# Algoritmos - Aula 10

Fernando Raposo

#### Vamos ver

- Grafos com Pesos
- Otimização
- Algoritmos Gulosos (Greedy)
  - Conceitos
  - Aplicações
- Otimizações
- Menor Caminho
- Exercício Prático

#### Grafos com Pesos

 Ainda não vimos grafos como o abaixo... qual a sua diferença para os anteriores?



#### **Grafos com Pesos**

- Quantos caminhos possíveis existem, por exemplo, partindo do vértice "5" até o vértice "2"?
  - 5 => 1 => 3 =>2 ou;
  - o 5 => 3 => 2?
- Qual o "custo" ou qual a distância entre eles?
- Qual o MENOR custo entre eles?



- Pelo visto estamos buscando uma solução razoável para esta distância não é?
- Queremos otimizar nossos recursos buscando o menor caminho.
- Assim, vamos simplificar um pouco o problema de otimização

#### Problema do Troco

- 1. Você trabalha em uma loja e precisa dar um troco de R\$289,00 para um cliente;
- 2. Há disponíveis (ilimitadas) notas de 100, 50, 25, 5 e 1;
- 3. Como pagar este troco com o menor número de notas possível?

- A pessoa geralmente vai "preenchendo" o valor inicialmente pelas notas maiores:
  - 2 notas de 100;
  - 1 nota de 50;
  - o 1 nota de 25:
  - 2 notas de 5;
  - 1 nota de 1;
- 289 100 = 189 100 = 89 50 = 39 25 = 14 5 = 9 5 = 4 1 = 3 -1 = 2 1 = 1 1 = Troco dado
- Essa é chamada de estratégia "Gulosa", ou Gananciosa, você utiliza logo os valores que te dão maior benefício sem arrependimento (Greedy).

- Mas... nem sempre a abordagem Gulosa funciona...
- Suponha que temos que dar um troco de R\$20,00 e temos notas ilimitadas de: 100, 50, 24, 12, 5, 1.
- Estratégia Gulosa Rodando:

```
    20 - 12 = 8 - 5 = 3 - 1 = 2 - 1 = 1 - 1 = Troco dado
```

- 1 nota de 12
- o 1 nota de 5
- o 3 notas de 1
- Mas esta solução não é a melhor. Qual seria?

- 4 notas de 5 seriam suficientes para dar o troco;
- Menos notas que a solução Gulosa;
- Logo chegamos a conclusão que não podemos usar a estratégia gulosa amplamente;
- É necessário que se prove a sua eficácia.

## Otimização: Solução

#### TROCO (N)

- 1.  $C \leftarrow \{100, 50, 25, 10, 5, 1\}$
- **2.** Moedas ← **{**}
- **3.** Soma ← **0**
- 4. ENQUANTO Soma ≠ N
- 5.  $x = m\acute{a}ximo de C tal que (Soma + x \le N)$
- 6. Moedas  $\leftarrow$  Moedas +  $\{x\}$
- 7. Soma  $\leftarrow$  Soma + x
- 8. RETORNE Moedas

#### Voltando para Grafos...

- Dado o grafo exibido como descobrir qual o menor caminho entre dois vértices?
- Por exemplo: entre 3 e 4
- Vamos enumerar as possibilidades?



#### Menor Caminho

- É possível utilizar a estratégia Gulosa para resolver o problema de menor caminho entre dois vértices;
- Concebido pelo cientista Holandês Edsger Dijkstra em 1956;
- Algoritmo:
  - o Premissas:
    - Teremos dois conjuntos:
      - Conjunto dos vértices que fazem parte do menor caminho;
      - Conjunto dos vértices que não fazem parte do menor caminho;
  - Passos:
    - Toda vez, procurar um vértice no conjunto de vértices que não fazem parte do menor caminho e trazê-lo para o outro grupo.

#### Menor Caminho entre **s** e **t**: Algoritmo

- 1. Criar um conjunto arvoreMenorCaminho, que contém os vértices que vão aos poucos fazendo parte do menor caminho de **s** a **t** (vazio no ínicio);
- Marcar a distância de cada vértice ao vértice de início (inicialmente atribuir infinito);
- 3. Atribuir a distância Zero de **s** a **s**;
- 4. Enquanto conjunto arvoreMenorCaminho não possuir todos os vértices...
  - 1. Escolher um vértice *u* que não está no conjunto arvoreMenorCaminho e que tem a menor distância desde *s*;
  - 2. Incluir *u* no conjunto arvoreMenorCaminho;
  - 3. Para cada vértice **v** adjacente a **u**:
    - 1. Se a soma da distância de  $\underline{u}$  + aresta u-v for menor que a distância atual do vértice, então atualizá-la;

#### Menor Caminho

Qual o menor caminho de "A" até "F" ?



| Α | В        | С        | D        | E        | F        | G  |
|---|----------|----------|----------|----------|----------|----|
| ∞ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 00 |

Iniciamos o Algoritmo com uma tabela de distâncias, inicialmente todas infinito.



| Α | В        | С        | D        | E        | F  | G  |
|---|----------|----------|----------|----------|----|----|
| 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 00 | 00 |

Calculamos a distância de "A" para "A", ou seja, zero. E verificamos seus vizinhos "B", "C" e "E".



| Α | В  | С        | D        | E        | F  | G        |
|---|----|----------|----------|----------|----|----------|
| 0 | 00 | $\infty$ | $\infty$ | $\infty$ | 00 | <b>∞</b> |

