Automated Machine Learning (AutoML)

M. Lindauer F. Hutter

University of Freiburg

Lecture 4: Hyperparameter Optimization Bayesian Optimization

Where are we? The big picture

- Introduction
- Background
 - Design spaces in ML
 - Evaluation and visualization
- → Hyperparameter optimization (HPO)
 - → Bayesian optimization
 - Other black-box techniques
 - Speeding up HPO with multi-fidelity optimization
 - Pentecost (Holiday) no lecture
 - Architecture search I + II
 - Meta-Learning
 - Learning to learn & optimize
 - Beyond AutoML: algorithm configuration and control
 - Project announcement and closing

Learning Goals

After this lecture, you will be able to ...

- explain the challenges in hyperparameter optimization
- efficiently optimize black box functions via Bayesian Optimization
- discuss the advantages of different surrogate models
- explain the idea of acquisition functions to trade off exploration and exploitation
- consider important design decisions for BO

Lecture Overview

- Hyperparameter Optimization and Black-Box Optimization
- 2 Tree-Parzen Estimator
- Bayesian Optimization
- 4 Surrogate Models
- 6 Acquisition Functions
- 6 Practical Considerations

How to Optimize Black Box Functions?

Only interaction: Query of function at \boldsymbol{x} to obtain $f(\boldsymbol{x})$

How to Optimize Black Box Functions?

Why Black Box Functions for AutoML?

- Internals of algorithms are often not known (or well understood)
- Extreme: Only way of interaction is running the algorithms

Why Black Box Functions for AutoML?

- Internals of algorithms are often not known (or well understood)
- Extreme: Only way of interaction is running the algorithms

Example: Hyperparameter Optimization (HPO)

Let

- ullet λ be the hyperparameters of an ML algorithm A with domain Λ ,
- ullet D_{opt} be a training set which is split into D_{train} and D_{valid}
- $\mathcal{L}(A_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{valid})$ denote the loss of A_{λ} trained on D_{train} and evaluated on D_{valid} .

The *hyper-parameter optimization (HPO)* problem is to find a hyper-parameter configuration that minimizes this loss:

$$\lambda^* \in \operatorname*{arg\,min}_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{valid})$$

What could be challenges in hyperparameter optimization? [2min]

- function evaluations are very expensive
 - training a single ML-pipeline can require minutes (or even hours)
 - → exhaustive search is not feasible

- function evaluations are very expensive
 - training a single ML-pipeline can require minutes (or even hours)
 - → exhaustive search is not feasible
- complex, structured search space
 - small continuous parameter spaces already challenging to optimize
 - typically, we talk about large configuration spaces ($\gg 10$ hyper-parameters)
 - many HPO benchmarks only consider a few continuous parameters
 - mixed parameter types
 - conditional structures

- function evaluations are very expensive
 - training a single ML-pipeline can require minutes (or even hours)
 - → exhaustive search is not feasible
- complex, structured search space
 - small continuous parameter spaces already challenging to optimize
 - typically, we talk about large configuration spaces ($\gg 10$ hyper-parameters)
 - many HPO benchmarks only consider a few continuous parameters
 - mixed parameter types
 - conditional structures
- resembles a black-box optimization problem
 - Input: hyperparameter configuration
 - Black box: ML pipeline
 - Output: loss
 - Note: no gradient information available

- function evaluations are very expensive
 - training a single ML-pipeline can require minutes (or even hours)
 - → exhaustive search is not feasible
- complex, structured search space
 - small continuous parameter spaces already challenging to optimize
 - typically, we talk about large configuration spaces ($\gg 10$ hyper-parameters)
 - many HPO benchmarks only consider a few continuous parameters
 - mixed parameter types
 - conditional structures
- resembles a black-box optimization problem
 - Input: hyperparameter configuration
 - Black box: ML pipeline
 - Output: loss
 - Note: no gradient information available
- (We discuss grey-box approaches in later sessions)

How to Optimize Black Box Functions?

Grid Search [Bergstra et al. '12]

Pros and Cons

What are potential pros and cons of grid search?

Pros and Cons

What are potential pros and cons of grid search?

Pros:

- easy to implement
- easy to parallelize
- exploratory studies

Cons:

- discretization of Λ ?
- does not scale with #hyperparameters
- inefficient if not all hyperparameters are important

Random Search [Bergstra et al. '12]

Pros and Cons

What are potential pros and cons of random search?

