```
#WINE QUALITY PREDICTION
#IMPORTING LIBRARIES
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
#LOADING DATASET
import pandas as pd
df=pd.read csv('WineQT.csv')
print("Successfully Imported data")
df
Successfully Imported data
      fixed acidity volatile acidity citric acid residual sugar
chlorides \
                7.4
                                 0.700
                                               0.00
                                                                 1.9
0
0.076
                7.8
                                 0.880
                                               0.00
                                                                 2.6
1
0.098
                7.8
                                 0.760
                                               0.04
                                                                 2.3
0.092
               11.2
                                 0.280
                                               0.56
                                                                 1.9
3
0.075
4
                7.4
                                 0.700
                                               0.00
                                                                 1.9
0.076
. . .
. . .
1138
                6.3
                                 0.510
                                               0.13
                                                                 2.3
0.076
1139
                6.8
                                 0.620
                                               0.08
                                                                 1.9
0.068
                6.2
                                 0.600
                                                                 2.0
1140
                                               0.08
0.090
1141
                5.9
                                 0.550
                                               0.10
                                                                 2.2
0.062
1142
                5.9
                                 0.645
                                               0.12
                                                                2.0
0.075
      free sulfur dioxide total sulfur dioxide density
sulphates \
                     11.0
                                            34.0 0.99780 3.51
0.56
                     25.0
                                            67.0 0.99680 3.20
1
0.68
                                            54.0 0.99700 3.26
2
                     15.0
0.65
3
                     17.0
                                            60.0 0.99800 3.16
```

```
0.58
                      11.0
                                             34.0 0.99780 3.51
4
0.56
. . .
. . .
1138
                      29.0
                                             40.0 0.99574 3.42
0.75
1139
                      28.0
                                             38.0
                                                 0.99651 3.42
0.82
1140
                      32.0
                                             44.0 0.99490 3.45
0.58
                      39.0
1141
                                             51.0 0.99512 3.52
0.76
1142
                      32.0
                                             44.0 0.99547 3.57
0.71
      alcohol quality
                           Id
                      5
0
          9.4
                            0
                      5
1
          9.8
                            1
                      5
2
                            2
          9.8
3
          9.8
                      6
                            3
                      5
4
                            4
          9.4
          . . .
                    . . .
. . .
                          . . .
                         1592
         11.0
1138
                     6
          9.5
1139
                      6
                         1593
1140
         10.5
                      5
                         1594
1141
         11.2
                      6
                        1595
1142
         10.2
                      5
                         1597
[1143 rows x 13 columns]
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):
 #
     Column
                            Non-Null Count
                                             Dtype
     -----
                                             float64
 0
     fixed acidity
                            1143 non-null
     volatile acidity
                            1143 non-null
                                             float64
 1
 2
     citric acid
                            1143 non-null
                                             float64
 3
     residual sugar
                            1143 non-null
                                             float64
 4
     chlorides
                            1143 non-null
                                             float64
 5
     free sulfur dioxide
                            1143 non-null
                                             float64
     total sulfur dioxide 1143 non-null
                                             float64
 6
 7
                            1143 non-null
                                             float64
     density
 8
                            1143 non-null
                                             float64
     рН
 9
     sulphates
                            1143 non-null
                                             float64
 10
     alcohol
                            1143 non-null
                                             float64
 11
     quality
                            1143 non-null
                                             int64
```

```
12
     Ιd
                            1143 non-null
                                             int64
dtypes: float64(11), int64(2)
memory usage: 116.2 KB
print(df.shape)
(1143, 13)
#DESCRIPTION
df.describe()
                       volatile acidity
       fixed acidity
                                          citric acid
                                                        residual sugar \
         1143.000000
                            1143.000000
                                          1143.000000
                                                           1143.000000
count
            8.311111
                               0.531339
                                             0.268364
                                                              2.532152
mean
            1.747595
                               0.179633
                                             0.196686
                                                              1.355917
std
min
            4.600000
                               0.120000
                                             0.000000
                                                              0.900000
25%
            7.100000
                               0.392500
                                             0.090000
                                                              1.900000
50%
            7.900000
                               0.520000
                                             0.250000
                                                              2.200000
75%
            9.100000
                               0.640000
                                             0.420000
                                                              2.600000
           15,900000
                               1.580000
                                             1.000000
                                                             15.500000
max
         chlorides free sulfur dioxide total sulfur dioxide
density
count
      1143.000000
                             1143.000000
                                                     1143.000000
1143.000000
          0.086933
                                15.615486
                                                       45.914698
mean
0.996730
                                                       32.782130
std
          0.047267
                                10.250486
0.001925
min
          0.012000
                                 1.000000
                                                        6.000000
0.990070
25%
          0.070000
                                 7.000000
                                                       21.000000
0.995570
50%
          0.079000
                                13.000000
                                                       37.000000
0.996680
75%
          0.090000
                               21.000000
                                                       61.000000
0.997845
                               68.000000
                                                      289.000000
          0.611000
max
1.003690
                       sulphates
                                       alcohol
                                                     quality
                                                                        Id
                рΗ
count 1143,000000
                     1143.000000
                                  1143.000000
                                                1143.000000
                                                              1143.000000
                                                               804.969379
mean
          3.311015
                        0.657708
                                     10.442111
                                                   5.657043
          0.156664
                        0.170399
                                      1.082196
                                                   0.805824
                                                               463.997116
std
min
          2.740000
                        0.330000
                                      8.400000
                                                   3.000000
                                                                 0.000000
25%
          3.205000
                        0.550000
                                      9.500000
                                                   5.000000
                                                               411.000000
```

