离散模型之二 ——层次分析法建模

背景

- 日常工作、生活中的决策问题
- 涉及经济、社会等方面的因素
- •作比较、判断时人的主观选择起相当主要作用,各因素的重要性难以量化
- T.L.Saaty于1970年代提出层次分析法——AHP(Analytic Hierarchy Process)
- AHP——一种定性与定量相结合的、 系统化、层次化的分析方法

"选择旅游地"思维过程的归纳

- 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
- 通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。
- 将上述两组权重进行综合,确定各方案对目标的权重。

层次分析法将定性分析与定量分析结合起来 完成以上步骤,给出决策问题的定量结果。

层次分析法的基本步骤

成对比较阵 和权向量

选

择

旅

游

地

元素之间两两对比,对比采用相对尺度

设要比较各准则 $C_1, C_2, ... C_n$ 对目标O的重要性:

$$C_{i}:C_{j}\Rightarrow a_{ij} \quad A=(a_{ij})_{n\times n}, a_{ij}>0, a_{ji}=\frac{1}{a_{ij}}$$

$$A=\begin{bmatrix} 1 & 1/2 & 4 & 3 & 3\\ 2 & 1 & 7 & 5 & 5\\ 1/4 & 1/7 & 1 & 1/2 & 1/3\\ 1/3 & 1/5 & 2 & 1 & 1\\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix} A \sim 成对比较阵$$
A称正互反阵

要由A确定C₁,...C_n对O的权向量

成对比较的
不一致情况
$$A = \begin{bmatrix} 1 & 1/2 & 4 & \cdots \\ 2 & 1 & 7 & \cdots \end{bmatrix}$$

 $a_{12} = 1/2(C_1:C_2)$ — 致比较 $a_{23} = 8(C_2:C_3)$
允许不一致,但要确定不一致的允许范围 8
考察完全一致的情况: $W \Rightarrow w_1, w_2, \cdots w_n$
 $\Rightarrow a_{ij} = w_i/w_j$ $A = \begin{bmatrix} \frac{w_1}{w_1} & \frac{w_1}{w_2} & \cdots & \frac{w_1}{w_n} \\ \frac{w_2}{w_1} & \frac{w_2}{w_2} & \cdots & \frac{w_2}{w_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \cdots & \frac{w_n}{w_n} \end{bmatrix}$

若正互反阵A满足 $a_{ij} \cdot a_{jk} = a_{ik}, \quad i, j, k = 1, 2, \dots, n$ 则A称一致阵。

$$A = \begin{bmatrix} \frac{1}{w_{1}} & \frac{1}{w_{2}} & \cdots & \frac{1}{w_{n}} \\ \frac{w_{2}}{w_{1}} & \frac{w_{2}}{w_{2}} & \cdots & \frac{w_{2}}{w_{n}} \\ \cdots & \cdots & & & \\ \frac{w_{n}}{w_{1}} & \frac{w_{n}}{w_{2}} & \cdots & \frac{w_{n}}{w_{n}} \end{bmatrix}$$

性质

- 一致阵 ____A的秩为1, A的唯一非零特征根为n
 - |• A的任一列向量是对应于n 的特征向量
 - A的归一化特征向量可作为权向量

对于不一致(但在允许范围内)的成对 比较阵A,建议用对应于最大特征根 λ $Aw = \lambda w$ 的特征向量作为权向量w,即

$$Aw = \lambda w$$

Saaty等人提出1~9尺度—— a_{ii} 取值

• 便于定性到定量的转化:

	1	2	3	4	5	6	7	8	9
$C_i:C_i$ 的重要性	相同		稍强		强	則]显引	虽	绝对强

 $a_{ii} = 1,1/2,1/9 ~ C_i : C_i$ 的重要性 与上面相反

- •心理学家认为成对比较的因素不宜超过9个
- \mathbb{H} 1~3,1~5,...1~17,...,1p~9p (p=2,3,4,5), d+0.1~d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比 较阵,算出权向量,与实际对比发现,1~9尺度较 优。

对A确定不一致的允许范围 一致性检验

己知: n 阶一致阵的唯一非零特征根为n

可证: n 阶正互反阵的最大特征根 $\lambda \ge n$, 且 $\lambda = n$ 时为一致阵

定义一致性指标:
$$CI = \frac{\lambda - n}{n - 1}$$
 CI 越大,不一致越严重

为衡量CI的大小,引入随机一致性指标RI——随机模拟 得到 a_{ij} ,形成A,计算CI即得RI。一组数据为

定义一致性比
$$CR = CI / RI$$
 率

当CR<0.1时, 通过一致性检

验

"选择旅游地"中 准则层对目标的权 向量及一致性检验

准则层对目标的成对比较阵

$$A = \begin{bmatrix} 1 & 1/2 & 4 & 3 & 3 \\ 2 & 1 & 7 & 5 & 5 \\ 1/4 & 1/7 & 1 & 1/2 & 1/3 \\ 1/3 & 1/5 & 2 & 1 & 1 \\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix}$$