Se a distância até "A" for menor que a distância atual (infinito), atribuir esta distância.



| Α | В | С | D        | E | F        | G  |
|---|---|---|----------|---|----------|----|
| 0 | 4 | 3 | $\infty$ | 7 | $\infty$ | 00 |

Agora, utilizando a estratégia Gulosa, vamos visitar o vértice com a menor distância calculada. Neste caso "C"



| Α | В | С | D        | E | F        | G  |
|---|---|---|----------|---|----------|----|
| 0 | 4 | 3 | $\infty$ | 7 | $\infty$ | 00 |

Vamos calcular as distâncias da vizinhança de "C" para "A" e substituir caso o cálculo da distância dê menor que o atualmente calculado. ACB = 9; ACE = 11; ACD = 14



| Α | В | С | D  | E | F        | G        |
|---|---|---|----|---|----------|----------|
| 0 | 4 | 3 | 14 | 7 | $\infty$ | <b>∞</b> |

Vamos calcular as distâncias da vizinhança de "C" para "A" e substituir caso o cálculo da distância dê menor que o atualmente calculado. ACB = 9; ACE = 11; **ACD = 14** 



| Α | В | С | D  | E | F        | G        |
|---|---|---|----|---|----------|----------|
| 0 | 4 | 3 | 14 | 7 | $\infty$ | <b>∞</b> |

Não há mais o que fazer em "C" Então, utilizando a estratégia Gulosa, vamos visitar o vértice com a menor distância calculada. Neste caso "B", pois "C" já foi visitado.



| Α | В | С | D  | E | F        | G  |
|---|---|---|----|---|----------|----|
| 0 | 4 | 3 | 14 | 7 | $\infty$ | 00 |

Vamos calcular as distâncias da vizinhança de "B" para "A" e substituir caso o cálculo da distância dê menor que o atualmente calculado. **ABD = 9**; 9 < 14, vamos trocar...



| Α | В | С | D | E | F        | G  |
|---|---|---|---|---|----------|----|
| 0 | 4 | 3 | 9 | 7 | $\infty$ | 00 |

Trocado! Não há mais o que fazer em "B" Então, utilizando a estratégia Gulosa, vamos visitar o vértice com a menor distância calculada. Neste caso "E", pois "B" e "C" já foram.



| Α | В | С | D | E | F        | G  |
|---|---|---|---|---|----------|----|
| 0 | 4 | 3 | 9 | 7 | $\infty$ | 00 |

Vamos calcular as distâncias da vizinhança de "E" para "A" e substituir caso o cálculo da distância dê menor que o atualmente calculado. AED = 9; **AEG = 12**, vamos trocar...



| Α | В | С | D | E | F        | G  |
|---|---|---|---|---|----------|----|
| 0 | 4 | 3 | 9 | 7 | $\infty$ | 12 |

Trocado! Não há mais o que fazer em "E" Então, utilizando a estratégia Gulosa, vamos visitar o vértice com a menor distância calculada. Neste caso "D", pois outros já foram.



| Α | В | С | D | E | F        | G  |
|---|---|---|---|---|----------|----|
| 0 | 4 | 3 | 9 | 7 | $\infty$ | 12 |

Vamos calcular as distâncias da vizinhança de "D" para "A" e substituir caso o cálculo da distância dê menor que o atualmente calculado. **ABDF = 11**; ABDG=19, vamos trocar...



| Α | В | С | D | E | F  | G  |
|---|---|---|---|---|----|----|
| 0 | 4 | 3 | 9 | 7 | 11 | 12 |

Vamos deixar o algoritmo rodar... Pode ser que haja um caminho menor por G. Então, utilizando a estratégia Gulosa, vamos visitar o vértice com a menor distância calculada **F** 



| Α | В | С | D | E | F  | G  |
|---|---|---|---|---|----|----|
| 0 | 4 | 3 | 9 | 7 | 11 | 12 |

Chegar em F por G é inviável, pois o caminho resultaria em 15... o caminho atual é 11.



| Α | В | С | D | E | F  | G  |
|---|---|---|---|---|----|----|
| 0 | 4 | 3 | 9 | 7 | 11 | 12 |

Só sobrou o vértice G para visitar... e o caminho até ele por D ou F não é melhor que o caminho que já existe.



| Α | В | С | D | E | F  | G  |
|---|---|---|---|---|----|----|
| 0 | 4 | 3 | 9 | 7 | 11 | 12 |

Opa! Chegamos ao destino. Acabamos de descobrir o menor caminho de "A" -> "F": É com um custo de 11 e Visitamos = {A, B, C, D, E}



#### Parte Prática...

 Vamos implementar o algoritmo do Menor Caminho para descobrir o menor caminho do vértice.

```
dijkstra.adicionaAresta( 0, 1);
dijkstra.adicionaAresta( 0, 7);
dijkstra.adicionaAresta( 1, 7);
dijkstra.adicionaAresta( 1, 2);
dijkstra.adicionaAresta( 7, 8);
dijkstra.adicionaAresta( 7, 6);
dijkstra.adicionaAresta( 6, 5);
dijkstra.adicionaAresta( 2, 3);
dijkstra.adicionaAresta( 2, 8);
dijkstra.adicionaAresta( 2, 5);
dijkstra.adicionaAresta( 5, 3);
dijkstra.adicionaAresta( 5, 4);
dijkstra.adicionaAresta( 3, 4);
```

