



#### **Master Thesis**

# Object Detection Using Transformer Fusion And Detection Transformer On Multi-Sensor Data For Automated Driving

**Anshu Garg** 

a\_garg19@cs.uni-kl.de

**Supervisor: David Michael Fürst** 

Professor: Prof. Dr. Didier Stricker





## **Outline**

- Motivation
- Related Work
- Research Gaps
- Methodology
- Experiments
- Qualitative Results
- Conclusion and Future Work
- References





Velodyne HDL-64E Laserscanner

Point Gray Flea

### **Motivation**

Model: TransFuserDeTr (TransFuser<sup>1</sup> + DeTr<sup>2</sup>)

Task: End-to-end 2D Object Detection

**Sensors: Camera and LiDAR** 

Data: RGB and BEV image (no calibration)



- 1. A.Prakash et al. "Multimodal fusion transformer for end-to-end autonomous driving" (CVPR), 2021.
- 2. N.Carion et al. "End-to-end object detection with transformers" (ECCV), 2020.

Motivation 3. A.Geiger et al. "Vision meets robotics: The kitti dataset" (IJRR), 2013.





## **Outline**

- Motivation
- Related Work
- Research Gaps
- Methodology
- Experiments
- Qualitative Results
- Conclusion and Future Work
- References





# **Transformer Fusion (TransFuser)**



**BEV Image Encoder** 

- Task: Waypoint Prediction
- Deep and slow fusion on multi-sensor data by attention menchanism using Transformer.
- Outputs global context feature vector.
   Related Work





## **Detection Transformer (DeTr)**



- Task: End-to-end 2D Object Detection.
- Idea: Considers object detection as set prediction problem.
- CNN: ResNet50.
- 1x1 conv. reduces feature map size (input\_proj).
- Encoder's positional encoding: Sine/ Learned.
- Standard Encoder and Decoder Transformer (decodes N objects in parallel).

Related Work 6 / 36





## **Detection Transformer (DeTr)**



- Decoder's Learned positional encoding called Object Queries.
- Decoder's Embedding layer (query\_embed).
- FFN: label classification head (class\_embed) and bounding box coordinates prediction head (bbox\_embed).
- Loss: Cross Entropy (label classification), L1 and GIoU (bounding box regression).

Related Work 7 / 36





## **Outline**

- Motivation
- Related Work
- Research Gaps
- Methodology
- Experiments
- Qualitative Results
- Conclusion and Future Work
- References





#### **Sensor Modalities:**

• Camera: 2D image.



• LiDAR: 3D point cloud and 2D BEV image.





Use of multi-sensor data might be beneficial for object detection.

Research Gaps 9 / 36





Multi sensor modality: data fusion.

- Late Fusion for e.g., CLOCs<sup>7</sup>. Little exchange of information.
- Slow Fusion: for e.g., AVOD<sup>8</sup>. Dependency on good calibration.
- Deep and Slow Fusion: for e.g., TransFuser.

Research Gap: TransFuser doesn't solve object detection task.

- 7. Su Pang et al. "CLOCs:Camera-LiDAR object Candidates fusion for 3D object detection" (IROS), 2020.
- 8. Jason Ku et al. "Joint 3d proposal generation and object detection from view aggregation"

  Research Gaps (IROS), 2018.

  10 / 36





#### **Object Detection Approaches:**

- Conventional Approaches: One and Two stage object detection models (for e.g., YOLO<sup>5</sup>, Faster-RCNN<sup>6</sup>).
  - Drawbacks: Prior knowledge, Post-processing steps.
- Recent Approaches: direct set prediction task (for e.g., DeTr).
  - Advantage: direct predictions.

Research Gap: DeTr doesn't use multi-sensor data.

- 5. R.Joseph "You only look once: Unified, real-time object detection" (CVPR) 2016.
- 6. S.Ren et al. "Faster R-CNN: Towards real-time object detection with region proposal networks" (NeurIPS), 2015.

Research Gaps





- Extension of DeTr and TransFuser model.
- TransFuserDeTr: TransFuser + DeTr model.
- Evaluation on Kitti dataset (7.4K images).
- Pre-training on NuScenes<sup>4</sup> dataset (34K images).



4. C.Holger et al. "Nuscenes: A multimodal dataset for autonomous driving" (CVPR), 2020.





## **Outline**

- Motivation
- Related Work
- Research Gaps
- Methodology
- Experiments
- Qualitative Results
- Conclusion and Future Work
- References





### **Baseline DeTr Model**

- Training DeTr on Kitti dataset for object detection task.
- Kitti to COCO<sup>12</sup> data format conversion.
- Baseline set up: code migration.
- Evaluation on Kitti dataset (7481 images).
- Prediction selection using threshold value (during evaluation).
- Transfer Learning from COCO to Kitti dataset for DeTr model.
- Different experimental set up to find the best setting.

12. Tsung-Yi.Lin et al. "Microsoft COCO: Common objects in context" (ECCV), 2014.







Replace DeTr backbone by TransFuser.

TransFuser and DeTr customisat

BEV generation.



Methodology 15 / 36





## TransFuserDeTr Model: BEV Generation

2 channel BEV capturing the camera view.









- Replace DeTr backbone by TransFuser.
- TransFuser and DeTr customisations.
- BEV generation.
- Find the best experimental set up.

Methodology 17 / 36





## **Kitti Dataset: Different Splits**

- TransFuserDeTr performance testing on different data splits:
  - Split 1
  - Split 2<sup>13</sup>
  - Split 3

13. C.Xiaozhi et al. "3d object proposals for accurate object class detection" (NeurIPS), 2015.





## **Kitti Dataset: Different Splits**





- 80:20 (Ours) (used so far)
- Split 1 No image sequence.
  - 50:50 (less training data)
- Split 2 Considers image sequence.
  - 80:20 (Ours) (used further)
- Split 3 Considers image sequence.





## **Transfer Learning using NuScenes**

Overfitting challenge on split 3.

Possible Solutions: L1, L2 Reg., Weight decay, Auxiliary Loss, Dropout, Data Augmentation (not effective)

Training on bigger dataset

Model pre-training

Pre-training on NuScenes dataset (34k images).

Fine tuning on Kitti dataset (split 3).

Evaluation using Kitti evaluator on both datasets.

Methodology 20 / 3





## **Outline**

- Motivation
- Related Work
- Research Gaps
- Methodology
- Experiments
- Qualitative Results
- Conclusion and Future Work
- References





#### **Baseline DeTr Model**

Using Kitti dataset (split 1).

DeTr pretrained weights versus scratch training.

| Pretrained | Backbone | Object  | Validation |
|------------|----------|---------|------------|
| weights    | weights  | Queries | Loss       |
| No         | No       | 100     | 1.021      |
| Yes        | Yes      | 30      | 0.1948     |
| Yes        | Yes      | 100     | 0.1885     |
| Yes        | No       | 100     | 0.1172     |

Hyper-parameter tuning

| Threshold | Pre-Norm | Car (AP) | Ped (AP) | Cyc (AP) |
|-----------|----------|----------|----------|----------|
| 70%       | T        | 89.14    | 72.41    | 72.68    |
| 70%       | F        | 89.39    | 77.56    | 86.08    |
| 80%       | F        | 89.38    | 76.00    | 79.30    |
| 90%       | F        | 89.36    | 69.76    | 79.09    |

Experiments 22 / 3





Using Kitti dataset (split 1).

| row | ip   | Hyper    | Encoder   | DA  | Fusion, | Size  | Car  | Ped   | Cyc   |
|-----|------|----------|-----------|-----|---------|-------|------|-------|-------|
|     | pw   | Params   |           |     | PG      |       |      |       |       |
|     | TA T | (1 0 1 ) | (D04 D40) | 3.7 | ( 0)    | FF3.6 | 00.0 | HO. 0 | 0.4.0 |



Experiments 23 / 36





Using Kitti dataset (split 1).

- Pretrained weights for RGB and BEV Image Encoder (Row 1).
- TransFuser Backbone hyper parameter tuning (Row 2).
- TransFuser RGB and BEV image Encoder (Row 3).

| row | ip<br>pw | Hyper<br>Params | Encoder    | DA | Fusion,<br>PG | Size | Car  | Ped  | Cyc  |
|-----|----------|-----------------|------------|----|---------------|------|------|------|------|
| 1   | Y        | (8,4,4,200)     | (R50,R50)  | N  | (+, 1)        | 604M | 7.5  | 9.0  | -    |
| 2   | Y        | (1,2,4,200)     | (R50,R50)  | N  | (+, 1)        | 202M | 84.7 | 61.7 | 63.9 |
| 3   | Y        | (1,8,4,200)     | (R34,R18)* | N  | (+, 1)        | 87M  | 87.6 | 70.4 | 74.5 |

Experiments 24 / 36





Using Kitti dataset (split 1).

- Weight Initialisation techniques (no significant improvement).
- TransFuserDeTr Model optimisation (Row 4 and 5).
- Data Augmentation (Row 6, also reduced generalisation gap).

| row | ip i | Hyper       | Encoder    | DA | Fusion, | Size | Car  | Ped  | Cyc  |
|-----|------|-------------|------------|----|---------|------|------|------|------|
|     | pw   | Params      |            |    | PG      |      |      |      |      |
| 1   | Y    | (8,4,4,200) | (R50,R50)  | N  | (+, 1)  | 604M | 7.5  | 9.0  | -    |
| 2   | Y    | (1,2,4,200) | (R50,R50)  | N  | (+, 1)  | 202M | 84.7 | 61.7 | 63.9 |
| 3   | Y    | (1,8,4,200) | (R34,R18)* | N  | (+, 1)  | 87M  | 87.6 | 70.4 | 74.5 |
| 4   | N    | (1,8,4,200) | (R34,R18)  | N  | (+, 1)  | 84M  | 84.4 | 63.5 | 67.2 |
| 5   | N    | (1,2,1,200) | (R34,R18)  | N  | (+, 1)  | 55M  | 86.8 | 71.9 | 78.6 |
| 6   | N    | (1,2,1,200) | (R34,R18)  | Y  | (+, 1)  | 55M  | 88.9 | 70.7 | 82.2 |

Experiments 25 / 36





Using Kitti dataset (split 1).

- Feature fusion technique & different parameter groupings (Row 7, 8, 9).
- Miscellaneous Experiments: different image resolution, LR Scheduler, Ir, normalize BEV, position encoding etc (no improvement).

| row | ip i | Hyper       | Encoder    | DA | Fusion,      | Size | Car  | Ped  | Cyc  |
|-----|------|-------------|------------|----|--------------|------|------|------|------|
|     | pw   | Params      |            |    | PG           |      |      |      |      |
| 1   | Y    | (8,4,4,200) | (R50,R50)  | N  | (+, 1)       | 604M | 7.5  | 9.0  | -    |
| 2   | Y    | (1,2,4,200) | (R50,R50)  | N  | (+, 1)       | 202M | 84.7 | 61.7 | 63.9 |
| 3   | Y    | (1,8,4,200) | (R34,R18)* | N  | (+, 1)       | 87M  | 87.6 | 70.4 | 74.5 |
| 4   | N    | (1,8,4,200) | (R34,R18)  | N  | (+, 1)       | 84M  | 84.4 | 63.5 | 67.2 |
| 5   | N    | (1,2,1,200) | (R34,R18)  | N  | (+, 1)       | 55M  | 86.8 | 71.9 | 78.6 |
| 6   | N    | (1,2,1,200) | (R34,R18)  | Y  | (+, 1)       | 55M  | 88.9 | 70.7 | 82.2 |
| 7   | N    | (1,2,1,-)   | (R34,R18)  | Y  | (+, 2)       | 55M  | 88.8 | 70.2 | 84.0 |
| 8   | N    | (1,2,1,-)   | (R34,R18)  | Y  | $(\cdot, 3)$ | 55M  | 89.4 | 74.2 | 77.1 |
| 9   | N    | (1,2,1,-)   | (R34',R18) | Y  | $(\cdot, 4)$ | 38M  | 89.3 | 82.9 | 86.8 |

Experiments 26 / 36





## TransFuserDeTr Model: Different Splits

Model evaluation for split 1, 2 and 3.

| Split | Best  | Car  | Ped  | Cyc  |
|-------|-------|------|------|------|
| _     | Epoch | (AP) | (AP) | (AP) |
| 1     | 390   | 89.3 | 82.9 | 86.8 |
| 2     | 240   | 81.4 | 55.3 | 38.0 |
| 3     | 360   | 86.7 | 70.1 | 58.1 |







- More training data in split 3 than 2: Less overfitting.
- Car enough training data: AP<sub>70</sub> is not affected much among three splits.
- Ped & Cyc less training data: least AP $_{70}$  & varies between split 2 and 3 $_{27}$  / 36 Experiments





# Transfer Learning using NuScenes

TransFuserDeTr model evaluation on NuScenes dataset using Kitti evaluator.

| Row | Resolution  | Camera         | Set up | Car  | Ped  | Сус  |
|-----|-------------|----------------|--------|------|------|------|
| 1   | (1024, 512) | front only     | 1      | 48.1 | 49.2 | 31.2 |
| 2   | (1600, 800) | front only     | 1      | 50.1 | 53.1 | 40.4 |
| 3   | (1024, 512) | front and back | 2      | 52.4 | 51.5 | 39.4 |

#### Kitti (split 3) versus NuScenes Classification Loss.





Experiments 28 / 36





## **SOTA Comparison**

Comparison between TransFuserDeTr model and SOTA on Kitti dataset.

| Model                             | Car (AP) | Ped (AP) | Cyc (AP) |
|-----------------------------------|----------|----------|----------|
| AVOD [8]                          | 89.8     | 39.4     | 52.6     |
| AVOD-FPN [8]                      | 88.9     | 57.8     | 60.7     |
| PFF3D [9]                         | 92.1     | 52.5     | 66.2     |
| PointPainting [10]                | 92.5     | 53.7     | 78.0     |
| Fast-CLOCs [11]                   | 95.7     | 62.5     | 75.0     |
| DeTr(w)*                          | 85.4     | 79.7     | 71.9     |
| TransFuserDeTr [Ours]             | 86.7     | 70.1     | 58.1     |
| TransFuserDeTr + Pre-train [Ours] | 86.3     | 71.0     | 61.4     |

For Pedestrian: TransFuserDeTr outperforms all SOTA (except DeTr).

For Car: TransFuserDeTr outperforms DeTr.

For Cyclist: TransFuserDeTr outperforms AVOD and AVOD-FPN.

Pretraining TransFuserDeTr on NuScenes, improved AP<sub>70</sub> for Pedestrian and Cyclist classes.

Experiments 29 / 36





## **Outline**

- Motivation
- Related Work
- Research Gaps
- Methodology
- Experiments
- Qualitative Results
- Conclusion and Future Work
- References





## **Qualitative Results**

TransFuserDeTr model prediction visualisation on Kitti dataset (split 3).









## **Outline**

- Motivation
- Related Work
- Research Gaps
- Methodology
- Experiments
- Qualitative Results
- Conclusion and Future Work
- References





#### **Conclusion**

- Transfer Learning on DeTr from COCO to Kitti dataset.
- Novel architecture TransFuserDeTr successfully performs end-to-end object detection task using mulit-sensor data.
- Do not need any calibration between sensor data.
- More training data: better model performance (AP value) and lower the loss, overfitting, generalisation gap challenges.
- Pre-training TransFuserDeTr enhances performance for Pedestrian and Cyclist, though couldn't address overfitting.
- TransFuserDeTr performs better than DeTr for Car prediction.
- TransFuserDeTr performs better than other SOTA using multi-sensor data, for Pedestrian (except DeTr) and Cyclist (AVOD, AVOD-FPN).

Conclusion 33 / 36





#### **Future Work**

Use TransFuserDeTr model for 3D Object Detection task.



Future Work 34 / 36





#### References

- 1. Aditya Prakash, Kashyap Chitta, and Andreas Geiger. "Multimodal fusion transformer for end-to-end autonomous driving". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021
- 2. Nicolas Carion, Francisco Massa, Gabriel Synnaeve, and N. Usunier et al. "End-to-end object detection with transformers". In: European Conference on Computer Vision (ECCV). Springer. 2020.
- 3. Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. "Vision meets robotics: The kitti dataset". In: The International Journal of Robotics Research (IJRR) 32.11 (2013), pp. 1231–1237.
- 4. Holger Caesar, Varun Bankiti, Alex H Lang, and S.Vora et al. "Nuscenes: A multimodal dataset for autonomous driving". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
- 5. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified, real-time object detection". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016.
- 6. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards real-time object detection with region proposal networks". In: Advances in Neural Information Processing Systems (NeurIPS) 28 (2015).
- 7. Su Pang, Daniel Morris, and Hayder Radha. "CLOCs: Camera-LiDAR object candidates fusion for 3D object detection". In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2020.
- 8. Jason Ku, Melissa Mozifian, Jungwook Lee, and A.Harakeh et al. "Joint 3d proposal generation and object detection from view aggregation". In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018.
- 9. Li-Hua Wen and Kang-Hyun Jo. "Fast and accurate 3D object detection for lidar-camera-based autonomous vehicles using one shared voxel-based backbone". In: IEEE Access 9 (2021), pp. 22080–22089.
- 10. Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Beijbom. "Pointpainting: Sequential fusion for 3d object detection". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

References 35 / 36





#### References

- 11. Su Pang, Daniel Morris, and Hayder Radha. "Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection". In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022.
- 12. Tsung-Yi Lin, Michael Maire, Serge Belongie, and J.Hays et al. "Microsoft COCO: Common objects in context". In: European Conference on Computer Vision (ECCV). Springer. 2014.
- 13. Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, and A.G.Berneshawi et al. "3d object proposals for accurate object class detection". In: Advances in Neural Information Processing Systems (NeurIPS) 28 (2015).
- 14. Ashish Vaswani, Noam Shazeer, Niki Parmar, and J.Uszkoreit et al. "Attention is all you need". In: Advances in Neural Information Processing Systems (NeurIPS) 30 (2017).

References 36 / 36





## **Thank You**

Happy Researching ©