Exercícios de Revisão sobre Números Complexos

No que se segue, representaremos por i a unidade imaginária: $i = \sqrt{-1}$. Usaremos ainda a fórmula de Euler para representar os números complexos na chamada forma polar (ou trigonométrica): $\rho e^{i\theta} = \rho(\cos\theta + i\sin\theta)$.

- 1. Determine os valores de $x \in \mathbb{R}$ que satisfazem:
 - (a) (2+xi)(3-2i) = 12+5i;
 - (b) $(2+xi)^2 = 4$.
- 2. Escreva cada um dos seguintes números complexos na forma algébrica a + bi:
 - (a) (3-2i)(1+i)+|3+4i|;
 - (b) $\frac{3-2i}{1-i} \frac{3-7i}{2-3i}$.
- 3. Determine $z \in \mathbb{C}$ por forma a que:
 - (a) $z^2 = 3 4i$;
 - (b) $z(2-i) = (\overline{z}+1)(1+i)$.
- 4. Escreva cada um dos seguintes números complexos na forma polar $\rho e^{i\theta}$. Represente no plano d'Argand.
 - (a) z = 3 3i;
 - (b) z = -6i;
 - (c) $z = \sqrt{3} + i$.
- 5. Escreva cada um dos seguintes números complexos na forma algébrica a + bi. Represente no plano d'Argand.
 - (a) $z = e^{7i\pi/3}$;
 - (b) $z = \sqrt{2}e^{-i\pi/4}$;
 - (c) $z = 2\sqrt{3}e^{-2i\pi/6}$.
- 6. Determine as raízes das seguintes equações:
 - (a) $x^2 x + (1 i) = 0$;

Sugestão:

- Use a fórmula resolvente para obter $x = \frac{1\pm w}{2}$, onde $w = \sqrt{-3+4i}$ (e, consequentemente, $w^2 = -3+4i$);
- -3 + 4*i*); • Faça w = a + bi ($a, b ∈ \mathbb{R}$), substitua na igualdade $w^2 = -3 + 4i$, e obtenha o sistema $\begin{cases} a^2 - b^2 = -3 \\ 2ab = 4 \end{cases}$;
- Resolva o sistema anterior e conclua que as suas únicas soluções reais são $b=2 \wedge a=1$ ou $b=-2 \wedge a=-1$;
- Conclua que x = 1 + i ou x = -i.
- (b) $x^2 3(1-i)x 5i = 0$;
- (c) $x^2 2x + 2 = 0$;
- (d) $x^2 + 9 = 0$:
- (e) $x^2 4x + 5 = 0$.
- 7. Utilize as fórmulas de De Moivre para calcular:
 - (a) $(2+2i)^4$; **Sugestão:** Repare que $2+2i=2\sqrt{2}e^{i\pi/4}...$
 - (b) $(1-i)^3$;
 - (c) $\sqrt[3]{1+i}$;
 - (d) $\sqrt[4]{-1}$. Sugestão: Repare que $-1 = e^{i\pi}$...