Refine Search

Search Results -

Terms	Documents
ep adj 1260791\$	2

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Search History

DATE: Monday, June 12, 2006 Printable Copy Create Case

Set Name side by side		Hit Count	<u>Set</u> <u>Name</u>
•			result set
DB=EH	PAB,DWPI; THES=ASSIGNEE; PLUR=YES; OP=OR		
<u>L18</u>	ep adj 1260791\$	2	<u>L18</u>
<u>L17</u>	ep1260791	0	<u>L17</u>
DB=PC	GPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; THES=ASSIGNEE; PLU	R = YES;	
OP = OR			
<u>L16</u>	L6 AND (DEVID\$ WITH (AREA\$ OR ZON\$ OR SITE))	0	<u>L16</u>
<u>L15</u>	L6 AND (SPLIT\$ WITH (AREA\$ OR ZON\$ OR SITE))	6	<u>L15</u>
<u>L14</u>	L6 AND (DEVID\$ WITH (AREA\$ OR ZON\$ OR SITE))	0	<u>L14</u>
<u>L13</u>	L11 AND (DEVID\$ WITH (AREA\$ OR ZON\$ OR SITE))	0	<u>L13</u>
<u>L12</u>	L11 AND (SPLIT\$ WITH (AREA\$ OR ZON\$ OR SITE))	2	<u>L12</u>
<u>L11</u>	L6 AND MAP\$	106	<u>L11</u>
<u>L10</u>	L9	106	<u>L10</u>
<u>L9</u>	L6 AND MAP\$8	106	<u>L9</u>
<u>L8</u>	L7 AND SEARCH\$ WITH AREA\$	1	<u>L8</u>

<u>L7</u>	6622085.PN.	2	<u>L7</u>
<u>L6</u>	SWITCH\$ WITH SEARCH\$ WITH AREA\$ AND @AD<=20030110	427	<u>L6</u>
<u>L5</u>	L4 AND MAP\$	5	<u>L5</u>
<u>L4</u>	L3 OR L2	36	<u>L4</u>
<u>L3</u>	L1 AND @PD<=20030110	29	<u>L3</u>
<u>L2</u>	L1 AND @AD<=20030110	32	<u>L2</u>
T.1	AUTOMATICS WITH SWITCHS WITH SEARCHS WITH AREAS	38	T.1

END OF SEARCH HISTORY

Sign in

Web

Results 1 - 5 of about 6 for map "search target area". (0.39 seconds)

Tip: Try removing quotes from your search to get more results.

Sponsored Links

IPDFI An efficient method to search for the location of network services ...

File Format: PDF/Adobe Acrobat

architecture termed network map to realize multiple QoS. routing on worldwide networks. ... search target area by utilizing the request for network QoSs ...

doi.wiley.com/10.1002/ecja.1131 - Similar pages

Map

Easy-to-read maps. Accurate directions. Trust MapQuest. MapQuest.com

EP1260791 Mitsubishi european software patent - Position ...

8. assume that a search-target area is specified as the dynamic search conditions. ... a display is switched partially or completely from the navigation map ... gauss.ffii.org/PatentView/EP1260791 - 168k - Cached - Similar pages

[PDF] TextWrangler 2.1.1 User Manual

File Format: PDF/Adobe Acrobat

program to a useful value, you may find it helpful to turn on the Map the File Name ... 7

Drag a folder to the search target area to search its contents, ...

ftp.barebones.com/pub/ manual/TextWrangler_User_Manual.pdf - Similar pages

[PDF] BBEdit 8.2.4 User Manual

File Format: PDF/Adobe Acrobat

BBEdit will first attempt to map the file name to the list of suffix-to-... 7 Drag a folder to the search target area to search its contents, ...

ftp.barebones.com/pub/manual/BBEdit_8_User_Manual.pdf - Similar pages

Thunderstone: GlobalSecurity.org - Reliable Security Information

Once sufficient forces are available, search target area. Use CI teams and linguist to attempt to pinpoint the sniper. 6. Report information gathered to the ... www.globalsecurity.org/.../search/?query=photos& pr=default&order=r&cmd=context&id=42b616333 - 78k - Cached - Similar pages

In order to show you the most relevant results, we have omitted some entries very similar to the 5 already displayed.

If you like, you can repeat the search with the omitted results included.