Pros and Cons

What are potential pros and cons of random search?

Pros:

- easy to parallelize
- more evaluations along each parameter

- Cons:
- even easier to implement does not scale with #hyper-parameters
 - purely explorative

Optimization for HPO

- Basically all black-box optimization approaches can be used
 - Local search
 - hypothesis: HPO surfaces have many local optima such that local search gets easily trapped in local optima
 - population-based evolution strategies (more next week)
 - hypothesis: often needs many function evaluations to perform well
 - model-based approaches
 - Idea: use an surrogate model to approximate the unknown function to be optimized and do parts of the optimization on these surrogate models
 - Remark: there are also combinations of these approaches (such as model-based ES)

Black-Box Optimization: Remarks

- Expensive black-box optimization is a quite common problem in many disciplines (not only limited to HPO)
- Examples include:
 - General algorithm configuration
 - parameter optimization of expensive simulations
 - automatic design of experiments (e.g., in material science)
 - tuning of robots
 - experimental particle physics
 - and many more ...

Black-Box Optimization: Remarks

- Expensive black-box optimization is a quite common problem in many disciplines (not only limited to HPO)
- Examples include:
 - General algorithm configuration
 - parameter optimization of expensive simulations
 - automatic design of experiments (e.g., in material science)
 - tuning of robots
 - experimental particle physics
 - and many more ...
- You should consider model-based optimization approaches, such as Bayesian Optimization, if ...
 - you can afford only a few function evaluations
 - you don't care too much about the overhead induced by the optimization algorithm

Lecture Overview

- Hyperparameter Optimization and Black-Box Optimization
- 2 Tree-Parzen Estimator
- Bayesian Optimization
- 4 Surrogate Models
- 5 Acquisition Functions
- 6 Practical Considerations

- Assume that we already observed some configuration and the corresponding loss $D = \{(\lambda_i, y_i)\}_{i=1}^N$
 - let's use $y_i = f(\lambda)$ as a short form for $\mathcal{L}(\mathcal{A}_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{valid})$

- Assume that we already observed some configuration and the corresponding loss $D=\{(\lambda_i,y_i)\}_{i=1}^N$
 - let's use $y_i = f(\lambda)$ as a short form for $\mathcal{L}(\mathcal{A}_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{valid})$
- \bullet We could approximate the good and the bad regions of the configuration space Λ

$$p(\lambda|y) = \begin{cases} l(\lambda) \text{ if } y < y^* \\ g(\lambda) \text{ otherwise} \end{cases}$$

where

• y^* is an empirical threshold for a well-performing configuration (e.g., a γ percentile of all observed y in D)

- Assume that we already observed some configuration and the corresponding loss $D=\{(\lambda_i,y_i)\}_{i=1}^N$
 - let's use $y_i = f(\lambda)$ as a short form for $\mathcal{L}(\mathcal{A}_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{valid})$
- \bullet We could approximate the good and the bad regions of the configuration space Λ

$$p(\lambda|y) = \begin{cases} l(\lambda) \text{ if } y < y^* \\ g(\lambda) \text{ otherwise} \end{cases}$$

where

- y^* is an empirical threshold for a well-performing configuration (e.g., a γ percentile of all observed y in D)
- ullet $l(\lambda)$ models the density of the well-performing region based on D
 - Note that we minimize!

M. Lindauer, F. Hutter AutoML

- Assume that we already observed some configuration and the corresponding loss $D=\{(\lambda_i,y_i)\}_{i=1}^N$
 - let's use $y_i = f(\lambda)$ as a short form for $\mathcal{L}(\mathcal{A}_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{valid})$
- \bullet We could approximate the good and the bad regions of the configuration space Λ

$$p(\lambda|y) = \begin{cases} l(\lambda) \text{ if } y < y^* \\ g(\lambda) \text{ otherwise} \end{cases}$$

where

- y^* is an empirical threshold for a well-performing configuration (e.g., a γ percentile of all observed y in D)
- ullet $l(\lambda)$ models the density of the well-performing region based on D
 - Note that we minimize!
- ullet $g(\lambda)$ models the density of the poorly performing region based on D

n D REIBURG

- Assume that we already observed some configuration and the corresponding loss $D=\{(\lambda_i,y_i)\}_{i=1}^N$
 - let's use $y_i = f(\lambda)$ as a short form for $\mathcal{L}(\mathcal{A}_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{valid})$
- \bullet We could approximate the good and the bad regions of the configuration space Λ

$$p(\lambda|y) = \begin{cases} l(\lambda) \text{ if } y < y^* \\ g(\lambda) \text{ otherwise} \end{cases}$$

where

- y^* is an empirical threshold for a well-performing configuration (e.g., a γ percentile of all observed y in D)
- \bullet $l(\lambda)$ models the density of the well-performing region based on D
 - Note that we minimize!
- ullet $g(\lambda)$ models the density of the poorly performing region based on D
- ullet g and l can be modeled by kernel density estimator (KDE)

