

PROGRAM MANAGER RMA CONTAMINATION CLEANUP

MATERIEL COMMAND

- COMMITTED TO PROTECTION OF THE ENVIRONMENT -

COMPREHENSIVE MONITORING PROGRAM

Contract Number DAAA15-87-0095

FINAL SURFACE WATER DATA ASSESSMENT **REPORT FOR 1989**

JUNE 1990

Version 2.0

Volume V

4006 NTIS

R.L. STOLLAR & ASSOCIATES, INC.

Harding Lawson Associates Ebasco Services Incorporated DataChem, Inc. Enseco-Cal Lab Midwest Research Institute

DTIC QUALITY INSPECTED 3

Contract Number DAAA15-87-0095

FINAL SURFACE WATER DATA ASSESSMENT REPORT FOR 1989

JUNE 1990

Version 2.0

Volume V

APPENDIX B

(Appendices B-1 to B-7)

Prepared by:

R. L. STOLLAR & ASSOCIATES INC. HARDING LAWSON ASSOCIATES EBASCO SERVICES INC. DATACHEM,INC.

ENVIRONMENTAL SCIENCE ENGINEERING, INC. RIVERSIDE TECHNOLOGY, INC.

Prepared for:

U. S. ARMY PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THE REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 06/00/90	3. REPORT TYPE AND	DATES COVERED				
4. TITLE AND SUBTITLE COMPREHENSIVE MONITORING PROGR REPORT FOR 1989, VERSION 2.0	COMPREHENSIVE MONITORING PROGRAM, FINAL SURFACE WATER DATA ASSESSMENT						
6. AUTHOR(S)			DAAA15 87 0095				
7. PERFORMING ORGANIZATION NAM	иE(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER				
ROBERT L. STOLLAR AND ASSOCIAT DENVER, CO	ES		91343R01				
9. SPONSORING/MONITORING AGEN HARDING LAWSON ASSOCIATES DENVER, CO	ICY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER				
11. SUPPLEMENTARY NOTES							
APPROVED FOR PUBLIC REI		IS UNLIMITED	12b. DISTRIBUTION CODE				
THE 1989 SURFACE WATER REPORT IS DIVIDED INTO SIX SECTIONS AND TWO APPENDICES. SECTION 1 PROVIDES A GENERAL HISTORICAL REVIEW OF THE DEVELOPMENT OF THE RMA. THE HISTORICAL ROLE OF SURFACE WATER FEATURES AT RMA, THE EFFECTS OF RMA INDUSTRIAL ACTIVITIES ON SURFACE SYSTEM MORPHOLOGY, AND THE MAJOR DRAINAGE BASINS THAT EXIST ON RMA ARE PRESENTED IN SECTION 2. SECTION 3 PROVIDE A DETAILED DISCUSSION OF THE PRESENT CMP PROGRAMS STRATEGIES AND METHODOLOGIES. SECTION 4 PRESENTS THE WATER QUALITY AND QUANTITY DATA COLLECTED DURING FISCAL YEAR 1989. SECTION 5 INTERPRETS THE COLLECTED SURFACE WATER DATA. SECTION 6 PROVIDES CONCLUSIONS AND A DETAILED SUMMARY OF FY89 RESULTS. APPENDIX A INCLUDES INFORMATION RELATED TO SURFACE WATER QUANTITY AND APPENDIX B INCLUDES INFORMATION RELATED TO SURFACE WATER QUANTITY AND APPENDIX B							
14. SUBJECT TERMS CONTAMINANTS, SAMPLING, DRAINA	GE BASINS		15. NUMBER OF PAGES 16. PRICE CODE				
17. SECURITY CLASSIFICATION 18 OF REPORT UNCLASSIFIED	B. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT				

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TABLE OF CONTENTS

				PA	GE
VOLUME I					
EXECUTIVE	E SUMM	IARY			
1.0 INTROD	UCTIO	N			1
1.1 1.2	Site Bar Surfac	ackground e-Water N	l	Program Objectives and Activities	1 2
	1.2.1 1.2.2	FY88 Pr FY89 Pr	ogram Activ	vitiesvities	2
1.3	RMA	Surface-W	Vater Invest	igations	5
	1.3.1 1.3.2	Surface- Surface-	Water Quan Water Qual	itity Investigations	14 17
		1.3.2.1 1.3.2.2 1.3.2.3 1.3.2.4	Sampling Remedial	itoring Program	18 18 18 20
			1.3.2.4.1 1.3.2.4.2 1.3.2.4.3 1.3.2.4.4 1.3.2.4.5 1.3.2.4.6 1.3.2.4.7	Southern Study Area South Plants Study Area Eastern Study Area Central Study Area North Plants Study Area North-Central Study Area Western Study Area	20 20 20 20 21 21 21
		1.3.2.5	Fiscal Yea	ar 1988 CMP Results	21
			1.3.2.5.1 1.3.2.5.2 1.3.2.5.3 1.3.2.5.4 1.3.2.5.5 1.3.2.5.6	Surface-Water Target Organic Compounds GC/MS Detections Trace Inorganic Constituents Field Water Quality Major Inorganic Constituents Sediment Study	22 22 22 27 27 27
		1.3.2.6	Historical	Data Base for Surface-Water Quality at RMA	27
			1.3.2.6.1 1.3.2.6.2 1.3.2.6.3 1.3.2.6.4	Source	27 30 30 34
	1.3.3 1.3.4	Sedimen Ground-	t Transport -Water and	Surface-Water Relationships	43 43
2.0 ENVIRC	NMEN'	TAL SET	ΓING		45

2.1 2.2 2.3	Groun	d-Water H	Hydrology	45 46 47
	2.3.1	Drainage	Basins	47
		2.3.1.1 2.3.1.2 2.3.1.3 2.3.1.4 2.3.1.5	First Creek Drainage Basin Second Creek Drainage Sand Creek Drainage South Platte Drainage Basin Irondale Gulch Drainage Basin	47 52 53 54 54
	2.3.2	Other Su	rface-Water Features	55
		2.3.2.1 2.3.2.2	Diversion Channels and Ditches	55 58
			2.3.2.2.1 Upper Derby Lake 2.3.2.2.2 Lower Derby Lake 2.3.2.2.3 Ladora Lake 2.3.2.2.4 Lake Mary 2.3.2.2.5 Rod and Gun Club Pond	59 59 60 61 61
		2.3.2.3	Collection Basins	62
2.4	Sewer	System .		64
3.0 PROGI	RAM STR	ATEGY A	AND METHODOLOGY	66
3.1	Surfac	e-Water Q	Quantity	66
	3.1.1	Surface-	Water Monitoring Network	66
		3.1.1.1	Irondale Gulch Drainage Basin	69
			3.1.1.1.1 Havana Interceptor (SW11002). 3.1.1.1.2 Peoria Interceptor (SW11001). 3.1.1.1.3 Havana Pond (SW11003). 3.1.1.1.4 Ladora Weir (SW02001). 3.1.1.1.5 South Uvalda (SW12005). 3.1.1.1.6 North Uvalda (SW01001). 3.1.1.1.7 Highline Lateral (SW12007). 3.1.1.1.8 South Plants Ditch (SW01003). 3.1.1.1.9 Lake Monitoring Stations.	69 72 73 73 74 74 75 75
		3.1.1.2	First Creek Drainage Basin.	76
			3.1.1.2.1 South First Creek (SW08003)	76 77

		3.1.1.3	3.1.1.2.4 Sewa	Creek Off-Post (SW3700 ge Treatment Plant (SW2 hinage Basin.	4001)	77 78 78
			3.1.1.3.1 Basin	n A (SW36001)		78
	3.1.2	Surface-V	ater Quantity D	ata Acquisition		79
		3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.2.5 3.1.2.6	Data Logger Pro Stream Stage Da Discharge Meas Discharge Data	cedures and Equipment ures and Equipment cedures and Equipment at Computation	Computation of	79 80 80 81 82 84
				version of Stream Stage to anel Reach Surveys		86 87
		3.1.2.7	Related Surface	-Water Data Acquisition		87
	3.1.3	South Uv	alda Stage Recor	d Review Procedures		88
3.2	Surfac	e-Water Q	ıality			90
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Surface-V Surface-V Laborator	Vater Quality Mo Vater Quality Mo y Analytical Pro	onitoring Network onitoring Strategies onitoring Field Methods cedures for Water and Se ol Data	diments	91 91 101 102 102
		3.2.5.1 3.2.5.2	Quality Control	nd Sediment Analytical A		102
			Quality Control			103
3.3	Sedime	ent Transp	ort			103
	3.3.1	Scope of	Investigation			103
		3.3.1.1 3.3.1.2	Sediment Quant Sediment Qualit	ity		104 104
	3.3.2	Sediment	Strategy and Me	thods		104
3.4	Groun	d-Water a	d Surface-Water	Interaction		105
	3.4.1	Scope of	Investigation			105

				PAGE
		3.4.1.1 3.4.1.2 3.4.1.3 3.4.1.4	First Creek South Plants Lakes Havana Pond Uvalda Interceptor	105
	3.4.2	Strategy	and Methods	106
		3.4.2.1 3.4.2.2 3.4.2.3	Comparison of Hydrographic Data	107
VOLUME II				
4.0 PROGR	AM RES	SULTS		109
4.1	Surfac	ce-Water C	Quantity Results	109
	4.1.1 4.1.2		limatological Conditions	
		4.1.2.1	Continuous Stage Data	112
			4.1.2.1.1 Havana Interceptor 4.1.2.1.2 Peoria Interceptor 4.1.2.1.3 Ladora Weir 4.1.2.1.4 South Uvalda 4.1.2.1.5 North Uvalda 4.1.2.1.6 Highline Lateral 4.1.2.1.7 South Plants Ditch 4.1.2.1.8 South First Creek 4.1.2.1.9 North First Creek 4.1.2.1.10 First Creek Off-Post 4.1.2.1.11 Basin A	113 114 115 115 115 116
		4.1.2.2	Stage Comparison of Analog and Digital Data	117
			4.1.2.2.1 South Uvalda (SW12005) 4.1.2.2.2 South First Creek (SW08003) 4.1.2.2.3 North First Creek (SW24002)	118
		4.1.2.3	Rating Curves and Equations	119
			4.1.2.3.1 Havana Interceptor 4.1.2.3.2 Peoria Interceptor 4.1.2.3.3 Ladora Weir 4.1.2.3.4 South Uvalda 4.1.2.3.5 North Uvalda 4.1.2.3.6 Highline Lateral	120 122 122 122

		4.1.2.3.7 South Plants Ditch 123 4.1.2.3.8 South First Creek 123 4.1.2.3.9 North First Creek 123 4.1.2.3.10 First Creek Off-Post 123 4.1.2.3.11 Basin A 124
4.1.3	Surface-	ater Hydrologic Conditions
	4.1.3.1	Streamflow Characteristics and Extremes
		4.1.3.1.1 Havana Interceptor 127 4.1.3.1.2 Peoria Interceptor 127 4.1.3.1.3 Ladora Weir 127 4.1.3.1.4 South Uvalda 127 4.1.3.1.5 North Uvalda 127 4.1.3.1.6 Highline Lateral 128 4.1.3.1.7 South Plants Ditch 128 4.1.3.1.8 South First Creek 128 4.1.3.1.9 North First Creek 128 4.1.3.1.10 First Creek Off-Post 128 4.1.3.1.11 Basin A 129 4.1.3.1.12 Streamflow Inflow/Outflow Comparison 129
	4.1.3.2 4.1.3.3	Annual Streamflow Analysis
		4.1.3.3.1 Havana Interceptor 131 4.1.3.3.2 Peoria Interceptor 131 4.1.3.3.3 Ladora Weir 131 4.1.3.3.4 South Uvalda 136 4.1.3.3.5 North Uvalda 136 4.1.3.3.6 Highline Lateral 136 4.1.3.3.7 South Plants Ditch 136 4.1.3.3.8 South First Creek 136 4.1.3.3.9 North First Creek 136 4.1.3.3.10 First Creek Off-Post 137 4.1.3.3.11 Basin A 137
	4.1.3.4 4.1.3.5	Streamflow Storm Runoff Hydrographs
		4.1.3.5.1 Havana Pond 140 4.1.3.5.2 Upper Derby Lake 143 4.1.3.5.3 Lower Derby Lake 143 4.1.3.5.4 Ladora Lake 143
	4.1.3.6	Sewage Treatment Plant Trends and Extremes 143

		4.1.3.7	South Uvalda Historical Stage Data Review Results 14	45
4.2	Surfac	e-Water Q	Quality Results	52
	4.2.1 4.2.2	Surface-	Water Quality Program Overview	52 52
		4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.2.5 4.2.2.6 4.2.2.7 4.2.2.8 4.2.2.9	Volatile Organohalogens.16Volatile Aromatics.17Organosulfur Compounds.17Organochlorine Pesticides.17Hydrocarbons.17Organophosphorus Compounds.17Phosphonates.17Dibromochloropropane (DBCP).17Phenols.17	70 70 71 73 74 75
	4.2.3 4.2.4	Occurrent Occurrent	ace of Nontarget Organic Compounds	76 78
		4.2.4.1 4.2.4.2 4.2.4.3 4.2.4.4 4.2.4.5 4.2.4.6	Cadmium, Chromium and Copper. 17 Arsenic. 17 Zinc. 18 Mercury. 18 Lead. 18 Cyanide. 18	78 81 81 82
	4.2.5	Field Par	rameter Measurements	32
		4.2.5.1 4.2.5.2 4.2.5.3	pH	33
	4.2.6	Occurren	nce of Major Inorganic Constituents	34
		4.2.6.1 4.2.6.2 4.2.6.3 4.2.6.4 4.2.6.5 4.2.6.6 4.2.6.7 4.2.6.8	Calcium. 18 Chloride. 18 Fluoride. 18 Potassium. 18 Magnesium. 18 Sodium. 18 Nitrate-Nitrite. 18 Sulfate. 19	86 87 88 89
	4.2.7		ter Chemistry Calculations for Major Inorganic	9 0
		4.2.7.1	Carbonate System Species	92 93

		4.2.7.3 4.2.7.4	Total Dissolved Solids	
	4.2.8	Comparis	on of Total and Dissolved Inorganic Analyses	194
		4.2.8.1 4.2.8.2	Trace Metal Inorganic Analytes	
4.3	Sedime	ent Transp	ort	197
	4.3.1 4.3.2		Quantity	
		4.3.2.1 4.3.2.2	Organic Compounds	199 203
4.4	Surface	e-Water/G	round-Water Interaction	207
	4.4.1 4.4.2 4.4.3 4.4.4	Surface-V Surface-V	Water and Ground-Water Hydrographs Water and Ground-Water Ion Data Water and Ground-Water Organic Data	209 210
4.5	Quality	y Assuranc	e/Quality Control Results of Water Quality Data	212
	4.5.1		and Inorganic Compounds Quality Assurance and Quality Results	213
		4.5.1.1 4.5.1.2 4.5.1.3	Blank Results	219
			Results).	219
5.0 DATA AS	SSESSM	ENT		225
5.1	Surface	e-Water Q	uantity Data Assessment	225
	5.1.1	Stream Fl	ow Data	225
		5.1.1.1 5.1.1.2	Rates and Volumes of Flow	
	5.1.2	Lake and	Pond Stage Data	227
		5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.4 5.1.2.5	Upper Derby Lake. Lower Derby Lake. Ladora Lake. Lake Mary. Havana Pond.	227 232 232

		5.1.3	Evapora	ation and Precipitation Data	232
	5.2	Surfa	ce-Water	Quality Assessment	232
		5.2.1	First C	reek Drainage Basin	234
			5.2.1.1 5.2.1.2 5.2.1.3 5.2.1.4	Organic Compounds in Surface Water	236 239
		5.2.2	Irondal	e Gulch Drainage Basin	240
			5.2.2.1 5.2.2.2 5.2.2.3 5.2.2.4	Organic Compounds in Surface Water	243 244
		5.2.3	South Pla	atte Drainage Basin	248
			5.2.3.2 5.2.3.3	Organic Compounds in Surface Water. Inorganic Constituents in Surface Water. Organic Compounds in Stream-Bottom Sediments. Trace Metals in Stream-Bottom Sediments.	250 250
		5.2.4	Sand Cre	ek Drainage Basin	251
				Organic Compounds in Surface Water	
	5.3	Grou	nd-Water	/Surface-Water Interaction Assessment	251
		5.3.1 5.3.2	First Cre South Pla	eek Drainage Basin	251 252
6.0	CONCLU	SION			254
	6.1 6.2	Surfa Surfa	ce-Water ce-Water	Quantity Conclusions	254 255
		6.2.1	First C	reek Drainage Basin	255
			6.2.1.1 6.2.1.2 6.2.1.3 6.2.1.4 6.2.1.5	Organic Compounds in Surface Water	256 256 257

		6.2.2	Irondale Gulch Drainage Basin	258
			6.2.2.1 Organic Compounds in Surface Water	259 260 260
		6.2.3	South Platte Drainage Basin	261
			6.2.3.1 Organic Compounds in Surface Water. 6.2.3.2 Inorganic Constituents in Surface Water. 6.2.3.3 Organic Compounds in Stream-Bottom Sediments. 6.2.3.4 Trace Metals in Stream-Bottom Sediments.	262262
		6.2.4	Sand Creek Drainage Basin	262
			6.2.4.1 Organic Compounds in Surface Water	
7.0	REFERE	NCES		264
VΩI	LUME III			
		SURF	ACE-WATER QUALITY DATA FOR WATER YEAR 1989	
	A-1		ee Water Station Survey Information	
			Monitoring Station Survey Information Station Survey Information	
			A-1.2.1 Cross Section Survey Plots A-1.2.2 Monitoring Station Plan Views A-1.2.3 Cross Section Survey Data A-1.2.4 Channel Reach Survey Procedure	
	A-2	Instant	taneous Discharge Measurements	
		A-2.2	Flume Specifications Discharge Measurement Procedures 1989 Water Year Instanteous Discharge Measurement Records WY89 Discharge Measurements Summary WY89 Discharge Measurement Field Records	
	A-3	Rating	g Curves	
			Rating Curve Development Procedures Gage Height vs. Discharge	

PAGE

A 2 2	Linad	***	Discharge
A-3.3	neau	VS.	Discharge

- A-4 Rating Equations
- A-5 Comparison of Instantaneous Discharge Versus Computed Discharge
- A-6 Continuous Gage Height Recorders Equipment and Procedures
 - A-6.1 Stevens Type F Equipment Specifications and Procedures
 - A-6.2 Datapod Equipment Specifications and Procedures
 - A-6.3 Data Logger Equipment Specifications and Procedures

VOLUME IV

- A-7 Gage Height Data
 - A-7.1 Water Year 1989 Gage Height Data
 - A-7.2 South Uvalda Historical Gage Height Data
- A-8 Water Discharge Records
 - A-8.1 1989 Water Year Discharge Records
 - A-8.2 South Uvalda Historical Discharge Records
- A-9 Lake Volume Records
- A-10 Sewage Treatment Plant Records
- A-11 Climatic Conditions Records
 - A-11.1 Precipitation Graphs/Plots
 - A-11.2 Daily Temperature and Precipitation Data
- A-12 Well Water Levels

VOLUME V

APPENDIX B SURFACE-WATER QUALITY DATA FOR 1989 WATER YEAR

- B-1 Sample Location Survey Information
- B-2 Spring 1989 Water Quality Data
- B-3 High Event 1989 Water Quality Data
- B-4 Fall 1989 Water Quality Data
- B-5 Ion Balance Calculations
- B-6 Water Quality Field Data
- B-7 Laboratory Analytical Procedures
 - B-7.1 Procedure for Water Analysis
 - B-7.2 Procedures for Sediment Analysis
 - B-7.3 Procedure for Suspended Solids Analysis

LIST OF TABLES

Table 1.3-1	Chronology of RMA Surface-Water Monitoring
Table 1.3-2	Evolution of Surface-Water Monitoring Stations
Table 1.3-3	RMA Remedial Investigations and Study Area Reports
Table 1.3-4	Occurrence of Target Organic Compounds During CMP FY88 Sampling Activities
Table 1.3-5	Occurrence of Trace Inorganic Constituents During CMP FY88 Sampling Activities
Table 1.3-6	Summary of Major Constituent Occurrence During CMP FY88 Sampling Activities
Table 1.3-7	Occurrence of Organic Compounds and Trace Inorganic Constituents in Bed Load Sediments for FY88
Table 1.3-8	Correlation of Historical and CMP FY89 Surface-Water Sampling Locations
Table 1.3-9	Historical Organic Compound Detections at Current CMP Surface- Water Sites
Table 1.3-10	Historical Trace Inorganic Constituent Detections at Current CMP Surface-Water Sites
Table 2.3-1	Monitoring Stations Used During FY89
Table 2.3-2	Sample Locations Considered During FY89
Table 3.1-1	Surface-Water Monitoring Network
Table 3.1-2	Surface-Water Monitoring Station Activities
Table 3.2-1	Water Year 1989, Summary of Sampling Activities
Table 3.2-2	Data Chem and Hunter ESE/ Laboratories Analytical Methods for Water and Sediment Samples
Table 3.4-1	Wells Used to Delineate Ground-Water/Surface-Water Interaction
Table 4.1-1	Monthly Averages of Temperature, Precipitation and Evaporation Data, Water Year 1989
Table 4.1-2	Surface-Water Structures, Channel Control and Rating Curves
Table 4.1-3	Surface-Water Sources at Continuous-recording Stations
Table 4.1-4	Summary of RMA Inflow and Outflow Volumes
Table 4.1-5	Summary of Minimum and Maximum Discharges

LIST OF TABLES (continued)

Table 4.1-6	Comparison of High and Extended Precipitation Events and Mean Daily Discharges
Table 4.1-7	Stage/Elevation Survey Information
Table 4.1-8	Average Storage Precipitation and Evaporation Volumes for South Plants Lakes and Havana Pond, Water Year 1989
Table 4.1-9	Sewage Treatment Plant Monthly Flow Summaries, Water Year 1989
Table 4.1-10	Historical Strip Chart Reduction Preliminary Analysis
Table 4.1-11	Comparison of Instantaneous Peak Stages
Table 4.1-12	General Stage Comparison
Table 4.1-13	Comparison of the Monthly Instantaneous Minimum and Maximum Stages and Flows
Table 4.1-14	Comparison of the Minimum and Maximum Daily Mean Flows
Table 4.1-15	Comparison of Total Monthly Flows
Table 4.2-1	CMP Surface-Water List of Target Organic Compounds
Table 4.2-2	FY89 Occurrences of Target Organic Compounds in Surface-Water Samples
Table 4.2-3	Ocurrence of Nontarget Organic Compounds
Table 4.2-4	Occurrence of Trace Inorganic Constituents
Table 4.2-5	Surface-Water Alkalinity Summary of Analytical and Field Results (Spring 1989)
Table 4.2-6	Calculations for Major Inorganic Constituents in Samples Collected During the Spring Sampling Event
Table 4.2-7	Summary of Dissolved Versus Total Recoverable Inorganic Constituent Analysis
Table 4.3-1	FY89 Total Suspended Solids Analytical Results
Table 4.3-2	FY89 Target Organic Compound Detections in Stream Bottom Sediment Samples
Table 4.3-3	FY89 Trace Inorganic Constituent Detections in Stream Bottom Sediment Samples
Table 4.4-1	Comparison of Surface-Water and Ground-Water Organic Compound Detections for Spring FY89

LIST OF TABLES (continued)

Table 4.5-1	Surface-Water Rejected Data
Table 4.5-2	Surface-Water Duplicate and Relative Percent Difference
Table 4.5-3	Confirmation Analysis Results
Table 5.1-1	Ratio of Daily Maximum Discharge to Mean Daily Discharge
Table 5.1-2	Ratio of Instantaneous Maximum Discharge to Mean Daily Discharge
Table 5.1-3	Evaporation, Precipitation, Lake Storage and Sewage Treatment Plant Discharge Data
Table 5.2-1	Baseline Surface-Water Quality Levels for Inorganic Constituents Entering RMA in the First Creek Drainage Basin at First Creek South Boundary (SW08001) during Base Flow Conditions
Table 5.2-2	Elevated Inorganic Constituent Concentrations for First Creek Drainage Basin Sites for FY89 CMP
Table 5.2-3	Baseline Surface-Water Quality Levels for Inorganic Constituents Entering RMA in the Irondale Gulch Drainage Basin During Base and Elevated Flow Conditions
Table 5.2-4	Elevated Inorganic Constituent Concentrations for Irondale Gulch Drainage Basin and South Platte Drainage Basin Sites for FY89 CMP
Table 5.2-5	Baseline Trace Metal Concentrations for Stream-Bottom Sediments in the Irondale Gulch Drainage Basin

LIST OF FIGURES

1.1-1	Rocky Mountain Arsenal Location Map
1.1-2	Rocky Mountain Features Map
1.3-1	Location of Study Areas
2.3-1	Detail of First Creek Drainage
2.3-2	Thalweg Slope and Cross Section of First Creek
2.3-3	Detail of South Boundary Storm Sewer Drainages
2.3-4	Location Map of Return Water Ditches
4.1-1	Precipitation and Evaporation, Water Year 1989
4.1-2	South Uvalda Stage Data Comparison
4.1-3	South First Creek Stage Data Comparison
4.1-4	North First Creek Stage Data Comparison
4.1-5	Havana Interceptor Monthly Total Discharge
4.1-6	Peoria Interceptor Monthly Total Discharge
4.1-7	Ladora Weir Monthly Total Discharge
4.1-8	South Uvalda Monthly Total Discharge
4.1-9	North Uvalda Monthly Total Discharge
4.1-10	Highline Lateral Monthly Total Discharge
4.1-11	South Plants Ditch Monthly Total Discharge
4.1-12	South First Creek Monthly Total Discharge
4.1-13	North First Creek Monthly Total Discharge
4.1-14	First Creek Off-Post Monthly Total Discharge
4.1-15	Basin A Monthly Total Discharge
4.1-16	Havana Interceptor Daily Mean Discharge Hydrograph
4.1-17	Peoria Interceptor Daily Mean Discharge Hydrograph
4.1-18	Ladora Weir Daily Mean Discharge Hydrograph
4.1-19	South Uvalda Daily Mean Discharge Hydrograph

LIST OF FIGURES (Continued)

4.1-20	North Uvalda Daily Mean Discharge Hydrograph
4.1-21	Highline Lateral Daily Mean Discharge Hydrograph
4.1-22	South Plants Ditch Daily Mean Discharge Hydrograph
4.1-23	South First Creek Daily Mean Discharge Hydrograph
4.1-24	North First Creek Daily Mean Discharge Hydrograph
4.1-25	First Creek Off-Post Daily Mean Discharge Hydrograph
4.1-26	Basin A Daily Mean Discharge Hydrograph
4.1-27	Comparison of RMA Inflow and Outflow Volumes
4.1-28	Havana Interceptor Mean Monthly Maximum Daily and Minimum Daily Discharge
4.1-29	Peoria Interceptor Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-30	Ladora Weir Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-31	South Uvalda Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-32	North Uvalda Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-33	Highline Lateral Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-34	South Plants Ditch Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-35	South First Creek Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-36	North First Creek Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-37	First Creek Off-Post Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-38	Basin A Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-39	Havana Pond Storage Volume
4.1-40	Upper Derby Lake Storage Volume
4.1-41	Lower Derby Lake Storage Volume
4.1-42	Ladora Lake Storage Volume
4.1-43	Sewage Treatment Plant Discharge
4.4-1	Havana Pond and Adjacent Wells Water Elevations
4.4-2	Upper Derby Lake and Adjacent Wells Water Elevations

LIST OF FIGURES (Continued)

4.4-3	Lower Derby Lake and Adjacent Wells Water Elevations
4.4-4	Ladora Lake and Adjacent Wells Water Elevations
4.4-5	Lake Mary and Adjacent Wells Water Elevations
4.4-6	Stiff Diagrams for First Creek Drainage
4.4-7	Stiff Diagrams for South Plants Lakes Area
5.2-1	Direct Relationship Between Discharge and Concentration
5.2-2	Inverse Relationship Between Discharge and Concentration

LIST OF PLATES

1.3-1	Surface-Water Quantity Monitoring Station Locations
1.3-2	Surface-Water Quality Sampling Locations
1.3-3	Occurrence of CMP Surface-Water FY88 Target Organic Compounds
1.3-4	Occurrence of CMP Surface-Water FY88 Trace Inorganic Constituents
1.3-5	Correlation of CMP and Historical Surface-Water Quality Sampling Locations
1.3-6	Frequency of Historical Organic Compound Detections
1.3-7	Frequency of Historical Trace Inorganic Constituent Detections
2.3-1	Diagram of RMA Surface-Water Features and Drainage Basins
3.4-1	Location Map of Surface-Water Sampling Sites and Monitoring Wells Used for Ground-Water/Surface-Water Interaction Study
4.2-1	1989 Occurrences of CMP Surface-Water Target Organic Compounds
4.2-2	1989 Occurrence of Trace Inorganic Constituents
4.3-1	1989 Organic and Trace Inorganic Compound Detections in Stream Bottom Sediments

TABLE OF CONTENTS

APPENDIX A SURFACE-WATER QUALITY DATA FOR WATER YEAR 1989

A-1 Surface Water Station Survey Information
--

- A-1.1 Monitoring Station Survey Information
- A-1.2 Station Survey Information
 - A-1.2.1 Cross Section Survey Plots
 - A-1.2.2 Monitoring Station Plan Views
 - A-1.2.3 Cross Section Survey Data
 - A-1.2.4 Channel Reach Survey Procedure

A-2 Instantaneous Discharge Measurements

- A-2.1 Flume Specifications
- A-2.2 Discharge Measurement Procedures
- A-2.3 1989 Water Year Instanteous Discharge Measurement Records WY89 Discharge Measurements Summary WY89 Discharge Measurement Field Records

A-3 Rating Curves

- A-3.1 Rating Curve Development Procedures
- A-3.2 Gage Height vs. Discharge
- A-3.3 Head vs. Discharge
- A-4 Rating Equations
- A-5 Comparison of Instantaneous Discharge Versus Computed Discharge
- A-6 Continuous Gage Height Recorders Equipment and Procedures
 - A-6.1 Stevens Type F Equipment Specifications and Procedures
 - A-6.2 Datapod Equipment Specifications and Procedures
 - A-6.3 Data Logger Equipment Specifications and Procedures

A-7 Gage Height Data

- A-7.1 Water Year 1989 Gage Height Data
- A-7.2 South Uvalda Historical Gage Height Data

A-8 Water Discharge Records

- A-8.1 1989 Water Year Discharge Records
- A-8.2 South Uvalda Historical Discharge Records
- A-9 Lake Volume Records
- A-10 Sewage Treatment Plant Records
- A-11 Climatic Conditions Records
 - A-11.1 Precipitation Graphs/Plots
 - A-11.2 Daily Temperature and Precipitation Data
- A-12 Well Water Levels

TABLE OF CONTENTS

APPENDIX B SURFACE-WATER QUALITY DATA FOR 1989 WATER YEAR

B-1	Sample Location Survey Information
B-2	Spring 1989 Water Quality Data
B-3	High Event 1989 Water Quality Data

B-5 Ion Balance Calculations

B-4

- B-6 Water Quality Field Data
- B-7 Laboratory Analytical Procedures

Fall 1989 Water Quality Data

- B-7.1 Procedure for Water Analysis
- B-7.2 Procedures for Sediment Analysis
- B-7.3 Procedure for Suspended Solids Analysis

