

ROI Specification [DRAFT]

Release 0.0.1

Roger Leigh

CONTENTS

1	Intro	oduction	1
	1.1	Purpose	1
	1.2	Scope	1
	1.3	Reference implementation	1
	1.4	Concepts	1
2	Requ	irements	3
	2.1	Barcelona meeting	3
3	ROI	Discussion	5
	3.1	ROIs in three dimensions	5
	3.2	Bitmasks	5
	3.3	Meshes	5
	3.4	Paths	5
4	2D p	rimitives in 3D	7
	4.1	Conversion to 3D primitives	7
	4.2	Use of 2D primitives in 3D space	7
5	Fund	lamental data types	9
6	Enun	merated types	11
	6.1		11
	6.2	Operator	11
7	Com	pound types	13
•	7.1	K V K	13
	7.2		13
•	~		
8		The state of the s	15
	8.1		15
	8.2		15 16
	8.3 8.4		
	8.5	Shape	17 17
	8.6		17
	8.7	Additional primitives	18
9	Regio	ons in arbitrary dimensions	19

10	Compound ROIs	21
	10.1 Set primitives	21 23
11	Compound types	27
	11.1 Zeiss AxioVision ROI types	27
12	Affine transforms	29
	12.1 2D transforms	29 29
13	Shapes	31
	13.1 Overview	31
	13.2 Definitions	32 42
14	Shape representations	43
	14.1 Overview	43 47
15	Masks	73
	15.1 Specification	73 74
16	Layers	77
17	ROI-ROI links	79
18	Storage of vertex data 18.1 XML schema	81 81 82
19	Definition of terms	83
20	Indices and tables	85
Ind	dex	87

ONE

INTRODUCTION

1.1 Purpose

This document is a formal specification for the definition, storage and exchange of regions of interest (ROIs). This specification will be implementable in any programming language, and is intended to provide a common set of ROI types which will be usable in all image analysis software programs.

1.2 Scope

This specification defines abstract definitions of regions of interest, including details of how certain data structures and algorithms must be defined and behave, in order to ensure that ROIs work uniformly between the different programs and libraries implementing the specification. It also provides examples of serialised forms which may be used for storage and/or exchange. However, it does not define a file format; it is the responsibility of the implementors to integrate this model into their file formats as they see fit.

1.3 Reference implementation

This specification is accompanied by a reference implementation of the model. This implementation is intended to validate and test the correctness of the specification. It may be usable directly, however this is not the primary intention for its existence. Note that the reference implementation strives for complete correctness, and implementors of this specification may wish to provide additional optimisations to improve performance.

1.4 Concepts

- A ROI is an evaluation of a shape object
- A shape is defined by the rules which transform its representation (e.g. geometry, range within a dimension) into a a bitmask and/or greymask
- Each shape has a unique name (type) and number; the number is used for serialisation and versioning
- Each shape is described by one (or more) representations, these are the primitives which define the geometry or range within a dimension

- A shape object can be composed of one or more shapes, which can include transforms and shapes in arbitrary dimensions
- Each representation has a unique name and number; the number is used for serialisation and versioning
- Shapes which share representations may be freely interconverted; conversion is not required to be possible in both directions (e.g. square to rectangle or polyline to/from polygon)
- A shape is essentially a serialised expression which must be evaluated to create a usable ROI; given that certain shapes can contain other shapes, this provides for ROIs which are both extensible and of arbitrary complexity.
- All shapes can be serialised as a sequence of numbers
- Given that each shape can be reconstructed using its shape and representation numbers, which specify the exact sequence of numbers to descrialise to reconstruct the object, it is possible to exchange ROIs as simple text, or alternately as binary; more structured (but space inefficient) representations could be realised using XML.
- The object/function serialisation methodology used here is inspired by (but not derived from) the SSH FXP specification which defines the wire protocol for SFTP.

REQUIREMENTS

2.1 Barcelona meeting

The following points are taken from the meeting notes.

Note: These may be incomplete, please do correct if necessary.

- Iterate through all points in a ROI. Order is important for some use cases, but not all.
- Type mechanism needed. Use concrete types.
- Version types to allow for deprecation, and translation to new versions.
- Define a persistent data model.
- ROIs must be serialisable. Needed for exchange and persistence.
- Serialisation may be implementation dependent. This could be XML, text or binary. Which should be used as a transfer format (if any)?
- Allow conversion between different ROI types.
- Need the ability to specify an interval in an arbitrary dimension.
- Hierarchy of interfaces.
 - Interval, Renderable.
- Need to specify how to draw and display (and edit?) types such as curves so that it does not vary between implementations.
- Persistence and drawing are separate problems.
- Transforms
 - Ability to attach transforms
 - Non-affine transforms.
 - * Need examples to understand the problem better
 - Store transforms with ROI?
 - Apply multiple transforms to a ROI in sequence; nested list of transforms
 - Modelling spaces and objects in space; maybe define transforms separately and reuse them

- Tree of transformations and operations

Union ROIs

- Only works in transform domain / "view space"
- Union of hypervolumes. [How to represent different shapes at different times?]
- Needs to be able to scale up to millions-billions of ROIs

Specific ROI types

- Include checkerboard (uneven integers)
- Hierarchy of ROIs; compound list

• Rendering:

- jHotDraw and other drawing toolkit independence
- Need objects to be manipulable
- List of control points

• Editing:

- Needed to manipulate shapes

Tree of operations

- compiler/interpreter
- obtain a "result"
- Grouping

• Comparison of models:

- OME: ROI is union of shapes

- ImgLib: Group is union of ROIs

THREE

ROI DISCUSSION

3.1 ROIs in three dimensions

Some of the 3D primitives described below may appear to be redundant; it's certainly possible for example, to represent a shape in 3D right now using multiple shapes, one per z plane. However, being able to use native 3D primitives is more powerful: it permits additional measurements involving volume, surface area and shape.

Some shapes may be represented equivalently in different ways; it might be worth considering adding support for these because it firstly allows the shape to be computed in different ways, which can differ depending upon the problem being solved, and it also contains information about how the measurement was made, i.e. the intent of the person doing the measuring, which is lost if converted to a canonical form.

3.2 Bitmasks

Mask Could we have a pointer to an IFD/file reference plus two coordinates so specify a clip region, then we can pack potentially hundreds of masks in a single plane.

3.3 Meshes

Mesh 2D mesh described as e.g a face-vertex mesh.

3DMesh 3D mesh described as e.g. a face-vertex mesh.

Meshes could be computed from masks, polygons, extruded shapes where there is a z range, or from thresholding.

3.4 Paths

3DPath As for Path, but with additional vector to describe motion along the prescribed plane?

FOUR

2D PRIMITIVES IN 3D

4.1 Conversion to 3D primitives

The existing 2D primitives may be represented by the equivalent 3D primitive for the 2D primitive, extruded in z to a single z plane thickness.

While this is desirable for reducing code complexity, retaining the 2D primitives is necessary for 2D measurements (area/perimeter). These can be obtained from the 3D shape by dividing the volume or surface area by the z thickness, respectively. Having the 2D primitives will provide the context for conversion of measurements from 3D volume to 2D surface, since these are otherwise meaningless for 3D ROIs which are not extruded 2D ROIs.

3D ROIs, where appropriate, could provide alternative forms for 2D use. For example, a 3D cylinder would, when extruded from a 2D circle, not have end faces (i.e. would be open), in order for 2D surface area measurements to be correct.

4.2 Use of 2D primitives in 3D space

While it would be possible to translate and rotate 2D primitives in 3D using a 4×4 matrix, it would be simpler for users if rotation could be specified using a unit vector which can specify the angle of the primitive in 3D space; the matrix transform can be trivially construct ed from the vector. However, note that while current transforms occur only in 2D, where the x and y pixel sizes are typically the same, this is not usually the case in z, and so the transformations may need performing in physical units; therefore adding proper support for units would also be desirable to fully support 3D transforms. Note that this would also solve the existing problem in 2D that prevents ellipses and rectangles being rotated (without the use of a matrix transform), though where the rotation centre should be may be shape- and context-dependent. The unit vector to (0,0,-1) which would specify the existing behaviour.

Note: Define behaviour of orientation of unit vector for rotation; which direction are primitives facing by default?

4.2.1 2D extrusion

Reconstruction of 3D shapes from 2D planes distributed in z/t. -> set of 3D objects in t.

4.2.2 2D decomposition

Decompose 3D shape into 3D planes distributed in z.

FUNDAMENTAL DATA TYPES

The following defined types are used in the subsequent sections. Implementors should treat these sizes as minimium requirements.

Note: Roger Leigh Depending upon how we wish to persue interoperability between implementations, these may be required to be exact. Using plain text would mitigate this to an extent.

Table 5.1: Primitives

Name	BinType	Description	
Affine 1D	double[2][2]	Affine transform in 1D	
Affine2D	double[3][3]	Affine transform in 2D	
Affine3D	double[4][4]	Affine transform in 3D	
BLogic	uint8	Bitwise binary logical operator	
Count	uint32	Number of objects	
Index	uint32	Index into an array	
Operator	uint8	Mathematical operator	
RepID	uint16	Numeric shape representation identifier	
Representation	compound	Abstract shape representation	
Shape	compound	Abstract shape	
ShapeID	uint16	Numeric shape identifier	
String	compound	Text string	
Value	double	Numerical value	
Vector1D	double	Vector in 1D	
Vector2D	double[2]	Vector in 2D	
Vector3D	double[3]	Vector in 3D	
Vertex1D	double	Vertex in 1D	
Vertex2D	double[2]	Vertex in 2D	
Vertex3D	double[3]	Vertex in 3D	

Table 5.2: C++ primitives

Name	C++ Type
Affine1D	glm::detail::tmat2x2 <double></double>
Affine2D	glm::detail::tmat3x3 <double></double>
Affine3D	glm::detail::tmat4x4 <double></double>
BLogic	BLogic
Count	int32_t
Index	uint32_t
Operator	Operator
RepID	uint16_t
Representation	scijava::roi::representation
Shape	scijava::roi::shape
ShapeID	uint16_t
String	std::string
Value	double
Vector1D	double
Vector2D	glm::detail::tvec2 <double></double>
Vector3D	glm::detail::tvec3 <double></double>
Vertex1D	double
Vertex2D	glm::detail::tvec2 <double></double>
Vertex3D	glm::detail::tvec2 <double></double>

Table 5.3: Java primitives

Name	Java Type
Affine1D	scijava.roi.types.Matrix2D
Affine2D	scijava.roi.types.Matrix3D
Affine3D	scijava.roi.types.Matrix4D
BLogic	BLogic
Count	int
Index	int
Operator	Operator
RepID	short
Representation	scijava.roi.representation
Shape	scijava.roi.shape
ShapeID	short
String	String
Value	double
Vector1D	scijava.roi.types.Vector1D
Vector2D	scijava.roi.types.Vector2D
Vector3D	scijava.roi.types.Vector3D
Vertex1D	scijava.roi.types.Point1D
Vertex2D	scijava.roi.types.Point2D
Vertex3D	scijava.roi.types.Point3D

Note: Barry DeZonia Support different coordinate spaces as needed (int, long, double). Should be possible to iterate some regions.

ENUMERATED TYPES

6.1 BLogic

Table 6.1: BLogic

Name	Number	Symbol	Description
AND	0	AND	And
OR	1	OR	Or
NOT	2	NOT	Not
XOR	3	XOR	Exclusive or

6.2 Operator

Table 6.2: Operator

Name	Number	Symbol	Description
EQ	0	=	Equals
NE	1	≠	Not equals
LT	2	<	Less than
LE	3	≤	Less than or equal to
GT	4	>	Greater than
GE	5	≥	Greater than or equal to

SEVEN

COMPOUND TYPES

7.1 Shape

Table 7.1: Shape

SeqNo	Type	Name	Description
0	NCHAR	Count	Number of octets
1	SID	ShapeID	Shape identifier
2	RID	RepID	Representation identifier

7.2 String

Table 7.2: String

SeqNo	Type	Name	Description
0	NCHAR	Count	Number of octets
1	uint8[NCHAR]	CHARS	Array of octets (UTF-8)

GEOMETRIC SHAPE PRIMITIVES

8.1 Overview

This section specifies how shapes are described in the model. For some shapes, there are several alternative ways of specifying them; which are worth supporting needs further discussion. One point to consider is that the different ways preserve the intent behind the original measurement and what is in the original metadata where this makes sense, even if this does mean some redundancy; this won't impact on the actual drawing/analysis code, which can deal with each shape in a canonical form. This records how the measurement was made by the user, which may have implications in further analysis and/or verification that the measurement was correct.