M. Lindauer, F. Hutter AutoML 17

Algorithm 1: Optimization with TPE

 $\begin{tabular}{ll} \textbf{Input} &: \textbf{Configuration Space Λ}, \ \textbf{black box function f}, \ \textbf{maximal number of function evaluations m}, \ \textbf{percentile γ} \end{tabular}$

1 $D_0 \leftarrow \mathsf{initial_design}(\mathbf{\Lambda});$

Algorithm 2: Optimization with TPE

Input : Configuration Space Λ , black box function f, maximal number of function evaluations m, percentile γ

- 1 $D_0 \leftarrow \mathsf{initial_design}(\mathbf{\Lambda});$
- 2 for $n = 1, 2, \dots m |D_0|$ do
 - $D_{\mathsf{good}}, D_{\mathsf{bad}} \leftarrow \mathsf{Split}\ D_{n-1}$ into good and bad observations according to γ percentile of all observed y;

M. Lindauer, F. Hutter AutoML 18

Algorithm 3: Optimization with TPE

Input : Configuration Space Λ , black box function f, maximal number of function evaluations m, percentile γ

- 1 $D_0 \leftarrow \mathsf{initial_design}(\mathbf{\Lambda});$
- 2 for $n = 1, 2, \dots m |D_0|$ do
 - $D_{\mathsf{good}}, D_{\mathsf{bad}} \leftarrow \mathsf{Split}\ D_{n-1}$ into good and bad observations according to γ percentile of all observed y;
 - $l(\lambda) \leftarrow \mathsf{fit} \; \mathsf{KDE} \; \mathsf{on} \; D_{\mathsf{good}};$
 - $g(\lambda) \leftarrow \text{fit KDE on } D_{\text{bad}};$

M. Lindauer, F. Hutter AutoML 18

Algorithm 4: Optimization with TPE

Input : Configuration Space Λ , black box function f, maximal number of function evaluations m, percentile γ

```
1 D_0 \leftarrow \operatorname{initial\_design}(\mathbf{\Lambda});
2 for n=1,2,\dots m-|D_0| do
3 D_{\operatorname{good}},D_{\operatorname{bad}} \leftarrow \operatorname{Split} D_{n-1} into good and bad observations according to \gamma percentile of all observed y;
4 l(\lambda) \leftarrow \operatorname{fit} \mathsf{KDE} on D_{\operatorname{good}};
5 g(\lambda) \leftarrow \operatorname{fit} \mathsf{KDE} on D_{\operatorname{bad}};
6 \Lambda_{\operatorname{cand}} \leftarrow \operatorname{draw} examples according to l;
7 select \lambda_n by optimizing \lambda_n \in \operatorname{arg} \max_{\lambda \in \Lambda_{\operatorname{cond}}} l(\lambda)/g(\lambda);
```


Algorithm 5: Optimization with TPE

0 return Best observed λ according to D_m

6

```
Input: Configuration Space \Lambda, black box function f, maximal
                 number of function evaluations m, percentile \gamma
1 D_0 \leftarrow \text{initial\_design}(\Lambda);
2 for n = 1, 2, \dots m - |D_0| do
        D_{\mathsf{good}}, D_{\mathsf{bad}} \leftarrow \mathsf{Split}\ D_{n-1} into good and bad observations
          according to \gamma percentile of all observed y;
      l(\lambda) \leftarrow \text{fit KDE on } D_{\text{good}};
      q(\lambda) \leftarrow \text{fit KDE on } D_{\text{bad}};
        \Lambda_{\mathsf{cand}} \leftarrow \mathsf{draw} examples according to l;
        select \lambda_n by optimizing \lambda_n \in \arg \max_{\lambda \in \Lambda_{--}} l(\lambda)/g(\lambda);
        Query y_n := f(\lambda_n);
        Add observation to data D_n := D_{n-1} \cup \{\langle \lambda_n, y_n \rangle\};
```

