1. Основни правила при операции с множества. Изброими и неизброими множества

- 1. За всяко множество A е в сила $\emptyset \subset A$
- 2. Всяко множество A се съдържа в себе си $A \subseteq A$
- 3. Ако A_1 и A_2 са две множества, за които $A_1 \subset A_2$ и $A_2 \subset A_1$, то следва, че $A_1 = A_2$
- 4. Ако за три множества A_1 , A_2 и A_3 са в сила включванията $A_1 \subset A_2$ и $A_2 \subset A_3$, то $A_1 \subset A_2$
- 5. $(A_1 \cup A_2) \cup A_3 = A_1 \cup (A_2 \cup A_3) = A_1 \cup A_2 \cup A_3$, като $A_1 \cup A_2 \cup A_3 = \{x : x \in A_1 \cup A_2 \cup A_3 \in A_2 \cup A_3 \in A_3 \}$
- 6. $A_1 \cap (A_2 \cap A_3) = (A_1 \cap A_2) \cap A_3 = A_1 \cap A_2 \cap A_3$, като $A_1 \cap A_2 \cap A_3 = \{x : x \in A_1$ или $x \in A_2$ или $x \in A_3$ }
- 7. Комутативен закон: $A_1 \cup A_2 = A_2 \cup A_1$; $A_1 \cap A_2 = A_2 \cap A_1$
- 8. Дистрибутивен закон: $A_1 \cap (A_2 \cup A_3) = (A_1 \cap A_2) \cap (A_1 \cap A_3)$
- 9. Ako $A_1 \subset A_2$, to $A_1 \cup A_2 = A_2$
- 10. $A_1 \subset A_2$ тогава и само тогава когато $A_1 \cup A_2 = A_2$
- 11. Ако $A_1 \subset A_2$ и A са произволни множества, то $A_1 \cap A \subset A_2 \cap A$ и $A_1 \cup A \subset A_2 \cap A$
- 12. Ako $A_1 \subset A_2 \coprod A_1 \subset A_3$, to $A_1 \subset A_2 \cap A_3$
- 13. Ako $A_1 \subset A_3 \text{ if } A_2 \subset A_3 \text{ , to } A_1 \cup A_2 \subset A_3$
- 14. $A_1 \cap A_2 \subset A_1 \setminus A_1 \cap A_2 \subset A_2$
- 15. $A_1 \subset A_1 \cup A_2 \cup A_2 \subset A_1 \cup A_2$
- 16. $A_1 \cap A = A$, $A \cup U = A$, $A = \emptyset = A$, $A \cap \emptyset = \emptyset$

Множеството A се нарича изброимо ако $A \sim N$. Ако A е безкрайно и не е изброимо, то A се нарича неизброимо. Ако A е безкрайно и не е изброимо, то A се нарича неизброимо.

2. Абсолютна стойност. Ограничени множества – принцип за непрекъснатост

Под абсолютна стойност на реалното число x ще разбираме неотрицателното число $|x| = \max(x, -x)$.

За всеки две реални числа х и у са валидни следните свойства:

1)
$$|x + y| \le |x| + |y|$$

2)
$$|x-y| \ge |x|-|y|$$

3)
$$|x||y| = ||x| - |y||$$

$$4) \ \frac{|x|}{|y|} = \left| \frac{x}{y} \right|, y \neq 0$$

Едно множество A от реални числа се нарича ограничено отгоре, ако съществува такова число $a \in R$, че за всяко $x \in A$ е изпълнено неравенството $x \le a$. Числото a се нарича горна граница на множеството A. Аналогично, числото b се нарича долна граница на множеството A ако за всяко $x \in A$ е изпълнено неравенството $x \ge b$.

$$S_A = \sup\{x \in R : x \in A\}, I_A = \inf\{x \in R : X \in A\}$$

$$\sup = \sup \min \min f = \inf \min f$$

Основно твърдение тук е принципът за непрекъснатост, който гласи че всяко ограничено отгоре множество от реални числа притежава точна горна граница.

Множеството A е ограничено тогава и само тогава, когато съществува такова число m>0, че за всяко $x\in A$ е изпълнено $|x|\leq m$.

3. Околности, точки на сгъстяване. Теорема на Bolzano-Weierstrass

Множеството $U\subset R$ се нарича околност на точка $x_0\in R$, ако съществува ε - околност на x_0 , която се съдържа в U , т.е. $U_\varepsilon(x_0)\subset U$.

Ако U и V са околности на точката $x_0 \in R$, то сечението $U \cap V$ е също околност на x_0 .

Казваме, че множеството A е гъсто в B, ако за всяка точка $x \in B$ и за всяка околност U = U(x) имаме $U \cap A \neq \emptyset$. Едно множество A се нарича навсякъде гъсто, ако е гъсто в R. С A ще означаваме някое множество от вида:

$$(a,b),[a,b],(a,b],[a,b),(-\infty,a],[a,\infty),R=(-\infty,\infty).$$

Една точка $a \in R$ се нарича точка на сгъстяване за едно множество $A \subset R$, ако всяка околност на точката съдържа безкрайно много елементи от A .

Bolzano-Weierstrass – Всяка ограничена редица има поне една точка на сгъстяване.

Но тук трябва да се каже, че има и неограничени редици с точка на сгъстяване.

4.Сходимост на редици. Монотонни редици. Критерий на Cauchy

Една редица ще наричаме сходяща, ако е ограничена и има само една точка на сгъстяване a. Числото a се нарича граница на редицата и се изполват означенията:

$$\lim_{r\to\infty}a_n=a, a_n\to a_{\Pi \text{PM}}\ n\to\infty, a_n\xrightarrow[n\to\infty]{} a$$
ули $a_1a_2,...a_n,...\to a$

Редицата е сходяща към точката а тогава и само тогава, когато във всяка околност на а се съдържат всички елементи на редицата с изключение на краен брой от тях.

Една редица се нарича монотонно растяща ако за всеки два последователни елемента на редицата е изпълнено неравенството $a_n \le a_{n+1}$. Ако $a_n < a_{n+1}$ редицата се нарича строго растяща. По същия начин редицата е монотонно намаляваща ако $a_n \ge a_{n+1}$ и строго намаляваща ако $a_n > a_{n+1}$.

Всяка монотонно растяща и ограничена отгоре редица е сходяща.

Всяка монотонно намаляваща и ограничена отдолу редица е сходяща.

Критерий на Cauchy — Редицата $a_1, a_2, ..., a_n, ...$ е сходяща тогава и само тогава, когато за всяко $\varepsilon > 0$ съществува такова числоv, че за всяко n > vи p > 0 е изпълнено неравенството:

$$\left|a_{n}-a_{n+p}\right|<\varepsilon$$

Ако една редица е сходяща към точката а, то точката а е нейната единствена точка на сгъстяване. В сила е и следното твърдение, което може да се счита като обратно.

