Eero Santamala

Taajuusmuuttajien käyttö kaivoksissa

Sähkötekniikan korkeakoulu

Kandidaatintyö Espoo 1.12.2014

Vastuuopettaja ja ohjaaja:

TkT Pekka Forsman

AALTO-YLIOPISTO SÄHKÖTEKNIIKAN KORKEAKOULU

Tekijä: Eero Sa	antamala						
Työn nimi: Taajuusmuuttajien käyttö kaivoksissa							
Päivämäärä: 1.	12.2014	Kieli:	Suomi	Sivumäärä: 5+10			
Koulutusohjelma: Automaatio- ja systeemitekniikka							
Vastuuopettaja ja ohjaaja: TkT Pekka Forsman							
Tiivistelmä suo	omeksi.						
Avainsanat: Avainsanoiksi valitaan kirjoituksen sisältöä keskeisesti kuvaavia käsitteitä							

Esipuhe

Kiitos ABB ja sillee jee.

Otaniemi, 1.12.2014

Eero H. Santamala

Sisällysluettelo

Ti	ivist	lmä	ii
$\mathbf{E}\mathbf{s}$	ipuh		iii
Sis	sällys	luettelo	iv
$\mathbf{S}\mathbf{y}$	mbo	it ja lyhenteet	\mathbf{v}
1	Joh	lanto	1
2	Kai	rosympäristön vaatimukset taajuusmuuttajalle	3
	2.1	Ympäristöolosuhteet	3
		2.1.1 Lämpö	3
		2.1.2 Kosteus	4
		2.1.3 Pienpartikkelit	4
		2.1.4 Mekaaniset rasitukset	4
	2.2	Kaivoksen sähköverkko	4
	2.3	Käyttöikä ja luotettavuus	4
	2.4	Kaivosteollisuuden standardit	4
3	Taa	uusmuuttajien toiminnallisuus	5
	3.1	Toimintasyklit	5
	3.2	Turvallisuustoiminnot	5
	3.3	Mittaukset	5
	3.4	Ohjaus ja -valvontajärjestelmät	5
	3.5	Verkkoon jarruttavat taajuusmuuttajat	5
4	Taa	uusmuuttajien sovellukset kaivoksissa	6
	4.1	Kokoluokat ja sijoittelu	6
	4.2	Sovellukset	6
		4.2.1 Kaivinkoneet	6
		4.2.2 Liukuhihnat ja kuljettimet	6
		4.2.3 Murskaimet	6
		4.2.4 Hissit	6
		4.2.5 Tuulettimet ja ilmanvaihto	6
		4.2.6 Pumput	6
		4.2.7 Paineilman tuottaminen?	7
5	Yht	eenveto	8
Vi	ittee		9
\mathbf{A}	Liit	1	10

Symbolit ja lyhenteet

Symbolit

Operaattorit

Lyhenteet

AC vaihtovirta DC tasavirta

IEC International Electrotechnical commission NEMA National Electrical Manufacturers Association

1 Johdanto

Taajuusmuuttajia käytetään yhä enenemässä määrin vaihtovirtasähkömoottoreiden ohjaukseen kaikilla teollisuudenaloilla ja erityisesti kaivosteollisuudessa [2, s. 262]. Erilaiset käyttöympäristöt ja -sovellukset vaikuttavat taajuusmuuttajalta vaadittuun toiminallisuuteen ja fyysisiin ominaisuuksiin. Käyttökohteesta riippuvat ominaisuudet luovat taajuusmuuttajavalmistajille näin tarpeen kartoittaa eri teollisuudenalojen erityisvaatimuksia, jotta tuotteet pystytään kehittämään vastaamaan asiakkaiden tarpeita mahdollisimman hyvin.

Tämän työn tarkoituksena on tarkastella kaivosteollisuuden asettamia vaatimuksia ja tarpeita taajuusmuuttajan toiminnallisuudelle ja kestävyydelle sekä kartoittaa millaisia eri sovelluksia taajuusmuuttajille kaivostoiminnassa esiintyy. Tämän työn yhteydessä kaivosteollisuudella tarkoitetaan kaivosta ja sen välittömässä läheisyydessä tapahtuvaa malmin siirtoa ja käsittelyä ja tarkastelu keskittyy yksinomaan siihen. Mineraalien jatkokäsittely kaivosalueen ulkopuolella muistuttaa jo tavanomaista prosessiteollisuutta, eikä siksi ole tämän työn kannalta mielenkiintoista.

