POLO REALE MINORE DI ZERO

• Nel prodotto tra t e $e^{p_i t}$ predomina l'esponenziale, quindi indipendentemente dalla potenza t^ℓ abbiamo modo convergenti a 0

POLO REALE UGUALE A ZERO

- Rimane solo t^{ℓ} nel prodotto
 - Quindi l'evoluzione dipende da quanto vale ℓ
- Pertanto, la molteplicità influenza l'evoluzione se il polo reale è uguale a zero

POLO REALE MAGGIORE DI ZERO

Nel prodotto tra t e $e^{p_i t}$ predomina l'esponenziale, quindi indipendentemente dalla potenza t^ℓ abbiamo modo convergenti a ∞

RIASSUMENDO

Relativamente ai modi di $t^\ell \ e^{p_i t} 1(t)$

	$\sigma_i < 0$	$\sigma_i = 0$	$\sigma_i > 0$
$\ell = 0$	convergente	limitato	divergente
$\ell > 0$	convergente	divergente	divergente

- Parte reale $\sigma_i=\mathrm{Re}\{p_i\}$ e molteplicità m_i (nel caso $\sigma_i=0$) determinano la convergenza/divergenza
- Parte immaginaria $\omega_i = \operatorname{Im}\{p_i\}$ determina la presenza o meno di **oscillazioni**

Nota: Per conoscere l'andamento qualitativo di $f(t)=\mathcal{L}^{-1}\{F(s)\}$ è sufficiente g ${\tt t}$ ardare la **posizione dei poli** nel piano s e la loro **molteplicità**

- ullet se abbiamo $m_i=1$ abbiamo solo il modo $e^{p_i t}$
- se abbiamo $m_i>1$ abbiamo due modi $t^\ell\,e^{p_it}$, con $\ell>0$

POLI COMPLESSI (CONIUGATI)

Lì prendiamo a coppie (il coniugato ha la stessa molteplicità di quello non coniugato)
 Stessi modi di evoluzione di quelli già visti, soltanto che ogni termine è moltiplicato per

$$1,t,t^2,\ldots,t^{m_i-1}$$
, ovvero:

• Consideriamo un polo complesso

$$p_i = \sigma_i + j\omega_i$$

con **molteplicità** m_i

(S-Pi) mi (S-Pi) mi

Allora anche il suo complesso coniugato

$$\overline{p}_i = \sigma_i - j\omega_i$$

è polo con la **stessa molteplicità** m_i

• Modi complessi associati alla coppia di poli complessi

$$e^{p_i t} 1(t), t e^{p_i t} 1(t), \dots, t^{m_i - 1} e^{p_i t} 1(t)$$

 $e^{\overline{p}_i t} 1(t), t e^{\overline{p}_i t} 1(t), \dots, t^{m_i - 1} e^{\overline{p}_i t} 1(t)$

• Tali modi complessi si combinano in modo da ottenere i modi reali

$$\widehat{\sin(\omega_i t)} e^{\sigma_i t} 1(t), t \underline{\sin(\omega_i t)} e^{\sigma_i t} 1(t), \dots, t^{m_i - 1} \underline{\sin(\omega_i t)} e^{\sigma_i t} 1(t) \\
\underline{\cos(\omega_i t)} e^{\sigma_i t} 1(t), t \underline{\cos(\omega_i t)} e^{\sigma_i t} 1(t), \dots, t^{m_i - 1} \underline{\cos(\omega_i t)} e^{\sigma_i t} 1(t)$$

ullet stessi modi ma moltiplicati per potenze successive di t

CON PARTE REALE MINORE DI ZERO

Domina l'esponenziale
 Costruiamo il grafico con l'inviluppo:

Poi moltiplico per il seno

Abbiamo tutti modi convergenti a zero, indipendentemente dalla molteplicità

CON PARTE REALE MAGGIORE DI ZERO

• Domina l'esponenziale, che quindi fa divergere il tutto (caso duale del precedente)

- segnali tutti divergenti, indipendentemente dalla molteplicità
 - perché posizionati sulla destra nel piano complesso

CON PARTE REALE UGUALE A ZERO

• Non c'è l'esponenziale, quindi dipende solo da ℓ

La molteplicità influenza sulla divergenza

Se $\ell=0$ allora abbiamo un andamento limitato, altrimenti se l>0 abbiamo divergenza (lineare)

