4.190C0000E+02 | +5.76C4467E+02 |
| 114.0           | 3                      | +5.4266650E+02 | +1.8941312E+02        | +7.4400000E+02 | +3.680C0000E+02 | +5.7599414E+02 |
| 115.0           | 3                      | +4.8733325E+02 | +6.0302017E+01        | +5.5600000E+02 | +4.430C0000E+02 | +5.7594384E+02 |
| 116.0           | 6                      | +4.6700000E+02 | +6.2555575E+01        | +5.7500000E+02 | +3.880C0000E+02 | +5.7589331E+02 |
| 117.0           | 3                      | +5.0266650E+02 | +3.3030739E+01        | +5.2503000E+02 | +4.6300000E+02  | +5.7584301E+02 |
| 122.0           | 3                      | +4.9500000E+02 | +8.5854528E+01        | +5.7600000E+02 | +4.0500000E+02  | +5.7559106E+02 |
| 123.0           | 9                      | +5.5244433E+02 | +8.1083461E+01        | +6.6900000E+02 | +4.170C0000E+02 | +5.7554052E+02 |
| 124.0           | 6                      | +5.6416650E+02 | +6.8327256E+01        | +6.8502000E+02 | +4.9490000E+02  | +5.7549023E+02 |
| 126.0           | 6                      | +4.8320000E+02 | +1.2959012E+02        | +6.9200000E+02 | +3.3800000E+02  | +5.7538940E+02 |
| 127.0           | 3                      | +6.9866650E+02 | +1.4910510E+02        | +8.6500000E+02 | +5.770C0000E+02 | +5.7533911E+02 |
| 131.0           | 9                      | +5.3875000E+02 | +7.4926154E+01        | +6.3600000E+02 | +4.3800000E+02  | +5.7513745E+02 |
| 132.0           | 1                      | +7.4400000E+02 | +0.0000000E+02        | +7.4400000E+02 | +7.4400000E+02  | +5.7508715E+02 |

ANB 3066 PROPLNT TANT & ANB UNLND, P POLYMER) TENSILE MODULUS, • 0002 IN/MIN

$\gamma = (( +6.2775772E+01) + (+2.4008402E-01) * X)$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF T = SIGNIFICANT  
 DEGREES OF FREEDOM = 182  
 STORAGE CONDITIONS = AMB TEMP/RH

$\diamond$  ANT  
 $+$  ANB

UNIT OF MEASURE = PSI

PARAMETER = MAXIMUM STRESS



ANB 3066 PROPELLANT ANT & ANB LINED, P POLYMER) TENSILE MAX STRESS, .0002 IN/IN

Figure 4-34

WATER LINEAR REGRESSION ANALYSIS \*\*\*  
vs. ANALYSIS OF TIME SERIES \*\*\*

| CONTINUOUS PER GROUP | STANDARD DEVIATION | MEAN Y          | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|----------------------|--------------------|-----------------|-----------------|-----------------|-----------------|
| 12.0                 | + 6.3582434E+01    | + 6.3436837E+00 | + 7.0529998E+01 | + 5.3199987E+01 | + 6.6377182E+01 |
| 13.0                 | + 6.4583755E+01    | + 5.5361135E+00 | + 7.7729995E+01 | + 4.4149993E+01 | + 6.6617263E+01 |
| 14.0                 | + 6.6544921E+01    | + 8.2365373E+00 | + 7.4269989E+01 | + 5.239993E+01  | + 6.6857360E+01 |
| 15.0                 | + 6.6367019E+01    | + 3.6363567E+00 | + 7.2259994E+01 | + 6.1039993E+01 | + 6.7057457E+01 |
| 16.0                 | + 6.9566650E+01    | + 1.2812033E+00 | + 7.0619995E+01 | + 6.8139999E+01 | + 6.7337554E+01 |
| 17.0                 | + 7.1469224E+01    | + 2.3582725E+00 | + 7.4719985E+01 | + 6.8175992E+01 | + 6.7577651E+01 |
| 18.0                 | + 7.0568817E+01    | + 3.5069023E+00 | + 7.7739990E+01 | + 5.8705991E+01 | + 6.7817733E+01 |
| 19.0                 | + 6.6781021E+01    | + 2.5238637E+00 | + 6.9769989E+01 | + 6.1739990E+01 | + 6.8057830E+01 |
| 20.0                 | + 6.6545477E+01    | + 3.5366592E+00 | + 7.1659978E+01 | + 6.1976995F+01 | + 6.8297927E+01 |
| 21.0                 | + 7.7356643E+01    | + 1.2399162E+00 | + 7.8359985E+01 | + 7.5969985E+01 | + 6.8538024E+01 |
| 22.0                 | + 7.4533325E+01    | + 1.971576E+00  | + 7.5299987E+01 | + 7.1839996F+01 | + 6.9018203E+01 |
| 23.0                 | + 7.0126647E+01    | + 1.5080501E+00 | + 7.1687287E+01 | + 6.8679992E+01 | + 6.9498397E+01 |
| 24.0                 | + 6.0103317E+01    | + 1.8411269E+00 | + 8.2219985E+01 | + 7.8865995F+01 | + 6.9738494E+01 |
| 25.0                 | + 7.1486602E+01    | + 2.1663089E+00 | + 8.3819992E+01 | + 6.2239990E+01 | + 6.9978591E+01 |
| 26.0                 | + 5.7733322E+01    | + 2.0791314E+01 | + 7.0442796E+01 | + 3.3739990E+01 | + 7.0218673E+01 |
| 27.0                 | + 6.9138259E+01    | + 3.5682941E+00 | + 7.4229995E+01 | + 6.4925992E+01 | + 7.0458770E+01 |
| 28.0                 | + 7.1711578E+01    | + 6.3633001E+00 | + 7.8759994E+01 | + 6.4409988E+01 | + 7.0698867E+01 |
| 29.0                 | + 7.1786651E+01    | + 9.9662111E+01 | + 7.2559997E+01 | + 7.0659988E+01 | + 7.0938964E+01 |
| 30.0                 | + 7.3169921E+01    | + 2.8588746E+00 | + 7.8099990E+01 | + 7.0505994E+01 | + 7.1179061E+01 |
| 31.0                 | + 7.1596649E+01    | + 4.8447194E+00 | + 7.7189987E+01 | + 6.8699996E+01 | + 7.1419143E+01 |
| 32.0                 | + 7.9466644E+01    | + 8.1946285E+01 | + 7.8967985E+01 | + 7.7519989E+01 | + 7.1659240E+01 |
| 33.0                 | + 7.1786651E+01    | + 9.9662111E+01 | + 7.2559997E+01 | + 7.0659988E+01 | + 7.1899337E+01 |
| 34.0                 | + 7.3169921E+01    | + 2.8588746E+00 | + 7.8099990E+01 | + 7.0505994E+01 | + 7.1179061E+01 |
| 35.0                 | + 7.1596649E+01    | + 4.8447194E+00 | + 7.7189987E+01 | + 6.8699996E+01 | + 7.1419143E+01 |
| 36.0                 | + 7.1311340E+01    | + 7.2096909E+00 | + 7.8079986E+01 | + 6.3539993F+01 | + 7.1899337E+01 |
| 37.0                 | + 8.0653785E+01    | + 3.7336847E+01 | + 8.1259994E+01 | + 8.0519989E+01 | + 7.2139434E+01 |
| 38.0                 | + 6.7233152E+01    | + 1.7298136E+01 | + 6.8609985E+01 | + 6.5449936E+01 | + 7.2379531E+01 |
| 39.0                 | + 7.1311340E+01    | + 1.7750930E+01 | + 7.3909997E+01 | + 6.9176992E+01 | + 7.3099807E+01 |
| 40.0                 | + 7.226654F+01     | + 9.4874195E+01 | + 7.2979925E+01 | + 7.1159988E+01 | + 7.3339904E+01 |
| 41.0                 | + 7.7466659E+01    | + 2.1928479E+01 | + 7.3979995E+01 | + 7.5935988E+01 | + 7.4060180E+01 |
| 42.0                 | + 7.9329986E+01    | + 7.0948980E+01 | + 7.8769389E+01 | + 7.7509994E+01 | + 7.4300277E+01 |
| 43.0                 | + 7.1733276E+01    | + 2.6085386E+00 | + 7.4959991E+01 | + 6.8549987E+01 | + 7.4780471E+01 |
| 44.0                 | + 6.6749984E+01    | + 9.9287130E+01 | + 7.3699996E+01 | + 5.9799987E+01 | + 7.5020553E+01 |
| 45.0                 | + 7.7699996E+01    | + 3.0900000E+01 | + 7.7699996E+01 | + 7.5260550E+01 | + 7.5260550E+01 |

Y(t) = PRIMIAT CANT. A AIR LINES, P POLYMER TENSILE MAX STRESS, • 0002 IN/MIN

NON-LINEAR REGRESSION ANALYSIS WORK

NON-LINEAR REGRESSION ANALYSIS WORK

| TEST NUMBER | PER GROUP | MEAN Y         | STANDARD DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-------------|-----------|----------------|--------------------|----------------|----------------|----------------|
| 53.0        | 3         | +6.8813992E+01 | +2.0153377E+00     | +7.1839996E+01 | +6.7289993E+01 | +7.5500747E+01 |
| 54.0        | 3         | +7.8683319E+01 | +1.4105442E+00     | +8.0309997E+01 | +7.7793987E+01 | +7.5740844E+01 |
| 55.0        | 3         | +7.0733322E+01 | +1.4273652E+00     | +8.0829986E+01 | +7.8119995E+01 | +7.5930941E+01 |
| 56.0        | 3         | +7.8126663E+01 | +1.9157144E+00     | +8.0289993E+01 | +7.6639999E+01 | +7.6221023E+01 |
| 57.0        | 3         | +7.1373321E+01 | +9.8227504E-01     | +7.2469985E+01 | +7.0569992E+01 | +7.6461120E+01 |

AND 50.0 PROPELLANT & AMBULATED, P (POLYMER) TENSILE MAX STRESS, .0002 IN/MIN

$\gamma = (+1.8038938E-01) + (-5.1108766E-04) * X_1$   
 $F = \text{SIGNIFICANCE OF } F = \text{SIGNIFICANT}$   
 $R = -3.6216027E-01$   
 $r = \text{SIGNIFICANCE OF } R = \text{SIGNIFICANT}$   
 $t = +5.2416331E+00$   
 $t^* = \text{SIGNIFICANCE OF } t = \text{SIGNIFICANT}$   
 $N = 184$   
 $\text{DEGREES OF FREEDOM} = 182$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{TEST CONDITIONS} = \text{AMB TEMP/RH}$

$\diamond$  ANT  
 $+$  ANB



4-123

ANB 3066 PROPELLANT (ANT & ANB LINED, P POLYMER) TENSILE STN ● RUFT, .0002 IN/MIN

Figure 4-35

## REGRESSION ANALYSIS ANALYSIS 4444

## TIME SERIES 4444

STANDARD DEVIATION  
MEAN Y  
DEVIATION  
MAXIMUM Y  
MINIMUM Y  
REGRESSION Y

|      |    |                |                |                |                |
|------|----|----------------|----------------|----------------|----------------|
| 15.0 | 12 | +1.7251633E-01 | +2.2006309E-02 | +1.9889998E-01 | +1.7272305E-01 |
| 16.0 | 13 | +1.6111515E-01 | +1.6412564E-02 | +1.8947997E-01 | +1.7221194E-01 |
| 17.0 | 6  | +1.5396666E-01 | +1.3208413E-02 | +1.6559994E-01 | +1.4099997E-01 |
| 14   | 14 | +1.7709970E-01 | +2.3067735E-02 | +2.1869999E-01 | +1.4639997E-01 |
| 16.0 | 3  | +1.6759933E-01 | +6.1568143E-03 | +1.7289996E-01 | +1.6089999E-01 |
| 12.0 | 6  | +1.7658314E-01 | +1.5453465E-02 | +1.9379997E-01 | +1.5559995E-01 |
| 21.0 | 2  | +1.7142188E-01 | +1.5232883E-02 | +1.9569998E-01 | +1.5469998E-01 |
| 22.0 | 1  | +1.7552200E-01 | +2.9851435E-02 | +2.1093996E-01 | +1.4999997E-01 |
| 23.0 | 2  | +1.8762195E-01 | +1.3651356E-02 | +2.0529997E-01 | +1.7009997E-01 |
| 24.0 | 3  | +1.6309998E-01 | +2.4955283E-03 | +1.6209995E-01 | +1.5729999E-01 |
| 25.0 | 3  | +1.7552994E-01 | +1.3908482E-03 | +1.7649996E-01 | +1.7409998E-01 |
| 28.0 | 3  | +1.9503996E-01 | +6.6102383E-03 | +1.7289996E-01 | +1.5969997E-01 |
| 29.0 | 3  | +1.4283329E-01 | +4.9059905E-03 | +1.4759999E-01 | +1.3779997E-01 |
| 30.0 | 6  | +1.5128326E-01 | +1.2319580E-02 | +1.6329996E-01 | +1.3595997E-01 |
| 31.0 | 3  | +1.6769993E-01 | +2.0656893E-02 | +1.9389996E-01 | +1.5129995E-01 |
| 32.0 | 6  | +1.6149993E-01 | +9.8385785E-03 | +1.7009997E-01 | +1.4649999E-01 |
| 32.0 | 6  | +1.6931658E-01 | +1.7642136E-02 | +1.8899995E-01 | +1.4939999E-01 |
| 34.0 | 3  | +1.6569994E-01 | +1.0420559E-02 | +1.7419999E-01 | +1.5479999E-01 |
| 35.0 | 6  | +1.5481662E-01 | +1.5469825E-02 | +1.6889995E-01 | +1.2619996E-01 |
| 36.0 | 3  | +1.5353997E-01 | +1.2928842E-02 | +1.6359996E-01 | +1.3899999E-01 |
| 37.0 | 3  | +1.6029996E-01 | +9.3604663E-03 | +1.7889994E-01 | +1.6019999E-01 |
| 38.0 | 7  | +1.6294270E-01 | +5.7767097E-03 | +1.7189997E-01 | +1.5699994E-01 |
| 39.0 | 3  | +1.7426663E-01 | +2.3238322E-03 | +1.7589996E-01 | +1.7249995E-01 |
| 40.0 | 5  | +1.6123333E-01 | +5.5226477E-03 | +1.6719976E-01 | +1.5625594E-01 |
| 41.0 | 2  | +1.6142195E-01 | +2.0941332E-02 | +1.9259975E-01 | +1.3379997E-01 |
| 41.0 | 3  | +1.4473323E-01 | +1.1431360E-03 | +1.4619994E-01 | +1.4389997E-01 |
| 47.0 | 3  | +1.5493327E-01 | +3.2131604E-03 | +1.5859997E-01 | +1.5259999E-01 |
| 48.0 | 3  | +1.5893328E-01 | +1.0692463E-02 | +1.6559994E-01 | +1.4659994E-01 |
| 50.0 | 6  | +1.5231662E-01 | +1.1963597E-02 | +1.6959995E-01 | +1.3589996E-01 |
| 51.0 | 2  | +1.4799994E-01 | +1.1314241E-02 | +1.5599995E-01 | +1.3999998E-01 |
| 52.0 | 1  | +1.3237795E-01 | +1.3002050E+51 | +1.3299995E-01 | +1.5391276E-01 |

LINEAR REGRESSION ANALYSIS

\* \* \* 531835 TIME SERIES ANALYSIS

| Age<br>(years) | SPECIES<br>IN GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION     |
|----------------|---------------------|----------------|-----------------------|----------------|----------------|----------------|
|                |                     |                |                       |                |                | Y              |
| 53.5           | 3                   | +1.672995E-01  | +1.6527560E-02        | +1.8440997E-01 | +1.5559996E-01 | +1.5330171E-01 |
| 54.0           | 3                   | +1.3593325E-01 | +1.5235174E-02        | +1.4959996E-01 | +1.1959993E-01 | +1.5279060E-01 |
| 55.0           | 3                   | +1.5426659E-01 | +4.1634161E-03        | +1.5759998E-01 | +1.4959996E-01 | +1.5227955E-01 |
| 56.0           | 3                   | +1.5226662E-01 | +2.5147250E-03        | +1.5459996E-01 | +1.4959996E-01 | +1.5176844E-01 |
| 57.0           | 3                   | +1.5173326E-01 | +3.2145308E-03        | +1.6359996E-01 | +1.5759998E-01 | +1.5125733E-01 |

STN 2 RIPT : 2002 IN/MIN

TEST CONDITIONS = AMB TEMP/RH      STORAGE CONDITIONS = AMB TEMP/RH

$\Sigma Y = 5.6806987E+01$   
 $\Sigma F = 4.9397261E-01$   
 $\Sigma L = 7.5370410E+00$   
 $\Sigma D = 1.78$

$\Sigma X_1 = 4.1412329E+02$   
 $\Sigma X_2 = 3.1356816E+00$

$S_{\bar{X}} = +7.9870188E+01$   
 $S_{\bar{F}} = +4.1603616E-01$   
 $S_{\bar{L}} = +6.9542337E+01$

STORAGE CONDITIONS = CMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH



ANB 3066 PROPYLENIC ANHYDRIDE LINED, P (POLYMER) TENSILE MODULUS, .0002 IN./MIN.  
Figure 4-36

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| ANALYSIS | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y     | REGRESSION Y   |
|----------|------------------------|-----------------|-----------------------|----------------|---------------|----------------|
| 15.0     | 12                     | +4.4204325E+02  | +2.2422438E+01        | +4.900000E+02  | +4.220000E+02 | +4.6115844E+02 |
| 16.0     | 13                     | +4.7751833E+02  | +6.4133474E+01        | +5.760000E+02  | +3.660000E+02 | +4.6429418E+02 |
| 17.0     | 4                      | +5.1820000E+02  | +1.8853287E+01        | +5.430000E+02  | +5.020000E+02 | +4.6742968E+02 |
| 18.0     | 14                     | +4.3342846E+02  | +6.4678749E+01        | +5.390000E+02  | +3.570000E+02 | +4.7056542E+02 |
| 19.0     | 3                      | +4.6266650E+02  | +1.6258331E+01        | +4.810000E+02  | +4.500000E+02 | +4.7370117E+02 |
| 20.0     | 6                      | +5.26550200E+02 | +7.1957626E+01        | +6.550000E+02  | +4.460000E+02 | +4.7683691E+02 |
| 21.0     | 9                      | +5.133325E+02   | +1.1313627E+02        | +6.290000E+02  | +3.560000E+02 | +4.7997241E+02 |
| 22.0     | 2                      | +4.6277758E+02  | +7.1257943E+01        | +5.450000E+02  | +3.720000E+02 | +4.8310815E+02 |
| 23.0     | 1                      | +4.1344433E+02  | +3.3272539E+01        | +4.550000E+02  | +3.620000E+02 | +4.8624389E+02 |
| 24.0     | 3                      | +5.6200000E+02  | +7.9372539E+01        | +5.690000E+02  | +5.540000F+02 | +4.8937963E+02 |
| 26.0     | 3                      | +4.6566659E+02  | +2.0816659E+02        | +4.680000E+02  | +4.640000E+02 | +4.9565087E+02 |
| 28.0     | 3                      | +4.8423325E+02  | +6.3266653E+00        | +4.910000E+02  | +4.750000E+02 | +5.0192236E+02 |
| 29.0     | 3                      | +6.63666650E+02 | +2.47857748E+01       | +6.920000E+02  | +6.430000F+02 | +5.0505786E+02 |
| 30.0     | 6                      | +5.6216650E+02  | +1.22685964E+02       | +6.760000F+02  | +4.390000E+02 | +5.0819360E+02 |
| 31.0     | 3                      | +4.970000E+02   | +1.7058722E+01        | +5.160000E+02  | +4.830000E+02 | +5.1132934E+02 |
| 32.0     | 6                      | +5.05666650E+02 | +1.7205775E+01        | +5.310000E+02  | +4.820000E+02 | +5.1446508E+02 |
| 33.0     | 6                      | +5.1083325E+02  | +1.1756430E+02        | +6.250000E+02  | +3.830000E+02 | +5.1760058E+02 |
| 34.0     | 3                      | +5.1333325E+02  | +4.9216083E+01        | +5.580000E+02  | +4.800000F+02 | +5.2073632E+02 |
| 35.0     | 6                      | +5.4216650E+02  | +4.9300777E+01        | +6.410000E+02  | +5.910000E+02 | +5.2387207E+02 |
| 36.0     | 3                      | +5.7733325E+02  | +1.3576941E+01        | +5.930000E+02  | +5.690000E+C2 | +5.2700781E+02 |
| 37.0     | 3                      | +5.8533325E+02  | +3.4268547E+01        | +6.230000E+02  | +5.560000E+02 | +5.3014331E+02 |
| 38.0     | 6                      | +5.1395000E+02  | +6.3597955E+01        | +5.860000E+02  | +4.570000E+02 | +5.3327905E+02 |
| 39.0     | 3                      | +5.333325E+02   | +8.3268262E+01        | +5.4101333E+02 | +5.250000E+02 | +5.3641479E+02 |
| 40.0     | 3                      | +5.8533325E+02  | +2.4906491E+01        | +5.340000E+02  | +4.890000F+02 | +5.3955053E+02 |
| 43.0     | 1                      | +2.1733325E+02  | +5.7861346E+01        | +6.030000E+02  | +4.430000E+02 | +5.4895751E+02 |
| 44.0     | 2                      | +5.8633325E+02  | +6.6563281E+01        | +5.940000E+02  | +5.820000E+02 | +5.52C9326E+02 |
| 47.0     | 3                      | +5.7233325E+02  | +1.115C485E+01        | +5.850000E+02  | +5.640000E+02 | +5.6150024E+02 |
| 48.0     | 4                      | +5.6133325E+02  | +5.5386321E+01        | +6.010000E+02  | +5.330000E+02 | +5.6463598E+02 |
| 50.0     | 6                      | +5.5133325E+02  | +4.7284951E+01        | +6.370000E+02  | +4.960000E+02 | +5.790722E+02  |
| 53.0     | 3                      | +5.6566650E+02  | +2.7300793E+01        | +5.370000E+02  | +4.870000E+02 | +5.8031420E+02 |
| 54.0     | 3                      | +6.7566650E+02  | +9.5126652E+01        | +7.810000E+02  | +6.050000E+02 | +5.8344995E+02 |

APRIL 1965, PRODUCT CANT 2 AND LIQUID, 2 POLYMER TENSILE MODULUS, • 3002 IN/MM

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(YEARS) | SPECIES | PE2 GROUP      | MEAN Y         | STANDARD DEVIATION |                | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|----------------|---------|----------------|----------------|--------------------|----------------|----------------|----------------|----------------|
|                |         |                |                | DEVIATION          | DEVIATION      |                |                |                |
| 55.0           | 3       | +5.950000E+02  | +4.999999E+02  | +6.000000E+02      | +5.900000E+02  | +5.8658569E+02 | +5.8658569E+02 | +5.8658569E+02 |
| 56.0           | 3       | +6.0756650E+02 | +3.8765736E+01 | +6.5200000E+02     | +5.8000000E+02 | +5.8972143E+02 | +5.8972143E+02 | +5.8972143E+02 |
| 57.0           | 3       | +5.3920000E+02 | +4.5825756E+00 | +5.4400000E+02     | +5.3500000E+02 | +5.9285693E+02 | +5.9285693E+02 | +5.9285693E+02 |

ANB 3766 PRODUKTANT 6 AND LINDO, P POLYMERI TENSILE MODULUS, .0002 IN/MIN

SECTION V  
HIGH RATE TRIAXIAL

This test utilizes a specimen 3/4 inch (1.9 cm) GL rail by 5 inches (12.7 cm) long. The specimens are tested on the MTS at a crosshead speed of 1750 in/min (74.08 cm/sec) with 600 psi (42.18 kg/sq cm). Strain rate is 1000 in/in/sec. These conditions simulate that of the motor at ignition.

This test does not show the significant changes which are characteristic in the very low rate tensile test. No type or combination of types has significant change in all parameters. ANT propellant shows a significant increase in maximum stress and a significant decrease in strain at rupture. Modulus shows a non-significant decrease (see Table 5-1).

The most consistent statistical feature of the test is the lower standard deviation of lined cartons compared to unlined cartons. This characteristic is most noticeable in the standard deviation of modulus which, in many cases, is less than half that of unlined cartons. Since determination of a consistent modulus has been a problem in high rate testing, the much reduced deviation in lined cartons seems all the more remarkable.

TABLE 5-1  
HIGH RATE TRIAXIAL  
Significance of "t"

| System              | Sm      | Fig  | er      | Fig  | E       | Fig  |
|---------------------|---------|------|---------|------|---------|------|
| ANA G Unlined       | NS dec  | 5-1  | NS inc  | 5-2  | Sig dec | 5-3  |
| ANB G Unlined       | NS inc  | 5-4  | Sig inc | 5-5  | NS dec  | 5-6  |
| ANB G Lined         | NS inc  | 5-7  | NS dec  | 5-8  | Sig inc | 5-9  |
| ANB P Unlined       | NS inc  | 5-10 | Sig inc | 5-11 | Sig dec | 5-12 |
| ANB P Lined         | NS inc  | 5-13 | NS dec  | 5-14 | Sig inc | 5-15 |
| ANT P Unlined       | Sig inc | 5-16 | Sig dec | 5-17 | NS dec  | 5-18 |
| ANT P Lined         | Sig inc | 5-19 | Sig dec | 5-20 | NS dec  | 5-21 |
| ANA & ANB G Unlined | NS dec  | 5-22 | Sig inc | 5-23 | NS dec  | 5-24 |
| ANB G & P Unlined   | NS inc  | 5-25 | Sig inc | 5-26 | Sig dec | 5-27 |
| ANB G & P Lined     | NS inc  | 5-28 | NS dec  | 5-29 | Sig inc | 5-30 |
| ANB & ANT P Unlined | NS dec  | 5-31 | Sig dec | 5-32 | NS dec  | 5-33 |
| ANB & ANT P Lined   | Sig inc | 5-34 | Sig dec | 5-35 | NS inc  | 5-36 |

$F = +1.1761949E-01$   
 $R = -4.3514325E-02$   
 $I = +3.4295698E-01$   
 $N = 64$   
 STORAGE CONDITIONS = TEST CONDITIONS = 77 DEG F. AMB RH

$\gamma = (+5.8359172E+02) + (-7.1728795E-02)$   
 SIGNIFICANCE OF  $F =$  NOT SIGNIFICANT  
 SIGNIFICANCE OF  $R =$  NOT SIGNIFICANT  
 SIGNIFICANCE OF  $I =$  NOT SIGNIFICANT  
 DEGREES OF FREEDOM = 62

$G = +3.4861414E+01$   
 $S_u = +2.0914807E-01$   
 $S_r = +3.5108144E+01$

TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPELLANT (ANAL) TENSILE MAX STRESS, 1750 IN/MIN, 600 PSI., 77 DEG UNLND

Figure 5-1

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 14.0            | 2                      | +5.4500000E+02 | +0.000000E+35         | +5.4500000E+02 | +5.4500000E+02 | +5.8258740E+02 |
| 15.0            | 2                      | +5.000000E+02  | +1.4142135E+01        | +5.100000E+02  | +4.900000E+02  | +5.8251562E+02 |
| 16.0            | 2                      | +6.150000E+02  | +7.0710678E+00        | +6.200000E+02  | +6.100000E+02  | +5.8244384E+02 |
| 18.0            | 2                      | +6.275000E+02  | +1.0606601E+01        | +6.350000E+02  | +6.200000E+02  | +5.8230053E+02 |
| 19.0            | 2                      | +6.100000E+02  | +1.4142135E+01        | +6.200000E+02  | +6.000000E+02  | +5.8222875E+02 |
| 20.0            | 2                      | +6.125000E+02  | +3.1819805E+01        | +6.350000E+02  | +5.900000E+02  | +5.8215698E+02 |
| 22.0            | 4                      | +6.187500E+02  | +1.9311050E+01        | +6.450000E+02  | +6.000000E+02  | +5.8201367E+02 |
| 24.0            | 2                      | +5.825000E+02  | +1.0606601E+01        | +5.900000E+02  | +5.750000E+02  | +5.8187011E+02 |
| 25.0            | 2                      | +5.875000E+02  | +1.7677669E+01        | +6.000000E+02  | +5.750000E+02  | +5.8179833E+02 |
| 26.0            | 2                      | +5.700000E+02  | +7.0710678E+00        | +5.750000E+02  | +5.650000E+02  | +5.8172656E+02 |
| 33.0            | 2                      | +5.600000E+02  | +2.1213203E+01        | +5.750000E+02  | +5.450000E+02  | +5.8122460E+02 |
| 43.0            | 2                      | +5.6895996E+02 | +2.6457455E-02        | +5.6895996E+02 | +5.6895996E+02 | +5.8050732E+02 |
| 49.0            | 1                      | +5.7579980E+02 | +0.000000E+83         | +5.7579980E+02 | +5.7579980E+02 | +5.8007690E+02 |
| 53.0            | 3                      | +5.4395312E+02 | +5.5807842E+00        | +5.4965991E+02 | +5.3853979E+02 | +5.7979003E+02 |
| 54.0            | 3                      | +5.4393652E+02 | +1.92683883E+00       | +5.4584985E+02 | +5.4210986E+02 | +5.7971826E+02 |
| 55.0            | 3                      | +5.3230639E+02 | +5.0986986E+00        | +5.3816992E+02 | +5.2913989E+02 | +5.7964648E+02 |
| 58.0            | 6                      | +5.6896142E+02 | +2.7159766E+01        | +5.8793994E+02 | +5.1848999E+02 | +5.7943139E+02 |
| 59.0            | 1                      | +5.5694995E+02 | +0.000000E+03         | +5.5694995E+02 | +5.5694995E+02 | +5.7935961E+02 |
| 60.0            | 3                      | +6.4258642E+02 | +7.5308923E+00        | +6.4965991E+02 | +6.3464990E+02 | +5.7928784E+02 |
| 69.0            | 6                      | +5.6271630E+02 | +6.3365990E+00        | +5.6979980E+02 | +5.5352978E+02 | +5.7864233E+02 |
| 70.0            | 3                      | +5.8411987E+02 | +7.2869410E+00        | +5.9245996E+02 | +5.7900000E+02 | +5.7857055E+02 |
| 71.0            | 9                      | +6.0441479E+02 | +6.7112358E+00        | +6.1928979E+02 | +5.9648999E+02 | +5.7849877E+02 |

$F = +2.3153589E+00$   
 $R = +1.8973690E-01$   
 $t = +1.5216303E+00$   
 $N = 64$   
 STORAGE CONDITIONS = AMB TEMP/RH  
 $\gamma = (( +2.8466899E-01 ) + ( +1.8478831E-04 ) * X)$   
 SIGNIFICANCE OF F = NOT SIGNIFICANT  
 SIGNIFICANCE OF R = NOT SIGNIFICANT  
 SIGNIFICANCE OF t = NOT SIGNIFICANT  
 DEGREES OF FREEDOM = 62  
 TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPELLANT (ANA) TENSILE STN AT RUP, 1750 IN/MIN, 600 PSI, 77 DEG UNLNG

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 14.0            | 2                      | +3.2049995E-01 | +2.1920089E-02        | +3.3599996E-01 | +3.0499994E-01 | +2.8725600E-01  |
| 15.0            | 2                      | +3.1099998E-01 | +9.3668466E-06        | +3.1099998E-01 | +3.1C99998E-01 | +2.8744077E-01  |
| 16.0            | 2                      | +2.8549998E-01 | +9.1903654E-03        | +2.9199999E-01 | +2.7899998E-01 | +2.8762555E-01  |
| 18.0            | 2                      | +2.8249996E-01 | +2.1918605E-02        | +2.9799997E-01 | +2.6699995E-01 | +2.87999515E-01 |
| 19.0            | 2                      | +2.8249996E-01 | +1.3434832E-02        | +2.9199999E-01 | +2.7299994E-01 | +2.8817993E-01  |
| 20.0            | 2                      | +2.6199996E-01 | +3.8182992E-02        | +2.8899997E-01 | +2.3499995E-01 | +2.8836470E-01  |
| 22.0            | 4                      | +2.8874993E-01 | +1.9889193E-02        | +3.0499994E-01 | +2.5999999E-01 | +2.8873431E-01  |
| 24.0            | 2                      | +2.9199993E-01 | +8.4839413E-03        | +2.9799997E-01 | +2.8599995E-01 | +2.8910386E-01  |
| 25.0            | 2                      | +2.9999995E-01 | +3.3941763E-02        | +3.2399994E-01 | +2.7599996E-01 | +2.8928869E-01  |
| 26.0            | 2                      | +2.9199993E-01 | +8.4839413E-03        | +2.9799997E-01 | +2.8599995E-01 | +2.8947347E-01  |
| 33.0            | 2                      | +2.7949994E-01 | +1.7675847E-02        | +2.9199999E-01 | +2.6699995E-01 | +2.9076695E-01  |
| 43.0            | 2                      | +2.6149994E-01 | +1.7746321E-04        | +2.6149994E-01 | +2.6149994E-01 | +2.9261487E-01  |
| 49.0            | 1                      | +2.6899999E-01 | +0.0000000E+83        | +2.6899999E-01 | +2.6899999E-01 | +2.9372358E-01  |
| 53.0            | 3                      | +2.9779994E-01 | +5.5963800E-03        | +3.0219995E-01 | +2.9149997E-01 | +2.9446274E-01  |
| 54.0            | 3                      | +2.9516661E-01 | +4.4306636E-03        | +2.9999995E-01 | +2.9129999E-01 | +2.9464751E-01  |
| 55.0            | 3                      | +3.0699992E-01 | +7.0138851E-03        | +3.1119996E-01 | +2.9889994E-01 | +2.9483234E-01  |
| 58.0            | 6                      | +2.9171639E-01 | +1.2448180E-02        | +3.0989998E-01 | +2.7829998E-01 | +2.9538667E-01  |
| 59.0            | 1                      | +2.3539996E-01 | +0.0000000E+03        | +2.3539996E-01 | +2.3539996E-01 | +2.9557144E-01  |
| 60.0            | 3                      | +2.7656662E-01 | +4.2344514E-03        | +2.8139996E-01 | +2.7349996E-01 | +2.9575628E-01  |
| 69.0            | 6                      | +3.0466651E-01 | +8.0217607E-03        | +3.1299996E-01 | +2.9199999E-01 | +2.9741936E-01  |
| 70.0            | 3                      | +3.2633328E-01 | +1.4188270E-02        | +3.3899998E-01 | +3.1099998E-01 | +2.9760414E-01  |
| 71.0            | 9                      | +2.9833292E-01 | +1.7922844E-02        | +3.1499999E-01 | +2.5499999E-01 | +2.9778891E-01  |

ANB 3066 PROPELLANT(ANA) TENSILE STN AT RUP, 1750 IN/MIN, 600 PSI, 77 DEG UNLND

$\gamma = ( (+5.8580296E+03) + (-2.7534707E+01) * X )$   
 $F = \text{SIGNIFICANCE OF } F = 8.2495976E+02$   
 $R = \text{SIGNIFICANCE OF } R = 3.5090468E+00$   
 $t = \text{SIGNIFICANCE OF } t = 5.8903780E+02$   
 $N = 64$   
 $i = 62$   
 $\text{DEGREES OF FREEDOM} = 62$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{TEST CONDITIONS} = 77 \text{ DEG F, AMB RH}$



ANB 3066 PROPELLANT (ANAL) TENSILE MODULUS, 1750 IN/MIN, 600 PSI, 77 DEG UNLND

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 14.0            | 2                      | +4.6500000E+03 | +7.07106778E+01       | +4.7000000E+03 | +4.6000000E+03 | +5.4725429E+03  |
| 15.0            | 2                      | +4.6500000E+03 | +3.5355339E+02        | +4.9000000E+03 | +4.4000000E+03 | +5.44500078E+03 |
| 16.0            | 2                      | +5.4500000E+03 | +7.7781745E+02        | +6.0000000E+03 | +4.9000000E+03 | +5.4174726E+03  |
| 18.0            | 2                      | +5.7000000E+03 | +1.4142135E+02        | +5.8000000E+03 | +5.6000000E+03 | +5.3624023E+03  |
| 19.0            | 2                      | +5.7000000E+03 | +1.4142135E+02        | +5.8000000E+03 | +5.6000000E+03 | +5.3348671E+03  |
| 20.0            | 2                      | +5.2500000E+03 | +4.9497474E+02        | +5.6000000E+03 | +4.9000000E+03 | +5.3073320E+03  |
| 22.0            | 4                      | +5.8250000E+03 | +6.3442887E+02        | +6.6000000E+03 | +5.1000000E+03 | +5.2522656E+03  |
| 24.0            | 2                      | +5.5000000E+03 | +1.4142135E+02        | +5.6000000E+03 | +5.4000000E+03 | +5.1971953E+03  |
| 25.0            | 2                      | +4.9500000E+03 | +3.5355339E+02        | +5.2000000E+03 | +4.7000000E+03 | +5.1696601E+03  |
| 26.0            | 2                      | +5.1500000E+03 | +3.5355339E+02        | +5.4000000E+03 | +4.9000000E+03 | +5.1421250E+03  |
| 33.0            | 2                      | +5.0500000E+03 | +2.1213203E+02        | +5.2000000E+03 | +4.9000000E+03 | +4.9493828E+03  |
| 43.0            | 2                      | +6.0000000E+03 | +0.0000000E+79        | +6.0000000E+03 | +6.0000000E+03 | +4.6740351E+03  |
| 49.0            | 1                      | +5.0000000E+03 | +0.0000000E+83        | +5.0000000E+03 | +5.0000000E+03 | +4.5088281E+03  |
| 53.0            | 3                      | +3.7273332E+03 | +3.2608792E+01        | +3.7620000E+03 | +3.6970000E+03 | +4.3986875E+03  |
| 54.0            | 3                      | +3.8853332E+03 | +1.4979096E+02        | +4.0120000E+03 | +3.7200000E+03 | +4.3711523E+03  |
| 55.0            | 3                      | +3.3820000E+03 | +1.1980818E+02        | +3.5120000E+03 | +3.2760000E+03 | +4.3436171E+03  |
| 58.0            | 6                      | +4.2245000E+03 | +4.0682145E+02        | +4.7360000E+03 | +3.7290000E+03 | +4.2610156E+03  |
| 59.0            | 1                      | +5.3000000E+03 | +0.0000000E+03        | +5.3000000E+03 | +5.3000000E+03 | +4.2334804E+03  |
| 60.0            | 3                      | +4.1573320E+03 | +3.0193597E+02        | +4.4170000E+03 | +3.8260000E+03 | +4.2059453E+03  |
| 69.0            | 6                      | +3.7236665E+03 | +1.6251974E+02        | +3.9130000E+03 | +3.4450000E+03 | +3.9581345E+03  |
| 70.0            | 3                      | +3.6150000E+03 | +2.5894014E+01        | +3.6300000E+03 | +3.5850000E+03 | +3.9305998E+03  |
| 71.0            | 9                      | +4.3553320E+03 | +3.1688720E+02        | +4.8790000E+03 | +3.9190000E+03 | +3.9030651E+03  |

ANB 3066 PROPELLANT(ANA) TENSILE MODULUS, 1750 IN/MIN, 600 PSI, 77 DEG UNLND

$\gamma = \{ (+5.6443037E+02) + \{ (+1.0111675E-02) * X \} * X \}$   
 $F =$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $F =$  NOT SIGNIFICANT  
 $R =$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $R =$  NOT SIGNIFICANT  
 $S^* =$  DEGREES OF FREEDOM = 243  
 $S^* =$  TEST CONDITIONS = AMB TEMP/RH  
 $N =$  STORAGE CONDITIONS = AMB TEMP/RH

UNIT OF MEASURE = PSI  
 PARAMETER = MAXIMUM STRESS



ANB 3066 PROPELLANT (ANB G) TENSILE MAX STRESS, 1750 IN/MIN, 600 PSI UNLND CTNS

Figure 5-4

\*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

\*\*\*\* ANALYSIS OF TIME SERIES \*\*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 22.0            | 2                      | +5.5638476E+02 | +1.0820743E+01        | +5.6402978E+02 | +5.4873999E+02 | +5.6465283E+02 |
| 23.0            | 2                      | +5.3182983E+02 | +1.5388167E+01        | +5.4270996E+02 | +5.2094995E+02 | +5.6466284E+02 |
| 24.0            | 2                      | +5.5563989E+02 | +2.6788421E+01        | +5.7457983E+02 | +5.3669995E+02 | +5.6467285E+02 |
| 25.0            | 2                      | +5.9723486E+02 | +1.5529364E+01        | +6.0820996E+02 | +5.8625976E+02 | +5.6468310E+02 |
| 33.0            | 2                      | +5.0750000E+02 | +3.5355339E+00        | +5.1000000E+02 | +5.0500000E+02 | +5.6476391E+02 |
| 34.0            | 6                      | +5.4916650E+02 | +6.0861865E+01        | +6.4500000E+02 | +5.0500000E+02 | +5.6477416E+02 |
| 38.0            | 1                      | +5.0500000E+02 | +0.0000000E+59        | +5.0500000E+02 | +5.0500000E+02 | +5.6481445E+02 |
| 40.0            | 2                      | +6.2294482E+02 | +9.8393488E+00        | +6.2989990E+02 | +6.1598999E+02 | +5.6483471E+02 |
| 41.0            | 4                      | +5.8125000E+02 | +1.6007810E+01        | +6.0500000E+02 | +5.7000000E+02 | +5.6484472E+02 |
| 45.0            | 7                      | +5.5229687E+02 | +1.3088065E+01        | +5.6931982E+02 | +5.4097998E+02 | +5.6488525E+02 |
| 46.0            | 5                      | +5.7339990E+02 | +3.3346656E+00        | +5.7643994E+02 | +5.6795996E+02 | +5.6489550E+02 |
| 47.0            | 2                      | +6.0458471E+02 | +4.2464954E+00        | +6.0755981E+02 | +6.0160986E+02 | +5.6490551E+02 |
| 48.0            | 4                      | +5.4338232E+02 | +4.2273191E+01        | +5.8395996E+02 | +4.9000000E+02 | +5.6491552E+02 |
| 50.0            | 2                      | +5.5250000E+02 | +3.5355339E+00        | +5.5500000E+02 | +5.5000000E+02 | +5.6493579E+02 |
| 52.0            | 3                      | +5.4299316E+02 | +3.4555181E+00        | +5.4689990E+02 | +5.4039990E+02 | +5.6495605E+02 |
| 53.0            | 7                      | +5.6194555E+02 | +7.0277972E+00        | +5.6865991E+02 | +5.5025976E+02 | +5.6496606E+02 |
| 54.0            | 14                     | +5.5254687E+02 | +3.4376101E+01        | +6.2203979E+02 | +5.0500000E+02 | +5.6497631E+02 |
| 55.0            | 8                      | +5.7661865E+02 | +3.7970737E+01        | +6.1000000E+02 | +5.1276977E+02 | +5.6498632E+02 |
| 56.0            | 6                      | +5.5058813E+02 | +3.5224132E+01        | +5.9610986E+02 | +5.009985E+02  | +5.6499658E+02 |
| 60.0            | 2                      | +6.0250000E+02 | +1.7677669E+01        | +6.1500000E+02 | +5.9000000E+02 | +5.6503686E+02 |
| 61.0            | 2                      | +5.8000000E+02 | +1.4142135E+01        | +5.9000000E+02 | +5.7000000E+02 | +5.6504711E+02 |
| 62.0            | 2                      | +6.2000000E+02 | +0.0000000E+19        | +6.2000000E+02 | +6.2000000E+02 | +5.6505712E+02 |
| 64.0            | 2                      | +5.1756469E+02 | +1.7750086E+01        | +5.3010986E+02 | +5.0501977E+02 | +5.6507739E+02 |
| 65.0            | 2                      | +6.4250000E+02 | +3.5355339E+00        | +6.4500000E+02 | +6.4000000E+02 | +5.6508740E+02 |
| 67.0            | 4                      | +5.5250000E+02 | +1.8484227E+01        | +5.8000000E+02 | +5.4000000E+02 | +5.6510766E+02 |
| 69.0            | 4                      | +6.2891723E+02 | +8.1141467E+00        | +6.4000000E+02 | +6.2253979E+02 | +5.6512792E+02 |
| 70.0            | 7                      | +6.0380125E+02 | +3.6015271E+01        | +6.4945996E+02 | +5.6000000E+02 | +5.6513818E+02 |
| 71.0            | 2                      | +5.8947485E+02 | +1.1276929E+01        | +5.9743994E+02 | +5.8150976E+02 | +5.6514819E+02 |
| 72.0            | 8                      | +5.8860351E+02 | +4.5400143E+01        | +6.5090991E+02 | +5.3000000E+02 | +5.6515820E+02 |
| 73.0            | 4                      | +5.8422973E+02 | +6.0579438E+01        | +6.3939990E+02 | +5.1325000E+02 | +5.6516845E+02 |
| 75.0            | 2                      | +5.9750000E+02 | +1.0606601E+01        | +6.0500000E+02 | +5.9000000E+02 | +5.6518872E+02 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 76.0            | 4                      | +5.8272241E+02 | +7.9027780E+00        | +5.8925976E+02 | +5.7196997E+02 | +5.6519873E+02 |
| 77.0            | 9                      | +5.6665258E+02 | +3.8685696E+01        | +6.2756982E+02 | +5.2000000E+02 | +5.6520874E+02 |
| 78.0            | 9                      | +5.4799389E+02 | +3.1066334E+01        | +6.0200976E+02 | +5.1458984E+02 | +5.6521899E+02 |
| 80.0            | 2                      | +5.8302978E+02 | +7.7927364E+00        | +5.8851977E+02 | +5.7753979E+02 | +5.6523925E+02 |
| 81.0            | 9                      | +5.6458154E+02 | +2.2799618E+01        | +5.9264990E+02 | +5.3000000E+02 | +5.6524925E+02 |
| 83.0            | 2                      | +5.8269995E+02 | +9.6194494E+00        | +5.8950000E+02 | +5.7589990E+02 | +5.6526953E+02 |
| 84.0            | 6                      | +5.6838134E+02 | +9.5548330E+00        | +5.8425976E+02 | +5.5950000E+02 | +5.6527954E+02 |
| 85.0            | 2                      | +5.5872998E+02 | +3.5256702E+00        | +5.6121997E+02 | +5.5623999E+02 | +5.6528979E+02 |
| 88.0            | 6                      | +5.2239160E+02 | +5.7038737E+01        | +5.8295996E+02 | +4.5000000E+02 | +5.6532006E+02 |
| 89.0            | 3                      | +5.6244653E+02 | +2.0974739E+01        | +5.7957998E+02 | +5.3828979E+02 | +5.6533007E+02 |
| 90.0            | 4                      | +5.508740E+02  | +2.6745111E+01        | +5.8032983E+02 | +5.2892993E+02 | +5.6534033E+02 |
| 94.0            | 2                      | +4.3786474E+02 | +1.4550410E+01        | +4.4814990E+02 | +4.2757983E+02 | +5.6538085E+02 |
| 95.0            | 4                      | +5.5308984E+02 | +2.1207144E+01        | +5.6657983E+02 | +5.2172998E+02 | +5.6539086E+02 |
| 96.0            | 4                      | +5.2019482E+02 | +7.63481198E+00       | +5.2834985E+02 | +5.1000000E+02 | +5.6540087E+02 |
| 100.0           | 2                      | +5.7443481E+02 | +5.3567623E+00        | +5.7821997E+02 | +5.7064990E+02 | +5.6544414E+02 |
| 101.0           | 2                      | +5.5044995E+02 | +5.6082537E+00        | +5.5440991E+02 | +5.4646999E+02 | +5.6545141E+02 |
| 102.0           | 8                      | +5.6732958E+02 | +3.4280548E+01        | +5.9489990E+02 | +5.0965991E+02 | +5.6546166E+02 |
| 105.0           | 2                      | +5.4314990E+02 | +5.1773224E+00        | +5.4679980E+02 | +5.3950000E+02 | +5.6549194E+02 |
| 108.0           | 2                      | +5.2655981E+02 | +3.6001536E+00        | +5.2906982E+02 | +5.2404980E+02 | +5.6552221E+02 |
| 109.0           | 2                      | +5.8410986E+02 | +1.0223636E+01        | +5.9132983E+02 | +5.7688989E+02 | +5.6553247E+02 |
| 110.0           | 2                      | +5.719995E+02  | +2.4228566E+00        | +5.7889990E+02 | +5.7550000E+02 | +5.6554248E+02 |
| 113.0           | 2                      | +5.6501977E+02 | +2.560317E+00         | +5.6676977E+02 | +5.6326977E+02 | +5.6557275E+02 |
| 115.0           | 2                      | +5.6779980E+02 | +8.9378277E-01        | +5.6839990E+02 | +5.6719995E+02 | +5.6559301E+02 |
| 116.0           | 2                      | +5.9424975E+02 | +5.0413451E+00        | +5.9779980E+02 | +5.9069995E+02 | +5.6560327E+02 |
| 118.0           | 12                     | +5.6693750E+02 | +5.7035943E+01        | +6.2046997E+02 | +4.7754980E+02 | +5.6562353E+02 |
| 119.0           | 5                      | +5.4448168E+02 | +5.1186877E+01        | +5.9761987E+02 | +4.7418994E+02 | +5.6563354E+02 |
| 120.0           | 4                      | +5.8612988E+02 | +2.4797551E+01        | +6.150000E+02  | +5.5250000E+02 | +5.6564355E+02 |
| 121.0           | 2                      | +5.7306982E+02 | +2.4156744E+01        | +5.9014990E+02 | +5.5598999E+02 | +5.6565380E+02 |
| 122.0           | 4                      | +5.7851489E+02 | +5.2623271E+00        | +5.8533984E+02 | +5.7267993E+02 | +5.6566381E+02 |
| 129.0           | 2                      | +6.2094970E+02 | +5.8997438E+00        | +6.2509985E+02 | +6.1679980E+02 | +5.6573461E+02 |
| 137.0           | 2                      | +5.4095483E+02 | +5.5382919E+00        | +5.484985E+02  | +5.3705981E+02 | +5.6581557E+02 |

$\gamma = ( -2.4323997E-01 ) + ( +3.5064528E-04 ) * x$   
 $F = \text{SIGNIFICANCE OF } F = \text{SIGNIFICANT}$   
 $R = \text{SIGNIFICANCE OF } R = \text{SIGNIFICANT}$   
 $t = \text{SIGNIFICANCE OF } t = \text{SIGNIFICANT}$   
 $t^2 = \text{DEGREES OF FREEDOM} = 243$   
 $N = \text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$

$F_0 = +2.4043138E+01$   
 $R_0 = +3.0005776E-01$   
 $t_0 = +4.9033802E+00$   
 $t^2_0 = 245$



ANB 3066 PROPELLANT (ANB, G) TENSILE STN @ RUPT, 1750 IN/MIN, 600 PSI, UNLND CT

Figure 5-5

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| 22.0            | 2                      | +2.5994992E-01  | +1.5909577E-02        | +2.7119994E-01  | +2.4869996E-01  | +2.5095415E-01 |
| 23.0            | 2                      | +2.3339992E-01  | +6.9320173E-03        | +2.3829996E-01  | +2.2849994E-01  | +2.5130480E-01 |
| 24.0            | 2                      | +2.6884996E-01  | +7.2809376E-03        | +2.7399998E-01  | +2.6369994E-01  | +2.5165545E-01 |
| 25.0            | 2                      | +2.7684998E-01  | +9.2608875E-03        | +2.8339999E-01  | +2.7029997E-01  | +2.5200605E-01 |
| 33.0            | 2                      | +2.3049998E-01  | +4.9489223E-03        | +2.3399966E-01  | +2.269999E-01   | +2.5481122E-01 |
| 34.0            | 6                      | +2.4499970E-01  | +4.8741517E-02        | +3.1199997E-01  | +1.8C99999E-01  | +2.5516188E-01 |
| 38.0            | 1                      | +2.3799997E-01  | +0.0000000E+59        | +2.3799997E-01  | +2.3799997E-01  | +2.5656443E-01 |
| 40.0            | 2                      | +2.7534991E-01  | +1.0394660E-02        | +2.8269994E-01  | +2.6799994E-01  | +2.5726574E-01 |
| 41.0            | 4                      | +2.6399993E-01  | +2.7006256E-02        | +2.9299998E-01  | +2.4099999E-01  | +2.5761640E-01 |
| 45.0            | 7                      | +2.88599978E-01 | +3.5599054E-02        | +3.1309998E-01  | +2.2059994E-01  | +2.5901895E-01 |
| 46.0            | 5                      | +2.4547976E-01  | +1.5943150E-02        | +2.6299995E-01  | +2.2499996E-01  | +2.5936961E-01 |
| 47.0            | 2                      | +2.5459992E-01  | +9.7579956E-03        | +2.6149994E-01  | +2.4769997E-01  | +2.5972026E-01 |
| 48.0            | 4                      | +2.5344991E-01  | +3.6897681E-02        | +2.83359997E-01 | +1.9899994E-01  | +2.6007091E-01 |
| 50.0            | 2                      | +2.8299993E-01  | +2.8240902E-03        | +2.8499996E-01  | +2.8099995E-01  | +2.6077222E-01 |
| 52.0            | 3                      | +2.6879996E-01  | +1.0499209E-02        | +2.7629995E-01  | +2.5679999E-01  | +2.6147347E-01 |
| 53.0            | 7                      | +2.7085685E-01  | +2.3233574E-03        | +2.7309995E-01  | +2.6749998E-01  | +2.6182413E-01 |
| 54.0            | 14                     | +2.6001381E-01  | +4.1428207E-02        | +3.2209998E-01  | +1.5599995E-01  | +2.6217478E-01 |
| 55.0            | 8                      | +2.6577472E-01  | +2.6305432E-02        | +3.0369997E-01  | +2.3499995E-01  | +2.6252543E-01 |
| 56.0            | 6                      | +2.5408315E-01  | +1.6919746E-02        | +2.7879995E-01  | +2.3799997E-01  | +2.6287609E-01 |
| 60.0            | 2                      | +3.1149995E-01  | +2.1919617E-02        | +3.2699996E-01  | +2.9599994E-01  | +2.6427865E-01 |
| 51.0            | 2                      | +2.6749998E-01  | +2.4748653E-02        | +2.8499996E-01  | +2.5000000E-01  | +2.6462930E-01 |
| 62.0            | 2                      | +2.9849994E-01  | +9.1907829E-03        | +3.0499994E-01  | +2.9199999E-01  | +2.6497995E-01 |
| 64.0            | 2                      | +2.819995E-01   | +2.0646958E-02        | +2.4279999E-01  | +2.1359997E-01  | +2.6568126E-01 |
| 55.0            | 2                      | +2.8349995E-01  | +1.3434547E-02        | +2.9299998E-01  | +2.7399998E-01  | +2.6603186E-01 |
| 67.0            | 4                      | +2.1299993E-01  | +5.7141230E-03        | +2.1999996E-01  | +2.05999397E-01 | +2.6673316E-01 |
| 69.0            | 4                      | +2.7509975E-01  | +1.4148626E-02        | +2.9599994E-01  | +2.6469999E-01  | +2.5743447E-01 |
| 70.0            | 7                      | +2.4834263E-01  | +2.6383272E-02        | +2.8899997E-01  | +2.1999996E-01  | +2.6778513E-01 |
| 71.0            | 2                      | +2.8509998E-01  | +5.6503855E-03        | +2.8909999E-01  | +2.8109997E-01  | +2.6813578E-01 |
| 72.0            | 8                      | +2.6916217E-01  | +2.4875952E-02        | +2.9699999E-01  | +2.2799998E-01  | +2.6848638E-01 |
| 73.0            | 4                      | +2.6047492E-01  | +4.4014781E-02        | +2.8409999E-01  | +1.9449996E-01  | +2.6883703E-01 |
| 75.0            | 2                      | +2.9249995E-01  | +4.9460191E-03        | +2.9599994E-01  | +2.8899997E-01  | +2.6953834E-01 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 76.0            | 4                      | +2.6374983E-01 | +4.9163270E-03        | +2.6849997E-01 | +2.5819998E-01 | +2.6938899E-01 |
| 77.0            | 9                      | +2.5722193E-01 | +2.2985323E-02        | +2.8939998E-01 | +2.1999996E-01 | +2.703965E-01  |
| 78.0            | 9                      | +2.7274417E-01 | +3.4294227E-02        | +3.1329995E-01 | +2.2449994E-01 | +2.7059030E-01 |
| 80.0            | 2                      | +2.9789996E-01 | +2.9650728E-03        | +2.9999995E-01 | +2.9579997E-01 | +2.7129155E-01 |
| 81.0            | 9                      | +2.5473308E-01 | +1.4230329E-02        | +2.7199995E-01 | +2.2799998E-01 | +2.7164220E-01 |
| 83.0            | 2                      | +3.4259992E-01 | +9.3335779E-03        | +3.4919995E-01 | +3.3599996E-01 | +2.7234351E-01 |
| 84.0            | 6                      | +2.4733304E-01 | +6.0439971E-02        | +3.2599997E-01 | +1.7889994E-01 | +2.7269417E-01 |
| 85.0            | 2                      | +3.1819993E-01 | +5.9399765E-03        | +3.2239997E-01 | +3.1399995E-01 | +2.7304476E-01 |
| 88.0            | 6                      | +2.5466644E-01 | +2.4787895E-02        | +2.7889998E-01 | +2.1999996E-01 | +2.7409672E-01 |
| 89.0            | 3                      | +2.8406661E-01 | +1.34777935E-02       | +2.9889996E-01 | +2.7279996E-01 | +2.7444738E-01 |
| 90.0            | 4                      | +2.8099989E-01 | +1.4100963E-02        | +3.0099999E-01 | +2.6799994E-01 | +2.7479803E-01 |
| 94.0            | 2                      | +2.0369994E-01 | +4.2435948E-03        | +2.0669996E-01 | +2.0669998E-01 | +2.7620059E-01 |
| 95.0            | 4                      | +2.8249979E-01 | +5.6963429E-03        | +2.8899997E-01 | +2.7599996E-01 | +2.7655124E-01 |
| 96.0            | 4                      | +2.7474975E-01 | +4.1211447E-02        | +3.0799996E-01 | +2.1999996E-01 | +2.7690190E-01 |
| 100.0           | 2                      | +3.0154991E-01 | +9.4051879E-03        | +3.0819994E-01 | +2.9489994E-01 | +2.7830445E-01 |
| 101.0           | 2                      | +2.9699993E-01 | +1.4140953E-02        | +3.0699998E-01 | +2.8699994E-01 | +2.7865511E-01 |
| 102.0           | 8                      | +2.7279973E-01 | +1.96836442E-02       | +2.9669994E-01 | +2.3819994E-01 | +2.7900576E-01 |
| 105.0           | 2                      | +3.2524996E-01 | +4.5940192E-03        | +3.2849997E-01 | +3.2199996E-01 | +2.8005772E-01 |
| 108.0           | 2                      | +3.2224994E-01 | +3.1773070E-03        | +3.2449996E-01 | +3.1999999E-01 | +2.8110963E-01 |
| 109.0           | 2                      | +3.0334997E-01 | +9.2603724E-03        | +3.0989998E-01 | +2.9679995E-01 | +2.8146028E-01 |
| 110.0           | 2                      | +3.0654996E-01 | +6.1404055E-04        | +3.0699998E-01 | +3.0609995E-01 | +2.8181093E-01 |
| 113.0           | 2                      | +3.1174993E-01 | +1.7243795E-04        | +3.1179994E-01 | +3.1169998E-01 | +2.8286284E-01 |
| 115.0           | 2                      | +2.9974997E-01 | +1.0534271E-02        | +3.0719995E-01 | +2.9229998E-01 | +2.8356415E-01 |
| 116.0           | 2                      | +2.9729992E-01 | +8.9091572E-03        | +3.0359995E-01 | +2.9099994E-01 | +2.8391480E-01 |
| 118.0           | 12                     | +2.8176641E-01 | +2.2457355E-02        | +3.1949996E-01 | +2.4349999E-01 | +2.8461611E-01 |
| 119.0           | 5                      | +2.7649974E-01 | +2.1760764E-02        | +3.0239999E-01 | +2.5369995E-01 | +2.8496670E-01 |
| 120.0           | 4                      | +2.7539992E-01 | +6.4490516E-03        | +2.8059995E-01 | +2.6599997E-01 | +2.8531736E-01 |
| 121.0           | 2                      | +2.9149997E-01 | +1.2019944E-02        | +2.9999995E-01 | +2.8299999E-01 | +2.8566801E-01 |
| 122.0           | 4                      | +2.9564976E-01 | +3.4519689E-03        | +2.9839998E-01 | +2.9089999E-01 | +2.8601866E-01 |
| 124.0           | 2                      | +2.7924996E-01 | +3.4626055E-03        | +2.8169995E-01 | +2.7679997E-01 | +2.8847318E-01 |
| 137.0           | 2                      | +2.7699995E-01 | +1.8382597E-02        | +2.8999996E-01 | +2.6399999E-01 | +2.9127836E-01 |

