

COMPUTERGRAPHIK

Inhaltsverzeichnis

- 4. Polygonale Repräsentation
 - 4.1 Einleitung
 - 4.2 Polygonale Repräsentation
 - 4.3 Level-of-Detail Ansätze

Ziel dreidimensionaler Computergraphik

 Erzeugung (zweidimensionaler)
 Darstellungen einer Szene oder eines Objektes ausgehend von Beschreibungen oder Modellen Die Art und die Verwendung der Computer-internen Repräsentation eines Objektes hängt dabei von vielen Einflussfaktoren ab.

Einflussfaktoren

- Das Objekt kann real oder nur in der Computerdarstellung existieren.
- Die Erstellung des Objektes ist eng mit seiner Visualisierung verknüpft (Interaktive CAD-Systeme).
 - Modellierung und Visualisierung als Werkzeuge beim Herstellungsprozess
 - Visualisierung
 - 2D
 - -3D
 - Herstellung
 - 3D Drucker
 - Ansteuerung einer Fräse

- Genauigkeit
 - Exakte Beschreibung von Geometrie und Form in CAD-Applikationen
 - Für einen Renderer ausreichende approximative Beschreibung
 - Bei interaktiven Anwendungen können für ein Objekt
 - Gleichzeitig mehrere interne Repräsentationen existieren.
 - Repräsentationen bei Bedarf dynamisch erzeugt werden.
 - ⇒ Level-of-Detail (LOD) Verfahren

Aspekte von Modellierung und Repräsentation

- Erzeugung von 3D Geometriedaten
 - CAD-Interface
 - Laser-Scanner (Reverse Eng.)
 - Analytische Techniken (z.B. Sweeping)
 - Bild (2D) und Video (3D) Analyse
- Repräsentation
 - Effizienter Zugriff
 - Konvertierung

- Repräsentationen
 - Polygonnetze (für Rendering am häufigsten genutzt)
 - Finite Elemente (FEM)
 - Constructive Solid Geometry (CSG)
 - B-Rep. ("Boundary-Representation" für CAD-Modelle)
 - Implizit (Isoflächen)
 - Surface Elements (Surfels = Punkte & Normalen)

Aspekte von Modellierung und Repräsentation

- Manipulation: Formänderung der Objekte (Editing)
 - Boolesche Operationen
 - Lokale Glättung
 - Interpolation bestimmter Features (Randkurven)
 - "Eingravieren" geometrischer Details

- Ein Objekt wird durch ein Netz polygonaler Facetten (oft Dreiecke) repräsentiert.
 - ⇒ stückweise lineare Approximation
- Die polygonalen Facetten stellen im Allgemeinen eine Approximation gekrümmter Flächen dar, welche das Objekt begrenzen.
- Klassische Repräsentationsform dreidimensionaler Objekte in der Computergraphik

- Genauigkeit der Approximation kann gewählt werden:
 - Anzahl der Polygone
 - Größe der Polygone

Fragen

- Welche Polygonauflösung benötigt man für eine genaue Darstellung?
- Welche Polygonauflösung benötigt ein Renderer, um die stückweise lineare Approximation glatt erscheinen zu lassen?
- Wie ist der Zusammenhang zwischen Polygonanzahl des Objektes und seiner Größe in der finalen Darstellung?
 - Oft verwendete Grundregel:
 Polygonauflösung an die lokale
 Krümmung der Fläche binden

Repräsentationshierarchie (konzeptionell)

- Objekt setzt sich aus Oberflächen zusammen.
- Oberfläche setzt sich aus Polygonen zusammen.
- Polygon besteht aus
 - Eckpunkten (vertices)
 - Kanten (edges)

Repräsentationshierarchie (topologisch)

UNIVERSITÄT Computergraphik 10

Repräsentationshierarchie (Datenstruktur)

Kanten

- Offensichtlich existieren in der approximierenden polygonalen Darstellung zwei Arten von Kanten:
 - Scharfe Kanten (Feature Lines)
 Þ diese sollen als Kanten sichtbar bleiben
 - Virtuelle Kanten (im Inneren glatter Flächen)
 Þ diese sollte der Renderer "verschwinden"
 lassen

- 70er Jahre: Schattierungsalgorithmen (Interpolative Shading)
 - Flat/Uniform
 - Gouraud
 - Phong Shading

Datenstruktur

Kann neben der Geometrie spezielle Attribute für Anwendungen und Rendering beinhalten

- Flächenattribute:
 - Repräsentation (Dreieck, Polygon, Freiformfläche)
 - Koeffizienten
 - Polygonnormalen
 - Eigenschaften: planar, konvex, "hat Löcher"
 - Verweis auf Eckpunkte (und ggf. Kanten)

- Kantenattribute:
 - Länge
 - Art: Randkante, Feature Line, virtuelle Kante
 - Ggf. Verweis auf zugehörige Polygone und Eckpunkte
- Eckpunktattribute:
 - Eckpunktnormale (gemittelte Polygonnormalen)
 - Farbe
 - Texturkoordinaten
 - Ggf. Verweis auf Polygone und Kanten

Erzeugung polygonaler Objekte: manuelle Verfahren

- Verschieben von (Gruppen von)
 Eckpunkten mittels
 dreidimensionaler Eingabegeräte
 oder Schnittstellen
 - Komplex, schwer handhabbar
 - Nur für einfache Objekte bzw. für einfache "Manipulationen" geeignet

- 3D-Digitizer
 - Manuelles Anbringen von Punkten auf Objekten, die mittels Digitalisierer zu Polygon-Eckpunkten werden sollen
 - Beispiel:
 Netze über Objektoberflächen "ziehen"
 ⇒ erste 3D-Darstellungen von Karosserien (1974)

Erzeugung polygonaler Objekte: automatische Verfahren

Laserscanner

- Objekt wird rundherum scheibchenweise mit einem Laserstrahl abgetastet; dieser misst den Abstand zur Objektoberfläche
- Aus den gemessenen 2D-Konturen werden mittels eines "skinning"-Algorithmus, der geeignet benachbarte Punkte verbindet, Dreiecksflächen erzeugt (Abb. (a))

(b)

(a)

UNIVERSITÄT Computergraphik

Erzeugung polygonaler Objekte: automatische Verfahren

- Laserscanner
 - Anwendungen:
 - Reverse Engineering
 - Virtuelle Bekleidung
 - etc.
 - Probleme:
 - Ist das Objekt stellenweise "zu konkav", gibt es Flächen, die vom Laserstrahl nicht erfasst werden können.
 - Dieser Ansatz tendiert dazu, (zu) viele
 Dreiecke zu erzeugen!
 (Abb. (b): 400.000 Dreiecke)

(b)

(a)

Erzeugung polygonaler Objekte: mathematische Verfahren

- Erzeugung von polygonalen
 Darstellungen aus analytischen
 Kurven und Flächen
 - ⇒ CAD-Anwendungen
- Vorteile:
 - Benutzer arbeitet mit high-level
 Objektbeschreibung.
 - Objektform ist direkt mit mathematisch exakter Objektbeschreibung gekoppelt.

- Beispiele:
 - Parameterflächen (stückweise Polynome)
 - Rotationsflächen
 - Sweep-Flächen

Erzeugung polygonaler Objekte: prozedurale Verfahren

- Erzeugung polygonaler Objekte durch Fraktale
 - Fraktale (Fractals) gehen in ihrem theoretischen Ansatz auf die Mandelbrot-Geometrie zurück.
 - Werden u. a. für die Modellierungen von geographischen Höhenfeldern (Terrain Models) eingesetzt
 - Fraktale finden aufgrund ihrer Effizienz
 z.B. Anwendung in professionellen
 Flugsimulatoren für das Pilotentraining.

- Erzeugung polygonaler Objekte durch Ersetzungssysteme, z. B.
 Grammatiken
 - Lindenmayer-/L-Systeme zur Beschreibung von biologischen Entwicklungen
 - Werden u. a. für die Modellierungen von Bäumen, Pflanzen, etc. eingesetzt

4.3 Level-of-detail Ansätze

Motivation

 Allgemein tendieren Verfahren zur Erzeugung polygonaler Modelle dazu, "zu viele" Polygone zu produzieren.

Probleme

- In den überwiegenden Fällen ist das Verhältnis (Polygonanzahl des Objektes) / (projizierte Fläche des Objekts) viel zu groß.
- Overhead bei der Speicherung,
 Übertragung, Bearbeitung und
 Visualisierung "unnötiger" Polygone

Lösung

- Verschiedene polygonale Auflösungen der Objektrepräsentation: Level of Detail (LOD)
- Diese werden als sogenannte "Detail Pyramid" / Multiresolutionrepräsentation verwaltet.

4.3 Level-of-detail Ansätze

Von ca. 10,5 Millionen Dreiecken werden nur 550.000 dargestellt.

4.3 Level-of-detail Ansätze

- Diskrete LODs, Pyramide mit verschiedenen Netzen, abhängig von der Entfernung
 - Popping
 - Alpha blending, morphing
- Kontinuierliche LODs, vordefinierte Einzeloperationen, Entfernen Kante für Kante
 - Flexibel
 - Teurer
 - Kann minimales Modell finden
 - Blickpunktabhängige Modelle möglich

- Statische LODs
 Feste, vordefinierte Auflösungsstufen
 - Kosten Speicher
- Dynamische LODs,
 Online Berechnung
 - Kosten Rechenzeit

Quellen

- Computergraphik, Universität Leipzig (Prof. Dr. D. Bartz)
- Graphische Datenverarbeitung I, TU Kaiserslautern (Prof. Dr. H. Hagen)
- Graphische Datenverarbeitung I,
 Universität Tübingen
 (Prof. Dr. W. Straßer)
- Graphische Datenverarbeitung I,
 TU Darmstadt
 (Prof. Dr. M. Alexa)