M. Lindauer, F. Hutter AutoML

Optimization with Tree-Parzen Estimator [Bergstra et al. 2011]

Optimization with Tree-Parzen Estimator [Bergstra et al. 2011]

Optimization with Tree-Parzen Estimator [Bergstra et al. 2011]

Remarks:

- TPE models $p(\lambda|y)$
 - we can multiply it with a prior to add expert knowledge

Remarks:

- TPE models $p(\lambda|y)$
 - we can multiply it with a prior to add expert knowledge
- Performance of TPE depends on:
 - lacktriangle setting of γ to trade-off exploration and exploitation
 - a band width of the KDEs

Remarks:

- TPE models $p(\lambda|y)$
 - we can multiply it with a prior to add expert knowledge
- Performance of TPE depends on:
 - lacktriangle setting of γ to trade-off exploration and exploitation
 - 2 band width of the KDEs
- optimizing $l(\lambda)/g(\lambda)$ is equivalent to optimizing expected improvement as acquisition function in Bayesian Optimization (more in a second)

Remarks:

- TPE models $p(\lambda|y)$
 - we can multiply it with a prior to add expert knowledge
- Performance of TPE depends on:
 - lacktriangle setting of γ to trade-off exploration and exploitation
 - 2 band width of the KDEs
- optimizing $l(\lambda)/g(\lambda)$ is equivalent to optimizing expected improvement as acquisition function in Bayesian Optimization (more in a second)
- successful tool implementing TPE is HyperOpt

Lecture Overview

- Hyperparameter Optimization and Black-Box Optimization
- 2 Tree-Parzen Estimator
- 3 Bayesian Optimization
- 4 Surrogate Models
- 5 Acquisition Functions
- 6 Practical Considerations

General Approach:

• Fit model $p(f(\lambda)|\lambda)$ on collected observations $\langle \lambda_t, f(\lambda_t) \rangle$

General Approach:

- Fit model $p(f(\lambda)|\lambda)$ on collected observations $\langle \lambda_t, f(\lambda_t) \rangle$
- $oldsymbol{2}$ use acquisition function a to trade off exploration and exploitation

General Approach:

- Fit model $p(f(\lambda)|\lambda)$ on collected observations $\langle \lambda_t, f(\lambda_t) \rangle$
- $oldsymbol{2}$ use acquisition function a to trade off exploration and exploitation
- **3** maximize acquisition function: $x^* \in \arg\min a(x)$

General Approach:

- Fit model $p(f(\lambda)|\lambda)$ on collected observations $\langle \lambda_t, f(\lambda_t) \rangle$
- use acquisition function a to trade off exploration and exploitation
- \bullet obtain new observation at x^*

General Approach:

- Fit model $p(f(\lambda)|\lambda)$ on collected observations $\langle \lambda_t, f(\lambda_t) \rangle$
- use acquisition function a to trade off exploration and exploitation
- **3** maximize acquisition function: $x^* \in \arg\min a(x)$
- lacktriangledown observation at x^*

Moving pieces:

- Which model family to use
- How to use the model to guide optimization
 - Determined by a(x) (Which data point should I acquire next?)

Algorithm 6: Bayesian Optimization (BO)

 $\begin{tabular}{ll} \textbf{Input} &: Search Space \mathcal{X}, black box function f, acquisition function α, \\ & maximal number of function evaluations m \\ \end{tabular}$

```
1 \mathcal{D}_0 \leftarrow \operatorname{initial\_design}(\mathcal{X});

2 for n=1,2,\ldots m-|D_0| do

3 \qquad \hat{f}: \lambda \mapsto y \leftarrow \operatorname{fit} predictive model on \mathcal{D}_{n-1};

4 \qquad \operatorname{select}\ x_n \ \operatorname{by}\ \operatorname{optimizing}\ x_n \in \operatorname{arg}\max_{x\in\mathcal{X}}\alpha(x;\mathcal{D}_{n-1},\hat{f});

5 \qquad \operatorname{Query}\ y_n:=f(x_n);

6 \qquad \operatorname{Add}\ \operatorname{observation}\ \operatorname{to}\ \operatorname{data}\ D_n:=D_{n-1}\cup\{\langle x_n,y_n\rangle\};
```

