S/N Unknown

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Gurtej Singh Sandhu et al.

Examiner: Unknown

Serial No.:

Unknown

Group Art Unit: Unknown

Filed:

Herewith

Docket: 303.676US3

Title:

CHEMICAL VAPOR DEPOSITION OF TITANIUM

PRELIMINARY AMENDMENT

Commissioner for Patents Washington, D.C. 20231

When the above-identified patent application is taken up for consideration, please amend the application as follows:

IN THE SPECIFICATION

Please make the paragraph substitutions indicated in the appendix entitled Clean Version of Amended Specification Paragraph. The specific changes incorporated in the substitute paragraph are shown in the following marked-up version of the original paragraph:

The paragraph beginning on page 1, line 4 is amended as follows:

This application is a <u>Divisional of U.S. Application No. 09/489,187</u>, filed on January 20, 2000, which is a continuation-in-part of U.S. Application Serial No. 09/030,705, filed February 25, 1998, now issued as U.S. Patent 6,143,362 on November 7, 2000, which is hereby incorporated by reference in its entirety.

IN THE CLAIMS

Please cancel claims 1-45 and 48-56 after adding the following new claims.

- 60. (New) A memory device, comprising:
 - a semiconductor substrate;
 - a memory array coupled to the semiconductor substrate;
 - a control circuit, operatively coupled to the memory array;
 - an I/O circuit, operatively coupled to the memory array;
 - an electronic device coupled to the semiconductor substrate, the electronic device having

an active region;

The state of the s

an insulating layer over the active region;

an alloy layer of a titanium alloy within a contact opening in the insulating layer, the contact opening being at least partially over the active region, wherein the titanium alloy comprises titanium and an element selected from the group consisting of zinc, cadmium, mercury, aluminum, gallium, indium, tin, silicon, germanium, lead, arsenic and antimony; and

a titanium silicide contact coupled to the alloy layer.

- 61. (New) The memory device of claim 60, wherein the titanium alloy includes titanium and zinc.
- 62. (New) The memory device of claim 60, wherein the insulator layer includes silicon dioxide (SiO₂).
- 63. (New) The memory device of claim 60, wherein the electronic device includes a transistor.
- 64. (New) A memory device, comprising:
 - a semiconductor substrate;
 - a memory array coupled to the semiconductor substrate;
 - a control circuit, operatively coupled to the memory array;
 - an I/O circuit, operatively coupled to the memory array;
- a transistor formed on the semiconductor substrate, the transistor having a source/drain region;

an insulating layer over the source/drain region;

an alloy layer of a titanium alloy within a contact opening in the insulating layer, the contact opening being at least partially over the source/drain region, wherein the titanium alloy comprises titanium and an element selected from the group

consisting of zinc, cadmium, mercury, aluminum, gallium, indium, tin, silicon, germanium, lead, arsenic and antimony; and a titanium silicide contact coupled to the alloy layer. (New) The memory device of claim 64, wherein the titanium alloy includes titanium and 65. zinc.

- (New) The memory device of claim 64, wherein the insulator layer includes silicon 66. dioxide (SiO₂).
- (New) The memory device of claim 64, wherein the contact opening includes a high 67. aspect ratio contact opening.
- (New) A memory device, comprising: 68.
 - a semiconductor substrate;

- a memory array coupled to the semiconductor substrate;
- a control circuit, operatively coupled to the memory array;
- an I/O circuit, operatively coupled to the memory array;
- an electronic device formed on the semiconductor substrate, the electronic device having an active region;
 - a borophosphous silicate glass (BPSG) layer over the active region;
 - an alloy layer of a titanium alloy within a contact opening in the borophosphous silicate glass (BPSG) layer, the contact opening being at least partially over the active region, wherein the titanium alloy comprises titanium and an element selected from the group consisting of zinc, cadmium, mercury, aluminum, gallium, indium, tin, silicon, germanium, lead, arsenic and antimony; and a titanium silicide contact coupled to the alloy layer.

- 69. (New) The memory device of claim 68, wherein the titanium alloy includes titanium and zinc.
- 70. (New) The memory device of claim 68, wherein the electronic device includes a transistor.
- 71. (New) The memory device of claim 68, wherein the contact opening includes a high aspect ratio contact opening.
- 72. (New) A memory device, comprising:
 - a semiconductor substrate;
 - a memory array coupled to the semiconductor substrate;
 - a control circuit, operatively coupled to the memory array;
 - an I/O circuit, operatively coupled to the memory array;
- an electronic device coupled to the semiconductor substrate, the electronic device having an active region;

an insulating layer over the active region;

- an alloy layer of a titanium alloy within a high aspect ratio contact opening in the insulating layer, the high aspect ratio contact opening being at least partially over the active region, wherein the titanium alloy comprises titanium and an element selected from the group consisting of zinc, cadmium, mercury, aluminum, gallium, indium, tin, silicon, germanium, lead, arsenic and antimony; and a titanium silicide contact coupled to the alloy layer.
- 73. (New) The memory device of claim 72, wherein the titanium alloy includes titanium and zinc.
- 74. (New) The memory device of claim 72, wherein the electronic device includes a transistor.

