STRUCTURED ANALYSIS AND SYSTEM SPECIFICATION

by

Tom DeMarco

Foreword by

P.J. Plauger

Technische Universität Darmstadt FACHBEREICH INFORMATIK								
В	I E	3 L	1	0	T	H	E	K
Invent	ar-Nr	.:	10	4 -	<u> </u>	<u>ص</u>	10	
Sachg	ebiet	e:						
Stand	ort;							

YOURDON PRESS A Prentice-Hall Company Englewood Cliffs, New Jersey 07632

CONTENTS

		PAGE
	PART 1: BASIC CONCEPTS	
1.	The Meaning of Structured Analysis	3
	1.1 What is analysis?	4
	1.2 Problems of analysis	9
	1.3 The user-analyst relationship	14
	1.4 What is Structured Analysis?	15
2:	Conduct of the analysis phase	19
	2.1 The classical project life cycle	19
	2.2 The modern life cycle	22
	2.3 The effect of Structured Analysis on the life cycle	25
	2.4 Procedures of Structured Analysis	27
	2.5 Characteristics of the Structured Specification	31
	2.6 Political effects of Structured Analysis	32
	2.7 Questions and answers	35
3.	The Tools of Structured Analysis	37
	3.1 A sample situation	37
	3.2 A Data Flow Diagram example	38\
	3.3 A Data Dictionary example	42
	3.4 A Structured English example	43
	3.5 A Decision Table example	44
	3.6 A Decision Tree example	44
	PART 2: FUNCTIONAL DECOMPOSITION	
4.	Data Flow Diagrams	47
	•	47
	- · · · · · · · · · · · · · · · · · · ·	48
	 4.2 A Data Flow Diagram by any other name 4.3 DFD characteristics — inversion of viewpoint 	48
	4.5 DED characteristics — liversion of viewpoint	70

5.	Data I	Flow Diagram conventions	51
	5.1	Data Flow Diagram elements	51
	5.2	Procedural annotation of DFD's	61
	5.3	The Lump Law	62
6.	Guide	lines for drawing Data Flow Diagrams	63
	6.1	Identifying net inputs and outputs	63
	6.2	Filling in the DFD body	64
	6.3	Labeling data flows	66
	6.4	Labeling processes	66
	6.5	Documenting the steady state	68 68
	6.6 6.7	Omitting trivial error-handling details	68
	6.8	Portraying data flow and not control flow Starting over	69
7.	Level	ed Data Flow Diagrams	71
	7.1	Top-down analysis — the concept of leveling	72
	7.1	Elements of a leveled DFD set	75
	7.3	Leveling conventions	77
	7.4	Bottom-level considerations	83
	7.5	Advantages of leveled Data Flow Diagrams	87
	7.6	Answers to the leveled DFD Guessing Game	87
8.	A Cas	se Study in Structured Analysis	89
	8.1	Background for the case study	89
	8.2	Welcome to the project — context of analysis	90
	8.3	The top level	91
	8.4	Intermezzo: What's going on here?	94
	8.5	The lower levels	96
	8.6	Summary	104
	8.7	Postscript	104
9.	Evalu	ation and Refinement of Data Flow Diagrams	105
	9.1	Tests for correctness	105
	9.2	Tests for usefulness	112
	9.3	Starting over	114
10	. Data	Flow Diagrams for System Specification	117
	10.1	The man-machine dialogue	117
	10.2	The integrated top-level approach	118
	10.3	Problems and potential problems	120

PART 3: DATA DICTIONARY

11. The a	analysis phase Data Dictionary	125
11.1 11.2 11.3	The uses of Data Dictionary Correlating Data Dictionary to the DFD's Implementation considerations	126 127 127
12. Defir	nitions in the Data Dictionary	129
12.1 12.2 12.3 12.4 12.5 12.6 12.7	Treatment of aliases What's in a name?	129 133 137 139 142 143 144
13. Logic	cal Data Structures	149
13.1 13.2 13.3	Data base considerations Data Structure Diagrams (DSD's) Uses of the Data Structure Diagram	150 152 155
14. Data	Dictionary Implementation	157
14.1 14.2 14.3 14.4 14.5	Automated Data Dictionary Manual Data Dictionary Hybrid Data Dictionary Librarian's role in Data Dictionary Questions about Data Dictionary	157 162 162 163 164
	PART 4: PROCESS SPECIFICATION	
15. Desc	ription of Primitives	169
15.1 15.2 15.3		169 177 177
16. Struc	etured English	179
16.1 16.2 16.3 16.4 16.5 16.6	Definition of Structured English An example The logical constructs of Structured English The vocabulary of Structured English Structured English styles The balance sheet on Structured English Gaining user acceptance	179 180 184 202 203 210 212

CONTENTS

17. Alternatives for Process Specification		215
17.1 17.2	When to use a Decision Table Getting started	215 217
17.3	Deriving the condition matrix	219
17.4	Combining Decision Tables and Structured English	221
17.5	Selling Decision Tables to the user	221
17.6	Decision Trees	222
17.7	A procedural note	225
17.8	Questions and answers	225
	PART 5: SYSTEM MODELING	
18. Use o	f System Models	229
18.1	Logical and physical DFD characteristics	230
18.2	Charter for Change	231
18.3	Deriving the Target Document	232
19. Buildi	ng a Logical Model of the Current System	233
19.1	Use of expanded Data Flow Diagrams	235
19.2	Deriving logical file equivalents	238
19.3		254
19.4	Logical DFD walkthroughs	256
20. Build	ng a Logical Model of a Future System	257
20.1	The Domain of Change	258
20.2	Partitioning the Domain of Change	260
20.3	Testing the new logical specification	263
21. Physi	cal Models	` 265
21.1	Establishing options	265
21.2	O O	269
21.3	Selecting an option	269
22. Packa	ging the Structured Specification	273
22.1	Filling in deferred details	273
22.2		275
22.3	A guide to the Structured Specification	275
22.4	Supplementary and supporting material	278

PART 6:	${\bf STRUCTURED}$	ANALYSIS FOR	A FUTURE	SYSTEM

23.	Lookir	ng Ahead to the Later Project Phases	283
	23.1 23.2 23.3	Analyst roles during design and implementation Bridging the gap from analysis to design	283 284 285
	23.3	User roles during the later phases	283
24.	Mainta	nining the Structured Specification	287
	24.1 24.2 24.3 24.4	Goals for specification maintenance The concept of the specification increment Specification maintenance procedures The myth of Change Control	287 289 292 294
25.	Transi	tion into the Design Phase	297
	25.1 · 25.2 · 25.3	Goals for design Structured Design Implementing Structured Designs	297 302 323
2 6.	Accept	ance Testing	325
	26.1 26.2 26.3 26.4 26.5 26.6	Derivation of normal path tests Derivation of exception path tests Transient state tests Performance tests Special tests Test packaging	326 328 330 330 331 331
27.	Heuris	stics for Estimating	: 333
	27.1 27.2 27.3	The empirically derived estimate Empirical productivity data Estimating rules	334 335 336
GL	OSSAI	RY	341
BII	BLIOGI	RАРНY	347
INDEX		349	