While some shapes have been included here for completeness, it's quite possible that not all are needed, particularly in all dimensions.

If anyone wants to check the maths behind the geometry, that would be much appreciated, because I'm firstly not an expert in this area, and it's also quite possible I've made some typos. The naming of the shapes is probably also wanting some improvement.

8.2 Alternative shape representations

Using the current ROI model is that there is only one way to describe each shape. e.g. a polyline can only be described as a series of points; it might in some cases be more natural to specify one as a starting point and a series of vectors; while either are fine just to draw the ROI, it would desirable to store what was measured, since converting it to a canonical representation is lossy, and removes the original measurements taken, and hence the intent of the original annotation. This applies to other shapes as well. For example, a circle or ellipse can be described by a bounding box (which may itself be a point and one or two vectors, or a set of points), or by a point and radius or half-axes, or by the Mahalanobis distance (typically for computing from a normal distribution of points). For a cylinder/cone, we can specify this in multiple ways also from a circle/ellipse plus length, or point plus vector (length and direction) plus radius (or half-axes).

The current model is focussed on drawing shapes, while making measurements involves drawing only for visualisation; the important parts are the values for making the measurement, and of course the results. Some programs (e.g. AxioVision) have separate sets of objects for drawing (annotation) and measurement. These are a largely overlapping set, but the former are not used for any length/area/volume/pixel measurements. Objects such as scale bars and labels are for drawing only.

Todo

Common methods for all primitives: Bounding box [AlignedCuboid3D] Rotation centre [Vertex2D/Vertex3D] Control points [may use points and vertex to describe position and movement path] Conversion to 2D (slab through); equivalent to intersection with cuboid. Should all primitives support a minimum of intersection with AlignedCuboid3D? Or Mesh3D for non-square images. Can 2D methods use alternative axes to project in xz/yz? Default to xy. If all 2D shapes must be represented by 3D forms (i.e. are just proxies), then the equivalent 3D can be used quite simply. Get greymap/bitmap. Get 2D/3D mesh. Intersect (only for cuboid?) Need to clip to image volume (optionally). Also useful to reduce to 2D (which can be a cuboid for a single plane). Non-aligned shapes inherit/implement the aligned forms. Shrink and grow: move polygons along surface normals for meshes. For other shapes, this will require recalculation of the geometry.

Add triangle as special case of polygon, which can be a special case of mesh?

Meshes: Need to be able to triangulate if higher order polygons are possible.

Add representation number to start of number list; this will allow shapes to be embedded in other shapes and be self-describing. e.g. all circle types may be used to specify a circular cylinder end. This will simplify the specification of more complex shapes by limiting the number of variants.

8.3 Shape serialisation

All shape primitives are described in terms of the above fundamental primitives. This means that all shape descriptions are serialisable as a list of integer and double-precision floating point values. The specifics of this are implementation-defined. Example formats:

- Plain text, as a list of values
- XML, as element content or a string attribute
- Binary data stream, using big-endian/network byte order

This also means that for compatible shape types, the shape type may be changed while retaining the following data unchanged (e.g. polyline to polygon spline with the same point list).

Note: Roger Leigh All 2D shape primitives could be oriented in 3D or using a unit Vector3D, which would allow all 2D shapes to be used as surfaces in 3D. They would additionally require a depth in order to be meaningful (or assume a depth of one z slice).

Or, 2D shapes should specify the pair of x/y/z axes they are using, and will be extruded along the third axis.

Key considerations:

- A shape exists in a set of dimensions e.g. xy, xyz, xyt. The shape must define the number of dimensions it exists in, and their identity.
- A shape must be identifiable unambiguously
- A shape must be versioned (to permit correction of any design/analysis bugs without altering any data retrospectively); this permits the replacement of the buggy implementation while not removing it.
- In order to allow code reuse and flexible use of shapes, shapes may include other shapes as part of their primitive specification.

In the following shape descriptions, all shapes are identified by a Shape ID and Representation ID. The shape specifies the geometric shape type. The representation specifies both the primitives required for serialisation, and can also be used for versioning the shape—i.e. it also specifies the behaviour for conversion to greymaps and bitmaps.

8.4 Shape

An abstract description of a shape.

Representation:

Name	Type	Description
S1	ShapeID	Shape
R1	RepID	Representation

Concrete implementations of shapes provide further elements in their representation. The above are only sufficient to describe the shape and its representation. The combination of shape and representation specifies the data required to construct the shape.

Note that one disadvantage of this method is that a reader will be required to understand how to descrialise all shape types; it's not possible to skip unknown shapes due to not knowing their lengths (which may be variable). However, this would be an issue for a purely XML-based implementation as well, so may not be a problem in practice.

Alignment Aligned shape variants are aligned at right-angles to the x and y (2D) or x, y and z (3D) axes.

8.5 Text placement and alignment

In order to annotate text next to measurements, it would be ideal if it were possible to control text placement and orientation. Currently the coordinate of the first letter is required. However, it would be nicer if the text could be also placed to the right of the point or centred on the point. And additionally, to the top, middle or bottom for vertical placement. Rotation would also be useful, though it's probably achievable indirectly via the transformation matrix, i.e. you would effectively have these anchors for placement, where 1 is the current behaviour.

This is needed to e.g. align text along measurement lines. Having a rotation angle specified directly would also save the need for complex calculations to work out the rotation origin and transform every time you want to just place a label along a line. It also makes it possible to place text in the centre of a shape.

8.6 Scale bars

8.4. Shape 17

Note: A 3D scale may need to be a 3D grid to allow visualisation of perspective, in which case the representation will define the grid bounding cuboid; inherit AlignedCuboid3D representations. Permit scale rotation with Cuboid3D? Allow specification of grid size and only allow sizing in discrete units?

8.7 Additional primitives

3D spline surfaces Natural cubic spline (Catmull-Rom)

The axiovision curve type is most likely a natural cubic spline, the curve passing smoothly through all points, but without local control. It is simply represented as a list of points through which the curve must pass; there are no additional control points. Depending upon if they are doing any custom stuff, it might not be possible to represent with pixel-perfect accuracy.

Curves might be more generally applicable to other formats, and useful in their own right. It might be worth considering adding a spline type with local control where the curve passes straight through the control points such as Catmull-Rom splines. This would make it very simple for non-experts to fit smooth lines while annotating their images.

NINE

REGIONS IN ARBITRARY DIMENSIONS

While it is possible to use geometric shapes to specify regions in physical dimensions, this does not translate meaningfully to arbitrary dimensions. The following primitives work in any "dimension" with a discrete or continuous range by permitting the selection of specific values, or sub-ranges.

These "nD" shapes (Value, Values, Range) and the extrusion and combining shapes (Extrude, Combine), permit the specification of ROIs in multiple arbitrary dimensions, and their combination with geometry in 1D, 2D and 3D.

Just as all 1D, 2D and 3D geometry can be converted to the respective 1D, 2D or 3D bitmask or greymask representing the described shape, all nD primitives in higher dimensions can be converted to 1D bitmask or greymask. A 1D bitmask for each dimension will allow efficient iteration over the higher-order dimensions using the resulting bitmaps.

By default, a ROI is unconstrained within all dimensions. The addition of constraints restricts it to particular dimensions, or subsets thereof.

Note: RL. Should we be unconstrained by default, or completely constrained? Should this behaviour be different for "real" dimensions (xyzt) compared with virtual dimensions such as channels?

COMPOUND ROIS

A ROI may consist of multiple shapes combined in different ways. The result is also a shape.

10.1 Set primitives

Shapes may combined using set operators:

- union
- intersection
- difference
- symmetric difference

The shape is the result of the set operation.

Note: Restrict to combinations of 2D or 3D shapes only?

Note: J-M Burel Union in the mathematical sense or aggregation.

10.1.1 Set

A simple collection of shapes. There is no implied relationship unless used with the set operators.

Representation:

Name	Type	Description
S1	ShapeID	Shape
R1	RepID	Representation
NSHAPE	Count	Number of shapes
SHAPE1	Shape	First shape
•••	Shape	Further shapes
SHAPEn	Shape	Last shape

10.1.2 Union

Produce the union of the shapes in the provided set.

Representation:

Name	Type	Description
S1	ShapeID	Shape
R1	RepID	Representation
SET	Set*	Set of shapes

10.1.3 Intersection

Produce the intersection of the shapes in the provided set.

Representation:

Name	Type	Description
S1	ShapeID	Shape
R1	RepID	Representation
SET	Set*	Set of shapes

10.1.4 Difference

Produce the set difference of the shapes in the provided set.

Representation:

Name	Type	Description
S1	ShapeID	Shape
R1	RepID	Representation
SET	Set*	Set of shapes

10.1.5 Symmetric difference

Produce the symmetric difference of the shapes in the provided set.

Representation:

Name	Type	Description
S1	ShapeID	Shape
R1	RepID	Representation
SET	Set*	Set of shapes

• Restrict to either 2D or 3D, but not both?

How do we detect if shapes intersect? Edge cases for set operations using masks-false positives for partially occupied pixels.

Event/Events: A simple list of points. The point size/style/colour may be changed to permit different sets to be distinguished.

Caliper/Distance/Multi-Caliper/Multi-Distance. These are all the same measurement(s), a baseline followed by a list of points. The measurement is the distance from each point to the baseline. The differences between the types are solely the visual presentation of the measurements.

Angle3/Angle4. These measure the angle between two lines. Angle4 is two separate lines, while Angle3 is two lines with a common point (i.e. a special case of Angle4). Angle3 could be represented with a three-point polyline. Angle4 would need to be two separate lines. Given that Angle3 is a special case of Angle4, it is not clear that it should be represented as a polyline.

Circle. While the OME model represents this as an ellipse with equal x and y radii, there are three ways to represent a circle here: - radius defined as a line from centre to edge - radius defined as a line from edge to centre (stored as the first type with the point order reversed) - circumference defined using three points. The first two are representable in the model as an ellipse plus a line. The latter is representable as an ellipse plus three points.

Polyline is directly translatable.

Aligned Rectangle is directly translatable as a rectangle (with some trivial differences in coordinates). However, additional tags define metadata to display inside the rectangle (optional) such as channel/slide/acquisition time/exposure time/etc. The verbatim text can be put into a Label, but the specific meaning would be lost—this is an overlay which would change as you navigate through a stack or timecourse etc, varying with the plane-specific parameters. While the specific tags would be retained, a more generic means to overlay image- and plane-specific OME metadata might be generally useful within the context of the OME model.

Ellipse is directly translatable.

Outline/closed polyline is directly translatable.

Text is convertible to Label. However, the OME Label type lacks the alignment attributes mentioned in my earlier mail. This makes it difficult to control the placement of text in complex compound ROIs.

Length is a single line distance measurement line like, but with additional end lines to make it like a technical drawing line outside the object itself, i.e.

Representable in the model as a simple line, across OBJECT, but with loss of the other lines. It is representable as three separate lines, but with loss of the context of the specific measurement.

Open and closed splines: these are probably natural splines (not Bezier). ZVI currently stores them as polylines given that we don't support splines. But having a spline type would permit them to be stored.

LUT and Profile: Covered in previous mail.

10.2 Storing and manipulating complex compound objects

With these measurements, one thing perhaps worth considering is that there are up to four types of object here:

- 1. Result context: the object(s) representing the physical measurement. This is what we currently store in the model.
- 2. Measurement context: line along radius of circle, points along circumference of circle etc. This is "how the measurement was made"
- 3. Visual context: such as visual cues such as construction lines. This is the visual presentation of the measurement to the viewer.
- 4. Editing context: values which control the placement of the above. Information for generation of UI manipulation handles, and of the other contexts while editing.

We can represent the actual measurements in most cases using the existing ROI types. However, if we store the additional types, it is no longer possible to distinguish between the measurement and the additional context.

If it was possible to distinguish between these in the model, it would be possible for the objects to be displayed without any advanced knowledge of how an object should be edited. It would also be possible to extract the primitive measurement values. However, the measurement context would provide additional information to editors for manipulation of the object, which would then be able to update all three contexts appropriately.

Doing this would provide a simple but effective means for additional ROI types to be added without requiring support in all programs displaying/modifying ROIs. This does not of course replace the need for namespaces to identify ROI categories, but it does supplement it by allowing programs to selectively display different contexts without any knowledge of the underlying type.

As an example, using this length measurement:

1. Result context

```
#*******
```

(where the #s are the start and end points of a Line at either end of the object. This is the value of the physical measurement.)

2. Measurement context

No additional information needed in this case.

3. Visual context

Three lines, one with arrow end markers, plus text label. This is the visual representation of the measurement.