50%	3.310000	0.620000	10.200000	6.000000	794.000000
75%	3.400000	0.730000	11.100000	6.000000	1209.500000
max	4.010000	2.000000	14.900000	8.000000	1597.000000
df.isnul					
	acidity cid sugar s fur dioxide lfur dioxide	0 0 0 0 0 0 0 0			
#CORRELAT df.corr()					
	acidity cid sugar s fur dioxide lfur dioxide	fixed acidity 1.000000 -0.250728 0.673153 0.171833 0.107889 -0.164833 -0.110628 0.681503 -0.685163 0.174592 -0.075055 0.121970 -0.275826	-0.2 -0.2 -0.5 -0.6	250728 900000 - 544187 905751 956336 901962 - 977748 916512 221492 - 276079 203909 407394	ric acid \ 0.673157 0.544187 1.000000 0.175815 0.245312 0.057589 0.036871 0.375243 0.546339 0.331232 0.106250 0.240821 0.139011
dioxide fixed aci	•	residual suga 0.17183	or chlorides 31 0.107889	free sulf	ur -0.164831
volatile	•	-0.00575			-0.104831
citric ac	_	0.1758			-0.057589
CICIIC at	-Lu	0.1/30.	19 0.743317		0.037309

residual sugar	1.000000 0.070863 0.165339
chlorides	0.070863 1.000000 0.015280
free sulfur dioxide	0.165339 0.015280 1.000000
total sulfur dioxide	0.190790 0.048163 0.661093
density	0.380147 0.208901 -0.054150
рН	-0.116959 -0.277759 0.072804
sulphates	0.017475 0.374784 0.034445
alcohol	0.058421 -0.229917 -0.047095
quality	0.022002 -0.124085 -0.063260
Id	-0.046344 -0.088099 0.095268
10	01010311 01000033 01033200
sulphates \ fixed acidity 0.174592 volatile acidity 0.276079 citric acid 0.331232 residual sugar 0.017475 chlorides 0.374784 free sulfur dioxide 0.034445 total sulfur dioxide 0.026894 density 0.143139 pH 0.185499	total sulfur dioxide density pH -0.110628 0.681501 -0.685163 0.077748 0.016512 0.221492 - 0.036871 0.375243 -0.546339 0.190790 0.380147 -0.116959 0.048163 0.208901 -0.277759 0.661093 -0.054150 0.072804 1.000000 0.050175 -0.059126 0.050175 1.000000 -0.352775 -0.059126 -0.352775 1.000000 -
sulphates 1.000000 alcohol 0.094421 quality 0.257710	0.026894 0.143139 -0.185499 -0.188165 -0.494727 0.225322 -0.183339 -0.175208 -0.052453
Id 0.103954	-0.107389 -0.363926 0.132904 -

```
alcohol quality
fixed acidity
                                0.121970 -0.275826
                     -0.075055
volatile acidity
                     -0.203909 -0.407394 -0.007892
citric acid
                                0.240821 -0.139011
                      0.106250
residual sugar
                      0.058421
                                0.022002 -0.046344
chlorides
                     -0.229917 -0.124085 -0.088099
free sulfur dioxide
                     -0.047095 -0.063260 0.095268
total sulfur dioxide -0.188165 -0.183339 -0.107389
                     -0.494727 -0.175208 -0.363926
density
Hq
                      0.225322 -0.052453 0.132904
sulphates
                      0.094421
                                0.257710 -0.103954
alcohol
                      1.000000
                                0.484866 0.238087
                      0.484866
                                1.000000
                                          0.069708
quality
                      0.238087 0.069708 1.000000
Ιd
df.groupby('quality').mean()
         fixed acidity volatile acidity citric acid residual sugar
quality
3
              8.450000
                                0.897500
                                             0.211667
                                                              2.666667
4
              7.809091
                                0.700000
                                             0.165758
                                                              2,566667
5
              8.161077
                                0.585280
                                             0.240124
                                                              2.540476
                                0.504957
                                             0.263680
6
              8.317749
                                                              2.444805
7
              8.851049
                                0.393671
                                             0.386573
                                                              2.760140
8
              8.806250
                                0.410000
                                             0.432500
                                                              2.643750
         chlorides free sulfur dioxide total sulfur dioxide
density \
quality
          0.105333
                               8.166667
                                                     24.500000
0.997682
          0.094788
                              14.848485
                                                     40.606061
0.996669
          0.091770
                              16.612836
                                                     55.299172
0.997073
                                                     39.941558
          0.085281
                              15.215368
0.996610
7
          0.075217
                              14.538462
                                                     37.489510
0.996071
          0.070187
                              11.062500
                                                     29.375000
0.995553
```

	рН	sulphates	alcohol	Id
quality				
3	3.361667	0.550000	9.691667	1121.166667
4	3.391212	0.637879	10.260606	692.848485
5	3.302091	0.613375	9.902277	753.925466
6	3.323788	0.676537	10.655339	854.625541
7	3.287133	0.743566	11.482634	830.349650
8	3.240625	0.766250	11.937500	797.875000

#HEATMAP FOR EXPRESSING CORRELATION

import seaborn as sns
sns.heatmap(df.corr())

<Axes: >

import seaborn as sns
sns.heatmap(df.corr(),annot=True)

```
- 1.0
       fixed acidity - 1 -0.250.670.170.11-0.160.110.68-0.690.170.0750.12-0.28
    volatile acidity -0.25 1 -0.59.0058056.002.078.0170.22-0.28-0.2-0.40.007
                                                                                             - 0.8
          citric acid -0.67-0.54 1 0.180.250.05&0370.38-0.550.33 0.110.24-0.14
                                                                                             - 0.6
     residual sugar -0.1-0.005&18 1 0.0710.170.190.38-0.120.010.050.02-0.04
          chlorides -0.110.0560.250.071 1 0.016.0480.21-0.280.37-0.230.120.08
                                                                                             - 0.4
free sulfur dioxide -0.160.000.058.170.015 1 0.660.054.078.0340.040.066.095
                                                                                             - 0.2
total sulfur dioxide -0.10.078.0370.190.0480.66 1 0.050.059.0270.190.180.11
            density -0.680.0170.380.380.210.0540.05 1 -0.350.14-0.490.180.36
                                                                                             - 0.0
                 pH -0.690.22-0.550.120.280.07-0.05-0.35 1 -0.190.230.0520.13
                                                                                              - -0.2
          sulphates -0.17-0.280.330.0170.370.039.0270.14-0.19 1 0.0940.26 -0.1
             alcohol -0.0750.2 0.110.0580.230.0470.190.490.230.094 1 0.480.24
                                                                                               -0.4
             quality -0.12-0.410.240.0220.120.0630.180.180.0520.260.48 1
                   ld -0.28.0079.140.046.088.0950.110.360.13-0.1 0.240.07
                                                                        alcohol
                       fixed acidity
                                                free sulfur dioxide
                                                    total sulfur dioxide
                                                                             quality
                                 citric acid
                                      residual sugar
                                                                    sulphates
                            volatile acidity
                                           chlorides
                                                               표
                                                                                  D
                                                          density
```

```
df[['fixed acidity','volatile acidity']].corr()
sns.heatmap(df.corr(),annot=True)
<Axes: >
```


