Chapter 1

Statistics and Data Science

Professor Jung Jin Lee

- 1.1 Statistics and Data Science
- 1.2 Population and Sample
- 1.3 Variables and Data
- 1.4 Software for Statistical Analysis

https://money.usnews.com/careers/best-jobs/rankings/best-business-jobs

Home / Money / Careers / Rankings / Best Business Jobs

Best Business Jobs

Business jobs are more than cubicle farms, suits and 9-to-5 schedules.

In Google, type

'Best Business Jobs US News Careers'

Statistician

#1 in Best Business Jobs

Statistics is the science of using data to make decisions. This is relevant in almost all fields of work and there are many opportunities for employment.

MONEY »

Investing

Retirement

Credit Cards

Loan

Home / Money / Careers / Rankings / Best Business Jobs

Best Business Jobs

Business jobs are more than cubicle farms, suits and 9-to-5 schedules.

#2 Medical and Health Service

Mathematician

1

#3 in Best Business Jobs

- #5 Financial Manager
- #6 Financial Advisor
- #7 Accountant
- #8 Market Research Analyst
- **#9 Business Operation Manager**
- #10 Social and Community Service Manager

#11 Actuary

Operations Research Analyst

#4 in Best Business Jobs

From data mining to mathematical modeling, operations research analysts use advanced techniques to help businesses run in a more efficient and cost-

Statistics

Statistics = 'State ' + 'istics'

Statistics

- History tells which country appeared where, when, how large its territory, how much population and how many households
 - In Egypt, Greece and Rome, population and farmland area were used for the management of their country.
- 8th to 13th century, concept of probability and inference Al-Khalil (717–786), Al-Kindi (801–873), Ibn Adlan (1187–1268)
- 17th to early 19th century, mathematical foundations of statistics Gerolamo Cardano, Blaise Pascal and Pierre de Fermat.
- late 19th century, Francis Galton and Karl Pearson
- early 20th century, Ronald Fisher

Statistics

- Today, statistical methods are applied in all fields
 - => decision making, accurate inferences from data
 - => management, economics, politics, social science, education physics, chemistry, biology, computer science medical science, pharmacy, agricultural science electrical, electronical, chemical, civil engineering
- Modern computers has expedited large-scale statistical computations.

- Statistics
- Modern statistics is the discipline
 - => efficiently collect data, summarize data
 - => analyze data to make scientific decisions using various probabilistic models in uncertain situations.
 - Company predicts sales, government establish economic development plan

- Application of Statistics
- sample surveys to predict the winners of the election.
 - Sample
- Test new drug by a pharmaceutical company.
- Quality Control

- Application of Statistics
- Examine blood pressure before and after treatment

Systolic Blood Pressure Before and After Treatment

175
150
Pre-Treatment BP
Post-Treatment BP
100
25
100
110
120
130
140
150
160
170
Systolic Blood Pressure (mmHg)

Using BMI to predict FAT Percentage

Data Science

Rapid advance of computer and tele-communication technology

 1946 Modern Digital Computer(ENIAC) by Eckert and Mouchly of Univ of Pennsylvania

- 1981 IBM Personal Computer
- Microsoft Operating System by Bill Gates

The CERN data centre in 2010 bhousing some WWW servers

- 1990s Networking of computers in the world
- World Wide Web by Berners-Lee
- Google search engine
- Yahoo, MSN web portal

Two smartphones: a Samsung Galaxy J5 (left) and an iPhone 6S (right)

- 2000s Smartphone = PC + Phone
- www + wireless connection of Smartphone
- YouTube, Facebook, Twitter, LinkedIn

Big Data

- SNS Data
- web log data
- Bank data
- credit card data
- Health data

18th Century 1st Industrial Revolution

4th Industrial Revolution is under going by using Big Data

- Artificial Intelligence (AI)
- Internet of Things (IoT)
- Hyper-forecasting

19th - Early 20th Century 2nd Industrial Revolution

Late 20th Century – 3rd Industrial Revolution

Automatic driving car 3D printing Virtual Reality Alpha Go

•••

Data Science is to collect big data, analyze and apply it in real life
 Data Science is a fusion of several science

