$_{ m QCM}^{ m Algo}$

1. Un arbre général dont les noeuds contiennent des valeurs est?
(a) valué
(b) étiqueté
(c) valorisé
(d) évalué
2. Parmi les constituants d'un arbre général, on trouve?
(a) un noeud
(b) une forêt
(c) une liste de noeud
(d) une liste d'arbres généraux
3. Dans un arbre général, une branche est le chemin obtenu à partir de la racine jusqu'à?
(a) un noeud interne de l'arbre
(b) une feuille de l'arbre
(c) la racine du premier sous-arbre
(d) le racine du dernier sous-arbre
4. Dans le parcours profondeur d'un arbre général, quels ordres ne sont pas des ordres induits?
(a) Préfixe
(b) Infixe
(c) Intermédiaire
(d) Suffixe
5. Dans un arbre général, un noeud possédant juste 1 fils est appelé?
(a) noeud interne
(b) noeud externe
(c) feuille
(d) point simple
(e) point double
6. Combien d'ordre de passages induit le parcours en profondeur main gauche d'un arbre général ?
(a) 1
(b) 2
(c) 2 et demi
(d) 3
(e) 4

- 7. La hauteur d'un arbre général réduit à un noeud racine est?
 - (a) -1
 - (b) 0
 - (c) 1
- 8. Un arbre planaire général?
 - (a) Possède au moins 2 sous-arbres
 - (b) ne peut pas être vide
 - (c) Possède un nombre indéterminé de sous-arbres
 - (d) Possède au moins 1 sous-arbre
- 9. Une forêt est?
 - (a) une liste d'arbres
 - (b) éventuellement vide
 - (c) une liste de noeuds
 - (d) toujours pleine
- 10. Lors d'une recherche si la clé recherchée n'est pas trouvée, on parle de recherche?
 - (a) négative
 - (b) positive
 - (c) affirmative
 - (d) logique
 - (e) cognitive

QCM N°19

lundi 26 mars 2018

Socient (P2, P2) EIR[X], LER

flotP2+P2)= ((1P2+P2)(2), (1P2+P2)(1)

= 161P2)+fle

= (1P12)+P2(2), (P, (1)+P12)

= (P2(2), P2'(2))+(P2(2)+P2'(1))

Question 11

(a) L'application
$$f: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow \mathbb{R}^2 \\ P(X) & \longmapsto \left(P(2), P'(1)\right) \end{array} \right.$$
 est linéaire

(b.) L'application
$$f: \left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow \mathbb{R}^2 \\ P(X) & \longmapsto \left(P(1) + P(2), P'(1)\right) \end{array} \right.$$
 est linéaire

c. L'application
$$f: \begin{cases} \mathbb{R}[X] & \longrightarrow \mathbb{R}^2 \\ P(X) & \longmapsto (P(1)P(2),P'(1)) \end{cases}$$
 est linéaire NON can produit non lineaire $\mathbb{R}[X] & \longrightarrow \mathbb{R}^2$

d. L'application
$$f: \left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow \mathbb{R}^2 \\ P(X) & \longmapsto \left(P(1)+1,P'(1)\right) \end{array} \right.$$
 est linéaire

Question 12

(a) L'application
$$f: \left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P(X) & \longmapsto X^2 P''(X) \end{array} \right.$$
 est linéaire

b. L'application
$$f: \left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow \mathbb{R}[X] \\ P(X) & \longmapsto P(X)P'(X) \end{array} \right.$$
 est linéaire
$$\left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow \mathbb{R}[X] \\ P(X) & \longmapsto P(X)P'(X) \end{array} \right.$$
 est linéaire
$$\left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow \mathbb{R}[X] \\ P(X) & \longmapsto P(X)P'(X) \end{array} \right.$$
 est linéaire
$$\left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow \mathbb{R}[X] \\ P(X) & \longmapsto P(X)P'(X) \end{array} \right.$$

C. L'application
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\ (x,y) & \longmapsto (x-y,5x-3y) \end{array} \right.$$
 est linéaire

d. L'application
$$f: \left\{ egin{array}{ccc} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ (x,y,z) & \longmapsto (xy-z,5x-3y,z-x) \end{array}
ight.$$
 est linéaire

$\begin{cases} (2^{4}) = X^{2} \times (X = 2X^{3}) \\ \{(2^{4}) = 3X^{5} \\ \{(2^{4} + 2^{3}) = (X^{4} + X^{3}) \cdot (2X + 3X^{4}) \} \\ = ZX^{3} + SX^{4} + 3X^{5} \\ \neq \{(2^{2}) + \{(2^{3}) + (2^{3}) + (2^{3}) \} \end{cases}$

Question 13

Soient E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$. Alors

a.
$$\operatorname{Ker}(f \circ f) \subset \operatorname{Ker}(f)$$
 (follow) = $\mathcal{O}_{\mathsf{E}} \Longrightarrow \{|x| = \mathcal{O}_{\mathsf{E}}\}$ Imp

(b)
$$\operatorname{Im}(f \circ f) \subset \operatorname{Im}(f)$$
 for $(*) \Longrightarrow f(*)$

c. Si
$$f\circ f=0,$$
 alors $\operatorname{Ker}(f)\subset\operatorname{Im}(f)$

(d.) Si
$$f \circ f = 0$$
, alors $\text{Im}(f) \subset \text{Ker}(f)$

e. rien de ce qui précède

Question 14

Soient E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$. Alors

(a)
$$f(\operatorname{Im}(f)) = \operatorname{Im}(f)$$

b.
$$f(\operatorname{Ker}(f)) = \operatorname{Ker}(f)$$

c.
$$f(\operatorname{Im}(f)) = E$$

(d)
$$f(\operatorname{Ker}(f)) = \{0\}$$

Question 15

Soient E un \mathbb{R} -ev, $f \in \mathcal{L}(E)$. Alors f injective ssi

(a)
$$Ker(f) = \{0\}$$

(b)
$$\forall (x,y) \in E^2$$
: $f(x) = f(y) \Longrightarrow x = y$

c.
$$\forall (x,y) \in E^2$$
: $x = y \Longrightarrow f(x) = f(y)$

Question 16

Soient E un \mathbb{R} -ev et F un sev quelconque de E. Alors

a.
$$Vect(F) = E$$

b.
$$Vect(F) = \{0\}$$

$$(c.)$$
 Vect $(F) = F$

d.
$$Vect(F) = E \cup F \neq F$$

e. rien de ce qui précède

Question 17

Soient E un \mathbb{R} -ev, F et G deux sev de E.

$$E = F \oplus G$$
 signifie

a.
$$E = F \cup G \text{ et } F \cap G = \{0\}$$

b.
$$E = F \cap G$$
 et $F \cup G = \{0\}$

c.
$$E = F \cup G$$
 et $F \cap G = \emptyset$

(d)
$$E = F + G$$
 et $F \cap G = \{0\}$

e. rien de ce qui précède

Injetive => kend = {0}

Question 18

- (a.) L'ensemble des polynômes à coefficients réels, nuls ou de degré inférieur ou égal à 2017 est un R-ev
- (b) L'ensemble des polynômes à coefficients réels multiples de X-1 est un \mathbb{R} -ev
- c. L'ensemble des polynômes à coefficients réels positifs ou nuls est un R-ev
- (d) L'ensemble des polynômes à coefficients réels dont le terme constant est nul est un R-ev
- e. rien de ce qui précède

Question 19

- (a) Toute suite réelle croissante et non majorée tend vers $+\infty$
- (b) Toute suite réelle croissante et bornée converge
- (c.) Toute suite réelle décroissante et non minorée tend vers $-\infty$
- d. rien de ce qui précède

Question 20

Soit (u_n) une suite réelle. Alors

- (a) (u_{n^2}) est une suite extraite de (u_n)
- (b) (u_{6n}) est une suite extraite de (u_n)
- (c.) (u_{2n+1}) est une suite extraite de (u_n)
- d. rien de de qui précède

1984, Part 2, Chap 1,2

- 21. 'In front of him was an enemy who was trying to kill him': Who does this refer to and why was he/she perceived as an enemy?
- a) Goldstein / Because he was the enemy of the people.
- b) Syme / Because he was a Party member.
- c) The girl with dark hair / Because she had been following him around.
- d) None of the above.
- 22. 'Winston did not immediately read the note.'
- a) True
- b) False
- c) Not clear
- 23. What did Winston do with the note before reading it?
- a) He tore it into pieces.
- b) He put it casually among the other papers on his desk.
- c) He folded it so that no one could see it.
- d) He went to the washroom to be able to read it.
- 24. What helped Winston to keep the girl out of his mind while he was still at work?
- a) Staring at the telescreen.
- b) A serious piece of work.
- c) Listening to Parsons' stories.
- d) None of the above.
- 25. Where did Winston and the girl decide to meet for the first time?
- a) At the canteen.
- b) In his apartment.
- c) Victory Square.
- d) Paddington Station.
- 26. What was the name of the dark haired girl?
- a) Jennifer
- b) Julia
- c) Julie
- d) Jane
- 27. What did she share with Winston during their first date? What was so special about that?
- a) A hug/ No one hugged in Oceania.
- b) A slab of chocolate / It was unusually tasty.
- c) A secret. / No one ever shared a secret with anyone in Oceania.
- d) A note. / No one wrote by hand in Oceania.

- 28. How did the girl find out that Winston was someone against the Party?
- a) Because she followed him everywhere.
- b) Because she had read his diary.
- c) Because she was good at spotting people.
- d) Because she had known him for a long time.
- 29. Winston said he liked the girl the more she _____.
- a) lost weight.
- b) wore overalls.
- c) said swear words.
- d) was corrupt.
- 30. Where did the girl work?
- a) At the Records Department.
- b) At the canteen.
- c) At the Fiction Department.
- d) At the Ministry of Plenty.

The following questions are based on the article read outside of class: "I Am Woman, Watch Me Hack"

- 31. Nikki Allen dreamed of being a:
 - a. Forensic investigator
 - b. Forensic doctor
 - c. Forensic scientist
 - d. Forensic coder
- 32. Nikki Allen was advised to apply to:
 - a. Girls and Computer Group
 - b. Girls and Programming
 - c. Girls Who Code
 - d. Girls and Computer Science
- 33. Nursing and teaching are sometime referred to as:
 - a. White collar occupations
 - b. Blue collar occupations
 - c. Green collar occupations
 - d. Pink collar occupations
- 34. In 1990-91, about 29% of bachelor's degrees awarded in computer and information science went to women. 20 years later it was:
 - a. Down to 18%
 - b. About the same percentage
 - c. Went up to 35%
 - d. None of the above.
- 35. What is one of the biggest challenges according to many in the industry?
 - a. Public-image problem
 - b. Lack of contact with computer scientists
 - c. Lack of understanding of the field
 - d. All of the above.
- 36. What was credited for helping turn forensic science into a primarily female occupation?
 - a. Teachers talking to students about forensic science
 - b. TV shows such as "CSI" and "Bones"
 - c. Meeting with engineers and scientists
 - d. None of the above.
- 37. A study financed by the Geena Davies Institute on Gender in Media found that:
 - a. Not a lot of women were represented as computer scientists or engineers during prime time TV.
 - b. Only women were represented as computer scientists.
 - c. Only men were represented as engineers.
 - d. None of the above.
- 38. What does the National Academy of Science offer for free to producers?
 - a. They propose to rewrite the screenplay.
 - b. Consultation with all kind of scientist.
 - c. They propose to have a real engineer as an actor.
 - To be part of the production team.
- 39. What happened to Natalie Portman's role in the movie "Thor"?
 - a. It changed from a nurse to astrophysicist
 - b. It changed from computer programmer to astrophysicist
 - c. It changed from nurse to computer programmer
 - d. None of the above
- 40. The skills required for computer science occupations are not taught in
 - a. Most elementary and public schools.
 - b. In college.
 - c. At universities.
 - d. In America.

O.C.M n°13 de Physique

41- L'équation différentielle du pendule simple qui oscille sans frottements est

 $\theta + \frac{g}{I}\theta = 0$ (g est le champ de pesanteur et L la longueur du fil)

La période d'oscillateur cet oscillateur est

a)
$$T = 2\pi \sqrt{\frac{g}{L}}$$

b)
$$T = 2\pi \sqrt{\frac{L}{g}}$$

c)
$$T = \frac{1}{2\pi} \sqrt{\frac{L}{g}}$$

a)
$$T = 2\pi \sqrt{\frac{g}{L}}$$
 b) $T = 2\pi \sqrt{\frac{L}{g}}$ c) $T = \frac{1}{2\pi} \sqrt{\frac{L}{g}}$ d) $T = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$

42- Dans le cas du pendule simple (question 41), la période T des oscillations dépend de la longueur du fil L. Si l'on considère le même pendule mais maintenant avec un fil de longueur 2L, que vaut la période T'?

a)
$$T' = 2T$$

b)
$$T' = T/\sqrt{2}$$
 c) $T' = T/2$ d) $T' = T.\sqrt{2}$

c)
$$T' = T/2$$

d)
$$T' = T.\sqrt{2}$$

- 43- Laquelle des grandeurs ci-dessous n'est pas intensive ?
 - a) la température
 - b) le nombre de moles
 - c) la pression
 - d) la masse volumique
- 44- Le flux de chaleur se propage dans
 - a) a) le sens opposé au vecteur gradient de température : $\overrightarrow{grad}(T)$
 - b) une direction perpendiculaire au vecteur gradient de température : grad(T)
 - c) le même sens que le vecteur gradient de température : grad(T)
 - d) du corps le plus froid vers le corps le plus chaud
- 45- On considère un conducteur de conductivité λ_{th}, de section S, d'épaisseur e, séparant deux milieux de températures respectives θ_{int} et θ_{ext} et traversé par un flux de chaleur Φ . La résistance thermique de ce conducteur est

a)
$$R_{th} = -\frac{\Delta \theta}{\Phi}$$
; $(\Delta \theta = \theta_{int} - \theta_{ext}, \text{ avec } \theta_{int} > \theta_{ext})$

b)
$$R_{th} = \frac{\lambda_{th}}{e.S}$$

c)
$$R_{th} = \frac{e.S}{\lambda_{th}}$$

A. Zellagui

46- Un double vitrage est constitué de deux vitres en verre, chacune de résistance R_{verre}, séparées par un espace rempli d'air de résistance Rair. Que vaut la résistance totale du double vitrage?

a)
$$\frac{2}{R_{verre}} + \frac{1}{R_{air}}$$

b)
$$R_{verre} + R_{air}$$

a)
$$\frac{2}{R_{verre}} + \frac{1}{R_{air}}$$
 b) $R_{verre} + R_{air}$ c) $2R_{verre} + R_{air}$ d) $\frac{1}{R_{verre}} + \frac{2}{R_{air}}$

$$d)\frac{1}{R_{verre}} + \frac{2}{R_{air}}$$

47- La température d'équilibre atteinte lorsque l'on mélange dans un calorimètre (de capacité calorifique négligeable) un volume V_1 d'eau à la température θ_1 et un volume V_2 d'eau à la température θ_2 est

a)
$$\theta_e = \frac{\theta_1 + \theta_2}{2}$$

b)
$$\theta_e = V_1 \theta_1 + V_2 \theta_2$$

a)
$$\theta_e = \frac{\theta_1 + \theta_2}{2}$$
 b) $\theta_e = V_1 \theta_1 + V_2 \theta_2$ $\bigcirc \theta_e = \frac{V_1 \theta_1 + V_2 \theta_2}{V_1 + V_2}$

48- Le premier principe de la thermodynamique énonce que la variation d'énergie interne ΔU d'un système fermé est

a)
$$\Delta U = W - Q$$
 (W est le travail des forces de pression et Q la quantité de chaleur échangée)

b)
$$\Delta U = -W + Q$$

c)
$$\Delta U = E_{pot} + E_{cinét}$$

49- Pour une transformation isochore d'un gaz parfait de l'état (1) vers l'état (2), les pressions et les températures vérifient :

a)
$$P_1 T_1 = P_2 . T_2$$
 b) $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ c) $\frac{T_1}{P_1} = \frac{P_2}{T_2}$

c)
$$\frac{T_1}{P_1} = \frac{P_2}{T_2}$$

50- La fonction d'état enthalpie H est définie par

a)
$$H = U - W$$
 (b) $H = U + P \cdot V$ (c) $H = U - P V$

QCM - Electronique

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Soit un courant sinusoïdal $i(t) = I.\sqrt{2}.sin(\omega t + \varphi)$. On note \underline{I} , l'amplitude complexe de i(t).

Q1. Quel est le module de I?

a.
$$\langle i \rangle$$

c. ω

d. $\frac{I}{\sqrt{2}}$

Q2. Quel est l'argument de \underline{I} ?

a.
$$\omega t + \varphi$$

c. ωt

d. *I*

Q3. Quelle formule représente l'impédance complexe d'un condensateur de capacité C?

c.
$$-jC\omega$$

$$\bigcirc$$
 $\frac{1}{iC\omega}$

d.
$$\frac{j}{Cw}$$

Q4. Dans un condensateur, quel est le déphasage du courant par rapport à la tension?

(a)
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

d. $\pm \frac{\pi}{2}$ selon la fréquence

Q5. Dans une bobine, quel est le déphasage du courant par rapport à la tension?

a.
$$+\frac{\pi}{2}$$

ⓑ
$$-\frac{\pi}{2}$$

d. $\pm \frac{\pi}{2}$ selon la fréquence

On cherche à identifier un dipôle. Pour cela, on mesure le courant i(t) qui le traverse et la tension u(t) à ses bornes, et on obtient :

$$u(t) = 20\cos(\omega t)$$
 et $i(t) = 5.10^{-3}\sin(\omega t + \phi)$ avec $\omega = 1000 \ rad. \ s^{-1}$

Q6. Si $\phi = 0$, ce dipôle est :

a. Une résistance
$$R=4k\Omega$$

c. Un condensateur de capacité
$$C=4\mu F$$

(b) Une bobine d'inductance
$$L=4\,H$$

d. Un condensateur de capacité
$$C=0.25 \mu F$$

a.	Une résistance	c. un interrupteur ouvert	
b.	un fil	d. aucune de ces réponses	
Q8.	Comment se comporte la bobine en très hautes fréquences :		
a.	Une résistance	c.) un interrupteur ouvert	
b.	un fil	d. aucune de ces réponses	
Soit un filtre du 1er ordre. On note $\underline{T}(\omega)$ la fonction de transfert d'un filtre, $A(\omega)$, sor			
amplification et $G(\omega)$, son gain en dB.			
Q9.	$A(\omega)$ est le quotient de la tension efficace de sortie sur la tension efficace d'entrée.		
(a.)	VRAI	b. FAUX	
Q10. $arg(\underline{T}(\omega))$ représente le déphasage de la tension d'entrée par rapport à la tension de sortie.			
a.	VRAI	(b.) FAUX	

Q7. Comment se comporte le condensateur en très basses fréquences :

QCM 5 Architecture des ordinateurs

Lundi 26 mars 2018

- 11. Donnez la représentation IEEE 754, en simple précision, du nombre suivant : -120,25
- 12. En double précision, quelle est la valeur minimum du champ E pour un codage à mantisse normalisée?
 - A. 0
 - B. 1
 - C. Aucune de ces réponses.
 - D. 2
- 13. En double précision, quelle est la valeur maximum du champ E pour un codage à mantisse normalisée ?
 - A. 2046
 - B. 2047
 - C. 1023
 - D. 1024
- 14. Donnez la représentation décimale associée au codage simple précision IEEE 754 suivant : 0020 0000₁₆
 - A. 2⁻¹²⁶
 - B. 2^{-124}
 - C. Aucune de ces réponses.
 - D. 2⁻¹²⁸
- 15. Une bascule D maître-esclave:
 - A. Modifie la sortie Q sur les fronts montants et descendants de l'horloge.
 - B. Modifie la sortie Q uniquement sur les fronts descendants de l'horloge.
 - C. Modifie la sortie Q uniquement sur les fronts montants de l'horloge.
 - D. Copie l'entrée D sur la sortie Q à chaque front montant de l'horloge.

- 16. Choisir la réponse correcte :
 - A. Une bascule JK ne possède pas de mise à 0.
 - B. Une bascule JK ne possède pas de mise à 1.
 - C. Une bascule JK ne possède pas d'état mémoire.
 - D. Une bascule JK ne possède pas d'état interdit.
- 17. Lorsque les entrées J et K d'une bascule synchronisée sur front montant sont toujours à 1 :
 - A. La sortie ne change jamais.
 - B. La sortie bascule à chaque front descendant du signal d'horloge.
 - C. La sortie est toujours à 1.
 - D. Aucune de ces réponses.
- 18. Combien de bascules sont nécessaires pour fabriquer un compteur modulo 2ⁿ (avec n > 1)?
 - A. n-1 bascules.
 - B. n bascules.
 - C. n + 1 bascules.
 - D. 2ⁿ bascules.
- 19. Combien de bascules sont nécessaires pour fabriquer un compteur modulo 2ⁿ 2 (avec n > 2) ?
 - A. n-1 bascules.
 - B. n bascules.
 - C. n + 1 bascules.
 - D. $2^n 1$ bascules.
- 20. Un compteur comportant n bascules :
 - A. Compte toujours de $0 \text{ à } 2^n 1$.
 - B. Ne peut pas compter de $0 \text{ à } 2^n 1$.
 - C. Peut compter de 0 à $2^n 1$.
 - D. Peut compter de 0 à 2ⁿ.