4. Editing context

(where the #s represent a distance between the measured line and the drawn line in the visual context. This information is used to generate the visual context from the measurement context.)

I hope the above does not sound too way out. But the current system is limited to storing only the first of these four contexts, which loses information. While it is possible to delegate all of the presentation and editing to the viewer, the reality is that this is stuff people want. If I'm annotating an image for a paper, I want the annotations to appear exactly the same as I see them if I send them to someone else. And if I'm doing physical measurements, I want the specifics of how I made the measurement to be recorded. All we are doing here is providing additional information to the viewer/editor that it is free to use and/or ignore as it chooses.

Thinking about this a little more, in many cases it will be possible to omit some contexts and infer them from the others. For example, if I have a simple line I will store a line in the result context. The measurement context is the same two points, and so we may simply use the result context points in its place. Likewise, if the measurement is a simple one, the visual context may be omitted and inferred from the result context also. The different contexts really only come into play when we want a more sophisticated visual representation (for example with overlaid textual representations of the measurement value or to visualise the measurement in a more complex manner than the result context alone can provide). And they are essential when using more complex compound ROIs as the last example attached shows.

In the last example, all the information is provided to allow the user to edit the object in a UI. For example, they can adjust the end points of the baseline, and the start points of the lines in the measurement context can be retriangulated from the end points and baseline. The measurement context can be inferred from the endpoints of the lines in the result context. And the endpoints can also be adjusted independently. Following any adjustment, the updated baseline can be stored in the editing context, the measurement lines in the measurement context, and the visual representation in the visual context. The visual context is shown here to include end markers on the distance lines, and text labels with the measured values. But these could be toggled on or off and the settings stored in an annotation specific for this measurement type—there's really no limit to the "extra stuff" you can add here, but the basic measurement remains the same in the result context.

(In this example, the baseline could actually be in the measurement context, since it's part of the measurement; the first example is a better illustration of the editing context.)

The important point is that anyone should be able to open the file and display the visual representation without any knowledge of the specifics of the ROI type or measurements being made. Likewise they can also look at the measured distances in the results context and use them without any knowledge of how they were measured. Only a UI which supports the ROI type in question will need to use the editing and/or measurements context, and they will know how to regenerate the other contexts when editing.

ELEVEN

COMPOUND TYPES

Line Profile LUT Scale bar

LUT/gradient boxes are quite specialist. However, they are also quite common in published figures, so it would make sense to have a general implementation. These are particularly useful when you have false colour heat maps where you need a visual scale to interpret the figure. We already support LUTs, so this is really just a view of the LUT for a given channel inside a rectangle.

Line profiles are quite common. But I guess supporting this would depend upon whether you classify the profile as the result of analysis of a ROI, or part of a ROI. It might be handy to be able to overlay a line profile as a set of coloured polylines, for example.

11.1 Zeiss AxioVision ROI types

For the Zeiss types, we can represent these in the model using:

Zeiss type	ROI model type
Event	Point2D
Events	Point2D (union of points)
Line	Line2D
Caliper	Line2D (union of lines)
Multiple caliper	Line2D (union of lines)
Distance	Line2D (union of lines)
Multiple distance	Line2D (union of lines)
Angle3	Line2D and Arc2D
Angle4	Line2D and Arc2D
Circle	Circle2D and Line2D
Scale Bar	Line2D (with end markers)
Polyline [open]	Polyline2D
Aligned Rectangle	AlignedRectangle2D
Rotated Rectangle	Rectangle2D
Ellipse	AlignedEllipse2D
Polyline [closed]	Polygon2D
Text	Label2D
Length	Line2D (union of lines)
Spline [open]	PolylineSpline2D
Spline [closed]	PolygonSpline2D
LUT	AlignedRectangle2D and Label2D
Line profile	Line2D and Polyline2D/Rectangle2D

Annotations don't typically have labels (with the exception of scale bars). Measurements would have one or more labels in the union as well displaying the value(s) of the measurement.

TWELVE

AFFINE TRANSFORMS

To support proper 3D operation, it would make sense to extend the existing support for 3×3 2D affine transforms to 4×4 3D transforms.

For both 2D and 3D transforms, translation, rotation and scaling are supported. Skewing, using the bottom row of the matrix, is not.

12.1 2D transforms

$$\begin{bmatrix} a & c & e \\ b & d & f \\ 0 & 0 & 1 \end{bmatrix}$$

12.2 3D transforms

$$\begin{bmatrix} a & d & g & j \\ b & e & h & k \\ c & f & i & l \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

THIRTEEN

SHAPES

13.1 Overview

Table 13.1: Shapes

ID	Shape	Dims	Description
0	Point	3D	A single point
1	Points	3D	A set of points
2	Line	3D	A single line
3	Lines	3D	A set of lines
4	Polyline	3D	A set of connected points (open)
5	Polygon	3D	A set of connected points (closed)
6	PolylineSpline	3D	A set of connected splines (open)
7	PolygonSpline	3D	A set of connected splines (closed)
8	Arc	3D	An arc
10	Cuboid	3D	A cuboid
11	Ellipsoid	3D	An ellipsoid
12	Cylinder	3D	An elliptic cylinder
13	Mesh	3D	A mesh
30	BitMask	3D	A mask with one bit values
31	GreyMask	3D	A mask with multiple grey levels
40	AffineTransform	3D	Affine transformation of a shape
41	AbstractTransform	3D	Abstract (implementation-defined) trans-
			formation of a shape
42	Bitwise	3D	Binary bitwise operation
50	Value	nD	A value in an arbitrary dimension
51	Values	nD	A set of values in an arbitrary dimension
52	Range	nD	A range of values in an arbitrary dimension
60	Extrude	nD	Extrude a shape of arbitrary dimensionality
			into an additional dimension.
61	Combine	nD	Combine shapes of differing dimensionality
100	Text	3D	Text (label)
101	Scale	3D	A scale bar between two points
102	Grid	3D	A scale grid in a defined volume

13.2 Definitions

Note that in the following tables, a '•' indicates a representation implemented *directly* by a shape, while '(•)' indicates a representation implemented *indirectly* through inheriting another shape's representations for in (or vice-versa for out).

13.2.1 Point (3D)

A single point.

Table 13.2: Point representations (3D)

Representation	Dim	In	Out	Inherited from
RPoint	1D	•	•	Point (3D) [self]
RPoint	2D	•	•	Point (3D) [self]
RPoint	3D	•	•	Point (3D) [self]

Canonical form is RPoint (3D).

13.2.2 Points (3D)

A set of points.

Table 13.3: Points representations (3D)

Representation	Dim	In	Out	Inherited from
RPoints	1D	•	•	Points (3D) [self]
RPoints	2D	•	•	Points (3D) [self]
RPoints	3D	•	•	Points (3D) [self]

Canonical form is RPoints (3D).

13.2.3 Line (3D)

A single line.

Table 13.4: Line representations (3D)

Representation	Dim	In	Out	Inherited from
RLinePoints	1D	•	•	Line (3D) [self]
RLinePoints	2D	•	•	Line (3D) [self]
RLinePoints	3D	•	•	Line (3D) [self]
RLineVector	1D	•	•	Line (3D) [self]
RLineVector	2D	•	•	Line (3D) [self]
RLineVector	3D	•	•	Line (3D) [self]

Canonical form is RLinePoints (3D).

13.2.4 Lines (3D)

A set of lines.

Table 13.5: Lines representations (3D)

Representation	Dim	In	Out	Inherited from
RLinePoints	1D	(•)		Line (3D)
RLinePoints	2D	(•)		Line (3D)
RLinePoints	3D	(•)		Line (3D)
RLineVector	1D	(•)		Line (3D)
RLineVector	2D	(•)		Line (3D)
RLineVector	3D	(•)		Line (3D)
RLinesPoints	1D	•	•	Lines (3D) [self]
RLinesPoints	2D	•	•	Lines (3D) [self]
RLinesPoints	3D	•	•	Lines (3D) [self]
RLinesVectors	1D	•	•	Lines (3D) [self]
RLinesVectors	2D	•	•	Lines (3D) [self]
RLinesVectors	3D	•	•	Lines (3D) [self]

Canonical form is RLinesPoints (3D).

13.2.5 Polyline (3D)

A set of connected points (open).

Table 13.6: Polyline representations (3D)

Representation	Dim	In	Out	Inherited from
RPolylinePoints	1D	•	•	Polyline (3D) [self]
RPolylinePoints	2D	•	•	Polyline (3D) [self]
RPolylinePoints	3D	•	•	Polyline (3D) [self]
RPolylineVector	1D	•	•	Polyline (3D) [self]
RPolylineVector	2D	•	•	Polyline (3D) [self]
RPolylineVector	3D	•	•	Polyline (3D) [self]

Canonical form is RPolylinePoints (3D).

13.2.6 Polygon (3D)

A set of connected points (closed).

Table 13.7: Polygon representations (3D)

Representation	Dim	In	Out	Inherited from
RPolylinePoints	1D	•	•	Polygon (3D) [self]
RPolylinePoints	2D	•	•	Polygon (3D) [self]
RPolylinePoints	3D	•	•	Polygon (3D) [self]
RPolylineVector	1D	•	•	Polygon (3D) [self]
RPolylineVector	2D	•	•	Polygon (3D) [self]
RPolylineVector	3D	•	•	Polygon (3D) [self]

Canonical form is RPolylinePoints (3D).

13.2.7 PolylineSpline (3D)

A set of connected splines (open).

Table 13.8: PolylineSpline representations (3D)

Representation	Dim	In	Out	Inherited from
<i>RPolylinePoints</i>	2D	•	•	PolylineSpline (3D) [self]
RPolylinePoints	3D	•	•	PolylineSpline (3D) [self]
RPolylineVector	2D	•	•	PolylineSpline (3D) [self]
RPolylineVector	3D	•	•	PolylineSpline (3D) [self]

Canonical form is RPolylineVector (3D).

13.2.8 PolygonSpline (3D)

A set of connected splines (closed).

Table 13.9: PolygonSpline representations (3D)

Representation	Dim	In	Out	Inherited from
RPolylinePoints	2D	•	•	PolygonSpline (3D) [self]
RPolylinePoints	3D	•	•	PolygonSpline (3D) [self]
RPolylineVector	2D	•	•	PolygonSpline (3D) [self]
RPolylineVector	3D	•	•	PolygonSpline (3D) [self]

Canonical form is RPolylineVector (3D).

13.2.9 Arc (3D)

An arc.

Table 13.10: Arc representations (3D)

Representation	Dim	In	Out	Inherited from
RArc1	2D	•	•	Arc (3D) [self]
RArc1	3D	•	•	Arc (3D) [self]
RArc2	2D	•	•	Arc (3D) [self]
RArc2	3D	•	•	Arc (3D) [self]
RArc3	2D	•	•	Arc (3D) [self]
RArc3	3D	•	•	Arc (3D) [self]

Canonical form is RArc1 (3D).

13.2.10 Cuboid (3D)

A cuboid.

Table 13.11: Cuboid representations (3D)

Representation	Dim	In	Out	Inherited from
RAlignedCube1	3D	•	•	Cuboid (3D) [self]
RAlignedCube2	3D	•	•	Cuboid (3D) [self]
RAlignedCuboid1	3D	•	•	Cuboid (3D) [self]
RAlignedCuboid2	3D	•	•	Cuboid (3D) [self]
RAlignedRectangle1	2D	•	•	Cuboid (3D) [self]
RAlignedRectangle2	2D	•	•	Cuboid (3D) [self]
RAlignedSquare1	2D	•	•	Cuboid (3D) [self]
RAlignedSquare2	2D	•	•	Cuboid (3D) [self]
RCube1	3D	•	•	Cuboid (3D) [self]
RCube2	3D	•	•	Cuboid (3D) [self]
RCuboid1	3D	•	•	Cuboid (3D) [self]
RCuboid2	3D	•	•	Cuboid (3D) [self]
RRectangle1	2D	•	•	Cuboid (3D) [self]
RRectangle2	2D	•	•	Cuboid (3D) [self]
RSquare1	2D	•	•	Cuboid (3D) [self]
RSquare2	2D	•	•	Cuboid (3D) [self]

Canonical form is RCuboid1 (3D).

13.2.11 Ellipsoid (3D)

An ellipsoid.

