TP2 Risk Management

TP2: Hair Parra, Alessio Bressan, Ioan Catalin

2023-04-10

Libraries

Risk Management: European Options Portfolio

The objective is to implement (part of) the risk management framework for estimating the risk of a book of European call options by taking into account the risk drivers such as underlying and implied volatility.

Data

.. ..\$: NULL

.. ..\$: chr [1:3] "K" "tau" "IV"

##

Load the database Market. Identify the price of the **SP500**, the **VIX index**, the term structure of interest rates (current and past), and the traded options (calls and puts).

```
# load dataset into environment
load(file = here("data raw", "Market.rda"))
# reassign name and inspect structure of loaded data
mkt <- Market
summary(mkt)
##
         Length Class Mode
## sp500 3410
               xts
                       numeric
## vix
         3410
                       numeric
                xts
## rf
           14
                -none- numeric
## calls 1266
                -none- numeric
## puts 2250
                -none- numeric
str(mkt)
## List of 5
    $ sp500:An xts object on 2000-01-03 / 2013-09-10 containing:
              double [3410, 1]
##
              Date [3410] (TZ: "UTC")
##
     Index:
##
    $ vix : An xts object on 2000-01-03 / 2013-09-10 containing:
              double [3410, 1]
##
    Data:
              Date [3410] (TZ: "UTC")
##
     Index:
##
           : num [1:14, 1] 0.00071 0.00098 0.00128 0.00224 0.00342 ...
     ..- attr(*, "names")= chr [1:14] "0.00273972602739726" "0.0192307692307692" "0.0833333333333333333333" "0.25" .
##
    $ calls: num [1:422, 1:3] 1280 1370 1380 1400 1415 ...
##
     ..- attr(*, "dimnames")=List of 2
##
##
     .. ..$ : NULL
##
     ....$ : chr [1:3] "K" "tau" "IV"
    $ puts : num [1:750, 1:3] 1000 1025 1050 1075 1100 ...
##
     ..- attr(*, "dimnames")=List of 2
##
```

plot(sp500)
plot(vix)

Let's unpack these into the env. individually:

```
# unpack each of the elements in the mkt list
sp500 <- mkt$sp500
vix <- mkt$vix
Rf <- mkt$rf # risk-free rates
calls <- mkt$calls
puts <- mkt$puts

# assign colname for aesthetic
colnames(sp500) <- "sp500"
colnames(vix) <- "vix"</pre>
```

```
SP500 and VIX
By inspection, we observe that we the SP500 and VIX indices are contained in the sp500 and vix xts objects respectively.
# show head of both indexes
head(sp500)
##
                 sp500
## 2000-01-03 1455.22
## 2000-01-04 1399.42
## 2000-01-05 1402.11
## 2000-01-06 1403.45
## 2000-01-07 1441.47
## 2000-01-10 1457.60
head(vix)
##
## 2000-01-03 0.2421
## 2000-01-04 0.2701
## 2000-01-05 0.2641
## 2000-01-06 0.2573
## 2000-01-07 0.2172
## 2000-01-10 0.2171
par(mfrow = c(2,1))
# plot both series on top of each other
```


Interest Rates

The interest rates are given in the \$rf attribute. We can see that

Rf

```
## [,1]
## [1,] 0.0007099993
## [2,] 0.0009799908
## [3,] 0.0012799317
## [4,] 0.0022393730
## [5,] 0.0034170792
## [6,] 0.0045123559
## [7,] 0.0043206525
```

```
##
    [8,] 0.0064284968
##
    [9,] 0.0090558654
## [10,] 0.0117237591
## [11,] 0.0141196498
## [12,] 0.0176131823
## [13,] 0.0207989304
## [14,] 0.0203526819
## attr(,"names")
   [1] "0.00273972602739726" "0.0192307692307692"
                                                      "0.08333333333333333
##
                               "0.5"
    [4] "0.25"
                                                       "0.75"
##
    [7] "1"
                               "2"
                                                       "3"
##
## [10] "4"
                               "5"
                                                       "7"
## [13] "10"
                               "30"
```

These represent the interest rates at different maturities. The maturities are given as follows:

```
r_f <- as.vector(Rf)
names(r_f) \leftarrow c("1d","1w", "1m", "3m", "6m", "9m", "1y", "2y", "3y", "4y", "5y", "7y", "10y", "30y")
##
              1d
                            1w
                                           1m
                                                         Зm
                                                                        6m
                                                                                      9m
## 0.0007099993 0.0009799908 0.0012799317 0.0022393730 0.0034170792 0.0045123559
##
                            2y
                                           Зу
                                                         4y
                                                                       5у
              1y
## 0.0043206525 0.0064284968 0.0090558654 0.0117237591 0.0141196498 0.0176131823
##
             10y
                           30<sub>V</sub>
## 0.0207989304 0.0203526819
```

Further, we can pack different sources of information in a matrix:

```
# pack Rf into a matrix with rf, years, and days
rf_mat <- as.matrix(r_f)
rf_mat <- cbind(rf_mat, as.numeric(names(Rf)))
rf_mat <- cbind(rf_mat, rf_mat[, 2]*360)
colnames(rf_mat) <- c("rf", "years", "days")
rf_mat</pre>
```

```
##
                           years
                                          days
      0.0007099993
                     0.002739726
                                     0.9863014
## 1d
      0.0009799908
                     0.019230769
                                     6.9230769
## 1w
## 1m
      0.0012799317
                     0.083333333
                                    30.0000000
## 3m
      0.0022393730
                    0.250000000
                                    90.0000000
## 6m
      0.0034170792
                    0.500000000
                                   180.0000000
## 9m
      0.0045123559
                    0.750000000
                                   270.0000000
## 1y 0.0043206525 1.000000000
                                   360.0000000
## 2y 0.0064284968
                    2.000000000
                                   720.0000000
## 3y 0.0090558654
                    3.000000000
                                  1080.0000000
## 4y 0.0117237591 4.000000000
                                  1440.0000000
## 5y 0.0141196498 5.000000000
                                  1800.0000000
## 7y 0.0176131823 7.000000000
                                  2520.0000000
## 10y 0.0207989304 10.000000000
                                  3600.0000000
## 30y 0.0203526819 30.000000000 10800.0000000
```

Term Structure of Risk-Free Rates

Calls

The calls object displays the different values of K (Strike Price), τ (time to maturity) and $\sigma = IV$ (Implied Volatilty)

dim(calls)

[1] 422 3

head(calls)

```
## K tau IV

## [1,] 1280 0.02557005 0.7370370

## [2,] 1370 0.02557005 0.9691616

## [3,] 1380 0.02557005 0.9451401

## [4,] 1400 0.02557005 0.5274481

## [5,] 1415 0.02557005 0.5083375

## [6,] 1425 0.02557005 0.4820041
```

Add days column for convenience:

```
calls <- cbind(calls, calls[, "tau"]*250)
colnames(calls) <- c("K","tau", "IV", "tau_days")
head(calls)</pre>
```

```
## K tau IV tau_days
## [1,] 1280 0.02557005 0.7370370 6.392513
## [2,] 1370 0.02557005 0.9691616 6.392513
## [3,] 1380 0.02557005 0.9451401 6.392513
```

```
## [4,] 1400 0.02557005 0.5274481 6.392513
## [5,] 1415 0.02557005 0.5083375 6.392513
## [6,] 1425 0.02557005 0.4820041 6.392513
tail(calls)
##
             K
                                IV tau_days
                    tau
## [417,] 1925 2.269406 0.1605208 567.3514
## [418,] 1975 2.269406 0.1602093 567.3514
## [419,] 2000 2.269406 0.1559909 567.3514
## [420,] 2100 2.269406 0.1480259 567.3514
## [421,] 2500 2.269406 0.1441222 567.3514
## [422,] 3000 2.269406 0.1519319 567.3514
Puts
dim(puts)
             3
## [1] 750
head(puts)
##
                                ΙV
           K
                    tau
## [1,] 1000 0.02557005 1.0144250
## [2,] 1025 0.02557005 1.0083110
## [3,] 1050 0.02557005 0.9622093
## [4,] 1075 0.02557005 0.9170457
## [5,] 1100 0.02557005 0.8728757
## [6,] 1120 0.02557005 0.8381910
puts <- cbind(puts, puts[, "tau"]*250)</pre>
colnames(puts) <- c("K","tau", "IV", "tau_days")</pre>
head(puts)
                    tau
##
                                IV tau_days
## [1,] 1000 0.02557005 1.0144250 6.392513
## [2,] 1025 0.02557005 1.0083110 6.392513
## [3,] 1050 0.02557005 0.9622093 6.392513
## [4,] 1075 0.02557005 0.9170457 6.392513
## [5,] 1100 0.02557005 0.8728757 6.392513
## [6,] 1120 0.02557005 0.8381910 6.392513
tail(puts)
             K
                                IV tau_days
                    tau
## [745,] 1750 2.269406 0.1899088 567.3514
## [746,] 1800 2.269406 0.1698365 567.3514
## [747,] 1825 2.269406 0.1986200 567.3514
## [748,] 1850 2.269406 0.1853406 567.3514
## [749,] 2000 2.269406 0.1520378 567.3514
## [750,] 3000 2.269406 0.2759397 567.3514
```

Pricing a Portfolio of Options

Black-Scholes

Notation:

- S_t = Current value of underlying asset price
- K = Options strike price
- T = Option maturity (in years)
- t =time in years
- $\tau = T t =$ Time to maturity
- r =Risk-free rate
- y Dividend yield
- R = r y
- $\sigma =$ Implied volatility
- c =Price Call Option
- p = Price Put Option

Proposition 1 (Black-Scholes Model). Assume the notation before, and let $N(\cdot)$ be the cumulative standard normal distribution function. Under certain assumptions, the Black-Scholes models prices Call and Put options as follows:

$$\begin{cases} C(S_t, t) = Se^{yT}N(d_1) - Ke^{-r \times \tau}N(d_2), \\ \\ P(S_t, t) = Ke^{-r \times \tau}(1 - N(d_2)) - Se^{y \times T}(1 - N(d_1)), \end{cases}$$

where:

$$\begin{cases} d_1 = \frac{\ln\left(\frac{S_t}{K}\right) + \tau\left(r + \frac{\sigma^2}{2}\right)}{\sigma\sqrt{\tau}} \\ d_2 = d_1 - \sigma\sqrt{\tau} \end{cases}$$

, further the Put Option price corresponds to the **Put-Call parity**, given by:

$$C(S_t, t) + Ke^{-r \times \tau} = P(S_t, t) + S_t$$

Note As here we don't have dividends, then y = 0, and so

$$\begin{cases} C(S_t, t) = S_t N(d_1) - K e^{-r \times \tau} N(d_2), \\ \\ P(S_t, t) = K e^{-r \times \tau} (1 - N(d_2)) - S_t (1 - N(d_1)), \end{cases}$$

Implementation

```
get_d1 <- function(S_t, K, tau, r, sigma){
    ### Compute d1 for the Black-Scholes model
    # INPUTS

# S_t: Current value of underlying asset price

# K: Strike Price

# tau: T- t, where T=maturity, and t=current time

# r: risk-free rate

# sigma Implied volatility (i.e. sigma)

num <- (log(S_t/K) - tau*(r + 0.5*sigma**2)) # numerator
denom <- sigma * sqrt(tau) # denominator

return(num/denom)</pre>
```

```
}
get_d2 <- function(d1, sigma, tau){</pre>
  ### Compute d2 for the Black-Scholes model
  # INPUTS
      d1: d1 factor calculated by the get_d1 function
      tau: T- t, where T=maturity, and t=current time
      sigma Implied volatility (i.e. sigma)
 return(d1 - sigma * sqrt(tau))
}
# Function to implement the Black-Scholes model
black_scholes <- function(S_t, K, r, tau, sigma, put=FALSE){</pre>
  # Calculates a Call (or Option) price using Black-Scholes
  # INPUTS
      S_{-}t:
                [numeric] Current value of underlying asset price
      K:
               [numeric] Strike Price
               [numeric] risk-free rate
      r:
      tau:
  #
               [numeric] T- t, where T=maturity, and t=current time
  #
               [numeric] Implied volatility (i.e. sigma)
  #
      put:
               [logical] if TRUE, calculate a Put, if FALSE, calculate a Call.
  #
               FALSE by default (Call).
  #
  # OUTPUTS:
     P or C: [numeric] Option value according to Black-scholes
  # calculate d1 & d2
  d1 <- get_d1(S_t, K, tau, r, sigma)</pre>
  d2 <- get_d2(d1, sigma, tau)
  if (put==TRUE) {
    # calculate a Put option
    P \leftarrow K*exp(-r*tau)*(1 - pnorm(d2)) - S_t * (1 - pnorm(d1))
    P <- as.numeric(P)</pre>
    return( round(P,6))
  # else calculate a Call option (default)
  C \leftarrow S_t * pnorm(d1) - K*exp(-r*tau) * pnorm(d2)
  return(round(as.numeric(C),6))
}
# Test: Call Option
S_t = 1540
K = 1600
r = 0.03
tau = 10/360
sigma = 1.05
black_scholes(S_t, K, r, tau, sigma)
```

[1] 80.81672

Book of Options

Assume the following book of **European Call Options:**

```
1. 1x strike K = 1600 with maturity T = 20d
2. 1x strike K = 1605 with maturity T = 40d
```

3. **1x** strike K = 1800 with maturity T = 40d

Find the price of this book given the last underlying price and the last implied volatility (take the VIX for all options). Use Black-Scholes to price the options. Take the current term structure and linearly interpolate to find the corresponding rates. Use 360 days/year for the term structure and 250 days/year for the maturity of the options.

Nearest values

This function will obtain the two nearest values a, b for a number x in a vector v, such that a < x < b.

```
# Obtain the two nearest values of x in vec.
get_nearest<- function(x, vec){</pre>
  # find all the numbers that are bigger and smaller than x in vec
  bigger <- vec >= x
  smaller <- vec <= x</pre>
  # filter only values with TRUE
  bigger <- bigger[bigger == TRUE]</pre>
  smaller <- smaller[smaller == TRUE]</pre>
  # obtain the indexes for the left and upper bound
  a_idx <- length(smaller)</pre>
  b_idx <- length(smaller)+1</pre>
  # retrieve values from original vector
  a <- vec[a idx]
  b <- vec[b_idx]</pre>
  # return the retrieved values
  return(c(a,b))
}
# Test
days <- rf_mat[, "days"]</pre>
get_nearest(40, rf_mat[, "days"]) # nearest day values
## 1m 3m
## 30 90
```

Linear Interpolation

Given two known values (x_1, y_1) and (x_2, y_2) , we can estimate the y-value for some x-value with:

$$y = y_1 + \frac{(x - x_1)(y_2 - y_1)}{(x_2 - x_1)}$$

```
# Function to interpolate y given two points
interpolate <- function(x,x1=1,y1=1,x2=2,y2=2){
  y1 + (x-x1)*(y2-y1)/(x2-x1)
}</pre>
```

Finding the rates through interpolation

The **yield curve** for the given structure of interest rates can be modeled a function $r_f = f(x)$, where x is the number of years. Then, we can interapolate the values as follows:

```
# Interest rates
rf_mat
```

```
##
                          years
                                         days
                rf
                    0.002739726
## 1d 0.0007099993
                                    0.9863014
      0.0009799908
                    0.019230769
                                    6.9230769
## 1w
## 1m
      0.0012799317
                    0.083333333
                                   30.000000
                                   90.0000000
## 3m 0.0022393730
                    0.250000000
## 6m 0.0034170792 0.500000000
                                 180.0000000
## 9m 0.0045123559 0.750000000
                                  270.0000000
## 1y 0.0043206525 1.000000000
                                  360.0000000
## 2y 0.0064284968 2.000000000
                                  720.0000000
## 3y 0.0090558654 3.000000000 1080.0000000
## 4y 0.0117237591 4.000000000 1440.0000000
## 5y 0.0141196498 5.000000000 1800.0000000
## 7y 0.0176131823 7.000000000 2520.0000000
## 10y 0.0207989304 10.000000000 3600.0000000
## 30y 0.0203526819 30.000000000 10800.0000000
```

head(calls)

```
## K tau IV tau_days
## [1,] 1280 0.02557005 0.7370370 6.392513
## [2,] 1370 0.02557005 0.9691616 6.392513
## [3,] 1380 0.02557005 0.9451401 6.392513
## [4,] 1400 0.02557005 0.5274481 6.392513
## [5,] 1415 0.02557005 0.5083375 6.392513
## [6,] 1425 0.02557005 0.4820041 6.392513
```

