Sprawozdanie 1

Paweł Maciocha

Streszczenie

W niniejszej pracy opisano podstawowe metody estymacji parametrów rozkładów alfa stabilnych oraz przedyskutowano skuteczność owych metod w oparciu o symulacje. W dalszej części podjęto próbę wyboru najlepszej metody estymacji kwantyli.

Spis treści

1	Wprowadzenie	2
	1.1 Gęstości rozkładów stabilnych	3
	1.2 Wybrane własności rozkładów	
2	Estymacja parametrów	6
	2.1 Podstawy teoretyczne	6
	2.2 Część praktyczna - symulacje	8
3	Szacowanie kwantyli	29
	3.1 Opis badań	29
	3.2 Symulacje	30
4	Rozkłady α -stabilne - VaR	33
	4.1 Opis danych	33
	4.2 $Var \text{ oraz } ES$	34
	4.3 Analiza akcji Sony oraz Netfix	35
	4.4 Przedziały ufności dla VaR	36

1 Wprowadzenie

Rodzina rozkładów alfa stabilnych wprowadzona została w latach trzydziestych XX wieku przez Paula Levy'ego. Pojawiała się w naturalny sposób przy badaniu rozkładów o grubych ogonach. Obecnie znajdująca zastosowanie w ekonomii oraz fizyce przy modelowaniu zdarzeń rzadkich często ekstremalnych (takich jak trzesienia ziemi czy krachy na giełdzie).

Definicja 1. Rozkłady alfa stabilne definiujemy w ogólności poprzez funkcję charakterystyczną postaci,

$$\phi(\alpha, \beta, \sigma, \mu) = \begin{cases} i\mu t - \sigma^{\alpha} |t|^{\alpha} \left(1 - i\beta sign(t) \tan\frac{\pi\alpha}{2}\right), & \alpha \neq 1\\ i\mu t - \sigma |t| \left(1 - i\beta\frac{2}{\pi} sign(t) \ln|t|\right), & \alpha \neq 1 \end{cases}$$
(1)

gdzie $\alpha \in (0,2], \ \beta \in [-1,1], \ \sigma > 0, \ \mu \in \mathbb{R}.$

 α nazywamy współczynnikiem stabilności określa on "szybkość" z jaką zanikają ogony. Gdy $\alpha < 2$ wariancja rozkładu jest nieskończona, a rozkłady posiadają grubsze ogony od rozkładu normalnego, gdy $\alpha > 1$ określona jest średnia rozkładu, równa μ - parametr położenia. β określa skośność zmiennej losowej, gdy jest dodatnia skutkuje to prawostronną skośnością, ujemna - lewostronną, dla $\beta = 0$ rozkład jest symetryczny. σ jest parametrem skali (rozproszenia). Ważną własnością jest fakt, iż dla α zdążającego do 2, wartość β przestaje wpływać na kształt funkcji gęstości i rozkład zbliża się do do rozkładu normalnego, który jest symetryczny niezależnie od parametru β . Rozkłady stabilne charakteryzują się jednomodalnością, mogą być skośne i mogą posiadać "grube ogony".

Niestety, poza trzema przypadkami nie są znane jawne postaci rozkładu funkcji gęstości rozkładów stabilnych, a są to,

• $\phi(2,0,\sigma,\mu)$ - rozkład normalny

$$f_G(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad -\infty < x < \infty,$$

• $\phi(1,0,\sigma,\mu)$ - rozkład Cauchy'ego

$$f_C(x) = \frac{1}{\pi} \frac{\sigma}{\sigma^2 + (x - \mu)^2}, \quad -\infty < x < \infty,$$

• $\phi(\frac{1}{2}, 1, \sigma, \mu)$ - rozkład Levy'ego

$$f_G(x) = \frac{\sigma}{\sqrt{2\pi}} \frac{1}{(x-\mu)^{3/2}} \exp\left(-\frac{\sigma}{2(x-\mu)}\right), \quad \mu < x < \infty.$$

1.1 Gęstości rozkładów stabilnych

Celem tego podrozdziału jest przedstawienie graficzne rozkładów stabilnych. Pomimo iż wpływ współczynników jest opisany w sekcji powyższej zapoznanie się z wykresami pozwoli nabrać intuicji co do wpływu parametrów na gęstość.

Przykład 1. Niech $\alpha = 2$ oraz $\beta = 0$. Dla takich parametrów otrzymujemy rozkład normalny, będziemy badać wpływ μ oraz σ na gęstość rozkładu,

Zmiana dla parametru μ , $\sigma=1$ μ -25 -50 -0 -25 -25

Rysunek 1: Wpływ parametru μ na gestość rozkładu stabilnego

jak możemy dostrzec parametr μ odpowiada modzie, czyli wartości, której prawdopodobieństwo wystąpienie jest największe (przez wartość mamy na myśli pewne małe ϵ -owe otoczenie, którego środkiem jest moda).

Rysunek 2: Wpływ parametru σ na gęstość rozkładu stabilnego

Wraz ze zwiększaniem wartości σ rozśnie rosnie rozproszenie gęstości (2), z kolei gdy σ zbiega do zera rozkład koncentruje się w modzie.

Zauważmy, że parametry σ oraz μ nie mają wpływu na grubość ogonu rozkładu.

Rozważać będziemy kolejny przypadek.

Przykład 2. Niech $\alpha=1,\ \sigma=2,\ \mu=0$ będziemy badać wpływ parametrów β na gęstość rozkładu.

Zmiana dla parametru β 0.15 β -0.2-0.6 0.10 -1 0 0.2 0.05 0.6 - 1 0.00 -2.5 0.0 2.5 -5.0

Rysunek 3: Wpływ parametru β na gęstość rozkładu

Postało zbadać wpływ parametru α na gęstość rozkładu.

Przykład 3. Niech $\beta=0,\ \sigma=3,\ \mu=7.$ Będziemy badać wpływ parametrów α na gęstość rozkładu.

Rysunek 4: Wpływ parametru α na gęstość rozkładu stabilnego

Widzimi, że im większa wartość parametru α tym większe skupienie rozkładu w wartości μ .

Wiem iż rozkłady stabilne cechują się ciężkimi ogonami, ale co to oznacza w praktyce, przyjrzyjmy się im.

Ogon rozkładu w zale no ci od $\,\alpha\,$

Rysunek 5: Wpływ parametru α na gestość rozkładu stabilnego

Możemy zauważyć, że wraz ze wzrostem parametru α ogony rozkładu szybciej zbiegają do zera. 4 obrazuje asymptotyczne własności rozkładów alfa stabilnych.

Ogon rozkładu w zale no ci od $\,\alpha\,$

Rysunek 6: Wpływ parametru α na gęstość rozkładu stabilnego

Zwróćmy uwagę, że wraz ze wzrostem argumentu x wartości przyjmowane przez funkcję gęstości maleją coraz to wolniej. Naszą analizę zwieńczymy następującym twierdzeniem,

Twierdzenie 1. Niech $X \sim S(\alpha, \beta, \sigma, \mu)$ dla $\alpha \in (0, 2)$. Wówczas

$$\lim_{x \to \infty} P(X > x) = x^{-\alpha} C_{\alpha} \frac{1+\beta}{2} \sigma^{\alpha},$$

gdzie

$$C_{\alpha} = \left(\int_{0}^{\infty} x^{-\alpha} \sin(x) dx \right)^{-1}.$$

1.2 Wybrane własności rozkładów

Ważną własnością rozkładów α -stabilnych jest ich zachowanie podczas sumowania niezależnych zmiennych losowych. Naturalnie, w czasie tej operacji ulegają zmianie parametry rozkładu wynikowego co znajduje swoje odzwierciedlenie w poniższym twierdzeniu.