Yleisin taajuusmuuttajan sijoituspaikka on sisätiloissa esimerkiksi tuotantolaitoksen sähköhuoneessa. Tällöin ympäristöolosuhteet saadaan pysymään hyvin tasaisina ja taajuusmuuttajan toiminnalle edullisina. Lämpötila- tai kosteusvaihteluita ei ilmastointijärjestelmän ansiosta juuri ole ja huoneen ilma on suodatettu pienpartikkeleista jo ennen sen pääsyä kosketuksiin taajuusmuuttajan kanssa. Kaivosteollisuudessa vastaavan tasaisen käyttöympäristön järjestäminen voi olla epäkäytännöllistä tai taloudellisesti kannattamatonta, jolloin taajuusmuuttajalta itseltään edellytetään kestävyyttä ja toimintavarmuutta vaativissakin käyttöympäristöissä. Myös kaivoksen sähköverkko asettaa taajuusmuuttajalle omat vaatimuksensa.

Työn alussa selvitetään kaivosympäristön erityisvaatimukset lähtien liikkeelle ympäristöolosuhteista. Osan tarkoituksena on luoda selvä kuva kaivoksen asettamista vaatimuksista siellä käytettävälle laitteistolle jotta voidaan ymmärtää mitä taajuusmuuttajilta vaaditaan. Tarkastelun alla ovat lisäksi standardit, jotka kaivoteollisuuden laitteita koskevat.

Seuraavassa osassa esitetään millaista toiminnallisuutta taajuusmuuttajien sisäisillä logiikkapiireillä voidaan toteuttaa ja miten niitä voidaan hyödyntää kaivosteollisuuden sovelluksissa. Viimeisessä osassa esitetään taajuusmuuttajien käyttökohteita kaivoksissa lähtien liikkeelle taajuusmuuttajien tyypillisestä sijoittelusta sekä tyypillisistä teho- ja jänniteluokista. Sovellukset-osio käy läpi suurimmat teollisuudenalan sähkövoimaa käyttävät sovellukset ja kertoo millaisia taajuusmuuttajaratkaisuja niissä käytetään ja mitä hyötyjä taajuusmuuttajien käyttö niissä tuo verrattuna perinteisiin ohjausratkaisuihin.

Työssä on oleellista taajuusmuuttajien hyödyntäminen ja niistä saatava lisäarvo kaivosteollisuuden asiakkaan näkökulmasta. Se keskittyy sovelluksiin ja niiden vaa-

timuksiin eikä niinkään taajuusmuuttajan sisäisiin ratkaisuihin näiden hyötyjen aikaansaamiseksi. Työ esittää alan olemassa olevat taajuusmuuttajaratkaisut ja pohtii mitä lisäarvoa taajuusmuuttajilla voitaisiin vielä saavuttaa.

2 Kaivosympäristön vaatimukset taajuusmuuttajalle

2.1 Ympäristöolosuhteet

Kuten todettu, kaivosympäristö on sähkölaitteille toimintaympäristönä erittäin rasittava [2, s. 251]. Sähkölaitteille kaivoksissa rasitusta aiheuttavia tekijöitä ovat

- Lämpötila
- Kosteus
- Ilman epäpuhtaudet
- Mekaaniset rasitukset

Suurin ympäristön aiheuttama vaara taajuusmuuttajien toiminnalle on ylikuumeneminen ja elektronisten komponenttien vaurioituminen kosteuden, epäpuhtauksien, mekaanisten iskujen tai tärinän seurauksena. Jotta taajuusmuuttajan luotettava toiminta voidaan taata, täytyy taajuusmuuttajan koteloinnin olla soveltuva käyttöympäristöönsä. Lähes kaikki taajuusmuuttajavalmistajat valmistavat taajuusmuuttajia eri suojausluokissa vastaamaan sovellusten vaatimuksia.

Euroopassa yleisesti käytössä oleva luokitus sähkölaiteen vesi- ja pölytiiveydelle on kansainvälisen sähköalan standardointitoimiston IEC:n IP-luokitus. Luokitus on kaksiosainen lähtien täysin suojaamattomasta IP00-luokasta ja päätyen täysin vesi- ja pölytiiviiseen IP69-luokitukseen [LIITE 1 TÄHÄN]. Pohjois-Amerikassa on käytössä vastaava NEMA-tiiveysluokitus.

