Set Theory Symbols

List of set symbols of set theory and probability.

Table of set theory symbols

Symbol	Symbol Name	Meaning / definition	Example
{}	set	a collection of elements	$A = \{3,7,9,14\},$ $B = \{9,14,28\}$
	such that	so that	$A = \{x \mid x \in \mathbb{R}, x < 0\}$
A∩ B	intersection	objects that belong to set A and set B	$A \cap B = \{9,14\}$
AU B	union	objects that belong to set A or set B	A U B = {3,7,9,14,28}
A⊆ B	subset	A is a subset of B. set A is included in set B.	$\{9,14,28\} \subseteq \{9,14,28\}$
A⊂ B	proper subset / strict subset	A is a subset of B, but A is not equal to B.	${9,14} \subset {9,14,28}$
A⊄ B	not subset	set A is not a subset of set B	{9,66} ⊄ {9,14,28}
A⊇ B	superset	A is a superset of B. set A includes set B	$\{9,14,28\} \supseteq \{9,14,28\}$
A⊃ B	proper superset / strict superset	A is a superset of B, but B is not equal to A.	${9,14,28} \supset {9,14}$
A⊅ B	not superset	set A is not a superset of set B	{9,14,28} ⊅ {9,66}
2 ^A	power set	all subsets of A	
$\mathcal{P}(A)$	power set	all subsets of A	

Symbol	Symbol Name	Meaning / definition	Example
P(A)	power set	all subsets of A	
$\mathbb{P}(A)$	power set	all subsets of A	
A=B	equality	both sets have the same members	A={3,9,14}, B={3,9,14}, A=B
A ^c	complement	all the objects that do not belong to set A	
A'	complement	all the objects that do not belong to set A	
A\B	relative complement	objects that belong to A and not to B	$A = \{3,9,14\},\ B = \{1,2,3\},\ A \setminus B = \{9,14\}$
A-B	relative complement	objects that belong to A and not to B	$A = \{3,9,14\},$ $B = \{1,2,3\},$ $A - B = \{9,14\}$
ΑΔΒ	symmetric difference	objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A Δ B = $\{1,2,9,14\}$
A⊖ B	symmetric difference	objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A \bigoplus B = $\{1,2,9,14\}$
a∈A	element of, belongs to	set membership	$A=\{3,9,14\}, 3 \in A$
x∉A	not element of	no set membership	$A = \{3, 9, 14\}, 1 \notin A$
(a,b)	ordered pair	collection of 2 elements	
A×B	cartesian product	set of all ordered pairs from A and B	$A \times B = \{(a,b) a \in A \}$ $, b \in B\}$
A	cardinality	the number of elements of set A	A={3,9,14}, A =3
#A	cardinality	the number of elements of set A	A={3,9,14}, #A=3
	vertical bar	such that	$A = \{x 3 < x < 14\}$
% 0	aleph-null	infinite cardinality of natural numbers set	

Symbol	Symbol Name	Meaning / definition	Example
x ₁	aleph-one	cardinality of countable ordinal numbers set	
Ø	empty set	Ø = {}	$A = \emptyset$
U	universal set	set of all possible values	
\mathbb{N}_0	natural numbers / whole numbers set (with zero)	$\mathbb{N}_0 = \{0,1,2,3,4,\}$	$0 \in \mathbb{N}_0$
\mathbb{N}_1	natural numbers / whole numbers set (without zero)	$\mathbb{N}_1 = \{1, 2, 3, 4, 5,\}$	$6 \in \mathbb{N}_1$
\mathbb{Z}	integer numbers set	$\mathbb{Z} = \{3,-2,-1,0,1,2,3,\}$	-6 ∈ ℤ
Q	rational numbers set	$\mathbb{Q} = \{x \mid x=a/b, a,b \in \mathbb{Z} \text{ and } b\neq 0\}$	2/6 ∈ Q
\mathbb{R}	real numbers set	$\mathbb{R} = \{x \mid -\infty < x < \infty\}$	$6.343434 \in \mathbb{R}$
\mathbb{C}	complex numbers set	$\mathbb{C} = \{ z \mid z = a + bi, \\ -\infty < a < \infty, -\infty < b < \infty \}$	$6+2i \in \mathbb{C}$