Solutions to Homework 9

Math 55B

1. Show, directly from the definition of $\int_{\gamma} f(z) dz$ as a limit of Riemann sums, that $\int_{\gamma} z dz = 0$ for any closed loop γ in the plane.

It suffices to show that, for γ any rectifiable path from a to b, $\int_{\gamma} z \, dz = \frac{1}{2}b^2 - \frac{1}{2}a^2$. Given $\varepsilon > 0$, uniform continuity of γ implies that there exists a $\delta > 0$ such that, for z, w points on γ with $|z - w| < \delta$, the segment of γ with endpoints z and w has diameter $< \varepsilon$. Thus, for any subdivision $z_0 = a, \ldots, z_n = b$ of γ with diameter $< \delta$, the Riemann sum $\sum_{1}^{n} w_i(z_{i+1} - z_i)$ is, up to an error of $\varepsilon \sum_{1}^{n} |z_{i+1} - z_i| \le \varepsilon L(\gamma)$, independent of the points w_i between z_i and z_{i+1} are chosen; letting $\varepsilon \to 0$, we justify the existence of the integral. Taking the average of the Riemann sums with $w_i = z_i$ and $w_i = z_{i+1}$, we may as well take $w_i = \frac{z_i + z_{i+1}}{2}$ in computing the limit, and in this case the Riemann sum telescopes to $\sum_{1}^{n} \frac{z_i + z_{i+1}}{2}(z_{i+1} - z_i) = \sum_{1}^{n} \left(\frac{1}{2}z_{i+1}^2 - \frac{1}{2}z_i^2\right) = \frac{1}{2}b^2 - \frac{1}{2}a^2$, hence the conclusion.

Remark. This computation, together with the Goursat argument given in class, can be used to give a proof of the Cauchy theorem that is completely independent of Stokes' theorem. Specifically, the Goursat argument works just as well to prove Cauchy's theorem $\int_{\gamma} f(z) dz = 0$ for the case that γ is the boundary of a triangle in whose interior f(z) is analytic (divide the triangle with its median lines into four congruent triangles, then into 16 smaller congruent triangles, etc. – the proof literally carries through, using only the basic integrals $\int_{\gamma} dz = \int_{\gamma} z dz = 0$ and not Stokes' theorem). Then, given an arbitrary (connected) region U, approximate ∂U by a piecewise linear loop γ lying in U, so that $\int_{\partial U} f(z) dz$ is uniformly approximated by $\int_{\gamma} f(z) dz$, reducing the assertion to the case of regions bounded by piecewise linear loops. But for these, choosing a point $p \in U$ and joining it to all vertices of the piecewise linear part ∂U to form (counterclockwise oriented) triangles $\gamma_1, \ldots, \gamma_n$, we have $\int_{\partial U} = \int_{\gamma_1} + \cdots + \int_{\gamma_n}$, because the *inner* paths of integration, those entering and leaving p, get mutually canceled out. Since Goursat's argument proves each $\int_{\gamma_i} f(z) dz = 0$, the Cauchy theorem follows.

2. Find those rational functions f(z) that perserve the unit circle |z| = 1.

Answer: $f(z) = e^{i\theta} \prod \frac{z-a}{1-\bar{a}z}$, where $a = \infty$ is also allowed, with the meaning of 1/z. Those either preserve the unit $disk \ \Delta$ (if no factors of 1/z occur; those are called **finite Blaschke products**), or $turn \ the \ disk \ \Delta \ inside \ out$, i.e. invert it with its complement |z| > 1.

