

Uniform Cost Search for Beginner (Solve it in lexicographical order)

- Tentukan root node
 - Root node adalah S
 - Masukkan root node ke Priority Queue
 - Priority Queue = {S}
- Pilih node pertama di Priority Queue
 - Node pertama adalah S
 - Hilangkan S dari Priority Queue
 - Priority Queue = {}
- Goal Test: Cek apakah node pertama di Priority Queue yang dipilih merupakan goal?
 - Kalau goal, solusi ditemukan
 - Kalau tidak, lanjut ke langkah selanjutnya
- Lalu expand node yang dipilih (turunkan anaknya)
 - Children node dari node S adalah A, C, K
 - ➤ Hitung path cost g(n) dari root node (S) ke setiap children node
 - ➤ Contoh path cost g(n)dari S ke E adalah 3 yang merupakan penjumlah cost dari S C (1), C D (1), D E (1)
 - Masukkan children node ke Priority Queue
 - Urutkan sesuai nilai path cost g(n)yang paling kecil
 - Tandai orang tua (parent) dari setiap node
 - > Contoh A^S melambangkan S adalah orang tua dari A
 - Priority Queue = {C^S, A^S, K^S} // 1, 2, 2

- ➤ Yang berarti C^S memiliki cost g(n) 1, A^S memiliki cost g(n) 2 dan seterusnya.
- Lakukan repetisi dari langkah kedua sampai goal ditemukan di langkah ketiga

Hasil lengkap dari contoh di atas:

- Priority Queue = {S}
- Visit S, Priority Queue = {CS, AS, KS} // 1, 2, 2
- Visit C^S, Priority Queue = {A^S, D^C, K^S} // 2, 2, 2
- Visit A^S, Priority Queue = {D^C, K^S, B^A} // 2, 2, 4
- Visit D^C, Priority Queue = {K^S, E^D, B^A} // 2, 3, 4
- Visit K^S, Priority Queue = {E^D, L^K, B^A} // 3, 3, 4
- Visit E^D, Priority Queue = {L^K, B^A, F^E} // 3, 4, 4
- Visit L^K, Priority Queue = {B^A, F^E} // 4, 4
- Visit B^A, Priority Queue = {F^E, H^B, G^B} // 4, 6, 7
- Visit F^E, Priority Queue = {G^F, H^B, G^B} // 5, 6, 7
- Visit G^F, Priority Queue = {H^B, G^B} // 6, 7

Path = S, C, D, E, F, G

Cost g(n) = 5

Visited node = S, C, A, D, K, E, L, B, F, G