最大特征根λ=5.073

权向量(特征向量) $w = (0.263, 0.475, 0.055, 0.090, 0.110)^{T}$

一致性指标
$$CI = \frac{5.073 - 5}{5 - 1} = 0.018$$

随机一致性指标 RI=1.12 (查表)

一致性比率 CR=0.018/1.12=0.016<0.1

通过一致 性检验

组合权向量

记第2层(准则)对第1层(目标) 的权向量为 $w^{(2)} = (w_1^{(2)}, \dots, w_n^{(2)})^T$

同样求第3层(方案)对第2层每一元素(准则)的权向量

方案层对C₁(景色) 方 的成对比较阵

方案层对 C_2 (费用) 的成对比较阵

$$B_1 = \begin{bmatrix} 1 & 2 & 5 \\ 1/2 & 1 & 2 \\ 1/5 & 1/2 & 1 \end{bmatrix}$$

$$B_2 = \begin{bmatrix} 1 & 1/3 & 1/8 \\ 3 & 1 & 1/3 \\ 8 & 3 & 1 \end{bmatrix}$$

 $...C_n$

最大特征根 λ_1

 λ_2

 $\ldots \lambda_n$

权向量

 $w_1^{(3)}$

 $w_2^{(3)}$

 $\dots w_n^{(3)}$

组合权向量

第3层对第2层的计算结果

 $w^{(2)}$ 0.263 0.475 0.055 0.090 0.110

k	1	2	3	4	5
	0.595	0.082	0.429	0.633	0.166
$W_k^{(3)}$	0.277	0.236	0.429	0.193 0.175	0.166
K	0.129	0.682	0.142	0.175	0.668
$\lambda_{_k}$	3.005	3.002	3	3.009	3
CI_k	0.003	0.001	0	0.005	0

RI=0.58 (n=3), CI_k 均可通过一致性检验

方案P₁对目标的组合权重为0.595×0.263+ ...=0.300

方案层对目标的组合权向量为 (0.300, 0.246, 0.456)T

组合 权向量

第2层对第1层的权向量

$$w^{(2)} = (w_1^{(2)}, \dots, w_n^{(2)})^T$$

第1层O 第2层C₁,...C_n 第3层P₁, ...P_m

第3层对第2层各元素的权向量

$$W_k^{(3)} = (W_{k1}^{(3)}, \dots, W_{km}^{(3)})^T, k = 1, 2, \dots, n$$

构造矩阵
$$W^{(3)} = [w_1^{(3)}, \dots, w_n^{(3)}]$$

则第3层对第1层的组合权向量 $w^{(3)} = W^{(3)} w^{(2)}$

第s层对第1层的组合权向量

$$w^{(s)} = W^{(s)}W^{(s-1)}\cdots W^{(3)}w^{(2)}$$
 $p-1$ 层权向量组成的矩阵

其中WeD是由第p层对第

层次分析法的基本步骤

深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),下层受上层影响,而层内 各因素相对独立。

- 2)构造成对比较阵 用成对比较法和1~9尺度构造各层对上一层每一因素的成 对比较阵。
- 3) 计算权向量并作一致性检验 对每一成对比较阵计算最大特征根和特征向量,作一致性 检验, 若通过, 则特征向量为权向量。
- 4) 计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据。

二. 层次分析法的广泛应用

- •应用领域: 经济计划和管理, 能源政策和分配, 人才选拔和评价, 生产决策, 交通运输, 科研选 题, 产业结构, 教育, 医疗, 环境, 军事等。
- 处理问题类型:决策、评价、分析、预测等。
- 建立层次分析结构模型是关键一步,要有主要决策层参与。
- •构造成对比较阵是数量依据,应由经验丰富、判断力强的专家给出。

三. 层次分析法的若干问题

- 正互反阵的最大特征根是否为正数? 特征向量 是否为正向量? 一致性指标能否反映正互反阵 接近一致阵的程度?
- 怎样简化计算正互反阵的最大特征根和特征向量?
- 为什么用特征向量作为权向量?
- 当层次结构不完全或成对比较阵有空缺时怎样用 层次分析法?

