Project Development Phase Model Performance Test

Date	27 June 2025
Team ID	LTVIP2025TMID38326
Project Name	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques
Maximum Marks	

Model Performance Testing:

Our project Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Trained and compared Logistic Regression, Support Vector Classifier, XGBoost, and K-Nearest Neighbors. KNN showed best performance.	 Data Size: 950 records, 42 features Target Variable: Binary classification – Patient has liver cirrhosis (Yes/No) Train-Test Split: 80-20% Best Model: K-Nearest Neighbors. Evaluation Metrics Used: Accuracy, Precision, Recall, F1-score, Confusion Matrix Fine-tuning: Performed using RandomizedSearchCV for k parameter in KNN 	# Define your model list with trained models model_list = { 'logistic regression': log, 'logistic regression (V': lcv, 'naive bayes': nb, '%KGBOOST': model, 'Ridge classifier': rg, 'Random Forest': rf, 'support Vector Classifier': svc, 'NON': knn # Assuming knn is your trained KNN model } print(model_eval_imfo_df) Rame Accuracy FI Score Precision Recall 0 logistic regression 78.42 84.53 91.80 78.32 1 logistic regression CV 82.63 87.36 93.44 82.81 1 logistic regression CV 82.63 87.36 93.44 82.81 2 naive bayes 35.79 0.00 0.00 0.00 0.00 3
2.	Accuracy	Training Accuracy - 91.30% (KNN)	Train score with tuned model: 0.9130434782686995 Test score with tuned model: 0.9230434782686995 Test score with tuned model: 0.823042182620538 Optimal hyperparameters for KSR: ('n_neighbors': sp.int64(0)) Scorincy on test set 0.92 (SI 12) (SI 12) (SI 12) (SI 12) (SI 12) (SI 13) (Classification spect (KBR): protition recall fi-score support 0 0.80 0.75 0.81 68 1 0.87 0.94 0.91 122 accuracy accuracy 0.80 0.85 0.87 190 marro avg 0.80 0.85 0.66 190 weighted avg 0.87 0.87 0.87 170
3.	Validation Accuracy - 87.36% (after tuning KNN using RandomizedSearchCV)	Validation Accuracy -87.36% (KNN)	Train score with tuned model: 0.913643792086695 Test score with tuned model: 0.973642392939355 Optimal hyperparameters for size: ("n_neighbors': np.int64(6)) Accuracy on test set: 0.82 [