7 return Best x according to D_m or \hat{f}

Bayesian Optimization

Pros and Cons

Pros:

- sample efficient
- can be applied to many black-box functions with expensive function evaluations (not only HPO)

Cons:

- overhead because of model training in each iteration
- hard to efficiently parallelize
- (requires good surrogate model)

Lecture Overview

- Hyperparameter Optimization and Black-Box Optimization
- 2 Tree-Parzen Estimator
- Bayesian Optimization
- 4 Surrogate Models
- 6 Acquisition Functions
- 6 Practical Considerations

Surrograte Model

Required features

- Mandatory:
 - Regression model
 - Uncertainty estimates

Surrograte Model

Required features

- Mandatory:
 - Regression model
 - Uncertainty estimates
- Preferable:
 - accurate predictions
 - cheap-to-train
 - scales with the complexity of the data (number of features and observations)
 - can handle different types of features (categorical and continuous)

Surrograte Model

Required features

- Mandatory:
 - Regression model
 - Uncertainty estimates
- Preferable:
 - accurate predictions
 - cheap-to-train
 - scales with the complexity of the data (number of features and observations)
 - can handle different types of features (categorical and continuous)
- Candidates:
 - Gaussian Processes (quite common)
 - Random Forests (our default choice)
 - Deep Neural Networks (recent trend)

• There can be several explanations (i.e., functions) for a set of observations

- There can be several explanations (i.e., functions) for a set of observations
- A good model would integrate over all these possible explanations (and weight them by their probability)

- There can be several explanations (i.e., functions) for a set of observations
- A good model would integrate over all these possible explanations (and weight them by their probability)
- Gaussian Processes (GPs) do exactly that by using a normal distribution assumption at each point.

Informal Definition

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution

- There can be several explanations (i.e., functions) for a set of observations
- A good model would integrate over all these possible explanations (and weight them by their probability)
- Gaussian Processes (GPs) do exactly that by using a normal distribution assumption at each point.

Informal Definition

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution

- Samples from the prior are zero-mean, with values drawn from a multivariate Gaussian distribution $\mathcal{N}(0,\mathbf{K})$
- \bullet The kernel ${\bf K}$ tells us how correlated the function values at two points are

Gaussian Process: RBF Kernel

$$k(x_i, x_j) = \exp\left(-\frac{1}{2\theta^2}||x_i - x_j||^2\right)$$

Gaussian Process: Posterior

$$P(f_{t+1}|D_t, \mathbf{x}_{t+1}) = \mathcal{N}(\mu_t(\mathbf{x}_{t+1}), \sigma_t^2(\mathbf{x}_{t+1})) \text{ where}$$

$$\mu_t(\mathbf{x}_{t+1}) = \mathbf{k}^T \mathbf{K}^{-1} f_{1:t}$$

$$\sigma_t^2(\mathbf{x}_{t+1}) = k(\mathbf{x}_{t+1}, \mathbf{x}_{t+1}) \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k}$$

Gaussian Process: Remarks

- GPs are very good models for small-dimensional, continuous functions
- Advantage: we can encode in the kernel expert knowledge about the design space

Gaussian Process: Remarks

- GPs are very good models for small-dimensional, continuous functions
- Advantage: we can encode in the kernel expert knowledge about the design space
- Disadvantage: we have to define a good kernel for each application (if we don't optimize small-dimensional, continuous functions)
 - e.g., special kernels for categorical hyperparameters and conditional dependencies

Gaussian Process: Remarks

- GPs are very good models for small-dimensional, continuous functions
- Advantage: we can encode in the kernel expert knowledge about the design space
- Disadvantage: we have to define a good kernel for each application (if we don't optimize small-dimensional, continuous functions)
 - e.g., special kernels for categorical hyperparameters and conditional dependencies
- GPs have a cubic scaling with the number of observations (because of inverting the kernel)
 - to address this issue, there are sparse GPs [Snelson and Ghahramani. 2005]

- Train:
 - n decision (or regression) trees
 - subsampled training data for each tree (with bootstrapping)
 - (subsampled feature set for each split)

Train:

- \bullet n decision (or regression) trees
- subsampled training data for each tree (with bootstrapping)
- (subsampled feature set for each split)
- → each tree gives us a possible explanation for the observations

