ES710 – Controle de Sistemas Mecânicos

05 – Análise no tempo: sistema de primeira ordem

Eric Fujiwara

Unicamp – FEM – DSI

Índice

Índice:

- 1) Resposta no tempo;
- 2) Sistema de primeira ordem;
- 3) Resposta ao degrau;
- 4) Resposta à rampa;
- 5) Resposta ao impulso;
- Questionário;
- Referências;
- Exercícios.

Modelagem e controle

1. Resposta no tempo

1.1. Resposta transiente e estacionária:

- Um sistema LTI excitado por um sinal u(t) produz uma saída y(t) com característica similar à entrada;
- A resposta y(t) varia no tempo e pode ser representada pela combinação linear de uma componente **transiente** $y_{tr}(s)$ e uma componente de **regime estacionário** $y_{ss}(s)$:

$$y(t) = y_{tr}(t) + y_{ss}(t)$$

$$\tag{1}$$

• Quando $t \to \infty$, a resposta transiente evanesce $y_{tr}(\infty) = 0$ e a saída do sistema tende à resposta estacionária $y(\infty) = y_{ss}(\infty)$.

2. Sistema de primeira ordem

- 2.1. Sistema de primeira ordem:
 - Um sistema de primeira ordem é caracterizado por

$$a_1 \dot{y}(t) + a_0 y(t) = u(t)$$
 (2)

$$\tau \dot{y}(t) + y(t) = u(t) \tag{3}$$

• $\tau = \frac{a_1}{a_0}$ é a **constante de tempo** do sistema (s).

2. Sistema de primeira ordem

2.2. Função de transferência:

Aplicando a transformada de Laplace:

$$Y(s)(\tau s + 1) = U(s)$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{\tau s + 1} \tag{4}$$

- O sistema de primeira ordem apresenta um polo real em $s=-\frac{1}{\tau}$;
- Seja Y(s) = G(s)U(s), uma vez determinado G(s) é possível simular a resposta do sistema $y(t) = \mathcal{L}^{-1}[Y(s)]$ para uma entrada $U(s) = \mathcal{L}[u(t)]$ conhecida.

3.1. Resposta ao degrau unitário:

 Seja um sinal do tipo degrau unitário e sua transformada de Laplace:

$$u(t) = 0,$$
 $t < 0$
 $u(t) = 1,$ $t > 0$

$$U(s) = \frac{1}{s} \tag{5}$$

A resposta do sistema de primeira ordem é calculada por

$$Y(s) = G(s)U(s) = \frac{1}{\tau s + 1} \frac{1}{s}$$

- 3.1. Resposta ao degrau unitário:
 - Re-arranjando:

$$Y(s) = \frac{1}{\tau} \frac{1}{(s + \frac{1}{\tau})} \frac{1}{s}$$

- Y(s) possui dois polos: $p_1 = -\frac{1}{\tau}$ e $p_2 = 0$;
- Calculando a transformada de Laplace inversa ($t \ge 0$, y(0) = 0):

$$y(t) = 1 - e^{-t/\tau} (6)$$

Resposta estacionária

Resposta transiente

3.1. Resposta ao degrau unitário:

- Quanto maior
 a constante de
 tempo τ, mais
 tempo o sistema
 demora para
 atingir o valor
 final;
- (A subida fica mais lenta).

3.1. Resposta ao degrau unitário:

- Observações:
 - A saída do sistema tende à resposta estacionária $y_{ss} = 1$ quando $t \to \infty$:

$$\lim_{t\to\infty}y(t)=1$$

• Quando $t = \tau$, a saída atinge 63,2% do valor final:

$$y(\tau) = 1 - e^{-\frac{\tau}{\tau}} = 1 - \frac{1}{e} = 0.6321$$

- 3.2. Identificação de um sistema à partir da resposta ao degrau:
 - Seja um sistema de primeira ordem excitado por uma função do tipo degrau. Para identificar o sistema experimentalmente:
 - 1) Transladar o eixo do tempo para que o degrau inicie em t=0 (opcional);
 - 2) Normalizar a saída para que o degrau seja unitário (opcional);
 - 3) Verificar o valor de tempo ($t = \tau$) para o qual a saída atinge 63,2% do valor final;
 - 4) Conhecendo τ , basta determinar a função de transferência G(s);
 - **Obs:** uma vez determinada a TF pela resposta ao degrau, o sistema pode ser testado para qualquer entrada (a TF é uma propriedade do sistema, e não da entrada).

