Student Online Teaching Advice Notice

The materials and content presented within this session are intended solely for use in a context of teaching and learning at Trinity.

Any session recorded for subsequent review is made available solely for the purpose of enhancing student learning.

Students should not edit or modify the recording in any way, nor disseminate it for use outside of a context of teaching and learning at Trinity.

Please be mindful of your physical environment and conscious of what may be captured by the device camera and microphone during videoconferencing calls.

Recorded materials will be handled in compliance with Trinity's statutory duties under the Universities Act, 1997 and in accordance with the University's policies and procedures.

Further information on data protection and best practice when using videoconferencing software is available at https://www.tcd.ie/info_compliance/data-protection/.

© Trinity College Dublin 2020

5 Functions

Task: Define a function rigorously and make sense of terminology associated to functions.

Definition: Let A, B be sets. A function $f: A \to B$ is a rule that assigns to every element of A one and only one element of B, i.e. $\forall x \in A \exists ! y \in B$ s.t. f(x) = y. A is called the domain of f and g is called the codomain.

Examples:

1.
$$A = \{1, 3, 7\}$$

 $B = \{1, 2, 5\}$

Is a function.

Not a function; 3 sent to both 1 and 5

Is a function.

2. $A=B=\mathbb{R}$ $F:\mathbb{R}\to\mathbb{R}$ given by f(x)=x is called the identity function.

Definition: Let A, B be sets, and let $f: A \to B$ be a function. The range of f denoted by f(A) is the subset of B defined by $f(A) = \{y \in B \mid \exists x \in A \text{ s.t. } f(x) = y\}.$

Definition: Let A be a set. A <u>Boolean function</u> on A is a function $f: A \to \{T, F\}$, which has A as its domain and the set of truth values $\{T, F\}$ as is codomain. $f: A \to \{T, F\}$ thus assigns truth values to the elements of A.

Function are often represented by graphs. If $f: A \to B$ is a function, the graph of f denoted $\Gamma(f)$ is the subset of the Cartesian product of the domain with the codomain $A \times B$ given by $\{(x, f(x)) \mid x \in A\}$.

Q: Is it possible to obtain every subset of $A \times B$ as the graph of some function?

A: No! For $f: A \to B$ to be a function $\forall x \in A \quad \exists ! y \in B \text{ s.t. } f(x) = y$, so for $\Gamma \subseteq A \times B$ to be the graph of some function, Γ must satisfy that $\forall x \in A \quad \exists ! y \in B \text{ s.t. } (x, y) \in \Gamma$. Then we can define f by letting

NB For the usual set-up of a function $f: \mathbb{R} \to \mathbb{R}$, this observation amounts to the "vertical line test," which you have seen before coming to university.

5.1 Composition of Functions

y = f(x).

Tools. Understand the natural exerction that allows us to combine functions

Example:

$$f: \mathbb{R} \to \mathbb{R} \qquad f(x) = 2x$$

$$g: \mathbb{R} \to \mathbb{R} \qquad g(x) = \cos x$$

$$g \circ f(x) = g(f(x)) = g(2x) = \cos(2x)$$

$$f \circ g(x) = f(g(x)) = f(\cos x) = 2(\cos x) = 2\cos x$$