James Lee

Convergence in Probability 1

Def 1.1 (Convergence in Probability). $Y_n \stackrel{p}{\to} c$ if for every $\epsilon > 0$ and $\delta > 0$, $\exists n_0(\epsilon, \delta)$ such that

$$P(|Y_n - c| > \epsilon) < \delta, \ \forall n > n_0(\epsilon, \delta)$$

Thm 1.1 (Chebyshev Inequality). For random variable, Y, a > 0, and c,

$$P(|Y - c| \ge a) \le \frac{\mathbf{E}(Y - c)^2}{a^2}$$

Def 1.2 (Markov Inequality). If X is a non-negative random variable and a > 0 then

$$P(X \ge a) \le \frac{\mathbf{E}X}{a}$$

Thm 1.2. If $\mathbf{E}(Y-c)^2 \to 0$, then $Y_n \stackrel{p}{\to} c$.

Thm 1.3. If X_1, \ldots, X_n iid, $\mathbf{E}X_i = \mu$, $\mathbf{Var}X_i = \sigma^2 < 1$ ∞ , then

$$\bar{X} \xrightarrow{p} \mu$$

Thm 1.4. If $A_n \stackrel{p}{\to} a$ and $B_n \stackrel{p}{\to} b$, then

- 1. $A_n \pm B_n \xrightarrow{p} a \pm b$, 2. $A_n \cdot B_n \xrightarrow{p} a \cdot b$.

Thm 1.5. If $Y_n \stackrel{p}{\to} c$ and f is continuous at c, then $f(Y_n) \xrightarrow{p} f(c)$.

Def 1.3. A sequence of estimators δ_n of $g(\theta)$ is consistent if

$$\delta_n \xrightarrow{p} g(\theta)$$

Thm 1.6. If bias and variance of $\delta_n \to 0$ as $n \to \infty$, δ_n is consistent.

Def 1.4. $A_n = o_p(B_n)$ if $\frac{A_n}{B_n} \stackrel{p}{\to} 0$.

Convergence in Law $\mathbf{2}$

Def 2.1. Y_n is bounded in probability if for any $\epsilon > 0 \ \exists K$ and $n_0(\epsilon)$ such that

$$P(|Y_n| > K) < \epsilon \text{ for all } n > n_0(\epsilon)$$

Def 2.2. Convergence in Law/Distribution $Y_n \xrightarrow{L} Y$ if $H_n(x) \to H(x)$ for all continuity points x.