Contents

Contents 0.1 Lemmas from other pdf 0.2 Proof	
0.1 Lemmas from other pdf	
ma:lifting_order_not_relevant $ angle$ Lemma 1. $\ell_{\Gamma}[\ell_{\Delta}[arphi]] = \ell_{\Delta}[\ell_{\Gamma}[arphi]].$	

0.2 Proof

Definition 2 (Substitution $\tau(\iota)$). For an inference ι with $\sigma = \operatorname{mgu}(\iota)$, we define the infinite substitution $\tau(\iota)$ with $\operatorname{dom}(\tau(\iota)) = \operatorname{dom}(\sigma) \cup \{z_s \mid s\sigma \neq s\}$ as follows for a variable x:

define in-

finite substitutions

properly and apply definition

here

$$x\tau(\iota) = \begin{cases} x\sigma & x \text{ is a non-lifting variable} \\ z_{t\sigma} & x \text{ is a lifting variable } z_t \end{cases}$$

If the inference ι is clear from the context, we abbreviate $\tau(\iota)$ by τ .

(lemma:lifting_tau_commute) Lemma 3. For a formula or term φ and an inference ι such that $\tau = \tau(\iota)$, $\ell[\ell[\varphi]\tau] = \ell[\varphi\tau]$.

Proof. We proceed by induction.

• Suppose that t is a grey constant or function symbol of the form $f(t_1, \ldots, t_n)$. Then we can derive the following, where (IH) signifies a deduction by virtue of the induction hypothesis.

$$\ell[\ell[t]\tau] = \ell[\ell[f(t_1, \dots, t_n)]\tau]$$

$$= \ell[f(\ell[t_1]\tau, \dots, \ell[t_n]\tau)]$$

$$= f(\ell[\ell[t_1]\tau], \dots, \ell[\ell[t_n]\tau])$$

$$\stackrel{\text{(IH)}}{=} f(\ell[t_1\tau], \dots, \ell[t_n\tau])$$

$$= \ell[f(t_1, \dots, t_n)\tau]$$

$$= \ell[t\tau]$$

• Suppose that t is a colored constant or function symbol. Then:

$$\ell[\ell[t]\tau] = \ell[z_t\tau] = \ell[z_{t\sigma}] = z_{t\sigma} = \ell[t\sigma] = \ell[t\tau]$$

• Suppose that t is a variable x. Then:

$$\ell[\ell[t]\tau] = \ell[\ell[x]\tau] = \ell[x\tau] = \ell[t\tau]$$

• Suppose that t is a lifting variable z_t . Then:

$$\ell[\ell[z_t]\tau] = \ell[z_t\tau] \qquad \Box$$

Definition 4 (Incrementally lifted interpolant). Let π be a resolution refutation of $\Gamma \cup \Delta$. We define $LI(\pi)$ and $LI_{cl}(\pi)$ to be $LI(\square)$ and $LI_{cl}(\square)$ respectively, where \square is the empty clause derived in π .

Let C be a clause in π . For a literal λ in C, we denote the corresponding literal in $\mathrm{LI}_{\mathrm{cl}}(C)$ by λ_{LIcl} , whose existence is ensured Lemma 5.

We define LI(C) and $LI_{cl}(C)$ as follows:

Base case. If $C \in \Gamma$, $LI(C) \stackrel{\text{def}}{=} \bot$. If otherwise $C \in \Delta$, $LI(C) \stackrel{\text{def}}{=} \top$. In any case, $LI_{cl}(C) \stackrel{\text{def}}{=} \ell[C]$.

Resolution. If the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ using a unifier σ such that $l\sigma = l'\sigma$, then define $\mathrm{LI}(C)$ and $\mathrm{LI}_{\mathrm{cl}}(C)$ as follows:

$$\mathrm{LI}_{\mathrm{cl}}(C) \stackrel{\mathrm{def}}{=} \ell[(\mathrm{LI}_{\mathrm{cl}}(C_1) \backslash \{l_{\mathrm{LIcl}}\})\tau] \ \lor \ \ell[(\mathrm{LI}_{\mathrm{cl}}(C_2) \backslash \{l_{\mathrm{LIcl}}'\})\tau]$$

