SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Conneely, Orla M.
 Headon, Denis R.
 O'Malley, Bert W.
 May, Gregory S.
- (ii) TITLE OF INVENTION: Production of Recombinant Lactoferrin and Lactoferrin Polypeptides Using cDNA Sequences in Various Organisms
- (iii) NUMBER OF SEQUENCES: 14
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Pennie & Edmonds
 - (B) STREET: 1155 Avenue of the Americas
 - (C) CITY: New York
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10036
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

4.

- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: To be assigned
 - (B) FILING DATE: Concurrently herewith
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/145,681
 - (B) FILING DATE: October 28, 1993
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Albert P. Halluin
 - (B) REGISTRATION NUMBER: 25,227
 - (C) REFERENCE/DOCKET NUMBER: 8206-023
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415-854-3660
 - (B) TELEFAX: 415-854-3694

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2360 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: H. sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

				•			
60		GGGGCCCTCG	GCTGTTCCTC	TCCTCGTCCT	AAACTTGTCT	CGCAGACATG	GAATTCCGAC
120		TCCCAACCCG	GTGCACCGTA	GTGTTCAGTG	AGGAGAAGGA	GGCTGGCCGT	GACTGTGTCT
180	19: 1 ¹	CCTCCTGTCA	AGTGCGTGGC	ATATGAGAAG	TGGCAAAGGA	ATGCTTCCAA	AGGCCACAAA
240		AACAGGGCCG	CATTGCGGAA	GTATCCAGGC	CCCATCCAGT	GAGAGACTCC	GCTGCATAAA
300		TACAAACTGC	CCTGGCCCCC	ACGAGGCAGG	GGTTTCATAT	CCTTGATGGT	ATGCTGTGAC
360		TATTATGCCG	ACGAACTCAC	AAAGACAGCC	TACGGGACCG	GGCGGAAGTC	GACCTGTAGC
420		CTGAAGTCCT	ACTGCAAGGT	AGCTGAACGA	GGCAGCTTTC	GAAGAAGGC	TGGCTGTGGT
480		CTTCGTCCAT	TATAGGGACA	GGAATGTGCC	ACCGCTGGAT	CCTTCGCAGG	GCCACACAGG
540		TTCTTCTCAG	TGTGGCCAGG	TTGAGGCAGC	CCTGAGCCCA	GACGGGTCCA	TCTTGAATTG
600		CTGTGTGCGG	CCTGTGTCGC	AGTTCCCCAA	GATAAAGGAC	TCCCGGTGCA	CCAGCTGTGT
660		TACTCTGGTG	GTACTTCAGC	CCCAGGAACC	GCCTTCTCCT	AAACAAATGT	GGACAGGGGA
720		AGCACAGTGT	TATCAGAGAG	ACGTGGCTTT	GGGGCTGGAG	TCTGAGAGAC	CCTTCAAGTG
780		CCAGACAACA	GTTACTCTGC	ACGAGTATGA	GCTGAAAGGG	GTCAGACGAG	TTGAGGACCT
840		TCTCATGCCG	CCGGGTCCCT	GCCATCTGGC	TTCAAAGACT	AGTGGACAAG	CTCGGAAGCC
900		CGCCAGGCAC	GAATCTTCTC	ATGCCATCTG	GGCAAGGAGG	AAGTGTGAAT	TTGTGGCACG
960		CCTAGTGGGC	CTTTGGCTCC	AATTCCAGCT	AAGTCACCGA	TGGAAAGGAC	AGGAAAAGTT
1020	1	CCGAGGATAG	GAGGGTGCCC	TTGGGTTTTC	GACTCTGCCA	GCTGTTCAAG	AGAAAGATCT
1080	1	AGGAAAAGTG	CCAGAACTTG	TCACTGCCAT	TCCGGCTACT	GTACCTTGGC	ATTCTGGGCT
1140	1	GAGCAGGAGC	TGCGGTGGGC	TCGTGTGGTG	CGTGCGCGGG	GGCTGCCCGG	AGGAGGAAGT
1200	. 1	TCCTCGGCCT	CGTGACCTGC	GCGAAGGCAG	AGTGGCTTGA	TAACCAGTGG	TGCGCAAGTG
1260	1	ATGAGTTTGG	AGCTGATGCC	TGAAAGGAGA	GCCCTGGTGC	GGACTGCATC	CCACCACAGA
1320	1	GCAGAGAACT	GCCTGTCCTG	GTGGTTTGGT	GCAGGCAAAT	TGTGTACACT	ATGGAGGATA

