Some properties of Fibonacci Numbers

Article · September 2012		
Source: arXiv		
CITATIONS		READS
3		4,496
2 authors, including:		
0	Alexandre Laugier	
	16 PUBLICATIONS 256 CITATIONS	
	SEE PROFILE	

SOME PROPERTIES OF FIBONACCI NUMBERS

ALEXANDRE LAUGIER AND MANJIL P. SAIKIA

ABSTRACT. In this paper we study the Fibonacci numbers and derive some interesting properties and recurrence relations. We also define period of a Fibonacci sequence modulo an integer, m and derive certain interesting properties related to them.

1. Preliminaries

We begin with the following famous results without proof.

Lemma 1.1 (Euclid). If $ab \equiv 0 \pmod{p}$ with a, b two integers and p a prime, then either p|a or p|b.

Remark 1.2. In particular, if gcd(a,b) = 1, p divides only one of the numbers a, b.

Theorem 1.3 (Fermat's Little Theorem). If p is a prime and $n \in \mathbb{N}$ relatively prime to p, then $n^{p-1} \equiv 1 \pmod{p}$.

The following is an easy exercise from [1].

Lemma 1.4. (5/p) = 1 if and only if $p \equiv 1, 9, 11$, or 19 (mod 20).

Remark 1.5. Clearly $5k + 2 \not\equiv 1, 9, 11, 19 \pmod{20}$.

Theorem 1.6.

$$(5/5k + 2) = -1.$$

Theorem 1.7 (Euler). Let p be an odd prime and gcd(a,p) = 1. Then a is a quadratic nonresidue of p if $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.

For proofs the reader is suggested to see [1] or [2].

Theorem 1.8. If $x^2 \equiv 1 \pmod{p}$ with p a prime, then either $x \equiv 1 \pmod{p}$ or $x \equiv p-1 \pmod{p}$.

Proof. If $x^2 \equiv 1 \pmod{p}$ with p a prime, then we have

$$x^2 - 1 \equiv 0 \pmod{p}$$

$$(x-1)(x+1) \equiv 0 \pmod{p}$$

 $x-1\equiv 0\pmod p$ or $x+1\equiv 0\pmod p$. It is equivalent to say that $x\equiv 1\pmod p$ or $x\equiv -1\equiv p-1\pmod p$.

Let p a prime number such that p = 5k + 2 with k an odd positive integer. From Fermat's Little Theorem we have

$$\left(5^{\frac{5k+1}{2}}\right)^2 \equiv 1 \pmod{5k+2}.$$

Second author is supported by DST-INSPIRE Scholarship 422/2009.

From Theorem 1.8, we have either $5^{\frac{5k+1}{2}} \equiv 1 \pmod{5k+2}$ or $5^{\frac{5k+1}{2}} \equiv 5k+1 \pmod{5k+2}$. Moreover, we can observe that

$$5(2k+1) \equiv 1 \pmod{5k+2}.$$

Definition 1.9. Let p be an odd prime and let gcd(a, p) = 1. The Legendre symbol (a/p) is defined to be equal to 1 if a is a quadratic residue of p and is equal to -1 is a is a quadratic non residue of p.

Theorem 1.10.

$$5^{\frac{5k+1}{2}} \equiv 5k+1 \pmod{5k+2}$$

where 5k + 2 is a prime.

The proof of Theorem 1.10 follows very easily from Lemma 1.4, Remark 1.5 and Theorems 1.7 and 1.6.

We fix the notation $[[1, n]] = \{1, 2, \dots, n\}$ throughout the rest of the paper. We now have the following properties.

Property 1.11.

$$\binom{5k+1}{2l+1} \equiv 5k+1 \pmod{5k+2},$$

with $l \in [[0, \lfloor \frac{5k}{2} \rfloor]]$ and 5k + 2 is a prime.

Proof. Notice that for l=0 the property is obviously true.

We also have

$$\binom{5k+1}{2l+1} = \frac{(5k+1)5k(5k-1)\dots(5k-2l+1)}{(2l+1)!}.$$

Or,

$$5k \equiv -2 \pmod{5k+2},$$

 $5k-1 \equiv -3 \pmod{5k+2},$
 \vdots
 $5k-2l+1 \equiv -(2l+1) \pmod{5k+2}.$

Multiplying these congruences we get

$$5k(5k-1)\dots(5k-2l+1) \equiv (2l+1)! \pmod{5k+2}$$
.