Twierdzenie 2. Niech X_1 i X_2 będą niezależnymi zmiennymi losowymi o rozkładach odpowiednio $X_1 \sim S(\alpha, \beta_1, \sigma_1, \mu_1)$ oraz $X_2 \sim S(\alpha, \beta_2, \sigma_2, \mu_2)$. Wówczas suma $X_1 + X_2 \sim S(\alpha, \beta, \sigma, \mu)$, gdzie poszczególne parametru rozkładu wynikowego związane są następującymi zależnościami:

$$\sigma = (\sigma_1 + \sigma_2)^{1/\alpha}, \quad \beta = \frac{\beta_1 \sigma_1^{\alpha} + \beta_2 \sigma_2^{\alpha}}{\sigma_1^{\alpha} + \sigma_2^{\alpha}}$$

Mamy również następujące twierdzenie

Twierdzenie 3. Niech $X \sim S(\alpha, \beta, \sigma, \mu)$ oraz a oznacza różną od zera liczbę rzeczywistą. Wówczas, prawdziwe są następujące równości:

1. $dla \ \alpha \neq 1$

$$aX \sim S(\alpha, |a|\sigma, \text{sign}(a)\beta, a\mu)$$

2. $dla \alpha = 1$

$$aX \sim S(1, |a|\sigma, \text{sign}(a)\beta, a\mu - \frac{2}{\pi}\ln(|a|)\sigma\beta)$$

Własności te są niezmiernie przydatne przy modelowaniu zwrotów z inwestycji. Przypuśćmy, że jednodniowy procentowy zwrot logarytmiczny ma rozkład alfa stabilny, oznaczmy go przez r_t . Jeśli przyjmiemy, że zwroty w ciągu kilku kolejnych n dniach są od siebie niezależne to, wtedy zwrot po n dniach będzie miał rozkład nr_t . Z powyższych twierdzeń wiemy, że jest to rozkład stabilny.

2 Estymacja parametrów

W tym rozdziale zajmiemy się estymacją parametrów rozkładów alfa stabilnych. Wpierw zapoznamy się z podstawami teoretycznymi, które stoją za metodami umożliwiającymi estymację parametrów.

2.1 Podstawy teoretyczne

Omówimy trzy metody estymacji. Metodę McCoulloch'a, Koutrouvelis'a oraz metodę największej wiarygodności.

2.1.1 Metoda McCoulloch'a

McCoulloch zaproponował zgodne estymatory dla czterech parametrów, gdy $0.6 \le \alpha \le 2$. Zdefiniował zmienną

$$v_{\alpha} = \frac{x_{0.95} - x_{0.05}}{x_{0.75} - x_{0.25}},$$

która jest niezależna od σ oraz μ . Niech \hat{v}_{α} będzie odpowiadającą wartością dla próby. Jest to estymator zgodny v_{α} .

Definiujemy

$$v_{\beta} = \frac{x_{0.95} + x_{0.05} - 2x_{0.5}}{x_{0.95} - x_{0.05}},$$

niech \hat{v}_{β} będzie odpowiadającą wartością dla próby. v_{β} jest również niezależna od σ oraz μ . Jako funkcja α oraz β jest ściśle rosnąca ze względu na β dla każdego α . \hat{v}_{β} jest zgodnym estymatorem v_{β} . v_{α} oraz v_{β} są funkcjami α oraz β . Zależność ta może zostać odwrócona i parametry α oraz β mogą być traktowane jako funkcje v_{α} , v_{β}

$$\alpha = \Phi_1(v_\alpha, v_\beta), \quad \beta = \Phi_2(v_\alpha, v_\beta).$$

Zastępując v_{α} i v_{β} ich wartościami danymi przez próbę otrzymujemy estymatory $\hat{\alpha}$, $\hat{\beta}$. Niech

$$v_{\sigma} = \frac{x_{0.75} - 2x_{0.25}}{\sigma},$$

wartość tą możemy traktować jako funkcję $\Phi_3(\alpha, \beta)$, a ponieważ $\hat{\alpha}, \hat{\beta}, \hat{x}_{0.75}$ i $\hat{x}_{0.25}$ są estymatorami zgodnymi a zatem estymatorem zgodnym σ jest.

$$\hat{\sigma} = \frac{\hat{x}_{0.75} - \hat{x}_{0.25}}{Phi_3(\hat{\alpha}, \hat{\beta})}.$$

Wartości powyższych funkcji zostały podane przez McCoulloch'a i można się z nimi zapoznać w pracy (Weron 1995) Tabela 4.1, 4.2, 4.3. Nie będziemy omawiali tego jak wyznacza się parametr μ , ale można się zapoznać z pracą (Kateregga, Mataramvura, and Taylor 2017), w której zostało to zrobione.

2.1.2 Metoda Koutrouvelis'a

W latach 1980, 1981 Koutrouvelis zaprezentował metodę, u której podstaw leży regresja służąca estymacji czterech parametrów. Jest ona oparta na następującej obserwacji dotyczącej funkcji charakterystycznej rozkładów stabilnych. Z (1) możemy wyprowadzić

$$\log(-\log|\phi(t)|^2) = \log(2\sigma^2) + \alpha\log|t|. \tag{2}$$

Część rzeczywista oraz urojona $\phi(t)$ przy $\alpha \neq 1$ dane są przez,

$$Re\phi(t) = \exp(-|\sigma t|^{\alpha})\cos\left[\mu t + |\sigma t|^{\alpha}\beta\operatorname{sign}(t)\tan\frac{\pi\alpha}{2}\right],$$
 (3)

oraz

$$Im\phi(t) = \exp(-|\sigma t|^{\alpha})\sin\left[\mu t + |\sigma t|^{\alpha}\beta\operatorname{sign}(t)\tan\frac{\pi\alpha}{2}\right]. \tag{4}$$

Ostatnie dwa równania prowadzą do,

$$\arctan\left(\frac{Im\phi(t)}{Re\phi(t)}\right) = \mu t + \beta \sigma^{\alpha} \tan\frac{\pi\alpha}{2}\operatorname{sign}(t)t^{\alpha}.$$
 (5)

Równanie (2) zależy tylko od α oraz σ co sugeruje możliwość przeprowadzenia regresji $y = \log(-\log|\phi_n(t)|^2)$ względem $\omega = \log|t|$ w modelu

$$y_k = m + \alpha \omega_k + \epsilon_k, \ k = 1, \dots, K, \tag{6}$$

gdzie (t_k) jest odpowiednim zbiorem liczb rzeczywistych, $m = \log(2\sigma^{\alpha})$, a ϵ_k reprezentuje błąd. Koutrouvelis zaproponował by za t_k przyjąć $\frac{\pi k}{25}$, $k = 1, \ldots, K$; gdzie K jest z przedziału 9, a 134 zależnie od α oraz wielkości próby. Gdy $\hat{\alpha}$ i $\hat{\sigma}$ zostały już wyznaczone, oszacowania β oraz μ mogą być otrzymane z . Niech $g_n(u) = Arctan(Im(\phi_n(u))/Re(\phi_n(u)))$ gdzie Arctan oznacza wartość główną funkcji arctan. Następnie możemy oszacować parametry β oraz μ poprzez regresje $z = g_n(u) + \pi k_n(u)$ względem u oraz sign $(u)|u|^{\alpha}$ w modelu

$$z_l = \mu u_l + \beta \sigma^{\alpha} \tan \frac{\pi \alpha}{2} \operatorname{sign}(u_l) |u_l|^{\alpha} + \eta_l, \ l = 1, 2, \dots, L,$$
 (7)

gdzie u_l jest odpowiednim zbiorem liczb rzeczywistych, a η_l reprezentuje błąd. Liczba $k_n(u)$ została wprowadzona w celu uwzględnienia ewentualnych odgałęzień niebędących wartościami głównymi funkcji arctan. Koutrouvelis zaproponował by za wartości u_l przyjąć $\frac{\pi l}{50}$, $l=1,\ldots,L$ gdzie L jest z przedziału 9, a 70 zależnie od α oraz wielkości próby.

2.1.3 Metoda najwiekszej wiarygodności

Metoda największej (ML) wiarygodności dla rozkładów α -stabilnych nie różni się od tej dla pozostałych rozkładów, przynajmniej w teorii. Dla próby $x = (x_1, \dots, x_n)$, estymacja ML wektora parametrów $\theta = (\alpha, \beta, \sigma, \mu)$ jest uzyskiwana poprzez maksymalizację funkcji logarytmicznej:

$$L_{\theta} = \sum_{i=1}^{n} \widetilde{f}(x_i; \theta), \tag{8}$$

gdzie \tilde{f} jest gęstością rozkładu stabilnego. Tylda nad funkcją f symbolizuje fakt, że w ogólności nie znamy dokładnej postaci gęstości i musimy ją aproksymować numerycznie. Nowoczesne metody estymacji największej wiarygodności wykorzystują FFT do aproksymacji gęstości rozkładu lub używając metod zwykłego całkowania bezpośredniego. Więcej o estymacji gęstości można przeczytać ((Borak, Härdle, and Weron 2005) podrozdział 1.3.2).

2.2 Część praktyczna - symulacje

W tej części pracy spróbujemy wybrać metodę najlepiej estymującą wszystkie parametry oraz ocenimy skuteczność estymacji pojedynczych parametrów.

2.2.1 Metodologia

Niech (ξ_1, \ldots, ξ_n) będą estymacjami pewnego parametru ξ . Definiujemy MSE, jako

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\xi_i - \xi)^2, \tag{9}$$

za metodę najlepiej estymującą parametr xi uznamy tą dla, której MSE osiąga wartość najmniejszą.

Miarami pomocniczymi przy wyborze metody najlepszej będą również wariacja oraz wartość średnia.

Z racji iż przestrzeń parametrów $(\alpha, \beta, \sigma, \mu)$ jest nieskończona musimy się ograniczyć do pewnej skończonej liczby wektorów parametrów. Niech będą to: $\theta_1 = (1, 0, 1, 0), \ \theta_2 = (2, 0, 1, 0)$ oraz $\theta_3 = (1, 0, 3, 0).$

2.2.2 Opis badań

Pierwsze badanie, które przeprowadzimy będzie polegało na oszacowaniu parametrów gdy próba losowa pochodząca z rozkładu α -stabilnego o parametrach θ_i , i=1,2,3 będzie wielości N=100. Dla każdej z czterech metod estymację przeprowadzimy R=1000 krotonie.

W badaniu drugim przyjrzymy się asymptotycznym własnościom estymatorów, w tym badaniu ze względu na złożoność obliczeniową zrezygnujemy z metody Monte Carlo. Wygenerujemy próbę wielkości N=10000 dla parametrów $\theta_i,\ i=1,2,3,$ nasępsnie dla pod-prób o wielkościach $500,1000,\ldots,10000$ będziemy estymowali parametry rozkładów α -stabilnych. Porówanamy skuteczność metod.

Badanie trzecie ma celu wyłonienie metody najlepszej ze względu na pewien parametr. Mianowicie przy ustalonych trzech parametrach będziemy zmieniać wartość tylko jednego parametru i badali w jaki sposób wpływa to na dokładność oszacowania. W tym badaniu ponownie posłużymy się metodą Monte Carlo. By wyjaśnić badanie posłużmy się przykładem

Przykład 4. Ustalmy parametry $\alpha = x_1, \beta = x_2, \mu = x_3$. Dla σ wybieramy pewien zbiór wartości $\{y_1, \ldots, y_n\}$. Dla każdego y_i oszacowujemy parametry na podstawie próby o wielkości N = 250 czterema metodami R = 200 krotnie. Dla każdego y_i w wyznaczamy 95% "pseudo" przedział ufności.

Ostatnie już w tej części **badanie czwarte** będzie polegało na porównaniu czasów potrzebnych do wyznaczenie oszacowań przez powyższe metody.

2.2.3 Wyniki badań

2.2.3.1 Badanie pierwsze Wyniki otrzymane w symulacjach przedstawimy na wykresach pudełkowych oraz w tabelach. W toku badania pierwszego otrzymaliśmy następujące wyniki. Wpierw przypadek $\theta_1 = (1, 0, 1, 0)$.

Powyższe wyniki możemy podsumować w poniższej tabeli,

Rysunek 7: θ_1 : estymacja parametru α oraz β

Rysunek 8: θ_1 : estymacja parametru σ oraz μ

Tablica 1: Podstawowe statystyki par. θ_1

		pars_	est_M		$pars_est_K$				
	α	β	σ	μ	α	β	σ	μ	
Min	0.5797	-0.7060	0.3913	-0.5540	0.4775	-1.0000	0.5708	-179.7152	
Max	1.4809	0.6493	1.7769	0.7859	1.5227	1.0000	1.5443	15791.9062	
Mean	0.9754	-0.0026	0.9641	-0.0008	0.9468	-0.0094	0.9693	18.2228	
Sd.	0.1462	0.2522	0.1707	0.1620	0.1387	0.2386	0.1430	501.0795	
MSE	0.0220	1.0688	0.0304	1.0278	0.0220	1.0758	0.0214	251126.1904	
$\xi_{0.025}$	0.7091	-0.4719	0.6772	-0.3085	0.6976	-0.5591	0.7217	-5.9729	
$\xi_{0.975}$	1.2891	0.4685	1.3092	0.3243	1.2431	0.5041	1.2735	11.3115	

Tablica 2: Podstawowe statystyki par. θ_1

		pars_e	est_ML		$pars_est_ML2$				
	α	β	σ	μ	α	β	σ	μ	
Min	0.4486	-0.9967	0.5839	-8.2363	0.5917	-0.6841	0.5394	-0.6609	
Max	2.0000	0.9663	20.3520	2.2650	1.4610	0.6713	1.7764	0.4950	
Mean	1.0637	-0.0375	1.0959	-0.0096	0.9764	0.0005	1.0121	-0.0801	
Sd.	0.2401	0.3263	0.6935	0.3386	0.1433	0.2387	0.1783	0.1670	
MSE	0.0617	1.1828	0.4896	1.1339	0.0211	1.0560	0.0319	1.1944	
$\xi_{0.025}$	0.8038	-0.9601	0.7494	-0.4078	0.7139	-0.4500	0.7159	-0.4325	
$\xi_{0.975}$	1.9813	0.6960	2.0254	0.3878	1.2810	0.4492	1.3938	0.2212	

Tablica 3: Tabela podsumowująca, θ_1

	α	β	σ	μ	\sum
pars est M	0.0220	1.0688	0.0304	1.0278	2.1490
pars est K	0.0220	1.0758	0.0214	251126.1904	251127.3096
pars est ML	0.0617	1.1828	0.4896	1.1339	2.8680
pars est ML2	0.0211	1.0560	0.0319	1.1944	2.3034

Zauważyć możemy, że trzy z czterech metod cechują się dużą stabilnością w przypadku estymacji wszystkich parametrów. Metoda Koutrouvelis pomimo dość dokładnych oszacowań parametrów α, β, σ zawodzi w przypadku estymacji parametru μ . Oczywiście mogłoby się okazać, że metoda ta daje nieprecyzyjne oszacowania dla jednej z R=1000 prób, wtedy należałoby się zastanowić czy należy ją uznać za gorszą. Jednakże dane przedstawione w Tablicy 3 (wartości $\xi_{0.025}, \xi_{0.975}$) potwierdzają, że nie jest to pojedyncze odchylenie. Zgodnie z metodologią, którą obraliśmy najlepszymi metodami okazują się być pars_est_M, oraz pars_est_ML2.

Przypadek kolejny, rozważamy $\theta_2=(2,0,1,0).$ Przeprowadzamy analogiczną analizę.

