ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА.

Задание 1. По параметрам из таблицы 1 рассчитать и записать аналитическое выражение (мгновенное значение) напряжения синусоидального сигнала (амплитуду, угловую частоту, период). Собрать схему эксперимента в Multisim, зафиксировать показания вольтметра, осциллографа, частотомера (V_{RMS} , V_{peak} , T_{s} (мс), f(Γ ц), Ψ_{e} (°)).

№	E_m , B			Частота	Период	Угловая	Начальная фаза	Мгновенное, комплексное значения	
	Действующие значения (RMS -	Амплитудные значения,	Двойные амплитудные значения, размах (peak to	f, Гц f=1/T	T, MC $T=1/f$	частота ω , рад/с	Ψ_e , \circ $\pm \Psi e = \frac{2\pi\Delta t}{T}$	напряжения, временная и векторная диаграмма, графическое	
	root-mean-square) Vpeak	$V_{peak} \sqrt{2}V_{RMS}$	$egin{array}{ll} ext{peak} \ V_{p ext{-}p}, ext{B} & V_{p ext{-}p} = 2V_p \end{array}$			$\omega = 2^{\pi} f$	ire - T	изображение элемента.	
	$V_{RMS} = \frac{V_{peak}}{\sqrt{2}}$								
1	1			50			45°		
2	1,41			60			60°		
3	28,2			400			30°		
4	14,1			1000			90°		
5	42.3			100			120°		
6	2,82			150			150°		
7	14,1			300			180°		
8	2,82			120			210°		
9	4,23			180			240°		
10	4,23			360			270°		
11	1,41			800			300°		
12	42,3			2400			330°		
13	14,1			1200			360°		
14	1,41			2000			225°		
15	42,3			50			-45°		
16	14,1			60			-60°		
17	28,2			400			-30°		
18	14,1			1000			-90°		
19	42,3			100			-120°		
20	28,2			150			-150°		
21	42,3			300			-180°		
22	28,2			120			-210°		
23	1,41			180			-240°		
24	28,2			360			-270°		
25	42,3			800			-300°		

Пример решения 1 задания

Амплитудные значения $V_{peak} = \sqrt{2}V_{RMS} = Um = 1,41*1=1.41~B$ Двойные амплитудные значения $V_{p-p} = 2*V_p = 2*1,41=2,82~B$ Период T=1/f=1/50=0,02~c

Угловая частота $\omega = 2^{\pi} f = 6.28*50 = 344 \ pad/c$

Мгновенное напряжение $u(t) = U_m \sin(\omega t + \psi_e); \ U(t) = 1,41 \sin(344t + 45);$ Комплексное действующее значение напряжения

$$U(t)=1,41\sin(344t+45) = > U=(1,41/\sqrt{2})*e^{j45}$$

Рисунок 1: Векторная диаграмма

Рисунок 2: Временная диаграмма

Задание 2. По аналитическому выражению (мгновенное значение) напряжения синусоидального сигнала в таблице 2 рассчитать и записать действующее значение, амплитудное значение, полный размах напряжения, частоту, период, начальную фазу. Собрать схему эксперимента в Multisim, снять показания вольтметра, осциллографа и частотомера (V_{RMS} , V_{peak} , T,(мс), f(Γ ц), Ψ_e (°)). Изобразить мгновенное(i(t)), комплексное(I) значения напряжения на временной и векторной диаграммах.

№	Мгновенное значение	E_m , B				Период	Начальная фаза	Графическое
	напряжения синусоидального сигнала, В	Действующие значения (RMS - root-mean-square) $V_{RMS} = \frac{V_{peak}}{\sqrt{2}}$	Амплитудные значения, $V_{peak=}\sqrt{2}V_{RMS}$	Двойные амплитудные значения, размах (peak to peak) V_{p-p} , B, $V_{p-p} = 2V_p$	f, Γц f= ω /2 ^π	Т, мс Т=1/f	Ψ_e, \circ $\pm \Psi e = \frac{2\pi \Delta t}{T}$	изображение (схема), мгновенное, комплексное значения напряжения, временная и векторная диаграмма, показания осциллографа.
1	1.41sin (3140t + 30°)							•
2	2.82 sin (3140t - 30°)							
3	141sin (314t + 60°)							
4	282 sin (314t - 60°)							
5	310 sin (314t - 120°)							
6	310 sin (314t - 240°)							
7	310 sin (314t)							
8	14.1sin (3140t + 45°)							
9	141sin (3140t - 45°)							
10	28.2 sin (3140t - 135°)							
11	282 sin (6280t - 135°)							
12	282 sin (6280t + 135°)							
13	310 sin (2512t + 120°)							
14	310 sin (2512t + 240°)							
15	310 sin (2512t + 360°)							
16	1.41sin (3140t + 90°)							
17	2.82 sin (3140t - 180°)							
18	220 sin (314t - 120°)							
19	220 sin (314t - 240°)							
20	220 sin (314t)							
21	1.41sin (3140t - 90°)							
22	141sin (314t + 60°)							
23	282 sin (314t - 60°)							
24	28.2 sin (3140t - 135°)							
25	282 sin (6280t + 135°)							

