

Fraternité

TRAITEMENT D'IMAGES

Partie Introductive

Frédéric Cointault
Institut Agro Dijon
Responsable Equipe ATIP
UMR Agroécologie
26 Bd Dr Petitjean
21000 Dijon
+33 3 80 77 27 54
frederic.cointault@agrosupdijon.fr

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
 - VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

<u>Détection de</u> <u>mouvement</u>: différence avec le fond

Même si la différence d'images n'est pas la méthode la plus complète pour l'analyse du mouvement, elle est très rapide pour la détection simple du mouvement

Applications diverses

- Détection de personnes
- Interaction homme-machine
 - Jeux vidéo web cam
- Détection de composantes sur un convoyeur
- Compter les voitures sur une route

- Cas les plus simples
 - Utilisation d'un fond de couleur uniforme
 - Un fond quelconque mais statique

Application en réalité virtuelle

- Projection d'une personne dans un univers virtuel
 - Réalité virtuelle
 - Obtenu par soustraction d'arrière-plan

<u>Détection de</u> <u>mouvement</u>: soustraction d'arrière-plan

- Si on possède une image de l'arrière-plan (AP), on soustrait l'image courante de cette image pour isoler l'objet en mouvement
 - L'image de l'arrière-plan ne varie pas en fonction du temps
- Algorithme de détection avec image d'arrière-plan :

```
0 : |I(x,y) - I<sub>AP</sub>(x,y)| < Seuil</li>
```

- 1: |I(x,y) I_{AP}(x,y)| >= Seuil
- On peut mettre à jour l'image d'arrière-plan
 - Pour tenir compte des variations d'éclairage
 - Variation temporelle de l'image (objets déplacés, etc.)

<u>Détection de</u> <u>mouvement</u>: construction d'arrière-plan

personne qui se déplace ?

Comment faire si on n'a pas l'image d'arrière-plan pour faire la détection ?

<u>Détection de</u> <u>mouvement</u>: construction d'arrière-plan

Séquence d'images

Tableau des valeurs pour chaque pixel

$$p(x1,y1) = [210, 118, ..., 180]$$

 $p(x2,y2) = [87, 59, ..., 86]$
...
 $p(x_n,y_n) = [200, 200, ..., 189]$

Arrière plan Obtenu par: Médiane, Moyenne récursive, ...

1- Moyenne temporelle récursive:

<u>Détection de</u> <u>mouvement</u>: construction d'arrière-plan

$$M_t = \alpha I_t + (1 - \alpha) M_{t-1}$$

= $\alpha (I_t - M_{t-1}) + M_{t-1}$

$$D_t = |\bar{M_t} - I_t|$$

avec α compris entre 0 et 1

2- Moyenne temporelle sigma-delta:

<u>Détection de</u> <u>mouvement</u>: construction d'arrière-plan

```
Pour chaque trame t
pour chaque pixel x:
\Delta_t(x) = M_t(x) - I_t(x)
(1)
```

Initialisation

pour chaque pixel x:

$$M_0(x) = I_0(x)$$

Pour chaque trame t

pour chaque pixel x:

if
$$\Delta_t(x) < 0$$
, $M_t(x) = M_{t-1}(x) + 1$

if
$$\Delta_t(x) > 0$$
, $M_t(x) = M_{t-1}(x) - 1$

(2)

<u>Détection de</u> <u>mouvement</u>: posttraitement

Après la détection, il reste encore du bruit, qu'il faut nettoyer pour obtenir l'objet qui nous intéresse

Cours L3 ESIREM

11

Détection de mouvement : post-traitement

Utilisation des opérateurs morphologiques comme l'érosion et la dilatation

Erosion 3x3

<u>Détection de</u> <u>mouvement</u>: post-

traitement

Localisation et suivi de la forme détectée

Calcul du centre de gravité

Flot optique: mesure de décalages faibles entre images

Estimation du mouvement

Flot optique : exemples

Marche

Mouvement Aorte

Considérons deux images $I_1(x,y)$ et $I_2(x,y)$ avec une translation de composantes v_x et v_y entre les deux images $I_2(x,y) = I_1(x - v_x, y - v_y)$

Estimation du mouvement

En considérant une faible valeur de translation, on peut utiliser le développement de Taylor:

$$I_2(x,y)\cong I_1(x,y)-v_x\,rac{\partial I_1(x,y)}{\partial x}-v_yrac{\partial I_1(x,y)}{\partial y} \ I_1(x,y)-I_2(x,y)\cong v_x\,rac{\partial I_1(x,y)}{\partial x}+v_yrac{\partial I_1(x,y)}{\partial y} \ I_t(x,y)\cong
abla I_1(x,y)v \ ext{Avec }
abla I_1(x,y)=\left[rac{\partial I_1(x,y)}{\partial x},rac{\partial I_1(x,y)}{\partial y}
ight] ext{et }
ext{V}=\left[rac{v_x}{v_y}
ight]$$

