

ROSCON FR 2024 Nantes – Workshop 4

Tache d'assemblage de modèles 3D de montres

- \$ git clone git@github.com:rosconfr24-ws4/acroba.git
- \$ cd acroba

Ou pour la mise à jour du setup existant:

- \$ cd acroba
- \$ git pull

Dans les deux cas:

- \$ make pull
- \$ make setup

ROSCON FR - Nantes - 18.06.2024

Workshop 4

Création d'une tâche d'assemblage

à l'aide d'arbres de comportement

Laurent Cavazzana

1. Le projet ACROBA

2. Les Arbres de Comportement

3. Tache d'assemblage de modèles 3D de montres

Ère de l'Industrie 4.0

- Évolution rapide des marchés
- Hyper-personnalisation des produits

Ère de l'Industrie 4.0

- Évolution rapide des marchés
- Hyper-personnalisation des produits
 - Défis pour l'industrie manufacturière

Ère de l'Industrie 4.0

- Évolution rapide des marchés
- Hyper-personnalisation des produits
 - Défis pour l'industrie manufacturière
- réduire le délai de mise sur le marché
- reprogrammation des outils de production?

Fabrication Agile

- concept de production flexible
- Système robotique capable de s'adapter
- Reprogrammation facilité
- Collaboration homme-robot (HRC)
- Clone digital

Le projet ACROBA

- + créer une plateforme robotique cognitive
- + facilement configurable
- + adaptable à pratiquement tous les scénarios industriels

Le projet ACROBA

- + créer une plateforme robotique cognitive
- + facilement configurable
- + adaptable à pratiquement tous les scénarios industriels
 - Réduction du temps de configuration, de programmation et de mise en service d'une solution robotique

ROSCON FR Nantes – Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

Le projet ACROBA

H2020 Innovation action

~8M€ budget ~7M€ EU funding

5 industrial pilots

Coordinator: BFH

42 months

2 ACROBA On-Site Lab 17 partners9 countries

Reference Architecture COPRA-AP

12 hackathons

ROSCON FR Nantes - Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

Le projet ACROBA

The ACROBA project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017284.

ROSCON FR Nantes - Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

ROSCON FR Nantes - Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

module de perception multi-modale

ROSCON FR Nantes – Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

Task Planner

 Générer une tâche à partir de la représentation Ul et des compétences/primitives existantes.

- Effectuer l'exécution/le contrôle de la tâche.

- Replanification automatique en ligne.

Task Planner

- Générer une tâche à partir de la représentation Ul et des compétences/primitives existantes.

- Effectuer l'exécution/le contrôle de la tâche.

- Replanification automatique en ligne.

Task Planner

- Générer une tâche à partir de la représentation Ul et des compétences/primitives existantes.

Arbres de Comportement

- Effectuer l'exécution/le contrôle de la tâche.

Replanification automatique en ligne.

- Généralisation de la Machine à états finis
- Arbre de noeuds hiérarchiques contrôlant la prise de décision
- Souple et puissant
- Utilisé dans les jeux vidéo pour émuler des comportement intelligent

Les Arbres de Comportement

Référence:

Behavior Trees in Robotics and Al Michele Colledanchise & Petter Ögren

https://arxiv.org/abs/1709.00084

- Un signal "tick" est envoyé à la racine de l'arbre à une fréquence donnée
- Le tick est propagé à travers l'arbre jusqu'à ce qu'il atteigne un nœud feuille
- Un nœud qui reçoit un "tick" renvoie l'un des résultats suivants : RUNNING SUCCESS FAILURE
- Si un nœud a plusieurs enfants, il est responsable de propager le signal à ses enfants.

- Les noeuds internes sont des noeuds de "controle"
 - Sequence
 - Fallback
 - Parallel
 - Decorator
- Les noeuds feuilles sont des noeuds d'execution
 - Action
 - Condition

- Les noeuds internes sont des noeuds de "controle"
 - Sequence
 - Fallback
 - Parallel
 - Decorator
- Les noeuds feuilles sont des noeuds d'execution
 - Action
 - Condition

Type of TreeNode	Children Count	Notes
ControlNode	1N	Usually, ticks a child based on the result of its siblings or/and its own state.
DecoratorNode	1	Among other things, it may alter the result of the children or tick it multiple times.
ConditionNode	0	Should not alter the system. Shall not return RUNNING.
ActionNode	0	This is the Node that "does something"

Source: https://www.behaviortree.dev/docs/learn-the-basics/BT_basics

https://roboticseabass.com/2021/05/08/introduction-to-behavior-trees/

Source: Behavior Trees in Robotics and AI - Colledanchise & Ögren

Source: Behavior Trees in Robotics and AI - Colledanchise & Ögren

Source: Behavior Trees in Robotics and AI - Colledanchise & Ögren

ROSCON FR 2024 Nantes – Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

Les Arbres de Comportement

Source: https://www.behaviortree.dev/docs/learn-the-basics/BT basics

Les Arbres de Comportement en bref:

- Simplicité et Réactivité: quelques composants seulement
- Evolutif: pas d'explosion combinatoire lorsque le nombre de noeuds augmentent.
- Dynamique: l'arbre peut être changé "on the fly".
- Ticking: no complex multi-threading.

- Les arbres de comportement modélise le flux de décision
- Flux de données ?

- Les arbres de comportement modélise le flux de décision
- Flux de données ? "Blackboard"

- Les arbres de comportement modélise le flux de décision
- Flux de données ? "Blackboard"
 - une structure de données partagée
 - accessible à tout moment pour ecrire ou lire données.

Implémentations

- BehaviorTreeCpp (https://www.behaviortree.dev/)
 - **C**++
 - Nav2
 - Xml
- py_trees (https://py-trees.readthedocs.io/en/devel/)
 - python

ROSCON FR 2024 Nantes – Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

BehaviorTreeCpp

- + performance (C++)
- + representation en XML (modulable, extensible, subtrees)
- + generation pendant l'execution possible (XML)
- + Nav2 implémentation (lifecycle management, plugins)
- + Visualisation Groot
- + Robuste
- C++, BT Wrapper.
- Data flow dans le Blackboard:
 - Système de ports d'entrée et sortie
 - typé statiquement
- Limitations pour la génération pendant l'éxecution
- Prise en main complexe/lourde
- + notation et concept sont calqués sur référence BT in Al.

py_trees

- + Python, developement rapide
- + Prise en main rapide
- + Visualisation (Arbre et Blackboard)
- + Debugging facilité
- Pas de representation intermédiaire
- Performance
- Medium scale
- Notations et concepts "différents"

3. Tache d'assemblage de modèles 3D de montres

Objectif: Assembler des "montres" de la même couleur

- une version très «épurée» de la platforme Acroba
 - * Environment de simulation (virtual gym).
 - * un nombre très restreint de skills:
 - > MoveTo
 - > OpenGripper
 - > CloseGripper
 - > Locate (sans vision...)
- py_trees

ROSCON FR 2024 Nantes - Workshop 4

Setup

- \$ git clone git@github.com:rosconfr24-ws4/acroba.git
- \$ cd acroba

Ou pour la mise à jour du setup existant:

- \$ cd acroba
- \$ git pull

Dans les deux cas:

- \$ make pull
- \$ make setup

ROSCON FR 2024 Nantes - Workshop 4

Pour commencer...

- \$ cd acroba
- \$ make run-dev

Si WSL2:

\$ make run-dev VG=WIN

Ou

\$ make run-dev VG=WSL

A vous de jouer :)

ROSCON FR 2024 Nantes - Workshop 4

Création d'une tâche d'assemblage à l'aide d'arbre de comportement

