Clean version of the claims with all of the changes to be made vis-à-vis the U.S. Patent 5,848,159, as follows:

1. (Twice Amended) A method for communications of a message cryptographically processed with RSA (Rivest, Shamir & Adleman) public key encryption, comprising the steps of: developing k distinct random prime numbers $p_1, p_2, \ldots p_k$, where k is an integer greater than 2; providing a number e relatively prime to $(p_1 - 1) \cdot (p_2 - 1) \cdot ... \cdot (p_k - 1)$; providing a composite number n equaling the product $p_1 \cdot p_2 \cdot \ldots \cdot p_k$;

receiving a ciphertext word signal C which is formed by encoding a plaintext message word signal M to a ciphertext word signal C, where M corresponds to a number representative of the message and

 $0 \le M \le n-1$,

where C is a number representative of an encoded form of the plaintext message word signal M such that

 $C \equiv M^e \pmod{n}$, and where e is associated with an intended recipient of the ciphertext

word signal C; and deciphering the received ciphertext word signal C at the intended recipient having available to it the k distinct random prime numbers $p_1, p_2, \dots p_k$.

2. (Twice Amended) The method according to claim 1, wherein the deciphering step includes establishing a number, d, as a multiplicative inverse of

$$e(\text{mod}(\text{lcm}((p_1-1), (p_2-1), \dots, (p_k-1)))), \text{ and }$$

decoding the ciphertext word signal C to the plaintext message word signal M where $M\equiv C^d \pmod{n}$.

3. (Twice Amended) A method for communications of a message signal M_i cryptographically processed with RSA public key encryption in a system having j terminals, each terminal being characterized by an encoding key $E_i = (e_i, n_i)$ and a decoding key $D_i = (d_i, n_i)$, where $i=1, 2, \ldots, j$, establishing n_i where n_i is a composite number of the form

$$\mathbf{n}_{i} = p_{i,1} \cdot p_{i,2} \cdot, \ldots, p_{i,k}$$

where k is an integer greater than 2,

 $p_{i,1}, p_{i,2}, \ldots, p_{i,k}$ are distinct random prime numbers,

 e_i is relatively prime to $lcm(p_{i,1}-1, p_{i,2}-1, \dots p_{i,k}-1)$, and

d_i is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

 $e_i \pmod{(lcm((p_{i,1}-1), (p_{i,2}-1), \ldots, (p_{i,k}-1)))};$

receiving by a recipient terminal (i = y) from a sender terminal $(i = x, x \neq y)$ a ciphertext signal C_x formed by encoding a digital message word signal M_x , wherein the encoding includes

transforming said message word signal M_x to one or more message block word signals M_x ", each block word signal M_x " corresponding to a number representative of a portion of said message word signal M_x in the range $0 \le M_x$ " $\le n_y-1$, and

transforming each of said message block word signals M_x " to a ciphertext word signal C_x that corresponds to a number representative of an encoded form of said message block word signal M_x " where

$$C_x \equiv M_x^{n_{e_y}} \pmod{n_y}$$
; and

deciphering the received ciphertext word signal C_x at the recipient terminal having available to it the k distinct random prime numbers $p_{y,1}, p_{y,2}, \ldots, p_{y,k}$ for establishing its d_y .

4. (Twice Amended) A system for communications of a message cryptographically processed with an RSA public key encryption, comprising:

a communication channel for transmitting a ciphertext word signal C;

encoding means coupled to said channel and adapted for transforming a transmit message word signal M to the ciphertext word signal C using a composite number, n, where n is a product of the form

$$n = p_1 \cdot p_2 \cdot \ldots \cdot p_k$$

 $p_1, p_2, \dots p_k$ are distinct random prime numbers,

where the transmit message word signal M corresponds to a number representative of the message and

 $0 \le M \le n-1$

where the ciphertext word signal C corresponds to a number representative of an encoded form of said message through a relationship of the form

 $C \equiv M^e \pmod{n}$, and

where e is a number relatively prime to lcm(p1 -1, p2 -1, ..., pk -1); and

decoding means coupled to said channel and adapted for receiving the ciphertext word signal C

from said channel and, having available to it the k distinct random prime numbers p1, p2,

... pk, for transforming the ciphertext word signal C to a receive message word signal M'

where M' corresponds to a number representative of a decoded form of the ciphertext

word signal C through a relationship of the form

 $M \equiv C^d \pmod{n}$

where d is selected from the group consisting of a class of numbers equivalent to a multiplicative inverse of

$$e(\text{mod}(\text{lcm}((p_1 - 1), (p_2 - 1), \dots, (p_k - 1)))).$$

- 5. (Twice Amended) A system for communications of a message cryptographically processed with an RSA public key encryption, the system having a plurality of terminals coupled by a communications channel, comprising:
 - a first terminal of the plurality of terminals characterized by an encoding key

 $E_A = (e_A, n_A)$ and a decoding key $D_A = (d_A, n_A)$,

where n_A is a composite number of the form

$$n_A = p_{A,1} \cdot p_{A,2} \cdot \dots \cdot p_{A,k}$$

where

k is an integer greater than 2,

 $p_{A,1}, p_{A,2}, \ldots, p_{A,k}$ are distinct random prime numbers,

e_A is relatively prime to

$$lcm(p_{A,1}-1, p_{A,2}-1, \ldots, p_{A,k}-1)$$
, and

d_A is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_A \pmod{(\text{lcm}((p_{A,1}-1), (p_{A,2}-1), \dots, (p_{A,k}-1)))};$$
 and

a second terminal of the plurality of terminals having

blocking means for transforming a first message, which is to be transmitted on said communications channel from said second terminal to said first terminal, into one or more transmit message word signals M_B, where each M_B corresponds to a number representative of said first message in the range

$$0 \le M_B \le n_A - 1$$
,

encoding means coupled to said channel and adapted for transforming each transmit message word signal M_B to a ciphertext word signal C_B that corresponds to a number representative of an encoded form of said first messagethrough a relationship of the form

$$C_B \equiv M_B^{e_A} (\operatorname{mod} n_A),$$

relationship $C_B \equiv M_B^e$ said first terminal having decoding means converged word signs decoding means coupled to said channel and adapted for receiving each of said ciphertext word signals C_B from said channel and, having available to it the k distinct random prime numbers $p_{A,1}, p_{A,2}, \ldots, p_{A,k}$, for transforming each of said ciphertext word signals C_B to a receive message word signal M'_B, and

> means for transforming said receive message word signal M'B to said first message, where M'_B corresponds to a number representative of a decoded form of C_B through a relationship of the form

$$M'_{\mathrm{B}} \equiv C_B^{d_A} \pmod{n_A}$$
.

6. (Twice Amended) The system according to claim 5 wherein said second terminal is characterized by an encoding key E_B =(e_B , n_B) and a decoding key D_B =(d_B , n_B), where n_B is a composite number of the form

$$n_B = p_{B,1} \cdot p_{B,2} \cdot \ldots \cdot p_{B,k}$$

where k is an integer greater than 2.

 $p_{B,1}, p_{B,2}, \dots p_{B,k}$ are distinct random prime numbers, e_B is relatively prime to

 d_{B} is selected from the group consisting of a class of numbers equivalent to a multiplicative inverse of

$$e_{\rm B}$$
 (mod(lcm($(p_{B,1}$ -1), $(p_{B,2}$ -1), ..., $(p_{B,k}$ -1)))),

said first terminal further having

blocking means for transforming a second message,[-to-be-transmitted] which is to be transmitted on said communications channel from said first terminal to said second terminal, to one or more transmit message word signals M_A, where each M_A corresponds to a number representative of said message in the range

$$0 \le M_A \le n_B - 1$$

encoding means coupled to said channel and adapted for transforming each transmit message word signal M_A to a ciphertext word signal C_A and for transmitting C_A on said channel, where C_A corresponds to a number representative of an encoded form of said second message through a relationship of the form

$$C_A \equiv M_A^{e_B} \pmod{n_B}$$

said second terminal further having

decoding means coupled to said channel and adapted for receiving each of said ciphertext word signals C_A from said channel and, having available to it the k distinct random prime numbers $p_{B,1}, p_{B,2}, \ldots p_{B,k}$, for transforming each of said ciphertext word signals to a receive message word signal M'_A, and means for transforming said receive message word signals M'_A to said second message, where M'_A corresponds to a number representative of a decoded form of C_A through a relationship of the form

$$M'_A \equiv C_A^{d_B} \pmod{n_B}$$
.

7. (Amended) A method for communications of a message cryptographically processed with an RSA public key encryption, comprising the steps of:

developing k factors of a composite number n, the k factors being distinct random prime numbers and k is an integer larger than two (k>2);

providing a number e relatively prime to a lowest common multiplier of the k factors; providing the composite number n;

to a number representative ofsaid message and

$$0 \le M \le n-1$$
,

where said ciphertext word signal C corresponds to a number representative of an encoded form of said message through a relationship of the form

$$C \equiv a_e M^e + a_{e-1} M^{e-1} + \dots + a_0 \pmod{n}$$

where e and a_e , a_{e-1} , ..., a_0 are numbers; and

deciphering the received chiphertext word signal C at an intended recipient with knowledge of the k factors.

8. Cancelled.

9. (Twice Amended) A system for communications of message signals cryptographically processed with RSA public key encryption, comprising:

j terminals including first and second terminals, each of the j terminals being characterized by an encoding key $E_i = (e_i, n_i)$ and decoding key $D_i = (d_i, n_i)$, where $i=1,2,\ldots,j$, each of the j terminals being adapted to transmit a particular one of the message signals where an ith message signal M_i is transmitted from an ith terminal, and

$$0 \le M_i \le n_i - 1$$
,

n_i being a composite number of the form

$$n_i = p_{i,1} \cdot p_{i,2} \cdot \ldots \cdot p_{i,k}$$

where

k is an integer greater than 2,

 $p_{i,1}, p_{i,2}, \dots p_{i,k}$ are distinct random prime numbers,

e_i is relatively prime to

$$lcm(p_{i,1}-1, p_{i,2}-1, \dots p_{i,k}-1)$$
, and

 d_{i} is selected from the group consisting of the class of numbers equivalent

to a multiplicative inverse of

$$e_i \pmod{(\operatorname{lcm}((p_{i,1}-1), (p_{i,2}-1), \ldots, (p_{i,k}-1)))};$$

said first terminal including

means for encoding a digital message word signal M₁ to be transmitted from said first terminal (i=1) to said second terminal (i=2), said encoding means transforming said digital message word signal M₁ to a signed message word signal M_{1s} using a relationship of the form

$$M_{1s} \equiv M_1^{d_1} \pmod{n_1}$$
; and

means for transmitting said signed message word signal M_{1s} from said first terminal to said second terminal, wherein said second terminal includes

means for decoding said signed message word signal M_{1s} to said digital message word signal M_1 .

