UNIVERSIDADE DO VALE DO ITAJAÍ ESCOLA DO MAR, CIÊNCIA E TECNOLOGIA ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Disciplina: Hand on Work 5

Professor: Lucas Debatin, MSc

Aluno(s): 7770324 - Alexandre Francisco de Souza

Sistema Locação de Veículos

- 1. INTRODUCAO
- 2. REQUISITOS DO SISTEMA
 - 2.1. ANÁLISE
- 3. DATABASE
 - 3.1.**DER**
 - 3.2. MER
 - 3.3. CÓDIGO SQL
 - 3.3.1. PROJETO LÓGICO
 - 3.3.2. PROJETO FÍSICO
 - 3.3.3. QUERY CRIAÇÃO DA BASE DE DADOS E TABELAS
 - 3.4. SIMULAÇÃO SQL
 - 3.4.1. INSERT (10)
 - 3.4.2. **UPDATE** (5)
 - 3.4.3. SELECT (10)
 - 3.4.4. DELETE (5)
 - 3.4.5. PROCEDIMENTO E GATILHO (PROCEDURE | TRIGGER)
 - 3.4.5.1. **PROCEDURE**
 - 3.4.5.2. TRIGGER
- 4. ENGENHARIA DE SOFTWARE
 - 4.1. ANÁLISE DE RISCOS
 - 4.2. CICLO DE VIDA DO DESENVOLVIMENTO DO APLICATIVO
- 5. RELATÓRIO
 - 5.1. RECURSOS DO PROJETO
 - 5.1.1. EQUIPE
 - 5.1.2. INFRAESTRUTURA
 - 5.1.3. HOMOLOGAÇÃO
 - 5.2. DIAGRAMA DE CASOS DE USO
 - 5.2.1. DIAGRAMA
 - 5.2.2. UCP
 - 5.3. CRONOGRAMA
 - 5.4. METODOLOGIA APLICADA
 - 5.5. VIDEO DO PROJETO
 - 5.5.1. LINK GITHUB

PLANO DE PROJETO

Sistema Locação de Veículos

1. INTRODUÇÃO

• Nome: MKR Rent a Car

Descrição: Sistema Mobile - Locações de veículos.

Objetivo: Desenvolver um sistema para controlar as locações

de veículos. Destinado a pequenas empresas do

ramo de locação de veículos.

• Prazo total: 20 Dias (16/04)

O projeto de Locação de veículo (**MKR Rent a Car**) tem como base o mercado de locação, entre cliente e locadora com seus principais atributos e regras de negócios, com base comercial, busquei retratar o fator Cliente (locador) e a empresa (locadora). Entendo que a locação é de maior complexidade e esse Projeto Integrador não foca em todo o processo e sim a introdução ao mesmo.

Em vista as melhores práticas de projeto e o conhecimento adquirido nos cursos de Database Design for Apps e Engenharia de software, busquei ser fiel aos ensinamentos.

Quanto a locação de veículos destacamos o processo, em que, o cliente tem a disposição veículos de marcas e modelos variados, através da locadora (**MKR Rent a Car**), onde por meio de reserva e datas pré-definidas, o cliente terá à disposição veículos e saberá quando devolver o bem locado.

Essa é uma breve introdução do projeto.

2. REQUISITOS DO SISTEMA

2.1. ANÁLISE

- I. Controle de Clientes:
 - a. Campos: Id, c_nome, c_email, c_senha;
 - b. Funções: cadastrar, editar, excluir e listar.
- II. Controle de Locação:
 - a. Campos: Id_loc, I_codveic, I_dta_retirada, I_dta_devolve, I_valor, I_obs;
 - b. Funções: cadastrar, editar, excluir e listar.
- III. Controle de Veículo:
 - a. Campos: Id_car; c_ano, c_cor, c_desc, c_obs;
 - b. Funções: cadastrar, editar, excluir e listar.
- IV. Controle de Modelos:
 - a. Campos: Id_model, md_desc;
 - b. Funções: cadastrar, editar, excluir e listar.
- V. Controle de Marcas:
 - a. Campos: Id_mar, mc_desc, mc_ativo;
 - b. Funções: cadastrar, editar, excluir e listar.

1º Semestre. Turma 2021/2023 – HOW 5 – Projeto Integrador.

