Einleitung Disambiguierungsstrategien Versuch 1 Versuch 2 Ergebnisse Fazit

Bachelorarbeit

Disambiguierungsstrategien in Dialogsystemen

Lena Enzweiler

Universität des Saarlandes

4. Januar 2015

Dialogsysteme

Abbildung: Funktionweise der odp-s3 Platform der Semvox GmbH

- Spracheingabe als semantisches Objekt interpretiert
- Objekt von Sprachdialog- und Kontextmodell verarbeitet
- Systemreaktion als Sprachausgabe realisiert

Dialogsysteme im automobilen Bereich

Dialogsysteme im Auto sollten folgende Punkte erfüllen:

- Ablenkung während der Fahrt vermeiden
- alle Informationen verständlich übermitteln
- einfache und intuitive Bedienung garantieren
- ightarrow Sprachäußerungen müssen raffiniert gestaltet werden

Fokus der Studie

- ambige Eingaben des Benutzers möglich
- System muss Mehrdeutigkeit der Eingaben auflösen
- $\rightarrow {\sf Disambiguierung\ durch\ geschicktes\ Nachfragen\ beim\ Benutzer}$

Fokus der Studie

Welche Disambiguierungsstrategie eignet sich für Dialogsysteme in einer automobilen Anwendung?

Disambiguierung

Disambiguierung in Dialogsystemen

- Disambiguierungsstrategie
 Disambiguierungsstrategie
- 3. Disambiguierungsstrategie

Disambiguierung

Abgrenzung verschiedener Bedeutungen

- . Disambiguierungsstrategie . Disambiguierungsstrategie
- 3. Disambiguierungsstrategie

Disambiguierung in Dialogsystemen

- "Rufe Peter an!"
- System muss über Peter Meier und Peter Müller disambiguieren

→ 3 Disambiguierungstrategien untersucht

- Disambiguierungsstrategie
 Disambiguierungsstrategie
- 3. Disambiguierungsstrategie

Disambiguierungsstrategie: Aggregierte Auswahl ohne Pause

- alle möglichen Interpretationen in einer Sprachausgabe
- keine Pause zwischen Interpretationen
- auf Auswahl des Benutzers gewartet

Akteur	Sprachausgabe
	Rufe Peter an!
	Meinst du Peter Müller oder Peter Meier?
Benutzer	Peter Müller.
System	Ok, ich werde Peter Müller jetzt anrufen.

3. Disambiguierungsstrategie

2. Disambiguierungsstrategie: Aggregierte Auswahl mit Pause

- alle möglichen Interpretationen in einer Sprachausgabe
- Pause und Nummerierung zwischen Interpretationen
- auf Auswahl des Benutzers gewartet

Akteur	Sprachausgabe	
Benutzer	Rufe Peter an!	
System	Meinst du [Pause] 1. Peter Müller	
	[Pause] oder 2. Peter Meier?	
Benutzer	Erstens	
System	Ok, ich werde Peter Müller jetzt anrufen.	

Disambiguierung in Dialogsystemen

- Disambiguierungsstrategie
 Disambiguierungsstrategie
- 3. Disambiguierungsstrategie

3. Disambiguierungsstrategie: Sequentielle Auswahl

- alle möglichen Interpretationen in einer separaten Sprachausgabe
- auf Zustimmung/Ablehnung des Benutzer gewartet

Akteur	Sprachausgabe
Benutzer	Rufe Peter an!
System	Meinst du Peter Meier?
Benutzer	Nein.
System	Meinst du Peter Müller?
Benutzer	Ja.
System	Ok, ich werde Peter Müller jetzt anrufen.

Kurzbeschreibung

- Probanden fahren ein Rennspiel (hohe kognitive Belastung)
- parellele Interaktion mit Dialogsystem
- alle Disambiguierungsstrategien pro Versuchsperson untersucht
- Probanden interagieren ohne Rennspiel (geringe kognitive Belastung)
- eine Disambiguierungsstrategie zufällig getestet
- ightarrow Disambiguierungsstrategien auf Effizienz und Beliebtheit untersucht
- \rightarrow Ergebnisse mit und ohne Rennspiel werden miteinander verglichen

Wizard-of-Oz

Die Existenz eines funktionierenden Systems wird vorgetäuscht

- Versuchspersonen wird der Eindruck verliehen, sie würde mit einem echten Dialogsystem interagieren
- echtes Dialogsystem durch Versuchsleiter simuliert
- Control Panel entwickelt, mit welchem Sprachausgaben ausgeben werden können

Testszenario

- Versuchspersonen sollen erfolgreich per Sprachsteuerung einen Anruf aufbauen
- insgesamt sollen vier Personen angerufen werden
- nach Anrufinitialisierung wird simuliert, dass die Spracheingabe zu unspezifisch ist
 - ightarrow System stellt Rückfrage um zum Beispiel über mehrere mögliche Kontakte oder Telefonnummern zu disambiguieren
- Nachfrage erfolgt in unterschiedlichen Strategien

Beispiel^b

Benutzer: "Rufe Anke an"

System: "Meinst du Anke Meier oder Schuhmacher?"

