

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.figsize':(9,7), 'figure.dpi':120})
In [2]: data= pd.read_excel('AirQualityUCI/AirQualityUCI.xlsx', parse_dates=[['Date', 'Time']])
data.head()
```

Out[2]:		Date_Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(O3)	Т	
	0	2004-03- 10 18:00:00	2.6	1360.00	150	11.881723	1045.50	166.0	1056.25	113.0	1692.00	1267.50	13.60	48.
	1	2004-03- 10 19:00:00	2.0	1292.25	112	9.397165	954.75	103.0	1173.75	92.0	1558.75	972.25	13.30	47.
	2	2004-03- 10 20:00:00	2.2	1402.00	88	8.997817	939.25	131.0	1140.00	114.0	1554.50	1074.00	11.90	53.
	3	2004-03- 10 21:00:00	2.2	1375.50	80	9.228796	948.25	172.0	1092.00	122.0	1583.75	1203.25	11.00	60.
	4	2004-03- 10 22:00:00	1.6	1272.25	51	6.518224	835.50	131.0	1205.00	116.0	1490.00	1110.00	11.15	59.
4														•
In [3]:	da	ta.shape												
Out[3]:	(9	357, 14)												
In [4]:	da	ta.info()												

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9357 entries, 0 to 9356
        Data columns (total 14 columns):
             Column
                            Non-Null Count Dtype
             _____
                            _____
             Date Time
                            9357 non-null
                                           datetime64[ns]
         1
             CO(GT)
                            9357 non-null
                                           float64
         2
             PT08.S1(CO)
                            9357 non-null
                                           float64
         3
             NMHC(GT)
                            9357 non-null
                                           int64
             C6H6(GT)
                            9357 non-null
                                           float64
         5
             PT08.S2(NMHC) 9357 non-null
                                          float64
             NOx(GT)
                            9357 non-null
                                          float64
         7
             PT08.S3(NOx)
                            9357 non-null float64
         8
             NO2(GT)
                            9357 non-null float64
         9
             PT08.S4(NO2)
                           9357 non-null float64
         10 PT08.S5(03)
                            9357 non-null
                                          float64
         11 T
                            9357 non-null
                                          float64
         12 RH
                            9357 non-null
                                          float64
         13 AH
                            9357 non-null float64
        dtypes: datetime64[ns](1), float64(12), int64(1)
        memory usage: 1023.5 KB
        data.rename(columns = {'PT08.S4(NO2)':'PT08 S4 NO2'}, inplace = True)
In [5]:
        data.corr()['PT08 S4 NO2']
In [6]:
        CO(GT)
                        -0.073721
Out[6]:
        PT08.S1(CO)
                         0.845133
        NMHC(GT)
                         0.162689
                         0.774649
        C6H6(GT)
                         0.874761
        PT08.S2(NMHC)
        NOx(GT)
                         0.035580
        PT08.S3(NOx)
                         0.122672
        NO2(GT)
                        -0.022092
        PT08 S4 NO2
                         1.000000
        PT08.S5(03)
                         0.723670
        Τ
                         0.755053
        RH
                         0.640685
                         0.691889
        Name: PT08 S4 NO2, dtype: float64
```

The matrix of regression variables X will contain two variables:

- Temperature T
- Absolute Humidity AH

STEP 1: Prepare the data

```
type(data['Date Time'])
In [7]:
         pandas.core.series.Series
Out[7]:
         data['DateTimeIndex'] = pd.to datetime(data['Date Time'])
         data = data.set index(keys=['DateTimeIndex'])
         Set the frequency attribute of the index to Hourly. This will create several empty rows corresponding to the missing hourly measurements in the
```

original data set. Fill up all the empty data cells with the mean of the corresponding column.

```
ata = data.asfreq('H')
 In [9]:
          data = data.fillna(data.mean(numeric only=True))
          data.shape
          (9357, 14)
Out[9]:
          data.isin([np.nan, np.inf, -np.inf]).sum()
In [10]:
         Date Time
Out[10]:
          CO(GT)
                           0
          PT08.S1(CO)
         NMHC(GT)
          C6H6(GT)
         PT08.S2(NMHC)
          NOx(GT)
          PT08.S3(NOx)
         NO2(GT)
         PT08_S4_N02
         PT08.S5(03)
                           0
          RH
          AΗ
                           0
         dtype: int64
```

```
In [11]: dataset_len = len(data)
    split_index = round(dataset_len*0.9)
    train_set_end_date = data.index[split_index]

In [12]: df_train = data.loc[data.index <= train_set_end_date].copy()
    df_test = data.loc[data.index > train_set_end_date].copy()
```

STEP 2: Create a Linear Regression model

```
In [13]: from patsy import dmatrices
    expr = 'PT08_S4_N02 ~ T + AH'

In [14]: y_train, X_train = dmatrices(expr, df_train, return_type='dataframe')
    y_test, X_test = dmatrices(expr, df_test, return_type='dataframe')
```

Ordinary Least Squares Linear Regression model

Out[16]:

OLS	Regres	ssion	Results

Dep. V	ariable:	PT08_S4	PT08_S4_NO2			0.654
	Model:		OLS	Adj. R-	squared:	0.654
N	/lethod:	Least So	quares	F-	statistic:	7969.
	Date:	Tue, 31 Mag	y 2022	Prob (F-s	tatistic):	0.00
	Time:	17	7:23:49	Log-Lik	elihood:	-59426.
No. Obser	vations:		8422		AIC:	1.189e+05
Df Re	siduals:		8419		BIC:	1.189e+05
Df	Model:		2			
Covariand	e Type:	non	robust			
	coe	f std err	1	t P> t	[0.025	0.975]
Intercept	1113.684	4 7.218	154.302	0.000	1099.536	1127.833
т	20.551	3 0.365	56.237	0.000	19.835	21.268
АН	-13.962	4 0.405	-34.444	0.000	-14.757	-13.168
Omi	nibus: 90)4.777 D	urbin-W	atson:	0.286	

Omnibus:	904.777	Durbin-Watson:	0.286
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1410.196
Skew:	0.785	Prob(JB):	6.02e-307
Kurtosis:	4.247	Cond. No.	144.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression coefficients of both regression variables T and AH are significant at a 99.99% confidence level as indicated by their P values (P > |t| column) which are essentially 0.

The second thing to note in these results is the output of the Durbin-Watson test which measures the degree of LAG-1 auto-correlation in the residual errors of regression. A value of 2 implies no LAG-1 auto-correlation. A value closer to 0 implies strong positive auto-correlation while a value close to 4 implies a strong negative auto-correlation at LAG-1 among the residuals errors ε .

In the above output, we see that the DW test statistic is 0.28 indicating a strong positive auto-correlation among the residual errors of regression at LAG-1. This was completely expected since the underlying data is a time series and the linear regression model has failed to explain the auto-correlation in the dependent variable. The DW test statistic just confirms it.

```
In [17]: import statsmodels.graphics.tsaplots as tsa
    plt.rcParams.update({'figure.figsize':(10,5), 'figure.dpi':120})
    tsa.plot_acf(olsr.resid, alpha=0.05)
    plt.show()
```


The ACF tells us three things:

- There are strong auto-correlations extending out to multiple lags indicating that the residual errors time series has a trend. We'll need to detrend this time series by using one or possibly 2 orders of differencing. Thus, the parameter d is likely to be 1, or possibly 2.
- The wavelike pattern in the ACF evidences a seasonal variation in the data.
- The peak at LAG = 24 indicates that the seasonal period is likely to be 24 hours. i.e. m is likely to be 24. This seems reasonable for data containing vehicular pollution measurements. We'll soon verify this guess using the time series decomposition plot.

Before we estimate the rest of the (S)ARIMA parameters, let's difference the time series once i.e. d=1:

```
olsr.resid.head(2)
In [18]:
         DateTimeIndex
Out[18]:
         2004-03-10 18:00:00
                                 309.398174
         2004-03-10 19:00:00
                                 181.863043
         dtype: float64
In [19]: olsr resid diff 1 = olsr.resid.diff()
         olsr resid diff 1.head(2)
         DateTimeIndex
Out[19]:
         2004-03-10 18:00:00
                                       NaN
         2004-03-10 19:00:00
                               -127.535131
         dtype: float64
In [20]: olsr resid diff 1.isnull().sum()
Out[20]: 1
         olsr_resid_diff_1 = olsr_resid_diff_1.dropna()
         plt.rcParams.update({'figure.figsize':(10,5), 'figure.dpi':120})
In [22]:
         tsa.plot_acf(olsr_resid_diff_1, alpha=0.05)
         plt.show()
```


We now see a very different picture in the ACF. The auto-correlations are significantly reduced at all lags. The wavelike pattern still exists but that's because we did nothing to remove the possible seasonal variation. The LAG-24 auto-correlation is once again especially prominent.

We see that there is still a significant auto-correlation at LAG-1 in the differenced time series. We could try extinguishing it by taking one more difference, i.e. d=2 and plotting the resulting time series' ACF:

```
In [23]: olsr_resid_diff_2 = olsr_resid_diff_1.diff()
    olsr_resid_diff_2 = olsr_resid_diff_2.dropna()

plt.rcParams.update({'figure.figsize':(10,5), 'figure.dpi':120})
```

```
tsa.plot_acf(olsr_resid_diff_2, alpha=0.05)
plt.show()
```


Differing the time series a second time has produced a heavy negative auto-correlation at LAG-1. This is bad sign. We seem to have over-done the differencing. We should stick with d=1.

```
In [24]: from statsmodels.tsa.seasonal import seasonal_decompose
    components = seasonal_decompose(olsr.resid)

plt.rcParams.update({'figure.figsize':(7,4), 'figure.dpi':120})
    components.plot()
```

Out[24]:

tsa.plot acf(olsr resid diff 1 24, alpha=0.05)

plt.show()

The strong negative correlation at LAG-24 indicates a Seasonal MA (SMA) signature with order 1. i.e. Q=1. Moreover, an absence of positive correlation at LAG-1, indicates an absence of a Seasonal AR component. i.e. P=0.

We have fixed P=0, D=1 and Q=1, and m=24 hours

We have managed to estimate all 7 params of the SARIMA model as follows: p=1, d=1, q=0, P=0, D=1, Q=1 and m=24 i.e. SARIMAX(1,1,0) (0,1,1)24

STEP 4: Build and fit the Regression Model with Seasonal ARIMA errors

Out[30]:

SARIMAX Results

Dep. Variable:	PT08_S4_NO2	No. Observations:	8422
Model:	ARIMA(1, 1, 0)x(0, 1, [1], 24)	Log Likelihood	-51815.958
Date:	Tue, 31 May 2022	AIC	103641.916
Time:	17:24:53	ВІС	103677.094
Sample:	03-10-2004	HQIC	103653.928
	- 02-24-2005		

Covariance Type:

opg

	coef	std err	z	P> z	[0.025	0.975]
Т	-4.6351	0.628	-7.383	0.000	-5.865	-3.405
АН	13.3304	0.673	19.808	0.000	12.011	14.649
ar.L1	-0.0041	0.008	-0.519	0.604	-0.020	0.011
ma.S.L24	-0.9184	0.003	-281.217	0.000	-0.925	-0.912
sigma2	1.334e+04	124.277	107.318	0.000	1.31e+04	1.36e+04

5180.0	Jarque-Bera (JB):	0.01	Ljung-Box (L1) (Q):
): 0.0	Prob(JB):	0.93	Prob(Q):
<i>r</i> : -0.	Skew:	0.66	Heteroskedasticity (H):
s: 6.8	Kurtosis:	0.00	Prob(H) (two-sided):

