

1.2 A low quiescent current LDO with reverse current protection

3 (3x3) DFN6

Features

- Input voltage from 1.6 to 5.5 V
- Very low-dropout voltage (300 mV typ. at 1 A load)
- Low quiescent current (35 μA typ. at no-load, 1 μA max. in off mode)
- Output voltage tolerance: ± 2.0% at 25 °C
- 1.2 A guaranteed output current
- Wide range of output voltages available on request: 0.8 V to 5 V with 50 mV step and adjustable
- · Logic-controlled electronic shutdown
- Compatible with ceramic capacitor C_{OUT} = 1 μF
- · Internal current and thermal limit
- Available in DFN6 (2x2), DFN6 (3x3) mm, SO8-batwing and PPAK packages
- Temperature range: -40 °C to 125 °C
- · Reverse current protection
- · Output discharge function (optional)

Applications

- Consumer
- Computer
- · Battery-powered systems
- · Low voltage point-of-load
- · USB-powered devices

Maturity status link

LDL112

Description

The LDL112 is a low-dropout linear regulator, which can provide a maximum current of 1.2 A, with a typical dropout voltage of 300 mV.

It is stabilized with a ceramic capacitor on the output.

The very low drop voltage, low quiescent current and reverse current protection features make it suitable for low power battery-powered applications.

The enable logic control function puts the LDL112 in shutdown mode allowing a total current consumption lower than 1 μ A.

The device is equipped with current limit and thermal protection.

1 Diagram

Figure 2. Block diagram

AM14036V1

Note: (*) The output discharge function is optional.

DS10321 - Rev 3 page 2/32

2 Pin configuration

Figure 3. Pin connection DFN6 (3x3) and DFN6 (2x2) (top view)

Figure 4. Pin connection PPAK and SO8 (top view)

Table 1. Pin description

Symbol	Function
V _{IN}	LDO input voltage
GND	Common ground
EN	Enable pin logic input: low = shutdown, high = active. Don't leave this pin floating
ADJ	Adjustable pin (on adjustable version)
V _{OUT}	LDO output voltage
Exposed pad	Must be connected to GND
NC	Not connected

DS10321 - Rev 3 page 3/32

3 Typical application

Figure 5. Typical application circuits

DS10321 - Rev 3 page 4/32

4 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	- 0.3 to 7	V
V _{OUT}	DC output voltage	- 0.3 to V _I + 0.3	V
V _{EN}	Enable input voltage	- 0.3 to V _I + 0.3	V
V _{ADJ}	ADJ pin voltage	2	V
I _{OUT}	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	- 65 to 150	°C
T _{OP}	Operating junction temperature range	- 40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 3. Thermal data

Symbol	Parameter	DFN6 (3x3)	DFN6 (2x2)	SO8	PPAK	Unit
R _{thJA}	Thermal resistance junction-ambient	55	65	55 ⁽¹⁾	100	°C/W
R _{thJC}	Thermal resistance junction-case	10	15	20	8	°C/W

1. Considering 6 cm² of copper board heatsink.

DS10321 - Rev 3 page 5/32

5 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 0.5 V (for $V_{OUT(NOM)}$ \leq 1 V, V_{IN} = 2.1 V), C_{IN} = C_{OUT} = 1 μ F, I_{OUT} = 5 mA, V_{EN} = V_{IN} , unless otherwise specified.