RIASSUMENDO

Evoluzione dei modi $t^{\ell}e^{p_it}\,1(t)$ con p_i reale $\underbrace{\ell=0} \qquad \qquad \underbrace{p_i<0} \qquad \qquad \underbrace{p_i>0} \qquad \qquad \underbrace{p_i>0} \qquad \qquad \underbrace{\ell=1} \qquad \qquad \underbrace{p_i>0} \qquad \underbrace$

Quindi in generale:

- se il polo è posizionato a sinistra, abbiamo convergenza
- se il polo è posizionato a destra, abbiamo divergenza
- se il polo è centrato in zero, devo stare attento alla molteplicità
 - [] Se essa è maggiore di zero, abbiamo divergenza

- [] Se essa è zero, abbiamo un andamento limitato

$\ell=0$ convergente limitato divergente		$\sigma_i < 0$	$\sigma_i = 0$	$\sigma_i > 0$
	$\ell = 0$	convergente \	(limitato	divergente
$\ell > 0$ convergente divergente divergente	$\ell > 0$	convergente	divergente	divergente

TEOREMA: RELAZIONE POLI ED EVOLUZIONE NEL TEMPO

• Formalizziamo le condizioni sopra riportate nella tabella presentando questo teorema

Teorema 2.1

o f(t) è convergente

$$\lim_{t \to \infty} f(t) = 0$$

- \Leftrightarrow se e solo se tutti i modi di F(s) sono convergenti
- \Leftrightarrow tutti i poli di F(s) hanno parte reale < 0
- $\mathbf{0}$ f(t) è limitata

$$\exists M \text{ tale che } |f(t)| \leq M \quad \forall t \geq 0$$

- \Leftrightarrow tutti i modi di F(s) sono limitati
- \Leftrightarrow tutti i poli di F(s) hanno parte reale ≤ 0 **AND** quelli con parte reale = 0 hanno molteplicità 1
- f(t) è divergente

$$\lim_{t \to \infty} |f(t)| = \infty$$

- \Leftrightarrow esiste almeno un modo di F(s) divergente
- $\Leftrightarrow F(s)$ ha almeno un polo con parte reale >0 **OR** almeno un polo con parte reale =0 e molteplicità >1

TEOREMA DEL VALORE FINALE

Utile per calcolare il limite di un segnale nel tempo quando abbiamo la sua trasformata F(s), senza calcolare esplicitamente l'antitrasformata

- Nota: valido solo quando questo limite esiste, ovvero quando non ci sono oscillazioni persistenti (caso b del teorema precedente) --> poli complessi con parte immaginaria diversa da zero

I casi validi quindi sono i seguenti:

• dove in 0 si prendono solo i poli con m=1 per escludere i casi sopra descritti

Il teorema garantisce che vale:

$$\lim_{t o \infty} f(t) = K \quad ext{con} \quad K = \lim_{s o 0} s F(s)$$

Ovvero, uguagliando i termini:

$$\overline{\lim_{t o\infty}f(t)=\lim_{s o0}sF(s)}$$

DIMOSTRAZIONE (TEOREMA RESIDUI)

- Dalla scomposizione in fratti semplici di F(s) generica, portiamo fuori dalle sommatorie il residuo relativo al polo in 0 (e quindi facciamo partire le Σ dall'indice successivo)
- Notiamo facendo l'antitrasformata, che:
 - Il polo in 0 è un gradino (perché a meno del residuo rimane da antitrasformare 1/s)
 - Gli altri poli (nelle sommatorie) sono convergenti a 0 perché per ipotesi sono relativi a poli con parte reale minore di 0.
 - Di tutto quindi rimane soltanto il residuo del polo in 0, pertanto il comportamento asintotico è dato da: $\lim_{t \to \infty} f(t) = K_1$

• se non c'è il polo in 0 il teorema vale lo stesso e $\lim_{t\to\infty}f(t)=0$, ovvero il segnale è convergente se ci sono tutti i poli con parte reale minore di 0.

ESERCIZI: COMPORTAMENTO ASINTOTICO

0)

- Guardo le radici di a(s), notando che c'è un polo in 0 con molteplicità 1 e un polo in -2 con molteplicità 1
- Possiamo applicare il teorema del valore finale
 - In maniera alternativa si può calcolare l'antitrasformata facendo la scomposizione in fratti semplici
 - Però se avessi avuto un polo con molteplicità elevata sarebbe venuta una scomposizione esageratamente pesante

$$F(s) = \frac{2}{5(s+1)^{1000}}$$

$$e(s) = 5(s+1)^{1000}$$

$$P_{1} = 0 \quad m_{1} = 1$$

$$P_{2} = 1 \quad m_{2} = 1000$$

$$P_{3} = 1 \quad m_{2} = 1000$$

$$P_{4} = 0 \quad m_{4} = 1$$

$$P_{5} = 1 \quad m_{2} = 1000$$

$$P_{7} = 1 \quad m_{5} = 1000$$

$$P_{8} = 1 \quad m_{5} = 1000$$

$$F(s) = \frac{2}{s(s+2)}$$

$$e(s) = s(s+2)$$

$$m_{x=1}$$

$$m_{z=1}$$

$$m_{z=1}$$

$$\lim_{m_{z=1}} f(t) = \lim_{m_{z=1}} f(t) =$$

1)

- Poli puramente immaginanari: non si può applicare il teorema del valore finale
- Siamo nel punto [b] del teorema, che mi garantisce che f(t) è limitata: tutti i poli con parte reale ≤ 0 e quelli con parte reale = 0 hanno m = 1
 - Infatti i modi di evoluzione sono: gradino (polo in 0), seno e coseno (poli complessi coniugati)

1)
$$F(s) = \frac{s^2+1}{s^3+10}s = \frac{s^2+1}{s(s^2+10)}$$
 $e(s) = s(s^3+10)$
 $P_1 = 0$
 $P_2 = jV10$
 $P_3 = -jV10$
 $P_3 = -jV10$

2)

- Guardo i poli di a(s), notando che hanno m=2 e sono complessi coniugati
- Il limite asintotico è 0 perché abbiamo tutti poli con parte reale ≤ 0, quindi modi di evoluzione convergenti (caso a del teorema)
 - calcoliamo anche esplicitamente i modi, guardando quando vale σ_1 e ω_1 per i poli complessi, e

ricordandosi di aggiungere i modi moltiplicati per t dato che abbiamo m=2

2)
$$F(s) = \frac{5s}{(s^{2}+s+1)^{2}}$$
 $a(s) = (s^{2}+s+1)^{2}$
 $e(s) = 0 \iff s^{2}+s+1 = 0 \iff s = -\frac{1}{2} \pm \sqrt{\frac{1-\epsilon}{2}} = -\frac{1}{2} \pm \sqrt{\frac{13}{3}}$
 $P_{1} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{2} = -\frac{1}{2} - \sqrt{\frac{13}{3}} = \frac{m_{2} = 2}{2}$
 $P_{3} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{2} = 2}{2}$
 $P_{4} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{2} = 2}{2}$
 $P_{5} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{2} = 2}{2}$
 $P_{7} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{2} = 2}{2}$
 $P_{8} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{1} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{2} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{2} = 2}{2}$
 $P_{3} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{4} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{2} = 2}{2}$
 $P_{5} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{1} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{2} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{3} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{4} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{5} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{7} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{8} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{1} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{2} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{1} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{1} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{1} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{2} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{3} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{4} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{5} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{1} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{2} = -\frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{3} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{4} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{4} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{5} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{5} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{5} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 $P_{5} = \frac{1}{2} + \sqrt{\frac{13}{3}} = \frac{m_{1} = 2}{2}$
 P

• abbiamo 4 modi come ci aspettavamo (dato che Σ molteplicita' = 4)

ULTIMI 4 ESERCIZI: LEZIONE 14

3)

- Si osserva che ci sono semplificazioni (stesso polo al numeratore e al denominatore)
 - Un polo "va via"
 - Ci rimangono solo poli complessi coniugati
- Si può applicare anche il teorema del valore finale

3)
$$F(s) = \frac{58}{8(s^2 + s + 1)} = \frac{5}{s^2 + s + 1}$$
 $e(s) = 0 \iff s^2 + s + 1 = 0 \iff s = -\frac{1}{2} + \frac{1}{3} + \frac{1}{3} = 0$
 $P_1 = -\frac{1}{2} + \frac{1}{3} + \frac{1}{3} = 0$
 $P_2 = -\frac{1}{2} - \frac{1}{3} + \frac{1}{3} = 0$
 $f(t) = 0$

modi esplicitamente calcolati nell'esercizio 2)

4)

- coppia di poli complessi coniugati
- non si può applicare il TVF (parte reale maggiore di zero)
 - parte reale maggiore di zero: divergenti
 - parte immaginaria presente: oscillanti
- quindi modi divergenti e oscillanti
 - caso \overline{c}

9)
$$F(s) = \frac{4s}{s^2 + 1}$$
 $e(s) = 0 \iff s^2 - s + 1 = 0 \iff s = 1 + 1 + 1 - 9 = \frac{1}{2} + \frac{1}{2}$
 $P_A = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} =$

• il limite non esiste perché abbiamo oscillazioni

5)

- non si può applicare il TVF perché la parte reale è uguale a zero
 - ullet inoltre abbiamo molteplicità 2, quindi diverge a ∞
 - 4 modi di evoluzione in generale (abbiamo un termine alla seconda al quadrato al denominatore)
- caso \boxed{c} del teorema (divergenza)

5)
$$F(s) = \frac{2s+1}{(s^2+4)^2}$$
 $e(s) = (s^2+4)^2$
 $e(s) = 0 \Leftrightarrow (s^2+4)^2 = 0 \Leftrightarrow s^2+4=0 \Leftrightarrow s^2=-4 \Leftrightarrow s=\pm j2$
 $P_1 = j^2 \quad m_1 = 2$
 $P_2 = -j^2 \quad m_2 = 2$
 $P_3 = p^2 \Leftrightarrow p^2 \Rightarrow p^2 \Rightarrow$

6)

- Semplificazioni! (fattorizzando il denominatore)
 - Polo in $0 \operatorname{con} m = 1$
 - Polo in -2 con m=1
- Posso applicare il TVF

Due modi di evoluzione:

- gradino, associato al polo in 0
- esponenziale decrescente, associato al polo in -2

6)
$$F(s) = \frac{s}{s^3 + 2s^2} = \frac{s}{s^2(s+2)} = \frac{1}{s(s+2)}$$
 $e(s) = s(s+2)$
 $e(s) = 0 \iff s(s+2) = 0 \implies s = 0 \implies s = -2$
 $P_1 = 0 \iff m_1 = 1 \iff p_2 = -2$
 $P_2 = -2 \iff m_2 = 1 \iff p_3 = -2$

tutti puli on Re <0 e un puls in 0 on multiplicate 1

 $\lim_{s \to \infty} f(s) = \lim_{s \to \infty} s \neq \frac{1}{s(s+2)} = \frac{1}{2}$
 $\lim_{s \to \infty} f(s) = \lim_{s \to \infty} s \neq \frac{1}{s(s+2)} = \frac{1}{2}$

TEOREMA DEI RESIDUI ESTESO: GRADO N = GRADO D

Sia F(s) una funzione semplicemente propria, dotata quindi dello stesso grado al numeratore e al denominatore

- Nota: finora abbiamo visto il caso di funzione strettamente propria Allora si può espandere in fratti semplici come:

$$F(s) = K_0 + \sum_{i=1}^k \sum_{\ell=1}^{m_i} rac{K_{i\ell}}{(s-p_i)^\ell}$$

- ullet ovvero si aggiunge un termine aggiuntivo K_0 dovuto al termine di grado massimo al denominatore
- Si dimostra che $\overline{K_0=b_n}$, quindi non va nemmeno calcolata faticosamente
 - Per dimostrarlo basta fare $\lim_{s \to \infty} F(s)$

ANTITRASFORMATA

Per linearità basta antitrasformare ciascun termine

- La parte delle sommatorie è analoga
- ullet La parte del termine costante K_0 porta con l'antitrasformata alla $\delta(t)$ di ampiezza K_0 , ovvero K_0

ESEMPIO

$$F(s) = \frac{3s+1}{s+1}$$

$$0(s) = s+1$$

$$b(s) = 3s+1$$

$$F(s) = K_0 + \frac{K_1}{s+1}$$

$$K_1 = \lim_{s \to p_1} (s-p_1)F(s) = \lim_{s \to -1} (s+1) \frac{3s+1}{s+1} = -2$$

$$K_0 = 3 = \lim_{s \to p_2} F(s)$$

$$F(s) = 3s+1$$

$$F(s) = 3s+1$$