5-14

$F = +2.1036469E+00$        $\gamma = (( +5.6553524E+03 ) + (-4.8231401E+00) * X)$   
 $R = -9.2642771E-02$       SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $S_a = +3.325396E+00$   
 $R = +1.4503954E+00$       SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $S_c = +1.4077673E+03$   
 $N = 245$       DEGREES OF FREEDOM = 243  
 STORAGE CONDITIONS = AMB TEMP/RH      TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPELLANT (ANB, G) TENSILE MODULUS, 1750 IN/MIN, 600 PSI, UNLND CTNS

Figure 5-6

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 22.0            | 2                      | +6.100000E+03  | +2.8284271E+02        | +6.300000E+03  | +5.900000E+03  | +5.5412421E+03 |
| 23.0            | 2                      | +5.750000E+03  | +2.1213203E+02        | +5.900000E+03  | +5.600000E+03  | +5.5444179E+03 |
| 24.0            | 2                      | +5.850000E+03  | +4.9497474E+02        | +6.200000E+03  | +5.500000E+03  | +5.5395937E+03 |
| 25.0            | 2                      | +7.200000E+03  | +8.4852813E+02        | +7.800000E+03  | +6.600000E+03  | +5.5347734E+03 |
| 33.0            | 2                      | +5.050000E+03  | +3.5355339E+02        | +5.300000E+03  | +4.800000E+03  | +5.4961875E+03 |
| 34.0            | 6                      | +5.7166640E+03 | +6.8239773E+02        | +6.600000E+03  | +5.000000E+03  | +5.4913632E+03 |
| 38.0            | 1                      | +5.300000E+03  | +0.000000E+59         | +5.300000E+03  | +5.300000E+03  | +5.4720703E+03 |
| 40.0            | 2                      | +6.410000E+03  | +8.6267027E+02        | +7.020000E+03  | +5.800000E+03  | +5.4624257E+03 |
| 41.0            | 4                      | +6.025000E+03  | +9.0691785E+02        | +6.900000E+03  | +4.900000E+03  | +5.4576015E+03 |
| 45.0            | 7                      | +4.5314257E+03 | +1.6618149E+03        | +7.100000E+03  | +3.436000E+03  | +5.4383085E+03 |
| 46.0            | 5                      | +5.5243984E+03 | +1.4906548E+03        | +7.300000E+03  | +3.878000E+03  | +5.4334843E+03 |
| 47.0            | 2                      | +4.521000E+03  | +2.4039550E+02        | +4.691000E+03  | +4.351000E+03  | +5.4286640E+03 |
| 48.0            | 4                      | +5.950000E+03  | +5.4467115E+02        | +6.700000E+03  | +5.500000E+03  | +5.4238398E+03 |
| 50.0            | 2                      | +5.050000E+03  | +4.9497474E+02        | +5.400000E+03  | +4.700000E+03  | +5.4141953E+03 |
| 52.0            | 3                      | +4.2466640E+03 | +1.1746205E+02        | +4.328000E+03  | +4.112000E+03  | +5.4045458E+03 |
| 53.0            | 7                      | +4.1638554E+03 | +2.1968760E+02        | +4.487000E+03  | +3.797000E+03  | +5.3997226E+03 |
| 54.0            | 14                     | +5.2942851E+03 | +1.9245015E+03        | +8.300000E+03  | +2.640000E+03  | +5.3949023E+03 |
| 55.0            | 8                      | +5.8352500E+03 | +1.7437468E+03        | +7.400000E+03  | +3.159000E+03  | +5.3900781E+03 |
| 56.0            | 6                      | +4.8760000E+03 | +1.1950484E+03        | +6.600000E+03  | +3.608000E+03  | +5.3852539E+03 |
| 60.0            | 2                      | +4.9000000E+03 | +0.0000000E+11        | +4.900000E+03  | +4.900000E+03  | +5.3659609E+03 |
| 51.0            | 2                      | +5.1000000E+03 | +1.4142135E+02        | +5.200000E+03  | +5.000000E+03  | +5.3611406E+03 |
| 52.0            | 2                      | +6.5000000E+03 | +1.4142135E+02        | +6.600000E+03  | +6.400000E+03  | +5.3563164E+03 |
| 64.0            | 2                      | +6.1500000E+03 | +3.5355339E+02        | +6.400000E+03  | +5.900000E+03  | +5.3466679E+03 |
| 55.0            | 2                      | +5.5500000E+03 | +7.0710678E+01        | +5.600000E+03  | +5.500000E+03  | +5.3418476E+03 |
| 67.0            | 4                      | +7.6750000E+03 | +3.5939764E+02        | +8.200000E+03  | +7.400000E+03  | +5.3321992E+03 |
| 69.0            | 4                      | +6.2785000E+03 | +1.5307405E+02        | +6.412000E+03  | +6.100000E+03  | +5.3225546E+03 |
| 70.0            | 7                      | +6.2445703E+03 | +8.4106417E+02        | +7.500000E+03  | +5.200000E+03  | +5.3177304E+03 |
| 71.0            | 2                      | +4.8605000E+03 | +1.9301683E+02        | +4.997000E+03  | +4.724000E+03  | +5.3129062E+03 |
| 72.0            | 8                      | +5.2753750E+03 | +1.6119023E+03        | +7.700000E+03  | +3.584000E+03  | +5.3080859E+03 |
| 73.0            | 4                      | +4.9560000E+03 | +1.4768669E+03        | +6.950000E+03  | +3.795000E+03  | +5.3032617E+03 |
| 75.0            | 2                      | +5.2500000E+03 | +7.0710678E+01        | +5.3000000E+03 | +5.2000000E+03 | +5.2936132E+03 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|-----------------|
| 76.0            | 4                      | +5.1397500E+03  | +4.1260463E+02        | +5.5440000E+03 | +4.5680000E+03 | +5.2887929E+03  |
| 77.0            | 9                      | +5.4882187E+03  | +1.0590901E+03        | +7.6000000E+03 | +4.3260000E+03 | +5.2839687E+03  |
| 78.0            | 9                      | +5.2352187E+03  | +1.5058234E+03        | +7.7000000E+03 | +3.6510000E+03 | +5.2791445E+03  |
| 80.0            | 2                      | +3.8705000E+03  | +3.0475481E+02        | +4.0860000E+03 | +3.6550000E+03 | +5.2695000E+03  |
| 81.0            | 9                      | +4.7378867E+03  | +1.9012890E+03        | +7.7000000E+03 | +2.6350000E+03 | +5.2646757E+03  |
| 83.0            | 2                      | +5.3665000E+03  | +2.9769027E+02        | +5.5770000E+03 | +5.1560000E+03 | +5.2550312E+03  |
| 84.0            | 6                      | +6.1101640E+03  | +1.1847251E+03        | +7.7660000E+03 | +4.3800000E+03 | +5.2502070E+03  |
| 85.0            | 0                      | +6.4145000E+03  | +2.1213203E+00        | +6.4160000E+03 | +6.4130000E+03 | +5.2453828E+03  |
| 88.0            | 6                      | +4.6621640E+03  | +1.1449321E+03        | +6.7000000E+03 | +3.6620000E+03 | +5.2309140E+03  |
| 89.0            | 3                      | +3.7913332E+03  | +5.9438651E+02        | +4.1790000E+03 | +3.1070000E+03 | +5.2260898E+03  |
| 90.0            | 4                      | +3.4955000E+03  | +9.2335312E+02        | +4.4110000E+03 | +2.3030000E+03 | +5.2212695E+03  |
| 94.0            | 2                      | +8.1500000E+03  | +7.0710678E+01        | +8.2000000E+03 | +8.1000000E+03 | +5.2019765E+03  |
| 95.0            | 4                      | +3.2532500E+03  | +7.8656759E+02        | +3.9460000E+03 | +2.5400000E+03 | +5.1971523E+03  |
| 96.0            | 4                      | +4.2527500E+03  | +1.9008620E+03        | +6.4000000E+03 | +2.5330000E+03 | +5.1923261E+03  |
| 100.0           | 2                      | +3.1125000E+03  | +1.6899556E+02        | +3.2320000E+03 | +2.9930000E+03 | +5.1730351E+03  |
| 101.0           | 2                      | +5.7635000E+03  | +9.6868467E+01        | +5.8320000E+03 | +5.6950000E+03 | +5.1682148E+03  |
| 102.0           | 8                      | +5.2867500E+03  | +1.5240931E+03        | +7.5100000E+03 | +3.6750000E+03 | +5.1633906E+03  |
| 105.0           | 2                      | +4.8180000E+03  | +9.3903354E+02        | +5.4920000E+03 | +4.1540000E+03 | +5.1489216E+03  |
| 108.0           | 2                      | +5.2450000E+03  | +8.4841027E+01        | +5.3050000E+03 | +5.1850000E+03 | +5.1344531E+03  |
| 109.0           | 2                      | +6.6720000E+03  | +6.2225396E+02        | +7.1120000E+03 | +6.2320000E+03 | +5.1296289E+03  |
| 110.0           | 2                      | +6.3050000E+03  | +2.2908077E+02        | +6.1670000E+03 | +5.8430000E+03 | +5.1248046E+03  |
| 113.0           | 2                      | +6.0650000E+03  | +2.2767959E+02        | +6.2260000E+03 | +5.9040000E+03 | +5.1103359E+03  |
| 115.0           | 2                      | +6.0540000E+03  | +1.1483379E+03        | +6.8660000E+03 | +5.2420000E+03 | +5.1006875E+03  |
| 116.0           | 2                      | +6.2205000E+03  | +4.0292679E+01        | +6.2490000E+03 | +6.1920000E+03 | +5.0956671E+03  |
| 118.0           | 12                     | +4.2490000E+03  | +1.1678706E+03        | +6.8650000E+03 | +3.1950000E+03 | +5.0862187E+03  |
| 119.0           | 5                      | +5.52511992E+03 | +1.7565495E+03        | +7.0900000E+03 | +3.4110000E+03 | +5.0813984E+03  |
| 120.0           | 4                      | +5.4470000E+03  | +1.7685063E+03        | +7.1860000E+03 | +3.9160000E+03 | +5.0765742E+03  |
| 121.0           | 2                      | +3.8110000E+03  | +1.6118932E+02        | +3.9250000E+03 | +3.6970000E+03 | +5.0C717500E+03 |
| 122.0           | 4                      | +6.4490000E+03  | +2.6912946E+02        | +6.6070000E+03 | +6.0470000E+03 | +5.0669257E+03  |
| 129.0           | 2                      | +7.4345000E+03  | +1.6896005E+02        | +7.5540000E+03 | +7.3150000E+03 | +5.0331640E+03  |
| 137.0           | 2                      | +4.3885000E+03  | +2.4484689E+01        | +4.4060000E+03 | +4.3710000E+03 | +4.945820E+03   |

$\gamma = (( +5.6917888E+02) + (+5.0148561E-01) * X_1)$   
 $F = +1.6363548E+00$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $R = +2.3904511E-01$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $L = +1.2792008E+00$  SIGNIFICANCE OF L = NOT SIGNIFICANT  
 $N = 29$  DEGREES OF FREEDOM = 27  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3065 PROPLNT (ANB G POLYMER) TENSILE SM. 1750 IN/MIN. 600 PSI. 77 DEG. LND

Figure 5-7

TABLE I. LINEAR REGRESSION ANALYSIS ~~RESULTS~~LINEAR ANALYSIS FOR TENSILE SERIES ~~RESULTS~~

| ASR<br>(MINUTS) | SPECIMENS<br>PER GROUP | STANDARD<br>DEVIATION |                        | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------------|------------------------|----------------|----------------|----------------|
|                 |                        | MEAN Y                | SPECIMENS<br>PER GROUP |                |                |                |
| 16.0            | 2                      | +5.658747E+02         | +1.6795277E+01         | +5.7473399E+02 | +5.5500376E+02 | +5.1720263E+02 |
| 17.0            | 2                      | +5.874643E+02         | +2.6346056E+01         | +6.7608984E+02 | +5.6383984E+02 | +5.7770410E+02 |
| 19.0            | 4                      | +5.5924437E+02        | +2.0439493E+01         | +5.7764990E+02 | +5.3089990E+02 | +5.7870703E+02 |
| 20.0            | 2                      | +6.0524972E+02        | +3.4397245E+01         | +6.2956982E+02 | +5.8C92993E+02 | +5.7920849E+02 |
| 23.0            | 2                      | +6.2350976E+02        | +2.4626537E+01         | +6.4091932E+02 | +6.0603985E+02 | +5.8071289E+02 |
| 29.0            | 2                      | +5.5824487E+02        | +1.5065147E+01         | +5.6932976E+02 | +5.4695996E+02 | +5.8372192E+02 |
| 31.0            | 2                      | +5.8502376E+02        | +2.7153030E+01         | +5.0522998E+02 | +5.6682983E+02 | +5.8472485E+02 |
| 40.0            | 2                      | +5.3419432E+02        | +1.6422232E+01         | +5.9579969E+02 | +5.7258984E+02 | +5.8923820E+02 |
| 42.0            | 2                      | +5.9129467E+02        | +2.0566026E+01         | +5.9582983E+02 | +5.6675976E+02 | +5.7024121E+02 |
| 44.0            | 4                      | +6.0552490E+02        | +1.43570025E+01        | +6.2364990E+02 | +5.8269995E+02 | +5.9124414E+02 |
| 45.0            | 2                      | +6.2038476E+02        | +4.0843695E+00         | +6.2325000E+02 | +6.1751977E+02 | +5.9174560E+02 |
| 54.0            | 1                      | +5.6851977E+02        | +0.0000000E+00         | +5.8851977E+02 | +5.8851977E+02 | +5.9625903E+02 |
| 56.0            | 2                      | +5.7074487E+02        | +1.4752704E+01         | +5.8116992E+02 | +5.5031982E+02 | +5.5726196E+02 |

ANALYSIS PROPLIT (ANG. 6 POLYMER) TENSILE SM, 1750 IN/MIN, 600 PSI, 77 DEG, LND

STORAGE CONDITIONS = AMB TEMP/RH  
 DEGREES OF FREEDOM = 29  
 N = 27  
 TEST CONDITIONS = 77 DEG F. AMB RH  
 SIGNIFICANCE OF F = NOT SIGNIFICANT  
 SIGNIFICANCE OF R = NOT SIGNIFICANT  
 SIGNIFICANCE OF C = NOT SIGNIFICANT  
 SIGNIFICANCE OF T = NOT SIGNIFICANT  
 SIGNIFICANCE OF S = +1.328075E-02  
 SIGNIFICANCE OF G = +1.8823882E-04  
 SIGNIFICANCE OF B = +1.3232683E-02  
 SIGNIFICANCE OF A = +1.3232683E-02  
 SIGNIFICANCE OF D = -1.6841995E-04  
 SIGNIFICANCE OF E = +1.6841995E-04



ANB 3066 PROPYLEN (ANB G POLYMER) TENSILE ER, 1750 MN/MIN. 600 PSI, 77 DEG. LTD

Figure 5-8

## LINEAR REGRESSION ANALYSIS # 2000

## ANALYSIS OF TENSILE STRENGTH TESTS

SPECIACLES  
PER GROUP

(MIN, MAX)

|      |   | MEAN Y         | STANDARD DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|------|---|----------------|--------------------|----------------|----------------|----------------|
| 10.0 | 2 | +2.8679493E-01 | +6.0805544E-03     | +2.9103995E-01 | +2.8249996E-01 | +2.8449105E-01 |
| 17.0 | 2 | +2.7754998E-01 | +1.4675953E-03     | +2.7853997E-01 | +2.7649998E-01 | +2.8432261E-01 |
| 19.0 | 4 | +2.9517485E-01 | +3.1754497E-03     | +2.9769996E-01 | +2.9129999E-01 | +2.8398579E-01 |
| 20.0 | 2 | +2.7669995E-01 | +2.2526052E-02     | +2.9269999E-01 | +2.5C69998E-01 | +2.8381735E-01 |
| 23.0 | 3 | +2.7254996E-01 | +7.5624794E-03     | +2.7789998E-01 | +2.5717999E-01 | +2.8331214E-01 |
| 29.0 | 2 | +2.9634994E-01 | +2.8974086E-03     | +2.9839973E-01 | +2.942996F-01  | +2.8230160E-01 |
| 31.0 | 2 | +2.6834394E-01 | +4.1718634E-03     | +2.7129995E-01 | +2.6539999E-01 | +2.8196477E-01 |
| 40.0 | 2 | +2.9414993E-01 | +1.5193523E-02     | +3.0559998E-01 | +2.3269994E-01 | +2.8044897E-01 |
| 42.0 | 2 | +2.8539993E-01 | +4.2447630E-03     | +2.8839995E-01 | +2.8289997E-01 | +2.8011214E-01 |
| +4.0 | 4 | +2.6737475E-01 | +1.3101230E-02     | +2.8259998E-01 | +2.5619995E-01 | +2.7977532E-01 |
| 45.0 | 2 | +2.7134995E-01 | +1.1607885E-02     | +2.7969998E-01 | +2.6299995E-01 | +2.7960687E-01 |
| 54.0 | 1 | +2.8249995E-01 | +0.0000000E+00     | +2.8249996E-01 | +2.8249996E-01 | +2.7809107E-01 |
| 56.0 | 2 | +2.8864991E-01 | +3.3231242E-03     | +2.9039994E-01 | +2.8629994E-01 | +2.7775424E-01 |

ANR 3055 PROPELLANT (ANB G POLYMER) TENSILE ER, 1750 IN/MIN, 600 PSI, 77 DEG, LND

$\gamma = (( +3.3037034E+03) + (+2.7077782E+01) * X)$   
 $G_1 = +6.3780402E+02$   
 $S_1 = +7.5896814E+01$   
 $S_2 = +5.3544502E+02$   
 $F = +1.2728554E+01$   
 $S = SIGNIFICANT$   
 $R = SIGNIFICANT$   
 $t = SIGNIFICANT$   
 $\alpha = DEGREES OF FREEDOM = 27$   
 $N = 29$   
 $STORAGE CONDITIONS = ANB TEMP/RH$   
 $F_R = +5.6602832E-01$   
 $R_R = +3.5677100E+00$   
 $t_R = +3.0077782E+01$   
 $G_R = +6.3780402E+02$   
 $S_R = +7.5896814E+01$   
 $S_{tR} = +5.3544502E+02$   
 $TEST CONDITIONS = 77 \text{ DEG F, AMB RH}$



Figure 5-9

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 AND ANALYSIS OF THREE SERIES \*\*\*

| ASG<br>(UNITS) | SPECIMEN<br>PER CUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y     | MINIMUM Y      | REGRESSION Y   |
|----------------|---------------------|----------------|-----------------------|---------------|----------------|----------------|
| 16.0           | 2                   | +3.511000E+03  | +2.6445037E+02        | +3.798000E+03 | +3.424000E+03  | +3.7369538E+03 |
| 17.0           | 2                   | +3.243500E+03  | +1.2796679E+02        | +3.934000E+03 | +3.753C000E+03 | +3.7640314E+03 |
| 19.0           | 4                   | +3.677000E+03  | +3.0727837E+02        | +3.929200E+03 | +3.230C000F+C3 | +3.8181872E+03 |
| 20.0           | 2                   | +4.219500E+03  | +2.6211965E+02        | +4.219000E+03 | +3.92C000E+03  | +3.8452648E+03 |
| 23.0           | 2                   | +4.527000E+03  | +1.2947823E+02        | +4.731000E+03 | +4.463000E+03  | +3.9264982E+03 |
| 29.0           | 2                   | +3.188500E+03  | +1.3783867E+02        | +3.286300E+03 | +3.091000E+03  | +4.C889650F+03 |
| 31.0           | 2                   | +3.852500E+03  | +3.35856827E+02       | +4.070000E+03 | +3.615000E+03  | +4.1431171E+03 |
| 40.0           | 2                   | +4.207000E+03  | +2.4605283E+02        | +4.391000E+03 | +4.033000E+03  | +4.3868203E+03 |
| 42.0           | 2                   | +4.341500E+03  | +6.1730017E+02        | +4.778000E+03 | +3.9C5000E+03  | +4.4409726E+03 |
| 44.0           | 4                   | +4.9737500E+03 | +4.4959676E+02        | +5.356000E+03 | +4.372000E+03  | +4.4951289E+03 |
| 45.0           | 2                   | +5.325000E+03  | +7.6302031E+C1        | +5.379000E+03 | +5.271000E+03  | +4.5222070E+03 |
| 54.0           | 1                   | +4.284000E+03  | +0.0000000E+79        | +4.284000E+03 | +4.284000E+03  | +4.7659062E+03 |
| 56.0           | 2                   | +4.255500E+03  | +1.9019858E+02        | +4.390000E+03 | +4.121000E+03  | +4.8200625E+03 |

AND 3066 PRUPLUT (ANB G POLYMER) TENSILE MOD 1750 IN/MIN 77 DEG 600 PSI LINED

$\gamma = (( +5.9819081E+02) + (+4.8422863E-02)) * X$   
 F = SIGNIFICANCE OF F = NOT SIGNIFICANT  
 R = SIGNIFICANCE OF R = NOT SIGNIFICANT  
 L = SIGNIFICANCE OF L = NOT SIGNIFICANT  
 DEGREES OF FREEDOM = 247  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F, AMB RH

UNIT OF MEASURE = PSI  
 PARAMETER = MAXIMUM STRESS



ANS 3066 PROPELLANT (ANB P) TENSILE MAX STRESS, 1750 IN/MIN, 600 PSI UNLND CTNS

Figure 5-10

\*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*  
 REG. ANALYSIS OF TIME SERIES \*\*\*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 16.0            | 8                      | +5.847294E+02  | +2.5755353E+01        | +6.2000002E+02 | +5.3979980E+02 | +5.7896557E+02 |
| 21.0            | 2                      | +5.9086987E+02 | +2.6774965E+01        | +6.0979980E+02 | +5.7193994E+02 | +5.9920751E+02 |
| 28.0            | 6                      | +6.0484985E+02 | +1.5906239E+01        | +6.2038989E+02 | +5.8370996E+02 | +5.9954663E+02 |
| 29.0            | 2                      | +5.9525488E+02 | +2.7530645E+01        | +6.1471997E+02 | +5.7578979E+02 | +5.9959497E+02 |
| 30.0            | 4                      | +5.8786987E+02 | +1.7224492E+01        | +6.0767993E+02 | +5.6721997E+02 | +5.9964331E+02 |
| 36.0            | 2                      | +4.9500000E+02 | +1.4142135E+01        | +5.0500000E+02 | +4.8500000E+02 | +5.9993383E+02 |
| 39.0            | 4                      | +6.2250000E+02 | +2.5000000E+01        | +6.5000000E+02 | +5.9000000E+02 | +6.0007910E+02 |
| 41.0            | 2                      | +6.3127978E+02 | +6.5608661E+00        | +6.3590991E+02 | +6.2664990E+02 | +6.0017602E+02 |
| 43.0            | 2                      | +6.0702490E+02 | +6.4302697E+00        | +6.1155981E+02 | +6.0248999E+02 | +6.0027294E+02 |
| 46.0            | 2                      | +5.5250000E+02 | +3.1819805E+01        | +5.7500500E+02 | +5.3000000E+02 | +6.0041821E+02 |
| 49.0            | 2                      | +6.2750000E+02 | +2.4748737E+01        | +6.4500000E+02 | +6.1000000E+02 | +6.0056347E+02 |
| 50.0            | 2                      | +6.0500000E+02 | +2.1213203E+01        | +6.2000000E+02 | +5.9000000E+02 | +6.0061181E+02 |
| 52.0            | 2                      | +6.1019995E+02 | +7.3850646E+00        | +6.1541992E+02 | +6.0497998E+02 | +6.0070874E+02 |
| 53.0            | 2                      | +6.3229980E+02 | +8.1571431E+00        | +6.3804980E+02 | +6.2654980E+02 | +6.0075706E+02 |
| 54.0            | 2                      | +6.2936987E+02 | +7.3015958E+00        | +6.3451977E+02 | +6.2421997E+02 | +6.0080541E+02 |
| 55.0            | 4                      | +6.0473730E+02 | +1.1424807E+01        | +6.2000000E+02 | +5.9308984E+02 | +6.0085400E+02 |
| 56.0            | 2                      | +5.9739990E+02 | +1.5222133E+01        | +6.0815991E+02 | +5.8663989E+02 | +6.0090234E+02 |
| 57.0            | 6                      | +6.0331494E+02 | +4.7557310E+01        | +6.4500000E+02 | +5.3694995E+02 | +6.0095068E+02 |
| 58.0            | 5                      | +5.8289575E+02 | +3.6655740E+01        | +6.2000000E+02 | +5.3619995E+02 | +6.0099926E+02 |
| 60.0            | 2                      | +5.4885986E+02 | +2.7068117E+01        | +5.6800000E+02 | +5.2971997E+02 | +6.0109594E+02 |
| 62.0            | 2                      | +6.2753491E+02 | +1.2869272E+01        | +6.3662988E+02 | +6.1843994E+02 | +6.0119287E+02 |
| 63.0            | 6                      | +6.2679467E+02 | +4.1245974E+00        | +6.3055981E+02 | +6.2000000E+02 | +6.0124121E+02 |
| 64.0            | 2                      | +6.4250000E+02 | +3.8893972E+01        | +6.7000000E+02 | +6.1500000E+02 | +6.0128979E+02 |
| 55.0            | 2                      | +6.2500000E+02 | +7.0710678E+00        | +6.3000000E+02 | +6.2000000E+02 | +6.0133813E+02 |
| 66.0            | 2                      | +6.6000000E+02 | +7.0710678E+00        | +6.6500000E+02 | +6.5500000E+02 | +6.0138671E+02 |
| 68.0            | 4                      | +6.4750000E+02 | +1.1902380E+01        | +6.6500000E+02 | +6.4000000E+02 | +6.0148339E+02 |
| 69.0            | 3                      | +6.2169482E+02 | +2.3710649E+01        | +6.5000000E+02 | +5.8655981E+02 | +6.0153198E+02 |
| 70.0            | 2                      | +5.4250000E+02 | +3.5355339E+00        | +5.4500000E+02 | +5.4000000E+02 | +6.0158032E+02 |
| 71.0            | 4                      | +5.6663305E+02 | +2.6655253E+01        | +5.9736987E+02 | +5.4973999E+02 | +6.0162866E+02 |
| 72.0            | 11                     | +5.9538549E+02 | +3.1588239E+01        | +6.6000000E+02 | +5.5650000E+02 | +6.0167724E+02 |
| 75.0            | 3                      | +5.62413C8E+02 | +5.0057220E+01        | +5.9689990E+02 | +5.0500000E+02 | +6.0182250E+02 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\* ANALYSIS OF TIME SERIES \*\*

| AGE<br>(MONTHS) | SPECIES<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|----------------------|----------------|-----------------------|----------------|----------------|----------------|
| 76.0            | 1                    | +5.650000E+02  | +0.000000E+02         | +5.650000E+02  | +5.650000E+02  | +6.0187084E+02 |
| 77.0            | 2                    | +6.5276489E+02 | +3.2388323E+00        | +6.5502978E+02 | +6.5C50000E+02 | +6.011918E+02  |
| 78.0            | 6                    | +5.9831152E+02 | +2.1838650E+01        | +6.1955981E+02 | +5.6017993E+02 | +6.0196777E+02 |
| 79.0            | 2                    | +6.1315991E+02 | +1.2689833E+01        | +6.2212988E+02 | +6.0418994E+02 | +6.0201611E+02 |
| 80.0            | 5                    | +5.4708769E+02 | +3.2670832E+01        | +5.8122938E+02 | +4.9298999E+02 | +6.0206445E+02 |
| 82.0            | 3                    | +6.0410302E+02 | +1.3874565E+01        | +6.1401977E+02 | +5.8823999E+02 | +6.0216137E+02 |
| 83.0            | 4                    | +6.0700000E+02 | +6.6503132E+01        | +6.7000000E+02 | +5.4000000E+02 | +6.0220971E+02 |
| 84.0            | 4                    | +6.1498486E+02 | +5.0751440E+01        | +6.6000000E+02 | +5.5685986E+02 | +6.0225830E+02 |
| 85.0            | 2                    | +6.2420996E+02 | +4.1951558E+C0        | +6.2716992E+02 | +6.2125000E+02 | +6.0230664E+02 |
| 90.0            | 2                    | +6.1603491E+02 | +1.0789421E+01        | +6.2365991E+02 | +6.0840991E+02 | +6.0254882E+02 |
| 91.0            | 2                    | +6.1595483E+02 | +6.6546962E+00        | +6.2063989E+02 | +6.1126977E+02 | +6.0259716E+02 |
| 92.0            | 4                    | +5.9749218E+02 | +5.7932340E+01        | +6.3471997E+02 | +5.1226977E+02 | +6.0264550E+02 |
| 93.0            | 2                    | +6.3590991E+02 | +1.3554638E+01        | +6.4548999E+02 | +6.2632983E+02 | +6.0269409E+02 |
| 94.0            | 4                    | +5.9723730E+02 | +6.6109993E+00        | +6.0251977E+02 | +5.8779980E+02 | +6.0274243E+02 |
| 95.0            | 4                    | +6.1089721E+02 | +1.7073050E+01        | +6.2501977E+02 | +5.8860986E+02 | +6.0279077E+02 |
| 96.0            | 3                    | +6.3111987E+02 | +3.9281527E+01        | +6.5773999E+02 | +5.8587988E+02 | +6.0283935E+02 |
| 100.0           | 2                    | +6.2530981E+02 | +1.4655342E+01        | +6.3566992E+02 | +6.1494995E+02 | +6.0303295E+02 |
| 105.0           | 2                    | +6.2546484E+02 | +1.0686836E+01        | +6.3300976E+02 | +6.1791992E+02 | +6.0327514E+02 |
| 106.0           | 4                    | +6.0073974E+02 | +1.8234063E+01        | +6.2311987E+02 | +5.8406982E+02 | +6.0332348E+02 |
| 107.0           | 4                    | +6.1819726E+02 | +1.8964522E+01        | +6.4285986E+02 | +5.9841992E+02 | +6.0337182E+02 |
| 108.0           | 2                    | +4.8874975E+02 | +5.0671635E+00        | +4.9231982E+02 | +4.8517993E+02 | +6.0342041E+02 |
| 109.0           | 3                    | +5.0982324E+02 | +2.4066680E+01        | +5.3358984E+02 | +4.8546997E+02 | +6.0346875E+02 |
| 110.0           | 8                    | +6.8195702E+02 | +2.0018242E+01        | +6.2064990E+02 | +5.5721997E+02 | +6.0351708E+02 |
| 111.0           | 4                    | +5.8491235E+02 | +1.7950462E+01        | +5.9637988E+02 | +5.6028979E+02 | +6.0356567E+02 |
| 112.0           | 6                    | +6.0272485E+02 | +3.7483893E+01        | +6.5906982E+02 | +5.5789990E+02 | +6.0361401E+02 |
| 113.0           | 5                    | +6.1791967E+02 | +1.8385812E+01        | +6.5032983E+02 | +6.0630981E+02 | +6.0366235E+02 |
| 114.0           | 2                    | +5.1582934E+02 | +8.3474817E+00        | +6.2172998E+02 | +6.0992993E+02 | +6.0371093E+02 |
| 115.0           | 2                    | +6.1888989E+02 | +2.2362954E+01        | +6.3469995E+02 | +6.0307983E+02 | +6.0375927E+02 |
| 116.0           | 2                    | +6.3606982E+02 | +4.9731715E+02        | +6.3955981E+02 | +6.3257983E+02 | +6.0380786E+02 |
| 117.0           | 4                    | +6.2582714E+02 | +1.0795128E+01        | +6.4103979E+02 | +6.1681982E+02 | +6.0385620E+02 |
| 118.0           | 2                    | +6.4195483E+02 | +2.4584128E+00        | +6.4367993E+02 | +6.4C22998E+02 | +6.0390454E+02 |

A'R 36.66 PROPELLANT (ANG. OF TENSILE MAX STRESS. 1750 IN/MIN, 600 PSI UNLV CTNS

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| Age<br>(MONTHS) | Specimens<br>per Group | MEAN Y         |                |                | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y | REGRESSION Y |
|-----------------|------------------------|----------------|----------------|----------------|-----------------------|----------------|-----------|--------------|
|                 |                        | 1              | 2              | 3              |                       |                |           |              |
| 120.0           | 2                      | +5.7945971E+02 | +8.7694230E+00 | +5.8564990E+02 | +5.7326977E+02        | +6.0400146E+02 |           |              |
| 123.0           | 7                      | +6.3833813E+02 | +1.8205622E+01 | +6.6842993E+02 | +6.0647998E+02        | +6.0414672E+02 |           |              |
| 124.0           | 4                      | +6.5104980E+02 | +1.7524167E+01 | +6.7009985E+02 | +6.3169995E+02        | +6.0419506E+02 |           |              |
| 127.0           | 6                      | +6.1718139E+02 | +2.1838212E+01 | +6.5418994E+02 | +5.9131982E+02        | +6.0434033E+02 |           |              |
| 129.0           | 4                      | +6.2419482E+02 | +4.6788925E+00 | +6.2998999E+02 | +6.1848999E+02        | +6.0443725E+02 |           |              |
| 132.0           | 4                      | +5.2535986E+02 | +1.2982311E+00 | +5.2700976E+02 | +5.2393994E+02        | +6.0458251E+02 |           |              |
| 133.0           | 2                      | +6.0781982E+02 | +5.6046415E+01 | +6.4744995E+02 | +5.6818994E+02        | +6.0463085E+02 |           |              |
| 134.0           | 4                      | +5.5137988E+02 | +4.5319771E+01 | +5.9523999E+02 | +5.0700000E+02        | +6.0467944E+02 |           |              |
| 135.0           | 4                      | +6.1776977E+02 | +1.8409388E+01 | +6.3975976E+02 | +5.9706982E+02        | +6.0472778E+02 |           |              |
| 136.0           | 2                      | +5.9254492E+02 | +1.5308887E+00 | +5.9359985E+02 | +5.9148999E+02        | +6.0477612E+02 |           |              |

ANB 3066 PROPELLANT (ANB P) TENSILE MAX STRESS, 1750 IN/MIN, 600 PSI UNLV CTNS

$Y = (( +2.4440939E-01) + (+1.3703278E-04) * \lambda) * \lambda$   
 $F = 3172458E+00$  SIGNIFICANCE OF F = SIGNIFICANT  
 $R = +1.4516766E-01$  SIGNIFICANCE OF R = SIGNIFICANT  
 $S = +2.3059153E+00$  SIGNIFICANCE OF S = SIGNIFICANT  
 $N = 249$  DEGREES OF FREEDOM = 247  
 $\sigma_y = 3.0503639E-02$   
 $S_a = +5.9426632E-05$   
 $S_e = +3.0241549E-02$   
 TEST CONDITIONS = 77 DEG F, AMB RH  
 STORAGE CONDITIONS = AMB TEMP/RH

PARAMETER = STRAIN AT RUPTURE  
 UNIT OF MEASURE = IN/IN  
 0.00 0.15 0.20 0.25 0.30 0.35 0.40



AMB 3066 PROPELLANT (ANG, P) TENSILE STN & RUPT. 1750 IN/MIN, 600 PSI, UNLND CT

Figure 5-11

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 16.0            | 8                      | +2.8012466E-01  | +1.8746900E-02        | +3.0199998E-01 | +2.5399994E-01 | +2.4660187E-01 |
| 21.0            | 2                      | +2.4524998E-01  | +1.1665027E-02        | +2.5349998E-01 | +2.3699998E-01 | +2.4728703E-01 |
| 28.0            | 6                      | +2.3558312E-01  | +1.9937143E-02        | +2.7399998E-01 | +2.1599996E-01 | +2.4824631E-01 |
| 29.0            | 2                      | +2.4304991E-01  | +1.0958388E-02        | +2.5079995E-01 | +2.3529994E-01 | +2.4838334E-01 |
| 30.0            | 4                      | +2.2594994E-01  | +3.6582398E-02        | +2.7769994E-01 | +1.9289994E-01 | +2.4852037E-01 |
| 36.0            | 2                      | +1.6299998E-01  | +5.8189520E-05        | +1.6299998E-01 | +1.6299998E-01 | +2.4934256E-01 |
| 39.0            | 4                      | +2.6224994E-01  | +1.9137969E-02        | +2.7699995E-01 | +2.3499995E-01 | +2.4975365E-01 |
| 41.0            | 2                      | +2.5369995E-01  | +2.0930200E-02        | +2.6847997E-01 | +2.3889994E-01 | +2.5002771E-01 |
| 43.0            | 2                      | +2.3384994E-01  | +1.6333237E-02        | +2.4539995E-01 | +2.2229999E-01 | +2.5030177E-01 |
| 46.0            | 2                      | +2.1299993E-01  | +1.9798596E-02        | +2.2699999E-01 | +1.9899994E-01 | +2.5071287E-01 |
| 49.0            | 2                      | +2.1249991E-01  | +1.3435378E-02        | +2.2199994E-01 | +2.0299994E-01 | +2.5112396E-01 |
| 50.0            | 2                      | +2.3049998E-01  | +1.4848296E-02        | +2.4099999E-01 | +2.1999996E-01 | +2.5126099E-01 |
| 52.0            | 2                      | +2.6794993E-01  | +5.7267292E-03        | +2.7199995E-01 | +2.6389998E-01 | +2.5153505E-01 |
| 53.0            | 2                      | +2.7689993E-01  | +8.2041535E-03        | +2.8269994E-01 | +2.7109998E-01 | +2.5167208E-01 |
| 54.0            | 2                      | +2.7559995E-01  | +1.3858697E-02        | +2.8539997E-01 | +2.6579999E-01 | +2.5180912E-01 |
| 55.0            | 4                      | +2.4924993E-01  | +3.5112919E-02        | +2.8599995F-01 | +2.0899999E-01 | +2.5194615E-01 |
| 56.0            | 2                      | +2.86299994E-01 | +1.3717134E-02        | +2.9599994E-01 | +2.7659994E-01 | +2.5208318E-01 |
| 57.0            | 6                      | +2.5904971E-01  | +3.5966465E-02        | +3.0219995E-01 | +2.0499998E-01 | +2.5222021E-01 |
| 58.0            | 5                      | +2.5283980E-01  | +2.5936847E-02        | +2.7629995E-01 | +2.2199994E-01 | +2.5235724E-01 |
| 60.0            | 2                      | +2.1314996E-01  | +5.6356094E-02        | +2.5299996E-01 | +1.7329996E-01 | +2.5263130E-01 |
| 62.0            | 2                      | +2.5994992E-01  | +2.1142576E-02        | +2.7489995E-01 | +2.4499994E-01 | +2.5290542E-01 |
| 63.0            | 6                      | +2.5061637E-01  | +3.7392186E-02        | +2.8149998E-01 | +1.7799997E-01 | +2.5304245E-01 |
| 64.0            | 2                      | +2.8149993E-01  | +1.0604399E-02        | +2.3899997E-01 | +2.7399998E-01 | +2.5317949E-01 |
| 65.0            | 2                      | +2.3799997E-01  | +1.4141601E-02        | +2.4799996E-01 | +2.2799998E-01 | +2.5331652E-01 |
| 66.0            | 2                      | +2.2849994E-01  | +1.7677759E-02        | +2.4099999E-01 | +2.1599996E-01 | +2.5345355E-01 |
| 68.0            | 4                      | +2.4299991E-01  | +9.1285137E-03        | +2.5399994E-01 | +2.3499995E-01 | +2.5372761E-01 |
| 59.0            | 8                      | +2.6399970E-01  | +3.3871685E-02        | +2.9999995E-01 | +1.9599997E-01 | +2.5386464E-01 |
| 70.0            | 2                      | +2.2699999E-01  | +1.3315672E-04        | +2.2699999E-01 | +2.2699999E-01 | +2.5400167E-01 |
| 71.0            | 3                      | +2.6403331E-01  | +3.2855735E-02        | +2.8539997E-01 | +2.2619998E-01 | +2.5413870E-01 |
| 72.0            | 11                     | +2.6991772E-01  | +2.3643627E-02        | +3.1399995E-01 | +2.3599994E-01 | +2.5427573E-01 |
| 73.0            | 3                      | +2.5569993E-01  | +7.2492345E-02        | +2.9849994E-01 | +1.7199999E-01 | +2.5468683E-01 |

A94 3066 PROPYLENE (ANH, P) TENSILE STN @ RUPT, 1750 IN/MIN, 600 PSI, UNLV CT

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MFAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|-----------------|----------------|----------------|
| 76.0            | 1                      | +2.3099994E-01 | +0.0000000E+15        | +2.3099994E-01  | +2.3099994E-01 | +2.5482386E-01 |
| 77.0            | 2                      | +3.0969995E-01 | +3.6747417E-03        | +3.1229996E-01  | +3.0709999E-01 | +2.5496089E-01 |
| 78.0            | 6                      | +2.8011637E-01 | +4.2803727E-02        | +3.1829994E-01  | +2.0989996E-01 | +2.5509792E-01 |
| 79.0            | 2                      | +2.4869996E-01 | +1.1877365E-02        | +2.5709998E-01  | +2.4C29999E-01 | +2.5523495E-01 |
| 80.0            | 5                      | +2.4769991E-01 | +3.8678805E-02        | +2.7529996E-01  | +1.8029999E-01 | +2.5537198E-01 |
| 82.0            | 3                      | +2.5416666E-01 | +1.3148155E-02        | +2.6579999E-01  | +2.3989999E-01 | +2.5564604E-01 |
| 83.0            | 4                      | +2.2924995E-01 | +5.2948665E-02        | +2.8899997E-01  | +1.7799997E-01 | +2.5578308E-01 |
| 84.0            | 4                      | +2.4267494E-01 | +2.3524100E-02        | +2.7699995E-01  | +2.2359997E-01 | +2.5592011E-01 |
| 85.0            | 2                      | +2.4644994E-01 | +1.0113782E-02        | +2.5359994E-01  | +2.3929995E-01 | +2.5605714E-01 |
| 90.0            | 2                      | +2.2974997E-01 | +1.2656649E-02        | +2.3869997E-01  | +2.2079998E-01 | +2.5674229E-01 |
| 91.0            | 2                      | +2.5194996E-01 | +2.8355452E-02        | +2.7199995E-01  | +2.3189997E-01 | +2.5687932E-01 |
| 92.0            | 4                      | +2.5124979E-01 | +1.8043945E-02        | +2.7549999E-01  | +2.3279994E-01 | +2.5701636E-01 |
| 93.0            | 2                      | +2.6699995E-01 | +2.1777583E-02        | +2.8239995E-01  | +2.5159996E-01 | +2.5715339E-01 |
| 94.0            | 4                      | +2.6149988E-01 | +1.8315990E-02        | +2.8309994E-01  | +2.4599999E-01 | +2.5729042E-01 |
| 95.0            | 4                      | +2.6109981E-01 | +2.0136196E-02        | +2.8289997E-01  | +2.3449999E-01 | +2.5742745E-01 |
| 96.0            | 3                      | +2.4909996E-01 | +1.6213978E-02        | +2.6749998E-01  | +2.3689997E-01 | +2.5756454E-01 |
| 100.0           | 2                      | +2.3894995E-01 | +1.3080124E-02        | +2.4819999E-01  | +2.2969996E-01 | +2.5811266E-01 |
| 105.0           | 2                      | +2.4404996E-01 | +5.7259995E-03        | +2.4809998E-01  | +2.3999994E-01 | +2.5879782E-01 |
| 106.0           | 4                      | +2.6199984E-01 | +1.1823039E-02        | +2.7969998E-01  | +2.5529998E-01 | +2.5893485E-01 |
| 107.0           | 4                      | +2.1684992E-01 | +3.7655718E-02        | +2.5699996E-01  | +1.6899996E-01 | +2.5907188E-01 |
| 108.0           | 2                      | +2.5544995E-01 | +1.7324297E-02        | +2.6769995E-01  | +2.4319994E-01 | +2.5920891E-01 |
| 109.0           | 3                      | +2.5236665E-01 | +1.9728064E-02        | +2.5443997E-01  | +2.5059998E-01 | +2.5934594E-01 |
| 110.0           | 8                      | +2.7227475E-01 | +2.19220284E-02       | +3.16899975E-01 | +2.3899996E-01 | +2.5948297E-01 |
| 111.0           | 4                      | +2.6274991E-01 | +1.1956053E-02        | +2.7029997E-01  | +2.4489998E-01 | +2.5962001E-01 |
| 112.0           | 6                      | +2.5991642E-01 | +4.4334370E-02        | +3.0509996E-01  | +1.8979996E-01 | +2.5975704E-01 |
| 113.0           | 5                      | +2.3895984E-01 | +3.3349246E-02        | +2.8399997E-01  | +1.9169998E-01 | +2.5989407E-01 |
| 114.0           | 2                      | +2.4949992E-01 | +2.0930696E-02        | +2.6329994E-01  | +2.3369997E-01 | +2.6003110E-01 |
| 115.0           | 2                      | +2.7349996E-01 | +1.9090827E-02        | +2.86399994E-01 | +2.5999999E-01 | +2.6016813E-01 |
| 116.0           | 2                      | +3.1283994E-01 | +8.3419922E-03        | +3.1879997E-01  | +3.0699998E-01 | +2.6030516E-01 |
| 117.0           | 4                      | +2.8544974E-01 | +1.6110410E-02        | +3.0639998E-01  | +2.7049994E-01 | +2.6044219E-01 |
| 118.0           | 2                      | +2.5019997E-01 | +1.6322438E-02        | +2.5749997E-01  | +2.4289995E-01 | +2.6057922E-01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|-----------------|----------------|
| 120.0           | 2                      | +2.6049995E-01 | +2.3335113E-02        | +2.7699995E-01 | +2.4399995E-01  | +2.6085329E-01 |
| 123.0           | 7                      | +2.6171398E-01 | +2.0527693E-02        | +2.8599995E-01 | +2.2499996E-01  | +2.6126438E-01 |
| 124.0           | 4                      | +2.5974988E-01 | +1.0244803E-02        | +2.6899999E-01 | +2.4899995E-01  | +2.6140141E-01 |
| 127.0           | 6                      | +2.6183301E-01 | +2.8641360E-02        | +2.8199994E-01 | +2.1499997E-01  | +2.6181250E-01 |
| 129.0           | 4                      | +2.8122496E-01 | +1.1819161E-02        | +2.8729999E-01 | +2.6349997E-01  | +2.6208657E-01 |
| 132.0           | 4                      | +2.6709985E-01 | +7.2396711E-03        | +2.7649998E-01 | +2.6099994E-01  | +2.6249772E-01 |
| 133.0           | 2                      | +2.5579994E-01 | +4.9214928E-02        | +2.9059994E-01 | +2.2099995E-01  | +2.6263475E-01 |
| 134.0           | 4                      | +2.8384995E-01 | +4.2482337E-03        | +2.8909999E-01 | +2.7919995E-01  | +2.6277178E-01 |
| 135.0           | 4                      | +2.4329996E-01 | +4.8766267E-03        | +2.4979996E-01 | +2.3889994E-01  | +2.6290881E-01 |
| 136.0           | 2                      | +2.4694997E-01 | +1.9303873E-02        | +2.6059997E-01 | +2.33299997E-01 | +2.6304584E-01 |

ANB 3066 PROPELLANT (ANB, P) TENSILE STN @ RUPT, 1750 IN/MIN, 600 PSI, UNLND CT

$Y = (( +6.7026944E+03) + (-1.4061342E+01) * X_1)$   
 $F = 2.7503758E+01$  SIGNIFICANCE OF F = SIGNIFICANT  
 $R = -3.1653509E-01$  SIGNIFICANCE OF R = SIGNIFICANT  
 $t = +5.2444025E+00$  SIGNIFICANCE OF t = SIGNIFICANT  
 $N = 247$  DEGREES OF FREEDOM = 247  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPELLANT (ANB, P) TENSILE MODULUS, 1750 IN/MIN, 600 PSI, UNLND CTNS

Figure 5-12

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 16.0            | 8                      | +4.9901250E+03 | +1.8292989E+03        | +7.5000000E+03 | +3.1470000E+03 | +6.4777109E+03 |
| 21.0            | 2                      | +6.7000000E+03 | +2.8284271E+02        | +6.9000000E+03 | +6.5000000E+03 | +6.4074023E+03 |
| 28.0            | 6                      | +6.8833320E+03 | +7.8078490E+02        | +7.6000000E+03 | +5.7000000E+03 | +6.3089755E+03 |
| 29.0            | 2                      | +7.2500000E+03 | +7.7781745E+02        | +7.8000000E+03 | +6.7000000E+03 | +6.2949140E+03 |
| 30.0            | 4                      | +8.0750000E+03 | +1.1176612E+03        | +9.2000000E+03 | +6.8000000E+03 | +6.2808515E+03 |
| 36.0            | 2                      | +8.1000000E+03 | +2.8284271E+02        | +8.3000000E+03 | +7.9000000E+03 | +6.1964843E+03 |
| 39.0            | 4                      | +6.6750000E+03 | +1.5261607E+03        | +8.4000000E+03 | +5.2000000E+03 | +6.1543007E+03 |
| 41.0            | 2                      | +6.5730000E+03 | +7.4528786E+02        | +7.1000000E+03 | +6.0460000E+03 | +6.1261757E+03 |
| 43.0            | 2                      | +7.9195000E+03 | +4.3075515E+01        | +7.9500000E+03 | +7.8890000E+03 | +6.0980546E+03 |
| 46.0            | 2                      | +7.7500000E+03 | +1.6263455E+03        | +8.9000000E+03 | +6.6000000E+03 | +6.0558710E+03 |
| 49.0            | 2                      | +7.8000000E+03 | +1.4142135E+02        | +7.9000000E+03 | +7.7000000E+03 | +6.0136875E+03 |
| 50.0            | 2                      | +7.6500000E+03 | +4.9497474E+02        | +8.0000000E+03 | +7.3000000E+03 | +5.9996250E+03 |
| 52.0            | 2                      | +4.4975000E+03 | +1.1521935E+02        | +4.5790000E+03 | +4.4160000E+03 | +5.9715039E+03 |
| 53.0            | 2                      | +4.4575000E+03 | +9.4039885E+01        | +4.5240000E+03 | +4.3910000E+03 | +5.9574414E+03 |
| 54.0            | 2                      | +3.5105000E+03 | +8.9024687E+02        | +4.1400000E+03 | +2.8810000E+03 | +5.9433789E+03 |
| 55.0            | 4                      | +6.2590000E+03 | +2.3176686E+03        | +8.6000000E+03 | +4.1860000E+03 | +5.9293203E+03 |
| 56.0            | 2                      | +3.9585000E+03 | +3.9244298E+02        | +4.2360000E+03 | +3.6810000E+03 | +5.9152578E+03 |
| 57.0            | 6                      | +4.5623320E+03 | +1.3823006E+03        | +6.3000000E+03 | +3.3380000E+03 | +5.9011953E+03 |
| 58.0            | 5                      | +5.5923984E+03 | +1.9349542E+03        | +7.9000000E+03 | +3.9640000E+03 | +5.8871328E+03 |
| 60.0            | 2                      | +5.9450000E+03 | +1.2091509E+03        | +6.8000000E+03 | +5.0900000E+03 | +5.8590117E+03 |
| 62.0            | 2                      | +4.6580000E+03 | +6.5053823E+01        | +4.7040000E+03 | +4.6120000E+03 | +5.8308906E+03 |
| 63.0            | 6                      | +5.4961640E+03 | +1.6465099E+03        | +7.9000000E+03 | +4.2710000E+03 | +5.8168281E+03 |
| 64.0            | 2                      | +5.5000000E+03 | +4.2426406E+02        | +5.8000000E+03 | +5.2000000E+03 | +5.8027656E+03 |
| 65.0            | 2                      | +7.8000000E+03 | +1.4142135E+02        | +7.9000000E+03 | +7.7000000E+03 | +5.7887070E+03 |
| 66.0            | 2                      | +8.2500000E+03 | +7.7781745E+02        | +8.8000000E+03 | +7.7000000E+03 | +5.7746445E+03 |
| 68.0            | 4                      | +7.0500000E+03 | +1.6258331E+03        | +8.8000000E+03 | +5.3000000E+03 | +5.7465195E+03 |
| 69.0            | 8                      | +5.0835000E+03 | +1.0781072E+03        | +6.1000000E+03 | +3.0550000E+03 | +5.7324609E+03 |
| 70.0            | 2                      | +6.4000000E+03 | +9.8994949E+02        | +7.1000000E+03 | +5.7000000E+03 | +5.7183984E+03 |
| 71.0            | 3                      | +4.4210000E+03 | +4.9076521E+02        | +4.9690000E+03 | +4.0220000E+03 | +5.7043359E+03 |
| 72.0            | 11                     | +4.3828164E+03 | +7.7456882F+02        | +6.1000000E+03 | +3.3100000E+03 | +5.6902773E+03 |
| 75.0            | 3                      | +5.8533320E+03 | +9.9189381E+02        | +6.7000000E+03 | +4.7620000E+03 | +5.6480898E+03 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

THE UNIVERSITY OF TORONTO LIBRARIES

**AGE SPECIMENS  
(MONTHS) PER GROUP**

STANDARD  
DEVIATION

MANY

REGRESSION Y

| <i>i</i> | <i>b</i>     | <i>a</i>         |
|----------|--------------|------------------|
| 1        | 1000000E+03  | +6. 1000000E+15  |
| 2        | 5850000E+03  | +2. 0505121E+02  |
| 3        | 2285000E+03  | +1. 1988143E+03  |
| 4        | 9485000E+03  | +3. 8536151E+02  |
| 5        | 4671992E+03  | +4. 1127925E+02  |
| 6        | 4230000E+03  | +3. 0919007E+02  |
| 7        | 5250000E+03  | +5. 1234753E+02  |
| 8        | 8250000E+03  | +6. 8495741E+02  |
| 9        | 9900000E+03  | +4. 38460629E+02 |
| 10       | 0.000000E+03 | +2. 8284271E+02  |
| 11       | 2500000E+03  | +3. 5355339E+02  |
| 12       | 2300000E+03  | +7. 9002109E+02  |
| 13       | 1915000E+03  | +1. 1523671E+02  |
| 14       | 4145000E+03  | +4. 0480077E+02  |
| 15       | 2065000E+03  | +8. 6242275E+02  |
| 16       | 3013320E+03  | +5. 3394132E+02  |
| 17       | 1445000E+03  | +9. 9206426E+02  |
| 18       | 5110000E+03  | +2. 5171015E+02  |
| 19       | 1477500E+03  | +6. 9685190E+02  |
| 20       | 3000000E+03  | +4. 2877500E+03  |
| 21       | 7505000E+03  | +3. 7505000E+03  |
| 22       | 8596665E+03  | +3. 8596665E+03  |
| 23       | 8020000E+03  | +4. 8020000E+03  |
| 24       | 6387500E+03  | +4. 6387500E+03  |
| 25       | 9546640E+03  | +5. 9546640E+03  |
| 26       | 9880000E+03  | +4. 9880000E+03  |
| 27       | 4050000E+03  | +4. 4050000E+03  |
| 28       | 8440000E+03  | +3. 8440000E+03  |
| 29       | 3054822E+02  | +9. 3054822E+02  |
| 30       | 8008060E+02  | +8. 8008060E+02  |
| 31       | 9817762E+02  | +6. 9817762E+02  |
| 32       | 9496464E+02  | +4. 9496464E+02  |
| 33       | 5448824E+02  | +3. 5448824E+02  |
| 34       | 8000000E+03  | +8. 8000000E+03  |
| 35       | 7980000E+03  | +6. 7980000E+03  |
| 36       | 7550000E+03  | +5. 7550000E+03  |
| 37       | 7550000E+03  | +4. 7550000E+03  |
| 38       | 6000000E+03  | +3. 8660000E+03  |
| 39       | 6400000E+03  | +3. 6460000E+03  |
| 40       | 3000000E+03  | +2. 9660000E+03  |
| 41       | 18828E+03    | +4. 18828E+03    |
| 42       | 1278203E+03  | +5. 1278203E+03  |
| 43       | 1137617E+03  | +5. 1137617E+03  |
| 44       | 996992E+03   | +5. 996992E+03   |
| 45       | 1860000E+03  | +3. 1860000E+03  |
| 46       | 1000000E+03  | +3. 3610000E+03  |
| 47       | 2000000E+03  | +4. 2000000E+03  |
| 48       | 8670C00E+03  | +4. 8670C00E+03  |

5-34

ANH 3C66 PROPELLANT (ANH, P) TENSILE MODULUS: 1750 N/MM<sup>2</sup>, UNLND CTNS 600 PSI, 600

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 120.0           | 2                      | +3.8530000E+03 | +7.8346793E+02        | +4.4070000E+03 | +3.2990000E+03 | +5.0153320E+03 |
| 123.0           | 7                      | +3.7835712E+03 | +6.2518460E+02        | +4.3430000E+03 | +2.6460000E+03 | +4.5731484E+03 |
| 124.0           | 4                      | +4.6650000E+03 | +6.6153659E+02        | +5.4480000E+03 | +3.8700000E+03 | +4.9590859E+03 |
| 127.0           | 6                      | +4.3173320E+03 | +5.3222050E+02        | +4.7750000E+03 | +3.4820000E+03 | +4.9169023E+03 |
| 129.0           | 4                      | +6.5622500E+03 | +8.3368014E+02        | +7.6630000E+03 | +5.6430000E+03 | +4.8887773E+03 |
| 132.0           | 4                      | +5.1350000E+03 | +2.5272646E+02        | +5.3390000E+03 | +4.7730000E+03 | +4.8465937E+03 |
| 133.0           | 2                      | +6.2025000E+03 | +1.1292490E+03        | +7.2010000E+03 | +5.4040000E+03 | +4.8325351E+03 |
| 134.0           | 4                      | +5.2515000E+03 | +3.1513753E+02        | +5.5300000E+03 | +4.8560000E+03 | +4.8184726E+03 |
| 135.0           | 4                      | +6.1555000E+03 | +4.4802343E+02        | +6.5920000E+03 | +5.7190000E+03 | +4.8044101E+03 |
| 136.0           | 2                      | +5.9595000E+03 | +4.6173531E+02        | +6.2860000E+03 | +5.6330000E+03 | +4.7903515E+03 |

