Aplicações Descentralizadas Baseadas em Blockchain

Noeli A. Pimentel Vaz

Sistemas Distribuídos - Prof. Sérgio T. de Carvalho Instituto de Informática | UFG

Roteiro

- Contextualização
- Objetivo da Pesquisa
- Fundamentos de Sistemas Distribuídos
- Blockchain
 - Redes
 - Plataformas
- Aplicações Descentralizadas dApps
 - Decisões para o desenvolvimento de dApps
- Arquiteturas de dApps baseadas em Blockchain
- Considerações Finais

Contextualização

- Evolução da utilização da Internet com o uso de redes de alta velocidade (5G e pós 5G)
- Necessidade de tecnologias/ ferramentas com menor grau de centralização visando reduzir problemas com violação de dados, censura, pontos únicos de falhas, além de outros
- Tecnologias de ledgers distribuídos (*Distributed Ledger Technology* DLT) possuem características descentralizadas
- Blockchain tem sido apresentada como uma tecnologia facilitadora para prover a descentralização em aplicações

Contextualização

- Blockchain resolve um problema central: muitas organizações desejam compartilhar dados de forma distribuída, mas nenhum proprietário único seria confiável para todos os usuários.
- As tecnologias Blockchain permitem transações diretas de forma segura e transparente, gerando confiança em sistemas que operam com a eficiência de uma rede peer-topeer.

Contextualização

- Nas aplicações a descentralização pode ser proporcionada para todos os blocos de construção (back-end, front-end e armazenamento de dados), ou somente para parte deles.
- Ao eliminar o agente intermediário entre o usuário e a aplicação de fato, as aplicações descentralizadas (Decentralized Application - dApp) utilizam em sua estrutura as tecnologias da Web 3.0.

Gerenciamento

de Identidade

Tecnologias Web 3 e Protocolos

Protocolos de

Interoperabilidade

Armazenamento

Descentralizado

Blockchain

Objetivo da Pesquisa

- Compreender as tecnologias que compõem o conhecimento necessário para o desenvolvimento das aplicações descentralizadas baseadas em blockchain.
- Propor uma Arquitetura para dApps baseadas em Blockchain.
- Desenvolver um estudo de caso para aplicação dos conceitos.

Fundamentos de Sistemas Distribuídos

- Redes Peer to Peer P2P
- Coordenação e consenso
- Protocolos de comunicação
- Questões relacionadas a escalabilidade

Blockchain - Principais componentes

Redes P2P

Blocos

Transações

Mecanismo de Consenso

Redes Blockchain

- O objetivo da blockchain é a realização de transações de forma segura, aberta e imutável
- A operação dos componentes demanda uma infraestrutura de suporte, que pode variar dependendo da sua implementação
- Uma rede blockchain requer uma rede distribuída de nós com poder computacional suficiente para processar e validar as transações

Redes Blockchain

- Greve et al. (2018) destacam que o consenso da blockchain é fortemente voltado ao tipo de rede a que se destina.
- Redes blockchain podem ser classificadas em:
 - Pública
 - Privada/ Federada
 - Permissionada (permissioned)
 - Não permissionada (permissionless)

Redes Blockchain Públicas

- Nós são desconhecidos e é permitida a entrada e a saída aleatórias de nós da rede
- Não há controle dos seu participantes, e a rede pode funcionar em escala mundial
- Exemplos: Bitcoin, Ethereum e Solana
- Podem exigir alguma forma de mecanismo de incentivo aberto e baseados em mineração, com recompensas na forma de criptomoeda
- Os mineradores entram em uma competição com base no poder computacional (e.g., PoW da Bitcoin), poder de posse (e.g., PoS da Ethereum) ou outras capacidades relevantes para a eleição e que não podem ser monopolizados

Redes Blockchain Privadas

- Os nós da rede são identificados, autorizados e autenticados
- As entradas e saídas de nós estão condicionadas por permissões e, em geral, funcionam em escala menor abrangendo corporações ou organizações em que os participantes possuem papéis bem definidos
- Exemplos são os protocolos PoA (proof of authority) ou Prova de Autoridade, disponíveis no Hyperledger Fabric e Hyperledger Besu

Redes Blockchain Híbridas / Consorciadas

- O principal diferencial está no mecanismo de consenso, que funcionaria com um conjunto de participantes da rede trabalhando como validadores com algum nível de confiança.
- A vantagem de uso do consenso PoA para a blockchain é que os nós validam as transações mais rapidamente que os consensos PoS ou PoW, porém o consenso PoA é considerado menos descentralizado, pois demanda uma quantidade de nós validadores de confiança (predefinidos ou não).
- Iniciativas como a Rede Blockchain Brasil (RBB) se enquadra nesse tipo de rede.

Redes Blockchain

- A escolha do mecanismo de consenso dependerá dos requisitos, objetivos específicos e decisões do projeto em desenvolvimento.
- Alguns projetos podem preferir eficiência e velocidade (PoA), enquanto outros podem optar por descentralização e segurança (PoS).
- Nesse sentido, a escolha do tipo de rede blockchain (pública, privada, híbrida/consórcio) segue as mesmas diretrizes.