10. (Twice Amended) The system of claim 9, wherein the means for decoding said signed message word signal M_{As} includes means for transforming said signed message word signal M_{As} using a relationship of the form

$$M_1 \equiv M_{1s}^{e_1} \pmod{n_1}.$$

- 11. (Twice Amended) A communications system for transferring a message signal cryptographically processed with RSA public key encryption, the communications system comprising:
- j communication stations including first and second stations, each of the j communication stations being characterized by an encoding key E_i =(e_i , n_i) and a decoding key D_i =(d_i , n_i), where i=1, 2, . . . , j, each of the j communication stations being adapted to transmit a particular one of the message signals where an i^{th} message signal M_i is received from an i^{th} communication station, and

$$0 \le M_i \le n_i - 1$$

 n_i being a composite number of the form

$$n_i = p_{i,1} \cdot p_{i,2} \cdot \ldots \cdot p_{i,k}$$

where

k is an integer greater than 2,

 $p_{i,1},\,p_{i,2},\,\ldots\,,\!p_{i,k}$ are distinct random prime numbers,

 e_i is relatively prime to $lcm(p_{i,1}-1,p_{i,2}-1,\ldots,p_{i,k}-1)$, and

$$e_i \pmod{(\text{lcm}((p_{i,1}-1), (p_{i,2}-1), \ldots, (p_{i,k}-1)))},$$

said first station including

means for encoding a digital message word signal M₁ to be transmitted from said first station (i=1) to said second station (i=2),

means for transforming said digital message word signal $[M_A]$ M_1 to one or more message block word signals $[M_A']$ M_1 ", each block word signal $[M_A']$ M_1 " being a number representative of a portion of said message word signal M_1 in the range

$$0 \le M_1'' \le n_2$$
-1, and

means for transforming each of said message block word signals M₁" to a ciphertext word signal C₁ using a relationship of the form

$$C_1 \equiv M_1^{n_1} \pmod{n_2}$$
; and

means for transmitting said ciphertext word signals C₁ from said first station to said second station, wherein said second station includes

means for deciphering said ciphertext word signals C_1 using $p_{2,1}$, $p_{2,2}$, . . . , $p_{2,k}$ to produce said message word signal M_1 .

12. (Twice Amended) The communications system of claim 11, wherein the deciphering means includes

means for decoding said ciphertext word signals C₁ to said message block word signals M₁" using a relationship of the form

$$M''_1 \equiv C_1^{d_2} \pmod{n_2}$$
, and

means for transforming said message block word signals M_1 " to said message word signal M_1 .

13. (Twice Amended) A system for communications of a message cryptographically processed with RSA public key encryption, comprising:

8

a first station; and

事件

Į,

111

a second station communicatively connected to the first station,

the first station having

encoding means for transforming a transmit message word signal M to a ciphertext word signal C where the transmit message word signal M corresponds to a number representative of a message and

 $0 \le M \le n-1$

n being a composite number formed as a product of at least 3 factors, the at least 3 factors being distinct random prime numbers, and where the ciphertext word signal C corresponds to a number representative of an encoded form of said message through a relationship of the form

$$C \equiv a_e M^e + a_{e-1} M^{e-1} + \dots + a_0 \pmod{n}$$

where e and a_e , a_{e-1} , ..., a_0 are numbers; and

means for transmitting the ciphertext word signal C to the second station, wherein the second station includes means for deciphering the chipertext word signal C using the at least 3 factors to produce the message.

New Claims:

開始ま

14. (Amended) A method of communicating a message cryptographically processed with an RSA public key encryption, comprising the steps of:

selecting a public key portion e associated with a recipient intended for receiving the message;

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus 1, p_1 -1, p_2 -1, ... p_k -1, is relatively prime to the public key portion e;

computing a composite number, n, as a product of the k distinct random prime numbers;

receiving a ciphertext message formed by encoding a plaintext message data M to the ciphertext message data C using a relationship of the form $C \equiv M^e \pmod{n}$, where M represents the

message, where $0 \le M \le n-1$ and where the sender knows n and the public key portion e but has no access to the k distinct random prime numbers, $p_1, p_2, \ldots p_k$; and

deciphering at the recipient the received ciphertext message data C to produce the message, the recipient having access to the k distinct random prime numbers, $p_1, p_2, \ldots p_k$.

15. (Amended) The method according to claim 14, comprising the further step of:

establishing a private key portion d by a relationship to the public key portion e in the form of

$$d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1))),$$

wherein the deciphering step includes decoding the ciphertext message data C to the plaintext message data M using a relationship of the form $M \equiv C^d \pmod{n}$.

16. (Amended) A method of communicating a message cryptographically processed with RSA public key encryption, comprising selecting a public key portion e; public key encryption, comprising the steps of:

developing k distinct random prime numbers, $p_1, p_2, \dots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus 1, p_1 -1, p_2 -1, . . . p_k -1, is relatively prime to the public key portion e;

establishing a private key portion d by a relationship to the public key portion e in the form of

$$d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)));$$

computing a composite number, n, as a product of the k distinct random prime numbers;

receiving a ciphertext message data C representing an encoded form of a plaintext message data M; and

decoding the received ciphertext message data C to the plaintext message data M using a relationship of the form $M \equiv C^d \pmod{n}$, the decoding performed by a recipient owning the private key portion d and having access to the k distinct random prime numbers, p_1 , $p_2, \ldots p_k$.

17. (Amended) The method according to claim 16, wherein the ciphertext message data C is formed by encoding the plaintext message data M to the ciphertext message data C using a relationship of the form $C \equiv M^e \pmod{n}$, wherein $0 \le M \le n-1$ and wherein n and the public key portion n are accessible to the sender although it has no access to the k distinct random prime numbers, $p_1, p_2, \ldots p_k$.

18. (Amended) A method of communicating a message cryptographically processed with RSA public key encryption, comprising the steps of:

selecting a public key portion e;

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;

establishing a private key portion d by a relationship to the public key portion e of the form

$$d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)));$$

computing a composite number, n, as a product of the k distinct random prime numbers;

encoding a plaintext message data M with the private key portion d to produce a signed message M_s using a relationship of the form $M_s \equiv M^d \pmod{n}$, where $0 \le M \le n-1$

receiving the signed message M_s ; and

deciphering the signed message to produce the plaintext message data M.

19. (Amended) The method of claim 18, wherein the deciphering step includes:

decoding the signed message M_s with the public key portion e to produce the plaintext message data M using a relationship of the form $M \equiv M_s^e \pmod{n}$.

sending to a recipient a cryptographically processed message formed by

assiging a number M to represent the message in plaintext message form, and

cryptographically transforming the assigned number M from the plaintext message form

to a number C that represents the message in an encoded form, wherein the number C is a function of

the assigned number M,

a number n that is a composite number equaling the product of at least three distinct random prime numbers, wherein $0 \le M \le n-1$, and

an exponent e that is a number relatively prime to a lowest common multiplier of the at least three distinct random prime numbers,

wherein the number n and exponent e having been obtained by the sender are associated with the recipient to which the message is intended; and

receiving the cryptographically processed message which is decipherable by the recipient based on

the number n,

another exponent d, and

the number C,

wherein the exponent d is a function of the exponent e and the at least three distinct random prime numbers.

21. (Amended) The method according to claim 20,

wherein the cryptographically transforming step includes using a relationship of the form $C \equiv M^e$ (mod n),

wherein the exponent d is established based on the at least three distinct random prime numbers, $p_1, p_2, \ldots p_k$ using a relationship of the form $d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)))$,

and

門

22. (Amended) A method for communicating a message cryptographically processed with RSA public key encryption, comprising the steps of:

receiving from a sender a cryptographically processed message, in the form of a number C, which is decipherable by the recipient based on a number n, an exponent d, and the number C; and

deciphering the cryptographically processed message,

wherein a number M represents a plaintext form of the message, wherein the number C represents a cryptographically encoded form of the message and is a function of the number M,

the number n that is a composite number equaling the product of at least three distinct random prime numbers, wherein $0 \le M \le n-1$, and

an exponent e that is a number relatively prime to a lowest common multiplier of the at least three distinct random prime numbers,

wherein the number n and exponent e are associated with the recipient to which the message is intended, and

wherein the exponent d is a function of the exponent e and the at least three distinct random prime numbers.

23. (Amended) The method according to claim 22,

wherein the number C is formed using a relationship of the form $C \equiv M^e \pmod{n}$,

wherein the exponent d is established based on the at least three distinct random prime numbers,

 $p_1, p_2, \dots p_k$ using a relationship of the form $d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)))$

and wherein the number M is obtained using a relationship of the form $M \equiv C^d \pmod{n}$.

24. (Amended) The method according to claim 21,

wherein p and q are a pair of prime numbers the product of which equals n,

wherein the deciphering the number C to derive the number M is divided into subtasks, one subtask for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to perform the deciphering relative to the number of computational cycles for performing such deciphering if the pair of prime numbers p and q were used instead.

25. (Amended) The method according to claim 22,

wherein p and q are a pair of prime numbers the product of which equals n,

wherein the deciphering the number C to derive the number M is divided into subtasks, one subtask for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to perform the deciphering relative to the number of computational cycles for performing such deciphering if the pair of prime numbers p and q were used instead.

26. (Amended) The method according to claim 20,

wherein p and q are a pair of prime numbers the product of which equals n, and wherein developing the at least three distinct random prime numbers and computing n is performed, including for n that is more than 600 digits long, in less time than it takes to develop

27. (Amended) The method according to claim 22,

the pair of prime numbers p and q and compute that n.

wherein p and q are a pair of prime numbers the product of which equals n, and wherein developing the at least three distinct random prime numbers and computing n is performed, including for n that is more than 600 digits long, in less time than it takes to develop the pair of prime numbers p and q and compute that n.

28. (Amended) The method according to claim 14,

wherein p and q are a pair of prime numbers the product of which equals n,

wherein the deciphering step is divided into sub-steps, one sub-step for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to perform the deciphering step relative to the number of computational cycles for performing such deciphering step if the pair of prime numbers p and q were used instead.

29. (Amended) The method according to claim 14, wherein p and q are a pair of prime numbers the product of which equals n, and wherein developing the k distinct random prime numbers and computing the composite number n are performed, including for n that is more than 600 digits long, in less time than it takes to

develop the pair of prime numbers p and q and compute that n.

30. (Amended) The method according to claim 16,

wherein p and q are a pair of prime numbers the product of which equals n,

wherein the decoding step is divided into sub-steps, one sub-step for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to perform the decoding step relative to the number of computational cycles for performing such decoding step if the pair of prime numbers p and q were used instead.

31. (Amended) The method according to claim 16,

wherein p and q are a pair of prime numbers the product of which equals n, and wherein developing the k distinct random prime numbers and computing the composite n is performed, including for n that is more than 600 digits long, in less time than it takes to develop the pair of prime numbers p and q and compute that n.

32. (Amended) The method according to claim 18, wherein p and q are a pair of prime numbers the product of which equals n,

÷.

wherein the encoding step is divided into sub-steps, one sub-step for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to perform the encoding step relative to the number of computational cycles for performing such encoding step if the pair of prime numbers p and q were used instead.

