CS 171: Discussion Section 8 (March 11)

1 CPA-Secure Public-Key Encryption From Two-Round Key Exchange

Question: Given a two-round key-exchange protocol that outputs keys of length n, construct a CPA-secure public-key encryption (PKE) scheme for messages of length n and prove its security. Do not use any other cryptographic primitive.

1.1 Two-Round Key Exchange

A two-round key-exchange protocol comprises three randomized algorithms (P_1, P_2, P_3) and has the following form:

- 1. Alice computes $(\mathsf{msg}_1, \mathsf{st}) \leftarrow P_1(1^n)$ and sends msg_1 to Bob.
- 2. Bob computes $(\mathsf{msg}_2, k) \leftarrow P_2(\mathsf{msg}_1)$, sends msg_2 to Alice, and outputs k.
- 3. Alice computes $k \leftarrow P_3(\mathsf{st}, \mathsf{msg}_2)$ and outputs k.

Here is the security game for the key-exchange protocol.

$\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)$:

- 1. The challenger executes the key exchange protocol to produce $(\mathsf{msg}_1, \mathsf{msg}_2, k)$.
- 2. The challenger samples a bit $b \leftarrow \{0,1\}$. If b = 0, the challenger sets $\hat{k} = k$. If b = 1, they set $\hat{k} \leftarrow \mathcal{K}$, where \mathcal{K} is the set of all possible keys. Then \mathcal{A} is given $(\mathsf{msg}_1, \mathsf{msg}_2, \hat{k})$.
- 3. A outputs a guess b' for b. The output of the experiment is 1 if b = b', and 0 otherwise.

We say that a key-exchange protocol is **secure** if for all PPT adversaries \mathcal{A} , there exists a negligible function negl such that:

$$\Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(1^n) \to 1] = \mathsf{negl}(n)$$

1.2 Definition of CPA security for PKE

Let's write the definition of CPA security for public-key encryption. It will resemble the definition we've seen previously for secret-key encryption.

Given an adversary \mathcal{A} , define the following game:

$\underline{\mathsf{PubK}_{\mathcal{A},\Pi}(n)}$:

- 1. The challenger samples the keys $(pk, sk) \leftarrow Gen(1^n)$. Then they give $(1^n, pk)$ to the adversary A.
- 2. A outputs a pair of messages (m_0, m_1) such that $|m_0| = |m_1|$.

3. The challenger samples $b \leftarrow \{0,1\}$ and computes the challenge ciphertext:

$$c \leftarrow \mathsf{Enc}(\mathsf{pk}, m_b)$$
 (1.1)

Then they give c to \mathcal{A} .

4. \mathcal{A} outputs a bit b'. The output of the experiment is 1 if b = b' and 0 otherwise.

A public-key encryption scheme is **CPA-secure** if for any probabilistic polynomial-time adversary A, there is a negligible function negl such that:

$$\Pr[\mathsf{PubK}_{\mathcal{A},\Pi}(n) \to 1] = \mathsf{negl}(n)$$

2 One-way functions from Pseudorandom Permutations

One-way functions can be constructed from many other cryptographic primitives, including from pseudorandom permutations.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom permutation. This can be written as F(k,x) or equivalently $F_k(x)$, where k is the key. Note that an adversary can compute $F_k^{-1}(\cdot)$ in addition to $F_k(\cdot)$ if they are given the key k.

1. Let
$$x = (x_0, x_1) \in \{0, 1\}^n \times \{0, 1\}^n$$
, and

let
$$f_1(x) = F_{x_0}(x_1)$$

Show that f_1 is not a one-way function.

2. Let
$$x \in \{0, 1\}^n$$
, and

let
$$f_2(x) = F_{0^n}(x)$$

Show that f_2 is not a one-way function.