APPENDIX B

Surface-Water Quality Data for 1989 Water Year

APPENDIX B-1

Sample Location Survey Information

Appendix B-1 Table B-1-1 Sample Location Survey Information

\$\begin{array}{c} \text{SW02002} & 175,721.40 & 2,182,686.29 & 5,234.51 \\ \$\begin{array}{c} \text{SW02003} & 177,726.61 & 2,179,691.86 & 5,223.23 \\ \$\begin{array}{c} \text{SW02004} & 177,378.84 & 2,178,434.27 & 5,206.35 \\ \$\begin{array}{c} \text{SW02006} & 177,998.25 & 2,181,339.77 & 5,231.15 \\ \$\begin{array}{c} \text{SW02006} & 179,121.05 & 2,182,840.84 & 5,257.90 \\ \$\begin{array}{c} \text{SW04001} & 177,928.55 & 2,172,516.56 & 5,195.20 \\ \$\begin{array}{c} \text{SW05001} & 175,590.08 & 2,197,131.85 & 5,282.37 \\ \$\begin{array}{c} \text{SW07002} & 170,191.43 & 2,189,198.96 & 5,291.33 \\ \$\begin{array}{c} \text{SW07002} & 170,191.43 & 2,189,198.96 & 5,291.33 \\ \$\begin{array}{c} \text{SW08001} & 172,876.88 & 2,199,286.91 & 5,298.91 \\ \$\begin{array}{c} \text{SW08002} & 170,284.98 & 2,194.415.70 & 5,315.13 \\ \$\begin{array}{c} \text{SW08003} & 173,686.65 & 2,198,520.22 & 5,293.84 \\ \$\begin{array}{c} \text{SW11001} & 170,287.71 & 2,179,583.49 & 5,248.08 \\ \$\begin{array}{c} \text{SW11002} & 170,992.86 & 2,178,854.75 & 5,262.22 \\ \$\begin{array}{c} \text{SW11003} & 172,696.42 & 2,180,121.78 & 5,254.28 \\ \$\begin{array}{c} \text{SW120001} & 170,294.42 & 2,186,942.80 & 5,278.46 \\ \$\begin{array}{c} \text{SW120003} & 175,315.77 & 2,186,625.33 & 5,254.18 \\ \$\begin{array}{c} \text{SW120004} & 170,195.602 & 2,186,181.97 & 5,278.77 \\ \$\begin{array}{c} \text{SW120004} & 170,195.602 & 2,186,818.97 & 5,278.77 \\ \$\begin{array}{c} \text{SW120004} & 170,192.44 & 2,186,942.80 & 5,276.22 \\ \$\begin{array}{c} \text{SW120003} & 175,315.77 & 2,186,625.33 & 5,254.18 \\ \$\begin{array}{c} \text{SW120004} & 170,132.67 & 2,188,189.7 & 5,278.77 \\ \$\begin{array}{c} \text{SW120005} & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$\begin{array}{c} \text{SW120006} & 170,132.67 & 2,188,189.89 & 5,276.20 \\ \$\begin{array}{c} \text{SW120006} & 170,132.67 & 2,188,725.83 & 5,275.15 \\ \$\begin{array}{c} \text{SW120006} & 170,132.67 & 2,188,725.83 & 5,275.15 \\ \$\begin{array}{c} \text{SW120006} & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$	Sample Location	Northing	Easting	Staked Elevation (ft-msl)
SW01002	SWOLOOL	175 588 02	2 187 896 41	5.260.51
SW01003				
SW01004 176,932.23 2,187,034.25 5,256.51 SW01005 176,395.24 2,183,915.96 5,246.73 SW02001 176,311.48 2,183,915.96 5,235.49 SW02002 175,721.40 2,182,686.29 5,234.51 SW02003 177,7378.84 2,178,434.27 5,206.35 SW02004 177,378.84 2,178,434.27 5,206.35 SW02006 179,121.05 2,182,840.84 5,257.90 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,289.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW11001 170,287.71 2,179,582.49 5,248.08 <			2,103,270.40	
SW01005 176,395,24 2,183,915,96 5,246,73 SW02001 176,311.48 2,183,915.96 5,235,49 SW02002 175,721.40 2,182,686.29 5,234.51 SW02003 177,726.61 2,179,691.86 5,223.23 SW02004 177,378.84 2,178,434.27 5,206.35 SW02005 177,998.25 2,181,339.77 5,231.15 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07001 170,230.73 2,191,183.13 5,295.71 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 </td <td></td> <td></td> <td></td> <td></td>				
\$\begin{array}{c} \text{SW02001} & 176,311.48 & 2,183,915.96 & 5,235.49 \\ \text{SW02002} & 175,721.40 & 2,182,686.29 & 5,234.51 \\ \text{SW02003} & 177,726.61 & 2,179,691.86 & 5,223.23 \\ \text{SW02004} & 177,378.84 & 2,178,434.27 & 5,206.35 \\ \text{SW02006} & 177,998.25 & 2,181,339.77 & 5,231.15 \\ \text{SW02006} & 179,121.05 & 2,182,840.84 & 5,257.90 \\ \text{SW02006} & 179,121.05 & 2,182,840.84 & 5,257.90 \\ \text{SW02006} & 179,220.05 & 2,172,516.56 & 5,195.20 \\ \text{SW05001} & 175,590.08 & 2,197,131.85 & 5,282.37 \\ \text{SW07001} & 170,230.73 & 2,191,183.13 & 5,295.71 \\ \text{SW07002} & 170,191.43 & 2,189,198.96 & 5,291.33 \\ \text{SW08003} & 170,284.98 & 2,194,415.70 & 5,315.13 \\ \text{SW08000} & 170,284.98 & 2,194,415.70 & 5,315.13 \\ \text{SW08000} & 170,284.98 & 2,194,415.70 & 5,315.13 \\ \text{SW080004} & 174,711.01 & 2,197,612.81 & 5,288.40 \\ \text{SW11001} & 170,287.71 & 2,179,583.49 & 5,248.08 \\ \text{SW11002} & 170,992.86 & 2,178,854.75 & 5,262.22 \\ \text{SW11003} & 172,696.42 & 2,186,121.78 & 5,254.28 \\ \text{SW12004} & 170,156.02 & 2,186,818.97 & 5,278.77 \\ \text{SW12003} & 175,315.77 & 2,186,625.33 & 5,254.18 \\ \text{SW12000} & 170,156.02 & 2,186,121.78 & 5,254.28 \\ \text{SW12000} & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \text{SW12000} & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \text{SW12000} & 170,292.77 & 2,188,725.83 & 5,275.15 \\ \text{SW12000} & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \text{SW12000} & 175,292.77 & 2,186,625.33 & 5,275.15 \\ \text{SW12000} & 175,292.77 & 2,				
\$\text{SW02002} \tag{175,721.40} \tag{2,182,686.29} \tag{5,234.51} \text{SW02004} \tag{177,726.61} \tag{2,179,691.86} \tag{5,223.23} \text{SW02004} \tag{177,7378.84} \tag{2,178,434.27} \tag{5,206.35} \text{SW02006} \tag{177,7378.84} \tag{2,178,434.27} \tag{5,206.35} \text{SW02006} \tag{177,928.25} \tag{2,181,339.77} \tag{5,231.15} \text{SW02006} \tag{179,121.05} \tag{2,182,840.84} \tag{5,257.90} \text{SW04001} \tag{177,928.55} \tag{2,172,516.56} \tag{5,195.20} \text{SW05001} \tag{170,230.73} \tag{2,191,183.13} \tag{5,295.71} \text{SW07002} \tag{170,191.43} \tag{2,189,198.96} \tag{5,291.33} \text{SW08001} \tag{170,284.98} \tag{2,194,415.70} \tag{5,315.13} \text{SW08002} \tag{170,284.98} \tag{2,194,415.70} \tag{5,315.13} \text{SW08003} \tag{173,686.65} \tag{2,198,520.22} \tag{5,293.84} \text{SW08004} \tag{174,711.01} \tag{2,197,612.81} \tag{5,288.40} \text{SW11001} \tag{170,292.86} \tag{2,178,854.75} \tag{5,262.22} \text{SW11003} \tag{170,192.86} \tag{2,186,942.80} \tag{5,278.46} \text{SW12000} \tag{170,156.02} \tag{170,156.02} \tag{1,186,942.80} \tag{5,278.46} \tag{5,274.18} \tag{5,276.20} \tag{5,271.19} \tag{5,281.200} \tag{5,271.19} \tag{5,276.20} \tag{5,271.19} \tag{5,276.20} \tag{5,271.19} \tag{5,276.20} \tag{5,271.19} \tag{5,281.200} \tag{5,278.46} \tag{5,278.46} \tag{5,278.46} \tag{5,278.46} \tag{5,278.46} \tag{5,278.46} \tag{5,278.46} \tag{5,278.46} \tag{5,278.46} \tag{5,276.20} \tag{5,271.19} \tag{5,276.20} \tag{5,271.19} \tag{5,276.20} 5,2	SW01005	176,395.24	2,183,915.96	5,246.73
\$\begin{array}{c} \$\$W02002 & 175,721.40 & 2,182,686.29 & 5,234.51 \\ \$5,220.003 & 177,726.61 & 2,179,691.86 & 5,223.23 \\ \$5W02004 & 177,378.84 & 2,178,434.27 & 5,206.35 \\ \$5W02006 & 177,998.25 & 2,181,339.77 & 5,231.15 \\ \$5W02006 & 179,121.05 & 2,182,840.84 & 5,257.90 \\ \$5W04001 & 177,928.55 & 2,172,516.56 & 5,195.20 \\ \$5W05001 & 175,590.08 & 2,197,131.85 & 5,282.37 \\ \$5W07001 & 170,230.73 & 2,191,183.13 & 5,295.71 \\ \$5W07002 & 170,191.43 & 2,189,198.96 & 5,291.33 \\ \$5W08001 & 172,876.88 & 2,199,286.91 & 5,298.91 \\ \$5W08003 & 173,686.65 & 2,198,520.22 & 5,293.84 \\ \$5W08004 & 174,711.01 & 2,197,612.81 & 5,288.40 \\ \$5W11001 & 170,287.71 & 2,179,583.49 & 5,248.08 \\ \$5W11002 & 170,192.86 & 2,178,854.75 & 5,262.22 \\ \$5W11003 & 172,696.42 & 2,180,121.78 & 5,254.28 \\ \$5W12004 & 170,129.44 & 2,188,947.15 & 5,254.28 \\ \$5W12004 & 170,129.44 & 2,186,942.80 & 5,278.46 \\ \$5W12005 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,186,625.33 & 5,254.18 \\ \$5W12008 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$5W12008 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$5W12008 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$5W12008 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$5W12008 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$5W12008 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$5W12008 & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$5W12007 & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$5W12009 & 175,292.16 & 2,186,492.80 & 5,275.20 \\ \$5W12009 & 175,292.16 & 2,186,327.81 & 5,137.80 \\ \$5W24001 & 195,373.14 & 2,187,281.35 & 5,144.90 \\ \$5W24002 & 196,426.80 & 2,186,327.81 & 5,137.24 \\ \$5W30001 & 188,547.58 & 2,188,840.20 & 5,191.10 \\ \$5W30002 & 188,563.22 & 2,186,925.57 & 5,184.43 \\ \$5W30001 & 184,589.82 & 2,190,050.52	SW02001	176,311.48	2,183,915.96	5,235.49
\$\begin{array}{c} \text{SW02003} & 177, \text{276.61} & 2, \text{179, 691.86} & 5, 223.23 \\ \$\begin{array}{c} \text{SW02006} & 177, \text{378.84} & 2, \text{178, 434.27} & 5, 206.35 \\ \$\begin{array}{c} \text{SW02006} & 177, \text{378.84} & 2, \text{181, 339.77} & 5, 231.15 \\ \$\begin{array}{c} \text{SW02006} & 179, \text{12.105} & 2, \text{182, 840.84} & 5, 257.90 \\ \$\begin{array}{c} \text{SW04001} & 177, \text{928.55} & 2, \text{172, 516.56} & 5, \text{195.20} \\ \$\begin{array}{c} \text{SW07001} & 170, 230.73 & 2, \text{191, 183.13} & 5, 295.71 \\ \$\begin{array}{c} \text{SW07002} & 170, \text{191.43} & 2, \text{189, 198.96} & 5, 291.33 \\ \$\begin{array}{c} \text{SW08002} & 170, 284.98 & 2, \text{194, 415.70} & 5, 315.13 \\ \$\begin{array}{c} \text{SW08003} & 173, 686.65 & 2, \text{198, 520.22} & 5, 293.84 \\ \$\text{SW11001} & 170, 287.71 & 2, \text{179, 583.49} & 5, 248.08 \\ \$\text{SW11001} & 170, 287.71 & 2, \text{179, 583.49} & 5, 248.08 \\ \$\text{SW11002} & 170, \text{92.86} & 2, \text{178, 854.75} & 5, 262.22 \\ \$\text{SW11003} & 172, 696.42 & 2, \text{180, 121.78} & 5, 254.28 \\ \$\text{SW12001} & 170, 205.42 & 2, \text{186, 642.80} & 5, 278.77 \\ \$\text{SW12003} & 175, 315.77 & 2, \text{186, 625.33} & 5, 254.18 \\ \$\text{SW12004} & 170, 129.44 & 2, \text{184, 947.15} & 5, 276.22 \\ \$\text{SW12003} & 175, 315.77 & 2, \text{186, 625.33} & 5, 254.18 \\ \$\text{SW12004} & 170, 129.44 & 2, \text{184, 947.15} & 5, 276.22 \\ \$\text{SW12003} & 175, 315.77 & 2, \text{186, 625.33} & 5, 254.18 \\ \$\text{SW12006} & 170, 132.67 & 2, \text{188, 745.8} & 5, 276.22 \\ \$\text{SW12009} & 175, 292.77 & 2, \text{188, 725.83} & 5, 275.15 \\ \$\text{SW120006} & 170, 132.67 & 2, \text{184, 791.45} & 5, 276.22 \\ \$\text{SW120007} & 175, 292.77 & 2, \text{188, 725.83} & 5, 275.15 \\ \$\text{SW120006} & 170, 132.67 & 2, \text{184, 791.45} & 5, 137.80 \\ \$\text{SW24001} & 195, 373.14 & 2, \text{186, 706.06} & 5, 274.14 \\ \$\text{SW24002} & 196, 426.80 & 2, \text{184, 791.45} & 5, 137.24 \\ \$\text{SW30001} & 188, 547.58 & 2, 1				5,234.51
SW02004 177,378.84 2,178,434.27 5,206.35 SW02006 177,998.25 2,181,339.77 5,231.15 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.13 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,186,942.80 5,278.76 SW12001 170,205.42 2,186,942.80 5,278.46 SW12003 175,315.77 2,186,942.80 5,278.46 </td <td></td> <td></td> <td></td> <td></td>				
SW02005 SW02006 177,998.25 179,121.05 2,181,339.77 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194.415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,186,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,942.80 5,278.47 SW12003 175,315.77 2,186,629.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.20 SW12005 170,445.36 2,186,746.06				
SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,78,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 <td></td> <td></td> <td></td> <td></td>				
\$\begin{array}{cccccccccccccccccccccccccccccccccccc				
\$\begin{array}{c} \text{SW07001} & 175,590.08 & 2,197,131.85 & 5,282.37 \\ \$\text{SW07001} & 170,230.73 & 2,191,183.13 & 5,295.71 \\ \$\text{SW07002} & 170,191.43 & 2,189,198.96 & 5,291.33 \\ \$\text{SW08001} & 172,876.88 & 2,199,286.91 & 5,298.91 \\ \$\text{SW08002} & 170,284.98 & 2,194,415.70 & 5,315.13 \\ \$\text{SW08003} & 173,686.65 & 2,198,520.22 & 5,293.84 \\ \$\text{SW08004} & 174,711.01 & 2,197,612.81 & 5,288.40 \\ \$\text{SW11001} & 170,287.71 & 2,179,583.49 & 5,248.08 \\ \$\text{SW11002} & 170,992.86 & 2,178,854.75 & 5,262.22 \\ \$\text{SW11003} & 172,696.42 & 2,180,121.78 & 5,254.28 \\ \$\text{SW12001} & 170,205.42 & 2,186,818.97 & 5,278.76 \\ \$\text{SW12002} & 170,156.02 & 2,186,818.97 & 5,278.77 \\ \$\text{SW12003} & 175,315.77 & 2,186,625.33 & 5,254.18 \\ \$\text{SW12004} & 170,129.44 & 2,184,947.15 & 5,276.22 \\ \$\text{SW12005} & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$\text{SW12006} & 170,132.67 & 2,186,700.69 & 5,275.15 \\ \$\text{SW12008} & 172,231.54 & 2,186,700.69 & 5,275.20 \\ \$\text{SW12009} & 175,209.16 & 2,188,544.87 & 5,268.60 \\ \$\text{SW24001} & 195,373.14 & 2,187,281.35 & 5,144.90 \\ \$\text{SW24002} & 196,426.80 & 2,186,327.81 & 5,137.80 \\ \$\text{SW24003} & 188,547.58 & 2,188,840.20 & 5,191.10 \\ \$\text{SW30001} & 188,547.58 & 2,188,840.20 & 5,191.10 \\ \$\text{SW30001} & 188,563.22 & 2,189,296.25 & 5,184.43 \\ \$\text{SW31001} & 184,589.82 & 2,190,050.52 & 5,215.74 \\ \$\text{SW31002} & 182,789.48 & 2,192,251.80 & 5,235.46 \\ \$\text{SW31001} & 184,589.82 & 2,190,050.52 & 5,215.74 \\ \$\text{SW31002} & 182,789.48 & 2,192,251.80 & 5,235.46 \\ \$\text{SW36001} & 180,985.85 & 2,184,525.97 & 5,253.65 \\	SW02006	179,121.05	2,182,840.84	5,257.90
\$\text{SW07001} & 170,230.73 & 2,191,183.13 & 5,295.71 \\ \$\text{SW07002} & 170,191.43 & 2,189,198.96 & 5,291.33 \\ \$\text{SW08001} & 172,876.88 & 2,199,286.91 & 5,298.91 \\ \$\text{SW08002} & 170,284.98 & 2,194,415.70 & 5,315.13 \\ \$\text{SW08003} & 173,686.65 & 2,198,520.22 & 5,293.84 \\ \$\text{SW08004} & 174,711.01 & 2,197,612.81 & 5,288.40 \\ \$\text{SW11001} & 170,287.71 & 2,179,583.49 & 5,248.08 \\ \$\text{SW11002} & 170,992.86 & 2,178,854.75 & 5,262.22 \\ \$\text{SW11003} & 172,696.42 & 2,180,121.78 & 5,254.28 \\ \$\text{SW12001} & 170,205.42 & 2,186,942.80 & 5,278.46 \\ \$\text{SW12002} & 170,156.02 & 2,186,818.97 & 5,278.77 \\ \$\text{SW12003} & 175,315.77 & 2,186,625.33 & 5,254.18 \\ \$\text{SW12004} & 170,129.44 & 2,184,947.15 & 5,276.22 \\ \$\text{SW12005} & 170,445.36 & 2,186,746.06 & 5,274.14 \\ \$\text{SW12006} & 170,132.67 & 2,184,180.89 & 5,276.30 \\ \$\text{SW12007} & 175,292.77 & 2,188,725.83 & 5,275.15 \\ \$\text{SW12009} & 175,290.16 & 2,186,700.69 & 5,275.20 \\ \$\text{SW12009} & 175,209.16 & 2,186,327.81 & 5,137.80 \\ \$\text{SW24001} & 195,373.14 & 2,187,281.35 & 5,144.90 \\ \$\text{SW24002} & 196,426.80 & 2,186,327.81 & 5,137.80 \\ \$\text{SW24001} & 195,373.14 & 2,187,281.35 & 5,144.90 \\ \$\text{SW24002} & 196,426.80 & 2,186,327.81 & 5,137.80 \\ \$\text{SW24003} & 196,357.55 & 2,184,791.45 & 5,137.24 \\ \$\text{SW30001} & 188,547.58 & 2,188,840.20 & 5,191.10 \\ \$\text{SW30001} & 188,547.58 & 2,188,840.20 & 5,191.10 \\ \$\text{SW30002} & 188,563.22 & 2,189,296.25 & 5,184.43 \\ \$\text{SW31001} & 184,589.82 & 2,190,050.52 & 5,215.74 \\ \$\text{SW31001} & 184,589.82 & 2,190,050.52 & 5,215.74 \\ \$\text{SW31001} & 182,789.48 & 2,192,251.80 & 5,235.46 \\ \$\text{SW36001} & 180,985.85 & 2,184,525.97 & 5,253.65 \\ \$\text{SW36001}	SW04001	177,928.55	2,172,516.56	5,195.20
SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.22 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 </td <td>SW05001</td> <td>175,590.08</td> <td>2,197,131.85</td> <td>5,282.37</td>	SW05001	175,590.08	2,197,131.85	5,282.37
SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.22 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 </td <td>SW07001</td> <td>170 230 73</td> <td>2 191.183.13</td> <td>5.295.71</td>	SW07001	170 230 73	2 191.183.13	5.295.71
SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.15 SW12009 175,209.16 2,186,327.81 5,137.80 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 </td <td>SW07002</td> <td></td> <td></td> <td></td>	SW07002			
SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.15 SW12009 175,209.16 2,186,327.81 5,137.80 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 </td <td>CWARAAI</td> <td>172 076 00</td> <td>2 100 206 01</td> <td>5 208 01</td>	CWARAAI	172 076 00	2 100 206 01	5 208 01
58W08003 173,686.65 2,198,520.22 5,293.84 58W08004 174,711.01 2,197,612.81 5,288.40 58W11001 170,287.71 2,179,583.49 5,248.08 58W11002 170,992.86 2,178,854.75 5,262.22 58W11003 172,696.42 2,180,121.78 5,254.28 58W12001 170,205.42 2,186,942.80 5,278.46 58W12002 170,156.02 2,186,818.97 5,278.77 58W12003 175,315.77 2,186,625.33 5,254.18 58W12004 170,129.44 2,184,947.15 5,276.22 58W12005 170,445.36 2,186,746.06 5,274.14 58W12006 170,132.67 2,184,180.89 5,276.30 58W12007 175,292.77 2,188,725.83 5,275.15 58W12009 175,209.16 2,188,744.87 5,268.60 58W24001 195,373.14 2,187,281.35 5,144.90 58W24002 196,426.80 2,186,327.81 5,137.80 58W24003 196,357.55 2,184,791.45 5,13				
58W08004 174,711.01 2,197,612.81 5,288.40 58W11001 170,287.71 2,179,583.49 5,248.08 58W11002 170,992.86 2,178,854.75 5,262.22 58W11003 172,696.42 2,180,121.78 5,254.28 58W12001 170,205.42 2,186,942.80 5,278.46 58W12002 170,156.02 2,186,818.97 5,278.77 58W12003 175,315.77 2,186,625.33 5,254.18 58W12004 170,129.44 2,184,947.15 5,276.22 58W12005 170,445.36 2,186,746.06 5,274.14 58W12006 170,132.67 2,184,180.89 5,276.30 58W12007 175,292.77 2,188,725.83 5,275.15 58W12008 172,231.54 2,186,700.69 5,275.20 58W12009 175,209.16 2,187,281.35 5,144.90 58W24001 195,373.14 2,187,281.35 5,144.90 58W24003 196,357.55 2,184,791.45 5,137.24 58W30001 188,547.58 2,188,840.20 5,191.10 58W30001 184,589.82 2,190,050.52 5				
SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74	SW08003			
SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,188,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW31001 184,589.82 2,190,050.52 5,215.74 </td <td>SW08004</td> <td>174,711.01</td> <td>2,197,612.81</td> <td>5,288.40</td>	SW08004	174,711.01	2,197,612.81	5,288.40
SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,188,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW31001 184,589.82 2,190,050.52 5,215.74 </td <td>SW11001</td> <td>170.287.71</td> <td>2,179,583,49</td> <td>5,248.08</td>	SW11001	170.287.71	2,179,583,49	5,248.08
SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 180,985.85 2,184,525.97 5,253.65				
SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW11003			
SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	CW12001	170 205 42	2 186 942 80	5 278 46
SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW12005	170,445.36		
SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW12006	170,132.67	2,184,180.89	5,276.30
SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW12007		2.188.725.83	5,275.15
SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW12009			
SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65		105 272 14	2 107 201 25	5 144 00
SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW24003	196,357.55	2,184,791.45	5,137.24
SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW30001	188,547.58	2,188,840.20	5,191.10
SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW30002	•		
SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW31001	184 589 82	2 190 050 52	5.215.74
	SW31001 SW31002			
	SW36001	180,985.85	2,184,525.97	5,253.65
SW37001 199,013.30 2,180,816.71 5,106.76		,	, ,	•
	SW37001	199,013.30	2,180,816.71	3,106.76

APPENDIX B-2

Spring 1989 Water Quality Data

Summary of Analytical Results

Surface Water Samples for Spring 89

mpling Oate	Station Number	Sample Depth (cm)	Sample Type	*Method	Analytical Parameters	Results	Units	Sample Humber
9117	SW01001	0.1	STRM	UM21	1,1,1-Trichloroethane	LT 1.00	O ug/i	GEZ005
2717	200 I 00 I	V-1	21101	N8	1,1,1-Trichlorosthane	LT 7.60 -		GH E007
				UM21	1,1,2-Trichloroethane	LT 1.00		GEZ005
				N8	1,1,2-Trichloroethane	LT 7.80 -	-t ug/i	GHE007
				UM21	1,1-Dichloroethene	LT 1.00	0 ug/l	GEZOO5
				N8	1,1-Dichloroethene	LT 1.70	O ug/l	GHEOO7
				UM21	1,1-Dichloroethane	LT 1.00	0 ug/l	GEZ005
				NS	1,1-Dichloroethane	LT 7.30 -	i ug/l	GH 6007
				UM21	1,2-Dichloroethene	LT 5.00	0 ug/l	GEZOO5
				N6	1,2-Dichloroethene	LT 7.60 -	-l ug/l	GHE007
				UMZ1	1,2-Dichloroethane	LT 1.00	0 ug/l	GEZ005
				N8	1,2-Dichloroethane	LT 1.40	0 ug/l	GHE007
				UM21	1.2-Dichloropropane		0 ug/i	GEZOOS
				UM23	1,3-Dichlorocenzene	LT 1.00		GEZOOS
				UM21	1.3-Dichloropropane	LT 4.50	O ug/l	GEZOO5
				UM21	m-Xylene	UT 1.00		GEZ005
				AV6	m-Xylene	LT 1.32		GHD007
				UM21	2-Chloroethyıvinyl Ether	LT 3.50		GEZ005
				UM21	Acrylonitrile	LT 8.40		GEZ005
				KK8	Aldrin	L1 5.00 -	Z ug/1	GFG018
				UM25	Aldrin	LT 1.30	1 ug/l	GFV004
				00	ALKALINITY	1.76	2 ug/l	GE0015
				AX8	Arsenic (filtered)	LT 2.35	0 ug/l	GFX017
				AX8	Arsenic	LT 2.35	0 ug/l	GFX018
				UH11	Atrazine	LT 4.03	0 ug/l	GFK014
				UM25	Atrazine	LT 5.90	0 ug/l	GFV004
				PB	Bicycloheptadiene	LT 5.90	0 ug/l	GFD014
				UM21	Bromodichloromethane	LT 1.00		GEZ005
				AAA6	Benzothiazole	LT 5.00		GPH015
				UM21	Vinyl Chloride	LT 1.20	I na\J	GEZOO5
				UM2i	Chloroethane	LT 8.00	0 ug/l	GEZ00S
				UM21	Benzene	LT 1.00		GEZ005
				AV8	Benz ene	LT 1.05		GHD007
				GG8	Calcium (filtered)	4.54	4 ug/l	GHH009

Comprehensive Monitoring Program

R. L. Stollar and Associates

Caste	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Humber
SSI17	SW01001	0.1	STRM	GGS	Calcium		4.95 4	ug/l	GHH017
	22.2.2.2			UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GEZ005
				UM21	Carbon letrachloride	LT	1.00 0	ug/l	GEZ005
				Nõ	Carbon Tetrachloride	LT	9.90 -1	ug/l	GHE007
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GHH009
				GG8	Cadmium	LT	6.40 0	ug/l	GHH017
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GEZ005
				NB	Methylene Chloride	LT	7.40 0	ug/l	GK E00 7
				UM21	Bromomethane	LT	1.40 1	ug/l	GEZ005
,				UM21.	Chloromethane	LT	1.20 0	ug/l	GEZ0 0 5
				UM21	Bromoform	LT	1.10 1	ug/l	GEZ005
				UM21	Chloroform	LT	1.00 0	ug/l	GEZ005
				N8	Chloroform	LT	5.00 -1	ug/1	GHE007
				HH8A	Chloride		3.30 4	ug/1	GFL010
				KK8	Hexachlorocyclopentadiene	LT	4,80 -2	ug/l	GFG018
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GFV004
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GEZ005
•				N6	Chlorobenzene	LT	8.20 -1	ug/l	GHE007
				KK6	Chlordane	LT	9.50 -2	ug/l	GFG018
				UM25	Chlordane	LT	3.70 1	ug/l	GFV004
				AAA8	p-Chiorophenylmethyl Sulfide	LT	5.69 0	ug/l	GFH015
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFV004
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFH015
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFV004
				AAA6	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH015
1				UM25	p-Chlarophenylmethyl Sulfone	LT	5.30 0	ug/l	GFV004
				GG8	Chromium (filtered)		2.40 1	ug/l	GHH009
1				GG8	Chromium		2.40 1	ug/l	GHH017
				GG8	Copper (filtered)		2.60 1	ug/l	GHH009
				GG8	Copper	LT	2.60 1	ug/l	GHH017
				TF20	Cyanide	LT	5.00 0	ug/l	GEN015
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN015
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFV004
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GEZ005

R. L. Stollar and Associates

Comprehensive Monitoring Program

01/10/90

sampling Date	Station Number	Sample Depth (Cm)	Sample Type	Method 	Analytical Parameters	Re	sults	Units	Sample Number
89117	SW01001	Ö.1	STRM	UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GEZ005
CF14/	0445/1001	0.4	W.1.0.	P8	Dicyclopentadiene	LT	5.00 0	ug/l	GFD014
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFV004
				UH11	Vapona	LT	3.84 -1	ug/l	GFK014
				UM25	Vapona	LT	8.50 0	ug/1	GFV004
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP015
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFV0 0 4
				AAA6	Dithiane	LT	1.34 0	ug/1	GFH015
				UM25	Dithiane	LT	3.30 0	ug/l	GFV004
				KK8	Dieldrin	LT	5.00 -2	ug/l	GFG018
				UM25	Dieldrin	LT	2.60 1	ug/l	GFV004
				AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l	GFH015
				UM21	Acetone	LT	8.00 0	ug/l	GEZ005
				AT8	Dimethylmethyl Phosphate		1.03 0	ug/l	GFP015
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFV004
				KKS	Endrin	LT	5.00 -2	ug/l	GFG018
				UM25	Endrin	LT	1.80 1	ug/l	GFV004
				UM21	Ethylbenzene	LT	1.00 0	ug/1	GEZOOS
				AVG	Ethylbenzene	LT	1.37 0	ug/l	GHD007
				HH8A	Fluoride		1.15 3	ug/l	GFL010
				CC8	Mercury (filtered)	LT	1.00 -1	${\sf ug/l}$	GGW019
				008	Mercury	LT	1.00 -1	ug/l	GGW020
				KK8	Isodrin	LT	5.10 -2	ug/1	GFG018
				UM25	lsodrin	LT	7.80 0	ug/1	GFV004
				GG8	Potassium (filtered)		4.44 3	ug/l	GHH009
				GG8	Potassium		4.67 3	ug/l	GHH017
				UM21	Toluene	LT	1.00 0	ug/l	GEZOO5
				AV8	Toluene	LT	1.47 0	ug/l	GHD007
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GEZ005
				GG8	Magnesium (filtered)		1.48 4	ug/l	GHH009
				GG8	Magnesium		1.57 4	ug/l	GHH017
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GEZ005
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GFD014
				UH11	Malathion	LT	3.73 -1	ug/l	GFK014

R. U. Stollar and Associates Comprehensive Monitoring Program

01/3/1790

Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Fis	esults	Units	Sample Numbe
89117	SW01001	0.1	STRM	UM25	Malathion	LT	2.10 1	ug/l	GFV00:
00447	OW01001		2/1/3/1	GG8	Sodium (filtered)		6.00 4	ug/l	GHHOOS
				GGS	Sodium		5.94 4	ug/l	GHF01
				LL8	Nitrite, Nitrate - Non specific		7.00 2	ug/l	GCLG3
				AAA6	1,4-Oxathiane	LT	2.36 0	ug/l	@FH01
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFV00
				GGƏ	Lead (filtered)	LT	7.40 1	ug/1	GHHOO
				GG8	Lead	LT	7.40 1	ug/l	GHH01
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG01
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFV00
				KK6	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GFG01
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEVOC
				UHII	Parathion	LT	6.47 -1	ug/l	GFK01
				UM25	Parathion	LT	3.70 1	ug/l	GFV00
				KH8A	Sulfate		8.50 4	ug/l	GFL01
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK01
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFV00
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GEZOÓ
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GEZOO
				Н6	Tetrachloroethene	LT	7.50 -1	ug/l	GHEOC
				Um21	Trichloroethene	LT	1.00 0	ug/l	GEZOC
				М8	Trichloroethene	LT	5.60 -1	ug/l	GHE00
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GEZOO
				AV8	Ortho- & Para-Xylene		1.36 0	ug/1	GHDOO
				GG8	Zinc (filtered)	L.T	2.20 1	ug/l	GHHOC
				GG8	Zinc		2.38 1	ug/l	GHH01
39117	SW01001B	0.1	STRM	ииз	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GFS00
				NNS	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GFS00
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS00
ļ				PNN	1,1-Dichlorcethane	LT	7.40 -2	ug/l	GFS00

A & Stollar and Associates

Comprehensive Monitoring Program

01/10/90

mpling Date	Station Humber	Sample Depth (cm)	Sample Type	Method	Analytical Farameters		rsults	Units	Sampl: Numbe
nma a m	CUC 2 CC 4 P	Δ 1	STRM	NN9	1,2-Dichloroethene	Γį	2.60 -1	ug/l	GFS00
39117	SW01001B	0.1	STOLL	NN9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GFS00
				AA9	m-Xylene	LT	2.60 -1	ug/l	GFT00
				89	Arsenic	ĻΥ		ug/l	GDM02
				LH15	Atrazine		1.00 0	ug/l	GFR00
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY01
				нн9	Benzothiazole	LT	2.04 0	ug/l	GFA01
				AA9	Benzene	L.T	6.50 -2	ug/l	GFTOO
				ннэ	Carbon Tetrachloride	LT	1.20 -1	ug/l	GFS00
				P9	Cadmium	LT	7.40 -1	ug/l	GDK.02
				РИИ	Methylene Chloride	LT	3.70 0	ug/l	GFSOC
				РИЯ	Chloroform	LT	6.80 -2	ug/l	GFSOC
				NN9	Chlorobenzene	LT	2.00 -1	ug/l	GFS00
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GFA01
				нн9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GFA01
				HH9	p-Chlorophenylmethyl Sulfone	LT		ug/l	GFA01
				P9	Chromium		6.50 0	ug/l	GDK02
				69	Copper		4.70 0	ug/l	GDK02
				59	Dibromochloropropane		5.00 -3	ug/l	GFB01
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKY01
				LH15	Vapona		8.00 -2	ug/l	GFROC
				TT9	Diisopropylmethyl Phosphonate		1.14 -1	ug/l	KSU01
				HH9	Dithiane		1.45 0	ug/l	GFA01
				HH9	Dimethyldisulfide		3.12 0	ug/l	GFA01
				TT9	Dimethylmethyl Phosphate	Lī	1.33 -1	ug/l	KSU01
				AA9	Ethylbenzene		1.60 -1	ug/l	GFTOC
				AAA9	Fluoroacetic Acid		2.00 0	ug/l	KRS01
				Y9	Mercury		5.00 -2	ug/l	GDL02
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS01
				AA9	Toluene	LT	1.90 -1	ug/l	GFT00
				ZZ9	Methylisobutyl Ketone		5.24 0	ug/l	IKY01
				LH15	Malathion		1.26 -1	ug/l	GFROO
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GFA01

R. L. Stollar and Associates

Comprehensive Monatoring Program

01/10/90

Summary of Analytical Results

Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89117	SW010018	0.1	STRM	P9	Lead	LT	6.40 0	ug/l	GDK026
ODIT	3440.700.70	0.7	w//	LH15	Parathion	LT	1.59 -1	ug/l	GFR009
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR009
				NN9	- Tetrachloroethene	LT	2.70 -1	ug/l	GFS009
				ИНЭ	Trichloroethene	LT	1.40 -1	ug/l	GFS009
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT009
				P9	Zinc		2.74 1	ug/l	GDK026
89117	SW01001T6	· o	QCTB	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GEZ006
				N6	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GHE008
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GEZ006
				NE	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	GHE008
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GEZ006
				N6	1,1-Dichloroethene	LT	1.70 0	ug/l	GHE008
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GEZ006
				N6	1,1-Dichloroethane	LT	7.30 -1	ug/l	GHE008
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/1	GEZ006
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GHE008
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GEZ006
				N∂	1,2-Dichloroethane	LT	1.10 0	ug/l	GHE008
				UM21	::1,2-Dichloropropane	LT	1.00 0	ug/l	GEZ006
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GEZ006
				UM21	1,3-Dichloropropane	LT	4.60 0	-ug/1	GEZ006
				UM21	. m-Xylene	LT	1.00 0	ug/l	GEZ006
				AV8	m-Xylene	LT	1.32 0	ug/1	GHD008
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GEZ006
				UM21	Acrylonitrile	LT	6.40 0	ug/1	GEZ006
				KK8	Aldrin	LT	5.00 -2	ug/l	GFG019
				UM25	Aldrin		1.30 1	ug/l	GFV005
				00	ALKALINITY	LT	6.78 1	ug/l	GE0016
				AXS	Arsenic (filtered)	LT	2.35 0	ug/l	GFX019
				UH11	Atrazine	LT	4.03 0	ug/l	GFK015
				UM25	Atrazine	LT	5.90 0	ug/l	GFV005

R. L. Stollar and Associates

Summary of Analytical Results

Surface Water Samples for Spring 89

sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89117	SW01001TB	Ö	QСТВ	-P6	Bicycloheptadiene	LT	5.90 0	ug/l	GFD015
•	5170100110			UM21	Bromodichloromethane	L٣	1.00 0	ug/l -	GEZ006
				AAAB	Benzothiazole	LT	5.00 0	ug/l	GFH016
				UM21	Vinyl Chloride	LT	1.20 1	ug/1	GEZOO6
				UM21	Chloroethane	LT	8.00 0	ug/l	GEZOO6
				UM21	Benz ene	LT	1.00 0	ug/l	GEZ006
				AV8	Benzene	LT	1.05 0	ug/1	GHD008
				GG8	Calcium (filtered)	LT	5.00 2	_ ug/l	GHH018
			•	UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GEZ006
_				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GEZ006
Ì				Na	Carbon Tetrachloride	LT	9.90 -1	ug/l	GHEOO8
				GG8	Cadmium (filtered) .	LT	8.40 0	ug/1	GHHÖ18
_				UM21	Methylene Chloride	LT	1.00 0	ug/1	GEZ006
				ВИ	Methylene Chloride	LT	7.40 0	ug/l	GHE008
				UM21	Bromomethane	LT	1.40 1	ug/l	GEZ006
1				UM21	Chloromethane	L٣	1.20 0	ug/l	GEZ006
				UM21	Bromoform	LT	1.10 1	ug/1	GEZ006
				UM21	Ch]oroform	LT	1.00 0.	ug/l	GEZQ06
1				N8	Chloroform	LT	5.00 -1	ug/l	GHE008
				HHƏA	Chloride	LT	7.20 2	ug/l	GFL011
•				KK8	Hexachlorocyclopentadiene	Lĭ	4.80 -2	ug/l	GFG019
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GFV005
		* * *		UM21	Chlorobenzene	LT	1.00 0	ug/l	GEZ006
				N6	Chlorobenzene	LT	6.20 -1	ug/l	GHE008
				KK8	Chlordane	LT	9.50 -2	ug/l	GFG019
•				UM25	Chlordane	LT	3.70 1	ug/l	GFV005
				ARAG	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GFH016
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFV005
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFH016
1				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFV005
j				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH016
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFV005
1				GG6	Chromium (filtered)	LT	2.40 1	ug/l	GHH018
				GG8	Copper (filtered)	LT	2.60 1	ug/1	GHH018

01/10/90

Sampling Date	Station Number	Sample Depth (cin)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
6 9117	SW01001TB	O	QCTB	TF20	Cyanide	LT	5.00 0	ug/l	GEN016
ŀ				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN016
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFV005
				UM21	· Dibromochloromethane	LT	1.00 0	ug/1	GEZ006
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GEZ006
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GFD015
_				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFV005
				UH11	Vapona	LT	3.84 -1	ug/1	GFK015
				UM25	Vapona	LT	8.50 O	ug/1	GFV005
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFV005
				AAA6	Dithiane	LT	1.34 0	ug/l	GFH016
1				UM25	Dithiane	LT	3.30 0	ug/l	GFV005
				KK8	Dieldrin	LT	5.00 -2	ug/l	GFG019
				UM25	Dieldrin	LT	2.60 1	ug/l	GFV005
1				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GFH016
				UM21	Acetone	LT	e.00 0	ug/l	GEZ006
				STA	Dimethylmethyl Phosphate		7.76 -1	ug/1	GFP016
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFV005
				KK8	Endrin	LT	5.00 -2	ug/l	GFG019
•				UM25	Endrin	LT	1.80 1	ug/l	GFV 00 5
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GEZOO6
j.				AV8	Ethylbenzene	LT	1.37 0	ug/l	GHD006
1- *				HH8A	Fluoride	LT	4.82 2	ug/l	GFL011
				cce	Mercury (filtered)	LT	1.00 -1	ug/l	GGW021
•				KK6	Isodrin	LT	5.10 -2	ug/l	GFG019
				UM25	Isodrin	LT	7.80 0	ug/1	GFV005
				GG8	Potassium (filtered)	LT	2.50 2	ug/l	GHH018
•				UM21	Toluene	LT	1.00 0	ug/l	GEZ006
				AV6	Toluene	LT	1.47) ug/l	GHD008
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GEZ006
				GG8	Magnesium (filtered)	LT	5.00 2	ug/1	GHH018
				UM21	Methylisobutyl Ketone	LT	1.40	ug/l	GEZ006
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GFD015

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
69117	SW01001TB	0	QCTB	UH11	Malathion	LT	3.73 -1	ug/l	GFK015
Q9117	340100110		44.12	UM25	Malathion	LT	2.10 1	ug/l	GFV005
				GG8	Sodium (filtered)	LT	9.40 2	ug/l	GHH018
1				LL8	Nitrite, Nitrate - Non specific		1.11 1	ug/l	GCL032
) ,				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	GFH016
)				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFV005
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GHH018
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG019
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFV005
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GFG019
1				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.60 1	ug/l .	GFV005
				UH11	Parathion	LT	6.47 -1	ug/l	GFK015
				UM25	Parathion	LT	3.70 1	ug/l	GFV005
				HH8A	Sulfate	LT	2.51 2	ug/l	GFL011
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK015
				.UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFV005
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GEZ006
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GEZ006
				.N8	Tetrachloroethene	LT	7.50 -1	ug/l	GHE008
				UM21	Trichloroethene	LT	1.00 0	ug/l	GEZ006
				N8	Trichloroethene	LT	5.60 -1	ug/l	GHE008
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GEZOO6
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GHD006
				G G8	Zinc (filtered)	LT	2.20 1	ug/l	GHH018
89138	SW01002	0.3	POND	N8	1,1,1-Trichloroethane	L۳	7.60 -1	ug/l	GLY011
1	-			UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL008
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GLY011
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GLL008
1				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GLY011
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GLL 00 8

Comprehensive Monitoring Program

01/10/90

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89138	SW01002	0.3	POND	N8	1,1-Dichloroethane	L.T	7.30 -1	.ug/1	GLY011
09130	3401002	0.5	1 0110	UM21	1,1-Dichlorosthane	LT	1.00 0	ug/l	GLL006
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GLY011
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLL008
				N8	1,2-Dichloroethane	LT	1.10 0	ug/1 -	GLY011
				UM21	1,2-Dichloroethane	LT	1.00 0	-ug/l	GLL 00 6
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GLL008
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	GLL006
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/1	GLL008
				UM21	m-Xylene	LT	1.00 0	ug/l	GLL006
				AV8	m-Xylene	LT	1.32 0	ug/l	GLZ011
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GLL008
		`		UM21	Acrylonitrile .	LT	8.40 0	ug/l	GLL006
				KK8	Aldrin		3.20 0	ug/l	GLH012
				UM25	Aldrin	LT	1.30 1	ug/l	GMR002
				00	ALKALINITY		1.37 2	ug/l	GMK009
				AX8	Arsenic (filtered)		1.69 1	ug/l	GLP016
				UH11	Atrarine		8.52 1	ug/l	GLG012
				UM25	Atrazine	LT	5.90 0	ug/l	GMRO02
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GLF017
	•	• 		UM21	Bromodichloromethane	LT	1.00 0	ug/l	GLL008
				AAA6	Benzothiazole		1.42 1	ug/l	GLJ013
	* -			UM21	Vinyl Chloride	LT	1.20 1	ug/l	GLL008
•		,		UM21	Chloroëthane	LT		ug/l	GLL008
				UM21	Benz ene	LT	1.00 0	ug/l	GLL008
				AV8	Benz <i>e</i> ne	LT	1.05 0	ug/l	GLZ011
				GG8	Calcium (filtered)		5.25 4	ug/l	GL0019
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GLL008
				N6	Carbon Tetrachloride	LT	9.90 -1	ug/l	GLY011
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GLL008
				GG8	Cadmium (filtered)		8.40 0	ug/l	GL0019
				N6	Methylene Chloride		7.40 0	ug/l	GLY011
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GLL008
				UM21	Bromomethane	LT	1.40 1	ug/l	GLL008

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
		A 5	most in	. UM21	Chloromethane	LT	1.20 0	ug/l	GLL008
69138	SW01002	0.3	POND	UM21	Bromoform	LT	1.10 1	ug/l	GLL008
				N8	Chloroform	h 1	7.07 0	ug/l	GLY011
				UM21	Chloroform		5.66 0	ug/l	GLL008
				ннеа	Chloride		2.70 4	ug/l	GLN016
				KK8	Hexachlorocyclopentadiene		2.21 -1	ug/l	GLH012
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GMR002
				N8	Chlorobenzene	LT	8.20 -1	ug/1	GLY011
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GLL008
				KK8	Chlordane		9.90 0	ug/l	GLH012
				UM25	Chlordane	LT	3.70 1	ug/l	GMR002
				BAAA	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GLJ01
	•			UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GMR00:
				AAA8	p-Chlorophenylmethyl Sulfoxide		7.50 2	ug/1	GLJ01
				UM25	p-Chlorophenylmethyl Sulfoxide	GT	3.00 2	ug/l	GMR00
				AAA8	p-Chlorophenylmethyl Sulfone		8.40 1	ug/l	GLJ01
				UM25	p-Chlorophenylmethyl Sulfone		1.01 2	ug/l	GMR00
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GL0019
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GL0019
				TF20	Cyanide	LT	5.00 0	ug/l	GLM00
			are .	AY8	Dibromochloropropane		3.80 1	ug/l	GLI013
			do es	UM25	Dibromochloropropane	LT	1.20 1	ug/l	GMROO:
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLLOO
		100		UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/1	GLLOOK
				P6	Dicyclopentadiene		9.69 1	ug/l	GLF017
				UM25	Dicyclopentadiene		7.56 1		- GMROO
				UH11	Vapona		3.84 -1	ug/l	GLG012
				UM25	Vapona		8.50 0	ug/l	GMR00
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GLK016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GMR002
				AAA8	Dithiane		1.34 0	ug/l	GLJ01
				UM25	Dithiane	LT	3.30 0	ug/l	GMR00
				KK8	Dieldrin		2.00 0	ug/l	GLH01
				UM25	Dieldrin	LT	2.60 1	ug/l	GMR00

Comprehensive Monitoring Program

01/10/90

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Mumbe
69138	SW01002	0.3	POND	AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GLJ013
00100	D44.0.1.0.0.7.	4.0	,	AT8	Dimethylmethyl Phosphate		7.42 -1	ug/l	GLK016
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GMR002
		•		KK8	Endrin		4.70 -1	ug/l	GLH012
				UM25	Endrin	LT	1.80 1	ug/l	GMR002
				UM21	- Ethylbenzene	LT	1.00 0	ug/l	GLL008
•				AV8	Ethylbenzene	LT	1.37 0	ug/l	GLZ011
				HH8A	Fluoride		1.02 3	ug/l	GLN016
				CC8	Mercury (filtered)		1.98 -1	ug/1	GML032
				KK8	lsodrin		7.40 -1	ug/l	GLH012
				UM25	Isodrin	LT	7.80 0	ug/l	GMR002
				GG8	Potassium (filtered)		4.21 3	ug/l	GL0019
				UM21	Toluene -	LT	1.00 0	ug/l	GLL00
				AV8	Toluene		4.42 0	ug/l	GLZ01
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL00
				GG8	Magnesium (filtered)		1.14 4	ug/l	GL0019
				P8	Methylisobutyl Ketone	LT		ug/l	GLF01
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLLOO
		-		UH11	Malathion		1.07 1	ug/l	GLG01
				UM25	Malathion	LT	2.10 1	ug/l	GMR00
				GG8	Sodium (filtered)		5.60 4	ug/l	GL0019
				LL6	Nitrite, Nitrate - Non specific		1.70 3	ug/l	GMZ00
				AAA8	1,4-Oxathiane	LT	2.36 0	ug/l	GLJ013
				UM25	1,4-0xathiane	LT	2.70 1	ug/l	GMR00
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GL0019
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GLH01
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GMR00
				KK8	Dichlorodiphenyltrichloro- ethane		1.93 -1	ug/l	GLH01
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GMR000
				UH11	Parathion		1.51 1	ug/l	GLG01
				U M25	Parathion	LT	3.70 1	ug/l	GMR00
				HH8A	Sulfate		1.00 5	ug/l	GLN01

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89138	SW01002	0.3	POND	UH11	2-Chloro-1(2,4-Dichlorophenyl)		7.10 0	ug/l	GLG012
					Vinyldiethyl Phosphates				
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GMR002
					Vinyldiethyl Phosphates	,		23	011.000
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GLL008
				КӨ	Tetrachloroethene		1.64 0	ug/l	GLY01
		•		UM21	Tetrachloroethene		1.20 0	ug/l	GLL008
				МӨ	Trichloroethene	LT	5.60 -1	ug/l	GLY01
				UM21	Trichloroethene	LT	1.00 0	ug/l	GLL008
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GLL00
				6VA	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GLZ01
				GG8	Zinc (filtered)		3.48 1	ug/l	GL001
39136	SW010028	0.3	POND	N9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GLV00
				ни9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GLW00
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/l	GLV00
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GLW00
				ииз	1,1-Dichloroethene	LT	2.40 -1	ug/l	GLW00
				ИЭ	1,1-Dichloroethane	LT	1.70 0	ug/l	GLV006
				н м9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GLW00
				N9	1,2-Dichloroethene	LT	1.70 0	ug/l	GLV00
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GLW00
				Н9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GLV00
				еии	1,2-Dichloroethane	LT	8.50 -2	ug/1	GLW00
				N9	m-Xylene	LT	7.40 -1	ug/1-	GLV00
				KK9A	Aldrin		8.40 0	ug/l	GLS00
				LH15	Atrazine	LT	1.54 -1	ug/l	. GLX00
				N9	Bicycloheptadiene	LT	3.60 -1	ug/l	GLV00
				И9	Benz ene	LT	2.50 -1	ug/l	GLV006
				N9	Carbon Tetrachloride	LT		ug/l	GLV00
				NN9	Carbon Tetrachloride	LT		ug/l	GLW00
				N9	Methylene Chloride	LT	1.50 0	ug/l	GLVOO
				ин9	Methylene Chloride	LT		ug/l	GLW00
				N9	Chloroform	· 1T	2.90 -1	ug/l	GLV006

