Homework

1. A short summary about the conductive heat transfer.

When the heat transfers through the wall, it will be lost, and the loss of heat rate (\dot{Q}) is related to the conductivity of the material (K), area of the wall (A), thickness (L) and delta T, which can be calculated by the formula $\dot{Q}=kA$ (delta T)/L, or the formula $\dot{Q}=(delta\ T)/R_{wall}$, $R_{wall}=L/kA$. The heat loss rate (\dot{Q}) is inversely proportional to area of the wall (A) and the conductivity of the material (K), and delta T.

2. Solving the same exercise with L=0.4m A=20 $\,\mathrm{m}^2$ \triangle T=25 $^{\circ}$ C K=0.78 $\frac{W}{mk}$ using both simple method and using the resistance concept.

By using the simple method:

$$\dot{Q} = kA \frac{\triangle T}{L} = 0.78 \cdot 20 \cdot \frac{25}{0.4} = 975W$$

By using the resistance concept:

$$R_{wall} = \frac{L}{kA} = \frac{0.4}{0.78 \cdot 20} \approx 0.0256 \ C/W$$

$$\dot{Q} = \frac{\triangle T}{R_{wall}} = \frac{25}{0.0256} \approx 976.56W$$