SPRINT 1 TEAM ID:PNT2022TMID42195

Importing required Libraries

```
In [ ]:
import numpy#for numerical analysis
import tensorflow#open source ml tool by google
In [ ]:
from tensorflow.keras.datasets import mnist #mnist dataset
from tensorflow.keras.models import Sequential# stack for layers
from tensorflow.keras import layers#input, middle and output layers forcnn structure
In [ ]:
from tensorflow.keras.layers import Dense, Flatten #dense and flatten layers
from tensorflow.keras.layers import Conv2D#convolutional layers
from tensorflow import keras#library for building neural networks built on tensorflow
In [ ]:
from tensorflow.keras.optimizers import Adam#optimizers
from keras.utils import np utils
Loading dataset
Dataset is available in tensorflow dataset repository
In [ ]:
(x train, y train), (x test, y test) = mnist.load data()
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.n
```

automatically data is splitted for train ,test -70:30 ratio

```
In [ ]:
print(x train.shape)
print(y train.shape)
(60000, 28, 28)
(60000,)
```

Training Dataset has 60000 images & testing has 10000 images

```
In [ ]:
print(x test.shape)
print(y test.shape)
(10000, 28, 28)
(10000,)
```

Analyze the data

```
x_train[3]
```

Out[]:

array([[0, 0, 0,	0, 0, 0]	0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,		0, 0,	
]	0, 0,	0, 0, 0]	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,
]	0, 0,	0, 0, 0]	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,
]	0, 0, 0,	0, 0, 0]	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,
]	0,	0, 0, 0]	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,
]	0,	0, 0, 0]	0, 0,	0, 0,	0, 0,			0, 255,	0, 63,	0, 0,	0, 0,	0, 0,	0, 0,
]		0, 0, 0]	0, 0,				0, 251,		0, 62,	0, 0,	0, 0,	0, 0,	0, 0,
]		0, 0, 0]	0, 0,				0, 251,		0, 62,	0, 0,	0, 0,	0, 0,	0, 0,
]	_	0, 0, 0]	0, 0,				0, 211,		0, 8,	0, 0,	0, 0,	0, 0,	0, 0,
]		0,	0, 60,	0, 228,			0, 94,	0, 0,	0, 0,	0, 0,		0, 0,	0, 0,
]		0,	0, 155,	0, 253,			0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,
]	0, 0, 0,	0,	0, 253,			0, 66,	0, 0,	0, 0,	0, 0,	0, 0,		0, 0,	0, 0,
]	0,	0, 205,	0, 253,	0, 251,		0, 0,	0, 0,		0, 0,	0, 0,	0, 0,	0, 0,	0, 0,
	0,	Ο,	0, 253,					0, 0,	-				0, 0,
	0, 240,	Ο,	0, 193,	0, 23,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,			80, 0,
	0, 253,	Ο,	0, 159,	0, 0,	0, 0,	0, 0,	0, 0,		0, 0,	0, 0,		32, 0,	253, 0,
	0, 251,	0,	0, 39,	0, 0,	0, 0,	0, 0,	0, 0,		0, 0,		0, 0,		
	0, 251,	0, 172, 0]	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,		48, 0,		
	96,	0, 12, 0]	0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,		234,		
]	0, 89, 0,	0, 0, 0]	0, 0,	0, 0,	0, 0,	0, 0,	0, 0,			0,	253,	0,	0,
]	0, 31, 0,	0, 0, 0]	0,	0, 0,	0, 0,	0, 0,	0, 0,	0,	0,	0,	255, 0,	0,	0,
]	0, 8,	0, 0,		0, 0,		0, 0,		0, 0,					

```
\vee ,
          \cup ],
                 Ο,
                                                   0,
                        0,
                              0,
                                     0,
                                            0,
                                                        64, 251, 253, 220,
   0,
          Ο,
   0,
                                     0,
          0,
                              0,
                                            0,
                                                   0,
                                                         0,
                                                                0,
                                                                      Ο,
          0],
   0,
                              0,
   0,
          0,
                       0,
                                                                                    Ο,
                 0,
                                     0,
                                            0,
                                                   0,
                                                        64, 251, 253, 220,
   0,
          0,
                 0,
                        0,
                              0,
                                     Ο,
                                            0,
                                                  Ο,
                                                         Ο,
                                                                Ο,
                                                                      Ο,
   0,
          0],
                 0,
                        0,
                              0,
                                     Ο,
                                            0,
                                                   0,
                                                        24, 193, 253, 220,
                                                                                    0,
   Ο,
          Ο,
   0,
          0,
                 0,
                        0,
                              0,
                                     0,
                                            Ο,
                                                   0,
                                                         Ο,
                                                                0,
   0,
          0],
   0,
                 0,
                        0,
                              0,
                                     0,
                                            0,
                                                   0,
                                                         0,
                                                                0,
                                                                       0,
                                                                              0,
                                                                                    0,
          Ο,
                 0,
                       0,
                                            0,
                                                                              0,
                                                                                    0,
   0,
                              Ο,
                                     0,
                                                   Ο,
                                                         0,
                                                                0,
                                                                       0,
          Ο,
          0],
   0,
                                     0,
          Ο,
                       0,
                 0,
                              0,
                                            0,
                                                   0,
                                                         0,
                                                                0,
                                                                       0,
[
   Ο,
                                                                              0,
                                                                                    0,
                                     Ο,
                                                                              0,
   Ο,
          Ο,
                 Ο,
                       Ο,
                              Ο,
                                            Ο,
                                                   Ο,
                                                         0,
                                                                Ο,
                                                                       Ο,
                                                                                    Ο,
   Ο,
          0],
                 0,
                       0,
                              Ο,
                                     0,
                                            0,
                                                   0,
                                                         0,
                                                                0,
                                                                       Ο,
                                                                              0,
                                                                                    0,
   Ο,
          Ο,
   0,
          0,
                 Ο,
                       Ο,
                              0,
                                     Ο,
                                            Ο,
                                                  0,
                                                         Ο,
                                                                Ο,
   0,
          0]], dtype=uint8)
```

In []:

```
y_train[36]
Out[]:
```

6

image in 36th position in training dataset

```
In [ ]:
```

```
import matplotlib.pyplot as plt
```

```
In [ ]:
```

```
plt.imshow(x_train[36])
```

Out[]:

<matplotlib.image.AxesImage at 0x7fa70fb3b550>

Reshaping the data

As we are using Deep learning neural network, the input for this network to get trained on should be of higher dimensional. Our dataset is having three-dimensional images so we have to reshape them too higher dimensions

```
In [ ]:
```

```
#(batch, height, width, channel)
x_train=x_train.reshape(60000,28,28,1).astype('float32')
x_test=x_test.reshape(10000,28,28,1).astype('float32')
```

Applying one hot encoding

One hot encoding to convert numerical values to classes where 0 to 9 are 10 seperate classes if value is 5 class 5 is 1 else 0

```
In []:
    no_of_classes=10
    y_train=np_utils.to_categorical(y_train,no_of_classes)
    y_test=np_utils.to_categorical(y_test,no_of_classes)

In []:
    y_test[3]
Out[]:
    array([1., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)
```