MAT218 – Ecuaciones Diferenciales Aplicadas

Profesor: Marcelo Flamarion Jefe de prácticas: Marcelo Gallardo

1 de octubre de 2025

Ecuaciones Diferenciales Homogéneas

Ejercicio 1. Resolver:

1.
$$y'' - 36y = 0$$

2.
$$y'' + 9y = 0$$

3.
$$3y'' + 2y' + y = 0$$

4.
$$y''' - y = 0$$

5.
$$y''' - 5y'' + 3y' + 9y = 0$$

6.
$$y'' + y' - 2y = 0$$

7.
$$16y^{(4)} + 24y'' + 9y = 0$$

Solución.

1.
$$r^2 - 36 = 0 \Rightarrow r = \pm 6$$
. $y = C_1 e^{6x} + C_2 e^{-6x}$.

2.
$$r^2 + 9 = 0 \Rightarrow r = \pm 3i$$
. $y = C_1 \cos(3x) + C_2 \sin(3x)$.

3.
$$3r^2 + 2r + 1 = 0 \Rightarrow r = \frac{-1 \pm i\sqrt{2}}{3}$$
. $y = e^{-x/3} [C_1 \cos(\frac{\sqrt{2}}{3}x) + C_2 \sin(\frac{\sqrt{2}}{3}x)]$.

4.
$$r^3 - 1 = 0 \Rightarrow r = 1, -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}$$
. $y = C_1 e^x + e^{-x/2} [C_2 \cos(\frac{\sqrt{3}}{2}x) + C_3 \sin(\frac{\sqrt{3}}{2}x)]$.

5.
$$(r-3)^2(r+1) = 0$$
. $y = C_1e^{3x} + C_2xe^{3x} + C_3e^{-x}$.

6.
$$(r-1)(r+2) = 0$$
. $y = C_1e^x + C_2e^{-2x}$.

7.
$$16(r^2)^2 + 24r^2 + 9 = 0 \Rightarrow (4r^2 + 3)^2 = 0, \ r = \pm i\frac{\sqrt{3}}{2} \text{ (doble)}. \ y = (C_1 + C_2 x)\cos(\frac{\sqrt{3}}{2}x) + (C_3 + C_4 x)\sin(\frac{\sqrt{3}}{2}x).$$

Ecuaciones Diferenciales No Homogéneas

Ejercicio 2. Resolver:

1.
$$y'' - y' + \frac{1}{4}y = 3 + e^{x/2}$$

$$2. y'' + y = 2x \sin x$$

3.
$$y'' + 2y' + y = \sin x + 3\cos 2x$$

4.
$$16y^{(4)} - y = e^{x/2}$$

Solución.

1. Ecuación característica: $(r-\frac{1}{2})^2=0$. Entonces

$$y_h = (C_1 + C_2 x)e^{x/2}.$$

Para la parte particular: $y_p=12+\frac{1}{2}x^2e^{x/2}$ (esto luego del Ansatz $Kx^2e^{x/2}).$ Por tanto,

$$y = (C_1 + C_2 x)e^{x/2} + 12 + \frac{1}{2}x^2 e^{x/2}.$$

2.

$$y_h = C_1 \cos x + C_2 \sin x,$$
 $y_p = \frac{1}{2} (x \sin x - x^2 \cos x).$

Esto pues, el Ansatz es

$$x[(ax+b)\cos x + (\alpha x + \beta)\sin x].$$

Entonces

$$y = C_1 \cos x + C_2 \sin x + \frac{1}{2} (x \sin x - x^2 \cos x).$$

3.

$$y_h = (C_1 + C_2 x)e^{-x}, y_p = -\frac{1}{2}\cos x - \frac{9}{25}\cos 2x + \frac{12}{25}\sin 2x.$$

Así,

$$y = (C_1 + C_2 x)e^{-x} - \frac{1}{2}\cos x - \frac{9}{25}\cos 2x + \frac{12}{25}\sin 2x.$$

4.

$$y_h = C_1 e^{x/2} + C_2 e^{-x/2} + C_3 \cos(\frac{x}{2}) + C_4 \sin(\frac{x}{2}), \qquad y_p = \frac{1}{8} x e^{x/2}.$$

En consecuencia,

$$y = C_1 e^{x/2} + C_2 e^{-x/2} + C_3 \cos(\frac{x}{2}) + C_4 \sin(\frac{x}{2}) + \frac{1}{8} x e^{x/2}.$$

Ecuaciones de Euler

Una ecuación de la forma

$$t^2y'' + \alpha ty' + \beta y = 0, \quad t > 0,$$

donde α y β son constantes, se llama ecuación de Euler.