3.3. CÓDIGO SQL

3.3.1. PROJETO LÓGICO

CLIENTE Id, c_nome, c_email, c_senha

LOCACAO <u>Id_loc</u>, I_codveic, I_dta_retirada, I_dta_devolve, I_valor, I_obs;

VEICULO <u>Id_car,</u> c_ano, c_cor, c_desc, c_obs;

MODELO ld_model, md_desc;

MARCA Id_mar, mc_desc, mc_ativo;

3.3.2. PROJETO FÍSICO

CLIENTE

Campo	Tipo	Tamanho	Descrição	Observação
ld	INT	5	Código Cliente	PK, NN
c_nome	VARCHAR	60	Nome do Cliente	NN
c_email	VARCHAR	40	Email do Cliente	NN, UQ
c_senha	VARCHAR	8	Senha do Cliente	NN

LOCACAO

Campo	Tipo	Tamanho	Descrição	Observação
ld_loca	INT	5	Código locacao	PK, NN
I_codveic	VARCHAR	5	Código do veículo	NN
l_dta_retirada	VARCHAR	10	Data de retirada	NN
l_dta_devolve	VARCHAR	10	Data de devolução	NN
I_valor	VARCHAR	6	Valor cobrado	NN
I_obs	VARCHAR	100	Outras informações	NN

VEICULO

Campo	Tipo	Tamanho	Descrição	Observação
ld_car	INT	5	Código veículo	PK, NN
c_ano	VARCHAR	4	Ano de fabricação	NN
c_cor	VARCHAR	15	Cor do veículo	NN
c_desc	VARCHAR	50	Descrição do veículo	NN
C_obs	VARCHAR	150	Outras observações	NN

MODELO

Campo	Tipo	Tamanho	Descrição	Observação
ld_model	INT	5	Código Modelo	PK, NN, AI
md_desc	VARCHAR	150	Descrição do modelo	NN

MARCA

Campo	Tipo	Tamanho	Descrição	Observação
ld_mar	INT	5	Código Marca	PK, NN, AI
mc_desc	VARCHAR	150	Descrição da marca	NN
mc_ativo	VARCHAR	9	Verificação	NN

