Lineare Algebra und analytische Geometrie I

7. Basis und Dimension.

Definition (Def. 7.1.)

Eine **Basis eines Vektorraums** *V* ist eine linear unabhängige Teilmenge

$$L \subseteq V$$
, s.d. $\langle L \rangle = V$.

Beispiele:

 $\{1\}$ ist eine Basis von $V = \mathbb{K}$.

 $L = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$, wo $\bar{e}_1 = (1, 0, 0)$, $\bar{e}_2 = (0, 1, 0)$, $\bar{e}_3 = (0, 0, 1)$, ist eine Basis von $V = \mathbb{K}^3$.

 \emptyset ist eine Basis von $\{\bar{0}\}$.

Besonders oft werden wir später Basen betrachten, die durch eine Menge $\{1,\ldots,n\}$ mit $n\in\mathbb{N}$ indiziert sind, $L=\{\bar{v}_1,\ldots,\bar{v}_n\}$. Wir legen zusätzlich fest, welcher Basisvektor der Erste, welcher der Zweite und so weiter sein soll.

Definition (Def. 7.2.)

Ein Vektorraum V heißt **endlich erzeugt** oder präziser **endlich erzeugbar** genau dann, wenn eine endliche Teilmenge $T \subseteq V$ existiert, s.d. $V = \langle T \rangle$.

Alle Vektorräume, die wir bis jetzt betrachtet haben, sind endlich erzeugt.

Lemma (Lemma 7.3.)

Sei V ein endlich erzeugter \mathbb{K} -Vektorraum. Dann existiert eine Basis von V.

Beweis.

Sei es $V = \langle T \rangle$ mit $T = \{t_1, \ldots, t_m\}$. Falls T linear unabhängig ist, haben wir schon eine Basis. Sonst finden wir $a_1, \ldots, a_m \in \mathbb{K}$, nicht alle gleich Null, s.d. $a_1t_1 + \ldots + a_mt_m = \bar{0}$. Sei es $a_i \neq 0$. Dann $t_i = \frac{-1}{2}(a_1t_1 + \ldots + a_{i-1}t_{i-1} + a_{i+1}t_{i+1} + \ldots + a_mt_m)$.

(FSU Jena)

Lemma (Lemma 7.3.)

Sei V ein endlich erzeugter K-Vektorraum. Dann existiert eine Basis von V.

Beweis.

Sei es $V=\langle T\rangle$ mit $T=\{t_1,\ldots,t_m\}$. Falls T linear unabhängig ist, haben wir schon eine Basis. Sonst finden wir $a_1,\ldots,a_m\in\mathbb{K}$, nicht alle gleich Null, s.d. $a_1t_1+\ldots+a_mt_m=\bar{0}$. Sei es $a_i\neq 0$. Dann $t_i=\frac{-1}{a_i}(a_1t_1+\ldots a_{i-1}t_{i-1}+a_{i+1}t_{i+1}+\ldots+a_mt_m)$. Sei nun $T'=T\setminus\{t_i\}$, also |T'|=m-1. Dann $t_i\in\langle T'\rangle$ und sogar $T\subset\langle T'\rangle$. Damit $\langle T\rangle\subset\langle T'\rangle$, weil $\langle T\rangle$ der kleinste Unterraum ist, der T umfasst. Ist T keine Basis, so finden wir $T'\subset T$ mit |T'|=|T|-1, s.d. $\langle T'\rangle=\langle T\rangle=V$.

Wir haben die folgende Aussage bewiesen.

Ist es $V = \langle T \rangle$ mit $|T| < \infty$, so existiert eine Basis L, s.d. $L \subseteq T$ ($|L| \leqslant |T|$).

Nach höchstens m Schritten bekommen wir doch eine Basis von V.

Lemma (Lemma 7.4.)

Sei $L=\{\bar{v}_1,\ldots,\bar{v}_m\}$ eine Basis von V und sei $T=\{\bar{u}_1,\ldots,\bar{u}_k\}\subseteq V$ eine linear unabhängige Teilmenge. Dann $k\leqslant m$.

Beweis.

Jeder Vektor \bar{u}_j ist eine lineare Kombination $\bar{u}_j = a_{1j}\bar{v}_1 + \dots a_{mj}\bar{v}_m$ mit $a_{ij} \in \mathbb{K}$. Damit

$$c_1\bar{u}_1+\ldots+c_k\bar{u}_k=c_1(a_{11}\bar{v}_1+\ldots a_{m1}\bar{v}_m)+\ldots+c_k(a_{1k}\bar{v}_1+\ldots a_{mk}\bar{v}_m)=(a_{11}c_1+a_{12}c_2+\ldots+a_{1k}c_k)\bar{v}_1+\ldots+(a_{m1}c_1+a_{m2}c_2+\ldots+a_{mk}c_k)\bar{v}_m.$$

Kann man schon merken,

$$\sum_{j=1}^k c_j \bar{u}_j = \bar{0} \Leftrightarrow (a_{i1}c_1 + a_{i2}c_2 + \ldots + a_{ik}c_k = 0 \ \forall i, 1 \leqslant i \leqslant m).$$

(FSU Jena) Lineare Algebra I 10.11.2015 5 / 35

Beweis.

Bemerkt,

$$\sum_{j=1}^k c_j \bar{u}_j = \bar{0} \Leftrightarrow (a_{i1}c_1 + a_{i2}c_2 + \ldots + a_{ik}c_k = 0 \ \forall i, 1 \leqslant i \leqslant m).$$

Sei *A* das Gleichungssystem $\left(\sum\limits_{j=1}^k a_{ij}x_j=0 \ \forall i,1\leqslant i\leqslant m\right)$. Hätte das

System A eine nicht triviale, ungleich $(0,0,\ldots,0)$, Lösung, so wäre $T=\{\bar{u}_1,\ldots,\bar{u}_k\}$ linear abhängig.

