

Professional Communication

In this document, a Professional Communication Evaluator has identified representative examples of consistent, patterned writing errors.

Not all errors are marked.

To demonstrate competency in Professional Communication, please correct the representative examples and revise your work to amend unmarked errors similar to the identified examples.

In resubmissions, a Professional Communication Evaluator may note different examples of remaining issues. If more than one document was submitted, those documents might require similar revisions.

Performance Assessment | D206 Data Cleaning

Ryan L. Buchanan Student ID: 001826691

Masters Data Analytics (12/01/2020)

Program Mentor: Dan Estes

(385) 432-9281 (MST) rbuch49@wgu.edu

Part I: Research Question

A. Question or Decision:

Can we determine which individual customers are at high risk of churn? And, can we determine which features are most significant to churn?

**A1. Alternative Question:

Also, Are there certain responses to survey that correlate with customer churn?

B. Required Variables:¶

The data set is 10,000 customer records of a popular telecommunications company. The dependent variable (target) in question is whether or not each customer has continued or discontinued service within the last month. This column is titled "Churn."

Independent variables or predictors that may lead to identifying a relationship with the dependent variable of "Churn" within the dataset include:

- 1. Services that each customer signed up for (for example, multiple phone lines, technical support add-ons or streaming media)
- 2. Customer account information (customers' tenure with the company, payment methods, bandwidth usage, etc.)
- 3. Customer demographics (gender, marital status, income, etc.).
- 4. Finally, there are eight independent variables that represent responses customer-perceived importance of company services and features.

The data is both numerical (as in the yearly GB bandwidth usage; customer annual income) and categorical (a "Yes" or "No" for Churn; customer job).

Part II: Data-Cleaning Plan

C1. Plan to Find Anomalies:

My approach will include:

1. Back up my data and the process I am following as a copy to my machine and, since this is a manageable dataset, to GitHub using command line and gitbash.

Commented [PCEV18-1]:

Parts of Speech: Missing article→Parts of speech errors recur.

WGU's Guide to Academic Writing Link: Module 8.12: Article Usage

- 2. Read the data set into Python using Pandas read csy command.
- 3. Evaluate the data struture to better understand input data.
- 4. Naming the dataset as a the variable "churn_df" and subsequent useful slices of the dataframe as "df".
- 5. Examine potential misspellings, awkward variable namimg & missing data.
- 6. Find outliers that may create or hide statistical significance using histograms.
- 7. Imputing records missing data with meaningful measures of central tendency (mean, median or mode) or simply remove outliers that are several standard deviations above the mean.

C2. Justification of Approach:

Though the data seems to be inexplicably missing quite a bit of data (such as the many NAs in customer tenure with the company) from apparently random columns, this approach seems like a good first approach in order to put the data in better working order without needing to involve methods of initial data collection or querying the data-gatherers on reasons for missing information. Also, this the first dataset that I've clean, so I followed the procedures practice in the performance lab as well as tips from StackOverflow and other tutorial resources.

C3. Justification of Tools:

I will use the Python programming language as I have a bit of a background in Python having studied machine learning independently over the last year before beginning this masters program and its ability to perform many things right "out of the box." Python provides clean, intuitive and readable syntax that has become ubiquitous across in the data science industry. Also, I find the Jupyter notebooks a convenient way to run code visually, in its attractive single document markdown format, the ability to display results of code and graphic visualizations and provide crystal-clear running documentation for future reference. A thorough installation and

Commented [PCEV18-2]:

Conventions: Missing punctuation

→Conventions errors recur.

WGU's Guide to Academic Writing Link: Module 7.10: Apostrophes

Commented [PCEV18-3]:

Conventions: Misspelled word

→Conventions errors recur.

WGU's Guide to Academic Writing Link: Module 7.13: Spelling

importation of Python packages and libraries will provide specially designed code to perfom complex data science tasks rather than personally building them from scratch. This will include:

- NumPy to work with arrays
- Pandas to load datasets
- Matplotlib to plot charts
- Scikit-learn for machine learning model classes
- SciPy for mathematical problems, specifically linear algebra transformations
- Seaborn for high-level interface and atttractive visualizations
 A quick, precise example of loading a dataset and creating a variable
 efficiently is using to call the Pandas library and its subsequent "read_csv"
 function in order to manipulate our data as a dataframe:

```
import pandas as pd
df = pd.read_csv('Data.csv')
```

C4. Provide the Code:

Install necessary packages

In [1]:

```
!pip install pandas
!pip install numpy
!pip install scipy
!pip install sklearn
!pip install matplotlib

Requirement already satisfied: pandas in c:\users\vreed\anaconda3\lib\site-packages (1.0.1)
Requirement already satisfied: python-dateutil>=2.6.1 in c:\users\vreed\anaconda3\lib\site-packages (from pandas) (2.8.1)
Requirement already satisfied: numpy>=1.13.3 in c:\users\vreed\anaconda3\lib\site-packages (from pandas) (1.18.1)
Requirement already satisfied: pytz>=2017.2 in c:\users\vreed\anaconda3\lib\site-packages (from pandas) (2019.3)
Requirement already satisfied: six>=1.5 in c:\users\vreed\anaconda3\lib\site-packages (from python-dateutil>=2.6.1->pandas) (1.14.0)
Requirement already satisfied: numpy in c:\users\vreed\anaconda3\lib\site-packages (1.18.1)
```

```
Requirement already satisfied: scipy in c:\users\vreed\anaconda3\lib\site-packages (1.4.1)
Requirement already satisfied: numpy>=1.13.3 in c:\users\vreed\anaconda3\lib\site-packages
(from scipy) (1.18.1)
Requirement already satisfied: sklearn in c:\users\vreed\anaconda3\lib\site-packages (0.0)
Requirement already satisfied: scikit-learn in c:\users\vreed\anaconda3\lib\site-packages
(from sklearn) (0.22.1)
Requirement already satisfied: scipy>=0.17.0 in c:\users\vreed\anaconda3\lib\site-packages
(from scikit-learn->sklearn) (1.4.1)
Requirement already satisfied: numpy>=1.11.0 in c:\users\vreed\anaconda3\lib\site-packages
(from scikit-learn->sklearn) (1.18.1)
Requirement already satisfied: joblib>=0.11 in c:\users\ured\anaconda3\lib\site-packages
(from scikit-learn->sklearn) (0.14.1)
Requirement already satisfied: matplotlib in c:\users\vreed\anaconda3\lib\site-packages
(3.1.3)
Requirement already satisfied: cycler>=0.10 in c:\users\vreed\anaconda3\lib\site-packages
(from matplotlib) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\vreed\anaconda3\lib\site-
packages (from matplotlib) (1.1.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in
c:\users\vreed\anaconda3\lib\site-packages (from matplotlib) (2.4.6)
Requirement already satisfied: python-dateutil>=2.1 in c:\users\vreed\anaconda3\lib\site-
packages (from matplotlib) (2.8.1)
Requirement already satisfied: numpy>=1.11 in c:\users\vreed\anaconda3\lib\site-packages
(from matplotlib) (1.18.1)
Requirement already satisfied: six in c:\users\vreed\anaconda3\lib\site-packages (from
cycler>=0.10->matplotlib) (1.14.0)
Requirement already satisfied: setuptools in c:\users\vreed\anaconda3\lib\site-packages
(from kiwisolver>=1.0.1->matplotlib) (45.2.0.post20200210)
# Standard imports
import numpy as np
import pandas as pd
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Increase Jupyter display cell-width
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:75% !important;
}</style>"))

In [4]:

Load data set into Pandas dataframe
churn_df = pd.read_csv('churn_raw_data.csv')

In [5]:

Display Churn dataframe
churn_df

Out[5]:

	Unnamed: 0	CaseOrder	Customer_id	Interaction	City	State	Col	ınty	Zip	Lat	Lng		MonthlyCh
0	1	1	K409198	aa90260b- 4141-4a24- 8e36- b04ce1f4f77b	Point Baker	AK	Prince o Wales- Hyder		99927	56.25100	- 133.37571		171.449762
1	2	2	S120509	fb76459f- c047-4a9d- 8af9- e0f7d4ac2524	West Branch	MI	Ogemav	,	48661	44.32893	-84.24080		242.948015
2	3	3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35	Yamhill	OR	Yamhill		97148	45.35589	- 123.24657	,	159.440398
3	4	4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311	Del Mar	CA	San Die	jo	92014	32.96687	- 117.24798		120.249493
4	5	5	K662701	68a861fd- 0d20-4e51- a587- 8a90407ee574	Needville	TX	Fort Ber	d	77461	29.38012	-95.80673		150.761216
9995			M324793	45deb5a2- ae04-4518-	Mount Holly	VT	Rutland		5758	43.43391	-72.78734		159.828800

	Unnamed: 0	CaseOrder	Customer_id	Interaction	City	State	Col	ınty	Zip	Lat	Lng	 MonthlyCh
				bf0b- c82db8dbe4a4								
9996	9997	9997	D861732	6e96b921- 0c09-4993- bbda- a1ac6411061a		TN	Montgor	nery	37042	36.56907	-87.41694	 208.856400
9997	9998	9998	1243405	e8307ddf- 9a01-4fff- bc59- 4742e03fd24f	Mobeetie	TX	Wheeler		79061	35.52039	- 100.44180	 168.220900
9998	9999	9999	l641617	3775ccfc- 0052-4107- 81ae- 9657f81ecdf3	Carrollton	GA	Carroll		30117	33.58016	-85.13241	 252.628600
9999	10000	10000	T38070	9de5fb6e- bd33-4995- aec8- f01d0172a499	Clarkesville	GA	Habersh	am	30523	34.70783	-83.53648	 218.371000

10000 rows × 52 columns

List of Dataframe Columns

df = churn_df.columns

print(df)

Remove redundant "Unnamed" column at beginning & display first five records