Try your search again on Google Book Search

Info when you want it, right on your desktop

map "search target area" Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2006 Google

First Hit

Previous Doc

Next Doc

Go to Doc#_

End of Result Set

Generate Collection Print

L18: Entry 2 of 2

File: DWPI

May 18, 2006

DERWENT-ACC-NO: 2002-435454

DERWENT-WEEK: 200634

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Position-associated information brokering/acquiring method, brokering

computer system, and mobile terminal

INVENTOR: OZAKI, M; SHIMOTANI, M; UEDA, F

PATENT-ASSIGNEE: MITSUBISHI ELECTRIC CORP (MITQ), OZAKI M (OZAKI), SHIMOTANI M

(SHIMI), UEDA F (UEDAI), MITSUBISHI DENKI KK (MITQ)

PRIORITY-DATA: 2000JP-0381970 (December 15, 2000), 2000JP-0310239 (October 11,

2000)

Search Selected Search ALL Clear

PATENT-	FAMILY:
---------	---------

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
US 20060105781 A1	May 18, 2006		000	H04Q007/20
WO 200231441 A1	April 18, 2002	J	088	G01C021/00
US 20020184200 A1	December 5, 2002		000	G06F007/00
EP 1260791 A1	November 27, 2002	E	000	G01C021/00
TW 512225 A	December 1, 2002		000	
JP 2002534779 X	February 19, 2004		000	G01C021/00
US 7003288 B2	February 21, 2006		000	H04B001/04
US 20060105780 A1	May 18, 2006		000	H04Q007/20

DESIGNATED-STATES: JP US AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
US20060105781A1	October 3, 2001	2001WO-JP08714	Div ex
US20060105781A1	June 10, 2002	2002US-0149154	Div ex
US20060105781A1	December 14, 2005	2005US-0302161	
US20060105781A1		US 7003288	Div ex
WO 200231441A1	October 3, 2001	2001WO-JP08714	
US20020184200A1	October 3, 2001	2001WO-JP08714	
US20020184200A1	June 10, 2002	2002US-0149154	
WO 200231441A1 US20020184200A1	October 3, 2001	2001WO-JP08714 2001WO-JP08714	Div ex

EP 1260791A1	October 3, 2001	2001EP-0972673	
EP 1260791A1	October 3, 2001	2001WO-JP08714	
EP 1260791A1		WO 200231441	Based on
TW 512225A	October 8, 2001	2001TW-0124786	
JP2002534779X	October 3, 2001	2001WO-JP08714	
JP2002534779X	October 3, 2001	2002JP-0534779	
JP2002534779X		WO 200231441	Based on
US 7003288B2	October 3, 2001	2001WO-JP08714	
US 7003288B2	June 10, 2002	2002US-0149154	
US 7003288B2		WO 200231441	Based on
US20060105780A1	October 3, 2001	2001WO-JP08714	Div ex
US20060105780A1	June 10, 2002	2002US-0149154	Div ex
US20060105780A1	December 14, 2005	2005US-0302112	
US20060105780A1		US 7003288	Div ex

INT-CL (IPC): $\underline{G01}$ \underline{C} $\underline{21/00}$; $\underline{G06}$ \underline{F} $\underline{7/00}$; $\underline{G06}$ \underline{F} $\underline{13/00}$; $\underline{G06}$ \underline{F} $\underline{17/30}$; $\underline{G06}$ \underline{F} $\underline{17/60}$; $\underline{G08}$ \underline{G} $\underline{1/0969}$; $\underline{G08}$ \underline{G} $\underline{1/137}$; $\underline{H04}$ \underline{B} $\underline{1/04}$; $\underline{H04}$ \underline{Q} $\underline{7/20}$

ABSTRACTED-PUB-NO: WO 200231441A

BASIC-ABSTRACT:

NOVELTY - A position-associated information brokering/acquiring method in which a brokering computer system (2) brokers position-associated information provided by a content server (4) on a network, and a mobile terminal (1) on the network acquires desired position-associated information connected with its behavior by the brokerage. In response to a request of a mobile terminal (1) or a client computer (6), a brokering computer system (2) sends an information source/distribution condition list to the mobile.

 ${\tt USE-Position-associated\ information\ brokering/acquiring\ method,\ brokering\ computer\ system,\ and\ mobile\ terminal}$

DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the position-associated information brokering/acquiring system.