Markkinoilla olevat taajuusmuuttajat ulottuvat suojaamattomista IP00-laitteista aina lähes vesitiiviisiin IP66-laitteisiin. IP00 taajuusmuuttajat asennetaan poikkeuksetta ulkoisiin koteloihin, jännitteellisten komponenttien ollessa täysin esillä. IP21 on yleinen käytössä oleva luokka taajuusmuuttajille, jotka tulevat kuivaan tilaan esimerkiksi tehtaan sisälle.

2.1.1 Lämpö

Maanalaisissa kaivoksissa lämpöolosuhteet eroavat huomattavasti maanpäällisistä. Kaivoksessa lämpöä aiheuttaa itse kallioperän lämpö, ilman puristuminen, lämpimät pohjavesivuodot, koneet, valaistus ja räjäytykset.

Etenkin syvissä kaivoksissa kallioperän lämpö on suurimpia kaivoksen sisäilman lämmittäjiä. Kallioperän lämpötila kasvaa noin 25-30c/km, joten jo kilometrin syvyisessä kaivoksessa lämpötila voi yltää 30-40c riippuen paikallisesta ilmastosta [1, s. 62]. Esimerkkinä todettakoon Suomen syvin metallikaivos Pyhäsalmella on 1400 metriä syvä, jolloin lämpötila ilman ilmanvaihtoa olisi noin x astetta (keskilämpö pohjanmaalla+1.4*25c???) [11].

Myös työkoneet tuottavat lämpöä etenkin jos käytetään dieselkäyttöisiä koneita?[7].

Taajuusmuuttajien ratkaisut flange ym ilmastointitavat?

2.1.2 Kosteus

- -Kaivosten kosteus, sumu, kaapelit vesitiiviitä
- -Laitteiden kosteuskestävyys
- -IP ja NEMA-lokitukset

2.1.3 Pienpartikkelit

- -Pöly
- -Kemikaalit
- -Syövyttävyys
- -Elektroniikan eristys (flange)

2.1.4 Mekaaniset rasitukset

- -kuljetus, asennus
- -Tärinä (murskaimet yms. Liikkuvat laitteet?)

2.2 Kaivoksen sähköverkko

Kaivoksen sähköverkko (EMC häiriöt)

- -jännite, laajuus, häiriönsieto, EMC
- -kuristimien/filttereiden tarpeellisuus

2.3 Käyttöikä ja luotettavuus

- -kaivoksen ikä? Sama laite koko elinkaaren?
- -Esim tuuletusjärjestelmän luotettavuus ensisijaisen tärkeää?
- -Redundanttius?
- -Virran katkeaminen? varavoimalähteet?

2.4 Kaivosteollisuuden standardit

- -ex-luoitus: Räjähdysherkkä tila?
- -mitä muita?

3 Taajuusmuuttajien toiminnallisuus

Milaisia toimintoja taajuusmuuttajista löytyy? Tamujen kehitys

3.1 Toimintasyklit

- -Millaisia tamuista löytyy (rampit, pid, vektoriohjaus, ABB:n DTC momenttiojaus,)
- -Vaihtoehtoiset ohjaustavat (softstartterit yms), Hyödyt? (verkon heilahdukset, energiansäästö, tarkemmat prosessit)
 - -Nää ehkä sovellukset osioon?---
- -Murskaimet [10]
- -Kuljettimet (ramppikäynnistys? kuorman mukaan säätyminen?)
- -Multidrives? ACS800 OPM (open pit mine) control program?

3.2 Turvallisuustoiminnot

- -turvallisuus tärkeää, kaivokset vaarallisia jne.
- -STO, miten voisi hyödyntää?
- -Profisafe yms.

3.3 Mittaukset

-Kuljettimet, määrän mittaus kuormasta ja nopeudesta? -MItä muuta (malmivirtojen mallinnus)

3.4 Ohjaus ja -valvontajärjestelmät

-Keskitetty automaatiojärjestelmä? -Kenttäväylät? -

3.5 Verkkoon jarruttavat taajuusmuuttajat

- -miten käytännössä toimii
- -Missä voidaan hyödyntää? (hissit, alamäkeen jarrutus, dumppitrukkien sähköraidejärjestelmä, yms.)

