Lógica y Matemática Computacional Licenciatura en Sistemas de Información

Algebra de Boole

Ing. JULIO C. ACOSTA

Unidad IV. Algebra de Boole

Definición.

Propiedades.

Principio de dualidad.

Puertas lógicas y circuitos booleanos.

Minimización de circuitos.

Funciones booleanas.

Diagrama de Karnaugh.

Definición

$$B = (S, +, \cdot, ', 0, 1)$$

- Leyes asociativas

$$x + (y + z) = (x + y) + z$$
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

- Leyes conmutativas

$$x + y = y + z$$
, $x \cdot y = y \cdot x$

- Leyes distributivas

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$
$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

Definición

$$B = (S, +, \cdot, ', 0, 1)$$

- Leyes de identidad (o del neutro)

$$x + 0 = x$$

$$x \cdot 1 = x$$

- Leyes del complemento

$$x + x' = 1$$

$$x \cdot x' = 0$$

$$B = (S, +, \cdot, ', 0, 1)$$

 $S = (x_1, x_2, ..., x_n)$

Algebra de Boole aplicado al álgebra de conjuntos

$$B = (S, \cup, \cap, -, \emptyset, U)$$

$$S = (X_1, X_2, ..., X_n)$$

Ejemplo:

$$B = (P_{(U)}, \cup, \cap, \overline{}, \emptyset, U)$$

$$U = \{1, 2\}$$

$$P(U) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

U	ф	{1}	{2}	{1,2}
ф	ф	{1}	{2}	{1,2}
{1}	{1}	{1}	{1,2}	{1,2}
{2}	{2}	{1,2}	{2}	{1,2}
{1,2}	{1,2}	{1,2}	{1,2}	{1,2}

\cap	ф	{1}	{2}	{1,2}
ф	ф	ф	ф	ф
{1}	ф	{1}	ф	{1}
{2}	ф	ф	{2}	{2}
{1,2}	ф	{1}	{2}	{1,2}

$$B = (S, +, \cdot, ', 0, 1)$$

 $S = (x_1, x_2, ..., x_n)$

Algebra de Boole aplicado al álgebra de proposiciones

$$B = (Z_2, \lor, \land, \neg, 0, 1)$$

$$Z_2 = \{0, 1\}$$

V	0	1
0	0	1
1	1	1

^	0	1
0	0	0
1	0	1

Sea Z el conjunto de fórmulas lógicas

 $Z = \{ \theta / \theta \text{ es una fórmula lógica} \}$

Desde un punto de vista estrictamente algebraico, definimos un Algebra de Boole sobre un conjunto cociente de Z

$$\theta \wedge \theta$$
; $\theta \vee \theta$; $\theta \wedge \theta \wedge \theta$; $\theta \vee \theta \vee \theta$; ...

Son todas fórmulas equivalentes a θ y pertenecen al conjunto Z, lo mismo que θ

Dos fórmulas θ y ϕ son equivalentes (y pertenecen al conjunto Z), si y solo si son lógicamente equivalentes

$$\theta$$
 es equivalente a ϕ \Leftrightarrow $\theta \leftrightarrow \phi$ es tautología

Llamamos la clase de fórmulas θ (y designaremos con $[\theta]$) a las formadas por todas las fórmulas lógicamente equivalentes.

$$[\theta] = \{\theta \land \theta; \ \theta \lor \theta; \ \theta \land \theta \land \theta; \ \theta \lor \theta \lor \theta; \dots\}$$

$$[\theta \rightarrow \phi] = \{\theta \rightarrow \phi; \neg \theta \lor \phi; \neg (\theta \land \neg \phi); ...\}$$

La relación de equivalencia induce una partición del conjunto Z, en el sentido que:

- i) cada clase es no vacía,
- ii) son disjuntas de a dos y
- iii) la unión de todos es Z

El conjunto cociente Z/eq está formado por todas las clases de equivalencia generadas por esta relación

$$Z/eq = \{[\theta], \theta \text{ es una fórmula lógica}\}$$

$$B = (Z/eq, \lor, \land, \neg, [\theta \land \neg \theta], [\theta \lor \neg \theta])$$

Es el Algebra de Boole de las fórmulas lógicas

$$x + y = X \cup Y = p \vee q$$
$$x \cdot y = X \cap Y = p \wedge q$$
$$x' = \overline{X} = \neg p$$

