LaPIS Diagnostic Test Workbook - Mathematics

Name : Sathana N P

Class : 7

Section : B

School : AKV Public School

Login ID : AKV163

Sathana N P's Performance Report

Score: 14/40 Percentage: 35.0%

Sathana N P's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
LCM Finding LCM		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

......

\underline{Answer} :

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

......

Therefore, factors of 10 are _____ and multiples of 10 are ____.

Question: 2

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

.....

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of 1 =_______

Multiple of 2 =______

Multiple of 13 =______

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Hi, here in this video you will learn **Types of Angles**

Question: 4

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $__$.

The straight line measures $___^{\circ}$.

Question: 5

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 6

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = ____ + ___ = ____

It is called as _____ angle.

Mensuration

Topics to be Improved				
Perimeter	Perimeter of triangle			

.....

Hi, here in this video you will learn **Perimeter**

Question: 7

Highlight the perimeter in the given image.

1	n	SI	,,	o	n.
\boldsymbol{H}	Ή.	S 7	17	ייש	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 8

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 9

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter = _____, and breadth = _____.
Perimeter of the floor =
$$2($$
_____ + ____).

Therefore, length of the rectangular floor is ______.

Data handling

Topics to be Improved			
Chance of probability	Sample space in probability, Basis of probability		
Arithmetic mean, mode and median	Mean, Median and Mode		

Hi, here in this video you will learn Basics of probability

Question: 10

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 11

Write the possible outcomes while spinning the given wheel.

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
Question: 12
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Basics of probability
Question: 13
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 14
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.

Question: 15						
	an eraser, a scale, sharting a pen from his bo		lour pen	cil and prot	tractor in his	box. What is the
$\underline{Answer:}$						
Does Raju have p	pen in his box, of getting pen from h	(Yes/ No).	0/1)		
Hi, here in th	uis video you will le	earn Me	an, M	edian, M	Iode	
Question: 16						
Find the mode of	f the following data: 5	15, 23, 5	, 32, 44,	72, 55, 6, 3	8, 5, 65, 45, 6	7, 24, 19 and 98.
$\underline{Answer:}$						
Arranging the da	ber that occurs ta in ascending order: occurs most number of					
Question: 17						
Which shape con	tains median of the gi	ven data 3	3, 5, 6, 2	, 7, 9, 6, 4 a	and 1	
Answer: Median is the	(first/cen	5 tral/last)	value of	6 a data whe	9 en the data is	s arranged in
ascending or desc	cending order.	, ,				
	n data in ascending or the given data is					f a data.
Question: 18						
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
$Mean = \underline{\hspace{1cm}},$	Median = ar	nd Mode =	=	_ .		
Answer:						

Mean = of all observation number of observation	
Here s sum of all observation $=$	$\underline{\hspace{1cm}}$, number of observation = $\underline{\hspace{1cm}}$
Therefore, mean $=$	
Arrange the data in ascending order:	
Here $median = mod$	e =

Geometry

Topics to be Improved			
Transversal angle made by transversal	Basics of Transversal angle		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle		
Lines of symmetry for regular polygons	Identification of lines of symmetry		
Related angles	Basic of angles		
Faces vertex and edges	Idenfication of faces, edges and vertices		
Types of triangle	Basics of types of triangle (sides)		

Hi, here in this video you will learn Basics of Transversal angle

Question: 19

......

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 20

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

......

Question: 21

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 22

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 23

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

 $\underline{Question:~24}$

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

1. The sum of the two sides of a triangle is	_(less/ greater) than sum of other two sides.
Therefore, the length of the third side is less than 2. The difference of the two sides of a triangle is	
triangle.	than the third side of the
Therefore, the third side should be Here, difference of the two sides =	
Therefore, the length of the third side is greater the	
Therefore, length of the third side is greater than	but less than
Hi, here in this video you will learn Symmer	tv sale
Question: 25	
Line of symmetry is divides any shape into (on identical) halves.	e / two) (identical / non
$\underline{Answer:}$	
Lines of symmetry is a line that divides any shape into Symmetrical image have (identical / no Therefore, line of symmetry is dividing the shape into _	n identical) parts.
Question: 26	
How many lines of symmetry does square have?	
Answer:	
Square have sides.	
All sides of square are and all angles ar	
Mark the lines of sym	metry.
Therefore, square has lines of symmetry.	
Question: 27	
Classify the following based on the symmetry.	

Letter S, scalene triangle, Letter K, Rhombus, Number 8, and circle .

A	ns	71)	er	•
		w	\sim	•

		
Lines	of symmetry is a line that divides the shape into (equa	l / unequal) halves.
The l	etter S is (symmetrical / asymmetrical) and have	lines of
symn	netry.	
Scale	ne triangle is(symmetrical / asymmetrical) and have	lines of
symn	· ·	
The l	etter K is (symmetrical / asymmetrical) and have	lines of
symn		
Rhon	abus is(symmetrical / asymmetrical) and have	lines of
	netry.	
	s (symmetrical / asymmetrical) and have	v v
Stars	is (symmetrical / asymmetrical) and have	lines of symmetry.
Ц;	here in this video you will learn Related Angles	
111,	nere in this video you will learn Related Angles	
Que	$stion: \ 28$	
(i)	When two rays of an angle are perpendicular, then the angle formed bet angle .	ween them is a
(ii)	When two rays of an angle are in opposite sides, then the angle formed angle .	between them is a
\underline{Ans}	wer:	
Α	(line segment /ray) begins from one point and travels end	llessly in a direction.
(i)	The angle formed between two perpendicular rays is $___^\circ$ and it is calle angle.	d
(ii)	If two rays starting at same point moves in opposite direction, they form	า я
(11)	(straight / perpendicular) line. The measure of the angle formed is angles.	

 $\underline{\textit{Question: 29}}$

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 30

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ _____, and its complement angle is _____.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Basics of 3D model

Question: 31

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

......

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet (Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 32	
4	

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number	of vertex,	edges and faces in a cu	be.
Cube have	vertices,	edges and	faces.

Question: 33

How many vertices, edges and faces does dices have?

Answer:			
The shape of dice is Dices have vertices,		forces	
Dices have vertices,	_ edges and	laces.	
Hi, here in this video you wil	ll learn Typ	es of triangle	
Question: 34			
Polygon with three sides is called as	S	·	
Answer:			
A polygon is a simple (open	n / closed) cur	ve made up of only line	e segments.
Polygon with three sides is called $_$			
Draw a diagram of polygon with the	ree sides :		

Question: 35

Identify the types of triangles.

Answer:

Triangle has _____ sides.

• Triangle with all sides are equal is called _____ triangle.

• Triangle with two sides of equal length is called triangle.	
• Triangle with three sides of different length is called triangle.	
$Question: \ 36$	
A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be	ıе
$\underline{Answer:}$	
The shape of the park is The shapes has sides and this shape has sides of equal length. Given: length of sides of park is The possible length of third side is	

Number system

	Topics to be Improved	
Fractions	Multiplication of fractions	
Operations on rational numbers	Division of rational numbers	
Positive and negative rational numbers	Identification of positive rational numbers	
Introduction to rational numbers	Basics of rational numbers	
Properties of integers	Associative property	
Exponents	Solving exponents	

Hi, here in this video you will learn Multiplication on fractions

Question: 37

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as ____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 38

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____ Fraction of students who are girls = _____

Number of girls $=$ \times $=$ $=$ $=$
Question: 39
Solve: $2\frac{7}{4} \times \frac{2}{3}$
Answer:
$2\frac{7}{4}$ is a (proper / mixed) fraction. Here, 2 is, 7 is and 4 is
To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$
$2\frac{7}{4} \times \frac{2}{3} = \boxed{\square} \times \frac{2}{3} = \boxed{\square}$
Hi, here in this video you will learn Operation on rational numbers
Question: 40
Fill in the boxes to make the given expression correct.
$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \boxed{\square}$
Answer:
When any fraction is divided by a fraction, we multiply the dividend by the (same/reciprocal) of the divisor.
Here, dividend $=$ and divisor $=$
$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$

Fraction form of 0.6 =______,

Question: 41

Solve: $\frac{18}{7} \div 0.6$

Answer:

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 42 ...

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 43

Segregate positive and negative rational number.

$\underline{Answer:}$

• If both the numerator and the denominator of a rational number are
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question: 44
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{\boxed{}}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 45
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
$\underline{Answer:}$
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Basics of rational numbers
Question:~46
The numbers in the diagram represents

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

.....

Question: 47

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

denominator is equal to _____(zero/ one/ any integer other than zero).

<u>Question: 48</u>

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$

$$\frac{-3}{2}$$

$$\frac{12}{-6}$$

$$\frac{0}{-9}$$

$$\frac{4}{0}$$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn **Properties of integers**

Question: 49

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
С	15 + 17 = 32
d	1 + 99 = 99 + 1

Answer:

(i)	Closure property: The sum of integers is always Therefore, + =			er).
(ii)	From the given option Associative property :			
	Rearranging the parentheses (br Therefore, $(a + b) + c = $ From the given option			
(iii)	Commutative property: Changing the order of the adden	ds (o		·
	Therefore, $a + b = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$ From the given option $\underline{\hspace{1cm}}$		es the Commutative pro	operty.
(iv)	Identity property : The sum of $_$ Therefore, $a + ___ = a$	and a	any number always retu	rns same number.
	From the given option	satisfie	es the Identity property	7.
	stion: 50 the operations in which commuta		y holds true for any tw	
	Addition Sub	traction	Multiplication	Division
\underline{Ans}	wer:			
	mmutative property, changing the (does not/ does) chang			of the operands
	ny two integers, commutative pro			
	commutative property for addition commutative property for multipli			

- (i) Tenth power of 100: Base = $__$, Power/Exponents = $__$, exponential form = $__$.
- (ii) k is raised to the power of 5 : Base = ____, Power/Exponent = ____, exponential form = ____.

Comparing Quantities

Topics to be Improved				
Simple interest Calculation of simple interest				
Percentage	Basic of percentage			
Equivalent ratios	Basic of proportion			

Hi, here in this video you will learn **Simple Interest**

Question: 55

Match the following.

	Column A				
i	Principle(P)				
ii	Amount (A)				
iii	Rate (R)				
iv	Time period (T)				

Column B				
a	Interest calculated based on this			
b	Total sum you borrow			
c	Number of years			
d	Total sum with interest			

Answer:
Formula for calculating simple interest = Interest calculated based on Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 56
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given: Amount =, Principle =, Time period = If Amount and principle is given, then formula for calculating interest is Interest = =
Question: 57
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
Answer:
$\label{eq:continuous_principal} Interest = \underline{\hspace{1cm}} \; , \; Time \; period = \underline{\hspace{1cm}} \; , \; Principal = \underline{\hspace{1cm}} \; .$

Rate of interest =	x 100	_		
Substituting values	Principal x	_		
<u> </u>				
Rate of interest =	x 100 Principal x	_		
Rate of interest = _ Therefore, the rate of				
Hi, here in this	video you will l	earn Basics of perc	centage	
Question: 58				
${2\%}$ can be written a	as			
Answer:				
Percentages are nun	nerators of fraction	as with denominator $2\% = \frac{\Box}{\Box}$		
Question: 59				
Arun attended the l Arun?	LaPIS test for 100	marks and got 75% mark	ks. What is the ma	ark scored by
Answer:				
Arun attended LaP	IS test for	marks. He got _	ma	rks.
75 % can be written	n in fraction form			
Then the mark scor	red by Arun = To	otal mark \times 75% =	×	=
Question: 60				
There are 25 apples apples.	in a basket in which	ch 10 of them are rotten.	. Find the percent	age of rotten
Answer:				
There are a Number of rotten ap				

Fraction form of rotten apples in a basket =							
Convert it into a percent= x	% = 1						
Hi, here in this video you will learn I	Basics	of p	prop	ortio	n		
Question: 61							
If a:b and c:d are equivalent ratio, then it can	ı be exp	ressec	d as _				
Answer:							
A (proportion / ratio) is used to exp. Standard form to express proportion is			(one/	two) e	quival	ent rat	ios.
Question: 62							
Find the ratio of shaded part to unshaded pa	rt of A	and E	3. Are	the tw	o ratio	os equi	valent?
A				В			
				Ь			
Answer:							
Shaded part of A =, Unshaded part Ratio of shaded to unshaded parts of A is Shaded part of B =, Unshaded part of B = Ratio of shaded to unshaded parts of B is Fractional form = Fraction form of A (equal/ not equal and a constitute of the shaded parts of B.	F	Fraction action	onal fo	of B.			
Question: 63			• • • • • •				
If a: b:: c: d is proportion, shade the correction $a = \frac{bc}{d}$ $c = \frac{ad}{b}$ $ad=cd$	ct expre	ession					

Two equivalent ratio which are proportion, it can be written as a : b :: c : d or ____ = ___ (in fraction) . First and fourth term are called ____ and second and third term are called ____. In proportion, product of extreme terms is ____ (equal to/ not equal to) product of middle terms. Therefore, a \times d = ____, then a = ___ and c = ____

Algebra

Topics to be Improved				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Terms of an expression	Identification of terms in an expression			
Basics of simple equation	Solving of simple equation			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi, here in this video you will learn Addition on expression

Question: 64

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______.

Question: 65

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$7r^2 + r \Box - 2 \Box = (7 + \Box - 2)r^2 = \Box$$

Question: 66				
Sam have 3a chocolates an	d 9y icecrean	n. Ram have 7	7a chocolates and 5y ic	ecream.
(i) Total chocolates Ran	n and Sam ha	ve:		
(ii) How many icecreams	Sam have m	ore than Ram	:	
Answer:				
		Chocolates	Icecream	
	Sam			
	Ram			
(i) Total chocolates Ram's cho			=+	=
(ii) How many icecreams ———————————————————————————————————	cecream	icecrean	n =	
Question: 67				
There are terms in	n the expressi	on $7x + 3y + 4$	m+5.	
Answer:				
In algebraic expression, of addition. The terms in the expression Therefore, there are	n are	- , , -		
Question: 68				
Classify the following expr	ession into m	onomial, binor	mial and polynomial.	
1. $7m + n + 2$				
2. $8x^2 + 0$				
3 7xy + 4m				

 $\underline{Answer:}$

	$\begin{array}{c} \text{xpression } 8x^2 + 0 \text{ as} \\ \text{on has } \underline{\qquad} \text{ term} \end{array}$			
	$\begin{array}{c} \text{xpression } 7xy + 4m \\ \text{n has } \underline{\qquad} \text{term} \end{array}$			
	$\begin{array}{c} \text{xpression } 7m + n + \\ \text{n has } & \text{term and} \end{array}$			
Question: 69				
$5m^2 + m + 0$ is a	expres	ssion. (Monomial/	Binomial/ Trinomi	al)
Answer:				
The terms in expression Here, the expression			lled a	expression.
Hi, here in this	video you will le	arn Terms of a	n expression	
Question: 70				
Separate the variable	es and constants for	all the terms given	n in the box	
	$ \begin{array}{c cccc} & & & 16 \\ & & & 18 \\ & & & 0 \\ & & 4x & & \end{array} $	$54c^4$	-4mn 4 ab	
Answer:				
In algebraic expression——.	on, variables are rep	presented by	and Con	stant is a
	Terms	Constants	Variables	
$\underline{\textit{Question: 71}}$. Mark the expression	that contains two t			
•	4xy 12a+b+1			
Answer:				
The terms in the exp	oression $3x + 5$ is/ar	re		

The terms in the expression 12a is/are _____. The terms in the expression 4xy is/are _____ The terms in the expression 12a + b + 1 is/are _____ The terms in the expression 7m + 0 is/are _____. Question: 72 Shade the outline of circle that contains the term of the given expression. $6m^2 - 7mn + nl$ $6\mathrm{m}^2$ -mn -7mn mn $7\mathrm{mn}$ Answer: In algebraic expression, _____ (variables/ terms) are connected together with operations of addition. Here, _____ _____, _____ are the terms of the given expression. Hi, here in this video you will learn **Solving an equation** Question: 73 If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____. Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 74

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

.....

.....

$$7 \Box + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times$$
 ____+ $3 =$ ____

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 75

Arrange the terms in the descending order when the value of x is 2.

2x	$5x \times 1$	x+3	2x - 4	$\frac{1}{2}$
----	---------------	-----	--------	---------------

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.

Hi, here in this video you will learn Subtraction on expression

Question: 76

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are _____ and ____.

The two terms will get added only if they are _____(Like/ Unlike) terms.

The sum of two expressions = ____ + ___.

The answer is _____

Question: 77

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

.....

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

Answer:

- (i) Number of boys in school A = _____,
 - Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is $___$ + $___$ = $___$.

- (ii) Number of boys in school B = _____,
 - Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 78

Solve the following:

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{r}
3a - 5b \\
(-) \quad 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$