На правах рукопису

Копаліані Дар'я Сергіївна

УДК 004.032.26

Еволюційні нейро-фаззі мережі з каскадною Структурою для інтелектуального аналізу данних

05.13.23 — системи та засоби штучного інтелекту

Дисертація на здобуття наукового ступеня кандидата технічних наук

Науковий керівник **Бодянський Євгеній Володимирович**, доктор технічних наук, професор

ЗМІСТ

Розділ	1. Ба і	гатовимірна каскадна нейро-мережа, що еволюціо-	
	нує		3
1.1.	Багатовимірна каскадна система, що еволюціонує, побудована		
	на багатовимірних нео-фаззі нейронах		3
	1.1.1.	Метод визначення поточно оптимального вихідного си-	
		гналу пулу багатовимірних нео-фаззі нейронів каскадної	
		системи, що еволюціонує	3
Список використаних джерел			

РОЗДІЛ 1

БАГАТОВИМІРНА КАСКАДНА НЕЙРО-МЕРЕЖА, ЩО ЕВОЛЮЦІОНУЄ

- 1.1. Багатовимірна каскадна система, що еволюціонує, побудована на багатовимірних нео-фаззі нейронах
- 1.1.1. Метод визначення поточно оптимального вихідного сигналу пулу багатовимірних нео-фаззі нейронів каскадної системи, що еволюціонує. У цьому підрозділі буде запропоновано узагальнюючий нейрон $GMN^{[m]}$ та рекурентний метод його навчання, щоб він об'єднував усі вихідні сигнали нейронів MN[m] пулу каскаду у сигнал

$$\hat{y}^{*[m]}(k) = \left(\hat{y}_1^{*[m]}(k), \hat{y}_2^{*[m]}(k), \dots, \hat{y}_g^{*[m]}(k)\right)^T, \tag{1.1}$$

з точністю не меншою від точності будь-якого з сигналів $\hat{y}_{i}^{[m]}(k)$.

Розв'язати це завдання можна, знову скориставший апаратом невизначених множників Лагранжа та адаптивного багатовимірного узагальненого прогнозування

Введемо до розгляду вихідний сигнал нейрону $GMN^{[m]}$ у вигляді

$$\hat{y}^{*[m]}(k) = \sum_{j=1}^{q} c_j^{[m]} \hat{y}_j^{[m]}(k) = \hat{y}^{[m]}(k) c^{[m]}, \qquad (1.2)$$

де $\hat{y}^{[m]}(k) = \left(\hat{y}_1^{[m]}(k), \hat{y}_2^{[m]}(k), \dots, \hat{y}_q^{[m]}(k)\right)^T - (g \times q)$ -матриця $c^{[m]} - (q \times 1)$ -вектор коефіцієнтів узагальнення, що відповідають умовам незміщенності

$$\sum_{j=1}^{q} c_j^{[m]} = E^T c^{[m]} = 1, \tag{1.3}$$

 $E = (1, 1, \dots, 1)^T$ – вектор, утворений одиницями.

Введемо критерій навчання

$$E^{[m]}(k) = \sum_{\tau=1}^{k} \left\| y(\tau) - \hat{y}^{[m]}(\tau) c^{[m]} \right\|^{2}$$

$$= Tr \left(\left(Y(k) - \hat{Y}^{[m]}(k) I \otimes c^{[m]} \right)^{T} \left(Y(k) - \hat{Y}^{[m]}(k) I \otimes c^{[m]} \right) \right)$$
(1.4)

де $Y(k) = (y^T(1), y^T(2), \dots, y^T(k))^T - (k \times s)$ матриця спостережень,

$$\hat{Y}^{[m]}(k) = \begin{pmatrix}
\hat{y}_1^{[m]T}(1) & \hat{y}_2^{[m]T}(1) & \dots & \hat{y}_q^{[m]T}(1) \\
\hat{y}_1^{[m]T}(2) & \hat{y}_2^{[m]T}(2) & \dots & \hat{y}_q^{[m]T}(2) \\
\vdots & \vdots & & \vdots \\
\hat{y}_1^{[m]T}(k) & \hat{y}_2^{[m]T}(k) & \dots & \hat{y}_q^{[m]T}(k)
\end{pmatrix},$$
(1.5)

де I – одинична $(g \times g)$ матриця,

 \otimes – символ тензорного добутку.

З урахуванням?? обмежень запишемо функцію Лагранжа

$$L^{[m]}(k) = E^{[m]}(k) + \lambda \left(E^{T} c^{[m]} - 1 \right)$$

$$= \sum_{\tau=1}^{k} \left\| y(\tau) - \hat{y}^{[m]}(\tau) c^{[m]} \right\|^{2} + \lambda \left(E^{T} c^{[m]} - 1 \right)$$

$$= Tr \left(\left(Y(k) - \hat{Y}^{[m]}(k) I \otimes c^{[m]} \right)^{T} \left(Y(k) - \hat{Y}^{[m]}(k) I \otimes c^{[m]} \right) \right)$$

$$+ \lambda \left(E^{T} c^{[m]} - 1 \right)$$

$$= Tr \left(V^{[m]T}(k) V^{[m]}(k) \right) + \lambda \left(E^{T} c^{[m]} - 1 \right),$$
(1.6)

де $V^{[m]}(k) = Y(k) - \hat{Y}^{[m]}(k)I \otimes c^{[m]} - (k \times g)$ матриця оновлень.

Розв'язання системи рівнянь Каруша-Куна-Таккера

$$\begin{cases}
\nabla_{c^{[m]}} L^{[m]}(k) = \overrightarrow{0}, \\
\frac{\partial L^{[m]}(k)}{\partial \lambda} = 0
\end{cases}$$
(1.7)

призводить до очевидного результату

$$\begin{cases}
c^{[m]} = \left(R^{[m]}(k)\right)^{-1} E\left(E^{T}\left(R^{[m]}(k)\right)^{-1}\right)^{-1} \\
\lambda = -2E^{T}\left(R^{[m]}(k)\right)^{-1} E,
\end{cases} (1.8)$$

де
$$R^{[m]}(k) = V^{[m]T}(k)V^{[m]}(k)$$
.

Таким чином, можна організувати оптимальне об'єднання виходів усіх нейронів пулу кожного каскаду. Зрозуміло, що в якості таких нейронів можуть використовуватися не тільки багатовимірні нео-фаззі нейрони, але й будь-які інші конструкції, що реалізують нелінійне відображення $R^{n+(m-1)g} \to R^g$.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