### ۱ جلسهی ششم

مثال ١. فاصلهي مبدأ را تا خط

$$\begin{cases} x = 1 + t \\ y = 7 - t \\ z = -1 + 7t \end{cases}$$

را بيابيد.

 $\psi$  موازی (۱, ۲, ۲) میگذرد و با بردار (۱, ۲, ۲) موازی موازی



فرض کنیم از مبدأ خطی عمود به خط مورد نظر بکشیم که آن را در  $P^\prime$  قطع کند.

$$P' = (x, y, z)$$
 ,  $O = (\cdot, \cdot, \cdot)$ 

میخواهیم بردار OP' بر خط عمود باشد. پس باید حاصلضرب داخلی OP' و بردار جهت خط صفر شود.

$$(x,y,z)\cdot (\mathbf{1},-\mathbf{1},\mathbf{1})=\mathbf{1}$$
  $\Rightarrow$   $x-y+\mathbf{1}z=\mathbf{1}$ 

از طرفی نقطه ی P' روی خطِ L واقع است. پس باید در معادله ی خط صدق کند. پارامترها ی خطِ  $x-y+\mathbf{r}z=\mathbf{r}$  را در معادله ی  $x-y+\mathbf{r}z=\mathbf{r}$  قرار می دهیم.

$$1 + t - 7 + t - 7 + t = \cdot \Rightarrow t = \frac{1}{7}$$

. در نتیجه در  $t=rac{1}{2}$  به نقطهی P' می رسیم

$$\begin{cases} x = 1 + t = \frac{r}{r} \\ y = r - t = \frac{r}{r} \\ z = -1 + rt = r \end{cases}$$

پس نقطه یP' برابر است با طول  $(\frac{r}{r}, \frac{r}{r}, \cdot)$  و فاصله ی مبدأ تا خط برابر است با طول OP' که می شود:

$$\sqrt{(\frac{r}{r})^{r}+(\frac{r}{r})^{r}+\boldsymbol{\cdot}}=\frac{r}{r}\sqrt{r}$$

# ۲ توابع برداری و منحنیهای فضایی

در این درس به تابعی تابع برداری گفته می شود که دامنه ی آن  $\mathbb R$  و برد آن  $\mathbb R^{\mathbb R}$  باشد.

$$\mathbf{r}:\mathbb{R}\longrightarrow\mathbb{R}^{r}$$

$$t \mapsto (f(t), g(t), h(t))$$

توجه ۲.

$$f,g,h:\mathbb{R}\longrightarrow\mathbb{R}$$
به اینها توابم مختصات تابع برداری  $\mathbf{r}$  گفته می شود.

میتوان r را به صورت زیر نوشت:

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

مثال ۳. مثال تابع برداری است.  $\mathbf{r}(t) = (\mathbf{1} + t)\mathbf{i} + (\mathbf{7} - t)\mathbf{j} + (-\mathbf{1} + \mathbf{7}t)\mathbf{k}$  مثال

یک خط راست 
$$\begin{cases} x(t) = \mathbf{1} + t \\ y(t) = \mathbf{1} - t \\ z(t) = -\mathbf{1} + \mathbf{1} t \end{cases}$$

مثال ۴. دامنهی تابع برداری زیر را بیابید.

$$\mathbf{r}(t) = (t^{\mathsf{r}}, \ln(\mathsf{r} - t), \sqrt{t})$$

 $t\geqslant \cdot$  برای معنی داشتن  $\sqrt{t}$  باید داشته باشیم: t>0 در دامنه  $\ln(\mathbf{T}-t)$  باید داشته باشیم: t>0 در دامنه  $t\in[0,\mathbf{T}]$  دامنه مورد نظر ماست.