#PAIR PLOT

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x259dd2f6e10>

sns.pairplot(df,hue='quality')
<seaborn.axisgrid.PairGrid at 0x26ecd8772d0>

#HISTOGRAM import matplotlib.pyplot as plt df.hist(bins=20,figsize=(10, 10))

plt.show()


```
import matplotlib.pyplot as plt
import seaborn as sns
df[["fixed acidity","volatile acidity"]].corr()
plt.figure(figsize=(5,10))#if we write above then it show different
effect
sns.heatmap(df[["fixed acidity","volatile acidity"]].corr())
#plt.figure(figsize=(5,10))#if we write below the plt.figure then
condition changes and does not show any effect

<Axes: >
```


sns.pairplot(df,hue='quality',kind='hist')

<seaborn.axisgrid.PairGrid at 0x259916d9150>

#BARGRAPH

```
plt.bar(df['quality'], df['alcohol'])
plt.xlabel('quality')
plt.ylabel('alcohol')
plt.show()
```


sns.pairplot(df,hue='quality',diag_kind='hist')
<seaborn.axisgrid.PairGrid at 0x26eab8b2950>

#KDE-K for kernal D for density E for estimation
sns.kdeplot(data=df,x=df['fixed acidity'])

<Axes: xlabel='fixed acidity', ylabel='Density'>


```
sns.kdeplot(data=df,x=df['fixed acidity'])
sns.kdeplot(data=df,x=df['volatile acidity'])
<Axes: xlabel='fixed acidity', ylabel='Density'>
```


sns.kdeplot(data=df,x=df['fixed acidity'],shade=True)

`shade` is now deprecated in favor of `fill`; setting `fill=True`. This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(data=df,x=df['fixed acidity'],shade=True)

<Axes: xlabel='fixed acidity', ylabel='Density'>


```
sns.kdeplot(data=df,x=df['fixed acidity'],shade=True)
sns.kdeplot(data=df,x=df['volatile acidity'],shade=True)
sns.kdeplot(data=df,x=df['citric acid'],shade=True)
sns.kdeplot(data=df,x=df['residual sugar'],shade=True)
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 59200\971205529.py:1:
FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
  sns.kdeplot(data=df,x=df['fixed acidity'],shade=True)
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 59200\971205529.py:2:
FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
  sns.kdeplot(data=df,x=df['volatile acidity'],shade=True)
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 59200\971205529.py:3:
FutureWarning:
`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
```

sns.kdeplot(data=df,x=df['citric acid'],shade=True)
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_59200\971205529.py:4:
FutureWarning:

`shade` is now deprecated in favor of `fill`; setting `fill=True`. This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(data=df,x=df['residual sugar'],shade=True)

<Axes: xlabel='fixed acidity', ylabel='Density'>

#BOXPLOT

sns.boxplot(x=df['fixed acidity'])

<Axes: xlabel='fixed acidity'>

sns.boxplot(y=df['fixed acidity'])

<Axes: ylabel='fixed acidity'>


```
df['fixed acidity'].quantile(0.25)
7.1

df['volatile acidity'].quantile(0.25)
0.3925

cal=['fixed acidity','volatile acidity','citric acid','chlorides']
for i in cal:
    print(sns.boxplot(df[i]))
    plt.figure()

Axes(0.125,0.11;0.775x0.77)
Axes(0.125,0.11;0.775x0.77)
Axes(0.125,0.11;0.775x0.77)
Axes(0.125,0.11;0.775x0.77)
```


<Figure size 640x480 with 0 Axes>

```
import seaborn as sns
import matplotlib.pyplot as plt
col=['chlorides']
for i in col:
    print(sns.boxplot(y=df[i]))
    plt.figure()

Axes(0.125,0.11;0.775x0.77)
```



```
<Figure size 640x480 with 0 Axes>
#OUTLIERS ANALYSIS
q1=df['fixed acidity'].quantile(0.5)
print(q1)
q2=df['volatile acidity'].quantile(0.5)
print(q2)
q3=df['citric acid'].quantile(0.5)
print(q3)
IQR=q3-q1
upper=q3+(1.5*IQR)
print(upper)
lower=q1+(1.5*IQR)
print(lower)
7.9
0.52
```

```
0.25
-11.2250000000000001
-3.5750000000000001
df.columns
Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual
       'chlorides', 'free sulfur dioxide', 'total sulfur dioxide',
'density',
        pH', 'sulphates', 'alcohol', 'quality', 'Id'],
      dtype='object')
col=['fixed acidity', 'volatile acidity', 'citric acid', 'residual
sugar',
       'chlorides'l
for i in col:
    print(df[i].value counts())
7.2
        43
7.1
        41
7.0
        40
7.8
        40
7.5
        37
        . .
4.6
         1
13.7
         1
13.4
         1
13.5
         1
12.2
Name: fixed acidity, Length: 91, dtype: int64
0.600
         32
0.500
         32
0.430
         31
0.390
         29
0.580
         28
         . .
1.035
          1
0.565
          1
0.865
          1
0.965
          1
0.160
          1
Name: volatile acidity, Length: 135, dtype: int64
0.00
        99
0.49
        47
0.24
        42
        35
0.02
0.01
        26
        1
0.61
```

```
0.72
         1
1.00
         1
0.75
         1
0.62
         1
Name: citric acid, Length: 77, dtype: int64
2.00
        107
2.10
        103
1.80
         92
2.20
         88
1.90
         80
7.30
          1
7.20
          1
2.95
          1
3.65
          1
4.40
          1
Name: residual sugar, Length: 80, dtype: int64
0.080
0.077
         41
0.074
         38
0.084
         38
0.078
         36
0.222
          1
0.422
          1
0.034
          1
0.387
          1
0.230
          1
Name: chlorides, Length: 131, dtype: int64
import seaborn as sns
import matplotlib.pyplot as plt
col=['chlorides']
for i in col:
    print(sns.boxplot(y=df[i]))
    plt.figure()
Axes(0.125,0.11;0.775x0.77)
```



```
<Figure size 640x480 with 0 Axes>
df.chlorides.value_counts()
0.080
         48
0.077
         41
0.074
         38
0.084
         38
0.078
         36
0.222
          1
0.422
          1
0.034
          1
0.387
          1
0.230
Name: chlorides, Length: 131, dtype: int64
#ENCODING
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df
      fixed acidity volatile acidity citric acid residual sugar
chlorides \
                                 0.700
                7.4
                                               0.00
                                                                 1.9
0.076
```

