Modélisation mathématique du trafic routier

Abderrahmane EDDAHBI

Numéro du dossier : 32038

1-Introduction

2-Modèle microscopique

- -Modèle de CHANDLER
- -Résolution numérique
- -Résultats

3-Modèle macroscopique

- -Modèle de LWR
- -Méthode des caractéristiques
- -Applications

4-Annexe

- -Quelque démonstrations
- -Code Python

La congestion

Nécessité de gérer au mieux

Le pétrole à 200 \$ le baril

Réduire: consommation, émission polluants

Rationaliser le système de transports et l'usage de la voiture

Intolérance au risque, demandes sécuritaires

Comment modéliser le trafic

Modèle microscopique

 $x_i(t)$: La position du véhicule i au temps t

 $u_i(t) = \dot{x}_i(t)$: La vitesse instantanée du véhicule i au temps t

 $a_i(t) = \ddot{x}_i(t)$: L'accélération du véhicule i au temps t

Modèle de Chandler

$$M \frac{d}{dt} u_i(t) = \gamma [u_{i-1}(t-\tau) - u_i(t-\tau)]$$
 (1)

Loi de poursuite

 $(u_i)_i$ est l'ensemble des vitesses des N véhicules considérés, M est la masse supposée identique entre tous ces véhicules, γ est un coefficient réel donnée $\tau \geq 0$ est un temps de retard (identique entre tous les conducteurs).

On introduit $(x_i)_i$ l'ensemble des positions des véhicules

$$x_i(t) = \int_0^t u_i(s) ds$$

$$\forall t \geq \tau, \forall i \in \{2, \dots, N\}, \qquad \ddot{x_i}(t) = \alpha \left[x_{i-1}(t-\tau) - \dot{x_i}(t-\tau) \right]$$

$$\alpha = \frac{\gamma}{M}$$

(2)

Résultat préliminaire

En un point x et pour une valeur h du pas de discrétisation tels que u soit trois fois dérivable sur l'intervalle [x-2h, x], la formule de Taylor-Young conduit à la relation :

$$u'(x) \approx \frac{u(x)-u(x-h)}{h}$$

$$u''(x) \approx \frac{u(x)-2u(x-h)+u(x-2h)}{h^2}$$

Résolution numérique

schéma numérique sur les positions

- ▶ On introduit une discrétisation régulière du temps Δt tel que $0 < \Delta t < \tau$
- ▶ Pour simplifier les calculs on choisit Δt tel que $\exists k \in IN$, $\tau = k\Delta t$
- ▶ Soit Uⁿ_i une solution numérique approchée de la solution exacte de l'EDO (1)

$$U_i^n \approx u_i(n\Delta t)$$

Soient:
$$X_i^n \approx x_i(n\Delta t)$$
, $U_i^n \approx \dot{x}_i(n\Delta t)$, $A_i^n \approx \ddot{x}_i(n\Delta t)$

$$u_i(t - \tau) = u_i(n\Delta t - k\Delta t) = u_i((n - k)\Delta t)$$
$$= U_i^{n-k}$$

(2)
$$\Rightarrow A_i^n = \alpha [U_{i-1}^{n-k} - U_i^{n-k}] :$$
 (3)

On prend h= Δt *et t*= $n\Delta t$

Le résultat préliminaire nous donne :

(4):
$$\begin{cases} A_i^n = \frac{X_i^n - 2X_i^{n-1} + X_i^{n-2}}{\Delta t^2} \\ U_i^n = \frac{X_i^n - X_i^{n-1}}{\Delta t} \end{cases}$$

On obtient en insérant (4) dans (3)

$$X_i^{n+1} = \alpha \Delta t \left[X_{i-1}^{n-k+1} - X_i^{n-k+1} + X_i^{n-k} - X_{i-1}^{n-k} \right] + 2 X_i^{n} - X_i^{n-1}$$

Pour simplifier on prend k=1 càd $\tau = \Delta t$

Distance de sécurité = 25m

Influence d'une décélération de la 1ère Voiture

Distance de sécurité = 25m

Influence d'une décélération de la 1ère Voiture 8000 1ère voiture 2ème voiture 3ème voiture 4ème voiture 7000 5ème voiture x(t) en m 6000 5000 4000 300 400 500 350 450 axe des temps (en s)

Influence d'une décélération de la 1ère Voiture

Importance de la distance de sécurité entre deux voitures pour éviter les accidents

Modèle macroscopique

q(x, t): le flux de véhicules en un point et un instant donné

 $\rho(x,t)$: La concentration (appelée également densité spatiale) instantanée correspondant au nombre de véhicules par unité de longueur se trouvant sur une section voisine du point d'abscisse x, au temps t