6. Аритметични действия със сходящи редици

Ако

$$a_1, a_2, ..., a_n, ... \rightarrow a$$

$$b_1, b_2, \dots, b_n, \dots \rightarrow b$$

са две сходящи редици съответно с граници a и b . Тогава:

- 1) Редицата $a_1+b_1, a_2+b_2, ..., a_n+b_n, ...$ е сходяща и $\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}, ...$
- 2) Редицата $a_1b_1, a_2b_2, ..., a_nb_n, ...$ е сходяща и $\lim_{x\to\infty}(a_nb_n)=ab$
- 3) Ако за редицата са изпълнени условията $a_n \neq 0$ и $a \neq 0$ за всяко $n \in N$, то редицата: $\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}, ...$ е сходяща и $\lim_{x \to \infty} \left(\frac{1}{a_n}\right) = \frac{1}{a}$

От тук следват три следствия:

$$\lim_{n \to \infty} (a_n + b) = \lim_{n \to \infty} a_n + b = a + b$$

$$2. \lim_{n \to \infty} (ba_n) = b \lim_{n \to \infty} a_n = ab$$

3.
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \lim_{x \to \infty} (a_n - b) = \lim_{x \to \infty} a_n - \lim_{x \to \infty} b_n = a - b$$

4. Ако
$$b_n$$
 и $b \neq 0$, то
$$\lim_{x \to \infty} \frac{a_n}{b_n} = \frac{\lim_{x \to \infty} a_n}{\lim_{x \to \infty} b_n} = \frac{a}{b}$$

Ако двете редици $a_1,a_2,...,a_n,...\to\ell$ и $b_1,b_2,...,b_n,...\to\ell$ са сходящи и имат една и съща граница и редицата $c_1,c_2,...,c_n,...$ удовлетворява условието $a_n\le c_n\le b_n$, то тя също е сходяща и $\lim_{x\to\infty}c_n=\ell$.

7. Неограничени числови редици

Редицата $a_1,a_2,...,a_n,...$ се нарича неограничено растяща, ако за всяко реално число E>0 съществува такова число v, че при всяко n>v да имаме $a_n>E$. Редицата се нарича неограничено намаляваща, ако за всяко E<0 съществува v , такова че при всяко n>v да е изпълнено $a_n< E$

8. Числови функции – начини на задаване. Ограничени, монотонни, периодични, четни, нечетни функции. Примери – sinx, cosx, tgx и cotgx

Ако множествата A и B се състоят от реални числа, изображението f се нарича числова функция и се означава f(x). Две функции f(x) и g(x) се наричат равни, ако дефиниционната област A е обща и за всяко $x \in A$ имаме f(x) = g(x). Ако $A_0 \subset A$ е подмножество на A и функцията $f_0(x)$ е дефинирана така че $f_0(x) = f(x)$ при $x \in A_0$, казваме че $f_0(x)$ е рестрикция на f(x). Обратно f(x) се нарича продължение на $f_0(x)$ върху "по-голямото" множество A.

Графика на една f ще наричаме множеството от наредени двойки (x, f(x)) когато $x \in A$, записваме го така:

$$\partial_f = \{(x, f(x)) : x \in A\}$$

Нагледно една крива представлява графика на функция, ако удовлетворява теста на вертикалната права, тоест всяка права $\|Oy\|$, пресича кривата най-много в една точка.

$$f(x)+g(x),f(x)-g(x),f(x)g(x),\dfrac{f(x)}{g(x)}$$
 (при $g(x)\neq 0$) , се наричат съответно

сума, разлика, произведение и частно на f(x) и g(x).

Функцията f се нарича ограничена отгоре върху A, ако съществува $const\ c$, такава че за всяко $x\in A$ е изпълнено $f(x)\leq c$.

Функцията f е ограничена отдолу, ако съществува $const\ p$, такава че $f(x) \ge p$ за всяко $x \in A$.

 ${\rm Ako}\,f(x)$ е ограничена отгоре и отдолу едновременно, то тя се нарича ограничена.

Една функция $f:D_f\to B$ се нарича монотонно растяща (монотонно намаляваща) ако за всеки две точки $x_1,x_2\in D_f$, за всяко $x_1< x_2$, е изпълнено:

 $f(x_1) \le f(x_2)$ $(f(x_1) \ge f(x_2))$. Ако $f(x_1) < f(x_2)$ (съответно $f(x_1) > f(x_2)$) функцията f се нарича строго растяща (строго намаляваща).

Примери:

$$y(x) = \sin x$$
 е строго растяща при $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

 $y(x) = \cos x$ е строго намаляваща при $x \in [2k\pi, (2k+1)\pi]$ $k \in \mathbb{Z}$

$$y(x) = tgx$$
 е строго растяща при $x \in \left(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right) k \in Z$

Функцията f(x) е четна, ако за всяко $x \in D_f$ е изпълнено f(x) = f(-x) и нечетна – ако f(x) = -f(-x)

Едно число T>0 се нарича период на една функция $f(x):D_f\to B$,ако за всяко $x\in D_f$ стойностите x-T и $x+T\in D_f$ и е изпълнено равенството π f(x-T)=f(x)=f(x+T). Функцията, която има период T се нарича T -периодична.

Примери на периодични функции са $\sin x$ и $\cos x$ с период 2π , а също tgx и $\cot gx$ с период π .

9. Непрекъснатост на функция в точка и в множество. Свойства на непрекъснатите функции. Примери

Неіпе — казваме че функцията $f(x):D\to R$ е непрекъсната в точката $x_0\in D$, ако за всяка сходяща редица от стойности на аргумента $x_1,x_2,...,x_n,...\to x_0,x_n\in D$, редицата $f(x_1),f(x_2),...,f(x_n),...$ е сходяща.

Cauchy — казваме че f(x) е непрекъсната в $x_0 \in D$, ако за всяко положително число $\varepsilon > 0$, можем да намерим такова число $\delta > 0$, че за всяко $x \in U_\delta(x_0)$ да бъде изпълнено $f(x) \in U_\varepsilon(f(x_0))$.

Всяка функция, чиято дефиниционна област съдържа изолирана точка е непрекъсната в тази точка.

Една функция $f(x): D \to R$ се нарича непрекъсната в множеството D, ако е непрекъсната във всяка точка от D.

Ако функцията $f(x): D \to R$ е дефинирана върху отвореното множество $D \subset R$, непрекъсната е при $x = x_0 \in D$ и $f(x_0) > 0$ ($f(x_0) < 0$), то съществува $U_{\delta}(x_0)$, така че за всяко $x \in U_{\delta}(x_0)$ имаме f(x) > 0 (f(x) < 0).

Ако $f:D\to R$ е непрекъсната при $x=x_0$ и $f(x_0)>0$ $(f(x_0)<0)$, то съществува $U_\delta(x_0)$, така че от $x\in U_\delta(x_0)\cap D$ следва f(x)>0 (f(x)<0).

Нека $f(x),g(x):D \to B$ са непрекъснати в точката $x_0 \in D$ и нека $f(x_0) > g(x_0)$ $(f(x_0) < g(x_0))$, тогава съществува $U_\delta(x_0)$, така че за всяко $x \in U_\delta(x_0) \cap D$ имаме $f(x) > g(x) \lim_{x \to x_0} f(x) = l \ (f(x) < g(x))$.

10. Граница на функция в точка. Свойства. Примери

Функцията $f(x): D \to R$ има граница l в точката x_0 , ако съществува продължение F(x) на f(x) върху $D \cup \{x_0\}$ като F(x) е непрекъсната при $x = x_0$ и $F(x_0) = l$.

Границата на функцията f в точката x_0 е определена еднозначно.

Функцията f(x) има граница l в точката x_0 , ако за всяко $\varepsilon>0$,съществува $\delta>0$,така че при $x\in U_\delta(x_0)\setminus\{x_0\}$ да имаме $f(x)\in U_\delta(l)$

Функцията f(x) има граница l в точката x_0 ,ако и само ако за всяка редица $x_1, x_2, ..., x_n, ...$ която клони към x_0 , $x_n \in D, x_n \neq x_0$, съответната редица от функционалните стойности $f(x_1), f(x_2), ..., f(x_n)$... е сходяща и клони към l .

Нека x_0 е точка на сгъстяване за D , където f , g : $D \to R$. Тогава ако $\lim_{x \to x_0} f(x) = l_1$ и $\lim_{x \to x_0} g(x) = l_2$, то :

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = l_1 + l_2$$

2.
$$\lim_{x \to x_0} (f(x) - g(x)) = l_1 - l_2$$

3.
$$\lim_{x \to x_0} (f(x)g(x)) = l_1 l_2$$

4.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$$
 при $g(x) \neq 0$ и $l_2 \neq 0$ при $x \in D$

Ако съществува $\delta > 0$, така че $g(x) \leq f(x) \leq h(x)$ при $x \in U_{\delta}(x_0)$, то от $\lim_{x \to x_0} g(x) = l$ и $\lim_{x \to x_0} h(x) = l$, следва $\lim_{x \to x_0} f(x) = l$.

