Projet tutoré : Robot Billard

DESSAULX - CAPAR - LATH - RETTER

Sommaire

- 1. Description du sujet
- 2. Etude technique
- 3. Etude de l'existant
- 4. Principales difficultées
- 5. Objectifs à atteindre
- 6. Partie exploratoire

Description du sujet

- Développer un robot autonome qui joue au billard.
- Un robot qui roule et sera équipé d'un marqueur (Aruco)
- Le robot sera guidé avec une caméra fixé au plafond.
- Un serveur web qui gère la communication entre tous les éléments pour pouvoir commander le robot.

Etude technique: Architecture du projet

Etude technique : Technologies utilisées

Websocket

Java FX

- Simulateur Java afin de tester les méthodes
- Possibilité d'utiliser le simulateur pour faire une retranscription sur un écran de pc

Node JS

 Environnement d'exécution JavaScript open source et multiplateforme qui se concentre sur les applications côté serveur et réseau

Dans notre projet:

- Permet de créer un réseau permettant de recevoir les informations reçu par le client web et piloter les arduinos.

Websocket

- L'API WebSocket est une technologie qui permet d'ouvrir un canal de communication bidirectionnelle entre un client et un serveur.

- Raison de l'utilisation du websocket :

Connexion continue entre le robot, le serveur et le client permettant des interactions en temps réels.

JS Aruco

- Librairie de réalité augmenté utilisant des marqueurs (Aruco)

Dans notre projet:

- Les marqueurs seront positionnés sur les robots
- Js Aruco retourne un array contenant les coordonnées des 4 coins du marqueur
- Obtenir la position du robot dans la réalité
- Obtenir l'orientation du robot

Arduino

 Un Arduino représente des cartes électroniques regroupant plusieurs composants électroniques afin de réaliser des objets électroniques interactifs.

Dans notre projet:

- Chaque robot est équipé par un arduino esp8266 Wifi.
- Le robot sera manipulé via les drivers
- Il est connecté au serveur Node JS
- Il est dirigé par le serveur

Étude de l'existant

Robot joueur de billard :

- Robot composé de 2 bras
- Caméra haute définition placée sur le dessus de la table de billard
 - Analyser d'une manière précise la position des boules
 - Calculer le coup optimum à réaliser.

Étude de l'existant

Robot Sumo:

- Autonomes
- Capteurs embarqués (infrarouges, ultrasoniques, etc.)
- Microcontrôleurs (Arduino, Raspberry Pi, etc.)
- Se déplace dans un cercle
- Programmes basés sur la détection de l'adversaire
- Objectif : Pousser l'adversaire hors du cercle

Étude de l'existant

Simulateur 2D Robot Sumo:

- Langage : C++
- Vue: 2D avec top et side view
- Physique : Prise en compte
- Objectif: Tester des robots Sumo
- Utilisation : Simulation de mouvements et comportements robotiques

Principales difficultés du projet

- Modélisation des Déplacements : Définir avec précision les mouvements du robot en tenant compte de la cinétique et de la dynamique.
- Interaction avec les Éléments Physiques : Programmer les réponses du robot à son environnement, comme la détection d'obstacles, en utilisant des principes physiques.
- **Problème de Latence** : Gérer les défis liés à la latence dans la communication entre le serveur et l'Arduino pour assurer des réponses en temps réel.
- **Différence entre programmation et réalité** : Les ordres effectués au robot peuvent être différents de la réalité.

Objectifs à atteindre

Le but principal du projet est :

- Faire un robot qui puisse se déplacer et toucher une boule grâce à un système intermédiaire.

Objectifs intermédiaires:

- Faire fonctionner le robot
- Réussir à connecter le robot au serveur
- Développer le client js pour visualiser l'espace de jeu avec une caméra
- Initialiser le serveur
- Développer le simulateur
- Intégrer les calculs de déplacement du robot dans le serveur

Partie exploratoire

Possibilités futures :

- robots en essaims : Football , simuler circulation automobile, réaliser des chorégraphies
- robots joueur du loup
- robots sumo
- robots labyrinthe
- Utilisation de drône : simulateur 3D

Conclusion