

Consider a bijection $f: A \to B$. Since f is a one-to-one correspondence, each element in B corresponds to exactly one element in A.

This observation allows us to define a function $f^{-1}: B \to A$ that assigns each element in B to its preimage in A; f^{-1} is called the inverse function of f. (Note that since f is a bijection, each element in B has a preimage containing one element only. In general, when f is not necessarily a bijection, the preimage of an element on B can be a set of any cardinality.)

Defn: Let $f: A \to B$ be a bijection. The **inverse** of f is a function $f^{-1}: B \to A$ defined as:

$$f^{-1}(b) = a \leftrightarrow f(a) = b.$$

1-10-1

case nuerse

B to A counst be defined

A function that has an inverse is called **invertible**.

We conclude that a function is invertible if and only if it's a bijection.

Defn: The **identity function** on a set A, denoted by $\iota_A : A \to A$, is the function defined as $\iota_A(x) = x$ for all $x \in A$.

Observe that ι_A is an invertible function. (What's its inverse?)

got

Defn: Let $f: A \to B$ and $g: B \to C$ be two functions. The composition $g \circ f$ of f and g is the function $g \circ f: A \to C$ defined as

gof + fog

 $(g \circ f)(x) = g(f(x))$ for all $x \in A$

Observe that $g: B \to A$ is the inverse of $f: A \to B$ if and only if $g \circ f = \iota_A$ and $f \circ g = \iota_B$

Think about this a little bit.

(over the reading week)

elements in the domain are ordered points of the (a_1b) where $a \in \mathbb{Z}$ and $b \in \mathbb{Z} - \{0\}$ (b is a non-zero codoman Exercises on Functions: Let $f(\mathbb{Z} \times (\mathbb{Z} - \{0\})) \to \mathbb{Q}$ be a function defined as $f(m,n) = \frac{m}{n}$. Is f one-to-one? Is f onto? (Note that the function f tales an ordered pair as input and gives a rational number as f is not one-to-one $(1,1) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ and (2,2) E Zx (Z-{0}), but (2,2) f (2,2) f (2,2) f (2,2) f(1,1) = f(2,2)1 = 1 = 2 Zx(Z-20}) Q Is fonto? from the codoman Q. Since $y \in \mathbb{R}$, we can write y= a where a,b \in Z and b \neq 0. Then we see that $f((a,b)) = \frac{a}{b} = y$. So we conclude that $E(z) = z \times (z - z)$ any element from the of the somain. Therefore, f is onto

get these numbers as output from f(x) Let $f:(0,+\infty)\to(0,+\infty)$ be a function defined by $f(x)=5x^2+7$ Is f one-to-one? Is f onto? f is not onto because for example ZE (0,+00) (the & codomain), but $f(x) \neq 2$ for any $x \in (0, +\infty)$ (the domain) (Observe that \$ \(\(\epsilon \) = 5x2+7 = 2 => 5×2=-5 $\int_{0}^{\infty} |x|^{2} = -|y|$ $\int_{0}^{\infty} |x|^{2} = -|y|$ $\int_{0}^{\infty} |x|^{2} = -|y|$ $\int_{0}^{\infty} |x|^{2} = -|y|$ $\int_{0}^{\infty} |x|^{2} = -|y|$ f 75 1-to-1: Suppose that f(x) = f(y)for arbitrary x,y & (0,+00) (the domain) f(x1= 5x2+7 = f(y). So 5x2+7=5y2+7/-7 => 5x2 = 5g2 /:5 =7 x2 = y2 / \TT => $x = \pm y$ Then since $x_{i,y} \in (0, +\infty)$ we can't have x = -y. => x=y. So, f(x) = f(y) => x=y, which shows that f is 1-to-1,

adomany

Let A be a set with 3 elements and B be a set with 5 elements. Determine whether the statements below are true or false.

Correct (1). There is no onto function from A to B.

 $|P(A)| = 2^{|A|} = 2^{|A|} = 2^{|A|}$. There is no one-to-one function from P(A) to P(B). $|P(B)| = 2^{|A|}$

- 3. There is no one-to-one function from $\mathcal{P}(A)$ to B.
- 4.) There is no onto function from $A \times B$ to $\mathcal{P}(B)$.
 - 5. There is no one-to-one function from $\mathcal{P}(\mathcal{P}(A))$ to $\mathcal{P}(A \times B)$.

2. false, there are such one-to-one functions

AxB = 3.5 = 15

P(B) = 32 = 2 = 2

no such onto function exists.

7.115h (3) &