Synapses, Neurons, Circuits Introduction to Computational Neuroscience

Bruce Graham
Computing Science & Mathematics
Faculty of Natural Sciences
University of Stirling
Scotland, U.K.

Useful Book

David Sterratt, Bruce Graham, Andrew Gillies, David Willshaw Cambridge University Press, 2011 compneuroprinciples.org

2nd Edition due 2022 (now with Gaute Einevoll too!)

NEURON Exercises

- Simulating neurons and neural networks with the NEURON software:
- 1. Frequency-Input Current (F-I) Firing Curve of a Neuron
 - 1. F-I curve of a basic neuron
 - 2. F-I curve types I and II
- 2. Electrical activity in a CA1 Pyramidal Cell
- 3. Simple Excitation-Inhibition (E-I) Oscillator
- 4. Excitation-Inhibition Balance
 - 1. Single I&F Neuron
 - 2. Network of I&F Neurons
- 5. STDP in Action
 - Phase precession of spike timing
 - Sequence learning
- 6. Associative Memory in a Network of Spiking Neurons

Levels of Detail

- Whole brain
- Brain nuclei
 - Lumped models
- Networks of neurons
- Single neurons
- Subcellular

(PCMN Fig. 1.3 pg 7)

Neurons

Neurons come in many shapes and sizes

(Dendrites, Hausser et al (eds))

Why Model a Neuron?

Response to inputs from other neurons?

Membrane potential

Intrinsic membrane properties

Synaptic signal integration

Compartmental Modelling

(Fig. 4.1 pg 73)

Computing Science & Maths, Stirling U.K.

BNNI September 2021

Electrical Potential of a Neuron

- Differences in ionic concentrations
- Transport of ions
 - Sodium (Na)
 - Potassium (K)

(Fig. 2.1 pg 14)

(Fig. 2.13 pg 31)

A Model of Passive Membrane

- A resistor and a capacitor
- Kirchhoff's current law

A Length of Membrane

Membrane compartments connected by intracellular resistance

(Fig. 2.15 pg 36)

Compartmental modelling equation

$$C_{\rm m} \frac{{\rm d}V_j}{{\rm d}t} = \frac{E_{\rm m} - V_j}{R_{\rm m}} + \frac{d}{4R_{\rm a}} \left(\frac{V_{j+1} - V_j}{l^2} + \frac{V_{j-1} - V_j}{l^2} \right) + \frac{I_{{\rm e},j}}{\pi dl}. \tag{2.23}$$

The Action Potential

- Output signal of a neuron
 - Rapid change in membrane potential
 - Flow of Na and K ions

(Fig. 3.1 pg 47)

Action Potential Model

- Empirical model by Hodgkin and Huxley, 1952
 - Voltage-dependent Na and K channels

$$C_{\rm m} \frac{\mathrm{d}V}{\mathrm{d}t} = -\overline{g}_{\rm L}(V - E_{\rm L}) - \overline{g}_{\rm Na} m^3 h(V - E_{\rm Na}) - \overline{g}_{\rm K} n^4 (V - E_{\rm K}) + I,$$

Time Varying Conductances

K conductance: n a function of time and voltage

$$I_{K} = \overline{g}_{K} n^{4} (V - E_{K}),$$

$$\frac{dn}{dt} = \alpha_{n} (1 - n) - \beta_{n} n,$$

$$\alpha_{n} = 0.01 \frac{V + 55}{1 - \exp(-(V + 55)/10)},$$

$$\beta_{n} = 0.125 \exp(-(V + 65)/80).$$

(Fig. 3.12 pg 63)

Complete Action Potential Model

$$C_{\rm m} \frac{\mathrm{d}V}{\mathrm{d}t} = -\overline{g}_{\rm L}(V - E_{\rm L}) - \overline{g}_{\rm Na} m^3 h(V - E_{\rm Na}) - \overline{g}_{\rm K} n^4 (V - E_{\rm K}).$$

Sodium activation and inactivation gating variables:

$$\begin{split} \frac{dm}{dt} &= \alpha_{m}(1-m) - \beta_{m}m, & \frac{dh}{dt} &= \alpha_{h}(1-h) - \beta_{h}h, \\ \alpha_{m} &= 0.1 \frac{V+40}{1-\exp\left(-(V+40)/10\right)}, & \alpha_{h} &= 0.07 \exp\left(-(V+65)/20\right), \\ \beta_{m} &= 4 \exp\left(-(V+65)/18\right), & \beta_{h} &= \frac{1}{\exp\left(-(V+35)/10\right)+1}. \end{split}$$

Potassium activation gating variable:

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n,$$

$$\alpha_n = 0.01 \frac{V + 55}{1 - \exp(-(V + 55)/10)},$$

$$\beta_n = 0.125 \exp(-(V + 65)/80).$$

Parameter values (from Hodgkin and Huxley, 1952d):

$$C_{\rm m} = 1.0 \ \mu {\rm F \, cm^{-2}}$$

 $E_{\rm Na} = 50 \ {\rm mV}$ $\overline{g}_{\rm Na} = 120 \ {\rm mS \, cm^{-2}}$
 $E_{\rm K} = -77 \ {\rm mV}$ $\overline{g}_{\rm K} = 36 \ {\rm mS \, cm^{-2}}$
 $E_{\rm L} = -54.4 \ {\rm mV}$ $\overline{g}_{\rm L} = 0.3 \ {\rm mS \, cm^{-2}}$

Box 3.5 pg 61

(Fig. 3.10 pg 60)

Propagating Action Potential

(Fig. 3.15 pg 65)

Families of Ion Channels

- Sodium (Na): fast, persistent
- Potassium (K): delayed rectifier, A, M
- Calcium (Ca): low and high voltage activated
 L, N, R, T
- Calcium-activated potassium: sAHP, mAHP
- Non-specific cation: H

Around 140 different voltage-gated ion channel types. A neuron may express 10 to 20 types.

Potassium A-current: K_A

- Different characteristics from delayed rectifier: K_{DR}
- Low threshold activating / inactivating current

$$C_{\rm m} \frac{{\rm d}V}{{\rm d}t} = -g_{\rm Na}(V-E_{\rm Na}) - g_{\rm K}(V-E_{\rm K}) - g_{\rm A}(V-E_{\rm A}) - g_{\rm L}(V-E_{\rm L}).$$

$$\begin{split} I_{A} &= g_{A}(V - E_{A}), & g_{A} &= \overline{g}_{A}a^{3}b, \\ a_{\infty} &= \left(\frac{0.0761 \exp\left(\frac{V + 99.22}{31.84}\right)}{1 + \exp\left(\frac{V + 6.17}{28.93}\right)}\right)^{\frac{1}{3}}, & \tau_{a} &= 0.3632 + \frac{1.158}{1 + \exp\left(\frac{V + 60.96}{20.12}\right)}, \\ b_{\infty} &= \frac{1}{\left(1 + \exp\left(\frac{V + 58.3}{14.54}\right)\right)^{4}}, & \tau_{b} &= 1.24 + \frac{2.678}{1 + \exp\left(\frac{V - 55}{16.027}\right)}. \end{split}$$

One Effect of A-current

- Type I: with K_A
 - Steady increase in firing frequency with driving current
- Type II: without K_A
 - Suddent jump to non-zero firing rate

Large Scale Neuron Model

- Hippocampal pyramidal cell (HPC)
- 337 electrical compartments
 - Plus synaptic spines
- 6 ion channel types
 - Heterogeneous distribution
- Current injection and synaptic inputs

HPC Voltage Responses

Sodium and calcium spikes

Computing Science & Maths, Stirling U.K.

BNNI September 2021

Varying Levels of Detail

Capture essential features of morphology

Reduced Pyramidal Cell Model

- 2-compartment model
 - Pinsky & Rinzel (1994)

- Captures essence of PC behaviour
 - Single spikes and bursting

$$C_{\rm m} \frac{{\rm d}V_{\rm d}}{{\rm d}t} = -\overline{g}_{\rm L}(V_{\rm d} - E_{\rm L}) - g_{\rm Ca}(V_{\rm d} - E_{\rm Ca}) - g_{\rm AHP}(V_{\rm d} - E_{\rm K}) - g_{\rm C}(V_{\rm d} - E_{\rm K}) + \frac{g_{\rm C}}{1 - p}(V_{\rm s} - V_{\rm d}) + \frac{I_{\rm syn}}{1 - p}.$$

Pinsky-Rinzel Model in Action

- Behaviour depends on
 - Compartment coupling strength (g)
 - Magnitude of driving current (I)

Simple Spiking Neuron Models

- Simplified equations for generating action potentials (APs)
 - FitzHugh-Nagumo; Kepler; Morris-Lecar
 - 2 state variables: voltage plus one other
 - H-H model contains 4 variables: V, m, h, n
- Simple spiking models that DO NOT model the
 - AP waveform
 - Integrate-and-fire models

Integrate-and-Fire Model

- RC circuit with spiking and reset mechanisms
 - When V reaches a threshold
 - A spike (AP) event is "signalled"
 - Switch closes and V is reset to E_m
 - Switch remains closed for refractory period