Rysunek 9: θ_2 : estymacja parametru α oraz β

Rysunek 10: θ_2 : estymacja parametru σ oraz μ

Tablica 4: Podstawowe statystyki par. θ_2

		pars_	est_M		pars_est_K					
	α	β	σ	μ	α	β	σ	μ		
Min	1.2259	-1.0000	0.6201	-0.6505	1.1523	-1.0000	0.6683	-0.4091		
Max	2.0000	1.0000	1.3804	0.7712	2.0000	1.0000	1.2536	0.4222		
Mean	1.8550	-0.0156	0.9961	0.0029	1.9688	-0.0130	0.9911	-0.0025		
Sd.	0.1421	0.4146	0.1221	0.1914	0.0674	0.4487	0.0803	0.1438		
MSE	0.0412	4.2346	1.0227	4.0251	0.0055	4.2533	1.0242	4.0307		
$\xi_{0.025}$	1.5001	-1.0000	0.7660	-0.3606	1.8016	-1.0000	0.8272	-0.2691		
$\xi_{0.975}$	1.9766	1.0000	1.2389	0.3767	2.0000	1.0000	1.1335	0.2836		

Tablica 5: Podstawowe statystyki par. θ_2

		pars_e	st_ML			st_ML2		
	α	β	σ	μ	α	β	σ	μ
Min	1.5311	-1.0000	0.7712	-0.5239	1.2379	-1.0000	0.6234	-0.6508
Max	2.0000	1.0000	1.2098	0.6542	1.9983	1.0000	1.3786	0.6744
Mean	1.9568	-0.0011	0.9797	-0.0023	1.8648	0.0028	0.9971	-0.0206
Sd.	0.0576	0.6326	0.0725	0.1542	0.1416	0.4142	0.1206	0.1778
MSE	0.0052	4.4043	1.0463	4.0331	0.0383	4.1600	1.0203	4.1143
$\xi_{0.025}$	1.8057	-1.0000	0.8322	-0.2974	1.5078	-1.0000	0.7672	-0.3608
$\xi_{0.975}$	2.0000	1.0000	1.1179	0.2909	1.9766	1.0000	1.2374	0.3174

Tablica 6: Tabela podsumowująca, θ_2

	α	β	σ	μ	\sum
pars est M	0.0412	4.2346	1.0227	4.0251	9.3236
pars est K	0.0055	4.2533	1.0242	4.0307	9.3137
pars est ML	0.0052	4.4043	1.0463	4.0331	9.4889
pars est ML2	0.0383	4.1600	1.0203	4.1143	9.3329

Z Rysunku 9 wynika, że parametr β rozkłada się w sposób jednostajny niezależnie od metody estymacji na przedziale [-1,1]. We wstępie teoretycznym odnotowaliśmy, że przy parametrze α zbiegającym do 2 parametr β przestaje mieć wpływ na rozkład i zapewne stąd wynika ta duża rozbieżność w oszacowaniach. Kolejna ciekawa obserwacja, estymatory nie pozwalają by parametr α przekroczył wartość dwa, stad zauważyć możemy, że parametr bywa tylko i wyłącznie niedoszacowywany.

Najskuteczniejszymi metodami estymacji okazały się pars_est_ML2 oraz pars_est_M.

Ostatni z rozważanych przypadków $\theta_3=(1,0,3,0)$ przy N=100.

Rysunek 11: θ_3 : estymacja parametru α oraz β

Rysunek 12: θ_1 : estymacja parametru σ oraz μ

Tablica 7: Podstawowe statystyki par
. θ_3

		pars_	est_M		$pars_est_K$				
	α	α β		μ	α	β	σ	μ	
Min	0.5797	-0.7060	1.1739	-1.6619	0.4775	-1.0000	1.7125	-549.0927	
Max	1.4809	0.6493	5.3307	2.3577	1.5227	1.0000	4.6330	47375.7187	
Mean	0.9754	-0.0026	2.8922	-0.0024	0.9486	-0.0084	2.9091	54.6548	
Sd.	0.1462	0.2522	0.5122	0.4860	0.1384	0.2409	0.4289	1503.2426	
MSE	0.0220	1.0688	3.8424	1.2408	0.0218	1.0749	3.8285	2260357.4079	
$\xi_{0.025}$	0.7091	-0.4719	2.0317	-0.9256	0.6977	-0.5318	2.1675	-17.8799	
$\xi_{0.975}$	1.2891	0.4685	3.9275	0.9730	1.2431	0.5055	3.8206	33.9345	

Tablica 8: Podstawowe statystyki par
. θ_3

	pars_	_estML						
	α	β	σ	μ	α	β	σ	μ
Min	0.2948	-0.9994	1.5062	-32.0040	0.5917	-0.6841	1.6181	-1.9828
Max	2.0000	0.9971	69.2864	65.5215	1.4610	0.6713	5.3291	1.4851
Mean	1.1084	0.0071	3.7275	0.0238	0.9764	0.0005	3.0364	-0.2402
Sd.	0.2892	0.4032	3.8563	2.7875	0.1433	0.2387	0.5348	0.5011
MSE	0.0953	1.1482	22.2955	8.7153	0.0211	1.0560	4.4325	1.7891
$\xi_{0.025}$ $\xi_{0.975}$	0.8029	-0.9676	2.2973	-1.6182	0.7139	-0.4500	2.1477	-1.2975
	1.9920	0.9573	7.5653	1.6330	1.2810	0.4492	4.1814	0.6635

Ponownie i w tym przykładzie metoda Koutrouvelis'a zawodzi w przypadku estymacji μ . Sporym błędem w oszacowaniach σ oraz μ odznacza się również metoda największej wiarygodności.

Podsumowując

Tablica 9: Tabela podsumowująca, θ_3

	α	β	σ	μ	\sum
pars est M	0.0220	1.0688	3.8424	1.2408	6.1740
pars est K	0.0218	1.0749	3.8285	2260357.4079	2260362.3331
pars est ML	0.0953	1.1482	22.2955	8.7153	32.2543
pars est ML2	0.0211	1.0560	4.4325	1.7891	7.2987

Zatem metody najlepsze to pars_est_M oraz pars_est_ML2.

Ponownie przeprowadzamy tą samą analizę z tym, że N=250.

Rysunek 13: θ_1 : estymacja parametru α oraz β

Rysunek 14: θ_1 : estymacja parametru σ oraz μ

Tablica 10: Podstawowe statystyki par
. θ_1

		pars_	est_M			pars	est_K	
	α	β	σ μ		α	α β		μ
Min	0.6956	-0.4345	0.6637	-0.2887	0.7225	-0.7675	0.7371	-5064.5873
Max	1.3133	0.4713	1.4605	0.3664	1.2477	0.5521	1.3835	2052.8160
Mean	0.9910	-0.0047	0.9780	0.0025	0.9801	-0.0014	0.9848	-3.0859
Sd.	0.0902	0.1735	0.1074	0.1047	0.0869	0.1286	0.0936	174.7176
MSE	0.0082	1.0395	0.0120	1.0059	0.0079	1.0192	0.0090	30512.4014
$\xi_{0.025}$	0.8208	-0.3311	0.7928	-0.2140	0.8109	-0.2767	0.8042	-10.8113
$\xi_{0.975}$	1.1699	0.3295	1.2047	0.2008	1.1505	0.2785	1.1803	11.2940

Tablica 11: Podstawowe statystyki par. θ_1

	pars_	_estML						
	α	β	σ	μ	α	β	σ	μ
Min	0.2286	-0.9986	0.7300	-4.3258	0.6902	-0.4126	0.7141	-0.3936
Max	2.0000	0.9939	44.2035	14.6696	1.3079	0.4469	1.5245	0.2455
Mean	1.0620	-0.0431	1.1639	0.0255	0.9917	-0.0019	1.0054	-0.0497
Sd.	0.2147	0.3330	1.5238	0.5378	0.0865	0.1595	0.1085	0.1066
MSE	0.0499	1.1988	2.3464	1.2386	0.0075	1.0292	0.0118	1.1132
$\xi_{0.025}$	0.8796	-0.9555	0.8185	-0.2759	0.8284	-0.3092	0.8093	-0.2673
$\xi_{0.975}$	1.9476	0.8764	2.2384	0.3459	1.1716	0.3081	1.2362	0.1561

Tablica 12: Tabela podsumowująca, θ_1

	α	β	σ	μ	\sum
pars est M	0.0082	1.0395	0.0120	1.0059	2.0656
pars est K	0.0079	1.0192	0.0090	30512.4014	30513.4375
pars est ML	0.0499	1.1988	2.3464	1.2386	4.8337
pars est ML2	0.0075	1.0292	0.0118	1.1132	2.1617

Zauważmy, że zwiększenie wielkości próby spowodowało wzrost dokładności oszacowań estymatorów oraz, że tym razem najlepszą metodą okazała się być zmodyfikowana metoda największej wiarygodności, a tuż za nią metoda McCoulloch'a.

