Linear Algebra-1 ML Context

"The beautiful
thing about
learning is that no
one can take it
away from you." —
B.B. King

Agenda

-> Linear Algebra

-> Coordinate Geometry

-> Calculus

-> Optimization

Flow: Concept -> Viz -> Maths -> Code

Intro. Problem Statement

Example 1: Fish Sorting Problem

Example 2: Diabetes Prediction

age	might	Diabetic
24	75	No
49	80	Yes
37	92	Yes
50	68	No

T-shirts	Size	Prediction
----------	------	------------

£,	f2_	
Torso	Shoulder	Size
61	40	S
63	42	M
64	५५	L
62	41	ے
64	43	M
69	45	L

multi-class classication

Process of Building an ML System

- 1. Data Collection -> Mistroi cul data (labelled data)
- 2. Data Visuelition → FDA
- 3. Choosing appropriate germetrical

 Structure to Seperate class Non-linear (line)

 Non-linear (Parable, curve)

dog

- 4. Choosing a Loss function which helps decide the "best" Structure
- 5. Training optimisation

Line Eq. : General from: 22:52 ax + by + c = 0 7 W121 + 22 12 + W0= Lg: ax + by + c = 0 W1. x1 + W2. x2 + x1=fi bias weights 71 \mathcal{X}_{2} ~ automatically Shoulder Torso Size leam + during 40 63 44 41

from Lg to L1

$$w_1 \cdot x + \omega_2 \cdot y + \omega_0 = 0$$
 $w_2 \cdot y = -\omega_0 - \omega_1 c$
 $y = -\frac{\omega_1}{\omega_2} \cdot x - \frac{\omega_0}{\omega_2}$

Y= mx+c

 $\omega_1 \chi_1 + \omega_2 \chi_2 + \omega_0 = 0$

 $\omega_1 x_1 + \omega_2 x_2 + \omega_3 x_3 + \omega_0 = 0$ Splane equation

Parallel Lines

$$\theta_1 = \theta_2$$

$$\tan \theta_1 = \tan \theta_2$$

$$m_1 = m_2$$

SvM

Perpendicular lines

$$m_1 \cdot m_2 = -1$$

$$M_1 = -\frac{1}{\omega_2} = -\frac{1}{-1} = \frac{1}{2}$$

$$M_{\nu} = \frac{1}{2\nu} = \frac{1}{1}$$

$$\omega_{1} \cdot x_{1} + \omega_{2} x_{2} + \omega_{0} = 0$$
 if we have $7 \cdot 2$ features'

2D $\omega_{|X|} + \omega_{2} x_{2} + \omega_{0} = 0$ "line"

3D $\omega_{|X|} + \omega_{2} x_{2} + \omega_{3} x_{3} + \omega_{0} = 0$ "plane"

4D $\omega_{|X|} + \omega_{2} x_{2} + \omega_{3} x_{3} + \omega_{4} x_{4} + \omega_{0} = 0$ " 4D hyperplane"

m = 0 m =

wo > Bias

Maifspaces

In the slope-intercept form of a linear equation, y = mx + b, which of the following statements is true regarding lines being perpendicular to the x-axis?

4 options

Active Duration (Most preferred: 30 seconds)

automataly