

John Pauline Pineda

December 31, 2023

OUTLINE

- Introduction and Background
- Exploratory Data Analysis
- Content-Based Recommender System Using Unsupervised Learning
- Collaborative Filtering Recommender System Using Supervised Learning
- Conclusion
- Appendix

INTRODUCTION

Problem Statement

• The current landscape of online education is marked by an overwhelming abundance of course offerings, making it challenging for learners to navigate and identify the most relevant and engaging courses aligned with their individual preferences and learning objectives.

Hypothesis

• It is hypothesized that the development of an online course recommender system will create a user-centric, adaptive, and effective learning platform that maximizes the educational value for each user. Its implementation will provide personalized recommendations ensuring that learners receive contents that align with their specific interests, shared preferences with other learners, and similarities to the courses they're currently enrolled in leading to a more engaging and effective learning experience.

Study Objective

- This project aims to conduct the following on gathered data containing user profiles and course preferences
 - · Data preprocessing to extract and transform relevant features suitable for analysis and model training
 - Exploratory data analysis to identify similarity patterns and correlations among the distribution of user and course data
 - · Recommender system model building using machine learning algorithms including regression, classification, and clustering

Tools

Python APIs: SciPy, Pandas, MatPlotLib, NumPy, NLTK, GenSim, WordCloud, Scikit-Learn, TensorFlow, Keras

- Course Counts per Genre
 - More courses were noted for the Backend Dev, Machine Learning, and Database genres, among others.

- Course Enrollment Distribution
 - Course enrollment distribution is bimodal with most users enrolled in 1 course or 5 to 6 courses.

- Top 20 Most Popular Courses
 - Among the highly rated courses included Data Science (DSxxxxxx) and Big Data (BDxxxxxx).

	COURSE_ID	TITLE	Ratings		COURSE_ID	TITLE	Ratings
0	PY0101EN	python for data science	14936	10	DV0101EN	data visualization with python	6709
1	DS0101EN	introduction to data science	14477	11	ML0115EN	deep learning 101	6323
2	BD0101EN	big data 101	13291	12	CB0103EN	build your own chatbot	5512
3	BD0111EN	hadoop 101	10599	13	RP0101EN	r for data science	5237
4	DA0101EN	data analysis with python	8303	14	ST0101EN	statistics 101	5015
5	DS0103EN	data science methodology	7719	15	CC0101EN	introduction to cloud	4983
6	ML0101ENv3	machine learning with python	7644	16	CO0101EN	docker essentials a developer introduction	4480
7	BD0211EN	spark fundamentals i	7551	17	DB0101EN	sql and relational databases 101	3697
8	DS0105EN	data science hands on with open source tools	7199	18	BD0115EN	mapreduce and yarn	3670
9	BC0101EN	blockchain essentials	6719	19	DS0301EN	data privacy fundamentals	3624

- Word Cloud of Course Titles
 - The most prominent words used in the course titles were Python, Data Science, and Data, among others.

Process Flowchart Using User Profile and Course Genres

- User Information
- Course Information
- Course Rating
- Course Genre

- · Course-Genre Table
- User Rating Distribution
- Course Rating Preferences
- Course Textual Frequency
- User Profile Vector
 Generation
- Course Genre Vector
 Generation

- Interest Score Calculation (Using the Dot Product of User Profile and Course Genre Vectors) and Threshold Setting
- Recommendation for Unenrolled Courses with Interest Scores Above Threshold

- Evaluation Results of User Profile-Based Recommender System
 - On average, 19 recommendations are provided with the top 10 recommendations given below.
 - **Hyperparameters**: Threshold=10

Average new | unseen course recommendations per user for the test dataset

18.62679972290352

rs		Count	
	COURSE_ID		
	TA0106EN	608	
	GPXX0IBEN	548	
	excourse22	547	
	excourse21	547	
	ML0122EN	544	
	excourse06	533	
	excourse04	533	
	GPXX0TY1EN	533	
	excourse31	524	
	excourse73	516	

Process Flowchart Using Course Similarity

- User Information
- Course Information
- Course Rating
- Course Genre

- Course-Genre Table
- User Rating Distribution
- Course Rating Preferences
- Course Textual Frequency
- Tokenization
- Stop Word Removal
- Bag-of-Words Feature
 Extraction

- Course Similarity Score
 Calculation (Using the Bagof-Words Features) and
 Threshold Setting
- Recommendation for Unenrolled Courses with Similarity Scores Above Threshold

- Evaluation Results of Course Similarity-Based Recommender System
 - On average, 12 recommendations are provided with the top 10 recommendations given below.
 - **Hyperparameters:** Threshold=0.60

Average new | unseen course recommendations per user for the test dataset

11.573753814852493

Top 10 most recor	nmendec	l cour	ses across all
users		Count	
	COURSE_ID		
	excourse62	579	
	excourse22	579	
	DS0110EN	562	
	excourse65	555	
	excourse63	555	
	excourse72	551	
	excourse68	550	
	excourse74	539	
	excourse67	539	
	RD0145EN	506	