12.Специални свойства на непрекъснатите функции

Weierstrass — Всяка функция, която се дефинирана и непрекъсната върху един краен и затворен интервал [a,b] е ограничена.

Ако f(x) е дефинирана и непрекъсната върху [a,b] ,то тя достига точната си горна и точната си долна граница. С други думи съществуват точки x_1 и $x_2 \in [a,b]$ такива ,че $f(x_1) = \sup\{f(x) : x \in [a,b]\} = M$ и $f(x_2) = \inf\{f(x) : x \in [a,b]\} = m$.

Cauchy - f(x) Ако е дефинирана и непрекъсната върху [a,b] и $f(a) \neq f(b)$, то каквото и да бъде числото C, заключено между f(a) и f(b), съществува поне едно число $\lambda \in [a,b]$, такова че $f(\lambda) = C$.

Множеството от стойностите на една непрекъсната функция дефинирана върху интервала [a,b] е интервалът [m,M], където $M = \sup\{f(x): x \in [a,b]\}$ и $m = \inf\{f(x): x \in [a,b]\}$.

Функцията $f(x): D \to R$ се нарича равномерно непрекъсната върху множеството D , ако за всяко $\varepsilon > 0$, съществува $\delta = \delta(\varepsilon) > 0$, така че за всеки две точки $x_1, x_2 \in D$ $arctgx: (-\infty, \infty) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, за които $|x_1 - x_2| < \delta$ е изпълнено $|f(x_1) - f(x_2)| < \varepsilon$

Осцилация на функцията f(x) върху множеството D се нарича числото $\omega = M - m$, където $m = \inf\{f(x) : x \in D\}$.

Cantor – Ако $f(x):[a,b]\to R$ е непрекъсната, то f(x) е неравномерно непрекъсната върху множеството [a,b].

Ако $f(x):[a,b]\to R$ е непрекъсната , то за всяко $\varepsilon>0$ съществува $\delta=\delta(\varepsilon)>0$ и такова подразделяне на интервала [a,b] от точки $a=x_0< x_1< x_2< ...< x_n=b$, че щом $\max_k |x_k-x_{k-1}|<\delta$, то $\omega_k<\varepsilon$.

13. Обратни функции – обратни на тригонометричните функции

агсsin $x:[-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, за която е изпълнено $\sin(\arcsin) = x$ при $x \in [-1,1]$ и $\arcsin(\sin x) = x$ при $x \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Нагледно графиката на $\arcsin x$ се получава след завъртане на координатната система на 90° и смяна на местата на x и y и отражение спрямо Oy . Изобщо обратната на $\sin x$ може да се избере по безбройно много причини във всеки един от интервалите $\left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right], k \in Z$. По-принцип $\arcsin x$ се разглежда само в интервала $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

По същия начин функцията $y(x) = \cos x : R \to [-1,1]$ има обратна $\arccos x : [-1,1] \to [0,\pi]$

$$tgx: \bigcup_{k\in\mathbb{Z}} \left(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right) \rightarrow \left(-\infty, \infty\right) \text{ e} \quad arctgx: \left(-\infty, \infty\right) \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

а на
$$cotgx: \bigcup_{k\in \mathbb{Z}} (k\pi, \pi + k\pi) \to (-\infty, \infty)$$
 е $arc \cot gx: (-\infty, \infty) \to (0, \pi)$

14. Непрекъснатост на тригонометричните функции и техните обратни

Функцията $y(x) = \sin x : R \to [-1,1]$ е непрекъсната. Избираме произволно $x_0 \in R$. Тогава за всяко $x \in R$ имаме $\sin x - \sin x_0 = 2\sin \frac{x - x_0}{2}\cos \frac{x + x_0}{2}$.

Непрекъснатостта на $\cos x$ се установява по същия начин като се използва равенството $\cos x - \cos x_0 = -2\sin\frac{x+x_0}{2}\sin\frac{x-x_0}{2}$.

Функциите $tgx = \frac{\sin x}{\cos x}$ и $cotgx = \frac{\cos x}{\sin x}$ са непрекъснати във всяка точка от дефиниционната си област.

16. Производна на функция в точка. Връзка между непрекъснатост и диференцируемост

Нека функцията y=f(x) е дефинирана в някаква околност на точката x_0 , тоест $D_f=U(x_0)$. Казваме че функцията f(x) има производна в точката x_0 , ако съществува границата $\lim_{\substack{\Delta x \to 0 \\ \Delta x \neq 0}} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$, която ще означаваме с $f^{'}(x_0)$.

Операцията на намиране производната на една функция се нарича диференциране.

Функциите $y(x) = C = const, y(x) = x^n (n \in N)$, $y(x) = \sin x, y(x) = \cos x, y(x) = a^x$, имат производни във всяка точка от дефиниционната си област.

Функциите $y(x) = \log_a x(a > 0)$ и $y(x) = x^a$ ($a \in R$) b имат производни при всяко x > 0.

Ако функцията f(x) има производна в точката, то тя е непрекъсната в точката x_0 .

17. Едностранни производни. Диференциал на функция

Дясна производна на f(x) в точката x_0 наричаме границата $\lim_{\Delta x \to {}^+ 0} \frac{\Delta y}{\Delta x} = f_+(x_0)$, ако съществува По същия начин дефинираме и лява производна $\lim_{\Delta x \to {}^- 0} \frac{\Delta y}{\Delta x} = f_-(x_0)$.

Ако f(x) има производна в точката $x=x_0$, то тя има дясна и лява производна и $f'(x_0)=f_+'(x_0)=f_-'(x_0)$. Обратно ако съществуват дясна и лява производна и те са равни, т.е. $f_+'(x_0)=f_-'(x_0)$, то f(x) има производната $f'(x_0)=f_+'(x_0)=f_-'(x_0)$.

Ако $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \infty$ казваме, че функцията y = f(x) има в точката x_0 производна $+\infty$ и пишем $f'(x_0) = \infty$.

Ако $f^{'}(x_0) = \infty$, то едностранните производни може да са $f_+^{'}(x_0) = \infty$ и $f_-^{'}(x_0) = \infty$.

Ако f(x) е дефинирана в някаква област $U(x_0)$ има нарастване $\Delta y = f(x_0 + \Delta x) - f(x_0)$, което може да се представи във вида $\Delta y = A \Delta x + \Delta x \varphi(\Delta x)$, където $A = A(x_0)$ не зависи от Δx , а функцията $\varphi(\Delta x)$ има свойството $\lim_{\Delta x \to 0} \frac{\varphi(\Delta x)}{\Delta x} = 0$, то f(x) се нарича диференцируема в точката x_0 . Произведението $A \Delta x$ се нарича диференциал на f(x) в точката x_0 и се означава с $df(x_0)$ или dy.

Една функция f(x) е диференцируема в точката x_0 тогава и само тогава, когато има производна в точката x_0 . Производната и диференциалът са свързани с равенството $df = f'(x_0) \Delta x$.

Казваме, че функцията f(x) е диференцируема в дефиниционната си област, ако е диференцируема във всяка точка от нея.

