

Trabajo de Investigación Tema #1: "Evolución de procesadores Intel® y análisis del Intel® Core™ i7"

Integrantes: Álvaro Montecinos Lorca, Fernando Villarreal Céspedes.

Profesor: Néstor González Valenzuela.

Fecha de Presentación: Lunes 3 de septiembre del 2018.

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

- Intel® Corporation.
- Trabajo a realizar.
- Planteamiento de objetivos.
- Intel[®] Core[™] i7.

Imagen 1. Fachada del cuartel general de Intel® en Santa Clara, California. Fuente: https://goo.gl/VjRQMT

Marco Teórico

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

- Microarquitectura.
- Litografía.
- Ley de Moore.
- Velocidad de reloj.

Imagen 2. Gráfico de la Ley de Moore. Fuente: https://goo.gl/cA2cYR

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

1971: Intel® 4004

Imagen 3. Intel® 4004. Fuente: https://goo.gl/9GtXsH

Velocidad de reloj	108 - 740 kHz
Cantidad de transistores	2,3 k
Litografía	10 μm (10 k nm)
Bus de datos	4 bits
Velocidad del bus de datos	108 kHz
Caché	N/A

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

1972: Intel® 8008

Imagen 4. Intel® 8008. Fuente: https://goo.gl/XdeL5E

Velocidad de reloj	500 - 800 kHz
Cantidad de transistores	3,5 k
Litografía	10 μm (10 k nm)
Bus de datos	8 bits
Velocidad del bus de datos	200 kHz
Caché	N/A

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

1978: Intel® 8086

Imagen 5. Intel® 8086. Fuente: https://goo.gl/fg6CVf

Velocidad de reloj	5 - 10 MHz
Cantidad de transistores	29 k
Litografía	3 μm (3 k nm)
Bus de datos	16 bits
Velocidad del bus de datos	4,77 - 10 MHz
Caché	N/A

Tabla 3. Características generales Intel® 8086.

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

1982: Intel® 80286

Imagen 6. Intel® 80286. Fuente: https://goo.gl/MKuoXi

Velocidad de reloj	6 - 12 MHz
Cantidad de transistores	134 k
Litografía	1,5 μm (1,5 k nm)
Bus de datos	16 bits
Velocidad del bus de datos	6 - 12 MHz
Caché	N/A

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

1986: Intel® 80386

Imagen 7. Intel® 80386. Fuente: https://goo.gl/7JV7PE

Velocidad de reloj	12 - 40 MHz
Cantidad de transistores	275 k
Litografía	1 μm (1k nm)
Bus de datos	32 bits
Velocidad del bus de datos	20 - 25 MHz
Caché	N/A

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

1993: Intel® Pentium™

Imagen 8. Intel® Pentium™. Fuente: https://goo.gl/khYMkA

Velocidad de reloj	60 - 200 MHz
Cantidad de transistores	3,1 M
Litografía	800 nm
Bus de datos	64 bits
Velocidad del bus de datos	50 - 80 MHz
Caché	L1: 16 KB

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

1999: Intel[®] Celeron[®]

Imagen 9. Intel® Celeron®. Fuente: https://goo.gl/tMCxpt

Velocidad de reloj	266 - 300 MHz
Cantidad de transistores	7,5 M
Litografía	250 nm
Bus de datos	32 bits
Velocidad del bus de datos	66 MHz
Caché	L2: 128 KB

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

2000: Intel® Pentium® 4

Imagen 10. Intel® Pentium® 4. Fuente: https://goo.gl/tfpR8U

Velocidad de reloj	1,4 - 2 GHz
Cantidad de transistores	42 M
Litografía	180 nm
Bus de datos	64 bits
Velocidad del bus de datos	400 MHz
Caché	L1: 8 KB - L2: 256 KB

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

2006: Intel[®] Core[™]2 Duo

Dual Core

Imagen 11. Intel® Core™2 Duo. Fuente: https://goo.gl/xJQhGC

Velocidad de reloj	1,8 - 3,3 GHz
Cantidad de transistores	167 M
Litografía	180 nm
Bus de datos	64 bits
Velocidad del bus de datos	400 MHz
Caché	L1: 64 KB - L2: 256 KB

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

2006: Intel[®] Core[™]2 Ext.

Quad Core

Imagen 12. Intel® Core™2 Ext. Fuente: https://goo.gl/2n7Fb9

Velocidad de reloj	2,66 GHz
Cantidad de transistores	582 M
Litografía	65 nm
Bus de datos	64 bits
Velocidad del bus de datos	1,066 MHz
Caché	L1: 128 KB - L2: 8 MB

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

2009: Intel[®] Core[™] i5

Quad Core

Imagen 13. Intel® Core™ i5. Fuente: https://goo.gl/Qkxj6M

Velocidad de reloj	2,88 - 3,20 GHz
Cantidad de transistores	774 M
Litografía	32 nm
Bus de datos	64 bits
Velocidad del bus de datos	1.25 GHz
Caché	L3: 8MB Smart

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

2010: Intel[®] Core[™] i3

Dual Core

Imagen 14. Intel® Core™ i3. Fuente: https://goo.gl/rJkMwj

Velocidad de reloj	2,93 GHz
Cantidad de transistores	382 M
Litografía	32 nm
Bus de datos	64 bits
Velocidad del bus de datos	1.25 GHz
Caché	L3: 4MB Smart

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

Análisis Core™ i7

1st vs 2nd Gen.