3.3.3. QUERY CRIAÇÃO DA BASE DE DADOS E TABELAS

```
-- MySQL Script generated by MySQL Workbench
-- Sun May 7 16:23:47 2023
-- Model: MKR Rent a Car Version: 1.0
-- Projeto HOW 5 UNIVALI - 2023
-- Curso ADS
-- Prof.Lucas Debatin, MSc
-- Academico: Alexandre Francisco de Souza
-- MySQL Workbench Forward Engineering
SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;
SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL,ALLOW_INVALID_DATES';
-- Schema mkr_rent_a_car
-- Schema mkr rent a car
CREATE SCHEMA IF NOT EXISTS `mkr_rent_a_car` DEFAULT CHARACTER SET utf8
COLLATE utf8 unicode ci;
USE `mkr_rent_a_car` ;
-- Table `mkr_rent_a_car`.`CLIENTE`
CREATE TABLE IF NOT EXISTS `mkr_rent_a_car`.`CLIENTE` (
 `Id` INT(5) NOT NULL,
 `c_nome` VARCHAR(60) NOT NULL,
 `c email` VARCHAR(40) NOT NULL,
 `c_senha` VARCHAR(8) NOT NULL,
 PRIMARY KEY ('Id'),
 UNIQUE INDEX `C_email_UNIQUE` (`c_email` ASC))
ENGINE = InnoDB;
- Table `mkr_rent_a_car`.`LOCACAO`
CREATE TABLE IF NOT EXISTS `mkr_rent_a_car`.`LOCACAO` (
  `id_loca` INT(5) NOT NULL,
  `l codveic` VARCHAR(5) NOT NULL,
 `l dta retirada` VARCHAR(10) NOT NULL,
```

```
`l_dta_devolve` VARCHAR(10) NOT NULL,
  `l_valor` VARCHAR(6) NOT NULL,
 `l_obs` VARCHAR(100) NOT NULL,
 `CLIENTE_Id` INT(5) NOT NULL,
 PRIMARY KEY (`id loca`),
 INDEX `fk_LOCACAO_CLIENTE1_idx` (`CLIENTE_Id` ASC),
 CONSTRAINT `fk_LOCACAO_CLIENTE1`
   FOREIGN KEY (`CLIENTE Id`)
   REFERENCES `mkr_rent_a_car`.`CLIENTE` (`Id`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION)
ENGINE = InnoDB;
-- Table `mkr rent a car`.`MARCA`
CREATE TABLE IF NOT EXISTS `mkr_rent_a_car`.`MARCA` (
  `id_mar` INT(5) NOT NULL AUTO_INCREMENT,
 `mc_desc` VARCHAR(150) NOT NULL,
 `mc_ativo` VARCHAR(9) NOT NULL,
 PRIMARY KEY (`id_mar`))
ENGINE = InnoDB;
-- Table `mkr_rent_a_car`.`MODELO`
CREATE TABLE IF NOT EXISTS `mkr_rent_a_car`.`MODELO` (
 `id_model` INT(5) NOT NULL AUTO_INCREMENT,
  `md_desc` VARCHAR(150) NOT NULL,
 `MARCA_id_mar` INT(5) NOT NULL,
 PRIMARY KEY (`id_model`),
 INDEX `fk_MODELO_MARCA1_idx` (`MARCA_id_mar` ASC),
 CONSTRAINT `fk_MODELO_MARCA1`
   FOREIGN KEY (`MARCA_id_mar`)
   REFERENCES `mkr_rent_a_car`.`MARCA` (`id_mar`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION)
ENGINE = InnoDB;
-- Table `mkr_rent_a_car`.`VEICULO`
CREATE TABLE IF NOT EXISTS `mkr_rent_a_car`.`VEICULO` (
  `id_car` INT(5) NOT NULL,
 `c ano` VARCHAR(4) NOT NULL,
```

```
c cor` VARCHAR(15) NOT NULL,
  `c_desc` VARCHAR(50) NOT NULL,
 `c_obs` VARCHAR(150) NOT NULL,
  `LOCACAO_id_loca` INT(5) NOT NULL,
  `MODELO id model` INT(5) NOT NULL,
 PRIMARY KEY (`id_car`),
 INDEX `fk_VEICULO_LOCACAO1_idx` (`LOCACAO_id_loca` ASC),
 INDEX `fk VEICULO MODELO1 idx` (`MODELO id model` ASC),
 CONSTRAINT `fk_VEICULO_LOCACAO1`
   FOREIGN KEY (`LOCACAO_id_loca`)
   REFERENCES `mkr_rent_a_car`.`LOCACAO` (`id_loca`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION,
 CONSTRAINT `fk_VEICULO_MODELO1`
    FOREIGN KEY (`MODELO_id_model`)
    REFERENCES `mkr_rent_a_car`.`MODELO` (`id_model`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION)
ENGINE = InnoDB;
SET SQL_MODE=@OLD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;
```

3.4. SIMULAÇÃO SQL

3.4.1. INSERT

```
INSERT INTO CLIENTE (Id, c nome, c email, c senha) VALUES
('1', 'Alexandre Francisco de Souza', 'alex.souza@edu.univali.br',
'55555555'),
('2', 'João Carlos Vieira', 'joao@edu.univali.br', '6666666'),
('3', 'Claudete Baltazar', 'Claudete@edu.univali.br', '77777'),
('4', 'Leandro Santa', 'lelesa@edu.univali.br', '77777'),
('10', 'Felipe Camargo', 'felipao@edu.univali.br', '77777'),
('6', 'Eduardo Silva', 'dudusilva@edu.univali.br', '77777'),
('7', 'Maria de Jesus', 'mjesus@edu.univali.br', '77777'),
('8', 'Cleiton machado', 'cleitonma@edu.univali.br', '77777'),
('9', 'Alessandro tomate', 'aletomate@edu.univali.br', '77777'),
('5', 'Molusco Desonesto', 'AmorVenceu2@edu.univali.br', '666');
INSERT INTO MARCA (id_mar, mc_desc, mc_ativo) VALUES
('1', 'Hyundai', 'ZeroKM'),
('2', 'Fiat', 'ZeroKM'),
('3', 'Kia', 'ZeroKM');
INSERT INTO MODELO (md_desc, MARCA_id_mar) VALUES
('HB20', 1),
('Uno', 2),
('Soul', 3);
INSERT INTO VEICULO (id car, c ano, c cor, c desc, c obs, LOCACAO id loca,
MODELO id model) VALUES
(2, '2022', 'preto', 'Fiat Palio', 'sem detalhes', 1, 2),
(3, '2022', 'preto', 'Fiat UNO', 'sem detalhes', 1, 2),
(4, '2022', 'preto', 'KIA SERATO', 'sem detalhes', 1, 3);
INSERT INTO LOCACAO (id_loca, l_codveic, l_dta_retirada, l_dta_devolve,
l_valor, l_obs, CLIENTE_Id) VALUES
(1, 'V001', '2023-05-10', '2023-05-13', '300.00', 'Locação para viagem de
fim de semana', 1),
(2, 'V002', '2023-05-10', '2023-05-13', '300.00', 'Locação para viagem de
fim de semana', 2),
(3, 'V003', '2023-05-10', '2023-05-13', '300.00', 'Locação para viagem de
fim de semana', 3);
```

