Wake efficiency correction

february 26, 2017

Synopsis

In this study we investigate the impact of wind turbine type (rotor size, generator size and hub height) on the wake efficiency. The overall idea is to build a simple model that could be able to predict(/correct) the wake effect of a specific configuration (turbine type) based on another "reference" configuration. It should be noted that it is a "macro" approach that does not go into the details of the wake model equations. 4 turbine characteristics have been identified to potentially have an impact on the wake effect:

- · hub height
- wind speed
- rotor size
- · generator size

To build this model, 5 sites of 17 WTGs have been selected across the Northern Europe countries. On each site, multiple configurations have been computed using winPRO 3.1 with the standard wake model (N.O Jense, WDC = 0.075). To assess the impact of each parameters on wake efficiency, a reference configuration has been chosen (hub height + rotor + generator) and from this reference, each parameter has been tuned one by one (keeping the other constant).

All inputs and the script can be found on this link: https://github.com/Umercia/wake

Input Data & Processing

Basic data processing has been done: It mainly consists of reading, subsetting and parsing data. Sample view of the input data after processing:

##		site	label	efficiency	rotor	generator	hub_height	wind_speed
##	1:	Α	F1	91.0994	126	3450	80	7.81
##	2:	Α	F2	92.7376	126	3450	80	7.78
##	3:	Α	F3	88.7298	126	3450	80	7.91
##	4:	Α	F4	89.0042	126	3450	80	7.74
##	5:	Α	F5	88.2402	126	3450	80	8.01
##								
##	863:	Ε	Ka13	89.3397	136	3300	80	6.54
##	864:	Ε	Ka14	85.2713	136	3300	80	6.56
##	865:	Ε	Ka15	83.9460	136	3300	80	6.55
##	866:	Ε	Ka16	86.2859	136	3300	80	6.55
##	867:	Ε	Ka17	92.1700	136	3300	80	6.52

Summary of the parsed data:

```
site
               efficiency
                              rotor
                                         generator
                                                     hub_height
                                                                   wind speed
##
    A:170
                    :73.79
                                                     80:289
                                                                         : 6.390
             Min.
                              105:187
                                         3000:187
                                                                 Min.
##
    B:187
             1st Qu.:89.93
                              117:204
                                         3300:306
                                                     100:187
                                                                 1st Qu.: 7.220
             Median :93.07
##
    C:170
                                         3450:187
                                                     120:204
                                                                 Median : 7.770
                              126:289
    D:170
                    :92.37
                              136:187
                                         3600:187
                                                     140:187
                                                                         : 7.823
             Mean
                                                                 Mean
##
    E:170
             3rd Qu.:96.07
                                                                 3rd Qu.: 8.520
##
             Max.
                    :99.48
                                                                 Max.
                                                                         :10.330
```

Rotor goes from 105m to 136m, generator size from 3MW to 3.6MW, and hub height from 80m to 140m.

Summary of the reference configuration for each site:

##		site	${\tt rotor}$	generator	hub_height
##	1:	Α	126	3450	120
##	2:	В	117	3300	100
##	3:	C	105	3000	80
##	4:	D	136	3600	140
##	5:	E	126	3300	80

Plots and model variables

For each parameters, 4 graphics have been built, showing step by step how the model is build.

- 1. visualisation of the results
- 2. model construction
- 3. test of the model
- 4. comparison of the deviation with/without model

Plot1: Wind speed

Plot 1.1 shows the variation of efficiency along wind speed. For each pad a fitted line is plotted.

Plot 1.2 shows the variation of the fitted line slopes along efficiency. Again, we will fit a line that would be used for our model.

Plot 1.3 shows the results of the model (dashed lines) using a reference point for each pad.

Plot 1.4 shows the comparison of not using any model (assuming efficiency constant) versus using the above model.

From the graphs above and the annexes (for generator, hub_height and rotor):

- Generator: Clear (good correlation factor) but relatively small impact on efficiency.
- Rotor: No clear impact on the efficiency
- Hub height: Clear and relatively important impact on efficiency.
- Wind speed: Clear and relatively important impact on efficiency.

It should be noted that wind speed and hub height are highly correlated. A change on the hub height will inevitably have an impact on the wind distribution. The core reason for the efficiency change is the wind speed change, whether this is due to a change in the input wind data or caused by a change in the hub height. For the final model, we will choose to use a correction for wind speed and generator.

$model_1$ equation:

$$Eff_2 = A_x * (100 * Eff_1) * (X_2 - X_1) + Eff_1$$

 Eff_1 : reference efficiency [%]

 Eff_2 : target efficiency [%] (new configuration)

 X_1 : reference value of the considered parameter (rotor, generator [kW], wind speed [m/s] or hub_height)

 X_2 : target value of the considered parameter (rotor, generator [kW], wind speed [m/s] or hub_height)

 A_x : slope from the model (take a specific value for each parameter x). According to the previous results, we have:

- For generator A_g : -8.842e-05 [1/kW]
- For wind speed A_w : 0.236 [s/m]

Benchmark

We will now benchmark the model on a new site with very different configurations (no common parameters). Competitor turbines have also been included. The reference configuration is V126-3.45 at 120m.

```
##
             manufacturer
                             efficiency
                                            rotor
                                                      generator
                                                                   hub_height
                                            105:41
##
    GE WIND ENERGY: 41
                                  :79.61
                                                      3000:82
                           Min.
                                                                 80
                                                                        :41
##
    NORDEX
                   : 41
                           1st Qu.:84.71
                                            117:41
                                                      3200:41
                                                                 100
                                                                        :41
##
    SENVION
                   : 41
                           Median :87.13
                                            122:41
                                                      3300:41
                                                                 110
                                                                        :41
                                  :87.82
##
    Siemens
                   : 41
                           Mean
                                            126:41
                                                      3430:41
                                                                 119
                                                                         :41
##
    Vestas
                   :164
                           3rd Qu.:90.94
                                            130:82
                                                      3450:41
                                                                 120
                                                                         :41
##
                           Max.
                                  :98.80
                                            131:41
                                                      3600:82
                                                                 134
                                                                         :41
##
                                            136:41
                                                                 (Other):82
##
      wind_speed
##
           :6.030
    Min.
##
    1st Qu.:6.968
##
    Median :7.315
##
    Mean
            :7.249
##
    3rd Qu.:7.610
##
            :8.040
    Max.
##
```

As previous, we will compare the relative error in efficiency, with & without model.

Annexes

Plots 2: Generators

Plot 2.1 shows the variation of efficiency along generator size. For each pad a fitted line is plotted.

Plot 2.2 shows the variation of the fitted line slopes along efficiency. Again, we will fit a line that would be used for our model.

Plot 2.3 shows the results of the model (dashed lines) using a reference point for each pad.

Plot 2.4 shows the comparison of not using any model (assuming efficiency constant) versus using the above model.

Plots 3: rotor size

Plot 3.1 shows the variation of efficiency along the rotor size. For each pad a fitted line is plotted.

Plot 3.2 shows the variation of the fitted line slopes along efficiency. Again, we will fit a line that would be used for our model.

Plot 3.3 shows the results of the model (dashed lines) using a reference point for each pad.

Plot 3.4 shows the comparison of not using any model (assuming efficiency constant) versus using the above model.

Plots 4: hub-height

Plot 4.1 shows the variation of efficiency along the rotor size. For each pad a fitted line is plotted.

Plot 4.2 shows the variation of the fitted line slopes along efficiency. Again, we will fit a line that would be used for our model.

Plot 4.3 shows the results of the model (dashed lines) using a reference point for each pad.

Plot 4.4 shows the comparison of not using any model (assuming efficiency constant) versus using the above model.

