LLM Quantization

Outline

- What is Quantization?

- Quantization in LLM

- Current Techniques

- Quantization in Sora

What is Quantization?

What is Quantization?

Why Quantization?

 Quantization compress parameters from high precision (e.g.FP32) to low precision (e.g. INT8) to reduce computational cost and memory usage

• The goal of quantization is to improve inference efficiency and hardware adaptability while maintaining model performance.

What is Quantization?

How to Quantization?

Asymmetric Quantization

$$\mathbf{Q_X} = \left\lceil \frac{\mathbf{X}}{s} + z \right
floor, s = \left\lceil \frac{\mathbf{X}_{\max} - \mathbf{X}_{\min}}{q_{\max} - q_{\min}}, z = \left\lceil q_{\min} - \frac{\mathbf{X}_{\min}}{s} \right
floor,$$

dequantization

$$\hat{\mathbf{X}} = Q\left(\mathbf{X}\right) = (\mathbf{Q}_{\mathbf{X}} - z) \cdot s$$

PTQ and QAT

Feature	PTQ (Post-Training Quantization)	QAT (Quantization-Aware Training)			
Workflow	Quantize the model after training	Simulate quantization during training			
Applicability	Fast and applicable to most pre- trained models	Achieves high accuracy but requires retraining			
Impact on Accuracy	May result in significant accuracy degradation	Maintains high accuracy by optimizing during training			
Computational Cost	Low, no extra training required	High, involves retraining with quantization			

W and A

W (Weights)

- Fixed parameters in the model, such as W_q , W_k , W_v in attention layers and weights in feed-forward networks (FFN).
- Do not change with input data; responsible for mapping and transformations.

A (Activations)

- Intermediate computed results, such as Q, K, V matrices and attention outputs.
- Dynamic, dependent on input data.

W: Fixed parameters, major focus on storage optimization.

A: Dynamic values, key to computtaion efficiency.

W8A8 and W4A16

- W8A8: Both activation and weights are quantized to INT8.
 - LLM.int8(), smoothQuant
- W4A16: Low-Bit Weight only quantization
 - AWQ, GPTQ

(i.e., batch size for GEMM, 1 for ATTN in decoding, sequence length for ATTN in prefilling)

Activation-Aware Weight Quantization(AWQ)

(a) RTN quantization (PPL 43.2)

Activation-Aware Weight Quantization(AWQ)

- Keeping a small fraction of weights (0.1%-1%) in FP16 significantly improves the performance of the quantized models.
- Selecting weights based on activation magnitude or L2-norm can significantly improve the performance

PPL ↓	FP16 RTN (w3-g128	RTN	FP16% (based on act.)		FP16% (based on W)		FP16% (random)				
		(w3-g128)	0.1%	1%	3%	0.1%	1%	3%	0.1%	1%	3%
OPT-1.3B	14.62	119.00	25.03	16.91	16.68	108.71	98.55	98.08	119.76	109.38	61.49
OPT-6.7B	10.86	23.54	11.58	11.39	11.36	23.41	22.37	22.45	23.54	24.23	24.22
OPT-13B	10.13	46.04	10.51	10.43	10.42	46.07	48.96	54.49	44.87	42.00	39.71

Quantization error in AWQ

If we scale the parameter per-channel?

$$Q(\mathbf{w}) = \Delta \cdot \text{Round}(\frac{\mathbf{w}}{\Delta}), \quad \Delta = \frac{\max(|\mathbf{w}|)}{2^{N-1}},$$

$$Q(w \cdot s) \cdot \frac{x}{s} = \Delta' \cdot \text{Round}(\frac{ws}{\Delta'}) \cdot x \cdot \frac{1}{s},$$

Scale is done per-channel, Δ' may not increase if s is not very large

So the quantization error will be:

$$\begin{aligned} & \operatorname{Err}(Q(w)x) = \Delta \cdot \operatorname{RoundErr}(\frac{w}{\Delta}) \cdot x \\ & \operatorname{Err}(Q(w \cdot s)(\frac{x}{s})) = \Delta' \cdot \operatorname{RoundErr}(\frac{ws}{\Delta'}) \cdot x \cdot \frac{1}{s} \end{aligned}$$

Algorithm in AWQ

- So we use scale based method to avoid mixed-precision to be more hardware-friendly. But how to train the scale factor?
- Here is the "Activation-aware":

$$\mathbf{s} = \mathbf{s}_{\mathbf{X}}^{\alpha}, \quad \alpha^* = \operatorname*{arg\,min}_{\alpha} \mathcal{L}(\mathbf{s}_{\mathbf{X}}^{\alpha})$$

• s_X is the average magnitude of activation(per channel). Only one single hyper-parameter α need to be trained

Smooth Quant

Outliers lies in activation mainly.

$$\mathbf{Y} = (\mathbf{X} \operatorname{diag}(\mathbf{s})^{-1}) \cdot (\operatorname{diag}(\mathbf{s})\mathbf{W}) = \hat{\mathbf{X}}\hat{\mathbf{W}}$$

 Migrate the scale variance from activations to weights.

$$\mathbf{s}_j = \max(|\mathbf{X}_j|)^{\alpha} / \max(|\mathbf{W}_j|)^{1-\alpha}$$

• j is the input channel

Current Techniques SVDQuant

If both activations and weights are hard to quantize:

SVDQuant introduce Singular Value Decomposition to deal with W

Current Techniques SVDQuant

Singular Value Decomposition (SVD) is a mathematical technique that factorizes a mxn matrix into three component matrices:

$$A = U\Sigma V^T$$

 $U: m \times m$ orthogonal matrix

 Σ : $m \times n$ diagonal matrix, containing the singular values in descending order.

 V^T : $n \times n$ orthogonal matrix

Current Techniques SVDQuant

W is the weight after smooth quant($m \times n$).

Assume $W = U\Sigma V$

^

If $L_1=U\Sigma_{[:,:r]}$, $L_2=V_{[:r]}$, W can be approximated as L_1L_2+R . L_1L_2 are low-rank branch since $r\ll min\{m,n\}$

SVDQuant Algorithm

$$\hat{W} = L_1L_2 + R$$
, where $L_1 \in R^{m imes r}$, $L_2 \in R^{r imes n}$. $\hat{X}W = \hat{X}\hat{W} = \hat{X}L_1L_2 + \hat{X}R \approx \underbrace{\hat{X}L_1L_2}_{16 ext{-bit low-rank branch}} + \underbrace{Q(\hat{X})Q(R)}_{4 ext{-bit residual}}$.

It can be proved that quantization can be bounded by the magnitude of R since X is already smoothed.

$$\mathbb{E}\left[\left\|\boldsymbol{R} - Q(\boldsymbol{R})\right\|_{F}\right] \leq \frac{\sqrt{\log\left(\operatorname{size}(\boldsymbol{R})\right)\pi}}{q_{\max}} \mathbb{E}\left[\left\|\boldsymbol{R}\right\|_{F}\right],$$

•
$$\| R \|_F = \| \hat{W} - L_1 L_2 \|_F = \sqrt{\sum_{i=r+1}^{\min(m,n)} \sigma_i^2},$$

where σ_i is the i-th singular value of W

Figure 5: First 64 singular values of \mathbf{W} , $\hat{\mathbf{W}}$, and \mathbf{R} . The first 32 singular values of $\hat{\mathbf{W}}$ exhibit a steep drop, while the remaining values are much more gradual.

GEMM on GPU

The matrix is divided in several tiles and computed in a sequential loop.

W8A8 vs W4A4

Compare W8A8 and W4A4: In W8A8, dequantization is performed in the accumulation.

However, W4A4 performs dequantization in the loop.CUDACore is about 2% the performance of tensor core.

So, W4A4 is even slower than W8A8 due to dequantization overhead.

Progressive Quantization (W4A8KV4)

In the algorithm, Qserve introduce progressive group quantization.

This approach ensures that all GEMMs are performed on INT8 tensor cores.

(d) Ours (INT4 Weights and INT8 Activations)

INT4 to INT8

Qserve introduce register level parallelism to accelerate.

$$\mathbf{Q_{W}}_{s8}^{(0)} = (\mathbf{Q_{W}}_{u4} - \mathbf{z}_{u4}) \cdot \mathbf{s}_{u8}^{(1)},$$

Subtraction after multiplication

- Sum can be achieved by vadd4
- Multiplication is achieved by padding 24 zeros to scale factor

Smooth Attention

Key suffers from outliers while values are not. To quantize KV cache, we use:

$$\mathbf{Z} = (\mathbf{Q}\boldsymbol{\Lambda}) \cdot (\mathbf{K}\boldsymbol{\Lambda}^{-1})^T, \quad \boldsymbol{\Lambda} = \operatorname{diag}(\lambda)$$
 $\lambda_i = \max(|\mathbf{K}_i|)^{\alpha}.$

Redundancy in Diffusion model

Similarity in Attention heatmap

 We observe that the attention in different frames changes little in particular layers.

 We want to quantize the residual between different frames to reduce computation

Similarity in Attention heatmap

 We also find that in particular layers, the heatmap exhibits a very distinct diagonal characteristic.

 Perhaps we can draw inspiration from the approaches used in other papers to handle outliers.

Thanks!