```
In [1]: import pandas as pd
data=pd.read_csv("/home/placement/Desktop/BhanuSiva4K8/Titanic Dataset.csv")
```

In [2]: import warnings
warnings.filterwarnings("ignore")

In [3]: data.describe()

Out[3]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
             Column
                           Non-Null Count Dtype
              _ _ _ _ _ _
                                            ----
             PassengerId 891 non-null
                                           int64
                           891 non-null
         1
             Survived
                                           int64
             Pclass
         2
                           891 non-null
                                           int64
          3
                           891 non-null
                                           obiect
             Name
         4
                           891 non-null
                                           object
             Sex
                           714 non-null
                                           float64
          5
             Age
                           891 non-null
                                           int64
             SibSp
         7
             Parch
                           891 non-null
                                           int64
                           891 non-null
                                           obiect
             Ticket
                                           float64
         9
             Fare
                           891 non-null
         10
             Cabin
                           204 non-null
                                           obiect
         11 Embarked
                           889 non-null
                                           object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
In [5]: data.isna().sum()
Out[5]: PassengerId
                          0
        Survived
                          0
```

```
Pclass
                  0
Name
                  0
Sex
                  0
                177
Age
SibSp
                  0
Parch
                  0
Ticket
                  0
Fare
                  0
Cabin
                687
Embarked
dtype: int64
```

In [6]: data.head(10)

Out[6]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
-	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	. 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
Ę	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
ç	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

```
In [7]: data['Pclass'].unique()
Out[7]: array([3, 1, 2])
In [8]: data['Survived'].unique()
Out[8]: array([0, 1])
In [9]: data['SibSp'].unique()
Out[9]: array([1, 0, 3, 4, 2, 5, 8])
```

