

WHAT IS CLAIMED IS:

Sub 15

1. A method for routing packets among a plurality of nodes in a computer system, the method comprising:

5

receiving a first response packet in a first/node of said plurality of nodes, said first node comprising a plurality of control packet buffers, each of said plurality of control packet buffers assigned to a different one of a plurality of virtual channels; and

10

15

storing said first response packet in a response buffer which is one of said plurality of control packet buffers, said plurality of control packet buffers further including at least two additional control packet buffers corresponding to at least two additional virtual channels of said plurality of virtual channels, wherein said first response packet is a response to a first control packet belonging to one of said at least two additional virtual channels, and wherein/said storing said first response packet in said response buffer is independent of which one of said at least two additional virtual channels said/first control packet belongs to.

20

2. The method as recited in claim/1 further comprising:

receiving a second response packet in said first node, said second response packet a response to a second control packet belonging to a different one of said at least two virtual channels from said first control packet; and

25

storing said second response packet in said response buffer.

3. The method as recited in claim 1 wherein said at least two additional virtual channels

plurality of response packets corresponding to said first control packet prior to transmitting said first control packet, said plurality of response packets including said first response packet.

- 9. The method as recited in claim 8 wherein said generating said first control packet comprises generating a probe packet in response to a second control packet received by said first node.
 - 10. A computer system comprising:

a first node configured to transmit a first response packet; and

a second node coupled to receive said first response packet from said first node, wherein said second node comprises:

a response buffer assigned to a response virtual channel;

a first control packet buffer assigned to a first virtual channel different from said response virtual channel; and

a second control packet buffer assigned to a second virtual channel different from said response virtual channel and said first virtual channel;

wherein said response packet is a response to a first control packet belonging to one of said first virtual channel and said second virtual channel, and wherein said second node is configured to store said first response packet in said response buffer independent of which of said first virtual channel and said second virtual channel to which said first control packet belongs.

15

10

20

5

10

15

20

- 11. The computer system as recited in claim 10, wherein said first node is configured to transmit a second response packet to said second node in response to a second control packet belonging to a different one of said first virtual channel and said second virtual channel from said first control packet, and wherein said second node is configured to store said second response packet in said response buffer.
- 12. The computer system as recited in claim 10 wherein said first virtual channel is a non-posted command virtual channel and said second virtual channel is a probe virtual channel.
- 13. The computer system as recited in claim 10 wherein said second node further comprises a response data buffer configured to store response data packets specified by response packets, and wherein said first rode is configured to transmit a first response data packet specified by said first response packet, and wherein said second node is configured to store said first response data packet in said response data buffer.
- 14. The computer system as recited in claim 13 wherein said first node is configured to transmit a second response packet to said second node in response to a second control packet belonging to a different one of said first virtual channel and said second virtual channel from said first control packet, and wherein said second node is configured to store said second response packet in said response buffer, and wherein said first node is configured to transmit a second response data packet specified by said second response packet, and wherein said second node is configured to store said second response data packet in said response data buffer.
- 15. The computer system as recited in claim 10 wherein said second node is configured to generate said first control packet.

17. The computer system as recited in claim 16 wherein said first control packet comprises a probe packet generated in response to a second control packet received by said second node.

18. A method for routing packets among a plurality of nodes in a computer system, the method comprising:

receiving a first command packet in a first node of said plurality of nodes, said
first command packet belonging to a first virtual channel of a plurality of
virtual channels;

generating a first response packet in said first node in response to said first command packet; and

transmitting said first response packet from said first node using a response virtual channel of said plurality of virtual channels, said transmitting independent of which one of said plurality of virtual channels is said first virtual channel to which said first command packet belongs.

19. A computer system comprising:

a first node configured to transmit a first command packet in a first virtual channel of a plurality of virtual channels; and

15

10

20

5

a second node coupled to receive said first command packet, wherein said second node is configured to generate a first response packet in response to said first command packet and is further configured to transmit said first response packet using a response virtual channel of said plurality of virtual channels independent of which one of said plurality of virtual channels is said first virtual channel.