ex.: 1x strike K = 1600 with maturity T = 20d

```
price_option <- function(T, K, calls, rf_mat, stock=NULL, S_t=NULL, IV = NULL, put=FALSE){</pre>
  # Calculates the price of an European option using input parameters
  # INPUTS
  #
      T:
                [numeric] maturity of option (in days)
  #
      K:
                [numeric] Strike Price
  #
      calls:
                [matrix] matrix containing information about tau and IV for different strike prices
  #
     rf_{mat}:
                    [matrix] matrix containing risk-free term structure
  #
      stock:
                 [xts OR zoo like object] object containing stock prices for a single stock
  #
      S_t:
                [numeric] Specific price at time t
  #
      IV:
             [float] Implied volatility of the underlying
  #
      put:
               [logical] if TRUE, calculate a Put, if FALSE, calculate a Call.
  #
               FALSE by default (Call).
  #
  # OUTPUTS:
  #
     LIST containing:
  #
        - P or C: [numeric] Option value according to Black-scholes and available information
  #
        - r_interp: [numeric] Interpolated risk-free rate given risk-free term structure
  #
        - calls [matrix] relevant set of calls information
        - rates [matrix] relevant set of risk-free rates used for the interpolation
  # Sanity check
  if(!is.matrix(calls) | !('tau_days' %in% colnames(calls)) ){
    stop("calls should be a matrix with columns c('K', 'tau', 'IV', 'tau_days')")
  }
  # Inputs
  sigma <- NA
```

```
tau = T/250 \# days \longrightarrow years
days_calls <- calls[,"tau_days"] # extract days column</pre>
days_rf <- rf_mat[, "days"] # extract days from rf_mat</pre>
# extract the calls values
ab <- get_nearest(T, days_calls) # search lower and upper nearest days to T
valid_days <- calls[, "tau_days"] == ab[1] | calls[, "tau_days"] == ab[2] # where match</pre>
calls_sub <- calls[ valid_days, ] # subset valid rows</pre>
calls_sub <- calls_sub[calls_sub[,"K"] == K, ] # subset matching K</pre>
# test whether matrix is empty (i.e. no matching K found)
if(all(is.na(calls sub))){
  warning("No values matching K in Calls data\n")
# extract interpolated risk rates
ab <- get_nearest(T, days_rf) # obtain nearest days to T available in rf_mat</pre>
valid_days_rf <- rf_mat[, "days"] == ab[1] | rf_mat[, "days"] == ab[2] # where match</pre>
rates <- rf_mat[valid_days_rf, ] # subset for valid days</pre>
# interpolate risk free rate for Option given maturity
r <- interpolate(tau,
                  x1=rates[1,2],
                 y1=rates[1,1],
                 x2=rates[2,2],
                 y2=rates[2,1])
# use provided sigma by default, else calculate from calls matrix
if(is.null(IV)){
  # retrieve implied volatility for option
  if(is.matrix(calls_sub)){
    # average between lower and upper values
    sigma <- (calls_sub[1, "IV"] + calls_sub[2, "IV"])/2</pre>
  } else{
    # retrive from numeric vector (single match)
    sigma <- calls_sub["IV"]</pre>
  }
}
else{
  # rename for convenience
  sigma <- IV
}
# if price at t is not provided
if(is.null(S_t) & !is.null(stock)){
  # retrieve last price for option from input index
  warning("Using last day's S_t from input index\n")
  S_t <- as.numeric( stock[length(stock)])</pre>
}
# Calculate Option price
if(put==TRUE){
 C <- NA
  P <- black_scholes(S_t, K, r, tau, sigma, put=TRUE)
}
else{
```

```
S_t = sp500[length(sp500)] # last price of underlying
IV = vix[length(vix)] # last volatility
## test: specific price
price_option(T=20, K=1600, calls = calls, rf_mat = rf_mat, stock = NA, S_t = S_t, IV = IV)
## $Call
## [1] 87.56885
##
## $Put
## [1] NA
##
## $S
## [1] 1683.99
##
## $K
## [1] 1600
##
## $r_interp
## [1] 0.001264335
##
## $calls
##
                    tau
                               IV tau_days
## [1,] 1600 0.02557005 0.1817481 6.392513
## [2,] 1600 0.10228238 0.1701946 25.570595
##
## $rates
##
                        years
                rf
                                    days
## 1w 0.0009799908 0.01923077 6.923077
## 1m 0.0012799317 0.08333333 30.000000
```

Next, using the function above we price the book of options given:

```
1. 1\mathbf{x} strike K = 1600 with maturity T = 20d
2. 1\mathbf{x} strike K = 1605 with maturity T = 40d
3. 1\mathbf{x} strike K = 1800 with maturity T = 40d
```

First, we retrieve the latest value for the underlying (SP500) and the latest implied volatility (VIX):

```
S_t = sp500[length(sp500)] # last price of underlying
IV = vix[length(vix)] # last volatility
```

Then, we price the options accordingly:

```
# First Call Option
price_option(T=20, K=1600, calls=calls, rf_mat=rf_mat, S_t = S_t, IV = IV)
## $Call
## [1] 87.56885
##
## $Put
## [1] NA
##
## $S
## [1] 1683.99
##
## $K
## [1] 1600
##
## $r_interp
## [1] 0.001264335
##
## $calls
##
                                IV tau_days
           K
                    tau
## [1,] 1600 0.02557005 0.1817481
## [2,] 1600 0.10228238 0.1701946 25.570595
##
## $rates
##
                rf
                         years
                                    days
## 1w 0.0009799908 0.01923077 6.923077
## 1m 0.0012799317 0.08333333 30.000000
# Second Call Option
price_option(T=40, K=1605, calls=calls, rf_mat=rf_mat, S_t = S_t, IV = IV)
## $Call
## [1] 90.22871
##
## $Put
   [1] NA
##
##
## $S
## [1] 1683.99
##
## $K
## [1] 1605
##
## $r_interp
## [1] 0.001721275
##
## $calls
##
              K
                                        ΙV
                          tau
                                               tau_days
                                 0.1676923
## 1605.0000000
                   0.1022824
                                             25.5705949
##
## $rates
##
                        years days
               rf
## 1m 0.001279932 0.08333333
                                30
## 3m 0.002239373 0.25000000
# Third Call Option
price_option(T=40, K=1800, calls=calls, rf_mat=rf_mat, S_t = S_t, IV = IV)
```

```
## $Call
## [1] 6.34395
##
## $Put
## [1] NA
##
## $S
  [1] 1683.99
##
##
## $K
## [1] 1800
##
## $r_interp
## [1] 0.001721275
##
## $calls
##
           K
                    tau
                                IV tau_days
## [1,] 1800 0.1022824 0.1057523 25.57059
   [2,] 1800 0.1789947 0.1044115 44.74868
##
## $rates
##
                rf
                        years days
## 1m 0.001279932 0.08333333
                                 30
## 3m 0.002239373 0.25000000
                                 90
```

Two risk drivers and copula-marginal model (Student-t and Gaussian Copula)

- 1. Compute the daily log-returns of the underlying stock
- 2. Assume the first invariant is generated using a Student-t distribution with $\nu = 10$ df and the second invariant is generated using a Student-t distribution with $\nu = 5$ df.
- 3. Assume the **normal copula** to merge the marginals.
- 4. Generate 10000 scenarios for the one-week ahead price for the underlying and the one-week ahead VIX value using the copula.
- 5. Determine the P&L distribution of the book of options, using the simulated values.
- 6. Take interpolated rates for the term structure.

Gaussian Copula with two Student-t marginals

A bivariate distribution H can be formed via a copula C from two marginal distributions with CDFs F and G via:

$$H(x,y) = C(F(x), G(y)) = C(F^{-1}(u), G^{-1}(u))$$

with density

$$h(x,y) = c(F(x), G(y))f(x)g(y)$$

The **Gaussian Copula** is given by:

$$C_{\rho}^{\text{Gauss}}(u,v) = \Phi_{\rho}(\Phi^{-1}(u), \Phi^{-1}(v)).$$

In this case, a Gaussian copula with two Student-t marginals with CDFs $t(\nu_1)$ with ν_1 degrees of freedom and $t(\nu_2)$ with ν_2 degrees of freedom is given by:

$$C_{\rho}^{\mathrm{Gauss}}(u,v) = \Phi_{\rho}(F_{\nu_1}^{-1}(u), F_{\nu_1}^{-1}(v)),$$

where F_{ν_1} and F_{ν_2} are their respective CDFs.