Asumiendo el orden de precedencia de los operadores del lenguaje proposicional, definimos que en el álgebra de Boole, el producto precede a la suma

$$(x \cdot y) + z = x \cdot y + z$$

Unicidad del complemento

Hipótesis: Si
$$x + y = 1$$
 y $x \cdot y = 0$

Tesis:
$$y = x'$$

Demostración:

$$y = y \cdot 1 \rightarrow y = y \cdot (x + x')$$

$$y = y \cdot x + y \cdot x \rightarrow y = x \cdot y + x' \cdot y$$

$$y = 0 + x' \cdot y \rightarrow y = x \cdot x' + x' \cdot y$$

$$y = x' \cdot x + x' \cdot y \rightarrow y = x' \cdot (x + y)$$

$$y = x' \cdot 1 \rightarrow y = x'$$

Leyes de idempotencia

Tesis 1:
$$x + x = x$$

Demostración:

$$x = x + 0 \rightarrow x = x + (x \cdot x')$$

$$x = (x + x) \cdot (x + x') \rightarrow x = (x + x) \cdot 1$$

$$x = x + x$$

Tesis 2:
$$x \cdot x = x$$

$$x = x \cdot 1 \quad \rightarrow \quad x = x \cdot (x + x')$$

$$x = (x \cdot x) + (x \cdot x^{`}) \quad \rightarrow \quad x = (x \cdot x) + 0$$

$$x = x \cdot x$$

2019

Leyes de acotación: Tesis 1

$$x + 1 = 1$$

Demostración:

$$x + 1 = (x + 1) \cdot 1$$

$$= (x + 1) \cdot (x + x')$$

$$= x \cdot (x + x') + 1 \cdot (x + x')$$

$$= x \cdot x + x \cdot x' + 1 \cdot x + 1 \cdot x'$$

$$= x + 0 + x + x'$$

$$= x + x'$$

$$= x + x'$$

$$= 1$$

Leyes de acotación: Tesis 2

 $x \cdot 0 = 0$

Demostración:

$$x \cdot 0 = (x \cdot 0) + 0$$

$$= (x \cdot 0) + (x \cdot x')$$

$$= x \cdot (0 + x')$$

$$= x \cdot (x' + 0)$$

$$= x \cdot x'$$

$$= 0$$

Leyes de absorción: Tesis 1 $x + x \cdot y = x$

Demostración:

$$x + x \cdot y = x \rightarrow x + x \cdot y = x \cdot 1 + x \cdot y$$

 $x + x \cdot y = x \cdot (1 + y) \rightarrow x + x \cdot y = x \cdot 1$
 $x + x \cdot y = x$

 $x \cdot (x + y) = x$ Leyes de absorción: Tesis 2

Demostración:

$$x \cdot (x + y) = x \rightarrow x \cdot (x + y) = (x + 0) \cdot (x + y)$$

$$x \cdot (x + y) = x + (0 \cdot y) \rightarrow x \cdot (x + y) = x + 0$$

$$x \cdot (x + y) = x$$

$$(x')' = x$$

Ley deyes del 0 y del 1

$$0' = 1$$
 ,

$$1' = 0$$

Leyes de De Morgan

$$(x+y)'=x'\cdot y'$$

$$(x \cdot y)' = x' + y'$$

Demostración de Leyes de De Morgan:

$$(x+y)'=x'\cdot y'$$

Si mostramos que:

$$(x+y)\cdot(x'\cdot y')=0$$

$$(x+y)+(x'\cdot y')=1$$

Entonces:

$$(x+y)'=x'\cdot y'$$

Demostraremos que:

$$(x + y) \cdot (x' \cdot y') = 0$$
$$(x + y) + (x' \cdot y') = 1$$

$$(x + y) \cdot (x' \cdot y') = (x' \cdot y') \cdot (x + y)$$

$$= ((x' \cdot y') \cdot x) + ((x' \cdot y') \cdot y)$$

$$= (x \cdot (x' \cdot y')) + ((x' \cdot y') \cdot y)$$

$$= ((x \cdot x') \cdot y') + (x' \cdot (y' \cdot y))$$

$$= (x \cdot x') \cdot y' + x' \cdot (y \cdot y')$$

$$(x + y) \cdot (x' \cdot y') = (x \cdot x') \cdot y' + x' \cdot (y \cdot y')$$

$$= 0 \cdot y' + x' \cdot 0$$

$$= y' \cdot 0 + x' \cdot 0$$

$$= 0 + 0$$

$$= 0$$

$$(x + y) + (x' \cdot y') = ((x + y) + x') \cdot ((x + y) + y')$$
$$= ((y + x) + x') \cdot ((x + y) + y')$$
$$= (y + (x + x')) \cdot (x + (y + y'))$$

