* 解答 ([] 内の数字は配点)

(₹):	0	[2]	(イ):	0	[2]	
(ウ):	CV	[3]	(エ):	$\frac{dq(t)}{dt} + L\frac{d^2q(t)}{dt^2} + \frac{q(t)}{C}$	[3]	
(計算) $q(t) = e^{-kt}$ を微分方程式に代入して、						
$Lk^2e^{-kt}-Rke^{-kt}+rac{1}{C}e^{-kt}=0$ この式の両辺を $e^{-kt}(>0)$ で割ると、 $Lk^2-Rk+rac{1}{C}=0$						
		ると、 <i>LK</i> − ┃		D^{\perp} / D^2 / L	F.C.1	
	$k = \frac{R \pm \sqrt{R^2 - 4\frac{L}{C}}}{2L}$	一	間(1):(答	$\frac{1}{2L}$	[5]	
問 2:解 k が (i) 異なる二つの正の実数、(ii) 正の重解、(ii) 異なる二つ の虚数解を持つ場合について考える。また $q(t)=e^{-kt}$ の時 $t_1=\frac{1}{k}$ で						
あるから $\frac{1}{k}$ の大小について考える。						
(i) の時、二つの実数解を $k_1=rac{R+\sqrt{R^2-4\frac{L}{C}}}{2L}$, $k_2=rac{R-\sqrt{R^2-4\frac{L}{C}}}{2L}$ とすると、						
時刻 t が-	時刻 t が十分大きい時、指数項について $ e^{k_1t} << e^{-k_2t} $ であるので、					
$q(t) pprox e^{-k_2 t}$ と近似でき、 $t_{rac{1}{e}} pprox rac{2L}{R-\sqrt{R^2-4rac{L}{C}}}$						
(ii) の時、重解は、 $k_1=k_2=rac{R}{2L}$ であるので、 $t_{rac{1}{e}}pproxrac{2L}{R}$						
(iii) の時、二つの虚数解を $k_1=rac{R+i\sqrt{4rac{L}{C}-R^2}}{2L}$, $k_2=rac{R-i\sqrt{4rac{L}{C}-R^2}}{2L}$ とする						
と、 指数項について $e^{k_1t}=e^{-\frac{R}{2L}t}\cdot e^{i\frac{\sqrt{4\frac{L}{C}-R^2}}{2L}t}, e^{-k_2t}=e^{-\frac{R}{2L}t}\cdot e^{i\frac{\sqrt{4\frac{L}{C}-R^2}}{2L}t}$						
預数項について $e^{ix} = e^{-2L} \cdot e^{-2L}$ であり、 $ e^{ix} = \sqrt{\cos^2 x + \sin^2 x} = 1$ から、 $ e^{k_1 t} = e^{-k_2 t} = e^{-\frac{R}{2L}t}$ で						
あり、 $t_{rac{1}{e}}pproxrac{2L}{R}$						
(i)~(iii) から、最も遅いのは (i) の異なる二つの正の実数解を持つ時であり、これは二次方程式の判別式から、 $R^2-4\frac{L}{C}>0$ の時である。					[5]	
					F0.7	
(1):	$\frac{\frac{1}{s^2}}{V}$	[3]	(2):	Ri(t)	[2]	
(3):	S	[3]	(4):	$\frac{R\mathcal{L}\{i(t)\}}{V}$	[2]	
(5):	$\frac{V}{Rs}$	[3]	(6):	$\frac{V}{R}$	[2]	
(7):	$\frac{\left(Ls^2 + Rs + \frac{1}{C}\right)^2}{Q_0(R-Ls)}$	$\left(\frac{1}{2}\right) \mathcal{L}\left\{q(t)\right\} =$	$-Q_0(R-LS)$	3)	[5]	
(8): $\frac{Q_0(R-Ls)}{Ls^2+Rs+\frac{1}{C}}$					[5]	
(計算) 方程式 $Ls^2 + Rs + \frac{1}{C} = 0$ の解 s_1, s_2 は、 $-R + \sqrt{R^2 - 4\frac{L}{C}} \qquad -R - \sqrt{R^2 - 4\frac{L}{C}} \qquad -R + R^2 - 4\frac{$						
$s_1 = \frac{-R + \sqrt{R^2 - 4\frac{L}{C}}}{2L}, s_2 = \frac{-R - \sqrt{R^2 - 4\frac{L}{C}}}{2L}$ であり、部分分数分解をして、						
$\mathcal{L}\{q(t)\} = \frac{Q_0}{L} \left\{ \frac{\frac{3}{2}R}{\left(s + \frac{R}{2L}\right)^2 + \frac{1}{LC} - \frac{R^2}{4L^2}} - \frac{L\left(s + \frac{R}{2L}\right)}{\left(s + \frac{R}{2L}\right)^2 + \frac{1}{LC} - \frac{R^2}{4L^2}} \right\}$						
シフト定理と、 $\sin \omega t, \cos \omega t$ のラプラス変換から、						
$q(t) = \frac{Q_0}{L} \frac{\frac{3}{2}R}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} e^{-\frac{R}{2L}t} \sin\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} t - Q_0 e^{-\frac{R}{2L}t} \cos\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} t$						
(9):(答)	$q(t) = \left(\frac{3Q_0R}{2L\sqrt{\frac{1}{1-R^2}}}\right)$ s	$ \frac{1}{LC} - \frac{1}{4} $	$\frac{R^2}{L^2}t - Q_0 \operatorname{co}$	$s\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}t\right)e^{-\frac{R}{2L}t}$	[5]	

*解説

(P)(A): スイッチ S_1 を入れて十分時間が経過した時、コンデンサには電流が流れず、コイルは導線と等価なので、

$$V_R = \mathbf{0}, \quad V_L = \mathbf{0}$$

(ウ): スイッチ S_1 を入れて十分時間が経過した時、コンデンサは充電され、 キルヒホッフ第 2 法則からコンデンサの電圧は V なので、

$$Q_0 = \mathbf{CV}$$

(エ): 電流は q(t) を用いて、 $\frac{dq(t)}{dt}$ と表せる。よって、抵抗での電圧降下は $V_L = R \frac{dq(t)}{dt}$ である。同様に、コイルの電圧降下は $L \frac{dI}{dt}$ に $I = \frac{dq(t)}{dt}$ を 代入すると、 $V_L = L \frac{d^2q(t)}{dt^2}$ と表せる。コンデンサの電圧は、q(t) を用いて、 $V_C = \frac{q(t)}{C}$ と表されるので、電圧則の式は、

$$0 = R\frac{dq(t)}{dt} + L\frac{d^2q(t)}{dt^2} + \frac{q(t)}{C}$$

問 1, 問 2: * 解答参照

(1): ラプラス変換の定義式から、Re(s) > 0として、

$$F(s) = \lim_{T \to \infty} \int_0^T t \, e^{-st} \, dt = \left[-\frac{t}{s} e^{-st} \right]_0^\infty + \int_0^\infty \frac{1}{s} e^{-st} \, dt = \frac{\mathbf{1}}{s^2}, \quad \text{Re}(s) > 0$$

(2): オームの法則から、

$$V_R = \mathbf{R}i(t)$$

(3): ラプラス変換の線形性から、

$$\mathcal{L}{V} = V\mathcal{L}{1} = \frac{V}{s}$$

(4): ラプラス変換の線形性から、

$$\mathcal{L}\{Ri(t)\} = \mathbf{R}\mathcal{L}\{i(t)\}$$

(5): オームの法則 V = Ri(t) から、両辺をラプラス変換すると、(3)(4) の結果から、

$$\frac{V}{s} R \mathcal{L}\{i(t)\} \qquad \therefore \mathcal{L}\{i(t)\} = \frac{V}{Rs}$$

(6): ラプラス変換の線形性と、 $\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = 1$ から、

$$i(t) = \mathcal{L}^{-1}\left\{\frac{V}{Rs}\right\} = \frac{V}{R}\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = \frac{V}{R}$$

(7): 時刻 t=0 で流れる電流は $\frac{dq(0)}{dt}=0$ であり、初期電荷は Q_0 であるので、ラプラス変換表から、

$$\mathcal{L}\left\{\frac{dq(t)}{dt}\right\} = s\mathcal{L}\left\{q(t)\right\} - Q_0, \qquad \mathcal{L}\left\{\frac{d^2q(t)}{dt^2}\right\} = s^2\mathcal{L}\left\{q(t)\right\} - sQ_0$$

となる。よって、微分方程式の両辺ラプラス変換すると、

$$0 = R (s\mathcal{L}{q(t)} - Q_0) + L (s^2\mathcal{L}{q(t)} - sQ_0) + \frac{q(t)}{C}$$

これを整理して、

$$0 = \left(Ls^2 + Rs + \frac{1}{C}\right) \mathcal{L}\left\{q(t)\right\} - Q_0(R - Ls)$$

(8): (7) の式を $\mathcal{L}{q(t)}$ について解くと、

$$\mathcal{L}{q(t)} = rac{Q_0(R - Ls)}{Ls^2 + Rs + rac{1}{C}}$$

(9): *解答参照