V : la vitesse moyenne

Deux processus en compétition

Besoin de sécurité: distance de sécurité qui augmente avec la vitesse

Désir d'aller vite : dont la réalisation est limitée par le besoin de sécurité

Résultats

- -Régime fluide: concentration faible, vitesse élevée, débit croît avec la concentration
- -Régime congestionné: concentration élevée, vitesse faible, débit décroît avec la concentration

Modèle de Lighthill-Whitham-Richards

Hypothèses

une route unidimensionnelle et de longueur infinie Il n'y a pas
d'intersections le long
le de la route. Ainsi,
le nombre de voitures
sur la route est
constant

Il n'y a pas de dépassement possible.

$$v(\rho) = v_m (1 - \frac{\rho}{\rho_m})$$

Loi de conservation:

$$\forall (t,x) \in D \subseteq [0,+\infty[\times IR \quad \frac{\partial}{\partial t} \rho(x,t) + \frac{\partial}{\partial x} q(\rho(x,t)) = 0$$

$$q = \rho v$$

Démonstration en annexe

$$\frac{\partial \rho}{\partial t} + v_m \left(1 - \frac{2\rho}{\rho_m} \right) \frac{\partial \rho}{\partial x} = 0 \quad : (5)$$

Enfin, on associe cette équation à la condition initiale suivante :

$$\rho(x,0) = h(x)$$

Méthode des caractéristiques

Pour chaque point (x,t) on le relie à $(x_0,0)$ par une courbe le long de laquelle ρ est constante - une caractéristique tel que $\rho(x,t) = \rho(x_0,0) = h(x_0)$

On obtient: x(t) =

 $\mathbf{x}(t) = q'(h(x_0)) t + x_0$

Et $\rho(x,t) = h(x - q'(h(x_0)) t)$

Démonstration en annexe

Applications

Feu tricolore

$$h(x) = \begin{cases} \rho_m & \text{si } x \le 0 \\ 0 & \text{si } x > 0 \end{cases}$$

$$q'(\rho) = v_m \left(1 - \frac{2\rho}{\rho_m} \right)$$

$$q'(h(x_0)) = \begin{cases} -v_m & \text{si } x_0 \le 0 \\ v_m & \text{si } x_0 > 0 \end{cases}$$

On cherche à déterminer ce qui se passe dans la région délimitée par les droites d'équation $x=v_mt$ et $x=-v_mt$ où ne passe aucune caractéristique

Problème de discontinuité

$$h_{\epsilon}(x) = \begin{cases} \rho_m & si \ x \le 0 \\ \rho_m \left(1 - \frac{x}{\epsilon} \right) & si \ 0 < x < \epsilon \\ 0 & si \ x \ge \epsilon \end{cases}$$

 h_{ϵ} est continue

L'équation des caractéristiques dans la région comprise entre $-v_m t$ et $v_m t$ est :

$$x(t) = -v_m \left(1 - \frac{2x_0}{\epsilon} \right) t + x_0$$

Démonstration en annexe

D'où
$$\rho_{\epsilon} = \rho_m \left(1 - \frac{x + v_m t}{2v_m t + \epsilon} \right)$$

On fait tendre ϵ vers 0 :

$$\rho(x,t) = \begin{cases} \rho_m & \text{si} \quad x \le -v_m t \\ \frac{\rho_m}{2} \left(1 - \frac{x}{v_m t} \right) & \text{si} \quad -v_m t < x < v_m t \\ 0 & \text{si} \quad x \ge v_m t \end{cases}$$

Onde de raréfaction

Embouteillage

$$h(x) = \begin{cases} \frac{1}{8}\rho_m & \text{si } x \le 0\\ \rho_m & \text{si } x > 0 \end{cases}$$

$$q'(h(x_0)) = \begin{cases} \frac{3}{4}v_m & si \ x_0 \le 0\\ -v_m & si \ x_0 > 0 \end{cases}$$

$$x(t) = \begin{cases} \frac{3}{4}v_m t + x_0 & si \ x_0 \le 0 \\ -v_m t + x_0 & si \ x_0 > 0 \end{cases}$$

$$\rho(x,t) = \begin{cases} \frac{1}{8}\rho_m & si \ x \le -\frac{1}{8}v_m t \\ \rho_m & si \ x > -\frac{1}{8}v_m t \end{cases}$$

$$\rho(x,t) = \frac{1}{8}\rho_m$$

$$\rho(x,t) = \rho_m$$

Onde de choc pour un embouteillage

Conclusion

Modélisation mathématique de franc roune

Merci pour votre attention!

Annexes:

Loi de conservation

$$q = \rho v_m \left(1 - \frac{\rho}{\rho_m} \right) = v_m \left(\rho - \frac{\rho^2}{\rho_m} \right)$$

$$\frac{\partial q}{\partial x} = \frac{\partial q}{\partial \rho} \frac{\partial \rho}{\partial x} = v_m \left(1 - \frac{2\rho}{\rho_m} \right) \frac{\partial \rho}{\partial x}$$

$$\frac{\partial \rho}{\partial t} + v_m \left(1 - \frac{2\rho}{\rho_m} \right) \frac{\partial \rho}{\partial x} = 0 \quad : (5)$$

Méthode des caractéristiques

Cherchons x(t):

On a

$$\forall t \ge 0, \rho(x(t), t) = h(x_0)$$

On dérive :

$$\frac{d}{dt}\rho(x(t),t) = \frac{\partial}{\partial x}\rho(x(t),t)x'(t) + \frac{\partial}{\partial t}\rho(x(t),t) = 0$$

(6)

$$(5) \Rightarrow$$

$$\frac{\partial}{\partial t}\rho(x(t),t) + q'(h(x_0))\frac{\partial}{\partial x}\rho(x(t),t) = 0 \qquad : (7)$$

(7)-(6):
$$\frac{\partial}{\partial t} \rho(x(t), t) \left[x'(t) - q'(h(x_0)) \right] = 0$$

Donc: $x'(t) = q'(h(x_0))$

D'où: $x(t) = q'(h(x_0)) t + x_0$

On a finalement : $\rho(x,t) = h(x - q'(h(x_0)) t)$

Feu tricolore

$$q'(\rho) = v_m \left(1 - \frac{2\rho}{\rho_m} \right)$$

$$q'(h(x_0)) = v_m \left(1 - \frac{2\rho_m}{\rho_m} \left(1 - \frac{x_0}{\epsilon} \right) \right) = v_m \left(1 - 2 + \frac{2x_0}{\epsilon} \right) = -v_m \left(1 - \frac{2x_0}{\epsilon} \right)$$

Et comme:

$$x(t) = q'(h(x_0)) t + x_0$$

Alors:

$$x(t) = -v_m \left(1 - \frac{2x_0}{\epsilon}\right)t + x_0$$

On obtient

$$x_0 = \frac{x + v_m t}{\frac{2v_m t}{\epsilon} + 1}$$

$$\rho(x,t) = h(x - q'(h(x_0)) t)$$

$$\rho = h(x + v_m \left(1 - \frac{2x_0}{\epsilon}\right)t)$$
 et $h(x) = \rho_m \left(1 - \frac{x}{\epsilon}\right)$

$$\rho_{\epsilon} = \rho_m \left(1 - \frac{x + v_m t}{2v_m t + \epsilon} \right)$$

Démonstration de la formule obtenue par Taylor Young

$$u(x+h) = u(x) + \sum_{n=1}^{3} \frac{h^n}{n!} u^{(n)}(x) + h^3 \varepsilon_1(x,h)$$

où la fonction $\varepsilon_i(x,h)$ converge vers 0 avec h.

$$\frac{u(x+h)-u(x)}{h} = u'(x) + \frac{h}{2}u''(x) + \frac{h^2}{3!}u^{(3)}(x) + h^2\varepsilon_1(x,h)$$

$$u''(x)=rac{rac{u(x+2h)-u(x+h)}{h}-rac{u(x+h)-u(x)}{h}}{h}+arepsilon_2(x,h)$$

$$rac{u(x+2h)-2u(x+h)+u(x)}{h^2}=u''(x)+rac{h^2}{6}u^{(3)}(x)+h^2arepsilon_3(x,h)$$

Code Python

```
import matplotlib.pyplot as plt
001
002
     import numpy as np
003
004
005
     def Resol 1 (f,t,a,p,x0,x1):
         # f est la fonction de mouvement de la voiture qui precede
0061
007
         # t est x le pas de discrétisation en temps
         # a est alpha de l'équation
008
         # x0 et x1 sont les valeurs initiales de la position de la voiture
009
010
        T = [0, t]
011
        L=[x0,x1]
012
         for i in range(p):
             L.append(a*t*(f(T[i+1])-L[i+1]+L[i]-f(T[i]))+2*L[i+1]-L[i])
013
014
             T.append((i+2)*t)
015
         return T, L
016
017
     def Resol 2 (M,t,a,p,x0,x1):
018
        T=[0,t]
019
        L=[\times 0, \times 1]
020
         for i in range(p):
021
             L.append(a*t*(M[i+1]-L[i+1]+L[i]-M[i])+2*L[i+1]-L[i])
022
             T.append((i+2)*t)
023
         return T, L
024
```

```
# Fonction de déceleration:
025
026
     def q(t):
027
         if t \ge 0 and t \le 50:
028
             return 25*t+208
029
         elif t>50 and t<=80 :
030
             return -0.4*((t-50)**2)+25*(t-50)+1250+208
031
         elif t>80 :
032
                     10*(t-80)+1640+208
             return
033
034
     # Simulation :
035
     N=[i for i in range(140)]
036
037
     Y2=Resol 1 (g,1,5*(10**-3),550,156,170)
     P=Y2[0]
038
039
     Y1=[q(x) \text{ for } x \text{ in } N]
    Y3=Resol 2 (Y2[1],1,5*(10**-3),550,104,120)
040
041
     Y4=Resol 2 (Y3[1],1,5*(10**-3),550,52,65)
042
     Y5=Resol 2 (Y4[1],1,5*(10**-3),550,0,12)
043
044
     plt.plot(N,Y1,"k",label='lère voiture')
045 l
     plt.plot(Y2[0],Y2[1],"r",label='2ème voiture')
    plt.plot(Y3[0],Y3[1],"b",label='3ème voiture')
046
047| plt.plot(Y4[0],Y4[1],"y",label='4ème voiture')
     plt.plot(Y5[0],Y5[1],"c",label='5ème voiture')
```

```
049| plt.legend()
050
    plt.title("Influence d'une décélération de la 1ère Voiture")
051| plt.xlabel("axe des temps (en s)")
052
     plt.ylabel("x(t) en m")
053
     plt.show()
054
055
056
    def h(t):
        if t>=0 and t<=50:
0571
058
             return 25*t+208
059
        elif t>50 :
060
              return -0.05*((t-50)**2)+25*(t-50)+1250+208
061
062
063
     def s(t):
        if t>=0 and t<=50:
064
065
             return 25*t+280
066
        elif t>50 and t<=80 :
067
             return -0.4*((t-50)**2)+25*(t-50)+1250+280
068
        elif t>80 :
069
             return
                    10*(t-80)+1640+280
070
071
    # 2ème Simulation :
    M=[i for i in range(550)]
072
073
```

```
Y6=Resol 1 (q,1,5*(10**-3),550,210,220)
    P=Y6[0]
075 l
    Y7=[s(x) for x in M]
    Y8=Resol 2 (Y6[1],1,5*(10**-3),550,140,150)
    Y9=Resol 2 (Y8[1],1,5*(10**-3),550,70,80)
    Y10=Resol 2 (Y9[1],1,5*(10**-3),550,0,8)
080
    plt.plot(N,Y7,"k",label='1ère voiture')
081
    plt.plot(Y6[0],Y6[1],"r",label='2ème voiture')
    plt.plot(Y8[0],Y8[1],"b",label='3ème voiture')
083
    plt.plot(Y9[0], Y9[1], "y", label='4ème voiture')
085 | plt.plot(Y10[0], Y10[1], "c", label='5ème voiture')
    plt.legend()
086
    plt.title("Influence d'une décélération de la 1ère Voiture")
088| plt.xlabel("axe des temps (en s)")
    plt.ylabel("x(t) en m")
090| plt.show()
091
```

```
# Fonctions utilisées sur le modèle de LWR :
093
     # Feu tricolore :
     def f_2(x):
094
         if x<=0 :
095
096
             return 1
097
         else :
098
             return 0
099
100
101
     def f_3(x,v,x0):
102
         if x<=-x0:
103
             return (-x-x0)/v
         elif x>=x0:
104
             return (x-x0)/v
105
         elif x<x0 and x>-x0:
106
107
             return 0
108
109
110
     def f_4(x,e,gho):
         if x<=0 :
111
112
             return gho
113
         elif x<e and x>0 :
114
             return gho*(1-(x/e))
115
         else :
             return 0
116
117
```

```