Log-returns

The **discrete returns** are given by:

$$R_{t+1} = \frac{P_{t+1} - P_t}{P_t}$$

and the next ahead log-returns are given by:

$$\log(R_{t+1}) = \log(P_{t+1} - P_t) - \log(P_t)$$

```
# load regruired libraries
library("PerformanceAnalytics")
# calculate returns
sp500_rets <- PerformanceAnalytics::CalculateReturns(sp500, method="log")
vix_rets <- PerformanceAnalytics::CalculateReturns(vix, method="log")</pre>
# remove first return
sp500_rets <- sp500_rets[-1]
vix_rets <- vix_rets[-1]</pre>
# remove nas
sp500_rets[is.na(sp500_rets)] <- 0</pre>
vix_rets[is.na(vix_rets)] <- 0</pre>
# display
head(sp500_rets)
##
                       sp500
## 2000-01-04 -0.0390992269
## 2000-01-05 0.0019203798
## 2000-01-06 0.0009552461
## 2000-01-07 0.0267299353
## 2000-01-10 0.0111278213
## 2000-01-11 -0.0131486343
head(vix_rets)
##
                         vix
## 2000-01-04 0.1094413969
## 2000-01-05 -0.0224644415
```

Generating the simulation scenarios

2000-01-06 -0.0260851000 ## 2000-01-07 -0.1694241312 ## 2000-01-10 -0.0004605112 ## 2000-01-11 0.0357423253

Assumptions: - Marginal Student-t distributions - Disregard time dependence in the bootstrapping process

```
# Load required libraries
library("fGarch")
library("MASS")
library("copula")
```

Warning: package 'copula' was built under R version 4.2.3

```
library("Matrix")
# random seed for replication
set.seed(123)
#################################
### Setup & Initialization ###
################################
# Simulation parameters
n_sim = 10 # set number of simulations
n_ahead = 5 # days aheade to produce samples
# preallocate matrices to store simulations
sim_rets_sp500 <- matrix(NA, nrow = n_sim, ncol=5)</pre>
sim_rets_vix <- matrix(NA, nrow = n_sim, ncol=5)</pre>
# assign days ahead
colnames(sim_rets_sp500) <- c("T+1", "T+2", "T+3", "T+4", "T+5")
colnames(sim_rets_vix) <- c("T+1", "T+2", "T+3", "T+4", "T+5")</pre>
# ############################
# ### Fitting the model ###
# ############################
# ## Fit a Gaussian Copula to model the dependence
#
# # calculate the mean vector
# mu <- c(mean(sp500_rets), mean(vix_rets))</pre>
# # calculate the covariance
# r <- cor(sp500_rets, vix_rets)[[1]] # correlation coefficient
# siq <- c(sd(sp500_rets), sd(vix_rets)) # standard deviation
\#R \leftarrow matrix(data = c(1, r, r, 1), \#correlation matrix)
               nrow = 2,
#
               ncol = 2,
               byrow = TRUE)
# Sigma <- diag(sig) %*% R %*% diag(sig) # covariance matrix
\# Sigma <- (Sigma + t(Sigma)) / 2
# Sigma <- as.matrix(nearPD(Sigma)$mat)
# ##################################
# ### Running the simulation ###
# #################################
# # perform simulations
# for(i in 1:n_sim){
#
    # Sample 5-days ahead from Gaussian Copula
    Z \leftarrow murnorm(n = n\_ahead, mu = mu, Sigma = Sigma)
    # Draws from Gaussian Copula
    U1 \leftarrow pnorm(q = Z[, 1], mu[1], sig[1]) \# first dimension (sp500)
    U2 \leftarrow pnorm(q = Z[, 2], mu[2], sig[2]) # second dimension (vix)
    # Model marginals with student-t distributions & sample
   \# X1 \leftarrow qt(U1, df = 10) \# simulated sp500
    \# X2 \leftarrow qt(U2, df = 5) \# simulated vix
    X1 \leftarrow qstd(U1, mean = mu[1], sd = sig[1], nu = 10) \# simulated sp500
```

```
#
    X2 \leftarrow qstd(U2, mean = mu[2], sd = sig[2], nu = 5) # simulated vix
#
#
    # store simulation of log return in matrix
#
    sim_rets_sp500[i, ] <- X1
#
   sim_rets_vix[i,] \leftarrow X2
# }
# # preview of simulated log returns
# head(sim_rets_sp500)
# head(sim_rets_vix)
# Load required libraries
library("fGarch")
library("MASS")
library("copula")
library("Matrix")
# random seed for replication
set.seed(123)
# convert to vector since fitting without dependence
sp500_rets_vec <- as.vector(sp500_rets)</pre>
vix_rets_vec <- as.vector(vix_rets)</pre>
# calculate means and sds for both indices
mu <- c(mean(sp500_rets_vec), mean(vix_rets_vec))</pre>
sigma <- c(sd(sp500_rets_vec), sd(vix_rets_vec))</pre>
# display
## [1] 0.00004283042 -0.00014976541
sigma
## [1] 0.01332592 0.06367330
## Fit marginals by MLE
# Student-t for sp500
fit1 <- suppressWarnings(</pre>
  fitdistr(x = sp500_rets_vec,
           densfun = dstd,
           start = list(mean = 0, sd = 1, nu = 10))
  )
theta1 <- fit1$estimate #extract fitted parameters
\# Student-t for vix
fit2 <- suppressWarnings(</pre>
 fitdistr(x = vix_rets_vec,
           densfun = dstd,
           start = list(mean = 0, sd = 1, nu = 5))
  )
theta2 <- fit2$estimate # extract fitted parameters
# display parameters
theta1
```

```
## mean sd nu
## 0.0004414879 0.0156603739 2.6953920404
```

