The Nexus between Squad Depth and NBA Championship

Team AAAW: Akhilesh Chegu, William Yan, Anthony Tarakji, Audrey Patterson

Motivation & Research Problem

Background & Problem

- NBA is the most popular basketball league
 - Thousands of data & many models that evaluate squad strength
- Squad depth is the number of quality players on the team contributing to the team success... BUT
 - No established metric to measure it in the NBA
 - State-of-the-art NBA prediction model (Cheng et al) did not consider squad depth

Question: Do championship winning teams have a significantly greater squad depth than the rest of the field? Can we use squad depth to predict team strength?

Hypothesis: Championship teams will have a higher true mean squad depth.

$$H_0: \mu_{champ} - \mu_{nochamp} = 0$$

$$H_A: \mu_{champ} - \mu_{nochamp} > 0$$

Data

Squad depth = #Quality Players / #Rotation Players

- Rotation player >= 10 mpg
- 0-1 scale

Strategies

- Simple
 - Points, Rebounds, OR Assists threshold met
- Advanced
 - PER OR WS/48 thresholds met
- Combo
 - Simple AND Advanced thresholds met

Compare Championship and Non-Champ teams by each strategy

EDA: Stats Accounted For In Basic Squad Depth

Basic Squad Depth Approach

Basic Depth= (number of players who met the pp36 threshold, the rp36 threshold, and the ap36 threshold) / (number of players in rotation (played >or= 10 pg)

A tibble: 2×2

Championship `mean(Basic depth)`

<chr>> <dbl> 1 Champ 0.755 2 Not Champ 0.720 p value <dbl> 0.078

Point Estimate: $\bar{x_c} - \bar{x_n} = 0.035$

EDA: Stats Accounted For In Advanced Squad Depth

Player Efficiency Rating

Win Shares

Advanced Squad Depth Approach

(number of players above PER threshold | above win share threshold)

number of rotation players

Point Estimate: $\bar{x_c} - \bar{x_n} = 0.245$

Combined Squad Depth Approach

Combined Squad Depth:

A tibble: 2×2

Championship `mean(Combo_depth)`

<chr>
1 Champ

<dbl>

2 Not Champ

0.439

Point Estimate: $\bar{x_c} - \bar{x_n} = 0.188$

Model

Both advanced and combined squad depth are significantly higher in championship teams → evaluate both models

Combined Squad Depth Model

- Advanced squad depth model is the best model both in terms of AIC and AUC
- High AUC → strong predictive power of advanced team depth
- Formula of the best model:

Specific:
$$\log\left(\frac{p}{1-p}\right) = 8.69 - 9.55 imes Adv_depth$$

Conclusion + Future work + Limitations

Findings & Significance:

- Combo and Adv squad depth significantly higher → good predictive value of squad depth
- High AUC of logistic model → good prediction models

Higher squad depths is associated with championship winning teams.

Future Work: Variables that are filtered into the meaning of squad depth can be monitored and manipulated by NBA data scientists to make better predictions regarding what teams will win championships.

Limitations: Limited predictive power because many factors beyond team strength determine championship wins. (both measurable and unmeasurable)