Part III Algebraic Geometry 2014

Part III Algebraic Geometry 2014

Contents

1	Sheaf Theory					
	1.1 Introduction	1				
	1.2 Sheaves	-				
	Locally free and coherent \mathcal{O}_X -modules 2.1 Locally free and coherent \mathcal{O}_X -modules	7				

vi *CONTENTS*

Chapter 1

Sheaf Theory

1.1 Introduction

These are lecture notes for the 2014 Part III Algebraic Geometry course taught by Dr. P.M.H. Wilson.

The recommended books are:

• Algebraic Geometry - ??

Generated: May 23, 2015, 07:31:00 (Z)

1.2 Sheaves

Let X be a topological space.

Definition 1.2.1 (Presheaves). A **presheaf** \mathcal{F} of abelian groups (resp. rings) on X consists of data:

- 1. For every open $U \subset X$ an abelian group (resp. ring) $\mathcal{F}(U)$.
- 2. For every inclusion of open sets $V \subset U$ a homomorphism called **restriction**, denoted $\rho_V^U \colon \mathcal{F}(U) \to \mathcal{F}(V)$ such that
 - (a) $\mathcal{F}(\emptyset) = 0$.
 - (b) $\rho_U^U \colon \mathcal{F}(U) \to \mathcal{F}(U)$ is $id_{\mathcal{F}(U)}$.
 - (c) If $W \subset V \subset U$ open then $\rho_W^U = \rho_W^V \circ \rho_V^U$.

Remark 1.2.2. If \mathcal{U} denotes the category of open sets in X (the morphisms are inclusions) then a presheaf of abelian groups over X is a contravariant functor $\mathcal{F} \colon \mathcal{U} \to \mathrm{Abgp}$. i.e. an element of $\mathrm{Abgp}^{\mathcal{U}^{\mathrm{op}}}$.

An element $s \in \mathcal{F}(U)$ is called a **section** of \mathcal{F} over U. For $s \in \mathcal{F}(U)$ we denote $\rho_V^U(s)$ by $s|_V$.

Definition 1.2.3 (Sheaves). A presheaf \mathcal{F} on X is a **sheaf** if it satisfies two further conditions:

- 1. If U is open and has $U = \bigcup_i U_i$ an open cover and if $s \in \mathcal{F}(U)$ is such that $s|_{V_i} = 0$ for all i then s = 0. (A presheaf satisfying this condition is called a **monopresheaf**).
- 2. If $U = \bigcup_i V_i$ is an open cover and we have $s_i \in \mathcal{F}(V_i)$ such that $\forall i, j \ s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ then there exists $s \in \mathcal{F}(U)$ with $s|_{V_i} = s_i$ for all i.

Example 1.2.4. X a topological space, A any abelian group (resp. ring). The constant shead \mathcal{A} determined by A is defined as follows: $\mathcal{A}(\emptyset) = \{0\}$, for $U \neq \emptyset$ open in X

$$\mathcal{A}(U) = \{ \text{locally constant maps } U \to A \},$$

this is an abelian group (resp. ring) under pointwise operations. With obvious restriction maps we obtain a sheaf. If $U \neq \emptyset$ is open and connected, then $\mathcal{A}(U) = A$. If U an open set whose connected components are open (e.g. in a locally connected topological space X) then the section $\mathcal{A}(U)$ is a direct product of copies of A.

Example 1.2.5. If X is a differentiable (C^{∞}) manifold, we can define the sheaf of C^{∞} -functions (\mathbf{R} or \mathbf{C} valued) on X. Which is a sheaf of rings. Similarly if X is a complex manifold, we can define a sheaf of holomorphic functions on X. In both cases, the sheaf is called the **structure sheaf** of X, sometimes denoted \mathcal{O}_X .

Example 1.2.6. For V an (irreducible) variety (affine, projective, quasi-projective). We can consider V as a topological space with the Zariski topology. For U open in V set

$$\mathcal{O}_V(U) = \{ \text{regular functions on } U \} = \{ f \in k(V) \text{ s.t. } f \text{ regular on } U \}.$$

This is a sheaf of rings with respect to the Zariski topology, and is known as the **structure sheaf** for varieties. If V is affine we have that $\mathcal{O}_V(V) = k[V]$.

