Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 20 du mercredi 5 mai 2021

Exercice 1.

Notons $\mathbb Q$ l'ensemble des nombres rationnels. Définissons $f:[0,1]^2\to\mathbb R$ pour tout $(x,y)\in[0,1]^2$ par

$$f(x,y) = \begin{cases} 1 & \text{si } (x,y) \in \mathbb{Q}^2 \cap [0,1]^2, \\ 0 & \text{sinon.} \end{cases}$$
 (1)

f est-elle intégrable au sens de Riemann?

Exercice 2.

Considérons le pavé $R := [0,1] \times [0,1]$ et la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} 1 & \text{si } x \neq \frac{1}{2}, \\ 1 & \text{si } x = \frac{1}{2} \text{ et } y \in \mathbb{Q}, \\ 0 & \text{autrement.} \end{cases}$$
 (2)

- 1) f est-elle Riemann-intégrable sur $[0,1]^2$?
- 2) La fonction $y \to f(x,y)$ est-elle Riemann-intégrable sur [0,1] pour tout $x \in [0,1]$?
- 3) La fonction $x \to f(x,y)$ est-elle Riemann-intégrable sur [0,1] pour tout $y \in [0,1]$?

Exercice 3.

Soit R un pavé de \mathbb{R}^n . Notons $\mathcal{R}(R)$ l'ensemble des fonctions $\mathbb{R}^n \to \mathbb{R}$ qui sont intégrables au sens de Riemann sur R.

- 1) Soient $f,g\in\mathcal{R}(R)$ telles que, $\forall x\in R,\, f(x)\leqslant g(x).$ Montrer que $\int_R f\leqslant \int_R g.$
- 2) Montrer que $\mathcal{R}(R)$ est un espace vectoriel et que

$$\forall (f,g,\lambda) \in \mathcal{R}(R) \times \mathcal{R}(R) \times \mathbb{R}, \quad \int_{R} (\lambda f + g) = \lambda \int_{R} f + \int_{R} g. \tag{3}$$