

Escuela Técnica Superior de Ingenieros Informáticos (UPM) LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

2ª EVALUACIÓN (20 de diciembre de 2016)

Apellidos: SOLUCIÓN

Nombre:

Ejercicio 1:

Sea el autómata a pila AP = { Σ , Γ , Q , q₀ , A₀ , f , \emptyset }, con Σ = { a , b }, Γ = { A₀ , A }, Q = { q₀ , q₁ } y f definida mediante los 5 movimientos siguientes:

- ① $f(q_0, a, A_0) = (q_0, AA_0)$
- ② $f(q_0, a, A) = (q_0, AA)$
- ③ $f(q_0, b, A) = (q_1, A)$
- \oplus $f(q_1, b, A) = (q_1, \lambda)$
- a) Construir a partir del AP, utilizando el algoritmo correspondiente, una gramática G que genere el mismo lenguaje y depurarla (7 puntos).
- b) Comprobar la generación en G y aceptación en AP de las palabras aab y aabbb (2 puntos).
- c) ¿Qué lenguaje reconoce el AP y genera G? (1 punto).

25 minutos

a) Se pide construir una G que genere el lenguaje aceptado por AP:

$$\begin{array}{l} \mathsf{AP} = \{\,\{\,a\,\,,\,b\,\,\}\,,\,\{\,A\,\,,\,A_0\,\,\}\,,\,\{\,q_0\,\,,\,q_1\,\,\}\,,\,A_0\,\,,\,q_0\,\,,\,f\,\,,\,\varnothing\,\,\}\\ \mathsf{G} = \{\,\Sigma_T\,,\,\Sigma_N\,,\,P\,\,,\,S\,\,\}\,,\,\Sigma_T = \Sigma\ \ \text{del AP}\,,\,\Sigma_N = \{\,S\,\,\}\,\cup\,\{\,[\,\,q\,\,\,A\,\,\,p\,\,]\,\,/\,\,\,q,\,p\,\in\,Q\,\,,\,A\,\in\,\Gamma\,\,\}\,,\,S = \mathsf{Axioma} \end{array}$$

ALGORITMO (para obtener las producciones P de G):

- 1. $S::=\left[\begin{array}{cc}q_0&A_0&p\end{array}\right],\;\forall\;p\in Q$
- 2. $[q \ A \ q_{m+1}]::=a[q_1 \ B_1 \ q_2],[q_2 \ B_2 \ q_3],[q_3 \ B_3 \ q_4],.....,[q_m \ B_m \ q_{m+1}]$ Todas las posibles secuencias que llevan de q_1 a q_{m+1} para cada símbolo B_1 , B_2 , B_3 , ..., B_m introducido en la pila. $\forall \ q_1,\ q_2,\ q_3,\ q_4,\ ...,\ q_m,\ q_{m+1}\in Q;\ A,\ B_1,\ B_2,\ B_3,\ ...,\ B_m\in \Gamma;\ a\in\Sigma\cup\{\lambda\}$ Si los movimientos de la función de transición f son del tipo: $(q_1 \ B_1B_2B_3...B_m)\in f(q_1 \ A)$
- 3. Si m = 0, es decir, si no se introduce nada en la pila: [q A q_i] : : = a , \forall q_i \in Q

Si los movimientos de la función de transición f son del tipo: $(q_i \ \lambda) \in f(q \ a \ A)$

Escuela Técnica Superior de Ingenieros Informáticos (UPM) LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

2ª EVALUACIÓN (20 de diciembre de 2016)

SOLUCIÓN Apellidos: Nombre:

3º movimiento: $[q_0 A q_1] ::= b[q_1 A q_1]$

 $[q_0 A q_0] ::= b[q_1 A q_0]$

 $[q_1 A q_1] ::= b$ 4º movimiento:

 $[q_1 A_0 q_0] ::= \lambda$ 5º movimiento:

SE REDENOMINAN LAS TERNAS Y SE DEPURA LA GRAMÁTICA

S::= A B	Eliminar símbolos no accesibles:
A::= aCA aDF	G y H (aDG, aDH, bH)
B::= aCB aDG	Eliminar reglas no generativas:
C::= aCC aDH bH	C::= aCC
D::= aCD aDE bE	Eliminar todas las afectadas por la regla anterior: aCA, aCB, aCD
E::= b	40B, 40B
$F::=\lambda$	
S::= aDF	Se sustituyen en S y D las reglas:
D::= aDE bE	E::= b
E::= b	$F::=\lambda$
F::= λ	
S::= aD	Producciones definitivas
D::= aDb bb	GRAMÁTICA DEPURADA

b)

Se prueban las 2 palabras: aab \notin L y aabbb \in L en AP:

Palabra aab: $[q_0 \text{ aab } A_0] \vdash [q_0 \text{ ab } AA_0] \vdash [q_0 \text{ b } AAA_0] \vdash [q_1 \lambda AAA_0]$ **NO ACEPTA**

Palabra aabbb: $[q_0 \text{ aabbb } A_0] \vdash [q_0 \text{ abbb } AA_0] \vdash [q_0 \text{ bbb } AAA_0] \vdash [q_1 \text{ bb } AAA_0] \vdash$

 $[q_1 \ b \ AA_0] \vdash [q_1 \ \lambda \ A_0] \vdash [q_1 \ \lambda \ \lambda]$ **ACEPTA**

Se prueban las 2 palabras: aab \notin L y aabbb \in L en la G:

Palabra aab: $S \rightarrow \underline{aD} \rightarrow \underline{aaDb} \rightarrow (NO)$; $S \rightarrow \underline{aD} \rightarrow \underline{abb} \rightarrow (NO)$

Palabra aabbb: $S \rightarrow aD \rightarrow aaDb \rightarrow aabbb (SI)$

c)

El lenguaje que acepta el AP es: $L = \{ a^n b^{n+1} / n \ge 1 \}$

Escuela Técnica Superior de Ingenieros Informáticos (UPM)

LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

2ª EVALUACIÓN (20 de diciembre de 2016)

Apellidos: SOLUCIÓN

Nombre:

Ejercicio 2:

Sea la Máquina de Turing M definida según el siguiente grafo:

Y cuya configuración inicial es la siguiente:

Donde $w \in 1^*$ es un número entero codificado en unario. M inicialmente está en el estado q_0 leyendo el primer 1 de w.

a) ¿Qué función aritmética sobre cada w calcula M? ¿Cuál es la configuración final de M tras recibir las entradas de los apartados a.1) y a.2)? (1,5 puntos)

- b) Escribir (y describir brevemente) el contenido inicial de la cinta de una Máquina de Turing Universal (MTU) programada para simular a la máquina M con la entrada del apartado a.1). Utilicen la siguiente codificación binaria: $q_0 = 00$; $q_1 = 01$; $q_2 = 10$; Izqda I = 1; Dcha D = 0 (1,5 puntos)
- c) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de la ejecución del módulo localizador cuando la MTU está simulando el primer movimiento de M con la entrada del apartado a.1).
 (1 punto)
- d) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de la ejecución del módulo transcriptor cuando la MTU está simulando el primer movimiento de M con la entrada del apartado a.1). ¿En qué estado termina el módulo transcriptor? ¿Por qué? (2 puntos)
- e) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de simular el primer movimiento que realiza la máquina M con la entrada del apartado a.1). ¿A qué estado accede el módulo simulador tras recolocar el *? ¿Por qué? (2 puntos)
- f) Escribir (y describir brevemente) el contenido final de la cinta de la MTU cuando termine de simular a la máquina M con la entrada del apartado a.1). ¿En qué estado se para la MTU? (2 puntos)

NOTA: Todos los apartados se responderán en la carilla de atrás.

Se da fotocopia con el grafo de la MTU (por favor, no escriban en esa hoja).

30 minutos

Continuación ejercicio 2. RESPUESTAS. SOLUCIONES
Apartado a) a.1) y a.2)
2.1) 9011+9,1+9,#+192# Función sitmética: (w+1) mod 2
2.2) 8111 + 9,11 + 90 1 + 9, # W p25 → #1#
Apartado b) MTU programada Pos cedas en olmo to 1 ft # D Had 100 to 0
*: Sobre le celos que inicialmente be M =001=
3 repistros, un por czalz movto de M Apartado c) Mód. Localizador (escribid sólo la parte de la cinta que cambia)
Busca la secuencia del REG inicial (001) al comienzo de los repistros hesta localizada. Marca los 0-0A; 1-0B para recordar que símbolos ya ha examinado
Apartado d) Mód. Transcriptor (escribid sólo la parte de la cinta que cambia)
\\ \pm = 0 1 0 \REG iniciz. \\ \mathread \REG iniciz. \\ \mathread \REG iniciz.
Termina en fiz (p,4) porque memoriza el vabr del desplazamiento de la cabeza (0) para transmitirado al módulo simulador (que recenita sabero para recobicar el *)
Apartado e) Mód. Simulador (escribid sólo la parte de la cinta que cambia)
======================================
Apartado f) MTU para Reservo por por por repistro que empiace por 100.
#OOJ* +BOO = AABABABAAAA = ABBAAAA = ABBAAAA
AAABABA=#···
Pero con un único. 1 (95) Tras marcar y rechozar todos los REG, el mód. localizados en la cinta y leyendo. buscardo un 1, se encuentra la 1º alda en blanco
el#a la dorectra (doude por la doche =0 pare en fo.