theta2


```
# Obtain the best rho for the Gaussian Copula
C <- normalCopula(dim = 2)
fit <- fitCopula(C, data = U, method = "ml")
fit

## Call: fitCopula(C, data = U, ... = pairlist(method = "ml"))
## Fit based on "maximum likelihood" and 3409 2-dimensional observations.
## Copula: normalCopula
## rho.1</pre>
```

```
## -0.7984
## The maximized loglikelihood is 1494
## Optimization converged
# seed for replication
set.seed(420)
# Simulation parameters
n_sim = 10000 # set number of simulations
# n_ahead = 5 # days ahead to produce samples
# produce simulations from copula
U_sim <- rCopula(n_sim, fit@copula)</pre>
# use copula U_sim to reproduce the marginals with student-t distr
\# rets1_sim <- qstd(U_sim[,1], mean = mu[1], sd = sigma[1], nu = theta1[3]) \# sp500
\# rets2\_sim \leftarrow qstd(U\_sim[,2], mean = mu[1], sd = sigma[1], nu = theta2[3]) \# vix
rets1_sim <- qstd(U_sim[,1], mean = mu[1], sd = sigma[1], nu = 10) # sp500
rets2_sim <- qstd(U_sim[,2], mean = mu[1], sd = sigma[1], nu = 5) # vix
rets_sim <- cbind(rets1_sim, rets2_sim)</pre>
# visualize
par(mfrow = c(2,2))
hist(rets1_sim, nclass=50)
hist(rets2_sim, nclass=50)
hist(rets_sim, nclass = round(10 * log(n_sim)))
```


-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 rets1_sim

Histogram of rets2_sim

Histogram of rets_sim


```
# random seed for replication
set.seed(69)
##################################
### Setup & Initialization ###
##################################
# Simulation parameters
n_sim = 10000 # set number of simulations
n_ahead = 5 # days ahead to produce samples
# preallocate matrices to store simulations
sim_rets_sp500 <- matrix(NA, nrow = n_sim, ncol=5)</pre>
sim_rets_vix <- matrix(NA, nrow = n_sim, ncol=5)</pre>
# assign days ahead
colnames(sim_rets_sp500) <- c("T+1", "T+2", "T+3", "T+4", "T+5")</pre>
colnames(sim_rets_vix) <- c("T+1", "T+2", "T+3", "T+4", "T+5")
#################################
### Running the simulation ###
################################
# perform n head days of n sim scenarios
for(t in 1:n_ahead){
  # Sample 5-days ahead from Gaussian Copula
  U_sim <- rCopula(n_sim, fit@copula)</pre>
  # use copula U_sim to reproduce the marginals quantiles F^{-1}(u) with student-t distr
  rets1_sim <- qstd(U_sim[,1], mean = theta1[1], sd = theta1[2], nu = 10) # sp500
  rets2\_sim \leftarrow qstd(U\_sim[,2], mean = theta2[1], sd = theta2[2], nu = 5) \# vix
  \# rets1\_sim \leftarrow qt(U\_sim[,1], df = 10) \# sp500
  \# rets2\_sim \leftarrow qt(U\_sim[,2], df = 5) \# vix
  rets_sim <- cbind(rets1_sim, rets2_sim)</pre>
  # store simulation of log return in matrix
  sim_rets_sp500[ ,t] <- rets1_sim</pre>
  sim_rets_vix[ ,t] <- rets2_sim</pre>
# preview of simulated log returns
head(sim_rets_sp500)
                                T+2
##
                  T+1
                                             T+3
                                                           T+4
                                                                          T+5
## [1,] -0.0009645126 0.0158554079 0.015383149 -0.0174310226 0.0155476192
## [2,] 0.0022227010 0.0178616966 0.003249986 0.0015075435 0.0004961551
## [3,] -0.0202696762 0.0070645564 0.011080134 -0.0163632659 0.0039542793
## [4,] 0.0267344996 0.0190648399 -0.004275895 0.0312856876 0.0004778219
## [6,] -0.0039970206 -0.0002199501 -0.003419139 -0.0004051185 0.0371441443
head(sim_rets_vix)
##
                T+1
                             T+2
                                          T+3
## [1,] 0.01231074 0.006644294 -0.005354024 0.01255679 -0.04752175
## [2,] -0.04109607 -0.073223553 -0.020098934 -0.03207569 -0.06300583
## [3,] 0.08429964 -0.030662396 -0.071921523 0.10934242 -0.05145715
```

Computing Prices from Returns

Next, we crate a function to forecast the 5 day ahead prices from the returns. Since:

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}}$$

$$\implies R_t = \frac{P_t}{P_{t-1}} - 1$$

$$\implies \log(R_t) = \log\left(\frac{P_t}{P_{t-1}}\right)$$

$$\implies \log(R_t) = \log(P_t) - \log(P_{t-1})$$

$$\implies \log(P_t) = \log(R_t) + \log(P_{t-1})$$

$$\implies P_t = \exp(\log(R_t) + \log(P_{t-1}))$$

$$\implies P_{t+1} = \exp(\log(R_{t+1}) + \log(P_t))$$

Since:

$$\exp\log(R_t) + \log(P_{t-1}) = \log(R_t \cdot P_{t-1})$$

```
# Obtain Initial values (last value of simulation)
spT <- sp500[length(sp500)][[1]]</pre>
vixT <- vix[length(vix)][[1]]</pre>
# Initialize empty matrices for the simulated sp500 and vix values
sim_val_mats <- initialize_sim_mats(sim_rets_sp500,</pre>
                                          lnames = c("sp500", "vix"), # <- this function comes from Utils.R</pre>
                                          num_mats = 2
# Initialize the first prices
sim val mats$sp500[, 1] <- f next Pt(spT, sim rets sp500[, 1])
sim_val_mats$vix[, 1] <- f_next_Pt(vixT, sim_rets_vix[, 1])</pre>
# for each day ahead
for(t in 2:n_ahead){
  # obtain the values for P_{t-1}
  Pt_prev_sp500 <- sim_val_mats$sp500[, t-1]
  Pt_prev_vix <- sim_val_mats$vix[, t-1]</pre>
  # extract current returns R_{t}
  Rt_sp500 <- sim_rets_sp500[, t]</pre>
  Rt_vix <- sim_rets_vix[, t]</pre>
  # compute and assign next price ahead using current returns
  sim_val_mats$sp500[, t] <- f_next_Pt(Pt_prev_sp500, Rt_sp500)</pre>
  sim_val_mats$vix[, t] <- f_next_Pt(Pt_prev_vix, Rt_vix)</pre>
}
# unpack matrices
sim_price_sp500 <- sim_val_mats$sp500</pre>
sim_vol_vix <- sim_val_mats$vix
```

