Math 225A Notes

Sarah Mantell

October 13, 2022

1.1 General Definitions

Definition 1.1.1 (Number field): A number field is a finite field extension over \mathbb{Q} .

Definition 1.1.2 (Algebraic integer): Let K be a number field. An algebraic number $a \in K$ is called integral or an algebraic integer of K if f(a) = 0 for some monic polynomial f with coefficients in \mathbb{Z} . Denote the set of algebraic integers in K by \mathbb{G}_K .

Proposition 1.1.3: Let K be a number field. Then \mathfrak{O}_K is a ring and $K = \operatorname{Frac}(\mathfrak{O}_K)$.

Proposition 1.1.4: The ring \mathfrak{O}_K is Noetherian, integrally closed, and every nonzero prime ideal of \mathfrak{O}_K is maximal.

Notice that the results presented in the proposition above imply that \mathfrak{O}_K is a Dedekind domain, using one of the many equivalent defintions of a Dedekind domain.

Theorem 1.1.5 (Unique Factorization of Ideals): Every nonzero ideal $\mathfrak{a} \not\subseteq \mathfrak{G}_K$ can be uniquely written as

$$\mathfrak{a}=\mathfrak{p}_1^{r_1}\cdots\mathfrak{p}_m^{r_m}$$

where $m \ge 1$, $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are distinct nonzero prime ideals of \mathfrak{G}_K , and $r_1, \ldots, r_m \in \mathbb{N}$.

Definition 1.1.6 (Trace, Norm): Suppose that $\mathbb{Q} \subseteq K \subseteq L$ is an extension of fields. Let $a \in L$ and view L as a K-vector space to consider the linear transformation

$$T_a:L\to L$$

The notes here about algebraic number theory are very brief – the recommended texts for a more in depth reading are:

- Algebraic Number Theory Chapters I, II (Neukirch)
- ► Algebraic Number Theory Notes (Milne)

Theorem ?? is actually true for any Dedekind domain, but we just focus on this specific case here.

$$x \mapsto ax$$
.

Define the trace and norm for *a* as

$$\operatorname{Tr}_{L/K}(a) = \operatorname{Tr}(T_a) \in K$$

and

$$Nm_{L/K}(a) = det(T_a) \in K$$
.

With trace and norm defined as in Definition ??, we obtain a bi-*K*-linear pairing:

$$\langle \cdot, \cdot \rangle_{L/K} : L \times K \to K$$

given by

$$\langle a, b \rangle_{L/K} = \operatorname{Tr}_{L/K}(ab).$$

Definition 1.1.7: Let $\alpha_1, \ldots, \alpha_n$ be a basis of L over K. The discriminant of $\alpha_1, \ldots, \alpha_n$ is defined as

$$D(\alpha_1,\ldots,\alpha_n) = \det\left(\left(\langle \alpha_i,\alpha_j\rangle\right)_{1\leq i,j\leq n}\right).$$

The discriminant of L/K is denoted by $D_{L/K}$ and is the ideal of \mathfrak{G}_K generated by

$$\{D(\alpha_1,\ldots,\alpha_n):\alpha_1,\ldots,\alpha_n\text{ is a basis of }L/K\text{ contained in }\mathfrak{O}_L\}.$$

For K/\mathbb{Q} , $\mathbb{O}_{\mathbb{Q}}=\mathbb{Z}$ and therefore is a PID. So, \mathbb{O}_K is a free \mathbb{Z} -module of rank $n=[K:\mathbb{Q}]$. For any \mathbb{Z} -basis α_1,\ldots,α_n of \mathbb{O}_K ,

$$D_{K/\mathbb{Q}} = (D(\alpha_1, \ldots, \alpha_n)).$$

Definition 1.1.8: Let L/K be an extension of number fields, $p \subseteq \mathcal{O}_L$ a nonzero prime ideal, and define $\mathfrak{p} = p \cap \mathcal{O}_K \subseteq \mathcal{O}_K$. Write the prime factorization of $\mathfrak{p}\mathcal{O}_L$ as

$$\mathfrak{p}\mathfrak{G}_L=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_m^{e_m}$$

where $p_1 = p$. The ramification index of p over p, denoted by e(p/p), is defined to be e_1 (as given in the prime factorization). The residue class degree, or the intertia degree, of p of p, denoted by e(p/p), is defined

The matrix

$$\left(\langle\alpha_i,\alpha_j\rangle\right)_{1\leq i,j\leq n}$$

is an $n \times n$ matrix, with entries in K.

to be $[\mathfrak{O}_L/\mathfrak{p} : \mathfrak{O}_K/\mathfrak{p}]$.

Definition 1.1.9: Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say \mathfrak{p} is ramified in L or L/K is ramified at \mathfrak{p} if $e(p/\mathfrak{p}) > 1$ for some $p \subseteq \mathfrak{O}_L$ satisfying $\mathfrak{p} = p \cap \mathfrak{O}_K$. We say \mathfrak{p} is unramified in L or L/K is unramified at \mathfrak{p} if $e(p/\mathfrak{p}) = 1$ for every $p \subseteq \mathfrak{O}_L$ where $\mathfrak{p} = p \cap \mathfrak{O}_K$.