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
6 9136	SW010028	0.3	POKD	NN9	Chloroform	LT	6.80 -2	ug/l	GLW005
09130	3MO 1 0 0 2.D	0.0	7 0.1.5	KK9A	Hexachlorocyclopentadiene	LT	1.60 -3	ug/l	GLS009
				N9	Chlorobenzene	LT	1.50 0	ug/l	GLV006
				NN9	Chlorobenzene	LT	2.00 -1	ug/l	GLW005
				KK9A	Chlordane	LT	2.30 -2	ug/l	GLS009
				S9	Dibromochloropropane		2.93 -2	ug/l	GLQ008
_				N9	Dibromochloropropane	LT	2.40 0	ug/l	GLV006
				N9	Dicyclopentadiene	LT	6.40 -1	ug/l	GLV006
}				LH15	Vapona	LT	8.00 -2	. ug/l	GLX006
				KK9A	Dieldrin		4.00 -1	ug/l	GLS009
				ИЭ	Dimethyldisulfide	LT	2.00 1	ug/l	GLV006
•				KK9A	Endrin	LT	5.60 -3	ug/l	GLS009
				МЭ	Ethylbenzene	LT	3.60 -1	ug/l	GLV006
				KK9A	Isodrin		2.80 -1	ug/l	GLS009
				Р 9	Toluene	LT	2.50 -1	ug/l	GLV006
				Н9	Methylisobutyl Ketone	LT	7.30 -1	ug/l	GLV006
				LH15	Malathion	LT	1.26 -1	ug/l	GLX006
				KK9A	Dichlorodiphenylethane		6.10 -2	ug/l	GLS009
				KK9A	Dichlorodiphenyltrichloro- ethane		1.60 -1	ug/l	GLS009
				LH15	Parathion	LT	1.59 -1	ug/l	GLX006
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GLX006
				И9	Tetrachloroethene	LT	2.50 -1	ug/l	GLV006
				еии	Tetrachloroethene	LT	2.70 -1	ug/l	GLW005
				И9	Trichloroethene	LT	5.40 -1	ug/l	GLV006
_				PM9	Trichloroethene	LT	1.40 -1	ug/l	GLW005
				н 9	Cirtho- & Para-Xylene	L٣	4.90 0	ug/l	GLV006
89138	SW01002B	0.3	POND	AA9	m-Xylene	LT	2.60 -1	ug/l	GLU005
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKZ005
				AA9	Benzene		8.50 -2	ug/l	GLU005
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKZ005
				TT9	Diisopropylmethyl Phosphonate	LŢ	1.14 -1	ug/l	KSX005
_									

01/10/90

ampling	Station	Sample	Sample						Samp1
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Ře	esults	Units	Numbe
39138	SW01002B	0.3	POND	TT 9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSX 00
22.00	04010020	0.0		AA9	Ethylbenzene	LT	1.60 -1	ug/l	GLU00
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRV00
				AAA9	Isaprapylmethyl Phosphonic	LT	2.11 0	ug/l	KRV00
					Acid				•
				AA9	Toluene	LT	1.90 -1	ug/l	GLUOC
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKZO
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GLUOC
9109	SW01004	0.3	LAKE	AV8	m-Xylene	LT	1.32 0	ug/l	GCS01
				KK6	Aldrin	LT	5.00 -2	ug/l	GCY0:
				UM25	Aldrin	LT	1.30 ì	ug/l	GDV00
				00	ALKALINITY		1.87 2	-ug/l	GCJO
				AX8	Arsenic (filtered)		2.44 0	ug/l	GCM0:
				AX8	Arsenic		2.61 0	ug/1	GCM0
				UH11	Atrazine	LT	4.03 0	ug/l	GCWÖ
				UM25	Atrazine	LT	5.90 0	ug/l	GDVO
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GCVO
				AAAB	Benzothiazole	LT	5.00 0	ug/l	GCZO
				AV8	Benzene	LT	1.05 0	ug/l	GCS0
				GG8	Calcium (filtered)		5.73 4	ug/1	GCOO
				GG8	Calcium		5.84 4	ug/l	GCDO
				· GG6	Cadmium (filtered)	LT	8.40 0	ug/l	GCOO
				GG8	Cadmium	LT	6.40 0	ug/l	- GC00
		at .		нн6А	Chloride		5.70 4	ug/l_	GCKO
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCYO
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDVO
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY0
				UM25	Chlordane	LT	3.70 1	ug/l	GDVO
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ0:
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDV0
				AAA8	p—Chlorophenylmethyl Sulfoxide		1.15 1	ug/l	GCZO
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GDVO
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ0:

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89109	SW01004	0.3	LAKE	UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV006
1				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC0021
				GG8	Chromium	LT	2.40 1	ug/l	GC0022
•				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0021
1		4.		GG8	Copper	LT	2.60 1	ug/l	GC0022
J				TF20	Cyanide	LT	5.00 0	ug/l	GCR012
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA014
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV006
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GCV012
_				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV006
				UH11	Vapona	LT	3.84 -1	ug/l	GCW012
<i>.</i>				UM25	Vapona	LT	8.50 0	ug/1	GDV006
•				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	GCX014
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GDV006
)				AAAB	Dithiane	LT	1.34 0	ug/l	GCZ014
1			,	UM25	Dithiane	LT	3.30 0	ug/l	GDV006
				KK8	Dieldrin		4.93 -2	ug/l	GCY014
				UM25	Dieldrin	LT	2.60 1	ug/l	GDV006
1				AAA8 -	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ014
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX014
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV006
				KK8	Endrin		5.33 -2	ug/l	GCY014
•				UM25	Endrin	LT	1.80 1	ug/1	GDV006
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS012
				HH8A	Fluoride		1.11 3	ug/l	GCK012
•				cca	Mercury (filtered)	LT	1.00 -1	ug/l	GCN021
				CC8	Mercury	LT	1.00 -1	ug/l	GCN022
				KK8	Isodrin		5.10 -2	ug/1	GCY014
				UM25	Isodrin	LT	7.80 0	ug/l	GDV006
1				GG8	Potassium (filtered)		6.91 3	ug/l	GC0021
i				GG8	Potassium		7.37 3	ug/l	GC0022
				AV8	Toluene	LT	1.47 0	ug/l	GCS012
				GG8	Magnesium (filtered)		1.50 4	ug/l	GC0021
				GG8	Magnesium		1.59 4	ug/l	GC0022

Comprehensive Monitoring Program R. L. Stollar and Associates

GGS Sodium (filtered) 6.67 4	Sample Units Numbe	· Un	i	sults	6.8	Re	l Parameters	Analytica 		Sample Type	Sample Depth (cm)	Station Number	Bampling Date
UM25 Malathion LT 2.10 1 668 Sodium (filtered) 6.67 4 6 6.67 4 6 6.67 4 6 6.67 4 6 6.67 4 6 6.67 4 6 6.67 4 6 6.68 Sodium 6.74 6 6.7	ug/l GCV01:	u	,	4.90		LT	utyl Ketone	Methyliso	P6	LAKE	0.3	SW01004	69109
GGS Sodium	ug/1 GDV000	u	,	2.10		LT		Malathion					
AAA6 1,4-0xathiane LT 2.38 0 LES Nitrite,Nitrate - Non specific 2.40 2 AAA68 1,4-0xathiane LT 2.70 1 GGS Lead (filtered) LT 7.40 1 GGS Lead (filtered) LT 7.40 1 KK8 Dichlorodiphenylethane LT 5.40 -2 LM25 Dichlorodiphenylethane LT 1.40 1 KK8 Dichlorodiphenyltrichloro- LT 4.90 -2 ethane UM25 Dichlorodiphenyltrichloro- LT 4.90 -2 ethane UM25 Parathion LT 3.70 1 HH6A Sulfate 5.20 4 UM25 2-Chloro-1(2,4-Dichlorophenyl) LT 1.90 1 vinyldiethyl Phosphates AV8 Ortho- & Para-Xylene LT 1.36 0 GGS Zinc (filtered) LT 2.20 1 GGS Zinc (filtered) LT 2.20 1 GGS Cadmium (filtered) LT 2.20 1 GGS Copper (filtered) LT 2.40 1 GGS Copper (filtered) LT 2.40 1 GGS Copper (filtered) LT 2.60 1 GGS Copper (filtered) LT 2.60 1 GGS Copper (filtered) LT 3.50 3 GGS Magnesium (filtered) LT 3.50 3 GGS Magnesium (filtered) LT 3.50 3 GGS Lead (filtered) LT 7.40 1 GGS Sodium (filtered) LT 7.40 1 GGS Lead (filtered) LT 7.40 1	ug/l GC002	u		6.67	6		(filtered)	Sodium	GG8				
### AAAB	ug/1 GC002	u	ł	6.74	1			Sodium	GG8				}
UMZS 1,4-0xathiane LT 2.70 1 GG8 Lead (filtered) LT 7.40 1 GG8 Lead (filtered) LT 7.40 1 KK8 Dichlorodiphenylethane LT 5.40 -2 UM2S Dichlorodiphenylethane LT 1.40 1 KK8 Dichlorodiphenyltrichloro- LT 4.90 -2 ethane UM2S Dichlorodiphenyltrichloro- LT 4.90 -2 ethane UM2S Dichlorodiphenyltrichloro- LT 4.90 1 ethane UM2S Parathion LT 3.70 1 HH6A Sulfate 5.20 4 UM2S 2-Chloro-1(2,4-Dichlorophenyl) LT 1.90 1 vinyldiethyl Phosphates Ortho- & Para-Xylene LT 1.36 0 GG8 Zinc (filtered) LT 2.20 1 GG8 Zinc (filtered) LT 2.20 1 GG8 Cadmium (filtered) LT 2.40 1 GG8 Copper (filtered) LT 3.40 0 GG8 Chromium (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.60 1 GG8 Copper (filtered) LT 2.60 1 GG8 Copper (filtered) LT 3.50 3 GG8 Magnesium (filtered) 1.35 4 GG8 Sodium (filtered) LT 7.40 1 GG8 Lead (filtered) LT 7.40 1 GG8 Lead (filtered) LT 7.40 1 GG8 Lead (filtered) LT 7.40 1	ug/l GCL01	u		2.40			trate - Non specific	Nitrite,N:	LL8				1
GGS Lead (filtered) LT 7.40 1 GGS Lead (filtered) LT 7.40 1 KK8 Dichlorodiphenylethane LT 1.40 1 Exthane UM25 Parathion LT 1.60 1 Exthane UM25 Parathion LT 3.70 1 HH6A Sulfate 5.20 4 UM25 2-Chloro-1(2,4-Dichlorophenyl) LT 1.90 1 Vinyldiethyl Phosphates AV8 Ortho- & Para-Xylene LT 1.36 0 GGS Zinc (filtered) LT 2.20 1 GGS Zinc (filtered) LT 2.20 1 GGS Cadmium (filtered) LT 2.20 1 GGS Chromium (filtered) LT 8.40 0 GGS Chromium (filtered) LT 2.40 1 GGS Copper (filtered) LT 2.60 1 GGS Potassium (filtered) LT 2.60 1 GGS Potassium (filtered) LT 3.50 3 GGS Magnesium (filtered) LT 3.50 3 GGS Magnesium (filtered) LT 3.50 4 GGS Lead (filtered) LT 7.40 1 GGS Lead (filtered) LT 7.40 1 GGS Lead (filtered) LT 7.40 1	ug/l GCZ01	u	;	2.38	:	LT	ane	1,4-0xath:	AAA6				
GGS Lead	ug/l GDV000	u)	2.70		LT	ane	1,4-0xath:	UM25				
WK8 Dichlorodiphenylethane LT 5.40 -2	ug/l GC002	u		7.40	-	LT	(filtered)	Lead	GG8				i
UM25 Dichlorodiphenylethane LT 1.40 1 KK8 Dichlorodiphenyltrichloro- LT 4.90 -2 ethane UM25 Dichlorodiphenyltrichloro- LT 1.60 1 ethane UM25 Parathion LT 3.70 1 HH8A Sulfate 5.20 4 UM25 2-Chloro-1(2,4-Dichlorophenyl) LT 1.90 1 Vinyldiethyl Phosphates AV8 Ortho- & Para-Xylene LT 1.36 0 GG8 Zinc (filtered) LT 2.20 1 GG8 Zinc (filtered) LT 2.20 1 GG8 Cadmium (filtered) LT 2.20 1 GG8 Copper (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.60 1 GG8 Potassium (filtered) . 3.50 3 GG8 Magnesium (filtered) . 1.35 4 GG8 Sodium (filtered) . 1.35 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 7.40 1	ug/l GC002	u)	7.40		LT		Lead	GG8				
KK8 Dichlorodiphenyltrichloro-	ug/l GCY01	· u	۰	5.40		LT	phenylethane	Dichlorod	KK8				
### Parathine UM25	ug/l GDV000	u	,	1.40		LT	phenylethane	Dichlorod:	UM25				
### Parathion LT 3.70 1	ug/l GCY01	u	,	4.90		LT	phenyltrichloro-		KK8				ļ
HH8A Sulfate 5.20 4 UM25 2-Chloro-1(2,4-Dichlorophenyl) LT 1.90 1	ug/l GDY000	u		1.60		LT	ohenyltrichloro-		UM25				
UM25 2-Chloro-1(2,4-Dichlorophenyl) LT 1.90 1 Vinyldiethyl Phosphates AV8 Ortho- & Para-Xylene LT 1.36 0 GG8 Zinc (filtered) LT 2.20 1 GG8 Zinc (filtered) LT 2.20 1 B9107 SW01005 0.3 LAKE GG8 Calcium (filtered) 4.44 4 GG6 Chromium (filtered) LT 3.40 0 GG6 Chromium (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.60 1 GG6 Potassium (filtered) 3.50 3 GG8 Magnesium (filtered) 1.35 4 GG8 Sodium (filtered) 1.35 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 7.40 1	ug/1 GDV000	u		3.70		LT		Parathion	UM25				,
Vinyldiethyl Phosphates	ug/l GCK01	u		5.20				Sulfate	AGHH				}
GG8 Zinc (filtered) LT 2.20 1 B9107 SW01005 0.3 LAKE GG8 Calcium (filtered) 4.44 4 GG8 Cadmium (filtered) LT 8.40 0 GG8 Chromium (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.60 1 GG8 Potassium (filtered) 3.50 3 GG8 Magnesium (filtered) 1.35 4 GG8 Sodium (filtered) 4.13 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/1 GDV000	u	ı	1.90		LT			UM25				
GG8 Zinc (filtered) LT 2.20 1 B9107 SW01005 0.3 LAKE GG8 Calcium (filtered) 4.44 4 GG8 Cadmium (filtered) LT 8.40 0 GG8 Chromium (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.60 1 GG8 Potassium (filtered) 3.50 3 GG8 Magnesium (filtered) 1.35 4 GG8 Sodium (filtered) 4.13 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/1 GCS01:	u	, 1	1.36		LT	ara-Xylene	Ortho- & F	AV8	4.4			
GG8 Zinc LT 2.20 1 89107 SW01005 0.3 LAKE GG8 Calcium (filtered) 4.44 4 GG8 Cadmium (filtered) LT 6.40 0 GG8 Chromium (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.60 1 GG8 Potassium (filtered) 3.50 3 GG8 Magnesium (filtered) 4.13 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 7.40 1	ug/1 GC002	u	,	2.20	2	LT							
GG8	ug/1 GC002	u)	2.20		LT							
GG8 Chromium (filtered) LT 2.40 1 GG8 Copper (filtered) LT 2.60 1 GG6 Potassium (filtered) 3.50 3 GG8 Magnesium (filtered) 1.35 4 GG8 Sodium (filtered) 4.13 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/1GC000	u		4.44	4		(filtered)	Calcium	GG8	LAKE	0.3 %	SW01005	89107
GG8 Copper (filtered) LT 2.60 1 GG8 Potassium (filtered) 3.50 3 GG8 Magnesium (filtered) 1.35 4 GG8 Sodium (filtered) 4.13 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/1 GC000	u		8.40	8	LT	(filtered)	Cadmium	GG8	1.90	i e		•
GG8 Potassium (filtered) 3.50 3 GG8 Magnesium (filtered) 1.35 4 GG8 Sodium (filtered) 4.13 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/l GC000	u		2.40	2	LT	(filtered)	Chromium	GG8				1
GG6 Magnesium (filtered) 1.35 4 GG6 Sodium (filtered) 4.13 4 GG6 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/1 GC000	u		2.60	2	LT	(filtered)	Copper	GG8				
GG8 Sodium (filtered) 4.13 4 GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/l GC000	u	. :	3.50	,		(filtered)	Potassium	GG8				
GG8 Lead (filtered) LT 7.40 1 GG8 Zinc (filtered) LT 2.20 1	ug/l GC000						(filtered)	Magnesium	GG6				
GGS Zinc (filtered) LT 2.20 1	ug/l GC000							Sodium	GG8				}
	ug/l GC000												
89108 SW01005 0.3 LAKE AV6 M-Xylene LT 1.32 0	ug/1 GC000	u	1	2.20	;	LT	(filtered)	Zinc	GG8				
	ug/1 GCS00									LAKE	0.3	SW01005	89108
	ug/1 GCY00												l
UM25 Aldrin LT 1.30 1	ug/1 GDV00	u	1	1.30		LT		Aldrin	UM25				

Summary of Analytical Results

							•		
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	esults	Units	Sample Number
Date	namoer	bepair (dii)	1950		Milary of Car T and out 5				
69108	SW01005	0.3	LAKE	00	ALKALINITY		1.27 2	ug/l	GCJ006
1				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GCM007
				AX8	Arsenic	LT	2.35 0	ug/l	GCM008
t				UH11	Atrazine	LT	4.03 0	ug/l	GCW006
				UM25	Atraxine	LT	5.90 0	ug/l	GDV002
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GCV006
				AAA6	Benzothiazole	LT	5.00 0	ug/l	GCZ006
İ				AV8	Benzene	LT	1.05 0	ug/l	GCS006
				GG8	Calcium		4.94 4	ug/l	GC0008
				GG8	Cadmium	LT	6.40 0	ug/l	GC0008
ı				HH8A	Chloride		3.30 4	ug/l	GCK006
				KK6	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY006_
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV002
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY006
				UM25	Chlordane	LT	3.70 1	ug/l	GDV002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ006
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GDV002
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ006
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDV002
į				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ006
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV002
				GG8	Chromium	LT	2.40 1	ug/l	GC0008
				GG8	Copper	LT	2.60 1	ug/l	GC0008
				TF20	Cyanide	LT	5.00 0	ug/l	GCR006
				AY8	Dibromochloropropane	LT.	1.95 -1	ug/l	GDA006
į				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV002
,				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GCV006
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV002
				UH11	Vapona	LT	3.84 -1	ug/l	GCW006
1				UM25	Vapona	LT	8.50 0	ug/l	GDV002
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX006
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV002
1		•		AAA8	Dithiane	LT	1.34 0	ug/l	GCZ006
l				UM25	Dithiane	LT	3.30 0	ug/l	GDV002
1									

Comprehensive Monitoring Program

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method 	Analytical Parameters	Re	sults	Units	Sample Number
89108	SW01005	0.3	LAKE	KK8	Dieldrin	LT	5.00 -2	ug/l	GCY006
05100	3001000	0.0	Not 11 5 has	UM25	Dieldrin	LT	2.60 1	ug/l	GDV002
				AAAG	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ006
				AT6	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	GCX006
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV002
				KK8	Endrin	LT	5.00 -2	ug/l	GCY006
				UM25	Endrin	LT	1.80 1	ug/l	GDV002
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS006
				ннаа	Fluoride		1.00 3	ug/l	GCK006
				CC8	Mercury (filtered)	LT		ug/l	GCN007
				CC8	Mercury	LT	1.00 -1	ug/l	GCN008
				KK8	Isodrin	LT	5.10 -2	ug/l	GCY006
				UM25	Isodrin	LT	7.80 0	ug/1	GDV002
				GG8	Potassium		3.89 3	ug/l	GC0008
				AVB	Toluene	LT	1.47 0	ug/l	GCS005
				GG8	Magnesium		1.42 4	ug/l	GC0008
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV006
				UM25	Malathion	LT	2.10 1	ug/l	GDV002
				GG8	Sodium		4.52 4	ug/l	GCOOOS
				LL8	Nitrite, Nitrate - Non specific		5,74 1	ug/l	GCL007
				AAA8	1,4-Oxathiane	LT	2.36 0	ug/l	GCZ006
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDV002
	week and	200		GG8	Lead	LT	7.40 1	ug/l	GC0008
	٠,	** *		KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY006
	** *			UM25	Dichlorodiphenylethane	LΥ	1.40 1	ug/l	GDV002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY006
				. UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDV002
				UM25	Parathion	LT	3.70 1	ug/l	GDV002
				HH8A	Sulfate		7.10 4	ug/l	GCK006
				UM25	2—Chloro—1(2,4—Dichlorophenyl)	LT	1.90 1	ug/l	GDV002
					Vinyldiethyl Phosphates				
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GC\$006

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method ———	Analytical Parameters	Re	sults	Units	Sample Number
89108	SW01005	0.3	LAKE	GG8	Zinc	LT	2.20 1	ug/l	GC0008
69106	SW01005D	0.3	· LAKE	AV8 =	m-Xylene	LT.	1.32 0	ug/l	GCS007
				KK8	Aldrin	LT	5.00 -2	ug/l	GCY007
_				UM25	Aldrin	LT	1.30 1	ug/l	GDV003
				00	ALKALINITY		1.26 2	ug/l	GCJ007
				AX8	Arsenic	LT	2.35 0	ug/l	GCMOO9
1				AXS	Arsenic	LT	2.35 0	ug/l	GCM010
				UH11	Atrazine	LT	4.03 0	ug/l	GCW007
				UM25	Atrazine	LT	5.90 0	ug/l	GDV003
1				P6	Bicycloheptadiene	LT	5.90 0	ug/1	GCV007
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GCZ007
_				AV8	Benzene	LT	1.05 0	ug/l	GCS007
				GG8	Calcium		4.77 4	ug/1	GC0009
j				GG8	Calcium		4.86 4	ug/l	GC0010
				GG8	Cadmium	LT	6.40 0	ug/l	GC0009
1				GG8	Cadmium	LT	6.40 0	ug/l	GC0010
				HH8A	Chloride		3.30 4	ug/l	GCK007
1			,	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY007
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV003
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY007
8				UM25	Chlordane	LT	3.70 1	ug/l	GDV003
•	# S	.a.·		AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ007
				UM25	p-Chlorophenylmethyl Sulfide		1.00 1	ug/l	EDV003
1	g a marie			AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ007
•				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDA003
				AAAS	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ007
İ			4	UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV003
•				GG8	Chromium	LT	2.40 1	ug/l	GC0009
.				GG8	Chromium	LT	2.40 1	ug/l	GC0010
				GG8	Copper	LT	2.60 1	ug/l	GC0009
				GG8	Copper	LT	2.60 1	ug/l	GC0010
				TF20	Cyanide		5.00 0	ug/l	GCR007
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA007

Comprehensive Monitoring Program

01/10/90

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	sults		Units	Sample Number
891 0 8	SW01005D	0.3	LAKE	UM25	. Dibromochloropropane	LT	1.20	1	ug/l	GDV003 ····
_				P8	Dicyclopentadiene	LT	5.00	0	ug/l	GCV007
				UM25	Dicyclopentadiene	LT	5.50	0	ug/l	GDV003
,				UH11	Vapona	LT	3.64	-1	ug/l	GCW007
1				UM25	Vapona	LT	8.50	0	ug/l	GDV003
				ATS	Diisopropylmethyl Phosphonate	LT	3.92	-1	ug/l	GCX007
				UM25	Diisopropylmethyl Phosphonate	LT	2.10		ug/l	GDV003
				AAAB	Dithiane	LT	1.34		ug/l	GCZ007
				UM25	Dithiane	LT	3.30		ug/l	GDV003
•				KK8	Dieldrin	LT	5.00	-2	ug/l	GCY007
İ				UM25	Dieldrin	LT	2.60		ug/l	GDV003
•				AAA8	Dimethyldisulfide	LT	5.50		ug/l	GCZ007
•				AT6	Dimethylmethyl Phosphate	LT	1.88		ug/l	GCX007
				UM25	Dimethylmethyl Phosphate	LT	1.30		ug/l	GDV003
				KK8	Endrin	LT	5.00	-2	ug/l	GCY007
l				UM25	Endrin	LT	1.80		ug/l	GDV003
				AV6	Ethylbenzene	LT			ug/l	GCS007
•				HH6A	Fluoride		1.09		ug/1	GCK007
1				CC8	Mercury (filtered)	LT	1.00		ug/l	GCN009
				CC8	Mercury	LT	1.00	-1	ug/l	GCN010
				KK8	Isodrin	LT	5.10		ug/l	GCY007
				UM25	Isodrin	LT	7.80		ug/l	GDV003
j				GG8	Potassium		3.58	3	ug/l	GC0009
				GG8	Potassium		3.93	3	ug/l	GC0010
•		6		AV8	Toluene	LT	1.47	0	ug/l	GCS007
ł				GG8	Magnesium		1.37	4	ug/l	GC0009
•				GG8	Magnesium		1.45		ug/l	GC0010
				P6	Methylisobutyl Ketone		4.90		ug/l	GCV007
				UM25	Malathion	LT	2.10		ug/l	GDV003
1				GG8	Sodium		4.22	4	ug/l	GC0009
				GG8	Sodium		4.40	4	ug/l	GC0010
				LL8	Nitrite, Nitrate - Non specific		7.46		ug/l	GCL009
				AAA8	1,4-Oxathiane		2.38		ug/l	GCZ007
				UM25	1,4-Oxathiane	LT	2.70	1	ug/l	GDV003
,										

Comprehensive Monitoring Program

01/10/90

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	method	Analytical Parameters	Re	sults	····	Units	Sample Number
6 9106	SW01005D	0.3	LAKE	GG8	Lead	LT	7.40	1	ug/l	GC0009
1				GG8	Lead	LT	7.40	1	ug/l	GC0010
				KK8	Dichlorodiphenylethane	_ LT	5.40	-2	ug/l	GCY007
				UM25	Dichlorodiphenylethane	LŦ	1.40	1	ug/l	GDV003
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2	ug/l	GCY 007
1				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GDV003
				UM25	Parathion	LT	3.70	1	ug/l	GDV003 .
				HH8A	Sulfate		7.00	4	ug/l	GCK007
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	. 1	ug/l	GDV003
•				AV8	Ortho- & Para-Xylens	LT	1.36	0	uā∖ļ	GCS 007
				GG8	Zinc		2.81	1	ug/l	GC0009
				GG8	Zinc		2.30	1	ug/l	GC0010
69108	SW02003	0.3	LAKE	UM21	1,1,1-Trichloroethane	LT	1.00	0	ug/l	GCQ003
				UM21	1,1,2-Trichloroethane	LT	1.00	0	ug/l	GCQ003
				UM21	1,1-Dichloroethene	LT	1.00	O	ug/l	GCQ003
1				UM21	1,1-Dichloroethane	LT	1.00	0	ug/1	GCQ003
				UM21	1,2-Dichloroethene	LT	5.00	0	ug/l	GCQ003
•				UM21	1,2-Dichloroethane	LT	1.00		ug/l	GCQ003
				UM21	1,2-Dichloropropane	LT	1.00		ug/l	GCQ003
•				UM21	1,3-Dichlorobenzene	LT	1.00		ug/l	GCQ003
				UM21	1,3-Dichloropropane			0	ug/l	GCQ003
				UM21	m-Xylene	LT	1.00	0	ug/l	GCQ003
				AV8	m-Xylene	LT	1.32	0	ug/l	GCS008
1		*		UM21	2-Chloroethylvinyl Ether		3.50		ug/l	CCQQQQ
				UM21	Acrylonitrile		6.40		ug/l	GCQ003
•				KK8	Aldrin		5.00		ug/l	GCY008
·				UM25	Aldrin	LT	1.30	1	ug/l	GCT003
				00	ALKALINITY		1.25		ug/l	GCJ008
				AX8	Arsenic (filtered)		2.35		ug/l	GCM011
				AX8	Arsenic		2.35		ug/l	GCM012
				UH11	Atrazine	LT	4.03	0	ug/l	GCW008

Comprehensive Monitoring Program R. L. Stollar and Associates

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		_Units	Sample Number
39108	SW02003	0.3	LAKE	UM25	Atrazine	LT	5.90	٥	ug/l	GCT003
				P8	Bicycloheptadiene	LT	5.90	٥	ug/l	GCV008
				UM21	Bromodichloromethane	LT	1.00	0	ug/1	GCQ003
				AAA8	Benzothiazole	LT	5.00	0	ug/l	GCZ008
				UM21	Vinyl Chloride	LT	1.20	- 1	ug/l	GCQOOX
				UM21	Chloroethane	LT	6.00	0	ug/l	GCQOOX
				UM21	Benzene	LT	1.00	0	ug/l	GCQOO3
				AV8	Benz e ne	LT	1.05	0	ug/l	GCS008
				GG8	Calcium (filtered)		4.35	4	ug/l	GC0011
				GG8	Calcium		4.31	4	ug/l	GC0012
				UM21	Trichlorofluoromethane	LT	1.00	0	ug/l	GCQ003
				UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	GCQQQQ
				GGଚ	Cadmium (filtered)	LT	8.40	O	ug/l	GC0011
				GG8	Cadmium	LT	8.40	O	ug/l	GC0012
				UM21	Methylene Chloride	LT	1.00	0	ug/l	GCQ003
				UM21	Bromomethane	LT	1.40	1	ug/l	GCQOO3
				UM21	Chloromethane	LT	1.20	٥	ug/l	GCQOO3
				UM21	Bromoform	LT		1	ug/l	GCQ003
				UM21	Chloroform	LT	1.00		ug/l	GCQOOT
				HH8A	Chloride		4.60	4	ug/l	GCK006
				KK8	Hexachlorocyclopentadiene	L٣	4.80		ug/l	GCY008
				UM25	Hexachlorocyclopentadiene	LT	5.40		ug/l	GCTOO
				UM21	Chlorobenzene	LT	1.00		ug/l	GCQ003
				KK8 UM25	Chlordane Chlordane	LT LT	9.50		ug/l ug/l	GCY008 GCT003
				Onzo	Chilordane	F-1	3.70		U9/ 1	QC I WW
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69		ug/l	GCZ006
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00		ug/l	GCTQQ3
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15		ug/l	GCZ008
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		ug/l	GCT003
				AAAG	p-Chlorophenylmethyl Sulfone	LT	7.46	0	ug/l	GCZ008
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30		ug/l	GCT003
				GG8	Chromium (filtered)	LT	2.40		ug/l	GC0011
				GG8	Chromium	LT	2.40		ug/l	GC0012
				GG8	Copper (filtered)	LT	2.60	1	ug/l	GC001:

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	eults	Units	Sample Number
6 9108	SW02003	0.3	LAKE	GG8	Copper	LT	2.60 1	ug/l	GC0012
				TF20	Cyanide	LT	5.00 0	ug/l	GCR008
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA008
				UM25	Oibromochloropropane	LT	1.20 1	ug/l	GCT003
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GCQ003
ŀ				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GCQ003
-				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GCV008
Ì				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GCT003
				UH11	Vapona	LT	3.84 -1	ug/1	GCW008
				UM25	Vapona	LT	8.50 0	ug/l	GCT003
į				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX008
-				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GCT003
				AAA6	Dithiane	LT	1.34 0	ug/l	GCZ008
				UM25	Dithiane	LT	3.30 0	ug/l	GCT003
				KK8	Dieldrin	LT	5.00 -2	ug/l	GCY008
				UM25	Dieldrin	LT	2.60 1	ug/l	GCT003
		•	40.	AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ008
				UM21	Acetone	LT	8.00 0	ug/l	GCQ003
				STA	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX008
;				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GCT003
				KK8	Endrin	LT	5.00 -2		600Y39
				UM25	Endrin	LT	1.60 1	ug/l	GCT003
.				UM21	Ethylbenzene	LT	1.00 0		GCQOO3
ja j				AV8	Ethylbenzene	LT	1.37 0		GCS008
				ннаа	Fluoride		1.20 3	ug/l	GCK 00 8
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN011
T				CC8	Mercury		1.00 -1	ug/l	GCN012
				KK6	Isodrin		5.10 -2		GCY008
•				UM25	Isodrin	LT	7.80 0		GCT003
			•	GG8	Potassium (filtered)		2.50 3	ug/l	GC0011
				GG8	Potassium		2.90 3		GC0012
. 4				UM21	Toluene	LT	1.00 0		GCQ003
				8VA	Toluene	LT	1.47 0		GCS008
Ł				UM21	Methylethyl Ketone	LT	1.00 1	ug/1	GCQ003

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method 	Analytical Parameters	_ Re	sults	Units	Sample Number
89108 ±	SW02 00 3	· 0.3	LAKE	GG8	Magnesium (filtered)		1.88	4 ug/l	GC0011
.	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			GG8	Magnesium		1.92	4 ug/l	GC0012
				UM21	Methylisobutyl Ketone	LT	1.40	0 ug/l	GCQ003
				P8	Methylisobutyl Ketone	LT	4.90	0 ug/l	GCV008
•				UM25	Malathion	LT	2.10	1 ug/l	GCT003
				GG8	Sodium (filtered)		6.49	4 ug/l	GC0011
				GG6	Sodium		6.70	4 ug/l	GC0012
1				LL8	Nitrite, Nitrate - Non specific		7.40	1 ug/l	GCL008
				AAAA	1,4-Oxathiane	LT	2.38	0 ug/l	GCZ008
				UM25	1,4-Oxathiane	LT	2.70	i ug/l	GCT003
				. GG8	Lead (filtered)	LT	7.40	i ug/i	GC0011
				GG8	Lead	LT	7.40	1 ug/l	GC0012
<u></u>				KK8	Dichlorodiphenylethane .	LT	5.40 -	2 ug/l	GCY008
				UM25	Dichlorodiphenylethane	LT	1.40	1 ug/l	GCT003
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -	2 ug/l	GCY008
ì				UM25	Dichlorodiphenyltrichloro~	LT	1.80	1 ug/l	GCT003
_				UM25	Parathion	LT	3.70	i ug/l	GCT003
				HH8A	Sulfate		9.30	4 ug/l	GCK0 0 8
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1 ug/l	GCT003
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0 ug/l	GCG003
				UM21	Tetrachloroethene	LT	1.00	0 ug/l	GCQ003
<u>.</u>			***	UM21	Trichloroethene	LT	1.00	0 ug/l	GCQ003
				UM21	Ortho- & Para-Xylene	LT	2.00		GCQ003
,				AV8	Ortho- & Para-Xylene	LT	1.36		GCS008
				GG8	Zinc (filtered)	LT	2.20	1 ug/l	GC0011
				GG8	Zinc	LŦ	2.20	1 ug/l	GC0012
89108	SW02003RB	0	QCRB	UM21	1,1,1-Trichloroethane	LT	1.00	0 ug/l	GCQ004
,				UM21	1,1,2-Trichloroethane	LT	1.00	0 ug/l	GCQ004
				UM21	1,1-Dichloroethene	LT	1.00	0 ug/l	GCQ004
				UM21	1,1-Dichloroethane	LT	1.00	0 ug/l	GCQ004
				UM21	1,2-Dichloroethene	LT	5.00	0 ug/l	GCQ004

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	F(6	eults		Jnits	Sample Number
60100	CHADAATAD	0	QCRB	UM21	1,2-Dichloroethane	· LT	1.00	n	ug/l	- GCQ004
69108	SW02003RB	O	GUND	UM21	1,2-Dichloropropane	LT	1.00		ug/l	GCQ004
				UM21	1,3-Dichlorobenzene	LT		0	ug/1-	GCQ004
				UM21	1,3-Dichloropropane	LT		0	ug/l	GCQ004
				UM21	m-Xylene	LT	1.00		ug/1	GCQ004
				AV8	m-Xylene	LT	1.32	0	ug/l	GCS009
				UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	GCQ004
				UM21	Acrylonitrile	LT	8.40	0	ug/l	GCQ004
				KK8	Aldrin	LT	5.00		ug/l	GCY009
				UM25	Aldrin	LT	1.30	1	ug/l	GCT004
				00 -	ALKALINITY	LT		1 /	ug/l	GCJ009
				AX8	Arsenic (filtered)	LT	2.35	0	ug/l	GCM013
				AX8	Arsenic	LT	2.35	0	ug/l	GCM014
				UH11	Atrazine	LT	4.03	O	ug/l	GCW009
				UM25	Atrazine	LT	5.90	0	ug/l	GCT004
				P6	Bicycloheptadiene	L۳	5.90	0	ug/l	GCV009
				UM21	Bromodichloromethane	LT	•••		ug/l	GCQ004
				AAA8	Benzothiarole	LT		O	ug/l	GCZ009
	No.			UM21	Vinyl Chloride	LT	1.20	1	ug/l	GCQ004
				UM21	Chloroethane	LT	6.00	0	ug/l	GCQ004
				UM21	Benzene	LT	1.00		ug/l	GCQ004
•				AV8	Benzene	LT			ug/l	GCS009
				GG8	Calcium (filtered)	LT	5.00		ug/l	GC0013
	· A			GG8	Calcium	LT	5.00		ug/l	GC0014
	**			UM21	Trichlorofluoromethane	LT	1.00	O	ug/l	GCQ004
				UM21	Carbon Tetrachloride	LT	1.00		ug/l	GCQ004
				GG8	Cadmium (filtered)	LT	8.40		ug/l	GC0013
				GG6	Cadmium	LT	8.40		ug/l	GC0014
				UM21 UM21	Methylene Chloride Bromomethane	LT LT	1.00		ug/l ug/l	GCQ004 GCQ004
				I ∰^21	Chloromethane	1 ~r	1 20	Λ	ua /ì	GCQ004
				UM21			1.20		ug/l	GCQ004
				UM21	Bromoform	LT			ug/l	
				UM21	Chloroform	LT	1.00	U	ug/l	GCQ004

Comprehensive Monitoring Program

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	esults	Units	Sample Number
CD4.80	ALIMAAA7777		QCR6	KK8	Hexachlorocyclopentadiene	LT	4.80 -2.	ua/1	GCY009
69106	SW02003RB	Ö	QUND	UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GCT004
				UM21	Chlorobenzene	LT	1.00 0	ug/1	GCQ004
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY009
				UM25	Chlordane	LT	3.70 1	ug/l	GCT004
				AAAS	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ009
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GCT004
				AAA6	p—Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ009
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GCT004
				AAA6	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ009
				UM25	p-Chlorophenylmethyl Sulfone	L٣	5.30 0	ug/l	GCT004
				GG8	Chromium (filtered)	LT	2.40 1	ug/1	GC0013
				GG8	Chromium	LT	2.40 1	ug/1	GC0014
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0013
				GG6	Copper	LT	2.60 1	ug/l	GC0014
				TF20	Cyanide	LT	5.00 0	ug/l	GCR009
}				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA009
				UM25	Dibromochloropropane	LT	1.20 1	-ug/1	GCT004
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GCQ004
				UM21	1,4—Dichlorobenzene	LT	2.00 0	ug/l	GCQ004
				P8	Dicyclopentadiene	LT	\$.00 O	ug/l	GCV009
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GCT004
				UH11	Vapona	LT	3.84 -1	ug/l	GCW009
			1	UM25	Vapona	LT	8.50 0	ug/l	GCT004
	-		****	AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX009
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GCT004.
li .				AAA6	Dithiane	LT	1.34 0	ug/l	GCZ009
				UM25	Dithiane		3.30 0	ug/l	GCT004
•				KK8	Dieldrin		5.00 -2	ug/l	GCY009
				UM25	Dieldrin	LT	2.60 1	ug/l	GCT004
				AAA8	Dimethyldisulfide		5.50 -1	ug/l	GCZ009
				UM21	Acetone		8.00 0	ug/l	GCQ004
				AT6	Dimethylmethyl Phosphate		1.88 -1	ug/l	GCX009
/				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GCT004

