

第七章:边缘检测

中国科学技术大学 电子工程与信息科学系

主讲教师: 李厚强 (<u>lihq@ustc.edu.cn</u>)

周文罡 (zhwg@ustc.edu.cn)

李礼(<u>lil1@ustc.edu.cn</u>)

胡 洋 (<u>eeyhu@ustc.edu.cn</u>)

边缘检测

- □ 边缘模型
- □ 边缘检测算子

边缘检测

- □ 边缘模型
- □ 边缘检测算子

边缘模型

常见的边缘剖面: 阶梯状、脉冲状、屋顶状

图象边缘模型及其一阶、二阶导数

描述边缘的参数

描述边缘的参数

- □ 位置
 - 边缘(等效的)最大灰度不连续处(最重要的参数)
- □ 朝向
 - 跨越灰度最大不连续的方向(XY平面)
- □ 幅度
 - 灰度不连续方向上的灰度差
- □ 均值
 - 分属边缘两边(近邻)像素的灰度均值
- □ 斜率
 - 边缘在其朝向上的倾斜程度(幅值)

边缘检测

- □ 边缘模型
- □ 边缘检测算子

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

正交梯度算子

□ 梯度算子

■ 一阶差分算子

矢量 $\nabla f(x,y) = \begin{bmatrix} G_x & G_y \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^{\mathrm{T}}$

幅度 $mag(\nabla f) = \left[G_x^2 + G_y^2 \right]^{1/2}$

方向角 $\phi(x, y) = \arctan(G_y/G_x)$

图象

剖面

一阶导数

二阶导数

正交梯度算子

- □ 梯度算子
 - 利用模板(与图象进行)卷积
 - 模板中系数之和为零,使得在恒定灰度区域的相应为0

■ Sobel算子应用最为广泛

梯度图示例

梯度图示例: a)原图; b) Sobel 水平模板; c) Sobel 垂直模板; d) Sobel梯度图 (范数2) e) Sobel梯度图 (范数1) f) Sobel梯度图 (范数∞)

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

方向微分算子

□ 基于特定方向上的微分来检测边缘

八方向Kirsch(7×7)模板

- 5	3	3
- 5		3
- 5	3	3

3	3	3
3	0	3
- 5	- 5	- 5

3	3	3
3	0	- 5
3	- 5	- 5

3	3	- 5
3		- 5
3	3	- 5

- 5	- 5	- 5
3	0	3
3	3	3

- 5	- 5	3
- 5	0	3
3	3	3

- □ 模板的对称性 → 模板数减半
 - 边缘强度: 卷积值的极大值的绝对值
 - 边缘方向: 卷积值的极大值的符号

方向微分算子

- □ 方向微分算子不局限于4个
 - 下面是每隔30度的模板
 - 0度,30度,60度,90度,120度,150度

1.0	1.0	1.0
-1.0	-1.0	-1.0
(a)		

1.0	1.0	0.7
0.8		-0.8
-0.7	-1.0	-1.0
	(h)	

1.0	0.8	-0.7
1.0		-1.0
0.7	-0.8	-1.0
(c)		

-1.0		1.0
-1.0		1.0
-1.0		1.0
(d)		

-0.7	0.8	1.0
-1.0		1.0
-1.0	-0.8	0.7
(e)		

0.7	1.0	1.0
-0.8		0.8
-1.0	-1.0	-0.7
(f)		

□ 基于梯度最大的两个方向可以进一步精细化幅值和方向

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

二阶导数算子

□ 拉普拉斯算子

■ 二阶差分算子(过零点性质)

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

0	- 1	0
- 1	4	- 1
0	- 1	0

(a)

- 1	- 1	- 1
- 1	8	- 1
- 1	- 1	- 1
	(b)	

二阶导数算子

- □ 拉普拉斯算子
 - 对图象中的噪声相当敏感
 - 产生双象素宽的边缘
 - 不能提供边缘方向的信息

□ 拉普拉斯算子很少直接用于检测边缘,主要用于已经边缘像素后确定该像素是在图像的暗区或明区一边

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

二阶导数算子

□ 马尔算子

- 1. 用一个2-D的高斯平滑模板与源图象卷积
 - ✓ 等价于低通滤波
- 2. 计算卷积后图象的拉普拉斯值
- 3. 检测拉普拉斯图象中的过零点作为边缘点

$$h(x, y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \qquad g(x, y) = h(x, y) \otimes f(x, y)$$

$$\nabla_g^2 = \nabla^2 [h(x, y) \otimes f(x, y)] = \nabla^2 h(x, y) \otimes f(x, y)$$

$$= \left(\frac{r^2 - \sigma^2}{\sigma^4}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right) \otimes f(x, y)$$

$$\nabla^2 h = h''(r) = \left(\frac{r^2 - \sigma^2}{\sigma^4}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right) \qquad (LoG)$$

二阶导数算子

□ 马尔算子

 $\nabla^2 h$ 的剖面和对应的转移函数

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

最优边缘检测算子

- □ 坎尼算子
 - 好的边缘检测算子应具有的三个指标
 - 低失误概率
 - ✓ 既要少将真正的边缘丢失也要少将非边缘判为边缘
 - 高位置精度
 - ✓ 检测出的边缘应在真正的边界上
 - 对每个边缘有唯一的响应
 - ✓ 得到的边界为单象素宽

• **J. Canny.** *A Computational Approach to Edge Detection*, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, Nov. 1986