Table 4. LDL112 electrical characteristics (fixed version)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{IN}	Operating input voltage		1.6		5.5	V	
V	V goourgov	I _{OUT} = 5 mA, T _J = 25 °C	-2.0		2.0	%	
V _{OUT}	V _{OUT} accuracy	I_{OUT} = 5 mA, -40 °C < T _J < 125 °C	-3.0		3.0	%	
ΔV _{OUT}	Static line regulation (1)	$V_{OUT(NOM)} + 0.5 \text{ V} < V_{IN} \le 5.5 \text{ V}^{(2)}$		0.05	0.1	%/V	
ΔV _{OUT}	Static load regulation	I _{OUT} = 0 mA to 1.2 A, V _{IN} > 2.1 V		15	30	mV	
		I _{OUT} = 1 A, V _{OUT} = 3.3 V		300			
V_{DROP}	Dropout voltage (3)	I _{OUT} = 1.2 A,V _{OUT} = 3.3 V -40 °C < T _J < 125 °C		350	600	mV	
e _N	Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 10 mA V _{OUT} = 3.3 V		135		μV _{RMS}	
SVR	Supply voltage rejection	$V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V +/- } V_{RIPPLE}$ (2) $V_{RIPPLE} = 0.2 \text{ V frequency} = 1 \text{ kHz}$ $I_{OUT} = 10 \text{ mA}$		57		dB	
		I _{OUT} = 0 mA, -40 °C < T _J <125 °C		35	70		
IQ	Quiescent current	I _{OUT} = 1.2 A, V _{OUT(NOM)} + 1 V, -40 °C < T _J < 125 °C ⁽²⁾		250	400	μА	
		V _{IN} input current in off mode: V _{EN} = GND		0.1	1		
I _{SC}	Short-circuit current	R _L = 0, V _{IN} > 2.1 V	1.4	2		Α	
V	Enable input logic low $V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V to } 5.5 \text{ V},$ $-40 \text{ °C} < T_{J} < 125 \text{ °C} \text{ (2)}$			0.35	.,		
V _{EN}	Enable input logic high	$V_{IN} = V_{OUT(NOM)} + 0.5 V$ to 5.5 V, -40 °C < T _J < 125 °C ⁽²⁾	1.4			V	
I _{EN}	Enable pin input current	$V_{EN} = V_{IN}$			100	nA	
Tourn	Thermal shutdown			165		°C	
T _{SHDN} H	Hysteresis			20			
C _{OUT}	Output capacitor	Capacitance (see Section 7 Typical performance characteristics)	1		10	μF	

^{1.} Not applicable for $V_{out(nom)} > 4.5 \text{ V}$.

DS10321 - Rev 3 page 6/32

^{2.} For V_{OUTNOM} lower than or equal to 1 V, V_{IN} = 2.1 V.

^{3.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.

 T_{J} = 25 °C, V_{IN} = 2.1 V, C_{IN} = C_{OUT} = 1 μ F, I_{OUT} = 5 mA, V_{EN} = V_{IN} , unless otherwise specified.

Table 5. LDL112 electrical characteristics (adjustable version)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		1.6		5.5	V
V	V _{AD,I} accuracy	I _{OUT} = 5 mA, T _J = 25 °C	784	800	816	mV
V_{ADJ}	V _{ADJ} accuracy	I _{OUT} = 5 mA, -40 °C < T _J < 125 °C	-3.0		3.0	%
ΔV _{OUT}	Static line regulation (1)	$2.1 \text{ V} \le V_{\text{IN}} \le 5.5 \text{ V}, I_{\text{OUT}} = 1 \text{ mA}^{(2)}$		0.05	0.1	%/V
ΔV_{OUT}	Static load regulation	I _{OUT} = 0 mA to 1.2 A, V _{IN} > 2.1 V		6	20	mV
V _{DROP} Dropout voltage (3)	I _{OUT} = 1 A, V _{OUT} = 3.3 V		300			
	I _{OUT} = 1.2 A, V _{OUT} = 3.3 V -40 °C < T _J < 125 °C		350	600	mV	
e _N	Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 10 mA		60		μV _{RMS}
I _{ADJ}	Adjust pin current			0.130	1	μA
SVR	Supply voltage rejection	$V_{IN} = V_{OUTNOM} + 0.5 \text{ V +/- } V_{RIPPLE}$ $V_{RIPPLE} = 0.2 \text{ V, freq.} = 1 \text{ kHz,}$ $I_{OUT} = 10 \text{ mA}$ (2)		53		dB
		I _{OUT} = 0 mA, -40 °C < T _J < 125 °C		35	70	
I_Q	Quiescent current	I _{OUT} = 1.2 A, 2.1 V < V _{IN} < 5.5 V, -40 °C < T _J < 125 °C		240	400	μА
		V _{IN} input current in off mode: V _{EN} = GND		0.1	1	
I _{SC}	Short-circuit current	R _L = 0, V _{IN} > 2.1 V	1.4	2		Α
\/	Enable input logic low	V_{IN} = 2 V to 5.5 V, -40 °C < T _J < 125 °C ⁽²⁾		0	0.35	V
V_{EN}	Enable input logic high	V_{IN} = 2 V to 5.5 V, -40 °C < T _J < 125 °C $^{(2)}$	1.4			V
I _{EN}	Enable pin input current	$V_{EN} = V_{IN}$			100	nA
Топри	Thermal shutdown			165		°C
T _{SHDN}	Hysteresis			20		
C _{OUT}	Output capacitor	Capacitance (see Section 7 Typical performance characteristics)	1		10	μF

^{1.} Not applicable for $V_{out(nom)} > 4.5 \text{ V}$.

