THEORY OF STATISTICS I

EDWARD O'CALLAGHAN

Contents

1.	Sigma Fields	2
2.	Bernoulli Distribution.	4
3.	Binomial Distribution.	4
4.	Geometric Distribution.	4
5.	Poisson Distribution.	5
6.	Hypergeometric Distribution.	6
Ref	References	

2

1. Sigma Fields

Definition 1.1 (Sigma Field). A σ -field, or σ -algebra, is some subset $\mathcal{A} \subseteq 2^X$ of the power set 2^X of set X such that;

- $\emptyset, X \in \mathcal{A}$,
- if $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$,
- for any countable collection of sets $A_1, A_2, \dots \in \mathcal{A}$ we have, $\bigcap_i A_i \in \mathcal{A}$ and $\bigcup_i A_i \in \mathcal{A}$.

Lemma 1.2. The σ -field \mathcal{F} from some set Ω , taken as $\mathcal{F} = \{\emptyset, \Omega\}$, is the trivial σ -field.

Definition 1.3 (Measure). A function μ defined on some σ -field \mathcal{A} is said to be countably additive and nonnegative *measurable* provided;

- $\mu(\emptyset) = 0$,
- $0 \le \mu(A) \le \infty$ for any $A \in \mathcal{A}$,
- for a countable collection of sets $A_1, A_2, \dots \in \mathcal{A}$ with $A_i \cap A_j = \emptyset : i \neq j$, we have $\mu\left(\bigcup_i A_i\right) = \sum_i \mu(A_i)$.

Definition 1.4 (Measure Space). The tuple (X, \mathcal{A}) is called a *measurable space* for some σ -field define on some set X. That is, a space in which we may define some *measure map* $\mu : \mathcal{A} \to \mathbb{R}$.

Theorem 1.5. Let μ be a measure on (Ω, \mathcal{F})

- i.) Monotonicity: If $A \subset B$ then $\mu(A) \leq \mu(B)$.
- ii.) Subadditivity: If $A \subset \bigcup_{k=1}^{\infty} A_k$ then $\mu(A) \leq \sum_{k=1}^{\infty} \mu(A_k)$.
- iii.) Continuity from below: If $A_i \uparrow A$ (i.e., $A_1 \subset A_2 \subset \ldots$ and $\cup_i A_i = A$) then $\mu(A_i) \uparrow \mu(A)$.
- iv.) Continuity from above: If $A_i \downarrow A$ (i.e., $A_1 \supset A_2 \supset ...$ and $\cap_i A_i = A$), with $\mu(A_1) \leq \infty$ then $\mu(A_i) \downarrow \mu(A)$.

Proof.

i.) Let $B-A=B\cap A^c$ be the difference of the two sets. Using \oplus to denote disjoint unions, $B=A\oplus (B-A)$ so

$$\mu(B) = \mu(A) \oplus \mu(B - A) > \mu(A).$$

ii.) Let $A'_n = A_n \cap A$, $B_1 = A'_1$ and for n > 1, $B_n = A'_n - \bigcup_{k=1}^{n-1} (A'_k)^c$. Since the B_n are disjoint and have union A, we have, using the definition of measure, $B_k \subset A_k$, and by i.) of this theorem,

$$\mu(A) = \sum_{k=1}^{\infty} \mu(B_k) \le \sum_{k=1}^{\infty} \mu(A_k).$$

iii.) Let $B_n = A_n - A_{n-1}$. Then the B_n are disjoint and have $\bigcup_{k=1}^{\infty} B_k = A$, $\bigcup_{k=1}^{n} B_k = A_n$ so

$$\mu(A) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \mu(A_n).$$

iv.) Given that $A_1 - A_n \uparrow A_1 - A$ so iii.) implies $\mu(A_1 = A_n) \uparrow \mu(A_1 - A)$. Now since $A_1 \supset B$, we have $\mu(A_1 - B) = \mu(A) - \mu(B)$ and it follows that $\mu(A_n) \downarrow \mu(A)$.

Definition 1.6 (Probability Measure). A probability measure is some measure \mathbb{P} defined on some σ -field \mathcal{F} from some set Ω such that $\mathbb{P}(\Omega) = 1$. In particular, we call the set Ω the sample space and the triple $(\Omega, \mathcal{F}, \mathbb{P})$ the probability measure space.

In a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we have the set of outcomes Ω , or sample space, the set of events \mathcal{F} and the probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$ that assigns probabilities to events. Recall that $\Omega, \emptyset \in \mathcal{F}$ is always trivially so, hence the probability measure \mathbb{P} is defined on all outcomes in the sample space Ω .

Example 1.7 (Discrete probability space). Let Ω = "a countable set", that is, finite or countably infinite. Take the σ -field $\mathcal{F} = 2^{\Omega}$ as the power set. Consider,

$$\mathbb{P}(A) = \sum_{\omega \in A} p(\omega) : p(\omega) \ge 0$$

and note

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Hence, for a finite set Ω , we may define a *uniform* probability measure $p(\omega) = \frac{1}{|\Omega|}$. Such as for a fair six sided dice, where $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $p(\omega) = 1/6$. In particular, for some *event* $A \in \mathcal{F}$ where A = "we get a 2 and a 3", we have chance $\mathbb{P}(A) = 1/6 + 1/6 = 1/3$.

Theorem 1.8. Suppose we are given some collection of σ -fields \mathcal{F}_i , $i \in I$, where the index set $I \neq \emptyset$ is arbitrary (i.e., possibly uncountable). Then $\cap_{i \in I} \mathcal{F}_i$ is a σ -field.

Proof.

- i.) Fix any $A \in \mathcal{F}_i$ for some $i \in I$. Then $A^c \in \mathcal{F}_i$ and so, if $A \in \cap_{i \in I} \mathcal{F}_i$ then $A^c \in \cap_{i \in I} \mathcal{F}_i$.
- ii.) Take any countable sequence of sets $\{A_k\}_{k=1}^n$ then $\bigcup_{k=1}^n A_k \in \mathcal{F}_i$ and so, if $\{A_k\}_{k=1}^n \in \cap_{i \in I} \mathcal{F}_i$ then, $\bigcup_{k=1}^n A_k \in \cap_{i \in I} \mathcal{F}_i$.

4

2. Bernoulli Distribution.

$$X \sim Bernoulli(p) : 0 \le p \le 1$$
 (1)

Take some random variable X with a Bernoulli parametric model with success parameter p defined by:

$$X \triangleq \begin{cases} 1 & \text{if success } p, \\ 0 & \text{otherwise.} \end{cases}$$

Then, $X \sim Bernoulli(p)$ read as; "X has distribution Bernoulli with parameter p". The probability mass function is then defined by:

$$f_X(x;p) \triangleq p^x (1-p)^{1-x} : x \in \{0,1\}.$$
 (2)

3. BINOMIAL DISTRIBUTION.

$$X \sim Bin(n,p) : 0 \le p \le 1$$
(3)

This is a finite generalisation of a series of Brnoulli random variables with replacement.

Take some random variable X with each observation $x_i \in X : 0 \le i \le n$ where n is the number of trials and that each $x_i \sim Bernoulli(p)$. Then, provided all the observations x_i are independent and since the parameter p is the same (a special case of the Poisson binomial distribution) for all. Then, we claim that the each x_i are "independent and identically distributed" **i.i.d.** Assuming now, we select each x_i with replacement, then there are $\binom{n}{x}$ ways to select x observations from a trial, or sample size of n.

That is, $X \sim Bin(n, p): 0 \le p \le 1$ and hence has probability mass function defined by:

$$f_X(x;n,p) \triangleq \binom{n}{x} p^x (1-p)^{n-x} : 0 \le x \le n.$$
(4)

Clear, this is just an extension of a Bernoulli trial sequentially repeated n times.

4. Geometric Distribution.

$$X \sim Geom(p) : 0 \le p \le 1 \tag{5}$$

This is a special case result of a Binomial random variable, for when x = 1.

Take some random variable X such that $X \sim Bin(n, p)$, given that p is the probability of success. Take x = 1 with n = k so that, the probability of first success on the k^{th} trial is given by,

$$f_X(1; k, p) = \binom{k}{1} p^1 (1-p)^{k-1}.$$

Then we have the following special case result as our probability mass function:

$$f_X(k;p) \triangleq p(1-p)^{k-1} : k \in \{1, 2, \dots\}.$$
 (6)

5. Poisson Distribution.

$$X \sim Poisson(\lambda) \tag{7}$$

This is another special case result of a Binomial random variable, for when p is close to zero and n is very large [Pap91].

Take some random variable Y such that $Y \sim Bin(n,p)$ and fix some parameter $\lambda \doteq np$ where n is known to be large and p is known to be small. Such a case is intuitively a rare event since the probability of success p is small for a large number of trials n. This is known as "the law of rare events" [Sem]. We continue with the assumtion that such events are sufficiently independent. Then, we have a limiting case of the Binomial random variable Y with parameter λ .

Hence if,

$$Y \sim Bin(n, p)$$

Substituting for λ and by introduction of an auxiliary random variable X

$$X \sim Bin(n, \frac{\lambda}{n})$$

we derive the probability mass function as follows,

$$f_X(x;\lambda) = \frac{n!}{(n-x)!x!} (\frac{\lambda}{n})^x (1 - \frac{\lambda}{n})^{n-x}$$
$$= \frac{n!}{n^x (n-x)!} \frac{1}{(1 - \frac{\lambda}{n})^x} \frac{\lambda^x}{x!} (1 - \frac{\lambda}{n})^n$$

Taking the limit as $n \to \infty$ and noting the definition of $e^{-\lambda} \doteq \lim_{n \to \infty} (1 - \frac{\lambda}{n})^n$

$$\frac{\lambda^x}{x!} \lim_{n \to \infty} \left(\frac{n!}{n^x (n-x)!} \right) \left(\frac{1}{(1-\frac{\lambda}{n})^x} \right) \left(1 - \frac{\lambda}{n} \right)^n$$
$$= \frac{\lambda^x}{x!} (1)(1)(e^{-\lambda})$$

hence, we have the probability mass function to be:

$$\Rightarrow f_X(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!} : x \in \{0,1,2,\dots\} \text{ for some fixed } \lambda.$$

Thus, Given a random variable X such that $X \sim Poisson(\lambda)$ then X has probability mass function:

$$f_X(x;\lambda) \triangleq \frac{e^{-\lambda}\lambda^x}{x!} : x \in \{0, 1, 2, \dots\}$$
(8)

6. Hypergeometric Distribution.

$$X \sim Hypergeom(M, N, n) : \max(0, M + n - N) \le k \le \min(M, n)$$
(9)

Bernoulli trials without replacement (Binomial is actually a special case of the hypergeometric). Probability mass function is defined as:

$$f_X(x; M, N, n) \triangleq \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} : N \in \{1, 2, \dots\}$$

$$m \in \{0, 1, 2, \dots, N\}$$

$$n \in \{1, 2, \dots, N\}$$

$$(10)$$

References

[Pap91] Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York, NY, USA, 1991.

[Sem] Ladislaus Semali. Home page.