ACAAATCCCA	ACAAAGCAGT	GACCCTGATC	CTAACTGTGT	GGATAGACCT	GTGGAAGGAT	1380
ATCTTGCTGT	GGCGGTGGTT	AGGAGATCAG	ACACTAGCCT	TACCTGGAAC	TCTGTGAAAG	1440
GCAAGAAGTC	CTGCCACACC	GCCGTGGACA	GGACTGCAGG	CTGGAATATC	CCCATGGGCC	1500
TGCTCTTCAA	CCAGACGGGC	TCCTGCAAAT	TTGATGAATA	TTTCAGTCAA	AGCTGTGCCC	1560
CTGGGTCTGA	CCCGAGATCT	AATCTCTGTG	CTCTGTGTAT	TGGCGACGAG	CAGGGTGAGA	1620
ATAAGTGCGT	GCCCAACAGC	AATGAGAGAT	ACTACGGCTA	CACTGGGGCT	TTCCGGTGCC	1680
TGGCTGAGAA	TGCTGGAGAC	GTTGCATTTG	TGAAAGATGT	CACTGTCTTG	CAGAACACTG	1740
ATGGAAATAA	CAATGAGGCA	TGGGCTAAGG	ATTTGAAGCT	GGCAGACTTT	GCGCTGCTGT	1800
GCCTCGATGG	CAAACGGAAG	CCTGTGACTG	AGGCTAGAAG	CTGCCATCTT	GCCATGGCCC	1860
CGAATCATGC	CGTGGTGTCT	CGGATGGATA	AGGTGGAACG	CCTGAAACAG	GTGCTGCTCC	1920
ACCAACAGGC	TAAATTTGGG	AGAAATGGAT	CTGACTGCCC	GGACAAGTTT	TGCTTATTCC	1980
AGTCTGAAAC	CAAAAACCTT	CTGTTCAATG	ACAACACTGA	GTGTCTGGCC	AGACTCCATG	2040
GCAAAACAAC	ATATGAAAAA	TATTTGGGAC	CACAGTATGT	CGCAGGCATT	$\mathtt{ACTAATCTGA}_{\mathfrak{P}^{\bullet,\frac{1}{2}}}$	2100
AAAAGTGCTC	AACCTCCCCC	CTCCTGGAAG	CCTGTGAATT	CCTCAGGAAG	TAAAACCGAA	2160
GAAGATGGCC	CAGCTCCCCA	AGAAAGCCTC	AGCCATTCAC	TGCCCCCAGC	TCTTCTCCCC	2220
AGGTGTGTTG	GGGCCTTGGC	TCCCCTGCTG	AAGGTGGGGA	TTGCCCATCC	ATCTGCTTAC	2280
AATTCCCTGC	TGTCGTCTTA	GCAAGAAGTA	AAATGAGAAA	TTTTGTTGAA	ААААААААА	2340
ААААААААА	ААААААААА					2360

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 711 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: H. sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Leu Val Phe Leu Val Leu Leu Phe Leu Gly Ala Leu Gly Leu 1 5 10 15