That each such product preserves the circle S^1 follows from the calculation $|z-a|=|\overline{z-a}|=|1/z-\overline{a}|=|1-\overline{a}z|$, valid on |z|=1. In general, given $f\in\mathbb{C}(z)$ a rational function that preserves the circle |z|=1, we can multiply f by a suitable Blaschke product to clear out all zeros and poles of f inside Δ , without introducing any new zeros or poles in Δ ; this is because |a|<1 is equivalent to $|\overline{a}^{-1}|>1$, so that the zero and pole of a factor $\frac{z-a}{1-\overline{a}z}$ are never simultaneously inside Δ . Thus the problem reduces to showing: if $f\in\mathcal{O}(\overline{\Delta})$ is an analytic function on $\overline{\Delta}$ without zeros or poles in Δ and preserving the circle |z|=1, then f is constant. For such a function, f and 1/f are simultaneously analytic in $\overline{\Delta}$ and satisfy |f|=|1/f|=1 on $\partial\Delta=S^1$, so that the **maximum principle** implies $\sup_{\overline{\Delta}}|f|=1=\inf_{\overline{\Delta}}|f|$, implying that $|f|\equiv 1$, and hence (see ex. 3 below) f, is constant. To complete the proof, I include a discussion (and proof) of the maximum principle below.

Maximum principle. A real-valued function f on a region U in \mathbb{C} is called **subharmonic** if it satisfies the following **mean value inequality**: for any $p \in U$ and disk $|z - p| \le r$ contained in U,

$$f(p) \le \frac{1}{2\pi} \int_0^{2\pi} f(p + re^{i\theta}) d\theta.$$

Equivalently, if f is smooth, it can be shown (and not needed here) that this subharmonicity condition is equivalent to the nonnegativity $\Delta f \geq 0$ of the Laplacian $\Delta = 4\partial\overline{\partial} = \partial_x^2 + \partial_y^2$ of f (recall that f is said to be harmonic if it satisfies $\Delta f = 0$; subharmonicity is the condition $\Delta f \geq 0$). For example, for f an analytic function on U, the real-valued function |f| is subharmonic on U: this follows upon combining the Cauchy integral formula $f(p) = \frac{1}{2\pi} \int_{|z-p|=r}^{1} f(z) \frac{dz}{z-p} = \frac{1}{2\pi\sqrt{-1}} \int_{0}^{2\pi} f(p+re^{i\theta}) \sqrt{-1} \, d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} f(p+re^{i\theta}) \, d\theta$ with the triangle inequality. The **maximum principle** states that a nonconstant subharmonic function on U cannot attain a maximum at an interior point. This is immediate: if f attains a maximum at $p \in U$, then the mean value inequality shows that f takes this maximum value on the boundary of any closed disk centered at p and contained in U, hence on any disk centered at p and contained in U, hence f is locally

constant, implying by connectedness of U that f is constant on U. As a consequence, since |f| is subharmonic whenever f is analytic on U, it follows in conjunction with ex. 3 below:

The maximum principle for analytic functions. If $f \in \mathcal{O}(U)$ is a nonconstant analytic function on the connected region $U \subset \mathbb{C}$, then $\max |f|$ is never attained at an interior point of U.

Second proof. Alternatively, applying to the analytic functions g=f and g=1/f the mean-value inequality $|g(0)| \leq \frac{1}{2\pi} \int_0^{2\pi} |g(e^{i\theta})| d\theta$, which for analytic functions g is just a combination of the Cauchy integral formula and the triangle inequality as above, and using |g|=1 on S^1 in both cases, we obtain |f(0)|=1. Expanding the rational function $f(z)=\sum_{n\geq 0}a_nz^n$ in an absolutely and uniformly (in fact, geometrically) convergent power series in $\overline{\Delta}$ (which is possible by the assumption that f has no poles in $\overline{\Delta}$, by the geometric series $1/(z-a)=-a^{-1}/(1-a^{-1}z)=-a^{-1}\sum_{n\geq 0}(a^{-1}z)^n$ that converge absolutely and uniformly in $\overline{\Delta}$ for |a|>1), we thus have $|a_0|=|f(0)|=1$. On the other hand, on |z|=1, we have $1=|f(z)|^2=f(z)\overline{f(z)}=\sum_{n\geq 0}|a_n|^2+\sum_{k\neq 0}c_kz^k$ for certain coefficients c_k . Multiplying by 1/z and integrating over S^1 using $\int_{S^1}z^k\,dz=\int_{S^1}d(z^{k+1}/(k+1))=0$ for $k\neq -1$, we obtain $\sum_{n\geq 0}|a_n|^2=1$; together with $|a_0|=1$, this shows all $a_n=0$ for n>0, and hence that $f(z)=a_0$ is constant, as required.