Mobile terminal 1

Computer system 2

Content server 4

Client computer 6

ABSTRACTED-PUB-NO: WO 200231441A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.1/23

DERWENT-CLASS: T01 W01

EPI-CODES: T01-N01A2A; W01-C01G6E;

Previous Doc Next Doc Go to Doc#

Record Display Form Page 1 of 2

First Hit Previous Doc Next Doc Go to Doc#

End of Result Set

☐ ::- Generate Collection :-- Print

L7: Entry 2 of 2 File: DWPI Sep 22, 2004

DERWENT-ACC-NO: 2000-686473

DERWENT-WEEK: 200615

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Device and method for creating and using data on road map expressed by

polygons

INVENTOR: AMITA, J; HATTORI, Y ; KOBAYASHI, H ; KISHIKAWA, K

PATENT-ASSIGNEE: ZENRIN KK (ZENRN), HITACHI SOFTWARE ENG CO LTD (HISF)

PRIORITY-DATA: 1999JP-0189974 (July 5, 1999), 1999JP-0015372 (January 25, 1999)

	Search Selected	Search ALL	Clear	
PATENT-FAMILY:				

PAT	ENT-FAMILY:				
	PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
	CN 1168046 C	September 22, 2004		000	G06T001/00
	WO 200043953 A1	July 27, 2000	J	000	G06T001/00
	EP 1182611 A1	February 27, 2002	E	000	G06T001/00
	CN 1338088 A	February 27, 2002		000	G06T001/00
	JP 2000595305 X	May 21, 2002		000	G06T001/00
	KR 2001113662 A	December 28, 2001		000	G06T001/00
	TW 504618 A	October 1, 2002		000	G06F017/00
	US 6622085 B1	September 16, 2003		000	G06F017/00
	EP 1450309 A2	August 25, 2004	E	000	G06T017/50

DESIGNATED-STATES: CN JP KR US AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
CN 1168046C	January 20, 2000	0 2000CN-0803114	
WO 200043953A1	January 20, 2000	0 2000WO-JP00248	
EP 1182611A1	January 20, 2000	0 2000EP-0901335	
EP 1182611A1	January 20, 2000	0 2000WO-JP00248	
EP 1182611A1		WO 200043953	Based on
CN 1338088A	January 20, 2000	0 2000CN-0803114	

JP2000595305X	January 20, 2000	2000JP-0595305	
JP2000595305X	January 20, 2000	2000WO-JP00248	
JP2000595305X		WO 200043953	Based on
KR2001113662A	July 24, 2001	2001KR-0709299	
TW 504618A	January 21, 2000	2000TW-0101017	
US 6622085B1	January 20, 2000	2000WO-JP00248	
US 6622085B1	October 1, 2001	2001US-0890081	
US 6622085B1		WO 200043953	Based on
EP 1450309A2	January 20, 2000	2000EP-0901335	Div ex
EP 1450309A2	January 20, 2000	2004EP-0004346	
EP 1450309A2		EP 1182611	Div ex

INT-CL (IPC): G06 F 17/00; G06 T 1/00; G06 T 17/50

ABSTRACTED-PUB-NO: WO 200043953A

BASIC-ABSTRACT:

NOVELTY - Data on roads and intersections expressed by polygons properly agreeing with the complex shapes of roads on a city map is automatically created. In a simple polygon forming processing (3), the line segments of road network data (2) where the roads are modeled to line segments are expanded in the direction of the road width, and simple road polygon data (4) on roads having widths a little thicker than those of the road widths of city map data (5). In a scissors data creating processing (6), shape lines near roads are connected from the city map data (5), and thereby scissors data (7) defining the outlines of roads is created. In a road polygon creating processing (9), simple road polygons are trimmed along the road outlines, and road polygon data (9) well agreeing with the road shapes on the city map data is created.

USE - None given.

