Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

7-Hydroxy-4-methyl-8-(3-methylbenzoyl)-2*H*-chromen-2-one ethanol monosolvate

Shu-Ping Yang, a* Li-Jun Han, Xiao-Yun Chen and Zhuan Gao a

^aCollege of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and ^bCollege of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China Correspondence e-mail: spyang69320@yahoo.cn

Received 28 October 2011; accepted 5 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.057; wR factor = 0.188; data-to-parameter ratio = 13.2.

In the title compound, $C_{18}H_{14}O_4\cdot C_2H_6O$, the coumarin ring system is approximately planar with a maximum deviation of 0.037 (3) Å and is nearly perpendicular to the benzene ring, making a dihedral angle of 86.55 (9)°. In the crystal, molecules are linked by classical $O-H\cdots O$ hydrogen bonds and weak $C-H\cdots O$ interactions.

Related literature

For the biological activity of coumarins, see: Sharma *et al.* (2005); Xiao *et al.* (2010); Iqbal *et al.* (2009); Siddiqui *et al.* (2009); Rollinger *et al.* (2004); Brühlmann *et al.* (2001). For a related structure, see: Yang *et al.* (2010).

Experimental

Crystal data $C_{18}H_{14}O_4 \cdot C_2H_6O$ $M_r = 340.36$

Monoclinic, $P2_1/c$ a = 12.4562 (6) Å b = 10.0341 (5) Å c = 14.8999 (7) Å $\beta = 111.980 (3)^{\circ}$ $V = 1726.93 (14) \text{ Å}^{3}$ Z = 4

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K $0.30 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.972$, $T_{\max} = 0.982$

12216 measured reflections 3021 independent reflections 1762 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.119$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.188$ S = 1.053021 reflections

229 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O3-H3···O5i	0.82	1.82	2.629 (3)	166
$O5-H5A\cdots O2$	0.82	1.95	2.764 (3)	169
C17-H17···O2 ⁱⁱ	0.93	2.54	3.398 (4)	154
C20−H20 <i>B</i> ···O4 ⁱⁱⁱ	0.96	2.53	3.489 (5)	177
Symmetry codes: $-x + 2, -y + 1, -z + 1$	(i) x, y	- 1, z; (ii)	$-x+1, y-\frac{1}{2},$	$-z + \frac{1}{2};$ (iii)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *SHELXL97*.

The project was supported by the Natural Science Foundation of Huaihai Institute of Technology, China (No. Z2009019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5373).

References

Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany

Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). *J. Med. Chem.* 44, 3195–3198.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). 4PEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Iqbal, P. F., Bhat, A. R. & Azam, A. (2009). Eur. J. Med. Chem. 44, 2252–2259.
Rollinger, J. M., Hornick, A., Langer, T., Stuppner, H. & Prast, H. (2004). J. Med. Chem. 47, 6248–6254.

Sharma, S. D., Rajor, H. K., Chopra, S. & Sharma, R. K. (2005). Biometals, 18, 143–154.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.

Xiao, C.-F., Tao, L.-Y., Sun, H.-Y., Wei, W., Chen, Y., Fu, L.-W. & Zou, Y. (2010). Chin. Chem. Lett. 21, 1295–1298.

Yang, S.-P., Han, L.-J., Wang, D.-Q. & Chen, X.-Y. (2010). Acta Cryst. E66, 03183.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3253 [doi:10.1107/S1600536811046630]

7-Hydroxy-4-methyl-8-(3-methylbenzoyl)-2*H*-chromen-2-one ethanol monosolvate

S.-P. Yang, L.-J. Han, X.-Y. Chen and Z. Gao

Comment

Coumarins are very well known for their biological activity, such as antioxidants (Sharma *et al.*, 2005), anticancer activity (Xiao *et al.*, 2010), antiamoebic (Iqbal *et al.*, 2009), anticonvulsant activity (Siddiqui *et al.*, 2009) and inhibitions of acetylcholinesterase and monoamine oxidase (Rollinger *et al.*, 2004; Brühlmann *et al.*, 2001). Previous we have decribed the crystal structure of 8-benzoyl-7-hydroxy-4-methyl coumarin (Yang *et al.*, 2010). As part of our study of the crystal structures of coumarin derivatives with 7-hydroxy, we report here the crystal structure of 8-(3-methylbenzoyl)-7-hydroxy-4-methyl-2*H*-1-benzopyran-2-one, (I).