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
sarimax_results = sarimax_model.fit()
sarimax_results.summary()
```

Out[31]:

SARIMAX Results

Dep. Variable:	PT08_S4_NO2	No. Observations:	8422
Model:	ARIMA(1, 1, 0)x(0, 1, 0, 24)	Log Likelihood	-53887.658
Date:	Tue, 31 May 2022	AIC	107783.315
Time:	17:24:58	ВІС	107811.458
Sample:	03-10-2004	HQIC	107792.925
	- 02-24-2005		

opg

Covariance Type:

	coef	std err	z	P> z	[0.025	0.975]
Т	-4.9003	0.688	-7.123	0.000	-6.249	-3.552
АН	13.6175	0.738	18.442	0.000	12.170	15.065
ar.L1	-0.0519	0.008	-6.482	0.000	-0.068	-0.036
sigma2	2.195e+04	208.195	105.422	0.000	2.15e+04	2.24e+04

Ljung-Box (L1) (Q): 0.67 Jarque-Bera (JB):	4288.52
Prob(Q): 0.41 Prob(JB):	0.00
teroskedasticity (H): 0.69 Skew:	0.06
Prob(H) (two-sided): 0.00 Kurtosis:	6.50

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

STEP 5: Prediction

```
In [32]: X test minus intercept = X test.drop('Intercept', axis=1)
          X_test_minus_intercept = X_test_minus_intercept.asfreq('H')
          y test = y test.asfreq('H')
In [33]:
          predictions = sarimax results.get forecast(steps=24, exog=X test minus intercept[:24])
          predictions.summary frame().head()
Out[33]:
                PT08 S4 NO2
                                          mean se mean ci lower mean ci upper
                                  mean
          2005-02-24 16:00:00 1286.066400 148.149772
                                                      995.698183
                                                                   1576.434617
          2005-02-24 17:00:00 1308.454485 204.153164
                                                      908.321635
                                                                   1708.587335
          2005-02-24 18:00:00 1345.693115 248.033957
                                                      859.555492
                                                                   1831.830738
          2005-02-24 19:00:00 1376.087728 285.232092
                                                      817.043100
                                                                   1935.132356
          2005-02-24 20:00:00 1388.823150 318.110281
                                                      765.338456
                                                                   2012.307845
          plt.rcParams.update({'figure.figsize':(10,5), 'figure.dpi':100})
In [34]:
          predicted, = plt.plot(X test minus intercept[:24].index, predictions.summary frame()['mean'], 'go-', label='Predicted')
          actual, = plt.plot( y test[:24], 'ro-', label='Actual')
          lower, = plt.plot(X test minus intercept[:24].index, predictions.summary frame()['mean ci lower'], color='#990099', marker='.',
          upper, = plt.plot(X test minus intercept[:24].index, predictions.summary frame()['mean ci upper'], color='#0000cc', marker='.',
          plt.fill between(X test minus intercept[:24].index, predictions.summary frame()['mean ci lower'], predictions.summary frame()['mean ci lower']
          plt.legend(handles=[predicted, actual, lower, upper])
          plt.show()
```


ARIMA model

```
In [35]: df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/wwwusage.csv', names=['value'], header=0)
```

Find the order of differencing (d) in ARIMA model

```
In [36]: from statsmodels.tsa.stattools import adfuller
    from numpy import log
    result = adfuller(df)
    print('ADF Statistic: %f' % result[0])
    print('p-value: %f' % result[1])
```

ADF Statistic: -2.464240 p-value: 0.124419

```
import numpy as np, pandas as pd
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.figsize':(9,7), 'figure.dpi':120})

# Original Series
fig, axes = plt.subplots(3, 2, sharex=True)
axes[0, 0].plot(df.value); axes[0, 0].set_title('Original Series')
plot_acf(data[['PT08_54_N02']], ax=axes[0, 1])

# 1st Differencing
axes[1, 0].plot(df.value.diff()); axes[1, 0].set_title('1st Order Differencing')
plot_acf(df.value.diff().dropna(), ax=axes[1, 1])