Table 13.12: Ellipsoid representations (3D)

Representation	Dim	In	Out	Inherited from
RAlignedCube1	3D	(•)		Cuboid (3D)
RAlignedCube2	3D	(•)		Cuboid (3D)
RAlignedCuboid1	3D	(•)		Cuboid (3D)
RAlignedCuboid2	3D	(•)		Cuboid (3D)
RAlignedHalfAxes	3D	•	•	Ellipsoid (3D) [self]
RAlignedRectangle1	2D	(•)		Cuboid (3D)
RAlignedRectangle2	2D	(•)		Cuboid (3D)
RAlignedSquare1	2D	(•)		Cuboid (3D)
RAlignedSquare2	2D	(•)		Cuboid (3D)
RCube1	3D	(•)		Cuboid (3D)
RCube2	3D	(•)		Cuboid (3D)
RCuboid1	3D	(•)		Cuboid (3D)
RCuboid2	3D	(•)		Cuboid (3D)
REllipsoidCovariance	3D	•	•	Ellipsoid (3D) [self]
RHalfAxes	3D	•	•	Ellipsoid (3D) [self]
RRectangle1	2D	(•)		Cuboid (3D)
RRectangle2	2D	(•)		Cuboid (3D)
RSphere0	3D	•	•	Ellipsoid (3D) [self]
RSphere1	3D	•	•	Ellipsoid (3D) [self]
RSphere2	3D	•	•	Ellipsoid (3D) [self]
RSphere3	3D	•	•	Ellipsoid (3D) [self]
RSphere4	3D	•	•	Ellipsoid (3D) [self]
RSphere5	3D	•	•	Ellipsoid (3D) [self]
RSphere6	3D	•	•	Ellipsoid (3D) [self]
RSquare1	2D	(•)		Cuboid (3D)
RSquare2	2D	(•)		Cuboid (3D)

Canonical form is RHalfAxes (3D).

Cuboid Width implied from ROI line width true true NOTE: Ambigouous shared representation; AlignedRectangle 2D needs dedicated representation? true true Also inherits AlignedEllipse implicitly true true Width implied from ROI line width true true NOTE: Ambigouous shared representation; AlignedCuboid 3D needs dedicated representation? true true Also inherits AlignedEllipsoid implicitly true true radius implied from ROI point radius true true centre and radius implied from bounding square true true radius implied from ROI point radius true true centre and radius implied from bounding cube true true Also inherits AlignedRectangle implicitly true true Also inherits AlignedCuboid implicitly true true

13.2.12 Cylinder (3D)

An elliptic cylinder.

Table 13.13: Cylinder representations (3D)

Representation	Dim	In	Out	Inherited from
RAlignedHalfAxes	2D	•	•	Cylinder (3D) [self]
RCircle0	2D	•	•	Cylinder (3D) [self]
RCircle1	2D	•	•	Cylinder (3D) [self]
RCircle2	2D	•	•	Cylinder (3D) [self]
RCircle3	2D	•	•	Cylinder (3D) [self]
RCircle4	2D	•	•	Cylinder (3D) [self]
RCircle5	2D	•	•	Cylinder (3D) [self]
RCircularCylinder1	3D	•	•	Cylinder (3D) [self]
RCircularCylinder2	3D	•	•	Cylinder (3D) [self]
RCircularCylinder3	3D	•	•	Cylinder (3D) [self]
RCircularCylinder4	3D	•	•	Cylinder (3D) [self]
REllipseCovariance	2D	•	•	Cylinder (3D) [self]
REllipticCylinder1	3D	•	•	Cylinder (3D) [self]
REllipticCylinder2	3D	•	•	Cylinder (3D) [self]
REllipticCylinder3	3D	•	•	Cylinder (3D) [self]
REllipticCylinder4	3D	•	•	Cylinder (3D) [self]
RHalfAxes	2D	•	•	Cylinder (3D) [self]

Canonical form is REllipticCylinder1 (3D).

13.2.13 Mesh (3D)

A mesh.

Table 13.14: Mesh representations (3D)

Representation	Dim	In	Out	Inherited from
RMesh	2D	•	•	Mesh (3D) [self]
RMesh	3D	•	•	Mesh (3D) [self]

Canonical form is RMesh (3D).

13.2.14 BitMask (3D)

A mask with one bit values.

Table 13.15: BitMask representations (3D)

Representation	Dim	In	Out	Inherited from
RBitMask	1D	•	•	BitMask (3D) [self]
RBitMask	2D	•	•	BitMask (3D) [self]
RBitMask	3D	•	•	BitMask (3D) [self]

Canonical form is RBitMask (3D).

13.2.15 GreyMask (3D)

A mask with multiple grey levels.

Table 13.16: GreyMask representations (3D)

Representation	Dim	In	Out	Inherited from
RGreyMask	1D	•	•	GreyMask (3D) [self]
RGreyMask	2D	•	•	GreyMask (3D) [self]
RGreyMask	3D	•	•	GreyMask (3D) [self]

Canonical form is RGreyMask (3D).

13.2.16 AffineTransform (3D)

Affine transformation of a shape.

Table 13.17: AffineTransform representations (3D)

Representation	Dim	In	Out	Inherited from
RAffineTransform	1D	•	•	AffineTransform (3D) [self]
RAffineTransform	2D	•	•	AffineTransform (3D) [self]
RAffineTransform	3D	•	•	AffineTransform (3D) [self]
RRotateTransform	2D	•		AffineTransform (3D) [self]
RRotateTransform	3D	•		AffineTransform (3D) [self]
RScaleTransform	1D	•		AffineTransform (3D) [self]
RScaleTransform	2D	•		AffineTransform (3D) [self]
RScaleTransform	3D	•		AffineTransform (3D) [self]
RTranslateTransform	1D	•		AffineTransform (3D) [self]
RTranslateTransform	2D	•		AffineTransform (3D) [self]
RTranslateTransform	3D	•		AffineTransform (3D) [self]

Canonical form is RAffineTransform (3D).

13.2.17 AbstractTransform (3D)

Abstract (implementation-defined) transformation of a shape.

Table 13.18: AbstractTransform representations (3D)

Representation	Dim	In	Out	Inherited from
RAbstractTransform	1D	•	•	AbstractTransform (3D) [self]
RAbstractTransform	2D	•	•	AbstractTransform (3D) [self]
RAbstractTransform	3D	•	•	AbstractTransform (3D) [self]
RAffineTransform	1D	(•)		AffineTransform (3D)
RAffineTransform	2D	(•)		AffineTransform (3D)
RAffineTransform	3D	(•)		AffineTransform (3D)
RRotateTransform	2D	(•)		AffineTransform (3D)
RRotateTransform	3D	(•)		AffineTransform (3D)
RScaleTransform	1D	(•)		AffineTransform (3D)
RScaleTransform	2D	(•)		AffineTransform (3D)
RScaleTransform	3D	(•)		AffineTransform (3D)
RTranslateTransform	1D	(•)		AffineTransform (3D)
RTranslateTransform	2D	(•)		AffineTransform (3D)
RTranslateTransform	3D	(•)		AffineTransform (3D)

Canonical form is RAbstractTransform (3D).

13.2.18 Bitwise (3D)

Binary bitwise operation.

Table 13.19: Bitwise representations (3D)

Representation	Dim	In	Out	Inherited from
RBitwise	1D	•	•	Bitwise (3D) [self]
RBitwise	2D	•	•	Bitwise (3D) [self]
RBitwise	3D	•	•	Bitwise (3D) [self]

Canonical form is RBitwise (3D).

13.2.19 Value (nD)

A value in an arbitrary dimension.

Constrain region to a single value within a specific dimension.

Table 13.20: Value representations (nD)

Representation	Dim	In	Out	Inherited from
RValue	nD	•	•	Value (nD) [self]

Canonical form is RValue (nD).

13.2.20 Values (nD)

A set of values in an arbitrary dimension.

Constrain region to multiple values within a specific dimension.

Table 13.21: Values representations (nD)

Representation	Dim	In	Out	Inherited from
RValues	nD	•	•	Values (nD) [self]

Canonical form is RValues (nD).

13.2.21 Range (nD)

A range of values in an arbitrary dimension.

Constrain region to a range of values within a specific dimension.

Table 13.22: Range representations (nD)

Representation	Dim	In	Out	Inherited from
RRange1	nD	•	•	Range (nD) [self]
RRange2	nD	•	•	Range (nD) [self]

Canonical form is RRange2 (nD).

13.2.22 Extrude (nD)

Extrude a shape of arbitrary dimensionality into an additional dimension..

There are no limits in the additional dimension; these must be set by combining with a range instead.

Table 13.23: Extrude representations (nD)

Representation	Dim	In	Out	Inherited from
RExtrude	nD	•	•	Extrude (nD) [self]

Canonical form is RExtrude (nD).

13.2.23 Combine (nD)

Combine shapes of differing dimensionality.

The result is a shape combining all subset dimensions. It is illegal to have a common dimension between the two shapes.

Table 13.24: Combine representations (nD)

Representation	Dim	In	Out	Inherited from
RCombine	nD	•	•	Combine (nD) [self]

Canonical form is RCombine (nD).

13.2.24 Text (3D)

Text (label).

Text in 3D will need to be based upon a rectangle in 3D (not yet possible without a transform). Should label alignment be specified directly in the representation, or in higher-level metadata?

Table 13.25: Text representations (3D)

Representation	Dim	In	Out	Inherited from
RText	2D	•	•	Text (3D) [self]

Canonical form is RText (2D).

13.2.25 Scale (3D)

A scale bar between two points.

Table 13.26: Scale representations (3D)

Representation	Dim	In	Out	Inherited from
RLinePoints	1D	(•)		Line (3D)
RLinePoints	2D	(•)		Line (3D)
RLinePoints	3D	(•)		Line (3D)
RLineVector	1D	(•)		Line (3D)
RLineVector	2D	(•)		Line (3D)
RLineVector	3D	(•)		Line (3D)

13.2.26 Grid (3D)

A scale grid in a defined volume.

Table 13.27: Grid representations (3D)

Representation	Dim	In	Out	Inherited from
RAlignedCube1	3D	(•)		Cuboid (3D)
RAlignedCube2	3D	(•)		Cuboid (3D)
RAlignedCuboid1	3D	(•)		Cuboid (3D)
RAlignedCuboid2	3D	(•)		Cuboid (3D)
RAlignedRectangle1	2D	(•)		Cuboid (3D)
RAlignedRectangle2	2D	(•)		Cuboid (3D)
RAlignedSquare1	2D	(•)		Cuboid (3D)
RAlignedSquare2	2D	(•)		Cuboid (3D)
RCube1	3D	(•)		Cuboid (3D)
RCube2	3D	(•)		Cuboid (3D)
RCuboid1	3D	(•)		Cuboid (3D)
RCuboid2	3D	(•)		Cuboid (3D)
RRectangle1	2D	(•)		Cuboid (3D)
RRectangle2	2D	(•)		Cuboid (3D)
RSquare1	2D	(•)		Cuboid (3D)
RSquare2	2D	(•)		Cuboid (3D)

13.3 Relationships

The following figure illustrates the relationships detailed in the above tables. Ellipses are shapes, while representations are rectangles. Black arrows indicate inheritance of shape representations, while red and blue arrows indicate the representations possible to provide as input to and obtain as output from a shape, respectively.

