Supplement Materials

November 14, 2018

1 Data Collection

1.1 Pre Florence Hurricane

• Start Date: September 10, 2018 11:40 AM PDT

• End Date: September 11, 2018 11:29 AM PDT

 Qualification: HIT Approval Rate for all Requester's HITs greater than 95. Location is one of US-NC, US-SC

• Payment: 1.25 dollars

• Title: Hurricane Florence Questionnaire (~ 15 minutes)

• Total collect: 404

• Remark: Use pre questionnaire version.

1.2 Post Florence Hurricane

• Start Date: September 21, 2018 8:10 AM PDT

• End Date: September 29, 2018 2:57 PM PDT

 Qualification: HIT Approval Rate for all Requester's HITs greater than 95. Location is one of US-NC, US-SC

• Payment: 1.00 dollars

 \bullet Title: Hurricane Florence Questionnaire (\sim 12 minutes)

• Total collect: 747

• Remark: Use post questionnaire version. Two typos which got fixed during the collection process when realized. 1) Using remain instead of stay. 2) Wrong Hurricane's name (Lane instead of Florence) in two demographic questions: one is about house structure before the Hurricane hit and another is the zip code before the hurricane hit.

1.3 Post Michael Hurricane - GA

• Start Date: October 18, 2018 7:09 AM PDT

• End Date: October 22, 2018 10:58 AM PDT

• Qualification: HIT Approval Rate for all Requester's HITs greater than 95. Location is one of US-GA

• Payment: 1.25 dollars

• Title: Hurricane Michael Survey (~15 minutes)

• Total collect: 300

• Remark: Use post questionnaire version. Slight modification of post Florence. See the questionnaire for the difference.

1.4 Post Michael Hurricane - FL

• Start Date: October 18, 2018 8:25 AM PDT

• End Date: October 22, 2018 8:30 AM PDT

• Qualification: HIT Approval Rate for all Requester's HITs greater than 95. Location is one of US-FL

• Payment: 1.25 dollars

 \bullet Title: Questionnaire for people in the Florida panhandle in the path of Hurricane Michael (\sim 15 minutes)

• Total collect: 400

• Remark: Use post questionnaire version. Slight modification of post Florence. See the questionnaire for the difference.

2 Summary of the datasets (before exclusion)

2.1 Pre Florence

Variable Name	Statistics
Evac Decision	Extremely unlikely: 93, Moderately unlikely: 94, Slightly unlikely: 48, Neither likely or unlikely: 34, Slightly likely: 48, Moderately likely: 41, Extremely likely: 93, Not Heard: 3
Age	Mean: 36.91, SD: 11.11
Gender	Female: 233, Male: 169, Other: 2
Education	High School: 57, Some College: 98, College Grad: 197, Grad School: 52
Income	<20k: 73, 20k - 40k: 110, 40k - 60k: 99, 60k - 80k: 58, 80k - 100k: 34, 100k - 150k: 25, >150k: 5
House structure	Detached single family: 269, Duplex/triplex: 28, Condo/apartment: 67, Mobile/trailer home: 35, Other: 5
Years in Resident	Less than 1 years: 63, 1 - 3 years: 106, 3 - 5 years: 61, 5 - 10 years: 78, More than 10 years: 96
Distance to coast	<1 mile: 8, 1 - 4 miles: 14, 4 - 10 miles: 26, 10 - 30 miles: 25, 30 - 50 miles: 18, >50 miles: 313
Number of Vehicle	None: 14, One: 160, More than one: 230
Has pet	Yes: 269, No: 135
Family size	Mean: 2.94, SD: 1.32
Has child [0,5]	0: 322, 1: 57, 2: 24, 3: 1
Has child [6,12]	0: 309, 1: 69, 2: 25, 4: 1
Has child [13,18]	0: 347, 1: 42, 2: 13, 3:1
has Elder (65 up)	0: 367, 1: 30, 2: 7
Need Medicine	Yes: 95, No: 309
Need Help Moving	Yes: 30, No: 374
Manda Evac Notice	Yes: 31, No: 373
Volun Evac Notice	Yes: 46, No: 358
Flood cost Eqv	Mean: 606.02, SD: 680.17
Elec cost Eqv	Mean: 598.83 SD: 3047.783
Traveling cost	Mean: 246.56, SD: 387.07
Safe place cost	Mean: 561.65, SD: 489.32
Safety Probability	Extremely unlikely: 25, Moderately unlikely: 81, Slightly unlikely: 60, Neither likely or unlikely: 59, Slightly likely: 88, Moderately likely: 56, Extremely likely: 32
Flood depth	Not flooded: 257, <1 foot: 88, 2 - 3 feet: 36, 4 - 5 feet: 14, >5 feet: 14
Elec lost duration	Not lose: 51, <1 week: 275, 1 - 2 weeks: 65, 3 - 4 weeks: 9, >1 month: 1
Normal return	<1 week: 150, 1 - 2 weeks: 148, 3 - 4 weeks: 62, >1 month: 41
Prev Exp Decision	No Exp.: 69, Evacuated: 45, Stayed: 290
Duration on HITs	Mean: 534.37, SD: 352.09

Table 1: Pre Florence Summary: A Table summarizes variables in the Pre Florence dataset that are used in the analysis. Total responses is 404. Eqv = equivalent for question on how much would you pay to not experience being in flooded house or without electricity.

2.2 Post Florence

Variable Name	Statistics
Evac Decision	Yes: 118, No: 629
Age	Mean: 36.82, SD: 11.74
Gender	Female: 463, Male: 281, Other: 3
Education	High School: 91, Some College: 234, College Grad: 311, Grad School: 111
Income	<20k: 138, 20k-40k: 230, 40k-60k: 161, 60k-80k: 111, 80k-100k: 48, 100k-150k: 50, >150k: 9
House structure	Detached single family: 473, Duplex/triplex: 39, Condo/apartment: 155, Mobile/trailer home: 70, Other: 10
Years in Resident	Less than 1 years: 102, 1 - 3 years: 224, 3 - 5 years: 109, 5 - 10 years: 143, More than 10 years: 169
Distance to coast	<1 mile: 18, 1 - 4 miles: 28, 4 - 10 miles: 56, 10 - 30 miles: 42, 30 - 50 miles: 54, >50 miles: 549
Number of Vehicle	None: 30, One: 280, More than one: 437
Has pet	Yes: 497, No: 250
Family size	Mean: 4.25, SD: 36.51
Has child [0,5]	0: 575, 1: 110, 2: 53, 3: 8, 9: 1
Has child [6,12]	0: 603, 1: 98, 2: 34, 3: 10, 4: 2
Has child [13,18]	0: 34, 1: 42, 2: 13, 3:1
has Elder (65 up)	0: 644, 1: 70, 2: 26, 3: 7
Need Medicine	Yes: 156, No: 591
Need Help Moving	Yes: 48, No: 699
Manda Evac Notice	Yes: 120, No: 627
Volun Evac Notice	Yes: 134, No: 613
Traveling cost (E)	Mean: 187.23, SD: 271.63
Safe place cost (E)	Mean: 54.40, SD: 125.38
Traveling cost (S)	Mean: 357.93, SD: 2015.04
Safe place cost (S)	Mean: 800.47, SD: 2063.42
Safety Probability	Extremely unlikely: 44, Moderately unlikely: 118, Slightly unlikely: 102, Neither likely or unlikely: 102, Slightly likely: 195, Moderately likely: 138, Extremely likely: 48
Flood depth	Not flooded: 484, <1 foot: 173, 2 - 3 feet: 69, 4 - 5 feet: 14, >5 feet: 7
Elec lost duration	Not lose: 53, <1 week: 504, 1 - 2 weeks: 171, 3 - 4 weeks: 18, >1 month: 1
Normal return	<1 week: 325, 1 - 2 weeks: 267, 3 - 4 weeks: 110, >1 month: 45
Prev Exp Decision	No Exp.: 180, Evacuated: 86, Stayed: 481
Duration on HITs	Mean: 764.15, SD: 5386.68

Table 2: Post Florence Summary: A Table summarizes variables in the Post Florence dataset that are used in the analysis. (E) = evacuated participants, (S) = stayed participants.

2.3 Post Michael

Variable Name	Statistics
Evac Decision	Yes: 112, No: 457
Age	Mean: 35.78, SD: 11.44
Gender	Female: 332, Male: 235, Other: 2
Education	High School: 68, Some College: 199, College Grad: 233, Grad School: 69
T	<20k: 115, 20k-40k: 171, 40k-60k: 137, 60k-80k: 72,
Income	80k-100k: 36, 100k-150k: 27, >150k: 11
	Detached single family: 355, Duplex/triplex: 31,Condo/apartment: 140,
House structure	Mobile/trailer home: 37,
	Other: 6
Years in Resident	Less than 1 years: 112, 1 - 3 years: 180, 3 - 5 years: 95,
rears in Resident	5 - 10 years: 78, More than 10 years: 169
Distance to coast	<1 mile: 27, 1 - 4 miles: 49, 4 - 10 miles: 78, 10 - 30 miles: 88,
Distance to coast	30 - 50 miles: 64, >50 miles: 263
Number of Vehicle	None: 18, One: 288, More than one: 263
Has pet	Yes: 372, No: 197
Family size	Mean: 2.89, SD: 1.45
Has child [0,5]	0: 436, 1: 93, 2: 34, 3: 6
Has child [6,12]	0: 467, 1: 73, 2: 22, 3: 7
Has child [13,18]	0: 483, 1: 66, 2: 16, 3:4
has Elder (65 up)	0: 528, 1: 35, 2: 5, 3: 1
Need Medicine	Yes: 92, No: 477
Need Help Moving	Yes: 39, No: 530
Manda Evac Notice	Yes: 57, No: 512
Volun Evac Notice	Yes: 130, No: 439
Flood cost	Mean: 566.5, SD: 647.26
Electricity cost	Mean: 444.8, SD: 651.9
Traveling cost (E)	Mean: 316.84, SD: 682.35
Safe place cost (E)	Mean: 63.26, SD: 149.12
Traveling cost (S)	Mean: 406.46, SD: 662.03
Safe place cost (S)	Mean: 205.46, SD: 596.27
	Extremely unlikely: 49, Moderately unlikely: 96, Slightly unlikely: 89,
Safety Probability	Neither likely or unlikely: 83, Slightly likely: 126, Moderately likely: 88,
	Extremely likely: 38
Flood depth	Not flooded: 394, <1 foot: 99, 1 - 3 feet: 51, 3 - 5 feet: 17, >5 feet: 8
Elec lost duration	Not lose: 107, <1 week: 317, 1 - 2 weeks: 103, 2 - 3 weeks: 28, 3 - 4 weeks: 8, >1 month: 6
Normal return	<1 week: 281, 1 - 2 weeks: 120,2 - 3 weeks: 71, 3 - 4 weeks: 38,
Duor Fun Dacicia-	>1 month: 59
Prev Exp Decision	No Exp.: 123, Evacuated: 104, Stayed: 342
Duration on HITs	Mean: 652.34, SD: 3171.8

Table 3: Post Michael Summary: A Table summarizes variables in the Post Michael dataset that are used in the analysis. (E) = evacuated participants, (S) = stayed participants.

3 Correlation Table (before exclusion)

Name	Flood C	Elec C	Travel C	Place C	Safe P	Flood D	Elec D	Norm D	Evac?
Age	0.08	0.15	-0.14	0.15	-0.06	-0.1	-0.02	0.07	-0.03
Gender	0.07	0.06	0.03	0.04	0.01	-0.04	-0.06	-0.03	-0.02
Edu	0.12	0.04	0.01	0.08	0.01	-0.03	-0.05	0.05	0.09
Income	0.25	0.01	0.11	0.18	0.08	0	-0.03	0.01	0.13
House struc	0.02	-0.01	0.04	-0.02	-0.02	-0.01	-0.14	-0.11	0.01
Years in Res	0.04	0.07	0.01	0.05	-0.03	-0.04	-0.01	-0.05	0.01
Dist to coast	-0.12	-0.01	-0.06	0.04	-0.26	-0.25	-0.13	-0.14	-0.28
Num vehicle	0.06	-0.05	-0.03	0.05	-0.06	-0.06	0.02	0.01	-0.02
Has pet	0.01	0.04	-0.03	0.06	-0.02	-0.01	0.1	0.03	-0.01
Family size	0.08	-0.01	0.11	0.01	0.06	0.09	0.06	0	0.01
Child [0,5]	0.06	-0.01	0.01	0.01	0.11	0.03	0.02	-0.03	-0.03
Child [6,12]	0.05	-0.02	-0.01	-0.02	-0.02	0.06	-0.04	0.02	-0.02
Child [13,18]	0.03	-0.01	0.12	0.05	0.04	0.03	0.09	0.05	0.08
Elder 65 up	-0.03	0.12	-0.04	0.01	-0.05	-0.01	0.03	0	-0.06
Need med	-0.03	-0.02	0.05	0.06	0.08	0.05	0	-0.01	0.07
Need move	-0.1	-0.03	-0.01	-0.06	0.04	0.02	-0.05	-0.03	0.08
Manda evac	0.18	0.2	-0.03	-0.03	0.23	0.24	0.11	0.18	0.25
Volun evac	0.18	0.02	0.09	0.07	0.19	0.24	0.09	0.13	0.14
Prev Exp D	-0.1	-0.06	-0.11	0.05	0	-0.15	0.05	0.1	-0.07
Flood C	1	0.16	0.12	0.31	0.06	0.08	-0.02	0.01	0.06
Elec C	0.16	1	0.02	0.1	0.1	0.11	0.06	0.09	0.11
Travel C	0.12	0.02	1	0.26	0.11	0.15	0.13	-0.02	0.07
Place C	0.31	0.1	0.26	1	0.1	0.08	0.09	0.08	0.01
Safety P	0.06	0.1	0.11	0.1	1	0.37	0.41	0.44	0.61
Flood D	0.08	0.11	0.15	0.08	0.37	1	0.31	0.29	0.31
Elec dur	-0.02	0.06	0.13	0.09	0.41	0.31	1	0.52	0.3
Normal dur	0.01	0.09	-0.02	0.08	0.44	0.29	0.52	1	0.31

Table 4: Pre Florence Correlation: Table of correlation between observable features and latent features plus evacuation decision of Pre Florence dataset. $c = \cos t$, p = prob, d = depth/duration.

Name	Travel C	Place C	Safe P	Flood D	Elec D	Norm D	Evac?
Age	-0.03	-0.02	-0.02	-0.08	-0.03	0	-0.03
Gender	-0.02	0	-0.1	-0.06	-0.05	-0.08	-0.07
Edu	0.01	0.04	-0.02	-0.06	0.03	0	0.03
Income	0.03	0.06	-0.05	-0.11	-0.01	-0.04	-0.02
House struc	0.08	0.06	-0.02	0.01	-0.09	-0.05	0.06
Years in Res	0.07	0.07	-0.01	-0.03	0.04	0	-0.06
Dist to coast	-0.03	0.03	-0.24	-0.28	-0.21	-0.28	-0.46
Num vehicle	-0.08	-0.04	0	-0.12	0.09	0.04	-0.1
Has pet	-0.05	0	0	-0.03	0.08	0.08	-0.07
Family size	-0.01	-0.01	0.04	0.02	0.05	0.05	0.08
Child [0,5]	-0.02	-0.01	0.02	0.01	0.03	0	0
Child [6,12]	0.01	0	0.1	0.03	0.03	0.03	0.04
Child [13,18]	0	-0.01	-0.01	-0.04	0.02	0.03	-0.07
Elder 65 up	-0.01	-0.01	0.03	0.03	0.01	0	0
Need med	-0.01	-0.01	0.09	0.04	0.09	0.09	0.12
Need move	-0.02	-0.03	0.04	0.11	0.06	0.02	0.13
Manda evac	-0.02	-0.07	0.24	0.25	0.19	0.2	0.45
Volun evac	-0.01	-0.06	0.21	0.28	0.09	0.2	0.23
Prev Exp D	-0.07	-0.04	0.03	-0.08	0.05	0.09	-0.04
Travel C	1	0.95	0.06	0.02	-0.01	0.02	-0.03
Place C	0.95	1	0.02	-0.04	-0.04	0	-0.14
Safety P	0.06	0.02	1	0.43	0.35	0.38	0.39
Flood D	0.02	-0.04	0.43	1	0.37	0.34	0.39
Elec dur	-0.01	-0.04	0.35	0.37	1	0.51	0.28
Normal dur	0.02	0	0.38	0.34	0.51	1	0.3

Table 5: Post Florence Correlation: Table of correlation between observable features and latent features plus evacuation decision of Post Florence dataset. c = cost, p = prob, d = depth/duration.