1 0.098		7.8	0.880	0.	00		2.6
2		7.8	0.760	0.	04		2.3
0.092		11 0	0.200	0	F.C		1 0
3 0.075		11.2	0.280	⊌.	56		1.9
4		7.4	0.700	0.	00		1.9
0.076							
					• •		
1138		6.3	0.510	0.	13		2.3
0.076 1139		6.8	0.620	0.	08		1.9
0.068							
1140 0.090		6.2	0.600	0.	08		2.0
1141		5.9	0.550	0.	10		2.2
0.062 1142		5.9	0.645	۵	12		2.0
0.075		5.9	0.045	υ.	12		2.0
	£1	مائد دائد مائد	+-+-114.	مامئن مئام من	d 4		
sulpha	ates \	Tur dioxide	total sulfu	ir gioxide	density	рн	
0	•	11.0		34.0	0.99780	3.51	
0.56 1		25.0		67.0	0.99680	3.20	
0.68							
2 0.65		15.0		54.0	0.99700	3.26	
3		17.0		60.0	0.99800	3.16	
0.58		11 0		24.0	0.00700	2 51	
4 0.56		11.0		34.0	0.99780	3.51	
 1138		29.0		40.0	0.99574	3.42	
0.75							
1139 0.82		28.0		38.0	0.99651	3.42	
1140		32.0		44.0	0.99490	3.45	
0.58		20.0		F1 0	0 00513	2 52	
1141 0.76		39.0		51.0	0.99512	3.52	
1142		32.0		44.0	0.99547	3.57	
0.71							
	alcohol	quality	Id				
0 1	9.4 9.8	5 5	0 1				
1	9.0	J	1				

```
2
          9.8
                     5
                            2
3
          9.8
                     6
                            3
4
          9.4
                     5
                            4
                    . . .
          . . .
1138
         11.0
                     6
                        1592
          9.5
1139
                     6
                        1593
                     5
1140
         10.5
                        1594
         11.2
                        1595
1141
                     6
         10.2
                     5
1142
                        1597
[1143 rows x 13 columns]
#LINEAR REGRESSION
X=df.iloc[:,:-1].values
Y=df.iloc[:,-1].values
X.shape
(1143, 12)
Χ
array([[ 7.4
                 0.7
                         0.
                               , ...,
                                       0.56 ,
                                               9.4
                                                             ],
       [ 7.8
                 0.88 ,
                         0.
                                       0.68 ,
                                               9.8
                                                       5.
                               , ...,
                                                             ],
       [ 7.8
                 0.76 ,
                         0.04 , ...,
                                       0.65 ,
                                               9.8
       [ 6.2
                 0.6 ,
                         0.08 , ...,
                                       0.58 , 10.5
                                                             ],
       [ 5.9
                 0.55 ,
                               , ...,
                                       0.76 , 11.2
                         0.1
                                                       6.
                                                             ],
       [ 5.9
              , 0.645,
                         0.12 , ..., 0.71 , 10.2
                                                       5.
                                                             ]])
Υ
array([ 0, 1, 2, ..., 1594, 1595, 1597], dtype=int64)
from sklearn.model_selection import train_test_split
X train, X test, Y train,Y test=
train_test_split(X,Y,test_size=.25,random_state=67)
X train
array([[ 7. ,
                0.62,
                       0.08, ...,
                                    0.53,
                                           9.
                                                  5.
       [11.6 ,
                       0.44, ...,
                                    0.86,
                                           9.9 ,
                                                  4.
                0.47,
       [8.3,
                0.78,
                       0.1 , ...,
                                    0.53, 10. ,
       [ 7.3 ,
                       0. , ...,
                                    0.47, 10. ,
                0.65,
                                                  7.
                       0.18, ...,
                                                  7.
       [5.1,
                0.51,
                                    0.87, 12.9 ,
                                                      ],
       [ 9.8 , 0.39,
                       0.43, ..., 0.46, 11.4,
                                                  5.
Y_train
```

```
array([
        89,
             833,
                  678, 1011, 1246, 106, 1340,
                                               289,
                                                     988,
                                                          110,
1013,
       897,
             720,
                  530, 448, 1552, 1420, 313,
                                               231, 1168, 1522,
588,
             671, 1335, 1503, 1057, 197, 466,
       183.
                                               497. 637. 1577.
200,
             103, 974, 772, 1274, 318, 131,
                                               644, 1184,
       808,
                                                          270,
1597,
                        950, 756, 191, 1404, 1052, 1300,
       533,
              91, 1551,
                                                          647.
1436,
             325, 1240, 286, 749, 1034, 753, 819, 1279,
       960,
                                                          757.
1347,
       477,
             604, 1399, 42, 1051, 1575, 1283, 577, 1062,
                                                          699,
1288,
      1371,
             455, 1361, 765, 1366, 360, 427, 1485, 1029,
                                                          308,
1088,
       250,
             583, 733, 232, 592, 1085, 384, 998, 1594, 1364,
1285,
             453, 1141, 1390, 1047, 524, 830, 1284, 1081,
       178,
685,
      1510, 1292, 403, 1572, 406, 1391, 1382, 245, 886, 795,
991,
      1532, 1290, 759, 45, 728, 1114, 348,
                                               838, 1357, 741,
877,
       409, 240, 809, 1275, 944, 1362, 501,
                                               895, 1556, 328,
156,
       537, 1107, 1461, 152, 1449, 1531, 1570, 794, 750,
                                                           35,
1415,
       324, 339, 721,
                        892, 188, 559, 277, 390,
                                                     987, 736,
967,
      1439, 1110, 901,
                        827, 1555, 1511, 884, 1225, 173, 1053,
1027,
      1351, 475, 636, 234, 1155, 54, 1429, 280, 1238, 1450,
292,
        34, 1472, 1195, 199, 893,
                                   999, 633, 1393, 1454, 531,
114,
      1112, 1169, 1583, 1119, 952, 257, 803, 1467, 60, 1419,
729,
       806, 1101, 1299, 655, 983, 1479, 860, 485, 989, 442,
160,
        96, 1509, 1495, 1245, 595, 153, 168, 796, 281,
                                                          428,
1254,
       435, 640, 1170, 702, 842, 745, 172, 1341, 1386, 1586,
392,
             351, 1207, 312, 407, 1372, 560, 1540, 296,
       388,
1183,
             894, 915, 1149, 1325, 1327, 1162, 440, 888, 791,
       193,
1058,
             841, 523, 564, 1191, 1571, 591, 754, 1451, 1567,
       639,
1049,
```

```
1559,
            823, 1595, 718, 1421, 539, 155, 1306, 180, 1266,
536,
       491, 872,
                  396,
                        768, 1336, 1493, 1546, 771, 1010, 22,
353,
                        216, 1592, 452, 275, 1091, 376, 1298,
       811. 1487.
                  652.
579,
                        697, 1226, 1319, 1392, 569, 1416, 1076,
       113, 1220, 780,
1289,
       278, 137, 661,
                        261, 495, 1059, 244, 1188,
                                                    126, 881,
662,
       946, 78, 707, 283, 402, 337, 1412, 982, 928, 1563,
111,
       632, 1297, 429, 1480, 487, 175, 565, 1311, 1558, 684,
499,
       515, 1203,
                  752, 760, 1580, 290, 1281, 1529, 964,
                                                          343,
865,
                  975, 891, 971, 457, 1099, 912,
                                                     52, 1236,
       578,
            431,
1560,
      1271,
            848, 128, 1561, 167, 80, 1206,
                                              953, 1127, 1519,
590,
        10, 648, 454, 1108, 1518, 692, 93,
                                              513, 300, 1105,
327,
      1210, 1396, 1447, 1428, 164, 76, 1476, 1046,
                                                      6, 1578,