compare simulated returns with the price head(sim_rets_sp500) ## T+1 T+2 T+3 T+4 T+5 ## [1,] -0.0009645126 0.0158554079 0.015383149 -0.0174310226 0.0155476192 **##** [2,] 0.0022227010 0.0178616966 0.003249986 0.0015075435 0.0004961551 ## [3,] -0.0202696762 0.0070645564 0.011080134 -0.0163632659 0.0039542793 ## [4,] 0.0267344996 0.0190648399 -0.004275895 0.0312856876 0.0004778219 ## [6,] -0.0039970206 -0.0002199501 -0.003419139 -0.0004051185 0.0371441443 head(sim_price_sp500) ## T+1 T+2 T+3 T+4 T+5 ## 1 1682.367 1709.254 1735.751 1705.757 1732.485 ## 2 1687.737 1718.154 1723.747 1726.347 1727.204 ## 3 1650.200 1661.899 1680.415 1653.142 1659.692 ## 4 1729.618 1762.909 1755.387 1811.174 1812.039 ## 5 1676.414 1677.901 1669.054 1684.111 1663.651 ## 6 1677.272 1676.904 1671.180 1670.503 1733.719 # compare simualted log rets with volatility head(sim_rets_vix) ## T+1 T+2 T+3 T+4 T+5 0.01255679 -0.04752175 ## [1,] 0.01231074 0.006644294 -0.005354024 ## [2,] -0.04109607 -0.073223553 -0.020098934 -0.03207569 -0.06300583 0.08429964 -0.030662396 -0.071921523 0.10934242 -0.05145715 ## [4,] -0.08896620 -0.032518583 0.020560914 -0.12085679 -0.02129170 ## [5,] -0.05179948 -0.017505235 0.022004416 -0.04412445 0.03046923 ## [6,] 0.01708910 -0.034281364 0.032441799 0.04104414 -0.11119617 head(sim_vol_vix) ## T+1 T+2 T+3 T+4T+5## 1 0.1470998 0.1480804 0.1472897 0.1491509 0.1422287 ## 2 0.1394498 0.1296037 0.1270248 0.1230150 0.1155035

```
## T+1 T+2 T+3 T+4 T+5
## 1 0.1470998 0.1480804 0.1472897 0.1491509 0.1422287
## 2 0.1394498 0.1296037 0.1270248 0.1230150 0.1155035
## 3 0.1580798 0.1533063 0.1426674 0.1591518 0.1511695
## 4 0.1329316 0.1286783 0.1313515 0.1163985 0.1139464
## 5 0.1379651 0.1355711 0.1385873 0.1326051 0.1367077
## 6 0.1478044 0.1428233 0.1475327 0.1537141 0.1375377
```

Pricing the simulation scenarios

Recall the initial (call) options:

```
1. \mathbf{1x} strike K = 1600 with maturity T = 20d
2. \mathbf{1x} strike K = 1605 with maturity T = 40d
3. \mathbf{1x} strike K = 1800 with maturity T = 40d
```

Option Pricing of Simulated Values

Next, we calculate the price of the book of options for the simulated values.

```
# random seed for replication
set.seed(123)
# Initialize empty matrices to store the simulated option prices (aka premiums)
opt_price_mats <- initialize_sim_mats(sim_price_sp500,
                                        lnames = c("opt1", "opt2", "opt3"),
                                        num mats = 3
                                        )
# maturities for each of the options
T1 <- 20
T2 <- 40
T3 <- 40
# Strikes for the options
K1 <- 1600
K2 <- 1605
K3 <- 1800
# looop through simulated prices (n_ahead days)
for(t in 1:n_ahead){
  # extract simulated prices for sp500 at T+t
  prices_t <- sim_price_sp500[, t]</pre>
  # extract implied volatility from vix at T+t
  vols_t <- sim_vol_vix[, t]</pre>
  # price first Call option
  c1_vec <- prc_opt(T1-t, K1, calls, rf_mat, prices_t, vols_t)</pre>
  opt_price_mats$opt1[ ,t] <- c1_vec</pre>
  # print(cbind(prices_t, vols_t, c1_vec)) # <-- uncomment for debugging</pre>
  # price first Call option
  c2_vec <- prc_opt(T2-t, K2, calls, rf_mat, prices_t, vols_t)</pre>
  opt_price_mats$opt2[ ,t] <- c2_vec</pre>
  # price first Call option
  c3_vec <- prc_opt(T3-t, K3, calls, rf_mat, prices_t, vols_t)</pre>
  opt_price_mats$opt3[ ,t] <- c3_vec</pre>
}
# overview of dataframes
head(opt_price_mats$opt1)
                      T+2
                                T+3
                                          T+4
##
           T+1
## 1 85.93966 110.69740 136.26860 107.01790 132.81728
## 2 90.24098 118.71906 124.10892 126.59144 127.36517
## 3 60.25326 68.45593 83.19676 60.93087 64.90429
## 4 130.13155 163.09257 155.57730 211.29567 212.15179
## 5 79.84446 80.69383 72.68668 85.73559 67.03312
## 6 81.47264 80.36234 75.33654 74.88091 133.99041
head(opt_price_mats$opt2)
##
                      T+2
                                T+3
                                          T+4
                                                     T+5
           T+1
## 1 88.90248 111.24440 134.68187 107.77097 130.79380
## 2 91.92460 116.94248 121.69327 123.66209 123.86035
```

```
## 3 67.26520 74.03584 85.82386 68.09352 70.64490
## 4 128.02224 159.29957 152.04729 206.61873 207.44600
## 5 82.45366 82.87864 76.06279 86.86910 70.78117
## 6 84.99456 83.39449 79.42470 79.69059 131.55401
```

head(opt_price_mats\$opt3)

```
## T+1 T+2 T+3 T+4 T+5
## 1 6.123012 10.265706 15.823742 9.093513 13.050811
## 2 5.750180 8.622494 8.911881 8.380779 6.947708
## 3 4.015923 4.362723 4.812672 3.739971 3.319742
## 4 11.997642 20.224478 17.932947 37.896755 37.291731
## 5 4.272045 3.942236 3.273257 3.813760 2.371687
## 6 5.586715 4.680559 4.407937 4.806311 12.402286
```

