Interstellar Explorers CSE523 ML Project Mid Sem Presentation

Title: Classification of Exoplanets

Team members:

Rudri Jani - AU2044002

Dhaval Deshkar - AU2044003

Riya Shah - AU2044004

Supan Shah -AU2044011

Guided by: Dr. Mehul Raval

TA: Jay Patel, Arpit Patel

Problem Definition

This project will aim to classify possible exoplanets from the data retrieved from NASA's Kepler mission that was aimed at exploring the structure and diversity of planetary systems.

Background

- Throughout history, humanity has shared an eternal desire to explore the unknown.
- The current search for a terrestrial, especially those in the Goldilocks (livable) zone where liquid water might exist, has been rejuvenated by technological advances in astronomy.
- As Russian space pioneer Konstantin Tsiolkovsky said, "The Earth is the cradle of humanity, but one cannot live in a cradle forever."

Road Map

Data Extraction

Fetch data directly from Nasa's API

EDAData understanding

Dataset

The dataset is taken from NASA's exoplanet archives using its live API.

http://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&select=pl_hostname,ra,dec&order=dec&format=ascii

- The data identifies the three categories of exoplanets like CONFIRMED, CANDIDATE and FALSE POSITIVES. The goal of the project is to identify this using classification algorithms.
- Confirmed The planet is exoplanet
- Candidate possibility of exoplanet
- False Positive Not an exoplanet

Image Source: https://exoplanetarchive.ipac.caltech.edu/docs/program_interfaces.html

Methodology

 The project will use classical machine learning methods for the classification of planets as exoplanets or not using features extracted by the Kepler space telescope.

- 1. Around 8% of the data was null and hence removed.
- 2. Remove irrelevant columns from dataset
- 3. Normalize the data: Z-score normalization
- 4. One hot encoding of categorical data
- 5. Create a new column on the basis of candidate and confirmed planets which will be the target column.
- 6. Next, we apply dimensionality reduction techniques to reduce dimensions.

Dimensionality Reduction

Process data for classification

- After applying dimensionality reduction, we selected five best columns
- Train-Test split: 80-20%
- Final processed data :

	DispositionScore	ImpactParameterUpper	TransitDepth[ppm]	TransitSignal-to-Noise	TCEPlanetNumber
0	-1.033552	-0.213373	3.886380	0.858828	-0.375167
1	-1.033552	-0.167855	-0.302691	-0.336844	-0.375167
2	-0.240581	-0.169386	-0.307851	-0.320646	2.710197
3	-1.033552	-0.211740	-0.309945	-0.333533	-0.375167
4	-1.033552	-0.212148	0.879915	1.733857	-0.375167

Logistic Regression Results

Train

Accuracy: 95.17%

F1 Score: 95.30%

Tes

t

Accuracy: 95.13%

F1 Score: 95.21%

Support Vector Machine Results

Train

Accuracy: 66.55% F1 Score: 75.48%

Tes

Accuracy: 66.55% F1 Score: 74.99%

Future Work

 Create dashboard where user can key-in feature values and get instant predictions.

References

API:

https://exoplanetarchive.ipac.caltech.edu/docs/program interfaces.html

Dataset:

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=cumulative

Documentation

https://exoplanetarchive.ipac.caltech.edu/docs/API kepcandidate columns.html

Thank you.