The dynamical nystem associated

to an autonomous differential equation in IRM

(1)
$$\dot{x} = \dot{f}(\dot{x})$$
 $\dot{f}(\dot{R}) \rightarrow \dot{R}$ \dot{R} \dot{R}

the motation wed by Isaac Newton for the derivative

× -> × , wink time

The existence and uniqueness theorem for the int

We asseme that $f \in C^1(\mathbb{R}^m, \mathbb{R}^n)$. Let $n \in \mathbb{R}^m$ and someider the

(2)
$$\begin{cases} x = f(x) \\ x(0) = n \end{cases}$$
 We have that the IVP (2) has a unique sol, denoted by $g(\cdot, n)$ whose maximal interval of def is denoted by $J_n = (x_n, p_n) \in \mathbb{R}$.

When y (:, r) is sounded in the future (i.e. on [0, Br.)) we

have By = + 00.

When &(:, m) is bounded in the part (i.e. on (az, o]) we

Pranse x np =

When p(:, m) is bounded on In them In = 12.

~ Terminiday ~ $m \in \mathbb{R}^m$ the initial state of the system. $p(t, n_0) \in \mathbb{R}^m$ the state of the system. Dof $M \in \mathbb{R}^m$ is said to be an equilibrium (stationary) state (point) of (1) when $\varphi(+, \eta^*) = \eta^*$, $\forall + \in \mathbb{R}$ n^* is an equalibrium point of (1) (=) the n^* n^* has the unique so, a constant function, $e(t, n^*) = n^*$, $t + \in \mathbb{R}$ (m*) = 0 trume that I lim ((t, m) = 17 * ERM. Then 17 * is an equilibrium point of (1). Broof: [m=1] $\varphi(t, \gamma) = \varphi(\gamma(t, \gamma))$ Thus, f is conto. =) f $f(\gamma(t, \gamma)) = \varphi(\gamma^*)$ =>] lim ((t, m) = f(m*) line 4(+) = 0 demina y & C1, I lim y (t) = 12 + => I lim y(t) =0, then We apply the mean value the an [m, m+1], meN. Jam & (ma, m+1) p.t. 4 (m+1) - 4 (m) = 41 (am) lin 4 (m) = 12*. => lim + (am) = 0 }

I lim + (t) line 4 (m+1) = 100

An extractor of (1) if \exists a meighbourhood V_{*} of v_{*}^{*} is t, f_{*} in $\varphi(t,n) = v_{*}^{*}$ When n_0^* is an attractor, not define its basin of attraction. $A_{n_0^*} = \{ n_0 \in \mathbb{R}^n : \lim_{t \to \infty} \varphi(t, n_0) = n_0^* \}$. When $A_{n_0^*} = \mathbb{R}^n$ we say that no is a global attender. when we replace "t > 0" to "t > - 0" we can give the similar motions replacing "attraction" with "repuller". Det: The function (t, v) +> (t, v) is said to be the FLOW of (1) dof the mer The ORBIT (trajectory) of me is In is the image of $\ell(t, n)$. The phase postrait of (i) is the representation of some "significant" orbits, together with an arosan on each orbit that indicates the future. i Examples. · X = 1-X

General procedure to
Lamma: Let $f: \mathbb{R} \to \mathbb{R}$ be a \mathbb{C}^{Λ} function. Any mon-court pol of $\dot{x} = f(x)$ is a strictly monorton for
formula procedure to represent the phase portrait of (1) when [n=1] (acalar dign right)
STEP 1: We find the equilibrium points, i.e. we solve the eq.
STEP 2: We find the sign of f on the interroals delimited by the equilibrium points.
STEP 3: We use "The vibits of X = f(X) are the ones corresponding to the equilibrium points and the open interval delimited by them".
We represent on R the orbits and son arrows on each orbit according to the rules: if \$ >0 on the orbit, then the arrows points to the right if \$ <0 - 1 - 1 - 1 - 1
Premiple \sim $\%$ reduits of $\dot{x} = 1 - 2$ one $(-\infty, -1)$, $\{-1, 1\}$, $\{-1, 1\}$, $\{1, 1\}$, $\{1, 2\}$, $\{1, 2\}$
How do not read the phase portrait?
Deduce that $\varphi(\cdot,0)$ is bounded, structly increasing, defined on \mathbb{R} , lim $\varphi(t,0)=1$, $\lim_{t\to\infty} \varphi(t,0)=-1$

BRUNNEN III

.

Explanation: $0 \in (-1, 1)$, which is an orbit $=> 8 = (-1, 1) =>$	
=> the image of $9(\cdot,0)$ is $(-1,1) => 9(\cdot,0)$ is bounded => => the time runs from $-\infty$ to $+\infty => J_0 = R$	(
PP => Elo $P(\cdot,0)$ is strictly incoparing. Note that $P(\cdot,0) = 1$	
lime $(4,0) = 1$ $4 = -\infty$ An attractor and $4 = (-1, \infty)$	
$m^{b} = -1$ ND a repeller and $B_{-1} = (-\infty, 1)$	0
The linearization method $f: \mathbb{R} \to \mathbb{R}$, $f' = f(x)$ be an equilibrium point of $x = f(x)$	
If $f'(n^*) > 0$, then n^* is an attractor. If $f'(n^*) > 0$, then n^* is a repulser.	
when $f'(m^2) = 0$, the linearization method fails. $\dot{x} = -x^3$, $\dot{x} = x^3$, $\dot{x} = x^2$, $\dot{x} = 0$.	
That represent the phase portrait and discuss the stability of $n^{**}=0$.	
(pon;) f'(n,) :0 , f(n,) =0	
$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$	

- problem 24 (from the list) to according processes, how x(4) being the temperature of a copy of tea be depends on the privilenment. a) First the flow and represent the phase portrait.

b) initial temp of 45°C > 37°C after so minutes.

Find ? $\frac{1}{12} = \frac{1}{12} = \frac{1}{12}$ |x(0)| = |-find gen, sol ; of) inp