Работа 1.2. Перевод чисел из одной системы счисления в другую

Цель работы: освоение методов перевода чисел из десятичной в другие позиционные системы счисления с использованием электронных таблиц и программ на Паскале.

Электронные таблицы

Задание 1 (уровень 1). Воспроизведите электронную таблицу для перевода недесятичного числа в десятичную систему счисления (см. учебник для 10 класса, рис. 1.6). Используя эту таблицу, выполните перевод в десятичную систему счисления следующих чисел: $110101,1011_2$; $35071,214_8$; $24013,3201_5$.

	Α	В	С	D	Ε	F	G	Н	13	J	K	L	М	N
1														C THE WITH
2	Основание системы:	S S	2	3	1 65	8	-12		n.h.	-03	note Total	an s	(49) A	HEROZUĆUM
3	1,912 (1927)		13.		21			Che al	17.75	1	15		E HAY	CHARLE
4	Разряды:	5	4	3	2	1	0		-1	-2	-3	-4	ATT UN	A He Land
5	Число:		0.77	2	0	1	1	,	1				=	58,333333
6	Перевод:	0	0	54	0	3	1		0,33	0	0	0	THE P	Danten

Рис. 1.6. Перевод недесятичного числа в десятичную систему счисления в электронной таблице

Для перевода числа используется разложение его по базису. Основание системы — в ячейке D2. Номера разрядов числа равны степеням основания в базисе (в развернутой форме). Значащие цифры числа вписываются в соответствующие ячейки пятой строки. В шестой строке вычисляются слагаемые развернутой формы числа. Например, в ячейке B6 записана формула: =B5*\$D\$2^B4. В ячейке C6: =C5*\$D\$2^C4 и т. д. Результат перевода получается в ячейке N5, где стоит формула: =CУММ(B6:L6). Данная таблица рассчитана на 6-разрядную целую часть и 4-разрядную дробную часть. При необходимости ее можно расширить.

Задание 2 (уровень 1). Используя созданную электронную таблицу, получите десятичный эквивалент числа 10101, считая его записанным во всех возможных системах счисления от двоичной до девятеричной.

Задание 3 (уровень 3). Постройте электронную таблицу для перевода целого десятичного числа в систему счисления с основанием p ($2 \le p \le 9$). Протестируйте работу этой таблицы.

Задание 4 (уровень 1). Воспроизведите программу на Паскале Numbers_p_10 (см. учебник для 10 класса, § 1.3.3). С помощью этой программы выполните перевод в десятичную систему счисления следующих недесятичных целых чисел: 110101₂; 35071₈; 24013₅.

```
Program Numbers_p_10;
Var N10, Np, k: longint;
               p: 2..9;
begin
       Write('p='); Readln(p); {ввод основания системы}
        Write('N', p, '='); Readln(Np); {ввод исходного
  р-ичного числа в предоставления пред
  k:=1; N10:=0;
while (Np<>0) do {цикл выполняется, пока Np не равно нулю}
               begin
N10:=N10+(Np mod 10)*k; {суммирование
 развернутой формы}
                      k:=k*p; {вычисление базиса: p, p в степени 2,...}
                      Np:=Np div 10 {отбрасывание младшей цифры}
        Writeln('N10=', N10) {вывод десятичного числа}
end.
```

В программе использованы следующие переменные:

р — основание системы счисления — исходное данное;

Np — целое p-ичное число — исходное данное;

N10 — десятичное число — результат.

Тип longint — тип длинное целое. Значения величин этого типа лежат в диапазоне от -2147483648 до 2147483647. (Значит, данная программа может работать с числами, не более чем 9-значными.) Тип переменной p — диапазон целых чисел от 2 до 9.

Про операции div и mod уже было сказано раньше: div — целочисленное деление, mod — остаток от целочисленного деления. Например: $1234 \mod 10 = 4$ — выделяется разряд единиц; $1234 \dim 10 = 123$ — отбрасывается младший разряд.

