

HV5308 / HV5408

32-Channel, Serial-to-Parallel Converter with High-Voltage Push-Pull Outputs

Features

- · Processed with High-Voltage CMOS technology
- · Low power-level shifting
- · Source/sink current minimum 20mA
- · Shift register speed 8.0 MHz
- · Latched data outputs
- · CMOS compatible inputs
- · Forward and reverse shifting options
- Diode to V_{PP} allows efficient power recovery

Description

HV5308 and HV5408 are low-voltage serial to high-voltage parallel converters with push-pull outputs. These devices have been designed for use as a driver for AC-electroluminescent displays. HV5308 / HV5408 can also be used in any application requiring multiple output high-voltage, current sourcing, and sinking capabilities such as driving plasma panels, vacuum fluorescent, or large matrix LCD displays.

These devices consist of a 32-bit shift register, 32 latches, and control logic to enable outputs. Data is shifted through the shift register on the low-to-high transition of the clock. HV5308 shifts in the clockwise direction, when viewed from the top of the package, and HV5408 shifts in the counter-clockwise direction.

A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the shift register (32). Operation of the shift register is not affected by the $\overline{\text{LE}}$ (latch enable) or the OE (output enable) inputs. Transfer of data from the shift register to the latch occurs when the $\overline{\text{LE}}$ input is high. The data in the latch is retained when $\overline{\text{LE}}$ is low.

Package Type

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS[†]

Supply voltage, V _{DD}	0.5V to +16V
Supply voltage, V _{PP}	0.5V to +90V
Logic input levels	
Ground current ¹	1.5A
Continuous total power dissipation ²	1200mW
Operating temperature range	40°C to +85°C
Storage temperature range	65°C to +150°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 1: Duty cycle is limited by the total power dissipated in the package.
- 2: For operation above 25°C ambient derate linearly to maximum operating temperature at 20mW/°C.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: V _{PP} = 60V, V _{DD} = 12V, T _A = 25°C										
Parameter		Symbol	Min	Max	Units	Conditions				
DC Characteristics										
V _{PP} supply current		I_{PP}	-	0.5	mA	HV _{OUTPUTS} high to low				
I _{DD} supply current (quiesce	ent)	I_{DDQ}	-	100	μA	All inputs = V_{DD} or GND				
I _{DD} supply current (operating	ng)	I_{DD}	-	15	mA	V _{DD} = V _{DD} max, f _{CLK} = 8.0MHz				
High level logic input currer	nt	I _{IH}	-	1.0	μΑ	$V_{IN} = V_{DD}$				
Low level logic input curren	t	I _{IL}	-	-1.0	μΑ	V _{IN} = 0				
High level output voltage	HV _{OUT}	V_{OH}	52	-	V	I _{OH} = -20mA, -40 to 85°C I _{OH} = -15mA, -55 to 125°C				
	Data out		10.5	-	V	I _O = -100μA				
Low level output voltage	HV _{OUT}	V_{OL}	-	8.0	V	I _{OL} = 20mA, -40 to 85°C I _{OL} = 15mA, -55 to 125°C				
	Data out		-	1.0	V	I _O = 100μA				
HV output clamp diode volt	age	V_{OC}	-	-1.5	V	I _{OL} = -100mA				
AC Characteristics										
Clock frequency		f_{CLK}	-	8.0	MHz					
Clock width, High or Low		t_{WL} or t_{WH}	62	-	ns					
Setup time before CLK rise	S	t _{SU}	25	-	ns					
Hold time after CLK rises		t _H	10	-	ns					
Data output delay after L to	H CLK	t _{DLH} (Data)	-	110	ns	C _L = 15pF, (Note 1)				
Data output delay after H to	L CLK	t _{DHL} (Data)	-	110	ns	C _L = 15pF, (Note 1)				
LE delay after L to H CLK		t_{DLE}	50	-	ns	(Note 1)				
Width of LE pulse	t_{WLE}	50	-	ns						
LE setup time before L to H CLK t _s			50	-	ns	(Note 1)				
Delay from $\overline{\text{LE}}$ to HV _{OUT} , L		t _{ON}	-	500	ns	(Note 1)				
Delay from $\overline{\text{LE}}$ to HV _{OUT} , H	to L	t _{OFF}	-	500	ns	(Note 1)				

Note 1: L to H = Low to High; H to L = High to Low.

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise specified, for all specifications T _A =T _J = +25°C										
Parameter	Symbol Min Typ M		Max Units		Conditions					
Temperature Ranges										
Operating Temperature		-40	_	85	°C					
Storage Temperature		-65	_	150	°C					
Package Thermal Resistances										
Thermal Resistance, 44-Lead PQFP	θ_{ja}	_	51	_	°C/W					
Thermal Resistance, 44-Lead PLCC	θ_{ja}	_	37	_	°C/W					

2.0 PIN DESCRIPTION

The locations of the pins are listed in Package Type.

TABLE 2-1: PIN DESCRIPTION PQFP

IABLE		RIPTION PQFP	Description					
Pin #	HV5308	HV5408	Description					
1	HV _{OUT} 22	HV _{OUT} 11						
2	HV _{OUT} 21	HV _{OUT} 12						
3	HV _{OUT} 20	HV _{OUT} 13						
4	HV _{OUT} 19	HV _{OUT} 14						
5	HV _{OUT} 18	HV _{OUT} 15						
6	HV _{OUT} 17	HV _{OUT} 16						
7	HV _{OUT} 16	HV _{OUT} 17						
8	HV _{OUT} 15	HV _{OUT} 18						
9	HV _{OUT} 14	HV _{OUT} 19						
10	HV _{OUT} 13	HV _{OUT} 20	High voltage outputs.					
11	HV _{OUT} 12	HV _{OUT} 21	High voltage push-pull outputs, which, depending on controlling					
12	HV _{OUT} 11	HV _{OUT} 22	low voltage data, can drive loads either to GND, or to V_{PP} rail lev-					
13	HV _{OUT} 10	HV _{OUT} 23	els.					
14	HV _{OUT} 9	HV _{OUT} 24						
15	HV _{OUT} 8	HV _{OUT} 25						
16	HV _{OUT} 7	HV _{OUT} 26						
17	HV _{OUT} 6	HV _{OUT} 27						
18	HV _{OUT} 5	HV _{OUT} 28						
19	HV _{OUT} 4	HV _{OUT} 29						
20	HV _{OUT} 3	HV _{OUT} 30						
21	HV _{OUT} 2	HV _{OUT} 31						
22	HV _{OUT} 1	HV _{OUT} 32						
23	DATA OUT	DATA OUT	Serial data output. Data output for cascading to the data input of the next device.					
24								
25	N/C	N/C	No connect.					
26								
27	CLK	CLK	Data shift register clock Input are shifted into the shift register on the positive edge of the clock.					
28	GND	GND	Logic and high voltage ground					
29	VPP	VPP	High voltage power rail.					
30	VDD	VDD	Low voltage logic power rail.					
31	ΙĒ	ĪĒ	Latch enable input. When LE is High, shift register data is transferred into a data latch. When LE is Low, data is latched, and new data can be clocked into the shift register.					
32	DATA IN	DATA IN	Serial data input. Data needs to be present before each rising edge of the clock.					
33	OE	OE	Output enable input. When OE is Low, all HV outputs are forced into a Low state, regardless of data in each channel. When OE is High, all HV outputs reflect data latched.					
34	N/C	N/C	No connect.					

TABLE 2-1: PIN DESCRIPTION PQFP (CONTINUED)

Pin#	HV5308	HV5408	Description
35	HV _{OUT} 32	HV _{OUT} 1	
36	HV _{OUT} 31	HV _{OUT} 2	
37	HV _{OUT} 30	HV _{OUT} 3	
38	HV _{OUT} 29	HV _{OUT} 4	High voltage outputs.
39	HV _{OUT} 28	HV _{OUT} 5	High voltage push-pull outputs, which, depending on controlling
40	HV _{OUT} 27	HV _{OUT} 6	low voltage data, can drive loads either to GND, or to V _{PP} rail lev-
41	HV _{OUT} 26	HV _{OUT} 7	els.
42	HV _{OUT} 25	HV _{OUT} 8	
43	HV _{OUT} 24	HV _{OUT} 9	
44	HV _{OUT} 23	HV _{OUT} 10	