Cys Leu Ala Gly Arg Arg Arg Ser Val Gln Trp Cys Thr Val Ser

Gln Pro Glu Ala Thr Lys Cys Phe Gln Trp Gln Arg Asn Met Arg Arg

Val Arg Gly Pro Pro Val Ser Cys Ile Lys Arg Asp Ser Pro Ile Gln 50 60

Cys Ile Gln Ala Ile Ala Glu Asn Arg Ala Asp Ala Val Thr Leu Asp 65 70 75 80

Gly Gly Phe Ile Tyr Glu Ala Gly Leu Ala Pro Tyr Lys Leu Arg Pro 85 90 95

Val Ala Ala Glu Val Tyr Gly Thr Glu Arg Gln Pro Arg Thr His Tyr
100 105 110

Tyr Ala Val Ala Val Val Lys Lys Gly Gly Ser Phe Gln Leu Asn Glu 115 120 125

Leu Gln Gly Leu Lys Ser Cys His Thr Gly Leu Arg Arg Thr Ala Gly
130 135 140

Trp Asn Val Pro Ile Gly Thr Leu Arg Pro Phe Leu Asn Trp Thr Gly
145 150 155 160

Pro Pro Glu Pro Ile Glu Ala Ala Val Ala Arg Phe Phe Ser Ala Ser 165 170 175

Cys Val Pro Gly Ala Asp Lys Gly Gln Phe Pro Asn Leu Cys Arg Leu 180 185 190

Cys Ala Gly Thr Gly Glu Asn Lys Cys Ala Phe Ser Ser Gln Glu Pro 195 200 205

Tyr Phe Ser Tyr Ser Gly Ala Phe Lys Cys Leu Arg Asp Gly Ala Gly 210 215 220

Asp Val Ala Phe Ile Arg Glu Ser Thr Val Phe Glu Asp Leu Ser Asp 225 230 235 240

Glu Ala Glu Arg Asp Glu Tyr Glu Leu Leu Cys Pro Asp Asn Thr Arg Lys Pro Val Asp Lys Phe Lys Asp Cys His Leu Ala Arg Val Pro Ser His Ala Val Val Ala Arg Ser Val Asn Gly Lys Glu Asp Ala Ile Trp Asn Leu Leu Arg Gln Ala Gln Glu Lys Phe Gly Lys Asp Lys Ser Pro Lys Phe Gln Leu Phe Gly Ser Pro Ser Gly Gln Lys Asp Leu Leu Phe Lys Asp Ser Ala Ile Gly Phe Ser Arg Val Pro Pro Arg Ile Asp Ser 330 Gly Leu Tyr Leu Gly Ser Gly Tyr Phe Thr Ala Ile Gln Asn Leu Arg Lys Ser Glu Glu Glu Val Ala Ala Arg Arg Ala Arg Val Val Trp Cys 360 Ala Val Gly Glu Gln Glu Leu Arg Lys Cys Asn Gln Trp Ser Gly Leu Ser Glu Gly Ser Val Thr Cys Ser Ser Ala Ser Thr Thr Glu Asp Cys 390 395 Ile Ala Leu Val Leu Lys Gly Glu Ala Asp Ala Met Ser Leu Asp Gly Gly Tyr Val Tyr Thr Ala Gly Lys Cys Gly Leu Val Pro Val Leu Ala Glu Asn Tyr Lys Ser Gln Gln Ser Ser Asp Pro Asp Pro Asn Cys Val Asp Arg Pro Val Glu Gly Tyr Leu Ala Val Ala Val Val Arg Arg Ser Asp Thr Ser Leu Thr Trp Asn Ser Val Lys Gly Lys Lys Ser Cys His Thr Ala Val Asp Arg Thr Ala Gly Trp Asn Ile Pro Met Gly Leu Leu Phe Asn Gln Thr Gly Ser Cys Lys Phe Asp Glu Tyr Phe Ser Gln Ser Cys Ala Pro Gly Ser Asp Pro Arg Ser Asn Leu Cys Ala Leu Cys Ile Gly Asp Glu Gln Gly Glu Asn Lys Cys Val Pro Asn Ser Asn Glu Arg Tyr Tyr Gly Tyr Thr Gly Ala Phe Arg Cys Leu Ala Glu Asn Ala Gly 550 555 Asp Val Ala Phe Val Lys Asp Val Thr Val Leu Gln Asn Thr Asp Gly 570

Asn	Asn	Asn	Glu 580	Ala	Trp	Ala	Lys	Asp 585	Leu	Lys	Leu	Ala	Asp 590	Phe	Ala
Leu	Leu	Cys 595	Leu	Asp	Gly	Lys	Arg 600	Lys	Pro	Val	Thr	Glu 605	Ala	Arg	Ser
Cys	His 610	Leu	Ala	Met	Ala	Pro 615	Asn	His	Ala	Val	Val 620	Ser	Arg	Met	Asp
Lys 625	Val	Glu	Arg	Leu	Lys 630	Gln	Val	Leu	Leu	His 635	Gln	Gln	Ala	Lys	Phe 640
Gly	Arg	Asn	Gly	Ser 645	Asp	Cys	Pro	Asp	Lys 650	Phe	Cys	Leu	Phe	Gln 655	Ser
Glu	Thr	Lys	Asn 660	Leu	Leu	Phe	Asn	Asp 665	Asn	Thr	Glu	Cys	Leu 670	Ala	Arg
Leu	His	Gly 675	Lys	Thr	Thr	Tyr	Glu 680	Lys	Tyr	Leu	Gly	Pro 685	Gln	Tyr	Val
Ala	Gly 690	Ile	Thr	Asn	Leu	Lys 695	Lys	Суз	Ser	Thr	Ser 700	Pro	Leu	Leu	Glu
Ala 705	Cys	Glu	Phe	Leu	Arg 710	Lys									4. 4°

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2347 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bos taurus