Задание 5 (уровень 1). Воспроизведите программу на Паскале Numbers10-р из § 1.3.3. С помощью этой программы выполните перевод десятичного числа 1234 в системы счисления с основаниями 2, 3, 5, 8.

```
Program Numbers10-p;
Var N10, Np, k: longint;
   p: 2..9;
 Write('N10='); Readln(N10); {Ввод исходного
                 10-тичного числа}
 Write('p='); Readln(p);
                         {Ввод основания системы}
 k:=1; Np:=0;
 repeat
   Np:=Np+(N10 \mod p)*k;
                         {Суммирование
                          развернутой формы}
                {Вычисление базиса: 10, 100, 1000, ...}
   k := k * 10;
   N10:=N10 div р {Отбрасывание младшей цифры}
 until (N10=0); {Цикл заканчивает выполнение при N10=0}
 Writeln('N', p, '=', Np) {Вывод р-ичного числа}
end.
```

Здесь использованы те же обозначения, что и в предыдущей программе. Исходными данными являются: N10 — десятичное число и p — основание системы, в которую осуществляется перевод. Результат получается в переменной Np — число в системе с основанием p.

В алгоритме используется цикл с постусловием repeat... until. Цикл повторяется до выполнения условия: N10 = 0.

Задание 6 (уровень 2). Используя текстовый редактор, постройте трассировочную таблицу выполнения программы Numbers10-р для следующих значений исходных данных: N10 = 9, p = 2.

Пример использования программы. Переведем число 25_{10} в двоичную систему счисления. Работа программы на экране компьютера отразится следующим образом:

```
N10=25
p=2
N2=11001
```

Следовательно, в результате получим: $25_{10} = 11001_2$. Для лучшего понимания работы программы рекомендуем построить трассировочную таблицу наподобие предыдущей.

Пример. При переводе по данной программе двоичного числа 1101_2 в десятичную систему на экране увидим:

p=2 N2=1101 N10=13

Следовательно, в итоге получили: $1101_2 = 13_{10}$.

Для лучшего понимания работы программы внимательно изучите приведенную ниже трассировочную таблицу. Она отражает изменения значений переменных на каждом шаге выполнения алгоритма, реализованного в программе.

Шаг ал- горитма	Команда алгоритма	P	Np	k	N10	Проверка условия
1	Ввод р, Np, k:=1, N10=0	2	1101	1	0	AND THE PARTY OF
2	Np<>0		211			1101 ≠ 0 , да
3	N10:=N10+(Np mod 10)*k		COST CONTRACTOR	7.7.	1	
4	k:=k*p			2		1991-1-1-1
5	Np:=Np div 10		110	MACA		147-12
6	Np<>0		1977	対な	1	110 ≠ 0, да
7	N10:=N10+(Np mod 10)*k				1	
8	k:=k*p		CLINE	4	A VIII	14年1676
9	Np:=Np div 10	1591	11	1, EE.	The same	17 下でも142
10	Np<>0	121	all The	11.5	1000	11 ≠ 0 , да
11	N10:=N10+(Np mod 10)*k				5	The It
12	k:=k*p			8		71 3-17
13	Np:=Np div 10		1			7777
14	Np<>0					1 ≠ 0, да
15	N10:=N10+(Np mod 10)*k	7	THE STATE	1	13	The Court of
16	k:=k*p		ta be	16	12 19	Defect tout
17	Np:=Np div 10		0	-10		SETT PRINCE
18	Np<>0					0 ≠ 0, нет
19	Вывод N10				13	

Задание 7 (уровень 3). Составьте программу на Паскале, переводящую дробное (меньшее единицы) недесятичное число с основанием p ($2 \le p \le 9$) в десятичную систему счисления. Выполните тестирование программы.

Задание 8 (уровень 3). Составьте программу на Паскале, переводящую десятичную дробь в систему счисления с основанием p ($2 \le p \le 9$). Выполните тестирование программы.