

#### CS 210 - Discrete Mathematics Fall 2015-16

| Instructor   | Imdad Ullah Khan       |
|--------------|------------------------|
| Room No.     | R#9-110A               |
| Office Hours | TBA                    |
| Email        | imdad.khan@lums.edu.pk |
| Telephone    | 8198                   |
| Secretary/TA | Zulfiqar N Malik/TBA   |
| TA Office    | TBA                    |
| Hours        |                        |
| Course URL   | TBA                    |
| (if any)     |                        |

| Course Basics  |            |   |          |                       |
|----------------|------------|---|----------|-----------------------|
| Credit Hours   | 4          |   |          |                       |
| Lecture(s)     | Nbr of     | 2 | Duration | 1 hour and 50 minutes |
|                | Lec(s) Per |   |          |                       |
|                | Week       |   |          |                       |
| Recitation/Lab | Nbr of     |   | Duration |                       |
| (per week)     | Lec(s) Per |   |          |                       |
|                | Week       |   |          |                       |
| Tutorial (per  | Nbr of     |   | Duration |                       |
| week)          | Lec(s) Per |   |          |                       |
|                | Week       |   |          |                       |

| Course Distribution |  |  |
|---------------------|--|--|
| Core                |  |  |
| Elective            |  |  |
| Open for            |  |  |
| Student             |  |  |
| Category            |  |  |
| Close for           |  |  |
| Student             |  |  |
| Category            |  |  |

#### COURSE DESCRIPTION

The course covers the mathematical foundations of computer science. The aim is to introduce the students to the fundamental techniques of discrete mathematics which may be employed in a variety of mathematical disciplines, including fields in theoretical computer science, such as, for instance, algorithms. An introduction to logic, proof techniques, sets, functions, and relations is made, along with an initiation to



combinatorics, basic graph and tree structures. A very brief introduction to number theory and discrete probability is made. Problems are formed mathematically and solved using available tools and techniques.

| COURSE PREREQUISITE(S) |                                     |  |
|------------------------|-------------------------------------|--|
| •                      | Calculus-I, or Calculus with Theory |  |
| •                      |                                     |  |
|                        |                                     |  |
| COURSE OBJECTIVES      |                                     |  |
|                        |                                     |  |
| •                      |                                     |  |
|                        |                                     |  |



| Learning Outcomes          |                                                                 |  |
|----------------------------|-----------------------------------------------------------------|--|
|                            | The students will understand the basic principles of discrete   |  |
| •                          | mathematics and will be able to apply these principles in       |  |
|                            | subsequent courses such as algorithms, theory of computing, and |  |
| •                          | networks.                                                       |  |
| •                          | The students will be able to reason mathematically about the    |  |
|                            | basic discrete structures and data types such as numbers, sets, |  |
|                            | relations, graphs and trees.                                    |  |
|                            | The students will be able to understand and synthesize          |  |
|                            | <del>-</del>                                                    |  |
|                            | elementary proofs                                               |  |
| Grading Breakup and Policy |                                                                 |  |
|                            |                                                                 |  |
| Assignmen                  | Assignments /Homework: 15%                                      |  |
| Midterm Examination: 30%   |                                                                 |  |
| Quizzes: 15%               |                                                                 |  |
| Final Exa                  | Final Examination: 40%                                          |  |

| Examinat        | ion Detail                                                             |
|-----------------|------------------------------------------------------------------------|
| Midterm<br>Exam | Open five two sided A4 sheets, Calculator Not Allowed; pencil required |
| Final<br>Exam   | Open five two sided A4 sheets, Calculator Not Allowed; pencil required |

| COURSE OV | COURSE OVERVIEW                                |  |
|-----------|------------------------------------------------|--|
| Week/     |                                                |  |
| Lecture   | Topics                                         |  |
| /         | TOPICS                                         |  |
| Module    |                                                |  |
| 1.        | Logic, Logical Equivalence, Predicate          |  |
| 2.        | Logic, Sets                                    |  |
| 3.        | Sets, Functions                                |  |
| 4.        | Functions, Sequence and Sums                   |  |
| 5.        | Sequence and Sums,                             |  |
| 6.        | Proofs, Induction                              |  |
| 7.        | Induction, Cardinality                         |  |
| 8.        | Counting                                       |  |
| 9.        | Counting, Binomial theorem and Pascal triangle |  |
| 10.       | Discrete Probability                           |  |
| 11.       | Discrete Probability                           |  |
| 12.       | Graphs and Trees                               |  |



| 13. | Graphs and Trees |
|-----|------------------|
| 14. | Graphs and Trees |

#### Textbook(s)/Supplementary Readings

- 1. R. H. Rosen, Discrete Mathematics and its Applications, 6th Edition, McGraw-Hill
- 2. Matousek&Nevestril, Invitation to Discrete Mathematics
- 3. Laszlo Lovasz&JozsefPelikan, Discrete Mathematics: Elementary and Beyond.