Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[5252]-132

S.E. (E&TC/Electronics) (First Semester) EXAMINATION, 2017 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (1) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of scientific calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) What is operating point? Explain its significance with d.c. load line. Also, state why voltage divider bias with emitter resistor is preferred over other biasing methods. [6]
 - (b) Calculate Av, Ri, Ro for the CE amplifier as shown in Fig. 1. Given : $h_{re} = h_{oe} = 0$, $h_{ie} = 1$ k Ω , $h_{fe} = 350$. [7]

Fig. 1

- **2.** (a) Define various stability factors and explain its significance with necessary equations. [6]
 - (b) Explain the significance of hybrid parameters in BJT. [3]
 - (c) Compare CE, CB, CC on the basis of Ri, Ro and their applications. [4]
- 3. (a) For a cascaded two stage amplifier using identical transistors, find lower and higher cutoff frequencies and bandwidth. The h-parameters for the transistors are $h_{ie} = 1.1 \text{ k}\Omega$, $h_{fe} = 250$, $h_{re} = h_{oe} = 0$. The lower cutoff frequency of single stage is 100 Hz and higher cutoff frequency in 15 KHz. [6]
 - (b) Draw all the four topological block diagram for -ve feedback amplifiers. State application of each of the amplifier. [6]

Or

- 4. (a) The parameters of the transistors in the ckt shown in Fig. 2 are $h_{fe}=50,\ h_{ie}=1.1\ \mathrm{k}\Omega,\ h_{re}=h_{oe}=0.$ Find : [6]
 - (i) Value of C_h for 3-dB frequency response of 20 Hz
 - (ii) Value of C_b necessary to ensure less than 10% till for 100 Hz square wave 1/p.

Fig. 2

	LC oscillator with L_1 = 1 μH , L_2 = 3 μH , C = 0.01 μF . Also
	identify the name of oscillator and state the application of
	the oscillator. [6]
(a)	Write a short note on power BJTs. [6]
(<i>b</i>)	For class-B amplifier providing 20 V peak signal to 16 Ω load
	(speaker) and power supply of 30 V. Determine the 1/P power,
	O/P power and efficiency. [7]
	power and emerciney.
	Or Or
(-)	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
(a)	A sinusoidal signal $V_s = 1.95 \sin 400 t$ is applied to a power
	amplifier. The resulting current is
	$i_0 = 12 \sin 400 t + 1.2 \sin 800 t +$
	$0.9 \sin 1200 \ t + 0.4 \sin 1600 \ t.$
	Calculate:
	(i) total harmonic distortion
	(ii) %age increase in power due to distortion. [7]
(<i>b</i>)	Draw a single power supply class AB complimentary push-pull
	amplifier and explain how cross-over distortion is eliminated
	in this amplifier with wave forms. [6]
(a)	Plot transfer and drain characteristics of n-channel E-MOSFET
	with necessary static and dynamic parameters. State equation
	for saturated current. [7]
(<i>b</i>)	What is constant current source biasing? Explain with circuit

State Barkhousen criterion. Find frequency of oscillation for

(*b*)

5.

6.

7.

diagram in detail.

3 [5252]-132 P.T.O.

[6]

- 8. Explain the effect of substrate potential in MOS based on (a) integrated circuits. Also, explain the effect of channel length modulation. [6]
 - Find I_D , V_{DS} , V_{GS} for the circuit shown in Fig. 3. Given V_{Th} = 0.8 V, K = 1 mA/V², λ = 0. [7] (*b*)

