Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2015

Physics A

PHYA1

Unit 1 Particles, Quantum Phenomena and Electricity

Tuesday 19 May 2015 9.00 am to 10.15 am

For this paper you must have:

- a pencil and a ruler
- a calculator
- a Data and Formulae Booklet (enclosed).

Time allowed

• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculator, where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Answer all questions in the spaces provided.

1 Table 1 contains five statements that refer to isotopes and some radium isotopes.

Table 1

	²²³ ₈₈ Ra	²²⁴ ₈₈ Ra	²²⁵ ₈₈ Ra	²²⁶ ₈₈ Ra
Isotope with the smallest mass number	✓			
Isotope with most neutrons in nucleus				
Isotope with nucleus which has the largest specific charge				
Isotope decays by β^- decay to form $^{225}_{89}Ac$				
Isotope decays by alpha decay to form $^{220}_{86}\mathrm{Rn}$				

1 (a)	Complete Table 1 by ticking one box in each row to identify the appropriate isotope.
	The first row has been completed for you.

[4 marks]

1 (b) (i)	An atom of one of the radium isotopes in Table 1 is ionised so that it has a charge of
	$+3.2 \times 10^{-19} \mathrm{C}.$

State what happens in the process of ionising this radium atom.

[1 ma	'k]

1 (b) (ii) The specific charge of the ion formed is $8.57 \times 10^5~C~kg^{-1}$.

Deduce which isotope in the table has been ionised. Assume that both the mass of a proton and the mass of a neutron in the nucleus is $1.66\times10^{-27}~kg$.

[3 marks]

8

2		The equation shows an interaction between a proton and a negative kaon that results in the formation of particle, \boldsymbol{X} .
		$K^- + p \rightarrow K^+ + K^0 + X$
2	(a) (i)	State and explain whether X is a charged particle. $ \begin{tabular}{ll} \textbf{[2 marks]} \\ \end{tabular} $
2	(a) (ii)	State and explain whether X is a lepton, baryon or meson. $\hbox{ \cite{content} {\bf [2\ marks]}}$
2	(a) (iii)	State the quark structure of the K^{-},K^{+} and the $K^{0}.$ [3 marks]
		K
		K ⁺
		K^0
2	(a) (iv)	Strangeness is conserved in the interaction.
		Determine, explaining your answer, the quark structure of X . $\hbox{ [3 marks]}$

10

3 (a)	Baryons, mesons and leptons are affected by particle interactions.
	Write an account of these interactions. Your account should:
	 include the names of the interactions identify the groups of particles that are affected by the interaction identify the exchange particles involved in the interaction give examples of two of the interactions you mention.
	The quality of your written communication will be assessed in your answer. [6 marks]

3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
3 (b) Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]			
[3 marks]	3 (b)	Draw a labelled Feynman diagram that represents a particle interaction.	
			[3 marks]

Turn over for the next question

9

4	Sodium metal has a work function of 2.28 eV. An atom of sodium has an ionis energy of 5.15 eV.	ation
4 (a) (i)	State what is meant by work function.	[2 marks]
4 (a) (ii)	State what is meant by ionisation energy.	[2 marks]
4 (b)	Show that the minimum frequency of electromagnetic radiation needed for a phionise an atom of sodium is about $1.2\times10^{15}~\rm{Hz}.$	noton to

4 (c)	Electromagnetic radiation with the frequency calculated in part (b) is incident on the
	surface of a piece of sodium.

Calculate the maximum possible kinetic energy of an electron that is emitted when a photon of this radiation is incident on the surface.

Give your answer to an appropriate number of significant figures.

[3 marks]

4 (d) Calculate the speed of an electron that has the same de Broglie wavelength as the electromagnetic radiation in part (b).

[3 marks]

12

5	(a)	Sketch, on Figure 1 , the current–voltage (IV) characteristic for a filament lamp for currents up to its working power.		
		[2 marks]		
		Figure 4		
		Figure 1		
		I		
		V		
5	(b) (i)	State what happens to the resistance of the filament lamp as the current increases.		
		[1 mark]		
5	(b) (ii)	State and explain whether a filament lamp is an ohmic or non-ohmic conductor up to its		
	()	working power. [1 mark]		
		[··········		

5 (c) Three identical filament lamps, P, Q and R are connected in the circuit shown in Figure 2.

Figure 2

The filament in lamp ${\bf Q}$ melts so that it no longer conducts. Explain why lamp ${\bf P}$ becomes brighter and lamp ${\bf R}$ becomes dimmer.

[2 marks]

Question 5 continues on the next page

5 (d)	A filament lamp, \mathbf{X} , is rated at 60 W 230 V. Another type of lamp, \mathbf{Y} , described as 'energy saving' has the same light intensity output but is rated at 11 W 230 V.	
5 (d) (i)		
	for a period of 30 days. [2 marks]	
	electrical energy converted by X =	
	electrical energy converted by Y =	
5 (d) (ii)	Suggest why the two lamps can have different power ratings but have the same light intensity output.	
	[2 marks]	

A 'potato cell' is formed by inserting a copper plate and a zinc plate into a potato. The circuit shown in **Figure 3** is used in an investigation to determine the electromotive force and internal resistance of the potato cell.

Figure 3

6 (a)	State what is meant by electromotive force.	[2 marks

Question 6 continues on the next page

6 (b) The plotted points on **Figure 4** show the data for current and voltage that were obtained in the investigation.

Figure 4

6 (b) (i)	Suggest what was done to obtain the data for the plotted points.
	[1 mark]
6 (b) (ii)	The electromotive force (emf) of the potato cell is 0.89 V. Explain why the voltages
	plotted on Figure 4 are always less than this and why the difference between the emf
	and the plotted voltage becomes larger with increasing current. [3 marks]
6 (b) (iii)	Use Figure 4 to determine the internal resistance of the potato cell.
() ()	[3 marks]
	internal resistance = Ω
	Question 6 continues on the next page

		1
6 (c)	A student decides to use two potato cells in series as a power supply for a light emitting diode (LED). In order for the LED to work as required, it needs a voltage of at least 1.6 $\rm V$ and a current of 20 $\rm mA$.	
	Explain whether the LED will work as required.	
	[2 marks]	
		_
		-

A cable used in high-voltage power transmission consists of six aluminium wires surrounding a steel wire. A cross-section is shown in **Figure 5**.

Figure 5

The resistance of a length of 1.0 km of the steel wire is 3.3 Ω . The resistance of a length of 1.0 km of **one** of the aluminium wires is 1.1 Ω .

7 (a) The steel wire has a diameter of 7.4 mm.

Calculate the resistivity of steel. State an appropriate unit.

[4 marks]

resistivity = unit unit

Question 7 continues on the next page

passes through the	steel wire.
[3 marks	
V.	The potential difference across a length of 1.0 ${ m km}$ of the cable is 75
	Calculate the total power loss for a 1.0 km length of cable.
[3 marks	
	Calculate the total power loss for a 1.0 km length of cable.
	Calculate the total power loss for a 1.0 km length of cable.
	Calculate the total power loss for a 1.0 km length of cable.

Copyright @ 2015 AQA and its licensors. All rights reserved.

