Modelos Neuronais mais Transparentes e Compactos usando Esparsidade

Gonçalo M. Correia

Introdução

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

Impacto e Conclusões

Modelos poderosos de aprendizagem automática

- Modelos poderosos de aprendizagem automática
- Capacidade de aprender representações complexas

- Modelos poderosos de aprendizagem automática
- Capacidade de aprender representações complexas
- Aplicações em áreas como visão computacional, processamento de linguagem natural, etc.

- Modelos poderosos de aprendizagem automática
- Capacidade de aprender representações complexas
- Aplicações em áreas como visão computacional, processamento de linguagem natural, etc.
- Resultados de ponta

des neuronais

Artificial intelligence beats eight world champions at bridge

Victory marks milestone for AI as bridge requires more human skills than other strategy games

des neuronais

Artificial intelligence beats eight world champions at bridge

Victory marks milestone for AI bridge requires more human sk than other strategy games

AI 'outperforms' doctors diagnosing breast cancer

Fergus Walsh
Medical correspondent
@BBCFergusWalsh

des neuronais Artificial intelligence

beats

Expresso 50

than ot

Conversar com uma máquina nunca foi tão real: chatGPT dá bridge conselhos, escreve poemas, lê o Expresso e gosta de futebol

Fergus Walsh Medical correspondent @BBCFergusWalsh

• Quantidade de dados necessários

- Quantidade de dados necessários
- Dificuldade de interpretar os resultados

- Quantidade de dados necessários
- Dificuldade de interpretar os resultados
- Quantidade de recursos computacionais necessários

Harvard Business Review

Al Can Outperform Doctors. So Why Don't Patients Trust It?

by Chiara Longoni and Carey K. Morewedge

SUBSCRIBE

Al Can Do Great Things—if It Doesn't Burn the Planet

The computing power required for AI landmarks, such as recognizing images and defeating humans at Go, increased 300,000-fold from 2012 to 2018.

Al Can Outperform Doctors. So Why Don't Patients Trust It?

by Chiara Longoni and Carey K. Morewedge

ntrodução

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

lmpacto e Conclusões

Tornar a rede esparsa

LMs usam representações densas.

Tornar a rede esparsa

LMs usam representações densas.

A nossa solução foi esparsificar:

- interpretabilidade
- descobrir estruturas linguísticas

Maior interpretabilidade

Ideias-chave

Introduzimos uma forma de usar esparsidade adaptativa em redes neuronais, melhorando a transparência das mesmas.

Ideias-chave

Introduzimos uma forma de usar esparsidade adaptativa em redes neuronais, melhorando a transparência das mesmas.

esparsidade

Ideias-chave

Introduzimos uma forma de usar esparsidade adaptativa em redes neuronais, melhorando a transparência das mesmas.

esparsidade

mais interpretável

Introdução

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

lmpacto e Conclusões

Método	sucesso (%)	# mensagens
Monte Carlo		
Marginalização		

Método	sucesso (%)	# mensagens
Monte Carlo		
M		

Método	sucesso (%)	# mensagens
Monte Carlo		
Marginalização		

Método	sucesso (%)	# mensagens
Monte Carlo		
Marginalização		

Método	sucesso (%)	# mensagens
Monte Carlo		
Marginalização Denso	93.37 ±0.42	256

Método	sucesso (%)	# mensagens
Monte Carlo SFE	33.05 ±2.84	1
<i>Marginalização</i> Denso	93.37 ±0.42	256

A nossa solução

Método	sucesso (%)	# mensagens
Monte Carlo SFE	33.05 ±2.84	1
Marginalização Denso Esparso	93.37 ±0.42	256

Método	sucesso (%)	# mensagens
Monte Carlo SFE	33.05 ±2.84	1
Marginalização Denso Esparso	93.37 ±0.42	256

Método	sucesso (%)	# mensagens
Monte Carlo SFE	33.05 ±2.84	1
Marginalização Denso Esparso	93.37 ±0.42 93.35 ±0.50	256

Método	sucesso (%)	# mensagens
Monte Carlo SFE	33.05 ±2.84	1
<i>Marginalização</i> Denso Esparso	93.37 ±0.42 93.35 ±0.50	256 3.13±0.48

Ideias-chave

Introduzimos um novo método para treinar, de forma mais eficiente, redes compactas, usando esparsidade.

Ideias-chave

Introduzimos um novo método para treinar, de forma mais eficiente, redes compactas, usando esparsidade.

eficiente

Ideias-chave

Introduzimos um novo método para treinar, de forma mais eficiente, redes compactas, usando esparsidade.

eficiente

esparso, se necessário

troduçã

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

Impacto e Conclusões

 Artigos que desenvolveram mais métodos com esparsidade, focados na transparência e eficiência que isso traz

- Artigos que desenvolveram mais métodos com esparsidade, focados na transparência e eficiência que isso traz
- Esperamos que este trabalho tenha contribuído para IA mais responsável

- Artigos que desenvolveram mais métodos com esparsidade, focados na transparência e eficiência que isso traz
- Esperamos que este trabalho tenha contribuído para IA mais responsável

Conclusões

Com esparsidade, démos passos para levar modelos neuronais mais perto da versão 2.0

Conclusões

Com esparsidade, démos passos para levar modelos neuronais mais perto da versão 2.0

transparência

Conclusões

Com esparsidade, démos passos para levar modelos neuronais mais perto da versão 2.0

Agradecimentos