Definition 1.2.7 (Stalks). If \mathcal{F} is a presheaf on a topological space X and $P \in X$ we define the stalk \mathcal{F}_P of \mathcal{F} at P to be $\varinjlim_{U\ni P} \mathcal{F}(U)$ i.e. an element of \mathcal{F}_P is represented by a pair (U,s) where U is an open neighbourhood of P and $s\in \mathcal{F}(U)$, where (U,s) and (V,t) define the same element of \mathcal{F}_P if there exists an open neighbourhood $W\ni P$ with $W\subset V\cap U$ such that $s|_W=t|_W$ the elements s_P of \mathcal{F}_P are called **germs**. If \mathcal{F} is a sheaf of abelian groups or rings then \mathcal{F}_P is an abelian group, ring, etc.

Example 1.2.8. For the constant sheaf A associated to A we have $A_P = A$.

Example 1.2.9. For X a C^{∞} manifold (resp. complex) with structure sheaf \mathcal{O}_X , the stalk $\mathcal{O}_{X,P}$ of \mathcal{O}_X at $P \in V$ consists of germs of C^{∞} (resp. holomorphic) functions.

Example 1.2.10. For V (irreducible) affine, projective or quasi-projective variety with structure sheaf \mathcal{O}_V the stalk at $P \in V\mathcal{O}_{V,P} = \text{local ring at } P$ (defined before).

Definition 1.2.11 (Morphisms of (pre)sheaves). If \mathcal{F} and \mathcal{G} are presheaves (resp. sheaves) on X a morphism $\Phi \colon \mathcal{F} \to \mathcal{G}$ consists of homomorphisms $\mathcal{F}(U) \xrightarrow{\Phi} \mathcal{G}(U)$ for all open U such that for $V \subseteq U$ open

$$\begin{array}{c|c} \mathcal{F}(U) & \xrightarrow{\phi(U)} & \mathcal{G}(U) \\ \downarrow & & \downarrow \\ \rho_V^U & & \downarrow \\ \downarrow & & \downarrow \\ \mathcal{F}(V) & \xrightarrow{\phi(V)} & \mathcal{G}(V) \end{array}$$

commutes.

A morphism $\phi \colon \mathcal{F} \to \mathcal{G}$ induces a homomorphism $\phi_P \colon \mathcal{F}_P \to \mathcal{G}_P$ for each P, namely $\phi_P[(U,s)] = [(U,\phi(U)(s))]$, which is well defined.

1.2. SHEAVES 3

Definition 1.2.12 (Injective and isomorphic sheaf morphisms). A morphism $\phi \colon \mathcal{F} \to \mathcal{G}$ of (pre)sheaves is **injective** if $\mathcal{F}(U) \to \mathcal{G}(U)$ is injective for all open U. e.g. sheaves of subgroups or subrings where $\mathcal{F}(U) \subseteq \mathcal{G}(U)$ for all U. In this case \mathcal{F} is called a **subsheaf** of \mathcal{G} .

A morphism $\phi \colon \mathcal{F} \to \mathcal{G}$ is called an isomorphism if there exists an inverse morphism $\chi \colon \mathcal{G} \to \mathcal{F}$. This is equivalent to $\phi(U) \colon \mathcal{F}(U) \to \mathcal{G}(U)$ being bijective for all U since we can define $\chi(U) = \phi(U)^{-1}$ as the inverse.

Lemma 1.2.13. Let $\phi \colon \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves then

- 1. ϕ is injective iff $\phi_P \colon \mathcal{F}_P \to \mathcal{G}_P$ is injective for all $P \in X$,
- 2. ϕ is an isomorphism iff $\phi_P \colon \mathcal{F}_P \to \mathcal{G}_P$ is an isomorphism for all $P \in X$.

Proof. (\Rightarrow) (true for presheaves too).

- 1. Suppose there exists a germ $s_P \in \mathcal{F}_P$ such that $\phi_P(s_P) = 0 \in \mathcal{G}_P$. i.e. there exists an open neighbourhood $W \subset U$ with $P \in W$ such that $\phi(U)(s|_W) = 0$. So by commutativity $\phi(W)(s|_W) = 0$ but ϕ injective implies $s|_W = 0$.
- 2. Clear.

