ME5309 Aircraft Engines and Rocket Propulsion

Assignment 2: Ideal and Non-Ideal Cycle Analysis

Part (a)

Due to the engine is ideal, and with the altitude goes higher, the temperature will follow:

$$T = \begin{cases} 288.15 - 0.0065H \ (H < 11000m) \\ 216.65K \ (11000 \le H \le 20100m) \end{cases}$$

And do it in the MATLAB, the coding will be attached behind.

Part (b)

For this case, at different altitude the maximum specific thrust happens in different height, so first of all is to fix the height and change the parameter π_c to find out the best specific thrust performance at this altitude, and change the altitude to do the same over and over again. And the result is shown:

Part (c)

The turbojet is not ideal, so we need to do more calculations, and add them into the code.

Part (d)

In this part, e_c and e_t have a variance of $\pm 2\%$. So for e_c , $e_t \in [0.833, 0.867]$.

I. For $e_c \in [0.833, 0.867]$

II. For $e_t \in [0.833, 0.867]$

From two charts above, we can conclude that the specific thrust is more sensitive to e_c .

Part (e)

Fix the height to 10km:

Appendix

```
Part(a)
clc;
clear;
clear all:
%known parameters
H_values = linspace(0,15000,1000);%%define the height
M_0_{values} = [0.85, 2.1];
gamma = 1.4;
R = 287;
C_p = R * gamma/(gamma-1);
T_t4 = 1900;
pi_c = 15;
Qr = 43000000;
%need to be known
T 0 values = zeros(size(H values));
a_0_values = zeros(size(H_values));
V_0_values = zeros(size(H_values));
t r values = zeros(size(H values));
t_lambda_values = zeros(size(H_values));
pi_r_values = zeros(size(H_values));
t_c_values = zeros(size(H_values));
eff_c_values = zeros(size(H_values));
f_values = zeros(size(H_values));
t t values = zeros(size(H values));
pi_t_values = zeros(size(H_values));
P t9 9 values = zeros(size(H values));
M_9_values = zeros(size(H_values));
T_9_T_0_values = zeros(size(H_values));
V_9_a_0_values = zeros(size(H_values));
thrust_values = zeros(length(M_0_values),length(H_values));
TSFC_values = zeros(length(M_0_values),length(H_values));
eff_p_values = zeros(length(M_0_values),length(H_values));
eff th values = zeros(length(M 0 values),length(H values));
eff_o_values = zeros(length(M_0_values),length(H_values));
%definr the T 0
for i = 1:length(H_values)
    H = H \text{ values(i);}
    if H < 11000
        T_0_{values(i)} = 288.15-0.0065*H;
        T_0_{values(i)} = 216.65;
    end
    for j=1:length(M_0_values)
        M_0 = M_0_{values(j)};
```

```
a_0_{values(i)} = sqrt(gamma * R * T_0_{values(i))};
    V_0_{values(i)} = a_0_{values(i)} * M_0;
    t_r_values(i) = 1+(gamma-1)/2 * M_0^2;
    pi_r_values(i) = t_r_values(i)^(gamma/(gamma - 1));
    t_lambda_values(i) = T_t4 / T_0_values(i);
    t_c_values(i) = pi_c^((gamma-1)/gamma);
    f_{values(i)} = (t_{lambda_values(i)} - t_{r_values(i)} * t_{c_values(i)})
(Qr/(C_p * T_0_values(i))-t_lambda_values(i));
    t_t_values(i) = 1-t_r_values(i)*(t_c_values(i)-1)/t_lambda_values(i);
    pi t values(i) = t t values(i)^(gamma-1));
    P_t9_9_values(i) = pi_c * pi_r_values(i) * pi_t_values(i);
   M_9_{\text{values}(i)} = \text{sqrt}(2/(\text{gamma-1})*(P_t9_9_{\text{values}(i)}^{((gamma-1)/gamma)-1)};
    T_9_T_0_values(i)
                                t_lambda_values(i)
                                                            t_t_values(i)
                         =
                                                       *
(P t9 9 values(i)^((qamma-1)/qamma));
    V_9_a_0_values(i) = M_9_values(i)*sqrt(T_9_T_0_values(i));
    thrust_values(j,i) = a_0_values(i)* (V_9_a_0_values(i)- M_0);
    TSFC_values(j,i) = f_values(i)/thrust_values(j,i);
                                   V_0_values(i)
    eff_p_values(j,i) = 2
                                *
                                                        thrust_values(j,i)
(a 0 values(i)^2 * (V 9 a 0 values(i)^2 - M 0^2));
    eff th values(j,i) = (a 0 values(i)^2 * (V 9 a 0 values(i)^2 - M 0^2)) /
(2 * f values(i) * Qr);
    eff_o_values(j,i) = eff_p_values(j,i) * eff_th_values(j,i);
end
end
figure;
plot(H_values,thrust_values(1,:),'r','LineWidth',2);
title('Variation of Thrust with Height');
xlabel('Height'):
ylabel('Thrust');
hold on
plot(H_values,thrust_values(2,:),'b','LineWidth',2);
legend('M=0.85','M=2.1');
grid on;
figure;
plot(H_values,TSFC_values(1,:),'r','LineWidth',2);
title('Variation of TSFC with Height');
xlabel('Height');
ylabel('TSFC');
hold on
plot(H_values, TSFC_values(2,:), 'b', 'LineWidth',2);
legend('M=0.85','M=2.1');
grid on;
figure:
plot(H_values,eff_p_values(1,:),'r','LineWidth',2);
title('Variation of efficiency of propulsion with Height');
xlabel('Height');
ylabel('efficiency of propulsion');
hold on
plot(H_values,eff_p_values(2,:),'b','LineWidth',2);
legend('M=0.85','M=2.1');
grid on;
```

```
figure;
plot(H_values,eff_th_values(1,:),'r','LineWidth',2);
title('Variation of efficiency of thermal energy with Height');
xlabel('Height');
ylabel('efficiency of th');
hold on
plot(H_values,eff_th_values(2,:),'b','LineWidth',2);
legend('M=0.85','M=2.1');
grid on;
figure:
plot(H_values,eff_o_values(1,:),'r','LineWidth',2);
title('Variation of total efficiency with Height');
xlabel('Height');
ylabel('total efficiency');
hold on
plot(H_values,eff_o_values(2,:),'b','LineWidth',2);
legend('M=0.85', '\overline{M}=\overline{2}.1');
arid on:
Part(b)
clc:
clear:
clear all;
%known parameters
H values = linspace(0,15000,1000); % define the height
M 0 values = [0.85 2.1]:
qamma = 1.4;
R = 287;
C_p = R * gamma/(gamma-1);
T_t4 = 1900;
0r = 430000000;
%need to be known
T 0 values = zeros(size(H values));
a_0_values = zeros(size(H_values));
V 0 values = zeros(size(H values));
t_r_values = zeros(size(H_values));
t_lambda_values = zeros(size(H_values));
pi_r_values = zeros(size(H_values));
t_c_values = zeros(size(H_values));
pi_c_values = zeros(length(M_0_values),length(H_values));
f_values = zeros(size(H_values));
t t values = zeros(size(H values));
pi_t_values = zeros(size(H_values));
P t9 9 values = zeros(size(H values));
M_9_values = zeros(size(H_values));
T_9_T_0_values = zeros(size(H_values));
V_9_a_0_values = zeros(size(H_values));
thrust_values = zeros(length(M_0_values),length(H_values));
TSFC_values = zeros(length(M_0_values),length(H_values));
eff p values = zeros(length(M 0 values),length(H values));
```

```
eff_th_values = zeros(length(M_0_values),length(H_values));
eff o values = zeros(length(M 0 values),length(H values));
%definr the T_0
for j = 1:length(M_0_values) % 遍历不同的 M_0
    M 0 = M 0 values(j); % 当前 M 0
    for i = 1:length(H_values)
        H = H_{values(i)};
        if H < 11000
            T 0 values(i) = 288.15-0.0065*H;
            T_0_{values(i)} = 216.65;
        end
        a_0_{values(i)} = sqrt(gamma * R .* T_0_{values(i))};
        V 0 values(i) = a 0 values(i) * M 0;
        t_r_{values(i)} = 1 + (gamma-1)/2 * M_0^2;
        pi_r_values(i) = t_r_values(i)^(gamma/(gamma - 1));
        t_lambda_values(i) = T_t4 / T_0_values(i);
t_c_values(i) = sqrt(t_lambda_values(i)) / t_r_values(i);
        pi_c_values(j,i) = t_c_values(i)^(gamma-1));
        f_values(i) = (t_lambda_values(i)-t_r_values(i) * t_c_values(i)) ./
(Qr/(C_p * T_0_values(i))-t_lambda_values(i));
        t_t_values(i) = 1-t_r_values(i)*(t_c_values(i)-1)/t_lambda_values(i);
        pi_t_values(i) = t_t_values(i)^(gamma-1));
        P t9 9 values(i) = pi c values(j,i) * pi r values(i) *
pi_t_values(i);
        M_9_values(i) = sqrt(2/(gamma-1)*(P_t9_9_values(i)^((gamma-1)/gamma)-
1)):
        T_9_T_0_values(i) = t_lambda_values(i) * t_t_values(i) /
(P t9 9 values(i)^((gamma-1)/gamma));
        V_9_a_0_values(i) = M_9_values(i)*sqrt(T_9_T_0_values(i));
        thrust values(j,i) = \overline{a} 0 values(i)* (V 9 \overline{a} 0 values(i)- M 0);
        TSFC_values(j,i) = f_values(i)/thrust_values(j,i);
        eff_p_values(j,i) = 2 * V_0_values(i) * thrust_values(j,i) /
(a 0 values(i)^2 * (V 9 a 0 values(i)^2 - M 0^2));
        eff_th_values(j,i) = (a_0_values(i)^2 * (V_9_a_0_values(i)^2 - values(i)^2)
M_0^2) / (2 * f_values(i) * Qr);
        eff_o_values(j,i) = eff_p_values(j,i) * eff_th_values(j,i);
    end
end
    figure;
    plot(H_values, pi_c_values(1,:), 'b', 'LineWidth', 2);
    hold on;
    title('Optimal \pi_c for Maximum Thrust vs Altitude');
    xlabel('Altitude (m)');
    ylabel('Optimal \pi_c');
    plot(H_values, pi_c_values(2,:), 'r', 'LineWidth', 2);
    legend('M_0 = 0.85', 'M_0 = 2.1');
    grid on;
    hold off
```

```
figure;
plot(H_values, thrust_values(1,:), 'r', 'LineWidth', 2);
title('Variation of Thrust with Height');
xlabel('Height');
vlabel('Thrust');
hold on
plot(H_values, thrust_values(2,:), 'b', 'LineWidth', 2);
legend('M=0.85','M=2.1');
grid on;
figure;
plot(H_values,TSFC_values(1,:),'r','LineWidth',2);
title('Variation of TSFC with Height');
xlabel('Height');
ylabel('TSFC');
hold on
plot(H_values,TSFC_values(2,:),'b','LineWidth',2);
legend('M=0.85','M=2.1');
arid on;
figure:
plot(H_values,eff_p_values(1,:),'r','LineWidth',2);
title('Variation of efficiency of propulsion with Height');
xlabel('Height');
ylabel('efficiency of propulsion');
hold on
plot(H_values,eff_p_values(2,:),'b','LineWidth',2);
legend('M=0.85', 'M=2.1');
grid on;
figure;
plot(H_values,eff_th_values(1,:),'r','LineWidth',2);
title('Variation of efficiency of thermal energy with Height');
xlabel('Height');
ylabel('/eta_t_h');
hold on
plot(H_values, eff_th_values(2,:), 'b', 'LineWidth', 1.5);
legend('M=0.85','M=2.1');
grid on;
figure:
plot(H_values, eff_o_values(1,:), 'r', 'LineWidth', 2);
title('Variation of total efficiency with Height');
xlabel('Height');
ylabel('total efficiency');
hold on
plot(H_values,eff_o_values(2,:),'b','LineWidth',2);
legend('M=0.85','M=2.1');
grid on;
```

```
%%
clc:
clear;
clear all;
%known parameters
H_values = linspace(0,15000,1000);%define the height
M_0_{values} = [0.85 \ 2.1];
T_t4 = 1900;
pi c = 15;
0r = 430000000;
pi d = 0.98;
e_c = 0.85;
pi b = 0.95;
eta_b = 0.98;
e_t = 0.85;
eta m = 0.98;
pi_n = 0.97;
qamma c = 1.4:
C pc = 1004;
qamma t = 1.33;
C_pt = 1156;
R_c = (gamma_c-1)/gamma_c * C_pc;
R_t = (gamma_t-1)/gamma_t * C_pt;
%need to be known
T 0 values = zeros(size(H values));
a_0_values = zeros(size(H_values));
V_0_values = zeros(size(H_values));
t_r_values = zeros(size(H_values));
t lambda values = zeros(size(H values));
pi_r_values = zeros(size(H_values));
t_c_values = zeros(size(H_values));
eff_c_values = zeros(size(H_values));
f_values = zeros(size(H_values));
t t values = zeros(size(H_values));
pi_t_values = zeros(size(H_values));
eta_t_values = zeros(size(H_values));
P t9 9 values = zeros(size(H values));
M_9_values = zeros(size(H_values));
 _9_T_0_values = zeros(size(H_values));
V_9_a_0_values = zeros(size(H_values));
thrust_values = zeros(size(H_values));
TSFC_values = zeros(size(H_values));
eff_p_values = zeros(size(H_values));
eff_th_values = zeros(size(H_values));
eff_o_values = zeros(size(H_values));
%definr the T 0
for j = 1:length(M_0_values) % different M_0
    M_0 = M_0_{values(j)};
    for i = 1:length(H values)
        H = H \text{ values(i);}
        if H < 11000
```

```
T_0_{values(i)} = 288.15 - 0.0065 * H;
        else
            T_0_{values(i)} = 216.65;
        end
        a_0_{values(i)} = sqrt(gamma_c * R_c * T_0_{values(i));
        V_0_values(i) = a_0_values(i) * M 0;
        t_r_values(i) = 1+(gamma_c-1)/2 * M_0^2;
        pi_r_values(i) = t_r_values(i)^(gamma_c/(gamma_c - 1));
        t lambda values(i) = T t4 * C pt / (T 0 values(i) * C pc);
        t_c_values(i) = pi_c^{((gamma_c - 1)/(gamma_c * e_c))};
        eff_c_values(i) = (pi_c^{(gamma_c - 1)/gamma_c)-1}/(t_c_values(i) - 1);
        f_{values(i)} = (t_{lambda_values(i)} - t_{r_values(i)} * t_{c_values(i)}) /
((eta b * Qr)/(C pc * T 0 values(i))-t lambda values(i));
        t t values(i)
                                   1
                                                   (t r values(i)*(t c values(i)-
1)/t_lambda_values(i))/(eta_m * (1 + f_values(i)));
        pi_t_values(i) = t_t_values(i)^(gamma_t /((gamma_t-1)*e_t));
        eta_t_values(i) = (1-t_t_values(i)) / (1 - t_t_values(i)^(-e_t));
        P t9 9 values(i) = pi c * pi r values(i) * pi t values(i) * pi n * pi b
* pi d;
        M 9 values(i) = sqrt(2/(qamma t - 1)*(P t9 9 values(i)^((qamma t -
1)/gamma_\bar{t})-1);
        T_9_T_0_values(i) =
                                   t lambda values(i)
                                                       *
                                                               t t values(i)
P_t9_9_values(i)^((gamma_t-1)/gamma_t)*C_pc/C_pt;
        V_9_a_0_values(i) = M_9_values(i)*sqrt(T_9_T_0_values(i) * R_t/R_c *
gamma_t/gamma_c);
        thrust_values(j,i)
                            = a 0 values(i)* ((1 + f values(i)))
                                                                                 *
V_9_a_0_values(i) - M_0);
        TSFC values(j,i) = f values(i)/thrust values(j,i);
        eff_p_values(j,i) = 2 * V_0_values(i) * thrust_values(j,i)
                                                                                 /
(a_0_{values(i)^2} * ((1 + f_{values(i)}) * V_9_a_0_{values(i)^2} - M_0^2));

eff_{th_values(j,i)} = a_0_{values(i)^2} * ((1 + f_{values(i)})
(V_9_a_0_values(i)^2 - M_0^2)) / (2 * f_values(i) * Qr);
        eff_o_values(j,i) = eff_p_values(j,i) * eff_th_values(j,i);
    end
end
    figure:
    plot(H_values, thrust_values(1,:), 'r', 'LineWidth', 2);
    plot(H_values, thrust_values(2,:), 'b', 'LineWidth', 2);
    title('Thrust vs Altitude');
xlabel('Altitude (m)');
    ylabel('Specific Thrust');
    legend('M_0 = 0.85', 'M_0 = 2.1');
    grid on;
    hold off
    figure;
    plot(H_values, TSFC_values(1,:), 'r', 'LineWidth', 2);
    hold on;
    plot(H_values, TSFC_values(2,:), 'b', 'LineWidth', 2);
    title('TSFC vs Altitude');
    xlabel('Altitude (m)');
    ylabel('TSFC');
    legend('M_0 = 0.85', 'M_0 = 2.1');
```

```
grid on;
    hold off
    figure;
    plot(H_values, eff_p_values(1,:), 'r', 'LineWidth', 2);
    hold on;
    plot(H_values, eff_p_values(2,:), 'b', 'LineWidth', 2);
    title('\eta_p vs Altitude');
    xlabel('Altitude (m)');
    ylabel('\eta_p');
    legend('M_0 = 0.85', 'M_0 = 2.1');
    grid on;
    hold off
    figure;
    plot(H_values, eff_th_values(1,:), 'r', 'LineWidth', 2);
    hold on;
    plot(H_values, eff_th_values(2,:), 'b', 'LineWidth', 2);
    title('\eta t h vs Altitude');
    xlabel('Altitude (m)');
    ylabel('\eta_t_h');
    legend('M_0 = \overline{0.85}', 'M_0 = 2.1');
    grid on;
    hold off
    figure;
    plot(H_values, eff_o_values(1,:), 'r', 'LineWidth', 2);
    hold on;
    plot(H_values, eff_o_values(2,:), 'b', 'LineWidth', 2);
    title('\eta_o vs Altitude');
    xlabel('Altitude (m)');
    ylabel('\eta_o');
    legend('M_0 = 0.85', 'M_0 = 2.1');
    grid on;
    hold off
part (d)
%%
clc;
clear;
clear all;
% 已知参数
H_values = linspace(0, 15000, 1000); % 定义高度范围
M_0_values = [0.85, 2.1]; % 飞行马赫数
T t4 = 1900;
pi_c = 15;
Qr = 43000000;
pi_d = 0.98;
e_c = 0.85; % e_c 取 10 个值
pi_b = 0.95;
```

```
eta_b = 0.98;
e t values = linspace(0.833, 0.867, 10);
eta_m = 0.98;
pi n = 0.97;
gamma_c = 1.4;
C_pc = 1004;
gamma_t = 1.33;
C_pt = 1156;
R_c = (gamma_c - 1) / gamma_c * C_pc;
R_t = (gamma_t - 1) / gamma_t * C_pt;
% 初始化存储数组
thrust values
                            zeros(length(e_t_values), length(H_values),
length(M_0_values));
% 遍历 M 0
figure:
hold on;
colors = lines(10); % 生成 10 种不同颜色
for k = 1:length(M_0_values)
   M_0 = M_0_{values(k)}
   % 遍历 e_c
    for j = 1:length(e_t_values)
        e_t = e_t_values(j);
        % 遍历高度 H
        for i = 1:length(H_values)
           H = H \text{ values(i);}
           % 计算环境温度
            if H < 11000
               T_0 = 288.15 - 0.0065 * H;
                T_0 = 216.65;
            end
           % 计算气动力参数
            a_0 = sqrt(gamma_c * R_c * T_0);
            V_0 = a_0 * M_0;
            t_r = 1 + (gamma_c - 1) / 2 * M_0^2;
            pi_r = t_r^{gamma_c} / (gamma_c - 1));
           t_{lambda} = T_t4 * C_pt / (T_0 * C_pc);
            t_c = pi_c^{(gamma_c - 1)} / (gamma_c * e_c);
            eff_c = (pi_c^{((gamma_c - 1) / gamma_c) - 1) / (t_c - 1);
            f = (t_lambda - t_r * t_c) / ((eta_b * Qr) / (C_pc * T_0) - t_lambda);
            t_t = 1 - (t_r * (t_c - 1) / t_lambda) / (eta_m * (1 + f));
           pi_t = t_t^{gamma_t} / ((gamma_t - 1) * e_t));
            eta_t = (1 - t_t) / (1 - t_t^{-e_t});
            P_t9_9 = pi_c * pi_r * pi_t * pi_n * pi_b * pi_d;
```

```
M_9 = \text{sqrt}(2 / (\text{gamma_t} - 1) * (P_t9_9^*((\text{gamma_t} - 1) / \text{gamma_t}) -
1)):
            T_9_T_0 = t_{ambda} * t_t / P_t_9^{(gamma_t - 1)} / gamma_t) * C_pc
/ C_pt;
            V_9_a_0 = M_9 * sqrt(T_9_T_0 * R_t / R_c * gamma_t / gamma_c);
            % 计算推力
            thrust_values(j, i, k) = a_0 * ((1 + f) * V_9_a_0 - M_0);
        end
        % 画出推力随高度变化的曲线
        if k == 1
            plot(H_values, squeeze(thrust_values(j, :, k)), 'Color',
colors(j, :), 'LineWidth', 1.5);
            plot(H_values, squeeze(thrust_values(j, :, k)), '--', 'Color',
colors(j, :), 'LineWidth', 1.5);
        end
    end
end
% 设置图例、标签和标题
title('Thrust vs Altitude for Different e_t and M_0');
xlabel('Altitude (m)');
ylabel('Thrust (N)');
legend_labels = cell(1, 20);
for j = 1:10
    legend_labels{j} = sprintf('M_0=0.85, e_t=%.3f', e_t_values(j));
    legend_labels{j + 10} = sprintf('M_0=2.1, e_t=%.3f', e_t_values(j));
legend(legend_labels, 'Location', 'northeastoutside');
grid on;
hold off;
part(e)
%%
clc:
clear;
clear all;
% Given parameters
H = 10000; % Altitude in meters
M_0_values = [0.85, 2.1]; % Mach numbers
T t4 = 1900; % Turbine inlet temperature in Kelvin
pi_c_values = linspace(1, 100, 100); % Range of compression ratios
Or = 43000000; % Fuel heating value in J/kg
pi_d = 0.98;
e c = 0.85;
pi_b = 0.95;
eta_b = 0.98;
```

```
e_t = 0.85;
eta m = 0.98;
pi_n = 0.97;
qamma c = 1.4;
C pc = 1004;
gamma_t = 1.33;
C_pt = 1156;
R_c = (gamma_c - 1) / gamma_c * C_pc;
R_t = (gamma_t - 1) / gamma_t * C_pt;
% Calculate ambient temperature T_0
if H < 11000
    T_0 = 288.15 - 0.0065 * H;
    T_0 = 216.65;
end
% Preallocate arrays for thrust
thrust values = zeros(length(M 0 values), length(pi c values));
% Create figure
figure:
hold on;
colors = lines(length(M_0_values)); % Generate different colors for the curves
for j = 1:length(M_0_values)
    M_0 = M_0_values(j);
    % Compute initial parameters
    a_0 = sqrt(gamma_c * R_c * T_0);
    V_0 = a_0 * M_0;
    t_r = 1 + (gamma_c - 1) / 2 * M_0^2;
    pi_r = t_r^{(gamma_c / (gamma_c - 1))};
    for i = 1:length(pi_c_values)
        pi_c = pi_c_values(i);
        t_{ambda} = T_t4 * C_pt / (T_0 * C_pc);
        t c = pi c^{((gamma c - 1) / (gamma c * e c))};
        eff_c = (pi_c^{(gamma_c - 1)} / gamma_c) - 1) / (t_c - 1);
        f = (t_{ambda} - t_{r} * t_{c}) / (((eta_{b} * Qr) / (C_{pc} * T_{0})) - t_{ambda});
        t_t = 1 - (t_r * (t_c - 1) / t_lambda) / (eta_m * (1 + f));
        pi_t = t_t^{gamma_t} / ((gamma_t - 1) * e_t));
        eta_t = (1 - t_t) / (1 - t_t^{-e_t});
        P_t9_9 = pi_c * pi_r * pi_t * pi_n * pi_b * pi_d;
        M_9 = sqrt(2 / (gamma_t - 1) * (P_t9_9^((gamma_t - 1) / gamma_t) - 1));
        T_9_T_0 = t_{ambda} * t_t / P_t9_9^((gamma_t - 1) / gamma_t) * C_pc /
C_pt;
        V_9_a_0 = M_9 * sqrt(T_9_T_0 * R_t / R_c * gamma_t / gamma_c);
        % Compute thrust
        thrust_values(j, i) = a_0 * ((1 + f) * V_9_a_0 - M_0);
    end
```

```
% Plot thrust vs pi_c
    plot(pi_c_values, thrust_values(j, :), 'Color', colors(j, :), 'LineWidth',
1.5, ... 'DisplayName', sprintf('M_0 = %.2f', M_0));
    % Find and mark the maximum thrust point
    [max_thrust, max_idx] = max(thrust_values(j, :));
    best_pi_c = pi_c_values(max_idx);
    % Highlight the maximum thrust point
plot(best_pi_c, max_thrust, 'o', 'Color', colors(j, :), 'MarkerSize', 8,
'MarkerFaceColor', colors(j, :));
    text(best_pi_c, max_thrust, sprintf('\\leftarrow Max Thrust: %.1f N (\\pi_c
= %.1f)', max_thrust, best_pi_c), ...
        'Color', colors(j, :), 'FontSize', 10);
end
% Labels and title in English
xlabel('\pi_c (Compression Ratio)', 'FontSize', 12);
ylabel('Thrust (N)', 'FontSize', 12);
title('Thrust vs Compression Ratio for Different Mach Numbers', 'FontSize',
14);
legend('Location', 'best');
grid on;
hold off;
```