Rozważamy wektor parametrów θ_2

Rysunek 15: θ_2 : estymacja parametru α oraz β

Rysunek 16: θ_2 : estymacja parametru σ oraz μ

Tablica 13: Podstawowe statystyki par
. θ_2

		pars_e	est_M		pars_est_K				
	α	β	σ	μ	α	β	σ	μ	
Min	1.5143	-1.0000	0.7906	-0.4805	1.7084	-1.0000	0.8374	-0.3012	
Max	2.0000	1.0000	1.2901	0.4978	2.0000	1.0000	1.1536	0.2893	
Mean	1.8873	-0.0237	0.9968	0.0027	1.9857	0.0112	0.9969	-0.0022	
Sd.	0.1005	0.3755	0.0783	0.1234	0.0248	0.3696	0.0507	0.0911	
MSE	0.0228	4.2361	1.0126	4.0045	0.0008	4.0918	1.0088	4.0169	
$\xi_{0.025}$	1.6208	-1.0000	0.8522	-0.2191	1.9189	-1.0000	0.9041	-0.1793	
$\xi_{0.975}$	1.9846	0.9998	1.1430	0.2357	2.0000	1.0000	1.0951	0.1763	

Tablica 14: Podstawowe statystyki par
. θ_2

	pars_	est_ML			pars_est_ML2				
	α	β	σ	μ	α	β	σ	μ	
Min	1.7117	-1.0000	0.8403	-0.3716	1.5263	-1.0000	0.7906	-0.4805	
Max	2.0000	1.0000	1.1339	0.3120	2.0000	1.0000	1.2885	0.3246	
Mean	1.9774	-0.0324	0.9898	-0.0012	1.8979	-0.0038	0.9971	-0.0142	
Sd.	0.0309	0.5768	0.0462	0.0951	0.0999	0.3738	0.0772	0.1128	
MSE	0.0015	4.4630	1.0226	4.0140	0.0204	4.1548	1.0119	4.0698	
$\xi_{0.025}$	1.9010	-0.9987	0.9003	-0.1866	1.6328	-1.0000	0.8565	-0.2252	
$\xi_{0.975}$	2.0000	0.9992	1.0754	0.1819	1.9879	0.9981	1.1415	0.1968	

Tablica 15: Tabela podsumowująca, θ_2

	α	β	σ	μ	Σ
pars est M	0.0228	4.2361	1.0126	4.0045	9.2760
pars est K	0.0008	4.0918	1.0088	4.0169	9.1183
pars est ML	0.0015	4.4630	1.0226	4.0140	9.5011
pars est $ML2$	0.0204	4.1548	1.0119	4.0698	9.2569

Ponownie dokładność oszacowań się zwiększyła. Najlepszymi metodami są metoda McCoulloch'a oraz Koutrouvelis'a.

Wykresy pudełkowe dla θ_3 przypomnijmy N=250.

Rysunek 17: θ_3 : estymacja parametru α oraz β

Rysunek 18: θ_3 : estymacja parametru σ oraz μ

Tablica 16: Podstawowe statystyki par
. θ_3

	pars_est_M					$pars_est_K$				
	α	β	σ	μ	α	β	σ	μ		
Min	0.6956	-0.4345	1.9911	-0.8661	0.7225	-0.7675	2.2130	-15193.7620		
Max	1.3133	0.4713	4.3816	1.0993	1.2477	0.5521	4.1506	6158.4481		
Mean	0.9910	-0.0047	2.9341	0.0075	0.9804	-0.0002	2.9548	-9.3047		
Sd.	0.0902	0.1735	0.3223	0.3141	0.0866	0.1280	0.2807	524.1526		
MSE	0.0082	1.0395	3.8446	1.0836	0.0079	1.0168	3.8999	274567.3958		
$\xi_{0.025}$	0.8208	-0.3311	2.3785	-0.6420	0.8109	-0.2717	2.4139	-32.5895		
$\xi_{0.975}$	1.1699	0.3295	3.6141	0.6024	1.1505	0.2832	3.5408	33.8820		

Tablica 17: Podstawowe statystyki par. θ_3

	pars_	_estML			pars_es	t_ML2		
	α	β	σ	μ	α	β	σ	μ
Min	0.2772	-0.9989	2.0552	-30.6921	0.6902	-0.4126	2.1422	-1.1808
Max	2.0000	0.9976	168.4976	117.1670	1.3079	0.4469	4.5735	0.7364
Mean	1.1151	-0.0042	4.0607	0.1417	0.9917	-0.0019	3.0162	-0.1491
Sd.	0.2800	0.4024	7.4082	4.5248	0.0865	0.1595	0.3255	0.3198
MSE	0.0915	1.1701	64.1935	21.1905	0.0075	1.0292	4.1710	1.4226
$\xi_{0.025}$	0.8743	-0.9828	2.4388	-1.3183	0.8284	-0.3092	2.4280	-0.8018
$\xi_{0.975}$	1.9947	0.9808	7.4510	1.4255	1.1716	0.3081	3.7085	0.4682

Tablica 18: Tabela podsumowująca, θ_3

	α	β	σ	μ	\sum
pars est M	0.0082	1.0395	3.8446	1.0836	5.9759
pars est K	0.0079	1.0168	3.8999	274567.3958	274572.3204
pars est ML	0.0915	1.1701	64.1935	21.1905	86.6456
pars est $ML2$	0.0075	1.0292	4.1710	1.4226	6.6303

W tym przypadku pogorszeniu uległy oszacowania uzyskane przy użyciu metody największej wiarygodności. Dla pozostałych metod uzyskano poprawę, najlepszymi metodami okazują się być McCoulloch'a oraz zmodyfikowana metoda największej wiarygodności.

2.2.3.2 Badanie drugie Przyjrzyjmy się wykresom

Rysunek 19: θ_1 : Własności asymptotyczne

Rysunek 20: θ_2 : Własności asymptotyczne

Rysunek 22: Suma błędów oszacowań przy większej próbie

Zaobserwować możemy, że jeśli metoda dobrze sprawdza się w przypadku estymacji pewnego parametru to wraz ze wzrostem wielkości próby błąd maleje. Jednakże, jeśli metoda nie sprawdza się w przypadku estymacji parametru dla małej próby to nie możemy oczekiwać, że wraz ze wzrostem liczby obserwacji oszacowania będę dokładniejsze.

Rozważmy jeszcze przypadek gdy próba jest wielkości N=100000 być może już dla tak wielkiej liczby obserwacji estymatory stają się dokładne. Rozważamy przypadek θ_1

Rysunek 23: θ_1 : Własności asymptotyczne dla próby N=100000

Niestety tak nie jest.