Ejercicio 3. Resuelva lo siguiente:

- a) Sea $x = \ln t$ y calcule $\frac{dy}{dt}$ y $\frac{d^2y}{dt^2}$ en términos de $\frac{dy}{dx}$ y $\frac{d^2y}{dx^2}$. b) Use los resultados de (a) para transformar la ecuación en

$$\frac{d^2y}{dx^2} + (\alpha - 1)\frac{dy}{dx} + \beta y = 0.$$

Solución. Como $x = \ln t$, se tiene dx/dt = 1/t. Entonces

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{1}{t}\frac{dy}{dx}.$$

Además

$$\frac{d^2y}{dt^2} = \frac{d}{dt} \left(\frac{1}{t} \frac{dy}{dx} \right) = \frac{1}{t^2} \left(\frac{d^2y}{dx^2} - \frac{dy}{dx} \right).$$

Sustituyendo en la ecuación original se obtiene

$$y_{xx} + (\alpha - 1)y_x + \beta y = 0.$$

Ejercicio 4. Resuelva las siguientes ecuaciones de Euler para t > 0:

- a) $t^2y'' + ty' + y = 0$.
- b) $t^2y'' + 4ty' + 2y = 0$.

Soluci'on.a) Aquí $\alpha=1,\,\beta=1.$ La ecuación transformada es

$$y_{xx} + y = 0,$$

cuyo polinomio característico es $r^2+1=0,\,r=\pm i.$ Por tanto

$$y(x) = C_1 \cos x + C_2 \sin x.$$

Como $x = \ln t$,

$$y(t) = C_1 \cos(\ln t) + C_2 \sin(\ln t), \quad t > 0.$$

b) Aquí $\alpha = 4, \beta = 2$. La ecuación transformada es

$$y_{xx} + 3y_x + 2y = 0,$$

con característica $r^2 + 3r + 2 = 0$, raíces r = -1, -2. Así

$$y(x) = C_1 e^{-x} + C_2 e^{-2x}.$$

Volviendo a t:

$$y(t) = C_1 t^{-1} + C_2 t^{-2}, \quad t > 0.$$

Problema de Valor Inicial

Ejercicio 5. Considere

$$mu'' + \gamma u' + ku = 0,$$
 $u(0) = u_0,$ $u'(0) = v_0,$

 $con \gamma^2 < 4km \ (caso \ subamortiguado).$

Solución. La ecuación característica es

$$mr^2 + \gamma r + k = 0.$$

cuyas raíces son

$$r = -\frac{\gamma}{2m} \pm i\mu, \qquad \mu = \frac{\sqrt{4mk - \gamma^2}}{2m}.$$

Por tanto, la solución general es

$$u(t) = e^{-\frac{\gamma}{2m}t} \left(A\cos(\mu t) + B\sin(\mu t) \right).$$

Aplicando las condiciones iniciales:

$$A = u_0, \qquad B = \frac{v_0 + \frac{\gamma}{2m}u_0}{\mu}.$$

De modo que la solución puede escribirse como

$$u(t) = R e^{-\frac{\gamma}{2m}t} \cos(\mu t - \delta),$$

donde la amplitud y la fase inicial vienen dadas por

$$R = \sqrt{u_0^2 + \left(\frac{v_0 + \frac{\gamma}{2m}u_0}{\mu}\right)^2}, \qquad \delta = \arctan\left(\frac{v_0 + \frac{\gamma}{2m}u_0}{\mu u_0}\right).$$

Dependencia de R con respecto a γ

Recordemos que

$$R^{2} = u_{0}^{2} + \frac{4m^{2} \left(v_{0} + \frac{\gamma}{2m}u_{0}\right)^{2}}{4mk - \gamma^{2}}.$$

• Para $\gamma = 0$ (oscilador no amortiguado),

$$R(0) = \sqrt{u_0^2 + \left(\frac{v_0}{\sqrt{k/m}}\right)^2}.$$

■ Cuando $\gamma \to 2\sqrt{km}^-$, el denominador tiende a cero y $R(\gamma) \to +\infty$.

