

Exercise 11C

Question 16:

Consider the triangles, ΔEBC and ΔEDA

Side AB of the cyclic quadrilateral ABCD is produced to E

∠EBC = ∠CDA

⇒ ∠EBC = ∠EDA(i)

Again, side DC of the cyclic quadrilateral ABCD isproduced to E.

∠ECB=∠BAD

∠ECB=∠EAD(ii)

and \(\text{ZBEC} = \text{ZDEA} \) [each equal to \(\text{E} \)]....(iii)

Thus from (i), (ii) and (iii), we have

. ΔEBC ≅ ΔEDA

Question 17:

 \triangle ABC is an isosceles triangle in which AB = AC and a circle passing through B and C intersects AB and AC at D and E.

Since AB =AC

∴ ∠ACB = ∠ABC

So, ext. $\angle ADE = \angle ACB = \angle ABC$

∴ ∠ADE = ∠ABC

⇒ DE || BC.

Question 18:

 \triangle ABC is an isosceles trianglein which AB = AC. D and E are the mid points of AB and AC respectively.

∴ DE || BC

⇒ ∠ADE = ∠ABC(i)

Also, AB = AC [Given]

⇒ ∠ABC = ∠ACB(ii)

∴ ∠ADE = ∠ACB [From (i) and(ii)]

Now, ∠ADE + ∠EDB = 180° [∴ ADBis a straightline]

∴ ∠ACB + ∠EDB = 180°

- ⇒ The opposite angles are supplementary.
- ⇒ D,B,C and E are concyclic i.e. D,B,C and E is a cyclic quadrilateral.

********** END ********