Name	Flood C	Elec C	Travel C	Place C	Safe P	Flood D	Elec D	Norm D	Evac?
Age	-0.03	-0.07	0.05	-0.01	-0.04	-0.11	-0.03	0.04	-0.07
Gender	0.02	0.01	0.08	0.02	0.07	0.07	0.02	0.07	0.08
Edu	0.08	0.07	0.04	0.01	0.04	-0.02	0.02	0.05	0
Income	0.19	0.13	0.15	0.09	-0.01	0.02	-0.02	-0.01	0.06
House struc	0.05	0.05	0.04	0.03	-0.05	0.03	-0.04	0	-0.05
Years in Res	0.03	-0.01	0.04	-0.01	-0.06	-0.04	-0.07	-0.04	-0.09
Dist to coast	-0.1	-0.08	-0.05	-0.01	-0.22	-0.3	-0.24	-0.27	-0.28
Num vehicle	0.04	0.03	0.01	0.02	-0.06	-0.03	-0.01	-0.08	-0.13
Has pet	-0.03	-0.04	-0.03	0	-0.02	0.01	-0.01	-0.06	-0.07
Family size	0.09	0.13	0.08	0.08	0.04	0.08	0.02	-0.02	0
Child [0,5]	0.01	0.01	0.02	0	-0.05	0.05	0.02	-0.06	-0.02
Child [6,12]	0.06	0.06	0.03	-0.02	0.05	0.01	-0.04	-0.06	0.02
Child [13,18]	0.07	0.08	0.05	0.1	0.02	0.03	0	0.06	-0.03
Elder 65 up	0.04	0.06	0.08	0.07	-0.02	-0.07	-0.06	-0.05	-0.07
Need med	0.06	0.07	0.08	0.15	0.07	0.03	0.05	0.05	-0.01
Need move	0.15	0.17	0.15	0.25	0.15	0.11	0.1	0.1	0.08
Manda evac	0.06	0.06	-0.01	-0.05	0.28	0.26	0.32	0.28	0.48
Volun evac	-0.06	-0.05	-0.01	-0.04	0.26	0.18	0.23	0.23	0.26
Prev Exp D	-0.01	-0.05	-0.01	0.03	-0.11	-0.19	-0.1	-0.05	-0.31
Flood C	1	0.79	0.47	0.55	0.09	0.09	0.06	0.1	0
Elec C	0.79	1	0.47	0.55	0.12	0.06	0.05	0.07	0.06
Travel C	0.47	0.47	1	0.69	0.07	0.07	0.09	0.08	-0.05
Place C	0.55	0.55	0.69	1	0.04	0.01	0.04	0.03	-0.1
Safety P	0.09	0.12	0.07	0.04	1	0.44	0.51	0.44	0.47
Flood D	0.09	0.06	0.07	0.01	0.44	1	0.5	0.42	0.42
Elec dur	0.06	0.05	0.09	0.04	0.51	0.5	1	0.63	0.41
Normal dur	0.1	0.07	0.08	0.03	0.44	0.42	0.63	1	0.37

Table 6: Post Michael Correlation: Table of correlation between observable features and latent features plus evacuation decision of Post Michael dataset. $c = \cos t$, p = prob, d = depth/duration.

4 Correlation Table (after exclusion)

Name	Flood C	Elec C	Travel C	Place C	Safe P	Flood D	Elec D	Norm D	Evac?
Age	0.18	0.09	0.03	0.17	-0.08	-0.09	-0.03	0.07	-0.04
Gender	0.12	0.05	-0.07	0.05	-0.02	-0.07	-0.12	-0.07	-0.05
Edu	0.15	0.08	0.02	0.07	0	-0.01	-0.08	0.03	0.09
Income	0.32	0.26	0.1	0.21	0.07	0.01	-0.05	-0.01	0.14
House struc	0.04	0.06	-0.02	-0.03	-0.04	-0.03	-0.16	-0.13	-0.03
Years in Res	0.15	0.06	0.03	0.1	-0.07	-0.06	-0.04	-0.08	-0.03
Dist to coast	0.02	-0.04	0.05	0.1	-0.26	-0.25	-0.1	-0.17	-0.25
Num vehicle	0.1	0.05	-0.01	0.07	-0.03	-0.01	0.06	0	0.02
Has pet	0.12	0.06	-0.03	0.06	-0.06	-0.02	0.03	0.01	-0.03
Family size	-0.03	0.01	0.08	0.02	0.07	0.06	0.07	0	0
Child [0,5]	-0.02	0.06	0.05	0.06	0.13	0.02	0.02	-0.04	-0.02
Child [6,12]	0.02	0.03	0.09	0.03	0.01	0.05	0	0.06	0.01
Child [13,18]	0.1	0.04	0.03	0.05	0.04	0.04	0.1	0.05	0.06
Elder 65 up	-0.05	-0.02	-0.05	0	-0.05	0	0.03	0	-0.07
Need med	-0.12	-0.04	0.02	0.01	0.08	0.06	-0.04	0	0.08
Need move	-0.13	-0.06	0.01	-0.09	0.04	0.05	-0.09	-0.03	0.08
Manda evac	0.03	0	-0.02	-0.06	0.18	0.21	0.07	0.14	0.19
Volun evac	-0.01	-0.03	0.03	-0.02	0.17	0.23	0.05	0.13	0.11
Prev Exp D	-0.01	-0.06	-0.08	0.05	-0.01	-0.1	0.05	0.09	-0.06
Flood C	1	0.55	0.12	0.39	-0.01	-0.03	-0.04	0.03	0.01
Elec C	0.55	1	0.13	0.34	0.06	0.06	-0.05	-0.02	0.07
Travel C	0.12	0.13	1	0.23	0.05	0.12	0.03	0.03	-0.03
Place C	0.39	0.34	0.23	1	0.04	0.04	-0.01	0.08	-0.05
Safety P	-0.01	0.06	0.05	0.04	1	0.37	0.39	0.44	0.58
Flood D	-0.03	0.06	0.12	0.04	0.37	1	0.32	0.3	0.29
Elec dur	-0.04	-0.05	0.03	-0.01	0.39	0.32	1	0.53	0.27
Normal dur	0.03	-0.02	0.03	0.08	0.44	0.3	0.53	1	0.29

Table 7: Pre Florence Correlation: Table of correlation between observable features and latent features plus evacuation decision of Pre Florence dataset. $c = \cos t$, p = prob, d = depth/duration.

Name	Travel C	Place C	Safe P	Flood D	Elec D	Norm D	Evac?
Age	0	0.07	-0.02	-0.09	-0.01	0.01	-0.03
Gender	-0.01	0.06	-0.1	-0.08	-0.05	-0.09	-0.09
Edu	-0.01	0.08	-0.03	-0.07	0.02	0	0.02
Income	0.06	0.12	-0.05	-0.14	0	-0.04	-0.02
House struc	-0.06	-0.08	-0.02	0.03	-0.11	-0.07	0.05
Years in Res	0.03	0.06	-0.03	-0.06	0.03	0	-0.06
Dist to coast	0.03	0.24	-0.25	-0.29	-0.22	-0.3	-0.46
Num vehicle	0.05	0.15	0	-0.11	0.07	0.03	-0.09
Has pet	0	0.15	0.01	-0.04	0.07	0.09	-0.08
Family size	0.09	0.01	0.08	0.06	0.06	0.04	-0.03
Child [0,5]	-0.02	0.03	-0.01	0	-0.01	-0.05	-0.04
Child [6,12]	0.09	-0.02	0.12	0.04	0.03	0.03	0.06
Child [13,18]	0.07	0.05	0	-0.04	0.03	0.03	-0.08
Elder 65 up	0.01	0	0.03	0.03	0.01	0	-0.02"
Need med	0	0.04	0.08	0.03	0.07	0.07	0.09
Need move	-0.07	-0.05	0.04	0.08	0.05	0.02	0.09
Manda evac	0	-0.19	0.23	0.25	0.16	0.19	0.44
Volun evac	0.03	-0.18	0.2	0.29	0.07	0.19	0.233
Prev Exp D	-0.02	0.2	-0.08	-0.19	-0.04	0	-0.26
Travel C	1	0.33	0.03	0.06	0.07	0.09	-0.11
Place C	0.33	1	-0.2	-0.22	-0.11	-0.1	-0.48
Safety P	0.03	-0.2	1	0.44	0.32	0.37	0.39
Flood D	0.06	-0.22	0.44	1	0.38	0.35	0.41
Elec dur	0.07	-0.11	0.32	0.38	1	0.49	0.25
Normal dur	0.09	-0.1	0.37	0.35	0.49	1	0.3

Table 8: Post Florence Correlation: Table of correlation between observable features and latent features plus evacuation decision of Post Florence dataset. c = cost, p = prob, d = depth/duration.

Name	Flood C	Elec C	Travel C	Place C	Safe P	Flood D	Elec D	Norm D	Evac?
Age	-0.03	-0.09	0.09	-0.07	-0.03	-0.11	-0.04	0.04	-0.07
Gender	0	0.02	0.02	-0.02	0.06	0.05	0.01	0.06	0.07
Edu	0.08	0.05	0.02	0.06	0.03	-0.03	0.02	0.06	-0.01
Income	0.2	0.09	0.11	0.11	0	0.04	-0.01	0	0.06
House struc	0.03	0.04	-0.02	0.03	-0.06	0	-0.04	0	-0.05
Years in Res	0	-0.02	0.09	0	-0.07	-0.07	-0.09	-0.06	-0.11
Dist to coast	0	-0.05	0.03	0.08	-0.22	-0.29	-0.23	-0.27	-0.28
Num vehicle	0.08	0.05	0.03	0.09	-0.06	-0.02	0	-0.07	-0.12
Has pet	0.04	-0.01	-0.05	-0.04	-0.01	0.04	0.02	-0.03	-0.03
Family size	0.06	0.1	0.09	0.05	0.03	0.08	0.02	-0.03	0
Child [0,5]	0.01	0.04	0.06	-0.01	-0.05	0.06	0.02	-0.07	-0.02
Child [6,12]	0.08	0.07	0.05	0	0.05	0.01	-0.04	-0.05	0.01
Child [13,18]	0.02	0.03	0.04	0.04	0.04	0.05	0.01	0.06	-0.02
Elder 65 up	0.01	0.05	0.04	-0.04	-0.03	-0.09	-0.07	-0.05	-0.07
Need med	-0.04	0	-0.01	0.03	0.05	0.01	0.05	0.03	0
Need move	0.02	0.07	0.01	0.05	0.15	0.11	0.11	0.1	0.11
Manda evac	0.03	0.01	-0.07	-0.08	0.27	0.25	0.31	0.27	0.47
Volun evac	-0.07	-0.02	0.05	-0.02	0.26	0.16	0.24	0.23	0.26
Prev Exp D	0.08	-0.01	0.01	0.04	-0.11	-0.21	-0.09	-0.05	-0.3
Flood C	1	0.69	0.03	0.2	0.06	0.03	0.03	0.07	-0.02
Elec C	0.69	1	0.07	0.24	0.07	0.1	0.02	0.07	0.03
Travel C	0.03	0.07	1	0.15	-0.01	0.02	0.09	0.11	-0.14
Place C	0.2	0.24	0.15	1	-0.09	-0.08	-0.05	-0.05	-0.24
Safety P	0.06	0.07	-0.01	-0.09	1	0.44	0.51	0.45	0.47
Flood D	0.03	0.1	0.02	-0.08	0.44	1	0.51	0.42	0.43
Elec dur	0.03	0.02	0.09	-0.05	0.51	0.51	1	0.64	0.4
Normal dur	0.07	0.07	0.11	-0.05	0.45	0.42	0.64	1	0.38

Table 9: Post Michael Correlation: Table of correlation between observable features and latent features plus evacuation decision of Post Michael dataset. c = cost, p = prob, d = depth/duration.

4.1 Post Florence Decision Map

Figure 1: A map of participants' decision from NC in Post Florence Data. The Dot represents the number of participants from each location. The color represents proportion of people's decision.

Figure 2: A map of participants' decision from SC in Post Florence Data. The Dot represents the number of participants from each location. The color represents proportion of people's decision.

4.2 Post Michael Decision Map

Figure 3: A map of participants' decision from FL in Post Michael Data.

Figure 4: A map of participants' decision from GA in Post Michael Data.

5 Results

- For Pre Florence, the evacuation decision is determined based on evacuation probability. If the probability is greater than 0.5, we assume that the participant will evacuate.
- For Post Florence, two latent features/questions are not in the dataset which are flood cost and traveling cost. The reason is that at the beginning we believed that these two questions are inappropriate to ask participante after the hurricane. Later, we decide to ask participant anyways to see how the answer look like in term of both the value and how well it would help the model and other methods. These two are filled it in using Pre Florence data. There are two methods that we present in this supplementary material. One is using median of income group. Another is using regression based on observable features. These different methods are reflected in Filled Latent column.
- For Grid Search of within dataset. The range of safety cost is [0,1500] with step size of 5 and the range of noise cost is [0,1000]. The smaller noise cost is to speed up the search for 10-CV. For across data, the range of both safety and noise is [0,1500].
- Prob columns of data transforms is the rule to transform 7 likely scale to number. There are three rules as follow:
 - Uniform (Unif): (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.825)
 - Normal (Norm): (0.05, 0.13, 0.32, 0.5, 0.68, 0.87, 0.95)
 - Mixed (Mix): (0.05, 0.2125, 0.375, 0.5, 0.625, 0.7875, 0.95)
- Below are the meaning of short-hand words in the results section
 - $-\gamma$ is discount factor. It applies to electricity lost duration and normal condition return duration to scale down the length of the duration using geometric series formula.
 - None = No Group, Income = Income Group, Prev E. = Previous Experience Group, Evac N = Evacuation Notice Group.
 - N and L of either Grid search or Bayesian Inference stands for No transform and Log transform of utility value.
 - obs = observable features, latent = latent features, All = every features mentioned in the data section plus infomation from TV/Radio and Social Media.

5.1 Within Data results

5.1.1 Pre Florence: Error

	11.4	į	21.95	5.72	22.75	4.87	22.51	5.77	21.43	5.04	21.71	5.16	22.54	ν. α
Logistic Regression	sqO	Lat	21.15	5.07	21.43	5.53	20.32	4.7	20.87	4.73	22.2	5.4	22.47	27 28
ogistic R	+0	Į.	20.56	6.03	20.84	6.03	20.01	5.52	21.12	5.74	20.84	5.89	20.56	5 74
ļ	- P	ŝ	32.58	6.95	32.58	6.95	32.58	6.95	32.58	6.95	32.58	6.95	32.58	6 05
	11.4	Ţ	23.93	6.12	23.93	6.12	23.93	6.12	23.93	6.12	23.93	6.12	23.93	6 13
Decision Tree	$^{\rm sqO}$	Lat	26.4	99.7	26.4	99.7	26.4	99.7	26.4	99.7	26.4	2.66	26.4	7 66
Decisio	+6	T G	21.95	98.9	21.95	98.9	21.95	98.9	21.95	98.9	21.95	98.9	21.95	98 9
	Obc	200	34.11	6.65	34.11	6.65	34.11	6.65	34.11	6.65	34.11	6.65	34.11	655
	v E	П	26.36	7.79	26.08	_∞	26.36	7.79	26.36	7.79	25.81	8.2	25.81	c
-	Prev	Z	23.13	4.76	22.85	6.28	23.41	4.96	23.13	5.88	20.91	4.65	20.32	7.7
Bayesian Inf Model	me	J	23.83	6.3	23.55	6.16	23.83	6.3	23.83	6.3	23.58	6.04	23.58	709
ayesian	Income	z	21.43	5.37	20.87	4.73	21.71	5.79	21.15	4.53	21.12	4.93	20.28	3 71
ш	None	П	24.94	7.97	24.97	8.08	25.22	8.23	25.22	8.23	24.94	8.88	25.22	8 03
	No	z	23.41	5.13	21.74	5.57	23.41	5.13	22.57	5.66	21.74	4.74	20.94	6.71
	v E	П	26.08	7.78	25.25	7.36	24.7	5.93	25.25	5.64	24.7	6.22	23.31	2 80
_	Prev	z	26.54	8.94	27.89	8.33	25.74	8.16	23.24	7.02	27.09	7.45	27.13	7 83
ch Mode	me	ы	25.81	8.09	26.08	7.89	25.01	7.74	25.01	7.29	26.61	8.52	25.77	7
Grid Search Model	Income	z	26.23	7.74	26.23	2.96	26.78	7.73	25.43	6.81	26.54	7.01	25.67	6 93
_	None	П	24.45	7.72	24.17	7.52	25.28	9.9	25.56	6.51	23.37	7.16	24.73	6.33
	No	z	25.67	9.13	26.78	8.06	24.91	8.76	24.35	86.9	25.18	8.09	25.39	7.67
m.	č	<i>-</i>	-	-	, L	ce.	-	7) L	ce.		7	, 1	
Data Transform	Drob	1 100	J: TI	OIIII	Jimil	Omi	Mound	INOLIII	N	INOLIII		MIX	7.4	TATTY
Data	Filled	Latent	Mosso	ivone	Mono	None	Mono	ivone	Mono	anon	Mone	ivone	Mono	INOME

Table 10: A table of the error rate for each method with different setup of 10-CV of Pre Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.2 Pre Florence: Recall

1 T L 0.38 (Dayesian	Bayesian Inf Model	el			Decision Tree	ı Tree		Γο	Logistic Regression	egressio	_ u
0.38 0.38	Prev E	None	Inc	Income	Prev	, E	340	+01	Obs	11.4	340	+0	Obs	11.4
0.38	l Z	L Z	z	L	z	Ц	S C	ğ	Lat	=	200	į	Lat	
	0.34 0.36	0.55 0.56	6 0.54	0.63	0.53	0.55	0.28	0.54	0.5	0.53	0.01	0.52	0.53	0.49
0.2 - 0.12 - 0	0.2 0.1	0.14 0.18	8 0.16	0.2	0.18	0.18	0.1	0.17	0.19	0.19	0.04	0.22	0.22	0.2
0.32 0.37 0.	0.32 0.38	0.55 0.56	6 0.55	0.63	0.53	0.56	0.28	0.54	0.5	0.53	0.01	0.5	0.52	0.47
0.13	0.16 0.11	0.13 0.18	8 0.17	0.2	0.19	0.18	0.1	0.17	0.19	0.19	0.04	0.2	0.22	0.2
0.39	0.39 0.38	0.55 0.56	6 0.54	0.63	0.53	0.55	0.28	0.54	0.5	0.53	0.01	0.52	0.54	0.5
$0.18 \mid 0.16 \mid 0.$	0.21 0.09	0.14 0.18	8 0.16	0.2	0.18	0.18	0.1	0.17	0.19	0.19	0.04	0.22	0.22	0.22
0.4	0.43 0.38	0.55 0.56	6 0.55	0.63	0.52	0.55	0.28	0.54	0.5	0.53	0.01	0.5	0.54	0.51
0.19 0.18 0.	0.19 0.09	0.13 0.18	8 0.17	0.2	0.18	0.18	0.1	0.17	0.19	0.19	0.04	0.2	0.21	0.22
0.37	0.36 0.38	0.52 0.57	7 0.54	0.63	0.53	0.56	0.28	0.54	0.5	0.53	0.01	0.49	0.51	0.48
0.2 0.12 0.	0.19 0.09	0.15 0.19	9 0.15	0.2	0.17	0.19	0.1	0.17	0.19	0.19	0.04	0.2	0.21	0.22
0.39	0.34 0.39	0.54 0.56	0.56	0.63	0.53	0.56	0.28	0.54	0.5	0.53	0.01	0.5	0.51	0.48
$0.19 \mid 0.16 \mid 0.$	0.16 0.09	0.17 0.19	9 0.15	0.2	0.17	0.19	0.1	0.17	0.19	0.19	0.04	0.2	0.21	0.21