Process Flowchart Using User-Profile Clusters

- User Information
- Course Information
- Course Rating
- Course Genre

- Course-Genre Table
- User Rating Distribution
- Course Rating Preferences
- · Course Textual Frequency
- User Profile Normalization
- Dimensionality Reduction of User Profile Vector by Principal Component Analysis
- K-Means Clustering Analysis for User Profile Vector Principal Components
- Recommendation Score
 Calculation and Threshold
 Setting by Cluster
- User Cluster Determination
- Cluster-Specific
 Recommendation for
 Unenrolled Courses with
 Scores Above Threshold

- Evaluation Results of Clustering-Based Recommender System
 - On average, 17 recommendations are provided with the top 10 recommendations given below.
 - Hyperparameters: Number of Clusters=15, Number of Principal Components=9, Threshold=10

Average new | unseen course recommendations per user for the test dataset

16.720858895705522

Top 10 most reconusers	ommended courses across all		
	COURSE_ID		
	ML0115EN	678	
	ST0101EN	636	
	DS0105EN	602	
	DB0101EN	582	
	CL0101EN	570	
	DS0103EN	569	
	BD0111EN	562	
	DS0301EN	554	
	CC0101EN	516	
	BD0211EN	510	

Process Flowchart Using K-Nearest Neighbors-Based Approach

Process Flowchart Using Non-Matrix Factorization-Based Approach

- User Information
- Course Rating

- User Rating Distribution
- Course Rating Preferences
- User-Course Interaction
 Matrix Generation
- Matrix Decomposition to
 Transformed User-Features
 and Course-Features
- Rating Prediction Model
 Development using NMF
 (Using the Dot Product of
 Transformed User-Features
 and Course-Features)
- Recommendation for
 Unenrolled Courses with
 Higher Ratings Based on the
 Latent Features of Users and
 Courses Extracted from NMF

Process Flowchart Using Neural Network Embedding-Based Approach

- User Information
- Course Rating

- User Rating Distribution
- Course Rating Preferences
- One-Hot Encoding of User Vector
- One-Hot Encoding of Course Vector
- Rating Prediction Model
 Development using Neural
 Network (Using the Dot
 Product of User-Embedded
 and Course-Embedded
 Layers)
- Recommendation for Unenrolled Courses with Higher Ratings Based on the Latent Features of Users and Courses Extracted from Neural Network

- Performance Comparison of Collaborative-Filtering Models
 - The Neural Network Embedding-Based Approach demonstrated the lowest root mean squared error among all the collaborative-filtering model candidates evaluated.

CONCLUSION

Key Findings

- 10 candidate recommender systems were developed based on two techniques a Content-Based Approach Using Unsupervised Learning (3 models) and a Collaborative Filtering-Based Approach Using Supervised Learning (7 models).
- Among all candidates, the Rating Prediction Model Based on the Latent Features of Users and Courses Extracted from Neural Network provided the lowest error based on RMSE at 0.119362.

Next Steps

- The current study can be further extended to improve the performance of the content-based and collaborative filtering methods in recommendation systems by addressing their respective limitations and exploring hybrid or enhanced techniques:
 - Content-Based Recommendation System
 - Deep learning architectures can be explored to automatically learn intricate patterns and representations from item features such as recurrent neural networks (RNNs) or transformers, to capture complex relationships within item content.
 - Ensemble methods can be explored by training multiple recommendation models with different feature representations and aggregating their predictions to improve robustness and generalization.

Collaborative Filtering-Based Recommendation System

- Other matrix factorization techniques can be explored such as Singular Value Decomposition (SVD), Alternating Least Squares (ALS), or matrix factorization with deep learning approaches to effectively decompose the user-item interaction matrix into lower-dimensional matrices to better capture latent factors
- Hybrid collaborative-content models can be explored which combine collaborative and content-based filtering methods to
 leverage the strengths of both approaches. Collaborative filtering can be used to capture user preferences while content-based
 recommendation can be employed to enhance recommendations with item features.

APPENDIX

Source Data

- Raw Data: <u>Course Genre</u> | <u>Ratings</u> | <u>Course Description</u>
- Processed Data: <u>Bag-of-Words Features</u> | <u>User Profile</u> | <u>Course Similarity Calculations</u>
- Embedded Data: <u>User Embeddings</u> | <u>Course Embeddings</u>

• Python Notebooks | Code Repository

- GitHub URL: Exploratory Data Analysis
- GitHub URL: <u>Bag-of-Words Feature Extraction</u>
- GitHub URL: Similarity Computation Using Bag-Of-Words Features
- GitHub URL: Content-Based Approach Using User Profiles and Course Genres
- GitHub URL: Content-Based Approach Using Course Similarities
- GitHub URL: Clustering-Based Approach
- GitHub URL: Collaborative Filtering Using K-Nearest Neighbors
- GitHub URL: Collaborative Filtering Using Non-Negative Matrix Factorization
- GitHub URL: Course Rating Prediction Using Neural Network
- GitHub URL: Regression-Based Rating Score Prediction Using Embedding Features
- GitHub URL: Classification-Based Rating Mode Prediction Using Embedding Features