SHAPE REPRESENTATIONS

14.1 Overview

Table 14.1: Representations

ID	Representation	Dims	Description
0	RPoint	1D	A single point in 1D
1	RPoint	2D	A single point in 2D
2	RPoint	3D	A single point in 3D
3	RPoints	1D	A list of points in 1D
4	RPoints	2D	A list of points in 2D
5	RPoints	3D	A list of points in 3D
6	RVector	1D	A vector in 1D
7	RVector	2D	A vector in 2D
8	RVector	3D	A vector in 3D
9	RVectors	1D	A list of vectors in 1D
10	RVectors	2D	A list of vectors in 2D
11	RVectors	3D	A list of vectors in 3D
12	RLinePoints	1D	A line described by two points in 1D
13	RLinePoints	2D	A line described by two points in 2D
14	RLinePoints	3D	A line described by two points in 3D
15	RLineVector	1D	A line described by a point and a vector
16	RLineVector	2D	A line described by a point and a vector
17	RLineVector	3D	A line described by a point and a vector
18	RLinesPoints	2D	A list of lines described by two points in 2D
19	RLinesPoints	3D	A list of lines described by two points in 3D
20	RLinesVectors	2D	A list of lines described by a point and a vector in 2D;
			can be used to represent a vector field
21	RLinesVectors	3D	A list of lines described by a point and a vector in 3D;
			can be used to represent a vector field
22	RPolylinePoints	2D	A list of points in a polyline in 2D [could use
			RPoints2D directly]
23	RPolylinePoints	3D	A list of points in a polyline in 3D [could use
			RPoints3D directly]
24	RPolylineVector	2D	A list of points in a polyline represented by a starting
			point and list of vectors in 2D
			Continued on next page

Table 14.1 – continued from previous page

ID	Representation	Dims	Description	
25	RPolylineVector	3D	A list of points in a polyline represented by a starting	
	THE ONLY WITH COLOR		point and list of vectors in 3D	
26	RAlignedSquare1	2D	A square in 2D aligned with the axes described by a	
20	Tanigheasquare 1		corner point and adjacent corner	
27	RAlignedSquare2	2D	A square in 2D aligned with the axes described by a	
	Mingheusquare2		corner point and vector to an adjacent corner	
28	RAlignedCube1	3D	A cube in 3D aligned with the axes described by a	
20	KAligheuCubel	שנ	corner point and adjacent corner	
29	DAlian ad Cub a	3D	A cube in 3D aligned with the axes described by a	
29	RAlignedCube2	שנ	corner point and vector to an adjacent corner	
30	RRectangle1	2D	-	
30	KKeciangie i	20	A rectangle in 2D described by two corner points and a vector	
31	DD a stan al a 2	2D		
31	RRectangle2	2D	A rectangle in 2D described by a corner point and two	
22	RCuboid1	2D	vectors	
32	RCuboia1	3D	A cuboid in 3D described by two adjacent corners and	
22	DC 1 : 12	2D	two vectors	
33	RCuboid2	3D	A cuboid in 3D described by a corner and three vec-	
2.4	DC: 1.1	an.	tors	
34	RCircle1	2D	A circle in 2D described by a centre point and 1D	
25	DC: 1.0	20	radius	
35	RCircle2	2D	A circle in 2D described by a centre point and 2D	
26	D.C. 1.3	25	radius	
36	RCircle3	2D	A circle in 2D described by a circumference point and	
25	D.C. 1.5	25	vector to the centre point	
37	RCircle5	2D	A circle in 2D described by three circumference	
20	DC 1 1	20	points	
38	RSphere1	3D	A sphere in 3D described by a centre point and 1D	
20	DC 1	20	radius	
39	RSphere2	3D	A sphere in 3D described by a centre point and 2D	
40	DC 1 2	20	radius	
40	RSphere3	3D	A sphere in 3D described by a centre point and 3D	
4.1	DC 1	20	radius	
41	RSphere4	3D	A sphere in 3D described by a surface point and vec-	
12	DC 1	20	tor to the centre point	
42	RSphere6	3D	A sphere in 3D described by a four surface points	
43	RAlignedHalfAxes	2D	An ellipse in 2D aligned with the axes described by	
	DII 104	25	two half axes	
44	RHalfAxes	2D	An ellipse in 2D described by two half axes	
45	REllipseCovariance	2D	An ellipse in 2D described by a centre point and co-	
	D.11.	25	variance matrix (Mahalanbobis distance)	
46	RAlignedHalfAxes	3D	An ellipsoid in 3D aligned with the axes	
47	RHalfAxes	3D	An ellipsoid in 3D described by three half axes	
48	REllipsoidCovariance	3D	An ellipsoid in 3D described by a centre point and	
			covariance matrix (Mahalanbobis distance)	
49	RCircularCylinder1	3D	A circular cylinder in 3D described by the centres of	
			both faces and a radius	
			Continued on next page	

Table 14.1 – continued from previous page

ID	Representation	Dims	Description
50	RCircularCylinder2	3D	A circular cylinder in 3D described by the centre of
			one face, vector to second face and a radius
51	RCircularCylinder3	3D	A circular cylinder in 3D with faces at different angles
			described by the centres of both faces and vectors spe-
			cifying the radius and angles of the faces
52	RCircularCylinder4	3D	A circular cylinder in 3D with faces at different angles
			described by the centre of one face, vector to second
			face and vectors specifying the radius and angles of
			the faces
53	REllipticCylinder1	3D	An elliptic cylinder in 3D described by the centres
			both faces and half axes
54	REllipticCylinder2	3D	An elliptic cylinder in 3D described by the centre of
			one face, vector to second face and half axes
55	REllipticCylinder3	3D	An elliptic cylinder in 3D with faces at different
			angles described by the centres both faces and half
			axes and angles
56	REllipticCylinder4	3D	An elliptic cylinder in 3D with faces at different
			angles described by the centre of one face, vector to
			second face and half axes and angles
57	RArc1	2D	An arc in 2D described by a line (points) and vector
58	RArc2	2D	An arc in 2D described by a line (vector) and a vector
59	RArc3	2D	An arc in 2D described by three points; vector in-
			ferred from third point
60	RArc1	3D	An arc in 3D described by a line (points) and vector
61	RArc2	3D	An arc in 3D described by a line (vector) and a vector
62	RArc3	3D	An arc in 3D described by three points; vector in-
			ferred from third point
63	RBitMask	1D	A bitmask in 1D described by bounding line, dimen-
			sions and mask data
64	RBitMask	2D	A bitmask in 2D described by bounding rectangle, di-
			mensions and mask data
65	RBitMask	3D	A bitmask in 3D described by bounding cuboid, di-
			mensions and mask data
66	RGreyMask	1D	A greymask in 1D described by bounding line, di-
			mensions and mask data
67	RGreyMask	2D	A greymask in 2D described by bounding rectangle,
			dimensions and mask data
68	RGreyMask	3D	A greymask in 3D described by bounding cuboid, di-
			mensions and mask data
69	RMesh	2D	A face-vertex mesh in 2D described by face and ver-
			tex lists
70	RMesh	3D	A face-vertex mesh in 3D described by face and ver-
			tex lists
71	RAffineTransform	1D	An affine transform in 1D described by a transform-
			ation matrix and 1D shape to transform
			Continued on next page

14.1. Overview 45

Table 14.1 – continued from previous page

ID	Table 14.1 – continued from previous page				
ID 72	Representation	Dims	Description		
72	RAffineTransform	2D	An affine transform in 2D described by a transform-		
			ation matrix and 2D shape to transform		
73	RAffineTransform	3D	An affine transform in 3D described by a transform-		
			ation matrix and 3D shape to transform		
74	RTranslateTransform	1D	A translation transformation in 1D		
75	RTranslateTransform	2D	A translation transformation in 2D		
76	RTranslateTransform	3D	A translation transformation in 3D		
77	RScaleTransform	1D	A scaling transformation in 1D		
78	RScaleTransform	2D	A scaling transformation in 2D		
79	RScaleTransform	3D	A scaling transformation in 3D		
80	RRotateTransform	2D	A rotation transformation in 2D		
81	RRotateTransform	3D	A rotation transformation in 3D		
82	RAbstractTransform	1D	An abstract (implementation-defined) transform in		
	v		1D		
83	RAbstractTransform	2D	An abstract (implementation-defined) transform in		
	V		2D		
84	RAbstractTransform	3D	An abstract (implementation-defined) transform in		
			3D		
85	RText	2D	Text		
87	RValue	nD	A single value		
88	RValues	nD	A set of values		
89	RRange1	nD	A range of values specified as the half-open range		
	Titterit ge 1		[V1, V2)		
90	RRange2	nD	A range of values specified as an inequality (or equal-		
	111000000		ity)		
91	RExtrude	nD	A shape extruded in an additional dimension		
92	RCombine	nD	A shape combined from shapes in different dimen-		
	Ti Como in C		sions		
93	RBitwise	1D	Binary bitwise operation		
94	RBitwise	2D	Binary bitwise operation		
95	RBitwise	3D	Binary bitwise operation		
181	RLinesPoints	1D	A list of lines described by two points in 1D		
201	RLinesVectors	1D 1D	A list of lines described by a point and a vector in 1D;		
201	ALITIES VECTOTS	10	can be used to represent a vector field		
221	RPolylinePoints	1D	A list of points in a polyline in 1D [could use		
441	KI OLYMINET OUILS	עון	RPoints 1D directly]		
2/1	D Dolylin Waster	1D	V -		
241	RPolylineVector	עו	A list of points in a polyline represented by a starting		
201	DAliono JD4 1 1	2D	point and list of vectors in 1D		
291	RAlignedRectangle1	2D	An aligned rectangle described by two points in 2D		
292	RAlignedCuboid1	3D	An aligned cuboid described by two points in 3D		
293	RAlignedRectangle2	2D	An aligned rectangle described by a point and a vector		
294	RAlignedCuboid2	3D	An aligned cuboid described by a point and a vector		
295	RCube1	3D	An aligned cuboid described by two points in 3D		
296	RCube2	3D	An aligned cuboid described by a point and a vector		
297	RSquare1	2D	An aligned cuboid described by two points in 3D		
298	RSquare2	2D	An aligned cuboid described by a point and a vector		
			Continued on next page		

Table 14.1 – continued from previous page

ID	Representation	Dims	Description
341	RCircle0	2D	A circle in 2D described by a centre point and circum-
			ference point
371	RCircle4	2D	A circle in 2D described by two circumference points
			[diameter]
381	RSphere0	3D	A sphere in 3D described by a centre point and sur-
			face point
421	RSphere5	3D	A sphere in 3D described by a two surface points [dia-
			meter]

14.2 Definitions

14.2.1 RPoint (1D)

A single point in 1D.

Table 14.2: RPoint members (1D)

SeqNo	Name	Type	Description
0	P1	Vertex1D	Point coordinate

14.2.2 RPoint (2D)

A single point in 2D.

Table 14.3: RPoint members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Point coordinates

14.2.3 RPoint (3D)

A single point in 3D.

Table 14.4: RPoint members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Point coordinates

14.2.4 RPoints (1D)

A list of points in 1D.

Table 14.5: RPoints members (1D)

SeqNo	Name	Type	Description
0	NPOINTS	Count	Number of points
1	POINTS	Vertex1D[NPOINTS]	Array of point coordinates

14.2.5 RPoints (2D)

A list of points in 2D.

Table 14.6: RPoints members (2D)

SeqNo	Name	Туре	Description
0	NPOINTS	Count	Number of points
1	POINTS	Vertex2D[NPOINTS]	Array of point coordinates

14.2.6 RPoints (3D)

A list of points in 3D.

Table 14.7: RPoints members (3D)

SeqNo	Name	Туре	Description
0	NPOINTS	Count	Number of points
1	POINTS	Vertex3D[NPOINTS]	Array of point coordinates

14.2.7 RVector (1D)

A vector in 1D.

Table 14.8: RVector members (1D)

SeqNo	Name	Type	Description
0	V1	Vector1D	Vector

14.2.8 RVector (2D)

A vector in 2D.

Table 14.9: RVector members (2D)

SeqNo	Name	Type	Description
0	V1	Vector2D	Vector

14.2.9 RVector (3D)

A vector in 3D.

Table 14.10: RVector members (3D)

SeqNo	Name	Type	Description
0	V1	Vector3D	Vector

14.2.10 RVectors (1D)

A list of vectors in 1D.

Table 14.11: RVectors members (1D)

SeqNo	Name	Type	Description
0	NVEC	Count	Number of vectors
1	VA1	Vector1D[NVEC]	Array of vectors

14.2.11 RVectors (2D)

A list of vectors in 2D.

Table 14.12: RVectors members (2D)

SeqNo	Name	Type	Description
0	NVEC	Count	Number of vectors
1	VA1	Vector2D[NVEC]	Array of vectors

14.2.12 RVectors (3D)

A list of vectors in 3D.

Table 14.13: RVectors members (3D)

SeqNo	Name	Type	Description
0	NVEC	Count	Number of vectors
1	VA1	Vector3D[NVEC]	Array of vectors

14.2.13 RLinePoints (1D)

A line described by two points in 1D.

Table 14.14: RLinePoints members (1D)

SeqNo	Name	Type	Description
0	P1	Vertex1D[2]	Line start and end points

14.2.14 RLinePoints (2D)

A line described by two points in 2D.

Table 14.15: RLinePoints members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D[2]	Line start and end points

14.2.15 RLinePoints (3D)

A line described by two points in 3D.

Table 14.16: RLinePoints members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D[2]	Line start and end points

14.2.16 RLineVector (1D)

A line described by a point and a vector.

Table 14.17: RLineVector members (1D)

SeqNo	Name	Type	Description
0	P1	Vertex1D	Line start

14.2.17 RLineVector (2D)

A line described by a point and a vector.

Table 14.18: RLineVector members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Line start
1	V1	Vector2D	Line end (relative to P1)

14.2.18 RLineVector (3D)

A line described by a point and a vector.

Table 14.19: RLineVector members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Line start
1	V1	Vector3D	Line end (relative to P1)

14.2.19 RLinesPoints (2D)

A list of lines described by two points in 2D.

Table 14.20: RLinesPoints members (2D)

SeqNo	Name	Type	Description
0	NLINES	Count	Number of lines
1	LINES	RLinePoints2D[NLINES]	Array of line points

14.2.20 RLinesPoints (3D)

A list of lines described by two points in 3D.