```
In [10]: data['Fare'].unique()
                                                               8.05
Out[10]: array([ 7.25
                             71.2833,
                                         7.925 ,
                                                   53.1
                                                                          8.4583.
                                        11.1333,
                                                   30.0708,
                                                              16.7
                   51.8625.
                             21.075 ,
                                                                         26.55
                   31.275 ,
                              7.8542,
                                        16.
                                                   29.125 ,
                                                              13.
                                                                         18.
                                         8.0292,
                                                   35.5
                                                              31.3875, 263.
                             26.
                    7.225 ,
                    7.8792,
                              7.8958,
                                        27.7208, 146.5208,
                                                               7.75
                                                                         10.5
                  82.1708,
                             52.
                                         7.2292,
                                                               9.475 ,
                                                   11.2417,
                                                                         21.
                                        21.6792,
                                                   17.8
                                                              39.6875,
                   41.5792.
                             15.5
                                                              80.
                                                                         83.475
                   76.7292,
                             61.9792,
                                        27.75
                                                   46.9
                   27.9
                             15.2458,
                                         8.1583,
                                                    8.6625,
                                                              73.5
                                                                         14.4542,
                   56.4958,
                              7.65
                                        29.
                                                   12.475 ,
                                                               9.
                                                                          9.5
                                        15.85
                   7.7875,
                             47.1
                                                   34.375 ,
                                                              61.175 .
                                                                         20.575 .
                                        23.
                   34.6542,
                             63.3583,
                                                   77.2875,
                                                               8.6542,
                                                                          7.775 ,
                   24.15
                              9.825 ,
                                        14.4583, 247.5208,
                                                               7.1417,
                                                                         22.3583,
                    6.975 ,
                              7.05
                                        14.5
                                                   15.0458,
                                                              26.2833,
                                                                          9.2167,
                                        11.5
                   79.2
                              6.75
                                                   36.75
                                                               7.7958,
                                                                         12.525 ,
                  66.6
                              7.3125,
                                        61.3792,
                                                    7.7333,
                                                              69.55
                                                                         16.1
                  15.75
                             20.525 ,
                                        55.
                                                   25.925 ,
                                                              33.5
                                                                         30.6958,
                                                              39.
                   25.4667,
                             28.7125,
                                         0.
                                                   15.05
                                                                         22.025 ,
                                         6.4958,
                   50.
                              8.4042,
                                                   10.4625,
                                                              18.7875,
                                                                         31.
                             27.
                                                   90.
                                                               9.35
                                                                         13.5
                 113.275 ,
                                        76.2917,
                    7.55
                             26.25
                                        12.275 ,
                                                    7.125 ,
                                                              52.5542,
                                                                         20.2125,
                   86.5
                            512.3292,
                                        79.65
                                                , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                             77.9583,
                                        20.25
                                                   78.85
                                                              91.0792,
                                                                         12.875 ,
                          , 151.55
                                        30.5
                                                   23.25
                    8.85
                                                              12.35
                                                                      , 110.8833,
                 108.9
                             24.
                                        56.9292,
                                                   83.1583, 262.375
                                                                         14.
                                         6.2375,
                                                              28.5
                 164.8667, 134.5
                                                   57.9792,
                                                                      , 133.65
                                        35.
                  15.9
                                                   75.25
                                                              69.3
                                                                         55.4417,
                              9.225 ,
                 211.5
                              4.0125, 227.525 ,
                                                   15.7417,
                                                               7.7292,
                                                                         12.
                             12.65
                                        18.75
                                                              32.5
                                                                          7.875 ,
                 120.
                                                    6.8583,
                  14.4
                             55.9
                                         8.1125,
                                                   81.8583,
                                                              19.2583,
                                                                         19.9667,
                  89.1042,
                             38.5
                                         7.725 ,
                                                   13.7917,
                                                               9.8375,
                                                                          7.0458,
                                                                         15.1
                             12.2875,
                                         9.5875,
                    7.5208,
                                                   49.5042,
                                                              78.2667,
                             22.525 ,
                    7.6292,
                                        26.2875,
                                                   59.4
                                                               7.4958,
                                                                         34.0208,
                   93.5
                          , 221.7792, 106.425 ,
                                                   49.5
                                                              71.
                                                                         13.8625,
                    7.8292.
                             39.6
                                                   51.4792.
                                                              26.3875,
                                                                         30.
                                        17.4
                  40.125 ,
                              8.7125,
                                        15.
                                                   33.
                                                              42.4
                                                                         15.55
                             32.3208,
                                         7.0542,
                                                    8.4333,
                                                              25.5875,
                                                                          9.8417,
                   65.
                    8.1375.
                             10.1708, 211.3375,
                                                   57.
                                                              13.4167.
                                                                          7.7417.
                    9.4833,
                              7.7375,
                                         8.3625, 23.45
                                                              25.9292,
                                                                          8.6833,
```

```
7.8875, 37.0042,
                 8.5167.
                                            6.45 , 6.95 ,
                                                                8.3
                               , 14.1083, 13.8583, 50.4958,
                 6.4375,
                         39.4
                 9.8458, 10.5167])
In [11]: data['Parch'].unique()
Out[11]: array([0, 1, 2, 5, 3, 4, 6])
In [12]: data['Age'].unique()
Out[12]: array([22.
                   , 38. , 26. , 35. , nan, 54.
                                                     , 2. , 27. , 14. ,
                4. , 58.
                          , 20. , 39. , 55. , 31. , 34.
                                                           , 15.
                          , 40. , 66. , 42. , 21.
                                                    , 18.
                                                           , 3.
                          , 65. , 28.5 , 5. , 11.
                                                     , 45.
                                                           , 17.
                         , 0.83, 30. , 33. , 23. , 24.
                                                           , 46.
               71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
               51. , 55.5 , 40.5 , 44. , 1. , 61. , 56.
               45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43.
               60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
               70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [13]: data['Embarked'].unique()
Out[13]: array(['S', 'C', 'Q', nan], dtype=object)
In [14]: list(data)
Out[14]: ['PassengerId',
          'Survived',
          'Pclass',
          'Name',
          'Sex',
          'Age',
          'SibSp',
          'Parch',
          'Ticket'.
          'Fare',
          'Cabin',
          'Embarked']
```

In [15]: datal=data.drop(['PassengerId','Cabin','Name','Ticket','SibSp','Parch'],axis=1)

In [16]: data1

Out[16]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

Out[17]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

In [19]: data2

Out[19]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

In [20]: data1.fillna(35, inplace=True)
 data1

Out[20]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	35.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

In [21]: import seaborn as hh
import matplotlib.pyplot as plt
hh.boxplot(data1.Age)

Out[21]: <Axes: >


