Multi-task Multi-kernel regression

Yucong Lin, Jiaheng Yin, Junwei Lu March 2021

1 Introduction

In this paper, we introduce a Multi-task Multi-kernel regression model on medical relationship extraction data.

2 Kernel Regression

2.1 Representer Theorem

For any L2-regularized linear model

$$min_w \frac{\lambda}{N} w^T w + \frac{1}{N} \sum_{n=1}^{N} err(y_n, w^T z_n)$$
 (1)

optimal

$$w^* = \sum_{n=1}^{N} \beta_n z_n \tag{2}$$

Proof by contradiction.

2.2 Kernel Logistic Regression

According to representer theorem, L2-regularized logistic regression

$$min_w \frac{\lambda}{N} w^T w + \frac{1}{N} \sum_{n=1}^N \log(1 + exp(-y_n w^T z_n))$$
(3)

has optimal solution

$$w^* = \sum_{n=1}^{N} \beta_n z_n \tag{4}$$

The problem can be converted to the optimization of β

$$min_{\beta} \frac{\lambda}{N} \sum_{m=1}^{N} \beta_{m} z_{m}^{T} \sum_{n=1}^{N} \beta_{n} z_{n} + \frac{1}{N} \sum_{n=1}^{N} \log(1 + exp(-y_{n} \sum_{m=1}^{N} \beta_{m} z_{m}^{T} z_{n}))$$
 (5)

We use z_i to represent the spatial transformation

$$x_i \to z_i = \Phi(x_i) \tag{6}$$

and kernel function is

$$K(x_i, x_j) = \Phi^T(x_i)\Phi(x_j) \tag{7}$$

The optimization problem can be represented as

$$min_{\beta} \frac{\lambda}{N} \sum_{m=1}^{N} \sum_{n=1}^{N} \beta_{m} \beta_{n} K(x_{m}, x_{n}) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + exp(-y_{n} \sum_{m=1}^{N} \beta_{m} K(x_{m}, x_{n})) \right)$$
(8)

3 Multi Kernel Regression

3.1 Heuristic Approaches

data-dependent:

$$k_{\eta}(x_i, x_j) = \sum_{m=1}^{P} \eta_m(x_i, x_j) k_m(x_i, x_j)$$
(9)

data-independent:

$$k_{\eta}(x_i, x_j) = \sum_{m=1}^{P} \eta_m k_m(x_i, x_j)$$
(10)

where we select the weights by looking at the performance values obtained by each kernel separately.

3.2 Kernel Alignment

The empirical alignment of two kernels is defined as:

$$A(K1, K2) = \frac{\langle K1, K2 \rangle_F}{\sqrt{\langle K1, K2 \rangle_F \langle K1, K2 \rangle_F}}$$
(11)

where

$$\langle K_1, K_2 \rangle_F = \sum_{i=1}^N \sum_{j=1}^N k_1(x_i \cdot x_j) k_2(x_i, x_j)$$
 (12)

We can select the kernel weights using alignment directly:

$$\eta_m = \frac{A(K_m, yy^T)}{\sum_{h=1}^P A(K_h, yy^T)}$$
(13)

where we call yy^T ideal kernel

$$A(K, yy^T) = \frac{\langle K, yy^T \rangle_F}{N\sqrt{\langle K, K \rangle_F}}$$

$$\tag{14}$$

In our model, we try to introduce cost functions of weights η

3.3 Approach of multi-kernel on multi-task

We can combine different tasks' cost functions in one equation, and add another term considering weights.

$$min_{\beta,\eta} \sum_{t=1}^{T} \left[Loss_{regression,t} + Loss_{\eta_t} \right] + Penalty_{\eta}$$
 (15)

$$Loss_{regression,t} = \frac{\lambda_t}{N_t} \sum_{m=1}^{N_t} \sum_{n=1}^{N_t} \beta_{tm} \beta_{tn} K_t(x_{tm}, x_{tn}) + \frac{1}{N_t} \sum_{n=1}^{N_t} \log \left(1 + exp(-y_n \sum_{m=1}^{N_t} \beta_m K_t(x_m, x_n)) \right)$$
(16)

