	Orthogonal Transformations
	· spatial relationships in 3D
	Def - An nxn matrix A is an orthogonal
	transformation I.F.F (if and only if)
	- It has n mutually perpendicular
	rows or columns with unit length
	· I rows must be in dependent
	(can't be multiples of each other)
	ex [1 2] > linearly dependent
	[26] > independent but
	· to be perpendicular,
	the dot product must be 0
	dot product: $X \cdot y = \sum_{i=1}^{n} x_i y_i$
	$x \cdot y = 0 \leftrightarrow x \perp y \text{ (perp.)}$
	· rows/columns must have unit length
	$ \times = \sqrt{\frac{\Sigma}{i}} \times = \sqrt{\times \times}$
	= The courses of A C
	- The rows or columns of A form an
	orthonormal basis of Rn
	· basic for space - set of vectors that
	can combine to create any vector in
	a space
	· basically first point with more words
* Mo	
abou	ιτ _ Δ-ι _ AT switches the rows
trans	noxt
pag	ex:[1 23] = 25
, ,	456 36

more about AAT = ATA=I & A-1 = AT mtx mult: basically the same info AB = C So what about (AB) = CT ******(X) AB # ATBT (7) MXN NXK NXM EXN so (AB)T = CT = BT AT identity Matrix I = 07 SO TA=A I x= X example of an orthogonal transformation: ex · 2 x 2 Rotation matrix: A = [cos 0 -sin 0] sin 0 cos 0 Want to show perpendicular columns: $\vec{x} = \begin{bmatrix} \cos \Theta \\ \sin \Theta \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} -\sin \Theta \\ \cos \Theta \end{bmatrix}$ Need to show 3 things 1) are they perpendicular? take u. v = - cos & sin & + sin & cos & = 0 so we know ULV