Therfore

$$(2l+1)! {5k+1 \choose 2l+1} \equiv (5k+1)(2l+1)! \pmod{5k+2}.$$

Since (2l+1)! and 5k+2 are relatively prime, we obtain

$$\binom{5k+1}{2l+1} \equiv 5k+1 \pmod{5k+2}.$$

Property 1.12.

$$\binom{5k}{2l+1} \equiv 5k - 2l \equiv -2(l+1) \pmod{5k+2}$$

with $l \in [[0, |\frac{5k}{2}|]]$ and 5k + 2 is a prime.

VOLUME, NUMBER

Proof. Notice that for l=0 the property is obviously true.

We have

$$\binom{5k}{2l+1} = \frac{5k(5k-1)\dots(5k-2l+1)(5k-2l)}{(2l+1)!}.$$

Or

$$5k \equiv -2 \pmod{5k+2},$$

 $5k-1 \equiv -3 \pmod{5k+2},$
 \vdots
 $5k-2l+1 \equiv -(2l+1) \pmod{5k+2}.$

Multiplying these congruences we get

$$5k(5k-1)\dots(5k-2l+1) \equiv (2l+1)! \pmod{5k+2}$$
.

Therfore

$$(2l+1)! \binom{5k}{2l+1} \equiv (2l+1)!(5k-2l) \pmod{5k+2}.$$

Since (2l+1)! and 5k+2 are relatively prime, we obtain

$$\binom{5k+1}{2l+1} \equiv 5k - 2l \equiv 5k + 2 - 2 - 2l \equiv -2(l+1) \pmod{5k+2}.$$

2. Formulas for the Fibonacci numbers

The Fibonacci sequence (F_n) is defined by $F_0 = 0, F_1 = 1, F_{n+2} = F_n + F_{n+1}$. The first Fibonacci numbers are

 $F_0 = 0$, $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, $F_7 = 13$, $F_8 = 21$, $F_9 = 34$, $F_{10} = 55$, $F_{11} = 89$, $F_{12} = 144$, $F_{13} = 233$, $F_{14} = 377$, $F_{15} = 610$, $F_{16} = 987$, $F_{17} = 1597$, $F_{18} = 2584$,... From the definition of the Fibonacci sequences it can be established the formula for the nth Fibonacci number

$$F_n = \frac{\varphi^n - (1 - \varphi)^n}{\sqrt{5}}$$

where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.

From binomial theorem, we have for $a \neq 0$ and $n \in \mathbb{N}$

$$(a+b)^{n} - (a-b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^{k} (1 - (-1)^{k}) = 2 \sum_{l=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2l+1} a^{n-(2l+1)} b^{2l+1},$$

$$(a+b)^{n} - (a-b)^{n} = 2a^{n} \sum_{l=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2l+1} \left(\frac{b}{a}\right)^{2l+1}.$$
(2.1)

We set

$$a+b=\varphi=\frac{1+\sqrt{5}}{2},$$

$$a-b=1-\varphi=\frac{1-\sqrt{5}}{2}.$$

So

$$a = \frac{1}{2}, \ b = \frac{2\varphi - 1}{2} = \frac{\sqrt{5}}{2}.$$

MONTH YEAR 3

Thus

$$\frac{b}{a} = \sqrt{5}$$
.

We get from (2.1)

$$\varphi^n - (1 - \varphi)^n = \frac{\sqrt{5}}{2^{n-1}} \sum_{l=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2l+1} 5^l.$$

Thus we have

Theorem 2.1.

$$F_n = \frac{1}{2^{n-1}} \sum_{l=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2l+1} 5^l.$$

