

Rozwiązania Kontestu 2 – Finaliści

Zadanie 1. Kwadraty szachownicy o wymiarach 100×100 są pomalowane 100 różnymi kolorami. Każdy kwadrat ma tylko jeden kolor, a każdy kolor jest użyty dokładnie 100 razy. Udowodnij, że istnieje wiersz lub kolumna na szachownicy, w którym użytych jest co najmniej 10 kolorów.

Źródło: Zadanie 06.4 z www.georgmohr.dk

Rozwiązanie 1. Niech R_i będzie liczbą kolorów użytych do pomalowania pól w i-tym wierszu, a C_j liczbą kolorów użytych do pomalowania pól w j-tej kolumnie. Niech r_k będzie liczbą wierszy, w których występuje kolor k, a c_k liczbą kolumn, w których występuje ten kolor. Z nierówności arytmetyczno-geometrycznej mamy $r_k + c_k \geqslant 2\sqrt{r_k c_k}$. Ponieważ kolor k występuje najwyżej c_k razy na każdym z r_k wierszy, w których może się znaleźć, to $c_k r_k$ musi być co najmniej całkowitą liczbą wystąpień koloru k, co wynosi 100. Stąd $r_k + c_k \geqslant 20$. W sumie mamy:

$$\sum_{i=1}^{100} R_i + \sum_{i=1}^{100} C_j = \sum_{k=1}^{100} r_k + \sum_{k=1}^{100} c_k = \sum_{k=1}^{100} (r_k + c_k) \ge 2000.$$

Jeśli suma 200 liczb całkowitych dodatnich wynosi co najmniej 2000, to przynajmniej jedna z tych liczb jest większa lub równa 10. Twierdzenie zostało udowodnione.

Zadanie 2. Dowieść, że gdy a, b są dodatnimi liczbami rzeczywistymi to zachodzi:

$$\frac{a^4 + b^4}{a^3 + b^3} \geqslant \frac{a^2 + b^2}{a + b}$$

Rozwiązanie 2. Jest to szczególny przypadek tzw. średnich Lehmer'a (ang. *Lehmer mean*). Wymnażając na krzyż otrzymujemy, że nierówność jest równoważna:

$$a^{5} + b^{5} + ab^{4} + a^{4}b \geqslant a^{5} + b^{5} + a^{2}b^{3} + a^{3}b^{2}$$

 $a^{3} + b^{3} \geqslant a^{2}b + ab^{2}$.

Jednak na mocy twierdzenia o ciągach jednomonotonicznych dla $(a^2,\,b^2)$ i $(a,\,b)$ ta nierówność musi zachodzić.

Zadanie 3. Niech n będzie liczbą naturalną. Liczba całkowita a>2 nazywa się n-rozkładalną, jeśli a^n-2^n jest podzielne przez wszystkie liczby postaci a^d+2^d , gdzie $d\neq n$ jest naturalnym dzielnikiem n. Znajdź wszystkie liczby złożone $n\in\mathbb{N}$, dla których istnieje liczba n-rozkładalna.

Źródło: AoPS

Rozwiązanie 3. Odpowiedź to wszystkie $n=2^k$, gdzie k>1 jest dowolne.

Zauważmy, że każde takie n oczywiście działa:

$$a^{2^k} - 2^{2^k} = (a-2)(a+2)(a^2+2^2)(a^{2^2}+2^{2^2})\cdots(a^{2^{k-1}}+2^{2^{k-1}}).$$

Teraz pokażemy, że jeśli n nie jest potęgą dwójki, to jest to niemożliwe. Ustawmy $n=2^k\cdot n'$, gdzie n'>1 jest liczbą nieparzystą, oraz $k\geq 0$. Załóżmy najpierw, że k>0. Następnie zauważmy, że

$$a^{2^k} \equiv -2^{2^k} \pmod{a^{2^k} + 2^{2^k}} \implies a^n \equiv -2^n \pmod{a^{2^k} + 2^{2^k}}.$$

Z tego wnioskujemy, że $a^{2^k}+2^{2^k}\mid 2^{n+1}$. To znaczy, że $a^{2^k}+2^{2^k}=2^u$ dla pewnego u. Oczywiście a jest liczbą parzystą, ustawmy a=2a', oraz a'>1. Mamy wtedy

$$2^{2^k} ((a')^{2^k} + 1) = 2^u \implies (a')^{2^k} + 1 = 2^t$$
 dla pewnego $t \ge 2$.

