ИІТМО

НИУ ИТМО

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ N2

По дисциплине "Теория автоматического управления"

"Модальные регуляторы и наблюдатели"

Вариант 30

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2025

Содержание

1.	1. Модальный регулятор				
	1.1.	Управ	вляемость собственных чисел	3	
	1.2. Модальный регулятор			3	
		1.2.1.	Подбор спектра модального регулятора	4	
		1.2.2.	Моделирование	6	
		1.2.3.	Выводы	7	
2.	Наб	, людат	гель полного порядка	10	

1. Модальный регулятор

Рассмотрим систему:

$$\dot{x} = Ax + Bu \tag{1}$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$$
 (2)

1.1. Управляемость собственных чисел

Для определения управляемости собственных чисел рассмотрим вещественную Жорданову форму системы:

$$\dot{\hat{x}} = P^{-1}AP\hat{x} + P^{-1}Bu \tag{3}$$

Где P – матрица собственных векторов матрицы A, а $\hat{x} = P^{-1}x$.

$$A_{j} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 2 & 2 \end{bmatrix} \quad P = \begin{bmatrix} -1 & -2.12 & 0.71 \\ 0 & -1.41 & 0 \\ 1 & 1.41 & 0 \end{bmatrix} \quad B_{j} = \begin{bmatrix} 0 \\ 2.12 \\ 4.95 \end{bmatrix}$$
(4)

Таким образом, последнее собственное число $\lambda_3 = -3$ не является управляемым. Соответственно, система не является полностью управляемой. Но, так как данное собственное число располагается в левой полуплоскости, то есть является устойчивым, то система является стабилизируемой.

1.2. Модальный регулятор

Замкнем систему обратной связью с модальным регулятором u = -Kx. Тогда уравнение состояния системы примет вид:

$$\dot{x} = Ax - BKx = (A - BK)x \tag{5}$$

Моделировать данную данную систему будем с помощью среды моделирования Simulink. Схема моделирования представлена на рисунке 1.

Рис. 1: Схема моделирования системы с модальным регулятором

1.2.1. Подбор спектра модального регулятора

Рассмотрим следующие варианты спектра модального регулятора:

- 1. $\sigma_1 = \{-1, -1, -1\}$
- 2. $\sigma_2 = \{-3, -3, -3\}$
- 3. $\sigma_3 = \{-1, -10, -100\}$
- 4. $\sigma_4 = \{-3, -30, -300\}$
- 5. $\sigma_5 = \{-1, -1 \pm 3i\}$
- 6. $\sigma_6 = \{-3, -3 \pm 9i\}$

Так как одно из собственных чисел матрицы A не является управляемым, то есть ни одно входное воздействие, а значит и ни один регулятор не может управлять данным собственным числом, то спектр замкнутой системы не может не содержать данное собственное число. Следовательно, спектры σ_1 , σ_3 , σ_5 не являются допустимыми.

Для того, чтобы проверить, может ли спектр системы, замкнутой модальным

регулятором, быть равен заданному спектру σ_i , нужно проверить, подобна ли матрица A+BK матрице Γ_i с заданным спектром σ_i . Матрицу Γ_i можно называть эталонной системой.

Для упрощения задачи подбора регулятора можно $co\kappa pamum b$ систему, убрав из нее неуправляемые собственные числа. Для этого уберем строку и столбец в диагональной форме, соответствующие неуправляемому собственному числу $\lambda_1 = -3$:

$$\dot{\hat{x}}' = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} \hat{x}' + \begin{bmatrix} 2.12 \\ 4.95 \end{bmatrix} u \tag{6}$$

Найдем вектор управления в Жордановой форме K_j с помощью метода Акермана (с помощью одноименной функции в Matlab) для эталонной системы Γ_i :

$$K_j = \begin{bmatrix} -1.06 & 2.47 \end{bmatrix} \tag{7}$$

Теперь вернемся к полной системе, поставив в векторе K нулевое значение для неуправляемого собственного числа:

$$K_j = \begin{bmatrix} 0 & -1.06 & 2.47 \end{bmatrix} \tag{8}$$

Вернемся к исходному базису:

$$K = K_j P^{-1} = \begin{bmatrix} 3.48 & -1 & 3.48 \end{bmatrix} \tag{9}$$

В итоге получим систему:

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 11.48 & 0 & 14.48 \\ 14.44 & -3 & 14.44 \\ -14.44 & 0 & -17.44 \end{bmatrix} x \tag{10}$$

Можно проверить, найдя ее собственные числа. Спектр системы: $\sigma_2 = \{-3, -3, -3\}$.

1.2.2. Моделирование

Проведем моделирование системы с модальным регулятором, спектр которого равен σ_2 и начальными условиями $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Результаты моделирования представлены на рисунке 2 и 3.

Рис. 2: Управление системы со спектром σ_2

Аналогично найдем регулятор для спектра σ_4 :

$$K = \begin{bmatrix} 580.28 & 275.52 & 580.28 \end{bmatrix} \tag{11}$$

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 588.28 & 276.52 & 591.28 \\ 1744.83 & 826.55 & 1744.83 \\ -1744.83 & -829.55 & -1747.83 \end{bmatrix} x \tag{12}$$

Спектр системы: $\sigma_4 = \{-3, -30, -300\}$. Результаты моделирования представлены на рисунках 4 и 5.

Рис. 3: Состояние системы со спектром σ_2

И для спектра σ_6 :

$$K = \begin{bmatrix} 7.69 & 1.79 & 7.69 \end{bmatrix} \tag{13}$$

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 15.69 & 2.79 & 18.69 \\ 27.07 & 5.38 & 27.07 \\ -27.07 & -8.38 & -30.07 \end{bmatrix} x \tag{14}$$

Спектр системы: $\sigma_6 = \{-3, -3 \pm 9i\}$. Результаты моделирования представлены на рисунках 6 и 7.

1.2.3. Выводы

В задании было показано, что для всех достижимых спектров эталонной системы можно найти модальный регулятор, При этом, как и ожидалось на основании анализа спектра замкнутой системы, чем больше модуль собственного числа, тем быстрее система приходит в устойчивое состояние, но при этом управление становится более интенсивным. Комплексная составляющая собственного числа вносит колебательный характер в систему.

Рис. 4: Управление системы со спектром σ_4

Рис. 5: Состояние системы со спектром σ_4

Рис. 6: Управление системы со спектром σ_6

Рис. 7: Состояние системы со спектром σ_6

2.	Наблюдатель і	полного	порядка