DS10321 - Rev 3 page 7/32

^{2.} For V_{OUT} lower than or equal to 1 V, V_{IN} = 2.1 V.

^{3.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.

6 Application information

6.1 Thermal and short-circuit protections

The LDL112 is self-protected from short-circuit condition and overtemperature. When the output load is higher than the one supported by the device, the output current increases until the limit of typically 2 A is reached, at this point the current is kept constant even when the load impedance is zero.

Thermal protection acts when the junction temperature reaches 165 °C, therefore the IC shuts down. As soon as the junction temperature falls again below the thermal hysteresis value the device starts working again.

In order to calculate the maximum power that the device can dissipate, keeping the junction temperature below the T_{OP} , the following formula is used:

Equation 1

$$P_{DMAX} = (125 - T_{AMB})/R_{THJA}$$

6.2 Output voltage setting for ADJ version

In the adjustable version, the output voltage can be set from 0.8 V up to the input voltage minus the voltage drop across the pass transistor (dropout voltage), by connecting a resistor divider between the ADJ pin and the output, thus allowing remote voltage sensing.

The resistor divider could be selected by the following equation:

Equation 2

$$V_{OUT} = V_{ADJ} (1 + R1 / R2)$$
, with $V_{ADJ} = 0.8 V (typ.)$

It is recommended to use resistors with values in the range of 10 k Ω to 50 k Ω . Lower values can also be suitable, but current consumption increases.

6.3 Reverse current protection

The device avoids the reverse current to flow from output to input during any operating condition (with enable pin in high or low status). The reverse current protection acts in particular during fast turning on/off operations or when another power supply (with higher voltage than the input one) is connected to the output port. If a power supply with lower voltage than the LDO output voltage is connected to V_{OUT} pin, LDO enters the current protection status, causing high power dissipation.

In the application, the LDL112 reverse current protection acts in the following cases:

- Off-state, EN pin is at GND level, V_{OUT} > [V_{IN} + 100 mV]. In this case the device power pass element (MOSFET) is off, the bulk and gate are switched to V_{OUT} and therefore all possible current paths from V_{OUT} to V_{IN} are interrupted.
- On-state, EN pin is at high level and V_{OUT} > V_{OUT(nominal)}. In this condition, V_{OUT} is higher than the nominal level, so the device op-amp works in open loop and the power element is off. V_{GS} is zero, the bulk and gate are switched to V_{OUT} (where V_{OUT} > [V_{IN} + 100 mV]) therefore all possible current paths from V_{OUT} to V_{IN} are interrupted.
- 3. On-state, EN pin is at high level and V_{OUT}< V_{OUT(nominal)}. In this condition V_{OUT} is lower than the nominal level, so the op-amp works in open loop with the power MOSFET on. V_{GS} is maximal so the power channel conducts with very low R_{DS(on)}. When V_{OUT} > V_{IN} the current can flow from V_{OUT} to V_{IN} until the condition V_{OUT} > (V_{IN} + 100 mV) is reached.

DS10321 - Rev 3 page 8/32

7 Typical performance characteristics

(C_{IN} = C_{OUT} = 1 μ F, V_{EN} to V_{IN}, T = 25 °C unless otherwise specified)

Figure 9. Output voltage vs. temperature (V_{OUT} = 3.3 V, I_{OUT} = 1.2 A)

DS10321 - Rev 3 page 9/32

DS10321 - Rev 3 page 10/32

DS10321 - Rev 3 page 11/32

DS10321 - Rev 3 page 12/32

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

8.1 DFN6 (3x3) package information

Figure 30. DFN6 (3x3) package outline

7946637_C

DS10321 - Rev 3 page 13/32

Table 6. DFN6 (3x3) mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
Α	0.80		1	
A1	0	0.02	0.05	
A3		0.20		
b	0.23		0.45	
D	2.90	3	3.10	
D2	2.23		2.50	
E	2.90	3	3.10	
E2	1.50		1.75	
е		0.95		
L	0.30	0.40	0.50	

Figure 31. DFN6 (3x3) recommended footprint

FOOTPRINT RECOMMENDED

7946637_C

DS10321 - Rev 3 page 14/32

8.2 DFN6 (3x3) packing information

Figure 32. DFN6 (3x3) tape outline

 $\stackrel{*}{-}$ 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ± 0.20

7875978_N

DS10321 - Rev 3 page 15/32

Figure 33. DFN6 (3x3) reel outline

7875978_N

Table 7. DFN6 (3x3) tape and reel mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
A0	3.20	3.30	3.40	
В0	3.20	3.30	3.40	
K0	1	1.10	1.20	

DS10321 - Rev 3 page 16/32

8.3 DFN6 (2x2) package information

Figure 34. DFN6 (2x2) package outline

7733060

DS10321 - Rev 3 page 17/32

Table 8. DFN6 (2x2) mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
Α	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A3	-	0.203 ref	-	
b	0.25	0.30	0.35	
D	-	2.00	-	
E	-	2.00	-	
е	-	0.50	-	
D2	0.77	0.92	1.02	
E2	1.30	1.45	1.55	
K	0.15	-	-	
L	0.20	0.30	0.40	
aaa	-	0.05	-	
bbb	-	0.10	-	
ccc	-	0.10	-	
ddd	-	0.05	-	
eee	-	0.08	-	

Figure 35. DFN6 (2x2) recommended footprint

Notes:

1) This footprint is able to ensure insulation up to 32 Vrms (according to CEI IEC 664-1)

2) The device must be positioned within \bigcirc 0.02 A B

7733060 revE

DS10321 - Rev 3 page 18/32

8.4 DFN6 (2x2) packing information

Figure 36. DFN6 (2 x 2 mm) reel outline

Table 9. DFN6 (2 x 2 mm) tape and reel mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
Α			180		
С	12.8		13.2		
D	20.2				
N	60				
Т			14.4		
A0		2.4			
В0		2.4			
K0		1.3			
P0		4			
Р		4			

DS10321 - Rev 3 page 19/32

8.5 SO8 package information

Figure 37. SO-8 batwing package outline

Table 10. SO-8 batwing mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А			1.75
A1	0.10		0.25
A2	1.25		
b	0.31		0.51
b1	0.28		0.48
С	0.10		0.25
c1	0.10		0.23
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
L2		0.25	
k	0°		8°
ccc			0.10

DS10321 - Rev 3 page 20/32

1.27

Figure 38. SO-8 batwing recommended footprint

0016023_GU

DS10321 - Rev 3 page 21/32

8.6 SO8-batwing packing information

Figure 39. SO8-batwing tape and reel outline

Table 11. SO8-batwing mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
Α			330	
С	12.8		13.2	
D	20.2			
N	60			
Т			22.4	
A0	8.1		8.5	
В0	5.5		5.9	
K0	2.1		2.3	
P0	3.9		4.1	
Р	7.9		8.1	

DS10321 - Rev 3 page 22/32

8.7 PPAK package information

Figure 40. PPAK package outline

DS10321 - Rev 3 page 23/32

Table 12. PPAK mechanical data

Div		mm	
Dim.	Min.	Тур.	Max.
А	2.2		2.4
A1	0.9		1.1
A2	0.03		0.23
В	0.4		0.6
B2	5.2		5.4
С	0.45		0.6
C2	0.48		0.6
D	6		6.2
D1		5.1	
E	6.4		6.6
E1		4.7	
е		1.27	
G	4.9		5.25
G1	2.38		2.7
Н	9.35		10.1
L2		0.8	1
L4	0.6		1
L5	1		
L6		2.8	
R		0.20	
V2	0°		8°

DS10321 - Rev 3 page 24/32

8.8 PPAK packing information

Figure 41. PPAK tape outline

AM08852v1

DS10321 - Rev 3 page 25/32

Figure 42. PPAK reel outline

Table 13. PPAK mechanical data

	Tape			Reel		
Dim.	mm		Dim	m	mm	
	Min.	Max.	Dim.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1	Base qty.		2500	
P1	7.9	8.1	Base qty.		2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

DS10321 - Rev 3 page 26/32

9 Ordering information

Table 14. Order codes

DFN6 (3x3)	DFN6 (2x2)	SO8-batwing	PPAK	Output voltage (V)
LDL112PV10R	LDL112PU10R	LDL112D10R		1.0
LDL112PV12R	LDL112PU12R	LDL112D12R		1.2
LDL112PV15R				1.5
LDL112PV18R	LDL112PU18R	LDL112D18R		1.8
	LDL112PU30R			3.0
LDL112PV33R	LDL112PU33R	LDL112D33R		3.3
LDL112PVR	LDL112PUR	LDL112DR	LDL112PT-TR	Adj

DS10321 - Rev 3 page 27/32

Revision history

Table 15. Document revision history

Date	Revision	Changes
21-Nov-2014	1	Initial release.
28-Oct-2016	2	Updated Figure 32. DFN6 (2x2) package outline. Modified Table 9. Order codes. Minor text changes.
20-Feb-2019	3	Updated Table 14. Order codes.