ANB 3066 PROPELLANT (ANB, P) TENSILE MODULUS, 1750 IN/MIN, 600 PSI, UNLND CTNS



ANB 3066 PROPELLANT (ANB P) TENSILE MAX STRESS, 1750 IN/MIN, 600 PSI, 77 DEG LINED

Figure 5-13

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|-----------------|-----------------|
| 13.0            | 3                      | +5.9631323E+02 | +1.2012212E+01        | +6.0511987E+02 | +5.0260327E+02  | +5.07560327E+02 |
| 15.0            | 2                      | +5.6743481E+02 | +6.703404CE+00        | +5.7216992E+02 | +5.6260995E+02  | +5.7626342E+02  |
| 16.0            | 2                      | +5.1747485E+02 | +3.4612348E+01        | +5.4194995E+02 | +4.0370000E+02  | +5.7659350E+02  |
| 17.0            | 4                      | +6.1354467E+02 | +1.5196654E+01        | +6.1251977E+02 | +5.9556632F+02  | +5.7602358E+02  |
| 20.0            | 2                      | +5.7337475E+02 | +5.3948043E+01        | +5.7752978E+02 | +5.6921357E+02  | +5.7791357F+02  |
| 22.0            | 4                      | +5.5612231E+02 | +3.7370281E+01        | +5.9302978E+02 | +5.0C891992E+02 | +5.7857373E+02  |
| 23.0            | 2                      | +5.4461474E+02 | +3.1929269E+01        | +5.6718994E+02 | +5.2203979E+02  | +5.7890380E+02  |
| 32.0            | 2                      | +5.7849487E+02 | +1.1417693E+01        | +5.8655981E+02 | +5.7C42093E+02  | +5.8137426E+02  |
| 33.0            | 2                      | +5.7015991E+02 | +1.3087656E+01        | +5.7940991E+02 | +5.6n90991E+02  | +5.8220434E+02  |
| 35.0            | 1                      | +5.6868994E+02 | +0.000000CE+23        | +5.6868994E+02 | +5.6868994E+02  | +5.8286425E+02  |
| 36.0            | 4                      | +6.2093725E+02 | +4.0345978E+01        | +6.6350977E+02 | +5.7050976E+02  | +5.8319433E+02  |
| 38.0            | 2                      | +6.5747973E+02 | +2.9492102E+01        | +6.7832983E+02 | +6.3662998E+02  | +5.9395440E+02  |
| 39.0            | 2                      | +5.6423486E+02 | +9.8030921E+01        | +5.7115991E+02 | +5.5730981F+02  | +5.8418457E+02  |
| 41.0            | 2                      | +5.4117480E+02 | +9.5415661E+00        | +5.4798999E+02 | +5.34350996E+02 | +5.9484448E+02  |
| 43.0            | 2                      | +5.5442968E+02 | +1.4649574E+01        | +5.6477978E+02 | +5.4477979E+02  | +5.8715478E+02  |
| 49.0            | 2                      | +6.2115478E+02 | +2.2723335E+01        | +6.3721997E+02 | +6.0509084E+02  | +5.8748486E+02  |
| 57.0            | 2                      | +5.6947448E+02 | +1.4148986E+01        | +5.6947998E+02 | +5.704F997E+02  | +5.012524F+02   |
| 59.0            | 2                      | +5.7497983E+02 | +5.7972278E+01        | +6.1586928E+02 | +5.3889989E+02  | +5.907854CE+02  |

5-37

ANB 3066 PROPELLANT(ANB) TENSILE MAX STRESS, 1750 IN/MIN, 600 PSI, 77 DEG LINED

$\gamma = (( +2.9892063E-01 ) + ( -3.7432770E-04 ) * X) * \bar{X}$   
 $F_R = +3.5685836E+00$   
 $R = NOT SIGNIFICANT$   
 $F_R = NOT SIGNIFICANT$   
 $R = NOT SIGNIFICANT$   
 $t = NOT SIGNIFICANT$   
 $t = NOT SIGNIFICANT$   
 $Degrees of Freedom = 40$   
 $N = 42$   
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPELLANT (ANBP) TENSILE STN AT RUP, 1750 IN/MIN, 600 PSI, 77 DEG LINED

Figure 5-14

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y           | STANDARD<br>DEVIATION | MAXIMUM Y        | MINIMUM Y        | PREDICTION      |
|-----------------|------------------------|------------------|-----------------------|------------------|------------------|-----------------|
| 13.0            | 3                      | +8.9579247E-03   | +3.0909997E-01        | +2.9319995E-01   | +2.9405632E-01   | +2.933056CE-01  |
| 15.0            | 2                      | +2.8439992E-01   | +1.0859422E-02        | +2.094100994E-01 | +2.074550036E-01 | +2.0933056CE-01 |
| 16.0            | 2                      | +3.1054997E-01   | +1.0162171E-02        | +3.02406995E-01  | +2.09699990E-01  | +2.09203137E-01 |
| 17.0            | 4                      | +2.8162479E-01   | +2.03551482E-02       | +2.09809999E-01  | +2.04719005E-01  | +2.09255706E-01 |
| 20.0            | 2                      | +2.0794994E-01   | +1.02666381E-02       | +2.08600994E-01  | +2.07160945E-01  | +2.09143404E-01 |
| 22.0            | 4                      | +2.09487490E-01  | +1.06746955E-02       | +3.01599998E-01  | +2.07516032E-01  | +2.09069541E-01 |
| 23.0            | 2                      | +2.05059945E-01  | +1.07393700E-02       | +3.00289995E-01  | +2.07829998E-01  | +2.09071103E-01 |
| 32.0            | 2                      | +2.09564994E-01  | +9.0493941E-04        | +2.09629999E-01  | +2.09469995E-01  | +2.08694212E-01 |
| 33.0            | 2                      | +2.07499997E-01  | +1.03554439E-03       | +2.07629995E-01  | +2.07369999E-01  | +2.08656780E-01 |
| 35.0            | 1                      | +3.01599998E-01  | +0.00000005E+03       | +5.01599998E-01  | +3.01599998E-01  | +2.08531911E-01 |
| 36.0            | 4                      | +2.07124977E-01  | +9.03708944E-03       | +2.07959996E-01  | +2.05749995E-01  | +2.09544479E-01 |
| 38.0            | 2                      | +2.07889996E-01  | +4.0907559E-03        | +2.08229999E-01  | +2.07549999E-01  | +2.08465016E-01 |
| 39.0            | 2                      | +3.001299994E-01 | +8.0607661E-03        | +3.00709999E-01  | +2.06569995E-01  | +2.08472164E-01 |
| 41.0            | 2                      | +3.01514996E-01  | +1.08089900E-02       | +3.02349999E-01  | +3.00670994E-01  | +2.08357315E-01 |
| 43.0            | 2                      | +2.05304993E-01  | +2.07632033E-03       | +2.06499900E-01  | +2.04190000E-01  | +2.09045247E-01 |
| 49.0            | 2                      | +2.06614993E-01  | +4.04537027E-03       | +2.06929998E-01  | +2.062000036E-01 | +2.04357856E-01 |
| 57.0            | 2                      | +2.05349998E-01  | +4.03492657E-03       | +2.05699996E-01  | +2.05000000E-01  | +2.07758780E-01 |
| 59.0            | 2                      | +2.08589993E-01  | +7.02105936E-03       | +2.0909994E-01   | +2.08079998E-01  | +2.07683526E-01 |

ANR 3066 PRPELLANT(ANH) TENSILE STN AT RUP, 1750 IN/MIN, 600 PSI, 77 DEG LINED

AD-A063 094 OGDEN AIR LOGISTICS CENTER HILL AFB UTAH PROPELLANT L--ETC F/G 21/9.2  
PROPELLANT SURVEILLANCE REPORT ANB-3066 PROPELLANT. (U)  
JUL 78 E M DALABA  
MANCP-398(78)

UNCLASSIFIED

NL

3 OF 4  
AD  
A063 094



3 OF 4

AD  
AO 63 094



$F = +1.4908374E+01$   
 $R = +5.2106973E-01$   
 $L = +3.8611364E+00$   
 $N = 42$   
 $F = \text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $R = \text{DEGREES OF FREEDOM} = 40$   
 $L = \text{TEST CONDITIONS} = 77 \text{ DEG F, AMB RH}$   
 $N = \text{SIGNIFICANCE OF F} = \text{SIGNIFICANT}$   
 $F = \text{SIGNIFICANCE OF R} = \text{SIGNIFICANT}$   
 $L = \text{SIGNIFICANCE OF L} = \text{SIGNIFICANT}$   
 $F = (\text{+3.1610200E+03}) + (\text{+2.2631780E+01}) * X$   
 $R = +6.1073040E+02$   
 $L = +5.8614298E+00$   
 $N = +5.2774263E+02$



ANB 3066 PROPELLANT (ANB P)TENSILE MODULUS, 1750 IN/MIN, 600 PSI, 77 DEG LINED

Figure 5-15

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|-----------------|-----------------|----------------|
| 13.0            | 3                      | +3.5793332E+03 | +3.7753851E+02        | +3.829000E+03   | +3.145000E+03   | +3.4552331E+02 |
| 15.0            | 2                      | +3.781500CE+03 | +2.7646970E+02        | +3.677000CE+03  | +3.586000CE+03  | +3.04965F+02   |
| 16.0            | 2                      | +3.0835200E+03 | +2.6516315E+02        | +3.271000E+03   | +2.896000E+03   | +3.5221284F+02 |
| 17.0            | 4                      | +4.1157503E+03 | +5.5979750E+02        | +4.543000E+03   | +3.733000E+03   | +3.54575C2E+02 |
| 20.0            | 2                      | +3.3345002E+03 | +6.1412539E+01        | +3.378000CF+03  | +3.261000CE+03  | +3.6136555E+02 |
| 22.0            | 4                      | +3.5207500E+03 | +5.5236634E+02        | +4.0163200CE+03 | +2.942000CE+03  | +3.6584186E+02 |
| 23.0            | 2                      | +3.6735002E+03 | +2.9061916E+02        | +3.879000E+03   | +3.468000E+03   | +3.6R15507E+03 |
| 32.0            | 2                      | +3.092000CE+03 | +1.6685322E+02        | +3.510000E+03   | +3.2740030CF+03 | +3.885236AE+02 |
| 33.0            | 2                      | +3.761000CE+03 | +1.3575713E+02        | +3.857000E+03   | +3.6650030E+03  | +3.90786R6E+02 |
| 35.0            | 1                      | +2.925000E+03  | +0.200000CE+23        | +2.925000CE+03  | +2.925000CE+03  | +3.9531323E+02 |
| 36.0            | 4                      | +3.7592500E+03 | +1.2742331E+02        | +3.928000CE+03  | +3.626000CE+03  | +3.9757639F+02 |
| 38.0            | 2                      | +4.293000CE+03 | +7.8630146E+02        | +4.849000CE+03  | +3.737000E+03   | +4.0210275F+03 |
| 39.0            | 2                      | +3.9695000E+03 | +8.9774718E+01        | +4.033000CE+03  | +3.9060020E+03  | +4.0436594E+03 |
| 41.0            | 2                      | +3.731000CE+03 | +1.3009996E+02        | +3.823000CE+03  | +3.639000CE+03  | +4.0890228F+02 |
| 48.0            | 2                      | +4.2435000E+03 | +1.7038632E+02        | +4.364000CE+03  | +4.123000DF+03  | +4.2473437E+03 |
| 49.0            | 2                      | +5.5970000E+03 | +2.5596484F+02        | +5.778000E+03   | +5.416000CE+03  | +4.2699765E+03 |
| 57.0            | 2                      | +4.4105000E+03 | +8.5530696E+01        | +4.4710000E+03  | +4.350000CE+03  | +4.4510312E+03 |
| 59.0            | 2                      | +4.3570000E+03 | +2.2061278E+02        | +4.5130000E+03  | +4.2010000E+03  | +4.4962929F+02 |

ANH 3066 PROPELLANT(ANSI) TENSILE MODULUS . 1750 IN/MIN. 600 PSI. 77 DEG LINED



ANS 3066 PROPELLANT (ANTI) TENSILE MAX STRESS. 1750 IN/MIN. 600 PSI. 77 DEG UNLND B

Figure 5-16

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\*\* ANALYSIS OF TIME SERIES \*\*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEN Y           | STANDARD<br>DEVIATION Y | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-------------------------|----------------|----------------|----------------|
| 14.0            | 2                      | +5.645546dt+02  | +1.4203308E+01          | +5.7458984E+02 | +5.5451977E+02 | +5.9093505E+02 |
| 16.0            | 3                      | +5.6484643E+02  | +1.2145975E+01          | +5.7602978E+02 | +5.5193994E+02 | +5.9233032E+02 |
| 17.0            | 5                      | +5.9898779E+02  | +1.7164894E+01          | +6.1816992E+02 | +5.7316992E+02 | +5.9302807E+02 |
| 19.0            | 2                      | +5.8451976E+02  | +2.1727169E+01          | +5.985987E+02  | +5.6914990E+02 | +5.9442333E+02 |
| 20.0            | 2                      | +5.6053491E+02  | +4.0124323E+00          | +5.6335986E+02 | +5.5770996E+C2 | +5.9512109E+02 |
| 26.0            | 1                      | +6.1984985E+02  | +0.6000000F+11          | +6.1984985E+02 | +6.1984985E+02 | +5.930688E+02  |
| 27.0            | 2                      | +6.3314477E+02  | +5.0326571E+03          | +6.3668994E+02 | +6.2959985E+02 | +6.0000463E+02 |
| 28.0            | 1                      | +6.3310986E+02  | +0.0000000F+19          | +6.3310986E+02 | +6.3310986E+02 | +6.0070214E+02 |
| 29.0            | 2                      | +6.2063989E+02  | +1.7597868E+01          | +6.3307983E+02 | +6.0819995E+02 | +6.0139990E+02 |
| 30.0            | 3                      | +6.0311645E+02  | +4.2450181E+01          | +6.3619995E+02 | +5.5525000E+02 | +6.0209741E+02 |
| 31.0            | 2                      | +6.5223486E+02  | +5.5078841E+01          | +6.9117993E+02 | +6.1328379E+02 | +6.0279516E+02 |
| 32.0            | 0                      | +6.1185986E+02  | +0.0000000E+35          | +6.1185986E+02 | +6.1185986E+02 | +6.0349267E+02 |
| 33.0            | 2                      | +5.8946484E+02  | +4.9202099E+00          | +5.9291992E+02 | +5.8600976E+02 | +6.0419042E+02 |
| 34.0            | 1                      | +5.9669995E+02  | +0.0600000E+43          | +5.9669995E+02 | +5.9669995E+02 | +6.0488793E+02 |
| 35.0            | 3                      | +5.86666267E+02 | +1.2110063E+01          | +5.9937988E+02 | +5.7528979E+02 | +6.0558569E+02 |
| 38.0            | 5                      | +5.9382983E+02  | +7.4940201E+00          | +6.0347998E+02 | +5.8751977E+02 | +6.3767871E+02 |
| 39.0            | 5                      | +6.0228784E+02  | +1.7345633E+01          | +6.1854980E+02 | +5.8061987E+02 | +6.0937622E+02 |
| 40.0            | 2                      | +6.3520971E+02  | +7.2531863E+00          | +6.4031982E+02 | +6.3009985E+02 | +6.0907397E+02 |
| 41.0            | 7                      | +6.0250537E+02  | +1.1917630E+01          | +6.1876977E+02 | +5.8755981E+02 | +6.0977148E+02 |
| 42.0            | 3                      | +6.4206640E+02  | +4.92276199E+00         | +6.4632983E+02 | +6.3665991E+02 | +6.1046923E+02 |
| 44.0            | 6                      | +5.6909814E+02  | +2.54146694E+01         | +5.9151977E+02 | +5.3657983E+02 | +6.1186450E+02 |
| 45.0            | 6                      | +5.9678208E+02  | +1.3376374E+01          | +6.1312988E+02 | +5.7908984E+02 | +6.1256225E+02 |
| 46.0            | 4                      | +5.7631479E+02  | +1.7432863E+01          | +6.2172996E+02 | +5.6092993E+02 | +6.1325976E+02 |
| 47.0            | 11                     | +6.1260805E+02  | +3.1016174E+01          | +6.4367993F+02 | +5.7220996E+02 | +6.1395751E+02 |
| 48.0            | 10                     | +6.194506HE+02  | +2.2561757E+01          | +6.5388989E+02 | +5.8829980E+02 | +6.1465502E+02 |
| 49.0            | 6                      | +6.2640820E+02  | +1.4834233E+01          | +6.4302978E+02 | +6.0970996E+02 | +6.1535278E+02 |
| 50.0            | 9                      | +6.3721777E+02  | +1.9657499E+01          | +6.8129980E+02 | +6.1645996E+02 | +6.1605029E+02 |
| 51.0            | 3                      | +6.1704321E+02  | +1.2247862E+01          | +5.2445996E+02 | +6.0289990E+02 | +6.1674804E+02 |
| 52.0            | 7                      | +6.0045463E+02  | +8.5222648E+00          | +6.0647998E+02 | +5.9442993E+02 | +6.1744555E+02 |
| 53.0            | 12                     | +6.1996113E+02  | +2.0686816E+01          | +6.5133984E+02 | +5.9517993E+02 | +6.1814331E+02 |
| 54.0            | 7                      | +6.4252392E+02  | +1.1055964F+01          | +6.5484985E+N2 | +6.2233984E+02 | +6.1884106E+02 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 56.0            | 6                      | +6.3288818E+02 | +3.6192994E+01        | +6.8021997E+02 | +6.0117993E+02 | +6.2023632E+02 |
| 57.0            | 6                      | +6.6054467E+02 | +3.4945907E+01        | +6.8677978E+02 | +6.0585986E+02 | +6.203383E+02  |
| 59.0            | 2                      | +6.6507933E+02 | +1.6367982E+00        | +6.6621997E+02 | +6.6393994E+02 | +6.2232910E+02 |
| 60.0            | 2                      | +6.6055981E+02 | +5.8803078E+00        | +6.6470996E+02 | +6.5640991E+02 | +6.2302685E+02 |
| 61.0            | 2                      | +6.1912988E+02 | +5.6735277E+00        | +6.2312988E+02 | +6.1512988E+02 | +6.2372436E+02 |
| 62.0            | 2                      | +6.5580493E+02 | +4.061125E+00         | +6.5866692E+02 | +6.5293994E+02 | +6.2442211E+02 |
| 64.0            | 4                      | +6.6571372E+02 | +2.2815307E+01        | +6.9659985E+02 | +6.4331982E+02 | +6.2581738E+02 |
| 66.0            | 2                      | +5.9879980E+02 | +5.5267919E+00        | +6.0269995E+02 | +5.9489990E+02 | +6.2721264E+02 |
| 69.0            | 4                      | +5.9129483E+02 | +7.5957975E+00        | +5.9618994E+02 | +5.7997998E+02 | +6.2930566E+02 |
| 71.0            | 4                      | +5.7076489E+02 | +2.4999734E+00        | +5.7278979E+02 | +5.6730981E+02 | +6.3070092E+02 |
| 72.0            | 2                      | +5.5171997E+02 | +9.9290157E+00        | +5.5873999E+02 | +5.4469995E+02 | +6.3139868E+02 |

ANB 3066 PROPELLANT(ANT) TENSILE MAX STRESS, 1750 IN/MIN, 600 PSI, 77 DEG UNLND

$Y = ((+2.9676650E-01) + (-2.1232236E-04)) * X_1$   
 $F = +1.4411453E+00$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $R = -9.3332333E-02$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $s = +1.2004771E+00$  SIGNIFICANCE OF S = NOT SIGNIFICANT  
 $N = 166$  DEGREES OF FREEDOM = 164  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F, AMB RH



PRAMETER = STRAIN AT RUPTURE  
 UNIT OF MEASURE = IN/IN

| 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 10.00 | 12.00 | 14.00 | 16.00 |
|------|------|------|------|------|-------|-------|-------|-------|
| 0.00 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40  |       |       |       |

ANB 3066 PROPELLANT (ANT) TENSILE STRAIN AT RUPTURE, 1750 IN/MIN, 600 PSI, 77 DEG UNLND

Figure 5-17

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|-----------------|-----------------|-----------------|
|                 |                        |                |                       |                 |                 | +3.17499993E-01 |
| 14.0            | 2                      | +3.2266658E-01 | +1.2504114E-02        | +3.34999997E-01 | +3.09999994E-01 | +2.9379397E-01  |
| 16.0            | 3                      | +3.1371992E-01 | +9.6282112E-03        | +3.2859998E-01  | +3.04999994E-01 | +2.9315698E-01  |
| 17.0            | 5                      | +3.7426993E-01 | +7.4227337E-03        | +3.7949997E-01  | +3.6899995E-01  | +2.9273235E-01  |
| 19.0            | 2                      | +3.0949997E-01 | +4.4547473E-02        | +3.4099996E-01  | +2.7799999E-01  | +2.9252004E-01  |
| 20.0            | 2                      | +2.3349999E-01 | +0.0000000E+11        | +2.3849999E-01  | +2.3849999E-01  | +2.9124611E-01  |
| 26.0            | 1                      | +2.4307992E-01 | +3.5779684E-02        | +2.6839995E-01  | +2.1779996E-01  | +2.9103374E-01  |
| 27.0            | 2                      | +2.2259995E-01 | +0.0000000E+19        | +2.2259998E-01  | +2.2259998E-01  | +2.9082143E-01  |
| 28.0            | 1                      | +3.2944995E-01 | +1.2656596E-02        | +3.3839994E-01  | +3.0499995E-01  | +2.9060912E-01  |
| 29.0            | 2                      | +2.8109997E-01 | +5.9113878E-02        | +3.2249999E-01  | +2.1339994E-01  | +2.9039680E-01  |
| 30.0            | 3                      | +2.3549991E-01 | +6.5336533E-02        | +2.8169995E-01  | +1.8929994E-01  | +2.9018449E-01  |
| 31.0            | 2                      | +1.9999998E-01 | +0.0000000E+35        | +1.9999998E-01  | +1.9999998E-01  | +2.8997218E-01  |
| 32.0            | 1                      | +3.1484997E-01 | +1.5344388E-02        | +3.2569998E-01  | +3.0399996E-01  | +2.8975981E-01  |
| 33.0            | 2                      | +2.8289997E-01 | +0.0000000E+43        | +2.8289997E-01  | +2.8289997E-01  | +2.8954750E-01  |
| 34.0            | 1                      | +2.9726660E-01 | +3.6807095E-02        | +3.1999999E-01  | +2.5479996E-01  | +2.8933519E-01  |
| 35.0            | 3                      | +2.8957974E-01 | +3.1595597E-02        | +3.2599997E-01  | +2.5719994E-01  | +2.8869825E-01  |
| 38.0            | 5                      | +2.8177982E-01 | +4.9612752E-02        | +3.5159999E-01  | +2.4189996E-01  | +2.8848588E-01  |
| 39.0            | 5                      | +2.6074993E-01 | +7.6780374E-04        | +2.6129996E-01  | +2.6019996E-01  | +2.8827357E-01  |
| 40.0            | 2                      | +2.7915680E-01 | +1.4397897E-02        | +3.0899995E-01  | +2.6809996E-01  | +2.8806126E-01  |
| 41.0            | 7                      | +2.4526661E-01 | +1.9962750E-02        | +2.6479995E-01  | +2.2489994E-01  | +2.8784894E-01  |
| 42.0            | 3                      | +2.9533302E-01 | +9.2536494E-03        | +3.0499994E-01  | +2.8399997E-01  | +2.8742426E-01  |
| 44.0            | 6                      | +2.8003323E-01 | +1.6997159E-02        | +2.9899996E-01  | +2.5549995E-01  | +2.8721195E-01  |
| 45.0            | 4                      | +3.1079953E-01 | +9.8082750E-03        | +3.2509994E-01  | +3.0289995E-01  | +2.86999964E-01 |
| 46.0            | 4                      | +2.6986318E-01 | +1.3137745E-02        | +2.9729998E-01  | +2.5499999E-01  | +2.8678733E-01  |
| 47.0            | 11                     | +2.6720958E-01 | +1.5637862E-02        | +2.8299999E-01  | +2.2799998E-01  | +2.8657501E-01  |
| 48.0            | 6                      | +2.8751641E-01 | +2.3759319E-02        | +3.1199997E-01  | +2.6319998E-01  | +2.8636270E-01  |
| 49.0            | 7                      | +2.9133296E-01 | +3.4332137E-02        | +3.4599995E-01  | +2.4699997E-01  | +2.8615033E-01  |
| 50.0            | 3                      | +2.8199994E-01 | +3.8935647E-02        | +3.1199997E-01  | +2.3799997E-01  | +2.8593802E-01  |
| 51.0            | 2                      | +3.7599993E-01 | +2.1213466E-02        | +3.2099997E-01  | +2.9099994E-01  | +2.8572571E-01  |
| 52.0            | 12                     | +2.9535794E-01 | +2.6470788E-02        | +3.4399998E-01  | +2.3499995E-01  | +2.8551340E-01  |
| 53.0            | 12                     | +2.8035676E-01 | +1.5998293E-02        | +3.0769997E-01  | +2.5399994E-01  | +2.8530108E-01  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>PERIOD | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|--------------------|-----------------|-----------------------|-----------------|----------------|----------------|
| 56.0            | 6                  | +2.7866649E-01  | +2.1631775E-02        | +3.1999999E-01  | +2.5999999E-01 | +2.8487640E-01 |
| 57.0            | 6                  | +2.8049975E-01  | +1.4481199E-02        | +3.0199998E-01  | +2.6389998E-01 | +2.8466409E-01 |
| 59.0            | 2                  | +2.9499795E-01  | +5.6758363E-04        | +2.9539996E-01  | +2.9459995E-01 | +2.8423947E-01 |
| 60.0            | 2                  | +2.8653393E-01  | +1.6987298E-03        | +2.8779995E-01  | +2.8539997E-01 | +2.8402715E-01 |
| 61.0            | 2                  | +3.2734796E-01  | +1.0438783E-03        | +3.28099965E-01 | +3.2659995E-01 | +2.8381478F-01 |
| 62.0            | 2                  | +2.8429996E-01  | +3.0123051E-02        | +3.0559998E-01  | +2.6299995E-01 | +2.8360247E-01 |
| 64.0            | 4                  | +3.0577492E-01  | +2.0461690E-02        | +3.2699996E-01  | +2.8209996E-01 | +2.8317785E-01 |
| 66.0            | 2                  | +2.7799993E-01  | +5.6569373E-03        | +2.8199994E-01  | +2.7399998E-01 | +2.8275322E-01 |
| 69.0            | 4                  | +2.8324985E-01  | +8.7750397E-03        | +2.9599994E-01  | +2.7699995E-01 | +2.8211623E-01 |
| 71.0            | 4                  | +3.03999970E-01 | +1.06679370E-02       | +3.1799995E-01  | +2.9199999E-01 | +2.8169161E-01 |
| 72.0            | 2                  | +2.9399996E-01  | +9.8981135E-03        | +3.0099999E-01  | +2.8699994E-01 | +2.8147923E-01 |

ANR 3066 PROPELLANT(ANT) TENSILE STN AT RUP, 1750 IN/MIN, 600 PSI, 77 DEG UNLND

$F = +2.5945518E+00$   
 $R = -1.2479603E-01$   
 $t = +1.6107612E+00$   
 $N = 166$   
 SIGNIFICANCE OF F = NOT SIGNIFICANT  
 SIGNIFICANCE OF R = NOT SIGNIFICANT  
 SIGNIFICANCE OF t = NOT SIGNIFICANT  
 DEGREES OF FREEDOM = 164  
 STORAGE CONDITIONS = RMS TEMP./RH TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPELLANT (ANT) TENSILE MODULUS, 1750 IN/MIN, 600 PSI, 77 DEG UNLND

Figure 5-18

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|-----------------|----------------|-----------------|
|                 |                        |                |                       |                 |                |                 |
| 14.0            | 2                      | +4.393000E+03  | +1.3794048E+03        | +4.4030000E+03  | +4.3830000E+03 | +4.96226328E+03 |
| 16.0            | 3                      | +4.0176665E+03 | +1.0005914E+02        | +4.1200000E+03  | +3.9200000E+03 | +4.9450625E+03  |
| 17.0            | 5                      | +4.2595970E+03 | +1.0115236E+02        | +4.4000000E+03  | +4.1310000E+03 | +4.9362773E+03  |
| 19.0            | 2                      | +3.5745000E+03 | +3.1889104E+02        | +3.8000000E+03  | +3.3490000E+03 | +4.9187109E+03  |
| 20.0            | 2                      | +3.9630000E+03 | +3.0951575E+01        | +3.9850000E+03  | +3.9410000E+03 | +4.9099257E+03  |
| 26.0            | 1                      | +5.7000000E+03 | +0.0000000E+11        | +5.7000000E+03  | +5.7000000E+03 | +4.8572187E+03  |
| 27.0            | 2                      | +6.8000000E+03 | +7.0710678E+02        | +7.3000000E+03  | +6.3000000E+03 | +4.8484335E+03  |
| 28.0            | 1                      | +7.7000000E+03 | +1.0000000E+19        | +7.7000000E+03  | +7.7000000E+03 | +4.8396523E+03  |
| 29.0            | 2                      | +4.5130000E+03 | +3.2102024E+02        | +4.7400000E+03  | +4.2860000E+03 | +4.8308671E+03  |
| 30.0            | 3                      | +5.4833320E+03 | +1.0574154E+03        | +6.7000000E+03  | +4.7860000E+03 | +4.82200820E+03 |
| 31.0            | 2                      | +5.4420000E+03 | +1.0719738E+03        | +6.2000000E+03  | +4.6840000E+03 | +4.8132968E+03  |
| 32.0            | 1                      | +6.6000000E+03 | +0.0000000E+35        | +6.6000000E+03  | +6.6000000E+03 | +4.8045117E+03  |
| 33.0            | 2                      | +4.8385000E+03 | +2.7081266E+02        | +5.0300000E+03  | +4.6470000E+03 | +4.7957304E+03  |
| 34.0            | 1                      | +6.7000000E+03 | +0.0000000E+43        | +6.7000000E+03  | +6.7000000E+03 | +4.7869453E+03  |
| 35.0            | 3                      | +5.1723325E+03 | +1.1574021E+03        | +6.5000000E+03  | +4.3760000E+03 | +4.7781601E+03  |
| 38.0            | 5                      | +5.1745976E+03 | +4.9279767E+02        | +5.6160000E+03  | +4.5520000E+03 | +4.7518085E+03  |
| 39.0            | 3                      | +5.1473984E+03 | +6.30793903E+02       | +5.6439000E+03  | +4.0680000E+03 | +4.7430234E+03  |
| 40.0            | 2                      | +4.6550000E+03 | +1.3150665E+02        | +4.7480000E+03  | +4.5620000E+03 | +4.7342382E+03  |
| 41.0            | 7                      | +4.6754257E+03 | +4.3908042E+02        | +5.2130000E+03  | +3.8190000E+03 | +4.7254531E+03  |
| 42.0            | 3                      | +5.1013320E+03 | +3.2192752E+02        | +5.4910000E+03  | +4.7610000E+03 | +4.7166679E+03  |
| 44.0            | 6                      | +3.8485000E+03 | +4.5005566E+02        | +4.3220000E+03  | +3.2370000E+03 | +4.6991015E+03  |
| 45.0            | 4                      | +4.6130000E+03 | +4.1486238E+02        | +5.0190000E+03  | +3.9920000E+03 | +4.6903164E+03  |
| 46.0            | 4                      | +4.3725000E+03 | +1.8014716E+02        | +4.5320000E+03  | +4.1280000E+03 | +4.6815312E+03  |
| 47.0            | 3                      | +4.7634531E+03 | +6.5131595E+02        | +5.3610000E+03  | +3.4020000E+03 | +4.6727460E+03  |
| 48.0            | 10                     | +4.6347068E+03 | +6.9228780E+02        | +5.4470000E+03  | +3.2470000E+03 | +4.6639648E+03  |
| 49.0            | 6                      | +4.7461640F+03 | +3.4985363E+02        | +5.01830000E+03 | +4.1640000E+03 | +4.6551796E+03  |
| 50.0            | 9                      | +3.6004443E+03 | +8.4729320F+02        | +4.3600000E+03  | +1.7890000E+03 | +4.6463945E+03  |
| 51.0            | 3                      | +4.7926644E+03 | +3.4981042E+02        | +5.1960000E+03  | +4.5720000E+03 | +4.6376093E+03  |
| 52.0            | 7                      | +3.1420000F+03 | +4.3776422F+01        | +3.1730000E+03  | +3.1110000E+03 | +4.6288242E+03  |
| 53.0            | 12                     | +4.8109140F+03 | +6.5004684E+02        | +5.6250000F+03  | +3.7380000E+03 | +4.6200429E+03  |
| 54.0            | 7                      | +4.8647154E+03 | +1.1794708F+03        | +6.1120000E+03  | +3.0680000E+03 | +4.6112578E+03  |

5-49

A-14 PROPULSIVE TENSILE MODULUS. 1750 IN/MIN. 600 PSI, 77 DEG UNLD

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y     | MINIMUM Y     | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|---------------|---------------|----------------|
| 56.0            | 6                      | +4.605500E+03  | +8.4891960E+02        | +5.869000E+03 | +3.490000E+03 | +4.5936875E+03 |
| 57.0            | 6                      | +5.438500E+03  | +8.8636454E+02        | +6.212000E+03 | +3.974000E+03 | +4.5849023E+03 |
| 59.0            | 2                      | +5.758000E+03  | +6.3560994E+01        | +5.803000E+03 | +5.713000E+03 | +4.5673359E+03 |
| 60.0            | 2                      | +6.510500E+03  | +7.5653816E+01        | +6.564000E+03 | +6.457000E+03 | +4.5585507E+03 |
| 61.0            | 2                      | +5.535500E+03  | +1.4433964E+02        | +5.638000E+03 | +5.433000E+03 | +4.5497656E+03 |
| 62.0            | 2                      | +4.923500E+03  | +7.0781318E+02        | +5.424000E+03 | +4.423000E+03 | +4.5409804E+03 |
| 64.0            | 4                      | +5.401500E+03  | +4.6148419E+02        | +5.798000E+03 | +4.762000E+03 | +4.5234140E+03 |
| 66.0            | 2                      | +3.558500E+03  | +7.8456994E+01        | +3.614000E+03 | +3.503000E+03 | +4.5058437E+03 |
| 69.0            | 4                      | +3.7552500E+03 | +3.2286516E+02        | +4.056000E+03 | +3.445000E+03 | +4.4794921E+03 |
| 71.0            | 4                      | +3.322500E+03  | +1.2734723E+02        | +3.510000E+03 | +3.228000E+03 | +4.4619218E+03 |
| 72.0            | 2                      | +2.880000E+03  | +4.6810255E+02        | +3.219000E+03 | +2.557000E+03 | +4.4531406E+03 |

ANB 3066 PROPELLANT(ANT) TENSILE MODULUS, 1750 IN/MIN, 600 PSI, 77 DEG UND



Figure 5-19

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>DFR GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y        | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|------------------|----------------|
| 15.0            | 7                      | +5.44E3589E+12  | +6.1972618E+00        | +5.5085986E+02 | +5.3866952E+02   | +5.504104CE+02 |
| 16.0            | 3                      | +5.4878320E+12  | +7.4891723E+00        | +5.5734985E+02 | +5.5642559E1F+C2 | +5.5174829E+C2 |
| 17.0            | 2                      | +5.6552651E+02  | +2.9C32994E+C1        | +5.8417993E+C2 | +5.5576196E+C2   | +5.5576196E+C2 |
| 20.0            | 2                      | +5.3783300E+12  | +2.2558211E+C1        | +5.5227978E+C2 | +5.5124495E+C2   | +5.5729985F+C2 |
| 22.0            | 7                      | +5.5214306E+12  | +5.4142675E+00        | +5.569C991E+C2 | +5.54664995E+C2  | +5.5977539E+C2 |
| 24.0            | 3                      | +5.5634985E+02  | +2.539861CE+C1        | +6.2C01977E+C2 | +5.6347994E+C2   | +5.6245117E+C2 |
| 27.0            | 6                      | +5.6172973E+02  | +2.5837751E+C1        | +6.25C0976E+C2 | +5.6240991E+C2   | +5.6646484E+C2 |
| 31.0            | 7                      | +5.62870654E+02 | +1.2377798E+C1        | +5.3927998E+C2 | +5.1540991E+C2   | +5.7181616F+C2 |
| 32.0            | 7                      | +5.67121313E+02 | +5.3209994E+C0        | +5.811499CE+C2 | +5.62659C1E+C2   | +5.7315405E+C2 |
| 33.0            | 7                      | +5.6060302E+02  | +7.2C02380E+C0        | +5.6516992E+C2 | +5.5231982E+C2   | +5.7449154E+C2 |
| 34.0            | 6                      | +5.7734375E+02  | +8.1456716E+C0        | +5.8P77978E+C2 | +5.7D26977E+C2   | +5.7582982E+C2 |
| 36.0            | 2                      | +6.1184472E+02  | +6.0425493E+C0        | +6.1609985E+C2 | +6.0758984E+C2   | +5.7850561E+C2 |
| 38.0            | 2                      | +5.2790478E+02  | +1.2247308E+C1        | +5.4655581E+C2 | +5.2925003E+C2   | +5.6118139E+C2 |
| 39.0            | 5                      | +5.5664770E+02  | +1.658C5C8E+C1        | +6.1726977E+C2 | +5.8262988E+C2   | +5.8251920E+C2 |
| 43.0            | 2                      | +5.8244970E+02  | +3.23008095E+C1       | +6.0507983E+C2 | +5.59819P2E+C2   | +5.8787060E+C2 |
| 44.0            | 2                      | +5.5392968E+02  | +6.5916695E+C0        | +5.9856982E+C2 | +5.9928979E+C2   | +5.6920849E+C2 |

ANS 3066 FRCPLNT (ANT P POLYMER) TENSILE SM. 175C IN/MIN ECO PSI 77 DEG LINEC



Figure 5-20

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y   |
|-----------------|-----------------------|----------------|-----------------------|----------------|-----------------|----------------|
|                 |                       |                |                       |                |                 |                |
| 15.0            | 3                     | +2.7916657E-71 | +1.6851599E-03        | +2.8059995E-C1 | +2.7729994E-C1  | +2.1081689E-C1 |
| 15.0            | 3                     | +3.1536652E-71 | +2.3052255E-C2        | +3.4029996E-C1 | +2.9479998E-C1  | +3.0920207E-01 |
| 16.0            | 3                     | +2.5886662E-71 | +1.3737878E-C2        | +2.1469994E-C1 | +2.9069997E-C1  | +2.0435764E-C1 |
| 16.0            | 3                     | +2.2386660E-71 | +4.2998195E-03        | +3.2639998E-01 | +3.1889998E-C1  | +3.0274283E-01 |
| 20.0            | 3                     | +2.1699999E-71 | +2.6196794E-02        | +3.4229999E-C1 | +2.8999996E-C1  | +2.6951322E-C1 |
| 22.0            | 2                     | +3.0546659E-71 | +2.3479935E-C2        | +3.2959997E-01 | +2.8269994E-C1  | +2.5628360E-01 |
| 24.0            | 3                     | +2.8402294E-71 | +2.6392668E-C2        | +3.1209999E-01 | +2.5999999E-C1  | +2.5143917E-01 |
| 27.0            | 6                     | +2.5779994E-71 | +1.3194786E-C2        | +2.1299996E-01 | +2.8929996E-C1  | +2.6457993E-C1 |
| 31.0            | 3                     | +2.9823327E-71 | +2.2885772E-02        | +3.1469994E-C1 | +2.7209997E-C1  | +2.8326513E-C1 |
| 32.0            | 3                     | +2.8453332E-71 | +1.8744473E-02        | +3.0599999E-01 | +2.7139997E-C1  | +2.8175032E-01 |
| 33.0            | 7                     | +2.6813983E-71 | +1.8586370E-C2        | +2.9699999E-C1 | +2.4699995E-C1  | +2.8013551E-C1 |
| 34.0            | 5                     | +2.659997E-01  | +7.06678377E-C3       | +2.7099996E-01 | +2.6099997E-01  | +2.7640589E-C1 |
| 35.0            | 2                     | +2.8249996E-71 | +1.3434832E-C2        | +2.5199999E-01 | +2.7299994E-C1  | +2.7367627E-01 |
| 38.0            | 2                     | +2.6223963E-71 | +1.6069810E-02        | +2.8199994E-01 | +2.4099999E-C1  | +2.7206146E-01 |
| 39.0            | 5                     | +2.4749994E-71 | +2.6590895E-C2        | +2.6799994E-C1 | +2.2699999E-C1  | +2.6560223E-01 |
| 43.0            | 2                     | +2.8999996E-71 | +1.4027190E-03        | +2.6899994E-C1 | +2.88999957E-C1 | +2.6398742E-C1 |
| 44.0            | 2                     |                |                       |                |                 |                |

AND 3066 PROPLNT (ANT P POLYMER) TENSILE ER. 1750 IN/MIN 600 PSI 77 DEG LINED

$\gamma = ((+4.4010966E+03) + (-1.3214767E+01)) * X$   
 $F = +1.7584578E+00$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $R = -1.8612802E-01$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $t = +1.3260685E+00$  SIGNIFICANCE OF t = NOT SIGNIFICANT  
 $N = 51$  DEGREES OF FREEDOM = 49  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH

UNIT OF MEASURE = PSI  
 $* 10^2$   
 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

PARAMETER = MODULUS



AMB 3066 PROPELLANT (HT P POLYMER) TENSILE MOD. 1750 IN/MIN 500 PSI 77 DG. LINED  
Figure 5-21

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 THE ANALYSIS OF TIME SERIES \*\*\*

| INTERV. | DATA POINT | SAMPLE NUMBER | MEAN Y           | STANDARD DEVIATION | MAXIMUM Y        | MINIMUM Y        | REGRESSION Y     |
|---------|------------|---------------|------------------|--------------------|------------------|------------------|------------------|
| 15.0    | 1          | 4             | +4.1516640E+01   | +2.2235584E+02     | +4.6445000CE+02  | +4.0230000CE+02  | +4.2028750E+02   |
| 16.0    | 2          | 5             | +4.0320000E+01   | +5.0129282E+02     | +4.4310000E+02   | +3.9470000E+02   | +4.1866666E+02   |
| 17.0    | 3          | 6             | +4.0366000E+01   | +3.6046666E+02     | +4.3950000CE+02  | +3.6740000CE+02  | +4.1600166E+02   |
| 18.0    | 4          | 7             | +3.0489332E+01   | +2.0184670E+02     | +3.6510000E+02   | +3.2400000E+02   | +4.1260000E+02   |
| 19.0    | 5          | 8             | +4.0166641E+01   | +6.0217644E+02     | +5.0219000CE+02  | +4.0200000E+02   | +4.1163710E+02   |
| 20.0    | 9          | 9             | +4.02123320E+01  | +6.03607781E+02    | +4.05760000E+02  | +3.04700000E+02  | +4.035421E+02    |
| 21.0    | 10         | 10            | +4.05266665E+01  | +5.06677622E+02    | +4.0650000CE+02  | +3.02650000E+02  | +4.0442978E+02   |
| 22.0    | 11         | 11            | +3.08233732E+01  | +2.007560620E+02   | +4.0101000CE+02  | +3.05700000E+02  | +3.0914387E+02   |
| 23.0    | 12         | 12            | +4.057756640E+01 | +7.00631578E+02    | +4.0874000CE+02  | +3.05752228E+02  | +3.05752228E+02  |
| 24.0    | 13         | 13            | +4.02266640E+01  | +2.00986552E+02    | +4.05540000CE+02 | +3.04950000DE+02 | +3.05650000SE+02 |
| 25.0    | 14         | 14            | +4.02065976E+01  | +7.004557702E+02   | +4.0830000CE+02  | +3.01740000E+02  | +3.05517944E+02  |
| 26.0    | 15         | 15            | +4.01245000E+01  | +6.004841306E+02   | +4.0583000CE+02  | +3.06666000CE+02 | +3.05263649E+02  |
| 27.0    | 16         | 16            | +2.00025000E+01  | +4.01710530E+01    | +2.00620000E+01  | +2.00620000E+01  | +2.00620000E+01  |
| 28.0    | 17         | 17            | +4.0097999E+01   | +9.00400717E+02    | +4.0853000CE+03  | +3.00320000CE+03 | +3.006857207E+03 |
| 29.0    | 18         | 18            | +3.004765000E+01 | +2.0097602756E+02  | +3.00687000CE+03 | +3.00265000CE+03 | +3.00328615E+03  |
| 30.0    | 19         | 19            | +3.004460000E+01 | +4.002426406E+01   | +3.004760000E+01 | +3.004160000E+01 | +3.003196467F+01 |

ANAL 3066 POLYESTER (ANT 2 POLYMER) TENSILE MOD. 1760 IN/NIN 600 PSI 77 OG. LINED

$F = +1.3641882E+00$   
 $R = -6.6512793E-02$   
 $t = +1.1679846E+00$   
 $N = 309$   
 $\gamma = ((+5.7461829E+02) + (-9.0214698E-02) * X_1) * X_2$   
 SIGNIFICANCE OF R = NOT SIGNIFICANT  
 SIGNIFICANCE OF t = NOT SIGNIFICANT  
 SIGNIFICANCE OF  $\gamma$  = NOT SIGNIFICANT  
 DEGREES OF FREEDOM = 307

STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

ANA  
 ANB

UNIT OF MEASURE = PSI  
 PARAMETER = MAXIMUM STRESS  
 400.00 460.00 520.00 580.00 640.00 720.00 800.00



ANB 9066 PROPELLANT (ANA & ANB, G POLYMER) TENSILE STRAIN 600 PSI

Figure 5-22

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 14.0            | 2                      | +5.4500000E+02 | +0.0000000E+19        | +5.4500000E+02 | +5.4500000E+02 | +5.735522E+02  |
| 15.0            | 2                      | +5.000000E+02  | +1.4142135E+01        | +5.100000E+02  | +4.900000E+02  | +5.7326489E+02 |
| 16.0            | 2                      | +6.150000E+02  | +7.0710678E+00        | +6.200000E+02  | +6.100000E+02  | +5.7317180E+02 |
| 18.0            | 2                      | +6.275000E+02  | +1.0606601E+01        | +6.350000E+02  | +6.200000E+02  | +5.7299438E+02 |
| 19.0            | 2                      | +6.100000E+02  | +1.4142135E+01        | +6.200000E+02  | +6.000000E+02  | +5.7290405E+02 |
| 20.0            | 2                      | +6.1250000E+02 | +3.1819805E+01        | +6.3500000E+02 | +5.9000000E+02 | +5.7281396E+02 |
| 22.0            | 6                      | +5.9796142E+02 | +3.5833894E+01        | +6.4500000E+02 | +5.4873999E+02 | +5.7263354E+02 |
| 23.0            | 2                      | +5.3182983E+02 | +1.5388167E+01        | +5.4270996E+02 | +5.2094995E+02 | +5.7254321E+02 |
| 24.0            | 4                      | +5.6906982E+02 | +2.2741921E+01        | +5.9000000E+02 | +5.3669995E+02 | +5.7245312E+02 |
| 25.0            | 4                      | +5.9236743E+02 | +1.4689404E+01        | +6.0820996E+02 | +5.7500000E+02 | +5.7236279E+02 |
| 26.0            | 2                      | +5.7000000E+02 | +7.0710678E+00        | +5.7500000E+02 | +5.6500000E+02 | +5.7227270E+02 |
| 33.0            | 4                      | +5.3375000E+02 | +3.2755406E+01        | +5.7500000E+02 | +5.5000000E+02 | +5.7164111E+02 |
| 34.0            | 6                      | +5.4916650E+02 | +6.0861865E+01        | +6.4500000E+02 | +5.5000000E+02 | +5.7155078E+02 |
| 38.0            | 1                      | +5.0500000E+02 | +0.0000000E+71        | +5.0500000E+02 | +5.0500000E+02 | +5.7118994E+02 |
| 40.0            | 2                      | +6.2294482E+02 | +9.8393488E+00        | +6.2989990E+02 | +6.1598999E+02 | +5.7100952E+02 |
| 41.0            | 4                      | +5.8125000E+02 | +1.6007810E+01        | +6.0500000E+02 | +5.7000000E+02 | +5.7091943E+02 |
| 43.0            | 2                      | +5.6895996E+02 | +2.6457455E-02        | +5.6895996E+02 | +5.6895996E+02 | +5.7073901E+02 |
| 45.0            | 7                      | +5.5229687E+02 | +1.3088065E+01        | +5.6931982E+02 | +5.4097998E+02 | +5.7055859E+02 |
| 46.0            | 5                      | +5.7339990E+02 | +3.3346656E+00        | +5.7643994E+02 | +5.6795996E+02 | +5.7046826E+02 |
| 47.0            | 2                      | +6.0458471E+02 | +4.2464954E+00        | +6.0755981E+02 | +6.0160986E+02 | +5.7037817E+02 |
| 48.0            | 4                      | +5.4338232E+02 | +4.2273191E+01        | +5.8395996E+02 | +4.9000000F+02 | +5.7028784E+02 |
| 49.0            | 1                      | +5.7579980E+02 | +0.0000000E+03        | +5.7579980E+02 | +5.7579980E+02 | +5.7019775E+02 |
| 50.0            | 2                      | +5.5250000E+02 | +3.5355339E+00        | +5.5500000E+02 | +5.5000000E+02 | +5.7010742E+02 |
| 52.0            | 3                      | +5.4299316E+02 | +3.4555181E+00        | +5.4689990E+02 | +5.4039900E+02 | +5.6992700E+02 |
| 53.0            | 10                     | +5.5654711E+02 | +1.0772450E+01        | +5.6865991E+02 | +5.3853979E+02 | +5.6983691E+02 |
| 54.0            | 17                     | +5.5102709E+02 | +3.1182962E+01        | +6.2203979E+02 | +5.0500000E+02 | +5.6974658E+C2 |
| 55.0            | 11                     | +5.6453295E+02 | +3.7990911E+01        | +6.1000000E+02 | +5.1276977E+02 | +5.6965625E+02 |
| 56.0            | 6                      | +5.5058813E+02 | +3.5224132E+01        | +5.9610986E+02 | +5.009985E+02  | +5.6956616E+02 |
| 58.0            | 6                      | +5.6596142E+02 | +2.7159766E+01        | +5.8793994E+02 | +5.1848999E+02 | +5.6938574E+02 |
| 59.0            | 1                      | +5.5694995E+02 | +0.0000000E+35        | +5.5694995E+02 | +5.5694995E+02 | +5.6929541E+02 |
| 60.0            | 5                      | +6.2555175E+02 | +2.4260307E+01        | +6.4965991E+02 | +5.9000000E+02 | +5.6920532E+02 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 61.0            | 2                      | +5.800000E+02   | +1.4142135E+01        | +5.900000E+02  | +5.700000E+02  | +5.6911499E+02 |
| 62.0            | 2                      | +6.200000E+02   | +0.000000E+47         | +6.200000E+02  | +6.200000E+02  | +5.6902490E+02 |
| 64.0            | 2                      | +5.1756469E+02  | +1.7750086E+01        | +5.3010986E+02 | +5.0501977E+02 | +5.6884448E+02 |
| 65.0            | 2                      | +6.425000E+02   | +3.5355339E+00        | +6.450000E+02  | +6.400000E+02  | +5.6875415E+02 |
| 57.0            | 4                      | +5.525000E+02   | +1.8484227E+01        | +5.800000E+02  | +5.400000E+02  | +5.6857373E+02 |
| 69.0            | 10                     | +5.8319628E+02  | +3.4834574E+01        | +6.400000E+02  | +5.5352978E+02 | +5.6839331E+02 |
| 70.0            | 10                     | +5.9789648E+02  | +3.1103661E+01        | +6.4945996E+02 | +5.600000E+02  | +5.6830322E+02 |
| 71.0            | 11                     | +6.0169799E+02  | +9.2555606E+00        | +6.1928979E+02 | +5.8150976E+02 | +5.6821289E+02 |
| 72.0            | 8                      | +5.8360351E+02  | +4.5400143E+01        | +6.5090991E+02 | +5.3000000E+02 | +5.6812280E+02 |
| 73.0            | 4                      | +5.8422973E+02  | +6.0579438E+01        | +6.3939990E+02 | +5.1325000E+02 | +5.6803247E+02 |
| 75.0            | 2                      | +5.9750000E+02  | +1.06066601E+01       | +6.0500000E+02 | +5.9000000E+02 | +5.6785205E+02 |
| 76.0            | 4                      | +5.8272241E+02  | +7.90277780E+00       | +5.8925976E+02 | +5.7196997E+02 | +5.6776196E+02 |
| 77.0            | 9                      | +5.6665258E+02  | +3.8685696E+01        | +6.2756982E+02 | +5.2000000E+02 | +5.6767163E+02 |
| 78.0            | 9                      | +5.4799389E+02  | +3.1066334E+01        | +6.0200976E+02 | +5.1458984E+02 | +5.6758154E+02 |
| 80.0            | 2                      | +5.8302978E+02  | +7.7927364E+00        | +5.8851977E+02 | +5.7753979E+02 | +5.6740087E+02 |
| 81.0            | 9                      | +5.6458154E+02  | +2.2799618E+01        | +5.9264900E+02 | +5.3000000E+02 | +5.6731079E+02 |
| 83.0            | 2                      | +5.8269995E+02  | +9.6194494E+00        | +5.8950000E+02 | +5.7589990E+02 | +5.6713037E+02 |
| 84.0            | 6                      | +5.6838134E+02  | +9.5548330E+00        | +5.8425976E+02 | +5.5950000E+02 | +5.6704003E+02 |
| 85.0            | 2                      | +5.5872998E+02  | +3.5256702E+00        | +5.6121997E+02 | +5.5623999E+02 | +5.6694995E+02 |
| 88.0            | 6                      | +5.2239160E+02  | +5.7038737E+01        | +5.8295996E+02 | +4.5000000E+02 | +5.6667919E+02 |
| 89.0            | 3                      | +5.6244653E+02  | +2.0974739E+01        | +5.7597998E+02 | +5.3828979E+02 | +5.6658911E+02 |
| 90.0            | 4                      | +5.5508740E+02  | +2.6745111E+01        | +5.8032983E+02 | +5.2892993E+02 | +5.6649877E+02 |
| 94.0            | 2                      | +4.3786474E+02  | +1.4550410E+01        | +4.4814990E+02 | +4.2757983E+02 | +5.6613793E+02 |
| 95.0            | 4                      | +5.5308984E+02  | +2.1207144E+01        | +5.6657983E+02 | +5.2172998E+02 | +5.6604785E+02 |
| 96.0            | 4                      | +5.2219482E+02  | +7.6348198E+00        | +5.2834985E+02 | +5.1000000E+02 | +5.6595751E+02 |
| 100.0           | 2                      | +5.74434681E+02 | +5.3567623E+00        | +5.7821997E+02 | +5.7064990E+02 | +5.6559667E+02 |
| 101.0           | 2                      | +5.5044995E+02  | +5.6082537E+00        | +5.5440991E+02 | +5.4648999E+02 | +5.6550659E+02 |
| 102.0           | 8                      | +5.6732958E+02  | +3.4280548E+01        | +5.9489990E+02 | +5.0965991E+02 | +5.6541625E+02 |
| 105.0           | 2                      | +5.4314990E+02  | +5.1773224E+00        | +5.4679980E+02 | +5.3950000E+02 | +5.6514575E+02 |
| 108.0           | 2                      | +5.2655981E+02  | +3.6001535E+00        | +5.2906982E+02 | +5.2404980E+02 | +5.6487500E+02 |
| 109.0           | 2                      | +5.8410986E+02  | +1.0223636E+01        | +5.9132983E+02 | +5.7688989E+02 | +5.6478466E+02 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 110.0           | 2                      | +5.7719995E+02 | +2.4228566E+00        | +5.7889990E+02 | +5.7550000E+02 | +5.6469458E+02 |
| 113.0           | 2                      | +5.6501977E+02 | +2.5606317E+00        | +5.6676977E+02 | +5.6326977E+02 | +5.6442382E+02 |
| 115.0           | 2                      | +5.6779980E+02 | +8.9378277E-01        | +5.6839990E+02 | +5.6719995E+02 | +5.6424340E+02 |
| 116.0           | 2                      | +5.9424975E+02 | +5.0413451E+00        | +5.9779980E+02 | +5.9069995E+02 | +5.6415332E+02 |
| 118.0           | 12                     | +5.6693750E+02 | +5.7005943E+01        | +6.2046997E+02 | +4.7754980E+02 | +5.6397290E+02 |
| 119.0           | 5                      | +5.4448168E+02 | +5.1186877E+01        | +5.9761987E+02 | +4.7418994E+02 | +5.6388256E+02 |
| 120.0           | 4                      | +5.8512988E+02 | +2.4797551E+01        | +6.1150000E+02 | +5.5250000E+02 | +5.6379248E+02 |
| 121.0           | 2                      | +5.7306982E+02 | +2.4156744E+01        | +5.9014990E+02 | +5.5598999E+02 | +5.6370214E+02 |
| 122.0           | 4                      | +5.7851489E+02 | +5.2623271E+00        | +5.8533984E+02 | +5.7267993E+02 | +5.6361206E+02 |
| 129.0           | 2                      | +6.2094970E+02 | +5.8997438E+00        | +6.2509985E+02 | +6.1679980E+02 | +5.6298046E+02 |
| 137.0           | 2                      | +5.4095483E+02 | +5.5382919E+00        | +5.4484985E+02 | +5.3705981E+02 | +5.6225878E+02 |

ANB 3066 PROPILNT (ANA & ANB, G POLYMER) TENSILE SM 1750 IN/MIN 600 PSI

$\gamma = (( +2.6550158E-01) + (+1.3190690E-04) * X)$   
 $F =$  SIGNIFICANCE OF  $\gamma$  = SIGNIFICANT  
 $R =$  SIGNIFICANCE OF  $\alpha$  = NOT SIGNIFICANT  
 $\beta =$  SIGNIFICANCE OF  $\beta$  = NOT SIGNIFICANT  
 $N =$  DEGREES OF FREEDOM = 307  
 $S =$  TEST CONDITIONS = AMB TEMP/RH