La función Gamma

Se define

$$\Gamma(p) = \int_0^\infty e^{-x} x^{p-1} dx, \qquad p > 0.$$

Ejercicio 6. Demuestre las siguientes propiedades:

a)
$$\Gamma(p+1) = p \Gamma(p)$$
.

b)
$$\Gamma(1) = 1$$
.

- c) Si n es un entero positivo, $\Gamma(n+1) = n!$.
- d) Para p > 0,

$$p(p+1)(p+2)\cdots(p+n-1) = \frac{\Gamma(p+n)}{\Gamma(p)}.$$

e) Dado que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, calcule $\Gamma(\frac{3}{2})$ y $\Gamma(\frac{11}{2})$.

Solución.

a) Usamos integración por partes:

$$\Gamma(p+1) = \int_0^\infty e^{-x} x^p \, dx.$$

Sea $u=x^p,\,dv=e^{-x}\,dx,\,$ entonces $du=px^{p-1}\,dx,\,v=-e^{-x}.$ Así,

$$\Gamma(p+1) = \left[-x^p e^{-x}\right]_0^{\infty} + p \int_0^{\infty} e^{-x} x^{p-1} dx.$$

El término de borde es cero (pues $x^p e^{-x} \to 0$ cuando $x \to \infty$, y vale 0 en x = 0). Luego

$$\Gamma(p+1) = p \, \Gamma(p).$$

b) Tomando p = 1:

$$\Gamma(1) = \int_0^\infty e^{-x} dx = 1.$$

c) Si $n \in \mathbb{N}$, aplicando recursivamente la relación (a):

$$\Gamma(n+1) = n\Gamma(n) = (n)(n-1)\Gamma(n-1) = \cdots = n!.$$

d) Aplicando repetidamente (a):

$$\Gamma(p+n) = (p+n-1)(p+n-2)\cdots(p)\,\Gamma(p).$$

Por tanto,

$$\frac{\Gamma(p+n)}{\Gamma(n)} = p(p+1)\cdots(p+n-1).$$

e) Usando $\Gamma(\frac{1}{2})=\sqrt{\pi}$ y la relación de recurrencia:

$$\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}.$$

Luego:

$$\Gamma\big(\tfrac{11}{2}\big) = \frac{9}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \, \Gamma\big(\tfrac{1}{2}\big) \,.$$

Calculamos el producto:

$$\frac{9 \cdot 7 \cdot 5 \cdot 3 \cdot 1}{2^5} \sqrt{\pi} = \frac{945}{32} \sqrt{\pi}.$$

$$\therefore \Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2}, \qquad \Gamma\left(\frac{11}{2}\right) = \frac{945}{32}\sqrt{\pi}.$$

Transformada de Laplace de t^p

Ejercicio 7. Considere la transformada de Laplace de t^p , p > -1.

a) Muestre que

$$\mathcal{L}\{t^p\}(s) = \int_0^\infty e^{-st} t^p dt = \frac{\Gamma(p+1)}{s^{p+1}}, \quad s > 0.$$

b) Para p = n entero positivo, deduzca que

$$\mathcal{L}\lbrace t^n\rbrace(s) = \frac{n!}{s^{n+1}}, \quad s > 0.$$

- c) Calcule $\mathcal{L}\{t^{-1/2}\}(s)$.
- d) Muestre que

$$\mathcal{L}\{t^{1/2}\}(s) = \frac{\sqrt{\pi}}{2\,s^{3/2}}, \qquad s > 0.$$

Solución.

a) Por definición,

$$\mathcal{L}\lbrace t^p\rbrace(s) = \int_0^\infty e^{-st} t^p \, dt.$$

Hacemos el cambio $x = st \implies t = \frac{x}{s}, dt = \frac{dx}{s}$:

$$\int_{0}^{\infty} e^{-st} t^{p} dt = \int_{0}^{\infty} e^{-x} \left(\frac{x}{s}\right)^{p} \frac{dx}{s} = \frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} dx.$$

Pero

$$\int_0^\infty e^{-x} x^p \, dx = \Gamma(p+1).$$

Así,

$$\mathcal{L}\lbrace t^p\rbrace(s) = \frac{\Gamma(p+1)}{s^{p+1}}, \quad s > 0.$$

b) Si $p = n \in \mathbb{N}$, se sabe que $\Gamma(n+1) = n!$. Luego,

$$\mathcal{L}\lbrace t^n\rbrace(s) = \frac{n!}{s^{n+1}}, \quad s > 0.$$

c) Para $p = -\frac{1}{2}$, tenemos

$$\mathcal{L}\lbrace t^{-1/2}\rbrace(s) = \frac{\Gamma\left(\frac{1}{2}\right)}{s^{1/2}}.$$

Recordando que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$:

$$\mathcal{L}\{t^{-1/2}\}(s) = \frac{\sqrt{\pi}}{\sqrt{s}}, \quad s > 0.$$

De forma alternativa, integrando directamente:

$$\mathcal{L}\{t^{-1/2}\}(s) = \int_0^\infty e^{-st} t^{-1/2} dt.$$

Con $x = \sqrt{st}$, se llega a

$$\mathcal{L}\{t^{-1/2}\}(s) = \frac{2}{\sqrt{s}} \int_{0}^{\infty} e^{-x^2} dx.$$

Pero

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Por tanto,

$$\mathcal{L}\{t^{-1/2}\}(s) = \frac{\sqrt{\pi}}{\sqrt{s}}, \quad s > 0.$$

d) Por la fórmula general

$$\mathcal{L}{t^p}(s) = \frac{\Gamma(p+1)}{s^{p+1}}, \quad p > -1,$$

tomando $p = \frac{1}{2}$ se obtiene

$$\mathcal{L}\{t^{1/2}\}(s) = \frac{\Gamma(3/2)}{s^{3/2}}.$$

Pero $\Gamma(3/2) = \frac{1}{2}\Gamma(1/2) = \frac{\sqrt{\pi}}{2}$. Así,

$$\mathcal{L}\{t^{1/2}\}(s) = \frac{\sqrt{\pi}}{2s^{3/2}}.$$

Ejercicio 8. (4) Suponga $g(t) = \int_0^t f(\tau) d\tau$. Si G(s), F(s) son las transformadas de Laplace de g(t), f(t), demuestre que

$$G(s) = \frac{F(s)}{s}.$$

Solución. Por definición:

$$G(s) = \int_0^\infty e^{-st} g(t) dt = \int_0^\infty e^{-st} \int_0^t f(\tau) d\tau dt.$$

Cambiando el orden de integración (teorema de Fubini):

$$G(s) = \int_0^\infty f(\tau) \left(\int_\tau^\infty e^{-st} dt \right) d\tau.$$

La integral interna es

$$\int_{\tau}^{\infty} e^{-st} \, dt = \frac{e^{-s\tau}}{s}.$$

Por tanto

$$G(s) = \frac{1}{s} \int_0^\infty e^{-s\tau} f(\tau) d\tau = \frac{F(s)}{s}.$$

Ejercicio 9. (5a) Use la serie de Taylor de $\sin t$:

$$\sin t = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!},$$

y suponga que la transformada se puede calcular término a término. Compruebe que

$$\mathcal{L}\{\sin t\}(s) = \frac{1}{s^2 + 1}, \quad s > 1.$$

Solución. Aplicando $\mathcal{L}\{t^m\}(s) = \frac{m!}{s^{m+1}}$:

$$\mathcal{L}\{\sin t\}(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot \frac{(2n+1)!}{s^{2n+2}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{s^{2n+2}}.$$

Es una serie geométrica:

$$\frac{1}{s^2} - \frac{1}{s^4} + \frac{1}{s^6} - \dots = \frac{1/s^2}{1 + 1/s^2} = \frac{1}{s^2 + 1}.$$

Ejercicio 10. (5b) Sea

$$f(t) = \begin{cases} \frac{\sin t}{t}, & t \neq 0, \\ 1, & t = 0. \end{cases}$$

Encuentre la serie de Taylor de f en t=0 y compruebe que

$$\mathcal{L}{f(t)}(s) = \arctan \frac{1}{s}, \quad s > 1.$$

Solución. Expandiendo $\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \cdots$, se tiene

$$\frac{\sin t}{t} = 1 - \frac{t^2}{3!} + \frac{t^4}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n+1)!}.$$

Aplicando la transformada término a término:

$$\mathcal{L}{f(t)}(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot \frac{(2n)!}{s^{2n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)s^{2n+1}}.$$

Esta es la serie de Taylor de $\arctan(1/s)$ para |1/s| < 1, es decir s > 1. Por lo tanto,

$$\mathcal{L}{f(t)}(s) = \arctan \frac{1}{s}.$$

Ejercicio 11. (6) Si f(t) es periódica de periodo T, pruebe que

$$\mathcal{L}{f(t)}(s) = \frac{\int_0^T e^{-st} f(t) dt}{1 - e^{-sT}}.$$

Solución. Partimos de

$$\int_0^\infty e^{-st} f(t) \, dt = \sum_{n=0}^\infty \int_{nT}^{(n+1)T} e^{-st} f(t) \, dt.$$

Cambio de variable t = u + nT en cada integral:

$$= \sum_{n=0}^{\infty} e^{-snT} \int_{0}^{T} e^{-su} f(u) \, du.$$

Factorizando la integral común:

$$\left(\int_0^T e^{-su} f(u) \, du\right) \sum_{n=0}^\infty (e^{-sT})^n.$$

La suma geométrica converge a

$$\frac{1}{1 - e^{-sT}}.$$

Así se obtiene la fórmula.

Ejercicio 12. (7) Resuelva el PVI:

$$y'' + y = f(t), \quad y(0) = 0, \ y'(0) = 1,$$

con

$$f(t) = \begin{cases} 1, & 0 \le t < \frac{\pi}{2}, \\ 0, & t \ge \frac{\pi}{2}. \end{cases}$$

Solución. La transformada de Laplace de y'' + y es

$$(s^{2}Y(s) - sy(0) - y'(0)) + Y(s) = F(s).$$

Con y(0) = 0, y'(0) = 1:

$$(s^2 + 1)Y(s) - 1 = F(s).$$

La función f(t) es un pulso rectangular (Heaviside). Su transformada:

$$F(s) = \int_0^{\pi/2} e^{-st} dt = \frac{1 - e^{-s\pi/2}}{s}.$$

Entonces

$$Y(s) = \frac{1}{s^2 + 1} \left(F(s) + 1 \right) = \frac{1}{s^2 + 1} \left(\frac{1 - e^{-s\pi/2}}{s} + 1 \right).$$

Separando:

$$Y(s) = \frac{1}{s(s^2+1)} - \frac{e^{-s\pi/2}}{s(s^2+1)} + \frac{1}{s^2+1}.$$

Antitransformando término a término:

- $\mathcal{L}^{-1} \left\{ \frac{1}{s(s^2+1)} \right\} = 1 \cos t.$
- El tercer término es desplazado: $\mathcal{L}^{-1}\left\{\frac{e^{-s\pi/2}}{s(s^2+1)}\right\} = u(t-\frac{\pi}{2})\left[1-\cos\left(t-\frac{\pi}{2}\right)\right].$

Así,

$$y(t) = (1 - \cos t) + \sin t - u(t - \frac{\pi}{2}) \left(1 - \cos(t - \frac{\pi}{2})\right).$$

Ejercicio 13. Bonus (**): Derivación de la ecuación de estado en el modelo de Solow.

Considere una economía cerrada, sin gobierno, en tiempo continuo. Sean:

- K(t) el stock de capital físico agregado en el tiempo t,
- L(t) la fuerza laboral (o población que trabaja),
- Y(t) el producto agregado.

El producto se obtiene mediante una función de producción neoclásica $F: \mathbb{R}^2_+ \to \mathbb{R}_+$, dos veces continuamente derivable, con retornos constantes a escala y productividad marginal positiva pero decreciente en cada factor. No hay progreso tecnológico.

