

Practical Machine Learning

Day 5: SEP23 DBDA

Kiran Waghmare

Agenda

- Regression
- Types of Regression

Iris dataset

- Many exploratory data techniques are nicely illustrated with the iris dataset.
 - Dataset created by famous statistician Ronald Fisher
 - 150 samples of three species in genus *Iris* (50 each)
 - Iris setosa
 - Iris versicolor
 - Iris virginica
 - Four attributes
 - sepal width
 - sepal length
 - petal width
 - petal length
 - Species is class label

Iris virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.

Linear model

In regression, the relationship between Y and X is modelled in the following form:

$$Y = a + b * X + E$$

where:

- Y is the dependent variable (Income in the example)
- X is the independent variable (IQ in the example)
- a is an intercept
- **b** is the coefficient
- E is an error term for each observation (since there is additional variation not explained by income)

Correlation

Linear Regression

$$\mathbf{Y}_{i} = \mathbf{\beta}_{0} + \mathbf{\beta}_{1} \mathbf{X}_{i} + \mathbf{\varepsilon}_{i}$$

What is multiple linear regression (MLR)? Visual model

Linear Regression

Single predictor X ----- Y

Multiple Linear Regression

Multiple predictors

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

The concept of Multicollinearity

No Multicollinearity

Not correlated - any statistical model will be able to pick apart which one is driving the effects

Multicollinearity

Very correlated - no statistical model will be able to pick apart which one is driving the effects

Low Variance

High Variance

Low Bias

High Bias

Underfitting Model

Regularization Result

Overfitting Result

Transforming the Loss function into Lasso Regression

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$

Loss function

Loss function + Regularized term

Designed by Author (Shanthababu)

Regularization

- The loss function is the function that computes the distance between the current output of the algorithm and the expected output.
- It's a method to evaluate how your algorithm models the data.
- A loss function specifies a penalty for an incorrect estimate from a statistical model.

Regularization Term

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \left[\lambda \sum_{j=1}^{n} \theta_j^2 \right]_{\text{Start at } \theta}$$

Lasso Regression

Lasso regression uses the same mean squared error loss function and this applies L1 Regularization and will repeat the same steps as Ridge. The cost function of Lasso Regression $J(\theta)$ is given as

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y - \hat{y})^2 + \lambda \sum_{j=1}^{n} |w_j|$$

where

 $\lambda \sum_{j=1}^{n} |w_j|$ is the penalty (L1 Regularization).

Loss Function =
$$\frac{1}{m} \sum_{i=1}^{n} (y - \hat{y})^2$$

Regularization (L1) =
$$\frac{1}{m} \sum_{i=1}^{n} (y - \hat{y})^2 + \lambda \sum_{j=1}^{m} |w_i|$$

Ridge Regression

Ridge regression uses the mean squared error loss function and applies L2 Regularization. Its cost function $J(\theta)$ is given as

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y - \hat{y})^2 + \lambda \sum_{j=1}^{n} w_j^2$$

where,

 $\frac{1}{m}\sum_{i=1}^{m}(y-\hat{y})^2$ is the Mean Squared error (loss function)

 $\lambda \sum_{j=1}^{n} w_j^2$ is the penalty (L2 Regularization)

Now, substitute \hat{y} as $wx_i + b$.

Ridge Regression

Regularization (L2) = Loss Function +
$$\lambda \sum_{i=1}^{m} w_i^2$$

^{*}Our Data was actually "parabolic" but we couldn't tell from the small training sample.