RESUMEN DE DENAVIT – HARTENBERG

Permite el paso de un eslabón al siguiente mediante 4 transformaciones básicas, que dependen exclusivamente de las características constructivas del robot. Las transformaciones básicas que relacionan el sistema de referencia del elemento *i* con el sistema del elemento son:

- 1. Rotación θ_i alrededor del eje z_{i-1}
- 2. Traslación d_i a lo largo del eje z_{i-1}
- 3. Traslación a_i a lo largo del eje x_i
- 4. Rotación α_i alrededor del eje x_i

$$^{i-1}\mathbf{A}_{i} = \mathbf{T}(z, \theta_{i})\mathbf{T}(0, 0, d_{i})\mathbf{T}(a_{i}, 0, 0)\mathbf{T}(x, \alpha_{i})$$

$$^{i-1}\mathbf{A}_{i} = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\alpha_{i}c\theta_{i} & -s\alpha_{i}c\theta_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 1) Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.
- 2) Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en n.
- 3) Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento.
- 4) Para i de 0 a n-1 situar el eje z_i sobre el eje de la articulación i+1.
- 5) Situar el origen del sistema de la base $\{S_0\}$ en cualquier punto del eje z_0 . Los ejes x_0 e y_0 se situarán de modo que formen un sistema dextrógiro con z_0 .
- 6) Para i de 1 a n-1, situar el sistema $\{S_i\}$ (solidario al eslabón i) en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i . Si ambos ejes se cortasen se situaría $\{S_i\}$ en el punto de corte. Si fuesen paralelos $\{S_i\}$ se situaría en la articulación i+1.
- 7) Para i de 1 a n-1, situar x_i en la línea normal común a z_{i-1} y z_i .
- 8) Para i de 1 a n-1, situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .
- 9) Situar el sistema $\{S_n\}$ en el extremo del robot de modo que z_n coincida con la dirección de z_{n-1} y x_n sea normal a z_{n-1} y z_n .
- 10) Obtener ϑ_i como el ángulo que hay que girar en torno a z_{i-1} para que x_{i-1} y x_i queden paralelos.
- 11) Obtener d_i como la distancia, medida a lo largo de z_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que x_i y x_{i-1} quedasen alineados.
- 12) Obtener a_i como la distancia medida a lo largo de x_i , que ahora coincidiría con x_{i-1} , que habría que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con $\{S_i\}$.
- 13) Obtener α_i como el ángulo que habría que girar en torno a x_i , que ahora coincidiría con x_{i-1} , para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$.
- 14) Obtener las matrices de transformación ⁱ⁻¹A_i.
- 15) Obtener la matriz de transformación que relaciona el sistema de la base con el del extremo del robot: $\mathbf{T} = {}^{0}\mathbf{A}_{1}{}^{1}\mathbf{A}_{2} \dots {}^{n-1}\mathbf{A}_{n}$
- 16) La matriz **T** define la orientación (submatriz de rotación) y posición (submatriz de traslación) del extremo referidas a la base en función de las *n* coordenadas articulares.