- 33. (Amended) The method according to claim 18, wherein p and q are a pair of prime numbers the product of which equals n, and wherein developing the k distinct random prime numbers and computing the composite number n is performed, including for n that is more than 600 digits long, in less time than it takes to develop the pair of prime numbers p and q and compute that n.
- 34. (Amended) The method according to claim 14, wherein a message cryptographically processed by the sender with two-prime RSA public key encryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q, is decipherable with multi-prime (k>2) RSA public key encryption characterized by the composite number n being computed as the product of the k distinct random prime numbers, $p_1, p_2, \ldots p_k$.
- 35. (Amended) The method according to claim 9, wherein the signed message word signal M_{Is} , formed from the digital message word signal M_I being cryptographically processed at the first terminal with multi-prime (k > 2) RSA public key encryption which is characterized by the composite number n being computed as the product of the k distinct random prime numbers, p_1 , p_2 , ... p_k , is decipherable at the second terminal with two-prime RSA public key encryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q.
- 36. (Amended) The method according to claim 16, wherein a message cryptographically processed by the sender with two-prime RSA public key encryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q, is decipherable by the decoding with multi-prime (k > 2) RSA public key encryption characterized

I.

忠事

by the composite number n being computed as the product of the k distinct random prime numbers, $p_1, p_2, \ldots p_k$.

- 37. (Amended) The method according to claim 18, wherein the signed message M_s , formed from the plaintext message data M being cryptographically processed at the sender with multi-prime (k > 2) RSA public key encryption which is characterized by the composite number n being computed as the product of the k distinct random prime numbers, $p_1, p_2, \ldots p_k$, is decipherable by the decoding at the recipient with two-prime RSA public key encryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q.
- 38. (Amended) The method according to claim 20, wherein a message cryptographically processed by the sender with two-prime RSA public key encryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q, is decipherable at the recipient with multi-prime RSA public key encryption characterized by the composite number n being computed as the product of the at least three distinct random prime numbers.
- 39. (Amended) The method according to claim 22, wherein a message cryptographically processed by the sender with two-prime RSA public key encryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q, is decipherable at the recipient with multi-prime RSA public key encryption characterized by the composite number n being computed as the product of the at least three distinct random prime numbers.
- 40. (Amended) A cryptography method for local storage of data by a private key owner, comprising the steps of:

selecting a public key portion e;

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;

establishing a private key portion d by a relationship to the public key portion e in the form of

$$d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)));$$

- computing a composite number, n, as a product of the k distinct random prime numbers that are factors of n, where only the private key owner knows the factors of n; and
- encoding plaintext data M to ciphertext data C for the local storage, using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$, whereby the ciphertext data C is decipherable only by the private key owner having available to it the factors of n.
- 41. The cryptography method in accordance with claim 40, further comprising the step of: decoding the ciphertext data C from the local storage to the plaintext data M using a relationship of the form $M \equiv C^d \pmod{n}$.
- 42. (Amended) A cryptographic communications system, comprising:
- a plurality of stations;
- a communications medium; and
- a host system adapted to communicate with the plurality of stations via the communications medium sending a receiving messages cryptographically processed with an RSA public key encryption, the host system including
 - at least one cryptosystem configured for

developing k distinct random prime numbers, $p_1, p_2, \dots p_k$, where $k \ge 3$,

checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots$ p_k-1 , is relatively prime to a public key portion e that is associated with the host system,

computing a composite number, n, as a product of the k distinct random prime numbers,

establishing a private key portion d by a relationship to the public key portion e in the form of $d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)))$,

in response to an encoding request from the host system, encoding a plaintext message data M producing therefrom a ciphertext message data C to be communicated via the host system, the encoding using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$,

in response to a decoding request from the host system, decoding a ciphertext message data C communicated via the host producing therefrom a plaintext message data M using a relationship of the form $M \equiv C^d$ (mod n).

- 43. (Amended) A system for communications of a message cyptographically processed with RSA public key encryption, comprising:
- a bus; and
- a cryptosystem communicatively coupled to and receiving from the bus encoding and decoding requests, the cryptosystem being configured for

providing a public key portion e,

developing k distinct random prime numbers, $p_1, p_2, \dots p_k$, where $k \ge 3$,

checking that each of the k distinct random prime numbers minus 1, p_1 -1, p_2 -1, ... p_k -1, is relatively prime to the public key portion e,

computing a composite number, n, as a product of the k distinct random prime numbers, establishing a private key portion d by a relationship to the public key portion e in the form of $d \equiv e^{-1}(\text{mod}((p_1-1)\cdot(p_2-1)\cdots(p_k-1)))$,

- in response to an encoding request from the bus, encoding a plaintext form of a first message M to produce C, a ciphertext form of the first message, using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$, and
- in response to an decoding request from the host system, decoding C', a ciphertext form of a second message, to produce M', a plaintext form of the second message, using a relationship of the form $M' \equiv C'^d \pmod{n}$, the first and second messages being distinct or one and the same.
- 44. The system of claim 42, wherein the at least one cryptosystem includes a plurality of exponentiators configured to operate in parallel in developing respective subtask values corresponding to the message.
- 45. (Amended) The system of claim 42, wherein the at least one cryptosystem includes a processor,
 a data-address bus,

a memory coupled to the processor via the data-address bus,

a data encryption standard (DES) unit coupled the memory and the processor via the data-address bus,

(

a plurality of exponentiator elements coupled to the processor via the DES unit, the plurality of exponentiator elements being configured to operate in parallel in developing respective subtask values corresponding to the message.

46. (Amended) The system of claim 45, wherein the memory and each of the plurality of exponentiator elements has its own DES unit that cryptographically processes message data received/returned from/to the processor.

47. (Amended) The system of claim 45, wherein the memory is partitioned into address spaces addressable by the processor, including secure, insecure and exponentiator elements address spaces, and wherein the DES unit is configured to recognize the secure and exponentiator elements address spaces and to automatically encode message data therefrom before it is provided to the exponentiator elements, the DES unit being bypassed when the processor is accessing the insecure memory address spaces, the DES unit being further configured to decode encoded message data received from the memory before it is provided to the processor.

- 48. The system of claim 45, wherein the at least one cryptosystem meets FIPS (Federal Information Processing Standard) 140-1 level 3.
- 49. The system of claim 45, wherein the processor maintains in the memory the public key portion e and the composite number n with its factors $p_1, p_2, \dots p_k$.
- 50. (Amended) A system for communications of a message cryptographically processed with RSA public key encryption, comprising:
- a bus; and

堪

- a cryptosystem receiving from the system via the bus encoding and decoding requests, the cryptosystem including
 - a plurality of exponentiator elements configured to develop subtask values,

a memory, and

a processor configured for

receiving the encoding and decoding requests, each encoding request providing a plaintext message M to be encoded,

obtaining a public key that includes an exponent e and a modulus n, a representation of the modulus n existing in the memory in the form of its k distinct random prime number factors $p_1, p_2, \ldots p_k$, where $k \ge 3$,

constructing subtasks, one subtask for each of the k factors, to be executed by the exponentiator elements for producing respective ones of the subtask values, $C_1, C_2, \ldots C_k$, and

forming a ciphertext message C from the subtask values $C_1, C_2, \ldots C_k$, wherein the ciphertext message C is decipherable using a private key that includes the modulus n and an exponent d which is a function of e.

- 51. (Amended) The system of claim 50 wherein each one of the subtasks $C_1, C_2, \ldots C_k$ is developed using a relationship of the form $C_i \equiv M_i^{e_i} \pmod{p_i}$, where $M_i \equiv M \pmod{p_i}$, and $e_i \equiv e \pmod{p_i-1}$, and where $i=1, 2, \ldots k$.
- 52. (Amended) A system for communications of a message cryptographically processed with RSA public key encryption, comprising:

a bus; and

- a cryptosystem receiving from the system via the bus encoding and decoding requests, the cryptosystem including
 - a plurality of exponentiator elements configured to develop subtask values,
 - a memory, and
 - a processor configured for

receiving the encoding and decoding requests, each encoding/decoding request provided with a plaintext/ciphertext message M/C to be encoded/decoded and with or without a public/private key that includes an exponent e/d and a modulus n a representation of which exists in the memory in the form of its k distinct random prime number factors $p_1, p_2, \ldots p_k$, where $k \ge 3$,

constructing subtasks to be executed by the exponentiator elements for producing respective ones of the subtask values, $M_1, M_2, \ldots M_k, C_1, C_2, \ldots C_k$, and forming the ciphertext/plaintext message C/M from the subtask values $C_1, C_2, \ldots C_k/M_1, M_2, \ldots M_k$.

- 53. (Amended) The system of claim 52 wherein when produced each one of the subtasks C_1 , C_2 , ... C_k is developed using a relationship of the form $C_i \equiv M_i^{e_i} \pmod{p_i}$, where $C_i \equiv C \pmod{p_i}$, and $e_i \equiv e \pmod{p_i 1}$, and where i = 1, 2, ... k.
- 54. (Amended) The system of claim 52 wherein when produced each one of the subtasks M_1 , M_2 , . . . M_k is developed using a relationship of the form $M_i \equiv C_i^{d_i} \pmod{p_i}$, where $M_i \equiv M \pmod{p_i}$, and $d_i \equiv d \pmod{p_i-1}$, and where i=1, 2, ... k.
 - 55. The system of claim 54, wherein the private key exponent d relates to the public key exponent e via $d \equiv e^{-1} (\text{mod}((p_1 1) \cdot (p_2 1) \cdots (p_k 1)))$.
- 56. (Amended) A system for communications of a message cryptographically processed with RSA public key encryption, comprising:

means for selecting a public key portion e;

- means for developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and for checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;
- means for establishing a private key portion d by a relationship to the public key portion e in the form of $d \equiv e^{-1} (\text{mod}((p_1 1) \cdot (p_2 1) \cdots (p_k 1)));$
- means for computing a composite number, n, as a product of the k distinct random prime numbers;

means for receiving a ciphertext message data C; and

means for decoding the ciphertext message data C to a plaintext message data M using a relationship of the form $M \equiv C^d \pmod{n}$.

57. The system according to claim 56, further comprising:

means for encoding the plaintext message data M to the ciphertext message data C, using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$.

58. (Amended) A system for communications of a message cryptographically processed with RSA public key encryption, comprising:

means for selecting a public key portion e;

T.

M I

*四部分数於

means for developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and for checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;

means for establishing a private key portion d by a relationship to the public key portion e of the form $d = e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)))$;

means for computing a composite number, n, as a product of the k distinct random prime numbers; and

means for encoding a plaintext message data M with the private key portion d to produce a signed message M_s using a relationship of the form $M_s \equiv M^d \pmod{n}$, where $0 \le M \le n-1$, the signed message M_s being decipherable using the public key portion e.

59. (Amended) The system of claim 58 further comprising the step of:

means for decoding the signed message M_s with the public key portion e to produce the plaintext message data M using a relationship of the form $M \equiv M_s^e \pmod{n}$.

60. (Amended) The system of claim 57, wherein the system can communicate the cryptographically processed message to another system that encodes/decodes data with RSA public key encryption using a modulus value equal to n independent of the k distinct prime numbers.

はこれに なんかん 本をををはれる

61. (Amended) The system of claim 59, wherein the system can communicate the cryptographically processed message to another system that encodes/decodes data with RSA public key encryption using a modulus value equal to n independent of the k distinct prime numbers.

