4COSC007C Mathematics for Computing

Tutorial 9

- 1. Add the following vectors using the parallelogram or triangle laws:
- (i) $\underline{\mathbf{p}} + \underline{\mathbf{q}}$

(ii) $\underline{\mathbf{r}} + \underline{\mathbf{s}}$

- 2. Subtract the following vectors
- (i) <u>**a**-**b**</u>

(ii) $\underline{\mathbf{c}} - \underline{\mathbf{d}}$

 $\frac{1}{2}$, Using the Diagram, find the vectors below in terms of \underline{a} , \underline{b} and \underline{c} .

- a) <u>AB</u>
 b) <u>BA</u>
 c) <u>CB</u>
 d) <u>AC</u>

L. What is the inverse of matrices **A** and **B**?

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 0 \\ 3 & 1 & 5 \\ -1 & 2 & 3 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & -4 \end{bmatrix}$$

Solve the following system of linear equations using matrices only. You will get a system of AX = B and you will need to find the inverse A^{-1} .

$$7x + 2y + z = 21$$

 $3y - z = 5$
 $-3x + 4y - 2z = -1$

6 A triangle is defined in its local coordinate space by the following vertices:

The origin is (0, 0).

The triangle is to be placed in world coordinates at the point (-20, 30). It is also to be rotated by 60 degrees anticlockwise.

- (i) Create the transformation matrix by concatenating the matrices in the appropriate order.
- (ii) Perform the transformations using the concatenating transformation matrix.

7 Represent the following 2D and 3D transformations in matrix notation using the homogeneous coordinates.

a.
$$x' = x + k_x y$$

 $y' = y$

$$b. \quad x' = x \\ y' = k_y x + y$$

c.
$$x' = x + k_x z$$

 $y' = y + k_y z$
 $z' = z$

What type of transformations are the above and in which axis are performed? Apply the first two transformations to a unit square with a shear factor of 0.5.

Challenge:

Create a 2D object of your own. It needs to be simple so don't give more than 5 vertices. The origin of the object is at (0, 0).

The object is to be placed in world coordinates through a rotation of 30 degrees clockwise and a translation of (-10, 10).

- (i) Perform the transformation matrix by concatenating the matrices in the appropriate order. Calculate the new vertices.
- (ii) Scale down the object to half the size about the fixed point (-10, 10) and rotate it through 90 degrees anticlockwise about the fixed point (5, -5). Perform the transformations.

Map the following graphs to matrices.

You are given an encoded message as: (26 -8 3) (78 -37 16) (41 -23 5)

Try to decode the message by using the following key (matrix K) and character map.

$$K = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

а	b	С	d	е	f	g	h	i	j	k	I	m
1	2	3	4	5	6	7	8	9	10	11	12	13

n	0	р	q	r	S	t	u	٧	¥	х	у	Z	Space
14	15	16	17	18	19	20	21	22	23	24	25	26	27