Das System A besteht aus m Gleichungen und hat k Unbekannte. Bringen wir A auf Zeilenstufenform, dann gibt es höchstens m Stufen. Alle Bekannte waren am Anfang gleich 0 und sind gleich 0 geblieben. (Das System hat eine Lösung, die triviale.)

Falls k > m, existieren freie Variablen und das System A hat auch eine nicht triviale Lösung. Widerspruch!

Lemma (Lemma 7.4.)

Sei $L=\{\bar{v}_1,\ldots,\bar{v}_m\}$ eine Basis von V und sei $T=\{\bar{u}_1,\ldots,\bar{u}_k\}\subseteq V$ eine linear unabhängige Teilmenge. Dann $k\leqslant m$.

Korollar

Sei $L = \{\bar{v}_1, \dots, \bar{v}_m\}$ eine Basis von V und sei $L' \subseteq V$ eine weitere Basis. Dann |L'| = m.

Beweis.

Falls $|L'|=\infty$ oder falls |L'|>m, finden wir eine endliche linear unabhängige Teilmenge $T\subseteq V$ mit |T|>m. Widerspruch!

Falls |L'| < m, dann haben wir eine Basis L' und eine endliche linear unabhängige Teilmenge L, s.d. |L| > |L'|. Widerspruch!

Korollar

Sei $L=\{\bar{v}_1,\ldots,\bar{v}_m\}$ eine Basis von V und sei $L'\subseteq V$ eine weitere Basis. Dann |L'|=m.

Ist es $V = \langle T \rangle$ mit $|T| < \infty$, so existiert eine Basis L, s.d. $L \subseteq T$ ($|L| \leqslant |T|$).

Satz (Satz 7.5.)

Jeder endlich erzeugte Vektorraum besitzt eine endliche Basis, und je zwei seiner Basen haben gleich viele Elemente.

Definition (Def. 7.6.)

Die Mächtigkeit einer und nach dem Satz 7.5. jeder Basis eines endlich erzeugten Vektorraums V heißt **Dimension von** V und wird dim V oder $\dim_{\mathbb{K}} V$ notiert.

Definition (Def. 7.6.)

Die Mächtigkeit einer und nach dem Satz 7.5. jeder Basis eines endlich erzeugten Vektorraums V heißt **Dimension von** V und wird $\dim V$ oder $\dim_{\mathbb{K}} V$ notiert.

Beispiele:

- $\mathbf{0}$ dim $_{\mathbb{K}} \mathbb{K} = 1$.
- \bigcirc dim $\mathbb{K}^n = n$,
- **3** $\dim\{\bar{0}\} = 0$.
- **4** dim $\operatorname{Mat}_{m \times n}(\mathbb{K}) = mn$. Übung!

Sei A ein homogenes LGS mit n Variablen. Die Menge aller Lösungen von A ist ein Untervektorraum $U \subseteq \mathbb{K}^n$ und ist, wie jeder Unterraum, ein \mathbb{K} -Vektorraum. Sei s die Anzahl der Stufen in Zeilenstufenform von A. Dann $\dim U = n - s$. (Zeigen wir noch.)

Sei der \mathbb{K} -Vektorraum V endlich erzeugt und sei $U \subseteq V$ ein Untervektorraum. Eine natürliche Frage, ist U endlich erzeugt? Die Antwort ist "ja" und das zeigen wir sofort, aber dafür benötigen wir eine andere Charakterisierung einer Basis.

Satz (Satz 7.7.)

 $L \subseteq V$ ist eine Basis $\Leftrightarrow L$ ist eine maximale linear unabhängige Teilmenge.

Linear unabhängig: eine Basis ist eine linear unabhängige Teilmenge.

Maximale linear unabhängige Teilmenge $L \subseteq V$: Ist es $L \subseteq T$, wo $T \subseteq V$ linear unabhängig ist, dann L = T.

Eine Basis ist eine unverlängerbare linear unabhängige Teilmenge.

Satz (Satz 7.7.)

 $L \subseteq V$ ist eine Basis $\Leftrightarrow L$ ist eine maximale linear unabhängige Teilmenge.

Beweis.

 (\Leftarrow) Sei $T\subseteq V$ eine maximale linear unabhängige Teilmenge. Wir zeigen, dass $V=\langle T \rangle$, damit wird gezeigt, dass T eine Basis ist. Sei $\bar{v}\in V$. Falls $\bar{v}\in T$, dann $\bar{v}\in \langle T \rangle$, gut. Falls $\bar{v}\not\in T$, dann ist $T\subset T\cup \{\bar{v}\}$ eine echte Teilmenge und die Menge $T\cup \{\bar{v}\}$ kann nicht linear unabhängig sein. Es existiert eine nicht triviale Abhängigkeit

$$a_1t_1+\ldots+a_kt_k+b\bar{v}=\bar{0} \text{ mit } a_1,\ldots,a_k,b\in\mathbb{K},t_1,\ldots,t_k\in\mathcal{T}.$$

Weil T linear unabhängig ist, muss es gelten $b \neq 0$ und

$$\bar{v} = \frac{-1}{b} (a_1 t_1 + \ldots + a_k t_k) \in \langle T \rangle.$$

Jeder Vektor $\bar{v} \in V$ gehört zu $\langle T \rangle$, d.h. $\langle T \rangle = V$.

(FSU Jena) Lineare Algebra I 10.11.2015

Satz (Satz 7.7.)

