Document of Aumore DI 3-19-1 Alg no KM N3 Bagarne T: 1) S = (sou D in Deig -corp) $|\cos\theta - 1|$ $\sin\theta = |\sin\theta - 1| = 0 = (\cos\theta - 1)(-\cos\theta - 1) - \sin^2\theta = 0$ $\begin{array}{c} = \\ \\ \downarrow = \\ \\ \downarrow$ VI : (1 + tq 2 e q) = cas 2 · (tq 2 e q) duntein-gcore = - 3 Tipolepus: - sintein = sint (1-cost) e in gar $\sqrt{\frac{1}{2}} \cdot \left(\sqrt{1 + ct_g^2 + \frac{\theta}{2}} \right) \cdot \left(t_g = i\varphi \right) + sin \cdot \frac{\theta}{2} \cdot \left(ct_g = i\varphi \right)$ (V + V 2) = - + 1 = 0 - apmoronaus mi. 2) 4>= 2, 11>+2-1-1> 2, = <1 | 4> = cos = / \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1} $\frac{(a)^{\frac{7}{2}}}{\sqrt{2}} \cdot (1^{2} + \frac{1}{\sqrt{9}})^{\frac{9}{2}} = \frac{1}{\sqrt{2}}$ d-1=<-114>= sin 2/ J2. (-1 ctg 2e-i4) (1)= 1 $P_{1} = |\frac{1}{\sqrt{2}}|^{2} = \frac{1}{2}$ $P_{-1} = |\frac{1}{\sqrt{2}}|^{2} = \frac{1}{2}$ $\sum_{i=1}^{n} |\frac{1}{\sqrt{2}}|^{2} = \frac{1}{2}$ L'x = -mw2x L'x = mx Jt L'x = mx L'y = - m w 2 y L'y = m y J+ L'y = m y $\begin{cases} -m\omega^2 x = m\ddot{x} \\ -m\omega^2 y = m\ddot{y} \end{cases} = \gamma \begin{cases} \ddot{x} + \omega^2 x = 0 \\ \ddot{y} + \omega^2 y = 0 \end{cases}$

1			ha	go	vi	2	9	ran	u	ee	V	ox	on	na		gels	a	X	u	Y		nci	N.	-er	no		2	n	Ru		P							re
1			X	=	(10	as	w	t	+	C 2	31	no	ot		-			1	V								1		3			m		6x	-0	g	w
T	F		X	=)	a	C,	311	2 (ut	1	- 0	2 (u s	ia	su	t												1		100							
		,	X (0) =	a	, ,	->	6	1	11	a			-	×	1	1 :	0	=	C	-					1											
		?	X	11	u	40	50	ut				u	c	a	u	t	-	a	7.5					-							1			100				1
		1	1 = 1	0	3	ca	u	t	4	C	4 1	in	u	t			1											1						100	1			
F		1	,	1	u	C	3)	in	wt	4	0	0	4	la	w	t	100									-		Vo	1	100				4		-		
		7																	=	U	v (4	-	7	2	4	=	w										
F	= >	7			V 0	511	10	ut	X		w	1	1	e	05	2 -	t	102		-	V0:	2 3	K2		-				1								1	
						And the	1	1 . 7					1000	1.00			1000	100					12		100								-		2	7.	1	
	1	=	7	1	1	12	4	+	-	ci	2	-	1	m	. 2	. 1	no	2	w	un	cy		-		6						-19	-				7		1

Sugara 2 nymm 2 Sa = [pxdx+pydy] [= = [(x2+y2-w2(x1+y2))] Px = DL/dx = mx py = cinques = my. 1 = pxx + pyy - L = px + px - px - px + w2. m. (x2+x4) $E = \frac{m}{2} \cdot \frac{dx^{2} + dy^{2}}{dt^{2}} + 0.5mw^{2}(x^{2} + y^{2}) = E$ $= > dt = \sqrt{\frac{m}{2}} \cdot \sqrt{\frac{dx^2 + dy^2}{E - 25mw^2(x^2 + y^2)}}$ $= \sum P \times = m \cdot \frac{d \times}{d t} = d \times \cdot \sqrt{2m} \cdot \sqrt{\frac{E - 9,5m\omega^2(x^2 + y^2)}{d \times (4 + d \times 2)}}$ Py = m. dx = dy. Vzm . JE-0,5mm2(x44x1) => So = J2m. VE-0,5mw2(x2+y2) J5x2+ dy2 Booday to the witer geto o glorinian sugartimopar, in a much morar y'= 0x - nyems u dx = x'dx > x- zu Epener => So = J2m · J VE-0, Smw = (x + y +) + y + 2 d x V2m V E- 0, 5mw 2 (x2449) 1 (4 × 13) x: - zu wopoeml 9 x = 9 9 9 x DL = Jzm · JE-1, Smw2(xtayt) Jity 2 = -0,5 mw 2 x 1 1 + x 2 JEM: (-0,5m w2x). JIN x12 = 0 (J2m , JE-0,5mw2 x1x4). X (1+302) VE-9, 5mw2(x=172) = > - 0.5 m w 2 y y ' = q q ' + anmenyangen

Jagara 2 nyogamenue

$$= \frac{1}{1+y^{2}} = -0.5 \text{ mw}^{2} (x^{2}+y^{2})$$

$$\frac{1+y^{2}}{1+y^{2}} = -0.5 \text{ mw}^{2} y^{2} + C$$

$$\frac{1}{1+y^{2}} = \frac{dy}{dt} = \frac{dy}{dt$$

$$=70,5mv_0^2+0,5mw^2a^2-0,5mw^2a^2=C=7C=0,5mv^2$$

= | gene bië nei 1,5 mw² | =
$$\frac{\sqrt{5}}{w^2}$$
 y'2 + d'y'2 - x2 y'2 - y2 y'2= - y2 - y1 y'2 + $\frac{\sqrt{5}}{w^2}$ +

$$(=) \frac{\left(\frac{\partial y}{\partial x}\right)^2}{b^2 - y^2} = \frac{1}{\alpha^2 - x^2}$$

$$= \gamma \int \frac{dy}{(b^2-y^1)^{0,5}} = \int \frac{dx}{(\alpha^2-x^2)}$$

=7 (depieu cunye)
$$\frac{Y}{b} = -\sqrt{1-\frac{x^2}{a^2}}$$

$$= \frac{y^2}{b^2} + \frac{x^2}{a^2} = 1$$

$$= \frac{y^2 \cdot w^2}{\sqrt{2}} + \frac{x^2}{a} = 1 - ya$$

Sin arcca x = VI - x2


```
H = - uB (cov to sin de in )
                                  it of w = A w =>
                                  \int \frac{d\psi}{d\psi} = \int \frac{H}{H} dt = \gamma \quad \psi = C e^{\frac{H}{1R}} = C e^{-\frac{H}{1R}} = C e^{\frac{H}{1R}} = C e^{\frac{H}{1R}}
                                14(t) = e # 14(01) = e # 14(0)
                                   e^{uB\hat{S}}; =(E+E\frac{uBt^2}{2!}+E\frac{uBt^4}{11}-...)+;(S.\frac{uBt}{2!}-S.\frac{uBt^3}{3!}+...)
S \cdot S = ( \begin{array}{c} \cos \theta \\ \sin \theta \end{array} ) \begin{array}{c} \sin \theta \end{array} + \begin{array}{c} \sin \theta \end{array} + \begin{array}{c} \cos \theta \\ \sin \theta \end{array} ) \begin{array}{c} \sin \theta \end{array} + \begin{array}{c} \cos \theta \end{array} + \begin{array}{c} \sin \theta \end{array} + \begin{array}{c} \cos 
          52n+1= J- 7mo zuronanegno (m. x 53 = 52 S= E.J = 5, nanpuneg)
          => e # = Ecos ( Ju B;) + i sin ( Ju B;)
        14(t) = (1) · E · (a) ( 1 B+) + (1) · S · sin ( 1 1) i
            = (1) cas ( u b t) + i ( cas + y) sin ( th t) /
```