第十周习题课讲义

2023年11月24日

目录

	Taylor 公式及其应用			
	1.1	不同余项的 Taylor 公式	1	
	1.2	计算	2	
	1.3	估值和不等式		
	1.4	Taylor 展开的极限性态	4	
		不定积分		
	2.1	常用积分表	Ę	
	2.2	组合积分法	6	
	2.3	递推法	8	
	2.4	有理函数的积分	Ć	
	2.5	含绝对值或者分段函数的不定积分	ę	
	2.6	习题处理	1(

1 Taylor 公式及其应用

1.1 不同余项的 Taylor 公式

定理 1.1 (Peano 余项) 设函数 f 在点 x_0 处有直到 n 阶的导数,则有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), x \to x_0$$

注意题目的要求:f 在 x_0 出有 n 阶导, 但是在 x_0 之外的信息我们并未知道.

定义 1.1 (Maclaurin 展开) f(x) 在 0 点处的带有 Peano 余项的泰勒展开称为 f 的 Maclaurin 展开.

定理 1.2 (Lagrange 余项) 设函数 f 在点 (a,b) 内有直到 n+1 阶的导数,则对任意的 $x,x_0\in(a,b)$ 有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

 ξ 位于 x, x_0 之间.

定理 1.3 (Cauchy 余项) 设函数 f 在点 (a,b) 内有直到 n+1 阶的导数,则对任意的 $x,x_0\in(a,b)$ 有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{n!} (x - x_0)(x - \xi)^n.$$

 ξ 位于 x, x_0 之间.

1.2 计算

例题 1.1 (习题 4.3) 计算下列函数的在 x_0 处的 Taylor 展开.

$$(4).f(x) = \ln x, x_0 = 2$$
, 写到 n 次;

$$(4).f(x) = \ln x, x_0 = 2$$
,写到 n 次; $(5).f(x) = \frac{x}{1+x^2}, x_0 = 0$,写到 $2n+1$ 次;

做法:

- 如果 $x_0 = 0$ 那就是 f(x) 在 0 点处的 Maclaurin 展开. 如果是基本初等函数那么就直接背答案; 如果不是, 例如 上边的习题 5, 我们可以将其看成两个基本初等函数的乘积, 分别泰勒展开然后相乘即可; 如果更复杂的情况, 我 们可以利用归纳法.
- 如果不是在 0 点展开, 我们作变换令 $t = x x_0$, 将 $x = t + x_0$ 带入, 对 t 在 0 点进行泰勒展开, 然后再将 x 替换 回去即可.
- 作变换 x-2=t, 因此 $g(t) = \ln(t+2)$, Taylor 展开得到:

$$g(t) = \ln 2 - \sum_{k=1}^{n} (-\frac{1}{2})^k t^k + o(t^n), t \to 0$$

因此:

$$f(x) = \ln 2 - \sum_{k=1}^{n} (-\frac{1}{2})^k (x-2)^k + o((x-2)^n), x \to 2$$

• 注意到:

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-x)^k + o(x^n), x \to 0$$

我们将 x 替换为 x^2 , 所以 $\frac{1}{1+x^2} = \sum_{k=0}^{n} (-x^2)^k + o(x^{2n}), x \to 0$, 所以就有了:

$$f(x) = \sum_{k=0}^{n} (-1)^k x^{2k+1} + o(x^{2n+1}), x \to 0$$

例题 1.2 设 f(x) 在 x=0 的某领域内二阶可导,且 $\lim_{x\to 0} \left(\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2}\right) = 0$,求 f(0),f'(0),f''(0) 及 $\lim_{x\to 0} \frac{f(x)+3}{x^2}$

我们对 f(x) 进行泰勒展开, 只需要用 Peano 余项即可. 故:

$$\lim_{x \to 0} \left(\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2} \right) = \frac{\sin 3x + f(0)x + f'(0)x^2 + \frac{f''(0)}{2}x^3 + o(x^3)}{x^3}$$

$$= \frac{3x - \frac{(3x)^3}{3!} + f(0)x + f'(0)x^2 + \frac{f''(0)}{2}x^3 + o(x^3)}{x^3}$$

$$= 0$$

因此 f(0) = -3, f'(0) = 0, $f''(0) = \frac{9}{2}$, 带入计算可得极限为 $\frac{9}{2}$.

例题 1.3 设 $f \in C^{(2)}(U(0))$, 且 $\lim_{x \to 0} f'(x) = 1$. 定义数列: $a_1 \neq 0$, 且 $a_1 \in U(0)$, $a_{n+1} = f(a_n)$ $(n = 1, 2, \cdots)$, $\lim_{n \to \infty} a_n = 1$ $0, \ \mathbb{N} \lim_{n \to \infty} \frac{1}{na_n} = -\frac{f''(0)}{2}.$

例题 1.4 任取 $0 < x_1 < \pi$, 并递推地定义 $x_{n+1} = \sin x_n, n = 1, 2, \cdots$. 证明:

(1)
$$\lim_{n\to\infty} x_n = 0;$$

$$(2)$$
 当 $n \to \infty$ 时, $x_n \sim \sqrt{\frac{3}{n}}$.