Table 11: A table of the recall for each method with different setup of 10-CV of Pre Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.3 Pre Florence: Precision

Data	Data Transform	m H		U	Grid Search	rch Mode	el			Ř	Bayesian Inf Model	Inf Mod	lel			Decision	n Tree		Ľ	Logistic Regression	egressio	no
Filled	Duch	ě	No	None	Incom	ome	Prev	v E	None	ne	Inc	Income	Prev	۷ E	Obo	+01	Obs		240	+01	Ops	11.4
Latent	1 100	<u>`</u>	z	Ч	z	П	z	П	z	П	Z	П	z	П	S	ig.	Lat	II V	SOO	La La	Lat	
N ₀	Jimil	-	0.61	99.0	0.62	0.62	0.61	99.0	0.62	0.59	0.67	9.0	0.62	0.57	0.43	29.0	0.56	0.62	0.01	29.0	0.64	0.63
allon		-	0.25	0.21	0.26	0.17	0.1	0.24	0.13	0.2	0.15	0.18	0.16	0.19	0.25	0.22	0.26	0.21	0.05	0.25	0.23	0.24
None	TITE	, a	0.59	99.0	0.62	0.61	0.59	0.67	99.0	0.59	89.0	9.0	0.63	0.57	0.43	0.67	0.56	0.62	0.01	99.0	0.64	0.61
alloni	IIIIO	. v.	0.24	0.22	0.27	0.17	0.09	0.23	0.16	0.2	0.12	0.18	0.17	0.19	0.25	0.22	0.26	0.21	0.05	0.25	0.24	0.23
Į.	Manne	-	0.64	0.64	0.61	0.62	0.61	99.0	0.62	0.59	0.67	9.0	0.61	0.57	0.43	29.0	0.56	0.62	0.01	89.0	99.0	9.0
inone	INOLIII	-	0.18	0.29	0.08	0.27	0.12	0.16	0.13	0.2	0.15	0.18	0.15	0.19	0.25	0.22	0.26	0.21	0.05	0.25	0.25	0.23
None	Money	N.	0.63	0.63	9.0	0.62	29.0	0.65	0.64	0.59	99.0	9.0	0.62	0.57	0.43	29.0	0.56	0.62	0.01	0.65	0.64	0.62
inome	INOLIII	. v.	0.24	0.3	0.24	0.27	0.14	0.17	0.16	0.2	0.16	0.18	0.17	0.19	0.25	0.22	0.26	0.21	0.05	0.25	0.24	0.24
NI.	M.:	-	0.63	89.0	0.59	0.61	0.59	89.0	99.0	0.59	89.0	9.0	69.0	0.57	0.43	29.0	0.56	0.62	0.01	99.0	0.62	0.64
INOME	MIX	4	0.16	0.21	0.25	0.17	0.11	0.22	0.19	0.2	0.14	0.19	0.12	0.19	0.22	0.22	0.26	0.21	0.05	0.26	0.25	0.24
None	Mix	O.R.	9.0	0.68	9.0	0.62	9.0	0.72	0.67	0.58	69.0	9.0	69.0	0.57	0.43	29.0	0.56	0.62	0.01	0.67	0.63	0.61
INOTE	MIN		0.23	0.22	0.23	0.16	0.14	0.18	0.22	0.5	0.13	0.19	0.16	0.19	0.22	0.22	0.26	0.21	0.02	0.25	0.25	0.23

Table 12: A table of the precision for each method with different setup of 10-CV of Pre Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.4 Pre Florence: F-score

Data	Data Transform	m.		Ω Ω	Grid Search	ch Mode	el			Ba	Bayesian Inf Model	nf Mod	el			Decisio	Decision Tree		Lo	Logistic Regression	egressio	u
Filled	Duch	7	None	ne	Incon	ome	Prev	迅	None	ae	Income	me	Prev	A E	- 24	+0	Obs	-17	240	+0	Obs	17
Latent	1 100	`	z	L	z	'n	z	L	z	ч	z	L	z	ы	S	Tar.	Lat		S	Į,	Lat	
N.	J: TI	-	0.4	0.5	0.38	0.47	0.42	0.45	0.57	0.57	0.58	9.0	0.56	0.55	0.33	0.58	0.52	0.55	0.01	0.57	0.57	0.54
TACITO	IIII O	4	0.21	0.12	0.2	0.12	0.16	0.11	0.12	0.16	0.15	0.16	0.15	0.15	0.13	0.16	0.2	0.19	0.04	0.22	0.23	0.21
200	J: TI) H	0.4	0.51	0.39	0.45	0.39	0.47	0.59	0.56	0.59	9.0	0.56	0.55	0.33	0.58	0.52	0.55	0.01	0.56	0.57	0.53
INOME		. v.	0.2	0.13	0.19	0.13	0.13	0.12	0.12	0.16	0.15	0.16	0.16	0.16	0.13	0.16	0.2	0.19	0.04	0.22	0.22	0.2
N ₀	N	-	0.47	0.44	0.4	0.47	0.45	0.48	0.57	0.56	0.58	9.0	0.56	0.55	0.33	0.58	0.52	0.55	0.01	0.58	0.59	0.54
TACITO	INOLIII	4	0.17	0.18	0.16	0.18	0.17	0.1	0.12	0.17	0.15	0.16	0.15	0.15	0.13	0.16	0.2	0.19	0.04	0.22	0.22	0.22
Noso	Nonn	о И	0.47	0.44	0.43	0.47	0.51	0.47	0.58	0.56	0.59	9.0	0.56	0.55	0.33	0.58	0.52	0.55	0.01	0.56	0.58	0.55
PIONI	INOITII		0.19	0.18	0.19	0.19	0.15	0.1	0.12	0.17	0.15	0.16	0.16	0.15	0.13	0.16	0.2	0.19	0.04	0.21	0.22	0.22
N ₀	7.5	-	0.47	0.52	0.39	0.45	0.42	0.48	0.57	0.57	0.59	9.0	0.58	0.56	0.33	0.58	0.52	0.55	0.01	0.56	0.55	0.54
TAOM	YIIY	-	0.16	0.13	0.19	0.13	0.14	0.1	0.15	0.17	0.14	0.16	0.14	0.16	0.13	0.16	0.2	0.19	0.04	0.22	0.22	0.22
Noso	Miss	, H	0.44	0.47	0.42	0.47	0.42	0.49	0.59	0.56	0.61	9.0	0.59	0.56	0.33	0.58	0.52	0.55	0.01	0.57	0.56	0.53
MOHE	MIN	56.	0.21	0.12	0.19	0.13	0.13	0.1	× 1 0	0 17	0 14	0.16	75	0 16	0 13	0.16	0.0	0 10	2	000	000	0.91

Table 13: A table of the F-score for each method with different setup of 10-CV of Pre Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.5 Post Florence: Error

	11.4	Ç	6.65	3.44	6.22	3	6.36	3.37	6.22	3	8.9	3.08	6.65	3.09	6.65	3.51	6.51	3.17	6.65	3.51	6.36	3.16	8.9	3.22	6.51	3.17
Logistic Regression	Ops	Lat	96.6	4.26	10.13	4.56	9.84	4.17	10.13	4.56	9.84	4.39	10.13	4.56	10.27	4.58	10.27	4.58	10.13	4.56	10.27	4.58	10.13	4.76	10.13	4.56
gistic Re	+	Fa	10.69	4.62	10.55	4.3	10.69	4.62	10.4	4	10.41	4.34	10.41	4.29	12.14	5.71	11.85	6.32	11.85	5.78	11.85	6.01	11.57	6.1	11.71	6.38
Lo	Obe	200	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41	13.14	3.41
	11.4	1	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33	7.23	4.33
n Tree	Obs	Lat	9.11	4.5	9.11	4.5	9.11	4.5	9.11	4.5	9.11	4.5	9.11	4.5	8.97	4.49	8.97	4.49	8.97	4.49	8.97	4.49	8.97	4.49	8.97	4.49
Decision Tree	+01	3	7.36	1.99	7.36	1.99	7.36	1.99	7.36	1.99	7.36	1.99	7.36	1.99	8.23	4.22	8.23	4.22	8.23	4.22	8.23	4.22	8.23	4.22	8.23	4.22
	Ohe	e COO	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41	16.49	4.41
	v E	П	6.07	2.55	6.07	2.55	6.07	2.55	6.21	2.48	6.07	2.55	6.07	2.55	6.07	2.55	6.07	2.55	5.92	2.33	6.07	2.55	6.07	2.55	6.07	2.55
-	Prev	z	7.52	3.68	7.95	4.02	7.37	3.33	7.81	3.83	99.7	3.7	7.81	3.83	7.95	3.45	99.7	3.37	7.95	3.32	99.2	3.37	7.81	3.31	99.7	3.51
nf Mode	me	Г	7.37	2.71	99.2	2.49	7.37	2.71	99.2	2.49	7.52	2.91	7.52	2.91	7.95	3.02	99.7	2.84	7.51	2.73	7.8	3.16	7.8	2.77	99.7	2.84
Bayesian Inf Model	Income	z	10.4	3.37	10.27	3.8	10.27	3.55	10.13	3.71	10.11	3.64	9.84	3.7	10.27	4.83	10.4	4.49	10.27	4.83	10.4	4.49	10.56	4.71	10.55	4.56
Ba	1e	П	8.53	3.91	8.82	3.79	8.67	3.76	8.82	3.79	8.39	4.38	8.24	3.89	8.39	4.22	8.39	4.54	8.39	4.22	8.25	4.34	8.1	4.29	8.1	4.51
	None	z	11.99	3.77	11.7	3.85	11.84	3.82	11.41	3.66	11.41	4.48	11.56	4.95	11.56	5.14	11.7	4.67	11.41	4.78	11.7	4.67	10.98	5.37	11.12	4.35
	Ξ,	П	6.65	2.41	98.9	1.98	20.9	2.46	6.65	2.68	6.51	2.21	6.65	2.5	5.5	1.93	5.64	2.12	5.64	2.12	5.93	2.33	5.64	2.12	5.93	2.33
	Prev	z	9.38	3.62	99.7	3.51	9.23	4.27	7.23	4	60.6	3.93	7.52	3.87	99.8	3.55	7.37	3.11	60.6	3.14	7.08	2.95	8.95	3.12	6.94	3.42
h Mode	me	П	7.95	3.02	2.8	2.85	8.53	2.63	8:38	2.38	8.38	2.91	7.95	2.51	8.53	2.88	8.53	2.8	8:38	2.83	8.38	2.91	8.09	2.72	8.53	2.96
Grid Search Model	Income	z	10.25	3.52	9.4	2.87	10.54	3.36	89.6	2.77	10.25	4.13	9.82	5.66	10.25	3.02	9.38	2.77	10.82	3.36	8.95	2.89	96.6	3.01	9.24	2.84
Ŗ	e	П	69.6	4.4	9.26	4.56	86.6	4.63	8.82	4.42	69.6	3.84	8.25	3.83	9.11	4.66	9.54	4.66	9.54	4.67	9.54	4.66	7.81	4.07	9.4	4.46
	None	z	10.39	3.74	96.6	4.13	10.11	4	10.39	4.32	9.82	4.21	10.25	4.07	10.83	3.71	29.6	3.76	10.11	3.88	96.6	4.67	10.54	3.75	9.82	3.42
m	ì	`	-	7)		,	-	N.		-	7) i			٦.	, H		-	٦	, L		-	7	N.	
Data Transform	Droh	1 100	J: TI	OIIII	J:II	O	Monn	INOITII	Money	INOLIII	Miss	VIIV	J.V	MIX	J: TI	O	TIMIT	O	Money	INOLIII	Menne	INOLIII	N. G	MIX	Miss	MIX
Data	Filled	Latent	2	dno.j5	Č	dnoip	2	dnoip	2	dnoip	2.0.0	dnoip	2	dnoib	D	neg	D	Ireg	D	200	Č	Deg	D	Deg	D	Reg

Table 14: A table of the error rate for each method with different setup of 10-CV of Post Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.6 Post Florence: Recall

	11.4		69.0	0.14	J.71	0.14	0.71	0.14	0.71	0.14	89.0	0.14	69.0	0.14	0.7	0.14	0.7	0.14	0.7	0.14	0.7	0.14	69.0	0.14	0.7	0.14
ession	SC	+;		14 0	_	_			_	_								_		_						
Regre	Ops	Lat	0.56	0.1	0.55	0.14	0.56	0.14	0.55	0.14	0.56	0.16	0.56	0.16	0.55	0.14	0.55	0.14	0.55	0.14	0.55	0.14	0.55	0.16	0.55	0.16
Logistic Regression	+	Fa	0.5	0.2	0.52	0.15	0.5	0.2	0.53	0.15	0.52	0.2	0.52	0.19	0.47	0.19	0.53	0.25	0.5	0.21	0.5	0.21	0.51	0.23	0.51	0.26
ř	, d	S	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16	0.33	0.16
	V 11	IIV.	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12	0.73	0.12
n Tree	Ops	Lat	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16	0.62	0.16
Decision Tree	+01	3	99.0	0.12	99.0	0.12	99.0	0.12	99.0	0.12	99.0	0.12	99.0	0.12	0.63	0.14	0.63	0.14	0.63	0.14	0.63	0.14	0.63	0.14	0.63	0.14
	J.P.	S	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0	0.3	80.0
	E	П	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11	0.74	0.11
le	Prev	z	9.0	0.17	0.61	0.18	9.0	0.16	0.61	0.18	9.0	0.16	0.62	0.17	0.59	0.16	0.62	0.15	9.0	0.16	0.62	0.15	9.0	0.14	0.62	0.12
Bayesian Inf Model	me	L,	29.0	0.12	99.0	0.12	89.0	0.12	99.0	0.13	69.0	0.12	69.0	0.14	99.0	0.11	0.67	0.11	89.0	0.1	99.0	0.11	89.0	0.11	69.0	0.11
resian I	Income	z	0.47	0.13	0.49	0.18	0.48	0.15	0.5	0.16	0.48	0.15	0.51	0.19	0.46	0.16	0.48	0.13	0.46	0.16	0.48	0.13	0.45	0.16	0.47	0.16
Bay	е	П	0.59	0.13	0.59	0.13	0.59	0.13	0.59	0.13	0.65	0.17	0.63	0.12	0.62	0.13	0.61	0.14	0.62	0.13	0.62	0.14	0.65	0.17	0.65	0.17
	None	z	0.36	0.15	0.39	0.13	0.37	0.14	0.4	0.13	0.44	0.17	0.46	0.17	0.39	0.14	0.41	0.1	0.39	0.14	0.41	0.1	0.45	0.17	0.44	0.13
	E	L)	0.71	0.14	0.73	0.12	0.73	0.14	0.72	0.13	0.72	0.13	0.72	0.13	0.73	0.12	0.72	0.13	0.73	0.12	0.72	0.13	0.73	0.12	0.72	0.13
	Prev	z	69.0	0.16	2.0	0.17	69.0	0.17	0.71	0.15	0.71	0.13	69.0	0.16	0.7	0.13	69.0	0.13	0.7	0.13	0.7	0.13	2.0	0.13		0.13
Model	ne	L	0.7	_	0.7		0.7		0.7		0.69							_			0.7	_	0.7	0.11 (0.7	
Grid Search Model	Incom	_ z	0.65	0.13 (0.64	0.13 (0.65	0.13 (0.64	0.13 (0.68	0.12 (0.61	0.12 (0.62	0.12 (0.64 (0.13 (0.6	0.13	99.0	0.12 (0.63	0.12 (
Grid			0.56 0	0.15 0	0.58 0	0.15 0	H	0.15 0	0.57 0	0.14 0	0.57 0	0.14 0	0.59 0	0.13 0	0.62 0	0.14 0	0.58 0	0.16 0	9.0	0.15 0	0.58 0	0.16 0	0.66 0	0.17 0		0.16 0
	None	_																			L					
		Z	0.72	0.15	0.7	0.14	0.71	0.15	0.69	0.17	0.7	0.15	0.69	0.14	0.68	0.16		0.16	0.69	0.16	0.67	0.17	0.7	0.15		0.15
rm	č		-	-	5		-	-	0		-	-	2	.e.		-	0 2		-	-	5		-	-	, L	
Data Transform	Droh	1 100	Jimil	OIIII	J:II		Nome	INOLIII	None	INOLIII	1	MIIX	7	MIIX	J:II	OIIII	TIMIT	O	Monro	INOLIII	N	INOLIII	Y.	MILL	Miss	MIIX
Data	Filled	Latent	2	dnoip	2	Group	2	Group	2	dnois	2	droup	2	dnois	ב	neg	Dog	Reg	D	neg	Ę	neg	D.	Reg	Q	neg

Table 15: A table of the recall for each method with different setup of 10-CV of Post Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.7 Post Florence: Precision

u	11.4	į	0.84	0.15	0.85	0.15	0.84	0.15	0.85	0.15	0.84	0.15	0.84	0.15	0.83	0.15	0.84	0.15	0.83	0.15	0.85	0.15	0.84	0.15	0.84	0.15
egressio	Obs	Lat	0.73	0.16	0.73	0.16	0.73	0.15	0.73	0.16	0.74	0.15	0.73	0.16	0.73	0.16	0.73	0.16	0.73	0.16	0.73	0.16	0.73	0.16	0.73	0.16
Logistic Regression	+01	ğ	0.73	0.15	0.73	0.14	0.73	0.15	0.74	0.13	0.74	0.14	0.74	0.14	89.0	0.16	69.0	0.18	69.0	0.18	69.0	0.18	0.72	0.18	0.71	0.18
Lo	- A-C	ŝ	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24	0.57	0.24
	11.4	ī	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12	8.0	0.12
n Tree	Ops	Lat	0.77	0.13	0.77	0.13	0.77	0.13	0.77	0.13	0.77	0.13	0.77	0.13	0.78	0.12	0.78	0.12	0.78	0.12	0.78	0.12	0.78	0.12	0.78	0.12
Decision Tree	+0	Ę	0.83	0.18	0.83	0.18	0.83	0.18	0.83	0.18	0.83	0.18	0.83	0.18	0.81	0.14	0.81	0.14	0.81	0.14	0.81	0.14	0.81	0.14	0.81	0.14
	O.P.	S S	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24	0.49	0.24
	E .	П	0.84	0.1	0.84	0.1	0.84	0.1	0.83	0.1	0.84	0.1	0.84	0.1	0.84	0.1	0.84	0.1	0.85	0.1	0.84	0.1	0.84	0.1	0.84	0.1
el	Prev	z	98.0	0.11	0.82	0.16	98.0	0.11	0.83	0.15	0.85	0.12	0.82	0.15	0.82	0.12	0.81	0.15	8.0	0.15	0.81	0.15	0.82	0.12	0.83	0.11
Bayesian Inf Model	eme	Г	0.82	0.13	0.81	0.14	0.81	0.12	0.83	0.14	8.0	0.12	0.81	0.11	0.79	0.11	8.0	0.12	8.0	0.13	8.0	0.13	0.78	0.11	0.78	0.11
yesian	Income	z	0.73	0.18	0.73	0.18	0.73	0.18	0.75	0.14	0.74	0.19	0.74	0.18	0.78	0.24	0.77	0.19	0.78	0.24	0.77	0.19	92.0	0.23	0.74	0.22
B	ne	П	0.83	0.13	0.81	0.15	0.82	0.14	0.81	0.15	0.81	0.12	0.83	0.13	0.82	0.12	0.84	0.13	0.82	0.12	0.84	0.13	0.83	0.11	0.83	0.11
	None	z	69.0	0.22	0.73	0.24	69.0	0.22	0.74	0.24	0.7	0.18	0.7	0.23	0.75	0.25	0.72	0.21	0.75	0.24	0.72	0.21	0.75	0.24	0.74	0.23
	Œ	П	0.83	0.14	0.83	0.13	0.84	0.12	0.82	0.09	0.82	0.13	0.82	0.13	0.89	0.09	0.89	0.1	0.89	0.09	0.87	0.09	0.89	0.09	0.87	0.09
el	Prev	z	69.0	0.17	0.79	0.1	0.71	0.17	0.82	0.12	0.7	0.16	0.81	0.13	0.74	0.17	8.0	0.08	0.71	0.14	0.81	0.1	0.71	0.14	0.84	0.12
Grid Search Model	ome	П	92.0	0.14	0.77	0.12	0.73	0.14	0.73	0.14	0.74	0.13	92.0	0.12	0.75	0.13	92.0	0.13	0.74	0.14	0.74	0.12	0.75	0.13	0.73	0.14
rid Sear	Incon	z	89.0	0.14	0.71	0.12	0.67	0.14	0.69	0.12	0.69	0.14	0.7	0.12	0.67	0.16	0.71	0.17	99.0	0.17	0.72	0.15	89.0	0.17	0.71	0.17
D'	None	Т	8.0	0.14	0.81	0.14	0.79	0.16	0.85	0.12	0.78	0.15	0.85	0.13	0.79	0.13	0.81	0.14	0.79	0.13	0.81	0.14	0.83	0.11	8.0	0.12
	No	z	99.0	0.17	69.0	0.17	29.0	0.16	99.0	0.17	69.0	0.14	29.0	0.17	0.65	0.15	0.7	0.16	89.0	0.15	0.7	0.15	99.0	0.16	69.0	0.16
m.	č		-	-	,	. v.		4	, 14	. y.		7	O H	. v.	-	7	O H			4	S F	. y.	-	7	, H	C.B.
Data Transform	Droh	1 100	Jimil	OIIII	J:II	OIIII	Nomo	NOLIII	Monne	INOLIII	7.65.	MIX	Mix	MIIX	J: TI	OIIII	TIMIT	O	Monno	INOLIII	Mound	INOLIII	7. Cir.	TATTA	Miss	MIX
Data	Filled	Latent	2	dronb	č	dronb	2	dronb	2	dronb	2	dronb	2	dronb	D	200	D	Sau	D	200	D	Deg.	<u> </u>	Sau	D	Reg

Table 16: A table of the Precision for each method with different setup of 10-CV of Post Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.8 Post Florence: F-score

														•-						•				•-		
on	Δ11	111.7	0.75	0.12	0.76	0.12	0.76	0.12	0.76	0.12	0.74	0.11	0.75	0.12	0.75	0.12	0.76	0.12	0.75	0.12	0.76	0.12	0.74	0.12	0.76	0.12
egressi	Ops	Lat	0.62	0.14	0.62	0.14	0.63	0.13	0.62	0.14	0.63	0.14	0.62	0.14	0.61	0.13	0.61	0.13	0.62	0.14	0.61	0.13	0.62	0.14	0.62	0.14
Logistic Regression	+0.	ŝ	0.57	0.15	0.59	0.11	0.57	0.15	9.0	0.09	0.59	0.14	0.59	0.14	0.53	0.14	0.57	0.19	0.55	0.16	0.56	0.17	0.56	0.18	0.56	0.19
Log	Ohe	2	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18	0.41	0.18
	11 4	1117	0.75	60.0	0.75	60.0	0.75	60.0	0.75	0.09	0.75	60.0	0.75	0.09	0.75	60.0	0.75	60.0	0.75	60.0	0.75	60.0	0.75	60.0	0.75	60.0
Tree	Obs	Lat	29.0	0.1	29.0	0.1	29.0	0.1	29.0	0.1	0.67	0.1	29.0	0.1	29.0	60.0	29.0	60°C	0.67	0.09	29.0	60.0	29.0	60.0		
Decision Tree) +e.T	3	0.72	- 80.0	0.72	80.0	0.72	80.0	0.72	80.0	0.72	80.0	0.72	0.08	0.69	0.1	0.69	0.1) 69.0	0.1	0.69	0.1	69.0).1	0.69	0.1 (
	Ohe		0.36 0	0.13 0	0.36 0	0.13 0	0.36 0	0.13 0	0.36 0	0.13 0	0.36 0	0.13 0	0.36 0	0.13 0	0.36 0	0.13 (0.36 0	0.13 (0.36 0	0.13 (0.36 0	0.13 (0.36 0	0.13 (
)		_		_																				
	Prev E	Г	0.78	0.08	0.78	0.08	0.78	0.08	0.78	0.08	0.78	0.08	0.78	0.08	0.78	0.08	0.78	0.0	0.79	0.08	0.78	0.08	0.78	0.08	0.78	0.08
lel	Pr	Z	0.69	0.13	0.68	0.15	0.7	0.13	0.69	0.14	0.69	0.13	0.69	0.13	89.0	0.13	0.7	0.14	0.68	0.14	0.7	0.14	0.69	0.12	0.7	0.11
Inf Mod	Income	Г	0.73	0.08	0.72	0.07	0.73	0.08	0.72	90.0	0.73	0.08	0.73	0.07	0.71	0.08	0.72	0.08	0.73	0.08	0.72	0.08	0.72	0.08	0.73	0.08
Bayesian Inf Model	Inc	Z	0.57	0.15	0.57	0.16	0.57	0.15	0.59	0.13	0.58	0.16	9.0	0.17	0.58	0.18	0.58	0.14	0.58	0.18	0.58	0.14	0.56	0.17	0.57	0.17
Ba	ie	Г	89.0	60.0	29.0	80.0	29.0	80.0	29.0	80.0	0.71	0.13	0.71	60.0	0.7	0.11	0.7	0.11	0.7	0.11	0.7	0.11	0.72	0.13	0.72	0.13
	None	Z	0.46	0.15	0.49	0.14	0.47	0.15	0.51	0.14	0.53	0.16	0.55	0.18	0.5	0.16	0.52	0.12	0.5	0.16	0.52	0.12	0.56	0.19	0.54	0.15
	M	Г	0.75	0.09	0.77	80.0	0.77	0.1	92.0	0.09	92.0	0.1	0.75	0.09	8.0	80.0	0.79	0.09	0.79	0.08	0.78	0.1	0.79	0.08	0.78	0.1
	Prev	z	89.0	0.12	0.73	0.1	89.0	0.13	0.75	0.11	69.0	0.1	0.73	0.12	0.71	0.11	0.74	80.0	69.0	60.0	0.74	80.0	0.7	60.0	0.75	0.1
h Model	ne	Г	0.72		0.72	60.0	0.7	_	0.71	_	0.71	60.0	0.72	_		_			0.71	_	0.71		0.72	80.0	0.71	_
Grid Search	Incom	_ Z	0.65 (80.0	0.66	0.09	0.65	0.07	0.66	0.09	0.67	0.08	0.64 (0.08	0.64	0.11 (99.0	0.11 (0.62 (0.11 (0.68	0.11 (0.64 (0.11 (0.67	
Grid		. 7	0.64 0	0.08 0	0.66 0		0.63 0	0.09 0	0.66 0	0.09 0	0.64 0	0.08 0	0 69.0	0.09 0	0.68 0	0.1 0	0.65 0		0.66 0	0.1 0	0.65 0		0.73 0	$0.13 \mid 0$	0.66 0	0.1 0
	None	Ι				1 0.1	_				H			_			H	9 0.1			L	1 0.1				
		Z	0.67	0.0	0.68	0.1	0.67	0.0	99.0	0.12	0.68	0.00	0.67	0.1	0.65	0.08	0.68	0.0	0.67	0.0	0.67	0.11	99.0	0.0	0.67	0.09
u.	ć	_	-	-	N.	ce.	-	-	0	. w.	-	Т	2	ce.	·	Т.	2		-	-	5	ce.	-	-	2	ce.
Data Transform	Proh	100	Jimil	OIIII	J: ~II		Manne	INOLIII	Mound	INOLIII	7.5	MIX	7.65.5	MIIX	J:II	Omi	Jimil	O	Mound	INOLIII	N.	INOLIII	Miss	MIX	Miss	MIX
Data '	Filled	Latent	2	dnois	2	dronb		dronb	2	dnois		dronb	2	droip	2	neg g	0	Treg	Q	neg	2	Deg	D	neg Leg	Q	Reg

Table 17: A table of the F-score for each method with different setup of 10-CV of Post Florence dataset. The upper number is mean and the lower number is standard derivation.

5.1.9 Post Michael: Error

Logistic Regression	Obs	Lat	11.06 7.98	3.85 3.42	11.06 8.16	3.85 3.42	11.06 8.16	3.85 3.53	11.25 8.34	4.16 3.52	10.52 7.98	3.7 3.42	10.89 7.8	4.28 3.99
ogistic R	101	Tar.	10.34	4.18	10.34	4.18	10.34	4.18	10.52	4.07	10.16	3.41	9.79	3.41
Д	<i>3</i> 40	ŝ	13.79	4.21	13.79	4.21	13.79	4.21	13.79	4.21	13.79	4.21	13.79	4.91
	IIV	II.C	10.71	3.49	10.71	3.49	10.71	3.49	10.71	3.49	10.71	3.49	10.71	3 10
on Tree	ops	Lat	9.62	2.99	9.62	2.99	9.62	2.99	9.62	2.99	9.62	2.99	9.62	2 99
Decision	+c I	ž	9.26	3.38	9.26	3.38	9.26	3.38	9.26	3.38	9.26	3.38	9.26	33.30
	O.P.	S	14.53	4.22	14.53	4.22	14.53	4.22	14.53	4.22	14.53	4.22	14.53	4 99
	Prev E	ı	9.22	2.74	9.43	3.02	9.25	2.74	9.43	3.02	9.22	2.74	9.43	3.09
	Pre	z	8.89	3.01	8.7	3.15	8.71	2.93	8.52	3.18	8.35	2.45	8.71	2 03
ıf Mode]	Income	П	10.17	2.88	10.71	2.2	86.6	2.88	10.53	3.08	10.17	2.75	10.17	3.94
Bayesian Inf Model	Inc	z	11.8	4.63	12.34	4.68	11.98	4.94	12.34	4.68	11.07	4.87	11.43	4 11
Ba	ne	П	10.89	2.41	11.43	5.69	10.89	2.41	11.61	2.42	10.7	3.01	10.7	2 15
	None	z	11.43	5.28	11.8	4.71	11.43	4.85	11.43	4.61	11.43	ro	11.43	4.61
	rev E	П	8.16	2.72	2.98	2.11	8.34	2.43	8.34	2.28	8.53	2.08	8.16	1 03
1	Pre	z	8.71	3.82	8.71	2.69	8.71	3.82	8.35	3.24	8.17	3.67	8.71	3.07
ch Mode	Income	П	10.53	2.68	10.7	3.86	10.53	3.51	10.7	3.46	10.89	3.32	11.25	60
Grid Search Model	Inc	z	11.25	4.17	11.98	5.02	11.44	4.7	11.62	4.95	11.43	4.85	9.98	4 22
ن ا	None	Ŋ	8.6	2.99	8.6	2.86	10.16	2.97	8.6	2.86	86.6	2.87	10.17	cc
	ĭ	z	8.6	3.45	8.6	3.56	86.6	3.86	9.62	4.29	8.6	3.86	9.26	25 27.
uı.	č	_	-	-	, 14		-	4	, 14		-	4	, H	
Data Transform	4ºªd	700	J: TI	OIIII	J: TI	OIIII	Money	INOFILL	N	INOLIII		MIX	7.41:2.5	MIX
Data	Filled	Latent	N	апом	Moss	апон	Mosso	ыопе	N.	апон	N.	ыопе	N	None

Table 18: A table of the error rate for each method with different setup of 10-CV of Post Michael dataset. The upper number is mean and the lower number is standard derivation.

5.1.10 Post Michael: Recall

Data	Data Transform	m		ਲੂ	Grid Search	ch Model	el			Ba	Bayesian Inf Model	Inf Mod	el			Decision	n Tree		Ļ	Logistic Regression	egressic	uc
Filled	Duch	ì	No	None	Incom	ome	Prev	м Е	None	ne	Income	me	Prev	ΛE	O.A.O.	+o 1	Obs		- A-O	+01	Obs	1
Latent	1 100	<u></u>	z	L	z	П	z	Ы	z	ы	z	ы	z	ы	S	Fa	Lat	TV.	S	Į,	Lat	
No.	TITE	-	0.63	0.59	0.65	0.61	0.7	89.0	0.51	0.71	0.5	0.73	0.67	0.73	0.51	0.73	0.73	0.73	0.37	0.55	0.54	0.67
NOH	OIIII	7	0.12	0.12	0.11	0.13	0.15	0.15	0.16	0.1	0.14	0.12	0.15	0.15	0.15	0.12	0.12	0.17	0.15	0.15	0.11	0.18
Z	Jimil	, L	0.62	0.59	0.61	0.58	0.75	89.0	0.5	0.7	0.49	0.71	89.0	0.73	0.51	0.73	0.73	0.73	0.37	0.55	0.54	0.67
PION	OIIII	. e.	0.12	0.12	0.12	0.13	0.09	0.15	0.16	0.12	0.15	0.09	0.18	0.15	0.15	0.12	0.12	0.17	0.15	0.15	0.11	0.18
No.	Monne	-	0.62	0.59	0.65	9.0	0.7	89.0	0.51	0.71	0.5	0.73	89.0	0.73	0.51	0.73	0.73	0.73	0.37	0.55	0.54	0.66
NOH	INOLIII	7	0.12	0.12	0.11	0.09	0.15	0.15	0.15	0.1	0.14	0.09	0.15	0.15	0.15	0.12	0.12	0.17	0.15	0.15	0.11	0.18
Nose.	Mound	, H	0.63	0.59	0.64	0.57	0.73	89.0	0.52	0.7	0.49	0.71	69.0	0.73	0.51	0.73	0.73	0.73	0.37	0.55	0.54	99.0
PION	INOITII		0.12	0.12	0.11	0.13	0.14	0.15	0.16	0.11	0.15	0.08	0.17	0.15	0.15	0.12	0.12	0.17	0.15	0.15	0.11	0.18
Z S	7 di	-	0.64	0.61	0.65	0.61	0.72	0.67	0.51	89.0	0.54	0.73	0.7	0.73	0.51	0.73	0.73	0.73	0.37	0.57	0.57	0.68
anon	MIX	-	0.11	0.1	0.12	0.11	0.13	0.14	0.11	0.11	0.17	0.09	0.13	0.15	0.15	0.12	0.12	0.17	0.15	0.14	0.1	0.18
None	Miss	n N	0.64	0.65	0.65	9.0	0.71	0.67	0.53	69.0	0.55	0.73	89.0	0.73	0.51	0.73	0.73	0.73	0.37	0.58	0.56	0.68
anon	MIN	. v.	0.12	0.1	0.12	0.1	0.13	0.14	0.14	0.12	0.14	0.09	75.	7.5	75.	0.12	0.12	0.17	75	0 14	-	0.18

Table 19: A table of the recall for each method with different setup of 10-CV of Post Michael dataset. The upper number is mean and the lower number is standard derivation.

5.1.11 Post Michael: Precision

			, ,	_	Ţ.		,	_	<u>_</u>		, .	~	.c	_
ion	Δ11	Ē	0.85	0.1	0.84	0.1	0.85	0.11	0.84	0.1	0.85	0.12	0.86	0
Logistic Regression	$^{\rm sqO}$	Lat	0.81	0.16	0.81	0.16	0.81	0.16	8.0	0.16	0.82	0.15	0.81	0 15
gistic F	1.a+	Ē	0.84	0.19	0.84	0.19	0.84	0.19	0.83	0.18	0.85	0.17	0.85	0.17
Γ	Obe	ŝ	0.78	0.2	0.78	0.2	0.78	0.2	0.78	0.2	0.78	0.2	0.78	0.0
	Δ11		0.7	0.17	0.7	0.17	0.7	0.17	0.7	0.17	0.7	0.17	0.7	0.17
n Tree	Obs	Lat	92.0	0.11	92.0	0.11	92.0	0.11	92.0	0.11	92.0	0.11	92.0	0 11
Decision	+o.T	Fa	0.77	0.12	0.77	0.12	0.77	0.12	0.77	0.12	0.77	0.12	0.77	0.12
	Ohe	S	0.64	0.13	0.64	0.13	0.64	0.13	0.64	0.13	0.64	0.13	0.64	0 13
	. E	П	0.75	0.12	0.74	0.13	0.75	0.12	0.74	0.13	0.75	0.12	0.74	0 13
le	Prev I	z	0.82	0.09	0.81	0.09	0.82	0.08	0.82	0.09	0.82	0.08	0.82	600
Bayesian Inf Model	me	П	0.74	0.09	0.73	0.1	0.74	0.1	0.73	0.11	0.73	0.11	0.73	0 11
yesian I	Income	z	0.84	0.13	8.0	0.15	0.81	0.12	8.0	0.15	0.85	0.13	0.81	0 13
Ba	le e	J	0.71	0.11	69.0	0.11	0.71	0.11	69.0	0.11	0.72	0.13	0.72	0 11
	None	z	98.0	0.13	0.84	0.14	0.85	0.14	0.84	0.14	0.85	0.12	0.83	0 13
	H	П	0.87	0.13	98.0	0.12	0.85	0.12	0.85	0.13	0.84	0.13	98.0	0.12
1	Prev	z	0.79	0.15	0.78	0.12	0.79	0.15	0.79	0.13	8.0	0.15	0.78	0 13
h Model	ne	П	0.79	0.16	8.0	0.15	8.0	0.15	8.0	0.15	0.78	0.17	92.0	7.1.5
Grid Search	$_{ m Income}$	z	\vdash		0.73	0.16	0.73		0.74	_	0.73		0.79	0 11
Gr	le le	J	0.84	0.14	0.85	0.13	0.82	0.14	0.85	0.13	0.81		0.78	_
	None	z	0.82	0.14	0.83	0.12	0.82	0.14		_	0.82	0.14	0.83	0 11
1	č	_	-	7	и	. v.	-	-	м	. v.	-	-	й	_
Data Transform	Drob	201	JimII		TITE	TIII O	Nomo	INOLIII	Money	INOLIII	Mix	INITY	Mix	TATTY
Data	Filled	Latent	Noso	Nome	N ₀	NOME	No.	PILONI	No.	PION	No.	PION	None	TAOME

Table 20: A table of the precision for each method with different setup of 10-CV of Post Michael dataset. The upper number is mean and the lower number is standard derivation.

5.1.12 Post Michael: F-score

Data	Data Transform	m.		G	Grid Search	ch Model	el			Β̈́	ayesian	Bayesian Inf Model	lel			Decision Tree	n Tree		Lo	Logistic Regression	egressic	u
Filled	Duch	ě	No	None	Incon	ome	Prev	v E	No	None	Inc	Income	Prev	'nΕ	240	+01	Obs		- A-C	+0	Ops	-
Latent	1 100	_	z	ы	z	П	z	ч	z	ы	z	L	z	Ы	S C C C	Tar.	Lat	IIV	S	i de	Lat	T.
N ₀	TIT	-	0.7	89.0	89.0	29.0	0.74	0.74	0.62	0.7	0.61	0.73	0.73	0.74	0.56	0.74	0.73	2.0	0.49	0.65	0.64	0.74
INOME	OIIII	4	0.09	0.11	0.1	0.11	0.14	0.12	0.12	0.08	0.12	90.0	0.1	0.11	0.13	0.09	0.08	0.14	0.18	0.15	0.12	0.15
Noso	TImit	O H	0.7	89.0	99.0	29.0	92.0	0.75	0.61	69.0	0.59	0.71	0.73	0.73	0.56	0.74	0.73	0.7	0.49	99.0	0.64	0.74
ivone	OIIII		0.08	0.11	0.11	0.12	80.0	0.12	0.12	0.09	0.13	0.04	0.13	0.11	0.13	0.09	0.08	0.14	0.18	0.15	0.12	0.15
Mosso	Money	-	0.7	89.0	89.0	89.0	0.74	0.74	0.62	0.7	0.61	0.73	0.74	0.74	0.56	0.74	0.73	2.0	0.49	0.65	0.64	0.73
MOHE	INOLIII	4	0.1	0.11	0.11	0.1	0.14	0.11	0.12	0.08	0.12	90.0	0.1	0.11	0.13	0.09	0.08	0.14	0.18	0.15	0.12	0.15
Moss	None	S F	0.71	89.0	0.67	99.0	0.75	0.74	0.62	89.0	0.59	0.71	0.74	0.73	0.56	0.74	0.73	0.7	0.49	0.65	0.64	0.73
INOILE	INOLIII		0.09	0.11	0.11	0.13	0.13	0.11	0.12	0.08	0.13	0.07	0.13	0.11	0.13	0.09	0.08	0.14	0.18	0.15	0.12	0.15
N.	7 C:	-	0.71	69.0	89.0	29.0	92.0	0.73	0.63	69.0	0.64	0.73	0.75	0.74	0.56	0.74	0.73	0.7	0.49	29.0	0.67	0.74
alloni	MIIX	٦ .	0.09	0.1	0.12	0.11	0.14	0.11	0.09	0.11	0.12	90.0	0.08	0.11	0.13	0.09	80.0	0.14	0.18	0.12	0.11	0.14
None	Miss	S H	0.72	0.7	0.71	99.0	0.74	0.74	0.64	0.7	0.64	0.72	0.74	0.73	0.56	0.74	0.73	0.7	0.49	89.0	99.0	0.75
TAOME	INTIX		0.09	0.00	0.1	0.1	0.12	0.11	0.1	0.09	0.1	0.08	0.1	0.11	0.13	0.00	0.08	0.14	0.18	0.12	0.11	0.14

Table 21: A table of the F-score for each method with different setup of 10-CV of Post Michael dataset. The upper number is mean and the lower number is standard derivation.

5.2 Across Data results

5.2.1 Pre Florence to Post Florence: Error

Prob γ None Incom Unif 1 13.45 17.52 17.54 12.72 Unif .95 14.18 15.94 12.72 Unif 1 17.11 15.64 12.57 Norm .95 16.23 15.64 12.13 Mix 1 17.11 16.37 12.57 Mix .95 16.81 17.11 17.11 Unif .95 16.81 17.71 17.11 Unif .95 16.81 15.79 12.72 Norm 1 17.11 15.79 13.01 Mix 1 17.11 15.79 13.01 Mix 1 17.69 16.81 12.87 Mix 1 17.69 16.81 12.87	Grid Search Model			В	ayesian I	Bayesian Inf Model	_			Decision Tree	Tree		À	Logistic Regression	gression	
Unif 1 13.45 17.54 12.72 Unif 35 14.18 15.94 12.72 Norm 35 16.23 15.64 12.13 Mix 35 16.81 17.11 16.37 12.57 Mix 35 16.81 17.11 17.11 Unif 1 1 15.35 19.15 13.16 Unif 1 17.11 15.79 13.01 Norm 1 17.11 15.79 13.01 Norm 35 16.81 16.23 12.43 Mix 1 17.11 15.79 13.01 Norm 35 16.81 16.23 12.43 Mix 1 17.69 16.81 12.87		Prev E	None	ne	Income	me	Prev	H	o40	+01	Ops	11.4	_ 54 C	+	Ops	11.4
Unif 1 13.45 17.54 12.72 Unif .95 14.18 15.94 12.28 Norm .95 16.23 15.64 12.57 Mix .95 16.81 17.11 16.57 Mix .95 16.81 17.11 17.11 Unif .95 13.6 15.79 12.72 Norm .95 16.81 16.79 12.72 Norm .95 16.81 16.23 12.43 Mix .1 17.11 15.79 13.01 Mix .1 17.69 16.81 12.87 Mix .1 17.69 16.81 12.87 Mix .1 17.69 16.81 12.87	N I	L	z	Ы	z	J	z	П	200	Fa	Lat	ī	<u>s</u>	Fa	Lat	Ţ
Unif .95 14.18 15.94 12.28 Norm .9 16.23 15.64 12.57 Mix .9 16.23 15.64 12.57 Mix .9 16.21 17.11 16.37 12.57 Unif .95 16.81 17.11 17.11 17.11 Unif .95 13.6 15.79 12.72 Norm .1 17.11 15.79 13.01 Norm .95 16.81 16.23 12.43 Mix .1 17.69 16.81 12.87 Mix .1 17.69 16.81 12.87	14.04 13.89	15.94	25.88	26.02	24.12	31.87	21.49	26.02	23.39	28.22	26.02	31.43	15.2	19.01	23.39	23.98
Norm 1 17.11 15.64 12.57 Norm .95 16.23 15.64 12.13 Mix .95 16.23 15.64 12.13 Nix .95 16.81 17.1	14.04 12.28	H	23.98	25.88	23.83	31.87	20.76	26.02	23.39	28.22	26.02	31.43	15.2	19.01	22.81	23.54
Mix 1 17.11 16.37 12.57 Mix 35 16.23 15.64 12.13 Mix 35 16.81 17.11 17.11 Unif 195 13.6 19.79 12.72 Norm 1 17.11 15.79 13.01 Norm 35 16.81 16.23 12.43 Mix 1 17.69 16.81 12.87	21.49 13.89	14.77	25.88	26.17	24.27	31.29	21.64	26.32	23.39	28.22	26.02	31.43	15.2	19.01	23.54	24.12
Mix 95 16.81 17.11 16.37 12.57 17.11 16.37 12.57 17.11 16.37 12.57 17.11 17.11 17.11 17.11 17.11 17.11 17.11 15.79 13.01 Norm 95 16.81 16.23 12.43 Mix 1 17.69 16.81 12.87	21.49 17.11	14.62	24.27	25.88	23.83	31.43	21.2	26.32	23.39	28.22	26.02	31.43	15.2	19.01	23.25	23.83
Mix .95 16.81 17.11 17.11 17.11 Unif 1 15.35 19.15 13.16 13.16	21.05 17.4	14.62	21.64	26.32	22.81	30.85	18.71	26.32	23.39	28.22	26.02	31.43	15.2	19.01	21.2	22.95
Unif 1 15.35 19.15 13.16 Unif .95 13.6 15.79 12.72 Norm .95 16.81 16.79 13.01 Norm .95 16.81 16.23 12.43 Mix 1 17.69 16.81 12.87	20.76 13.6	14.33	21.05	26.02	22.81	30.7	18.71	26.32	23.39	28.22	26.02	31.43	15.2	19.01	21.64	22.81
Unif .95 13.6 15.79 12.72 Norm 1 17.11 15.79 13.01 Norm .95 16.81 16.23 12.43 Mix 1 17.69 16.81 12.83 Mix 1 17.69 16.81 12.83	14.33 14.91	15.64	25.88	26.02	25	31.58	21.78	25.73	23.39	29.82	26.02	31.43	15.2	19.01	23.54	24.12
Norm 1 17.11 15.79 13.01 Norm 95 16.81 16.23 12.43 Mix 1 17.69 16.81 12.87	14.62 13.74	16.08	25.29	25.88	25.29	31.87	22.22	25.73	23.39	28.62	26.02	31.43	15.2	19.01	22.81	23.83
Norm .95 16.81 16.23 12.43 Mix 1 17.69 16.81 12.87	21.78 15.06	14	26.17	25.88	22	31.29	22.22	26.02	23.39	28.62	26.02	31.43	15.2	19.01	23.68	24.12
Mix 1 17.69 16.81 12.87	21.64 17.69	14.47	25.58	25.88	22	31.73	22.37	26.32	23.39	29.82	26.02	31.43	15.2	19.01	23.25	23.54
F 2 41 F 3 41 O 5 41 20 3 4	21.05 17.25	14.91	21.49	26.46	23.39	31.14	19.3	26.61	23.39	29.82	26.02	31.43	15.2	19.01	21.49	23.1
reg 10.04 10.09 10.04	20.91 14.91	14.77	21.93	26.32	24.12	30.85	20.32	26.32	23.39	28.62	26.02	31.43	15.2	19.01	21.93	23.1

Table 22: A table of the error rate for each method with different setup of using Pre Florence to predict Post Florence.

5.2.2 Pre Florence to Post Florence: Recall

on	11 V	II C	0.71	0.72	0.73	0.72	0.72	0.72	0.71	0.72	0.73	0.73	0.72	0.20
egressic	Ops	Lat	0.73	0.74	0.74	0.74	0.73	0.73	0.74	0.74	0.74	0.74	0.73	0.73
logistic Regression	+0	ğ	29.0	29.0	0.67	29.0	29.0	29.0	29.0	29.0	0.67	0.67	29.0	0.67
ľ	- Pr	200	0	0	0	0	0	0	0	0	0	0	0	0
	11.4	11.0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
n Tree	$^{\mathrm{sq}}$ O	Lat	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	090
Decision Tree	+ c I	Fa	0.78	0.78	0.78	0.78	0.78	0.78	0.81	0.81	0.81	0.81	0.81	180
	Obe	S	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.69
	ΛE	Г	0.89	0.89	68.0	0.89	0.89	0.89	0.89	0.89	68.0	68.0	0.89	080
lel	Prev	z	98.0	0.87	0.87	98.0	0.85	98.0	98.0	0.85	98.0	0.87	0.85	ο π
Bayesian Inf Model	Income	П	6.0	0.91	6.0	0.91	6.0	6.0	6.0	6.0	6.0	6.0	6.0	0 0
yesian	Inc	z	98.0	0.85	98.0	0.85	98.0	0.85	0.85	0.82	0.85	0.83	0.85	68.0
Ğ	None	П	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	αα
	No	z	98.0	98.0	98.0	98.0	98.0	0.85	0.85	98.0	0.85	98.0	0.85	ο π
	Prev E	П	0.88	0.88	0.87	0.87	0.88	0.88	0.88	0.88	0.87	0.88	0.88	ox oc
el	Pre	Z	0.84	0.83	0.85	0.87	0.84	0.84	0.85	0.84	0.84	0.85	98.0	0.84
ch Model	ome	Г	0.85	0.85	0.84	0.84	0.84	0.84	0.85	0.85	0.83	0.83	0.85	28.5
Grid Sear	Inco	z	0.72	0.7	0.73	0.72	0.73	0.77	0.73	0.71	0.73	0.73	0.73	0.78
U	None	П	0.87	0.87	0.84	0.85	0.87	0.87	0.87	0.87	0.84	0.84	0.87	0 × 7
	Nc	z	0.77	0.74	0.79	8.0	0.79	0.83	0.78	92.0	0.79	0.78	8.0	08.0
rm:	č	-	1	.95	1	.95	1	.95	1	.95	1	.95	1	05
Data Transform	Droh	1 100	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	Miv
Data	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	Box

Table 23: A table of the recall for each method with different setup of using Pre Florence to predict Post Florence.

5.2.3 Pre Florence to Post Florence: Precision

			_	_			_		Г					_
uc	11.4		0.36	0.36	0.36	0.36	0.37	0.37	0.35	0.36	0.36	0.36	0.37	0.37
egressi	$^{\rm sqO}$	Lat	0.37	0.37	0.36	0.37	0.39	0.39	0.36	0.37	0.36	0.37	0.39	0.38
Logistic Regression	+0	ž	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
Ľõ	- Pe	<u>s</u>	0	0	0	0	0	0	0	0	0	0	0	0
	11.4		0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
$_{\rm Lree}$	Obs	Lat	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Decision Tree	+01	3	0.32	0.32	0.32	0.32	0.32	0.32	0.31	0.31	0.31	0.31	0.31	0.31
_	- Pe	ŝ	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
	M	П	0.36	0.36	0.35	0.35	0.35	0.35	0.36	0.36	0.36	0.35	0.35	0.35
_	Prev	z	0.4	0.41	0.4	0.41	0.44	0.44	0.4	0.39	0.39	0.39	0.43	0.42
Bayesian Inf Model	ne er	-I	0.31	0.31	0.32	0.32	0.32	0.32	0.31	0.31	0.32	0.31	0.32	0.32
esian Ir	Income	z	0.37	0.37	0.37	0.37	0.39	0.39	0.36	0.36	0.36	0.36	0.38	0.37
Bay	n	L)	0.36	0.36	0.35	0.36	0.35	0.36	98.0	0.36	0.36	0.36	0.35	0.35
	None	_ z	0.35	0.37	0.35	0.37	0.4	0.41	0.35	0.36	0.35	0.36	0.4	0.4
	H	-I	0.49	0.48	0.51	0.51	0.51	0.52	0.49	0.48	0.51	0.51	0.51	0.51
	Prev E	z	0.53	0.57	0.53	0.47	0.46	0.53	0.51	0.53	0.5	0.46	0.46	0.51
n Model	ıe	L)	0.52	0.52	0.4	0.4	0.41	0.41	0.52	0.51	0.4	0.4	0.41	0.41
Grid Search	Incom	_ z	0.56	0.58	0.57	0.58	0.57	0.46	0.55	0.56	0.55	0.57	0.56	0.46
G.T.	a	L L	0.46	0.49	0.49	0.49	0.48	0.47	0.43	0.49	0.49	0.48	0.47	0.45
	None	z	0.54	0.52	0.46	0.48	0.46	0.47	0.5	0.54	0.46	0.47	0.45	0.45
	õ	_	1	.95	1	.95	1	.95	1	.95	1	.95	1	.95
Data Transform	Droh	1 100	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	Mix
Data T	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	Reg

Table 24: A table of the precision for each method with different setup of using Pre Florence to predict Post Florence.

5.2.4 Pre Florence to Post Florence: F-score

	-	114	0.47	0.48	0.48	0.48	0.49	0.49	0.47	0.48	0.48	0.49	0.49	010
ession	_				H		L						<u> </u>	L
Regre	ops	Lat	0.49	0.5	0.49	0.49	0.51	0.51	0.49	0.5	0.49	0.49	0.51	0
Logistic Regression	10	1 2	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0 17.0
À	24.0	S	0	0	0	0	0	0	0	0	0	0	0	_
		TV.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	7
Tree	Ops	Lat	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	77
Decision Tree	+0	i a	0.46	0.46	0.46	0.46	0.46	0.46	0.45	0.45	0.45	0.45	0.45	7
_	240	S	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	75
	田	П	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	-
-	Prev	z	0.55	0.56	0.55	0.55	0.58	0.58	0.54	0.54	0.54	0.54	0.57	0 2 0
af Mode	ne	П	0.46	0.47	0.47	0.47	0.47	0.47	0.47	0.46	0.47	0.46	0.47	7.1
Bayesian Inf Model	Income	z	0.52	0.52	0.52	0.52	0.53	0.53	0.51	0.5	0.51	0.5	0.52	-
Ba	e	П	0.51	0.51	0.5	0.51	0.5	0.51	0.51	0.51	0.51	0.51	0.5	77
	None	z	0.5	0.52	0.5	0.52	0.55	0.55	0.5	0.51	0.5	0.5	0.54	7 20
	Ш	П	0.63	0.62	0.64	0.64	0.65	0.65	0.63	0.63	0.64	0.65	0.64	100
_	Prev	z	0.65	29.0	0.65	0.61	0.59	0.65	0.63	0.65	0.63	0.59	9.0	69 0
ch Model	ne	L L	0.65	0.65	0.54	0.54	0.55	0.55	0.64	0.64	0.54	0.54	0.55	о п
Grid Searc	Income	z	0.63	0.63	0.64	0.64	0.64	0.58	0.63	0.63	0.63	0.64	0.63	0 1
G.	1e	П	9.0	0.62	0.62	0.62	0.62	0.61	0.58	0.62	0.62	0.61	0.61	90
	None	z	0.63	0.61	0.58	9.0	0.58	9.0	0.61	0.63	0.58	0.58	0.58	020
J	-	<u></u>	1	.95	1	.95	1	.95	1	.95	1	.95	1	100
Data Transform	Duch	0017	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	Miss
Data [Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	Dog

Table 25: A table of the F-score for each method with different setup of using Pre Florence to predict Post Florence.

5.2.5 Pre Florence to Post Michael: Error

Data Transform	ırm			Grid Search Model	ch Mode				В	ayesian i	Bayesian Inf Model	1			Decision	n Tree		Γ	Logistic Regression	egression	
D. C	ò	No	None	Incc	ncome	Prev E	v E	None	ne	Inco	ncome	Prev	Э	- Pe	+01	Ops	11.4	oh.	+01	Obs	11 4
100	^	z	J	z	Ч	z	L	z	J	z	Г	z	П	S 0	F	Lat	11.0	s O	Ę.	Lat	1
Unif		10.89	12.73	10.15	11.99	96.6	12.18	17.71	17.9	15.87	19.74	14.21	18.45	37.82	21.77	22.69	24.72	19.19	16.79	21.4	21.77
Unif	.95	11.25	11.99	10.33	12.36	9.04	11.99	15.87	17.9	15.68	20.11	12.73	18.45	37.82	21.77	22.69	24.72	19.19	16.79	20.85	21.77
Norm	1	11.25	11.62	96.6	15.5	10.15	10.89	18.08	17.9	15.87	19.74	14.39	18.63	37.82	21.77	22.69	24.72	19.19	16.79	21.77	21.59
Vorm	.95	11.62	12.18	10.7	15.87	11.07	10.52	16.05	17.9	15.5	19.74	14.02	18.27	37.82	21.77	22.69	24.72	19.19	16.79	21.22	21.96
Mix		11.25	12.18	9.78	15.13	11.07	10.7	14.58	18.27	15.31	19	13.1	18.82	37.82	21.77	22.69	24.72	19.19	16.79	19.93	21.03
Mix	.95	11.44	12.55	11.07	15.5	9.41	10.33	14.02	18.27	14.21	19.19	11.99	18.82	37.82	21.77	22.69	24.72	19.19	16.79	20.48	21.22

Table 26: A table of the error rate for each method with different setup of using Pre Florence to predict Post Michael.

5.2.6 Pre Florence to Post Michael: Recall

_	_		_	_	_		_	_
on	11 4	II V	0.72	0.72	0.72	0.72	0.7	0.71
egression	Obs	Lat	0.67	69.0	0.67	69.0	0.64	0.67
Logistic Regression	+0	121	0.62	0.62	0.62	0.62	0.62	690
P	- 240	S 0	0	0	0	0	0	_
	11.4	II.	99.0	99.0	99.0	99.0	99.0	990
n Tree	Obs	Lat	89.0	89.0	89.0	89.0	89.0	890
Decision	+01	ğ	0.74	0.74	0.74	0.74	0.74	0 17
	240	S	0.54	0.54	0.54	0.54	0.54	- M
	, E	Ы	98.0	98.0	98.0	98.0	98.0	900
el	Prev	z	0.82	0.82	0.82	0.81	0.82	000
nf Mod	me	ы	0.84	0.83	0.84	0.84	0.85	000
Bayesian Inf Model	Income	z	92.0	0.75	92.0	0.75	0.75	0.76
Ba	ne ar	ы	0.85	0.85	0.85	0.85	98.0	900
	None	z	0.73	92.0	0.73	0.75	0.75	0.76
	, E	П	0.82	0.82	0.81	0.81	0.82	000
el	Prev	z	0.79	0.75	92.0	8.0	8.0	75
ch Model	me	Ы	0.71	0.71	0.72	0.7	0.73	0 40
Grid Search	Incon	z	0.65	0.63	0.65	0.63	99.0	0 40
ਲੁ	None	Ы	92.0	0.74	0.73	0.71	92.0	0.76
	No	z	29.0	99.0	0.7	0.7	0.71	0 40
m		<u>,</u>	1	.95	1	.95	П	Z.
Fransfor	Duch	1000	Unif	Unif	Norm	Norm	Mix	Miss
Data '.	Filled	Latent	None	None	None	None	None	None

Table 27: A table of the recall for each method with different setup of using Pre Florence to predict Post Michael.

5.2.7 Pre Florence to Post Michael: Precision

uc	11.4	11.5	0.46	0.46	0.46	0.45	0.47	0.47
egressic	Ops	Lat	0.46	0.47	0.45	0.46	0.49	010
Logistic Regression	+01	121	0.56	0.56	0.56	0.56	0.56	0 12 0
L _o	240	ŝ	0	0	0	0	0	_
	11 4	II V	0.41	0.41	0.41	0.41	0.41	0.41
1 Tree	Obs	Lat	0.44	0.44	0.44	0.44	0.44	1110
Decision	+° I	i di	0.46	0.46	0.46	0.46	0.46	91 0
	240	ŝ	0.26	0.26	0.26	0.26	0.26	96 0
	Œ	П	0.51	0.51	0.51	0.51	0.51	- E
le le	Prev	z	0.59	0.63	0.59	9.0	0.62	0 GE
nf Mode	me	П	0.49	0.49	0.49	0.49	0.5	м М
Bayesian Inf Model	Income	z	0.56	0.57	0.56	0.57	0.58	9 0
Bay	e	Ч	0.52	0.52	0.52	0.52	0.51	- H
	None	z	0.53	0.56	0.52	0.56	9.0	0.61
	A	Ы	0.64	0.65	89.0	69.0	69.0	- 1
ī	Prev	z	0.72	0.77	0.72	89.0	89.0	0.76
th Model	me	Ч	89.0	29.0	0.58	0.57	0.58	0
Grid Searck	Incom	z	0.78	0.79	0.79	0.77	0.79	- 11
G	ıe	Ч	0.64	0.67	89.0	0.67	99.0	200
	None	z	0.74	0.73	0.71	0.7	0.7	08.0
n	i	<u></u>	1	.95	1	.95	1	Z H
Γ ransforn	Duch	1100	Unif	Unif	Norm	Norm	Mix	Miss
Data 1	Filled	Latent	None	None	None	None	None	None

Table 28: A table of the Precision for each method with different setup of using Pre Florence to predict Post Michael.

5.2.8 Pre Florence to Post Michael: F-score

no	11.4	11.5	0.56	0.56	0.56	0.56	0.56	0.56
Logistic Regression	Ops	Lat	0.55	0.56	0.54	0.56	0.55	0.56
gistic R	+01	į	0.59	0.59	0.59	0.59	0.59	0.59
S	- F-4 C	ŝ	0	0	0	0	0	0
	1.	11.	0.51	0.51	0.51	0.51	0.51	0.51
1 Tree	Ops	Lat	0.54	0.54	0.54	0.54	0.54	0.54
Decision Tree	+01	i di	0.57	0.57	0.57	0.57	0.57	0.57
	240	SOO	0.35	0.35	0.35	0.35	0.35	0.35
	田,	П	0.64	0.64	0.64	0.64	0.64	0.64
el	Prev E	z	69.0	0.71	69.0	69.0	0.71	0.73
nf Mod	me	П	0.62	0.61	0.62	0.62	0.63	0.63
Bayesian Inf Model	Income	z	0.65	0.65	0.65	0.65	0.65	0.67
Ba	эе	ч	0.64	0.64	0.64	0.64	0.64	0.64
	None	z	0.61	0.65	0.61	0.64	99.0	0.68
	Е	ч	0.72	0.72	0.74	0.75	0.75	0.75
- F	Prev E	z	0.75	92.0	0.74	0.73	0.73	0.75
ch Model	me	ч	69.0	69.0	0.64	0.63	0.65	0.64
Grid Searc	Inco	z	0.71	0.7	0.72	69.0	0.72	0.71
ى ت	ne	L)	0.7	0.7	0.71	69.0	0.71	0.7
	None	z	0.7	69.0	0.71	0.7	0.71	0.71
ш	į	<u></u>	1	.95	П	.95		.95
Γ ransfor	Duch	0011	Unif	Unif	Norm	Norm	Mix	Mix
Data 1	Filled	Latent	None	None	None	None	None	None

Table 29: A table of the F-score for each method with different setup of using Pre Florence to predict Post Michael.

5.2.9 Post Florence to Post Michael: Error

	11 4	IIV	8.86	9.04	9.04	9.04	9.41	9.04	8.86	9.04	9.04	9.04	9.41	9.04
gression	Obs	Lat	14.02	13.84	14.02	13.84	13.47	13.65	14.02	13.84	14.02	13.84	13.47	13.65
Logistic Regression	+o_1	i de	13.47	14.39	13.47	14.39	13.84	14.58	13.65	14.39	13.47	14.39	13.84	14.58
Lo		S	18.45	18.45	18.45	18.45	18.45	18.45	18.45	18.45	18.45	18.45	18.45	18.45
	11.4	II V	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24
Decision Tree	Obs	Lat	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71
Decision	+01	i de	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71
	240	ŝ	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4
	м Э	П	10.89	11.07	11.07	11.07	10.89	10.89	11.44	11.25	11.25	11.07	11.07	11.07
	Prev	z	8.49	8.3	8.3	8.12	8.67	8.3	9.04	98.8	9.04	8.86	9.59	9.41
of Model	me	П	17.34	17.9	16.97	17.16	16.97	16.97	16.97	17.71	17.9	18.08	17.71	18.08
Bayesian Inf Model	Income	z	14.76	13.65	14.94	14.02	14.39	13.65	14.76	14.39	14.94	14.58	14.58	14.21
Ba	1e	ы	17.34	16.97	17.16	17.34	17.16	17.16	18.27	18.08	18.08	18.45	18.08	18.08
	None	Z	13.47	13.1	14.02	12.73	13.65	13.47	14.21	13.1	13.65	13.47	14.21	13.65
	EI.	П	8.12	8.3	8.49	8.49	8.67	8.49	8.12	8.3	8.49	8.49	8.67	8.49
	Prev E	Z	12.92	12.36	13.1	14.39	14.76	13.84	14.21	13.1	13.84	14.76	15.87	14.94
h Model	me	П	15.31	12.18	15.13	13.1	14.21	14.94	15.31	13.1	15.87	13.65	14.58	15.5
Grid Search Model	Income	z	12.92	15.68	11.81	12.36	12.55	13.28	13.65	17.53	12.18	13.28	12.92	13.84
ß	ne er	П	14.39	14.39	14.21	13.47	15.5	16.61	14.94	13.84	14.02	13.84	14.94	16.97
	None	z	13.65	12.73	12.73	12.73	13.28	12.92	14.21	14.21	12.92	13.65	14.39	14.02
m	,	<i>.</i>	П	.95	1	.95		.95		.95	1	.95	1	.95
Data Transform	Duch	1100	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	Mix
Data	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	Reg

Table 30: A table of the error rate for each method with different setup of using Post Florence to predict Post Michael.

5.2.10 Post Florence to Post Michael: Recall

Data	Data Transform	u		G	Grid Search	ch Model	el			Ř	Bayesian Inf Model	Inf Moc	lel			Decision Tree	n Tree		Γ_{0}	Logistic Regression	egressio	u
Filled	- T		None	ne	Incom	me	Prev	v E	No	None	Inc	Income	Prev	^ E	1	101	Obs	11.4	2	1 - 1	Obs	12
Latent	LIOD	<u>-</u>	z	П	z	П	z	L	z	П	z	П	z	П	SOO	Lat	Lat	H	SOO	Lai	Lat	W
Group	Unif	1	89.0	0.75	29.0	0.79	0.79	0.78	0.55	0.83	0.52	98.0	89.0	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	0.77
Group	Unif	.95	69.0	0.75	0.71	92.0	8.0	0.78	9.0	0.84	0.58	98.0	0.71	8.0	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Group	Norm	1	29.0	8.0	29.0	0.81	0.78	0.77	0.55	0.84	0.51	0.85	0.7	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	0.76
Group	Norm	.95	69.0	0.75	0.7	92.0	0.84	0.77	0.63	0.84	0.56	0.85	0.71	8.0	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Group	Mix	1	0.72	0.81	89.0	8.0	8.0	0.77	0.54	0.83	0.53	0.85	69.0	0.81	0.56	99.0	99.0	89.0	0.51	89.0	0.67	92.0
Group	Mix	.95	0.71	0.82	89.0	0.81	0.83	0.78	0.58	0.83	0.57	0.85	0.7	0.81	0.56	99.0	99.0	89.0	0.51	29.0	29.0	0.77
Reg	Unif	1	69.0	0.75	89.0	0.79	8.0	0.78	0.55	0.82	0.54	98.0	69.0	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	0.77
Reg	Unif	.95	0.71	0.75	0.71	0.77	0.83	0.78	9.0	0.84	0.58	98.0	0.71	0.81	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Reg	Norm	1	69.0	8.0	69.0	8.0	0.78	92.0	0.58	0.83	0.53	0.85	69.0	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	0.76
Reg	Norm	.95	0.73	0.75	0.71	0.77	0.85	0.76	0.62	0.83	0.56	98.0	0.71	0.81	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Reg	Mix	1	0.73	0.82	0.7	0.81	0.82	92.0	0.54	0.83	0.53	0.85	89.0	0.81	0.56	99.0	99.0	89.0	0.51	89.0	29.0	92.0
Reg	Mix	.95	0.73	0.82	0.7	0.81	0.83	0.78	0.58	0.83	0.57	0.85	0.7	0.81	0.56	0.66	0.66	890	72.	0.67	0.67	22.0

Table 31: A table of the recall for each method with different setup of using Post Florence to predict Post Michael.

5.2.11 Post Florence to Post Michael: Precision

						_						_		
uo	11.4	Ţ	0.77	92.0	0.77	92.0	0.75	92.0	0.77	92.0	0.77	92.0	0.75	92.0
egression	$_{\rm ops}$	Lat	0.63	0.63	0.63	0.63	0.64	0.64	0.63	0.63	0.63	0.63	0.64	0.64
Logistic Regression	+01	Fa	0.64	0.62	0.64	0.62	0.63	0.61	0.64	0.62	0.64	0.62	0.63	0.61
Ľ	240	ŝ	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
	11.4		0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56
Tree	Ops	Lat	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
Decision Tree	+6	- Fa	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
	- Pe	ŝ	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	田	L	69.0	89.0	89.0	89.0	89.0	89.0	29.0	29.0	29.0	89.0	89.0	89.0
_	Prev	z	0.85	0.83	0.84	0.84	0.83	0.84	0.81	8.0	0.81	8.0	0.79	0.78
Bayesian Inf Model	ne	П	0.53	0.52	0.54	0.53	0.54	0.54	0.54	0.52	0.52	0.52	0.52	0.52
resian In	Income	z	0.64	29.0	0.64	99.0	0.65	29.0	0.64	0.64	0.63	0.64	0.65	0.65
Bay	e	П	0.53	0.54	0.53	0.53	0.53	0.53	0.52	0.52	0.52	0.51	0.52	0.52
	None	z	69.0	89.0	99.0	89.0	89.0	29.0	99.0	89.0	0.67	99.0	99.0	29.0
	H	П	0.79	0.79	0.78	0.78	0.78	0.78	0.79	0.79	0.79	0.79	0.78	0.78
_	Prev E	z	0.63	0.64	0.63	0.59	0.58	9.0	9.0	0.62	0.61	0.58	0.56	0.58
h Model	ne	J	0.57	99.0	0.58	0.63	9.0	0.58	0.57	0.63	0.56	0.62	0.59	0.57
Grid Search	Incom	z	99.0	0.57	0.7	29.0	29.0	0.65	0.63	0.53	89.0	0.64	0.65	0.62
Ğ	ie.	L L	9.0	9.0	9.0	0.62	0.57	0.54	0.59	0.61	9.0	0.61	0.58	0.54
	None	z	0.63	99.0	29.0	99.0	0.64	0.65	0.62	0.61	0.65	0.62	9.0	0.61
u	č	_	П	.95	1	.95	П	.95	1	.95	1	.95	1	.95
Data Transform	Droh	1 100	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	Mix
Data 1	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	Reg

Table 32: A table of the precision for each method with different setup of using Post Florence to predict Post Michael.

5.2.12 Post Florence to Post Michael: F-score

on	-	ξ.	0.77	0.77	0.76	0.77	0.76	0.77	0.77	0.77	0.76	0.77	0.76	0 11
Logistic Regression	Obs	Lat	0.64	0.65	0.64	0.65	99.0	0.65	0.64	0.65	0.64	0.65	99.0	70.0
gistic R	10 1	ğ	99.0	0.64	99.0	0.64	0.65	0.64	0.65	0.64	99.0	0.64	0.65	100
Lo	240	200	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	1
			0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	000
n Tree	Obs	Lat	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	2
Decision Tree	+0	Ę F	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0
	240	200	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1
	田	L,	0.74	0.73	0.73	0.73	0.74	0.74	0.73	0.73	0.73	0.74	0.74	1
le	Prev	z	92.0	0.77	92.0	0.77	0.75	92.0	0.75	92.0	0.75	92.0	0.73	1
poW Ju	me	П	0.65	0.65	99.0	0.65	99.0	99.0	99.0	0.65	0.64	0.64	0.65	700
Bayesian Inf Model	Income	z	0.57	0.62	0.57	9.0	0.59	0.61	0.58	0.61	0.58	0.59	0.58	.0
Ba	le le	П	0.65	0.65	0.65	0.65	0.65	0.65	0.63	0.64	0.64	0.63	0.64	0
	None	z	0.61	0.64	9.0	99.0	9.0	0.62	9.0	0.64	0.62	0.64	0.59	000
	迅	П	0.79	0.78	0.78	0.78	0.77	0.78	0.79	0.78	0.77	0.77	0.77	1
Te.	Prev	z	2.0	0.71	2.0	69.0	29.0	0.7	89.0	0.71	89.0	69.0	99.0	000
ch Model	me	J	99.0	0.71	29.0	69.0	89.0	29.0	99.0	69.0	99.0	89.0	89.0	1
Grid Search	Incon	z	29.0	0.64	69.0	69.0	89.0	99.0	99.0	0.61	69.0	29.0	89.0	000
Gı	ne	J	29.0	29.0	89.0	89.0	0.67	0.65	99.0	89.0	69.0	89.0	89.0	100
	None	z	99.0	89.0	29.0	89.0	89.0	89.0	0.65	99.0	29.0	29.0	99.0	0.0
m	,	· ·	1	.95	1	.95	1	.95	1	.95	1	.95	-	ì
Data Transform	Duch	1 100	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	7.6
Data	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	-

Table 33: A table of the F-score for each method with different setup of using Post Florence to predict Post Michael.

5.2.13 Post Michael to Post Florence: Error

_	_			_			_			_			_	
	11.4	Ţ	7.02	7.16	7.16	7.16	7.46	7.16	7.02	7.16	7.16	7.16	7.46	7.16
gression	Ops	Lat	11.11	10.96	11.11	10.96	10.67	10.82	11.11	10.96	11.11	10.96	10.67	10.82
Logistic Regression	+c <u>1</u>	i i	10.67	11.4	10.67	11.4	10.96	11.55	10.82	11.4	10.67	11.4	10.96	11.55
Lc	- Pe	200	14.62	14.62	14.62	14.62	14.62	14.62	14.62	14.62	14.62	14.62	14.62	14.62
	11.4	į	12.87	12.87	12.87	12.87	12.87	12.87	12.87	12.87	12.87	12.87	12.87	12.87
ı Tree	Ops	Lat	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04
Decision	+° I	ę i	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04
	O.P.	ŝ	16.96	16.96	16.96	16.96	16.96	16.96	16.96	16.96	16.96	16.96	16.96	16.96
	v E	П	8.63	8.77	8.77	8.77	8.63	8.63	90.6	8.92	8.92	8.77	8.77	8.77
	Prev	Z	6.73	6.58	6.58	6.43	28.9	6.58	7.16	7.02	7.16	7.02	9.7	7.46
ıf Model	me	Г	13.74	14.18	13.45	13.6	13.45	13.45	13.45	14.04	14.18	14.33	14.04	14.33
Bayesian Inf Model	Income	z	11.7	10.82	11.84	11.11	11.4	10.82	11.7	11.4	11.84	11.55	11.55	11.26
Ba	ne	П	13.74	13.45	13.6	13.74	13.6	13.6	14.47	14.33	14.33	14.62	14.33	14.33
	None	z	10.67	10.38	11.11	10.09	10.82	10.67	11.26	10.38	10.82	10.67	11.26	10.82
	Э	П	6.43	6.58	6.73	6.73	28.9	6.73	6.43	6.58	6.73	6.73	28.9	6.73
	Prev	Z	10.23	8.6	10.38	11.4	11.7	10.96	11.26	10.38	10.96	11.7	12.57	11.84
h Model	me	П	12.13	9.62	11.99	10.38	11.26	11.84	12.13	10.38	12.57	10.82	11.55	12.28
Grid Search Model	Income	z	10.23	12.43	9.36	8.6	9.94	10.53	10.82	13.89	9.62	10.53	10.23	10.96
B	ne	П	11.4	11.4	11.26	10.67	12.28	13.16	11.84	10.96	11.11	10.96	11.84	13.45
	None	z	10.82	10.09	10.09	10.09	10.53	10.23	11.26	11.26	10.23	10.82	11.4	11.11
n	ò	^	1	.95	1	.95	1	.95	1	.95	1	.95	1	.95
Data Transform	Droh	201	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	Mix
Data	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	Reg

Table 34: A table of the error rate for each method with different setup of using Post Michael to predict Post Florence.

5.2.14 Post Michael to Post Florence: Recall

Data .	Data Transform	n L		Ü	Grid Search	ch Model	el			B	Bayesian Inf Model	Inf Mod	lel			Decision Tree	n Tree		Γo	Logistic Regression	egressio	u
Filled	- D		None	ne	Incon	me	Prev	V E	No	None	Inc	Income	Prev	v E	1	101	Obs	-	1	40	Obs	11.4
atent	LIGO	۲	z	П	z	Ы	z	П	z	П	z	Ы	z	П	SOO	rai	Lat	HH.	SOO	rai	Lat	AII
Group	Unif	1	89.0	0.75	29.0	0.79	0.79	0.78	0.55	0.83	0.52	98.0	89.0	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	0.77
Group	Unif	.95	69.0	0.75	0.71	92.0	8.0	0.78	9.0	0.84	0.58	98.0	0.71	8.0	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Group	Norm	1	29.0	8.0	29.0	0.81	0.78	0.77	0.55	0.84	0.51	0.85	0.7	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	92.0
Group	Norm	.95	69.0	0.75	0.7	92.0	0.84	0.77	0.63	0.84	0.56	0.85	0.71	8.0	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Group	Mix	1	0.72	0.81	89.0	8.0	8.0	0.77	0.54	0.83	0.53	0.85	69.0	0.81	0.56	99.0	99.0	89.0	0.51	89.0	29.0	92.0
Group	Mix	.95	0.71	0.82	89.0	0.81	0.83	0.78	0.58	0.83	0.57	0.85	0.7	0.81	0.56	99.0	99.0	89.0	0.51	29.0	29.0	0.77
Reg	Unif	1	69.0	0.75	89.0	0.79	8.0	0.78	0.55	0.82	0.54	98.0	69.0	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	0.77
Reg	Unif	.95	0.71	0.75	0.71	0.77	0.83	0.78	9.0	0.84	0.58	98.0	0.71	0.81	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Reg	Norm	1	69.0	8.0	69.0	8.0	0.78	92.0	0.58	0.83	0.53	0.85	69.0	8.0	0.56	99.0	99.0	89.0	0.51	29.0	99.0	92.0
Reg	Norm	.95	0.73	0.75	0.71	0.77	0.85	92.0	0.62	0.83	0.56	98.0	0.71	0.81	0.56	99.0	99.0	89.0	0.51	99.0	99.0	0.77
Reg	Mix	1	0.73	0.82	0.7	0.81	0.82	92.0	0.54	0.83	0.53	0.85	89.0	0.81	0.56	99.0	99.0	89.0	0.51	89.0	29.0	92.0
Reg	Mix	.95	0.73	0.82	0.7	0.81	0.83	0.78	0.58	0.83	0.57	0.85	0.7	0.81	0.56	99.0	99.0	89.0	0.51	0.67	0.67	0.77

Table 35: A table of the recall for each method with different setup of using Post Michael to predict Post Florence.

5.2.15 Post Michael to Post Florence: Precision

_	_		_		_	_	_		_	_		_	_	
uc	11 V	1	0.77	0.76	0.77	92.0	0.75	92.0	0.77	0.76	0.77	92.0	0.75	92.0
egressic	Ops	Lat	0.63	0.63	0.63	0.63	0.64	0.64	0.63	0.63	0.63	0.63	0.64	0.64
Logistic Regression	+01	3	0.64	0.62	0.64	0.62	0.63	0.61	0.64	0.62	0.64	0.62	0.63	0.61
Lo	Obe	ŝ	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
	11.4	11.0	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56
n Tree	Ops	Lat	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
Decision	+01	3	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
	O.P.	S	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Œ	П	69.0	89.0	89.0	89.0	89.0	89.0	0.67	29.0	29.0	89.0	89.0	89.0
el	Prev	z	0.85	0.83	0.84	0.84	0.83	0.84	0.81	8.0	0.81	8.0	0.79	0.78
Bayesian Inf Model	me	П	0.53	0.52	0.54	0.53	0.54	0.54	0.54	0.52	0.52	0.52	0.52	0.52
yesian]	Income	z	0.64	29.0	0.64	99.0	0.65	29.0	0.64	0.64	0.63	0.64	0.65	0.65
Ba	ıe	J	0.53	0.54	0.53	0.53	0.53	0.53	0.52	0.52	0.52	0.51	0.52	0.52
	None	z	69.0	89.0	99.0	89.0	89.0	0.67	99.0	89.0	0.67	99.0	99.0	0.67
	E	П	0.79	0.79	0.78	0.78	0.78	0.78	0.79	0.79	0.79	0.79	0.78	0.78
le le	Prev E	z	0.63	0.64	0.63	0.59	0.58	9.0	9.0	0.62	0.61	0.58	0.56	0.58
ch Model	me	П	0.57	99.0	0.58	0.63	9.0	0.58	0.57	0.63	0.56	0.62	0.59	0.57
Grid Search	Incon	z	99.0	0.57	0.7	0.67	0.67	0.65	0.63	0.53	89.0	0.64	0.65	0.62
වි	ne	П	9.0	9.0	9.0	0.62	0.57	0.54	0.59	0.61	9.0	0.61	0.58	0.54
	None	z	0.63	99.0	29.0	99.0	0.64	0.65	0.62	0.61	0.65	0.62	9.0	0.61
m	č	_	1	.95	1	.95	1	.95	1	.95	1	.95	1	96.
Data Transform	Drob	1 100	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	Mix
Data	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	Reg

Table 36: A table of the precision for each method with different setup of using Post Michael to predict Post Florence.

5.2.16 Post Michael to Post Florence: F-score

ou	-		0.77	0.77	0.76	0.77	0.76	0.77	0.77	0.77	92.0	0.77	0.76	0 11
Logistic Regression	Obs	Lat	0.64	0.65	0.64	0.65	99.0	0.65	0.64	0.65	0.64	0.65	99.0	7 C
gistic B	+01	Į Į	99.0	0.64	99.0	0.64	0.65	0.64	0.65	0.64	99.0	0.64	0.65	100
$\Gamma_{\rm c}$	240	S	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	1
		II V	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	000
Decision Tree	Ops	Lat	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0
Decisio	+0	ğ	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0 11
	240	s O	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1
	- E	П	0.74	0.73	0.73	0.73	0.74	0.74	0.73	0.73	0.73	0.74	0.74	1
el	Prev	z	92.0	0.77	92.0	0.77	0.75	92.0	0.75	92.0	0.75	92.0	0.73	1
nf Mod	me	П	0.65	0.65	99.0	0.65	99.0	99.0	99.0	0.65	0.64	0.64	0.65	700
Bayesian Inf Model	Income	z	0.57	0.62	0.57	9.0	0.59	0.61	0.58	0.61	0.58	0.59	0.58	6.7
Ba	1e	П	0.65	0.65	0.65	0.65	0.65	0.65	0.63	0.64	0.64	0.63	0.64	
	None	z	0.61	0.64	9.0	99.0	9.0	0.62	9.0	0.64	0.62	0.64	0.59	000
) E	ы	0.79	0.78	0.78	0.78	0.77	0.78	0.79	0.78	0.77	0.77	0.77	1
le	Prev	z	0.7	0.71	0.7	69.0	29.0	0.7	89.0	0.71	89.0	69.0	99.0	00
ch Model	me	ы	99.0	0.71	29.0	69.0	89.0	29.0	99.0	69.0	99.0	89.0	89.0	1
Grid Search	Incon	z	0.67	0.64	69.0	69.0	89.0	99.0	99.0	0.61	69.0	19.0	89.0	000
Ę.	ne	Ы	0.67	0.67	89.0	89.0	0.67	0.65	99.0	89.0	69.0	89.0	89.0	200
	None	z	99.0	89.0	0.67	89.0	89.0	89.0	0.65	99.0	0.67	29.0	99.0	0 01
m	,	, <u>, , , , , , , , , , , , , , , , , , </u>	Н	.95	П	.95	н	.95	1	.95		.95	н	2
Data Transform	Duch	1100	Unif	Unif	Norm	Norm	Mix	Mix	Unif	Unif	Norm	Norm	Mix	
Data	Filled	Latent	Group	Group	Group	Group	Group	Group	Reg	Reg	Reg	Reg	Reg	4

Table 37: A table of the F-score for each method with different setup of using Post Michael to predict Post Florence.

5.3 Across dataset using only observable features

5.3.1 Pre Florence to Post Florence Obs Only: Error

Data	Transfor	m		(Grid Sear	ch Mode	el			I	Bayesian	Inf Mode	el		Tree	Logit
Filled	Prob	٥,	No	ne	Inco	ome	Eva	c N	No	one	Inco	ome	Eva	c N	Obs	Obs
Latent	1 100	, ,	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	17.69	14.91	17.84	14.47	18.13	14.18	19.15	16.08	18.13	18.42	18.57	17.84	23.39	15.2
None	Unif	.95	16.52	14.62	17.4	14.77	17.11	13.45	17.98	16.96	16.67	18.27	17.69	17.84	23.39	15.2
None	Norm	1	18.42	14.91	18.42	21.2	18.71	14.91	16.96	15.06	19.88	17.54	16.37	16.52	23.39	15.2
None	Norm	.95	16.52	14.62	16.96	21.78	16.67	19.74	15.79	17.54	17.4	16.96	15.64	16.81	23.39	15.2
None	Mix	1	18.27	14.62	18.27	21.2	18.13	19.74	19.44	16.08	17.98	18.57	19.01	18.13	23.39	15.2
None	Mix	.95	16.67	14.33	16.67	21.78	16.67	19.88	18.13	17.11	17.54	18.71	17.4	18.13	23.39	15.2

Table 38: A table of the error rate for each method with different setup of using Pre Florence to predict Post Florence using only observable features.

5.3.2 Pre Florence to Post Florence Obs Only: Recall

Data	Transfor	m		G	rid Sea	rch Mod	lel			В	ayesian	Inf Mod	lel		Tree	Logit
Filled	Prob	~	No	one	Inco	ome	Eva	c N	No	one	Inco	ome	Eva	ıc N	Obs	Obs
Latent	1100	' '	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.33	0.16	0.33	0.2	0.38	0.52	0.49	0.42	0.5	0.48	0.47	0.39	0.62	0
None	Unif	.95	0.36	0.15	0.36	0.19	0.5	0.54	0.52	0.48	0.54	0.47	0.52	0.39	0.62	0
None	Norm	1	0.32	0.16	0.32	0.38	0.38	0.16	0.44	0.45	0.45	0.48	0.49	0.37	0.62	0
None	Norm	.95	0.38	0.14	0.35	0.37	0.38	0.35	0.5	0.45	0.51	0.5	0.51	0.37	0.62	0
None	Mix	1	0.33	0.16	0.33	0.38	0.41	0.35	0.49	0.46	0.52	0.48	0.5	0.4	0.62	0
None	Mix	.95	0.4	0.18	0.4	0.38	0.48	0.35	0.52	0.51	0.56	0.46	0.54	0.41	0.62	0

Table 39: A table of the recall for each method with different setup of using Pre Florence to predict Post Florence using only observable features.

5.3.3 Pre Florence to Post Florence Obs Only: Precision

Data	Transfor	m		G	rid Sear	ch Moc	lel			В	ayesian	Inf Mod	lel		Tree	Logit
Filled	Prob	~	No	one	Inco	ome	Eva	ıc N	No	one	Inco	ome	Eva	ıc N	Obs	Obs
Latent	1100	' '	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.4	0.53	0.4	0.57	0.4	0.53	0.4	0.47	0.42	0.41	0.4	0.41	0.35	0
None	Unif	.95	0.45	0.57	0.42	0.54	0.44	0.56	0.43	0.45	0.46	0.41	0.43	0.41	0.35	0
None	Norm	1	0.38	0.53	0.38	0.33	0.38	0.53	0.44	0.51	0.37	0.43	0.46	0.45	0.35	0
None	Norm	.95	0.45	0.58	0.43	0.31	0.44	0.35	0.48	0.43	0.44	0.45	0.49	0.44	0.35	0
None	Mix	1	0.38	0.57	0.38	0.33	0.41	0.35	0.39	0.47	0.43	0.41	0.4	0.4	0.35	0
None	Mix	.95	0.45	0.59	0.45	0.32	0.45	0.35	0.42	0.45	0.44	0.4	0.44	0.41	0.35	0

Table 40: A table of the Precision for each method with different setup of using Pre Florence to predict Post Florence using only observable features.

5.3.4 Pre Florence to Post Florence Obs Only: F-score

Data	Transfor	m		G	rid Sea	rch Moc	lel			В	ayesian	Inf Mod	lel		Tree	Logit
Filled	Prob	٥,	No	ne	Inco	ome	Eva	c N	No	one	Inco	ome	Eva	ıc N	Obs	Obs
Latent	Prob Y N			L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.36	0.25	0.36	0.3	0.39	0.53	0.44	0.44	0.46	0.44	0.44	0.4	0.45	0
None	Unif	.95	0.4	0.24	0.38	0.28	0.47	0.55	0.47	0.46	0.5	0.44	0.47	0.4	0.45	0
None	Norm	1	0.34	0.25	0.34	0.35	0.38	0.25	0.44	0.48	0.41	0.45	0.48	0.4	0.45	0
None	Norm	.95	0.41	0.23	0.38	0.34	0.41	0.35	0.49	0.44	0.47	0.47	0.5	0.4	0.45	0
None	Mix	1	0.35	0.25	0.35	0.35	0.41	0.35	0.43	0.47	0.47	0.44	0.44	0.4	0.45	0
None	Mix	.95	0.42	0.28	0.42	0.34	0.47	0.35	0.47	0.48	0.49	0.43	0.48	0.41	0.45	0

Table 41: A table of the F-score for each method with different setup of using Pre Florence to predict Post Florence using only observable features.

5.3.5 Pre Florence to Post Michael Obs Only: Error

Data	Transfor	m		(Grid Sea	rch Mode	el			I	Bayesian	Inf Mode	el		Tree	Logit
Filled	Prob		No	one	Inco	ome	Eva	ıc N	No	ne	Inc	ome	Eva	c N	Obs	Obs
Latent	1100	' '	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	22.32	16.61	22.32	16.97	21.4	16.61	19.19	16.97	19.56	16.42	19	17.71	21.4	18.08
None	Unif	.95	21.4	16.97	21.4	17.16	20.11	16.61	19	16.97	19.37	16.42	18.82	17.71	21.4	18.08
None	Norm	1	22.32	17.16	22.32	17.34	21.4	17.71	18.82	16.97	19.37	16.61	19	17.9	21.4	18.08
None	Norm	.95	21.4	17.16	21.4	17.16	20.85	17.9	18.82	16.97	19.19	16.61	18.82	17.9	21.4	18.08
None	Mix	1	22.32	16.97	22.32	16.79	21.22	17.9	19.74	16.97	19.19	16.61	19	17.71	21.4	18.08
None	Mix	.95	21.4	16.97	21.4	16.79	20.3	17.9	18.82	16.97	19	16.61	18.82	17.71	21.4	18.08

Table 42: A table of the error rate for each method with different setup of using Pre Florence to predict Post Michael using only observable features.

5.3.6 Pre Florence to Post Michael Obs Only: Recall

Data	Transfor	m		G	rid Sea	rch Mod	lel			В	ayesian	Inf Mod	lel		Tree	Logit
Filled	Prob	٥,	No	one	Inco	ome	Eva	c N	No	one	Inco	ome	Eva	c N	Obs	Obs
Latent	1100	' '	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.21	0.36	0.21	0.35	0.46	0.37	0.19	0.36	0.18	0.37	0.53	0.51	0.56	0.53
None	Unif	.95	0.21	0.34	0.21	0.33	0.45	0.37	0.19	0.36	0.18	0.37	0.5	0.51	0.56	0.53
None	Norm	1	0.21	0.34	0.21	0.33	0.46	0.52	0.19	0.36	0.19	0.37	0.53	0.5	0.56	0.53
None	Norm	.95	0.21	0.33	0.21	0.33	0.41	0.52	0.19	0.36	0.19	0.37	0.5	0.5	0.56	0.53
None	Mix	1	0.21	0.36	0.21	0.35	0.45	0.52	0.19	0.36	0.2	0.37	0.53	0.51	0.56	0.53
None	Mix	.95	0.21	0.36	0.21	0.35	0.44	0.52	0.19	0.36	0.2	0.37	0.51	0.51	0.56	0.53

Table 43: A table of the recall for each method with different setup of using Pre Florence to predict Post Michael using only observable features.

5.3.7 Pre Florence to Post Michael Obs Only: Precision

Data	Transfor	m		G	rid Sear	rch Moc	lel			В	ayesian	Inf Mo	del		Tree	Logit
Filled	Prob	~	No	ne	Ince	ome	Eva	ıc N	No	ne	Ince	ome	Eva	ıc N	Obs	Obs
Latent	1 100	, ,	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.36	0.62	0.36	0.6	0.44	0.61	0.5	0.6	0.48	0.62	0.5	0.54	0.45	0.53
None	Unif	.95	0.39	0.6	0.39	0.6	0.47	0.61	0.51	0.6	0.49	0.62	0.51	0.54	0.45	0.53
None	Norm	1	0.36	0.59	0.36	0.59	0.44	0.54	0.53	0.6	0.49	0.61	0.5	0.54	0.45	0.53
None	Norm	.95	0.39	0.6	0.39	0.6	0.45	0.53	0.53	0.6	0.5	0.61	0.51	0.54	0.45	0.53
None	Mix	1	0.36	0.6	0.36	0.61	0.45	0.53	0.47	0.6	0.5	0.61	0.5	0.54	0.45	0.53
None	Mix	.95	0.39	0.6	0.39	0.61	0.47	0.53	0.53	0.6	0.51	0.61	0.51	0.54	0.45	0.53

Table 44: A table of the precision for each method with different setup of using Pre Florence to predict Post Michael using only observable features.

${\bf 5.3.8}\quad {\bf Pre\ Florence\ to\ Post\ Michael\ Obs\ Only:\ F-score}$

Data	Transfor	m		G	rid Sear	ch Mod	lel			В	ayesian	Inf Moo	lel		Tree	Logit
Filled	Prob	~	No	ne	Inco	ome	Eva	c N	No	ne	Inco	ome	Eva	c N	Obs	Obs
Latent	1 100	· ' /	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.27	0.45	0.27	0.44	0.45	0.46	0.28	0.45	0.26	0.46	0.52	0.52	0.5	0.53
None	Unif	.95	0.28	0.43	0.28	0.42	0.46	0.46	0.28	0.45	0.27	0.46	0.5	0.52	0.5	0.53
None	Norm	1	0.27	0.43	0.27	0.42	0.45	0.53	0.28	0.45	0.28	0.46	0.52	0.52	0.5	0.53
None	Norm	.95	0.28	0.42	0.28	0.42	0.43	0.53	0.28	0.45	0.28	0.46	0.5	0.52	0.5	0.53
None	Mix	1	0.27	0.45	0.27	0.44	0.45	0.53	0.27	0.45	0.29	0.46	0.52	0.52	0.5	0.53
None	Mix	.95	0.28	0.45	0.28	0.44	0.46	0.53	0.28	0.45	0.29	0.46	0.51	0.52	0.5	0.53

Table 45: A table of the F-score for each method with different setup of using Pre Florence to predict Post Michael using only observable features.

5.3.9 Post Florence to Post Michael Obs Only: Error

Data	Transfor	m		(Grid Sear	ch Mode	l			I	Bayesian	Inf Mode	el		Tree	Logit
Filled	Prob	٥,	No	one	Inco	ome	Eva	c N	No	one	Inco	ome	Eva	c N	Obs	Obs
Latent	1 100	''	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	18.63	22.14	18.63	22.51	17.9	21.96	19.93	21.59	20.48	22.32	15.68	20.66	23.25	17.34
None	Unif	.95	22.69	22.14	22.51	23.25	21.59	21.77	19.74	21.59	19.74	21.96	17.53	20.66	23.25	17.34
None	Norm	1	18.63	21.96	19.93	23.43	17.71	21.77	19.93	21.59	19.93	21.96	16.24	19.93	23.25	17.34
None	Norm	.95	22.69	21.96	22.32	23.43	21.59	21.77	20.3	21.59	21.96	21.96	17.53	19.93	23.25	17.34
None	Mix	1	18.82	21.96	19.74	22.51	18.08	21.77	19.93	21.59	19.93	21.96	16.24	19.93	23.25	17.34
None	Mix	.95	22.69	21.96	22.32	23.43	21.59	21.77	20.11	21.59	21.96	21.96	17.34	19.93	23.25	17.34

Table 46: A table of the error rate for each method with different setup of using Post Florence to predict Post Michael using only observable features.

5.3.10 Post Florence to Post Michael Obs Only: Recall

Data	Transfor	m		G	rid Sear	ch Mod	lel			В	ayesian	Inf Mod	lel		Tree	Logit
Filled	Prob	۵,	No	ne	Inco	ome	Eva	c N	No	one	Inco	ome	Eva	c N	Obs	Obs
Latent	Prob 7 N		N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.18	0.11	0.17	0.15	0.24	0.12	0.07	0.11	0.04	0.15	0.27	0.13	0.42	0.28
None	Unif	.95	0.13	0.11	0.08	0.15	0.17	0.12	0.05	0.11	0.05	0.11	0.12	0.13	0.42	0.28
None	Norm	1	0.18	0.11	0.23	0.16	0.26	0.12	0.07	0.11	0.07	0.14	0.24	0.17	0.42	0.28
None	Norm	.95	0.13	0.11	0.09	0.16	0.21	0.12	0.05	0.11	0.07	0.14	0.19	0.17	0.42	0.28
None	Mix	1	0.17	0.11	0.18	0.15	0.29	0.12	0.07	0.11	0.07	0.14	0.24	0.17	0.42	0.28
None	Mix	.95	0.12	0.11	0.12	0.16	0.21	0.12	0.06	0.11	0.08	0.14	0.2	0.17	0.42	0.28

Table 47: A table of the recall for each method with different setup of using Post Florence to predict Post Michael using only observable features.

5.3.11 Post Florence to Post Michael Obs Only: Precision

Data	Transfor	m		G	rid Sea	rch Mod	lel			В	ayesian	Inf Mod	lel		Tree	Logit
Filled	Prob	~	No	ne	Inc	ome	Eva	c N	No	one	Inco	ome	Eva	ıc N	Obs	Obs
Latent	1 100	' '	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.54	0.29	0.55	0.32	0.58	0.31	0.39	0.31	0.27	0.33	0.76	0.39	0.4	0.6
None	Unif	.95	0.3	0.29	0.24	0.3	0.37	0.32	0.38	0.31	0.38	0.3	0.8	0.39	0.4	0.6
None	Norm	1	0.54	0.3	0.46	0.3	0.59	0.32	0.39	0.31	0.39	0.33	0.74	0.45	0.4	0.6
None	Norm	.95	0.3	0.3	0.26	0.3	0.39	0.32	0.31	0.31	0.24	0.33	0.65	0.45	0.4	0.6
None	Mix	1	0.53	0.3	0.46	0.32	0.56	0.32	0.39	0.31	0.39	0.33	0.74	0.45	0.4	0.6
None	Mix	.95	0.28	0.3	0.3	0.3	0.39	0.32	0.35	0.31	0.26	0.33	0.66	0.45	0.4	0.6

Table 48: A table of the precision for each method with different setup of using Post Florence to predict Post Michael using only observable features.

5.3.12 Post Florence to Post Michael Obs Only: F-score

Data	Transfor	m		G	rid Sea	rch Moc	lel			В		Tree	Logit						
Filled	Prob	. ~	Prob o		Prob o		ne	Inco	ome	Eva	c N	No	one	Inc	ome	Eva	c N	Obs	Obs
Latent	t 1100 y	1100	100	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs		
None	Unif	1	0.27	0.15	0.26	0.21	0.34	0.17	0.11	0.16	0.07	0.21	0.4	0.2	0.41	0.38			
None	Unif	.95	0.19	0.15	0.12	0.2	0.24	0.17	0.09	0.16	0.09	0.16	0.2	0.2	0.41	0.38			
None	Norm	1	0.27	0.16	0.31	0.21	0.36	0.17	0.11	0.16	0.11	0.2	0.36	0.25	0.41	0.38			
None	Norm	.95	0.19	0.16	0.13	0.21	0.27	0.17	0.08	0.16	0.11	0.2	0.3	0.25	0.41	0.38			
None	Mix	1	0.26	0.16	0.26	0.21	0.38	0.17	0.11	0.16	0.11	0.2	0.36	0.25	0.41	0.38			
None	Mix	.95	0.16	0.16	0.18	0.21	0.27	0.17	0.1	0.16	0.12	0.2	0.31	0.25	0.41	0.38			

Table 49: A table of the F-score for each method with different setup of using Post Florence to predict Post Michael using only observable features.

5.3.13 Post Michael to Post Florence Obs Only: Error

Data	Data Transform Grid Search Model									1		Tree	Logit				
Filled	Prob		No	one	ne Incor		ome Evac N		None		Income		Evac N		Obs	Obs	
Latent	Latent Frob γ	ob 'y	, ,	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	17.69	13.16	17.69	13.45	16.96	13.16	15.2	13.45	15.5	13.01	15.06	14.04	16.96	14.33	
None	Unif	.95	16.96	13.45	16.96	13.6	15.94	13.16	15.06	13.45	15.35	13.01	14.91	14.04	16.96	14.33	
None	Norm	1	17.69	13.6	17.69	13.74	16.96	14.04	14.91	13.45	15.35	13.16	15.06	14.18	16.96	14.33	
None	Norm	.95	16.96	13.6	16.96	13.6	16.52	14.18	14.91	13.45	15.2	13.16	14.91	14.18	16.96	14.33	
None	Mix	1	17.69	13.45	17.69	13.3	16.81	14.18	15.64	13.45	15.2	13.16	15.06	14.04	16.96	14.33	
None	Mix	.95	16.96	13.45	16.96	13.3	16.08	14.18	14.91	13.45	15.06	13.16	14.91	14.04	16.96	14.33	

Table 50: A table of the error rate for each method with different setup of using Post Michael to predict Post Florence using only observable features.

5.3.14 Post Michael to Post Florence Obs Only: Recall

Data	Transfor	m		G	rid Sear	rch Mod	lel			В		Tree	Logit			
Filled	Prob \gamma		No	ne	Inco	ome	Eva	c N	No	one	Inco	ome	Eva	ıc N	Obs	Obs
Latent	atent From \ \gamma	' '	N	L	N	L	N	L	N	L	N	L	N	L		l Obs
None	Unif	1	0.21	0.36	0.21	0.35	0.46	0.37	0.19	0.36	0.18	0.37	0.53	0.51	0.56	0.53
None	Unif	.95	0.21	0.34	0.21	0.33	0.45	0.37	0.19	0.36	0.18	0.37	0.5	0.51	0.56	0.53
None	Norm	1	0.21	0.34	0.21	0.33	0.46	0.52	0.19	0.36	0.19	0.37	0.53	0.5	0.56	0.53
None	Norm	.95	0.21	0.33	0.21	0.33	0.41	0.52	0.19	0.36	0.19	0.37	0.5	0.5	0.56	0.53
None	Mix	1	0.21	0.36	0.21	0.35	0.45	0.52	0.19	0.36	0.2	0.37	0.53	0.51	0.56	0.53
None	Mix	.95	0.21	0.36	0.21	0.35	0.44	0.52	0.19	0.36	0.2	0.37	0.51	0.51	0.56	0.53

Table 51: A table of the recall for each method with different setup of using Post Michael to predict Post Florence using only observable features.

5.3.15 Post Michael to Post Florence Obs Only: Precision

Data	Data Transform Grid Search Model									В		Tree	Logit			
Filled	Filled Latent Prob	~	No	None		Income		Evac N		None		Income		Evac N		Obs
Latent		' ' ^{''}	N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.36	0.62	0.36	0.6	0.44	0.61	0.5	0.6	0.48	0.62	0.5	0.54	0.45	0.53
None	Unif	.95	0.39	0.6	0.39	0.6	0.47	0.61	0.51	0.6	0.49	0.62	0.51	0.54	0.45	0.53
None	Norm	1	0.36	0.59	0.36	0.59	0.44	0.54	0.53	0.6	0.49	0.61	0.5	0.54	0.45	0.53
None	Norm	.95	0.39	0.6	0.39	0.6	0.45	0.53	0.53	0.6	0.5	0.61	0.51	0.54	0.45	0.53
None	Mix	1	0.36	0.6	0.36	0.61	0.45	0.53	0.47	0.6	0.5	0.61	0.5	0.54	0.45	0.53
None	Mix	.95	0.39	0.6	0.39	0.61	0.47	0.53	0.53	0.6	0.51	0.61	0.51	0.54	0.45	0.53

Table 52: A table of the precision for each method with different setup of using Post Michael to predict Post Florence using only observable features.

${\bf 5.3.16}\quad {\bf Post\ Michael\ to\ Post\ Florence\ Obs\ Only:\ F-score}$

Data	Data Transform Grid Search Model									В		Tree	Logit			
Filled	Prob	γ	None		Income		Eva	Evac N		None		Income		Evac N		Obs
Latent	Latent Frod		N	L	N	L	N	L	N	L	N	L	N	L	Obs	Obs
None	Unif	1	0.27	0.45	0.27	0.44	0.45	0.46	0.28	0.45	0.26	0.46	0.52	0.52	0.5	0.53
None	Unif	.95	0.28	0.43	0.28	0.42	0.46	0.46	0.28	0.45	0.27	0.46	0.5	0.52	0.5	0.53
None	Norm	1	0.27	0.43	0.27	0.42	0.45	0.53	0.28	0.45	0.28	0.46	0.52	0.52	0.5	0.53
None	Norm	.95	0.28	0.42	0.28	0.42	0.43	0.53	0.28	0.45	0.28	0.46	0.5	0.52	0.5	0.53
None	Mix	1	0.27	0.45	0.27	0.44	0.45	0.53	0.27	0.45	0.29	0.46	0.52	0.52	0.5	0.53
None	Mix	.95	0.28	0.45	0.28	0.44	0.46	0.53	0.28	0.45	0.29	0.46	0.51	0.52	0.5	0.53

Table 53: A table of the F-score for each method with different setup of using Post Michael to predict Post Florence using only observable features.