For instance,

$$n = 1: F_1 = \frac{1}{2^0} \sum_{l=0}^{0} \binom{1}{2l+1} 5^l = 1,$$

$$n = 2: F_2 = \frac{1}{2} \sum_{l=0}^{0} \binom{2}{2l+1} 5^l = 1,$$

$$n = 3: F_3 = \frac{1}{2^2} \sum_{l=0}^{1} \binom{3}{2l+1} 5^l = \frac{1}{4} \left\{ \binom{3}{1} + \binom{3}{3} \times 5 \right\} = \frac{1}{4} (3+5) = \frac{8}{4} = 2,$$

$$n = 4: F_4 = \frac{1}{2^3} \sum_{l=0}^{1} \binom{4}{2l+1} 5^l = \frac{1}{8} \left\{ \binom{4}{1} + \binom{4}{3} \times 5 \right\} = \frac{1}{8} (4+20) = \frac{24}{8} = 3,$$

$$n = 5: F_5 = \frac{1}{2^4} \sum_{l=0}^{2} \binom{5}{2l+1} 5^l = \frac{1}{16} \left\{ \binom{5}{1} + \binom{5}{3} \times 5 + \binom{5}{5} \times 5^2 \right\} = \frac{1}{16} (5+50+25) = \frac{80}{16} = 5,$$

$$n = 6: F_6 = \frac{1}{2^5} \sum_{l=0}^{2} \binom{6}{2l+1} 5^l = \frac{1}{32} \left\{ \binom{6}{1} + \binom{6}{3} \times 5 + \binom{6}{5} \times 5^2 \right\} = \frac{1}{32} (6+100+150) = \frac{256}{32} = 8.$$

Property 2.2

$$F_{k+2} = 1 + \sum_{i=1}^{k} F_i.$$

Proof. We have

$$F_{0} = 0,$$

$$F_{1} = 1,$$

$$F_{2} = F_{0} + F_{1},$$

$$F_{3} = F_{1} + F_{2},$$

$$\vdots$$

$$F_{k+2} = F_{k} + F_{k+1}.$$

Adding these equalities we get

$$F_{k+2} = 1 + F_1 + F_2 + \dots + F_k = 1 + \sum_{i=1}^k F_i.$$

Theorem 2.3.

$$F_{k+l} = F_l F_{k+1} + F_{l-1} F_k$$

with $k \in \mathbb{N}$ and $l \geq 2$. $(l \geq 2)$.

Proof. We prove the result by induction on l.

From the definition of the Fibonacci sequence, we know that $F_{k+2} = F_{k+1} + F_k = F_2 F_{k+1} + F_1 F_k$ since $F_1 = F_2 = 1$.

Let assume that: $F_{k+i} = F_i F_{k+1} + F_{i-1} F_k$ with i = 2, 3, ..., l - 1, l.

Then, we have

$$F_{k+l+1} = F_{k+l} + F_{k+l-1}$$
.

From our assumption, we have

$$F_{k+l} = F_l F_{k+1} + F_{l-1} F_k$$

and

$$F_{k+l-1} = F_{l-1}F_{k+1} + F_{l-2}F_k.$$

Thus we get

$$F_{k+l+1} = F_l F_{k+1} + F_{l-1} F_k + F_{l-1} F_{k+1} + F_{l-2} F_k,$$

$$F_{k+l+1} = (F_l + F_{l-1}) F_{k+1} + (F_{l-1} + F_{l-2}) F_k.$$

Using the recurrence relation of the Fibonacci sequence, we obtain

$$F_{k+l+1} = F_{l+1}F_{k+1} + F_lF_k.$$

3. Properties of the Fibonacci numbers

Property 3.1. $F_n \equiv 0 \pmod{2}$ if and only if $n \equiv 0 \pmod{3}$.

Proof. We prove by induction that for $k \in \mathbb{N}$ we have

$$F_{3k} \equiv 0 \pmod{2}$$

We have $F_0 = 0 \equiv 0 \pmod{2}$.

We assume that $F_{3k} \equiv 0 \pmod{2}$.

From Theorem 2.3 we have

$$F_{3(k+1)} = F_{3k+3} = F_3 F_{3k+1} + F_2 F_{3k}.$$

Since $F_3 = 2 \equiv 0 \pmod{2}$ and we assumed that $F_{3k} \equiv 0 \pmod{2}$, we have

$$F_{3(k+1)} \equiv 0 \pmod{2}.$$

We again prove by induction for $k \in \mathbb{N}$

$$F_{3k+1} \equiv 1 \pmod{2}$$
.

We have $F_1 = 1 \equiv 1 \pmod{2}$.

