

1/20

Summary statistics and discrepancy measures for approximate Bayesian computation via surrogate posteriors

TrungTin Nguyen

Statify team, Inria centre at the University Grenoble Alpes trung-tin.nguven@inria.fr

Joint work with

Florence Forbes (Inria centre at the University Grenoble Alpes)
Hien Duy Nguyen (University of Queensland)
Julyan Arbel (Inria centre at the University Grenoble Alpes)

Outline

- Approximate Bayesian computation (ABC)
- Semi-automatic ABC
- Surrogate posteriors as functional summaries
- GLLiM-ABC procedures
- Theoretical properties
- Illustration
- Conclusion

A data generating model

Prior: $\pi(\boldsymbol{\theta})$

Likelihood: $f_{\theta}(\mathbf{z})$

 $\longrightarrow \mathbf{z} = \{z_1, \dots, z_d\}$ can be simulated from $f_{m{ heta}}$

Goal: Estimation of θ given some observed $\mathbf{y} = \{y_1, \dots, y_d\}$

Posterior: $\pi(\boldsymbol{\theta}|\mathbf{y}) \propto \pi(\boldsymbol{\theta}) f_{\boldsymbol{\theta}}(\mathbf{y})$

What if f_{θ} is not tractable, not available, too costly?

Goal: get a sample of θ values from $\pi(\cdot|\mathbf{y})$

Simulate
$$M$$
 i.i.d. $(\theta_m , \mathbf{z}_m)$ for $m = 1 \dots M$

$$\boldsymbol{\theta}_m \sim \pi(\boldsymbol{\theta})$$

$$\mathbf{z}_m \sim f_{\boldsymbol{\theta}_m}$$

If
$$D(\mathbf{y}, \mathbf{z}_m) < \epsilon$$
 then keep $\boldsymbol{\theta}_m$ [Rejection ABC]

where
$$D(\mathbf{y}, \mathbf{z}_m) = ||\mathbf{y} - \mathbf{z}_m||$$
 or $D(\mathbf{y}, \mathbf{z}_m) = ||\mathbf{s}(\mathbf{y}) - \mathbf{s}(\mathbf{z}_m)||$

s is a summary statistic

 \longrightarrow Which choice for D? for s? for ϵ ?

For continuous data $||\mathbf{y} - \mathbf{z}_m|| < \epsilon$ is inefficient in high dimension

Two main types of approaches

1. Summary-based procedures: effort on s, D "standard" norm

 $||\mathbf{s}(\mathbf{y}) - \mathbf{s}(\mathbf{z}_m)||$ has a smaller variance

- Pros: Dimension reduction, smaller variance
- Cons: Loss of information, arbitrary s

Difficult to select a summary statistic in general

- \longrightarrow Semi-automatic ABC [Fearnhead & Prangle 2012] : preliminary regression step Requires d small, not for i.i.d. samples unless summarized, not for large time series
- --- OK for one vector of observations

2. Data discrepancy-based procedures: effort on D, no need for s

 \longrightarrow Replace $||\mathbf{y}-\mathbf{z}_m||$ by a distance between samples considered as empirical distributions (instead of vectors)

$$\mathbf{z}_m = d^{-1} \sum_{i=1}^d \mathbb{1}_{z_i} \quad \text{and} \quad \mathbf{y} = d^{-1} \sum_{i=1}^d \mathbb{1}_{y_i}$$

- p-order Wasserstein distance [Bernton & al 2019]
- Kullback-Leibler (1 nearest neighbor density estimate) [Jiang et al 2018]
- Maximum Mean Discrepancy [Park et al 2016]
- Classification accuracy [Gutmann et al 2018]
- Energy distance: [Nguyen & al 2020]
- Integral probability semimetrics: [Legramanti & al 2022]
- Pros: ABC methods that do not require summary statistics
- Cons: Requires moderately large (i.i.d.) samples, not always available in inverse problems

\Rightarrow 3. An approach that can be applied in both cases

Semi-automatic ABC [Fearnhead & Prangle 2012]

The posterior mean is the optimal (quadratic loss) summary : $\mathbf{s}(\mathbf{z}) = \mathbb{E}[\boldsymbol{\theta}|\mathbf{z}]$

- \rightarrow Use a preliminary linear regression step to learn an approximation of $\mathbb{E}[\boldsymbol{\theta}|\mathbf{z}]$ as a function of \mathbf{z} from $\mathcal{D}_N = \{(\boldsymbol{\theta}_n, \mathbf{z}_n), n = 1 : N\}$ simulated from the true joint distribution
- Variant 1: replace linear regression by neural networks ... [Jiang et al 2017, Wiqvist et al 2019]
- Variant 2: add extra higher order moments (eg variances) in s

A natural idea mentioned (not implemented) in [Jiang et al 2017]

- ightarrow Requires a procedure able to provide posterior moments at low cost
- ullet Variant 3: replace $\mathbf{s}(\mathbf{z})$ by an approximation (surrogate) of $\pi(m{ heta}|\mathbf{z})$

Moments, point estimates replaced by functional summaries

Requires

- → a learning procedure able to provide tractable approximate posteriors at low cost: Gaussian Locally Linear Mapping [Deleforge et al. 2015]
- ightarrow a tractable metric between distributions to compare them

Surrogate posteriors as mixtures of affine Gaussian experts

The Gaussian Locally Linear mapping (GLLiM) model: an inverse regression approach that

- aims at capturing the link between z and θ with a mixture of K affine components
- provides for each z a posterior within a parametric family $\{p_G(\theta|\mathbf{z};\phi),\phi\in\Phi\}$

$$\boldsymbol{\phi} \!\! = \! \{ \boldsymbol{\pi}_k, \mathbf{c}_k, \boldsymbol{\Gamma}_k, \mathbf{A}_k, \mathbf{b}_k, \boldsymbol{\Sigma}_k \}_{k=1}^K \quad \text{and} \quad p_G(\boldsymbol{\theta} | \mathbf{z}; \boldsymbol{\phi}) \! = \! \sum_{k=1}^K \! \eta_k(\mathbf{z}) \, \mathcal{N}\!(\boldsymbol{\theta}; \! \mathbf{A}_k \mathbf{z} \! + \! \mathbf{b}_k, \boldsymbol{\Sigma}_k)$$

mixture components: $\mathcal{N}(.; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ Gaussian pdf with mean $\boldsymbol{\mu}$, covariance $\boldsymbol{\Sigma}$

mixture weights:
$$\eta_k(\mathbf{z}) = \frac{\pi_k \mathcal{N}(\mathbf{z}; \mathbf{c}_k, \Gamma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{z}; \mathbf{c}_j, \Gamma_j)}$$