1176,
       450, 1533, 1228, 557, 159, 1333, 1014, 185, 689, 1417,
311,
       298, 941,
                   98, 1506, 1006, 1569, 359,
                                              708, 1118, 1478,
920,
      1078, 1343,
                  608, 425, 395, 1332,
                                              529, 793, 1151,
                                         414,
831,
                        446, 694, 785,
      1227, 23,
                  898,
                                         596,
                                              801, 955, 412,
58,
                  653,
                        853, 1515, 1355, 770, 64, 1120, 306,
       285. 755.
1264,
                  502,
                        567, 1593, 1070, 657, 856, 1256, 1230,
       459.
            961,
942,
      1197,
            962,
                   16, 1475, 810, 1219, 268, 1100, 676, 1019,
176,
             609, 469, 422, 500, 824, 656, 127,
       925.
                                                      3, 1431,
1305,
                  122,
                        182, 1443, 1339, 1268, 673, 1060,
      1378,
            927,
333,
       813,
            4, 336,
                        447, 1069, 1562, 627, 1000, 218,
1026,
                        737, 658, 902, 1250, 705, 748, 1409,
      1445,
            906, 1468,
120,
            710, 1063, 775, 226, 77, 956,
                                              587, 727, 1385,
       703,
1239,
            416, 1548, 344, 1134, 1273, 951, 354, 1338, 1021,
       433,
542,
```

```
511,
                  535, 730, 1334, 919, 1022, 726, 504,
                                                         778,
      1395,
1189,
      1103, 1018, 67, 2, 1089, 792, 1156, 1380, 1201, 924,
731,
                        423, 157, 400, 166, 288, 1212, 1545,
       698.
             63,
                  548.
5,
                        184, 821, 1358, 626, 1418, 820, 1221,
             580, 1258,
        61,
620,
      1437, 1486, 444, 706, 617, 165, 1422, 367, 464, 1291,
213,
       314, 804, 1178, 1041, 570, 258, 532, 779, 1145, 739,
439,
            784, 1411, 102, 1452, 1128, 1346, 1331, 252,
      1304,
279,
      1237,
            287, 985,
                        527, 1326, 506, 1324, 1344,
                                                    667,
                                                         851,
1144,
                        124, 1568, 1231, 1321, 562, 917,
       404,
            211, 1143,
                                                         862,
419,
      1280, 889, 230, 259, 758, 543, 1111, 1125, 725, 115.
788,
                        505, 1133, 251, 51, 1153, 1179, 434,
       293, 1353, 1481,
79,
                   59,
       494. 871.
                        334, 836, 1261, 352, 295, 1582, 1199,
1492,
      1094, 1092, 610, 204, 1132, 1413, 145, 1023, 885, 269,
1494,
        24, 1278, 461, 1525, 1140, 936, 1173, 410,
                                                    650, 170,
781,
      1356, 253, 1, 616, 1423, 1270, 512, 1087,
                                                          40,
                                                    467,
1477,
      1096, 1471, 612, 1367, 460, 1036, 194, 1376, 361, 1061,
104,
            516, 36, 1460, 140, 802, 854, 479, 934,
       489.
214,
            556, 534, 540, 1008, 472, 1229, 355, 1243,
       134.
                                                         634.
190,
      1267, 1038, 1505, 1142, 931, 1427, 545, 1175, 72,
1501,
      1260, 121, 1172, 364, 858, 1115, 691, 711, 1066, 1122,
837,
            496, 43, 1433, 264, 177, 1379, 1407, 1517, 366,
       679,
161,
      1316, 993, 347, 1535, 654, 922, 629, 1309, 437,
                                                         949,
777,
       468, 1039, 1590, 947, 32,
                                   572, 8, 926,
                                                   144,
                                                         135,
399,
       222, 1232, 263, 1024, 1139, 932, 1497, 362,
                                                    430,
                                                         100,
1565,
       554, 1146, 86, 649, 1370, 1296, 1464, 622, 1368,
1265,
```

```
787, 1410, 981,
                        208, 418, 977, 220, 1591, 30,
                                                          681,
1402,
      1073, 1135, 769, 538, 260, 790, 1473, 426, 761, 882,
683,
                  666, 1469, 1214, 1277, 1388, 7, 1157, 1181],
       507. 1147.
     dtype=int64)
X test
                0.38 ,
                       0.56 , ...,
                                    0.71 , 10.9
array([[12.
                                                   6.
                                                        ],
      [11.3
                0.34 ,
                       0.45 , ...,
                                    0.66 ,
                                           9.2
                                                   6.
                                                        ],
                0.63 ,
      [ 7.5
                       0.27 , ...,
                                    0.58 ,
                                           9.8
                                                   6.
                                                        ],
                0.3 ,
                       0.63 , ...,
                                    0.78 , 10.8
                                                        ],
      [ 8.]
                                                   6.
                                       , 11.2
      [ 9.1
                0.37 ,
                       0.32 , ...,
                                    0.8
                                                   6.
                                                        ],
             , 0.705,
                       0.05 , ...,
                                   0.95 , 10.5
                                                   6.
                                                        ]])
Y test
array([ 241, 669, 1315, 907, 1499, 1337, 262, 150, 1192, 321,
717,
      1566, 56, 1584, 284, 1384, 1312, 493, 1330, 417, 65,
846,
      1012, 1438, 25, 1048, 1345, 326, 1020, 130, 1557, 995,
1198,
       990, 958, 1272, 547, 1459, 1056, 693, 1148, 517,
1190,
      1194, 46, 221,
                        520, 1458, 1234, 714, 82, 1035, 1408,
1490,
       378, 762, 911, 476, 1397, 598, 369, 319, 1152, 1253,
158,
      1414, 1093, 916, 1400, 37, 297, 1204, 151, 1007, 1457,
552,
      1045, 910,
                  553, 875, 1504, 28, 84, 1573, 576, 483,
1257,
                  619, 29, 1174, 1090, 799, 704,
        53,
             148,
                                                     107. 215.
642,
            116, 73, 1301, 21, 1104, 602, 630, 470,
       843,
                                                           19.
421,
                  611, 1549, 734, 929, 1328, 1262, 1079, 896,
             939,
       563,
568,
             380, 857, 900, 1216, 1209, 773, 621, 732, 544,
      1044,
235,
                        550, 302, 26, 358, 1553, 397, 1067,
       863,
            301, 12,
1130,
                        904, 1587, 276, 179, 1523, 1514, 304,
       142, 146, 85,
1117,
       205, 1534, 1463, 1544, 246, 1086, 1071, 143, 1466, 1109,
551,
         0, 1224, 363, 514, 471, 980, 1202, 764, 217, 449,
```

```
1252,
       356, 1200, 665, 456, 391, 635, 1430, 210, 413, 908,
1083,
       607, 847, 1138, 850, 255, 415, 436, 335, 225, 744,
94,
        87, 1507, 372, 481, 814, 1032, 695, 1065, 723, 256,
1004,
       294, 1538, 1483, 1055, 1474, 688, 498, 1164, 581, 1434,
1508,
      1528, 105, 660, 628, 631, 1276, 746, 1406, 163, 1005,
826,
       223, 1403, 1082, 1116, 342, 701, 1208, 541, 546, 242,
1016,
       789, 1282, 700, 50, 243, 377, 196, 181, 1167, 1488,
492,
      1455, 266, 1136, 509, 677, 41, 1383, 13, 1530, 968,
1526,
       978, 206, 1359, 1251, 162, 371, 1322, 797, 1329, 719,
249,
      1064, 918, 766, 186, 1025, 1470, 740, 357, 1576, 1302,
69],
     dtype=int64)
X train.shape
(857, 12)
#FEATURE SCALING
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
from sklearn.linear model import LinearRegression
reg=LinearRegression()
reg.fit(X train,Y train)
LinearRegression()
reg.coef
array([-8.49521000e+01, 1.15202170e+02, 3.14545000e+02,
4.15854633e+00,
       -3.02028117e+02, 1.24269361e+01, -4.61333273e+00, -
3.73576471e+04,
      -4.35625267e+02, -1.25777042e+02, 5.60787306e+01, -
4.46523564e+01])
