desde que o impacto de cada agente sobre os outros seja significativo, Atualmente as máquinas superam os humanos nas damas e no othello, já derrotaram campeões do mundo de xadrez e de gamão e go. Jogos que incluem aleatoriedade Decisões imperfeitas em tempo Os jogos foram assunto para a IA praticamente desde o seu começo. determinísticos, à vez, dois jogadores e soma nula, com informação independentemente do ambiente ser cooperativo ou competitivo. A teoria dos jogos vê os ambientes multi-agente como um jogo podem executar e cujas consequências estão definidas por regras. São construções abstratas, logo sem os detalhes que surgem nos problemas reais e que complicam as análises. Os agentes têm normalmente um número reduzido de ações que aparecimento de problemas de pesquisa adversarial - os jogos. Na IA os jogos são normalmente dum tipo muito específico: O caso do ambiente com agentes competitivos leva ao Leitura recomendada O estado de um jogo é fácil de representar. Porquê estudar jogos em IA Decisões ótimas em jogos Pesquisa adversarial Poda alfa-beta perfeita. Conteúdo Jogos A \blacktriangle \blacktriangle os valores da função de utilidade no fim do jogo são sempre valores os jogos se passam num ambiente determinístico; existem dois agentes cujas ações devem ser executadas de forma Inteligência Artificial Ano lectivo 2019-20 Luís A. Alexandre iguais e de sinal oposto; o ambiente é totalmente observável. Isto significa que: Pesquisa adversarial alternada; Conteúdo Jogos Jogos lack

Para termos uma noção do grau de dificuldade destes jogos, vejamos

o caso do xadrez:

P. ex., se um jogador ganha um jogo de xadrez (+1) o outro perde (-1). É esta oposição entre as funções de utilidade dos jogadores que torna a situação adversarial.

 \blacktriangle

▶ fator de ramificação de cerca de 35 ▶ um jogo chega a levar 50 jogadas por cada jogador ▶ árvore de pesquisa com $35^{100}=10^{154}$ nodos, embora "apenas" 10^{40} sejam distintos

Avanço da IA nos jogos

- Em 2009: "Atualmente as máquinas superam os humanos... A principal exceção é o jogo Go onde aparentemente ainda estão num nível básico."

IN A HUGE BREAKTHROUGH, GOOGLE'S AT BEATS A TOP PLAYER AT THE GAME OF GO

Mais detalhes.

Conteúdo

Porquê estudar jogos em IA

- Os jogos, como a vida real, exigem que se tomem decisões mesmo sem poder calcular qual é a decisão ótima.
- A **ineficiência** nos jogos é normalmente penalizada de forma severa: uma má implementação do ${\sf A}^*$ pode ter 50% da eficiência duma outra: num jogo como o xadrez com limite de tempo isso pode significar que essa implementação perca sempre.
- Dadas as questões que referimos antes, o estudo dos jogos em IA levou à descoberta de várias ideias de como aproveitar melhor o tempo em termos da resolução de problemas.

Consideremos jogos com 2 jogadores a que chamaremos MAX e MIN. Decisões ótimas em jogos lack

- MAX joga primeiro e depois jogam à vez.
- Um jogo pode ser definido como um problema de pesquisa com os
 - um estado inicial que inclui as posições no tabuleiro e identifica o jogador que irá começar;

 - jogador(s) indica o jogador que joga no estado s; acoes(s) devolve o conjunto de jogadas possíveis no estado s;
- resultado(s, a) devolve o estado resultado de fazer a ação a quando o jogo está no estado s; estado_terminal(s) que é verdadeiro quando s é um estado terminal
- (jogo termina) e falso caso contrário; utilidade(s, j) (também chamada função objetivo) dá um valor numérico ao estado terminal s para o jogador j. No xadrez o resultado pode ser vitória, derrota ou empate com valores respetivos de +1, -1, e 0. O gamão por exemplo tem uma gama de valores possíveis maior (de +192 a -192).

Decisões ótimas em jogos

Pesquisa adversarial

em jogos Decisões ótimas

- mostra parte da **árvore de jogo** do A figura ao lado jogo do galo.
- O estado inicial e as jogadas legais definem esta árvore.
- sub-árvore da árvore de jogo com os nodos consultados enquanto se tenta A **árvore de pesquisa** é uma resolver o jogo.

erminal

× ×o × × 0 X Ä

Decisões ótimas em jogos

- Partindo do estado inicial o MAX tem 9 possibilidades colocar o seu marcador(X). A
- folha que corresponde a um estado terminal: um dos jogadores tem O MIN coloca o seu (O) alternadamente até chegarmos a um nodo 3 em linha ou já não existem quadrados livres no tabuleiro.
 - terminal para o MAX: valores altos são bons para o MAX e maus O número em cada folha indica o valor de utilidade do estado para o MIN.