Пример решения 2 задания

Mгновенное значение напряжения синусоидального сигнала U(t)=1.41 $\sin{(3140t+30^\circ)}$

Действующие значения
$$V_{RMS} = \frac{V_{peak}}{\sqrt{2}} = 1,41/\sqrt{2} = 1$$
 В

Амплитудные значения
$$V_{peak} = \sqrt{2}V_{RMS} = 1,41*1=1,41~B$$

Двойные амплитудные значения
$$V_{p-p} = 2V_p = 1,41*2=2,82~B$$

Частота
$$f = \omega / 2^{\pi} = 3140/6, 28 = 500 \Gamma \mu$$

Период
$$T=1/f=1/500=0,002 c$$

Начальная фаза
$$\Psi_e$$
 =30°

Мгновенное значения напряжения вычисляется по формуле $U(t)=1.41\sin{(3140t+30^{\circ})}$

Комплексное значения напряжения
$$U$$
= $1e^{(30j)}$

Рисунок 3: Векторная диаграмма

Рисунок 4: Временная диграмма

Задание 3. R элемент в линейной электрической цепи синусоидального тока. Используя аналитическое выражение источника ЭДС (данные из таблицы 2) собрать принципиальную электрическую схему с R элементом. Рассчитать мгновенное значение тока, напряжения, мощности, действующие комплексные значения тока, напряжения, мощности. Собрать схему эксперимента в Multisim, снять показания осциллографа (V_{RMS} , V_{peak} , T_{s} (мс), f(Γ ц), Ψ_{e} (°), i(t), u(t), p(t)).

Схема состоит из двух последовательно соеденных резисторов и представляет собой делитель напряжения.

Мультиметр

Моделирование->Приборы->Мультиметр

Осциллограф

Моделирование->Приборы->4-х канал. Осц

Резистор

Вставить->Компонент->Basic->Resistor

Мультиплеер

Вставить->Компонент->Source->Control_Function_Blocks->Multiplier

Рисунок 5: Принципиальная электрическая схема для 3 задания

Пример решения 3 задания

Входное напряжение $U(t)=1.41\sin{(3140t+30^{\circ})};$

Общее сопротивление $R_{\text{обш}} \sim 1 \text{ kOm}$

Внутренее сопротивление $R_{\text{вн}}$ =0,01Ом

Действующее значение напряжения $U_{\text{в}} = U_{\text{m}} / \sqrt{2} = 1 \text{ B}$

Максимальное значение напряжения Um =1,41 B

Мгновенное значение тока

Для резистивного сопротивления $\psi = \psi_u = 30$

Зависимость мощности от времени на резистивном сопротивлении

Рисунок 6: Векторная диаграмма

Рисунок 7: Моделирование в Multisim 3 задания

Рисунок 8: Осциллограмма напряжения, тока и мощности на резисторе

Задание 4. L элемент в линейной электрической цепи синусоидального тока. Используя аналитическое выражение источника ЭДС (данные из таблицы 2) собрать принципиальную электрическую схему с L элементом. Рассчитать мгновенное значение тока, напряжения, мощности, действующие комплексные значения тока, напряжения, мощности. Собрать схему эксперимента в Multisim, снять показания осциллографа (V_{RMS} , V_{peak} , T_{c} (мс), f(Γ ц), Ψ_{e} (°), i(t), u(t), p(t)).

Мультиметр

Моделирование->Приборы->Мультиметр

Осциллограф

Моделирование->Приборы->4-х канал. Осц

Резистор

Вставить->Компонент->Basic->Resistor

Катушка индуктивности

Вставить->Компонент->Basic->Inductor

Мультиплеер

Вставить->Компонент->Source->Control_Function_Blocks->Multiplier

Рисунок 9: Принципиальная электрическая схема для 4 задания

$$V_{RMS} = 1 B f = 500 \Gamma u$$

$$V_{peak.} = 1,44 B \Psi_e = 30^{\circ}$$

$$T_{s}(Mc) = 0.02 c$$

По закону Ома находим ток протекающий через катушку индуктивности $u_L = L \frac{di_L}{dt}$ Сопротивление катушки индуктивности

