Recitation Session 6

Problem

- 1. Markov's inequality Suppose we know that the number of items produced in a factory during a week is a random variable with mean 500.
 - a. What can be said about the probability that this week's production will be at least 1000? (Hint: Markov's inequality)
 - b. If the variance of a week's product is known to equal 100, what is the probability that this week's production will be between 400 and 600?
- 2. Mean and Variance. Let $X \sim \text{Exp}(\beta)$. Use the definition to compute the following quantities.
 - a. Compute E(X). (Hint: use *u*-substitution).
 - b. Compute Var(X). (Hint: use Gamma function in homework 2 or integration by parts).
- 3. Expected value and variance of sample average Suppose $\{X_1, \dots, X_n\}$ are n independent identically distributed (they are of the same distribution) random variables with finite expectation μ , variance σ^2 , and cdf $F_X(x)$. Denote the sample average as

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- a. Compute the expectation of \overline{X}_n .
- b. Compute the variance of \overline{X}_n .
- 4. Generating Random Variables Every package of some intrinsically dull commodity includes a small and exciting plastic object. There are n different types of object, and each package is equally likely to contain any given type. You buy one package each day.
 - a. Let X_k be the number of days which elapse between the acquisitions of the (k-1)-th new type of object and the k-th new type. What is the distribution of X_k , $1 \le k \le n$? (Hint: In particular, we have $X_1 = 1$. The distribution of X_k should depend on k).
 - b. What is the mean of X_k ? (Hint: use the result in (a).)
 - c. Let X be the number of days which elapse before you have a full set of objects. What is the expectation of X?