

Online Normalization for Training Neural Networks

Ilya Sharapov

Sofía Samaniego de la Fuente

 $\langle x', 1 \rangle = 0$ and $\langle x', y \rangle = 0$

Leads to uniformly bounded error in

gradient calculation

Atli Kosson

Vishal Subbiah

Urs Köster

Controller $\leftarrow y'$:

 $\tilde{x}' = y' - \alpha \varepsilon^{(y)} y$

Michael James

Motivation and Background

- Normalization accelerates learning
- Normalization transforms a neural network from a function to a statistical operator that depends on its input distribution.
- Existing methods either use batches to approximate the input distribution [1,2] or restrict normalization's domain to a single sample [3,4,5].
- We propose an online normalization process that:
- Eliminates batch dependency without restricting the domain
- Decreases memory usage
- Computes unbiased gradients
- Provides train/inference symmetry
- Integrates into auto differentiation frameworks

Memory Usage (GB)			
Network	Online	Batch	Norm
	Norm	32	128
ResNet-50, ImageNet, theory ResNet-50, ImageNet, measured a 3D U-Net, $150 \times 150 \times 150$ voxels, theory 3D U-Net, $250 \times 250 \times 250$ voxels, theory 2D U-Net, 1024×1024 pixels, theory 2D U-Net, 2048×2048 pixels, theory	1	2	4
	2	5	15
	1	29	115
	6	195	785
	2	31	123
	5	137	546
^a PyTorch implementation stores multiple copies of			

Principles of Normalization

- Normalization and its derivative are statistical operators
- \circ Notation: $(\cdot)' = \nabla_{(\cdot)} L$

$$y = f_{\mathbb{X}}[x] \equiv (x - \mu[x]) / \sigma[x]$$
 and $x' = (\nabla_x f_{\mathbb{X}}[x]) y', x \sim \mathbb{X}$

activations for improved performance

BWD: Two projections st. gradient satisfies the orthogonality conditions that follow from the backward eqs: $\mu[x'] = 0$ and $\mu[x'y] = 0$

Ryan Reece

Normalized networks are invariant to gradient scale

Weight decay is required to prevent magnitude growth

Online Normalization

Vitaliy Chiley

Image / Language / Generative Models

References

- [1] Sergey loffe and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift."
- [2] Sergey loffe. "Batch renormalization: Towards reducing minibatch dependence in batch-normalized models."
- [3] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. "Layer Normalization."
- [4] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. "Instance normalization: The missing ingredient for fast stylization"
- [5] Yuxin Wu and Kaiming He. "Group normalization."
- [6] Igor Gitman and Boris Ginsburg. "Comparison of batch normalization and weight normalization algorithms for the large-scale image
- [7] Wenling Shang, Justin Chiu, and Kihyuk Sohn. "Exploring normalization in deep residual networks with concatenated rectified linear units."
- https://github.com/Cerebras/online-normalization, https://arxiv.org/abs/1905.05894, fithps://www.cerebras.net