例题 1.5 设 f 是定义在区间 [0,a)(a>0) 上的 m 阶可微函数, 满足以下条件:

$$f(0) = f'(0) = \dots = f^{(m-1)}(0) = 0, \quad f^{(m)}(0) > 0,$$

且 $0 < f(x) < 1, \forall x \in (0, a)$. 任取 $0 < x_1 < a$, 而令 $\{x_n\}_{n=1}^{\infty}$ 为按下列递推公式得到的数列:

$$x_{n+1} = x_n [1 - f(x_n)], \quad n = 1, 2, \dots$$

显然 $\{x_n\}_{n=1}^\infty$ 单调递减且各项都在区间 (0,a) 中,因此有极限。在上述递推公式两端令 $n\to\infty$ 取极限,即知 $\lim_{n\to\infty}x_n=0$. 需要解决的问题是求 x_n 趋于零的阶,即求正数 α 和 $c\neq 0$ 使当 $n\to\infty$ 时, $x_n\sim cn^{-\alpha}$.

结论:
$$\alpha = \frac{1}{m}$$
, 求 c .

1.3 估值和不等式

例题 1.6 (习题 4.3) 当 x > 0 时, 求证: 对任何 $n \in \mathbb{N}^*$, 有

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots - \frac{x^{2n}}{2n} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^{2n-1}}{2n-1}$$

此时利用 Peano 余项已经不够用了, 我们需要利用 Lagrange 余项. 对 $\ln(1+x)$ 进行泰勒展开:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^{2n-1}}{2n-1} + \frac{f^{(2n)}(\xi)x^{2n}}{(2n)!}$$

注意到:

$$\frac{f^{(2n)}(\xi)}{(2n)!} = (-1)^{2n-1} \frac{1}{(1+\xi)^{2n}} \cdot \frac{1}{2n}$$

得证.

例题 1.7 若 f(x) 在 (0,1) 内二阶可导,有最小值 $\min_{x \in (0,1)} f(x) = 0$,又 $f\left(\frac{1}{2}\right) = 1$,求证: $\forall \xi \in (0,1)$,使 $f''(\xi) > 8$

证明设 $\exists x_0 \in (0,1)$, 使 $f(x_0) = \min_{x \in (0,1)} f(x) = 0$, 则 $f'(x_0) = 0$, f 在 x_0 的一阶泰勒公式为

$$f(x) = 0 + 0 \cdot (x - x_0) = \frac{f''(\xi)}{2!} (x - x_0)^2$$

取 $x=\frac{1}{2}$, 得

$$1 = \frac{f''(\xi)}{2!} \left(\frac{1}{2} - x_0\right)^2 \quad \left(\xi \, \text{ fr} \, \exists x_0 \, \exists \frac{1}{2} \, \text{ \angleiii}\right), f''(\xi) = \frac{2}{\left(\frac{1}{2} - x_0\right)^2},$$

上面等式中因为 $\left|\frac{1}{2} - x_0\right| < \frac{1}{2}$,所以 $\frac{1}{\left(\frac{1}{2} - x_0\right)^2} > 4$,即 $f''(\xi) > 8$.

例题 1.8 设 f 在 [0,1] 上有二阶导数. 如果

$$|f(0)| \le 1$$
, $|f(1)| \le 1$, $|f''(x)| \le 2(0 \le x \le 1)$,

证明: 对每个 $x \in [0,1]$, 有 $|f'(x)| \leq 3$.

证明由 Taylor 定理, 得

$$f(1) = f(x) + f'(x)(1-x) + \frac{1}{2}f''(\xi)(1-x)^2 \quad (x < \xi < 1),$$

$$f(0) = f(x) + f'(x)(0-x) + \frac{1}{2}f''(\eta)(0-x)^2 \quad (0 < \eta < x).$$

把以上两式相减,得

$$f(1) - f(0) = f'(x) + \frac{1}{2}f''(\xi)(1-x)^2 - \frac{1}{2}f''(\eta)x^2.$$

于是, 对任意的 $x \in [0,1]$, 有

$$|f'(x)| = \left| f(1) - f(0) - \frac{1}{2} f''(\xi) (1 - x)^2 + \frac{1}{2} f''(\eta) x^2 \right|$$

$$\leq |f(1)| + |f(0)| + \frac{1}{2} |f''(\xi)| (1 - x)^2 + \frac{1}{2} |f''(\eta)| x^2$$

$$\leq 2 + (1 - x)^2 + x^2 \leq 3$$

例题 1.9 (习题 4.3) 设 f 在区间 [a,b] 上有二阶导数,且 f'(a) = f'(b) = 0. 求证:存在 $c \in (a,b)$,使得

$$|f''(c)| \geqslant \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

在 a,b 进行一阶泰勒公式, 且令 x=c, 得

$$f(c) = f(a) + f'(a)h + \frac{1}{2}f''(\xi_1)h^2 \quad (a < \xi_1 < c),$$

$$f(c) = f(b) - f'(b)h + \frac{1}{2}f''(\xi_2)h^2 \quad (c < \xi_2 < b),$$

将以上两式相减, 并利用 f'(a) = f'(b) = 0 得

$$f(b) - f(a) = \frac{1}{2} [f''(\xi_1) - f''(\xi_2)] h^2.$$

取
$$\xi = \begin{cases} \xi_1, |f''(\xi_1)| \ge |f''(\xi_2)|, \\ \xi_2, |f''(\xi_1)| \le |f''(\xi_2)|, \end{cases}$$
 则有

$$|f(b) - f(a)| \le \frac{1}{2} (|f''(\xi_1)| + |f''(\xi_2)|) h^2 \le f''(\xi)h^2,$$

