2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- ullet a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm **norm ball** with center x_c and radius r: $\{x\mid \|x-x_c\|\leq r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt$

for m=2: $S= \bigcap S_t$, $S_t = \{ \times \mid \chi^T \alpha(t) \leq I, \chi^T \alpha(t) \geq -I \}$

Affine function 仿射 变换

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

• the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C\subseteq \mathbf{R}^m \text{ convex } \implies f^{-1}(C)=\{x\in \mathbf{R}^n\mid f(x)\in C\} \text{ convex }$$

examples

$$C = \{(x,t) \mid ||x||_{2} \leq t\} \quad ||x||_{2} \leq t\}$$
Convex sets
$$f(x) = \left(\begin{array}{c} P^{\frac{1}{2}} \times \\ C & T \end{array}\right) \quad f'(c)$$

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

$$f = P \circ h$$
: $h(x) = (Ax+b, cTx+d)$
 $P(x,t) = \frac{x}{t}$
为透射与份射变换的复金

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- lacktriangle K is pointed (contains no line)

有正常能就可以定义序关系

examples

- \bullet nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0,1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \geq 0 \text{ for } t \in [0,1]\}$$

$$\text{Qutile} \left(\begin{array}{c} t \\ t \\ t \end{array} \right) \qquad \text{k.t.} \left(\begin{array}{c} \chi \\ \chi \end{array} \right) \left$$

jut
$$k = \bigcap_{t \in (\overline{2}_1)} \langle \times | \chi^T q(t) > 0 \rangle$$

generalized inequality defined by φ proper cone K:

$$x \leq_K y \iff y - x \in K,$$

$$x \leq_K y \iff y - x \in K, \qquad \left(x \prec_K y \iff y - x \in \mathbf{int} K \right)$$

examples

 \bullet componentwise inequality $(K = \mathbf{R}^n_+)$

$$x \leq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \leq_K **properties:** many properties of \leq_K are similar to \leq on **R**, e.g.,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$

$$\alpha \in \mathsf{k}, \quad b \in \mathsf{k} \implies \alpha + b \in \mathsf{k}.$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

最小元
$$y \in S \implies x \preceq_K y$$
 在一部小子 若存在 刚 以一唯一 $S \subseteq X + K$

 $x \in S$ is a minimal element of S with respect to \leq_K if \bigwedge

$$y \in S, \quad y \preceq_K x \quad \Longrightarrow \quad y = x \quad S \cap (X - E) = \{\chi \}$$

example
$$(K = \mathbf{R}_+^2)$$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone K:

类似地 Polor Cone 根郷?

K°= 「Y | Y X ≤ O VX ∈ k)

examples

$$\bullet \ K = \mathbf{R}^n_+ \colon K^* = \mathbf{R}^n_+$$

•
$$K = \mathbb{R}^{n}_{+}$$
: $K^{*} = \mathbb{R}^{n}_{+}$
• $K = \mathbb{S}^{n}_{+}$: $K^{*} = \mathbb{S}^{n}_{+}$
• $K = \{(x,t) \mid ||x||_{2} \leq t\}$: $K^{*} = \{(x,t) \mid ||x||_{2} \leq t\}$

• $K = \{(x,t) \mid ||x||_{2} \leq t\}$: $K^{*} = \{(x,t) \mid ||x||_{2} \leq t\}$

• $K = \{(x,t) \mid ||x||_{2} \leq t\}$: $K^{*} = \{(x,t) \mid ||x||_{2} \leq t\}$

• $K = \{(x,t) \mid ||x||_{2} \leq t\}$: $K^{*} = \{(x,t) \mid ||x||_{2} \leq t\}$

•
$$K = \{(x,t) \mid ||x||_2 \le t\}$$
: $K^* = \{(x,t) \mid ||x||_2 \le t\}$

$$\|u\|_{\mathcal{X}} = \sup \{u^T \times | \|x\|^{\frac{1}{2}} \}$$

•
$$K = \{(x,t) \mid ||x||_1 \le t\}$$
: $K^* = \{(x,t) \mid ||x||_{\infty} \le t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$\int y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \preceq_K

x is minimum element of S (iff) for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S

X = arg min { \lambda^T 2 \ \ \forall \text{*}

minimal element w.r.t. \leq_K

if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal

• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

$$(x-k)$$
 $(x-k)$ $(x-$

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbf{R}^n$
- ullet production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}^n_+

example (n=2)

 x_1 , x_2 , x_3 are efficient; x_4 , x_5 are not

