IV. Relation entre les notions de la commandabilité et l'observabilité et fonction de transfert

Pour établir telle relation nous allons commencer par un exemple typique.

Exemple

Un système est donné par la représentation d'état suivante :

$$\begin{cases} \dot{X}(t) = AX(t) + Bu(t) \\ y(t) = CX(t) + Du(t) \end{cases}$$

Avec

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \qquad D = 0$$

La fonction de transfert du système globale est :

$$F(p) = \frac{Y(p)}{U(p)} = C(pI - A)^{-1}B + D = \frac{1}{p+1}$$

Nous pouvons toujours trouver un changement de variables tel que :

$$X(t) = T.Z(t)$$

ce qui donne

$$\begin{cases} \dot{Z}(t) = A'Z(t) + B'u(t) \\ y(t) = C'Z(t) + D'u(t) \end{cases}$$

avec:

$$A' = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix} \qquad B' = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
$$C' = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix}$$

Rappel: Forme modale vas des pôles simples

$$F(p) = \frac{Y(p)}{U(p)} = \frac{\alpha_1}{p - \lambda_1} + \frac{\alpha_2}{p - \lambda_2} + \dots + \frac{\alpha_n}{p - \lambda_n}$$

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} \qquad B = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

$$C = (\alpha_1 \dots \alpha_n)$$

$$C = (\alpha_1 \quad \dots \quad \alpha_n)$$

Schématiquement nous allons représenter le système par la figure suivante :

Théorème:

Un mode (un système) de premier ordre est commandable s'il est lié à l'entrée et observable s'il est lié à la sortie.

Observations:

Le sous-système (S1) est à la fois commandable et observable

Le sous-système (S2) est non commandable mais observable

Le sous-système (S1) est commandable et non observable

Le sous-système (S1) est non commandable et non observable

Le sous-système (S1) est le seul qui est commandable et observable et sa fonction de transfert est la même que celle du système global.

Conclusions:

 La fonction de transfert représente uniquement les parties commandables et observable du système.

- Si le deg(FT) < dim(X(t)) alors il y a des parties qui sont non commandables et/ou non observables

 Si le deg(FT) = dim(X(t)) alors le système est complètement commandable et complètement observable.

V. Commandabilité et observabilité des systèmes élémentaires

1. Cas continu:

Un système donné par une représentation donnée :

$$\begin{cases} \dot{X}(t) = AX(t) + Bu(t) \\ y(t) = CX(t) \end{cases}$$

Nous pouvons toujours trouver un changement de variables tel que :

$$X(t) = T.Z(t)$$

ce qui donne

$$\begin{cases} \dot{Z}(t) = A'Z(t) + B'u(t) \\ y(t) = C'Z(t) \end{cases}$$

avec:

 $C' = \begin{pmatrix} l_1 & \cdots & l_k & l_\alpha & l_\beta & l_i & \dots & l_i \end{pmatrix}$

Nous pouvons déduire trois type de systèmes selon le type des valeurs propores.

Système de Type I : VP simples réelles

$$A = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{pmatrix} \qquad B = \begin{pmatrix} h_1 \\ \vdots \\ h_k \end{pmatrix}$$

$$C = (l_1 \dots l_k)$$

Système de Type II : VP Complexes conjuguées

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad B = \begin{pmatrix} h_{\alpha} \\ h_{\beta} \end{pmatrix}$$
$$C = \begin{pmatrix} l_{\alpha} & l_{\beta} \end{pmatrix}$$

Système de Type III : VP Multiples

Soit λ une valeur propre d'ordre 'n'.

