天体核网络方程

陈永寿 创新群体项目研讨会 夏门, 2011.10.13-14.

Introduction
Newtwork and reaction rates
Li-overproduction problem
Planning

Introduction

Evolution of the Universe

Three cosmology probes

They are complementary

Probing very different times after BB:
millions to billions years
380000 years
3 minutes

Stellar burning stages Nuclear reaction drives the evolution stars

All hydrogen fuel burned to helium at core No more fusion from hydrogen – gravity contracts star Core heats up and helium begins to fuse to form carbon and oxygen

All helium burned to C and O at core No more fusion from helium- gravity contracts star Core heats up and C begins to fuse to form neon and magnesium...

The death of stellar - Supernova

1a Type Supernovae

Accreting matter

Nuclear Burning rp

Explosion

天体核反应网络方程的特点

恒星演化的各个阶段的天体物理环境决定了特定的网络方程。(核反应的数量和类型)

宇宙中爆发性事的天体物理环境决定了特定的网络方程。

天体演化模型以及核物理输入的发展,网络方程相应发展。

Network and reaction rates

The reaction network --- a set of differential equations

$$\frac{dY_{i}}{dt} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{j,k}^{i} \rho N_{A} < \sigma V >_{jk,i} Y_{j} Y_{k}
+ \sum_{j,k,l} N_{j,k,l}^{i} \rho^{2} N_{A}^{2} < \sigma V >_{jkl,i} Y_{j} Y_{k} Y_{l}$$

$$Y_i = n_i / \rho N_A$$
 The nuclear abundance

N_A Avagadro constant number

ρ The density

n_i The number density of species 'i'

Definition of Reaction Rate

A reaction rate is defined to describe the rate of interaction of two types of nuclei in a star.

Reaction rate combine the INDIVIDUAL and ENSEMBLE behavior of nuclei in a star

INDIVIDUAL: interaction of any two particular nuclei depends on their relative velocity or relative energy

ENSEMBLE: pairs of nuclei have a wide range of relative energies in a star – characterized by the temperature of the system

sensitivity to nuclear physics - core collapse supernovae

 Neutron capture cross sections, especially near closed neutron shells - can change abundances by factor of ~10

Nuclear structure information masses, lifetimes, neutron
separation energies, shell
structure ... can change
abundances by
orders of magnitude

⁶Li-overproduction problem

Cosmological Lithium Problem

Li-abundances Observed in metal-poor halo stars are in disagreement with the standard BBN

Simulation of BBN with the baryon–to-photon ratio η fixed by WMAP

- ♦ Observed ⁷Li abundance is about a factor of 3 smaller than the prediction of standard model.
- ♦ Observed abundance of ⁶Li is 1000 times larger than the prediction of standard model.

问题出自: 核物理?天文观测?其它?

The set of differential equations for BBN

$$\frac{\stackrel{\bullet}{R}}{R} = H = \sqrt{\frac{8\pi G_N \rho}{3}}$$

$$\frac{n_B}{n_B} = -3H$$

$$\stackrel{\bullet}{\rho} = -3H(\rho + p)$$

$$\rho = \rho_B + \rho_{\gamma} + \rho_e + \rho_{\nu}$$

$$\frac{dY_i}{dt} = \sum_{j} N_j^i \lambda_j Y_j + \sum_{j,k} N_{j,k}^i \rho_B N_A < \sigma V >_{jk,i} Y_j Y_k$$

$$+ \sum_{j,k,l} N_{j,k,l}^i \rho_B^2 N_A^2 < \sigma V >_{jkl,i} Y_j Y_k Y_l$$

$$n_{B} \sum_{i} Z_{i} X_{i} = n_{e^{-}} - n_{e^{+}} \equiv L(\frac{m_{e}}{T}, \phi_{e})$$

$$(\frac{\partial}{\partial t} - H|p|\frac{\partial}{\partial |p|})f_{\nu_{\alpha}}(|p|,t) = I_{\nu_{\alpha}}[f_{\nu_{e}}, f_{\nu_{e}}, f_{\nu_{x}}, f_{\nu_{x}}, f_{e^{-}}, f_{e^{+}}]$$

BBN simulation 侯素青 with largest network and upgraded reaction rates (including CIAE rates of ⁸Li(n,g)⁹Li,....)

Reactions for creation and destruction of ⁶Li

Table 1 Reactions for creation and destruction of ⁶Li in the present network.

Creation of ⁶ Li	Destruction of ⁶ Li
$^{2}\mathrm{H}(\alpha,\gamma)^{6}\mathrm{Li}$	$^6\mathrm{Li}(n,\gamma)^7\mathrm{Li}$
$^9\mathrm{Be}(p,\alpha)^6\mathrm{Li}$	$^6\mathrm{Li}(n,\alpha)^3\mathrm{H}$
	$^6\mathrm{Li}(p,\gamma)^7\mathrm{Be}$
	$^6\mathrm{Li}(p,\alpha)^3\mathrm{He}$
	$^6\mathrm{Li}(\alpha,\gamma)^{10}\mathrm{B}$

Rates of ⁶Li - creation reactions

Rates of ⁶Li - destruction reactions

3 key reactions for the ⁶Li – problem

Figure 3: The fluxes calculated for three most important reactions to 6Li production.

