Topología elemental Problemas

Íker Muñoz Martínez

Índice general

1.	Lista 0: Para Empezar	5
	1.1. Número 0.1	5
	1.2. Número 0.2	5
	1.3. Número 0.3	6
	1.4. Número 0.4	7
	1.5. Número 0.5	7
2.	Lista 1: Espacios Topológicos	9
	2.1. Número 1.1	9
	2.2. Número 1.4	9
	2.3. Número 1.7	10
	2.4. Número 1.8	10
3.	Lista 2: Aplicaciones continuas	11
4.	Lista 3: Construcción de topologías	13
5.	Lista 4: Separación	15
6.	Lista 5: Numerabilidad	17
7.	Lista 6: Compacidad	19
8.	Lista 7: Conexión	21
9.	Lista 8: Conexión por caminos	23
10	.Lista 9: Homotopía	25
11	Lista 10: Borsuk y sus variantes	27

Lista 0: Para Empezar

Número 0.1

Enunciado

Comprobar las leyes distributivas para la unión y la intersección de conjuntos, y las leyes de De Morgan.

Solución:

- Ley distributiva de la unión: $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ $x \in (A \cap B) \cup C \Leftrightarrow (x \in A \land x \in B) \lor x \in C \Leftrightarrow (x \in A \lor x \in C) \land (x \in B \lor x \in C) \Leftrightarrow x \in (A \cup C) \cap (B \cup C)$
- Ley distributiva de la intersección: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $x \in (A \cup B) \cap C \Leftrightarrow (x \in A \lor x \in B) \land x \in C \Leftrightarrow (x \in A \land x \in C) \lor (x \in B \land x \in C) \Leftrightarrow x \in (A \cap C) \cup (B \cap C)$
- Leyes de De Morgan: $(A \cup B)^c = A^c \cap B^c \& (A \cap B)^c = A^c \cup B^c$
 - (1) $x \in (A \cup B)^c \Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A \land x \notin B \Leftrightarrow x \in A^c \land x \in B^c \Leftrightarrow x \in A^c \cap B^c$
 - (2) $A \cap B = A^{cc} \cap B^{cc} \stackrel{(1)}{=} (A^c \cup B^c)^c$, y tomando complementarios en ambos lados obtenemos la segunda ley.

Número 0.2

Enunciado

Se consideran una aplicación $f: A \to B$ y subconjutos $A_0 \subset A, B_0 \subset B$.

- (1) Demostrar que $A_0 \subset f^{-1}(f(A_0))$ y que se da la igualdad si f es inyectiva.
- (2) Demostrar que $f(f^{-1}(B_0)) \subset B_0$ y que se da la igualdad si f es sobreyectiva.

Solución:

(1) Sea $x\in A_0$. Así, $f(x)\in f(A_0)$, y por definición de preimagen, $x\in f^{-1}(f(A_0))$. En particular, obtenemos la igualdad $A_0=f^{-1}(f(A_0))$ si f es inyectiva. Supongamos que $\exists y\in f^{-1}(f(A_0))\setminus A_0$. Así, $f(y)\in f(A_0)$, luego existe un $x\in A_0$ tal que f(y)=f(x). Como f es inyectiva, $x=y\in A_0$, lo que nos lleva a una contradicción.

(2) Sea $y \in f(f^{-1}(B_0))$. Así, existe $x \in f^{-1}(B_0)$ tal que y = f(x). Por tanto, si aplicamos f, obtenemos que $f(x) = y \in B_0$. En particular, obtenemos la igualdad $f(f^{-1}(B_0)) = B_0$ si f es sobreyectiva. Si $y \in B_0$, como f es sobreyectiva, existe un $x \in f^{-1}(B_0)$ tal que f(x) = y. Aplicamos f^{-1} y obtenemos que $f^{-1}(y) = x \in f^{-1}(B_0)$, y al aplicar f obtenemos $f(x) = y \in f(f^{-1}(B_0))$.

Número 0.3

Enunciado

Se consideran una aplicación $f: A \to B$ y colecciones de subconjutos $A_i \subset A, B_i \subset B$.