```
In [22]: #plt.hist(data['Age'])
         plt.hist(data2['Age'])
Out[22]: (array([ 54., 46., 177., 346., 118., 70., 45., 24., 9., 2.]),
          array([ 0.42 , 8.378, 16.336, 24.294, 32.252, 40.21 , 48.168, 56.126,
                64.084, 72.042, 80. ]),
          <BarContainer object of 10 artists>)
          350
          300
          250
          200
          150
          100
           50
```



```
In [24]: data1.isna().sum()
Out[24]: Survived
                        0
          Pclass
                        0
          Sex
                        0
          Age
          Fare
          Embarked
          dtype: int64
          data1.describe()
In [25]:
Out[25]:
                   Survived
                               Pclass
                                            Sex
                                                      Age
                                                                Fare
                 891.000000
                           891.000000
                                     891.000000
                                                891.000000
                                                          891.000000
           count
                   0.383838
                             2.308642
                                        0.647587
                                                 30.752155
                                                           32.204208
           mean
             std
                   0.486592
                             0.836071
                                        0.477990
                                                 13.173100
                                                           49.693429
                   0.000000
                             1.000000
                                        0.000000
                                                  0.420000
                                                            0.000000
             min
            25%
                   0.000000
                             2.000000
                                        0.000000
                                                 22.000000
                                                            7.910400
            50%
                   0.000000
                             3.000000
                                        1.000000
                                                 32.000000
                                                           14.454200
            75%
                   1.000000
                             3.000000
                                        1.000000
                                                 35.000000
                                                           31.000000
            max
                   1.000000
                             3.000000
                                        1.000000
                                                 80.000000
                                                          512.329200
In [26]: data1['Age'].unique()
Out[26]: array([22.
                       , 38.
                               , 26.
                                        , 35.
                                               , 54.
                                                        , 2.
                                                               , 27.
                                                                        , 14.
                  58.
                               , 39.
                                       , 55.
                                                , 31.
                                                        , 34.
                                                                , 15.
                                , 66.
                                        , 42.
                                                , 21.
                                                        , 18.
                                                                , 3.
                               , 28.5 , 5.
                                               , 11.
                                                        , 45.
                                                                , 17.
                                        , 33.
                                                , 23.
                                                                , 46.
                  25.
                       , 0.83, 30.
                                                        , 24.
                                                                        , 59.
                               , 14.5 , 70.5 , 32.5 , 12.
                                                                , 9.
                                                                        , 36.5
                  55.5 , 40.5 , 44.
                                       , 1.
                                               , 61.
                                                          56.
                                                                  50.
                                                      , 23.5 , 0.92, 43.
                               , 41. , 52. , 63.
                               , 13. , 48. , 0.75, 53.
                                                               , 57.
                                                                      , 80.
                  24.5 , 6. , 0.67 , 30.5 ,
                                                   0.42, 34.5 , 74.
```

```
In [27]: data1.groupby(['Age']).count()
```

Out[27]:

	ouou	. 0.000	00/1		
Age					
0.42	1	1	1	1	1
0.67	1	1	1	1	1
0.75	2	2	2	2	2
0.83	2	2	2	2	2
0.92	1	1	1	1	1
70.00	2	2	2	2	2
70.50	1	1	1	1	1
71.00	2	2	2	2	2
74.00	1	1	1	1	1
80.00	1	1	1	1	1

Survived Pclass Sex Fare Embarked

88 rows × 5 columns

```
In [28]: list(data1)
```

Out[28]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']

Out[29]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Third	1	35.0	8.0500	S
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	Third	0	35.0	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	Third	1	32.0	7.7500	Q

In [30]: data1=pd.get_dummies(data1)
 data1

Out[30]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
886	0	1	27.0	13.0000	0	1	0	0	0	0	1
887	1	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	0	35.0	23.4500	0	0	1	0	0	0	1
889	1	1	26.0	30.0000	1	0	0	0	1	0	0
890	0	1	32.0	7.7500	0	0	1	0	0	1	0

In [31]: data1.head(500)

Out[31]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
495	0	1	35.0	14.4583	0	0	1	0	1	0	0
496	1	0	54.0	78.2667	1	0	0	0	1	0	0
497	0	1	35.0	15.1000	0	0	1	0	0	0	1
498	0	0	25.0	151.5500	1	0	0	0	0	0	1
499	0	1	24.0	7.7958	0	0	1	0	0	0	1

In [32]: cor_mat=data1.corr()
 cor_mat

Out[32]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked
Survived	1.000000	-0.543351	-0.083713	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.1556
Sex	-0.543351	1.000000	0.091930	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.1257
Age	-0.083713	0.091930	1.000000	0.074199	0.302149	-0.022021	-0.242412	0.069343	0.036953	0.040528	-0.0650
Fare	0.257307	-0.182333	0.074199	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.1666
Pclass_F	0.285904	-0.098013	0.302149	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.1703
Pclass_S	0.093349	-0.064746	-0.022021	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.1920
Pclass_Third	-0.322308	0.137143	-0.242412	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.0095
Embarked_35	0.060095	-0.064296	0.069343	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.0765
Embarked_C	0.168240	-0.082853	0.036953	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.7783
Embarked_Q	0.003650	-0.074115	0.040528	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.4966
Embarked_S	-0.155660	0.125722	-0.065062	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.0000

localhost:8888/notebooks/logistic regression model.ipynb

In [33]: import seaborn as sns
sns.heatmap(cor_mat,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')

Out[33]: <Axes: >


```
In [34]: data.groupby('Survived').count()
Out[34]:
                   Passengerld Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
           Survived
                 0
                          549
                                      549 549 424
                                                     549
                                                                 549
                                                                      549
                                                                             68
                                                                                      549
                                549
                                                           549
                1
                          342
                                      342 342 290
                                                     342
                                                                 342
                                                                      342
                                                                            136
                                                                                      340
                                342
                                                           342
In [35]: y=data1['Survived']
          x=data1.drop('Survived',axis=1)
```

In [36]: x

Out[36]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	1	22.0	7.2500	0	0	1	0	0	0	1
1	0	38.0	71.2833	1	0	0	0	1	0	0
2	0	26.0	7.9250	0	0	1	0	0	0	1
3	0	35.0	53.1000	1	0	0	0	0	0	1
4	1	35.0	8.0500	0	0	1	0	0	0	1
886	1	27.0	13.0000	0	1	0	0	0	0	1
887	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	35.0	23.4500	0	0	1	0	0	0	1
889	1	26.0	30.0000	1	0	0	0	1	0	0
890	1	32.0	7.7500	0	0	1	0	0	1	0

- In [37]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
- In [43]: from sklearn.linear_model import LogisticRegression
 reg=LogisticRegression()#creating object of LogisticRegression
 reg.fit(x_train,y_train)#training and fitting LR object using training data
- Out[43]:

 v LogisticRegression ()

 LogisticRegression()

```
In [44]: from sklearn.linear model import LogisticRegression
        classifier=LogisticRegression()#creating object of LogisticRegression
        classifier.fit(x train.v train)#training and fitting LR object using training data
Out[44]:
         ▼ LogisticRegression
         LogisticRegression()
In [45]: y pred=classifier.predict(x test)
        y_pred
Out[45]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
               1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
               0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
               1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
               0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0])
In [46]: from sklearn.metrics import confusion matrix
        confusion matrix(y test,y pred)
Out[46]: array([[155, 20],
               [ 37, 83]])
In [47]: from sklearn.metrics import accuracy score
        accuracy score(y test,y pred)
Out[47]: 0.8067796610169492
```

```
In [48]: y
Out[48]: 0
                0
                1
         2
                0
         886
                0
         887
                1
         888
                0
         889
         890
         Name: Survived, Length: 891, dtype: int64
In [ ]:
```