世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 田02M 7/537, 7/5387, 田02P 7/63

A1 C

(11) 国際公開番号

W098/42067

(43) 国際公開日

1998年9月24日(24.09.98)

(21) 国際出願番号

PCT/JP97/00909

(22) 国際出願日

1997年3月19日(19.03.97)

(71) 出願人 (米国を除くすべての指定国について) 株式会社 日立製作所(HITACHI, LTD.)[JP/JP]

〒101 東京都千代田区神田駿河台四丁目6番地 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

大橋敬典(OHASHI, Hironori)[JP/JP]

〒274 千葉県船橋市習志野台5丁目39番6棟303号 Chiba, (JP)

高瀬真人(TAKASE, Makoto)[JP/JP]

〒274 千葉県船橋市習志野台5丁目39番6棟404号 Chiba, (JP)

富田浩之(TOMITA, Hiroyuki)[JP/JP]

〒274 千葉県船橋市習志野台8丁目1番1-304号 Chiba, (JP)

石田誠司(ISHIDA, Seiji)[JP/JP]

〒274 千葉県船橋市習志野台5丁目39番6棟103号 Chiba, (JP)

杉浦正樹(SUGIURA, Masaki)[JP/JP]

〒274 千葉県船橋市習志野台5丁目38番25号 Chiba, (JP)

(74) 代理人

弁理士 小川勝男(OGAWA, Katsuo)

〒100 東京都千代田区丸の内一丁目5番1号

株式会社 日立製作所内 Tokyo, (JP)

(81) 指定国 CN, JP, KR, SG, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54)Title: POWER CONVERTER, AC MOTOR CONTROLLER AND THEIR CONTROL METHOD

(54)発明の名称 電力変換装置、交流モータ制御装置、及びそれらの制御方法

(57) Abstract

An automatic on-delay compensation value regulator, and a low cost and high precision controller are provided. An on-delay compensation value calculator (35) is provided in a control circuit (3). The current of an AC motor (1) and the voltage of a power converter (2) are measured, and the carrier frequency is varied to calculate an on-delay compensation value. A Fourier converter is built in the on-delay value calculator (35). The on-delay compensation compensation value is varied so as to minimize the harmonics and ripples in the current to obtain a proper on-delay compensation value. As the deviation of the on-delay compensation value which is caused by the variation of the power converter itself can be controlled automatically, a torque ripple caused by the variation of the on-delay compensation value is prevented and a high precision controller is realized. Further, as the allowance of the variation of the hardware is increased, a low cost controller is realized.

2 ... u-phase, v-phase and w-phase

31 ... arithmetic controller

32 ... PWM pattern generator

33 ... on-delay compensator

34 ... on-delay generator

35a ... on-delay compensation value calculator

311 ... current controller

本発明は、自動オンディレイ補償値の調整装置について記し、安価で高精度な制御装置を提供することにある。

本発明は制御回路3内にオンディレイ補償値演算器35を設け、交流モータ1の電流と電力変換器2の電圧を検出し、キャリヤ周波数を変化させてオンディレイ補償値を演算する。また、オンディレイ補償値演算器35内にフーリエ変換器を内蔵させ電流の高調波や脈動を最小にするようにオンディレイ補償値を変化させて適正なオンディレイ補償値を求めるようにした。本発明によれば電力変換器個体のバラツキによるオンディレイ補償値のずれを自動調整するので、オンディレイ補償値のずれによるトルクリプルを防止でき、高精度な制御装置を実現できる。また、自動調整により、ハードウェアのバラツキの許容範囲が増えるため、安価な制御装置を実現できる効果もある。

明細書

電力変換装置、交流モータ制御装置、及びそれらの制御方法

技術分野

本発明はスイッチング素子を用いる電力変換器を用いて交流モータを 5 駆動する交流モータ制御装置に関する。

また、本発明はスイッチング素子を用いる電力変換器を用いた全ての制御装置に適用可能で、例えば、PWMコンバータなどの電力変換器などにも用いることもできる。

10 背景技術

15

20

説明の都合上、以降は電力変換器の負荷としてモータを例に取り、説明する。

スイッチング素子を用いて可変周波数の電源に電力変換し、交流モータ1を速度制御する制御装置として第12図に示す3相の電力変換器2が一般的である。第12図において、3は制御回路、CTは出力電流を検出する電流検出器である。この電力変換器は出力相毎にスイッチング素子の上下アームを直列に、いわゆる三相ブリッジに接続し、排他的にスイッチングさせることを特徴としている。スイッチング素子にはIGBTなどの半導体スイッチング素子が使用されオン/オフの動作には遅れがあるため、各相の上下アームの一方のスイッチング素子のオフ信号に対し他方のスイッチング信号のオン信号を遅らせるオンディレイ期間を付けてスイッチングさせないと、上下アームのスイッチング素子がアーム短絡を起こし、スイッチング素子が破壊する。このため、制御回路3にはモータ電流などの制御演算器31から電圧指令v*をPWMパタ

10

15

20

25

...

