Resumen 13

Organismos:

- Ambiente abiótico (no tiene que ver con interacción entre organismos)
 - 1. Temperatura.
 - **2.** Disponibilidad de O_2 .
 - **3.** Etc...
- Ambiente biótico (tiene que ver con interacción entre organismos)
 - 1. Competidores.
 - 2. Depredadores.
 - **3.** Presas.
 - **4.** Etc...
- Interacción organismo/ambiente
 - **1. Homeostasis:** Regulación del medio interno. Equilibrio dinámico.
 - 2. Debido a restricciones físicas, la forma de una Crecimiento estructura frecuentemente se asocia con su función y/o el ambiente (Ej.: Hojas, gran área superficial para captar luz).

Materia

Energía

Reproducción

Curva de rendimiento

Nicho ecológico

- 1. Nicho fundamental: rango de condiciones ambientales en el cual una especie puede funcionar.
- 2. Nicho realizado: rango de condiciones en la cual se observa la especie.
- **3.** "Asociación entre características funcionales de un linaje y su ecología, abundancia y potencial distribución."

Adaptaciones

- 1. Conjunto de repuestas a distintos niveles de organización que mejora las oportunidades de sobrevivir y dejar descendencia fértil.
- **2.** Adaptación Darwiniana: Respuesta evolutiva producto de la selección natural (adaptación genética, a largo plazo).
- **3.** Plasticidad fenotípica: Cambios temporales que ocurren a nivel de individuo, gatillados por el ambiente (adaptación fisiológica).

Adaptación y diversificación

 Novedades evolutivas y la colonización de nuevos nichos puede resultar en diversificación. (Ejemplo: Endotermia en aves y mamíferos).

Aves y mamíferos:

- **1.** Generación de calor metabólico y elevación de temperatura corporal.
- **2.** Permite colonizar nuevos ambientes (fríos, nocturnos, etc.).

Ambient Temperature (°C)

Cetáceos:

- 1. Registro fósil muy detallado.
- 2. Fósiles demuestran cómo ocurrió la transición de vida terrestre a acuática.
- 3. Patas posteriores reducidas.
- **4.** Apertura nasal posterior.
- 5. Transición a agua salada.
- **6.** Transición a agua dulce.
- 7. Adaptaciones fisiológicas:
 - a) Hemoglobina
 - b) Mioglobina
 - c) Reflejo del buceo.
 - d) Vías aéreas rígidas

8. Diversificación:

- a) Tasas de especiación cambiaron en dos ocasiones durante la evolución de este grupo.
- b) 35 Ma: Separación de Antártica.
- c) 12 Ma: Se cerraron o restringieron tres pasajes ecuatoriales.

Conclusiones:

- **1.** Las interacción entre los organismos y su ambiente son un componente determinante de la diversidad.
- **2.** Los conceptos de <u>fenotipo</u>, de <u>adaptación</u> y de <u>nicho</u> incluyen de forma intrínseca la interacción entre organismo y ambiente.
- **3.** Las respuestas a distintas presiones selectivas pueden verse reflejadas en múltiples niveles de organización.

Ecología de Poblaciones I:

 Ecología es: "El estudio científico de los procesos que influencian la distribución y abundancia de los organismos"

Poblaciones

- Conjunto de individuos de una misma especie que viven en un tiempo y espacio determinado.
- Los individuos son equivalentes ecológicos.
- Individuo < Población < Comunidad < Ecosistema < Bioma < Biosfera

Características individuales:

- Edad
- Tamaño
- Sexo

<u>Características Poblacionales:</u>

- Densidad
- Distribución de edades
- Proporción de sexos

Procesos individuales:

- Desarrollo
- Crecimiento
- Alimentación
- Reproducción
- Muerte

Procesos Poblacionales:

- Crecimiento poblacional
- Cambios en la distribución de edades
- Mortalidad

Ecología de poblaciones:

- Estudio de las dinámicas de las poblaciones de diferentes especies y de cómo estas interactúan con el ambiente.

Elementos o criterios para seleccionar diferentes tipos de modelos:

- Generalidad
- Realismo
- Precisión
- Uso de teorías muy específicas ⇒ Baja P de capturar fenómeno.
- Especificidad-Generalidad ⇒ No asegura dar en el blanco.
- Mucha generalidad ⇒ Puede capturar otros fenómenos.

Dinámica de Poblaciones:

- Se preocupa de estudiar los factores que influyen en la expansión, disminución o mantención de las poblaciones.
- Natalidad: % de individuos recién nacidos que <u>nacen</u> en un t por cada hembra.
- Mortalidad: % de individuos que mueren en un t.
- **Inmigración:** % de individuos que <u>entran</u> a una población en un t.
- **Emigración:** % de individuos que <u>salen</u> de una población en un t.

Densidad poblacional:

- Puede ser absoluta (individuos por área) o relativa (% respecto a otra).
- ¿Cómo se determina?
 - Mediante censos (poblaciones pequeñas y escasa movilidad).
 - Mediante estimaciones: Base a una muestra de población.

• Marcaje y recaptura (Estimador de Lincoln 1930)

$$N = \frac{Capturados\ en\ visita\ 1*Capturados\ en\ visita\ 2}{Recapurados\ marcados}$$

- **Métodos indirectos** (Permiten identificar la presencia de una especie en un lugar):
 - Huellas
 - Fecas

$$\Delta N = Birth - Deaths + Inmigración - Emigración$$

Curvas de sobrevivencia

- Existen 3 maneras de estimar patrones de sobrevivencia en una población:
 - Tabla de vida
 - Registrando muertes
 - Calculando diferencia en % de individuos en clases de edades sucesivas.

Tipo I: Humanos

Tipo II: Aves

Tipo III: Peces

La mayoría de las poblaciones no cae **perfectamente** en ninguna de estas 3 curvas.

Distribución de edades:

- Indican períodos exitosos de reproducción, períodos de alta y baja sobrevivencia, crecimiento o decrecimiento de la población.

Ecología de Poblaciones II:

Tasa reproductiva neta (R_0) :

- Corresponde al número promedio de descendencia producido por un individuo de una población durante su vida o por generación.
- $R_0 > 1 \Longrightarrow$ Población crece.
- $R_0 = 1 \Rightarrow$ Población no crece.
- $R_0 < 1 \Rightarrow$ Población decrece.

Crecimiento poblacional:

- Con las condiciones ambientales adecuadas, tanto poblaciones terrestres como marinas mostrarán su máxima capacidad de crecimiento.
- Algunas crecen **geométricamente** (por pulsos) y otras **exponencialmente** (crecimiento poblacional continuo).
- Las poblaciones son **dinámicas** y responden a variables externas (como el clima) y a variables intrínsecas de las poblaciones (enfermedades, competencia, etc.).

Tasa de crecimiento poblacional geométrico:

$$N_t = N_0 * \lambda^t$$

 N_0 = Población a tiempo t_0 λ = Tasa geométrica de incremento

Tasa de crecimiento poblacional exponencial:

$$N_t = N_0 * e^{r_{max} * t}$$

 r_{max} = Tasa intrínseca máxima de crecimiento poblacional

Se dan bajo condiciones favorables y a bajas densidades poblacionales

Crecimiento poblacional logístico

El tamaño poblacional al cual el crecimiento se detiene se conoce como capacidad de carga (K).

K corresponde al número de individuos de una población en particular que el ambiente puede soportar. Y esta determinada por factores tales como comida, parasitismo, enfermedades y espacio.

El crecimiento probabilístico alcanza su valor más alto cuando N = K/2

$$\frac{dN}{dt} = r_{max} * N\left(1 - \frac{N}{K}\right)$$

 $\frac{N}{K}$ = Resistencia ambiental.

 r_{max} dependerá de las condiciones ambientales (calidad) y de la historia de vida de las especies (potencial de crecimiento).

Factores limitantes al crecimiento poblacional

- Pueden ser tanto **bióticos** o **denso-dependiente** (enfermedades, depredación) como **abióticos** o **denso-independientes** (inundaciones, temperaturas extremas).

Interacciones biológicas:

	Α	В	Ejemplo
Depredación	+	-	León depreda a Cebras
Parasitismo	+	-	Termitas destruyen Árboles
Competencia inte.	-	-	Leones y hienas cazan mismas presas.
Competencia intra.	-	-	León "líder" de la camada.
Amensalismo	-	0	Animales pisotean hierbas
Comensalismo	+	0	Abejas construyen panales en arboles
Mutualismo obligado	+	+	Abejas y plantas (Polinización)
Mutualismo facultativo	+	+	Relación hombre-perro

La competencia, amensalismo y comensalismo afecta a la ecuación logística:

Especie 1:
$$\frac{dN_1}{dt} = r_1 * N_1 \left(1 - \frac{N_1 - \alpha N_2}{K_1} \right)$$

Especie 2: $\frac{dN_2}{dt} = r_2 * N_2 \left(1 - \frac{N_1 - \beta N_1}{K_1} \right)$

Los coeficientes de competencia α y β miden el efecto per cápita de una especie sobre la población de la otra, medido en forma relativa al efecto de competencia interespecífica.

Si α = 1 \Rightarrow Efecto intraespecífico per cápita = efecto interespecífico.

Si α < 1 \Rightarrow Efecto intraespecífico per cápita < efecto interespecífico.

Si $\alpha > 1 \Rightarrow$ Efecto intraespecífico per cápita > efecto interespecífico.

Si $\alpha = \beta \Rightarrow$ Competencia simétrica.

Población víctima

$$\frac{dV}{dt} = rV\left(1 - \frac{V}{K} - aVP\right)$$

- r = Tasa de crecimiento intrínseca de la población presa.
- a = Eficiencia de captura del depredador.
- V = Víctima.

Población depredador (Modelo de Lotka Volterra)

$$\frac{dP}{dt} = b(aVP) - dP$$

- Asume que la población de depredadores depende únicamente del número de presas que consume.
- B es la eficiencia de la conversión de la captura en nuevos depredadores.
- d es la tasa de mortalidad de los depredadores.

El modelo de Lotka Volterra:

- Asigna mucha importancia al depredador en determinar la abundancia de la presa.
- La abundancia de presas no necesariamente indica disponibilidad: los depredadores seleccionan.
- No considera diferencias genéticas
- No considera mecanismos de defensa de las presas.
- No considera dificultades al encontrar presas.

Consecuencias

- Aumenta la densidad de depredadores ⇒ Disminuye la densidad de presas.
- Disminuye la densidad de presas ⇒ Aumenta la mortalidad de depredadores.
- Disminuye la densidad de depredadores ⇒ Aumenta la densidad de presas.

Competencia

Población Huésped:

$$\frac{dH}{dt} = rH\left(1 - \frac{H}{K} - aHP\right)$$

r = Tasa de crecimiento intrínseca

a = Eficiencia del parásito para producir efectos letales.

Parásito mata al huésped

$$\frac{dH}{dt} = rH\left(1 - \frac{H}{K}\right)$$

Parasitismo

Parásito no mata al huésped

Ecología de Comunidades:

DIVERSIDAD = Número (Riqueza) + Abundancia relativa (equitatividad)

Dominancia: Una o pocas especies representan a la mayoría de la abundancia o la biomasa de la comunidad.

Una comunidad que posee unos pocos individuos de muchas especies es más diversa que una comunidad en la cual unas pocas especies acaparan toda la abundancia.

Cómo cuantificar la diversidad:

Índice de Shannon:

$$H' = -\sum_{i=1}^{s} p_i * \log(p_i)$$

H' = Diversidad de especies

s = Número de especies

p_i = Proporción de individuos en total de la muestra que pertenecen a la especie i.

La **equitatividad (J)** se obtiene a partir del cálculo de H_{max}

$$H_{max} = \ln(s)$$

 ${\rm H}_{\rm max}$ = Valor que tendría H' si todas las especies en la comunidad tuviesen el mismo número de individuos.

$$J = \frac{H}{H_{max}}$$

Índice de Simpson (D)

$$Dominancia(D) = \frac{1}{\sum P_i^2}$$

 P_i = Proporción de individuos con respecto al total de individuos de todas las especies

 D_{max} = Número de especies presentes

D incrementa con la equitatividad

Comunidad biológica

- Conjunto de organismos que **interactúan** tanto de manera directa como indirecta en un momento determinado.

Ecología de comunidades

- Los ecólogos de comunidades examinan los **patrones** e **interacciones** que se dan entre **grupos de especies**.

Distintos enfoques (Complementarios)

- La comunidad como grupos de especies (DIVERSIDAD)
- La comunidad como una colección de poblaciones (DINÁMICA COMUNITARIA)

Reglas de ensamble de una comunidad ecológica

- Las especies que pueden ensamblar una comunidad están determinadas por:
 - 1. Restricciones ambientales
 - 2. Restricciones en la capacidad de dispersión
 - 3. Dinámicas internas (i.e. competencia)

Zonación ⇒ Variación espacial en la estructura de las comunidades

- La composición de especies varía espacialmente.
- Dicha variación es recurrente para un tipo de hábitat en distintos lugares e independiente de las diferencias en la composición de especies.
- En esos casos se habla de una **zonación** de especies.
- Las zonaciones son comunes en los ambientes acuáticos y terrestres

Criterios para definir los límites entre comunidades

- Delimitación espacial de las interacciones entre especies (una especie que no interactúa no es parte de la comunidad).
- Delimitación de áreas que presenten mayor grado de similitud en su composición y diversidad de especies.
- En algunos casos, y gracias a la existencia de límites físicos es más fácil delimitar a las comunidades.

Zona de transición

Borde: Punto donde se encuentran 2 o más comunidades.

Ecotono: Donde se encuentran y se entrelazan 2 comunidades distintas.

- Los bordes indican cambios abruptos en las condiciones ambientales.
- Los ecotonos surgen de la transición entre 2 comunidades que muestran un cambio paulatino en sus patrones de dominancia.
- Los ecotonos pueden estar compuestos por especies de una, otra, ambas o incluso por especies que no pertenecen a ninguna de las comunidades en contacto.

Algunas especies son especialistas y colonizan selectivamente los bordes y/o ecotonos

- Suelen ser oportunistas (solo dominan en situaciones de borde o ecotono).
- **Plantas** = Normalmente intolerantes a la sombra y tolerantes a ambientes secos.
- **Animales** = Especies que requieren de recursos desde las 2 comunidades de contacto.
- ∴ La diversidad de especies es mayor en las cercanías de bordes y ecotonos ⇒
 efecto borde.

Sucesión ⇒ Variación temporal de la comunidad

- Cuando el cambio es gradual y aparentemente direccional en el tiempo se habla de **sucesión.**
- Puede observarse en clase de ambientes
- Las distintas especies que forman parte de los procesos de sucesión comparten ciertas características biológicas:
 - **Especies tempranas** (o especies pioneras): presentan tiempos generacionales cortos, altas tasas de reproducción, crecimiento rápido, pequeño tamaño y amplia dispersión.
 - **Especies tardías**: tasas de dispersión colonización menores, bajas tasas de crecimiento, mayores tamaños y tiempos de vida largo.

- Se pueden reconocer 2 tipos generales de sucesión:
 - **1. Sucesión primaria**: Se da en un lugar que previamente no estaba ocupado por una comunidad, una superficie nueva expuesta a la colonización.
 - **2. Sucesión secundaria**: Se da en sitios previamente ocupados y sigue a las perturbaciones.

Ecología de Ecosistemas:

Ecosistema: Sistema biológico constituido por una comunidad de organismos vivos y el medio físico donde se relacionan.

Ecosistemas abiertos, cerrados, salidas y entradas

- El foco de atención primario de la ecología de ecosistemas es como ocurre el intercambio de materia y energía.
- Lo que llega al ecosistema desde el ambiente que lo rodea se denomina entradas y lo que sale de él se denominan salidas.
- Un ecosistema sin entradas de materia se denomina cerrado mientras que uno abierto tiene una o más entradas.

Todos los ecosistemas tienen 3 componentes básicos

- 1. **Autótrofos:** plantas verdes ⇒ Fotosíntesis (energía solar).
- 2. **Heterótrofos:** Utilizan compuestos orgánicos producidos por los autótrofos como fuente de alimento.
- 3. **Abióticos:** Es el ambiente fisicoquímico en que se desenvuelven los organismos que actúa tanto como fuente como sumidero de materia y energía.

El flujo energético de los ecosistemas se rige por las leyes de la termodinámica

Productores ⇒ **Consumidores** ⇒ **Descomponedores** ⇒ **Calor**

2 Formas de energía:

- Potencial: Energía almacenada y disponible para realizar trabajo
- **Cinética:** Energía en movimiento, realiza un trabajo a expensas de la energía potencial.

Trabajo en ecosistemas ⇒ Almacenamiento de energía.

La productividad primaria

- Energía almacenada por la fotosíntesis ⇒ Productividad primaria (pp)
- Productividad primaria bruta: Total de la energía captada durante la fotosíntesis.
- Respiración: Se gasta parte de esta energía en la mantención del metabolismo.
- **Productividad primaria neta**: Energía que queda disponible luego del gasto que realiza la planta.

$$PPN = PPB - R$$

- La **productividad** ⇒ Unidades de energía o biomasa por unidad de área por unidad de tiempo ⇒ Es un tasa (g/cm2/año).
- La **producción** ⇒ Cantidad de materia que se encuentra almacenada en un lugar en un momento dado ⇒ NO es una tasa.

¿Qué limita la PP en los océanos?

Plantas terrestres ⇒ La fotosíntesis se desarrolla en las partes aéreas mientras que las raíces están inmersas en la zona en la cual se desarrolla el reciclaje de nutrientes.

Fitoplancton \Rightarrow Se encuentra en la superficie mientras que los nutrientes se encuentran en las aguas profundas y deben ser transportados hacia la superficie para suplir los procesos de productividad.

Variabilidad temporal de la PP

- Los factores que influyen sobre la productividad primaria varían de acuerdo con la estacionalidad pero también de año a año.
- La PP también varía con la edad de los ecosistemas.

La PP limita la producción secundaria

- La PPN es la energía disponible para los heterótrofos. Toda esta energía termina siendo consumida por herbívoros o descomponedores.

$$Eficiencia\ de\ consumo = \frac{Consumo\ en\ el\ nivel\ tr\'ofico\ n}{Producci\'on\ en\ el\ nivel\ tr\'ofico\ n-1} = \frac{I_n}{P_{n-1}}$$

La energía disminuye en cada nivel trófico sucesivo

- No toda la energía ingresada se transforma en producción.
- Disminución secuencial en la energía que fluye desde un nivel trófico a otro (disminución de 90% aprox.).

La producción de los sucesivos niveles tróficos se dispone en pirámides ecológicas

 Al representar la suma de toda la biomasa o energía contenida en cada nivel trófico se observa que en términos generales todos los ecosistemas forman las llamadas pirámides ecológicas.

Tramas tróficas en los ecosistemas

- **Plantas:** Productores primarios
- Herbívoros: Productores secundarios y consumidores primarios.
- **Carnívoros:** Productores terciarios y a la vez consumidores secundarios, etc.
- Omnívoros: Obtienen su alimento desde varios niveles tróficos
- **Carroñeros:** Se nutren de materia animal muerta.
- Saprófitos: Se nutren de materia vegetal muerta.

Los descomponedores son un grupo heterogéneo

 Hay descomponedores microscópicos (bacterias y hongos) y macroscópicos (lombrices).

La productividad de los descomponedores depende de:

- La cantidad de materia orgánica muerta la que depende de la PP.
- La Tº y disponibilidad.
- La materia orgánica se descompone rápidamente en condiciones de humedad y calor los cuales favorecen a la actividad microbiana.

Propiedades generales de tramas tróficas

- Ecosistemas terrestres ⇒ no más de 4 niveles tróficos.
- Los omnívoros no son comunes y cuando están presentes se alimentan de niveles tróficos adyacentes.
- Entre más presas posee un depredador menos depredadores lo utilizan de presa.
- Ambientes constantes ⇒ Cadenas más largas.

El mundo vivo depende del flujo de energía y de la circulación de los materiales a través del ecosistema

- Todos los nutrientes fluyen desde comportamientos abióticos a los bióticos y luego regresan a los abióticos (= reservorios bióticos y abióticos y flujos)
- Los elementos mas importantes en todos los ciclos son:
- Plantas verdes ⇒ Organizan lo nutrientes en componentes biológicamente útiles.
- **Descomponedores** ⇒ Devuelven a los nutrientes a su estad simple inicial.
- Compartimentos abióticos ⇒ (aire, agua, rocas) transporta y almacena nutrientes.
- Los procesos ecosistémicos corresponden a fenómenos involucrados en las transferencias de energía y materiales desde un reservorio a otro.

BIOGEOQUÍMICA: Rama de la Ecología y Cs. de la Tierra que estudia las influencias biológicas sobre los procesos químicos de la tierra

Principales ciclos Biogeoquímicos:

- Agua
- Carbono (C)
- Nitrógeno (N)
- Fósforo (P)
- Azufre (S)

Flujos hidrológicos

- Los flujos son la manera en que describimos los movimientos de agua desde un reservorio a otro.
- Cambio de fases:
 - a) Precipitación (Vapor \Rightarrow líquido \Rightarrow sólido)
 - b) Evaporación y transpiración (líquido ⇒ vapor)
 - c) Condensación (vapor ⇒ líquido)
 - d) Escurrimiento

- Infiltración, recarga acuíferos, descarga y flujo de acuíferos.
- Acumulación de nieve, etc.

Reservorios

- Se refieren a los lugares donde se encuentra almacenado H₂O en su paso por el ciclo.
- Océanos (96,5%).
- Mantos de hielo polar (1,7%)
- Acuíferos y aguas subterráneas (1,1%)
- Hielo, nieve, suelos, atmósfera, ríos, lagos... (0,1%)

Carbono

Relevancia:

- Cumple roles fundamentales en la captura (fotosíntesis) y liberación (respiración) de energía en los organismos.
- Es el componente estructural principal de los sistemas vivientes y de los combustibles.
- Forma bicarbonatos

Ciclo:

- Desde la atm el CO2 es capturado por las plantas, convertido en materia orgánica y almacenado en tejidos.
- Es consumido por los animales y descomponedores y retorna a la atm o al océano.
- La materia orgánica muerta sedimenta y la combustión libera el C de los sedimentos.

Nitrógeno

Relevancia:

- Es la base para la formación de moléculas funcionales y estructurales de los organismos (proteínas, enzimas y nucleótidos).

Ciclo:

- Desde la atm el N es fijado por bacterias y algas verdes/azules o por procesos industriales y convertido en amonio (fijación).
- El amonio puede ser asimilado por plantas o consumidores (desde el agua o suelo) o convertido en nitrato (nitrificación).
- Los animales excretan amonio que puede ser nitrificado o desnitrificado (por bacterias anaeróbicas) retornando a la atm.

Marea roja: Interacciones entre ecosistemas marinos y nutrientes terrestres

- Los HABs (Harmful algae blooms) son cada vez más frecuentes en todo el mundo.
- La productividad desbocada de parte de muchos microorganismos marinos debido al exceso de nitrógeno es en gran parte responsable de la eutrofización de las zonas costeras.
- En el sur de Chile esta además se encuentra sujeta a fluctuaciones de variabilidad natural de las temperaturas como el Fenómeno del Niño.

Fósforo

Relevancia:

 Otro de los componentes de los nucleótidos y el principal implicado en la transferencia de energía celular (ATP-ADP) y del ADN. Es un componente importante de los huesos en vertebrados.

Ciclo:

- El fosfato (PO_4) es captado desde el suelo o desde el agua por los productores e ingresado a la cadena trófica y retornado por la excreción en un ciclo bastante simple. Es altamente insoluble en agua y suelo (nutriente limitante).

- El reciclado dentro de la fase biótica es muy importante, especialmente entre ecosistemas (ej. animales marinos = mar a la tierra).
- El movimiento tierra-mar puede ser importante (polvo) para las islas oceánicas.

Azufre

Relevancia:

 Componente de proteínas aminoácidos, enzimas y de los compuestos implicados en la comunicación olfativa.

Ciclo:

- El azufre es depositado desde la atm en suelos y el océano (sulfato).
- Es asimilado por las plantas desde el suelo o directamente desde la atm o mar, ingresa a los animales y descomponedores y es excretado como súlfido ⇒ convertido a sulfato por bacterias quimiosintéticas o en el mar y volcanes.
- El sulfato vuelve a la atm.

Tanto en los ciclos del azufre y del nitrógeno se produce la lluvia ácida

- En la atm el SO2 y los óxidos de nitrógeno (NOx) producidos por la quema de combustibles fósiles, se combinan:
- **Depositación seca:** Parte de la mezcla precipita como partículas en las cercanías de la fuente y otra porción mayor es transportada lejos de la fuente.
- **Depositación húmeda:** Durante el transporte el SO2 y los NOx participan en una serie de reacciones complejas produciendo ácido nítrico y ácido sulfúrico, que se diluyen en el vapor de agua y caen a la tierra en forma de precipitación.

Cambio Global I:

El cambio global en un conjunto de estudios sobre el impacto de la actividad humana a escala planetaria.

- La **biósfera** puede ser modificada tanto por los seres vivos como por fuerzas geofísicas y extraplanetarias.
- La magnitud de la actividad humana actual sobrepasa muchos procesos biogeoquímicos naturales.
- La dimensión espacial del impacto humano se extiende a todo el planeta.
- La dimensión temporal de los cambio inducidos por la actividad humana es el orden de décadas a siglos.

Cambio global es más que cambio climático: Comprende múltiples impactos de las actividades humanas sobre el medio ambiente global.

Principales componentes del cambio global

- Cambio climático acelerado a través del efecto invernadero de la atm.
- Toxinificación de la biosfera por metales, pesticidas, ozono, lluvia ácida, fertilizantes, etc.
- Modificación del paisaje, incluyendo fragmentación de hábitats, desertificación, urbanización, industrialización, agricultura.
- Introducción e invasión de especies exóticas.
- Pérdidas de diversidad biológica.

Glosario:

- Cambio climático: Cualquier cambio en el clima independiente de su causa y su escala temporal.
- **Cambio global**: Cambio climático y sus consecuencias aunque frecuentemente limitado para referirse al AGW y sus impactos.
- **AGW**: "Anthropogenic global warming" (calentamiento global inducido o gatillado por el hombre).
- IPCC: Panel Inter-Gubernamental de cambio climático.

Potencial del calentamiento invernadero (GWP)

- Es la capacidad de un gas determinado para absorber radiación infrarroja ponderado por el tiempo de residencia de ese gas en la atmósfera.

Cambio Global II:

¿Qué significa proponer una nueva época geológica?

- Un cambio de **Época** en la escala geológica del tiempo corresponde a un cambio importante e el registro estratégico.
- ¿Qué nivel de alteración del sistema terrestre se requiere para producir estos cambios?