Let us assume that $F_{3k+1} \equiv 1 \pmod{2}$.

From Theorem 2.3 we have

$$F_{3(k+1)+1} = F_{3k+4} = F_4 F_{3k+1} + F_3 F_{3k}.$$

Since $F_{3k} \equiv 0 \pmod{2}$ and $F_4 = 3 \equiv 1 \pmod{2}$, using the assumption $F_{3k+1} \equiv 1 \pmod{2}$, it follows that

$$F_{3(k+1)+1} \equiv 1 \pmod{2}$$
.

MONTH YEAR 5

From $F_{3k} \equiv 0 \pmod{2}$ and $F_{3k+1} \equiv 1 \pmod{2}$, using the recurence relation of the Fibonacci sequence, we also have

$$F_{3k+2} = F_{3k+1} + F_{3k} \equiv 1 \pmod{2}$$
.

Thus the property is established.

Corollary 3.2. If p = 5k + 2 is a prime which is strictly greater than 5 $(k \in \mathbb{N} \text{ and } k \text{ odd})$, then $F_p = F_{5k+2}$ is an odd number.

In order to prove this assertion, it suffices to remark that p is not divisible by 4.

Property 3.3.

$$F_{5k} \equiv 0 \pmod{5}$$

with $k \in \mathbb{N}$.

Proof. We again prove this result by induction.

We have $F_0 = 0 \equiv 0 \pmod{5}$.

Notice also that $F_5 = 5 \equiv 0 \pmod{5}$.

Let assume that $F_{5k} \equiv 0 \pmod{5}$.

From Theorem 2.3 we have

$$F_{5(k+1)} = F_{5k+5} = F_5 F_{5k+1} + F_4 F_{5k}.$$

Since $F_5 \equiv 0 \pmod{5}$ and we assumed that $F_{5k} \equiv 0 \pmod{5}$, we obtain

$$F_{5(k+1)} \equiv 0 \pmod{5}.$$

Property 3.4.

$$F_n \ge n$$

with $n \in \mathbb{N}$ and $n \geq 5$.

Proof. We prove this by induction.

We have $F_5 = 5 \ge 5$.

Let assume that $F_i \geq i$ with $i = 5, 6, \dots, n$.

From Property 2.2 using the assumption above, we have

$$F_{n+1} = 1 + \sum_{i=0}^{n-1} F_i \ge 1 + \sum_{i=0}^{n-1} i.$$

$$F_{n+1} \ge 1 + \frac{n(n-1)}{2}.$$

Again

$$\frac{n(n-1)}{2} - n = \frac{n(n-3)}{2} > 0.$$

So, from $F_{n+1} \ge 1 + \frac{n(n-1)}{2}$, we obtain

$$F_{n+1} \ge n + 1$$
.

4. Characterization of numbers 5k+2 which are primes with $k\in\mathbb{N}$ and k odd

Let p = 5k + 2 be a prime number with k a non-zero positive integer which is odd. Notice that in this case, $5k \pm 1$ is an even number and so:

$$\left| \frac{5k \pm 1}{2} \right| = \frac{5k \pm 1}{2}.$$

Property 4.1.

$$F_{5k+2} \equiv 5k+1 \pmod{5k+2}$$

with $k \in \mathbb{N}$ and k odd such that 5k + 2 is prime.

Proof. From Theorems 1.10 and 2.1 we have

$$2^{5k+1}F_{5k+2} = \sum_{l=0}^{\frac{5k+1}{2}} {5k+2 \choose 2l+1} 5^l \equiv 5^{\frac{5k+1}{2}} \equiv 5k+1 \pmod{5k+2}$$

where we used the fact that $\binom{5k+2}{2l+1}$ is divisible by 5k+2 for $l=0,1,\ldots,\frac{5k-1}{2}$. From Fermat's little theorem, we have

$$2^{5k+1} \equiv 1 \pmod{5k+2}.$$

We get $F_{5k+2} \equiv 5k + 1 \pmod{5k+2}$.

Property 4.2.

$$F_{5k+1} \equiv 1 \pmod{5k+2}$$

with $k \in \mathbb{N}$ and k odd such that 5k + 2 is prime.

