COMPLETE LISTING OF CLAIMS

Please amend claim 4, without prejudice or admission, so that the pending claims will be as shown in the following complete listing of all claims ever presented for this application (37 C.F.R. 1.121(c)):

- (Original) A method of treating patients who have diseases characterized bone loss comprising the step of administering to said patient an amount of TRANCE/RANK inhibitors effective to inhibit osteoclastogenesis and/or osteoclast function
- (Original) The method of claim I wherein said TRANCE/RANK inhibitor is a compound having the Formula I wherein:

R₁, and R₂ are, independently, selected from the group consisting of -H, - OCH₃, -CH₂CH₃, -t-butyl, 3-carboxy-4-chlorophenylamino, -N-(CH₂CH₂OH)₂, and -O(O)C-Ph:

R₃ is selected from the group consisting of -H, ethyl, -OCH₃, -Cl, Br, F, 3carboxy-4-chlorophenylamino, -N-(CH₂CH₂0H)₂, -t-butyl, and -OC(O)-Ph, and is not limited to attachment at any certain position on the phenyl ring to which it is attached; and

R4 is selected from the group consisting of -Br,-Cl, and -F.

- (Original) The method of claim 2 wherein R₃ is attached at either the 1 or 4 position of the 15 phenyl ring.
- (Currently amended) The method of claim 1 wherein said
 TRANCE/RANK inhibitor is a compound having the Formula I wherein:

R1, R2, and R3 are -OCH3, R3 is attached at the 4 position, R4 is -C1;

R₁, and R₂ are methyl, R₃ is ethyl, attached at the 4 position, R₄ is -Cl;

R₁, and R₂ are -OCH₃, R₃ is -Cl, attached at the 2 position, R₄ is -Cl;

R₁, and R₂ are -OCH₃ and R₃ is H, R₄ is -Cl;

 R_1 , is H, R_2 and R_3 are 3-carboxy-4-chlorophenylamino, and R_3 is attached at the 4 position, R_4 is -CI;

 R_1 and R_2 are -N(CH₂CH₂OH)₂, R_3 is Cl, attached at the 4 position, R_4 is -Cl:

R1, R2, and R3 are t-butyl, R3 is attached at the 4 position, R4 is -Cl;

R1, is -OCH3, R2 and R3 are H, R4 is Cl; or

R, R2, and R3 are benzoate, R3 is attached at the 4 position, R4 is Br.

- (Original) The method of claim I wherein said TRANCE/RANK inhibitor is selected from the group consisting I-A, I-B, I-C, I-D, I-E, I-F, I-G, I-H and I-I.
- (Original) The method of claim 1 wherein said TRANCE/RANK inhibitor is a compound having the Formula II wherein:

 R_1 is selected from the group consisting of -diphenylchloro methyl, -di(4chlorophenyl)chloro methyl, and 4-(diphenylchloromethyl)phenyl; and R_2 , R_3 , R_4 are independently selected from the group consisting of -Br, -Cl, and -F.

(Original) The method of claim 6 wherein R₂, R₃, R₄ are each -Cl.

- (Original) The method of claim I wherein the TRANCEIRANK inhibitor is selected from the group consisting compounds II-A, II-B, II-C and II-D.
- (Original) The method of claim 1 wherein said inhibitor is a compound having Formula III wherein:

 $R_1 = (N0_2)_2$, $O(CO)CH_3$, OH, $O(CO)CH_3$, $O(CO)(CH_2)_2COOH$, $O(CO)CH_2Br$, $O(CO)CH_2CI$, $O(CO)CH_2N(CH_3)_3$, or OC_3H_90 ; $R_2 = CH_20(NO_2)$, CHO, $CH_2O(NO_2)$, CN, CH_3 , COOH, CHNOH, $CH_20(CO)(CH_2)_2COOH$, $CHN(NH)CONH_2$, $CHN(NH)C_6H_5$, $CHN(CH_2)C_6H_5$, $CH_2N(CH_2)_2OH$, $CH_2NC_6H_5$, or $CHN(NH)CSNH_3$.

R₃= OH, or H:

R4= CH3:

 $R_5 = OH$;

$$\begin{split} R_6 &= C_4 H_3 0_2, N(NHCO) C_6 H_4 CI, N(NHCO) C_6 H_4 F, COOH, O, \\ COCH_3, CH(CH_3)(CH_2)_2 C00H, CH(CH_3)(CH_2)_2 C00CH_3, \\ O(CO) C_6 H_5, or OH; \end{split}$$

 $R_{7} = O(CO)CH_2N(CH_3)_3$, or $O(CO)CH_3$;

 $R_8 = OH$;

R₉= O, or OH; and Rio=O

 $R_{10} = O$.

- (Original) The method of claim 1 wherein the inhibitor is selected from the group consisting compounds III-1 to III-31.
- 11. (Original) The method of claim 1 wherein said inhibitor is a compound having Formula IV wherein:

$$R_1$$
 = O(CO)(CH₂)₂COOH, or O(CO)CH₂Br; and

$$R_2 = O(CO)(CH_2)_2COOH$$
, or $O(CO)CH_2Br$.

- (Original) The method of claim 1 wherein the inhibitor is selected from the group consisting compounds IV-1 and IV-2.
- (Original) The method of claim 1 wherein said inhibitor is a compound having Formula V wherein:

$$R_1 = O$$
, OH, or O(CO)CH₃;

$$R_2$$
= O(CO)CH₃, OH, CO(CH₃), or CO(CH₂)O(CO)CH₃;

- (Original) The method of claim I wherein the inhibitor is selected from the group consisting compounds V-1 and V-5
- 15. (Original) The method of claim 1 wherein said inhibitor is a compound having Formula VI wherein:

$$R_1 = O(CO)CH_3$$
, OH, or $O(CO)(CH_2)_2COOH$;

$$R_2 = CH_3$$
;

$$R_3 = O$$
, or OH :

$$R_4 = CH_3$$
:

 $R_3 = C_9H_{13}COCH_3$, $C_9H_{13}(CH_2CH_3)(CH_2OH)$, $C_9H_{13}(CH_2CH_3)(CH_2000CH_3)$, $C_9H_{13}(CH_2CH_3)(CH_2$ $OCO(CH_2)_2COOH)$, $C_9H_{13}(CH_2CH_3)(COOH)$, or $C_9H_7O(CH_3)(C_9H_90CH_3)$;

 $R_6 = CH_3$:

 $R_7 = O$, or H;

 $R_8 = CH_3$;

 $R_9 = (CH_3)_2$; and

 $R_{10}=Br.$

- (Original) The method of claim I wherein the inhibitor is selected from the group consisting compounds VI-1 and VI-11.
- (Original) The method of claim I wherein the inhibitor is selected from the group consisting compounds VII, VIII IX, X, XI and XII.

Claims I 8-43: (Cancelled)

* * * * *