3.4.2. UPDATE

```
1. Atualizar o nome de um cliente com o ID 1:
sql
Copy code
UPDATE CLIENTE
SET c_nome = 'João Silva'
WHERE Id = 1;
2. Atualizar o valor de uma locação com o ID 10:
sql
Copy code
UPDATE LOCACAO
SET l_valor = '500,00'
WHERE id_loca = 10;
3. Atualizar a descrição de um modelo de carro com o ID 3:
sql
Copy code
UPDATE MODELO
SET md_desc = 'SUV compacto'
WHERE id_model = 3;
4. Atualizar a cor de um veículo com o ID 25:
sql
Copy code
UPDATE VEICULO
SET c_cor = 'vermelho'
WHERE id_car = 25;
5. Atualizar o status de uma marca de carro com o ID 6:
sql
Copy code
UPDATE MARCA
SET mc ativo = 'inativo'
WHERE id_mar = 6;
```

3.4.3. SELECT

```
SELECT SIMPLES
1. Selecionar todos os dados da tabela CLIENTE:
SELECT * FROM CLIENTE;
2. Selecionar todos os veículos disponíveis para locação:
SELECT * FROM VEICULO WHERE LOCACAO id loca IS NULL;
3. Selecionar a descrição de todos os modelos de veículos:
SELECT md desc FROM MODELO;
4. Selecionar todos os clientes que já alugaram um veículo:
SELECT DISTINCT c nome FROM CLIENTE JOIN LOCACAO ON CLIENTE.Id =
LOCACAO.CLIENTE_Id;
5. Selecionar a marca e modelo de todos os veículos alugados, juntamente com
o nome do cliente que alugou o veículo:
SELECT MARCA.mc desc, MODELO.md desc, CLIENTE.c nome
FROM VEICULO
JOIN LOCACAO ON VEICULO.LOCACAO id loca = LOCACAO.id loca
JOIN MODELO ON VEICULO.MODELO id model = MODELO.id model
JOIN MARCA ON MODELO.MARCA id mar = MARCA.id mar
JOIN CLIENTE ON LOCACAO.CLIENTE_Id = CLIENTE.Id;
JOIN

    Simulação de locações por cliente:

SELECT c.c nome, 1.1 dta retirada, 1.1 dta devolve, 1.1 valor
FROM CLIENTE c
JOIN LOCACAO 1 ON c.Id = 1.CLIENTE Id;
2. Simulação de locações por modelo de veículo:
SELECT m.md_desc, 1.1_dta_retirada, 1.1_dta_devolve, 1.1_valor
FROM MODELO m
JOIN VEICULO v ON m.id model = v.MODELO id model
JOIN LOCACAO 1 ON v.LOCACAO_id_loca = l.id_loca;
```

```
3. Simulação de locações por marca de veículo:
SELECT ma.mc_desc, 1.1_dta_retirada, 1.1_dta_devolve, 1.1_valor
FROM MARCA ma
JOIN MODELO m ON ma.id mar = m.MARCA id mar
JOIN VEICULO v ON m.id_model = v.MODELO_id_model
JOIN LOCACAO 1 ON v.LOCACAO id loca = 1.id loca;
4. Simulação de locações por data de devolução:
SELECT c.c_nome, l.l_dta_retirada, l.l_dta_devolve, l.l_valor
FROM CLIENTE c
JOIN LOCACAO 1 ON c.Id = 1.CLIENTE Id
WHERE 1.1 dta devolve BETWEEN '2023-05-01' AND '2023-05-25';
5. Simulação de locações com veículos ainda não devolvidos:
SELECT c.c_nome, l.l_dta_retirada, l.l_dta_devolve, l.l_valor
FROM CLIENTE c
JOIN LOCACAO 1 ON c.Id = 1.CLIENTE_Id
JOIN VEICULO v ON l.id_loca = v.LOCACAO_id_loca
WHERE 1.1_dta_devolve > NOW();
```