- Probability
- Estimation
- Testing
- Sampling
- Multivariate Stat Anal
- Database
- Information Retrieval
- Distributed Computing
- Artificial Intellignece
- Pattern Recognition
- Machine Learning
- Optimization
- MIS
- Marketing

Example of Data Science

 Google Flu Trend to estimate influenza activity

 Market basket analysis

 Crude oil exploration

 Car insurance fraud detection

=> Introductory Statistics toward Data Science

Population Sample

- Population is a whole set of data which we are interested in.
- Sample is some number of data extracted from the population.

- Descriptive statistics with Excel, eStat
 - data visualization using graphs
 - data summary using frequency table and measures
 - probability, distributions
- Inferential Statistics by using statistical software, eStat
 - sampling distribution
 - estimation
 - testing hypothesis
 - simple linear regression

Example 1.2.1

The voting result for the 2016 United States Presidential Election are summ arized as the following table. What field of statistics is this?

Candidate	Votes	% Electral vote
Donald John Trump (Republican)	62,984,828	46.09% 304
Hillary Diane Clinton (Democratic)	65,853,514	48.18% 227
Gary Earl Johnson (Libertarian)	4,489,341	3.28% 0
Jill Ellen Stein (Green)	1,457,218	1.07% 0
David Evan McMullin (Independent)	731,991	0.54% 0
Darrell Lane Castle (Constitution)	203,090	0.15% 0
Gloria Estela La Riva (Socialism)	74,401	0.05% 0

Example 1.2.2

The CNN poll was conducted from May 7, 2020 to May 10, 2020 for the 2020 United States Presidential Election by using a sample of 1001 registered voters. The result of poll was as follows. Margin of error = \pm -4 percentage points. What field of statistics is this?

Candidate %

Donald John Trump (Republican) 46%

Joe Biden (Democratic) 51%

- Data are values that observe or measure the properties of an object or event that are of interest by a given rule.
- The property of these objects or events is called a variable.
 - if you measured the gender and height of a college student, there are two variables (gender and height).
- Qualitative variable: Attributes of gender are 'Male', 'Female', ...
 (Categorical variable)
 - => frequency analysis
- Quantitative variable: Height are 180cm, 165cm, 175cm, ...
 - => Discrete(countable) vs Continuous(uncountable) variable
 - => statistical analysis

- Categorical data are classified either raw data or summary data

 - Raw Data of Gender
 Summary Data of Gender

row	Gender
1	Male
2	Female
3	Male
4	Female
5	Male
6	Male
7	Male
8	Female
9	Female
10	Male

Gender	Students
Male	6
Female	4

- 'Gender' variable name
- , 'Male' or 'Female' variable value

1.4 Software for Statistical Analysis

Computer software is essential for Statistics & Data Science

- Elementary: Excel
- Advanced: statistical packages such as SAS, SPSS, R, Stata for advanced user no educational module expensive except R not an web/mobile

1.4 Software for Statistical Analysis

- eStat Development Project (2015 ~ 2018)
 - by J.J.Lee and others
 - freeware
 - web/mobile ready anytime and anywhere
 - easy user interface
 - dynamic graphs
 - from elementary to university users

Technology & Manpower for eStat

- > HTML5, CSS3, JavaScript
- D3.js for dynamic graphs
- Handson table sheet
- Statistical distribution library
 - include nonparametric distributions
- Professors in statistics, statistical computing Professors in mathematics education Elementary, middle, high school teachers

© *eStat* modules

Elementary School

Middle School

High School

Binomial, Normal, Sampling Distribution, Law of Large Number, Confidence Interval

eStatU - University Statistics Education SW

Uniform Random Number

Binomial Experiment

Binomial Distribution

Poisson Distribution

Geometric Distribution

HyperGeometric Distribution

Exponential Distribution

Normal Experiment

Normal Distribution

t Distribution

ChiSquare Distribution

F Distribution

Wilcoxon Signed Rank Sum Dist.