def f_5(f,L,v,x0):
118
119
         M=[]
         for c in L :
120
             M.append(f(float(c),v,x0))
121
122
         return M
123
124
     def f_6(f,L):
125
         M=[]
        for c in L:
126
             M.append(f(float(c)))
127
128
         return M
129
130
    # Tracage des fonctions :
    L1=np.linspace(-50,50,2001)
131
132 | L2=np.linspace(-10,0,11)
133 | L3=np.linspace(0.0000001,10,11)
    M2=f 6(f 2,L2)
134
    M3=f 6(f 2,L3)
135
    fig = plt.figure()
136
    ax = fig.add subplot(1, 1, 1)
137
     ax.spines['left'].set_position('center')
138
     ax.spines['bottom'].set position('center')
139
     ax.spines['right'].set color('none')
140
     ax.spines['top'].set color('none')
```

```
142 ax.xaxis.set ticks position('bottom')
    ax.yaxis.set ticks position('left')
143
144| plt.plot(L2,M2,'k')
145| plt.plot(L3,M3,'k')
146 | plt.title("Condition initiale h(x)")
147 | plt.xlabel("x")
148 | plt.grid()
149 | plt.show()
150
151
    M4=f 5(f 3,L1,2,0)
152 | M5=f 5(f 3,L1,2,10)
    M6=f 5(f 3,L1,2,20)
153 l
154 | M7=f 5(f 3,L1,2,30)
155 | fig = plt.figure()
|156| ax = fig.add subplot(1, 1, 1)
    ax.spines['left'].set position('center')
157
    ax.spines['right'].set color('none')
158
    ax.spines['top'].set color('none')
159
     ax.spines['bottom'].set position('zero')
160
    ax.yaxis.set ticks position('left')
161
    ax.set xticklabels([])
162
163
     ax.set yticklabels([])
```

```
164| plt.plot(L1,M4,'k')
165 | plt.plot(L1,M5,'k')
166| plt.plot(L1,M6,'k')
     plt.plot(L1,M7,'k')
     plt.xlabel("x")
168
169 | plt.ylabel("t")
170 | plt.show()
171
172
     L8=np.linspace(-50,0,100)
173
     L9=np.linspace(0.00001,20,100)
174
     L10=np.linspace(20.00001,50,100)
175
     M8=f 5(f 4,L8,20,10)
176 l
     M9=f_5(f_4,L9,20,10)
177 l
     M10=f 5(f 4, L10, 20, 10)
178
179
    fig = plt.figure()
180
     ax = fig.add subplot(1, 1, 1)
181
     ax.spines['left'].set position('center')
     ax.spines['right'].set color('none')
182
     ax.spines['top'].set color('none')
183
     ax.spines['bottom'].set position('zero')
184
     ax.yaxis.set ticks position('left')
185
186
     ax.set xticklabels([])
```

```
186 ax.set xticklabels([])
    ax.set yticklabels([])
188
     plt.plot(L8,M8,'k')
     plt.plot(L9,M9,'k')
    plt.plot(L10,M10,'k')
     plt.xlabel('0')
191
192| plt.show()
193
194
     M11=f 5(f 3,L1,2,0)
196
     M12=f 5(f 3,L1,2,10)
     M13=f 5(f 3,L1,2,20)
198
     M14=f 5(f 3,L1,1,0)
     M15=f 5(f 3, L1, 0.5, 0)
    fig = plt.figure()
200
     ax = fig.add subplot(1, 1, 1)
201
     ax.spines['left'].set position('center')
202 I
```

```
ax.spines['right'].set color('none')
     ax.spines['top'].set color('none')
204
     ax.spines['bottom'].set position('zero')
     ax.yaxis.set ticks position('left')
206
     ax.set xticklabels([])
     ax.set yticklabels([])
     plt.plot(L1,M11,'k')
     plt.plot(L1,M12,'k')
    plt.plot(L1,M13,'k')
    plt.plot(L1,M14,'k')
     plt.plot(L1,M15,'k')
     plt.xlabel("x")
    plt.ylabel("t")
216 | plt.show()
```

```
217
218 # Embouteillage :
219
    def f 7(x):
         if x<0:
220
221
             return 1/8
222
        else :
223
             return 1
224
225
    L11=np.linspace(-50,50,2001)
    L12=np.linspace(-10,-0.00000001,11)
226
227
    L13=np.linspace(0.0000001,10,11)
    M16=f 6(f 7,L12)
228
229
    M17=f 6(f 7,L13)
    fig = plt.figure()
230
231
    ax = fig.add subplot(1, 1, 1)
    ax.spines['left'].set position('center')
232
233
    ax.spines['right'].set color('none')
234
    ax.spines['top'].set color('none')
235
    ax.spines['bottom'].set position('zero')
    ax.yaxis.set_ticks_position('left')
236
237
    plt.plot(L12,M16,'k')
238 | plt.plot(L13,M17,'k')
239 plt.title("Condition initiale h(x)")
240 | plt.xlabel("x")
241| plt.grid()
242| plt.show()
```