聖你是大堂打工 医大生生性原理

File Compare Results to Show Changes to the Claims Since the Preliminary Amendment

Clean version of the Claims

Clean version of the claims with all of the changes to be made vis-à-vis the U.S. Patent 5,848,159, as follows:

1. (Twice Amended) A method of processing a message for use in cryptographic communications of a message cryptographically processed with RSA (Rivest, Shamir & Adleman) public key encryption, comprising the steps of:

developing k distinct random prime numbers $p_1, p_2, \ldots p_k$, where k is an integer greater than 2; providing a number e relatively prime to $(p_1 - 1) \cdot (p_2 - 1) \cdot ... \cdot (p_k - 1)$;

providing a composite number, n, as a equaling the product of $p_1 \cdot p_2 \cdot \ldots \cdot p_k$ where k is an integer greater than 2, and $p_1, p_2, \dots p_k$ are distinct random prime numbers; and;

receiving a ciphertext word signal C which is formed by encoding a plaintext message word 聖聖斯 衛衛士 教 大本本年 等 signal M to a ciphertext word signal C, where M corresponds to a number representative of the message and

 $0 \le M \le n-1$,

·

where C is a number representative of an encoded form of the plaintext message word signal M such that

 $C \equiv M^e \pmod{n}$, and where e is associated with an intended recipient of the ciphertext word signal C; and

where e is a number relatively prime to $(p_1-1)\cdot (p_2-1)\cdot \dots \cdot (p_k-1)$.

deciphering the received ciphertext word signal C at the intended recipient having available to it the k distinct random prime numbers $p_1, p_2, \dots p_k$.

The method according to claim 1, comprisingwherein the 2. (Twice Amended) furtherdeciphering step of:includes

establishing a number, d, as a multiplicative inverse of $e(\text{mod}(\text{lcm}((p_1-1), (p_2-1), \dots, (p_k-1))));$ and

Reissue 09/694,416

decoding the ciphertext word signal C to the plaintext message word signal M where $M \equiv C^d \pmod{n}$.

3. (Twice Amended) A method for communications of processing a message signal M_i for usecryptographically processed with RSA public key encryption in a communications-system having j terminals, each terminal being characterized by an encoding key $E_i = (e_i, n_i)$ and decoding key $D_i = (d_i, n_i)$, where $i=1, 2, \ldots, j$, and the message signal M_i corresponding corresponds to a number representative of a message-to-be-transmitted received from the i^{th} terminal, the method comprising the steps of:

computingestablishing ni where ni is a composite number of the form

$$\mathbf{n_i} = p_{i,1} \cdot p_{i,2} \cdot, \ldots, p_{i,k}$$

where k is an integer greater than 2,

 $p_{i,1}, p_{i,2}, \ldots, p_{i,k}$ are distinct random prime numbers,

 e_i is relatively prime to $lcm(p_{i,1}-1, p_{i,2}-1, \dots p_{i,k}-1)$, and

d_i is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

 $e_i \pmod{(lcm((p_{i,1}-1), (p_{i,2}-1), \ldots, (p_{i,k}-1)))};$

receiving by a recipient terminal (i = y) from a sender terminal $(i = x, x \neq y)$ a ciphertext signal C_x formed by encoding a digital message word signal M_1 for transmission from a first terminal (i-1) to a second terminal $(i-2)\underline{M}_x$, said encoding step including wherein the sub-step of: encoding includes

transforming said message word signal $M_1 \underline{M_x}$ to one or more message block word signals $M_1 \underline{M_x}$ ", each block word signal $M_1 \underline{M_x}$ " corresponding to a number representative of a portion of said message word signal $M_1 \underline{M_x}$ in the range $0 \le M_A \underline{M_x}$ " $\le n_2 - 1$, $\underline{n_y} = 1$, and

transforming each of said message block word signals $M_1\underline{M_x}$ " to a ciphertext word signal $C_1\underline{C_x}$ that corresponds to a number representative of an encoded form of said message block word signal $M_1\underline{M_x}$ " where

Reissue 09/694.416

$$C_x \equiv M_x^{n_{e_y}} \pmod{n_y}$$
; and

deciphering the received ciphertext word signal C_x at the recipient terminal having available to it the k distinct random prime numbers $p_{y,1}, p_{y,2}, \ldots, p_{y,k}$ for establishing its d_y .

4. (<u>Twice Amended</u>) A <u>eryptographic system for communications system of a message cryptographically processed with an RSA public key encryption, comprising:</u>

a communication channel adapted for transmitting a ciphertext word signal C that relates to a transmit message word signal M;

encoding means coupled to said channel and adapted for transforming the transmit message word signal M to the ciphertext word signal C using a composite number, n, where n is a product of the form

$$n=p_1\cdot p_2\cdot \ldots \cdot p_k$$

k is an integer greater than 2, and

 $p_1, p_2, \dots p_k$ are distinct random prime numbers,

where the transmit message word signal M corresponds to a number representative of athe message and

 $0 \le M \le n-1$

海南日本部川部 「御海山町町

where the ciphertext word signal C corresponds to a number representative of an encoded form of said message through a relationship of the form[and corresponds to]

$$C \equiv M^e \pmod{n}$$
, and

where e is a number relatively prime to lcm(p1 -1, p2 -1, ..., pk -1); and

from said channel and, having available to it the k distinct random prime numbers p_1 , p_2 , ... p_k , for transforming the ciphertext word signal C to a receive message word signal M' where M' corresponds to a number representative of a decoded form of the ciphertext word signal C through a relationship of the form

$$M \equiv C^d \pmod{n}$$

where d is selected from the group consisting of a class of numbers equivalent to a multiplicative inverse of

Reissue 09/694,416

$$e(\text{mod}(\text{lcm}((p_1-1), (p_2-1), \dots, (p_k-1)))).$$

5. (<u>Twice Amended</u>) A <u>eryptographic system for communications of a message cryptographically processed with an RSA public key encryption, the system having a plurality of terminals coupled by a communications channel, comprising:</u>

a first terminal of the plurality of terminals characterized by an encoding key

 $E_A = (e_A, n_A)$ and a decoding key $D_A = (d_A, n_A)$,

where n_A is a composite number of the form

$$n_A = p_{A,1} \cdot p_{A,2} \cdot \dots \cdot p_{A,k}$$

where

404

Triple

4

1

u

k is an integer greater than 2,

 $p_{A,1}, p_{A,2}, \ldots, p_{A,k}$ are distinct random prime numbers,

e_A is relatively prime to

$$lcm(p_{A,I}-1, p_{A,2}-1, \ldots, p_{A,k}-1)$$
, and

 d_A is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_A \pmod{(\operatorname{lcm}((p_{A,1}-1), (p_{A,2}-1), \ldots, (p_{A,k}-1)))};$$
 and

a second terminal of the plurality of terminals having

blocking means for transforming a first message, which is to be transmitted on said communications channel from said second terminal to said first terminal, to into one or more transmit message word signals M_B , where each M_B corresponds to a number representative of said <u>first</u> message in the range

$$0 \le M_B \le n_A - 1$$
,

encoding means coupled to said channel and adapted for transforming each transmit message word signal M_B to a ciphertext word signal C_B that corresponds to a number representative of an encoded form of said first message through a relationship of the form

$$C_B \equiv M_B^{e_A} (\bmod n_A),$$

said first terminal having

Reissue 09/694,416

$$M'_{\mathrm{B}} \equiv C_B^{d_A} \pmod{n_A}$$
.

6. (<u>Twice Amended</u>) The system according to claim 5 wherein said second terminal is characterized by an encoding key $E_B = (e_B, n_B)$ and a decoding key $D_B = (d_B, n_B)$, where n_B is a composite number of the form

$$n_B = p_{B,1} \cdot p_{B,2} \cdot \ldots \cdot p_{B,k}$$

*

西京李奉奉 田野

where k is an integer greater than 2,

 $p_{B,1}, p_{B,2}, \dots p_{B,k}$ are distinct random prime numbers,

e_B is relatively prime to

$$lcm(p_{B,1}-1, p_{B,2}-1, \dots p_{B,k}-1)$$
, and

 d_{B} is selected from the group consisting of a class of numbers equivalent to a multiplicative inverse of

$$e_{\rm B}$$
 (mod(lcm(($p_{B,1}$ -1), ($p_{B,2}$ -1), ..., ($p_{B,k}$ -1)))),

said first terminal further having

blocking means for transforming a second message, [-to-be-transmitted] which is to be transmitted on said communications channel from said first terminal to said second terminal, to one or more transmit message word signals M_A, where each M_A corresponds to a number representative of said message in the range

$$0 \le M_A \le n_B$$
-1

encoding means coupled to said channel and adapted for transforming each transmit message word signal M_A to a ciphertext word signal C_A and for transmitting C_A on said channel, where C_A corresponds to a number

Reissue 09/694,416

$$C_A \equiv M_A^{e_B} \pmod{n_B}$$

said second terminal further having

decoding means coupled to said channel and adapted for receiving each of said signals CA from said channel and, having available to it the ciphertext word k distinct random prime numbers p_{B,1}, p_{B,2}, ... p_{B,k}, for transforming each of said signals to a receive message word signal M'A, and ciphertext word for transforming said receive message word signals M'A to said second message, where M'A corresponds to a number representative of a decoded form of CA through a relationship of the form

$$M'_A \equiv C_A^{d_B} \pmod{n_B}$$
.

7. (Amended) A method of processing a message for use in cryptographic communications of a message cryptographically processed with an RSA public key encryption, comprising the steps of:

developing k factors of a composite number, n, as a product of at least 3 whole number factors greater than one, the k factors being distinct random prime numbers, and k is an integer larger than two (k>2);

providing a number e relatively prime to a lowest common multiplier of the k factors;

providing the composite number n;

receiving a ciphertext word signal C which is formed by encoding a digital message word signal M to athe ciphertext word signal C, where said digital message word signal M corresponds to a number representative of aofsaid message and

 $0 \le M \le n-1$,

where said ciphertext word signal C corresponds to a number representative of an encoded form of said message through a relationship of the form

$$C \equiv a_e M^e + a_{e-1} M^{e-1} + \dots + a_0 \pmod{n}$$

where e and a_e , a_{e-1} , ..., a_0 are numbers. \vdots and

Reissue 09/694,416

Document #267082

34

福福福

deciphering the received chiphertext word signal C at an intended recipient with knowledge of the k factors.

