\mathbb{R}^n 上の内積とノルム

 \mathbb{R}^n にはベクトル演算という構造があるわけだが、 \mathbf{n} 積という付加的な構造を定める

ref: 行列と行列式の基 礎 p76

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^n a_i b_i$$

を \mathbb{R}^n 上の内積と呼ぶ

特に、

$$(\boldsymbol{a}, \boldsymbol{a}) = a_1^2 + a_2^2 + \dots + a_n^2 \ge 0$$

なので、

$$\|\boldsymbol{a}\| \coloneqq \sqrt{(\boldsymbol{a}, \boldsymbol{a})} \ge 0$$

が定義できる

 \mathbb{R}^n 上のノルム \mathbb{R}^n 上のベクトル \boldsymbol{a} の長さ (ノルム) を次のように定義する

$$\|\boldsymbol{a}\| = \sqrt{(\boldsymbol{a}, \boldsymbol{a})}$$

\mathbb{R}^n 上の内積の性質

ref: 行列と行列式の基

礎 p76

 $oldsymbol{\iota}$ \mathbb{R}^n 上の内積の双線形性 $oldsymbol{u}$, $oldsymbol{v}$, $oldsymbol{u}$ 1, $oldsymbol{u}$ 2, $oldsymbol{v}$ 1, $oldsymbol{v}$ 2 \in \mathbb{R}^n , $c\in\mathbb{R}$ に対して、以下が成立する

i.
$$({m u}_1 + {m u}_2, {m v}) = ({m u}_1, {m v}) + ({m u}_2, {m v})$$

ii.
$$(c\boldsymbol{u},\boldsymbol{v})=c(\boldsymbol{u},\boldsymbol{v})$$

iii.
$$(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = (\boldsymbol{u}, \boldsymbol{v}_1) + (\boldsymbol{u}, \boldsymbol{v}_2)$$

iv.
$$(\boldsymbol{u}, c\boldsymbol{v}) = c(\boldsymbol{u}, \boldsymbol{v})$$

証明

行列のかけ算と和に関する分配法則、行列のスカラー倍についての 性質から従う ■

 $\boldsymbol{\psi}$ \mathbb{R}^n 上の内積の対称性 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ に対して、次が成り立つ

$$(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{v},\boldsymbol{u})$$

証明

実数同士の乗算は可換であることから、 \mathbb{R}^n 上の内積の定義により

$$(oldsymbol{u},oldsymbol{v}) = \sum_{i=1}^n u_i v_i = \sum_{i=1}^n v_i u_i = (oldsymbol{v},oldsymbol{u})$$

となり、明らかに成り立つ

 $label{eq:condition}$ $label{eq:condition}$

$$(\boldsymbol{u}, \boldsymbol{u}) \geq 0$$

であり、 $\mathbf{u} = \mathbf{0}$ のときに限り、等号が成立する

証明 証明

内積の定義より、

$$(\boldsymbol{u}, \boldsymbol{u}) = \sum_{i=1}^n u_i^2 \geq 0$$

である

ここで現れた $oldsymbol{u}_i^2$ は、 $oldsymbol{u}_i$ が 0 のときに限り 0 になるので、 $oldsymbol{u}=oldsymbol{0}$ のときに限り、等号が成立する

\mathbb{R}^n 上の内積と直交

ref: 行列と行列式の基 礎 p77

 \mathbf{t} \mathbb{R}^n 上の内積に対するコーシー・シュワルツの不等式 $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ に対して、次が成り立つ

$$|(\boldsymbol{u}, \boldsymbol{v})| \leq \|\boldsymbol{u}\| \|\boldsymbol{v}\|$$

証明 証明

任意の $t \in \mathbb{R}$ に対して、

$$\|\boldsymbol{u} - t\boldsymbol{v}\|^2 = (\boldsymbol{u} - t\boldsymbol{v}, \boldsymbol{u} - t\boldsymbol{v}) \ge 0$$

が成り立つ

ここで、内積の双線形性を用いて左辺を展開すると、

$$(\boldsymbol{u}, \boldsymbol{u}) - 2t(\boldsymbol{u}, \boldsymbol{v}) + t^2(\boldsymbol{v}, \boldsymbol{v}) \ge 0$$

 $\|\boldsymbol{u}\|^2 - 2t(\boldsymbol{u}, \boldsymbol{v}) + t^2\|\boldsymbol{v}\|^2 \ge 0$

これは t についての 2 次式であり、判別式が 0 以下であることか

ら、次の不等式が成り立つ

$$(-2(\boldsymbol{u}, \boldsymbol{v}))^2 - 4\|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 \le 0$$

