Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 **Experimento 7** 09/01/2025

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

O experimento tem como objetivo principal analisar as respostas em frequência de circuitos que apresentam resistência, indutância e capacitância em diferentes configurações. Por meio da variação da frequência do sinal de entrada, são obtidos os comportamentos de amplitude e fase, que são representados graficamente no Diagrama de Bode. Este tipo de análise permite identificar características importantes do circuito, como frequência de ressonância, largura de banda e comportamento em altas e baixas frequências. A abordagem experimental possibilita compreender a influência dos parâmetros do circuito sobre a resposta em frequência e sua aplicação em filtros e sistemas de controle.

2 Materiais

- National Instruments Elvis II
- 1 capacitor de 100 n F
- 1 resistor de 47Ω
- 1 indutor de 1mH

3 Procedimentos

Como já é de costume, são feitas as medidas dos valores de todos os componentes do ciruito e esses valores são comparados com os nominais. O resultado é o disposto na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
R	47Ω	47.359Ω	0.76
L	1mH	0.863 mH	13.70
С	100nF	107.500 nF	7.50

Tabela 1: Valores dos componentes

Em seguida, esses componentes são dispostos na configuração mostrada na Figura 1.

Figura 1: Circuito RLC com medição no capacitor

Usando o o gerador de funções do Elvis para gerar um onda senoidal com 4 Vpp, offset zero e frequência 10kHz e osciloscópio integrado ao Elvis para medir as tensões V_0 e V_1 , é obtido o Gráfico 1.

Gráfico 1: Coleta das tensões V_1 e V_0 no capacitor a 10kHz

Com isso obtemos os valores das amplitudes $|V_0|$, $|V_1|$ e a sua diferença de fase obtida através do dt, multiplicando simplesmente o dt por $\omega \cdot 2\pi$. Como $\omega = 10^4$, a diferença de fase

é de -43.20° , as amplitudes são $|V_0|=1.55V, |V_1|=1.81V$. Além disso, usando os valores das amplitudes das tensões é calculado o ganho da amplitude em decibéis através da fórmula $20log_{10}\left(\frac{|V_1|}{|V_0|}\right)=1.347$ e esses valores são todos adicionados à Tabela 2.

Para o cálculo dos valores teóricos, é usada a fórmula de divisor de tensão para identificar os valores de V_0 e V_1 . Na frequência de 10kHz, a impedância total do circuito é de 97 - j990 e a do capacitor é de -j1000. Portanto,

$$V_0 = 2 \cdot \frac{47 - j990}{97 - j990} = 1.57 \angle - 19.19^{\circ}V$$

$$V_1 = 2 \cdot \frac{-j1000}{97 - j990} = 2.33 \angle - 45.20^{\circ}V$$

$$20log_{10} \left(\frac{|V_1|}{|V_0|}\right) = 3.434$$

Diferença de fase: -26.01°

Esses valores também são adicionados à Tabela 2.

Em seguida, o processo é repetido com as frequências de 12.5kHz, 15.5kHz, 19.3kHz, 24.1kHz e 30kHz. Como as contas são todas completamente análogas, elas serão omitidas, mas seus resultados constam na Tabela 2. Seguem a seguir o gráfico 2, Gráfico 3, Gráfico 4, Gráfico 5 e Gráfico 6 para as próximas frequências.

Gráfico 2: Coleta das tensões V_1 e V_0 no capacitor a 12.5kHz

Gráfico 3: Coleta das tensões V_1 e V_0 no capacitor a 15.5kHz

Gráfico 4: Coleta das tensões V_1 e V_0 no capacitor a 19.3kHz

Gráfico 5: Coleta das tensões V_1 e V_0 no capacitor a 24.1kHz

Gráfico 6: Coleta das tensões V_1 e V_0 no capacitor a 30kHz

Frequência (kHz)	Grandeza	Valor nominal	Valor medido	Erro (%)
10	$ V_0 $	1.57V	1.55V	1.27
10	$ V_1 $	2.33V	1.81V	22.31
10	$20log_{10}(V_1 / V_0)$	3.434	1.347	60.77
10	Fase de V_1 em relação a V_0	-26.01°	-43.20°	66.09
12.5	$ V_0 $	1.25V	1.38V	10.40
12.5	$ V_1 $	2.35V	1.63V	30.64
12.5	$20log_{10}(V_1 / V_0)$	5.481	1.446	73.62
12.5	Fase de V_1 em relação a V_0	-43.93°	-57.24°	30.30
15.5	$ V_0 $	0.97V	1.34V	38.14
15.5	$ V_1 $	2.11V	1.46V	30.81
15.5	$20log_{10}(V_1 / V_0)$	6.733	0.745	88.94
15.5	Fase de V_1 em relação a V_0	-83.58°	-71.45°	14.51
19.3	$ V_0 $	1.17V	1.34V	14.53
19.3	$ V_1 $	1.58V	1.20V	24.05
19.3	$20log_{10}(V_1 / V_0)$	2.626	-0.958	136.48
19.3	Fase de V_1 em relação a V_0	-129.54°	-94.48°	27.06
24.1	$ V_0 $	1.51V	1.47V	2.65
24.1	$ V_1 $	1.02V	0.89V	12.75
24.1	$20log_{10}(V_1 / V_0)$	-3.381	-4.359	28.93
24.1	Fase de V_1 em relação a V_0	-151.17°	-121.47°	19.65
30	$ V_0 $	1.72V	1.64V	4.65
30	$ V_1 $	0.64V	0.63V	1.56
30	$20log_{10}(V_1 / V_0)$	-8.635	-4.155	51.88
30	Fase de V_1 em relação a V_0	-160.86°	-129.49°	19.51

Tabela 2: Valores referentes ao circuito 1

Agora que a Tabela 2 está completa, o circuito sofre uma alteração e sua configuração agora é de acordo com a Figura 2:

Figura 2: Circuito RLC com medição no resistor.

No entanto, todas as medições são exatamente análogas, mudando apenas que no divisor de tensão usa-se agora a resistência de 47Ω em vez da impedância do capacitor, portanto serão omitidas. Seguem os gráficos obtidos experimentalmente.

Gráfico 7: Coleta das tensões V_1 e V_0 no resistor a 10kHz

Gráfico 8: Coleta das tensões V_1 e V_0 no resistor a 12.5kHz

Gráfico 9: Coleta das tensões V_1 e V_0 no resistor a 15.5kHz

Gráfico 10: Coleta das tensões V_1 e V_0 no resistor a 19.3kHz

Gráfico 11: Coleta das tensões V_1 e V_0 no resistor a 24.1kHz

Gráfico 12: Coleta das tensões V_1 e V_0 no resistor a 30kHz

Todos os valores para o segundo circuito estão na Tabela 3.

Frequência (kHz)	Grandeza	Valor nominal	Valor medido	Erro (%)
10	$ V_0 $	1.57V	1.60V	1.91
10	$ V_1 $	0.69V	0.68V	1.45
10	$20log_{10}(V_1 / V_0)$	-7.160	-7.432	3.79
10	Fase de V_1 em relação a V_0	63.99°	60.45°	5.53
12.5	$ V_0 $	1.25V	1.42V	13.59
12.5	$ V_1 $	0.87V	0.76V	12.64
12.5	$20log_{10}(V_1 / V_0)$	-3.175	-5.429	70.99
12.5	Fase de V_1 em relação a V_0	46.07°	39.59°	14.07
15.5	$ V_0 $	0.97V	1.29V	32.99
15.5	$ V_1 $	0.97V	0.85V	12.37
15.5	$20log_{10}(V_1 / V_0)$	-0.055	-3.623	6487.27
15.5	Fase de V_1 em relação a V_0	6.42°	13.41°	108.88
19.3	$ V_0 $	1.17V	1.29V	10.25
19.3	$ V_1 $	0.90V	0.85V	5.56
19.3	$20log_{10}(V_1 / V_0)$	-2.257	-3.623	60.52
19.3	Fase de V_1 em relação a V_0	-39.54°	-22.23°	43.78
24.1	$ V_0 $	1.51V	1.47V	2.65
24.1	$ V_1 $	0.73V	0.76V	4.11
24.1	$20log_{10}(V_1 / V_0)$	-6.335	-5.730	9.55
24.1	Fase de V_1 em relação a V_0	-61.17°	-48.59°	20.57
30	$ V_0 $	1.72V	1.64V	4.65
30	$ V_1 $	0.57V	0.68V	19.29
30	$20log_{10}(V_1 / V_0)$	-9.687	-7.647	21.06
30	Fase de V_1 em relação a V_0	-70.86°	-51.79°	26.91

Tabela 3: Valores referentes ao circuito 2

Assim como foi feito anteriormente, agora o circuito muda mais uma vez e fica de acordo com a Figura 3.

Figura 2: Circuito RLC com medição no indutor.

Novamente, os cálculos são completamente análogos, mudando apenas a fórmula do divisor de tensão para a tensão no indutor. Logo, os cálculos serão omitidos e seus resultados dispostos na Tabela 4, logo após os gráficos experimentais.

Gráfico 13: Coleta das tensões V_1 e V_0 no indutor a $10\mathrm{kHz}$

Gráfico 14: Coleta das tensões V_1 e V_0 no indutor a 12.5kHz

Gráfico 15: Coleta das tensões V_1 e V_0 no indutor a 15.5kHz

Gráfico 16: Coleta das tensões V_1 e V_0 no indutor a 19.3kHz

Gráfico 17: Coleta das tensões V_1 e V_0 no indutor a 24.1kHz

Gráfico 18: Coleta das tensões V_1 e V_0 no indutor a $30\mathrm{kHz}$

Todos os valores para o terceiro circuito estão na Tabela 4.

Frequência (kHz)	Grandeza	Valor nominal	Valor medido	Erro (%)
10	$ V_0 $	1.57V	1.60V	1.91
10	$ V_1 $	0.92V	0.85V	7.61
10	$20log_{10}(V_1 / V_0)$	-4.639	-5.494	18.43
10	Fase de V_1 em relação a V_0	96.42°	100.78°	4.52
12.5	$ V_0 $	1.25V	$1.47\mathrm{V}$	17.6
12.5	$ V_1 $	1.45V	1.11V	23.45
12.5	$20log_{10}(V_1 / V_0)$	1.285	-2.439	289.81
12.5	Fase de V_1 em relação a V_0	136.07°	86.40°	36.50
15.5	$ V_0 $	0.97V	1.38V	42.27
15.5	$ V_1 $	2.01V	1.37V	31.84
15.5	$20log_{10}(V_1 / V_0)$	6.274	-0.063	101.00
15.5	Fase de V_1 em relação a V_0	96.42°	66.98°	30.53
19.3	$ V_0 $	1.17V	1.38V	17.95
19.3	$ V_1 $	2.32V	1.59V	31.47
19.3	$20log_{10}(V_1 / V_0)$	5.976	1.230	79.42
19.3	Fase de V_1 em relação a V_0	50.46°	44.46°	11.89
24.1	$ V_0 $	1.51V	1.47V	2.65
24.1	$ V_1 $	2.34V	1.81V	21.98
24.1	$20log_{10}(V_1 / V_0)$	3.827	1.807	52.78
24.1	Fase de V_1 em relação a V_0	28.83°	41.65°	44.47
30	$ V_0 $	1.72V	1.60V	6.98
30	$ V_1 $	2.26V	1.94V	14.16
30	$20log_{10}(V_1 / V_0)$	2.377	1.673	29.62
30	Fase de V_1 em relação a V_0	19.14°	25.90°	35.32

Tabela 4: Valores referentes ao circuito 3

Agora que temos todos os dados, passamos para a análise dos diagramas de Bode. O diagrama de Bode é obtido através da análise em escala logarítmica da função de transferência do circuito no domínio fasorial. Para obter $H(j\omega)$, um dos métodos é através da técnica de divisores de tensão, isto é, utilizando a relação $V1 = V_0 \cdot \left(\frac{Z_{carga}}{Z_{eq}}\right)$, obtém-se a razão V1/V0, equivalente à função de transferência.

Para a resposta em amplitude, utiliza-se o módulo da função de transferência, sendo este convertido pelo fator $20log_{10}$, de modo que a análise do efeito da frequência passa a ser feita por década, oferecendo uma resposta em decibéis (dB), assim facilitando a análise para diferentes escalas de frequência.

Além disso, para o espectro de fase do circuito, calcula-se o ângulo da função de transferência, de modo que para obter a resposta, utilizamos a função arctan para definir o ângulo.

Para o circuito 1, onde a carga é o capacitor, tem-se a função de transferência

$$H(j\omega) = \frac{-j10^7}{97\omega + j\frac{\omega^2}{1000} - j10^7}$$

de modo que sua resposta em amplitude resulta na figura 4 e sua resposta em frequência resulta na figura 5.

$$|H(j\omega)|_{dB} = 20log_{10} \left(\left| \frac{-j10^7}{97\omega + j\frac{\omega^2}{1000} - j10^7} \right| \right)$$

 $|H(j\omega)|$

 ω

$$A = (10 \cdot 2\pi \cdot 10^{3}, 1.347)$$

$$D = (19.3 \cdot 2\pi \cdot 10^{3}, -0.958)$$

$$B = (12.5 \cdot 2\pi \cdot 10^{3}, 1.446)$$

$$E = (21.4 \cdot 2\pi \cdot 10^{3}, -4.359)$$

$$C = (15.5 \cdot 2\pi \cdot 10^{3}, 0.745)$$

$$F = (30 \cdot 2\pi \cdot 10^{3}, -4.155)$$

Figura 4: Diagrama de Bode da resposta em amplitude no circuito 1.