Reissue 09/694,416

e_i is relatively prime to

 $p_{i,1}, p_{i,2}, \dots p_{i,k}$ are distinct random prime numbers,

 $lcm(p_{i,1}-1, p_{i,2}-1, \dots p_{i,k}-1)$, and

d_i is selected from the group consisting of the class of numbers equivalent

to a multiplicative inverse of

$$e_i \pmod{(\operatorname{lcm}((p_{i,1}-1), (p_{i,2}-1), \ldots, (p_{i,k}-1))))};$$

said first terminal including

means for encoding a digital message word signal M1 to be transmitted from said first terminal (i=1) to said second terminal (i=2), said encoding means transforming said digital message word signal M₁ to a signed message word signal M_{1s} using a relationship of the form

The communication system of claim 9 further comprising: $M_{1s} \equiv M_1^{d_1} \pmod{n_1}$; and

means for transmitting said signed message word signal M1s from said first terminal to said second terminal, wherein said second terminal including includes

> means for decoding said signed message word signal M_{1s} to said digital message signal M₁₁. word

(Twice Amended) The system of claim 9, wherein the means for decoding said signed message word signal M_{4s} includes means for transforming said signed message word signal M_{ds} using a relationship of the form

$$M_1 \equiv M_{1s}^{e_1} \pmod{n_1}.$$

- 11. (Twice Amended) A communications system for transferring a message signal cryptographically processed with RSA public key encryption, the communications system comprising:
- j communication stations including first and second stations, each of the j communication stations being characterized by an encoding key $E_i=(e_i, n_i)$ and a decoding key $D_i=(d_i, n_i)$ Reissue 09/694,416 Document #267082

 n_i), where i=1, 2, ..., j, each of the j communication stations being adapted to transmit a particular one of the message signals where an i^{th} message signal M_i is received from an i^{th} communication station corresponds to an i^{th} message signal M_i , and

$$0 \le M_i \le n_i - 1$$

n_i being a composite number of the form

$$n_i = p_{i,1} \ p_{i,2} \cdot \ldots \cdot p_{i,k}$$

where

k is an integer greater than 2,

 $p_{i,1}, p_{i,2}, \ldots, p_{i,k}$ are distinct random prime numbers,

 e_i is relatively prime to $lcm(p_{i,1}-1,p_{i,2}-1,\ldots,p_{i,k}-1)$, and

d_i is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_i \pmod{(\operatorname{lcm}((p_{i,1}-1), (p_{i,2}-1), \ldots, (p_{i,k}-1)))},$$

said first station including

means for encoding a digital message word signal M₁ to be transmitted from said first station (i=1) to said second station (i=2),

means for transforming said digital message word signal $[\underline{M_A}]$ M_1 to one or more message block word signals $[\underline{M_A'}]$ M_1 ", each block word signal $[\underline{M_A'}]$ M_1 " being a number representative of a portion of said message word signal M_1 in the range

$$0 \le M_1'' \le n_2 - 1$$
, and

means for transforming each of said message block word signals M₁" to a ciphertext word signal C₁ using a relationship of the form

12. (Amended) The communications system of claim 11 further comprising: $C_1 \equiv M_1^{e_2} \pmod{n_2}; \text{ and }$

Reissue 09/694,416

就行為其意為, 您更免疫的 and a

means for transmitting said ciphertext word signals C₁ from said first station to said second station, wherein said second station includes

means for deciphering said ciphertext word signals C_1 using $p_{2,1}$, $p_{2,2}$, ..., $p_{2,k}$ to produce said message word signal M_1 .

12. (Twice Amended) The communications system of claim 11, wherein the deciphering means includes

means for decoding said ciphertext word signals C_1 to said message block word signals M_1 " using a relationship of the form

 $M''_1 \equiv C_1^{d_2} \pmod{n_2}$, and

means for transforming said message block word signals M_1 " to said message word signal M_1 .

- 13. (<u>Twice Amended</u>) A <u>system for communications system of a message cryptographically processed with RSA public key encryption</u>, comprising:
- a first station; and
- a second station <u>communicatively</u> connected to the first station <u>for communications</u> therebetween,

the first communicating station having

the first station having

encoding means for transforming a transmit message word signal M to a ciphertext word signal C where the transmit message word signal M corresponds to a number representative of a message and $0 \le M \le n-1$

n being a composite number formed as a product of at least 3-whole number factors-greater than one, the at least 3 factors being distinct random prime numbers, and

Reissue 09/694,416 ______10

where the ciphertext word signal C corresponds to a number representative of an encoded form of said message through a relationship of the form

$$C \equiv a_e M^e + a_{e-1} M^{e-1} + \dots + a_0 \pmod{n}$$

where e and a_e , a_{e-1} , ..., a_0 are numbers; and

means for transmitting the ciphertext word signal C to the second station, wherein the second station includes means for deciphering the chipertext word signal C using the at least 3 factors to produce the message.

New Claims:

İ.

14. (New Amended) A method of processing communicating a message for use in eryptographic communications cryptographically processed with an RSA public key encryption, comprising the steps of:

selecting a public key portion e associated with a recipient intended for receiving the message;

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus 1, p_1 -1, p_2 -1, ... p_k -1, is relatively prime to the public key portion e;

computing a composite number, n, as a product of the k distinct random prime numbers; and;

deciphering at the recipient the received ciphertext message data C to produce the message, the recipient having access to the k distinct random prime numbers, $p_1, p_2, \ldots p_k$.

Reissue 09/694,416

15. (New Amended) The method according to claim 14, comprising the further step of: establishing a private key portion d by a relationship to the public key portion e in the form of

$$\frac{1}{1}$$
 and $d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)))$

wherein the deciphering step includes decoding the ciphertext message data C to the plaintext message data M using a relationship of the form $M \equiv C^d \pmod{n}$.

16. (New Amended) A method of processing communicating a message for use in eryptographic communications cryptographically processed with RSA public key encryption, comprising the steps of:

selecting a public key portion e;

福 等 學 等 報 報 報

はは

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;

establishing a private key portion d by a relationship to the public key portion e in the form of

$$d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)));$$

computing a composite number, n, as a product of the k distinct random prime numbers;

obtaining receiving a ciphertext message data C; and decoding the ciphertext message data C to representing an encoded form of a plaintext message data M; and

decoding the received ciphertext message data C to the plaintext message data M using a relationship of the form $M \equiv C^d \pmod{n}$, the decoding performed by a recipient owning the private key portion d and having access to the k distinct random prime numbers, p_1 , $p_2, \ldots p_k$.

Reissue 09/694,416

12

- 17. (New Amended) The method according to claim 16, comprising the further step of: wherein the ciphertext message data C is formed by encoding the plaintext message data C to the ciphertext message data C, using a relationship of the form $C \equiv M^e \pmod{n}$, where wherein $0 \le M$ $\le n-1$. 1 and wherein n and the public key portion e are accessible to the sender although it has no access to the k distinct random prime numbers, $p_1, p_2, \ldots p_k$.
- 18. (New Amended) A method of processing communicating a message for use in eryptographic communications cryptographically processed with RSA public key encryption, comprising the steps of:

selecting a public key portion e;

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;

establishing a private key portion d by a relationship to the public key portion e of the form

$$d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)));$$

computing a composite number, n, as a product of the k distinct random prime numbers;

encoding a plaintext message data M with the private key portion d to produce a signed message M_s using a relationship of the form $M_s \equiv M^d \pmod{n}$, where $0 \le M \le n-1.1$

receiving the signed message M_s ; and

deciphering the signed message to produce the plaintext message data M.

- 19. (New Amended) The method of claim 18 further comprising 18, wherein the deciphering step of includes:
- decoding the signed message M_s with the public key portion e to produce the plaintext message data M using a relationship of the form $M \equiv M_s^e \pmod{n}$.

Reissue 09/694,416 13

selecting a public key portion e;

developing k

sending to a recipient a cryptographically processed message formed by

assiging a number M to represent the message in plaintext message form, and

cryptographically transforming the assigned number M from the plaintext message form

to a number C that represents the message in an encoded form, wherein the number C is a function of

the assigned number M,

a number n that is a composite number equaling the product of at least three distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and checking that each of the kwherein $0 \le M \le n-1$, and

an exponent e that is a number relatively prime to a lowest common multiplier of the at least three distinct random prime numbers minus 1, p_1 1, p_2 1, . . . p_k 1, is relatively prime to the public key portion e;

wherein the number n and exponent e having been obtained by the sender are associated

with the recipient to which the message is intended; and

receiving the cryptographically processed message which is decipherable by the recipient based on

the number n,

another exponent d, and

the number C,

wherein the exponent d is a function of the exponent e and the at least three distinct random prime numbers.

Reissue 09/694,416 14

21. (Amended) The method according to claim 20,

encoding a plaintext message data M to a ciphertext message data C, wherein the cryptographically transforming step includes using a relationship of the form $C \equiv M^e$ (mod n), where $0 \le M \le n-1$,

whereby a computational speed of the cryptographic process is increased.

21. (New) The method according to claim 20, comprising the further step of:

establishing a private key portion d by a relationship to the public key portion e in the form of e and

decoding the ciphertext message data C to the plaintext message data M wherein the exponent d is established based on the at least three distinct random prime numbers, $p_1, p_2, \ldots p_k$ using a relationship of the form $d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)))$, and

wherein the cryptographically processed message is deciphered using a relationship of the form $M \equiv C^d \pmod{n}.$ The 22 (New) Amended) A method for increasing the efficiency of the form
22. (New) Amended) A method for increasing the efficiency of communicating a cryptographic processmessage cryptographically processed with RSA public key encryption, comprising the steps of:

selecting a public key portion e;

developing k distinct random prime numbers, $p_1, p_2, \dots p_k$, where $k \ge 3$, and checking that each of

receiving from a sender a cryptographically processed message, in the form of a number C, which is decipherable by the k distinct random prime numbers minus $1, p_1 - 1, p_2 - 1, \dots p_k - 1$, is relatively prime to the public key portion e;

establishing a private key portion d by a relationship to the public key portion e in the form of

1.

Reissue 09/694,416 15

Document #267082

÷

computing recipient based on a composite number number number n, n, as a product of the k distinct random prime numbers;

obtaining a ciphertext message data C; and an exponent d, and the number C; and

decoding the ciphertext deciphering the cryptographically processed message data C to a,

wherein a number M represents a plaintext form of the message data M, wherein the number C represents a cryptographically encoded form of the message and is a function of

the number M,

the number n that is a composite number equaling the product of at least three distinct random prime numbers, wherein $0 \le M \le n-1$, and

an exponent e that is a number relatively prime to a lowest common multiplier of the at least three distinct random prime numbers,

wherein the number n and exponent e are associated with the recipient to which the message is intended, and

wherein the exponent d is a function of the exponent e and the at least three distinct random prime numbers.

23. (Amended) The method according to claim 22,

wherein the number C is formed using a relationship of the form $C \equiv M^e \pmod{n}$,

wherein the exponent d is established based on the at least three distinct random prime numbers,

 $\underline{p_1, p_2, \dots p_k}$ using a relationship of the form $d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)))$,

whereby a computational speed of the cryptographic process is increased.

and wherein the number M is obtained using a relationship of the form $M = C^d \pmod{n}$.

23. (New) The method according to claim 22, comprising the further step of:

encoding the plaintext message data M to the ciphertext message data C, using a relationship of the form $C = M^c \pmod{n}$, where $0 \le M \le n-1$.

Reissue 09/694,416 16

Document #267082

野野

藝

24. (New) Amended) The method according to claim 20,21,

wherein p and q are a pair of prime numbers the product of which equals n, and

wherein the deciphering the number C to derive the number M is divided into subtasks, one subtask for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of *n* it takes fewer computational cycles to find and check the K distinct random prime numbers that it takes to find and checkperform the deciphering relative to the number of computational cycles for performing such deciphering if the pair of prime numbers *p* and *q* were used instead.