 $L \subseteq V$ ist eine Basis $\Leftrightarrow L$ ist eine maximale linear unabhängige Teilmenge.

Beweis.

 (\Rightarrow) Sei $L \subseteq V$ eine Basis und sei $L \subseteq T$, wo $T \subseteq V$ linear unabhängig ist. Nehmen wir an, dass $L \neq T$. Dann existiert $\bar{v} \in T$, s.d. $\bar{v} \notin L$. L ist eine Basis $\Rightarrow \langle L \rangle = V \Rightarrow \bar{v} = a_1 t_1 + \ldots + a_k t_k$ mit $a_1, \ldots, a_k \in \mathbb{K}$, $t_1, \ldots, t_k \in L$. Wir können annehmen, dass $t_i \neq t_i$, falls $i \neq j$ (sonst schreiben wir $(a_i + a_i)t_i$ statt $a_it_i + a_it_i$). Nun haben wir die Identität

$$a_1 t_1 + \ldots + a_k t_k + (-1) \bar{v} = \bar{0},$$

wo $\bar{v} \neq t_i$ für jede *i* und $t_i \neq t_i$, falls $i \neq j$. Die Teilmenge *T* ist linear abhängig. Widerspruch!

Lineare Algebra 10.11.2015 12 / 35 Sei V ein endlich erzeugter Vektorraum, $V = \langle T \rangle$, wo $|T| = k < \infty$. Dann

- V besitzt eine Basis L, s.d. $L \subseteq T$, also $|L| = m \leqslant k$;
- 2 Jede linear unabhängige Teilmenge \tilde{L} enthält höchstens m Elemente.
- 3 Basis = maximale linear unabhängige Teilmenge.

Lemma (Lemma 7.8.)

Sei $U \subseteq V$ ein Untervektorraum. Dann ist U endlich erzeugt und besitzt eine Basis L_U mit $|L_U| \leqslant m$, wo $m = \dim V$. Dazu $|L_U| = m \Leftrightarrow U = V$.

Beweis.

Zuerst konstruieren wir eine Basis in U. Setzen $L_0 := \emptyset$. Falls $\langle L_0 \rangle = U$, haben wir schon eine Basis. Sonst ist L_0 verlängerbar in U, $\exists L_1 \subseteq U$, s.d. $L_0 \subset L_1$ (echte Teilmenge) und L_1 linear unabhängig ist. Ist L_1 keine Basis von U, so finden wir eine linear unabhängige Teilmenge $L_2 \subseteq U$ mit $L_1 \subset L_2$. Und so weiter, $L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_k \subset \ldots$. Merken, $|L_k| \geqslant k$ und immer $|L_k| \leqslant m$ wegen (2).

Lemma (Lemma 7.8., V ist endlich erzeugt.)

Sei $U \subseteq V$ ein Untervektorraum. Dann ist U endlich erzeugt und besitzt eine Basis L_U mit $|L_U| \leqslant m$, wo $m = \dim V$. Dazu $|L_U| = m \Leftrightarrow U = V$.

Beweis.

Setzen $L_0 := \emptyset$. Falls $\langle L_0 \rangle = U$, haben wir schon eine Basis. Sonst ist L_0 verlängerbar in U, $\exists L_1 \subseteq U$, s.d. $L_0 \subset L_1$ (echte Teilmenge) und L_1 linear unabhängig ist. Ist L_1 keine Basis von U, so finden wir eine linear unabhängige Teilmenge $L_2 \subseteq U$ mit $L_1 \subset L_2$. Und so weiter,

$$L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_k \subset \ldots$$

Merken, $|L_k| \ge k$ und immer $|L_k| \le m$ wegen (2). Nach höchstens m Schritten bekommen wir eine Basis L_U und $|L_U| \le m$.

Basis
$$\Rightarrow U = \langle L_U \rangle \Rightarrow U$$
 endlich erzeugt

Falls $|L_U| = m$, dann ist L_U unverlängerbar in V, deswegen ist L_U eine Basis von V und U = V.

Lemma (Lemma 7.8., *V* ist endlich erzeugt.)

Sei $U \subseteq V$ ein Untervektorraum. Dann ist U endlich erzeugt und besitzt eine Basis L_U mit $|L_U| \leqslant m$, wo $m = \dim V$. Dazu $|L_U| = m \Leftrightarrow U = V$.

Sei $U \subseteq V$ ein Unterraum eines endlich erzeugten Vektorraums V. Dann $\dim U \leqslant \dim V$ und $\dim U = \dim V$ genau dann, wenn U = V.

Beispiele (Unterräume $U \subseteq V$ und Dimension)

- Sei $V = \mathbb{R}$. Dann dim V = 1 und dim U ist entweder 0 oder 1. dim $U = 0 \Leftrightarrow U = \{\overline{0}\}$; dim $U = 1 \Leftrightarrow U = V$.
- $V = \mathbb{R}^2$, dim V = 2.
 - = dim $U_0=0$, falls $U_0=\{\overline{0}\}$; dim $U_1=2$, falls $U_1=V$, und
 - $\mathsf{D} = \mathsf{dim} U = \mathsf{D} = \mathsf{D$
- - \cup dim $U_0 = 0$, falls $U_0 = \{\bar{0}\}$; dim $U_1 = 3$, falls $U_1 = V$, und
 - \forall dimU=1, falls $U=U_{\bar{v}}=\{r\bar{v}\mid r\in\mathbb{R}\}$, wo $\bar{v}\in\mathbb{R}^3$, $\bar{v}\neq\bar{0}$, und
 - dimU=2, falls $U=U_{\overline{v},\overline{u}}=\{a\overline{v}+b\overline{u}\mid a,b\in\mathbb{R}\}$, wo $\overline{v},\overline{u}$ nicht auf einer Geraden liegen, $\overline{v},\overline{u}\in\mathbb{R}^3$.

Mit Hilfe der aufsteigenden Kette beweist man auch das folgende Lemma.

Lemma (Lemma 7.9.)

Sei V ein endlich erzeugter Vektorraum und sei $T \subseteq V$ linear unabhängig. Dann existiert eine Basis L von V, s.d. $T \subseteq L$.

Beweis.

Ist T eine Basis, so sind wir fertig. Sonst existiert eine linear unabhängige Teilmenge L_1 mit $T \subset L_1$ (echt). Entweder ist L_1 eine Basis oder existiert eine linear unabhängige Teilmenge L_2 mit $L_1 \subset L_2$. Und so weiter,

$$L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_k \subset \ldots$$

Immer $|L_k| < |L_{k+1}| \le \dim V < \infty$.

Das Verfahren endet mit einer Basis L, s.d. $T \subseteq L$.

Korollar

Sei $U \subseteq V$ ein Unterraum eines endlich erzeugten Vektorraums V und sei L_U eine Basis von U. Dann existiert eine Basis L von V, s.d. $L_U \subseteq L$.

Korollar

Sei $U \subseteq V$ ein Unterraum eines endlich erzeugten Vektorraums V und sei L_U eine Basis von U. Dann existiert eine Basis L von V, s.d. $L_U \subseteq L$.

Die Basis ist $L = \{\bar{u}_1, \dots, \bar{u}_k, \bar{v}_1, \dots, \bar{v}_\ell\}$, wo $k = \dim U$, $k+\ell = \dim V$. Jeder Vektor $\bar{v} \in V$ ist eine lineare Kombination

$$ar{v} = a_1 ar{u}_1 + \ldots + a_k ar{u}_k + b_1 ar{v}_1 + \ldots + b_\ell ar{v}_\ell = ar{u} + ar{w}, \text{ wo } \ ar{u} = a_1 ar{u}_1 + \ldots + a_k ar{u}_k \in U, \ ar{w} = b_1 ar{v}_1 + \ldots + b_\ell ar{v}_\ell \in W, \ W = \langle ar{v}_1, \ldots, ar{v}_\ell \rangle.$$

Man sagt, dass V die Summe von U und W ist, V = U + W, jeder Vektor $\bar{v} \in V$ ist eine Summe $\bar{v} = \bar{u} + \bar{w}$, mit $\bar{u} \in U$, $\bar{w} \in W$.

Ähnlich kann man die Summe beliebige Unterräume $U_1, U_2 \subseteq V$ definieren: $U_1 + U_2 := \{\bar{u}_1 + \bar{u}_2 \mid \bar{u}_1 \in U_1, \bar{u}_2 \in U_2\} = \langle U_1 \cup U_2 \rangle$ ist ein Unterraum. Oder für eine beliebige Familie $(U_\alpha, \alpha \in \mathcal{F})$ von Unterräume ist

$$\sum_{lpha\in\mathcal{F}} U_lpha := \{ar{u}_{lpha(1)} + \ldots + ar{u}_{lpha(k)} \mid k \in \mathbb{N}, lpha(i) \in \mathcal{F}\} = \left\langle igcup_{lpha\in\mathcal{F}} U_lpha
ight
angle$$
 ein Unterraum.

Direkte Summe

Sei
$$L = \{\bar{v}_1, \dots, \bar{v}_m\}$$
 eine Basis von V . Falls

$$a_1\bar{v}_1+\ldots+a_m\bar{v}_m=b_1\bar{v}_1+\ldots+b_m\bar{v}_m$$
 mit $a_i,b_i\in\mathbb{K},$

dann
$$(a_1-b_1)\bar{v}_1+\ldots+(a_m-b_m)\bar{v}_m=\bar{0}$$
 und $a_i=b_i$ für jede i .

Sei
$$L = \{\bar{u}_1, \dots, \bar{u}_k, \bar{w}_1, \dots, \bar{w}_\ell\}$$
 eine Basis, $U = \langle \bar{u}_1, \dots, \bar{u}_k \rangle$, $W = \langle \bar{w}_1, \dots, \bar{w}_\ell \rangle$.

Sei
$$\bar{v}=\bar{u}+\bar{w}=\bar{u}'+\bar{w}'$$
 mit $\bar{u},\bar{u}'\in \mathit{U},\,\bar{w},\bar{w}'\in \mathit{W}.$ Dann $\bar{u}-\bar{u}'=\bar{w}'-\bar{w}.$

Wir haben
$$\bar{u} - \bar{u}' = \alpha_1 \bar{u}_1 + \ldots + \alpha_k \bar{u}_k = \beta_1 \bar{w}_1 + \ldots + \beta_\ell \bar{w}_\ell = \bar{w}' - \bar{w}$$
.

Damit
$$\bar{u} = \bar{u}'$$
, $\bar{w}' = \bar{w}$. Wir merken auch, dass $U \cap W = \{\bar{0}\}$. $V = U \oplus W$.

Für zwei Unterräume $U_1, U_2 \subseteq V$ ist es äquivalent:

(i)
$$U_1 \cap U_2 = \{\bar{0}\},\$$

(ii)
$$(\bar{u}_1 + \bar{u}_2 = \bar{u}_1' + \bar{u}_2' \text{ mit } \bar{u}_1, \bar{u}_1' \in U_1, \bar{u}_2, \bar{u}_2' \in U_2) \Leftrightarrow (\bar{u}_1 = \bar{u}_1' \wedge \bar{u}_2 = \bar{u}_2').$$

Falls (i), (ii) gelten, sagt man, dass die Summe von U_1 und U_2 **direkt** ist, und schreibt $U_1 \oplus U_2$ statt $U_1 + U_2$.

(FSU Jena) Lineare Algebra I 10.11.2015 18 / 35

Lemma (Lemma 7.10.)

Für zwei Unterräume $U_1, U_2 \subseteq V$ ist es äquivalent:

- (i) $U_1 \cap U_2 = \{\bar{0}\},\$
- $\text{(ii)} \ \ (\bar{u}_1 + \bar{u}_2 = \bar{u}_1' + \bar{u}_2' \ \textit{mit} \ \bar{u}_1, \bar{u}_1' \in \textit{U}_1, \ \bar{u}_2, \bar{u}_2' \in \textit{U}_2) \Leftrightarrow (\bar{u}_1 = \bar{u}_1' \wedge \bar{u}_2 = \bar{u}_2').$

Beweis.

- (i) \Rightarrow (ii): Sei es $\bar{u}_1 + \bar{u}_2 = \bar{u}_1' + \bar{u}_2'$, dann $\bar{u}_1 \bar{u}_1' = \bar{u}_2' \bar{u}_2 \in U_1 \cap U_2$ und deswegen ist $\bar{0}$.
- \neg (i) \Rightarrow \neg (ii): Sei es $U_1 \cap U_2 \neq \{\bar{0}\}$. Dann $\exists \bar{u} \in U_1 \cap U_2, \, \bar{u} \neq \bar{0}$.

Wir schreiben $\bar{u}=\bar{u}+\bar{0}=\bar{0}+\bar{u}$, wo $\bar{u},\bar{0}\in U_1,\bar{0},\bar{u}\in U_2$ und sehen, dass

(ii) nicht stimmt.

Direkte Summen

Seien U, V Vektorräume über \mathbb{K} . Das kartesische Produkt

$$U \times V = \{(\bar{u}, \bar{v}) \mid \bar{u} \in U, \bar{v} \in V\}$$
 ist ein Vektorraum, wo

$$\diamond \ (\bar{u}_1,\bar{v}_1)+(\bar{u}_2,\bar{v}_2)=(\bar{u}_1+\bar{u}_2,\bar{v}_1+\bar{v}_2),$$

- $\diamond \ \bar{\mathbf{0}}_{U\times V}=(\bar{\mathbf{0}}_{U},\bar{\mathbf{0}}_{V}),$
- $\diamond \ r(\bar{u},\bar{v}) = (r\bar{u},r\bar{v}) \text{ für alle } r \in \mathbb{K}.$

Man schreibt $U \oplus V$ statt $U \times V$, denn U und V zu Unterräumen von $U \times V$ zählen, wenn wir ein Element $(\bar{u}, \bar{0}_V)$ als $\bar{u} \in U$, ein Element $(\bar{0}_U, \bar{v})$ als $\bar{v} \in V$ betrachten.

Induktiv kann man $V_1 \oplus V_2 \oplus \ldots \oplus V_n$ definieren. Oder allgemein,

$$\bigoplus_{\alpha\in\mathcal{F}}V_{\alpha}=\{(\bar{\mathbf{v}}(\alpha_1),\bar{\mathbf{v}}(\alpha_2),\ldots,\bar{\mathbf{v}}(\alpha_k),\bar{\mathbf{0}},\ldots,\bar{\mathbf{0}},\ldots)\}$$

für eine Familie $(V_{\alpha}, \alpha \in \mathcal{F})$ von Vektorräumen. Ist die Familie \mathcal{F} unendlich und $V_{\alpha} \neq \{\bar{0}\}$ für jede α , so ist $\bigoplus_{\alpha \in \mathcal{F}} V_{\alpha}$ nicht endlich erzeugbar.

(FSU Jena) Lineare Algebra I 10.11.2015 20 / 35

Summen, Beispiele

$$U \oplus V = U \times V \text{ mit } (\bar{u}_1, \bar{v}_1) + (\bar{u}_2, \bar{v}_2) = (\bar{u}_1 + \bar{u}_2, \bar{v}_1 + \bar{v}_2), \ r(\bar{u}, \bar{v}) = (r\bar{u}, r\bar{v}).$$

- n Stücke
- **1** Übung: dim $(U \oplus V) = \dim U + \dim V$, falls U und V endlich erzeugt sind.
- **5** $\mathbb{R}^3 = \langle (1,1,1), (1,0,2) \rangle + \langle (0,1,1), (0,0,1) \rangle$, keine direkte Summe, $\langle (1,1,1), (1,0,2) \rangle \cap \langle (0,1,1), (0,0,1) \rangle = \langle (0,1,-1) \rangle \neq \{\bar{0}\}.$

Satz (Satz 7.11.)

Seien $U_1, U_2 \subseteq V$ Unterräume eines endlich erzeugten \mathbb{K} -Vektorraums V. Dann gilt: $\dim(U_1+U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$.

Beweis.

```
Sei T eine Basis von U_1 \cap U_2. Nach dem Lemma 7.9. existieren Basen L_1 von U_1, L_2 von U_2 mit T \subseteq L_1, T \subseteq L_2. Merken, dass T \subseteq L_1 \cap L_2 \subseteq U_1 \cap U_2 und die Teilmengen T, L_1 \cap L_2 linear unabhängig sind. Weil T eine maximale linear unabhängige Teilmenge (= Basis) von U_1 \cap U_2 ist, gilt es L_1 \cap L_2 = T. Setzen L := L_1 \cup L_2. Dann |L| = |L_1| + |L_2| - |L_1 \cap L_2| = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2). Es bleibt nur zu zeigen, dass L eine Basis von U_1 + U_2 ist. Merken, U_1 \subseteq \langle L_1 \rangle \subseteq \langle L \rangle, U_2 \subseteq \langle L_2 \rangle \subseteq \langle L \rangle. Daraus U_1 + U_2 \subseteq \langle L \rangle, denn \langle L \rangle ein Unterraum ist. Eigentlich U_1 + U_2 = \langle L \rangle, denn L \subseteq U_1 + U_2. Jetzt fehlt nur die zweite Eigenschaft: L ist linear unabhängig. . . . . . . .
```

Satz (Satz 7.11.)