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

60		TCCCCGCCCT	AAGCTCTTCG	CCAGCCCATG	CCCCAGGACG	TCCGGAGTCG	GAGCCTTCGT
120		TTCGATGGTG	AGGAAAAACG	GGCTGCCCCG	GACTGTGTCT	GGAGCCCTTG	CCTGTCCCTT
180	中中	TGAAGAAGCT	CAGTGGAGGA	CCGCAGATGG	GGTTCAAATG	CAACCTGAGT	TACCATCTCC
240		TTCCGGGCAT	TTGGAATGTA	GGCCTTTGCC	GTGTGAGGCG	TCTATCACCT	GGGTGCTCCC
300		AGGCGGGCCG	ATGGTGTTTG	GGATGGTGGC	CTGTGACCCT	AAGGCGGATG	CGCGGAGAAA
360		AGTCTCCCCA	GGGACGAAAG	AGAGATCTAT	CAGTAGCAGC	AAACTGCGGC	GGACCCCTAC
420		TGGACCAGCT	AACTTTCAGC	GAAGGGCAGC	CCGTCGTGAA	TATGCTGTGG	AACCCACTAT
480		TCATCCCTAT	GCTGGGTGGA	TGGCAGGTCC	ATACGGGCCT	AAGTCCTGCC	GCAAGGCCGG
540		AGGGAGCTGT	GAGCCCCTCC	AGAGTCACTC	TGAGCTGGAC	CGCCCGTACT	GGGAATCCTT
600		ACCCCAACCT	AGACAAGCAT	CTGCATTGAT	GCTGTGTTCC	TTCTCTGCCA	GGCTAAATTC
660		GGGAACCATA	TGCTCCTCCC	CCAGTGTGCC	AGGGGGAGAA	TGCAAGGGGG	GTGTCAACTG
720		TGGCTTTTGT	GCTGGAGACG	GCAGGACGGG	TCAAGTGTCT	TCTGGTGCCT	CTTCGGTTAT
780		AGTATGAGCT	GACAGGGACC	AGAGAAGGCT	AGAACTTGCC	ACAGTGTTTG	TAAAGAGACG
840		ACCTGGCCCA	AAGGAGTGCC	GGATGCGTTC	GGGCGCCAGT	AACAACAGTC	TCTCTGCCTG
900		TGATCTGGAA	AAGGAAGACT	TGTGGATGGC	TGGCCCGAAG	CATGCTGTCG	GGTCCCTTCT
960		TCCAGCTCTT	TCTCGGAGCT	AAAAAACAAG	AGAAATCTGG	AAGGCGCAGG	GCTTCTCAGC
1020	:	GGTTTTTGAG	TCTGCTCTTG	GTTCAAAGAC	GGGACCTGCT	CCCGGCCAGA	TGGCTCTCCA
1080	:	CCACCTTGAA	CGCTACTTGA	CCTGGGCTCC	CGGCGCTGTA	AAGGTAGATT	GATCCCCTCG
1140	:	TGTGGTGTGC	ACCAGGGTCG	GGCGCGGTAC	AGGAGGTGAA	GAAACTGCGG	GAACCTCAGG
1200		GCCAGAACGT	CAGCAGAGCG	GCAGTGGAGC	AGAAGTGCCA	GAGGAGCAGA	CGTGGGACCT
1260	•	AAGGGGAAGC	CTGGTGCTGA	CTGCATCGTC	CCACTGACGA	ACGGCGTCCA	GACCTGTGCC
1320	:	GCCTGGTGCC	GGCAAGTGTG	CTACACTGCG	GAGGATATAT	AACTTGGATG	AGATGCCCTG