Testszenario

- relevante Personenangaben (Slots) werden über ein Personenprofil angezeigt.
- pro Anruf werden jeweils 2 Slots abgefragt.
- die zufüllenden Slots unterscheiden sich pro anzurufenden Kontakt
- Rückfragen sind so generiert, dass der Slot an zweiter
 Stelle der zu füllende ist

Versuchsaufbau

- Versuchspersonen fahren ein Rennspiel.
 - \rightarrow Fahrsimulation
- Rennspiel: Need for Speed: Shift
- Rennspiel wird mit Lenkrad inklusive Gas- und Bremspedal gespielt
 - ightarrow realitätsgetreues Gefühl
- Es wird im Einzelrennen mit jeweils 5 Gegnern gespielt
- Versuchspersonen sollen möglichst hohe Platzierung erreichen
 - ightarrow Anstrengung und Konzentration soll hohe kognitive Belastung verursachen

Einleitung
Disambiguierungsstrategien
Versuch 1
Versuch 2
Ergebnisse
Fazit

Versuchsbeschreibung Control Panel Versuchspersonen Auswertung Resultat

Versuchsaufbau - Rennspiel

Abbildung: Need for Speed - Shift

Versuchsaufbau - Überblick

Vorrunde	1. Runde	2. Runde	3. Runde	4. Runde
Rennspiel	Rennspiel	Rennspiel	Rennspiel	
	Anruf Anke	Anruf Peter	Anruf Fritz	Anruf Kim

- Vorrunde zum Einspielen
- Runde 1-3: Rennspiel mit paralleler Systeminteraktion
 - ightarrow hohe kognitive Belastung
- Runde 4: nur Systeminteraktion
 - ightarrow geringe kognitive Belastung

Versuchsdesign

Aufteilung	Strecke 1	Strecke 2	Strecke 3
1. Gruppe	Strategie A	Strategie B	Strategie C
Gruppe	Strategie B	Strategie C	Strategie A
Gruppe	Strategie C	Strategie A	Strategie B
4. Gruppe	keine Strecke	keine Strecke	keine Strecke

- 3 verschiedene Strecken, um Lerneffekt auszuschließen
- jede Strecke mit unterschiedlicher Disambiguierungsstrategie
- um Zeiten besser zu vergleichen:
 - ightarrow Disambiguierungsstrategien werden auf Strecken verteilt
 - ightarrow Versuchspersonen werden in Gruppen (1-3) aufgeteilt
- Die Strecken werden in gleicher Reihenfolge gefahren
- Gruppe 4 führt das Testszenario mit zufälliger Strategie aus.

Control Panel

- entwickelt um ein laufendes Dialogsystem zu simulieren
- verschiedene Sprachausgaben k\u00f6nnen per Mausklick abgespielt werden

Versuchspersonen

Versuchsablauf für eine Versuchsperson:

- Testrunde fahren
- Fragebogen über eigene Person ausfüllen
- Strecke A fahren + Anke anrufen
- Fragebogen über kognitive Belastung und Dialog ausfüllen
- **⑤** Strecke B fahren + Peter anrufen
- Fragebogen über kognitive Belastung und Dialog ausfüllen
- Fragebogen über kognitive Belastung und Dialog ausfüllen
- Kim anrufen
- Fragebogen über kognitive Belastung und Dialog ausfüllen

Versuchsperson - Fragebogen

Wie alt sind Sie?

Altereingabe

Haben Sie Erfahrung mit Dialogsystemen?

1: gar keine Erfahrung 6: viel Erfahrung

1	2	3	4	5	6
0%	8%	8%	0%	56%	25%

Spielen Sie oft Rennspiele?

1: sehr oft 6: nie

Versuchsperson - Fragebogen

Vorahnung

"The wise man avoids evil by anticipating it"(Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Vorahnung

"The wise man avoids evil by anticipating it"(Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Vorahnung

"The wise man avoids evil by anticipating it"(Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Vorahnung

"The wise man avoids evil by anticipating it"(Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Vorahnung

"The wise man avoids evil by anticipating it"(Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Vorahnung

"The wise man avoids evil by anticipating it"(Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Vorahnung

"The wise man avoids evil by anticipating it" (Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Vorahnung

"The wise man avoids evil by anticipating it" (Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben

Einleitung Disambiguierungsstrategien Versuch 1 Versuch 2 Ergebnisse Fazit

Vorahnung

"The wise man avoids evil by anticipating it" (Publilius Syrus)

- kein Halten von gefährlichen Tieren als Haustiere
- keine Spaziergänge bei Gewitter
- Reflexe ausüben