```
df = churn_df.drop(churn_df.columns[0], axis = 1)
df.head()
```

CaseOrder	Customer_id	d Interaction	City	State	County	Zip	Lat	Lng	Population		MonthlyCharge	Ban
1	K409198		Point Baker	AK	Prince of Wales- Hyder		'56.25100 [°]	33.37571	38		171.449762	904
1 2	S120509		West Branch	MI	Ogemaw	48661	44.32893	84.24080	10446	4	242.948015	800
2 3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35		OR	Yamhill	97148	345.35589 [°]	23.24657	3735		159.440398	205
3 4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311	_ 0	$(: \Delta)$	San Diego	92014	32.96687	17.24798	13863		120.249493	216
4 5	K662701	68a861fd- 0d20-4e51- a587- 8a90407ee574	Needville	I X	Fort Bend	77461	29.38012	95.80673	11352		150.761216	271
5 rows × 51 col	lumns											

Rename last 8 survey columns for better description of variables

Tn [9]•

df.columns

In [10]:

df.head()

Out[10]:

	CaseOrder	Customer_	_id Interaction	City	State	County	Zip	Lat	Lng	Population	١	.MonthlyCharg	eBar
0	1	K409198	aa90260b- 4141-4a24- 8e36- b04ce1f4f77b	Point Baker	AK	Prince of Wales- Hyder		'56.25100 [°]	33.37571	38		.171.449762	904
1	2	S120509	fb76459f- c047-4a9d- 8af9- e0f7d4ac2524	West Branch	MI	Ogemaw	48661	44.32893	84.24080	10446		.242.948015	800
2		K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35		OR	Yamhill	97148	45.35589 [°]	23.24657	,3735		.159.440398	205
3	4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311		CA	San Diego	92014	32.96687	17.24798	13863		.120.249493	216
4	5	K662701	68a861fd- 0d20-4e51- a587- 8a90407ee574	Needville	TX	Fort Bend	77461	29.38012	95.80673	11352		.150.761216	271

Find number of records and columns of dataset

df.shape

Out[11]:

Describe Churn dataset statistics

df.describe()

CaseOrde Outage_sec_perv Lat Lng Population Children Zip Age Income cou 10000.000 10000.0000 10000.0000 10000.0000 10000.00000 7505.0000 75 7510.000000 10000.000000 0 00 00 00 mea 5000.5000 49153.3196 38.757567 -90.782536 9756.562400 2.095936 53 275748 1.452955 std 2886.8956 27532.1961 5.437389 14432.69867 2.154758 20 15.156142 753928 7.025921 8 171.688150 0.000000 0.000000 18 000000 1.00000 601.000000 17.966120 740.660000 1.348571 **25%** 2500.7500 26292.5000 35.341828 -97.082813 738.000000 0.000000 35 000000 8.054362 0 00 **50%** 5000.5000 48869.5000 39.395800 33186.78500 -87.918800 2910.500000 1.000000 53 000000 10.202896 0 **75%** 7500.2500 71866.5000 42.106908 -80.088745 0 = 3.000000 -80.088745 0 = 3.00000012.487644 14 0 00 max 10000.000 99929.0000 70.640660 258900.7000 17.049280 00 8 rows × 23 columns

Remove less meaningful variables from statistics description
df_stats = df.drop(columns=['CaseOrder', 'Zip', 'Lat', 'Lng'])
df stats.describe()

out[13]:

	Population	Children	Age	Income	Outage_sec_perw eek		Email	Contacts	Yearly_equip_fai	
coun t		7505.0000 00	00		10000.000000	1000 00	0.0000	10000.0000 00	10000.000000	906 00
mea n	9756.562400	2.095936	53.275748	39936.76222 6	11.452955	12.0	16000	0.994200	0.398000	34.4
std	14432.69867 1	2.154758	20.753928	28358.46948 2	7.025921	3.02	5898	0.988466	0.635953	26.4
min	0.000000	0.000000	18.000000	740.660000	-1.348571	1.00	0000	0.000000	0.000000	1.00
25%	738.000000	0.000000	35.000000	19285.52250 0	8.054362	10.0	00000	0.000000	0.000000	7.89
	2910.500000		53.000000	33186.78500 0	10.202896	12.0	00000	1.000000	0.000000	36.1
75%	13168.00000 0	3.000000	71.000000	53472.39500 0	12.487644	14.0	00000	2.000000	1.000000	61.4
	111850.0000 00	10.000000		258900.7000 00	47.049280	23.0	00000	7.000000	6.000000	71.9

Calculate Churn Rate

df.Churn.value_counts() / len(df)

No 0.735

Name: Churn, dtype: float64

Review data types (numerical => "int64" & "float64"; &
categorical => "object") in data set

df.dtypes

CaseOrder	int64	
Customer_id	object	
Interaction	object	
City	object	
State	object	
County	object	
Zip	int64	
Lat	float64	
Lng	float64	

Tn [14] ·

Out[14]:

In [15]:

Population	int64
Area	object
Timezone	object
Job	object
Children	float64
Age	float64
Education	object
Employment	object
Income	float64
Marital	object
Gender	object
Churn	object
Outage_sec_perweek	float64
Email	int64
Contacts	int64
Yearly_equip_failure	int64
Techie	object
Contract	object
Port_modem	object
Tablet	object
InternetService	object
Phone	object
Multiple	object
OnlineSecurity	object
OnlineBackup	object
DeviceProtection	object
TechSupport	object
StreamingTV	object
StreamingMovies	object
PaperlessBilling	object
PaymentMethod	object
Tenure	float64
MonthlyCharge	float64
Bandwidth_GB_Year	float64
Responses	int64
Fixes	int64
Replacements	int64
Reliability	int64
Options	int64
Respectful	int64
Courteous	int64
Listening	int64
dtype: object	

In [16]:

Re-validate column data types and missing values df.columns.to_series().groupby(df.dtypes).groups

In [17]:

Display non-null fields within each columns df.info()