Fit a GLLiM model to a learning set $\mathcal{D}_N = \{(\boldsymbol{\theta}_n, \mathbf{z}_n), n = 1 : N\}$ simulated from the true joint distribution: parameters ϕ learned with an EM algorithm $\phi_{K.N}^* = \{\pi_k^*, \mathbf{c}_k^*, \mathbf{\Gamma}_k^*, \mathbf{A}_k^*, \mathbf{b}_k^*, \mathbf{\Sigma}_k^*\}_{k=1}^K$

GLLiM surrogate posteriors for each \mathbf{z} , $p_G(\boldsymbol{\theta} \mid \mathbf{z}; \boldsymbol{\phi}_{K,N}^*)$ with $\boldsymbol{\phi}_{K,N}^*$ independent of \mathbf{z}

$$p_G(\boldsymbol{\theta}|\mathbf{z};\boldsymbol{\phi}_{K,N}^*) \!=\! \sum_{k=1}^K \! \eta_k^*(\mathbf{z}) \, \mathcal{N}\!(\boldsymbol{\theta};\! \mathbf{A}_k^*\mathbf{z} \!+\! \mathbf{b}_k^*, \boldsymbol{\Sigma}_k^*)$$

- Variant 1: approximate $\mathbb{E}[\boldsymbol{\theta}|\mathbf{z}]$ with $\mathbb{E}_{G}[\boldsymbol{\theta}|\mathbf{z};\boldsymbol{\phi}_{K,N}^{*}] = \sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*})$
- Variant 2: add the log posterior variances from

$$\begin{aligned} \mathsf{Var}_{G}[\boldsymbol{\theta}|\mathbf{z};\boldsymbol{\phi}_{K,N}^{*}] &= \sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z}) \left[\boldsymbol{\Sigma}_{k}^{*} + (\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*})^{\top}\right] \\ &- (\sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*}))(\sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*}))^{\top} \end{aligned}$$

- ullet Variant 3: use full $p_G(m{ heta} \mid \mathbf{z}; \phi_{K,N}^*)
 ightarrow$ requires a metric for Gaussian mixtures
 - → Mixture Wasserstein distance (MW2) [Delon & Desolneux 2020]
 - \rightarrow L₂ distance

- 1: Inverse operator learning. Apply GLLiM on \mathcal{D}_N to get for any \mathbf{z} $p_G(\boldsymbol{\theta} \mid \mathbf{z}, \boldsymbol{\phi}_{K,N}^*)$ as a first approximation of the true posterior $\pi(\boldsymbol{\theta} \mid \mathbf{z})$
- 2: Distances computation. For another simulated set $\mathcal{E}_M = \{(\boldsymbol{\theta}_m, \mathbf{z}_m), m = 1:M\}$ and a given observed \mathbf{y} , do one of the following for each m:

Vector summary statistics:

```
GLLiM-E-ABC: Compute summary s_1(\mathbf{z}_m) = \mathbb{E}_G[\boldsymbol{\theta} \mid \mathbf{z}_m; \boldsymbol{\phi}_{K,N}^*] GLLiM-EV-ABC: Compute s_1(\mathbf{z}_m) and s_2(\mathbf{z}_m) the GLLiM posterior log-variances Compute standard distances between summary statistics
```

Functional summary statistics:

```
GLLiM-MW2-ABC: Compute MW_2(p_G(\cdot|\mathbf{z}_m; \phi_{K,N}^*), p_G(\cdot|\mathbf{y}; \phi_{K,N}^*))
GLLiM-L2-ABC: Compute L_2(p_G(\cdot|\mathbf{z}_m; \phi_{K,N}^*), p_G(\cdot|\mathbf{y}; \phi_{K,N}^*))
```

- 3: Sample selection. Select the θ_m values that correspond to distances under an ϵ threshold (rejection ABC) or apply some standard ABC procedure
- 4: Sample use. Use produced θ values to get a closer approximation of $\pi(\theta|\mathbf{y})$

Theoretical properties

• A new quasi-posterior formulation: $q_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}) \propto \int_{\mathcal{Y}} \mathbb{1}_{\{D(\pi(\cdot|\mathbf{y}), \pi(\cdot|\mathbf{z})) \leq \epsilon\}} \pi(\boldsymbol{\theta}|\mathbf{z}) \pi(\mathbf{z}) d\mathbf{z}$ vs. Standard form: $q_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}) \propto \pi(\boldsymbol{\theta}) \int_{\mathcal{Y}} \mathbb{1}_{\{D(\mathbf{s}(\mathbf{y}), \mathbf{s}(\mathbf{z})) \leq \epsilon\}} f_{\boldsymbol{\theta}}(\mathbf{z}) d\mathbf{z}$

Result [FF et al, Theorem 1]: $q_{\epsilon}(\cdot \mid \mathbf{y}) \to \pi(\cdot \mid \mathbf{y})$ in total variation when $\epsilon \to 0$ In practice: replace the unknown $\pi(\cdot \mid \mathbf{y})$ by a tractable approximation

 $\bullet \ \, \text{ABC quasi-posterior with surrogate posteriors} \ \{p^{K,N}(\cdot|\mathbf{y}) : \mathbf{y} \in \mathcal{Y}, K \in \mathbb{N}, N \in \mathbb{N}\}$

$$q_{\epsilon}^{K,N}\left(\boldsymbol{\theta}\mid\mathbf{y}\right)\propto\pi(\boldsymbol{\theta})\;\int_{\mathcal{Y}}\mathbb{1}_{\left\{D\left(p^{K,N}\left(\cdot\mid\mathbf{y}\right),p^{K,N}\left(\cdot\mid\mathbf{z}\right)\right)\leq\epsilon\right\}}\;f_{\boldsymbol{\theta}}(\mathbf{z})\;d\mathbf{z}$$

Result [FF et al, Theorem 2] : $\epsilon \to 0$, $K, N \to \infty$

The Hellinger distance
$$D_{H}\left(q_{\epsilon}^{K,N}\left(\cdot\mid\mathbf{y}\right),\pi\left(\cdot\mid\mathbf{y}\right)\right)$$
 converges to 0

- in some measure λ , with respect to $\mathbf{y} \in \mathcal{Y}$
- in probability, with respect to the sample $\left\{ \left(oldsymbol{ heta}_{n},\mathbf{y}_{n}\right) ,n=1:N
 ight\}$

Restrictions:

- $p^{K,N}$ cannot be replaced by GLLiM $p_G^{K,N}$
- Truncated Gaussian distributions with constrained parameters can meet the restrictions

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023 11/20

i.i.d. samples:

• Moving average of order 2: one 150D series cut into 5 pieces, $R=5, d=30, \ell=2$

Examples with multimodal posteriors: 10D observation (a single y, e.g. summaries)

- Multiple hyperboloid example ($\ell = 2$ parameters)
- Real inverse problem in planetary science ($\ell = 4$ parameters)

Comparison of different (rejection and SMC ABC) procedures :

