Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear GABARITO da AP1 - Segundo Semestre de 2008 Professores: Márcia Fampa & Mauro Rincon

- 1.(2.5) Considere o conjunto $B = \{v_1, v_2\}$, onde $v_1 = (1, 2, 3)$ e $v_2 = (-5, 1, 1)$.
 - a. (0.5) Calcule o módulo de v_1 .

Solução:

$$|v_1| = \sqrt{(1^2 + 2^2 + 3^2)} = \sqrt{(1 + 4 + 9)} = \sqrt{14}.$$

b. (0.5) Calcule a distância $d(v_1, v_2) = |v_1 - v_2|$

Solução:

$$d(v_1, v_2) = \sqrt{(-5-1)^2 + (1-2)^2 + (1-3)^2} = \sqrt{36+1+4} = \sqrt{41}.$$

c. (0.5) Calcule o ângulo formado por v_1 e v_2 .

Solução:

Seja θ o ângulo entre os vetores v_1 e v_2 .

$$cos(\theta) = \frac{v_1.v_2}{|v_1|.|v_2|}.$$

Do item (a), $|v_1| = \sqrt{14}$.

$$|v_2| = \sqrt{(-5)^2 + 1^2 + 1^2} = \sqrt{(25 + 1 + 1)} = \sqrt{27}.$$

$$v_1.v_2 = 1 \times (-5) + 2 \times 1 + 3 \times 1 = -5 + 2 + 3 = 0.$$

$$cos(\theta) = \frac{0}{\sqrt{14}\sqrt{27}} = 0 \Longrightarrow \theta = \frac{\pi}{2}.$$

d. (1.0) Determine o espaço gerado pelos vetores v_1 e v_2 de B.

Solução:

 $v_1 = (1, 2, 3)$ e $v_2 = (-5, 1, 1)$. Sejam $a, b \in \Re$. $[v_1, v_2] = a(1, 2, 3) + b(-5, 1, 1) = (a - 5b, 2a + b, 3a + b) = (x, y, z)$. Assim, temos o seguinte sistema linear:

$$a - 5b = x \tag{1}$$

$$2a + b = y \tag{2}$$

$$3a + b = z \tag{3}$$

Fazendo (2) \leftarrow -(2) + 2 × (1) e (3) \leftarrow -(3) + 3 × (1), chegamos ao seguinte sistema linear:

$$a - 5b = x$$

$$-11b = 2x - y$$

$$-16b = 3x - z$$

Da terceira equação temos que $b=\frac{-3x+z}{16}$. Da segunda equação temos que $b=\frac{-2x+y}{11}$. Igualando estes dois valores de b temos: $\frac{-3x+z}{16}=\frac{-2x+y}{11}\Longrightarrow -33x+11z=-32x+16y\Longrightarrow x=-16y+11z$ Logo $[v_1,v_2]=\{(x,y,z)\in\Re^3/x=-16y+11z\}$.

2.(2.0) (a) Sejam V = M(n,n) o conjunto de matrizes quadradas de ordem n, B uma matriz fixa de V e $S = \{A \in M(n,n) | AB = 0\}$, isto é, S é o conjunto das matrizes que, multiplicadas por B, têm como resultado a matriz nula. Verifique se S é ou não um subspaço vetorial de M(n,n).

Solução:

Sejam $A_1 \in S$, $A_2 \in S$, $C = A_1 + A_2$ e $D = \alpha A_1$, onde $\alpha \in \mathbb{R}$. Como $CB = (A_1 + A_2)B = A_1B + A_2B = 0 + 0 = 0$, então $C \in S$. Como $DB = \alpha A_1B = \alpha 0 = 0$, então $D \in S$. Logo, S é subspaço vetorial de M(n, n).

(b) Considere a reta $S = \{(x, x+3) | x \in \mathbb{R}\}$. Verifique se a reta é um subspaço vetorial de \mathbb{R}^2 .

Solução:

Como $(0,3) \in S$, $(1,4) \in S$ e $(0,3) + (1,4) = (1,7) \notin S$, então S não é um subspaço vetorial.

3.(1.5) Seja $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$, dois vetores em \mathbb{R}^3 . Determinar o valor de k para que o vetor u = (-1, k, -7) seja combinação linear de v_1 e v_2 .

Solução:

Devemos ter $u = av_1 + bv_2$, para $a, b \in \mathbb{R}$, ou

$$(-1, k, -7) = a(1, -3, 2) + b(2, 4, -1)$$

De onde vem o sistema

$$\begin{cases} a + 2b = -1 \\ -3a + 4b = k \\ 2a - b = -7 \end{cases}$$

o qual tem solução apenas se k=13, já que das linhas 1 e 3, obtemos a=-3 e b=1.

4.(2.0) Determinar uma base que não seja ortogonal do seguinte subspaço vetorial do \mathbb{R}^3 .

$$S = \{(x, y, z) \in \mathbb{R}^3 | x + y - z = 0\}$$

Em seguida, aplicar o processo de ortogonalização de Gram-Schmidt a base, para obter uma nova base ortonormal para S.

Solução:

Observemos que dimS=2 e, portanto, uma base de S tem dois vetores. Isolando x na igualdade x+y-z=0, temos x=-y+z. Se fizermos (1) y=0 e z=1, (2) y=1 e z=0, obteremos os vetores $v_1=(1,0,1)$ e $v_2=(-1,1,0)$, sendo $B=\{v_1,v_2\}$ uma base de S, pois v_1 e v_2 são LI. Como $< v_1, v_2>=-1$, B não é ortogonal. Procuremos uma base $B'=\{u_1,u_2\}$ que seja ortonormal aplicando o processo de ortogonalização de Gram-Schmidt

$$u_1 = \frac{v_1}{|v_1|} = \frac{(1,0,1)}{\sqrt{2}} = (\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$$

$$w_2 = v_2 - \langle v_2, u_1 \rangle u_1 = (-1,1,0) - (-\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$$

$$w_2 = (-1,1,0) - (-\frac{1}{2},0,-\frac{1}{2}) = (-\frac{1}{2},1,\frac{1}{2})$$

$$u_2 = \frac{w_2}{|w_2|} = \frac{\left(-\frac{1}{2}, 1, \frac{1}{2}\right)}{\frac{\sqrt{6}}{2}} = \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

Logo, $B' = \{(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})\}$ é uma base ortonormal de S.

5.(2.0) Determinar uma base e a dimensão do espaço de soluções do sistema homogêneo

$$\begin{cases} x + 2y - 4z + 3t = 0 \\ x + 2y - 2z + 2t = 0 \\ 2x + 4y - 2z + 3t = 0 \end{cases}$$

Solução: Fazendo $linha_2 := linha_2 - linha_1$, $linha_3 := linha_3 - 2linha_1$ e, posteriormente, $linha_3 := linha_3 - 3linha_2$ temos o seguinte sistema equivalente

$$\begin{cases} x + 2y - 4z + 3t = 0 \\ 2z - t = 0 \\ 0 = 0 \end{cases}$$

Do qual, obtemos da segunda linha t=2ze , substituindo a igualdade na primeira linha, x=-2y-2z. Logo, o conjunto-solução do sistema é:

$$S = \{(x,y,z,t) | t = 2z, x = -2y - 2z\},\$$

que é um subspaço vetorial de \mathbb{R}^4 . Tendo em vista serem duas as variáveis livres $(y \in z)$, conclui-se que dimS=2. Logo, qualquer subconjunto de S com dois vetores LI, forma uma base de S. Façamos (1) y=1 e z=0, (2) y=0 e z=1, para obter os vetores $v_1=(-2,1,0,0)$ e $v_2=(-2,0,1,2)$. O conjunto $\{v_1,v_2\}$ é uma base de S.