

Turing Machines (2)

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Notasi Makro

- Suatu Mesin Turing dapat dipandang sebagai susunan sejumlah Mesin Turing yang lebih sederhana.
- Mesin-mesin Turing sederhana itu bisa muncul berulang di dalam satu Mesin Turing demikian.
- Mesin Turing sederhana dengan fungsionalitas/proses yang jelas dapat digantikan suatu notasi makro guna menyederhanakan gambaran Mesin Turing besarnya.
- Dalam buku teks, satu himpunan notasi digunakan agar suatu Mesin Turing yang kompleks dapat lebih mudah digambarkan.

Mesin Penulis Simbol

- Untuk setiap $x \in \Gamma$, [x] didefinisikan sebagai mesin yang menulis x pada posisi head, kemudian, dengan head tetap diposisi yang sama, mesin *halt*.
 - Untuk $\Gamma = \{a, b, \square\}$, akan ada mesin [a], [b] dan $[\square]$.
 - Misalnya [a] sbb:

Mesin Pemindah Head

- Dibuat [R] untuk pindah ke kanan, dan [L] untuk pindah ke kiri, keduanya berpindah tanpa mengubah isi tape.
 - Untuk $\Gamma = \{a, b, \square\}$, misalnya [R]:

Mesin untuk Halt

- Ada tiga macam halt [h] (halt saja), [n] (halt dengan reject), dan [y] (halt dengan accept).
 - Untuk $\Gamma = \{a, b, \square\}$, misalnya [h]:

Mesin Komposisi

• Jika mesin M terbentuk dari komposisi sikuensial antara M_1 , M_2 , ..., M_n maka dituliskan sebagai konkatenasi sbb.

$$>M_1M_2\ldots M_n$$

- Tanda mata panah ">" diberikan pada mesin yang pertama akan dijalankan.
- Contoh: >[R][a][R][b][L][L] menyatakan operasi
 - berpindah ke kanan satu posisi,
 - menuliskan a,
 - berpindah ke kanan satu posisi,
 - menuliskan b, dan,
 - berpindah ke kiri dua posisi.
- Note: jika sudah jelas, tanda [dan] dapat dihilangkan.

Mesin Komposisi Kondisional

- Mesin komposisi kondisional dari M_1 dan M_2 yang digambarkan dengan panah kontinyuitas (transisi untuk versi mesin makro)
 - menjalankan M_1 , kemudian jika M_1 halt, periksa kondisi, dan jika kondisi true, maka jalankan M_2 .

$$>M_1 \xrightarrow{\text{kondisi}} M_2$$

• Selanjutnya:

$$M_{1} \xrightarrow{a} M_{2} \qquad M_{1} \xrightarrow{a, b} M_{2} \qquad M_{1} \xrightarrow{\neg a} M_{2}$$
Identik dengan
$$M_{1} \xrightarrow{a/a/S} M_{2} \qquad M_{1} \xrightarrow{a} M_{2} \qquad M_{1} \xrightarrow{b, \square} M_{2}$$

$$M_{1} \xrightarrow{a/a/S} M_{2} \qquad M_{1} \xrightarrow{b, \square} M_{2}$$

Mesin Pencabangan

- Dengan komposisi kondisional, beberapa cabang dapat dibuat sesuai simbol yang dibaca head
 - Contoh untuk $\Gamma = \{a, b, \square\}$:

Mulai dari start state M_1 , jalankan M_1 . Kemudian

- Jika simbol pada head a, maka jalankan M_2 .
- Jika simbol pada head b, maka jalankan M_3 .

Contoh: WcW

 Kembali dengan Bahasa WcW, dengan ide yang sama membuat mesin Turing dalam notasi makro.

Nampaknya disini notasi makro belum begitu berbeda!

Mesin Iterator (1)

 Melakukan perulangan menjalankan suatu mesin selama kondisi true. Notasi dengan panah self-cyclic dengan label kondisinya atau dengan men-subscript negasi kondisi setelah nama mesinnya.

• Contoh:

- Pindahkan head ke **kanan**, lalu selama disitu bukan blank, lakukan kembali.
- Pindahkan head ke kiri, lalu selama disitu bukan blank, lakukan kembali.
- Pindahkan head ke kanan, lalu selama disitu blank, lakukan kembali.
- Pindahkan head ke kiri, lalu selama disitu blank, lakukan kembali.

