Flipping bits

You will be given a list of 32 bit unsigned integers. Flip all the bits $(1 \to 0 \text{ and } 0 \to 1)$ and return the result as an unsigned integer.

Example

```
n = 9_{10}
```

 $9_{10} = 1001_2$. We're working with 32 bits, so:

Return 4294967286.

Function Description

Complete the *flippingBits* function in the editor below.

flippingBits has the following parameter(s):

• int n: an integer

Returns

• int: the unsigned decimal integer result

Input Format

The first line of the input contains q, the number of queries. Each of the next q lines contain an integer, n, to process.

Constraints

$$1 \le q \le 100 \\ 0 \le n < 2^{32}$$

Sample Input 0

```
3
2147483647
1
0
```

Sample Output 0

```
2147483648
4294967294
4294967295
```

Explanation 0

```
2
4
123456
```

Sample Output 1

```
4294967291
4294843839
```

Explanation 1

Sample Input 2

```
3
0
802743475
35601423
```

Sample Output 2

```
4294967295
3492223820
4259365872
```

Explanation 2