- Train:
 - n decision (or regression) trees
 - subsampled training data for each tree (with bootstrapping)
 - (subsampled feature set for each split)
 - → each tree gives us a possible explanation for the observations
- Predict
 - Obtain prediction of each tree
 - Aggregate predictions (e.g., average)

Train:

- *n* decision (or regression) trees
- subsampled training data for each tree (with bootstrapping)
- (subsampled feature set for each split)
- → each tree gives us a possible explanation for the observations

Predict

- Obtain prediction of each tree
- Aggregate predictions (e.g., average)
- Uncertainty of predictions: stdev across tree predictions

37

Random Forest's Hyperparameters

w bootstrapping and w/o random splits

w bootstrapping and w/ random splits

w/o bootstrapping and w/o random splits

w/o bootstrapping and w/ random splits

Advantages and Disadvantages of Random Forests

Pros:

- Cheap to train
- Scales well with #observations
 - Worst-case complexity for T tress with n data points of dimensionality p: $\mathcal{O}(T \cdot p \cdot n^2 \log n)$
- training can be parallelized
- Can handle continuous and categorical features
 - most RF implementations can handle only continuous features

Cons:

- Poor uncertainty estimates
- No extrapolation
 - last seen value for extrapolation (constant)
 - no prior

Deep Neural Networks as Surrogate Models

- DNNs are known to have good predictions given big data
- In Bayesian Optimization (BO), we have (often) little data
- DNNs are not known for very good uncertainty estimates
- Nevertheless, we can use DNN for BO

Source: [Springerberger et al. 2016]

• Main idea: combine DNN with a Bayesian linear regression

- Main idea: combine DNN with a Bayesian linear regression
- \bullet 1st step: Train a DNN with linear regression as last layer to get an embedding $\phi(x)$

- Main idea: combine DNN with a Bayesian linear regression
- \bullet 1st step: Train a DNN with linear regression as last layer to get an embedding $\phi(x)$
- Replace last layer by Bayesian linear regressor
 - Bayesian linear regression has two hyperparameters α , β
 - Snoek et al. used slice sampling to integrate these out

M. Lindauer, F. Hutter AutoML 4

- Main idea: combine DNN with a Bayesian linear regression
- \bullet 1st step: Train a DNN with linear regression as last layer to get an embedding $\phi(x)$
- Replace last layer by Bayesian linear regressor
 - Bayesian linear regression has two hyperparameters α , β
 - Snoek et al. used slice sampling to integrate these out
- DNGO scales much better than GPs:

DNGO: Meta-Design Decisions [Snoek et al. 2015]

- the activation function is quite important to get good uncertainty estimates
- other hyperparameters (such as the architecture of the DNN) are also crucial
 - Snoek et al. used BO to optimize these hyperparameters (as a meta-meta problem)
 - however, the impact of this meta-meta tuning is unknown

Further approaches for BO with DNNs

- [Springenberger et al. 2016] proposed Bayesian Optimization with Hamiltonian Monte Carlo Artificial Neural Networks (BOHAMIANN)
 - uses stochastic gradient Hamiltonian Monte Carlo (SGHMC) for a truly Bayesian approach

Further approaches for BO with DNNs

- [Springenberger et al. 2016] proposed Bayesian Optimization with Hamiltonian Monte Carlo Artificial Neural Networks (BOHAMIANN)
 - uses stochastic gradient Hamiltonian Monte Carlo (SGHMC) for a truly Bayesian approach
- [Lu et al. 2018] proposed to use structured variationally auto-encoders
 - Iearn an embedding into a small-dimensional latent space
 - 2 the latent representation is fed into a GP

Lecture Overview

- Hyperparameter Optimization and Black-Box Optimization
- 2 Tree-Parzen Estimator
- Bayesian Optimization
- 4 Surrogate Models
- 6 Acquisition Functions
- **6** Practical Considerations

The Role of the Acquisition Function

- Given: a model $\hat{f}: \mathbf{\Lambda} \to \mathbb{R}$ that predicts the quality $\mu(\lambda)$ for each configuration λ and its standard deviation $\sigma(\lambda)$ (\leadsto uncertainty)
 - \bullet Assume w.l.o.g. that we want to $\textit{maximize}\ f$

