COL215 Assignment-2

SOURAV(2019CS10404) HARSH TANWAR(2019CS10432)

April 2022

1 Introduction

In lab we design a combination circuit that takes a decimal/hexadecimal digit encoded using 4 bits and produces 7-bit output for seven segment displays of BASYS3 FPGA board. For simulation and implementation of our VHDL code, we use viavdo software.

2 Steps Performed in this Assignment

- 1. We create an entity for our inputs and outputs (here we are using 4 Buttons for the input and 7 segment for the output).
- 2. We crate the truth table.
- 3. From the truth table, we create a k-map and find each output in terms of inputs.
- 4. Then we write the architecture of our VHDL code and run simulations and check the outputs.
- 5. Then we write the constraints file for our code.
- 6. After this we Synthesize and implement our project and generate a bitstream.
- 7. Finally, we download the bitstream in the FPGA board and check outputs for all possible values (0-9, and A-F).

3 Resources Utilization

Resource	Count
LUT Memory	0
LUT logic	4
DSP	0
Flip Flops	0
BRAM	0

Cell	Count
LUT4	7
IBUF	4
OBUF	11

4 Digital Circuit for 7 segment Display

5 Expressions Derivation Truth Table

В3	B2	B1	В0	A	В	С	D	Е	F	G
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	0	0
1	0	1	0	0	0	0	1	0	0	0
1	0	1	1	1	1	0	0	0	0	0
1	1	0	0	0	1	1	0	0	0	1
1	1	0	1	1	0	0	0	0	1	0
1	1	1	0	0	1	1	0	0	0	0
1	1	1	1	0	1	1	1	0	0	0

Use Karnaugh map for finding the boolean expression for the outputs.

$$B = B_0 B_1 B_2 + \overline{B_0} B_1 B_2 + B_0 \overline{B_1} B_2 \overline{B_3} + \overline{B_0} \overline{B_1} B_2 B_3$$

11 11

6 Simulation of 7 segment Display

7 FPGA output