- (1) Probar que f^{-1} conserva inclusiones, uniones, intersecciones y diferencias
 - (a) Si $B_i \subset B_j$, entonces $f^{-1}(B_i) \subset f^{-1}(B_j)$
 - (b) $f^{-1}(\bigcup_i B_i) = \bigcup_i f^{-1}(B_i)$
 - (c) $f^{-1}(\bigcap_i B_i) = \bigcap_i f^{-1}(B_i)$
 - (d) $f^{-1}(B_i \setminus B_j) = f^{-1}(B_i) \setminus f^{-1}(B_j)$
- (2) Demostrar que f conserva solamente las uniones y las inclusiones:
 - (a) Si $A_i \subset A_j$, entonces $f(A_i) \subset f(A_j)$
 - (b) $f(\bigcup_i A_i) = \bigcup_i f(A_i)$
 - (c) $f(\bigcap_i A_i) \subset \bigcap_i f(A_i)$; se da la igualdad si f es inyectiva.
 - (d) $f(A_i \setminus A_j) \supset f(A_i) \setminus f(A_j)$; se da la igualdad si f es inyectiva.

Solución:

- (1) Probar que f^{-1} conserva inclusiones, uniones, intersecciones y diferencias
 - (a) Sea $x \in f^{-1}(B_i)$. Así, $f(x) \in B_i \subset B_j$, y por tanto, $x \in f^{-1}(B_j)$.
 - (b) Sea $x \in f^{-1}(\bigcup_i B_i) \Leftrightarrow f(x) \in \bigcup_i B_i \Leftrightarrow \exists i \in I : f(x) \in B_i \Leftrightarrow \exists i \in I : x \in f^{-1}(B_i) \Leftrightarrow x \in \bigcup_i f^{-1}(B_i).$
 - (c) Análogamente, sea $x \in f^{-1}(\bigcap_i B_i) \Leftrightarrow f(x) \in \bigcap_i B_i \Leftrightarrow \forall i \in I : f(x) \in B_i \Leftrightarrow \forall i \in I : x \in f^{-1}(B_i) \Leftrightarrow x \in \bigcap_i f^{-1}(B_i).$
 - (d) Sea $x \in f^{-1}(B_i \setminus B_j) \Leftrightarrow f(x) \in B_i \setminus B_j \Leftrightarrow f(x) \in B_i \wedge f(x) \notin B_j \Leftrightarrow x \in f^{-1}(B_i) \wedge x \notin f^{-1}(B_j) \Leftrightarrow x \in f^{-1}(B_i) \setminus f^{-1}(B_j).$
- (2) Demostrar que f conserva solamente las uniones y las inclusiones:
 - (a) Sea $x \in f(A_i)$. Entonces, $\exists a \in A_i : f(a) = x \Rightarrow a \in A_i \subset A_j$, luego $x = f(a) \in f(A_j)$.
 - (b) Sea $x \in f(\bigcup_i A_i) \Leftrightarrow \exists a \in \bigcup_i A_i : f(a) = x \Leftrightarrow \exists i \in I \ \exists a \in A_i : f(a) = x$. Por tanto, $\exists i \in I : f(a) \in f(A_i) \ \& \ f(a) = x \Leftrightarrow f(a) \in \bigcup_i f(A_i) \ \& \ f(a) = x \Leftrightarrow x \in f \bigcup_i f(A_i)$.
 - (c) Veamos primero el contenido general, y después el caso en que f es inyectiva.
 - Sea $x \in f(\bigcap_i A_i)$. Entonces, $\exists a \in \bigcap_i A_i : f(a) = x \Rightarrow \forall i \in I \ \exists a \in A_i$, luego $\forall i \in I \ \exists f(a) \in f(A_i) \ \& \ f(a) = x$. Por tanto, $\forall i \in Ix \in f(A_i)$, es decir, $x \in \bigcap_i f(A_i)$.
 - (Si f inyectiva) Sea $x \in \bigcap_i f(A_i)$. Entonces, $\forall i \in I : x \in f(A_i)$. Entonces, $\forall i \in I \exists a \in A_i : f(a) = x \Rightarrow \exists a \in \bigcap_i A_i : f(a) = x$, y como la f es inyectiva, $x \in f(\bigcap_i A_i)$.
 - (d) Veamos primero el contenido general, y después el caso en que f es inyectiva.
 - Sea $x \in f(A_i) \setminus f(A_j)$, es decir, $x \in f(A_i) \land x \in f(A_j)^c$. Por tanto, $\begin{cases} \exists a \in A_i : f(a) = x \\ \nexists a \in A_j : f(a) = x \end{cases} \Rightarrow \exists a \in A_i \cap A_i^c : f(a) = x$, es decir, $x \in f(A_i \setminus A_j)$.
 - (Si f inyectiva) Sea $x \in f(A_i \setminus A_j)$, es decir $\exists a \in A_i \setminus A_j : f(a) = x$. Por tanto, $\begin{cases} \exists a \in A_i : f(a) = x \\ \exists a \notin A_j : f(a) = x \end{cases}$. Como f es inyectiva, los a son los mismos y por tanto $x \in f(A_i) \cap f(A_j)^c$, es decir, $x \in f(A_i) \setminus f(A_j)$.

Número 0.4

Enunciado

Probar que el conjunto \mathbb{Q} de los números racionales es numerable. Probar que el intervalo [0,1] no es numerable, y que por tanto no lo es \mathbb{R} .

Solución:

(1) Veamos primeramente que el conjunto $\mathbb Q$ es numerable. Apoyándonos en el hecho de que $\mathbb Z$ es numerable, construimos la siguiente aplicación:

$$f: \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$$

 $(p,q) \mapsto \frac{p}{q}$

La aplicación f es sobreyectiva, ya que $\forall x \in \mathbb{Q}, \exists p,q \in \mathbb{Z}: x = \frac{p}{q}, q \neq 0$. Así,

$$Card(\mathbb{Q}) \leq Card(\mathbb{Z} \times \mathbb{Z}) = Card(\mathbb{N})$$

Luego \mathbb{Q} es numerable.

(2) Para probar que el intervalo [0,1] no es numerable, emplearemos el argumento conocido como diagonalización de Cantor. Por reducción al absurdo, supongamos que el intervalo fuere numerable. Si lo fuera, admitiría una posible enumeración $\{r_n\}_n$. Cada uno de los elementos de la sucesión será un $x \in (0,1)$ (no afecta a la numerabilidad que quitemos los extremos, pues son únicamente dos puntos, es decir, un conjunto finito), que podemos expresar utilizando sus cifras decimales $x=0.\ldots$ La sucesión tendría la pinta:

$$r_1 = 0.a_1^1 a_2^1 a_3^1 \dots$$

$$r_2 = 0.a_1^2 a_2^2 a_3^2 \dots$$

$$r_3 = 0.a_1^3 a_2^3 a_3^3 \dots$$

$$r_4 = 0.a_1^4 a_2^4 a_3^4 \dots$$

$$r_5 = 0.a_1^5 a_2^5 a_3^5 \dots$$

$$\vdots$$

Cada a_i^j es un número natural comprendido entre 0 y 9. Consideramos entonces el siguiente número:

$$R = 0.r_1r_2r_3r_4...:r_i = a_i^i + 1 \pmod{10}$$

El número R pertenece al intervalo; no obstante, difiere con todos los r_i en al menos una posición. Es decir, hemos construido un número que no se encuentra en la sucesión $\{r_n\}_n$, por lo que nuestra hipótesis de que el intervalo [0,1] fuera numerable debe ser falsa.

Además, no es difícil comprobar que la aplicación

$$f:(0,1)\to\mathbb{R}$$

$$x\mapsto \tan\left[\pi(x-\frac{1}{2})\right]$$

Es una biyección. Por tanto, \mathbb{R} no es numerable, y en particular, $Card(\mathbb{R}) = Card([0,1])$

Número 0.5

Enunciado

(Distancias en \mathbb{R}^n) Comprobar que cada una de las siguientes es una distancia en \mathbb{R}^n y estudiar como son las bolas en cada una de ellas.

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2} \qquad \rho_1(x,y) = \sum_{i} |x_i - y_i| \qquad \rho_2(x,y) = \max_{i} |x_i - y_i|$$

Para la primera, utilizar la desigualdad triangular o de Minkowsky

$$\sqrt{\sum_{i} (a_i + b_i)^2} \le \sqrt{\sum_{i} a_i^2} + \sqrt{\sum_{i} b_i^2}$$

Solución:

dgerhgsre

Lista 1: Espacios Topológicos

Número 1.1

Enunciado

Sea X un conjunto, y \mathfrak{T}_{CF} la familia de todos los subconjuntos de X cuyo complementario es finito, más el conjunto vacío. Probar que \mathfrak{T}_{CF} es una topología en X. Esta topología se llama, por razones evidentes, topología de los complementarios finitos. ¿Qué topología obtenemos si X es un conjunto finito?

Solución:

Veamos que \mathfrak{T}_{CF} satisface las tres propiedades para que sea topología:

- (1) Por definición, $\emptyset \in \mathfrak{T}_{CF}$. Además, $X^c = \emptyset$ es finito, por lo que $X \in \mathfrak{T}_{CF}$.
- (2) Comprobemos que las uniones arbitrarias de elementos del \mathfrak{T}_{CF} están en \mathfrak{T}_{CF} . Sean $U_i \in \mathfrak{T}_{CF}$ con $i \in I$ arbitrario. Veamos entonces que $X \setminus \bigcup_{i \in I} U_i$ es finito.

$$X \setminus \bigcup_{i \in I} U_i \stackrel{DeMorgan}{=} \bigcap_{i \in I} X \setminus U_i$$

Como los $U_i \in \mathfrak{I}_{CF}$, su complementario es finito, y la intersección arbitraria de conjuntos finitos es finita. Así, $\bigcup_{i \in I} U_i \in \mathfrak{I}_{CF}$

(3) Finalmente, comprobemos que las intersecciones finitas de elementos de \mathfrak{T}_{CF} están en \mathfrak{T}_{CF} . Basta comprobarlo para dos conjuntos U,U', pues la intersección finita de conjuntos puede definirse dos a dos. Así, sean $U,U'\in\mathfrak{T}_{CF}$, y veamos que $X\setminus(U\cap U')$ es finito.

$$X \setminus (U \cap U') \stackrel{DeMorgan}{=} (X \setminus U) \cup (X \setminus U')$$

Como $U,U'\in\mathfrak{T}_{CF}$, su complementario es finito, y la unión finita de conjuntos finitos es finita. Por tanto, $\bigcap_{i\in I}U_i:I$ finito $\in\mathfrak{T}_{CF}$.

En particular, si X es finito, cualquier subconjunto suyo $A \subset X$ tiene complementario finito, y por tanto, pertenece a \mathfrak{T}_{CF} . Así, en particular todos los puntos son abiertos, y por tanto, $\mathfrak{T}_{CF}=\mathfrak{T}_{Discreta}$.

Número 1.4

Enunciado

Sea X un conjunto infinito y T una topología en la que todos los conjuntos infinitos son abiertos. Demostrar que T es la topología discreta.

Solución:

Número 1.7

Enunciado

En el plano $X=\mathbb{R}^2$ se considera la familia $\mathfrak T$ de todos los subconjuntos U tales que para cada punto $(a,b)\in U$ existe $\varepsilon>0$ con

$$((a-\varepsilon,a+\varepsilon)\times\{b\})\cup(\{a\}\times(b-\varepsilon,b+\varepsilon))\subset U$$

Estudiar si \Im es una topología en X.

Solución:

Número 1.8

Enunciado

En $X = \mathbb{R}^2$ se consideran los subconjuntos

$$G_t = \{(x, y) \in X : x > y + t\} \text{ con } t \in \mathbb{R}$$

Demostrar que estos subconjuntos, junto con \emptyset y X, son los abiertos de una topología en X. ¿Es esto mismo cierto si $t \in \mathbb{N}$? ¿Y si $t \in \mathbb{Q}$?

i

Solución:

Lista 2: Aplicaciones continuas

Lista 3: Construcción de topologías

Lista 4: Separación

Lista 5: Numerabilidad

Lista 6: Compacidad

Lista 7: Conexión

Lista 8: Conexión por caminos

Lista 9: Homotopía

Lista 10: Borsuk y sus variantes