[SUPPLEMENTARY MATERIALS]

Stochastic Variance Inflation Factor with Collective Information Content Pre-analysis for Detecting Linkage Disequilibrium in Indonesian Rice SNPs

Nicholas Dominic^{1[0000-0003-2015-6689]} and Bens Pardamean^{1,2[0000-0002-7404-9005]}

¹ Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia, 11480

Definition 1. By deriving from Eq. (2) and minimizing the residual sum of squares (RSS) or the cost function $\sum_{i=1}^{N} (y_i - \hat{y}_i)^2$, the normal Ordinary Least Squares (OLS) can be formulated as

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

where β_0 and β_1 are the coefficients, act as the regression parameters.

Proof 1. The sum of all residuals is equal to zero, $\sum_{i=1}^{N} \varepsilon_i = 0$.

1. Estimate value of β_0 that minimizes the OLS:

$$\frac{\partial}{\partial \beta_0} \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$-2\sum_{i=1}^{N} y_i - \beta_0 - \beta_1 x_i = 0$$

Ignore the constant for a while. Since $\varepsilon_i = y_i - \hat{y}_i = y_i - (\beta_0 + \beta_1 x_i)$, it is proved that $\sum_{i=1}^N \varepsilon_i = 0$. Remember, since a partial derivative has been done w.r.t. β_0 , this property applies when $\beta_0 = 0$.

2. Estimate value of β_1 that minimizes the OLS:

$$\frac{\partial}{\partial \beta_1} \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$-2\sum_{i=1}^{N} x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

² BINUS Graduate Program, Bina Nusantara University, Jakarta, 11480, Indonesia bdsrc@binus.edu

Omit the constant and thus it is proved that $\sum_{i=1}^{N} x_i \varepsilon_i = 0$. Remember, since a partial derivative has been done w.r.t. β_1 , this property applies when $\beta_{1,\dots,N}=0.$

Proof 2. Residual and the predicted value are uncorrelated, $corr(\hat{y}, \varepsilon) = 0$.

roof 2. Residual and the predicted value are uncorrelated,
$$corr(\hat{y}, \varepsilon) = 0$$
.

$$corr(\hat{y}, \varepsilon) = \frac{Cov(\hat{y}, \varepsilon)}{\sqrt{\sigma_{\hat{y}}^2 \sigma_{\varepsilon}^2}}$$

$$= \frac{N^{-1} \sum_{i=1}^{N} (\hat{y} - \mu_{\hat{y}}) (\varepsilon - \mu_{\varepsilon})}{\sqrt{\sigma_{\hat{y}}^2 \sigma_{\varepsilon}^2}}$$

$$= \frac{N^{-1} \sum_{i=1}^{N} \varepsilon (\hat{y} - \mu_{\hat{y}})}{\sqrt{\sigma_{\hat{y}}^2 \sigma_{\varepsilon}^2}} \qquad \dots \mu_{\varepsilon} = 0$$

$$= \frac{N^{-1} (\sum_{i=1}^{N} \hat{y} \varepsilon - \mu_{\hat{y}} \sum_{i=1}^{N} \varepsilon)}{\sqrt{\sigma_{\hat{y}}^2 \sigma_{\varepsilon}^2}} \qquad \text{and } \sum_{i=1}^{N} \hat{y} \varepsilon = 0, \text{ has been proved in } Proof 1.$$

Hence, it is proved that $Corr(\hat{y}, \varepsilon) = 0$, as well as $Cov(\hat{y}, \varepsilon) = 0$.

Proof 3. The coefficient of determination is equivalent to the squared Pearson correlation coefficient, $R^2(y, \hat{y}) \equiv r_{y\hat{y}}^2$.

$$r^{2}(y,\hat{y}) = \left(\frac{Cov(y,\hat{y})}{\sqrt{\sigma_{y}^{2}\sigma_{\hat{y}}^{2}}}\right)^{2}$$
$$= \frac{Cov(y,\hat{y}) Cov(y,\hat{y})}{\sigma_{y}^{2}\sigma_{\hat{y}}^{2}}$$

Recall that residual, $\varepsilon = y - \hat{y} \Leftrightarrow y = \hat{y} + \varepsilon$.

$$= \frac{Cov(\hat{y} + \varepsilon, \hat{y}) Cov(\hat{y} + \varepsilon, \hat{y})}{\sigma_{y}^{2} \sigma_{\hat{y}}^{2}}$$

This equation can be expanded since Cov(a, (b+c)) = Cov(a, b) + Cov(a, c), and then can be further simplified since $Cov(a, a) = \sigma_a^2$. The cancellation of $Cov(\hat{y}, \varepsilon)$ is due to the second property of residuals, as proved in Proof 2.

$$= \frac{\left(Cov(\hat{y}, \hat{y}) + Cov(\hat{y}, \varepsilon)\right)\left(Cov(\hat{y}, \hat{y}) + Cov(\hat{y}, \varepsilon)\right)}{\sigma_y^2\sigma_{\hat{y}}^2}$$

$$= \frac{Cov(\hat{y}, \hat{y}) Cov(\hat{y}, \hat{y})}{\sigma_y^2 \sigma_{\hat{y}}^2}$$

$$= \frac{\sigma_{\hat{y}}^2 \sigma_{\hat{y}}^2}{\sigma_y^2 \sigma_{\hat{y}}^2}$$

$$r^2(y, \hat{y}) = \frac{N^{-1} \sum_{i=1}^{N} (\hat{y}_i - \mu_{\hat{y}_i})^2}{N^{-1} \sum_{i=1}^{N} (y_i - \mu_{y_i})^2}$$

where explained sum of squares, $ESS = N^{-1} \sum_{i=1}^{N} (\hat{y}_i - \mu_{\hat{y}_i})^2$, total sum of squares, $TSS = N^{-1} \sum_{i=1}^{N} (y_i - \mu_{y_i})^2$, and hence $R_{y\hat{y}}^2 = \frac{ESS}{TSS} = r^2(y, \hat{y})$.