```
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 51 columns):
# Column
                     Non-Null Count Dtype
0 CaseOrder
                     10000 non-null int64
1 Customer_id
                     10000 non-null object
                     10000 non-null object
2 Interaction
3 City
                     10000 non-null object
4 State
                     10000 non-null object
                     10000 non-null object
5 County
7 Lat
                     10000 non-null float64
8 Lng
   Population
10 Area
                       10000 non-null object
11 Timezone
                     10000 non-null object
                     10000 non-null object
13 Children
                     7505 non-null float64
```

7525 non-null float64

<class 'pandas.core.frame.DataFrame'>

14 Age

```
15 Education
                     10000 non-null object
                       10000 non-null object
16 Employment
17 Income
                      7510 non-null float64
                     10000 non-null object
18 Marital
19 Gender
                     10000 non-null object
20 Churn
                     10000 non-null object
21 Outage_sec_perweek 10000 non-null float64
                    10000 non-null int64
10000 non-null int64
22 Email
23 Contacts
24 Yearly_equip_failure 10000 non-null int64
25 Techie
                       7523 non-null
                                     object
26 Contract
                       10000 non-null object
                     10000 non-null object
27 Port_modem
                      10000 non-null object
28 Tablet
29 InternetService
                     10000 non-null object
30 Phone
                      8974 non-null object
31 Multiple
                      10000 non-null object
32 OnlineSecurity
                     10000 non-null object
33 OnlineBackup
                     10000 non-null object
34 DeviceProtection 10000 non-null object
35 TechSupport
                       9009 non-null object
36 StreamingTV
                       10000 non-null object
37 StreamingMovies
                       10000 non-null object
38 PaperlessBilling
39 PaymentMethod
                     10000 non-null object
40 Tenure
                      9069 non-null float64
41 MonthlyCharge 10000 non-null float64
42 Bandwidth_GB_Year 8979 non-null float64
                     10000 non-null int64
43 Responses
44 Fixes
                      10000 non-null int64
                     10000 non-null int64
45 Replacements
46 Reliability
47 Options
                       10000 non-null int64
48 Respectful
                       10000 non-null int64
49 Courteous
                       10000 non-null int64
50 Listening
                       10000 non-null int64
dtypes: float64(9), int64(14), object(28)
```

memory usage: 3.9+ MB

Find missing values

df.isnull()

	CaseOrder	Customer_i	idInteraction	CityStateCo	unty Zi _l	Lat	LngPop	ulation	MonthlyCharge	Bandwidth_GB_Y
0	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
1	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
2	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
3	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
4	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
									• • •	***
9995	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
9996	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
9997	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
9998	False	False	False	False False Fal	lse Fals	False	False Fals	е	False	False
9999	False	False	False	False False Fal	lse Fals	False	False Fals	e	False	False

10000 rows × 51 columns

In [19]:

Access only rows from dataframe containing missing values
df.isnull().any(axis=1)

In [20]:

- # Woah, lots of empty fields! Immediately noticeable as "True"
 in columns of "Children", "Age", "Income", "Techie", "Phone",
 "Tenure"
- # Display the specific columns with NAs
 df.isna().any()

CaseOrder False
Customer_id False

Interaction	False
City	False
State	False
County	False
Zip	False
Lat	False
Lng	False
Population	False
Area	False
Timezone	False
Job	False
Children	True
Age	True
Education	False
Employment	False
Income	True
Marital	False
Gender	False
Churn	False
Outage_sec_perweek	False
Email	False
Contacts	False
Yearly_equip_failure	False
Techie	True
Contract	False
Port_modem	False
Tablet	False
InternetService	False
Phone	True
Multiple	False
OnlineSecurity	False
OnlineBackup	False
DeviceProtection	False
TechSupport	True
StreamingTV	False
StreamingMovies	False
PaperlessBilling	False
PaymentMethod	False
Tenure	True
MonthlyCharge	False
Bandwidth_GB_Year	True
Responses	False
Fixes	False
Replacements	False

Reliability False
Options False
Respectful False
Courteous False
Listening False
dtype: bool

In [21]:

Confirm missing observations numbers data_nulls = df.isnull().sum() print(data_nulls)

CaseOrder	
Customer_id	
Interaction	
City	
State	
County	
Zip	
Lat	
Lng	
Population	
Area	
Timezone	
Job	
Children	2495
Age	2475
Education	
Employment	
Income	2490
Marital	
Gender	
Churn	
Outage_sec_perweek	
Email	
Contacts	
Yearly_equip_failure	
Techie	2477
Contract	
Port_modem	
Tablet	
InternetService	
Phone	1026
Multiple	

OnlineSecurity	
OnlineBackup	
DeviceProtection	
TechSupport	991
StreamingTV	
StreamingMovies	
PaperlessBilling	
PaymentMethod	
Tenure	931
MonthlyCharge	
Bandwidth_GB_Year	1021
Bandwidth_GB_Year Responses	1021 0
Responses	
Responses	
Responses Fixes Replacements	
Responses Fixes Replacements Reliability	
Responses Fixes Replacements Reliability Options	
Responses Fixes Replacements Reliability Options Respectful	

In [22]:

Store rows with missing values in a new variable
rows_with_missing_values = df.isnull().any(axis=1)
df[rows_with_missing_values]

Out [22] •

	CaseOrder	Customer_ic	I Interaction	City	State	County	Zip	Lat	Lng	Population	 MonthlyCh
0	1	K409198		Point Baker	AK	Prince of Wales- Hyder	99927	6.25100	- 133.37571	38	 171.44976:
2	3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35	Yamhill	OR	Yamhill	97148	\$5.35589	- 123.24657	,3735	 159.44039
5	6	W303516	2b451d12- 6c2b-4cea- a295- ba1d6bced078	Fort Valley	GA	Peach	31030	32.57032	-83.89040	17701	 184.40155
6	7	U335188	6630d501- 838c-4be4-	Pioneer	TN	Scott	37847	6.43420	-84.27892	2535	 200.06488

	CaseOrder	Customer_	_id Interaction	City	State	County	Zip	Lat	Lng	Population	 MonthlyCh
			a59c- 6f58c814ed6a								
7	8	V538685	70ddaa89- b726-49dc- 9022- 2d655e4c7936	Oklahoma City	OK	Oklahoma	73109:	85.43313	-97.52463	23144	 114.75411
9994	9995	P175475	c60df12b- a50b-4397- ae57- 98381a0d3960	West Kill	NY	Greene	12492	J2.18491	-74.33574	210	 143.68790
9995	9996	M324793	45deb5a2- ae04-4518- bf0b- c82db8dbe4a4	Mount Holly	VT	Rutland	5758	13.43391	-72.78734	640	 159.82880
9996		D861732	6e96b921- 0c09-4993- bbda- a1ac6411061a		TN	Montgomery	⁄37042:	6.56907	-87.41694	77168	 208.85640
9997	9998	1243405	e8307ddf- 9a01-4fff- bc59- 4742e03fd24f	Mobeetie	тх	Wheeler	79061	35.52039	- 100.44180	406	 168.22090
9999	10000	T38070	9de5fb6e- bd33-4995- aec8- f01d0172a499	Clarkesville	:GA	Habersham	30523	34.70783	-83.53648	12230	 218.37100

7867 rows × 51 columns

In [23]:

Examine columns for misspellings in categorical variables using unique() method

df['Employment'].unique()

array(['Part Time', 'Retired', 'Student', 'Full Time', 'Unemployed'],

dtype=object)

In [28]:

df['Area'].unique()

Out[28]:

```
df['Timezone'].unique()
array(['America/Sitka', 'America/Detroit', 'America/Los_Angeles',
      'America/Chicago', 'America/New_York', 'America/Puerto_Rico',
      'America/Denver', 'America/Menominee', 'America/Phoenix',
      'America/Indiana/Indianapolis', 'America/Boise',
      'America/Kentucky/Louisville', 'Pacific/Honolulu',
      'America/Indiana/Petersburg', 'America/Nome', 'America/Anchorage',
      'America/Indiana/Knox', 'America/Juneau', 'America/Toronto',
      'America/Indiana/Winamac', 'America/Indiana/Vincennes',
      'America/North_Dakota/New_Salem', 'America/Indiana/Tell_City',
      'America/Indiana/Marengo', 'America/Ojinaga'], dtype=object)
df['Job'].unique()
array(['Environmental health practitioner', 'Programmer, multimedia',
      'Chief Financial Officer', 'Solicitor', 'Medical illustrator',
      'Chief Technology Officer', 'Surveyor, hydrographic',
      'Sales promotion account executive',
      'Teaching laboratory technician', 'Museum education officer',
      'Teacher, special educational needs', 'Maintenance engineer',
      'Engineer, broadcasting (operations)', 'Learning disability nurse',
      'Automotive engineer', 'Amenity horticulturist',
      'Applications developer', 'Immunologist', 'Engineer, electrical',
      'Broadcast presenter', 'Counsellor', 'Geophysical data processor',
      'Designer, multimedia', 'Event organiser',
      'Equality and diversity officer', 'Psychiatrist',
      'Surveyor, commercial/residential', 'Civil Service administrator',
      'Radiographer, diagnostic', 'Air traffic controller', 'Dietitian',
      'Therapist, occupational', 'Building services engineer',
      'Information officer', 'Outdoor activities/education manager',
      'Market researcher', 'Surveyor, insurance', 'Office manager',
      'Editorial assistant', 'Customer service manager',
      'Production designer, theatre/television/film',
      'Analytical chemist', 'Print production planner',
      'Conservation officer, nature', 'Librarian, public',
      'Financial adviser', 'Surveyor, building',
```

'Horticulturist, amenity', 'Diagnostic radiographer',

array(['Urban', 'Suburban', 'Rural'], dtype=object)

```
'Doctor, general practice', 'Insurance risk surveyor',
'Heritage manager', 'Legal executive', 'Professor Emeritus',
'Radio producer', "Barrister's clerk", 'Engineer, automotive',
'Recruitment consultant', 'Commercial horticulturist',
'Pharmacist, community', 'Forest/woodland manager',
'Designer, graphic', 'Civil engineer, consulting',
'Science writer', 'Health and safety inspector',
'Administrator, Civil Service', 'Technical sales engineer',
'Special educational needs teacher', 'Sports therapist',
'Engineer, communications', 'Oceanographer', 'Archaeologist',
'Personal assistant', 'Animal nutritionist', 'Hydrologist',
'Arts development officer', 'Herpetologist',
'Medical sales representative',
'Scientist, research (physical sciences)',
'Higher education lecturer', 'Nurse, adult', 'Chiropodist',
'Therapeutic radiographer', 'Designer, television/film set',
'Education officer, environmental', 'Colour technologist',
'Academic librarian', 'Mudlogger', 'Designer, textile',
'Chief Strategy Officer', 'Loss adjuster, chartered',
'Pharmacologist', 'Hydrographic surveyor',
'Engineer, manufacturing', 'Research scientist (medical)',
'Wellsite geologist', 'Embryologist, clinical',
'Occupational psychologist', 'Sales professional, IT',
'Advertising copywriter', 'Radiographer, therapeutic',
'English as a second language teacher', 'Occupational therapist',
\verb|'Armed forces logistics/support/administrative officer'|,
'Technical author', 'Regulatory affairs officer',
'Optician, dispensing', 'Theme park manager', 'IT trainer',
'Contracting civil engineer', 'Psychologist, sport and exercise',
'Manufacturing engineer', 'Musician',
'Senior tax professional/tax inspector', 'Engineer, biomedical',
'Facilities manager', 'Osteopath', 'Corporate investment banker',
'Psychotherapist', 'Copywriter, advertising',
'Horticultural consultant', 'Microbiologist',
'Educational psychologist', 'Sport and exercise psychologist',
'Risk manager', 'Health visitor', 'Visual merchandiser',
'Clinical biochemist', 'Water quality scientist', 'Optometrist',
'Petroleum engineer', 'Building control surveyor',
'Financial planner', 'Theatre director', 'Secretary, company',
'Materials engineer', 'Civil Service fast streamer',
'Health service manager', 'Scientist, forensic',
'Immigration officer', 'Dealer',
'Planning and development surveyor', 'Broadcast engineer',
'Local government officer', 'Nature conservation officer',
```

```
'Private music teacher', 'Geologist, wellsite', 'Gaffer',
'Curator', 'Editor, commissioning', 'Barrister', 'TEFL teacher',
'Public relations account executive', 'Audiological scientist',
'Travel agency manager', 'Land', 'Music therapist',
'Librarian, academic', 'Film/video editor',
'Journalist, broadcasting', 'Waste management officer',
'Scientist, water quality', 'Sub', 'Neurosurgeon',
'Scientist, research (maths)', 'Public house manager',
'Building surveyor', 'Animator',
'Production assistant, television', 'Transport planner',
'Geneticist, molecular', 'Merchant navy officer',
'Research scientist (life sciences)',
'Engineer, building services', 'Solicitor, Scotland',
'Hospital pharmacist', 'Engineer, petroleum', 'Oncologist',
'IT technical support officer', 'Site engineer',
'Early years teacher', 'Plant breeder/geneticist',
'Chartered management accountant',
'Runner, broadcasting/film/video', 'Newspaper journalist',
'Naval architect', 'Agricultural engineer', 'Meteorologist',
'Designer, ceramics/pottery', 'Environmental education officer',
'Textile designer', 'Engineer, materials', 'Magazine journalist',
'Conference centre manager', 'Dance movement psychotherapist',
'Warden/ranger', 'Teacher, English as a foreign language',
'Producer, television/film/video', 'Make', 'Pharmacist, hospital',
'Therapist, horticultural', 'Journalist, newspaper',
'Retail merchandiser', 'Nurse, mental health', 'Chief of Staff',
'Systems analyst', 'Electronics engineer', 'Quantity surveyor',
'Minerals surveyor', 'Scientist, research (life sciences)',
'Archivist', 'Brewing technologist',
'Investment banker, operational',
'Accountant, chartered certified', 'Surveyor, minerals',
'Hospital doctor', 'Theatre stage manager',
'Operational researcher', 'Tax inspector',
'Television camera operator', 'Arts administrator',
'Patent attorney', 'Bonds trader', 'Ship broker',
'Furniture conservator/restorer', 'Media planner',
'Radio broadcast assistant', 'Mental health nurse',
'Purchasing manager', 'Scientist, biomedical', 'Photographer',
'Sports coach', 'Environmental manager', 'Estate agent',
'Public librarian', 'Designer, blown glass/stained glass',
'Occupational hygienist', 'Surgeon', 'Youth worker',
'Hotel manager', 'Programmer, systems', "Politician's assistant",
'Social researcher', 'Publishing copy', 'Tax adviser',
'Quarry manager', 'Buyer, industrial', 'Production manager',
```