تعریف ۵ (حد توابع برداری). اگر  $\mathbf{r}(t) = (f(t), g(t), h(t))$  آنگاه، تعریف میکنیم:

$$\lim_{t \to a} \mathbf{r}(t) = (\lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t))$$

در صورتیکه  $\lim_{t\to a} f(t)$ ،  $\lim_{t\to a} g(t)$ ،  $\lim_{t\to a} g(t)$  هر سه موجود باشند. توجه کنید که عبارت

$$\lim_{t\to a} \mathbf{r}(t) = (b_1, b_2, b_3)$$

یعنی این که فاصله ی بردارِ  $\mathbf{r}(t)$  از نقطه ی  $(b_1,b_7,b_7)$  را میتوان به هر اندازه ی دلخواه کم کرد، به شرط این که t به اندازه ی کافی به a نزدیک شود. به بیان دیگر:

 $\lim_{t\to a} \mathbf{r}(t) = (b_1, b_2, b_3) \Leftrightarrow \forall \epsilon > \bullet \quad \exists \delta > \bullet \quad \forall t \quad (|t-a| < \delta \to ||\mathbf{r}(t) - (b_1, b_2, b_3)|| < \epsilon).$ 

مثال ۶. اگر 
$$\mathbf{r}(t)=(\mathbf{1}-t^{\mathsf{r}})\mathbf{i}+(te^{-t})\mathbf{j}+(rac{\sin t}{t})\mathbf{k}$$
 مثال ۶. اگر

$$\lim_{t\to \cdot} \mathbf{r}(t)$$

پاسخ.

$$\lim_{t \to \cdot} \mathbf{1} + t^{\mathbf{r}} = \mathbf{1}, \lim_{t \to \cdot} t e^{-t} = \mathbf{1}, \lim_{t \to \cdot} \frac{\sin t}{t} = \mathbf{1} \Rightarrow \lim_{t \to \cdot} \mathbf{r}(t) = (\mathbf{1}, \mathbf{1}, \mathbf{1})$$

تعریف ۷ (پیوستگی). میگوییم تابع برداری  ${\bf r}$  در نقطه a پیوسته است، هرگاه

$$\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$$

پس  $\mathbf{r}(t)=(f(t),g(t),h(t))$  در نقطه ی  $\mathbf{r}(t)=(f(t),g(t),h(t))$  و م در نقطه ی  $\mathbf{r}(t)=(f(t),g(t),h(t))$  و میروسته باشند.

$$f:I o\mathbb{R}$$
 توابعی حقیقی و پیوسته روی  $g:I o\mathbb{R}$  نید توابع کنید توابع کنید  $h:I o\mathbb{R}$  توابعی حقیقی و پیوسته روی بازه ی $f:I$  بازه ی $f:I$  بازه یوسته و پیوسته روی

$$C = \{ (f(t), g(t), h(t)) | t \in I \}$$

به C یک منحنی فضائی میگوییم.

منحنی های فضائی می توانند مسطح (یعنی واقع در یک صفحه) باشند؛ مانند خطها.

مثال ٩. منحني فضايي ساخته شده توسط معادلات پارامتري زير را تحليل كنيد.

$$\begin{cases} x = 1 + t \\ y = 1 + \Delta t \\ z = -1 + 9t \end{cases}$$

*پاسخ.* معادلات بالا نشانگر خط به دست آمده از نقطه ی زیر و بردار جهت زیر هستند.

نقطه 
$$(1, Y, -1)$$

بردار
$$(1, 0, 8)$$

به طور کلی رسم همهی منحنیهای فضائی آسان نیست. در ادامه برخی منحنیهای فضائی را تحلیل کردهایم و نمودار آنها را با استفاده از نرمافزار میپل رسم کردهایم.