Mesin Iterator (2)

• Contoh iterator-iterator dan kombinasi dengan penjcabangan.

La

• Temukan simbol a pertama mulai dari posisi sebelah kiri posisi head.

 $R_{a,b}$

Temukan simbol a atau b pertama mulai dari posisi di sebelah kanan posisi head.

 M_1 • Menemukan posisi a atau b pertama mulai dari posisi sebelah kiri posisi head, kemudian jika itu a, jalankan M_1 , jika itu b, jalankan M_2 .

Contoh: WcW

• Kembali dengan Bahasa WcW, dengan ide yang sama membuat mesin Turing dalam notasi makro lebih lengkap (kecuali variable).

Contoh: WcW

- Bahasa WcW, dengan ide yang sama membuat mesin Turing dalam notasi makro dengan variable.
- Mesin yang kedua adalah versi apabila crash digantikan dengan halt-yes (mengacu pada contoh dalam buku teks).

Variabel Penyimpan Harga

- Simbol yang dibaca head dapat "direkam" dalam suatu "variabel" untuk digunakan kemudian.
 - Perekaman ditandai dengan tanda assignment "←" setelah variabel, dan diikuti oleh simbolnya.
- Contoh 1:
 - berikut ini menggambarkan setelah M_1^3 , periksa kondisi "jika bukan a" adalah true, rekam sebagai x, dan lanjutkan ke M_2 , suatu saat setelah M_3 , simbol dalam x sama dengan simbol dalam y, maka jalankan M_4 .
- Contoh lain:
- setiap simbol yang dibaca bukan blank, Rampan sebagai x lalu setelah bergeser satu posisi ke kanan tuliskan x disitu.
- Warning: Rx berbeda dengan R_x !

Realisasi Variabel dalam Notasi TM Standard

- Dapat dilakukan dengan
 - o penyimpanan di posisi tertentu pada tape, atau
 - Dengan membuat pencabangan ke status-status berbeda untuk setiap kemungkinan.
- Kendala:
 - Penyimpanan di tape menyebabkan head hilir-mudik dari posisi sebenarnya ke posisi penyimpanan lalu kembali ke posisi sebenarnya, tapi
 - Pencabangan ke status-status berbeda dapat melipatgandakan jumlah status dari mesin.

Mesin Iterator (3)

- Lebih lanjut kita bisa menuliskan iterator-iterator berikut ini.
 - Menemukan posisi a atau b pertama mulai dari posisi sebelah kiri posisi head, kemudian catat sebagai x.
 - Lalu pindahkan head ke sebelah kanannya, dan
 - Tuliskan yang dicata dalam x disitu.

$$L_{x \leftarrow a,b} Rx$$

Contoh: Penggunaan Variable

• Untuk mengenali Bahasa apakah mesin berikut ini?

Contoh: Penggunaan Variable

- Mesin itu untuk menerima Bahasa Palindrom PAL dengan alfabet input {a,b} hanya bercabang 2.
- Jika alfabet input {a,b,c...,z} seperti apa bentuknya?
- Mesin yang sama yang dibuat dengan notasi makro dengan alfabet input berukuran apapun:

Contoh Mesin Triplikasi (1)

- Mesin untuk men-triplikasi suatu string $w \in \{1\}^*$
 - Input: <u>□</u>wOutput: <u>□</u>www
 - Contoh input □111 dan output □1111111111
- Dalam loop:
 - Temukan simbol 1 atau □ pertama arah ke kanan.
 - Jika simbol □ (semua 1 sudah di-copy), maka keluar dari loop.
 Jika tidak (simbol 1), tandai sebagai # (untuk tidak dicopy ulang).
 - Temukan blank pertama di kanan.
 - Lalu, tuliskan dua buah # (pada dua blank berurutan).
- Lakukan dalam satu pass mengubah # kembali ke 1.

Contoh Mesin Triplikasi (2)

Contoh: Geser Satu Posisi ke Kiri

- Kita akan mebangun mesin penggeser S_{\leftarrow}
- Input: $\Box u \underline{\Box} w \Box$ Output: $\Box uw \underline{\Box}$, untuk $u, w \in \Sigma^*$.
- Contoh input $\Box 11 \underline{\Box} 00 \Box$ dan output $\Box 1100 \underline{\Box}$ dengan $\Sigma = \{0,1\}$.
- Ide: iterasi dari kiri ke kanan dalam w, copy setiap simbol ke sebelah kirinya.