$$A = \begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \qquad B = \begin{pmatrix} h_i \\ \vdots \\ \vdots \\ h_j \end{pmatrix}$$

$$C = \begin{pmatrix} l_i & \dots & \dots & l_j \end{pmatrix}$$

Système de Type I : VP simples réelles

$$A = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{pmatrix} \qquad B = \begin{pmatrix} h_1 \\ \vdots \\ h_k \end{pmatrix}$$

$$C=\begin{pmatrix}l_1 & \dots & l_k\end{pmatrix}$$

Conditions de commandabilité et observabilité

Cas ; k = 2

$$\varphi = (B \quad AB) = \begin{pmatrix} h_1 & \lambda_1 h_1 \\ h_2 & \lambda_2 h_2 \end{pmatrix}$$

$$det(\varphi) = h_1 h_2 (\lambda_1 - \lambda_2)$$

$$det(\varphi) \neq 0$$
 ssi $h_1 \neq 0$ et $h_2 \neq 0$

D'une façon générale le système de type II est commandable ssi tous les coefficients du vecteur de commande sont non nuls,

$$O = \begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} l_1 & l_2 \\ \lambda_1 l_1 & \lambda_2 l_2 \end{pmatrix}$$

$$det(0) = l_1 l_2 (\lambda_1 - \lambda_2)$$

$$det(0) \neq 0 \ ssi \ l_1 \neq 0 \ et \ l_2 \neq 0$$

D'une façon générale le système de type II est observable ssi tous les coefficients du vecteur de sortie sont non nuls,

Système de Type II : VP Complexes conjuguées

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad B = \begin{pmatrix} h_{\alpha} \\ h_{\beta} \end{pmatrix}$$
$$C = (l_{\alpha} \quad l_{\beta})$$

Conditions de commandabilité et observabilité

$$\varphi = (B \quad AB)$$

$$\varphi = \begin{pmatrix} h_{\alpha} & ah_{\alpha} + bh_{\beta} \\ h_{\beta} & -bh_{\alpha} + ah_{\beta} \end{pmatrix}$$

$$det(\varphi) = -b(h_{\alpha}^{2} + h_{\beta}^{2})$$

$$det(\varphi) \neq 0 \quad ssi \quad \begin{pmatrix} h_{\alpha} \\ h_{\beta} \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$0 = \begin{pmatrix} C \\ CA \end{pmatrix}$$

$$0 = \begin{pmatrix} l_{\alpha} & l_{\beta} \\ al_{\alpha} - bl_{\beta} & bl_{\alpha} + al_{\beta} \end{pmatrix}$$

$$det(0) = b(l_{\alpha}^{2} + l_{\beta}^{2})$$

$$det(0) \neq 0 \quad ssi(l_{\alpha} \quad l_{\beta}) \neq (0 \quad 0)$$

Système de Type III : VP Multiples

Soit λ une valeur propre d'ordre 'n'.

$$A = \begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \qquad B = \begin{pmatrix} h_i \\ \vdots \\ \vdots \\ h_j \end{pmatrix}$$

$$C = \begin{pmatrix} l_i & \dots & \dots & l_j \end{pmatrix}$$

Conditions de commandabilité et observabilité

Cas; k=2

$$\varphi = (B \quad AB) = \begin{pmatrix} h_i & \lambda h_i + h_j \\ h_j & \lambda h_j \end{pmatrix}$$

$$det(\varphi) = -h_j^2$$

$$det(\varphi) \neq 0$$
 ssi $h_i \neq 0$

D'une façon générale, un système de type III est commandable ssi le dernier élément du vecteur de commande est non nul

$$O = \begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} l_i & l_j \\ \lambda l_i & l_i + \lambda l_j \end{pmatrix}$$

$$det(0) \neq 0$$
 $ssi l_i \neq 0$

D'une façon générale, un système de type III est observable ssi le premier élément du vecteur de sortie est non nul

Exercice 1:

Un système est donné par la représentation d'état suivante : $\begin{cases} \dot{x} = Ax + Bu \\ y = cx \end{cases}$