مثال ۱۰. منحنی فضائی معادلهی زیر را رسم کنید.

$$\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$$

یاسخ. نخست ابتدا منحنی مسطح دو بعدی  $\mathbf{r}(t)=(\cos t,\sin t)$  را در نظر بگیرید. این منحنی همان دایره ی مثلثاتی است که با حرکت ِt از t تا t در جهت عکس عقربههای ساعت کشیده می شود. یه بیان دیگر از آنجا که  $\mathbf{r}(t)=(\cos(t),\sin(t))$  منحنی  $\sin^{\mathsf{r}}(t)+\cos^{\mathsf{r}}(t)=1$  یک دایره است.

$$x = \cos t, y = \sin t$$
  $x^{\mathsf{Y}} + y^{\mathsf{Y}} = \cos^{\mathsf{Y}} t + \sin^{\mathsf{Y}} t = \mathsf{Y}$ 



پس تصویرِ منحنی  $z=\cdot$  یک دایره با شعاع یک  $\mathbf{r}(t)=\cos t\mathbf{i}+\sin t\mathbf{j}+t\mathbf{k}$  یک دایره با شعاع یک است. پس منحنی  $\mathbf{r}(t)$  هر چه باشد روی استوانه ی  $\mathbf{r}(t)$  واقع است. حال دقت کنید که مؤلفه ی  $\mathbf{r}(t)$  زیادتر می شود و با خود دایره را به سمت بالا می کشاند.

به شکل حاصل از معادلهی بالا، یک مارپیچ، یا یک پیچار گفته میشود.

<sup>\</sup>helix

> spacecurve([cos(t), sin(t), t], t = 0  $\dots$  20\*Pi, numpoints = 1000)



مثال ۱۱. منحنی فضائی محل تقاطع استوانهی ۱ $y^{
m T}=1$  با صفحه کy+z=1 را بیابید.

*پاسخ.* استوانهی

به شکل زیر است:  $x^{\mathsf{T}} + y^{\mathsf{T}} = \mathsf{T}$ 





صفحهی مورد نظر را نیز می توان با مشخص کردن سه نقطه از آن رسم کرد:



محل تقاطع استوانه با صفحه یک بیضی است.





برای بدست آوردن معادله ی بیضی، سه پارامتر x(t),y(t),z(t) را می خواهیم. تصویر بیضی روی صفحه ی xy برابر است با

$$x^{\mathsf{Y}} + y^{\mathsf{Y}} = \mathsf{Y}$$

پس تصویر مورد نظر با معادلهی پارامتری زیر مشخص می شود:

$$x(t) = \cos t, y(t) = \sin t$$

از آنجا که بیضی مورد نظر روی صفحه ی  $y+z={
m Y}$  واقع است، مؤلفه ی z برابر است با  $z(t)={
m Y}-\sin t$ 

> spacecurve([cos(t), sin(t), 2-sin(t)], t = 0 .. 2\*Pi, numpoints = 1000)



$$x=(\mathbf{Y}+\sin(\mathbf{Y}\cdot t))\cos t$$
  $y=(\mathbf{Y}+\sin(\mathbf{Y}\cdot t))\sin t$  مثال ۱۱. منحنی فضائی به معادلهی مقابل را در نظر بگیرید:  $z=\cos(\mathbf{Y}\cdot t)$ 

پاسخ. به این منحنی یک مارپیچ چنبرهای میگوئیم، زیرا روی یک چنبره (به شکل دونات) به صورت مارپیچ حرکت میکند. ۲

<sup>&</sup>lt;sup>†</sup>Toroidal spiral

> spacecurve([(4+sin(20\*t))\*cos(t), (4+sin(20\*t))\*sin(t), cos(20\*t)], t = 0 ... 2\*Pi, numpoints = 1000)



مثال ۱۳. منحنی فضائی به معادلهی  $\mathbf{r}(t) = (t, t^{\mathsf{Y}}, t^{\mathsf{W}})$  را رسم کنید.

پاسخ. دقت کنید که مؤلفههای x,y روی استوانهی سهموی  $y=x^{\mathsf{T}}$  واقعند.

