Problem 3 $\varphi(n) = |\{i | \leq i \leq n, \gcd(n, i) = 1\}|$ for m, n such that $\gcd(m, n) = 1, \varphi(mn) = \varphi(m) \cdot \varphi(n)$ 1. Let p be a prime number. $\phi(p) = |\{i| \le i \le p, \gcd(p, i) = 1\}|$ Since all integers less than p are coprine with p, and there are p-1 numbers less than p and greater than or equal to I, 3. Let p be a prime number and a \(\int Z^{\psi}, \alpha \rho.\)
What is a \(\phi(\rho)\) mod \(\rho^2\) from port 1, \(\phi(\rho) = \rho - 1\)
a \(\phi(\rho)\) mod \(\rho = \alpha^{-1}\) mod \(\rho = \frac{1}{2}\) mod \(\rho = \frac{1}{2}\) 2. Let p be prime and h be a positive neger. What is $\phi(p^k)$? This is just all the numbers up to p^k minus all the multiples of p, For p^k , there are p^{k-1} multiples of p less than p^k . So $\lfloor \mathscr{D}(p^k) = p^k - p^{k-1} \rfloor$ 4. b with prime Footors p., P_2 , P_3 , ..., P_K . $b = p^{\alpha_1}$. $P_2^{\alpha_2}$... P_k $gcd(a_1b) = 1$ given, show $a^{\alpha(b)} = 1$ mod P_i . Since a is coprime with b, it is also coprime with all factors of b, and all $P_i^{\alpha(a_1)}$ are coprime with P_{i} for $j \neq i$. Using the theorem mentioned earlier: $\alpha^{\varphi(P_{i},\alpha_{1},P_{2},\alpha_{2},...,P_{k},\alpha_{k})} = \alpha^{\varphi(P_{i},\alpha_{1})} \alpha^{\varphi(P_{i},\alpha_{2})} \cdots \alpha^{\varphi(P_{k},\alpha_{k})} \alpha^{\varphi(P_{i},\alpha_{1},P_{k},\alpha_{k})} = \alpha^{\varphi(P_{i},\alpha_{1})} (P_{i}^{\alpha_{1}} - P_{i}^{\alpha_{1}}) (P_{i}^{\alpha_{2}} - P_{i}^{\alpha_{2}}) \cdots (P_{k}^{\alpha_{k}} - P_{k}^{\alpha_{k}})$ for any i, this can be rewritten a K(Pi-1) For KEZ a k(P-1) = (a P-1) = 1 mod p; = 11 mod p; / using FL1