Los árboles 2-3 son balanceados ... pero

Las operaciones en un árbol 2-3, particularmente al insertar una nueva clave, tienen mucho *overhead*:

- durante el recorrido desde la raíz a la hoja, es posible que haya que hacer dos comparaciones en cada nodo (nodos 3)
- cuando se llega a la hoja, si es un nodo 2, hay que convertirlo en un nodo 3
- si es un nodo 3, hay que convertirlo en dos nodos 2 y hacer subir la clave mediana al nodo padre
- si el nodo padre es un nodo 2, hay que convertirlo en un nodo 3; si es un nodo
 3, hay que aplicar recursivamente el paso anterior

¿Será posible representar un árbol 2-3 como un ABB?

Nos interesa conservar toda la información del 2-3

Nodo 2

Nodo 2 como un nodo en un ABB

Nodo 3

Nodo 3 como dos nodos en un ABB

Árbol 2-3 ...

Árbol 2-3 ... como ABB

El árbol resultante se conoce como árbol rojo-negro

Un árbol rojo-negro es un ABB que cumple cuatro propiedades:

- 1) Cada nodo es ya sea rojo o negro
- 2) La raíz del árbol es negra
- 3) Si un nodo es rojo, sus hijos deben ser negros
- 4) La cantidad de nodos **negros** camino a cada hoja debe ser la misma

Las hojas nulas se consideran como nodos negros

Inserción en un árbol rojo-negro

Una inserción puede violar las propiedades del árbol rojo-negro (así como ocurre en un árbol AVL)

Debemos restaurarlas, usando rotaciones (como en un AVL) y cambios de color (en lugar de ajustar el balance del nodo)

Es más fácil de ver si nos fijamos en el árbol 2-3 equivalente

Equivalencia de árboles rojo-negro con los árboles 23 2-4

Bueno ... no todos los árboles rojonegro tienen un árbol 2-3 equivalente

...; pero sí tienen un árbol 2-4 equivalente!

un **árbol 2-4** puede tener nodos 2 y nodos 3 (al igual que un árbol 2-3)

... y además puede tener **nodos 4**:

- 3 claves
- si no es una hoja, entonces 4 hijos

Equivalencia de los árboles rojo-negro con los **árboles 2-4**

2-4

(Un paréntesis

Para estudiar para las pruebas, simplemente revisar las diapositivas usadas en clases está **muy lejos de ser suficiente**:

- estudiar los conceptos está bien
- ... pero también hay que hacer muchos ejercicios

Ejemplo de inserción:

si insertamos la clave Z, ¿a dónde va a parar, inicialmente?

Insertemos la Z en el árbol rojo-negro

El nodo se inserta rojo (para no quebrantar la propiedad 4)

... y en el árbol 2-4

Observamos que el "tío" del nodo insertado es negro

La configuración del nodo 4 "S V Z" nos sugiere qué hacer en el árbol rojo-negro

La sola rotación no es suficiente

2) Cambio de color a S y V ...

... también hay que cambiar colores

Veamos otra inserción en el árbol original: la clave *U*

Insertemos la *U* en el rojo-negro

Nuevamente, el nodo recién insertado se pinta rojo

... y también en el 2-4

Nuevamente, el tío del nodo insertado es negro

La configuración del nodo "S U V" nos sugiere qué hacer en el árbol rojo-negro

1) Rotación en torno a *U-V*

Una rotación no basta

2) Segunda rotación, en torno a S-U

... hacemos una segunda rotación

... y también cambiamos colores

Hagamos una tercera inserción en el árbol original: la clave *K*

Insertemos la K en el árbol rojo-negro

El nodo se inserta rojo

... y también en el árbol 2-4

El tío del nodo insertado es rojo

¿Qué pasa en el árbol 2-4 y cómo se refleja en el árbol rojo-negro?

1) Cambio de color

"Subimos" el problema de un nodo rojo con un hijo rojo

En el árbol 2-4 creamos una nueva raíz "arriba" de la que había

2) (recursivamente) Cambio de color

En el árbol rojo-negro, si la raíz se vuelve roja, ...

3) La raíz es roja: se cambia a negro

... simplemente la pintamos de negro

¡Listo!

Inserción en árboles rojo-negros

Los nodos siempre se insertan rojos

Si su padre es rojo, hay dos casos según el color del tío:

- Si el tío es negro, tenemos el aumento de grado en el nodo del 2-4
 - Se soluciona con rotaciones y cambios de color. No genera más conflictos.
- Si el tío es rojo, tenemos el caso en que el nodo del 2-4 rebalsa
 - Se soluciona cambiando colores. Puede generar conflictos hacia arriba.

Ejercicio propuesto

Demuestra que la altura de un árbol rojo-negro con n nodos es $O(\log n)$