O traçado vermelho é o Diagrama de Bode usando os valores teóricos, enquanto os pontos são os experimentais e eles são definidos abaixo do diagrama.

$$\angle H(j\omega) = \frac{\angle - j10^7}{\angle (97\omega + j\frac{\omega^2}{1000} - j10^7)} = -\frac{\pi}{2} - \arctan\left(\frac{\frac{\omega}{1000} - \frac{10^7}{\omega}}{97}\right)$$

 $\angle H(j\omega)$

$$A = \left(10 \cdot 2\pi \cdot 10^{3}, \frac{\pi(-43.2)}{180}\right) \qquad D = \left(19.3 \cdot 2\pi \cdot 10^{3}, \frac{\pi(-94.48)}{180}\right)$$

$$B = \left(12.5 \cdot 2\pi \cdot 10^{3}, \frac{\pi(-57.24)}{180}\right) \qquad E = \left(21.4 \cdot 2\pi \cdot 10^{3}, \frac{\pi(-121.47)}{180}\right)$$

$$C = \left(15.5 \cdot 2\pi \cdot 10^{3}, \frac{\pi(-71.45)}{180}\right) \qquad F = \left(30 \cdot 2\pi \cdot 10^{3}, \frac{\pi(-129.49)}{180}\right)$$

Figura 5: Diagrama de Bode da resposta em fase no circuito 1.

Para o circuito 2, onde a carga é o resistor, tem-se a função de transferência

$$H(j\omega) = \frac{47\omega}{97\omega + j\frac{\omega^2}{1000} - j10^7}$$

de modo que sua resposta em amplitude resulta na Figura 6 e sua resposta em frequência resulta na Figura 7.

$$|H(j\omega)|_{dB} = 20log_{10} \left(\left| \frac{47\omega}{97\omega + j\frac{\omega^2}{1000} - j10^7} \right| \right)$$

 $|H(j\omega)|$

 ω

$$A = (10 \cdot 2\pi \cdot 10^{3}, -7.432)$$

$$D = (19.3 \cdot 2\pi \cdot 10^{3}, -3.623)$$

$$E = (12.5 \cdot 2\pi \cdot 10^{3}, -5.429)$$

$$E = (21.4 \cdot 2\pi \cdot 10^{3}, -5.730)$$

$$C = (15.5 \cdot 2\pi \cdot 10^{3}, -3.623)$$

$$F = (30 \cdot 2\pi \cdot 10^{3}, -7.647)$$

Figura 6: Diagrama de Bode da resposta em amplitude no circuito 2.

Figura 7: Diagrama de Bode da resposta em fase no circuito 2.

Para o circuito 3, onde a carga é o indutor, tem-se a função de transferência

$$H(j\omega) = \frac{j\frac{\omega^2}{1000}}{97\omega + j\frac{\omega^2}{1000} - j10^7}$$

de modo que sua resposta em amplitude resulta na Figura 8 e sua resposta em frequência resulta na Figura 9.

$$|H(j\omega)|_{dB} = 20log_{10} \left(\left| \frac{j \frac{\omega^2}{1000}}{97\omega + j \frac{\omega^2}{1000} - j10^7} \right| \right)$$

 $|H(j\omega)|$

 ω

Figura 8: Diagrama de Bode da resposta em amplitude no circuito 3.

$$\angle H(j\omega) = \angle \left(j\frac{\omega^2}{1000}\right) - \angle \left(97\omega + j\frac{\omega^2}{1000} - j10^7\right) = \frac{\pi}{2} - \arctan\left(\frac{\left(\frac{\omega}{1000} - \frac{10^7}{\omega}\right)}{97}\right)$$

 $\angle H(j\omega)$

 ω

$$A = \left(10 \cdot 2\pi \cdot 10^{3}, \frac{\pi(100.78)}{180}\right) \qquad D = \left(19.3 \cdot 2\pi \cdot 10^{3}, \frac{\pi(44.46)}{180}\right)$$

$$B = \left(12.5 \cdot 2\pi \cdot 10^{3}, \frac{\pi(86.40)}{180}\right) \qquad E = \left(21.4 \cdot 2\pi \cdot 10^{3}, \frac{\pi(41.65)}{180}\right)$$

$$C = \left(15.5 \cdot 2\pi \cdot 10^{3}, \frac{\pi(66.98)}{180}\right) \qquad F = \left(30 \cdot 2\pi \cdot 10^{3}, \frac{\pi(25.90)}{180}\right)$$

Figura 9: Diagrama de Bode da resposta em fase no circuito 3.

4 Conclusão

O experimento permitiu a análise detalhada das respostas de amplitude e fase em função da frequência, evidenciando o impacto dos componentes resistivos, indutivos e capacitivos no comportamento do circuito. Foi possível determinar a frequência de ressonância, identificar regiões de ganho e atenuação e observar o comportamento de fase em diferentes faixas de frequência. Essas informações são fundamentais para o projeto e a aplicação de circuitos em sistemas que demandam controle de frequência, como filtros e amplificadores, consolidando a importância do Diagrama de Bode como ferramenta de análise no regime de sinais alternados.

5 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.