```
'Police officer', 'Theatre manager', 'Sports administrator',
'Research scientist (maths)', 'Therapist, music', 'Soil scientist',
'Holiday representative', 'Producer, radio',
'Intelligence analyst', 'Geochemist', 'Probation officer',
'Fish farm manager', 'Chartered accountant', 'Architect',
'Psychiatric nurse', 'Farm manager', 'Geoscientist',
'Lecturer, further education', 'Horticulturist, commercial',
'Surveyor, quantity', 'Clothing/textile technologist',
'Technical brewer', 'Landscape architect',
'Information systems manager', 'Sales executive',
'Exercise physiologist', 'Administrator, arts', 'Careers adviser',
'Lobbyist', 'Claims inspector/assessor', 'Recycling officer',
'Product/process development scientist', 'Paramedic',
'Fine artist', 'Teacher, secondary school',
'Data processing manager', 'Government social research officer',
'Product manager', 'Accounting technician', 'Engineer, land',
'Lawyer', 'Restaurant manager', 'Catering manager', 'Contractor',
'Research officer, government', 'Medical secretary', 'Podiatrist',
'Phytotherapist', 'Surveyor, building control', 'Comptroller',
'Lighting technician, broadcasting/film/video', 'Paediatric nurse',
'Designer, furniture', 'Adult guidance worker',
'Clinical molecular geneticist', 'Games developer', 'Metallurgist',
'Armed forces technical officer', 'Risk analyst',
'Careers information officer', 'Garment/textile technologist',
'Multimedia specialist', 'Trade union research officer',
'Museum/gallery exhibitions officer',
'Armed forces operational officer', 'Air broker',
'Mechanical engineer', 'Ceramics designer', 'Airline pilot',
'Trading standards officer', 'Advice worker', 'Music tutor',
'Leisure centre manager', 'Surveyor, rural practice',
'Scientist, physiological', 'Fisheries officer',
'Research officer, trade union', 'Licensed conveyancer',
"Nurse, children's", 'Museum/gallery curator',
'Psychologist, occupational', 'Astronomer', 'Therapist, drama',
'Therapist, speech and language', 'Surveyor, land/geomatics',
'Production assistant, radio', 'Human resources officer',
'Fast food restaurant manager', 'Orthoptist',
'Public relations officer', 'Bookseller',
'Health and safety adviser', 'Clinical cytogeneticist',
'Ergonomist', 'Psychologist, prison and probation services',
'Actuary',
'Scientist, clinical (histocompatibility and immunogenetics)',
'Community development worker', 'Consulting civil engineer',
'Television production assistant', 'Veterinary surgeon',
```

```
'Teacher, adult education', 'Civil engineer, contracting',
'Architectural technologist', 'Volunteer coordinator',
'Primary school teacher', 'Insurance underwriter',
'Research officer, political party',
'Radiation protection practitioner', 'Psychotherapist, child',
'Interior and spatial designer', 'Therapist, nutritional',
'Jewellery designer', 'Press sub',
'Clinical scientist, histocompatibility and immunogenetics',
'Administrator, sports', 'Insurance account manager',
'Museum/gallery conservator', 'Furniture designer',
'Haematologist', 'Associate Professor', 'Physicist, medical',
'Pathologist', 'Chartered public finance accountant', 'Printmaker',
'Surveyor, mining', 'Chief Marketing Officer',
'General practice doctor', 'Chemical engineer',
'Forensic scientist', 'Marketing executive', 'Art gallery manager',
'Therapist, sports', 'Insurance claims handler',
'Secondary school teacher',
'Development worker, international aid', 'Quality manager',
'Conservator, furniture', 'Tour manager',
'Control and instrumentation engineer', 'Adult nurse',
'Diplomatic Services operational officer', 'Cartographer',
'Chiropractor', 'Land/geomatics surveyor', 'Statistician',
'Financial trader', 'Special effects artist',
'Clinical psychologist', 'Further education lecturer',
'Engineer, water', 'Energy manager', 'Education administrator',
'Art therapist', 'Television floor manager', 'Legal secretary',
'Merchandiser, retail', 'Web designer',
'Nurse, learning disability',
'International aid/development worker', 'Warehouse manager',
'Engineer, mining', 'Exhibition designer',
'Administrator, local government', 'Water engineer',
'Physiotherapist', 'Engineer, electronics', 'Equities trader',
'Telecommunications researcher', 'Hydrogeologist',
'Community education officer', 'Engineer, energy',
'Scientist, audiological', 'Patent examiner', 'Retail manager',
'Engineer, aeronautical', 'Engineer, site',
'Engineer, civil (contracting)', 'Proofreader',
'Scientist, marine', 'Speech and language therapist',
'IT sales professional', 'Buyer, retail', 'Network engineer',
'Commercial art gallery manager',
'Chartered legal executive (England and Wales)',
'Presenter, broadcasting', 'Surveyor, planning and development',
'Research scientist (physical sciences)', 'Commissioning editor',
'Operational investment banker', 'Seismic interpreter',
```

```
'Charity officer', 'English as a foreign language teacher',
'Scientist, research (medical)', 'Designer, interior/spatial',
'Lexicographer', 'Therapist, art', 'Clinical embryologist',
'Child psychotherapist', 'Midwife', 'Pensions consultant',
'Tree surgeon', 'Health physicist', 'Artist', 'Company secretary',
'Fashion designer', 'IT consultant', 'Teacher, early years/pre',
'Geographical information systems officer',
'Tourist information centre manager', 'Biomedical engineer',
'Biomedical scientist', 'Financial risk analyst',
'Multimedia programmer', 'Engineer, control and instrumentation',
'Insurance broker', 'Drilling engineer',
'Development worker, community', 'Designer, industrial/product',
'Medical technical officer', 'Advertising account executive',
'Counselling psychologist', 'Tourism officer', 'Dancer',
'Social research officer, government', 'Teacher, music',
'Translator', 'Race relations officer',
'Engineer, civil (consulting)',
'Historic buildings inspector/conservation officer',
'Financial manager', 'Financial controller', 'Designer, jewellery',
'Retail banker'.
'Administrator, charities/voluntary organisations',
'Magazine features editor', 'Psychotherapist, dance movement',
'Barista', 'Passenger transport manager', 'Mining engineer',
'Administrator, education',
'Programme researcher, broadcasting/film/video', 'Ranger/warden',
'Actor', 'Pension scheme manager', 'Investment analyst',
'Physiological scientist', 'Advertising art director',
'Sports development officer', 'Manufacturing systems engineer',
'Accommodation manager', 'Television/film/video producer',
'Accountant, chartered', 'Engineer, agricultural',
'Horticultural therapist', 'Economist',
'Training and development officer', 'Engineer, maintenance',
'Logistics and distribution manager', 'Psychologist, clinical',
'Accountant, chartered management', 'Rural practice surveyor',
'Biochemist, clinical', 'Set designer', 'Nutritional therapist',
'Illustrator', 'Designer, exhibition/display',
'Armed forces training and education officer', 'Location manager',
'Charity fundraiser', 'Community pharmacist',
'Geophysicist/field seismologist', 'Designer, fashion/clothing',
'Computer games developer', 'Acupuncturist',
'Database administrator', 'Stage manager', 'Operations geologist',
'Marine scientist', 'Glass blower/designer', 'Corporate treasurer',
'Ecologist', 'Structural engineer', 'Housing manager/officer',
'Chief Operating Officer', 'Engineer, manufacturing systems',
```

```
'Herbalist', 'Editor, film/video', 'Retail buyer',
'Doctor, hospital', 'Prison officer', 'Ophthalmologist',
'Chemist, analytical', 'Chartered certified accountant',
'Industrial buyer', 'Video editor', 'Publishing rights manager',
'Engineer, drilling', 'Food technologist', 'Arboriculturist',
'Engineer, technical sales', 'Systems developer', 'Firefighter',
'Education officer, museum', 'Media buyer', 'Records manager',
'Aid worker', 'Pilot, airline', 'Advertising account planner',
'Psychologist, counselling', 'Environmental consultant', 'Copy',
'Trade mark attorney', 'Psychologist, forensic', 'Social worker',
'Administrator', 'Agricultural consultant',
'Education officer, community', 'Management consultant',
'Field trials officer', 'Graphic designer',
'Teacher, primary school', 'Homeopath', 'Cabin crew',
'Editor, magazine features', 'Medical physicist',
'Medical laboratory scientific officer', 'Press photographer',
'Field seismologist', 'Estate manager/land agent',
'Industrial/product designer', 'Software engineer',
'Air cabin crew', 'Freight forwarder', 'Engineer, structural',
'Fitness centre manager', 'Interpreter',
'Scientific laboratory technician', 'Data scientist',
'Electrical engineer', 'Clinical research associate',
'Engineering geologist', 'Call centre manager',
'Psychologist, educational', 'Conservator, museum/gallery',
'Emergency planning/management officer', 'Communications engineer',
'Conservation officer, historic buildings', 'Cytogeneticist',
'Personnel officer', 'Dramatherapist',
'Investment banker, corporate', 'Camera operator',
'Chartered loss adjuster', 'Health promotion specialist',
'Scientist, product/process development', 'Learning mentor',
'Lecturer, higher education',
'Sound technician, broadcasting/film/video',
'Restaurant manager, fast food', 'Engineer, maintenance (IT)',
'Energy engineer', 'Dispensing optician',
'Chief Executive Officer', 'Ambulance person',
'Public affairs consultant', 'Product designer',
'Community arts worker', 'Higher education careers adviser',
'Dentist', 'Exhibitions officer, museum/gallery', 'Futures trader',
'Commercial/residential surveyor', 'Engineer, production',
'Animal technologist', 'Banker', 'Programmer, applications',
'Best boy', 'Secretary/administrator', 'Journalist, magazine',
'Production engineer', 'Accountant, chartered public finance',
'Geologist, engineering', 'Aeronautical engineer',
'Engineer, chemical', 'Forensic psychologist',
```

```
'Broadcast journalist', 'Town planner', 'Toxicologist', 'Writer'],
     dtype=object)
# Well then, how many unique jobs are there and will this
variable help us out much?
len(df['Job'].unique())
df['Children'].unique()
array([nan, 1., 4., 0., 3., 2., 7., 5., 9., 6., 10., 8.])
df['Age'].unique()
array([68., 27., 50., 48., 83., nan, 49., 86., 23., 56., 30., 39., 63.,
     60., 61., 52., 75., 77., 47., 70., 69., 45., 40., 82., 26., 25.,
# Examine age range
age range = df['Age'].unique()
print(sorted(age range))
[23.0, 25.0, 26.0, 27.0, 30.0, 31.0, 39.0, 40.0, 41.0, 43.0, 44.0, 45.0, 47.0, 48.0, 49.0,
df['Education'].unique()
```

```
array(["Master's Degree", 'Regular High School Diploma',
      'Doctorate Degree', 'No Schooling Completed', "Associate's Degree",
      "Bachelor's Degree", 'Some College, Less than 1 Year',
      'GED or Alternative Credential',
      'Some College, 1 or More Years, No Degree',
      '9th Grade to 12th Grade, No Diploma',
      'Nursery School to 8th Grade', 'Professional School Degree'],
     dtype=object)
df['Employment'].unique()
array(['Part Time', 'Retired', 'Student', 'Full Time', 'Unemployed'],
     dtype=object)
df['Marital'].unique()
array(['Widowed', 'Married', 'Separated', 'Never Married', 'Divorced'],
     dtype=object)
df['Gender'].unique()
array(['Male', 'Female', 'Prefer not to answer'], dtype=object)
df['Contract'].unique()
array(['One year', 'Month-to-month', 'Two Year'], dtype=object)
df['PaymentMethod'].unique()
array(['Credit Card (automatic)', 'Bank Transfer(automatic)',
      'Mailed Check', 'Electronic Check'], dtype=object)
```

Display any duplicate rows in the dataframe. data_duplicates = df.loc[df.duplicated()] print(data_duplicates)

Empty DataFrame

Columns: [CaseOrder, Customer_id, Interaction, City, State, County, Zip, Lat, Lng,
Population, Area, Timezone, Job, Children, Age, Education, Employment, Income, Marital,
Gender, Churn, Outage_sec_perweek, Email, Contacts, Yearly_equip_failure, Techie, Contract,
Port_modem, Tablet, InternetService, Phone, Multiple, OnlineSecurity, OnlineBackup,
DeviceProtection, TechSupport, StreamingTV, StreamingMovies, PaperlessBilling,
PaymentMethod, Tenure, MonthlyCharge, Bandwidth_GB_Year, Responses, Fixes, Replacements,
Reliability, Options, Respectful, Courteous, Listening]
Index: []

[0 rows x 51 columns]

In [44]:

Identify the standard deviation of every numeric column in the dataset

data_std = df_stats.std()
print(data_std)

Population	14432.698671
Children	2.154758
Age	20.753928
Income	28358.469482
Outage_sec_perweek	7.025921
Email	3.025898
Contacts	0.988466
Yearly_equip_failure	0.635953
Tenure	26.438904
MonthlyCharge	43.335473
Bandwidth_GB_Year	2187.396807
Responses	1.037797
Fixes	1.034641
Replacements	1.027977
Reliability	1.025816
Options	1.024819
Respectful	1.033586
Courteous	1.028502
Listening	1.028633
dtype: float64	

data_nulls = df_stats.isnull().sum() print(data_nulls)

Customer_id	
Interaction	
City	
State	
County	
Population	
Area	
Timezone	
Job	
Children	2495
Age	2475
Education	
Employment	
Income	2490
Marital	
Gender	
Churn	
Outage_sec_perweek	
Email	
Contacts	
Yearly_equip_failure	
Techie	2477
Contract	
Port_modem	
Tablet	
InternetService	
Phone	1026
Multiple	
OnlineSecurity	
OnlineBackup	
DeviceProtection	
TechSupport	991
StreamingTV	
StreamingMovies	
PaperlessBilling	
PaymentMethod	
Tenure	931
MonthlyCharge	
Bandwidth_GB_Year	1021

