5. Prediction

D Regression model $y = g^T x + e$, $y, e \in \mathbb{R}$, $g, x \in \mathbb{R}^{P+1}$

New obs. $x_o^T = (1, \kappa_0, \dots, \kappa_{op})$. $\Rightarrow r.v. y = \beta^T \kappa_o + e_o$

Point est. $\hat{y} = \hat{\mathbf{F}}(\hat{y}_0) = \hat{\boldsymbol{\beta}}^T x_0$

 $I-\alpha$ C.I. for E(g_o) or I_{Yolko} : $\hat{\beta}^T x_o \mp t_{\frac{\alpha}{2}}(n-p') \hat{\sigma} \sqrt{x_o^T (X^T X)^{-1} x_o}$

[- ~ prediction interval; pTx. 7 to(n-p') o√1+x√(XTX)-1x0

* See P33 for the case of p=1.

2) Coef. of determination

Def: $R^2 = \frac{\text{Reg.SS}}{\text{TSS}} = (-\frac{\text{Res.SS}}{\text{TSS}})$

RE[O,I]

For p=1, $R^2 = \left(\frac{S_{Ky}}{\sqrt{S_{Nx}}\sqrt{S_{Nx}}}\right)^2$

6. Lack of fit.

Repeated observations with the same set of independent variables.

Ho: No lack of fit.

m combinations of x. M: # observations of the ith combination.

$$\sum_{i=1}^{n} (y_{ij} - \hat{y}_{i})^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_{ij} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} n_{i}(\hat{y}_{i} - \hat{y}_{i})^{2}$$

Res.SS

Pure error S.S. Lack of fit SS

~ 62 X2(n-p1. N)

 $\sim r^2 \chi^2 (n-m)$

02 x2 (m-p1, s)

Estimates of 52:

$$t^2 = \frac{RS}{n-p^2}$$
 or t^2 pure error t^2 t^2 t^2 t^2 t^2 t^2 t^2 t^2 t^2

Test stat:

$$F = \frac{\text{Lack of fitSS}/(m-p')}{\text{Pure error SS}/(n-m)} \stackrel{\text{Ho}}{\sim} F(m-p', n-m)$$

Reject Ho if F>Fa(m-p', n-m).

7. Added variable Plot.
$y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_0 x_{ip} + e_i.$
y ~ x _(-k) ⇒ les = ê y αx _k)
3 $\hat{e}_{y(x_k)} \sim \hat{e}_k \Rightarrow slope = \hat{e}_k$. Explain $\hat{\beta}_k$.
4) PCC (Y, Xe X(-k)) = Corr (ê x(xx), êx). PCC.
PCC as conditional independence test:
Generally, when $(X,Y,Z) \sim MN$, we have
$PCC(x,Y z) = 0 \iff X \perp\!\!\!\perp Y z$