Desenvolvimento de Software Concorrente - 2020-1

Atividade 4

1 – Faça o diagrama de estados para o programa abaixo:

boolean wantp false, wantq false				
q	p			
loop forever	loop forever			
q1: await wantp = false	p1: await wantq = false			
q2: wantq true	p2: wantp true			
q3: wantq false	p3: wantp false			

2 - Construa o diagrama de estados para o progrma abaixo e use-o para mostrar que a exclusão mútua é válida:

boolean wantp false, wantq false				
p		q		
loc	op forever	lo	oop forever	
p1:	non-critical section	q1:	non-critical section	
p2:	wantp true	q2:	wantq true	
p3:	await wantq = false	q3:	await wantp = false	
p4:	critical section	q4:	critical section	
p5:	wantp false	q5:	wantq false	

3 – Para o programa abaixo, responda os itens:

boolean wantp false, wantq false			
p	q		
loop forever	loop forever		
p1: non-critical section	q1: non-critical section		
p2: wantp true	q2: wantq true		
p3: while wantq	q3: while wantp		
p4: wantp false	q4: wantq false		
p5: wantp true	q5: wantq true		
p6: critical section	q6: critical section		
p7: wantp false	q7: wantq false		

- a) Construa a forma tabular (ou diagrama de estados) do cenário para starvation como mostrado em 3.5;
- b) Explique o porquê desse cenário ser considerado starvation e não uma livelock como na terceira tentativa.
- c) Construa um cenário onde um processo entra em starvation e outro entra na SC infinitamente.

Referências: Ben-Ari, M. (2006). Principles of Concurrent and Distributed Programming. Boston: Addison-Wesley (Second Edition). ISBN 978-0-321-31283-9.