ーン発生器32に出力し、スイッチング素子がオフする期間だけオン信号を遅らせるオンディレイ発生器34が必要になる。

このオンディレイはモータなどの制御装置から見ると、出力電流の方向などに対して非線形なもので、第10図に示すように出力電流(線電流 iu の例を示しているが、i v, i w も同様)を歪ませ、制御特性を劣化させ、トルクリプルなどの発生要因となる(第10図は、上段に出力電流の基本被Y1と、第5次高調被Y5、第7次高調被Y7に分けて描いてあり、中段は歪んだ出力電流i u を示し、下段は後述のように電流をd-q変換して直流表示したi dを示している)。このため、最近ではオンディレイ発生器34に加え更に第12図のオンディレイ補償器33を設け、このオンディレイによる影響を無くす手法が取られる。このオンディレイ補償器33は、PWMパターン発生器32から入力される信号のオン時間T on に出力電流i (iu,iv,iw) の流れる方向(極性sgn(i))を考慮したオンディレイ補償値Tdを加算し、次のようにオンディレイ分を補償するものである。

 $T'on \leftarrow T on + sgn(i) \cdot T d$

しかし、このオンディレイ補償値Tdは、スイッチング素子にオン信号を入力してから実際にオンするまでの時間をton、オフ信号を入力して実際にオフするまでの時間をtoff、上下アームのスイッチング素子にPWMパターン発生器32から入力される信号が同時にオフしている時間をオンディレイ時間Tdeadとすると

 $T d = T dead + t on - t off \cdot \cdot \cdot \cdot \cdot (1)$

となる。これらT dead, t on, t off の時間はスイッチング素子、制御回路構成部品等のハードウェアの個々の特性によりバラツくため、T d もバラツキを生じる。従ってオンディレイ補償値T d を特定の値にしてオンディレイ補償を行っても、T d がバラツいた分だけ補償することがで

きない。

5

20

前述のようにハードウェアにより T d が電力変換器毎にバラツくため、モータ制御装置として見ると電流が歪み、上記のオンディレイ発生器 3 4、オンディレイ補償器 3 3 だけではまだ不十分で、トルクリプルを発生する。これを少しでも防止するため、従来では(1)式の各項に関するハードウェア(フォトカプラなど)に選定品を使ったり、人手により電力変換器個別に調整が必要であった。

本発明の目的はオンディレイ補償値Tdを自動的に制御装置が調整し、安価な制御装置を提供することにある。また、第2の目的はこの自動調10整により、制御装置のトルクリプルなどを抑え、高精度な制御装置を提供することにある。

発明の開示・

第1、2の目的のため、電流、電圧などを入力して、自動的にオンデ 15 ィレイ補償値Tdを調整するオンディレイ補償値演算器35を設け、外 部からのオンディレイ補償値演算開始信号により、オンディレイ補償値 演算を開始するようにした。

オンディレイ補償値演算器 3 5 により、電流、電圧を検出し、オンディレイ補償による電流歪みなどの特徴量を抽出し、これによりオンディレイ補償値を演算する。

図面の簡単な説明

- 第1図は、本発明の第1の実施例の制御ブロック図である。
- 第2図は、本発明の第1の実施例の制御フローチャートである。
- 25 第3図は、本発明の第1の実施例の動作原理を説明するための電流制 御器とキャリヤ周波数の関係を示している。

第4図は、本発明の第2の実施例の制御ブロック図である。

第5図は、オンディレイ未補償時の電流波形である。

第6図は、本発明の第2の実施例の動作原理を説明するための高調波 とオンディレイ補償値の関係を示している。

5 第7図は、本発明の第2の実施例の制御フローチャートの一実施例で ある。

第8図は、本発明の第2の実施例の制御フローチャートの他の実施例である。

第9図は、本発明の第3の実施例の制御ブロック図である。

10 第10図は、オンディレイ未補償時の線電流波形の例である。

第11図は、本発明の第3の実施例の制御フローチャートである。

第12図は、従来の制御装置の制御ブロック図である

発明を実施するための最良の形態

15 以下、本発明の第1の実施例を第1図により説明する。第1図は交流 モータ1を電力変換器2により駆動し、制御回路3で制御する装置の制 御ブロック図を示したものである。制御回路3は速度制御、電流制御、 出力電圧と出力周波数の比率制御(以下V/f制御)、励磁成分とトル ク成分をベクトル分解して制御するいわゆるベクトル制御などを行う制 20 御演算器31、電力変換器2のゲート信号を作るためのPWMパターン 発生器32、オンディレイ補償器33、オンディレイ発生器34、及び 本発明によるオンディレイ補償値演算器35aなどから成っている。C Tは出力電流を検出する電流検出器である。

