| Quiz    | Course Title:      | Course   | Date:     | <b>Duration of</b> | Number of  | Instructor:      | University: | Department:    |
|---------|--------------------|----------|-----------|--------------------|------------|------------------|-------------|----------------|
| Number: | Digital Signal and | Code:    | Thursday, | Quiz:              | Questions: | Siamak Najarian, | UBC         | Electrical and |
| 3       | Image Processing   | ELEC 421 | November  | 15 minutes         | 5          | Ph.D., P.Eng.    |             | Computer       |
|         |                    |          | 21, 2024  |                    |            |                  |             | Engineering    |
|         |                    |          |           |                    |            |                  |             |                |

# Please carefully read the following instructions and guidelines:

- **1.** This quiz is closed books/notes.
- **2.** You will not get a negative mark for choosing the incorrect answer.
- **3.** Each question carries 1 mark.



#### Question 1:

In digital signal processing, a bandlimited signal with a maximum frequency  $\omega_B$  can be perfectly reconstructed from its samples if the sampling frequency  $\omega_S$  satisfies which of the following conditions?

A. 
$$\omega_S < 2\omega_B$$

B. 
$$\omega_S=2\omega_B$$

C. 
$$\omega_S \geq 2\omega_B$$

D. 
$$\omega_S > 2\omega_B$$

#### Question 2:

To mitigate the aliasing effect in signal sampling, what technique can be used to prevent high-frequency components from distorting the sampled signal?

- **A.** Apply a highpass filter to remove low-frequency components before sampling, ensuring the signal conforms to the Nyquist Rate (NR).
- **B.** Apply a bandpass filter to ensure the signal remains within a specific frequency range.
- **C.** Apply a lowpass filter to the signal before sampling to remove high-frequency components, ensuring the signal conforms to the Nyquist Rate (NR).
- D. Apply a frequency modulation technique to shift the signal frequencies before sampling.

#### Question 3:

In the context of zero-order hold reconstruction, which two functions should be convolved with each other to generate the reconstructed signal?

- A. The original continuous signal and a unit impulse function
- **B.** The discrete-time delta functions and a rectangular pulse function
- C. The sampled signal and a triangular pulse function
- D. The discrete-time delta functions and a Gaussian pulse function

## Question 4:

In digital signal processing, one key difference between IIR and FIR low-pass filters is related to the filter's impulse response and phase characteristics. Which of the following statements is true about IIR low-pass filters?

- A. IIR filters have a finite impulse response and typically exhibit linear phase characteristics.
- **B.** IIR filters have an infinite impulse response and can achieve a steeper roll-off with fewer coefficients than FIR filters.
- C. IIR filters require more coefficients than FIR filters to achieve the same roll-off.
- D. IIR filters are always stable and have a linear phase response.

## Question 5:

Which of the following is true regarding a Finite Impulse Response (FIR) low-pass filter in Digital Signal Processing (DSP)?

- **A.** FIR filters have a finite impulse response, are always stable, have a linear phase response, and require more coefficients for similar performance compared to IIR filters.
- **B.** FIR filters always have a non-linear phase response, which distorts the order of frequencies in the signal.
- C. FIR filters are always unstable, but they are easier to design for specific phase requirements.
- **D.** FIR filters can achieve a steeper roll-off for a given filter order compared to IIR filters, but they are less computationally efficient.

# **End of Questions**

## **Answer Sheet:**

| Question<br>Number | Α | В | С | D |
|--------------------|---|---|---|---|
| 1                  |   |   |   |   |
| 2                  |   |   |   |   |
| 3                  |   |   |   |   |
| 4                  |   |   |   |   |
| 5                  |   |   |   |   |