Contrat Été 2023

CARNET DE BORD, UNIVERSITÉ MCGILL

RÉALISÉ DANS LE CADRE D'UN PROJET POUR

ISMER-UQAR

12/05/2023

Table des matières

1	Erreurs rencontrées 1.1 Ancienne méthode : Calculer la fonction de courant barotrope directement
	Comparatif entre les deux méthodes 2.1
	Optimiser le pas de temps 3.1 Enjeu

1 Erreurs rencontrées

1.1 Ancienne méthode : Calculer la fonction de courant barotrope directement

Concrétement, l'ancienne méthode (voir rapport précédent) consistait à trouver le rotationnel de u_{BT} , soit $\zeta_{BT} = \nabla \times (u_{BT})$ pour solutionner l'équation de Poisson,

$$\nabla^2(\psi_{BT}) = \|\nabla \times \boldsymbol{u}_{BT}\|. \tag{1.1}$$

Une foit ψ_{BT} en main, il est trivial (on s'en rapelle) de retrouver u_{BT} à l'aide de la relation

$$\mathbf{u} = \hat{\mathbf{k}} \times \nabla \psi = -(\nabla \times \hat{\mathbf{k}} \psi). \tag{1.2}$$

Malheureusement, certains problèmes émergeaient de l'application de cette méthode.

1.2 Fluctuation relative de la fonction de courant barotrope

On définit la fluctuation relative de la fonction de courant barotrope $\delta\psi_{BT}$ de sorte que cette quantité satisfait la relation

$$\psi_{BT}^{t+\delta t} = \psi_{BT}^t + \delta \psi_{BT} + Er(\psi_{BT}), \tag{1.3}$$

où $Er(\psi_{BT})$ est une fonction pseudo-aléatoirement linéaire qui représente l'erreur numérique associée à une solution. Cette dernière est proportionnelle à la solution de l'équation 1.1, de sorte que

$$Er(\psi_{BT}) \propto \psi_{BT}.$$
 (1.4)

Alors, si l'on solve l'équation 1.1 avec une précision de 5 chiffres par exemple, l'erreur par rapport à la fluctuation relative de la fonction de courant barotrope va se faire sentir sur les résultats. Essentiellement, l'erreur numérique donne naissance à l'inégalité suivante

Erreur relative =
$$\left| \frac{Er(\psi_{BT})}{\psi_{BT}} \right| \le \left| \frac{Er(\psi_{BT})}{\delta \psi_{BT}} \right|$$
 car (généralement) $\left| \psi_{BT} \right| \ge \left| \delta \psi_{BT} \right|$. (1.5)

Donc, si l'on veut diminuer l'échelle de l'erreur numérique relative, on doit absolument solutionner $\delta\psi_{BT}$ plutôt que ψ_{BT} sinon on perd une résolution importante. Encore une fois, on y faisait référence dans le rapport précédent. Si l'on faisait ça, nous aurions plutôt

Erreur relative =
$$\underbrace{\left\{ \left| \frac{Er(\delta \psi_{BT})}{\psi_{BT}} \right| \le \left| \frac{Er(\delta \psi_{BT})}{\delta \psi_{BT}} \right| \right\}}_{\text{Solution } \delta \psi_{BT}} << \underbrace{\left\{ \left| \frac{Er(\psi_{BT})}{\psi_{BT}} \right| \le \left| \frac{Er(\psi_{BT})}{\delta \psi_{BT}} \right| \right\}}_{\text{Solution } \psi_{BT}}.$$
(1.6)

Nous aurions donc bien des avantages à changer de méthode (on va le faire).

1.3 Pas de temps

Techniquement, on peut argumenter que nous calculions 2 fois le pas de temps, accidentellement. En différences finies, les équations du mouvement ont la forme

$$\boldsymbol{u}^{t+\delta t} = \underbrace{\boldsymbol{u}^t + RHS \cdot \Delta t}_{\tilde{\mathcal{U}}} \underbrace{-\nabla \phi \cdot \Delta t}_{\text{Correction P}}.$$
(1.7)

Par définition, on sait que

$$\nabla^2 \psi^{t+\delta t} = \zeta^{t+\delta t},\tag{1.8}$$

et on décompose en partie barotrope et barocline, de sorte que

$$\nabla^2 \psi_{BT}^{t+\delta t} + \psi_{BC}^{t+\delta t} = \zeta_{BT}^{t+\delta t} + \zeta_{BC}^{t+\delta t} \qquad \Longrightarrow \qquad \nabla^2 \psi_{BT}^{t+\delta t} = \zeta_{BT}^{t+\delta t}, \qquad \text{et} \qquad \nabla^2 \psi_{BT}^{t+\delta t} = \zeta_{BT}^{t+\delta t}. \tag{1.9}$$

Comme présenté à l'équation 1.7, on peut décomposer le RHS de la dernière équation selon

$$\nabla^2 \psi_{BT}^{t+\delta t} = \tilde{\zeta}_{BT} - \nabla \times (\Delta t \cdot \nabla \phi). \tag{1.10}$$

On solutionne l'équation de Poisson, on trouve $\psi^{t+\delta t}$, puis on retrouve le courant à l'aide de l'équation (à se souvenir),

$$\mathbf{u}_{BT} = \hat{\mathbf{k}} \times (\nabla \psi_{BT}) = -\nabla \times (\psi_{BT} \hat{\mathbf{k}}). \tag{1.11}$$

Finalement, on additionne les parties barocliniques et barotropes pour obtenir

$$\boldsymbol{u}^{t+\delta t} = \boldsymbol{u}_{BT}^{t+\delta t} + \boldsymbol{u}_{BC}^{t+\delta t}. \tag{1.12}$$

Donc au final, s'il y a une erreur, elle est à l'équation 1.12. Concrétement, on additionne deux parties qui constituent une même chose. Par contre, on obtient ces quantités depuis une quantités qui est entre deux pas de temps, à un temps peu définit. Par exemple, on assume que

$$\boldsymbol{u}^{t+\delta t} = \tilde{\boldsymbol{u}} - \nabla \phi \cdot \Delta t. \tag{1.13}$$

Puis, on décompose en deux parties à l'aide de 1.12, soit barotrope et baroclines,

$$\boldsymbol{u}_{BT}^{t+\delta t} = \overline{\tilde{\boldsymbol{u}} - \nabla \phi \cdot \Delta t}^{z} = \tilde{\boldsymbol{u}}_{BT} - \nabla \phi \cdot \Delta t, \tag{1.14a}$$

$$\boldsymbol{u}_{RC}^{t+\delta t} = \boldsymbol{u}^{t+\delta t} - \boldsymbol{u}_{RT}^{t+\delta t}. \tag{1.14b}$$

où $\overline{\alpha}^z$ dénote la moyenne verticale d'une quantité α . On développe

$$u_{BC}^{t+\delta t} = u^{t+\delta t} - \tilde{u}_{BT} + \nabla \phi \cdot \Delta t,$$

$$= \tilde{u} - \nabla \phi \cdot \Delta t - \tilde{u}_{BT} + \nabla \phi \cdot \Delta t,$$

$$= \tilde{u} - \tilde{u}_{BT}.$$
(1.15)

Cette dernière quantité est la définition de \tilde{u}_{BC} , donc on devrait être convaincu que

$$\boldsymbol{u}_{BC}^{t+\delta t} = \tilde{\boldsymbol{u}} - \tilde{\boldsymbol{u}}_{BT} = \tilde{\boldsymbol{u}}_{BC}. \tag{1.16}$$

2 Comparatif entre les deux méthodes

2.1

2.2 Enjeu

Comme la correction s'applique sur la fonction de courant barotrope (ψ_{BT}) et que le RHS est calculé à partir de $\zeta_{BT} = \nabla \times (u_{BT})$, On Voit que l'effet est particulièrement puissant sur ces deux quantités.

À l'inverse, quand nous résolvions le gradient de pression, nous appliquions une correction sur la divergence (car le gradient de pression s'appliquait sur le courant).

Donc,

3 Optimiser le pas de temps

3.1 Enjeu

J'avais une intuition que ça marchait pas trop ce qu'on faisait. Premièrement, parce qu'on passait totalement par dessus le gradient de pression. Deuxièmement, parce qu'on utilisait $\tilde{\boldsymbol{u}}_BT$ en ayant déjà appliqué le RHS. Dans les faits, comme \boldsymbol{u}_t respectait déjà l'équation de continuité, c'est plutôt en balançant les RHS avec le gradient de pression que $\boldsymbol{u}^{t+\delta t}$ satisferait cette dernière équation. Et non en balaçant directement $\tilde{\boldsymbol{u}}$ avec l'équation de continuité – considérant qu'on sait pas vraiment c'est à quel pas de temps.

3.2 Discrétisation mathématique