制御演算器31はPWMパターン発生器32に電圧指令v*を与え、 25 PWMパターン発生器32は良く知られた三角波比較PWMなどにより、 電力変換器2のスイッチング素子(IGBTなどの半導体スイッチング

15

20

素子)のオン時間Tonを出力する。これにより、直流電力Vdcは交流電力に変換されて交流モータ1が回転駆動される。なお直流電源Vdc は交流を整流して得られるようにしても良いことは勿論である。

第12図で前述したのと同様に、本実施例においても第1図に示すように電力変換器2はU相、V相、W相の各スイッチング素子を上下アーム直列に接続し、排他的にスイッチングさせる。また、オンディレイ発生器34はスイッチング素子のアーム短絡を防ぐために備えられる。更にオンディレイ補償器33が、電流の歪抑制のために設けられる。

本実施例は、更にオンディレイ補償器33で補償できないオンディレ 10 イ補償値Tdのハードウェアによるバラツキを、オンディレイ補償値演 算器35aにより、自動計測し、ハードウェアによるバラツキを解消し、 安価で高精度な制御装置を提供するものである。

まず、本実施例のオンディレイ補償値演算器 3 5 a の動作を説明し、その後にその原理について述べる。本実施例のオンディレイ補償値演算器 3 5 a は制御装置の外部からオンディレイ補償値演算開始信号 Std が与えられると第 2 図に示すようなフローチャートで動作を開始する(STEP100~STEP103)。交流モータ1を回転させないようにするため、まず、オンディレイ補償値演算器 3 5 a は u - v 相間に直流電流を流すように制御演算器 3 1 内の電流制御器 3 1 1 に直流電流指令 I * を出力し、PWMパターン発生器 3 2 に電力変換器 2 のスイッチング素子のスイッチング周波数を決めるキャリヤ周波数 f 1 を出力する。電流制御器 3 1 1 は例えば良く知られた P I (比例積分)制御器のようなもので十分である(STEP100a)。

次にオンディレイ補償値演算器 3 5 a はこの電流制御器 3 1 1 の電流 25 制御出力 v * が安定したのを見計らい、この電流制御出力 v * を u - v 相 間の電圧指令 v _* _, とする(STEP100b)。同様に前述したキャリヤ周波

15

20

25

数 f 1 とは異なった周波数 f 2 、直流電流指令 I * で電流制御し (STEP100c)、電流制御出力 v * が安定したのを見計らい、この電流制御出力 v * を u - v 相間の電圧指令 v $_2$ * $_{uv}$ とする (STEP100d)。

このような一連の動作をv-w相間(STEP101)、w-u相間(STEP102) を繰返し、 v_1*_{uv} 、 v_2*_{uv} 、 v_1*_{vw} 、 v_2*_{vw} 、 v_1*_{wu} 、 v_2*_{wu} を得る。そして、オンディレイ補償値演算を(2)式~(4)式のように行う (STEP103)。

$$T_{duv} = \frac{v_{1uv} - v_{2uv}}{V_{dc} \cdot f_1} \qquad \qquad \circ \circ \circ \circ \circ (2)$$

$$T_{dvw} = \frac{v_{1vw} - v_{2vw}}{V_{dc} \cdot f_1} \qquad \qquad \circ \circ \circ \circ \circ (3)$$

$$T_{dwu} = \frac{v_{1wu} - v_{2wu}}{V_{dc} \cdot f_1} \qquad \qquad \circ \circ \circ \circ \circ (4)$$

ここで、Vdcは電力変換器2の直流電圧である。これらのTduv、Tdvu、Tdwuを各相のオンディレイ補償値とする。また、各相個別にすると処理が煩雑になることが予想されるがその時は(5)式のように平均などの処理を取り、3相一括のTduvwで補償しても良いことは明白である。

$$T_{duvw} = \frac{T_{duv} + T_{dvw} + T_{dwu}}{3} \qquad \qquad \circ \quad \circ \quad \circ \quad \circ \quad (5)$$

