

GEOS 639 – INSAR AND ITS APPLICATIONS GEODETIC IMAGING AND ITS APPLICATIONS IN THE GEOSCIENCES

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu

Lecture 6: Interferometric SAR Techniques - Topographic Mapping

INSAR FOR TOPOGRAPHIC MAPPING: CONCEPT

Think - Pair - Share

For InSAR to Work, we Require Accuracte Co-Registration between the InSAR Image Partners:

- **Q1**: Using the image to your right as a visual clue, why is highly accurate coregistration required?
- **Q2**: How accurate do you think the co-registration needs to be?
 - Within 10s of pixels
 - At about the pixel level
 - At 1/100 of a pixel or better

Phase signature of a single SAR image

Across-Track InSAR Geometry To Enable Topographic Mapping

- For sensitivity to topography:
 Images from two slightly different vantage points are required
- Sensitivity to topography depends on these acquisition parameters:
 - The separation of the acquisition locations perpendicular to the sensor look direction B_{\perp}
 - The sensor's wavelength λ
 - The distance between satellite and ground R
 - The sensor look angle θ

Measuring Topography using InSAR

How to measure topographic height from the InSAR phase:

$$\phi_{topo} = \frac{4 \pi}{\lambda} \frac{B_{\perp}}{R \sin \theta} h$$

How well can we measure height: $\sigma_h = \frac{\lambda}{4 \pi} \frac{R \sin \theta}{B_{\perp}} \cdot \sigma_{\phi}$

example ALOS PALSAR: $\lambda \approx 25 \text{ cm}$

 $R \approx 800 \text{ km}$

$$\theta = 30^{\circ} \rightarrow \sin \theta = 0.5$$

baseline	height for 1 phase cycle (2π)		
F0 m	~ 1000 m		
50 m	≈ 1000 m		
100 m	≈ 500 m		
200 m	≈ 250 m		

Interferometric Sensitivity as a Function of Wavelength

Three simultaneously acquired Interferograms and θ but varying λ identical B

X-band $\lambda \approx 3.1 cm$

C-band $\lambda \approx 5.6 cm$

L-band $\lambda \approx 24.0cm$

Think - Pair - Share

Try to answer the following questions:

• Q1: What is the Height difference between Points 1 and 2?

Height per phase cycle (fringe):
$$h_{2\pi} = \frac{\lambda}{2} \frac{R \sin \theta}{B_{\perp}}$$

$$B = 400m$$

$$R = 800,000m$$

$$\sin \theta = 0.5$$

$$\lambda = 0.25m$$
 Height per fringe:
$$h_{2\pi} =$$

• Q2: What is the absolute Height at Point 2?

Problem of InSAR: Interferometric Phase is Ambiguous

A specific interferometric phase value matches several topographic height values!

Phase Unwrapping: Find "Most Likely" Absolute Phase Given Measured Ambiguous Phase

• Phase Unwrapping algorithms find mathematical ways of describing that ...

this is much more likely ...

... than this

A Typical InSAR Processing Workflow

- 1. Select and order InSAR-capable SAR data from a data server
- 2. Import SAR data into an InSAR processing system
- 3. Calculate spatial baseline & apply spectral (wavenumber) shift filtering (not discussed in the lectures applied automatically by most available tools)

4. Determine co-registration parameters:

- cross-correlate >100 image chips spread over image
- use over-sampling and interpolation to locate correlation peaks
- apply regression to parameterize co-registration (e.g. affine transform)

5. Co-register images:

- Resample slave image(s) to match master image
- Required accuracy: << 1/10 resolution element
- More on required co-registration accuracy on Slides 20 & 21

A Typical InSAR Processing Workflow

- **6. [Optional Orbit improvement:** If precise orbit information is available.]
- 7. Interferogram formation: $I = u_1 \cdot u_2^*$; optional multi-looking may be applied.
- **8. Flat Earth phase removal:** Simulate and subtract phase trend due to the geometry changes from near range to far range.
- **9.** Coherence Calculation: Coherence is calculated as described in Lecture 12.
- **10. For differential InSAR (d-InSAR):** Using a DEM, simulate and subtract interferogram replicating topography-related phase.
- 11. Apply phase filter: A phase filter is applied to reduce InSAR phase noise and reduce phase unwrapping complexity (see next section).
- 12. Phase Unwrapping: Turns originally ambiguous interferometric phase into unambiguous absolute phase.
- **13. Geocoding and Terrain Correction:** Note that flat earth phase needs to be added before geocoding to obtain absolute phase.

Effects of Coregistration Errors on Coherence

How accurately must the two SAR images be co-registered before interferogram formation?

Coherence Reduction Caused by Image Mis-Registration

- Here a plot how coherence drops with pixel misregistration:
 - Assumption: Mis-registration is only cause of de-correlation
 - Mis-registration expressed in fractions of pixels

Tips for Selecting Suitable Images for InSAR

How to select a suitable image pair for successful InSAR processing

Required conditions:

- Images from identical orbit direction (both ascending or both descending)
- Images with identical incidence angle and beam mode
- Images with identical resolution and wavelength (usually: same sensor)
- Images with same viewing geometry (same track/frame combination)

Recommended conditions:

- For topographic mapping: Limited time separation between images (temporal baseline)
- For topographic mapping: Image pairs with sufficient spatial baseline
- Images from similar seasons / growth / weather conditions

INSAR FOR TOPOGRAPHIC MAPPING: MISSIONS

SRTM – A Dedicated Topographic Mapping Mission

⇒ partial coverage, but higher accuracy

< 6 m vertical relative accuracy

SRTM – Deployment of Mast

SRTM Coverage

SRTM Example, Cotopaxi Volcano, Ecuador

Cotopaxi Volcano Ecuador

SRTM/X-SAR

Digital Elevation Model (DEM)

TanDEM-X - An X-Band Mission for Global Topographic Mapping

Mission Goals:

- Acquisition of a global DEM according to HRTI-3 standard
- Generation of Local DEMs with HRTI-4 quality
- Demonstration of innovative bistatic imaging techniques and applications

Helix Orbit of TanDEM-X

TanDEM-X

DEM Vertical Accuracy

	Spatial Resolution	Absolute Vertical Accuracy (90%)	Relative Vertical Accuracy (point-to-point in 1° cell, 90%)
DTED-1	90 m x 90 m	< 30 m	< 20 m
DTED-2	30 m x 30 m	< 18 m	< 12 m
TanDEM-X	12 m x 12 m	< 10 m	< 2 m
Level-4	6 m x 6 m	< 5 m	< 0.8 m

Visualization of improved DEM quality:

TanDEM-X vs. SRTM DEMs

Global TanDEM-X DEM

Global TanDEM-X DEM

Absolute Height Error

Zink, Manfred, et al. "TanDEM-X mission status: the complete new topography of the Earth." 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016.

Repeat-Pass vs. Single-Pass Interferometry

What's Next?

• This is what awaits next:

Lab on DEM generation using InSAR

