How it Works: Convolutional Neural Networks

CNN & Image Recognition

Each Layer will learn some details

CNN can be used along with Reinforcement Learning CNN can learn how to play video games

A toy ConvNet: X's and O's

Says whether a picture is of an X or an O

For example

Trickier cases

Deciding is hard

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
					1			
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	X	-1	-1	-1	-1	X	Χ	-1
-1	Χ	X	-1	-1	Χ	X	-1	-1
-1	-1	Х	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	Χ	-1	-1
-1	-1	X	Х	-1	-1	X	X	-1
-1	Χ	Х	-1	-1	-1	-1	X	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Computers are literal

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

ConvNets match pieces of the image

Features match pieces of the image

-1-11-11-11-1-1

D

- I. Line up the feature and the image patch.
- 2. Multiply each image pixel by the corresponding feature pixel.
- 3. Add them up.
- 4. Divide by the total number of pixels in the feature.

1	1	1

1	1	1
1		

1	1	1
1	1	

1	1	1
1	1	1

1	1	1
1	1	1
1		

1	1	1
1	1	1
1	1	

1	1	1
1	1	1
1	1	1

1	1	-1

1	1	-1
1	1	1
-1	1	1

Convolution: Trying every possible match

Convolution: Trying every possible match

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution layer

One image becomes a stack of filtered images

Convolution layer

One image becomes a stack of filtered images

0.77		0.11	0.33	0.55		0.33
	1.00		0.33			
0.11		1.00	-0.33	0.11		0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55		0.11	-0.33	1.00		0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.55	0.55	0.11	0.11	0.11	0.55	0.55
0.33	-0.11	0.55	0.33		-0.11	0.77
-0.11		-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

Pooling: Shrinking the image stack

- 1. Pick a window size (usually 2 or 3).
- 2. Pick a stride (usually 2).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum value.

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

1.00	0.33	0.55	0.33	
0.33	1.00	0.33	0.55	
0.55	0.33	1.00	0.11	
0.33	0.55	0.11	0.77	

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Pooling layer

A stack of images becomes a stack of smaller images.

Normalization

Keep the math from breaking by tweaking each of the values just a bit.

Change everything negative to zero.

	0.77			
ì				

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33		
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11		
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55		
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33		
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11		
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11		
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77		

0.77	0			

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33	0.7	.77	0	0.11	0.33	0.55	0	
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11	0	0 1	1.00	0	0.33	0	0.11	
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55	0.1	.11	0	1.00	0	0.11	0	(
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33	0.3	.33	0.33	0	0.55	0	0.33	(
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11	0.5	.55	0	0.11	0	1.00	0	(
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11	0	0	0.11	0	0.33	0	1.00	
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77	0.3	.33	0	0.55	0.33	0.11	0	C

ReLU layer

A stack of images becomes a stack of images with no negative values.

0.77	0	0.11	0.33	0.55	0	0.33
	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	0.77
0.33	0	0.11	0	0.11	0	0.33
0	0.55	0	0.33	0.11	0.55	0
0.11	0.55	0.55	0.33	0.55	0.55	0.11
0	0.33	0	1.00	0	0.33	0
0.11	0.55	0.55	0	0.55	0.55	0.11
0	0.55	0	0.33	0	0.55	0
0.33	0	0.11	0	0.11	0	0.33
0.33	0	0.55	0.33	0.11	0	0.77
	0.11	0	0.33	0	1.00	0
0.55	0	0.11	0	1.00	0	0.11
0.33	0.33	0	0.55	0	0.33	0.33
0.11	0	1.00	0	0.11	0	0.55
0	1.00	0	0.33	0	0.11	0
0.77	0	0.11	0.33	0.55	0	0.33

Layers get stacked

The output of one becomes the input of the next.

Deep stacking

Layers can be repeated several (or many) times.

Every value gets a vote

Vote depends on how strongly a value predicts X or O

Vote depends on how strongly a value predicts X or O

A list of feature values becomes a list of votes.

These can also be stacked.

Putting it all together

A set of pixels becomes a set of votes.

Learning

Q:Where do all the magic numbers come from?

Features in convolutional layers

Voting weights in fully connected layers

A: Parklaneae action

A: Backpropagation

Backprop

Error = right answer – actual answer

.5_I

Backprop

	Right answer	Actual answer	Error
X	1		
0			

.51

	Right answer	Actual answer	Error
X	1	0.92	
0			

	Right answer	Actual answer	Error
X	1	0.92	0.08
O			

.51

	Right answer	Actual answer	Error	
X	1	0.92	0.08	
0	0	0.51	0.49	

	Right answer	Actual answer	Error
X	1	0.92	0.08
0	0	0.51	0.49
		Total	0.57

Gradient descent

For each feature pixel and voting weight, adjust it up and down a bit and see how the error changes.

Gradient descent

For each feature pixel and voting weight, adjust it up and down a bit and see how the error changes.

Hyperparameters (knobs)

Convolution

Number of features

Size of features

Pooling

Window size

Window stride

Fully Connected

Number of neurons

Architecture

How many of each type of layer? In what order?

Not just images

Any 2D (or 3D) data.

Things closer together are more closely related than things far away.

Images

Sound

Text

Limitations

ConvNets only capture local "spatial" patterns in data. If the data can't be made to look like an image, ConvNets are less useful.

Customer data

Name, age, address, email, purchases, browsing activity,...

Customers

А	22	1A	<u>a@a</u>	1	aa	a1.a	123	aa1
В	33	2B	<u>b@b</u>	2	bb	b2.b	234	bb2
С	44	3C	<u>c@c</u>	3	СС	c3.c	345	cc3
D	55	4D	<u>d@d</u>	4	dd	d4.d	456	dd4
E	66	5E	<u>e@e</u>	5	ee	e5.e	567	ee5
F	77	6F	<u>f@f</u>	6	ff	f6.f	678	ff6
G	88	7G	g@g	7	gg	g7.g	789	gg7
Н	99	8H	<u>h@h</u>	8	hh	h8.h	890	hh8
ı	111	91	<u>i@i</u>	9	ii	i9.i	901	ii9

Rule of thumb

If your data is just as useful after swapping any of your columns with each other, then you can't use Convolutional Neural Networks.

In a nutshell

ConvNets are great at finding patterns and using them to classify images.