SOLUCIONES: Ejercicios Tema 3 - Distribuciones Notables: más distribuciones notables

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Curso de Probabilidad y Variables Aleatorias con R y Python

Contents

1	Distribuciones Notables: más distribuciones notables.	1
	1.1 Ley de Bendford	1
	1.2 Distribución de Pareto (Power law)	4
	1.3 Distribución de Gumbel (teoría del valor extremo).	7

1 Distribuciones Notables: más distribuciones notables.

1.1 Ley de Bendford

La ley de Benford es una curiosa distribución de probabilidad que suele aparecer en la distribución del primer dígito de las cantidades registradas en contabilidades y en observaciones científicas o datos numéricos. La variable X sigue una distribución discreta Benford con dominio $D_X = \{1, 2, 3, 4, 5, 7, 8, 9\}$ son 9 dígitos (se elimina el cero) y sin función de probabilidad es

$$P_X(x) = P(X = x) = \log(d+1) - \log(d).$$

- a) Calcular la media y la varianza de X.
- b) Calcular la función de distribución de X.
- c) ¿Cuál es el dígito más frecuente (moda)?
- d) Construid con R las funciones de probabilidad y de distribución de X.
- e) Dibujar con R las funciones del apartado anterior.

1.1.1 Solución

a) Recordad que en R log10 es el logartimo en base 10

Como $\log(d+1) - \log(d) = \log(\frac{d+1}{d})$. Podemos implementar la función de probabilidad de Bendford con el siguiente código R

```
dBendford = function(x){
    sapply(x, FUN=function(x1)
    {
        if (x1 %in% 1:9)
        {log10(x1+1)-log10(x1)}
        else{0}
    })
}
```

dBendford(1:9)

[1] 0.30103000 0.17609126 0.12493874 0.09691001 0.07918125 0.06694679 0.05799195

[8] 0.05115252 0.04575749

sum(dBendford(1:9))

[1] 1

Así la media μ será

```
mu=sum(c(1:9)*dBendford(1:9))
mu
```

[1] 3.440237

```
sumx2=sum(c(1:9)^2*dBendford(1:9))
sumx2
```

```
## [1] 17.89174
```

```
sigma2=sumx2-mu^2
sigma2
```

[1] 6.056513

```
sigma=sqrt(sigma2)
sigma
```

[1] 2.460998

En resumen La variable de Bendford tiene dominio $D_X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y función de probabilidad

$$P_X(x) = P(X = x) = \begin{cases} 0.30103 & \text{si } x = 1\\ 0.1760913 & \text{si } x = 2\\ 0.1249387 & \text{si } x = 3\\ 0.09691 & \text{si } x = 4\\ 0.0791812 & \text{si } x = 5\\ 0.0669468 & \text{si } x = 6\\ 0.0579919 & \text{si } x = 7\\ 0.0511525 & \text{si } x = 8\\ 0.0457575 & \text{si } x = 9\\ 0 & \text{en otro caso} \end{cases}$$

$$E(X) = \sum_{k=1}^{9} x \cdot P_X(x) = 1 \cdot 0.30103 + 2 \cdot 0.1760913 + 3 \cdot 0.1249387 + 4 \cdot 0.09691 + 5 \cdot 0.0791812$$
+ $6 \cdot 0.0669468 + 7 \cdot 0.0579919 + 8 \cdot 0.0511525 + 9 \cdot 0.0457575$
= 3.440237

$$E(X^2) = \sum_{k=1}^{9} x^2 \cdot P_X(x) = 1 \cdot 0.30103 + 4 \cdot 0.1760913 + 9 \cdot 0.1249387 + 16 \cdot 0.09691 + 25 \cdot 0.0791812 + 36 \cdot 0.0669468 + 49 \cdot 0.0579919 + 64 \cdot 0.0511525 + 81 \cdot 0.0457575 = 3.440237$$

```
Y por último Var(X) = E(X^2) - (E(X))^2 = 17.891743 - (3.440237)^2 = 6.0565126 y la desviación típica es \sqrt{Var(X)} = 2.4609983.
```

b) Ahora nos piden $F_X(x) = P(X \le x)$. Con R es

```
pBendford=function(x){
  sapply(x,FUN=function(x){
   probs=cumsum(dBendford(1:9))
   xfloor=floor(x)
   if(xfloor<1){0} else {if(xfloor>8) {1} else {probs[xfloor]}}
})
}
pBendford(0:9)
```

[1] 0.0000000 0.3010300 0.4771213 0.6020600 0.6989700 0.7781513 0.8450980 ## [8] 0.9030900 0.9542425 1.0000000

pBendford(0)

[1] 0

pBendford(10)

[1] 1

Así tenemos que

$$F_X(x) = P(X \le x) = \begin{cases} 0 & \text{si } x < 1 \\ 0.30103 & \text{si } 1 \le x < 2 \\ 0.4771213 & \text{si } 2 \le x < 3 \\ 0.60206 & \text{si } 3 \le x < 4 \\ 0.69897 & \text{si } 4 \le x < 5 \\ 0.7781513 & \text{si } 5 \le x < 6 \\ 0.845098 & \text{si } 6 \le x < 7 \\ 0.90309 & \text{si } 7 \le x < 8 \\ 0.9542425 & \text{si } 8 \le x < 9 \\ 1 & \text{si } 9 \le x \end{cases}$$

c) EL dígito más frecuente es el 1

```
dBendford(1:9)
```

```
## [1] 0.30103000 0.17609126 0.12493874 0.09691001 0.07918125 0.06694679 0.05799195 ## [8] 0.05115252 0.04575749
```

max(dBendford(1:9))

[1] 0.30103

```
which.max(dBendford(1:9))
```

[1] 1

- d) Ya lo hemos hecho....
- e) Dibujemos

```
par(mfrow=c(1,2))
aux=rep(0,18)
aux[seq(2,18,2)]=dBendford(c(1:9))
```

```
x=c(1:9)
plot(x,y=dBendford(c(1:9)),
   ylim=c(0,1),xlim=c(0,10),xlab="x",
   main="Función de probabilidad \n Bendford")
lines(x=rep(1:9,each=2),y=aux, type = "h", lty = 2,col="blue")
curve(pBendford(x), xlim=c(-1,11),col="blue", main="Función de distribución\n Bendford")
```


1.2 Distribución de Pareto (Power law)

Es una distribución que aparece en muchos ámbitos. Consideremos el económico. Supongamos que en un gran país consideramos la población activa económicamente; desde el más humilde becario al directivo más adinerado.

Escogemos un individuo al azar de esta población y observamos la variable X = sus ingresos en euros (digamos que anuales).

Un modelo razonable es el que supone que:

- Hay un ingreso mínimo $x_m > 0$.
- La probabilidad de un ingreso mayor que x decrece de forma inversamente proporcional al ingreso x, es decir proporcional a $\left(\frac{x_m}{x}\right)^{\gamma}$ para algún número real $\gamma > 1$.

Más formalmente. dado $x > x_m$

$$P(X > x) = k \cdot \left(\frac{x_m}{x}\right)^{\gamma}.$$

Luego su función de distribución es

$$F_X(X) = P(X \le x) = \begin{cases} 1 - P(X > x) = 1 - k \cdot \left(\frac{x_m}{x}\right)^{\gamma} & \text{si } x > x_m \\ 0 & \text{si } x \le x_m \end{cases}$$

Se pide

- a) Calcular en función de k y γ la densidad de la variable X.
- b) Para $\gamma > 1$ calcular E(X) y Var(X) y su desviación típica.
- c) ¿Qué sucede con E(X) si $0 < \gamma < 1$.
- d) ¿Cómo se calcula está distribución con R y con python?
- e) Dibujar las gráficas de su densidad y distribución para $\gamma=3$ y $\gamma=5$.
- f) Explorar por internet (wikipedia) cómo es la distribución **power law** y qué relación tiene el concepto de *scale free* con los resultados del apartado c).

1.2.1 Solución

a) La densidad será la derivada de la distribución F_X respecto de x, si $x \geq x_m > 0$

$$f_X(x) = (F_X(x))' = \left(1 - k \cdot \left(\frac{x_m}{x}\right)^{\gamma}\right)' = \left(1 - k \cdot x_m^{\gamma} \cdot x^{-\gamma}\right)' = \left(1 - k \cdot x_m^{\gamma} \cdot x^{-\gamma}\right)'$$
$$= -\gamma \cdot (-k \cdot x_m^{\gamma}) \cdot x^{-\gamma - 1} = \gamma \cdot k \cdot x_m^{\gamma} \cdot x^{-\gamma - 1}$$

Si tenemos $x < x_m$ entonces $f_X(x) = 0$ en resumen

$$f_X(x) = \begin{cases} \gamma \cdot x_m^{\gamma} \cdot x^{-\gamma - 1} & \text{si } x \ge x_m \\ 0 & \text{si } x < x_m \end{cases}$$

Notemos que γ es un parámetro pero k es na constante a determinar pues la densidad debe integrar 1 en el dominio $D_X = [x_m, +\infty)$

$$\int_{x_m}^{+\infty} f_X(x) dx = \int_{x_m}^{+\infty} \gamma \cdot k \cdot x_m^{\gamma} \cdot x^{-\gamma - 1} \cdot dx = \left[-k \cdot x_m^{\gamma} \cdot x^{-\gamma} \right]_{x = x_m}^{+\infty} = \lim_{x \to \infty} \left[-k \cdot x_m^{\gamma} \cdot x^{-\gamma} \right] - \left(-k \cdot x_m^{\gamma} \cdot x_m^{-\gamma} \right)$$
$$= 0 + k \cdot x_m^{\gamma} \cdot x_m^{-\gamma} = k.$$

Notemos que el límite es 0 pues $\gamma > 0$ y $x_m > 0$. Luego k = 1 y la función de densidad y la de distribución se puede escribir como damos dos versiones

$$f_X(x) = \begin{cases} \gamma \cdot x_m^{\gamma} \cdot x^{-(\gamma+1)} & \text{si } x \ge x_m \\ 0 & \text{si } x < x_m \end{cases} = \begin{cases} \frac{\gamma \cdot x_m^{\gamma}}{x^{(\gamma+1)}} & \text{si } x \ge x_m \\ 0 & \text{si } x < x_m \end{cases}$$

$$f_X(x) = \left\{ \begin{array}{ll} \gamma \cdot x_m^{\gamma} \cdot x^{-(\gamma+1)} & \text{ si } x \geq x_m \\ 0 & \text{ si } x < x_m \end{array} \right. = \left\{ \begin{array}{ll} \frac{\gamma \cdot x_m^{\gamma}}{x^{(\gamma+1)}} & \text{ si } x \geq x_m \\ 0 & \text{ si } x < x_m \end{array} \right.$$

y la distribución

$$F_X(X) = \begin{cases} 1 - x_m^{\gamma} \cdot x^{-\gamma} & \text{si } x > x_m \\ 0 & \text{si } x \le x_m \end{cases} = \begin{cases} 1 - \left(\frac{x_m}{x}\right)^{\gamma} & \text{si } x > x_m \\ 0 & \text{si } x \le x_m \end{cases}$$

c)

Calculemos su esperanza

$$\begin{split} E(X) &= \int_{x_m}^{+\infty} x \cdot f_X(x) \cdot dx = \int_{x_m}^{+\infty} x \cdot \gamma \cdot x_m^{\gamma} \cdot x^{-\gamma-1} \cdot dx = \int_{x_m}^{+\infty} \gamma \cdot x_m^{\gamma} \cdot x^{-\gamma} \cdot dx = \left[\frac{\gamma}{-\gamma+1} \cdot x_m^{\gamma} \cdot x^{-\gamma+1} \right]_{x=x_m}^{+\infty} \\ &= \lim_{x \to \infty} \left[\frac{\gamma}{-\gamma+1} \cdot x_m^{\gamma} \cdot x^{-\gamma+1} \right] - \left(\frac{\gamma}{-\gamma+1} \cdot x_m^{\gamma} \cdot x_m^{-\gamma+1} \right) = \lim_{x \to \infty} \left[\frac{\gamma}{-\gamma+1} \cdot x_m^{\gamma} \cdot x^{-\gamma+1} \right] + \frac{\gamma \cdot x_m}{\gamma-1} \end{split}$$

Ahora tenemos dos casos para el límite que $0 < \gamma \le 1$ o que $\gamma > 1$, es decir que $-\gamma + 1$ sea negativo o positivo, entonces

$$\lim_{x\to\infty}\left[\frac{\gamma}{-\gamma+1}\cdot x_m^\gamma\cdot x^{-\gamma+1}\right] = \left\{\begin{array}{ll} +\infty & \text{diverge si } 0<\gamma\leq 1\\ \frac{\gamma\cdot x_m}{\gamma-1} & \text{converge si } \gamma>1 \end{array}\right.$$

Así que **no siempre existe** E(X), si en una distribución Pareto $\gamma \leq 1$ su media diverge se dice entonces que es una distribución **de escala libre**, en inglés **scale free** en el sentido de que carece de media.

e) Podemos programar pero ya lo han hecho en el paquete *Environmental Statistics* (EnvStats) y el *Extra Distributions* (extraDistr) utilizaremos el segundo paquete en el que las funciones están implementadas en C++) instalarlo si no lo tenéis.

```
par(mfrow=c(1,2))# el parámetro gamma es a y el parámetro m es b
curve(extraDistr::dpareto(x,a=1,b=1),xlim=c(1,50),
      ylim=c(0,0.04),lty=1,main="Densidad Pareto.")
curve(extraDistr::dpareto(x,a=3,b=4),
      add=TRUE, col="red", lty=2)
curve(extraDistr::dpareto(x,a=4,b=10),
      add=TRUE, col="green", lty=3)
legend("topright",pch=21,
       legend=c("gamma=1 xm=1","gamma=1 xm=1","gamma=1 xm=1"),
       col=c("black","red","green"),lty=c(1,2,3),cex=0.5)
curve(extraDistr::ppareto(x,a=1,b=1),
      xlim=c(1,50),ylim=c(0,1),lty=1,main="Distribución Pareto.")
curve(extraDistr::ppareto(x,a=3,b=4),
      add=TRUE, col="red", lty=2)
curve(extraDistr::ppareto(x,a=4,b=10),
      add=TRUE, col="green", lty=3)
```


f) Buscad los enlaces del la wikipedia. Tenéis que buscar la *Power law* y la *Zipf's law*. Ambas distribuciones son famosas aparecen en la distribución de contactos en una ley social, en la longitud de un mensaje en un foro y en otros aspectos empíricos muy interesantes. Si hay ocasión y el curso es un éxito ampliaremos estas distribuciones.

1.3 Distribución de Gumbel (teoría del valor extremo).

La distribución de Gumbel aparece en variables que miden lo que se llama un valor extremo: precipitación máxima de lluvia, tiempo máximo transcurrido entre dos terremotos, o en métodos de *machine learning* el máximo de las puntuaciones de una algoritmo; por ejemplo comparar pares de objetos (fotos, proteínas, etc.).

Una variable aleatoria sigue una ley de distribución Gumbel (de TIPO I) si su distribución es:

$$F_X(x) = \begin{cases} e^{-e^{-\frac{x-\mu}{\beta}}} & \sin x \ge 0\\ 0 & \sin x < 0 \end{cases}$$

Para μ y $\beta > 0$ parámetros reales. Llamaremos distribución Gumbel estándar a la que tiene por parámetros $\mu = 0$ y $\beta = 1$.

- a) Si X es una Gumbel estándar calcular su función de densidad y dibujar su gráfica.
- b) Consideremos la función $F(x) = e^{-e^{-x}}$ para $x \ge 0$ y que vale cero en el resto de casos. Comprobar que es la función de distribución $P(X \le x)$ de una v.a. Gumbel estándar.
- c) Buscad un paquete de R que implemente la distribución Gumbel. Aseguraros de que es la (Gumbel Tipo I). Dejando fijo el parámetro $\beta = 1$ dibujar la densidad Gumbel para varios valores de μ y explicad en que afecta a la gráfica el cambio de μ .
- d) Dejando fijo el parámetro μ dibujad la densidad Gumbel para varios valores de $\beta > 0$ y explicar en qué afecta a la gráfica el cambio de este parámetro.

- e) Buscad cuales son las fórmulas de la esperanza y varianza de una distribución Gumbel en función de α y β .
- f) Repetid los apartados c) y d) con python. Con python se puede pedir con la correspondiente función la esperanza y varianza de esta distribución, comprobar con esta función para algunos valores las fórmulas de la esperanza y la varianza del apartado e).

1.3.1 Solución

a) La Gumbel estándar tiene por distribución

$$F_X(x) = \begin{cases} e^{-e^{-x}} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

Entonces si x > 0

$$f_X(X) = (F_X(x))' = (e^{-e^{-x}})' = e^{-e^{-x}} \cdot e^{-x}$$

Luego

$$f_X(x) = \begin{cases} e^{-e^{-x}} \cdot e^{-x} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

```
dgumbel_standar=function(x) {
    sapply(x,
        FUN=function(x) {
        if(x>0) {return(exp(-exp(-x))*exp(-x))} else {return(0)}
    }
    }
}
curve(dgumbel_standar(x),col="blue",main="Densidad Gummbel estándar",xlim=c(0,10))
```

Densidad Gummbel estándar

b) Consideremos la función $F(x) = e^{-e^{-x}}$ para $x \ge 0$ y que vale cero en el resto de casos. Comprobar que es la función de distribución $P(X \le x)$ de una v.a. Gumbel estándar.

Efectivamente Es suficiente sustituir en la fórmula original.

c) Buscad un paquete de R que implemente la distribución Gumbel. Aseguraros de que es la (Gumbel Tipo I). Dejando fijo el parámetro $\beta=1$ dibujar la densidad Gumbel para varios valores de μ y explicad en que afecta a la gráfica el cambio de μ .

Un paquete que implementa la Gumbel es extra Distr
 el parámetro mu es μ mientras que β es el parámetro sigma.

Densidad Gumbel mu=1, 2 y 4 y beta 1

d) Dejando fijo el parámetro μ dibujad la densidad Gumbel para varios valores de $\beta > 0$ y explicar en que afecta a la gráfica el cambio de este parámetro.

```
# el paramento mu es mu y el parámetro beta es sigma
curve(extraDistr::dgumbel(x,mu=1,sigma=1),xlim=c(0,15),
        ylim=c(0,0.38),lty=1,main="Densidad Gumbel\n mu=1 y beta variando 1,5, y 10")
curve(extraDistr::dgumbel(x,mu=1,sigma=2),
        add=TRUE,col="red",lty=2)
curve(extraDistr::dgumbel(x,mu=1,sigma=4),
        add=TRUE,col="green",lty=3)
legend("topright",pch=21,
        legend=c("mu=1, beta=1","mu=1, beta=2","mu=1, beta=4"),
        col=c("black","red","green"),lty=c(1,2,3),cex=0.5)
```

Densidad Gumbel mu=1 y beta variando 1,5, y 10

- e) Si X sigue un ley Gumbel de parámetros μ y β entonces $E(X) = \mu + \beta \cdot \gamma$ donde gamma es el número de euler $\gamma = 0.577215664...$, y $Var(X) = \frac{\pi^2}{6} \cdot \beta^2$
- f) Repetid los apartados c) y d) con python. Con python se puede pedir con la correspondiente función la esperanza y varianza de esta distribución, comprobar con esta función para algunos valores las fórmulas de la esperanza y la varianza del apartado e).

```
import numpy as np
from scipy.stats import gumbel_r
mu, beta = 0, 0.1 # location and scale
x = np.linspace(0, 2 * np.pi, 30)
import matplotlib.pyplot as plt
#count, bins, ignored = plt.hist(s, 30, normed=True)
plt.plot(x,gumbel_r.pdf(x, loc=1, scale=1),linewidth=2, color='black')
plt.plot(x,gumbel_r.pdf(x, loc=2, scale=1),linewidth=2, color='green')
plt.plot(x,gumbel_r.pdf(x, loc=4, scale=1),linewidth=2, color='red')
plt.show()
```



```
import numpy as np
from scipy.stats import gumbel_r
mu, beta = 0, 0.1 # location and scale
x = np.linspace(0, 2 * np.pi, 30)
import matplotlib.pyplot as plt
#count, bins, ignored = plt.hist(s, 30, normed=True)
plt.plot(x,gumbel_r.pdf(x, loc=1, scale=1),linewidth=2, color='black')
plt.plot(x,gumbel_r.pdf(x, loc=1, scale=2),linewidth=2, color='green')
plt.plot(x,gumbel_r.pdf(x, loc=1, scale=4),linewidth=2, color='red')
plt.show()
```


Y los estadísticos

```
from scipy.stats import gumbel_r
gumbel_r.stats(loc=0, scale=1, moments='mv')

## (array(0.57721566), array(1.64493407))
print("E(X) = {m}".format(m=gumbel_r.stats(loc=0, scale=1, moments='m')))

## E(X) = 0.5772156649015329
print("Var(X) = {v}".format(v=gumbel_r.stats(loc=0, scale=1, moments='v')))
```

Var(X) = 1.6449340668482264

Se observa que en este caso la esperanza es la constante de euler $\gamma = 0.577215664...$