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type		Analytical Parameters	Re	sults:	Units	Sample Number
6 91 0 6	SW0200 3RB	o	QCSP	KK8	Endrin	17	5.00 -2	ug/l	GCY009
⊒ ⇔ar∧o	SWUZUUSKO	U	WCOF	UM25	Endrin	LT	1.60 1	ug/l	GCT004
				Um21	Ethylbenzene	LT	1.00 0	ug/l	GCQ004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS009
Á				ннаа	Fluoride	LT	4.82 2	ug/l	GCK009
ľ				cca	Mercury (filtered)	LT	1.00 -1	ug/l	GCN013
_				cca	Mercury	LT	1.00 -1	ug/l	GCN014
				KK8	Isodrin	LT	5.10 -2	ug/l	GCY009
				UM25	Isodrin	LT	7.80 0	ug/l	GCT004
_				GG8	Potassium (filtered)	LT	2.50 2	ug/l	GC0013
				GG8	Potassium	LT	2.50 2	ug/l	GC0014
-				UM21	Toluene	LT	1.00 0	ug/l	GCQ004
•				AV8	Toluene	LT	1.47 0	ug/l	GCS009
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GCQ004
				GG8	Magnesium (filtered)	LT	5.00 2	ug/l	GC0013
				GG8	Magnesium	LT	5.00 2	ug/l	GC0014
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GCQ004
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV009
				UM25	Malathion	LT	2.10 1	ug/l	GCT004
J				GG8	Sodium (filtered)	LT	9.40 2	ug/l	GC0013
R				GG8	Sodium	LT	9.40 2	_ug/l	GC0014
				LL8	Nitrite, Nitrate - Non specific		9.35 1	ug/l	GCL006
				AAA6	1,4-Oxathiane		2.36 0	ug/l	GCZ009
				UM25 GG8	1,4-Oxathiane Lead (filtered)	LT LT	2.70 1 7.40 1	ug/l ug/l	GCT004 GC0013
				GG8	Lead	LT	7.40 1	ug/l	GC0014
<u>.</u>				KK8	Dichlorodiphenylethane		5.40 -2	ug/l	GCY009
				UM25	Dichlorodiphenylethane		1.40 1	ug/l	GCT004
ı				KK8	Dichlorodiphenyltrichloro-		4.90 -2	ug/l	GCY009
				UM25	ethane Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GCT004
				UM25	Parathion	LT	3.70 1	ug/l	GCT004
				HH8A	Sulfate	, ~~	2.51 2	ug/l	GCK009

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89108	SW02003RB	· · o	QCRB	UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GCT004
				1.0204	Vinyldiethyl Phosphates	LT	1.50 0	ug/l	GCQ004
				UM21	1,1,2,2-Tetrachloroethane	LT	1.00 0	ug/l	GCQ004
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GCQ004
				UM21 UM21	Trichloroethene Ortho- & Para-Xylene	LT	2.00 0	ug/l	GCQ004
				AV6	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS009
}				GG8	Zinc (filtered)	LT	2.20 i	ug/l	GC0013
				GG8	Zinc		6.28 1	ug/l	GC0014
89109	SW02004	0.3	LAKE	AV8	m-Xylene	LT	1.32 0	ug/l	GCS011
				KK8	Aldrin	LT	5.00 -2		GCY013
•				UM25	Aldrin	LT	1.30 1	ug/l	GDV005
Ī				00	ALKALINITY		1.50 2	ug/1	GCJ011
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GCM019
				AX8	Arsenic	LT	2.35 0	ug/l	GCM020
				UH11	Atrazine	LT	4.03 0	ug/l	GCW011
j				UM25	Atrazine	LT	5.90 0	ug/l	GDV005
				P8	Bicycloheptadiene	LT	5.90 0	ug/1	GCV011
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GCZ013
				AV8	Benzene	LT	1.05 0	ug/l	GCS011
				GG6	Calcium (filtered)		4.03 4	ug/l	GC0019
				GG8	Calcium		4.27 4	ug/l	GC0020
ļ				GG8	Cadmium (filtered)	LT	8.40 0	ug/1	GC0019
				GG8	Cadmium	LT	8.40 0	ug/l	GC0020
				HH6A	Chloride		6.00 4	ug/l	GCK011
				KK6	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY013
1				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV005
1				KK8	Chlordane	LT	9.50 -2	ug/1	GCY013
				UM25	Chlordane	LT	3.70 1	ug/l	GDV005
				AAA8	p-Chlorophenylmethyl Sulfide		5.69 0	ug/l	GCZ013
l ,				UM25	p-Chlorophenylmethyl Sulfide		1.00 1		GDV005
				AAAS	p-Chlorophenylmethyl Sulfoxide		1.15 1	ug/l	GCZ013
)				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GDV005
,				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ013

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	~ Method	Analytical Parameters	Re	sults	Units	Sample Number
89109	SW02004	0.3	LAKE	UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	$_{\text{Lug}}/1$	GDV005
i				GG8	Chromium (filtered)	LT	2.40 1	ug/1	GC0019
į				GG8	Chromium	LT	2.40 1	ug/1	GC0020
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0019
Ì				GG8	Copper	LT	2.60 1	ug/l	GC0020
i				TF20	Cyanide	LT	5.00 0	ug/l	GCR011
_				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA013
İ				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV 00 5
j	•			P6	Dicyclopentadiene	LT	5.00 0	ug/l	GCV011
•				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV005
Ì				UH11	Vapona	LT	3.84 -1	ug/l	GCW011
•				UM25	Vapona	LT	8.50 0	ug/1	GDV005
				AT8	Diisopropylmethyl, Phosphonate	LT	3.92 -1	ug/1	GCX013
i				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GDV005
				AAAB	Dithiane	LT	1.34 0	ug/l	GCZ013
l				UM25	Dithiane	LT	3.30 0	ug/l	GDV005
į				KK8	Dieldrin	LT	5.00 -2	ug/1	GCY013
				UM25	Dieldrin	LT	2.60 1	ug/l	GDV005
1	4.5			AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ013
t				ATB	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX013
.			* *	UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV005
				KK8	Endrin	LT	5.00 -2	ug/l	GCY013
•				UM25	Endrin	LT	1.80 1	ug/1	GDV005
•	der Const			AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS011
j				HHBA	Fluoride		1.18 3	ug/l	GCK011
•			ž.	cce	Mercury (filtered)	LT	1.00 -1	ug/l	GCN019
S .				CC8	Mercury	LT	1.00 -1	ug/l	GCN020
ľ				KK6	Isodrin		9.72 -2	ug/l	GCY013
_				UM25	Isodrin	LT	7.80 0	ug/l	GDV005
Ì				GG8	Potassium (filtered)		3.38 3	ug/l	GC0019
į				GG8	Potassium		3.59 3	ug/l	GC0020
				AV6	Toluene	LT	1.47 0	ug/l	GCS011
				GG8	Magnesium (filtered)		1.51 4	ug/1	GC0019
1				GCC	The management (1 x x out a a)		****	W 33/ L	200012

Comprehensive Monitoring Program

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	-	Units	Sample Number
89109	SW02004	0.3	LAKE	P6	Methylisobutyl Ketone	LT	4.90	0	ug/l	GCV011
09109	SPPOZION	0. 0	Sur II \ Su	UM25	Malathion			1	ug/l	GDV005
				GG8	Sodium (filtered)		7.84	4	ug/l	GC0019
r				GG8	Sodium		6.69	4	ug/l	GC0020
- - 				LT8	Nitrite, Nitrate - Non specific		7.21	1	ug/l	GCL011
				AAAS	1,4-Oxathiane	LT	2.38	0	ug/l	GCZ013
				UM25	1,4-Oxathiane	LT	2.70	1	ug/1	GDV005
				GG8	Lead - (filtered)	LT	7.40	1	ug/l	GC0019
				GG8	Lead	LT	7.40	1	ug/l	GC0020
				KK8	Dichlorodiphenylethane	LT	5.40	-2	ug/l	GCY013
				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/l	GDV005
				KK6	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2	ug/l	GCY013
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GDV005
				UM25	Parathion	LT	3.70	1	ug/l	GDV005
				HH8A	Sulfate		7.60	4	ug/l	GCK011
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1 .	ug/l	GDV005
ı				AV8	Ortho- & Para-Xylene	LT	1.36	0	ug/l	GCS011
				GG8	Zinc (filtered)	LT	2.20	1	ug/l	GC0019
ı				GG8	Zinc	LT	2.20	1	ug/l	GC0020
89117	SW02006	0.2	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00	0	ug/l	GEZ003
		15 LL		UM21	1,1,2-Trichloroethane	LT	1.00	. O	ug/l	GEZ003
ı		garden et al.		UM21	1,1-Dichloroethene	LT	1.00	~~ O	ug/l	GEZ003
				UM21	1,1-Dichloroethane	LT	1.00	0	ug/l	GEZ003
				UM21	1,2-Dichloroethene	LT	5.00	Ö.	ug/l	GEZ003
! !				UM21	1,2-Dichloroethane		1.00		ug/l	GEZ003
				UM21	1,2-Dichloropropane		1.00		ug/l	GEZ003
				UM21	1,3-Dichlorobenzene	LŢ	1.00		ug/l	GEZ003
				UM21	1,3-Dichloropropane	LT	4.60		ug/l	GEZ003
				UM21	m-Xylene	LT	1.00	0	ug/l	GEZ 00 3
				AV8	m-Xylene	LT	1.32	O	ug/l	GHD005
					A contract of the contract of					

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Re	sults		Units	Sample Number
				1.0.00	A X (A (X		1 7	o 40	^	um (i	GEZ003
89117	SW02006	0.2	DTCH	UM21	Acrylonitrile		LT	6.40 5.00		ug/l	GFG016
				KK8	Aldrin			1.30		ug/l ug/l	GFV002
				UM25	Aldrin		LT		2	ug/l	GE0013
				00 AX8	ALKALINITY Arsenic (filtered)		LT	2.35	0	ug/l	GFX013
				AX8	Arsenic		LT	2.35	o	ug/l	GFX014
				UH11	Atrazine		LT	4.03	0	ug/l	GFK012
				UM25	Atrazine		LT	5.90	0	ug/l	GFV002
				P8	Bicycloheptadiene		LT	5.90	0	ug/l	GFD012
				UM21	Bromodichloromethane		LT	1.00	0	ug/l	GEZ003
				AAA8	Benzothiazole		LT	5.00	O	ug/l	GFH013
				UM21	Vinyl Chloride		LT	1.20	1	ug/l	GEZ003
				UM21	Chloroethane		LT	8.00	0	ug/1	GEZ003
				UM21	Benz ene		LT	1.00	0	ug/1	GEZ003
				AV6	Benz ene		LT	1.05	0	ug/l	GH0005
				G G8	Calcium (filtered)			3.40	4	ug/l	GHH009
				GG8	Calcium			3.43	4	ug/l	GHH006
				UM21	Trichlorofluoromethane		LT	1.00	0	ug/l	GEZ003
				UM21	Carbon Tetrachloride	nie	LT	1.00	0	ug/l	GEZ003
				GG6	Cadmium (filtered)		LT	8.40	0	ug/l	GHH005
		,		GG8	Cadmium		LT	8.40	0	ug/l	GНН00€
				UM21	Methylene Chloride		LT	1.00	0	ug/l	GEZ003
				UM21	Bromomethane		LT	1.40	1	ug/l	GEZ003
				UM21	Chloromethane			1.20	0	ug/l	GEZ003
				UM21	Bromoform		ĻT	1.10	1	ug/l	GEZ003
				UM21	Chloroform				0	ug/l	GEZ003
				HH8A	Chloride			4.60	4	ug/l	GFL008
				KK8	Hexachlorocyclopentadiene		LT	4.60		ug/l	GFG016
				UM25	Hexachlorocyclopentadiene		LT	5.40		ug/1	GFV002
				UM21	Chlorobenzene		LT	1.00	0	ug/l	GEZ003
				KK8	Chlordane			9.50		ug/l	GFG016
				UM25	Chlordane			3.70		ug/l	GFV002
				AAAS	p-Chlorophenylmethyl Sulfide			5.69		ug/1	GFH013
				UM25	p-Chlorophenylmethyl Sulfide		LT	1.00	1	ug/l	GFV002

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Mumber
00447	CHADAC	0.0	DTCH	AAAB	p-Chlorophenylmethyl Sulfoxide	LΫ́	1.15 1	ug/l	GFH013
89117	SW02006	0.2	UICN	UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFV002
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH013
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFV002
1				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GHH005
				- GG8	Chromium	LT	2.40 1	ug/l	GHH006
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GHH005
ł				GG8	Copper	LT	2.60 1	ug/l	GHH006
				TF20	Cyanide	LT	5.00 0	ug/l	GEN013
i				AYS	Dibromochloropropane	LT	1.95 -1	ug/ĺ	: GFM013
				UM25	Dibromochloropropane	LT	.1.20 1	ug/l	GFV002
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GEZ003
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/1	GEZ003
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GFD012
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFV002
				UH11	Vapona	LT	3.84 -1	ug/l	GFK012
				UM25	Vapona	LT	8.50 O	ug/l	GFV002
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP013
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l .	GFV002
				AAA6	Dithiane	LT	1.34 0	ug/l	GFH013
				UM25	Dithiane	LT	3.30 0	ug/l	GFV002
				. KK8	Dieldrin	LT	5.00 -2	ug/l	GFG016
				UM25	Dieldrin	LT	2.60 1	ug/1	GFV002
		week to the second		AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	. GFH013
)				UM21	Acetone	LT	6.00 0	ug/l	GEZ003
				AT8	Dimethylmethyl Phosphate		2.54 0	ug/1	GFP013
l				UM25	Dimethylmethyl Phosphate		1.30 2	ug/l	GFV002
				KK8	Endrin	LT	5.00 -2	ug/l	GFG016
				UM25	Endrin.	LT		ug/l	GFV002
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GEZ003
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GHD005
				HH8A	Fluoride		1.23 3	ug/l	GFL008
				CC8	Mercury (filtered)		1.03 -1	ug/l	GGW015
				CC6	Mercury		1.33 -1	ug/1	GGW016

Comprehensive Monitoring Program

01/10/90

Sampling Date	Station Nümber	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
							- 40 0		070044
69117	SW02006	0.2	DTCH	KK8	Isodrin	LT	5.10 -2		GFG016
				UM25	Isodrin	LT	7.60 0	ug/l	GFV002
				GG8	Potassium (filtered)		2.35 3	ug/l	GHH005
		•		GG8	Potassium	,	2.46 3	ug/l	GHH006
				UM21	Toluene	LI	1.00 0	ug/l	GEZO03
				AV6	Toluene	LT	1.47 0	ug/l	GHD005
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GEZ003
				GG8	Magnesium (filtered)		1.48 4	ug/l	GHH005
				GG8	Magnesium		1.48 4	ug/l	GHH006
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GEZ003
				89	Methylisobutyl Ketone	LT	4.90 0	ug/l	GFD012
				UH11	Malathion	LT	3.73 -1	ug/l	GFK012
				UM25	Malathion	LT	2.10 1	ug/l	GFV002
				GG8	Sodium (filtered)		6.82 4	ug/l	GHH005
				GG8	Sodium		6.95 4	ug/l	GHH006
				LL8	Nitrite,Nitrate - Non specific		1.70 2	ug/l	GCL029
				AAA8	1,4-0xathiane	LT	2.38 0	ug/l	GFH013
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFV002
			5.4	GG8	Lead (filtered)	LT	7.40 1	ug/l	GHH005
				GG8	Lead	LΤ	7.40 1	ug/l	GHH006
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG016
				UM25 -	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFV002
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	GFG016
				UM25	ethane Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFV002
				UH11	Parathion	LT	6.47 -1	ug/l	GFK012
				UM25	Parathion	LT	3.70 1	ug/l	GFV002
				HHBA	Sulfate		8.90 4	ug/l	GFL008
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK012
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFV002
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GEZ003

Comprehensive Monitoring Program

01/10/90

Bampling Date	Station Number	Sample Depth (cm)	Sample Type	Method 	Analytical Parameters	Re	esults	Units	Sample Number
		•							
89117	SW02006	0.2	DTCH	UM21	Tetrachloroethene	LT	1.00 0	ug/l	GEZ003
				UM21	Trichloroethene	LT	1.00 0	ug/l	GEZ003
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GEZ003
-				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GHD005
			•	GG8	Zinc (filtered)	LT	2.20 1	ug/l	GHH005
				GG8	Zinc	LT	2.20 1	ug/l	GHHOO6
89116	SW02006	0.2	ртсн	NB	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GHE005
				NS	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GHEO05
•				84	1,1-Dichloroethene	LT	1.70 0	ug/1	GHE005
_				н8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GHEO05
				N8	1,2-Dichlorcethene	LT	7.60 -1	nā/J	GHE005
•				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GHE005
				N6	Carbon Tetrachloride	LT	9.90 -1	ug/l	GHE005
				พธ	Methylene Chloride	LT	7.40 0	ug/1	GHEOO5
_				ИӨ	Chloroform		4.33 0	ug/l	GHEO05
1				ма	Chlorobenzene	LT	8.20 -1	ug/l	GHEOO5
				ив	Tetrachloroethene	LT	7.50 -1	ug/l	GHE005
				ИВ	Trichloroethene	LT	5.60 -1	ug/l	GHE005
89117	SW02006B	.20	DTCH	LH15	Atrazine		6.23 0	ug/l	GFR010
				LH15	Vapona	LT	8.00 -2	ug/l	GFR010
8				LH15	Malathion	LT	1.26 -1	ug/l	GFR010
				LH15	Parathion	LT	1.59 -1	ug/l	GFR010
				LH15	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.48 -1	ug/l	GFR010
					Vinyldiethyl Phosphates				
69117	SW02006B	0.2	DTCH	ени	1,1,1-Trichloroethane		8.80 -2	ug/1	GFS010
				NN9	1,1,2-Trichloroethane		2.60 -1	ug/1	GFS010
				HN9	1,1-Dichloroethene	LT		ug/l	GFS010
_				NN9	1,1-Dichloroethane		7.40 -2	ug/l	GFS010
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS010
				NN9	1,2-Dichloroethane		8.50 -2	ug/l	GFS010
•				AA9	m-Xylene		2.60 -1	ug/l	GFT010
ł				69	Arsenic	LT	2.50 0	ug/l	GDM026
#									

