Topologie des espaces métriques — Cours

Ivan Lejeune

30 janvier 2025

Table des matières

Chapitre	1 — Topologie (d'un espace métrique).								2
1	Espaces métriques								2
2	Ouverts d'un espace métrique								3

Chapitre 1 — Topologie (d'un espace métrique)

1 Espaces métriques

Soit X un ensemble.

Définition 1.1. On appellle une **distance** (ou métrique) sur X une application $d: X \times X \to \mathbb{R}$ telle que pour tout $x, y, z \in X$,

(i) la distance est positive :

$$d(x,y) \ge 0$$

(ii) la distance possède la séparation :

$$d(x,y) = 0 \iff x = y$$

(iii) la distance est symétrique :

$$d(x,y) = d(y,x)$$

(iv) la distance vérifie l'inégalité triangulaire :

$$d(x,z) \le d(x,y) + d(y,z)$$

Exemple. Un exemple classique de distance est la **distance euclidienne** sur \mathbb{R}^n :

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Définition 1.2. Soit E un \mathbb{R} -espace vectoriel. On appelle **norme** sur E une application $\|\cdot\|: E \to \mathbb{R}^+$ telle que pour tout $x, y \in E$ et $\lambda \in \mathbb{R}$,

(i) la norme possède la $s\'{e}paration$:

$$||x|| = 0 \iff x = 0$$

(ii) la norme est homogène :

$$\|\lambda x\| = |\lambda| \|x\|$$

(iii) la norme vérifie l'inégalité triangulaire :

$$||x + y|| \le ||x|| + ||y||$$

Exercice *.

Montrer que si $\|\cdot\|$ est une norme sur E, alors la fonction

$$d(x,y) = ||x - y||$$

est une distance sur E.

Exemple. Un exemple classique est \mathbb{R}^n muni d'une norme $\|\cdot\|$.

Exercice *.

Soit X et $\delta: X \times X \to \mathbb{R}$ telle que

$$\delta(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{sinon} \end{cases}$$

Montrer que δ est une distance sur X appelée distance discrète.

Remarque. Si on considère \mathbb{R} muni de δ alors δ n'est pas une norme.

2 Ouverts d'un espace métrique

Soit (X, d) un espace métrique.

Définition 2.1. Pour $\varepsilon > 0$ et $x_0 \in X$, on note

$$\mathsf{B}\left(x_{0},\varepsilon\right[=\left\{ x\in X\mid d(x,x_{0})<\varepsilon\right\}$$

la **boule ouverte** de centre x_0 et de rayon ε .

Définition 2.2. Une partie $U \subset X$ est dite **ouverte** si et seulement si pour tout $x \in U$, il existe $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset U$.

Exemple.

• Dans \mathbb{R} muni de la norme euclidienne, on a

$$\mathsf{B}\left(x_{0},\varepsilon\right) = \left\{x \in \mathbb{R} \mid |x - x_{0}| < \varepsilon\right\}$$

qui est l'intervalle ouvert $]x_0 - \varepsilon, x_0 + \varepsilon[.$

• Un contre-exemple est l'intervalle [0,1[dans $\mathbb R$ qui n'est pas ouvert.

Définition 2.3. On note $\mathcal{T}_d = \{$ **ouverts de** $X\}$

Proposition. On a les propriétés suivantes :

- (i) $X \in \mathcal{T}_d$ et $\emptyset \in \mathcal{T}_d$,
- (ii) Si $\{U_i\}_{i\in I}$ est une famille de \mathcal{T}_d , alors $\bigcup_{i\in I} U_i \in \mathcal{T}_d$,
- (iii) Si $\{U_i\}_{i\in\{1,\ldots,n\}}$ est une famille finie de \mathcal{T}_d , alors $\bigcap_{i=1}^n U_i \in \mathcal{T}_d$.

Démonstration.

- (i) Par convention de logique, on a $\emptyset \in \mathcal{T}_d$. Soit $x \in X$, alors $\mathsf{B}(x,1[\ \subset X,\ \mathrm{donc}\ X \in \mathcal{T}_d)$.
- (ii) Soit $x \in \bigcup_{i \in I} U_i$, alors il existe $i \in I$ tel que $x \in U_i$. Comme $U_i \in \mathcal{T}_d$, il existe $\varepsilon > 0$ tel que $\mathsf{B}(x, \varepsilon[\subset U_i \subset \bigcup_{i \in I} U_i])$. Donc $\bigcup_{i \in I} U_i \in \mathcal{T}_d$.
- (iii) Soit $x \in \bigcap_{i=1}^n U_i$, alors pour tout $i \in \{1, ..., n\}$, on a $x \in U_i$. Comme $U_i \in \mathcal{T}_d$, il existe $\varepsilon_i > 0$ tel que $\mathsf{B}(x, \varepsilon_i[\subset U_i)$. Posons $\varepsilon = \min_{i=1}^n \varepsilon_i$, alors pour tout $i \in \{1, ..., n\}$, on a $\mathsf{B}(x, \varepsilon[\subset U_i)$. Donc $\bigcap_{i=1}^n U_i \in \mathcal{T}_d$.

