DIGITAL CIRCUITS

Week-8, Lecture-2 Decoders

Sneh Saurabh 26th September, 2018

Digital Circuits: Announcements/Revision

Digital Circuits: Practice Problems

Problems 4.31-4.35

from "Digital Design" – M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).

Problems 6.3-6.10

from Fundamentals of Digital Logic with Verilog Design - S. Brown, Z. Vranesic

Problem: Design XNOR gate using 2:1 multiplexers

Problem: Implement the function $f(w, x, y, z) = \Sigma m(1,4,5,7,9,12,13)$ using a 8-to-1 MUX and minimum number of 2-to-1 MUX only.

Problem: Implement the function $f(w, x, y, z) = \Sigma m(1,4,5,7,9,12,13)$ using a 8-to-1 MUX and minimum number of logic-gates only.

Decoder: Basics

- A binary decoder is a combinational circuit with:
 - \triangleright *n* inputs: $w_0, w_1, ..., w_{n-1}$
 - \triangleright 2ⁿ outputs: $y_0, y_1, ..., y_{2^n-1}$
 - ➤ A pin named *En* or *Enable*
- Only one of the outputs is asserted "1" and rest of the outputs are "0"
- Which of the outputs is asserted "1" depends on the binary number at the inputs corresponding to: $w_{n-1}...w_1w_0$

- A decoder also has an input named "En" or "Enable"
 - \triangleright When "En = 0", all the outputs are "0"
 - \triangleright When "En = 1", one of the outputs gets a value of "1"

Decoder: 2-to-4 decoder

2-to-4 decoder:

- Two data inputs w_0, w_1 , one En input and four outputs y_0, y_1, y_2 and y_3
- One of the outputs gets a value "1" depending on the binary number represented by w_1w_0

En	w_1	w_0	y_0	y_1	y_2	<i>y</i> ₃
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0

- Can you write the expression for each output y₀,y₁, y₂ and y₃?
- Each output correspond to a minterms of the 2 variable function f(w₀,w₁)

Decoder: Large decoder from small decoder

- Larger decoders can be built using smaller decoders
- Build a 3-to-8 decoder using two 2-to-4 decoders and some other gates.
- The *w*₂ input drives the enable inputs of the two decoders
- The top decoder is enabled if $w_2 = 0$, and the bottom decoder is enabled if $w_2 = 1$

Decoder: Large decoder from small decoder

- Build a 4-to-16 decoder using only five 2to-4 decoders
- The *w*₂*w*₃ input drives the enable inputs of the four decoders
- The top decoder is enabled if $w_2w_3 = 00$, and the bottom decoder is enabled if $w_2w_3 = 11$

Decoder: To multiplexer

- Build a 4-to-1 multiplexer using a 2-to-4 decoder and AND/OR gates
- En pin is set to 1
- The output of the decoder generates 1 on one of the four lines, based on the binary number represented by the select lines s₁s₀
- The output of the decoder selects one of the inputs w_0 , w_1 , w_2 , w_3 of the multiplexer

Decoder: Realizing a given function

Implement the function:

$$f(A,B) = \Sigma m(2,3)$$

using a 2-to-4 decoder and an OR gate.

- If a function F has many minterms then the OR gate will have a large number of inputs
 - ➤ Implementing *F*' and taking the complement will be more efficient
- Depending on the number of minterms in a given function, implementing using either OR gate or using NOR gate may be more efficient.

Decoder: Realized using NAND gates

- A decoder can be built using NAND gates
- Enable is active low (Decoder is enabled when E = 0)
- Outputs are active low (output is complement of normal decoder): complement of the minterms
- Only one of the outputs is 0, rest are 1
- Since outputs are complement of minterms, realizing a function will require using NAND gates, rather than OR gates

Implement the function: $f(A, B) = \Sigma m(2,3)$ using the decoder that is realized using NAND gates

E	\boldsymbol{A}	B	D_0	D_1	D_2	D_3
1 0 0 0	X 0 0 1	X 0 1 0	1 0 1 1	-	1	-
0	1	1	1	1	1	0

Decoder: To demultiplexer

 Decoder with enable input can work as a *demultiplexer*

Demultiplexer

Demultiplexer is a combinational circuit that function opposite to that of a multiplexer

Function of a Demultiplexer

- The output a circuit that receives information from a single line and directs it to one of the 2^N possible output lines
- The selection of a specific output is controlled by the bit combination of N selection lines

Decoder: To demultiplexer

s_1	s_0	y_0	y_1	y_2	y_3
0	0	I	0	0	0
0	1	0	I	0	0
1	0	0	0	I	0
1	1	0	0	0	I

1-to-4 Demultiplexer

Build a 1-to-4 Demultiplexer using a decoder

Digital Circuits: Practice Problems

Problems 4.22-4.28

from "Digital Design" – M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).