Seien $U_1, U_2 \subseteq V$ Unterräume eines endlich erzeugten \mathbb{K} -Vektorraums V. Dann gilt: $\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$.

Beweis.

```
Haben L = L_1 \cup L_2, wo L_1 eine Basis von U_1, L_2 eine Basis von U_2, und
T = L_1 \cap L_2 eine Basis von U_1 \cap U_2 ist. Weiter gezeigt, U_1 + U_2 = \langle L \rangle,
|L| = |L_1| + |L_2| - |L_1 \cap L_2| = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).
Nun zeigen wir, dass L linear unabhängig ist. Sei es L_1 \setminus T = \{s_1, \dots, s_k\},
T = \{t_1, \ldots, t_m\}, L_2 \setminus T = \{q_1, \ldots, q_r\}.
Sei b_1 s_1 + \ldots + b_k s_k + a_1 t_1 + \ldots + a_m t_m + c_1 q_1 + \ldots + c_r q_r = \bar{0} eine nicht
triviale Abhängigkeit. Dann ar{v} = -\sum c_i q_i \in \mathit{U}_2 \cap \mathit{U}_1 und
\bar{v} = \alpha_1 t_1 + \ldots + \alpha_m t_m. Weil L_1 eine Basis ist, gilt es \alpha_i = a_i für 1 \le i \le m
und b_1 = \ldots = b_k = 0. Weil L_2 eine Basis ist, gilt nun
a_1 = ... = a_m = c_1 = ... = c_r = 0. Widerspruch!
```

```
"One, two, three, five, four, ..."
```

"Well if I want to say one, two, three, five, four, why can't I?"

"That's not how it goes."

In einem LGS kann man auch Spalten vertauschen.

$$(A) \begin{cases} a_{11}x_1 + \dots + a_{1k}x_k + \dots + a_{1\ell}x_{\ell} + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{n1}x_1 + \dots + a_{ik}x_k + \dots + a_{i\ell}x_{\ell} + \dots + a_{in}x_n = b_i \\ \dots \\ a_{m1}x_1 + \dots + a_{mk}x_k + \dots + a_{m\ell}x_{\ell} + \dots + a_{mn}x_n = b_m \end{cases} \Leftrightarrow (A') \begin{cases} a_{11}x_1 + \dots + a_{m\ell}x_{\ell} + \dots + a_{mn}x_n = b_n \\ \dots \\ a_{m1}x_1 + \dots + a_{mk}x_k + \dots + a_{i\ell}x_{\ell} + \dots + a_{ik}x_k + \dots + a_{in}x_n = b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{i\ell}x_{\ell} + \dots + a_{mk}x_k + \dots + a_{in}x_n = b_i \\ \dots \\ a_{m1}x_1 + \dots + a_{m\ell}x_{\ell} + \dots + a_{mk}x_k + \dots + a_{mn}x_n = b_m \end{cases}$$

Die Lösungsmenge ändert sich nicht.

Landen wir bei einer Zeilenstufenform mit derselben Zahl von Stufen, wenn wir zuerst die Spalten unseres Systems willkürlich vertauschen, bevor wir den Gauß-Algorithmus durchführen?

[&]quot;No Daddy, it's one, two, three, four, five."

Satz (Satz 7.12.)

Sei A ein homogenes LGS mit n Variablen. Die Menge aller Lösungen von A ist ein Untervektorraum $U \subseteq \mathbb{K}^n$ und ist, wie jeder Unterraum, ein \mathbb{K} -Vektorraum. Sei s die Anzahl der Stufen in Zeilenstufenform von A. Dann gilt es dim U = n - s.

Beweis.

Sei A in Zeilenstufenform mit den Stufen-Indizes $t(1) < t(2) < \ldots < t(s)$. Die freien Variablen x_i mit $i \notin \{t(1), t(2), \ldots, t(s)\}$ kann man frei wählen. Ein n-Tupel $\bar{u} = (u_1, \ldots, u_n)$ ist eine Lösung des Systems A genau dann, wenn

$$u_{t(i)} = -(a_{i,t(i)+1}u_{t(i)+1} + a_{i,t(i)+2}u_{t(i)+2} + \ldots + a_{i,n}u_n)$$
 für jede $t(i)$ mit $1 \le i \le s$.

Man beginnt mit $u_{t(s)}$ und rechnet dann alle $u_{t(i)}$ mit i = s - 1, s - 2, ..., 1 aus. Falls $u_i = 0$ für jede $i \notin \{t(1), t(2), ..., t(s)\}$, dann $\bar{u} = 0$.

Für jede $i \notin \{t(1), t(2), \dots, t(s)\}$ konstruieren wir eine Lösung \bar{v}_i .

(FSU Jena) Lineare Algebra I 10.11.2015 25 / 35

Satz (Satz 7.12.)

Sei A ein homogenes LGS mit n Variablen und sei $U \subseteq \mathbb{K}^n$ die Lösungsmenge von A. Dann dim U = n - s.

Beweis.