I&F Model Response

- Response to constant current injection
 - No refractory period

More Realistic I&F Neurons

- Basic I&F model does not accurately capture the diversity of neuronal firing patterns
 - Adaptation of interspike intervals (ISIs) over time

(Fig. 8.8 pg 213)

- Precise timing of AP initiation
- Noise

Modelling AP Initiation

- Basic I&F is a poor model of the ionic currents near AP threshold
- Quadratic I&F

$$C_{\rm m} \frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{(V-E_{\rm m})(V_{\rm thresh}-V)}{R_{\rm m}(V_{\rm thresh}-E_{\rm m})} + I. \label{eq:cm}$$

Exponential I&F

$$C_{\rm m} \frac{\mathrm{d}V}{\mathrm{d}t} = -\left(\frac{V - E_{\rm m}}{R_{\rm m}} - \frac{\Delta_{\rm T}}{R_{\rm m}} \exp\left(\frac{V - V_{\rm T}}{\Delta_{\rm T}}\right)\right) + I,$$

(Fig. 8.9 pg 214)

Neural Connections: Synapses

- Presynaptic AP causes neurotransmitter release
- Binding to postsynaptic receptors generates a response

Synaptic Conductance

- 3 commonly used simple waveforms
 - a) Single exponential $g_{syn}(t) = \overline{g}_{syn} \exp\left(-\frac{t-t_s}{\tau}\right)$
 - b) Alpha function
 - c) Dual exponential

$$g_{\text{syn}}(t) = \overline{g}_{\text{syn}} \exp\left(-\frac{t - t_{\text{s}}}{\tau}\right)$$

$$g_{\text{syn}}(t) = \overline{g}_{\text{syn}} \frac{t - t_{\text{s}}}{\tau} \exp\left(-\frac{t - t_{\text{s}}}{\tau}\right)$$

$$g_{\text{syn}}(t) = \overline{g}_{\text{syn}} \frac{\tau_{1}\tau_{2}}{\tau_{1} - \tau_{2}} \left(\exp\left(-\frac{t - t_{\text{s}}}{\tau_{1}}\right) - \exp\left(-\frac{t - t_{\text{s}}}{\tau_{2}}\right)\right)$$

- Current: $I_{syn}(t) = g_{syn}(t)(V(t)-E_{syn})$

(Fig. 7.2 pg 174)

Neuronal Firing Patterns

- Neuronal firing activity is often irregular
- How does this arise?
 - Intrinsic or network property?
 - Balance of excitation and inhibition

Model using I&F Neuron

- I&F neuron driven by 100Hz Poisson spike trains
 - Via excitatory and inhibitory synapses
- Alter balance of excitation and inhibition

Network Model with I&F Neurons

- Randomly connected network of 80% excitatory and 20% inhibitory neurons
- External excitatory drive to all neurons
 - Noisy Poisson spike trains

Network Model: Random Firing

Rhythm Generation

- E-I oscillator
 - Reciprocally coupled excitatory and inhibitory neurons
 - Constant drive to excitatory neuron
 - Delay around the loop

Associative Learning: Hebbian

 Increase synaptic strength if both pre- and postsynaptic neurons are active: LTP

 Decrease synaptic strength when the pre- or postsynaptic neuron is active alone: LTD

Example: Associative Memory

- Autoassociation and heteroassociation
- Hebbian learning of weights
- Content addressable

Heteroassociative Memory

- Associations between binary patterns
- Hebbian learning: ∆w_{ij} = p_i.p_j
- Store multiple patterns

Memory Recall

- Weighted synaptic input from memory cue
- Threshold setting on output

(Fig. 9.5 pg 235)

Multistep Memory Recall

Autoassociative recurrent network

(Fig. 9.6 pg 236)

Spiking Associative Network

- How could this be implemented by spiking neurons?
 - Sommers and Wennekers (2000, 2001)
- 100 Pyramidal cell recurrent network
 - Pinsky-Rinzel 2-compartment PC model
 - E connections determined by predefined binary
 Hebbian weight matrix that sets AMPA conductance
 - All-to-all fixed weight inhibitory connections
- Tests autoassociative memory recall

Spiking Associative Network

- Pattern is 10 active neurons out of 100
- 50 random patterns stored
- 4 active neurons as recall cue

Cued Recall in Spiking Network

- Cue: 4 of 10 PCs in a stored pattern receive constant excitation
- Network fires with gamma frequency
- Pattern is active cells on each gamma cycle
- Timing and strength of inhibition

(Fig. 9.10 pg 253)

The End Any questions?