ELEC2870 - Machine learning: regression and dimensionality reduction

Support Vector Machines

Michel Verleysen

Machine Learning Group Université catholique de Louvain Louvain-la-Neuve, Belgium michel.verleysen@uclouvain.be

Outline

- Introduction
- Large-margin classifier
 - Motivation
 - Optimization problem
- Soft margin classifier
 - Motivation
 - Optimization problem
- Mapping to feature space
 - Motivation
 - Dual SVM problem and the kernel trick
 - Kernels and Mercer's condition
- Other kernel methods
- Discussion and conclusions

Outline

- Introduction
- Large-margin classifier
 - Motivation
 - Optimization problem
- Soft margin classifier
 - Motivation
 - Optimization problem
- Mapping to feature space
 - Motivation
 - Dual SVM problem and the kernel trick
 - Kernels and Mercer's condition
- Other kernel methods
- Discussion and conclusions

Support Vector Machines

- Decision surface is a hyperplane (line in 2-D), as in the perceptron
- Decision surface is the maximal margin hyperplane
- Regularization can handle misclassifications for non-linearly separable problems
- Decision surface is built in a feature space, not the original data space
- Feature space is built implicitely (not explicitely), thanks to the kernel trick
- Objective function is quadratic
 - \rightarrow single minimum
 - → efficient algorithms
- # parameters is # data, not # dimensions

Outline

- Introduction
- Large-margin classifier
 - Motivation
 - Optimization problem
- Soft margin classifier
 - Motivation
 - Optimization problem
- Mapping to feature space
 - Motivation
 - Dual SVM problem and the kernel trick
 - Kernels and Mercer's condition
- Other kernel methods
- Discussion and conclusions

Which separating hyperplane to use?

v.4.0

Maximizing the margin

Support vectors

Setting up the optimization problem

The width of the margin is

$$\frac{2|k|}{\|\mathbf{w}\|}$$

• So the problem is

$$\max_{\mathbf{w}, b} \frac{2|k|}{\|\mathbf{w}\|}$$
s.t. $\mathbf{w}^{\mathsf{T}} \mathbf{x} + b \ge k, \forall \mathbf{x} \in C^{1}$
and $\mathbf{w}^{\mathsf{T}} \mathbf{x} + b \le -k, \forall \mathbf{x} \in C^{2}$

Setting up the optimization problem

 There is a scale and unit of data for which k=1

Then the problem becomes

$$\max_{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|}$$
s.t. $\mathbf{w}^{\mathsf{T}} \mathbf{x} + b \ge 1, \forall \mathbf{x} \in C^{1}$
and $\mathbf{w}^{\mathsf{T}} \mathbf{x} + b \le -1, \forall \mathbf{x} \in C^{2}$

Setting up the optimization problem

 If class 1 corresponds to 1 and class 2 corresponds to -1, we can rewrite

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}^{i} + b \ge 1, \forall \mathbf{x}^{i} \text{ with } y^{i} = 1$$

 $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{i} + b \le -1, \forall \mathbf{x}^{i} \text{ with } y^{i} = -1$

as

$$y^{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{i}+b)\geq 1, \forall \mathbf{x}^{i}$$

Then the problem becomes

$$\max_{\mathbf{w},b} \frac{2}{\|\mathbf{w}\|} \qquad \qquad \min_{\mathbf{w},b} \|\mathbf{w}\|^{2}$$
s.t. $y^{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{i} + b) \ge 1, \forall \mathbf{x}^{i}$ s.t. $y^{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{i} + b) \ge 1, \forall \mathbf{x}^{i}$

Linear, hard-margin SVM formulation

Find w, b that solves

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^{2}$$
s.t. $y^{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{i} + b) \ge 1, \forall \mathbf{x}^{i}$

- Problem is convex so, there is a unique global minimum value (when feasible)
- There is also a unique minimizer, i.e. w and b value that provides the minimum
- Non-solvable if the data is not linearly separable
- Quadratic Programming
 - Very efficient computationally with modern constraint optimization engines (handles thousands of constraints and training instances)

Outline

- Introduction
- Large-margin classifier
 - Motivation
 - Optimization problem
- Soft margin classifier
 - Motivation
 - Optimization problem
- Mapping to feature space
 - Motivation
 - Dual SVM problem and the kernel trick
 - Kernels and Mercer's condition
- Other kernel methods
- Discussion and conclusions

Nonlinearly separable data

• Introduce slack variables ξ^i

 Allow some instances to fall within the margin, but penalize them

Formulating the optimization problem

Constraints become :

$$y^{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{i}+b)\geq 1-\xi^{i}, \forall \mathbf{x}^{i}$$

 $\xi^{i}\geq 0$

 Objective function penalizes for misclassified instances and those within the margin

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2 + C \sum_{i} \xi^{i}$$

• *C* trades-off margin width and misclassifications

Linear, soft-margin SVMs

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2 + C \sum_{i} \xi^{i} \qquad \qquad y^{i} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{i} + b) \ge 1 - \xi^{i}, \forall \mathbf{x}^{i}$$
$$\xi^{i} \ge 0$$

- Algorithm tries to maintain ξ_i to zero while maximizing margin
- Notice: algorithm does not minimize the number of misclassifications (NP-complete problem) but the sum of distances from the margin hyperplanes
- Other formulations use ξ_i^2 instead
- As $C \rightarrow \infty$, we get closer to the hard-margin solution

Robustness of Soft vs Hard Margin SVMs

Soft vs Hard Margin SVM

- Soft-Margin always have a solution
- Soft-Margin is more robust to outliers
 - Smoother surfaces (in the non-linear case)
- Hard-Margin does not require to guess the cost parameter (requires no parameters at all)

Outline

- Introduction
- Large-margin classifier
 - Motivation
 - Optimization problem
- Soft margin classifier
 - Motivation
 - Optimization problem
- Mapping to feature space
 - Motivation
 - Dual SVM problem and the kernel trick
 - Kernels and Mercer's condition
- Other kernel methods
- Discussion and conclusions

Limitations of linear decision surfaces

Advantages of nonlinear surfaces

Linear classifieers in high-dimensional spaces

Find function $\Phi(\mathbf{x})$ to map to a different space

Mapping Data to a High-Dimensional Space

 Find function Φ(x) to map to a different space, then SVM formulation becomes:

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2 + C \sum_{i} \xi^{i} \qquad \qquad y^{i} (\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}^{i}) + b) \ge 1 - \xi^{i}, \forall \mathbf{x}^{i}$$
$$\xi^{i} \ge 0$$

- Data appear as $\Phi(\mathbf{x})$, weights \mathbf{w} are now weights in the new space
- Explicit mapping expensive if $\Phi(\mathbf{x})$ is very high dimensional
- Solving the problem without explicitly mapping the data is desirable

The Dual of the SVM Formulation

- Original SVM formulation
 - N inequality constraints
 - N positivity constraints
 - N number of ξ variables
 - D+1 parameters \mathbf{w}, b

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^{2} + C \sum_{i} \xi^{i}$$

$$y^{i} (\mathbf{w}^{T} \Phi(\mathbf{x}^{i}) + b) \ge 1 - \xi^{i}, \forall \mathbf{x}^{i}$$

$$\xi^{i} \ge 0$$

- The (Wolfe) dual of this problem
 - one equality constraint
 - N positivity constraints
 - N number of α variables (Lagrange multipliers)
 - Objective function more complicated

$$\min_{\alpha^{i}} \frac{1}{2} \sum_{i,j} \alpha^{i} \alpha^{j} y^{i} y^{j} \left(\Phi(\mathbf{x}^{i})^{\mathsf{T}} \Phi(\mathbf{x}^{i}) \right) - \sum_{i} \alpha^{i}$$
s.t. $0 \le \alpha^{i} \le C, \forall \mathbf{x}^{i}$

$$\sum_{i} \alpha^{i} y^{i} = 0$$

NOTICE: Data only appear as Φ(x_i)^T Φ(x_i)