Table 14.21: RLinesPoints members (3D)

SeqNo	Name	Type	Description
0	NLINES	Count	Number of lines
1	LINES	RLinePoints3D[NLINES]	Array of line points

14.2.21 RLinesVectors (2D)

A list of lines described by a point and a vector in 2D; can be used to represent a vector field.

Table 14.22: RLines Vectors members (2D)

SeqNo	Name	Туре	Description
0	NLINES	Count	Number of lines
1	LINES	RLineVector2D[NLINES]	Array of line vectors

14.2.22 RLinesVectors (3D)

A list of lines described by a point and a vector in 3D; can be used to represent a vector field.

Table 14.23: RLines Vectors members (3D)

SeqNo	Name	Туре	Description
0	NLINES	Count	Number of lines
1	LINES	RLineVector3D[NLINES]	Array of line vectors

14.2.23 RPolylinePoints (2D)

A list of points in a polyline in 2D [could use RPoints2D directly].

Table 14.24: RPolylinePoints members (2D)

SeqNo	Name	Type	Description
0	P1	RPoints2D	Array of points

14.2.24 RPolylinePoints (3D)

A list of points in a polyline in 3D [could use RPoints3D directly].

Table 14.25: RPolylinePoints members (3D)

SeqNo	Name	Type	Description
0	P1	RPoints3D	Array of points

14.2.25 RPolylineVector (2D)

A list of points in a polyline represented by a starting point and list of vectors in 2D.

Table 14.26: RPolylineVector members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	First point
1	V1	RVectors2D	Array of vectors

14.2.26 RPolylineVector (3D)

A list of points in a polyline represented by a starting point and list of vectors in 3D.

Table 14.27: RPolylineVector members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	First point
1	V1	RVectors3D	Array of vectors

14.2.27 RAlignedSquare1 (2D)

A square in 2D aligned with the axes described by a corner point and adjacent corner.

Table 14.28: RAlignedSquare1 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	First corner
1	P2	Vertex1D	x coordinate of adja-
			cent/opposing corner

14.2.28 RAlignedSquare2 (2D)

A square in 2D aligned with the axes described by a corner point and vector to an adjacent corner.

Table 14.29: RAlignedSquare2 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	First corner
1	P2	Vector1D	distance to adjacent corner on
			x axis (relative to P1)

14.2.29 RAlignedCube1 (3D)

A cube in 3D aligned with the axes described by a corner point and adjacent corner.

Table 14.30: RAlignedCube1 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	First corner
1	P2	Vertex1D	x coordinate of adja-
			cent/opposing corner

14.2.30 RAlignedCube2 (3D)

A cube in 3D aligned with the axes described by a corner point and vector to an adjacent corner.

Table 14.31: RAlignedCube2 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	First corner
1	P2	Vector1D	distance to adjacent corner on
			x axis (relative to P1)

14.2.31 RRectangle1 (2D)

A rectangle in 2D described by two corner points and a vector.

Table 14.32: RRectangle1 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	First corner
1	P2	Vertex2D	Adjacent corner
2	V1	Vector1D	Distance to corner opposing P1 (relative to P2)

14.2.32 RRectangle2 (2D)

A rectangle in 2D described by a corner point and two vectors.

Table 14.33: RRectangle2 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	First corner
1	V1	Vector2D	Distance to adjacent corner
			(relative to P1)
2	V2	Vector1D	Distance to corner opposing
			P1 (relative to P2)

14.2.33 RCuboid1 (3D)

A cuboid in 3D described by two adjacent corners and two vectors.

Table 14.34: RCuboid1 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	First corner
1	P2	Vertex3D	Second corner (adjacent to P1)
2	V1	Vector2D	Distance to third corner (adja-
			cent to P2)
3	V2	Vector1D	Distance to fourth corner (op-
			posing P1, adjacent to V1)

14.2.34 RCuboid2 (3D)

A cuboid in 3D described by a corner and three vectors.

Table 14.35: RCuboid2 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	First corner
1	V1	Vector3D	Distance to second corner (re-
			lative to P1)
2	V2	Vector2D	Distance to third corner (relat-
			ive to V1)
3	V3	Vector1D	Distance to fourth corner (rel-
			ative to V2, opposing P1)

14.2.35 RCircle1 (2D)

A circle in 2D described by a centre point and 1D radius.

Table 14.36: RCircle1 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Centre point
1	V1	Vector1D	Radius

14.2.36 RCircle2 (2D)

A circle in 2D described by a centre point and 2D radius.

Table 14.37: RCircle2 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Centre point
1	V1	Vector2D	Radius

14.2.37 RCircle3 (2D)

A circle in 2D described by a circumference point and vector to the centre point.

Table 14.38: RCircle3 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Point on circumference
1	V1	Vector2D	Vector to centre

14.2.38 RCircle5 (2D)

A circle in 2D described by three circumference points.

Table 14.39: RCircle5 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D[3]	Three points on circumference

14.2.39 RSphere1 (3D)

A sphere in 3D described by a centre point and 1D radius.

Table 14.40: RSphere1 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre point
1	V1	Vector1D	Radius

14.2.40 RSphere2 (3D)

A sphere in 3D described by a centre point and 2D radius.

Table 14.41: RSphere2 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre point
1	V1	Vector2D	Radius

14.2.41 RSphere3 (3D)

A sphere in 3D described by a centre point and 3D radius.

Table 14.42: RSphere3 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre point
1	V1	Vector3D	Radius

14.2.42 RSphere4 (3D)

A sphere in 3D described by a surface point and vector to the centre point.

Table 14.43: RSphere4 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Point on surface
1	V1	Vector3D	Vector to centre

14.2.43 RSphere6 (3D)

A sphere in 3D described by a four surface points.

Table 14.44: RSphere6 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D[4]	Four points on surface

14.2.44 RAlignedHalfAxes (2D)

An ellipse in 2D aligned with the axes described by two half axes.

Table 14.45: RAlignedHalfAxes members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Centre point
1	V1	Vector2D	Half axes (x,y)

14.2.45 RHalfAxes (2D)

An ellipse in 2D described by two half axes.

Table 14.46: RHalfAxes members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Centre point
1	V1	Vector2D	Half axes (xy)
2	V1	Vector1D	Half axes (x)

V1 Is the dimensionality of the half axes correct here?

14.2.46 REllipseCovariance (2D)

An ellipse in 2D described by a centre point and covariance matrix (Mahalanbobis distance).

Table 14.47: REllipseCovariance members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D	Centre point (mean)
1	COV1	double[2][2]	2 × 2 covariance matrix

14.2.47 RAlignedHalfAxes (3D)

An ellipsoid in 3D aligned with the axes.

Table 14.48: RAlignedHalfAxes members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre point
1	V1	Vector3D	Half axes (x,y,z)

14.2.48 RHalfAxes (3D)

An ellipsoid in 3D described by three half axes.

Table 14.49: RHalfAxes members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre point
1	V1	Vector3D	Half axes (xyz)
2	V2	Vector2D	Half axes (xy)
3	V3	Vector1D	Half axes (x)

V2 Is the dimensionality of the half axes correct here?

V3 Is the dimensionality of the half axes correct here?

14.2.49 REIlipsoidCovariance (3D)

An ellipsoid in 3D described by a centre point and covariance matrix (Mahalanbobis distance).

Table 14.50: REllipsoidCovariance members (3D)

SeqNo	Name	Туре	Description
0	P1	Vertex3D	Centre point (mean)
1	COV1	double[3][3]	3×3 covariance matrix

14.2.50 RCircularCylinder1 (3D)

A circular cylinder in 3D described by the centres of both faces and a radius.

A basic circular cylinder with faces at right angles.

Table 14.51: RCircularCylinder1 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	P2	Vertex3D	Centre of second face
2	V1	Vector1D	Radius

14.2.51 RCircularCylinder2 (3D)

A circular cylinder in 3D described by the centre of one face, vector to second face and a radius.

A basic circular cylinder with faces at right angles.

Table 14.52: RCircularCylinder2 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	V1	Vector3D	Distance to centre of second
			face
2	V2	Vector1D	Radius

14.2.52 RCircularCylinder3 (3D)

A circular cylinder in 3D with faces at different angles described by the centres of both faces and vectors specifying the radius and angles of the faces.

Face angles other than right-angles let chains of cylinders be used for tubular structures without gaps at the joins.

Table 14.53: RCircularCylinder3 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	P2	Vertex3D	Centre of second face
2	V1	Vector3D	Radius and angle of first face
3	V2	Vector3D	Angle of second face

V2 Should V2 only allow angle, assuming radius from V1, or also allow a second radius to represent a conical section?

14.2.53 RCircularCylinder4 (3D)

A circular cylinder in 3D with faces at different angles described by the centre of one face, vector to second face and vectors specifying the radius and angles of the faces.

Face angles other than right-angles let chains of cylinders be used for tubular structures without gaps at the joins.

Table 14.54: RCircularCylinder4 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	V1	Vector3D	Distance to centre of second
			face
2	V2	Vector3D	Radius and angle of first face
3	V3	Vector3D	Angle of second face

V3 Should V3 only allow angle, assuming radius from V2, or also allow a second radius to represent a conical section?

14.2.54 REllipticCylinder1 (3D)

An elliptic cylinder in 3D described by the centres both faces and half axes.

A basic elliptic cylinder with faces at right angles.

Table 14.55: REllipticCylinder1 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	P2	Vertex3D	Centre of second face
2	V1	Vector2D	Half axes (xy)
3	V2	Vector1D	Half axes (x)

V2 Is the dimensionality of the half axes correct here?

14.2.55 REllipticCylinder2 (3D)

An elliptic cylinder in 3D described by the centre of one face, vector to second face and half axes.

A basic elliptic cylinder with faces at right angles.

Table 14.56: REllipticCylinder2 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	V1	Vector3D	Distance to second face
2	V2	Vector3D	Half axes (xy)
3	V3	Vector2D	Half axes (x)

V3 Is the dimensionality of the half axes correct here?

14.2.56 REllipticCylinder3 (3D)

An elliptic cylinder in 3D with faces at different angles described by the centres both faces and half axes and angles.

Face angles other than right-angles let chains of cylinders be used for tubular structures without gaps at the joins.

Table 14.57: REllipticCylinder3 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	P2	Vertex3D	Centre of second face
2	V1	Vector3D	Half axes of first face (xyz)
3	V2	Vector2D	Half axes of first face (xy)
4	V3	Vector3D	Angle of second face

V1 Should half axes and angle be specified in same vector or separately?

14.2.57 REllipticCylinder4 (3D)

An elliptic cylinder in 3D with faces at different angles described by the centre of one face, vector to second face and half axes and angles.

Face angles other than right-angles let chains of cylinders be used for tubular structures without gaps at the joins.

Table 14.58: REllipticCylinder4 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre of first face
1	V1	Vector3D	Distance to second face
2	V2	Vector3D	Half axes (xyz)
3	V3	Vector2D	Half axes (xy)
4	V4	Vector3D	Angle of second face

14.2.58 RArc1 (2D)

An arc in 2D described by a line (points) and vector.

Table 14.59: RArc1 members (2D)

SeqNo	Name	Type	Description
0	P1	RLinePoints2D	Centre point and arc start
1	V1	Vector2D	Arc end

14.2.59 RArc2 (2D)

An arc in 2D described by a line (vector) and a vector.

Table 14.60: RArc2 members (2D)

SeqNo	Name	Type	Description
0	P1	RLineVector2D	Centre point and arc start
1	V1	Vector2D	Arc end

14.2.60 RArc3 (2D)

An arc in 2D described by three points; vector inferred from third point.

Table 14.61: RArc3 members (2D)

SeqNo	Name	Type	Description
0	P1	Vertex2D[3]	Centre point, arc start and arc
			end (vector inferred)

14.2.61 RArc1 (3D)

An arc in 3D described by a line (points) and vector.

Table 14.62: RArc1 members (3D)

SeqNo	Name	Type	Description
0	P1	RLinePoints3D	Centre point and arc start
1	V1	Vector3D	Arc end

14.2.62 RArc2 (3D)

An arc in 3D described by a line (vector) and a vector.

Table 14.63: RArc2 members (3D)

SeqNo	Name	Type	Description
0	P1	RLineVector3D	Centre point and arc start
1	V1	Vector3D	Arc end

14.2.63 RArc3 (3D)

An arc in 3D described by three points; vector inferred from third point.

Table 14.64: RArc3 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D[3]	Centre point, arc start and arc
			end (vector inferred)

14.2.64 RBitMask (1D)

A bitmask in 1D described by bounding line, dimensions and mask data.