次に動作原理について述べる。オンディレイ補償値Tdは(1)式に示したようにスイッチング素子のスイッチング周波数には無関係であるが、スイッチング素子の動作周期(キャリヤ周波数の逆数)が長くなれば、周期に占める割合が少なくなりそのオンディレイ補償値Tdの影響は小さくなり、電流波形歪みも小さくなる。逆にスイッチング素子の動作周期が短くなれば、周期に占める割合が大きくなりその影響も大きくなる。従って、この2つの動作周期での電流制御出力v*の差がオンディレイ補償値Tdとして利用できる。この関係を図示したのが第3図である。

第3図は横軸にキャリヤ周波数fcを取り、縦軸に電流制御出力v*

を取っている。電流制御は直流の電流指令を出力電流が直流となるように直流電流指令 I*としているため、キャリヤ f 2 を低い周波数に選べば、交流モータ I の抵抗 I の電圧降下分 I* のみがオンディレイの影響としてでるような周波数電流制御出力 I を抽出できる。一方、キャリヤ周波数を次第に大きくし、I I とすると、電流制御出力 I な電圧降下分 I を取れば電圧降下分 I なる。従って、この差を取れば電圧降下分 I な相殺し、オンディレイの電圧降下分の電圧となる。これを(2)式~(4)式のように周波数 I で時間換算すればオンディレイ補償値 I d を求めることができる。

- 10 従って、精度良くオンディレイ補償値Tdを求めるにはf2をオンディレイの影響の小さいキャリヤ周波数に選定し、f1をオンディレイの影響の大きいキャリヤ周波数とすることが肝要になる。電力変換器2のスイッチング素子がIGBTならf1を10kHz以上、f2を5kHz以下とし、バイポーラトランジスタの場合はf1を2kHz以上、f15 2を1kHz以下とすることが望ましい。また、本発明では直流電流でオンディレイ補償値Tdを求めるため、交流でのオンディレイ補償値Tdとは若干ずれる可能性が有るが、このときは(2)式~(4)式で求めたオンディレイ補償値Tdに重み係数を掛ければ良いことは言うまでもない。
- 20 また、前記のように直流電流 I*としたが (2) 式~ (4) 式に示したように ton、 toff がスイッチング素子に流れる電流で異なった値となるため、直流電流指令 I*を変化させ、前述のようなオンディレイ補償値演算をすることでさらに高精度なオンディレイ補償値 Tdを求めることが可能である。
- 25 次に本発明の第2の実施例について説明する。第1の実施例と異なる ところは第4図に示すように電流制御器311に代わり、制御演算器3

2.3

5

10

15

20

25

1 に交流電圧発生器 3 1 2 を設け、オンディレイ補償値演算器 3 5 b に高調波を求めるためのフーリエ変換器(高速 F F T)あるいはウォルッシュ変換器などを設ける点であり、第 1 の実施例が直流でオンディレイ補償値 T d を求めるところを交流で求めるところが大きな違いである。

交流モータ1を回転させないため、2相の正弦波状の交流励磁を行い、オンディレイ補償を外すと出力電流として第5図のY13のような電流が流れる。これはオンディレイにより、正弦波状の交流電圧を加えているにも関わらず、0電流付近で電圧が落ち込むために、0クロス付近で電流が歪むものである。この電流歪みを最小にするようにオンディレイ補償値Tdを変化させていけばオンディレイ補償値Tdを求めることができる。

オンディレイにより歪んだ電流波形(第5図のY13)は第5図に示したように3次の高調波Y3を含んでいるため、これをオンディレイ補償値演算器35b内のフーリエ変換器(高速FFT)あるいはウォルッシュ変換器で3次の高調波出力A3を求め、最小二乗法などでA3を最小にするようにオンディレイ補償値Tdを求める。第6図はその様子を描いたもので、横軸をオンディレイ補償値Tdとし、縦軸に波高値A3を取っている。第5図の関係より、A3が第6図のように極小点を持つのは明らかである。例えば最初、Td=0(A点)から始め、徐々にTdを増やしていくと(A点→B点→C点)、D点で逆にA3が大きくなる。ここで、今度は少しTdを減らし、最終的にE点で最適なオンディレイ補償値を求めることができる。これらの追い込みはまさに最小二乗法などの数値解析法で、これらの手法を用いれば容易に実現できる。

第2の実施例のフローチャートを第7図に示す(STEP110~STEP112)。 前述の実施例と同様にまずu - v 間で交流励磁を行う(STEP110a)。電 流波形が安定した所で前述したようにフーリエ変換器(高速FFT)あ

10

15

20

25

るいはウォルシュ変換器などにより、A 3 uv を取り出し(STEP110b)、 オンディレイ補償値を最小二乗法などでA 3 uv を最小にするオンディ レイ補償値T d uv を求める(STEP110c)。これと同様に v - w 相間、w - u 相間について繰り返し(STEP111、STEP112)、オンディレイ補償値 T d uv、T d vw、T d wu を求める。