Assume the probability of using m-th kernel given data D_i is

$$p(k_m|D_i) \propto exp\left[\frac{A(K_m, yy^T)}{\sum_{h=1}^P A(K_h, yy^T)}\right]$$
(17)

thus the likelihood is

$$L = (p(k_1|D))^{I(m=1)} (p(k_2|D))^{I(m=2)} \dots (p(k_P|D))^{I(m=P)}$$
(18)

Using η_m to replace I(m), and log it

$$loss_{i} = -\sum_{m=1}^{P} \eta_{m} \left[\frac{A(K_{m}, yy^{T})}{\sum_{h=1}^{P} A(K_{h}, yy^{T})} \right]$$
(19)

for T tasks, each task has data itself

$$loss_{\eta} = -\sum_{t}^{T} \sum_{m=1}^{P} \eta_{tm} \left[\frac{A(K_{tm}, y_{t}y_{t}^{T})}{\sum_{h=1}^{P} A(K_{th}, y_{t}y_{t}^{T})} \right]$$
(20)

Constraints on η are for t = 1, ..., T; i = 1, ..., P

$$\eta_{ti} \ge 0 \tag{21}$$

$$\sum_{i=1}^{P} \eta_{ti}^2 = 1 \tag{22}$$

3.4 With Joint Sparse Feature Selection

$$L_{penalty} = \lambda P_{\infty} = \lambda \sum_{i=1}^{P} \max_{t}(|\eta_{tj}|)$$
(23)

So the process is

Step 1: solve the optimization of loss of η

$$\eta = argmin_{\eta}(loss_{\eta} + L_{penalty}) \tag{24}$$

Step 2: using derived η to solve the optimization of loss of β : equation 16

3.5 Prediction

After solving problem above, we can derive β and η β_{ti} is the weight of i-th sample in task t. η_{tm} is the weight of m-th kernel in task t.

Given one sample x, and we know it belongs to task t, then we can predict its y:

$$y = \frac{1}{1 + exp(-w^T x)} = \frac{1}{1 + exp(-\sum_{i=1}^{N_t} \beta_{ti} \sum_{m=1}^{P} \eta_{tm} k_m(x, x_i))}$$
(25)

4 Experiments

4.1 Data

- positive samples: may cause, may be caused by, ddx, is a risk factor for, is a, diagnoses
- negative samples:
 - get other top frequent relations in umls.MRREL involving DISO/LAB
 - filter potential false negative relations (e.g. disease_may_have_cytogenetic_abnormality) and inverse relations (e.g. "finding_site_of", "has_finding_site")
- statistics
 - 294719 negative samples
 - 262814 positive samples
- filter with prefer terms (delete sample which prefer terms can not be found)
 - 294718 negative samples
 - 262486 positive samples

4.2 Experiment Setup

From raw data, we have entity pairs in 6 types of relations. We view each relation as a task in our model.

Figure 1: process of dealing data

4.3 Models

- four models: single-task single-kernel, single-task multi-kernel, multi-task single-kernel, multi-task multi-kernel (our model)
- we do 5-fold cross validation for each model, and calculate the average performance on valid-set.
 - single-task single-kernel: logistic regression training on each relation. Calculate the average on different relations.
 - single-task multi-kernel: logistic kernel regression training on each relation. Calculate the average on different relations.
 - multi-task single-kernel: multi-task logistic regression training on all relations.
 - multi-task multi-kernel: our model, training on all relations.

4.3.1 Results

For several datasets we randomly selected, the 5-fold cross validation results are as followed.

fold	1	2	3	4	5	Average
Single-Task Single-Kernel	0.9329	0.9413	0.9438	0.9250	0.9371	0.9360
Single-Task Multi-Kernel	0.9296	0.9483	0.9392	0.9383	0.9479	0.9407
Multi-Task Single-Kernel	0.9271	0.9600	0.9292	0.9196	0.9767	0.9425
Multi-Task Multi-Kernel	0.9350	0.9533	0.9450	0.9504	0.9513	0.9470
	'	'		!		
fold	1	2	3	4	5	Average
Single-Task Single-Kernel	0.9358	0.9154	0.8638	0.9125	0.8942	0.9043
Single-Task Multi-Kernel	0.9517	0.9292	0.9129	0.9254	0.8942	0.9227
Multi-Task Single-Kernel	0.9358	0.9229	0.9250	0.9288	0.9375	0.9300
Multi-Task Multi-Kernel	0.9633	0.9363	0.9129	0.9329	0.9171	0.9325