25. (New) Amended) The method according to claim 22,

wherein p and q are a pair of prime numbers the product of which equals n, and

wherein the deciphering the number C to derive the number M is divided into subtasks, one subtask for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to find and check the K distinct random prime numbers that it takes to find and checkperform the deciphering relative to the number of computational cycles for performing such deciphering if the pair of prime numbers p and q were used instead.

26. (New) Amended) The method according to claim 24, 20,

wherein the p and q are a pair of prime numbers the product of which equals n, and wherein developing the at least three distinct random prime numbers and computing steps can be n is performed, including for n that is more than 600 digits long-faster, in less time than heretofore possible with only it takes to develop the pair of prime numbers p and q and compute that n.

27. (New) Amended) The method according to claim $\frac{25}{22}$, wherein the p and q are a pair of prime numbers the product of which equals n, and

R	leissue (09/694.	.416	17

Document #267082

西班 野 等 等 等

NA PARTIES

OLD VER

wherein developing, the at least three distinct random prime numbers and computing and encoding steps can be n is performed, including for n that is more than 600 digits long-faster, in less time than heretofore possible with only it takes to develop the pair of prime numbers p and q and compute that n.

28. (New)-Amended) The method according to claim 14,

wherein p and q are a pair of prime numbers the product of which equals n, and

wherein the deciphering step is divided into sub-steps, one sub-step for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to find and check the K distinct random prime numbers that it takes to find and checkperform the deciphering step relative to the number of computational cycles for performing such deciphering step if the pair of prime numbers p and q were used instead.

29. (New) Amended) The method according to claim 28,14,

wherein thep and q are a pair of prime numbers the product of which equals n, and

wherein developing the k distinct random prime numbers and computing steps can be the composite number n are performed, including for n that is more than 600 digits long faster, in less time than heretofore possible with only it takes to develop the pair of prime numbers p and q and compute that n.

30. (New) Amended) The method according to claim 16,

wherein p and q are a pair of prime numbers the product of which equals n, and

wherein the decoding step is divided into sub-steps, one sub-step for each of the k distinct random prime numbers,

wherein the k distinct random prime numbers are each smaller than p and q,

whereby for a given length of n it takes fewer computational cycles to find and check the K distinct random prime numbers that it takes to find and checkperform the decoding step relative

Reissue 09/694,416 18

Document #267082

m

鎮金華紙

to the number of computational cycles for performing such decoding step if the pair of prime numbers p and q were used instead.

- 31. (New) Amended) The method according to claim 30, 16, wherein thep and q are a pair of prime numbers the product of which equals n, and wherein developing the k distinct random prime numbers and computing steps can bethe composite n is performed, including for n that is more than 600 digits long-faster, in less time than heretofore possible with only it takes to develop the pair of prime numbers p and q and compute that n.
- 32. (New) Amended) The method according to claim 18, wherein p and q are a pair of prime numbers the product of which equals n; and wherein the encoding step is divided into sub-steps, one sub-step for each of the k distinct random prime numbers, 都職職都特益

wherein the k distinct random prime numbers are each smaller than p and q, whereby for a given length of n it takes fewer computational cycles to find and check the Kdistinct random prime numbers that it takes to find and checkperform the encoding step relative to the number of computational cycles for performing such encoding step if the pair of prime numbers p and q were used instead.

- 33. (New) Amended) The method according to claim 32,18, wherein the p and q are a pair of prime numbers the product of which equals n, and wherein developing the k distinct random prime numbers and computing steps can bethe composite number n is performed, including for n that is more than 600 digits long-faster, in less $\underline{\text{time}}$ than heretofore possible with only it takes to develop the pair of prime numbers p and q and compute that n.
 - The method according to claim 14, wherein a message cryptographically 34. (New Amended) processed in accordance with by the method is compatible sender with two-prime RSA public key eryptographyencryption characterized by n being equal to a composite number computed as the

19

Reissue 09/694,416

product of 2 prime numbers p and q, is decipherable with multi-prime (k>2) RSA public key encryption characterized by the composite number n being computed as the product of the k distinct random prime numbers, $p_1, p_2, \dots p_k$.

- 35. (New Amended) The method according to claim 14,9, wherein athe signed message word signal M_{Is} , formed from the digital message word signal M_{I} being cryptographically processed in accordance at the first terminal with the method multi-prime (k>2) RSA public key encryption which is compatible characterized by the composite number n being computed as the product of the k distinct random prime numbers, p_1, p_2, \ldots, p_k , is decipherable at the second terminal with two-prime RSA public key cryptography encryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q.
- 36. (New Amended) The method according to claim 16, wherein a message <u>cryptographically</u> processed in accordance with <u>by</u> the method is <u>compatiblesender</u> with two-prime RSA public key <u>eryptographyencryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q, is decipherable by the decoding with multi-prime (k > 2) RSA public key encryption characterized by the composite number n being computed as the product of the k distinct random prime numbers, $p_1, p_2, \dots p_k$.</u>
- 37. (New Amended) The method according to claim 18, wherein at the signed message M_s , formed from the plaintext message data M being cryptographically processed in accordance at the sender with the method multi-prime (k > 2) RSA public key encryption which is compatible characterized by the composite number n being computed as the product of the k distinct random prime numbers, p_1, p_2, \ldots, p_k , is decipherable by the decoding at the recipient with two-prime RSA public key eryptographyencryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q.
 - 38. (New Amended) The method according to claim 20, wherein a message data cryptographically processed in accordance with by the method is compatible sender with two-prime RSA public key eryptography encryption characterized by *n* being equal to a composite Reissue 09/694,416

 20

 Document #267082

Transport

number computed as the product of 2 prime numbers p and q, is decipherable at the recipient with multi-prime RSA public key encryption characterized by the composite number n being computed as the product of the at least three distinct random prime numbers.

- 39. (New Amended) The method according to claim 22, wherein a message datacryptographically processed in accordance withby the method is compatible sender with twoprime RSA public key eryptographyencryption characterized by n being equal to a composite number computed as the product of 2 prime numbers p and q, is decipherable at the recipient with multi-prime RSA public key encryption characterized by the composite number n being computed as the product of the at least three distinct random prime numbers.
- 40. (NewAmended) A cryptography method for local storage of data by a private key owner, comprising the steps of:

selecting a public key portion e;
developing k distinct random pri
of the k distinct random
to the public key portion developing k distinct random prime numbers, $p_1, p_2, \dots p_k$, where $k \ge 3$, and checking that each of the k distinct random prime numbers minus 1, p_1 -1, p_2 -1, . . . p_k -1, is relatively prime to the public key portion e;

establishing a private key portion d by a relationship to the public key portion e in the form of $d \equiv e^{-1}(\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1)));$

k computing a composite number, n, as a product of the k distinct random prime numbers that are factors of n, where only the private key owner knows the factors of n; and

encoding plaintext data M to ciphertext data C for the local storage, using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1-1$, whereby the ciphertext data C is decipherable only by the private key owner having available to it the factors of n.

The cryptography method in accordance with claim 40, further comprising the 41. (New) step of:

decoding the ciphertext data C from the local storage to the plaintext data M using a relationship of the form $M \equiv C^d \pmod{n}$.

Reissue 09/694,416 21

Document #267082

新

弄

- 42. (New Amended) A cryptographic communications system, comprising:
- a plurality of stations:
- a communications medium; and
- a host system adapted to conduct encrypted communications communicate with the plurality of stations via the communications medium sending a receiving messages cryptographically processed with an RSA public key encryption, the host system including
 - at least one cryptosystem responsive to encryption and/or-decryption requests from the host system, the cryptosystem being configured for

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$,

checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots$ p_k -1, is relatively prime to a public key portion e that is associated with the host system,

computing a composite number, n, as a product of the k distinct random prime numbers,

establishing a private key portion d by a relationship to the public key portion e in the form of $d \equiv e^{-1} (\operatorname{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_{\nu} - 1)))$,

in response to an encoding request from the host system, encoding a plaintext message data M producing therefrom a ciphertext message data C to be communicated via the host system, the encoding using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$.

establishing a private key portion d by a relationship to the public key portion e in the form of; and

- in response to a decoding request from the host system, decoding a ciphertext message data C communicated via the host producing therefrom a plaintext message data M' using a relationship of the form $M \equiv C^{d}$ (mod n), where C and M' can be respectively C and M.
- 43. (New Amended) A system for processing a message used in cryptographic communications of a message cyptographically processed with RSA public key encryption, comprising:

a bus; and

Reissue 09/694,416 22

OLD VER.

a cryptosystem operatively communicatively coupled to and receiving from the bus encryptionencoding and decryptiondecoding requests, the cryptosystem being capableconfigured offor

providing a public key portion e,

developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$,

checking that each of the k distinct random prime numbers minus 1, p_1 -1, p_2 -1, ... p_k -1, is relatively prime to the public key portion e,

computing a composite number, n, as a product of the k distinct random prime numbers.

encoding a plaintext form of a first message M to produce a ciphertext form of the first message C using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$,

establishing a private key portion d by a relationship to the public key portion e in the form of $d \equiv e^{-1} (\text{mod}((p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1))),$

- in response to an encoding request from the bus, encoding a plaintext form of a first message M to produce C, a ciphertext form of the first message, using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$, and
- in response to an decoding request from the host system, decoding C', a ciphertext form of a second message C, to produce the M', a plaintext form of the second message M', using a relationship of the form $M' \equiv C'^{d} \pmod{n}$, the first and second messages can be being distinct or one and the same.
- in 1

 44. (New)

 a p The system of claim 42, wherein the at least one cryptosystem includes a plurality of exponentiators configured to operate in parallel in developing respective subtask values corresponding to the message.
 - 45. (New Amended) The system of claim 42, wherein the at least one cryptosystem includes a processor,
 - a data-address bus,
 - a memory-operatively coupled to the processor via the data-address bus,
 - a data encryption standard (DES) unit operatively coupled the memory and the processor via the data-address bus.

Reissue 09/694,416

23

Document #267082

T.

a plurality of exponentiator elements-operatively coupled to the processor via the DES unit, the plurality of exponentiator elements being configured to operate in parallel in developing respective subtask values corresponding to the message.

The system of claim 45, wherein the memory and each of the plurality of 46. (New Amended) exponentiator elements has its own DES unit that encryptscryptographically processes message data received/returned from/to the processor.

The system of claim 45, wherein the memory is partitioned into address 47. (New Amended) spaces addressable by the processor, including secure, insecure and exponentiator elements address spaces, and wherein the DES unit that is coupled to the processor is configured to recognize the secure and exponentiator elements address spaces and to automatically encryptencode message data therefrom before it is provided to the exponentiator elements, the DES unit being bypassed when the processor is accessing the insecure memory address spaces, が記れませます。 ははいまれば、 はいまれば、 the DES unit being further configured to decryptdecode encryptedencoded message data received from the memory before it is provided to the processor.

The system of claim 45, wherein the at least one cryptosystem meets FIPS 48. (New) (Federal Information Processing Standard) 140-1 level 3.

The system of claim 45, wherein the processor maintains in the memory the 49. (New) public key portion e and the composite number n with its factors $p_1, p_2, \ldots p_k$.

A system for processing a message used in cryptographic 50. (New Amended) communications of a message cryptographically processed with RSA public key encryption, comprising:

a bus; and

a cryptosystem receiving from the system via the bus encryptionencoding decryptiondecoding requests, the cryptosystem including a plurality of exponentiator elements configured to develop subtask values,

24 Reissue 09/694,416

a processor configured for

receiving the <u>encryptionencoding</u> and <u>decryptiondecoding</u> requests, each <u>encryptionencoding</u> request providing a plaintext message M to be <u>encryptedencoded</u>, each encryption request can additionally provide

obtaining a public key that includes an exponent e and a modulus n, a representation of a<u>the</u> modulus n existing in the memory in the form of its k distinct random prime number factors $p_1, p_2, \ldots p_k$, where $k \ge 3$, or the processor can obtain the public key from the memory,

constructing subtasks, one subtask for each of the k factors, to be executed by the exponentiator elements for producing respective ones of the subtask values, $C_1, C_2, \ldots C_k$, and

forming a ciphertext message C from the subtask values $C_1, C_2, \ldots C_{k_2}$ wherein the ciphertext message C is decipherable using a private key that includes the modulus n and an exponent d which is a function of e.

- 51. (New Amended) The system of claim 50 wherein each one of the subtasks $C_1, C_2, \ldots C_k$ is developed using a relationship of the form $C_i \equiv M_i^{e_i} \pmod{p_i}$, where $M_i \equiv M \pmod{p_i}$, and $e_i \equiv e \pmod{p_i 1}$, and where $i = 1, 2, \ldots k$.
- 52. (New Amended) A system for processing a message used in cryptographic communications of a message cryptographically processed with RSA public key encryption, comprising:
- a bus; and

如果我是我不是我我不知道我我

- a cryptosystem receiving from the system via the bus <u>encryptionencoding</u> and <u>decryptiondecoding</u> requests, the cryptosystem including
 - a plurality of exponentiator elements configured to develop subtask values,
 - a memory, and
 - a processor configured for

Reissue 09/694,416

25

Document #267082

*

receiving the encryptionencoding and decryptiondecoding requests, each encryptionencoding/decryptiondecoding request providing provided with a plaintext/ciphertext message M/C to be encryptedencoded/decrypteddecoded and ean additionally provide with or without a public/private key that includes an exponent e/d and a modulus n a representation of a modulus n which exists in the memory in the form of its k distinct random prime number factors $p_1, p_2, \ldots p_k$, where $k \geq 3$, or the processor can obtain

obtaining the public/private key from the memory, the memory if the encoding/decoding request is provided without the public/private key, constructing subtasks to be executed by the exponentiator elements for producing respective ones of the subtask values, $M_1, M_2, \ldots M_k, C_1, C_2, \ldots C_k$, and forming the ciphertext/plaintext message C/M from the subtask values $C_1, C_2, \ldots C_k/M_1, M_2, \ldots M_k$.

- 53. (New Amended) The system of claim 52 wherein when produced each one of the subtasks $C_1, C_2, \ldots C_k$ is developed using a relationship of the form $C_i \equiv M_i^{e_i} \pmod{p_i}$, where $C_i \equiv C \pmod{p_i}$, and $e_i \equiv e \pmod{p_i-1}$, and where $i=1, 2, \ldots k$.
- 54. (New Amended) The system of claim 52 wherein when produced each one of the subtasks M_1, M_2, \ldots, M_k is developed using a relationship of the form $M_i \equiv C_i^{d_i} \pmod{p_i}$, where $M_i \equiv M \pmod{p_i}$, and $M_i \equiv M \pmod{p_i}$.
 - 55. (New) The system of claim 54, wherein the private key exponent d relates to the public key exponent e via $d \equiv e^{-1} (\text{mod}((p_1 1) \cdot (p_2 1) \cdots (p_k 1)))$.
 - 56. (New Amended) A system for processing a message used in cryptographic communications of a message cryptographically processed with RSA public key encryption, comprising:

Reissue 09/694,416

26

Document #267082

は春記

means for selecting a public key portion e;

- means for developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and for checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;
- means for establishing a private key portion d by a relationship to the public key portion e in the form of $d \equiv e^{-1} (\text{mod}((p_1 1) \cdot (p_2 1) \cdots (p_k 1)));$
- means for computing a composite number, n, as a product of the k distinct random prime numbers;

means for obtaining receiving a ciphertext message data C; and

- means for decoding the ciphertext message data C to a plaintext message data M using a relationship of the form $M \equiv C^d \pmod{n}$.
- 57. (New) The system according to claim 56, further comprising:

means for encoding the plaintext message data M to the ciphertext message data C, using a relationship of the form $C \equiv M^e \pmod{n}$, where $0 \le M \le n-1$.

58. (New (Amended) A system for processing a message used in cryptographic communications of a message cryptographically processed with RSA public key encryption, comprising:

means for selecting a public key portion e;

- means for developing k distinct random prime numbers, $p_1, p_2, \ldots p_k$, where $k \ge 3$, and for checking that each of the k distinct random prime numbers minus $1, p_1-1, p_2-1, \ldots p_k-1$, is relatively prime to the public key portion e;
- means for establishing a private key portion d by a relationship to the public key portion e of the form $d \equiv e^{-1} (\text{mod}((p_1 1) \cdot (p_2 1) \cdots (p_k 1)));$
- means for computing a composite number, n, as a product of the k distinct random prime numbers; and

means for encoding a plaintext message data M with the private key portion d to produce a signed message M_s using a relationship of the form $M_s \equiv M^d \pmod{n}$, where $0 \le M \le n-1-1$, the signed message M_s being decipherable using the public key portion e.

- 59. (New Amended) The system of claim 58 further comprising the step of: means for decoding the signed message M_s with the private public key portion e to produce the plaintext message data M using a relationship of the form $M \equiv M_s^e \pmod{n}$.
- 60. (New Amended) The system of claim 57, wherein the system can conduct encrypted communications with other public key cryptographycommunicate the cryptographically processed message to another system that encryptencodes/decryptdecodes data with RSA public key encryption using a modulus value equal to n independent of the k distinct prime numbers.
- 61. (New) Amended) The system of claim 59, wherein the system can conduct encrypted communications communicate the cryptographically processed message to another system that encodes/decodes data with other RSA public key cryptography systems that encrypt/decrypt dataencryption using a modulus value equal to n independent of the k distinct prime numbers.

28

Document comparison done by DeltaView on Monday, August 26, 2002 08:45:01

Input:	### ##################################
Document 1	pcdocs://siliconvalley/266556/1
Document 2	pcdocs://siliconvalley/266555/1
Rendering set	Standard

Legend:	The State of the S
Insertion	
Deletion	
Moved from	
Moved to	,
Format change	
Moved deletion	
Inserted cell	
Deleted cell	er de la desperanción de la desp
Moved cell	and the second s
Split/Merged cell	
Padding cell	

CASTELL STATE OF THE STATE OF T
The Part of the Pa
Count
407
326
4
4
0
741

經過過於於如此 经并分本等語話話

1	FASSIGN PPLICAT	EE TO REISSUE TON	Docket Nu	mber:	20206-014(PT-TA-410)
This is part of the ap	oplication t	for a reissue patent	based on the origi	inal pate	ent identified below.
Name of Patentee(s):	COLLI	NS et al.			
Patent Number:	5,848,13	59	Patent Issued	Dec	ember 8, 1998
Title of Invention	PUBLIC	C KEY CRYPTOG	RAPHIC APPAR	ATUS A	AND METHOD
the entire interest in reissue of the origina A certificate u	the original patent.	al patent, I hereby	consent to the fi	iling of	Corporation, the assignee of the present application for true and that all statements
made on information with the knowledge imprisonment, or both	and belie that willf h, under 18	f are believed to be ful false statements 3 U.S.C. 1001 and	e true; and further and the like so that such willful fa	r that th made a alse state	lese statements were made are punishable by fine or ements may jeopardize the which this declaration is
Name of Assignee		Compaq Computer	Corporation		
Signature of Person Signing for Assignee		TILL	PL.		
Printed name and title person signing for ass		Theodore S. Park,	Counsel		

IN THE UNITED STATES PATENTS AND TRADEMARK OFFICE

Applicant:

COLLINS et al.

Attorney Docket No.: 20206-0014(PT-TA-410)

Patent No.:

5,848,159

Issued:

December 8, 1998

For: "PUBLIC KEY CRYPTOGRAPHIC APPARATUS AND METHOD"

CERTIFICATE UNDER 37 CFR 3.73(b)

- I. Compaq Computer Corporation, a Delaware corporation, certifies that it is the assignee of the entire right, title, and interest in the patent application identified above by virtue of a chain of title from the inventors of the patent application identified above, to the current assignee as shown below:
 - 1. From: Thomas Collins, Dale Hopkins, Susan Langford and Michael Sabin To: Tandem Computers Incorporated

The document was recorded in the Patent and Trademark Office on May 7, 1997 as Reel and Frame # 8542/0875.

2.

From: Tandem Computers Incorporated

To: Compaq Computer Corporation

The document was recorded in the Patent and Trademark Office on October 12, 2000, a copy of which is attached.

The undersigned is empowered to sign this certificate on behalf of the assignee.

II.

II.

jai.

出土土土

Date: 170CT on

Theodore S. Park

Senior Counsel, Intellectual Property

Compaq Computer Corporation P.O. Box 692000 Houston, TX 7707-2698

JULY 15, 1997 S7JUL 22 AN 9: 59

TOWNSEND AND TOWNSEND AND CREW LLP ROBERT J. BENNETT
TWO EMBARCADERO CENTER, 8TH FLOOR
SAN FRANCISCO, CA 94111-3834

UNITED 1 ITES DEPARTMENT OF COMMERCE Patent and Trademark Office

ASSISTANT SECRETARY AND COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

UNITED STATES PATENT AND TRADEMARK OFFICE NOTICE OF RECORDATION OF ASSIGNMENT DOCUMENT

THE ENCLOSED DOCUMENT HAS BEEN RECORDED BY THE ASSIGNMENT DIVISION OF THE U.S. PATENT AND TRADEMARK OFFICE. A COMPLETE MICROFILM COPY IS AVAILABLE AT THE ASSIGNMENT SEARCH ROOM ON THE REEL AND FRAME NUMBER REFERENCED BELOW.

PLEASE REVIEW ALL INFORMATION CONTAINED ON THIS NOTICE. THE INFORMATION CONTAINED ON THIS RECORDATION NOTICE REFLECTS THE DATA PRESENT IN THE PATENT AND TRADEMARK ASSIGNMENT SYSTEM. IF YOU SHOULD FIND ANY ERRORS OR DAVE QUESTIONS CONCERNING THIS NOTICE, YOU MAY CONTACT THE EMPLOYEE WHOSE NAME APPEARS ON THIS NOTICE AT 703-308-9723. PLEASE SEND REQUEST FOR CORRECTION TO: U.S. PATENT AND TRADEMARK OFFICE, ASSIGNMENT DIVISION, BOX ASSIGNMENTS, NORTH TOWER BUILDING, SUITE 10C35, WASHINGTON, D.C. 20231.

