

SIPMOS ® **Power Transistor**

- N channel
- Enhancement mode
- Avalanche-rated
- Logic Level

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Ordering Code
BUZ 72 L	100 V	10 A	0.2 Ω	TO-220 AB	C67078-S1327-A2

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		А
$T_{\rm C} = 25 ^{\circ}{\rm C}$		10	
Pulsed drain current	I _{Dpuls}		
$T_{\rm C}$ = 25 °C		40	
Avalanche current,limited by $T_{ m jmax}$	I _{AR}	10	
Avalanche energy,periodic limited by $T_{ m jmax}$	E _{AR}	7.9	mJ
Avalanche energy, single pulse	E _{AS}		
I_{D} = 10 A, V_{DD} = 25 V, R_{GS} = 25 Ω			
$L = 885 \mu\text{H}, T_{j} = 25 ^{\circ}\text{C}$		59	
Gate source voltage	V_{GS}	± 20	V
ESD-Sensitivity HBM as per MIL-STD 883		Class 1	
Power dissipation	P _{tot}		W
$T_{\rm C}$ = 25 °C		40	
Operating temperature	T _j	-55 + 150	°C
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip case	R _{thJC}	≤ 3.1	K/W
Thermal resistance, chip to ambient	R _{thJA}	75	
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.25 \text{ mA}, T_{\rm j} = 25 ^{\circ}\text{C}$		100	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\rm GS} = V_{\rm DS}$, $I_{\rm D} = 1$ mA		1.2	1.6	2	
Zero gate voltage drain current	IDSS				μA
V_{DS} = 100 V, V_{GS} = 0 V, T_{j} = 25 °C		-	0.1	1	
$V_{\rm DS}$ = 100 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	10	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{GS} = 5 \text{ V}, I_{D} = 5 \text{ A}$		-	0.12	0.2	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fs}				S
$V_{\text{DS}} \ge 2 * I_{\text{D}} * R_{\text{DS(on)max}}, I_{\text{D}} = 5 \text{ A}$		5	7.5	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	680	900	
Output capacitance	$C_{\rm oss}$				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	180	250	
Reverse transfer capacitance	C _{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	90	150	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 5 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	20	30	
Rise time	t_{r}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 5 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	85	130	
Turn-off delay time	$t_{d(off)}$				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 5 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS}$ = 50 Ω		-	100	130	
Fall time	t_{f}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 5 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	55	70	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	I _S				А
$T_{\rm C}$ = 25 °C		-	-	10	
Inverse diode direct current,pulsed	/ _{SM}				
$T_{\rm C}$ = 25 °C		-	-	40	
Inverse diode forward voltage	V_{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 20 \text{ A}$		-	1.2	1.5	
Reverse recovery time	t _{rr}				ns
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/µs}$		-	180	-	
Reverse recovery charge	Q _{rr}				nC
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	460	-	

Power dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{C}})$

parameter: V_{GS}≥5 V

Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0.01, $T_{\rm C} = 25$ °C

Transient thermal impedance

$$Z_{\mathsf{th\ JC}} = f(t_{\mathsf{p}})$$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: $t_p = 80 \mu s$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\mathrm{DS}\;(\mathrm{on})} = f(I_{\mathrm{D}})$

parameter: V_{GS}

Typ. forward transconductance $g_{fs} = f(I_D)$

parameter: $t_p = 80 \mu s$,

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\rm DS \, (on)} = f(T_{\rm j})$ parameter: $I_{\rm D} = 5$ A, $V_{\rm GS} = 5$ V

Gate threshold voltage

 $V_{\mathsf{GS}\;(\mathsf{th})} = f(T_{\mathsf{j}})$

parameter: $V_{GS} = V_{DS}$, $I_{D} = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$

parameter: $I_D = 10 \text{ A}$, $V_{DD} = 25 \text{ V}$

 $R_{\rm GS} = 25 \ \Omega, \ L = 885 \ \mu H$

Typ. gate charge

 $V_{\mathsf{GS}} = f(Q_{\mathsf{Gate}})$

parameter: $I_{D \text{ puls}} = 15 \text{ A}$

Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

