Physik Cheatsheet

Physik Cheatsheet

```
Wärme
   Wärme aus Reibung
Mechanik
   Kräfte
       Kräftegleichgewicht
    Drehmoment
    Reibung
       Abhang & Reibung
Geschwindigkeit
    Beschleunigung
   Strecke
    Zeit
    2. Newtonsches Axiom
Arbeit
   Leistung
   Wirkungsgrad
   Hubarbeit/Potentielle Energie
    Spannarbeit/Federenergie
    Beschleunigungsarbeit/Kinetische Energie
Horizontaler Wurf
    Bezugssystem nach unten
    Bezugssystem nach oben
Kreisbewegung
       Harmonische Schwingung
       Federpendel
```

Wärme

Q: Wärmeenergie [J]

Acknowledgements

 $\Delta Q = mc \cdot \Delta T$

Wärme aus Reibung

 $F_R \cdot s = mc \cdot \Delta T$

Mechanik

Kräfte

Einheit: [N] Formelzeichen: F

Kräftegleichgewicht

$$ec{F}_{res} = \overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 = 0$$

Drehmoment

Einheit: [Nm] Formelzeichen: M

 M_r = Drehmoment nach rechts

 M_l = Drehmoment nach links

$$egin{aligned} M_r &= M_l \ M_r &= F_1 * l_1 + F_2 * l_2 \cdots \ M_l &= F_3 * l_3 + F_4 * l_4 \cdots \end{aligned}$$

Reibung

 F_R : (maximal mögliche) Reibungskraft [N]

 F_N : Normalkraft [N] (Reaktionskraft)

 μ : Reibungskoeffizient

Solange keine Kraft auf den Körper drückt, gilt $F_N=F_G$

$$\mu = \frac{F_R}{F}$$

$$F_R = \mu \cdot F_N$$

Abhang & Reibung

 F_H : Hangabtriebskraft [N]

 $F_{G\perp}$: Kraft senkrecht zur Ablage [N]

$$egin{aligned} F_H &= F_G \cdot \sin(lpha) \ F_N &= F_{G \perp} = F_G \cdot \cos(lpha) \ F_R &= \mu \cdot F_N \ F_R &= \mu \cdot F_G \cdot \cos(lpha) \end{aligned}$$

Wenn $F_h=F_R$ gilt, gilt auch

$$\begin{split} FG \cdot \sin(\alpha) &= \mu \cdot F_G \cdot \cos(\alpha) \\ \sin(\alpha) &= \mu \cdot \cos(\alpha) \\ \mu &= \frac{\sin(\alpha)}{\cos(\alpha)} \\ \mu &= \tan(\alpha) \end{split}$$

Geschwindigkeit

a: Beschleunigung $\left[\frac{m}{s^2}\right]$

v: Geschwindigkeit [$\frac{m}{s}$]

t: Zeit [*s*]

s: Strecke [m]

Mit Anfangsgeschwindigkeit

 v_0 : Anfangsgeschwindigkeit $[\frac{m}{s}]$

$$v=\sqrt{v_0^2+2as} \ v(t)=at+v_0$$

Ohne Anfangsgeschwindigkeit

$$v=at \ v=\sqrt{2as} \ v=\sqrt{v_0^2+2as} \ v=at$$

Beschleunigung

$$a = \frac{\Delta v}{\Delta t}$$

Strecke

$$s=v\cdot t$$
 $s=rac{1}{2}at^2$ $s(t)=s_0+v_0\cdot t+rac{1}{2}at^2$

Zeit

$$t=rac{s}{v}$$
 $t=rac{s}{\overline{v}}=rac{2s}{v1+v2}$

2. Newtonsches Axiom

$$F_{Res} = ma$$

Arbeit

W: Arbeit/Energie [Nm/J/Ws]

Arbeit = Kraft (in Wegrichtung) * Strecke

$$W = F \cdot s$$

Leistung

P: Leistung [W]

Leistung = Kraft (in Wegrichtung) * Geschwindigkeit (* Reibungskoeffizient)

$$P = \frac{\Delta E}{\Delta t}$$

$$P = F \cdot v$$

$$P = F \cdot v \cdot \mu$$

Wirkungsgrad

Der Wirkungsgrad stellt die Übersetzung von aufgewandter Energie zu gebrauchter Energie dar. Er ist ein Mass der Effizienz.

$$\eta = rac{E_{Nutzen}}{E_{Aufwand}}$$

Hubarbeit/Potentielle Energie

$$W_H = F \cdot s = m \cdot g \cdot s = E_{pot}$$

Spannarbeit/Federenergie

D: Federkonstante $\left[\frac{N}{m}\right]$

$$F_F = D \cdot \Delta x$$
 $W_S = rac{1}{2} D \cdot \Delta x^2 = E_F$

Beschleunigungsarbeit/Kinetische Energie

$$W_B = rac{1}{2} m \cdot v^2 = E_{kin}$$

Horizontaler Wurf

OHNE Berücksichtigung des Luftwiderstandes.

 t_F : Fallzeit [s]

$$h=rac{1}{2}g\cdot t^2=>t_F=\sqrt{rac{2h}{g}}$$
 $x_W=v_0\cdot t_F$ $v=\sqrt{v_0^2+v_Z^2}$

Bezugssystem nach unten

$$h(t)=rac{1}{2}gt^2$$
 $h(t)=v_0t+rac{1}{2}gt^2$ $v=\sqrt{2gh}$ $v=\sqrt{v_0^2+2gh}$

$$h=\overline{v}t \ t_F=\sqrt{rac{2h}{g}}$$

$$egin{aligned} v(t) &= gt \ v(t) &= v_0 + gt \end{aligned}$$

Bezugssystem nach oben

$$z(t) = z_0 - rac{1}{2}gt^2$$
 $z(t) = z_0 + v_0t - rac{1}{2}gt^2$ $v = \sqrt{2gh}$ $v = \sqrt{v_0^2 - 2gh}$

$$v(t) = -gt$$
$$v(t) = v_0 - gt$$

Kreisbewegung

- ω : Winkelgeschwindigkeit/Kreisfrequenz $\left[\frac{1}{s}\right]$
- v: Bahngeschwindigkeit $[\frac{m}{s}]$
- r: Bahnradius
- U: Umfang [m]
- T: Periodendauer [s]
- f: Frequenz der Umdrehung $\left[\frac{1}{s}\right]$

$$\omega = \frac{\Delta \phi}{\Delta t} = \frac{2\pi}{T} = 2\pi \cdot f$$

$$v = \frac{U}{T} = \frac{2\pi \cdot r}{T} = \omega \cdot r$$

 $\it a_z$: Anzugsbeschleunigung zum Zentrum

 F_z : Anzugskraft zum Zentrum (= F_R)

 \hat{y} / \hat{x} : Amplitude

y / x: (momentane) Auslenkung

$$a_z = rac{2\pi \cdot v}{T} = \omega \cdot v = \omega^2 \cdot r = rac{v^2}{r}$$
 $\phi = \omega \cdot t$ $F_z = m \cdot a_z$

Harmonische Schwingung

$$y = \hat{y} \cdot sin(\omega \cdot t)$$

 $\hat{v} = \omega \cdot \hat{y}$
 $\hat{a} = \omega \cdot \hat{v} = \omega^2 \cdot \hat{y}$

Federpendel

$$T=2\pi\sqrt{rac{m}{D}}$$
 $T=2\pi\sqrt{rac{l}{a}}$

Acknowledgements

Author(s): d20cay

Last updated: See changelog