reg.intercept
39834.55848194451
Y pred=reg.predict(X test)
```

```
Y pred
        536.0913878 ,
                         615.6672747 ,
                                         703.9902699 ,
                                                         980.98370256,
array([
        970.50239001,
                       1075.26341935,
                                         784.98055005,
                                                         988.7836496 ,
        907.72029104,
                         575.81553786,
                                         815.91026766,
                                                        1181.64715411,
                        1212.83022811,
        854.53788546,
                                         568.80533489,
                                                         853.0966624
                                         695.74660228,
        993.24603163,
                         579.54402124,
                                                         788.70322128,
        952.24922106,
                         882.57117678,
                                         970.75508097,
                                                         901.1365322
        990.17484252,
                         743.91060984,
                                         858.33589974,
                                                         741.52577317,
        811.73077381,
                         715.54870895,
                                         963.28468054,
                                                         799.11951446,
        862.82430917,
                        1011.37564234,
                                        1054.43534766,
                                                        1164.23808401,
                                         968.20164831,
        586.48754514,
                         957.82087026,
                                                         392.09942001,
        988.51973688,
                         658.16206774,
                                         721.64917511,
                                                         969.01162764,
        811.8481123
                         685.07496782,
                                         856.19162417,
                                                         603.20123337,
        878.16171381,
                        1214.26810206,
                                         610.22876275,
                                                         823.97191208,
        674.0860328
                        1138.6003416
                                        1190.62826881,
                                                         794.552941
        703.95723816,
                         799.12462201,
                                         707.02810413,
                                                         715.20870572,
        738.30317187,
                         821.53555098,
                                         654.21402256,
                                                         860.49348393,
        776.59104376,
                         822.03427362,
                                         649.21174908,
                                                         768.67731172,
        893.30212261,
                         689.46170884,
                                         784.65288034,
                                                         592.77978253,
       1023.41221484,
                         897.35247361,
                                         866.70500588,
                                                         753.31491109,
        668.14479652,
                        1210.57294573,
                                         995.66961157,
                                                        1154.77004106,
        834.84121132,
                        1033.23029238,
                                         779.47710416,
                                                         922.37852343,
       1028.36802245,
                         701.38044166,
                                         672.36250569,
                                                         813.96309036,
        666.68441988,
                         871.04944699,
                                         568.67125587,
                                                         767.26644282,
        762.38449685,
                        1122.77565925,
                                         712.74253586,
                                                         711.71811884,
                         774.99186897,
        799.38830711,
                                         624.80708439,
                                                         667.179074
                                         869.57613924,
        680.46512042,
                                                         689.57412313,
                         771.42947002,
       1184.8226665
                         803.99400788,
                                         650.20941656,
                                                         546.88879154,
        764.15637997,
                        1143.08318542,
                                         924.30061105,
                                                        1067.83692107,
        462.78618539,
                        1069.43216197,
                                         620.66751341,
                                                         956.42372733,
        936.8960328
                         903.21628399,
                                         514.50902385,
                                                         986.85929374,
        589.48457886,
                        1124.70184197,
                                         787.53863915,
                                                         781.11788161,
                         578.74263595,
                                        1097.38960148,
                                                         525.01716037,
        842.21625717,
        488.63808508,
                         886.17877575,
                                         348.77617439,
                                                         732.30755234,
        586.01424853,
                         625.28554849,
                                         898.36019159,
                                                         844.69626463,
                         884.66921266,
                                         512.77338418,
        634.08338232,
                                                         851.65309837,
        600.28334569,
                         757.13833323,
                                         716.05289231,
                                                        1240.12796492,
                                         921.91721578,
        816.54973196,
                         968.19557768,
                                                        1078.12604684,
        503.05742918,
                         725.33834271,
                                        1102.58453502,
                                                         627.8183631
        669.87450392,
                        1033.976805
                                         446.28631342,
                                                        1044.19235028,
        942.20368855,
                         994.01288611,
                                         812.25251295,
                                                         798.89726582,
        809.90949864,
                         891.73980663,
                                         969.34989675,
                                                         665.418789
        639.75046508,
                         680.28272012,
                                         498.02992458,
                                                         640.02606935,
        848.9346132
                         912.13940037,
                                         734.83332421,
                                                         857.11237951,
                         753.92990474,
                                         693.67722716,
        529.62702469,
                                                         826.80385915,
        664.76607531,
                         987.72594584,
                                         815.93033158,
                                                         718.63487863,
```

965.66963823,

1022.24778959,

771.07484227,

943.69101355,

787.91377269,

1042.09803471,

910.44423173,

862.31187277,

516.68725976,

380.97661933,

702.37269494,

690.51647875,

```
329.60562447, 1115.65339593,
                                        593.23909402,
                                                        933.19038266,
        404.37768643, 1239.70761363,
                                        803.85864553, 1033.23029238,
        857.9386383 ,
                        818.13948575,
                                        545.7183075 ,
                                                        708.44400492,
       1088.02566911,
                        850.51762486,
                                        814.18622427.
                                                        709.25278128.
       1050.13312001,
                        283.44519702,
                                       1092.48985001,
                                                        989.78016508,
        520.92148345,
                        773.34791134,
                                        820.05399399,
                                                        663.21905496,
        824.27702043,
                        486.18100628,
                                        650.42129786, 1008.92327205,
        841.39225549,
                        677.56325802,
                                        723.6714779 ,
                                                        650.20941656,
        608.81060753, 1086.14382338,
                                        633.70004882,
                                                        834.83311833,
        738.97484773,
                       1182.7529067 ,
                                        910.81364462,
                                                        710.42361199,
                        869.59916278,
                                       1033.976805
        780.60080462,
                                                        542.52453136,
        709.8451694 ,
                       1023.41221484,
                                        771.17026914,
                                                        685.80610331,
                        966.20973092,
                                        528.0109678 ,
        783.63803724,
                                                        836.73141583,
        680.24692555,
                        751.17368323,
                                        123.73586086,
                                                        821.53555098,
        825.05683989,
                        565.78890032,
                                       1070.15905946,
                                                       1009.63551781,
       1025.63495585,
                        991.30097398,
                                        618.25309137,
                                                        751.11081148,
        659.28815674,
                        732.25903828,
                                        826.37624439,
                                                        723.75755608,
        693.88860853,
                       1011.00845157, 1191.00601906,
                                                        934.85482478,
       1052.39496642,
                        446.28631342,
                                        581.92820149,
                                                        956.71787463,
                        757.90852674, 1082.59961257,
                                                        887.11751279.
        846.57735247,
        695.74660228,
                        767.64823784,
                                        541.61629465, 1008.63797428,
                        612.80855049,
        878.6506882 ,
                                        765.7090696 ,
                                                        693.47989026,
        875.26212753,
                        940.01181041,
                                        783.33692083, 1033.23248759,
        797.416425 ,
                        779.9476916 ])
#EVALUATION
from sklearn import metrics
metrics.mean squared error(Y test,Y pred)
192915.74724032867
import numpy as np
np.sqrt(metrics.mean squared error(Y test,Y pred))
439.22175178414
r2=metrics.r2 score(Y_test,Y_pred)
n=df.shape[0] #sample size
p=df.shape[1] # columns/independent variables
df.shape
(1143, 13)
#PERCENTAGE ACCURATE
r2=metrics.r2 score(Y test,Y pred)
r2
0.14708477569668355
Adj r2 = 1 - (1 - r2) * (n - 1) / (n - p - 1)
```

```
Adj r2
0.13726378551427154
#LOGISTIC REGRESSION
x=df.iloc[:,:-2].values
v=df.iloc[:,:-2].values
from sklearn.model selection import train test split
X train, X test, Y train, Y test=train test split(X,Y,test size=.25, rando
m state=67)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X train=sc.fit transform(X train)
X test=sc.transform(X test)
#MODELLING
from sklearn.linear model import LogisticRegression
lr=LogisticRegression()
lr.fit(X train,Y train)
C:\Users\Lenovo\anaconda3\Lib\site-packages\sklearn\linear model\
logistic.py:460: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as
shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear model.html#logistic-
regression
  n iter i = check optimize result(
LogisticRegression()
Y pred=lr.predict(X test)
Y pred
