

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

پردازش تصویر در حوزه مکان

Image Processing in Spatial Domain

ارتقاء تصوير

- ارتقاء تصویر پردازشی است که در آن تصویر تولید شده برای پردازشهای بعدی یا برای دیدن مناسبتر از تصویر اصلی باشد
 - پردازشهای حوزه مکان در حالت کلی با نماد زیر نشان داده میشوند

$$g(x,y) = T[f(x,y)]$$

پردازش نقطهای

- پردازش نقطهای ساده ترین شکل همسایگی است که اندازه قاب ۱×۱ است
 - در این حالت، g(x,y)تنها به مقدار f در نقطه g(x,y) وابسته است ullet
 - نیز تابع تبدیل شدت روشنایی یا تابع نگاشت نامیده می شود T

s = T(r)

پردازش نقطهای

• مثال

تبدیل گاما

 $s = cr^{\gamma}$

هیستوگرام

• هیستوگرام برای یک تصویر دیجیتال با سطوح روشنایی در محدوده $[0\ L-1]$ تابعی است گسسته که به صورت زیر تعریف می شود:

$$h(r_k) = n_k$$

که r_k یک سطح روشنایی در محدوده مورد نظر است و n_k تعداد پیکسلهایی است که دارای آن سطح روشنایی هستند

• هیستوگرام نرمالیزه

$$p(r_k) = \frac{n_k}{n}$$

هیستوگرام

- هیستوگرام اساس بسیاری از روشهای پردازش تصویر در حوزه مکان را تشکیل میدهد
 - محاسبه نرمافزاری هیستوگرام تصویر و تحقق سختافزاری آن ساده و ارزان است
- مولفههای هیستوگرام در تصویر با کنتراست بالا محدوده وسیعتری از محور سطوح روشنایی را پوشش میدهد

كشش هيستوگرام

• ساده ترین راه برای استفاده از تمام سطوح روشنایی، کشش هیستوگرام است

$$g(x,y) = stretch[f(x,y)] = \left(\frac{f(x,y) - f_{min}}{f_{max} - f_{min}}\right)(MAX - MIN) + MIN$$

كشش هيستوگرام

Histogram Stretching

كشش هيستوگرام

برش هیستوگرام

- در برش هیستوگرام، بخشی از مولفههای پائین و بالا در نمودار هیستوگرام را قطع می کنیم
 - به طور مثال اگر ۱ درصد از مولفههای بالا و پائین را قطع کنیم:

$$g(x,y) = clip[f(x,y)] = \left(\frac{f(x,y) - f_1}{f_{99} - f_1}\right)(MAX - MIN) + MIN$$

$$g(x,y) = stretch[f(x,y)] = \left(\frac{f(x,y) - f_{min}}{f_{max} - f_{min}}\right) (MAX - MIN) + MIN$$

Histogram Clipping

كشش هيستوگرام

متعادلسازی هیستوگرام

- متعادلسازی هیستوگرام (Histogram Equalization) پردازشی است که هیستوگرام تصویر را تا حد امکان مسطح میکند
- اساس متعادلسازی هیستوگرام مبتنی بر تئوری احتمالات است که در آن هیستوگرام به عنوان تابع توزیع احتمال سطوح روشنایی تصویر در نظر گرفته میشود
- متعادلسازی هیستوگرام برابر با تابعی است که این توزیع احتمال را به توزیع احتمال یکنواخت تبدیل کند

متعادلسازی هیستوگرام

متعادلسازی هیستوگرام

$$s = T(r)$$

$$0 \le r \le L - 1$$

$$0 \le T(r) \le L - 1$$

$$T(r_2) \ge T(r_1) \text{ for } r_2 > r_1$$

هیم و پگالی احتمال شدت روشنایی در تصویر اولیه را با $p_r(r)$ و در تصویر جدید را با $p_s(s)$ نشان می $p_s(s)$

• تابع چگالی احتمال (pdf)

$$p_x(x) = \frac{Pr(x \le X < x + dx)}{dx}$$

$$P_{\chi}(\chi) = Pr(X \le \chi)$$

$$P_{x}(x) = \int_{-\infty}^{x} p_{x}(x)dx \qquad p_{x}(x) = \frac{d}{dx}P_{x}(x)$$

تبديل توزيع احتمال

اگر T یک تابع یکنوا از r باشد رابطه توزیع احتمال s برابر است با:

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

• هدف از متعادلسازی هیستوگرام آن است که توزیع ۶ یکنواخت باشد

$$p_s(s) = \frac{1}{L-1} = p_r(r) \left| \frac{dr}{ds} \right|$$

$$\left| \frac{ds}{dr} \right| = \left| \frac{dT(r)}{dr} \right| = (L-1)p_r(r) \quad \Rightarrow T(r) = (L-1)P_r(r)$$

تبدیل توزیع احتمال گسسته

$$p_r(r_k) = \frac{n_k}{n}$$

• احتمال تخمینی از هر سطح روشنایی

• تابع تبدیل که معادل با توزیع تجمعی است

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{L-1}{n}\sum_{j=0}^k n_j$$

• در فضای گسسته نمی توان انتظار داشت که توزیع حاصل کاملا یکنواخت باشد

Histogram of dark image

متعادلسازی هیستوگرام

• عملیات متعادلسازی هیستوگرام را برای تصویر ۴×۴ زیر انجام دهید (فرض کنید پیکسلها دارای ۱۰ سطح هستند)

2	3	3	4
2	2	4	5
2	3	3	3
2	2	4	4

k	0	1	2	3	4	5	6	7	8	9
n_k										

2	3	3	4
2	2	4	5
2	3	3	3
2	2	4	4

k	0	1	2	3	4	5	6	7	8	9
n_k	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^{k} n_j$										

2	3	3	4
2	2	4	5
2	3	3	3
2	2	4	4

k	0	1	2	3	4	5	6	7	8	9
n_k	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^{k} n_j$	0	0	6	11	15	16	16	16	16	16
$\sum_{j=0}^{k} \frac{n_j}{n}$										

2	3	3	4
2	2	4	5
2	3	3	3
2	2	4	4

k	0	1	2	3	4	5	6	7	8	9
n_k	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^{k} n_j$	0	0	6	11	15	16	16	16	16	16
$\sum_{j=0}^{k} \frac{n_j}{n}$	0	0	$\frac{6}{16}$	$\frac{11}{16}$	$\frac{15}{16}$	1	1	1	1	1
$(L-1)\sum_{j=0}^{k}\frac{n_{j}}{n}$										

2	3	3	4
2	2	4	5
2	3	3	3
2	2	4	4

k	0	1	2	3	4	5	6	7	8	9
n_k	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^{k} n_j$	0	0	6	11	15	16	16	16	16	16
$\sum_{j=0}^{k} \frac{n_j}{n}$	0	0	$\frac{6}{16}$	$\frac{11}{16}$	$\frac{15}{16}$	1	1	1	1	1
$(L-1)\sum_{j=0}^{k}\frac{n_j}{n}$	0	0	3.38	6.19	8.44	9	9	9	9	9
Round	0	0	3	6	8	9	9	9	9	9

2	3	3	4
2	2	4	5
2	3	3	3
2	2	4	4

2	3	3	4
2	2	4	5
2	ന	3	3
2	2	4	4

مثال عددي

k	0	1	2	3	4	5	6	7	8	9
n_k	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^{k} n_j$	0	0	6	11	15	16	16	16	16	16
$\sum_{j=0}^{k} \frac{n_j}{n}$	0	0	$\frac{6}{16}$	$\frac{11}{16}$	$\frac{15}{16}$	1	1	1	1	1
$(L-1)\sum_{j=0}^{k}\frac{n_j}{n}$	0	0	3.38	6.19	8.44	9	9	9	9	9
Round	0	0	3	6	8	9	9	9	9	9
Stretch Round	0	0	0	4	8	9	9	9	9	9