- 3. Let f_1, \ldots, f_n be analytic functions on a (connected) region $U \subset \mathbb{C}$ such that $\sum_{i=1}^{n} |f_i|^2$ is constant. Prove that all f_i are constant.
 - **Proof 1.** Denote $\partial = d/dz$, $\bar{\partial} = d/d\bar{z}$, so that the analyticity condition becomes $\bar{\partial}f = 0$. Note that the Laplacian $\Delta = d^2/dx^2 + d^2/dy^2 = \partial_x^2 + \partial_y^2$ becomes $\Delta = 4\partial\bar{\partial}$. Applying it to $|f|^2$ for f an analytic function, we obtain $\Delta f = 4\partial\bar{\partial}|f^2| = 4\partial\bar{\partial}(f\bar{f}) = 4\partial(f\bar{f}') = 4f'\bar{f}' = 4|f'|^2$, where we have used that $\bar{\partial}f = 0$, $\partial f = f'$, $\bar{\partial}\bar{f} = \bar{f}'$, $\bar{\partial}\bar{f}' = 0$ for f analytic. By this calculation, $\sum_1^n |f_i|^2 = \text{const}$ implies $0 = \Delta \sum_1^n |f_i|^2 = \sum_1^n \Delta |f_i|^2 = 4\sum_1^n |f_i'|$, showing all $f_i' = 0$ and hence all $f_i = \text{const}$.
 - **Proof 2.** We may alternatively use the Cauchy integral formula as our point of departure, proving something stronger: if $\sum_{1}^{n} |f_{i}| = \text{const}$, then all $f_{i} = \text{const}$ (this is stronger upon replacing each f_{i} with f_{i}^{2}). The Cauchy integral formula for f_{i} gives $f_{i}(p) = \frac{1}{2\pi\sqrt{-1}} \int_{|z-p|=r} f(z) \frac{dz}{z-p} = \frac{1}{2\pi\sqrt{-1}} \int_{0}^{2\pi} f(p+re^{i\theta}) \sqrt{-1} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} f(p+re^{i\theta}) d\theta$ whenever the disk

 $|z-p| \le r$ is contained in U. Taking absolute values and summing, we obtain

$$\sum_{1}^{n} |f_i(p)| = \sum_{1}^{n} \frac{1}{2\pi} \left| \int_{0}^{2\pi} f_i(p + re^{i\theta}) d\theta \right|$$

On the other hand, the constancy of $\sum_{i=1}^{n} |f_i|$ implies trivially the equality

$$\sum_{1}^{n} |f_i(p)| = \sum_{1}^{n} \frac{1}{2\pi} \int_{0}^{2\pi} |f_i(p + re^{i\theta})| d\theta.$$

