UNIVERSIDAD EAFIT

Maestría en Ciencias de los Datos y Analítica Taller de Matemáticas

Matemáticas

NOTA:

		110 1111
NOMBRE:	CÓDIGO:	
GRUPO:	PROFESOR: Henry Laniado y José Solano	FECHA: Julio 17 de 2019

1. **Teorema del Valor Medio**. Si f(x) es continua y diferenciable en el intervalo [a, b], entonces existe $c, a \le c \le b$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Explique con sus palabras el mensaje del teorema y utilícelo para probar que existe $0 \le c \le x$ tal que $x \cos(c) = \sin(x)$. Verifique que se cumple el Teorema del Valor medio para

- a) $f(x) = 2x^2 7x + 10$, en el intervalo [2, 5]
- b) $f(x) = x^3 + x 1$, en el intervalo [0, 2]
- c) $f(x) = 5 \frac{4}{x}$, en el intervalo [1, 4]
- d) Verifique que se cumplen las condiciones del Teorema en el intervalo [2, 6], para:

$$f(x) = \begin{cases} 2x - 3 & \text{si } x < 4 \\ -x^2 + 10x - 19 & \text{si } x \ge 4. \end{cases}$$

- e) Utilice el Teorema del valor medio para explicar que si una función es continua y diferenciable en un intervalo [a,b] y además f(b)=f(a), entonces existe al menos un punto donde la función tiene una recta tangente horizontal.
- 2. [40 %] Realice los siguientes ejercicios
 - a) Utilice multiplicadores de Lagrange para encontrar un vector del primer cuadrante cuya norma 1 sea igual a 10 y que su norma 2 sea máxima.
 - b) Utilice multiplicadores de Lagrange para encontrar un vector del primer cuadrante cuya norma 2 sea igual a 10 y que su norma 2 sea máxima.
 - c) Utilice multiplicadores de Lagrange para encontrar la distancia mas corta del punto (1,3,0) al plano 4x+2y-z=5
 - d) Utilice multiplicadores de Lagrange para encontrar tres números positivos cuya suma sea 24 y que el producto sea máximo.
 - e) Utilice multiplicadores de Lagrange para encontrar tres números positivos cuyo producto sea
 24 y que la suma sea mínima.
 - f) Pruebe que para un vector en \Re^2 , su norma 2 es máximo su norma 1. Ilustre varios caso donde ambas coincidan.

- g) Estudiar el documento https://pfortuny.net/calculo/practica3.pdf que adjunto.
- h) Estudie derivación con el software y sus gráficas

a)
$$\sum_{i=0}^{\infty} \frac{i}{5^i}$$
 b)
$$\lim_{z \to 0} (1 + zx)^{\frac{1}{z}}$$

3. Dada la siguiente matriz

$$A = \left(\begin{array}{cc} 3 & 5 \\ 4 & 4 \end{array}\right)$$

- a) Calcule los vectores y valores propios de A
- b) Calcular el determinante y la traza A
- c) Qué operaciones, entre los valores propios, asocias con el determinante y la traza de A?
- d) Realice el mismo ejercicio anterior para las siguientes matrices

$$A^2$$
, A^3 AA^T , A^TA , A^{-1} A^T

 ${\cal A}^T$ significa la Transpuesta de ${\cal A}$