array([ 418, 667, 311, 1300, 1497, 1336, 1420, 1356, 949, 285,
23,
       1472, 654, 1206, 285, 1304, 422, 499, 311, 1419, 64,
848,
       736, 1347, 34, 1049, 1332, 513, 1021, 145, 756, 1013,
1230,
        988, 1452, 1122, 971, 806, 1059, 694, 1091, 459, 102,
```

```
1078,
             61, 439, 269, 955, 1237, 296, 703, 495, 1156,
       120,
1026,
       946, 8, 1078, 1416, 188, 1332, 504,
                                              285. 1155. 222.
122,
      1416, 950, 1191, 1419, 1449, 298, 1206, 106, 1006, 1533,
348,
      1122, 1021, 1178, 1451, 956, 4, 1472, 1300, 1238,
                                                         689.
1388,
             51, 1416, 8, 1173, 1156, 1147, 1189, 848,
       523,
                                                         156,
644,
             500, 927, 355, 733, 1100, 170, 172, 446, 754,
       253,
425,
            813, 435, 1449, 298, 806, 1336,
       610,
                                              545, 1081, 1132,
308,
      1168, 200, 949, 1509, 311, 1206, 689, 620, 170, 464,
8,
       860, 1060, 1480, 52, 298,
                                  80, 440, 1551, 429,
                                                         440.
1110,
       144, 153, 872, 1133, 1591, 268,
                                         529, 872, 1515,
                                                         165.
1115,
       407, 1066, 1351, 1449, 182,
                                   974, 595,
                                               80, 1468,
                                                          842,
348,
         4, 244, 264, 513, 1058, 983, 1061, 765, 170, 450,
1334,
                        626, 359,
                                   469, 872,
       446, 1197, 655,
                                              467, 278, 1175,
982,
       884, 245, 1057, 851, 188, 515, 1529, 455, 1460, 523,
1178,
        80, 956, 639, 495, 472, 1108, 1321, 1277, 88, 1416,
872,
       244, 1052, 1509, 1275, 1476, 170, 495, 981, 580, 1476,
1472,
       790, 103, 658, 172, 1416, 1078, 59, 1412,
                                                    164, 1010,
952,
            128, 1140, 1115, 343, 697, 1206, 1078, 268, 54,
       427,
491,
                                   504, 733, 1260, 1132, 1480,
       967.
            134, 710, 542, 244,
491,
       756,
            419, 1172, 657, 170, 927, 1419, 43, 1142, 1100,
1494,
      1201, 407, 1362, 1085, 7, 1143, 1181, 1070, 311, 625,
245,
      1237, 1156, 23, 610, 351, 1376, 1577, 513, 1472, 971,
128],
     dtype=int64)
Y test
```

```
array([ 241, 669, 1315,
                        907, 1499, 1337, 262, 150, 1192,
                                                         321,
717,
      1566,
             56, 1584, 284, 1384, 1312, 493, 1330, 417,
                                                          65.
846,
      1012, 1438, 25, 1048, 1345, 326, 1020, 130, 1557,
1198,
       990, 958, 1272, 547, 1459, 1056, 693, 1148, 517,
1190,
             46, 221,
                        520, 1458, 1234, 714, 82, 1035, 1408,
      1194,
1490,
                        476, 1397, 598, 369, 319, 1152, 1253,
       378, 762, 911,
158,
      1414, 1093,
                  916, 1400, 37, 297, 1204, 151, 1007, 1457,
552,
      1045, 910,
                  553, 875, 1504, 28, 84, 1573, 576, 483,
1257,
                  619, 29, 1174, 1090, 799, 704,
        53,
            148,
                                                    107,
                                                         215,
642,
            116, 73, 1301, 21, 1104, 602, 630, 470,
       843,
421,
                  611, 1549, 734, 929, 1328, 1262, 1079,
       563,
            939,
568,
      1044.
            380, 857, 900, 1216, 1209, 773, 621, 732,
                                                         544.
235,
       863,
                   12,
                        550, 302, 26, 358, 1553, 397, 1067,
            301,
1130,
       142, 146, 85,
                        904, 1587, 276, 179, 1523, 1514, 304,
1117,
       205, 1534, 1463, 1544, 246, 1086, 1071, 143, 1466, 1109,
551,
         0, 1224, 363, 514, 471, 980, 1202, 764, 217, 449,
1252,
                        456, 391, 635, 1430, 210,
       356, 1200, 665,
                                                    413.
                                                         908.
1083,
       607, 847, 1138,
                        850, 255, 415, 436, 335, 225, 744,
94,
        87, 1507, 372, 481, 814, 1032, 695, 1065, 723, 256,
1004,
       294, 1538, 1483, 1055, 1474, 688, 498, 1164,
                                                   581, 1434,
1508,
      1528, 105, 660, 628, 631, 1276, 746, 1406,
                                                   163, 1005,
826,
                                                   546, 242.
       223, 1403, 1082, 1116, 342, 701, 1208, 541,
1016,
       789, 1282, 700, 50, 243, 377, 196, 181, 1167, 1488,
492,
      1455, 266, 1136, 509, 677, 41, 1383, 13, 1530, 968,
1526,
       978, 206, 1359, 1251, 162, 371, 1322, 797, 1329, 719,
249,
```

```
1064, 918, 766, 186, 1025, 1470, 740, 357, 1576, 1302, 69],

dtype=int64)

from sklearn.metrics import confusion_matrix

confusion_matrix(Y_test,Y_pred)

array([[0, 1, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0]], [0, 0, 0, ..., 0, 0, 0]], dtype=int64)
```