Proof. From Theorem 2.1 and Property 1.11 we have

$$2^{5k}F_{5k+1} = \sum_{l=0}^{\lfloor \frac{5k}{2} \rfloor} {5k+1 \choose 2l+1} 5^l \equiv (5k+1) \sum_{l=0}^{\lfloor \frac{5k}{2} \rfloor} 5^l \pmod{5k+2}.$$

We have

$$\sum_{l=0}^{\lfloor \frac{5k}{2} \rfloor} 5^l = \frac{5^{\lfloor \frac{5k}{2} \rfloor + 1} - 1}{4}.$$

We get from the above

$$2^{5k+2}F_{5k+1} \equiv (5k+1)\left\{5^{\lfloor \frac{5k}{2} \rfloor + 1} - 1\right\} \pmod{5k+2}.$$

Since k is an odd positive integer, there exists a positive integer m such that k = 2m + 1. It follows that

$$\left\lfloor \frac{5k}{2} \right\rfloor = 5m + 2.$$

Notice that 5k + 2 = 10m + 7 is prime, implies that $k \neq 5$ and $k \neq 11$ or equivalently $m \neq 2$ and $m \neq 5$. Other restrictions on k and m can be given.

From Theorem 1.10 we have

$$5^{5m+3} \equiv 10m+6 \pmod{10m+7}$$
.

MONTH YEAR 7

We can rewritte $\sum_{l=0}^{\lfloor \frac{5k}{2} \rfloor} 5^l = \frac{5^{\lfloor \frac{5k}{2} \rfloor + 1} - 1}{4}$ as

$$\sum_{l=0}^{\lfloor \frac{5k}{2} \rfloor} 5^l = \frac{5^{5m+3} - 1}{4}.$$

Moreover, we have

$$(5k+1)\left\{5^{\lfloor \frac{5k}{2} \rfloor + 1} - 1\right\} = (10m+6)\left\{5^{5m+3} - 1\right\}.$$

Or,

$$(10m+6)\left\{5^{5m+3}-1\right\} \equiv 5^{5m+3}\left\{5^{5m+3}-1\right\} \equiv 5^{10m+6}-10m-6 \pmod{10m+7}.$$

We have

$$(10m+6)\left\{5^{5m+3}-1\right\} \equiv 5^{10m+6}+1 \pmod{10m+7}.$$

From Fermat's little theorem, we have $5^{10m+6} \equiv 1 \pmod{10m+7}$. Therefore

$$(10m+6) \{5^{5m+3}-1\} \equiv 2 \pmod{10m+7},$$

or equivalently

$$(5k+1)\left\{5^{\lfloor\frac{5k}{2}\rfloor+1}-1\right\} \equiv 2 \pmod{5k+2}.$$

It follows that

$$2^{5k+2}F_{5k+1} \equiv 2 \pmod{5k+2}.$$

Since 2 and 5k + 2 are relatively prime

$$2^{5k+1}F_{5k+1} \equiv 1 \pmod{5k+2}.$$

From Fermat's little theorem, we have $2^{5k+1} \equiv 1 \pmod{5k+2}$. Therefore

$$F_{5k+1} \equiv 1 \pmod{5k+2}.$$

Property 4.3.

$$F_{5k} \equiv 5k \pmod{5k+2}$$

with $k \in \mathbb{N}$ and k odd such that 5k + 2 is prime.

Proof. From Theorem 2.1 and Property 1.12 we have

$$2^{5k-1}F_{5k} = \sum_{l=0}^{\frac{5k-1}{2}} {5k \choose 2l+1} 5^l \equiv \sum_{l=0}^{\frac{5k-1}{2}} (5k-2l) 5^l \pmod{5k+2}.$$

Also

$$\sum_{l=0}^{\frac{5k-1}{2}} (5k-2l)5^l = \frac{5\left[3 \times 5^{\frac{5k-1}{2}} - (2k+1)\right]}{8}.$$

So

$$2^{5k+2}F_{5k} \equiv 5\left(3 \times 5^{\frac{5k-1}{2}} - (2k+1)\right) \pmod{5k+2}.$$

Moreover since k = 2m + 1, we have

$$3 \times 5^{\frac{5k-1}{2}} - (2k+1) = 3 \times 5^{5m+2} - (4m+3).$$

Since $5^{5m+3} \equiv 10m+6 \pmod{10m+7}$, we have

$$3 \times 5^{5m+3} \equiv 30m + 18 \pmod{10m+7}$$
,

VOLUME, NUMBER

$$3 \times 5^{5m+3} \equiv 40m + 25 \pmod{10m+7}$$
.

