

K. J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Batch: A1 Roll No.: 16010120015

Experiment No._7_

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Title: Implementation of All Pair Shortest Path using Dynamic Programming

Objective To learn the All Pair Shortest Path using Floyd-Warshall algorithm

CO to be achieved:

CO 2 Describe various algorithm design strategies to solve different problems and analyze Complexity.

Books/ Journals/ Websites referred:

- 1. Ellis horowitz, Sarataj Sahni, S.Rajsekaran," Fundamentals of computer algorithm", University Press
- 2. T.H.Cormen ,C.E.Leiserson,R.L.Rivest and C.Stein," Introduction to algorithms",2nd Edition ,MIT press/McGraw Hill,2001
- 3. http://users.cecs.anu.edu.au/~Alistair.Rendell/Teaching/apac_comp3600/module4/all_pairs_shortest_paths.xhtml
- 4. https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
- 5. http://www.cs.bilkent.edu.tr/~atat/502/AllPairsSP.ppt

Theory:

It aims to figure out the shortest path from each vertex v to every other u.

- 1. In all pair shortest path, when a weighted graph is represented by its weight matrix W then objective is to find the distance between every pair of nodes.
- 2. Apply dynamic programming to solve the all pairs shortest path.
- 3. In all pair shortest path algorithm, we first decomposed the given problem into sub problems.
- 4. In this principle of optimally is used for solving the problem.
- 5. It means any sub path of shortest path is a shortest path between the end nodes.

Algorithm:


```
Algorithm All pair(W, A)
For i = 1 to n do
For j = 1 to n do
A[i,j] = W[i,j]
For k = 1 to n do
      For i = 1 to n do
             For j = 1 to n do
             A[i,j] = min(A[i,j], A[i,k] + A[k,j])
             }}}
```

Example:

Solution:

A·[3,4]	>	5+7		, 4 3	V.		•	
A°[4,2]	ļ	10[4,	1] + A'	[1,2]	7		•	
00	>	2+						
A2 =	1	2	3	4				
1	0	3	3 5	7				3
3	8		2					
3	5	8	0	1				
4	2	5	1	0	1		v	
A'[1,3]	A'	[1,2]	+ A	12,3]			
∞0			2					
A'[1,4]								
7	<							
A' [3,1]					[1,			_
5			+ 8		_	107		
A' [3,4]						7		-
1			+ 15					
A'[4,3]			4,23		12,3	3]		
ω	>		5+2					
A3 =		1	2	3	4	7		
/1 =	1	0	3	5	6			
	2	7	0	2	. 3			
	3	5	8	0	1			
	41	2 .	5	7	0	1		

$A^{2}[1,2]$ $A^{2}[1,3] + A^{2}[3,2]$
3 < 5+8
$A^{2}[1,4]$ $A^{2}[3,4]$
7 > . 5+1
$A^{2}[2,1]$ $A^{2}[2,3] + A^{2}[3,1]$
8 > 2+5
$A^{2}[2,4]$ $A^{2}[2,3] + A^{2}[3,4]$
15 7 2+1
$A^{2}[4,1]$ $A^{2}[4,3] + A^{2}[3,1]$
2 < 7+5
$A^{2}[4,2]$ $A^{2}[4,3] + A^{2}[3,2]$
5 < 7+8.
Similarly
1 2 3 4
A4= 1 0 3 5 6
2 5 0 2 3
3 3 6 0 1
4[2 5 7 0]
for (k=1; k <= n; k++) {
for (i=0; i <n; &<="" i++)="" td=""></n;>
for (j=0; j <n; j++)="" td="" {<=""></n;>
for (j=0; j <n; (a[i,j],="" a[i,j]="min" a[i][k]+a[h,j]);<="" j++)="" td="" {=""></n;>
3
)

K. J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Code:

```
#include <stdio.h>
#include <conio.h>
#define MAX 25
#define INF 999
int min(int a, int b)
 if (a < b)
  return a;
 else
  return b;
void main()
 int n, cost[MAX][MAX], a[MAX][MAX], i, j, k;
 printf("\n Enter the no. of vertices:"); scanf("\d", &n); printf("\n Enter the cost matrix:\n"); for (i = 0; i < n; i++)
   for (j = 0; j < n; j++)
    scanf("%d", &cost[i][j]);
    if (i == j)
      a[i][j] = 0;
    else if (cost[i][j] == 0)
     a[i][j] = INF;
    else
     a[i][j] = cost[i][j];
 for (k = 0; k < n; k++)
   printf("A(%d) is as follows:\n", k + 1);
   for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
      a[i][j] = min(a[i][j], a[i][k] + a[k][j]);
     printf("%d", a[i][j]);
    printf("\n");
 printf("\n The shortest path matrix is as follows\n");
 for (i = 0; i < n; i++)
   for (j = 0; j < n; j++)
    printf("%d ", a[i][j]);
  printf("\n");
getch();
```


K. J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

#DEFINE INF AS 999

■ "E:\SEM 4\ASSIGNMENTS\CODE BLOCKS\c++ project\lcs\short\bin\Debug\short.exe"

```
Enter the no. of vertices:4
Enter the cost matrix:
0 5 INF 6
A(1) is as follows:
0 5 1 999
999 0 1000 40
16 21 0 999
999 4 999 0
A(2) is as follows:
0 5 1 45
999 0 1000 40
16 21 0 61
999 4 999 0
A(3) is as follows:
0 5 1 45
999 0 1000 40
16 21 0 61
999 4 999 0
A(4) is as follows:
0 5 1 45
999 0 1000 40
16 21 0 61
999 4 999 0
The shortest path matrix is as follows
0 5 1 45
999 0 1000 40
16 21 0 61
999 4 999 0
```


Analysis of algorithm:

ME COMPLEXITY	/		
N - No	of Vertices		
for u= 0		<u></u>	n + 1 n(n+1)
for h = 0 + if (k!=			n ² + n
for j=0 if ; ! =	to n;	<u> </u>	$n.n.(n+1)$ = $n^3 + n^2$
'f j! =			
of Edist	[h][j] > dist[]][j] = dist[h	(Vi] + Vi] +	dij [i][j]; dist[i][j]
else :)[j]=0		
Return dist	J ,		
n3+n2+	n2+ n+n+1		
0(1			
_	Complexity	= 00	n3)

Conclusion:

In this Experiment we have determined the shortest graph distances between every pair of vertices in a given graph.

- We have seen a method to compute all pairs shortest paths in a weighted undirected graph with possibly negative weights.
- This method can also be used to detect negative cycles.
- This method is efficient for dense graphs.