Summary of Analytical Results

Campling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	sults	Units	Sample Number
69117	SW02006B	0.2	DTCH	ZZ9	Bicycloheptadiene	LT	5.08 0	- ug/1	IKY016
~~~				<b>A</b> A9	Benzene	LT	8.50 -2	ug/l	GFT010
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GFS010
				<b>НИ</b> 9	Methylene Chloride	LT	3.70 0	ug/l	GFS010
•				ии9	Chloroform	LT	6.80 -2	ug/l	GFS010
				инэ	Chlorobenzene	LT	2.00 -1	ug/l	GFS010
				S9	Dibromochloropropane		2.01 -2	ug/l	GFB012
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKY016
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU018
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU018
	-			<b>A</b> A9	Ethylbenzene	LT	1.60 -1	ug/l	GFT010
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS018
				Y9	Mercury		8.00 O	ug/l	GDL026
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS018
				<b>A</b> A9	Toluene	LT	1.90 -1	ug/l	GFT01
				<b>ZZ</b> 9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY01
				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GFS01
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GFS01
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT01
39117	SW02006B	2.0	DTCH	P9 -	Cadmium	LT	7.40 -1	ug/l	GDK02
				P9	Chromium		1.37 1	ug/l	GDK02
				P9	Copper		7.88 1	ug/l	GDK02
				P9	Lead		7.47 1	ug/l	GDK021
				P9	Zinc		1.59 2	ug/l	G0K021
39135	SW04001ST	0.2	DTCH	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GKN01
				N6	1,1,2-Trichloroethane	L۳	7.80 -1	ug/l	GKN01
				не	1,1-Dichloroethene		1.70 0	ug/l	GKN01
				N6	1,1-Dichloroethane	LT	7.30 -1	ug/l	GKN01
				N6	1,2-Dichloroethene		7.60 -1	ug/l	GKN01
				N6	1,2-Dichloroethane		1.10 0	ug/l	GKN01
				AV8	m-Xylene	LT	1.32 0	ug/l	GK001
				KK8	Aldrin	L۳	5.00 -2	ug/l	GKK00

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89135	SW04001ST	0.2	DTCH	UM25	Aldrin	LT	1.30 1	ug/l	GKW004
				00	ALKALINITY		2.29 1	ug/l	GMK008
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GKS016
•				UH11	Atrazine	LT	4.03 0	ug/l	GKM007
•				UM25	Atrazine	LT	5.90 0	ug/l	GKW004
ļ.				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GKQ012
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GKJ007
				AV6	Benzene	LT	1.05 0	ug/l	GK0010
				GG8	Calcium (filtered)		6.21 3	ug/l	GKR013
_				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GKN010
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GKR013
,				N6	Methylene Chloride	. LT	7.40 0	ug/1	GKN010
<b>a</b>				N8	Chloroform	LT	5.00 -1	ug/l	GKN010
				HH8A	Chloride		1.26 3	ug/l	GKP015
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GKK007
1				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GKW004
J				N8	Chlorobenzene	LT	8.20 -1	ug/1	GKN010
				KK8	Chlordane	LT	9.50 -2	ug/l	GKK007
1			Lar.	UM25	Chlordane	LT	3.70 1	ug/l	GKW004
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GKJ007
_				UM25	p-Chlorophenylmethyl Sulfide	LŢ	1.00 1	ug/l	GKW004
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GKJ007
•				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1		GKW004
,				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0		GKJ007
-				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW004
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKR013
1				GG8	Copper (filtered)	LT	2.60 1	ug/l	GKR013
				TF20	Cyanide	LT	5.00 0	ug/l	GKT010
•				AY8	Dibromochloropropane	LT	1.95 -1		GKL007
ı				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GKW004
ł				P6	Dicyclopentadiene	LT			GKQ012
				UM25	Dicyclopentadiene	LT	5.50 0		GKW004
				UH11	Vapona	LT	3.84 -1		GKM007
				UM25	Vapona	LT	8.50 0	ug/l	GKW004

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
							•		
89135	SW04001ST	0.2	DTCH	AT6	Diisopropylmethyl Phosphonate		3.92 -1	ug/l	GK1005
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GKW004
				AAA6	Dithiane	LT	1.34 0	ug/l	GKJ007
				UM25	Dithiane	LT	3.30 0	ug/l	GKW004
				KK8	Dieldrin		5.51 -2	ug/l	GKK007
				UM25	Dieldrin	LT	2.60 1	ug/l	GKW004
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GKJ007
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GKI005
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKW004
	,			KK8	Endrin	LT	5.00 -2	ug/l	GKK007
				UM25	Endrin	LT	1.80 1	ug/l	GKW004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GK0010
				HH8A	Fluoride		8.07 2	ug/l	GKP015
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GML006
			•	KK8	Isodrin	LT	5.10 -2	ug/l	GKK007
				UM25	Isodrin	LT	7.80 0	ug/l	GKW004
				GG8	Potassium (filtered)		2.93 3	ug/l	GKR013
				AV8	Toluene	LT	1.47 0	ug/1	GK0010
				GG8	Magnesium (filtered)		8.65 2	ug/l	GKR013
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKQ012
				UH11	Malathion	LT	3.73 -1	ug/l	GKM007
				UM25	Malathion	LT	2.10 1	ug/l	GKW004
				GG8	Sodium (filtered)		1.23 3	ug/l	GKR013
	eroe e			LL8	-Nitrite, Nitrate - Non specific		6.60 2	ug/l	GKV018
				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	GKJ007
				UM25	1,4-Oxathiane	LT	2.70 -1	ug/l	GKW004
				GGS	Lead (filtered)		7.40 1	ug/l	GKR013
				KK8	Dichlorodiphenylethane	L۳	5.40 -2	ug/l	GKK007
				UM25	Dichlorodiphenylethane		1.40 1	ug/l	GKW004
				KK8	Dichlorodiphenyltrichloro- ethane		4.90 -2	ug/l	GKK007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW004
				UH11	Parathion	LT	6.47 -1	ug/l	GKM007

Comprehensive Monitoring Program

R. L. Stollar and Associates

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method ———	Analytical Parameters	Re	esults	Units	Sample Number
69135	SW04001ST	0.2	DTCH	UM25	Parathion	LT	3.70 1	ug/l	GKW004
W 2 3 3 3	5115-100151	<b></b>		HH8A	Sulfate		3.46 3	ug/l	GKP015
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GKM007
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GKW004
				И8	Tetrachloroethene	LT	7.50 -1	ug/l	GKN010
				N8	Trichloroethene	LT	5.60 -1	ug/l	GKN010
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GK0010
	e.			GG8	Zinc (filtered)		4.37 1	ug/l	GKR013
89117	SW07001	0.1	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GEZ004
				на	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GHE006
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GEZ004
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GHE006
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GEZ004
				NB	1,1-Dichloroethene	LT	1.70 0	ug/l	GHE006
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GEZO04
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/1	GHE006
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GEZ004
				М8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GHE006
				UM21	1,2-Dichloroethane	ĹT	1.00 0	ug/l	GEZ004
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GHE006
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GEZO04
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	GEZO04
				UM21	1,3-Dichloropropane	LT	4.60 0	ug/l	GEZ004
				UM21	m-Xylene	LT	1.00 0	ug/l	GEZ004
				AV8	m-Xylene	LT	1.32 0	ug/l	GHD006
				UM21	2-Chloroethylvinyl Ether		3.50 0	ug/l	GEZ004
				UM21	Acrylonitrile	LT	8.40 0	ug/1	GEZ004
				KK8	Aldrin		1.52 -1	ug/l	GFG017
				UM25	Aldrin	LT	1.30 1	ug/l	GFV003
				00	ALKALINITY		1.46 2	ug/1	GE0014
				AX8	Arsenic (filtered)	LT	2.35 0	ug/1	GFX015
				AX8	Arsenic	LT	2.35 0	ug/l	GFX016

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters		Re	⊖sults	Units	Sample Number	
69117	SW07001	0.1	DTCH	UH11	Atrazine		LT	4.03	0 ug/l	GFK013	
2				UM25	Atrazine		LT	5.90	0 ug/l	GFV003	
				P8	Bicycloheptadiene		LT	5.90	0 ug/l	GFD013	
				UM21	Bromodichloromethane		LT	1.00	0 ug/l	GEZ004	
,				AAA8	Benzothiazole		LT	5.00	O ug/l	GFH014	
				UM21	Vinyl Chloride		LT	1.20		GEZ004	
				UM21	Chloroethane	=	LT	8.00		GEZ004	
				UM21	Benzene		LT	1.00		GEZ004	
,				AV8	Benz ene		LT	1.05		GHD006	
-	1			GG8	Calcium (filtered)	٠		4.43	4 ug/l	GHH007	
				GG8	Calcium			4.59	4 ug/l	GHH008	
}				UM21	Trichlorofluoromethane		LT	1.00	0 ug/l	GEZ004	
				UM21	Carbon Tetrachloride		LT	1.00	0 ug/l	GEZ004	
				N8	Carbon Tetrachloride		LT	9.90 -	·1 ug/l	GHE006	
j				GG8	Cadmium (filtered)		LT	8.40	0 ug/l	GHH007	
1				GG8	Cadmium		LT	8.40	0 ug/l	GHH008	
		•		UM21	Methylene Chloride		LT	1.00		GEZ004	
				М8	Methylene Chloride		LT	7.40		GHE006	
1				UM21	Bromomethane		LT	1.40		GEZ004	
ł	•			UM21	Chloromethane		LT	1.20	0 ug/l	GEZ004	
_				UM21	Bromoform		LT	1.10		GEZ004	
				UM21	Chloroform		LT	1.00		GEZ004	
				N8	Chloroform		LT	5.00 -		GHE006	
-				HH8A	Chloride			5.30		GFL009	
			٠.	KK8	Hexachlorocyclopentadiene	• •		7.17 -	2 ug/l	GFG017	
				UM25	Hexachlorocyclopentadiene		LT	5.40		GFV003	
1				UM21	Chlorobenzene		LT	1.00		GEZ004	
				N8	Chlorobenzene			6.20 -		GHE006	
				KK8	Chlordane			9.50 -		GFG017	
1				UM25	Chlordane		LT	3.70	1 ug/l	GFV003	
i				AAAS	p-Chlorophenylmethyl Sulfid			5.69		GFH014	
				UM25	p-Chlorophenylmethyl Sulfid			1.00		GFV003	
				AAA6	p-Chlorophenylmethyl Sulfox			1.15		GFH014	
				UM25	p-Chlorophenylmethyl Sulfox	kide	LT	1.50	1 ug/l	GFV003	

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	esults	Units	Sample Number
			***************************************		•				
89117	SW07001	0.1	DTCH	8888	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH014
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFV003
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GHH007
				GG8	Chromium	LT	2.40 1	ug/l	GHH008
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GHH007
				GG8	Copper .	LT	2.60 1	ug/l	GHH008
				TF20	Cyanide		6.25 0	ug/l	GEN014
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN014
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFV003
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GEZ004
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GEZ004
				P8	Dicyclopentadiene	LT	5.00 0	ug/1	GFD013
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFV003
				UH11	Vapona		1.86 0	ug/l	GFK013
				UM25	Vapona	LT	8.50 0	ug/l	_ GFV003
				ATS	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP014
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFV003
				AAAS	Dithiane	LT	1.34 0	ug/l	GFH014
		.a.,2		UM25	Dithiane	LT	3.30 0	ug/l	GFV003
				.KK8	Dieldrin		7.95 -2	ug/l	GFG017
				UM25	Dieldrin	LT	2.60 1	ug/l	GFV003
				BAAA	Dimethyldisulfide	LT	5.50 -1	ug/l	GFH014
				UM21	Acetone	LT	8.00 0	ug/l	GEZ004
				ATS	Dimethylmethyl Phosphate		2.08 0	ug/l	GFP014
		н .		UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFV003
				KK8	Endrin	LT	5.00 -2	ug/l	GFG017
				UM25	Endrin	LT	1.80 1	ug/l	GFV003
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GEZ004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GHD006
				HH6A	Fluoride		1.63 3	ug/l	GFL009
				CCS	Mercury (filtered)	LT	1.00 -1	ug/l	GGW017
				CC8	Mercury		2.01 -1	ug/l	GGW018
				KK8	Isodrin		1.32 -1	ug/l	GFG017
				UM25	Isodrin	LT	7.80 0	ug/l	GFV00

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	eults	Units	Sample Number
69117	SW07001	0.1	DTCH	GG8	Potassium (filtered)		7.98 3	ug/l	GHH007
				GG8	Potassium		8.24 3	ug/l	GHH008
				UM21	Toluene	LT	1.00 0	ug/l	GEZ004
				AV8	Toluene	LT	1.47 0	ug/1	GH0006
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GEZ004
				GG8	Magnesium (filtered)		1.21 4	ug/l	GHH007
				GG8	Magnesium		1:36 4	ug/l	GHH008
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GEZ004
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GF0013
				UH11	Malathion	LT	3.73 -1	ug/l	GFK013
				UM25	Malathion	LT	2.10 1	ug/l	GFV003
				GG8	Sodium (filtered)		6.65 4	ug/1	GHH007
				GG8	Sodium		6.98 4	ug/l	GHH008
				LL8	Nitrite,Nitrate - Non specific		3.30 3	ug/l	GCL030
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GFH014
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFV003
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GHH007
				GG8	Lead	LT	7.40 1	ug/l	GHH008
		Ã.		KK8	Dichlorodiphenylethane		2.52 -1	ug/l	GFG017
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFV003
				KK8	Dichlorodiphenyltrichloro- ethane		6.38 -2	ug/l	GFG017
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFV003
				UH11	Parathion	LT	6.47 -1	ug/l	GFK013
		•••		UM25	Parathion	LT	3.70 1	ug/l	GFV003
				HH8A	Sulfate		6.80 4	ug/l	GFL009
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -i	ug/l	GFK013
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFV003
				UM21	1,1,2,2-Tetrachlorosthane	LT	1.50 0	ug/l	GEZ004
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GEZ004
				W1 186. A	Tetrachloroethene	F (	A-00 U	~ 3/ A	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Ře	sults	Units	Sample Number	
89117	SW07001	0.1	DTCH	UM21	Trichloroethene	LT	1.00 0	ug/l	GEZO04	
				N8	Trichloroethene	LT	5.60 -1	ug/l	GHE006	
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GEZ004	
-		•		AV6	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GHD006	
ı				GG8	Zinc (filtered)		5.27 1	ug/l	GHH007	
j				GG8	Zinc		6.88 1	ug/l	GHH008	
89117	SW07001B	0.1	DTCH	РИ9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GFS008	
				ни9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GFS008	
				еии	1,1-Dichloroethene	LT	2.40 -1	ug/l	GF\$008	
1				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/1	GFS008	
				МИЭ	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS008	
_				ниэ	1,2-Dichloroethane	LT	8.50 -2	ug/l	GFS008	
				AA9	m-Xylene	LT	2.60 -1	ug/l	GFT008	
				69	Arsenic	LT	2.50 0	ug/l	GDM024	
				LH15	Atrazine '		2.94 0	ug/l	GFR008	
l				ZZ9	Bicycloheptadiene	LT	5. <b>0</b> 8 0	ug/l	IKY015	
,				нн9	Benzothiazole	LT	2.04 0	ug/l	GFA010	
ì				AA9	Benzene	LT	8.50 -2	ug/l	GFT008	
				еми	Carbon Tetrachloride	LT	1.20 -1	ug/l	GF\$008	
				<b>P9</b>	Cadmium	LT	7.40 -1	ug/l	GDK025	
				NN9	Methylene Chloride	LT	3.70 0	ug/l	GFS008	
				инэ	Chloroform	L۳	6.60 -2	ug/l	GFS008	
-1				NN9	Chlorobenzene	LT	2.00 -1	ug/l	GFS008	
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GFA010	
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GFA010	
_				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GFA010	
Ì				P9	Chromium	LT	6.50 0	ug/l	GDK025	
				P9	Copper		1.75 1	ug/l	GDK025	
_				<b>S</b> 9	Dibromochloropropane		1.40 -2	ug/l	GFB010	
				ZZ9	Dicyclopentadiene		5.12 0	ug/l	IKY015	
ł				LH15	Vapona	LT	6.00 -2	ug/l	GFR006	
				TT9	Diisopropylmethyl Phosphonate		1.14 -1	ug/l	KSU017	
				HH9	Dithiane		1.45 0	ug/l	GFA010	

01/10/90

Summary of Analytical Results

Date	Station Number  SW07001B	Sample Depth (cm)  O.1	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
		***************************************							
: - 69117 : :   	SW07001B	0.1							***************************************
69117	SW07001B	0.1							
			DTCH	HH9	Dimethyldisulfide 7	LT	3.12 0	ug/l	GFA010
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU017
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GFT008
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS017
				Y9	Mercury	LT	5.00 -2	ug/l	GDL024
		·		AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS017
				<b>A</b> A9	Toluene	LT	1.90 -1	ug/1	GFT008
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY015
				LH15	Malathion	LT	1.26 -1	ug/l	GFR008
				нн9	1,4-0xathiane	LT	1.74 0	ug/l	GFA010
				P9	Lead		3.22 1	ug/l	GDK025
				LH15	Parathion	LT	1.59 -1	ug/l	GFR008
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR008
				PN9	Tetrachloroethene	LT	2.70 -1	ug/l	GF\$008
. 				NN9	Trichloroethene	LT	1.40 -1	ug/l	GFS008
				889	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT008
	••	* *		P9 :	Zinc		6.34 1	ug/l	GDK025
89115 S	SW08001	0.2	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GDX004
ı				UM21	1,1,2-Trichloroethane	LT	1:00 0	ug/l	GDX004
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/1	GDX004
l				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GDX004
1				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GDX004
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GDX004
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GDX004
1				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GDX004
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GDX004
1				UM21	m-Xylene		1.00 0	ug/l	GDX004
				AV8	m-Xylene	LT	1.32 0	ug/l	GCS021
				UM21	2-Chloroethylvinyl Ether		3.50 0	ug/l	GDX004
				UM21	Acrylonitrile		6.40 0	ug/l	GDX004
				UM25	Aldrin		1.30 1	ug/1	GDZ004
				KK8	Aldrin		5.00 -2	ug/l	GEGO10

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	eults		Units	Sample Number
<b>8</b> 9115	SW08001	0.2	STRM	00	ALKALINITY		2.54	2	ug/l	GE0005
	5W00001	W + 2	W1141	AX8	Arsenic (filtered)		2.61	0	ug/l	GFI013
				AX8	Arsenic	LT	2.35	0	ug/l	GFI014
•				UM25	Atrazine	LT	5.90	0	ug/l	GDZ004
				UH11	Atrazine	LT	4.03	0	ug/l	GEJ010
				P6	Bicycloheptadiene	L.T	5.90	٥	ug/l	GEI010
				UM21	Bromodichloromethane	LT	1.00	0	ug/l	GDX004
				UM21	Vinyl Chloride	LT	1.20	1.	ug/l	GDX004
				UM21	Chloroethane	LT	8.00	O	ug/1	GDX004
_				UM21	Benzene	LT	1.00	0	ug/l	GDX004
Ė				AV8	Benz ene	LT	1.05	Ö	ug/l	GCS021
•			• .	GG8	Calcium (filtered)		8.01	4	ug/l	GEP019
-				GG8	Calcium		8.20	c/į	ug/l	GEP020
				UM21	Trichlorofluoromethane	LT	1.00	0	ug/l	GDX004
				UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	GDX004
				GG8	Cadmium (filtered)	LT	8.40	o	ug/l	GEP019
j				GG8	Cadmium	LT	8.40	Ö	ug/1	GEP020
				UM21	Methylene Chloride	LT	1.00	0	ug/l	GDX004
ì				UM21	Bromomethane	LT	1.40	1	ug/l	GDX004
				UM21	Chloromethane ··	LT	1.20	0	ug/l	GDX004
_				UM21	Bromoform	LT	1.10	1	ug/l	GDX004
				UM21	Chloroform	LT	1.00	0	ug/l	GDX004
				HH8A	Chloride		3.20	4	ug/l	GCK021
			*	KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	GEGO10
				UM21	Chlorobenzene	LT	1.00	O	ug/l	GDX004
				UM25	Chlordane	LT	3.70	1	ug/l	GDZ004
•				KK6	Chlordane	LT	9.50	-2	ug/1	GEGO10
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GDZ004
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	GDZ004
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	Ö	ug/l	GDZ004
ł				602	Chromium (filtered)	LT	2.40	1	ug/l	GEP019
				GG8	Chromium	LT	2.40	1	ug/1	GEP020
ī				GG8	Copper (filtered)	LT	2.60	1	ug/l	GEP019
				GG8	Copper	LT	2.60	1	ug/l	GEP020

## Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

·		······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****************						
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	- Analytical Parameters	Re	e <b>s</b> ults	Units	Sample Number	
		<u></u>				***************************************				
69115	SW06001	0.2	STRM	TF20	- Cyanide	LT	5.00 0	ug/l	GEN005	
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GEE010	
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDZ004	
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GDX004	
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GDX004	
j				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GEI010	
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDZ004	
				UM25	Vapona	LT	8.50 0	ug/l	GDZ004	
				UH11	Vapona		7.88 -1	ug/1	GEJ010	
-				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDZ004	
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GEH010	
				UM25	Dithiane	LT	3.30 0	ug/1	G0Z004	
Ī				UM25	Dieldrin	LT	2.60 1	ug/l	GDZ004	
				KK8	Dieldrin	LT	5.00 -2	ug/1	GEG010	
				UM21	Acetone	LT	8.00 0	ug/l	GDX004	
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDZ004	
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	GEH010	
				UM25	Endrin	LT	1.80 1	ug/l	GDZ004	
				KK8	Endrin	LT	5.00 -2	ug/l	GEG010	
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GDX004	
1				AV6	Ethylbenzene	LT	1.37 0	ug/l	GCS021	
	***			HHBA	Fluoride	*.*	1.22 3	ug/l	GCK021	
				- CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN039	
				CC8	Mercury	LT	1.00 -1	ug/l	GCN040	
		·		UM25	Isodrin	LT	7.80 0	ug/l	GDZ004	
_				ккв	Isodrin	LT	5.10 -2	ug/l	GEG010	
				GG6	Potassium (filtered)		3.78 3	ug/l	GEP019	
				GG8	Potassium		3.64 3	ug/l	GEP020	
				UM21	Toluene	LT	1.00 0	ug/l	GDX004	
				AV8	Toluene	LT	1.47 0	ug/l	GCS021	
•				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GDX004	
-				GC8	Magnesium (filtered)		1.73 4	ug/l	GEP019	
				GG8	Magnesium		1.75 4	ug/l	GEP020	
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GDX004	
					•					

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
						***************************************			
- 89115	SW08001	0.2 - "	STRM	P8 -	methylisobutyl Ketone	LT	4.90 (	) ug/l	GEI010
09113	3400001	0.2	31741	UM25	Malathion	LT	2.10		GDZ004
				UH11	Malathion	LT	3.73 -1		GEJ010
<del></del>				GG8	Sodium (filtered)		5.62		GEP019
				GG8	Sodium	•	5.81 4		GEP020
j				LL8	Nitrite, Nitrate - Non specific		1.03 2	2 ug/l	GCL021
_				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDZ004
				GG8	Lead (filtered)	LT	7.40 1	. ug/l	GEP019
}				GG8	Lead	LT	7.40 1	. ug/l	GEP020
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GDZ004
				KK8	Dichlorodiphenylethane	LT	5.40 -2	2 ug/l	GEG010
_				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	. ug/l	GDZ004
				KK8	Oichlorodiphenyltrichloro-	LT	4.90 -2	e ug/l	GEGÖ10
				UM25	ethane Parathion	LT	3.70 1	ug/l	GDZ004
1				UH11	Parathion		6.47 -1		GEJ010
•				HH8A	Sulfate		9.00 4	l ug/l	GCK021
			MT I	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 i	ug/1	GDZ004
,				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	. ug/l	GEJ010
					Vinyldiethyl Phosphates			- 43	
j				UM21 UM21	1,1,2,2-Tetrachloroethane Tetrachloroethene	LT LT	1.50 0		GDX004 GDX004
•				UM21	Trichloroethene	LT	1.00 0	) ug/l	GDX004
		• • •		UM21	Ortho- & Para-Xylene	LT	2.00	5, 71	GDX004
<del></del>			•	AV8	Ortho- & Para-Xylene	LT	1.36		GCS021
			**	GG8	Zinc (filtered)	LT	2.20 1		GEP019
				GG8	Zinc		2.20 1		GEP020
•									
89115	SW08001	5.0	STRM	AAA8	Benzothiazole		5.00		GEF010
_				AAA8	p-Chlorophenylmethyl Sulfide		5.69		GEF010
-				AAA8	p-Chlorophenylmethyl Sulfoxide		1.15 1		GEF010
				AAA8	p-Chlorophenylmethyl Sulfone	LT			GEF010
				AAA6	Dithiane	LT	1.34 (	) ug/l	GEF010

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	-	Ře	esults	Units	Sample Number
69115	SW08001	5.0	STRM	- AAA8	. Dimethyldi <b>sulfide</b>		LT	5.50 -1	ug/l	GEF010:
				AAA6	1,4-Oxathiane		LT	2.38 0	ug/l	GEF010
<b>8</b> 9115	SW08001B	0.1	STRM	N9	1,1,1-Trichloroethane		LT	4.30 -1	ug/l	GEQ005
				<b>N</b> N9	1,1,1-Trichloroethane		LT	8.80 -2	ug/1	GDY009
				N9	1,1,2-Trichloroethane		LT	3.90 -1	ug/l	GEQ005
				NN9	1,1,2-Trichloroethane		LT	2.60 -1	ug/l	GDY009
				ИИЭ	1,1-Dichloroethene		LT	2.40 -1	ug/l	GDY009
				И9	1,1-Dichloroethane		LT	1.70 0	ug/l	GEQ005
				NN9	1,1-Dichloroethane		LT	7.40 -2	ug/l	GDY009
				N9	1,2-Dichloroethene		LT	1.70 0	.ug/l	GEQ005
				NN9	1,2-Dichloroethene		LT	2.60 -1	ug/l	GDY009
_				N9	1,2-Dichloroethane		LT	5.60 -1	ug/l	GEQ005
				еии	1,2-Dichloroethane		LT	8.50 -2	ug/l	GDY009
				N9	m-Xylene	4	LT	7.40 -1	ug/l	GEQ005
_				<b>AA</b> 9	m-Xylene		LT	2.60 -1	ug/1	GDW009
				KK9A	Aldrin		LT	1.90 -3	ug/l	GEB009
				69	Arsenic		LT	2.50 0	ug/l	GDM014
			1 200	LH15	Atrazine			2.29 0	ug/l	GEA009
				N9	Bicycloheptadiene		·LT	3.60 -1	ug/l	GEQ005
				ZZ9	Bicycloheptadiene		LT	5.08 0	ug/l	IKY010
				HH9	Benzothiazole		LT	2.04 0	ug/l	GEC008
		•		Н9	Benzene		LT	2.50 -1	ug/l	GEQ005
				AA9	Benz ene		LT	8.50 -2	ug/l	GDW009
				N9	Carbon Tetrachloride		LT	2.50 -1	ug/l	GEQ005
				NN9	Carbon Tetrachloride		LT	1.20 -1	ug/1	GDY009
				- P9	Cadmium		LT	7.40 -1	ug/l	GDK014
				N9	Methylene Chloride		LT	1.50 0	ug/l	GEQ005
				еии	Methylene Chloride		LT	3.70 0	ug/l	GDY009
				N9	Chloroform		LT	2.90 -1	ug/l	GEQ005
				NN9	Chloroform		LT	6.80 -2	ug/l	GDY009
-				KK9A	Hexachlorocyclopentadiene		LT	1.80 -3	ug/l	GEB009
				Н9	Chlorobenzene		LT	1.50 0	ug/l	GEQ005
				еии	Chlorobenzene		LT	2.00 -1	ug/l	GDY009

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
00115	CUADAA1 D	0.1	STRM	KK9A	Chlordane	LT	.2.30 -2	ug/l	GEB009
89115 	SW08001B	0.1	STREET	HH9	p-Chlorophenylmethyl Sulfide	LT		ug/1	GEC008
				HH9	p-Chlorophenylmethyl Sulfoxide		6.88 0	ug/1	GEC008
•	•	*		HH9	p-Chlorophenylmethyl Sulfone	LT		ug/l	GEC008
1			•	P9	Chromium	LT	6.50 0	ug/l	GDK014
ļ				P9	Copper	LT	4.70 0	ug/l	GDK014
				S9	Dibromochloropropane	LT	5.00 -3	ug/l	GED009
j				N9	Dibromochloropropane	LT	2.40 0	ug/l	GEQ005
į				N9	Dicyclopentadiene	LT	6.40 -1		GEQ005
_				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKY010
				LH15	· Vapona	LT	8.00 -2	ug/l	GEA009
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU012
				HH9	Dithiane	LT	1.45 0	ug/l	GEC008
				KK9A	Dieldrin	LT	3.30 -3	ug/l	GEB009
ı				N9	Dimethyldisulfide	LT	2.00 1	ug/l	GEQ005
				нн9	Dimethyldisulfide	LT	3.12 0	ug/l	GEC008
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU012
				KK9A	Endrin	LT	5.80 -3	ug/l	GEB009
,				N9	Ethylbenzene	LT	3.80 -1	ug/l	GEQ005
				<b>AA</b> 9	Ethylbenzene	LT	1.60 -1	ug/l	GDW009
				<b>AA</b> A9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS012
				Y9	Mercury	LT	5.00 -2	ug/l	GDL014
1				AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/l	KRS012
]				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB009
				N9	Toluene	LT	2.50 -1	ug/l	GEQ005
				<b>AA</b> 9	Toluene	LT	1.90 -1	ug/l	GDW009
				N9	Methylisobutyl Ketone		7.30 -1	ug/l	GEQ005
,				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY010
				LH15	Malathion	LT	1.26 -1	ug/l	GEA009
				ннэ	1,4-Oxathiane	LT	1.74 0	ug/l	GEC008
,		,		P9	Lead	LT	8.40 0	ug/l	GDK014
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB009
ļ				KK9A	Dichlorodiphenyltrichloro- ethane	LT		ug/l	GEB009

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Oate	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults .	Units	Sampl Numbe
89115	SW080018	0.1	STRM	LH15	Parathion	LT	1.59 -1	· ug/l	GEACO
02112	2400001D	. 0.1	J11411	LH15	2-Chloro-1(2,4-Dichlorophenyl)		1.48 -1	ug/l	GEA00
				Ellan	Vinyldiethyl Phosphates				
				N9	Tetrachloroethene	LT	2.50 -1	ug/l	GEQ00
				ин9	Tetrachloroethene	LT	2.70 -1	ug/l	GDY00
				Н9	Trichloroethene	LT	5.40 -1	ug/l	GEQOO
				еии	Trichloroethene	LT	1.40 -1	ug/l	GDY00
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/l	GEQOO
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDWOO
				P9	Zinc		2.24 1	ug/l	GDK01
89115	SW06003	0.2	STRM	AV8	m-Xylene	LT	1.32 0	ug/l	GCS02
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDW01
				KK8	Aldrin	LT	5.00 -2	ug/l	GEGO1
				UM25	Aldrin	LT	1.30 1	ug/l	GEKOC
				00	ALKALINITY		2.61 2	ug/l	GEOOC
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFI01
				AX8	Arsenic	LT	2.35 0	ug/l	GFI01
				LH15	Atrazine		1.03 1	ug/l	GEA01
				UM25	Atrazine	LT	5.90 0	ug/l	GEKOC
				UH11	Atrazine	LT	4.03 0	ug/l	GEJ01
				P8 ···	Bicycloheptadiene	LT	5.90 p	ug/l	GEIO
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKYOO
				AV6	Benzene	LT	1.05 0	ug/l	GCS02
				<b>AA9</b>	Benzene	LT	6.50 -2	ug/l	GDW01
				GG8	Calcium (filtered)	•	8.89 4	ug/l	GEP02
				GG8	Calcium		9.15 4	ug/l	GEP02
				GG8	Cadmium (filtered)	LT	6.40 0	ug/l	GEP02
				GG8	Cadmium	LT	8.40 0	ug/l	GEP02
				P9	Cadmium	LT	7.40 -1	ug/l	GDK01
				HH8A	Chloride		3.30 4	ug/l	GCK0:
				KK8	<b>Hexachlorocyclopentadiene</b>	LT	4.80 -2	ug/l	GEGO:
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GEKO
				KK8	Chlordane	LT	9.50 -2	ug/l	GEGO:
				UM25	Chlordane	LT	3.70 1	ug/l	GEKO

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
00115	CHADAA7	0.2	STRM	UM25	p-Chlorophenylmethyl Sulfide	LT		1 ug/l	GEKOO6
89115	SW08003	V-2	STREE	UM25	p-Chlorophenylmethyl Sulfoxide	LT		1 ug/l	GEK006
				UM25	p-Chlorophenylmethyl Sulfone	.LT		0 ug/l	GEK <b>006</b>
_				GG8	Chromium (filtered)	LT		i ug/l	GEP023
ļ				GG8	Chromium	LT	2.40	1 ug/l	GEP024
j.				P9	Chromium	LT	6.50	0 ug/l	GDK015
1				GG8	Copper (filtered)	LT	2.60	1 ug/l	GEP023
				GG8	Copper	LT	2.60	1  ug/l	GEP024
				P9	Copper	LT	4.70	0 ug/l	GDK015
3		*		TF20	Cyanide	LT	5.00	O ug/l	GENO07
				AY8	Dibromochloropropane	LT	1.95 -	1 ug/l	GEE012
				S9	Dibromochloropropane	LT	5.00 -	⊰ ug/l	GED010
1				UM25	Dibromochloropropane	LT	1.20	1 ug/l	GEK006
				P8	Dicyclopentadiene	LT	5.00	0 ug/l	GEI012
-				UM25	Dicyclopentadiene	LT	5.50	0 ug/l	GEK006
				ZZ9	Dicyclopentadiene	LT	5.12	0 ug/l	IKYOO9
,				LH15	Vapona	LT	8.00 -		GEA010
•				UM25	Vapona	LT	8.50		GEK006
				UH11	Vapona	LT	3.84 -		GEJ012
ŀ				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -	1 ug/l	GEH012
İ				UM25	Diisopropylmethyl Phosphonate	LT	2.10		GEK006
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -		KSU011
				UM25	Dithiane	LT	3.30		GEK006
1	•			KK8	Dieldrin	LT	5.00	2 ug/l	GEG012
ļ				UM25	Dieldrin	LT	2.60	1 ug/l	GEK006
2				ATO	Dimethylmethyl Phosphate	LT	1.88 -		GEH012
				UM25	Dimethylmethyl Phosphate	LT	1.30	2 ug/l	GEK006
				TT9	Dimethylmethyl Phosphate	LT	1.33 -	1  ug/l	KSU011
				KK8	Endrin	LT	5.00 -	2 ug/l	GEGO12
1				UM25	Endrin	LT	1.80	1 ug/l	GEK006
ı				AV6	Ethylbenzene		1.37		GCS023
i '				AA9	Ethylbenzene	LT	1.60 -	1 ug/l	GDW010
				HH6A	Fluoride		1.20		GCK023
ı				AAA9	Fluoroacetic Acid		9.40	0 ug/l	KRS011

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	⊷ Re	sults	Units	Sample Number
89115	SW08003	0.2	STRM	cca	Mercury (filtered)	LT	1.00 -1	ug/l	GCN043
				CC6	Mercury	LT	1.00 -1	ug/l	GCN044
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS011
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG012
				UM25	Isodrin	LT	7.60 0	ug/l	GEK006
				GG8	Potassium (filtered)		3.78 3	ug/l	GEP023
				GG8	Potassium		3.81 3	ug/l	GEP024
				AV8	Toluene	LT	1.47 0	ug/l	GC\$023
				<b>AA</b> 9	Toluene	LT	1.90 -1	ug/l	GDW010
				GG8	Magnesium (filtered)		1.88 4	ug/l	GEP023
				GG8	Magnesium		1.88 4	ug/l	GEP024
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GEI012
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY009
				LH15	Malathion	LT	1.26 -1	ug/l	GEA010
				UM25	Malathion	LT	2.10 1	ug/l	GEKOO6
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ012
				GG8	Sodium (filtered)		6.19 4	ug/l	GEP023
				GG8	Sodium		6.34 4	ug/l	GEP024
				UM25	1,4-Oxathiane		2.70 1	ug/l	GEKOO6
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP023
				GG8	Lead	LT	7.40 1	ug/l	GEP024
				P9	Lead	LT	8.40 0	ug/l	GDK015
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GEG012
			* .	UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEKOO6
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GEG012
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEK006
				LH15	Parathion	LT	1.59 -1	ug/l	GEA010
				UM25	Parathion		3.70 1	ug/l	GEKOO6
				UH11	Parathion		6.47 -1	ug/l	GEJ012
				HH8A	Sulfate		9.40 4	ug/l	GCK023
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA010

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for Spring 69

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`method	Analytical Parameters	Re	sults	Units	Sample Number
89115	SW08003	0.2	STRM	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LŢ	_1.90 1	ug/l	GEK006
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ012
i				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS023
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDW010
•				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP023
				668	Zinc	LT	2.20 1	ug/l	GEP024
				F9	Zinc	LT	8.70 0	ug/l	GDK015
69115	SW08003	5.0	STRM	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF012
,				AAAB	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF012
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF012
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF012
				AAA8	Dithiane	LT	1.34 0	ug/l	GEF012
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF012
				AAAB	1,4-Oxathiane	LT	2.38 0	ug/l	GEF012
69117	SW08003	0.1	STRM	LL8	Nitrite, Nitrate - Non specific		2.80 2	ug/l	GCL028
89115	SW08003B	0.2	STRM	N9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GEQ006
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDY010
	-	.2		N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/l	GEQ006
		+ + W		РИ9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	_GDY010
				РИЯ	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY010
		•••		<b>N</b> 9	1,1-Dichloroethane	LT	1.70 0	ug/l	GEQ006
\				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY010
		**		N9	1,2-Dichloroethene	LT	1.70 0	ug/l	GEQ006
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDY010
				N9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GEQ006
				NN9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY010
				<b>Н</b> 9	m-Xylene	LT	7.40 -1	ug/l	GEQ006
				KK9A	Aldrin	LT	1.90 -3	ug/l	GEB010
				<b>B</b> 9	Arsenic	LT	2.50 0	ug/l	GDM015
1				М9	Bicycloheptadiene		3.60 -1	ug/l	GEQ006

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69115	SW08003B	0.2	STRM	HH9	Benzothiazole	LT	2.04 0	ug/l	GECOO9
ľ				<b>н</b> 9	Benzene	LT	2.50 -1	ug/l	GEQ006
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/l	GEQ006
,				ени	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY010
1				ИЭ	Methylene Chloride		8.70 0	ug/l	GEQ006
				NN9	Methylene Chloride	LT	3.70 0	ug/l	GDY010
-				<b>N</b> 9	Chloroform	LT	2.90 -1	ug/l	GEQ006
				еии	Chloroform	LT	6.80 -2	ug/l	GDY010
				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	. ug/l	GEB010
•				N9	Chlorobenzene	LT	1.50 0	ug/l	GEQ006
,				еии	Chlorobenzene	LT	2.00 -1	ug/1	GDY010
,				KK9A	Chlordane	LT	2.30 -2	ug/l	GEB010
1				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC009
				нн9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GECOO9
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GEC009
				N9	Dibromochloropropane	LT		ug/l	GEQ006
r				К9	Dicyclopentadiene	LT		ug/l	GEQ006
_				HH9	Dithiane	LT	1.45 0	ug/l	GEC009
		. :	1.2	KK9A	Dieldrin	LT	3.30 -3	ug/l	GEB010
j.				И9	Dimethyldisulfide	LT	2.00 1	ug/l	GEQ006
•				нн9	Dimethyldisulfide	LT		ug/l	GEC009
				KK9A	Endrin	LT	5.60 -3	ug/l	GEBO10
				М9	Ethylbenzene	LT	3.80 -1	ug/l	GEQ006
				Y9	Mercury	LT	5.00 -2	ug/l	GDL015
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEBO10
-				Н9	Toluene	LT	2.50 -1	ug/l	GEQ006
				И9	Methylisobutyl Ketone		7.30 -1	ug/l	GEQ006
				нн9	1,4-Oxathiane		1.74 0	ug/l	GECO09
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB010
<b>.</b>			•	KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GE8 <b>0</b> 10
_				<b>н</b> 9	Tetrachloroethene	LT	2.50 -1	ug/l	GEQ006
				ии9	Tetrachloroethene	LT	2.70 -1	ug/1	GDY010
				N9	Trichloroethene	LT	5.40 -1	ug/l	GEQ006

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

,										
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number	
						***************************************		***************************************		
69115	8E0080W2	0.2	STRM	NN9	Trichloroethene	LT	1.40 -1	ug/1	GDY010	
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/l	GEQ006	
89134	SWOOOOJST	0.2	STRM	N8 ,	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GJU014	
`				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL004	
				Ne	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GJU014	
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GLL004	
				N8 .	1,1-Dichloroethene	LT	1.70 0	ug/l	GJU014	
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GLL004	
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GJU014	
Ì				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GLL004	
				N6	1,2-Dichloroethene	LT	7.60 -1	ug/l	GJU014	
_				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLL004	
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GJU014	
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GLL004	
<u>.</u>				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GLL004	
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GLL004	
ř _.				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GLL004	
				AV8	m-Xylene	LT	1.32 0	ug/l	GJT014	
				UM21	m-Xylene	LT	1.00 0	ug/l	GLL004	
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GLL004	
•				UM21	Acrylonitrile	LT	6.40 0	ug/l	GLL004	
ļ	, the effect of			· KK8	Aldrin	LT	5.00 -2	ug/l	GJV007	
				UM25	Aldrin	17	1.30 1	ug/l	GKW002	-
<b>T</b>				00	ALKALINITY		1.03 2	ug/l	GMK005	
			, *	AX8	Arsenic	LT	2.35 0	ug/l	GKF021	••
•				UH11	Atrazine	LT	4.03 0	ug/l	GJX007	
1				UM25	Atrazine	LT	5.90 0	ug/l	GKW002	
į.				P8	Bicycloheptadiene	ŁŦ	5.90 0	ug/l	GKC012	
				UM21	Bromodichloromethane		1.00 0	ug/1	GLL004	
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GJY007	
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GLL004	
				UM21	Chloroethane	LT	8.00 0	ug/l	GLL004	
				AV6	Benzene	LT	1.05 0	ug/l	GJT014	

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for Spring 89

					<i>;</i>				
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
		***************************************							
89134	T2E0080W2	0.2	STRM	UM21	Benz ene	LT	1.00 0	ug/1	GLL004
				GG8	Calcium (filtered)		3.02 4	ug/1	GKB013
,				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GLL004
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GJU014
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GLL004
1				GG8	Cadmium (filtered)	LT	6.40 <b>0</b>	ug/l	GKB013
1				не	Methylene Chloride	LT	7.40 0	ug/l	GJU014
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GLL004
ŀ				UM21	Bromomethane	LT	1.40 1	ug/l	GLL004
ı	•			UM21	Chloromethane	LT	1.20 0	ug/l	GLL004
				UM21	Bromoform	LT	1.10 1	ug/l	GLL004
				N8	Chloroform	LT	5.00 -1	ug/l	GJU014
ł				UM21	Chloroform	LT	1.00 0	ug/1 ·	GLL004
				HHSA	Chloride		1.30 4	ug/l	GKH019
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GJV007
}				UM25	Hexachlorocyclopentadiene	LT	5.40. 1	ug/l	GKW002
<i>\</i>				N8	Chlorobenzene	LT	8.20 -1	ug/l	GJU014
				UM21	Chlorobenzene	LT	1.00 0	ug/1	GLL004
				KK8	Chlordane	LT	9.50 -2	ug/l	GJV007
				UM25	Chlordane	LT	3.70 1	ug/l	GKW002
}				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GJY007
	, in the second			UM25	p—Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW002
•				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GKW002
				AAA8	.p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 O	ug/l	GKW002
ł				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKB013
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GKB013
				TF20	Cyanide	LT	5.00 0	ug/l	GK5005
				AY8	Dibromochloropropane		2.41 -1	ug/l	GJW007
J				UM25	Dibromochloropropane	LT	1.20 1	ug/1	GKW002
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLL004
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GLL004
İ				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GKC012

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Numbe
	~! \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Λ >	STRM	UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GKW00
69134	SW08003ST	0.2	. STEGH	UH11	Vapona	LT	3.84 -1	ug/l	GJX00
				UM25	Vapona	LT	8.50 0	ug/l	GKWOO
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GJZ01
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GKW00
				AAA8	Dithiane	LT	1.34 0	ug/l	GJY00
				UM25	Dithiane	LT	3.30 0	ug/l	GKWOO
				KK8	Dieldrin	LT	5.00 -2	ug/l	GJVOC
				UM25	Dieldrin	LT	2.60 1	ug/l	GKWOO
				AAA8	Dimethyldisulfide	LT	5.50 -i	ug/l	GJYOC
				AT8	Dimethylmethyl Phosphate	LT	1.88 -i	ug/1	GJZ01
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKWOC
				KK8	Endrin	LT	5.00 -2	ug/l	GJVO