上記第2の実施例ではモータを回転しないように単相交流励磁としたが、交流モータ1を回転しても良い場合は、第8図に示すようなフローチャートでオンディレイ補償値を求めることができる(STEP120~STEP122)。ここで、前述と異なるのはV/f運転で交流モータ1を駆動することと(STEP120)、この時の電流波形が第10図のように5、7次調波を含んだ波形となることである。このため、STEP120aでフーリエ変換器(高速FFT)あるいはウォルシュ変換器などにより、A5もしくはA7の少なくとも一方を取り出し、これを最小最小二乗法などで追い込むことである。他は同一なので説明は省略する。

以上、第2の実施例では各相ごとにオンディレイ補償Tdを求めることができるので平均をとったり、重み係数を掛けるなどの手法は第1の実施例に示すように同様に行えることは言うまでもない。また、交流モータ1を励磁する周波数や電圧値で電流などが異なるため、さらに精密にオンディレイ補償Tdを求めるときは、第1の実施例に示したように個別にパラメータ(電圧、周波数)を振り、求めれば良いことは明らかである。

第3の実施例は前述した第2の実施例の2番目の方法のようにモータを回転させても良い場合の方法で、実際に交流モータ1を回転させるため、さらに正確なオンディレイ補償Tdを求めることができる。第2の実施例との構成上での違いは第9図に示したようにオンディレイ補償値 演算器35c内にフーリエ変換器(高速FFT)あるいはウォルシュ変

15

20

25

10
$$\left(\frac{i_d}{i_q}\right) = \sqrt{\frac{2}{3}} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} i_u \\ i_v \\ i_w \end{pmatrix}$$
 (6)

ここで、第2の実施例のようにオンディレイ補償値演算器35c内にフーリエ変換器(高速FFT)あるいはウォルシュ変換器などを用いて、オンディレイ補償値を求められることは明らかである。しかし、このようなフーリエ変換器(高速FFT)あるいはウォルシュ変換器などを用いずともオンディレイ補償値を求められることを以下に示す。

前述したようにidの脈動を小さくすれば良く、例えば(7)式のよ

WO 98/42067

5

15

20

25

...

うに最小、最大値から Δ idを求めたり、(8)式もしくは(9)式のように平均値を取り、最小、最大値の差を取り出せばフーリエ変換器(高速 FFT)あるいはウォルシュ変換器など複雑な処理は不要となり、これらを第11図に示すフローチャートのように最小にするようにオンディレイ補償値を求めれば良い。以上述べた、第3の実施例のフローチャートを第11図に示す(STEP130~STEP132)。

$$\Delta i_{d} = i_{d \max} - i_{d \min} \qquad \qquad \cdots \qquad \cdots \qquad (7)$$

$$\Delta i_{m ean} = i_{d \min} - \frac{1}{N} \sum_{j=1}^{j=N} i_{d}(j) \qquad \cdots \qquad (8)$$

$$\Delta i_{m ean} = \frac{1}{N} \sum_{j=1}^{j=N} i_{d}(j) - i_{d \min} \qquad \cdots \qquad (9)$$

10 ただし、idmax: idの最大値、idmin: idの最小値とする。

また、説明の都合上i dを用いたがi qを使っても同様で行え、第2の実施例で述べたような平均をとったり、重み係数を掛けるなどの手法は第1の実施例に示すように同様に行えることは言うまでもない。また、交流モータ1を励磁する周波数や電圧値で電流などが異なるため、さらに精密にオンディレイ補償Tdを求めるときは、第1の実施例に示したように個別にパラメータ(電圧、周波数)を振り、求めれば良いことは明らかである。

以上述べた実施例においては、オンディレイ補償値を自動的に演算するが、その際、電力変換器などの故障でオンディレイ補償値演算値が異常な値になる場合がある。その時には(1)式の値を typ. 値としてリミッタを付けてやることにより、異常な動作を防止する機構を付ければ良いことは明らかであり、逆にこの状態を利用して故障判断できる。

またオンディレイ補償値演算開始信号 Std は制御回路 3 の外部からスイッチなどを設けて任意のタイミングで与えることができる。この場合は例えば製品出荷に際して行うとか据え付け後のメンテナンス時に必要に応じて行うことできる。あるいは電源投入時に行うようにしたい場合

は、電源投入に合わせてこの Std 信号を自動的に発生するようにしておけばよい。この場合は制御回路 3 の内部で Std 信号を発生することもできる。また以上述べた実施例はオンディレイ補償値演算器 3 5 に全て共存でき、制御回路 3 の外部からどの手法でオンディレイ補償値を求めるか選択できるようにすると、その用途は広がり、交流モータの負荷状態によらずオンディレイ補償値を求めることができるようになる。さらに本発明で述べたオンディレイ補償値演算器は PWMコンバータや他の電力変換器にも用いることができるのは言うまでもない。