坎尼边缘检测方法

- □ Canny算子近似
 - Canny 算子可以用高斯函数的一阶微分算子来近似
- □ Canny边缘检测流程:
 - 高斯滤波平滑
 - 计算梯度大小与方向
 - 非极大值抑制
 - ✓ 实现单像素宽的边缘
 - 双阈值检测和连接
 - ✓ 保证低失误率

• **J. Canny.** *A Computational Approach to Edge Detection*, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, Nov. 1986

高斯平滑及差分

- □ 先对图像进行高斯卷积平滑滤波,然后计算梯度
 - 卷积算子和差分算子均为线性算子,可以交换运算顺序

$$S = \nabla(I * h) = \nabla(h * I) = (\nabla h) * I = \begin{bmatrix} h_x \\ h_y \end{bmatrix} * I = \begin{bmatrix} h_x * I \\ h_y * I \end{bmatrix}$$

高斯滤波器:
$$h = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{x^2 + y^2}{2\sigma^2})$$

高斯差分滤波器:
$$h_x = \frac{\partial h}{\partial x}$$
, $h_y = \frac{\partial h}{\partial y}$

图像梯度幅值:
$$G = \sqrt{(h_x * I)^2 + (h_y * I)^2}$$

实例结果

I

 $h_x * I$

非极大值抑制

- □ 沿着梯度方向,抑制梯度值非最大的点
 - 细化幅值图像M[i, j]中的屋脊带(ridge),只 保留幅值局部变化最大的点。
 - NMS通过抑制梯度线上所有非屋脊峰值的幅值来细化边缘。

- □ 基于最近邻进行最大值消除
 - 将梯度角θ[i, j]的变化范围分为四个扇区ζ[i, j] = Sector(θ[i, j]);
 - 用3x3邻域作用于幅值图像M[i, j], 邻域中心像素M[i, j]与沿着梯度线方向的两个像素进行比较
 - 若M[i, j]不比沿梯度线方向的两个相邻点幅 值大,则像素(i, j)被抑制, M[i, j] 被置为0。

用插值进行非最大消除

□ 用插值进行最大值消除:

- 通过对相邻单元的梯度幅值的插值估计梯度线上的相邻幅值
- 如果P点的梯度值小于 S_1 或 S_2 的梯度值,则P点梯度值被置为O
- 精确但计算量大

$$G_{S_1} = (1 - d)G_{P_1} + dG_{P_2}$$

实例结果

原图 梯度图 非极大值抑制结果图

双阈值算法

- □ 双阈值算法采用两个阈值 τ_1 和 τ_2 ,且 τ_2 ≈ $2\tau_1$
- □ 得到两个阈值边缘图像 $T_1[i,j]$ 和 $T_2[i,j]$
- \square $T_2[i,j]$ 含有的假边缘少,但有断点
- □ 以 $T_2[i,j]$ 为指导,在 $T_1[i,j]$ 中相应8邻域点寻找可以连接到轮廓上的点
- □ 不断在 $T_1[i,j]$ 收集边缘,直到将 $T_2[i,j]$ 中所有的间隙连接起来为止

原图

强/弱边缘检测结果

最后边缘检测结果

边缘检测对比

Roberts	Sobel
Log	Canny

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

SUSAN算子

- USAN (Univalue Segment Assimilating Nucleus)
 - 核同值区:相对于模板的核,模板中有一定的区域与它有相同的 灰度

- □ USAN面积携带了关于图象中核象素处结构的主要信息
 - 当核象素处在图象中的灰度一致区域,USAN的面积会达到最大
 - 当核处在直边缘处该面积约为最大值的一半,而当核处在角点处则为最大值的1/4
- □ USAN面积作为特征起到了增强边缘和角点的效果

SUSAN算子

□ SUSAN: 最小(Smallest) 核同值区(USAN)

检测模板: 37个象素, 半径为3.4象素

$$C(x_0, y_0; x, y) = \begin{cases} 1 & \text{yild} \quad |f(x_0, y_0) - f(x, y)| \le T \\ 0 & \text{yild} \quad |f(x_0, y_0) - f(x, y)| > T \end{cases}$$

SUSAN算子

- □ 检测对模板中的每个像素进行
- □ 得到输出的游程和(running total)

$$S(x_0, y_0) = \sum_{(x,y) \in N(x,y)} C(x_0, y_0; x, y)$$

□ 边缘响应

$$R(x_0, y_0) = \begin{cases} G - S(x_0, y_0) & \text{如果} \quad S(x_0, y_0) < G \\ 0 & \text{否则} \end{cases}$$

几何阈值 $G = 3S_{\text{max}}/4$ (为了达到最佳信噪比), 其中 S_{max} 是S所能取的最大值,即模板面积。

SUSAN边缘检测

□ 特点

- 有噪声时的性能较好
 - ✓ 不需要计算微分
 - ✓ 对面积计算中的各个值求和(积分)
 - ✓ 非线性响应特点
- 易自动化实现
 - ✓ 控制参数的选择简单
 - ✓ 参数的任意性较小

SUSAN算子检测实例

左:原图。

中: SUSAN检测结果。

右:含高斯白噪声的结果。(SNR=0.5)

边界闭合

- □ 有噪声时:边缘象素常孤立/分小段连续
- □ 封闭边界(轮廓):连接边缘象素
- □ 一种具体方法
 - 利用象素梯度的幅度和方向:

$$\left|\nabla f(x,y) - \nabla f(s,t)\right| \leq T$$

$$|\varphi(x,y)-\varphi(s,t)| \leq A$$

■ 象素(s, t)在象素(x, y)的邻域