Consequently

$$3 \times 5^{5m+3} \equiv 8m + 5 \pmod{10m+7}$$

which implies

$$3 \times 5^{5m+2} - (4m+3) \equiv 4m+2 \pmod{10m+7}$$

or equivalently for k = 2m + 1

$$3 \times 5^{\frac{5k-1}{2}} - (2k+1) \equiv 2k \pmod{5k+2},$$

 $2^{5k+2}F_{5k} \equiv 2 \times 5k \pmod{5k+2}.$

Since 2 and 5k + 2 are relatively prime

$$2^{5k+1}F_{5k} \equiv 5k \pmod{5k+2}$$
.

From Fermat's little theorem, we have $2^{5k+1} \equiv 1 \pmod{5k+2}$. Therefore

$$F_{5k} \equiv 5k \pmod{5k+2}$$

5. Periods of the Fibonacci sequence modulo a positive integer

Notice that $F_1 = F_2 \equiv 1 \pmod{m}$ with m an integer which is greater than 2.

Definition 5.1. The Fibonacci sequence (F_n) is periodic modulo a positive integer m which is greater than 2 $(m \ge 2)$, if there exists at least a non-zero integer ℓ_m such that:

$$F_{1+\ell_m} \equiv F_{2+\ell_m} \equiv 1 \pmod{m}$$

The number ℓ_m is called a period of the Fibonacci sequence (F_n) modulo m.

Remark 5.2. For $m \geq 2$ we have $l_m \geq 2$. Indeed, ℓ_m cannot be equal to 1 since $F_3 = 2$.

From Theorem 2.3 we have

$$F_{2+\ell_m} = F_{\ell_m} F_3 + F_{\ell_m - 1} F_2 \equiv 2F_{\ell_m} + F_{\ell_m - 1} \pmod{m}.$$

Since $F_{\ell_m} + F_{\ell_m-1} = F_{1+\ell_m}$, we get

$$F_{2+\ell_m} \equiv 2F_{\ell_m} + F_{\ell_m-1} \equiv F_{\ell_m} + F_{1+\ell_m} \equiv F_{\ell_m} + F_{2+\ell_m} \pmod{m}.$$

Therefore we have the following

Property 5.3.

$$F_{\ell_m} \equiv 0 \pmod{m}$$

Moreover, from Theorem 2.3 we have

$$F_{1+\ell_m} = F_{\ell_m} F_2 + F_{\ell_m - 1} F_1 \equiv F_{\ell_m} + F_{\ell_m - 1} \equiv F_{\ell_m - 1} \pmod{m}.$$

Since $F_{1+\ell_m} \equiv 1 \pmod{m}$, we obtain the following

Property 5.4.

$$F_{\ell_m-1} \equiv 1 \pmod{m}$$
.

Besides, using the recurrence relation of the Fibonacci sequence, from Property 5.3 we get

$$F_{\ell_m - 2} + F_{\ell_m - 1} = F_{\ell_m} \equiv 0 \pmod{m}.$$

Using Property 5.4 we obtain

MONTH YEAR 9

Property 5.5.

$$F_{\ell_m-2} \equiv m-1 \pmod{m}$$
.

Remark 5.6. From Theorem 2.3 we have for m > 2

$$F_{2m} = F_{m+m} = F_m F_{m+1} + F_{m-1} F_m = F_m (F_{m+1} + F_{m-1})$$

and

$$F_{2m+1} = F_{(m+1)+m} = F_m F_{m+2} + F_{m-1} F_{m+1} = F_m (F_m + F_{m+1}) + F_{m-1} (F_{m-1} + F_m),$$

$$F_{2m+1} = F_m (2F_m + F_{m-1}) + F_{m-1} (F_{m-1} + F_m) = 2F_m^2 + 2F_m F_{m-1} + F_{m-1}^2 = F_m^2 + F_{m+1}^2.$$
From this we get

$$F_{2m+2} = F_{2m+1} + F_{2m} = F_m^2 + F_{m+1}^2 + F_m(F_{m+1} + F_{m-1}),$$

$$F_{2m+3} = F_3 F_{2m+1} + F_2 F_{2m} = 2(F_m^2 + F_{m+1}^2) + F_m(F_{m+1} + F_{m-1}),$$

$$F_{2m+4} = F_{2m+3} + F_{2m+2} = 3(F_m^2 + F_{m+1}^2) + 2F_m(F_{m+1} + F_{m-1}).$$

Theorem 5.7. A period of the Fibonacci sequence modulo 5k + 2 with 5k + 2 a prime and k odd is given by

$$\ell_{5k+2} = 2(5k+3).$$

Proof. Using the recurrence relation of the Fibonacci sequence, and from Properties 4.1, 4.2 and 4.3 we have

$$F_{5k+3} = F_{5k+2} + F_{5k+1} \equiv 5k + 2 \equiv 0 \pmod{5k+2}$$
.

Taking m = 5k + 2 prime (k odd) in the formulas of F_{2m+3} and F_{2m+4} , we have

$$F_{10k+7} = 2(F_{5k+2}^2 + F_{5k+3}^2) + F_{5k+2}(F_{5k+3} + F_{5k+1}) \equiv 2(5k+1)^2 + 5k + 1 \pmod{5k+2},$$

$$F_{10k+7} \equiv 50k^2 + 20k + 2 + 5k + 1 \equiv 10k(5k+2) + (5k+2) + 1 \pmod{5k+2},$$

$$F_{10k+7} \equiv 1 + (10k+1)(5k+2) \equiv 1 \pmod{5k+2},$$

and

$$F_{10k+8} = 3(F_{5k+2}^2 + F_{5k+3}^2) + 2F_{5k+2}(F_{5k+3} + F_{5k+1}) \equiv 3(5k+1)^2 + 2(5k+1) \pmod{5k+2},$$

$$F_{10k+8} \equiv 75k^2 + 30k + 3 + 10k + 2 \equiv 15k(5k+2) + 2(5k+2) + 1 \pmod{5k+2},$$

$$F_{10k+8} \equiv 1 + (15k+2)(5k+2) \equiv 1 \pmod{5k+2}.$$

Thus

$$F_{10k+7} \equiv F_{10k+8} \equiv 1 \pmod{5k+2}$$
,

or equivalently

$$F_{1+2(5k+3)} \equiv F_{2+2(5k+3)} \equiv 1 \pmod{5k+2}$$
.

We deduce that a period of the Fibonacci sequence modulo 5k+2 with 5k+2 a prime is $\ell_{5k+2}=2(5k+3)$.

Remark 5.8. We can observe that

$$F_{5k-1} = F_{5k+1} - F_{5k} \equiv 1 - 5k \equiv 3 \equiv F_4 \pmod{5k+2},$$

$$F_{5k-2} = F_{5k} - F_{5k-1} \equiv 5k - 3 \equiv 5k - F_4 \pmod{5k+2},$$

$$F_{5k-3} = F_{5k-1} - F_{5k-2} \equiv 6 - 5k \equiv 8 \equiv F_6 \pmod{5k+2},$$

$$F_{5k-4} = F_{5k-2} - F_{5k-3} \equiv 5k - 11 \equiv 5k - (F_4 + F_6) \pmod{5k+2}.$$

Using induction we can show the following two properties.

Property 5.9. Let 5k + 2 be a prime with k odd. Then, we have

$$F_{5k-(2l+1)} \equiv F_{2(l+2)} \pmod{5k+2}$$

with l a positive integer such that $l \leq \lfloor \frac{5k-1}{2} \rfloor$.

Property 5.10. Let 5k + 2 be a prime with k odd. Then, we have

$$F_{5k-2l} \equiv 5k - \sum_{i=0}^{l-1} F_{2(i+2)} \pmod{5k+2}$$

with $l \ge 1$ such that $l \le \lfloor \frac{5k}{2} \rfloor$.