即

$$|f''(\xi)| \geqslant \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

1.4 Taylor 展开的极限性态

例题 1.10 1. 设函数 f 在点 x_0 处有 n+1 阶导数, 且 $f^{(n+1)}(x_0) \neq 0$. 将 f 在 x_0 处按 Taylor 公式展开:

$$f(x_0 + h) = f(x_0) + f'(x_0) h + \dots + \frac{h^n}{n!} f^{(n)}(x_0 + \theta_n h),$$

其中 $\theta_n \in (0,1)$. 求证:

$$\lim_{n \to 0} \theta_n = \frac{1}{n+1}.$$

己知

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(x_0 + \theta(h)h)}{n!}h^n,$$

此外还有 $f^{(n)}(x_0 + \theta(h)h) = f^{(n)}(x_0) + f^{(n+1)}(x_0)\theta(h)h + o(h)$ 代入上式得

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \dots + \frac{h^n}{n!} \left[f^{(n)}(x_0) + f^{(n+1)}(x_0)\theta(h)h + o(h) \right]$$

另一方面, 直接应用 Taylor 公式, 做 n+1 阶 Taylor 展开得

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + \frac{f^{(n+1)}(x_0)}{(n+1)!}h^{n+1} + o(h^{n+1})$$

比较上面二式得

$$\theta(h)f^{(n+1)}(x_0) = \frac{1}{n+1}f^{(n+1)}(x_0) + \frac{o(h)}{h} + \frac{o(h^{n+1})}{h^{n+1}}$$

注意 $f^{(n+1)}(x_0) \neq 0$, 所以 $\lim_{h \to 0} \theta(h) = \frac{1}{n+1}$.

例题 1.11 4. 设 f 在 $(x_0 - \delta, x_0 + \delta)$ 上有 n 阶导数, 且

$$f''(x_0) = f'''(x_0) = \dots = f^{(n-1)}(x_0) = 0,$$

但 $f^{(n)}(x_0) \neq 0$, $f^{(n)}$ 在 x_0 处连续, 且当 $0 < |h| < \delta$ 时,

$$f(x_0 + h) - f(x_{01}) = hf'(x_0 + \theta h) \quad (0 < \theta < 1).$$

证明:

$$\lim_{n \to 0} \theta = \frac{1}{n^{1/(n-1)}}.$$

证利用各阶导数的信息,将 $f'(x_0 + \theta h)$ 在点 $x = x_0$ 处展成泰勒公式

$$f'(x_0 + \theta h) = f'(x_0) + \theta h f''(x_0) + \dots + \frac{(\theta h)^{n-1}}{(n-1)!} f^{(n)}(x_0 + \theta_1 h)$$
$$= f'(x_0) + \frac{(\theta h)^{n-1}}{(n-1)!} f^{(n)}(x_0 + \theta_1 h) (0 < \theta_1 < 1).$$

结合题给的条件 $f(x_0 + h) - f(x_0) = hf'(x_0 + \theta h)$, 分离出目标量 θ 得

$$\theta^{n-1} = \frac{f\left(x_{0} + h\right) - f\left(x_{0}\right) - hf'\left(x_{0}\right)}{h^{n}} \cdot \frac{(n-1)!}{f^{(n)}\left(x_{0} + \theta_{1}h\right)} (0 < |h| < \delta),$$

令 $h \to 0$, 注意到 $f^{(n)}(x_0 + \theta_1 h) \to f^{(n)}(x_0)$, 连续使用 n 次洛必达法则 (对 h 求导) 得

$$\lim_{h \to 0} \theta^{n-1} = \frac{1}{n}, \text{ II } \lim_{h \to 0} \theta = \frac{1}{\sqrt[n-1]{n}}.$$

2 不定积分

2.1 常用积分表

$$\int 0 \, dx = c,$$

$$\int \frac{1}{x} \, dx = \ln|x| + c,$$

$$\int e^x \, dx = e^x + c,$$

$$\int e^x \, dx = e^x + c,$$

$$\int \sin x \, dx = -\cos x + c,$$

$$\int \cos x \, dx = \sin x + c,$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + c,$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + c.$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c,$$

$$\int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \ln \left(x + \sqrt{a^2 + x^2} \right) + c,$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left(x + \sqrt{a^2 + x^2} \right) + c,$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right| + c,$$

$$\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + c,$$

$$\int \frac{dx}{\cos x} = \ln \left| \sec x + \tan x \right| + c$$

有理真分式 $R(x) = \frac{P(x)}{Q(x)}$ 最终可以分解为如下四种简单分式之和:

$$\frac{A}{x-\alpha},\frac{A}{(x-\alpha)^m},\frac{Ax+B}{x^2+px+q},\frac{Ax+B}{\left(x^2+px+q\right)^m}\left(p^2-4q<0\right)$$

由于 $x^2 + px + q = \left(x + \frac{p}{2}\right)^2 + \frac{4q - p^2}{4}$, 经过变量替换, 有理分式的不定积分可归结成下述 6 种最简单的分式的不定 积分 (a > 0):

$$\frac{1}{x-\alpha}$$
, $\frac{1}{(x-\alpha)^m}$, $\frac{x}{x^2+a^2}$, $\frac{1}{x^2+a^2}$, $\frac{x}{(x^2+a^2)^m}$, $\frac{1}{(x^2+a^2)^m}$

这这些积分都有显式表达式

$$\int \frac{dx}{x - \alpha} = \ln|x - \alpha| + C$$

$$\int \frac{dx}{(x - \alpha)^m} = -\frac{1}{(m - 1)(x - \alpha)^{m - 1}} + C$$

$$\int \frac{x \, dx}{x^2 + a^2} = \frac{1}{2} \ln(x^2 + a^2) + C$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan\frac{x}{a} + C,$$

$$\int \frac{x \, dx}{(x^2 + a^2)^m} = -\frac{1}{2(m - 1)} \frac{1}{(x^2 + a^2)^{m - 1}} + C$$

$$I_{m+1} = \int \frac{dx}{(x^2 + a^2)^{m+1}} = \frac{x}{2a^2 m (x^2 + a^2)^m} + \frac{2m - 1}{2a^2 m} I_m$$

$$\tan\frac{x}{2} = t, \sin x = \frac{1 - t^2}{1 + t^2}, \cos x = \frac{2t}{1 + t^2}$$

1. 如果: $y(x) = \sqrt[n]{\frac{ax+b}{cx+d}}, n \ge 1$ 为整数, $ad-bc \ne 0$. 那么令 $t = \sqrt[n]{\frac{ax+b}{cx+d}},$ 则 $t^n = \frac{ax+b}{cx+d},$ 从而 $x = \frac{dt^n-b}{a-ct^n},$ 于是 $dx = \frac{n(ad-bc)t^{n-1}}{(a-ct^n)^2}$ dt.

 $(a-ct^{-})$ 2. 如果: $y(x) = \sqrt{ax^2 + bx + c}$, $a \neq 0$. 通常先将 $ax^2 + bx + c$ 配方, 然后再来应用三角函数将原来那个不定积分转 化成三角有理函数的不定积分.

2.2组合积分法

在处理某些含有三角函数或者有理函数的积分时, 我们可以采取所谓的组合积分法.

例题 2.1 求
$$A = \int \frac{\cos x}{\cos x + \sin x} dx$$
 和 $B = \int \frac{\sin x}{\cos x + \sin x} dx$ 。

注意到
$$A+B=\int dx=x+C_1$$
,

$$A - B = \int \frac{\cos x - \sin x}{\cos x + \sin x} dx = \int \frac{d(\sin x + \cos x)}{\cos x + \sin x} = \ln|\sin x + \cos x| + C_2,$$

所以
$$A=\frac{x+\ln|\sin x+\cos x|}{2}+C_1, B=\frac{x-\ln|\sin x+\cos x|}{2}+C_2$$
 。 一般的推广。

例题 **2.2** 令
$$A = \int \frac{\cos x}{a\cos x + b\sin x} dx, B = \int \frac{\sin x}{a\cos x + b\sin x} dx, a^2 + b^2 \neq 0$$

注意到
$$aA + bB = \int dx = x + C_1$$
,

$$\int \frac{d(a\cos x + b\sin x)}{a\cos x + b\sin x} = \int \frac{-a\sin x + b\cos x}{a\cos x + b\sin x} dx = -aB + bA,$$

而
$$\int \frac{d(a\cos x + b\sin x)}{a\cos x + b\sin x} = \ln|a\cos x + b\sin x| + C_2$$
,也即
$$\begin{cases} aA + bB = \int dx = x + C_1 \\ bA - aB = \ln|a\cos x + b\sin x| + C_2 \end{cases}$$
解得
$$A = \frac{ax + b\ln|a\cos x + b\sin x|}{a^2 + b^2} + C_1, B = \frac{bx - a\ln|a\cos x + b\sin x|}{a^2 + b^2} + C_2$$

小试牛刀:

例题 2.3 计算积分 $\int \frac{7\sin x + \cos x}{3\sin x + 4\cos x} dx$.

解因为 $7\sin x + \cos x = (3\sin x + 4\cos x) - (3\sin x + 4\cos x)'$ 所以

原式 =
$$\int dx - \int \frac{d(3\sin x + 4\cos x)}{3\sin x + 4\cos x} = x - \ln|3\sin x + 4\cos x| + C$$

评注若被积函数形为 $\frac{a \sin x + b \cos x}{c \sin x + d \cos x}$, 可令

$$a\sin x + b\cos x = A(c\sin x + d\cos x) + B(c\sin x + d\cos x)'$$

解出 A, B 作拆分.

有些时候, 虽然不满足上边的类型, 但是我们也可以通过这种组合积分的方法做一些简化.

例题 **2.4** 计算
$$\int \frac{1+\sin x}{1+\sin x+\cos x} dx$$
.

原式 =
$$\int \frac{\frac{1}{2}(1+\sin x + \cos x) + \frac{1}{2}(\sin x - \cos x) + \frac{1}{2}}{1+\sin x + \cos x} \, \mathrm{d}x$$
=
$$\frac{1}{2} \int \mathrm{d}x - \frac{1}{2} \int \frac{\cos x - \sin x}{1+\sin x + \cos x} \, \mathrm{d}x + \frac{1}{2} \int \frac{1}{1+\sin x + \cos x} \, \mathrm{d}x$$
=
$$\frac{1}{2}x - \frac{1}{2} \int \frac{\mathrm{d}(1+\sin x + \cos x)}{1+\sin x + \cos x} + \frac{1}{2} \int \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2} + 2\cos^2 \frac{x}{2}} \, \mathrm{d}x$$
=
$$\frac{1}{2}x - \frac{1}{2} \ln|1 + \sin x + \cos x| + \frac{1}{2} \int \frac{1}{\tan \frac{x}{2} + 1} \, \mathrm{d}\tan \frac{x}{2}$$
=
$$\frac{1}{2}x - \frac{1}{2} \ln|1 + \sin x + \cos x| + \frac{1}{2} \ln \left|\tan \frac{x}{2} + 1\right| + C$$
用类似的想法也可以对某些有理函数的积分作一些简化.

例题 2.5 求不定积分
$$\int \frac{\mathrm{d}x}{1+x^4}$$
.

解令
$$M(x) = \int \frac{\mathrm{d}x}{1+x^4}, N(x) = \int \frac{x^2 \, \mathrm{d}x}{1+x^4},$$
则有

$$\begin{split} M(x) - N(x) &= \int \frac{1-x^2}{1+x^4} \; \mathrm{d}x = -\int \frac{1-\frac{1}{x^2}}{x^2+\frac{1}{x^2}} \; \mathrm{d}x \\ &= -\int \frac{\mathrm{d}\left(x+\frac{1}{x}\right)}{\left(x+\frac{1}{x}\right)^2-2} = -\frac{1}{2\sqrt{2}} \ln \frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1} + C, \\ M(x) + N(x) &= \int \frac{1+x^2}{1+x^4} \; \mathrm{d}x = \int \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}} \; \mathrm{d}x = \int \frac{\mathrm{d}\left(x-\frac{1}{x}\right)}{\left(x-\frac{1}{x}\right)^2+2} \\ &= \frac{1}{\sqrt{2}} \arctan \frac{x-\frac{1}{x}}{\sqrt{2}} + C = \frac{1}{\sqrt{2}} \arctan \frac{x^2-1}{\sqrt{2}x} + C, \end{split}$$

因此得到

$$M(x) = \frac{1}{2}[(M(x) + N(x)) + (M(x) - N(x))]$$
$$= -\frac{1}{4\sqrt{2}} \ln \frac{x^2 - \sqrt{2}x + 1}{x^2 + \sqrt{2}x + 1} + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{\sqrt{2}x} + C.$$

当然这里边也蕴含了一种特别的代换.

递推法 2.3

对于某些具有某种规律性的积分我们可以利用递推法来求其原函数.

例题 2.6 求 $\int \ln^n x dx$ 的递推公式.

直接利用分部积分公式就有:

$$I = x \ln^n x - \int x d \ln^n x = x \ln^n x - n \int x \cdot \frac{1}{x} \cdot \ln^{n-1} x dx$$

所以:

$$I_n = x \ln^n x - nI_{n-1}$$

其中 $I_1 = x \ln x - x + C$.

下边我们看一些稍微复杂的递推。

例题 2.7 求不定积分
$$I_n = \int \frac{dx}{\sin^n x}$$
 的递推公式 $(n \text{ 为自然数})$

$$I_n = \int \frac{\sin x dx}{\sin^{n+1} x} = -\int \frac{d \cos x}{\sin^{n+1} x} = -\frac{\cos x}{\sin^{n+1} x} + \int \cos x \cdot d \frac{1}{\sin^{n+1} x}$$

$$= -\frac{\cos x}{\sin^{n+1} x} - (n+1) \int \frac{\cos^2 x}{\sin^{n+2} x} dx$$

$$= -\frac{\cos x}{\sin^{n+1} x} - (n+1) \int \frac{1 - \sin^2 x}{\sin^{n+2} x}$$

$$= -\frac{\cos x}{\sin^{n+1} x} - (n+1) (I_{n+2} - I_n)$$

整理得到
$$I_{n+2} = -\frac{\cos x}{\sin^{n+1} x} - (n+1)(I_{n+2} - I_n)$$

整理得到 $I_{n+2} = -\frac{\cos x}{(n+1)\sin^{n+1} x} + \frac{n}{n+1}I_n, \quad n = 1, 2, 3, \cdots,$
此外 $I_1 = \int \frac{dx}{\sin x} = \int \frac{\sin dx}{\sin^2 x} = -\int \frac{d\cos x}{1 - \cos^2 x} = \frac{1}{2}\ln\frac{1 - \cos x}{1 + \cos x} + C$
(1) 类似可求得 $I_n = \int \frac{dx}{(a\sin x + b\cos x)^n} (n > 2)$ 的递推公式. 因为

(1) 类似可求得
$$I_n = \int \frac{\mathrm{d}x}{(a\sin x + b\cos x)^n} (n > 2)$$
 的递推公式. 因为

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x+\theta)$$
, $\exists t = a \cot \frac{b}{a}$.

(2) 若 $I_n = \int f(x,n) dx$, 设法找到 I_n 与 I_{n-1} 或 I_{n-2} 之间的关系, 算出 I_1 I_0 , 就可求得 I_n ; 对 $I_n = \int f^n(x) dx$ 的情形, 常利用分解 $f^n(x) = f^{n-1}(x)[1+g(x)]$ 或 $f^n(x) = f^{n-2}(x)[1+g(x)]$ 作分部积分以获得递推公式. 例如: $I_n = \int \tan^n x \, dx, \, \text{利用 } \tan^n x = \tan^{n-2} x \cdot \left(\sec^2 x - 1\right) \, \text{可得 } I_n = \frac{1}{n-1} \tan^{n-1} x - I_{n-2} \, J_n = \int \sin^n x \, dx, \, \text{利用 } \sin^n x = \sin^{n-2} x \cdot \left(1 - \cos^2 x\right) \, \text{及分部积分可得}$

$$J_n = J_{n-2} - \frac{1}{n-1} \left(\sin^{n-1} x \cos x + J_n \right)$$

例题 2.8 设对正整数 n > 2, 定义 $I_n = \int \frac{\sin nx}{\sin x} dx$, 证明:

$$I_n = \frac{2}{n-1}\sin(n-1)x + I_{n-2}.$$

$$I_n = \int \frac{\sin(n-1)x\cos x + \sin x\cos(n-1)x}{\sin x} dx$$

$$= \int \frac{\sin(n-1)x\cos x}{\sin x} dx + \int \cos(n-1)x dx$$

$$= \frac{1}{2} \int \frac{\sin nx + \sin(n-2)x}{\sin x} dx + \int \cos(n-1)x dx$$

$$= \frac{1}{2}I_n + \frac{1}{2}I_{n-2} + \frac{1}{n-1}\sin(n-1)x,$$

所以 $I_n = \frac{2}{n-1}\sin(n-1)x + I_{n-2}$.

2.4 有理函数的积分

我们之前已经分析过了对于有理函数的积分我们有固定的处理方式. 其中比较繁琐的一步是确定 A, B, C, \cdots 这些常数的值, 有些时候这些常数的确定可以进行简化.

例题 2.9
$$\int \frac{2x^2+1}{(x+3)(x-1)(x-4)} dx$$

根据有理函数的分解, 我们知道其有唯一分解, 即:

$$I = \frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{x-4}$$

两边同时乘 x+3, 再令 x=-3 就可以得到 A 的值, 同理两边同时乘 x-1,x-4 再分别令 x=1,x=4 就可以得到 C 的值.

但是上边的方法并非是万能的,或者说并非一定就很简单,例如我们下边函数的一个分解,

$$\frac{x^5 - x^4 + x^3 - 3x^2 - 2x}{(x - 1)^2 (x^2 + 1)^2} = \frac{A}{(x - 1)^2} + \frac{B}{x - 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{Ex + F}{x^2 + 1}.$$

两边同时称 $(x-1)^2$ 然后令 x=1 可以求出 A 的值, 但是我们不能两边同时乘 x-1, 令 x-1. 类似的, 我们可以两边同时乘 $(x^2+1)^2$, 然后令 x=i, 此时我们就可以得到 Ci+D=1+i, 从而得到 C=D=1, 但是却不可以得到 E,F 的值. 利用复变函数的技巧其实可以做, 但是这未必就比我们通分然后列方程求未知数方便.

不过如果我们可以结合两种方法, 那么就可以大大的加快我们分解的速度.

2.5 含绝对值或者分段函数的不定积分

例题 **2.10** 设
$$f(x) = \lim_{n \to \infty} \sqrt[n]{1 + x^n + \left(\frac{x^2}{2}\right)^n} (x > 0), \, \, \, \, \, \, \, \, \int f(x) \mathrm{d}x.$$

解由极限运算的夹逼法则易得

所以

$$\lim_{n \to \infty} \sqrt[n]{a^n + b^n + c^n} = \max\{a, b, c\} \quad (a, b, c > 0)$$

$$f(x) = \max_{(0, +\infty)} \left\{ 1, x, \frac{x^2}{2} \right\} = \begin{cases} 1, & 0 < x \le 1 \\ x, & 1 < x \le 2 \\ \frac{x^2}{2}, & x > 2 \end{cases}$$

当 x>0 时 f(x) 连续, 存在原函数. 记 $F(x)=\int f(x)\mathrm{d}x$, 则有

$$F(x) = \begin{cases} x + C_1, & 0 < x \le 1\\ \frac{1}{2}x^2 + C_2, & 1 < x \le 2\\ \frac{x^3}{6} + C_3, & x > 2 \end{cases}$$

由于 F(x) 连续,有 $\lim_{x\to 1^-} F(x) = \lim_{x\to 1^+} F(x)$, $\lim_{x\to 2^-} F(x) = \lim_{x\to 2^+} F(x)$,得 $C_2 = C_1 + \frac{1}{2}$, $C_3 = C_2 + \frac{2}{3}$ 。记 C_1 为 C_2 则有

$$F(x) = \begin{cases} x + C, & 0 < x \le 1\\ \frac{1}{2}(x^2 + 1) + C, & 1 < x \le 2\\ \frac{1}{6}(x^3 + 7) + C, & x > 2 \end{cases}$$

1. 如果 f(x) 是一个连续函数,那么其原函数一定是连续的,因此在上述分段求解原函数之后,我们需要让 F(x) 在分段点处相等.

- 2. 如果我们函数本身的定义域是简单的, 如 $\ln |x|$, 则我们求解出来之后不需要让其在分段点 (x=0) 处相等.
- 3. 类似的, 例如求 | sin x | 的不定积分, 我们分段可得其原函数:

$$F(x) = \begin{cases} -\cos x + c, x \in [0, \pi] \\ \cos x + 2 + c, x \in [\pi, 2\pi] \\ -\cos x + 2 + c, x \in [2\pi, 3\pi] \\ \cos x + 4 + c, x \in [3\pi, 4\pi] \\ \cdots \end{cases}$$

但是一般而言, 我们很少处理这样的情况, 例如 $\sqrt{(\cos x + \sin x)^2}$, 我们就直接打开为 $\cos x + \sin x$ 进行积分, 很少见在不定积分的时候还要这样分段的, 但是在定积分的时候一定分正负号.

2.6 习题处理

1. 求
$$\int \frac{dx}{\sin^4 x + \cos^4 x}$$
解法作变换 $\tan x = u$, 则 $x = \arctan u$, 于是

$$\int \frac{\mathrm{d}x}{\cos^4 x + \sin^4 x} = \int \frac{\sec^2 x}{1 + \tan^4 x} \cdot \sec^2 x \, dx = \int \frac{1 + \tan^2 x}{1 + \tan^4 x} \, d\tan x$$

$$= \int \frac{1 + u^2}{1 + u^4} \, du = \int \frac{1 + u^2}{\left(1 - \sqrt{2}u + u^2\right) \left(1 + \sqrt{2}u + u^2\right)} \, du$$

$$= \frac{1}{2} \int \left(\frac{1}{u^2 - \sqrt{2}} \frac{1}{1 + 1} + \frac{1}{u^2 + \sqrt{2}u + 1}\right) \, du$$

$$= \int \left[\frac{1}{1 + (\sqrt{2}u - 1)^2} + \frac{1}{1 + (\sqrt{2}u + 1)^2}\right] \, du$$

$$= \frac{1}{\sqrt{2}} \left[\arctan(\sqrt{2}u - 1) + \arctan(\sqrt{2}u + 1)\right] + C$$

$$= \frac{1}{\sqrt{2}} \left[\arctan(\sqrt{2}\tan x - 1) + \arctan(\sqrt{2}\tan x + 1)\right] + C$$

$$= \frac{1}{\sqrt{2}} \arctan\left(\frac{1}{\sqrt{2}}\tan 2x\right) + C.$$

$$2.\int \frac{\sin^2 x}{1+\sin^2 x} dx$$
作变换 $\tan x = t$, 则

$$\int \frac{\sin^2 x}{1 + \sin^2 x} dx = \int \frac{\tan^2 x}{\sec^2 x + \tan^2 x} dx$$

$$= \int \frac{t^2}{1 + 2t^2} \cdot \frac{dt}{1 + t^2} = \int \left(\frac{1}{1 + t^2} - \frac{1}{1 + 2t^2}\right) dt$$

$$= \arctan t - \frac{1}{\sqrt{2}} \arctan \sqrt{2}t + C$$

$$= x - \frac{1}{\sqrt{2}} \arctan(\sqrt{2}\tan x) + C.$$

$$3.\int \frac{\sin x}{\cos^3 x + \sin^3 x} \, \mathrm{d}x$$

作变换 $\tan x = u$, 则

$$\int \frac{\sin x}{\cos^3 x + \sin^3 x} \, \mathrm{d}x = \int \frac{\tan x}{1 + \tan^3 x} \sec^2 x \, \mathrm{d}x$$

$$= \int \frac{u}{1 + u^3} \, \mathrm{d}u = \int \frac{u}{(1 + u)(1 - u + u^2)} \, \mathrm{d}u = \frac{1}{3} \int \left(\frac{u + 1}{1 - u + u^2} - \frac{1}{1 + u}\right) \, \mathrm{d}u$$

$$= \frac{1}{6} \int \frac{2u - 1}{1 - u + u^2} \, \mathrm{d}u + \frac{1}{2} \int \frac{1}{1 - u + u^2} \, \mathrm{d}u - \frac{1}{3} \int \frac{\mathrm{d}u}{1 + u}$$

$$= \frac{1}{6} \ln \left(u^2 - u + 1\right) - \frac{1}{3} \ln |1 + u| + \frac{1}{2} \cdot \frac{2}{\sqrt{3}} \arctan \frac{2}{\sqrt{3}} \left(u - \frac{1}{2}\right) + C$$

$$= \frac{1}{6} \ln \frac{u^2 - u + 1}{(1 + u)^2} + \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}} (2u - 1) + C$$

$$= \frac{1}{6} \ln \frac{\tan^2 x + 1 - \tan x}{(1 + \tan x)^2} + \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}} (2\tan x - 1) + C$$

$$= \frac{1}{6} \ln \frac{1 - \sin x \cos x}{1 + 2\sin x \cos x} + \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}} (2\tan x - 1) + C.$$

4.
$$\int \frac{\mathrm{d}x}{(x+a)^m(x+b)^n}$$
, $m, n \in \mathbb{N}$; $\int \frac{\mathrm{d}x}{(1+x^n) \sqrt[n]{1+x^n}}$. 解法 1 (1) (i) 若 $a=b$. 则

$$\int \frac{\mathrm{d}x}{(x+a)^m(x+a)^n} = \int \frac{\mathrm{d}x}{(x+a)^{m+n}} = -\frac{1}{(m+n-1)x^{m+n-1}} + C.$$

(ii) 若 $a \neq b, m = n = 1$, 则

$$\int \frac{\mathrm{d}x}{(x+a)(x+b)} = \int \left(\frac{1}{x+a} - \frac{1}{x+b}\right) \frac{1}{b-a} \, \mathrm{d}x = \frac{1}{b-a} \ln \left|\frac{x+a}{x+b}\right| + C.$$

