MATH 110 WORKSHEET, AUGUST 5TH

JAMES MCIVOR

- (1) Consider the functional ϕ on $P_2(\mathbb{R})$ which takes a polynomial p(x) to the real number $\int_0^1 p(x) dx$. Find a "representing vector" for this functional, i.e., a vector q(x) such that $\phi(p(x)) = \langle p(x), q(x) \rangle$ for all p(x). Use the inner product $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x) dx$.
- (2) Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the map $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+2z \\ z+x \\ y \end{pmatrix}$. Find a formula for T^* . Both spaces are given the standard (Euclidean) inner product.
- (3) Let $T \in \mathcal{L}(V)$. Prove that $\operatorname{Null} T^* = (\operatorname{Range} T)^{\perp}$. (it's in the book if you get stuck...)
- (4) Let $R: V \to V$ be a linear map such that $R^2 = I$ (R is a "reflection").
 - (a) Show that you can find subspaces U and W of V such that $V = U \oplus W$ and $R \Big|_{U} = I$, $R \Big|_{W} = -I$.
 - (b) Show that U is orthogonal to W if and only if $R=R^*$.