DS10321 - Rev 3 page 28/32

Contents

1	Diag	ram	2
2	Pin c	onfiguration	3
3	Туріс	cal application	4
4	Maxi	mum ratings	5
5	Elect	rical characteristics	6
6	Appl	ication information	8
	6.1	Thermal and short-circuit protections	8
	6.2	Output voltage setting for ADJ version	8
	6.3	Reverse current protection	8
7	Typic	cal performance characteristics	9
8	Pack	age information	.13
	8.1	DFN6 (3x3) package information	. 13
	8.2	DFN6 (3x3) packing information	. 14
	8.3	DFN6 (2x2) package information	. 16
	8.4	DFN6 (2x2) packing information	. 18
	8.5	SO8-batwing package information	. 19
	8.6	SO8-batwing packing information	. 21
	8.7	PPAK package information	. 22
	8.8	PPAK packing information	. 24
9		ring information	
Rev	ision I	nistory	.28
Con	tents		.29
List	of tab	lles	.30
l ist	of figu	ures	.31

List of tables

Table 1.	Pin description	
Table 2.	Absolute maximum ratings	5
Table 3.	Thermal data	5
Table 4.	LDL112 electrical characteristics (fixed version)	6
Table 5.	LDL112 electrical characteristics (adjustable version)	7
Table 6.	DFN6 (3x3) mechanical data	14
Table 7.	DFN6 (3x3) tape and reel mechanical data	16
Table 8.	DFN6 (2x2) mechanical data	18
Table 9.	DFN6 (2 x 2 mm) tape and reel mechanical data	19
Table 10.	SO-8 batwing mechanical data	20
Table 11.	SO8-batwing mechanical data	22
Table 12.	PPAK mechanical data	24
	PPAK mechanical data	
Table 14.	Order codes	27
Table 15.	Document revision history	28

List of figures

Figure 2.	Block diagram	. 2
Figure 3.	Pin connection DFN6 (3x3) and DFN6 (2x2) (top view)	. 3
Figure 4.	Pin connection PPAK and SO8 (top view)	. 3
Figure 5.	Typical application circuits	
Figure 8.	Output voltage vs. temperature (V _{OUT} = 3.3 V, I _{OUT} = 5 mA)	. 9
Figure 9.	Output voltage vs. temperature (V _{OUT} = 3.3 V, I _{OUT} = 1.2 A)	. 9
Figure 10.	Output voltage vs. temperature (V _{OUT} = V _{ADJ} , I _{OUT} = 5 mA)	. 9
Figure 11.	Output voltage vs. temperature (V _{OUT} = V _{ADJ} , I _{OUT} = 1.2 A)	. 9
Figure 12.	Line regulation vs. temperature	10
Figure 13.	Load regulation vs. temperature	10
Figure 14.	Quiescent current vs. temperature (I _{OUT} = 0 mA)	10
Figure 15.	Quiescent current vs. temperature (I _{OUT} = 1.2 A)	10
Figure 16.	Shutdown current vs. temperature	10
Figure 17.	Quiescent current vs. load current	10
Figure 18.	Dropout voltage vs. temperature (I _{OUT} = 600 mA)	11
Figure 19.	Dropout voltage vs. temperature (I _{OUT} = 1.2 A)	11
Figure 20.	Dropout voltage vs. load current	11
Figure 21.	Short-circuit current vs. input voltage	11
Figure 22.	Enable thresholds vs. temperature	11
Figure 23.	SVR vs. frequency	11
Figure 24.	Output noise spectral density	12
Figure 25.	Stability plan vs. C _{out} , ESR	12
Figure 26.	Line transient	12
Figure 27.	Load transient	12
Figure 28.	Enable transient	12
Figure 29.	Turn-on time	12
Figure 30.	DFN6 (3x3) package outline	
Figure 31.	DFN6 (3x3) recommended footprint.	
Figure 32.	DFN6 (3x3) tape outline	
Figure 33.	DFN6 (3x3) reel outline	
Figure 34.	DFN6 (2x2) package outline	
Figure 35.	DFN6 (2x2) recommended footprint.	
Figure 36.	DFN6 (2 x 2 mm) reel outline	
Figure 37.	SO-8 batwing package outline	
Figure 38.	SO-8 batwing recommended footprint	
Figure 39.	SO8-batwing tape and reel outline	
Figure 40.	PPAK package outline	
Figure 41.	PPAK tape outline	
Figure 42	PPAK reel outline	26

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS10321 - Rev 3 page 32/32