Algoritmi in podatkovne strukture 1

Visokošolski strokovni študij Računalništvo in informatika

Zahtevnost algoritmov

Jurij Mihelič, UniLj, FRI

 Katere vire potrebuje algoritem za svoje izvajanje?

• Viri:

- čas: realni čas, št. korakov,
 št. operacij, št. dostopov do pomnilnika
- prostor: poraba pomnilnika, diska
- energija: poraba električne energije
- komunikacija: pasovna širina, št. paketov

- Koliko vira potrebuje algoritem za svoje izvajanje?
 - koliko časa, koliko operacij
 - koliko pomnilnika
 - koliko električne energije

- Porabo virov navadno le ocenimo
- Zahtevnost ugotavljamo glede na nek bolj ali manj realen model računanja.

John Von Neumann

1903 - 1957

Arhitektura računalnika

- Von Neumannovov model
 - CPU
 - aritmetično logična enota, kontrolna enota
 - registri (ukazni register, programski števec)
 - pomnilnik
 - vsebuje podatke in ukaze
 - Von Neumannovo ozko grlo
 - branje ukazov in podatkov

- Model računanja (model of computation)
 - množica dovoljenih operacij
 - realnost operacij
 - kompleksnost operacij
 - vsaka operacija ima neko ceno
 - cena ene izvedbe
 - cene so lahko različne
 - enostavnost in realnost modela
 - uporabnost

Model računanja ní enako kot računskí model (computatíonal model).

RAM (Random Access Machine)

zaporedno izvaja običajne operacije

program je zapečen v procesor

- ocena zahtevnosti
 - (solidna) ocena časa
 - (dobra) ocena prostora
- RAM kot ciljni stroj

Algoritme pišemo
 v višjem programskem jeziku
 RAM pa si predstavljamo kot ciljni stroj.

- RAM (Random Access Machine)
 - Dolžina besede in naslovni prostor
 - w bitov
 - Predstavitev števil in kazalcev:
 - nepredznačeno od 0 do 2w – 1
 - predznačeno
 od -2^{w-1} do 2^{w-1} 1

Pomnilnik

- Veliko vrst modelov
 - avtomati, Turingovi stroji,
 - stroji s števcem, kazalcem,
 - RAM, PRAM, RASP,
 - programski jeziki, MMIX,
 - programi brez zank
 - bitni izračun (logična vezja)
 - odločitveno drevo
 - itd.

Zahtevnost algoritma

Katere in koliko virov potrebuje algoritem za svoje izvajanje v nekem modelu računanja?

- Zahtevnost je odvisna od naloge (vhoda)
 - ogromno različnih nalog
 - različne naloge algoritem lahko rešuje različno časa
 - odvisnost zahtevnosti od:
 - velikosti naloge,
 - od podatkov naloge.

- Odvisnost od velikosti naloge
 - Množenje: 2*3 vs 1234*5678
 - Urejanje: 213 vs 3142596078
- Zanima nas zahtevnost ob spremembi velikosti naloge
 - Časovna zahtevnost
 - $T(n) = \dots$
 - Prostorska zahtevnost
 - $S(n) = \dots$

- Odvisnost od podatkov v nalogi
 - Množenje: 1234*1000 vs 1234*5678
 - Urejanje: 0123456789 vs 3142596078
- Glede na vse možne naloge govorimo o zahtevnosti:
 - v najboljšem primeru (best case)
 - v najslabšem primeru (worst case)
 - v povprečju (average)

- Zakaj najpogosteje uporabljamo zahtevnost v najslabšem primeru?
 - podaja največjo možno porabo vira za izvedbo algoritma na katerikoli nalogi
 - za veliko algoritmov je najslabši primer zelo pogost
 - npr. iskanje elementa, ko elementa ni v seznamu
 - zahtevnost v povprečju je pogosto (asimptotično) enaka zahtevnosti v najslabšem primeru.
 - zahtevnost v povprečju je pogosto težko analizirati

Primeri

- Ideja algoritma
 - zaporedoma poglej vse elemente

Zaporedno iskanje

```
for i = 0 until n do
    if a[i] == key then return i
return -1
```

- Zahtevnost algoritma
 - čas in prostor
 - kaj dejansko merimo?
 - odvisnost
 - od podatkov? od velikosti naloge?