				UM25	Endrin	LT	1.80 1	ug/l	GKW00
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GJT01
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GLLO
				HH8A	Fluoride	LT	4.82 2	ug/l	GKHO:
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GKG0
				KK8	Isodrin	LT	5.10 -2	ug/l	GJV00
				UM25	Isodrin	LT	7.80 0	ug/l	GKWO
				GG8	Potassium (filtered)		2.70 3	ug/l	GKB0:
				AV8	Toluene	LT	1.47 0	ug/l	GJTO
				UM21	Toluene	LT	1.00 0	ug/l	GLL <b>O</b>
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLLO
	•	•		GG8	Magnesium (filtered)		6.21 3	ug/l	GKB0:
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKC <b>0</b> :
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLLO
				UH11	Malathion		3.73 -1	ug/l	GJX0
				UM25	Malathion	LT	2.10 1	ug/l	GKWO
				GC8	Sodium (filtered)		2.49 4	ug/l	GKB0
				LL8	Nitrite,Nitrate - Non specific		4.10 2	ug/l	GKD0
				AAA8	1,4-Oxathiane		2.38 0	ug/l	GJYO
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	GKWO
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GKB0

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89134	SW080035T	0.2	STRM	KK8	Dichlorodiphenylethane	LT	5.40 -	2 ug/l	GJV007
				UM25	Dichlorodiphenylethane	LT	1.40	1 ug/l	.GKW002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -	2 ug/l	GJV007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1 ug/l	GKW002
j				UH11	Parathion	LT	6.47 -	1 ug/l	GJX007
				UM25	Parathion	LT	3.70	1 ug/l	GKW002
j				HH8A	Sulfate		3.10	4 ug/1	GKH019
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -	1 ug/l	GJX007
j'				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1 ug/l	GKW002
				UM21	1,1,2,2-Tetrachloroethane	LŢ	1.50	) ug/l	GLL <b>0</b> 04
				N6	Tetrachloroethene	LT	7.50 -	1 ug/l	GJU014
				UM21	Tetrachloroethene	LT	1.00	0 ug/l	GLL004
				N8	Trichloroethene	LT	5.60 -	1  ug/l	GJU014
				UM21	Trichloroethene	LT	1.00	0 ug/l	GLL004
ì				AV6	Ortho- & Para-Xylene	LT	1.36	0 ug/l	GJT014
				UM21	Ortho- & Para-Xylene	LT	2.00	0 ug/l	GLL004
•				GG8	Zinc (filtered)	LT	2.20	1 ug/l	GKB013
89116	SW11001	0.0	STSW	UM21	1,1,1-Trichloroethane		1.00		GF0002
				UM21	1,1,2-Trichloroethane	LT	1.00		GF0002
1				UM21	1,1-Dichloroethene	LT	1.00		GF0002
				UM21	1,1-Dichloroethane	LT	1.00		GF0002
•				UM21	1,2-Dichloroethene	LT	5.00	0 ug/l	GF0002
}				UM21	1,2-Dichloroethane		1.00		GF0002
1				UM21	1,2-Dichloropropane		1.00		GF0002
				UM21	1,3-Dichlorobenzene	LT	1.00		GF0002
1				UM21	1,3-Dichloropropane	LT			GF0002
				UM21	m-Xylene	LΤ	1.00	0 ug/l	GF0002
·				AV8	m-Xylene		1.32		GCS025
				UM21	2-Chloroethylvinyl Ether		3.50		GF0002
!				UM21	Acrylonitrile	LT	8.40	0 ug/l	GF0002

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method ———	Analytical Parameters	Re	esults	Units	Sample Number
00115	CU15 1 001	0.0	STSW	KK8	Aldrin	LT	5.00 -2	ug/l	ĠFG008
69116	SW11001	0.0	313W	UM25	Aldrin	LT	1.30 1	ug/l	GFC002
				00	ALKALINITY		3.42 1	ug/l	GE0009
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFI025
				AX8	Arsenic	LT	2.35 0	ug/l	GFI026
				UH11	Atrazine	LT	4.03 0	ug/l	GFK008
				UM25	Atrazine	LT	5.90 0	ug/l	GFC002
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GFD008
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GF0002
				AAA8	Senzothiazole	LT	5.00 0	ug/l	GFH005
				UM2i	Vinyl Chloride	LT	1.20 1	ug/l	GF0002
				UM21	Chloroethane	LT	8.00 0	ug/1	GF0002
				UM21	Benzene	LT	1.00 0	ug/1	GF0002
				AVS	Benzene	LT	1.05 0	ug/1	GCS025
				GG8	Calcium (filtered)		1.67 4	-ug/1	GFF011
				GG8	Calcium		1.56 4	ug/l	GFF012
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GF0002
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GF0002
				- GGଚ	Cadmium (filtered)	LT	6.40 0	ug/l	GFF011
				GG8	Cadmium	LT	6.40 0	ug/l	GFF012
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GF0002
				UM21	Bromomethane	LT	1.40 1	ug/l	GF00 <b>0</b> 2
				UM21	Chloromethane	LT	1.20 0	ug/l	GF0002
				UM21	Bromoform	LT	1.10 1	ug/1	GF0002
				UM21	Chloroform	LT	1.00 0	ug/l	GF0002
				HH8A	Chloride		5.59 3	ug/l	GCK025
				KK8	Hexachlorocyclopentadiene		7.10 -1	na/J	GFG008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/1	GFC002
				UM21	Chlorobenzene	LT	1.00 0	ug/1	GF0002
	*			KK8	Chlordane	LT	9.50 -2	ug/l	GFG008
				UM25	Chlordane	LT	3.70 1	ug/l	GFC002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GFH <b>0</b> 05
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFC002
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFH005

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89116	SW11001	0.0	STSW	UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFC002
0.00	OW11001	0.0	37311	AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH005
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFC002
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GFF011
				GG8	Chromium	LT		ug/l	GFF012
				GG8	Copper (filtered)	· LT	2.60 1	ug/l	GFF011
				GG8	Copper	LT	2.60 1	ug/l	GFF012
				TF20	Cyanide	LT	5.00 0	ug/l	GEN009
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN005
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFC002
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GF0002
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GF0002
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GFD008
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFC002
				UH11	Vapona	LT	3.84 -1	ug/l	GFK008
				UM25	Vapona	LT	6.50 O	ug/l	GFC002
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP005
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFC002
		1		AAA8	Dithiane	LT	1.34 0	ug/l .	GFH005
				UM25	Dithiane	LT	3.30 0	ug/l	GFC002
		•		KK8	Dieldrin	LT	5.00 -2	ug/l	. GFG008
				UM25	Dieldrin	LT	2.60 1	. ug/l .	GFC002
			÷	<b>AA</b> A6	Dimethyldisulfide	LT	5.50 -1	ug/l .	GFH005
				UM21	Acetone	LT	6.00 0	ug/l	GF0002
				AT6	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GFP005
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFC002
				KK8	Endrin		5.00 -2	ug/1	GFG008
				UM25	Endrin		1.80 1	ug/l	GFC002
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GF0002
				AV8	Ethylbenrene	LT	1.37 0	ug/l	GCS025
				HHBA	Fluoride	LT	4.82 2	ug/l	GCK025
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN051
				CC6	Mercury	LT	1.00 -1	ug/l	GCN052
				KK6	Isodrin	LT	5.10 -2	ug/l	GFG008

R. L. Stollar and Associates

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
89116	SW11001	0.0	STSW	UM25	Isodrin	LT	-7-80	: 0	ug/l	GFC002
03110	SW11001	0.0		GG8	Potassium (filtered)			3	ug/l	GEF011
				GG8	Potassium		3.27	-3	ug/l	GFF012
				UM21	Toluene	LT		0	ug/l	GF0002
				AV8	Toluene	LT	1.47	0	ug/l	GCS025
				UM21	Methylethyl Ketone	LT	1.00	1	ug/l	GF0002
				GG8	Magnesium (filtered)		2.60	3	ug/1	_ GFF0,11
				GG8	Magnesium		2.61	3	ug/l	GFF012
				P8 -	Methylisobutyl Ketone	LT	4.90	Ο.	ug/1	GFD008
				UM21	Methylisobutyl Ketone	LT	1.40	0	ug/l	GF0002
				UH11	Malathion	LT	3.73	-1	ug/l	GFK008
				UM25	Malathion	LT	2.10	1	ug/l	GFC002
				GG8	Sodium (filtered)		9.95	3	ug/l	GFF011
				GG8	Sodium		9.64	3	ug/l	GFF012
				LL8	Nitrite, Nitrate - Non specific		2.50	2	ug/l	GCL024
				AAA8	1,4-Oxathiane	LT	2.38	0	ug/l	GFH00
				UM25	1,4-Oxathiane	LT	2.70	1	ug/l	GFC002
				GG8	Lead (filtered)	LT	7.40	1	ug/l	GFF011
				GG8	Lead Dichlorodiphenylethane	LT	7.40 5.40		ug/l ug/l	GFF012 GFG008
				UM25	Dichlorodiphenylethane		1.40		ug/l	GFC002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2	ug/l	GFG008
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GFC002
				UH11	Parathion	LT	6.47	1	ug/l	GFK008
				UM25	Parathion		3.70		ug/l	GFC002
				HH8A	Sulfate		2.20	4	ug/l	GCK025
				UH11	2—Chloro-1(2,4—Dichlorophenyl)	LT	7.87		ug/l	GFK008
				UM25	Vinyldiethyl Phosphates 2-Chloro-1(2,4-Dichlorophenyl)	LΤ	1.90	1	ug/l	GFC002
				gar y Loren dor	Vinyldiethyl Phosphates			-	·· ••	
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0	ug/l	GF0002
				UM21	Tetrachloroethene		1.38	0	ug/l	GF0002

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
<b>89116</b>	SW11001	0.0	STSW	UM21	Trichloroethene	LΥ	1.00 0	ug/l	GF0002
09110	3W11001	0.0	.01011	UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GF0002
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS025
				GG8	Zinc (filtered)		3.02 1	ug/1	GFF011
				GG8	Zinc	LT	2.20 1	ug/l	GFF012
8 69116	SW11001B	0.1	SURF	NN9	1,1,1-Trichloroethane		3.36 -1	ug/l	GFS005
				NN9	1,1,2-Trichloroethane	L.T	2.60 -1	ug/1	GFS005
•				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS005
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GFS <b>00</b> 5
				ниэ	1,2-Dichloroethene	LT	2.60 -1	ug/l	GF\$005
				NN9	1,2-Dichloroethane	LT	6.50 -2	ug/l	GFS005
				AA9	m-Xylene	LT	2.60 -1	ug/l	GFT005
				<b>6</b> 9	Arsenic	LT	2.50 0	ug/1	GDM019
				LH15	Atrazine		4.58 0	ug/l	GFR005
}				<b>Z</b> Z9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY011
				ннэ —	Benzothiazole	LT	2.04 0	ug/l	GFA007
				AA9	Benzene	LT	8.50 -2	ug/l	GFT005
)				NN9	Carbon Tetrachloride	LT.	1.20 -1	ug/l	GFS005
				P9	Cadmium	LT	7.40 -1	ug/l	GDK019
				<b>ИН</b> 9	Methylene Chloride	LT	3.70 0	ug/l	GFS005
				нн9	. Chloroform	LT	6.80 -2	ug/l	GFS005
				NN9	Chlorobenzene	LT	2.00 -1	ug/l	GFS005
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GFA007
				HH9	p-Chlorophenylmethyl Sulfoxide		3.50 1	ug/1	GFA007
-		*		HH9	p—Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GFA007
ì				P9	Chromium		9.99 0	ug/l	GDK019
				P9	Copper		1.45 1	ug/l	GDK019
				\$9	Dibromochloropropane		2.29 -2	ug/l	GFB007
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKY011
				LH15	Vapona	LT	8.00 -2	ug/l	GFR005
				TT9	Diisopropylmethyl Phosphonate		1.14 -1	ug/l	KSU013
				HH9	Dithiane		1.45 0	ug/l	GFA007
-				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GFA007

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
	<u></u>	\							VC110.1.77
89116	SW110018	0.1	STSW	TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU013
				AA9	Ethylbenzene	LT	1.60 -1	ug/l ug/l	GFT005 KRS013
				AAA9	Fluoroacetic Acid	LT	2.00 0 5.00 -2	ug/l	GDL021
_		•		Y9	Mercury	LT		ug/l	KRS013
				<b>AAA</b> 9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/1	NOOTO
_				AA9	Toluene		3.75 -1	ug/l	GFT005
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY011
				LH15	Malathion	LT	1.26 -1	. ug/l	GFR005
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GFA007
				P9	Lead		2.74 1	ug/l	GDK019
•				LH15	Parathion	LT	1.59 -1	ug/l	GFR005
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR005
				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GFS005
				еии	Trichloroethene	LT	1.40 -1	ug/l	GFS005
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT005
				P9	Zinc .		1.02 2	ug/l	GDK019
89116	SW11001BD	0.1	SURF	еии	1,1,1-Trichloroethane	LT	8.60 -2	ug/l	GFS006
				NM9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GF\$006
<b>P</b>				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS006
		• • • • • •	10 miles	PN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GFS006
_			144 A 127 A	NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS006
				ни9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GFS006
			4	AA9	m-Xylene	LT	2.60 -1	ug/l	GFT006
_			* *	<b>B</b> 9	Arsenic	LT	2.50 0	ug/l	GDM020
				LH15	Atrazine		2.40 1	ug/l	GFR006
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY012
				НН9	Benzothiazole		2.04 0	ug/l	GFA008
				AA9	Benzene		8.50 -2	ug/l	GFT006
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GF\$006
				P9	Cadmium	LT	7.40 -1	ug/l	GDK020
				нн9	Methylene Chloride	LT	3.70 0	ug/l	GFS006

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	sults	Units	Sample Number
	***************************************		<u></u>	***************************************				<del></del>	
89116	SW110018D	0.1	SURF	NNS -	Chloroform	LT	6.80 -2	ug/l	GFS006
				NN9 -	Chlorobenzene	LT	2.00 -1	ug/1	GFS006
}				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GFA008
				HH9	p-Chlorophenylmethyl Sulfoxide		3.40 1	ug/l	GFA008
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GFA008
				P9	Chromium	LT	6.50 0	ug/l	GDK020
				P9	Copper		7.97 0	ug/l	GDK020
				S9	Dibromochloropropane		6.90 -3	ug/1	GF8008
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/1	IKY012
				LH15	Vapona	LT	8.00 -2	ug/l	GFR006
,				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU014
				HH9	Dithiane	LT	1.45 0	ug/l	GFA008
				HH9 "	Dimethyldisulfide	LT	3.12 0	. ug/l	GFA008
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU014
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GFT006
				6669	Fluoroacetic Acid	LT	2.00 0	ug/1	KRS014
				Y9	Mercury	LT	5.00 -2	. ug/l	GDL022
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/ľ	KRS014
				<b>A</b> A9	Toluene	LT	1.90 -1	ug/l	GFT006
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY012
				LH15	malathion	LT	1.26 -1	ug/l	GFR006
				HH9	1,4-Oxathiane	LT	1.74 0	ug/1	GFA008
				P9	Lead		1.76 1	ug/l	GDK020
				LH15	Farathion	LT	1.59 -1	ug/l	GFR006
	·			LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR006
				нн9	Tetrachloroethene	LT	2.70 -1	ug/l	GFS006
				<b>NN</b> 9	Trichloroethene	LT	1.40 -1	ug/l	GFS006
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT006
				<b>P</b> 9	Zinc		6.02 1	ug/l	GDK020
89116	SW11001D	0.0	STSW	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GF0003
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GF0003
							1.00 0	ug/l	GF0003

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling	Station	Sample	Sample	~					Sample
Date	Number ————	Depth (cm)	Type	Method	Analytical Parameters	. Re	sults	Units	Humbe
89116	SW11001D	0.0	STSW	UM21	1,1-Dichloroethane	LT	1.00	) ug/l	GF0001
03220				UM21	1,2-Dichloroethene	LT	5.00	) ug/l	GF0000
				UM21	1,2-Dichloroethane	LT	1.00	) ug/l	GF000
				UM21	1,2-Dichloropropane	LT	1.00	) ug/l	GF000
				UM21	1,3-Dichlorobenzene	LT	1.00	) ug/l	GF000
				UM21	1,3-Dichloropropane	LT	4.60 (	) ug/l	GF000
				UM21	m-Xylene	LT	1.00	) ug/l	GF000
				AV8	m-Xylene	LT	1.32	) .ug/l	GCS026
				UM21	2-Chloroethylvinyl Ether	LT	3.50	) ug/l	GF0000
				UM21	Acrylonitrile	LT	8.40	) ug/l	GF0000
				KK8	Aldrin	LT	5.00 -	2 ug/l	GFG009
				UM25	Aldrin	LT	1.30	l ug/l	GFC00
				00	ALKALINITY		3.27		GE001
				AX8	Arsenic		2.35		GF102
				AX8	Arsenic	LT	2.35	) ug/l	GFX00
				UH11	Atrazine	LT	4.03 (		GFK00
				UM25	Atrazine	LT	5.90 (		GFC00
				P6	Bicycloheptadiene	LT	5.90 (		GFD00
	***			UM21	Bromodichloromethane		1.00		GFO00
				raa6	Benzothiazole	LT	5.00 (	) ug/l	GFH00
				<b>UM</b> 21	Vinyl Chloride		1.20		GF000
				UM21	Chloroethane	LT.	8.00 (		GF0001
				UM21	Benzene		1.00 (		GF0001
				AV8	Benzene	LT	1.05		GCS026
				GG8	Calcium		1.53	∣ ug/l	GFF01
				GC8	Calcium		1.57		GFF01
				UM21	Trichlorofluoromethane		1.00 (		GF0003
				UM21	Carbon Tetrachloride		1.00 (		GF0003
				GG8	Cadmium	LT	8.40	•	GFF01
				GG8	Cadmium	LT	8.40 (	) ug/l	GFF01
				UM21	Methylene Chloride		1.00		GF0003
				UM21	Bromomethane		1.40		GF0001
				UM21	Chloromethane		1.20 (		GF000
				UM21	Bromoform	LT	1.10	ug/1	GF000

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	esults	Units	Sample Number
891 <b>16</b>	SW11001D	0.0	STSW	UM21	Chloroform	LT.	1.00 0 -	ug/l	GF0003
				HH8A	Chloride		5.78 3	ug/l	GCK026
				KK8	Hexachlorocyclopentadiene		1.80 0	ug/l	GFG009
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GFC003
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GF0003
				KK8	Chlordane	LT	9.50 -2	ug/l	GFG009
				UM25	Chlordane	LT	3.70 1	ug/1	GFC003
				BAAA	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GFH006
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFC003
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFH006
				UM25	p-Chlorophenylmethyl Sulfoxide	LΥ	1.50 1	ug/l	GFC003
				6AAA	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH006
				UM25	p—Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFC003
				GG8	Chromium	LT	2.40 1	ug/l	GFF013
				GG8	Chromium	LT	2.40 1	ug/l	GFF014
				GG8	Copper	LT	2.60 1	ug/l	GFF013
				GG8	Copper	LT	2.60 1	ug/l	GFF014
				TF20	Cyanide	LT	5.00 0	ug/l	GEN010
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN006
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFC003
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GF0003
				UM21		LT	2.00 0	ug/l	GF0003
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GFD009
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFC003
				UH11	Vapona	LT	3.84 -1	ug/l	GFK009
				UM25	Vapona	LT	6.50 <b>0</b>	ug/l	GFC003
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP006
				UM25	Diisopropylmethyl Phosphonate		2.10 1	ug/l	GFC003
				AAA8	Dithiane		1.34 0	ug/l	GFH006
				UM25	Dithiane	LT	3.30 0	ug/l	GFC003
				KK8	Dieldrin		5.00 -2	ug/l	GFG009
				UM25	Dieldrin		2.60 1	ug/l	GFC003
				AAA8	Dimethyldisulfide		5.50 -1	ug/l	GFH006
				UM21	Acetone	LT	8.00 0	ug/l	GF0003

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number	
89116	SW11001D	0.0	STSW	AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GFP006	
03110	30110010	W-0	W-1 W-11		Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFC003	
				KK8	Endrin	LT	5.00 -2	ug/l	GFG009	
				UM25	Endrin	LT	1.60 1	ug/l	GFC003	
1				UM21	Ethylbenzene	LT	1.00 0	ug/l	GF0003	
)				8VA	Ethylbenzene	LT	1.37 0	ug/l	GCS026	
				HHƏA	Fluoride	LT	4.82 2	ug/l	GCK026	
l				CC8	Mercury	LT	1.00 -1	ug/l	GCN053	
,				CC6	Mercury	LT	1.00 -1	ug/l	GGW005	
l l				KK8	Isodrin	LT	5.10 -2	ug/l	GFG009	
•				UM25	Isodrin	LT	7.80 0	ug/l	GFC003	
				GG8	Potassium		2.96 3	ug/l	GFF013	
				GGS	Potassium		3.30 3	ug/l	GFF014	
j				UM21	Toluene	LT	1.00 0	ug/l	GF0003	
_				AV8	Toluene	LT	1.47 0	ug/l	GCS026	
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GF0003	
•				GG8	Magnesium		2.65 3	ug/l	GFF013	
1				<b>G</b> G8	Magnesium		2.84 3	ug/l	GFF014	
l			-	P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	- GFD009	
,				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GF0003	
ì				UH11	Malathion	LT	3.73 -1	ug/l	GFK009	
i				UM25	Malathion	LT	2.10 1	ug/l	GFC003	
				GG8	Sodium		9.13 3	ug/l	GFF013	
1 ·				<b>GG</b> 8	Sodium		9.89 3	ug/l	GFF014	
j				LL8	Nitrite, Nitrate - Non specific		2.50 2	ug/l	GCL025	
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GFH006	
İ				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFC003	
				GG8	Lead	LT	7.40 1	ug/l	GFF013	
_				GG8	Lead		7.40 1	ug/l	GFF014	
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG009	
,				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFC003	
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	GFG009	
					ethane					
J				UM25	Oichlorodiphenyltrichloro-	LT	1.80 1	ug/1	GFC003	
					ethane					

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	~ Method	Analytical Parameters	Re	sults	Units .	Sample Number
					P	LT	6.47 -1	ug/l	GFK009
89116	SW11001D	0.0	STSW	UH11	Parathion 2 / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LT	3.70 1	ug/l	GFC003
				UM25	Parathion Sulfate	k. I	2.10 4	ug/l	GCK026
				HH8A UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.67 -1	ug/l	GFK009
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFC003
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GF0003
•				UM21	Tetrachloroethene		1.29 0	ug/l	GF0003
	•			UM21	Trichloroethene	LT	1.00 0	ug/1	GF0003
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GF0003
				AVA	Ortho- & Para-Xylene	LT	1.36 0	ug/l -	GC\$026
				668	Zinc	LT	2.20 1	ug/l	GFF013
				GG8	Zinc	LT	2.20 1	ug/l	GFF014
<b>6</b> 9130	SW11001ST	0.2	STSW	TT8	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY008
				UU8	1,1,1-Trichloroethane	LT	2.40 0	ug/l	GSH007
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/1	GBY008
_				UU8	1,1,2-Trichloroethane	LT	1.60 0	ug/1	GSH007
			•	TT6	1,1-Dichloroethene	LT	1.85 0	ug/I	GBY008
- <del></del>				TT8	1,1-Dichloroethane	LT	1.93 0	ug/l	G6Y008
				UU8	1,1-Dichloroethane	LT	1.40 0	ug/l	GSH007
				TT8	1,2-Dichloroethene	LT	1.75 0	ug/l	GBY008
		**		UUS	1,2-Dichloroethene	LT	3.20 0	ug/1	GSH007
-				TT6	1,2-Dichloroethane	LT	2.07 0	ug/l	GEY008
				uua	1,2-Dichloroethane	LT	7.20 -1	ug/l	GSH007
				UM18	1,3—Dichlorobenzene	LT	1.70 0	ug/1	PHF005
				\$\$8	m-Xylene	LT	1.04 0	ug/l	GAX015
				UU6	m-Xylene	LT	2.90 0	ug/l	GSH007
_				MM8A	Aldrin	LT	6.30 -2	ug/l	GPL014
				UM16	Aldrin	ND	5.00 0	ug/l	PHF005
				<b>VV</b> 8	Arsenic	LT			GH0021
_				<b>U</b> U8	Bicycloheptadiene	LT	1.80 0	ug/l	GSH007
				PP6A	Benzothiazole	LT			GIQ011
				SS8	Benz ene	LT	1.92 0	ug/l	GAX015

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Ře	sults	Units	Sample Number
89130	SW11001ST	0.2	STRM	UU6	Benz ene	LT	2.70 0	ug/l	GSH007
1	-	~~~		TT8	Carbon Tetrachloride	LT	1.69 0	ug/l	GBY008
				UU8	Carbon Tetrachloride	LT	4.90 0	ug/l	GSH007
				R9D	Cadmium	LT	5.00 0	ug/l	QSD008
1				ттө	Methylene Chloride	LT	2.48 0	ug/l	600Y8
				<b>UU</b> 6	Methylene Chloride	ND	5.00 0	ug/l	GSH007
				TT8	Chloroform	LT	1.88 0	ug/l	GBY008
1				uua	Chloroform	LT	1.70 0	ug/l	GSH007
				NN8	Chloride		8.63 3	ug/l	GJK008
-				MMGA	Hexachlorocyclopentadiene	LT	8.30 -2	ug/l	GPL014
				UM18	Hexachlorocyclopentadiene	LT	a.60 0	ug/l	PHF005
				TT8	Chlorobenzene	LT	1.36 0	ug/1	600Y60
				UU6	Chlorobenzene	LT	1.80 0	ug/l	GSH007
				MM8A	Chlordane	L۳	1.52 -1	ug/l	GPL014
•				PP8A	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	GIQ011
				PP6A	p-Chlorophenylmethyl Sulfoxide	LT	1.98 0	ug/l	GIQ011
				PP8A	p-Chlorophenylmethyl Sulfone	LT	2.24 0		GIQ011
				R90	Chromium	LT	2.20 1	ug/l	QSD008
ì				R90	Copper	LT	1.00 1	ug/1	QSD008
				TF18	Cyanide	LT	2.50 0	ug/l	LCN007
-				Qe	Dibromochloropropane	LT	1.30 -1	ug/l	GKU022
				UU8	Dibromochloropropane	LT	5.60 0		GSH007
j				UU6	Dicyclopentadiene	LT	3.70 0	" ug/l	GSH007
				<b>QQ</b> 8	Diisopropylmethyl Phosphonate	LT	1.01 1	ug/l	GGS008
				PP6A	Dithiane	LT	-3.34 0	ug/l	GIQ011
•				MMSA	Dieldrin	LT	5.39 -2	ug/l	GPL014
1				UM18	Dieldrin	ND	5.00 0	ug/l	PHF005
				PP6A	Dimethyldisulfide	LT	1.16 0	ug/1	GIQ011
-				<b>UU</b> 6	Dimethyldisulfide		3.70 0		GSH007
ì				QQS	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS006
i				MMSA	Endrin		6.00 -2		GPL014
				UM18	Endrin		6. <b>0</b> 0 0		PHF005
				\$\$8	Ethylbenzene		6.20 -1		GAX015
į.				<b>UU</b> 6	Ethylbenzene	LT	2.40 0	ug/l	GSH007

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample . Number
89130	SW11001ST	0.2	STSW	вии	Fluoride		1.22	3	ug/l	GJK008
				WW8	Mercury	LT	5.00	-1	ug/l	GWA011
				MMSA	Isodrin	LT	5.60	-2	ug/l	GPL014
				XX8	Potassium		2.98	3	ug/l	DYW008
]				SS8	Toluene	LT	2.10	0	ug/l	GAX015
i				UU8	Toluene	LT	3.50	o	ug/l	GSH007
,				UU8	Methylisobutyl Ketone	LT	1.20	0	ug/l	- GSH007
				TF22	Nitrite, Nitrate - Non specific		1.00	3	ug/l	PCD018
i				UM18	N-Nitrosodimethylamine	ND	2.00	0	ug/l	PHF005
ì				UM18	N-Nitrosodi-N-Propylamine	LT	4.40	0	ug/l	PHF005
j				PP8A	1,4-Oxathiane	LT	1.35	0	ug/l	GIQ011
				R9D	Lead	LT	5.20	1	ug/l	QSD008
l				MMSA	Dichlorodiphenylethane	LT	4.60	-2	ug/l	GPL014
				UM18	Dichlorodiphenylethane	ND	5.00	0	ug/l	PHF005
ì				MM8A	Dichlorodiphenyltrichloro- ethane	LT	5.90	-2	ug/l	GPL014
				UM18	Dichlorodiphenyltrichloro- ethane	ND	9.00	o	ug/l	PHF005
				UN07	Parathion		1.04	0	ug/l	PGB008
				NN8	Sulfate		1.11	4	ug/l	GJK008
				TT8	Tetrachloroethene	LT	2.76	0	ug/l	GBY008
1	*			UU8	Tetrachloroethene	LT	2.90	0	ug/l	GSH007
ļ				TT8	Trichloroethene	LT	1.31	0	ug/l	GBY008
				UU3	Trichloroethene	LT	2.00	0	ug/l	GSH007
				SS8	Ortho- & Para-Xylene		1.46	0	ug/1	GAX015
				UU6	Ortho- & Para-Xylene	LT	2.40	0	ug/l	GSH007
				R9D	Zinc		3.81	1	ug/l	Q\$D008
89116	SW11002	0.1	STRM	UM21	1,1,1-Trichloroethane	LT	1.00		ug/l	GF0004
1				UM21	1,1,2-Trichloroethane	LT	1.00		ug/l	GF0004
				UM21	1,1-Dichloroethene	LT	1.00		ug/l	GF0004
,				UM21	1,1-Dichloroethane	LT	1.00	0	ug/l	GF0004
l				UM21	1,2-Dichloroethene	LT	5.00	0	ug/l	GF0004
j				UM21	1,2-Dichloroethane	LT	1.00	0	ug/l	GF0004

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	TMethod	Analytical Parameters	- Re	sults		Units	Sample Number	
89116	SW11002	0.1	STRM	UM21	1,2-Dichloropropane	LT	1.00	0	ug/l	GF0004	
				UM21	1,3-Dichlorobenzene	 LT	1.00	0	ug/l	GF0004	
				UM21	1,3-Dichloropropane	LT	4.80	0	ug/1	GF0004	
•				UM21	m-Xylene	LT	1.00	0	ug/1	GF0004	
		•		AVS	m-Xylene	LT	1.32	0	ug/l	GCS027	
•				UM21	· 2-Chloroethylvinyl Ether	LT	3.50	o	ug/l	GF0004	
				UM21	Acrylonitrile	LT	8.40	0	ug/l	GF0004	
				KK8	Aldrin	LT	5.00	-2	ug/l	GFG010	
				UM25	Aldrin	LT	1.30	1	ug/1	GFC004	
_				00	ALKALINITY		5.12	1	ug/l	GE0011	
				AX8	Arsenic (filtered)	LT	2.35	o	ug/l	GFX006	
	•			AX8	Arsenic	LT	2.35	. 0	ug/1	GFX007	
-				UH11	Atrazine	LT	4.03	0	ug/l	GFK010	
				UM25	Atrazine	LT	5.90	0	ug/l	GFC004	
				P8 -	Bicycloheptadiene	LT	5.90	0	ug/l	GFD010	
1				UM21	Bromodichloromethane	LT	1.00		ug/l	GF0004	
}				AAA6	Benzothiazole	LT	5.00		ug/l	GFH007	
				UM21	Vinyl Chloride	LT	1.20		ug/1	GF0004	
				UM21	Chloroethane	LT	8.00		ug/1	GF0004	
				UM21	Benzene	LT	1.00	٥	ug/l	GF0004	
_				AV6	Benzene	LT	1.05		ug/l	GCS027	
				GG8	Calcium (filtered)		2.37		ug/l	GFF015	
J				GG8	Calcium		2.33		ug/l	GFF016	
				UM21	Trichlorofluoromethane	LT	1.00		ug/l	GF0004	
				UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	GF0004	
					Cadmium (filtered)		8.40		ug/l	GFF015	
1				GG8	Cadmium	LT	6.40		ug/l	GFF016	
				UM21	Methylene Chloride	LT	1.00		ug/l	GF0004	
•				UM21	Bromomethane	LT	1.40		ug/1	GF0004	
				UM21	Chloromethane	LT	1.20	0	ug/l	GF0004	
<b>.</b>				UM21	Bromoform	LT	1.10		ug/l	GF0004	
				UM21	Chloroform	LT	1.00		ug/l	GF0004	
ì				HH8A	Chloride		1.70		ug/l	GCK027	
				KK8	Hexachlorocyclopentadiene		2.59	-1	ug/1	GFG010	

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89116	SW11002	0.1	STRM	UM25	Hexachlorocyclopentadiene .	LT.	5.40 1	ug/l	GFC004
			*****	UM21	Chlorobenzene	LT	1.00 0	ug/l	GF0004
				KK8	Chlordane	LT	9.50 -2	ug/l	GFG010
•				UM25	Chlordane	LT	3.70 1	ug/l	GFC004
)				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GFH007_
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFC004
_				AAA8	p-Chlorophenylmethyl Sulfoxide	· LT	1.15 1	ug/l	GFH007
				UM25	p-Chlorophenylmethyl Sulfoxide	L٣	1.50 1	ug/l	GFC004
				AAAB	p-Chlorophenylmethyl Sulfone	LΥ	7.46 0	ug/l	GFH007
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFC004
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GFF015
				GG8	Chromium	LT	2.40 1	ug/l	GFF016
1				<b>G</b> G8	Copper (filtered)	LT	2.60 1	ug/l	GFF015
				GG8	Copper	LT	2.60 1	ug/l	GFF016
ļ				TF20	Cyanide	LT	5.00 0	ug/l	GEN011
1				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN007
<b>;</b>				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFC004
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GF0004
			'Z- 181	- UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GF0004
				P8 .	Dicyclopentadiene	LT	5.00 0	ug/l	GFD010
				UM25-	Dicyclopentadiene		.5.50 O	ug/l	GFC004
	e e			UH11	Vapona	LT	3.64 -1	ug/l	GFK010
				UM25	Vapona	LT	6.50 0	ug/l	GFC004
-				ATA	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP007
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFC004
			٠.	AAA8	Dithiane	LT	1.34 0	ug/l	GFH007
)				UM25	Dithiane	LT	3.30 0	ug/l	GFC004
				KK8	Dieldrin		5.00 -2	ug/l	GFG010
•				UM25	Dieldrin	LT	2.60 1	ug/l	GFC004
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GFH007
į				UM21	Acetone	LT	6.00 0	ug/l	GF0004
				AT6	Dimethylmethyl Phosphate		4.30 -1		GFP007
				UM25	Dimethylmethyl Phosphate		1.30 2		GFC004
j				KK8	Endrin	LT	5.00 -2	ug/l	GFG010

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89116	SW11002	0.1	STRM	UM25	Endrin	LT	1.80 1	ug/l	GFC004
09110	SW11002	. 0.1	31141	UM21	Ethylbenzene	LT	1.00 0	ug/l	GF0004
				AV8	Ethylbenzene		1.37 0	ug/l	GCS027
				HHƏA	Fluoride		7.40 2	ug/l	GCK027
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GGW007
				CC8	Mercury	LT	1.00 -1	ug/l	GGW008
				KK8	Isodrin	LT	5.10 -2	ug/l	GFG010
				UM25	Isodrin	LT	7.80 0	ug/l	GFC004
				GG8	Potassium (filtered)		4.52 3	ug/l	GFF015
				GG8	Potassium		4.70 3	ug/l	GFF016
				UM21	Toluene	LT	1.00 0	ug/l	GF0004
				AV8	Toluene	LT	1.47 0	ug/1	GCS027
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GF0004
				GG8	Magnesium (filtered)		3.73 3	ug/l	GFF015
				GG8	Magnesium		3.74 3	ug/l	GFF016
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GFD010
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GF0004
				UH11	Malathion	LT	3.73 -1	ug/l	GFK010
			*** **** **** ***	UM25	Malathion	LT	2.10 1	ug/l	GFC004
				GG8	Sodium (filtered)		2.04 4	ug/l	GFF015
				608	Sodium		2.09 4	ug/l	GFF016
			÷	LL8	Nitrite, Nitrate - Non specific		5,19 1	ug/l	GCL026
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GPH007
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFC004
				GG6	Lead (filtered)	LT	7.40 1	ug/l	GFF015
				GG8	Lead		7.40 1	ug/l	GFF016
				KK8	Dichlorodiphenylethane		5.40 -2	ug/l	GFG010
				UM25	Dichlorodiphenylethane		1.40 1	ug/l	GFC004
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GFG010
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFC004
				UH11	Parathion	LT	6.47 -1	ug/l	GFK010
				UM25	Parathion	LT	3.70 1	ug/l	GFC004

01/10/90

Summary of Analytical Results

Campling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89116	SW11002	0.1	STRM	HH8A	Sulfate		3.10 4	ug/l	GCK027
09110	3W. I. T. U. U.	<b>5.</b> <i>x</i>	• ,,	UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.67 -1	ug/l	GFK010
		-		UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFC004
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GF0004
3				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GF0004
			. 1914	UM21	Trichloroethene	LT	1.00 0	ug/l	GF0004
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GF0004
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS027
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GFF015
				GG8	Zinc	LT	2.20 1	ug/l	GFF016
69116	SW11002B	0.1	STRM	- NN9	1,1,1-Trichloroethane	LT	6.60 -2	ug/l	GFS007
05110	5//110020	0.7		NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GFS007
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/1	GFS007
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GFS007
				<b>и</b> и9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS007
				ииэ .	1,2-Dichloroethane	LT	8.50 -2	ug/l	GFS007
				AA9	m-Xylene	LT	2.60 -1	ug/l	-GFT007
				<b>B</b> 9	Arsenic	LT	2.50 0	ug/l	GDM021
			- : :	LH15	Atrazine		3.72 0	ug/l	GFR007
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY013
				ннэ	Benzothiazole	ĹŤ	2.04 0	ug/l	GFA009
				AA9	Benzene	LT	8.50 -2	ug/l	GFT007
				PN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GFS007
				P9	Cadmium	LT	7.40 -1	ug/l	GDK021
				РИЯ	Methylene Chloride	LT	3.70 0	ug/l	GFS007
				еии	Chloroform	LT		ug/l	GFS007
				NN9	Chlorobenzene	LT		ug/l	GFS007
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0		GFA009
				HH9	p-Chlorophenylmethyl Sulfoxide		5.94 0		GFA009
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GFA009
ļ				P9	Chromium	LT	6.50 0	ug/l	GDK021

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
	Col to a Ci Cicio	 6. 4	er Trenks	P9	Copper	LT	4.70 0	ug/l	GDK021
89116	SW11002B	0.1	STRM	89 S9	Dibromochloropropane	LT	5.00 -3		GFB009
				2 <b>2</b> 9	Dicyclopentadiene	LT	5.12 0		IKY013
				LH15	Vapona	LT	8.00 -2		GFR007
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1		KSU015
				HH9	Dithiane	LT	1.45 0	ug/l	GFA009
				ннэ	Dimethyldisulfide	LT	3.12 0	ug/l	GFA009
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU015
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GFT007
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS015
				<b>Y</b> 9	Mercury	LT	5.00 -2	ug/l	GDL023
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS015
				AA9	Toluene	LT	1.90 -1	ug/l	GFT007
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY013
				LH15	Malathion	LT	1.26 -1	ug/l	GFR007
				нн9	1,4-Oxathiane	LT	1.74 0	ug/l	GFA009
				P9	Lead		1.81 1	ug/l	GDK021
		AM		LH15	Parathion	LT	1.59 -1	ug/1 ==	GFR007
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR007
				ииэ	Tetrachloroethene	LT	2.70 -1	ug/l	GF\$007
			-ad-	ниэ	Trichloroethene	LT	1.40 -1	ug/l	GFS007
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT007
				P9	Zinc		6.47 1	ug/l	GDK021
89116	SW11002FB	O	QCFB	UM21	1,1,1-Trichloroethane	LT	1.00 0		GF0005
				UM21	1,1,2-Trichloroethane	LT	1.00 0		GF0005
				UM21	1,1-Dichloroethene	LT	1.00 0		GF0005
				UM21	1,1-Dichloroethane	LT	1.00 0		GF0005
				UM21	1,2-Dichloroethene	L٣	5.00 0	ug/l	GF0005
				UM21	1,2-Dichloroethane	LT			GF0005
				UM21	1,2-Dichloropropane	LT	1.00 0		GF0005
				UM21	1,3-Dichlorobenzene	LT	1.00 0		GF0005
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GF0005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Fee	esults	Units	Sample Number
89116	SW11002FB	٥	QCFB	UM21	m-Xylene	LT	1.00 0	ug/l	GF0005
				AV8	m-Xylene	LT	1.32 0	${\sf ug/l}$	GCS028
j				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GF0005
				UM21	Acrylonitrile	LT	8.40 0	ug/l	GF0005
				KK8	Aldrin	LT	5.00 -2	ug/l	GFG011
!				UM25	Aldrin	LT	1.30 1	ug/l	GFC005
l				00	ALKALINITY	LT	5.12 1	ug/l	GE0012
				AX6	Arsenic (filtered)	LT	2.35 0	ug/1	GFX008
J			**	UH11	Atrazine	LT	4.03 0	ug/l	GFK011
1				UM25	Atrazine	LT	5.90 0	ug/l	GFC005
	-			P6	Bicycloheptadiene	LT	5.90 0	ug/l	GF0011
				UM21	Bromodichloromethane	LT	1.00 0	ug/1	GF0005
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GFH008
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GF0005
				UM21	Chloroethane	LT	8.00 0	ug/l	GF0005
				UM21	Benzene	LT	1.00 0	ug/l	GF0005
•				AV8	Benzene	LT	1.05 0	ug/l	GCS028
1				GG8	Calcium (filtered)	LT	5.00 2	ug/l	GFF017
."			th. 1 4.	UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GF0005
į				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GF0005
				GG8	Cadmium (filtered)	LT	6.40 0	ug/l	GFF017
-				UM21	Methylene Chloride	 LT	1.00 0	ug/1	GF0005
			4	UM21	Bromomethane	 LT	1.40 1	ug/l	GF0005
l				UM21	Chloromethane	LT	1.20 0	ug/l	GF0005
				UM21	Bromoform	LT	1.10 1	ug/l	GF0005
				UM21	Chloroform	LT	1.00 0	ug/l	GF0005
				HH8A	Chloride	LT	7.20 2	ug/1	GCK028
l				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GFG011
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GFC005
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GF0005
ļ				кка	Chlordane	LT	9.50 -2	ug/l	GFG011
				UM25	Chlordane	LT	3.70 1	ug/l	GFC005
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GFH008
1				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GFC005

R. L. Stollar and Associates Comprehensive

Summary of Analytical Results

Sampling   Date	Station Number	Sample Depth (cm)	Sample Type	_Method	Analytical Parameters	Re	esults	Units	Sample Number
						. ***			021440
89116	SW11002FB	0	QCFB	AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1		GFH008
1				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFC005
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0		GFH008
•				UM25 GG8	p-Chlorophenylmethyl Sulfone Chromium (filtered)	LT LT	5.30 0 2.40 1	ug/l ug/l	GFC005 GFF017
Ì					ر پښور	,	~ ~ ~ ~		omma a
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GFF017
				TF20	Cyanide	LT	5.00 0	ug/l	GEN012
1				AY8	Dibromochloropropane	LT	1.95 -1		GFN008
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFC005
•				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GF0005
				UM21	1,4-Dichlorobenzene	Ĺ٣	2.00 0	ug/l	GF0005
				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GFD011
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFC005
				UH11	Vapona	LT	3.84 -1	ug/l	GFK011
l				UM25	Vapona	LT	8.50 0	ug/l	GFC005
				ATS	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP008
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFC005
,				<b>AAA</b> 8	Dithiane	LT	1.34 0	ug/l	GFH008
_				UM25	Dithiane	LT	3.30 0	ug/l	GFC005
				KK8	Dieldrin	LT	5.00 -2	ug/l :.	GFG011
				UM25	Dieldrin	LT	2.60 1	ug/l	GFC005
1				AAAS	Dimethyldisulfide	LT	5.50 -1	ug/l	GFH008
				UM21	Acetone	LT	6.00 O	ug/l	GF0005
<u>.</u>				STA	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GFP008
1				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFC005
}				KK8	Endrin	LT	5.00 -2	ug/l	GFG011
				UM25	Endrin	LT	1.80 1	ug/l	GFC005
1				UM21	Ethylbenzene	LT	1.00 0	ug/l	GF0005
				AV6	Ethylbenzene	LT	1.37 0	ug/l	GCS028
				HH8A	Fluoride	LT	4.62 2	ug/l	GCK028
				cce	Mercury (filtered)	LT	1.00 -1	ug/l	GGW009
	-			KK8	Isodrin	LT	5.10 -2	ug/l	GFG011
				UM25	Isodrin	LT	7.80 0	ug/l	GFC005
				GG8	Potassium (filtered)	LT	2.50 2	ug/l	GFF017

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	- Re	eulte	Units	Sample Number
<del>8</del> 9116	SW11002FB	T. O	QCSP	UM21	Toluene	LT	1.00 0	ug/l	GF0005
•				AV8	Toluene	LT	1.47 0	ug/1	GCS028
			• •	UM21	Methylethyl Ketone	LT	1.00 1	ug/1	GF0005
}				GG8	Magnesium (filtered)	LT	5.00 2	ug/l	GFF017
· 1				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GFD011
				UM21	Methylisobutyl Ketone	LT	1.40 0	u9/l	GF0005
				UH11	Malathion	LT	3.73 -1	ug/l	GFK011
				UM25	Malathion	LT	2.10 1	ug/1	GFC <b>00</b> 5
				GG8	Sodium (filtered)	LT	9.40 2	ug/l	GFF017
				LLS	Nitrite, Nitrate - Non specific		7.43 1	ug/l	GCL027
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GFH008
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFC005
_				GG8	Lead (filtered)	LT	7.40 1	ug/l	GFF017
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG011
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFC005
]				KK8	Dichlorodiphenyltrichloro- ethane	· LT	4.90 -2	ug/l	GFG011
				UM2S	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFC005
				UH11	Parathion	LT	6.47 -1	ug/l	GFK011
				UM25	Parathion	LT	3.70 1	ug/1	GFC005
-				HH8A	Sulfate	LT	2.51 2	ug/l	GCK028
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK011
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFC005
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GF0005
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GF0005
				UM21	Trichloroethene	LT	1.00 0	ug/l	GF0005
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GF0005
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS028
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GFF017
69130	SW11002ST	0.2	STRM	тта	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY006
				UU3	1,1,1-Trichloroethane	1 T	2.40 0	ug/l	GSH005

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_Method	Analytical Parameters	Re	sults	Units	Sample .
89130	SW11002ST	0.2	STRM	TT8	1.1.2-Trichloroethane	LT	1.63 0	ug/l	GBY006
		<del></del>		UU8	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH005
				TT8	1,1-Dichloroethene	LT	1.85 0	ug/l	GBY006
				TT8	1,1-Dichloroethane	LT	1.93 0	ug/l	G6Y006
l				UU8	1,1-Dichloroethane	LT	1.40 0	ug/l	GSH005
				TT8	1,2-Dichloroethene	LT	1.75 0	ug/l	GBY006
				UU8	1,2-Dichloroethene	LT	3.20 0	ug/l	GSH005
				TT8	1,2-Dichloroethane	LT	2.07 0	ug/l	GBY006
				UU8	1,2-Dichloroethane	LT	7.20 -1	ug/l	GSH005
l				UM18	1,3-Dichlorobenzene	LT	1.70 0	ug/l	PHF003
				SS8	m-Xylene	LT	1.04 0	ug/l	GAX006
į				UU8	m-Xylene	LT	2.90 0	ug/l	GSH005
				AGMM	Aldrin	LT	8.30 -2	ug/1	GPL012
				MM8A	Aldrin	LT	8.30 -2	ug/l	GPL013