3.4.4. DELETE

```
    Excluindo um registro específico da tabela CLIENTE:

DELETE FROM CLIENTE WHERE Id = 1;
2. Excluindo todas as locações que possuem um determinado valor na coluna
l valor da tabela LOCACAO:
DELETE FROM LOCACAO WHERE 1_valor = '100';
3. Excluindo todos os registros da tabela VEICULO que possuem um determinado
valor na coluna c_ano e cuja locação associada ainda não foi concluída:
DELETE FROM VEICULO
WHERE c_{ano} = '2010'
AND LOCACAO_id_loca IN (
 SELECT id loca FROM LOCACAO WHERE 1 dta devolve IS NULL
);
4. Excluindo todas as locações associadas a um determinado cliente na tabela
LOCACAO:
DELETE FROM LOCACAO WHERE CLIENTE_Id = 2;
5. Excluindo todos os registros da tabela MODELO que não estão associados a
nenhum veículo na tabela VEICULO:
DELETE FROM MODELO WHERE id_model NOT IN (
 SELECT MODELO id model FROM VEICULO
);
```

3.4.5. PROCEDIMENTO E GATILHO (PROCEDURE | TRIGGER)

3.4.5..1. PROCEDURE (PROCEDIMENTOS ARMAZENADO)

Procedure recebe o nome de um cliente e retorne o número total de locações

```
DELIMITER //
CREATE PROCEDURE total_locacoes_cliente (IN nome_cliente VARCHAR(100), OUT
total_locacoes INT)
BEGIN
    SELECT COUNT(*) INTO total_locacoes FROM locacao
    WHERE id_cliente = (SELECT id_cliente FROM cliente WHERE nome =
nome_cliente);
END //
DELIMITER;
```

STATUS DA PROCEDURE: **SHOW PROCEDURE STATUS** EXECUTAR A PROCEDURE

```
CALL total_locacoes('João');
```

3.4.5..2. TRIGGER (REGISTRAR LOG DATA DE LOCAÇÃO)

```
DELIMITER $$
CREATE TRIGGER registrar_data_locacao
BEFORE INSERT ON locacao
FOR EACH ROW
BEGIN
    SET NEW.data_locacao = NOW();
END$$
DELIMITER;
```

Criei o campo data_locacao para registrar log data de locação;

```
ALTER TABLE locacao
ADD COLUMN data_locacao DATETIME;
```

4. ENGENHARIA DE SOFTWARE

4.1. ANÁLISE DE RISCOS

Detalhes	Impacto	Probabilidade	Gatilho	Plano Contingência
Pequenas mudanças no	Médio	Média	Adicionar novas	Modificação no plano de
projeto original			funcionalidades as	projeto de acordo com as
			já existentes	novas exigências.
				Adicionar as modificações na
				próxima atualização do
				sistema em conformidade ao
				aos novos cronogramas

4.2. CICLO DE VIDA DO DESENVOLVIMENTO DO APLICATIVO

5. RELATÓRIO

5.1. RECURSOS DO PROJETO

5.1.1. EQUIPE (PESSOAS)

Alexandre F. Souza

Gerencia Do Projeto | Analista De Sistema | Desenvolvedor Pleno | Analista QA

5.1.2. INFRAESTRUTURA (HARDWARE)

Servidor com MySQL (BD Banco de dados)

■ Produção: Cloud

Homologação: LOCALHOST

- Ambiente De Desenvolvimentos E Testes:
 - Notebook i5, Vídeo dedicada 2mb, Mem12gb, SSD M.2 240gb
 - PC AMD Athlon II X2 270 3.40 GHz, Mem 8gb, SSD 1tb

5.1.3. HOMOLOGAÇÃO (SOFTWARE)

POO

programação orientada a objetos, estruturas de controle de fluxo, tipos de dados, entre outros conceitos fundamentais

JDK (Java Development Kit)

JDK inclui a JVM (Java Virtual Machine), o compilador Java e outras ferramentas.

• Eclipse, NetBeans e IntelliJ IDEA

A escolha pela IDE ideal ao projeto, será realizada na próxima etapa da documentação.

