Exercise 6. Let V be a normed linear space. Show that the dual V^* of V is complete under the norm $\|\cdot\|$ defined above. (Hint: Let $\{F_n\}$ be a Cauchy sequence in V^* . Show that for each v in V the sequence $\{F_n(v)\}$ is a Cauchy sequence in \mathbb{R} (or in \mathbb{C}) and so is convergent. Then show that the formula $F(v) = \lim_n F_n(v)$ defines a bounded linear functional on V and that $\lim_n \|F_n - F\| = 0$.)

Proof. Let K ($K = \mathbb{R}$ or $K = \mathbb{C}$) be the field of scalars for V. Let $\varepsilon > 0$; since the sequence $\{F_n\}$ is a Cauchy sequence, we have

$$\exists N \in \mathbb{N}, \quad \forall n, m \in \mathbb{N}, \quad n \geq N \land m \geq N \implies ||F_n - F_m|| < \varepsilon$$

where $\|\cdot\|$ is the norm of linear functionals on V. Let $v \in V$, we have

$$|F_n(v) - F_m(v)| = |(F_n - F_m)(v)| \le ||F_n - F_m|| \cdot ||v|| < ||v|| \cdot \varepsilon \tag{1}$$

for all $n, m \in \mathbb{N}$ such that $n \geq N$ and $m \geq N$. From this we deduce that the sequence $\{F_n(v)\}$ is a Cauchy sequence of elements of K. Since K is complete, $\{F_n(v)\}$ converges to some scalar in K. Let

$$F: V \to K$$
$$v \mapsto \lim_{n} F_n(v)$$

For all $u, v \in V$ and all $\alpha \in K$ we have

$$F(u+v) = \lim_{n} F_n(u+v) = \lim_{n} \left(F_n(u) + F_n(v) \right)$$
$$= \lim_{n} F_n(u) + \lim_{n} F_n(v) = F(u) + F(v)$$
$$F(\alpha \cdot u) = \lim_{n} F_n(\alpha \cdot u) = \lim_{n} \left(\alpha \cdot F_n(u) \right)$$
$$= \alpha \cdot \lim_{n} F_n(u) = \alpha \cdot F(u)$$

so that F is linear.

Let $B_1 = \{v \in V \mid ||v|| \le 1\}$ and $v \in B_1$. For all nonzero $v \in V$ and all $\varphi \in V^*$, we have $\varphi(\frac{v}{||v||}) = \frac{1}{||v||} \varphi(v)$, so that

$$\|\varphi\| = \inf\{M \in \mathbb{R} \mid \forall v \in V, |\varphi(v)| \le M \cdot \|v\|\}$$
$$= \inf\{M \in \mathbb{R} \mid \forall v \in B_1, |\varphi(v)| \le M\}$$

The convergence of $\{F_n(v)\}$ to F(v) implies the existence of $n_0 \in \mathbb{N}$ such that $|F_{n_0}(v) - F(v)| < 1$. From this we get

$$|F(v)| \le |F(v) - F_{n_0}(v)| + |F_{n_0}(v)| \le 1 + ||F_{n_0}|| \cdot ||v|| \le 1 + ||F_{n_0}||$$

so that F is bounded, and therefore continuous.

Let $v \in B_1$ and $n \in \mathbb{N}$ such that $n \geq N$. For all $m \in \mathbb{N}$, we have by (1)

$$|F_n(v) - F(v)| \le |F_n(v) - F_{n+m}(v)| + |F_{n+m}(v) - F(v)|$$

$$\le \varepsilon \cdot ||v|| + \varepsilon \le 2\varepsilon$$

as soon as $m \ge M$ depending only on v. Therefore

$$\forall v \in B_1, \quad \forall n \in \mathbb{N}, \quad |(F_n - F)(v)| \le 2\varepsilon$$

which implies $||F_n - F|| \le 2\varepsilon$. Thus $\lim_n ||F_n - F|| = 0$, and V^* is complete for the norm of linear functionals.