				UM16	Aldrin	ND	4.70 0	ug/l	PHF003
<b>:</b>				<b>VV</b> 8	Arsenic	LT	2.50 0	ug/l	GHO019
				UU8	Bicycloheptadiene	LT	1.80 0	ug/l	GSH005
				PP8A	Benzothiazole	LT	1.14 0	ug/l	GIQ009
				UM18	Benzothiazole		3.00 0	ug/1	PHF003
			*	SS8	Benzene	LT	1.92 0	ug/l	GAX006
				UU8	Benzene	LT	2.70 0	ug/l	GSH005
				TT8	Carbon Tetrachloride	LT	1.69 0	ug/l	GBY006
				UU8	Carbon Tetrachloride	LT		ug/l	GSH005
				R90	Cadmium	LT	5.00 0	ug/l	QSD006
				TT8	Methylene Chloride	LT	2.48 0	ug/l	GBY006
				uus	Methylene Chloride	МD	5.00 0	ug/l	GSH005
				TT6	Chloroform	LT	1.88 0	ug/l	GBY006
				<b>W</b> 6	Chloroform	LT	1.70 0	ug/l	GSH005
				NN8	Chloride		1.16 4	ug/l	GJK006
				MM8A	Hexachlorocyclopentadiene	LT	6.30 -2	ug/l	GPL012
				MMSA	Hexachlorocyclopentadiene	LT	8.30 -2	ug/l	GPL013
				UM16	Hexachlorocyclopentadiene	LT	8.60 0	ug/l	PHF003
				TT8	Chlorobenzene	LT	1.36 0	ug/l	GBY006
				UU8	Chlorobenzene	LT	1.80 0	ug/l	GSH005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample -Type	-Method	Analytical Parameters	Re	sults	Units	Sample Number
69130	SW11002ST	0.2	STRM	· MM6A	· Chlordane	LT	1.52 -1	ug/1	GPL012
1	0,11200201		******	MMBA	Chlordane	LT	1.52 -1	ug/l	GPL013
				PP6A	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/1	GIQ009
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98 0	ug/1	GIQ009
				PP6A	p-Chlorophenylmethyl Sulfone	LT	2.24 0	ug/l	G10009
				R90	Chromium	LT	2.20 1	ug/l	QSD006
				R9D	Copper		1.05 1	ug/l	QSD006
				TF18	Cyanide	LT	2.50 0	ug/1	LCN005
				Q6 ·	Dibromochloropropane	LT	1.30 -1	ug/1	GKU020
				UU6	Dibromochloropropane	LT	5.60 0	ug/1	GSHO05
				R6	Dicyclopentadiene	LT	9.31 0	ug/l	GXA020
				UU8	Dicyclopentadiene	LT	3.70 0	ug/l	GSH005
				QQ6	Diisopropylmethyl Phosphonate	LT	1.01 i	ug/1	GG\$006
				PP6A	Dithiane	LT	3.34 0	ug/1	GIQ009
		ne et		MM8A	Dieldrin	LT	5.39 -2	ug/l	GPL012
				MMOA	Dieldrin	LT	5.39 -2	ug/l	GPL013
				UM18	Dieldrin	OM	4.70 0	ug/l	PHF003
				PP6A	Dimethyldisulfide	LT	1.16 0	ug/l	GIQ009
				008	Dimethyldisulfide	LT	3.70 0	ug/1	GSHO05
				998	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS006
				MM6A	Endrin	LT	6.00 -2	ug/l	GPL012
				MMSA	Endrin	LT	6.00 -2	ug/l	GPL013
				UM18	Endrin	ПN	7.60 0	ug/l	PHF003
				SS8	Ethylbenzene	LT	6.20 -1	ug/l	GAX006
				· uua	Ethylbenzene	LT	2.40 0	ug/1	GSH005
				ние	Fluoride	LT	1.00 3	ug/l	GJK006
				<b>₩W</b> @	Mercury	LT	5.00 -1	ug/l	GW4009
				MMSA	Isodrin	LT	5.60 -2	ug/l	- GPL012
				MMBA	Isodrin	LT	5.60 -2	ug/l	GPL013
				XX6	Potassium		2.62 3	ug/l	DYW006
				SS8	Toluene		2.10 0	ug/l	GAX006
				W8	Toluene		3.50 0	ug/l	GSH005
				R8	Methylisobutyl Ketone		1.29 1	ug/l	GXA020
				UU6	Methylisobutyl Ketone	LT	1.20 0	ug/1	GSH005

R. L. Stollar and Associates Compreh

Comprehensive Monitoring Program

Summary of Analytical Results

UM18	Sampling Date	Station Number	Sample Depth (cm)	Sample Type	"Method	Analytical Parameters	Re	esults	*********	Units	Sample Number
UM18	89130	SW11002ST	0.2	STRM	TF22	Nitrite,Nitrate - Non specific		1.00	3	ug/l	PCD016
PPSA   1,4-Dxathiane	1				UM18	N-Nitrosodimethylamine	ND	2.00	0	ug/l	PHF003
MMSA					UM18	N-Nitrosodi-N-Propylamine	LT	4.40	0	ug/l	PHF003
MMSA Dichlorodiphenylethane LT 4.60 -2 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l					PP8A	1,4-Oxathiane	LT	1.35	٥	ug/l	GIQ009
MMRA Dichlorodiphenylethane					R90	Lead	LT	5.20	1	ug/l	QSD006
Unis   Dichlorodiphenylethane   ND   4.70   0   ug/l   6					MMGA	Dichlorodiphenylethane	LT	4.60	-2	ug/l	GPL012
MMS					MM6A	Dichlorodiphenylethane	LT	4.60	-2	ug/l	GPL013
### ethane  UM18			•		UM18	Dichlorodiphenylethane	ND	4.70	0	ug/l	PHF003
UM18 Dichlorodiphenyltrichloro- ethane  UM07 Parathion LT 2.50 -1 ug/l 6 NN8 Sulfate 1.34 4 ug/l 0 NN8 Sulfate 1.34 4 ug/l 0 NN8 Sulfate 1.34 4 ug/l 0 UM2 Tetrachloroethene LT 2.76 0 ug/l 0 UM2 Trichloroethene LT 2.90 0 ug/l 0 T18 Trichloroethene LT 1.31 0 ug/l 0 S88 Ortho- & Para-Xylene LT 1.34 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.34 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.40 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.00 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.32 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-Xylene LT 1.35 0 ug/l 0 NN9 Ortho- & Para-					MM8A	·	LT	5.90	-2	ug/l	GPL012
NN8   Sulfate   1.34   4   4   4   4   4   4   4   4   4					UM18		ПИ	9.20	0	ug/l	PHF003
TT6 Tetrachloroethene					UN07	Parathion	LT	2.50	-1	ug/l	PGB006
### Tetrachloroethene					вин	Sulfate		1.34	4	ug/1	GJK006
### Trichloroethene					TT6	Tetrachloroethene	LT	2.76	0	ug/l	GBY006
UU8 Trichloroethene LT 2.00 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug					8UU	Tetrachloroethene	LT	2.90	0	ug/l	GSH005
SS8 Ortho- & Para-Xylene LT 1.34 0 ug/l 0 ug/l 0 ortho- & Para-Xylene LT 2.40 0 ug/l 0 ug/l 0 explored labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled labeled					T <b>T</b> 8	Trichloroethene	LT	1.31	0	ug/l	GBY006
UUS					uua	Trichloroethene	LT		0	ug/l	GSH005
R9D Zinc 2.94 1 ug/1 0  89115 SW11003 0.2 POND UM21 1,1,1-Trichloroethane LT 1.00 0 ug/1 0  UM21 1,1,2-Trichloroethane LT 1.00 0 ug/1 0  UM21 1,1-Dichloroethane LT 1.00 0 ug/1 0  UM21 1,1-Dichloroethane LT 1.00 0 ug/1 0  UM21 1,2-Dichloroethane LT 5.00 0 ug/1 0  UM21 1,2-Dichloroethane LT 1.00 0 ug/1 0  UM21 1,2-Dichloroethane LT 1.00 0 ug/1 0  UM21 1,2-Dichloropropane LT 1.00 0 ug/1 0  UM21 1,3-Dichloropropane LT 1.00 0 ug/1 0  UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/1 0					\$S8	Ortho- & Para-Xylene	LT	1.34	0	ug/l	GAX006
89115 SW11003 0.2 POND UM21 1,1,1-Trichloroethane LT 1.00 0 ug/l 0 UM21 1,1,2-Trichloroethane LT 1.00 0 ug/l 0 UM21 1,1-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,1-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloropropane LT 1.00 0 ug/l 0 UM21 1,3-Dichloropropane LT 1.00 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0 UM21 2-Chloroethylvinyl Ether					UU8	Ortho- & Para-Xylene	LT	2.40	0	ug/l	GSH005
UM21 1,1,2-Trichloroethane LT 1.00 0 ug/l 0 ug/l 1,1-Dichloroethene LT 1.00 0 ug/l 0 ug/l 0 ug/l 1,1-Dichloroethane LT 1.00 0 ug/l 0 ug/l 1,2-Dichloroethane LT 1.00 0 ug/l 0 ug/l 0 ug/l 1,2-Dichloroethane LT 1.00 0 ug/l 0 ug/l 0 ug/l 1,2-Dichloroethane LT 1.00 0 ug/l 0 ug/l 1,2-Dichloropropane LT 1.00 0 ug/l 0 ug/l 1,3-Dichloropropane LT 1.00 0 ug/l 0 ug/l 1,3-Dichloropropane LT 1.00 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l 0 ug/l					R9D	Zinc		2.94	1	ug/l	QSD006
UM21 1,1-Dichloroethene LT 1.00 0 ug/l 0 UM21 1,1-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloroethene LT 5.00 0 ug/l 0 UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloropropane LT 1.00 0 ug/l 0 UM21 1,3-Dichloropropane LT 1.00 0 ug/l 0 UM21 1,3-Dichloropropane LT 1.00 0 ug/l 0 UM21 1,3-Dichloropropane LT 1.00 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0  AV6 m-Xylene LT 1.32 0 ug/l 0 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0	89115	SW11003	0.2	POND	UM21	1,1,1-Trichloroethane	LT	1.00	o	ug/l	GDX005
UM21 1,1-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloropropane LT 1.00 0 ug/l 0 UM21 1,3-Dichlorobenzene LT 1.00 0 ug/l 0 UM21 1,3-Dichloropropane LT 4.60 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0  AV6 m-Xylene LT 1.32 0 ug/l 0 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0					UM21	1,1,2-Trichloroethane	LT		0	ug/l	GDX005
UM21 1,2-Dichloroethene LT 5.00 0 ug/l 0  UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0  UM21 1,2-Dichloropropane LT 1.00 0 ug/l 0  UM21 1,3-Dichlorobenzene LT 1.00 0 ug/l 0  UM21 1,3-Dichloropropane LT 4.60 0 ug/l 0  UM21 m-Xylene LT 1.00 0 ug/l 0  AV6 m-Xylene LT 1.32 0 ug/l 0  UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0					UM21	1,1-Dichloroethene	LT		0	ug/l	GDX005
UM21 1,2-Dichloroethane LT 1.00 0 ug/l 0 UM21 1,2-Dichloropropane LT 1.00 0 ug/l 0 UM21 1,3-Dichlorobenzene LT 1.00 0 ug/l 0 UM21 1,3-Dichloropropane LT 4.00 0 ug/l 0 UM21 m-Xylene LT 1.00 0 ug/l 0  AV6 m-Xylene LT 1.32 0 ug/l 0 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0					UM21	1,1-Dichloroethane	LT			ug/l	GDX005
UM21       1,2-Dichloropropane       LT       1.00       0       ug/l       0         UM21       1,3-Dichloropropane       LT       1.00       0       ug/l       0         UM21       1,3-Dichloropropane       LT       4.80       0       ug/l       0         UM21       m-Xylene       LT       1.00       0       ug/l       0         AV6       m-Xylene       LT       1.32       0       ug/l       0         UM21       2-Chloroethylvinyl Ether       LT       3.50       0       ug/l       0					UM21	1,2-Dichloroethene	LT	5.00	0	ug/l	GDX005
UM21       1,3-Dichlorobenzene       LT       1.00       0       ug/l       0         UM21       1,3-Dichloropropane       LT       4.80       0       ug/l       0         UM21       m-Xylene       LT       1.00       0       ug/l       0         AV6       m-Xylene       LT       1.32       0       ug/l       0         UM21       2-Chloroethylvinyl Ether       LT       3.50       0       ug/l       0					UM21	1,2-Dichloroethane	LT				GDX005
UM21       1,3-Dichloropropane       LT 4.80 0 ug/l 0         UM21       m-Xylene       LT 1.00 0 ug/l 0         AV6       m-Xylene       LT 1.32 0 ug/l 0         UM21       2-Chloroethylvinyl Ether       LT 3.50 0 ug/l 0		•			UM21	1,2-Dichloropropane	LT	1.00	0	ug/l	GDX005
UM21 m-Xylene LT 1.00 0 ug/l 0  AV6 m-Xylene LT 1.32 0 ug/l 0  UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0							LT				GDX005
AV6 m-Xylene LT 1.32 0 ug/l 0 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l 0					UM21	1,3-Dichloropropane	LT				GDX005
UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l (					UM21	m-Xylene	LT	1.00	0	ug/l	GDX005
					AV8	m-Xylene	LT				GCS024
UM21 Acrylonitrile LT 8.40 0 ug/l (					UM21	2-Chloroethylvinyl Ether	LT				GDX005
					UM21	Acrylonitrile	LT	8.40	0	ug/l	GDX005

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling	Station	Sample	Sample	استاناه موادا	Annichting 1 Carmetere	D~	esults	Units	Sample Number
Date	Number	Depth (cm)	Type	Method	Analytical Parameters		2901C2	- OII 08	
69115	SW11003	0.2	STRM	UM25	Aldrin	LT	1.30 1	ug/l	GDZ005
				KK8	Aldrin		5.81 -2	ug/1	GEG013
				UM25	Aldrin	LT	1.30 1	ug/l	GEKO07
				00	ALKALINITY -		4.49 1	ug/l	GE0008
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFI019
				AX8	Arsenic	LT	2.35 0	ug/l	GFI020
				UM25	Atrazine	LT	5.90 0	ug/l	GDZ005
				UM25	Atraxine	LT	5.90 0	ug/l	GEKO07
				UH11	Atrazine	LT	4.03 0	ug/l	GEJ013
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GEI013
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GDX005
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GDX005
				UM21	Chloroethane	LT	8.00 0	ug/1	GDX005
				UM21	Benzene	LT	1.00 0	ug/l	GDX005
				AV8	Benzene	LT	1.05 0	ug/l	GCS024
				<b>G</b> G8	Calcium (filtered)		1.84 4	ug/l	GFF005
				GG8	Calcium		1.94 4	ug/l	GFF006
				UM21	Trichlorofluoromethane	LT	1.00 0		GDX005
				UM21	Carbon-Tetrachloride	LT	1.00 0	ug/l	GDX005
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GFF005
				GG8 -	Cadmium	LT	8.40 0		GFF006
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GDX005
				UM21	Bromomethane	LT	1.40 1	ug/l	GDX005
				UM21	Chloromethane	LT	1.20 0	ug/1	GDX005
				UM21	Bromoform	LT	1.10 1	ug/l	GDX005
				UM21	Chloroform	LT	1.00 0	ug/l	GDX005
	•			HH8A	Chloride		1.40 5	ug/l	GCK024
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GEG013
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GEK007
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GDX005
				UM25	Chlordane	LT	3.70 1	ug/l	GDZ005
				KK8	Chlordane		1.49 -1	ug/l	GEG013
				UM25	Chlordane	LT	3.70 1	ug/l	GEK007
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDZ005

# R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults		Units	Sample Number
89115 ⁻	SW11003	0.2	POND	UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GEKO07
D D X X D	JW11005	W.Z	1 0/10	Um25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		ug/l	GDZ005
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		ug/l	GEK007
,				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30		ug/l	GDZ005
1				UM25		LT	5.30	0	ug/l	GEK007
				6G8	Chromium (filtered)	LT	2.40	1	ug/l	GFF005
				GG8	Chromium	LT	2.40	1	ug/l	GFF006
Ì				GG8	Copper (filtered)	LT	2.60	1	ug/1	GFF005
				GG8	Copper	LT	2.60	1	ug/l	GFF006
				TF20	Cyanide	LT	5.00	0	ug/l	GEN008
				AY8	Dibromochloropropane	LT	1.95	-1	ug/l	GEE013
,				UM25	Dibromochloropropane	ĿT	1.20	1	ug/l	GDZ005
•				UM25	Dibromochloropropane	LT	1.20	1 .	ug/l	GEKOO7
				UM21	Dibromochloromethane	LT	1.00	0	ug/ļ	GDX005
ļ,			ed.	UM21	1,4-Dichlorobenzene	LT	2.00	0	ug/l	G0X005
Ļ				P8	Dicyclopentadiene	LT	5.00	o	ug/l	GEI013
				UM25	Dicyclopentadiene	LT		0	ug/l	GDZ005
				UM25	Dicyclopentadiene	LT		0	ug/l	GEK007
				UM25 UM25	Vapona Vapona	LT LT	8.50 8.50	0	ug/l ug/l	GDZOO5 GEKOO7
ŗ					Managa a		7.27 -	1	ug/l	GEJ013
ı				UH11	Vapona Diisopropylmethyl Phosphonate	LT	2.10		ug/l	GDZ005
				UM25 AT8	Diisopropylmethyl Phosphonate	LT	3.92 -		ug/l	GEH013
				UM25	Diisopropylmethyl Phosphonate	LT	2.10		ug/l	GEK007
Ì				UM25	Dithiane	LT	3.30		ug/l	GDZ005
ļ				UM25	Dithiane	LT	3.30	0	ug/l	GEKO07
_		•		UM25	Dieldrin	LT	2.60		ug/l	GDZ005
				KK8	Dieldrin		5.00 -		ug/l	GEG013
				UM25	Dieldrin				ug/1	GEKO07
1				UM21	Acetone		8.00		ug/l	GDX005
				UM25	Dimethylmethyl Phosphate	LT	1.30	2	ug/l	GDZ005
				AT6	Dimethylmethyl Phosphate	LT	1. <b>8</b> 8 -	-1	ug/l	GEH013
1				UM25	Dimethylmethyl Phosphate	LT	1.30	2	ug/l	GEK007
				UM25	Endrin	LT	1.80	1	ug/l	GDZ005

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters -	Re	sults	Units	Sample Number
89115	SW11003	0.2	POND	KK8	Endrin	LT	5.00 -2	2 ug/l	GEG013
05110	UN11000		1 477120	UM25	Endrin	LT	1.80 1		GEK007
				UM21	Ethylbenzene	LT	1.00	) ug/l	GDX005
				AV8	Ethylbenzene	LT	1.37		GCS024
				HH6A	Fluoride		8.68 2	2 ug/l	GCK024
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN045
				CC8	Mercury	LT	1.00 -1	l ug/l	GCN046
				UM25	Isodrin	LT	7.80	) ug/l	GDZ005
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG013
				UM25	Isodrin	LT	7.80 0	) ug/l	GEK007
				GG8	Potassium (filtered)		4.81 3		GFF005
				GG8	Potassium		5.13 3		GFF006
				UM21	Toluene		1.00		GDX005
				AV8	Toluene		1.47		GCS024
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GDX005
				GG8	Magnesium (filtered)		1.71 3		GFF005
				GG8	Magnesium		1.91		GFF006
				UM21	Methylisobutyl Ketone		1.40 0		GDX005
		•		P8	Methylisobutyl Ketone		4.90 0		GEI013
				UM25	Malathion	LT	2.10 1	ug/l	GDZ005
				UM25	Malathion		2.10 1		GEK007
				UH11	Malathion	LT	3.73 -1		GEJ013
				GG8	Sodium (filtered)		1.30 5		GFF005
				GG8 LL8	Sodium Nitrite,Nitrate - Non specific		1.40 S		GFF006 GCL023
				UM25	1,4-Oxathiane	١٣	2.70 1	. ug/l	GDZ005
				UM25	1,4-0xathiane		2.70 1		GEK007
				GG8	Lead (filtered)		7.40 1		GFF005
				GG8	Lead		7.40 1		GFF006
				UM25	Dichlorodiphenylethane		1.40 1		GDZ005
				KK8	Dichlorodiphenylethane	LT	5.40 -2	e ug/l	GEG013
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK007
				UM25	Dichlorodiphenyltrichloro- ethane		1.80 1		GDZ005

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	esults	'Unit⊜	Sample Number
69115	SW11003	0.2	POND	KK8	· Dichlorodiphenyltrichloro-	***************************************	5.52 -2		GEG013
03112	3411003	V.2	1 0110	1410	ethane				
				UM25 -	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEK007
				UM25	Parathion	LT	3.70 1	ug/l	GDZ005
				UM25	Parathion	LT	3.70 1	ug/l	GEKO07
				UH11	Parathion	LT	6.47 -1	ug/l	GEJ013
				HH8A	Sulfate		2.70 4	ug/l	GCK024
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDZ005
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GEKÖÖ7
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ013
				UM21.	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GDX005
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GDX005
				UM21	Trichloroethene	LT	1.00 0	ug/l	GDX005
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GDX005
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS024
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GFF005
				GG8	Zinc	LT	2.20 1	ug/l	GFF006
89115	SW11003	5.0	POND	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF013
	** 1	Α		AAA8 -	p-Chlorophenylmethyl Sulfide		5.69 0	ug/l	GEF013
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	GEF013
				BAAA	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF013
				<b>AA</b> A8	Dithiane	LT	1.34 0	ug/l	GEF013
				AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF013
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GEF013
89110	SW12001	0.1	DTCH	AV8	m-Xylene		1.32 0	ug/l	GCS014
				KK8	Aldrin		5.00 -2	ug/l	GCY016
				UM25	Aldrin	LT	1.30 1	ug/l	GDV007
				00	ALKALINITY		2.66 2	ug/l	GCJ014
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GCM025

Comprehensive Monitoring Program

Summary of Analytical Results

		······································	·			************		,	
Sampling Date	Station Number	Sample Depth (cm)	Sample	`Method	Analytical Parameters	Ře	esults	Units	Sample Number
	Tidilloci	Deport (on)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,	
69110	SW12001	0.1	DTCH	AX6	Arsenic	LT	2.35 0	ug/l	GCM026
1				UH11	Atrazine	LT	4.03 0	ug/1	GCW014
				UM25	Atrazine	LT	5.90 0	ug/1	GDV007
				P8	Bicycloheptadiene	LT	5.90 O	ug/1	GCV014
1				AAA8	Benzothiazole	LT	5.00 0	ug/l	GCZ016
i				AV8	Benzene	LT	1.05 0	ug/l	GCS014
_				GG8	Calcium (filtered)		7.58 4	ug/l	GEP005
				GG8	Calcium		7.56 4	ug/l	GEP006
}				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GEP005
-				GG8	Cadmium	LT	8.40 0	ug/l	GEP006
				HH8A	Chloride		3.60 4	ug/l	GCK014
-				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY016
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV007
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY016
				UM25	Chlordane	LT	3.70 1	ug/l	GDV007
				AAAS	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ016
J				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDV007
				AAA8	p—Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ016 .
1				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDV007
				AAAS	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ016
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV007
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GEP005
				GG8	Chromium	LT	2.40 1	ug/l	GEP006
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP005
				GG8	Copper	LT	2.60 1	ug/l	GEP006
				TF20	Cyanide		6.91 0	ug/l	GCR014
6			• •	AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA016
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV007
•				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GCV014
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV007
ľ				UH11	Vapona	LT	3.84 -1	ug/l	GCW014
				UM25	Vapona	LT	8.50 0	ug/1	GDV007
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV007

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	esults	Units	Sample Number
89110	SW12001	0.1	DTCH	AAA8	Dithiane	LT	1.34 0	ug/l	GCZ016
	JW12001	0.1	W 1 011	UM25	Dithiane	LT	3.30 0	ug/l	GDV007
				KK8	Dieldrin	LT	5.00 -2	ug/l	GCY016
}				UM25	Dieldrin	LT	2.60 1	ug/l	GDV007
•	4			AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ016
				AT8	Dimethylmethyl Phosphate	LT	1.56 -1	ug/l	GCX016
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GDV007
ł				KK8	Endrin	LT	5.00 -2	ug/l	GCY016
				UM25	Endrin	LT	1.80 1	ug/1	GDV007
,				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS014
				HH6A	Fluoride		1.40 3	ug/l	GCK014
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN025
				833	Mercury	LT	1.00 -1	ug/1	GCN026
!				KK8	Isodrin	LT	5.10 -2	ug/1	GCY016
ĺ				UM25	Isodrin	LT	7.80 0	ug/l	GDV007
[				GG8	Potassium (filtered)		2.95 3	ug/l	GEP005
				GG8	Potassium		3.02 3		GEP006
•				AV8	Toluene	LT	1.47 0	ug/1	GCS014
ī				GG8	Magnesium (filtered)		2.27 4	ug/l	GEP005
				GG8 ·	Magnesium		2.26-4	ug/l	GEP006
•				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV014
				UM25	Malathion		2.10 1		GDV007
				GG8	Sodium (filtered)	5,5	7.66 - 4	ug/l	GEP005
				GG8	Sodium		7.68 4		GEP006
				LL6	Nitrite, Nitrate - Non specific		3.50 3	ug/l	GCL014
!				AAA8	1,4-Oxathiane	LΤ	2.38 0	ug/l	GCZ016
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDV007
				GG8	Lead (filtered)	LT	7.40 1	ug/1	GEP005
ļ				GG8	Lead	LT	7.40 1	ug/l	GEP006
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY016
				UM25	Dichlorodiphenylethane		1.40 1		GDV007
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY016
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDV007

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	~Method	Analytical Parameters	Re	sults	Units	Sample Number
89110	SW12001	0.1	DTCH	UM25	Parathion	LT	3.70 1	. ug/l	GDV007
1	W11 X X X X			HH8A	Sulfate		1.10 9		GCK014
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDV007
				AV8	Ortho- & Para-Xylene	LT	1.36 (	) ug/l	GCS014
				GG8	Zinc (filtered)		4.57 1	. ug/l	GEP005
t				GG8	Zinc	LT	2.20 1	. ug/l	GEP006
89125	SW12002	0.2	DTCH	HH8A	Chloride		7.40 2	2 ug/l	GKP016 ·
				HH8A	Fluoride	LT	4.82	ug/1	GKP016
				HH8A	Sulfate		2.49 3	ug/1	GKP016
69110	SW12003	0.1	POND	AV8	m-Xylene	LT	1.32 0	) ug/l	GCS013
à				KK8	Aldrin	LT	5.00 -2	e ug/l	GCY015
				UM25	Aldrin	LT	1.30 1	. ug/l	GDV006
				00	ALKALINITY		3.09 2	2 ug/l	GCJ013
<b>T</b>				AX6	Arsenic (filtered)		2.77 0	) ug/l	GCM023
ļ				AX8	Arsenic		3.11 0		GCM024
				UH11	Atrazine		4.03 0		GCW013
				UM25	Atrazine	LT			GDV008
				P8	Bicycloheptadiene		5.90 0	***	GCV013
_				AAA8** *	Benzothiazole	LT	5.00 C	) ug/l	GCZ015
				AV8	Benzene	LT	1.05 0		GCS013
•				GG8	Calcium (filtered)		1.10 5		GC0023
<b>.</b>				GG8	Calcium Cadmium (filtered)	LT	1.00 S		GC0024 GC0023
				GG8	Cadmium	LT			GC0024
•				HH8A	Chloride		8. <b>0</b> 0 4	ug/l	GCK013
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2		GCY015
				UM25	Hexachlorocyclopentadiene	LT			GDV006
				KK6	Chlordane		9.50 -2		GCY015
				UM25	Chlordane		3.70 1		GDV008
•				AAA8	<pre>← p-Chlorophenylmethyl Sulfide</pre>	LT	5.69 C	) ug/l	GCZ015
1				UM25	p-Chlorophenylmethyl Sulfide	LT			GDV006
			. •	AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1		GCZ015
-					The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	hu i		. ∨≊/ <b>*</b>	~~~~~~

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	esults	Units	Sample Number	
6911 <b>0</b>	SW12003	0.1	POND	- UM25-	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDV008	
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ015	
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	GDV008	
,				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC0023	
,				GG8	Chromium	LT	2.40 1	ug/l	GC0024	
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0023	
				GG8	Copper	LT	2.60 1	ug/l	GC0024	
1				TF20	Cyanide	LT	5.00 0	ug/l	GCR013	
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA015	
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV008	
				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GCV013	
J				UM25	Dicyclopentadiene	.LT	5.50 0	ug/l	GDV006	
_				UH11	Vapona	LT	3.84 -1	ug/l	GCW013	
				UM25	Vapona	LT	8.50 0	ug/l	GDV006	
Ì				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX015	
Ī				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV008	
				AAA6	Dithiane		1.34 0	ug/l	GCZ015	
-				UM25	Dithiane		3.30 0	ug/l	GDV008	
1				KK8	Dieldrin	LT	5.00 -2	ug/l	GCY015	
				UM25	Dieldrin	LT	2.60 1	ug/l	GDV008	
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ015	
}				AT6	Dimethylmethyl Phosphate	LT	1.68 -1	ug/l	GCX015	
l				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GDV008	
				KK8	Endrin		5.88 -2	ug/l	GCY015	
}				UM25	Endrin	LT	1.80 1	ug/l	GDV008	
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS013	
		·		HH8A	Fluoride		1.84 3	ug/l	GCK013	
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN023	
J				CC8	Mercury	LT	1.00 -1	ug/l	GCN024	
Y				KK6	Isodrin	LT	5.10 -2	ug/l	GCY015	
<b>)</b>				UM25	Isodrin	LT	7.60 0	ug/l	GDV008	
				GG8	Potassium (filtered)		1.20 4	ug/l	GC0023	
ļ				GG8	Potassium		1.20 4	ug/l	GC0024	
				AV8	Toluene	LT	1.47 0	ug/l	GCS013	

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		esults	Units	Sample Number
69110°	SW12003	0.1	POND	GG8	Magnesium (filtered)		4.25 4	ug/l	GC0023
1				GG8	Magnesium		4.54 4	ug/l	GC0024
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV013
				UM25	Malathion	LT	2.10 1	ug/l	GDV008
1				GG8	Sodium (filtered)		1.10 5	ug/l	GC0023
				GG8	Sodium		1.10 5	ug/l	GC0024
				LL8	Nitrite, Nitrate - Non specific		3.90 2	ug/l	GCL013
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ015
				UM25	1,4-0xathi <mark>ane</mark>	LT	2.70 1	ug/l	GDV008
_				GG8	Lead (filtered)	LT	7.40 1	ug/l	GC0023
				GG8	Lead	LT	7.40 1	ug/l	GC0024
•				KK8	Dichlorodiphenylethane	LT	5.40 -2	. ug/l	GCY015
ı e				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDV008
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY015
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.60 1	ug/l	GDV008
}				UM25	Parathion	LT	3.70 1	ug/l	GDV008
1				HH8A	Sulfate		2.40 5	ug/l	GCK013
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDV008
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS013
ł				GG8	Zinc (filtered)		3.69 1	ug/l	GC0023
				GG8	Zinc	LT	2.20 1	ug/l	GC0024
89110	SW12003B	0.1	POND	еии	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJ008
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	@DJ008
1				PN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDJ008
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/1	GDJ008
1				<b>РИЯ</b>	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJ008
ł				нн9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDJ008
,				AA9	m-Xylene	LT	2.60 -1	ug/1	GDH008
				<b>B</b> 9	Arsenic		4.67 0	ug/1	GDM010
				LH15	Atrazine		8.85 -1	ug/1	GDF007
ł				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKX010

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69110	SW12003B	0.1	POND	нн9	Benzothiazole	LT	2.04 0	ug/l	GDC010
1	0.1.2	<b>2</b>		AA9	Benzene	LT	8.50 -2	ug/l	GDH008
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDJ008
)				P9	Cadmium		1.71 0	ug/1	GDK010
1				еии	Methylene Chloride	LT	3.70 0	ug/l	GDJ008
				ииэ	Chloroform	LT	6.80 -2	ug/l	GDJ008
				РИЯ	Chlorobenzene	LT	2.00 -1	ug/1	GDJ008
1				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GDC010
				HH9	p-Chlorophenylmethyl Sulfoxide		2.38 1	ug/l	GDC010
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GDC010
j				<b>F</b> 9	Chromium		1.59 1	ug/l	GDK010
				P9	Copper		1.92 1	ug/l	GDK010
				S9	Dibromochloropropane	LT	5.00 -3	ug/1	G08010
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX010
I				LH15	Vapona	LT	8.00 -2	ug/l	GDF007
1				<b>TT</b> 9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST009
ŀ				HH9	Dithiane	LT	1.45 0	ug/l	GDC010
-				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GDC010
ì				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KST009
		•		AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDH008
_				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR012
				Y9	Mercury	LT	5.00 -2	ug/l	GDL010
	·			<b>AAA</b> 9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRR012
				AA9	Toluene	LT	1.90 -1	ug/l	GDH008
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKX010 -
•				LH15	Malathion	LT	1.26 -1	ug/l	GDF007
				ннэ	1,4-Oxathiane	LT	1.74 0	ug/l	GDC010
•				P9	Lead		1.19 2	ug/l	GDK010
				LH15	Parathion	LT	1.59 -1	ug/l	GDF007
}				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GDF007
				ии9	Tetrachloroethene	LT	2.70 -1	ug/l	GDJ008
				еии	Trichloroethene	LT	1.40 -1	ug/l	GDJ008

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89110	SW12003B	0.1	POND	AA9 P9	Ortho- & Para-Xylene Zinc	LT	3.90 -1: 7.75 1	ug/l ug/l	GDH008 GDK010
<b>,</b>			0 <b>*</b> 01	AU.	va Williama	LT	1.32 0	ug/l	GCS010
89109	SW12004	0.1	STSW	AV8	m-Xylene	LT	5.00 -2	ug/l	GCY012
				KK8	Aldrin	LT	1.30 1	ug/1	GDV004
				UM25	Aldrin	h 1	7.54 1	ug/l	GCJ010
•				00 AX6	ALKALINITY Arsenic (filtered)	LT	2.35 0	ug/l	GCM017
				AX8	Arsenic	LT	2.35 0	ug/l	GCM018
				UH11	Atrazine	LT	4.03 0	ug/l	GCW010
i				UM25	Atrazine	LT	5.90 0	ug/l	GDV004
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GCV010
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GCZ012
				AV8	Benz ene	L۳	1.05 0	ug/l	GCS010
				GG8	Calcium (filtered)		3.05 4	ug/l	GC0017
				GG8	Calcium		2.97 4	ug/1	GC0018
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GC0017
i				GG8	Cadmium	LT	8.40 0	ug/l	GC0018
<b>.</b>				нн8а	Chloride		1.50 4	ug/l	GCK010
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY012
				· UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV004
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY012
				UM25	Chlordane	LT	3.70 1	ug/l	GDV004
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ012
}			# *	UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDV004
				AAA8	p-Chlorophenylmethyl Sulfoxide		3.59 1	ug/l	GCZ012
	•		Sec.	UM25	p-Chlorophenylmethyl Sulfaxide	LT	1.50 1	ug/l	GDVQ04
l				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ012
i				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV004
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC0017
				GG8	Chromium	LT	2.40 1	ug/l	GC0018
Į.				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0017
4				GG8	Copper	LT	2.60 1	ug/l	GC0018
j				TF20	Cyanide	LT	5.00 0	ug/l	GCR010

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	eulte	Units	Sample Number
89109	SW12004	0.1	STRM	' AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA012
02102	5W12004	0.1	Stran	UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV004
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GCV010
,				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV004
•				UH11	Vapona	LT	3.84 -1	ug/l	GCW010
				UM25	Vapona	LT	8.50 0	ug/l	GDV004
-				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX012
<u> </u>				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV004
İ				AAA8	Dithiane	LT	1.34 0	ug/l	GCZ012
				UM25	Dithiane	LT	3.30 0	ug/l	GDV004
1.				KK8	Dieldrin	LT	5.00 -2	ug/l	GCY012
i				UM25	Dieldrin	LT	2.60 1	ug/l	GDV004
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ012
ì				AT6	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX012
i	-			UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV004
L				KK8	Endrin	LT	5.00 -2	ug/l	GCY012
				UM25	Endrin	LT	1.80 1	ug/l	GDV004
				AV6	Ethylbenzene	LT	1.37 0	ug/l	GCS010
				HH8A	Fluoride		1.81 3	ug/l	GCK010
				CC8	Mercury (filtered)	Ł٣	1.00 -1	ug/l	GCN017
_				600	Mercury	LT	1.00 -1	ug/l	GCN018
İ				KK8	Isodrin	LT	5.10 -2	ug/1	GCY012
ļ			•	UM25	Isodrin	LT	7.80 0	ug/l	GDV004
				GG8	Potassium (filtered)		1.00 4	ug/l	GC0017
				622	Potassium		1.06 4	ug/l	GC0018
,				AV6	Toluene	LT	1.47 0	ug/l	GCS010
L				GG8	Magnesium (filtered)		5.23 3	ug/l	GC0017
				GG8	Magnesium		5.46 3	ug/l	GC0018
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV010
1				UM25	Malathion	LT	2.10 1	ug/l	GDV004
i				GG8	Sodium (filtered)		1.92 4	ug/l	GC0017
				GG8	Sodium		1.65 4	ug/l	GC0018
}				LL8	Nitrite, Nitrate - Non specific		3.80 2	ug/l	GCL010
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ012

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	sults	Units	Sample Number
89109	SW12004	0.1	STSW	UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDV004
1		*		GG8	Lead (filtered)	LT	7.40 1	ug/l	GC0017
				GG8	Lead	LT	7.40 1	ug/l	GC0018
•				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY012
1				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDV004
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY012
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDV004
				UM25	Parathion	LT	3.70 1	ug/l	GDV004
ı				HH8A	Sulfate		3.60 4	ug/l	GCK010
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDV004
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS010
j				GG8	Zinc (filtered)		3.51 1	ug/1	GC0017
I				GG8	Zinc		8.73 1	ug/l	GC0016
69109	SW12004B	0.1	SURF	ии9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJ006
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDJ006
		* *		ни9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDJ006
•				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDJ 006
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJ006
				NN9	1,2-Dichloroethane	LT	6.50 -2	ug/l	GDJ006
				<b>AA</b> 9	m-Xylene	LT	2.60 -1	ug/l	GDH006
١				B9	Arsenic	LT	2.50 0	ug/1	GDM006
				LH15 ZZ9	Atrazine Bicycloheptadiene	LT	1.20 1 5.08 0	ug/l ug/l	GDF006 IKX006
	•			RINO	Benzothiazole	1 77	2.04 0	ug/l	GDC006
				HH9 AA9	Benzene		8.50 -2	ug/l	GDH006
ł				19 19 19	Carbon Tetrachloride		1.20 -1	ug/l	GDJ006
				P9	Cadmium		7.40 -1	ug/l ug/l	GDK006
				NN9	Methylene Chloride		3.70 0	ug/l	900fd9
•				ниэ	Chloroform	LT	6.80 -2	ug/l	GDJ006
				еии	Chlorobenzene	LT	2.00 -1	ug/l	GDJ006
ŀ				нн9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GDC006

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
7.54.55		<i>-</i>	CLIDE	ano	p-Chlorophenylmethyl Sulfoxide		3.90 2	ug/l	GDC006
69109	SW12004B	0.1	SURF	HH9	p-Chlorophenylmethyl Sulfone	ΙT	9.01 0	ug/l	GDC006
				P9	Chromium	LT		ug/l	GDK006
				P9	Copper		1.20 1	ug/l	GDK006
<b>!</b>				S9	Dibromochloropropane	LT		ug/l	GDB006
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX006
				LH15	Vapona		3.60 0	ug/l	GDF006
1				TT9	Diisopropylmethyl Phosphonate	LT	2.28 -1	ug/l	KSS009
				HH9	Dithiane	LT	1.45 0	ug/l	GDC006
,				ннэ	Dimethyldisulfide	LT	3.12 0	ug/l	GDC006
				TT9	Dimethylmethyl Phosphate	LT	2.66 -1	ug/l	KS\$009
				<b>AA</b> 9	Ethylbenzene	LT	1.60 -1	ug/l	GDH006
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR008
İ				Y9	Mercury	LT	5.00 -2	ug/l	GDL006
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRR008
				<b>AA</b> 9	Toluene	LT	1.90 -1	ug/l	GDH006
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKX006
		•		LH15	Malathion	LT	1.26 -1	ug/l	GDF006
				нн9	1,4-Oxathiane	LT	1.74 0	ug/l	GDC006
				P9	Lead		3.70 1	ug/l	GDK006
				LH15	Parathion		4.27 -1	ug/l	GDF006
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GDF006
1				нн9	Tetrachloroethene	LT	2.70 -1	ug/1	GDJ006
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDJ006
				<b>AA</b> 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDH006
!				P9	Zinc		6.92 1	ug/l	GDK006
89107	SW12005	0.3	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GCQ002
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GCQ002
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GCQ002
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GCQ002
i				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GCQ002

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults		Units	Sample Number
	SW12005	0.3	STRM	UM21	1,2-Dichloroethane	LT	1.00	0	ug/l	GCQ002
89107	5W12005	0.5	21101	UM21	1,2-Dichloropropane	LT	1.00		ug/1	GCQ002
				UM21	1,3-Dichlorobenzene	LT		Ö	ug/l	GCQ002
				UM21	1.3-Dichloropropane	LT		0	ug/l	GCQ002
				UM21	m-Xylene	LT	1.00	0	ug/l	GCQ002
				AV8	m-Xylene	LT	1.32	0	ug/l	GCS005
				UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	GCQ002
				UM21	Acrylonitrile	LT	8.40	٥	ug/1	GCQ002
				KK8	Aldrin	LT	5.00	-2	ug/l	GCY005
				UM25	Aldrin	LT	1.30	1	ug/l	GCT002
				00	ALKALINITY		2.30	2	ug/l	GCJ005
				AX8	Arsenic (filtered)	LT	2.35	Ø	ug/l	GCM005
				AX8	Arsenic	LT	2.35	0	ug/l	GCMOOE
				UH11	Atrazine	LT	4.03	O	ug/l	GCWOOS
				UM25	Atrazine	LT	5.90	0	ug/l	GCT002
				P8	Bicycloheptadiene	LT		0	ug/l	GCV005
				UM21	Bromodichloromethane	LT		0	ug/l	GCQ002
				AAA6	Benzothiazole	LT		0	ug/l	GCZ005
				UM21	Vinyl Chloride	LT	1.20	1	ug/l	GCQ002
				UM21	Chloroethane	LT	6.00	0	ug/l	GCQ002
				.UM21	Benzene	LT	1.00		ug/l	GCQ002
				AV8	Benzene	- LT		٥	ug/l	GCS005
				GG8	Calcium (filtered)		6.56	4	ug/l	GC0005
				GG8 UM21	Calcium Trichlorofluoromethane	LT	6.55 1.00	4 0	ug/l ug/l	GCQ003
				UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	GCQ002
			-	GG8	Cadmium (filtered)		8.40		ug/l	GC0005
				GG8	Cadmium		8.40		ug/l	GC0006
				UM21	Methylene Chloride	LT	1.00		ug/1	GCQ002
				UM21	Bromomethane		1.40		ug/l	GCQ002
				UM21	Chloromethane	LT	1.20	0	ug/l	GCQ002
				UM21	Bromoform	LT	1.10	1	ug/l	GCQ002
				UM21	Chloroform	LT	1.00		ug/l	GCQ002
				HH8A	Chloride		3.60		ug/l	GCK005

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R∈	esults	Units	Sample Number
89107	SW12005	0.3	STRM	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY005
03107	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.5	21171	UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GCT002
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GCQ002
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY005
				UM25	Chlordane	LT	3.70 1	ug/l	GCT002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ005
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GCT002
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1/	ug/l	GCZ005
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GCT002
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ005
				UM25	p-Chlorophenylmethyl Sulfane	LT	5.30 0	ug/l	GCT002
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC0005
				GG8	Chromium	LT	2.40 1	ug/1	GC0006
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0005
				GG8	Copper	LT	2.60 1	ug/l	GC0006
				TF20	Cyanide	LT	5.00 0	ug/l	GCR005
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA005
				.UM25	Dibromochloropropane	LT	1.20 1	ug/l	GCT002
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GEQ002
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GCQ002
				<b>P8</b>	Dicyclopentadiene	LT	5.00 0	ug/l	GCV005
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GCT <b>0</b> 02
				UH11	Vapona	LT	3.84 -1	ug/l	GCW005
				UM25	Vapona	LT	8.50 0	ug/1	GCT002
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX005
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GCT002
				AAA8	Dithiane	LT	1.34 0	ug/l	GCZ005
				UM25	Dithiane	LT	3.30 0	ug/l	GCT002
				KK8	Dieldrin	LT	5.00 -2	ug/l	GCY005
				UM25	Dieldrin	LT	2.60 1	ug/l	GCT002
				AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ005
				UM21	Acetone	LT	8.00 0	ug/1	GCQ002
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX005
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GCT002

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	esults	Units	Sample Number
		***************************************					r no o		ocunn"
69107	SW12005	0.31 - =	STRM	KK6	Endrin = = = = = = = = = = = = = = = = = = =	LT	5.00 -2	ug/l	- GCY005
I				UM25	Endrin	LT	1.80 1	ug/l	GCT002
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GCQ002
				AV8 HH8A	Ethylbenzene Fluoride	LI	1.37 0 1.42 3	ug/l ug/l	GCS005 GCK005
				cca	Mercury (filtered)	LT	1.00 -1	ug/l	GCN005
				CC8	Mercury	LT	1.00 -1	ug/1	GCN006
				KK8	Isodrin	LT	5.10 -2	ug/1	GCY005
l				UM25	Isodrin	LT	7.80 0	ug/l	GCT002
				GG8	Potassium (filtered)		3.31 3	ug/l	GC0005
				GG8	Potassium		3.11 3	ug/l	GC0006