$$(x + y) \cdot (x' \cdot y') = (y + (x + x')) \cdot (x + (y + y'))$$

= $(y + 1) \cdot (x + 1)$
= $1 \cdot 1$
= 1

Queda demostrado que:

$$(x+y)'=x'\cdot y'$$

Demostración de Leyes de De Morgan:

$$(x \cdot y)' = x' + y'$$

Si mostramos que:

$$(x \cdot y) + (x' + y') = 1$$
$$(x \cdot y) \cdot (x' + y') = 0$$

Entonces:

$$(x \cdot y)' = x' + y'$$

Demostraremos que:

$$(x \cdot y) + (x' + y') = 1$$
$$(x \cdot y) \cdot (x' + y') = 0$$

$$(x \cdot y) + (x' + y') = (x' + y') + (x \cdot y)$$

$$= ((x' + y') + x) \cdot ((x' + y') + y)$$

$$= (x + (x' + y')) \cdot ((x' + y') + y)$$

$$= ((x + x') + y') \cdot (x' + (y' + y))$$

$$= ((x + x') + y') \cdot (x' + (y + y'))$$

$$(x \cdot y) + (x' + y') = ((x + x') + y') \cdot (x' + (y + y'))$$

$$= (1 + y') \cdot (x' + 1)$$

$$= (y' + 1) \cdot (x' + 1)$$

$$= 1 + 1$$

$$= 1$$

$$(x \cdot y) \cdot (x' + y') = ((x \cdot y) \cdot x') + ((x \cdot y) \cdot y')$$

$$= ((y \cdot x) \cdot x') + ((x \cdot y) \cdot y')$$

 $= (y \cdot (x \cdot x')) + (x \cdot (y \cdot y'))$

$$(x \cdot y) \cdot (x' + y') = (y \cdot (x \cdot x')) + (x \cdot (y \cdot y'))$$
$$= (y \cdot 0) + (x \cdot 0)$$
$$= 0 \cdot 0$$
$$= 0$$

Queda demostrado que:

$$(x \cdot y)' = x' + y'$$

Principio de Dualidad

El Dual de una expresión booleana, es otra expresión booleana donde se cambia

+ por • y • por +; además 0 por 1 y 1 por 0.

Observación: Si dos expresiones boolenas son iguales, sus duales también lo son.

Verifique la validez de la siguiente expresión y de su dual.

$$(x+y)\cdot(x+1) = x + x\cdot y + y$$

$$(x + y) \cdot (x + 1) = x + x \cdot y + y$$

$$(x + y) \cdot (x + 1) = x \cdot (x + 1) + y \cdot (x + 1)$$

$$= x \cdot x + x \cdot 1 + y \cdot x + y \cdot 1$$

$$= x + x + x \cdot y + y$$

$$(x + y) \cdot (x + 1) = x + x \cdot y + y$$

$$x \cdot y + x \cdot 0 = x \cdot (x + y) \cdot y$$

$$x \cdot y + x \cdot 0 = (x + x \cdot 0) \cdot (y + x \cdot 0)$$

$$= (x + x) \cdot (x + 0) \cdot (y + x) \cdot (y + 0)$$

$$= (x + x) \cdot (x + 0) \cdot (y + x) \cdot (y + 0)$$

$$= x \cdot x \cdot (x + y) \cdot y$$

$$x \cdot y + x \cdot 0 = x \cdot (x + y) \cdot y$$
₂₀₁₉

AND

Α	В	Salida
0	0	0
0	1	0
1	0	0
1	1	1

A • B

OR

Α	В	Salida
0	0	0
0	1	1
1	0	1
1	1	1

A + B

NOT

Α	Salida
0	1
1	0

Α,

NAND

A	В	Salida
0	0	1
0	1	1
1	0	1
1	1	0

(A • B) '

NOR

Α	В	Salida
0	0	1
0	1	0
1	0	0
1	1	0

$$(A + B)$$

X-OR

Α	В	Salida
0	0	0
0	1	1
1	0	1
1	1	0

 $A \oplus B$

Lógica y Matemática Computacional Licenciatura en Sistemas de Información

Algebra de Boole

Ing. JULIO C. ACOSTA

Funciones Booleanas

$$B^2 o B$$
 $x y x y 0$ $0 0$ $0 0$ $0 0$ $0 1 1$ $1 0$ $1 1$ $0 1$

$$p\Delta q = (p \land -q) \lor (-p \land q)$$

$$f(x,y) = x \cdot y' + x' \cdot y \qquad (x1,y1);(x2,y2)...$$

$$f(x_1, x_2, ..., x_n) = X(x_1, x_2, ..., x_n)$$

$$f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4$$

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 + x_2 + x_1 + x_3$$

$$f(x_1,x_2)=x_1'\cdot x_2'$$

Son expresiones booleanas equivalentes

$$X_1(x,z) = x' \cdot x + x' \cdot z$$

$$X_2(x,z) = x' \cdot (x+z)$$

$$X_1(x_1, x_2, x_3) = x_1 \cdot x_2 + x_1 \cdot x_3 + x_3$$
 $X_2(x_1, x_2, x_3) = x_1 \cdot x_2 + x_3$

$$f(x_1, x_2, x_3) = x_1 \cdot (x_2' + x_3)$$

$$h(x_1, x_2, x_3) = x_1 \cdot x_2' + x_1 \cdot x_3$$

$$x_1 \cdot (x_2' + x_3) = x_1 \cdot x_2' + x_1 \cdot x_3$$

 $f(x_1, x_2, x_3) = h(x_1, x_2, x_3)$

$$\widetilde{x_i}$$
 es x_i o x_i'

Llamamos *minitérminos* al producto lógico de k variables \mathcal{X}_l

Una función booleana está definida en

Forma Canónica (o normal) disyuntiva

Si la expresión de la función booleana se expresa como una suma de minitérminos

$$f(x_1, x_2, x_3) = x_1' \cdot x_2 \cdot x_3' + x_1 \cdot x_2 \cdot x_3' + x_1 \cdot x_2 \cdot x_3 + x_1' \cdot x_2 \cdot x_3 + x_1' \cdot x_2' \cdot x_3$$

 $x_3 f(x_1, x_2, x_3) f(x_1, x_2, x_3)$

 $f(x_1, x_2, x_3) = (x_1 \cdot x_2' \cdot x_3') + (x_1 \cdot x_2' \cdot x_3) + (x_1 \cdot x_2 \cdot x_3)$

min-términos o *disyunciones de conjunciones.*

Minimización de funciones

$$f(x_1, x_2, x_3) = (x_1 \cdot x_2' \cdot x_3') + (x_1 \cdot x_2' \cdot x_3) + (x_1 \cdot x_2 \cdot x_3)$$

$$f(x_1, x_2, x_3) = x_1 \cdot x_2' \cdot (x_3' + x_3) + (x_1 \cdot x_2 \cdot x_3)$$

$$f(x_1, x_2, x_3) = x_1 \cdot x_2' \cdot 1 + (x_1 \cdot x_2 \cdot x_3)$$

$$f(x_1, x_2, x_3) = x_1 \cdot x_2' + x_1 \cdot x_2 \cdot x_3$$

x_1	x_2	x_3	$x_1 \cdot x_2'$	$x_1 \cdot x_2 \cdot x_3$	$x_1 \cdot x_2' + x_1 \cdot x_2 \cdot x_3$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1]	0	2019	1 9

$$\widetilde{x_i}$$
 es x_i o x_i'

Llamamos $\emph{maxitérminos}$ a la suma lógica de k variables \mathcal{X}_l

Una función booleana está definida en

Forma Canónica (o normal) conjuntiva

Si la expresión de la función booleana se expresa como un producto de maxitérminos

$$f(x_1, x_2, x_3) = (x_1' + x_2' + x_3) \cdot (x_1 + x_2' + x_3) \cdot (x_1 + x_2' + x_3')$$

2019

Esta expresión es la Forma Normal Conjuntiva o producto de max-términos o conjunción de disyunciones.

Formas Canónicas

Forma Canónica Disyuntiva

$$f(x_1, x_2, x_3) = (x_1 \cdot x_2 \cdot x_3') + (x_1 \cdot x_2 \cdot x_3) + (x_1 \cdot x_2' \cdot x_3)$$

Forma Canónica Conjuntiva

$$f(x_1, x_2, x_3) = (x_1' + x_2' + x_3) \cdot (x_1 + x_2' + x_3) \cdot (x_1 + x_2' + x_3')$$

Diagrama de Karnaugh (Mapas)

Consideramos una función booleana

$$f: B_2 \to B$$

	\boldsymbol{x}'	$\boldsymbol{\mathcal{X}}$
y ,	$x' \cdot y'$	$x \cdot y'$
y	x'•y	$x \cdot y$