 (\Leftarrow)

- 1. Needs first sheaf condition on \mathcal{F} . If ϕ_P injective for all P and U is open in X it remains to prove that $\phi(U) \colon \mathcal{F}(U) \to \mathcal{G}(U)$ is injective. Suppose not and there exists $0 \neq s \in \mathcal{F}(u)$ such that $\phi(U)(s) = 0 \in \mathcal{G}(U)$. Let s_P denote the germ of s at $P \in U$, then $0 = \phi(U)(s)_P = \phi_P(s_P)$ for all $P \in U$. So s_P in \mathcal{F}_P for all $P \in U$. Hence for all $P \in U$ we have an open neighbourhood $U \supset W \ni P$ such that $s|_W = 0$. So U is covered by open sets U_α such that $s|_{U_\alpha} = 0$ for all α , which implies that s = 0.
- 2. $\phi(U) \colon \mathcal{F}(U) \to \mathcal{G}(U)$ is an injection for all open U by the first part, so it remains to prove that it is surjective also. Suppose $t \in \mathcal{G}(U)$ and let $t_P \in \mathcal{G}_P$ be its germ at $P \in U$. Since ϕ_P is surjective we have some $s_P \in \mathcal{F}_P$ such that $\phi_P(s_P) = t_P$. Now suppose that s_P is represented by a pair (V, s) with $P \in V \subseteq U$ and $s \in \mathcal{F}(V)$. We then have that t_P is represented by $\phi(V)(s)$, i.e. $(U,t) \sim (V,\phi(V)(s))$. Shrinking V we may assume that we have an ope neighbourhood $V_P \ni P$ such that $\phi(V)(s)|_{V_P} = t|_{V_P}$. In this way we cover U by open sets giving $U ==\bigcup_{\alpha} U_{\alpha}$ to obtain sections $s_{\alpha} \in \mathcal{F}_{\alpha}$ such that $\phi(U_{\alpha})(s_{\alpha}) = t|_{U_{\alpha}}$. On the overlaps $U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$ we have $\phi(U_{\alpha\beta})(s_{\alpha}|_{U_{\alpha\beta}}) = t|_{U_{\alpha\beta}} = \phi(U_{\alpha\beta})(s_{\beta}|_{U_{\alpha\beta}})$, therefore the injectivity of $\phi(U_{\alpha\beta})$ gives that $s_{\alpha}|_{U_{\alpha\beta}} = s_{\beta}|_{U_{\alpha\beta}}$. Since \mathcal{F} is a sheaf the s_{α} patch together to give a section $s \in \mathcal{F}(U)$ wuch that $s|_{U_{\alpha}} = s_{\alpha}$ (using the second sheaf condition for \mathcal{F}). But then $\phi(U)(s)$ and t are sections of $\mathcal{G}(U)$ such that $\phi(U)(s)|_{U_{\alpha}} = \phi(U_{\alpha})(s_{\alpha}) = t|_{U_{\alpha}}$ for all α . The first sheaf condition for \mathcal{G} now gives that $\phi(U)(s) = t$ as required.

Definition 1.2.14 (Surjective sheaf morphisms). A morphism of sheaves $\phi \colon \mathcal{F} \to \mathcal{G}$ is called **surjective** if $\phi_P \colon \mathcal{F}_P \to \mathcal{G}_P$ is surjective for all $P \in X$.

Definition 1.2.15 (Induced (pre)sheaves). Given a (pre)sheaf \mathcal{F} on a space X and a continuous map $f: X \to Y$ we have an **induced (pre)sheaf**, denoted $f_*\mathcal{F}$ on Y defined by

$$(f_*\mathcal{F})(U) = \mathcal{F}(f^{-1}(U))$$

for U open in Y. With the restriction maps coming from \mathcal{F} as $V \subset U$ implies $f^{-1}(V) \subset f^{-1}(U)$. It should be checked that indeed \mathcal{F} being a (pre)sheaf implies $f_*\mathcal{F}$ is a (pre)sheaf.

Definition 1.2.16 (Ringed spaces). A **ringed space** is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of rings on X.

Definition 1.2.17 (Morphisms of ringed spaces). Given two ringed spaces (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) a **morphism of ringed spaces** $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair $(f, f^\#)$ where $f \colon X \to Y$ is continuous and $f^\# \colon \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a morphism of sheaves of rings. So $f^\#$ defines homomorphisms $\mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U))$ for all U open in Y, compatible with restrictions. Hence we have homomorphisms on stalks too $\mathcal{O}_{Y,f(P)} \to \mathcal{O}_{X,P}$.

Definition 1.2.18 (Ringed spaces over a ring). If R is a commutative ring (e.g. a field), a **ringed space over** R is a ringed space with \mathcal{O}_X a sheaf of R-algebras. (Therefore the restriction maps are homomorphisms of R-algebras.) A morphism of ringed spaces over R is defined in the obvious way.