Remark 5.11. We can notice that

$$F_{5k+4} = F_{5k+3} + F_{5k+2} \equiv F_{5k+2} \equiv 5k+1 \pmod{5k+2},$$

$$F_{5k+5} = F_{5k+4} + F_{5k+3} \equiv F_{5k+4} \equiv 5k+1 \pmod{5k+2},$$

$$F_{5k+6} = F_{5k+5} + F_{5k+4} \equiv 10k+2 \equiv 5k \pmod{5k+2},$$

and for $l \geq 1$ we have

$$F_{5k+3l+2} = F_{3l+2}F_{5k+1} + F_{3l+1}F_{5k} \equiv F_{3l+2} + 5kF_{3l+1} \pmod{5k+2},$$

 $F_{5k+3l+2} \equiv F_{3l} + (5k+1)F_{3l+1} \equiv F_{3l} - F_{3l+1} + (5k+2)F_{3l+1} \equiv F_{3l} - F_{3l+1} \equiv -F_{3l-1} \pmod{5k+2}$. Furthermore, we have for $l \ge 1$

$$F_{5k+3l+1} = F_{3l+1}F_{5k+1} + F_{3l}F_{5k} \equiv F_{3l+1} + 5kF_{3l} \pmod{5k+2},$$

 $F_{5k+3l+1} \equiv F_{3l-1} + (5k+1)F_{3l} \equiv F_{3l-1} - F_{3l} + (5k+2)F_{3l} \equiv F_{3l-1} - F_{3l} \equiv -F_{3l-2} \pmod{5k+2}$. Besides, we have for $l \ge 1$

$$F_{5k+3l} = F_{3l}F_{5k+1} + F_{3l-1}F_{5k} \equiv F_{3l} + 5kF_{3l-1} \pmod{5k+2},$$

$$F_{5k+3l} \equiv F_{3l-2} + (5k+1)F_{3l-1} \equiv F_{3l-2} - F_{3l-1} + (5k+2)F_{3l-1} \equiv F_{3l-2} - F_{3l-1} \equiv -F_{3l-3} \pmod{5k+2}$$

Finally we can state the following property, the proof of which follows from the above remark and by using induction.

Property 5.12. $F_{5k+n} \equiv -F_{n-3} \pmod{5k+2}$.

Theorem 5.13. Let 5k + 2 be a prime with k an odd positive number and let n a positive integer. Then, we have:

$$F_{n(5k+3)} \equiv 0 \pmod{5k+2}$$

Proof. The proof of the theorem will be done by induction. We have $F_0 \equiv 0 \pmod{5k+2}$. Moreover, we know that $F_{5k+3} \equiv 0 \pmod{5k+2}$. Let assume that $F_{n(5k+3)} \equiv 0 \pmod{5k+2}$. We have:

$$F_{(n+1)(5k+3)} = F_{n(5k+3)+5k+3} = F_{5k+3}F_{n(5k+3)+1} + F_{5k+2}F_{n(5k+3)}$$

Since $F_{5k+3} \equiv 0 \pmod{5k+2}$, using the assumption $F_{n(5k+3)} \equiv 0 \pmod{5k+2}$, we deduce that:

$$F_{(n+1)(5k+3)} \equiv 0 \pmod{5k+2}$$

It achieves the proof of the theorem.

Corollary 5.14. If 5k + 3|m, then $F_m \equiv 0 \pmod{5k + 2}$.

MONTH YEAR 11

6. Acknowledgements

The authors would like to thank Zakir Ahmed, Sudarson Nath and Ankush Goswami for helpful comments.

References

- [1] D. M. Burton, Elementary Number Theory, Tata McGraw Hill, 2007.
- [2] R. A. Mollin, Fundamental Number Theory with Applications, Chapman and Hall/CRC, 2008.

MSC2010: 11A07, 11B37, 11B39, 11B50.

Lycée professionnel hotelier La Closerie, 10 rue Pierre Loti - BP 4, 22410 Saint-Quay-Portrieux, France

 $E ext{-}mail\ address: laugier.alexandre@orange.fr}$

DEPARTMENT OF MATHEMATICAL SCIENCES, TEZPUR UNIVERSITY, NAPAAM, SONITPUR, ASSAM, PIN 784028, INDIA

 $E ext{-}mail\ address: manjil@gonitsora.com}$