2.
$$R_{\lambda}(g) = \begin{bmatrix} \frac{3-\lambda}{1} & \frac{3-\lambda}{2} & \frac{3}{2} \\ 0 & -1 & -\lambda \end{bmatrix} = (3-\lambda) \begin{bmatrix} \frac{3-\lambda}{1} & \frac{3}{2} \\ -1 & -\lambda \end{bmatrix} = (3-\lambda)(\lambda-1)(\lambda-2)$$

Let $R_{\lambda}(g) = 0$, g have eigenvalues $\lambda_{1} = 1$, $\lambda_{2} = 2$, $\lambda_{3} = 3$.

(ii) Then find eigenvectors for each eigenvalue:

For $\lambda_{1} = 1$, $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \cdot V_{1} = 0$, just pick $V_{1} = \begin{bmatrix} 0 & 0 \\ -1 & 1 \end{bmatrix}$

For $\lambda_{2} = 2$, $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & -1 & -2 \end{bmatrix} \cdot V_{2} = 0$, pick $V_{3} = \begin{bmatrix} 0 \\ -2 \\ 3 \\ 1 \end{bmatrix}$

For $\lambda_{3} = 3$, $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & -1 & -3 \end{bmatrix} \cdot V_{3} = 0$, pick $V_{3} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$

So, let $h = \begin{bmatrix} 0 & 0 & -2 \\ -1 & -2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, so $h^{-1} = \begin{bmatrix} -\frac{1}{2} & 1 & 2 \\ 1 & -1 & -1 \\ -\frac{1}{2} & 0 & 0 \end{bmatrix}$

Check $h^{-1}gh = \begin{bmatrix} -\frac{1}{2} & 1 & 2 \\ 1 & -1 & -1 \\ -\frac{1}{2} & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 & 0 \\ 1 & 3 & 2 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 2 \\ -1 & -23 \\ 0 & -1 & 0 \end{bmatrix}$ is diagonal matrix.

3. Since g is a upper triangular matrix, eigenvalues are the entries of the diagonal, for g, g have eigenvalue $\chi=3$ with multiplicity g.

Then calculate $g_{\lambda}=g-\lambda I=\begin{bmatrix}0&1&1&0\\0&0&1&1\\0&0&0&0\end{bmatrix}$ $g_{\lambda}^2=\begin{bmatrix}0&0&1&2\\0&0&0&0\\0&0&0&0\end{bmatrix}$ $g_{\lambda}^3=\begin{bmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\end{bmatrix}$ $g_{\lambda}^4=0$ So $d_{3,1}=(4-3-1)$, $d_{3,2}=(4-2-2)$, $d_{3,3}=(4-1-3)$, $d_{3,4}=(4-0-4)$ which gives $0< C_4=C_3=C_2=C_1=1$ There exists 1 jump at j=4, gives j=4 jump j=4. Gives j=4 jump j=4 is j=4. Gives j=4 is j=4. Give

4. (i)
$$g_{z}$$
 can be viewed as block matrix $g = \begin{bmatrix} A & B \\ B & A \end{bmatrix}$ where $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}$ we can pick $I_{v} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ where $I_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = -I$ then check $I_{v} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} B & A \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} A & B \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} B & A \\ -1 & B \end{bmatrix}$ and $I_{v} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} A & B \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} B & A \\ -1 & B \end{bmatrix}$

As g. Iv = Iv-g and Iv=-I, we can say T can be viewed as a linear operator for complex vector space Va.

(iii) For linear operator T, $T(e_1,e_2,ie_1,ie_2) = (e_1,e_2,ie_1,ie_2)\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & \lambda & -2 & 0 \\ 0 & -1 & 3 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}$ So $T(e_1) = 3e_1 + 2ie_2$ and $T(e_3) = -ie_1 + 2e_2$ because T can be viewed as a linear operator for complex vector space,

so $Te(e_1e_2) = (e_1e_3) - g_e$, as $T(e_1) = 3e_1 + 2ie_2$ and $T(e_3) = -ie_1 + 2e_2$ gives $g_e = \begin{bmatrix} 3 & -i \\ 2i & 2 \end{bmatrix}$, $P_{\lambda}(g_e) = \begin{bmatrix} 3 - \lambda & -i \\ 2i & 2 - \lambda \end{bmatrix} = (\lambda - i)(\lambda - 4)$, eigenvalues are I and I (both multiplicity I).

(iii)
$$P_{\lambda}(J_{R}) = \begin{vmatrix} 3-\lambda & 0 & 0 & 1 \\ 0 & 2-\lambda & -2 & 0 \\ 0 & -1 & 3-\lambda & 0 \\ 0 & -1 & 3-\lambda & 0 \\ 0 & 0 & 2-\lambda \end{vmatrix} = (3-\lambda) \begin{vmatrix} 2-\lambda & -2 & 0 \\ -1 & 3-\lambda & 0 \\ 0 & 0 & 2-\lambda \end{vmatrix} - \begin{vmatrix} 0 & 2-\lambda & -2 \\ 0 & -1 & 3-\lambda \\ 2 & 0 & 0 \end{vmatrix}$$

$$= (3-\lambda) (2-\lambda) \begin{vmatrix} 2-\lambda & -2 \\ -1 & 3-\lambda \end{vmatrix} - 2 \begin{vmatrix} 2-\lambda & -2 \\ -1 & 3-\lambda \end{vmatrix}$$

$$= (\lambda^{2}-5\lambda+6-2) \cdot (\lambda^{2}-5\lambda+6-2)$$

$$= (\lambda^{2}-5\lambda+4)^{2}$$

$$= (\lambda-1)^{2}(\lambda-4)^{2}$$

So eigenvalues for gr are 1=1 (multiplicity 2) and 1=4 (multiplicity 2)