Climate Change, Fuels, and Wildfire

November 29, 2011

Partners in Environmental Technology
Technical Symposium & Workshop
SERDP | ESTCP

Anthony Westerling Sierra Nevada Research Institute University of California, Merced

Joint Fire Sciences
California Energy Commission
NOAA OGP USDA Forest Service

Report Documentation Page

Form Approved OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE 29 NOV 2011	2. REPORT TYPE	3. DATES COVERED 00-00-2011 to 00-00-2011	
4. TITLE AND SUBTITLE Climate Change, Fuels, and Wildfire		5a. CONTRACT NUMBER	
		5b. GRANT NUMBER	
		5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)		5d. PROJECT NUMBER	
	5e. TASK NUMBER		
	5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California, Merced, Sierra Nevada Research Institute, 5200 N. Lake Road, Merced, CA, 95343		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)	
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)	

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

Presented at the Partners in Environmental Technology Technical Symposium & Workshop, 29 Nov? 1 Dec 2011, Washington, DC. Sponsored by SERDP and ESTCP. U.S. Government or Federal Rights License

14. ABSTRACT

Climate affects both fuel availability and flammability on multiple time scales, and the relative importance of availability versus flammability as limiting drivers of wildfire activity varies across ecosystem types. Climatic controls on fuel flammability during the peak fire season dominate in dense forests with characteristically infrequent, high severity fire, while the effects of antecedent moisture on the availability of fine surface fuels may also play a role in forests with more frequent, lower severity fire regimes. Changes in future temperatures and in precipitation amounts, form (rain versus snow) and timing can all potentially alter fuels, fire regimes, and emissions. We will describe the primary drivers of fire activity in very diverse ecosystems in California and the Northern Rockies, and summarize how climate change may affect these. In order to assess changes in wildfire and emissions, it is particularly important to use modeling methods that demonstrably capture extreme events, as well as to model at spatial resolutions that can capture topographic influences on temperature and precipitation. We demonstrate probabilistic statistical models that are designed to meet these requirements in California and Northern Rockies. We demonstrate methods that allow the estimate of fuels management on vulnerability to climate change in diverse ecosystems. Altered climate may drive changes in burned area and fire severity may in turn profoundly impact emissions from wildfire in some areas of the western US. We demonstrate the production of emissions scenarios for approximately 2000 future climate and development scenarios in California, and discuss the important drivers of differences in emissions across a wide range of scenarios.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF
			ABSTRACT	OF PAGES	RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	28	1.00.01.00.01.00.1

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

CLIMATE CHANGE, FUELS, AND WILDFIRE

PROFESSOR ANTHONY LEROY WESTERLING University of California, Merced 5200 N. Lake Road Merced, CA 95343 (209) 756-8793 awesterling@ucmerced.edu

Climate affects both fuel availability and flammability on multiple time scales, and the relative importance of availability versus flammability as limiting drivers of wildfire activity varies across ecosystem types. Climatic controls on fuel flammability during the peak fire season dominate in dense forests with characteristically infrequent, high severity fire, while the effects of antecedent moisture on the availability of fine surface fuels may also play a role in forests with more frequent, lower severity fire regimes. Changes in future temperatures and in precipitation amounts, form (rain versus snow) and timing can all potentially alter fuels, fire regimes, and emissions. We will describe the primary drivers of fire activity in very diverse ecosystems in California and the Northern Rockies, and summarize how climate change may affect these.

In order to assess changes in wildfire and emissions, it is particularly important to use modeling methods that demonstrably capture extreme events, as well as to model at spatial resolutions that can capture topographic influences on temperature and precipitation. We demonstrate probabilistic statistical models that are designed to meet these requirements in California and Northern Rockies. We demonstrate methods that allow the estimate of fuels management on vulnerability to climate change in diverse ecosystems.

Altered climate may drive changes in burned area and fire severity may in turn profoundly impact emissions from wildfire in some areas of the western US. We demonstrate the production of emissions scenarios for approximately 2000 future climate and development scenarios in California, and discuss the important drivers of differences in emissions across a wide range of scenarios.

USF & NPS Large Forest Fires per Year 40 100 frequency frequency **BLM Large Forest Fires per Year** frequency frequency

Since the mid-1980s

Large Forest Wildfires
Have Increased ~300%

Since the mid-1980s

Large Forest Wildfires
Have Increased ~300%

Other Large Wildfires Have Not Changed Substantially

Timing of Spring Snowmelt

Fire Season Length

Late Snowmelt Years

Early Snowmelt Years

1972 - 2003, NPS, USFS & BIA Fires over 1000 acres

<u>Understory</u> Fire Regimes

- Fire suppression has increased amount and connectivity of fuels
 - Unnatural increase tree density
- Fire regime <u>has</u> changed
 - Fires are less frequent and more severe
 - Increased risk of severe fire

Stand-replacement Fire Regime

- Fire suppression has had little effect
 - Tree densities changed little over last century
- Fire regime has <u>not</u> changed
 - Infrequent, severe crown fires are natural and still dominate

Fire Modeling

Fire Presence/Absence	Conditional Fire Number	Conditional Burned Area
Logit Model	Poisson Lognormal	Generalized Pareto
Temperature Precipitation Moisture Deficit Topography Location & Month	Temperature Precipitation Moisture Deficit Topography Location & Month	Moisture Deficit
Grid/Month	Grid/Month/Presence	Grid/Month/Fire

Combined models: Burned Area

Figure 4-2. Change in California Annual Average Daily Mean Temperature Relative to 1961-1990

Change in California annual mean temperature (°F and °C) by year from 1961 to 2100 relative to 1961–1990 average—7-year running mean.

HadCM3 = Hadley Climate Model version 3

PCM = Parallel Climate Model

GFDL2.1 = Geophysical Fluid Dynamics Laboratory model 2.1

A1, A2, and B1 refer to global emission scenarios explained in Section 4. They are higher (A1), medium-high (A2), and lower (B1) emission scenarios.

Change in Mean Expected Burned Area by Emissions Scenario

Average annual wildfire CO2 Emissions