Sei A in Zeilenstufenform mit den Stufen-Indizes $t(1) < t(2) < \ldots < t(s)$. Setzen $SI := \{t(1), t(2), \ldots, t(s)\}$. Wir haben bemerket, dass eine Lösung $\bar{u} = (u_1, \ldots, u_n)$ gleich $\bar{0}$ ist, falls $u_i = 0$ für jede $i \notin SI$.

Für jede $i \notin SI$ konstruieren wir eine Lösung \bar{v}_i , indem wir x_i als 1 und alle x_j , s.d. $j \notin SI$, $j \neq i$, als 0 wählen.

Wir bekommen n-s verschiedene Vektoren, die linear unabhängig sind.

Nehmen wir ein $\bar{u} \in U$ und betrachten $\bar{w} = \bar{u} - \sum_{i \notin \mathrm{SI}} u_i \bar{v}_i$. Dann ist jeder

"freie" Eintrag von \bar{w} gleich Null. Das bedeutet, $\bar{w} = \bar{0}$ und $\{\bar{v}_i \mid i \notin SI\}$ ist eine Basis von U.

(FSU Jena) Lineare Algebra I 10.11.2015 26 / 35

Ein Beispiel

Seien die Koeffizienten des homogenen LGS A durch die folgende Matrix gegeben.

Hier n = 7, s = 4, $SI = \{1, 3, 4, 6\}$, $\{i \mid i \notin SI\} = \{2, 5, 7\}$.

Weiter, zu der Lösungen \bar{v}_2 , \bar{v}_5 , \bar{v}_7 .

Bei \bar{v}_7 haben wir $x_7 = 1$, $x_5 = x_2 = 0$.

Damit $x_6 = 2$, $x_4 = -1$, $x_3 = -2$, $x_1 = 18$; also $\bar{v}_7 = (18, 0, -2, -1, 0, 2, 1)$.

Bei \bar{v}_5 : $x_7 = 0$, $x_5 = 1$, $x_2 = 0$.

Damit $x_6 = 0$, $x_4 = 3$, $x_3 = -6$, $x_1 = -33$; also $\bar{v}_5 = (-33, 0, -6, 3, 1, 0, 0)$.

Bei \bar{v}_2 : $x_7 = 0 = x_5$, $x_2 = 1$.

Damit $x_6 = 0 = x_4 = x_3$, $x_1 = 0$; also $\bar{v}_2 = (0, 1, 0, 0, 0, 0, 0)$.

(FSU Jena) Lineare Algebra 10.11.2015 27 / 35

Ein Beispiel

Seien die Koeffizienten des homogenen LGS A durch die folgende Matrix gegeben.

Hier
$$n = 7$$
, $s = 4$, $SI = \{1, 3, 4, 6\}$, $\{i \mid i \notin SI\} = \{2, 5, 7\}$.

Die Basis-Lösungen:
$$\begin{pmatrix} \bar{v}_7 \\ \bar{v}_5 \\ \bar{v}_2 \end{pmatrix} = \begin{pmatrix} 18 & 0 & -2 & -1 & 0 & 2 & 1 \\ -33 & 0 & -6 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

(FSU Jena)

Polynome

Sei x eine Variable.

Wir betrachten die Menge R der formalen Summen, der Polynome,

$$R = \mathbb{K}[x] = \{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \mid n \in \mathbb{N} \cup \{0\}, a_i \in \mathbb{K}\}.$$

Sei
$$g = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
,

$$h = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$
 mit $n \ge m$, dann $g + h = h + g = b_m x^m + b_m x^m +$

$$=a^{n}x^{n}+\ldots+a_{m+1}x^{m+1}+(a_{m}+b_{m})x^{m}+\ldots+(a_{1}+b_{1})x+a_{0}+b_{0}.$$

Das neutrale Element:
$$\bar{0}_R = 0 = 0x + 0$$
; $-g = \sum_{k=0}^{n} -a_k x^k$, wo $x^0 = 1$.

Multiplikation mit den Skaralen: $rg = \sum_{k=0}^{n} ra_k x^k$.

 $\mathbb{K}[x]$ ist ein nicht endlich erzeugbarer Vektorraum.

Der **Grad** (*degree* auf Englisch): Ist es $g = a_n x^n + ... + a_0$ mit $a_n \neq 0$, so setzt man $\deg g = n$. Z.B. $\deg a = 0$, falls $a \in \mathbb{K}^{\times}$.

Vereinbarung: $deg 0 = -\infty$.

(FSU Jena) Lineare Algebra I

10.11.2015

29 / 35

Der Vektorraum

 $R = \mathbb{K}[x] = \{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \mid n \in \mathbb{N} \cup \{0\}, a_i \in \mathbb{K}\}$ ist nicht endlich erzeugbar. Das zeigen wir jetzt mit Hilfe des Grades. deg g = n, falls $g = a_n x^n + \ldots + a_0$ mit $a_n \neq 0$, deg $0 = -\infty$.

 $\mathsf{Merken}, \deg(g+h) \leqslant \max(\deg g, \deg h) \ \ \forall g,h \in \mathbb{K}[x].$

Angenommen: $R = \langle p_1, \dots, p_m \rangle$. Sei $M = \max(\deg p_1, \dots, \deg p_m, 1)$. Weil $\deg(a_1p_1 + \dots + a_mp_m) \leqslant M \ \forall a_1, \dots, a_m \in \mathbb{K}$, gilt es $\deg g \leqslant M \ \forall g \in R$. Aber $\deg x^{M+1} = M+1$. Widerspruch!