```
Fixes
Replacements
Reliability
Options
Respectful
Courteous
Listening
dtype: int64
# Impute missing fields for variables Children, Age, Income,
Tenure and Bandwidth GB Year with median or mean
df stats['Children'] =
df['Children'].fillna(df['Children'].median())
df_stats['Age'] = df['Age'].fillna(df['Age'].median())
df stats['Income'] = df['Income'].fillna(df['Income'].median())
df stats['Tenure'] = df['Tenure'].fillna(df['Tenure'].median())
df stats['Bandwidth GB Year'] =
df['Bandwidth GB Year'].fillna(df['Bandwidth GB Year'].median())
data_nulls = df_stats.isnull().sum()
print(data_nulls)
Customer_id
Interaction
City
County
Population
Area
Timezone
Children
Age
Education
Employment
Marital
```

Responses

Gender

Churn	0
Outage_sec_perweek	0
Email	0
Contacts	0
Yearly_equip_failure	0
Techie	2477
Contract	0
Port_modem	0
Tablet	0
InternetService	0
Phone	1026
Multiple	0
OnlineSecurity	0
OnlineBackup	0
DeviceProtection	0
TechSupport	991
StreamingTV	0
StreamingMovies	0
PaperlessBilling	0
PaymentMethod	0
Tenure	0
MonthlyCharge	0
Bandwidth_GB_Year	0
Responses	0
Fixes	0
Replacements	0
Reliability	0
Options	0
Respectful	0
Courteous	0
Listening	0
dtype: int64	

Anomaly Detection & Data Visualization

```
In [48]:
```

```
# Create histograms of important variables

df_stats[['Children', 'Age', 'Income', 'Tenure',
    'MonthlyCharge', 'Bandwidth_GB_Year']].hist()

plt.savefig('churn_pyplot.jpg')

plt.tight_layout()
```

plt.close() findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans. findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans. Bandwid Age 2000 2000 0 40 60 80 2000 20 Children Inc 5000 -2500 0 -0 5000010000 10 Ó MonthlyCharge Τe 2000 -2000 -0 0 100 150 200 250 300 0 20 # Some odd distributions here, let's see some box plots for outliers # Create a boxplot of user duration, payment & usage variables df_stats.boxplot(['Tenure', 'MonthlyCharge', 'Bandwidth_GB_Year']) plt.savefig('churn_boxplots.jpg')

In [50]:

Let's see monthly charge separately
df_stats.boxplot(['MonthlyCharge'])

 $\mbox{\tt\#}$ Definitely outliers but not sure how that effects PCA down the line

Out[50]:

<matplotlib.axes._subplots.AxesSubplot at 0x150f465dc08>

Let's see a Seaborn boxplot fee & bandwidth
sns.boxplot('MonthlyCharge', data = df_stats)
plt.show()
Definitely outliers but not sure what to do with them


```
df_stats.to_csv('churn_clean.csv')
```

Reload cleaned data & remove all variable except user services payment info and survey data churn_user = pd.read_csv('churn_clean.csv')

Slice off all but last eleven service realted variables data = churn user.loc[:, 'Tenure':'Listening']

data.head() TenureMonthlyChargeBandwidth_GB_YearResponsesFixesReplacemen s Reliability **0**6.795513 171.449762 904.536110 5 5 5 **1**1.156681 242.948015 800.982766 3 3 **2**15.754144159.440398 2 2054.706961 4 **3**17.087227120.249493 2164.579412 4 4 4 4 **4**1.670972 150.761216 271.493436 4 # Import Scikit Learn PCA application from sklearn.decomposition import PCA # Normalize the data churn_normalized = (data - data.mean()) / data.std() # Select number of components to extract pca = PCA(n components = data.shape[1]) # Create a list of PCA names churn numeric = data[['Tenure', 'MonthlyCharge', 'Bandwidth GB Year', 'Responses', 'Fixes', 'Replacements', 'Reliability', 'Options', 'Respectful', 'Courteous', 'Listening']] pcs names = [] for i, col in enumerate(churn numeric.columns): pcs names.append('PC' + str(i + 1)) print(pcs_names)

Options Respectful Courteous

```
['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10', 'PC11']
# Re-Extract Clean dataset
churn numeric.to csv('churn clean final.csv')
churn numeric.head()
   TenureMonthlyChargeBandwidth_GB_YearResponsesFixesReplacemen
06.795513 171.449762
                        904.536110
                                           5
                                                     5
                                                           5
11.156681 242.948015
                        800.982766
                                           3
                                                     4
                                                           3
215.754144159.440398
                        2054.706961
                                           4
                                                     4
                                                           2
                                                     4
                                                           4
317.087227120.249493
                        2164.579412
                                           4
41.670972 150.761216
                                                     4
                                                           4
                        271.493436
                                           4
# Call PCA application & convert the dataset of 19 variables
into a dataset of 19 components
pca.fit(churn normalized)
churn_pca = pd.DataFrame(pca.transform(churn_normalized),
                         columns = pcs names)
# For a scree plot import matplotlib & seaborn libraries
import matplotlib.pyplot as plt
import seaborn as sns
# Run the scree plot
plt.plot(pca.explained_variance_ratio_)
plt.xlabel('Number of Components')
plt.ylabel('Explained Variance')
plt.show();
```

Respectful Courteou

```
3.0 -
    2.5
    2.0
 Eigenvalue
    1.5
    1.0
    0.5
    0.0
                            2
            0
                                                           6
                                                                          8
                                       Number of Components
# Select the fewest components
for pc, var in zip(pcs_names,
np.cumsum(pca.explained_variance_ratio_)):
    print(pc, var)
PC1 0.26792660623963066
PC2 0.44053732880229357
PC3 0.5891444522248594
PC4 0.6801579842425083
PC5 0.7513217054372497
PC6 0.8143117094101318
PC7 0.8681970531672316
PC8 0.9171387362588829
PC10 0.9905736363144831
PC11 1.0
```

