lo que conduce a los siguientes sistemas:

$$2a_{11} - 5a_{21} = 3$$
 $2a_{12} - 5a_{22} = 2$
 $4a_{11} + 3a_{21} = 1$ y $4a_{12} + 3a_{22} = -1$

Las soluciones son $a_{11} = \frac{7}{13}$, $a_{21} = -\frac{5}{13}$, $a_{12} = \frac{1}{26}$ y $a_{22} = \frac{5}{13}$. Entonces $A = \frac{1}{26} \begin{pmatrix} 14 & 1 \\ -10 & -10 \end{pmatrix}$

y
$$(\mathbf{x})_{B_2} = \frac{1}{26} \begin{pmatrix} 14 & 1 \\ -10 & -10 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{26} (14b_1 + b_2) \\ -\frac{10}{26} (b_1 + b_2) \end{pmatrix}$$

en base canónica

Por ejemplo,
$$\mathbf{x} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$
; entonces $\begin{pmatrix} 7 \\ 4 \end{pmatrix}_{B_1} = b_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + b_2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = 3 \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

de manera que

$$\begin{pmatrix} 7 \\ 4 \end{pmatrix}_{B_1} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

У

$$\begin{pmatrix} 7 \\ 4 \end{pmatrix}_{B_1} = \frac{1}{26} \begin{pmatrix} 14 & 1 \\ -10 & -10 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \begin{pmatrix} \frac{41}{26} \\ \frac{20}{26} \end{pmatrix}$$

Es decir,

$$\begin{pmatrix} 7 \\ 4 \end{pmatrix} = \frac{41}{26} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \frac{20}{26} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$

Como se vio en el ejemplo 5.6.3, encontrar la matriz de transición entre dos bases diferentes a la canónica requirió expresar los vectores de una base en términos de la otra. Es posible simplificar un poco el procedimiento si utilizamos como paso intermedio la representación en la base canónica, ya que es sencillo encontrar la matriz de transición de una base cualquiera a la base canónica. Lo que se requiere representar esquemáticamente es lo siguiente: si queremos encontrar la matriz de transición de una base B_1 a una base B_2 usando la canónica E, encontramos las matrices de transición de las bases B_1 y B_2 a la base E, es decir, hallamos $C_{B_1 \to E}$ y $C_{B_2 \to E}$ y encontramos que $C_{E \to B_2} = C_{B_2 \to E}^{-1}$ por el teorema 5.6.2. Finalmente, encontramos la matriz de transición de B_1 a B_2

$$A_{B_1 \to B_2} = C_{E \to B_2} C_{B_1 \to E} = C_{B_2 \to E}^{-1} C_{B_1 \to E}$$
 (5.6.15)

Ahora mostraremos el procedimiento con la información del ejemplo 5.6.3.

Obtención de la matriz de transición entre dos bases a través de la base canónica

Utilizando las bases del ejemplo 5.6.3, encuentre la matriz de transición de B_1 a B_2 por medio del procedimiento descrito por la ecuación (5.6.15). Encontrando las matrices de transición de las bases B_1 y B_2 a la base E