Esercizi sulle Dipendenze Funzionali

Luca Cosmo

1. Usando gli assiomi di Armstrong, si dimostri che se $X \to Y$ e $YW \to Z$, allora $XW \to Z$.

Solution: Possiamo costruire il seguente albero di prova:

$$\frac{\text{Augm}}{\text{Trans}} \frac{\frac{X \to Y, YW \to Z \vdash X \to Y}{X \to Y, YW \to Z \vdash XW \to YW} \qquad X \to Y, YW \to Z \vdash YW \to Z}{X \to Y, YW \to Z \vdash XW \to Z}$$

In alternativa possiamo esibire la seguente derivazione:

$$X \to Y, XW \to YW, YW \to Z, XW \to Z.$$

2. Si supponga che una dipendenza funzionale $X \to Y$ sia soddisfatta da due istanze di relazione r ed s con gli stessi attributi. Dire se $r \cap s$ e $r \cup s$ soddisfano $X \to Y$, fornendo una dimostrazione o un controesempio opportuni.

Solution: $r \cap s$ soddisfa la dipendenza $X \to Y$, dato che $r \cap s \subseteq r$ ed r soddisfa $X \to Y$. In particolare, sappiamo che $\forall u, v \in r : u[X] = v[X] \Rightarrow u[Y] = v[Y]$, quindi tale proprietà continua a valere anche per ogni sottoinsieme di r, fra cui $r \cap s$.

Al contrario $r \cup s$ potrebbe non soddisfare $X \to Y$. In particolare, si considerino le relazioni $r = \{(X = 1, Y = 1)\}$ e $s = \{(X = 1, Y = 2)\}$. Sebbene sia r che s soddisfino $X \to Y$, è facile osservare che tale dipendenza non è soddisfatta da $r \cup s$.

3. Si consideri lo schema di relazione R(A,B,C,D) con dipendenze $F = \{AB \to C, C \to D, D \to A\}$. Si trovino tutte le dipendenze non banali¹ derivabili da F e tutte le chiavi di R.

Solution: Ci concentriamo sulle dipendenze funzionali che hanno un solo attributo nella parte destra, in quanto tutte le altre sono derivabili tramite la regola di unione e quindi vengono omesse per leggibilità. Costruiamo le chiusure per tutti i sottoinsiemi di attributi, per leggibilità vengono omessi i sottoinsiemi che non contribuiscono a generare nuove dipendenze:

- $C^+ = CDA$, da cui la nuova dipendenza $C \to A$
- $AB^+ = ABCD$, da cui la nuova dipendenza $AB \to D$
- $AC^+ = ACD$, da cui la nuova dipendenza $AC \to D$
- $BC^+ = BCDA$, da cui le nuove dipendenze $BC \to D$ e $BC \to A$

 $^{^1{\}rm La}$ dipendenza funzionale $X\to Y$ è detta banale se e solo se $Y\subseteq X.$

- $BD^+ = BDAC$, da cui le nuove dipendenze $BD \to A$ e $BD \to C$
- $CD^+ = CDA$, da cui la nuova dipendenza $CD \to A$
- $ABC^+ = ABCD$, da cui la nuova dipendenza $ABC \to D$
- $ABD^+ = ABDC$, da cui la nuova dipendenza $ABD \rightarrow C$
- $BCD^+ = BCDA$, da cui la nuova dipendenza $BCD \to A$

Sulla base delle chiusure calcolate possiamo identificare le chiavi AB, BC e BD. Si noti che tutte le chiavi contengono B, in quanto tale attributo non è derivabile.

4. Si trovino tutte le chiavi dell'esercizio precedente utilizzando l'algoritmo apposito descritto a lezione.

Solution: Dato che B è il solo simbolo che non compare mai a destra, partiamo da B :: (ACD). Osserviamo che $B^+ = B$, perciò generiamo i nuovi candidati BA :: (CD), BC :: (D) e BD :: (). A questo punto abbiamo:

- $BA^+ = BACD$, quindi BA è una chiave;
- $BC^+ = BCDA$, quindi BC è una chiave;
- $BD^+ = BDAC$, quindi BD è una chiave.

Poichè i candidati sono finiti, l'algoritmo termina.

5. Si consideri l'insieme di dipendenze funzionali $F = \{A \to B, C \to B, D \to ABC, AC \to D\}$. Trovare una copertura canonica di F.

Solution: Prima di tutto convertiamo F in modo che le parti destre contengano un solo attributo:

$$G = \{A \to B, C \to B, D \to A, D \to B, D \to C, AC \to D\}.$$

Procediamo poi all'eliminazione degli attributi estranei, che possono occorrere solo nella dipendenza $AC \to D$. Dato che $A_G^+ = AB$ e $C_G^+ = CB$, non vi sono attributi estranei da eliminare.

Infine ci restano da eliminare le dipendenze ridondanti. Consideriamo le dipendenze una per una:

- $A \to B$: abbiamo $A_{G \setminus \{A \to B\}}^+ = A$, quindi la dipendenza non è ridondante;
- $C \to B$: abbiamo $C^+_{G \backslash \{C \to B\}} = C$, quindi la dipendenza non è ridondante;
- $D \to A$: abbiamo $D^+_{G \setminus \{D \to A\}} = DBC$, quindi la dipendenza non è ridondante;
- $D \to B$: abbiamo $D^+_{G \setminus \{D \to B\}} = DACB$, quindi la dipendenza è ridondante e va rimossa;
- $D \to C$: abbiamo $D^+_{G \setminus \{D \to B, D \to C\}} = DAB$, quindi la dipendenza non è ridondante;
- $AC \to D$: abbiamo $AC^+_{G \setminus \{D \to B, AC \to D\}} = ACB$, quindi la dipendenza non è ridondante.

La copertura canonica è quindi $\{A \to B, C \to B, D \to A, D \to C, AC \to D\}$.

6. Si consideri l'insieme di dipendenze $F = \{AB \to CDE, AC \to BDE, B \to C, C \to B, C \to D, B \to E\}$. Portare F in forma canonica e trovare tutte le chiavi.

Solution: Assicuriamoci prima di tutto di avere un solo attributo a destra:

$$\{AB \rightarrow C, AB \rightarrow D, AB \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

E' facile notare che $AB \to C$ e $AB \to E$ contengono un attributo estraneo A, dato che $B \to C$ e $B \to E$ fanno parte dell'insieme delle dipendenze. Più formalmente, si noti che $B^+ = BCDE$ e quindi abbiamo sia $C \in B^+$ che $E \in B^+$.

Analogamente osserviamo che $AC \to B$ e $AC \to D$ contengono un attributo estraneo A, dato che $C \to B$ e $C \to D$ fanno parte dell'insieme delle dipendenze. Più formalmente, si noti che $C^+ = CBDE$ e quindi abbiamo sia $B \in C^+$ che $D \in C^+$.

Infine $AB \to D$ contiene un attributo estraneo A (dato che $D \in B^+$) ed anche $AC \to E$ contiene un attributo estraneo A (dato che $E \in C^+$). Si ottiene quindi il nuovo insieme di dipendenze funzionali:

$$G = \{B \rightarrow D, C \rightarrow E, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

A questo punto andiamo ad eliminare le dipendenze ridondanti, in particolare:

- $B \to D$: abbiamo $B^+_{G \setminus \{B \to D\}} = BCDE$, quindi $B \to D$ va rimossa;
- $C \to E$: abbiamo $C^+_{G \setminus \{B \to D, C \to E\}} = CBDE$, quindi $C \to E$ va rimossa;
- $B \to C$: abbiamo $B^+_{G \setminus \{B \to D, C \to E, B \to C\}} = BE$, quindi $B \to C$ non è ridondante;
- $C \to B$: abbiamo $C^+_{G \setminus \{B \to D, C \to E, C \to B\}} = CD$, quindi $C \to B$ non è ridondante;
- $C \to D$: abbiamo $C^+_{G \setminus \{B \to D, C \to E, C \to D\}} = CBE$, quindi $C \to D$ non è ridondante;
- $B \to E$: abbiamo $B^+_{G \setminus \{B \to D, C \to E, B \to E\}} = BCD$, quindi $B \to E$ non è ridondante.

Rimaniamo quindi con le dipendenze:

$$H = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

A questo punto passiamo alla ricerca delle chiavi, iniziando dal candidato A :: (BCDE). Dato che $A^+ = A$, generiamo i nuovi candidati AB :: (CDE), AC :: (DE), AD :: (E) e AE :: (). Abbiamo:

- $AB^+ = ABCDE$, quindi AB è una chiave;
- $AC^+ = ACBDE$, quindi AC è una chiave;
- $AD^+ = AD$, quindi AD non è una chiave e viene generato il candidato ADE :: ();
- $AE^+ = AE$, quindi AE non è una chiave e non ci sono altri candidati da generare;
- $ADE^+ = ADE$, quindi ADE non è una chiave e non ci sono altri candidati da generare.

Concludiamo che le chiavi sono AB e AC.

A	B	C	D
a_1	b_1	c_1	d_1
a_1	b_1	c_2	d_2
a_2	b_1	c_1	d_3
a_2	b_1	c_3	d_4

Table 1: Unica istanza valida di R

7. Si consideri lo schema di relazione R(A, B, C, D) e si supponga che l'unica istanza valida di R sia quella in Table 1. Si trovi una copertura canonica delle dipendenze funzionali soddisfatte da R.

Solution: Identifichiamo prima le dipendenze funzionali e poi le portiamo in forma canonica. Partiamo ragionando sui singoli attributi, identificando così le dipendenze $A \to B$, $C \to B$ e $D \to ABC$. Ragioniamo poi sugli insiemi con più di un attributo:

- AB: osserviamo che $AB \not\rightarrow C$ e $AB \not\rightarrow D$, dato che troviamo dei controesempi;
- AC: osserviamo che $AC \to BD$, dato che nessuna tupla ha gli stessi valori sia su a che su c, quindi la dipendenza funzionale è banalmente vera;
- BC: osserviamo che $BC \not\to A$ e $BC \not\to D$, dato che troviamo dei controesempi;
- AD, BD, ABD, ACD, BCD, ABCD: questi insiemi di attributi contengono la chiave D, pertanto derivano tutti gli attributi mancanti. Chiaramente gli attributi diversi da D sono estranei e verrebbero eliminati nella copertura canonica, quindi possiamo ignorare tali dipendenze e tenere solo D → ABC;
- ABC: questo insiemi di attributi contiene la chiave AC, pertanto abbiamo $ABC \to D$. Tale dipendenza contiene l'attributo estraneo B, che verrebbe eliminato nella copertura canonica, quindi possiamo ignorarla e tenere solo $AC \to BD$.

Per ottenere la copertura canonica, riscriviamo le dipendenze trovate in modo da avere un singolo attributo a destra di ciascuna:

$$F = \{A \rightarrow B, C \rightarrow B, D \rightarrow A, D \rightarrow B, D \rightarrow C, AC \rightarrow B, AC \rightarrow D\}.$$

Procediamo ora all'eliminazione degli attributi estranei. Dato che $B \in A_F^+$, l'attributo C è estraneo in $AC \to B$, quindi tale dipendenza viene eliminata (diventerebbe $A \to B$, che era già nell'insieme). Viceversa $AC \to D$ non ha attributi estranei. Rimaniamo quindi con l'insieme di dipendenze:

$$G = \{A \rightarrow B, C \rightarrow B, D \rightarrow A, D \rightarrow B, D \rightarrow C, AC \rightarrow D\}.$$

Andiamo infine a rimuovere le dipendenze ridondanti. In particolare è possibile osservare che la sola dipendenza ridondante è $D \to B$, dato che $D^+_{G \setminus \{D \to B\}} = DACB$.

8. Una palestra ospita diversi corsi appartenenti a diverse tipologie (aerobica, danza, ...). Ogni corso ha una sigla, che lo identifica, un insegnante e alcuni allievi. Un insegnante offre in generale più corsi, anche con diverse tipologie, e anche un allievo può essere iscritto a più corsi. Di ogni insegnante interessano il nome (che lo identifica) e l'indirizzo. Di ogni allievo interessano il nome (che lo identifica) e il numero di telefono. Per ogni allievo interessa sapere, per ogni corso che frequenta, quanto ha già versato finora. La palestra gestisce attualmente i dati con un foglio elettronico con tante colonne quanti sono i fatti

elementari da trattare. Si chiede di:

- (a) Definire le dipendenze funzionali;
- (b) Dare una copertura canonica delle dipendenze di tale schema;
- (c) Trovare tutte le chiavi.

Solution: Lo schema di relazione avrà forma R(TipoC, SiglaC, NomeI, IndI, NomeA, TelA, Vers), dove i suffissi C, I, A indicano corsi, insegnanti ed allievi rispettivamente. Le dipendenze funzionali F sono:

- 1. $SiglaC \rightarrow TipoC\ NomeI$
- 2. $NomeI \rightarrow IndI$
- 3. $NomeA \rightarrow TelA$
- 4. $SiglaC\ NomeA \rightarrow Vers$

La copertura canonica G si ottiene semplicemente sostituendo la dipendenza 1 con due dipendenze $SiglaC \to TipoC$ e $SiglaC \to NomeI$, visto che è possibile dimostrare che non ci sono attributi estranei e dipendenze ridondanti. A questo punto osserviamo che SiglaC e NomeA devono far parte di ogni chiave, perchè non occorrono a destra di nessuna dipendenza funzionale. In particolare abbiamo che la chiusura di tale coppia di attributi contiene tutti gli attributi della relazione, quindi $\{SiglaC, NomeA\}$ è l'unica chiave.