Der Vektorraum $\mathbb{K}[x]$ hat eine unendliche Basis $\{1, x, x^2, x^3, \dots, x^n, \dots\}$. Die Polynome kann man *multiplizieren*, z.B.

$$x^{k} \cdot (a_{n}x^{n} + \ldots + a_{0}) = a_{n}x^{n+k} + a_{n-1}x^{n-1+k} + \ldots + a_{1}x^{k+1} + a_{0}x^{k}.$$

Und allgemein $(\sum_{j=0}^m b_j x^j) \cdot g = \sum_{j=0}^m b_j x^j \cdot g$. $\mathbb{K}[x]$ heißt *Polynomring*.

Die Polynome kann man auch als endliche Folgen betrachten:

$$g \rightsquigarrow (a_0, a_1, \ldots, a_n, 0, \ldots, 0, \ldots).$$

30 / 35

Einige nicht endlich erzeugbare Vektorräume

Der Raum \mathbb{R}^{∞} der unendlichen reellen Vektoren (Folgen)

$$\bar{a}=(a_1,a_2,a_3,\ldots,a_n,\ldots)$$

und seine Unterräume:

- **①** Konvergente Folgen: $K = \{\bar{a} \mid \lim_{n \to \infty} a_n \text{ existient}\}.$
- ② Beschränkte Folgen: $\ell^{\infty} = \{\bar{a} \mid \{a_n \mid n \in \mathbb{N}\} \text{ ist beschränkt}\}.$ Eine Folge heißt **beschränkt**, wenn es eine Zahl b, eine so genante *Schranke*, gibt, so dass $|a_n| \leq b$ für alle n gilt.
- **3** Absolut konvergente Folgen: $\ell^1 = \{\bar{a} \mid \sum_{n=1}^{\infty} |a_n| < \infty\}.$
- Folgen, die fast aus Nullen bestehen (also die Polynome): $\{\bar{a} \mid a_n = 0 \text{ für alle } n \text{ bis auf endlich viele Ausnahmen}\}.$

(FSU Jena) Lineare Algebra I 10.11.2015 31 / 35

Funktionen als Vektorräume

Sei M eine Menge ($M \neq \emptyset$) und sei \mathbb{K} ein Körper.

Abbildungen von M nach $\mathbb{K} = \mathbb{K}$ -wertige Funktionen auf M

Die Menge $\mathrm{Abb}(M,\mathbb{K})$ aller *Abbildungen* von M nach \mathbb{K} , $f:M\to\mathbb{K}$, ist ein \mathbb{K} -Vektorraum, wenn man sie mit der Addition: (f+g)(x)=f(x)+g(x) und mit der Multiplikation mit Skalaren: $(rf)(x)=r\cdot f(x)$ versieht.

Der Vektorraum $\mathrm{Abb}(M,\mathbb{K})$ ist endlich erzeugbar $\Leftrightarrow |M| < \infty$. Übung: Ist es $|M| < \infty$, dann $\dim_{\mathbb{K}} \mathrm{Abb}(M,\mathbb{K}) = |M|$.

Vielleicht können Sie Beispiele von Unterräumen $U \subseteq \mathrm{Abb}(M, \mathbb{K})$ finden, insbesondere falls $M = \mathbb{R}$ oder $M = \mathbb{R}^2$.

(FSU Jena) Lineare Algebra I 10.11.2015 32 / 35

Nicht endlich erzeugbare Vektorräume – Basen

Jeder Vektorraum V besitzt eine Basis.

Das beweisen wir jetzt nicht. Nur ein paar Bemerkungen dazu.

- Sei $L_1 \subset L_2 \subset L_3 \subset \ldots \subset L_k \subset \ldots$ eine aufsteigende Kette von linear unabhängigen Teilmengen $L_k \subseteq V$. Dann ist die Vereinigung $L = \bigcup_k L_k$ linear unabhängig.
- V besitzt eine maximal linear unabhängige Teilmenge.

Seien L_1 , L_2 zwei Basen von V. Dann existiert eine Bijektion $f: L_1 \to L_2$.

Das zeigen wir auch nicht, mindestens nicht jetzt. Falls Sie wirklich Interesse haben, eine Übung: Sei $L \subseteq V$ eine **abzählbare** Basis (es existiert eine Bijektion $f : \mathbb{N} \to L$). Dann ist jede Basis von V abzählbar. endlich erzeugter Vektorraum = **endlich dimensionaler** Vektorraum

(FSU Jena) Lineare Algebra I 10.11.2015 33 / 35

Prüfung

Anmeldung in Friedolin bis Ende dieser Woche (27.11.).

Zulassungsvoraussetzungen sind

- das Erreichen von mindestens 40% der Punkte aus den Übungsaufgaben während des Semesters;

Terminvorschlag: 17.02.2016.

Die Bedingungen:

- es wird 5 Aufgaben geben, jede 4 Punkte wert, also 20 Punkte insgesamt;
- es reicht zwei Aufgaben zu lösen, haben Sie 8 oder mehr Punkte bekomme, so haben Sie bestanden.

(FSU Jena) Lineare Algebra I 10.11.2015 34 / 35

Prüfung

Am 5.01.16 (statt der Vorlesung) findet die Probeklausur statt. (Hier, im HR1.) Das ist freiwillig. Die wird aus 4 Aufgaben bestehen, die Prüfungsafgaben ähnlich sind. Ein gutes Ergebnis kann bei der fraglichen Zulassung helfen.

Mögliche Aufgabe. Sind die folgenden Vektoren linear unabhängig?

- (a) $(1,0,-2), (3,-4,5), (0,2,3), (-2,-7,0) \in \mathbb{R}^3$.
- (b) $(1,2,3), (0,1,2) \in \mathbb{R}^3$.
- (c) $(0,1,1,0), (3,1,0,1), (-1,-2,-1,-2), (1,0,-1,4) \in \mathbb{R}^4$.