Technika Cyfrowa. Ćwiczenie 3.

Maciej Pieta

Piotr Koproń Rafał Piwowar

Jakub Woś

Maj 2023

1 Zadanie 3a

Treść zadania. Bazując na dowolnie wybranych przerzutnikach, zaprojektować, zbudować i przetestować synchroniczny trzybitowy licznik liczący w następujący sposób: $0, 2, 4, 6, 1, 3, 5, 7, 0, 2, 4, \ldots$ itd. Inaczej mówiąc: licznik najpierw przechodzi po wartościach parzystych, a potem po wartościach nieparzystych, i znowu po parzystych, i tak w kółko.

1.1 Ogólna idea rozwiązania

Licznik jest trzybitowy - wartość wyjściowa jest definiowana jako $1*out_0+2*out_1+4*out_2$. Jako wartości wejściowe przyjmujemy zewnętrzny zegar oraz sygnał resetujący.

1.2 Tabele prawdy

Tabele prawdy informują o kolejnej wartości wysyłanej przez licznik, wyznaczone z wartości aktualnej.

	Α	В	С	D	Е	F	G	Н	l l	J
1				OBECNIE			NASTĘPNY			
2	wartość		Q2	Q1	Q0		Q2	Q1	Q0	
3	0		0	0	0		0	1	. 0	
4	2		0	1	0		1	0	0	
5	4		1	0	0		1	1	. 0	
6	6		1	1	0		0	0	1	
7	1		0	0	1		0	1	. 1	
8	3		0	1	1		1	0	1	
9	5		1	0	1		1	1	. 1	
10	7		1	1	1		0	0	0	
11										

1.3 Tabele Karnaugh

Dokonujemy minimalizacji, w celu wyznaczenia bezpośrednich wzorów na wejścia do przerzutników, oznaczone D_0, D_1, D_2 .

1.4 Schemat układu

Dodatkowo załączamy układ wizualizujący działanie naszego licznika.

1.5 Układ testujący

Przygotowaliśmy automatyczny model testujący. Lampka błędu pozostanie zgaszona tylko jeżeli we wszystkich sytuacjach licznik zachowa się zgodnie z oczekiwaniami.

Ustawienia generatora słów i wyniki analizatora logicznego.

Wartość oznaczona "4" stale równa 1 oznacza że lampka błędu nie świeci, czyli program działa.

1.6 Wnioski

Alternatywne rozwiązania Rozważaliśmy wykorzystanie przerzutnika T na zapamiętywanie najmniej znaczącego bitu, ale uznaliśmy że jednolitość przerzutników zmniejsza poziom skomplikowania układu.

Słowem komentarza twórczego Podczas przyotowywania tabeli Karnaugh, pierwotnie wyznaczyliśmy $D_0 = \overline{Q_2}Q_0 + Q_2Q_1\overline{Q_0} + Q_1\overline{Q_0}Q_2$., zanim zorienitowaliśmy się że możemy uprościć układ.

Zastosowania Licznik może być wykorzystany do synchronizacji sygnalizacji świetlnej interskrzyżowaniowo, w celu zapewnienia optymalnych warunków jazdy dla kierowców jadących zgodnie z ogarniczeniami prędkości. (Jak jedzie przepisowo, to cały czas będzie miał zielone, jak nie - to i tak będzie musiał hamować na czerwonym).

2 Zadanie 3b

Treść zadania Bazując na przerzutnikach "D", zaprojektować, zbudować i przetestować automat realizujący detekcję wprowadzanej na jego wejście czterobitowej wartości. Automat powinien rozpoznawać liczbę binarną: "1101". Jako źródło wprowadzanej wartości proszę użyć układu zbudowanego w ramach ćw.2b.

Układ zbudowany w ramach ćwiczenia 2b Zgodnie z komentarzem zwrotnym do ćwiczenia 2b, zbudowany przez nas układ PISO wymagał pewnych poprawek. Załączamy tutaj poprawioną wersję.

Układ SC1 zaimplemtowany poniżej:

2.1 Ogólna idea rozwiązania

Automat na wejściu przyjmuje zewenętrzy zegar, oraz sygnał wejściowy. Oprócz tego, wprowadzony jest sygnał resetujący automat. Na wyjściu, sygnał outY przekazuje inforamacje o tym, czy liczba "1011" została rozpoznana. Dodatkowo, sygnały out1 i out2 pozwalają (wraz z outY) na poznanie dokładnego stanu automatu.

Implementujemy następujący automat:

2.2 Funkcje przejścia stanu

2.3 Funkcja wyjścia

2.4 Schemat układu

W połączeniu z układem PISO z zad. 2b:

2.5 Układ testujący

Przygotowaliśmy automatyczny model testujący. Lampka błędu pozostanie zgaszona tylko jeżeli we wszystkich sytuacjach licznik zachowa się zgodnie z oczekiwaniami.

Załączamy kod wykorzystany do utworzenia konfiguracji generatora słów.

```
output = []
def toBinary(val):
   res = []
   while val != 0:
      res.insert(0, val % 2)
      val = val // 2
   while len(res) < 4:
   res.insert(0, 0)
   return res
def hex4(val):
   res = hex(val)[2:]
   while len(res) < 4:
      res = "0" + res
   return res
def addOutput(data):
   output.append(data[:1] + '1' + data[2:])
   output.append(data[:1] + '0' + data[2:])
output.append("Data:\n")
addOutput("10000000\n")
                                           # generalny reset
for i in range(16):
   addOutput("80000000\n")
                                           # reset przerzutników w automacie
   addOutput('0000001' + hex(i)[2:] + '\n')
                                           # wejścia dla piso
   binary = toBinary(i)
   for k in range(4):
   addOutput('00000000' + '\n')
                                                                # wynik
output.append("Initial:" + '\n')
output.append("0000" + '\n')
output.append("Final:" + '\n')
output.append(hex4(224) + '\n')
with open('output.dp', 'w') as outputFile:
   outputFile.writelines(output)
```

Rezultaty z analizatora logicznego. Linia "20" stale na 0 oznacza brak błędu.

2.6 Wnioski

Alternatywne rozwiązania Automat realizuje detekcję "1101" z dowolnym prefiksem - alternatywny automat mógły przechodzić do stanu pułapki po otrzymaniu nieprawidłowego ciągu aż do momentu zresetowania.

Zastosowania Automat taki może być zastosowany w drzwiach automatycznych połączonych z sensorem ruchu. Automat najpierw sprawdza brak ruchu przez dłuższy czas ("11'), następnie ruchu, '0' - gdy ktoś podchodzi do drzwi, a następnie brak ruchu '1' - gdy ktoś zatrzymuje się przed drzwiami.

Zamki Rozważaliśmy też alternatywne zastosowanie w zamku cyfrowym - rozpoznającym kod "1101" - ale zorientowaliśmy się że osobny układ PISO z wejściem 'mode' tworzy podatność na atak, gdzie atakujący mógłby wymusić zmianę trybu aby wysłać więcej niż cztery bity.