- GLLiM-E-ABC and GLLiM-EV-ABC (abc package [Csillery et al 2012])
- GLLiM-L2-ABC, GLLiM-MW2-ABC (transport package [Schuhmacher et al 2020])
- Semi-automatic ABC (abctools R package [Nunes and Prangle, 2015])
- Wasserstein ABC and SMC-ABC (winference R package [Bernton et al, 2020])

Setting:

- GLLiM learning $N=10^5$, K Gaussians (BIC) (xLLiM package [Perthame et al 2017])
- Rejection and SMC ABC: simulations $M=10^5$ or 10^6 , ϵ is a distance quantile (e.g. 0.1%)

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023 12/20

Moving average of order 2: $y_t = z_t + \theta_1 z_{t-1} + \theta_2 z_{t-2}, t = 1, ..., 150$

Rejection ABC: ϵ is set to the 0.1% quantile leading to selected samples of size 100

SMC-ABC: 2048 particles, 100 best distances selected

GLLiM: K=20 (BIC), R=1, d=150, $\ell=2$, with bloc diagonal covariances, 5 blocs 30×30

MSE over 100 simulated observations with the same true parameters $\theta_1=0.6$ and $\theta_2=0.2$

Procedure	$mean(heta_1)$	$mean(heta_2)$	$std(heta_1)$	$std(heta_2)$	$cor(heta_1, heta_2)$		
	Average						
Exact	0.5807			0.0813	0.4483		
	MSE						
Semi-auto ABC	0.3402	0.0199	0.1521	0.1255	0.2235		
Auto-cov Semi-auto	0.0048	0.0147	0.0012	0.0070	0.1212		
Auto-cov Rejection ABC	0.0047	0.0145	0.0010	0.0070	0.1196		
	K = 20						
GLLiM mixture	0.0340	0.0060	0.1223	0.0367	0.1691		
GLLiM-E-ABC	0.0103	0.0066	0.0020	0.0037	0.0440		
GLLiM-EV-ABC	0.0256	0.0065	0.0052	0.0035	0.0375*		
GLLiM-L2-ABC	0.0095	0.0057	0.0016	0.0031	0.0470		
GLLiM-MW2-ABC	0.0038	0.0041	0.0005	0.0013	0.0509		
GLLiM-MW2-SMC	0.0032*	0.0035*	0.0003*	0.0010*	0.0513		
ABC-DNN [Jiang et al. 2017]	0.0096	0.0089	0.0025	0.0026	0.0517		

True posterior values computed numerically

Multiple hyperboloid example

Parameter $\pmb{\theta}=(x,y),\ d=10$ dimensional observation $\mathbf{y}=(y_1,\ldots,y_d)$ with a likelihood that depends on two pairs $\mathbf{m}^1=(\mathbf{m}_1^1,\mathbf{m}_2^1)$ and $\mathbf{m}^2=(\mathbf{m}_1^2,\mathbf{m}_2^2),\ \sigma^2=0.01$ and $\nu=3$

$$\begin{split} f_{\boldsymbol{\theta}}(\mathbf{y}) &= \frac{1}{2} \mathcal{S}_d(\mathbf{y}; F_{\mathbf{m}^1}(\boldsymbol{\theta}) \mathbb{1}_d, \sigma^2 \mathbf{I}_d, \nu) + \frac{1}{2} \mathcal{S}_d(\mathbf{y}; F_{\mathbf{m}^2}(\boldsymbol{\theta}) \mathbb{1}_d, \sigma^2 \mathbf{I}_d, \nu) \\ \text{where } F_{\mathbf{m}}(\boldsymbol{\theta}) &= (\|\boldsymbol{\theta} - \mathbf{m}_1\|_2 - \|\boldsymbol{\theta} - \mathbf{m}_2\|_2), \text{ if } \mathbf{m} = (\mathbf{m}_1, \mathbf{m}_2) \;. \end{split}$$

\longrightarrow Posterior distribution that concentrates around four hyperbolas $\ \, {\sf True} \ m{ heta} = (1.5,1)$

Contours of the true posterior

Metropolis-Hastings sample

GLLiM $N=10^5, K=38$ (BIC); Rejection and SMC ABC $M=10^6$, $\epsilon=0.1\%$ quantile (1000 values)

A physical model inversion in planetary science

Goal: Study the textural properties of planetary materials

Origin: 1) Remote sensing (Mars surface), 2) Laboratory (analog materials)

Texture and composition parametrized by $\mathbf{x} = (\omega, c, b, \bar{\theta}, B_0, h)$ y: reflectance (observed) $y: reflectance \text{ ($

Hapke's radiative transfer model $\mathbf{y} = F(\boldsymbol{\theta}) + \varepsilon$

Measurements from 10 geometries

Determination of unknown parameters $(\omega, \bar{\theta}, b, c)$ via reflectance information (d=10 geometries)

TrungTin Nguyen GLLiM-ABC UEH,

UEH, August 31, 2023 16/20

GLLiM: K=40 (BIC K=39), $N=10^5$; Rejection ABC: $M=10^5$, ϵ is the 0.1% quantile

- 1 Nontronite BRDF ${\bf y}$: 10 geometries measured (incidence $\theta_0\!=\!45$, azimuth $\phi\!=\!0)$ at 2310nm
- \rightarrow Two sets of parameters: $(\omega, \overline{\theta}, b, c) = (0.59, 0.15, 0.14, 0.06)$ and (0.59, 0.42, 0.14, 0.06)

Left: GLLiM-E-ABC, GLLiM-EV-ABC (dot), GLLiM-L2-ABC, GLLiM-MW2-ABC, Semi-automatic ABC Right: signal reconstructions

An extension of $semi-automatic\ ABC$ with surrogate posteriors in place of summary statistics, can be used as an alternative to discrepancy-based approaches

Requirements:

- A tractable, scalable model to learn the surrogates : e.g. GLLiM up to d=100 and more with GLLiM-iid and Hybrid-GLLiM [Deleforge et al 2015]; can deal with missing data; latent variables
- A metric between distributions: e.g. L₂, MW₂

First results and conclusions:

- No need to choose summary statistics
- A (restricted) convergence result to the true posterior
- Satisfying performance when posteriors are multimodal
- Surrogate posterior quality seems not critical
- Wasserstein-based distance seems more robust than L2

Short term improvements/ Future work:

- Other ABC scheme than rejection and SMC ABC (IS ABC, MCMC ABC, etc.)
- ullet GLLiM use & implementation: higher computational cost, BNP variant to select K
- Other metrics between distributions
- Use in Bayesian Synthetic Likelihood context
- Sequential learning easy with GLLiM
- Other learning scheme than GLLiM (Mixture density networks, Invertible NN, Normalizing flows)

Special thanks to: Guillaume Kon Kam King, Benoit Kugler and Sylvain Douté

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023

Thank you for your attention!

Publication: F. Forbes, H. Nguyen, T. Nguyen, J. Arbel. Summary statistics and discrepancy measures for ABC via surrogate posteriors. Statistics & Computing, 2022.