- 75. (New) The memory device of claim 72, wherein the insulator layer includes silicon dioxide (SiO₂).
- (New) The memory device of claim 72, wherein the insulator layer includes 76. borophosphous silicate glass (BPSG).
- 77. (New) A memory device, comprising:
 - a semiconductor substrate;
 - a memory array coupled to the semiconductor substrate;
 - a control circuit, operatively coupled to the memory array;
 - an I/O circuit, operatively coupled to the memory array;
- a transistor coupled to the semiconductor substrate, the transistor having a source/drain region;

an insulating layer over the source/drain region;

an alloy layer of a titanium alloy within a high aspect ratio contact opening in the insulating layer, the high aspect ratio contact opening being at least partially over the source/drain region, wherein the titanium alloy comprises titanium and an element selected from the group consisting of zinc, cadmium, mercury, aluminum, gallium, indium, tin, silicon, germanium, lead, arsenic and antimony; and

a titanium silicide contact coupled to the alloy layer.

- 78. (New) The memory device of claim 77, wherein the titanium alloy includes titanium and zinc.
- 79. (New) The memory device of claim 77, wherein the insulator layer includes silicon dioxide (SiO₂).

Filing Date: Herewith

CHEMICAL VAPOR DEPOSITION OF TITANIUM

Dkt: 303.676US3

- 80. (New) The memory device of claim 77, wherein the insulator layer includes borophosphous silicate glass (BPSG).
- 81. (New) A memory device, comprising:
 - a semiconductor substrate;
 - a memory array coupled to the semiconductor substrate;
 - a control circuit, operatively coupled to the memory array;
 - an I/O circuit, operatively coupled to the memory array;
- a transistor coupled to the semiconductor substrate, the transistor having a source/drain region;
 - a borophosphous silicate glass (BPSG) layer over the source/drain region; an alloy layer of a titanium alloy within a high aspect ratio contact opening in the borophosphous silicate glass (BPSG) layer, the high aspect ratio contact opening being at least partially over the source/drain region, wherein the titanium alloy comprises titanium and an element selected from the group consisting of zinc, cadmium, mercury, aluminum, gallium, indium, tin, silicon, germanium, lead, arsenic and antimony; and
 - a titanium silicide contact coupled to the alloy layer.
- 82. (New) The memory device of claim 81, wherein the titanium alloy includes titanium and zinc.

PRELIMINARY AMENDMENT

Serial Number: Unknown Filing Date: Herewith

Title: CHEMICAL VAPOR DEPOSITION OF TITANIUM

Page 7 Dkt: 303.676US3

REMARKS

Currently claims 46-47 and 57-82 are pending in the application. The Applicant respectfully requests that the preliminary amendment described herein be entered into the record prior to examination and consideration of the above-identified application. The Examiner is invited to contact Applicant's Representatives at the below-listed telephone number if there are any questions regarding this Preliminary Amendment or if prosecution of this application may be assisted thereby.

Respectfully submitted,

GURTEJ SINGH SANDHU ET AL.

By their Representatives,

SCHWEGMAN, LUNDBERG, WOESSNER & KLUTH, P.A.

P.O. Box 2938

Minneapolis, MN 55402

(612) 373-6944

Date _8/27/01

David C. Peterson

Reg. No. 47,857

"Express Mail" mailing label number: <u>EL873860197US</u>

Date of Deposit: August 28, 2001

This paper or fee is being deposited on the date indicated above with the United States Postal Service pursuant to 37 CFR 1.10, and is addressed to the Commissioner for Patents, Box Patent Application, Washington, D.C. 20231.

CLEAN VERSION OF AMENDED SPECIFICATION PARAGRAPHS

CHEMICAL VAPOR DEPOSITION OF TITANIUM Applicant: Gurtej Singh Sandhu et al.

The paragraph beginning on page 1, line 4.

This application is a Divisional of U.S. Application No. 09/489,187, filed on January 20, 2000, which is a continuation-in-part of U.S. Application Serial No. 09/030,705, filed February 25, 1998, now issued as U.S. Patent 6,143,362 on November 7, 2000, which is hereby incorporated by reference in its entirety.