Wilcoxon Rank Sum Distribution

Kruskal-Wallis H Distribution

Friedman S Distribution

HSD Studentized Range Dist.

Contact: jjlee@ssu.ac.kr © eStat.org, Korea

Law of Large Number

Population vs Sample

Dist of Sample Means

Confidence Interval

Correlation Coefficient

Regression Experiment

Testing Hypothesis µ

Testing μ - C, β

Testing μ - C, n

Testing Hypothesis σ²

Testing Hypothesis p

Testing Hypothesis μ_1 , μ_2

Testing Hypothesis σ_1^2 , σ_2^2

Testing Hypothesis p₁, p₂

Testing Hypothesis ANOVA

Sign Test

Signed Rank Sum Test

Rank Sum Test

Kruskal-Wallis Test

Friedman Test

Goodness of Fit Test

Testing Independence

Data and Dynamic Graph

- > Support csv and json format
- > Support summary and raw data for data processing
- Dynamic graph

File	(021Discrete_MathPreference							
Analysis Var by Group									
	2: MathPref ▼ 1: Sex								
	(Selected data: Raw Data) (Summary Data:								
Selec	ctedVar V	2 by V1,	1						
	Sex	MathPref	V3	V4					
1	1	3							
2	2	1							
3	1	3							
4	2	1							
5	1	3							
6	1	1							
7	1	2							
8	2	2							
9	2	3							
10	1	2							

© Graphical Result of Statistical Analysis - ANOVA

Analysis of Variance					
Factor	Sum of Squares	deg of freedom	Mean Squares	F value	p value
Treatment	17692.195	2	8846.098	16.074	< 0.0001
Error	28067.138	51	550.336		
Total	45759.333	53			

All tables of statistical distributions are on smart-phone

Normal Distribution	μ = 0	σ = 1.000													
х	P(X ≤ x)	x	P(X ≤ x)	x	P(X ≤ x)	x	P(X ≤ x)	x	P(X ≤ x)	x	P(X ≤ x)	x	P(X ≤ x)	×	P(X ≤ x)
-3.99	0.0000	-2.99	0.0014	-1.99	0.0233	-0.99	0.1611	0.01	0.5040	1.01	0.8438	2.01	0.9778	3.01	0.9987
-3.98	0.0000	-2.98	0.0014	-1.98	0.0239	-0.98	0.1635	0.02	0.5080	1.02	0.8461	2.02	0.9783	3.02	0.9987
-3.97	0.0000	-2.97	0.0015	-1.97	0.0244	-0.97	0.1660	0.03	0.5120	1.03	0.8485	2.03	0.9788	3.03	0.9988
-3.96	0.0000	-2.96	0.0015	-1.96	0.0250	-0.96	0.1685	0.04	0.5160	1.04	0.8508	2.04	0.9793	3.04	0.9988
-3.95	0.0000	-2.95	0.0016	-1.95	0.0256	-0.95	0.1711	0.05	0.5199	1.05	0.8531	2.05	0.9798	3.05	0.9989
-3.94	0.0000	-2.94	0.0016	-1.94	0.0262	-0.94	0.1736	0.06	0.5239	1.06	0.8554	2.06	0.9803	3.06	0.9989
-3.93	0.0000	-2.93	0.0017	-1.93	0.0268	-0.93	0.1762	0.07	0.5279	1.07	0.8577	2.07	0.9808	3.07	0.9989
-3.92	0.0000	-2.92	0.0018	-1.92	0.0274	-0.92	0.1788	0.08	0.5319	1.08	0.8599	2.08	0.9812	3.08	0.9990
-3.91	0.0000	-2.91	0.0018	-1.91	0.0281	-0.91	0.1814	0.09	0.5359	1.09	0.8621	2.09	0.9817	3.09	0.9990
-3.90	0.0000	-2.90	0.0019	-1.90	0.0287	-0.90	0.1841	0.10	0.5398	1.10	0.8643	2.10	0.9821	3.10	0.9990
-3.89	0.0001	-2.89	0.0019	-1.89	0.0294	-0.89	0.1867	0.11	0.5438	1.11	0.8665	2.11	0.9826	3.11	0.9991
-3.88	0.0001	-2.88	0.0020	-1.88	0.0301	-0.88	0.1894	0.12	0.5478	1.12	0.8686	2.12	0.9830	3.12	0.9991
-3.87	0.0001	-2.87	0.0021	-1.87	0.0307	-0.87	0.1922	0.13	0.5517	1.13	0.8708	2.13	0.9834	3.13	0.9991
-3.86	0.0001	-2.86	0.0021	-1.86	0.0314	-0.86	0.1949	0.14	0.5557	1.14	0.8729	2.14	0.9838	3.14	0.9992
-3.85	0.0001	-2.85	0.0022	-1.85	0.0322	-0.85	0.1977	0.15	0.5596	1.15	0.8749	2.15	0.9842	3.15	0.9992
-3.84	0.0001	-2.84	0.0023	-1.84	0.0329	-0.84	0.2005	0.16	0.5636	1.16	0.8770	2.16	0.9846	3.16	0.9992
-3.83	0.0001	-2.83	0.0023	-1.83	0.0336	-0.83	0.2033	0.17	0.5675	1.17	0.8790	2.17	0.9850	3.17	0.9992