RECORDATION DATE: 05/07/1997

REEL/FRAME: 8542/0875

NUMBER OF PAGES: 4

BRIEF: ASSIGNMENT OF ASSIGNOR'S INTEREST (SEE DOCUMENT FOR DETAILS).

P ...

ASSIGNOR:

COLLINS, THOMAS DOC DATE: 04/29/1997

ASSIGNOR:

HOPKINS, DALE DOC DATE: 04/29/1997

ASSIGNOR:

LANGFORL, SUSAN DOC DATE: 04/30/1907

ASSIGNOR:

SABIN, MICHAEL DOC DATE: 04/30/1997

ASSIGNEE:

TANDEM COMPUTERS INCORPORATED 10435 NORTH TANTAU AVENUE CUPERTINO, CALIFORNIA 95014

SERIAL NUMBER: 08784453

PATENT NUMBER:

FILING DATE: 01/16/1997

ISSUE DATE:

UNITED STATES DEPARTMENT OF COMMERCE Patent and Trademark Office

ASSISTANT SECRETARY AND COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

DECEMBER 28, 2000

PTAS

OPPENHEIMER WOLFF & DONNELLY LLP LEAH SHERRY 1400 PAGE MILL RD. PALO ALTO, CA 94304

UNITED STATES PATENT AND TRADEMARK OFFICE NOTICE OF RECORDATION OF ASSIGNMENT DOCUMENT

THE ENCLOSED DOCUMENT HAS BEEN RECORDED BY THE ASSIGNMENT DIVISION OF THE U.S. PATENT AND TRADEMARK OFFICE. A COMPLETE MICROFILM COPY IS AVAILABLE AT THE ASSIGNMENT SEARCH ROOM ON THE REEL AND FRAME NUMBER REFERENCED BELOW.

PLEASE REVIEW ALL INFORMATION CONTAINED ON THIS NOTICE. THE INFORMATION CONTAINED ON THIS RECORDATION NOTICE REFLECTS THE DATA PRESENT IN THE PATENT AND TRADEMARK ASSIGNMENT SYSTEM. IF YOU SHOULD FIND ANY ERRORS OR HAVE QUESTIONS CONCERNING THIS NOTICE, YOU MAY CONTACT THE EMPLOYEE WHOSE NAME APPEARS ON THIS NOTICE AT 703-308-9723. PLEASE SEND REQUEST FOR CORRECTION TO: U.S. PATENT AND TRADEMARK OFFICE, ASSIGNMENT DIVISION, BOX ASSIGNMENTS, CG-4, 1213 JEFFERSON DAVIS HWY, SUITE 320, WASHINGTON, D.C. 20231.

RECORDATION DATE: 10/16/2000

REEL/FRAME: 011190/0457

NUMBER OF PAGES: 4

BRIEF: ARTICLES OF MERGER OF PATENT AND SUBSIDIARY CORPORATIONS

ASSIGNOR:

TANDEM COMPUTERS INCORPORATED

DOC DATE: 12/31/1998

ASSIGNEE:

COMPAQ COMPUTER CORPORATION P.O. BOX 692000, 20555 SH 249 HOUSTON, TEXAS 77070-2698

SERIAL NUMBER: 08784453 PATENT NUMBER: 5848159 FILING DATE: 01/16/1997 ISSUE DATE: 12/08/1998

MARY BENTON, EXAMINER
ASSIGNMENT DIVISION
OFFICE OF PUBLIC RECORDS

OPPENHEIMER WOLFF & DONNELLY LLP
PALO ÄLTO, CALIFORNIA

" JAN 0 5 2001

UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Collins et al.

Patent No. 5,848,159

Issued: December 8, 1998

By: LSB/jmp

Docket No. 20206-014(PT-TA-410) Express No. EL655031318US

PUBLIC KEY CRYPTOGRAPHIC APPARATUS AND **METHOD**

The stamp of the U.S. Patent and Trademark Office hereon acknowledges receipt of the following:

- Reissue Transmittal along with Fee Transmittal;
- Petition to Wave Delay Period (37 CFR 1.183); 2.
- Specification and Claims for U.S. Patent No. 5,484,159; 3.
- Reissue Declaration by Inventors; 4.
- 5. Offer to Surrender;
- 6. Certificate under 37 CFR 3.73(b);
- 7. Consent of Assignee to Reissue Patent;
- 8. Copy of Assignments;
- 9. Preliminary Amendment;
- 10. IDS Transmittal, 1449, and 13 cited references; and
- 11. Check No. 124516 for \$2,664..00.

JC914 U.S. PTO 09/694416

۵

Form	1449	(Modifiea)

Information Disclosure Statement By Applicant

(Use Several Sheets if Necessary)

Docket No. 20206.126 Applicant:

Filing Date 12-8-98

Reexamination No.:

90/005,773 90/005/33

Group

$\not \nearrow$				U.S. Pater	nt Documents			
T	xaminer nitial	No.	Patent No.	Date	Patentee	Class	Sub- class	Filing Date
SEE SEE	JJW S	A	4,351,982	9-28-82	Miller et al.	178	22.10; 22.11	12-15-80
1	JWS	В	5,974,151	10-26-99	Slavin	380	30	11-1-96
\vdash		C					ł	
L		D						
		E						
		F					 	-
L		G						
L		Н						Dra-
L		I						RECEIVED
<u> </u>		J						JUN
<u> </u>		K					-	871/17

	F	oreign Patent	or Published	l Foreign Patent A	Applicatio	n	Technol	ogy Center	991 2607
Examiner Initial	No.	Document No.	Publication Date	Country or Patent Office	Class	Sub- class	Trans Yes	slation No	
	M			l.					
- 1	N 0								
	P			,					

Other Documents

Examiner			
Initial	No.	Author, Title, Date, Place (e.g. Journal) of Publication	DEACIVED
,	R		RECEIVED
	-		<u>JUL_0_2_2001</u>
	T		Technology Center 2100
Examiner		Date Considered	
Evaminar: I		5 - Fal 9406 21	002

Examiner: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

													Sheet	
	FORM PTO	-1449			RE	ISSU	JE APPLICA	ATION NO.	09/694,410	5	ATTY	/ DO	CKET NO.:	
	U.S. DEPARTMENT OF COMMERCE, PATENT AND TRADEMARK OFFICE					EXA	MINATION	CONTRO	L NO. 90/00)5/733		20206-125 (PT-TA410) 20206-126 (PT-TA410U		
			-		RE	EXA	MINATION	I CONTROI	L NO. 90/00	5/733	20200	-127	(PT-TA410U	
					Ori	g. PA	ATENT NO.	5,848,159	•					
	INFO	RMATI	ON DISCLOSURE T BY APPLICANT	3	INV	ENT	TORS	-						
	SIAI	EMEN	BI APPLICANT		CO	LLIN	IS et al.						,	
							DATE				GRO	OUP	·	
		_			Dec	embe	er 8, 1998							
					U.	S. P	ATENT DO	CUMENTS	3					
	EXAMINER INITIAL		DOCUMENT NUMBER		DATE		NAME		CLASS	SUI	BCLASS		LING DATE	
	IWS	AA	4,514,592		4/30/1985		0/1985 Miyaguchi		178	22.11; 22.14		I	14/1982	
	TWS	AB	5,046,094		9/3/19		Kawamura	1	380 46; 28		28	2/:	2/1990 .	
	TWS.	AC	5,343,527		8/30/19	/30/1994 Moore 380 4; 2			4; 2.	5; 30 10/27/1993		/27/1993		
	t t				FÖRI	EIGN	I PATENT I	OOCUMEN	TS					
#			DOCUMENT NUMBER	DA	TE	CC	DUNTRY	NAME	CLASS	3	SUBCLA	SS	TRANSLA YES	
1		AD												
手不是官場	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		QTHER DO	CUM	ENTS (Inclu	ding Author	, Title, Date	, Pertinent I	Pages,	Etc.)		 	
Britis /	505	AE	P. J. Flinn et al. Us Sign and Verify w. http://www.cyberls	ithout	Infringi	ing th	rithm for En ne RSA Pate	cryption and nt?" July 9,	d Digital Si 1997, Alsto	gnature n & B	es: Can you ird LLP,	ı Enc	rypt, Decrypt,	

EXAMINER	\bigcirc 1	DATE CONSIDERED
Janas	Seal	5 DEC 2001

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through-citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTY DOCKET NO	PATENT NO.			
	20206-0014(PT-TA-410)	5,848,159			
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	APPLICANT				
	COLLINS et al.				
	ISSUE DATE December 8, 1998	GROUP			
	December 6, 1998	2766			

U. S. PATENT DOCUMENTS

EXAMINER INITIAL	,	DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	FILING DATE IF APPROPRIATE
			06/1998	Naciri	380	30	07/18/1996
	AA	5,761,310	L				

FOREIGN PATENT DOCUMENTS

		DOCUMENT NUMBER	DATE	COUNTRY	NAME .	CLASS	SUBCLASS] '					
, s; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	AB												
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)											
SWL	AC	S.A. VANSTONE et al., "Using Four-Prime RSA in Which Some of the Bits are Specified," December 1994, Electronics Letter, Vol. 30, No. 25. pp. 2118-2119											
JWS	AD	C. Couvruer et al., "An Introduction to Fast Generation of Large Prime Numbers," 1982, Philips Journal Research, Vol. 37, Nos. 5-6, pp. 231-264.											
JUIS	AE	Y. DESMEDT et al., "Public-Key Systems Based on the Difficulty of Tampering (Is There a Difference Between DES and RSA?)," 1986, Lecture Notes in Computer Science, Advances in Cryptology-CRYPTO '86, Proceedings.											
JUS	AF	J. J. QUISQUATER et al., "Fast Decipherment Algorithm for RSA Public-Key Cryptosystem" October 1982, Electronic Letters, Vol. 19, No. 21.											
JWS	AG	CETIN KAYA KOC, "High-Speed RSA Implementation (Version 2.0)," November 1994, RSA White Paper, RSA Laboratories.											
JWS	АН	RIVEST et al., "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," February 1978, Communications of the ACM, Vol. 21.											
JWS	ΑI	PKCS #1: RSA Encryption Standard (Version 1.5), November 1993, RSA Laboratories Technical Note.											
JWS	AJ	M.O. RABIN, "Digitalized Signatures and Public-Key Functions as Intractable as Factorization," January, 1979, MIT Laboratory for Computer Science.											
JWS	AK	R. LIDL et al., "Permutation Polynomials in RSA-Cryptosystems," 1984, Advances in Cryptology—Crypto '83, pp. 293-301.											
JNS	AL	D. BONEH et al., "Generating a Product of Three Primes with an Unknown Factorization," Computer Science Department, Stanford University.											
JWS	AM	J. J. QUISQUATER et al., "Fast Generation of Large Prime Numbers" June 1982, Library of Congress, Catalog No. 72-179437, IEEE Catalog No. 82CH1767-3 IT, pp. 114-115											
JNS	AN	A. J. Menezes et al., "Handbook of Applied Cryptography", 1997, Library of Congress catalog No. 96-27609, pp. 89, 612-613											

EXAMINER

Jany Sal

DATE CONSIDERED

5 D 200

EXAMINER. Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant