Chapter 3.2 Practice Problems

EXPECTED SKILLS:

- Be able to compute the derivatives of logarithmic functions.
- Know how to use logarithmic differentiation to help find the derivatives of functions involving products and quotients.

1

PRACTICE PROBLEMS:

For problems 1-16, calculate $\frac{dy}{dx}$.

1.
$$y = \ln(x^2)$$

$$2. \ y = \frac{1}{\ln(3x)}$$

$$3. \ y = x^2 \ln x$$

$$4. \ y = \ln\left(\frac{1}{x}\right)$$

5.
$$y = \ln |x^3|$$

6.
$$y = \ln(x^2 + 1)^2$$

7.
$$y = \left[\ln\left(x^2 + 1\right)\right]^2$$

8.
$$y = \sqrt{\ln 2x}$$

9.
$$y = \log_2(3x - 1)$$

10.
$$y = \tan(\ln x)$$

$$11. \ y = \ln\left(\ln x\right)$$

$$12. \ y = \frac{\log x}{2 - \log x}$$

13.
$$y = \ln|\sec x|$$

14.
$$y = \ln|\sec x + \tan x|$$

15.
$$y = \ln(x^x)$$

16.
$$y = \ln\left(\frac{2x+1}{\sqrt{x}(3x-4)^{10}}\right)$$

- 17. Use logarithmic differentiation to calculate $\frac{dy}{dx}$ if $y = \frac{2x+1}{\sqrt{x}(3x-4)^{10}}$
- 18. Recall the change of base formula: $\log_b x = \frac{\ln x}{\ln b}$
 - (a) Remind yourself of why this is true.
 - (b) Compute y' if $y = \log_{x^2}(e)$
 - (c) Compute $\frac{dy}{dx}$ if $y = \log_{3x}(x)$
- 19. Compute an equation of the line which is tangent to the graph of $f(x) = \ln(x^2 3)$ at the point where x = 2.
- 20. Find the value(s) of x at which the tangent line to the graph of $y = \ln(x^2 + 11)$ is perpendicular to y = -6x + 5.
- 21. Find the value(s) of x at which the tangent line to the graph of $y = -\ln x$ passes through the origin.
- 22. Calculate $\frac{d^2y}{dx^2}$ if $y = \ln(3x^2 + 2)$.
- 23. Multiple Choice: Let $y = \ln(\cos x)$. Which of the following is $\frac{dy}{dx}$?
 - (a) $(\ln x)(-\sin x) + (\cos x)(\ln x)$
 - (b) $-\tan x$
 - (c) $\cot x$
 - (d) $\sec x$
 - (e) $\frac{1}{\ln(\cos x)}$
- 24. **Multiple Choice:** Let $h(x) = \ln[(f(x))^2 + 1]$. Suppose that f(1) = -1 and f'(1) = 1. Find h'(1).
 - (a) -2
 - (b) -1
 - (c) 0
 - (d) 1
 - (e) 2
- 25. Consider the triangle formed by the tangent line to the graph of $y = -\ln x$ at the point $P(t, -\ln t)$, the horizontal line which passes through P, and the y-axis. Find a function A(t) which gives the area of this triangle.