4. Resposta à rampa

4.1. Resposta à rampa unitária:

Função rampa unitária:

$$r(t) = 0,$$
 $t < 0$
 $r(t) = t,$ $t \ge 0$

$$R(s) = \frac{1}{s^2} \tag{7}$$

A resposta do sistema:

$$Y(s) = G(s)U(s) = \frac{1}{\tau} \frac{1}{(s + \frac{1}{\tau})} \frac{1}{s^2}$$

- Y(s) possui um polos simples $p_1 = -\frac{1}{\tau}$ e um polo duplo $p_2 = 0$;

• Dica: resíduo de um polo duplo:
$$z = \lim_{s \to s_0} \frac{d}{ds} \left[(s - s_0)^2 y(s) e^{st} \right]$$

4. Resposta à rampa

- 4.1. Resposta à rampa unitária:
 - Resposta no tempo ($t \ge 0$ e condições iniciais nulas):

$$y(t) = t - \tau + \tau e^{-t/\tau} \tag{8}$$

Resposta estacionária

Resposta transiente

• Quando $t \to \infty$, y(t) tende a acompanhar u(t) com um offset constante τ :

$$e(t)\Big|_{t\to\infty} = [u(t) - y(t)]\Big|_{t\to\infty} = \tau$$

4. Resposta à rampa

4.1. Resposta à rampa unitária:

- Quanto maior a constante de tempo, maior será a diferença entre os sinais de entrada e de saída;
- (Aumenta o erro estacionário do sistema).

- 5.1. Resposta ao impulso unitário:
 - Função "impulso unitário":

$$\begin{cases}
f(t) = 0, & t \neq 0 \\
f(t) = 1, & t = 0
\end{cases}$$

$$F(s) = 1$$
(9)

Resposta do sistema:

$$Y(s) = G(s)U(s) = \frac{1}{s + \frac{1}{\tau}}$$

- Y(s) possui um polos simples $p_1 = -\frac{1}{\tau}$;
- Nota-se que a resposta ao impulso é a própria planta G(s).

- 5.1. Resposta ao impulso unitário:
 - Resposta no tempo ($t \ge 0$ e condições iniciais nulas):

$$y(t) = 0 + \frac{1}{\tau} e^{-t/\tau}$$
 (10)

Resposta estacionária

Resposta transiente

 A resposta ao impulso unitário é a própria função de transferência do sistema.

5.1. Resposta ao impulso unitário:

 Quanto maior a constante de tempo, mais o sistema demora para atingir o valor final.

- 5.2. Relação entre respostas ao impulso, degrau e rampa:
 - Válido para sistemas LTI.

Resposta à rampa

Resposta ao degrau

Resposta ao impulso

Questionário

• Questionário:

- 1) Qual é o significado físico da constante de tempo de um sistema primeira ordem?
- 2) Por que a integral da resposta ao impulso é igual à resposta ao degrau do sistema? E por que a integral da resposta ao degrau é igual à resposta à rampa?
- 3) Suponha que você deseja identificar experimentalmente um sistema eletromecânico (entrada elétrica e saída mecânica):
 - Como determinar se o sistema é de primeira ordem?
 - Como determinar os parâmetros do modelo a_0 , a_1 e τ ?

Referências

Referências:

- R. S. Figliola, D. E. Beasley, Theory and Deisign for Mechanical Measurements, Wiley, 2011.
- G. F. Franklin *et al.*, Feedback Control of Dynamic Systems, Prentice Hall, 2002.
- K. Ogata, Modern Control Engineering, Prentice Hall, 2002.

- **Ex 5.1)** Seja um drone de massa m sujeito a uma força de propulsão F e à força de arrasto $F_b = bv = b\dot{y}$. Assuma que o drone só consegue se mover na direção vertical y.
 - a) Obtenha a TF do sistema G(s) = V(s)/F(s);
 - b) Obtenha a resposta ao impulso, ao degrau, e à rampa unitária.
 - Dados do modelo:
 - m = 0.8 kg;
 - b = 0.4 N.s/m.