```
# Above, we see that 89% of variance is explained by 14
components
# Create a rotation
rotation = pd.DataFrame(pca.components .T, columns = pcs names,
index = churn_numeric.columns)
print(rotation)
                     PC1
                                                PC4
                                                                  PC6 \
                              PC2
               -0.010403 0.701838 -0.072209 -0.063594 0.005683 -0.011155
Tenure
                0.000317 0.041147 -0.014151 0.996995 -0.022136 0.015231
MonthlyCharge
Bandwidth_GB_Year -0.012166 0.703079 -0.074222 0.004399 0.009590 0.003466
                0.458932 0.031325 0.281154 0.018568 -0.070233 -0.119149
Fixes
                0.434134 0.042559 0.282404 0.007508 -0.106632 -0.169752
               0.400639 0.034665 0.281118 -0.019631 -0.173742 -0.255336
Replacements
Reliability
                0.145799 -0.050367 -0.567815 -0.010310 -0.171334 -0.483328
               -0.175633 0.066334 0.587335 -0.000047 0.135949 0.060124
Options
Respectful
               0.405207 -0.012680 -0.183447 0.004596 -0.062342 0.064609
               0.358342 -0.003886 -0.181697 -0.027959 -0.182406 0.806166
Courteous
Listening
               0.308925 -0.017396 -0.131173 0.015574 0.931612 -0.011133
                     PC7
                              PC8
                                       PC9
                                               PC10
                                                        PC11
                0.007419 -0.011527 0.006935 0.003286 -0.705445
Tenure
MonthlyCharge
               -0.018038 -0.004316  0.023690 -0.013785 -0.047865
Bandwidth_GB_Year 0.003701 -0.002364 -0.008068 0.008529 0.706925
               -0.045963 0.025431 -0.240574 0.793237 -0.004306
Responses
               -0.065414 0.074400 -0.592131 -0.573832 -0.002217
Fixes
               -0.146887 -0.396333 0.673088 -0.177665 0.014933
Replacements
Reliability
               -0.443353 0.431528 0.087207 0.018301 0.002283
               -0.209767 0.693861 0.265474 -0.042012 -0.002514
               0.757954 0.402835 0.230319 -0.063972 0.001604
Respectful
               -0.379136 0.067889 0.067293 -0.040946 -0.006875
Courteous
               -0.113297 -0.045132 0.046107 -0.042251 -0.002357
Listening
# Output loadings for components
loadings = pd.DataFrame(pca.components_.T,
                             columns = pcs_names,
                             index = data.columns)
loadings
```

	PC1	PC2	PC3	PC4	PC5	PC6	PC	PC8	PC9	PC10	PC11
Tenure	- 0.010403	0.701838	- 0.072209	- 0.063594	0.005683	- 0.011155	.0 07419	- 0.011527	0.006935	0.003286	- 0.705445
MonthlyCharge	0.000317	0.041147	- 0.014151	0.996995	 0.022136	0.015231 ₀	.018038	- 30.004316	0.023690	- 0.013785	- 0.047865
Daniel Little OD Vasa						0.0034660		1 0.002364	_	0.008529	0.706925
Responses	0.458932	0.031325	0.281154	0.018568	- 0.070233	- 0.1191490	.0 45963	0.025431	- 0.240574	0.793237	- 0.004306
Fire						- 0.1697520					- 0.002217
Daniel and a second as						- 0.2553360					
Deliebility						- 0.4833280					
Ontions						0.060124 ₀					- 0.002514
Respectful	0.405207	- 0.012680	- 0.183447	0.004596	- 0.062342	0.0646090	. <mark>7</mark> 57954	40.402835	0.230319	- 0.063972	0.001604
Courteous	0.358342	- 0.003886	- 0.181697	- 0.027959	- 0.182406	0.806166 ₀	.379130	0.067889	0.067293	- 0.040946	- 0.006875
Listoning						- 0.0111330					

Finally, extract reduced dataset & print 3 components
churn_reduced = churn_pca.iloc[: , 0:3]
print(churn_reduced)

PC1 PC2 PC3

0 1.923875 -1.421955 1.903125

1 -0.199798 -1.706801 0.538766

2 -0.667923 -0.985940 0.227390

3 0.046465 -0.730628 2.282040

4 1.326741 -1.924880 0.825729

...

9995 -2.097964 1.961837 0.104147

9996 1.917485 1.645946 0.611009

9997 1.431918 0.323573 0.028288

9998 2.011460 2.187756 -0.079864

9999 -2.266364 1.591986 -0.819973

Part III: Data Cleaning

D. Data Cleaning Summary

D1.Cleaning Findings: There was much missing data with meaningful variable fields including Children, Age, Income, Tenure and Bandwidth_GB_Year. Given mean and variance of these variables, it seemed reasonable to impute missing values with median values. Many categorical (such as whether or not the customer was "Techie") & non-numeric (columns for customer ID numbers & related customer transaction IDs) data were not included in analysis given they seemed less meaningful to interpretation and decision-making. The anomalies discovered were not significant & were mitigated as follows.

D2.Justification of Mitigation Methods: Mitigated missing values with imputation using median values. MonthlyCharge variable shows outliers so left alone. Does not seem significant to this analysis.

D3.Summary of Outcomes: Cleaned dataset to leave remaining variables describing customer tenure, monthly service charge, yearly bandwidth usage & responses to survey. Seems pretty straightforward at this point.

D4.Mitigation Code: (see code above and Panopto recording)
D5.Clean Data: (see attached file

D6.Limitations: Limitations given the telecom company data set are that the data are not coming from an warehouse. In this scenario, it is as though I initiated and gathered the data. So, I am not able to reach out to the staff that organized & gathered this information to ask them why certain NAs are there, why are fields such as age or yearly bandwidth usage missing information that might be relevant to answering questions about customer retention or churn. In a real world project, you would be able to go down to the department where these folks worked and fill in the empty fields or discover why fields are left blank.

Commented [PCEV18-4]:

Sentence Fluency: Sentence fragment →Sentence fluency concerns recur.

WGU's Guide to Academic Writing
Link: Module 5.24: Sentence Fragments

Commented [PCEV18-5]:

Parts of Speech: Incorrect article
 →Parts of speech errors recur.

WGU's Guide to Academic Writing Link: Module 8.12: Article Usage

D7. The accurate factual data for missing fields that might be recoverable given the ability to access the staff in the data warehouse, such as company tenure with the company, may give a slighty different overall picture to the analysis. While imputation may provide a path to move forward and give decision-makers reasonable answers, there really is no reason for these data to be missing. The limitations here could be remedied by instituting stricter data acquisition procedures, follow-ups & feedback.

E. PCA Application¶

E1. Principal Components: The principal components, and what I determined to be "most important", in this dataset include survey responses to:

- Timely Responses
- Timely Fixes
- Timely Replacements
- Respectful Response

E2. Criteria Used: I had a sneaking intuitition that these might be the most important features to predict why a customer might or might not leave a company. However, confirmation bias is not what confirmed this forethought. I used a scree plot & extracted the eigenvalues for visualization of where the "elbow was bending". The elbow bent at about 3 but kept an eigenvalue above 1 until the tenth component. Then, the fewest number of components were selected based on the 89% explanation using the Numpy cumsum method. A rotation & loadings were created which suggested the "most important" features of the dataset.
E3. Benefits: Their is as the loadings suggest the variables involved in timely action with regard to customer satisfaction should be given greater emphasis and hopefully help reduce the the churn rate from the large number of 27% & "increase the retention period of customers" by targeting more resources in the direction prompt customer service (Ahmad, 2019).

Commented [PCEV18-6]:

- Word Choice: Repeated words
- →Word choice errors recur.

WGU's Guide to Academic Writing

Link: Module 8.27: Vocabulary in Academic Writing

Again, this seems an intuitive result but now decision-makers in the company of reasonable verification of what might have been a "hunch".

Part IV: Supporting Documents

F. Video¶

(see Panopto recording)

G. Sources for Third-Party Code¶

Cmdline. (2018, March 20). How To Change Column Names and Row Indexes in Pandas? Python and R Tips.

https://cmdlinetips.com/2018/03/how-to-change-column-names-and-row-indexes-in-pandas/

Larose, C. D. & Larose, D. T. (2019). *Data Science: Using Python and R.* John Wiley & Sons, Inc.

Poulson, B. (2016). *Data Science Foundations: Data Mining* LinkedIn Learning.

https://www.linkedin.com/learning/data-science-foundations-data-mining/anomaly-detection-in-python?u=2045532

Sree. (2020, October 26). *Predict Customer Churn in Python.* Towards Data Science.

https://towardsdatascience.com/predict-customer-churn-in-python-e8cd6d3aaa7

VanderPlas, J. (2017). Python Data Science Handbook: Essential Tools for Working with Data.

O'Reilly Media, Inc.

H. Sources¶

Ahmad, A. K., Jafar, A & Aljoumaa, K. (2019, March 20). Customer churn prediction in telecom using machine

learning in big data platform. Journal of Big Data.

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0191-6

Altexsoft. (2019, March 27). Customer Churn Prediction Using Machine Learning: Main Approaches and Models.

Altexsoft.

https://www.altexsoft.com/blog/business/customer-churn-prediction-forsubscription-businesses-using-machine-learning-main-approaches-andmodels/

Frohbose, F. (2020, November 24). *Machine Learning Case Study: Telco Customer Churn Prediction*.

Towards Data Science.

https://towardsdatascience.com/machine-learning-case-study-telco-customer-churn-prediction-bc4be03c9e1d

Mountain, A. (2014, August 11). *Data Cleaning*. Better Evaluation. https://www.betterevaluation.org/en/evaluation-options/data_cleaning