Distribution of the Profit and Loss for the Book Of Options

Recall the profit functions for European options:

Parameters

Parameters: - S: Spot price (current) - S_0 : Spot price at the beginnin of the option - S_T : Spot price at maturity - T: Maturity of option - K: Strike price - c: Price of Call option - p: Price of Put option

Profit at Maturity

The profit functions of a long call and a long put are given by:

$$\pi^{\text{Long Call}} = \max(S_T - K, 0) - c$$
$$\pi^{\text{Long Put}} = \max(K - S_T, 0) - p$$

Calculating the profits

For each of the simulated prices and resulting premiums, we want to calculate the profit generated at each simulation timestep:

```
# Matrices of profit and loss for each of the options simulations
PL_mats <- initialize_sim_mats(sim_price_sp500,
                                        lnames = c("PL1", "PL2", "PL3"),
                                        num mats = 3
                                        )
# Calculate profit for all simulated options at each day ahead
for(t in 1:n_ahead){
  #spot price of underlying at day T+t
  spot <- sim_price_sp500[, t]</pre>
  # Option profit for K1 at time T+t with premiums c1
  c1 <- opt_price_mats$opt1[, t] # extract the premiums</pre>
  PL_mats$PL1[,t] <- option_profit(S=spot, K=K1, c=c1)$call_profit
  # Option profit for K1 at time T+t with premiums c1
  c2 <- opt_price_mats$opt2[, t] # extract the premiums</pre>
  PL_mats$PL2[,t] <- option_profit(S=spot, K=K2, c=c2)$call_profit
  # Option profit for K1 at time T+t with premiums c1
```

```
c3 <- opt_price_mats$opt3[, t] # extract the premiums</pre>
  PL_mats$PL3[,t] <- option_profit(S=spot, K=K2, c=c3)$call_profit
}
# display profit matrices
head(PL_mats$PL1)
                   T+2
                            T+3
                                      T+4
##
          T+1
## 1 156.9949 187.2824 204.0350 281.2273 266.0588
## 2 152.6936 179.2607 216.1946 261.6537 271.5109
## 3 182.6813 229.5238 257.1068 327.3143 333.9718
## 4 112.8030 134.8872 184.7263 176.9495 186.7242
## 5 163.0901 217.2859 267.6169 302.5096 331.8429
## 6 161.4620 217.6174 264.9670 313.3643 264.8856
head(PL_mats$PL2)
##
          T+1
                   T+2
                            T+3
                                      T+4
                                               T+5
## 1 149.0321 181.7354 200.6217 275.4742 263.0822
## 2 146.0100 176.0373 213.6103 259.5831 270.0157
## 3 170.6694 218.9439 249.4797 315.1517 323.2311
## 4 109.9124 133.6802 183.2563 176.6265 186.4300
## 5 155.4809 210.1011 259.2408 296.3761 323.0949
## 6 152.9400 209.5853 255.8789 303.5546 262.3220
head(PL_mats$PL3)
                                               T+5
##
          T+1
                   T+2
                            T+3
                                      T+4
## 1 231.8116 282.7141 319.4798 374.1517 380.8252
## 2 232.1844 284.3573 326.3917 374.8644 386.9283
## 3 233.9187 288.6170 330.4909 379.5052 390.5563
## 4 225.9369 272.7553 317.3706 345.3484 356.5843
## 5 233.6625 289.0375 332.0303 379.4314 391.5044
## 6 232.3479 288.2992 330.8956 378.4389 381.4738
```

Distribution of Options P/L

Next, using all the simulated profits and losses for each of the options, we display a histogram for the distribution for each of the options, for the aggregated 5 days of simulation:

```
# flatten the matrices 5-days ahead simulated P/L for the three options
sim_pl_opt1 <- as.vector(PL_mats$PL1)
sim_pl_opt2 <- as.vector(PL_mats$PL2)
sim_pl_opt3 <- as.vector(PL_mats$PL3)

# Compute the 95% VaR and 95% ES
opt1_VaR_ES <- f_VaR_ES(sim_pl_opt1, alpha = 0.05)
opt2_VaR_ES <- f_VaR_ES(sim_pl_opt2, alpha = 0.05)
opt3_VaR_ES <- f_VaR_ES(sim_pl_opt3, alpha = 0.05)

# plot the distribution for each of the options
par(mfrow = c(2,2))
hist(sim_pl_opt1, nclass = round(10 * log(n_sim)), probability = TRUE)
lines(density(sim_pl_opt1), lwd=2, col="blue")
abline(v=opt1_VaR_ES$VaR, col="red") # 95% VaR
abline(v=opt1_VaR_ES$ES, col="black") # expected shortfall
rug(sim_pl_opt1)</pre>
```

```
hist(sim_pl_opt2, nclass = round(10 * log(n_sim)), probability = TRUE)
lines(density(sim_pl_opt2), lwd=2, col="blue")
abline(v=opt2_VaR_ES$VaR, col="red") # 95% VaR
abline(v=opt2_VaR_ES$ES, col="black") # expected shortfall
rug(sim_pl_opt2)

hist(sim_pl_opt3, nclass = round(10 * log(n_sim)), probability = TRUE)
lines(density(sim_pl_opt3), lwd=2, col="blue")
abline(v=opt3_VaR_ES$VaR, col="red") # 95% VaR
abline(v=opt3_VaR_ES$ES, col="black") # expected shortfall
rug(sim_pl_opt3)
```

Histogram of sim_pl_opt1

Density 0.000 0.0

Histogram of sim_pl_opt2

Histogram of sim_pl_opt3

VaR95

Definition

For a random variable X, the Value-at-Risk (VaR) at level α is defined as the α -lower quantile of the distribution of X, thus:

$$VaR_X(\alpha) = F_X^{-1}(1-\alpha)$$

First Option

```
opt1_VaR_ES$VaR # first option

## [1] 137.2302

opt2_VaR_ES$VaR # second doption

## [1] 132.5263

opt3_VaR_ES$VaR # third option
```

[1] 230.0578

ES95

Expected shortfall is calculated by averaging all of the returns in the distribution that are worse than the VAR of the portfolio at a given level of confidence.

display opt1_VaR_ES\$ES

[1] 121.0392

opt2_VaR_ES\$ES

[1] 117.6614

opt3_VaR_ES\$ES

[1] 227.4093