TGTCCTGGCA	GAGAACCGGA	AATCCTCCAA	ACACAGTAGC	CTAGATTGTG	TGCTGAGACC	1380
AACGGAAGGG	TACCTTGCCG	TGGCAGTTGT	CAAGAAAGCA	AATGAGGGGC	TCACATGGAA	1440
TTCTCTGAAA	GACAAGAAGT	CGTGCCACAC	CGCCGTGGAC	AGGACTGCAG	GCTGGAACAT	1500
CCCCATGGGC	CTGATCGTCA	ACCAGACAGG	CTCCTGCGCA	TTTGATGAAT	TCTTTAGTCA	1560
GAGCTGTGCC	CCTGGGGCTG	ACCCGAAATC	CAGACTCTGT	GCCTTGTGTG	CTGGCGATGA	1620
CCAGGGCCTG	GACAAGTGTG	TGCCCAACTC	TAAGGAGAAG	TACTATGGCT	ATACCGGGGC	1680
TTTCAGGTGC	CTGGCTGAGG	ACGTTGGGGA	CGTTGCCTTT	GTGAAAAACG	ACACAGTCTG	1740
GGAGAACACG	AATGGAGAGA	GCACTGCAGA	CTGGGCTAAG	AACTTGAATC	GTGAGGACTT	1800
CAGGTTGCTC	TGCCTCGATG	GCACCAGGAA	GCCTGTGACG	GAGGCTCAGA	GCTGCCACCT	1860
GGCGGTGGCC	CCGAATCACG	CTGTGGTGTC	TCGGAGCGAT	AGGGCAGCAC	ACGTGAAACA	1920
GGTGCTGCTC	CACCAGCAGG	CTCTGTTTGG	GAAAAATGGA	AAAAACTGCC	CGGACAAGTT	1980
TTGTTTGTTC	AAATCTGAAA	CCAAAAACCT	TCTGTTCAAT	GACAACACTG	AGTGTCTGGC	2040
CAAACTTGGA	GGCAGACCAA	CGTATGAAGA	ATATTTGGGG	ACAGAGTATG	TCACGGCCAT 🍖 🤻	2100
TGCCAACCTG	AAAAAATGCT	CAACCTCCCC	GCTTCTGGAA	GCCTGCGCCT	TCCTGACGAG	2160
GTAAAGCCTG	CAAAGAAGCT	AGCCTGCCTC	CCTGGGCCTC	AGCTCCTCCC	TGCTCTCAGC	2220
CCCAATCTCC	AGGCGCGAGG	GACCTTCCTC	TCCCTTCCTG	AAGTCGGATT	TTTGCCAAGC	2280
TCATCAGTAT	TTACAATTCC	CTGCTGTCAT	TTTAGCAAGA	AATAAAATTA	GAAATGCTGT	2340
TGAAAAA						2347

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 708 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bos taurus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
 - Met Lys Leu Phe Val Pro Ala Leu Leu Ser Leu Gly Ala Leu Gly Leu 1 5 10 15
 - Cys Leu Ala Ala Pro Arg Lys Asn Val Arg Trp Cys Thr Ile Ser Gln
 20 25 30
 - Pro Glu Trp Phe Lys Cys Arg Arg Trp Gln Trp Arg Met Lys Lys Leur 35 40 45
 - Gly Ala Pro Ser Ile Thr Cys Val Arg Arg Ala Phe Ala Leu Glu Cys 50 55 60
 - Ile Pro Gly Ile Ala Glu Lys Lys Ala Asp Ala Val Thr Leu Asp Gly 65 70 75 80
 - Gly Met Val Phe Glu Ala Gly Arg Asp Pro Tyr Lys Leu Arg Pro Val 85 90 95
 - Ala Ala Glu Ile Tyr Gly Thr Lys Glu Ser Pro Gln Thr His Tyr Tyr
 100 105 110
 - Ala Val Ala Val Lys Lys Gly Ser Asn Phe Gln Leu Asp Gln Leu 115 120 125
 - Gln Gly Arg Lys Ser Cys His Thr Gly Leu Gly Arg Ser Ala Gly Trp 130 135 140
 - Ile Ile Pro Met Gly Ile Leu Arg Pro Tyr Leu Ser Trp Thr Glu Ser 145 150 155 160
 - Leu Glu Pro Leu Gln Gly Ala Val Ala Lys Phe Phe Ser Ala Ser Cys
 165 170 175
 - Val Pro Cys Ile Asp Arg Gln Ala Tyr Pro Asn Leu Cys 180 185 190
 - Lys Gly Glu Gly Glu Asn Gln Cys Ala Cys Ser Ser Arg Glu Pro Tyr 195 200 205
 - Phe Gly Tyr Ser Gly Ala Phe Lys Cys Leu Gln Asp Gly Ala Gly Asp 210 215 220
 - Val Ala Phe Val Lys Glu Thr Thr Val Phe Glu Asn Leu Pro Glu Lys 225 230 235 240

