

Standard Rectifier

R	3~ Rectifier				
V_{RRM}	=	1200 V			
I_{DAV}	=	40 A			
I _{FSM}	=	370 A			

3~ Rectifier Bridge

Part number

GUO40-12NO1

Backside: isolated

Features / Advantages:

- Low forward voltage drop
- Planar passivated chips
 Easy to mount with one screw
- Space and weight savings

Applications:

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
 Battery DC power supplies
- Field supply for DC motors

Package: GUFP

- Isolation Voltage: 2500 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
 Base plate: Plastic overmolded tab
- Reduced weight

Rectifier	•				Ratings	3	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			40	μΑ
		V _R = 1200 V	$T_{VJ} = 150^{\circ}C$			1.5	mΑ
V _F	forward voltage drop	I _F = 10 A	$T_{VJ} = 25^{\circ}C$			1.06	V
		$I_F = 30 A$				1.28	٧
		I _F = 10 A	T _{VJ} = 150 °C			0.92	V
		$I_F = 30 A$				1.23	٧
I _{DAV}	bridge output current	T _c = 90°C	T _{vJ} = 175°C			40	Α
		rectangular d = ⅓					i I I I
V _{F0}	threshold voltage		T _{vJ} = 175°C			0.74	V
r _F	slope resistance \(\) for power	loss calculation only				16.3	mΩ
R _{thJC}	thermal resistance junction to ca	se				4.3	K/W
R _{thCH}	thermal resistance case to heats	sink			0.50		K/W
P _{tot}	total power dissipation		$T_{\rm C}$ = 25°C			35	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			370	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			400	Α
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			315	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			340	Α
I²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			685	A²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			665	A²s
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			495	A²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			480	A²s
CJ	junction capacitance	$V_R = 400 \text{ V}; f = 1 \text{ MHz}$	T _{VJ} = 25°C		10		pF

Package GUFP				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					70	Α
T _{VJ}	virtual junction temperature				-40		175	°C
T _{op}	operation temperature				-40		150	°C
T _{stg}	storage temperature				-40		150	°C
Weight						8.5		g
M _D	mounting torque				8.0		1.2	Nm
F_c	mounting force with clip				20		120	N
d _{Spp/App}	creepage distance on surface striking distance through air 6.7		5.4			mm		
d _{Spb/Apb}	orcepage distance on surface str	Tiking distance unough an	terminal to backside	10.0	8.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 II DMO I 44 A		2500			V
		t = 1 minute	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		2080			V
R _{thJA}	thermal resistance junction to am	bient				50		K/W

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	GUO40-12NO1	GUO40-12NO1	Tube	14	514892

Similar Part	Package	Voltage class
DNA40U2200GU	GUFP	2200
DMA40U1800GU	GUFP	1800
GUO40-16NO1	GUFP	1600
GUO40-08NO1	GUFP	800

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 175 ^{\circ}C$
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.74		V
R _{0 max}	slope resistance *	13.7		$m\Omega$

Outlines GUFP

Dim	Millimeter		Inches			
Dim.	min	typ.	max	min	typ.	max
Α	5.40	5.50	5.60	0.213	0.217	0.221
A2	3.90	4.00	4.10	0.154	0.158	0.162
A3	0.95	1.00	1.10	0.037	0.039	0.043
A4	0.95	1.00	1.05	0.037	0.039	0.041
A5	1.60	1.70	1.80	0.063	0.067	0.071
A6	1.25	1.30	1.35	0.049	0.051	0.053
b	0.95	1.00	1.05	0.037	0.039	0.041
b2	1.95	2.00	2.05	0.077	0.079	0.081
С	0.45	0.50	0.55	0.018	0.020	0.022
D	24.80	25.00	25.20	0.977	0.985	0.993
E	34.70	35.00	35.30	1.367	1.379	1.391
е	BSC	BSC 7.50			BSC 0.296	
F	2.40	2.50	2.60	0.095	0.099	0.102
L	20.30	20.40	20.50	0.800	0.804	0.808
L1	3.70	3.75	3.80	0.146	0.148	0.150
0	17.40	17.50	17.60	0.686	0.690	0.693
ØΡ	4.10	4.20	4.30	0.162	0.165	0.169
Q	9.20	9.30	9.40	0.362	0.366	0.370
$^{\emptyset}$ / ₂ R		1.77			0.070	
s1	3.45	3.50	3.55	0.136	0.138	0.140
s2	1.45	1.50	1.55	0.057	0.059	0.061
t1	0.95	1.00	1.05	0.037	0.039	0.041
t2	0.95	1.00	1.05	0.037	0.039	0.041
x1	3.20	3.30	3.40	0.126	0.130	0.134
x2	1.90	2.00	2.10	0.075	0.079	0.083
y1	1.60	1.65	1.70	0.063	0.065	0.067
y2	4.65	4.70	4.75	0.183	0.185	0.187
z1	2.80	2.90	3.00	0.110	0.114	0.118

Rectifier

Fig. 2 Surge overload current vs. time per diode

Fig. 3 I2t vs. time per diode

Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

Fig. 5 Max. forward current vs. case temperature per diode

Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for Z_{thJC} calculation:

İ	R_{th} (K/W)	t _i (s)
1	0.302	0.002
2	1.252	0.032
3	1.582	0.227
4	1.164	0.820