The Role of the Acquisition Function

- Given: a model $\hat{f}: \Lambda \to \mathbb{R}$ that predicts the quality $\mu(\lambda)$ for each configuration λ and its standard deviation $\sigma(\lambda)$ (\leadsto uncertainty)
 - ullet Assume w.l.o.g. that we want to maximize f
- Which configuration should we select next? Need to trade off:
 - Exploitation (sampling where the predicted mean $\mu(\lambda)$ is small)
 - Exploration (sampling where we're uncertain about f; i.e., $\sigma(\lambda)$ is high)

M. Lindauer, F. Hutter AutoML 4

The Role of the Acquisition Function

- Given: a model $\hat{f}: \Lambda \to \mathbb{R}$ that predicts the quality $\mu(\lambda)$ for each configuration λ and its standard deviation $\sigma(\lambda)$ (\leadsto uncertainty)
 - ullet Assume w.l.o.g. that we want to maximize f
- Which configuration should we select next? Need to trade off:
 - Exploitation (sampling where the predicted mean $\mu(\lambda)$ is small)
 - Exploration (sampling where we're uncertain about f; i.e., $\sigma(\lambda)$ is high)
- Various acquisition functions achieve this trade-off

Probability of Improvement

• Let $f(\theta^+)$ denote the best (here: max) function value known so far.

$$PI(\lambda) = P(f(\lambda) \ge f(\theta^+)) = \Phi\left(\frac{\mu(\theta) - f(\theta^+)}{\sigma(\theta)}\right)$$

• Here, Φ is the cumulative distribution function of the standard normal distribution. (There are $\mathcal{O}(1)$ lookup tables for this.)

Expected Improvement

- Like probability of improvement, but also takes into account the magnitude of the improvement.
- Define the improvement at a point λ as:

$$I(\lambda) = \max(f(\lambda) - f(\lambda^+), 0)$$

Expected Improvement

- Like probability of improvement, but also takes into account the magnitude of the improvement.
- Define the improvement at a point λ as:

$$I(\lambda) = \max(f(\lambda) - f(\lambda^+), 0)$$

 Then, we can compute the expectation of this improvement across the predictive distribution

$$\mathbb{E}[I(x)] = \int_{-\infty}^{\infty} \max(f(\lambda) - f(\lambda^{+}), 0) \cdot \mathcal{N}(f(\lambda); \mu(\lambda), \sigma^{2}(\lambda)) df(\lambda)$$

Expected Improvement

- Like probability of improvement, but also takes into account the magnitude of the improvement.
- Define the improvement at a point λ as:

$$I(\lambda) = \max(f(\lambda) - f(\lambda^+), 0)$$

 Then, we can compute the expectation of this improvement across the predictive distribution

$$\mathbb{E}[I(x)] = \int_{-\infty}^{\infty} \max(f(\lambda) - f(\lambda^{+}), 0) \cdot \mathcal{N}(f(\lambda); \mu(\lambda), \sigma^{2}(\lambda)) df(\lambda)$$

• This turns out to have a closed form solution:

This turns out to have a closed form solution:
$$\mathbb{E}[I(x)] = (\mu(\lambda) - f^+) \Phi\left(\frac{\mu(\lambda) - f(\lambda^+)}{\sigma(\lambda)}\right) + \sigma(\lambda) \phi\left(\frac{\mu(\lambda) - f(\lambda^+)}{\sigma(\lambda)}\right)$$

Upper Confidence Bound

• UCB(λ) = $\mu(\lambda) + \kappa \sigma(\lambda)$, with exploration parameter κ

ullet Which point would we pick next with UCB and $\kappa=1$?

Upper Confidence Bound

• UCB(λ) = $\mu(\lambda) + \kappa \sigma(\lambda)$, with exploration parameter κ

- Which point would we pick next with UCB and $\kappa=1$?
- GP-UCB(λ) = $\mu(\lambda) + \sqrt{\beta_t}\sigma(\lambda)$, with β_t increasing over time [Srinivas et al. 2009]

Entropy Search [Hennig and Schuler 2012]

ullet Idea: Learn the probability that x is the minimum

$$p_{\mathsf{min}}(x) = p[x \in \arg\min f(x)]$$

- ullet try to minimize the entropy of the estimated p_{\min} distribution
- Parts of the approach
 - Estimate p(f) e.g., using a GP (as before)
 - 2 Approximate p_{\min} by representer points and monte-carle simulations
 - $\textbf{3} \ \, \text{The acquisition function basically measures how the entropy of } p_{\min} \text{ is reduced if we would add a new observations}$
 - relates to gaining more information where the optimum is