10 産業上の利用可能性

5

15

本発明によれば電力変換器個体のバラツキによるオンディレイ補償値 のずれを自動調整するので、オンディレイ補償値のずれによるトルクリ プルを防止でき、高精度な制御装置を実現できる。また、自動調整によ り、ハードウェアのバラツキの許容範囲が増えるため、安価な制御装置 を実現できる効果もある。

÷-;

5

10

請求の範囲

- 1. 交流モータと、前記交流モータに供給する交流電力をスイッチング素子により発生する電力変換器と、前記スイッチング素子のオンディレイを補償するオンディレイ補償器を備えた交流モータ制御装置において、前記スイッチング素子をオンディレイの影響の多い第1のスイッチング周波数とオンディレイの影響の少ない第2のスイッチング周波数の少なくとも2つのスイッチング周波数で一定の直流電流を流すように制御する手段と、少なくとも上記2つの周波数での電圧制御出力の差に基づき前記オンディレイ補償値を求める手段を有するオンディレイ補償値演算手段を備えたことを特徴とした交流モータ制御装置。
- 2. 前記請求1の交流モータ制御装置において、前記スイッチング素子はIGBTであり、前記第1の周波数を10kHz以上、前記第2の 周波数を5kHz以下とした前記請求項1記載の交流モータ制御装置。
- 15 3. 前記請求1の交流モータ制御装置において、前記スイッチング素子はバイポーラトランジスタであり、前記第1の周波数を2kHz以上、前記第2の周波数を1kHz以下とした前記請求項1記載の交流モータ制御装置。
- 4. 交流モータと、前記交流モータに供給する交流電力をスイッチング素子により発生する電力変換器と、前記スイッチング素子のオンディレイを補償するオンディレイ補償器を備えた交流モータ制御装置において、前記交流モータを正弦波状の単相交流で励磁する手段と、前記単相交流励磁手段で励磁しながら前記オンディレイ補償器のオンディレイ補償値を変化させる手段と、前記オンディレイ補償値を変化させることにより前記交流モータに流れる電流の零クロス部分の歪みがほぼ最小になるオンディレイ補償値を求める手段を備えたことを特徴と

10

25

した交流モータ制御装置。

- 5. 交流モータと、前記交流モータに供給する交流電力をスイッチング素子により発生する電力変換器と、前記スイッチング素子のオンディレイを補償するオンディレイ補償器を備えた交流モータ制御装置において、前記交流モータを正弦波状の単相交流で励磁して流れた電流をフーリエ変換あるいはウォルッシュ変換する手段と、前記フーリエ変換あるいはウォルッシュ変換で求められた高調波分を最小にするように前記オンディレイ補償器のオンディレイ補償値変化させてオンディレイ補償値を求める手段を備え、該求めたオンディレイ補償値に基づき前記オンディレイ補償器を動作させることを特徴とした交流モータ制御装置。
- 6. 交流モータと、前記交流モータに供給する交流電力をスイッチング素子により発生する電力変換器と、前記スイッチング素子のオンディレイを補償するオンディレイ補償器を備えた交流モータ制御装置において、前記交流モータを正弦波状の交流電圧で励磁して流れた電流を該交流電圧の周波数で回転する2軸の直行座標系の電流に変換する手段と、前記直行座標系に変換された電流のうち少なくとも1軸の脈動を最小にするように前記オンディレイ補償器のオンディレイ補償値変化させてオンディレイ補償値を求める手段を備え、該求めたオンディレイ補償値に基づき前記オンディレイ補償器を動作させることを特徴とした交流モータ制御装置。
 - 7. 交流モータと、前記交流モータに供給する交流電力をスイッチング 素子により発生する電力変換器と、前記スイッチング素子のオンディ レイを補償するオンディレイ補償器を備えた交流モータ制御装置にお いて、前記交流モータを正弦波状の交流電圧で励磁して流れた電流を フーリエ変換あるいはウォルッシュ変換する手段と、前記フーリエ変

_...

