Sottospazi Affini Euclidei e Varietà Lineari

Questa breve nota propone agli studenti dell'insegnamento di Geometria del corso di laurea in Informatica (gruppo DF-M) una dimostrazione del fatto che i sottospazi affini (euclidei) sono varietà lineari e viceversa.

Definition 0.1. Uno spazio affine (euclideo) è una terna $(\overrightarrow{\mathcal{E}}, \mathcal{E}, \pi)$ dove $\overrightarrow{\mathcal{E}}$ è uno spazio vettoriale (euclideo), \mathcal{E} è un insieme e $\pi: \mathcal{E} \times \mathcal{E} \leftarrow \overrightarrow{\mathcal{E}}$ è un'applicazione che associa a ogni coppia (P,Q) di elementi di \mathcal{E} il vettore $\overrightarrow{PQ} := \pi(P,Q)$ tale che

- (1) $\forall A \in \mathcal{E}, \forall a \in \overrightarrow{\mathcal{E}}, \exists ! X \in \mathcal{E} \text{ tale che } \overrightarrow{AX} = a;$ (2) $\forall P, Q, R \in \mathcal{E}, \overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}.$

Definition 0.2. Dato uno spazio affine (euclideo) $(\overrightarrow{\mathcal{E}}, \mathcal{E}, \pi)$, un sottoinsieme \mathcal{H} di \mathcal{E} si dice sottospazio affine (euclideo) di \mathcal{E} se sono soddisfatte le seguenti proprietà:

- (i) il sottoinsieme $\overrightarrow{\mathcal{H}}:=\pi(\mathcal{H}\times\mathcal{H})=\{\overrightarrow{PQ}\in\overrightarrow{\mathcal{E}}\mid P,Q\in\mathcal{H}\}$ di $\overrightarrow{\mathcal{E}}$ è un sottospazio vettoriale di $\overrightarrow{\mathcal{E}} \text{ (detto } \textit{giacitura o spazio } \textit{direttore } \text{di } \mathcal{H})$ (ii) $\forall A \in \mathcal{H}, \ \forall a \in \overrightarrow{\mathcal{H}}, \ \text{l'unico punto } X \in \mathcal{E} \text{ tale } \text{che } \overrightarrow{AX} = a \text{ appartiene } \text{ad } \mathcal{H}.$

Osservazione. Si noti che \mathcal{H} è un sottospazio affine (euclideo) di \mathcal{E} se e solo se la terna $(\overrightarrow{\mathcal{H}}, \mathcal{H}, \pi_{|\mathcal{H} \times \mathcal{H}})$ è uno spazio affine (euclideo).

Definition 0.3. Dato un punto P_0 di \mathcal{E} e un sottospazio vettoriale U di $\overrightarrow{\mathcal{E}}$, il sottoinsieme

$$(P_0, U) := \{ Q \in \mathcal{E} \mid \overrightarrow{P_0 Q} \in U \}$$

e detto varietà lineare passante per P_0 e parallela a U.

Proposition 0.4.

- (a) Ogni varietà lineare è un sottospazio affine (euclideo). Ossia, per ogni punto P_0 di $\mathcal E$ e sottospazio vettoriale U di $\overrightarrow{\mathcal{E}}$, la varietà lineare (P_0, U) è un sottospazio affine di \mathcal{E} .
- (b) Ogni sottospazio affine (euclideo) è una varietà lineare. Ossia, se H è un sottospazio affine (euclideo) di \mathcal{E} , allora per ogni punto P_0 di \mathcal{H} si ha $(P_0, \overrightarrow{\mathcal{H}}) = \mathcal{H}$.

Proof. Prima di tutto osserviamo che il punto P_0 appartiene a (P_0, U) perché $\overrightarrow{P_0P_0} = \mathbf{0}_{\overrightarrow{\mathcal{E}}} \in U$.

Per dimostrare l'enunciato (a), osserviamo prima il seguente fatto. Sia a un vettore di U e A un punto dell'insieme $(P_0, U) \subseteq \mathcal{E}$. Per la proprietà (1) sappiamo che esiste un solo punto $X \in \mathcal{E}$ tale che $\overrightarrow{AX} = a \in U$. Allora, siccome $\overrightarrow{P_0X} = \overrightarrow{P_0A} + \overrightarrow{AX} \in U$, per definizione il punto X appartiene in particolare a (P_0, U) e la proprietà (ii) risulta provata. Adesso basta provare che vale l'uguaglianza $\pi((P_0, U) \times (P_0, U)) = U.$

"

Si consideri una coppia (P,Q) in $(P_0,U)\times (P_0,U)$. Per definizione si ha che i vettori $\overrightarrow{P_0P}$ e $\overrightarrow{P_0Q}$ appartengono a U e per la proprietà (2) si ha:

$$\overrightarrow{PQ} = \overrightarrow{PP_0} + \overrightarrow{P_0Q} = -\overrightarrow{P_0P} + \overrightarrow{P_0Q} \in U$$

perchè U è sottospazio vettoriale.

" \supseteq " Siccome la proprietà (ii) è stata già dimostrata per (P_0, U) , possiamo dire che per ogni vettore a di U esiste un unico punto X di (P_0, U) tale che $a = \overrightarrow{P_0X} = \pi(P_0, X) \in \pi((P_0, U) \times (P_0, U))$ e abbiamo finito.

Adesso, dimostriamo l'enunciato (b) provando l'uguaglianza $(P_0, \overrightarrow{\mathcal{H}}) = \mathcal{H}$.

"⊆" $P \in (P_0, \overrightarrow{\mathcal{H}}) \iff \overrightarrow{P_0P} \in \overrightarrow{\mathcal{H}} \Rightarrow P \in \mathcal{H}$, per la proprietà (ii).

"\(\text{\text{"}}\)"
$$P \in \mathcal{H} \Rightarrow \overrightarrow{P_0P} \in \overrightarrow{\mathcal{H}} \Rightarrow P \in (P_0, \overrightarrow{\mathcal{H}}).$$