Nehalem/Westmere vs Sandy Bridge

Imágenes 15 y 16. Logos Intel® Core™ i7 1st & 2nd Gen. Fuentes: https://goo.gl/vAPGLX y https://goo.gl/12P1aw

Velocidad de reloj	2,6 - 3,3 GHz	1,5 - 3,9 GHz
Cantidad de transistores	731 M - 1,17 B	1,16 - 1,27 B
Litografía	32 - 45 nm	32 nm
Bus de datos	64 bits	64 bits
Velocidad del bus de datos	2,4 GHz	2,5 GHz
Caché	12 MB Smart	15 MB Smart
Núcleos	4 - 6	2 - 4

Tabla 13. Comparación Intel® Core™ i7 1st & 2nd Gen.

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

Análisis Core™ i7

3rd vs 4th Gen.

Ivy Bridge vs Haswell

Imágenes 17 y 18. Logos Intel® Core™ i7 3rd & 4th Gen. Fuentes: https://goo.gl/m8mxcG y https://goo.gl/movu3F

Velocidad de reloj	1,5 - 3,9 GHz	1,5 - 4,4 GHz
Cantidad de transistores	1,4 - 1,86 B	1,4 - 2,6 B
Litografía	22 nm	22 nm
Bus de datos	64 bits	64 bits
Velocidad del bus de datos	2,5 GHz	2,5 GHz
Caché	4 - 8 MB Smart	4 - 8 MB Smart
Núcleos	2 - 6	2 - 6

Tabla 14. Comparación Intel® Core™ i7 3rd & 4th Gen.

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

Análisis Core™ i7

5th vs 6th Gen.

Broadwell vs Skylake

Imágenes 19 y 20. Logos Intel® Core™ i7 5th & 6th Gen. Fuentes: https://goo.gl/xmgBt2 y https://goo.gl/z4Ex7y

Velocidad de reloj	2 - 4,2 GHz	2 - 4,2 GHz
Cantidad de transistores	Billones	Billones
Litografía	14 nm	14 nm
Bus de datos	64 bits	64 bits
Velocidad del bus de datos	2 - 2,5 GHz	2,4 GHz
Caché	4 - 6 MB Smart	4 - 8 MB Smart
Núcleos	2 - 8	2 - 10

Tabla 15. Comparación Intel® Core™ i7 5th & 6th Gen.

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

Análisis Core™ i7

7th vs 8th Gen

Kaby Lake vs Coffee Lake

Imágenes 21 y 22. Logos Intel® Core™ i7 5th & 6th Gen. Fuentes: https://goo.gl/oY6VbZ y https://goo.gl/io7g2a

Velocidad de reloj	1,3 - 4,5 GHz	1,8 - 5 GHz
Cantidad de transistores	Billones	Billones
Litografía	14 nm	14 nm
Bus de datos	64 bits	64 bits
Velocidad del bus de datos	2 - 4 GHz	2 - 4 GHz
Caché	4 - 8 MB Smart	8 - 12 MB Smart
Núcleos	2 - 8	4 - 6

Tabla 16. Comparación Intel® Core™ i7 7th & 8th Gen.

Análisis Core™ i7

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Imagen 23. Mejora de rendimiento entre la 6th, 7th & 8th Gen. Intel® Core™ i7.
Fuente: https://goo.ql/vCjP7A

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

Análisis Core™ i7

Una comparación con historia

Intel® 8086 vs Intel® Core™ i7-8086K

Imagen 24. Intel® 8086 e Intel® Core™ i7-8086K Fuente: https://goo.gl/2SWtCW

Velocidad de reloj	5 MHz (0,005 GHz)	5 GHz
Cantidad de transistores	29 k	Billones
Litografía	3 μm (3 k nm)	14 nm
Tamaño	33 mm²	>100 mm²
Performance	0,33 MIPS	>100 k MIPS
Caché	N/A	12 MB Smart
Precio	US\$ 86 (330 Inf.)	US\$ 425

Tabla 17. Comparación Intel® 8086 e Intel® Core™ i7-8086K

Estado del Arte

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

- Intel[®] en el mercado actual.
- Intel[®] Core[™] i7 9th Gen.
- Intel[®] Core[™] i9.

Imagen 25. Intel® Core™ i9 X-series. Fuente: https://goo.gl/XTambn

Conclusiones

Introducción

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

- Cumplimiento de objetivos.
- Resumen de la investigación.
- Resultados obtenidos.
- Análisis de la evolución de Intel[®].

Imagen 26. Figura con visto bueno. Fuente: https://goo.ql/fh6kKq

Marco Teórico

Evolución Intel®

Análisis Core™ i7

Estado del Arte

Conclusiones

Referencias

Referencias

- Wikimedia Foundation, Inc. (2018). *Transistor count.* (Recuperado 20 de agosto de 2018). https://en.wikipedia.org/wiki/Transistor_count
- Intel® Corporation. (2018). *Product Specifications*. (Recuperado 20 de agosto de 2018). https://ark.intel.com/
- Intel® Corporation. (2018). Microprocessor Quick Reference Guide. (Recuperado 20 de agosto de 2018). https://www.intel.com/pressroom/kits/quickrefyr.htm

Imagen 27. Figura leyendo sobre libros. Fuente: https://goo.gl/mfRhKL

Trabajo de Investigación Tema #1: "Evolución de procesadores Intel® y análisis del Intel® Core™ i7"

Integrantes: Álvaro Montecinos Lorca, Fernando Villarreal Céspedes.

Profesor: Néstor González Valenzuela.

Fecha de Presentación: Lunes 3 de septiembre del 2018.