Decisões sobre o tipo de rede Blockchain

Fonte: Adaptado de WÜST & GERVAIS, 2018.

Plataformas de Blockchain

- Os projetos Hyperledger e Ethereum são as principais referências em termos de plataformas blockchain e desenvolvimento de contratos inteligentes.
- Hyperledger se insere no contexto de blockchains privadas e Ethereum no de blockchains públicas.

Plataforma Blockchain - Hyperledger

- É uma plataforma de código aberto mantida pela Linux Foundation
- A IBM propõe o Fabric, o mais utilizado por organizações que desenvolvem aplicações privadas baseadas em blockchain
- Caracterizada como uma rede permissionada, estabelece uma maior confiança na rede e utiliza o consenso baseado em PoA

Plataforma Blockchain - Ethereum

- Oferece uma rede pública, sem necessidade de controle de seus participantes
- Caracterizada por uma rede em que não há qualquer confiança entre os nós
- Já utilizou o consenso PoW e, atualmente, usa o consenso PoS

dApp baseada em Blockchain

Uma aplicação descentralizada pode ser considerada, como uma aplicação web aberta, desenvolvida sobre serviços de infraestrutura P2P.

Um dos requisitos para criar dApps tem sido o uso de plataformas de blockchain descentralizadas, como a Ethereum.

As dApps podem ser visualizadas nas áreas de entretenimento, finanças (DeFis), redes sociais, navegadores e serviços de tecnologia descentralizados.

Decisões para o desenvolvimento de dApps baseadas em Blockchain

dApp baseada em Blockchain

Fazer uso de blockchain em projetos, inclui compreender a concepção de dApps.

Uma visão arquitetural pode facilitar essa abordagem, como uma forma de guiar a construção de aplicações que tenham como base a blockchain.

Arquiteturas de dApps baseadas em Blockchain

Zheng et al. (2023) apresentam a evolução de arquiteturas de dApps.

(a) Native Client as a DApp

(b) Smart Contract as a DApp

(c) Web & Contract as a DApp

(d) Fully-decentralized DApp

Arquiteturas de DApp. ZHENG et al., 2023.

Arquiteturas de dApps baseadas em Blockchain

Para definição do grau de descentralização (total ou parcial) durante a concepção arquitetural de dApps, é preciso avaliar duas dimensões:

Operacional

Dados

Arquiteturas de dApps baseadas em Blockchain

Operacional

Envolve o tipo de rede blockchain envolvida e o emprego de contratos inteligentes

Totalmente descentralizada: rede blockchain pública

Parcialmente descentralizada: rede blockchain privada

Dados

É analisado considerando o serviço de armazenamento usado pela aplicação

Totalmente descentralizada: armazenamento por meio de uma rede P2P

Parcialmente descentralizada: armazenamento centralizado

Proposta de Arquitetura para dApps baseada em Blockchain

Proposta de Arquitetura para dApps baseada em Blockchain

Pontos Importantes

Infraestrutura para serviços de blockchain

Rede de servidores de hardware dedicados

Servidores virtualizados controlados por um provedor de nuvem

Descentralização do front-end da aplicação Armazenamento descentralizado de dados sensíveis

Identidades descentralizadas

Limitações da blockchain em termos de velocidade das transações e custo do gas Stack de desenvolvimento de acordo com as decisões de projeto

Considerações Finais

Estudo buscou pavimentar o caminho para um entendimento mais amplo das dApps baseadas em blockchain

Identificou as principais decisões relacionados às características da plataforma blockchain, visto que ainda é apresentado de forma esparsa na literatura

Uma visão arquitetural de uma dApp baseadas em blockchain colabora com o entendimento das tecnologias utilizadas no ecossistema da Web 3.0

Próximos passos:

Buscar trabalhos primários que apresentam dApps em área específica Definição da *stack* voltada para principais decisões de projeto Implementar dApps para as principais *stacks* propostas

Referências

A. M. Antony e G. Wood, Mastering Ethereum: Building Smart Contracts and DApps, 2nd ed. O'Reilly Media, 2018.

COULOURIS, George; DOLLIMORE, Jean; KINDBERG, Tim; et al. Sistemas distribuídos. Grupo A, 2013. E-book. ISBN 9788582600542. Disponível em:

https://app.minhabiblioteca.com.br/#/books/9788582600542/. Acesso em: 18 jun. 2023.

GREVE, Fabíola Greve et al. Blockchain e a Revolução do Consenso sob Demanda.

Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC)-Minicursos, 2018.

WÜST, Karl; GERVAIS, Arthur. Do you need a blockchain?. In: 2018 crypto valley conference on blockchain technology (CVCBT). IEEE, 2018. p. 45-54.

X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, e P. Rimba, "A taxonomy of blockchain-based systems for architecture design," in 2017 IEEE international conference on software architecture (ICSA). IEEE, 2017, p. 243–252.

ZHENG, Peilin et al. Blockchain-based Decentralized Application: A Survey. IEEE Open Journal of the Computer Society, 2023.

Aplicações Descentralizadas Baseadas em Blockchain

Noeli A. Pimentel Vaz

Sistemas Distribuídos - Prof. Sérgio T. de Carvalho Instituto de Informática | UFG