lmage credit: NASA/JPL-Caltech

Mining the high-energy Universe: a probabilistic, interpretable classification of X-ray sources for large X-ray surveys — The power of CLAXBOI

Hugo TRANIN, Postdoc, ICCUB, University of Barcelona

28 Feb 2024

XMM-Newton survey legacy for Athena and beyond

26-29 Feb 2024 Toulouse (France)

Outline

- 1) Data preparation
- 2) Classification and interpretation
- 3) Applications

X-ray catalogs grow larger and larger

	Observations period, Coverage	PSF, Median Sensitivity	Number of sources
XMM-Newton 4XMM-DR13 (Webb+2	2000-2022 1328 deg ²	6" 1e-14 erg/cm ² /s	657k
Chandra CSC2 (Evans+2019)	2000-2014 560 deg ²	0.5" on-axis 4e-15 erg/cm²/s	317k
			
Swift-XRT 2SXPS (Evans+2020)	2005-2018 3790 deg ²	6" 8e-14 erg/cm ² /s	206k

XMM2ATHENA

Focus of this talk

→ Expected content: AGN, stars, XRB, CV, galaxy clusters...
How to find them? ⇒ automatic source classification

1) Data preparation

"Prepare for battle" - Gandalf

Preparing the dataset for classification

1) Identification of known sources

[auto_classes.py]

X-ray samples

Catalogs of AGN (e.g. Secrest+2015)
Catalogs of stars (e.g. Kharchenko+2009)
Catalogs of XRB & CV (e.g. Ritter+2014)

TOPCAT software (Taylor+2005)
Sky with errors

(Simplistic crossmatch)

Ex. training sample of 4XMM-DR10

AGN	Star	XRB	CV
19,000	6,000	730	260

Tranin et al. A&A 2022

Preparing the dataset for classification

2) Identification of counterparts

[auto_nway.py]

X-ray samples

optical / IR surveys

high sky density → probabilistic treatment

Survey list (tunable):

Optical

- Gaia
- PanSTARRS
- DES
- USNO

Infrared

- 2MASS
- AllWISE
- UnWISE

Tranin et al. A&A 2022

⇒ Multiwavelength associations

Flux ratios

$${
m logFxFr} = {
m log}_{10} \left(rac{F_X}{F_{R~{
m (Gaia)}}}
ight)$$

10 arcsec

Preparing the dataset for classification

3) Distance estimate

X-ray samples

⊗ Gaia distances (Bailer-Jones+2021)

[auto gaiaglade.py]

⇒ source distance & luminosity

$$L_X = 4\pi D^2 \times F_X$$

GLADE = all-sky highly complete galaxy catalog

>1M galaxies at D<500Mpc

Other physical properties:

- proper motion
- X-ray variability (maxtomin)

[auto_xlinks.py]

Multiwavelength dataset ready for classification

Name / Reference - Gaia EDR3, PanSTARRS, DES	in 4XMM-DR11 496k 310k
	310k
2MASS, AllWISE, UnWISE	420k
GLADE (Dalya+2016)	16k
Véron-Cetty+2010, Secrest+2015, Simbad	44k
ASCC (Kharchenko+2009)	8k
Liu Q. Z.+2006, 2007, Humphrey+2008, Mineo+2012	520
Downes+2006, Ritter+2014	243
	GLADE (Dalya+2016) Véron-Cetty+2010, Secrest+2015, Simbad ASCC (Kharchenko+2009) Liu Q. Z.+2006, 2007, Humphrey+2008, Mineo+2012

small samples

XMM2ATHEN

Tranin et al. A&A 2022

Features used by the classifier

Name	Category
Galactic latitude	Location
Gaia proper motion	Location
Relative distance to the host center	Location
X-ray luminosity	Location
X-ray over optical (b,r) flux ratio	Counterparts
X-ray over infrared (W1,W2) flux ratio	Counterparts
X-ray max to min flux ratio (multi-mission)	Variability
X-ray lower max to higher min flux ratio	Variability
X-ray hardness ratio HR1, HR2, HR3	Hardness
Power law index fitted to X-ray spectrum	Hardness

XMM2ATHEN

Tranin et al. A&A 2022

Probability densities of the training samples

Physical properties:

- logFxFr (counterpart)
 - logFmaxFmin (variability)
- HR1 (spectrum)
 - b (location)
- sep (location)
 - L_x (spectrum)

2) Probabilistic classification (CLAXBOI) and interpretation

"You're a wizard, Harry" - Hagrid

Methods for automatic source classification

Before 2022, in X-ray astronomy:

- Decision tree (e.g. Lin+2012) \rightarrow poor performance
- □ Random forest (e.g. Farrell+2015, Arnason+2020)
 → poor interpretability
- □ Other machine learning algorithm (nearest neighbors, naive Bayes...)
 (e.g. Pineau+2017, Arnason+2020)

CLAXBOI: **probabilistic** classification, good **interpretability** and **reliability**

Previous studies

Previously classified samples (before 2022)

Small! ~ 10³⁻⁴ sources instead of 10⁶ detected

- □ Only bright sources (e.g. Lin+2012)
- □ Only variable sources (e.g. Farrell+2015)
- ☐ Only specific fields (e.g. Arnason+2020)

CLAXBOI: classification of **most of** well-detected point-like sources

Naive Bayes Classifier (2 classes)

Possible criterion:

$$log(F_X/F_{W1}) < -1 \Rightarrow star$$

else \Rightarrow AGN

... but overlap

Naive Bayes Classifier (2 classes)

[classify new.py]

$$\mathbb{P}(\mathrm{AGN}|D) = \frac{\mathcal{P}(\mathrm{AGN})\mathcal{L}(\mathrm{AGN}|D)}{\mathcal{P}(\mathrm{AGN})\mathcal{L}(\mathrm{AGN}|D) + \mathcal{P}(Star)\mathcal{L}(Star|D)} = 31\% \text{ here}$$
(with priors $\mathcal{P}(\mathrm{AGN})=0.75$, \mathcal{P}
(Star)=0.25)

Combine the 18 features ⇒ Naive Bayes classification

Maximising the classification performance

[classify new.py]

- Trade-off between recall and precision
- Optimization : fine-tuning the α_t

$$\mathbb{P}(\mathbf{c}|data) = \frac{\mathcal{P}(\mathbf{c}) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|\mathbf{c})^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}{\sum_{C \in \{\text{classes}\}} \mathcal{P}(C) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|C)^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}$$

One α_t per category of properties: $\alpha_{location}$, $\alpha_{spectrum}$, $\alpha_{variability}$, $\alpha_{counterparts}$ Optimized to maximize the f₁-score of XRB (f₁ = (recall⁻¹+precision⁻¹)⁻¹)

Results (Confusion matrix)

on 4XMM training sample (because no overfitting + few XRB and CV)

The second secon				
	AGN	Star	XRB	CV
→AGN	18373	25	46	149
→Star	15	6197	10	12
→XRB	80	12	479	10
→CV	4	0	8	81
recall (%)	99.5	99.4	88.2	32.1
precision (%)	98.9	97.2	93.7	84.6
f ₁ -score	0.992	0.983	0.909	0.465

on 2SXPS

Truth \rightarrow	AGN	Star	XRB	CV	Total cl.
\rightarrow AGN	19515	82	25	191	19813
→Star	44	4628	3	27	4702
\rightarrow XRB	140	18	326	17	501
\rightarrow CV	9	9	2	124	144
Total	19708	4737	356	359	Average
recall (%)	99.0	97.7	91.6	34.5	80.7
precision (%)	97.0	98.6	90.7	85.5	92.3

Random Forest on 2SXPS

$Truth \rightarrow$	AGN	Star	XRB	CV	Total cl.
\rightarrow AGN	5889	7	20	39	5955
→Star	6	1404	1	3	1414
\rightarrow XRB	9	5	83	5	102
\rightarrow CV	7	1	1	68	77
Total	5911	1417	105	115	Average
recall (%)	99.6	99.1	79.0	59.1	84.2
precision (%)	96.8	99.2	95.2	87.9	95.2

Tranin et al. A&A 2022

Interpretation #1: Finding outliers

$$O.M. = -\log \left(\mathcal{P}(\mathbf{c}) \times \prod_{t \in \{\text{cat}\}} \mathcal{L}(t|\mathbf{c})^{\alpha_t/\sum_{t \in \{\text{cat}\}} \alpha_t} \right)$$

 \sim scarcity of the training sample at the location of the source in the parameter space Depends on the output class c

⇒ way to nuance the classification

Tranin et al. A&A 2022

Outliers = one of these:

- Spurious sources
- Spurious identifications
- If classified as star/AGN : special types of star/AGN
- If classified as XRB : rare & variable objects such as TDE, GRB, supernovae...

Interpretation #2: marginal probabilities

[Pbatrack.py]

Sources are classified based on their location, spectrum, counterparts and variability

⇒ find the discriminant properties thanks to marginal probabilities

XMM-Newton

Legacy Survey

 $P_{AGN} = 88\%$

Source inspection:

- Hard source
- No optical c. found
- little data

Marginal proba:

- spec and loc suggests GalacticXRB
- other+prior suggest AGN
- ⇒ classification as AGN is explained

Interpretation #3: alternative classifications

Sources are classified based on their

location, spectrum, counterparts, variability

What if we ignore a category of properties? **⇒ Alternative classification**

Ex. previous source: no alternative classification this blended source: alternative classification without location = Galactic XRB

SRCID=202004502010101

*
XMM-Newton

XMM extent 42"
Blends 3 Chandra sources
No opt or IR counterpart
Low Galactic latitude b=1°

3) Applications

"This is a beautiful tool but it still needs an active brain to use it"

- Mara Salvato

Classification of a whole catalog

4XMM-DR12 fully classified (XMM2ATHENA deliverables)
 Published in April 2023:

http://xmm-ssc.irap.omp.eu/xmm2athena/catalogues/

7 classes
Priors:
0.55,0.20,0.03,0.02,
0.05,0.05,0.10

truth →	AGN	Star	gal_XRB	CV	AGN_2	ex_XRB	extended
→AGN	23770	26	55	151	0	0	1097
→Star	8	8246	2	6	0	3	597
→gal_XRB	15	2	79	30	0	0	12
→CV	1	2	3	78	0	0	1
→AGN_2	7	3	0	1	958	27	313
→ex_XRB	1	2	1	5	55	510	559
→extended	0	0	0	0	0	0	61438
recall (%)	99.9	99.6	56.4	28.8	94.6	94.4	95.9
precision (%)	95.5	98.9	86.6	88.9	93.3	91.7	100

Classification of a whole catalog

4XMM-DR12 fully classified (XMM2ATHENA deliverables)
 Published in April 2023:
 http://xmm-ssc.irap.omp.eu/xmm2athena/catalogues/

Content
430,941 AGN
75,160 stars
42,810 Galactic XRB
8,889 extragalactic XRB
920 Cataclysmic Variables
71,627 extended sources

Priors: 0.55,0.20,0.03,0.02,0.05,0.05,0.10

Beware of spurious sources + crowded regions

Specialisation of the classification

X-ray samples ⊗ GLADE (44k sources)

CLAXBOI

AGN (background sources)	Soft source (foreground sources, SNR)	XRB
95.2	50.9	89.7
95.8	68.9	80.4

recall

precision

Goal: properly identify ULX

XMM2ATHENA

Identifying ULX in nearby galaxies

- A lot of interlopers remain here if we trust the maximum probability
- We need a physical prior and compare it with P_{XRB}
- Selection criterion: P_{XRB} > f_{contaminant}, frequency of background AGN from logN-logS

⇒ P_{XRB} has a meaning!!

[your science case here!]

XMM2ATHE

CLAXBOI is public, documented and accessible via github (updated this week): https://github.com/htranin/classificationXray

Feel free to use it for your science cases and reach me in case of questions!

Complementarity with citizen science

- CLAXBOI includes data preparation and value-adding
 Fully probabilistic classification
 Well-behaved on catalog-sized samples
- Both reliable and interpretable
- Samples of known XRB, CV, TDE... are still small
- ⇒ to enlarge traning samples and find anomalies, use citizen science.
- ⇒ CLAXSON platform https://xmm-ssc.irap.omp.eu/claxson/

Conclusion

- CLAXBOI is a versatile, open-source and straightforward code to make the most of one's X-ray catalog
- □ It can be easily tuned to identify X-ray sources in both general (entire catalogs) and specific (population study) frameworks
- ☐ It has been **successfully applied to 4XMM-DR12** (DR14 coming soon) but also CSC2, 2SXPS
- ☐ It provides **highly interpretable classifications**, helping scientific exploitation
- □ Automatic and Human-based source classification are complementary → see tomorrow's talk about CLAXSON citizen science project

github link:

