# Лабораторная работа №3

# Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование.

# 2. Цель лабораторной работы:

Научиться реализовывать алгоритмы численного интегрирования посредством детерминированных циклических вычислительных процессов с управлением по аргументу с помощью FreePascal.

# 3. Используемое оборудование:

ПК, среда программирования Lazarus

# Задача 1

# 4. Постановка задачи:

Написать программу для вычисления определенного интеграла методом прямоугольников левых частей.

# 5. Математическая модель:

Вычислить данный интеграл методом прямоугольников левых частей.

$$\int_{0.7}^{2.1} \frac{\sqrt{0.6x+1.5}dx}{2x+\sqrt{x^2+3}}$$



| Имя | Смысл                     | Тип     |  |
|-----|---------------------------|---------|--|
| n   | Кол-во отрезков разбиения | integer |  |
| а   | Пределы интегрирования    | real    |  |
| b   | Пределы интегрирования    | real    |  |
| h   | Длина каждого отрезка n   | real    |  |
| sum | Сумма                     | real    |  |
| х   | Параметр цикла            | real    |  |
| S   | Площадь                   | real    |  |

# 8. Код программы:

```
program zadanie1;
var
n:integer;
a,b,h,sum,x,s:real;
begin
writeln('Vvedite kol-vo otrezkov razbieniy: ');
readIn(n);
a:=0.7;
b:=2.1;
h:=(b-a)/n;
x :=a;
sum:=0;
while x<=(b-h) do begin
sum:=sum+((sqrt(0.6*x+1.5))/(sqrt(x*x+3)+2*x));
x := x+h;
end;
s := sum*h;
writeln('Ploshad, vychislennay po metodu pryamougolnikov levyh chastey: ',s:3:6);
readIn();
end.
```

# 9. Результаты выполненной работы:

```
C:\TEMP\project1.exe

Uvedite kol-vo otrezkov razbieniy:
10000
Ploshad, vychislennay po metodu pryamougolnikov levyh chastey: 0.438493
-
```

#### 10. Анализ результатов вычисления:

Наша программа получает в качестве входных данных пределы кол-во отрезков разбиения, которое определяет точность вычислений. Затем она присваивает некоторым переменным параметры, необходимые для последующего выполнения цикла while. В теле цикла происходит вычисление суммы, которую после выхода из цикла мы домножаем на шаг h. Таким образом программа вычисляет площадь по методу правых частей прямоугольника.

# Задача 2

#### 4. Постановка задачи:

Написать программу для вычисления определенного интеграла методом прямоугольников правых частей.

#### 5. Математическая модель:

Вычислить данный интеграл методом прямоугольников правых частей.

$$\int_{0.7}^{2.1} \frac{\sqrt{0.6x+1.5} dx}{2x+\sqrt{x^2+3}}$$



| Имя | Смысл                     | Тип     |  |
|-----|---------------------------|---------|--|
| n   | Кол-во отрезков разбиения | integer |  |
| a   | Пределы интегрирования    | real    |  |
| b   | Пределы интегрирования    | real    |  |
| h   | Длина каждого отрезка n   | real    |  |
| sum | Сумма                     | real    |  |
| Х   | Параметр цикла            | real    |  |
| S   | Площадь                   | real    |  |

# 8. Код программы:

```
program zadanie2;
var
n:integer;
a,b,h,sum,x,s:real;
begin
a:=0.7;
b:=2.1;
writeln('Vvedite kol-vo otrezkov razbieniy: ');
readIn(n);
h := (b-a)/n;
x := a+h;
sum := 0;
while x <= b do begin
sum:=sum+((sqrt(0.6*x+1.5))/(sqrt(x*x+3)+2*x));
x:=x+h;
end;
s:=sum*h;
writeln('Ploshad, vychislennay po metodu pryamougolnikov pravyh chastey: ',s:3:6);
readIn();
end.
```

## 9. Результаты выполненной работы:



# 10. Анализ результатов вычисления:

Наша программа получает в качестве входных данных пределы кол-во отрезков разбиения, которое определяет точность вычислений. Затем она присваивает некоторым переменным параметры, необходимые для последующего выполнения цикла while. В теле цикла происходит вычисление суммы, которую после выхода из цикла мы домножаем на шаг h. Таким образом программа вычисляет площадь по методу левых частей прямоугольника.

#### Задача 3

#### 4. Постановка задачи:

Написать программу для вычисления определенного интеграла из индивидуального задания методом трапеций.

# 5. Математическая модель:

Вычислить данный интеграл методом трапеций.

$$\int_{0.7}^{2.1} \frac{\sqrt{0.6x+1.5}dx}{2x+\sqrt{x^2+3}}$$



| Имя | Смысл                     | Тип     |
|-----|---------------------------|---------|
| n   | Кол-во отрезков разбиения | integer |
| a   | Пределы интегрирования    | real    |
| b   | Пределы интегрирования    | real    |
| h   | Длина каждого отрезка n   | real    |
| sum | Сумма                     | real    |
| х   | Параметр цикла            | real    |
| S   | Площадь                   | real    |
| fa  | Значение в пределе а      | real    |
| fb  | Значение в пределе b real |         |

# 8. Код программы:

```
program zadanie3;
var
a,b,n,h,sum, x, s,fa,fb : real;
begin
a:=0.7;
b:=2.1;
writeln('Vvedite kol-vo otrezkov razbieniy: ');
readIn(n);
h:=(b-a)/n;
x:=a+h;
sum := 0;
while x <=(b-h) do begin
sum := sum+((sqrt(0.6*x+1.5))/(sqrt(x*x+3)+2*x));
x:=x+h;
end;
fa:=((sqrt(0.6*a+1.5))/(sqrt(a*a+3)+2*a));
fb:=((sqrt(0.6*b+1.5))/(sqrt(b*b+3)+2*b));
s:=h*((fa+fb)/2+sum);
writeln('Ploshad, vychislennay po metodu trapecyi: ',s:3:6);
readIn();
end.
```

# 9. Результаты выполненной работы:

```
Uvedite kol-vo otrezkov razbieniy:
10000
Ploshad, vychislennay po metodu trapecyi: 0.438480
```

# 10. Анализ результатов вычисления:

Программа вычисляет площадь как среднее арифметическое формул прямоугольника левых и правых частей, т.е. методом трапеций.

# Задача 4

# 4. Постановка задачи:

Написать программу для вычисления определенного интеграла методом парабол.

## 5. Математическая модель:

Вычислить данный интеграл методом парабол.

$$\int_{0.7}^{2.1} \frac{\sqrt{0.6x+1.5} dx}{2x+\sqrt{x^2+3}}$$



| РМЯ  | Смысл                     | <b>Тип</b><br>integer |  |
|------|---------------------------|-----------------------|--|
| n    | Кол-во отрезков разбиения |                       |  |
| a    | Пределы интегрирования    | real                  |  |
| b    | Пределы интегрирования    | real                  |  |
| h    | Длина каждого отрезка n   | real                  |  |
| sum  | Сумма                     | real                  |  |
| sum2 | Сумма 2                   | real                  |  |
| Х    | Параметр цикла            | real                  |  |
| S    | Площадь                   | real                  |  |
| fa   | Значение в пределе а      | real                  |  |
| fb   | Значение в пределе b      | real                  |  |

# 8. Код программы:

program zadanie4;

var

```
n:integer;
a,b,h,sum, sum2,x,s,fa,fb:real;
begin
a := 0.7;
b := 2.1;
writeln('Vvedite kol-vo otrezkov razbieniy: ');
readIn(n);
h:=(b-a)/n;
x:=a+h;
sum:= 0;
sum2:= 0;
while x <= (b-h) do begin
sum := sum+((sqrt(0.6*x+1.5))/(sqrt(x*x+3)+2*x));
x:=x+2*h;
end;
x:=a+2*h;
while x \le (b-2*h) do begin
sum2:= sum2+((sqrt(0.6*x+1.5))/(sqrt(x*x+3)+2*x));
x:=x+2*h;
end;
fa:=((sqrt(0.6*a+1.5))/(sqrt(a*a+3)+2*a));
fb:=((sqrt(0.6*b+1.5))/(sqrt(b*b+3)+2*b));
s:=h/3*(fa+fb+4*sum+2*sum2);
writeln('Ploshad, vychislennay po metodu parabol: ',s:3:6);
readIn();
end.
```

# 9. Результаты выполненной работы:

```
Uvedite kol-vo otrezkov razbieniy:
10000
Ploshad, vychislennay po metodu parabol: 0.438446
```

# 10. Анализ результатов вычисления:

Наша программа получает в качестве входных данных кол-во отрезков разбиения, которое определят точность вычислений. Затем она присваивает переменным суммы значение 0, а переменной х значение a+h. В теле цикла происходит вычисление суммы до предела b-h с шагом 2\*h. Затем переменной х присваивается значение a+2\*h. Начинается второй цикл, который вычисляет вторую сумму до предела b-2\*h с шагом 2\*h. После этого отдельно вычисляются значения на начале и конце отрезка ab. После этого программа подставляет необходимые переменные и вычисляет по формуле нужное нам значение.

# 11. Вывод:

| N<br>Количество<br>разбиений | Н<br>Шаг | Метод левых частей прямоугольников | Метод правых частей прямоугольников | Метод<br>трапеций | Метод<br>парабол |
|------------------------------|----------|------------------------------------|-------------------------------------|-------------------|------------------|
| 10                           |          | 0.416631                           | 0.392315                            | 0.403752          | 0.391792         |
| 100                          |          | 0.439804                           | 0.437228                            | 0.438516          | 0.431757         |
| 1000                         |          | 0.438306                           | 0.438049                            | 0.438177          | 0.438514         |
| 10000                        |          | 0.438493                           | 0.438467                            | 0.438480          | 0.438446         |

Из рассмотренных методов наиболее точным является метод парабол.

Если увеличить количество отрезков разбиения, то можно увеличить точность любого метода.