

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு இரண்டாம் தவணைப் பரீட்சை - 2024 National Field Work Centre, Thondaimanaru.

2nd Term Examination - 2024

இரசாயனவியல்	Ι
Chemistry	Ι

 $c = 3 \times 10^8 ms^{-1}$

One Hours

Gr -12 (2025)

02	$\left[\left(\begin{array}{c} \mathbf{T} \end{array} \right) \right]$	I
		$\overline{}$

- 01) உலோகங்களின் பெரும்பார்வைக்குரிய பெரும்பாலான இயல்புகளை (Macroscopic Properties). உலோக விளக்குவதற்கு, பிணைப்பு மாதிரியுரு என்னும் மாதிரியுருவை கொண்டு வாயுக்களின் நடத்தையின் இயக்க அடிப்படையாகக் உருவாக்கப்பட்டது. உலோகப்பிணைப்பு மாதிரியுருவுடன் அதிகம் தொடர்புபட்டவர்கள்,
 - (1) கஸ்வெல் (Caswell), லூயி (Lewis)
 - (2) லுட்விக் ரூட் (Ludwig Drude), ஹென்றிக் லோறன்z (Hendric Lorentz)
 - (3) ஹென்றி பெக்ரல் (Hentry Bequerel), ஹென்றி மோஸ்லி (Hentry Mosley)
 - (4) றொனால்ட் ஜிலெப்சி (Ronald Gillespie), கஸ்வெல் (Caswell)
 - (5) கோல்ட் ஸ்ரெய்ன் (Gold stein) , இரதபோர்ட் (Rutherford)

 $L=6.022\times 10^{23} mol^{-1}$

- SF_6 மூலக்கூறில், $\ell=0$ ஆக உள்ள அணு ஓபிற்றல்களிலுள்ள மொத்த இலத்திரன்களின் எண்ணிக்கையாக அமைவது?
 - (1) 30

- (3) 28
- (4) 22

 $R = 8.314 J \, mol^{-1} K^{-1}, h = 6.626 \times 10^{-34} J H$

(5) 28

03) பின்வருவனவற்றில் இருமுனைத்திருப்பத்திறன் உயர்வாக உள்ள மூலக்கூறு யாது?

(5) 0 = C = 0

$$\begin{array}{ccc}
(4) & Cl \\
Cl - P - Cl \\
Cl & Cl
\end{array}$$

- 04) குறித்த மூலக்கூறில் மைய அணுவிலுள்ள தள்ளுகை அலகுகளின் எண்ணிக்கை 5 ஆகும். அம்முலக்கூறின் அணு மைய சார்பாக மூலக்கூறின் வடிவமாக சாத்தியமானது வரச் பின்வருவனவற்றில் யாது?
 - (1) எண்முகி, தளசதுரம், சதுரக்கூம்பகம்
 - (2) முக்கோண இரு கூம்பகம், நிறுத்தாடுவளை, T வடிவம்
 - (3) நான்முகி, முக்கோண கூம்பகம், கோண வடிவம்
 - (4) முக்கோண இரு கூம்பகம், முக்கோண கூம்பகம், நேர்கோடு
 - (5) எண்முகி, சதுரக்கூம்பகம், T வடிவம்

05) $Li, Al, Na^+, Mg^{2+}, F^-$ ஆகிய அணுக்கள், அயன்களின் இறங்குவரிசையாக அமைவது?

- (1) $Al > Na^+ > Mg^{2+} > F^- > Li$
- (2) $Al > Li > F^- > Na^+ > Mg^{2+}$
- (3) $Li > Al > F^- > Na^+ > Ma^{2+}$
- (4) $Al > F^- > Na^+ > Mg^{2+} > Li$
- (5) $Na^+ > Al > F^- > Li > Mg^{2+}$
- 06) A, B, C, D ஆகியவை 4 ஆம் ஆவர்த்தனத்தைச் சேர்ந்த மூலகங்கள் ஆகும்.
 - I. A நீருடன் எரிதலுடன் உக்கிர தாக்கத்தில் ஈடுபடும்.
 - II. B இன் உப்பு சுவாலைச் சோதனைக்கு சிவப்பு செம்மஞ்சள் நிறத்தைத் தரும்.
 - III. C ஆனது தரைநிலையில் அதிகூடிய சோடியாக்கப்படாத இலத்திரன்களைக் கொண்டுள்ளது.
 - IV. D இன் உருகுநிலையானது 4ஆம் ஆவர்த்தனத்தில் உள்ள ஏனைய மூலகங்களை விட உயர்வானது.
 - (1) Ca, K, Cr, V

(2) K, Ca, V, Cr

(3) K, Ca, Cr, V

(4) Sc, Ca, K, V

- (5) *Mn, Sc, K, Ca*
- 07) $C_{(s)} + con4HNO_{3(l)} \rightarrow CO_{2(g)} + 4NO_2 + 2H_2O$ இத்தாழ்த்தேற்ற தாக்கம் பற்றி திருத்தமானது எது?
 - (1) காபன் 0 இல் இருந்து +4 இற்கு ஒட்சியேற்றப்படுகிறது.
 - (2) நைதரசன் +5 இலிருந்து +4 இற்கு தாழ்த்தப்படுகிறது.
 - (3) இத்தாக்கத்தில் 4 இலத்திரன்கள் பரிமாற்றப்படுகின்றன.
 - (4) (1),(2),(3) யாவும் திருத்தமானவை.
 - (5) (1),(2) மட்டும் திருத்தமானவை.
- 08) $XY_{2(g)} + 2XY_{(g)} \to X_3Y_{4(g)}$ இத்தாக்கமானது குறித்த வெப்ப அமுக்கத்தில் விறைப்பான மூடிய கொள்கலத்தில் இடம்பெறுகிறது. ஆரம்பதத்தில் கொள்கலன் XY_2, XY என்பவற்றை 3: 4 எனும் மூல்விகிதத்தில் கொண்டுள்ளன. அதே அமுக்கத்தில் தொகுதியின் வெப்பநிலையை இரண்டு மடங்காக உயர்த்திய போது XY இன் 75% தாக்கமடைந்தது. இந்நிலையில் XY இன் மூல்பின்னம் யாது?
 - (1) 0.25
- (2) 0.5
- (3) 0.33
- (4) 0.375
- (5) 0.22

09) இரண்டு விறைத்த கொள்கலன்களில் இலட்சிய வாயுவைக் கொண்டுள்ள தொகுதி ஒன்று உருவில் காட்டப்பட்டுள்ளது. திருகுபிடியை திறப்பதன் மூலம் இரு கொள்கலன்களிலுள்ள இரு வாயுக்களையும் கலக்கச் செய்ய முடியும். திருகுபிடியை கலக்கும் போது அமைப்பு 1 இலிருந்து அமைப்பு 2 மாற்றமடையும் போது அமுக்கம், வெப்பநிலை மாற்றமடைதல் உருவில் காட்டப்பட்டுள்ளது. n, P, V, T என்பன முறையே மூல், அமுக்கம், கனவளவு, வெப்பநிலை என்பவற்றை வகை குறிக்கின்றது.

- $(1) \ \frac{P_1}{T_1} + \frac{P_2}{T_2} = \frac{P}{T_3}$
- (3) $P_1V_1 + P_2V_2 = P(V_1 + V_2)$
- (5) $P = \left(\frac{(V_1 + V_2)}{T_2}\right) \left(\frac{P_1 V_1}{T_1} + \frac{P_2 V_2}{T_2}\right)$

- (2) $P = \frac{T_3}{(V_1 + V_2)} \left(\frac{P_1 V_1}{T_1} + \frac{P_2 V_2}{T_2} \right)$
- (4) $\frac{V_1}{T_1} + \frac{V_2}{T_2} = \frac{(V_1 + V_2)}{T_3}$
- 10) ஆய்வு கூடத்தில் *KOH* கொண்ட சேமிப்பு போத்தலானது குறித்த செய்முறையின் பின் மூடியால் மூடப்படாது 2 நாட்கள் இருந்தது. இரு நாட்களுக்கு பின் போத்தலிலுள்ள மாதிரியானது பகுப்பாய்வுக்கு உட்படுத்திய போது மாதிரியில் இருக்கத்தக்க சேர்வைகள்,
 - (1) KOH, $KHCO_3$, H_2O
- (2) KOH, K_2CO_3, H_2O
- (3) K_2O, K_2CO_3, H_2O

- (4) KH, K_2CO_3 , KOH
- (5) KOH, $KHCO_3$, K_2CO_3
- 11) வாகனத்திலிருந்து வெளியெறும் புகை மாதிரியில், COவாயுவின் அமைப்பை துணிய பின்வரும் நடைமுறை மேற்கொள்ளப்பட்டது. 27° C இல் புகை மாதிரியின் 3g ஆனது மிகை தூளாக்கப்பட்ட I_2O_5 திண்மத்தினூடாக செலுத்தப்பட்டது. இதன்போது உருவான I_2 முழுவதும் KI நீர்க்கரைசலின் $50.0cm^3$ இல் கரைக்கப்பட்டது. பெறப்பட்ட விளைவு கரைசல் முழுவதும் $0.0001moldm^{-2}\ Na_2S_2O_3$ உடன் நியமிக்கப்பட்டது. தேவைப்பட்ட $Na_2S_2O_3$ இன் கனவளவு $3.00cm^3$ தேவைப்பட்டது. புகை மாதிரியில் CO இன் அமைப்பை ppm இல் தருக. $[I_2O_5+CO\rightarrow CO_2+I_2]$ (தாக்கம் சமப்படுத்தப்படவில்லை)
 - (1) 70ppm
- (2) 14ppm
- (3) 11ppm
- (4) 10ppm
- (5) 7ppm
- 12) $A_g + B_g \to 2C_g \triangle S^\circ = 50 Jmol^{-1}K^{-1}$ T கெல்வின் வெப்பநிலையில் இத்தாக்கத்தின் $\triangle G^\circ = -100 K Jmol^{-1}.2T$ கெல்வின் வெப்பநிலையில் $\triangle G^\circ = -150 K Jmol^{-1}$ ஆகும். (வெப்பநிலையுடன் $\triangle S^\circ, \triangle H^\circ$ ஆகியன மாற்றம் அடையவில்லை) T கெல்வின் வெப்பநிலையின் பெறுமதி யாது?
 - (1) 2000K
- (2) 500K
- (3) 1500K
- (4) 1000K
- (5) 727K

- 13) S தொகுதி உலோகங்களின் இரசாயன இயல்பு பற்றி பிழையானது?
 - (1) திரவநிலை நீரில் தாக்கமடைந்து H_2 ஐயும் உலோக ஐதரொட்சைட்டையும் தரும்.
 - (2) Be கொதிநீராவியுடன் மாத்திரம் தாக்கமடையும்
 - (3) அமோனியா இவ்வுலோகங்களுடன் தாக்கமடையும் போது NH_3 அமிலமாகவும் ஒட்சியேற்றும் கருவியாகவும் தொழிற்படுகிறது.
 - (4) கூட்டம் ஒன்றின் எல்லா உலோகங்களும் NaOH நீர் கரைசலுடன் தாக்கமடைந்து ஐதரசனை ஒரு விளைவாக தருகிறது.
 - (5) Na மிகை ஒட்சிசனுடன் தாக்கமடைந்து O^{2-}, O_2^{2-} அன்னயனைக் கொண்ட சேர்வைகளின் கலவையைத் தருகிறது.
- 14) கந்தகத்தின் பிறதிருப்பங்கள் பற்றி பின்வரும் கூற்றுக்களில் சரியானது?
 - (1) சாய்சதுரக் கந்தகபளிங்கு கிரீடம் வடிவமானது.
 - (2) கந்தகத்தின் பிறதிருப்பங்களில் ஒரு சரிவுக்கந்தகம் வெப்ப இயக்கவியலின்படி உறுதியான கட்டமைப்பாகும்.
 - (3) சாய்சதுரக்கந்தகம், ஒரு சரிவுக்கந்தகம் மூடிய சங்கிலித் துணிக்கைகளால் ஆன பளிங்குக் கட்டமைப்பாகும்.
 - (4) $Na_2S_2O_3$ கரைசலுக்கு ஐதான HCl சேர்க்கும் போது மஞ்சள் நிற கலங்கலுக்கு காரணமான சாய்சதுரக் கந்தகத்தை கொடுக்கிறது.
 - (5) உருகிய கந்தகத்தினை நீரினுள் உளற்றும் போது அல்லது சடுதியாக குளிர்விக்கும் போது பளிங்குருவான கந்தகம் உருவாக்கிறது.
- $Ba(OH)_2$ இன் திண்ம மாதிரியானது சடத்துவ மாசு ஒன்றினால் மாசுபடுத்தப்பட்டுள்ளது. $Ba(OH)_2$ திணம மாதிரியானது $500cm^{3}$ 8.00gமேற்படி நீரில் கரைக்கப்பட்டு $50cm^3$ பெறப்பட்ட விளைவுக்கரைசலின் கரைசலாக்கப்பட்ட<u>து</u>. ஆனது $0.2moldm^{-3},50cm^3$ HCl உடன் தாக்கமடைய அனுமதிக்கப்பட்டது. பெறப்பட்ட விளைவுக்கரைசலில் H⁺அயனின் செறிவு $0.01 moldm^{-3}$ எனின் இருந்தது ஆக மாதிரியிலுள்ள $Ba(OH)_2$ இன் தூய்மை வீதம் யாது?
 - (1) 66.2% (2) 85.5% (3) 96.2%
 - 3) 96.2% (4) 98%
- (5) 99%

16 – 20 வரையான வினாக்களுக்கான அறிவுறுத்தற் சுருக்கம்

(1)	(2)	(3)	(4)	(5)
(a),(b)ஆகியன மாத்திரம் திருத்தமானவை.	(b),(c)ஆகியன மாத்திரம் திருத்தமானவை.	(c),(d)ஆகியன மாத்திரம் திருத்தமானவை.	(a),(d)ஆகியன மாத்திரம் திருத்தமானவை.	வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவை.

- 16) மெய்வாயுக்கான $\left(P+\frac{an^2}{V^2}\right)(V-nb)=nRT$ சமன்பாடு பற்றியும், வாயுக்கள் பற்றியும் பின்வருவனவற்றில் உண்மையானது/ உண்மையானவை?
 - a) a இன் பெறுமதி பின்வரும் மூலக்கூறுகளில் குறையும் $H_2O>CO_2>H_2>He$
 - b) b இன் பெறுமதி பின்வரும் மூலக்கூறுகளில் குறையும் ${\it CO}_2>H_2{\it O}>H_2>He$
 - c) இச்சமன்பாடு குறித்த நிபந்தனைகளில் இலட்சிய வாயுக்களுக்கு பயன்படுத்த முடியும்.
 - d) மிக தாழ் அமுக்கத்தில் மெய்வாயுவின் கனவளவை புறக்கணிக்கமுடியும்.

- 17) இலட்சிய வாயுக்கள் பற்றி பின்வரும் கூற்றுக்களில் சரியானது/சரியானவை?
 - a) உயர் வெப்பநிலையில், தாழ் அமுக்கத்தில் மூலக்கூற்றிடைக் கவர்ச்சி விசை புறக்கணிக்கத்தக்கது.
 - b) ஒரு போதும் திரவமாக்க முடியாது
 - c) அமுக்கம் பூச்சியத்தினை அண்மிக்கும் போது இலட்சிய வாயுத்தன்மை மேலும் மேலும் அதிகரிக்கிறது.
 - d) கதிவர்க்க இடையானது \sqrt{T} ற்கு நேர்விகித சமனாகும். (T தனிவெப்பநிலை)
- 18) பின்வரும் தாக்கங்களில் எது/எவை நைதரசனை விளைபொருளொன்றாக தரக்கூடியது?
 - a) $NH_4Cl_{(aq)}$ இற்கு NaOH சேர்த்தல்
 - b) $NH_4NO_{3(s)}$ இன் வெப்பப்பிரிகை.
 - c) $\mathcal{C}u\mathcal{O}_{(g)}$ உடன் NH_3 வாயு தாக்கமடைதல்
 - d) $(NH_4)_2 Cr_2 O_{7(s)}$ இன் வெப்பப்பிரிகை
- 19) பின்வரும் கூற்றுக்களில் எது/ எவை பென்சிற்கரி தொடர்பாக திருத்தமானது/திருத்தமானவை,
 - ${
 m a}$) பென்சிற்கரியிலுள்ள எல்லா காபன் அணுக்களும் ${\it SP}^2$ கலப்பாக்க ${
 m (}$ மடையவை.
 - b) இது உயர் உருகுநிலையுடையது.
 - c) இது சிறந்த மின்கடத்தி
 - d) இது உராய்வு நீக்கியாக பயன்படுகிறது.
- 20) பின்வரும் கூற்றுக்களில் எது / எவை *S* தொகுப்பு மூலகம் மற்றும் அதன் சேர்வைகள் தொடர்பாக திருத்தமானது/திருத்தமானவை,
 - a) கூட்டம் 2 மூலக ஐதரொட்சைட்டுக்களின் கரைதிறன் கூட்டம் வழியே மேலிருந்து கீழ் அதிகரிக்கும்.
 - b) இவ் உலோக இருகாபனேற்றுக்களின் வெப்ப உறுதி அதன் காபனேற்றுகளின் வெப்ப உறுதியை விட அதிகம்.
 - c) S தொகுப்பு மூலகங்களின் உருகுநிலை கூட்டம் வழியே அதிகரிக்கும் (மேலிருந்து கீழ்)
 - d) பேரியம் (Barium) ஆனது O_2 வாயுவுடன் தாக்கமடைந்து இரு வகையாக ஒட்சைட்டுக்களைத் தரும்.

💠 21 – 25 வரையான வினாக்களுக்கான அறிவுறுத்தல் சுருக்கம்

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று
(01)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்
		திருத்தமான விளக்கத்தைத் தருவது.
(02)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்
		திருத்தமான விளக்கத்தைத் தராதது.
(03)	உண்மை	பொய்
(04)	பொய்	உண்மை
(05)	பொய்	பொய்

கூற்று I

21) S தொகுதி உலோகங்களின் அணுவாதல் வெப்பவுள்ளுறையிலும் d தொகுதி உலோகங்களின் அணுவாதல் வெப்பவுள்ளுறை பொதுவாக உயர்வாகும்

- கூற்று II
- உலோகப்பிணைப்பு வலிமை பொதுவாக S தொகுதி உலோகங்களிலும் d தொகுதி உலோகங்களிற்கு உயர்வாகும்.
- 22) HI ஆனது மற்றைய ஐதரசன் ஏலைட்டுக்களை விட அமில இயல்பு கூடியது.
- ஏனைய ஐதரசன் ஏலைட்டுகளின் பிணைப்பை விட HI பிணைப்பு வலிமை குறைந்தது.
- 23) வெப்ப இயக்கவியலின்படி, புறவெப்பத் தாக்கங்கள் எந்த வெப்பநிலையிலும் சுயாதீனமாக நிகழ வேண்டும் எனின் அத்தாக்கத்தின் ΔS ஆனது + ஆக இருத்தல் வேண்டும்.
- புறவெப்பத்தாக்கங்களின் ΔG (-) மறை பெறுமானம் உடையதாகும்.
- 24) காபன் உருவாக்கும் பல்வேறு பங்கீட்டு வலுச்சேர்வைகளில் காபனின் மின்னெதிர்தன்மை Sp > Sp² > Sp³ என்றவாறு அமையும்.
- காபனின் கருவுக்கும், கலப்பு ஓபிற்றல்களுக்கும் இடையிலான தூரம்/ பருமன் $Sp < Sp^2 < Sp^3$ என்றவாறு அமையும்.
- 25) மூடிய தொகுதியில் இலட்சிய வாயு மூலக்கூறுகளின் மொத்த சக்தி, மாறா வெப்பநிலையில் மாறிலி ஆகும்.
- மூடிய தொகுதியில் இலட்சியவாயுவின் மொத்த சக்தி தனி வெப்பநிலைக்கு நேர் வீத சமனாகும்.

(25 x 2 = 50 புள்ளிகள்)