M. Lindauer, F. Hutter AutoML

Entropy Search [Hennig and Schuler 2012]

ullet Idea: Learn the probability that x is the minimum

$$p_{\mathsf{min}}(x) = p[x \in \arg\min f(x)]$$

- ullet try to minimize the entropy of the estimated p_{\min} distribution
- Parts of the approach
 - Estimate p(f) e.g., using a GP (as before)
 - 2 Approximate p_{min} by representer points and monte-carle simulations
 - $\textbf{3} \ \, \text{The acquisition function basically measures how the entropy of } p_{\min} \text{ is } \\ \text{reduced if we would add a new observations}$
 - relates to gaining more information where the optimum is
- This approach does not necessarily samples at the peak of $p_{\min};$ You have to trust your model to obtain the expected best x

Lecture Overview

- 1 Hyperparameter Optimization and Black-Box Optimization
- 2 Tree-Parzen Estimator
- Bayesian Optimization
- 4 Surrogate Models
- 6 Acquisition Functions
- **6** Practical Considerations

Preprocessing Configuration

Convert λ for ML Model

- continuous and integer parameter can be directly passed
 - $\bullet \ \ \mathsf{scaled} \ \ \mathsf{to} \ [0,1]$

Preprocessing Configuration

Convert λ for ML Model

- continuous and integer parameter can be directly passed
 - \bullet scaled to [0,1]
- categorical parameters should be encoded if necessary
 - e. g., random forest can handle categorical parameter natively (Not all implementations are able to do it!)
 - use one-hot encoding if necessary:
 - add new variable for each possible value v_i
 - set one of these variable to one (depending on the configuration)

Preprocessing Configuration

Convert λ for ML Model

- continuous and integer parameter can be directly passed
 - \bullet scaled to [0,1]
- categorical parameters should be encoded if necessary
 - e. g., random forest can handle categorical parameter natively (Not all implementations are able to do it!)
 - use one-hot encoding if necessary:
 - add new variable for each possible value v_i
 - set one of these variable to one (depending on the configuration)
- ordinal parameters can be converted to integers or also one-hot encoded

Preprocessing Configuration (cont'd)

Conditional Hyperparameters

- Configuration spaces often have a hierarchical structure
- e.g., hyperparameter A is only active if heuristic H is used

M. Lindauer, F. Hutter AutoML

Preprocessing Configuration (cont'd)

Conditional Hyperparameters

- Configuration spaces often have a hierarchical structure
- e.g., hyperparameter A is only active if heuristic H is used
- List of hyperparameter values has missing entries because of inactive hyperparameters

Preprocessing Configuration (cont'd)

Conditional Hyperparameters

- Configuration spaces often have a hierarchical structure
- e.g., hyperparameter A is only active if heuristic H is used
- List of hyperparameter values has missing entries because of inactive hyperparameters
 - Fixes:
 - Impute missing data, e.g., by default setting
 - Mark these inactive hyperparameters and let the model deal with it e.g., a random forest could only split on active parameters

Transformation of y-values

- log-transformed values to fit the model and the acquisition function improves performance
- less emphasize on large outlier values
- focus more on small improvements and less on exploration in unexplored spaces

Important Design Dimensions in BO

Interleaving Random Points

- RFs don't extrapolate well
- Interpolation between two observations with similar function values leads to constant uncertainty estimates
- BO with RFs can easily get stuck in local optima
- interleave randomly sampled points to escape local optima

Important Design Dimensions in BO

Initial Design

- Alternative to exploration via randomly sampled points
- explore the space before the actual BO takes place
- Pro: will improve the model in early iterations
- Con: will invest a considerable number of function evaluations without taking the already gathered knowledge into account

Learning Goals

After this lecture, you are able to ...

- explain the challenges in hyperparameter optimization
- efficiently optimize black box functions via Bayesian Optimization
- discuss the advantages of different surrogate models
- explain the idea of acquisition functions to trade off exploration and exploitation
- consider important design decisions for BO

M. Lindauer, F. Hutter AutoML

Literature [These are links]

- [Jones et al. 1998. Efficient Global Optimization of Expensive Black-Box Functions]
- [Srinivas et al. 2009. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design]
- [Hutter et al. 2011. Sequential Model-Based Optimization for General Algorithm Configuration]
- [Shahriari et al. 2017. Taking the Human Out of the Loop: A Review of Bayesian Optimization]

