Eléments de correction des TD de Logique des Prédicats (LP1)

Exercice 1 : Table de vérité

$$F = p(a) \lor \forall x(p(x) \Rightarrow q)$$

En enlevant le connecteur '⇒', on peut re-écrire la formule :

$$F = p(a) \lor \forall x (\neg p(x) \lor q) = p(a) \lor \forall x (\neg p(x)) \lor q$$

On enlève ensuite le quantificateur \forall :

$$\mathbf{F} = \mathbf{p}(\mathbf{a}) \vee (\neg \mathbf{p}(\mathbf{e}_1) \wedge \neg \mathbf{p}(\mathbf{e}_2)) \vee \mathbf{q}$$

Pour établir la table de vérité, on doit former toutes les combinaisons des cas suivants :

- a? 2 valeurs possibles (e₁ ou e₂)

- q? 2 valeurs de vérité possibles : V ou F

- p(x)? 4 définitions possibles :

$$p^{1}(e_{1}) = V$$
 $p^{2}(e_{1}) = V$ $p^{3}(e_{1}) = F$ $p^{4}(e_{1}) = F$ $p^{1}(e_{2}) = V$ $p^{2}(e_{2}) = F$ $p^{3}(e_{2}) = V$ $p^{4}(e_{2}) = F$

En tout il y a donc $2\times2\times4 = 16$ cas possibles donc 16 lignes dans la table de vérité :

p	q	a	p(a)	$\neg p(e_1) \lor$	F
				$\neg p(e_2)$	
	V	e_1	V	F	V
$p^1(e_1) = V$ $p^1(e_2) = V$	\mathbf{V}	\mathbf{e}_2	V	F	V
	F	e_1	V	F	V
	F	\mathbf{e}_2	V	F	V
$p^{2}(e_{1}) = V$ $p^{2}(e_{2}) = F$	\mathbf{V}	e_1	V	V	V
	\mathbf{V}	\mathbf{e}_2	F	V	V
	F	e_1	V	V	V
	F	e_2	F	V	V
	${f V}$	e_1	F	V	\mathbf{V}
$p^{3}(e_1) = F$ $p^{3}(e_2) = V$	\mathbf{V}	\mathbf{e}_2	V	V	V
	F	e_1	F	V	V
	F	e_2	V	V	V
$p^{4}(e_{1}) = F$ $p^{4}(e_{2}) = F$	\mathbf{V}	e_1	F	V	V
	V	e_2	F	V	V
	F	e_1	F	V	V
	F	e_2	F	V	V

Exercice 2 : Démonstration

2.1 La formule $\exists x(A \land B) \Rightarrow (\exists x(A) \land \exists x(B))$ est-elle valide ? (toujours vraie ?)

On sait que pour deux formules $\{\phi,\psi\}$ quelconques, les 2 validités suivantes sont établies :

$$\models \phi \land \psi \Rightarrow \phi$$
 (a)

et

$$\vDash \phi \land \psi \Rightarrow \psi$$
 (a')

(Au besoin, pour s'en convaincre, tracer une table de vérité pour a et a' et vérifier que les deux tables ne contiennent que des V)

On sait aussi que : si
$$\models$$
 F \Rightarrow G alors \models (\exists x F) \Rightarrow (\exists x G) (b)

(Pour s'en convaincre, on peut faire une analogie dans la théorie des ensembles : l'implication est remplacée par l'inclusion ensembliste et $\exists x \ P$ est remplacée par $P \neq \{\}$. On a bien d'un point de vue ensembliste : si $F \subseteq G$ alors $F \neq \{\} \Rightarrow G \neq \{\}$)

Application : on substitue $F=A \land B$ et G=A dans (b)

$$si \models A \land B \Rightarrow A \quad alors \models \exists x (A \land B) \Rightarrow \exists x (A) \quad (c)$$

de même

$$si \vDash A \land B \Rightarrow B$$
 alors $\vDash \exists x (A \land B) \Rightarrow \exists x (B)$ (c')

Or
$$\models A \land B \Rightarrow A$$
 (a)

et
$$\models A \land B \Rightarrow B$$
 (a') sont établies, donc

$$\vDash \exists x (A \land B) \Rightarrow \exists x (A) (d)$$

et

$$\vDash \exists x (A \land B) \Rightarrow \exists x (B) (d')$$

sont également établies.

Pour finir, on sait que:

$$si \vDash C \Rightarrow D \text{ et } si \vDash C \Rightarrow E \qquad alors \vDash C \Rightarrow (D \land E)$$
 (f)

D'où, d'après d et d' d'une part et (f) d'autre part, on peut établir que :

$$\vDash \exists x(A \land B) \Rightarrow \exists x(A) \land \exists x(B) \qquad \dots cqfd$$

Une autre démonstration (plus courte).

Le théorème de la de démonstration permet d'énoncer que :

Logique & Programmation Logique

4^{ème} année IR

Démontrer $\vDash P \Rightarrow Q$ et démontrer $P \vDash Q$ sont équivalents

On sait déjà que :

$$\exists x (A \land B) \vDash \exists x (A)$$

et

$$\exists x (A \land B) \vDash \exists x (B)$$
 (en permutant A et B et sachant que \land est commutatif)

donc
$$\exists x (A \land B) \vDash \exists x(A) \land \exists x(B)$$
 d'après (f)

qu'on peut reécrire (toujours grâce au même théorème de démonsration) :

$$\vDash \exists x \ (A \land B) \Rightarrow \exists x (A) \land \exists x (B) \qquad \dots cqfd$$

2.2 Les formules $\forall x (f(x) \land g)$ et $(\forall x f(x)) \land g$ sont-elles logiquement équivalentes ?

On se place dans le domaine sémantique et on analyse deux cas :

- a/ soit I une interprétation telle que $\mathbf{I}(\mathbf{g}) = \mathbf{F}$; on peut remplacer G par ' \bot ' (proposition toujours fausse)

$$I(\forall x (f(x) \land g)) = I(\forall x (f(x) \land \bot)) = I(\forall x (\bot)) = I(\bot) = F$$

de même:

$$I(\forall x \ f(x) \land g) = I(\forall x \ f(x)) \land I(\bot) = I(\forall x \ f(x)) \land F = F$$

Le deux formules ont la même interprétation dans le cas a. (I(g)=F).

- b/ soit I une interprétation telle que $\mathbf{I}(\mathbf{g}) = \mathbf{V}$; on peut remplacer g par 'T' (proposition toujours vraie)

$$I(\forall x \; (f(x) \land g)) = I(\forall x \; (f(x) \land T)) = I(\forall x \; f(x))$$

de même:

$$I(\forall x \ f(x) \land g) = I(\forall x \ f(x) \land T) = I(\forall x \ f(x)) \land I(T) = I(\forall x \ f(x))$$

Les deux formules ont donc même interprétation dans le cas b. (I(g)=V).

Les deux formules ont la même interprétation dans les cas a. et b.

Donc on a bien :
$$\forall x (f(x) \land g) \boxminus (\forall x f(x)) \land g$$
 ...cqfd

Exercice 3: Formule satisfiable

3.1 Soit l'ensemble de clauses $S = \{ (\neg p(X_1, g(X_1)) \lor q(X_1, Y_1)), q(X_2, f(X_2)), p(a, X_3) \}$

(les symboles a, f et g dénotent des fonctions classiques et non des fonctions de Skolem)

A quelle formule prenexe normale conjonctive de LP1 correspond S?

a – on traduit chaque clause en une formule dans laquelle les variables sont quantifiées universellement :

$$(\neg p(X_1, g(X_1)) \lor q(X_1, Y_1)) \qquad -----> \qquad \forall \textbf{X}_1 \forall \textbf{Y}_1 \ (\neg p(X_1, g(X_1)) \lor q(X_1, Y_1))$$

$$= \qquad \forall X_1 \forall Y_1 \ (p(X_1, g(X_1)) \Rightarrow q(X_1, Y_1))$$

$$q(X_2, f(X_2)) \qquad -----> \qquad \forall X_2 \ q(X_2, f(X_2))$$

$$\qquad -----> \qquad \forall X_3 \ p(a, X_3)$$

b – on peut regrouper les quantificateurs \forall à gauche

d'où
$$F = (\forall X_1 \forall Y_1 (\neg p(X_1, g(X_1)) \lor q(X_1, Y_1))) \land (\forall X_2 q(X_2, f(X_2))) \land (\forall X_3 p(a, X_3))$$

$$= \forall X_1 \forall Y_1 \forall X_2 \forall X_3 ((\neg p(X_1, g(X_1)) \lor q(X_1, Y_1)) \land q(X_2, f(X_2)) \land p(a, X_3))$$

3.2 Pour trouver une interprétation I qui satisfait F sur un domaine de variation $D = \{e_1,e_2\}$ dans le cas où les prédicats ne sont pas des constantes,

il faut montrer que la formule est vraie pour une certaine définition de p, q, f, g et a :

Comme F est une conjonction (forme normale conjonctive) on doit montrer que les 3 sousformules sont **simultanément** vraies pour une certaine interprétation de p, q, f, g et a. On doit fixer :

- a: parmi 2 valeurs possibles
- f(X): parmi 4 définitions possibles
- -g(X): parmi 4 définitions possibles
- p(X,Y): parmi 16-2 = 14 définitions possibles, car p \neq Cte
- q(X,Y): parmi 16-2 = 14 définitions possibles, car $q \neq Cte$

On doit donc avoir:

$$(1) \qquad I(\forall X_1 \forall Y_1 \ (\neg p(X_1, g(X_1)) \lor q(X_1, Y_1) = V)$$

(2)
$$I(\forall X_2 q(X_2, f(X_2))) = V$$

(3)
$$I(\forall X_3 p(a, X_3)) = V$$

En enlevant les quantificateurs \forall , ces formules deviennent :

$$\begin{array}{lll} (1') & I(\ (\neg p(e_1,g(e_1)) \lor q(e_1,\,e_1)) \land & (x_1=e_1 & y_1=e_1) \\ & (\neg p(e_1,g(e_1)) \lor q(e_1,\,e_2)) \land & (x_1=e_1 & y_1=e_2) \\ & (\neg p(e_2,g(e_2)) \lor q(e_2,\,e_1)) \land & (x_1=e_2 & y_1=e_1) \\ & (\neg p(e_2,g(e_2)) \lor q(e_2,\,e_2)) \) & (x_1=e_2 & y_1=e_2) \\ & = V \end{array}$$

(1')
$$I((\neg p(e_1,g(e_1)) \lor (q(e_1,e_1)) = V$$
et
$$I((\neg p(e_1,g(e_1)) \lor (q(e_1,e_2)) = V$$
et
$$I((\neg p(e_2,g(e_2)) \lor (q(e_2,e_1)) = V$$
et
$$I((\neg p(e_2,g(e_2)) \lor (q(e_2,e_2)) = V$$

(2') I(
$$q(e_1, f(e_1))) = V$$

et I($q(e_2, f(e_2))) = V$

(3')
$$I(p(a, e_1)) = V$$

et $I(p(a, e_2)) = V$

On peut permuter les valeurs e_1 et e_2 , sans rien changer aux formules 1',2' et 3'. Cette symétrie nous permet de diviser le problème en deux familles de solutions équivalentes pour $a=e_1$ et pour $a=e_2$. On peut se limiter à étudier le cas $\mathbf{a}=\mathbf{e}_1$ On re-écrit donc (3') en :

(3")
$$I(p(e_1, e_1)) = V$$
 et
$$I(p(e_1, e_2)) = V$$

Dans le but de faire apparaître des littéraux identiques dans 1', 2' et 3'', on fixe arbitrairement les fonctions f et g aux fonctions particulières : f(X) = X et g(X) = X

On a donc 8 contraintes à satisfaire :

(1'')
$$I((\neg p(e_1,e_1) \lor (q(e_1,e_1)) = V)$$
 et
$$I((\neg p(e_1,e_1) \lor (q(e_1,e_2)) = V)$$
 et
$$I((\neg p(e_2,e_2) \lor (q(e_2,e_1)) = V)$$

On peut voir que l'ouvre l, et que couvre (. On peut donc enlever) et (.

D'autre part on peut simplifier (compte tenu de) et simplifier) compte tenu de (.

Il reste:

Construisons la table de vérité des prédicats p et q :

X	Y	p(X,Y)	q(X,Y)
e_1	e_1	v >	V)
e_1	e_2	V	V (
e_2	e_1	?	?
e_2	e_2	?	V <

La contrainte $q \neq Cte$ (1) impose $I(q(e_2, e_1)) = F$ ce qui permet de simplifier 1) qui se reécrit en :

I(
$$\neg p(e_2,e_2)$$
) = V, soit:

$$I(p(e_2, e_2)) = F$$

X	Y	p(X,Y)	q(X,Y)
e_1	e_1	V >	V)
e_1	e_2	V	V (
e_2	e_1	?	F)
e_2	e_2	F)	V <

La valeur de $p(e_2, e_1)$ reste libre.

Il existe donc bien au moins une interprétation de p, q, f, g et a qui pemet de satisfaire la formule. (cqfd)

Exercice 4 : Principe de résolution et validité d'énoncé

1. Pour montrer que le raisonnement est valide, on veut montrer que :

$$H_1 \wedge H_2 \wedge H_3 \models C1$$

c-à-d que:

$$H_1 \wedge H_2 \wedge H_3 \wedge \neg Cl \qquad \qquad \vdash \qquad \Box \text{ (clause vide)}$$

Etapes =

- mise sous forme prénexe des formules H₁, H₂, H₃ et ¬Cl
- skolémisation
- traduction en sous forme de clauses
- application du P.R jusqu'à obtenir la clause vide

$$H_1 = \forall X \forall Y (a(X,Y) \Rightarrow c(X,Y))$$

= $\forall X \forall Y (\neg a(X,Y) \lor c(X,Y))$

$$\begin{aligned} H_2 &= \forall X \forall Y \; (\; \exists Z (\; c(X,Z) \land a(Z,Y)) \Rightarrow c(X,Y) \;) \\ &= \forall X \forall Y \; (\neg (\; \exists Z (c(X,Z) \land a(Z,Y))) \lor c(X,Y) \;) \\ &= \forall X \forall Y \; (\; \forall Z \; (\neg (c(X,Z) \land a(Z,Y)) \lor c(X,Y) \;) \\ &= \forall X \forall Y \forall Z \; (\; \neg c(X,Z) \lor \neg a(Z,Y) \lor c(X,Y) \;) \end{aligned}$$

$$H_3 = \neg (\exists X c(X,X))$$

= $\forall X \neg c(X,X)$

$$\neg Cl = \neg (\forall X \forall Y (\neg a(X,Y) \lor \neg a(Y,X)))$$
$$= \exists X \exists Y (a(X,Y) \land a(Y,X))$$

$$F = H_1 \wedge H_2 \wedge H_3 \wedge \neg C1$$

On doit renommer les variables :

$$F = \forall X_1 \forall Y_1 (\neg a(X_1, Y_1) \lor c(X_1, Y_1)) \land$$

$$\forall X_2 \forall Y_2 \forall Z_2 (\neg c(X_2, Z_2) \lor \neg a(Z_2, Y_2) \lor c(X_2, Y_2)) \land$$

$$\forall X_3 \neg c(X_3, X_3) \land$$

$$\exists X_4 \exists Y_4 (a(X_4, Y_4) \land a(Y_4, X_4))$$

On fait remonter les quantificateurs à gauche. On peut placer $\exists X_4 \exists Y_4$ en tête de formule car $a(X_4, Y_4) \land a(Y_4, X_4)$ ne dépend pas des variables quantifiés universellement :