Combining the two equalities, and using that, for a continuous function $g: S \to \mathbb{C}$ the triangle inequality $\left| \int_S g \right| \leq \int_S |g|$ can only turn into equality when arg(g) is constant on S, we conclude (again by connectedness of U) that each $arg(f_i)$ is constant on U. This reduces the proof of our assertion to showing that a real-valued analytic function $f \in \mathcal{O}(U)$ is constant. This, by pre-composing in turn with the exponential $\exp(iz)$ (note that f analytic trivially implies $g(z) := e^{if(z)}$ analytic), reduces the problem to the case n = 1: if $g \in \mathcal{O}(U)$ is analytic, then $|g| \equiv 1$ implies g = const. Indeed, the Cauchy formula (or mean value property) for the analytic function $g(z) = e^{if(z)}$ implies $e^{if(p)} = \frac{1}{2\pi\sqrt{-1}} \int_{|z-p|=r} e^{if(z)} \frac{dz}{z-p} =$ $\frac{1}{2\pi}\int_0^{2\pi}e^{if(p+re^{i\theta})}d\theta$, and hence, upon dividing by $e^{if(p)}/2\pi$ and taking real parts, $2\pi = \int_0^{2\pi} \cos\left(f(p+re^{i\theta}) - f(p)\right) d\theta$, were we have used that the argument $f(p+re^{i\theta}) - f(p)$ is real-valued. Since $\cos t \leq 1$ for $t \in \mathbb{R}$, a real-valued continuous function $g:[0,2\pi] \to \mathbb{R}$ with $\int_0^{2\pi} \cos g(\theta) d\theta = 2\pi$ is a constant multiple of 2π , hence the conclusion: f = f(p) on the boundary of every closed disk $|z-p| \leq r$ contained in U and centered at p, hence f = const on every disk contained in U and centered at p, hence (by connectedness of U), f is constant on U. The alternative proof is complete.

4. Show that $\prod_{1}^{\infty}(1+a_n) := \lim_{N\to\infty}\prod_{1}^{N}(1+a_n)$ exists and is nonzero, provided $a_n \neq -1$ and $\sum |a_n| < \infty$.

We need to show that $\prod_{N}^{M}(1+a_n) \to 1$ as $N \to \infty$; the key is the easily verified inequality $-2|x| \le \log(1+x) \le |x|$ for |x| < 1/2. For N large enough so that $|a_n| < 1/2$ for $n \ge N$, these inequalities imply $-2\sum_{N}^{M}|a_n| \le \sum_{N}^{M}\log(1+a_n) \le \sum_{N}^{M}|a_n|$, proving the claim by letting $N \to \infty$.

- 5. Let p(n) be the partition function. Show that $\sum_{n\geq 0} p(n)z^n = \prod_{n\geq 1} \frac{1}{1-z^n}$ for all complex z with |z| < 1.
 - That the coefficients of the formal expansion $\prod_{n\geq 1}\frac{1}{1-z^n}=\prod_{n\geq 1}(1+z^n+z^{2n}+\cdots)$ are given by the partition function is easy combinatorics; the point is to justify the formal product expansion for |z|<1. This follows from ex. 3 above, by the geometric convergence of $\sum \left|\frac{z^n}{1-z^n}\right|$ for |z|<1, since the latter implies $\prod_N^M\frac{1}{1-z^n}\to 1$ as $N\to\infty$, while the partial product expansion satisfies $\prod_1^N\frac{1}{1-z^n}=\sum_{n< N}p(n)z^n\mod z^{N+1}$.
- 6. Let G denote the group of Möbius transformations $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$. Prove that the map $\phi: \mathrm{SL}_2(\mathbb{C}) \to G$ given by

$$\phi:\,A=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\mapsto f(z)=\frac{az+b}{cz+d}$$

is a surjective homomorphism, and compute its kernel. Explain the homomorphism geometrically in terms of the 'slope' map $s: \mathbb{C}^2 - \{(0,0)\} \to \widehat{\mathbb{C}}$ given by $s(z_1, z_2) = z_1/z_2$. Which vectors of \mathbb{C}^2 correspond to the fixed points of f?

