

Factors Affecting Typing Speed

Project Presentation: MA4240 Applied Statistics

GROUP-5 July 2, 2022

Team Members

- Amulya Tallamraju Al20BTECH11003
- Vaibhav Chhabra Al20BTECH11022
- Anita Dash MA20BTECH11001
- Anjali MA20BTECH11002
- Ruthwika Boyapally MA20BTECH11004
- Kunal Nema MA20BTECH11007
- Sparsh Gupta MA20BTECH11015
- Tapishi Kaur MA20BTECH11017

Introduction

Abstract

Typing is now one of the essential part of almost every job since it lets you do your work very quickly and efficiently. We aim to analyze the typing speed of students in IITH, try drawing conclusions based on various factors and analyze if there is some relation between the factors and the typing speed.

Collection of Data

Objective of the Study

Objective

The objective of our study is to ascertain factors affecting the typing speed of students.

Figure 1: factors considered for the purpose of this study

Figure 2: Is there a correlation between the factors and WPM?

Figure 3: Is there a correlation between the factors and Accuracy?

Figure 4: Variables of Interest

We perform an observational study to find out how the above stated factors affect the typing speed of an individual.

Strategy followed for Data Collection

- A google form was circulated to collect data.
- To avoid measurement problem in responses, participants were urged to take a common test.
- ► Link to the Test

Strategy followed for Data Collection

A Potential Issue

The survey we conducted is an example of convenience sampling. Hence, the data frame generated would be biased

Strategy followed for Data Collection

Definition

Simple random sampling is defined as a sampling technique where every item in the population has an even chance and likelihood of being selected in the sample.

Figure 5: Simple random sampling of subgroups

Figure 6: The graphs show that the data for wpm is right skewed and the accuracy is left skewed

p-value test for normality

Hypothesis Testing with 0.05 level of significance More details

Null Hypothesis: Data is Normally Distributed

Alternative Hypothesis: Data is not Normally Distributed

```
[] from scipy.stats import shapiro
    stat, p = shapiro(sample_data['WPM'])
    alpha = 0.05
    if p > alpha:
        print('Sample is normal (fail to reject H0)')
    else:
        print('Sample is not normal (reject H0)')

Sample is not normal (reject H0)
```

Issue

Our data is not normally distributed How do we go ahead with our study?

Central Limit Theorem

The Central Limit Theorem states that the sampling distribution of the sample means approaches a normal distribution as the sample size gets larger — no matter what the shape of the population distribution. This fact holds especially true for sample sizes over 30.

Sampling distribution for n = 30: WPM

Sampling distribution for n = 30: Accuracy

0.2

Sample

	Gender	
	Male Female	
Total	107	50
Sampled	70	39

	Branch			
	Group-1	Group-2	Group-3	Group-4
Total	53	36	36	32
Sampled	45	30	30	30

	Batch		
	UG M.Sc./M.Des/M.Tech		PHD
Total	80	41	36
Sampled	60	35	33

Figure 8: Data Collected and Data Sampled

Summarizing and Visualizing the Sample Data

Summarizing and Visualizing the Sample Data

Formulas

Sample Mean:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

Sample Variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n-1} (x_{i} - \bar{x})^{2}$$
 (2)

Gender-Based comparison

	Gender		
	Male Female		
Total	107	50	
Sampled	70	39	
(a)			

male	WPM	Accuracy	
mean	61.985714	95.714286	
variance	539.231677	12.236025	
(b)			
female	WPM	Accuracy	
mean	49.179487	94.868421	

(c)

180.203779 43.901138

variance

Figure 10

Batch-Based comparison

	Sample	
UG	WPM	Accuracy
mean	56.316667	94.883333
PHD	WPM	Accuracy
mean	54.121212	95.939394
Masters	WPM	Accuracy
mean	54.171429	95.285714

(a)

	Batch		
	UG	M.Sc./M.Des/M.Tech	PHD
Total	80	41	36
Sampled	60	35	33

(b)

	Sample	
UG	WPM	Accuracy
variance	525.169209	37.392938
PHD	WPM	Accuracy
variance	187.672348	8.871212
Masters	WPM	Accuracy
variance	242.49916	11.857143

(c)

Figure 12

Branch-Based comparison

WPM		
Group	mean	
G-1	66.29	
G-2	45.33	
G-3	54.37	
G-4	53.57	
(a)		

	Branch			
	Group-1	Group-2	Group-3	Group-4
Total	53	36	36	32
Sampled	45	30	30	30

(b)

WPM		
Group	variance	
G-1	650.66	
G-2	120.64	
G-3	262.52	
G-4	123.43	

(c)

Branch-Based Comparision

Accuracy		
Group	variance	
G-1	11.904	
G-2	17.66091954	
G-3	53.91	
G-4	5.24	

Accuracy			
Group mean			
G-1	95.22		
G-2	96.167		
G-3	93.47		
G-4	95.93		

(a) (b)

Figure 15

Analyzing Data

CI for estimation of Population Means

Formulas

If $X_1, X_2, ..., X_n$ are normally distributed with unknown mean μ and variance σ^2 , then a $(1 - \alpha)100\%$ CI for the population mean μ is:

$$\left(\bar{X}-t_{\alpha/2,n-1}\left(\frac{S}{\sqrt{n}}\right),\ \bar{X}+t_{\alpha/2,n-1}\left(\frac{S}{\sqrt{n}}\right)\right)$$

CI for estimation of Population Means

95% Confidence Interval							
	UG	PHD	Masters		UG	PHD	Masters
	WPM				Accuracy		
	[50.40,	[49.26,	[48.82,		[93.30,	[94.88,	[94.10,
mean	62.23]	58.97]	59.52]		96.46]	96.99]	96.46]

95% confidence interval:					
	Male	Female	Male Female		
	W	PM	Accu	ıracy	
pop_mean	[56.45,67.52]	[44.83,53.53]	[94.87,96.56]	[92.72,97.02]	

WPM			
95% CI			
Group	mean		
G-1	(58.63, 73.95)		
G-2	(41.23, 49.43)		
G-3	(48.32, 60.42)		
G-4	(49.42, 57.72)		

Accuracy			
95% CI			
Group	mean		
G-1	(94.19, 96.26)		
G-2	(94.60, 97.74)		
G-3	(90.72, 96.21)		
G-4	(95.08, 96.79)		

CI for estimation of Difference in Population Means

Two sampled pooled t-interval

$$if\left(\frac{1}{4} < \frac{S_X^2}{S_Y^2} < 4\right)$$

 $X_1, X_2, ..., X_n \sim N(\mu_1, \sigma^2)$ and $Y_1, Y_2, ..., Y_m \sim N(\mu_2, \sigma^2)$ are independent random samples, then a $(1 - \alpha)100\%$ CI for the difference in the population means, $\mu_1 - \mu_2$ is:

$$\left((\bar{X} - \bar{Y}) - t_{\alpha/2, n+m-2} S_P \sqrt{\frac{1}{n} + \frac{1}{m}}, \ (\bar{X} - \bar{Y}) + t_{\alpha/2, n+m-2} S_P \sqrt{\frac{1}{n} + \frac{1}{m}}\right)$$

where

$$S_P^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

CI for estimation of Difference in Population Means

Welch's t-interval

$$\text{if}\left(\frac{S_\chi^2}{S_\gamma^2} < \frac{1}{4} \text{ or } 4 < \frac{S_\chi^2}{S_\gamma^2}\right)$$

 $X_1, X_2, ..., X_n \sim N(\mu_1, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_m \sim N(\mu_2, \sigma_Y^2)$ are independent random samples, then a $(1 - \alpha)100\%$ CI for the difference in the population means, $\mu_1 - \mu_2$ is:

$$\left((\bar{X} - \bar{Y}) - t_{\alpha/2,r} \sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}, \ (\bar{X} - \bar{Y}) + t_{\alpha/2,r} \sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}} \right)$$

where

$$r = \text{integer part of } \frac{\left(\frac{S_\chi^2}{n} + \frac{S_\gamma^2}{m}\right)^2}{\frac{(S_\chi^2/n)^2}{n-1} + \frac{(S_\gamma^2/m)^2}{m-1}}$$

CI for estimation of Difference in Population Means

	WPM	Accuracy		
	Difference of Mean	Difference of mean		
group 1,2	(12.39, 29.54)	(-0.83, 2.71)		
group 1,3	(1.46, 22.39)	(-0.76, 4.27)		
group 1,4	(4.11, 21.33)	(-0.72, 2.14)		
group 2,3	(1.88, 16.19)	(-0.39, 5.79)		
group 2,4	(2.52, 13.94)	(-1.52, 1.98)		
group 3,4	(-6.38, 7.98)	(-6.38, 7.98)		

difference of two means WPM :	[5.85,19.77]
difference of two means accuracy :	[-1.44,3.14]

(b)

difference of mean WPM (UG-PHD):	[-6.48,	difference of mean Accura	cy [-0.82,
	10.87]	(UG-PHD):	2.93]
difference of mean WPM	[-7.06,	difference of mean Accura	cy [-0.90,
(Masters-PHD):	7.16]		2.12]
difference of mean WPM (UG-	[-8.62,	difference of mean Accura	cy [-1.58,
Masters):	8.72]	(UG-Masters):	2.89]

(a) (c)

CI for estimating Population Variance

Formulas

If $X_1, X_2, ..., X_n$ are normally distributed and $a = \chi^2_{1-\alpha/2, n-1}$, $b = \chi^2_{\alpha/2, n-1}$, then a $(1 - \alpha)100\%$ CI for the population variance σ^2 is:

$$\left(\frac{(n-1)S^2}{b}, \frac{(n-1)S^2}{a}\right)$$

CI for estimating Population Variance

95% Confidence Interval							
	UG PHD Masters				UG	PHD	Masters
	WPM				Accuracy		
	[377.33,	[121.37,	[158.66,		[26.87,	[5.73,	[7.75,
variance	781.23]	328.33]	416.28]		55.63]	15.52]	20.35]

	Male	Female	Male	Female
	Wi	PM	Accu	iracy
pop_SD	[25.57,40.33]	[10.97,17.3]	[3.85,6.07]	[5.41,8.54]

WPM				
95% CI				
Group variance				
G-1	(445.93,1038.25)			
G-2	(76.52, 218.03)			
G-3	(166.50, 474.41)			
G-4	(78.28, 223.05)			

Accuracy			
95% CI			
Group variance			
G-1	(8.16, 18.99)		
G-2	(11.20, 31.92)		
G-3	(34.19, 97.43)		
G-4	(3.32, 9.46)		

CI for estimating ratio of population variance

Formulas

If $X_1, X_2, ..., X_n \sim N(\mu_X, \sigma_X^2)$ and $Y_1, Y_2, ..., Y_m \sim N(\mu_Y, \sigma_Y^2)$ are independent samples and $c = F_{\alpha/2}(m-1, n-1)$, $d = F_{1-\alpha/2}(m-1, n-1)$,

$$\left(c\frac{S_\chi^2}{S_\gamma^2},\ d\frac{S_\chi^2}{S_\gamma^2}\right)$$

CI for estimating ratio of population variance

	WPM	Accuracy		
	CI for Ratio of Variances	CI for Ratio of Variances		
group 1,2	(3.13,9.31)	(0.39,1.163)		
group 1,3	(1.44,4.28)	(0.13,0.38)		
group 1,4	(3.06,9.095)	(1.32,3.92)		
group 2,3	(0.24,1.73)	(0.17,1.23)		
group 2,4	(0.52,3.68)	(1.79,12.69)		
group 3,4	(0.24,3.63)	(0.05,0.75)		
0 s. p •) .	(5.2.)5105)	(5.55)0(75)		

ratio of population variance WPM	[1.66,5.15]
ratio of population variance accuracy	[0.15,0.48]

(b)

Cls for ratio of 2 variances WPM (UG-PHD):	[1.47, 5.04]	ratio of 2 variances Accuracy (UG-PHD):	[2.21, 7.60]
CIs for ratio of 2 variances WPM (Masters-PHD):	[0.38,	ratio of 2 variances Accuracy	[0.37,
	1.55]	(Masters-PHD):	1.50]
Cls for ratio of 2 variances WPM (UG-Masters):	[0.26,	ratio of 2 variances Accuracy	[0.18,
	0.87]	(UG-Masters):	0.60]

(a) (c)

Hypothesis Testing

Definition

Hypothesis testing is a form of statistical inference that uses data from a sample to draw conclusions about a population parameter or a population probability distribution.

Test for $\mu_1 - \mu_2$: Independent Samples, Unequal Variances

Left-tailed test:

Null Hypothesis (H_0): $\mu_1 \ge \mu_2$ Alternative Hypothesis (H_a): $\mu_1 < \mu_2$

The Test Statistic (TS) is:

$$t' = \frac{\bar{x_1} - \bar{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Now,

$$df = \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2(n_1 - 1) + c^2(n_2 - 1)} \quad \text{where} \quad c = \frac{\frac{s_1}{n_1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Test for $\mu_1 - \mu_2$: Independent Samples, Unequal Variances

Left-tailed test contd.

df represents degree of freedom.

Using p-value approach, we find the p-value for the test statistic (TS) by using t-distribution table and if

p-value $\leq \alpha$: Reject H_0 p-value $> \alpha$: Fail to reject H_0

Test for σ_1^2 and σ_2^2

Two-tailed test

Null Hypothesis (
$$H_0$$
): $\sigma_1^2 = \sigma_2^2$
Alternative Hypothesis (H_a): $\sigma_1^2 \neq \sigma_2^2$

The Test Statistic (TS) is:

$$F = \frac{S_1^2}{S_2^2}$$

For a significance level α , with $df_1 = n_1 - 1$ and $df_2 = n_2 - 1$, if

$$F \le F_{1-\alpha/2,df_1,df_2}$$
 or $F \ge F_{\alpha/2,df_1,df_2}$: Reject H_0
 $F_{1-\alpha/2,df_1,df_2} < F < F_{\alpha/2,df_1,df_2}$: Fail to reject H_0

Gender-Based Hypothesis Testing

Figure 18

Batch-Based Hypothesis Testing

Figure 19

Branch-Based Hypothesis Testing

Figure 20

Conclusion

Conclusion

We draw the following conclusions:

- Since we performed an observational study, we can only ascertain correlation between the dependent and independent variables.
- In terms of words per minute, males have been found to perform better than their female counterparts. The spread¹ of data is not similar in both cases.

¹By spread, it means the comparison of variances of the groups

Motivation

- Image to Image translation is a challenging problem that typically requires the development of a specialized model and hand-crafted loss function for the type of translation task being performed.
- Classical approaches use per-pixel classification or regression models.
- The problem is that each predicted pixel is independent of the pixels predicted before it and the broader structure of the image might be missed.
- Ideally, a technique is required that is general, meaning that the same general model and loss function can be used for multiple different image-to-image translation tasks.

Pix2Pix Model

Figure 21: Source

Motivation

- Traditionally, training an image-to-image translation model requires a dataset comprised of paired examples.
- The requirement for a paired training dataset is a limitation as these datasets are challenging and expensive to prepare.
- Hence, there is a need for techniques for training an image-to-image translation system that does not require paired examples.
- We need s setting wherein we can take two collections of unrelated images and extract the general characteristics which can be used for image translation.

CycleGAN dataflow

https://modelzoo.co/model/mnist-svhn-transfer

Cycle consistency loss

Figure 22: Source

Sample Outputs from the original paper

THANK YOU!