$$F = \exists X_4 \exists Y_4 \forall X_1 \forall Y_1 \forall X_2 \forall Y_2 \forall Z_2 \forall X_3$$

$$(\neg a(X_1, Y_1) \lor c(X_1, Y_1)) \land$$

$$(\neg c(X_2, Z_2) \lor \neg a(Z_2, Y_2) \lor c(X_2, Y_2)) \land$$

4ème année IR Logique & Programmation Logique
$$\neg c(X_3,\!X_3) \qquad \land \\ (a(X_4,\!Y_4) \land a(Y_4,\!X_4))$$

Skolémisation:

On remplace toutes les occurrences de X_4 , et Y_4 respectivement par e_1 et e_2 (constantes). D'où l'ensemble des clauses :

$$\begin{split} S &= \{ \begin{array}{ll} (\neg a(X_1,Y_1) \vee c(X_1,Y_1)), & C_1 \\ (\neg c(X_2,Z_2) \vee \neg a(Z_2,Y_2) \vee c(X_2,Y_2)), & C_2 \\ \neg c(X_3,X_3), & C_3 \\ a(e_1,e_2), & C_4 \\ a(e_2,e_1) & C_5 \\ \end{array} \\ &= \{ C_1,C_4 \} & \xrightarrow{-----pr----->} & \overline{c(e_1,e_2)} & C_6 \\ & \sigma &= \{ e_1|X_1,e_2|Y_1 \} \\ & d'où & C_1{}^{\sigma} &= (\neg a(e_1,e_2) \vee c(e_1,e_2)) \text{ et } \\ & C_4{}^{\sigma} &= a(e_1,e_2) \\ \end{split} \\ &\{ C_2,C_3 \} & \xrightarrow{-----pr----->} & \overline{\neg c(X_3,Z_2) \vee \neg a(Z_2,X_3)} & C_7 \\ & \sigma &= \{ X_3|X_2,X_3|Y_2 \} \\ & d'où & C_2{}^{\sigma} &= \neg c(X_3,Z_2) \vee \neg a(Z_2,X_3) \vee c(X_3,X_3) \text{ et } \\ & C_3{}^{\sigma} &= \neg c(X_3,X_3) \\ & renommage : & \overline{\neg c(X_7,Z_7) \vee \neg a(Z_7,X_7)} & C_7 \\ \end{split}$$

Donc le raisonnement est correct.

----->

 $\{C_5, C_8\}$

Exercice 5 : Validité d'énoncés

Les bébés sont illogiques.

Nul n'est méprisé lorsqu'il peut venir à bout d'un crocodile.

aucune substitution nécessaire

(cqfd)

Logique & Programmation Logique

4^{ème} année IR

Les gens illogiques sont méprisés.

1. Base de 4 prédicats unaires

bebe(X)illogique(X)meprise(X)vrai si X est un bébévrai si X est illogiquevrai si X est meprise

vabc(X) vrai si X vient à bout d'un crocodile

2. Traduction des énoncés en formules de LP1.

```
\forall X \text{ (bebe(X)} => \text{illogique(X)})

\forall X \text{ (vabc(X)} => \neg \text{meprise(X)})

\forall X \text{ (illogique(X)} => \text{meprise(X)})
```

3. Traduction en clauses.

- C1 $\neg bebe(X) \lor illogique(X)$
- C2 $\neg vabc(Y) \lor \neg meprise(Y)$
- C3 $\neg illogique(Z) \lor meprise(Z)$

4. Saturation (trouver toutes les clauses possibles par résolution à partir de C1,C2, C3

- {C2, C3} ------- $\neg vabc(Y) \lor \neg illogique(Y)$ C5

Les personnes qui viennent à bout d'un crocodile ne sont pas illogiques. (ou bien les gens illogiques ne viennent pas à bout d'un crocodile).

(ou bien les gens qui viennent à bout d'un crocodile ne sont pas des bébés)