ABSTRACTED-PUB-NO: WO 200043953A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/0

DERWENT-CLASS: T01

EPI-CODES: T01-J06B1; T01-J10C4;

Previous Doc Next Doc Go to Doc#

Record Display Form

Page 1 of 2

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L12: Entry 1 of 2 File: USPT Aug 14, 2001

DOCUMENT-IDENTIFIER: US 6275483 B1

TITLE: Fast and accurate identification of spread spectrum signals

Application Filing Date (1): 19980903

Detailed Description Text (10):

The path identification unit 40 communicates the results to the searcher controller 42. The searcher controller 42 determines how the additional searches, if any, will be performed, or if it will switch to a new search area. The searcher controller 42 controls path identification unit 40 via control line 43. To examine the next, not necessarily successive, code offset, the searcher controller 42 provides the necessary code offset information to the I and Q PN code generators 46. The interaction between the path identification unit 40, the searcher controller 42 and the I and Q PN generator 46 are described in detail below, as the particular aspects of the invention are presented in the remaining paragraphs.

Detailed Description Text (17):

If the uncertainty area contains a relatively large number of hypotheses, it can be split to several smaller ones which are then examined separately according to any of the previously mentioned search strategies. In that manner, the memory size needed to store the correlation results (number of SNR measurements or number of counters) is kept relatively small and within acceptable, cost effective limits. Another reason for keeping the search area relatively small is to avoid having a significant time drift due to the mismatch between the transmit and receive clocks of the communications unit in which the method operates by the time the examination of the search area is complete. The search area is scanned multiple times. This is a viable option because the total uncertainty area is usually limited to a maximum of a few hundred chips and it is the result of propagation delays relative to a known PN code offset at the transmitting base station.

Detailed Description Text (28):

The offset counter (OC) is initialized to the first offset in the search area; OC=1. For the beginning of the search process, if N (N>=1) tests are performed for each chip interval, incrementing OC by 1 corresponds to advancing the code offset by 1/N chip intervals. In other words, the successive correlations are performed for successive 1/N chip intervals and OC maps to successive 1/N-chip offsets. For example, typical values for N are 1, and 2.

<u>Detailed Description Text</u> (31):

If DS(OC) exceeds TH(BC), the Hit Counter (HC) for the corresponding test is increased by one in block 44. The <u>mapping</u> of HC to the corresponding OC is denoted by HC(OC). The initial value of HC for all offsets is 0.

Detailed Description Text (33):

If OC is smaller than TN(BC), i.e., the result of the test in block 45 is "YES", then there are more tests to be performed before the end of the search area. The next step is thus block 46, in which OC is increased by one to \underline{map} to the next chip offset. The process then returns to step 42, and the search process is repeated after evaluating the new DS(OC).

Detailed Description Text (35):

If IC is smaller than BIN(BC), i.e., the result of the test in block 47 is "YES", then more search iterations of the search area should be performed. The next step is thus block 48, in which OC is set to one to $\underline{\text{map}}$ the first test of the new search iteration, and IC is increased by one. The search process is repeated after evaluating the new DS(OC).

Detailed Description Text (36):

If IC is not smaller than BIN(BC), i.e., the result of the test in block 47 is "NO", then the total number of iterations for the particular benchmark has been achieved. The next step is thus block 49, in which the parameters for the next benchmark are indirectly set by increasing BC by one. This advances the index of the vectors and perform the necessary mapping to obtain the new parameters. Subsequently, in the same block 49, the HCs at the examined offsets are sorted according to their value and the TN largest ones are selected for further consideration. TN may be a function of the benchmark and this is denoted as TN(BC).

Detailed Description Text (47):

If OC is smaller than TN(BC), i.e., the result of the test in block 64 is "YES", then there are more offsets with SNR measurements to be performed before the end of the search area. The next step is thus block 65, in which OC is increased by one to map to the next chip offset, and the search process is repeated after evaluating the new SNR(OC).

Detailed Description Text (49):

If IC is smaller than BIN(BC), i.e., the result of the test in block 66 is "YES", then more search iterations of the search area should be performed. The next step is thus block 57, in which OC is set to one to $\underline{\text{map}}$ the first test of the new search iteration and IC is increased by one. The search process is repeated after evaluating the new SNR(OC).

Detailed Description Text (50):

If IC is not smaller than BIN(BC), i.e., the result of the test in block 66 is "NO", then the total number of iterations for the particular benchmark has been achieved. The next step is thus block 68, in which the parameters for the next benchmark are indirectly set by increasing BC by one. This will advance the index of the vectors and perform the necessary <u>mapping</u> to obtain the new parameters. Subsequently, the SNR values at the examined offsets are sorted according to their value and the TN largest ones are selected for further consideration. TN may be a function of the benchmark and this is denoted as TN(BC).

Previous Doc Next Doc Go to Doc#