Haga lo siguiente:

a) Explique y enuncie las hipótesis de retornos constantes a escala y productividad marginal decreciente. Escriba la identidad contable de ingresos y el vínculo ahorro-inversión bajo una economía cerrada sin gobierno.

b) Muestre que, bajo un esquema de ahorro exógeno con tasa $s \in (0,1)$ y depreciación proporcional del capital a tasa $\delta > 0$, la ley de movimiento de K(t) es

$$\dot{K}(t) = sY(t) - \delta K(t).$$

c) Use la propiedad de retornos constantes a escala para definir variables en unidades por trabajador:

$$k(t) = \frac{K(t)}{L(t)}, \qquad y(t) = \frac{Y(t)}{L(t)},$$

y muestre que existe una función intensiva f tal que y(t) = f(k(t)).

d) Suponga crecimiento poblacional exógeno a tasa constante n > 0, es decir, $\dot{L}(t) = nL(t)$. A partir de la identidad

$$\dot{k}(t) = \frac{d}{dt} \left(\frac{K(t)}{L(t)} \right),$$

derive paso a paso la ecuación diferencial autónoma de Solow para el capital por trabajador:

$$\dot{k}(t) = s f(k(t)) - (n+\delta) k(t).$$

Indique con claridad en qué paso se usa cada supuesto.

e) Interprete económicamente cada término de la ecuación obtenida y explique en una oración por qué es autónoma.

Solución.

a) Supuestos tecnológicos. Retornos constantes a escala: para todo $\lambda > 0$,

$$F(\lambda K, \lambda L) = \lambda F(K, L).$$

Productividades marginales: $F_K > 0$, $F_L > 0$ y $F_{KK} < 0$, $F_{LL} < 0$. Identidad de ingresos en economía cerrada sin gobierno: Y(t) = C(t) + I(t). El ahorro agregado es S(t) = Y(t) - C(t) y, al no haber comercio exterior ni gobierno, S(t) = I(t).

b) Regla de acumulación del capital. Se asume ahorro exógeno a tasa $s \in (0,1)$: S(t) = sY(t). La inversión bruta repone depreciación y suma inversión neta:

$$I(t) = \dot{K}(t) + \delta K(t).$$

Como I(t) = S(t), resulta

$$\dot{K}(t) + \delta K(t) = sY(t) \implies \dot{K}(t) = sY(t) - \delta K(t).$$

Aquí se usaron: identidad contable y depreciación proporcional.

c) Variables intensivas y función f. Por retornos constantes a escala,

$$Y(t) = F(K(t), L(t)) = L(t) F(\frac{K(t)}{L(t)}, 1).$$

Definiendo k(t) = K(t)/L(t) y f(k) := F(k, 1), se obtiene

$$y(t) = \frac{Y(t)}{L(t)} = f(k(t)).$$

La función intensiva f hereda f' > 0 y f'' < 0 de F; si además F satisface las condiciones de Inada, entonces $f'(k) \to \infty$ cuando $k \downarrow 0$ y $f'(k) \to 0$ cuando $k \uparrow \infty$.

d) Derivación de la ecuación autónoma. Partimos de la identidad de cociente:

$$\dot{k}(t) = \frac{d}{dt} \left(\frac{K}{L} \right) = \frac{L \, \dot{K} - K \, \dot{L}}{L^2} = \frac{\dot{K}}{L} - \frac{K}{L} \cdot \frac{\dot{L}}{L} = \frac{\dot{K}}{L} - k(t) \, n,$$

donde se usó $\dot{L}/L = n$. Dividimos la ley de movimiento de K por L y usamos y = f(k):

$$\frac{\dot{K}}{L} = s \frac{Y}{L} - \delta \frac{K}{L} = s f(k(t)) - \delta k(t).$$

Sustituyendo en la expresión de \dot{k} :

$$\dot{k}(t) = \left[s f(k(t)) - \delta k(t) \right] - n k(t) = s f(k(t)) - (n + \delta) k(t).$$

En esta cadena se emplean, respectivamente: ahorro exógeno y depreciación proporcional, definición de variables per cápita, y crecimiento poblacional exógeno.

e) Interpretación y autonomía. El término s f(k) es la inversión por trabajador: una fracción s del producto por trabajador se destina a invertir. El término $(n + \delta)k$ es la inversión de mantenimiento necesaria para sostener constante el capital por trabajador: δk repone la depreciación y nk compensa la dilución del capital debido al crecimiento de la población. La ecuación es autónoma porque el lado derecho depende sólo del estado actual k(t) y de parámetros constantes (s, n, δ) , pero no depende explícitamente del tiempo t.