* Diagrama de Vern

- Diagramos de Venn (John Venn [1834-1923]) → diagramas lange me, cointimose camente mora aus cobisdas strembersurus cotronos de trois dos conjuntos cotraciones de trois dos conjuntos

- Grouma (Granstroidode da continêncio): Suja A, Bec conjuntos quarquer De ACB & BCC, into ACC

* Sonodão de Musul

- Consunto ordinario: consunto que mão pentines a si mismo.

- George (paradora de Presul I blesso Batrond Presul : 1872-1970]:

[ouronides strugues muis A | A] = E: strugues mu i son soquintes utringes of

- A motocoo por compresensos permito definir algo que nos é conjunto! - Sila spanodoto de Puscel:
- (Não siste o conjunto de todos os conjuntos)

Nem todo a coleção de elementos (definida por comprunção) constitui

- Torma de votor a paradora de Plesal (quando a abjetira é definir um somueso, E (a) of la de me, a my ignister. « (occommenda son son es a la pras) de somme valor em um outermodo conjunto A, ou siza, ¿a EA/p(a) } andustas anus o comple an Israel do exobaras do since esta antimatam

otrutus mu è son cotremele do copelos o ex « comunto outentes o es « como or estrutas o estrutas o

- Álgilia di conjunto - algilia grande.	
- Algebra de conjuntos - algebra grande. - Sobre uma algebra pequena - deve se consideror um dodo conjunto su	marse
Environt von respond ()	
Latherer apendo vitrad a caparaga amu i « birererer com caparago —	~
mão poole-se recuperar os opmandos or esquares:	
· União · Interseção	
- Definição (União); Sejam A&B conjuntos Então:	
AUB={x/xEAVxEB}	
of AUB AUB	
- Relacionamento da unios com a logica: U com V	
- Sulauramento da unico com a logica: U com V - Sapriidodes da unico (Syom A, Br C conjuntos):	
A = AU Q = QUA : actuar atrianell .	
- Dalempatinui : AUA = A AUB = BUA : avitatuma ?	
Comutation: AUB=BUA Researchers: AU(BUC)=(AUB)UC	
(- Difinição (Interseção): Syon A & B conjuntos. Então:	
AIID = [2 xeA / xeb;	
A B Lange on the Number	
- Sulacionamento da intracção com a lógico: O com 1	

- : onoistras student as tremovitale? -
 - · Não comutationado → BXC ± CXB
 - · Não associativadodu → (AXB)XC + AX(BXC)

: (cotrugeos De B, A adroquea) anaestras, atuborg ab adopundos?

- Distribution a union: AX(BUC)=(AXB)U(AXC)
- · Distributiodode sobre a intersução: AX(Bnc)=(AXB)n(Anc)

- Fleresblidade da praduta carteriono AXB: O primira operado Baquetivamente, o regundo aperando) é o conjunto constituido por todo os elementos da primira (respectivamente, da regunda) componente dos paras da produto carteriono.

+ Defunção (União Despurto): Sujam A. B. conjuntos. A união despurto dos conjuntos A. B. á defunda por:

A+B(on AUB) = { < a, A> | a eA} U { < b, B> | beB}

= { < a, 0> | a ∈ A} v { < b, 1> | b ∈ B}

= { a , lae A } u { b , l b e B }

- Strevaliliste da unión desjunta > como coda elemento posser juna de conjunta de conjunta

cotrugios de solgla e solgla e true copoles X

- Constros lógicos x oprogos sols conjuntos

A=AAA of Solver ountequade.

A=AUA of Solver ountequade.

· comutation professor ANB = BNA professor AUB = BUA

DU(BUA) = (DUB) UA TURPY (STRY B) V (BUC) = (ANB) UC

• distribution $p \wedge (q \vee x) \Leftrightarrow (p \wedge q) \vee (p \wedge y) \wedge A \cap (B \vee C) = (A \cap B) \vee (A \cap C)$ $p \vee (q \wedge y) \Leftrightarrow (p \vee q) \wedge (p \vee x) \wedge (B \cap C) = (A \cap B) \wedge (A \cup C)$

emplored $779696 \sim A = A$ complements $61769696 \sim A = 6$ $61769696 \sim A = 6$ $61769696 \sim A = 6$
DeMagon 7(pvq)⇔7p17q ~(AUB)=~A1~B 7(p1q)⇔7pV7q ~(A1B)=~AU~B
elements $\phi \wedge V \Leftrightarrow \phi$ $A \cap U = A$ mentes $\phi \vee F \Leftrightarrow \phi$ $A \cup \phi = A$
elmonte prf=>F An Ø=Ø 0=UNAV OF STRONGORDE
· planting to the state of the
- Subscrib logues × reloções sobre compuntos: • implicações $p \Rightarrow q$ $A \subseteq B$ $A = \{x \mid p(x)\}$, $B = \{x \mid q(x)\}$ • continúncia • equipolímeia $p \Leftrightarrow q$ $A = B$ $A \in B \Leftrightarrow \forall x \in U, p(x) \Leftrightarrow q(x)$ • equipolímeia $p \Leftrightarrow q$ $A = B$ $A = B \Leftrightarrow \forall x \in U, p(x) \Leftrightarrow q(x)$
$- A = U \Leftrightarrow \forall x \in U, p(x) \Leftrightarrow V$ $- A = \phi \Leftrightarrow \forall x \in U, p(x) \Leftrightarrow F$