Definition 1.1.10: Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say \mathfrak{p} splits or splits completely in L if $e(p/\mathfrak{p}) = f(p/\mathfrak{p}) = 1$ for every $p \subseteq \mathfrak{O}_L$ with $p \cap \mathfrak{O}_K = \mathfrak{p}$.

Definition 1.1.11: Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say that \mathfrak{p} is inert in L if $\mathfrak{p}\mathfrak{O}_L$ is a prime ideal of \mathfrak{O}_L .

From these definitions, one can derive the following identity: if $\mathfrak{p}\mathbb{G}_L = p_1^{e_1} \cdots p_m^{e_m}$ then

$$[L:K] = \sum_{j=1}^{m} e(p_j/\mathfrak{p}_j) f(p_j/\mathfrak{p}_j).$$

Proposition 1.1.12: Let *K* be a number field. Every fractional ideal a of *K* can be written uniquely in the form

$$\mathfrak{a}=\prod_{\mathfrak{p}}\mathfrak{p}^{r_{\mathfrak{p}}}$$

where the product is taken over all the nonzero prime ideals of \mathfrak{G}_K , each $r_{\mathfrak{p}} \in \mathbb{Z}$, and almost every $r_{\mathfrak{p}}$ is zero.

Remark 1 With these definitions, I_K is the free abelian group on the set of nonzero prime ideals of \mathfrak{O}_K .

Define a subgroup of I_K by

$$P_K = \left\{ (a) = a \mathfrak{O}_K : a \in K^\times \right\}.$$

Definition 1.1.13 (Ideal class group, Class group): The ideal class group or class group of *K* is defined as

$$Cl(K) = I_K/P_K$$
.

Theorem 1.1.14: For any number field K, the class group Cl(K) is finite.

Definition 1.1.15 (Class number): The class number of a number field K is the order of the class group Cl(K).

The proof that the class number of a given number field is indeed finite uses Minkowski Theory.

For a number field K, let r_k denote the number of real embeddings of K into \mathbb{R} and s_k denote the number of pairs of complex embeddings of K into \mathbb{C} . Here we are assuming that s_k is counting the pairs of embeddings that are not strictly contained in \mathbb{R} . Note that the complex embeddings occur in pairs through complex conjugation.

Theorem 1.1.16 (Dirichlet's Unit Theorem): Suppose that K is a number field and $\mu(K)$ is the finite group of roots of unity that are contained in K. Then,

$$\mathbb{O}_K^\times \cong \mathbb{Z}^{r_k+s_k-1} \times \mu(K).$$

Definition 1.1.17 (Decomposition group): Suppose that L/K is a Galois extension of number fields, $\wp \subseteq L$ is a prime ideal, and $\mathfrak{p} = \wp \cap \mathfrak{G}_K$. The decomposition group of \wp is the set

$$G_{\wp} = \{ \sigma \in \operatorname{Gal}(L/K) : \sigma(\wp) = \wp \}.$$

Definition 1.1.18 (Inertia group): Let $\kappa = \mathbb{O}_K/\mathfrak{p}$ and $\lambda = \mathbb{O}_L/\wp$. The kernel of the map

$$G_{\wp} \to \operatorname{Aut}(\lambda/\kappa)$$

is the inertia group of \wp and is denoted by I_{\wp} .

Need to check the assumptions here – where is \wp living? Nonzero?

1.2 Valuations and Absolute Values

In general, assume hereafter that *p* denotes some prime number.

Definition 1.2.1 (p-adic absolute value, p-adic norm): The p-adic absolute value or norm of \mathbb{Q}

$$|\cdot|_p:\mathbb{Q}\to\mathbb{R}$$

is defined by

$$\left| p^m \frac{a}{b} \right|_p = p^{-m}$$

where both a and b are coprime to p. Set $|0|_p = 0$.

Proposition 1.2.2: The *p*-adic norm is indeed a norm. That is:

- 1. $|a|_p > 0$ for all $a \in \mathbb{Q}^{\times}$
- 2. $|ab|_p = |a|_p |b|_p$
- 3. $|a+b|_p \le |a|_p + |b|_p$

The p-adic norm actually satsifies a stronger version of the triangle inequality: $|a+b|_p \le \max\{|a|_p,|b|_p\}$. Since we have now equipped $\mathbb Q$ with a norm, it can be viewed as a topological space and thus there is a notion of convergence and Cauchy sequences. In particular, we are interested in studying the completion of $\mathbb Q$ with respect to a given p-adic norm.

Definition 1.2.3 (*p***-adic numbers):** Let \mathbb{Q}_p be the completion of \mathbb{Q} with respect to the *p*-adic norm. The elements of \mathbb{Q}_p are called the *p*-adic numbers.

Using properties of limits and the fact that every element of \mathbb{Q}_p can be represented as the limit of a sequence of points in \mathbb{Q} , the addition and multiplication of \mathbb{Q} can be naturally extended to \mathbb{Q}_p . Likewise, the norm $|\cdot|_p$ can be extended to a norm on \mathbb{Q}_p . With these operations, \mathbb{Q}_p is a field that contains \mathbb{Q} as a subfield.