In the molecule (I), the asymmetric unit contains one coumarin molecule and one ethanol molecule, and which are linked together by one O—H···O hydrogen bond (Table 1 and Fig. 1). The coumarin moiety (r.m.s deviations 0.0214 Å) and phenyl ring are perpendicular to each other with a dihedral angle of 86.55 (9)° between the plane of the atoms O1—O3/C1—C9 and the plane of C12—C17.

In crystal structure of (I), atom O3 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O5 in the molecule at (x, y - 1, z), forming a C(10) chain running parallel to the [010] direction and generated by translation. Inversionally related molecular chains are linked together by a weak π - π interaction, the ring centroid Cg1[O1/C1—C4/C9] in the molecule at (x, y, z) connects Cg1 in the molecule at (1 - x, 1 - y, 1 - z) [centroid-centroid distance = 3.57278 (17) Å], so forming a doubled chain of $R_4^4(22)$ ring parallel to the [010] direction (Fig. 2). Neighboring doubled chains are linked into three-dimensional crystal structure by weak C—H···O hydrogen bonds (Table.1).

Experimental

The mixture containing 1.47 g (5 mmol) of dry powdered 7-(3-methylbenzoxy)-4-methylcoumarin and 2.0 g (15 mmol) of anhydrous aluminium chloride was heated for about 2 h at 463 K in an oil bath, then 30 ml of dilute (1:7) hydrochloric acid is added and the mixture is heated on a steam bath for 60 min, the crude products were filtered off, washed with water. Single crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from a 95% ethanol solution, m.p. 503–504 K.

Refinement

H atoms were placed in calculated positions with O—H = 0.82 Å (hydroxyl), C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene), and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$ (aromatic and methylene) and $U_{iso}(H) = 1.5U_{eq}(C,O)$ (methyl and hydroxyl).

Figures

Fig. 1. The asymmetric unit of title structure, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme, intramolecular O—H···O contact is shown.

Fig. 2. The molecular doubled chain of $R_4^4(22)$ ring parallel to the [010] direction. [Symmetry codes: (*) x, -1 + y, z; (#) x, 1 + y, 1 - z;(&) 1 - x, 1 - y, 1 - z].

7-Hydroxy-4-methyl-8-(3-methylbenzoyl)-2*H*-chromen-2-one ethanol monosolvate

Crystal data

 $C_{18}H_{14}O_4 \cdot C_2H_6O$ F(000) = 720 $M_r = 340.36$ $D_x = 1.309 \text{ Mg m}^{-3}$

Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc Cell parameters from 1087 reflections

 a = 12.4562 (6) Å
 $\theta = 2.5-27.8^{\circ}$

 b = 10.0341 (5) Å
 $\mu = 0.09 \text{ mm}^{-1}$

 c = 14.8999 (7) Å
 T = 298 K

 $\beta = 111.980$ (3)°
 Prism, colourless

 $V = 1726.93 (14) \text{ Å}^3$ $0.30 \times 0.25 \times 0.20 \text{ mm}$

Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3021 independent reflections

Radiation source: fine-focus sealed tube 1762 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.119$

 ϕ and ω scans $\theta_{max} = 25.0^{\circ}, \, \theta_{min} = 1.8^{\circ}$

Absorption correction: multi-scan $h = -14 \rightarrow 8$

(SADABS; Bruker, 2001) h = -1

$T_{\min} = 0.972, T_{\max} = 0.982$	$k = -11 \rightarrow 8$
12216 measured reflections	$l = -15 \rightarrow 17$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2 methods Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.188$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0767P)^2 + 0.8164P]$ S = 1.05where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ 3021 reflections $\Delta \rho_{\text{max}} = 0.19 \text{ e Å}^{-3}$ 229 parameters $\Delta \rho_{min} = -0.25 \text{ e Å}^{-3}$ 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.5042 (3)	0.6046 (3)	0.3838 (2)	0.0487 (8)
C2	0.3975 (3)	0.5458 (3)	0.3794 (2)	0.0547 (9)
H2	0.3386	0.6016	0.3809	0.066*
C3	0.3789 (3)	0.4140(3)	0.3734 (2)	0.0498 (8)
C4	0.4702 (2)	0.3271 (3)	0.3715 (2)	0.0439 (7)
C5	0.4632 (3)	0.1883 (3)	0.3652(2)	0.0538 (8)
H5	0.3943	0.1467	0.3595	0.065*
C6	0.5548 (3)	0.1119 (3)	0.3673 (2)	0.0523 (8)
Н6	0.5474	0.0197	0.3626	0.063*
C7	0.6596 (3)	0.1722 (3)	0.3765 (2)	0.0460(8)
C8	0.6708 (2)	0.3099 (3)	0.38248 (19)	0.0395 (7)
C9	0.5751 (2)	0.3841 (3)	0.37894 (18)	0.0400(7)
C10	0.2669 (3)	0.3553 (4)	0.3712 (3)	0.0717 (11)
H10A	0.2202	0.4242	0.3828	0.108*
H10B	0.2828	0.2882	0.4205	0.108*
H10C	0.2261	0.3159	0.3090	0.108*

