PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-126074

(43)Date of publication of application: 11.05.2001

(51)Int.CI.

GO6T 7/00

G06F 17/30

(21)Application number: 11-318369

•

(21)Applicación nami

1 010005

(71)Applicant: ATL SYSTEMS:KK

(22)Date of filing:

09.11.1999

(72)Inventor:

CHATOUURU DEIANTONO

(30)Priority

Priority number: 11230185

Priority date: 17.08.1999

Priority country: JP

(54) METHOD FOR RETRIEVING DATA BY PATTERN MATCHING AND RECORDING MEDIUM HAVING ITS PROGRAM RECORDED THEREON

(57)Abstract:

PROBLEM TO BE SOLVED: To accelerate data retrieval in a processor by providing a method capable of speedily executing pattern matching by a simpler algorithm.

SOLUTION: In order to match an inputted observation pattern and a standard pattern in a database, a system for judging similarity through the used of an exponential function having the difference between the waveforms of both patterns as a vehicle is used. That is, when observation data shown by f(x) is inputted like figure 1, e.g. to judge matching with standard data shown by g(x) in the database, the difference between the waveforms of both data at prescribed points on the waveforms (the difference between two points on both waveforms) d(x) is inserted to e-werbar: d(x)| to judge similarity from the value. In a method for using the exponential function like this, an algorithm is simple and calculation is fast.

LEGAL STATUS

[Date of request for examination]

16.11.1999

[Date of sending the examiner's decision of rejection]

18.06.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-126074 (P2001-126074A)

(43)公開日 平成13年5月11日(2001.5.11)

(51) Int.Cl. 7 G 0 6 T 7/00 G 0 6 F 17/30 識別記号

FΙ

テーマコード(参考)

G06F 15/70

455A 5B075

15/403

350C 5L096

9A001

審査請求 有 請求項の数14 OL (全 8 頁)

(21)出願番号

特願平11-318369

(22)出願日

平成11年11月9日(1999.11.9)

(31)優先権主張番号

特願平11-230185

(32)優先日

平成11年8月17日(1999.8.17)

(33)優先権主張国

日本 (JP)

(71)出願人 598088619

株式会社エーティーエルシステムズ

山梨県甲府市相生1丁目4番23号

(72) 発明者 チャトゥール ディアントノ

山梨県甲府市相生1-19-2 株式会社工

ーティーエルシステムズ内

(74)代理人 100106220

弁理士 大竹 正悟

Fターム(参考) 5B075 ND08 PR06 QM08

5L096 BA02 BA08 HA08 JA03

9A001 FF03 HH17 HH21 JJ01 LZ03

(54) 【発明の名称】 パターンマッチングによるデータ検索方法及びそのプログラムを記録した記録媒体

(57) 【要約】

【課題】より簡単なアルゴリズムで高速にパターンマッチングを行える手法を提供し、処理装置におけるデータ検索の高速化を図る。

【解決手段】入力された観測パターンとデータベースにある標準パターンとのマッチングに、両パターンの波形間の差を変数とした指数関数を用いて類似度を判断する方式を使用する。すなわち、たとえば図1のように、f(x)で示される観測データが入力され、データベース中のg(x)で示される標準データとのマッチングを判断するとした場合、波形上の所定の点における両データの波形間の差(両波形上の2点間の差)d(x)を e

- l d (x) | に挿入して、その値から類似度を判断する。このように指数関数を利用する手法は、アルゴリズムが簡単であり、計算も速い。

【特許請求の範囲】

【請求項1】 領域Mで、入力された観測パターン [f(x)] とデータベースにある標準パターン [g(x)] とをパターンマッチングにより類似判断するようにした処理装置のデータ検索方法において、

観測パターンの波形と標準パターンの波形との波形間の 差 [d(x)] により指数関数 $[e^{-|d(x)|}]$ を定義し、これを類似度として判断するようにしたことを特徴とするデータ検索方法。

【請求項2】 数式1で示すように、指数関数 [e - | d(x) |] の | d(x) | を n 乗 (n は 実数) して | d(x) | n とする請求項1記載のデータ検索方法。

【数1】

$$e^{-|d(x)|^t}$$

離散表現で

$$\rho^{-|d_i|'}$$

【請求項3】 数式2で示すように、指数関数 [e $- \mid d(x) \mid$] の $\mid d(x) \mid$ を感度係数 [S(x)] でわって ($\mid d(x) \mid / S(x)$) \mid とする請求項2記載のデータ検索方法。

【数 2 】

$$e^{\frac{-|d(x)|^n}{S(x)^n}}$$

離散表現で

$$e^{\frac{-|d_i|^n}{S_i^n}}$$

【請求項4】 数式3で示すように、観測データ [f(x)] の波形上のN個の点につき指数関数 [e - | d(x)] を求めて重み係数 $[\alpha(x)]$ をかけ、これらの重心から類似度を判断する請求項3記載のデータ検索方法。

【数3】

$$\frac{\int_{M} \alpha(x) e^{\frac{-|d(x)|^{n}}{S(x)^{n}}} dx}{\int_{M} \alpha(x) dx}$$

離散表現で

$$\frac{\sum_{i=1}^{N} \alpha_i e^{\frac{-|d_i|^n}{S_i^n}}}{\sum_{i=1}^{N} \alpha_i}$$

【請求項5】 観測データ [f(x)] の波形上の観測点について重み付けを最大とし且つ該観測点から離れるに従って小さくなるようにした重み付け係数 [w(x)] を観測点及びその近隣点における波形間の差 [d(x)] に乗算し、そして、その乗算結果 $[w\cdot d(x)]$ を積算するとともに使用した重み付け係数を積算してこれら積算結果を除算し、該除算結果 $[\Sigma w\cdot d(x)/\Sigma w]$ を観測点における波形間の差とする請求項 $1\sim 4$ のいずれか 1 項に記載のデータ検索方法。

【請求項6】 観測データ [f(x)] の波形の変化量が 所定のしきい値を越える部分についてのみ類似度を判断 する請求項 $1\sim5$ のいずれか1 項に記載のデータ検索方 法

【請求項 7 】 予め計算した指数関数の計算結果をテーブルにしてメモリへ格納し、算出された波形間の差 [d(x)] に従い該テーブルをアクセスして類似度を決定する請求項 $1\sim6$ のいずれか 1 項に記載のデータ検索方法

【請求項8】 領域Mで、入力された観測パターン [f(x)] とデータベースにある標準パターン [g(x)] とをパターンマッチングにより類似判断する際に、観測パターンの波形と標準パターンの波形との波形間の差 [d(x)] により指数関数 $[e^{-|d(x)|}]$ を定義し、これを類似度として判断するようにしたデータ検索機能をコンピュータに実行させるためのプログラムを記録してある、コンピュータ読取可能な記録媒体。

【請求項9】 数式4で示すように、指数関数 [e - | o(x) |] の | d(x) | を n 乗 (n は 実数) し | d(x) | | n としてデータ検索機能を実行させるプログラムを記録してある請求項8記載のコンピュータ読取可能な記録媒体。

【数4】

 $e^{-\left|d(x)\right|^n}$

離散表現で

$$e^{-|d_i|^n}$$

【請求項10】 数式5で示すように、指数関数 [e $- \mid d(x) \mid$] の $\mid d(x) \mid$ を感度係数 [S(x)] でわり ($\mid d(x) \mid / S(x)$) \mid としてデータ検索機能を実行させるプログラムを記録してある請求項9記載のコンピュータ読取可能な記録媒体。

【数 5 】

 $e^{\frac{-\left|d(x)\right|^n}{S(x)^n}}$

離散表現で

$$e^{\frac{-|d_i|^n}{S_i^n}}$$

【請求項11】 数式6で示すように、観測データ [f(x)] の波形上のN個の点につき指数関数 [e - | d(x) |] を求めて重み係数 [$\alpha(x)$] をかけ、これらの重心から類似度を判断するデータ検索機能を実行させるプログラムを記録してある請求項10記載のコンピュータ読取可能な記録媒体。

【数6】

$$\frac{\int_{M} \alpha(x) e^{\frac{-|d(x)|^{n}}{S(x)^{n}}} dx}{\int_{M} \alpha(x) dx}$$

離散表現で

$$\frac{\sum_{i=1}^{N} \alpha_{i} e^{\frac{-|d_{i}|^{n}}{S_{i}^{n}}}}{\sum_{i=1}^{N} \alpha_{i}}$$

【請求項12】 観測データ [f(x)] の波形上の観測点について重み付けを最大とし且つ該観測点から離れるに従って小さくなるようにした重み付け係数 [w(x)] を観測点及びその近隣点における波形間の差 [d(x)] に乗算し、そして、その乗算結果 $[w\cdot d(x)]$ を積算するとともに使用した重み付け係数を積算してこれら積算結果を除算し、該除算結果 $[\Sigma w\cdot d(x)/\Sigma w]$ を観測点における波形間の差とするデータ検索機能を実行させるプログラムを記録してある請求項8~11のいず

れか1項に記載のコンピュータ読取可能な記録媒体。

【請求項13】 観測データ [f(x)] の彼形の変化量が所定のしきい値を越える部分についてのみ類似度を判断するデータ検索機能を実行させるプログラムを記録してある請求項8~12のいずれか1項に記載のコンピュータ読取可能な記録媒体。

【請求項14】 予め計算した指数関数の計算結果をテーブルにしてメモリへ格納し、算出された波形間の差 [d(x)] に従い該テーブルをアクセスして類似度を決定するデータ検索機能を実行させるプログラムを記録してある請求項8~13のいずれか1項に記載のコンピュータ読取可能な記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、入力された観測パターンとデータベースの標準パターンとの近さによって 識別を行うパターンマッチング法(パターン整合法)を 利用してコンピュータなど処理装置(プロセッサ)でデ ータベースの検索を行うデータ検索方法に関する。 【0002】

【発明が解決しようとする課題】現在よく知られているパターンマッチング法としては、ユークリッド距離を採用し、内積に基づく単純類似度の手法や、動的計画法(DPMatching)、残差逐次検定法(SSDA)などがある。これらの手法はいずれも優れたものではあるが、入室管理システム(顔、虹彩、指紋認識等)や音声、振動などに関する波形認識などリアルタイムのデータ検索処理を要求されるシステムにおいては、アルゴリズムの複雑さや処理速度の点で向上が望まれている。

[0003] そこで本発明は、より簡単なアルコリスムで高速にパターンマッチングを行える手法を提供し、処理装置におけるデータ検索の高速化を図るものである。 [0004]

【課題を解決するための手段】本発明では、入力された観測パターンとデータベースにある標準パターンとのマッチングに、両パターンの波形間の差を変数とした指数関数を用いて類似度を判断する方式を使用する。すなわち、たとえば図1のように、f(x)で示される観測データが入力され、データベース中のg(x)で示される標準データとのマッチングを判断するとした場合、波形上の所定の点における両データの波形間の差(両波形上の2点間の差)d(x)を $e^{-1d(x)}$ に挿入して、その値から類似度を判断する。このように指数関数を利用する手法は、アルゴリズムが簡単であり、計算も速い。

【0005】このデータ検索方法では、その|d(x)|をn乗(nは実数)して|d(x)| やすれば(数式7)、nの値を変えることにより、図2に示すごとく類似判断の"鈍さ"を調整することができる。すなわち、nの値を上げていくと図中① \rightarrow ④のように変化していき、nが大きくなるほど、d(x)がある値になったとき

に急激に類似度が低下する挙動を示す。したがってnを大きくすれば、波形間の差d(x)の所定の値(類似度が急激に下がるところ)を区切りとして、それ以下は類似、それを越えると非類似というように、0、1のデジタル式判断を行うことができる。一方、nを小さくした場合には、d(x)が大きくなるにつれて緩やかに類似度は減少していくので、区切り判定を鈍くすることができる。

【数7]

$$e^{-\left|d(x)\right|^{n}}$$

離散表現で

$$e^{-|d_i|^n}$$

【0006】また、|d(x)| を感度係数S(x) でわり、 (|d(x)|/S(x)) ⁿ としておくと(数式8)、その S(x) の値により、図3 に示すように類似度の傾きをコントロールすることができる(S_1 , S_2 , S_3 , S_4)。これによって、たとえば図中の差 "D" は、 S_1 のときには非類似とみなされるが、 S_4 のときには類似とみなされるというように、類似判断感度を調整することが可能である。

【数8】

$$\int_{0}^{-\left|d(x)\right|^{n}} \frac{\left|d(x)\right|^{n}}{S(x)^{n}}$$

離散表現で

$$e^{\frac{-|d_i|^n}{S_i^n}}$$

【0007】以上の手法については、波形上のN点について $e^{-|d(x)|}$ を求め、これらの重心又は平均から波形の類似度を判断する方式とするのがよい(数式9)。なお、式中のn 乗や感度係数S(x)は必要に応じて挿入し(S(x)=1とすれば関与しない)、設定することができる。このときに使う重み係数 $\alpha(x)$ は、波形上のN個の点で求められた各類似度にそれぞれかけられるもので、どの点の類似度を重視するかを決定する役割をもつことになる。このような重み係数は、たとえば映像信号の類似度を判断するような場合に、色信号R、G、Bのいずれを重視するかというようなときにも使用することができる。すなわち、R、G、Bの各波形について求めた類似度にそれぞれ重み係数をかけるようにすればよい。

【数9】

$$\frac{\int_{M} \alpha(x) e^{\frac{-|d(x)|^{n}}{S(x)^{n}}} dx}{\int_{M} \alpha(x) dx}$$

離散表現で

$$\frac{\sum_{i=1}^{N} \alpha_i e^{\frac{-|d_i|^n}{S_i^n}}}{\sum_{i=1}^{N} \alpha_i}$$

【0008】このようなパターンマッチング法において は、ある点の差d(x)を算出するときに、波形のずれを 考慮に入れるようにするのがよい。すなわち、ずれを考 慮して比較範囲に幅をもたせることにより、画像中の一 部分のマッチングを判断するような場合に、比較範囲が 微妙にずれていたとしても問題なく実行できるようにな り、データ検索の精度を上げられる。たとえば図4に示 すように、本来は一致しているとみなすべき観測データ f(x)と標準データg(x)とにずれがあるとする。この場 台、所定の点pにおける両波形の差d~(xp)の算出に 際し、近隣点の差…, d(xp-1), d(xp), d(x p+1), …を影響させるようにする。その近隣値影響 には重み付け係数w(x)を用い(たとえばw(x) = e-x2 : 式中の指数 x 2 は x 2 の意味) 、観測点 p の重 み付けを最大とし、観測点pから離れるに従って小さく なるようにして、各近隣点の差…, d(xp-1), d(x p), d(xp+1), …に乗算する [w·d]。すなわ 5, $w \cdot d = \cdots$, $w(x_{p-1} - x_p) d(x_{p-1})$, w(0) $d(x_p)$, $w(x_{p+1} - x_p) d(x_{p+1})$, ... $rac{-}{}$ して、その結果w・dを積算するとともに、重み付け係 数w(x)も積算し、該積算結果を除算する。つまり、 Σ $w \cdot d / \Sigma w = d_{-(p)}$ を計算し、そのd_(p)を点pにお ける差と再定義する。この重み付け係数w(x)をコント ロールすれば、ずれを考慮したマッチングが可能にな

【0009】本発明のデータ検索方法を画像データに適用する場合、波形の変化量(振幅)が所定のしきい値を越える部分についてのみ類似度を判断するようにすれば、いっそうの高速化が図れ、リアルタイム処理により向いている。すなわち、たとえば図5に示すように画面中にリンゴのある画像で、その画像データをなす輝度、R、G、Bのいずれかの波形をA-A切断線でとりだすと、リンゴの輪郭を表している部分で最も変化量が大きくなる。つまり、画像データのマッチングを判断する場合、変化量の大きい部分についてのみ類似判断を行えば、画像中の物の形をとらえて整合性の判断をつけられ

7

るということである。

【0010】本発明はさらに、上記のようなデータ検索機能をコンピュータ(データ処理装置)に実行させるプログラムを記録したコンピュータ読取可能な記録媒体も範囲に含む。すなわち、領域Mで、入力された観測パターン [f(x)]とデータベースにある標準パターン [g(x)]とをパターンマッチングにより類似判断する際に、観測パターンの波形と標準パターンの波形との波形間の差 [d(x)]により指数関数 $[e^{-1d(x)}]$]を定義し、これを類似度として判断するようにしたデータ検 10索機能をコンピュータに実行させるためのプログラムを記録してある、コンピュータ読取可能な記録媒体が提供される。

【0011】この記録媒体に入れられたプログラムによるデータ検索機能についても、上記処理装置の実行するデータ検索方法と同様のバリエーションが可能である。 【0012】

【発明の実施の形態】以下、本発明のデータ検索方法の 実施形態につき2つの例をあげて説明する。なお、本例 では数式9を使用するものとする。

【0013】図6に示す第1の例は、入室管理システムにおけるデータ検索の例である。すなわち、カメラ、マイクなどのセンサー(sensor)で取り込んだ入室者の特徴(画像、音声など)である観測データf(x)がこの場合の処理装置であるコンピュータPC(計算機)へ入力されると、データベースDBに入っている登録者特徴の標準データg(x)が順次読み出され、逐次類比判断されていく。その結果、類似度が高く一致していると判断されるものがあった場合、ドア(door)のロックを解除する命令が出され、入室者が室内へ入ることができるようになる。

【0014】図7に示す第2の例は、音声認識システムにおけるデータ検索の例である。すなわち、マイク(mic rophone)で取り込んだユーザーの声である観測データf(x)がコンピュータPCへ入力されると、データベースDBに格納されている音声の標準データg(x)が順に読み出され、類似判断されていく。このときデータベースDBから読み出される標準データは、たとえば"あ""い""う"が発声されたときのそれぞれの波形であり、これらと類似判断することでユーザーの音声が認識40.

される。そして、音声が認識されると、それに合致する 文字をコードで表示したり、あるいは、ユーザーが音声 により指定したアクションを実施する。マイクで取り込むのは音声に限らず、たとえば自動車のエンジン音をひ ろって比較するなども可能である。この場合、標準デー タとして故障時の異常エンジン音を格納しておけば、故 障診断をリアルタイムで行えることになる。また、音楽 のイントロ比較を行って所望の曲を選曲したり、VTR の頭出しを行うなど、音の比較による各種の応用例があ

【0015】なお、この他にも、スキャナで読みとった 手書き文字を観測データとして入力し、データベースに 入っているタイプ文字の標準データの中から類似してい るものを引き当てる文字認識など、時系列、音声、画 像、三次元等々の各種データ検索への適用例がある。

【0016】これらの例では、コンピュータのソフトウェア(又はハードウェア)に本発明に係るパターンマッチングの手法を組み入れ、これに従い観測データにマッチするデータベース中の標準データを検索する。このようなコンピュータに適用するときのプログラミングには、以下のような応用例がよい。

【0017】上記の各例の場合、観測パターン中の一部分に、標準パターンに一致するデータがあるかどうかを検出する必要がある。つまり、観測パターンに対し標準パターンを移動しながら重ねて相関を調べていくことになる。

【0018】 fとgにつき、次の数式10のように定義し、m次元で定義されるN個の要素をもったベクトルとする。ただし、fの定義領域をF、gの定義領域をGとし、G C F とする(図8)。また、データの i 番目の要素に関する類似度をE i とする。

【数 1 0 】 $f_i(\mathbf{r}) = f_i(r_1, r_2, \dots, r_m)$; $g_i(\mathbf{u}) = g_i(u_1, u_2, \dots, u_m)$ $(i = 1, 2, \dots, N)$

【0019】 gの領域を適当なスケール係数 a_1 , b_1 により拡大又は縮小して f の縮尺にあわせ、上記のように f 内で g を移動させるため、 g の原点が f の原点から r 離れた場合の E_1 を、次のようにして計算する。

【数11】

50

$$E_{a_1,b_2}(\mathbf{r}) = \frac{1}{a_1^m U_1 U_2 \cdots U_n} \int_0^{a_1 U_1 a_2 U_2} \int_0^{a_1 U_2 a_2 U_2} e^{-\frac{1}{a_1 u_2} \frac{1}{a_1 u_2 U_2 \cdots U_n}} du_1 du_2 \cdots du_n$$

$$S(\mathbf{u}) > \mathbf{0}$$

$$\widetilde{d}_{a_i,b_i}(\mathbf{r},\mathbf{u}) = \frac{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} [P_{a_i}(\mathbf{r},\mathbf{r} + \hat{\mathbf{r}} + \mathbf{u}) - b_i q_i (\frac{\mathbf{r} + \hat{\mathbf{r}}}{a_i})] w_i(\hat{\mathbf{r}},\mathbf{r}) d\hat{r}_i d\hat{r}_2 \cdots d\hat{r}_m}{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} w_i(\hat{\mathbf{r}},\mathbf{r}) d\hat{r}_i d\hat{r}_2 \cdots d\hat{r}_m}$$

$$P_{a_i}(\mathbf{r},\mathbf{u}) = f_i(\mathbf{u}) - \widetilde{f}_{a_i}(\mathbf{r}) \qquad ; \qquad \widetilde{f}_{a_i}(\mathbf{r}) = \frac{1}{a_i^m U_i U_2 \cdots U_m} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i} \int_{r_i + a_i U_i r_i}^{r_i + a_i U_i r_i} \int_{r_i}^{r_i + a_i U_i r_i} \int_{r_i + a_i U_i r_i}^{r_i + a_i U_i r_i} \int_{r_i + a_i U_i r_i}^{r_i + a_i U_i r_i} \int_{r_i + a_i U_i r_i}^{r_i + a_i U_i r_i} \int_{r_i + a_i U_i r_i}^{r_i + a_i U_i r_i} \int_{r_i + a_$$

