Algoritmi avansați

Seminar 5 (săpt. 9 și 10)

- **1.** Fie punctele $A = (1, 2, 3), B = (4, 5, 6) \in \mathbb{R}^3$.
 - a) Fie C = (a, 7, 8). Arătați că există a astfel ca punctele A, B, C să fie coliniare și pentru a astfel determinat calculați raportul r(A, B, C).
 - b) Determinați punctul P astfel ca raportul r(A, P, B) = 1.
 - c) Dați exemplu de punct Q astfel ca r(A, B, Q) < 0 și r(A, Q, B) < 0.
- **2.** Fie punctele P = (1, -1), Q = (3, 3).
 - a) Calculați valoarea determinantului care apare în testul de orientare pentru muchia orientată \overrightarrow{PQ} și punctul de testare O=(0,0).
 - b) Fie $R_{\alpha}=(\alpha,-\alpha)$, unde $\alpha\in\mathbb{R}$. Determinați valorile lui α pentru care punctul R_{α} este situat în dreapta muchiei orientate \overrightarrow{PQ} .
- **3.** Fie $\mathcal{M} = \{P_1, P_2, \dots, P_9\}$, unde $P_1 = (-2, 4)$, $P_2 = (-1, 1)$, $P_3 = (0, 1)$, $P_4 = (2, 1)$, $P_5 = (4, 3)$, $P_6 = (5, 5)$, $P_7 = (6, 9)$, $P_8 = (8, 4)$, $P_9 = (10, 6)$. Detaliați cum evoluează lista \mathcal{L}_i a vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , obținută pe parcursul Graham's scan, varianta Andrew. Justificați!
- **4.** Dați un exemplu de mulțime \mathcal{M} din planul \mathbb{R}^2 pentru care, la final, \mathcal{L}_i are 4 elemente, dar, pe parcursul algoritmului, numărul maxim de elemente al lui \mathcal{L}_i este egal cu 6 (\mathcal{L}_i este lista vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , obținută pe parcursul Graham's scan, varianta Andrew). Justificați!
- 5. Fie mulţimea $\mathcal{P} = \{P_1, P_2, \dots, P_7\}$, unde $P_1 = (1,0), P_2 = (2,2), P_3 = (3,1), P_4 = (4,0), P_5 = (6,0), P_6 = (3,-3), P_7 = (6,-2)$. Indicaţi testele care trebuie făcute pentru a găsi succesorul lui P_1 atunci când aplicăm Jarvis' march pentru a determina marginea inferioară a acoperirii convexe a lui \mathcal{P} , parcursă în sens trigonometric (drept drept pivot inițial va fi considerat P_2).
- **6.** Discutați un algoritm bazat pe paradigma *Divide et impera* pentru determinarea acoperirii convexe. Analizați complexitatea-timp.

Algoritmi avansaţi

Seminar 6 (săpt. 11 și 12)

- 1. Aplicați metoda din demonstrația teoremei galeriei de artă, indicând o posibilă amplasare a camerelor de supraveghere în cazul poligonului $P_0P_1P_2...P_{12}$, unde $P_0 = (0, -2), P_1 = (5, -6), P_2 = (7, -4), P_3 = (5, -2), P_4 = (5, 2), P_5 = (7, 4), P_6 = (7, 6)$ iar punctele $P_7, ..., P_{12}$ sunt respectiv simetricele punctelor $P_6, ..., P_1$ față de axa Oy.
- **2.** Fie poligonul $\mathcal{P} = (P_1P_2P_3P_4P_5P_6)$, unde $P_1 = (5,0)$, $P_2 = (3,2)$, $P_3 = (-1,2)$, $P_4 = (-3,0)$, $P_5 = (-1,-2)$, $P_6 = (3,-2)$. Arătați că Teorema Galeriei de Artă poate fi aplicată în două moduri diferite, așa încât, aplicând metoda din teoremă și mecanismul de 3-colorare, în prima variantă să fie suficientă o singură cameră, iar în cea de-a doua variantă să fie necesare și suficiente două camere pentru supravegeherea unei galerii având forma poligonului \mathcal{P} .
- **3.** Dați exemplu de poligon cu 6 vârfuri care să aibă atât vârfuri convexe, cât și concave și toate să fie principale.
- **4.** Fie $\mathcal{M} = \{A_i \mid i = 0, \dots, 50\} \cup \{B_i \mid i = 0, \dots, 40\} \cup \{C_i \mid i = 0, \dots, 30\}, \ dată$ de punctele $A_i = (i+10,0), \ i = 0,1,\dots,50, \ B_i = (0,i+30), \ i = 0,1,\dots,40,$ $C_i = (-i,-i), \ i = 0,1,\dots,30.$ Determinați numărul de triunghiuri și numărul de muchii ale unei triangulări a lui \mathcal{M} .
- **5.** Dați un exemplu de mulțime din \mathbb{R}^2 care să admită o triangulare având 6 triunghiuri și 11 muchii.
- **6.** În \mathbb{R}^2 fie punctele $P_1 = (1,7)$, $P_2 = (5,7)$, $P_3 = (7,5)$, $P_4 = (1,3)$, $P_5 = (5,3)$, $P_6 = (\alpha 1,5)$, cu $\alpha \in \mathbb{R}$. Discutați, în funcție de α , numărul de muchii ale unei triangulări asociate mulțimii $\{P_1, P_2, P_3, P_4, P_5, P_6\}$.
- 7. Fie $\mathcal G$ un graf planar conex, v numărul de noduri, m numărul de muchii, f numărul de fețe. Se presupune că fiecare $v \hat{a} r f$ are $gradul \geq 3$. Demonstrați inegalitățile

