Building a Linear Regression Model

In this notebook, I will be building and optimizing a Linear Regression Model in the hopes that it can accurately predict Mileage from various other variables—although the actual data is irrelevant, the point of this notebook is purely to showcase and improve my skills with building a model

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
import statsmodels.api as sm
import seaborn as sns
import statsmodels.formula.api as smf
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
```

Importing the data set

data = pd.read_csv("https://raw.githubusercontent.com/austinkirwin/public-projects/refs/heads/main/Python_projects/LinRegModelFromScratch/uaeddata.head()

		Make	Model	Year	Price	Mileage	Body Type	Cylinders	Transmission	Fuel Type	Color	Location	Description
	0	toyota	camry	2016	47819	156500	Sedan	4	Automatic Transmission	Gasoline	Black	Dubai	2016 toyota camry with Rear camera, Leather se
	1	kia	sorento	2013	61250	169543	SUV	4	Automatic Transmission	Gasoline	Grey	Abu Dhabi	2013 kia sorento with Sunroof, Adaptive cruise
	4 =												•

Basic data manipulation

Description is useless for mileage so I will remove it

data = data.drop("Description", axis=1)
data.head()

		Make	Model	Year	Price	Mileage	Body Type	Cylinders	Transmission	Fuel Type	Color	Location
	0	toyota	camry	2016	47819	156500	Sedan	4	Automatic Transmission	Gasoline	Black	Dubai
	1	kia	sorento	2013	61250	169543	SUV	4	Automatic Transmission	Gasoline	Grey	Abu Dhabi
	2	mini	cooper	2023	31861	221583	Soft Top Convertible	4	Automatic Transmission	Gasoline	Grey	Dubai
	3	nissan	altima	2016	110322	69754	Sedan	4	Automatic Transmission	Gasoline	Red	Dubai
	4	toyota	land-cruiser-76-series	2020	139994	71399	Pick Up Truck	4	Manual Transmission	Gasoline	White	Dubai

```
# Many categorical variables so One-Hot Encoding
transformed_data = pd.get_dummies(data, dtype = int)
transformed_data.head() # 616 columns is excessive, let's try dropping some

transformed_data = pd.get_dummies(data.drop('Location', axis=1), dtype = int)
transformed_data.head() # 600 columns

transformed_data = pd.get_dummies(data.drop(['Location','Color'], axis = 1), dtype = int)
transformed_data.head() # 583 columns

transformed_data = pd.get_dummies(data.drop(['Location','Color','Make','Model'], axis = 1), dtype = int)
transformed_data = pd.get_dummies(data.drop(['Location','Color','Make','Model'], axis = 1), dtype = int)
transformed_data.head() # Only 30 columns!!
```

__

	Year	Price	Mileage	Body Type_Coupe	Body Type_Crossover	Body Type_Hard Top Convertible	Body Type_Hatchback	Body Type_Other	Body Type_Pick Up Truck	Body Type_SUV	 Cylinders_5	Cy:
0	2016	47819	156500	0	0	0	0	0	0	0	 0	
1	2013	61250	169543	0	0	0	0	0	0	1	 0	
2	2023	31861	221583	0	0	0	0	0	0	0	 0	
3	2016	110322	69754	0	0	0	0	0	0	0	 0	
4	2020	139994	71399	0	0	0	0	0	1	0	 0	

Looking at pairwise data to see if there are any patterns

sns.pairplot(data)

5 rows × 30 columns

There do not seem to be any obvious relationships.

Building the Model

```
train, test = train_test_split(transformed_data, test_size=.2)
model = smf.ols(formula = 'Mileage ~ Price', data = train).fit()
model.summary()
```

```
₹
```

OLS Regression Results

Dep. Variable: Mileage 0.000 R-squared: Model: OLS Adj. R-squared: 0.000 Method: Least Squares F-statistic: 1.255 Date: Tue, 04 Mar 2025 Prob (F-statistic): 0.263 Time: 21:47:19 Log-Likelihood: -1.0206e+05 No. Observations: 8000 AIC: 2.041e+05 Df Residuals: 7998 BIC: 2.041e+05 Df Model:

Covariance Type: nonrobust

std err t P>|t| [0.025 0.975] coef Intercept 1.543e+05 1058.043 145.833 0.000 1.52e+05 1.56e+05 Price 0.0022 0.002 1.120 0.263 -0.002 0.006 Omnibus: 7689.209 Durbin-Watson: 1.953

Prob(Omnibus): 0.000 Jarque-Bera (JB): 489.066 Skew: 0.007 Prob(JB): 6.32e-107 Kurtosis: 1.789 Cond. No. 6.05e+05

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 6.05e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Checking for highly influential or high leverage points

```
# Get influence measures
influence = model.get_influence()
# Print Cook's distances
print("Cook's Distances:")
print(max(influence.cooks_distance[0]))
# Print leverage values
print("\nLeverage Values:")
print(max(influence.hat_matrix_diag))
    Cook's Distances:
     0.2240768497189483
     Leverage Values:
     0.11459555751536069
train_exp = train.drop('Mileage', axis = 1)
train_target = train['Mileage']
test_exp = test.drop('Mileage', axis = 1)
test_target = test['Mileage']
linreg = LinearRegression()
```

linreg.fit(train_exp, train_target) linreg.score(test_exp, test_target) # obviously overfitted model

-0.009194744480062411

new_data = pd.get_dummies(data.drop(['Location','Color','Make','Model', 'Body Type'], axis = 1), dtype = int) new_data.head()

_	→	÷
•	÷	_

	Year	Price	Mileage	Cylinders_10	Cylinders_12	Cylinders_3	Cylinders_4	Cylinders_5	Cylinders_6	Cylinders_8	Cylinders_Unknown
0	2016	47819	156500	0	0	0	1	0	0	0	0
1	2013	61250	169543	0	0	0	1	0	0	0	0
2	2023	31861	221583	0	0	0	1	0	0	0	0
3	2016	110322	69754	0	0	0	1	0	0	0	0
4	2020	139994	71399	0	0	0	1	0	0	0	0

Testing other models

```
new_train, new_test = train_test_split(new_data, test_size=.2)
new_train_exp = new_train.drop('Mileage', axis = 1)
new_train_target = new_train['Mileage']
new_test_exp = new_test.drop('Mileage', axis = 1)
new_test_target = new_test['Mileage']
new_linreg = LinearRegression()
new_linreg.fit(new_train_exp, new_train_target)
new_linreg.score(new_test_exp, new_test_target) # still overfit
→ -0.003463323851841782
AAAAA_data = data.drop(['Make','Model','Body Type','Cylinders','Transmission','Fuel Type','Color','Location'], axis = 1)
A_train, A_test = train_test_split(AAAAA_data, test_size=.2)
A_trainexp = A_train.drop('Mileage', axis = 1)
A_traintar = A_train['Mileage']
A_testexp = A_test.drop('Mileage', axis = 1)
A_testtar = A_test['Mileage']
Alinreg = LinearRegression()
Alinreg.fit(A_trainexp, A_traintar)
Alinreg.score(A_testexp, A_testtar)
-0.0019276961904044487
```

In conclusion all of these models have extremely low R^2 scores so Mileage is probably not able to be predicted by any of the variables in the dataset.