The surjectivity of the map ϕ follows upon noting that every expression $\frac{az+b}{cz+d}$ of a Möbius transformation can be normalized upon dividing the coefficient matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by $\sqrt{ad-bc} \neq 0$, yielding a coefficient matrix of determinant 1. The pre-image of the identity of G is $\{\pm I\}$: the identity $z = \frac{az+b}{cz+d}$ of rational functions is equivalent to b = c = 0, a = d, which for ad = 1 amounts to the two possibilities a = d = 1 and a = d = -1. That ϕ is a group homomorphism can be verified by a direct ('brute force') computation; but one may simply (as Alex did) note that both groups $\mathrm{SL}_2(\mathbb{R})$ and G act transitively on the set \mathbb{CP}^1 of 1-dimensional subspaces of \mathbb{C}^2 , with $A \in \mathrm{SL}_2(\mathbb{C})$ acting in the same way as $\phi(A) \in G$, proving (from the axioms of a transitive group action!) that ϕ is a group homomorphism! Thus $\phi: \mathrm{SL}_2(\mathbb{C}) \to \overline{\mathbb{C}}$ is a surjective homomorphism with kernel $\{\pm I\}$, yielding an isomorphism $PSL_2(\mathbb{C}) := SL_2(\mathbb{C})/\{\pm I\} \cong G$. Identifying $\widehat{\mathbb{C}}$ with \mathbb{CP}^1 by identifying $z \in \mathbb{C}$ with the 1-dimensional subspace $\mathbb{C} \cdot (z,1) \in$ \mathbb{CP}^1 of \mathbb{C}^2 , and $\infty \in \widehat{\mathbb{C}}$ with $\mathbb{C} \cdot (1,0) \in \mathbb{CP}^1$, the action of $\mathrm{PGL}_2(\mathbb{C})$ on \mathbb{CP}^1 becomes identified with the action of G on $\widehat{\mathbb{C}}$; this explains the action in terms of the slope map on $\mathbb{C}^2 - \{(0,0)\}$. The fixed points of $\phi(A) \in G$ correspond to the images in \mathbb{CP}^1 of the eigenvectors of $A \in \mathrm{SL}_2(\mathbb{C})$.

7. Prove that every $f \in G$ is conjugate to either $f(z) = \lambda z$ (for some $\lambda \in \mathbb{C}^*$) or f(z) = z + 1. Show that the value of λ can be determined from $\operatorname{tr}(A)$ if $f = \phi(A)$. Is it unique? What value(s) of $\operatorname{tr}(A)$ correspond to f(z) = z + 1?

Every $f = (az + b)/(cz + d) \in G$ has two fixed points, the solutions to the quadric $az + b = cz^2 + dz$, with double zeros counted twice.

Case 1. f has two distinct fixed points.

If these are $p \neq q$, we may use the Möbius transformation g(z) := (z - p)/(z-q) to conjugate f to a Möbius transformation $g \circ f \circ g^{-1}$ that fixes 0 and ∞ . Clearly, the Möbius transformations that fix 0 and ∞ are those of the form $\lambda z, \lambda \in \mathbb{C}^*$; thus f is conjugate to such Möbius transformation.

Case 2. f has a unique (double) fixed point.

If p is this point, then conjugating, similarly, f by 1/(z-p) to move p to ∞ , we see that f is conjugate to a Möbius transformation that has ∞ for its unique fixed point; the Möbius transformation having this property clearly being the translations $z \mapsto z + c$, $c \neq 0$, which are all conjugate to $z \mapsto z + 1$ via $z \mapsto z/c$, it follows that, in this case, f is conjugate to $z \mapsto z + 1$.

If $f(z) = \lambda z$ equals $\phi(A)$, then $A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ is diagonal with ad = 1 and $a/d = \lambda$, and then λ is recovered from $\operatorname{tr}(A)$ (non-uniquely) by the quadratic relation $\lambda + \frac{1}{\lambda} = \frac{a}{d} + \frac{d}{a} = \frac{a^2 + d^2}{ad} = a^2 + d^2 = (a+d)^2 - 2ad = \operatorname{tr}(A)^2 - 2$. For f(z) = z + 1, the corresponding values of $\operatorname{tr}(A)$ are ± 2 , corresponding to $A = \pm I$.

8. Let $H \subset G$ be the subgroup generated by a single map of the form αz , $\alpha \neq 0$. What is the centralizer of H? What is the normalizer? Answer the same question with $H = \langle z \mapsto z + 1 \rangle$, as well as with $H = \langle z \mapsto z + t \mid t \in \mathbb{C} \rangle$.