Odločitveni ali iskalni problem Naloga:

- tabela elementov
- iskani element

Rešitev:

- odgovor da/ne
- indeks iskanega elementa

- Čas: št. primerjav elementov
 - best: 1
 - worst: n
 - avg: (n + 1) / 2

Zaporedno iskanje

```
for i = 0 until n do
    if a[i] == key then return i
return -1
```

- Kako računamo povprečno zahtevnost?
 - vsi možni vhodi enako verjetni: permutacije števil 1 ... n
 - vedno iščemo isti element 1 (ostalo je simetrično)
 - koliko permutacij ima 1 na 1., 2., 3., ... n-tem mestu?

$$C_{avg}(n) = \sum_{i=1}^{n} \frac{(n-1)!}{n!} i = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$$

- Čas: realni čas na nekem računalniku
 - ocena trajanja posameznih operacij

Zaporedno iskanje

```
for i = 0 until n do
    if a[i] == key then return i
return -1
```

$$c_1$$
 ... pogoj v zanki

 c_2 ... primerjava elementov

 c_3 ... stavek **return**

- Zahtevnost:
 - best: $c_1 + c_2 + c_3$

worst:
$$c_1 \cdot (n+1) + c_2 \cdot n + c_3$$

- avg:
 - element je na indeksu p-1 (izvede se p iteracij)

•
$$T(n, p) = c_1 \cdot p + c_2 \cdot p + c_3$$

$$T_{avg}(n) = \sum_{p=1}^{n} \frac{1}{n} T(n, p) = \dots = \frac{(c_1 + c_2)}{2} n + \frac{(c_1 + c_2)}{2} + c_3$$

- Čas: praktični preizkus
 - Časovna zahtevnost
 - T(n) = a n + b
 - Določanje a in b
 - t1 = T(n1) in t2 = T(n2)
 - a = (t2 t1) / (n2 n1)
 - $b = t^2 a n^2$

Dvojiško iskanje

- Iskanje elementa v urejeni tabeli
- Ideja algoritma
 - tabelo delimo na dve polovici
 - rekurzivno iščemo le v eni polovici

Odločitveni ali iskalni problem Naloga:

- urejena tabela elementov
- iskani element

Rešitev:

- odgovor da/ne
- indeks iskanega elementa

Dvojiško iskanje

• Globina rekurzije:

- best: 1

- worst: $\lfloor \lg n \rfloor + 1$

urejena tabela

Dvojiško iskanje

Psevdokoda

Dvojiško iskanje (rekurzivno)

```
fun binarySearch(a, left, right, key) is
   if right > left then return -1
   mid = left + (right - left) / 2
   if (key < a[mid]) then
       return binarySearch(a, left, mid - 1)
   if (k > a[mid]) then
       return binarySearch(a, mid + 1, right)
   return mid
```

Dvojiško iskanje (iterativno)

```
while left <= right do
    mid = left + (right - left) / 2
    if key < a[mid] then right = mid - 1
    elif key > a[mid] then left = mid + 1
    else return mid
endwhile
return -1
```


Logaritem

2000

4000

6000

8000

10000

- Dvojiški logaritem
 - a) Kolikokrat je potrebno razpoloviti n, da dobimo ≤ 1 ?
 - b)Koliko bitov potrebujemo za binarno predstavitev števil $\leq n$?

V algoritmiki ima logaritem osnovno 2, če le ni drugače rečeno.

c) Koliko je globina celovitega (complete) dvojiška drevesa z n vozlišči?

Načeloma velja

$$\lg n = \log_2 n$$

$$ln n = log_e n$$

$$\log n = \log_{10} n$$

()

(q

9)

Dvojna zanka

Vsota elementov spodnjega trikotnika matrike

```
s = 0 c_1 for i = 0 to n - 1 do c_2 for j = 0 to i do c_3 c_4
```


Časovna zahtevnost:

$$T(n) = c_1 + (n+1)c_2 + \sum_{i=0}^{n-1} \sum_{j=0}^{i+1} c_3 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} c_4$$
...
$$= \frac{(c_3 + c_4)}{2} n^2 + (c_2 + 3/2c_3 + c_4/2)n + c_1 + c_2$$

Dvojna zanka

 Vsota elementov spodnjega trikotnika matrike, dokler so elementi večji od 0

- Časovna zahtevnost:
 - odvisna od t_i (št. iteracij while zanke), ta pa od podatkov

$$T(n) = c_1 + c_2 + (c_1 + c_2 - c_4)n + (c_3 + c_4) \sum_{i=0}^{n} t_i$$

- best: $t_i = 1$, $T_{best}(n) = ?$
- worst: $t_i = i+1$, $T_{worst}(n) = ?$

Izračunaj

- Koliko časa porabi algoritem za nalogo velikosti n=100, če je njegova časovna zahtevnost:
 - $3n+7\sqrt{n}$ sekund
 - $-2^{n}/n^{13}$ sekund
- Kako veliko nalogo lahko rešimo v 1 letu, če algoritem pri nalogi velikosti n porabi:
 - $n^2 + 5 ur$
 - en sekund
- Algoritem s prostorsko zahtevnostjo $S(n)=n^2+3$ bajtov. Koliko porabi pri dvakrat večji nalogi glede na prvotno velikost?

Povzetek

- Viri
 - čas in prostor
- Model računanja
 - RAM
- Odvisnost zahtevnosti
 - od velikosti naloge in od podatkov v nalogi
- Vrste zahtevnosti
 - najboljši primer, najslabši primer, povprečje
- Primeri
 - linearno iskanje, dvojiško iskanje, dvojne zanke