18. Правила за диференциране

Ако f(x) и g(x) са диференцируеми в точката x_0 , то такива са и f(x)+g(x), f(x)-g(x), f(x)g(x) и $\frac{f(x)}{g(x)}$ при $g(x)\neq 0$, като:

$$[f(x)+g(x)]' = f'(x)+g'(x),$$

$$[f(x)-g(x)]' = f'(x)-g'(x),$$

$$[f(x)+g(x)]' = f'(x)g(x)+f(x)g'(x)$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$$

Ако $f_k(x)$ (k=1,...,n) са диференцируеми в точката x_0 и C_k (k=1,...,n) са константи, то:

$$\left[\sum_{k=1}^{n} C_{k} f_{k}(x)\right] = \sum_{k=1}^{n} C_{k} f_{k}(x) \text{ и в частност } \left[Cf(x)\right] = Cf(x).$$

$$(tgx)' = \frac{1}{\cos^2 x} \text{ при } x \neq \frac{\pi}{2} + k\pi \text{ и } (\cot gx)' = -\frac{1}{\sin^2 x} \text{ при } x \neq k\pi, k \in Z$$

Ако функциите y=g(x) и z=f(y) са диференцируеми съответно в точките x_0 и $y_0=g(x_0)$, то композицията z(x)=f(g(x)) е диференцируема в точката x_0 и $z'(x_0)=f'(y_0)g'(x_0)=f'(g(x_0))g'(x_0)$

Диференциалът на една функция y = f(x) има един и същи вид, а именно dy = f'(x)dx при смяна на независимата променлива. Това свойство се нарича инвариантност на формата на първия диференциал.

19. Производни и диференциали от произволен ред. Формула на Leibniz

Нека функцията $f(x):D_f\to R$ има първа производна и е вътрешна точка за D_f . Тогава ако съществува границата $\lim_{\substack{\Delta x\to 0\\ \Delta x\neq 0}} \frac{f^{'}(x_0+\Delta x)-f^{'}(x_0)}{\Delta x}$ казваме, че има втора производна при $x=x_0$ и я означаваме с $f^{''}(x_0)$.Или по-общо за всяко $n\in N$ имаме $f^{(n)}(x_0)=\lim_{\substack{\Delta x\to 0}} \frac{f^{(n-1)}(x_0+\Delta x)-f^{(n-1)}(x_0)}{\Delta x}$

Функцията която има производни за всяко $n \in N$, се нарича безкрайно диференцируема.

Формула на Leibniz – Ако функциите u(x) и v(x) имат производни до ред n (вкл.), то функцията $\omega(x) = u(x)v(x)$ има също производни до ред n (вкл.).

Диференциал на една функция наричаме израза, който е линейна част на нарастването: $\Delta f = f^{'}(x_0)\Delta x + \varphi(\Delta x)\Delta x$ или както установихме $df = f^{'}(x_0)dx$. Той се нарича още първи диференциал. Втори диференциал наричаме диференциала на първия диференциал, т.е.:

$$d^2 f = d(df) = d(f'(x)dx) = dxd(f'(x)dx) = dxf''(x)dx = f''(x)dx^2$$

Ако функцията f(x) има производна от ред n, то под nmu диференциал разбираме: $d^n f = d(d^{n-1}f) = f^{(n)}(x)dx^n$ или $y^n = \frac{d^n y}{dx^n}$

Свойства на птия диференциал:

1.
$$d^n(Au + Bv) = Ad^nu + Bd^nv$$

2.
$$d^{n}(uv) = \sum_{k=0}^{n} {n \choose k} d^{k} u d^{n-k} v$$

20. Основни теореми на диференциалното смятане. (Fermat, Rolle)

Казваме, че функцията f(x) има в точката $x_0 \in D_f$ локален минимум (максимум) ако съществува такава δ – околност на x_0 , $U_\delta(x_0) \subset D_f$, така че за всяко $x \in U_\delta(x_0)$ да е изпълнено $f(x) \ge f(x_0)$ $(f(x) \le f(x_0))$

Локалните максимуми и минимуми могат да се обединят с общия термин локални екстремуми.

Fermat — Ако функцията f(x) има при $x_0 \in D_f$ локален екстремум и е диференцируема в x_0 , то $f'(x_0) = 0$

Rolle — Нека една функция f(x) е дефинирана и непрекъсната върху интервала [a,b]. Нека освен това тя е диференцируема в (a,b) и f(a)=f(b). Тогава съществува поне една точка $\xi \in (a,b)$, такава, че $f'(\xi)=0$.

21. Продължение. (Lagrange, Cauchy)

Lagrange — Нека функцията $f(x):[a,b]\to R$ е непрекъсната и диференцируема при $x\in(a,b)$. Тогава съществува поне една точка $\xi\in(a,b)$, за която $f(b)-f(a)=f^{'}(\xi)(b-a)$. Тази теорема често се нарича теорема за крайните нараствания. Тя може да се запише и във вида: $f(x)-f(x_0)=f^{'}(x_0+\theta(x-x_0))(x-x_0)$,

където
$$b=x$$
, $a=x_0$, $0<\theta=\frac{\xi-x_0}{x-x_0}<1$.

Ако функцията f(x) е диференцируема в дефиниционния си интервал D, то условието f'(x) = 0 при $x \in D$ е необходимо и достатъчно f(x) да бъде константа.

Саисhу — Ако функциите f(x) и g(x) са непрекъснати в интервала [a,b] и са диференцируеми върху (a,b) , то съществува такава точка $\xi \in (a,b)$, че

$$[f(b)-f(a)]g'(\xi) = [g(b)-g(a)]f'(\xi)$$

22. Формули на Taylor и Maclaurin

Нека f(x) е произволен полином от степен не по-висока от n, т.е. $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$. Ако заместим x с $x_0 + h$, получаваме $f(x_0 + h) = a_0 + a_1 (x_0 + h) + a_2 (x_0 + h)^2 + ... + a_n (x_0 + h)^n$ и след разкриване на скобите се получава: $f(x_0 + h) = b_0 + b_1 h + b_2 h^2 + ... + b_n h^n$. След диференциране на равенството за $f(x_0 + h)$ получаваме: $f'(x_0 + h) = b_1 + 2b_2 h + ... + nb_n h^{n-1}$.

Нека функцията f(x) има производни до ред (n+1) при $x \in U_{\delta}(x_0)$. Тогава за всяко $x \in U_{\delta}(x_0) \setminus \{x_0\}$ съществува ξ принадлежаща на отворения интервал с краища x_0 и x, такава, че $f(x) = f(x_0) + \frac{f^{'}(x_0)}{1!}(x-x_0) + ... + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$

Ако $x_0 = 0$ формулата на Taylor се нарича формула на Maclaurin.

23. Разлагане на основните елементарни функции

Показателна функция $f(x) = e^x$ или $e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n)$

Хиперболични функции f(x) = shx и f(x) = chx

За
$$f(x) = shx$$
 имаме $shx = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}), x \to 0$

Тригонометрични функции $f(x) = \sin x$ имаме

$$f^{(2n)}(x) = \sin x \left(x + \frac{\pi}{2} (2n) \right), f^{(2n)}(0) = 0, f^{(2n+1)}(0) = (-1)^n$$

И следователно за:
$$\cos x = x - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n + \frac{x^2 n}{(2n)!} + o(x^{2n+1})$$

Степенна функция $f(x) = (1+x)^a, a \in \mathbb{R}^1$, тогава $(1+x)^a = \sum_{k=0}^n C_a^k x^k + o(x^n)$

Логаритмична функция $f(x) = \ln(1+x), x \in (-1, \infty)$, тогава

$$\ln(1=x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}}{n} x^n + o(x^n), x \to 0$$

Маклореново разлагане на e^x с остатъчен член във формата на Lagrange:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{x^{n+1}}{(n+1)!} e^{\xi}$$

24. Теореми на Лопитал

Теоремите на Лопитал дават възможност за намиране на граници на функции от вида $\frac{f(x)}{g(x)}$ в точка x_0 , в която едновременно $f(x_0) = g(x_0) = 0$.