C11	0.7839 (2)	0.3780(3)	0.3970 (2)	0.0409 (7)
C12	0.8089(2)	0.4124 (3)	0.31036 (19)	0.0389(7)
C13	0.9089(2)	0.4854 (3)	0.3207 (2)	0.0445 (7)
H13	0.9614	0.5062	0.3823	0.053*
C14	0.9305 (3)	0.5269 (3)	0.2408 (2)	0.0524 (8)
C15	0.8528 (3)	0.4895 (4)	0.1505 (3)	0.0639 (10)
H15	0.8668	0.5149	0.0959	0.077*
C16	0.7554(3)	0.4160 (4)	0.1391 (2)	0.0637 (10)
H16	0.7050	0.3917	0.0775	0.076*
C17	0.7327 (3)	0.3784(3)	0.2191 (2)	0.0489 (8)
H17	0.6661	0.3301	0.2115	0.059*
C18	1.0332 (3)	0.6147 (4)	0.2514(3)	0.0744 (11)
H18A	1.0066	0.7024	0.2278	0.112*
H18B	1.0751	0.5776	0.2147	0.112*
H18C	1.0833	0.6197	0.3184	0.112*
O1	0.59052 (16)	0.51973 (19)	0.38378 (14)	0.0455 (5)
O2	0.52656 (19)	0.7229 (2)	0.38776 (17)	0.0622 (7)
O3	0.75312 (19)	0.1018 (2)	0.37973 (17)	0.0611 (6)
Н3	0.7378	0.0220	0.3759	0.092*
O4	0.84811 (18)	0.4066 (2)	0.47834 (15)	0.0611 (7)
C19	0.8207 (4)	0.7597 (4)	0.4184 (4)	0.0976 (15)
H19A	0.8036	0.6926	0.3680	0.117*
H19B	0.8307	0.7144	0.4785	0.117*
C20	0.9288 (4)	0.8253 (4)	0.4285 (4)	0.0938 (14)
H20A	0.9239	0.8584	0.3667	0.141*
H20B	0.9914	0.7626	0.4523	0.141*
H20C	0.9425	0.8981	0.4732	0.141*
O5	0.7296 (2)	0.8436 (2)	0.3963 (3)	0.1013 (11)
H5A	0.6743	0.8040	0.4008	0.152*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0388 (18)	0.049(2)	0.0555 (19)	0.0084 (15)	0.0140 (14)	0.0061 (15)
C2	0.0376 (18)	0.060(2)	0.065(2)	0.0087 (16)	0.0180 (15)	0.0060 (17)
C3	0.0358 (17)	0.062(2)	0.0499 (18)	-0.0011 (16)	0.0140 (13)	0.0072 (15)
C4	0.0359 (16)	0.049(2)	0.0452 (17)	-0.0037 (14)	0.0129 (13)	0.0039 (14)
C5	0.0417 (18)	0.058(2)	0.061(2)	-0.0136 (16)	0.0182 (15)	0.0034 (16)
C6	0.052(2)	0.0435 (19)	0.062(2)	-0.0063 (16)	0.0216 (16)	0.0020 (15)
C7	0.0421 (18)	0.0450 (19)	0.0511 (18)	0.0015 (15)	0.0177 (14)	0.0041 (14)
C8	0.0384 (16)	0.0392 (17)	0.0408 (16)	-0.0007 (13)	0.0148 (12)	0.0016 (13)
C9	0.0401 (17)	0.0388 (17)	0.0398 (15)	-0.0019 (14)	0.0135 (13)	0.0038 (13)
C10	0.041(2)	0.085(3)	0.092(3)	-0.0007 (19)	0.0287 (18)	0.011(2)
C11	0.0358 (16)	0.0378 (17)	0.0459 (17)	0.0044 (13)	0.0117 (14)	0.0010 (13)
C12	0.0319 (15)	0.0361 (16)	0.0486 (16)	0.0030 (13)	0.0149 (13)	-0.0006 (13)
C13	0.0358 (16)	0.0409 (18)	0.0566 (18)	0.0009 (13)	0.0170 (14)	-0.0052 (14)
C14	0.050(2)	0.0468 (19)	0.069(2)	0.0021 (15)	0.0332 (17)	0.0032 (16)
C15	0.067 (2)	0.075 (3)	0.060(2)	0.004(2)	0.0343 (19)	0.0069 (18)