Avec;
$$A = \begin{pmatrix} 1 & -2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & -3 & 1 & 0 \\ 0 & 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 & -3 \end{pmatrix}$$
; $B = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 2 \\ 0 \end{pmatrix}$; $C = \begin{pmatrix} 0 & 0 & 2 & 1 & 0 \end{pmatrix}$

- 1. Le système est –il commandable ? expliquer
- 2. Le système est-il observable ? expliquer
- 3. Le système est-il stable ? expliquer
- 4. Le système est-il stabilisable ? expliquer

Exercice 2:

Un système est donné par la représentation d'état suivante : $\begin{cases} \dot{x} = Ax + Bu \\ y = cx \end{cases}$

Avec:
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}; C = (0 \quad 1 \quad 0 \quad 0).$$

- 1. Est-ce que le système est commandable?
- 2. Est-ce que le système est observable?

Exercice 3:

Un système est donné par la représentation d'état suivante :

$$\begin{cases} \dot{x} = Ax + Bu \\ y = cx \end{cases}$$

Avec

$$A = \begin{pmatrix} -1 & 2 \\ 2 & 2 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- 1. Est-ce que le système est commandable?
- 2. Le système est-il stable ?
- 3. Le système est-il stabilisable?

Cas Discret:

Le système échantillonné correspondant est donné par la représentation d'état suivante :

$$\begin{cases}
X_{k+1} = A'X_k + B'u_k \\
y_k = C'X_k
\end{cases}$$

avec

$$A' = e^{At}$$
 $B' = \int_0^T e^{A(T-\tau)} B d\tau$ $C' = C$

Théorème!

- Un système échantillonné est commandable (respectivement observable) Alors le système continu correspondant est commandable (respectivement observable)
- Un système échantillonné est commandable (respectivement observable) SSI :
 - ✓ le système continu correspondant est commandable (respectivement observable)
 - ✓ Si $Rel(\lambda_i) = Rel(\lambda_j)$ Alors $Im(\lambda_i \lambda_j) \neq \frac{2k}{T}$

Constatation:

Ce théorème veut dire que la commandabilité et l'observabilité sont affectées par la période d'échantillonnage uniquement pour le cas du système de type II (Les valeurs propres sont complexes conjuguées)

En effet:

Le Système de type I est donné par :

$$A' = \begin{pmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_k t} \end{pmatrix} \quad B' = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} \quad \text{et} \quad C' = C = (l_1 \quad \dots \quad l_k)$$

Nous allons démontrer les choses pour le cas de l'observabilité (plus simple)

cas ; k = 2

$$0 = \begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} l_1 & l_2 \\ e^{\lambda_1 t} l_1 & e^{\lambda_2 t} l_2 \end{pmatrix}$$
$$det(0) = l_1 l_2 (e^{\lambda_1 t} - e^{\lambda_2 t})$$
$$det(0) \neq 0 \quad ssi \quad l_1 \neq 0 \quad et \quad l_2 \neq 0$$

C'est exactement la même condition que celle du système continu et la période d'échantillonnage n'a aucune influence sur l'observabilité.

Système de Type II:

Le système continu est donné par :

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad \text{et} \quad C = (l_{\alpha} \quad l_{\beta})$$

Le système échantillonné correspondant est donné par :

$$A' = e^{aT} \begin{pmatrix} \cos(bT) & \sin(bT) \\ -\sin(bT) & \cos(bT) \end{pmatrix} \qquad C' = C = (l_{\alpha} \quad l_{\beta})$$

$$0 = \begin{pmatrix} C \\ CA \end{pmatrix} \qquad det(0) = e^{aT}(l_{\alpha}^2 + l_{\beta}^2) \sin(bT)$$

$$det(0) \neq 0 \quad ssi \begin{cases} l_1 \neq 0 \quad et \ l_2 \neq 0 \\ b \neq \frac{k\pi}{T} \end{cases}$$

Exercice 4

Un système est donné par :

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

- 1. Etudier la commandabilité et l'observabilité de système
- 2. Déterminer la fonction de transfert
- 3. Déduire la fonction de transfert du système échantillonné
- 4. Conclure sur le choix de la période d'échantillonnage

Commandabilité et observabilité des systèmes composés

Généralement un système est composé de plusieurs sous-systèmes comme l'indique la figure suivante.

