HackShitUp / Data-Mining

- * k = 2
- Seed = 1: 2679.2831700304127
- Seed = 2: 2675.9791802778172
- Seed = 3: 2679.2831700304123
- Seed = 4: 2679.2831700304123
- Seed = 5: 2679.2831700304127
- * k = 3
- Seed = 1: 2076.046974451557
- Seed = 2: 2067.3943009564287
- Seed = 3: 2097.2292114738843
- Seed = 4: 2163.2404801332495
- Seed = 5: 2070.162850875394

```
* k = 4
• Seed = 1: 2056.620348700981
• Seed = 2: 1551.9131911443642
• Seed = 3: 1642.9138686894187
• Seed = 4: 1715.9489102547257
• Seed = 5: 1665.3563431309058
* k = 5
• Seed = 1: 1634.2039979339227
• Seed = 2: 1633.2457462359876
• Seed = 3: 1170.4945259691226
• Seed = 4: 1194.3849991231245
• Seed = 5: 1645.8937444622636
* k = 6
• Seed = 1: 1165.1103592101838
• Seed = 2: 1162.0856789536233
• Seed = 3: 836.3536270105087
• Seed = 4: 1173.8415533841737
• Seed = 5: 1174.9295639714344
* k = 7
• Seed = 1: 809.290574529901
• Seed = 2: 1142.638143570465
• Seed = 3: 814.9944462630268
• Seed = 4: 818.6153664649133
• Seed = 5: 819.4695861690018
* k = 8
• Seed = 1: 474.9410917910018
• Seed = 2: 1128.4055223846658
• Seed = 3: 475.7815733735389
• Seed = 4: 474.99383053363255
• Seed = 5: 475.87600826995697
* k = 9
• Seed = 1: 456.0157786166358
• Seed = 2: 1106.0223417277023
• Seed = 3: 454.40848503934603
• Seed = 4: 466.9579060993053
• Seed = 5: 457.6651436775775
* k = 10
• Seed = 1: 448.0451849019205
• Seed = 2: 750.40252317349
• Seed = 3: 420.5315346241276
• Seed = 4: 464.009240158985
```

(b) For each k = 1, 2, ..., 10 compute the mean SSE, which we denote μ_k and the sample standard deviation of SSE, which we denote σ_k over all 5 clustering runs for that value of k. Produce a table containing the 4 columns: k, μ_k , μ_k - $2\sigma_k$ and μ_k + $2\sigma_k$ for each of the values of k = 1, 2, ..., 10.

Notes:

- μ_k = Mean
- σ_k = Sample Standard Deviation

• Seed = 5: 430.1227625164528

1. Get mean

- 2. Per each number: subtract the mean and square the result
- 3. Get mean of those squared differences
- 4. Take square root

k	$\mu_{\mathbf{k}}$	σ_{k}	μ_k -2 σ_k	μ_k + $2\sigma_k$
1	3804.7443834874	7.1901869436451E-13	3804.7443834874	3804.7443834874
2	2678.6223720799	1.4775891367531	2675.6671938064	2681.5775503534
3	2094.8147635781	39.999177253144	2014.8164090718	2174.8131180844
4	1726.5505323841	193.84046230267	8245.0717373151	9020.4335865257
5	1455.6446027449	249.5934226265	6779.0361684714	7777.4098589774
6	1102.464156506	148.862398396	5214.5959857379	5810.0455793219
7	881.0016233995	146.3141545705	588.3733142585	1173.6299325405
8	605.9996052706	292.03410568512	21.9313939004	1190.0678166408
9	588.2139310321	289.50466685734	9.2045973174	1167.2232647468
10	502.622249075	139.51679609811	223.5886568788	781.6558412712

2. (20 points) Consider the following dataset:

(a) Build a dendrogram for this dataset using the single-link, bottom-up approach. Show your work.

(b) Suppose we want the two top level clusters. List the data points in each cluster.

3. (20 points) Given two clusters

$$C1 = \{(1,1),(2,2),(3,3)\}\$$
 $C2 = \{(5,2),(6,2),(7,2),(8,2),(9,2)\}$

compute the values in (a) - (f). Use the definition for scattering criteria presented in class. Note that *tr* in the scattering criterion is referring to the trace of the matrix. 1

- (a) The mean vectors m₁ and m₂
 - $x_1 = [1 + 2 + 3]/3 = 2$
- $y_1 = [1 + 2 + 3]/3 = 2$
- $**m_1 = (2, 2)**$
- $x_2 = [5 + 6 + 7 + 8 + 9]/5 = 7$
- * $y_2 = [2 + 2 + 2 + 2 + 2]/5 = 2$
- **m₂ = (7, 2)**
- (b) The total mean vector m

$$_{m} = (4.38, 2)$$

(c) The scatter matrices S_1 and S_2

$$S_i = \sum (x - \mu_i)(x - \mu_i)^T$$

$$\begin{bmatrix} - \\ \end{bmatrix} * \begin{bmatrix} - \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix} * (1, 1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & + & \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & + & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} & = & \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 7 \end{bmatrix} & \begin{bmatrix} 5 & 7 \end{bmatrix} & \begin{bmatrix} -2 \end{bmatrix} \\ \begin{bmatrix} -1 \end{bmatrix} & * & \begin{bmatrix} -1 \end{bmatrix} & * & (-2, 0) & = & \begin{bmatrix} 4 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 2 \end{bmatrix} & \begin{bmatrix} 2 & 2 \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \end{bmatrix}$$

(d) The within-cluster scatter matrix $S_{\mbox{\scriptsize W}}$

$$S_W =$$

$$[2 \ 2] * [10 \ 0] = [12 \ 2]$$

 $[2 \ 2] [0 \ 0] [2 \ 2]$

(e) The between-cluster scatter matrix S_B

$$3 * [2 - 4.38] * [2 - 4.38]T = 3 * [-2.38] * (-2.38, 0) = [16.9 0]$$
 $[2 2] [2 - 2] [0] [0]$
 $[3 * [7 - 4.38] * [7 - 4.38]T = 5 * [-2.62] * (-2.62, 0) = [34.3 0]$
 $[2 2] [2 - 2] [0]$

$$S_B =$$

- (f) The scatter criterion $tr(S_B)/tr(S_W)$ $tr(S_B)/tr(S_W) = 14/51.2$
- 4. (20 points) A Naive Bayes classifier gives the predicted probability of each data point belonging to the positive class, sorted in a descending order:

Instance #	True Class Label	Predicted Probability of Positive Class
1	Р	0.95
2	N	0.85
3	Р	0.78
4	Р	0.66
5	N	0.60
6	Р	0.55
7	N	0.43
8	N	0.42
9	N	0.41

10

Ρ

0.4

Suppose we use 0.5 as the threshold to assign the predicted class label to each data point, i.e., if the predicted probability \geq 0.5, the data point is assigned to positive class; otherwise, it is assigned to negative class. Calculate the Confusion Matrix, Accuracy, Precision, Recall, F1 Score and Specificity of the classifier.

Confusion Matrix

Accuracy

$$[TP + TN]/[P + N] = [4 + 3]/[5 + 5] = 7/10$$

Precision

$$[TP]/[TP + FP] = 4/[4+1] = 4/5$$

Recall

$$[TP]/[TP + FN] = 4/[4+2] = 4/6 = 2/3$$

• F1 Score

$$[2TP]/[2TP + FP + FN] = [2*4]/[(2*4) + 1 + 2] = 8/11$$

Specifity

$$[TP]/[FP + TN] = 3/[1+3] = 3/4$$