Chapitre 9 : Logique propositionnelle (Sémantique et mise sous forme normale)

- 1. Syntaxe de la logique propositionnelle
- 2. Algèbre de Boole
- Sémantique de la logique propositionnelle
- 4. Mise sous forme normale

1. Syntaxe de la logique propositionnelle

2. Algèbre de Boole

3. Sémantique de la logique propositionnelle

4. Mise sous forme normale

- 1. Syntaxe de la logique propositionnelle
- 2. Algèbre de Boole
- Sémantique de la logique propositionnelle Interprétation
 Fonction booléenne associée à une formule Conséquence logique
 Reformulations avec des équivalences
- 4. Mise sous forme normale

3- Sémantique • 3.1 Interprétation

Interprétation - définition

On considère encore $\mathcal Q$ un ensemble non vide de variables. On note encore $\mathbb B$ l'algèbre de Boole.

Définition

Un **environnement propositionnel** est une fonction de Q dans \mathbb{B} .

Définition

Soit $\rho \in \mathbb{B}^{\mathcal{Q}}$ un environnement propositionnel. On définit l'**interprétation selon** ρ des formules de la logique propositionnelle sur \mathcal{Q} comme étant la fonction $[\bullet]^{\rho}$ ci-contre.

$$\begin{array}{ccc}
\top & \mapsto & V \\
\bot & \mapsto & F \\
q \in \mathcal{Q} & \mapsto & \rho(q) \\
\neg A & \mapsto & \overline{[A]^{\rho}} \\
A \lor B & \mapsto & \overline{[A]^{\rho}} \cdot \overline{[B]^{\rho}} \\
A \land B & \mapsto & \overline{[A]^{\rho}} \cdot \overline{[B]^{\rho}} \\
A \to B & \mapsto & \overline{[A]^{\rho}} \cdot \overline{[B]^{\rho}} \\
A \leftrightarrow B & \mapsto (\overline{[A]^{\rho}} \cdot \overline{[B]^{\rho}})
\end{array}$$

1 / 18

3- Sémantique ullet 3.1 Interprétation

Vocabulaire

Définition

Soit $A \in \mathbb{F}_p(\mathcal{Q})$.

Pour $\rho \in \mathbb{B}^{\mathcal{Q}}$, si $[A]^{\rho} = V$, on dit que ρ satisfait A.

On dit que A est **satisfiable** s'il existe $\rho \in \mathbb{B}^{Q}$ tel que $[A]^{\rho} = V$.

On dit que A est une tautologie (ou valide) si $\forall \rho \in \mathbb{B}^{Q}$, $[A]^{\rho} = V$.

On dit que A est **une antilogie** (ou insatisfiable) si $\forall \rho \in \mathbb{B}^{\mathcal{Q}}$, $[A]^{\rho} = F$.

Attention : antilogie n'est pas la négation de tautologie, mais celle de formule satisfiable.

Fonction booléenne associée à une formule - définition

informel Changement de point de vue : $[A]^{\rho}$ dépend de A et de ρ . Pour la dépendance en A on a, pour $\rho \in \mathbb{B}^{\mathcal{Q}}$ fixé, la fonction $[\bullet]^{\rho} = A \mapsto [A]^{\rho}$. Pour celle en ρ on veut, pour $A \in \mathbb{F}_{\rho}(\mathcal{Q})$ fixée, la fonction $\rho \mapsto [A]^{\rho}$.

Définition

Soit $A \in \mathbb{F}_p(\mathcal{Q})$.

On appelle fonction booléenne associée à la formule A la fonction

$$\llbracket ullet
brace^A = \left(egin{array}{ccc} \mathbb{B}^\mathcal{Q} &
ightarrow & \mathbb{B} \\
ho & \mapsto & [A]^
ho \end{array}
ight)$$

Remarque : Toute fonction booléenne d'arité $n \in \mathbb{N}^*$ est la fonction booléenne associée d'une formule propositionnelle sur un ensemble de variables propositionnelles de cardinal n.

(voir section mise sous forme normale)

3- Sémantique • 3.2 Fonction booléenne associée à une formule

Équivalence logique - définition

Définition

On définit la relation binaire $\equiv sur \mathbb{F}_p(\mathcal{Q})$ par

$$\forall (A, B) \in \mathbb{F}_{p}(\mathcal{Q})^{2}, A \equiv B \text{ ssi } \llbracket \bullet \rrbracket^{A} = \llbracket \bullet \rrbracket^{B}$$
$$\text{ssi } \forall \rho \in \mathbb{B}^{\mathcal{Q}}, \ \llbracket \rho \rrbracket^{A} = \llbracket \rho \rrbracket^{B}$$
$$\text{ssi } \forall \rho \in \mathbb{B}^{\mathcal{Q}}, \ [A]^{\rho} = [B]^{\rho}$$

Autrement dit,
$$\left\{ \rho \in \mathbb{B}^{\mathcal{Q}} \middle| [A]^{\rho} = V \right\} = \left\{ \rho \in \mathbb{B}^{\mathcal{Q}} \middle| [B]^{\rho} = V \right\}.$$

Propriété

La relation \equiv est une relation d'équivalence sur $\mathbb{F}_p(\mathcal{Q})$.

Définition

Soit $(A, B) \in \mathbb{F}_p(\mathcal{Q})^2$.

On dit que A et B sont **logiquement équivalentes** si $A \equiv B$.

Équivalence logique - exemples

Pour
$$(A, B) \in \mathbb{F}_p(Q)^2$$
 on a $A \vee B \equiv B \vee A$.

En effet,
$$\forall \rho \in \mathbb{B}^{\mathcal{Q}}$$
, $[A \lor B]^{\rho} = [A]^{\rho} + [B]^{\rho}$ par déf de l'interprétation
$$= [B]^{\rho} + [A]^{\rho}$$
 par commutativité de $+$
$$= [B \lor A]^{\rho}$$
 par déf de l'interprétation

Exercice: Soit $(A, B) \in \mathbb{F}_p(Q)^2$. Montrer que

$$\rightarrow A \land B \equiv B \land A$$

$$\rightarrow A \rightarrow B \equiv (\neg A) \lor B$$

$$\rightarrow$$
 $A \rightarrow B \equiv (\neg B) \rightarrow (\neg A)$

$$\rightarrow A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$$

$$\rightarrow A \lor \neg A \equiv \top$$

$$\rightarrow \neg (A \land B) \equiv \neg A \lor \neg B$$

$$\rightarrow \neg (A \lor B) \equiv \neg A \land \neg B$$

Conséquence logique - définition

Définition

Soit
$$(A, B) \in \mathbb{F}_p(\mathcal{Q})^2$$
.

On dit que B est **conséquence logique** de A, noté $A \models B$ ssi tout environnement propositionnel satisfaisant A satisfait aussi B.

c'est-à-dire en terme d'ensemble d'environnements? Autrement dit, $\left\{\rho \in \mathbb{B}^{\mathcal{Q}} \middle| [A]^{\rho} = V\right\} \subseteq \left\{\rho \in \mathbb{B}^{\mathcal{Q}} \middle| [B]^{\rho} = V\right\}.$

Propriété

La relation binaire ⊨ est réflexive et transitive.

Propriété

Soit
$$(A, B) \in \mathbb{F}_p(Q)^2$$
. $A \equiv B$ ssi $A \models B$ et $B \models A$.

preuve à faire (+ remarque csq sémantique vs déduction)

Conséquence logique - exemples

Définition

Soit $X \subseteq \mathbb{F}_p(\mathcal{Q})$. Soit $B \in \mathbb{F}_p(\mathcal{Q})$.

On note $X \models B$ ssi tout environnement propositionnel satisfaisant **toutes** les formules de X satisfait aussi B.

$$Autrement\ dit,\ \Big\{\rho\in\mathbb{B}^{\mathcal{Q}}\Big|\ \forall A\!\in\!X,\ [A]^{\rho}\!=\!V\Big\}\subseteq \Big\{\rho\in\mathbb{B}^{\mathcal{Q}}\Big|[B]^{\rho}\!=\!V\Big\}.$$

différence avec "B est conséquence de la conjonction des formules de X" ? $\hookrightarrow X$ peut être de cardinal infini.

Exercice: Soit $(A, B) \in \mathbb{F}_p(Q)^2$. Montrer que

$$\rightarrow \{(A \rightarrow B), A\} \models B$$

$$\rightarrow \{(A \rightarrow B), \neg B\} \vDash \neg A$$

Reformulation des définitions avec ≡

Propriété

Soit $A \in \mathbb{F}_p(\mathcal{Q})$.

- \rightarrow A est une tautologie ssi A $\equiv \top$
- \rightarrow A est une antilogie ssi A $\equiv \bot$
- \rightarrow A est une tautologie ssi \neg A est une antilogie

Propriété

Soit $(A, B) \in \mathbb{F}_p(Q)^2$.

- \rightarrow $A \equiv B$ ssi $A \leftrightarrow B \equiv \top$ (i.e. $A \leftrightarrow B$ est une tautologie)
- \rightarrow $A \vDash B$ ssi $A \rightarrow B \equiv \top$ (i.e. $A \rightarrow B$ est une tautologie)

preuves à faire en exercice

Espace quotient

L'espace des formules logiques quotienté par équivalence $\mathbb{F}_p(\mathcal{Q})/\equiv$ est en bijection avec $\mathcal{F}(\mathbb{B}^\mathcal{Q},\mathbb{B})$. En effet une classe d'équivalence selon \equiv est caractérisée par la fonction booléenne à laquelle sont associées tous ses éléments. Cela justifie que $\llbracket \bullet \rrbracket^A$ soit parfois appelée la **représentation** de A.

- → Quel est représentant d'une classe préfère-t-on ?
- \hookrightarrow Peut-on choisir une formule canonique pour représenter une classe de formules équivalentes ?

- 1. Syntaxe de la logique propositionnelle
- 2. Algèbre de Boole
- 3. Sémantique de la logique propositionnelle
- 4. Mise sous forme normale Mise sous FND à partir d'une table de vérité Mise sous FNC à partir d'une table de vérité

Sur un exemple

Comment mettre sous FND la formule $A = (a \lor b) \to (c \land a)$

Table de vérité d'une formule

On étend ici la définition de table de vérité aux formules, pour une numérotation des variables fixée : $Q = \{q_1, q_2, \dots q_n\}$ où n = Card(Q).

Une table de vérité d'une formule $A \in \mathbb{F}_p(\mathcal{Q})$ est en fait une table de vérité de la fonction associée $\llbracket ullet \rrbracket^A$:

- $\rightarrow \{(T_{i,j})_{i \in [1..n]} \mid i \in [1..2^n]\} = \mathbb{B}^{Q}$
- ightarrow pour tout $i \in [1..2^n]$, $T_{i,n+1}$ vaut $\llbracket \rho^i \rrbracket^A$ où $\rho^i \in \mathbb{B}^Q$ est défini par $\forall j \in [1..n]$, $\rho^i(q_i) = T_{i,j}$.

En calculant une FND à partir de T on calcule bien quelque chose qui ne dépend pas exactement de A mais de sa classe...

Calculer une FND à partir d'une table de vérité - 1/3

Soit $A \in \mathbb{F}_p(\mathcal{Q})$ où $\mathcal{Q} = \{q_1, q_2, \dots q_n\}$.

Soit T une table de vérité de A suivant cette numérotation de Q.

Pour tout $i \in [1..2^n]$ et $j \in [1..n]$, on note $\ell_{i,j}$ comme étant

- \rightarrow le littéral q_i si $T_{i,j} = V$
- \rightarrow le littéral $\neg q_i$ si $T_{i,j} = F$

Lemme

$$\forall i \in [1..2^n], \ \forall j \in [1..n], \ [\ell_{i,j}]^{\rho^i} = V$$

Preuve: Soit $i \in [1..2^n]$. Soit $j \in [1..n]$.

Si $T_{i,j} = V$, alors $\ell_{i,j} = q_j$, donc $[\ell_{i,j}]^{\rho^i} = \rho^i(q_j)$ par définition de l'interprétation d'une variable. Or par définition de ρ^i , $\rho^i(q_i) = T_{i,j}$, donc $[\ell_{i,j}]^{\rho^i} = V$.

Si $T_{i,j} = F$, alors $\ell_{i,j} = \neg q_j$ donc $[\ell_{i,j}]^{\rho^i} = \overline{\rho^i(q_j)}$ par définition de l'interprétation d'une négation. Or par définition de ρ^i , $\rho^i(q_j) = T_{i,j} = F$, donc $[\ell_{i,j}]^{\rho^i} = \overline{F} = V$.

Calculer une FND à partir d'une table de vérité - 2/3

Ensuite on pose, pour tout $i \in [1..2^n]$, $L^i = \bigwedge_{i=1}^n \ell_{i,j}$.

Lemme

•
$$\forall i \in [1..2^n], [L^i]^{\rho^i} = V$$
 • $\forall (i, k) \in [1..2^n]^2, i \neq k, [L^i]^{\rho^k} = F$

Preuve : Soit $i \in [1..2^n]$. Par définition de l'interprétation d'une conjonction,

$$[L^i]^{
ho^i}=\prod_{j=1}^n[\ell_{i,j}]^{
ho^j}=\prod_{j=1}^nV$$
 d'après le lemme précédent, d'où $[L^i]^{
ho^j}=V$.

Soit $k \in [1..2^n]$ tel que $k \neq i$. Puisque les lignes de T restreintes à leurs n premières colonnes sont deux à deux distinctes, il existe $j_0 \in [1..n]$ tel que $T_{i,j_0} \neq T_{k,j_0}$.

 \hookrightarrow Si $T_{i,j_0} = V$, alors $\ell_{i,j_0} = q_{j_0}$ et $T_{k,j_0} = F$. Par déf. de l'interprétation d'une variable

$$[\ell_{i,j_0}]^{\rho^k} = \rho^k(q_{j_0})$$
, or par déf. de ρ^k on a $\rho^k(q_{j_0}) = T_{k,j_0} = F$, donc $[\ell_{i,j_0}]^{\rho^k} = F$.

 \hookrightarrow Si au contraire $T_{i,j_0} = F$, alors $\ell_{i,j_0} = \neg q_{j_0}$ et $T_{k,j_0} = V$. Par déf. de l'interprétation de la négation d'une variable $[\ell_{i,j_0}]^{\rho^k} = \overline{\rho^k(q_{j_0})}$ or par déf. de ρ^k on a

$$\rho^k(q_{i_0}) = T_{k,i_0} = V$$
, donc $[\ell_{i,i_0}]^{\rho^k} = \overline{V} = F$.

Dans les deux cas le terme d'indice j_0 de la somme qu'est l'interprétation de L^i vaut F, et F étant absorbant pour \times , on en déduit que $[L^i]^{\rho^k} = F$.

Calculer une FND à partir d'une table de vérité - 3/3

Finalement on pose
$$D = \bigvee_{\substack{i \in [1..2^n] \\ T_{i,n+1} = V}} L^i$$

Propriété

 $D \equiv A$.

Preuve : Soit $\rho \in \mathbb{B}^{\mathcal{Q}}$. On note $I = \{i \in [1..2^n] \mid T_{i,n+1} = V\}$ ainsi $D = \bigvee_{i=1}^n L^i$.

De plus par déf. de l'interprétation d'une disjonction $[D]^{
ho} = \sum_{i=1}^{r} [L^i]^{
ho}$.

Puisque les lignes de T restreintes à leurs n premières colonnes couvrent $\mathbb{B}^{\mathcal{Q}}$, il existe $i_0 \in [1..2^n]$ tel que $\rho = \rho^{i_0}$.

- \hookrightarrow Si $[A]^{\rho} = V$, on a $V = \llbracket \rho \rrbracket^A = \llbracket \rho^{i_0} \rrbracket^A = T_{i_0,n+1}$, donc $i_0 \in I$. Ainsi le terme $[L^{i_0}]^{\rho}$ apparaît dans la somme qu'est $[D]^{\rho}$, or par le lemme préc., $[L^{i_0}]^{\rho} = [L^{i_0}]^{\rho^{i_0}} = V$, et V étant absorbant pour la somme, on en déduit que $[D]^{\rho} = V$, soit $[D]^{\rho} = [A]^{\rho}$.
- \hookrightarrow Si au contraire $[A]^{\rho} = F$, alors $T_{i_0,n+1} = F$ donc $i_0 \notin I$. Autrement dit $\forall i \in I, i \neq i_0$ donc d'après le lemme précédent $[L^i]^{\rho^{i_0}} = F$ soit $[L^i]^{\rho} = F$. Une somme de F étant F, on en déduit que $[D]^{\rho} = F$, soit $[D]^{\rho} = [A]^{\rho}$.