ANA

C6=C  
ANB



## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|-----------------|
|                 |                        |                 |                       |                |                | +3.0499994E-01  |
| 14.0            | 2                      | +3.2049995E-01  | +2.1920089E-02        | +3.3599996E-01 | +2.0499994E-01 | +2.6734822E-01  |
| 15.0            | 2                      | +3.1099998E-01  | +9.3668466E-06        | +3.1099998E-01 | +3.1099998E-01 | +2.6748013E-01  |
| 16.0            | 2                      | +2.8549998E-01  | +9.1903654E-03        | +2.9199999E-01 | +2.7899998E-01 | +2.6761.04E-01  |
| 18.0            | 2                      | +2.8249996E-01  | +2.1918605E-02        | +2.9799997E-01 | +2.6699995E-01 | +2.6787585E-01  |
| 19.0            | 2                      | +2.8249996E-01  | +1.3434832E-02        | +2.9199999E-01 | +2.7299994E-01 | +2.6800781E-01  |
| 20.0            | 2                      | +2.6199996E-01  | +3.8182992E-02        | +2.8899997E-01 | +2.3499995E-01 | +2.6813971E-01  |
| 22.0            | 6                      | +2.7914965E-01  | +2.2568141E-02        | +3.0499994E-01 | +2.4869996E-01 | +2.6840353E-01  |
| 23.0            | 2                      | +2.3339992E-01  | +6.9320173E-03        | +2.3829996E-01 | +2.2849994E-01 | +2.6853543E-01  |
| 24.0            | 4                      | +2.8042483E-01  | +1.4846015E-02        | +2.9799997E-01 | +2.6369994E-01 | +2.68666734E-01 |
| 25.0            | 4                      | +2.8842496E-01  | +2.4315484E-02        | +3.2399994E-01 | +2.7029997E-01 | +2.6879924E-01  |
| 26.0            | 2                      | +2.9199993E-01  | +6.4839413E-03        | +2.9799997E-01 | +2.8599995E-01 | +2.6893115E-01  |
| 33.0            | 4                      | +2.5499987E-01  | +3.0211144E-02        | +2.9199999E-01 | +2.2699999E-01 | +2.6985448E-01  |
| 34.0            | 6                      | +2.4499970E-01  | +4.8741517E-02        | +3.1199997E-01 | +1.8099999E-01 | +2.6998639E-01  |
| 38.0            | 1                      | +2.3799997E-01  | +0.0000000E+7.1       | +2.3799997E-01 | +2.3799997E-01 | +2.7051401E-01  |
| 40.0            | 2                      | +2.7534991E-01  | +1.0394660E-02        | +2.8269994E-01 | +2.6799994E-01 | +2.7077782E-01  |
| 41.0            | 4                      | +2.6399993E-01  | +2.7006256E-02        | +2.9299998E-01 | +2.4099999E-01 | +2.7090972E-01  |
| 43.0            | 2                      | +2.6149994E-01  | +1.7746321E-04        | +2.6149994E-01 | +2.6149994E-01 | +2.7117353E-01  |
| 45.0            | 7                      | +2.88599978E-01 | +3.5599054E-02        | +3.1309998E-01 | +2.2059994E-01 | +2.7143734E-01  |
| 46.0            | 5                      | +2.4547976E-01  | +1.5943150E-02        | +2.6299995E-01 | +2.2499996E-01 | +2.7156925E-01  |
| 47.0            | 2                      | +2.5459992E-01  | +9.7579956E-03        | +2.6149994E-01 | +2.4769997E-01 | +2.7170115E-01  |
| 48.0            | 4                      | +2.5344991E-01  | +3.8897681E-02        | +2.8359997E-01 | +1.9899994E-01 | +2.7183306E-01  |
| 49.0            | 1                      | +2.6899999E-01  | +0.0000000E+0.3       | +2.6899999E-01 | +2.6899999E-01 | +2.7196496E-01  |
| 50.0            | 2                      | +2.8299993E-01  | +2.8240902E-03        | +2.8499996E-01 | +2.8099995E-01 | +2.7209687E-01  |
| 52.0            | 3                      | +2.6879996E-01  | +1.0499209E-02        | +2.7629995E-01 | +2.5679999E-01 | +2.7236074E-01  |
| 53.0            | 10                     | +2.7893978E-01  | +1.3413574E-02        | +3.0219995E-01 | +2.6749998E-01 | +2.7249264E-01  |
| 54.0            | 17                     | +2.6621723E-01  | +3.9846817E-02        | +3.2209998E-01 | +1.5599995E-01 | +2.7262455E-01  |
| 55.0            | 11                     | +2.7701783E-01  | +2.9412564E-02        | +3.1119996E-01 | +2.3493995E-01 | +2.7275645E-01  |
| 56.0            | 6                      | +2.5408315E-01  | +1.6919746E-02        | +2.7879995E-01 | +2.3799997E-01 | +2.7288836E-01  |
| 58.0            | 6                      | +2.9171639E-01  | +1.2448180E-02        | +3.0989998E-01 | +2.7829998E-01 | +2.7315217E-01  |
| 59.0            | 1                      | +2.3539996E-01  | +0.0000000E+3.5       | +2.3539996E-01 | +2.3539996E-01 | +2.7328407E-01  |
| 60.0            | 5                      | +2.9053974E-01  | +2.2256230E-02        | +3.2699996E-01 | +2.7349996E-01 | +2.7341598E-01  |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION<br>Y |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 61.0            | 2                      | +2.6749998E-01 | +2.4748653E-02        | +2.8499996E-01 | +2.5000000E-01 | +2.7354788E-01  |
| 62.0            | 2                      | +2.9849994E-01 | +9.1907829E-03        | +3.0499994E-01 | +2.9199999E-01 | +2.7367979E-01  |
| 64.0            | 2                      | +2.2819995E-01 | +2.0646958E-02        | +2.4279999E-01 | +2.1359997E-01 | +2.7394360E-01  |
| 65.0            | 2                      | +2.8349995E-01 | +1.3434547E-02        | +2.9299998E-01 | +2.7399998E-01 | +2.7407550E-01  |
| 67.0            | 4                      | +2.1299993E-01 | +5.7141230E-03        | +2.1999996E-01 | +2.0599997E-01 | +2.7433931E-01  |
| 69.0            | 10                     | +2.9283970E-01 | +1.8320957E-02        | +3.1299996E-01 | +2.6469999E-01 | +2.7460312E-01  |
| 70.0            | 10                     | +2.7173966E-01 | +4.3910759E-02        | +3.3899998E-01 | +2.1999996E-01 | +2.7473503E-01  |
| 71.0            | 11                     | +2.9592686E-01 | +1.6996659E-02        | +3.1499999E-01 | +2.5499999E-01 | +2.7486693E-01  |
| 72.0            | 8                      | +2.6916217E-01 | +2.4875952E-02        | +2.9699999E-01 | +2.2799998E-01 | +2.7499884E-01  |
| 73.0            | 4                      | +2.6347492E-01 | +4.4014781E-02        | +2.8409999E-01 | +1.9449996E-01 | +2.7513074E-01  |
| 75.0            | 2                      | +2.9249995E-01 | +4.9460191E-03        | +2.9599994E-01 | +2.8899997E-01 | +2.7539455E-01  |
| 76.0            | 4                      | +2.6374983E-01 | +4.9163270E-03        | +2.6849997E-01 | +2.5819998E-01 | +2.7552646E-01  |
| 77.0            | 9                      | +2.5722193E-01 | +2.2985323E-02        | +2.8939998E-01 | +2.1999996E-01 | +2.7565836E-01  |
| 78.0            | 9                      | +2.7274417E-01 | +3.4294227E-02        | +3.1329995E-01 | +2.2449994E-01 | +2.7579027E-01  |
| 80.0            | 2                      | +2.9789996E-01 | +2.9650728E-03        | +2.9999995E-01 | +2.9579997E-01 | +2.7605408E-01  |
| 81.0            | 9                      | +2.5473308E-01 | +1.4230329E-02        | +2.7199995E-01 | +2.2799998E-01 | +2.7618598E-01  |
| 83.0            | 2                      | +3.4259992E-01 | +9.3335779E-03        | +3.4919995E-01 | +3.3599996E-01 | +2.7644979E-01  |
| 84.0            | 6                      | +2.4733304E-01 | +6.0439971E-02        | +3.2599997E-01 | +1.7889994E-01 | +2.7658170E-01  |
| 85.0            | 2                      | +3.1819993E-01 | +5.9399765E-03        | +3.2239997E-01 | +3.1399995E-01 | +2.7671366E-01  |
| 86.0            | 6                      | +2.5466644E-01 | +2.4787896E-02        | +2.7899998E-01 | +2.1999996E-01 | +2.7710938E-01  |
| 89.0            | 3                      | +2.8406661E-01 | +1.3477935E-02        | +2.9899996E-01 | +2.7279996E-01 | +2.7724128E-01  |
| 90.0            | 4                      | +2.8099989E-01 | +1.4100963E-02        | +3.0099999E-01 | +2.6799994E-01 | +2.7737319E-01  |
| 94.0            | 2                      | +2.0369994E-01 | +4.2435948E-03        | +2.0669996E-01 | +2.0069998E-01 | +2.7790081E-01  |
| 95.0            | 4                      | +2.8249979E-01 | +5.6963429E-03        | +2.8899997E-01 | +2.7599996E-01 | +2.7803272E-01  |
| 96.0            | 4                      | +2.7474975E-01 | +4.1211447E-02        | +3.0799996E-01 | +2.1999996E-01 | +2.7816462E-01  |
| 100.0           | 2                      | +3.0154991E-01 | +9.4051879E-03        | +3.0819994E-01 | +2.9489994E-01 | +2.7869224E-01  |
| 101.0           | 2                      | +2.9599993E-01 | +1.4140953E-02        | +3.0699998E-01 | +2.8699994E-01 | +2.7882415E-01  |
| 102.0           | 8                      | +2.7279973E-01 | +1.9683442E-02        | +2.9669994E-01 | +2.3819994E-01 | +2.7895605E-01  |
| 105.0           | 2                      | +3.2524996E-01 | +4.5940192E-03        | +3.2849997E-01 | +3.2199996E-01 | +2.7935177E-01  |
| 108.0           | 2                      | +3.2224994E-01 | +3.1773070E-03        | +3.2449996E-01 | +3.1999999E-01 | +2.7974748E-01  |
| 109.0           | 2                      | +3.0334997E-01 | +9.2603724E-03        | +3.0989998E-01 | +2.9679995E-01 | +2.7987939E-01  |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 110.0           | 2                      | +3.0654996E-01 | +6.1404055E-04        | +3.0699998E-01 | +3.0609995E-01 | +2.8001129E-01 |
| 113.0           | 2                      | +3.1174993E-01 | +1.7243795E-04        | +3.1179994E-01 | +3.1169998E-01 | +2.8040701E-01 |
| 115.0           | 2                      | +2.9374997E-01 | +1.0534271E-02        | +3.0719995E-01 | +2.9229998E-01 | +2.8067182E-01 |
| 116.0           | 2                      | +2.9729992E-01 | +8.9091572E-03        | +3.0359995E-01 | +2.9099994E-01 | +2.8080272E-01 |
| 118.0           | 12                     | +2.8176641E-01 | +2.2457355E-02        | +3.1949996E-01 | +2.4349999E-01 | +2.8106659E-01 |
| 119.0           | 5                      | +2.7649974E-01 | +2.1760764E-02        | +3.023999E-01  | +2.5369995E-01 | +2.8119850E-01 |
| 120.0           | 4                      | +2.7539992E-01 | +6.4490516E-03        | +2.8059995E-01 | +2.6599997E-01 | +2.8133040E-01 |
| 121.0           | 2                      | +2.9149997E-01 | +1.2019444E-02        | +2.9999995E-01 | +2.8299999E-01 | +2.8146231E-01 |
| 122.0           | 4                      | +2.9564976E-01 | +3.4519689E-03        | +2.9839998E-01 | +2.9089999E-01 | +2.8159421E-01 |
| 129.0           | 2                      | +2.7924996E-01 | +3.4626055E-03        | +2.8169995E-01 | +2.7679997E-01 | +2.8251755E-01 |
| 137.0           | 2                      | +2.7699995E-01 | +1.8382597E-02        | +2.8999996E-01 | +2.6399999E-01 | +2.8357279E-01 |

ANB 3066 PROPLNT (ANA & ANB UNLND. G POLYMER) TENSILE ER 1750 IN/MIN. 600 PSI

$\gamma = (( +5.3019211E+03) + (-2.2971336E+00) * X)$   
 SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $S_f = +1.3416389E+03$   
 SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $S_r = +2.6777833E+00$   
 SIGNIFICANCE OF t = NOT SIGNIFICANT  
 $S_t = +1.3422145E+03$   
 DEGREES OF FREEDOM = 307  
 N = 309  
 STORAGE CONDITIONS = AMB TEMP/RH

ANA  
 ANB



ANB 3066 PROPELLANT (ANA & ANB UNLND, G POLYMER) TENSILE MOD 1750 IN/MIN, 600 PSI

Figure 5-24

## \*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 14.0            | 2                      | +4.650000E+03  | +7.0710678E+01        | +4.700000E+03  | +4.600000E+03  | +5.2697578E+03 |
| 15.0            | 2                      | +4.650000E+03  | +3.5355339E+02        | +4.900000E+03  | +4.400000E+03  | +5.2674509E+03 |
| 16.0            | 2                      | +5.450000E+03  | +7.7781745E+02        | +6.000000E+03  | +4.900000E+03  | +5.2651640E+03 |
| 18.0            | 2                      | +5.700000E+03  | +1.4142135E+02        | +5.800000E+03  | +5.600000E+03  | +5.2605703E+03 |
| 19.0            | 2                      | +5.700000E+03  | +1.4142135E+02        | +5.800000E+03  | +5.600000E+03  | +5.2582734E+03 |
| 20.0            | 2                      | +5.250000E+03  | +4.9497474E+02        | +5.000000E+03  | +4.900000E+03  | +5.2559765E+03 |
| 22.0            | 6                      | +5.9166640E+03 | +5.2694085E+02        | +6.000000E+03  | +5.100000E+03  | +5.2513828E+03 |
| 23.0            | 2                      | +5.750000E+03  | +2.1213203E+02        | +5.900000E+03  | +5.600000E+03  | +5.2490859E+03 |
| 24.0            | 4                      | +5.675000E+03  | +3.5939764E+02        | +6.200000E+03  | +5.400000E+03  | +5.2467890E+03 |
| 25.0            | 4                      | +6.075000E+03  | +1.40326699E+03       | +7.800000E+03  | +4.700000E+03  | +5.2444921E+03 |
| 26.0            | 2                      | +5.150000E+03  | +3.5355339E+02        | +5.400000E+03  | +4.900000E+03  | +5.2421953E+03 |
| 33.0            | 4                      | +5.050000E+03  | +2.38047761E+02       | +5.300000E+03  | +4.800000E+03  | +5.2261132E+03 |
| 34.0            | 6                      | +5.7166640E+03 | +6.82397773E+02       | +6.600000E+03  | +5.000000E+03  | +5.2238164E+03 |
| 38.0            | 1                      | +5.300000E+03  | +0.000000E+71         | +5.300000E+03  | +5.300000E+03  | +5.2146289E+03 |
| 40.0            | 2                      | +6.410000E+03  | +8.6267027E+02        | +7.020000E+03  | +5.800000E+03  | +5.2100351E+03 |
| 41.0            | 4                      | +6.025000E+03  | +9.0691785E+02        | +6.900000E+03  | +4.900000E+03  | +5.2077382E+03 |
| 43.0            | 2                      | +6.000000E+03  | +0.000000E+83         | +6.000000E+03  | +6.000000E+03  | +5.2031406E+03 |
| 45.0            | 7                      | +4.5314257E+03 | +1.6618149E+03        | +7.100000E+03  | +3.4360000E+03 | +5.1985468E+03 |
| 46.0            | 5                      | +5.5243984E+03 | +1.4906548E+03        | +7.300000E+03  | +3.8780000E+03 | +5.1962500E+03 |
| 47.0            | 2                      | +4.5210000E+03 | +2.4039550E+02        | +4.6910000E+03 | +4.3510000E+03 | +5.1939531E+03 |
| 48.0            | 4                      | +5.950000E+03  | +5.4467115E+02        | +6.700000E+03  | +5.500000E+03  | +5.1916562E+03 |
| 49.0            | 1                      | +5.000000E+03  | +0.000000E+03         | +5.000000E+03  | +5.000000E+03  | +5.1893593E+03 |
| 50.0            | 2                      | +5.050000E+03  | +4.9497474E+02        | +5.400000E+03  | +4.700000E+03  | +5.1870625E+03 |
| 52.0            | 3                      | +4.2466640E+03 | +1.1746205E+02        | +4.3280000E+03 | +4.1120000E+03 | +5.1824687E+03 |
| 53.0            | 10                     | +4.0328999E+03 | +2.7726118E+02        | +4.4870000E+03 | +3.6970000E+03 | +5.1801718E+03 |
| 54.0            | 17                     | +5.0456445E+03 | +1.8216997E+03        | +8.3000000E+03 | +2.6400000E+03 | +5.1778750E+03 |
| 55.0            | 11                     | +5.1561796E+03 | +1.8559266E+03        | +7.4000000E+03 | +3.1590000E+03 | +5.1755781E+03 |
| 56.0            | 5                      | +4.8760000E+03 | +1.1950484E+03        | +6.6000000E+03 | +3.6080000E+03 | +5.1732812E+03 |
| 58.0            | 6                      | +4.2245000E+03 | +4.0682145E+02        | +4.7360000E+03 | +3.7290000E+03 | +5.1686835E+03 |
| 59.0            | 1                      | +5.3000000E+03 | +0.0000000E+35        | +5.3000000E+03 | +5.3000000E+03 | +5.1663867E+03 |
| 50.0            | 5                      | +4.4543984E+03 | +4.5940047E+02        | +4.9000000E+03 | +3.8260000E+03 | +5.1640898E+03 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 61.0            | 2                      | +5.100000E+03  | +1.4142135E+02        | +5.200000E+03  | +5.000000E+03  | +5.1617929E+03 |
| 62.0            | 2                      | +6.570000E+03  | +1.4142135E+02        | +6.600000E+03  | +6.400000E+03  | +5.1594960E+03 |
| 64.0            | 2                      | +6.150000E+03  | +3.5355339E+02        | +6.400000E+03  | +5.900000E+03  | +5.1549023E+03 |
| 65.0            | 2                      | +5.550000E+03  | +7.0710678E+01        | +5.600000E+03  | +5.500000E+03  | +5.1526054E+03 |
| 57.0            | 4                      | +7.675000E+03  | +3.5939764E+02        | +8.200000E+03  | +7.400000E+03  | +5.1480117E+03 |
| 69.0            | 10                     | +4.7455976E+03 | +1.3278341E+03        | +6.4120000E+03 | +3.4450000E+03 | +5.1434179E+03 |
| 70.0            | 10                     | +5.4556992E+03 | +1.4439931E+03        | +7.500000E+03  | +3.585000E+03  | +5.1411210E+03 |
| 71.0            | 11                     | +4.4671796E+03 | +3.5470898E+02        | +4.9970000E+03 | +3.9190000E+03 | +5.1388242E+03 |
| 72.0            | 8                      | +5.2753750E+03 | +1.6119023E+03        | +7.7000000E+03 | +3.5840000E+03 | +5.1365273E+03 |
| 73.0            | 4                      | +4.9560000E+03 | +1.4768669E+03        | +6.9500000E+03 | +3.7950000E+03 | +5.1342265E+03 |
| 75.0            | 2                      | +5.2500000E+03 | +7.0710678E+01        | +5.3000000E+03 | +5.2000000E+03 | +5.1296328E+03 |
| 76.0            | 4                      | +5.1397500E+03 | +4.1260463E+02        | +5.5440000E+03 | +4.5680000E+03 | +5.1273359E+03 |
| 77.0            | 9                      | +5.4882187E+03 | +1.0590901E+03        | +7.6000000E+03 | +4.3260000E+03 | +5.1250390E+03 |
| 78.0            | 9                      | +5.2352187E+03 | +1.5058234E+03        | +7.7000000E+03 | +3.6510000E+03 | +5.1227421E+03 |
| 80.0            | 2                      | +3.8705000E+03 | +3.0475481E+02        | +4.0860000E+03 | +3.6550000E+03 | +5.1181484E+03 |
| 81.0            | 9                      | +4.7378867E+03 | +1.9012890E+03        | +7.7000000E+03 | +2.6350000E+03 | +5.1158515E+03 |
| 83.0            | 2                      | +5.3665000E+03 | +2.9769027E+02        | +5.5770000E+03 | +5.1560000E+03 | +5.1112578E+03 |
| 84.0            | 6                      | +6.1101640E+03 | +1.1847251E+03        | +7.7660000E+03 | +4.3800000E+03 | +5.1089609E+03 |
| 85.0            | 2                      | +6.4145000E+03 | +2.1213203E+00        | +6.4160000E+03 | +6.4130000E+03 | +5.1066640E+03 |
| 88.0            | 6                      | +4.6621640E+03 | +1.1449321E+03        | +6.7000000E+03 | +3.6620000E+03 | +5.0997695E+03 |
| 89.0            | 3                      | +3.7913332E+03 | +5.9438651E+02        | +4.1790000E+03 | +3.1070000E+03 | +5.0974726E+03 |
| 90.0            | 4                      | +3.4255000E+03 | +9.2235312E+02        | +4.4110000E+03 | +2.3030000E+03 | +5.0951757E+03 |
| 94.0            | 2                      | +8.1500000E+03 | +7.0710678E+01        | +8.2000000E+03 | +8.1000000E+03 | +5.0859882E+03 |
| 95.0            | 4                      | +3.2532500E+03 | +7.8656759E+02        | +3.9460000E+03 | +2.5400000E+03 | +5.0836914E+03 |
| 96.0            | 4                      | +4.2527500E+03 | +1.9008620E+03        | +6.4000000E+03 | +2.5330000E+03 | +5.0813945E+03 |
| 100.0           | 2                      | +3.1125000E+03 | +1.6899556E+02        | +3.2320000E+03 | +2.9930000E+03 | +5.0722070E+03 |
| 101.0           | 2                      | +5.7635000E+03 | +9.6868467E+01        | +5.8320000E+03 | +5.6950000E+03 | +5.0699101E+03 |
| 102.0           | 8                      | +5.2867500E+03 | +1.5240931E+03        | +7.5100000E+03 | +3.6750000E+03 | +5.0676132E+03 |
| 105.0           | 2                      | +4.8180000E+03 | +9.3903354E+02        | +5.4820000E+03 | +4.1540000E+03 | +5.0607187E+03 |
| 108.0           | 2                      | +5.2450000E+03 | +8.4841027E+01        | +5.3050000E+03 | +5.1850000E+03 | +5.0538281E+03 |
| 109.0           | 2                      | +6.6720000E+03 | +6.2225396E+02        | +7.1120000E+03 | +6.2320000E+03 | +5.0515312E+03 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 110.0           | 2                      | +6.0050000E+03 | +2.2908077E+02        | +6.1670000E+03 | +5.8430000E+03 | +5.0492343E+03 |
| 113.0           | 2                      | +6.0650000E+03 | +2.2767959E+02        | +6.2260000E+03 | +5.9040000E+03 | +5.0423437E+03 |
| 115.0           | 2                      | +6.0540000E+03 | +1.1483379E+03        | +6.8660000E+03 | +5.2420000E+03 | +5.0377530E+03 |
| 116.0           | 2                      | +6.2205000E+03 | +4.0292679E+01        | +6.2490000E+03 | +6.1920000E+03 | +5.0354531E+03 |
| 118.0           | 12                     | +4.2490000E+03 | +1.1678706E+03        | +6.8650000E+03 | +3.1950000E+03 | +5.0308554E+03 |
| 119.0           | 5                      | +5.5251992E+03 | +1.7565495E+03        | +7.0900000E+03 | +3.4110000E+03 | +5.0285585E+03 |
| 120.0           | 4                      | +5.4470000E+03 | +1.7685063E+03        | +7.1860000E+03 | +3.9160000E+03 | +5.0262617E+03 |
| 121.0           | 2                      | +3.8110000E+03 | +1.6118932E+02        | +3.9250000E+03 | +3.6970000E+03 | +5.0239648E+03 |
| 122.0           | 4                      | +6.4490000E+03 | +2.6912946E+02        | +6.6070000E+03 | +6.0470000E+03 | +5.0216679E+03 |
| 129.0           | 2                      | +7.4345000E+03 | +1.6896005E+02        | +7.5540000E+03 | +7.3150000E+03 | +5.0055898E+03 |
| 137.0           | 2                      | +4.3885000E+03 | +2.4484689E+01        | +4.4060000E+03 | +4.3710000E+03 | +4.9872109E+03 |

ANB 3066 PROPLNT (ANA & ANB UNLND, G POLYMER) TENSILE MOD 1750 IN/MIN, 600 PSI

$F = +2.8394099E+00$   
 $R = +7.5749873E-02$   
 $t_1 = +1.6850548E+00$   
 $N = 494$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP./RH}$   
 $\gamma = (( +5.7518505E+02) + (+1.0888869E-01)) * X$   
 SIGNIFICANCE OF F = NOT SIGNIFICANT  
 SIGNIFICANCE OF R = NOT SIGNIFICANT  
 SIGNIFICANCE OF t\_1 = NOT SIGNIFICANT  
 DEGREES OF FREEDOM = 492

TEST CONDITIONS =

$\times$  ANBP  
 $\triangle$  ANBG



Figure 5-25

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |                |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|-----------------|----------------|
|                 |                        |                 |                       |                |                | +5.3979980E+02  | +5.7692724E+02 |
| 16.0            | 2                      | +5.90865937E+02 | +2.5755353E+01        | +6.2000000E+02 | +5.7193994E+02 | +5.7747167E+02  | +5.7747167E+02 |
| 21.0            | 2                      | +5.9679476E+02  | +2.6774965E+01        | +6.0579980E+02 | +5.6402978E+02 | +5.4873559E+02  | +5.7758C56E+C2 |
| 22.0            | 2                      | +5.9679476E+02  | +1.082C743E+01        | +5.6402978E+02 | +5.427996E+02  | +5.02094995E+02 | +5.7768945E+C2 |
| 23.0            | 2                      | +5.93182093E+02 | +1.5388167E+01        | +5.427996E+02  | +5.427996E+02  | +5.02094995E+02 | +5.7768945E+C2 |
| 24.0            | 2                      | +5.9562589E+02  | +2.6769421E+01        | +5.7457983E+02 | +5.3669955E+02 | +5.7779833E+02  | +5.7779833E+02 |
| 24.1            | 2                      | +5.9562589E+02  | +2.6769421E+01        | +5.7457983E+02 | +5.0820996E+02 | +5.8525976E+02  | +5.779C722E+C2 |
| 25.0            | 2                      | +5.9723486E+02  | +1.5529364E+01        | +6.2038989E+02 | +5.8370996E+02 | +5.8370996E+02  | +5.7823388E+C2 |
| 25.0            | 6                      | +6.0494585E+02  | +1.55C6239E+01        | +6.1471957E+02 | +5.7578979E+02 | +5.7634277E+02  | +5.7634277E+02 |
| 29.0            | 2                      | +5.9525488E+02  | +2.7530646E+C1:       | +6.0767993E+02 | +5.6721997E+02 | +5.7845166E+02  | +5.7845166E+02 |
| 30.0            | 2                      | +5.9786497E+02  | +1.722492E+C1         | +6.0767993E+02 | +5.0500000E+02 | +5.7877832E+C2  | +5.7877832E+C2 |
| 33.0            | 2                      | +5.0750000E+02  | +3.5355339E+C0        | +5.1000000E+02 | +5.0500000E+02 | +5.788720E+C2   | +5.788720E+C2  |
| 34.0            | 6                      | +5.4916650E+02  | +6.0861865E+01        | +6.4500000E+02 | +5.0500000E+02 | +5.7910498E+C2  | +5.7910498E+C2 |
| 36.0            | 2                      | +4.5500000E+02  | +1.4142135E+01        | +5.0500000E+02 | +4.9500000E+02 | +5.0500000E+02  | +5.0500000E+02 |
| 39.0            | 1                      | +5.0500000E+02  | +0.000000E+11         | +5.0500000E+02 | +5.0500000E+02 | +5.7932275E+02  | +5.7932275E+02 |
| 39.0            | 4                      | +6.0225000E+02  | +2.500000E+01         | +6.5000000E+02 | +5.9000000E+02 | +5.7943164E+02  | +5.7943164E+02 |
| 40.0            | 2                      | +6.02254492E+02 | +5.8393488E+C0        | +6.2989950E+02 | +6.1598999E+02 | +5.7954052E+C2  | +5.7954052E+C2 |
| 41.0            | 6                      | +5.9792651E+02  | +2.88C4269E+01        | +6.3550991E+02 | +5.7000000E+02 | +5.7964941E+02  | +5.7964941E+02 |
| 43.0            | 2                      | +6.072C490E+02  | +6.4302697E+01        | +6.1155981E+02 | +6.0248999E+02 | +5.7986718E+C2  | +5.7986718E+C2 |
| 45.0            | 7                      | +5.5229687E+02  | +1.30E8065E+01        | +5.6931982E+02 | +5.4097998E+02 | +5.80C8496E+02  | +5.80C8496E+02 |
| 46.0            | 7                      | +5.6742846E+02  | +1.6738136E+C1        | +5.7643994E+02 | +5.3000000E+02 | +5.8C19384E+C2  | +5.8C19384E+C2 |
| 47.0            | 2                      | +6.0458471E+02  | +4.2464954E+C0        | +6.0755981E+02 | +6.0160086E+02 | +5.9020273E+C2  | +5.9020273E+C2 |
| 48.0            | 4                      | +5.4338232E+02  | +4.2272191E+C1        | +5.8395996E+02 | +4.9000000E+C2 | +5.8041162E+C2  | +5.8041162E+C2 |
| 49.0            | 2                      | +6.02750030E+02 | +2.4748737E+01        | +6.4500000E+C2 | +6.1000000E+02 | +5.805205CE+C2  | +5.805205CE+C2 |
| 50.0            | 4                      | +5.7875000E+02  | +3.27554C6E+C1        | +6.2000000E+02 | +5.5000000E+C2 | +5.8062939E+C2  | +5.8062939E+C2 |
| 52.0            | 6                      | +5.65897573E+02 | +3.7271333E+C1        | +6.1541992E+02 | +5.4039950E+C2 | +5.8C84716E+C2  | +5.8C84716E+C2 |
| 53.0            | 9                      | +5.77757934E+02 | +3.175108CE+C1        | +6.3AC4980F+02 | +5.5025976E+02 | +5.8C95605F+C2  | +5.8C95605F+C2 |
| 54.0            | 10                     | +5.6214665E+02  | +4.1428000E+C1        | +6.3451977E+02 | +5.0500000E+02 | +5.91C6494E+C2  | +5.91C6494E+C2 |
| 55.0            | 12                     | +5.9599145E+02  | +3.3825232E+C1        | +6.2000000E+02 | +5.1276977E+02 | +5.8117382E+C2  | +5.8117382E+C2 |
| 56.0            | 9                      | +5.6229131E+02  | +3.7268351E+C1        | +6.6815991E+02 | +5.009985E+02  | +5.8128271F+C2  | +5.8128271F+C2 |
| 57.0            | 6                      | +6.0321434E+02  | +4.07557310E+C1       | +6.4500000E+02 | +5.3694995E+02 | +5.8139160E+02  | +5.8139160E+02 |
| 58.0            | 5                      | +5.8280575E+02  | +3.06655740E+C1       | +6.2000000E+02 | +5.3619955E+C2 | +5.8150048E+C2  | +5.8150048E+C2 |
| 59.0            | 4                      | +6.0756766E+02  | +3.6157913E+C1        | +6.1500000E+02 | +5.2971997E+C2 | +5.8171826E+C2  | +5.8171826E+C2 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>NO. & GROUP | STANDARD<br>DEVIATION |                 | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|--------------------------|-----------------------|-----------------|-----------------|----------------|----------------|
|                 |                          | MEAN Y                | S.E.C.O.D.O.E   |                 |                |                |
| 51.0            | 2                        | +1.4142135E+01        | +5.900000E+02   | +5.700000E+02   | +5.8182714E+02 |                |
| 52.0            | 4                        | +6.2376733E+02        | +8.5954070E+02  | +6.3662928E+02  | +6.1843954E+02 | +5.8193603E+02 |
| 53.0            | 6                        | +6.2679467E+02        | +4.1245974E+02  | +6.3C55981E+02  | +6.200000E+02  | +5.8204492E+02 |
| 54.0            | 4                        | +5.9CC3222E+02        | +7.6235632E+C1  | +6.700000E+02   | +5.0501977E+02 | +5.8215380E+02 |
| 55.0            | 4                        | +6.237520CE+02        | +1.1096778E+C1  | +6.45C0020CE+02 | +6.200000E+02  | +5.8226269E+02 |
| 56.0            | 2                        | +6.6C0000CE+02        | +7.0710578E+C2  | +6.65C000CE+C2  | +6.550000E+02  | +5.8237158E+02 |
| 57.0            | 4                        | +5.5252002E+02        | +1.9484227E+C1  | +5.800000CE+02  | +5.490000CE+02 | +5.8248046E+02 |
| 58.0            | 4                        | +6.4750030E+02        | +1.1902380E+C1  | +5.65C000CE+02  | +6.400000CE+02 | +5.8258935E+02 |
| 59.0            | 12                       | +6.2410255F+02        | +1.9711943E+C1  | +6.500000CE+02  | +5.8655981E+02 | +5.8269824E+02 |
| 60.0            | 9                        | +5.9C17871E+02        | +4.1292629E+C1  | +6.4945956E+02  | +5.400000CE+02 | +5.8280712E+02 |
| 61.0            | 5                        | +5.7576977E+02        | +2.3314515E+C1  | +5.9743954E+02  | +5.4973999E+02 | +5.8291601E+02 |
| 62.0            | 19                       | +5.9281884E+02        | +3.7014451E+C1  | +6.600000CE+02  | +5.300000CE+02 | +5.8302490E+02 |
| 63.0            | 4                        | +5.8422973E+02        | +6.0579438E+C1  | +6.3939990E+02  | +5.1325000E+02 | +5.8313378F+02 |
| 64.0            | 5                        | +5.7644775E+02        | +4.0619504E+C1  | +6.050000CE+02  | +5.050000CE+02 | +5.8325156E+02 |
| 65.0            | 5                        | +5.7917773E+02        | +1.2471733E+C1  | +5.8925976E+02  | +5.650000CE+02 | +5.834644E+02  |
| 66.0            | 11                       | +5.8233908E+02        | +4.9111729F+C1  | +6.5502978E+02  | +5.200000CE+02 | +5.8356933E+02 |
| 67.0            | 15                       | +5.68120336E+02       | +3.7059045E+C1  | +6.1955981E+C2  | +5.1458984E+C2 | +5.8367822E+C2 |
| 68.0            | 2                        | +6.1315991E+02        | +1.2689833F+C1  | +6.2212988E+C2  | +6.0418954E+C2 | +5.8378710E+C2 |
| 69.0            | 7                        | +5.5735693E+02        | +3.2901174E+C1  | +5.8851977E+C2  | +4.9298999E+C2 | +5.8389599E+C2 |
| 70.0            | 9                        | +5.6458154E+02        | +2.2799618E+C1  | +5.9264990E+C2  | +5.300000CE+02 | +5.8400488E+C2 |
| 71.0            | 5                        | +6.0412302E+02        | +1.3874565E+C1  | +6.1401977E+C2  | +5.8822999E+C2 | +5.8411376E+C2 |
| 72.0            | 2                        | +5.5889990E+02        | +5.3192715E+C1  | +6.200000CE+02  | +5.400000CE+02 | +5.8422265E+C2 |
| 73.0            | 6                        | +5.8702246E+02        | +3.8589017E+C1  | +6.600000CE+C2  | +5.5485986E+C2 | +5.8433154E+C2 |
| 74.0            | 4                        | +5.6458154E+02        | +3.7934570E+C1  | +6.2716992E+C2  | +5.5523099E+C2 | +5.8444442E+C2 |
| 75.0            | 7                        | +5.223916CE+02        | +5.7338777E+C1  | +5.8295996E+C2  | +4.500000CE+C2 | +5.8476708E+C2 |
| 76.0            | 3                        | +5.6244653E+02        | +2.9747395E+C1  | +5.7597998E+C2  | +5.3828979E+C2 | +5.847557E+C2  |
| 77.0            | 10                       | +5.8702246E+02        | +3.8589017E+C1  | +6.600000CE+C2  | +5.5485986E+C2 | +5.8433154E+C2 |
| 78.0            | 3                        | +5.6458154E+02        | +3.7934570E+C1  | +6.2716992E+C2  | +5.5523099E+C2 | +5.8444442E+C2 |
| 79.0            | 2                        | +6.1315991E+02        | +1.2689833F+C1  | +6.2212988E+C2  | +6.0418954E+C2 | +5.8378710E+C2 |
| 80.0            | 7                        | +5.5735693E+02        | +3.2901174E+C1  | +5.8851977E+C2  | +4.9298999E+C2 | +5.8389599E+C2 |
| 81.0            | 9                        | +5.6458154E+02        | +2.2799618E+C1  | +5.9264990E+C2  | +5.300000CE+02 | +5.8400488E+C2 |
| 82.0            | 5                        | +6.0412302E+02        | +1.3874565E+C1  | +6.1401977E+C2  | +5.8822999E+C2 | +5.8411376E+C2 |
| 83.0            | 6                        | +5.5889990E+02        | +5.3192715E+C1  | +6.200000CE+02  | +5.400000CE+02 | +5.8422265E+C2 |
| 84.0            | 10                       | +5.8702246E+02        | +3.8589017E+C1  | +6.600000CE+C2  | +5.5485986E+C2 | +5.8433154E+C2 |
| 85.0            | 4                        | +5.6458154E+02        | +3.7934570E+C1  | +6.2716992E+C2  | +5.5523099E+C2 | +5.8444442E+C2 |
| 86.0            | 7                        | +5.223916CE+02        | +5.7338777E+C1  | +5.8295996E+C2  | +4.500000CE+C2 | +5.8476708E+C2 |
| 87.0            | 3                        | +5.6244653E+02        | +2.9747395E+C1  | +5.7597998E+C2  | +5.3828979E+C2 | +5.847557E+C2  |
| 88.0            | 6                        | +5.754207F+02         | +3.79583353E+C1 | +6.2365991E+C2  | +5.2892993E+C2 | +5.8498486E+C2 |
| 89.0            | 2                        | +6.16C5483E+02        | +6.6546962E+C0  | +6.2063989E+C2  | +6.126977E+C2  | +5.8509375E+C2 |
| 90.0            | 4                        | +5.9749219F+02        | +5.7932340F+C1  | +6.3471997E+C2  | +5.1226977E+C2 | +5.8520263E+C2 |
| 91.0            | 3                        | +5.3550991E+02        | +1.3554698E+C1  | +6.4548959E+C2  | +5.2632993E+C2 | +5.8531152E+C2 |
| 92.0            | 6                        | +5.4411703E+C2        | +3.2713909E+C1  | +6.0251977E+C2  | +4.2757993E+C2 | +5.8542041E+C2 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y           | STANDARD<br>DEVIATION | MAXIMUM Y        | MINIMUM Y        | REGRESSION Y     |
|-----------------|------------------------|------------------|-----------------------|------------------|------------------|------------------|
| 35.0            | 8                      | + 5.8195365E+02  | + 3.5669332E+01       | + 6.2501977E+02  | + 5.2172958E+02  | + 5.8555292E+C2  |
| 36.0            | 7                      | + 5.6773413E+02  | + 6.3729722E+01       | + 6.5773999E+C2  | + 5.1500000E+C2  | + 5.8563818E+C2  |
| 37.0            | 4                      | + 5.987231E+02   | + 3.072457E+01        | + 6.3566992E+02  | + 5.706490E+02   | + 5.8618261E+C2  |
| 38.0            | 2                      | + 5.44995E+02    | + 5.6082637E+00       | + 5.5440991E+02  | + 5.4548959E+02  | + 5.8629150E+C2  |
| 39.0            | 3                      | + 5.6732958E+02  | + 3.42E0548E+01       | + 5.9489990E+02  | + 5.0965991E+02  | + 5.8629150E+C2  |
| 40.0            | 4                      | + 5.8430737E+02  | + 4.8215883E+01       | + 6.33C0976E+C2  | + 5.3950000E+02  | + 5.8661816E+02  |
| 41.0            | 4                      | + 6.073974E+02   | + 1.8234633E+01       | + 6.2311987E+02  | + 5.8406992E+02  | + 5.8672705E+02  |
| 42.0            | 4                      | + 6.1819726E+02  | + 1.9564522E+01       | + 6.4285986E+02  | + 5.9841992E+02  | + 5.863553E+02   |
| 43.0            | 4                      | + 5.765478E+02   | + 2.2122661E+01       | + 5.2906982F+02  | + 4.8517993E+02  | + 5.8694482E+C2  |
| 44.0            | 5                      | + 5.3953784E+02  | + 4.4356854E+C1       | + 5.9132983E+C2  | + 4.9546997E+02  | + 5.8705371E+C2  |
| 45.0            | 10                     | + 5.8110488E+02  | + 1.7801348E+01       | + 6.2064990E+02  | + 5.5721957E+02  | + 5.8716259E+02  |
| 46.0            | 4                      | + 5.8491235F+02  | + 1.7050462E+01       | + 5.937988E+02   | + 5.6928979E+02  | + 5.8727148E+02  |
| 47.0            | 6                      | + 6.0272495E+02  | + 3.7483893F+01       | + 6.5906982E+02  | + 5.5789990E+02  | + 5.8738037E+02  |
| 48.0            | 7                      | + 6.0280517E+02  | + 2.9822691E+01       | + 6.5032983E+02  | + 5.6326977E+02  | + 5.8748925E+02  |
| 49.0            | 2                      | + 6.1582983E+02  | + 6.374817E+0C        | + 6.2172998E+02  | + 6.0992993E+02  | + 5.8759814E+02  |
| 50.0            | 4                      | + 5.9334472E+02  | + 3.2158719E+01       | + 6.3469995E+02  | + 5.6719995E+02  | + 5.8770703E+02  |
| 51.0            | 4                      | + 6.1515966E+02  | + 2.4477407E+01       | + 6.39555981E+02 | + 5.9069995E+02  | + 5.8781591E+02  |
| 52.0            | 4                      | + 6.2582714E+02  | + 1.0795128E+01       | + 6.64103979E+02 | + 6.1681982E+C2  | + 5.8792480E+02  |
| 53.0            | 14                     | + 5.7765389E+02  | + 5.9097506E+01       | + 6.4367993E+02  | + 4.7754980E+02  | + 5.8033369E+C2  |
| 54.0            | 5                      | + 5.4448168E+02  | + 5.1186877E+01       | + 5.9761987E+02  | + 4.7418994E+02  | + 5.8814257E+C2  |
| 55.0            | 4                      | + 5.8393649E+02  | + 1.9898072E+C1       | + 6.115000E+02   | + 5.5250010E+02  | + 5.8825146E+02  |
| 56.0            | 2                      | + 5.7306982E+02  | + 2.4156744E+01       | + 5.9014990E+C2  | + 5.5598959E+02  | + 5.8836035E+C2  |
| 57.0            | 4                      | + 5.7851489E+02  | + 5.2623271E+C0       | + 5.8533984E+02  | + 5.7267953E+C2  | + 5.8846923E+C2  |
| 58.0            | 7                      | + 6.3933813E+02  | + 1.8235622E+C1       | + 6.6842993E+C2  | + 6.2647958E+02  | + 5.8857812E+C2  |
| 59.0            | 5                      | + 6.510498CE+02  | + 1.7524167E+C1       | + 6.7009965E+02  | + 6.3169995E+02  | + 5.8868701E+C2  |
| 60.0            | 17                     | + 6.1718139E+02  | + 2.1838212E+C1       | + 6.5418994E+02  | + 5.9131982F+C2  | + 5.89501367E+02 |
| 61.0            | 6                      | + 6.2311303E+02  | + 4.7819792E+00       | + 6.2988999E+02  | + 6.15779980E+C2 | + 5.8923168E+C2  |
| 62.0            | 3                      | + 5.26355986E+02 | + 1.2982311E+C0       | + 5.2700976E+02  | + 5.2393994E+C2  | + 5.8955834E+C2  |
| 63.0            | 4                      | + 6.0446416E+02  | + 6.60446416E+01      | + 6.4744955E+C2  | + 5.6818994E+02  | + 5.8966723E+02  |
| 64.0            | 2                      | + 6.2781982E+02  | + 5.6046416E+01       | + 6.423999E+02   | + 5.7700000E+C2  | + 5.8977612E+C2  |
| 65.0            | 4                      | + 5.5137998E+02  | + 4.5219716E+01       | + 5.9523999E+02  | + 5.975976F+C2   | + 5.898500F+C2   |
| 66.0            | 4                      | + 6.1776977E+02  | + 1.R4C53388E+C1      | + 6.3975976F+C2  | + 5.9759762E+C2  | + 5.898500F+C2   |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|-----------------|-----------------|-----------------|
| 135.0           | 2                      | +5.0254492E+12 | +1.5372887E+00        | +5.0359985E+C2  | +5.0148999E+02  | +5.08999389E+02 |
| 137.0           | 2                      | +5.005433E+12  | +5.5382919E+C0        | +5.04484995E+02 | +5.03705981E+02 | +5.09010278E+C2 |

AND 3056 PROPLNT (AND UNLINED, C & P POLYMER) TENSILE SM. 1750 IN/MIN. 600 PSI

$\gamma = (+2.47502; 1E-01) + (+1.9189E86E-04) \times t$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $s = \text{SIGNIFICANCE OF } s$   
 $N = \text{DEGREES OF FREEDOM} = 492$   
 $N = 494$   
 $R = \text{STORAGE CONDITIONS} = \text{AMB TEMP, RH}$   
 $s = \text{TEST CONDITIONS} = \text{AMB TEMP, RH}$   
 $\times \text{ ANBP}$   
 $\triangle \text{ ANBG}$

$\text{PARAMETER} = \text{STRAIN AT RUPTURE}$   
 $\text{UNIT OF MEASURE} = \text{IN/IN}$   
 0.00 0.20 0.25 0.30 0.35 0.40  
 1.5 1.0 0.5 0.0



ANB 3066 PROPYLENE (ANB UNLINED, G & P POLYMER, TENSILE ER, 1750 IN/MIN, 600 PSI  
 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 15.00  
 AGE AT TEST (YEARS)

Figure 5-26

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

A57 SPECIATINS  
PER GROUP

| TIME (hrs) | STANDARD<br>DEVIATION | MEAN Y           | MAXIMUM Y        | MINIMUM Y        | REGRESSION Y     |                  |
|------------|-----------------------|------------------|------------------|------------------|------------------|------------------|
|            |                       |                  |                  |                  | 1                | 2                |
| 19.0       | +2.08012466E-01       | +1.03746900E-02  | +3.01156999E-01  | +2.05057244E-01  | +2.05057244E-01  | +2.05057244E-01  |
| 21.0       | +2.04524998E-01       | +1.01665027E-02  | +2.05340958E-01  | +2.05163189E-01  | +2.05163189E-01  | +2.05163189E-01  |
| 22.0       | +2.05594592E-01       | +1.05609577E-02  | +2.07119994E-01  | +2.04869996E-01  | +2.05172382E-01  | +2.05172382E-01  |
| 23.0       | +2.07729925E-01       | +6.03201735E-03  | +2.07626996E-01  | +2.02849994E-01  | +2.05191569E-01  | +2.05191569E-01  |
| 24.0       | +2.06984998E-01       | +7.02826376E-03  | +2.07350998E-01  | +2.06166994E-01  | +2.05210762E-01  | +2.05210762E-01  |
| 25.0       | +2.07604998E-01       | +9.02508875E-03  | +2.09330999E-01  | +2.07029997E-01  | +2.05229948E-01  | +2.05229948E-01  |
| 26.0       | +2.025582312E-01      | +1.0952714CE-02  | +2.07299998E-01  | +2.01599996E-01  | +2.05287520E-01  | +2.05287520E-01  |
| 27.0       | +2.04304991E-01       | +1.02958388E-02  | +2.05079995E-01  | +2.03526994E-01  | +2.05306707E-01  | +2.05306707E-01  |
| 30.0       | +2.02594994E-01       | +3.06552398E-02  | +2.07766994E-01  | +1.09286994E-01  | +2.05325900E-01  | +2.05325900E-01  |
| 31.0       | +2.03049998E-01       | +4.0489223FE-03  | +2.03399996E-01  | +2.02699999E-01  | +2.05383466E-01  | +2.05383466E-01  |
| 34.0       | +2.04499570E-01       | +4.08741517E-02  | +3.01199997E-01  | +1.08099999E-01  | +2.05402659E-01  | +2.05402659E-01  |
| 36.0       | +2.016299998E-01      | +5.08189520E-05  | +1.06299998E-01  | +1.06299998E-01  | +2.05441038E-01  | +2.05441038E-01  |
| 38.0       | +2.03799997E-01       | +9.00000000E+11  | +2.03799997E-01  | +2.03799997E-01  | +2.05479418E-01  | +2.05479418E-01  |
| 39.0       | +2.06224994F-01       | +1.091377969E-02 | +2.07699995E-01  | +2.03499995E-01  | +2.05498604E-01  | +2.05498604E-01  |
| 40.0       | +2.07534991E-01       | +1.0324662CE-02  | +2.08269994E-01  | +2.05799994E-01  | +2.05517797E-01  | +2.05517797E-01  |
| 41.0       | +2.06056635E-01       | +2.035296535E-02 | +2.09299998E-01  | +2.03889994E-01  | +2.055366984E-01 | +2.055366984E-01 |
| 43.0       | +2.03384994E-01       | +1.06333207E-02  | +2.04539995E-01  | +2.02229999E-01  | +2.055753633E-01 | +2.055753633E-01 |
| 45.0       | +2.09859578E-01       | +3.0559054E-02   | +3.01305998E-01  | +2.02059994F-01  | +2.05613743E-01  | +2.05613743E-01  |
| 46.0       | +2.03619961E-01       | +2.02046790E-02  | +2.06299995E-01  | +1.09899994E-01  | +2.05622935E-01  | +2.05622935E-01  |
| 47.0       | +2.0549992E-01        | +9.07579956E-03  | +2.06149994E-01  | +2.04769997E-01  | +2.05652122E-01  | +2.05652122E-01  |
| 48.0       | +2.05344991E-01       | +3.08697681E-C2  | +2.08359997E-01  | +1.09899994E-01  | +2.05671315E-01  | +2.05671315E-01  |
| 49.0       | +2.01249991E-01       | +1.03435378E-02  | +2.02199994E-01  | +2.00299994E-01  | +2.05690501E-01  | +2.05690501E-01  |
| 50.0       | +2.05674995E-01       | +7.01542142E-02  | +2.08409995E-01  | +2.01999996E-01  | +2.05709695AF-01 | +2.05709695AF-01 |
| 51.0       | +2.069455935E-01      | +7.07422855E-C3  | +2.07625955E-01  | +2.05679995E-01  | +2.05748C74E-01  | +2.05748C74E-01  |
| 52.0       | +2.07219963E-01       | +4.04326211E-03  | +2.082609954E-01 | +2.05749998E-01  | +2.05777260E-01  | +2.05777260E-01  |
| 53.0       | +2.06146205E-01       | +2.05059F937E-C2 | +3.02209994E-01  | +1.05599995E-01  | +2.05786453E-01  | +2.05786453E-01  |
| 54.0       | +2.06125670E-01       | +2.0322564E-02   | +2.00369997E-01  | +2.00999999E-01  | +2.058C564CE-01  | +2.058C564CE-01  |
| 55.0       | +2.06213729E-01       | +2.01352853E-C2  | +2.05599994E-01  | +2.03799997E-01  | +2.05824832E-01  | +2.05824832E-01  |
| 56.0       | +2.0504971F-01        | +2.05964465E-02  | +3.0C219995E-01  | +2.04999998E-01  | +2.05844019E-01  | +2.05844019E-01  |
| 57.0       | +2.05283930E-01       | +2.05536447E-02  | +2.07629995E-01  | +2.01999994E-01  | +2.05863212E-C1  | +2.05863212E-C1  |
| 58.0       | +2.062722431F-01      | +6.06657112F-02  | +3.02699996F-01  | +1.071299956F-01 | +2.05901591E-C1  | +2.05901591E-C1  |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| TEST NUMBER | SPECIMEN | PERCENT GROUP | MEAN Y          | STANDARD DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-------------|----------|---------------|-----------------|--------------------|-----------------|-----------------|----------------|
| 61          | • 9      |               | +2.6749998E-01  | +2.4748653E-02     | +2.64999956E-01 | +2.5920778E-01  | +2.5920778E-01 |
| 62          | • 9      |               | +2.7922437E-01  | +2.5934422F-02     | +3.0499994E-01  | +2.4499994E-01  | +2.5939971E-01 |
| 63          | • 9      | 6             | +2.5E61637E-01  | +3.9392186E-02     | +2.8149998F-01  | +1.7799997E-01  | +2.5950157E-01 |
| 64          | • 9      | 4             | +2.5484991E-01  | +3.3564819E-02     | +2.8899997E-01  | +2.13599957E-01 | +2.597835CE-01 |
| 65          | • 9      | 4             | +2.674981E-01   | +2.45E3225E-02     | +2.9259998E-01  | +2.2799998E-01  | +2.5957537E-01 |
| 66          | • 9      | 2             | +2.8499945E-01  | +1.7677789E-02     | +2.4C99999E-01  | +2.1599996E-01  | +2.6C1673CE-01 |
| 67          | • 9      | 4             | +2.12599932E-01 | +5.7141230E-03     | +2.1999996E-01  | +2.5999997E-01  | +2.6C25916E-01 |
| 68          | • 9      | 4             | +2.4299991E-01  | +9.1285137E-03     | +2.5399994E-01  | +2.3499995E-01  | +2.6C55109E-01 |
| 69          | • 9      | 12            | +2.6769953E-01  | +2.8542119E-02     | +2.9999995E-01  | +1.9599997E-01  | +2.6C74256E-01 |
| 70          | • 9      | 9             | +2.4359965E-01  | +2.4712625E-02     | +2.8899997E-01  | +2.1999996E-01  | +2.6093488E-01 |
| 71          | • 9      | 5             | +2.7245974E-01  | +2.6096026E-02     | +2.8909999E-01  | +2.2619998E-01  | +2.6112675F-01 |
| 72          | • 9      | 19            | +2.6959949E-01  | +2.34E0165E-02     | +3.1399995E-01  | +2.2799998E-01  | +2.6131868E-01 |
| 73          | • 9      | 4             | +2.6047492E-01  | +4.4014781F-02     | +2.8409999E-01  | +1.9449996F-01  | +2.6151055E-01 |
| 75          | • 9      | 5             | +2.7041965E-01  | +5.5137490E-02     | +2.9849994E-01  | +1.7199999E-01  | +2.6169434E-01 |
| 76          | • 9      | 5             | +2.5719982E-01  | +1.525252691E-02   | +2.6849997E-01  | +2.3099994E-01  | +2.6208627E-01 |
| 77          | • 9      | 11            | +2.6676232E-01  | +2.9575382E-02     | +3.12299956E-01 | +2.1999996E-01  | +2.6227813E-01 |
| 78          | • 9      | 15            | +2.7569299E-01  | +3.6610439E-02     | +3.01829994E-01 | +2.09899956E-01 | +2.6247006E-01 |
| 79          | • 9      | 2             | +2.4869996E-01  | +1.1877365E-02     | +2.5709998E-01  | +2.4029999E-01  | +2.6266193E-01 |
| 80          | • 9      | 7             | +2.6204258F-01  | +3.9587087E-02     | +2.9999995E-01  | +1.8029999E-01  | +2.6285386F-01 |
| 91          | • 9      | 9             | +2.5473308E-01  | +1.4230329E-02     | +2.7199995E-01  | +2.2799998F-01  | +2.63C4572E-01 |
| 92          | • 9      | 3             | +2.5416666E-01  | +1.3148155F-02     | +2.6579999E-01  | +2.3989999E-01  | +2.6223765E-01 |
| 93          | • 9      | 6             | +2.670319E-01   | +7.1555245E-02     | +3.4919995E-01  | +1.7799997E-01  | +2.6342952E-01 |
| 94          | • 9      | 10            | +2.4546557E-01  | +4.714889E-02      | +3.2599997E-01  | +1.7889994E-01  | +2.6362144E-01 |
| 95          | • 9      | 4             | +2.8232470E-01  | +4.1C75073F-02     | +3.2235997E-01  | +2.39299955E-01 | +2.6381331F-01 |
| 96          | • 9      | 4             | +2.5466644E-01  | +2.7873956E-02     | +2.78999958E-01 | +2.1999996E-01  | +2.6438903E-01 |
| 97          | • 9      | 3             | +2.946661F-01   | +1.3477735E-02     | +2.9899996E-01  | +2.72799996E-01 | +2.6458090F-01 |
| 98          | • 9      | 6             | +2.6791449E-01  | +2.9185919E-02     | +3.0C99999E-01  | +2.20799998E-01 | +2.6477283E-01 |
| 99          | • 9      | 2             | +2.5194996E-01  | +2.8255452E-02     | +2.7199995E-01  | +2.3189997E-01  | +2.6456469E-01 |
| 100         | • 9      | 4             | +2.5124979E-01  | +1.8043945E-02     | +2.7549995E-01  | +2.3279999AE-01 | +2.6515656E-01 |
| 101         | • 9      | 2             | +2.66699995E-01 | +2.1777583E-02     | +2.8239995E-01  | +2.51599956E-01 | +2.6534949E-01 |
| 102         | • 9      | 6             | +2.4223719E-01  | +3.7133621F-02     | +2.96399949F-01 | +2.09699954F-01 | +2.6554036E-01 |

## \*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

## \*\*\*\*\* ANALYSIS OF TIME SERIES \*\*\*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| 25.0            | 8                      | +2.717998E-01   | +1.7847216E-02        | +2.9899957E-01  | +2.3445999E-01  | +2.6573228E-01 |
| 26.0            | 7                      | +2.6375687E-01  | +3.3528937E-02        | +3.0799956E-01  | +2.1999956E-01  | +2.6552415E-01 |
| 27.0            | 4                      | +2.7024984E-01  | +3.73205022E-02       | +3.0819994E-01  | +2.29699956E-01 | +2.6669174E-01 |
| 28.0            | 2                      | +2.5669993E-01  | +1.4140953E-02        | +3.0699958E-01  | +2.8699994E-01  | +2.668367E-01  |
| 29.0            | 9                      | +2.7272973E-01  | +1.9693442E-02        | +2.96699954E-01 | +2.39199954F-01 | +2.6707553E-01 |
| 30.0            | 4                      | +2.8464984F-01  | +4.7077307E-02        | +3.2849997E-01  | +2.3999994E-01  | +2.6765125E-01 |
| 31.0            | 4                      | +2.6169934E-01  | +1.15233039E-02       | +2.75699958E-01 | +2.5529998E-01  | +2.6784312E-01 |
| 32.0            | 6                      | +2.1684992E-01  | +3.7655719E-02        | +2.56699956E-01 | +1.69999956E-01 | +2.6803505E-01 |
| 33.0            | 4                      | +2.6984983E-01  | +3.9826422E-02        | +3.2449956E-01  | +2.4319994E-01  | +2.6822692E-01 |
| 34.0            | 5                      | +2.7275979E-01  | +2.8342199E-02        | +3.0989998E-01  | +2.5059998E-01  | +2.6841884E-01 |
| 35.0            | 10                     | +2.7912955E-01  | +2.4139718E-02        | +3.16899955E-01 | +2.38999966E-01 | +2.6921071E-01 |
| 36.0            | 4                      | +2.6274991E-01  | +1.1956053E-02        | +2.70299957E-01 | +2.44899958E-01 | +2.680264E-01  |
| 37.0            | 6                      | +2.5991642E-01  | +4.4334370E-02        | +3.0509996E-01  | +1.89799956E-01 | +2.6899451E-01 |
| 38.0            | 7                      | +2.5975686E-01  | +4.4755599E-02        | +3.1179994E-01  | +1.91699958E-01 | +2.6918643E-01 |
| 39.0            | 2                      | +2.4849992E-01  | +2.2932656E-02        | +2.63299954E-01 | +2.33699957E-01 | +2.6937830E-01 |
| 40.0            | 2                      | +2.8662490E-01  | +1.9703045E-02        | +3.07199955E-01 | +2.5999999E-01  | +2.6957023E-01 |
| 41.0            | 4                      | +3.0509996E-01  | +1.1435556E-02        | +3.1879997E-01  | +2.9099994E-01  | +2.6976209E-01 |
| 42.0            | 4                      | +2.8544974E-01  | +1.6110410E-02        | +3.0699998E-01  | +2.7049994E-01  | +2.6995402E-01 |
| 43.0            | 14                     | +2.7725684E-01  | +2.3797989E-02        | +3.19499956E-01 | +2.42899955E-01 | +2.7014589E-01 |
| 44.0            | 5                      | +2.7649974E-01  | +2.1760764E-02        | +3.0239999E-01  | +2.5369995E-01  | +2.7037782E-01 |
| 45.0            | 6                      | +2.7043306E-01  | +1.3868390E-02        | +3.05699955E-01 | +2.43999955E-01 | +2.7052568E-01 |
| 46.0            | 2                      | +2.5149937E-01  | +1.2619344E-02        | +2.9999995E-01  | +2.8299999E-01  | +2.7072161E-01 |
| 47.0            | 4                      | +2.6564976E-01  | +3.4515689E-03        | +2.9839959E-01  | +2.9096999E-01  | +2.7091348E-01 |
| 48.0            | 7                      | +2.6171298E-01  | +2.0527693E-02        | +2.85999955E-01 | +2.24999956E-01 | +2.711054CE-01 |
| 49.0            | 4                      | +2.3174989E-01  | +1.0244603E-02        | +2.6899995C-01  | +2.48999955E-01 | +2.7129727E-01 |
| 50.0            | 12                     | +2.4174201E-01  | +2.864136CE-02        | +2.81199954E-01 | +2.14099957E-01 | +2.7187299E-01 |
| 51.0            | 6                      | +2.39109621E-01 | +9.3559922E-03        | +2.87299959E-01 | +2.63499957E-01 | +2.725679E-01  |
| 52.0            | 4                      | +2.67049985E-01 | +7.2396711E-02        | +2.76499958E-01 | +2.6099994E-01  | +2.7283245E-01 |
| 53.0            | 2                      | +2.56769994E-01 | +4.9214928E-02        | +2.90599994E-01 | +2.2099995E-01  | +2.732438E-01  |
| 54.0            | 4                      | +2.8749995E-01  | +4.2492337E-02        | +2.89099959E-01 | +2.7919995E-01  | +2.7321624E-01 |
| 55.0            | 4                      | +2.4229096E-01  | +4.8765267E-02        | +2.46759956E-01 | +2.38800948E-01 | +2.7340517E-01 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIES | PER GROUP      | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y |
|-----------------|---------|----------------|----------------|-----------------------|----------------|----------------|--------------|
| 136.0           | 2       | +2.4694997E-01 | +1.9303973E-02 | +2.6059997E-01        | +2.3329997E-01 | +2.7360004E-01 |              |
| 137.0           | 2       | +2.7699993E-01 | +1.8382597E-02 | +2.8999996F-01        | +2.6399999E-01 | +2.7275196E-01 |              |

ANB 3066 PRCPNT (ANB UNLINED, C & P POLYMER) TENSILE ER, 1750 RPM, 600 PSI

$\gamma = (( +6.1776772E+03) + (-9.6256711E+00)) * S_1$   
 $S_1 = +1.4270320E+03$   
 $S_2 = +2.0968209E+00$   
 $S_3 = +1.39988377E+03$   
 $F = 2.1073630E+01$   
 $R = -2.0266550E-01$   
 $t = +4.5906023E+00$   
 $N = 494$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{DEGREES OF FREEDOM} = 492$   
 $\text{TEST CONDITIONS} = \text{AMB TEMP/RH}$

$\times$  ANBP  
 $\triangle$  ANBG



ANB 3066 PROPELLANT (ANS UNLINED, G & P POLYMER, TENSILE M30, 1750 IN/MIN 600 PSI

Figure 5-27

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| A GE<br>(MTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y   |                |
|----------------|------------------------|-----------------|-----------------------|----------------|-----------------|----------------|----------------|
|                |                        |                 |                       |                |                 | REGRESSION 1   | REGRESSION 2   |
| 16.0           | 9                      | +4.00001250E+03 | +1.3222089E+03        | +7.5000000E+03 | +3.01470000E+03 | +6.0226640E+03 | +6.0226640E+03 |
| 21.0           | 2                      | +6.07300000E+03 | +2.0294271E+02        | +6.0000000E+03 | +6.0000000E+03  | +5.0975351E+03 | +5.0975351E+03 |
| 22.0           | 2                      | +6.01000000E+03 | +2.024271E+02         | +6.0000000E+03 | +5.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 23.0           | 2                      | +5.07500000E+03 | +2.01213203E+02       | +5.0000000E+03 | +5.0000000E+03  | +5.0562851E+03 | +5.0562851E+03 |
| 24.0           | 2                      | +5.00000000E+03 | +4.0457474E+02        | +6.0000000E+03 | +5.0000000E+03  | +5.0466601E+03 | +5.0466601E+03 |
| 25.0           | 2                      | +7.02000000E+03 | +8.04852813E+02       | +7.8000000E+03 | +6.0000000E+03  | +5.9370251E+03 | +5.9370251E+03 |
| 28.0           | 6                      | +6.08833200E+03 | +7.8079490E+02        | +7.6000000E+03 | +5.7000000E+03  | +5.9081562E+03 | +5.9081562E+03 |
| 29.0           | 2                      | +7.02500000E+03 | +7.7781745E+02        | +7.8000000E+03 | +6.7000000E+03  | +5.9985312E+03 | +5.9985312E+03 |
| 30.0           | 4                      | +8.00750000E+03 | +1.1176112E+03        | +9.0000000E+03 | +6.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 31.0           | 2                      | +5.00000000E+03 | +3.02555339E+02       | +5.0000000E+03 | +4.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 32.0           | 6                      | +5.07166640E+03 | +6.02397773E+02       | +6.0000000E+03 | +5.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 33.0           | 2                      | +8.01000000E+03 | +2.0284271E+02        | +8.0000000E+03 | +7.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 34.0           | 1                      | +5.03000000E+03 | +0.0000000E+03        | +5.0000000E+03 | +5.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 35.0           | 4                      | +6.06750000E+03 | +1.5221607E+03        | +8.0000000E+03 | +5.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 36.0           | 2                      | +6.04100000E+03 | +8.0267327E+02        | +7.0200000E+03 | +5.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 37.0           | 9                      | +6.02076640E+03 | +8.02744901E+02       | +7.0100000E+03 | +4.0000000E+03  | +4.0000000E+03 | +4.0000000E+03 |
| 38.0           | 2                      | +7.09195000E+03 | +4.03075515E+01       | +7.9500000E+03 | +7.0000000E+03  | +7.0000000E+03 | +7.0000000E+03 |
| 39.0           | 7                      | +4.05314257E+03 | +1.66118149E+03       | +7.1000000E+03 | +3.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 40.0           | 7                      | +6.01602851E+03 | +1.7611238E+03        | +8.0000000E+03 | +3.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 41.0           | 2                      | +4.05210000E+03 | +2.4075550E+02        | +4.6910000E+03 | +4.0000000E+03  | +4.0000000E+03 | +4.0000000E+03 |
| 42.0           | 4                      | +5.09500000E+03 | +5.04467115E+02       | +6.0000000E+03 | +5.0000000E+03  | +5.0000000E+03 | +5.0000000E+03 |
| 43.0           | 2                      | +7.08000000E+03 | +1.04142135E+02       | +7.0000000E+03 | +4.0000000E+03  | +4.0000000E+03 | +4.0000000E+03 |
| 44.0           | 4                      | +6.03500000E+03 | +1.5545631E+02        | +8.0000000E+03 | +4.0000000E+03  | +4.0000000E+03 | +4.0000000E+03 |
| 45.0           | 5                      | +4.02470000E+03 | +1.70564966E+02       | +4.0575000E+03 | +4.0000000E+03  | +4.0000000E+03 | +4.0000000E+03 |
| 46.0           | 9                      | +4.02791063E+03 | +2.0252658E+02        | +4.0524000E+03 | +3.0000000E+03  | +3.0000000E+03 | +3.0000000E+03 |
| 47.0           | 2                      | +5.0C713125E+02 | +1.04000000E+02       | +8.0000000E+03 | +2.0000000E+03  | +2.0000000E+03 | +2.0000000E+03 |
| 48.0           | 12                     | +5.0G765020E+02 | +1.0556542F+03        | +8.0000000E+03 | +3.0000000E+03  | +3.0000000E+03 | +3.0000000E+03 |
| 49.0           | 3                      | +4.0646250E+03  | +1.05565423E+02       | +6.0000000E+03 | +3.0000000E+03  | +3.0000000E+03 | +3.0000000E+03 |
| 50.0           | 6                      | +4.05623321E+03 | +1.3822006E+02        | +6.0000000E+03 | +3.0000000E+03  | +3.0000000E+03 | +3.0000000E+03 |
| 51.0           | 5                      | +5.05923994E+03 | +1.9349542E+02        | +7.0000000E+03 | +3.0000000E+03  | +3.0000000E+03 | +3.0000000E+03 |
| 52.0           | 4                      | +5.04225000E+03 | +9.02269008E+02       | +6.0000000E+03 | +4.0000000E+03  | +4.0000000E+03 | +4.0000000E+03 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y        | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|------------------|----------------|
|                 |                        |                |                       |                |                  |                |
| 61.0            | 2                      | +5.100000E+03  | +1.4142135E+C2        | +5.200000E+03  | +5.000000E+C3    | +5.5905078E+C3 |
| 62.0            | 4                      | +5.5760000E+03 | +1.0672700E+03        | +6.600000E+03  | +4.6120000E+03   | +5.5868828E+03 |
| 63.0            | 6                      | +5.4961642E+03 | +1.54465099E+03       | +7.900000E+03  | +4.2710000E+C5   | +5.5712578E+03 |
| 64.0            | 4                      | +5.8250320E+03 | +4.9244289E+C2        | +6.4000000E+03 | +5.2000000E+C3   | +5.5616328E+C3 |
| 65.0            | 4                      | +6.6759000E+03 | +1.3222419E+C3        | +7.9000000E+03 | +5.5000000E+C3   | +5.5520078E+C3 |
| 66.0            | 2                      | +8.2500000E+03 | +7.7781745E+C2        | +9.8000000E+03 | +7.7000000E+03   | +5.5423828E+C3 |
| 67.0            | 4                      | +7.6760000E+03 | +2.5939764E+C2        | +8.2000000E+03 | +7.4000000E+03   | +5.527539E+C3  |
| 68.0            | 4                      | +7.0500000E+03 | +1.6258331E+C3        | +8.8000000E+C3 | +5.3000000E+03   | +5.5231289E+C3 |
| 69.0            | 12                     | +5.4819320E+03 | +1.0450781E+C3        | +6.4120000E+03 | +3.0550000E+C3   | +5.5135035E+C3 |
| 70.0            | 9                      | +6.2791935E+03 | +8.1100869E+02        | +7.5000000E+03 | +5.2000000E+03   | +5.5038789E+03 |
| 71.0            | 5                      | +4.5967968E+03 | +4.3722880E+C2        | +4.9970000E+C3 | +4.9220000E+03   | +5.4942539E+03 |
| 72.0            | 19                     | +4.7586289E+03 | +1.2444507E+03        | +7.7000000E+03 | +3.3100000E+03   | +5.4846250E+03 |
| 73.0            | 4                      | +4.9560000E+03 | +1.47686669E+03       | +6.9500000E+03 | +3.7950000E+03   | +5.4750000E+C3 |
| 75.0            | 5                      | +5.6120000E+03 | +7.7613143E+C2        | +6.7000000E+03 | +4.7520000E+C3   | +5.4557500E+03 |
| 76.0            | 5                      | +5.3317968E+03 | +5.5865727E+C2        | +6.1000000E+03 | +4.5680000E+03   | +5.461250E+C3  |
| 77.0            | 2                      | +5.6876328E+03 | +1.0480304E+C3        | +7.6000000E+03 | +4.3260000E+03   | +5.4365000E+C3 |
| 78.0            | 15                     | +5.6325312E+03 | +1.4361853E+C3        | +8.2300000E+03 | +3.6510000E+03   | +5.4268710E+C3 |
| 79.0            | 2                      | +5.9485000E+03 | +2.8536151E+02        | +6.2210000E+03 | +5.6760000E+03   | +5.4172460E+03 |
| 80.0            | 7                      | +4.2967109E+03 | +4.6154169E+C2        | +5.0790000E+03 | +3.6550000E+03   | +5.4076210E+C3 |
| 81.0            | 9                      | +4.7378867E+03 | +1.9012890E+03        | +7.7000000E+03 | +2.6350000E+03   | +5.3979560E+C3 |
| 82.0            | 3                      | +5.4230030E+03 | +3.0919007E+C2        | +5.7800000F+03 | +5.2410000E+C3   | +5.3883710E+C3 |
| 83.0            | 6                      | +6.1389320E+03 | +7.3015283E+C2        | +7.0000000E+03 | +5.1560000E+03   | +5.3787460E+C3 |
| 84.0            | 10                     | +6.3960976F+03 | +1.3355653E+C3        | +7.7660000E+03 | +4.3800000E+03   | +5.3691171E+C3 |
| 85.0            | 4                      | +6.7022500E+03 | +4.1769337E+C2        | +7.3000000E+C3 | +6.4130000E+C3   | +5.3594921E+C3 |
| 86.0            | 5                      | +4.6621640E+03 | +1.1449321E+C2        | +6.7000000E+C3 | +3.6520000E+C3   | +5.3206171E+C3 |
| 87.0            | 2                      | +3.7913332E+C3 | +5.9438651E+02        | +4.1790000E+C3 | +3.1070000E+C3   | +5.3209921E+C3 |
| 88.0            | 6                      | +4.6236640E+C3 | +1.9600309E+C3        | +7.0200000E+C3 | +2.3030000E+C3   | +5.3113632E+C3 |
| 89.0            | 2                      | +7.2500000E+03 | +3.5265339E+C2        | +7.5000000E+C3 | +7.0000000E+C3   | +5.3017382E+C3 |
| 90.0            | 4                      | +7.2200000E+03 | +7.9002109E+02        | +7.9400000E+03 | +6.1000000E+03   | +5.2921172E+C3 |
| 91.0            | 2                      | +4.1918000E+03 | +1.1523671E+C2        | +4.2730000E+C3 | +4.1100000E+C3   | +5.2824882E+C3 |
| 92.0            | 6                      | +6.3263320E+03 | +1.44733355E+C3       | +8.2000000E+C3 | +5.0640000C0F+C3 | +5.2729672E+C3 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\*\* ANALYSIS OF TIME SERIES \*\*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>PAIR GROUP | NFAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|----------------|
| 25.2            | 9                      | +4.225875CE+23  | +1.293818CE+03        | +6.2340000E+03  | +2.5400000E+03  | +5.2632382E+C3 |
| 36.0            | 7                      | +4.7021406E+03  | +1.4885639CE+02       | +6.4000000E+03  | +2.5330000E+03  | +5.2536053F+C3 |
| 120.4           | 4                      | +4.6285010E+03  | +1.8444308E+03        | +6.8460000F+03  | +2.9930000F+03  | +5.2151093E+03 |
| 121.0           | 2                      | +5.7635000E+03  | +6.5868467E+01        | +5.8320000E+03  | +5.6950000E+03  | +5.2054843E+03 |
| 122.2           | 8                      | +5.2867507E+03  | +1.5240931E+01        | +7.5100000E+03  | +3.6750000E+03  | +5.1958554E+C3 |
| 125.0           | 4                      | +5.6645000F+03  | +1.1271484E+C3        | +6.68900CE+03   | +4.1540000F+03  | +5.1669804E+03 |
| 126.2           | 4                      | +5.1477500E+C3  | +6.968519CE+C2        | +5.7930000E+C3  | +4.4790000E+03  | +5.1673554E+C3 |
| 127.7           | 4                      | +4.2877520E+03  | +6.4361987E+02        | +5.1600000E+03  | +3.6460000E+C3  | +5.1477265E+02 |
| 128.7           | 4                      | +4.4277500E+03  | +3.6603713E+02        | +5.3050000E+03  | +3.7050000E+03  | +5.121015E+C3  |
| 129.5           | 5                      | +4.9845976F+03  | +1.5790198E+03        | +7.1120000E+C3  | +3.5960000E+03  | +5.1264765E+C3 |
| 130.0           | 10                     | +5.0425976E+03  | +8.0157930E+02        | +6.01670000E+03 | +3.8660000E+03  | +5.1168515E+03 |
| 131.9           | 4                      | +4.6387500E+03  | +3.5448824E+02        | +5.0020000E+03  | +4.1720000E+02  | +5.1092265E+C3 |
| 132.0           | 6                      | +5.9546640E+03  | +8.8000000E+02        | +6.07980000E+03 | +4.3490000E+03  | +5.0996015E+03 |
| 133.0           | 7                      | +5.2957109E+03  | +7.8088490E+02        | +6.02260000E+03 | +3.8530000E+03  | +5.0899726E+02 |
| 134.0           | 2                      | +4.4050000E+03  | +4.9496464E+02        | +4.7560000E+03  | +4.0550000E+03  | +5.0803476E+03 |
| 135.0           | 4                      | +4.9490000E+03  | +1.53500227E+03       | +6.0660000E+03  | +3.1860000E+03  | +5.0707226E+C3 |
| 136.0           | 4                      | +4.9052500E+03  | +1.5303622E+C3        | +6.02490000E+03 | +3.3610000E+03  | +5.0610976E+03 |
| 137.0           | 4                      | +4.5937500E+03  | +2.8285435E+02        | +4.8140000E+03  | +4.0000000E+03  | +5.0514726E+02 |
| 138.0           | 14                     | +4.3572109E+03  | +1.1102832E+03        | +6.08650000E+03 | +3.19500000E+03 | +5.0418476E+02 |
| 139.0           | 14                     | +5.5251992E+03  | +1.7565495E+03        | +7.0500000F+03  | +3.4110000E+03  | +5.022187E+03  |
| 140.0           | 6                      | +4.5156640E+03  | +1.6361202E+03        | +7.1860000E+03  | +3.2990000E+03  | +5.0225937E+03 |
| 141.0           | 2                      | +3.8110000F+03  | +1.6118932E+02        | +3.9250000E+03  | +3.6970000F+03  | +5.0129687E+03 |
| 142.0           | 4                      | +6.64490000E+02 | +2.6512946E+02        | +6.0670000E+03  | +6.0470000F+03  | +5.0033437E+03 |
| 143.0           | 7                      | +7.7835712E+03  | +6.2519460E+02        | +4.0343000CE+03 | +2.5460000F+C3  | +4.9527187F+C3 |
| 144.0           | 4                      | +4.6650000E+03  | +6.6135659E+C2        | +5.04480000F+03 | +3.9700000E+03  | +4.9840927F+C7 |
| 145.0           | 0                      | +4.03173320E+03 | +5.3222050E+02        | +4.07750000E+03 | +3.4820000E+03  | +4.9582148E+C3 |
| 146.0           | 6                      | +6.85300000E+03 | +7.9393792E+02        | +7.6680000E+03  | +5.6430000E+C3  | +4.9359648F+C3 |
| 147.0           | 4                      | +5.0380000CE+03 | +2.5272646E+C2        | +5.3390000E+03  | +4.7730000E+03  | +4.9079859E+C3 |
| 148.0           | 2                      | +6.2025000F+03  | +1.1292490F+03        | +7.0010000E+03  | +5.4040000E+03  | +4.8974609E+C3 |
| 149.0           | 4                      | +5.02515000E+03 | +3.1513763E+C2        | +5.5300000E+03  | +4.3560000E+C3  | +4.878355E+02  |
| 150.0           | 4                      | +6.01455000E+03 | +4.0812343E+C2        | +6.5920000E+C3  | +5.7100000E+C3  | +4.9752109E+C3 |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y     | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|---------------|----------------|----------------|
| 135.0           | 2                      | +5.955000E+03  | +4.6173531E+02        | +6.286000E+03 | +5.6330000E+03 | +4.8685859E+03 |
| 137.0           | 2                      | +4.3885000E+03 | +2.4484689E+01        | +4.460000E+03 | +4.3710000E+03 | +4.8589570E+03 |

AND 3166 PROPLNT (ANB UNLINED. G & P POLYMER) TENSILE MOD. 1750 IN/MIN 600 PSI

$F = +1.4966803E+00$        $\gamma = 11 +5.7111203E+02$        $( +3.6813162E-01 ) * X$   
 $R = +1.4468436E-01$       SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $L = +1.2233888E+00$       SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $N = 72$       DEGREES OF FREEDOM = 70  
 STORAGE CONDITIONS = AMB TEMP/RH      TEST CONDITIONS = AMB TEMP/RH



Figure 5-28

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|----------------|----------------|
| 13.0            | 3                      | +5.9631323E+02  | +1.2012212E+01        | +6.0511987E+02  | +5.8262988E+02 | +5.7589770E+02 |
| 15.0            | 2                      | +5.6743481E+02  | +6.7034040E+00        | +5.7216992E+02  | +5.626995E+02  | +5.7663378E+02 |
| 16.0            | 4                      | +5.4217480E+02  | +3.6145055E+01        | +5.7873999E+02  | +4.9300000E+02 | +5.7700195E+02 |
| 17.0            | 6                      | +6.0485131E+02  | +2.1414104E+01        | +6.3251977E+02  | +5.6883984E+02 | +5.737011E+02  |
| 19.0            | 4                      | +5.5024487E+02  | +2.0439493E+01        | +5.764990E+02   | +5.3089990E+02 | +5.7810644E+02 |
| 20.0            | 4                      | +5.8931225E+02  | +2.7280547E+01        | +6.2956982E+02  | +5.6921997E+02 | +5.7847460E+02 |
| 22.0            | 4                      | +5.5612231E+02  | +3.7370281E+01        | +5.9302978E+02  | +5.0891992E+02 | +5.7921069E+02 |
| 23.0            | 4                      | +5.8606225E+02  | +5.1151913E+01        | +6.4091992E+02  | +5.2203979E+02 | +5.7957885E+02 |
| 29.0            | 2                      | +5.5924487E+02  | +1.5965147E+01        | +5.6952978E+02  | +5.4695996E+02 | +5.8178784F+02 |
| 31.0            | 2                      | +5.8502978E+02  | +2.7155030E+01        | +6.05229998E+02 | +5.6682983E+02 | +5.8252392E+02 |
| 32.0            | 2                      | +5.7849487E+02  | +1.1417693E+01        | +5.86555981E+02 | +5.7042993E+02 | +5.8289208E+02 |
| 33.0            | 2                      | +5.7015991E+02  | +1.3087656E+01        | +5.7940991E+02  | +5.6090991E+02 | +5.8326025E+02 |
| 35.0            | 1                      | +5.6868994E+02  | +0.0000000E+67        | +5.6868994E+02  | +5.6868994E+02 | +5.8399658E+02 |
| 36.0            | 4                      | +6.2093725E+02  | +4.0345978E+01        | +6.6350976E+02  | +5.7050976E+02 | +5.8436474E+02 |
| 38.0            | 2                      | +6.5747973E+02  | +2.9492102E+01        | +6.7832983E+02  | +6.3662988E+02 | +5.8510083E+02 |
| 39.0            | 2                      | +5.6423486E+02  | +9.8030921E+00        | +5.7115991E+02  | +5.5730981E+02 | +5.8546899E+02 |
| 40.0            | 2                      | +5.8419482E+02  | +1.6422232E+01        | +5.9579980E+02  | +5.7258984E+02 | +5.8583715E+02 |
| 41.0            | 2                      | +5.4117480E+02  | +9.6415661E+00        | +5.4798999E+02  | +5.3435986E+02 | +5.8620532E+02 |
| 42.0            | 2                      | +5.81294467E+02 | +2.05669266E+01       | +5.95829983E+02 | +5.6675976E+02 | +5.8657348E+02 |
| 44.0            | 4                      | +6.0552490E+02  | +1.4357002E+01        | +6.2364990E+02  | +5.8866995E+02 | +5.8730981E+02 |
| 45.0            | 2                      | +6.2038476E+02  | +4.0843896E+00        | +6.2325000E+02  | +6.1751977E+02 | +5.8767773E+02 |
| 47.0            | 1                      | +5.6019995E+02  | +0.0000000E+03        | +5.6019995E+02  | +5.6019995E+02 | +5.8841406E+02 |
| 48.0            | 2                      | +5.5442968E+02  | +1.46449574E+01       | +5.6477978E+02  | +5.4407983E+02 | +5.8878222E+02 |
| 49.0            | 2                      | +6.2115478E+02  | +2.2723335E+01        | +6.3721997E+02  | +6.0508984E+02 | +5.8915039E+02 |
| 54.0            | 1                      | +5.8851977E+02  | +0.0000000E+15        | +5.8851977E+02  | +5.8851977F+02 | +5.9099096E+02 |
| 56.0            | 2                      | +5.7074487E+02  | +1.4752704E+01        | +5.8116992E+02  | +5.6031982E+02 | +5.9172729E+02 |
| 57.0            | 2                      | +5.8947485E+02  | +1.4148985E+01        | +5.9947998E+02  | +5.7946997E+02 | +5.9209545E+02 |
| 59.0            | 2                      | +5.7487988E+02  | +5.7970278E+01        | +6.1586987E+02  | +5.3386989E+02 | +5.9283178E+02 |

ANR 3066 PROPLNT (ANB LINED), G E P POLYMER) TENSILE SM. 1750 IN/MIN. 600 PSI

$F = +3.0978934E+00$   
 $R = -2.0586418E-01$   
 $t = +1.7600833E+00$   
 $N = 72$   
 $\gamma = ((+2.9370246E-01) + (-2.5656289E-04)) * X$   
 $F = \text{SIGNIFICANCE OF } F = \text{NOT SIGNIFICANT}$   
 $R = \text{SIGNIFICANCE OF } R = \text{NOT SIGNIFICANT}$   
 $t = \text{SIGNIFICANCE OF } t = \text{NOT SIGNIFICANT}$   
 $\text{DEGREES OF FREEDOM} = 70$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$   
 $\text{TEST CONDITIONS} = \text{AMB TEMP/RH}$   
 X ANBP  
 △ ANBG



ANB 3066 PROPLNT (ANB LINED, G & P POLYMER) TENSILE ER, 1750 IN/MIN, 600 PSI

Figure 29

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                      | +2.9876661E-01  | +8.9579247E-03        | +3.0909997E-01 | +2.9319995E-01 | +2.9036712E-01 |
| 15.0            | 2                      | +2.8439992E-01  | +1.3859422E-02        | +2.9419994E-01 | +2.7459996E-01 | +2.8985399E-01 |
| 16.0            | 4                      | +2.9367482E-01  | +1.7968324E-02        | +3.2409995E-01 | +2.8249996E-01 | +2.8959745E-01 |
| 17.0            | 6                      | +2.80266628E-01 | +1.8379942E-02        | +2.9809999E-01 | +2.4719995E-01 | +2.8934085E-01 |
| 19.0            | 4                      | +2.9517483E-01  | +3.1754497E-03        | +2.9789996E-01 | +2.9129999E-01 | +2.8882771E-01 |
| 20.0            | 4                      | +2.7309977E-01  | +1.4522446E-02        | +2.9269999E-01 | +2.6069998E-01 | +2.8857117E-01 |
| 22.0            | 4                      | +2.9487490E-01  | +1.6746955E-02        | +3.1599998E-01 | +2.7519994E-01 | +2.8805804E-01 |
| 23.0            | 4                      | +2.8157496E-01  | +1.5116960E-02        | +3.0289995E-01 | +2.6719999E-01 | +2.8780150E-01 |
| 29.0            | 2                      | +2.9534994E-01  | +2.8974086E-03        | +2.9839998E-01 | +2.9429996E-01 | +2.8626209E-01 |
| 31.0            | 2                      | +2.6834994E-01  | +4.1718534E-03        | +2.7129995E-01 | +2.6539999E-01 | +2.8574895E-01 |
| 32.0            | 2                      | +2.9564994E-01  | +9.0493941E-04        | +2.9629999E-01 | +2.9499995E-01 | +2.8549242E-01 |
| 33.0            | 2                      | +2.7499997E-01  | +1.8354439E-03        | +2.7629995E-01 | +2.7369999E-01 | +2.8523588E-01 |
| 35.0            | 1                      | +3.1599998E-01  | +0.0000000E+67        | +3.1599998E-01 | +3.1599998E-01 | +2.8472274E-01 |
| 36.0            | 4                      | +2.7124977E-01  | +9.3708944E-03        | +2.7959996E-01 | +2.5799995E-01 | +2.8446614E-01 |
| 38.0            | 2                      | +2.7889996E-01  | +4.7997559E-03        | +2.8229999E-01 | +2.7549999E-01 | +2.8395307E-01 |
| 39.0            | 2                      | +3.0139994E-01  | +8.0607661E-03        | +3.0709999E-01 | +2.9569995E-01 | +2.8369647E-01 |
| 40.0            | 2                      | +2.9414993E-01  | +1.6193628E-02        | +3.0559998E-01 | +2.8269994E-01 | +2.8343993E-01 |
| 41.0            | 2                      | +3.1514996E-01  | +1.1808990E-02        | +3.2349997E-01 | +3.0679994E-01 | +2.8318333E-01 |
| 42.0            | 2                      | +2.8589993E-01  | +4.2447630E-03        | +2.8889995E-01 | +2.8289997E-01 | +2.8292679E-01 |
| 44.0            | 4                      | +2.6737475E-01  | +1.3101230E-02        | +2.8259998E-01 | +2.5619995E-01 | +2.8241366E-01 |
| 45.0            | 2                      | +2.7134996E-01  | +1.1807885E-02        | +2.7969998E-01 | +2.6299995E-01 | +2.8215712E-01 |
| 47.0            | 1                      | +3.2299995E-01  | +0.0000000E+03        | +3.2299995E-01 | +3.2299995F-01 | +2.8164398E-01 |
| 48.0            | 2                      | +2.9304993E-01  | +2.7632339E-03        | +2.9499995E-01 | +2.9109996E-01 | +2.8138738E-01 |
| 49.0            | 2                      | +2.6614993E-01  | +4.4537027E-03        | +2.6929998E-01 | +2.6299995E-01 | +2.8113085F-01 |
| 54.0            | 1                      | +2.8249996E-01  | +0.0000000E+15        | +2.8249996E-01 | +2.8249996E-01 | +2.7984803E-01 |
| 56.0            | 2                      | +2.8364991E-01  | +3.3231242E-03        | +2.9099994E-01 | +2.8629994E-01 | +2.7933490E-01 |
| 57.0            | 2                      | +2.5349998E-01  | +4.9492657E-03        | +2.5699996E-01 | +2.5000000E-01 | +2.7907836E-01 |
| 59.0            | 2                      | +2.8589993E-01  | +7.2105936E-03        | +2.9099994E-01 | +2.8079998E-01 | +2.7856522E-01 |

ANR 3066 PROPLNT (ANB LINED, G & P POLYMER) TENSILE ER. 1750 IN/MIN. 600 PSI



ANB 3066 PROPLNT (ANB LINEO, G & P POLYMER) TENSILE KOO, 1750 IN/MIN 600 PSI

Figure 30

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                      | +3.5793332E+03 | +3.7753851E+02        | +3.8290000E+03 | +3.1450000E+03 | +3.5364399E+03 |
| 15.0            | 2                      | +3.7815000E+03 | +2.7646970E+02        | +3.9770000E+03 | +3.5860000E+03 | +3.5846784E+03 |
| 16.0            | 4                      | +3.3472500E+03 | +3.7349776E+02        | +3.7980000E+03 | +2.8960000E+03 | +3.6087978E+03 |
| 17.0            | 6                      | +4.0250000E+03 | +4.5941745E+02        | +4.9430000E+03 | +3.7330000E+03 | +3.6329169E+03 |
| 19.0            | 4                      | +3.6770000E+03 | +3.0727837E+02        | +3.9280000E+03 | +3.2300000E+03 | +3.6811557E+03 |
| 20.0            | 4                      | +3.6770000E+03 | +4.2918761E+02        | +4.2190000E+03 | +3.2910000E+03 | +3.7052749E+03 |
| 22.0            | 4                      | +3.5207500E+03 | +5.5236634E+02        | +4.1630000E+03 | +2.9420000E+03 | +3.7525136E+03 |
| 23.0            | 4                      | +4.1352500E+03 | +5.6956525E+02        | +4.7310000E+03 | +3.4680000E+03 | +3.7776328E+03 |
| 29.0            | 2                      | +3.1885000E+03 | +1.3783867E+02        | +3.2860000E+03 | +3.0910000E+03 | +3.9223486E+03 |
| 31.0            | 2                      | +3.8525000E+03 | +3.3586827E+02        | +4.0900000E+03 | +3.6150000E+03 | +3.9705871E+03 |
| 32.0            | 2                      | +3.3920000E+03 | +1.6685322E+02        | +3.5100000E+03 | +3.2740000E+03 | +3.9947065E+03 |
| 33.0            | 2                      | +3.7510000E+03 | +1.3575713E+02        | +3.8570000E+03 | +3.6650000E+03 | +4.0188259E+03 |
| 35.0            | 1                      | +2.9250000E+03 | +0.0000000E+67        | +2.9250000E+03 | +2.9250000E+03 | +4.0670644E+03 |
| 36.0            | 4                      | +3.7592500E+03 | +1.2743331E+02        | +3.9280000E+03 | +3.6260000E+03 | +4.0911838E+03 |
| 38.0            | 2                      | +4.2930000E+03 | +7.8630146E+02        | +4.8490000E+03 | +3.7370000E+03 | +4.1394218E+03 |
| 39.0            | 2                      | +3.9695000E+03 | +8.9774718E+01        | +4.0330000E+03 | +3.9060000E+03 | +4.1635390E+03 |
| 40.0            | 2                      | +4.2070000E+03 | +2.4605283E+02        | +4.3810000E+03 | +4.0330000E+03 | +4.1876601E+03 |
| 41.0            | 2                      | +3.7310000E+03 | +1.300996E+02         | +3.8230000E+03 | +3.6390000E+03 | +4.2117773E+03 |
| 42.0            | 2                      | +4.3415000E+03 | +6.1730017E+02        | +4.7780000E+03 | +3.9050000E+03 | +4.2358984E+03 |
| 44.0            | 4                      | +4.9737500E+03 | +4.4959676E+02        | +5.3560000E+03 | +4.3720000E+03 | +4.2841367E+03 |
| 45.0            | 2                      | +5.3250000E+03 | +7.6302031E+01        | +5.3790000E+03 | +5.2710000E+03 | +4.3082539E+03 |
| 47.0            | 1                      | +3.7730000E+03 | +0.0000000E+03        | +3.7730000E+03 | +3.7730000E+03 | +4.3564960E+03 |
| 48.0            | 2                      | +4.2435000E+03 | +1.7038632E+02        | +4.3640000E+03 | +4.1230000E+03 | +4.3806132E+03 |
| 49.0            | 2                      | +5.5970000E+03 | +2.5596484E+02        | +5.7780000E+03 | +5.4160000E+03 | +4.4047343E+03 |
| 54.0            | 1                      | +4.2340000E+03 | +0.0000000E+15        | +4.2840000E+03 | +4.2840000E+03 | +4.5253281E+03 |
| 56.0            | 2                      | +4.2555000E+03 | +1.9019858E+02        | +4.3900000E+03 | +4.1210000E+03 | +4.5735664E+C3 |
| 57.0            | 2                      | +4.4105000E+03 | +8.5530696E+01        | +4.4710000E+03 | +4.3500000E+03 | +4.5976875E+03 |
| 59.0            | 2                      | +4.3570000E+03 | +2.2061278E+02        | +4.5130000E+03 | +4.2010000E+03 | +4.6459257E+03 |

$F = +1.1398818E-01$        $(+6.0798881E+02)$        $(-1.9179807E-02)$        $(* X)$   
 $R = -1.6610968E-02$       SIGNIFICANCE OF F = NOT SIGNIFICANT       $\sigma_f = +3.7075377E+01$   
 $t = +3.3762135E-01$       SIGNIFICANCE OF R = NOT SIGNIFICANT       $S_r = +5.6808631E-02$   
 $N = 415$       SIGNIFICANCE OF V = NOT SIGNIFICANT       $S_v = +3.7115113E+01$   
DEGREES OF FREEDOM = 413

STORAGE CONDITIONS = AMB TEMP/RH      TEST CONDITIONS = AMB TEMP/RH

UNIT OF MEASURE = PSI      480.00      530.00      580.00      630.00      680.00      730.00

PARAMETER = MAXIMUM STRESS



ANB 3066 PROPELLANT (ANT & ANB UNLND, P POLYMER) TENSILE SM, 1750 IN/MIN, 600 PSI

Figure 5-31

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y            | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|-------------------|-----------------------|-----------------|-----------------|-----------------|
| 14.0            | 2                      | + 5.64554468E+02  | + 1.42033308E+01      | + 5.7458984E+02 | + 5.5451977E+02 | + 6.0772021E+02 |
| 16.0            | 11                     | + 5.7939637E+02   | + 2.4094066E+01       | + 6.2000000E+02 | + 5.3979980E+02 | + 6.0768188E+02 |
| 17.0            | 5                      | + 5.7838779E+02   | + 1.7164894E+01       | + 6.1816992E+02 | + 5.7316992E+02 | + 6.0766259E+02 |
| 19.0            | 2                      | + 5.845509776E+C2 | + 2.17271679E+01      | + 5.9986987E+02 | + 5.6914990E+02 | + 6.0762426E+02 |
| 20.0            | 2                      | + 5.6053491E+02   | + 4.0124323E+00       | + 5.6335986E+02 | + 5.577C99E+02  | + 6.0760498E+02 |
| 21.0            | 2                      | + 5.9086987E+02   | + 2.6774955E+01       | + 6.0979980E+02 | + 5.7193994E+J2 | + 6.0758593E+02 |
| 26.0            | 1                      | + 6.1784985E+02   | + 3.0000000E+11       | + 6.1984985E+02 | + 6.1984985E+02 | + 6.0748999E+02 |
| 27.0            | 2                      | + 6.3214477E+02   | + 5.0326571E+C0       | + 6.3668994E+02 | + 6.2959985E+02 | + 6.0747094E+02 |
| 28.0            | 7                      | + 6.0588671E+02   | + 1.8040445E+01       | + 6.3310986E+02 | + 5.837C99E+02  | + 6.0745166E+02 |
| 29.0            | 4                      | + 6.0794726E+02   | + 2.3887899E+01       | + 6.3307983E+02 | + 5.7578979E+02 | + 6.0743237E+02 |
| 30.0            | 7                      | + 5.9440380E+02   | + 2.8554173E+01       | + 6.3619995E+02 | + 5.5525000E+02 | + 6.0741333E+02 |
| 31.0            | 2                      | + 6.5223486E+02   | + 5.5078841E+01       | + 6.9117993E+02 | + 6.1328979E+02 | + 6.0739404E+02 |
| 32.0            | 1                      | + 6.1185986E+02   | + 0.0000000E+35       | + 6.1185986E+02 | + 6.1185986E+02 | + 6.0737500E+02 |
| 33.0            | 2                      | + 5.8946464E+02   | + 4.9202099E+20       | + 5.9291992E+02 | + 5.8600976E+02 | + 6.0735571E+02 |
| 34.0            | 1                      | + 5.9667795E+02   | + 0.0000000E+43       | + 5.9667795E+02 | + 5.9667795E+02 | + 6.0733666E+02 |
| 35.0            | 3                      | + 5.8666967E+02   | + 1.2110063E+01       | + 5.9937988E+02 | + 5.7528979E+02 | + 6.0731738E+02 |
| 36.0            | 2                      | + 4.9500000E+02   | + 1.4142135E+01       | + 5.0500000E+02 | + 4.8500000E+02 | + 6.0729833E+02 |
| 38.0            | 5                      | + 5.9382983E+02   | + 7.4940201E+00       | + 6.0347998E+02 | + 5.8751977E+02 | + 6.0725976E+02 |
| 39.0            | 3                      | + 6.1127075E+02   | + 2.2329114E+01       | + 6.5000000E+02 | + 5.8061987E+02 | + 6.0724072E+02 |
| 40.0            | 2                      | + 6.3522971E+02   | + 7.2531863E+00       | + 6.4931982E+02 | + 6.3009985E+02 | + 6.0722143E+02 |
| 41.0            | 2                      | + 6.0887915E+02   | + 1.6540560E+01       | + 6.3590991E+02 | + 5.8755981E+02 | + 6.0720239E+02 |
| 42.0            | 3                      | + 6.4206640E+02   | + 4.9276199E+00       | + 6.4632983E+02 | + 6.3665991E+02 | + 6.0718310E+02 |
| 43.0            | 2                      | + 6.0702490E+02   | + 6.4302697E+00       | + 6.1155991E+02 | + 6.0248999E+02 | + 6.0716406E+02 |
| 44.0            | 6                      | + 5.6909814E+02   | + 2.5414694E+01       | + 5.9151977E+02 | + 5.3657983E+02 | + 6.0714477E+02 |
| 45.0            | 4                      | + 5.9679808E+02   | + 1.3376974E+C1       | + 6.1312988E+02 | + 5.7908994E+02 | + 6.0712548E+02 |
| 46.0            | 6                      | + 5.6877661E+02   | + 2.3319513E+01       | + 6.0170996E+02 | + 5.3000000E+02 | + 6.0710644E+02 |
| 47.0            | 11                     | + 6.1200805E+02   | + 3.1016174E+01       | + 6.4367993E+02 | + 5.7220996E+02 | + 6.0708715E+02 |
| 48.0            | 10                     | + 6.1045068E+02   | + 2.2561757E+01       | + 6.5388989E+02 | + 5.8829980E+02 | + 6.0706811E+02 |
| 49.0            | 8                      | + 6.2568115E+02   | + 1.5651866E+C1       | + 6.4500000E+02 | + 6.097C996E+02 | + 6.0704882E+02 |
| 50.0            | 11                     | + 6.3135986E+02   | + 2.2890763E+01       | + 6.9129980E+02 | + 5.9000000E+02 | + 6.0702978E+02 |
| 51.0            | 3                      | + 6.1754321E+02   | + 1.2247862E+C1       | + 6.2445996E+02 | + 6.0285990E+02 | + 6.0701049E+02 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                 |                        |                |                       |                |                | 12              | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 80 |
| 52.0            | 4                      | +6.3532739E+02 | +8.5770159E+00        | +6.1541992E+02 | +5.9442993E+02 | +6.0699145E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 53.0            | 14                     | +6.2172338E+02 | +1.9691017E+01        | +6.5133984E+02 | +5.9517933E+02 | +6.0697216E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 54.0            | 9                      | +6.3960053E+02 | +1.1492198E+01        | +6.5484985E+02 | +6.2233984E+02 | +6.0695288E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 55.0            | 4                      | +6.0473735E+02 | +1.1424807E+01        | +6.2000000E+02 | +5.9308984E+02 | +6.0693383E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 56.0            | 3                      | +6.2401562E+02 | +3.5203486E+01        | +6.8021997E+02 | +5.8663989E+02 | +6.0691455E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 57.0            | 12                     | +6.3192895E+02 | +4.9775235E+01        | +6.8677978E+02 | +5.3694995E+02 | +6.0689550E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 58.0            | 5                      | +5.8289575E+02 | +3.6655745E+01        | +6.2000000E+02 | +5.3619995E+02 | +6.0687622E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 59.0            | 2                      | +6.6507983E+02 | +1.6367982E+00        | +6.6621997E+02 | +6.6393994E+02 | +6.0685717E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 60.0            | 4                      | +6.9479996E+02 | +6.6441584E+01        | +6.6479996E+02 | +5.2971997E+02 | +6.0683789E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 61.0            | 2                      | +6.1312958E+02 | +5.6735277E+00        | +6.2312988E+02 | +6.1512988E+02 | +6.0681860E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 62.0            | 4                      | +6.4166992E+02 | +1.8081716E+01        | +6.5866992E+02 | +6.1843994E+02 | +6.0679956E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 63.0            | 6                      | +6.2579467E+02 | +4.1245974E+00        | +6.3055981E+02 | +6.2000000E+02 | +6.0678027E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 64.0            | 6                      | +6.5564648E+02 | +2.7771238E+01        | +6.9659985E+02 | +6.1500000E+02 | +6.0676123E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 65.0            | 2                      | +6.2500000F+02 | +7.0710678E+00        | +6.3000000E+02 | +6.2000000E+02 | +6.06674194E+02 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 66.0            | 4                      | +6.2233990E+02 | +3.5710616E+01        | +6.6500000E+02 | +5.9485990E+02 | +6.0672290E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 68.0            | 4                      | +6.4750000E+02 | +1.1902380E+01        | +6.6500000E+02 | +6.4000000E+02 | +6.0668457E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 69.0            | 12                     | +6.1153125E+02 | +2.4478865E+01        | +6.5000000E+02 | +5.7997998E+02 | +6.0666528E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 70.0            | 2                      | +5.4250000E+02 | +3.5355339E+00        | +5.4500000E+02 | +5.4000000E+02 | +6.0664599E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 71.0            | 7                      | +5.6899414E+02 | +1.5643942E+01        | +5.9736987E+02 | +5.4973999E+02 | +6.0662695E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 72.0            | 13                     | +5.8909033F+02 | +3.3397633E+01        | +6.6000000E+02 | +5.4469995E+02 | +6.0660766E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 75.0            | 3                      | +5.6241308E+02 | +5.0057220E+01        | +5.9689990E+02 | +5.0500000E+02 | +6.0655029E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 76.0            | 1                      | +5.6500000E+02 | +0.0000000E+00        | +5.6500000E+02 | +5.6500000E+02 | +6.0653100E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 77.0            | 2                      | +6.5276489E+02 | +3.2388323E+00        | +6.5502978E+02 | +6.5050000E+02 | +6.0651196E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 78.0            | 6                      | +5.7631152E+02 | +2.1938650E+01        | +6.1955981E+02 | +5.6017993E+02 | +6.0649267E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 79.0            | 2                      | +6.1215901E+02 | +1.2689833E+01        | +6.2212988E+02 | +6.0418994E+02 | +6.0647338E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 80.0            | 5                      | +5.4708789E+02 | +3.3870330E+01        | +5.9122998E+02 | +4.9298999E+02 | +6.0645434E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 82.0            | 3                      | +6.2416302E+02 | +1.3874565E+01        | +6.1401977E+02 | +5.3823999E+02 | +6.0641601E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 83.0            | 4                      | +6.0700000F+02 | +6.6503132E+01        | +6.7000000E+02 | +5.4000000E+02 | +6.0639672E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 84.0            | 4                      | +6.1498486E+02 | +5.0761440E+01        | +6.6000000E+02 | +5.5685986E+02 | +6.0637768E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 85.0            | 2                      | +6.2420996E+02 | +4.1951558E+01        | +6.2716992E+02 | +6.2125000E+02 | +6.0635839E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 90.0            | 2                      | +6.1603491E+02 | +1.0789421E+01        | +6.2365991E+02 | +6.0840991E+02 | +6.0626245E+02  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y            | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y        | REGRESSION Y     |
|-----------------|------------------------|-------------------|-----------------------|-----------------|------------------|------------------|
| 91.0            | 2                      | + 6.159546983E+02 | + 6.2063989E+02       | + 6.1126977E+02 | + 6.0624340E+02  |                  |
| 92.0            | 4                      | + 5.9749218E+02   | + 5.7932340E+01       | + 6.3471997E+02 | + 5.1226977E+02  | + 6.062412E+02   |
| 93.0            | 2                      | + 6.3590991E+02   | + 1.3554698E+01       | + 6.4548999E+02 | + 6.2632983E+02  | + 6.0620507E+02  |
| 94.0            | 4                      | + 5.9723735E+02   | + 6.6109993E+00       | + 6.0251977E+02 | + 5.8779980E+02  | + 6.0618579E+02  |
| 95.0            | 4                      | + 6.1589721E+02   | + 1.7073505E+01       | + 6.2501977E+02 | + 5.8860986E+02  | + 6.0616650E+02  |
| 96.0            | 3                      | + 6.3111287E+02   | + 3.9381527E+01       | + 6.5773999E+02 | + 5.8587988E+02  | + 6.0614746E+02  |
| 100.0           | 2                      | + 6.2530981E+02   | + 1.4655342E+01       | + 6.3566992E+02 | + 6.1494995E+02  | + 6.0607080E+02  |
| 105.0           | 2                      | + 6.2546484E+02   | + 1.0686836E+01       | + 6.3300976E+02 | + 6.1791992E+02  | + 6.0597485E+02  |
| 106.0           | 4                      | + 6.0073974E+02   | + 1.8234063E+01       | + 6.2311987E+02 | + 5.8406982E+02  | + 6.0595556E+02  |
| 107.0           | 4                      | + 6.1819726E+02   | + 1.8964522E+01       | + 6.4285986E+02 | + 5.9841992E+02  | + 6.0593652E+02  |
| 108.0           | 2                      | + 4.8874975E+02   | + 5.0671636E+00       | + 4.9231982E+02 | + 4.85117993E+02 | + 6.0591723E+02  |
| 109.0           | 3                      | + 5.0982324E+02   | + 2.4066680E+01       | + 5.3358984E+02 | + 4.8546997E+02  | + 6.0589819E+02  |
| 110.0           | 8                      | + 5.8195703E+02   | + 2.0018242E+01       | + 6.2064990E+02 | + 5.5721997E+02  | + 6.0587890E+02  |
| 111.0           | 4                      | + 5.8491235E+02   | + 1.7050462E+01       | + 5.9637988E+02 | + 5.6028979E+02  | + 6.0585961E+02  |
| 112.0           | 6                      | + 6.0272485E+02   | + 3.7483893E+01       | + 6.5906982E+02 | + 5.5785990E+02  | + 6.0584057E+02  |
| 113.0           | 5                      | + 6.1791967E+02   | + 1.8385812E+01       | + 6.5032983E+02 | + 6.0630981E+02  | + 6.0582128E+02  |
| 114.0           | 2                      | + 6.1582983E+02   | + 8.3474817E+00       | + 6.2172998E+02 | + 6.0992993E+02  | + 6.0580224E+02  |
| 115.0           | 2                      | + 6.1888989E+02   | + 2.362954E+01        | + 6.3469995E+02 | + 6.0307983E+02  | + 6.05782295E+02 |
| 116.0           | 2                      | + 6.3606982E+02   | + 4.9731716E+00       | + 6.3955981E+02 | + 6.3257983E+02  | + 6.0576391E+02  |
| 117.0           | 4                      | + 6.2582714E+02   | + 1.0795128E+01       | + 6.4103979E+02 | + 6.1681982E+02  | + 6.0574462E+02  |
| 118.0           | 2                      | + 6.4195483E+02   | + 2.4584128E+00       | + 6.4367993E+02 | + 6.4022998E+02  | + 6.0572558E+02  |
| 120.0           | 2                      | + 5.7945971E+02   | + 8.7694230E+00       | + 5.8564990E+02 | + 5.7326977E+02  | + 6.0568701E+02  |
| 123.0           | 7                      | + 6.3833813E+02   | + 1.8205622E+01       | + 6.6842993E+02 | + 6.0647998E+02  | + 6.0562963E+02  |
| 124.0           | 4                      | + 6.5104990E+02   | + 1.7524167E+01       | + 6.7009985E+02 | + 6.3169995E+02  | + 6.0561035E+02  |
| 127.0           | 6                      | + 6.1718139E+02   | + 2.1438212E+01       | + 6.5418994E+02 | + 5.9131982E+02  | + 6.055273E+02   |
| 129.0           | 4                      | + 6.2417482E+02   | + 4.6788926E+00       | + 5.2798999E+02 | + 6.1848599E+02  | + 6.0551440E+02  |
| 132.0           | 4                      | + 5.2535986E+02   | + 1.2982311E+00       | + 5.270976E+02  | + 5.2393994E+02  | + 6.0545703E+02  |
| 133.0           | 2                      | + 6.0781982E+02   | + 5.6046416E+01       | + 6.4744995E+02 | + 5.6818994E+02  | + 6.0543774E+02  |
| 134.0           | 4                      | + 5.5137988E+02   | + 4.5319716E+01       | + 5.9523999E+02 | + 5.0700000E+02  | + 6.0541870E+02  |
| 135.0           | 4                      | + 6.1776977E+02   | + 1.8409388E+01       | + 6.3975976E+02 | + 5.9706982F+02  | + 6.0539941E+02  |
| 136.0           | 2                      | + 5.7254492E+02   | + 1.5308888E+00       | + 5.9359985E+02 | + 5.9148999E+02  | + 6.0538012E+02  |

$F = +1.5618425E+01$   
 $R = -1.9089001E-01$   
 $t^* = +3.9520153E+00$   
 $N = 415$   
 SIGNIFICANCE OF F =  $+3.4040015E-02$   
 SIGNIFICANCE OF R =  $+5.1205667E-02$   
 SIGNIFICANCE OF t^\* =  $+3.3454497E-02$   
 DEGREES OF FREEDOM = 413

STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

Z ANT ANB

UNIT OF MEASURE = IN/IN  
 PARAMETER = STRAIN AT RUPTURE



ANB 3066 PROPELLANT (ANT & ANB UNLND, P POLYMER) TENSILE ER, 1750 IN/MIN, 600 PSI

Figure 5-32

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|----------------|----------------|
| 14.0            | 2                      | +3.1749993E-01  | +1.2020736E-02        | +3.2599997E-01  | +3.0899995E-01 | +2.7931922E-01 |
| 16.0            | 11                     | +2.9172694E-01  | +2.5926372E-02        | +3.3499997E-01  | +2.5399994E-01 | +2.7891451E-01 |
| 17.0            | 5                      | +3.1371992E-01  | +9.6282112E-03        | +3.28599938E-01 | +3.0499994E-01 | +2.7871215E-01 |
| 19.0            | 2                      | +3.7424993E-01  | +7.4227337E-03        | +3.7949997E-01  | +3.6899995E-01 | +2.7830737E-01 |
| 20.0            | 2                      | +3.0949997E-01  | +4.4547473E-02        | +3.4099996E-01  | +2.7795999E-01 | +2.7810502E-01 |
| 21.0            | 2                      | +2.4524998E-01  | +1.1665027E-02        | +2.5349998E-01  | +2.3695998E-01 | +2.7790266E-01 |
| 26.0            | 1                      | +2.3849999E-01  | +0.3002000E+11        | +2.3849999E-01  | +2.3849999E-01 | +2.7689081E-01 |
| 27.0            | 2                      | +2.4309992E-01  | +3.5779684E-02        | +2.6837995E-01  | +2.1779996E-01 | +2.7668845E-01 |
| 28.0            | 7                      | +2.3372822E-01  | +1.8825331E-02        | +2.7399998E-01  | +2.1595996E-01 | +2.7648609E-01 |
| 29.0            | 4                      | +2.8624987E-01  | +5.0811438E-02        | +3.3837994E-01  | +2.3529994E-01 | +2.7628374E-01 |
| 30.0            | 7                      | +2.4958539E-01  | +5.1991427E-02        | +3.2249999E-01  | +1.9289994E-01 | +2.7608138E-01 |
| 31.0            | 2                      | +2.3549991E-01  | +6.5336533E-02        | +2.8167995E-01  | +1.8929994E-01 | +2.7587902E-01 |
| 32.0            | 1                      | +1.9999998E-01  | +0.0000000E+35        | +1.9999998E-01  | +1.9999998E-01 | +2.7567666E-01 |
| 33.0            | 2                      | +3.1484997E-01  | +1.5344388E-02        | +3.2569998E-01  | +3.0399996E-01 | +2.7547430E-01 |
| 34.0            | 1                      | +2.8289997E-01  | +0.0000000E+43        | +2.8289997E-01  | +2.8289997E-01 | +2.7527189E-01 |
| 35.0            | 3                      | +2.9726660E-01  | +3.6807095E-02        | +3.1999999E-01  | +2.5475996E-01 | +2.7506953E-01 |
| 36.0            | 2                      | +1.6299998E-01  | +5.8189520E-05        | +1.6299998E-01  | +1.6299998E-01 | +2.7486717E-01 |
| 38.0            | 5                      | +2.8957974E-01  | +3.1595597E-02        | +3.2599997E-01  | +2.5715994E-01 | +2.7446246E-01 |
| 39.0            | 9                      | +2.7309966E-01  | +3.8394535E-02        | +3.5159999E-01  | +2.3495995E-01 | +2.7426010E-01 |
| 40.0            | 2                      | +2.6074993E-01  | +7.6780374E-04        | +2.6129996E-01  | +2.6019996E-01 | +2.7405774E-01 |
| 41.0            | 9                      | +2.7349954E-01  | +1.8339397E-02        | +3.0899995E-01  | +2.3889994E-01 | +2.7385538E-01 |
| 42.0            | 3                      | +2.4526661E-01  | +1.9962750E-02        | +2.6479995E-01  | +2.2489994E-01 | +2.7365297E-01 |
| 43.0            | 2                      | +2.3384994E-01  | +1.6333207E-02        | +2.4539995E-01  | +2.2229999E-01 | +2.7345061E-01 |
| 44.0            | 6                      | +2.9533302E-01  | +9.2536494E-03        | +3.0493994E-01  | +2.8399997E-01 | +2.7324825E-01 |
| 45.0            | 6                      | +2.8203323E-01  | +1.6797159E-02        | +2.9899976E-01  | +2.5549995E-01 | +2.7304589E-01 |
| 46.0            | 6                      | +2.78119357E-01 | +5.1355071E-02        | +3.2509994E-01  | +1.9895994E-01 | +2.7284353E-01 |
| 47.0            | 11                     | +2.6386318E-01  | +1.3137745E-02        | +2.9729998E-01  | +2.5499999E-01 | +2.7264118E-01 |
| 48.0            | 10                     | +2.6720958E-01  | +1.5637862E-02        | +2.8299999E-01  | +2.2795998E-01 | +2.7243882E-01 |
| 49.0            | 8                      | +2.6876211E-01  | +4.0435329E-02        | +3.1199997E-01  | +2.0295994E-01 | +2.7223640E-01 |
| 50.0            | 11                     | +2.8027230E-01  | +3.9631372E-02        | +3.4599995E-01  | +2.1999996E-01 | +2.7203404E-01 |
| 51.0            | 3                      | +2.6199994E-01  | +3.8935647E-02        | +3.1199997E-01  | +2.3795997E-01 | +2.7183169E-01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|
| 52.0            | 4                      | +2. 9697490E-01 | +2. 5368915E-02       | +3. 2099997E-01 | +2. 6389998E-01 | +2. 7162933E-01 |
| 53.0            | 14                     | +2. 9272097E-01 | +2. 5357599E-02       | +3. 4399998E-01 | +2. 3499995E-01 | +2. 7142697E-01 |
| 54.0            | 9                      | +2. 7329961E-01 | +1. 4847138E-02       | +3. 0769997E-01 | +2. 5399994E-01 | +2. 712261E-01  |
| 55.0            | 4                      | +2. 4924993E-01 | +3. 5112919E-02       | +2. 8599995E-01 | +2. 0899999E-01 | +2. 7102226E-01 |
| 56.0            | 8                      | +2. 8057479E-01 | +1. 9329844E-02       | +3. 1999999E-01 | +2. 5999999E-01 | +2. 7081990E-01 |
| 57.0            | 12                     | +2. 6277467E-01 | +2. 8440091E-02       | +3. 0219995E-01 | +2. 0499998E-01 | +2. 7061748E-01 |
| 58.0            | 5                      | +2. 5283380E-01 | +2. 5936847E-02       | +2. 7629995E-01 | +2. 2199994E-01 | +2. 7241512E-01 |
| 59.0            | 2                      | +2. 9499995E-01 | +5. 6758363E-04       | +2. 9539996E-01 | +2. 9459995E-01 | +2. 7021276E-01 |
| 60.0            | 4                      | +2. 4987494E-01 | +5. 3459633E-02       | +2. 8779995E-01 | +1. 7329996E-01 | +2. 7001041E-01 |
| 61.0            | 2                      | +3. 2734996E-01 | +1. 0438783E-03       | +3. 2809996E-01 | +3. 2659995E-01 | +2. 6980805E-01 |
| 62.0            | 4                      | +2. 7212476E-01 | +2. 5480396E-02       | +3. 0559998E-01 | +2. 4499994E-01 | +2. 6960569E-01 |
| 63.0            | 6                      | +2. 5061637E-01 | +3. 9392186E-02       | +2. 8149998E-01 | +1. 7799997E-01 | +2. 6940333E-01 |
| 64.0            | 6                      | +2. 9768306E-01 | +2. 0760070E-02       | +3. 2699996E-01 | +2. 7399998E-01 | +2. 6920098E-01 |
| 65.0            | 2                      | +2. 3799997E-01 | +1. 4141501E-02       | +2. 4799996E-01 | +2. 2799998E-01 | +2. 6899856E-01 |
| 66.0            | 4                      | +2. 5324988E-01 | +3. 0522529E-02       | +2. 8199994E-01 | +2. 1599996E-01 | +2. 6879620E-01 |
| 68.0            | 4                      | +2. 4299991E-01 | +9. 1285137E-03       | +2. 5399994E-01 | +2. 3499995E-01 | +2. 6839148E-01 |
| 69.0            | 12                     | +2. 7041625E-01 | +2. 9000400E-02       | +2. 9999995E-01 | +1. 9599997E-01 | +2. 6813913E-01 |
| 70.0            | 2                      | +2. 2699999E-01 | +1. 3315672E-04       | +2. 2699999E-01 | +2. 2699999E-01 | +2. 6798677E-01 |
| 71.0            | 7                      | +2. 8687107E-01 | +2. 9553668E-02       | +3. 1799995E-01 | +2. 2611998E-01 | +2. 6778441E-01 |
| 72.0            | 13                     | +2. 7362263E-01 | +2. 3576064E-02       | +3. 1399995E-01 | +2. 3599994E-01 | +2. 6758199E-01 |
| 75.0            | 3                      | +2. 5569993E-01 | +7. 2492345E-02       | +2. 9849994E-01 | +1. 7199999E-01 | +2. 6697492E-01 |
| 76.0            | 1                      | +2. 3099994E-01 | +0. 0000000E+95       | +2. 3099994E-01 | +2. 3099994E-01 | +2. 6677256E-01 |
| 77.0            | 2                      | +3. 0369995E-01 | +3. 6747417E-03       | +3. 1229996E-01 | +3. 0705999E-01 | +2. 6657021E-01 |
| 78.0            | 6                      | +2. 3011637E-01 | +4. 2803727E-02       | +3. 1829994E-01 | +2. 3989999E-01 | +2. 6636785E-01 |
| 79.0            | 2                      | +2. 4869996E-01 | +1. 1877365E-02       | +2. 5709998E-01 | +2. 4029999E-01 | +2. 6616549E-01 |
| 80.0            | 5                      | +2. 4769991E-01 | +3. 8678805E-02       | +2. 7529996E-01 | +1. 8024999E-01 | +2. 6596307E-01 |
| 82.0            | 3                      | +2. 5416666E-01 | +1. 3148155E-02       | +2. 6579999E-01 | +2. 3989999E-01 | +2. 6555836E-01 |
| 83.0            | 4                      | +2. 2924995E-01 | +5. 2948665E-02       | +2. 8899997E-01 | +1. 7799997E-01 | +2. 6535600E-01 |
| 84.0            | 4                      | +2. 4267494E-01 | +2. 3524100E-02       | +2. 7699995E-01 | +2. 2355997E-01 | +2. 6515364E-01 |
| 85.0            | 2                      | +2. 4544994E-01 | +1. 0113782E-02       | +2. 5359994E-01 | +2. 3929995E-01 | +2. 6495128E-01 |
| 90.0            | 2                      | +2. 2974997E-01 | +1. 2656649E-02       | +2. 3864997E-01 | +2. 2079998E-01 | +2. 6393944E-01 |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 91.0            | 2                      | +2.5194996E-01 | +2.8355452E-02        | +2.7199995E-01 | +2.3189997E-01 | +2.6373708E-01 |
| 92.0            | 4                      | +2.5124979E-01 | +1.8043945E-02        | +2.7549999E-01 | +2.3279994E-01 | +2.6353472E-01 |
| 93.0            | 2                      | +2.6699995E-01 | +2.177583E-02         | +2.8239995E-01 | +2.5159996E-01 | +2.6333236E-01 |
| 94.0            | 4                      | +2.6149988E-01 | +1.8315990E-02        | +2.8309994E-01 | +2.4599999E-01 | +2.6313000E-01 |
| 95.0            | 4                      | +2.6109981E-01 | +2.0136196E-02        | +2.8289997E-01 | +2.3449999E-01 | +2.6292759E-01 |
| 96.0            | 3                      | +2.4909996E-01 | +1.6213978E-02        | +2.6749998E-01 | +2.3689997E-01 | +2.6272523E-01 |
| 100.0           | 2                      | +2.3894995E-01 | +1.3080124E-02        | +2.4819999E-01 | +2.2965996E-01 | +2.6191580E-01 |
| 105.0           | 2                      | +2.4404996E-01 | +5.7259995E-03        | +2.4809998E-01 | +2.3999994E-01 | +2.6090395E-01 |
| 106.0           | 4                      | +2.6199984E-01 | +1.1823039E-02        | +2.7969998E-01 | +2.5529998E-01 | +2.6070159E-01 |
| 107.0           | 4                      | +2.1684992E-01 | +3.7655718E-02        | +2.5699996E-01 | +1.6899996E-01 | +2.6049923E-01 |
| 108.0           | 2                      | +2.5544995E-01 | +1.7324297E-02        | +2.6769995E-01 | +2.4319994E-01 | +2.6029688E-01 |
| 109.0           | 3                      | +2.5236660E-01 | +1.9728064E-03        | +2.5449997E-01 | +2.5059998E-01 | +2.6009452E-01 |
| 110.0           | 8                      | +2.7227473E-01 | +2.1920284E-02        | +3.1689995E-01 | +2.3899996E-01 | +2.5989210E-01 |
| 111.0           | 4                      | +2.6274991E-01 | +1.1956053E-02        | +2.7029997E-01 | +2.4489998E-01 | +2.5968974E-01 |
| 112.0           | 6                      | +2.5991642E-01 | +4.4334370E-02        | +3.0509996E-01 | +1.8979996E-01 | +2.5948739E-01 |
| 113.0           | 5                      | +2.3895984E-01 | +3.3349246E-02        | +2.8399997E-01 | +1.916998E-01  | +2.5928503E-01 |
| 114.0           | 2                      | +2.4849992E-01 | +2.0930696E-02        | +2.6329994E-01 | +2.3369997E-01 | +2.5908267E-01 |
| 115.0           | 2                      | +2.7349996E-01 | +1.9090827E-02        | +2.6699994E-01 | +2.5999999E-01 | +2.5888031E-01 |
| 116.0           | 2                      | +3.1289994E-01 | +8.3419922E-03        | +3.1879997E-01 | +3.069998E-01  | +2.5867795E-01 |
| 117.0           | 4                      | +2.8544974E-01 | +1.6110410E-02        | +3.0699998E-01 | +2.7049994E-01 | +2.5847560E-01 |
| 118.0           | 2                      | +2.5019997E-01 | +1.0322438E-02        | +2.5749999E-01 | +2.4289995E-01 | +2.5827318E-01 |
| 120.0           | 2                      | +2.6049995E-01 | +2.3335113E-02        | +2.7699995E-01 | +2.4399995E-01 | +2.5786846E-01 |
| 123.0           | 7                      | +2.6171398E-01 | +2.0527693E-02        | +2.8599995E-01 | +2.2499996E-01 | +2.5726139E-01 |
| 124.0           | 4                      | +2.5974988E-01 | +1.0244803E-02        | +2.6899999E-01 | +2.4899995E-01 | +2.5705903E-01 |
| 127.0           | 6                      | +2.6183301E-01 | +2.8641360E-02        | +2.8199994E-01 | +2.1499997E-01 | +2.5645190E-01 |
| 129.0           | 4                      | +2.8122496E-01 | +1.1819161E-02        | +2.8729999E-01 | +2.6345997E-01 | +2.5604718E-01 |
| 132.0           | 4                      | +2.6709985E-01 | +7.2396711E-03        | +2.7649998E-01 | +2.6009994E-01 | +2.5544011E-01 |
| 133.0           | 2                      | +2.5579994E-01 | +4.9214928E-02        | +2.9059994E-01 | +2.2099995E-01 | +2.5523769E-01 |
| 134.0           | 4                      | +2.8384995E-01 | +4.2482337E-03        | +2.8909999E-01 | +2.7919995E-01 | +2.5503534E-01 |
| 135.0           | 4                      | +2.432996E-01  | +4.8766267E-03        | +2.4979996E-01 | +2.3889994E-01 | +2.5483298E-01 |
| 136.0           | 2                      | +2.4694997E-01 | +1.9303873E-02        | +2.6059997E-01 | +2.3329997E-01 | +2.5463062E-01 |