- Ex 5.1)
 - Equilíbrio de forças:

$$m\dot{v}(t) = F(t) - F_b(t) - P$$

$$m\dot{v}(t) + bv(t) = F(t) - mg = u(t)$$

Função de transferência:

$$V(s)[ms+b] = U(s)$$

$$G(s) = \frac{V(s)}{U(s)} = \frac{1}{ms+b} = \frac{\frac{1}{b}}{\left(\frac{m}{s}\right)s+1}$$

$$U(s) = F(s) - mg$$

$$U(s) = F(s) - mg$$

$$Y(s) = \frac{1}{s}V(s)$$

- **Ex 5.1)**
 - Parâmetros do sistema de primeira ordem:

$$G(s) = \frac{V(s)}{U(s)} = \frac{\frac{1}{b}}{\left(\frac{m}{s}\right)s+1}$$

- $a_1 = m = 0.8 \text{ kg}$;
- $a_0 = b = 0.4 \text{ N.s/m};$
- $\tau = \frac{m}{b} = 2 \text{ s};$
- $K = \frac{1}{h} = 2.5$.

- **Ex 5.1)**
 - Implementação no MATLAB:

```
%Parametros do modelo
m = 0.8;
b = 0.4;
g = 9.81;
tau = m/b
K = 1/b

%Funcao de transferencia
s = tf('s');
Gs = K/(tau*s+1)
Gs = Gs/K %Normalizado
```

```
%Resposta ao degrau
figure
step(Gs)

%Resposta ao impulso
figure
impulse(Gs)

%Resposta a rampa
figure
step(Gs/s)
```

Ex 5.1)

- Resposta ao degrau:
 - Em t = τ = 2 s, a saída atinge 63% do valor final;
 - Note que a planta foi normalizada para que a saída seja unitária;
 - Note que a força aplicada é u(t) = F(t) - mg;

- **Ex 5.1)**
 - Resposta ao impulso:
 - O valor final tende a zero para $t \to \infty$.

Ex 5.1)

- Resposta à rampa:
 - A resposta do sistema acompanha a rampa unitária de entrada.
 - Sugestão: plotar a rampa unitária de entrada como referência:

```
figure
step(Gs/s)
hold on
plot([0 20],[0 20],'k:')
hold off
```


- **Ex 5.1)**
 - Implementação no Simulink:

• Ex 5.1)

• Resposta ao degrau: força de propulsão F(t) e esforço unitário u(t). Foi aplicado um offset de mg em F(t) para garantir sustentação ao drone no repouso.

• Ex 5.1)

• Resposta ao degrau: velocidade v(t) e altitude y(t). A velocidade segue o sinal de entrada. Como a velocidade é constante, o drone continua subindo.

Ex 5.1)

 Para manter a altitude do drone constante, pode-se aplicar um perfil trapezoidal de velocidade, lembrando de manter o offset de mg para compensar o peso.

- **Ex 5.1)**
 - Perfis de velocidade e altitude:

- **Ex 5.1)**
 - Comentários:
 - A entrada do sistema é a força de propulsão F(t) e a saída é a velocidade de subida v(t);
 - Na verdade, a força é a velocidade de rotação das hélices, ou a tensão aplicada nos motores;
 - Na prática, você acha conveniente controlar a velocidade a partir de um sinal de força?
 - Solução: desenvolver um controlador que, dada uma velocidade desejada $v^*(t)$, produza uma força F(t) de modo a garantir que o drone se mova com uma velocidade $v(t) = v^*(t)$.

Ex 5.2) Seja um circuito RL em série excitado por um trem de pulsos v_s de amplitude 100 V.

O gráfico ao lado mostra a tensão no resistor v_R medida com um osciloscópio.

Obtenha a função de transferência que relaciona a corrente de saída i(t) com a tensão de entrada $v_s(t)$, $G(s) = I(s)/V_s(s)$.

• Resistência medida com multímetro: $R = 15 \Omega$.

- **Ex 5.2**)
 - Circuito RL série:

$$V_{S}(s) = [sL + R]I(s)$$

$$G(s) = \frac{I(s)}{V_s(s)} = \frac{1}{sL + R} = K \frac{\frac{1}{R}}{\tau s + 1}$$

$$\frac{V_R(s)}{V_S(s)} = RG(s) = K \frac{1}{\tau s + 1}$$

Ex 5.2)

Constante de tempo:

$$\tau = t_{63.2\%} - t_0 = 0.299 - 0.209 = 0.09 \,\mathrm{s}$$

$$\tau = \frac{L}{R} \Rightarrow L = 1.35 \text{ H}$$

- Ganho:
 - Normalizando a entrada ($v_s/100$), a saída também se torna unitária, com valor de estabilização $v_R(t \to \infty) = 1$ V. Portanto, K = 1;
- Função de transferência:

$$G(s) = \frac{I(s)}{V_s(s)} = \frac{0.067}{0.09s + 1}$$