# Predictive modelling for wind power estimation

PRESENTED BY: VEDANT MEHTA

KANCHAN SATPUTE

### Insight into the data

- •The data consists of following variables:
  - Wind Speed
  - Wind Speed Stdev
  - Wind direction
  - Environment temperature
  - Turbulence Intensity (added manually after referring the paper<sup>[1]</sup>)
- The output is Power generated
- •The data has been collected over a period of one year so as to factor in the seasonal effect
- •All the data recorded has been averaged over 10 minute time intervals

#### Cont.



- The figure shown on the left is a heat map
- This plot shows the correlation among the predictors and the output variable
- As seen from the plot, power and wind speed have the highest correlation
- Turbulence intensity also has correlation with wind speed and its std. deviation, because it is derived from those two values

# Average value of predictors over each month

| Month     | wind speed  | Wind Speed_Std | Wind Direction | Environment Temperature | TI          |
|-----------|-------------|----------------|----------------|-------------------------|-------------|
| January   | 6.18882762  | 0.665538233    | 173.7761183    | 6.402845089             | 0.110353542 |
| February  | 6.137140499 | 0.694159543    | 164.8385138    | 7.346446043             | 0.115861298 |
| March     | 6.165356194 | 0.697589228    | 151.6910919    | 10.78608079             | 0.114760932 |
| April     | 6.665079419 | 0.796706996    | 170.6862501    | 15.56413417             | 0.122128408 |
| May       | 6.209380688 | 0.772476554    | 155.7210757    | 20.50823341             | 0.125958896 |
| June      | 6.263534855 | 0.821642071    | 159.6317888    | 25.12843335             | 0.13337773  |
| July      | 6.233259857 | 0.754149169    | 158.1749344    | 27.23974869             | 0.120259257 |
| August    | 6.262362179 | 0.76313141     | 155.5356763    | 28.93998535             | 0.121109984 |
| September | 6.030573995 | 0.749104965    | 135.4471957    | 25.29694799             | 0.126558718 |
| October   | 6.034052343 | 0.65773111     | 182.2127556    | 20.94305276             | 0.111203613 |
| November  | 6.908429521 | 0.818605107    | 180.748135     | 13.33846974             | 0.120768332 |
| December  | 6.372286851 | 0.650090311    | 236.2062578    | 8.428433218             | 0.104903643 |

As seen from the above figure, wind direction and temperature have a lot of variability., which may hamper prediction accuracy. Turbulence intensity already has std. dev. in it, so we can drop wind speed std. deviation as well

# Predictive modelling

Predictive models built, with their RMSE values:

| Model              | Training RMSE | Validation RMSE |
|--------------------|---------------|-----------------|
| Linear regression  | 0.0885        | 0.0895          |
| Ridge regression   | 0.081         | 0.078           |
| Lasso regression   | 0.0831        | 0.0845          |
| SVM                | 0.0474        | 0.0470          |
| CART               | 0.0017        | 0.0552          |
| Tree with AdaBoost | 0.0495        | 0.0494          |
| Random Forest      | 0.0356        | 0.039           |

- •We will discuss only two methods, decision tree and random forest
- And also explain why we have chosen them
- •We have split the data randomly in the ratio of 7:3 for training and validation

#### Decision Tree

- Decision Tree is a much simpler algorithm as compared to other algorithms
- Decision tree gives better results as compared to linear, ridge, lasso and SVM
- This is because when you compare this method with the industry standard IEC binning method, they both are kind of analogous
- In IEC binning method, you make bins of predefined bin width and then put the data points in each of that bins and for prediction we average the corresponding output values in each bin

#### Cont.

- In decision trees, we do a similar kind of procedure, except we don't specify any kind of "node size" other than the min. node size
- Also, we do the prediction by taking the average at each node
- RMSE values for CART:
  - Training RMSE = 0.0017
  - Validation RMSE = 0.0552
- Above RMSE values show that decision tree has overfit the data, thus giving a high validation RMSE

#### Random Forest

- Random Forest is an ensemble of trees, so our analogy with IEC binning method still holds
- But, Random Forest builds trees on bootstrap samples and bags them together
- Thus, reducing the variance as compared to decision trees
- So, Random Forest is a low bias low variance model as compared to decision trees

# Fine tuning Random Forest



- We gave an array of tree sizes as an input and used 10-fold cross validation to see which tree size gave the least cross validation error
- The best parameter (tree size = 20) model gave the following RMSE values:
  - Training RMSE = 0.0356
  - Validation RMSE = 0.039
- We cross-checked this using a plot of OOB error rate vs tree size

# Concluding remarks

We have chosen random forest as the best model due to following reasons:

- We get very low training RMSE and validation RMSE
- Random Forest has low variance as compared to decision trees
- SVM is computationally complex, so Random Forest is preferred for huge amount of data
- •Also, Random Forest provides better RMSE values as compared to all other methods that we applied