PLEASE INCLUDE THIS PAGE WITH YOUR SUBMISSION

NAME:	Student #	GROUP:
	ENG 1440 Lab # 11	

Determine the resultant, \mathbf{R} , of the parallel force system acting on the rectangular plate shown below and determine the intersection of the line of action of \mathbf{R} with the y-z plane.

Force	Position vector	Force vector	Moment vector $\mathbf{M_o}$
$\mathbf{F_1}$			
$\mathbf{F_2}$			
$\mathbf{F_3}$			
$\mathbf{F_4}$			
R			

PLEASE INCLUDE THIS PAGE WITH YOUR SUBMISSION

Force Position Force
$$\vec{M}_0$$
 \vec{F}_1 1.5 $\hat{j}_1 + 0\hat{k}_2$ 500 \hat{i}_2 - 750 \hat{k}_3
 \vec{F}_2 1.5 $\hat{j}_3 + 1.5 \hat{k}_4$ - 450 \hat{i}_3 675 \hat{k}_4 - 675 \hat{j}_4
 \vec{F}_3 0.75 $\hat{j}_3 + 1.5 \hat{k}_4$ 100 \hat{i}_3 - 75 \hat{k}_4 150 \hat{j}_4
 \vec{F}_4 1.5 $\hat{j}_3 + 3.0 \hat{k}_4$ 720 \hat{i}_4 - 1080 \hat{k}_4 + 2160 \hat{j}_4
 $\vec{K} = 870 \hat{i}_4$ $\vec{M}_0 = -1230 \hat{k}_4 + 1635 \hat{j}_4$
 $= 870 \hat{j}_4 = -1230$ $\vec{K}_3 = -1230 \hat{k}_4 + 1635 \hat{j}_4$
 $= 870 \hat{j}_4 = -1230$ $\vec{K}_4 = -1230 \hat{k}_4 + 1635 \hat{j}_4$

PLEASE INCLUDE THIS PAGE WITH YOUR SUBMISSION

2) A flat plate is supported by ball-and-socket joints at A and E and by a cable DF. A 1600 N load is applied at point C. Neglecting the weight of the plate, determine the tension in the cable.

 $\sum M_{EA} = 0$ (moment about line EA =0 since A and E are pins)

$$\begin{split} M_{EA} &= \pmb{\lambda}_{EA} ~\bullet ~ \mathbf{M}_E = M_{EA} = \pmb{\lambda}_{EA} ~\bullet ~ (\mathbf{r}_{BD} ~x~ \mathbf{T}_{DF} + \mathbf{r}_{BC} ~x~ \mathbf{W}) \\ &= \pmb{\lambda}_{BA} ~\bullet ~ (\mathbf{r}_{BD} ~x~ \mathbf{T}_{DF}) + \pmb{\lambda}_{BA} ~\bullet ~ (\mathbf{r}_{BC} ~x~ \mathbf{W}) \end{split}$$

6.18

$$\frac{1}{10\pi} = \frac{1}{10\pi} = \frac{1}{10\pi}$$

$$M_{BA} = \frac{T_{OF}}{0.42} \begin{vmatrix} 0.14 & 0 & -0.48 \\ 0.32 & 0 & 0.52 \\ -0.32 & 0.23 & -0.16 \end{vmatrix} = \frac{0.14}{0.5} \begin{vmatrix} 0.14 & 0 \\ 0.5 & 0 & 0.52 \\ 0.32 & 0 & -0.28 \\ 0.32 & 0 & -0.28 \\ 0.32 & 0 & -1.6 \end{vmatrix} = \frac{T_{OF}}{0.42} \left[-0.098304 \right] - \left[0.12544 \right] + \left[0.49152 \right] - \left[0.12544 \right]$$

$$0.234057T_{OF} = 0.36608$$

$$T_{OF} = 1.564 kN = \frac{1.564}{0.55} = 0.36608$$