The Kernel trick

- $\Phi(\mathbf{x}_i)^{\mathsf{T}} \Phi(\mathbf{x}_j)$: means, map data into new space, then take the inner product of the new vectors
- We can find a function such that: $K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)$, i.e., the function evaluates the inner product of the images of the data
- Then, we do not need to explicitly map the data into the highdimensional space to solve the optimization problem (for training)

The Kernel trick and new instances

How do we classify without explicitly mapping the new instances?
 It turns out that

$$\operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\Phi(\mathbf{x}) + b) = \operatorname{sgn}\left(\sum_{i} \alpha^{i} y^{i} K(\mathbf{x}^{i}, \mathbf{x}) + b\right)$$

b can be extracted by solving

$$\alpha^{j} \left(y^{j} \sum_{i} \alpha^{i} y^{i} K \left(\mathbf{x}^{i}, \mathbf{x}^{j} \right) + b - 1 \right) = 0$$

for any *j* with $\alpha^{j} \neq 0$

Polynomial kernel

- Consider we have two variables x_1 and x_2 at disposal.
- · We build the mapping

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^6: \Phi(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, x_1, x_2, 1)$$

Let us define the kernel

$$K(\mathbf{x},\mathbf{z}) = (\mathbf{x}^{\mathsf{T}}\mathbf{z} + 1)^2$$

We have

$$\Phi(\mathbf{x})^{\mathsf{T}}\Phi(\mathbf{z}) = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2 + x_1 z_1 + x_2 z_2 + 1$$
$$= (x_1 z_1 + x_2 z_2 + 1)^2$$
$$= \mathcal{K}(\mathbf{x}, \mathbf{z})$$

Polynomial kernel

•
$$K(\mathbf{x},\mathbf{z}) = (\mathbf{x}^{\mathsf{T}}\mathbf{z} + 1)^{\mathcal{O}}$$

is called the polynomial kernel of degree p.

- For p=2 and D=1000
 - building explicitly the mappings $\Phi(\mathbf{x})$ and $\Phi(\mathbf{z})$ then calculating the inner product between $\Phi(\mathbf{x})$ and $\Phi(\mathbf{z})$ means
 - to calculate around 10⁶ new features, and
 - to take the inner product of two 10⁶-dimensional vectors
 - Using the kernel means
 - to take the inner product of two 10³-dimensional vectors
 - To take the square of the result
- In general, using the Kernel trick provides huge computational savings over explicit mapping!

Gaussian kernel

The Gaussian kernel

$$K(\mathbf{x},\mathbf{z}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{z}\|}{2\sigma^2}\right)$$

is widely used

- There is a hyperparameter (σ)
- In theory, it maps instances to an infinite-dimensional space
 - Quite difficult to write/compute $\Phi(\mathbf{x})$ explicitly...
- In practice, the dimension of the features space is the number of instances

Kernels and Mercer condition

- Kernels must be symmetric (obviously)
- Is there a mapping $\Phi(\mathbf{x})$ for any symmetric function $K(\mathbf{x},\mathbf{z})$? No.
- The SVM dual formulation requires calculation $K(\mathbf{x}^i, \mathbf{x}^j)$ for each pair of training instances. The array $G^{ij} = K(\mathbf{x}^i, \mathbf{x}^j)$ is called the Gram matrix
- Mercer condition: there is a feature space $\Phi(\mathbf{x})$ when the Kernel is such that G is always semi-positive definite
- How to build kernels? If $K_1(\mathbf{x},\mathbf{z})$ and $K_2(\mathbf{x},\mathbf{z})$ are kernels, and p(.) is a polynomial, then $aK_1(\mathbf{x},\mathbf{z}) + bK_2(\mathbf{x},\mathbf{z})$ $K_1(\mathbf{x},\mathbf{z})K_2(\mathbf{x},\mathbf{z})$ $p(K_1(\mathbf{x},\mathbf{z}))$ are kernels too $\exp(K_1(\mathbf{x},\mathbf{z}))$ etc.

Outline

- Introduction
- Large-margin classifier
 - Motivation
 - Optimization problem
- Soft margin classifier
 - Motivation
 - Optimization problem
- Mapping to feature space
 - Motivation
 - Dual SVM problem and the kernel trick
 - Kernels and Mercer's condition
- Other kernel methods
- Discussion and conclusions

Other types of kernel methods

- Multi-class SVMs
- SVMs that perform regression
- SVMs that perform clustering
- Kernels suitable for sequences of strings, or other specialized kernels
 - Very useful when instances x are not standard vectors: strings (genomics), functions (infinite-dimensional objects, time series), etc.
 - No need to have the instances \mathbf{x} : the knowledge of the "distance" kernel $K(\mathbf{x}^i, \mathbf{x}^j)$ for each pair of instances is sufficient!
- Basically all data analysis methods that can be expressed in terms of x^Tz can be "kernelized":
 - Principal Component Analysis
 - Partial Least Squares
 - Self-Organizing Maps
 - Etc.

Multi-class SVMs

- One-versus-all
 - Train n binary classifiers, one for each class against all other classes.
 - Predicted class is the class of the most confident classifier
- One-versus-one
 - Train n(n-1)/2 classifiers, each discriminating between a pair of classes
 - Several strategies for selecting the final classification based on the output of the binary SVMs
- Truly MultiClass SVMs
 - Generalize the SVM formulation to multiple categories

Variable selection with SVMs

- Recursive Feature Elimination
 - Train a linear SVM
 - Remove the variables with the lowest weights (those variables affect classification the least), e.g., remove the lowest 50% of variables
 - Retrain the SVM with remaining variables and repeat until classification is reduced
- Very successful
- Other formulations exist where minimizing the number of variables is folded into the optimization problem
- Similar algorithms exist for non-linear SVMs
- Some of the best and most efficient variable selection methods

Outline

- Introduction
- Large-margin classifier
 - Motivation
 - Optimization problem
- Soft margin classifier
 - Motivation
 - Optimization problem
- Mapping to feature space
 - Motivation
 - Dual SVM problem and the kernel trick
 - Kernels and Mercer's condition
- Other kernel methods
- Discussion and conclusions

Comparison with multi-layer perceptrons

MLP

- Hidden Layers map to moderate-dimensional spaces (higher or lower)
- Search space has multiple local minima
- Training is expensive
- Classification extremely efficient
- Requires number of hidden units and layers
- Very good accuracy in typical domains

SVM

- Kernel maps to a very-high dimensional space
- Search space has a unique minimum
- Training is extremely efficient
- Classification extremely efficient
- Requires kernel, kernel hyperparameters and regularization constant C
- Very good accuracy in typical domains
- Extremely robust

Why do SVM generalize?

- Mapping to a very high-dimensional space: risk of high number of parameters, thus overfitting?
- Not really:
 - Model in feature space is very constrained (strong bias in that space)
 - Number of parameters limited by # instances (solution has to be a linear combination of the training instances)
- Large theory on Structural Risk Minimization (Vapnik, ...) providing bounds on the error of an SVM
- Typically the error bounds too loose to be of practical use
 - Except, tentatively, to compare models (choice of kernel, hyperparameters, ...)

Conclusions

- SVMs express learning as a mathematical problem taking advantage of the rich theory in optimization
 - quadratic optimization problem
 - # unknowns = # data(advantageous in high-dimensional spaces, moderate sample size)
 - SVM includes many models (flexibility on the choice of the kernel)
- SVM uses the kernel trick to map indirectly to extremely high dimensional spaces
- SVMs are extremely successful, robust, efficient, and versatile while there are good theoretical indications as to why they generalize well

Sources and references

Sources

 Most of these slides come from (or are largely inspired by) MEDINFO 2004, tutorial on Machine Learning Methods for Decision Support and Discovery, by Constantin F. Aliferis & Ioannis Tsamardinos

Further readings

- An introduction to Support Vector Machines and other kernel-based learning methods, N. Cristianini, J. Shawe-Taylor, Cambridge University Press, 2002.
- Learning with Kernels, Support Vector Machines, Regularization,
 Optimization and Beyond, B. Schölkopf, A.J. Smola, MIT Press, 2002
- http://www.kernel-machines.org/tutorial.html
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 2(2), 1998.
- Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, Springer 2001