Question: Si tous les sous-systèmes sont commandables (respectivement observables), est ce que le système global est commandable (respectivement observable)?

Pour répondre à cette question on va présenter autrement les choses.

Pour chaque sous-système S_i on associe une représentation d'état donnée par un vecteur état X_i et une fonction de transfert FT_i

Par hypothèse tous les sous-systèmes sont à la fois commandables et observables. Par la suite :

$$\dim(X_i) = \deg(FT_i) = n_i$$

On note:

Le système global (S) est composé par N sous-système donc la dim $(X) = \sum_{i=1}^{N} n_i = n$

La question précédente sera traduite comme suit :

Est-ce que le $\deg(FT)$ du système global (S) est égal à $\dim(X) = \sum_{i=1}^{N} n_i = n$?

Pour cela on va étudier les 3 cas possibles suivants.

Cas1 : systèmes en parallèles :

On note:

$$FT_1 = G_1 = \frac{num_1}{den_1}$$
 et $FT_2 = G_2 = \frac{num_2}{den_2}$

$$\dim(X_1) = n_1 \quad \text{et} \quad \dim(X_2) = n_2$$

La dimension de l'espace d'état du système global $\dim(X)$ est obligatoirement égale à n_1+n_2 Puisque les deux sous-systèmes sont commandables et observables nous avons donc :

$$\deg(FT_1) = n_1 \text{ et } \deg(FT_2) = n_2$$

La fonction de transfert du système global est:

$$FT = G = G_1 + G_2 = \frac{num_1}{den_1} + \frac{num_2}{den_2}$$

La question qui se pose est quand est ce que $deg(FT) = n_1 + n_2$?

Autrement dit, quand est ce qu'il n'y aura pas de simplification dans la fonction de transfert équivalente.

Condition:

le système global est commandable et observable ssi TF_1 et TF_1 n'ont pas un pôle en commun

Cas2 : Systèmes en série

La fonction de transfert équivalente est :

$$TF = G_1 * G_2 = \frac{num_1}{den_1} * \frac{num_2}{den_2}$$

Condition:

- Le système global est commandable et observable ssi pas de simplification entre pôles et zéros
- Plus précisément le système global est commandable ssi pas de simplification entre zéros de S₁ et pôles de S₂. Et il est observable ssi pas de simplification entre zéros de S₂ et pôles de S₁

Cas 3 : Système en rétroaction

Conditions:

- 1. Le système global est commandable ssi la cascade (S_1S_2) est commandable
- 2. Le système global est observable ssi la cascade (S_2S_1) est observable

La condition 1. se traduit par : le système global est commandable ssi pas de simplification entre zéros de S_1 et pôles de S_2

La condition 2. se traduit par: le système global est observable ssi pas de simplification entre zéros de S_1 et pôles de S_2 .

En conclusion: le système en rétroaction est commandable et observable ssi pas de simplification entre zéro de S_1 et pôle de S_2

Exercice 5:

Deux systèmes S1 et S2 sont donnés par :

(S1):
$$\frac{u_1}{p+b} \xrightarrow{y_1} (S2): \frac{u_2}{p+d} \xrightarrow{y_2}$$

- Donner la représentation d'état, sous la forme canonique d'observabilité, de chacun des systèmes. En déduire les conditions de commandabilité et d'observabilité de chaque système.
- 2. Utilisant les représentations d'état données dans la question 1), proposer une représentation d'état du système (S3) donné par la figure suivante :

3. Mêmes questions pour (S3) donné par la figure suivante :

Mêmes questions pour (S3) donné par la figure suivante :