- 1. If l is Γ-colored: LI(C) $\stackrel{\text{def}}{=} \ell[\text{LI}(C_1)\tau] \vee \ell[\text{LI}(C_2)\tau]$
- 2. If l is Δ -colored: $LI(C) \stackrel{\text{def}}{=} \ell[LI(C_1)\tau] \wedge \ell[LI(C_2)\tau]$
- 3. If l is grey: $LI(C) \stackrel{\text{def}}{=} (\ell[l_{LIcl}\tau] \wedge \ell[LI(C_2)\tau]) \vee (\neg \ell[l'_{LIcl}\tau] \wedge \ell[LI(C_1)\tau])$

Factorisation. If the clause C is the result of a factorisation step ι of C_1 : $l \vee l' \vee D$ using a unifier σ such that $l\sigma = l'\sigma$, then $\mathrm{LI}(C) \stackrel{\mathrm{def}}{=} \ell[\mathrm{LI}(C_1)\tau]$ and $\mathrm{LI}_{\mathrm{cl}}(C) \stackrel{\mathrm{def}}{=} \ell[(\mathrm{LI}_{\mathrm{cl}}(C_1)\setminus\{l'_{\mathrm{LIcl}}\})\tau]$.

vs_clause_plus_literals_equal \rangle Lemma 5. Let C be a clause in a resolution refutation of $\Gamma \cup \Delta$.

Then for every literal λ in C, there exists a literal λ_{LIcl} in $LI_{cl}(C)$ such that $\lambda_{LIcl} = \ell[\lambda]$ and for resolved or factorised literals l and l' of a resolution or factorisation inference ι , we have that $\ell[l_{LIcl}\tau] = \ell[l'_{LIcl}\tau]$.

Proof. We proceed by induction.

Base case. For $C \in \Gamma \cup \Delta$, $LI_{cl}(C)$ is defined to be $\ell[C]$.

Resolution/Factorisation. Suppose the clause C is the result of a resolution or factorisation inference ι of the clauses \bar{C} with $\sigma = \text{mgu}(\iota)$.

Every literal in C is of the form $\lambda \sigma$ for a literal λ in $C_i \in \overline{C}$.

By the induction hypothesis, $\ell[\lambda]$ occurs in $\mathrm{LI}_{\mathrm{cl}}(C_i)$. By the construction of $\mathrm{LI}_{\mathrm{cl}}(C)$ and as λ is not a resolved or factorised literal, $\mathrm{LI}_{\mathrm{cl}}(C)$ contains a literal of the form $\ell[\ell[\lambda]\tau]$. But by Lemma 3, this is nothing else than $\ell[\lambda\tau]$. As λ occurs in the resolution derivation, it does not contain lifting variables. Hence we get by the definition of τ that $\ell[\lambda\tau] = \ell[\lambda\sigma]$.

Let l and l' be the resolved or factorised literals of ι . In order to show that $\ell[l_{\text{LIcl}}\tau] = \ell[l'_{\text{LIcl}}\tau]$, consider that by the induction hypothesis, this is nothing else than $\ell[\ell[l]\tau] = \ell[\ell[l']\tau]$. But by applying a similar argument as above, this equation is equivalent to $\ell[l\sigma] = \ell[l'\sigma]$, which is implied by $l\sigma = l'\sigma$.

Definition 6. $LI^{\Delta}(C)$ and $LI_{cl}^{\Delta}(C)$ for a clause C are defined as LI(C) and $LI_{cl}(C)$ respectively with the difference that in its inductive definition, every lifting $\ell[\varphi]$ for a formula or term φ is replaced by a lifting of only the Δ -terms $\ell_{\Delta}[\varphi]$.

Remark. Many results involving LI(C) or $LI_{cl}(C)$ are valid for $LI^{\Delta}(C)$ or $LI_{cl}^{\Delta}(C)$ in a formulation which is adapted accordingly. This can easily be seen by the following proof idea:

Let f_1, \ldots, f_n be all Γ -colored function or constant symbols occurring in C, c a fresh constant symbol and g a fresh n-ary function symbol. Construct a formula $\varphi: g(t_1, \ldots, t_n) = g(t_1, \ldots, t_n)$, such that $t_i = f_i(c_1, \ldots, c_m)$ for $1 \leq i \leq n$ where m is the arity of f_i and $c_j = c$ for $1 \leq j \leq m$. Let $\Delta' = \Delta \cup \{\varphi\}$ and apply the desired result to the initial clause sets Γ and Δ' .

Under this construction, every originally Γ -colored symbol is now grey, which implies that $LI(C) = LI^{\Delta}(C)$ as well as $LI_{cl}(C) = LI_{cl}^{\Delta}(C)$. $\Delta \models \psi \Leftrightarrow \Delta' \models \psi$ for any formula ψ .

