Heuristic Rule 2: Let $A \to A\alpha_1, \ldots, A \to A\alpha_n$ and $A \to \beta_1, \ldots, A \to \beta_m$ be all rules with A on the left-hand side, where the β_i 's do not start with an A and n > 0 (that is, there is at least one left-recursive rule). Then replace these rules by $A \to \beta_1 A', \ldots, A \to \beta_m A'$ and $A' \to \alpha_1 A', \ldots, A' \to \alpha_n A'$, and $A' \to e$, where A' is a new nonterminal.

 $S \rightarrow bBA | (\beta, e, e) (q, S)$ $A \rightarrow ab \rightarrow (q, e, S) (q, bBA)$ $B \rightarrow b | (qe, A) (q, ab)$ (q, e, B) (q, e, b) (q, a, a) (q, e) (xB) (b, e, e) (q, e)

S-> AX/XB (p,e,e) (q,S) X-) axble (q,e,S) (q,Ax) A-) aAle (7,e,S) (q,XB) B-) bBle (q,e,A) (q,aA)

wcwr 90 aaaaa (b, e, e), (20, & ambn m≤n≤ 2m (90,0,0)(90,0) (90,6,9) (a, ,ba) (91,16,6a)(9, ,e) a aabbb s-ashasble a aa bbbbbb agabbb aaabb b, e, c) (q, s) a b tabte b (90,b,e) (90,e) 5-> BaBaB (90, a, e)(9, e) 91, , b, e) (9, e) 91, a, e) (95, e) B=> bBle

(92,6,e) (92,e)

as be ab

(a+b)*(a+b)

S→ ac| 5/8 [A→ bscalad; 3→ ass168€; c→ asclad;

> ac ac B ac BB S > ac A-) bsca | ad c > ad as B b B C S -) and

a" 620 am 3-) a A 66B A > a Abble ab 13-)QB1e (9,e,A)/(9,a) abba S-) aga B+ aBalabosa (9vb/2) (9pb) (9, /a, b) (9, e) S7a \$1a S-)a AbbB pie,e 9 3 9- apple (205) 2 apply - q a Albb B) aBle -v,aB 2e R 2 e 92 qe १ ७७ res 98 Stule Input Stack Raniton abba abba abba a Abb B **b**b9 AbbB 66 B 66 g bB ba B α aß a Be 2

11th Nov

	S> AB		first	ΩU
	a) aAlb	ς	a, to) 00C
	B→ CA		a,b	$c_j a_j b$
	C-> cC e	R	y & b,a	S
		<i>D</i>	(, e	a, 6
900	19,e,			ceah
	LIB (CVIE)	S) (a) AB		0
ا بهاد	Vb \ (g , a	n) (9,4)	96	S AB
9/1,2		A) $(9,0)$		1 1
9,8,8	18e - (9,0)	B) (9, e		B
6 0 0	Ca, e,	B) (9,CF	ĺ)	A
(Va) 43),(9, AB) (9, e)	(%/c	() 9h	\$ 1
	, C9, AB) (9,1,	(E) (9, e	2)	C
(ga,e,f	(9,aA) $(9,a$,a) (ge)		1 K /
(9b,e,1	1) / (9, b) (2)	(96	C
(10
	Deterministic Look-ahea	d PDA transitions:		0
	1. ((p,e,e), (q, S))			
	2. ((q,a,e), (q _a ,e)) 3. ((q,b,e), (q _b ,e))			
	4. ((q,c,e), (q,e))			
	 ((q,S,e), (q_s,e)) ((q,e,S), (q,AB)) 	// since a is in F	IRST of S	
	7. ((q, ,e, S), (q, AB))	// since b is in F		
	8. ((q _a ,e,A), (q _a , aA))	// since a is in FI		0
	 ((q_b,e,A), (q_b,b)) ((q_b,e,B), (q_b,CA)) 	// since b is in F		-
	11. ((q _a ,e, B), (q _a , CA))			-
	12.((q, e, B), (q, CA)) 13. ((q, e, C), (q, e))	// since c is in // since a is in F0	FIRST of B OLOWS of C and C-)	e l
	14. ((q, e, C), (q, e))		OLOWS of C and C-	
	15.((q, ,e, C), (q, ,cC))	// since c is in	FIRST of C	
	16.((q, ,e,x), (q,e))	//for each x in ∑		-