8. How many different three-letter initials with none of the letters repeated can people have?

With no repeated letters there will be 26 * 25 * 24 = 15600 different three letter initials.

12. How many bit strings are there of length six or less?

There will be 6 separate cases where each case is 2^n . The total will be $\sum_{n=0}^{6} 2^n = 127$

16. How many strings are there of four lowercase letters that have the letter x in the term?

If there were no X's then the highest number would be 26 * 26 * 26 * 26 * 26 * 26 * 26. Since there needs to be an at least one X there will be 4 cases:

Case 1 (one x): With one X there are 4 combinations of where the letter can be placed in the string. That makes the total 4*25*25*25=62500

Case 2 (two x): There will now be 6 combinations of placements for the letter in the string but it also takes up two positions. That makes the total 6 * 25 * 25 = 3750

Case 3 (three x): There are 4 combinations of placements for three x's. That makes the total 2 * 25 = 100

Case 4 (four x): There is only one string with 4 x's.

Adding all of the cases up gives a total of 66351 four letter strings.

- 24. How many strings of four decimal digits
- a) do not contain the same digit twice?
- b) end with an even digit?
- c) have exactly three digits that are 9s?

A: Since the string can't contain the same digit twice it can have 10 choices for the first digit, 9 for the second, 8 for the third, and 7 for the last. Giving a total of 10 * 9 * 8 * 7 = 5040

B: Half of the strings will end in an even digit. The total of all four digit strings is 10^4 and the even strings will be $\frac{10^4}{2} = 5000$

C: There are 4 combinations of three digits (9) in a 4 digit string. That makes the total 4*9=36

26. How many license plates can be made using either three digits followed by three letters or three letters followed by three digits?

There are 10 * 10 * 10 number combinations and 26 * 26 * 26 letter combinations. The total for one type of plate is $10^3 * 26^3$. The other plate will give the same number so the overall total is $2 * (10^3 * 26^3) = 35152000$

42. How many bit strings of length seven either begin with two 0s or end with three 1s?

There will be 2^5 strings that begin with two 0s and 2^4 strings that end with three 1s. The overlap between the two sets is 2^2 so the total is $(2^5 + 2^4) - 2^2 = 44$.

46. Every student in a discrete mathematics class is either a computer science or a mathematics major or is a joint major in these two subjects. How many students are in the class if there are 38 computer science majors(including joint majors), 23 mathematics majors(including joint majors), and 7 joint majors?

There are 38compsci + 23math - 7joint = 54 students in the class.

60. Use mathematical induction to prove the product rule for m tasks from the product rule for two tasks.

P(m) is the product rule for m tasks.

Basis step:

m = 2, P(2) is true since there are n_1 ways to do the first task and n_2 ways to do the second one. The total being n_1n_2 .

Inductive Step:

Prove P(k) is true for $k \geq 2$.

For a k+1 tasks we have $T_1T_2 \cdot T_{k+1}$. Each of which can be done $n_1n_2 \cdot n_{k+1}$ ways. That means that for the next k+1 task we will have $(n_1n_2 \cdot n_k) * n_{k+1}$ ways which proves P(k+1).