1. 正互反阵的最大特征根和特征向量的性质

定理1 正矩阵**A** 的最大特征根 λ 是正单根,对应正特征向量**w**,且 $\lim_{k\to\infty}\frac{A^ke}{e^TA^ke}=w, \quad e=(1,1,\cdots 1)^T$

定理2 n阶正互反阵A的最大特征根 $\lambda \ge n$, 当 $\lambda = n$ 时A为一致阵。

证明: 已知 $A=(a_{ij})$ 的 $\lambda>0$,

定理2 n阶正互反阵A的最大特征根 $\lambda \geq n$, 当 $\lambda = n$ 时A为一致阵。

证明 (续)
$$\lambda = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \varepsilon_{ij} \quad A \overline{\Sigma} \overline{\Sigma} \overline{\Sigma}$$
$$a_{ij} = \varepsilon_{ij} w_{i} / w_{j} \quad \square \quad \varepsilon_{ij} > 0, \quad \varepsilon_{ji} = 1 / \varepsilon_{ij}$$

证明
(续)
$$\lambda = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \varepsilon_{ij} \quad A \overline{E} \overline{D} \overline{D}$$

$$a_{ij} = \varepsilon_{ij} w_{i} / w_{j} \qquad \varepsilon_{ij} > 0, \varepsilon_{ji} = 1 / \varepsilon_{ij}$$

$$\lambda = \frac{1}{n} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left(\varepsilon_{ij} + \frac{1}{\varepsilon_{ij}} \right) + 1 \qquad \lambda \ge \frac{2}{n} \frac{n(n-1)}{2} + 1$$

$$\varepsilon_{ij} + \frac{1}{\varepsilon_{ij}} \ge 2$$

$$\lambda \ge n$$

$$\lambda = n \mid c \mid \varepsilon_{ij} + \frac{1}{\varepsilon_{ij}} = 2 \mid c \mid \varepsilon_{ij} = 1 \mid c \mid a_{ij} = \frac{w_i}{w_j}$$

$$\lambda = n$$
 是A为一致阵的充要条件 \triangle A为一致阵

- 2. 正互反阵的最大特征根和特征向量的简化计算
 - 精确计算的复杂和不必要
 - 简化计算的思路——一致阵的任一列向量都 是特征向量, 一致性尚好的正互反阵的列向量 都应近似特征向量, 可取其某种意义下的平均。

和法——取列向量的算术平均

例
$$A = \begin{bmatrix} 1 & 2 & 6 \\ 1/2 & 1 & 4 \\ 1/6 & 1/4 & 1 \end{bmatrix}$$
 列向量 $\begin{bmatrix} 0.6 & 0.615 & 0.545 \\ 9.3 & 0.308 & 0.364 \\ 0.1 & 0.077 & 0.091 \end{bmatrix}$ 算术 $\begin{bmatrix} 0.587 \\ 9.324 \\ 0.089 \end{bmatrix} = w$

$$Aw = \begin{bmatrix} 1.769 \\ 0.974 \\ 0.286 \end{bmatrix}$$
$$Aw = \lambda w$$
$$\lambda = \frac{1}{3} (\frac{1.769}{0.587} + \frac{0.974}{0.324} + \frac{0.268}{0.089}) = 3.009$$

精确结果:w=(0.588,0.322,0.090)^T, \(\lambda = 3.010\)

根法——取列向量的几何平均

幂法——迭代算法

- 1) 任取初始向量 $w^{(0)}$, k:=0, 设置精度 ε
- 2) 计算 $\widetilde{w}^{(k+1)} = Aw^{(k)}$

3) 归一化
$$w^{(k+1)} = \widetilde{w}^{(k+1)} / \sum_{i=1}^{n} \widetilde{w}_{i}^{(k+1)}$$

- 4) 若 $\max_{i} |w_{i}^{(k+1)} w_{i}^{(k)}| < \varepsilon$,停止; 否则, k:=k+1, 转2)
- 5) 计算 $\lambda = \frac{1}{n} \sum_{i=1}^{n} \frac{\widetilde{w}_{i}^{(k+1)}}{w_{i}^{(k)}}$

3. 特征向量作为权向量——成对比较的多步累积效应

问题 一致阵A, 权向量 $w=(w_1,...w_n)^T$, $a_{ii}=w_i/w_i$

> A不一致,应选权向量w使 w_i/w_i 与 a_{ii} 相差 尽量小 (对所有i,j)。

拟合——确定
$$w$$
 min $\sum_{w_i (i=1,\cdots,n)} \sum_{j=1}^n \sum_{j=1}^n \left(a_{ij} - \frac{w_i}{w_j} \right)^2$ 非线性 最小二乘

线性化——

续性化——对数最小二乘
$$\min_{w_i (i=1,\cdots,n)} \sum_{i=1}^n \sum_{j=1}^n \left(\ln a_{ij} - \ln \frac{w_i}{w_j} \right)^2$$

