

# CS 378: INTRO TO SPECH AND AUDIO PROCESSING

The Acoustic Theory of Speech Production

**DAVID HARWATH**Assistant Professor, UTCS



## Today's agenda



- Overview of human speech production
- Acoustic tubes
- Modeling the human vocal tract with concatenated acoustic tubes

 After today, you should be able to complete exercise 1 on problem set 1

## Source-Filter model of speech





## The sound source: your vocal cord



#### Two primary modes of operation:

- Unvoiced speech (open vocal cord). Produces turbulent airflow, as heard in sounds such as "ssss", "shhh", 'fffff", etc.
- Voiced speech (closed vocal cord).
   Produces periodic (i.e. pitched) excitation, as heard in vowels



@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

## The sound source: your vocal cord







@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

## The filter: your vocal tract



- Manipulation of your articulators changes the shape of your vocal tract, which changes H(Ω)
- Every person has a slightly different vocal tract, and thus a different voice
  - But the general patterns of speech sounds are universal



## Analogy to brass instruments



#### **Sound Source**



Embouchure (buzzing your lips)

#### Adjustable Filter



Changing the shape of an acoustic tube (e.g. moving the trombone's slide)

## Source-Filter Speech Production





Source
Vocal cord vibration

Filter
Vocal tract
frequency response

Observed Spectrum
What is recorded by
the microphone

### Formants and Harmonics





#### Recall: Narrowband vs. Wideband Spectrograms



Wideband spectrogram: Short STFT window blurs together harmonics, but gives sharper time detail

Narrowband spectrogram: Long STFT window reveals voicing harmonics, but with worse time detail (e.g. for stop consonants)



## Estimating FO





Count # pitch periods in a 0.1 (100ms) time span

11 pitch periods / .1 seconds = 110 pitch periods per second, so F0 = 110 Hz

Can only do this with a wideband spectrogram (window must be shorter than a pitch period)

## Vocal tract shape ⇒ vowel quality





## Approximating the vocal tract shape





#### Resonances of Acoustic Tubes



Recall from physics that hollow tubes filled with air will resonate at different wavelengths depending their length





#### Resonances of Acoustic Tubes



An acoustic tube will always resonate at *multiple* frequencies that are harmonically related



#### Quarter- vs. Half-Wavelength Resonators



Resonance frequencies also depend on the boundary conditions of the tube (open vs. closed at the ends). For a resonance, particle displacement will be zero at a solid wall, and at a maximum at an open end.



Can "squeeze"  $\frac{1}{4}$ ,  $\frac{3}{4}$ ,  $\frac{5}{4}$ , ... of a wavelength into tube



Closed at both ends
Can "squeeze"  $\frac{1}{2}$ , 1,  $\frac{3}{2}$ , ...
of a wavelength into tube



Open at both ends
Can "squeeze"  $\frac{1}{2}$ , 1,  $\frac{3}{2}$ , ...
of a wavelength into tube

## Quarter-Wavelength Resonators





A quarter-wavelength resonator is closed only at one end and will have resonances at frequencies  $f_n$  given by:

$$f_n = \frac{c}{4l}(2n-1), \qquad n = 1, 2, 3, \dots$$

Where c is the velocity of sound in air (34,000 cm/s), l is the length of the tube in cm, and  $f_n$  is in Hertz (Hz)

Note: "resonances" = "poles" = "natural frequencies"

## Half-Wavelength Resonators





A half-wavelength resonator is *closed* at both ends **or** open at both ends and will have resonances at frequencies  $f_n$  given by:

$$f_n = \frac{c}{2l}n$$
,  $n = 1, 2, 3, ...$ 

Again where c is the velocity of sound in air (34,000 cm/s), l is the length of the tube in cm, and  $f_n$  is in Hertz (Hz)

#### Helmholtz Resonators



Cross-sectional area



A third type of resonator that comes up in speech production is the Helmholtz resonator

It has a characteristic "bottle" shape, and has a special low frequency resonance (the *Helmholtz resonance*) at

$$f = \frac{c}{2\pi} \left[ \frac{A_2}{A_1 l_1 l_2} \right]^{1/2}$$

## Helmholtz Demo



## Decoupling Concatenated Tubes





When  $A_1 \gg A_2$  or  $A_1 \ll A_2$ , we can decouple the tubes and compute their resonances independently.

The *union* of the sets of resonances belonging to all tubes determine the *formant frequencies*.



## Example: Formants for [i]





349 Hz



We take the union of all resonances from all tubes, sort them in ascending order, and label them as the first formant (F1), second formant (F2), and so on.

F2 2833 Hz F3 3400 Hz

5667 Hz

8500 Hz 10200 Hz

6800 Hz

:

## Example Spectrogram







## Example: Formants for [ a ]







1/4 WL



$$f_n = \frac{c}{4l}(2n - 1)$$

F1 944 Hz

F3 2833 Hz

4722 Hz

÷

 $f_n = \frac{c}{4l}(2n-1)$ 

=2 1214 Hz

3642 Hz

6071 Hz

:

# Example Spectrogram







## Opening the nasal cavity



When you make a nasal consonant like an "m" or "n", you lower your velum which couples your nasal cavity to your vocal tract



Resonances of the front cavity "trap" acoustic energy and prevent it from radiating out from the nasal cavity

This gives rise to zeros in the transfer function from the vocal folds to the nostrils, which cancel out formants



# Example Spectrogram







## Constricting for Consonants









## Constricting for Consonants





A constriction will also introduce zeros that correspond to the resonances of the tubes behind the very front of the constriction, where we also treat the front of the constriction as a *hard wall* 



# Example Spectrogram







## Rounding the lips



Rounding your lips has the effect of slightly *increasing* the length of the vocal tract, and drags all formants down