Definition 1.2.19 (Locally ringed spaces). A ringed space (X, \mathcal{O}_X) is a **locally ringed space** (also known as a geometric space) if all $\mathcal{O}_{X,P}$ are local rings.

Definition 1.2.20 (Morphisms of locally ringed spaces). A morphism of locally ringed spaces is a morphism of ringed spaces as above where all the induced maps $f_P^\#: \mathcal{O}_{Y,f(P)} \to \mathcal{O}_{X,P}$ are local homomorphisms of local rings.

Example 1.2.21. (X, \mathbf{Z}) is a ringed space but not locally ringed.

Example 1.2.22. If X is a C^{∞} (resp. complex) manifold with structure sheaf \mathcal{O}_X then (X, \mathcal{O}_X) is a locally ringed space over \mathbf{R} (resp. over \mathbf{C}). A smooth (resp. holomorphic) map of manifolds $f \colon X \to Y$ yields a morphism of \mathbf{R} (resp. \mathbf{C})-algebras $f^{\#} \colon \mathcal{O}_Y \to f_* \mathcal{O}_X$ namely $f^{\#} \colon \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}U)$ given by $g \to g \circ f$ (smooth (resp. holomorphic) functions on Y pullback to ones on X). Clearly $g(f(P)) = 0 \iff f^{\#}(g)(P) = 0$ and so $f^{\#}(m_{Y,f(P)} \subseteq m_{X,P})$. So $(f, f^{\#})$ is a morphism of locally ringed spaces over \mathbf{R} (resp. \mathbf{C}).

Example 1.2.23. (V, \mathcal{O}_V) for V an irreducible affine variety V is a ringed space via its structure sheaf, it is locally ringed over the base field k. If $\Phi \colon V \to W$ is a morphism of affine varieties then there exists a morphism of locally ringed spaces over $k(\phi, \phi^{\#}) \colon (V, \mathcal{O}_V) \to (W, \mathcal{O}_W)$ given by $\phi^{\#}(g) = g \circ \phi \in \mathcal{O}_V(\phi^{-1}U)$ for $g \in \mathcal{O}_W(U)$.

Lemma 1.2.24. If V, W are (irreducible) affine varieties and $(f, f^{\#}): (V, \mathcal{O}_V) \to (W, \mathcal{O}_W)$ is a morphism of locally ringed spaces over k then f is induced from a morphism of varieties $\phi: V \to W$ with $f^{\#} = \phi^{\#}$ defined as above.

Proof. Suppose $V \subseteq \mathbf{A}^n$, $W \subseteq \mathbf{A}^m$ let y_j be the jth coordinate function on W and define $g_j = f^\#(y_j) \in \mathcal{O}_V(V) = k[V]$. Let $\phi = (g_1, \ldots, g_m)$, this is a morphism $V \to \mathbf{A}^m$. Suppose that $f(P) = (b_1, \ldots, b_m)$ for $P \in V$ then $y_j - b_j \in m_{W,f(P)}$ for all j which implies that $g_j(P) = b_j$ for all j. Since $f^\#$ is local we have that $\phi(P) = f(P)$ and so $\phi \colon V \to W$ is the same map as f on topological spaces. Moreover y_1, \ldots, y_m generate k[V] as a k-algebra and also generate k(W) as a field over k. $f^\#(y_j) = g_j = y_j \circ \phi = \phi^\#(y_j)$ and it follows that $f^\# = \phi^\#$ on any $\mathcal{O}_W(U)$. $k[W] \subset \mathcal{O}_W(U) \subset k(W)$ for U open in W.

Definition 1.2.25 (Morphisms of varieties). Given V and W (irreducible) quasiprojective varieties, we define a **morphism** of varieties $V \to W$ to be a morphism of the corresponding locally ringed spaces over $k(V, \mathcal{O}_V) \to (W, \mathcal{O}_W)$. 1.2. SHEAVES 5

1.2.1 \mathcal{O}_X -modules

Definition 1.2.26 (\mathcal{O}_X -modules). Let M be a sheaf of abelian groups on a ringed space (X, \mathcal{O}_X) , M is said to be an \mathcal{O}_X -module if for every open set $U \subset XM(U)$ is an open $\mathcal{O}_X(U)$ -module and for any $W \subseteq U$ open $\alpha \in \mathcal{O}_X(U)$, $m \in M(U)$, we have $(\alpha m)|_W = (\alpha|_W)(m|_W)$. Similarly we have the obvious definition for morphisms of \mathcal{O}_X -modules $\phi \colon M \to N$ (all maps respect the \mathcal{O}_X -module structure).