2.2.3.3 Badanie trzecie

Zmienna α Wpierw rozważać będziemy przypadek gdy zmienną jest α przyjmującą wartości z $\alpha_{vec} = \{0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9\}$, a $\beta = 0.5$, $\sigma = 3$, $\mu = 2$. Na poniższych rysunkach linią przerywaną oznaczono $\xi_{0.025}$ oraz $\xi_{0.975}$. Linia ciągła reprezentuje średnią oszacowań zawierających się w 0.95% pseudo przedziale ufności.

Rysunek 24: Dokładność estymacji parametrów w zależności od α

Rysunek 25: Estymacja parametrów σ oraz μ dla $\alpha > 0.4$

Po pierwsze zauważyć możemy, że parametry nie są wyznaczone dla metody Koutrouvelis'a gdy $\alpha < 0.5$. Obliczenia okazały się zbyt czasochłonne, a czasami nawet niemożliwe, program ${\bf R}$ zawieszał działanie. Jeśli jednak α zbiega do wartości 2 metoda ta staje się najbardziej skuteczną ze względu na wszystkie parametry. Kolejna ważna uwaga, dla małych α największą skutecznością w przypadku estymacji tego właśnie parametru cechuje się metoda największej wiarygodności, a odznacza się ona najmniejszą precyzją gdy α jest w pobliżu wartości 1. Niemniej oddać należy, że dla pozostałych α oszacowania są bardzo dobre. Zmodyfikowana metoda największej wiarygodności oraz metoda McCoulloch'a dla β , σ oraz μ dają bardzo zbliżone oszacowania parametrów. Nie są one skuteczne wyłącznie dla $\alpha < 0.5$ w pozostałych przypadkach estymacje są bardzo dobre ze względu na wszystkie parametry.

Zmienna β

Ustalamy $\alpha = 0.7$, $\sigma = 3$, $\mu = 2$ oraz $\beta_{vec} = \{-1.0, -0.6, -0.2, 0.0, 0.2, 0.6, 1.0\}$.

Rysunek 26: Dokładność estymacji parametrów w zależności od β

Z rysunku wynika, że metoda największej wiarygodności cechuje się sporym rozrzutem w przypadku estymacji α oraz μ gdy β przyjmuje wartości w pobliżu 1 oraz -1. Zauważyć możemy również, że zmodyfikowana metoda największej wiarygodności, źle estymuje parametr σ gdy $\beta < 0$. Należy zauważyć, że poza tymi przypadkami oszacowania uzyskane przez wszystkie metody dla każdego parametru są bardzo podobne.

Zmienna σ

Rysunek 27: Dokładność estymacji parametrów w zależności od σ

Niezależnie od wartości, którą przyjmuje parametr σ metoda Koutrouvelis'a nie doszacowuje parametru $\alpha.$ Widzimy również, że wraz ze wzrostem wartości σ oszacowania uzyskane przez metodę największej wiarygodności dla każdego parametru są coraz mniej dokładne. **Zmienna** μ

Rysunek 28: Dokładność estymacji parametrów w zależności od μ

Możemy zaobserwować, że zmiana parametru μ nie wpływa na dokładność oszacowań.

2.2.3.4 Badanie czwarte Z poprzednich badań dowiedzieliśmy się jak metody sprawdzają w przypadku oszacowań $\theta_1, \theta_2, \theta_3$ dla prób wielkości N=100, 250. Dowiedzieliśmy się również jak wielkość próby wpływa na dokładność estymacji. Kolejnym kluczowym czynnikiem przy wyborze metody najlepszej jest czas obliczeń, czas, który jest potrzebny na estymację parametrów.

Czas oczekiwania, N = 100

Rysunek 29: Czas oczekiwana dla $\theta_1,\theta_2,\theta_3;\,N=100$

Czas oczekiwania, N = 250

Rysunek 30: Czas oczekiwana dla $\theta_1,\theta_2,\theta_3$ N=250

Zdecydowanie najbardziej czasochłonną metodą jest metoda największej wiarygodności. Z badania drugiego wiemy, że dla małych α jest ona skuteczna i być może w takim przypadku warto czekać. W innych przypadkach lepiej korzystać z metod pozostałych.

Czas oczekiwania dla θ_1

Rysunek 31: Czas obliczeń dla θ_1 gdy N=20000

Zauważmy, że czas obliczeń wraz ze wzrostem wielkości próby będzie średnio większy, ale nie jest to prawdą dla poszczególnej realizacji.

3 Szacowanie kwantyli

W tym rozdziale zajmiemy się szacowaniem kwantyli rozkładów α -stabilnych na podstawie próby. Opis teoretyczny metod, których będziemy używać w toku analizy wykracza poza ramy tego artykułu. Można się z nimi zapoznać w pracach, estymacja parametryczna: (Nolan 1997), estymacja nieparametryczna: (Hyndman and Fan 1996).

3.1 Opis badań

W badaniu pierwszym porównamy estymatory parametryczne oraz nieparametryczne dla θ_1, θ_2 oraz θ_3 z poprzedniego podrozdziału. Ponownie rozważać będziemy wielkość próby N=100, a następnie N=250.

Badanie drugie pozwoli nam zbadać asymptotyczne własności estymatorów. Szczególnie będziemy chcieli się dowiedzieć czy dla dostatecznie dużej próby metody nieparametryczne nie dają lepszych rezultatów.

3.2 Symulacje

Ponownie wykorzystamy wykresy pudełkowe oraz tabele z danymi. Na wykresach pudełkowych dla metod parametrycznych będziemy ignorować obserwacje bardzo odstające.

Przypomnijmy $\theta_1 = (1, 0, 1, 0)$. Rozważamy przypadek N = 100.

Rysunek 32: Porównanie oszacowań kwantyli rzędu 0.95 dla θ_1 gdy N=100

		Parametryczne					Nieparametryczne			
	pars est M	pars est K	pars est ML	pars est ML2	type.1	type.6	type.8			
Min	1.7683	-173.6654	-7.080068e + 28	1.9096	1.6953	2.0018	1.9417			
Max	32.0595	15797.5566	3.457720e+01	30.2964	32.5639	38.6126	33.7079			
Mean	7.1657	26.0222	-7.080068e + 25	7.3560	6.4271	8.0113	7.5110			
Sd.	3.7566	501.2756	2.238914e + 27	3.6672	3.3143	4.5454	4.0598			
MSE	52.1134	251651.7852	5.012736e + 54	53.8337	40.4272	69.7984	58.8589			
$\xi_{0.025}$	2.8970	-0.2440	2.525900e+00	3.1252	2.6472	3.0974	2.9781			
$\xi_{0.975}$	17.1122	25.0900	1.219220e+01	17.0743	14.6099	19.5024	17.9422			

Tablica 19: θ_1 kwant.= 0.95, N = 100

Z powyższych wykresów oraz tabeli widzimy, że z metod parametrycznych najlepszym estymatorem jest metoda McCoulloch'a oraz zmodyfikowana metoda największej wiarygodności. W przypadku metod nieparametrycznych najlepiej spisuje się typ pierwszy.

W toku dalszej analizy zrezygnujemy z wykresów pudełkowych i ograniczymy się do prezentowania danych tylko w tabelach.

Tablica 20: θ_1 kwant.= 0.99, N=100

		Paran	ľ	Nieparametryczne			
	pars est M	pars est K	pars est ML	pars est ML2	type.1	type.6	type.8
Min	5.7045	-151.7059	2.4681	6.0559	3.2727	5.1473	5.0476
Max	510.6415	15820.0150	324.1547	455.3897	583.7368	5955.2589	4002.9608
Mean	44.6168	71.9392	33.8674	46.2136	30.6100	140.8619	104.4825
Sd.	41.1213	506.7185	22.7587	40.2854	35.7298	400.1149	271.4949
MSE	3591.6974	261538.9474	1597.7059	3665.5531	2152.0953	179493.2058	84344.3892
$\xi_{0.025}$	11.3012	9.1802	5.5258	12.0448	5.7007	8.9945	8.3014
$\xi_{0.975}$	151.2844	208.5121	86.5993	145.1035	117.6125	822.7895	591.7654

Wyniki otrzymane w Tablicy 20 są zaskakujące. Z metod parametrycznych najlepszą okazała się być metoda największej wiarygodności, która to dawała najgorsze oszacowania dla kwantyla rzędu 0.95. Przypomnijmy $\theta_2=(2,0,1,0)$.

Tablica 21: Kwantyle rzędu 0.95 i 0.99 dla θ_2

		Para		Nieparametryczne			
	pars est M	pars est K	pars est ML	pars est ML2	type.1	type.6	type.8
0.95							
MSE	0.2979	0.1621	0.1466	0.2826	0.1536	0.2493	0.2118
$\xi_{0.025}$	1.9096	1.8583	1.8472	1.8339	1.6940	1.7851	1.7626
$\xi_{0.975}$	3.0534	2.7721	2.7598	3.0312	2.8860	3.0225	2.9767
0.99							
MSE.	5.2023	2.3678	2.1592	4.9519	1.2720	2.7068	2.1362
$\xi_{0.025}$.	2.8473	2.7281	2.6701	2.7636	2.2695	2.5543	2.5085
$\xi_{0.975}$.	6.9111	4.2096	4.6024	6.8143	3.8986	4.8522	4.4053

Widzimy, że spośród metod parametrycznych najlepszą jest metoda największej wiarygodności. Nieparametrycznych typ pierwszy.

Tablica 22: Kwantyle rzędu 0.95 i 0.99 dla θ_3

		Paran	netryczne]	Nieparametryczne			
	pars est M	pars est K	pars est ML	pars est ML2	type.1	type.6	type.8		
0.95									
MSE	547.0086	2265158.5686	3.823352e+08	564.7752	432.9699	716.3214	611.8626		
$\xi_{0.025}$	8.6911	-0.7319	7.208400e+00	9.3755	7.9416	9.2922	8.9344		
$\xi_{0.975}$	51.3366	73.8773	$3.896620e{+01}$	51.2228	43.8297	58.5071	53.8267		
0.99									
MSE.	32852.6780	2342323.9927	2.278194e+13	33536.5407	19728.1778	1617121.1945	760345.2926		
$\xi_{0.025}.$	33.9035	27.2458	1.352660e+01	36.1344	17.1022	26.9836	24.9042		
$\xi_{0.975}$.	453.8531	583.4370	2.644840e+02	435.3104	352.8376	2468.3685	1775.2963		

Tak jak dla θ_1 najlepszymi estymatorami okazują się być metody McCoulloch'a oraz Koutrouvelis'a. Z typów nieparametrycznych ponownie najlepszym okazuje się być typ pierwszy.

Rozważamy teraz przypadek dla N=250.

Tablica 23: Kwantyle rzędu 0.95 i 0.99 dla θ_1

		Para	metryczne		Nie	eparametrycz	zne
	pars est M	pars est K	pars est ML	pars est ML2	type.1	type.6	type.8
0.95							
MSE	34.2123	30502.2017	1.118988e + 18	35.2449	35.0273	38.7026	36.2131
$\xi_{0.025}$	3.6838	-4.7374	2.402400e+00	3.8362	3.7238	3.8469	3.7650
$\xi_{0.975}$	11.1453	17.5348	$1.027090e{+01}$	11.1462	11.2793	11.6549	11.3932
0.99							
MSE.	1423.7029	31885.8997	2.045442e + 17	1476.9663	2418.5771	9307.3996	3756.2267
$\xi_{0.025}.$	15.3107	13.2873	5.117100e+00	16.4638	11.2171	13.2262	12.2693
$\xi_{0.975}$.	72.5361	86.6209	5.820970e + 01	72.7609	119.3995	217.9991	150.7370

Tablica 24: Kwantyle rzędu 0.95 i 0.99 dla θ_2

	Parametryczne					Nieparametryczne	
	pars est M	pars est K	pars est ML	pars est ML2	type.1	type.6	type.8
0.95							
MSE	0.2082	0.1284	0.1208	0.1945	0.1384	0.1558	0.1439
$\xi_{0.025}$	2.0594	2.0549	2.0460	2.0208	1.9789	1.9928	1.9818
$\xi_{0.975}$	2.7809	2.5959	2.5797	2.7682	2.7152	2.7408	2.7227
0.99							
MSE.	3.6048	1.8005	1.8342	3.4015	1.7289	2.0660	1.8348
$\xi_{0.025}$.	3.0474	2.9569	2.9405	2.9954	2.6858	2.7804	2.7211
$\xi_{0.975}$.	5.5483	3.7155	3.8431	5.4798	3.9398	4.0858	3.9854

Tablica 25: Kwantyle rzędu 0.95 i 0.99 dla θ_3

		Parametryczne				ieparametrycz	ne
	pars est M	pars est K	pars est ML	pars est ML2	type.1	type.6	type.8
0.95							
MSE	377.9693	274554.2082	1.914897e + 25	388.6413	386.0709	422.4845	397.8547
$\xi_{0.025}$	11.0513	-14.2123	7.037200e+00	11.5087	11.1714	11.5407	11.2950
$\xi_{0.975}$	33.4358	52.6043	3.444430e + 01	33.4387	33.8378	34.9648	34.1796
0.99							
MSE.	13226.5262	287285.4513	2.755437e + 15	13715.4851	22222.8725	84479.6720	34347.5178
$\xi_{0.025}.$	45.9320	40.8518	1.188140e+01	49.3913	33.6512	39.6787	36.8079
$\xi_{0.975}$.	217.6082	258.1222	1.852156e + 02	218.2828	358.1984	653.9974	452.2109

4 Rozkłady α -stabilne - VaR

W tym ostatnim już rozdziale wyznaczymy rozkład logarytmicznych zwrotów jednodniowej inwestycji dla spółek Netfilx oraz Sony bazując na zeszło rocznych danych. Kolejnym krokiem będzie punktowe wyznaczenie wartości narażonej na ryzyko VaR oraz ES czyli expected shortfall. W ostatnim podrozdziale tej sekcji wyznaczmy przedziały ufności dla wartości narażonej na ryzyko.

4.1 Opis danych

Rozpoczniemy od wprowadzenia definicji,

Definicja 2. Logarytmiczną stopą zwrotu nazywamy,

$$r_t = \log \frac{P_t}{P_{t-1}},\tag{10}$$

 $gdzie P_t$ jest ceną instrumentu finansowego w chwili t.

Rozważamy zwroty logarytmiczne inwestycji w spółki za okres 2019-01-01 do 2020-01-10. Zbiór zawiera N=258 danych. Poniżej przedstawiono tablicę z podstawowymi statystykami oraz histogramy.

Rysunek 33: Histogramy zwrotów logarytmicznych

Tablica 26: Podstawowe statystyki NFLX oraz SNE

	NFLX	SNE
Min.	-0.1083878	-0.0825231
1st Qu.	-0.0115381	-0.0056372
Median	0.0005678	0.0021114
Mean	0.0010007	0.0015539
3rd Qu.	0.0145717	0.0113283
Max.	0.0927929	0.0787738
Sd.	0.0218606	0.0171849

Możemy dostrzec, że dla obu akcji zwroty są prawo-skośne. Jednakże średni zwrot dla akcji Sony jest większy.

4.2 Var oraz ES

Definicja 3. Wartością narażoną na ryzyko (VaR) na poziomie α nazywamy taką wartość $VaR_{\alpha}(L)$, dla której w przypadku, gdy L ma rozkład absolutnie ciągły względem miary Lebesgueg'a

$$P(L \ge VaR_{\alpha}(L)) = \alpha,\tag{11}$$

oraz w pozostałych przypadkach

$$VaR_{\alpha}(L) = \inf\{x : P(L > x)\} \le \alpha. \tag{12}$$

Innymi słowy VaR jest wartością liczbową, która charakteryzuje ryzyko portfela. Dla $\alpha=0.05$ oraz jednodniowych zwrotów z akcji interpretujemy ją w sposób następujący, z 95% pewnością na inwestycji stracimy mniej niż $Var_{\alpha}(L)$ w ciągu jednego dnia.

ES definiujemy natomiast jako,

Definicja 4. Expected shortfall ES_{α} nazywamy wartość oczekiwaną straty L, pod warunkiem, że jest ona większa od VaR_{α} czyli,

$$ES_{\alpha} = \frac{\int_0^{\alpha} VaR_u(L)du}{\alpha}.$$
 (13)

Jak interpretujemy ES_{α} ?. Jeśli wystąpi zdarzenie rzadkie, czyli poniesiemy stratę większą niż $VaR_{\alpha}(L)$ to nasza oczekiwana strata wyniesie ES_{α} .

4.2.0.1 Część praktyczna

Oszacujemy VaR_{α} oraz ES_{α} dla $\alpha=0.05$. Estymacje te wyznaczymy w trzech następujących przypadkach, przy założeniu, że zwroty logarytmiczne mają rozkład

• normalny o nieznanych parametrach,

- stabilny o nieznanych parametrach,
- nieznany absolutnie ciągły.

By wyznaczyć VaR oraz ES dla powyższych rozkładów wpierw będziemy musieli wyznaczyć ich parametry. W przypadku rozkładu normalnego posłużymy się metodą największej wiarygodności, dla rozkładu stabilnego decyzję o wyborze metody podejmiemy w toku dalszej analizy, decyzję oprzemy na podstawie otrzymanych parametrów. W przypadku nieznanego rozkładu absolutnie ciągłego wyznaczamy kwantyl rzędu $\lfloor N\alpha/2 \rfloor$ gdzie N jest liczbą obserwacji.

4.3 Analiza akcji Sony oraz Netfix

Rozważamy zakup 47 akcji Sony w dniu 2020-01-09. Cena akcji wynosi 71.03\$ zatem koszt całkowitej inwestycji wyniesie S=3338.41\$. Kupujemy również akcje Netfix w ilości 10 cena zakupu z tego samego dna co dla Sony. Koszt inwestycji S wynosi 3356.6\$

Na podstawie danych historycznych wyznaczymy parametry rozkładów normalnego oraz stabilnego.

Parametry rozkładu normalnego wyznaczamy metodą największej wiarygodności. Mamy,

Tablica 27: Parametry normalnego dla SNE oraz NFLX

	Mean	Sd.
SNE NFLX	$\begin{array}{c} 0.0015539 \\ 0.0010007 \end{array}$	$\begin{array}{c} 0.0171516 \\ 0.0218182 \end{array}$

Gestości zostały przestawione na poniższym Rysunku.

Rysunek 34: Gęstości rozkładów normalnych

Dla rozkładów α -stabilnych w zależności od metody estymacji parametrów otrzymujemy,

Tablica 28: Oszacowania parametrów stabilnych

	α	β	σ	μ
SNE				
pars est init	1.431407	-0.2444919	0.0086667	0.0027237
pars est k	1.526569	-0.2874880	0.0084577	0.0029279
pars est ml	1.430228	-0.2443354	0.0086167	0.0025853
pars est ml2	1.443421	-0.2225679	0.0088192	0.0015528
NFLX				
pars est init.	1.790083	0.1124964	0.0136230	0.0003747
pars est k.	1.835702	0.0618100	0.0133028	0.0009923
pars est ml.	1.802723	0.0320684	0.0133128	0.0010388
pars est ml2.	1.802097	0.1344204	0.0136284	0.0003486

W przypadku zwrotów dla SNE z poprzedniej analizy (Rysunek 28) wynika, że dla takich parametrów najlepiej zastawać metodę pars_est_m12. Dla NFLX wykorzystamy metodę największej wiarygodności pars_est_m1.

Warto sprawdzić czy rozkładay otrzymane czterema metodami wiele się od siebie różnią,

Rysunek 35: Gęstości rozkładów α -stabilne

Dla powyższych rozkładów oraz rozkładu nieznaego otrzymujemy następujące wartości VaR_{α} oraz ES_{α} .

4.4 Przedziały ufności dla VaR

Do wyznaczenia przedziału ufności przy założeniu o normalności zwrotów logarytmicznych wykorzystamy metodę 4 z opracowania (Chakraborti and Li 2007) oraz metodą bootstrap. Dla rozkładów stabilnych posłużymy się tylko metodą bootstrap, natomiast w przypadku gdy

Tablica 29: Oszacownia dla VaR oraz ES

	SNE.VaR	VaR.NFLX	ES.SNE	ES.NFLX
$\mathcal{N}(\mu, \sigma)$	87.82	115.10	110.96	144.39
$S(\alpha, \beta, \sigma, \mu)$	101.59	99.38	247.17	250.01
Nieznany	87.82	117.92	140.71	166.86

rozkład jest nieznany wyznaczymy ogólny przedział dla gęstości absolutnie ciągłej względem miary Lebesgueg'a.

Konstrukcja bootstrapowego przedziału ufności

- 1. Dla $j \in \{1, ..., N = 3000\}$ loswujemy ze zwracaniem n = 258 elementów z próby w celu uzyskania bootstrapowej próby $X^{*j} = \{x_1^{*j}, ..., x_n^{*j}\},$
- 2. Na podstawie próby X^{*j} wyznaczamy parametry rozkładów, a następnie kwantyl rzędu q,ozn, Θ_j^*
- 3. Wyznaczamy przedział

$$C = (\Theta^*_{|N\alpha/2|}, \Theta^*_{|N(1-\alpha/2)|}).$$

Dla spółek Sony oraz Netflix,

Tablica 30: Przedziały ufności VaR, α -stabilny

	$SNE.CI_L$	$SNE.CI_U$	$NFLX.CI_L$	$NFLX.CI_U$
pars est init pars est k pars est ml	116.8360 122.5136 116.3189	63.61581 63.39698 61.84887	140.6964 125.8132 138.6140	91.98140 87.17369 89.19358
pars est ml2	130.3023	63.61448	146.1363	92.28572

Tablica 31: Przedziały ufności VaR, normalny

	$SNE.CI_L$	$SNE.CI_U$	$NFLX.CI_L$	$NFLX.CI_U$
Metoda.4. Bootstrap	99.2375 103.8425	78.18672 71.48347	$129.5597 \\ 136.6315$	$102.85815 \\ 97.03925$

Tablica 32: Przedziały ufności VaR, dowolny

	CI_L	CI_U
SNE	119.3849	65.80974
NFLX	143.0142	81.75667

Borak, Szymon, Wolfgang Karl Härdle, and Rafał Weron. 2005. Stable Distributions.

Chakraborti, Subha, and Jia Li. 2007. "Confidence Interval Estimation of a Normal Percentile." *The American Statistician* 61 (February): 331–36. https://doi.org/10.1198/000313007X2444 57.

Hyndman, Rob J., and Yanan Fan. 1996. "Sample Quantiles in Statistical Packages." *The American Statistician* 50 (4): 361–65. http://www.jstor.org/stable/2684934.

Kateregga, M., S. Mataramvura, and D. Taylor. 2017. "Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns." Cogent Economics & Finance 5 (1). https://doi.org/10.1080/23322039.2017.1318813.

Nolan, John P. 1997. "Numerical Calculation of Stable Densities and Distribution Functions." Communications in Statistics. Stochastic Models 13 (4): 759–74. https://doi.org/10.1080/15 326349708807450.

Weron, Rafal. 1995. "Performance of the estimators of stable law parameters." HSC Research Reports HSC/95/01. Hugo Steinhaus Center, Wroclaw University of Technology. https://ideas.repec.org/p/wuu/wpaper/hsc9501.html.