

APSSDC

Andhra Pradesh State Skill Development Corporation S

Day09 Dimensionality Reduction

Principal Component Analysis (PCA)

Brief primer and history

Principal component analysis (PCA) is a statistical procedure that uses an <u>orthogonal transformation</u> (https://en.wikipedia.org/wiki/Orthogonal_transformation) to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated

(https://en.wikipedia.org/wiki/Correlation and dependence) variables called principal components. The number of distinct principal components is equal to the smaller of the number of original variables or the number of observations minus one. This transformation is defined in such a way that the first principal component has the largest possible variance (https://en.wikipedia.org/wiki/Variance) (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal (https://en.wikipedia.org/wiki/Orthogonal) the preceding components. The resulting vectors are an uncorrelated orthogonal basis set (https://en.wikipedia.org/wiki/Orthogonal basis set).

PCA is sensitive to the relative scaling of the original variables.

PCA was invented in 1901 by <u>Karl Pearson (https://en.wikipedia.org/wiki/Karl_Pearson)</u> as an analogue of the principal axis theorem in mechanics; it was later independently developed and named by <u>Harold Hotelling (https://en.wikipedia.org/wiki/Harold_Hotelling)</u> in the 1930s.

<u>Dataset_Link (https://raw.githubusercontent.com/AP-State-Skill-Development-Corporation/Datasets/master/wine.data.csv)</u>

class of wine Wine dataset --> Reducing the dimensions --> unsupervised

Data Exploration

In [3]: ▶

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [4]: ▶

df = pd.read_csv('https://raw.githubusercontent.com/AP-State-Skill-Development-Corporation/

```
In [5]: ▶
```

df.head()

Out[5]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proa
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
4										•

In [6]: ▶

df.shape

Out[6]:

(178, 14)

In [7]: ▶

df.columns

Out[7]:

- 0. Class The type of wine, into one of three classes, 1 (59 obs), 2(71 obs), and 3 (48 obs)
- 1. Alcohol -
- 2. Malic acid
- 3. Ash
- 4. Alcalinity of ash
- 5. Magnesium
- 6. Total phenols
- 7. Flavanoids
- 8. Nonflavanoid phenols
- 9. Proanthocyanins
- 10. Color intensity
- 11. Hue

```
In [8]:
                                                                                              H
df['Class'].value_counts() ## Class is the output
Out[8]:
2
     71
1
     59
     48
3
Name: Class, dtype: int64
In [9]:
                                                                                              M
df.isnull().sum()
Out[9]:
Class
                                 0
Alcohol
                                 0
Malic acid
                                 0
Ash
                                 0
Alcalinity of ash
                                 0
Magnesium
                                 0
Total phenols
                                 0
Flavanoids
                                 0
Nonflavanoid phenols
                                 0
Proanthocyanins
                                 0
Color intensity
                                 0
                                 0
OD280/OD315 of diluted wines
                                 0
Proline
                                 0
dtype: int64
```

H

Out[10]:

In [10]:

df.duplicated().sum()

12. OD280/OD315 of diluted wines

13. Proline

0

In [11]: ▶

df.dtypes

Out[11]:

Class	int64		
Alcohol	float64		
Malic acid	float64		
Ash	float64		
Alcalinity of ash	float64		
Magnesium	int64		
Total phenols	float64		
Flavanoids	float64		
Nonflavanoid phenols	float64		
Proanthocyanins	float64		
Color intensity	float64		
Hue	float64		
OD280/OD315 of diluted wines	float64		
Proline	int64		

dtype: object

In [12]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Class	178 non-null	int64
1	Alcohol	178 non-null	float64
2	Malic acid	178 non-null	float64
3	Ash	178 non-null	float64
4	Alcalinity of ash	178 non-null	float64
5	Magnesium	178 non-null	int64
6	Total phenols	178 non-null	float64
7	Flavanoids	178 non-null	float64
8	Nonflavanoid phenols	178 non-null	float64
9	Proanthocyanins	178 non-null	float64
10	Color intensity	178 non-null	float64
11	Hue	178 non-null	float64
12	OD280/OD315 of diluted wines	178 non-null	float64
13	Proline	178 non-null	int64

dtypes: float64(11), int64(3)

memory usage: 19.6 KB

```
In [13]: ▶
```

```
df.describe()
```

Out[13]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	FI
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	17
mean	1.938202	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	
std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	
25%	1.000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	
75%	3.000000	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	
max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	
4								•

- First step "decorrelation"
- Second step reduces dimension

```
In [15]:

data = df.drop('Class', axis = 'columns')
data.head()
```

```
In [16]: ▶
```

from sklearn.preprocessing import StandardScaler

```
In [17]: ▶
```

```
decorr = StandardScaler()

Decodata = decorr.fit_transform(data)
```

```
In [25]:
                                                                                          M
help(pca)
Help on PCA in module sklearn.decomposition._pca object:
class PCA(sklearn.decomposition._base._BasePCA)
 PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto',
tol=0.0, iterated_power='auto', random_state=None)
   Principal component analysis (PCA).
    Linear dimensionality reduction using Singular Value Decomposition of
the
   data to project it to a lower dimensional space. The input data is cen
tered
   but not scaled for each feature before applying the SVD.
    It uses the LAPACK implementation of the full SVD or a randomized trun
cated
   SVD by the method of Halko et al. 2009, depending on the shape of the
 input
 data and the number of components to extract.
In [18]:
from sklearn.decomposition import PCA
In [33]:
                                                                                          M
pca = PCA()
In [34]:
                                                                                          M
pca.fit(Decodata)
Out[34]:
PCA()
In [35]:
                                                                                          H
len(pca.explained_variance_ratio_)
```

Out[35]:

13

In [39]:

```
import matplotlib.pyplot as plt
plt.barh(data.columns, pca.explained_variance_ratio_, color = ['r','b','g','r','b','g','r',
```

Out[39]:

<BarContainer object of 13 artists>

In [38]: ▶

help(plt.barh)

Help on function barh in module matplotlib.pyplot:

barh(y, width, height=0.8, left=None, *, align='center', **kwargs)
 Make a horizontal bar plot.

The bars are positioned at *y* with the given *align*\ment. Their dimensions are given by *width* and *height*. The horizontal baseline is *left* (default 0).

Each of *y*, *width*, *height*, and *left* may either be a scalar applying to all bars, or it may be a sequence of length N providing a separate value for each bar.

Parameters

y : scalar or array-like The y coordinates of the bars. See also *align* for the alignment of the bars to the coordinates. In [44]: ▶

```
plt.scatter(Decodata[:,0], Decodata[:,1], c = df['Class'])
```

Out[44]:

<matplotlib.collections.PathCollection at 0x2471fcbc8b0>

