Лабораторная работа 1 Сетевые технологии

Чигладзе М.В.

29 мая 2003

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Чигладзе Майя Владиславовна
- студент РУДН направления Прикладная информатика
- заместитель ОСК профсоюза РУДН
- волонтер университета и Москвы
- [1132239399@pfur.ru]
- https://github.com/LaMeru

Вводная часть

Цели

Изучение методов кодирования и модуляции сигналов с помощью высокоуровнего языка программирования Octave. Определение спектра и параметров сигнала. Демонстрация принципов модуляции сигнала на примере аналоговой амплитудной модуляции. Исследование свойства самосинхронизации сигнала.

Актуальность

Несмотря на развитие цифровых методов, основы кодирования и модуляции остаются важными для понимания работы современных систем связи.

Материалы и методы

Методы исследования:

В ходе выполнения данной лабораторной работы будут использованы следующие материалы и методы:

- Кодирование сигналов
- Модуляция сигналов
- Спектральный анализ (преобразование Фурье)
- Генерация сигналов
- Визуализация сигналов
- Моделирование
- Амплитудная модуляция (АМ):

Выполнение лабораторной работы

Построение графиков в Octave

Рис. 1.3.1.2.

Рис. 1.3.1.1. Оконный интерфейс

Рис. 1.3.1.2. Создание файла

Построение графиков в Octave

Рис. 1.3.1.3. Построение на интервале

Рис. 1.3.1.4. Сценарий на выполнение

Построение графиков в Octave

Рис. 1.3.1.5. Два графика

Разложение импульсного сигнала в частичный ряд Фурье

Рис. 1.3.2.4. Сабплот и плот

Рис. 1.3.2.5. Экспорт

Разложение импульсного сигнала в частичный ряд Фурье

Рис. 1.3.2.4. Сабплот и плот

Определение спектра и параметров сигнала

Рис. 1.3.3.1. Новый сценарий

Рис. 1.3.3.4. График сигналов

Определение спектра и параметров сигнала

Рис. 1.3.3.5. Спектр сигналов

Рис. 1.3.3.6. График спектра

Определение спектра и параметров сигнала

Рис. 1.3.3.7. Спектр суммы рассмотренныз сигналов

Амплитудная модуляция

Рис. 1.3.4.1. Новый каталог

Амплитудная модуляция

Рис. 1.3.4.2. Спектр

Кодирование сигнала. Исследование свойства самосинхронизации

CHIBITO TO

Рис. 1.3.5.1. Файлы в каталоге

Рис. 1.3.5.2. Сигнал

Кодирование сигнала. Исследование свойства самосинхронизации

Рис. 1.3.5.3. Входные последовательности

Рис. 1.3.5.4. График сигнала

Кодирование сигнала. Исследование свойства самосинхронизации

Name	Size	Type
ami.m	165 байты	Matlab source
bipolar	128 байты	Matlab source
bipolarr	149 байты	Matlab source
calcspe	340 байты	Matlab source
diffman	208 байты	Matlab source
main.m	3,34 KiB	Matlab source
manche	204 байты	Matlab source
mapto	115 байты	Matlab source
unipola	124 байты	Matlab source

CHIBITO TO

Рис. 1.3.5.5. Добавляем код

Рис. 1.3.5.7. Создание всех ф

Результаты

Результаты

В ходе выполнения лабораторной работы были приобретены практические навыки изучения методов кодирования и модуляции сигналов с помощью высоко- уровнего языка программирования Octave. Определение спектра и параметров сигнала. Демонстрация принципов модуляции сигнала на примере аналоговой амплитудной модуляции. Исследование свойства самосинхронизации сигнала.