IIC1253 — Matemáticas Discretas — 1'2018

INTERROGACION 2

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Demuestre que si (A, \preceq) es un orden parcial, entonces el grafo dirigido (A, \preceq) no tiene ciclos de largo mayor o igual a 2.

Pregunta 2

Sea A un conjunto. Una relación $R \subseteq A \times A$ se dice que es de punto medio si, y solo si, para todo $a, b \in A$, si $(a, b) \in R$, entonces existe $c \in A$ tal que $(a, c) \in R$ y $(c, b) \in R$.

- 1. (4 puntos) Suponga que A es un conjunto finito y $R \subseteq A \times A$ tal que $R \neq \emptyset$. Demuestre que si R es transitiva y de punto medio, entonces existe un $x \in A$ tal que $(x, x) \in R$.
- 2. (2 puntos) ¿Es cierto lo anterior si R es infinito? Demuestre su afirmación.

Pregunta 3

Sea A un conjunto finito y \mathcal{F} el conjunto de todas las funciones biyectivas $f:A\to A$. Para $S\subseteq A$ se define:

$$\mathcal{F}_S = \{ f \in \mathcal{F} \mid \forall x \in S. \ f(x) = x \}$$

En otras palabras, \mathcal{F}_S son todas las funciones biyectivas $f:A\to A$ que mantienen (en otras palabras, "fijan") todos los elementos en S. Note que para todo $f,g\in\mathcal{F}_S$, se cumple que $f\circ g\in\mathcal{F}_S$ y $f^{-1}\in\mathcal{F}_S$.

- 1. Considere la relación $R_S \subseteq \mathcal{F} \times \mathcal{F}$ tal que $(f,g) \in R_S$ si, y solo si, $f^{-1} \circ g \in \mathcal{F}_S$. Demuestre que R_S es una relación de equivalencia.
- 2. Considere el conjunto cuociente \mathcal{F}/R_S , esto es, el conjunto de todas las clases de equivalencia de R_S . Demuestre que para todo $X \in \mathcal{F}/R_S$ existe un $g \in \mathcal{F}$ tal que:

$$X = \{ f \circ g \mid f \in \mathcal{F}_S \}$$

Pregunta 4

Sea A un conjunto y R una relación sobre A.

1. Se define la clausura transitiva de R como:

$$R^t = \bigcup_{i=1}^{\infty} R^i$$

donde $R^i = R \circ \overset{\text{i-veces}}{\cdots} \circ R$. Demuestre que R^t es una relación transitiva.

2. Se define $I = \{(a, a) \mid a \in A\}$ como la relación identidad sobre A. Demuestre que la relación:

$$R^{\sim} = (R \cup R^{-1} \cup I)^t$$

es la menor relación de equivalencia que contiene a R. En otras palabras, demuestre que R^{\sim} es una relación de equivalencia y, para toda otra relación de equivalencia E, si $R \subseteq E$ entonces $R^{\sim} \subseteq E$.