Pesquisa adversarial Decisões ótimas em jogo

Estratégias ótimas

- Num problema normal de pesquisa uma solução ótima seria uma sequência de ações que conduzem a um estado objetivo: um estado terminal que é uma vitória.
- Num jogo, MAX tem sempre de levar em consideração as ações do MIN.
- Assim, chamamos uma estratégia de **ótima** se levar a um resultado de MAX pelo menos tão bom quanto o alcançável se MIN fosse infalível.
 - ➤ Veremos de seguida como achar a estratégia ótima, embora só seja possível fazê-lo (devido a custos computacionais) para jogos muito simples como o jogo do galo.

Luís A. Alexandre (UBI) Inteligência Artificial

Estratégias ótimas

- ► Mesmo para o jogo do galo não conseguimos facilmente desenhar a sua árvore de jogo logo vamos começar por considerar o seguinte jogo trivial: MAX pode fazer uma de 3 jogadas, a1, a2, a3 e MIN pode responder com uma de 3 jogadas também b1, b2, b3.
- A árvore de jogo é a seguinte, onde os triângulos representam nodos em que é a vez de MAX jogar e os triângulos invertidos os estados em que é a vez de MIN jogar. Os quadrados são os nodos terminais e têm o valor de utilidade para MAX.

Pesquisa adversarial Decisões ótimas em iog

Estratégias ótimas

Assim podemos identificar a decisão minimax na raiz: a ação $a_{\rm l}$. ótima pois conduz ao sucessor com maior valor minimax.

ΨШ

- Esta definição de ótimo para MAX assume que o MIN também vai agir de forma ótima: tenta sempre o pior resultado para MAX.
- ► E se o MIN não jogar de forma ótima? Então o MAX vai ter ainda melhores resultados usando a estratégia minimax.

Vexandre (UBI) Inteligência Artificial Ano lectivo 2019-20

Pesquisa adversarial Decisões ótimas em jogos

Estratégias ótimas

- ▶ Dada a árvore de jogo, a estratégia ótima pode ser obtida examinando o valor minimax de cada nodo, a que chamaremos MINIMAX(s).
 - ► Este valor corresponde à utilidade para MAX desse nodo assumindo que ambos os jogadores jogam de forma ótima a partir desse nodo até ao fim do jogo.
- Dada a escolha, MAX prefere um movimento para um nodo com valor minimax máximo, ao passo que MIN prefere um nodo com valor minimax mínimo.
 - ► Assim vem

 $\begin{aligned} & \textit{utilidade(s,jogador(s))} \\ & \text{max}_{s \in acoes(s)} \textit{MINIMAX}(\textit{resultado}(s,a)) \end{aligned} & \text{se s for estado term.} \\ & \text{min}_{s \in acoes(s)} \textit{MINIMAX}(\textit{resultado}(s,a)) \end{aligned} & \text{se jogador}(s) == \text{MAX} \\ & \text{min}_{s \in acoes(s)} \textit{MINIMAX}(\textit{resultado}(s,a)) \end{aligned} & \text{se jogador}(s) == \text{MIN}$

A Alexandre (HRI)

Estratégias ótimas

- Vejamos como se aplica a definição do MINIMAX no caso do jogo acima.
- Os estados terminais já contêm o seu valor de utilidade.
- ▶ O primeiro nodo MIN, chamado B, tem 3 nodos sucessores, com valores 3, 12 e 8, logo o seu valor minimax é ____.
- ► Os outros 2 nodos minimax (C e D) têm valor minimax ____
- ► O nodo raiz é nodo MAX e dados os valores minimax dos seus sucessores, ele tem valor _____.

uís A. Alexandre (UBI) Inteligência Artificial Ano lectivo

Pesauisa adversarial Decisões

.

Algoritmo minimax

- O seguinte algoritmo acha a decisão minimax a partir do nodo actual.
- ▶ Usa uma implementação recursiva: começa por ir até às folhas da árvore onde acha a decisão usando a função utilidade(s, j). Conforme a recursividade se vai desfazendo, os valores de minimax de cada nodo vão sendo preenchidos.
- Este algoritmo usa PPP e se a maior profundidade da árvore for p e existirem b jogadas legais que a complexidade temporal é $O(b^p)$. A complexidade espacial é O(bp) se gerarmos todos os nodos duma vez e O(p) para um algoritmo que gera um sucessor de cada vez.
 - Dada a complexidade temporal deste algoritmo, ele não é utilizável em jogos reais, mas vai servir de base para o estudo de outros algoritmos mais eficientes.

Luis A. Alexandre (UB) Inteligência Artificial Ano lectivo 2019-20 18 / 42

Pesquisa adversarial Poda alfa-beta Conteúdo function VALOR_MÁXIMO(estado) RETURNS valor de utilidade SE estado_terminal(estado) ENTÃO return utilidade(estado.jogador(estado)) function VALOR_MÍNIMO(estado) RETURNS valor de utilidade SE estado_terminal(estado) ENTÃO return utilidade(estado.jogador(estado)) function MINIMAX_DECISÃO(estado) RETURNS ação return arg max_{acacos(estado,} VALOR_MÍNIMO(resultado(estado,a)) $\begin{array}{ll} v\leftarrow -\infty \\ PARA \ a \ IN \ acces(estado) \\ v\leftarrow MAX(v,VALOR_MÍNIMO(resultado(estado,a))) \end{array}$ $\begin{array}{lll} v\leftarrow +\infty & \\ PARA \ a \ IN \ acoes(estado) & \\ v\leftarrow MIN(v,VALOR_MÁXIMO(resultado(estado,a))) & \end{array}$ Algoritmo minimax return v

Poda alfa-beta

- O problema com a abordagem minimax é que o número de estados que devemos examinar cresce exponencialmente com o número de jogadas (vimos atrás que é $O(b^p)$).
- Não é possível eliminar o expoente mas podemos dividi-lo por 2, pois é possível achar a decisão minimax correta sem ser necessário olhar para todos os nodos da árvore. \blacktriangle
- Podemos podar a árvore de forma a eliminar vários estados. \blacktriangle
- A técnica de poda que iremos estudar chama-se poda alfa-beta.
- decisão que o minimax normal, mas elimina ramos da árvore que Esta técnica quando é aplicada à árvore minimax devolve a mesma não podem influenciar a decisão.

Poda alfa-beta

- A poda alfa-beta pode ser aplicada a árvores de qualquer profundidade e muitas vezes podam-se sub-árvores completas e não apenas nodos folha.
 - O nome desta estratégia vem dos seguintes parâmetros:
- \bullet α é o valor da melhor escolha (valor maior) até um dado momento para MAX β é o valor da melhor escolha (valor menor) até um dado momento para MIN

Poda alfa-beta

- Consideremos de novo o jogo simples que vimos atrás, apenas com uma jogada para cada jogador (p=2). lack
- Se voltarmos a calcular os valores minimax com atenção podemos verificar que chegamos à decisão minimax sem nunca precisarmos de visitar dois dos nodos folha. Quais? \blacktriangle

21/42

Algoritmo da pesquisa alfa-beta

A pesquisa alfa-beta vai atualizando os valores α e β enquanto percorre a árvore e poda os restantes ramos num nodo assim que o valor desse nodo for pior que o valor atual de α ou β , consoante seja a vez de jogar o MAX ou o MIN.

```
Pesquisa adversarial
Conteúdo
                                                                                                                                                                                                                                                                           function VALOR_MÁXIMO(estado,\alpha,\beta) RETURNS valor de utilidade SE estado_terminal(estado) ENTÃO return utilidade(estado,jogador(estado))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                function VALOR_MINIMO(estado,α,β) RETURNS valor de utilidade
SE estado_terminal(estado) ENTÃO return utilidade(estado,jogador(estado))
                                                                 function PESQUISA_ALFA_BETA(estado) RETURNS ação
v ← VALOR_MÁXIMO(estado, —∞,∞)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \begin{array}{lll} \mathbf{v} \leftarrow +\infty \\ \mathsf{PARA} \ \mathbf{a} \ \mathsf{IN} \ \mathsf{acoes}(\mathsf{estado}) \\ \mathbf{v} \leftarrow \mathsf{MIN}(\mathbf{v}, \mathsf{VALOR\_M\acute{A}XIMO}(\mathbf{s}, \alpha, \beta)) \\ \mathsf{SE} \ \mathbf{v} \le \alpha \ \mathsf{ENT\acute{A}O} \ \mathsf{return} \ \mathbf{v} \\ \beta \leftarrow \mathsf{MIN}(\beta, \mathbf{v}) \end{array}
                                                                                                                                                                                                                                                                                                                                                                                            \begin{array}{l} \mathbf{v} \leftarrow -\infty \\ \mathsf{PARA} \ \mathbf{a} \ \mathsf{IN} \ \mathsf{acces}(\mathsf{estado}) \\ \mathbf{v} \leftarrow \mathsf{MAX}(\mathbf{v}, \mathsf{VALOR\_MINIMO}(\mathbf{s}, \alpha, \beta)) \\ \mathsf{SE} \ \mathbf{v} \geq \beta \ \mathsf{ENT} \tilde{\mathsf{A}} \mathsf{O} \ \mathsf{return} \ \mathbf{v} \\ \alpha \leftarrow \mathsf{MAX}(\alpha, \mathbf{v}) \end{array}
    Algoritmo da pesquisa alfa-beta
                                                                                                                                                                                      return a \in acoes(estado) com valor v
```

Decisões impe

Decisões imperfeitas em tempo real

- O algoritmo minimax gera todo o espaço de pesquisa, enquanto a poda alfa-beta permite eliminar parte desse espaço. \blacktriangle
- No entanto, mesmo a poda alfa-beta precisa de atingir o nodo folha para uma parte do espaço de pesquisa.
 - Quando as jogadas têm de ser feitas num tempo limitado pode não ser possível chegar até um nodo folha. \blacksquare
 - para jogar xadrez, que os programas deviam terminar a pesquisa Shannon sugeriu em 1950, num artigo sobre escrita de programas antes de chegarem aos nodos folha e usarem uma função de avaliação heurística para estimar a utilidade do nodo.
- lsto traduz-se em duas alterações aos algoritmos minimax e poda \blacksquare
 - substituição da função de utilidade por uma função de avaliação
- heurística, EVAL, que **estima** a utilidade do nodo; substituir o teste de terminação por um **teste de corte** que decide quando se deve usar EVAL.

Funções de avaliação

- Uma função de avaliação devolve uma estimativa para a utilidade do jogo a partir duma dada posição, do mesmo modo que as funções heurísticas que vimos nas pesquisas devolviam uma estimativa da distância até ao objetivo.
- proposta de Shannon por todos os jogadores que tentam estimar o valor da sua posição no jogo. Isto porque os humanos não conseguem A ideia duma função de avaliação já era usada muito antes da fazer muita pesquisa. \mathbf{A}
 - A função de avaliação deve: \blacksquare
- senão poderia fazer jogadas sub-ótimas mesmo que conseguisse ter acesso a todos os estados do jogo. ser rápida, pelo menos mais rápida que o minimax, senão não vale a pena usá-la. ordenar os estados terminais como a função de utilidade verdadeira,
- ser fortemente correlacionada com a **probabilidade** de vitória, para

estados não terminais.

```
Decisões imperfeitas em tempo
```

Heuristica-minimax

Seguindo as ideias anteriores chegamos à seguinte heurística minimax para o estado s à profundidade d:

```
se s for estado corte
se jogador(s) == MAX
se jogador(s) == MIN
                                EVAL(s) \\ \max_{a \in acose(s)} HMINIMAX(resultado(s, a), d+1) \\ \min_{a \in acose(s)} HMINIMAX(resultado(s, a), d+1)
HMINIMAX(s,d) =
```

Funções de avaliação

- dados porque ao interrompermos a pesquisa em nodos não terminais O termo **probabilidade** surge aqui mesmo sem haver lançamento de ficamos numa situação de incerteza face ao verdadeiro valor desses
- A maioria das funções de avaliação calcula várias características do estado (ex.: no xadrez, uma característica poderia ser o número de peões que cada jogador tem ainda em jogo)
- equivalentes, independentemente dos detalhes (a posição dos peões, As características permitem definir classes de equivalência de estados: estados que possuem as mesmas características são
- Cada **classe de equivalência** contém alguns estados que irão dar vitórias, outros derrota e outros empates.

Funções de avaliação

- Não é possível saber à priori quais os estados que vão conduzir a cada desfecho sem se calcular a árvore até aos estados terminais, mas pode-se achar o seu valor esperado. A
- derrota (-1) e 8% de empate (0), então o valor esperado desta classe é $0.72 \times 1 + 0.20 \times (-1) + 0.08 \times 0 = 0.52$. probabilidade de vitória de 72% (valor de utilidade =1), 20% de Por exemplo, se numa dada classe de equivalência existir uma \blacksquare
- As estimativas das probabilidades são obtidas após análise de um conjunto grande de jogos. lack

a pesquisa Interromper

- passo seguinte será decidir quando é que se deve interromper a pesquisa. 0
- A abordagem mais simples é definir uma profundidade máxima p.
- Esta profundidade é escolhida de forma a que nunca se exceda a quantidade de tempo disponível no jogo
- Outra hipótese seria aplicar a profundidade iterativa, como estudámos
- Neste caso, quando o tempo disponível termina, o algoritmo devolve a jogada com maior valor da função de avaliação que tenha conseguido calcular até ao momento.

que incluem aleatoriedade Jogos

- Muitos jogos tentam simular a imprevisibilidade da vida real através da introdução de aleatoriedade, como por exemplo, lançando um dado. \blacktriangle
- Para lidarmos com este tipo de jogos, temos de incluir na árvore de pesquisa **nodos aleatórios**, além dos nodos MAX e MIN já vistos. \blacktriangle

Funções de avaliação

- Exemplo: os livros básicos de xadrez dão alguns valores aproximados de cada peça: peão vale 1, cavalo e o bispo valem 3, torre 5 e rainha 9. Algumas características como a boa colocação dos peões ou a segurança do rei podem valer meio peão.
 - O que se faz é adicionar os valores destas características para se ficar com uma estimativa do valor da posição.
 - Uma vantagem de cerca de 1 peão dá boas hipóteses de vitória e se for de 3 peões dá vitória quase certa. A função de avaliação é deste tipo

$$EVAL(s) = \sum_{i=1}^{n} w_i f_i(s)$$

onde w_i representa a importância da característica f_i .

P. ex., ainda no xadrez, f_i poderia ser o número de peças de cada tipo ainda no tabuleiro e os w_i os valores respectivos de cada peça referidos acima. \blacktriangle

Conteúdo

Pesquisa adversarial

Jogos que incluem aleatoriedade

Jogos que incluem aleatoriedade

Exemplo para um jogo em que cada jogador pode fazer uma de duas ações e lança um dado de seguida.

Pesquisa adversarial Jogos que incluem aleatoried

Jogos que incluem aleatoriedade

- Agora temos de saber como tomar decisões neste caso: queremos ainda escolher a jogada que leve à melhor posição.
- No entanto, as posições não têm valores minimax definidos: temos de calcular o valor esperado.
- A esperança é calculada sobre todos os possíveis valores aleatórios (p.ex., no caso de um dado, tomando em consideração que podemos obter valores entre 1 e 6).

Luís A. Alexandre (UBI)

ência Artificial Ano lectiv

Avaliação da posição em jogos com nodos aleatórios

- Como fizemos com o minimax, queremos cortar a pesquisa e usar uma função de avaliação.
 - O problema é que a função de avaliação para um jogo com aleatoriedade é diferente das dos problemas sem aleatoriedade.
- Exemplo: na figura de cima a melhor jogada para MAX seria a1.

Alexandre (UBI) Inteligência Artificial Ano lectivo 2019-20

Avaliação da posição em jogos com nodos aleatórios

- ► Mas se modificarmos a função de avaliação para alterar a escala dos valores mesmo sem alterar a sua ordem, a decisão ótima muda: ver fig. de baixo (neste caso a transformação é não linear).
 - ► Recalcular os valores expectiminimax para a figura de baixo e encontrar a decisão a tomar para os novos valores.
- Assim, se queremos uma função de avaliação que não altere os resultados face à pesquisa feita até chegarmos aos nodos, termos de escolher uma **transformação linear positiva** da utilidade.
 - ► Um exemplo de uma função de avaliação não linear para o xadrez?

Alexandre (UBI) Inteligência Artificial Ano lectivo 2

Expectiminimax

► Deste modo obtemos uma generalização do valor minimax para jogos com nodos aleatórios, a que chamaremos **expectiminimax** e que definimos como:

EXPECTMINIMAX(s) =

 $\begin{array}{ll} \textit{utilidade(s,jogador(s))} & \text{se s for estado term.} \\ \max_{s \in socse(s)} EXPECTIMINIMAX(resultado(s,a)) & \text{se jogador}(s) == \text{MAX} \\ \min_{s \in socse(s)} EXPECTIMINIMAX(resultado(s,a)) & \text{se jogador}(s) == \text{MIN} \\ \sum_{r} P(r)EXPECTIMINIMAX(resultado(s,r)) & \text{se jogador}(s) == \text{SORTE} \end{array}$

onde r é uma ação aleatória e P(r) é a probabilidade de ocorrência

dessa ação.

leliaĝocia Artificial

Pesquisa adversarial Jogos que incluem aleatoriedade

Leitura recomendada

Leitura recomendada

Russell e Norvig, cap. 5.

0......

Luís A. Alexandre (UBI) Inteligência Artificial And