Note that f(z) commutes with $z \mapsto \alpha z$ iff $f(\alpha z) = \alpha f(z)$, and normalizes $\langle z \mapsto \alpha z \rangle$ iff $f(\alpha z) = \alpha^k f(z)$ for some $k \in \mathbb{Z}$. The first condition requires that $f(0) = \alpha f(0)$ and $f(\infty) = \alpha f(\infty)$, which subsequently require either $\alpha = 1$, or $f(0), f(\infty) \in \{0, \infty\}$. If f(0) = 0, then also $f(\infty) = \infty$ (since α is injective), and hence $f(z) = \beta z$ for some $\beta \neq 0$. If $f(0) = \infty$, then $f(\infty) = 0$, and hence $f(z) = \beta/z$ for some $\beta \neq 0$ (those are the only Möbius transformations that swap 0 and ∞), and this case requires

 $\alpha^2 = 1$ and hence $\alpha = \pm 1$ for $f(\alpha z) = \alpha f(z)$ to hold. Thus the centralizer of H is: $\langle z \mapsto \beta z \mid \beta \in \mathbb{C}^* \rangle$, if $\alpha \neq \pm 1$; $\langle \beta z, \beta/z \mid \beta \in \mathbb{C}^* \rangle$, if $\alpha = -1$; and G, if $\alpha = 1$. (NB: Note that $z \mapsto -z$ and $z \mapsto 1/z$ commute, which many of you missed; in this question, as was explicitly clarified, H is generated by a single transformation $z \mapsto \alpha z$, and not by all such transformations!). The normalizer of $\langle z \mapsto \alpha z \rangle$ (for $\alpha \neq 1$) is always $\langle \beta z, \beta/z \mid \beta \in \mathbb{C}^* \rangle$; this is because $f(z) = \beta/z$ satisfy $f(\alpha z) = \alpha^{-1} f(z)$.

The centralizer of $\langle z \mapsto z+1 \rangle$ consists of those f satisfying f(z+1)=f(z)+1; namely, of the translations $z\mapsto z+c$. The normalizer consists of the f satisfying f(z+1)=f(z)+k for some $k\in\mathbb{Z}\setminus\{0\}$; namely, it is $\langle z\mapsto kz+c\mid k\in\mathbb{Z}\setminus\{0\},c\in\mathbb{C}\rangle$.

Finally, the centralizer of $\langle z \mapsto z + t \mid c \in \mathbb{C} \rangle$ consists of those f satisfying f(z+t) = f(z) + t for all t; namely, again the translations f(z) = z + c; while the normalizer consists of the f satisfying f(z+t) = f(z) + kt for some $k = k(t) \in \mathbb{Z} \setminus \{0\}$; namely, it is, once again, $\langle z \mapsto kz + c \mid k \in \mathbb{Z} \setminus \{0\}, c \in \mathbb{C} \rangle$.

9. Prove that the image of a circle or a line under a Möbius transformation is a circle or a line.

Note that the group G of Möbius transformations is generated by the subgroup $\{z\mapsto az+b\}$ of affine transformations, together with the transformation $z\mapsto \frac{z+i}{z-i};$ since the affine transformations act transitively on lines and circles and preserve both lines and circles, it suffices to verify that $z\mapsto i\frac{z+1}{z-1}$ transforms the unit circle |z|=1 onto the imaginary axis $\mathrm{Re}(z)=0.$ To this end, simply note that $\frac{z+i}{z-i}=\frac{x+i(y+1)}{x+i(y-1)}=\frac{(x+i(y+1))(x-i(y-1))}{x^2+(y-1)^2}=\frac{x^2+y^2-1}{x^2+(y-1)^2}+i\frac{2x}{x^2+(y-1)^2}$ has real part 0 iff $x^2+y^2=1$, iff |z|=1.