5

換あるいはウォルッシュ変換で求められた高調波分を最小にするよう に前記オンディレイ補償器のオンディレイ補償値変化させてオンディ レイ補償値を求める手段を備え、該求めたオンディレイ補償値に基づ き前記オンディレイ補償器を動作させることを特徴とした交流モータ 制御装置。

- 8. 前記請求1から7記載の交流モータ制御装置において、前記オンディレイ補償値の演算機能の開始を指示できるようにした交流モータ制御装置。
- 9. 交流モータと、前記交流モータに供給する交流電力をスイッチング 素子により発生する電力変換器と、前記スイッチング素子のオンディ レイを補償するオンディレイ補償器を備えた交流モータ制御装置にお いて、

前記オンディレイ補償器は、

前記スイッチング素子をオンディレイの影響の多い第1のスイッチング周波数とオンディレイの影響の少ない第2のスイッチング周波数の少なくとも2つのスイッチング周波数で一定の直流電流を流すように制御する手段と少なくとも上記2つの周波数での電圧制御出力の差に基づき前記オンディレイ補償値を求める手段を有する第1のオンディレイ補償器と、

- 20 前記交流モータを正弦波状の単相交流で励磁する手段と前記単相交流 励磁手段で励磁しながら前記オンディレイ補償器のオンディレイ補償 値を変化させる手段と前記オンディレイ補償値を変化させることによ り前記交流モータに流れる電流の零クロス部分の歪みがほぼ最小にな るオンディレイ補償値を求める手段を有する第2のオンディレイ補償 器と、
 - 前記交流モータを正弦波状の単相交流で励磁して流れた電流をフーリ

20

工変換あるいはウォルッシュ変換する手段と前記フーリエ変換あるいはウォルッシュ変換で求められた高調波分を最小にするように前記オンディレイ補償器のオンディレイ補償値変化させてオンディレイ補償値を求める手段を有する第3のオンディレイ補償器と、

5 前記交流モータを正弦波状の交流電圧で励磁して流れた電流を該交流 電圧の周波数で回転する2軸の直行座標系の電流に変換する手段と前 記直行座標系に変換された電流のうち少なくとも1軸の脈動を最小に するように前記オンディレイ補償器のオンディレイ補償値変化させて オンディレイ補償値を求める手段を有する第4のオンディレイ補償器 と、

前記交流モータを正弦波状の交流電圧で励磁して流れた電流をフーリエ変換あるいはウォルッシュ変換する手段と前記フーリエ変換あるいはウォルッシュ変換で求められた高調波分を最小にするように前記オンディレイ補償器のオンディレイ補償値変化させてオンディレイ補償値を求める手段を有する第5のオンディレイ補償器を備え、

前記第1乃至第5のオンディレイ補償器の選択を可能にした交流モータ制御装置。

- 10. スイッチング素子を用いて電力を変換し負荷に電力を供給する電力変換手段と、前記電力変換器のスイッチングを制御する制御手段を備えた電力変換装置において、前記制御手段は前記スイッチング素子のオンディレイ補償値を求めるオンディレイ補償手段を備え、該オンディレイ補償手段により前記スイッチング素子のオンディレイ補償を行う電力変換装置。
- 11.スイッチング素子により交流電力を得て交流モータに供給する電力変換器と、前記電力変換器のスイッチングを制御する制御手段を備 えた電力変換装置において、前記制御手段の外部からの信号に応答し

10

25

て前記スイッチング素子のオンディレイ補償値を求めるオンディレイ 補償手段を備え、該オンディレイ補償手段で求めたオンディレイ補償 値に基づいてオンディレイ補償を行うことを特徴とした電力変換装置。

- 12.交流モータと、交流電力を受けスイッチング素子により任意の周波数の交流電力に変換し前記交流モータに供給する電力変換器と、前記スイッチング素子のオンディレイを補償するオンディレイ補償器を有する制御回路を備えた交流モータ制御装置において、前記スイッチング素子を動作させて検出したオンディレイによりオンディレイ補償値を演算するオンディレイ補償値演算手段と、前記オンディレイ補償値演算手段の演算を開始させる手段と、前記オンディレイ補償値演算手段の演算結果により前記スイッチング素子のオンディレイを補償する手段を備えた交流モータ制御装置。
- 13.交流モータと、直流電力を受けスイッチング素子により交流電力に変換し前記交流モータに供給する電力変換器と、前記スイッチング素子のオンディレイを補償するオンディレイ補償器を有する制御回路を備えた交流モータ制御装置において、電圧、電流、周波数の少なくとも1つに対応する値に基づいて自動的にオンディレイ補償値を調整するオンディレイ補償値調整手段と、前記制御回路の外部からオンディレイ補償値の調整を開始させる信号を入力する手段とを備え、前記オンディレイ補償値の調整を開始する手段を備えた交流モータ制御装置。
 - 14. スイッチング素子を用いて電力を変換し負荷に電力を供給する電力変換手段と、前記電力変換器のスイッチングを制御する制御手段を備えた電力変換装置の制御方法において、前記スイッチング素子のオンディレイ補償値を前記スイッチング素子を動作させることにより求め、該求められたオンディレイ補償値により前記スイッチング素子の

5

オンディレイ補償を行う電力変換装置の制御方法。

- 15. スイッチング素子により交流電力を得て交流モータに供給する電力変換器と、前記電力変換器のスイッチングを制御する制御手段を備えた電力変換装置の制御方法において、前記制御手段の外部からの信号に応答して前記スイッチング素子を動作させ、次いでこのスイッチング素子の動作に基づくオンディレイ補償値を求め、該求めたオンディレイ補償値に基づいてオンディレイ補償を行うことを特徴とした電力変換装置の制御方法。
- 16.交流モータと、交流電力を受けスイッチング素子により任意の周 波数の交流電力に変換し前記交流モータに供給する電力変換器と、前 記スイッチング素子のオンディレイを補償するオンディレイ補償手段 を有する制御回路を備えた交流モータ制御装置の制御方法において、 所定タイミングで前記オンディレイ補償値演算手段の演算を開始させ て前記オンディレイ補償値を求め、この求められたオンディレイ補償 値により前記スイッチング素子のオンディレイを補償する交流モータ 制御装置の制御方法。
- 17. 交流モータと、直流電力を受けスイッチング素子により交流電力に変換し前記交流モータに供給する電力変換器と、前記スイッチング素子のオンディレイを補償するオンディレイ補償器を有する制御回路を備えた交流モータ制御装置の制御方法において、電圧、電流、周波数の少なくとも1つに対応する値に基づいて自動的にオンディレイ補償値を演算するオンディレイ補償値演算器と、前記制御回路の外部からオンディレイ補償値演算を開始させる信号を入力する手段とを備え、前記オンディレイ補償値演算開始信号の入力に応答して前記オンディレイ補償値演算開始信号の入力に応答して前記オンディレイ補償値演算開始信号の入力に応答して前記オンディレイ補償値演算開始する手段を備えた交流モータ制御装置の制御方法。

第10図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00909

		
A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁶ H02M7/537, 7/5387, H02P7/63		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols)		
Int. Cl ⁶ H02M7/42-7/98, H02P7/628-7/632		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Jitsuyo Shinan Koho 1926 - 1997 Kokai Jitsuyo Shinan Koho 1971 - 1997 Toroku Jitsuyo Shinan Koho 1994 - 1997		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
X JP, 3-143287, A (Hitachi, I	td.),	10
A June 18, 1991 (18. 06. 91)		1-9, 11-17
X JP, 8-126335, A (Hitachi, I	itd.).	10
A May 17, 1996 (17. 05. 96) (F	family: none)	1-9, 11-17
· ·		
·		!
Further documents are listed in the continuation of Box C. See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular releases. "A" document defining the general state of the art which is not considered to be of particular releases.		
"E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is		
means combined with one or more other such documents, such combination being obvious to a person skilled in the art "P" document published prior to the international filing date but later than		
the priority date claimed "&" document member of the same patent family		
Date of the actual completion of the international search Date of mailing of the international search report		
June 16, 1997 (16. 06. 97)	July 1, 1997 (01.	07. 97)
Name and mailing address of the ISA/	Authorized officer	
Japanese Patent Office		
Facsimile No.	Telephone No.	

発明の風する分野の分類(国際特許分類(IPC)) H02M7/537, 7/5387, H02P7/63 Int. C16 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C16 H02M 7/42-7/98, H02P7/628-7/632最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新築公報 1926-1997年 日本国公開実用新案公報 1971-1997年 日本国登録実用新案公報 1994-1997年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー* JP, 3-143287, A (株式会社日立製作所) 18.06月.1991 $\overline{\mathbf{x}}$ 10 (18.06.91) (ファミリーなし) 1 - 9.11 - 17Α JP、8-126335, A(株式会社日立製作所) 17.05月.1996 10 X (17.05.96) (ファミリーなし) 1-9, 11-17Α □ パテントファミリーに関する別紙を参照。 □ C櫚の焼きにも文献が列挙されている。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「丁」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 もの 「E」先行文献ではあるが、国際出願日以後に公表されたも **論の理解のために引用するもの** 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当獎者にとって自明である組合せに 文献(理由を付す) 「O」ロ頭による開示、使用、展示等に官及する文献 よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査報告の発送日 国際調査を完了した日 01.07.97 16.06.97 特許庁審査官(権限のある職員) 5 H 9181 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 松浦 功 郵便番号100 東京都千代田区殿が関三丁目4番3号 電話番号 03-3581-1101 内線 3530

様式PCT/ISA/210 (第2ページ) (1992年7月)