The mask is applied to the bounding line. Dimensions specify the x size of the mask. DATA is the mask pixel data.

Table 14.65: RBitMask members (1D)

SeqNo	Name	Type	Description
0	B1	RLinePoints2D	Bounding line
1	DIM1	Vector1D	Mask dimensions (x)
2	DATA	bool[x]	Mask data

14.2.65 RBitMask (2D)

A bitmask in 2D described by bounding rectangle, dimensions and mask data.

The mask is applied to the bounding rectangle. Dimensions specify the x and y size of the mask. DATA is the mask pixel data.

Table 14.66: RBitMask members (2D)

SeqNo	Name	Type	Description
0	B1	RLinePoints2D	Bounding box
1	DIM1	Vector2D	Mask dimensions (x,y)
2	DATA	bool[x,y]	Mask data

14.2.66 RBitMask (3D)

A bitmask in 3D described by bounding cuboid, dimensions and mask data.

The mask is applied to the bounding cuboid. Dimensions specify the x, y and z size of the mask. DATA is the mask pixel data.

Table 14.67: RBitMask members (3D)

SeqNo	Name	Type	Description
0	B1	RLinePoints3D	Bounding box
1	DIM1	Vector3D	Mask dimensions (x,y,z)
2	DATA	bool[x,y,z]	Mask data

14.2.67 RGreyMask (1D)

A greymask in 1D described by bounding line, dimensions and mask data.

The mask is applied to the bounding line. Dimensions specify the x size of the mask. DATA is the mask pixel data.

Table 14.68: RGreyMask members (1D)

SeqNo	Name	Type	Description
0	B1	RLinePoints1D	Bounding line
1	DIM1	Vector1D	Mask dimensions (x)
2	DATA	double[x]	Mask data

14.2.68 RGreyMask (2D)

A greymask in 2D described by bounding rectangle, dimensions and mask data.

The mask is applied to the bounding rectangle. Dimensions specify the x and y size of the mask. DATA is the mask pixel data.

Table 14.69: RGreyMask members (2D)

SeqNo	Name	Type	Description
0	B1	RLinePoints2D	Bounding box
1	DIM1	Vector2D	Mask dimensions (x,y)
2	DATA	double[x,y]	Mask data

14.2.69 RGreyMask (3D)

A greymask in 3D described by bounding cuboid, dimensions and mask data.

The mask is applied to the bounding cuboid. Dimensions specify the x, y and z size of the mask. DATA is the mask pixel data.

Table 14.70: RGreyMask members (3D)

SeqNo	Name	Type	Description
0	B1	RLinePoints3D	Bounding box
1	DIM1	Vector3D	Mask dimensions (x,y,z)
2	DATA	double[x,y,z]	Mask data

14.2.70 RMesh (2D)

A face-vertex mesh in 2D described by face and vertex lists.

Vertex references are indexes into the VERTS array. Vertex-face mapping is implied, and will require the implementor to construct the mapping.

Table 14.71: RMesh members (2D)

SeqNo	Name	Type	Description
0	NFACE	Count	Number of faces
1	VREF	double[NFACE][3]	Vertex references per face,
			counterclockwise winding
2	NVERT	Count	Number of vertices
3	VERTS	Vertex2D[NVERT]	Vertex coordinates

14.2.71 RMesh (3D)

A face-vertex mesh in 3D described by face and vertex lists.

Vertex references are indexes into the VERTS array. Vertex-face mapping is implied, and will require the implementor to construct the mapping.

Table 14.72: RMesh members (3D)

SeqNo	Name	Type	Description
0	NFACE	Count	Number of faces
1	VREF	double[NFACE][3]	Vertex references per face,
			counterclockwise winding
2	NVERT	Count	Number of vertices
3	VERTS	Vertex3D[NVERT]	Vertex coordinates

14.2.72 RAffineTransform (1D)

An affine transform in 1D described by a transformation matrix and 1D shape to transform.

Table 14.73: RAffineTransform members (1D)

SeqNo	Name	Type	Description
0	TRANS	Affine1D	Transform
1	SHAPE	Shape	Shape

TRANS TODO: Specify dimensions for transform? Or have variants for different combinations?

14.2.73 RAffineTransform (2D)

An affine transform in 2D described by a transformation matrix and 2D shape to transform.

Table 14.74: RAffineTransform members (2D)

SeqNo	Name	Type	Description
0	TRANS	Affine2D	Transform
1	SHAPE	Shape	Shape

14.2.74 RAffineTransform (3D)

An affine transform in 3D described by a transformation matrix and 3D shape to transform.

Table 14.75: RAffineTransform members (3D)

SeqNo	Name	Type	Description
0	TRANS	Affine3D	Transform
1	SHAPE	Shape	Shape

14.2.75 RTranslateTransform (1D)

A translation transformation in 1D.

Table 14.76: RTranslateTransform members (1D)

SeqNo	Name	Type	Description
0	TR1	Vector1D	Translation in x
1	SHAPE	Shape1D	Shape

14.2.76 RTranslateTransform (2D)

A translation transformation in 2D.

Table 14.77: RTranslateTransform members (2D)

SeqNo	Name	Type	Description
0	TR1	Vector2D	Translation in x,y
1	SHAPE	Shape1D	Shape

14.2.77 RTranslateTransform (3D)

A translation transformation in 3D.

Table 14.78: RTranslateTransform members (3D)

SeqNo	Name	Type	Description
0	TR1	Vector3D	Translation in x,y,z
1	SHAPE	Shape1D	Shape

14.2.78 RScaleTransform (1D)

A scaling transformation in 1D.

Table 14.79: RScaleTransform members (1D)

SeqNo	Name	Type	Description
0	SF1	double[1]	Scale factor for x
1	SHAPE	Shape1D	Shape

14.2.79 RScaleTransform (2D)

A scaling transformation in 2D.

Table 14.80: RScaleTransform members (2D)

SeqNo	Name	Type	Description
0	SF1	double[2]	Scale factor for x,y
1	SHAPE	Shape1D	Shape

14.2.80 RScaleTransform (3D)

A scaling transformation in 3D.

Table 14.81: RScaleTransform members (3D)

SeqNo	Name	Type	Description
0	SF1	double[3]	Scale factor for x,y,z
1	SHAPE	Shape	Shape

14.2.81 RRotateTransform (2D)

A rotation transformation in 2D.

Table 14.82: RRotateTransform members (2D)

SeqNo	Name	Type	Description
0	RA	double[1]	Rotation angle in z
1	SHAPE	Shape	Shape

14.2.82 RRotateTransform (3D)

A rotation transformation in 3D.

Table 14.83: RRotateTransform members (3D)

SeqNo	Name	Type	Description
0	RA	double[3]	Rotation angle in x,y,z
1	SHAPE	Shape	Shape

14.2.83 RAbstractTransform (1D)

An abstract (implementation-defined) transform in 1D.

Table 14.84: RAbstractTransform members (1D)

SeqNo	Name	Type	Description
0	NAME	String	Name of transformation
1	ARGS	String	Arguments
2	SHAPE	Shape	Shape

14.2.84 RAbstractTransform (2D)

An abstract (implementation-defined) transform in 2D.

Table 14.85: RAbstractTransform members (2D)

SeqNo	Name	Type	Description
0	NAME	String	Name of transformation
1	ARGS	String	Arguments
2	SHAPE	Shape	Shape

14.2.85 RAbstractTransform (3D)

An abstract (implementation-defined) transform in 3D.

Table 14.86: RAbstractTransform members (3D)

SeqNo	Name	Type	Description
0	NAME	String	Name of transformation
1	ARGS	String	Arguments
2	SHAPE	Shape	Shape

14.2.86 RText (2D)

Text.

Table 14.87: RText members (2D)

SeqNo	Name	Type	Description
0	B1	RRectangle2	Text bounds
1	TEXT	String	Text

TEXT Or, should the text be specified externally, e.g. as ROI label text?

14.2.87 RValue (nD)

A single value.

Table 14.88: RValue members (nD)

SeqNo	Name	Type	Description
0	D1	Index	Dimension
1	V1	Index	Value within dimension

14.2.88 RValues (nD)

A set of values.

Table 14.89: RValues members (nD)

SeqNo	Name	Type	Description
0	D1	Index	Dimension
1	NVAL	Count	Number of values
2	V1	Index[NVAL]	Values within dimension

14.2.89 RRange1 (nD)

A range of values specified as the half-open range [V1, V2).

Table 14.90: RRange1 members (nD)

SeqNo	Name	Type	Description
0	D1	Index	Dimension
1	V1	Index	Starting value within dimen-
			sion
2	V2	Index	Ending value +1 within di-
			mension

14.2.90 RRange2 (nD)

A range of values specified as an inequality (or equality).

Specified as all values for which the formula "n O1 V1" is true, e.g. " $n \le 5$ ".

Table 14.91: RRange2 members (nD)

SeqNo	Name	Type	Description
0	D1	Index	Dimension
1	01	Operator	Mathematical operator
2	V1	Value	Value for operation

14.2.91 RExtrude (nD)

A shape extruded in an additional dimension.

Table 14.92: RExtrude members (nD)

SeqNo	Name	Type	Description
0	D1	Index	Dimension
1	SHAPE	Shape	Shape

14.2.92 RCombine (nD)

A shape combined from shapes in different dimensions.

Table 14.93: RCombine members (nD)

SeqNo	Name	Type	Description
0	S 1	Shape	Dimension
1	S2	Shape	Dimension

14.2.93 RBitwise (1D)

Binary bitwise operation.

Table 14.94: RBitwise members (1D)

SeqNo	Name	Type	Description
0	O1	BLogic	Bitwise logic operator
1	M1	RBitMask1D	Mask 1
2	M2	RBitMask1D	Mask 2

14.2.94 RBitwise (2D)

Binary bitwise operation.

Table 14.95: RBitwise members (2D)

SeqNo	Name	Type	Description
0	01	BLogic	Bitwise logic operator
1	M1	RBitMask2D	Mask 1
2	M2	RBitMask2D	Mask 2

14.2.95 RBitwise (3D)

Binary bitwise operation.

Table 14.96: RBitwise members (3D)

SeqNo	Name	Type	Description
0	O1	BLogic	Bitwise logic operator
1	M1	RBitMask3D	Mask 1
2	M2	RBitMask3D	Mask 2

14.2.96 RLinesPoints (1D)

A list of lines described by two points in 1D.

Table 14.97: RLinesPoints members (1D)

SeqNo	Name	Туре	Description
0	NLINES	Count	Number of lines
1	LINES	RLinePoints1D[NLINES]	Array of line points

14.2. Definitions 69

14.2.97 RLinesVectors (1D)

A list of lines described by a point and a vector in 1D; can be used to represent a vector field.

Table 14.98: RLinesVectors members (1D)

SeqNo	Name	Type	Description
0	NLINES	Count	Number of lines
1	LINES	RLineVector1D[NLINES]	Array of line vectors

14.2.98 RPolylinePoints (1D)

A list of points in a polyline in 1D [could use RPoints1D directly].

Table 14.99: RPolylinePoints members (1D)

SeqNo	Name	Type	Description
0	P1	RPoints1D	Array of points

14.2.99 RPolylineVector (1D)

A list of points in a polyline represented by a starting point and list of vectors in 1D.

Table 14.100: RPolylineVector members (1D)

SeqNo	Name	Type	Description
0	P1	Vertex1D	First point
1	V1	RVectors1D	Array of vectors

14.2.100 RAlignedRectangle1 (2D)

An aligned rectangle described by two points in 2D.

Table 14.101: RAlignedRectangle1 members (2D)

SeqNo	Name	Type	Description
0	P1	RLinePoints2D	Corner and opposing corner

14.2.101 RAlignedCuboid1 (3D)

An aligned cuboid described by two points in 3D.

Table 14.102: RAlignedCuboid1 members (3D)

SeqNo	Name	Type	Description
0	P1	RLinePoints3D	Corner and opposing corner

14.2.102 RAlignedRectangle2 (2D)

An aligned rectangle described by a point and a vector.

Table 14.103: RAlignedRectangle2 members (2D)

SeqNo	Name	Type	Description
0	P1	RLineVector2D	Corner and vector to opposing
			corner

14.2.103 RAlignedCuboid2 (3D)

An aligned cuboid described by a point and a vector.

Table 14.104: RAlignedCuboid2 members (3D)

SeqNo	Name	Type	Description
0	P1	RLineVector3D	Corner and vector to opposing
			corner

14.2.104 RCube1 (3D)

An aligned cuboid described by two points in 3D.