Définition 2.4. Soit X un ensemble (pas forcément métrique). On dit que $\mathcal{T} \subset \mathscr{P}(x)$ est une **topologie** sur X si elle vérifie les propriétés suivantes :

- (i) $X \in \mathcal{T}$ et $\emptyset \in \mathcal{T}$,
- (ii) Si $\{U_i\}_{i\in I}$ est une famille de \mathcal{T} , alors $\bigcup_{i\in I} U_i \in \mathcal{T}$,
- (iii) Si $\{U_i\}_{i\in\{1,\dots,n\}}$ est une famille finie de \mathcal{T} , alors $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

Les éléments de \mathcal{T} sont appelés **ouverts** de X. On dit alors que (X,\mathcal{T}) est un **espace topologique**.

Exemple. Soit X un ensemble. On a les exemples suivants :

- (a) Si (X, d) est un espace métrique, alors \mathcal{T}_d est une topologie sur X.
- (b) $\mathcal{T} = \{\emptyset, X\}$ est une topologie sur X.
- (c) $\mathcal{T} = \mathcal{P}(X) = \mathcal{T}_{\delta}$ est une topologie sur X où δ est la distance discrète.

3

(d) Si $X = \{a, b\}$, alors $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}\}$ est une topologie sur X.

Définition 2.5. Soit (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques et $f: X \to Y$ une application. On dit que f est **continue** si pour tout ouvert $V \in \mathcal{T}_Y$, $f^{-1}(V) \in \mathcal{T}_X$.

Définition 2.6. Soit (X, \mathcal{T}) un espace topologique. On dit que $A \subset X$ est **fermé** si $X \setminus A$ est ouvert

Remarque. Un ensemble $A \subset X$ peut être ouvert et fermé en même temps.

Exemple. Si on se place dans \mathbb{R} muni de la norme euclidienne, alors l'intervalle [0,1[n'est ni ouvert ni fermé.

Proposition de relation avec la continuité de $\mathbb R$ dans $\mathbb R$.

Soient (X, d_X) et (Y, d_Y) deux espaces métriques.

Une application $f: X \to Y$ est continue si et seulement si pour tout $x_0 \in X$ et pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$\forall x \in X, d_X(x,x_0) < \delta \implies d_Y(f(x),f(x_0)) < \varepsilon$$

Démonstration. On commence par énoncer et démontrer un lemme qui nous sera utile :

Lemme. Soit (X, d) un espace métrique. Une boule ouverte sur X est un ouvert pour la topologie \mathcal{T}_d .

Démonstration. Soit $x_0 \in X$ et $\varepsilon > 0$. On a $\mathsf{B}(x_0, \varepsilon[\in \mathcal{T}_d \text{ par définition de la topologie.}$ Soit $x \in \mathsf{B}(x_0, \varepsilon[, \text{ alors } d(x, x_0) < \varepsilon. \text{ Posons } \delta = \varepsilon - d(x, x_0), \text{ alors } \delta > 0.$ Soit $y \in \mathsf{B}(x, \delta[, \text{ alors } d(y, x) < \delta. \text{ Par l'inégalité triangulaire, on a}$

$$d(y,x_0) \le d(y,x) + d(x,x_0)$$

$$< \delta + d(x,x_0)$$

П

Donc $y \in \mathsf{B}(x_0, \varepsilon[, \text{ donc } \mathsf{B}(x, \delta[\subset \mathsf{B}(x_0, \varepsilon[.$

Revenons à la preuve de la proposition.

 \triangleright Sens direct :

Soit $x_0 \in X$ et $\varepsilon > 0$. Montrons que $B = \mathsf{B}(f(x_0), \varepsilon[$ est un ouvert de Y, donc $f^{-1}(B)$ est un ouvert de X.

On sait que $x_0 \in f^{-1}(B)$, ouvert par hypothèse. Alors, il existe $\delta > 0$ tel que

$$B(x_0,\delta[\subset f^{-1}(B)$$

Donc pour tout $x \in X$,

$$d_X(x,x_0) < \delta \implies d_Y(f(x),f(x_0)) < \varepsilon$$

⊳ Sens réciproque :

Soit $V \in \mathcal{T}_Y$, alors V est un ouvert de Y. Soit $x_0 \in f^{-1}(V)$, alors $f(x_0) \in V$. Comme V est ouvert, il existe $\varepsilon > 0$ tel que $\mathsf{B}(f(x_0), \varepsilon[\subset V.$

Par hypothèse, il existe $\delta > 0$ tel que

$$\forall x \in X, \quad d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \varepsilon$$

Donc $B(x_0, \delta) \subset f^{-1}(V)$, donc $f^{-1}(V)$ est ouvert.

Remarque. Si f est une fonction bijective et continue, sa réciproque f^{-1} n'est pas forcément continue.