THEOREM 2.3 Limit Laws

Assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. The following properties hold, where c is a real number and m>0 and n>0 are integers.

1. Sum
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2. **Difference**
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3. Constant multiple
$$\lim_{x\to a} [c f(x)] = c \lim_{x\to a} f(x)$$

4. Product
$$\lim_{x \to a} [f(x) g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right]$$

4. Product
$$\lim_{x \to a} [f(x) g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right]$$
5. Quotient $\lim_{x \to a} \left[\frac{f(x)}{g(x)}\right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$, provided $\lim_{x \to a} g(x) \neq 0$
6. Power $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$

6. Power
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n$$

7. Fractional power
$$\lim_{x \to a} [f(x)]^{n/m} = \left[\lim_{x \to a} f(x)\right]^{n/m}$$
, provided $f(x) \ge 0$, for x near a , if m is even and n/m is reduced to lowest terms