Sur le même exemple

Comment mettre sous FNC la formule $A = (a \lor b) \to (c \land a)$

a	b	С	$(a \lor b)$	$(c \wedge a)$	A	
V	•	V	V	V	V	•
V	V	F	V	F	F	$\rightarrow (\neg a \lor \neg b \lor c)$
V	F	V	V	V	V	•
V	F	F	V	F	F	$\rightarrow (\neg a \lor b \lor c)$
•	V	V	V	F	F	$\rightarrow (a \lor \neg b \lor \neg c)$
F	V	F	V	F	F	$\rightarrow (a \lor \neg b \lor c)$
F	F	V	F	F	V	•
F	F	F	F	F	V	•

$$(\neg a \lor \neg b \lor c) \land (\neg a \lor b \lor c) \land (a \lor \neg b \lor \neg c) \land (a \lor \neg b \lor c)$$

Calculer une FNC à partir d'une table de vérité

Soit $A \in \mathbb{F}_p(\mathcal{Q})$ où $\mathcal{Q} = \{q_1, q_2, \dots q_n\}$.

Soit T une table de vérité de A suivant cette numérotation de Q.

Pour tout $i \in [1..2^n]$ et $j \in [1..n]$, on note $r_{i,j}$ comme étant

- \rightarrow le littéral $\neg q_i$ si $T_{i,j} = V$
- \rightarrow le littéral q_i si $T_{i,j} = F$

Ensuite on pose, pour tout $i \in [1..2^n]$, $R^i = \bigvee_{i=1}^n r_{i,j}$.

Finalement on pose
$$C = \bigwedge_{\substack{i \in [1..2^n] \\ T_{i,n+1} = F}} R^i$$

Propriété

- $\rightarrow \forall i \in [1..2^n], \forall j \in [1..n], [r_{i,j}]^{\rho^i} = F$
- $\rightarrow \forall i \in [1..2^n], [R^i]^{\rho^i} = F \text{ et } \forall k \in [1..2^n], k \neq i, [R^i]^{\rho^k} = V$
- $\rightarrow C \equiv A$

Bilan sur FNC/FND

- certaines formules sont à la fois sous FNC et FND exemple : $a \lor b \lor c$
- il y a **existence** de la FNC/FND équivalente à une formule (on vient de le montrer).
- il n'y a **pas unicité** de de la FNC équivalente à une formule

ex :
$$(a \lor \neg b) \land (c \lor d) \equiv (c \lor d) \land (a \lor \neg b)$$
 du à la commutativité $(a \lor \neg b \lor b) \land (c \lor d) \equiv a \land (c \lor d)$ du à la simplfication

Attention la taille peut exploser en passant d'une forme à l'autre

ex :
$$A = \bigvee_{i=1}^{N} (a_i \wedge b_i)$$
 est une conj. de n termes, écrite avec $2n$ littéraux,

mais une FND équivalente est une disjonction de 2^n termes étant chacun le produit de n littéraux (pour chaque $i \in [1..n]$, a_i ou b_i apparaît)

$$A \equiv (a_1 \lor a_2 \lor a_3...a_n) \land (b_1 \lor a_2 \lor a_3...a_n) \land (a_1 \lor b_2 \lor a_3...a_n) \dots \land (a_1 \lor b_2 \lor a_3...\lor a_{n-1} \lor b_n) \dots \land (b_1 \lor b_2 \lor b_3...\lor b_{n-1} \lor b_n)$$

Exercices

Quelques simplifications utiles :

$$\rightarrow A \land \neg A \equiv \bot$$

$$\rightarrow A \land \top = A$$

$$\rightarrow A \land \bot \equiv \bot$$

$$\rightarrow A \land (\neg A \lor B) \equiv A \land B$$

$$\rightarrow$$
 $(A \lor B) \land (\neg A \lor B) \equiv B$

$$\rightarrow A \lor \neg A \equiv \top$$

$$\rightarrow A \lor \top \equiv \top$$

$$\rightarrow A \lor \bot \equiv A$$

$$\rightarrow A \lor (\neg A \land B) \equiv A \lor B$$

$$\rightarrow (A \land B) \lor (\neg A \land B) \equiv B$$

Mettre sous FNC et FND les formules suivantes :

$$\rightarrow U: (x \wedge y) \vee (z \wedge \neg z \wedge q) \vee (\neg x \wedge z)$$

$$\rightarrow W: (x \land q) \rightarrow ((y \lor \neg z) \land q)$$

$$\rightarrow X: (x \land y) \leftrightarrow (\neg x \land z)$$