Design and Modeling of Fluid Power Systems ME 597/ABE 591 - Lecture 13

Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems

MAHA Fluid Power Research Center Purdue University

Displacement Controlled Systems

- Secundary controlled actuator

Secondary controlled actuator

Requires constant pressure supply

$$M_{Sx} = \frac{R}{\cos^2 \beta} \cdot \sum_{i=1}^{z} F_{AKi} \cdot \cos \varphi_i$$

Displacement Controlled Rotary Drive

Secondary Controlled Drive

Secondary controlled actuator

Examples - High Lift System

Secondary controlled actuator

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Hydraulic actuator principles

Hydraulic actuator principles

Classification & Main System Properties

Valve Controlled
Actuator

Proportional valve

Servovalve

LS-valve

Energy Dissipation

High Bandwith

Central Pressure Supply

Energy Recover

Displacement Controlled

Actuator

Pump Control

Secondary Control

- Central Pressure Supply
- Energy Recover
- High Bandwith
- Central Pressure Supply

Speed Controlled

Actuator

Electric Motor Control

- Central Pressure Supply
- Energy Recover