(iii) 若 $a \neq b, m = 1, n > 1$ (若 $a \neq b, m > 1, n = 1$ 类似), 则

$$\int \frac{\mathrm{d}x}{(x+a)(x+b)^n} = \int \frac{\mathrm{d}x}{\left(\frac{x+a}{x+b}\right)(x+b)^{n+1}} \frac{\frac{x+a}{x+b} = t}{x = \frac{a-bt}{t-1}} \int \frac{-\frac{a-b}{(t-1)^2}}{t\left(\frac{a-b}{t-1}\right)^{n+1}} \, \mathrm{d}t$$

$$= -\int \frac{(t-1)^{n-1}}{t} \cdot \frac{\mathrm{d}t}{(a-b)^n} = -\frac{1}{(a-b)^n} \int \frac{1}{t} \sum_{k=0}^{n-1} (-1)^k C_{n-1}^k t^{n-k} \, \mathrm{d}t$$

$$= -\frac{1}{(a-b)^n} \int \left[\sum_{k=0}^{n-2} (-1)^k C_{n-1}^k t^{n-k-1} + \frac{(-1)^{n-1}}{t} \right] \, \mathrm{d}t$$

$$= -\frac{1}{(a-b)^n} \left[\sum_{k=0}^{n-2} \frac{(-1)^k}{n-k} C_{n-1}^k t^{n-k} + (-1)^{n-1} \ln|t| \right] + C$$

$$= -\frac{1}{(a-b)^n} \left[\sum_{k=0}^{n-2} \frac{(-1)^k}{n-k} C_{n-1}^k \left(\frac{x+a}{x+b} \right)^{n-k} + (-1)^{n-1} \ln\left|\frac{x+a}{x+b}\right| \right] + C.$$

(iv) 若
$$a \neq b, m > 1, n > 1$$
. 令 $J_{m,n} = \int \frac{\mathrm{d}x}{(x+a)^m (x+b)^n}$, 则

$$J_{m,n} = \int \frac{\mathrm{d}(x+a)}{(x+a)^m (x+b)^n} = -\frac{1}{m-1} \frac{1}{(x+a)^{m-1} (x+b)^n} + \frac{-n}{m-1} \int \frac{\mathrm{d}x}{(x+a)^{m-1} (x+b)^{n+1}}$$
$$= -\frac{1}{(m-1)(x+a)^{m-1} (x+b)^n} - \frac{n}{m-1} J_{m-1,n+1}.$$

利用此递推公式, 最后化为 (iii) 的情形 $J_{1,m+n-1}$.

(2)
$$\diamondsuit 1 + x^n = t$$
, $\bowtie x = (t-1)^{\frac{1}{n}}$, $dx = \frac{1}{n}(t-1)^{\frac{1}{n}-1} dt$. $\exists E$

$$\int \frac{\mathrm{d}x}{(1+x^n)\sqrt[n]{1+x^n}} = \frac{1}{n} \int \frac{1}{t^{1+\frac{1}{n}}} \frac{(t-1)^{\frac{1}{n}}}{t-1} \, \mathrm{d}t = \frac{1}{n} \int \frac{1}{t(t-1)}\sqrt[n]{\frac{t-1}{t}} \, \mathrm{d}t$$
$$\frac{\sqrt{\frac{t-1}{t}}}{t} = u}{t} \frac{1}{t} \int \frac{1}{\frac{1}{1-u^n} \cdot \frac{u^n}{1-u^n}} u \cdot \frac{nu^{n-1}}{(1-u^n)^2} \, \mathrm{d}u$$

$$= \int du = u + C = \sqrt[n]{\frac{t-1}{t}} + C = \sqrt[n]{\frac{x^n}{1+x^n}} + C.$$

解法 2(1) 将 $\frac{1}{(x+a)^m(x+b)^n}$ 用待定系数法或凑合法分解为部分公式

$$\frac{1}{(x+a)^m(x+b)^n} = \frac{A_1}{x+a} + \frac{A_2}{(x+a)^2} + \dots + \frac{A_m}{(x+a)^m} + \frac{B_1}{x+b} + \frac{B_2}{(x+b)^2} + \dots + \frac{B_n}{(x+b)^n},$$

其中, $A_i(i=1,2,\cdots,m)$, $B_i(j=1,2,\cdots,n)$ 都为常数. 则

$$\int \frac{\mathrm{d}x}{(x+a)^m (x+b)^n} = \int \sum_{i=1}^m \frac{A_i}{(x+a)^i} \, \mathrm{d}x + \int \sum_{j=1}^n \frac{B_j}{(x+b)^j} \, \mathrm{d}x$$
$$= A_1 \ln|x+a| + B_1 \ln|x+b| + \sum_{i=2}^m \frac{A_i}{1-i} \frac{1}{(x+a)^{i-1}}$$
$$+ \sum_{j=2}^n \frac{B_j}{1-j} \frac{1}{(x+b)^{j-1}} + C.$$

$$5.\int\sqrt{rac{1-x}{1+x}}rac{\mathrm{d}x}{x^2}$$
变换: 令 $t=\sqrt{rac{1-x}{1+x}},$ 所以:

$$x = \frac{1-t^2}{1+t^2}, dx = \frac{-4t}{(1+t^2)^2} delta$$

那么:

$$I = -4 \int \frac{t^2}{(1 - t^2)^2} dt$$

积分得到:

$$I = \frac{2u}{u^2 - 1} - \ln(u - 1) + \ln(u + 1) + c$$

$$= -\sqrt{\frac{1 - x}{x + 1}} \cdot \frac{x + 1}{x} - \ln\left(\sqrt{\frac{1 - x}{1 + x}} - 1\right) + \ln\left(\sqrt{\frac{1 - x}{x + 1}} + 1\right) + c$$