- 1 import numpy as np
- 2 import matplotlib.pyplot as plt
- 3 import pandas as pd
- 4 from sklearn.preprocessing import MinMaxScaler

1 data = pd.read_csv('/content/2022-04-25-copy.csv', date_parser = True)
2 data.tail()

	date	<pre>estimated_transaction_volume</pre>	close_price	open_price	high_price	low_
4801	2/24/2022	172501.0	38376.88	37253.26	39720.00	34
4802	2/25/2022	136990.0	39231.64	38360.93	39727.97	38
4803	2/26/2022	61083.0	39146.66	39242.64	40330.99	38
4804	2/27/2022	47577.0	37712.68	39146.66	39886.92	37
4805	2/28/2022	47577.0	43178.98	37717.10	44256.08	37
4						•

- data_training = data[data['date']< '2022-31-01'].copy()</pre>
- 2 data_training

	date	estimated_transaction_volume	close_price	open_price	high_price	low_
0	1/2/2009	0.0	0.00	0.00	0.00	
1	1/3/2009	0.0	0.00	0.00	0.00	
2	1/4/2009	0.0	0.00	0.00	0.00	
3	1/5/2009	0.0	0.00	0.00	0.00	
4	1/6/2009	0.0	0.00	0.00	0.00	
4801	2/24/2022	172501.0	38376.88	37253.26	39720.00	34
4802	2/25/2022	136990.0	39231.64	38360.93	39727.97	38
4803	2/26/2022	61083.0	39146.66	39242.64	40330.99	38
4804	2/27/2022	47577.0	37712.68	39146.66	39886.92	37
4805	2/28/2022	47577.0	43178.98	37717.10	44256.08	37
2024 rd	ows × 6 colur	mns				
4						•

¹ data_test = data[data['date']< '2022-31-01'].copy()</pre>

² data_test

	date	estimated_transaction_volume	close_price	open_price	high_price	low_
0	1/2/2009	0.0	0.00	0.00	0.00	
1	1/3/2009	0.0	0.00	0.00	0.00	
2	1/4/2009	0.0	0.00	0.00	0.00	
3	1/5/2009	0.0	0.00	0.00	0.00	
4	1/6/2009	0.0	0.00	0.00	0.00	
4801	2/24/2022	172501.0	38376.88	37253.26	39720.00	34
4802	2/25/2022	136990.0	39231.64	38360.93	39727.97	38
4803	2/26/2022	61083.0	39146.66	39242.64	40330.99	38
4804	2/27/2022	47577.0	37712.68	39146.66	39886.92	37
4805	2/28/2022	47577.0	43178.98	37717.10	44256.08	37
2024 rc	ws × 6 colur	nns				

- 1 training_data = data_training.drop(['date'], axis = 1)
- 2 training_data.head()

	<pre>estimated_transaction_volume</pre>	close_price	open_price	high_price	low_price	1
0	0.0	0.0	0.0	0.0	0.0	
1	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	0.0	

```
1 scaler = MinMaxScaler()
```

```
array([[0.
                 , 0.
                            , 0.
                                         , 0.
                                                     , 0.
                                                                 ],
                 , 0.
                                        , 0.
                                                     , 0.
      [0.
                            , 0.
                                                                 ],
      [0.
                 , 0.
                            , 0.
                                         , 0.
                                                     , 0.
                                                                 ],
      \hbox{\tt [0.01149655, 0.57944404, 0.5809637, 0.5845071, 0.58264151],}
      [0.00895456, 0.55821845, 0.57954278, 0.5780713 , 0.55872815],
      [0.00895456, 0.63912995, 0.558379 , 0.64139246, 0.56556966]])
```

² training_data = scaler.fit_transform(training_data)

³ training_data

¹ X_train = []

² Y_train = []

³ training data.shape[0]

```
4
    for i in range(60, training_data.shape[0]):
5
      X_train.append(training_data[i-60:i])
      Y_train.append(training_data[i,0])
6
7
    X_train, Y_train = np.array(X_train), np.array(Y_train)
   Y train.shape
    (1964,)
1 # from tensorflow.keras import Sequential
2 # from tensorflow.keras.layers import Dense, LSTM, Dropout
3 # #Initialize the RNN
4 # model = Sequential()
5 # model.add(LSTM(units = 50, activation = 'relu', return_sequences = True, input_shape =
6 # model.add(Dropout(0.2))
7 # model.add(LSTM(units = 60, activation = 'relu', return_sequences = True))
8 # model.add(Dropout(0.3))
9 # model.add(LSTM(units = 80, activation = 'relu', return_sequences = True))
10 # model.add(Dropout(0.4))
11 # model.add(LSTM(units = 120, activation = 'relu'))
12 # model.add(Dropout(0.5))
13 # model.add(Dense(units =1))
14 # model.summary()
```

Model: "sequential"

Layer (type)	Output Sha	ape	Param #
lstm (LSTM)	(None, 60	 , 50)	11200
dropout (Dropout)	(None, 60	, 50)	0
lstm_1 (LSTM)	(None, 60	, 60)	26640
dropout_1 (Dropout)	(None, 60	, 60)	0
lstm_2 (LSTM)	(None, 60	, 80)	45120
dropout_2 (Dropout)	(None, 60	, 80)	0
lstm_3 (LSTM)	(None, 12	0)	96480
<pre>dropout_3 (Dropout)</pre>	(None, 12	0)	0
dense (Dense)	(None, 1)		121

Total params: 179,561 Trainable params: 179,561 Non-trainable params: 0

- The network contains an input layer
- a 1D convolutional layer
- · the multi-scale residual module
- an LSTM layer
- a fully connected layer
- · an output layer


```
1 #1D kernal
 2 from keras.layers import Input, Dense, LSTM, MaxPooling1D, Conv1D
 3 from keras.models import Model
4 import tensorflow as tf
 5 #input
 6 input_layer = Input(shape=(X_train.shape[1], 5))
 7 #Conv 1D Layer
8 conv1 = Conv1D(filters=16,
 9
                  kernel size=1,
10
                  strides=1,
11
                  activation='relu',
12
                  padding='same')(input layer)
13 #MRC
14 l1 = Conv1D(filters=16,
15
                  kernel size=1,
                  strides=1,
16
17
                  activation='relu',
18
                  padding='same')(conv1)
19 12 = Conv1D(filters=16,
20
                  kernel_size=2,
21
                  strides=1,
22
                  activation='relu',
23
                  padding='same')(conv1)
24 13 = Conv1D(filters=16,
25
                  kernel_size=3,
26
                  strides=1,
27
                  activation='relu',
```

```
padding='same')(conv1)

Multi_scale_Residual_Block = tf.keras.layers.Concatenate()([11, 12, 13])

#LSTM layer

lstm1 = LSTM(50, return_sequences=True)(Multi_scale_Residual_Block)

#Fully Connected Layer

multi_scale_Residual_Block)

padding='same')(conv1)

fulli_scale_Residual_Block)

padding='same')(conv1)

fulli_scale_Residual_Block)

fulli_scale_Residual_Block)

fulli_scale_Residual_Block)

fulli_scale_Residual_Block)

fulli_scale_Residual_Block)

fulli_scale_Residual_Block)

fulli_scale_Residual_Block)

fulli_scale_Residual_Block

fulli_scale_Residual_Block)

fulli_scale_Residual_
```

Model: "model_2"

Layer (type)	Output Shape	Param #	Connected to
input_6 (InputLayer)	[(None, 60, 5)]	0	[]
conv1d_20 (Conv1D)	(None, 60, 16)	96	['input_6[0][0]']
conv1d_21 (Conv1D)	(None, 60, 16)	272	['conv1d_20[0][0]']
conv1d_22 (Conv1D)	(None, 60, 16)	528	['conv1d_20[0][0]']
conv1d_23 (Conv1D)	(None, 60, 16)	784	['conv1d_20[0][0]']
concatenate_2 (Concatenate)	(None, 60, 48)	0	['conv1d_21[0][0]', 'conv1d_22[0][0]', 'conv1d_23[0][0]']
lstm_6 (LSTM)	(None, 60, 50)	19800	['concatenate_2[0][0]'
dense_3 (Dense)	(None, 60, 1)	51	['lstm_6[0][0]']

.....

Total params: 21,531 Trainable params: 21,531 Non-trainable params: 0

(1964,)

```
1 history= model.fit(X_train, Y_train, epochs = 500, batch_size =50, validation_split=0.1)
      Epoch 458/500
Epoch 459/500
Epoch 460/500
Epoch 461/500
Epoch 462/500
Epoch 463/500
Epoch 464/500
Epoch 465/500
Epoch 466/500
Epoch 467/500
Epoch 468/500
Epoch 469/500
Epoch 470/500
Epoch 471/500
Epoch 472/500
Epoch 473/500
Epoch 474/500
Epoch 475/500
Epoch 476/500
Epoch 477/500
Epoch 478/500
Epoch 479/500
Epoch 480/500
Epoch 481/500
Epoch 482/500
Epoch 483/500
Epoch 484/500
```

```
1 loss = history.history['loss']
2 val_loss = history.history['val_loss']
3 epochs = range(len(loss))
4 plt.figure()
5 plt.plot(epochs, loss, 'b', label='Training loss')
6 plt.plot(epochs, val_loss, 'r', label='Validation loss')
7 plt.title("Training and Validation Loss")
8 plt.legend()
9 plt.show()
```



```
part_60_days = data_training.tail(60)

df= part_60_days.append(data_test, ignore_index = True)

df = df.drop(['date'], axis = 1)

df.head()
```

	estimated_transaction_volume	close_price	open_price	high_price	low_price
0	172549.44990	46214.37	47110.30	48589.47	45655.31
1	48673.23487	47777.42	46230.00	47960.98	46199.90
2	30402.67709	47350.22	47745.25	47989.00	46660.00
3	60782.52690	46439.89	47290.55	47586.58	45692.13
4	136044.53810	45820.00	46464.01	47526.00	45539.05

inputs = scaler.transform(df)

1 X_test = []

```
2
   Y_test = []
3
    for i in range (60, inputs.shape[0]):
4
        X_test.append(inputs[i-60:i])
5
        Y_test.append(inputs[i, 0])
6
   X_test, Y_test = np.array(X_test), np.array(Y_test)
7
    X_test.shape, Y_test.shape
   Y_pred = regressor.predict(X_test)
8
9 Y_pred, Y_test
10
   scaler.scale_
1 scale = 1/5.18164146e-05
2 Y_test = Y_test*scale Y_pred = Y_pred*scale
3 Y_pred
1 Y_test
1 plt.figure(figsize=(14,5))
2 plt.plot(Y_test, color = 'red', label = 'Real Bitcoin Price')
3 plt.plot(Y_pred, color = 'green', label = 'Predicted Bitcoin Price')
4 plt.title('Bitcoin Price Prediction using RNN-LSTM')
5 plt.xlabel('Time')
6 plt.ylabel('Price')
7 plt.legend()
8 plt.show()
```