$\gamma = (( +5.3098340E+03) + (-1.7472865E+00) * X) * X$   
 $F = +7.3979101E-01$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $R = -4.2285442E-02$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $t = +8.6011105E-01$  SIGNIFICANCE OF t = NOT SIGNIFICANT  
 $N = 415$  DEGREES OF FREEDOM = 413  
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$

UNIT OF MEASURE = PSI  
 $\times 10^2$   
 PARAMETER = MODULUS



ANB 3066 PROPELLANT (ANT & ANB UNLND, P POLYMER) TENSILE MOD. 1750 IN/MIN, 600 PS

Figure 5-33

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|----------------|----------------|
| 14.0            | 2                      | +4.3784048E+01  | +1.3784048E+01        | +4.4030000E+03  | +4.383CC00E+J3 | +5.2853710E+03 |
| 16.0            | 11                     | +4.72470062E+J3 | +1.5963054E+03        | +7.5000000E+03  | +3.1470000E+03 | +5.2818750E+03 |
| 17.0            | 5                      | +4.2595976E+03  | +1.0115236E+02        | +4.4000000E+03  | +4.1310000E+03 | +5.2801289E+03 |
| 19.0            | 2                      | +3.5745000E+03  | +3.1889104E+02        | +3.8000000E+03  | +3.349C000E+03 | +5.2766328E+03 |
| 20.0            | 2                      | +3.3630002E+03  | +3.0751575E+01        | +3.9850000E+J3  | +3.9410000E+03 | +5.2748867E+03 |
| 21.0            | 2                      | +6.7000000E+03  | +2.8284271E+02        | +6.9000000E+J3  | +6.500C000E+03 | +5.2731406E+03 |
| 26.0            | 1                      | +5.7000000E+03  | +0.0000000E+11        | +5.7000000E+03  | +5.700CC00E+03 | +5.2644023E+03 |
| 27.0            | 2                      | +6.8500000E+03  | +7.0710678E+02        | +7.3000000E+03  | +6.3000000E+03 | +5.2626562E+03 |
| 28.0            | 7                      | +7.0000000E+03  | +7.7670758E+02        | +7.7000000E+03  | +5.7000000E+03 | +5.2609062E+03 |
| 29.0            | 4                      | +5.8815000E+03  | +1.6532012E+03        | +7.8000000E+03  | +4.286C000E+03 | +5.2591601E+03 |
| 30.0            | 7                      | +6.9542851E+03  | +1.7077236E+03        | +9.2000000E+03  | +4.7860000E+03 | +5.2574140E+03 |
| 31.0            | 2                      | +5.4420000E+03  | +1.0719738E+03        | +6.2000000E+03  | +4.684C000E+03 | +5.2556679E+03 |
| 32.0            | 1                      | +6.6000000E+03  | +0.0000000E+35        | +6.6000000E+03  | +6.600C000E+03 | +5.2539179E+03 |
| 33.0            | 2                      | +4.8385000E+03  | +2.7081266E+02        | +5.0300000E+03  | +4.647C000E+03 | +5.2521718E+03 |
| 34.0            | 1                      | +6.7000000E+03  | +0.0000000E+43        | +6.7000000E+03  | +6.700CC00E+03 | +5.2504257E+03 |
| 35.0            | 3                      | +5.1723320E+03  | +1.1574021E+03        | +6.5000000E+03  | +4.376C000E+03 | +5.2486757E+03 |
| 36.0            | 2                      | +8.1000000E+03  | +2.8284271E+02        | +8.3000000E+03  | +7.900C000E+03 | +5.2469296E+03 |
| 36.0            | 5                      | +5.1745976E+03  | +4.9279767E+02        | +5.6160000E+03  | +4.5520000E+03 | +5.2434335E+03 |
| 39.0            | 9                      | +5.8263320F+03  | +1.3117110E+03        | +8.4000000E+03  | +4.0680000E+03 | +5.2416875E+03 |
| 40.0            | 2                      | +4.6550000E+03  | +1.3150665E+02        | +4.7482000E+03  | +4.5620000E+03 | +5.2399414E+03 |
| 41.0            | 9                      | +5.0971093E+03  | +9.5612583E+02        | +7.1200000E+03  | +3.8190000E+03 | +5.2381914E+03 |
| 42.0            | 3                      | +5.1613320F+J3  | +3.2192752E+02        | +5.4010000E+03  | +4.7610000E+03 | +5.2364453E+03 |
| 43.0            | 2                      | +7.9195000F+03  | +4.3075515E+01        | +7.9500000E+03  | +7.889C000E+03 | +5.2346992E+03 |
| 44.0            | 6                      | +3.8485000F+03  | +4.5005566E+02        | +4.3220000E+03  | +3.237C000E+03 | +5.2329531E+03 |
| 45.0            | 6                      | +4.6133000E+03  | +4.1486238E+02        | +5.0190000E+03  | +3.9920000E+03 | +5.2312031E+03 |
| 46.0            | 6                      | +5.5116640E+03  | +1.8853523E+03        | +6.9000000E+03  | +4.128C000E+03 | +5.2294570E+03 |
| 47.0            | 11                     | +4.7534531E+03  | +6.5131595E+02        | +5.3610000E+03  | +3.402C000E+03 | +5.2277109E+03 |
| 48.0            | 10                     | +4.6347968E+03  | +6.9228780E+02        | +5.447J0000E+03 | +3.2470000E+03 | +5.2259609E+03 |
| 49.0            | 8                      | +5.5096250E+03  | +1.4452303E+03        | +7.9000000E+03  | +4.1640000E+03 | +5.2242148E+03 |
| 50.0            | 11                     | +4.3367265F+03  | +1.8117066E+03        | +8.0000000E+03  | +1.789CC00E+03 | +5.2224687E+03 |
| 51.0            | 3                      | +4.7926640F+03  | +3.4981042E+02        | +5.196J0000E+03 | +4.5720000E+03 | +5.2207187E+03 |

5-99

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
|                 |                        |                |                       |                |                | 5-100          |
| 52.0            | 4                      | +3.3197500E+03 | +7.8582605E+02        | +4.5790000E+03 | +3.111C000E+03 | +5.2189726E+03 |
| 53.0            | 14                     | +4.7604257E+03 | +6.1210541E+02        | +5.6250000E+03 | +3.7380000E+03 | +5.2172265E+03 |
| 54.0            | 3                      | +4.5637773E+03 | +1.2178505E+03        | +6.1120000E+03 | +2.8810000E+03 | +5.2154804E+03 |
| 55.0            | 4                      | +6.2590000E+03 | +2.3176686E+03        | +8.6000000E+03 | +4.1860000E+03 | +5.2137304E+03 |
| 56.0            | 8                      | +4.4437500E+03 | +7.9149474E+02        | +5.8690000E+03 | +3.4900000E+03 | +5.2119843E+03 |
| 57.0            | 12                     | +5.0004140E+03 | +1.1979005E+03        | +6.3000000E+03 | +3.3800000E+03 | +5.2102382E+03 |
| 58.0            | 5                      | +5.5923984E+03 | +1.9349542E+03        | +7.9000000E+03 | +3.9640000E+03 | +5.2084882E+03 |
| 59.0            | 2                      | +5.7580000E+C3 | +6.3560994E+01        | +5.8030000E+03 | +5.713C000E+03 | +5.2067421E+03 |
| 60.0            | 4                      | +6.2277500E+C3 | +7.7191531E+02        | +6.8000000E+03 | +5.0900000E+03 | +5.2049960E+03 |
| 61.0            | 2                      | +5.5355000E+03 | +1.4493964E+02        | +5.6380000E+03 | +5.4330000E+03 | +5.2032460E+03 |
| 62.0            | 4                      | +4.7707500E+03 | +4.3807219E+02        | +5.4240000E+03 | +4.423C000E+03 | +5.2015000E+03 |
| 63.0            | 6                      | +5.4961640E+03 | +1.6465099E+03        | +7.9000000E+03 | +4.2710000E+03 | +5.1957539E+03 |
| 64.0            | 6                      | +5.4543320E+03 | +4.0788217E+02        | +5.8000000E+03 | +4.7620000E+03 | +5.1980039E+03 |
| 65.0            | 2                      | +7.8000000E+03 | +1.4142135E+02        | +7.9000000E+03 | +7.7000000E+03 | +5.1962578E+03 |
| 66.0            | 4                      | +5.9342500E+03 | +2.7459866E+03        | +8.8000000E+03 | +3.5030000E+03 | +5.1945117E+03 |
| 68.0            | 4                      | +7.0500000E+03 | +1.6258331E+03        | +8.8000000E+03 | +5.3000000E+03 | +5.1910156E+03 |
| 69.0            | 12                     | +4.6407500E+03 | +1.0935124E+03        | +6.1000000E+03 | +3.055C000E+03 | +5.1892695E+03 |
| 70.0            | 2                      | +6.4900000E+03 | +9.8994949E+02        | +7.1000000E+03 | +5.7000000E+03 | +5.1875234E+03 |
| 71.0            | 7                      | +3.7932856E+03 | +6.5812314E+02        | +4.9690000E+03 | +3.2280000E+03 | +5.1857734E+03 |
| 72.0            | 13                     | +4.1528437E+03 | +9.1287634E+02        | +6.1000000E+03 | +2.5570000E+03 | +5.1840273E+03 |
| 75.0            | 3                      | +5.8533320E+03 | +9.9189331E+02        | +6.7000000E+03 | +4.762C000E+03 | +5.1787851E+03 |
| 76.0            | 1                      | +6.1000000E+03 | +0.0000000E+95        | +6.1000000E+03 | +6.1000000E+03 | +5.1770390E+03 |
| 77.0            | 2                      | +6.5850000E+03 | +2.0505121E+02        | +6.7300000E+03 | +6.4400000E+03 | +5.1752929E+03 |
| 78.0            | 6                      | +6.2285000E+03 | +1.1981466E+03        | +8.2300000E+03 | +5.0000000E+03 | +5.1735429E+03 |
| 79.0            | 2                      | +5.9485000E+03 | +5.8536151E+02        | +6.2210000E+03 | +5.6750000E+03 | +5.1717968E+03 |
| 80.0            | 5                      | +4.4671992E+03 | +4.1127995E+02        | +5.0790000E+03 | +3.9720000E+03 | +5.1700507E+03 |
| 82.0            | 3                      | +5.4230000E+03 | +3.0919007E+02        | +5.7800000E+03 | +5.241C000E+03 | +5.1665546E+03 |
| 83.0            | 4                      | +6.5250000E+03 | +5.1234752E+02        | +7.0000000E+03 | +5.8000000E+03 | +5.1648085E+03 |
| 84.0            | 4                      | +6.8252000E+03 | +6.8495741E+02        | +7.2000000E+03 | +5.8000000E+03 | +5.1630585E+03 |
| 85.0            | 2                      | +6.9700000E+03 | +4.3840620E+02        | +7.3000000E+03 | +6.6800000E+03 | +5.1613125E+03 |
| 90.0            | 2                      | +7.0000000E+03 | +2.8284271E+02        | +7.2000000E+03 | +6.8000000E+03 | +5.1525781E+03 |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\*\* ANALYSIS OF TIME SERIES \*\*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y    |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|
| 31.0            | 2                      | + 7.250000E+03  | + 3.5355339E+02       | + 7.500000E+03  | + 7.000000E+03  | + 5.1508281E+03 |
| 92.0            | 4                      | + 7.2300000E+03 | + 7.9002109E+02       | + 7.9400000E+03 | + 6.100000E+03  | + 5.1490820E+03 |
| 93.0            | 2                      | + 4.1915030E+03 | + 1.1523671E+02       | + 4.2730000E+03 | + 4.110000E+03  | + 5.1473359E+03 |
| 94.0            | 4                      | + 5.4145000E+03 | + 4.0480077E+02       | + 5.7752000E+03 | + 5.064000E+03  | + 5.1455859E+03 |
| 95.0            | 4                      | + 5.2065000E+03 | + 8.6242275E+02       | + 6.2340000E+03 | + 4.174000E+03  | + 5.1438398E+03 |
| 96.0            | 3                      | + 5.3213320E+03 | + 5.3394132E+02       | + 5.8000000E+03 | + 4.738000E+03  | + 5.1420937E+03 |
| 100.0           | 2                      | + 6.1445000E+03 | + 9.9206426E+02       | + 6.8460000E+03 | + 5.4430000E+03 | + 5.1351015E+03 |
| 105.0           | 2                      | + 6.5110000E+03 | + 2.5171015E+02       | + 6.6890000E+03 | + 6.333000E+03  | + 5.1263671E+03 |
| 106.0           | 4                      | + 5.1477500E+03 | + 6.9685170E+02       | + 5.7930000E+03 | + 4.4790000E+03 | + 5.1246210E+03 |
| 107.0           | 4                      | + 4.2877500E+03 | + 6.4361887E+02       | + 5.1600000E+03 | + 3.6460000E+03 | + 5.1228710E+03 |
| 108.0           | 2                      | + 3.7505000E+03 | + 6.43388946E+01      | + 3.7960000E+03 | + 3.7050000E+03 | + 5.1211250E+03 |
| 109.0           | 3                      | + 3.8596665E+03 | + 2.1788949E+02       | + 4.1070000E+03 | + 3.6960000E+03 | + 5.1193789E+03 |
| 110.0           | 8                      | + 4.8022000E+03 | + 6.9844398E+02       | + 5.9660000E+03 | + 3.8660000E+03 | + 5.1176289E+03 |
| 111.0           | 4                      | + 4.6387500E+03 | + 3.5448844E+02       | + 5.0020000E+03 | + 4.1720000E+03 | + 5.1158828E+03 |
| 112.0           | 6                      | + 5.9546640E+03 | + 8.8008060E+02       | + 6.7980000E+03 | + 4.3490000E+03 | + 5.1141367E+03 |
| 113.0           | 5                      | + 4.9880000E+03 | + 6.9817762E+02       | + 5.7550000E+03 | + 3.8530000E+03 | + 5.1123906E+03 |
| 114.0           | 2                      | + 4.4050000E+03 | + 4.9496464E+02       | + 4.7550000E+03 | + 4.0550000E+03 | + 5.1106406E+03 |
| 115.0           | 2                      | + 3.8440000E+03 | + 9.3054822E+02       | + 4.5020000E+03 | + 3.1860000E+03 | + 5.1088945E+03 |
| 116.0           | 2                      | + 3.5900000E+03 | + 3.2383946E+02       | + 3.8190000E+03 | + 3.3610000E+03 | + 5.1071484E+03 |
| 117.0           | 4                      | + 4.5937500E+03 | + 2.82285435E+02      | + 4.8140000E+03 | + 4.2000000E+03 | + 5.1053984E+03 |
| 118.0           | 2                      | + 5.0265000E+03 | + 1.9724984E+02       | + 5.1460000E+03 | + 4.8670000E+03 | + 5.1036523E+03 |
| 120.0           | 2                      | + 3.8530000E+03 | + 7.8346793E+02       | + 4.4070000E+03 | + 3.2990000E+03 | + 5.1001562E+03 |
| 123.0           | 7                      | + 3.7835712E+03 | + 6.2518460E+02       | + 4.3430000E+03 | + 2.6460000E+03 | + 5.0949140E+03 |
| 124.0           | 4                      | + 4.6650000E+03 | + 6.6153659E+02       | + 5.4480000E+03 | + 3.8700000E+03 | + 5.0931679E+03 |
| 127.0           | 6                      | + 4.3173320E+03 | + 5.3222050E+02       | + 4.7750000E+03 | + 3.4820000E+03 | + 5.0879257E+03 |
| 129.0           | 4                      | + 6.5622500E+03 | + 8.3368014E+02       | + 7.6680000E+03 | + 5.6430000E+03 | + 5.0844335E+03 |
| 132.0           | 4                      | + 5.1350000E+03 | + 2.5272646E+02       | + 5.3390000E+03 | + 4.7730000E+03 | + 5.0791914E+03 |
| 133.0           | 2                      | + 6.2025000E+03 | + 1.1292490E+03       | + 7.0010000E+03 | + 5.4040000E+03 | + 5.0774414E+03 |
| 134.0           | 4                      | + 5.2515000E+03 | + 3.1513733E+02       | + 5.5307000E+03 | + 4.8560000E+03 | + 5.0756953E+03 |
| 135.0           | 4                      | + 6.1555000E+03 | + 4.4802343E+02       | + 6.5920000E+03 | + 5.7190000E+03 | + 5.0739492E+03 |
| 136.0           | 2                      | + 5.9595000E+03 | + 4.6173531E+02       | + 6.2860000E+03 | + 5.6330000E+03 | + 5.0721992E+03 |



ANB 3066 PROPLNT (ANT & ANB LINED, P POLYMER) TENSILE SM. 1750 IN/MIN 600 PSI  
Figure 5-34

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| STANDARD DEVIATION | MEAN Y          | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y    |
|--------------------|-----------------|----------------|-----------------|-----------------|
| 3                  | +5.9331323E+02  | +1.2012212E+01 | +6.0511987E+02  | +5.8262988E+02  |
| 15.0               | +5.5375781E+02  | +1.3618782E+C1 | +5.7216992E+02  | +5.3866932E+C2  |
| 16.0               | +5.3625976E+02  | +2.4927561E+01 | +5.5734985E+02  | +4.9300C00E+02  |
| 17.0               | +6.1354457E+02  | +1.5196554E+01 | +5.3251977E+02  | +5.6535766E+02  |
| 17.0               | +5.6592651E+02  | +2.9032394E+01 | +5.8417393E+02  | +5.9556982E+C2  |
| 20.0               | +5.5204980E+02  | +2.5113722E+01 | +5.7752378E+02  | +5.1244995E+C2  |
| 22.0               | +5.5484545E+02  | +2.6650616E+C1 | +5.9302978E+02  | +5.0891992E+02  |
| 23.0               | +5.4731474E+02  | +3.1929269E+01 | +5.6718994E+02  | +5.2203979E+02  |
| 24.0               | +5.7634985E+02  | +2.9398610E+01 | +6.2001977E+02  | +5.6343994E+02  |
| 27.0               | +5.81172973E+02 | +2.5837751E+01 | +6.2500976E+02  | +5.624C991E+02  |
| 31.0               | +5.2670654E+02  | +1.2377858E+01 | +5.3987982E+02  | +5.1540991E+02  |
| 32.0               | +5.7412573E+02  | +9.5855255E+00 | +5.86555981E+02 | +5.62655991E+02 |
| 33.0               | +5.6442578E+02  | +9.7996952E+00 | +5.7940991E+02  | +5.5231982E+02  |
| 34.0               | +5.7734375E+02  | +8.1456716E+00 | +5.8877978E+02  | +5.7026977E+02  |
| 35.0               | +5.6868994E+02  | +0.0000000E+95 | +5.6868994E+02  | +5.6868994E+02  |
| 36.0               | +6.1790649E+02  | +3.1715570E+01 | +6.6350976E+02  | +5.7050976E+02  |
| 38.0               | +5.9769238E+02  | +7.1454559E+01 | +6.7832983E+02  | +5.2925000E+02  |
| 39.0               | +5.8738671E+02  | +2.1204745E+01 | +6.1726977E+02  | +5.5730981E+02  |
| 41.0               | +5.4117480E+02  | +9.6415661E+00 | +5.4798999E+02  | +5.3435986E+02  |
| 43.0               | +5.8244970E+02  | +3.2008095E+01 | +6.0507983E+02  | +5.5981982F+02  |
| 44.0               | +5.9392968E+02  | +6.5916635E+00 | +5.9856982E+02  | +5.2928979E+02  |
| 47.0               | +5.6019995H+02  | +0.0000000E+23 | +5.6019995E+02  | +5.6019995E+02  |
| 48.0               | +5.5442268E+02  | +1.4649574E+01 | +5.6477978E+02  | +5.4407983F+02  |
| 49.0               | +5.2115476E+02  | +2.2723353E+01 | +6.3721997E+02  | +6.0508984E+02  |
| 57.0               | +5.8947435E+02  | +1.4148986E+01 | +5.9947995E+02  | +5.7946997E+C2  |
| 59.0               | +5.7437988E+02  | +5.7970278E+01 | +5.1586937E+02  | +5.3388989E+02  |

$\gamma = \{ +3.0901959E-01 \} + \{ -6.9326832E-04 \} * X$   
 $F = +1.3039503E+01$  SIGNIFICANCE OF F = SIGNIFICANT  
 $R = -3.5233371E-01$  SIGNIFICANCE OF R = SIGNIFICANT  
 $t = +3.6110253E+00$  SIGNIFICANCE OF t = SIGNIFICANT  
 $N = 94$  DEGREES OF FREEDOM = 92  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

C ANT  
 + ANB



ANB 3066 PROPELLANT (ANT & ANB LINED, P POLYMER) TENSILE ER, 1750 IN/MIN 600 PSI

Figure 5-35

## LINEAR REGRESSION ANALYSIS \*\*\*#\*

## ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                 |                        |                 |                       |                |                | 13.0            | 15.0 | 16.0 | 17.0 | 19.0 | 20.0 | 22.0 | 23.0 | 24.0 | 27.0 | 31.0 | 32.0 | 33.0 | 34.0 | 35.0 | 36.0 | 38.0 | 39.0 | 41.0 | 43.0 | 44.0 | 47.0 | 48.0 | 51.0 | 57.0 |
| 13.0            | 3                      | +2.9576661E-01  | +3.9579247E-03        | +3.9509097E-01 | +2.3319995E-01 | +3.0000704E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 15.0            | 5                      | +2.6125971E-01  | +7.6037087E-03        | +2.9417994E-01 | +2.7455996E-01 | +2.9862052E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 16.0            | 5                      | +3.1343990E-01  | +1.3097621E-02        | +3.4029996E-01 | +2.9475998E-01 | +2.9723399E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 17.0            | 4                      | +2.8162479E-01  | +2.3551482E-02        | +2.9809999E-01 | +2.4713995E-01 | +2.4713995E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 19.0            | 3                      | +2.9866662E-01  | +1.3727823E-02        | +3.1463994E-01 | +2.9005997E-01 | +2.9584747E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 20.0            | 5                      | +3.0511991E-01  | +2.5058445E-02        | +3.2639998E-01 | +2.7195995E-01 | +2.9515421E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 22.0            | 7                      | +3.0435681E-01  | +2.2559001E-02        | +3.4229999E-01 | +2.7515994E-01 | +2.9376763E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 23.0            | 2                      | +2.9059994E-01  | +1.7393700E-02        | +3.0289995E-01 | +2.7329998E-01 | +2.9307436E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 24.0            | 3                      | +3.0546659E-01  | +2.347935E-02         | +3.2959397E-01 | +2.8265994E-01 | +2.9238110E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 27.0            | 6                      | +2.8403294E-01  | +2.0393658E-02        | +3.1203993E-01 | +2.5979999E-01 | +2.9030132E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 31.0            | 2                      | +2.9773394E-01  | +1.3194786E-02        | +3.1299996E-01 | +2.8929996E-01 | +2.8752821E-C1  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 32.0            | 5                      | +2.9713978E-01  | +1.6253995E-02        | +3.1469994E-01 | +2.7205997E-01 | +2.8683495E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 33.0            | 5                      | +2.93071975E-01 | +1.4280877E-02        | +3.0539999E-01 | +2.7139997E-01 | +2.8614169E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 34.0            | 5                      | +2.6813983E-01  | +1.8586370E-02        | +2.9699999E-01 | +2.4899995E-01 | +2.8544843E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 35.0            | 1                      | +3.1599998E-01  | +0.0000000E+95        | +3.1599998E-01 | +3.1599998E-01 | +2.8475517E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 36.0            | 6                      | +2.6949959E-01  | +8.3757450E-03        | +2.7599996E-01 | +2.5799995E-01 | +2.844C6190E-01 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 38.0            | 4                      | +2.8069996E-01  | +8.4955994E-03        | +2.9199999E-01 | +2.909994E-01  | +2.8267538E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 39.0            | 7                      | +2.7342808E-01  | +2.3414757E-02        | +3.0709399E-01 | +2.4099999E-01 | +2.8198212E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 41.0            | 2                      | +3.1514996E-01  | +1.1808990E-02        | +3.2349997E-01 | +3.0675994E-01 | +2.8059554E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 43.0            | 2                      | +2.4749994E-01  | +2.8990895E-02        | +2.6799994E-01 | +2.2699999E-01 | +2.7920901E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 44.0            | 2                      | +2.8999996E-01  | +1.4027190E-02        | +2.909994E-01  | +2.8899997E-01 | +2.7851575E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 47.0            | 1                      | +3.2299995E-01  | +6.0000000E+23        | +3.299995E-01  | +3.2299995E-01 | +2.7643597E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 48.0            | 2                      | +2.9504993E-01  | +2.7532039E-03        | +2.949395E-01  | +2.9109996E-01 | +2.7574270E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 49.0            | 7                      | +2.6614993E-01  | +4.4537027E-03        | +2.6229998E-01 | +2.6229998E-01 | +2.7504938E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 57.0            | 2                      | +2.5499998E-01  | +4.7492657E-03        | +2.5699996E-01 | +2.5699996E-01 | +2.5000000E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 59.0            | 2                      | +2.65899993E-01 | +7.2105936E-03        | +2.9099994E-01 | +2.8075998E-01 | +2.6811671E-01  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

AIRC 3050 POLY(1,4-PHENYLENE TEREPHTHALIC ACID) TENSILE TEST, 1750 IN/MIN 600 PSI



ANB 3066 PROPELLANT (ANT & ANB LINED, P POLYMER) TENSILE MOD. 1750 IN/MIN 600 PSI

Figure 5-36

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

| TEST<br>(CONT'D) | SPECIMENS<br>OF TEST GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|------------------|----------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 13.0             | 3                          | +3.5793332E+03 | +3.7753851E+02        | +3.8290000E+03 | +3.1450000E+03 | +3.7718413E+03 |
| 15.0             | 5                          | +4.0275998E+03 | +3.0744723E+02        | +4.4450000E+03 | +3.5860000E+03 | +3.7922268E+03 |
| 16.0             | 5                          | +3.6531939E+03 | +6.4318753E+02        | +4.4310000E+03 | +2.8950000E+03 | +3.8024194E+03 |
| 17.0             | 4                          | +4.1157500E+03 | +5.5979750E+02        | +4.9430000E+03 | +3.7330000E+03 | +3.8126120E+03 |
| 19.0             | 3                          | +4.0360000E+03 | +3.6049965E+02        | +4.3950000E+03 | +3.6740000E+03 | +3.8329973E+03 |
| 20.0             | 5                          | +3.4267398E+03 | +1.7562306E+02        | +3.6510000E+03 | +3.2490000E+03 | +3.8431901E+03 |
| 22.0             | 7                          | +3.7471428E+03 | +7.5116385E+02        | +5.2120000E+03 | +2.9420000E+03 | +3.8635754E+03 |
| 23.0             | 2                          | +3.5735000E+03 | +2.3061916E+02        | +3.8790000E+03 | +3.4680000E+03 | +3.8737680E+03 |
| 24.0             | 3                          | +4.2123320E+03 | +6.3507781E+02        | +4.5790000E+03 | +3.4790000E+03 | +3.8839606E+03 |
| 27.0             | 6                          | +4.0736665E+03 | +5.6677692E+02        | +4.6900000E+03 | +3.2050000E+03 | +3.9145388E+03 |
| 31.0             | 3                          | +3.8333332E+03 | +2.6550560E+02        | +4.1010000E+03 | +3.5700000E+03 | +3.9553095E+03 |
| 32.0             | 5                          | +4.1033984E+03 | +7.0222154E+02        | +4.8740000E+03 | +3.2740000E+03 | +3.9655021E+03 |
| 33.0             | 5                          | +4.0463999E+03 | +3.4270220E+02        | +4.5540000E+03 | +3.6650000E+03 | +3.9756948E+03 |
| 34.0             | 5                          | +4.2095976E+03 | +7.0457703E+02        | +4.8300000E+03 | +3.1740000E+03 | +3.9858874E+03 |
| 35.0             | 1                          | +2.9250000E+03 | +0.0000000E+95        | +2.9250000E+03 | +2.9250000E+03 | +3.9960800E+03 |
| 36.0             | 6                          | +3.8810000E+03 | +3.5973156E+02        | +4.5830000E+03 | +3.6260000E+03 | +4.0062727E+03 |
| 38.0             | 4                          | +3.4727500E+03 | +1.0505943E+03        | +4.8490000E+03 | +2.6230000E+03 | +4.0266582E+03 |
| 39.0             | 7                          | +4.0554284E+03 | +7.3403152E+02        | +4.6930000E+03 | +3.0320000E+03 | +4.0368508E+03 |
| 41.0             | 2                          | +3.7310000E+03 | +1.3009996E+02        | +3.8230000E+03 | +3.6390000E+03 | +4.0572360E+03 |
| 43.0             | 2                          | +3.4765000E+03 | +2.9768355E+02        | +3.6870000E+03 | +3.2660000E+03 | +4.0776215E+03 |
| 44.0             | 2                          | +3.4450000E+03 | +4.2426406E+01        | +3.4760000E+03 | +3.4160000E+03 | +4.0878142E+03 |
| 47.0             | 1                          | +3.7300000E+03 | +0.2000000E+23        | +3.7730000E+03 | +3.7730000E+03 | +4.1183906E+03 |
| 48.0             | 2                          | +4.2435000E+03 | +1.7038632E+02        | +4.3640000E+03 | +4.1230000E+03 | +4.1285820E+03 |
| 49.0             | 2                          | +5.5970000E+03 | +2.5595464E+02        | +5.7780000E+03 | +5.4160000E+03 | +4.1397773E+03 |
| 57.0             | 2                          | +4.4105000E+02 | +5.5530596E+01        | +4.4710000E+03 | +4.3500000E+03 | +4.2203164E+03 |
| 59.0             | 2                          | +4.3570000E+03 | +2.20661278E+02       | +4.5130000E+03 | +4.2010000E+03 | +4.2407031E+03 |

NOMO PROPYLENE FAM 6 AND LINEO, P POLYMER) TENSILE MOD., 1750 IN/MIN 600 PSI

## SECTION VI STRESS RELAXATION

An end-bonded 1/2" x 1/2" x 4" bar (1.27 x 1.27 x 10.16 cm) is tested on the stress relaxometer. Load is applied at 2 in/min (.085 cm/sec). Timing begins when load is applied. Specimens are strained at 1%.

The use of 1% strain over the range of temperatures was not introduced into the test program until Phase 3 of Minuteman III testing and Phase B Series 2 for Minuteman II. Master curves (Figures 6-1 thru 6-7) show that the temperature shift is not linear and deviation from linearity is most marked at elevated temperatures. There is very little consistency in the super-positioning. For example, ANA (G Propellant) unlined cartons, corresponds well with ANT (P Propellant) lined cartons. This agreement is better than between lined and unlined cartons of the same type. There is better agreement at elevated temperatures than at cold temperatures, where the differences are noticeable with all systems.

In general, stress relaxation modulus shows a significant increase. The exception is ANB 'G' which shows a significant decrease. (Figures 6-10 and 6-11) which holds when combined with ANA (Figures 6-22 and 6-23).

When gradient stress relaxation is run there is a definite bias between ANB and ANT propellant with ANT (P polymer) showing a higher modulus. The minima exhibited by both ANT and ANB occurs at 2.2 inches from the liner (Figure 6-32).

TABLE 6-1  
STRESS RELAXATION  
Significance of "t"

| SYSTEM              | n   | 10 sec   | Fig  | 1000 sec | Fig  |
|---------------------|-----|----------|------|----------|------|
| ANA, G Unlined      | 39  | Sig inc  | 6-8  | Sig inc. | 6-9  |
| ANB G Unlined       | 114 | Sig dec. | 6-10 | Sig dec  | 6-11 |
| ANB G Lined         | 36  | NS dec   | 6-12 | NS inc   | 6-13 |
| ANB P Unlined       | 84  | Sig inc  | 6-14 | Sig inc  | 6-15 |
| ANB P Lined         | 33  | Sig inc  | 6-16 | Sig inc  | 6-17 |
| ANT P Unlined       | 108 | NS inc.  | 6-18 | NS inc   | 6-19 |
| ANT P Lined         | 57  | Sig inc  | 6-20 | Sig inc  | 6-21 |
| ANA & ANBG Unlined  | 153 | Sig dec  | 6-22 | Sig dec  | 6-23 |
| ANB G & P Unlined   | 198 | NS inc   | 6-24 | NS dec   | 6-25 |
| ANB G & P Lined     | 69  | NS inc   | 6-26 | Sig inc  | 6-27 |
| ANB & ANT P Unlined | 222 | Sig inc  | 6-28 | Sig inc  | 6-29 |
| ANB & ANT P Lined   | 141 | Sig inc  | 6-30 | Sig inc  | 6-31 |



FIGURE 6-1



FIGURE 6-2



FIGURE 6-3

ANB 3066 PROPELLANT 'G' POLYMER LINED CARTONS STRESS RELAXATION MASTER PLOT



FIGURE 6-4



FIGURE 6-5



ANB 3066 PROPELLANT AND 'P' POLYMER UNLND CARTONS STRESS RELAXATION MASTER PLOT

FIGURE 6-6



ANB 3066 PROPELLANT (ANT LINED CARTONS) STRESS RELAXATION MASTER PLOT



FIGURE 6-8

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 51.0            | 6                      | +5.6333325E+02 | +9.2448183E+01        | +6.8000000E+02 | +4.5000000E+02 | +5.9418969E+02  |
| 52.0            | 3                      | +5.3000000E+02 | +4.9999999E+01        | +5.8000000E+02 | +4.8000000E+02 | +6.0286938E+02  |
| 56.0            | 6                      | +7.3166650E+02 | +2.3945076E+02        | +1.0400000E+03 | +4.7000000E+02 | +6.3758764E+02  |
| 58.0            | 3                      | +5.5666650E+02 | +5.7735026E+00        | +5.6000000E+02 | +5.5000000E+02 | +6.5494702E+02  |
| 62.0            | 6                      | +8.1666650E+02 | +2.2677448E+02        | +1.0400000E+03 | +6.1000000E+02 | +7.5042260E+02  |
| 70.0            | 3                      | +8.5666650E+02 | +5.5075705E+01        | +9.2000000E+02 | +8.2000000E+02 | +7.5910205E+02  |
| 71.0            | 3                      | +5.3666650E+02 | +1.1547005E+01        | +5.5000000E+02 | +5.3000000E+02 | +7.67778173E+02 |
| 72.0            | 3                      | +7.6666650E+02 | +3.0550504E+01        | +8.0000000E+02 | +7.4000000E+02 | +7.7646118E+02  |
| 76.0            | 3                      | +1.0300000E+03 | +7.2111025E+01        | +1.0900000E+03 | +9.5000000E+02 | +8.1117968E+02  |
| 82.0            | 3                      | +7.0000000E+02 | +1.7320508E+01        | +7.1000000E+02 | +6.8000000E+02 | +8.6325732E+02  |

ANB 3066 PROPELLANT (ANA, G POLYMER) RELAX MODULUS @ 10 SEC., UNLNC CTNS, 18 STN

$F = +7.6777170E+00$   
 $R = +4.1454393E-01$   
 $I = +2.7708693E+00$   
 $N = 39$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF I = SIGNIFICANT  
 DEGREES OF FREEDOM = 37  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PAPLNT (ANA. C POLYMER) RELAX MODULUS • 1000 SEC, UNLNO CTNS 1%

FIGURE 6-9

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION |                | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|-----------------|--------------|
|                 |                        |                 |                       |                |                |                 |              |
| 51.0            | 6                      | +3.7000000E+02  | +5.6568542E+01        | +4.4000000E+02 | +3.1000000E+02 | +3.8025878E+02  |              |
| 52.0            | 3                      | +3.6000000E+02  | +1.9999999E+01        | +3.8000000E+02 | +3.4000000E+02 | +3.8457226E+02  |              |
| 56.0            | 6                      | +4.6666650E+02  | +1.2242004E+02        | +6.1999300E+02 | +3.1000000E+02 | +4.0182641E+02  |              |
| 58.0            | 3                      | +3.46666650E+02 | +1.1547005E+01        | +3.6020000E+02 | +3.4000000E+02 | +4.1045361E+02  |              |
| 69.0            | 6                      | +4.8000000E+02  | +1.3175735E+02        | +6.1000000E+02 | +3.5C00000E+02 | +4.5790234E+02  |              |
| 70.0            | 3                      | +5.2333325E+02  | +2.3094310E+01        | +5.5000000E+02 | +5.1000000E+02 | +4.6221582E+02  |              |
| 71.0            | 3                      | +3.4000000E+02  | +9.9999999E+00        | +3.5000000E+02 | +3.3000000E+02 | +4.66522954E+02 |              |
| 72.0            | 3                      | +4.5333325E+02  | +1.5275252E+01        | +4.7000000E+02 | +4.4C00000E+02 | +4.7084301E+02  |              |
| 76.0            | 3                      | +6.2666650E+02  | +5.1316014E+01        | +6.7000000E+02 | +5.7000000E+02 | +4.8809716E+02  |              |
| 82.0            | 3                      | +4.3333325E+02  | +1.5275252E+01        | +4.5000000E+02 | +4.2000000E+02 | +5.1397827E+02  |              |

ANB 3066 PRPLNT (ANA. G POLYMER) RELAX MODULUS @ 1000 SEC., UNLND CTNS 1%

$\gamma = (( +1.0210620E+03) + (-3.4647334E+00)) \times X$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $\epsilon = \text{SIGNIFICANCE OF } \epsilon$   
 $i = \text{DEGREES OF FREEDOM} = 141$   
 $N = \text{STORAGE CONDITIONS = AMB TEMP/RH}$   
 $\sigma_t = +1.9385486E+02$   
 $S_u = +6.7991258E-01$   
 $S_e = +1.7877411E+02$



ANB 3066 PROPELLANT 'G' POLYMER UNLND CARTONS STRESS RELAX AT 10 SEC 1% STRAIN

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM        | MINIMUM        | REGRESSION<br>Y |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|-----------------|
| 29.0            | 3                      | +1.0396665E+03  | +7.9563391E+01        | +1.1300000E+03 | +7.8000000E+02 | +9.2058471E+02  |
| 36.0            | 2                      | +9.4700000E+02  | +1.02162236E+02       | +1.0330000E+03 | +8.6100000E+02 | +8.9633154E+02  |
| 45.0            | 3                      | +7.6000000E+02  | +5.5677643E+01        | +8.1000000E+02 | +7.0000000E+02 | +9.6514892E+02  |
| 53.0            | 6                      | +9.5000000E+02  | +1.7251095E+02        | +1.0400000E+03 | +6.0000000E+02 | +8.3743115E+02  |
| 54.0            | 3                      | +5.533325E+02   | +1.1547005E+01        | +5.6000000E+02 | +5.4000000E+02 | +6.396630E+02   |
| 58.0            | 3                      | +7.766650E+02   | +3.5076107E+01        | +8.1400000E+02 | +7.4400000E+02 | +8.2010742E+02  |
| 61.0            | 3                      | +7.8333325E+02  | +1.1547005E+01        | +7.9000000E+02 | +7.7000000E+02 | +8.0971313E+02  |
| 62.0            | 3                      | +6.0333325E+02  | +5.7735026E+00        | +6.1000000E+02 | +6.0000000E+02 | +6.3624853E+02  |
| 63.0            | 3                      | +7.0000000E+02  | +3.4641016E+01        | +7.4000000E+02 | +6.8000000E+02 | +8.0278359E+02  |
| 69.0            | 3                      | +8.9533325E+02  | +4.1621308E+01        | +9.2500000E+02 | +8.5200000E+02 | +7.8199536E+02  |
| 70.0            | 3                      | +8.7833325E+02  | +2.8536526E+01        | +9.0600000E+02 | +8.4900000E+02 | +7.7853051E+02  |
| 72.0            | 6                      | +8.5333325E+02  | +9.9933311E+01        | +9.9000000E+02 | +7.1000000E+02 | +7.7160107E+02  |
| 76.0            | 3                      | +6.6000000E+02  | +1.9999999E+01        | +5.8000000E+02 | +5.4000000E+02 | +7.5774218E+02  |
| 78.0            | 3                      | +6.7000000E+02  | +0.0000000E+55        | +6.7000000E+02 | +6.7000000E+02 | +7.5081274E+02  |
| 81.0            | 3                      | +6.7333325E+02  | +8.1445278E+01        | +7.3000000E+02 | +5.8000000E+02 | +7.4041845E+02  |
| 84.0            | 6                      | +7.8400000E+02  | +1.6736905E+02        | +1.0040000E+03 | +6.1000000E+02 | +7.3002441E+02  |
| 85.0            | 3                      | +5.0333325E+02  | +1.23094010E+01       | +5.3000000E+02 | +4.9000000E+02 | +7.2655557E+02  |
| 86.0            | 3                      | +5.96666650E+02 | +5.5075705E+01        | +6.5000000E+02 | +5.4000000E+02 | +7.2309497E+02  |
| 87.0            | 3                      | +1.09666665E+03 | +1.6072751E+02        | +1.2800000E+03 | +9.8000000E+02 | +7.1963012E+02  |
| 88.0            | 12                     | +7.0283325E+02  | +2.2529085E+02        | +1.0640000E+03 | +4.6000000E+02 | +7.1616552E+02  |
| 89.0            | 6                      | +8.68333225E+02 | +1.0796604E+02        | +9.9000000E+02 | +7.0000000E+02 | +7.12770058E+02 |
| 90.0            | 3                      | +7.6666550E+02  | +5.5075705E+01        | +8.3000000E+02 | +7.2000000E+02 | +7.0923587E+02  |
| 91.0            | 2                      | +6.0666650E+02  | +2.3034010E+01        | +6.2000000E+02 | +5.8000000E+02 | +7.0577124E+02  |
| 94.0            | 12                     | +7.9000000E+02  | +2.4826671E+02        | +1.4000000E+03 | +5.2000000E+02 | +6.9527645E+02  |
| 95.0            | 3                      | +8.96666650E+02 | +5.0332223E+01        | +9.5000000E+02 | +8.5000000E+02 | +6.91912375E+02 |
| 96.0            | 6                      | +8.2333325E+02  | +3.5023801E+01        | +8.7000000E+02 | +7.7000000E+02 | +6.8844750E+02  |
| 97.0            | 6                      | +7.2283325E+02  | +8.9031267E+01        | +8.2400000E+02 | +6.0000000E+02 | +6.84982915E+02 |
| 100.0           | 3                      | +4.1000000E+02  | +9.9999999E+00        | +4.2000000E+02 | +4.0000000E+02 | +6.7458862E+02  |
| 109.0           | 3                      | +8.4700000E+02  | +6.9289248E+01        | +8.3800000E+02 | +7.6700000E+02 | +6.4340600E+02  |
| 113.0           | 9                      | +4.5111108E+02  | +4.3609585E+01        | +5.1000000E+02 | +3.7000000E+02 | +6.2954711E+02  |
| 113.0           | 3                      | +5.8333325E+02  | +3.7A59783F+01        | +6.1000000F+02 | +5.4000000F+02 | +6.1222339E+02  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y       | REGRESSION Y     |
|-----------------|------------------------|-----------------|-----------------------|----------------|-----------------|------------------|
| 119.0           | 3                      | +4, 9000000E+02 | +9, 999999E+00        | +5, 000000E+02 | +4, 8000000E+02 | +6, 0E 75878E+02 |
| 120.0           | 3                      | +7, 2333325E+02 | +5, 8594652E+01       | +7, 900000E+02 | +6, 800000E+02  | +6, 0529394E+02  |
| 137.0           | 3                      | +4, 4733325E+02 | +1, 1547005E+01       | +4, 500000E+02 | +4, 300000E+02  | +5, 4E 39355E+02 |

ANB 3056 FROPELLANT • G• POLYMER UNLND CARTONS STRESS RELAX AT 10 SEC 1% STRAIN



FIGURE 6-11

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|-----------------|----------------|-----------------|
| 29.0            | 3                      | +4.6266650E+02 | +4.0278199E+01        | +5.0800000E+02  | +4.0210000E+02 | +5.0597851E+02  |
| 36.0            | 2                      | +4.4350000E+02 | +3.1819805E+01        | +4.6600000E+02  | +4.2100000E+02 | +4.9455142E+02  |
| 45.0            | 3                      | +4.4000000E+02 | +2.6457513E+01        | +4.6000000E+02  | +4.0000000E+02 | +4.8079663E+02  |
| 53.0            | 6                      | +5.2000000E+02 | +3.0553851E+01        | +6.3000000E+02  | +4.2000000E+02 | +4.6820581E+02  |
| 54.0            | 3                      | +3.7000000E+02 | +6.5C99939E+00        | +3.8C000000E+02 | +2.6000000E+02 | +4.6663183E+02  |
| 58.0            | 3                      | +3.5366650E+02 | +1.4294521E+01        | +3.6600000E+02  | +3.8000000E+02 | +4.6033642E+02  |
| 61.0            | 3                      | +4.9666650E+02 | +1.5275252E+01        | +5.1000000E+02  | +4.8000000E+02 | +4.5561499E+02  |
| 62.0            | 3                      | +3.8000000E+02 | +0.2000000E+31        | +3.8000000E+02  | +3.8000000E+02 | +4.5404101E+02  |
| 63.0            | 3                      | +4.5000000E+02 | +1.7320508E+01        | +4.6000000E+02  | +4.3000000E+02 | +4.5246728E+02  |
| 69.0            | 3                      | +3.9900000E+02 | +1.1789826E+01        | +4.0900000E+02  | +3.8600000E+02 | +4.4202392E+02  |
| 70.0            | 3                      | +3.9866650E+02 | +1.8009255E+01        | +4.1700000E+02  | +3.8100000E+02 | +4.4145019E+02  |
| 72.0            | 6                      | +5.5500000E+02 | +4.7222875E+01        | +6.2000000E+02  | +4.6000000E+02 | +4.3830249E+02  |
| 76.0            | 3                      | +3.5666650E+02 | +1.5275252E+01        | +3.7000000E+02  | +3.4000000E+02 | +4.3200708E+02  |
| 78.0            | 3                      | +4.1000000E+02 | +9.9999999E+00        | +4.2000000E+02  | +4.0000000E+02 | +4.2885937E+02  |
| 81.0            | 3                      | +4.3666650E+02 | +6.0277137E+01        | +5.0000000E+02  | +3.8000000E+02 | +4.2413769E+02  |
| 84.0            | 6                      | +3.9850000E+02 | +1.8425525E+01        | +4.6310000E+02  | +3.6000000E+02 | +4.41941601E+02 |
| 85.0            | 3                      | +3.1000000E+02 | +9.9999999E+00        | +3.2000000E+02  | +3.0000000E+02 | +4.1784228E+02  |
| 86.0            | 3                      | +3.5666650E+02 | +3.2145502E+01        | +3.8000000E+02  | +3.2000000E+02 | +4.15266831E+02 |
| 87.0            | 3                      | +6.5666650E+02 | +8.9628864E+01        | +7.6000000E+02  | +6.0000000E+02 | +4.1469458E+02  |
| 88.0            | 12                     | +3.4775000E+02 | +6.5704745E+01        | +4.4800000E+02  | +2.7000000E+02 | +4.1312060E+02  |
| 89.0            | 6                      | +5.9000000E+02 | +5.7965506E+01        | +6.5000000E+02  | +5.2000000E+02 | +4.1154687E+02  |
| 90.0            | 7                      | +4.5666650E+02 | +2.0816659E+01        | +4.5000000E+02  | +4.0000000E+02 | +4.07290E+02    |
| 91.0            | 3                      | +3.533325E+02  | +1.1547005E+01        | +3.6000000E+02  | +2.9000000E+02 | +4.0839916E+02  |
| 94.0            | 12                     | +4.8000000E+02 | +1.5603030E+02        | +8.8000000E+02  | +3.2000000E+02 | +4.0367749E+02  |
| 95.0            | 3                      | +5.333325E+02  | +2.3094010E+01        | +5.6000000E+02  | +5.2000000E+02 | +4.0210375E+02  |
| 96.0            | 6                      | +5.0500000E+02 | +2.8809720E+01        | +5.5000000E+02  | +4.7000000E+02 | +4.0052974E+02  |
| 97.0            | 6                      | +3.8250000E+02 | +3.4955686E+01        | +4.2000000E+02  | +3.9000000E+02 | +3.9895605E+02  |
| 100.0           | 3                      | +2.433332E+02  | +1.1547005E+01        | +2.5000000E+02  | +2.3000000E+02 | +3.9423437E+02  |
| 109.0           | 3                      | +3.5433325E+02 | +1.3315656E+01        | +3.6200000E+02  | +3.3900000E+02 | +3.9069549E+02  |
| 113.0           | 9                      | +2.9444433E+02 | +3.4318767E+01        | +3.6000000E+02  | +2.5000000E+02 | +3.7377416E+02  |
| 118.0           | 3                      | +3.5000000E+02 | +1.7320508E+01        | +3.6000000E+02  | +3.3000000E+02 | +3.6500478E+02  |

6-18

AN9 3066 PROPELLANT • G• POLYMER UNLND CANTORS STRESS RELAX AT 1000 SEC. X STRAIN

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 119.0           | 3                      | +2.7666650E+02 | +5.7735026E+00        | +2.8000000E+02 | +2.7000000E+02 | +3.6432105E+02 |
| 120.0           | 3                      | +4.0666650E+02 | +2.8867513E+01        | +4.6430000E+02 | +3.9000000E+02 | +3.6276709E+02 |
| 137.0           | 3                      | +2.6666650E+02 | +5.7735026E+00        | +2.7000000E+02 | +2.6000000E+02 | +3.2600044E+02 |

ANB 3066 PROPELLANT \*G\* POLYMER UNLND CAPTUNS STRESS RELAX AT 1000 SEC 1% STRAIN

$\gamma = (1 + 6.2416915E+02) + (-4.0700408E-01) * X$   
 $F = +6.7955636E-02$  SIGNIFICANT  
 $R = -4.4662158E-02$  NOT SIGNIFICANT  
 $S = +2.6068301E-01$  SIGNIFICANT  
 $N = 36$  DEGREES OF FREEDOM = 34  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



PARAMETER = RELAXATION MODULUS

RNB 3066 PROPELLANT (RNB G POLYMER) RELAX MODULUS @ 10 SEC. 77 DEG. LINED, 1%

RNB 3066 PROPELLANT (RNB G POLYMER) RELAX MODULUS @ 10 SEC. 77 DEG. LINED, 1%

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>NUMBER | MEAN Y | STANDARD<br>DEVIATION | MAXIMUM Y | MINIMUM Y | REGRESSION Y                                                                                                                                                   |
|-----------------|--------------------|--------|-----------------------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                    |        |                       |           |           | 16. • 5333325E+02<br>19. • 7200000E+02<br>20. • 73666650E+02<br>20. • 9333325E+02<br>26. • 6<br>30. • 6<br>32. • 6<br>39. • 6<br>43. • 6<br>45. • 6<br>55. • 6 |

AIR 3056 PROPELLANT (ANG 6 POLYMER) RELAX MODULUS @ 10 SEC, 77 DEG, LINED, 1%

$\gamma = (( +3.8674302E+02 ) + ( +4.2186236E-01 ) * X) * X$   
 $F = +2.2737981E-01$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $R = +8.1505914E-02$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $t = +4.7684359E-01$  SIGNIFICANCE OF t = NOT SIGNIFICANT  
 $N = 36$  DEGREES OF FREEDOM = 34  
 $N =$  STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPLNT (ANB G POLYMER) RELAX MODULUS • 1000 SEC. 77 DEG. LINED. 12

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MINS.) | SPECIES<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|----------------|----------------------|----------------|-----------------------|----------------|----------------|----------------|
| 16.0           | 3                    | +3.6333325E+02 | +2.3094610E+01        | +3.7000000E+02 | +3.5000000E+02 | +3.9349267E+02 |
| 19.0           | 3                    | +4.300000E+02  | +1.7320508E+01        | +4.500000E+02  | +4.200000E+02  | +3.9475830E+02 |
| 20.0           | 3                    | +4.5366650E+02 | +2.8867513E+01        | +5.000000E+02  | +4.500000E+02  | +3.9518017E+02 |
| 24.0           | 6                    | +3.4500000E+02 | +4.3243495E+01        | +4.1000000E+02 | +2.3000000E+02 | +3.9855493E+02 |
| 30.0           | 6                    | +4.1333325E+02 | +2.7325202E+01        | +4.4000000E+02 | +3.8000000E+02 | +3.9939868E+02 |
| 32.0           | 3                    | +3.6666650E+02 | +4.0414518E+01        | +4.1000000E+02 | +3.3000000E+02 | +4.024243E+02  |
| 39.0           | 3                    | +3.5000000E+02 | +9.3999999E+00        | +3.6000000E+02 | +3.4000000E+02 | +4.0319555E+02 |
| 43.0           | 3                    | +4.2000000E+02 | +9.0000000E+83        | +4.2000000E+02 | +4.2000000E+02 | +4.0488305E+02 |
| 45.0           | 3                    | +5.1000000E+02 | +6.5574385E+01        | +5.8000005E+02 | +4.5000000E+02 | +4.0572680E+02 |
| 55.0           | 3                    | +3.8000000E+02 | +2.6457513E+01        | +4.0000000E+02 | +3.5000000E+02 | +4.0994531E+02 |

ANB 3066 PROPELLANT (ANB G POLYMER) RELAX MODULUS @ 1000 SEC. 77 DEG., LINED, 18

$\gamma = (( +6.4151764E+02) + (+2.8145196E+00)) * X$   
 $F = +1.1655413E+01$  SIGNIFICANCE OF F = SIGNIFICANT  
 $R = +3.5277468E-01$  SIGNIFICANCE OF R = SIGNIFICANT  
 $t = +3.4140026E+00$  SIGNIFICANCE OF t = SIGNIFICANT  
 $N = 84$  DEGREES OF FREEDOM = 82

STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



FIGURE 6-14

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | STANDARD       |                | MAXIMUM Y      | MINIMUM Y     | REGRESSION Y   |
|-----------------|------------------------|----------------|----------------|----------------|---------------|----------------|
|                 |                        | MEAN Y         | DEVIATION      |                |               |                |
| 15.0            | 3                      | +6.600000E+02  | +6.0827625E+01 | +7.300000E+02  | +6.200000E+02 | +6.8373535E+02 |
| 52.0            | 9                      | +8.1666650E+02 | +1.9570385E+02 | +1.170000E+03  | +4.900000E+02 | +7.8787255E+02 |
| 53.0            | 3                      | +8.2333325E+02 | +1.6072751F+02 | +9.400000F+02  | +6.400000E+02 | +7.9068701E+02 |
| 54.0            | 3                      | +7.5333325E+02 | +5.6862407E+01 | +8.000000E+02  | +6.900000E+02 | +7.9350170E+02 |
| 57.0            | 3                      | +7.6333325E+02 | +6.8068592E+01 | +8.400000E+02  | +7.1C0000E+02 | +8.0194506E+02 |
| 62.0            | 3                      | +1.0633332E+03 | +3.0550504E+01 | +1.390000E+03  | +1.230000E+03 | +8.1601782E+02 |
| 69.0            | 3                      | +8.1666650E+02 | +8.6216781E+01 | +9.100000E+02  | +7.400000E+02 | +8.3571948E+02 |
| 72.0            | 3                      | +9.800000E+02  | +2.9999999E+01 | +1.010000E+03  | +9.500000E+02 | +8.4416284E+02 |
| 77.0            | 3                      | +5.4333325E+02 | +5.7735026E+00 | +5.500000E+02  | +5.400000E+02 | +8.5823559E+02 |
| 78.0            | 3                      | +6.8333325E+02 | +3.0550504E+01 | +7.100000E+02  | +6.500000E+02 | +8.6105004E+02 |
| 80.0            | 3                      | +9.7666650E+02 | +1.1590225E+02 | +1.110000E+03  | +9.0C0000E+02 | +8.6667919E+02 |
| 88.0            | 3                      | +8.7333325E+02 | +2.7098585E+02 | +1.130000E+03  | +5.900000E+02 | +8.8919531E+02 |
| 93.0            | 3                      | +8.800000E+02  | +2.9999999E+01 | +9.100000E+02  | +8.500000E+02 | +9.0326782E+02 |
| 105.0           | 6                      | +9.6666650E+02 | +1.9469634E+02 | +1.200000E+03  | +7.1C0000E+02 | +9.3704199E+02 |
| 106.0           | 3                      | +9.1333325E+02 | +2.1221058E+02 | +1.150000E+03  | +7.400000E+02 | +9.3985668E+02 |
| 109.0           | 3                      | +5.500000E+02  | +0.000000E+99  | +5.500000E+02  | +5.500000E+02 | +9.4830004E+02 |
| 110.0           | 3                      | +1.1233332E+03 | +1.7387735E+02 | +1.320000E+03  | +9.900000E+02 | +9.5111474E+02 |
| 111.0           | 6                      | +1.1316665E+03 | +1.7904375E+02 | +1.43C0000E+03 | +9.3C0000E+02 | +9.5392919E+02 |
| 113.0           | 3                      | +9.600000E+02  | +4.5825756E+01 | +1.000000E+03  | +9.100000E+02 | +9.5955834E+02 |
| 116.0           | 6                      | +6.7166650E+02 | +1.8411047E+02 | +9.900000E+02  | +4.900000E+02 | +9.6800170E+02 |
| 122.0           | 3                      | +1.0333332E+03 | +7.5718777E+01 | +1.120000E+03  | +9.8C0000E+02 | +9.8488891E+02 |
| 123.0           | 3                      | +1.4233332E+03 | +1.0969655E+02 | +1.553000E+03  | +1.360000E+03 | +9.8770336E+02 |
| 126.0           | 3                      | +7.8333325E+02 | +4.0414518F+01 | +1.320000E+03  | +9.400000E+02 | +9.9614697E+02 |

ANB 3066 PROPELLANT (ANB, P POLYMER) RELAX MODULUS @ 10 SEC., UNLNC CTNS, 1% STN

$F = +4.4886721E+00$   
 $R = +2.2781343E-01$   
 $L = +2.1186486E+00$   
 $N = 84$   
 $\gamma = (( +4.2749243E+02 ) + ( +1.1166920E+00 ) * X) /$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF L = SIGNIFICANT  
 DEGREES OF FREEDOM = 82  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPELLANT (ANB, P POLYMER) RELAX MODULUS • 1000 SEC. UNLND CTNS, 12

FIGURE 6-15

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 15.0            | 3                      | +4.3000000E+02 | +3.4641016E+01        | +4.7000000E+02 | +4.1000000E+02 | +4.4424267E+02 |
| 52.0            | 9                      | +4.8888867E+02 | +1.1688075E+02        | +6.9000000E+02 | +2.8000000E+02 | +4.8556030E+02 |
| 53.0            | 3                      | +5.0000000E+02 | +1.1269427E+02        | +5.7000000E+02 | +3.7000000E+02 | +4.8667700E+02 |
| 54.0            | 3                      | +4.4000000E+02 | +4.3588989E+01        | +4.7000000E+02 | +3.9000000E+02 | +4.8779370E+02 |
| 57.0            | 3                      | +4.3666650E+02 | +4.7258156E+01        | +4.9000000E+02 | +4.0000000E+02 | +4.9114379E+02 |
| 62.0            | 3                      | +7.0333325E+02 | +2.8867513E+01        | +7.2000000E+02 | +6.7000000E+02 | +4.9672729E+02 |
| 69.0            | 3                      | +4.9000000E+02 | +6.0827625E+01        | +5.6000000E+02 | +4.5000000E+02 | +5.0454418E+02 |
| 72.0            | 3                      | +5.7333325E+02 | +2.8867513E+01        | +5.9000000E+02 | +5.4000000E+02 | +5.0789404E+02 |
| 77.0            | 3                      | +3.3000000E+02 | +0.0000000E+71        | +3.3000000E+02 | +3.3000000E+02 | +5.1347753E+02 |
| 78.0            | 3                      | +4.1666650E+02 | +5.7735026E+00        | +4.2000000E+02 | +4.1000000E+02 | +5.1459423E+02 |
| 80.0            | 3                      | +5.8000000E+02 | +7.8102496E+01        | +6.7200000E+02 | +5.3000000E+02 | +5.1682763E+02 |
| 88.0            | 3                      | +6.2333325E+02 | +2.6006409E+02        | +8.8000000E+02 | +3.6000000E+02 | +5.2576123E+02 |
| 93.0            | 3                      | +5.4000000E+02 | +1.9999999E+01        | +5.6000000E+02 | +5.2000000E+02 | +5.3134472E+02 |
| 105.0           | 6                      | +5.4333325E+02 | +1.1724617E+02        | +6.9000000E+02 | +3.8000000E+02 | +5.4474487E+02 |
| 106.0           | 3                      | +5.0666650E+02 | +1.1590225E+02        | +6.4000000E+02 | +4.3000000E+02 | +5.4586157E+02 |
| 109.0           | 3                      | +3.1666650E+02 | +5.7735026E+00        | +3.2000000E+02 | +3.1000000E+02 | +5.4921166E+02 |
| 110.0           | 3                      | +6.3000000E+02 | +1.1269427E+02        | +7.6000000E+02 | +5.6000000E+02 | +5.5032836E+02 |
| 111.0           | 6                      | +6.9666650E+02 | +1.3952299E+02        | +9.3000000E+02 | +5.3000000E+02 | +5.5144506E+02 |
| 113.0           | 3                      | +5.6666650E+02 | +2.5166114E+01        | +5.9000000E+02 | +5.4000000E+02 | +5.5367846E+02 |
| 116.0           | 6                      | +3.6833325E+02 | +9.8268340E+01        | +5.5000000E+02 | +2.8000000E+02 | +5.5702856E+02 |
| 122.0           | 3                      | +5.8333325E+02 | +4.9328828E+01        | +6.4000000E+02 | +5.5000000E+02 | +5.6372875E+02 |
| 123.0           | 3                      | +7.7333325E+02 | +4.9328828E+01        | +8.3000000E+02 | +7.4000000E+02 | +5.6484545E+02 |
| 126.0           | 3                      | +5.5666650E+02 | +4.0414518E+01        | +6.0000000E+02 | +5.2000000E+02 | +5.6819555E+02 |

$F = +8.6811587E+00$   
 $R = +4.6773156E-01$   
 $t = +2.9463806E+00$   
 $N = 33$   
 Y =  $( ( +5.2279090E+02 ) + ( +3.5401992E+00 ) * X )$   
 SIGNIFICANCE OF F = SIGNIFICANT  
 SIGNIFICANCE OF R = SIGNIFICANT  
 SIGNIFICANCE OF t = SIGNIFICANT  
 DEGREES OF FREEDOM = 31  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPELLANT (ANB P POLYMER) RELAX MODULUS @ 10 SEC, 77 DEG, LINED, 1Z

FIGURE 6-16

AD-A063 094

OGDEN AIR LOGISTICS CENTER HILL AFB UTAH PROPELLANT L--ETC F/G 21/9.2  
PROPELLANT SURVEILLANCE REPORT ANB-3066 PROPELLANT. (U)  
JUL 78 E M DALABA  
MANCP-398(78)

UNCLASSIFIED

NL

4 OF 4  
AD  
A063094

EEC



END  
DATE  
FILED  
3-79  
DDC

4 OF 4

AD  
A063 094



\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                      | +5.6333325E+02 | +4.1633319E+01        | +6.1000000E+02 | +5.3000000E+02 | +5.6881347E+02 |
| 15.0            | 3                      | +5.80C0000E+02 | +1.7320508E+01        | +6.0000000E+02 | +5.7000000E+02 | +5.7589379E+02 |
| 16.0            | 3                      | +6.333325E+02  | +1.6692676E+C2        | +7.0000000E+02 | +5.1000000E+C2 | +5.7943406E+02 |
| 21.0            | 3                      | +5.7666650E+02 | +2.3816659E+01        | +6.0000000E+C2 | +5.6000000E+C2 | +5.5713500E+02 |
| 22.0            | 3                      | +6.8333325E+02 | +2.0816659E+01        | +7.0000000E+02 | +6.6000000E+02 | +6.0067504E+02 |
| 32.0            | 3                      | +6.6666650E+02 | +4.7258156E+C1        | +7.2000000E+02 | +6.3000000E+02 | +6.3607714E+02 |
| 34.0            | 3                      | +5.7333325E+02 | +1.5275252E+C1        | +5.9000000E+02 | +5.6000000E+02 | +6.4315747E+02 |
| 36.0            | 3                      | +6.0333325E+02 | +8.0208062E+C1        | +6.8000000E+02 | +5.2000000E+02 | +6.5023803E+02 |
| 40.0            | 3                      | +4.7333325E+02 | +7.5055534E+01        | +5.6000000E+02 | +4.3000000E+02 | +6.6439868E+02 |
| 48.0            | 3                      | +7.8666650E+02 | +9.2915732E+01        | +8.5000000E+02 | +6.8000000E+02 | +6.9272045E+02 |
| 58.0            | 3                      | +7.9666650E+02 | +4.7258156E+C1        | +8.5000000E+02 | +7.6000000E+02 | +7.2812231E+02 |

ANB 3066 PROPELLANT (ANB P POLYMER) RELAX MODULUS @ 10 SEC, 77 DEG, LINED, 1X

$F = +8.4996202E+00$        $\gamma = (( +3.3010464E+02 ) + ( +2.2254194E+00 ) * X)$   
 $R = +4.6387749E-01$       SIGNIFICANCE OF  $F = \text{SIGNIFICANT}$   
 $I = +2.9154108E+00$       SIGNIFICANCE OF  $R = \text{SIGNIFICANT}$   
 $N = 33$       SIGNIFICANCE OF  $I = \text{SIGNIFICANT}$   
 DEGREES OF FREEDOM = 31

STORAGE CONDITIONS = AMB TEMP/RH      TEST CONDITIONS = 77 DEG F, AMB RH



ANB 3066 PROPYLENIC (ANB P POLYMER) RELAX MODULUS • 1000 SEC. 77 DEG. LINED, 12 SEC. TEST

FIGURE 6-17

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y     | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|---------------|----------------|
| 13.0            | 3                      | +3.600000E+02  | +1.732050E+01         | +3.800000E+02  | +3.500000E+02 | +3.5903451E+02 |
| 15.0            | 3                      | +3.700000E+02  | +2.6457513E+01        | +4.000000E+02  | +3.500000E+02 | +3.6348583E+02 |
| 16.0            | 3                      | +4.1666650E+02 | +4.0414518E+C1        | +4.4C0C000E+02 | +3.700000E+02 | +3.6571118E+02 |
| 21.0            | 3                      | +3.6333325E+02 | +2.3094010E+01        | +3.900000E+02  | +3.500000E+02 | +3.7683837E+02 |
| 22.0            | 3                      | +4.0666650E+02 | +1.5275252E+01        | +4.200000E+02  | +3.900000E+02 | +3.7906772E+02 |
| 32.0            | 3                      | +4.300000E+02  | +3.6055512E+01        | +4.700000E+02  | +4.000000E+02 | +4.0131787E+02 |
| 34.0            | 3                      | +3.6666650E+02 | +2.5166114E+01        | +3.900000E+02  | +3.400000E+02 | +4.0576879E+02 |
| 36.0            | 3                      | +3.600000E+02  | +6.2449979E+C1        | +4.300000E+02  | +3.100000E+02 | +4.1021972E+02 |
| 40.0            | 3                      | +2.0666650E+02 | +6.3508529E+01        | +3.800000E+02  | +2.700000E+02 | +4.1912133E+02 |
| 48.0            | 3                      | +4.7333325E+02 | +6.5064070E+01        | +5.400000E+02  | +4.100000E+02 | +4.3692456E+02 |
| 56.0            | 3                      | +5.2333325E+02 | +5.7735026E+00        | +5.3C00000E+02 | +5.200000E+02 | +4.5917895E+02 |

ANR 3966 PROPLNT (ANB P POLYMER) RELAX MODULUS @ 1000 SEC. 77 DEG. LINED. 1X

$\gamma = (( +7.2970790E+02) + (+1.2972929E+00)) * X$   
 $F = +1.2217774E+00$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $R = +1.0674672E-01$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $t = +1.1053404E+00$  SIGNIFICANCE OF t = NOT SIGNIFICANT  
 $N = 108$  DEGREES OF FREEDOM = 106  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 77 DEG F, AMB RH



PARAMETER = RELAXATION MODULUS

ANB 3066 PROPELLANT (ANT, P POLYMER) RELAX MODULUS • 10 SEC, UNLND CTNS, 1% STN

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| TEST (T-S) | SPECIMENS PER GROUP | MEAN Y          | STANDARD DEVIATION | MAXIMUM Y     | MINIMUM Y     | REGRESSION Y   |
|------------|---------------------|-----------------|--------------------|---------------|---------------|----------------|
| 13.0       | 3                   | +6.600000E+02   | +3.60555125E+01    | +7.200000E+02 | +6.300000E+02 | +7.4657250E+02 |
| 12.0       | 3                   | +6.3333325E+02  | +2.5166114E+01     | +6.600000E+02 | +6.100000E+02 | +7.4916723E+02 |
| 16.0       | 3                   | +5.8666650E+02  | +2.5166114E+01     | +6.100000E+02 | +5.600000E+02 | +7.5046435E+02 |
| 33.0       | 3                   | +1.1233332E+03  | +4.1633319E+01     | +1.170000E+03 | +1.090000E+03 | +7.7251855E+02 |
| 36.0       | 6                   | +7.2666650E+02  | +7.6594168E+01     | +8.200000F+02 | +6.400000E+02 | +7.7641040E+02 |
| 37.0       | 5                   | +9.08333325E+02 | +1.41903725E+02    | +1.070000E+03 | +7.300000E+02 | +7.7770751E+02 |
| 38.0       | 3                   | +8.8333325E+02  | +1.52752525E+01    | +9.000000E+02 | +8.700000E+02 | +7.7900488E+02 |
| 40.0       | 3                   | +7.6666650E+02  | +1.07857793E+02    | +8.900000E+02 | +6.900000E+02 | +7.8159960E+02 |
| 41.0       | 3                   | +6.300000E+02   | +2.6457513E+01     | +6.500000E+02 | +6.000000E+02 | +7.8289672E+02 |
| 43.0       | 9                   | +8.488867E+02   | +1.2868998E+02     | +1.000000E+03 | +6.500000E+02 | +7.8549145E+02 |
| 44.0       | 6                   | +7.2333325E+02  | +8.2138095E+01     | +8.600000E+02 | +6.200000E+02 | +7.8678857E+02 |
| 45.0       | 6                   | +3.0166650E+02  | +1.3511723E+02     | +9.500000E+02 | +6.700000E+02 | +7.8808593E+02 |
| 47.0       | 5                   | +3.0333325E+02  | +3.7771241E+01     | +8.600000E+02 | +7.600000E+02 | +7.9068066E+02 |
| 48.0       | 6                   | +7.3933325E+02  | +6.7946057E+01     | +8.500000E+02 | +6.700000E+02 | +7.9197778E+02 |
| 50.0       | 3                   | +7.200000E+02   | +9.1651513E+01     | +8.000000E+02 | +6.200000E+02 | +7.9457250E+02 |
| 51.0       | 3                   | +8.700000E+02   | +7.8102496F+01     | +9.600000E+02 | +8.200000E+02 | +7.9586962E+02 |
| 52.0       | 3                   | +8.500000E+02   | +5.2915025E+01     | +8.900000E+02 | +7.900000E+02 | +7.9716699E+02 |
| 53.0       | 6                   | +8.0166650E+02  | +1.8476110E+02     | +9.900000E+02 | +5.400000E+02 | +7.9846435E+02 |
| 54.0       | 6                   | +9.3500000E+02  | +1.8338484E+02     | +1.150000E+03 | +7.500000E+02 | +7.9976171E+02 |
| 56.0       | 3                   | +7.4000000E+02  | +1.1789825E+02     | +8.700000E+02 | +6.400000E+02 | +8.0235620E+02 |
| 57.0       | 3                   | +9.2323325E+02  | +8.504905E+01      | +1.020000E+03 | +8.600000E+02 | +8.0365356E+02 |
| 59.0       | 3                   | +6.5666650E+02  | +4.1633319E+01     | +6.900000E+02 | +6.100000E+02 | +8.0624804E+02 |
| 60.0       | 3                   | +8.7333325E+02  | +5.6862407E+01     | +9.400000E+02 | +8.300000E+02 | +8.0754541E+02 |
| 64.0       | 6                   | +6.1166650E+02  | +1.1356349E+02     | +7.400000E+02 | +4.900000E+02 | +6.1273461E+02 |
| 65.0       | 3                   | +8.0333325E+02  | +2.7300793E+02     | +9.900000E+02 | +4.900000E+02 | +8.1532910E+02 |

ANS 3066 PROPELLANT (ANT. P POLYMER) RELAX MODULUS @ 10 SFC, UNLND CTNS, 16 STN

$\gamma = (( +4.4244850E+02) + (+6.6698560E-01) * X)$   
 $F = +8.4274978E-01$  SIGNIFICANCE OF  $F$  = NOT SIGNIFICANT  
 $R = +8.8813052E-02$  SIGNIFICANCE OF  $R$  = NOT SIGNIFICANT  
 $t = +9.1801404E-01$  SIGNIFICANCE OF  $t$  = NOT SIGNIFICANT  
 $N = 108$  DEGREES OF FREEDOM = 106 TEST CONDITIONS = 77 DEG F. AMB RH  
 STORAGE CONDITIONS = AMB TEMP/RH



ANB 3066 PROPELLANT (ANT. P POLYMER) RELAX MODULUS • 1000 SEC. UNLND CTNS 12 ST

FIGURE 6-19

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                      | +4.30000000E+02 | +1.99999999E+01       | +4.2000000E+02 | +3.9000000E+02 | +4.5111914E+02 |
| 15.0            | 3                      | +3.80000000E+02 | +1.7320506E+01        | +4.0000000E+02 | +3.7000000E+02 | +4.5245312E+02 |
| 15.0            | 3                      | +3.5666650E+02  | +1.2275252E+01        | +3.7000000E+02 | +3.4000000E+02 | +4.5312011E+02 |
| 33.0            | 3                      | +6.30000000E+02 | +3.6055512E+01        | +6.7000000E+02 | +6.5000000E+02 | +6.6445898E+02 |
| 36.0            | 6                      | +4.4166650E+02  | +4.7081489E+01        | +5.1000000E+02 | +3.9000000E+02 | +4.6645996E+02 |
| 37.0            | 6                      | +5.65000000E+02 | +9.1378334E+01        | +6.6000000E+02 | +4.5000000E+02 | +4.6712695E+02 |
| 36.0            | 3                      | +5.5333325E+02  | +1.5275252E+01        | +5.7000000E+02 | +5.4000000E+02 | +4.6779394E+02 |
| 40.0            | 3                      | +4.90000000E+02 | +7.6102496E+01        | +5.8000000E+02 | +4.4000000E+02 | +4.6912768E+02 |
| 41.0            | 3                      | +3.60000000E+02 | +9.9999999E+00        | +3.7000000E+02 | +3.5000000E+02 | +4.6979467E+02 |
| 43.0            | 9                      | +4.9777758E+02  | +7.8386506E+01        | +5.7000000E+02 | +3.7000000E+02 | +4.7112866E+02 |
| 44.0            | 6                      | +4.2166650E+02  | +6.1779176E+01        | +5.2000000E+02 | +3.5000000E+02 | +4.7179565E+02 |
| 45.0            | 6                      | +4.8166650E+02  | +9.0645830E+01        | +5.8000000E+02 | +3.9000000E+02 | +4.7246264E+02 |
| 47.0            | 6                      | +4.3666650E+02  | +1.3662601E+01        | +5.2000000E+02 | +4.9000000E+02 | +4.7379663E+02 |
| 42.0            | 6                      | +4.5166650E+02  | +3.7638632E+01        | +5.2000000E+02 | +4.2000000E+02 | +4.7446362E+02 |
| 50.0            | 3                      | +3.9333325E+02  | +3.7859388E+01        | +4.2000000E+02 | +3.5000000E+02 | +4.7579760E+02 |
| 51.0            | 3                      | +5.3666650E+02  | +4.0188021E+01        | +5.9000000E+02 | +5.1000000E+02 | +4.7646459E+02 |
| 52.0            | 3                      | +5.30000000F+02 | +3.4641016E+01        | +5.5000000E+02 | +4.9000000E+02 | +4.7713159E+02 |
| 53.0            | 6                      | +4.7166650E+02  | +9.5375447E+01        | +5.7000000E+02 | +3.3000000E+02 | +4.7779858E+02 |
| 54.0            | 6                      | +5.4000000E+02  | +1.3356646E+02        | +6.9000000E+02 | +3.9000000E+02 | +4.7846557E+02 |
| 56.0            | 3                      | +4.6333325E+02  | +7.0945988E+01        | +5.4000000E+02 | +4.7000000E+02 | +4.7979956E+02 |
| 57.0            | 3                      | +2.4333325E+02  | +5.7735026E+01        | +6.1000000E+02 | +5.1000000E+02 | +4.8046655E+02 |
| 59.0            | 3                      | +3.9333325E+02  | +2.0816657E+01        | +4.1000000E+02 | +3.7000000E+02 | +4.8180053E+02 |
| 60.0            | 3                      | +5.5333325E+02  | +4.0550504E+01        | +5.8000000E+02 | +5.2000000E+02 | +4.8246752E+02 |
| 64.0            | 3                      | +3.5166650E+02  | +7.5476265E+01        | +4.3000000E+02 | +2.7000000E+02 | +4.8513549E+02 |
| 65.0            | 3                      | +4.9566650E+02  | +1.8195707E+02        | +6.0000000E+02 | +3.1000000E+02 | +4.8646948E+02 |

ANALYSIS PERCENT (ANT. P POLYMER) RELAX MODULUS @ 1000 SEC. UNLND CT-S 1% ST

$\gamma = (( +4.6438564E+02 ) + ( +7.5895256E+00 ) * X) * X$   
 $F = \text{SIGNIFICANCE OF } F = \text{SIGNIFICANT}$   
 $R = \text{SIGNIFICANCE OF } R = \text{SIGNIFICANT}$   
 $t = \text{SIGNIFICANCE OF } t = \text{SIGNIFICANT}$   
 $N = 57$   
 $\text{DEGREES OF FREEDOM} = 55$   
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$  TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPELLANT (ANT P POLYMER) RELAX MODULUS • 10 SEC, 77 DEG, LINED, 12

FIGURE 6-20

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 14.0            | 3                      | +6.1333325E+02 | +4.0414518E+C1        | +6.5000000E+02 | +5.7000000E+C2 | +5.7062851E+02 |
| 15.0            | 1                      | +5.9000000E+02 | +0.0200000E+C07       | +5.9000000E+02 | +5.9000000E+02 | +5.702851E+02  |
| 17.0            | 1                      | +5.4000000F+02 | +4.3588989E+C1        | +5.9000000E+02 | +5.1000000E+02 | +5.5340747F+C2 |
| 19.0            | 3                      | +5.7333325E+02 | +1.1547050E+C1        | +5.8000000E+02 | +5.6000000E+02 | +6.0095707E+02 |
| 20.0            | 6                      | +6.3666650E+02 | +1.2027745E+C2        | +7.9000000E+02 | +5.1000000E+C2 | +6.16176C2E+C2 |
| 22.0            | 3                      | +5.9333325E+02 | +3.0550504E+C1        | +6.2000000E+02 | +5.6000000E+C2 | +6.3135498E+02 |
| 24.0            | 3                      | +7.0000000E+02 | +3.4641016E+C1        | +7.4000000E+02 | +6.8000000E+02 | +6.4652417E+C2 |
| 25.0            | 3                      | +6.2000000E+02 | +4.2588989E+C1        | +6.5000000E+02 | +5.7000000E+02 | +6.5412377E+C2 |
| 27.0            | 3                      | +5.4333325E+02 | +5.7735026E+C07       | +5.5000000E+C2 | +5.4000000E+C2 | +6.6930273E+C2 |
| 29.0            | 8                      | +5.8625000E+02 | +1.0568653E+C2        | +8.2000000E+02 | +5.3000000E+C2 | +6.8448168E+C2 |
| 30.0            | 3                      | +8.8666650E+02 | +6.6277137E+C1        | +9.5000000E+02 | +8.3000000E+02 | +6.9207128E+C2 |
| 31.0            | 3                      | +8.3000000E+02 | +6.5574385E+C01       | +9.0000000E+02 | +7.7000000E+C2 | +6.5966088E+C2 |
| 33.0            | 3                      | +5.2333325E+02 | +1.5307950E+C2        | +7.0000000E+02 | +4.3000000E+C2 | +7.1483984E+02 |
| 36.0            | 3                      | +7.8333325E+02 | +3.5118845E+C1        | +8.2000000E+02 | +7.5000000E+C2 | +7.3760839E+C2 |
| 39.0            | 3                      | +7.1666650E+02 | +3.5118845E+C01       | +7.5000000E+02 | +6.8000000E+02 | +7.5278759E+C2 |
| 40.0            | 3                      | +7.2000000E+02 | +4.9999999E+C1        | +7.7000000E+02 | +6.7000000E+02 | +7.6796655E+02 |
| 44.0            | 3                      | +8.3666650E+02 | +7.7674534E+C01       | +9.0000000E+02 | +7.5000000E+C2 | +7.5632470E+C2 |

ANB 3066 PROPLNT (ANT P POLYMFRI) RELAX MODULUS @ 10 SEC. 77 DEG. LINED. 1X

$F = +2.6207986E+01$        $\gamma = (( +2.8090470E+02 ) + ( +5.1268743E+00 ) * X) * S_1$   
 $R = +5.6809041E-01$       SIGNIFICANCE OF  $F$  = SIGNIFICANT  
 $t = +5.1193736E+00$       SIGNIFICANCE OF  $R$  = SIGNIFICANT  
 $N = 57$       DEGREES OF FREEDOM = 55  
 STORAGE CONDITIONS = AMB TEMP/RH      TEST CONDITIONS = 77 DEG F. AMB RH



ANB 3066 PROPLNT (ANT P POLYMER) RELAX MODULUS • 1000 SEC, 77 DEG, LINED. 1%

FIGURE 6-21

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMEN<br>DEP. GROUP | STANDARD<br>DEVIATION |                | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------------|----------------|----------------|----------------|----------------|
|                 |                        | MEAN Y                |                |                |                |                |
| 14.0            | 3                      | +3.7223325E+02        | +3.05505C4E+01 | +4.0CC000CE+02 | +3.4CC000CE+02 | +3.52E8050E+C2 |
| 15.0            | 1                      | +3.5000001E+02        | +0.2000000E+07 | +3.9C0000CE+02 | +3.900000E+C2  | +3.57E0761E+02 |
| 17.0            | 3                      | +3.50C0000F+02        | +2.5999999E+01 | +3.8C000CE+02  | +3.2C000CE+02  | +3.680615E+C2  |
| 19.0            | 3                      | +3.6666650E+02        | +5.7735026E+00 | +3.7C0000CE+02 | +3.6C000CE+02  | +3.7318823E+C2 |
| 21.0            | 6                      | +3.8833325E+02        | +4.4C07575E+01 | +4.4C0000CE+02 | +3.4C000CE+02  | +3.8344213E+02 |
| 22.0            | 3                      | +3.5666650E+02        | +1.5275252E+01 | +3.7C0000CE+02 | +3.4C000CE+02  | +3.5369580E+02 |
| 24.0            | 3                      | +4.0C00000E+02        | +1.5999999E+01 | +4.200000E+02  | +3.800000E+02  | +4.0394946E+02 |
| 25.0            | 3                      | +3.5000000E+02        | +2.6457513E+01 | +4.1C00000E+02 | +3.6C0000E+02  | +4.0907641E+02 |
| 27.0            | 3                      | +3.5000003E+02        | +0.0CC000CE+35 | +3.5C0000E+02  | +3.500000E+02  | +4.1933007E+02 |
| 29.0            | 9                      | +4.4375000E+02        | +6.5680392E+01 | +5.3C0000E+02  | +3.50C000CE+02 | +4.2958358E+02 |
| 30.0            | 3                      | +5.5000000E+12        | +2.5999999E+01 | +5.8C0000E+02  | +5.200000E+03  | +4.3471093E+C2 |
| 31.0            | 3                      | +5.1223325E+02        | +4.5052497E+01 | +5.600000E+02  | +4.700000E+02  | +4.3983764E+02 |
| 33.0            | 3                      | +3.4333325E+02        | +1.0115993E+02 | +4.600000E+02  | +2.800000E+02  | +4.5009155E+02 |
| 36.0            | 3                      | +4.8666650E+12        | +2.5156114E+01 | +5.100000E+02  | +4.6C0000CE+02 | +4.6547216E+02 |
| 38.0            | 3                      | +4.70C0000E+02        | +1.5999999E+01 | +4.900000E+02  | +4.5C0000CE+02 | +4.7572583E+02 |
| 40.0            | 3                      | +4.4333325E+02        | +3.05505C4E+01 | +4.700000E+02  | +4.1C0000CE+02 | +4.5597949E+02 |
| 44.0            | 3                      | +5.2666650E+02        | +5.1316014E+01 | +5.7C0000CE+02 | +4.7C0000CE+02 | +5.06A8706E+02 |

6-39

$\gamma = (( +8.5482895E+02) + (-2.1723434E+00) * X)$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $L = \text{SIGNIFICANCE OF } L$   
 $D = \text{DEGREES OF FREEDOM} = 166$   
 $N = \text{STORAGE CONDITIONS} = \text{RMB TEMP/RH}$   
 $\sigma_r = +1.9024048E+02$   
 $S_a = +7.0236175E-01$   
 $S_t = +1.8554140E+02$

UNIT OF MEASURE = PSI  
 $*10^1$   
 PARAMETER = RELAXATION MODULUS

ANA  
 ANB



ANB 3066 PROPLNT (ANA & ANB UNLND, G POLYMER) STRESS RELAX MODULUS • 10 SEC 1%

FIGURE 6-22

## \*\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y     | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|---------------|----------------|
| 45.0            | 3                      | +7.600000E+02  | +5.5677643E+01        | +6.100000E+02  | +7.000000E+02 | +7.5707348E+02 |
| 51.0            | 6                      | +5.6333325E+02 | +9.2448183E+01        | +6.800000E+02  | +4.500000E+02 | +7.4403930E+02 |
| 52.0            | 3                      | +5.300000E+02  | +4.9999999E+01        | +5.800000E+02  | +4.800000E+02 | +7.4186694E+02 |
| 53.0            | 6                      | +8.500000E+02  | +1.7251086E+02        | +1.040000E+03  | +6.600000E+02 | +7.3969458E+02 |
| 54.0            | 3                      | +5.5333325E+02 | +1.1547050E+01        | +5.600000E+02  | +5.400000E+02 | +7.3752221E+02 |
| 56.0            | 6                      | +7.3166650E+02 | +2.3945076E+02        | +1.040000E+03  | +4.700000E+02 | +7.3317749E+02 |
| 58.0            | 3                      | +5.5666650E+02 | +5.7735026E+00        | +5.600000E+02  | +5.500000E+02 | +7.2883300E+02 |
| 51.0            | 3                      | +7.8333325E+02 | +1.1547050E+01        | +7.900000E+02  | +7.700000E+02 | +7.2231591E+02 |
| 62.0            | 3                      | +6.0333325E+02 | +5.7735025E+00        | +6.100000E+02  | +6.000000E+02 | +7.2014355E+02 |
| 63.0            | 3                      | +7.000000E+02  | +3.4641016E+01        | +7.400000E+02  | +6.800000E+02 | +7.1797119E+02 |
| 59.0            | 6                      | +8.1666650E+02 | +2.2677448E+02        | +1.040000E+03  | +6.100000E+02 | +7.0493725E+02 |
| 70.0            | 3                      | +8.5666650E+02 | +5.5075705E+01        | +9.200000E+02  | +8.200000E+02 | +7.0276489E+02 |
| 71.0            | 3                      | +5.3666650E+02 | +1.1547005E+01        | +5.500000E+02  | +5.300000E+02 | +7.0059252E+02 |
| 72.0            | 9                      | +8.2444433E+02 | +9.1393532E+01        | +9.900000E+02  | +7.100000E+02 | +6.9842016E+02 |
| 67.0            | 6                      | +7.9500000E+02 | +2.6174414E+02        | +1.090000E+03  | +5.400000E+02 | +6.8973071E+02 |
| 78.0            | 3                      | +6.7000000E+02 | +0.000000E+47         | +6.700000E+02  | +6.700000E+02 | +6.8538598E+02 |
| 81.0            | 3                      | +6.7333325E+02 | +8.1445278E+01        | +7.300000E+02  | +5.800000E+02 | +6.786914E+02  |
| 82.0            | 3                      | +7.000000E+02  | +1.7320508E+01        | +7.100000E+02  | +6.800000E+02 | +6.7669677E+02 |
| 84.0            | 6                      | +6.4000000E+02 | +4.1952353E+01        | +7.100000E+02  | +6.000000E+02 | +6.7235205E+02 |
| 85.0            | 3                      | +5.0333325E+02 | +2.3094010E+01        | +5.300000E+02  | +4.900000E+02 | +6.7017968E+02 |
| 86.0            | 3                      | +5.9666650E+02 | +5.5075705E+01        | +6.500000E+02  | +5.400000E+02 | +6.6800732E+02 |
| 87.0            | 3                      | +1.0366665E+03 | +1.6072751E+02        | +1.280000E+03  | +9.800000E+02 | +6.6583496E+02 |
| 88.0            | 6                      | +5.0500000E+02 | +5.0892042E+01        | +5.800000E+02  | +4.600000E+02 | +6.6366259E+02 |
| 59.0            | 9                      | +7.5555541E+02 | +1.9086062E+02        | +9.900000E+02  | +4.900000E+02 | +6.6149023E+02 |
| 90.0            | 6                      | +6.4000000E+02 | +1.4380542E+02        | +8.300000E+02  | +5.000000E+02 | +6.5931787E+02 |
| 91.0            | 3                      | +6.0666650E+02 | +2.3094010E+C1        | +6.2000000L+02 | +5.800000E+02 | +6.5714550E+02 |
| 94.0            | 15                     | +7.1733325E+02 | +2.6850024E+02        | +1.400000E+03  | +3.300000E+02 | +6.5062866E+02 |
| 95.0            | 6                      | +6.9500000E+02 | +2.2340546E+02        | +9.500000E+02  | +4.800000E+02 | +6.4845629E+02 |
| 96.0            | 6                      | +8.2333325E+02 | +3.5023801E+01        | +8.700000E+02  | +7.700000E+02 | +6.4628393E+02 |
| 77.0            | 3                      | +6.4566650E+02 | +4.1633319E+01        | +6.800000E+02  | +6.000000E+02 | +6.4411157E+02 |
| 100.0           | 3                      | +4.1500000E+02 | +9.9999999E+00        | +4.2000000E+02 | +4.000000E+02 | +6.3759448E+02 |

6-41

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y     | MINIMUM Y     | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|---------------|---------------|----------------|
| 113.0           | 9                      | +4.511108E+02  | +4.9609586E+01        | +5.100000E+02 | +3.700000E+02 | +6.0935400E+02 |
| 118.0           | 3                      | +5.8333325E+02 | +3.7859388E+01        | +6.100000E+02 | +5.400000E+02 | +5.9849243E+02 |
| 119.0           | 3                      | +4.900000E+02  | +9.999999E+00         | +5.000000E+02 | +4.800000E+02 | +5.9632006E+02 |
| 120.0           | 3                      | +7.2333325E+02 | +5.8594652E+01        | +7.900000E+02 | +6.800000E+02 | +5.9414770E+02 |
| 137.0           | 3                      | +4.4333325E+02 | +1.1547005E+01        | +4.500000E+02 | +4.300000E+02 | +5.5721777E+02 |

ANB 3066 PROPYLEN (ANA & ANB UNLND, G POLYMER) STRESS RELAX MODULUS @ 10 SEC 1%



FIGURE 6-23

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |                |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|----------------|
|                 |                        |                 |                       |                |                | +4.6000000E+02 | +4.1000C00E+02 |
| 45.0            | 3                      | +4.4000000E+02  | +2.6457513F+01        | +4.6000000E+02 | +4.1000C00E+02 | +4.6586474E+02 | +4.6586474E+02 |
| 51.0            | 6                      | +3.7000000E+02  | +5.6568542E+01        | +4.4000000E+02 | +3.1000000E+02 | +4.6431103E+02 | +4.6431103E+02 |
| 52.0            | 3                      | +3.6000000E+02  | +1.9999999E+01        | +3.8000000E+02 | +3.4000C00E+02 | +4.6275732E+02 | +4.6275732E+02 |
| 53.0            | 6                      | +5.2000000E+02  | +9.0553851E+01        | +6.3000000E+02 | +4.2000C00E+02 | +4.6275732E+02 | +4.6275732E+02 |
| 54.0            | 3                      | +3.7000000E+02  | +9.9999999E+00        | +3.8000000E+02 | +3.6000000E+02 | +4.6120361E+02 | +4.6120361E+02 |
| 56.0            | 6                      | +4.4666650E+02  | +1.2242004E+02        | +6.1000000E+02 | +3.1000000E+02 | +4.5809643E+02 | +4.5809643E+02 |
| 58.0            | 3                      | +3.4566650E+02  | +1.1547005E+01        | +3.6000000E+02 | +3.4000C00E+02 | +4.5498901E+02 | +4.5498901E+02 |
| 61.0            | 3                      | +4.9566650E+02  | +1.5275252E+01        | +5.1000000E+02 | +4.8000000E+02 | +4.5032812E+02 | +4.5032812E+02 |
| 62.0            | 3                      | +3.8000000E+02  | +0.0000000E+19        | +3.8000000E+02 | +3.8000000E+02 | +4.4877441E+02 | +4.4877441E+02 |
| 63.0            | 3                      | +4.5000000E+02  | +1.7320508E+01        | +4.6000000E+02 | +4.3000C00E+02 | +4.4722070E+02 | +4.4722070E+02 |
| 69.0            | 6                      | +4.8000000E+02  | +1.3175735E+02        | +6.1000000E+02 | +3.5000C00E+02 | +4.3789868E+02 | +4.3789868E+02 |
| 70.0            | 3                      | +5.233325E+02   | +2.3094010E+01        | +5.5000000E+02 | +5.1000000E+02 | +4.3634497E+02 | +4.3634497E+02 |
| 71.0            | 3                      | +3.4000000E+02  | +9.9999999E+00        | +3.5000000E+02 | +3.3000000E+02 | +4.3479150E+02 | +4.3479150E+02 |
| 72.0            | 9                      | +5.2111108E+02  | +6.3530395E+01        | +6.2000000E+02 | +4.4000C00E+02 | +4.3323779E+02 | +4.3323779E+02 |
| 76.0            | 6                      | +4.9166650E+02  | +1.5171244E+02        | +6.7000000E+02 | +3.4000000E+02 | +4.2702319E+02 | +4.2702319E+02 |
| 78.0            | 3                      | +4.1000000E+02  | +9.9999999E+00        | +4.2000000E+02 | +4.0000C00E+02 | +4.2391577E+02 | +4.2391577E+02 |
| 81.0            | 3                      | +4.3666650E+02  | +6.0277137E+01        | +5.0000006E+02 | +3.8000000E+02 | +4.1925488E+02 | +4.1925488E+02 |
| 82.0            | 3                      | +4.333325E+02   | +1.5275252E+01        | +4.5000000E+02 | +4.2000000E+02 | +4.1770117E+02 | +4.1770117E+02 |
| 84.0            | 6                      | +3.9666650E+02  | +2.2509257E+01        | +4.4000000E+02 | +3.8000C00E+02 | +4.1459375E+02 | +4.1459375E+02 |
| 85.0            | 3                      | +3.1000000E+02  | +9.9999999E+00        | +3.2000000E+02 | +3.0000C00E+02 | +4.1304003E+02 | +4.1304003E+02 |
| 96.0            | 3                      | +3.5666650E+02  | +3.2145502E+01        | +3.8000000E+02 | +3.2000000E+02 | +4.1148657E+02 | +4.1148657E+02 |
| 87.0            | 3                      | +6.5666650E+02  | +8.9628864E+01        | +7.6000000E+02 | +6.0000000E+02 | +4.0993286E+02 | +4.0993286E+02 |
| 88.0            | 6                      | +2.93332325E+02 | +4.16733322E+01       | +3.8000000E+02 | +2.7000C00E+02 | +4.0837915E+02 | +4.0837915E+02 |
| 89.0            | 3                      | +4.93332325E+02 | +1.5239750E+02        | +6.5000000E+02 | +2.8000C00E+02 | +4.0682543E+02 | +4.0682543E+02 |
| 90.0            | 6                      | +3.93332325E+02 | +7.1460945E+01        | +4.8000000E+02 | +3.2000000E+02 | +4.0527172E+02 | +4.0527172E+02 |
| 91.0            | 3                      | +3.53332325E+02 | +1.1547005E+01        | +3.6000000E+02 | +3.4000C00E+02 | +4.0371826E+02 | +4.0371826E+02 |
| 94.0            | 15                     | +4.3600000E+02  | +1.6642458E+02        | +8.8000000E+02 | +2.1000C00E+02 | +3.905712E+02  | +3.905712E+02  |
| 95.0            | 6                      | +4.0500000E+02  | +1.4152738E+02        | +5.6000000E+02 | +2.7000000E+02 | +3.9750341E+02 | +3.9750341E+02 |
| 96.0            | 6                      | +5.0600000E+02  | +2.8609720E+01        | +5.5000000E+02 | +4.7000C00E+02 | +3.9594995E+02 | +3.9594995E+02 |
| 97.0            | 3                      | +4.133325E+02   | +5.7735026E+00        | +4.2000000E+02 | +4.1000C00E+02 | +3.9439624E+02 | +3.9439624E+02 |
| 100.0           | 3                      | +2.4333322E+02  | +1.1647005E+01        | +2.5000000E+02 | +2.3000000E+02 | +3.8973510E+02 | +3.8973510E+02 |

6-44

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 113.0           | 9                      | +2.9444433E+02 | +3.4318767E+01        | +3.6000000E+02 | +2.5000000E+02 | +3.6953759E+02 |
| 118.0           | 3                      | +3.5000000E+02 | +1.7320508E+01        | +3.6000000E+02 | +3.3000000E+02 | +3.6176928E+02 |
| 119.0           | 3                      | +2.7666650E+02 | +5.7735026E+00        | +2.8000000E+02 | +2.7000000E+02 | +3.6021557E+02 |
| 120.0           | 3                      | +4.0566650E+02 | +2.8867513E+01        | +4.4000000E+02 | +3.9000000E+02 | +3.5866186E+02 |
| 137.0           | 3                      | +2.6556650E+02 | +5.7735026E+00        | +2.7000000E+02 | +2.6000000E+02 | +3.3224975E+02 |

ANB 3066 PROPELLANT (ANA E AND UNLND, S POLYMER) STRESS RELAX MOD a 1000 SEC 1%

$\gamma = (( +7.4280164E+02) + \{ +3.0953550E-01 \}) * X$   
 $F = +2.1129595E-01$   
 $R = +3.2815845E-02$   
 $R^2 = +4.5966940E-01$   
 $N = 198$   
 $Degrees of Freedom = 196$   
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

UNIT OF MEASURE = PSI  
 PARAMETER = RELAXATION MODULUS



ANB 9066 PROPLNT (ANB G & P, UNLND) STRESS RELAX MODULUS • 10 SEC 1% STRAIN

FIGURE 6-24

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS I.F TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y       | REGRESSION Y     |
|-----------------|------------------------|-----------------|-----------------------|-----------------|-----------------|------------------|
| 15.0            | 3                      | + 6.6100000E+02 | + 6.0827625E+01       | + 7.3000000E+02 | + 6.2000000E+02 | + 7.4744450E+02  |
| 45.0            | 3                      | + 7.5700000E+02 | + 5.5277543E+01       | + 8.1000000E+02 | + 7.0000000E+02 | + 7.5673071E+02  |
| 52.0            | 9                      | + 5.1666650E+02 | + 1.9570385E+02       | + 1.1700000E+03 | + 4.9070000E+02 | + 7.5889746E+02  |
| 53.0            | 9                      | + 8.4111108E+02 | + 1.5885877E+02       | + 1.0400000E+03 | + 6.4000000E+02 | + 7.5920678E+02  |
| 54.0            | 6                      | + 6.5333325E+02 | + 1.1552777E+02       | + 8.0000000E+02 | + 5.4000000E+02 | + 7.5951635E+02  |
| 57.0            | 3                      | + 7.6333325E+02 | + 6.8068592E+01       | + 8.4000000E+02 | + 7.1000000E+02 | + 7.6044506E+02  |
| 51.0            | 3                      | + 7.8333325E+02 | + 1.1547005E+01       | + 7.9000000E+02 | + 7.7000000E+02 | + 7.6168310E+02  |
| 62.0            | 6                      | + 8.3333325E+02 | + 2.5271855E+02       | + 1.0900000E+03 | + 6.0000000E+02 | + 7.6199267E+02  |
| 53.0            | 3                      | + 7.0000000E+02 | + 3.4641015E+01       | + 7.4000000E+02 | + 6.9000000E+02 | + 7.623C224E+02  |
| 69.0            | 3                      | + 8.1566650E+02 | + 8.6216781E+01       | + 9.1000000E+02 | + 7.4000000E+02 | + 7.6415942E+02  |
| 72.0            | 9                      | + 8.9555541E+02 | + 1.0236101E+02       | + 1.0100000E+03 | + 7.1000000E+02 | + 7.65C8813E+02  |
| 76.0            | 3                      | + 5.6000000E+02 | + 1.9999999E+01       | + 5.8000000E+02 | + 5.4000000E+02 | + 7.66322617E+02 |
| 77.0            | 3                      | + 5.4333325E+02 | + 5.7735026E+00       | + 5.5000000E+02 | + 5.4000000E+02 | + 7.6663574E+02  |
| 78.0            | 6                      | + 6.7566650E+02 | + 2.0655911E+01       | + 7.1000000E+02 | + 6.5000000E+02 | + 7.6694531E+02  |
| 80.0            | 3                      | + 9.7666650E+02 | + 1.1590225E+02       | + 1.1100000E+03 | + 9.0000000E+02 | + 7.6756445E+02  |
| 81.0            | 3                      | + 6.7333325E+02 | + 8.1445278E+01       | + 7.3000000E+02 | + 5.8000000E+02 | + 7.6787402E+02  |
| 84.0            | 3                      | + 6.3666650E+02 | + 3.0550504E+01       | + 6.7000000E+02 | + 6.1000000E+02 | + 7.6880249E+02  |
| 85.0            | 3                      | + 5.0333325E+02 | + 2.3094010E+01       | + 5.3000000E+02 | + 4.9000000E+02 | + 7.6911206E+02  |
| 86.0            | 3                      | + 5.9666650E+02 | + 5.5075705E+01       | + 6.5000000E+02 | + 5.4000000E+02 | + 7.6942163E+02  |
| 37.0            | 3                      | + 1.0966665E+03 | + 1.6072751E+02       | + 1.2800000E+03 | + 9.8000000E+02 | + 7.6973120E+02  |
| 38.0            | 9                      | + 6.2777758E+02 | + 2.3215177E+02       | + 1.1300000E+03 | + 4.6000000E+02 | + 7.7004077E+02  |
| 89.0            | 6                      | + 8.6833325E+02 | + 1.07966504E+02      | + 9.9000000E+02 | + 7.0000000E+02 | + 7.7035009E+02  |
| 90.0            | 3                      | + 7.6666650E+02 | + 5.5075705E+01       | + 8.3000000E+02 | + 7.3000000E+02 | + 7.7065966E+02  |
| 91.0            | 3                      | + 6.2566650E+02 | + 2.3094010E+01       | + 6.2000000E+02 | + 5.8000000E+02 | + 7.7096923E+02  |
| 93.0            | 3                      | + 8.3000000E+02 | + 2.9999999E+01       | + 9.1000000E+02 | + 8.5000000E+02 | + 7.7159837E+02  |
| 94.0            | 12                     | + 7.9000000E+02 | + 2.4326671E+02       | + 1.4000000E+03 | + 5.2000000E+02 | + 7.7189794E+02  |
| 75.0            | 3                      | + 5.9566650E+02 | + 5.0332229E+01       | + 9.5000000E+02 | + 8.5000000E+02 | + 7.7220751E+02  |
| 96.0            | 6                      | + 8.2333325E+02 | + 3.5023801E+01       | + 8.7000000E+02 | + 7.7000000E+02 | + 7.7251684E+02  |
| 97.0            | 3                      | + 6.4666650E+02 | + 4.1633319E+01       | + 6.8000000E+02 | + 6.0000000E+02 | + 7.7292641E+02  |
| 100.0           | 3                      | + 4.1000000E+02 | + 9.9999999E+00       | + 4.2000000E+02 | + 4.0000000E+02 | + 7.7375512F+02  |
| 105.0           | 6                      | + 9.6666650E+02 | + 1.9459534E+02       | + 1.2000000E+03 | + 7.1000000E+02 | + 7.7530273E+02  |

## \*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 106.0           | 3                      | +9.1333325E+02 | +2.1221058E+02        | +1.1500000E+03 | +7.4000000E+02 | +7.7561230E+02 |
| 109.0           | 3                      | +5.5000000E+02 | +3.0000000E+03        | +5.5000000E+02 | +5.5000000E+02 | +7.7654101E+02 |
| 110.0           | 3                      | +1.1233332E+03 | +1.7387735E+02        | +1.3200000E+03 | +9.9000000E+02 | +7.7685034E+02 |
| 111.0           | 6                      | +1.1316665E+03 | +1.7904375E+02        | +1.4300000E+03 | +9.3000000E+02 | +7.7715991E+02 |
| 113.0           | 12                     | +5.7533325E+02 | +2.3482424E+02        | +1.0000000E+03 | +3.7000000E+02 | +7.7777905E+02 |
| 116.0           | 6                      | +6.7166650E+02 | +1.8411047E+02        | +9.9000000E+02 | +4.9000000F+02 | +7.7870776E+02 |
| 118.0           | 3                      | +5.8333325E+02 | +3.7859388E+01        | +6.1000000E+02 | +5.4000000F+02 | +7.7932666E+02 |
| 119.0           | 3                      | +4.9000000E+02 | +9.9999999E+00        | +5.0000000E+02 | +4.8000000F+02 | +7.7963623E+02 |
| 120.0           | 3                      | +7.2333325E+02 | +2.8594552E+01        | +7.9000000E+02 | +6.8000000E+02 | +7.7994580E+02 |
| 122.0           | 3                      | +1.0333332E+03 | +7.5718777E+01        | +1.1200000E+03 | +9.8000000E+02 | +7.8056494E+02 |
| 123.0           | 3                      | +1.4233332E+03 | +1.0969655E+02        | +1.5500000E+03 | +1.3600000E+03 | +7.8087451E+02 |
| 126.0           | 3                      | +9.8333325E+02 | +4.0414518E+01        | +1.0200000E+03 | +9.4000000E+02 | +7.8180297E+02 |
| 137.0           | 3                      | +4.4333325E+02 | +1.1547005E+01        | +4.5000000E+02 | +4.3000000E+02 | +7.8520800E+02 |

ANB 3066 PROPLNT (ANB G &amp; P, UNLV) STRESS RELAX MODULUS @ 10 SEC 1% STRAIN



FIGURE 6-25

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y    |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|-----------------|
| 15.0            | 3                      | *4.3333325E+02 | *3.4641016E+01        | *4.7000000E+02 | *4.1000000F+02 | *4.8424511E+02  |
| 45.0            | 3                      | *4.4000000E+C2 | +2.6457513E+C1        | *4.6000000E+02 | +4.1000000F+02 | +4.7679150E+02  |
| 52.0            | 3                      | *4.6888967E+02 | +1.1688075E+02        | +6.9000000E+02 | +2.8000000F+02 | +4.7501249E+02  |
| 53.0            | 9                      | *5.1333325E+02 | *9.1651513E+01        | +6.3000000E+02 | +3.7000000E+02 | +4.7480395E+02  |
| 54.0            | 6                      | *4.0500000E+02 | +4.7644516E+01        | *4.7000000E+02 | +3.6000000E+02 | +4.7455566E+02  |
| 57.0            | 3                      | *4.3666650E+02 | +4.7258156E+01        | *4.9000000E+02 | +4.0000000E+02 | +4.7381030E+02  |
| 61.0            | 3                      | *4.9666650E+02 | +1.5275252E+01        | +5.1000000E+02 | +4.8000000F+02 | +4.7281640E+02  |
| 62.0            | 5                      | *5.4166650E+02 | +1.7803557E+02        | +7.2000000E+02 | +3.8000000F+02 | +4.7256787E+02  |
| 63.0            | 3                      | *4.5000000E+C2 | +1.7320508E+01        | +4.6000000E+02 | +4.3000000E+02 | +4.7231958E+02  |
| 59.0            | 3                      | *4.9000000E+02 | +6.0827625E+01        | +5.6000000E+02 | +4.5000000F+02 | +4.7082886E+02  |
| 72.0            | 9                      | *5.611108E+02  | +4.1062283E+01        | +6.2000000E+02 | +4.8000000F+02 | +4.70C8349E+02  |
| 76.0            | 3                      | *3.5666650E+02 | +1.5275252E+01        | +3.7000000E+02 | +3.4000000F+02 | +4.69C8959E+02  |
| 77.0            | 3                      | *3.3000000E+02 | +0.0000000E+23        | +3.3000000E+02 | +3.3000000E+02 | +4.6884106E+02  |
| 78.0            | 6                      | *4.1333325E+02 | +6.1649658E+00        | +4.2000000E+02 | +4.0000000F+02 | +4.6859277E+02  |
| 80.0            | 3                      | *5.8300000E+02 | +7.8102496E+01        | +6.7000000E+02 | +5.3000000E+02 | +4.68C9570E+02  |
| 81.0            | 3                      | *4.3666650E+02 | +6.0277137E+01        | +5.0000000E+02 | +3.8000000E+02 | +4.6784741E+02  |
| 84.0            | 3                      | *3.9200000E+02 | +9.999999E+00         | +4.0000000E+02 | +3.8000000E+02 | +4.6710205E+02  |
| 85.0            | 3                      | *3.1000000E+02 | +9.999999E+00         | +3.2000000E+02 | +3.0000000E+02 | +4.6685351E+02  |
| 86.0            | 3                      | *3.5666650E+02 | +3.2145502E+01        | +3.8000000E+02 | +3.2000000E+02 | +4.66660498E+02 |
| 87.0            | 3                      | *6.5666650E+02 | +8.9628864E+01        | +7.6000000E+02 | +6.0000000E+02 | +4.6635668E+02  |
| 88.0            | 3                      | *4.0656650E+02 | +2.1071307E+02        | +8.8000000E+02 | +2.7000000E+02 | +4.6610815E+02  |
| 89.0            | 6                      | *5.9000000E+02 | +5.7965506E+01        | +6.5000000E+02 | +5.2000000F+02 | +4.6585961E+02  |
| 90.0            | 3                      | *4.5666650E+02 | +2.0816659E+01        | +4.8000000E+02 | +4.4000000F+02 | +4.6561132E+02  |
| 91.0            | 3                      | *3.5333325E+02 | +1.1547005E+01        | +3.6000000E+02 | +3.4000000F+02 | +4.6536279E+02  |
| 93.0            | 3                      | *5.4000000E+02 | +1.9999999E+01        | +5.6000000E+02 | +5.2000000F+02 | +4.6486596E+02  |
| 94.0            | 12                     | *4.8000000E+02 | +1.5603030E+02        | +8.8000000E+02 | +3.2000000F+02 | +4.6461743E+02  |
| 95.0            | 3                      | *5.3333325E+02 | +2.3094010E+01        | +5.6000000E+02 | +5.2000000F+02 | +4.6436889E+02  |
| 96.0            | 6                      | *5.0500000E+02 | +2.8809720E+01        | +5.5000000E+02 | +4.7000000E+02 | +4.6412060E+02  |
| 97.0            | 3                      | *4.1333325E+02 | +5.7735026E+00        | +4.2000000E+02 | +4.1000000E+02 | +4.6387207E+02  |
| 100.0           | 3                      | *2.433332E+02  | +1.1547035E+C1        | +2.5000000E+02 | +2.3000000F+02 | +4.6312670E+02  |
| 105.0           | 5                      | *5.4333325E+02 | +1.1724517E+02        | +6.9000000E+02 | +3.8000000E+02 | +4.6198452E+02  |

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 106.0           | 3                      | +5.3666650E+02  | +1.1590225E+02        | +6.4000000E+02 | +4.3000000E+02 | +4.6163598E+02 |
| 109.0           | 3                      | +3.1666650E+02  | +5.7735026E+00        | +3.2000000E+02 | +3.1000000E+02 | +4.6089062E+02 |
| 110.0           | 3                      | +6.3000000E+02  | +1.1269427E+02        | +7.6000000E+02 | +5.6000000E+02 | +4.6064208E+02 |
| 111.0           | 6                      | +6.3666650E+02  | +1.3952299E+02        | +9.3000000E+02 | +5.3000000E+02 | +4.6039379E+02 |
| 113.0           | 12                     | +3.5250000E+02  | +1.2700214E+02        | +5.9000000E+02 | +2.5000000E+02 | +4.5989697E+02 |
| 116.0           | 6                      | +3.6333325E+02  | +9.8268340E+01        | +5.5000000E+02 | +2.8000000E+02 | +4.5915161E+02 |
| 118.0           | 3                      | +3.5000000E+02  | +1.7320508E+CL        | +3.6000000E+02 | +3.3000000E+02 | +4.5865454E+02 |
| 119.0           | 3                      | +2.7566650E+02  | +5.7735025E+00        | +2.8000000E+02 | +2.7000000E+02 | +4.5840625E+02 |
| 120.0           | 3                      | +4.0666650E+02  | +2.8807513E+CL        | +4.4000000E+02 | +3.9000000E+02 | +4.5815771E+02 |
| 122.0           | 3                      | +5.8333325E+02  | +4.9328828E+01        | +6.4000000E+02 | +5.5000000E+02 | +4.5766088E+02 |
| 123.0           | 3                      | +7.7333325E+02  | +4.9328828E+01        | +8.3000000E+02 | +7.4000000E+02 | +4.5741235E+02 |
| 126.0           | 3                      | +5.5666650E+02  | +4.0414518E+01        | +6.0000000E+02 | +5.2000000E+02 | +4.5666669E+02 |
| 137.0           | 3                      | +2.66666650E+02 | +5.7735026E+00        | +2.7000000E+02 | +2.6000000E+02 | +4.5393408E+02 |

ANB 3066 PROPLNT (ANB G & P POLYMER, UNLND) STRESS RELAX MOD @ 1000 SEC, 1% ST

$\gamma = (( +5.6222784E+02) + (+1.8593883E+00)) * \lambda$   
 $F = +3.5783163E+00$  SIGNIFICANCE OF F = NOT SIGNIFICANT  
 $R = +2.2516646E-01$  SIGNIFICANCE OF R = NOT SIGNIFICANT  
 $t = +1.8916438E+00$  SIGNIFICANCE OF t = NOT SIGNIFICANT  
 $N = 69$  DEGREES OF FREEDOM = 67

STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

X ANBP  
 △ ANBG



PARAMETER = RELAXATION MODULUS

ANB 3066 PROPELLANT (ANB G & P, LINEO) STRESS RELAX MODULUS @ 10 SEC 1% STRAIN

FIGURE 6-26

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                      | +5.6323325E+02  | +4.1633319E+C1        | +5.100000E+02  | +5.390000E+02  | +5.8639965E+02 |
| 15.0            | 3                      | +5.AC00000E+02  | +1.7320509E+C1        | +6.000000E+02  | +5.700000E+C2  | +5.9011865E+C2 |
| 16.0            | 6                      | +5.5833325E+02  | +7.9351538E+C1        | +7.000000E+02  | +5.1000000E+02 | +5.9197802E+C2 |
| 18.0            | 3                      | +7.2000000E+02  | +4.5825756E+C1        | +7.7000000E+02 | +6.8000000E+02 | +5.9755615E+02 |
| 20.0            | 3                      | +7.3666650E+02  | +3.7859388E+C1        | +7.8000000E+02 | +7.1000000E+02 | +5.9541552E+C2 |
| 21.0            | 3                      | +5.7666650E+02  | +2.0916659E+C1        | +6.0000000E+02 | +5.6000000E+02 | +6.0127490E+C2 |
| 22.0            | 3                      | +6.8333325E+02  | +2.0916659E+01        | +7.0000000E+02 | +6.6000000E+02 | +6.0313427E+02 |
| 23.0            | 6                      | +5.0333325E+02  | +7.7373552E+C1        | +6.2000000E+02 | +4.1000000E+02 | +6.1429052E+C2 |
| 25.0            | 6                      | +6.3166666E+02  | +4.7CE14A9E+C1        | +6.9000000E+C2 | +5.7700000E+02 | +6.1800927E+02 |
| 32.0            | 6                      | +6.1666650E+02  | +7.3122904E+C1        | +7.2000000E+02 | +5.1000000E+C2 | +6.2172802E+C2 |
| 34.0            | 3                      | +5.7333325E+02  | +1.5275252E+01        | +5.9000000E+02 | +5.6000000E+02 | +6.2544702E+C2 |
| 36.0            | 3                      | +6.0333325E+02  | +8.02C8062E+01        | +6.8000000E+02 | +5.2000000E+02 | +6.2916577E+02 |
| 39.0            | 3                      | +5.06666650E+02 | +5.7735026E+00        | +5.1000000E+02 | +5.0000000E+02 | +6.3474389E+C2 |
| 40.0            | 3                      | +4.7333325E+02  | +7.5055534E+C1        | +5.6000000E+02 | +4.3000000E+02 | +6.3660327E+C2 |
| 43.0            | 3                      | +6.2333325E+02  | +3.7859388E+C1        | +6.5000000E+02 | +5.8000000E+02 | +6.4218139E+C2 |
| 45.0            | 3                      | +7.6000000E+02  | +1.3000000E+02        | +8.9000000E+02 | +6.3000000E+02 | +6.4590014E+C2 |
| 48.0            | 3                      | +7.8666650E+02  | +9.2915732E+01        | +8.5000000E+02 | +6.8000000E+02 | +6.5147827E+C2 |
| 55.0            | 3                      | +5.8666650E+02  | +5.1316014E+01        | +6.3000000E+02 | +5.1000000E+02 | +6.6449414E+C2 |
| 53.0            | 3                      | +7.9666650E+02  | +4.7258156E+01        | +8.5000000E+02 | +7.6000000E+02 | +6.7007226E+02 |

ANS 3066 PROPLNT (ANG G & P, LINED) STRESS RELAX MODULUS @ 10 SEC 1% STRAIN

$\gamma = (( +3.5267023E+02 ) + ( +1.4841453E+00 ) * X) * X$   
 $F = +6.6270852E+00$  SIGNIFICANT  
 $R = +3.0001465E-01$  SIGNIFICANT  
 $t = +2.5743125E+00$  SIGNIFICANT  
 $N = 69$  DEGREES OF FREEDOM = 67  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

+ ANBP

△ ANBG



## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y       | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|-----------------|----------------|----------------|
| 12.0            | 3                      | +3.6300000E+02  | +1.732050C8E+01       | +3.8C00000E+02  | +3.5000000E+02 | +3.7196411E+02 |
| 15.0            | 3                      | +3.7000000E+02  | +2.6457513E+01        | +4.0000000E+02  | +3.5000000E+02 | +3.7493237E+02 |
| 15.0            | 6                      | +3.5000000E+02  | +4.1472882E+01        | +4.4000000E+02  | +3.5000000E+02 | +3.764165CE+02 |
| 19.0            | 3                      | +4.2000000E+02  | +1.732050C8E+01       | +4.5C00000E+02  | +4.2000000E+02 | +3.8C00000E+02 |
| 20.0            | 3                      | +4.6666650E+02  | +2.8667513E+01        | +5.0000000E+02  | +4.5000000E+02 | +3.8235302E+02 |
| 21.0            | 3                      | +3.5373325E+02  | +2.3094010CE+01       | +3.9000000E+02  | +3.5000000E+02 | +3.833715E+02  |
| 22.0            | 3                      | +4.0666650E+02  | +1.5275252E+01        | +4.2000000E+02  | +3.9000000E+02 | +3.8532126E+02 |
| 29.0            | 6                      | +3.4500000E+02  | +4.3243496E+01        | +4.1000000E+02  | +2.9000000E+02 | +3.9422607E+02 |
| 30.0            | 5                      | +4.1332225E+02  | +2.73252202E+01       | +4.4000000F+02  | +3.8000000E+02 | +3.9719458E+02 |
| 32.0            | 6                      | +3.9833325E+02  | +4.8751068E+01        | +4.7000000E+02  | +3.3000000E+02 | +4.0016284E+02 |
| 34.0            | 3                      | +2.6666650E+02  | +2.5166114E+01        | +3.9000000E+02  | +3.4000000E+02 | +4.0313110E+02 |
| 36.0            | 3                      | +3.6000000E+02  | +6.2449979E+01        | +4.3000000QE+02 | +3.1000000E+02 | +4.0609936E+02 |
| 39.0            | 3                      | +2.5000000E+02  | +9.5959999E+00        | +3.6000000E+02  | +3.4000000E+02 | +4.1055175E+02 |
| 40.0            | 3                      | +3.0666650E+02  | +6.35C8529E+01        | +3.8000000E+02  | +2.7000000E+02 | +4.1203568E+02 |
| 43.0            | 5                      | +4.2000000E+02  | +0.0000000E+19        | +4.2000000E+02  | +4.2000000E+02 | +4.1648828E+02 |
| 45.0            | 3                      | +5.10C00000E+02 | +6.5574385E+01        | +5.8000000E+02  | +4.5000000E+02 | +4.1945654E+02 |
| 48.0            | 3                      | +4.733325E+02   | +6.5064070E+01        | +5.4000000E+02  | +4.1000000E+02 | +4.2350917E+02 |
| 55.0            | 3                      | +3.8000000E+02  | +2.6457513E+01        | +4.0000000F+02  | +3.5000000E+02 | +4.3429809E+02 |
| 59.0            | 3                      | +5.2333325E+02  | +5.7735C26E+C0        | +5.3000000E+02  | +5.2000000E+02 | +4.3875048E+02 |

ANB 3166 PREPLNT (ANB G &amp; P POLYMER. LINED) STRESS RELAX MCD at 100C SEC. 1% ST



FIGURE 6-28

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|--------------|
| 13.0            | 3                      | +3.6055512E+01  | +7.000000E+02         | +6.300000E+02  | +7.0818530E+02 |              |
| 15.0            | 6                      | +6.4566650E+02  | +4.4121045E+01        | +7.300000E+02  | +6.100000E+02  |              |
| 16.0            | 3                      | +5.8666650E+02  | +2.5166114E+01        | +6.100000E+02  | +5.600000E+02  |              |
| 33.0            | 3                      | +1.123332E+03   | +4.1633319E+01        | +1.170000E+03  | +1.090000E+03  |              |
| 36.0            | 6                      | +7.2666650E+02  | +7.6594168E+01        | +8.200000E+02  | +6.400000E+02  |              |
| 37.0            | 6                      | +9.0933325E+02  | +1.4190372E+02        | +1.070000E+03  | +7.300000E+02  |              |
| 38.0            | 3                      | +8.8333325E+02  | +1.5275252E+01        | +9.000000E+02  | +8.700000E+02  |              |
| 40.0            | 3                      | +7.6566650E+02  | +1.0785793E+02        | +8.900000E+02  | +6.900000E+02  |              |
| 41.0            | 3                      | +6.3200000F+02  | +2.6457513E+01        | +6.500000E+02  | +6.000000E+02  |              |
| 43.0            | 9                      | +8.4888867E+02  | +1.2868998E+02        | +1.000000E+03  | +6.500000E+02  |              |
| 44.0            | 6                      | +7.2333325E+02  | +8.2138095E+01        | +8.600000E+02  | +6.200000E+02  |              |
| 45.0            | 6                      | +8.0166650E+02  | +1.3511723E+02        | +9.500000E+02  | +6.700000E+02  |              |
| 47.0            | 6                      | +8.0333325E+02  | +3.7771241E+01        | +8.600000E+02  | +7.600000E+02  |              |
| 48.0            | 6                      | +7.3833325E+02  | +6.7946057E+01        | +8.500000E+02  | +6.700000E+02  |              |
| 50.0            | 3                      | +7.2900000E+02  | +9.1651513E+01        | +8.000000E+02  | +6.200000E+02  |              |
| 51.0            | 3                      | +8.7000000E+02  | +7.8102496E+01        | +9.600000E+02  | +8.200000E+02  |              |
| 52.0            | 12                     | +8.2500000E+02  | +1.6908846E+02        | +1.1700000E+03 | +4.900000E+02  |              |
| 53.0            | 9                      | +8.0888867E+02  | +1.6706618E+02        | +9.900000E+02  | +5.400000E+02  |              |
| 54.0            | 9                      | +8.744443E+02   | +1.7342946E+02        | +1.1500000E+03 | +6.900000E+02  |              |
| 56.0            | 3                      | +7.4500000E+02  | +1.1782826E+02        | +8.700000E+02  | +6.400000E+02  |              |
| 57.0            | 6                      | +8.4333325E+02  | +1.1147495E+02        | +1.0200000E+03 | +7.100000E+02  |              |
| 59.0            | 3                      | +6.5566650E+02  | +4.1633319E+01        | +6.9000000E+02 | +6.100000E+02  |              |
| 60.0            | 3                      | +8.9333325E+02  | +5.6862407E+01        | +9.4000000E+02 | +8.300000E+02  |              |
| 52.0            | 3                      | +1.0633332E+03  | +3.0550504E+01        | +1.0900000E+03 | +1.0390000F+03 |              |
| 64.0            | 6                      | +6.1166650F+02  | +1.1326349E+02        | +7.4000000E+02 | +4.700000E+02  |              |
| 66.0            | 3                      | +8.04333325E+02 | +2.7363793E+02        | +9.3000000E+02 | +4.900000E+02  |              |
| 69.0            | 3                      | +8.1666650F+02  | +8.6216721E+01        | +9.1000000E+02 | +7.4000000E+02 |              |
| 72.0            | 3                      | +9.8000000E+02  | +2.9999999E+01        | +1.0100000E+03 | +9.5000000E+02 |              |
| 77.0            | 3                      | +5.4333325E+02  | +5.7735026E+00        | +5.5020000E+02 | +5.4000000E+02 |              |
| 78.0            | 3                      | +6.9333325E+02  | +3.0550504E+01        | +7.1020000E+02 | +6.5000000E+02 |              |
| 80.0            | 3                      | +9.7666650E+02  | +1.1590225E+02        | +1.1100000E+03 | +9.9000000F+02 |              |

\*\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 88.0            | 3                      | +8.7333325E+02 | +2.7998585E+02        | +1.1300000E+03 | +5.9000000E+02 | +8.9077294E+02 |
| 93.0            | 3                      | +8.8000000E+02 | +2.9999999E+01        | +9.1000000E+02 | +8.5000000E+02 | +9.0294531E+02 |
| 105.0           | 6                      | +9.6566650E+02 | +1.9469634E+02        | +1.2000000E+03 | +7.1000000E+02 | +9.3215942E+02 |
| 106.0           | 3                      | +9.1333325E+02 | +2.1221058E+02        | +1.1500000E+03 | +7.4000000E+02 | +9.3459399E+02 |
| 109.0           | 3                      | +5.5000000E+02 | +0.0000000E+27        | +5.5000000E+02 | +5.5000000E+02 | +9.4189746E+02 |
| 110.0           | 3                      | +1.1233332E+03 | +1.7387735E+02        | +1.3200000E+03 | +9.9000000E+02 | +9.4433203E+02 |
| 111.0           | 6                      | +1.1316665E+03 | +1.79C4375E+02        | +1.4300000E+03 | +9.3000000E+02 | +9.4676635E+02 |
| 113.0           | 3                      | +9.6000000E+02 | +4.5825756E+01        | +1.0000000E+03 | +9.1000000E+02 | +9.5163549E+02 |
| 116.0           | 6                      | +6.7156650E+02 | +1.8411047E+02        | +9.9000000E+02 | +4.9000000E+02 | +9.5893896E+02 |
| 122.0           | 3                      | +1.0333332F+03 | +7.5718777E+01        | +1.1200000E+03 | +9.8000000E+02 | +9.7354589E+02 |
| 123.0           | 3                      | +1.4233332E+03 | +1.0969655E+02        | +1.5500000E+03 | +1.3600000E+03 | +9.7598046E+02 |
| 126.0           | 3                      | +9.8333325E+02 | +4.0414518E+01        | +1.0200000E+03 | +9.4000000E+02 | +9.8328393E+02 |

ANB 3066 PROPYLENIC ANB UNLND, P POLYMER) STRESS RELAX MODULUS @ 10 SEC 1%



\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

\*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                      | +4.2600000E+02 | +1.999999E+01         | +4.2300000E+02 | +3.8000000E+02 | +4.3801928E+02 |
| 15.0            | 6                      | +4.050000F+J2  | +3.6742346E+01        | +4.700000E+02  | +3.700000E+02  | +4.4028979E+02 |
| 16.0            | 3                      | +3.5666650E+02 | +1.5275252E+01        | +3.700000E+02  | +3.4000000E+02 | +4.414504E+02  |
| 33.0            | 3                      | +6.3700000E+02 | +3.655512E+01         | +6.700000E+02  | +6.0000000E+02 | +4.6072412E+02 |
| 36.0            | 6                      | +4.4166650E+02 | +4.7081489E+01        | +5.100000E+02  | +3.9000000E+02 | +4.6412988E+02 |
| 37.0            | 6                      | +5.6500000F+02 | +9.1378334E+01        | +6.600000E+02  | +4.500000E+02  | +4.6526513E+02 |
| 38.0            | 3                      | +5.5333325E+02 | +1.5275252E+01        | +5.700000E+02  | +5.4000000E+02 | +4.6640039E+02 |
| 40.0            | 3                      | +4.9000000E+02 | +7.8102496E+01        | +5.800000E+02  | +4.4000000E+02 | +4.6867089E+02 |
| 41.0            | 3                      | +3.6300000E+02 | +9.9399999E+00        | +3.700000E+02  | +3.500000E+02  | +4.6980615E+02 |
| 43.0            | 2                      | +4.9777758E+02 | +7.8386506E+01        | +5.700000E+02  | +3.700000E+02  | +4.7207666E+02 |
| 44.0            | 6                      | +4.2166650E+02 | +6.1779176E+01        | +5.200000E+02  | +3.5000000E+02 | +4.7321191E+02 |
| 45.0            | 6                      | +4.8166650E+02 | +9.0645830E+01        | +5.800000E+02  | +3.900000E+02  | +4.7434692E+02 |
| 47.0            | 6                      | +4.9666650E+02 | +1.3662601E+01        | +5.200000E+02  | +4.800000E+02  | +4.7661743E+02 |
| 48.0            | 6                      | +4.5166650E+J2 | +3.7638632E+01        | +5.200000E+02  | +4.2000000E+02 | +4.7775268E+02 |
| 50.0            | 3                      | +3.9333325E+02 | +3.7859388E+01        | +4.200000E+02  | +3.5000000E+02 | +4.8002319E+02 |
| 51.0            | 3                      | +5.3666650E+02 | +4.6188021E+01        | +5.900000E+02  | +5.1000000E+02 | +4.8115844E+02 |
| 52.0            | 12                     | +4.9916650E+02 | +1.0246581E+02        | +6.900000E+02  | +2.8000000E+02 | +4.8229370E+02 |
| 53.0            | 9                      | +4.811108E+02  | +9.5189868E+01        | +5.700000E+02  | +3.3000000E+02 | +4.8342895E+02 |
| 54.0            | 9                      | +5.0666650E+02 | +1.1884864E+02        | +6.900000E+02  | +3.9000000E+02 | +4.8456420E+02 |
| 56.0            | 3                      | +4.5333325E+02 | +7.0945988E+01        | +5.400000E+02  | +4.0000000E+02 | +4.8683471E+02 |
| 57.0            | 6                      | +4.9200000E+02 | +7.5079933E+01        | +6.100000E+02  | +4.0000000E+02 | +4.8796997E+02 |
| 59.0            | 3                      | +3.9333325E+02 | +2.0816659E+01        | +4.100000E+02  | +3.700000E+02  | +4.9024047E+02 |
| 60.0            | 3                      | +5.5333325E+02 | +3.0550504E+01        | +5.600000E+02  | +5.2000000E+02 | +4.9137573E+02 |
| 62.0            | 2                      | +7.0333325E+J2 | +2.8867513F+H1        | +7.2601030E+02 | +6.700000E+02  | +4.9364624E+02 |
| 64.0            | 6                      | +3.5166650E+02 | +7.5476265E+01        | +4.300000E+02  | +2.7000000E+02 | +4.9591650E+02 |
| 56.0            | 3                      | +4.9506650E+02 | +1.6196797E+02        | +6.000000E+02  | +3.1000000E+02 | +4.9818701E+02 |
| 69.0            | 3                      | +4.9000000F+02 | +6.0827625E+01        | +5.600000E+02  | +4.5000000E+02 | +5.0159277E+02 |
| 72.0            | 3                      | +5.7333325E+02 | +2.8867513E+01        | +5.900000E+02  | +5.4000000E+02 | +5.0499853E+02 |
| 77.0            | 3                      | +3.3000000E+02 | +6.0000000E+02        | +3.3000000E+02 | +3.3000000E+02 | +5.1067480E+02 |
| 78.0            | 1                      | +4.1666650E+02 | +5.7735026E+01        | +4.2000000E+02 | +4.1000000E+02 | +5.1181005E+02 |
| PC.0            | 3                      | +5.8500000F+02 | +7.8102496E+01        | +6.700000E+02  | +5.3000000E+02 | +5.14C8056E+02 |

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 88.0            | 3                      | +6.2333325E+02  | +2.6006409E+02        | +8.8000000E+02 | +3.6000000E+02 | +5.2316235E+02 |
| 93.0            | 3                      | +5.4000000E+02  | +1.3399999E+01        | +5.6000000E+02 | +5.2000000E+02 | +5.2883862E+02 |
| 105.0           | 6                      | +5.4333325E+02  | +1.1724617E+02        | +6.9000000E+02 | +3.8000000E+02 | +5.4246142E+02 |
| 106.0           | 3                      | +5.0666650E+02  | +1.1590225E+02        | +6.4000000E+02 | +4.3000000E+02 | +5.4359667E+02 |
| 109.0           | 3                      | +3.1666650E+02  | +5.7735026E+01        | +3.2000000E+02 | +3.1000000E+02 | +5.4700244E+02 |
| 110.0           | 3                      | +6.3500000E+02  | +1.1269427E+02        | +7.6000000E+02 | +5.6000000E+02 | +5.4813769E+02 |
| 111.0           | 6                      | +6.9566650E+02  | +1.3952239E+02        | +9.3000000E+02 | +5.3000000E+02 | +5.4927294E+02 |
| 113.0           | 3                      | +5.6666650E+02  | +2.5166114E+01        | +5.9000000E+02 | +5.4000000E+02 | +5.5154345E+02 |
| 116.0           | 6                      | +3.6833325E+02  | +9.8268340E+01        | +5.5000000E+02 | +2.8000000E+02 | +5.5494921E+02 |
| 122.0           | 3                      | +5.8333325E+02  | +4.9328828E+01        | +6.4000000E+02 | +5.5000000E+02 | +5.6176049E+02 |
| 123.0           | 3                      | +7.7333325E+02  | +4.9328828E+01        | +8.3000000E+02 | +7.4000000E+02 | +5.6289575E+02 |
| 126.0           | 3                      | +5.56666650E+02 | +4.0414518E+01        | +6.0000000E+02 | +5.2000000E+02 | +5.6630151E+02 |

ANB 3066 PROPLUT (ANT &amp; AVR UNLND, P POLYMER) STRESS RELAX MOD @ 1000 SEC 18

$\gamma = ( +5.2297378E+02 ) + ( +4.7031372E+00 ) * X_1$   
 $F = +1.9702509E+01$  SIGNIFICANT  
 $R = +4.270848E-01$  SIGNIFICANT  
 $I = +4.4387508E+00$  SIGNIFICANT  
 $N = 90$  DEGREES OF FREEDOM = 88  
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH



FIGURE 6-30

## \*\*\* LINEAR REGRESSION ANALYSIS \*\*\*

## \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIMENS<br>PER GROUP | MEAN Y          | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|------------------------|-----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                      | +5.6333325E+02  | +4.1633319E+01        | +6.1000000E+02 | +5.3000000E+02 | +5.8411450E+02 |
| 14.0            | 3                      | +6.1333325E+02  | +4.0414518E+01        | +6.5000000E+02 | +5.7000000E+02 | +5.881762E+02  |
| 15.0            | 4                      | +5.8250000E+02  | +1.4999999E+01        | +6.0000000E+02 | +5.7000000E+02 | +5.9352075E+02 |
| 16.0            | 3                      | +6.3333325E+02  | +1.0692676E+02        | +7.0000000E+02 | +5.1000000E+02 | +5.9822387E+02 |
| 17.0            | 3                      | +5.4000000E+02  | +4.3588989E+01        | +5.9000000E+02 | +5.1000000E+02 | +6.0292700E+02 |
| 18.0            | 3                      | +5.7333325E+02  | +1.1547005E+01        | +5.8000000E+02 | +5.6000000E+02 | +6.0763012E+02 |
| 20.0            | 6                      | +6.3666650E+02  | +1.2027745E+02        | +7.9000000E+02 | +5.1000000E+02 | +6.1703637E+02 |
| 21.0            | 3                      | +5.7666650E+02  | +2.0816659E+01        | +6.0000000E+02 | +5.6000000E+02 | +6.2173950E+02 |
| 22.0            | 6                      | +6.3833325E+02  | +5.43558836E+01       | +7.0000000E+02 | +5.6000000E+02 | +6.2644262E+02 |
| 24.0            | 3                      | +7.0000000E+02  | +3.4641016E+01        | +7.4000000E+02 | +6.8000000E+02 | +6.3584887E+02 |
| 25.0            | 3                      | +6.2000000E+02  | +4.3588989E+01        | +6.5000000E+02 | +5.7000000E+02 | +6.4055200E+02 |
| 27.0            | 3                      | +5.4333325E+02  | +5.7735026E+00        | +5.5000000E+02 | +5.4000000E+02 | +6.4995625E+02 |
| 29.0            | 8                      | +6.8625000E+02  | +1.05686653E+02       | +8.2000000E+02 | +5.3000000E+02 | +6.5936474E+02 |
| 30.0            | 3                      | +8.8666650E+02  | +6.0277137E+01        | +9.5000000E+02 | +8.3000000E+02 | +6.6406787E+02 |
| 31.0            | 3                      | +8.3000000E+02  | +6.5574385E+01        | +9.0000000E+02 | +7.7000000E+02 | +6.6877099E+02 |
| 32.0            | 3                      | +6.6666650E+02  | +4.7258156E+01        | +7.2000000E+02 | +6.3000000E+02 | +6.7347412E+02 |
| 33.0            | 3                      | +5.2333325E+02  | +1.5307950E+02        | +7.0000000E+02 | +4.3000000E+02 | +6.7817724E+02 |
| 34.0            | 3                      | +5.7333325E+02  | +1.5275252E+01        | +5.9000000E+02 | +5.6000000E+02 | +6.8288037E+02 |
| 36.0            | 6                      | +6.9333325E+02  | +1.1307814E+02        | +8.2000000E+02 | +5.2000000E+02 | +6.9228662E+02 |
| 38.0            | 3                      | +7.1666650E+02  | +3.5118845E+01        | +7.5000000E+02 | +6.8000000F+02 | +7.0169287E+02 |
| 40.0            | 6                      | +5.9666650E+02  | +1.4665151E+02        | +7.7000000E+02 | +4.3000000E+02 | +7.1109912F+02 |
| 44.0            | 3                      | +8.36666650E+02 | +7.7674534E+01        | +9.0000000E+02 | +7.5000000E+02 | +7.2991162F+02 |
| 46.0            | 3                      | +7.86666650E+02 | +9.2915732E+01        | +8.5000000E+02 | +6.8000000E+02 | +7.4872436E+02 |
| 56.0            | 3                      | +7.06666650E+02 | +4.7258156E+01        | +8.5000000E+02 | +7.5000000E+02 | +7.9575561E+02 |



FIGURE 6-31

\*\*\* LINEAR REGRESSION ANALYSIS \*\*\*  
 \*\*\* ANALYSIS OF TIME SERIES \*\*\*

| AGE<br>(MONTHS) | SPECIEMS<br>PER GROUP | MEAN Y         | STANDARD<br>DEVIATION | MAXIMUM Y      | MINIMUM Y      | REGRESSION Y   |
|-----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|
| 13.0            | 3                     | +3.6700000E+02 | +1.7320508E+01        | +3.8000000E+02 | +3.5000000E+02 | +3.6464550E+02 |
| 14.0            | 3                     | +3.7333325E+02 | +3.0555514E+01        | +4.0720000E+02 | +3.4000000E+02 | +3.6774902E+02 |
| 15.0            | 4                     | +3.7533300E+02 | +2.3804761E+01        | +4.0500000E+02 | +3.5000000E+02 | +3.7085253E+02 |
| 16.0            | 3                     | +4.1566650E+02 | +4.0414518E+01        | +4.4000000E+02 | +3.7000000E+02 | +3.7395629E+02 |
| 17.0            | 3                     | +3.5000000E+02 | +2.7799999E+01        | +3.8720000E+02 | +3.2000000E+02 | +3.7705981E+02 |
| 18.0            | 3                     | +3.6666650E+02 | +5.7735026E+01        | +3.7020000E+02 | +3.6000000E+02 | +3.8016333E+02 |
| 20.0            | 6                     | +3.8633325E+02 | +4.4007575E+01        | +4.4000000E+02 | +3.4000000E+02 | +3.8637060E+02 |
| 21.0            | 3                     | +3.6333325E+02 | +2.3094010E+01        | +3.9000000E+02 | +3.5000000E+02 | +3.8947412E+02 |
| 22.0            | 6                     | +3.8166650E+02 | +3.0605010E+01        | +4.2000000E+02 | +3.4000000E+02 | +3.9257763E+02 |
| 24.0            | 3                     | +4.0000000E+02 | +1.9999999E+01        | +4.2000000E+02 | +3.8000000E+02 | +3.9878466E+02 |
| 25.0            | 3                     | +3.9000000E+02 | +2.6457513E+01        | +4.1000000E+02 | +3.6000000E+02 | +4.018842E+02  |
| 27.0            | 3                     | +3.5000000E+02 | +0.0000000E+31        | +3.5000000E+02 | +3.5000000E+02 | +4.0809545E+02 |
| 29.0            | 8                     | +4.4375000E+02 | +6.9680392E+01        | +5.3000000E+02 | +3.5000000E+02 | +4.1430273E+02 |
| 30.0            | 3                     | +5.5000000E+02 | +2.9999999E+01        | +5.8000000E+02 | +5.2000000E+02 | +4.1740625E+02 |
| 31.0            | 3                     | +5.1333325E+02 | +4.5092497E+01        | +5.6000000E+02 | +4.7000000E+02 | +4.2050976E+02 |
| 32.0            | 3                     | +4.3000000E+02 | +3.6055512E+01        | +4.7000000E+02 | +4.0000000E+02 | +4.2361328E+02 |
| 33.0            | 3                     | +3.4333325E+02 | +1.0115933E+02        | +4.6000000E+02 | +2.8000000E+02 | +4.2671679E+02 |
| 34.0            | 3                     | +3.6666650E+02 | +2.5166114E+01        | +3.9000000E+02 | +3.4000000E+02 | +4.2982055E+02 |
| 36.0            | 6                     | +4.2333325E+02 | +8.1404340E+01        | +5.1000000E+02 | +3.1000000E+02 | +4.3602758E+02 |
| 38.0            | 3                     | +4.7000000E+02 | +1.9999999E+01        | +4.9000000E+02 | +4.5000000E+02 | +4.4223461E+02 |
| 40.0            | 6                     | +3.7500000E+02 | +8.7120636E+01        | +4.7000000E+02 | +2.7000000E+02 | +4.4844189E+02 |
| 44.0            | 3                     | +5.2666650E+02 | +5.1316014E+01        | +5.7000000E+02 | +4.7000000E+02 | +4.6085620E+02 |
| 48.0            | 3                     | +4.7333325E+02 | +6.5064970E+01        | +5.4000000E+02 | +4.1000000E+02 | +4.7327050E+02 |
| 50.0            | 3                     | +5.2333325E+02 | +5.7735026E+01        | +5.3000000E+02 | +5.2000000E+02 | +5.0430615E+02 |

MPA 3066 PROBLENT TANT S AND LIQUID, o POLYMER) STRESS RELAX MOD A 1000 SEC 1%



FIGURE 6-32

RELAXATION MODULUS @ 60 SECONDS \*10<sup>3</sup>  
 50.00 67.50 85.00 102.50 120.00 137.50



FIGURE 6-33  
TRANSIENT FRICTION STRESS RELAXATION MODULUS



FIGURE 6-34



FIGURE 6-35

SECTION VII  
THERMAL COEFFICIENT OF LINEAR EXPANSION

Thermal coefficient of linear expansion (TCLE) is run on the DuPont 990 TMA using an expansion probe. The specimen used is a wafer approximately .200" (.508 cm) thick by .33" diameter (.84 cm). The specimen is cooled with liquid nitrogen to -110°C then heated at 5°C/min to 40°C and the glass point (Tg), TCLE below Tg and above Tg are determined.

In the past, TCLE above Tg has been obtained from a line extrapolated from -110°C to plus 40°C. This has resulted in high values of TCLE. Thermal expansion of propellant is not linear and varies considerably when determined in 20° increments from Tg to 40°C. The average value from incremental values is now being used and previous data is being revised to reflect this change as well as to enter data from recent testing.

Based on available data, unlined cartons show a significant increase in TCLE with a decrease in glass point. Regression analysis will be given in the next report.

## SECTION VIII

### CASE LINER BONDS

Cartons of propellant were lined with SD-851-2 liner/V45 rubber. In the preparation of the cartons, liner sometimes penetrates the propellant to a depth of 0.5 inches. Irregularities are most apparent on outer surfaces, and corners may be particularly affected by curvature of the insulation.

Liner color varies from a pale buff to a deep pink which apparently develops from the anti-oxidant used. In general, the pink liner tends to be sticky and strings out in tensile testing.

Aerojet did a study of 44 manufacturing variables to determine those which had a significant effect on liner bond strength. According to their report (MVS-1, June 76) several factors had a statistically significant effect on bond strength. Initial high bond strength and low insulation moisture content usually mean a longer time to degradation of the liner bond.

Constant load tensile and constant load shear data from several test periods have been summarized in Table 8-1. Tensile stress to cause failure in 100 minutes is slightly less than in the previous report, but above the 23.1 psi alert limit for storage for Stage II. Shear stress to cause failure at 100 minutes is slightly greater than in the previous report and is above the alert limit of 15.4 psi. Regressions are shown in Figures 8-1 through 8-4.

Mini-DPT data are given in Tables 8-2 and 8-3. These data have not been subjected to regression analysis. In many of the specimens two maxima occur and maximum stress may be early or late in the test. There does not appear to be any correlation between maximum stress, time to failure and type of failure.

Moisture in insulation has shown much variability and results have not been subjected to statistical analysis. This is also true of liner-swell ratio.

TABLE 8-1  
SUMMARY OF REGRESSION ANALYSIS, STRESS VS TIME TO FAILURE

| Test     | Type | Intercept<br>Mean<br><u>a</u> | Std Dev<br><u>b</u> | Slope<br>Mean<br><u>b</u> |                                       | Correl<br>Coeff.<br><u>s<sub>xy</sub></u> | Nr of<br>Spec<br>@ 1(min)<br><u>UL</u> | Predicted Stress To Cause Failure<br>95% Confidence Limits<br>Mean @100 min<br><u>LL</u> |                                                     |                                                     | Limits<br>LL<br>23.496 |
|----------|------|-------------------------------|---------------------|---------------------------|---------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------|
|          |      |                               |                     | Std<br>(1)                | Std Dev error<br><u>s<sub>b</sub></u> |                                           |                                        | Mean<br>@ 1(min)<br><u>UL</u>                                                            | 95% Confidence Limits<br>Mean @100 min<br><u>UL</u> | 95% Confidence Limits<br>Mean @100 min<br><u>UL</u> |                        |
| Constant | ANB  | 18.071                        | 0.679               | -10.098                   | 0.413                                 | 0.889                                     | -0.850                                 | 232                                                                                      | 61.518                                              | 131.826                                             | 58.614                 |
| Load     |      |                               |                     |                           |                                       |                                           |                                        |                                                                                          | 38.994                                              | 52.723                                              |                        |
| Tensile  | ANT  | 16.572                        | 0.663               | -8.712                    | 0.379                                 | 0.898                                     | -0.814                                 | 270                                                                                      | 79.799                                              | 186.209                                             | 72.277                 |
|          |      |                               |                     |                           |                                       |                                           |                                        |                                                                                          | 46.989                                              | 64.417                                              | 25.003                 |
| Constant | ANB  | 12.456                        | 0.325               | -7.595                    | 0.202                                 | 0.573                                     | -0.893                                 | 358                                                                                      | 43.551                                              | 67.920                                              | 34.041                 |
| Load     |      |                               |                     |                           |                                       |                                           |                                        |                                                                                          | 15.100                                              | 20.184                                              | 10.092                 |
| Shear    | ANT  | 12.794                        | 0.529               | -7.391                    | 0.235                                 | 0.505                                     | -0.893                                 | 269                                                                                      | 48.529                                              | 80.538                                              | 43.752                 |
|          |      |                               |                     |                           |                                       |                                           |                                        |                                                                                          | 18.408                                              | 23.878                                              | 12.972                 |

Regression Model:  $\log(\text{time to failure}) = a + b (\log \text{stress, psi})$

(1) Std error stated in terms of log time since time is dependent variable.

$\text{LOG } (\gamma) = (( +1.8071491E+01 ) + (-1.0098104E+01) * \text{LOG } (X))$   
 $F = +5.9712440E+02$  SIGNIFICANCE OF F = SIGNIFICANT  
 $R = -8.4966356E-01$  SIGNIFICANCE OF R = SIGNIFICANT  
 $L = +2.4436129E+01$  SIGNIFICANCE OF L = SIGNIFICANT  
 $N = 232$  DEGREES OF FREEDOM = 230



$\text{LOG } (\gamma) = (( +1.6571567E+01 ) + (-8.7122057E+00) * \text{LOG } (X))$   
 $F = +5.2738783E+02$   
 $R = -8.1428340E-01$   
 $S_e = +2.2964926E+01$   
 $N = 270$   
 $F = \text{SIGNIFICANCE OF } F$   
 $R = \text{SIGNIFICANCE OF } R$   
 $S_e = \text{SIGNIFICANCE OF } S_e$   
 $Degrees of Freedom = 268$



Figure 8-2



Figure 8-3

$\text{LOG } (\gamma) = (( +1.2794368E+01 ) + (-7.5907873E+00) * \text{LOG } (X))$   
 $F = +1.0462374E+03$  SIGNIFICANT  
 $R = -8.9257249E-01$  SIGNIFICANT  
 $t = +3.2345583E+01$  SIGNIFICANT  
 $N = 269$  DEGREES OF FREEDOM = 267



ANT CONSTANT LOAD SHEAR LOG TIME TO FAILURE VS LOG STRESS AT RUPTURE

TABLE 8-2  
Mini-DPT Stage II

| <u>S/N</u> | <u>Lot</u> | <u>DOM</u> | <u>Test Data</u> | <u>Sm(psi)</u>                  | <u>tm(min)</u>               |
|------------|------------|------------|------------------|---------------------------------|------------------------------|
| AA21024    | 052G       | 72207      | 77046            | 28<br>16.2                      | .24<br>.165                  |
| AA21036    | 052G       | 72244      | 77046            | 42.5<br>58.6                    | .04<br>.371                  |
| AA21062    | 053G       | 72294      | 77046            | 64.4<br>61.9                    | .302<br>.294                 |
| AA21071    | 053G       | 72307      | 77046            | 82.78<br>102.1                  | .125<br>.075                 |
| AA21462    | 066P       | 76008      | 77046            | 72.3<br>87.1                    | .076<br>.059                 |
| AA21448    | 067P       | 75307      | 77046            | 59.5<br>47.3                    | .05<br>.188                  |
| AA21465    | 067P       | 76020      | 77046            | 90.5<br>96.7                    | .063<br>.044                 |
| AA21140    | 054P       | 73121      | 78139            | 77.5<br>66.96<br>65.89<br>69.07 | .06<br>.185<br>.234<br>.27   |
| AA21148    | 054P       | 73150      | 78139            | 50.0<br>55.5<br>64.57<br>56.5   | .235<br>.035<br>.04<br>.041  |
| AA21329    | 062P       | 74196      | 78139            | 67.86<br>61.58<br>68.0<br>74.5  | .315<br>.225<br>.249<br>.387 |
| AA21343    | 062P       | 74225      | 78139            | 58.74<br>68.03<br>61.53<br>65.8 | .20<br>.046<br>.05<br>.266   |
| AA21379    | 063P       | 75073      | 78139            | 79.4<br>90.2<br>73.26<br>74.35  | .132<br>.051<br>.136<br>.160 |

TABLE 8-2 (cont)

| <u>S/N</u> | <u>Lot</u> | <u>DOM</u> | <u>Test Date</u> | <u>S<sub>m</sub>(psi)</u> | <u>t<sub>m</sub>(min)</u> |
|------------|------------|------------|------------------|---------------------------|---------------------------|
| AA21360    | 063P       | 74267      | 78139            | 46.49                     | .272                      |
|            |            |            |                  | 62.71                     | .208                      |
|            |            |            |                  | 60.16                     | .311                      |
| AA21459    | 068P       | 76005      | 78139            | 77.8                      | .048                      |
|            |            |            |                  | 97.29                     | .054                      |
|            |            |            |                  | 86.6                      | .09                       |
| AA21493    | 068P       | 76188      | 78139            | 104.15                    | .062                      |
|            |            |            |                  | 89.20                     | .169                      |
|            |            |            |                  | 109.14                    | .05                       |
|            |            |            |                  | 90.86                     | .049                      |
| AA21522    | 069P       | 77018      | 78139            | 102.06                    | .062                      |
|            |            |            |                  | 91.88                     | .056                      |
|            |            |            |                  | 87.37                     | .104                      |
|            |            |            |                  | 81.4                      | .077                      |
| AA21547    | 069P       | 77129      | 78139            | 86.23                     | .117                      |
|            |            |            |                  | 78.67                     | .044                      |
|            |            |            |                  | 81.73                     | .051                      |

TABLE 8-3  
Mini-DPT Stage III

| <u>S/N</u> | <u>DOM</u> | <u>Test Date</u> | <u>S<sub>m</sub>(psi)</u> | <u>t<sub>m</sub>(min)</u> |
|------------|------------|------------------|---------------------------|---------------------------|
| 7240019    | 72221      | 77053            | 56.7                      | .328                      |
|            |            |                  | 62.3                      | .352                      |
| 7240454    | 72247      | 70053            | 61.5                      | .197                      |
|            |            |                  | 61.9                      | .053                      |
| 7110013    | 72282      | 77053            | 96.0                      | .176                      |
|            |            |                  | 87.5                      | .189                      |
| 7110048    | 72300      | 77053            | 83.6                      | .156                      |
|            |            |                  | 81.1                      | .120                      |
| 712003     | 72335      | 77053            | 95.6                      | .057                      |
|            |            |                  | 105.3                     | .061                      |
| 7120036    | 73070      | 77053            | 81.8                      | .054                      |
|            |            |                  | 86.6                      | .056                      |
| 7130002    | 73115      | 77053            | 76.7                      | .245                      |
|            |            |                  | 78.9                      | .237                      |
| 7130018    | 73144      | 77053            | 121.3                     | .075                      |
|            |            |                  | 114.1                     | .079                      |
| 8190011    | 73241      | 77053            | 89.9                      | .242                      |
|            |            |                  | 90.3                      | .054                      |
| 8190038    | 73291      | 77053            | 81.3                      | .22                       |
|            |            |                  | 84.2                      | .185                      |
| 8250011    | 75337      | 77053            | 119.2                     | .066                      |
|            |            |                  | 102.2                     | .065                      |
| 8250022    | 76022      | 77053            | 105.7                     | .061                      |
|            |            |                  | 105.9                     | .062                      |
| 8200010    | 73339      | 78080            | 52.34                     | .054                      |
|            |            |                  | 70.0                      | .09                       |
|            |            |                  | 75.75                     | .035                      |
|            |            |                  | 56.99                     | .138                      |
| 8200037    | 74038      | 78080            | 80.0                      | .059                      |
|            |            |                  | 84.08                     | .075                      |
|            |            |                  | 76.52                     | .157                      |
|            |            |                  | 64.94                     | .126                      |

TABLE 8-3 (cont)  
Mini-DPT Stage III

| <u>S/N</u> | <u>DOM</u> | <u>Test Date</u> | <u><math>S_m</math>(psi)</u> | <u><math>t_m</math>(min)</u> |
|------------|------------|------------------|------------------------------|------------------------------|
| 8220014    | 74255      | 78080            | 79.36                        | .045                         |
|            |            |                  | 71.4                         | .126                         |
|            |            |                  | 84.49                        | .038                         |
| 8220030    | 74296      | 78080            | 84.32                        | .129                         |
|            |            |                  | 85.71                        | .126                         |
|            |            |                  | 90.06                        | .076                         |
| 8230008    | 75027      | 78080            | 97.94                        | .062                         |
|            |            |                  | 94.75                        | .031                         |
| 8230031    | 75099      | 78080            | 89.79                        | .099                         |
|            |            |                  | 67.41                        | .062                         |
|            |            |                  | 93.59                        | .077                         |
|            |            |                  | 79.72                        | .076                         |
| 8240028    | 75212      | 78080            | 95.72                        | .041                         |
|            |            |                  | 97.6                         | .051                         |
|            |            |                  | 69.5                         | .111                         |
|            |            |                  | 83.47                        | .095                         |
| 8240042    | 75295      | 73080            | 104.54                       | .039                         |
|            |            |                  | 42.0                         | .089                         |
|            |            |                  | 93.59                        | .077                         |
|            |            |                  | 84.24                        | .164                         |
| 8260007    | 76190      | 73080            | 85.6                         | .096                         |
|            |            |                  | 98.54                        | .073                         |
|            |            |                  | 113.4                        | .041                         |
|            |            |                  | 88.29                        | .077                         |
| 8260032    | 76315      | 73080            | 88.6                         | .40                          |
|            |            |                  | 83.24                        | .10                          |
|            |            |                  | 101.43                       | .066                         |

SECTION IX  
HARDNESS

A Shore A Durometer is used to take initial and 10 second readings on dogbone ends.

Unlined cartons of ANB(G) propellant show a significant decrease in hardness, but lined cartons show a significant increase. ANB(P) propellant shows a significant increase in hardness for both unlined and lined cartons. ANT(P) lined cartons do not show a significant change while there is a significant increase for unlined cartons. ANA(G) cartons show a significant increase. Usually the intercept is higher for unlined cartons than lined cartons and the standard deviation ( $S_y$ ) is greater.

A small scale comparison of hardness data was made between G and P polymer blocks, taking the first reading on the uncut surface of the carton. These data are shown in Tables 9-1 and 9-2. Each value is an average of five readings, using both sides of a dogbone. The cutting plans for lined and unlined cartons differ (see drawings A-1 and A-2). (Drawing A-3 shows the cutting plan for Thiokol's unlined cartons). Therefore, a true gradient exists only in the unlined cartons. The data do not reflect a trend, and in some cases, surface hardness is less than for the interior of the carton. No categorical statements can be made from this data, since there are differences between the two types of polymer and between lined and unlined cartons.

TABLE 9-1

## HARDNESS ~ 10 Sec

UNLINED CARTONS  
GTR Polymer

|         |      |      |      |      |      |      |      |      |
|---------|------|------|------|------|------|------|------|------|
| AA20850 | 64.2 | 63.9 | 62.8 |      | 62.2 | 62.0 | 63.9 | 62.9 |
| 20855   | 62.4 | 61.8 | 61.0 | 61.2 | 60.8 | 60.5 | 61.9 | 61.2 |
| 20862   | 61.8 | 66.0 | 65.0 | 65.0 | 64.4 | 65.0 | 64.8 | 65.0 |
| AA20867 | 64.0 | 69.0 | 68.5 | 68.9 | 68.0 | 66.8 | 66.3 | 67.9 |
| 20872   | 66.4 | 68.9 | 68.1 | 69.4 | 68.2 | 67.0 | 67.7 | 68.2 |
| 20879   | 65.2 | 68.9 | 67.5 | 67.8 | 68.3 | 67.0 | 68.0 | 67.9 |
| AA20939 | 66.6 | 71.6 | 70.4 | 70.6 | 71.0 | 70.0 | 70.0 | 70.6 |
| 20951   | 70.4 | 70.3 | 70.3 | 71.0 | 70.3 | 70.3 | 70.5 | 70.5 |
| 20964   | 67.4 | 68.7 | 68.2 | 68.7 | 69.0 | 68.3 | 69.5 | 68.7 |

UNLINED CARTONS  
Phillips Polymer

|         | <u>Surface</u> | <u>1</u> | <u>2</u> | <u>3</u> | <u>4</u> | <u>5</u> | <u>6</u> | Average Thru<br>The Blocks |
|---------|----------------|----------|----------|----------|----------|----------|----------|----------------------------|
| AA20238 | 78.6           | 73.7     | 68.3     | 68.0     | 69.9     | 70.5     | 72.8     | 70.5                       |
| 20243   | 80.6           | 71.5     | 67.8     | 68.0     | 69.3     | 68.5     | 71.3     | 69.3                       |
| 20250   | 81.4           | 72.2     | 67.7     | 67.5     | 75.8     | 66.7     | 70.7     | 70.1                       |
| AA20255 | 76.0           | 68.7     | 66.2     | 66.7     | 68.5     | 69.5     | 70.8     | 68.4                       |
| 20262   | 76.2           | 68.7     | 69.2     | 66.2     | 67.7     | 69.0     | 66.9     | 68.0                       |
| 20285   | 78.2           | 67.7     | 65.7     | 64.0     | 64.3     | 67.5     | 69.5     | 66.5                       |
| AA20271 | 71.8           | 63.2     | 62.0     | 61.8     | 64.9     | 64.2     | 64.9     | 63.5                       |
| 20298   | 66.6           | 61.2     | 62.3     | 60.8     | 63.5     | 63.0     | 64.1     | 62.5                       |
| 20312   | 66.6           | 61.4     | 61.6     | 61.9     | 64.3     | 63.8     | 63.2     | 62.7                       |
| AA20611 | 68.8           | 69.0     | 68.9     | 69.7     | 70.2     | 70.5     | 72.0     | 70.0                       |
| 20627   | 73.8           | 70.4     | 70.0     | 70.0     | 71.4     | 71.2     | 71.8     | 71.4                       |
| 20659   | 76.6           | 70.4     | 70.0     | 69.2     | 70.7     | 71.3     | 72.9     | 70.8                       |
| AA20704 | 68.2           | 68.7     | 67.2     | 68.9     | 67.4     | 68.5     | 69.4     | 68.4                       |
| 20712   | 68.0           | 69.9     | 69.2     | 69.6     | 68.4     | 68.7     | 67.7     | 68.9                       |
| 20715   | 71.4           | 71.0     | 71.1     | 68.5     | 68.0     | 68.4     | 69.4     | 69.4                       |
| AA20814 | 72.8           | 71.8     | 68.2     | 67.2     | 66.4     | 66.5     | 71.0     | 68.5                       |
| 20825   | 70.4           | 70.4     | 66.9     | 65.6     | 66.0     | 69.0     | 70.2     | 68.0                       |
| 20844   | 71.4           | 71.2     | 70.3     | 69.3     | 66.5     | 68.0     | 68.9     | 69.0                       |

TABLE 9-2

## HARDNESS - 10 Sec

LINED CARTONS  
GTR Polymer

|         | <u>Surface</u> | <u>1</u> | <u>2</u> | <u>3</u> | <u>4</u> | <u>5</u> | <u>6</u> | Average Thru<br>The Blocks |
|---------|----------------|----------|----------|----------|----------|----------|----------|----------------------------|
| AA21117 | 67.0           | 68.3     | 68.7     | 66.0     | 69.3     | 69.2     | 69.3     | 68.5                       |
| 21128   | 69.4           | 70.0     | 70.0     | 69.8     | 67.5     | 67.7     | 67.5     | 68.8                       |
| AA21234 | 71.6           | 69.6     | 70.2     | 70.0     | 70.0     | 70.0     | 70.4     | 70.0                       |
| 21245   | 69.6           | 69.6     | 69.0     | 69.8     | 69.8     | 69.7     | 69.5     | 69.5                       |
| AA21256 | 69.4           | 69.9     | 69.5     | 70.0     | 68.6     | 67.4     | 67.5     | 68.8                       |
| 21282   | 66.8           | 67.5     | 67.0     | 66.8     | 67.5     | 67.5     | 67.5     | 67.3                       |
| AA21294 | 65.6           | 68.4     | 67.8     | 67.6     | 68.3     | 67.0     | 68.0     | 67.8                       |
| 21317   | 65.6           | 66.5     | 66.5     | 66.7     | 66.3     | 66.2     | 66.5     | 66.4                       |

LINED CARTONS  
Phillips Polymer

|         |      |      |      |      |      |      |      |      |
|---------|------|------|------|------|------|------|------|------|
| AA21084 | 73.4 | 71.8 | 71.6 | 71.8 | 72.0 | 71.3 | 72.4 | 71.8 |
| 21101   | 66.8 | 68.0 | 67.2 | 68.6 | 68.0 | 68.2 | 69.0 | 68.2 |
| AA21194 | 70.2 | 70.8 | 69.0 | 70.2 | 70.5 | 71.0 | 70.5 | 70.3 |
| 21211   | 69.2 | 69.4 | 69.5 | 68.8 | 68.9 | 68.9 | 68.6 | 69.0 |
| AA21306 | 61.6 | 62.8 | 63.2 | 62.5 | 62.4 | 61.8 | 62.0 | 62.4 |
| 21326   | 59.4 | 65.2 | 65.0 | 65.0 | 64.2 | 65.0 | 64.4 | 64.8 |





UNLINED CARTON CUTTING PLAN  
(scale 1/2 - 1)

A-2



STAGE 3 ANB-3066 UNLINED CARTONS (THIOKOL)

A-3

SECTION X  
OTHER TENSILE TESTS

A. LOW RATE UNIAXIAL TESTS:

Low rate uniaxial tests are routinely run on ANB-3066 propellant. Standard JANNAF specimens are tested on the Instron at 2 in/min (.0847 cm/sec) at 77°F (25°C).

Three parameters: maximum stress, strain at rupture and modulus were chosen for multiple regressions. There are two plots for each parameter; one comparing ASPC 'G' polymer with Thiokol 'P' polymer and the other comparing 'P' propellants with ANA 'G' as a base line (Figures 10-1 thru 10-6). Regression information is given in Tables 10-1 thru 10-3.

Except for ANB 'G' lined cartons and ANB 'P' unlined cartons there is a significant change in maximum stress. These two types do not show a significant change in strain at rupture or in modulus.

B. MODIFIED DOGBONES:

Modified dogbones with 3/4" GL are tested under 600 psi nitrogen pressure (42.18 kg/cm<sup>2</sup>) at 1750 in/min (74.08 cm/sec).

A comparison similar to that for low rate tensile was made on the data (Figures 10-7 thru 10-12 and Tables 10-4 thru 10-6). ANA 'G' unlined cartons and ANB 'P' lined and unlined cartons show significant changes in all three parameters. Other types showed a significant increase in modulus.



Figure 10-1

MAXIMUM STRESS (PSI)

100.00 132.00 164.00 196.00 228.00 260.00



10-3

RNB 306G PROFILIN REGRESSION COMPARISON, TENSILE MAX STRESS, 2.0 IN/IN 77 DEG F

Figure 10-2

Table 10-1

|   |           | 95% CONFIDENCE LIMITS         |                                  |                                  |                                   |           |                                   |
|---|-----------|-------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------|-----------------------------------|
|   |           | INTERCEPT / STD. ER. DESCERR. | SLOPE / STD. ER. SLOPE           | STD. ER. RECESS.                 | CORRELATION / T                   | SIG. OF T | UPPER LIMIT / LOWER LIMIT         |
| 1 | AIR P. UL | 3.66                          | 0.23527732E+03<br>0.9275489E+01  | 0.13596515E+02<br>0.22202451E+02 | 0.4450176E+01<br>0.3950377E+01    | SIG       | 0.15574250E+03<br>0.12562216E+03  |
| 2 | ANT P. UL | 6.2                           | 0.23525840E+03<br>0.23237402E+03 | 0.56023500E+02<br>0.5675935E+02  | 0.91675705E+01<br>0.83537545E+01  | SIG       | 0.15215076E+03<br>0.11740851E+03  |
| 3 | ANT P. UL | 14.27                         | 0.1362235E+03<br>0.2471657E+03   | -0.20170235E+02<br>0.6552235E+02 | 0.210286361E+02<br>0.25673695E+02 | SIG       | 0.15351489E+03<br>0.121265746E+03 |
| 4 | ANT P. L  | 13.6                          | 0.2220170E+03<br>0.19539568E+03  | 0.4527593E+00<br>0.5736150E+01   | 0.64002224E+01<br>0.7623786E+01   | SIG       | 0.16295740E+03<br>0.12916656E+03  |
| 5 | ANT P. UL | 35.0                          | 0.13555590E+03<br>0.20616942E+02 | 0.23543535E+00<br>0.40605013E+02 | 0.27012906E+01<br>0.52327846E+01  | SIG       | 0.17568164E+03<br>0.13025531E+03  |

AN F TEST FOR PREDICTOR REGRESSION COEFFICIENTS, MAX STRESS = 2.0 INFLU. 77 CRS F

|   |            | 95% CONFIDENCE LIMITS         |                                  |                                  |                                 |           |                                  |
|---|------------|-------------------------------|----------------------------------|----------------------------------|---------------------------------|-----------|----------------------------------|
|   |            | INTERCEPT / STD. ER. DESCERR. | SLOPE / STD. ER. SLOPE           | STD. ER. RECESS.                 | CORRELATION / T                 | SIG. OF T | UPPER LIMIT / LOWER LIMIT        |
| 1 | ANT C. BC. | 3.66                          | 0.13527712E+03<br>0.5575164E+01  | 0.10956515E+01<br>0.21424251E+01 | 0.646170E+01<br>0.3595377E+01   | SIG       | 0.15974290E+03<br>0.12562216E+03 |
| 2 | ANT P. L   | 8.7                           | 0.23501463E+03<br>0.24332827E+03 | 0.25597454E+00<br>0.2141211E+01  | 0.3010455E+02<br>0.2766340E+02  | SIG       | 0.15821240E+03<br>0.11626539E+03 |
| 3 | ANT P. UL  | 12.1                          | 0.7515006E+00<br>0.12016944E+02  | 0.11912115E+01<br>0.22451872E+02 | 0.41110356E+01<br>0.1436549E+01 | SIG       | 0.17062260E+03<br>0.12070665E+03 |
| 4 | ANT P. L   | 12.6                          | 0.12201170E+03<br>0.19555268E+02 | 0.45727503E+00<br>0.5736035E+01  | 0.4002224E+01<br>0.7623378E+01  | SIG       | 0.16295740E+03<br>0.12916656E+03 |
| 5 | ANT P. UL  | 35.0                          | 0.13555590E+03<br>0.20616944E+02 | 0.2559435E+00<br>0.4860513E+01   | 0.2145E324E+01<br>0.53774E+01   | SIG       | 0.17568164E+03<br>0.13025531E+03 |

AN F TEST FOR PREDICTOR REGRESSION COEFFICIENTS, MAX STRESS = 2.0 INFLU. 77 CRS F

10-4



Figure 10-3



Figure 10-4

Table 10-2



Figure 10-5



10-9

Figure 10-6

Table 10-3



Figure 10-7



Figure 10-8

Table 10-4



Figure 10-9



Figure 10-10

Table 10-5

10-16



Figure 10-11



Figure 10-12

Table 10-6

## DISTRIBUTION

NR  
COPIES

|                                                    |   |
|----------------------------------------------------|---|
| OO-ALC                                             |   |
| MMWRME                                             | 1 |
| MMWRMT                                             | 1 |
| DDC (TISIR) Cameron Station, Alexandria, VA 22314  | 2 |
| AFPRO, Aerojet, Sacramento, CA 95813               | 1 |
| Aerojet Solid Propulsion Company                   | 1 |
| P.O. Box 15847, Sacramento, CA 95813               |   |
| Attn: Mr. G. Hoover for Mr. J. Drislane            |   |
| AFPRO, Thiokol Chemical Corporation                | 2 |
| Wasatch Division                                   |   |
| P. O. Box 524                                      |   |
| Brigham City, Utah 84302                           |   |
| (Cy to R.E. Keating)                               |   |
| AFRPL (MKPE) Edwards AFB, CA 93523                 | 1 |
| SAC (LGMB) Offutt AFB, NB 68113                    | 1 |
| U.S. Naval Ordnance Station, Indian Head, MD 20640 | 1 |
| Attn: Dr. James H. Wiegand                         |   |
| Fleet Support Dept., Propulsion                    |   |
| System Development Division, Code FS7              |   |
| CPIA, Applied Physics Laboratory                   | 1 |
| John Hopkins University                            |   |
| Johns Hopkins Road                                 |   |
| Laurel, MD 20810                                   |   |
| Attn: Dr. P.L. Nichols                             |   |

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              | READ INSTRUCTIONS BEFORE COMPLETING FORM             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1. REPORT NUMBER<br><i>(14) MANCP Report No-398(78)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. GOVT ACCESSION NO.<br><i>(9) Semi</i>                                                     | 3. RECIPIENT'S CATALOG NUMBER<br><i>Annual rept.</i> |
| 4. TITLE (and Subtitle)<br><i>(6) Propellant Surveillance Report ANB-3066 Propellant,</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5. TYPE OF REPORT & PERIOD COVERED<br><i>Test Results- -Semi Annual</i>                      |                                                      |
| 7. AUTHOR(s)<br><i>(10) Elizabeth M. Dalaba</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6. PERFORMING ORG. REPORT NUMBER                                                             |                                                      |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Propellant Lab Section<br>Directorate of Maintenance<br>00-ALC Hill AFB, Utah 84406                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>MMWRM Project M82937C/M82938C |                                                      |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Service Engineering Division<br>Directorate of Materiel Management<br>00-ALC Hill AFB, Utah 84406                                                                                                                                                                                                                                                                                                                                                                                                                              | 12. REPORT DATE<br><i>(11) July 1978</i>                                                     |                                                      |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br><i>(12) 368</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13. NUMBER OF PAGES<br><i>267</i>                                                            |                                                      |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for Public Release Distribution Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15. SECURITY CLASS. (of this report)                                                         |                                                      |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE                                                   |                                                      |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                      |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Solid Propellant<br>Minuteman                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                              |                                                      |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>This report contains test results on ANB-3066 propellant manufactured by Aerojet Solid Propulsion Company and Thiokol Corporation. Statistical comparison of all types was made on the basis of similar ages.<br>Propellants were analyzed with respect to the type of polymer used in the manufacturing process and by carton type.<br>Regressions are given for very low rate tensile, high rate biaxial tensile under pressure, stress relaxation and case liner bonds.<br>(over) |                                                                                              |                                                      |

407387

J.B.

The test results indicate dissimilarity between Minuteman II, Stage II and Minuteman III, Stage III propellant as described by the linear regression analysis.