Table 14.105: RCube1 members (3D)

SeqNo	Name	Type	Description
0	P1	RLinePoints3D	Corner and adjacent corner

14.2.105 RCube2 (3D)

An aligned cuboid described by a point and a vector.

Table 14.106: RCube2 members (3D)

SeqNo	Name	Type	Description
0	P1	RLineVector3D	Corner and vector to adjacent
			corner

14.2.106 RSquare1 (2D)

An aligned cuboid described by two points in 3D.

Table 14.107: RSquare1 members (2D)

SeqNo	Name	Type	Description
0	P1	RLinePoints2D	Corner and opposing corner

14.2. Definitions 71

14.2.107 RSquare2 (2D)

An aligned cuboid described by a point and a vector.

Table 14.108: RSquare2 members (2D)

SeqNo	Name	Type	Description
0	P1	RLineVector2D	Corner and vector to opposing
			corner

14.2.108 RCircle0 (2D)

A circle in 2D described by a centre point and circumference point.

Table 14.109: RCircle0 members (2D)

SeqNo		Name	Type	Description
0)	P1	Vertex2D	Centre point
1		P2	Vertex2D	Circumference point

14.2.109 RCircle4 (2D)

A circle in 2D described by two circumference points [diameter].

Table 14.110: RCircle4 members (2D)

Seq	₁ No	Name	Type	Description
	0	P1	Vertex2D[2]	Two points on circumference

14.2.110 RSphere0 (3D)

A sphere in 3D described by a centre point and surface point.

Table 14.111: RSphere0 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D	Centre point
1	P2	Vertex3D	Surface point

14.2.111 RSphere5 (3D)

A sphere in 3D described by a two surface points [diameter].

Table 14.112: RSphere5 members (3D)

SeqNo	Name	Type	Description
0	P1	Vertex3D[2]	Two points on surface

FIFTEEN

MASKS

15.1 Specification

Bitmasks may be specified directly, e.g. by segmenting an image. They may also be derived from any shape, since every shape is reducible to a bitmask.

Greymasks (masks with multiple greylevels) may also be specified directly. They may also be derived from any shape. Shapes may provide direct conversion to a greymask, or alternatively via a high-resolution bitmask, which is then converted into a greymask. This process is illustrated in the following figure.

Note:

Roger We need to specify the criteria for pixel inclusion when converting from a shape to bitmask. Some shapes may be able to efficiently convert to a greymask, but a threshold value is still needed.

We also need to allow the user to specify the threshold value when converting from a greymask to bitmask.

Also need to have rules for conversion of points and lines, which do not have any intrinsic area, to pixels. Does a point always occupy a single pixel? How about lines, which pass through multiple pixels? The latter could convert to a greymask. Both could have default widths and allow the user to override them. Convert via a shape e.g. implicitly convert line to cuboid and point to sphere?

A circle, drawn a 6×6 pixel grid may be converted directly as a 6×6 pixel bitmap. Alternatively, the grid may be subdivided further so that each pixel is itself an 8×8 pixel grid, to give a grid size of 48×48 pixels. Each real pixel therefore contains 256 bits of information, from which it is trivial to derive a 6×6 pixel 6-bit greymask with 256 grey levels. The resolution may be further increased so that each pixel is a 16×16 pixel grid from which an 8-bit greymask with 256 greylevels may be derived.

The following grid sizes could be used:

Grid size	Grid bits	Greylevel bits	Greylevels
2×2	4	2	4
4×4	16	4	16
8×8	64	6	64
16×16	256	8	256
32×32	1024	10	1024
64×64	3096	12	4096
128×128	16384	14	16384
256x256	65536	16	65536

Note:

Roger We don't need to support all these sizes, but supporting 8 bit masks at a minimum would be useful. Larger sizes would have greater precision, but quite a large overhead: a 16 bit greymask requires 8KiB/pixel!

15.2 Set operations

Set operations only make sense to perform at the level of bitmasks. Set operations on basic shape geometry rapidly becomes an intractable problem, since this for example requires that it be possible to describe the union of every shape type with every other shape type, including all combinations of unions. This would be possible if all geometry was reduced to meshes, but this would also result in a loss of precision.

Set operations are trivial to perform using masks. However, as shown in the above figure, there may be loss of precision when converting to a mask. However, it would be possible to do the set operations on a higher-resolution mask prior to conversion to a greymask or lower-resolution bitmask. This includes intersection, set difference, etc.

Note:

Roger Consider a union of two shapes which do not touch, but which overlap a common pixel. It is possible to compute the union using the higher-resolution bitmask because this takes into account the extent to which the shapes overlap (or not), and this can be reflected in the resulting greymap. The user can choose the precision of the operation via the grid size

SIXTEEN

LAYERS

In the Zeiss AxioVision formats, ROIs (shapes) are contained within Layers. Sets of ROIs are collected in different layers. The UI only uses a single layer, but uses separate layers for acquisition and post-acquisition ROIs. But in the file format one may define arbitrary numbers of layers to act as a grouping mechanism for ROIs.

Adding layers as a top level grouping would permit related ROIs to be grouped together. However, this would also be possible using ROI-ROI links; it could be implemented using Layer-ROI links. Maybe layer could be a ROI type used solely for grouping?

SEVENTEEN

ROI-ROI LINKS

ROI relationships: When segmenting cell contents, shown as cytoplasm, actin filaments, nucleus and nucleolus, these fall into a strict hierarchy (a nucleus can only be in one cell, though one cell could have more than one nucleus). If we added a ROI type that was a container of ROIs (note: not a union), and added a means of classifying ROIs with tags/labels, this would be very useful for HCS and other types of analysis. Additionally, some relationships are not hierarchical, e.g. tree-like branching and merging in a vessel bed, but could be represented if a ROI could point to one or more other ROIs, which would permit a directed graph of relationships between ROIs.

Tracking Containment User modification (branch/merge) Inherit properties Layer DAG

STORAGE OF VERTEX DATA

For quite a number of the shape primitives, it is possible to support 3D very simply—we just increase the number of dimensions in each vertex, and that's it (obviously just for storage; it will still require some work for rendering). From the point of view of storing the list of vertices, it would be nice if we could specify the dimensions being used e.g. XZT, and then allow missing dimensions to be specified as constants as we now do for theZ. This will also mean that will will be possible to use a 2D primitive with theZ set as equivalent to a 3D primitive with the z value specified separately to the (x,y) points. This would provide one means of keeping the representation compact. Additionally, it is undesirable to have a separate element for each vertex, since for complex shapes e.g. meshes, this would waste a lot of space: when scaling up to thousands of vertices, this would waste multi-megabytes of XML markup for no good reason.

18.1 XML schema

Shape type and representation are stored as unsigned 16 bit integers, counts as unsigned 32 bit integers, and vertices and vectors as double-precision floating point.

```
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"</pre>
    <xsd:simpleType name="shapeDetailElement">
        <xsd:union memberTypes="xsd:unsignedShort xsd:unsignedInt xsd:double" />
    </xsd:simpleType>
    <xsd:simpleType name="shapeDetail">
        <xsd:list itemType="shapeDetailElement"/>
    </xsd:simpleType>
    <xsd:element name="shape">
        <xsd:complexType>
            <xsd:simpleContent>
                <xsd:extension base="shapeDetail">
                </xsd:extension>
            </xsd:simpleContent>
        </xsd:complexType>
    </xsd:element>
</xsd:schema>
```

18.2 Properties

Store at the level of the ROI, not the shape. Since all the shapes within a ROI describe a single entity, there is no need for separate properties (colour, line thickness/style/endings etc.) on each shape.

Note: J-M Burel: previous discussion about that. Need to review the notes taken at the time.

NINETEEN

DEFINITION OF TERMS

ROI Region of interest. A subset of samples within an image. This is specified by the boundary or surface of the object.

Shape Geometric shape or mask. A shape is a geometric primitive or bitmask. A ROI is composed of one or more shapes.

TWENTY

INDICES AND TABLES

- genindex
- search

INDEX

Symbols 2D Affine transform, 29 3D Affine transform, 29	O Operator, 11 P Point (3D), 32 Points (3D), 32
AbstractTransform (3D), 38 Affine transform, 28 transform 2D, 29	Polygon (3D), 33 PolygonSpline (3D), 34 Polyline (3D), 33 PolylineSpline (3D), 34
transform 3D, 29 AffineTransform (3D), 38 Arc (3D), 34	RAbstractTransform (1D), 66 RAbstractTransform (2D), 66 RAbstractTransform (3D), 67
BitMask (3D), 37 Bitwise (3D), 39 BLogic, 11	RAdstract Transform (3D), 67 RAffineTransform (1D), 64 RAffineTransform (2D), 64 RAffineTransform (3D), 64 RAlignedCube1 (3D), 53
C Combine (nD), 40 Cuboid (3D), 35 Cylinder (3D), 36	RAlignedCube2 (3D), 53 RAlignedCuboid1 (3D), 70 RAlignedCuboid2 (3D), 71 RAlignedHalfAxes (2D), 56 RAlignedHalfAxes (3D), 57
Ellipsoid (3D), 35 Extrude (nD), 40	RAlignedRectangle1 (2D), 70 RAlignedRectangle2 (2D), 70 RAlignedSquare1 (2D), 52 RAlignedSquare2 (2D), 52
G GreyMask (3D), 37 Grid (3D), 41	Range (nD), 40 RArc1 (2D), 60 RArc1 (3D), 61 RArc2 (2D), 60 RArc2 (3D), 61
Line (3D), 32 Lines (3D), 32	RArc3 (2D), 60 RArc3 (3D), 61 RBitMask (1D), 61 RBitMask (2D), 62
M Mesh (3D), 37	RBitMask (2D), 62 RBitwise (1D), 69 RBitwise (2D), 69

RBitwise (3D), 69	RPolylinePoints (2D), 51
RCircle0 (2D), 72	RPolylinePoints (3D), 51
RCircle1 (2D), 54	RPolylineVector (1D), 70
RCircle2 (2D), 54	RPolylineVector (2D), 52
RCircle3 (2D), 55	RPolylineVector (3D), 52
RCircle4 (2D), 72	RRange1 (nD), 68
RCircle5 (2D), 55	RRange2 (nD), 68
RCircularCylinder1 (3D), 57	RRectangle1 (2D), 53
RCircularCylinder2 (3D), 58	RRectangle2 (2D), 53
RCircularCylinder3 (3D), 58	RRotateTransform (2D), 66
RCircularCylinder4 (3D), 58	RRotateTransform (3D), 66
RCombine (nD), 68	RScaleTransform (1D), 65
RCube1 (3D), 71	RScaleTransform (2D), 65
RCube2 (3D), 71	RScaleTransform (3D), 65
RCuboid1 (3D), 54	RSphere0 (3D), 72
RCuboid2 (3D), 54	RSphere1 (3D), 55
REllipseCovariance (2D), 57	RSphere2 (3D), 55
REllipsoidCovariance (3D), 57	RSphere3 (3D), 55
REllipticCylinder1 (3D), 59	RSphere4 (3D), 56
REllipticCylinder2 (3D), 59	RSphere5 (3D), 72
REllipticCylinder3 (3D), 59	RSphere6 (3D), 56
REllipticCylinder4 (3D), 60	RSquare1 (2D), 71
RExtrude (nD), 68	RSquare2 (2D), 71
RGreyMask (1D), 62	RText (2D), 67
RGreyMask (2D), 62	RTranslateTransform (1D), 64
RGreyMask (3D), 63	RTranslateTransform (2D), 65
RHalfAxes (2D), 56	RTranslateTransform (3D), 65
RHalfAxes (3D), 57	RValue (nD), 67
RLinePoints (1D), 49	RValues (nD), 67
RLinePoints (2D), 49	RVector (1D), 48
RLinePoints (3D), 50	RVector (2D), 48
RLinesPoints (1D), 69	RVector (3D), 48
RLinesPoints (2D), 50	RVectors (1D), 49
RLinesPoints (3D), 51	RVectors (2D), 49
RLinesVectors (1D), 69	RVectors (3D), 49
RLinesVectors (2D), 51	S
RLinesVectors (3D), 51	_
RLineVector (1D), 50	Scale (3D), 41
RLineVector (2D), 50	Shape, 13, 17, 83
RLineVector (3D), 50	String, 13
RMesh (2D), 63	Т
RMesh (3D), 63	
ROI, 83	Text (3D), 40
RPoint (1D), 47	transform
RPoint (2D), 47	2D, Affine, 20
RPoint (3D), 47	3D, Affine, 29
RPoints (1D), 47	Affine, 28
RPoints (2D), 48	V
RPoints (3D), 48	Value (nD), 39
RPolylinePoints (1D), 70	Values (nD), 39

88 Index