LASTNAME SOLUTION

MCGILL ID#

FIRST NAME

SIGNATURE

- Carefully read the questions
- Show all your work
- Clearly indicate your final answer
- Plagiarism will have important consequences
- Provide symbol for both the multiplier and SI unit in your final answer where applicable
- Only standard calculator is accepted
- You have 45 minutes to complete this quiz

Question 1: Consider the Thévenin circuit below showing the voltage variable v_{AB} at the output of the two terminals (A and B) and the current variable i_{AB} . Answer the following questions.

- a) Derive the equation relating the current variable i_{AB} to the voltage variable v_{AB} . [1 pt]
- b) Draw the i_{AB} - v_{AB} diagram corresponding to the circuit shown. Have the voltage v_{AB} on the x-axis and the current i_{AB} on the y-axis. Clearly indicate the value of the voltage v_{AB} when $i_{AB} = 0$ A, and the value of the current i_{AB} when $v_{AB} = 0$ V. [2 pt]
- c) What is the power delivered by the independent voltage source when a load resistor of 20 Ω is connected between the two terminals A and B? [2 pt]
- d) Indicate on your diagram in part b), the i_{AB} - v_{AB} point corresponding to the circuit in part c) (i.e., when a load resistor of 20 Ω is connected). [1 pt]

resistor of 20
$$\Omega$$
 is connected). [I pt]

a) Using KVL l ohm's law $-25V + 15\Omega$ $c_{AB} + V_{AB} = 0$

$$V_{AB} = 25V \text{ when}$$

$$c_{AB} = 25V \text{ when}$$

d)
$$V_{AB} = 25V. \ 20.52 : 25V. \ 4.72 : 100 \ V = V_{AB}$$

$$15.72 + 20.52 : 7.52 : 7.54 : 14.29V$$

$$16.8 = \frac{25V}{15.52} - \frac{V_{AB}}{15.52} (from a)$$

$$16.8 = \frac{5}{3} A - \frac{100}{7} V. \ 1 = \frac{5}{3} A - \frac{20V}{21.92} = \frac{35-20}{21} A : \frac{15}{21} A \text{ Page 1 of 3}$$

$$18.8 = \frac{5}{3} A - \frac{100}{7} V. \ 1 = \frac{5}{3} A - \frac{20V}{21.92} = \frac{35-20}{21} A : \frac{15}{21} A \text{ Page 1 of 3}$$

Question 2: Considering the circuit below. Answer the following questions.

- a) Use source transformation to find the value of the current i_x . [3 pt]
- b) Use the principle of superposition to find the value of the power delivered by the independent voltage source. [3 pt]

c) all src off, IMA ON 13= - IMA. 20 KSL 10 KSL+20KSL $i_3 = -\frac{2}{3} mA$