Kruskal- Wallis H Distribution	k = 3		
	n ₁ = 3	n ₂ = 3	n ₃ = 3
х	P(X = x)	P(X ≤ x)	P(X ≥ x)
0.000	0.0071	0.0071	1.0000
0.089	0.0429	0.0500	0.9929
0.089	0.0214	0.0714	0.9500
0.267	0.0500	0.1214	0.9286
0.356	0.0500	0.1714	0.8786
0.622	0.0357	0.2071	0.8286
0.622	0.0714	0.2786	0.7929
0.800	0.0571	0.3357	0.7214
1.067	0.0357	0.3714	0.6643
1.156	0.0143	0.3857	0.6286
1.156	0.0714	0.4571	0.6143
1.422	0.0321	0.4893	0.5429
1.689	0.0714	0.5607	0.5107
1.867	0.0476	0.6083	0.4393
1.867	0.0095	0.6179	0.3917
2.222	0.0214	0.6393	0.3821
2.400	0.0214	0.6607	0.3607
2 400	0.0420	0.7000	0.2202

Menu

Modules for Home Work Assignment - eStatU

Testing Hypothesis μ_1 , μ_2 [Hypothesis] $H_o: \mu_1 - \mu_2 = D$ 0 • $H_1: \mu_1 - \mu_2 \neq D$ • $H_1: \mu_1 - \mu_2 > D$ • $H_1: \mu_1 - \mu_2 < D$

[Test Type] t test , Variance Assumption $\circ \sigma_1^2 = \sigma_2^2 \circ \sigma_1^2 \neq \sigma_2^2$

Significance Level $\alpha = 95\%$ 1%

Sampling Type • independent sample • paired sample

[Sample Data] Input either sample data using BSV or sample statistic

Sample 1 1 2 3 4
Sample 2 3 5 6

[Sample Statistics]

Sample Size $n_1 = 4$ $n_2 = 3$ Sample Mean $\bar{x}_1 = 2.50$ $\bar{x}_2 = 4.67$ Sample Variance $s_1^2 = 1.67$ $s_2^2 = 2.33$

Execute

Simulation Experiments

http://www.estat.me

eStat works 100% with Chrome

- 1) Enter system
- 2) Data input/save/open
- 3) Draw graph and data analysis
- 4) Save results / print results
- 5) Log out the system
- 6) Educational modules
- 7) Others

1.5 Summary

- Statistics: long history to manage an organization
- Introductory Statistics toward Data Science Using eStat
 - data visualization, data summary
 - probability, distribution function, estimation
 - testing hypothesis, regression
- eStat is an educational statistical software
 - web/mobile based, easy UI, dynamic graph
 - from elementary school to university
 - freeware, multilingual
- eStat is widely used in the world
 - USCOTS, JINSE(Japan) recommended

Thank you