Ala Asp Arg Asp Gln Tyr Glu Leu Leu Cys Leu Asn Asn Ser Arg Ala 245 Pro Val Asp Ala Phe Lys Glu Cys His Leu Ala Gln Val Pro Ser His Ala Val Val Ala Arg Ser Val Asp Gly Lys Glu Asp Leu Ile Trp Lys Leu Leu Ser Lys Ala Gln Glu Lys Ser Gly Lys Asn Lys Ser Arg Ser 295 Phe Gln Leu Phe Gly Ser Pro Pro Gly Gln Arg Asp Leu Leu Phe Lys Asp Ser Ala Leu Gly Phe Leu Arg Ile Pro Ser Lys Val Asp Ser Ala Leu Tyr Leu Gly Ser Arg Tyr Leu Thr Thr Leu Lys Asn Leu Arg Glu 345 Thr Ala Glu Glu Val Lys Ala Arg Tyr Thr Arg Val Val Trp Cys Ala Val Gly Pro Glu Glu Gln Lys Lys Cys Gln Gln Trp Ser Gln Gln Ser Gly Gln Asn Val Thr Cys Ala Thr Ala Ser Thr Thr Asp Asp Cys Ile Val Leu Val Leu Lys Gly Glu Ala Asp Ala Leu Asn Leu Asp Gly Gly 405 410 Tyr Ile Tyr Thr Ala Gly Lys Cys Gly Leu Val Pro Val Leu Ala Glu Asn Arg Lys Ser Ser Lys His Ser Ser Leu Asp Cys Val Leu Arg Pro Thr Glu Gly Tyr Leu Ala Val Ala Val Val Lys Lys Ala Asn Glu Gly Leu Thr Trp Asn Ser Leu Lys Asp Lys Lys Ser Cys His Thr Ala Val Asp Arg Thr Ala Gly Trp Asn Ile Pro Met Gly Leu Ile Val Asn Gln Thr Gly Ser Cys Ala Phe Asp Glu Phe Phe Ser Gln Ser Cys Ala Pro 505 Gly Ala Asp Pro Lys Ser Arg Leu Cys Ala Leu Cys Ala Gly Asp Asp Gln Gly Leu Asp Lys Cys Val Pro Asn Ser Lys Glu Lys Tyr Tyr Gly Tyr Thr Gly Ala Phe Arg Cys Leu Ala Glu Asp Val Gly Asp Val Ala Phe Val Lys Asn Asp Thr Val Trp Glu Asn Thr Asn Gly Glu Ser Thr

	Ala	Asp	Trp	Ala 580	Lys	Asn	Leu	Asn	Arg 585	Glu	Asp	Phe	Arg	Leu 590	Leu	Cys
	Leu	Asp	Gly 595	Thr	Arg	Lys	Pro	Val 600	Thr	Glu	Ala	Gln	Ser 605	Cys	His	Leu
	Ala	Val 610	Ala	Pro	Asn	His	Ala 615	Val	Val	Ser	Arg	Ser 620	Asp	Arg	Ala	Ala
	His 625	Val	Lys	Gln	Val	Leu 630	Leu	His	Gln	Gln	Ala 635	Leu	Phe	Gly	Lys	Asn 640
	Gly	Lys	Asn	Cys	Pro 645	Asp	Lys	Phe	Cys	Leu 650	Phe	Lys	Ser	Glu	Thr 655	Lys
•	Asn	Leu	Leu	Phe 660	Asn	Asp	Asn		Glu 665	Cys	Leu	Ala	Lys	Leu 670	Gly	Gly
	Arg	Pro	Thr 675	Tyr	Glu	Glu	Tyr	Leu 680	Gly	Thr	Glu	Tyr	Val 685	Thr	Ala	Ile
	Ala	Asn 690	Leu	Lys	Lys	Cys	Ser 695	Thr	Ser	Pro	Leu	Leu 700	Glu	Ala	Cys	Ala
	Phe 705	Leu	Thr	Arg												nie de

