

Pydcol: Control of ODE Systems with "Minimal Effort"

May 6th, 2021

Authors: John D'Angelo & Shreyas Sudhaman

Overview

- Introduction
- Methodology
- Examples
- Demonstration & Documentation
- Conclusion

Ref. [2]

Introduction

- pydcol automates direct collocation problem for
 - ODE systems: $\dot{X}=f(X,u)$
 - Fixed final time and state
 - Objective: Minimal control effort:

$$egin{aligned} min \int_{t_0}^{t_f} u^2 dt \ X, u \end{aligned} \ s. \, t. \, X(t_0) = X_{start}, X(t_f) = X_{goal} \end{aligned}$$

Introduction

- Simultaneous Discretization
- Non-linear Program (NLP)
- Design a library to handle
 - Symbolic manipulation
 - Multiple integration methods
 - Choice of optimizer

Ref. [4]

Methodology

 $\dot{X} = f(X,U) \ X(t_0), X(t_f)$

/V

User Input:

Problem Definition

Sym Objective Sym Constraints Sym Derivatives Num Objective Num Constraints Num Derivatives

Output: Locally-Optimal X,U Trajectory

Methodology

- General equation for a node used instead of writing N equations
- Reduces computational cost of Jacobian and Hessian

Sparsity Pattern for Jacobian of Equality Constraints

Examples

- A set of test problems was selected (sorted by difficulty to solve):
 - Box move (linear)
 - Cartpole swing-up (slightly nonlinear)
 - Double pendulum swing-up (very nonlinear)
 - Lunar lander (stiff, multiple inputs)

Box Move

Ref. [2]

Dots = Collocation, Lines = IVP

Error Analysis

Iteration 1:

$$oldsymbol{X_0} \quad oldsymbol{X_1} \quad oldsymbol{X_2} \quad oldsymbol{X_2} \quad oldsymbol{X_3} \quad oldsymbol{X_4}$$

Box Move - Revised Error Analysis

*Radau and Hermite-Simpson converged too quickly for this analysis to be meaningful.

$$e_i = |Obj_i - Obj_{i-1}|$$

$$O(e) pprox log(rac{e_{i-1}}{e_i})/log(2)$$

Integration Method	Estimated Order of Accuracy
Euler Backward	2
Trapezoid	1
*Hermite-Simpson	N/A
*Radau IIA	N/A

Cartpole Swing-up

Ref. [2]

Dots = Collocation, Lines = IVP

Cartpole - Revised Error Analysis

Integration Method	Estimated Order of Accuracy
Euler Backward	1
Trapezoid	1
Hermite-Simpson	4
Radau IIA	3

Documentation

- The documentation and source code for pydcol are available on Github
- We welcome feedback through issues or pull requests

Double Pendulum Swing-up

Ref. [1]

Conclusions

- pydcol is a tool for solving a common variation of the optimal control problem
- Our testing showed that pydcol's hermite-simpson method is well suited for optimal control of mechanical systems
- Developing this tool yielded some practical insights into direct collocation (how you integrate the objective matters, sparsity is great but gets complex quickly, etc.)

References

- [1] Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation (Course Notes for MIT 6.832). Downloaded on [date] from http://underactuated.mit.edu/
- [2] Kelly, M. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. SIAM Rev. 2017, 59 (4), 849–904. https://doi.org/10.1137/16M1062569
- [3] Assignment 4: Lunar Lander Solution https://web.aeromech.usyd.edu.au/AMME3500/Course_documents/material
- [4] A. Amini et al. "Spatial Uncertainty Sampling for End-to-End Control". NeurIPS Bayesian Deep Learning 2018.

Acknowledgement

Thank you to Professor Subramanian for his instruction in this course and his assistance with this project.

Thank you!

Questions?

Cartpole Swing-up

Ref. [2]

Lunar Lander

Dots = Collocation, Lines = IVP

Ref. [3]

Lunar Lander

Ref. [3]

Room for Improvement

- Using final time as an optimization variable
- Interfacing with a Sequential Quadratic Programming solver
- Handling arbitrary objectives and integration schemes
- Handling DAE's

Double Pendulum Swing-up

Dots = Collocation, Lines = IVP

Double Pendulum Swing-up

Ref. [1]