

Motivations

Suppose that you need to print a string (e.g., "Welcome to Java!") a hundred times. It would be tedious to have to write the following statement a hundred times:

System.out.println("Welcome to Java!");

So, how do you solve this problem?

Opening Problem

Problem:

100 times

```
System.out.println("Welcome to Java!");
```

Introducing while Loops

```
int count = 0;
while (count < 100) {
   System.out.println("Welcome to Java");
   count++;
}</pre>
```

while Loop Flow Chart

```
int count = 0;
while (loop-continuation-condition) {
                                                         while (count < 100) {
 // loop-body;
                                                           System.out.println("Welcome to Java!");
 Statement(s);
                                                           count++;
                                                                      count = 0:
                         Loop
                                     false
                                                                                   false
                      Continuation
                                                                    (count < 100)?
                       Condition?
                        true
                                                                      true
                                                           System.out.println("Welcome to Java!");
                       Statement(s)
```

count++;

(**B**)

(loop body)

(**A**)

Trace while Loop

int count = 0;
while (count < 2) {
 System.out.println("Welcome to Java!");
 count++;
}</pre>

Initialize count


```
int count = 0;
while (count < 2) {
   System.out.println("Welcome to Java!");
   count++;
}</pre>
```

(count < 2) is true


```
int count = 0;
while (count < 2) {
    System.out.println("Welcome to Java!");
    count++;
}</pre>
```

Print Welcome to Java


```
int count = 0;
while (count < 2) {
   System.out.println("Welcome to Java!")
   count++;
}</pre>
```

Increase count by 1 count is 1 now


```
int count = 0;
while (count < 2) {
   System.out.println("Welcome to Java!");
   count++;
}</pre>
```

(count < 2) is still true since count is 1


```
int count = 0;
while (count < 2) {
    System.out.println("Welcome to Java!");
    count++;
}</pre>
```

Print Welcome to Java


```
int count = 0;
while (count < 2) {
   System.out.println("Welcome to Java!"),
   count++;
}</pre>
```

Increase count by 1 count is 2 now


```
int count = 0;
while (count < 2) {
   System.out.println("Welcome to Java!");
   count++;
}</pre>
```

(count < 2) is false since count is 2 now

Trace while Loop

```
int count = 0;
while (count < 2) {
   System.out.println("Welcome to Java!"):
   count++;
}</pre>
```

The loop exits. Execute the next statement after the loop.

Problem: Guessing Numbers

Write a program that randomly generates an integer between 0 and 100, inclusive. The program prompts the user to enter a number continuously until the number matches the randomly generated number. For each user input, the program tells the user whether the input is too low or too high, so the user can choose the next input intelligently. Here is a sample run:

<u>GuessNumberOneTime</u>

Run

GuessNumber

Problem: An Advanced Math Learning Tool

The Math subtraction learning tool program generates just one question for each run. You can use a loop to generate questions repeatedly. This example gives a program that generates five questions and reports the number of the correct answers after a student answers all five questions.

SubtractionQuizLoop

Ending a Loop with a Sentinel Value

Often the number of times a loop is executed is not predetermined. You may use an input value to signify the end of the loop. Such a value is known as a *sentinel value*.

Write a program that reads and calculates the sum of an unspecified number of integers. The input 0 signifies the end of the input.

SentinelValue

Caution

Don't use floating-point values for equality checking in a loop control. Since floating-point values are approximations for some values, using them could result in imprecise counter values and inaccurate results. Consider the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

```
double item = 1; double sum = 0;
while (item != 0) { // No guarantee item will be 0
    sum += item;
    item -= 0.1;
}
System.out.println(sum);
```

Variable item starts with 1 and is reduced by 0.1 every time the loop body is executed. The loop should terminate when item becomes 0. However, there is no guarantee that item will be exactly 0, because the floating-point arithmetic is approximated. This loop seems OK on the surface, but it is actually an infinite loop.

do-while Loop

```
Statement(s)
                                              (loop body)
                                                 Loop
                                       true
                                              Continuation
do {
                                               Condition?
  // Loop body;
                                                     false
  Statement(s);
```

(loop-continuation-condition);

while

for Loops

```
for (initial-action; loop-
   continuation-condition;
   action-after-each-iteration) {
 // loop body;
  Statement(s);
```

```
int i;
for (i = 0; i < 100; i++)
 System.out.println(
   "Welcome to Java!");
```


Trace for Loop

```
int i;
for (i = 0; i < 2; i++) {
    System.out.println(
    "Welcome to Java!");
}</pre>
```

Declare i


```
int i;
for (i = 0; i < 2; i++) {
   System.out.println(
   "Welcome to Java!");
}</pre>
```

Execute initializer i is now 0


```
int i;
for (i = 0; i < 2; i++) {
    System.out.println( "Welcome to Java!");
}</pre>
```

(i < 2) is true since i is 0

Print Welcome to Java

```
int i;
for (i = 0; i < 2; i++) {
   System.out.println("Welcome to Java!");
}</pre>
```



```
int i;
for (i = 0; i < 2; i++) {
   System.out.println("Welcome to Java!");
}</pre>
```

Execute adjustment statement i now is 1


```
int i;
for (i = 0; i < 2; i++) {
   System.out.println("Welcome to Java!");
}</pre>
```

