MATH 299Q: Homework 4 Quiver Representations

Let k be an algebraically closed field.

1. Fix Q to be the Kroenecker 2-quiver;

$$1 \xrightarrow{\frac{\alpha}{\beta}} 2.$$

Associate to Q, the path algebra kQ (recall this is a k-algebra).

- (a) What is $\dim kQ$?
- (b) An endomorphism is a morphism from M to itself, that is for some $M \in \operatorname{rep} Q$ the morphism $f: M \to M$. The collection of all endomorphisms, $\operatorname{End} M$, of a fixed representation M, much like $\operatorname{Hom}(-,-)$, forms a natural k-vector space under composition of morphisms. Let M be the following representation of Q;

$$k^2 \xrightarrow{\begin{bmatrix} 10\\01\\00\end{bmatrix}} k^3 .$$

$$\begin{bmatrix} 00\\10\\01\end{bmatrix}$$

What is $\dim(\operatorname{End} kQ)$?

2. Fix Q to be as follows;

With the set of relations $R = \{\alpha\beta - \gamma\delta, \beta\epsilon, \delta\epsilon\zeta\}$ generating the admissible ideal $I = \langle R \rangle$. Compute the indecomposable projective representations $\mathcal{P}(1)$, $\mathcal{P}(3)$, and $\mathcal{P}(4)$ of (Q, I).