 $> implicit plot \verb""d"(y=x",x=-\verb"o..o",y=-\verb"o..o",z=-\verb"o..o",\\ scaling=constrained, numpoints=""\"\"")$ 



از طرفی مؤلفههای  $z=x^{\mathrm{r}}$  بر روی یک استوانه به معادلهی  $z=z^{\mathrm{r}}$  واقعند:

$$\begin{split} implicit plot \mathbf{T} d(z=x^{\mathbf{T}}, x=-\mathbf{D}..\mathbf{D}, y=-\mathbf{D}..\mathbf{D}, z=-\mathbf{D}..\mathbf{D}, \\ scaling = constrained, numpoints = \mathbf{V} \bullet \bullet \bullet \bullet) \end{split}$$



## از تقاطع ایندو شکل زیر حاصل می شود (منحنی مکعبی خم شده) $^{\text{\tiny T}}$

 $> spacecurve([t, t^{\mathsf{Y}}, t^{\mathsf{Y}}], t = -\mathsf{Y}..\mathsf{Y}, numpoints = \mathsf{V} \cdot \cdot \cdot)$ 



مثال ۱۴  $(t\cos t, t, t\sin t)$  را رسم کنید.

پاسخ. به رابطه ی بین x,z دقت کنید:

$$x^{\mathsf{Y}} + z^{\mathsf{Y}} = t^{\mathsf{Y}}(\mathsf{Y}) = t^{\mathsf{Y}}$$

<sup>&</sup>quot;twisted cubic

پس منحنی مورد نظر روی یک مخروط واقع است.

 $> spacecurve([t*cos(t), t, t*sin(t)], t = {\color{black} \boldsymbol{\cdot}}.. {\color{black} \boldsymbol{\cdot}} *Pi, numpoints = {\color{black} \boldsymbol{\cdot}} {\color{black} \boldsymbol{\cdot}} {\color{black} \boldsymbol{\cdot}})$ 



مثال ۱۵. ابتدا منحنی دو بعدی  $(\cos t, \sin t, \cos \Upsilon t)$  ، سپس منحنی فضائی  $(\cos t, \sin t, \cos \Upsilon t)$  را رسم کنید.

 $:(\cos t,\cos \Upsilon t)$  پاسخ. منحنی

$$x=\cos t, y=\cos \mathbf{Y} t$$

$$\cos \mathbf{Y} t = \cos^{\mathbf{Y}} t - \sin^{\mathbf{Y}} t = \mathbf{Y} \cos^{\mathbf{Y}} t - \mathbf{Y}$$

در نتیجه داریم:

$$y = \Upsilon x^{\Upsilon} - \Upsilon$$



 $:(\cos t,\cos \mathsf{Y} t,\, ullet)$ منحنی

 $> spacecurve([cos(t), cos(\mathbf{Y}*t), \bullet], t = \bullet...\mathbf{Y}*Pi, numpoints = \mathbf{V}\bullet\bullet\bullet)$ 



 $:(\cos t,\sin t,\cos {
m Y}t)$ منحنی

 $> spacecurve([cos(t), sin(t), cos(\texttt{Y}*t)], t = \verb+...\texttt{Y}*Pi, numpoints = \verb+...*)$ 



#### مثال ۱۶.

 $> spacecurve([cos(t), sin(t), \texttt{V}/(t^{\texttt{Y}} + \texttt{V})], t = \bullet... \texttt{V} * Pi, numpoints = \texttt{V} \bullet \bullet \bullet)$ 



### مثال ۱۷.

 $> spacecurve([t, \texttt{I}/(t^{\texttt{Y}} + \texttt{I}), t^{\texttt{Y}}], t = \verb§+...§+, numpoints = \texttt{I} • • • •)$ 



#### مثال ۱۸.

 $> spacecurve([cos(\texttt{A}*t), sin(\texttt{A}*t), exp(\texttt{/}\,\texttt{A}*t)], t = \verb+...+ *Pi, numpoints = \verb+...+)$ 



### مثال ١٩.

 $> spacecurve([cos(t)^{\mathsf{Y}}, sin(t)^{\mathsf{Y}}, t], t = {\bullet}..{\mathsf{Y}} * Pi, numpoints = {\mathsf{V}} {\bullet} {\bullet} {\bullet})$ 