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2259 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Sus scrofa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACATGAAGCT	CTTCATCCCC	GCCCTGCTGT	TCCTCGGGAC	ACTTGGACTG	TGTCTGGCTG	60
CCCCTAAGAA	AGGGGTTCGA	TGGTGTGTCA	TATCCACAGC	AGAGTATTCA	AAATGCCGCC	120
AGTGGCAATC	AAAGATAAGA	AGAACTAATC	CCATGTTCTG	CATAAGGAGG	GCTTCTCCCA 🐮	180
CTGACTGTAT	CCGGGCCATC	GCGGCAAAAA	GGGCAGATGC	TGTGACCCTT	GATGGTGGTT	240
TGGTGTTTGA	AGCAGACCAG	TACAAACTGC	GGCCGGTAGC	AGCGGAGATC	TACGGGACAG	300
AAGAGAATCC	CCAAACCTAC	TATTATGCTG	TGGCTGTAGT	GAAGAAAGGT	TTCAACTTTC	360
AGAACCAGCT	ACAAGGTCGA	AAGTCCTGCC	ACACAGGCCT	TGGCAGGTCT	GCCGGGTGGA	420
ATATCCCTAT	AGGGTTACTT	CGCCGGTTCT	TGGACTGGGC	AGGGCCACCT	GAGCCCCTCC	480
AGAAAGCTGT	GGCCAAATTC	TTCTCTCAGA	GCTGTGTGCC	CTGCGCAGAT	GGAAATGCGT	540
ATCCCAACCT	GTGTCAGCTG	TGCATAGGGA	AAGGGAAAGA	TAAATGTGCT	TGTTCCTCCC	600
AGGAACCGTA	TTTTGGCTAT	TCCGGTGCCT	TCAACTGTCT	GCACAAAGGG	ATTGGAGATG	660
TGGCTTTTGT	CAAGGAGAGT	ACAGTGTTTG	AGAACCTGCC	ACAGAAGGCT	GACCGGGACA	720
AATACGAGCT	ACTCTGCCCA	GACAATACTC	GAAAGCCAGT	GGAAGCATTC	AGGGAGTGCC	780
ACCTTGCCCG	GGTCCCTTCT	CATGCTGTTG	TGGCCCGAAG	TGTGAATGGC	AAGGAGAACT	840
CCATCTGGGA	GCTTCTCTAC	CAGTCACAGA	AAAAGTTTGG	AAAAAGCAAT	CCACAGGAGT	900
TCCAGCTCTT	TGGCTCTCCT	GGTCAGCAGA	AGGACCTCCT	GTTTAGAGAT	GCTACCATCG	960
GGTTTTTGAA	GATCCCCTCA	AAGATAGATT	CTAAGCTGTA	CCTGGGCCTC	CCGTACCTTA	1020
CTGCCATCCA	GGGCCTGAGG	GAAACGGCAG	CGGAGGTGGA	GGCGCGGCAG	GCGAAGGTCG	1080
TGTGGTGCGC	CGTGGGTCCA	GAGGAGCTGC	GCAAGTGCCG	GCAGTGGAGC	AGCCAGAGCA	1140
GCCAGAACCT	GAACTGCAGC	CTGGCCTCCA	CCACCGAGGA	CTGCATCGTC	CAGGTGCTGA	1200
AAGGAGAAGC	TGATGCTATG	AGCTTGGATG	GAGGATTTAT	CTACACTGCG	GGCAAGTGTG	1260
GTTTGGTGCC	TGTCCTGGCA	GAGAACCAAA	AATCTCGCCA	AAGCAGTAGC	TCAGACTGTG	1320

TGCATAGACC	AACACAAGGG	TATTTTGCCG	TGGCGGTTGT	CAGGAAAGCA	AATGGTGGTA	1380
TCACCTGGAA	CTCTGTGAGA	GGCACGAAGT	CCTGCCACAC	TGCTGTGGAC	AGGACAGCAG	1440
GCTGGAACAT	CCCCATGGGC	CTGCTTGTCA	ACCAGACAGG	CTCCTGCAAA	TTTGACGAAT	1500
TCTTTAGTCA	AAGCTGTGCT	CCTGGGTCTC	AGCCGGGATC	CAATCTCTGT	GCACTGTGTG	1560
TTGGCAATGA	CCAGGGCGTG	GACAAGTGTG	TGCCCAACAG	TAATGAGAGA	TACTATGGTT	1620
ACACCGGGGC	TTTCAGGTGC	CTGGCTGAGA	ATGCTGGGGA	TGTGGCGTTT	GTGAÄAGATG	1680
TCACTGTCTT	GGACAACACG	AATGGACAGA	ACACAGAAGA	GTGGGCCAGG	GAATTGAGGT	1740
CAGATGACTT	TGAGCTGCTG	TGCCTTGATG	GCACCAGGAA	GCCTGTGACT	GAGGCTCAGA	1800
ACTGTCACCT	GGCTGTGGCC	CCCAGTCATG	CTGTGGTCTC	TCGGAAGGAA	AAGGCAGCAC	1860
AGGTGGAACA	GGTGCTACTC	ACTGAGCAGG	CTCAGTTTGG	AAGATACGGA	AAAGACTGCC	1920
CGGACAAGTT	TTGCTTGTTC	CGGTCTGAGA	CCAAAAACCT	TCTGTTCAAC	GACAACACGG	1980
AGGTTCTGGC	CCAACTCCAA	GGCAAAACAA	CATACGAAAA	ATATTTGGGA	TCAGAGTATG	2040
TCACAGCCAT	CGCTAACCTG	AAACAGTGCT	CAGTCTCCCC	GCTTCTGGAA	GCCTGTGCCT	2100
TCATGATGAG	GTAAAACCGG	AAAAGAAGCT	GCCCGCCTCC	CCAGGGGCCT	CAGCTTTCCC	2160
TCCTCCCGTC	TTGATTCCCA	GCTGCCCTGG	GCCTGCCTCT	CTCCCTTCCT	GAGGGCAGAC	2220
TTTGTTCAGC	TCATCCGTTT	TCACAATTCC	CTCGTGCCG			2259