结果同根法

多步累积效应

• 按不同准则确定的权向量不同, 特征向量有什么优点。

成对比较 C_i:C_i(直接比较)

 $a_{ii} \sim 1$ 步强度

$$A^{2} = (a_{ij}^{(2)}) a_{ij}^{(2)} = \sum_{s=1}^{n} a_{is} a_{sj}$$

a_{ii}⁽²⁾~2步强度

 $a_{is}a_{sj}\sim C_i$ 通过 C_s 与 C_i 的比较 更能反映 C_i 对 C_i 的强度

$$A^{k} = (a_{ij}^{(k)}), \quad a_{ij}^{(k)} \sim k$$
步强度 体现多步累积效应

$$\forall i, j, \exists k_0, k > k_0, a_{is}^{(k)} \ge a_{js}^{(k)} \implies a_{is}^{(k)} \le a_{js}^{(k)} (s = 1, \dots, n)$$

 \implies 当k足够大, A^k 第i行元素反映 C_i 的权重 \implies 求 A^k 的行和

定理
$$1 \lim_{k \to \infty} \frac{A^k e}{e^T A^k e} = w$$

定理 $1 \lim_{k \to \infty} \frac{A^k e}{e^T A^k e} = w$ 特征向量体现多步累积效应

完全层次结构:上层每一元素与下层所有元素相关联。

不完全层次结构

例. 评价教师贡献的层次结构

设第2层对第1层权向量 $w^{(2)}=(w_1^{(2)},w_2^{(2)})$ 已定

第3层对第2层权向量 $W_1^{(3)} = (W_{11}^{(3)}, W_{12}^{(3)}, W_{13}^{(3)}, 0)^T$

 $w_2^{(3)}=(0,0,w_{23}^{(3)},w_{24}^{(3)})^{\mathrm{T}}$ 已得

讨论由 $w^{(2)}, W^{(3)} = (w_1^{(3)}, w_2^{(3)})$ 计算第3层对第1层权向量 w⁽³⁾的方法

C1,C2支配元素的数目不等

考察一个特例: 若 C_1 , C_2 重要性相同, $w^{(2)}$ =(1/2,1/2), $P_1 \sim P_4$ 能力相同, $w_1^{(3)}$ =(1/3,1/3,1/3,0) T , $w_2^{(3)}$ =(0,0,1/2,1/2) T 公正的评价应为: P_1 : P_2 : P_3 : P_4 =1:1:2:1

- 支配元素越多权重越大 用支配元素数目对w⁽²⁾加权进行修正

设 C_1, C_2 支配元素 数目分别为 n_1, n_2 $\widetilde{w}^{(2)} = (n_1 w_1^{(2)}, n_2 w_2^{(2)})^T / (n_1 w_1^{(2)} + n_2 w_2^{(2)})$

5. 残缺成对比较阵的处理

例
$$A = \begin{bmatrix} 1 & 2 & * \\ 1/2 & 1 & 2 \\ * & 1/2 & 1 \end{bmatrix}$$
 電助矩阵 $C = \begin{bmatrix} 1 & 2 & w_1/w_3 \\ 1/2 & 1 & 2 \\ w_3/w_1 & 1/2 & 1 \end{bmatrix}$

*为残缺元素

$$Cw = \lambda w$$
 \Rightarrow $\lambda = 3, w = (0.5714, 0.2857, 0.1429)^T$

$$\overline{A}w = \lambda w$$

$$\overline{A} = \begin{bmatrix} 2 & 2 & 0 \\ 1/2 & 1 & 2 \\ 0 & 1/2 & 2 \end{bmatrix}$$

$$\overline{a}_{ij} = \begin{cases} a_{ij}, & i \neq j \\ m_i + 1, & i = j \end{cases}$$

$$m_i \sim A \hat{\pi} i \text{ if } p * \text{ th } \uparrow \text{ th}$$

6. 更复杂的层次结构

- 递阶层次结构: 层内各元素独立, 无相互影响和 支配; 层间自上而下、逐层传递, 无反馈和循环。
- 更复杂的层次结构: 层内各元素间存在相互影响或支配; 层间存在反馈或循环。

层次分析法的优点

- 系统性——将对象视作系统,按照分解、比较、 判断、综合的思维方式进行决策——系统分析 (与机理分析、测试分析并列);
- •实用性——定性与定量相结合,能处理传统的优化方法不能解决的问题;
- · 简洁性——计算简便,结果明确,便于 决策者直接了解和掌握。

层次分析法的局限

- 囿旧——只能从原方案中选优,不能产生新方案;
- •粗略——定性化为定量,结果粗造;
- •主观——主观因素作用大,结果可能难以服人。