EXPOSÉ PROJET 5

SEGMENTER DES CLIENTS D'UN SITE E-COMMERCE

Le 16 Décembre 2020

Zeineb Guizani

Plan de la présentation

- . Présentation de l'appel à projet
- 2. Description et transformation du jeu de données
- 3. Pistes de modélisation effectuées
- 4. Modèle final sélectionné
- 5. Conclusion

I- Présentation de l'appel à projet

- La solution de vente en ligne « Olist » souhaite segmenter sa base clients selon l'intention d'achat afin de les cibler efficacement.
- Partitionner les données en clusters, de manière non supervisée, grâce aux comportements et aux données personnelles.
- Algorithmes de clustering non supervisés.
 - fournir à l'équipe marketing une description actionable de la segmentation.
 - proposition de contrat de maintenance.

.

II- Description et transformation du jeu de données

- Le jeu de données "olist" comporte 9 bases de données :
 - ['customers', 'geolocation', 'items', 'payments', 'reviews', 'orders', 'products', 'sellers', 'category'].
- Nettoyage:
 - suppression des lignes à NAN.
 - Suppression des doublons ['order id', 'customer unique id', 'order purchase timestamp']
 - Modifier le type de données dans les colonnes de date
- Feature engineering : Rajout de nouvelles variables:
 - review_score
 - nbr produits par clients
 - nb_cities

II- Description et transformation du jeu de données

I - Création des variables RFM + segmentation manuelle

Segments	Récence	Fréquence + Montant
Meilleurs Clients	3-4	3–4
Clients fidèles	2-4	2-4
Clients récents	3-4	1–2
Clients à risque	1-2	2-3
A ne pas perdre	1	3–4
Clients perdus	1-2	1–2

II - Segmentation avec K-means

- Adapter les hyperparamètres d'un algorithme non supervisé afin de l'améliorer:
- range_n_clusters = [3, 4, 5,6, 7,8]

II - Segmentation avec K-means

- Cluster 5 : Consommateurs à risque (non satisfaits et n'achètent pas souvent)
- Cluster 4 : Meilleurs consommateurs, il achètent souvent et ils sont actifs
- Cluster 3 : Consommateurs réguliers
- Cluster 2 : Les consommateurs à développer
- Cluster I : Consommateurs perdus (la majorité de la base: n'achètent plus et dépensent le minimum)
- Cluster 0 : Nouveaux consommateurs (Ils ont commencé à acheter)

III - Segmentation avec DBSCAN

- Adapter les hyperparamètres d'un algorithme non supervisé afin de l'améliorer:
- epsilons = [0.2, 0.25, 0.3, 2, 4, 5]

III - Segmentation avec DBSCAN

- Cluster I: bruit
- Cluster 0 : nouveaux consommateurs.
- Cluster 1 : consommateurs standars

■ IV - Segmentation avec Classification ascendante hiérarchique (CAH)

- Le choix du seuil à 70 (presque 140/2).
- Le dendrogramme « suggère » un découpage en 3 groupes

IV - Segmentation avec Classification ascendante hiérarchique (CAH)

- Cluster 0: Consommateurs réguliers
- Cluster I: Meilleurs consommateurs
- Cluster 2: Clients à risque (presque perdus)

V- Modèle final sélectionné

Modèle sélectionné:

Segmentation avec K-means

Conclusion

Conclusion:

- > Relever les défis de la segmentation non supervisée des clients à tarvers :
 - La transformation des variables pertinentes d'un modèle d'apprentissage non supervisé
 - L'adaptation des hyperparamètres d'un algorithme non supervisé afin de l'améliorer
 - L'évaluation des performances d'un modèle d'apprentissage non supervisé
 - L'étude de la stabilité

MERCI DE VOTRE ATTENTION