Нека функциите f(x) и g(x) са диференцируеми в интервала $(x_0,b), \lim_{x\to x_0+0} f(x)=0, \lim_{x\to x_0+0} g(x)=0$ и $g'(x)\neq 0$ при $x\in (x_0,b)$. Ако съществува $\lim_{x\to x_0+0} \frac{f'(x)}{g'(x)}=A$, то съществува и $\lim_{x\to x_0+0} \frac{f(x)}{g(x)}=A$.

Нека функциите f(x) и g(x) са диференцируеми при x>a, като $g'(x)\neq 0$ при x>a, $\lim_{x\to\infty}f(x)=\infty$ и $\lim_{x\to\infty}g(x)=\infty$. Тогава ако съществува границата $\lim_{x\to\infty}\frac{f'(x)}{g'(x)}=A$, то съществува и $\lim_{x\to\infty}\frac{f(x)}{g(x)}=A$.

25. Изследване на функции чрез производните им. Растене и намаляване. Локални и глобални ектремуми

$$f(x) = x - \sin x$$

Нейната производна $f'(x) = 1 - \cos x > 0$ е положителна, което означава че е монотонно растяща, т.е. ако x > 0, то f(x) > f(0), което означава, че $f(x) = x - \sin x > f(0) = 0$, $x - \sin x > 0$ или $\sin x < x$ при $x \in \left(0, \frac{\pi}{2}\right)$. Но $\sin \frac{\pi}{2} < \frac{\pi}{2}$, т.е. $1 < \frac{\pi}{2}$. Понеже $\sin \frac{\pi}{2}$ е най-голямата стойност на $\sin x$, то и при $x > \frac{\pi}{2}$ ще имаме $\sin x < x$. Окончателно $\sin x < x$ при x > 0.

Точките в които производната на една функция е равна на 0, се наричат стационарни точки, а тези, в които функцията е непрекъсната, а производната $\mathfrak L$ е равна на 0 или не съществува, се наричат критични точки.

Точката x_0 се нарича точка на строг максимум (минимум), ако съществува $U_\delta(x_0)$, така че за всяко $x \in U_\delta(x_0) \setminus \{x_0\}$ е изпълнено $f(x) < f(x_0)$ ($f(x) > f(x_0)$). Точките, в които f(x) има максимум или минимум, се наричат екстремни точки.

Нека функцията f(x) е диференцируема при $x \in U_{\delta}(x_0)$ и е непрекъсната в точката x_0 . Ако f'(x) си мени знака от - към + при прехода през x_0 , то x_0 е точка на строг минимум. Ако f'(x) си мени знака от + към -, то x_0 е точка на строг максимум.

Нека x_0 е стационарна точка на f(x), т.е. f'(x) = 0 и нека съществува $f''(x_0) = 0$ и f''(x) = 0 е непрекъсната при $x = x_0$, тогава:

- 1) ако f''(x0) > 0, то x_0 е точка на строг минимум;
- 2) ако f''(x0) < 0, то x_0 е точка на строг максимум.

26. Продължение – изпъкналост, вдлъбнатост, инфлексни точки

Ако за всеки две точки $x_1, x_2 \in (a,b)$ е изпълнено неравенството

 $f\left(\frac{x_1+x_2}{2}\right) \ge \frac{f(x_1)+f(x_2)}{2}f$ се нарича вдлъбната, а в случай на строго неравенство – строго вдлъбната. Ако $f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}f$ се нарича изпъкнала (или строго изпъкнала).

Ако съществува $\delta > 0$ така, че в единия от интервалите $(x_0 - \delta, x_0), (x_0, x_0 + \delta)$ f(x) е изпъкнала, а в другия – вдлъбната, то x_0 се нарича инфлексна точка.

Нека x_0 е инфлексна точка за f(x). Ако f''(x) съществува в някаква околност $U(x_0)$ и f''(x) е непрекъсната в x_0 , то f''(x) = 0.

Ако f(x) е непрекъсната в x_0 и $f^{"}(x)$ си сменя знака при прехода през x_0 , то x_0 е инфлексна точка.

Ако f''(x) = 0 и $f'''(x) \neq 0$, то x_0 е инфлексна точка за f(x).

27. Продължение. Асимптоти

Вертикална асимптота — ако е изпълнено поне едно от условията $\lim_{x \to x_0 = 0} f(x) = \pm \infty$ или $\lim_{x \to x_0 + 0} f(x) = \pm \infty$, то правата с уравнение $x = x_0$ се нарича вертикална асимптота към графиката на y = f(x) .

Наклонена асимптота — правата y=kx+n се нарича дясна асимптота за функцията y=f(x) ако съществува границата $\lim_{x\to\infty}[f(x)-kx-n]=0$. Когато $x\to-\infty$, говорим за лява асимптота. Ако $k\neq 0$ асимптотата е наклонена, а ако k=0 -хоризонтална.

Правата y = kx + n е асимптота към графиката на y = f(x) при $x \to \infty$ тогава и само тогава, когато съществуват границите $\lim_{x \to \infty} \frac{f(x)}{x} = k \neq 0$ и $\lim_{x \to \infty} [f(x) - kx] = n$

28. Неопределен интеграл – основни свойства. Таблични интеграли

Нека функциите f(x) и F(x) са дефинирани в (a,b). Ако F'(x) съществува и за всяко $x \in (a,b)$ имаме F'(x) = f(x), то функцията F(x) се нарича примитивна на f(x).

Ако $F_1(x)$ и $F_2(x)$ са две примитивни на f(x) в интервала (a,b), то за всяко $x \in (a,b)$ е изпълнено $F_1(x) = F_2(x) + C$, където C е произволна константа.

Съвкупността от всички примитивни на функцията f(x) в някакъв интервал D се нарича неопределен интеграл от функцията f(x) и се пише $\int f(x) dx = F(x) + C$.

Операцията на намиране на неопределен интеграл на дадена функция се нарича интегриране. Интегрирането е операция обратна на диференцирането.

Таблични интеграли:

1)
$$\int x^a dx = \frac{x^{a+1}}{a+1} + C, (a \neq -1)$$
 2) $\int \frac{1}{x} dx = \ln|x| + C$ 3) $\int e^x dx = e^x + C$

4)
$$\int a^x dx = \frac{a^x}{\ln a} + C, (a > 0, a \ne 1)$$
 5) $\int \sin x dx = -\cos x + C$

$$6 \int \cos x dx = \sin x + C \qquad 7) \int \frac{dx}{\cos^2 x} = tgx + C \qquad 8) \int \frac{dx}{\sin^2 x} = -\cot gx + C$$

9)
$$\int shxdx = chx + C$$
 10) $\int chxdx = shx + C$ 11) $\int \frac{1}{ch^2x}dx = thx + C$

12)
$$\int \frac{1}{sh^2x} dx = -cothx + C$$
 13) $\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + C$

14)
$$\int \frac{dx}{1+x^2} = arctgx + C$$
 15)
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

Свойства:

1)
$$d\left(\int f(x)dx\right) = f(x)dx$$
 2) $\int dF(x) = F(x) + C \Rightarrow \int dF(x) = \int f(x)dx = F(x) + C$

3) Ако функциите f(x) и g(x) имат примитивни в някакъв интервал, то за всеки $\alpha, \beta \in R$ такива, че $\alpha\beta \neq 0$, функцията $\varphi(x) = \alpha f(x) + \beta g(x)$ също има примитивна и $\int [\alpha f(x) + \beta f(x)] dx = \alpha \int f(x) dx + \beta \int g(x) dx$.

29. Интегриране, чрез внасяне под знака на диференциала

Нека функцията f(u) има примитивна в D_f , а функцията $\varphi(x)$ е диференцируема в D_φ и $\varphi:D_\varphi\to D_f$. Тогава функцията $f\left[\varphi(x)\right]\varphi'(x)$ има неопределен интеграл в D_φ и ако положим $F(u)=\int f(u)du$, то имаме $\int f\left[\varphi(x)\right]\varphi'(x)dx=F\left[\varphi(x)\right]+C$

30. Интегриране, чрез субституция. Интегриране по части

$$f(x)dx = f[\varphi(t)]d\varphi(t) = f[\varphi(t)]\varphi'(t)dt$$

Означаваме с $u(t)=f\left[\varphi(t)\right]\varphi'(t)$, откъдето имаме f(x)dx=u(t)dt. Нека U(t) е примитивна за u(t). Следователно $\int u(t)dt=U(t)+C$, т.е.

$$I = \int f(x)dx = \int u(t)dt = U(t) + C = U[\omega(x)] + C$$

Интегриране по части:

 $\int (uv)' dx = \int u'v dx + \int uv' dx + C \,, \text{ ако причислим } C \, \text{ към интеграла } \int (uv)' dx \,, \text{ имаме} \\ uv = \int u' dx + \int uv' dx \, \text{ или } \int u' dx = uv - \int uv' dx \,, \text{ като последното може да се запише и така:} \\ \int v du = uv - \int u dv \,, \text{ което се нарича формула за интегриране по части.}$

31. Интегриране на рационални функции

Интегралите от рационални функции представляват много важен клас ,понеже почти всички останали интеграли по-нататък се свеждат към тях с помощта на подходящи субституции. Както е известно рационалните функции са тези, които са частно от два полинома ,т.е. $\int R(\sin x,\cos x)dx \ f(x) = \frac{P_m(x)}{Q_n(x)}$, където $P_m(x)$ е полином от степен m, $Q_n(x)$ - от степен n. Коефициентите на $P_m(x)$ и $Q_n(x)$ са реални числа. Засега ще предположим, че m < n и в този случай ще казваме, че f(x) е правилна дроб.

32. Интегриране на някои класи ирационални функции

Интеграли от вида $\int R \left(x, \left(\frac{ax+b}{ch+d} \right)^{r-1}, ..., \left(\frac{ax+b}{cx+d} \right)^{r_n} \right) dx$, където $r_k \in Q(k=1,...,n), a,b,c,d \in R^1, ad-bc \neq 0$. В този случай се полага $\frac{ax+b}{cx+d} = t^p$, където p е общият знаменател на рационалните числа $r_1, r_2, ..., r_n$.

33. Ойлерови субституции. Дигеренциален бином

Интеграли от вида $\int R\left(x,\sqrt{ax^2+bx+c}\right)dx$, където $a\neq 0,b^2-4ac\neq 0$. Тези интеграли се свеждат до интеграли от рационални функции чрез така наречените Ойлерови субституции;

- 1) ако a>0 , полагаме $\sqrt{ax^2+bx+c}=\pm t\pm \sqrt{a}x$;
- 2) ако c > 0 , полагаме $\sqrt{ax^2 + bx + c} = \pm xt \pm \sqrt{c}$
- 3) ако $b^2-4ac>0$ полагаме $\sqrt{ax^2+bx+c}=\pm t(x-\alpha)$, където α е единият от корените на $ax^2+bx+c=0$. Изборът на знаците е в зависимост от конкретната задача.

Изразът $x^m (a+bx^n)^p$ където m,n и p са рационални числа, а числата $a,b \in R$ са различни от 0, се нарича диференциален бином.

- 1) Числото \bar{p} е цяло, полагаме $x=t^2$
- 2) Числото $\frac{m+1}{n}$ е цяло, полагаме $a+bx^n=t$
- 3) Числото $\frac{m+1}{n} + p$ е цяло, полагаме $t = \frac{a + bx^n}{x^n}$

34. Интегриране на рационални функции на $\sin x$ и $\cos x$

 $R(u,v) = \frac{u^2 - 4uv + 3u^2v - 2}{u^4 + v^4 + 3^2v^2 + 3u - v + 2}$. Ако в една такава функция u е заместено с $\sin x$, а v - с $\cos x$, то получаваме рационална функция от тригонометричните функции $\sin x$ и $\cos x$. И така интеграла от вида $\int R(\sin x, \cos x) dx$ се привеждат към интеграли

от рационална функция чрез субституцията $t = tg\frac{x}{2}$. Тъй като $\sin x = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}}$,

$$\cos x = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}}, \qquad \text{To} \qquad \sin x = \frac{2t}{1 + t^2}, \cos x = \frac{1 - t^2}{1 + t^2}, x = 2arctgt, dx = \frac{2}{1 + t^2}dt. \qquad \text{Ako}$$

подинтегралната функция R(u,v) удовлетворява допълнителни условия, то рационализирането на $\int R(\sin x,\cos x)dx$ става по-лесно със следните субституции:

- 1) Ако $R(-\sin x, \cos x) = -R(\sin x, \cos x)$ полагаме T > 0 $t = \cos x$.
- 2) Ako $R(\sin x, -\cos) = -R(\sin x, \cos x)$ полагаме $t = \sin x$
- 3) Ako $R(-\sin x, -\cos x) = R(\sin x, \cos x)$ Hojarame t = tgx

35. Определен интеграл – интеграл на Риман

Изразът $\sum_{i=0}^{n-1} f(\xi_i) \Delta x_i$ се нарича интегрална сума на Риман за f(x) , съответстваща на разделянето (σ) .

Функцията f(x) се нарича интегрируема по Риман върху [a,b], ако съществува число I със следното свойство: за всяко $\varepsilon>0$ съществува $\delta=\delta(\varepsilon)>0$ така, за всяко разделяне (σ) на [a,b] за което $h(\sigma)< b$ е изпълнено $\left|\sum_{i=0}^{n-1} f(\xi_i) \Delta x_i - I\right| < \varepsilon$ при всеки избор на точките $\xi_i \in [x_i, x_i + 1] (i = 0, 1, ..., n-1)$. Числото I се нарича определен интеграл на Риман и се означава $\int_{-\infty}^{b} f(x) dx$. С други думи $\int_{-\infty}^{b} f(x) dx = \lim_{h(\sigma) \to 0} \sum_{i=0}^{n-1} f(\xi_i) \Delta x_i$.

Ако f(x) е интегрируема по Риман върху интервала [a,b], то тя е ограничена върху [a,b].

36. Суми на Дарбу – свойства

 $S(\sigma) = \sum_{i=0}^{n-1} M_i \Delta x_i$, $S(\sigma) = \sum_{i=0}^{n-1} m_i \Delta x_i$. Числата $S(\sigma)$ и $S(\sigma)$ се наричат съответно голяма и малка сума на Дарбу, съответстващи на разделянето $S(\sigma)$. Разделянето $S(\sigma)$ на $S(\sigma)$ се нарича издребняване на разделянето $S(\sigma)$. Ако всяка точка на разделянето $S(\sigma)$ се съдържа в $S(\sigma)$ (но не и обратно) и пишем $S(\sigma)$ 0.

Нека $(\sigma) \subset (\sigma')$ като разлагането (σ') е получено от (σ) чрез добавяне на P нови точки на делене, тогава в сила следните неравенства:

$$0 \le S(\sigma) - S(\sigma') \le p(M - m)h(\sigma)$$

$$0 \le s(\sigma) - s(\sigma') \le p(M - m)h(\sigma)$$

С други думи големите суми на Дарбу намаляват при издребняване на (σ) , а малките растат. Всяка малка сума на Дарбу е по-малка от всяка голяма сума на Дарбу, с други думи ако (σ_1) и (σ_2) са две разделяния на интервала [a,b], то $s(\sigma_1) \leq S(\sigma_2)$.

Множеството от всички малки суми $s(\sigma_1)$ е ограничено отгоре. От принципа за непрекъснатост следва, че съществува точна горна граница на сумите $s(\sigma_1)$, т.е. $\sup s(\sigma_1) = I$ и числото I се нарича долен интеграл на Дарбу. По същия начин установяваме, че съществува числото $I = \inf S(\sigma_2)$, което се нарича горен интеграл на Дарбу.

За всеки две разделяния (σ_1) и (σ_2) на [a,b] съществуват числата I и I, за които $s(\sigma_1) \leq I \leq \bar{I} < S(\sigma_2) \,.$

37. Основни свойства на Римановия интеграл

Ако f(x) е интегрируема върху интервала [a,b], то тя е интегрируема върху всеки под интервал $[a_i,b_i] \subset [a,b]$.

Ако $c \in (a,b), f(x)$ е интегрируема върху [a,c] и [c,b], то f(x) е интегрируема върху [a,b] и $\int\limits_{a}^{b} f(x) dx = \int\limits_{a}^{c} f(x) dx + \int\limits_{a}^{b} f(x) dx$.

Ако f(x) и g(x) са интегрируеми върху [a,b], то сумата f(x)+g(x) е интегрируема върху [a,b] и $\int\limits_{a}^{b} [f(x)+g(x)]dx = \int\limits_{a}^{b} f(x)dx + \int\limits_{a}^{b} g(x)dx$.

Ако f(x) е интегрируема върху [a,b], а c е произволна константа, то функцията c.f(x) е интегрируема върху [a,b] и $\int\limits_{a}^{b} (cf(x)dx) = c\int\limits_{a}^{b} f(x)dx$.

Ако f(x) и g(x) са дефинирани върху [a,b], при това f(x) е интегрируема върху [a,b], а g(x) се отличава от f(x) в краен брой точки от [a,b], то g(x) е интегрируема върху [a,b] и $\int\limits_{a}^{b} g(x) dx = \int\limits_{a}^{b} f(x) dx$

Ако f(x) и g(x) са интегрируеми върху [a,b], то f(x)g(x) е интегрируема върху [a,b].

Ако f(x) е интегрируема върху [a,b] и $f(x) \ge 0$, то $\int_{a}^{b} f(x) dx \ge 0$.

Ако
$$f(x) \le g(x)$$
 при $x \in [a,b]$, то $\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$.

Ако f(x) е интегрируема върху [a,b], |f(x)| е също интегрируема и $\left|\int\limits_a^b f(x)dx\right| \leq \int\limits_a^b |f(x)|dx$. От интегрируемостта на |f(x)| не следва интегрируемост f(x),

което се вижда от следния пример. Нека $f(x) = D(x) - \frac{1}{2}$, където D(x) е вече разгледаната функция на Dirichlet.

38. Класи интегрируеми по Риман функции

Ако една функция f(x) е непрекъсната върху [a,b], то тя е интегрируема по Риман. Ако f(x) е ограничена върху [a,b] и е непрекъсната с изключение на краен брой точки, то f(x) е интегрируема в смисъл на Риман върху [a,b]. Ако f(x) е монотонна върху [a,b], то тя е интегрируема.

Теорема за средните стойности — ако f(x) е непрекъсната върху [a,b], то съществува $\xi \in [a,b]$, така че $\int\limits_a^b f(x) dx = f(\xi)(b-a)$.

Ако f(x) е интегрируема по Риман върху [a,b], то функцията $F(x) = \int_{a}^{x} f(t) dt$ е непрекъсната.

39. Теорема и формула на Нютон – Лайбниц

Newton-Leibniz — ако f(x) е интегрируема върху [a,b] и е непрекъсната при $x=x_0$, то F(x) е диференцируема при $x=x_0$ и $F^{'}(x_0)=f(x_0)$.

Ако f(x) е непрекъсната в [a,b], то функцията $F(x) = \int_a^x f(t) dt$ е примитивна на f(x). Ако f(x) е непрекъсната в [a,b], то $\int_a^x f(t) dt = \phi(x) - \phi(a)$, където $\phi(x)$ е една от примитивните на f(x).

Нека функциите u(x) и v(x) са интегрируеми по Риман върху [a,b] и $U(x) = U_0 + \int\limits_a^x u(t)dt, V(x) = V_0 + \int\limits_a^x v(t)dt$, където U_0 и V_0 са произволни константи. Тогава функциите U(x)u(x) и V(x)v(x) са интегрируеми по Риман върху [a,b] и $\int\limits_a^b U(x)u(x)dx = U(x)V(x)\Big|_a^b - \int\limits_a^b V(x)v(x)dx$ или друго я че записано $\int\limits_a^b U(x)u(x)dx = U(b)V(b) - U(a)V(a) - \int\limits_a^b V(x)v(x)dx$.

Ако функциите u(x) и v(x) са непрекъснати върху [a,b], заедно с първите си производни, то е валидна формулата за интегриране по части $\int\limits_a^b u(x)v'(x)dx = u(x)v(x)\bigg|_a^b - \int\limits_a^b v(x)u'(x)dx$

Смяна на променливите — нека f(x) е дефинирана и непрекъсната в [a,b], $\varphi(t):[\alpha,\beta]\to[a,b]$ е диференцируема и има непрекъсната производна $\varphi(t)$ като $\varphi(\alpha)=a$ и $\varphi(\beta)=b$. Тогава $\int_{a}^{b}f(x)dx=\int_{a}^{b}f(\varphi(t))\varphi'(t)dt$.

40. Приложение на определения интеграл – дължина на дъга и т.н.

Наредената двойка функции $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, които са дефинирани и непрекъснати в интервала $[\alpha, \beta]$ се нарича дъга. Множеството от наредени двойки [x(t), y(t)], когато $t \in [\alpha, \beta]$, се нарича графика на дъгата.

Ако съвкупността от числата I_σ (когато (σ) описва всички възможни разделяния на $[\alpha,\beta]$) е ограничена отгоре, то казваме че дъгата е ректифицируема. Под дължина на дъгата ℓ разбираме точната горна граница на множеството $\{I_\sigma\}_\sigma$

Ако функцията $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$ $t \in [\alpha, \beta]$ имат непрекъснати първи производни при $t \in [\alpha, \beta]$, то дъгата е ректифицируема и нейната дължина се дава с формулата $\ell = \int\limits_{-\infty}^{\beta} \sqrt{x^{'2}(t) + y^{'2}(t) dt}$.

Ако дъгата е зададена чрез функцията y=f(x) при $x\in [\alpha,\beta]$, тогава $\begin{vmatrix} x=t\\y=f(t) \end{vmatrix}$ и формулата за дължина на дъга става $\ell=\int\limits_{\alpha}^{\beta}\sqrt{1+f^{'2}(x)}dx$.

Ако дъгата е зададена чрез полярно уравнение $\rho = f(\theta), \theta \in [\alpha, \beta]$, тогава нейната дължина е $\ell = \int\limits_{\alpha}^{\beta} \sqrt{\rho^2(\theta) + \left[\rho'(\theta)\right]^2} d\theta$

41. Числови редове – абсолютно и условно сходящи

Редът $\sum_{k=1}^{\infty} x_k$ се нарича абсолютно сходящ, ако е сходящ редът $\sum_{k=1}^{\infty} |x_k|$. Редът $\sum_{k=1}^{\infty} x_k$ се нарича условно сходящ, ако $\sum_{k=1}^{\infty} x_k$ е сходящ, а $\sum_{k=1}^{\infty} |x_k|$ е разходящ.

Ако един ред $\sum_{k=1}^{\infty} x_k$ е абсолютно сходящ, той е и сходящ. Ако един ред $\sum_{k=1}^{\infty} x_k$ е с неотрицателни (не положителни) членове и редицата $x_1, x_2, ..., x_n, ...$ е ограничена отгоре (отдолу), той е сходящ.