(i < 2) is still true since i is 1

Print Welcome to Java

```
int i;
for (i = 0; i < 2; i++) {
   System.out.println("Welcome to Java!");
}</pre>
```



```
int i;
for (i = 0; i < 2; i++) {
   System.out.println("Welcome to Java!");
}</pre>
```

Execute adjustment statement i now is 2


```
int i;
for (i = 0; i < 2; i++) {
   System.out.println("Welcome to Java!");
}</pre>
```

(i < 2) is false since i is 2


```
int i;
for (i = 0; i < 2; i++) {
   System.out.println("Welcome to Java')
}</pre>
```

Exit the loop. Execute the next statement after the loop

Note

The <u>initial-action</u> in a <u>for</u> loop can be a list of zero or more comma-separated expressions. The <u>action-after-each-iteration</u> in a <u>for</u> loop can be a list of zero or more comma-separated statements. Therefore, the following two <u>for</u> loops are correct. They are rarely used in practice, however.

```
for (int i = 1; i < 100; System.out.println(i++));
```

```
for (int i = 0, j = 0; (i + j < 10); i++, j++) {
// Do something
```


Note

If the <u>loop-continuation-condition</u> in a <u>for</u> loop is omitted, it is implicitly true. Thus the statement given below in (a), which is an infinite loop, is correct. Nevertheless, it is better to use the equivalent loop in (b) to avoid confusion:

Caution

Adding a semicolon at the end of the <u>for</u> clause before the loop body is a common mistake, as shown below:

Logic Error

```
for (int i=0; i<10; i++);
{
    System.out.println("i is " + i);
}</pre>
```

Caution, cont.

```
Similarly, the following loop is also wrong:
int i=0;
while (i < 10); Logic Error
{
    System.out.println("i is " + i);
    i++;
}
```

In the case of the <u>do</u> loop, the following semicolon is needed to end the loop.

Which Loop to Use?

The three forms of loop statements, while, do-while, and for, are expressively equivalent; that is, you can write a loop in any of these three forms. For example, a while loop in (a) in the following figure can always be converted into the following for loop in (b):

A for loop in (a) in the following figure can generally be converted into the following while loop in (b) except in certain special cases (see Review Question 3.19 for one of them):

```
for (initial-action;
loop-continuation-condition;
action-after-each-iteration) {
// Loop body;
}

(a)

Equivalent initial-action;
while (loop-continuation-condition) {
// Loop body;
action-after-each-iteration;
}

(b)
```

Recommendations

Use the one that is most intuitive and comfortable for you. In general, a for loop may be used if the number of repetitions is known, as, for example, when you need to print a message 100 times. A while loop may be used if the number of repetitions is not known, as in the case of reading the numbers until the input is 0. A do-while loop can be used to replace a while loop if the loop body has to be executed before testing the continuation condition.

Nested Loops

Problem: Write a program that uses nested for loops to print a multiplication table.

Minimizing Numerical Errors

Numeric errors involving floating-point numbers are inevitable. This section discusses how to minimize such errors through an example.

Here is an example that sums a series that starts with 0.01 and ends with 1.0. The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on.

TestSum

Problem:

Finding the Greatest Common Divisor

Problem: Write a program that prompts the user to enter two positive integers and finds their greatest common divisor.

Solution: Suppose you enter two integers 4 and 2, their greatest common divisor is 2. Suppose you enter two integers 16 and 24, their greatest common divisor is 8. So, how do you find the greatest common divisor? Let the two input integers be $\underline{n1}$ and $\underline{n2}$. You know number 1 is a common divisor, but it may not be the greatest commons divisor. So you can check whether \underline{k} (for $\underline{k} = 2$, 3, 4, and so on) is a common divisor for $\underline{n1}$ and $\underline{n2}$, until \underline{k} is greater than $\underline{n1}$ or $\underline{n2}$.

GreatestCommonDivisor

Problem: Predicating the Future Tuition

Problem: Suppose that the tuition for a university is \$10,000 this year and tuition increases 7% every year. In how many years will the tuition be doubled?

FutureTuition

Problem: Predicating the Future Tuition

```
double tuition = 10000; int year = 1 // Year 1
tuition = tuition * 1.07; year++; // Year 2
tuition = tuition * 1.07; year++; // Year 3
tuition = tuition * 1.07; year++; // Year 4
...
```

FutureTuition

Guessing Number Problem Revisited

Here is a program for guessing a number. You can rewrite it using a break statement.

<u>GuessNumberUsingBreak</u>

Problem: Displaying Prime Numbers

Problem: Write a program that displays the first 50 prime numbers in five lines, each of which contains 10 numbers. An integer greater than 1 is *prime* if its only positive divisor is 1 or itself. For example, 2, 3, 5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

Solution: The problem can be broken into the following tasks:

- •For number = 2, 3, 4, 5, 6, ..., test whether the number is prime.
- •Determine whether a given number is prime.
- •Count the prime numbers.
- •Print each prime number, and print 10 numbers per line.

PrimeNumber

(GUI) Controlling a Loop with a Confirmation Dialog

A sentinel-controlled loop can be implemented using a confirmation dialog. The answers *Yes* or *No* to continue or terminate the loop. The template of the loop may look as follows:

```
int option = 0;
while (option == JOptionPane.YES_OPTION) {
   System.out.println("continue loop");
   option = JOptionPane.showConfirmDialog(null, "Continue?");
}
```

<u>SentinelValueUsingConfirmationDialog</u>