Jednakże, ponieważ k>0 oraz $t\geq 2$ (bo a'>1), jest to niemożliwe przy użyciu arytmetyki modulo 4.

Podobnie, jeśli k=0 (to znaczy, że n jest liczbą nieparzystą), ustawmy n=pq dla pewnych liczbp,q>1 nieparzystych. Mamy

$$a^p \equiv -2^p \pmod{a^p + 2^p} \implies a^n \equiv -2^n \pmod{a^p + 2^p} \implies a^p + 2^p = 2^u \text{ dla pewnego } u$$

Ponownie, ustawiając a=2a' dla pewnego a'>0, zauważamy, że $(a')^p+1$ jest potęgą liczby 2. Oczywiście, p>1 i $(a')^{p-1}-(a')^{p-2}+\cdots+1$ jest dzielnikiem tej liczby, który jest liczbą nieparzystą i większą od jedności, co prowadzi do sprzeczności.

Źródło: AoPS

Zadanie 4. Dany jest czworokąt wypukły ABCD. Punkty P, Q, R, S leżą na bokach AB, BC, CD, DA odpowiednio, przy czym odcinki PR i QS dzielą ten czworokąt na cztery czworokąty o prostopadłych przekątnych. Udowodnij, że punkty P, Q, R, S leżą na okręgu.

Rozwiązanie 4. Lemat: Punkt E jest przecięciem przekątnych AC i BD w czworokącie ABCD. Punkty H_1 , H_2 są ortocentrami trójkątów AED i BEC odpowiednio. Wówczas prosta H_1H_2 jest osią potęgową okręgów o średnicach AB, CD.

Dowód: Niech A', B', C', D' to rzuty punktów A, B, C, D odpowiednio na proste BD, AC, BD, AC. Wówczas, skoro $\not AA'B = 90^\circ = \not AB'B$, to punkty A, B, B', A' leżą na okręgu o średnicy AB. Podobnie, punkty C, D, C', D' leżą na okręgu o średnicy CD. Ponadto, $\not AA'D = 90^\circ = \not AD'D$, więc punkty A, D', A', D leżą na jednym okręgu. Stąd, na mocy potęgi punktu, mamy

$$AH_1 \cdot H_1 A' = DH_1 \cdot H_1 D',$$

co pokazuje, że punkt H_1 (i analogicznie H_2) leży na osi potęgowej okręgów o średnicach AB i CD. Stąd, prosta H_1H_2 pokrywa się z tą osią. To kończy dowód lematu.

Przejdźmy teraz do rozwiązania właściwego zadania: Niech odcinki PR i QS przecinają się w punkcie O. Oznaczmy przez H_1 , H_2 , G ortocentra trójkątów POS, QOR, POQ odpowiednio. Na mocy danych prostopadłości mamy $AP \cap CQ = B$, $AH_1 \cap CH_2 = O$ oraz $PH_1 \cap QH_2 = G$. Punkty B, O, G są współliniowe, gdyż leżą na prostej przechodzącej przez O prostopadłej do PQ. Z twierdzenia Desarguesa dla trójkątów APH_1 , CQH_2 wynika więc, że proste H_1H_2 , AC, PQ są współpękowe. Oznaczmy ten punkt przez X. Analogicznie dowodzimy, że proste H_1H_2 , AC, RS są współpękowe. Stąd, proste H_1H_2 , PQ i RS przechodzą przez X. Na mocy lematu, prosta H_1H_2 jest osią potęgową okręgów o średnicach PQ, RS, czyli X ma równą potęgę względem tych okręgów. Jako, iż $PQ \cap RS = X$, to

$$XP \cdot XQ = XR \cdot XS,$$

co na mocy kryterium potęgowego dowodzi współokręgowości punktów $P,\,Q,\,R,\,S.$ To kończy dowód.