 $\langle \text{lemma:no_colored_terms} \rangle$ Lemma 7. Let C be a clause of a resolution refutation of $\Gamma \cup \Delta$. LI(C) and $LI_{cl}(C)$ do not contain colored symbols.

> *Proof.* For LI(C) and $LI_{cl}(C)$, consider the following: In the base case of the inductive definitions of LI(C) and $LI_{cl}(C)$, no colored symbols occur. In the inductive steps, any colored symbol which is added by τ to intermediary formulas is lifted.

 $\langle \text{lemma:substitute_and_lift} \rangle$ Lemma 8. Let σ be a substitution and F a formula without Φ -colored terms such that for a set of formulas Ψ which does not contain Φ -lifting variables, $\Psi \vDash F$. Then $\Psi \vDash \ell_{\Phi}[F\sigma]$.

> *Proof.* $\ell_{\Phi}[F\sigma]$ is an instance of F: σ substitutes variables either for terms which do not contain Φ -colored symbols or by terms containing Φ -colored symbols. For the first kind, the lifting has no effect. For the latter, the lifting only replaces subterms of the terms introduced by the substitution by a lifting variable such that the original structure of F remains invariant as it by assumption does not contain colored terms.

 $\langle \text{lemma:gamma_proves_pide} \rangle$ Lemma 9. Let C be a clause in a resolution refutation of $\Gamma \cup \Delta$. Then $\Gamma \models LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C).$

Proof. We proceed by induction of the strengthening $\Gamma \models LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C_{\Gamma})$.

Base case. For
$$C \in \Gamma$$
, $LI_{cl}^{\Delta}(C_{\Gamma}) = \ell_{\Delta}[C] = C$. Hence $\Gamma \models LI_{cl}^{\Delta}(C_{\Gamma})$.
For $C \in \Delta$, $LI^{\Delta}(C) = \top$, so $\Gamma \models LI^{\Delta}(C)$.

Resolution. Suppose the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ with $\sigma = \text{mgu}(\iota)$.

We define the following abbreviations:

$$\mathrm{LI}_{\mathrm{cl}}^{\Delta}((C_1)_{\Gamma})^* = \mathrm{LI}_{\mathrm{cl}}^{\Delta}((C_1)_{\Gamma} \setminus \{l_{\mathrm{LIcl}^{\Delta}}\})$$

$$\mathrm{LI}_{\mathrm{cl}}^{\Delta}((C_2)_{\Gamma})^* = \mathrm{LI}_{\mathrm{cl}}^{\Delta}((C_2)_{\Gamma} \setminus \{\neg l'_{\mathrm{LIcl}^{\Delta}}\})$$

Hence the induction hypothesis can be stated as follows:

$$\Gamma \models \mathrm{LI}^{\Delta}(C_1) \vee \mathrm{LI}_{\mathrm{cl}}^{\Delta}((C_1)_{\Gamma})^* \vee (l_{\mathrm{LIcl}^{\Delta}})_{\Gamma}$$

$$\Gamma \models \mathrm{LI}^{\Delta}(C_2) \vee \mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_2)_{\Gamma})^* \vee \neg (l'_{\mathrm{LIcl}^{\Delta}})_{\Gamma}$$

By Lemma 7, $LI^{\Delta}(C_i)$ and $LI^{\Delta}_{cl}(C_i)$ for $i \in \{1, 2\}$ do not contain Δ -colored terms. Hence we are able to apply Lemma 8 in order to obtain

$$\Gamma \stackrel{(\circ)}{\models} \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_1)\tau] \vee \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_1)_{\Gamma})^*\tau] \vee \ell_{\Delta}[(l_{\mathrm{LIcl}^{\Delta}})_{\Gamma}\tau]$$

$$\Gamma \stackrel{(*)}{\vDash} \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_2)\tau] \vee \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_2)_{\Gamma})^*\tau] \vee \neg \ell_{\Delta}[(l'_{\mathrm{LIcl}^{\Delta}})_{\Gamma}\tau]$$

By Lemma 5, we obtain that $\ell_{\Delta}[l_{LIcl^{\Delta}}\tau] = \ell_{\Delta}[l'_{LIcl^{\Delta}}\tau]$.