Ток протекающий через катушку индуктивности

Рисунок 11: Временная диаграмма тока, напряжения и мощности

Рисунок 12: Векторная диаграмма тока и напряжения на L

Анализ мгновенной мощности в индуктивном элементе

Из аналитического выражения для мощности можно сделать вывод, что это знакопеременная функция , изменяющаяся с двойной частотой по отношению к частоте изменения напряжения U_L и тока I_L в цепи. Среднее значение мощности $P_L(t)$ за период T равно нулю. В индуктивном элементе в первую четверть периода T напряжение U_L и ток I_L имеют знак плюс, поэтому мощность больше нуля, т.е. Индуктивный элемент потребляет электрическую энергию источника и преобразовывает её в магнитную, накапливая её в магнитном поле катушке. Во вторую четверть периода напряжение U_L и ток I_L имеют противоположные знаки, поэтому мощность отрицательна. В это время накопленная магнитная энергия возвращается источнику, преобразовываясь в электрическую энергию. В третьей четверти происходит накопление

энергии в магнитном поле элемента L, в четвертой — её возврат источнику энергии.

Теперь параллельно подключаем две катушки индуктивности с тем же номиналом. Общая емкость параллельно соединенных катушек индуктивности равна сумме емкостей этих конденсаторов $L_1 L_2 / (L_1 + L_2)$;

Из результатов эксперимента, можно убедиться, что ток в цепи увеличился ровно в 2 раза

Задание 5. С элемент в линейной электрической цепи синусоидального тока. Используя аналитическое выражение источника ЭДС (данные из таблицы 2) собрать принципиальную электрическую схему с С элементом. Рассчитать мгновенное значение тока, напряжения, мощности, действующие комплексные значения тока, напряжения, мощности. Собрать схему эксперимента в Multisim, снять показания осциллографа (V_{RMS} , V_{peak} , T_{c} (мс) f(Γ ц), Ψ_{e} (°), f(Γ ц), f(г).

Мультиметр

Моделирование->Приборы->Мультиметр

Осциллограф

Моделирование->Приборы->4-х канал. Осц

Резистор

Вставить->Компонент->Basic->Resistor

Конденсатор

Вставить->Компонент->Basic->Capacitor

Мультиплеер

Вставить->Компонент->Source->Control_Function_Blocks->Multiplier

Рисунок 15: Принципиальная электрическая схема для 4 задания

$$V_{RMS} = 1 B f = 500 \Gamma y$$
,

$$V_{peak,} = 1,44 \ B \ \Psi_e = 30^{\circ}$$

$$T = 0.02 \text{ c}$$

Соотношение фазы тока и напряжения на конденсаторе $\mathcal{Q} - \mathcal{Q}_u = \frac{\pi}{2}$

Реактивное емкостное сопротивление
$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{3140 \cdot 10^{-9}} = 318 kOm$$

По закону Ома
$$U_C = \frac{1}{C} \int i d_{\rm M} i_{\rm C} = C \frac{dU_C}{dt}$$

4-х канальный осциллограф-XSC1 Канал_С Канал_D Экран 1.409 V -3.890 nV -5.483 nV Сохранить 3.858 nV 5.440 nV 1.409 V 7,748 nV 10.923 nV GND (Y/T A/B > A+B > Одн. Норм Авто Нет

Рисунок 16: Моделирование в Multisim

Рисунок 17: Временная диаграмма тока, напряжения и мощности

Рисунок 18: Векторная диаграмма напряжения и тока на С

Анализируя мгновенную мощность в емкостном элементе

заключаем, что это знакопеременная функция времени, изменяющаяся в противофазе с реактивной индуктивностью мощностью PL

Среднее значение мощности Pc(t) за период рано нулю.

В ёмкостном элементе в первую очередь периода Т напряжения Uc и ток Ic имеют разные знаки, это означает, что емкостной элемент в первую четверть возвращает накопленную электростатическую энергию источнику. Во вторую четверть периода ток и напряжение имеют одинаковое направление и следовательно конденсатор заряжается. В третьей четверти происходит возврат энергии, в четвертой зарядка конденсатора энергией.

Теперь параллельно подключаем два конденсатора с тем же номиналом. Общая емкость параллельно соединенных конденсаторов равна сумме

емкостей этих конденсаторов $C_{3KB} = C_1 + C_2$

Oscilloscope-XSC1 Время Канал_А Канал_В Канал_С Канал_D Экран T1 ← → T2 ← → 532,178 ms 49.139 mV 88.800 nV 4.365 nV Сохранить 534.183 ms 6.417 nV 72.263 mV 88.754 nV GND (*) T2-T1 2.005 ms 23.124 mV -46.132 pV 2.052 nV Развертка Канал С Синхронизация: Шкала 50 nV/Div Внеш 🦳 Шкала 500 us/Div Задержка 0 Смещение 0 ٧ **Уровень** Y/T A/B A+B Одн. Норм Авто Нет AC 0 DC А Внеш

Рисунок 19: Схема моделирования в Multisim

Рисунок 20: Временная диаграмма тока напряжения и мощности

Из результатов эксперимента, можно убедиться, что ток в цепи увеличился ровно в 2 раза