4 Taajuusmuuttajien sovellukset kaivoksissa

4.1 Kokoluokat ja sijoittelu

- -Teho- ja jänniteluokat (kuvia!)
- -Seinä, lattia, floorstanding
- -Asennuspaikat
- -fyysinen koko?
- -Hyvät/huonot puolet
- -kaapelien pituus, EMC

4.2 Sovellukset

4.2.1 Kaivinkoneet

- -mitä erilaisia? (jäätävän isot osana sähköverkkoa vs pienet)
- -Multidrive ohjaamaan kaikkea?

4.2.2 Liukuhihnat ja kuljettimet

- -Millaisia erilaisia? (liukuhihnat,ruuvit,nostimet,yms.)
- -Nykyratkaisut?
- -Miten tamuja hyödynnetään? edut perinteiseen verrattuna?

4.2.3 Murskaimet

- -Millaisia? kuinka isoja?
- -Toimintasyklit? [10]
- -Automation taso?

4.2.4 Hissit

-Henkilöhissit, junat, kärryt. Millä ihmiset liikkuu?

4.2.5 Tuulettimet ja ilmanvaihto

- -Kaivoksen tuulettaminen!
- -Miten tehty?
- -Ohjaus, valvonta?
- -Varajärjestelmät?

4.2.6 Pumput

- -mutapumput, vesipumput.
- -puhdistus
- -mittaukset

4.2.7 Paineilman tuottaminen?

Paljon sähköä kuluttava? Mihin käytetään kaivoksissa? Miten tamuja voidaan hyödyntää?

5 Yhteenveto

- -Energiansäästö
- -Kustannuk set
- $\hbox{-} Tarkemmat\ prosessit$
- -Tulevaisuus?
 - ->profit

Viitteet

- [1] Fridleifsson, Ingvar B., Bertani, Ruggero, Huenges, Ernst, Lund, John W., Ragnarsson, Arni ja Rybach, Ladislaus. *The possible role and contribution of geothermal energy to the mitigation of climate change.* IPCC Scoping Meeting on Renewable Energy Sources. Luebeck, Germany, 2008, Saatavissa: http://www.ipcc.ch/pdf/supporting-material/proc-renewables-lubeck.pdf
- [2] Hakapää, A. ja Lappalainen, P. Kaivos- ja louhintatekniikka. 2. painos. Helsinki, Vammalan kirjapaino Oy, 2007.
- [3] IEC 60529. Degrees of protection provided by enclosures (IP Code). Versio 2.1, Geneve, Sveitsi, International Electrotechnical Commission, 2001.
- [4] Rumpunen, A. *Tuulivoiman vaatimukset taajuusmuuttajalle*. Kandidaatintyö. Aalto-yliopisto. Insinööritieteiden korkeakoulu. Espoo. 2012.
- [5] ABB Drives Technical guide book, 2008.
- [6] Lukkarinen T. Mineraalitekniikka Osa 1 Mineraalien hienonnus. Hki: Insinööritieto Oy, 1984.
- [7] Anttila A. Kaivosten tuuletusilman energiatehokas lämmitys Suomessa. Kandidaatintyö. Aalto-yliopisto. Insinööritieteiden korkeakoulu. Espoo. 2014.
- [8] Muttilainen, A. Lifetime and Reliability of a Frequency Converter's Fan. Diplomityö. Aalto-yliopisto. Sähkötekniikan korkeakoulu. Espoo. 2013
- [9] Karlsson, S. Murskaintyyppien ominaisuuksien vertailu. Kandidaatintyö. Aaltoyliopisto. Insinööritieteiden korkeakoulu. Espoo. 2011.
- [10] Erik Hulthén, C. Evertsson, M. Real-time algorithm for cone crusher control with two variables. Minerals Engineering. 24. Vuosikerta. numero 9. Elokuu 2011. s. 987-994. Saatavissa: http://dx.doi.org/10.1016/j.mineng.2011.04.007.
- [11] CUPP, Pyhäsalmen kaivos. Verkkodokumentti. Päivitetty 26.3.2013. Viitattu 6.10.2014. Saatavissa: http://www.cupp.fi/index.php?option=com_content&view=article&id=3&Itemid=41&lang=fi
- [12] ABB Oy. ABB drives in mining. P\u00e4ivitetty 2012. Viitattu 6.10.2014. Saatavissa: http://www05.abb.com/global/scot/scot216.nsf/veritydisplay/2205e72865c2c747c1257a620026d001/\u00e4file/Mining\u00e420brochure_EN_lowres.pdf

A Liite 1

IP-luokat taulukossa