Code available at https://github.com/Trung-TinNguyenDS/GLLiM-ABC

References

Bernton, E., Jacob, P. E., Gerber, M., Robert, C. P. (2019). Inference in generative models using the Wasserstein distance. JRSS B.

Crackel, R, & Flegal, J. (2017). Bayesian inference for a flexible class of bivariate Beta distributions. J. of Statistical Computation & simulation.

Deleforge, A., Forbes, F. & Horaud, R. (2015). High-Dimensional Regression with Gaussian Mixtures and Partially-Latent Response Variables. Statistics & Computing.

Delon, J. & Desolneux, A. (2020). A Wasserstein-type distance in the space of Gaussian Mixture Models. SIAM Journal on Imaging Sciences.

Drovandi, C. & Pettitt, A. (2011). Likelihood-free Bayesian estimation of multivariate quantile distributions. CSDA.

Fearnhead, P. & Prangle, D. (2012). Constructing summary statistics for ABC: semi-automatic ABC. JRSS B.

Gutmann, M., Dutta, R., Kaski, S., and Corander, J. (2018). Likelihood-free inference via classification. Statistics & Computing.

Jiang, B., et al. (2017). Learning summary statistics for ABC via Deep Neural Network. Statistica Sinica.

Jiang, B., et al. (2018). Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy, AISTATS.

Nguyen, H. D., Arbel, J., Lü, H. & Forbes, F. (2020). Approximate Bayesian Computation Via the Energy Statistic.IEEE Access.

Park, M., Jitkrittum, W. & Sejdinovic, D. (2016). K2-ABC: ABC with kernel embeddings. AISTATS.

Prangle, D., Everitt, R. G. & Kypraios, T. (2018). A rare event approach to high-dimensional ABC. Statistics & Computing. Rubio, F. & Johansen, A. M. (2013). A simple approach to maximum intractable likelihood estimation. Electronic Journal of Statistics.

Wiqvist, S., Mattei, P.-A., Picchini, U. & Frellsen, J. (2019). Partially exchangeable networks and architectures for learning summary statistics in ABC. ICML.

Goal: sample approximately from $\pi(\theta \mid \mathbf{y}) \propto \pi(\theta) f_{\theta}(\mathbf{y})$ using $D(\mathbf{y}, \mathbf{z}) \left(D(\mathbf{s}(\mathbf{y}), \mathbf{s}(\mathbf{z})) \right)$

Rejection ABC: replace intractable f_{θ} by: $L_{\epsilon}(\mathbf{y}, \theta) = \int_{\mathcal{V}} \mathbb{I}_{\{D(\mathbf{y}, \mathbf{z}) < \epsilon\}} f_{\theta}(\mathbf{z}) d\mathbf{z}$

$$\longrightarrow$$
 ABC quasi-posterior: $\pi_{\epsilon}(\boldsymbol{\theta} \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \int_{\mathcal{Y}} \mathbb{I}_{\{D(\mathbf{y}, \mathbf{z}) < \epsilon\}} f_{\boldsymbol{\theta}}(\mathbf{z}) d\mathbf{z}$

Convergence of the quasi-posterior to $\pi(\theta \mid \mathbf{y})$: intuition of the proof

when
$$\epsilon \to 0$$
 then $D(\mathbf{y}, \mathbf{z}) \to 0$ so $\mathbf{z} \to \mathbf{y}$ and $\{\mathbf{z} \in \mathcal{Y}, \ D(\mathbf{y}, \mathbf{z}) < \epsilon\} \to \{\mathbf{y}\}$

$$\pi(\boldsymbol{\theta}) \! \int_{\mathcal{Y}} \! \mathbb{I}_{\{D(\mathbf{y}, \mathbf{z}) < \epsilon\}} f_{\boldsymbol{\theta}}(\mathbf{z}) \ d\mathbf{z} \ \rightarrow \ \pi(\boldsymbol{\theta}) \! \int_{\mathcal{Y}} \! \mathbb{I}_{\{\mathbf{z} = \mathbf{y}\}} f_{\boldsymbol{\theta}}(\mathbf{z}) \ d\mathbf{z} \ \rightarrow \ \pi(\boldsymbol{\theta}) f_{\boldsymbol{\theta}}(\mathbf{y})$$

Details in [Rubio & Johansen 2013, Prangle et al 2018, Berton et al 2019]

The requirement $\{z \in \mathcal{Y}, \ D(y, z) < \epsilon\} \rightarrow \{y\}$ is too strong

• An equivalent formulation (Bayes' theorem):

$$\pi_{\epsilon}(\boldsymbol{\theta} \mid \mathbf{y}) \propto \int_{\mathcal{Y}} \mathbb{1}_{\{D(\mathbf{y}, \mathbf{z}) \leq \epsilon\}} \ \pi(\boldsymbol{\theta}) \ f_{\boldsymbol{\theta}}(\mathbf{z}) \ d\mathbf{z} \ \propto \int_{\mathcal{Y}} \mathbb{1}_{\{D(\mathbf{y}, \mathbf{z}) \leq \epsilon\}} \ \pi(\boldsymbol{\theta} \mid \mathbf{z}) \ \pi(\mathbf{z}) \ d\mathbf{z}$$

replace $D(\mathbf{y}, \mathbf{z})$ by $D(\pi(\cdot \mid \mathbf{y}), \pi(\cdot \mid \mathbf{z}))$, D now a distance on densities

• A new quasi-posterior: $q_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}) \propto \int_{\mathcal{Y}} \mathbb{1}_{\{D(\pi(\cdot|\mathbf{y}), \pi(\cdot|\mathbf{z})) \leq \epsilon\}} \pi(\boldsymbol{\theta}|\mathbf{z}) \pi(\mathbf{z}) d\mathbf{z}$

Result [FF et al, Theorem 1]: $q_{\epsilon}(\cdot \mid \mathbf{y}) \to \pi(\cdot \mid \mathbf{y})$ in total variation when $\epsilon \to 0$

Intuition of the proof:

when
$$\epsilon \to 0$$
 then $D(\pi(\cdot \mid \mathbf{y}), \pi(\cdot \mid \mathbf{z})) \to 0$, then $\pi(\cdot \mid \mathbf{z}) \to \pi(\cdot \mid \mathbf{y})$ and

$$\int_{\mathcal{Y}} \mathbb{I}_{\left\{D\left(\pi\left(\cdot\mid\mathbf{y}\right),\pi\left(\cdot\mid\mathbf{z}\right)\right)\leq\epsilon\right\}} \pi\left(\boldsymbol{\theta}\mid\mathbf{z}\right) \pi\left(\mathbf{z}\right) d\mathbf{z} \rightarrow \int_{\mathcal{Y}} \mathbb{I}_{\left\{\pi\left(\cdot\mid\mathbf{z}\right)=\pi\left(\cdot\mid\mathbf{y}\right)\right\}} \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right) \pi\left(\mathbf{z}\right) d\mathbf{z} \propto \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)$$

$$\{\mathbf{z} \in \mathcal{Y}, D\left(\pi(\cdot|\mathbf{y}), \pi(\cdot|\mathbf{z})\right) \leq \epsilon\} \rightarrow \{\mathbf{z} \in \mathcal{Y}, \pi(\cdot|\mathbf{z}) = \pi(\cdot|\mathbf{y})\} \text{ is less demanding }$$

In practice: replace the unknown $\pi(\cdot|\mathbf{y})$ by a tractable approximation

Appendix: GLLiM model hierarchical definition

$$\mathbf{y} = \sum_{k=1}^K \mathbb{I}_{(z=k)} (\mathbf{A}_k' \boldsymbol{\theta} + \mathbf{b}_k' + \mathbf{E}_k')$$

 $\mathbf{y} \in R^d$, $\boldsymbol{\theta} \in R^\ell$ with $d>>\ell$, 1 Indicator function, \mathbf{A}_k' $d \times \ell$ matrix, \mathbf{b}_k' d-dim vector

 \mathbf{E}_k' : observation noise in \mathbb{R}^d and reconstruction error, Gaussian, centered, independent on θ , \mathbf{y} , and z

$$p(\mathbf{y}|\boldsymbol{\theta}, z = k; \boldsymbol{\phi}') = \mathcal{N}(\mathbf{y}; \mathbf{A}'_{k}\boldsymbol{\theta} + \mathbf{b}'_{k}, \boldsymbol{\Sigma}'_{k})$$

Affine transformations are local: mixture of K Gaussians

$$p(\boldsymbol{\theta}|z=k;\boldsymbol{\phi}') = \mathcal{N}(\boldsymbol{\theta}; \mathbf{c}'_k, \boldsymbol{\Gamma}'_k)$$
$$p(z=k;\boldsymbol{\phi}') = \pi'_k$$

• The set of all model parameters is:

$$\phi' = \{\mathbf{c}_k', \mathbf{\Gamma}_k', \pi_k', \mathbf{A}_k', \mathbf{b}_k', \mathbf{\Sigma}_k'\}_{k=1}^K$$

possible constraint: $\Sigma_k' = \sigma^2 \mathbf{I}_d$ for $k=1\dots K$ (isotropic) or bloc diagonal (GLLiM-iid)

Appendix: GLLiM Geometric Interpretation

This model induces a partition of \mathbb{R}^ℓ into K regions \mathcal{R}_k where the transformation τ_k is the most probable.

If $|\Gamma_1'|=\cdots=|\Gamma_K'|$: $\{\mathcal{R}_k,k=1\ldots K\}$ define a Voronoi diagram of centroids $\{\mathbf{c}_k',k=1\ldots K\}$ (Mahalanobis distance $||.||_{\Gamma'}$).

$$p_G(\mathbf{y}|\boldsymbol{\theta}, \boldsymbol{\phi}') = \sum_{k=1}^K \eta_k'(\boldsymbol{\theta}) \mathcal{N}(\mathbf{y}; \mathbf{A}_k' \boldsymbol{\theta} + \mathbf{b}_k', \boldsymbol{\Sigma}_k') \quad \text{with } \eta_k'(\boldsymbol{\theta}) = \frac{\pi_k' \mathcal{N}(\boldsymbol{\theta}; \mathbf{c}_k', \boldsymbol{\Gamma}_k')}{\sum_{j=1}^K \pi_j' \mathcal{N}(\boldsymbol{\theta}; \mathbf{c}_j', \boldsymbol{\Gamma}_j')}$$

$$p_G(\boldsymbol{\theta}|\mathbf{y}, \boldsymbol{\phi}) = \sum_{k=1}^K \eta_k(\mathbf{y}) \mathcal{N}(\boldsymbol{\theta}; \mathbf{A}_k \mathbf{y} + \mathbf{b}_k, \boldsymbol{\Sigma}_k) \quad \text{with } \eta_k(\mathbf{y}) = \frac{\pi_k \mathcal{N}(\mathbf{y}; \mathbf{c}_k, \boldsymbol{\Gamma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{y}; \mathbf{c}_j, \boldsymbol{\Gamma}_j)}$$

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023 4/19

Appendix : GLLiM link between ϕ and ϕ'

$$\mathbf{c}_{k} = \mathbf{A}_{k}^{\prime} \mathbf{c}_{k}^{\prime} + \mathbf{b}_{k}^{\prime}$$

$$\mathbf{\Gamma}_{k} = \mathbf{\Sigma}_{k}^{\prime} + \mathbf{A}_{k}^{\prime} \mathbf{\Gamma}_{k}^{\prime} \mathbf{A}_{k}^{\prime \top}$$

$$\mathbf{\Sigma}_{k} = \left(\mathbf{\Gamma}_{k}^{\prime - 1} + \mathbf{A}_{k}^{\prime \top} \mathbf{\Sigma}_{k}^{\prime - 1} \mathbf{A}_{k}^{\prime}\right)^{-1}$$

$$\mathbf{A}_{k} = \mathbf{\Sigma}_{k} \mathbf{A}_{k}^{\prime \top} \mathbf{\Sigma}_{k}^{\prime - 1}$$

$$\mathbf{b}_{k} = \mathbf{\Sigma}_{k} \left(\mathbf{\Gamma}_{k}^{\prime - 1} \mathbf{c}_{k}^{\prime} - \mathbf{A}_{k}^{\prime \top} \mathbf{\Sigma}_{k}^{\prime - 1} \mathbf{b}_{k}^{\prime}\right)$$

The number of parameters depends on the GLLiM variant but is in $\mathcal{O}(dK\ell)$

If diagonal covariances Σ_k' , the number of parameters is $K-1+K(\ell+\ell(\ell+1)/2+d\ell+2d)$

ightarrow for K=100, $\ell=4$ and d=10 leads to 7499 parameters and to 61499 parameters if d=100.

• Optimal transport-based distance [Delon & Desolneux 2020]

Quadratic cost Wasserstein distance between $g_1 = \mathcal{N}(\cdot; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ and $g_2 = \mathcal{N}(\cdot; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$:

$$W_2^2(g_1, g_2) = \|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|_2^2 + \operatorname{trace}\left(\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 - 2\left(\boldsymbol{\Sigma}_1^{1/2}\boldsymbol{\Sigma}_2\boldsymbol{\Sigma}_1^{1/2}\right)^{1/2}\right)$$

Mixture Wasserstein distance (MW2) between two Gaussian mixtures $f_1 = \sum_{k=1}^{K_1} \pi_{1k} \ g_{1k}$ and $f_2 = \sum_{k=1}^{K_2} \pi_{2k} \ g_{2k}$:

$$\mathsf{MW}_2^2(f_1, f_2) = \min_{\mathbf{w} \in \Pi(\pi_1, \pi_2)} \sum_{k, l} w_{kl} \; \mathsf{W}_2^2(g_{1k}, g_{2l})$$

• L₂ distance

 L_2 scalar product between two Gaussian distributions g_1 and g_2 :

$$\langle g_1, g_2 \rangle = \mathcal{N}(\boldsymbol{\mu}_1; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2)$$

 L_2 distance between two Gaussian mixtures f_1 and f_2 :

$$\mathsf{L}_{2}^{2}(f_{1},f_{2}) = \sum_{k,l} \pi_{1k}\pi_{1l} < g_{1k}, g_{1l} > + \sum_{k,l} \pi_{2k}\pi_{2l} < g_{2k}, g_{2l} > -2\sum_{k,l} \pi_{1k}\pi_{2l} < g_{1k}, g_{2l} > -2\sum_{k,l} \pi_{2k}\pi_{2l} < g_{2k}, g_{2k} > -2\sum_{k,l} \pi_{2k}\pi_{2k} < g_{2k} < g_{2$$

Appendix: Theorem 1 $q_{\epsilon}(\cdot|\mathbf{y}) \to \pi(\cdot|\mathbf{y})$ in TV

Theorem

For every
$$\epsilon > 0$$
, let $A_{\epsilon} = \{ \mathbf{z} \in \mathcal{Y} : D(\pi(\cdot \mid \mathbf{y}), \pi(\cdot \mid \mathbf{z})) \le \epsilon \}$

- (A1) $\pi(\theta \mid \cdot)$ is continuous for all $\theta \in \Theta$, and $\sup_{\theta \in \Theta} \pi(\theta \mid \mathbf{y}) < \infty$;
- (A2) There exists a $\gamma > 0$ such that $\sup_{\theta \in \Theta} \sup_{\mathbf{z} \in A_{\gamma}} \pi(\theta \mid \mathbf{z}) < \infty$;
- (A3) $D(\cdot,\cdot):\Pi\times\Pi\to\mathbb{R}_+$ is a metric on the functional class

$$\Pi = \{\pi \left(\cdot \mid \mathbf{y} \right) : \mathbf{y} \in \mathcal{Y} \} ;$$

(A4) $D(\pi(\cdot | \mathbf{y}), \pi(\cdot | \mathbf{z}))$ is continuous, with respect to \mathbf{z} .

Under (A1)–(A4), $q_{\epsilon}(\cdot \mid \mathbf{y})$ converges in total variation to $\pi(\cdot \mid \mathbf{y})$, for fixed \mathbf{y} , as $\epsilon \to 0$.

Appendix: proof Theorem 1

$$q_{\epsilon}\left(\boldsymbol{\theta}\mid\mathbf{y}\right) = \int_{\mathcal{Y}} K_{\epsilon}\left(\mathbf{z};\mathbf{y}\right) \pi\left(\boldsymbol{\theta}\mid\mathbf{z}\right) d\mathbf{z} \quad \text{ with } \quad K_{\epsilon}(\mathbf{z};\mathbf{y}) \propto \mathbb{I}_{A_{\epsilon}}(\mathbf{z}) \ \pi(\mathbf{z})$$

$$\begin{aligned} |q_{\epsilon}\left(\boldsymbol{\theta}\mid\mathbf{y}\right) - \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)| &\leq \int_{\mathcal{Y}} K_{\epsilon}\left(\mathbf{z};\mathbf{y}\right) |\pi\left(\boldsymbol{\theta}\mid\mathbf{z}\right) - \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)| \, d\mathbf{z} \\ &\leq \sup_{\mathbf{z}\in A_{\epsilon}} |\pi\left(\boldsymbol{\theta}\mid\mathbf{z}\right) - \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)| \quad \left(K_{\epsilon}\left(\cdot;\mathbf{y}\right) \text{ is a pdf}\right) \\ &= |\pi\left(\boldsymbol{\theta}\mid\mathbf{z}_{\epsilon}\right) - \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)| \text{ for } \mathbf{z}_{\epsilon} \in A_{\epsilon} \quad \text{(by (A1) and } A_{\epsilon} \text{ compact)} \end{aligned}$$

For each $\epsilon > 0$, $\mathbf{z}_{\epsilon} \in A_{\epsilon}$, $\lim_{\epsilon \to 0} \mathbf{z}_{\epsilon} \in A_{0} = \bigcap_{\epsilon \in \mathbb{Q}_{+}} A_{\epsilon}$. Then, $A_{0} = \{\mathbf{z} \in \mathcal{Y} : D(\pi(\cdot|\mathbf{z}), \pi(\cdot|\mathbf{y})) = 0\} = \{\mathbf{z} \in \mathcal{Y} : \pi(\cdot|\mathbf{z}) = \pi(\cdot|\mathbf{y})\}$ (continuity, equality property of D)

Then $\epsilon \to 0$ yields $|\pi\left(\boldsymbol{\theta}\mid\mathbf{z}_{\epsilon}\right) - \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)| \to |\pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right) - \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)| = 0$ and hence $|q_{\epsilon}\left(\boldsymbol{\theta}\mid\mathbf{y}\right) - \pi\left(\boldsymbol{\theta}\mid\mathbf{y}\right)| \to 0$, for each $\theta \in \Theta$.

By (A2),
$$\sup_{\boldsymbol{\theta} \in \Theta} q_{\epsilon}\left(\boldsymbol{\theta} \mid \mathbf{y}\right) = \sup_{\boldsymbol{\theta} \in \Theta} \int_{\mathcal{Y}} K_{\epsilon}\left(\mathbf{z}; \mathbf{y}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{z}\right) d\mathbf{z} \leq \sup_{\boldsymbol{\theta} \in \Theta} \sup_{\mathbf{z} \in A_{\gamma}} \pi\left(\boldsymbol{\theta} \mid \mathbf{z}\right) < \infty$$

for some γ , so that $\epsilon \leq \gamma$. Finally (bounded convergence theorem),

$$\lim_{\epsilon \to 0} \int_{\Omega} |q_{\epsilon}\left(\boldsymbol{\theta} \mid \mathbf{y}\right) - \pi\left(\boldsymbol{\theta} \mid \mathbf{y}\right)| d\boldsymbol{\theta} = \lim_{\epsilon \to 0} \|q_{\epsilon}\left(\cdot \mid \mathbf{y}\right) - \pi\left(\cdot \mid \mathbf{y}\right)\|_{1} = 0$$

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023 8/19

Appendix: Theorem 2

Theorem

Assume the following: $\mathcal{X} = \Theta \times \mathcal{Y}$ is a compact set and

(B1) For joint density π , there exists G_π a probability measure on Ψ such that, with $g_{\varphi} \in \mathcal{H}_{\mathcal{X}}$,

$$\pi(\mathbf{x}) = \int_{\Psi} g_{\varphi}(\mathbf{x}) \ G_{\pi}(d\varphi);$$

- (B2) The true posterior density $\pi(\cdot | \cdot)$ is continuous both with respect to θ and y;
- (B3) $D\left(\cdot,\cdot\right):\Pi\times\Pi\to\mathbb{R}_{+}\cup\left\{ 0\right\}$ is a metric on a functional class Π , which contains the class

$$\left\{ p^{K,N}\left(\cdot\mid\mathbf{y}\right):\mathbf{y}\in\mathcal{Y},K\in\mathbb{N},N\in\mathbb{N}\right\}$$
.

In particular, $D\left(p^{K,N}\left(\cdot\mid\mathbf{y}\right),p^{K,N}\left(\cdot\mid\mathbf{z}\right)\right)=0$, if and only if $p^{K,N}\left(\cdot\mid\mathbf{y}\right)=p^{K,N}\left(\cdot\mid\mathbf{z}\right)$;

- (B4) For every $\mathbf{y} \in \mathcal{Y}$, $\mathbf{z} \mapsto D\left(p^{K,N}\left(\cdot \mid \mathbf{y}\right), p^{K,N}\left(\cdot \mid \mathbf{z}\right)\right)$ is a continuous function on \mathcal{Y} .
- Then, under (B1)–(B4), the Hellinger distance $D_H\left(q_{\epsilon}^{K,N}\left(\cdot\mid\mathbf{y}\right),\pi\left(\cdot\mid\mathbf{y}\right)\right)$ converges to 0 in some measure λ , with respect to $\mathbf{y}\in\mathcal{Y}$ and in probability, with respect to the sample $\{(\boldsymbol{\theta}_n,\mathbf{y}_n),n\in[N]\}$. That is, for any $\alpha>0,\beta>0$, it holds that

$$\lim_{\epsilon \to 0, K \to \infty, N \to \infty} \Pr \left(\lambda \left(\left\{ \mathbf{y} \in \mathcal{Y} : D_H^2 \left(q_{\epsilon}^{K,N} \left(\cdot \mid \mathbf{y} \right), \pi \left(\cdot \mid \mathbf{y} \right) \right) \ge \beta \right\} \right) \le \alpha \right) = 1.$$

Appendix: sketch of proof Theorem 2

$$q_{\epsilon}^{K,N}\left(\boldsymbol{\theta}\mid\mathbf{y}\right) = \int_{\mathcal{V}} K_{\epsilon}^{K,N}\left(\mathbf{z};\mathbf{y}\right) \pi\left(\boldsymbol{\theta}\mid\mathbf{z}\right) d\mathbf{z} \ \text{ with } K_{\epsilon}^{K,N}\left(\mathbf{z};\mathbf{y}\right) \propto \mathbb{1}_{A_{\epsilon}^{K,N}}(\mathbf{z}) \; \pi\left(\mathbf{z}\right)$$

Relationship between Hellinger and L₁ distances yields:

$$D_{H}^{2}\left(q_{\epsilon}^{K,N}\left(\cdot\mid\mathbf{y}\right),\pi\left(\cdot\mid\mathbf{y}\right)\right)\leq2D_{H}\left(\pi(\cdot\mid\mathbf{z}_{\epsilon,\mathbf{y}}^{K,N}),\pi\left(\cdot\mid\mathbf{y}\right)\right)$$

where
$$\mathbf{z}_{\epsilon,\mathbf{y}}^{K,N} \in B_{\epsilon,\mathbf{y}}^{K,N}$$
 with $B_{\epsilon,\mathbf{y}}^{K,N} = \operatorname{argmax}_{\mathbf{z} \in A_{\epsilon,\mathbf{y}}^{K,N}} D_1\left(\pi\left(\cdot \mid \mathbf{z}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right)$

$$\mathbf{z}_{0,\mathbf{y}}^{K,N} = \lim_{\epsilon \to 0} \mathbf{z}_{\epsilon,\mathbf{y}}^{K,N} \text{ and } \mathbf{z}_{0,\mathbf{y}}^{K,N} \in A_{0,\mathbf{y}}^{K,N} = \left\{\mathbf{z} \in \mathcal{Y} : p^{K,N}\left(\cdot \mid \mathbf{z}\right) = p^{K,N}\left(\cdot \mid \mathbf{y}\right)\right\}$$

Triangle inequality for D_H :

$$\begin{split} D_{H}\left(\pi\left(\cdot\mid\mathbf{z}_{\epsilon,\mathbf{y}}^{K,N}\right),\pi\left(\cdot\mid\mathbf{y}\right)\right) &\leq D_{H}\left(\pi\left(\cdot\mid\mathbf{z}_{\epsilon,\mathbf{y}}^{K,N}\right),\pi(\cdot\mid\mathbf{z}_{0,\mathbf{y}}^{K,N})\right) + D_{H}\left(\pi(\cdot\mid\mathbf{z}_{0,\mathbf{y}}^{K,N}),p^{K,N}\left(\cdot\mid\mathbf{y}\right)\right) \\ &+ D_{H}\left(p^{K,N}\left(\cdot\mid\mathbf{y}\right),\pi\left(\cdot\mid\mathbf{y}\right)\right) \end{split}$$

First term in the rhs: goes to 0 as ϵ goes to 0 independently on K,N

Two other terms are similar: use [Rakhlin et al 2005, Corol. 2.2]

$$z_1=v_1/(1+v_1)$$
 and $z_2=v_2/(1+v_2)$ with
$$v_1=(u_1+u_3)/(u_5+u_4) \text{ and } v_2=(u_2+u_4)/(u_5+u_3) \text{, where } u_i\sim \mathsf{Gamma}(\theta_i,1)$$

Likelihood for ${f z}$ not available in closed form

GLLiM:
$$K=100$$
 (set manually) for $R=100$ i.i.d. observations ($d=2$), $\ell=5,~ \times N=10^5$

ABC: ϵ is set to the 0.05% quantile leading to selected samples of size 50,

Empirical parameter means, and RMSE averaged over 10 repetitions with observed data generated with $\theta=(1,1,1,1,1)$.

Procedure	$ar{ heta}_1$	$ar{ heta}_2$	$\bar{\theta}_3$	$ar{ heta}_4$	$ar{ heta}_5$	$R(heta_1)$	$R(\theta_2)$	$R(\theta_3)$	$R(heta_4)$	$R(\theta_5)$
GLLiM mixture	2.510	2.546	2.714	2.630	2.591	2.145	2.291	2.201	2.277	2.056
GLLiM-E-ABC	1.439	1.051	0.914	1.095	1.264	0.952	0.791	0.483	0.629	0.510
GLLiM-EV-ABC	1.444	1.037	0.916	1.153	1.205	1.003	0.751	0.556	0.596	0.521
GLLiM-L2-ABC	1.860	2.301	2.430	2.136	2.620	1.268	1.859	2.008	1.536	1.966
GLLiM-MW2-ABC	1.330	1.000	0.8465	1.056	1.159	0.836	0.781	0.458	0.558	0.448
	Best results using data discrepancies as reported in [Nguyen et al 2020]									
R = 100	1.275	1.176	0.751	0.830	1.237	0.834	0.593	0.459	0.219	0.409

Marginal ABC posteriors for each of the 5 parameters

GLLiM-E-ABC (red), GLLiM-EV-ABC (dotted red), GLLiM-MW2-ABC (black), GLLiM-L2-ABC (blue), SA-ABC on 14 quantiles (green), GLLiM mixture (dotted green)

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023 12/19

Marginal ABC posteriors for each of the 5 parameters

SMC-ABC procedures for a budget of $M=10^5$ (dotted lines) and $M=10^6$ (plain lines): GLLiM-MW2-SMC (black), GLLiM-L2-SMC (blue), WABC (red).

