

به نام خدا

دانشگاه تهران دانشکده مهندسی برق و کامپیوتر اصول سیستم های مخابراتی

تمرین کامپیوتری دوم

سياوش شمس	نام و نام خانوادگی
۸۱۰۱۹۷۶۴۴	شماره دانشجویی
99/9/۲9	تاریخ ارسال گزارش

فهرست گزارش سوالات

٣	سوال ۱-Bessel functions
۴	سوال Narrow Band Modulation-۲
۵	سوال ۳- Single Tone Modulation
11	سوال ۴- FM using PM
١٢	سوال ۵- Armstrong Indirect Method

سوال ۱-Bessel functions

سوال Narrow Band Modulation-۲

The reason that NBPM is different from Phase modulated signal is that we used approximation (first terms of Taylor's series) for calculating the NBPM though $|\varphi(t)|$ is not less than 1.

maximum value of $\it kp$ for having less than 1% error is 0.7

سوال ۳- Single Tone Modulation

As we see in the above graphs, as β increases the bandwidth also increases, its due to increament of $|\varphi(t)|$, so the spectrum of the modulated signal changes in that way.

For $\beta=0.1$ approximate bandwidth is 2(0.1+1)10=22 $Hz \rightarrow n=1.1 \rightarrow N=2$

For $\beta=1$ approximate bandwidth is $2(1+1)10=40~Hz \rightarrow n=2 \rightarrow N=2$

For $\beta=5$ approximate bandwidth is $2(5+1)10=120~Hz \rightarrow n=6 \rightarrow N=6$

For $\,eta=10$ approximate bandwidth is $2(10+1)10=220\,$ Hz
ightarrow n=11
ightarrow N=11

These are the calculated N's for using bessel function for modulation, but we use a value higher than these calculated N's for our simulations to have more accurate and better results.

Modulated signals using Bessel's function for different values of eta

سوال ۴- FM using PM

$$\beta = \frac{kf}{fm} \to kf = 100$$

Comparing output of FM modulation and PM modulation we realize that FM modulated signal has $\frac{\pi}{2}$ phase shift and a minus sign.

سوال ۵- Armstrong Indirect Method

If we use several multipliers instead of one we will need a crystal oscillator with much less frequency so it will be cheaper. For example we want to multiply frequency by 3072 with fc=200Khz, if we use one multiplier we will need a crystal oscillator with 500 MHz frequency to put it on 100MHz but if we use two multipliers with value of 64 and 48 we will achieve this goal with only a 10.8MHz crystal oscillator.

Frequency multiplier is a non-linear device combined with BPF

Output of non-linear circuit is $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$

And if we choose $x = \cos(\omega t)$ the output will be

$$y(x) = a_0 + a_1 \cos(\omega t) + a_2 \cos^2(\omega t) + a_3 \cos^3(\omega t) + \cdots$$

We know that: $\cos^2(\omega t)=(1-\cos(2\omega t))$ & $\cos^3(\omega t)=\frac{1}{4}(\cos(\omega t)+\cos(3\omega t))$ & ... So we can write $y=b_0+b_1\cos(\omega t)+b_2\cos(2\omega t)+b_3\cos(3\omega t)+\cdots$

So we can choose what multiple of the frequency of the input signal we want and then pass It through the BPF.

Frequency converter: These devices usually consist of a <u>rectifier</u> stage (producing <u>direct</u> <u>current</u>) which is then inverted to produce AC of the desired frequency. The <u>inverter</u> may use <u>thyristors</u>, <u>IGCTs</u> or <u>IGBTs</u>.