Bibliotecas

Spring Framework, Hibernate, JUnit

5.2. DIAGRAMA DE CASOS DE USO

5.2.1. DIAGRAMA

- 1. Manter Cliente: criar, alterar, excluir e listar (médio);
- 2. Manter Locação: criar, alterar, excluir e listar (médio);
- 3. Locar Veículo: Realizar a locação e confirmação por e-mail (simples);
- 4. Devolução Veículo: Devolver, confirmação por e-mail, verificar multa por atraso e verificar reservas (médio);
- 5. Multa: Gerar e enviar notificação por e-mail para Cliente (simples);
- 6. Confirmar Reserva: Reservar e notificar por e-mail (simples);
- 7. Locação: via sistema, acesso, pesquisa e confirmação da reserva (simples);
- 8. Cancelar Reserva: via sistema, acessar e cancelamento da locação (simples);

5.2.2. UCP

Ator	Complexidade
Cliente	С
Locadora	С

Atores					
Complexidade	Quantidade	Peso	Total		
Simples (s)	0	1	0		
Médio (m)	0	2	0		
Complexo (c)	2	3	6		

Caso de Uso	Transações	Complexidade
Manter Cliente	criar, alterar, excluir e listar	m
Manter Locação	criar, alterar, excluir e listar	m
Locar Veículo	Realizar a locação e confirmação	S
Devolução Veículo	Devolver, confirmação por e-ma	m
Multa	Gerar e enviar notificação por e	S
Confirmar Reserva	Reservar e notificar por e-mail	S
Locação	via sistema, acesso, pesquisa e (S
Cancelar Reserva	via sistema, acessar e cancelam	S

Casos de Uso					
Complexidade Quantidade Peso Total					
Simples (s)	5	5	25		
Médio (m)	3	10	30		
Complexo (c)	0	15	0		

	EF						
Código	Descrição	Peso	Valor	Resultado			
F1	Familiaridade com o processo de desenvolvimento orientado a objetos adotado	1,5	4	6			
F2	Colaboradores de meio período	-1	0	0			
F3	Capacidade de análise	0,5	4	2			
F4	Experiência em desenvolvimento de aplicações deste gênero	0,5	0	0			
F5	Experiência em orientação a objetos	1	3	3			
F6	Motivação	1	2	2			
F7	Dificuldade na linguagem de programação	-1	0	0			
F8	Requisitos estáveis	2	5	10			

	TCF				
Código	Descrição	Peso	Valor	Resultado	
F1	Sistema distribuído	2	0	0	
F2	Performance	1	2	2	
F3	Eficiência para o usuário final (on-line)	1	4	4	
F4	Processamento interno complexo	1	1	1	
F5	Código deve ser reusável	1	4	4	
F6	Fácil para instalar	0,5	0	0	
F7	Fácil para usar	0,5	5	2,5	
F8	Portável	2	2	4	
F9	Fácil para mudar	1	4	4	
F10	Concorrente	1	1	1	
F11	Seguro	1	4	4	
F12	Fornece acesso direto para third parties (sistemas/componentes externos)	1	0	0	
	É requerido treinamento do usuário para				
F13	usar o software	1	2	2	

UUCP	61	
TCF	0,885	
EF	0,71	
UCP	38,32935	
Horas por UCP	10	
Estimativa Horas	383,2935	
Dias	47,9116875	
Valor hora	R\$	25,00
Valor total	R\$	9.582,34

5.3. CRONOGRAMA

	Atividades	Duração	Início	Fim
CRIAÇÃO	Documentação	08:00:00	20/abr	11/mai
	Models	04:00:00	23/abr	26/abr
	Controllers	10:00:00	26/abr	29/abr
	Views	14:00:00	2/mai	5/mai
	Testes	04:00:00	5/mai	8/mai
	implantação (Servidor)	04:00:00	8/mai	11/mai
	Total	44:00:00		

5.4. METODOLOGIA APLICADA

O principais desafios ao começar um projeto, durante a criação do software é conseguir uma execução bem-feita e uma entrega final coerente com o que fora proposto inicialmente. A gestão de projetos, análise, desenvolvimento, testes, entre outros, exige muita atenção e mudanças durante o projeto torna o projeto bastante custoso e desprende refazer cronogramas, por isso a escolha pelo METODOLOGIA AGIL, vem de encontro a essas flexibilidade. As práticas Ágeis tornam o projeto mais eficiente e assertivo.

Nesse projeto iremos utilizar algumas práticas como, SCRUM, LEAN (Construir, medir, aprender), KANBAN (TO DO, DOING, DONE), entre outros.

Abaixo exemplo do ciclo de um projeto, utilizando de metodologia Ágil.

Imagem da internet: fonte: link

5.5. VIDEO DO PROJETO

5.5.1. LINK GITHUB: CLIQUE AQUI!