Ava, Conor, Taylor

Reed College

April 23, 2024

### Neural Networks (NN)



Figure: Example neural network





Figure: Example neural network neuron



Neural Networks Bavesian Neural Networks

### Issues with Neural Networks

000000



- Stir data and pray
- Interpretability problems
- Lots of data required
- Risk of overfitting
- Unpredictable failures to generalize
- No uncertainty quantification
- Computationally expensive



Figure: XKCD: "Machine Learning" [5]

# Convolutional Neural Networks (CNN)



Convolutional Kernel Input Matrix

Output Feature Map



## Convolutional Neural Networks (CNN)



Figure: CNN pipeline [10]



Neural Networks 000000

Bayesian Neural Networks Simulation

### Why we use CNNs

Neural Networks

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:





ANSWER QUICKLY—OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

Figure: XKCD: "Self Driving" [6]

- Fewer parameters
- Encode spatial patterns
- More efficient for image tasks



\$ Z







### **BNN Neuron**

Neural Networks







Figure: Example BNN Neuron [2]



### Why we use BNN



I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

Figure: XKCD: "Error Bars" [6]

- Well-calibrated uncertainty
- Handles sparse data while minimizing overfitting
- More predictable failures
- Formalizes prior knowledge and assumptions
- Inherent sequentiality



### Applications

Neural Networks

#### THE SIMPLE ANSWERS

TO THE QUESTIONS THAT GET ASKED AROUT EVERY NEW I TECHNOLOGY

| THOO EVENT HER TECHNOLOGY                                                  |                                 |
|----------------------------------------------------------------------------|---------------------------------|
| WILL MAKE US ALL GENIUSES?                                                 | No                              |
| WILL MAKE US ALL MORONS?                                                   | NO                              |
| WILL DESTROY WHOLE INDUSTRIES?                                             | YES                             |
| WILL MAKE US MORE EMPATHETIC?                                              | NO.                             |
| WILL MAKE US LESS CARING?                                                  | NO                              |
| WILL TEENS USE FOR SEX?                                                    | YES                             |
| WERE THEY GOING TO HAVE SEX ANYWAY?                                        | YES                             |
| WILL DESTROY MUSIC?                                                        | NO                              |
| WILL DESTROY ART?                                                          | NO                              |
| BUT CAN'T WE GO BACK TO A TIME WHEN-                                       | NO                              |
| WILL BRING ABOUT WORLD PEACE?                                              | NO                              |
| WILL CAUSE WIDESPREAD ALIENATION BY CREATING A WORLD OF EMPTY EXPERIENCES? | WE WERE<br>AUREADY<br>ALIENATED |

- Uncertainty quantification
  - Engineering, Medicine, Finance. ...
- Sparse data
  - Anywhere data is expensive
  - Medical diagnosis
  - Molecular biology
- Warnings before failing to generalize
  - Autonomous driving
  - Engineering
- Sequentiality



Figure: XKCD: "Simple Answers" [8]

Bayesian Neural Networks Simulation 0000●

### Difference between BNNs and BCNNs



Figure: XKCD: "The General Problem" [9]

The relationship between BNNs and BCNNs is the same as NNs and CNNs.



Neural Networks



#### CIFAR-10







## Hyperparameters

| Hyperparameter      | CNN   | BCNN  |
|---------------------|-------|-------|
| Epochs              | 100   | 100   |
| Learning Rate       | 0.001 | 0.003 |
| Regularization Rate | 0.001 | 0.001 |
| Optimizer           | Adamw | Adamw |



### Results

| Metric              | CNN           | BCNN          |
|---------------------|---------------|---------------|
| Train Accuracy      | 84.96%        | 81.27%        |
| Validation Accuracy | 61.76%        | 59.21%        |
| Time to Train       | 16 min 11 sec | 22 min 11 sec |



ural Networks Bayesian Neural Network

### Accuracy over time (CNN)







Simulation 00000000

# Accuracy over time (BNN)







 Neural Networks
 Bayesian Neural Networks
 Simulation 00000 €00
 Closing 00

# Confusion Matrix (CNN)







 Neural Networks
 Bayesian Neural Networks
 Simulation 00000 €0
 Closing 00

# Confusion Matrix (BCNN)







#### Live Demo



Figure: XKCD: "Laws of Physics" [4]



### Questions

I HAVE A QUESTION. WELL, LESS OF A QUESTION AND MORE OF A COMMENT. I GUESS IT'S LESS OF A COMMENT AND MORE OF AN UTTERANCE REALLY IT'S LESS AN UTTERANCE. MORE AN AIR PRESSURE WAVE. IT'S LESS AN AIR PRESSURE WAVE AND MORE A FRIENDLY HAND WAVE. I GUESS IT'S LESS A FRIENDLY WAVE THAN IT IS A FRIENDLY BUG. I FOUND THIS BUG AND NOW WE'RE FRIENDS. DO YOU WANT TO MEET IT?

Figure: XKCD: "Conference Question" [7]



#### References I

- [1] Jacek Fleszar. "Bayesian Neural Networks Capturing The Uncertainty Of The Real World!" In: (Sept. 2023).
- [2] Florian Häse et al. "How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry". In: *Chemical science* 10.8 (2019), pp. 2298–2307.
- [3] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. "CIFAR-10 (Canadian Institute for Advanced Research)". In: (). URL: http://www.cs.toronto.edu/~kriz/cifar.html.
- [4] Randall Monroe. XKCD: Laws of Physics. Apr. 2016.
- [5] Randall Monroe. XKCD: Machine Learning. May 2017.
- [6] Randall Monroe. XKCD: Self Driving. Oct. 2017.



#### References II

Neural Networks

- [7] Randall Monroe. XKCD: Self Driving. Aug. 2019.
- [8] Randall Monroe. XKCD: Simple Answers. Nov. 2013.
- [9] Randall Monroe. XKCD: The General Problem. Nov. 2011.
- [10] Sumit Saha. "A Guide to Convolutional Neural Networks the ELI5 way". In: (Dec. 2018).