Estimation du mouvement

UNE SOLUTION: LUKAS-KANADE

Hypothèse : même translation pour tous les pixels

- ⇒unique vecteur v pour tous les pixels.
- ⇒construction d'un système surdéterminé de type Av=b

$$A = \begin{pmatrix} \frac{\partial I_1}{\partial x}(p_1) & \frac{\partial I_1}{\partial y}(p_1) \\ \vdots & \vdots \\ \frac{\partial I_1}{\partial x}(p_n) & \frac{\partial I_1}{\partial y}(p_n) \end{pmatrix}, \mathbf{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}, b = -\begin{pmatrix} \frac{\partial I_1}{\partial t}(p_1) \\ \vdots \\ \frac{\partial I_1}{\partial t}(p_n) \end{pmatrix}$$

Avec p_i le ième pixel de l'image et n le nombre de pixels de l'image.

Résolution du problème par moindres-carrés : $A^TAy = A^Tb$

17

Estimation du mouvement

UNE SOLUTION: LUKAS-KANADE

$$A^{T}A = \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{bmatrix} \text{ et } A^{T}b = \begin{bmatrix} \sum I_{t}I_{x} \\ \sum I_{t}I_{y} \end{bmatrix}$$

$$\text{Avec } I_{x} = \frac{\partial I_{1}}{\partial x}, I_{y} = \frac{\partial I_{1}}{\partial y}, I_{t} = \frac{\partial I_{1}}{\partial t} = I_{2} - I_{1}$$

Solution : la matrice A^TA doit être inversible. La solution est alors : $(A^TA)^{-1}A^Tb$.

Soit
$$\widehat{v_x} = \frac{1}{Det} \left(\sum I_t I_x \sum I_y^2 - \sum I_t I_y \sum I_y I_x \right)$$

$$\widehat{v_y} = \frac{1}{Det} \left(\sum I_t I_y \sum I_x^2 - \sum I_t I_x \sum I_y I_x \right)$$

Avec
$$Det = \sum I_y^2 \sum I_x^2 - \left(\sum I_x I_y\right)^2$$

CALCUL DES GRADIENTS SPATIAUX

Différence finie à droite

$$I_x(x,y) = I(x+1,y) - I(x,y)$$

 $I_y(x,y) = I(x,y+1) - I(x,y)$

I(x,y)	I(x+1,y)
I(x,y+1)	I(x+1,y+1)

Estimation du mouvement

On peut également utiliser :

$$I_x(x,y) = \frac{\left(I(x+1,y) - I(x,y)\right) + \left(I(x+1,y+1) - I(x,y+1)\right)}{2}$$

$$I_y(x,y) = \frac{\left(I(x,y+1) - I(x,y)\right) + \left(I(x+1,y+1) - I(x+1,y)\right)}{2}$$

Besoin de recalage d'un demi-pixel :

$$I_1(x,y) \leftarrow I_1(x+0.5,y+0.5)$$
 avec une interpolation bilinéaire
Soit $I_1(x,y) \leftarrow \frac{I_1(x,y) + I_1(x+1,y) + I_1(x,y+1) + I_1(x+1,y+1)}{4}$

On réalise ceci sur l1 et l2.

Implementing Lucas Kanade Method

for each point, calculate I x, I y, I t

Estimation du mouvement

```
Ix m = conv2(im1,[-1 1; -1 1], 'valid'); % partial on x
Iy_m = conv2(im1, [-1 -1; 1 1], 'valid'); % partial on y
It_m = conv2(im1, ones(2), 'valid') + conv2(im2, -ones(2), 'valid');
u = zeros(length(C),1);
v = zeros(length(C),1);
% within window ww * ww
for k = 1:length(C(:,2))
   i = C(k, 2);
   j = C(k, 1);
     Ix = Ix m(i-w:i+w, j-w:j+w);
     Iy = Iy m(i-w:i+w, j-w:j+w);
     It = It m(i-w:i+w, j-w:j+w);
     Ix = Ix(:);
     Iy = Iy(:);
     b = -It(:); % get b here
     A = [Ix Iy]; % get A here
     nu = pinv(A)*b;
      u(k)=nu(1);
     v(k)=nu(2);
end;
```