Lecture 4

Completely Randomized Designs: Model, Estimation, Inference

STAT 8050 Design and Analysis of Experiments January 21, 2020

> Whitney Huang Clemson University

Means Model

Notes

Notes

Effects Model

 $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \cdots, g, \quad j = 1, \cdots, n_i, \quad \epsilon_{ij} \sim \text{N}(0, e^{\frac{1}{2}})$

Notes

Effects Model Cont'd

Suppose we let $\sum_{i=1}^{g} n_i \alpha_i = 0$

Notes		

Effects Model Cont'd

Suppose we let $\alpha_1 = 0$

Notes

Data Layout & the Dot Notation

Treatment	Observations				Totals	Averages
1	<i>y</i> ₁₁	<i>y</i> ₁₂		<i>y</i> _{1<i>n</i>₁}	<i>y</i> ₁ .	<i>y</i> ₁ .
2	<i>y</i> ₂₁	<i>y</i> ₂₂		y_{2n_2}	y ₂ .	ȳ 2.
÷	÷	÷		÷	:	÷
g	y_{g1}	y_{g2}		y_{gn_g}	y_{g} .	$ar{ extit{y}}_{g\cdot}$
					y	<u> </u>

Notes

ANOVA

Decomposition of y_{ij} : $y_{ij} = \bar{y}_{\cdot \cdot} + (\bar{y}_{i\cdot} - \bar{y}_{\cdot \cdot}) + (y_{ij} - \bar{y}_{i\cdot})$

$$\Rightarrow \underbrace{\sum_{j=1}^{g} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{..})^{2}}_{SS_{T}} = \underbrace{\sum_{j=1}^{g} n_{i} (\bar{y}_{i.} - \bar{y}_{..})^{2}}_{SS_{TRT}} + \underbrace{\sum_{j=1}^{g} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i.})^{2}}_{SS_{T}}$$

Completely Randomized Designs: Model, Estimation, Inference

CLEMS N

ANOVA Table

Source	df	SS	MS	EMS
Treatment	g – 1	SS _{TRT}	$MS_{TRT} = \frac{SS_{TRT}}{g-1}$	$\sigma^2 + \frac{\sum_{i=1}^g n_i \alpha_i^2}{g-1}$
Error	N-g	SS_E	$MS_E = \frac{SS_E}{N-g}$	σ^2
Total	N - 1	SST		

$$SS_{T} = \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{.})^{2} = \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{ij}^{2} - \frac{y_{.}^{2}}{N}$$

$$SS_{TRT} = \sum_{i=1}^{g} n_{i} (\bar{y}_{i.} - \bar{y}_{..})^{2} = \sum_{i=1}^{g} \frac{y_{i.}^{2}}{n_{i}} - \frac{y_{..}^{2}}{N}$$

$$SS_{E} = \sum_{i=1}^{g} \sum_{i=1}^{n_{i}} (y_{ij} - \bar{y}_{i.})^{2} = \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{ij}^{2} - \sum_{i=1}^{g} \frac{y_{i.}^{2}}{n_{i}} = SS_{T} - SS_{TRT}$$

Completely
Randomized
Designs: Model,
Estimation,
Inference

Notes

Notes

Notes

F-Test

Testing for treatment effects

$$H_0: \alpha_i = 0$$
 for all i
 $H_a: \alpha_i \neq 0$ for some i

Test statistics: $F = \frac{\text{MS}_{RRI}}{\text{MS}_E}$. Under H_0 , the test statitic follows an F-distribution with g-1 and N-g degrees of freedom Reject H_0 if

$$F_{obs} > F_{g-1,N-g;\alpha}$$

for an α -level test, $F_{g-1,N-g;\alpha}$ is the 100 × (1 $-\alpha$)% percentile of a central F-distribution with g-1 and N-g degrees of freedom.

The P-value of the F-test is the probability of obtaining F at least as extreme as F_{obs} , that is, $P(F > F_{obs}) \Rightarrow \text{reject } H_0$ if P-value $< \alpha$.

CLEMS#1

F Distribution and the F-Test

Notes			

Example

Source: https://www.shutterstock.com/image-vector/find-your-way-cheese-mouse-maze-232569073

Completely Randomized Designs: Model, Estimation, Inference	
CLEMS N	

Notes			

Notes			