 $4(\boldsymbol{u}, \boldsymbol{v})^2 \le 4\|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2$

よって、両辺を 4 で割ると

$$|(u, v)| \le ||u|| ||v||$$

が得られる

$$-1 \le \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1$$

なので、

$$\cos \theta = \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \quad (0 \le \theta \le \pi)$$

を介して \boldsymbol{u} , \boldsymbol{v} のなす角を定義できる

$$\cos \theta = \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \quad (0 \le \theta \le \pi)$$

により定まる θ を \boldsymbol{u} , \boldsymbol{v} のなす角という

 $\cos \theta = 0$ は、幾何学的には \boldsymbol{u} と \boldsymbol{v} のなす角が直角であることを意味する

$$({\bf u},{\bf v})=0$$

が成り立つとき、 \boldsymbol{u} と \boldsymbol{v} は $\underline{\mathbf{o}}$ するといい、

 $u \perp v$

と表記する

\mathbb{C}^n 上の内積

複素数 z = a + bi に対して、

$$(a+bi)(a-bi) = a^2 + b^2 \ge 0$$

という式が成り立つ

このとき、a-bi を z の共役複素数といい、 \overline{z} と表記するまた、 $\sqrt{a^2+b^2}$ は z の絶対値と呼ばれ、|z| と表記する

すなわち、冒頭の不等式は、

$$|z|^2 = z\overline{z} > 0$$

と書き換えられる

このことを利用して、 \mathbb{C}^n 上の内積は、次のように定義すると \mathbb{R}^n の場合の自然な拡張になる

 \mathbf{c}^n 上の内積(標準内積) $\mathbf{a}=(a_i)_{i=1}^n$, $\mathbf{b}=(b_i)_{i=1}^n\in\mathbb{C}^n$ に対して、

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^{n} a_i \overline{b_i}$$

を \mathbb{C}^n 上の内積と定義する

この内積は標準内積、あるいは標準エルミート内積とも呼ばれる

このように定めることで、特に、

$$(\boldsymbol{a}, \boldsymbol{a}) = \sum_{i=1}^{n} a_i \overline{a_i} = \sum_{i=1}^{n} |a_i|^2 \ge 0$$

であるので、 \mathbb{R}^n の場合と同様に、ベクトルの/ルムを定義できる

 \mathbb{R}^n 上の内積で成り立つ性質の多くは、 \mathbb{C}^n 上の内積でも成り立つが、対称性に関しては注意が必要である

 $\boldsymbol{\psi}$ \mathbb{C}^n 上の内積の対称性 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}^n$ に対して、次が成り立つ

$$(\boldsymbol{u},\boldsymbol{v}) = \overline{(\boldsymbol{v},\boldsymbol{u})}$$

証明

 $\frac{=}{z} = z$ をふまえると、

$$egin{aligned} \overline{(oldsymbol{v},oldsymbol{u})} &= \overline{\sum_{i=1}^n v_i \overline{u_i}} \ &= \sum_{i=1}^n \overline{v_i} \overline{u_i} \ &= \sum_{i=1}^n \overline{v_i} u_i \ &= \sum_{i=1}^n u_i \overline{v_i} \ &= (oldsymbol{u},oldsymbol{v}) \end{aligned}$$

となり、目的の式が示された

複素数 z = a + bi において、b = 0 の場合、z は実数である このとき、a + 0i = a - 0i = a であるから、z が実数の場合、

$$\overline{z} = z$$

が成り立つ

よって、 \boldsymbol{u} , $\boldsymbol{v} \in \mathbb{R}^n$ であるなら、 \mathbb{C}^n 上の内積の対称性の式は

$$(\boldsymbol{u},\boldsymbol{v}) = \overline{(\boldsymbol{v},\boldsymbol{u})} = (\boldsymbol{v},\boldsymbol{u})$$

と書き換えられ、これは \mathbb{R}^n 上の内積の対称性そのものである

つまり、 \mathbb{C}^n 上の内積の対称性は、 \mathbb{R}^n 上の内積の対称性も含んだ表現になっている

転置による内積の表現

内積は、転置を用いて表現することもできる

🕹 転置による内積の表現

$$(oldsymbol{a},oldsymbol{b})={}^toldsymbol{a}\cdot\overline{oldsymbol{b}}=(a_1,\ a_2,\ \ldots,\ a_n)egin{pmatrix} rac{b_1}{b_2}\ rac{\vdots}{b_n} \end{pmatrix}$$