Sistemas de Inteligencia Artificial

Algoritmos Genéticos

Introducción

- Obtener la mejor configuración de un personaje de un juego de rol
- Utilización de algoritmos genéticos para conseguir posibles soluciones
- Observar y comparar diferentes métodos y parámetros que se utilizan en el algoritmo
- Obtener conclusiones a partir de los resultados obtenidos

Algoritmos Genéticos

Algoritmos Genéticos

Genes

- Altura \longrightarrow Se muta variando la altura un determinado δ , manteniéndose en [1.3m;2.0m]
- Casco
- <u>Pecho</u>
- <u>Arma</u>
- Guantes
- Botas

Se mutan cambiando a otro equipamiento aleatorio dentro del dataset del mismo tipo

Condiciones de Corte

- <u>Tiempo</u>
- Generaciones
- Estructura
 Porcentaje de personajes con iguales características por una determinada cantidad de generaciones
- Solución aceptable → Se llega a un fitness que se considera aceptable
- Contenido El máximo fitness alcanzado no cambia bajo un determinado rango por una determinada cantidad de generaciones

Parámetros

- N → tamaño de población
- K → tamaño de selección de padres
- A y B
- Método de selección de padres A y B
- Método de selección de reemplazo A y B
- Método de cruce

- Método de mutación
- Rango de mutación de la altura
- Probabilidad de mutación
- Implementación de reemplazo
- Condición de corte
- Clase del personaje

Parámetros

- Selección por Boltzmann → Valores TO, Tc, k
- Selección por torneos M individuos en cada grupo
- Corte de tiempo → Tiempo límite (ms)
- Corte por generaciones
 Cantidad máxima de generaciones
- Corte por solución aceptable Valor de fitness que se considera aceptable
- Corte por estructura Porcentaje de personajes con los mismos genes
- Corte por contenido Rango de variación que puede tener el fitness máximo

Métricas

- Fitness Máximo
- Fitness Promedio
- Fitness Mínimo
- Diversidad genética
 Se divide la población en grupos que contienen individuos con los mismos genes

$$\sum_{i} -p_i \log_2(p_i)$$
 con pi siendo la proporción del grupo del total de la población

Resultados

- Se corrió 5 veces para cada configuración y se tomó el promedio de los valores.
- Parámetros fijos:
 - \circ N = 1000
 - \circ K = 500
 - Cruce Uniforme
 - Mutación Multigen Uniforme (p = 0.1)
 - o Fill All
 - Corte a las 1000 generaciones
 - \circ Si se utiliza Boltzmann \longrightarrow Tc = 1, T0 = 10, k = 1

100% Elite Selección de Padres; 100% Elite Selección de Reemplazo

50% Ruleta-50% Ranking Selección de Padres; 50% Ruleta-50% Ranking Selección de Reemplazo

50% Boltzmann-50% Torneo D. Selección de Padres; 50% Boltzmann-50% Torneo D. Selección de Reemplazo

50% Ruleta 50% Torneo D. Selección de Padres; 50% Boltzmann-50% Elite Selección de Reemplazo

- Se corrió 5 veces para cada configuración y se tomó el promedio de los valores.
- Parámetros fijos:
 - O N = 1000
 - \circ K = 500
 - Cruce Uniforme
 - 50% Ruleta-50% Elite Selección de Padres; 50% Ruleta-50% Elite
 Selección de Reemplazo
 - o Fill All
 - Corte a las 1000 generaciones
 - Probabilidad de mutación = 0.1

- Se corrió 5 veces para cada configuración y se tomó el promedio de los valores.
- Parámetros fijos:
 - N = 1000
 - \circ K = 500
 - 50% Ruleta-50% Elite Selección de Padres; 50% Ruleta-50% Elite
 Selección de Reemplazo
 - \circ Mutación Gen (p = 0.1)
 - o Fill All
 - Corte a las 1000 generaciones

Un Punto

Uniforme

Población Inicial

- Se corrió 5 veces para cada configuración y se tomó el promedio de los valores.
- Parámetros fijos:
 - Cruce Uniforme
 - 50% Ruleta-50% Elite Selección de Padres; 50% Ruleta-50% Elite
 Selección de Reemplazo
 - Mutación Multigen Uniforme (p = 0.1)
 - Fill All
 - Corte a las 1000 generaciones

Población inicial

N = 1000; K = 500

Población inicial

$$N = 100; K = 50$$

Población inicial

Conclusiones

Conclusiones

- Se pueden realizar ajustes de métodos y parámetros para modificar la evolución del fitness y la diversidad genética
- El tamaño de la población inicial tuvo el impacto más significativo en el fitness máximo obtenido
- Los métodos más elitistas y más determinísticos llevan a diversidades genéticas menores al avanzar generaciones
- El método de mutación multigen uniforme obtiene la mayor diversidad genética en comparación a los otros métodos de mutación