Reaction	Flux:
$^{6}\text{Li}(n,\alpha)^{3}\text{H}$	2.42762E-09
⁶ Li(p, ³ He) ⁴ He	1.71925E-09
2 H(α ,g) 6 Li	4.14757E-09
all of other channels of ⁶ Li	<1E-14

Table 2: The values of fluxes of individual reactions of 6Li

BBN 反应流计算结果表明: 只有三个核反应最重要, 它们完全决定了原初核合 成的 ⁶Li 丰度。

正是这3个核反应决定了 6Li丰度为10⁻¹³ (而观测 值是10⁻¹⁰)。

4.14757-2.42762-1.71925 =0.0007

> 初步结论: 6Li 超丰问题不大 可能是由于核物 理本身出了问题。

⁶Li Breakup in Coulomb Dissociation

New GSI experiment with 150 A MeV ⁶Li on Pb target

6
Li + A \rightarrow d + 4 He + A

Stefan Typel, GSI

7th ANL/INT/JINA/MSU Annual FRIB workshop Interfaces between nuclear structure & reactions August 8-12, 2011

$$d + {}^{4}He \rightarrow {}^{6}Li$$

在串列加速器上完成的核反应测量

- $^{7}\text{Li}(^{6}\text{Li},^{7}\text{Li})^{6}\text{Li} \Rightarrow {^{6}\text{Li}(n,\gamma)}^{7}\text{Li}$
- $^{6}\text{He}(d,n)^{7}\text{Li} \Rightarrow {^{6}\text{He}(p,\gamma)^{7}\text{Li}}$
 - $^{13}\text{C}(^{6}\text{Li},^{7}\text{Be})^{12}\text{B} \Rightarrow {^{6}\text{Li}(p,\gamma)^{7}\text{Be}}$
- $^{13}\text{C}(^{7}\text{Li},^{8}\text{Li})^{12}\text{C} \Rightarrow ^{7}\text{Li}(n,\gamma)^{8}\text{Li}$
- $^{8}\text{Li}(d,p)^{9}\text{Li} \Rightarrow ^{8}\text{Li}(n,\gamma)^{9}\text{Li}$
- $^{8}\text{Li}(d,n)^{9}\text{Be} \Rightarrow {^{8}\text{Li}(p, \gamma)^{9}}\text{Be}$
- $^{13}\text{C}(^{9}\text{Be}, ^{8}\text{Li})^{14}\text{N} \Rightarrow ^{8}\text{Li}(p, \gamma)^{9}\text{Be}$
- ⁸Li(p,d)⁷Li,⁶He(p,n)⁶Li,⁸Li(p,t)⁶Li

李志安

CIAE-6Li问题下一步计划

⁴He(nn,γ)⁶He 反应激发函数
 ⁷Be(d,³He)⁶Li 反应激发函数
 ⁹Li(p,α)⁶He 反应激发函数
 ²H(α,γ)⁶Li 反应还有较大不确定性

CIAE的系统实验测量,将使Li-难题研究提高到一个新的层面,使我们有一定发言权。

Particle physics catalysis of thermal BBN

M. Pospelov, axiV:hep-ph/0605215v4 15 Mar 2007, (PRL June 2007)

According to the super- symmetry theory X⁻ particle, negative charged, massive, lifetime long enough to survive until BBN time, for example, 50 GeV, 1600 seconds

$$\sigma(d + (X^{-}\alpha) \rightarrow {}^{6}Li + X^{-}) \sim 10^{8} \times \sigma(d + \alpha \rightarrow {}^{6}Li + \gamma)$$

planning

- A .development of theory
- 1. Networks for selected astrophysical models Advanced nuclear data base of rates.
- 2. Nuclear theoretical models.
 - Capture reaction theory (ANC)
 - Shell model
 - Spectroscopic factor
 - beta-decay theory
 - Nuclear mass theory

Neutron capture elements in low-metallicity Galactic halo stars

结合天文台观测研究

早期银河系核合成的时间、性质和天体物理环境

β-衰变理论

激发态间的Gamow-Teller 跃迁

Z.C. Gao et al., Phys. Rev. C74, 054303 (2006)

人才培养

通过几年或十年左右的努力,培养出一支较高学术水准的核天体物理科学研究队伍(实验和理论)。

这是一项有挑战性的艰巨工作。

Remark

现代宇宙学主要有三个探针:宇宙微波背景辐射、星体运动观测(1a型超新星)和宇宙大爆炸原初核合成。宇宙微波背景辐射的发现,微波背景辐射黑体谱和各向异性的发现是现代宇宙学的里程碑成就。宇宙加速膨胀的发现预示着什么事情都可能发生。大爆炸核合成的探索,试图从微观与宏观统一的角度看宇宙,是重要的科学方法论,我们有理由寄望宇宙学的新突破。

整体统一观

现在对科学的最大的挑战,已不仅是那些已知的物质。因为在我们知道的物质之外,还有暗物质、暗能量。所以 我们要立足新的基础科学前沿,一定要将小的与大的联系 起来,这个方法可称为"整体统一"。我认为,"整体统一"的科学方法,应该是21世纪最重要的科学方法。

李政道

Thank you

天体核过程的路径

Neutron capture elements in low-metallicity Galactic halo stars

- 1、元素丰度随金属丰度的变化 Ge/H vs Fe/H
- 2、元素丰度比随金属丰度的变化 La/Eu vs Fe/H , Hf/Eu vs Fe/H Mg/Fe vs Fe/H , Eu/Fe vs Fe/H
- 3、元素丰度比随的元素丰度比变化 Ba/Sr vs Ba/Fe

4、同一颗恒星中的中子俘获元素丰度 Log(x) vs A

5、中子俘获元素奇偶同位素比 Fraction of odd Ba vs Ba/H Fraction of odd Ba vs Eu/Ba Fraction of odd Ba vs Eu/Fe

Theoretical tasks:
Pure r-process
Pure s-Process
Mixed r- & s- process