C16	0.058 (2)	0.083 (3)	0.0475 (19)	-0.005 (2)	0.0169 (16)	-0.0057 (17)		
C17	0.0451 (18)	0.0514 (19)	0.0493 (18)	-0.0030 (15)	0.0167 (14)	-0.0027 (14)		
C18	0.063 (2)	0.071 (3)	0.103 (3)	-0.010 (2)	0.048 (2)	0.005 (2)		
O1	0.0357 (11)	0.0407 (12)	0.0602 (13)	0.0028 (9)	0.0179 (10)	0.0051 (9)		
O2	0.0485 (14)	0.0451 (14)	0.0929 (18)	0.0074 (11)	0.0262 (12)	0.0043 (12)		
O3	0.0509 (14)	0.0423 (13)	0.0938 (17)	0.0020 (11)	0.0314 (12)	-0.0004 (12)		
O4	0.0472 (14)	0.0809 (17)	0.0482 (13)	-0.0111 (12)	0.0098 (11)	-0.0003 (11)		
C19	0.097(3)	0.059(3)	0.171 (5)	0.012(3)	0.088(3)	0.017(3)		
C20	0.071 (3)	0.081 (3)	0.131 (4)	0.006(2)	0.040(3)	-0.009(3)		
O5	0.0615 (17)	0.0419 (15)	0.203 (3)	0.0025 (13)	0.052(2)	0.0129 (17)		
Geometric para	meters (Å, °)							
C1—O2		1.216 (4)	C12—C	C17	1.379	(4)		
C1—O1		1.372 (4)	C12—C	C13	1.403	(4)		
C1—C2		1.433 (4)	C13—C	C14	1.379	(4)		
C2—C3		1.340 (4)	C13—I	H13	0.930	0		
C2—H2		0.9300	C14—(1.384			
C3—C4		1.441 (4)	C14—(1.512			
C3—C10		1.503 (4)	C15—C		1.375			
C4—C9		1.393 (4)	C15—I		0.9300			
C4—C5		1.397 (4)	C16—0		1.376 (4)			
C5—C6		1.364 (4)	C16—C17 C16—H16		0.9300			
C5—H5		0.9300	C17—H17		0.9300			
C6—C7		1.399 (4)	C18—H18A		0.9600			
С6—Н6		0.9300	C18—H18B		0.960			
C7—O3		1.348 (3)	C18—H18C		0.960			
C7—C8		1.387 (4)	O3—H3		0.820			
C8—C9		1.390 (4)	C19—O5		1.352			
C8—C11		1.507 (4)	C19—(1.454			
C9—O1		1.372 (3)	C19—I		0.970			
C10—H10A		0.9600	C19—I		0.970			
C10—H10B		0.9600	C20—H20A		0.9600			
C10—H10C		0.9600	C20—I		0.9600			
C11—O4		1.211 (3)	C20—I		0.960			
C11—C12		1.478 (4)	О5—Н		0.820			
O2—C1—O1		116.1 (3)		C12—C11	119.7			
O2—C1—C2		126.6 (3)		C13—C12	121.0			
O1—C1—C2		117.3 (3)			119.5	` ′		
C3—C2—C1		122.9 (3)	C14—C13—H13				119.5	
C3—C2—H2		118.5	C12—C13—H13				117.8	
C1—C2—H2		118.5	C13—C14—C15				121.1	
			C13—C14—C18 C15—C14—C18					
C2—C3—C4		118.7 (3)			121.1			
C2—C3—C10		121.6 (3)		C15—C14	122.0			
C4—C3—C10		119.7 (3)		C15—H15	119.0			
C9—C4—C5		116.6 (3)		C15—H15	119.0			
C9—C4—C3		118.3 (3)		C16—C17	119.8			
C5—C4—C3		125.1 (3)		C16—H16	120.1			
C6—C5—C4		121.9 (3)	C1/—(C16—H16	120.1			

06 05 115	110.0	017 017 012	110.0 (2)
C6—C5—H5	119.0	C16—C17—C12	119.8 (3)
C4—C5—H5	119.0	C16—C17—H17	120.1
C5—C6—C7	120.1 (3)	C12—C17—H17	120.1
C5—C6—H6	120.0	C14—C18—H18A	109.5
C7—C6—H6	120.0	C14—C18—H18B	109.5
O3—C7—C8	117.1 (3)	H18A—C18—H18B	109.5
O3—C7—C6	122.6 (3)	C14—C18—H18C	109.5
C8—C7—C6	120.3 (3)	H18A—C18—H18C	109.5
C7—C8—C9	117.9 (3)	H18B—C18—H18C	109.5
C7—C8—C11	121.8 (3)	C1—O1—C9	121.4 (2)
C9—C8—C11	120.3 (2)	C7—O3—H3	109.5
O1—C9—C8	115.4 (2)	O5—C19—C20	113.8 (3)
O1—C9—C4	121.3 (3)	O5—C19—H19A	108.8
C8—C9—C4	123.3 (3)	C20—C19—H19A	108.8
C3—C10—H10A	109.5	O5—C19—H19B	108.8
C3—C10—H10B	109.5	C20—C19—H19B	108.8
H10A—C10—H10B	109.5	H19A—C19—H19B	107.7
C3—C10—H10C	109.5	C19—C20—H20A	109.5
H10A—C10—H10C	109.5	C19—C20—H20B	109.5
H10B—C10—H10C	109.5	H20A—C20—H20B	109.5
O4—C11—C12	122.8 (3)	C19—C20—H20C	109.5
O4—C11—C8	118.9 (2)	H20A—C20—H20C	109.5
C12—C11—C8	118.2 (2)	H20B—C20—H20C	109.5
C17—C12—C13	119.5 (3)	C19—O5—H5A	109.5
C17—C12—C11	120.7 (3)		
O2—C1—C2—C3	178.8 (3)	C3—C4—C9—C8	176.9 (3)
O1—C1—C2—C3	-1.5 (4)	C7—C8—C11—O4	-94.5 (3)
C1—C2—C3—C4	0.2 (5)	C9—C8—C11—O4	82.6 (3)
C1—C2—C3—C10	178.6 (3)	C7—C8—C11—C12	88.2 (3)
C2—C3—C4—C9	1.9 (4)	C9—C8—C11—C12	-94.7 (3)
C10—C3—C4—C9	-176.5 (3)	O4—C11—C12—C17	-179.6 (3)
C2—C3—C4—C5	-179.9 (3)	C8—C11—C12—C17	-2.4 (4)
C10—C3—C4—C5	1.7 (4)	O4—C11—C12—C13	-2.3 (4)
C9—C4—C5—C6	0.7 (4)	C8—C11—C12—C13	174.8 (2)
C3—C4—C5—C6	-177.6 (3)	C17—C12—C13—C14	1.8 (4)
C4—C5—C6—C7	0.4 (5)	C11—C12—C13—C14	-175.5 (3)
C5—C6—C7—O3	179.5 (3)	C12—C13—C14—C15	-2.6 (4)
C5—C6—C7—C8	-0.8 (4)	C12—C13—C14—C18	175.2 (3)
03—C7—C8—C9	179.8 (2)	C13—C14—C15—C16	1.4 (5)
C6—C7—C8—C9	0.0 (4)	C18—C14—C15—C16	-176.3 (3)
O3—C7—C8—C11	-3.1 (4)	C14—C15—C16—C17	0.5 (6)
C6—C7—C8—C11	177.2 (3)	C15—C16—C17—C12	-1.3 (5)
C7—C8—C9—O1	* *		` ′
C11—C8—C9—O1	-179.1 (2) 3.6 (3)	C13—C12—C17—C16 C11—C12—C17—C16	0.1 (5) 177.4 (3)
C7—C8—C9—C4	1.2 (4)	O2—C1—O1—C9	
			-179.6 (2)
C11—C8—C9—C4	-176.1 (2)	C2—C1—O1—C9	0.6 (4)
C5—C4—C9—O1	178.8 (2)	C8—C9—O1—C1	-178.2 (2)
C3—C4—C9—O1	-2.8 (4)	C4—C9—O1—C1	1.5 (4)
C5—C4—C9—C8	-1.5 (4)		

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O3—H3···O5 ⁱ	0.82	1.82	2.629 (3)	166.
O5—H5A···O2	0.82	1.95	2.764 (3)	169.
C17—H17···O2 ⁱⁱ	0.93	2.54	3.398 (4)	154.
C20—H20B···O4 ⁱⁱⁱ	0.96	2.53	3.489 (5)	177.

Symmetry codes: (i) x, y-1, z; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+2, -y+1, -z+1.

Fig. 1

Fig. 2