Now we distinguish cases based on the color of the resolved literal:

• Suppose that l is Γ -colored. Then as $\ell_{\Delta}[l_{\mathrm{LIcl}\Delta}\tau] = \ell_{\Delta}[l'_{\mathrm{LIcl}\Delta}\tau]$, we can perform a resolution step on (\circ) and (*), which gives that $\Gamma \models \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_1)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}((C_1)_{\Gamma})^*\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_2)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}((C_2)_{\Gamma})^*\tau]$. This however is nothing else than $\Gamma \models \mathrm{LI}^{\Delta}(C) \lor \mathrm{LI}^{\Delta}(C)$.

• Suppose that l is Δ -colored. Then (\circ) and (*) simply to the following:

$$\Gamma \vDash \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_1)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_1)_{\Gamma})^*\tau]$$

$$\Gamma \vDash \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_2)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_2)_{\Gamma})^*\tau]$$

These however imply that $\Gamma \models \operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_1)_{\Gamma})^* \vee \operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_2)_{\Gamma})^* \vee (\ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau] \wedge \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_2)\tau])$, which is nothing else than $\Gamma \models \operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}_{\operatorname{cl}}^{\Delta}(C)$.

• Suppose that l is grey. Suppose that M is a model of Γ such that $M \not\models \operatorname{LI}_{\operatorname{cl}}^{\Delta}(C)$, i.e. $M \not\models \ell_{\Delta}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_1)_{\Gamma})^*\tau] \vee \ell_{\Delta}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_2)_{\Gamma})^*\tau]$. Then $M \models \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau] \vee \ell_{\Delta}[l_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau]$ as well as $M \models \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_2)\tau] \vee -\ell_{\Delta}[l'_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau]$. Due to $\ell_{\Delta}[l_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau] = \ell_{\Delta}[l'_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau]$, we obtain that $M \models (\ell_{\Delta}[l_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau] \wedge \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_2)\tau]) \vee (-\ell_{\Delta}[l'_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau] \wedge \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau])$, which is nothing else than $M \models \operatorname{LI}^{\Delta}(C)$.

Factorisation. Suppose the clause C is the result of a factorisation inference ι of $C_1: l \vee l' \vee D$ with $\sigma = \text{mgu}(\iota)$.

We introduce the abbreviation $LI_{cl}^{\Delta}((C_1)_{\Gamma})^* = LI_{cl}^{\Delta}((C_1)_{\Gamma} \setminus \{l_{LIcl}^{\Delta}, \neg l'_{LIcl}^{\Delta}\})$ and express the induction hypothesis as follows:

$$\Gamma \models \mathrm{LI}^{\Delta}(C_1) \vee \mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_1)_{\Gamma})^* \vee (l_{\mathrm{LIcl}^{\Delta}})_{\Gamma} \vee \neg (l'_{\mathrm{LIcl}^{\Delta}})_{\Gamma}$$

By Lemma 7, $LI^{\Delta}(C_i)$ and $LI^{\Delta}_{cl}(C_i)$ for $i \in \{1, 2\}$ do not contain Δ -colored terms. Hence we are able to apply Lemma 8 in order to obtain

$$\Gamma \overset{(*)}{\vDash} \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_{1})\tau] \vee \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_{1})_{\Gamma})^{*}\tau] \vee \ell_{\Delta}[(l_{\mathrm{LIcl}^{\Delta}})_{\Gamma}\tau] \vee \neg \ell_{\Delta}[(l'_{\mathrm{LIcl}^{\Delta}})_{\Gamma}\tau]$$

As by Lemma 5 we get that $\ell_{\Delta}[l_{\mathrm{LIcl}^{\Delta}}\tau] = \ell_{\Delta}[l'_{\mathrm{LIcl}^{\Delta}}\tau]$, we can perform a factorisation step on (*) to obtain that $\Gamma \models \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_1)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}((C_1)_{\Gamma})^*\tau] \lor \ell_{\Delta}[(l_{\mathrm{LIcl}^{\Delta}})_{\Gamma}\tau]$. But this is nothing else than $\Gamma \models \mathrm{LI}^{\Delta}(C) \lor \mathrm{LI}^{\Delta}_{\mathrm{cl}}(C_{\Gamma})$.

?(def:arrow_quantifier_block)? **Definition 10** (Quantifier block). Let C be a clause in a resolution refutation π of $\Gamma \cup \Delta$ and \bar{x} the Δ -lifting variables and \bar{y} the Γ -lifting variables occurring in LI(C) and LI_{cl}(C). Q(C) denotes an arrangement of the elements of $\{\forall x_t \mid x_t \in \bar{x}\} \cup \{\exists y_t \mid y_t \in \bar{y}\}$ such that for two lifting variable z_s and z_r , if s is a subterm of r, then z_s is listed before z_r . We denote $Q(\Box)$ by $Q(\pi)$.

