PCT/EP2005/000694

WO 2005/071068

SEQUENCE LISTING

	CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS BIONOSTRA, S.L.
<120>	EMPTY CAPSIDS (VLPs(-VP4)) OF THE INFECTIOUS BURSAL DISEASE VIRUS (IBDV), OBTAINMENT PROCESS AND APPLICATIONS
<130>	P1392PC
-	ES P200400121 2004-01-21 (January 21, 2004)
<160> <170>	10 PatentIn version 3.1
<210> <211>	
<212>	·
	Synthetic DNA Oligo I primer
<400> gcgcag	1 atct atgacaaacc tgtcagatca aaccc 35
<210> <211>	
<212> <213>	DNA Artificial sequence
	Synthetic DNA Oligo II primer
<400> gcgcaa	2 gctt aggcgagagt cagctgcctt atgc 34
<210> <211>	
<212>	
<220> <223>	Plasmid pFBD/pVP2-his-VP3
<222>	promoter (157)(285) Promotor ppolh
	CDS (291)(1289) pVP2 ORF

WO 2005/071068 2 PCT/EP2005/000694

<221> promoter <222> (7443)(7 <223> Promoter p		•		
<400> 3 gggtgatcaa gtctto	ogtog agtgattgta a	ataaaatgt aat	ttacagt atagtatttt	60
aattaatata caaato	gattt gataataatt c	ttatttaac tat	aatatat tgtgttgggt	120
tgaattaaag gtccgt	tatac tccggaatat ta	aatagatca tgg	agataat taaaatgata	180
accatctcgc aaataa	aataa gtattttact g	ttttcgtaa cag	ttttgta ataaaaaac	240
ctataaatat tccgga	attat tcataccgtc c	caccatcgg gcg	cggatct atg aca Met Thr 1	296
	caa acc cag cag at Gln Thr Gln Gln Il 10	_	· — —	344
_	acc gga ccg gcg tc Thr Gly Pro Ala Se 25			392
-	agg tca gag acc tc Arg Ser Glu Thr Se 40			440
Asp Thr Gly Ser (ggg cta att gtc tt Gly Leu Ile Val Ph 55			488
	cac tac aca ctg ca His Tyr Thr Leu Gl 75	n Gly Asn Gly	-	536
	ctg act gcc cag aa Leu Thr Ala Gln As 90			584
	agt cgg agt ctc ac Ser Arg Ser Leu Th 105		Ser Thr Leu Pro	632
	gca cta aac ggc ac Ala Leu Asn Gly Th 120	-	_ =	680
Gly Ser Leu Ser (gaa ctg aca gat gt Glu Leu Thr Asp Va 135			728
	atc aac gac aaa at Ile Asn Asp Lys Il 15	e Gly Asn Val		776
	ctc agc tta ccc ac Leu Ser Leu Pro Th 170	_		824

WO 2005/071068 3 PCT/EP2005/000694

agg ctt ggt gac ccc att cc Arg Leu Gly Asp Pro Ile Pr 180 18	o Ala Ile Gly Leu		372
gcc aca tgt gac agc agt ga Ala Thr Cys Asp Ser Ser As 195 200			920
gcc gat gat tac caa ttc to Ala Asp Asp Tyr Gln Phe Se 215			968
atc aca ctg ttc tca gcc aa Ile Thr Leu Phe Ser Ala As 230			016
ggg gga gag ctc gtg ttt cg Gly Gly Glu Leu Val Phe Ar 245			064
gcc acc atc tac ctc ata gg Ala Thr Ile Tyr Leu Ile Gl 260 26	y Phe Asp Gly Thr		112
gct gtg gcc gca aac aat gg Ala Val Ala Ala Asn Asn Gl 275 280			160
cca ttc aat ctt gtg att cc Pro Phe Asn Leu Val Ile Pr 295			208
tcc atc aaa ctg gag ata gt Ser Ile Lys Leu Glu Ile Va 310			256
gat cag atg tca tgg tcg go Asp Gln Met Ser Trp Ser Al 325		gcagtgacga tccatggtgg 13	309
caactatcca ggggccctcc gtcc	cgtcac gctagtggcc	tacgaaagag tggcaacagg 13	369
atccgtcgtt acggtcgctg gggt	gagcaa cttcgagctg	atcccaaatc ctgaactagc 14	429
aaagaacctg gttacagaat acgg	ccgatt tgacccagga	gccatgaact acacaaatt 14	489
gatactgagt gagagggacc gtct	tggcat caagaccgtc	tggccaacaa gggagtacac 1	549
tgactttcgt gaatacttca tgga	ggtggc cgacctcaac	tctccctga agattgcagg 10	609
agcattcggc ttcaaagaca taat	ccgggc cataaggagg	atagctgtgc cggtggtctc 10	669
cacattgttc ccacctgccg ctcc	cctage ccatgeaatt	ggggaaggtg tagactacct 1'	729
gctgggcgat gaggcccagg ccgc	ttcagg aactgctcga	gccgcgtcag gaaaagcaag 1	789
agctgcctca ggccgcataa ggca	gctgac tctcgcctaa	gcttgtcgag aagtactaga 18	849
ggatcataat cagccatacc acat	ttgtag aggttttact	tgctttaaaa aacctcccac 19	909

WO 2005/071068 4 PCT/EP2005/000694

acctcccct gaacctgaaa cataaaatga atgcaattgt tgttgttaac ttgtttattg 1969 cagcttataa tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt 2029 2089 tttcactgca ttctagttgt ggtttgtcca aactcatcaa tgtatcttat catgtctgga 2149 tctgatcact gcttgagcct aggagatccg aaccagataa gtgaaatcta gttccaaact attttgtcat ttttaatttt cgtattagct tacgacgcta cacccagttc ccatctattt 2209 2269 tgtcactctt ccctaaataa tccttaaaaa ctccatttcc acccctccca gttcccaact attttgtccg cccacagcgg ggcatttttc ttcctgttat gtttttaatc aaacatcctg 2329 2389 ccaactccat gtgacaaacc gtcatcttcg gctacttttt ctctgtcaca gaatgaaaat 2449 ttttctgtca tctcttcgtt attaatgttt gtaattgact gaatatcaac gcttatttgc 2509 agcctgaatg gcgaatggga cgcgccctgt agcggcgcat taagcgcggc gggtgtggtg 2569 gttacgcgca gcgtgaccgc tacacttgcc agcgccctag cgcccgctcc tttcgctttc 2629 ttcccttcct ttctcgccac gttcgccggc tttccccgtc aagctctaaa tcgggggctc 2689 cctttagggt tccgatttag tgctttacgg cacctcgacc ccaaaaaact tgattagggt 2749 gatggttcac gtagtgggcc atcgccctga tagacggttt ttcgcccttt gacgttggag 2809 tocacgitet tiaatagigg actetigite caaaciggaa caacacicaa cectateieg 2869 gtctattctt ttgatttata agggattttg ccgatttcgg cctattggtt aaaaaatgag 2929 ctgatttaac aaaaatttaa cgcgaatttt aacaaaatat taacgtttac aatttcaggt 2989 ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tattttcta aatacattca 3049 aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc ggcattttgc 3109 cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagttg 3169 3229 ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagtttt 3289 cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg tggcgcggta ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat 3349 gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat gacagtaaga 3409 3469 gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt acttctgaca 3529 acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga tcatgtaact cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc 3589 acgatgcctg tagcaatggc aacaacgttg cgcaaactat taactggcga actacttact 3649

ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc aggaccactt

3709

WO 2005/071068 5 PCT/EP2005/000694

ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc cggtgagcgt 3769 3829 gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg tatcgtagtt 3889 atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata 3949 ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgataat 4009 4069 ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg cttgcaaaca 4129 4189 aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgtagccg 4249 tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaatc 4309 4369 ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga 4429 cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc 4489 agettggage gaacgaceta caccgaactg agatacetae agegtgagea ttgagaaage gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcggaaca 4549 4609 ggagagegea egagggaget tecaggggga aacgeetggt atetttatag teetgteggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta 4669 4729 tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg gccttttgct 4789 cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac cgcctttgag 4849 tgagetgata cegetegeeg cageegaacg acegagegea gegagteagt gagegaggaa 4909 geggaagage geetgatgeg gtattttete ettacgeate tgtgeggtat tteacacege 4969 agaccagccg cgtaacctgg caaaatcggt tacggttgag taataaatgg atgccctgcg 5029 taagcgggtg tgggcggaca ataaagtctt aaactgaaca aaatagatct aaactatgac 5089 aataaagtct taaactagac agaatagttg taaactgaaa tcagtccagt tatgctgtga aaaagcatac tggacttttg ttatggctaa agcaaactct tcattttctg aagtgcaaat 5149 5209 tgcccgtcgt attaaagagg ggcgtggcca agggcatggt aaagactata ttcgcggcgt 5269 tgtgacaatt taccgaacaa ctccgcggcc gggaagccga tctcggcttg aacgaattgt 5329 taggtggcgg tacttgggtc gatatcaaag tgcatcactt cttcccgtat gcccaacttt gtatagagag ccactgcggg atcgtcaccg taatctgctt gcacgtagat cacataagca 5389 ccaagcgcgt tggcctcatg cttgaggaga ttgatgagcg cggtggcaat gccctgcctc 5449

cggtgctcgc cggagactgc gagatcatag atatagatct cactacgcgg ctgctcaaac

5509

ctgggcagaa cgtaagccgc gagagcgcca acaaccgctt cttggtcgaa ggcagcaagc 5569 gcgatgaatg tcttactacg gagcaagttc ccgaggtaat cggagtccgg ctgatgttgg 5629 gagtaggtgg ctacgtctcc gaactcacga ccgaaaagat caagagcagc ccgcatggat 5689 ttgacttggt cagggccgag cctacatgtg cgaatgatgc ccatacttga gccacctaac 5749 tttgttttag ggcgactgcc ctgctgcgta acatcgttgc tgctgcgtaa catcgttgct 5809 gctccataac atcaaacatc gacccacggc gtaacgcgct tgctgcttgg atgcccgagg 5869 5929 catagactgt acaaaaaac agtcataaca agccatgaaa accgccactg cgccgttacc accgctgcgt tcggtcaagg ttctggacca gttgcgtgag cgcatacgct acttgcatta 5989 cagtttacga accgaacagg cttatgtcaa ctgggttcgt gccttcatcc gtttccacgg 6049 6109 tgtgcgtcac ccggcaacct tgggcagcag cgaagtcgag gcatttctgt cctggctggc 6169 gaacgagcgc aaggtttcgg tctccacgca tcgtcaggca ttggcggcct tgctgttctt 6229 ctacggcaag gtgctgtgca cggatctgcc ctggcttcag gagatcggta gacctcggcc 6289 gtcgcggcgc ttgccggtgg tgctgacccc ggatgaagtg gttcgcatcc tcggttttct ggaaggcgag catcgtttgt tcgcccagga ctctagctat agttctagtg gttggcctac 6349 gtacccgtag tggctatggc agggcttgcc gccccgacgt tggctgcgag ccctgggcct 6409 6469 tcacccgaac ttgggggttg gggtggggaa aaggaagaaa cgcgggcgta ttggtcccaa 6529 tggggtctcg gtggggtatc gacagagtgc cagccctggg accgaacccc gcgtttatga 6589 acaaacgacc caacacccgt gcgttttatt ctgtcttttt attgccgtca tagcgcgggt 6649 teetteeggt attgteteet teegtgttte agttageete eeceatetee eggtaeegea 6709 tgcctcgaga ctgcaggctc tagattcgaa agcggccgcg actagtgagc tcgtcgacgt 6769 aggeetttga atteeggate eteacteaag gteeteatea gagaeggtee tgateeageg 6829 gcccagccga ccagggggtc tctgtgttgg agcattgggt tttggcttgg gctttggtag agcccgcctg ggattgcgat gcttcatctc catcgcagtc aagagcagat ctttcatctg 6889 ttcttggttt gggccacgtc catggttgat ttcatagact ttggcaactt cgtctatgaa 6949 7009 agettggggt ggetetgeet gteetggage eeegtagate gaegtagetg eeettaggat 7069 ttgttcttct gatgccaacc ggctcttctc tgcatgcacg tagtctagat agtcctcgtt tgggtccggt atttctcgtt tgttctgcca gtactttacc tggcctgggc ttggccctcg 7129 gtgcccattg agtgctaccc attctggtgt tgcaaagtag atgcccatgg tctccatctt 7189 7249 ctttgagatc cgtgtgtctt tttccctctg tgcttcctct ggtgtggggc cccgagcctc cactccgtag cctgctgtcc cgtacttggc cctttgcgac ttgctgcctg cttgtggtgc 7309

PCT/EP2005/000694 WO 2005/071068

gtttgcaaga aaatttcgca tccgatgggc gttcgggtcg ctgagtgcga agttggccat	7369													
gtcagtcaca atcccattct cttccagcca catgaacaca ctgagtgcag attggaatag	7429													
tgggtccacg ttggctgctg cttccattgc tctgacggca ctctcgagtt cgggggtctc	7489													
tttgaactct gatgcagcca tggcgccctg aaaatacagg ttttcggtcg ttgggatatc	7549													
gtaatcgtga tggtgatggt gatggtagta cgacatggtt tcggac	7595													
<210> 4 <211> 333 <212> PRT <213> Artificial sequence <220>														
<220> <223> pVP2-his-VP3 protein														
<pre><400> 4 Met Thr Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg 1</pre>														
Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr 20 25 30														
Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr 35 40 45														
Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro Gly Phe Pro 50 55 60														
Gly Ser Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr 65 70 75 80														
Lys Phe Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr 85 90 95														
Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr 100 105 110														
Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr 115 120 125														
Phe Gln Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu 130 135 140														
Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val 145 150 155 160														
Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly 165 170 175														
Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys 180 185 190														
Met Val Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile 195 200 205														

WO 2005/071068 PCT/EP2005/000694

Thr	Ala 210	Ala	Asp	Asp	Tyr	Gln 215	Phe	Ser	Ser	Gln	Tyr 220	Gln	Pro	Gly	Gly		
Val 225	Thr	Ile	Thr	Leu	Phe 230	Ser	Ala	Asn	Ile	Asp 235	Ala	Ile	Thr	Ser	Leu 240		
Ser	Val	Gly	Gly	Glu 245	Leu	Val	Phe	Arg	Thr 250	Ser	Val	His	Gly	Leu 255	Val		
Leu	Gly	Ala	Thr 260	Ile	Tyr	Leu	Ile	Gly 265	Phe	Asp	Gly	Thr	Thr 270	Val	Ile		
Thr	Arg	Ala 275	Val	Ala	Ala	Asn	Asn 280	Gly	Leu	Thr	Thr	Gly 285	Thr	Asp	Asn		
Leu	Met 290	Pro	Phe	Asn	Leu	Val 295	Ile	Pro	Thr	Asn	Glu 300	Ile	Thr	Gln	Pro		
Ile 305	Thr	Ser	Ile	Lys	Leu 310	Glu	Ile	Val	Thr	Ser 315	Lys	Ser	Gly	Gly	Gln 320		
Ala	Gly	Asp	Gln	Met 325	Ser	Trp	Ser	Ala	Arg 330	Gly	Ser	Leu		•			
<210> 5 <211> 35 <212> DNA <213> Artificial sequence																	
<220> Synthetic DNA <223> Oligo III primer																	
<400 gcg0		5 tct a	atgad	caaa	cc to	gtcaç	gatca	a aad	ccc								35
<212	10> 6 11> 34 12> DNA 13> Artificial sequence														,		
<220 <223		Synth Oligo															
<400 gcg		6 ctt a	aggc	gaga	gt ca	agct	geet	t atq	gc								34
<210 <211 <212 <213	L> 2>	33	ficia	al se	equer	nce											
		Synth Oligo									•						
<400 gcg		7 ttc q	gatg	gcato	ca ga	agtto	caaa	g aga	a								33

<2107	20					
<211>						
<212>		ionac				
<213>	Artificial sequ	reuce				
<220>	Synthetic DNA					
	Oligo VI primer	•				
\LL \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Orago va primos	•				
<400>	8					
cgcggat	ccc tcaaggtcct	catcagagac	gg			32
<210>						
<211>						
<212>		10700				
(213)	Artificial sequ	lelice				
<223>	Plasmid pESCURA	A/pVP2-VP3-0	SFP			
<221>	promoter					
	(5649)(5859)					,
<223>	Promoter GAL 1	(pVP2)				
<221>	•					
	(7402)(8080)	/*****				
<223>	Promoter GAL 2	(VP3-GFP)				
<221>	CDS					
	(8086)(9597)					
	VP3-GFP ORF					
\2237	VFS GFL ORL					
<400>	9					
ggccgca	acta gtatcgatgg	attacaagga	tgacgacgat	aagatctgag	ctcttaatta	60
acaatto	cttc gccagaggtt	tggtcaagtc	tccaatcaag	gttgtcggct	tgtctacctt	120
		+	++	artaratar	ttattasasa	180
gccagaa	aatt tacgaaaaga	tggaaaaggg	tcaaatcgtt	ggtagatacg	tigitgadad	100
ttctaaa	ataa gcgaatttct	tatgatttat	gatttttatt	attaaataaq	ttataaaaaa	240
ccccaa	acaa gogaaccooc		9			
aataagi	tgta tacaaatttt	aaagtgactc	ttaggtttta	aaacgaaaat	tcttattctt	300
gagtaad	ctct ttcctgtagg	tcaggttgct	ttctcaggta	tagcatgagg	tcgctccaat	360
						400
tcagct	gcat taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	420
**			ataxxtaxtt	aaaataaaa	anagartata	480
ttccgci	ttcc tcgctcactg	actegetgeg	ereggreger	eggergegge	gageggeate	480
anctea	ctca aaggcggtaa	tacqqttatc	cacagaatca	ggggataacg	caggaaagaa	540
agecea	occa aaggoggeaa			,		
catqtq	agca aaaggccagc	aaaaqqccaq	gaaccgtaaa	aaggccgcgt	tgctggcgtt	600
J .,						
tttccaf	tagg ctccgcccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	660
	"					
gcgaaa	cccg acaggactat	aaagatacca	ggcgtttccc	cctggaagct	ccctcgtgcg	720
						700
ctctcc	tgtt ccgaccctgc	cgcttaccgg	atacctgtcc	gccttccc	cetegggaag	780
catass	gctt tctcatagct	cacactatea	gtatctcagt	teaatataaa	teatteacte	840
cyryyc	gull lucalayur	cacyctytay	gracecage	coggegeagg	cogceogceo	040

caagetggge tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 900 ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 960 taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 1020 taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 1080 cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 1140 tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt 1200 gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt 1260 catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 1320 atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga 1380 ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt 1440 gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 1500 1560 agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga 1620 agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca ttgctacagg 1680 catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc 1740 aaggcgagtt acatgatece ceatgttgtg caaaaaageg gttageteet teggteetee 1800 gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca 1860 1920 taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac 1980 caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa aacgttcttc 2040 ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 2100 tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt gagcaaaaac 2160 2220 aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca tgagcggata 2280 catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 2340 agtgccacct gaacgaagca tctgtgcttc attttgtaga acaaaaatgc aacgcgagag 2400 cgctaatttt tcaaacaaag aatctgagct gcatttttac agaacagaaa tgcaacgcga 2460 2520 aagcgctatt ttaccaacga agaatctgtg cttcattttt gtaaaacaaa aatgcaacgc gagagcgcta atttttcaaa caaagaatct gagctgcatt tttacagaac agaaatgcaa 2580 cgcgagagcg ctattttacc aacaaagaat ctatacttct tttttgttct acaaaaatgc 2640

WO 2005/071068 11 PCT/EP2005/000694

atcccgagag cgctattttt ctaacaaagc atcttagatt acttttttc tcctttgtgc 2700 gctctataat gcagtctctt gataactttt tgcactgtag gtccgttaag gttagaagaa 2760 2820 ggctactttg gtgtctattt tctcttccat aaaaaaagcc tgactccact tcccgcgttt actgattact agcgaagctg cgggtgcatt ttttcaagat aaaggcatcc ccgattatat 2880 tctataccga tgtggattgc gcatactttg tgaacagaaa gtgatagcgt tgatgattct 2940 tcattggtca gaaaattatg aacggtttct tctattttgt ctctatatac tacgtatagg 3000 aaatgtttac attttcgtat tgttttcgat tcactctatg aatagttctt actacaattt 3060 3120 ttttgtctaa agagtaatac tagagataaa cataaaaaat gtagaggtcg agtttagatg 3180 caagttcaag gagcgaaagg tggatgggta ggttatatag ggatatagca cagagatata 3240 tagcaaagag atacttttga gcaatgtttg tggaagcggt attcgcaata ttttagtagc tcgttacagt ccggtgcgtt tttggttttt tgaaagtgcg tcttcagagc gcttttggtt 3300 3360 ttcaaaagcg ctctgaagtt cctatacttt ctagagaata ggaacttcgg aataggaact 3420 tcaaagcgtt tccgaaaacg agcgcttccg aaaatgcaac gcgagctgcg cacatacagc tcactgttca cgtcgcacct atatctgcgt gttgcctgta tatatatata catgagaaga 3480 acggcatagt gcgtgtttat gcttaaatgc gtacttatat gcgtctattt atgtaggatg 3540 aaaggtagtc tagtacctcc tgtgatatta tcccattcca tgcggggtat cgtatgcttc 3600 cttcagcact accetttage tgttctatat getgecacte etcaattgga ttagteteat 3660 3720 ccttcaatgc tatcatttcc tttgatattg gatcatacta agaaaccatt attatcatga 3780 cattaaccta taaaaatagg cgtatcacga ggccctttcg tctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc cggagacggt cacagcttgt ctgtaagcgg 3840 3900 atgccgggag cagacaagcc cgtcagggcg cgtcagcggg tgttggcggg tgtcggggct 3960 ggcttaacta tgcggcatca gagcagattg tactgagagt gcaccatacc acagcttttc aattcaattc atcatttttt ttttattctt ttttttgatt tcggtttctt tgaaattttt 4020 ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga cttagattgg 4080 tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc ttaacccaac 4140 tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct acatataagg 4200 aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc atgcacgaaa 4260 agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta ctggagttag 4320 ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc ttgactgatt 4380 tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac aattttttac 4440

WO 2005/071068 12 PCT/EP2005/000694

tcttcgaaga cagaaaattt gctgacattg gtaatacagt caaattgcag tactctgcgg 4500 4560 gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg gtgggcccag 4620 gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct agaggccttt tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat actaagggta 4680 ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct caaagagaca 4740 tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg ggtttagatg 4800 acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc tctacaggat 4860 4920 ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct aaggtagagg gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc cagcaaaact 4980 aaaaaactgt attataagta aatgcatgta tactaaactc acaaattaga gcttcaattt 5040 aattatatca gttattaccc tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa 5100 5160 taccgcatca ggaaattgta aacgttaata ttttgttaaa attcgcgtta aatttttgtt 5220 aaatcagctc atttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga 5280 acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg 5340 5400 aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc 5460 ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc 5520 5580 gcgtaaccac cacacccgcc gcgcttaatg cgccgctaca gggcgcgtcg cgccattcgc 5640 cattcaggct gcgcaactgt tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc 5700 agctggatct tcgagcgtcc caaaaccttc tcaagcaagg ttttcagtat aatgttacat 5760 gcgtacacgc gtctgtacag aaaaaaaaga aaaatttgaa atataaataa cgttcttaat actaacataa ctataaaaaa ataaataggg acctagactt caggttgtct aactccttcc 5820 5880 ttttcggtta gagcggatct tagctagccg cggtaccaag cttaggcgag agtcagctgc cttatgcggc ctgaggcagc tcttgctttt cctgacgcgg ctcgagcagt tcctgaagcg 5940 6000 gcctgggcct catcgcccag caggtagtct acaccttccc caattgcatg ggctagggga geggeaggtg ggaacaatgt ggagaccacc ggcacagcta tecteettat ggceeggatt 6060 atgtctttga agccgaatgc tcctgcaatc ttcaggggag agttgaggtc ggccacctcc 6120 atgaagtatt cacgaaagtc agtgtactcc cttgttggcc agacggtctt gatgccaaga 6180 , cggtccctct cactcagtat caattttgtg tagttcatgg ctcctgggtc aaatcggccg 6240

WO 2005/071068 13 PCT/EP2005/000694

tattctgtaa ccaggttctt tgctagttca ggatttggga tcagctcgaa gttgctcacc 6300 ccagcgaccg taacgacgga tcctgttgcc actctttcgt aggccactag cgtgacggga 6360 cggagggccc ctggatagtt gccaccatgg atcgtcactg ctaggctccc tcttgccgac 6420 catgacatct gatcccctgc ctgaccacca cttttggagg tcactatctc cagtttgatg 6480 gatgtgattg gctgggttat ctcgtttgtt ggaatcacaa gattgaatgg cataaggttg 6540 tcggtgccgg tcgtcagccc attgtttgcg gccacagccc tggtgattac cgttgtccca 6600 tcaaagccta tgaggtagat ggtggcgccc agtacaaggc cgtggacgct tgttcgaaac 6660 acgagetete ecceaacget gaggettgtg atggeateaa tgttggetga gaacagtgtg 6720 attgttaccc cacctggttg gtactgtgat gagaattggt aatcatcggc tgcagttatg 6780 gtgtagactc tgggcctgtc actgctgtca catgtggcta ccatttttgg gtcaagccct 6840 attgcgggaa tggggtcacc aagcctcaca tacccaagat catatgatgt gggtaagctg 6900 aggacggtga ccccttcccc tactaggacg ttcccaattt tgtcgttgat gttggctgtt 6960 gcagacatca acccattgta gctaacatct gtcagttcac tcaggcttcc ttggaaggtc 7020 7080 acggcgttta tggtgccgtt tagtgcataa acgccaccag gaagtgtgct tgacctcact gtgagactcc gactcactag cctgcagtag ttgtaactgg ccggtaggtt ctgggcagtc 7140 aggagcatct gatcgaactt gtagttccca ttgccctgca gtgtgtagtg agcacccaca 7200 7260 attgagccag ggaatccagg gaaaaagaca attagccctg accctgtgtc ccccacagtc aaattgtagg tcgaggtctc tgacctgaga gtgtgcttct ccagggtgtc gtccggaatg 7320 gacgccggtc cggttgttgg catcagaagg ctccgtatga acggaacaat ctgctgggtt 7380 tgatctgaca ggtttgtcat agatccgggg ttttttctcc ttgacgttaa agtatagagg 7440 tatattaaca attttttgtt gatactttta ttacatttga ataagaagta atacaaaccg 7500 aaaatgttga aagtattagt taaagtggtt atgcagtttt tgcatttata tatctgttaa 7560 tagatcaaaa atcatcgctt cgctgattaa ttaccccaga aataaggcta aaaaactaat 7620 cgcattatca tcctatggtt gttaatttga ttcgttcatt tgaaggtttg tggggccagg 7680 ttactgccaa tttttcctct tcataaccat aaaagctagt attgtagaat ctttattgtt 7740 cggagcagtg cggcgcgagg cacatctgcg tttcaggaac gcgaccggtg aagacgagga 7800 cgcacggagg agagtcttcc ttcggagggc tgtcacccgc tcggcggctt ctaatccgta 7860 cttcaatata gcaatgagca gttaagcgta ttactgaaag ttccaaagag aaggtttttt 7920 taggctaaga taatggggct ctttacattt ccacaacata taagtaagat tagatatgga 7980 tatgtatatg gatatgtata tggtggtaat gccatgtaat atgattatta aacttctttg 8040

cgtccatcca aaaaaaagt aagaattttt gaaaattcga attcg atg gct gca tca Met Ala Ala Ser 1	8097
gag ttc aaa gag acc ccc gaa ctc gag agt gcc gtc aga gca atg gaa Glu Phe Lys Glu Thr Pro Glu Leu Glu Ser Ala Val Arg Ala Met Glu 5 10 15 20	8145
gca gca gcc aac gtg gac cca cta ttc caa tct gca ctc agt gtg ttc Ala Ala Ala Asn Val Asp Pro Leu Phe Gln Ser Ala Leu Ser Val Phe 25 30 35	8193
atg tgg ctg gaa gag aat ggg att gtg act gac atg gcc aac ttc gca Met Trp Leu Glu Glu Asn Gly Ile Val Thr Asp Met Ala Asn Phe Ala 40 45 50	8241
ctc agc gac ccg aac gcc cat cgg atg cga aat ttt ctt gca aac gca Leu Ser Asp Pro Asn Ala His Arg Met Arg Asn Phe Leu Ala Asn Ala 55 60 65	8289
cca caa gca ggc agc aag tcg caa agg gcc aag tac ggg aca gca ggc Pro Gln Ala Gly Ser Lys Ser Gln Arg Ala Lys Tyr Gly Thr Ala Gly 70 75 80	8337
tac gga gtg gag gct cgg ggc ccc aca cca gag gaa gca cag agg gaa Tyr Gly Val Glu Ala Arg Gly Pro Thr Pro Glu Glu Ala Gln Arg Glu 85 90 95 100	8385
aaa gac aca cgg atc tca aag aag atg gag acc atg ggc atc tac ttt Lys Asp Thr Arg Ile Ser Lys Lys Met Glu Thr Met Gly Ile Tyr Phe 105 110 115	8433
gca aca cca gaa tgg gta gca ctc aat ggg cac cga ggg cca agc cca Ala Thr Pro Glu Trp Val Ala Leu Asn Gly His Arg Gly Pro Ser Pro 120 125 130	8481
ggc cag gta aag tac tgg cag aac aaa cga gaa ata ccg gac cca aac Gly Gln Val Lys Tyr Trp Gln Asn Lys Arg Glu Ile Pro Asp Pro Asn 135 140 145	8529
gag gac tat cta gac tac gtg cat gca gag aag agc cgg ttg gca tca Glu Asp Tyr Leu Asp Tyr Val His Ala Glu Lys Ser Arg Leu Ala Ser 150 155 160	8577
gaa gaa caa atc cta agg gca gct acg tcg atc tac ggg gct cca gga Glu Glu Gln Ile Leu Arg Ala Ala Thr Ser Ile Tyr Gly Ala Pro Gly 165 170 175 180	8625
cag gca gag cca ccc caa gct ttc ata gac gaa gtt gcc aaa gtc tat Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp Glu Val Ala Lys Val Tyr 185 190 195	8673
gaa atc aac cat gga cgt ggc cca aac caa gaa cag atg aaa gat ctg Glu Ile Asn His Gly Arg Gly Pro Asn Gln Glu Gln Met Lys Asp Leu 200 205 210	. 8721
ctc ttg act gcg atg gag atg aag cat cgc aat ccc agg cgg gct cta Leu Leu Thr Ala Met Glu Met Lys His Arg Asn Pro Arg Arg Ala Leu 215 220 . 225	8769

	_		_					gct Ala							ggt Gly	8	8817
			-					gtc Val				•				8	8865
		_		_		· ·	_	ggc Gly			_					8	8913
-			_	_		_	-	ggc Gly 285	_				_	_		3	8961
-								gat Asp	_				-	_		9	9009
								aag Lys								9	9057
	-			_				gtg Val	_	-		_	_			<u> </u>	9105
_		_	-	_		_		ttc Phe				_		_	-	S	9153
	_	_		_				ttc Phe 365	_	_	-				_	9	9201
		-			_			ggc			_			_		Š	9249
	_	Lys	Gly	Ile	_	Phe	Lys	gag Glu	Asp	Gly	Asn		_			S	9297
_	_						_	cac His		_			_	•	_	9	9345
-	_	_				_		aac Asn		_		_				9	9393
	_		_		_		_	gac Asp 445	_		_	_				9	9441
						-		ccc Pro						_		9	9489

		Ala												atg Met		9537	,
	Leu													gac Asp		9585	` ,
	tac Tyr	-	taa	agc												9600	}
<210> 10 <211> 503 <212> PRT <213> Artificial sequence																	
<220> <223> pVP2-VP3-GFP protein																	
		10 Ala	Ser	Glu 5	Phe	Lys	Glu	Thr	Pro 10	Glu	Leu	Glu	Ser	Ala 15	Val		
Arg	Ala	Met	Glu 20	Ala	Ala	Ala	Asn	Val 25	Asp	Pro	Leu	Phe	Gln 30	Ser	Ala		
Leu	Ser	Val 35	Phe	Met	Trp	Leu	Glu 40	Glu	Asn	Gly	Ile	Val 45	Thr	Asp	Met		
Ala	Asn 50	Phe	Ala	Leu	Ser	Asp 55	Pro	Asn	Ala	His	Arg 60	Met	Arg	Asn	Phe		
Leu 65	Ala	Asn	Ala	Pro	Gln 70	Ala	Gly	Ser	Lys	Ser 75	Gln	Arg	Ala	Lys	Tyr 80		
Gly	Thr	Ala	Gly	Tyr 85	Gly	Val	Glu	Ala	Arg 90	Gly	Pro	Thr	Pro	Glu 95	Glu		
Ala	Gln	Arg	Glu 100	Lys	Asp	Thr	Arg	Ile 105	Ser	Lys	Lys	Met	Glu 110	Thr	Met		
Gly	Ile	Tyr 115	Phe	Ala	Thr	Pro	Glu 120	Trp	Val	Ala	Leu	Asn 125	Gly	His	Arg		
Gly	Pro 130	Ser	Pro	Gly	Gln	Val 135	Lys	Tyr	Trp	Gln	Asn 140	Lys	Arg	Glu	Ile		
Pro 145	Asp	Pro	Asn	Glu	Asp 150	Tyr	Leu	Asp	Tyr	Val 155	His	Ala	Glu	Lys	Ser 160		
Arg	Leu	Ala	Ser	Glu 165	Glu	Gln	Ile	Leu	Arg 170	Ala	Ala	Thr	Ser	Ile 175	Tyr		
Gly	Ala	Pro	Gly 180	Gln	Ala	Glu	Pro	Pro 185	Gln	Ala	Phe	Ile	Asp 190	Glu	Val		
Ala	Lys	Val 195	Tyr	Glu	Ile	Asn	His 200	Gly	Arg	Gly	Pro	Asn 205	Gln	Glu	Gln		

Met Lys Asp Leu Leu Thr Ala Met Glu Met Lys His Arg Asn Pro Arg Arg Ala Leu Pro Lys Pro Lys Pro Lys Pro Asn Ala Pro Thr Gln Arg Pro Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr Val Ser Asp Glu Asp Leu Glu Gly Ser Ile Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys