

Wnioski dotyczące systemów automatycznego dowodzenia

- Systemy automatycznego wnioskowania abstrahują od semantyki symboli i formuł
- Logika klasyczna nie umożliwia reprezentacji informacji <u>niepewnej</u>
- Zastosowanie metod automatycznego wnioskowania jest problematyczne kiedy wiedza jest <u>niepełna</u>
- Podstawowy problem to zgromadzenie i zorganizowanie <u>wiedzy zdroworozsądkowej</u> niezbędnej do analizowania praktycznych zadań

Wnioski dotyczące systemów automatycznego dowodzenia

- Jak uporać się z wiedzą niepełną i niepewną?
 - Opracować inne formy reprezentacji wiedzy
- Jak sprostać ogromnej ilości wiedzy zdroworozsądkowej niezbędnej w praktycznych problemach wnioskowania?
 - Ograniczyć funkcjonowanie systemu do mocno specjalistycznej dziedziny wiedzy

Regułowa forma reprezentacji wiedzy

- Reguły mogą opisywać różnego rodzaju zależności:
 - Proceduralne: IF <sytuacja> THEN <akcja>
 np. <u>jeżeli</u> pada deszcz <u>to</u> otwórz parasol
 - Przyczynowo-skutkowe: IF <przyczyna> THEN <skutek>
 np. <u>jeżeli</u> X jest przeziębiony <u>to</u> X ma gorączkę
 - Pojęciowe: IF <warunek> THEN <wniosek>np. jeżeli X jest zatrudniony to X jest ubezpieczony
 - Kompozycji: IF <podtyp> THEN <typ>
 np. <u>jeżeli</u> X jest częścią silnika <u>to</u> X jest częścią auta
 - Dziedziczenia: IF <podtyp> THEN <typ>
 np. jeżeli X jest psem to X jest ssakiem

Regułowa forma reprezentacji Reguły produkcji Proceduralne IF <sytuacja> THEN <akcja> np. jeżeli pada deszcz to zabierz parasol Deklaratywne (pojęciowe) IF <przesłanka/warunek> THEN <konkluzja/decyzja> np. jeżeli X jest zatrudniony to X jest ubezpieczony Metareguły IF <stan systemu> THEN <ustaw parametr> np. jeżeli optymalne rozwiązane to strategia wszerz

Postać regułowej bazy wiedzy

Ogólna postać :

IF A1 ⊙ ... ⊙ An **THEN** B1 ∧...∧ Bm gdzie: ⊙ to ∧ i/lub ∨

Przykład najpopularniejszy

Reguły Horna (koniunkcja zdań atomowych oraz jedna konkluzja):

IF A1 A ... A An THEN B

Zalety reguł hornowskich Kilka konkluzji ten sam warunek -**IF** $A1 \land A2 \land A3$ **THEN** $X1 \land X2$. IF A1 \wedge A2 \wedge A3 THEN X1 IF A1 \wedge A2 \wedge A3 THEN X2

- Alternatywne warunki ta sama konkluzja
 - -IF (A1 A2 A A3) > (B1 AB2 A B3) THEN W-

IF A1 \wedge A2 \wedge A3 THEN W

IF B1 \wedge B2 \wedge B3 THEN W

 Prostsza - w rezultacie efektywniejsza - konstrukcja mechanizmu wnioskowania oraz większa czytelność (przejrzystość) bazy reguł

"Zazębianie" reguł

- Warunki odpytywalne (ang. askeable conditions)
 - Warunki nie będące wnioskami innych reguł ich wartość musi być określona przez odpowiedź użytkownika na pytanie zadane podczas wnioskowania systemu eksperckiego
- Warunki nieodpytywalne (ang. non-askeable conditions)
 - Warunki będące wnioskami innych reguł ich wartość wynika pośrednio z odpowiednich reguł i wartości odpowiednich warunków odpytywalnych

"Zazębiania" można uniknąć przez "spłaszczanie" bazy wiedzy:

> IF A A B A C A D A E THEN W

Dlaczego? interesujące dla użytkownika

"Zazębianie" reguł

- Istnienie "zazębień" w bazie zwiększa dokładność (gradację) procesu wnioskowania – mamy jawną informację o wnioskach pośrednich, nie będących warunkami odpytywalnymi, które mogą być
- Bliższe rzeczywistości odzwierciedlenie wiedzy dziedzinowej – "spłaszczanie" reguł uniemożliwia zachowanie hierarchicznej struktury wiedzy
- Przejrzysta i czytelna baza wiedzy reguły mają mniej warunków

Negacje w konkluzji reguły

W regułowej bazie wiedzy <u>nie moga</u> występować równocześnie reguły z wnioskami w postaci prostej i zanegowanej

IF Urlop ∧ Pieniądze THEN Wycieczka

IF ¬Zdrów THEN ¬Wycieczka

IF ¬Zdrów(żona) THEN ¬Wycieczka

czasami można bazę przeformułować:

IF Urlop ∧ Pieniądze ∧ Zdrów ∧ Zdrów(żona)THEN Wycieczka

dzięki czemu pozbędziemy się konkluzji zanegowanych.

Negacja w regułowej bazie wiedzy W systemie regułowym prawda jest tylko to

W systemie regułowym prawdą jest tylko to, co wynika ze zdefiniowanych reguł i faktów oraz danych wprowadzonych przez użytkownika.

Jest to przejaw założenia o zamkniętości świata.

Inaczej: jeśli czegoś nie można wywnioskować na podstawie reguł i faktów, to uznaje się to za nieprawdziwe.

Negacja w regułowej bazie wiedzy

Różnice między logiką a systemem regułowym wynikające z założenia o zamkniętości świata:

Regula

IF P THEN Q	Р	Q
True	True	True
True	False	False

Implikacja w logice

P⇒Q	Р	Q
True	True	True
True	False	True
True	False	False

Gdy warunki prawdziwej implikacji w logice są fałszywe, wniosek może być prawdziwy lub fałszywy. Natomiast gdy warunki prawdziwej reguły nie są prawdą, to również wniosek nie może być prawdą.

Rodzaje mechanizmów wnioskowania na regułach

Mamy dwa podstawowe typy mechanizmów wnioskujących dla reprezentacji regułowej:

- Wnioskowanie w przód (ang. forward chaining)
 - Weryfikujemy warunki wszystkich reguł na wszystkich dostępnych faktach w celu wyprowadzenia nowych faktów za pomocą reguł
- Wnioskowanie wstecz (ang. backward chaining)
 - Szukamy reguły, która we wniosku zawiera naszą hipotezę, sprawdzamy czy warunki użycia tej reguły są spełnione (badamy możliwość ich spełnienia przez fakty lub inne reguły)

Kierunek wnioskowania: w przód kryterium: porządkowe R1: IF start THEN p ∧ q R2: IF p THEN r ^ s R3: IF q THEN w ∧ r R4: IF q THEN t ∧ u R5: IF s THEN v R6: IF $v \wedge r \wedge q$ THEN goal Zbiór konfliktowy Pamięć robocza Odpalona regula R1 start R1 start, p, q R2,R3,R4 R2 R3, R4, R5 R3 start, p, q, r, s ⇔nawrót R4, R5 R4 ⇔nawrót start, p, q, r, s, w R5 start, p, q, r, s, w, t, u R5 R6 R6 start, p, q, r, s, w, t, u, v start, p, q, r, s, w, t, u, goal Ø

Wnioskowanie w tył procedure backward(Cel) if Cel matches Baza Faktów then return(true) for each Regula: conclusions(Regula) match Cel do for each P in premises(Regula) do: if backward(P)= false then // rekurencja continue // następna reguła <u>if</u> \forall *P* backward(*P*)=true <u>then</u> // warunki spełnione add(Cel, Baza Faktów) and return(true) //cel spełniony if $\forall Regula$: premises(Regula) = false then return(false) if ¬∃ Regula: conclusions(Regula) match Cel then if ask_user(Cel)=true then add(Cel,Baza Faktów) and return(true) <u>if</u> ask_user(*Cel*)=false <u>then</u> return(false)

Kierunek wnioskowania: w tył strategia: w głąb kryterium: porządkowe			
R3: IF	start THEN p ∧ q q THEN w ∧ r s THEN v	R2: IF p THEN r \(s \) R4: IF q THEN t \(\lambda \) R6: IF r \(\lambda \times \) q THEN goal	
Pamięć celów	Zbiór konfliktowy	=	
goal	R6	R6	
r, v, q, goal	(R2; R3), R6	•	
p,r,v,q,goal	R1, (R2; R3), R6		
start, p, r, v, q, goal	R1, (R2; R3), R6	<i>⇔dodajemy fakt</i> start	
start ←	R1, (R2; R3), R6	<i>⇔odpalamy</i> R1 <i>(mamy</i> p <i>i</i> q)	
start, p, r, v, q, goal	(R2; R3), R6	<i>⇔odpalamy</i> R2 <i>(mamy</i> r <i>i</i> s)	
start, p, v, r, s, q, goal	R6	<i>⇔brakuje</i> v	
<u>start, p, v, r, s, q, g</u> oal		R5	
<u>start, p, v, r, s, q, goal</u>		<i>⇔odpalamy</i> R5 <i>(mamy</i> v)	
<u>start, p, v, r, s, q, g</u> oal	R6	⇔odpalamy R6 (mamy goal)	
<u>start, p, v, r, s, q, goal</u>	Ø	⇔ brak niespełnionych	
*Podkreślone cele ∈ Baza-Faktóv		⇔koniec!	

Niedeterminizm

Dla dwóch reguł o treści:

IF C1 THEN W1

IF C2 THEN W2

zachodzi niedeterminizm (*ang.ambiguity*) bazy wiedzy, jeżeli istnieje stan opisany przez formułę *F* taki, że równocześnie:

 $F \models C1 i F \models C2 oraz W1 \neq W2$

- log. konsekw.

Są to zatem reguły, których akcje można wykonać równocześnie ale ich konkluzje (skutki) są różne.

Niezgodność

Dla dwóch reguł o treści:

IF C1 THEN W1

IF C2 THEN W2

zachodzi niezgodność (*ang.ambivalence*) bazy wiedzy, jeżeli istnieje stan opisany przez formułę *F* taki, że równocześnie:

Są to zatem reguły, które można odpalić równocześnie ale ich konkluzje są konfliktowe (nie mogą być równocześnie prawdziwe).

Sprzeczność (logiczna)

Dla dwóch reguł o treści:

IF C1 THEN W1

IF C2 THEN W2

zachodzi sprzeczność (ang. logical inconsistency) bazy wiedzy, jeżeli istnieje stan opisany przez formułę F, taki że równocześnie:

Są to zatem reguły, które można odpalić równocześnie ale ich konkluzje są logicznie sprzeczne (nie mogą być równocześnie prawdziwe w żadnej interpretacji).

Sprzeczność reguł powiązanych

Załóżmy, że mamy bazę reguł:

R1: IF K ∧ B THEN H

R2: IF $C \wedge D \wedge X$ THEN K

R3: IF $\neg H \land A$ THEN X

"spłaszczając" R3 do R2 otrzymamy:

R2': IF $C \wedge D \wedge \neg H \wedge A$ THEN K

zaś "spłaszczenie" R2' do R1 daje sprzeczną regułę:

IF $C \wedge D \wedge \neg H \wedge A \wedge B$ THEN H

Jest to przykład sprzeczności zewnętrznej reguł.

Sprzeczność reguł powiązanych

Załóżmy, że mamy bazę reguł:

R1: IF $C \wedge B \wedge Y$ THEN X

R2: IF $A \land \neg B$ THEN Y

"spłaszczając" R2 do R1 otrzymamy sprzeczną regułę:

IF $C \land B \land A \land \neg B$ THEN X

Jest to przykład sprzeczności wewnętrznej reguł.

Wykrywanie sprzeczności występujących na skutek zazębień reguł może być kosztowne i w ogólnym przypadku wymagać pełnego przeglądu reguł.

Nadmiarowość

Baza wiedzy R reprezentowana przez zbiór reguł $R = R1 \land R2 \land ... \land Rm$ jest nadmiarowa (redundantna), jeśli istnieje baza R' otrzymana z R poprzez usunięcie z niej składowej (reguły) Ri, taka że: $R \models R$ ' i R' $\models R$.

Zatem, baza jest nadmiarowa jeżeli istnieje możliwość usunięcia z niej co najmniej jednej z reguł i otrzymana w ten sposób baza jest logicznie równoważna pierwotnej bazie wiedzy.

Pochłanianie reguł

Regula postaci **IF** A **THEN** B pochlania regulę (jest ogólniejsza od reguly) postaci **IF** C **THEN** D wtedy i tylko wtedy, gdy $C \models A$ i $B \models D$.

Reguła pochłaniająca posiada zatem mniej wymagające warunki ale mocniejsze konkluzje.

Przykład

R1: IF $P \land Q$ THEN $H \land G$ R2: IF $P \land Q \land S$ THEN H

Reguła R1 pochłania regułę R2.

Nad IF A / IF C / IF E / -IF A / IF A / IF A /

Nadmiarowość: warianty

IF $A \wedge B$ THEN W

IF C ^ D THEN A

IF E \wedge F THEN B

- **IF-C-**^-D-**~E- ~F- THEN W**-

-**IF-A-**^-B-^-**C-THEN-W** - - -

IF $A \wedge B$ THEN W

-**IF-**A-\-B-\-C-**THEN**-W----

-**IF-A-**∧-B-∧---**C-THEN**-W---

IF A ^ B THEN W

Występowanie reguł wielokrotnych

Występowanie reguł pochłoniętych

Występowanie reguł o zbędnych warunkach

Mocne strony systemów eksperckich

- Mniejszy koszt ekspertyzy przy większej prędkości jej uzyskiwania
- Stała i większa dostępność ekspertyzy
- · Dostępność wyjaśnień
- Ekspertyza pozbawiona wpływu czynników emocjonalnych
- Możliwość instruowania użytkowników inteligentny nauczyciel początkujących ekspertów
- Możliwa modyfikacja bazy wiedzy bez naruszania integralności systemu

Słabe strony systemów eksperckich

- Duży rozmiar bazy wiedzy w poważnych zastosowaniach
- Brak mechanizmów autonomicznego pozyskiwania wiedzy przez system – nie generują nowej wiedzy
- Brak wiedzy przyczynowo-skutkowej wiedza zawarta w regułach nie musi odzwierciedlać faktycznego procesu podejmowania decyzji

Zakres zastosowań systemów eksperckich • Interpretacja danych Formowanie wniosków na podstawie danych C₈H₁₀N₄O₂ DENDRAL

Zakres zastosowań systemów eksperckich

Projektowanie

Dobór konfiguracji układu oparty na określonych kryteriach przy uwzględnieniu przyjętych ograniczeń

Zakres zastosowań systemów eksperckich

Planowanie

Konstrukcja sekwencji działań prowadzących od przyjętego stanu początkowego do stanu docelowego

Zakres zastosowań systemów eksperckich

· Szkolenie i instruktaż

Wykrywanie i korygowania błędów w rozumieniu przedmiotu danej dziedziny

Zakres zastosowań systemów eksperckich

· Monitorowanie i sterowanie

Porównywanie obserwowanego działania z oczekiwanym funkcjonowaniem oraz nadzór nad aktywnością złożonych systemów

