Shri Mata Vaishno Devi University

School Of Mathematics

B.Tech. II Semester (Civil, Computer Science, Electrical, Electronics, Mechanical)

Minor Exam 1: Spring 2023-2024

Entry No .: Date:

Total No. Pages: [2] Total No. Questions: [3]

Course Title: Engineering Mathematics II (MTL BS-102)

Time alloted: 1 Hours

Total marks: [20]

Attempt all questions.

- 1. Do any two of the followings each carry two marks.
 - (a) Find the unit tangent vector at any point on the curve $x = t^2 + 2, y =$ 4t - 5, $z = 2t^2 - 6t$, where t is any variable.

(b) If
$$\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, show that $grad\left(\frac{1}{r}\right) = -\frac{\overrightarrow{r}}{r^3}$. [CO 1]

(c) State divergence theorem.

[CO 2]

- 2. Do any two of the followings each carry three marks.
 - (a) Show that $curl(curl\overrightarrow{V}) = grad(div\overrightarrow{V}) \nabla^2\overrightarrow{V}$. [CO 1]

(b) Prove that
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$
. [CO 1]

- (c) Find the directional derivative of the function $f(x,y,z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.
- 3. Do any two of the followings each carry five marks.
 - (a) Evaluate $\iint_S \overrightarrow{F} \cdot \hat{n} ds$, where $\overrightarrow{F} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$ and S is the surface bounding the region $x^2 + y^2 = 4, z = 0, z = 3$. [CO 2]
 - (b) If $\overrightarrow{A} = 2xz\hat{i} x\hat{j} + y^2\hat{k}$, evaluate $\int \int \int_V \overrightarrow{A} dv$, where V is the region bounded by the surface $x = 0, x = 2, y = 0, y = 6, z = x^2, z = 4$. [CO 2]
 - (c) Verify divergence theorem for $\overrightarrow{F} = (x^3 yz)\hat{i} 2x^2y\hat{j} 2\hat{k}$, taken over the rectangular parallelopiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.