9.3.1 התכנסות בהחלט של טורים כלליים

5202 בפברואר 82

הגדרה

טור מתכנס בהחלט

נאמר שהטור $\sum\limits_n |a_n|$ מתכנס בהחלט אם "ם מעור מתכנס בחלט באמר נאמר אמור מתכנס בהחלט אם באחלט אח

מסקנה

 $a_n = |a_n|$ כל טור אי שלילי מתכנס, מתכנס, מתכנס

משפטים

1. התכנסות בהחלט גוררת התכנסות

אם $\sum\limits_n a_n$ מתכנס בהחלט, אזי מתכנס ה $\sum\limits_n a_n$

הוכחה

נשים לב שמתקיים $\forall n\in\mathbb{N}\,0\leq |a_n|-a_n\leq 2\,|a_n|$ ובנוסף ובנוסף $\sum_n a_n=\sum_n\left(|a_n|-(|a_n|-a_n)\right)$ מתכנס גם הוא לכן מאריתמטיקה של טורים הטור $\sum_n 2\,|a_n|$ מתכנס גם הוא, וממבחן ההשוואה הטור לכן מאריתמטיקה של טורים נקבל ש $\sum_n a_n=2\,|a_n|-(|a_n|-a_n)$ מתכנס גם הוא, כנדרש אז שוב מאריתמטיקה של טורים נקבל ש

מסקנות

- 1. כל טור חיובי מתכנס גם מתכנס בהחלט
- מתכנס בהחלט $\sum\limits_{n=1}^{\infty} \frac{(-1)^{rac{n(n+1)}{2}}}{n^2}$ מתכנס בהחלט .2
- . מתכנס. אד $\left|\left(-1\right)^{n+1}\frac{1}{n}\right|=\frac{1}{n}$ אד ולכן מתכנס, אך ואינו מתכנס בתנאי: כשלעצמו הוא טור לייבניץ ולכן מתכנס, אד
 - 4. טור מתכנס הוא חסום כי הסס"ח שלו מתכנסת ועל כן חסומה
 - סום אך א חסום אך א חסום הטור $\sum\limits_{n=1}^{k} \left(-1
 ight)^n$ הטור שלא מתכנסים: הטורים חסומים שלא העכנסים: הטור
 - מתכנס $\sum\limits_{n=1}^{\infty}a_n$ חסום, $\sum\limits_{n}a_n$ חסום: או שלילי מיובי או אינב מיובי ($a_n)_{n=1}^{\infty}$ מתכנס .6

3. תנאי שקול להתכנסות בהחלט על ידי הפירוק להפרש של אי־שליליים

מתכנס בהחלט אם $\sum\limits_{n=1}^\infty a_n$ ובפרט $\sum\limits_{n=1}^\infty a_n=\sum\limits_{n=1}^\infty a_n^+-\sum\limits_{n=1}^\infty a_n^-$ מתכנס בהחלט אם $\sum\limits_{n=1}^\infty a_n$ מתכנס בהחלט אם $\sum\limits_{n=1}^\infty a_n$ ובפרט $\sum\limits_{n=1}^\infty a_n$ מתכנס בהחלט אם $\sum\limits_{n=1}^\infty a_n$ ובפרט האי שליליים האי שליליים בהחלט אחדים האי שליליים בהחלט אם $\sum\limits_{n=1}^\infty a_n$ מתכנס בהחלט אם $\sum\limits_{n=1}^\infty a_n$ ובפרט האי שליליים בהחלט אם $\sum\limits_{n=1}^\infty a_n$

הוכחה

- מתכנס בהחלט, כלומר $\sum_n |a_n|$ מתכנס. $\sum_n a_n |a_n| = \sum_n a_n + \sum_n a_n^+$ מתכנסים כנדרש. אועל כן ממבחן ההשוואה $\forall n \in \mathbb{N} \ 0 \leq a_n^+, a_n^- \leq |a_n|$ מתקיים מתקיים כנדרש.
- מתכנס, אזי $\sum\limits_{n=1}^{\infty}|a_n|$ מתכנס, של טורים אזי $\forall n\in\mathbb{N}$ $a_n^++a_n^-=|a_n|\iff \forall k\in\mathbb{N}$ $\sum\limits_{n=1}^{k}|a_n|=\sum\limits_{n=1}^{k}a_n^+-\sum\limits_{n=1}^{k}a_n^-$ מתכנס, אזי $\sum\limits_{n=1}^{\infty}a_n$ מתכנס.