Example 1.2.27. For V a (irreducible) quasi-projective variety with structure sheaf \mathcal{O}_V and $W \subset V$ a closed subvariety we have the **sheaf of ideals** $\mathcal{I}_W \subset \mathcal{O}_V$ a subsheaf of \mathcal{O}_V given by

$$\mathcal{I}_W(U) = \{ f \in \mathcal{O}_V(U) : f|_{W \cap U} \equiv 0 \}.$$

This is clearly an \mathcal{O}_V -module.

Most things go through unchanged e.g. if M is an \mathcal{O}_X -module then any stalk M_P is an $\mathcal{O}_{X,P}$ -module etc.

However there is the following technicality: If we take the pushforward of an \mathcal{O}_X -module M under a morphism of ringed spaces $(X, \mathcal{O}_X) \xrightarrow{\phi} (Y, \mathcal{O}_Y)$. The sheaf f_*M is naturally an $f_*\mathcal{O}_X$ -module via the morphism $f^\# \colon \mathcal{O}_Y \to f_*\mathcal{O}_X$ we can consider f_*M as an \mathcal{O}_Y -module which we denote by ϕ_*M . Explicitly for U open in Y we let

1.2.2 Sheafification

Definition 1.2.28 (Sheafification). Given a preheaf \mathcal{F} on X there exists an associated sheaf \mathcal{F}^+ and a morphism $\Theta \colon \mathcal{F} \to \mathcal{F}^+$ with the universal property that for any sheaf \mathcal{G} on X and morphism $\phi \colon \mathcal{F} \to \mathcal{G}$ there is a unique morphism $\psi \colon \mathcal{F}^+ \to \mathcal{G}$ such that $\phi = \psi \Theta$. We construct \mathcal{F}^+ as follows: For U open in X we let

$$\mathcal{F}^+(U) = \left\{ \text{functions } s \colon U \to \coprod \mathcal{F}_p : \forall p \in U \\ s(p) \in \mathcal{F}_p, \ \forall p \in U \\ \exists \text{ open nbhd } W, \ t \in \mathcal{F}(W) \text{ with } s(q) = t_q \\ \forall q \in Q \right\}$$

It is clear that this is a sheaf since sections are given in terms of functions.

There exists a morphism $\Theta \colon \mathcal{F} \to \mathcal{F}^+$ where $\Theta(U) \colon \mathcal{F}(U) \to \mathcal{F}^+(U)$ is given by $\sigma \mapsto s$ with $s(p) = \sigma_p$ for all $p \in U$.

Chapter 2

Locally free and coherent \mathcal{O}_X -modules

2.1 Locally free and coherent \mathcal{O}_X -modules

Definition 2.1.1 (Locally free \mathcal{O}_X -modules). An \mathcal{O}_X -module M is locally free of rank r if for each $x \in X$ there exists an open neighbourhood $U \ni x$ s.t. $M|_U$ is isomorphic to $\mathcal{O}_U^r = \bigoplus_{i=1}^r \mathcal{O}_U$

Example 2.1.2. If (X, \mathcal{O}_X) is a C^{∞} (resp. complex) manifold and $E \to X$ a rank rC^{∞} (resp. holomorphic) vector bundle over X we can define a corresponding \mathcal{O}_X -module \mathcal{E} by letting $\mathcal{E}(U)$ be the C_*^{∞} (resp. holomorphic) sections σ of \mathcal{E} over U. Since \mathcal{E} is locally trivial it's clear that \mathcal{E} is locally free of rank r.

Definition 2.1.3 (Transition functions). For M a locally free \mathcal{O}_X -module of rank r we have an open cover $\{U_i\}$ of X (when X is a variety we may in fact take a finite open cover) and trivialisations $M|_{U_i} \cong \mathcal{O}_{U_i}^r$ this then gives rise to isomorphisms on the overlaps $U_{ij} = U_i \cap U_j$. We write ψ_{ji} for the map from the ith trivialisation to the jth. These functions are called the **transition functions**. They satisfy some compatibility conditions: $\psi_{ii} = id$, $\psi_{ij} = \psi_{ji}^{-1}$ and $\psi_{kj}\psi_{ji} = \psi_{ki}$.