TABLE 2-2: PIN DESCRIPTION PLCC

Pin#	HV5308	HV5408	Description				
1	HV _{OUT} 17	HV _{OUT} 16					
2	HV _{OUT} 16	HV _{OUT} 17					
3	HV _{OUT} 15	HV _{OUT} 18					
4	HV _{OUT} 14	HV _{OUT} 19					
5	HV _{OUT} 13	HV _{OUT} 20					
6	HV _{OUT} 12	HV _{OUT} 21					
7	HV _{OUT} 11	HV _{OUT} 22					
8	HV _{OUT} 10	HV _{OUT} 23	High voltage outputs.				
9	HV _{OUT} 9	HV _{OUT} 24	High voltage push-pull outputs, which, depending on controlling low voltage data, can drive loads either to GND, or to V _{PP} rail lev-				
10	HV _{OUT} 8	HV _{OUT} 25	els.				
11	HV _{OUT} 7	HV _{OUT} 26					
12	HV _{OUT} 6	HV _{OUT} 27					
13	HV _{OUT} 5	HV _{OUT} 28					
14	HV _{OUT} 4	HV _{OUT} 29					
15	HV _{OUT} 3	HV _{OUT} 30					
16	HV _{OUT} 2	HV _{OUT} 31					
17	HV _{OUT} 1	HV _{OUT} 32					
18	DATA OUT	DATA OUT	Serial data output. Data output for cascading to the data input of the next device.				
19							
20	N/C	N/C	No connect.				
21							
22	CLK	CLK	Data shift register clock Input are shifted into the shift register on the positive edge of the clock.				
23	GND	GND	Logic and high voltage ground				
24	VPP	VPP	High voltage power rail.				
25	VDD	VDD	Low voltage logic power rail.				
26	LE	LE	Latch enable input. When LE is High, shift register data is transferred into a data latch. When LE is Low, data is latched, and new data can be clocked into the shift register.				

HV5308 / HV5408

TABLE 2-2: PIN DESCRIPTION PLCC (CONTINUED)

Pin#	HV5308	HV5408	Description
27	DATA IN	DATA IN	Serial data input. Data needs to be present before each rising edge of the clock.
28	OE	OE	Output enable input. When OE is Low, all HV outputs are forced into a LOW state, regardless of data in each channel. When OE is High, all HV outputs reflect data latched.
29	N/C	N/C	No connect.
30	HVOUT32	HV _{OUT} 1	
31	HVOUT31	HV _{OUT} 2	
32	HVOUT30	HV _{OUT} 3	
33	HVOUT29	HV _{OUT} 4	
34	HVOUT28	HV _{OUT} 5	
35	HVOUT27	HV _{OUT} 6	
36	HVOUT26	HV _{OUT} 7	High voltage outputs.
37	HVOUT25	HV _{OUT} 8	High voltage push-pull outputs, which, depending on controlling low voltage data, can drive loads either to GND, or to V _{PP} rail lev-
38	HVOUT24	HV _{OUT} 9	els.
39	HVOUT23	HV _{OUT} 10	
40	HVOUT22	HV _{OUT} 11	
41	HVOUT21	HV _{OUT} 12	
42	HVOUT20	HV _{OUT} 13	
43	HVOUT19	HV _{OUT} 14	
44	HVOUT18	HV _{OUT} 15	

3.0 FUNCTIONAL DESCRIPTION

Table 3-1 provides functional information about HV5308 / HV5408.

TABLE 3-1: FUNCTIONAL TABLE CLK

DATA IN	CLK	DATA OUT
Н	↑	Н
L	↑	L
Х	No ↑	No change

Note: H = High level, L = Low level, ↑ = Low-to-High transition

TABLE 3-2: FUNCTIONAL TABLE LE, OE

DATA IN	LE	OE	HV _{OUT}
Х	Х	L	All HV _{OUT} = Low
Х	L	Н	Previous latched data
Н	Н	Н	Н
L	Н	Н	L

Note: H = High level, L = Low level, X= Don't Care

3.1 Power-Up and Recommended Operating Conditions

To power-up HV5308 / HV5408, perform the following power-up sequence:

- 1. Connect ground
- 2. Apply V_{DD}
- Set all inputs (Data, CLK, LE, etc.) to a known state
- 4. Apply V_{PP}
- The V_{PP} should not fall below V_{DD} or float during operation.

To power-down the device, reverse the steps above.

TABLE 3-3: RECOMMENDED OPERATING CONDITIONS (-40°C to 85°C)

Symbol	Parameter	Min	Max	Units
V _{DD}	Logic voltage supply	10.8	13.2	V
V_{PP}	High voltage supply	8.0	80	V
V _{IH}	Input high voltage	V _{DD} - 2.0	V_{DD}	V
V _{IL}	Input low voltage	0	2.0	V
f _{CLK}	Clock frequency	0	8.0	MHz

FIGURE 3-1: Input and Output Equivalent Circuits

FIGURE 3-2: Switching Waveforms

4.0 PACKAGING INFORMATION

4.1 **Package Marking Information**

Example

44-lead PLCC

Example

Legend: XX...X Product Code or Customer-specific information

Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') WW

NNN Alphanumeric traceability code

Pb-free JEDEC® designator for Matte Tin (Sn) (e3)

This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

In the event the full Microchip part number cannot be marked on one line, it will Note: be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

44-Lead PQFP Package Outline (PG)

10.00x10.00mm body, 2.35mm height (max), 0.80mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ
Dimension (mm)	MIN	1.95*	0.00	1.95	0.30	13.65*	9.80*	13.65*	9.80*		0.73			0 °
	NOM	1	1	2.00	-	13.90	10.00	13.90	10.00	0.80 BSC	0.88	1.95 REF	0.25 BSC	3.5°
	MAX	2.35	0.25	2.10	0.45	14.15*	10.20*	14.15*	10.20*		1.03			7 °

JEDEC Registration MO-112, Variation AA-2, Issue B, Sep.1995.

Drawings not to scale.

^{*} This dimension is not specified in the JEDEC drawing.

44-Lead PLCC Package Outline (PJ)

.653x.653in body, .180in height (max), .050in pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging. *Notes:*

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- Actual shape of this feature may vary.

Symb	ol	Α	A 1	A2	b	b1	D	D1	E	E1	е	R
	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650		.025
Dimension (inches)	NOM	.172	.105	-	ı	1	.690	.653	.690	.653	.050 BSC	.035
(5.100)	MAX	.180	.120	.083	.021	.036†	.695	.656	.695	.656		.045

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.

Drawings not to scale.

[†] This dimension differs from the JEDEC drawing.

HV5308 / HV5408

APPENDIX A: REVISION HISTORY

Revision A (December 2015)

• Updated file to Microchip format

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>xx</u> -	X	- <u>X</u>	-	X		Exa	mples:	
Device	Package Options	 Version	Environme	ental	 Media Type		a)	HV5308PG-B-G	Clockwise data shift, 44-Lead PQFP pack- age, 96/Tray
Device:	HV530	8 = 32-Ch	annel Serial to	Paralle	el Converter, with	\neg $ $ '	b)	HV5308PG-B-G-M919	Clockwise data shift, 44-Lead PQFP pack- age, 500/Reel
Device.		High-v data s	oltage Push-pu hifts in clockwis	III Outp	puts		c)	HV5308PJ-B-G	Clockwise data shift, 44-Lead PLCC pack- age, 27/Tube
		High-v	High-voltage Push-pull Outputs data shifts in counter-clockwise direction				d)	HV5308PJ-B-G-M903	Clockwise data shift, 44-Lead PLCC package, 500/Reel
Package:	PG PJ	= 44-Lea					e)	HV5408PG-B-G	Counter-clockwise data shift, 44-Lead PQFP package, 96/Tray
Version	В	= Revis	ion B				f)	HV5408PJ-B-G	Counter-clockwise data shift, 44-Lead PLCC package,
Environmental	G	= Lead	(Pb)-free/ROH	S-com	npliant package				27/Tube
Media Type:	(blank)	= 27/Tub	y for PG packa be for PJ packa	ge					
	M903 M919		eel for PG pack eel for PJ pack						

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0073-8

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/support

Web Address:

www.microchip.com
Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138

Fax: 86-592-2388130 China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

HV5308PJ-B-G HV5308PG-B-G