Принцип за сравнение — нека членовете на двата реда $\sum_{k=1}^{\infty} x_k$ и $\sum_{n=1}^{\infty} y_n$ са свързани с условието $0 \le |x_n| \le y_n$ при $n \ge n_0$, тогава:

1) Ако
$$\sum_{k=1}^{\infty} \mathcal{Y}_k$$
 е сходящ, то $\sum_{k=1}^{\infty} \mathcal{X}_k$ е абсолютно сходящ

2) Ако
$$\sum_{k=1}^{\infty} x_k$$
 е разходящ, то и $\sum_{k=1}^{\infty} y_k$ $(y_k \ge 0)$ е разходящ

Критерий на D'Alambert — Ако за всяко $n \ge n_0$, $x_n \ne 0$ имаме $\left| \frac{x_{n+1}}{x_n} \right| \le q < 1$, то редът $\sum_{k=1}^{\infty} x_k$ е абсолютно сходящ. Ако при $n \ge n_0$ $\left| \frac{x_{n+1}}{x_n} \right| \ge q > 1$, то $\sum_{k=1}^{\infty} x_k$ е разходящ.

Ако съществува границата $\lim_{n\to\infty}\left|\frac{x_{n+1}}{x_n}\right|=q$, то при q<1, редът $\sum_{n=1}^{\infty}x_n$ е абсолютно сходящ, а при q>1 е разходящ.

Cauchy — ако при $n \ge n_0$ е изпълнено $\sqrt[n]{|x_n|} \le q < 1$, то $\sum_{n=1}^\infty x_n$ е абсолютно сходящ, а при $\sqrt[n]{|x_n|} \ge q > 1$ редът $\sum_{n=1}^\infty x_n$ е разходящ.

Ако съществува $\lim_{n\to\infty} \sqrt[n]{|x_n|} = q$, то $\sum_{n=1}^{\infty} x_n$, е сходящ при q<1 и разходящ при q>1 (ако q=1 не може да се направи заключение).

Leibniz – ако
$$a_k \ge a_{k+1} > 0$$
 $\lim_{k \to \infty} a_k = 0$, то редът $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ е сходящ.

Ако $\sum_{k=1}^{\infty} x_k$ е абсолютно сходящ, то редът $\sum_{k=1}^{\infty} \mathcal{Y}_k$ получен чрез разместване на членовете на $\sum_{k=1}^{\infty} x_k$, е също абсолютно сходящ и има същата сума.

Riemann — ако редът $\sum_{k=1}^{\infty} x_k$ е сходящ (условно) и Y е произволно реално число, то членовете му могат да бъдат разместени така, че $\sum_{k=1}^{\infty} x_{m(k)} = Y$.

Нека редовете $\sum_{k=1}^{\infty} x_k$ и $\sum_{k=1}^{\infty} y_k$ са сходящи със суми съответно X и Y, като единият от тях (например $\sum_{k=1}^{\infty} x_k$) е сходящ абсолютно. Тогава $\sum_{k=0}^{\infty} z_k$ е сходящ и сумата му е Z = XY.

42. Редици и редове от функции

$$f_1(x), f_2(x), ..., f_n(x), ...$$

Казваме, че горната редица е сходяща в D, ако за всяла фиксирана стойност на $x_0 \in D$ съответната числова редица $f_1(x_0), f_2(x_0), ..., f_n(x_0), ...$ е сходяща и означаваме нейната граница $f(x_0)$. С други думи за всяко $\varepsilon > 0$ съществува v, така че при n > v $\left| f_n(x_0) - f(x_0) \right| < \varepsilon$. Ако всяко $\varepsilon > 0$ съществува v, което зависи само от ε , но не и от x, така че $\left| f_n(x_0) - f(x_0) \right| < \varepsilon$ за всяко $x \in D$ говорим за равномерна сходимост на редицата от функции.

Weierstrass — ако съществува ред с положителни членове $a_1+a_2+...+a_n+...$, който е сходящ и освен това $|u_n(x)| \le a_n$ за всяко $x \in D$, то редът $u_1(x)+u_2(x)+...$ е равномерно сходящ.

Ако редицата от непрекъснати функции $f_1(x), f_2(x), ..., f_n(x), ...$ е равномерно сходяща върху $x \in D$, то границата $f_0(x)$ е непрекъсната върху D. Ако редът от непрекъснати функции $u_1(x) + u_2(x) + ...$ е равномерно сходящ, то сумата S(x) е непрекъсната функция.

Граничен преход под знака на интеграла — ако редицата от функции $f_1(x), f_2(x), ..., f_n(x), ...,$ които са непрекъснати в интервала [a,b], е равномерно сходяща, то $\lim_{n\to\infty} \int\limits_a^b f_n(x) dx = \int\limits_a^b l \lim_{n\to\infty} f_n(x) dx$.

43. Степенни редове. Ред на Тейлър-Маклорен

Функционален ред от вида $a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + ... + a_n(x - x_0)^n + ...$, където $a_0, a_1, ..., a_n, ...$ са реални числа се нарича степенен ред. В степенния ред $\sum_{k=0}^\infty u_n(x)$ функциите са избрани по специален начин, а именно $u_n(x) = a_n(x - x_0)^n$. Непосредствено се вижда че степенния ред е сходящ при $x = x_0$ и неговата сума е a_0 . Степенният ред $\sum_{n=0}^\infty a_n(x - x_0)^n$ е абсолютно сходящ при всички $x \in R$, за които $|x - x_0| < R$ и разходящ при всички x, за които $|x - x_0| > R$, ако $x = \infty$, то $\sum_{n=0}^\infty a_n(x - x_0)^n$ е сходяща за всяко $x \in R$.

Интервалът (x_0-R,x_0+R) или $(-\infty,\infty)$ се нарича интервал на сходимост на степенен ред. В точките x_0-R и x_0+R предварително не може да се каже нищо за сходимостта.

Ако редът $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ е сходящ при $x \neq x_1$, то той е абсолютно сходящ при всяко x, за което $|x-x_0| < |x_1-x_0|$. Степенният ред $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ е равномерно сходящ във всеки интервал от вида $\left[x_0 - r, x_0 + r \right]$ при r < R. Степенният ред $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ може да се диференцира (и интегрира) произволен брой пъти в интервала на сходимост.

Taylor – степенният ред:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f'(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \dots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

се нарича ред на Taylor за безкрайно диференцируемата функция $f(x) \in D$. При $x_0 = 0$ редът се нарича ред на Maclaurin. Непосредствено от формулата на Taylor следва редът $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ е сходящ към f(x) в точката $x \in D$, тогава и само тогава, когато $\lim_{n \to \infty} R_n(x,x_0) = 0$.

44. Несобствени интеграли

Несобствен интервал от първи род от функцията f(x) дефинирана върху $[a,\infty)$ и интегрируема по Риман върху всеки интервал от вида $[a,p] \subset [a,\infty)$ се нарича границата $\lim_{p\to\infty}\int_a^p f(x)dx$ (ако съществува) и се означава с $\int_a^\infty f(x)dx$, т.е. $\int_a^\infty f(x)dx = \lim_{p\to\infty}\int_a^p f(x)dx$. Казва се още, че несобствения интеграл $\int_a^\infty f(x)dx$ е сходящ, а функцията f(x) е интегрируема в несобствен смисъл. Ако границата $\lim_{p\to\infty}\int_a^p f(x)dx$ не съществува казваме, че $\int_a^\infty f(x)dx$ е разходящ. Несобственият интеграл $\int_a^\infty fdx$ се нарича абсолютно сходящ, ако $\int_a^\infty |f(x)|dx$ е сходящ. Ако един интеграл е сходящ, но не е абсолютно сходящ, той се нарича условно сходящ.