# 2nd Differencing
axes[2, 0].plot(df.value.diff().diff()); axes[2, 0].set_title('2nd Order Differencing')
plot_acf(df.value.diff().diff().dropna(), ax=axes[2, 1])

plt.show()
```


Auto Arima Forecast

```
Performing stepwise search to minimize aic
ARIMA(1,2,1)(0,0,0)[0] intercept : AIC=525.587, Time=0.03 sec
ARIMA(0,2,0)(0,0,0)[0] intercept : AIC=533.474, Time=0.01 sec
ARIMA(1,2,0)(0,0,0)[0] intercept : AIC=532.437, Time=0.02 sec
ARIMA(0,2,1)(0,0,0)[0] intercept : AIC=525.893, Time=0.03 sec
ARIMA(0,2,0)(0,0,0)[0]
                              : AIC=531.477, Time=0.01 sec
ARIMA(2,2,1)(0,0,0)[0] intercept : AIC=515.248, Time=0.05 sec
ARIMA(2,2,0)(0,0,0)[0] intercept : AIC=513.459, Time=0.03 sec
ARIMA(3,2,0)(0,0,0)[0] intercept
                             : AIC=515.284, Time=0.05 sec
ARIMA(3,2,1)(0,0,0)[0] intercept
                             : AIC=inf, Time=0.22 sec
ARIMA(2,2,0)(0,0,0)[0]
                               : AIC=511.465, Time=0.03 sec
ARIMA(1,2,0)(0,0,0)[0]
                               : AIC=530.444, Time=0.00 sec
                               : AIC=513.291, Time=0.03 sec
ARIMA(3,2,0)(0,0,0)[0]
                               : AIC=513.256, Time=0.03 sec
ARIMA(2,2,1)(0,0,0)[0]
ARIMA(1,2,1)(0,0,0)[0]
                               : AIC=523.592, Time=0.02 sec
ARIMA(3,2,1)(0,0,0)[0]
                               : AIC=inf, Time=0.16 sec
Best model: ARIMA(2,2,0)(0,0,0)[0]
Total fit time: 0.714 seconds
                           SARIMAX Results
______
Dep. Variable:
                                  No. Observations:
                                                                 100
Model:
                  SARIMAX(2, 2, 0)
                                  Log Likelihood
                                                             -252,732
Date:
                  Tue, 31 May 2022
                                  AIC
                                                             511.465
Time:
                         17:25:01
                                  BIC
                                                             519,220
                               0
                                  HOIC
Sample:
                                                              514.601
                            - 100
Covariance Type:
                             opg
______
              coef
                      std err
                                          P>|z|
                                                    [0.025
                                                               0.9751
ar.L1
            0.2579
                       0.103
                                 2.510
                                          0.012
                                                     0.056
                                                               0.459
                                -5.093
                                                    -0.610
ar.L2
            -0.4407
                       0.087
                                          0.000
                                                               -0.271
sigma2
            10.1268
                       1.519
                                 6.668
                                          0.000
                                                     7.150
                                                              13,103
______
                                 0.05 Jarque-Bera (JB):
Liung-Box (L1) (0):
                                                                     0.10
Prob(0):
                                 0.82 Prob(JB):
                                                                     0.95
Heteroskedasticity (H):
                                 0.49
                                      Skew:
                                                                    -0.07
Prob(H) (two-sided):
                                 0.05
                                       Kurtosis:
                                                                     2.92
```

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [39]: model.plot_diagnostics(figsize=(10,7))
plt.show()

In [40]: # Forecast

```
n periods = 24
fc, confint = model.predict(n_periods=n_periods, return_conf_int=True)
index_of_fc = np.arange(len(df.value), len(df.value)+n_periods)
# make series for plotting purpose
fc series = pd.Series(fc, index=index of fc)
lower series = pd.Series(confint[:, 0], index=index_of_fc)
upper series = pd.Series(confint[:, 1], index=index of fc)
# PLot
plt.plot(df.value)
plt.plot(fc series, color='darkgreen')
plt.fill between(lower series.index,
                 lower_series,
                 upper series,
                 color='k', alpha=.15)
plt.title("Final Forecast of WWW Usage")
plt.show()
```

Final Forecast of WWW Usage

In []: