AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

Listing of Claims:

Claim 1 (Original): A semiconductor memory device comprising:

a ferroelectric element, an electric field applied to the ferroelectric element being controlled to relatively shift a position of a first atom with respect to a position of another atom and to store data at stabilized positions as remanent polarization,

wherein the ferroelectric element stores two-bit information by having total four stabilized positions of the first atom, which include first stabilized two positions in a first direction and second stabilized two positions in a second direction perpendicular to the first direction.

Claim 2 (Original): A semiconductor memory device comprising:

a ferroelectric element composed of a ferroelectric material having one structure selected from an ABO₃ crystal structure and an ABO₃ perovskite structure, both of the ABO₃ crystal structure and the ABO₃ perovskite structure being composed of atoms A, atoms B and atoms O, an electric field applied to the ferroelectric element being controlled so that a position of each of the atoms B is relatively shifted for positions of the atoms A and the atoms O to store data at the stabilized positions as remanent polarization,

wherein the ferroelectric element stores two-bit information by having total four stabilized positions of the atoms B, which include first stabilized two positions in a first direction and second stabilized two positions in a second direction perpendicular to the first direction.

Claim 3 (Original): A semiconductor memory device comprising:

a ferroelectric element composed of a ferroelectric material having one structure selected from an ABxC(1-x)O₃ crystal structure and an ABxC(1-x)O₃ perovskite structure, both of the ABxC(1-x)O₃ crystal structure and the ABxC(1-x)O₃ perovskite structure being composed of at least atoms A, atoms B, atoms C and atoms O, an electric field applied to the ferroelectric element being controlled to relatively shift a position of one atom selected from the atoms B and atoms C with respect to positions of the atoms A and atoms O and permit data to be stored in stabilized positions as remanent polarization,

wherein the ferroelectric element stores two-bit information by having total four stabilized positions of one atom selected from the atoms B and atoms C, which include first stabilized two positions in a first direction and second stabilized two positions in a second direction perpendicular to the first direction.

Claim 4 (Original): The semiconductor memory device according to claim 1, wherein the operation of shifting the first atom to the four positions is performed by use of a first electric field, a second electric field in a direction opposite to the first electric field, a third electric field in a direction perpendicular to the first electric field, and a fourth electric field in a direction opposite to the third electric field.

Claim 5 (Original): The semiconductor memory device according to claim 2, wherein the operation of shifting the atom B to the four positions is performed by use of a first electric field, a second electric field in a direction opposite to the first electric field, a third electric field in a direction perpendicular to the first electric field, and a fourth electric field in a direction opposite to the third electric field.

Claim 6 (Original): The semiconductor memory device according to claim 3, wherein the operation of shifting the selected one atom to the four positions is performed by use of a first electric field, a second electric field in a direction opposite to the first electric field, a third electric field in a direction perpendicular to the first electric field, and a fourth electric field in a direction opposite to the third electric field.

Claim 7 (Original): The semiconductor memory device according to claim l, wherein the operation of shifting the first atom to the four positions is performed by use of electric fields generated by controlling voltages applied to four electrodes arranged near the ferroelectric element.

Claim 8 (Original): The semiconductor memory device according to claim 2, wherein the operation of shifting the atom B to the four positions is performed by use of electric fields generated by controlling voltages applied to four electrodes arranged near the ferroelectric element.

Claim 9 (Original): The semiconductor memory device according to claim 3, wherein the operation of shifting the selected one atom to the four positions is performed by use of electric fields generated by controlling voltages applied to four electrodes arranged near the ferroelectric element.

Claim 10 (Original): The semiconductor memory device according to claim 1, wherein the ferroelectric element includes at least BaTiO₃.

Claim 11 (Original): The semiconductor memory device according to claim 2, wherein the ferroelectric element includes at least BaTiO₃.

Claim 12 (Original): The semiconductor memory device according to claim 3, wherein the ferroelectric element includes at least BaTiO₃.

Claim 13 (Original): The semiconductor memory device according to claim 1, wherein the ferroelectric element includes at least PbZrxTi(1-x)O₃.

Claim 14 (Original): The semiconductor memory device according to claim 2, wherein the ferroelectric element includes at least PbZrxTi(1-x)O₃.

Claim 15 (Original): The semiconductor memory device according to claim 1, wherein the ferroelectric element includes at least (BiLa)₄Ti₃O₁₂, Bi₄Ti₃O₁₂, SrBi₂Ta₂O₉.

Claim 16 (Original): A semiconductor memory device comprising:

a ferroelectric element having one structure selected from an ABO₃ crystal structure and an ABO₃ perovskite structure, both of the ABO₃ crystal structure and the ABO₃ perovskite structure being composed of at least atoms A, atoms B and atoms O, an electric field applied to the ferroelectric element being controlled to relatively shift a position of the atoms B with respect to positions of the atoms A and atoms O and permit data to be stored in stabilized positions as remanent polarization,

wherein the ferroelectric element stores multi-bit information by having total six stabilized positions of the atoms B, which include first stabilized two positions in a first direction, second stabilized two positions in a second direction perpendicular to the first direction and third stabilized two positions in a third direction perpendicular to the first and second directions.

Claim 17 (Original): A semiconductor memory device comprising:

a ferroelectric element having one structure selected from an ABxC(1-x)O₃ crystal structure and an ABxC(1-x)O₃ perovskite structure, both of the ABxC(1-x)O₃ crystal structure and the ABxC(1-x)O₃ perovskite structure being composed of at least atoms A, atoms B, atoms C and atoms O, an electric field applied to the ferroelectric element being controlled to relatively shift a position of one atom selected from the atoms B and atoms C with respect to positions of the atoms A and atoms O and permit data to be stored in stabilized positions as remanent polarization,

wherein the ferroelectric element stores multi-bit information by having total six stabilized positions of one atom selected from the atoms B and atoms C, which include two stabilized positions in a first direction, two stabilized positions in a second direction perpendicular to the first direction and two stabilized positions in a third direction perpendicular to the first and second directions.

Claim 18 (Original): A semiconductor memory device comprising:

a ferroelectric element, an electric field applied to the ferroelectric element being controlled to relatively shift a position of a first atom with respect to a position of another atom and permit data to be stored in stabilized positions as remanent polarization,

wherein the ferroelectric element stores multi-bit information by having total six stabilized positions of the first atom, which include first stabilized two positions in a first direction, second stabilized two positions in a second direction perpendicular to the first

direction and third stabilized two positions in a third direction perpendicular to the first and second directions.

Claim 19 (Original): The semiconductor memory device according to claim 16, wherein the operation of shifting the atom to the six positions is performed by use of a first electric field, a second electric field in a direction opposite to the first electric field, a third electric field in a direction perpendicular to the first electric field, a fourth electric field in a direction opposite to the third electric field, a fifth electric field in a direction perpendicular to the first and third electric fields, and a sixth electric field in a direction opposite to the fifth electric field.

Claim 20 (Original): The semiconductor memory device according to claim 17, wherein the operation of shifting the atom to the six positions is performed by use of a first electric field, a second electric field in a direction opposite to the first electric field, a third electric field in a direction perpendicular to the first electric field, a fourth electric field in a direction opposite to the third electric field, a fifth electric field in a direction perpendicular to the first and third electric fields, and a sixth electric field in a direction opposite to the fifth electric field.

Claim 21 (Original): The semiconductor memory device according to claim 18, wherein the operation of shifting the atom to the six positions is performed by use of a first electric field, a second electric field in a direction opposite to the first electric field, a third electric field in a direction perpendicular to the first electric field, a fourth-electric field in a direction opposite to the third electric field, a fifth electric field in a direction perpendicular to

the first and third electric fields, and a sixth electric field in a direction opposite to the fifth electric field.

Claim 22 (Original): The semiconductor memory device according to claim 16, wherein the operation of shifting the atom to the six positions is performed by use of electric fields generated by controlling voltages applied to six electrodes arranged near the ferroelectric element.

Claim 23 (Original): The semiconductor memory device according to claim 17, wherein the operation of shifting the atom to the six positions is performed by use of electric fields generated by controlling voltages applied to six electrodes arranged near the ferroelectric element.

Claim 24 (Original): The semiconductor memory device according to claim 18, wherein the operation of shifting the atom to the six positions is performed by use of electric fields generated by controlling voltages applied to six electrodes arranged near the ferroelectric element.

Claim 25 (Original): The semiconductor memory device according to claim 16, wherein the ferroelectric element includes at least BaTiO₃.

Claim 26 (Original): The semiconductor memory device according to claim 17, wherein the ferroelectric element includes at least BaTiO₃.

Claim 27 (Original): The semiconductor memory device according to claim 18, wherein the ferroelectric element includes at least BaTiO₃.

Claim 28 (Original): The semiconductor memory device according to claim 17, wherein the ferroelectric element includes at least PbZrxTi(1-x)O₃.

Claim 29 (Original): The semiconductor memory device according to claim 18, wherein the ferroelectric element includes at least PbZrxTi(1-x)O₃.

Claim 30 (Original): The semiconductor memory device according to claim 18, wherein the ferroelectric element includes at least (BiLa)₄Ti₃O₁₂, Bi₄Ti₃O₁₂, SrBi₂Ta₂O₉.

Claims 31-32 (Canceled).

Claim 33 (Currently Amended): A semiconductor memory device comprising: a ferroelectric element,

wherein a first atom is shifted to at least three positions, and is stabilized at the positions on a two-dimensional plane in the ferroelectric element by applying at least three different directions of an electric field, the electric field being in parallel to the two-dimensional plane, to hold data of at least three values.

Claim 34 (Currently Amended): A semiconductor memory device comprising: a ferroelectric element,

wherein a first atom is shifted to at least three positions, and is stabilized at the positions on a three-dimensional plane in the ferroelectric element by applying at least three

<u>different directions of an electric field in the three-dimensional plane</u> to hold data of at least three values.

Claim 35 (Currently Amended): A semiconductor memory device comprising:

a ferroelectric element including first, second, third and fourth electrodes,

wherein a first atom in the ferroelectric element is shifted to four positions, and is

stabilized at the four positions by a first bias between the first and second electrodes and a

second bias between the third and fourth electrodes, and the first and second electrodes are
respectively connected to source and drain terminals of a first transistor and the third and
fourth electrodes are respectively connected to source and drain terminals of a second

transistor to configure one memory cell and information of at least two bits is stored in the
memory cell.

Claim 36 (Original): The semiconductor memory device according to claim 35, wherein a plurality of memory cells which each have the same configuration as the above memory cell are provided, the source and drain terminals of the first transistor are used as a first two-terminal, the source and drain terminals of the second transistor are used as a second two-terminal, a first two-terminal of a plurality of memory cells are series-connected to one another and a second two-terminal of the memory cells are series-connected to one another to provide a memory cell unit.