Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

La Protección Mecánica Canalización, Cajas y Tableros

¿Son importantes las condiciones del medio ambiente? ¿Que finalidad cumple la canalización?

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Introducción

La Protección mecánica de una Instalación Eléctrica

- Las características de la protección dependen de los siguientes factores:
 - La temperatura y humedad durante la ស្រុក្ខាធុរជុំព្រះ ្រេវ
 - La presencia de gases, polvo o material en el ambiente.
 - Los conductores usados en la instalación.
 - El sistema de puesta a tierra.
 - La necesidad de protección contra golpes u otros daños mecánicos.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Lugares peligrosos

- Un área peligrosa es aquella en donde una sustancia inflamable está o puede estar en un estado fácilmente inflamable.
- La operación del equipo electrico puede ocasionar que la(s) sustancia(s) inflamables se enciendan, de allí que defina las características de su canalización, cajas de paso y tableros.
- El Código eléctrico del Perú clasifica los lugares peligrosos en tres "clases" y los subdivide en "divisiones".

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Clases de lugares peligrosos

La clasificación se basa en el NEC.

- Clase I

 IEE217 SISTEMAS ELÉCTRICOS
 Ing. Raúl D

 Gases o vapores

 inflamables
- Clase II Polvos combustibles
- Clase III Pelusas combustibles.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Lugares de Clase I

- Locales cuya atmósfera están o pueden estar presentes gases o vapores inflamables cos en cantidad suficiente como para producir una mezcla inflamable o explosiva.
- Los gases y vapores están organizados en 4 grupos de similar peligrosidad.

Grupo A	Acetilenc

- Grupo B
 Ing. Raul Del Rosario Q.
 gases de igual poder
 Grupo C.
 Etileno, eter
- Grupo C Etileno, eter, etc.
- Grupo D Gasolina, benceno, solventes, etc

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Lugares de Clase II

- Locales aquellos que son peligrosos debido a la presencia de polvos combustibles o eléctricamente conductivos.
- Los polvos estan divididos en 3 grupos de similar peligrosidad.

Grupo E	Polvos
	metálicos como
	Al, Magnesio,
Ing. Raúl Del Rosario	etc. (No)

Grupo F Negro de humo, carbón o coque.

Grupo G Harina, polvos de granos, etc.

ING. RAUL DEL ROSARIO Q

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Lugares de Clase III

- Areas en donde existen condiciones de peligrosidad debido a la presencia de fibras o materiales que Ing. Raúl Del Rosario Q. produzcan pelusas inflamables.
- Esta clase de áreas no tienen grupos específicos que las identifiquen.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Divisiones

- Los lugares de peligrosos se dividen de acuerdo a la presencia de la sustancia peligrosa:
 - División fister donde la sustancia peligrosa esta presente en condiciones de operación NORMAL.
 - División 2 Lugares en donde las sustancias peligrosas están confinadas y solo ante una FALLA se presentan en la atmósfera. O lugares en donde se previene su presencia mediante sistemas de ventilación.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Lugares peligrosos Clasificación IEC - 60079

- ZONA 0 La mezcla explosiva de gas, vapor o polvo está <u>permanentemente presente</u>, por ejemplo la fase gaseosa en el interior de un tanque de almacenamiento ó urra cármana sabientas. Ing. Raúl Del Rosario Q.
- ZONA 1 La atmósfera explosiva está <u>casi siempre</u> <u>presente</u>, debido a la presencia de gases, vapores ó polvos, durante la operación normal del proceso.
- ZONA 2 La atmósfera explosiva no está presente durante la operación normal, sólo está presente durante períodos cortos y de manera accidental.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Influencia de la clasificación del lugar.

- Los alojamientos y dispositivos de una instalación eléctrica de un lugar peligroso deben ser certificados y debidamente etiquetados.
- La especificación de los equipos dependerá de la norma usada como referencia.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Los grados de protección del equipo

¿De que protegemos la instalación eléctrica? ¿Que norma se usa en nuestro país?

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Los Grados de protección NTP IEC-60529 -1 • Esta norma clasifica la protección que ofrece un gabinete al sistema eléctrico converespectora reúl pel Partirio. • Al contacto y la presencia de cuerpos extraños, como polvo. • El ingreso de agua. • La resistencia a los golpes.

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

		Protección Prinsra Cifra
Contacto	Cuerpos Extraños	IP
Sin protección	Sin protección	0
Con áreas importantes del cuerpo (reverso de la mano)	Cuerpos extraños grandes, de diámetro mayor que los 50 mm	1
Con el dedo	Cuerpos extraños de mediano tamaño, diámetro mayor que	2
Con herramientas y cables, diámetro mayor que 2,5 mm	2.5mm Cuerpos extraños pequeños, diámetro mayor que 2,5 mm	3

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Protección Segunda Cifra IP	Protección con	atra agua
0	Sin protección	
IEEX 1	Gotas de agua cayendo verticalmente	o o o o
2	Gotas de agua cayendo a 15 grados de la vertical	15° 0

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Protecció Segunda Cifr IP	Protección contra agua		
6	Flujo de agua importante		
7	Inmersión de corto plazo		
8	Inmersión		
IEE 217 - SISTEMAS ELÉCTRICO	INGNBAHADEDEC	PROBURDO Q.	

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Clasificación de la protección NEMA 250

- La norma NEMA clasifica los alojamientos sobre la base de las características del lugar de instalación y el desempeño esperado.
- Las dases definidas para lugares no no peligrosos son: 1, 2, 3, 3R, 3S, 3X, 3RX, 3SX, 4, 4X, 5, 6, 6P, 12, 12K y 13.
- Las clases definidas para lugares peligrosos son: 7, 8, 9, 10.

IEE 217 – SISTEMAS ELÉCTRICOS

Ejemplos de Clase NEMA				
Clase	NEMA Std. 250			
3R	Gabinetes destinados al uso a la intemperie primariamente para proporcionar un grado de protección contra lluvia y lluvia helada; sin daño por la formación de hielo en el gabinete.			
4X	Gabinetes destinados para el uso en interiores o a la intemperie primariamente para proporciona protección contra corrosión, polvo y lluvias sopladas por el viento, agua salpicada o disparada por mangueras.			
12	Gabinetes destinados al uso de interiores, primariamente para proporcionar un grado de protección contra polvo, suciedad cayendo y goteo de líquidos no corrosivos.			
IEE 217 – SISTEMA	AS ELÉCTRICOS ING. RAUL DEL RO	SARIO Q.		

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Referencia Clase NEMA - IP IEC Grado de Protección IEC 1 X 2 Χ 3 X 3R AS ELÉCTRICOS SISTE aúl Del <No> 4 X 4x X 6 X 12 X 13 Χ Esta tabla solo es referencial para envolventes de uso exterior e interior en

lugares sin condiciones peligrosas. No existe una equivalencia exacta entre las clases definidas en la norma IEC y las clases de la norma NEMA 250.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Ejemplo de cajas y tableros Clase NEMA

- Caja NEMA 7.
- Construida en fundición de aluminio a pruebatede 7 - SISTEMAS E explosión.
- Clase I
 División 1 y 2,
 Grupos A, B, C
 o D.
- Tablero de bombas de uso interior

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Protección contra los impactos mecánicos NTP IEC 62262

- El índice IK indica la resistencia de una envolvente al impacto mecánico nocivo, que este alojamiento ofrece a los equipos instalados en su interior.
- El índice IK esta formado por dos dígitos desde 00 hasta 10 (20 J) que representan la energía que la envolvente puede absorber.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

IK ##

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Los Grados de protección IK – Norma NTP IEC 62262

Grado IK	00	01	02	03	04	05
Energía (J)	 IEE217 – SIST	0,15 EMAS ELECTR	$0.20 m _{ICOS}$ Ing. Raú	0,35 I Del Rosario Q.	0,5	0,7
Masa y altura del golpe		0,2 kg 70 mm	0,2 kg 100 mm	0,2 kg 175 mm	0,2 kg 250 mm	0,2 kg 350 mm

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Los Grados de protección IK – Norma NTP IEC 62262

Grado IK	06	07	08	09	10
Energía (J)	217 – S I STEMAS	eléctræos I	lng. Raú 5 0el Rosa	rio Q. 10	20
Masa y altura del golpe	0,5 kg 200 mm	0,5 kg 400 mm	1,7 kg 295 mm	5 kg 200 mm	5 kg 400 mm

El índice IK actualmente es usado en nuestro país por las distribuidoras para luminarias.

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Agradecimientos

- Comisión Electrotécnica Internacional (IEC)
 - NTP IEC 60529, Grados de protección proporcionados por las envolventes (Código IP).
 - NTP IEC 62262, Grados de protección proporcionados por las envolventes de materiales eléctricos contra los impactos mecánicos externos (Código IK).
- Asociación Nacional de Fabricantes Eléctrico (NEMA)
 - NEMA 250, Envolventes para equipo eléctrico (máximo 1000 V)
- Eaton Cooper Crouse Hinds Electric Company.

IEE 217 – SISTEMAS ELÉCTRICOS