$$p_{a_i}(\mathbf{r}, \mathbf{u}) = f_i(\mathbf{u}) - \widetilde{f}_{a_i}(\mathbf{r}) \qquad ; \qquad \widetilde{f}_{a_i}(\mathbf{r}) = \frac{1}{a_i^m U_i U_2 \cdots U_m} \int_{\gamma_i}^{\gamma_i \cdot \mathbf{u}} \int_{\gamma_i \cdot \mathbf{u}}^{\gamma_i \cdot \mathbf{u}} \int_{\gamma_i}^{\gamma_i \cdot \mathbf{u}} \int_{$$

【数12】

$$w_i(\hat{\mathbf{r}}, \mathbf{r}) = e^{\frac{-|\hat{\mathbf{r}}|^*}{\eta_i(\mathbf{r})^*}}$$

【0020】式中、f(r)はrにおける観測データ、g(r)は r における標準データ、d (r,u)は f (r)とg (r)の 差、a, bはそれぞれ水平と垂直方向のスケール係数、 Sは上述の感度係数、wは上述の重み付け係数である。 wは、点Pからr^m離れた近隣点が点Pに及ぼす影響を 考慮するものであり、ηを変えることによりその影響を 制御することができる。したがってヵは、近隣点影響関 数である。

【0021】数式11,12は、数式9をプログラムに 適した形としたものである。 【0022】上記の計算結果については、予め計算して

おいて、たとえば差 $d(x) = 0 \sim 5$ は類似度 1(-致)、 $d(x) = 6 \sim 10$ は類似度 0.8、 $d(x) = 11 \sim$ 15は類似度0.6というように段階別のテーブルにし てメモリへ格納し、実際の処理時には、算出された波形 間の差d(x)に対応するメモリのテーブルをアクセスし て類似度を読み出す方式にしておくのがよい。これによ り、計算時間をいっそう短縮させることが可能となる。 【0023】以上の例においてnは、自然の物理データ の分布が近似的に正規分布であり、おおむね n = 2 の形 になっているので、n=2を採用するのがよい。また、 たとえば画像データでは、輝度Y、色信号R、G、Bの それぞれについて類似度を求め、これら各類似度の集合 を数式13にあてはめて計算するようにする。式中のE i は各類似度を表し、α i はE i に対する重み係数を示 し、類似度EIがN個存在するとしている。

【数13】

$$E = \frac{\sum_{i=1}^{N} \alpha_i E_i}{\sum_{i=1}^{N} \alpha_i}$$

[0024]

【発明の効果】本発明は、時系列データ、画像、音声、 三次元データなどの各種データを取り扱い可能で、リア ルタイム監視システム、画像や音声、音楽の検索システ ムなど各種のデータ検索を行うシステムへ適用可能であ る。この指数関数を利用したパターンマッチングによる データ検索方法は、従来の他の手法に比べてアルゴリズ ムが単純であり、高速処理を実現することができる。

【0025】また、感度係数を利用することにより、マ ッチング感度をコントロールすることが可能であり、さ らに、多次元のマッチングで各点における近隣点の影響 を考慮する重み付け係数を導入することで、ある程度の 波形のずれをも吸収することが可能である。加えて、た とえば画像の場合には、輪郭部分を示す変化量(情報 量)の高いところでのみ計算を行うようにすることで、 いっそうの高速化を図ることができる。

【図面の簡単な説明】

【図1】本発明のデータ検索方法におけるパターンマッ チングの原理を説明するグラフ。

【図2】波形間の差と類似度(指数関数)の関係を示し たグラフ。

【図3】感度係数による類似度の感度制御を説明するグ ラフ。

【図4】近隣点の影響を加味する重み付け係数を説明す るグラフ。

【図5】画像データの輪郭部分を抽出して類似度判断す る手法の説明図。

【図6】本発明の実施形態の一例を示したブロック図。

【図7】本発明の実施形態の他の例を示したブロック 図。

【図8】プログラミング用の式を説明するための関数の 関係を示したグラフ。

【符号の説明】

f (x) 観測データ

g(x) 標準データ

d(x) 波形間の差(2点間の差)

S(x) 感度係数

w(x) 重み付け係数

