1. Internet中的地址

2. 物理地址

物理地址是单个网络内部对一个计算机进行寻址时所使用的地址(用来定义网络设备的位置/用来表示每一个站点的唯一性标识符),由计算机所属的网络进行定义,包含在数据链路层使用的帧中,是最低一级的地址,也称为MAC(Medium/Media Access Control)地址

- ★ 单个网络指不能跨越路由器(路由器转发时不带MAC)
- ★ 在网络底层的物理传输过程中,是通过MAC地址来识别主机的,因此一个主机会有一个唯一的MAC地址
- ★ MAC地址是固化在网络适配器(网卡)中的
 - 包括以太网卡、无线网卡、蓝牙网卡等
- ★ MAC地址占6字节(48bit),用十六进制表示,通常的表示形式为

"E8-2A-EA-D7-88-72"

"E8:2A:EA:D7:88:72"

"E82A: EAD7: 8872"

- Windows下用ipconfig /all查看
- Linux下用ifconfig查看

2. 物理地址

物理地址是单个网络内部对一个计算机进行寻址时所使用的地址(用来定义网络设备的位置/用来表示每一个站点的唯一性标识符),由计算机所属的网络进行定义,包含在数据链路层使用的帧中,是最低一级的地址,也称为MAC(Medium/Media Access Control)地址

- ★ MAC地址的前三字节(24bit)称为组织唯一标志符(0UI=Organizationally Unique dentifier) 由IEEE的地址注册管理机构分配给网络设备制造商,后三字节(24bit)由制造商内部分配, 称扩展标识符,保证全球唯一,设备出厂前固化,不可改变
 - 软件可模拟修改 MAC 地址
 - 从左到右依次编号为47 0,则

BBBBBBBB, XX, XX, XX, XX, XX

第**40**bit位: 0 - 单播地址

1 - 组播地址

网卡MAC地址的最

高字节必定偶数

第41bit位: 0 - 全局地址(IEEE分配)

1 - 本地地址(自行分配)

48bit 全1 - 广播地址

- ★ 网卡的MAC地址虽然固定,但是仍可以监听到任何发送到它连接的网线上的数据,正常情况下 网卡忽略目的地址非本机/组播/广播的数据包,不向上层传输;但若将网卡设为混杂模式 (Promiscuous Mode),则会将所有收到的数据包均向上层传输
 - Wireshark等抓包软件/路由器网卡均需此模式

3. IP地址

在整个Internet (全球范围) 内分配的一个唯一的4字节(32bit)的标识符(IPv4), 一般采用十进制表示,形式为点分十进制形式(例: 192.168.1.230)

- ★ 把整个Internet看成为一个单一的、抽象的网络
- ★ 分配给每个主机/路由器
- ★ 这个IP地址俗称为公网IP地址,与之对应,私网的IP地址不能直接连入Internet,要经过NAT 转换
- ★ 公/私网的概念可以分层理解世界范围 / 中国范围 / 同济范围 / 寝室范围

4. 端口地址

端口地址用于唯一标识Internet主机中的每一个进程,在TCP/UDP中端口地址为2字节(16bit)以十进制表示,表示范围是0-65535

- ★ 端口一般称为服务端口号,某些端口有缺省占用
- ★ 不同进程的端口地址不能相同
- ★ 可以根据需要改变端口地址,一个进程也可以绑定多个端口地址

- 5. 分类IP地址
- 5.1. IP地址的表示

- ★ 网络通信时,发送方和接收方均有IP地址做为标识
- 5. 2. IP地址的构成

在IPv4协议中,每个IP地址由两部分组成

- ★ 网络号(Netid): 网络号用于标识一个网络
- ★ 主机号 (Hostid): 主机号用于标识在该网络中的一个主机

Netid	Hostid
-------	--------

共32bit, Netid在前, Hostid在后

5. 分类IP地址

A/B/C类地址可用于正常分配,约定如下:

1、Netid中,阴影部分全0的不能分配

A类网:0 B类网:128.0 C类网:192.0.0

2、Hotsid中,全0和全1有特殊含义,不能分配

B类: 156.16,则156.16.0.0/156.16.255.255不用

- 5. 分类IP地址
- 5. 3. IP地址的分类

★ A类IP地址

- Netid占7bit (可区分 2⁷ = 128 网络), Hostid占24bit (可区分 2²⁴ = 16777216个主机)
- 地址范围为: 0.0.0.0~127.255.255.255, 其中0(Netid为0)/127(环回测试地址) 不能用,可用为1-126(共2⁷-2 = 126个网络)
- 每个A类地址中Hostid为全0/全1的不能用(2²⁴-2) 例: Netid为12,则12.0.0.0/12.255.255.255不能用,实际可用12.0.0.1-12.255.255.254, (每个网络共2²⁴-2 = 16777214个主机)
- A类地址适用于有大量主机的大型网络

★ B类IP地址

- Netid占14bit (可区分2¹⁴ = 16384个网络), Hostid占16bit (可区分2¹⁶ = 65536个主机)
- 地址范围为: 128.0.0.0~191.255.255.255, 其中128.0 (Netid为0) 不能用,可用为 128.1-191.255 (共2¹⁴-1 = 16383个网络)
- 每个B类地址中Hostid为全0/全1的不能用(2¹⁶-2) 例: Netid为130.12,则130.12.0.0/130.12.255.255不能用,实际可用130.12.0.1-130.12.255.254 (每个网络共2¹⁶-2 = 65534个主机)
- B类地址适用于一般大公司和大单位组建的网络

- 5. 分类IP地址
- 5. 3. IP地址的分类

★ C类IP地址

- Netid占21bit (可区分2²¹ = 2097152个网络), Hostid占8bit (可区分2⁸ = 256个主机)
- 地址范围为: 192.0.0.0~223.255.255.255, 其中192.0.0 (Netid为0) 不能用,可用为 192.0.1-223.255.244(共2²¹-1 = 2097151个网络)
- 每个C类地址中Hostid为全0/全1的不能用(2⁸-2) 例: Netid为192.168.1,则192.168.1.0/192.168.1.255不能用,实际可用 192.168.1.1-192.168.1.254 (每个网络共2⁸-2 = 254个主机)
- C类地址适用于较小的公司和单位组建的网络

★ D类IP地址

定义为多播使用。在D类地址中没有网络地址和主机地址,整个地址都用作多播

- 地址范围为: 224.0.0.0~239.255.255.255
- 一般用于路由器报文等特殊信息的发送

★ E类IP地址

保留,用于某些实验和将来使用。在E类地址中没有网络地址和主机地址

- 地址范围为: 240.0.0~255.255.255.255
- 将来:按现有路由器算法等的设置,基本无法用于定义网络和主机

- 5. 分类IP地址
- 5. 3. IP地址的分类

	A类地址	B类地址	C类地址	D类地址	E类地址
Netid位数	'0'+7位	'10'+14位	'110'+21位	'1110'	' 11110'
可表示网络数量	128	16384	2097152	没有网络地址和	主机地址的区
实际可表示 网络数量	-2	-1	-1	别	
Hostid位数	24	16	8	整个范围都用	保留,用于某 些实验和将来 使用
可表示主机数量	16777216	65536	256	】于多播,一般 】用于路由器报	
实际可表示 主机数量	-2	-2	-2	文等特殊信息 的发送	
地址范围	1. 0. 0. 0	128. 1. 0. 0	192. 0. 1. 0	224. 0. 0. 0	240. 0. 0. 0
	126. 255. 255. 255	191. 255. 255. 255	223. 255. 255. 255	239. 255. 255. 255	255. 255. 255. 254
不可用的Netid	0 / 127	128. 0	192. 0. 0		
适用	大量主机	大公司/大单 位	较小的公司/ 单位	多播	实验及保留

- 5. 分类IP地址
- 5. 4. 特殊的IP地址
- ★ 网络地址: 用于定义网络本身

```
Host1: 123. 50. 16. 90
Host2: 123. 65. 7. 34
Router: 123. 90. 123. 4
Host1: 141. 14. 22. 8
Host2: 141. 14. 45. 9
Router: 141. 14. 67. 64
Host1: 192. 168. 1. 230
Host2: 192. 168. 1. 100
Router: 192. 168. 1. 1
```

Netid正常,Hostid为全0 不能当源地址,也不能当目的地址 用作网络标识

- 5. 分类IP地址
- 5. 4. 特殊的IP地址
- ★ 直接广播地址: 对特定网络上的所有主机进行广播

Host1: 123. 50. 16. 90
Host2: 123. 65. 7. 34
Router: 123. 90. 123. 4
Host1: 141. 14. 22. 8
Host2: 141. 14. 45. 9
Router: 141. 14. 67. 64
Host1: 192. 168. 1. 230
Host2: 192. 168. 1. 100
Router: 192. 168. 1. 1

Netid正常,Hostid为全1 不能当源地址,可以当目的地址 一般来自于远端,由路由器转发

- 5. 分类IP地址
- 5. 4. 特殊的IP地址
- ★ 受限广播地址: 只在本网络进行广播 (特殊用处)

```
Host1: 123.50.16.90
Host2: 123.65.7.34
Host3: 123.90.123.4
Host1: 141.14.22.8
Host2: 141.14.45.9
Host3: 141.14.67.64
Host1: 192.168.1.230
Host2: 192.168.1.100
Host3: 192.168.1.1
```

255. 255. 255. 255 不能当源地址,可以当目的地址 一般来自于本网主机,路由器不转发

- 5. 分类IP地址
- 5. 4. 特殊的IP地址
- ★ 本网络的本主机: 自己

0.0.0.0

可以当源地址,不能当目的地址此时一般目的地址是255.255.255.255

Netid and hostid

A host that does not know its IP address uses the IP address 0.0.0.0 as the source address and 255.255.255.255 as the destination address to send a message to a bootstrap server.

- 5. 分类IP地址
- 5. 4. 特殊的IP地址
- ★ 本网络的特定主机: 本网络中某台具体的主机

Host1: 123. 50. 16. 90
Host2: 123. 65. 7. 34
Host3: 123. 90. 123. 4
Host1: 141. 14. 22. 8
Host2: 141. 14. 45. 9
Host3: 141. 14. 67. 64
Host1: 192. 168. 1. 230
Host2: 192. 168. 1. 1

Netid全0,Hostid正常 不能当源地址,可以当目的地址 路由器不转发

Netid

Hostid

This address is used by a router or host to send a message to a specific host on the same network.

- 5. 分类IP地址
- 5. 4. 特殊的IP地址
- ★ 环回地址: 用于本地软件回送测试之用
 - => 每台主机均设有环回口,地址一般是127.0.0.1(Windows/Linux下ping任何127.*.*.*均通)
 - => 对应的主机名为localhost
 - => hosts文件标示这种对应关系(优于DNS解析)
 - => Linux: /etc/hosts
 Windows: %windir%\System32\Drivers\etc\hosts
 - => 修改Hosts文件(病毒/特殊技巧)

- 5. 分类IP地址
- 5. 4. 特殊的IP地址

特殊地址	Netid	Hostid	用作 源地址	用作 目的地址
网络地址	特定	全0	No	No
直接广播地址	特定	全1	No	Yes
受限广播地址	全1	全1	No	Yes
本网络上的本主机	全0	全0	Yes	No
本网络上的特定主机	全0	特定	No	Yes
环回地址	127	任意	No	Yes

- 5. 分类IP地址
- 5. 5. 私有网IP地址

这些IP地址保留给私有用户,不必做到全球唯一,这些IP地址可以用于未连到Internet的网络,也可以用于采用NAT技术连到Internet的网络

类	Netid	总数
A	10. 0. 0	1
В	172. 16~172. 31	16
С	192. 168. 0~192. 168. 255	256

★ 169. 254. 0.0 - 169. 254. 255. 255是保留地址,若DHCP分配但DHCP服务器不存在,则临时获得一个该网段的地址

- 5. 分类IP地址
- 5.6.分类IP地址的特点
- ★ IP地址是一种分等级的地址结构, IP地址管理机构在分配 IP 地址时只分配网络号, 而剩下的主机号则由得到该网络号的单位自行分配(便于管理)
- ★ IP地址并不仅仅用于标识一个主机,而是标识一个主机(或路由器)与网络的一条链路的接口

- 5. 分类IP地址
- 5.6. 分类IP地址的特点
- ★ 路由器的作用是在两个不同的网络(Netid不同)间转发数据(因此至少两个接口,配置分属于不同网段的IP地址,分别连接不同网段),转发时仅根据目的主机所连接的网络号来转发而不考虑目的主机号,这样可以使路由表中的项目数大幅度减少(减少路由表所占空间,加快查找速度)
 - 再次说明,路由器转发时不带MAC地址
- ★ 如果一个主机同时连接到两个网络上时,该主机就必须同时具有两个不同网段的相应IP地址, 这种主机称为多接口主机(multihomed host)
- ★ 所有分配到网络号netid的网络,无论是范围很小的局域网,还是可能覆盖很大地理范围的 广域网,都是平等的
- ★ IP地址由国际组织统一分配,逐级管理
 - IANA (Internet Assigned Numbers Authority): 国际互联网代理成员管理局: Internet号 分配机构,负责对IP地址分配规划以及对TCP/UDP公共服务的端口定义
 - 顶级的管理者是ICANN,行使IANA的职能

Internet Corporation for Assigned Names and Numbers

● 区域性IP地址分配机构

ARIN (American Registry for Internet Numbers)

RIPE (Reseaux IP Europeens)

APNIC (Asia Pacific Network Information Center)

LACNIC (Regional Latin-American and Caribbean IP Address Registry)

AfriNIC (Africa Network Information Centrer)

非洲

- 6. 划分子网
- 6.1. 现有分类IP地址存在的问题
- ★ 初期规划不合理(创立者没有料想到Internet的发展速度 如此之快),导致初期分配很随意,IP地址空间的利用率 有时很低,很多网络申请到的IP地址存在着很大的浪费, 这也使IP地址空间的资源过早地被用完
- ★ 同一网络内主机数量过多,广播/多播报文的发送容易引起 网络风暴

3.0.0.0/8: 通用电气 9. 0. 0. 0/8: IBM 11.0.0.0/8: 美国国防部 12.0.0.0/8: AT&T贝尔实验室 13.0.0.0/8: 施乐 15.0.0.0/8: HP (收购了Compaq) 16.0.0.0/8: DEC(倒闭,被Compag收购) 17.0.0.0/8: 苹果 18. 0. 0. 0/8: MIT 19.0.0.0/8: 福特汽车 55.0.0.0/8: 波音 56.0.0.0/8: 美国邮政局 大陆: 4A + 111B + 31C 74391296 台湾: 248B + 106C 16280064 香港: 95B + 245C 6288640 澳门: 2B + 53C 144640 (2013年) (2015年已全部耗尽)

- 6. 划分子网
- 6.1. 现有分类IP地址存在的问题
- ★ 两级IP地址不够灵活,一旦在新的地点有新的开通网络需求,则必须申请新网段的IP地址, 否则无法连接Internet

问:路由器如何转发?

答:路由器仅考虑网络号 无法做到,如果存储所有 主机号,数量太大会导致 效率低下

- 6. 划分子网
- 6.1. 现有分类IP地址存在的问题
- 6.2. 子网划分的基本概念

为了解决两级分类IP地址所带来的不便,在IP地址中增加一个"子网号字段",使两级IP地址变成为三级IP 地址,称为划分子网(subnetting)[RFC 950],划分子网已成为Internet的正式

标准协议

- ★ 从主机号借用若干 bit 作为子网号subnetid, 而主机号 hostid 也就相应减少了若干bit
- ★ 凡从其他网络发送给本单位某主机的 IP 数据报,先根据 IP 数据报的目的网络号 netid 找到连接在本单位网络上的路由器;此路由器收到 IP数据报后,再按目的子网号 subnetid 找到目的子网;最后根据目的主机号hostid将 IP数据报直接交付给目的主机
- ★ 划分子网纯属一个单位内部的事情。单位对外仍然表现为没有划分子网的网络
- ★ 当没有划分子网时, IP 地址是两级结构,地址的网络号字段也就是IP 地址的"因特网部分", 而主机号字段是 IP 地址的"本地部分"
- ★ 划分子网后 IP 地址就变成了三级结构。划分子网只是将 IP 地址的本地部分进行再划分, 而不改变IP 地址的因特网部分

- 6. 划分子网
- 6.3. 三级地址结构

问: 如果仅使用IP地址,路由器 能否区分是否加了子网划分?

答:不能,需要加子网掩码

6.4. 子网掩码 (subnet mask)

子网掩码和IP地址都是32bit长,由连续的一串1和跟随的连续一串0组成:1对应于IP地址中的网络号和子网号,0对应于IP地址中的主机号,使用子网掩码可以找出 IP 地址中的子网部分

★ A/B/C类网络缺省子网掩码如下

A:	netid	subid			
	11111111	00000000	000000000	000000000	
В:	netid		subid		
	11111111	11111111	00000000	00000000	
C:		netid		subid	
	11111111	11111111	11111111	00000000	

★ IP地址和子网掩码按位与 可以求得子网网络地址

- 6. 划分子网
- 6.4. 子网掩码 (subnet mask)

问:如果目的IP地址为19.30.84.5,子网掩码为255.255.192.0,则子网网络地址是多少?

答: 19.30.84.5 & 255.255.192.0 = 19.30.64.0

19. 30. 01 010100. 5

255. 255. 11 000000. 0 (18位子网掩码)

19. 30.01 000000. 0

续问:该子网的广播地址?主机数量?

Broadcast: 19.30. 011111111. 255 = 19.30.127.255

Hosts : 19.30. 01000000. 1 = 19.30.64.1

19.30. 011111111. 254 = 19.30.127.254 共16382台主机

