CS 349 Final Project

CDs & Vinyls Dataset: Task 2

Ian Shi

Task 1: Feature Engineering

- Unique Reviews
 Total number of unique reviews each product received
- Image Percentage*
 Proportion of reviews
 per product that
 contained an image

Mean negative sentiment of each review/summary for a specific product

Mean Upvote Rate
Average number of
upvotes across the
reviews per product

- 6 Sentiment
 Average sentiment
 across product reviews
 and summaries
- Sentiment Threshold
 Overall sentiment of a
 product based on its
 reviews/summaries (0, 1).

Verification
Proportion of reviews
submitted by verified
users per product

- 7 Compound
 Mean compound sentiment
 of each review/summary for
 a specific product
- Sentiment Ratio
 Ratio of each products
 positive to negative
 sentiment

- Provides timestamp for the earliest review each product received
- Positive
 Mean positive sentiment
 of each review/summary
 for a specific product
- Review vs Summary
 Each products review vs
 summary sentiment
 ratio

Task 1: Hyperparameter Optimization

Recursive Feature Elimination

- Sklearn's RFECV function was used to to recursively test which features chosen during our feature engineering step should be prioritized in our model
- Each feature is tested on a 10-fold cross-validation
- Feature rankings are recorded, giving us a list of features for each model that should be used

Grid Search

- Sklearn's GridSearchCV function was used to iteratively test different hyperparameters for each relevant model
- Each hyperparameter pair was tested on a 10-fold cross-validation, with their mean F1 score recorded
- Collected data was exported to a .csv file where we could analyze which set of hyperparameters gave us the best results

Task 1: Model Performance

K Nearest Neighbors

N_neighbors: 9 | weights: uniform

Precision: 0.54 | Recall: 0.58

F1 Score: 0.56

Gaussian NB

Precision: 0.60 | Recall: 0.61

F1 Score: 0.60

Decision Tree

Criterion: entropy | max_depth = 3

Precision: 0.59 | Recall: 0.75 F1 Score: 0.66

SVM

Kernel: rfb

Precision: 0.55 | Recall: 0.88

F1 Score: 0.68

Random Forest

max_depth: 1 | n_estimators: 28

Features: ['verified', 'rev_posSentiment', 'rev_negSentiment', 'summ_negSentiment', 'rev posNegRatio', 'summ posNegRatio', 'summToRev']

Precision: 0.57 | Recall: 0.82

F1 Score: 0.68

Task 2: Feature Engineering

1 Length of Review
Average number of words
contained in each review per
product

Normalized Time
Issue with task 1 "earliest

review" feature: scale was too high. Normalizing prevents that*

Review Period

Time between first and last review of product (normalized).

Total Reviews

Total number of raw reviews per product (task 1 contained total unique reviews)

Max Upvotes

Maximum number of upvotes on a product's review page

Task 2: New Algorithms & Methods

Task 2: Hyperparameter Optimization

Recursive Feature Elimination

- Sklearn's RFECV function was used to to recursively test which features chosen during our feature engineering step should be prioritized in our model
- Each feature is tested on a 10-fold cross-validation
- Feature rankings are recorded, giving us a list of features for each model that should be used
- For task 2, we added 5 new features and fixed a broken feature (image) from task 1
- Also created RFE functions for classifiers w/o RFECV support

Grid Search

- Sklearn's GridSearchCV function was used to iteratively test different hyperparameters for each relevant model
- Each hyperparameter pair was tested on a 10-fold cross-validation, with their mean F1 score recorded
- Collected data was exported to a .csv file where we could analyze which set of hyperparameters gave us the best results

Randomized Search

- Sklearn's RandomizedSearchCV function was used as another optimization method
- Compared to Grid Search (which tests every combination), Randomized Search randomly selects combinations from a given subset. This is beneficial when testing on larger datasets like ours
- Each hyperparameter pair was tested on a 10-fold cross-validation, with their mean F1 score recorded

Task 2: Model Performance

Part 1: Rerun Task 1 models & hyperparameter optimization with new and fixed features

Random Forest

max_depth: 1 | n_estimators: 28

Features : all

Precision: 0.57 | Recall: 0.81 | F1 Score: 0.67

Decision Tree

max_depth: 5

Features: ['verified', 'rev_negSentiment', 'summ_negSentiment', 'total_reviews', 'norm time diff']

Precision: 0.59 | Recall: 0.75 | F1 Score: 0.66

Gaussian NB

Features: ['vote', 'verified', 'rev_Sentiment', 'rev_posSentiment', 'rev_negSentiment', 'summ_negSentiment', image', 'rev_posNegRatio', 'normalized_time', 'max_upvote', 'norm_time_diff']

Precision: 0.59 | Recall: 0.73 | F1 Score: 0.66

Task 2: Model Performance (cont.)

Part 2: Implement new classifiers & algorithms

Logistic Regression

Precision: 0.55 | Recall: 0.86 | F1 Score: 0.67

Adaboost

classifiers: Gaussian NB, Decision Tree, Random Forest, Logistic Regression

Features: all

Precision: 0.53 | Recall: 0.67 | F1 Score: 0.59

Task 2: Model Performance (cont.)

Part 3: Late Fusion with VotingClassifier() to create final classification model

Late Fusion

estimators = random forest, decision tree, logistic regression

Features: all

Precision: 0.58 | Recall: 0.61 | F1 Score: 0.69

Areas of Concern

- Overall, our training model performance was again not as optimal as we would have liked (unable to achieve an F1 score above 0.7, relatively low precision)
- These may have to do with suboptimal features
 - If given more time on this project, we would have liked to explore more feature options
- Our implementation of Adaboost ran into issues with changing the number of features used with each classifier, preventing us from using our results from feature optimization
 - This may have negatively impacted the ability of Adaboost to improve its predictions
 - Some classifiers have particularly inaccurate results when using all features
 - E.g., logistic regression sorts all vectors into 1
 - More information on the next slide

Areas of Concern (cont.)

Aside: Adaboost

Adaboost Error

- After implementing Adaboost for testing multiple classifiers, we calculated error rate based on the number of classifiers included in the boosting
- Data was split into training (70%) and testing (30%)
- While performance improved when training and boosting the classifiers, it appears the boosting actually increased error while boosting on the test data

Next Steps

Neural Networks & Deep Learning

- Parts 1 & 2 of the final project were restricted to binary classifiers, which performed mediocre on the task of predicting "awesome" vs "not awesome" products based on the information given
- In the individual portion, exploring different neural network and deep learning algorithms--while adding complexity--could help the performance of our model

Sentiment Analysis

- Sentiment analysis was one of the biggest "black-box" unknowns during our preprocessing stage
- Trying different models such as TF-IDF, or spaCY instead of nltk could product different or more accurate results

Feature Engineering

 The features we chose gave mean results that made it hard to distinguish between "awesome" and "not awesome" products. While task 2 refined and added new features, it will be important to continue to develop and monitor the best features to extract from our dataset