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 703 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Sus scrofa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Lys Leu Phe Ile Pro Ala Leu Leu Phe Leu Gly Thr Leu Gly Leu

Cys Leu Ala Ala Pro Lys Lys Gly Val Arg Trp Cys Val Ile Ser Thr

Ala Glu Tyr Ser Lys Cys Arg Gln Trp Gln Ser Lys Ile Arg Arg Thr

Asn Pro Met Phe Cys Ile Arg Arg Ala Ser Pro Thr Asp Cys Ile Arg

Ala Ile Ala Ala Lys Arg Ala Asp Ala Val Thr Leu Asp Gly Gly Leu

Val Phe Glu Ala Asp Gln Tyr Lys Leu Arg Pro Val Ala Ala Glu Ile

Tyr Gly Thr Glu Glu Asn Pro Gln Thr Tyr Tyr Tyr Ala Val Ala Val

Val Lys Lys Gly Phe Asn Phe Gln Asn Gln Leu Gln Gly Arg Lys Ser

Cys His Thr Gly Leu Gly Arg Ser Ala Gly Trp Asn Ile Pro Ile Gly

Leu Leu Arg Arg Phe Leu Asp Trp Ala Gly Pro Pro Glu Pro Leu Gln 145

Lys Ala Val Ala Lys Phe Phe Ser Gln Ser Cys Val Pro Cys Ala Asp 170

Gly Asn Ala Tyr Pro Asn Leu Cys Gln Leu Cys Ile Gly Lys Gly Lys

Asp Lys Cys Ala Cys Ser Ser Gln Glu Pro Tyr Phe Gly Tyr Ser Gly

Ala Phe Asn Cys Leu His Lys Gly Ile Gly Asp Val Ala Phe Val Lys

Glu Ser Thr Val Phe Glu Asn Leu Pro Gln Lys Ala Asp Arg Asp Lys 225 230

Tyr Glu Leu Cys Pro Asp Asn Thr Arg Lys Pro Val Glu Ala Phe Arg Glu Cys His Leu Ala Arg Val Pro Ser His Ala Val Val Ala Arg Ser Val Asn Gly Lys Glu Asn Ser Ile Trp Glu Leu Leu Tyr Gln Ser 280 Gln Lys Lys Phe Gly Lys Ser Asn Pro Gln Glu Phe Gln Leu Phe Gly 295 Ser Pro Gly Gln Gln Lys Asp Leu Leu Phe Arg Asp Ala Thr Ile Gly Phe Leu Lys Ile Pro Ser Lys Ile Asp Ser Lys Leu Tyr Leu Gly Leu 330 Pro Tyr Leu Thr Ala Ile Gln Gly Leu Arg Glu Thr Ala Ala Glu Val 345 Glu Ala Arg Gln Ala Lys Val Val Trp Cys Ala Val Gly Pro Glu Glu Leu Arg Lys Cys Arg Gln Trp Ser Ser Gln Ser Ser Gln Asn Leu Asn Cys Ser Leu Ala Ser Thr Thr Glu Asp Cys Ile Val Gln Val Leu Lys Gly Glu Ala Asp Ala Met Ser Leu Asp Gly Gly Phe Ile Tyr Thr Ala Gly Lys Cys Gly Leu Val Pro Val Leu Ala Glu Asn Gln Lys Ser Arg Gln Ser Ser Ser Ser Asp Cys Val His Arg Pro Thr Gln Gly Tyr Phe Ala Val Ala Val Val Arg Lys Ala Asn Gly Gly Ile Thr Trp Asn Ser 455 Val Arg Gly Thr Lys Ser Cys His Thr Ala Val Asp Arg Thr Ala Gly Trp Asn Ile Pro Met Gly Leu Leu Val Asn Gln Thr Gly Ser Cys Lys 485 Phe Asp Glu Phe Phe Ser Gln Ser Cys Ala Pro Gly Ser Gln Pro Gly 505 Ser Asn Leu Cys Ala Leu Cys Val Gly Asn Asp Gln Gly Val Asp Lys 520 Cys Val Pro Asn Ser Asn Glu Arg Tyr Tyr Gly Tyr Thr Gly Ala Phe Arg Cys Leu Ala Glu Asn Ala Gly Asp Val Ala Phe Val Lys Asp Val 555 Thr Val Leu Asp Asn Thr Asn Gly Gln Asn Thr Glu Glu Trp Ala Arg 570 565