$$v \le \frac{2}{3}m,$$
 $m \le 3v - 6$
 $m \le 3f - 6,$ $f \le \frac{2}{3}m$
 $v \le 2f - 4,$ $f \le 2v - 4$

1

Dați exemplu de grafuri în care au loc egalități în relațiile de mai sus.

Algoritmi avansaţi

Seminar 7 (săpt. 13 și 14)

- **1.** Dați exemplu de mulțime $\mathcal{M} = \{A_1, A_2, A_3, A_4, A_5, A_6\}$ din \mathbb{R}^2 astfel ca diagrama Voronoi asociată lui \mathcal{M} să conțină exact patru semidrepte, iar diagrama Voronoi asociată lui $\mathcal{M} \setminus \{A_1\}$ să conțină exact cinci semidrepte. Justificați alegerea făcută.
- **2.** a) Fie o multime cu n situri necoliniare. Atunci, pentru diagrama Voronoi asociată au loc inegalitățile

$$n_v \le 2n - 5, \quad n_m \le 3n - 6,$$

unde n_v este numărul de vârfuri ale diagramei și n_m este numărul de muchii al acesteia

- b) Câte vârfuri poate avea diagrama Voronoi \mathcal{D} asociată unei mulțimi cu cinci puncte din \mathbb{R}^2 știind că \mathcal{D} are exact cinci semidrepte? Analizați toate cazurile. Este atins numărul maxim de vârfuri posibile $(n_v = 2n 5)$? Justificați!
- **3.** Fie punctele O = (0,0), $A = (\alpha,0)$, B = (1,1), C = (2,0), D = (1,-1), unde $\alpha \in \mathbb{R}$ este un parametru. Discutați, în funcție de α , numărul de muchii de tip semidreaptă ale diagramei Voronoi asociate mulțimii $\{O, A, B, C, D\}$.
- **4.** (i) Fie punctul A = (1,2). Alegeți două drepte distincte d, g care trec prin A, determinați dualele A^*, d^*, g^* și verificați că A^* este dreapta determinată de punctele d^* și g^* .
- (ii) Determinați duala următoarei configurații: Fie patru drepte care trec printr-un același punct M. Se aleg două dintre ele; pe fiecare din aceste două drepte se consideră câte un punct diferit de M și se consideră dreapta determinată de cele două puncte. Desenați ambele configurații. Completați configurația inițială (adăugând puncte/drepte) astfel încât să obțineți o configurație autoduală (i.e. configurația duală să aibă aceleași elemente geometrice și aceleași incidențe ca cea inițială).
- **5.** a) Fie semiplanele $H: x+y-3 \le 0$ şi $H': -2x+y+1 \le 0$. Daţi exemplu de semiplan H'' astfel ca intersecția $H \cap H' \cap H''$ să fie un triunghi dreptunghic.
 - b) Fie semiplanele H_1, H_2, H_3, H_4 date de inecuațiile

$$H_1: -y+1 \le 0;$$
 $H_2: y-5 \le 0;$ $H_3: -x \le 0;$ $H_4: x-y+a \le 0,$

unde $a \in \mathbb{R}$ este un parametru. Discutați, în funcție de parametrul a, natura intersecției $H_1 \cap H_2 \cap H_3 \cap H_4$.

6. Scrieți inecuațiile semiplanelor corespunzătoare și studiați intersecția acestora, dacă normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,1,-1), (0,1,0), (0,0,-1), (0,-1,0), (0,-1,-1).$$

7. (Suplimentar) Demonstrați că arborele parțial de cost minim al lui \mathcal{P} este un subgraf al triangulării Delaunay.