 $\langle \text{lemma:gamma_lifted_lide} \rangle$ Lemma 11. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\ell_{\Gamma}[\text{LI}^{\Delta}(C)] = \text{LI}(C)$ and $\ell_{\Gamma}[\text{LI}^{\Delta}(C)] = \text{LI}_{cl}(C)$.

Proof. We proceed by induction.

Base case. For $C \in \Gamma \cup \Delta$, $\operatorname{LI}^{\Delta}_{\operatorname{cl}}(C) = \ell_{\Delta}[C]$. By Lemma 1, $\ell_{\Gamma}[\ell_{\Delta}[C]] = \ell[C]$, so $\ell_{\Gamma}[\operatorname{LI}^{\Delta}_{\operatorname{cl}}C] = \ell[C] = \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C)$.

 $LI^{\Delta}(C)$ does not contain colored symbols.

Inductions step. Suppose the clause C is the result of a resolution or factorisation inference ι of the clauses \bar{C} .

Every literal in LI(C) or $LI_{cl}(C)$ is of the form $\ell[\lambda\tau]$ for some λ in $LI(C_i)$ or $LI_{cl}(C_i)$ for some $C_i \in \bar{C}$.

Every literal in $LI^{\Delta}(C)$ or $LI_{cl}^{\Delta}(C)$ is of the form $\ell_{\Delta}[\lambda \tau]$ for some λ in $LI^{\Delta}(C_i)$ or $LI_{cl}^{\Delta}(C_i)$ for some $C_i \in \bar{C}$.

Hence it suffices to show that for a literal λ in $LI^{\Delta}(C_i)$ or $LI^{\Delta}_{cl}(C_i)$ and its corresponding literal κ in $LI(C_i)$ or $LI_{cl}(C_i)$ for some $C_i \in \bar{C}$ that $\ell_{\Gamma}[\ell_{\Delta}[\lambda\tau]] = \ell[\kappa\tau].$

By the induction hypothesis, $\ell_{\Gamma}[\lambda] = \kappa$. By Lemma 7, no Δ -terms occur in λ . Hence $\ell[\lambda] = \kappa$ and also $\ell[\ell[\lambda]\tau] = \ell[\kappa\tau]$. By Lemma 3, $\ell[\lambda\tau] =$ $\ell[\kappa\tau]$, which by Lemma 1 is nothing else than $\ell_{\Gamma}[\ell_{\Delta}[\lambda\tau]] = \ell[\kappa\tau]$.

gamma_proves_quantified_lide \rangle Lemma 12. For a clause C of a resolution refutation of Γ \cup Δ , Γ \vDash $Q(C)(LI(C) \vee LI_{cl}(C)).$

Proof. By Lemma 11 $\ell_{\Gamma}[LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)] = LI(C) \vee LI_{cl}(C)$. By Lemma 9, $\Gamma \models LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)$. Hence the terms in $LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)$ provide witness terms for the Γ -lifting variables in $LI(C) \vee LI_{cl}(C)$, which are existentially quantified in $Q(C)(LI(C) \vee LI_{cl}(C))$.

Furthermore, the ordering imposed on the quantifiers in Q(C) implies that if a Δ -lifting variable x_s occurs in a witness term for a Γ -lifting variable y_r, y_r is quantified in the scope of the quantifier of x_s as s is a subterm of r. This however ensures that the witness terms are valid.

 $\langle \text{lemma:li_symmetry} \rangle$ Lemma 13. Let π be a refutation of $\Gamma \cup \Delta$ and $\hat{\pi}$ be π with $\hat{\Gamma} = \Delta$ and $\hat{\Delta} = \Gamma$. Then for a clause C in π and its corresponding clause \hat{C} in $\hat{\pi}$, $Q(C)(LI(C)) \Leftrightarrow Q(C)(LI(C)).$

> *Proof.* Note that LI_{cl} is defined irrespective of the coloring, so $LI_{cl}(C) =$ $LI_{cl}(\hat{C}).$

> Consider furthermore that liftings variables of C and \hat{C} only differ in the variable symbol, but not in the index, and that the quantifier type of any given lifting variable in C is exactly contrary to the corresponding one in \hat{C} . Hence for any formula ϕ , $Q(C)\neg\phi \Leftrightarrow \neg Q(\hat{C})\phi$.

It remains to show that $LI(C) \Leftrightarrow \neg LI(\hat{C})$, which we do be induction:

Base case. If $C \in \Gamma$, then $LI(C) = \bot \Leftrightarrow \neg \top \Leftrightarrow \neg LI(\hat{C})$ as $\hat{C} \in \Delta$. The case for $C \in \Delta$ can be argued analogously.

Resolution. Suppose the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ with $\sigma = \text{mgu}(\iota)$.

As τ depends only on σ , τ is the same for both π and $\hat{\pi}$.

We now distinguish the following cases:

1. l is Γ -colored:

$$\begin{split} \operatorname{LI}(C) &= \ell[\operatorname{LI}(C_1)\tau] \vee \ell[\operatorname{LI}(C_2)\tau] \\ \Leftrightarrow \neg(\neg \ell[\operatorname{LI}(C_1)\tau] \wedge \neg \ell[\operatorname{LI}(C_2)\tau]) \\ \Leftrightarrow \neg(\ell[\operatorname{LI}(\hat{C}_1)\tau] \wedge \ell[\operatorname{LI}(\hat{C}_2)\tau]) \\ &= \neg \operatorname{LI}(\hat{C}) \end{split}$$

- 2. l is Δ -colored: This case can be argued analogously
- 3. l is grey: Note that by Lemma 5, $\ell[l_{\text{LIcl}}\tau] = \ell[l'_{\text{LIcl}}\tau]$ (*).

$$\begin{split} \operatorname{LI}(C) &= \left(\neg \ell[l'_{\operatorname{LIcl}}\tau] \wedge \ell[\operatorname{LI}(C_1)\tau] \right) \vee \left(\ell[l_{\operatorname{LIcl}}\tau] \wedge \ell[\operatorname{LI}(C_2)\tau] \right) \\ &\stackrel{(*)}{\Leftrightarrow} \left(\ell[l'_{\operatorname{LIcl}}\tau] \vee \ell[\operatorname{LI}(C_1)\tau] \right) \wedge \left(\neg \ell[l_{\operatorname{LIcl}}\tau] \vee \ell[\operatorname{LI}(C_2)\tau] \right) \\ & \Leftrightarrow \neg \left(\left(\neg \ell[l'_{\operatorname{LIcl}}\tau] \wedge \neg \ell[\operatorname{LI}(C_1)\tau] \right) \vee \left(\ell[l_{\operatorname{LIcl}}\tau] \wedge \neg \ell[\operatorname{LI}(C_2)\tau] \right) \right) \\ &= \neg \left(\left(\neg \ell[\hat{l}'_{\operatorname{LIcl}}\tau] \wedge \ell[\operatorname{LI}(\hat{C}_1)\tau] \right) \vee \left(\ell[\hat{l}_{\operatorname{LIcl}}\tau] \wedge \ell[\operatorname{LI}(\hat{C}_2)\tau] \right) \right) \\ &= \operatorname{LI}(\hat{C}) \end{split}$$

Factorisation. Suppose the clause C is the result of a factorisation ι of C_1 : $l \vee l' \vee D$ with $\sigma = \text{mgu}(\iota)$.

Then $LI(C) = \ell[LI(C_1)\tau]$, so the construction is not influenced by the coloring and the induction hypothesis gives the result.

Theorem 14. Let π be a resolution refutation of $\Gamma \cup \Delta$. Then $LI(\pi)$ is an interpolant.

Proof. By Lemma 12 $\Gamma \models Q(\pi)(\operatorname{LI}(\pi) \vee \operatorname{LI}_{\operatorname{cl}}(\pi))$. But as $\operatorname{LI}_{\operatorname{cl}}(\pi) = \square$, this simplifies to $\Gamma \models Q(\pi)\operatorname{LI}(\pi)$.

By constructing a proof $\hat{\pi}$ from π with $\hat{\Gamma} = \Delta$ and $\hat{\Delta} = \Gamma$, we obtain by Lemma 12 that $\hat{\Gamma} \models Q(\hat{\pi}) \operatorname{LI}(\hat{\pi})$. By Lemma 13, this however is nothing else than $\Delta \models \neg Q(\pi) \operatorname{LI}(\pi)$.

As furthermore by construction no colored symbols occur in $Q(\pi) \operatorname{LI}(\pi)$, this formula is an interpolant for $\Gamma \cup \Delta$.