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023

Moving average of order 2: $y'_t = z_t + \theta_1 z_{t-1} + \theta_2 z_{t-2}, t = 1...150$

 $N=10^5$ series of length 150, the series to be inverted is simulated with $\theta_1=0.6$ and $\theta_2=0.2$.

Rejection ABC: ϵ is set to the 0.1% quantile leading to selected samples of size 100

GLLiM: K=20, R=1, d=150, $\ell=2$, with bloc diagonal covariances, 5 blocs 30×30

$$f_{\boldsymbol{\theta}}(\mathbf{z}) = \mathcal{S}_d(\mathbf{z}; \mu^2 \mathbf{1}_d, \sigma^2 \mathbf{I}_d, \nu)$$

d=10, mean $=(\mu^2\dots\mu^2)^T$, isotropic scale matrix= $\sigma^2\mathbf{I}_d$ ($\sigma^2=2$), dof (tail) $\nu=2.1$

Observation y: true $\mu = 1$

Setting: GLLiM: K = 10, $N = 10^5$; Rejection ABC: $M = 10^5$, $\epsilon = 0.1\%$ (100 values)

True symmetric posterior $\pi(\mu|\mathbf{y})$

GLLiM-E-ABC GLLiM-EV-ABC (dot)

Semi-automatic ABC

GLLiM-L2-ABC GLLiM-MW2-ABC

15 / 19

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023

Appendix: other illustration, sum of MA(1) processes

$$y'_{t} = z_{t} + \rho z_{t-1}$$

 $y''_{t} = z'_{t} - \rho z'_{t-1}$
 $y_{t} = y'_{t} + y''_{t}$

 $\{z_t\}$ and $\{z_t'\}$ are i.i.d. standard normal realizations and ρ is an unknown scalar parameter

$$\rightarrow \mathbf{y} = (y_1, \dots, y_d)^{\top} \sim \mathcal{N}(\mathbf{0}_d, 2(\rho^2 + 1)\mathbf{I}_d)$$

Observation y: d = 10, true $\rho = 1$

Setting: GLLiM: $K=20, N=10^5$; Rejection ABC: $M=10^5$, $\epsilon=0.1\%$ (100 selected values)

True symmetric posterior $\pi(\mu|\mathbf{y})$

GLLiM-E-ABC GLLiM-EV-ABC (dot)

Semi-automatic ABC

GLLiM-L2-ABC GLLiM-MW2-ABC

16 / 19

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023

Appendix: other illustration, sum of MA(2)

$$y'_{t} = z_{t} + \theta_{1}z_{t-1} + \theta_{2}z_{t-2}$$

$$y''_{t} = z'_{t} - \theta_{1}z'_{t-1} + \theta_{2}z'_{t-2}$$

$$y_{t} = y'_{t} + y''_{t},$$

K=80 and $N=M=10^5$, ϵ to the 1% distance quantile (samples of of size 1000)

An observation of size d=10 is simulated from $\theta_1=1$ and $\theta_2=0.6$

TrungTin Nguyen

GLLiM-ABC

UEH, August 31, 2023

Appendix: synthetic data from the Hapke model

TrungTin Nguyen GLLiM-ABC UEH, August 31, 2023

Computation times (MacBook Pro 8 cores, 2.4 GHz)

Exp.	ABC	ℓ	d	K	N	M	R	BIC	GLLiM	Dist.	ABC	Package	
Beta	Rej-ABC												
	G-E-ABC	5	2	100	10^{5}	10^{5}	100	-	11h13m	3m03s	0.28s	abc	
	G-EV-ABC	5	2	100	10^{5}	10^{5}	100	-	11h13m	3m03s	0.51s	abc	
	G-L2-ABC	5	2	100	10^{5}	10^{5}	100	_	11h13m	19m02s	0.01s	abc	
	G-MW2-ABC	5	2	100	10^{5}	10^{5}	100	-	11h13m	19m02s	0.01s	abc	
	SMC-ABC												
	WABC	5	2	-	-	10^{6}	100	-	-	-	31m05s	winference	
	G-MW2-SMC	5	2	100	10^{5}	10^{6}	100	-	11h13m	_	34m53s	winference	
	G-L2-SMC	5	2	100	10^{5}	10^{6}	100	-	11h13m	-	2h34m	winference	
MA(2)	Rej-ABC												
` ′	SA	2	150	-	-	10^{5}	1	-	-	-	1m25s	abctools	
	G-E-ABC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	50s	0.12s	abc	
	G-EV-ABC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	50s	0.20s	abc	
	G-L2-ABc	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	1m03s	0.01s	abc	
	G-MW2-ABC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	1m03s	0.01s	abc	
	SMC-ABC	İ											
	WABC	2	30	-	-	10^{5}	5	-	-	-	10m29s	winference	
	G-MW2-SMC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	-	11m08s	winference	
	G-L2-SMC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	-	8m43s	winference	
Hyperb.	Rej-ABC												
	SA	2	10	-	-	10^{6}	i - i	-	-	-	13s	abctools	
	G-E-ABC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	25s	0.9s	abc	
	G-EV-ABC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	11m28s	1.8s	abc	
	G-L2-ABC	2	10	38	10^{5}	10^{6}	i - i	1h43m	4m47s	4h18m	0.1s	abc	
	G-MW2-ABC	2	10	38	10^{5}	10^{6}	i - i	1h43m	4m47s	4h18m	0.1s	abc	
	SMC-ABC												
	G-MW2-SMC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	-	1h10m	winference	
Hapke	Rej-ABC												
	SA	4	10	-	-	10^{5}	-	-	-	-	1.4s	abctools	
	G-E-ABC	4	10	40	10^{5}	10^{5}	i - i	2h59s	21m30s	3.3s	0.2s	abc	
	G-EV-ABC	4	10	40	10^{5}	10^{5}	-	2h59s	21m30s	79s	0.3s	abc	
G-MW2-ABC 4 10				40	105	105		2h59s	21m30s	40m10s	0.01s	abc	
TrungTin Nguyen				GLLiM-ABC UEH, August 31, 2023 19						023 19/19			