Tabla de la conjunción

0 0	1 0
0 1	1 1

0	0
0	1

$$f(x,y) = (x' \cdot y') + (x' \cdot y) = x' \cdot (y' + y) = x' \cdot 1 = x'$$

$$f(x,y) = x'$$

$$f(x,y) = x' + y'$$

$$f(x,y) = x' + (x \cdot y')$$

$$f(x,y) = x' \cdot y' + x' \cdot y + x \cdot y' = x' \cdot (y' + y) + x \cdot y' = x' + x \cdot y'$$

Consideramos una función booleana

$$f: B_{3} \to B$$

$$x'y' \quad x'y \quad xy \quad xy'$$

$$z' \quad x' \cdot y' \cdot z' \quad x' \cdot y \cdot z' \quad x \cdot y \cdot z' \quad x \cdot y' \cdot z'$$

$$z \quad x' \cdot y' \cdot z \quad x' \cdot y \cdot z \quad x \cdot y \cdot z \quad x \cdot y' \cdot z$$

$$0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1$$

$$0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1$$

$$x'y' \quad x'y \quad xy \quad xy'$$

$$z' \quad 0 \quad 0 \quad 0 \quad 0$$

$$z \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$$

$$f(x,y) = x \cdot y \cdot z_{2019}$$

Ejemplo:

$$f(x,y,z) = x' \cdot y' \cdot z' + x' \cdot y \cdot z' + x \cdot y \cdot z' + x \cdot y' \cdot z' + x \cdot y \cdot z$$

$$f(x,y,z) = y' \cdot z' \cdot (x' + x) + x \cdot y \cdot (z + z') + x' \cdot y \cdot z' + x \cdot y \cdot z'$$

$$f(x,y,z) = y' \cdot z' + x \cdot y + y \cdot z' \cdot (x' + x) = y' \cdot z' + x \cdot y + y \cdot z'$$

$$f(x,y,z) = z' \cdot (y' + y) + x \cdot y_{0.9} = z' + x \cdot y$$
₁₇

Ejemplo:

$$f(x,y,z) = x' \cdot y' + x' \cdot y \cdot z + x \cdot y \cdot z + x \cdot y' \cdot z' + x' \cdot y' \cdot z'$$

$$f(x,y,z) = x' \cdot y' + y \cdot z \cdot (x' + x) + y' \cdot z' \cdot (x + x')$$

$$f(x,y,z) = x' \cdot y' + y \cdot z + y' \cdot z'$$

Consideramos una función booleana

$$f: B^4 \to B$$

	x'y'	x'y	xy	xy'
z'w'				
z'w				
zw				
zw,				

000	010 0	1100	100 0
000	010 1	1101	100 1
0011	0111	1111	1011
001 0	0110	1110	101 0

$$f(x, y, z, w) = w \cdot y + w' \cdot y'$$

X	y	\boldsymbol{Z}	w_{I}	$y' \cdot w'$	$y \cdot w + y' \cdot w'$
0	0	0	0	1	1
0	0	0	1	0	0
0	0	1	0	1	1
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	0	0
1	1	1	1	1	1

$\boldsymbol{\mathcal{X}}$	y	\boldsymbol{Z}	w_{I}	$y' \cdot w'$	$y \cdot w + y' \cdot w'$	
0	0	0	0	1	1	$x' \cdot y' \cdot z' \cdot w'$
0	0	0	1	0	0	
0	0	1	0	1	1	$x' \cdot y' \cdot z \cdot w'$
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	0	1	$x' \cdot y \cdot z' \cdot w$
0	1	1	0	0	0	
0	1	1	1	0	1	$x' \cdot y \cdot z \cdot w$
1	0	0	0	1	1	$x \cdot y' \cdot z' \cdot w'$
1	0	0	1	0	0	
1	0	1	0	1	1	$x \cdot y' \cdot z \cdot w'$
1	0	1	1	0	0	
1	1	0	0	0	0	
1	1	0	1	0	1	$x \cdot y \cdot z' \cdot w$
1	1	1	0	0	0	
1	1	1	1	1	1	$x \cdot y \cdot z \cdot w$

$$f(x, y, z, w) = x + y' + z \cdot w$$

DEJA QUE EL AMOR GUÍE TU CORAZÓN LA LÓGICA GUÍE TU MENTE Y LA FE GUÍE TU ALMA.