				UM21	Toluene	LT	1.00 0	ug/l	GCQ002
				AV8	Toluene	LT	1.47 0	ug/l	GCS005
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GCQ002
				GG8	Magnesium (filtered)		2.12 4	ug/l	GCD005
1				GG8	Magnesium		2.17 4	ug/l	GC0006
				UM21	Methylisobutyl Ketone	LT		ug/l	GCQ002
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV005
		The second second		UM25 GG8	Malathion Sodium (filtered)	LI	2.10 1 · 7.13 4	ug/l ug/l	GCT002 GC0005
				GGS	Sodium		7.20 4	ug/l	GC0006 .
				LL8	Nitrite, Nitrate - Non specific		3.00 3	ug/l	GCL005
ı				AAAB	1,4-0xathiane	LT	2.38 0	ug/1	GCZ005
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GCT002
				668	Lead (filtered)	LT	7.40 1	ug/l	GC0005
				GG8	Lead	LT	7.40 1	ug/l	GC0006
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GCY005
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GCT002
ı				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY005
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GCT <b>0</b> 02
İ				UM25	Parathion	LT	3.70 1	ug/l	GCT002
!				HH8A	Sulfate		1.10 5	ug/l	GCK005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
69107	SW12005	0.3	STRM	UM25	2—Chloro—1(2,4—Dichlorophenyl)	LT	1.90 1	ug/l	GCT002
					Vinyldiethyl Phosphates				
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GCQ000
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GCQ00
				UM21	Trichloroethene	LT	1.00 0	ug/l	GCQ00
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GCQOO
				AV6	Ortho- & Para-Xvlene	LT	1.36 0	ug/l	GCS00
				GG8 ·	Zinc (filtered)	LT	2.20 1	ug/l	GC000
				GG8	Zinc		6.44 1	ug/l	GCOOO
89107	SW120056	0.2	BORE	Н9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GDIOO
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJ00
				М9	1,1,2-Trichloroethane	LT	3.90 -1	ug/l	GDIOO
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDJ 00
				<b>и</b> иа	.1,1-Dichloroethene	LT	2.40 -1	ug/l	GDJ00
				Н9	1,1-Dichloroethane	LT	1.70 0	ug/l	GDIOC
				РИИ	1,1-Dichloroethane	LT	7.40 -2	ug/1	GDJ00
				<b>M</b> 9	1,2-Dichloroethene	LT	1.70 0	ug/l	GDIOO
				RNS	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJ00
				<b>N</b> 9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GD100
				ниэ	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDJ00
				К9	m-Xylene	LT	7.40 -1	ug/l	GDI 00
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDHOO
				L9	Aldrin	LT	3.00 -1	ug/l	GDGOO
				<b>69</b>	Arsenic	LT	2.50 0	ug/l	GDM00
				LH15	Atrazine		3.00 0	ug/l	GDF00
				L9	Atrazine	LT	3.00 -1	ug/l	GDGOO
				PP9	Bicycloheptadiene		1.10 0	ug/l	GDEOO
				N9	Bicycloheptadiene		3.60 -1	ug/l	GDIOO
				HH9	Benzothiazole	LT	2.04 0	ug/l	GDC00
				К9	Benzene		2.50 -1	ug/l	GD100
				AA9	Benzene		8.50 -2	ug/l	GDHOC
		•		N9	Carbon Tetrachloride		2.50 -1	ug/l	GDIOO
				9	Carbon Tetrachloride		1.20 -1	ug/l	GDJOC
				P9	Cadmium	LT	7.40 -1	ug/1	GDK00

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample ·	Method	Analytical Parameters	Re	esults	Units	Sample Number
<b>-</b> 69107	SW12005B	0.2	BORE	нэ	- Methylene Chloride	LT	1.50 0	ug/l	GDI002
				NN9	Methylene Chloride	LT	3.70 0	ug/l	GDJ005
				N9	Chloroform	LT	2.90 -1	ug/l	GD1002
				NN9	Chloroform	LT	6.60 -2	ug/1	GDJ005
				L9	Hexachlorocyclopentadiene	LT	6.00 -1	ug/l	GDG002
				ИЭ	Chlorobenzene	LT	1.50 0	ug/l	GD1002
				₩9 .	Chlorobenzene	LT	2.00 -1	ug/1	GDJ 005
				L9	Chlordane	LT	2.00 0	ug/l	GDG002
<del></del>				L9	p-Chlorophenylmethyl Sulfide	LT	9.00 -1	ug/l	GDG002
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GDC005
				L9	p-Chlorophenylmethyl Sulfoxide	LT	3.00 -1	ug/l	GDG002
				HH9	p-Chlorophenylmethyl Sulfoxide	GT	2.00 1	ug/l	GDC005
	**			L9	p-Chlorophenylmethyl Sulfone	LT	3.00 -1	ug/l	GDG002
			Mina	HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GDC005
_				P9	Chromium	LT	6.50 0	ug/l	GDK005
				P9	Copper	LT	4.70 0	ug/l	GDK005
				\$9	Dibromochloropropane	LT	5.00 -3	ug/l	GD8005
				И9	Dibromochloropropane	LT	2.40 0	ug/1	GD1002
7.2				L9	Dibromochloropropane	LT.	3.00 -1	ug/l	GDG002
				PP9	Dicyclopentadiene	LT	4.50 -1	ug/l	GDE005
1				№	Dicyclopentadiene	LT	6.40 -1	ug/l	GDI002
. *	4.4			L9	Dicyclopentadiene	LT	1.00 0	ug/1	GDG002
				LH15	Vapona	LT	8.00 -2	ug/1	GDF005
				L9	Vapona	LT	3.00 0	ug/l	GDGOO2
				L9	Diisopropylmethyl Phosphonate	LT	1.00 0	ug/l	GDG002
_				TT9	-Diisopropylmethyl Phosphonate	LT	2.28 -1	ug/l	KSS006
				L9	Dithiane	LT	4.00 -1	ug/l	GDG002
				HH9	Dithiane	LT	1.45 0	ug/l	GDC005
				L9	Dieldrin		3.00 -1	ug/l	GDG002
				<b>N</b> 9	Dimethyldisulfide	LT	2.00 1	ug/l	GD1002
				ннэ	Dimethyldisulfide		3.12 0	ug/l	GDC005
				TT9	Dimethylmethyl Phosphate		2.66 -1	ug/l	KSS006
				L9	Endrin	LT	5.00 -1	ug/l	GDG002
_				И9	Ethylbenzene	LT	3.80 -1	ug/l	GD1002

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number	
_ 89107	SW12005B	0.2	STRM	AA9	- Ethylbenzene	LT	1.60 -1	ug/l	GDH005	
				Y9 .	Mercury	LT	5.00 -2	ug/l	GDL005	
}				L9	Isodrin	LT	3.00 -1	ug/l	GDG002	
				И9	Toluene	LT	2.50 -1	ug/l	GD1002	
				AA9	Toluene	LT	1.90 -1	ug/l	GDH005	
				PP9	Methylisobutyl Ketone	LT	6.40 -1	ug/l	GDE005	
				И9	Methylisobutyl Ketone	LT	7.30 -1	ug/1	GDI002	
				LH15	Malathion	LT	1.26 -1	ug/l	GDF005	
•				L9	Malathion	LT	7.00 -1	ug/1	GDG002	
<b>.</b>				L9	1,4-Oxathiane	LT	3.00 -1	ug/l	GDG002	
j				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GDCQ05	
				P9	Lead	LT	6.40 0	ug/l	GDK005	
1				L9	Dichlorodiphenylethane	LT	6.00 -1	ug/l	GDG002	
				L9 / .	Dichlorodiphenyltrichloro- ethane	LT	5.00 -1	ug/l	GDG002	
B				LH15	Parathion	LT	1.59 -1	ug/l	GDF005	
				L9	Parathion	LT	9.00 -1	ug/l	GDG002	
<b>.</b>				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GDF005	
				L9	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT-	6.00-1	ug/l	GDG002 -	
1				к9	Tetrachloroethene	LT	2.50 -1	ug/l	GD1002	
				NN9	Tetrachloroethene	LŢ	2.70 -1	ug/l	GDJ005	
				N9	Trichloroethene	LT	5.40 -1	ug/l	GD1002	
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDJ005	
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/l	GD1002	
				<b>AA</b> 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDH005	
				P9	Zinc		5.61 1	ug/l	GDK005	
89130	SW12005ST	0.2	STRM	TT6	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY007	
				uue	1,1,1-Trichloroethane	LT	2.40 0	ug/l	GSH006	
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/l	GBY007	
_				UU8	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH006	
ł				TT8	1,1-Dichloroethene	LT	1.85 0	ug/1	GBY007	
ı										

R. L. Stollar and Associates

Summary of Analytical Results . Surface Water Samples for Spring 69

									1
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
								***************************************	
89130	SW12005ST	0.2	STRM	TT6	1,1-Dichloroethane	LT	1.93 0	ug/l	GBY007
				UU8	1,1-Dichloroethane	LT	1.40 0	ug/l	GSH00€
				TT6	1,2-Dichlorcethene	LT	1.75 0	ug/l	GBY007
				UUS	- 1,2-Dichloroethene	LT	3.20 0	ug/1	GSH006
				TT8	1,2-Dichloroethane	LT	2.07 0	ug/l	GBY007
				UU8	1,2-Dichloroethane	LT	7.20 -1	ug/l	GSHOOE
				UM18	1,3-Dichlorobenzene	LT	1.70 0	ug/1	PHF004
				\$\$6	m-Xylene	LT	1.04 0	ug/1	GAX007
				<b>UU</b> 8	m-Xylene	LT	2.90 0	ug/l	GSH006
				UM16	Aldrin	ДИ	4.70 0	ug/l	PHF004
				<b>V</b> V8	Arsenic	LT	2.50 0	ug/l	GH0020
				UU8	Bicycloheptadiene	LT	1.80 0	ug/l	GSH00
				PP8A	Benzothiazole	LT	1.14 0	ug/l	GIQ01
				SS8	Benzene	LT	1.92 0	ug/l	GAX00
				uua	Benz ene	LT	2.70 0	ug/l	GSH00
				тта	Carbon Tetrachloride	LT	1.69 0	ug/l	GBY00
				UU3	Carbon Tetrachloride	LT	4.90 0	ug/l	GSHOO
				R9D	Cadmium	LT	5.00 0	ug/l	QSD00
		er er er		TTO	Methylene Chloride	LT	2.48 0	ug/l	GBY00
				UU8	Methylene Chloride	ИD	5.00 0	ug/l	GSHOO
				TT6	Chloroform	LT	1.88 0	ug/l	GBY001
		, 25. °		UU8	Chloroform	LT	1.70 0	ug/l	GSHOO
				NN6	Chloride		1.81 4	ug/l	GJK00
				UM18	Hexachlorocyclopentadiene	LT	8.60 0	ug/l	PHF00
				TT6	Chlorobenzene	LT	1.36 0	ug/l	GBY001
				UU8	Chlorobenzene	LT	1.80 0	ug/l	GSH00
				PP8A	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	GIQ01
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98 0	_ug/l	GIQ01
				PP6A	p-Chlorophenylmethyl Sulfone	LT	2.24 0	ug/l	GIQ01
				R90	Chromium	LT	2.20 1	ug/l	QSD00
				R90	Copper	LT	1.00 1	ug/l	QSD00
				TF18	Cyanide	LT	2.50 0	ug/l	LCN00
				Q6	Dibromochloropropane	LT	1.30 -1	ug/l	GKU02
				uus	Dibromochloropropane	LT	5.60 0	ug/l	GSH00

Comprehensive Monitoring Program

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	. U	nits 	Sample Number
					- · · · · · · · · · · · · · · · · · · ·		<i>c.</i> 74			CVAAAI
89130	SW12005ST	0.2	STRM	R8 ***	Dicyclopentadiene	LT	9.31		ug/1 .	GXA021 .
				R8	Dicyclopentadiene	LT			ug/l	GXA022
				UU8	Dicyclopentadiene	LT	3.70		ug/l	GSH006
				QQ8 PP8A	Diisopropylmethyl Phosphonate Dithiane	LT LT	1.01 3.34		ug/l ug/l	GGS007 GIQ010
				UM18	Dieldrin	ИD	4.70	0 1	19/l	PHF004
				PP6A	Dimethyldisulfide	LT	1.16	0	J9/1	GIQ010
				NN8 .	Dimethyldisulfide	LT	3.70	0 1	ug/l	GSH0 <b>0</b> 6
				<b>QQ</b> 8	Dimethylmethyl Phosphate	LT	1.63	1 1	ug/1	GGS007
				UM18	Endrin	ND	7.60	0 1	ug/l	PHF004
				\$\$8	Ethyl benzene	LT	6.20	-1 "	19/1	GAX007
				UU6	Ethylbenzene	LT	2.40	0 1	19/1	GSH006
				вии	Fluoride	LT	1.00	3 (	19/1	GJK007
				WW8	Mercury	LT	5.00	-1 (	$_{\rm lg/l}$	GWA010
				XX8	Potassium		5.05	3 (	ug/1	DYW007
				SS8	Toluene	LT	2.10		ug/l	GAX007
				UU8	Toluene	LT			19/1	GSH006
				R6	Methylisobutyl Ketone	LT	1.29		19/1	GXA021
				R8 UU8	Methylisobutyl Ketone Methylisobutyl Ketone	LT	1.29		19/l 19/l	GXA022 GSH006
				TF22	Nitrite, Nitrate - Non specific		1.60	3 u	19/l	PCD017
				UM18	N-Nitrosodimethylamine	. ND			ıg/1	PHF004
				UM18	N-Nitrosodi-N-Propylamine	LT			19/1	PHF004
				PP8A	1,4-Oxathiane	LT	1.35		ıg/1	GIQ010
			. •	R90	Lead	LT	5.20		ıg/l	QSD007
				UM18	Dichlorodiphenylethane	МD	4.70	0 1	ug/l	PHF004
				MMBA	Dichlorodiphenyltrichloro- ethane	LT	5.90	−2 ι	19/1	GPL013
				UM18	Dichlorodiphenyltrichloro- ethane	ДN	9.20	0 (	ug/1	PHF004
				UN07	Parathion	LT	2.50	-1 (	<b>1</b> 9/1	PG8007
				нив	Sulfate		2.44	4 u	ıg/l	GJK007
				TT6	Tetrachloroethene	LT	2.76	0 1	ıg/1	GBY007
				UU8	Tetrachloroethene	LT	2.90	0 (	19/1	GSH006

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
<b>=</b> 89130	SW12005ST	0.2	STRM	TTa	Trichloroethene	LT	1.31 0	ug/l	GBY007
05130	OW12.00001	₩•2	ψ. (1)	UUB	Trichloroethene	LT	2.00 0	ug/l	GSH006
				588	Ortho- & Para-Xylene	LT	1.34 0	ug/l	GAX007
				UU8	Ortho- & Para-Xylene	LT	2.40 0	ug/1	GSH006
				R90	Zinc		2.73 1	ug/1	QSD007
89138	SW24001	0.0	STP	МӨ	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GLY012
				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL009
_				ви	1,1,2-Trichloroethane	LT	7.60 -1	ug/1	GLY012
				UMZ1	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GLL009
				NS	1,1-Dichloroethene	LT	1.70 0	ug/l	GLY012
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GLL009
				88	1,1-Dichloroethane	LT	7.30 -1	ug/1	GLY012
				Uri21	1,1-Dichloroethane	LT	1.00 0	ug/l	GLL009
				ВМ	1,2-Dichloroethene	LT	7.60 -1	ug/l	GLY012
			·	UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLL009
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GLY012
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/1	GLL009
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GLL009
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	GLL009
-				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GLL009
				UM21	m-Xylene	LT	1.00-0	ug/l	GLL009
-				AV8	m-Xylene	LT	1.32 0	ug/l	GLZ012
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GLL009
				UM21 -	Acrylonitrile	LT	6.40 0	ug/l	GLL009
_				KK8	Aldrin	LT	5.00 -2	ug/l	GLH013
				UM25	Aldrin	LT	1.30 1	ug/l	GMR003
				00	ALKALINITY		1.48 2	ug/l	GMK010
				AX8	Arsenic (filtered)		2.90 1	ug/l	GLP017
				UH11	Atrazine		4.03 0	ug/l	GLG013
				UM25	Atrazine	LT	5.90 0	ug/l	COOSMD
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GLF018
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GLL009
				AAAS	Benzothiazole	LT	5.00 0	ug/l	GLJ014

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units_	Sample Number
89138	SW24001	0.0	STP	UM21	Vinyl Chloride	LT	1.20 1	ug/l	- GLL009
09130	SWATOOL	0.0		UM21	Chloroethane	LT	8.00 0	ug/l	GLL009
				UM21	Benzene	LΥ	1.00 0	ug/ĭ	GLL009
				AV8	Benzene	LT	1.05 0	ug/l	GLZ012
		<del>.</del>		668	Calcium (filtered)		3.67 4	ug/l	GL0020
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GLL009
				В	Carbon Tetrachloride	LT	9.90 -1	ug/l	GLY012
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GLL009
ľ				GG8	Cadmium (filtered)	LT	8.40 0	ug/1	GL0020
				МӘ	Methylene Chloride	LT	7.40 0	ug/l	GLY012
ı				UM21	Methylene Chloride	LT	1.00 0	ug/l	GLL009
				UM21	Bromomethane	LT	1.40 1	ug/l	GLL009
				UM21	Chloromethane	LT	1.20 0	ug/l	GLL009
				UM21	Bromoform	LT	1.10 1	ug/l	GLL009
				не	Chloroform	LT	5.00 -1	ug/l	GLY012
	•			UM21	Chloroform	LT	1.00 0	ug/l	GLL009
				HH8A	Chloride		4.70 4	ug/l	GLN017
				KK8	Hexachlorocyclopentadiene	LT	4.60 -2	ug/l	GLH013
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GMR003
				N8	Chlorobenzene	LT	6.20 -1	ug/l	GLY012
ı				UM21	Chlorobenzene	LT	1.00 0	ug/l	GLL009
				KK8	Chlordane	LT	9.50 -2	ug/l	GLH013
				UM25	Chlordane	LT	3.70 1	ug/l	GMR003
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GLJ014
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	.ug/l	- GMROO3
				AAAS	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	GLJ014
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GMR003
				AAAA	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GLJ014
				UM25 GG8	<pre>p-Chlorophenylmethyl Sulfone Chromium (filtered)</pre>	LT LT	5.30 0 2.40 1	ug/l ug/l	GMR003 GL0020
				660	Canana (#J]Anund)	1 77	2 60 1	ua (i	CL DADA
				GG8	Copper (filtered)		2.60 1	ug/l	GL0020
				TF20	Cyanide		5.00 0	ug/l	GLM006
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GLI014
1				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GMR003

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

M21	Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R:	esults	Units	Sample Number -
UM21	<b>- 6</b> 9138	SW24001	0.0	STP	UM21	Dibromochloromethane	LT	1.00 0	$-$ ug $/1^{\circ}$	GLL009
PS						1,4-Dichlorobenzene	LT	2.00 0	ug/1	GLL009 · ·
UM25							LT	5.00 0	ug/l	GLF018
UM25 Vapona LT 8.84 -1 Ug/1 GLG01  UM25 Vapona LT 8.50 0 Ug/1 GRR00  AT8 Diisopropylmethyl Phosphonate LT 3.92 -1 Ug/1 GLK01  UM25 Diisopropylmethyl Phosphonate LT 2.10 1 Ug/1 GRR00  APA8 Diistiane LT 1.34 0 Ug/1 GLK01  UM25 Dithiane LT 3.30 0 Ug/1 GRR00  KK8 Dieldrin LT 5.00 -2 Ug/1 GLK01  UM25 Dieldrin LT 2.60 1 Ug/1 GRR00  APA8 Dimethyldisulfide LT 5.50 -1 Ug/1 GLK01  AT8 Dimethyldisulfide LT 5.50 -1 Ug/1 GLK01  UM25 Dimethylmethyl Phosphate LT 1.30 2 Ug/1 GRR00  KK8 Endrin LT 5.00 -2 Ug/1 GLK01  UM25 Dimethylmethyl Phosphate LT 1.30 2 Ug/1 GRR00  KK8 Endrin LT 5.00 -2 Ug/1 GLK01  UM25 Endrin LT 1.00 0 Ug/1 GLK00  UM21 Ethylbenzene LT 1.00 0 Ug/1 GLL00  AV8 Ethylbenzene LT 1.37 0 Ug/1 GLL00  AV8 Ethylbenzene LT 1.37 0 Ug/1 GLL00  KK6 Isodrin LT 5.10 -2 Ug/1 GLK01  UM25 Isodrin LT 5.10 -2 Ug/1 GLK01  UM25 Isodrin LT 7.80 0 Ug/1 GLK00  KK6 Isodrin LT 7.80 0 Ug/1 GLK00  UM21 Toluene LT 1.00 0 Ug/1 GRR00  GGB Potassium (filtered) LT 1.00 0 Ug/1 GLK00  UM21 Toluene LT 1.47 0 Ug/1 GRR00  AV8 Toluene LT 1.47 0 Ug/1 GLC00  AV8 Toluene LT 1.49 0 Ug/1 GLC00  AV8 Magnesium (filtered) LT 4.90 0 Ug/1 GLC00  AV8 Magnesium (filtered) LT 3.75 -1 Ug/1 GLC00  AV8 Magnesium (filtered) LT 3.75 -1 Ug/1 GLC00  UM21 Methylisobutyl Ketone LT 4.90 0 Ug/1 GLC00  UM21 Methylisobutyl Ketone LT 4.90 0 Ug/1 GLC00  UM21 Methylisobutyl Ketone LT 3.75 -1 Ug/1 GLC00  UM25 Malathion LT 3.75 -1 Ug/1 GLC00  UM26 Malathion LT 3.75 -1 Ug/1 GLC00  UM27 Malathion LT 3.75 -1 Ug/1 GRR00  UM26 Malathion LT 3.75 -1 Ug/1 GRR00  UM27 Malathion LT 3.75 -1 Ug/1 GRR00  UM28 Malathion LT 3.75 -1 Ug/1 GRR00  UM29 Malathion LT 3.75 -1 Ug/1 GRR00  UM29 Malathion LT 3.75 -1 Ug/1 GRR00  UM20 Malathion LT 3.75 -1 Ug/1 GRR00  UM20 Malathion LT 3.75 -1 Ug/1 GRR00  UM20 Malathion LT 3.75 -1 Ug/1 GRR00  UM20 Malathion LT 3.75 -1 Ug/1 GRR00  UM20 Malathion LT 3.75 -1 Ug/1 GRR00  UM20 Malathion LT 3.75 -1 Ug/1 GLT00							LT	5.50 0	ug/l	GMR003
AT8									ug/1	GLG013
UM25 Disopropylmethyl Phosphonate LT 2.10 1 ug/l GFR00 ARA8 Dithiane LT 1.34 0 ug/l GLJ01 UM25 Dithiane LT 3.30 0 ug/l GFR00 KK8 Dieldrin LT 5.00 -2 ug/l GLM01 UM25 Dieldrin LT 2.60 1 ug/l GFR00 ARA8 Dimethyldisulfide LT 5.50 -1 ug/l GFR00 ARA8 Dimethyldisulfide LT 5.50 -1 ug/l GFR00 UM25 Dimethylmethyl Phosphate LT 1.88 -1 ug/l GFR00 UM25 Dimethylmethyl Phosphate LT 1.80 -1 ug/l GFR00 KK8 Endrin LT 5.00 -2 ug/l GFR00 KK8 Endrin LT 1.80 1 ug/l GFR00 UM25 Endrin LT 1.80 1 ug/l GFR00 UM21 Ethylbenzene LT 1.00 0 ug/l GLD01 GFR00 UM21 Ethylbenzene LT 1.00 0 ug/l GLD01 GFR00 UM21 Ethylbenzene LT 1.00 0 ug/l GLD01 GFR00 UM21 Ethylbenzene LT 1.60 0 ug/l GLD01 GFR00 UM25 Isodrin LT 5.10 -2 ug/l GFR00 UM25 Isodrin LT 5.10 -2 ug/l GFR00 UM21 Toluene LT 1.00 0 ug/l GLD01 UM21 Toluene LT 1.00 0 ug/l GLD01 UM21 Toluene LT 1.00 0 ug/l GLD01 UM21 Methylethyl Ketone LT 1.00 1 ug/l GLD01 GFR00 UM21 Methylsobutyl Ketone LT 1.00 1 ug/l GLD01 GFR00 UM21 Methylsobutyl Ketone LT 1.49 0 ug/l GLD01 UM21 Methylsobutyl Ketone LT 1.49 0 ug/l GLD01 UM21 Methylsobutyl Ketone LT 1.49 0 ug/l GLD02 UM21 Methylsobutyl Ketone LT 1.49 0 ug/l GLD02 Malathion LT 3.73 -1 ug/l GLD02 UM25 Malathion LT 3.73 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GFR00 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malathion LT 3.75 -1 ug/l GLG002 UM25 Malat					UM25	Vapona	LT	6.50 O	ug/l	GMR003
AAA8					AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GLK017
MK8					UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GMRO03
KK8					AAAS	Dithiane	LT	1.34 0	ug/l	GLJ014
UM25   Dieldrin					UM25	Dithiane	LT	3.30 0	ug/l	GMR003
AAAS   Dimethyldisulfide					KK8	Dieldrin	LT			GCH013
ATS Dimethylmethyl Phosphate LT 1.88 -1 ug/l GLK01 UM25 Dimethylmethyl Phosphate LT 1.30 2 ug/l GMR00 KK8 Endrin LT 5.00 -2 ug/l GMR00 UM25 Endrin LT 1.80 1 ug/l GMR00 UM21 Ethylbenzene LT 1.00 0 ug/l GLC00 AV8 Ethylbenzene LT 1.37 0 ug/l GLZ01 HH8A Fluoride LT 1.63 1 ug/l GMR00 UM25 Isodrin LT 5.10 -2 ug/l GLW01 UM25 Isodrin LT 5.10 -2 ug/l GLW01 UM25 Isodrin LT 7.80 0 ug/l GLW01 UM25 Isodrin LT 7.80 0 ug/l GMR00 GG8 Potassium (filtered) LT 1.00 1 ug/l GMR00 UM21 Toluene LT 1.00 1 ug/l GLC00 UM21 Toluene LT 1.00 1 ug/l GLC00 UM21 Methylethyl Ketone LT 1.00 1 ug/l GLC00 GG8 Magnesium (filtered) 1.16 4 ug/l GLC00 GG8 Methylisobutyl Ketone LT 1.00 ug/l GLC00 UM21 Methylisobutyl Ketone LT 1.49 0 ug/l GLC00 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLC00 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLC00 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLC00 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLC00 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLC00 UM25 Malathion LT 3.73 -1 ug/l GLG01 UM25 Malathion LT 3.75 -1 ug/l GLG01 UM25 Malathion LT 2.10 1 ug/l GMR00 GG8 Sodium (filtered) 7.60 4 ug/l GU002	_				UM25	Dieldrin				GMR003
Dimethylmethyl Phosphate					AAA8	Dimethyldisulfide				GLJ014
KK8			. "	· •		Dimethylmethyl Phosphate	LT			GLK017
UM25 Endrin LT 1.80 1 ug/1 GMR00 UM21 Ethylbenzene LT 1.00 0 ug/1 GLL00 AV8 Ethylbenzene LT 1.37 0 ug/1 GLZ01 HH6A Fluoride LT 1.00 -1 ug/1 GLN01  CC8 Mercury (filtered) LT 1.00 -1 ug/1 GLN01  KK6 Isodrin LT 5.10 -2 ug/1 GLH01  UM25 Isodrin LT 7.80 0 ug/1 GLH01  UM25 Isodrin LT 7.80 0 ug/1 GL002  UM21 Toluene LT 1.00 0 ug/1 GL002  UM21 Toluene LT 1.00 1 ug/1 GL002  AV8 Toluene LT 1.47 0 ug/1 GL002  GG8 Magnesium (filtered) LT 1.00 1 ug/1 GL002  GG8 Magnesium (filtered) LT 1.00 1 ug/1 GL002  M21 Methylethyl Ketone LT 1.8 4 ug/1 GL002  P6 Methylisobutyl Ketone LT 4.90 0 ug/1 GLF01  UM21 Methylisobutyl Ketone LT 1.40 0 ug/1 GLF01  UM21 Methylisobutyl Ketone LT 1.40 0 ug/1 GLC001  UM21 Malathion LT 3.73 -1 ug/1 GL002  UM1 Malathion LT 3.73 -1 ug/1 GLG01  UM25 Malathion LT 2.10 1 ug/1 GMR00  GG6 Sodium (filtered) 7.60 4 ug/1 GL002	_				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GMR003
UM21 Ethylbenzene LT 1.00 0 ug/l GLL00 AV8 Ethylbenzene LT 1.37 0 ug/l GLZ01 HH6A Fluoride LT 1.00 -1 ug/l GLX01  CC8 Mercury (filtered) LT 1.00 -1 ug/l GML03 KK6 Isodrin LT 5.10 -2 ug/l GLM01  UM25 Isodrin LT 7.80 0 ug/l GMC03 GG8 Potassium (filtered) 4.79 3 ug/l GL002 UM21 Toluene LT 1.00 0 ug/l GLC00  AV8 Toluene LT 1.00 1 ug/l GLC00  GG8 Magnesium (filtered) LT 1.00 1 ug/l GLC00 GG8 Magnesium (filtered) 1.18 4 ug/l GL002 P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01 UM21 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLC00  UM21 Malathion LT 3.73 -1 ug/l GLG01  UM25 Malathion LT 3.73 -1 ug/l GMR00 GG8 Sodium (filtered) 7.60 4 ug/l GL002										GLH013
AV8 Ethylbenzene LT 1.37 0 ug/1 GLZ01 HH8A Fluoride 1.16 3 ug/1 GLN01  CC8 Mercury (filtered) LT 1.00 -1 ug/1 GML03 KK8 Isodrin LT 5.10 -2 ug/1 GLH01 UM25 Isodrin LT 7.80 0 ug/1 GMR00 G68 Potassium (filtered) 4.79 3 ug/1 GL002 UM21 Toluene LT 1.00 0 ug/1 GL002 UM21 Methylethyl Ketone LT 1.00 1 ug/1 GL002 G68 Magnesium (filtered) 1.18 4 ug/1 GL002 G68 Magnesium (filtered) 1.18 4 ug/1 GL002 G68 Methylisobutyl Ketone LT 4.90 0 ug/1 GLF01 UM21 Methylisobutyl Ketone LT 4.90 0 ug/1 GLF01 UM21 Methylisobutyl Ketone LT 1.40 0 ug/1 GLF01 UM21 Methylisobutyl Ketone LT 1.40 0 ug/1 GLC00 UM21 Methylisobutyl Ketone LT 1.40 0 ug/1 GLC00 UM21 Malathion LT 3.73 -1 ug/1 GLG01 UM25 Malathion LT 2.10 1 ug/1 GMR00 G68 Sodium (filtered) 7.60 4 ug/1 GL002										GMR003
HHGA Fluoride 1.16 3 ug/l GLN01  CC6 Mercury (filtered) LT 1.00 -1 ug/l GML03  KK8 Isodrin LT 5.10 -2 ug/l GLH01  UM25 Isodrin LT 7.80 0 ug/l GMR00  GG8 Potassium (filtered) 4.79 3 ug/l GL002  UM21 Toluene LT 1.00 0 ug/l GL002  AV8 Toluene LT 1.47 0 ug/l GL002  GG8 Magnesium (filtered) 1.18 4 ug/l GL002  P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01  UM21 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01  UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GL002  P8 Methylisobutyl Ketone LT 1.40 0 ug/l GL002  UM21 Malathion LT 3.73 -1 ug/l GL001  UM25 Malathion LT 2.10 1 ug/l GMR00  GG6 Sodium (filtered) 7.60 4 ug/l GU002	-									
CC6 Mercury (filtered) LT 1.00 -1 ug/l GML03 KK6 Isodrin LT 5.10 -2 ug/l GLH01 UM25 Isodrin LT 7.60 0 ug/l GMR00 GG6 Potassium (filtered) 4.79 3 ug/l GL002 UM21 Toluene LT 1.00 0 ug/l GLL00  AV8 Toluene LT 1.47 0 ug/l GL201 UM21 Methylethyl Ketone LT 1.00 1 ug/l GL002 GG8 Magnesium (filtered) 1.16 4 ug/l GL002 P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GL002 WM21 Methylisobutyl Ketone LT 1.40 0 ug/l GL002 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GL002 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GL002 UM25 Malathion LT 2.10 1 ug/l GMR00 GG8 Sodium (filtered) 7.60 4 ug/l GL002							LT			
KK8       Isodrin       LT 5.10 -2 ug/l GLH01         UM25       Isodrin       LT 7.80 0 ug/l GMR00         GG8       Potassium (filtered)       4.79 3 ug/l GL002         UM21       Toluene       LT 1.00 0 ug/l GL201         UM21       Methylethyl Ketone       LT 1.47 0 ug/l GL201         UM21       Methylethyl Ketone       LT 1.00 1 ug/l GL002         GG8       Magnesium (filtered)       1.18 4 ug/l GL002         P8       Methylisobutyl Ketone       LT 4.90 0 ug/l GLF01         UM21       Methylisobutyl Ketone       LT 1.40 0 ug/l GL002         UH11       Malathion       LT 3.73 -1 ug/l GL601         UM25       Malathion       LT 2.10 1 ug/l GMR00         GG8       Sodium (filtered)       7.60 4 ug/l GL002					HH6A	Fluoride		1.16 3	ug/l	GLN017
UM25       Isodrin       LT 7.80 0 ug/l GMR00         GG8       Potassium (filtered)       4.79 3 ug/l GL002         UM21       Toluene       LT 1.00 0 ug/l GL201         AV8       Toluene       LT 1.47 0 ug/l GL201         UM21       Methylethyl Ketone       LT 1.00 1 ug/l GL002         GG8       Magnesium (filtered)       1.18 4 ug/l GL002         P8       Methylisobutyl Ketone       LT 4.90 0 ug/l GLF01         UM21       Methylisobutyl Ketone       LT 1.40 0 ug/l GL002         UH11       Malathion       LT 3.73 -1 ug/l GL001         UM25       Malathion       LT 2.10 1 ug/l GMR00         GG8       Sodium (filtered)       7.60 4 ug/l GL002					CC8		LT			GML033
GG8 Potassium (filtered) 4.79 3 ug/l GL002 UM21 Toluene LT 1.00 0 ug/l GL002  AV8 Toluene LT 1.47 0 ug/l GL201 UM21 Methylethyl Ketone LT 1.00 1 ug/l GL002 GG8 Magnesium (filtered) 1.18 4 ug/l GL002 P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GL002 UM21 Methylisobutyl Ketone LT 3.73 -1 ug/l GL002 UM11 Malathion LT 3.73 -1 ug/l GLG01 UM25 Malathion LT 2.10 1 ug/l GMR00 GG8 Sodium (filtered) 7.60 4 ug/l GL002						Isodrin	LT			
UM21       Toluene       LT 1.00 0 ug/l GLL00         AV8       Toluene       LT 1.47 0 ug/l GL201         UM21       Methylethyl Ketone       LT 1.00 1 ug/l GL002         GG8       Magnesium (filtered)       1.18 4 ug/l GL002         P8       Methylisobutyl Ketone       LT 4.90 0 ug/l GLF01         UM21       Methylisobutyl Ketone       LT 1.40 0 ug/l GL002         UH11       Malathion       LT 3.73 -1 ug/l GLG01         UM25       Malathion       LT 2.10 1 ug/l GMR00         GG8       Sodium (filtered)       7.60 4 ug/l GL002							LT			GMRO03
AV8 Toluene LT 1.47 0 ug/l GLZ01:  UM21 Methylethyl Ketone LT 1.00 1 ug/l GL201:  GG8 Magnesium (filtered) 1.18 4 ug/l GL002:  P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01:  UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GL002:  UH11 Malathion LT 3.73 -1 ug/l GL001:  UM25 Malathion LT 2.10 1 ug/l GMR00:  GG8 Sodium (filtered) 7.60 4 ug/l GL002:					GG8					GL0020
UM21 Methylethyl Ketone LT 1.00 1 ug/l GLL00 GG8 Magnesium (filtered) 1.18 4 ug/l GL002 P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLL00  UH11 Malathion LT 3.73 -1 ug/l GLG01  UM25 Malathion LT 2.10 1 ug/l GMR00 GG8 Sodium (filtered) 7.60 4 ug/l GL002					UM21	Toluene	LT	1.00 0	ug/l	GLL009
GG8 Magnesium (filtered) 1.18 4 ug/l GL002 P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01 UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLL00  UH11 Malathion LT 3.73 -1 ug/l GLG01  UM25 Malathion LT 2.10 1 ug/l GMR00 GG8 Sodium (filtered) 7.60 4 ug/l GL002	_									GLZ012
P8 Methylisobutyl Ketone LT 4.90 0 ug/l GLF01: UM21 Methylisobutyl Ketone LT 1.40 0 ug/l GLC00  UH11 Malathion LT 3.73 -1 ug/l GLG01  UM25 Malathion LT 2.10 1 ug/l GMR00  GG8 Sodium (filtered) 7.60 4 ug/l GL002			al .				LT			
UM21       Methylisobutyl Ketone       LT 1.40 0 ug/l       GLL00         UH11       Malathion       LT 3.73 -1 ug/l       GLG01         UM25       Malathion       LT 2.10 1 ug/l       GMR00         GG8       Sodium (filtered)       7.60 4 ug/l       GL002										
UH11 Malathion LT 3.73-1 ug/l GLG01 UM25 Malathion LT 2.10 1 ug/l GMR00 GG8 Sodium (filtered) 7.60 4 ug/l GL002						Methylisobutyl Ketone				GLF018
UM25         Malathion         LT 2.10 1 ug/l GMR00           GG8         Sodium (filtered)         7.60 4 ug/l GL002					UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLL009
GG8 Sodium (filtered) 7.60 4 ug/1 GL002	-									GLG013
GG8 Sodium (filtered) 7.60 4 ug/1 GL002 LL6 Nitrite, Nitrate - Non specific 4.40 3 ug/1 GMZ00							LT			GMR003
LL8 Nitrite, Nitrate - Non specific 4.40 3 ug/1 GMZ00										
	_				LL6	Nitrite, Nitrate - Non specific		4.40 3	ug/1	UTIZOUD

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units_	Sample Number
. 89138	SW24001	000 -	STP	AAA8	1,4-Oxathiane	LT	2.36 0	ug/l	GLJ014
02130	201477.410.01	0.0	<i>2</i> / ·	UM25	1.4-Oxathiane	LT	2.70 1	ug/l	GMR003
ļ				GG8	Lead (filtered)	LT	7.40 1	ug/l	GL0020
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	_GLH013
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GMR003
,				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GLH013
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GMR003
				UH11	Parathion -	LT	6.47 -1	ug/l	GLG013
i				Um25	Parathion	LT	3.70 1	ug/l	GMR003
				HH8A	Sulfate		6.90 4	ug/l	GLN017
		-		UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.67 -1	-ug/l	GLG013
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GMR003
				UM21	1,1,2,2-Tetrachloroethane	1 T	1.50 0	ug/l	GLL009
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	GLY012
1				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GLL009
				ви	Trichloroethene	LT	5.60 -1	ug/l	GLY012
				UM21	Trichloroethene	LT	1.00 0	ug/l	GLL009
1		٠		UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GLL009
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GLZ012
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GL0020
89138	SW24001D	0.0	STP	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GLY013
		en en en en en en en en en en en en en e		UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL010
				<b>N</b> 6	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GLY013
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GLL010
1				М8	1,1-Dichloroethene	LT	1.70 0	ug/l	GLY013
				UM21	1,1-Dichloroethene		1.00 0	ug/l	GLL010
				N8	1,1-Dichloroethane		7.30 -1	ug/1	GLY013
l				UM21	1,1-Dichloroethane		1.00 0	ug/l	GLL010
				N8	1,2-Dichloroethene		7.60 -1	ug/l	GLY013
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLL010

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults		Units	Sample Number
<b>-</b> 89138	SW24001D	0.0	STP	N8	1,2-Dichloroethane	LT	1.10	0	ug/l	GLY013
05430	5WZ-10075			UM21	1,2-Dichloroethane	LT		0	ug/l	GLL010
				UM21	1,2-Dichloropropane	LT		٥	ug/l	GLL010
				UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/l	GLL010
				UM21	1,3-Dichloropropane	. LT	4.80	0	ug/l	GLL010
•				UM21	m-Xylene	LT	1.00	0	ug/l	GLL010
				AV8	m-Xylene	LT	1.32	0	ug/1	- GLZ013
				UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	GLLO10
-				UM21	Acrylonitrile	LT	8.40	0	ug/l	GLL010
1				KK8	Aldrin	LT	5.00	-2	ug/l	GLH014
ł				UM25	Aldrin	LT		1	ug/l	GMROO4
_				00	ALKALINITY		1.48	2	ug/l	GMK011
				AX8	Arsenic			1	ug/l	GLP018
J				UH11	Atrazine	L.T	4.03	0	ug/l	GLG014
_				UM25	Atrazine	LT	5.90	0	ug/l	GMR004
				PB	Bicycloheptadiene	LT		0	ug/l	GLF019
_				UM21	Bromodichloromethane	LT		0	ug/l	GLL010
		•		AAA8	Benzothiazole	LT	5.00	0	ug/l	GLJ015
		****		UM21	Vinyl Chloride	LT		1	ug/l	GLL010
•		•		UM21	Chloroethane	LT	8. <b>0</b> 0	0	ug/l	GLLO10
1				UM21	Benzene	LT	1.00		ug/l	GLL010
				AV8	Benzene	LT	1.05		ug/l	GLZ013
				GG8	Calcium		3.64		ug/l	GL0021
				UM21	***		1.00		ug/l	GLL010
				N8	Carbon Tetrachloride	LT	9.90	-1	ug/l	GLYO13
				UM21	Carbon Tetrachloride	LT	1.00		ug/l	-GLL010
				GG8	Cadmium	LT	8.40		ug/l	GL0021
				И8	Methylene Chloride		7.40		ug/l	GLY013
8				UM21 UM21	Methylene Chloride Bromomethane		1.00		ug/l ug/l	GLL010 GLL010
ł				UM21	Chloromethane	ı۳	1.20	0	ug/l	GLL010
				UM21	Bromoform		1.10		ug/1 ug/1	GLLO10
				N8	Chloroform		5.00		ug/1	GLY013
•				UM21	Chloroform		1.00		ug/1	GLL010
				WI IAA	wind with	· ·		~		

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89138	SW24001D	0.0	STP	HH8A	Chloride		4.60 4	ug/l	GLN018
09130	34240CAD	W.U	<b>917</b>	KK8 -	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GLH014
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GMRO04
				N8	Chlorobenzene	LT	8.20 -1	ug/l	GLY013
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GLL010
ł				KK8	Chlordane	LT	9.50 -2	ug/l	GLH014
•				UM25	Chlordane	LT	3.70 1	ug/l	GMR004
				AAAB	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GLJ015
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GMR004
1				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GLJ015
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GMR004
				AAAA	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/1	GLJ015
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GMRO04
				GG8	Chromium	LT	2.40 1	ug/1	GL0021
				GG8	Copper	LT	2.60 1	ug/l	GL0021
				TF20	Cyanide	L٣	5.00 0	ug/l	GLM007
		*		AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GLI015
<b>.</b>				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GMR004
			· · ·	UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLL010 ·
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GLL010
ł			eg 1 - eg	P8	Dicyclopentadiene	LT	5.00 0	ug/l	GLF019 -
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GMR004
				UH11	Vapona	LT	3.84 -1	ug/l	GLG014
P				UM25	Vapona	LT	8.50 0	ug/l	GMR004
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GLK018
<u>.</u>				-UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GMRO04
				AAA8	Dithiane	LT	1.34 0	ug/l	GLJ015
•				UM25	Dithiane		3.30 0	ug/1	GMR004
				KK8	Dieldrin	LT	5.00 -2	ug/l	GLH014
				UM25	Dieldrin	LT	2.60 1	ug/l	GMROO4
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GLJ015
à				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GLK018
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GMR004
				KK8	Endrin	LT	5.00 -2	ug/1	GLH014

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults:	Units	Sample Number	
······································	***************************************									
. 69138	SW24001D	0.0	STP	UM25	Endrin	LT	1.80 1	ug/l	GMR004	
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GLL010	
				AV8	Ethylbenzene	LT		ug/l	GLZ013	
				HHBA	Fluorade		1.10 3	ug/l	GLN018	
				633	Mercury	LT	1.00 -1	ug/l	GML034	
•				KK8	Isodrin	LT	5.10 -2	ug/l	GLH014	
ì		•		UM25	Isodrin	LT	7.80 <b>0</b>	ug/l	GMR004	
				GG8	Potassium		4.73 3	ug/l	GL0021	
				UM21	Toluene	LT	1.00 0	ug/l	GLL010	
1				AV8	Toluene	LT	1.47 0	ug/l	GLZ013	
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL010	
				GG8	Magnesium		1.24 4	ug/l	GL0021	
Ī				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GLF019	
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLL010	
•				UH11	Malathion	LT	3.73 -1	ug/l	GLG014	
				UM25	Malathion	LT	2.10 1	ug/l	GMR004	
				GG8	Sodium		7.36 4	ug/l	GL0021	
_				LL8	Nitrite, Nitrate - Non specific		4.40 3	ug/l	GMZ007	
				<b>AA</b> A8	1,4-Oxathiane	LT	2.38 0	ug/l	GLJ015	
İ				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GMR004	
•				GG8	Lead	LT	7.40 1	ug/l	GL0021	
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GLH014	
-	-			UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GMR004	
				KK6	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GLH014	
k.				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l	GMROO4	
					ethane					
!				UH11	Parathion	LT	6.47 -1	ug/l	GLG014	
				UM25	Parathion	LT	3.70 1	ug/l	GMR004	
				HH8A	Sulfate		6.90 4	ug/l	GLN018	
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GLG014	
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GMR004	

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Oate	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
. 89138	SW24001D	0.0	STP	- UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	·ug/l ··	GLL010
02130	Q442.4001D	~ • ~		N8	Tetrachloroethene	LT	7.50 -1	ug/1	GLY013
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GLL010
				N8	Trichloroethene	LT	5.60 -1	ug/l	GLY013
				UM21	Trichloroethene	LT	1.00 0	ug/l	GLL <b>0</b> 10
ļ				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GLL010
ı			e	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GLZ013
				GGS	Zinc	LT	2.20 1	ug/l	GL0021
69111	SW24002	0.1	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GDX003
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	GDX002
				UM21	1,1-Dichloroethene	LT	1.00 - 0	ug/1	GDX002
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GDX002
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GDX002
				Um21	1,2-Dichloroethane	LT	1.00 0	ug/l	GDX002
ł				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GDX002
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GDX002
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GDX002
ì				UM21	m-Xylene	LT	1.00 0	ug/l	GDX002
				AV8	m-Xylene	LT	1.32 0	ug/l	GCS016
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GDX002
		2		UM21	Acrylonitrile	LT	6.40 0	ug/l	GDX002
				UM25	Aldrin	LT	1.30 1	ug/l	GDZ002
_				KK6	Aldrin	LT	5.00 -2	ug/l	GEGO05
i				AX8	Arsenic (filtered)	LT -	2.35 0	ug/l	GF1005
				AX8	Arsenic	LT	2.35 0	ug/l	GFI006
				UM25	Atrazine	LT	5.90 0	ug/1 -	GDZ002
				UH11	Atrazine	LT	4.03 0	ug/l	GEJ005
1				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GE1005
				UM21	Bromodichloromethane		1.00 0	ug/l	GDX002
				UM21	Vinyl Chloride	LT		ug/l	GDX003
				UM21	Chloroethane	LT		ug/l	GDX002
i				UM21	Benzene	LT	1.00 0	ug/l	GDX002
				AV8	Benz ene	LT	1.05 0	ug/l	GCS016

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	sults		Units	Sample Number	
69111	SW24002	0.1	STRM	GG8	Calcium (filtered)		8.93	4	ug/l	GEP011	
OPILI	31124002	0.1	211411	GG8	Calcium		8.84		ug/1	GEP012	
				UM21	Trichlorofluoromethane	LT	1.00		ug/l	GDX002	
				UM21	Carbon Tetrachloride	LT	1.00		ug/1	GDX002	
				GG8	Cadmium (filtered)	LT	8.40		ug/l	GEP011	
				GG6	Cadmium	LT	6.40	0	ug/l	GEP012	
•				UM21	Methylene Chloride	LT	1.00	0	ug/l	GDX002	
				UM21	Bromomethane	LT	1.40	1	ug/l	GDX002	
				UM21	Chloromethane	LT	1.20	0	ug/l	GDX002	
B				UM21	Bromoform	LT	1.10	1	ug/l	GDX002	
İ				UM21	Chloroform	LT	1.00	0	ug/l	GDX002	
				HHBA	Chloride		5.40	4	ug/l	GCK016	
				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	GEG005	
				UM21	Chlorobenzene	LT	1.00		ug/l	GDX002	
				UM25	Chlordane	LT	3.70	1	ug/l	GDZ002	
				KK8	Chlordane	LT	9.50	-2	ug/1	GEG005	
		*. v		UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GDZ002	
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	GDZ002	
		MAN TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL T		UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GDZ002	
				GG8	Chromium (filtered)	LT.	2.40	1	ug/l	GEP011	
				GG8	Chromium	LT	2.40	1	ug/l	GEP012	
				GG8	Copper (filtered)	LT	2.60	1	ug/l	GEP011	
				GG8	Copper	LT	2.60	1	ug/1	GEP012	
_				TF20	Cyanide	LT	5.00	0	ug/1	GCR016	
		,	* **	AY8	Dibromochloropropane	LT	1.95	-1	ug/l	- GEE005	
		ts.		UM25	Dibromochloropropane	LT	1.20	1	ug/l	GDZ002 -	
				UM21	Dibromochloromethane	LT	1.00	0	ug/l	GDX002	
				UM21	1,4-Dichlorobenzene	LT	2.00	0	ug/l	GDX002	
				P8	Dicyclopentadiene	LT	5.00	0	ug/l	GE1005	
i				UM25	Dicyclopentadiene	LT	5.50	0	ug/l	GDZ002	
i				UM25	Vapona	LT	8.50	o	ug/l	GDZ002	
-				UH11	Vapona		6.60		ug/l	GEJ005	
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1	ug/1	GDZ002	
				AT6	Diisopropylmethyl Phosphonate	LT	3.92	-1	ug/l	GEH005	

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	F:e	eults	Units	Sample Number
69111	SW24002	0.1	STRM	UM25	Dithiane	LT	3.30 0	ug/l	GDZ002
00111	<b>0</b> 1,2			UM25	Dieldrin	LT	2.60 1	ug/l	GDZ002
				KK8	Dieldrin	LT	5.00 -2	ug/1	GEG005
				UM21	Acetone	LT	8.00 0	ug/1	GDX002
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	- GDZ002
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GEH005
				UM25	Endrin	LT	1.80 1	ug/l	GDZ002
				KK8	Endrin	LT	5.00 -2	ug/l	GEG005
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GDX002
				AVS	Ethylbenzene	LT	1.37 0	ug/l	GCS016
				ннеа	Fluoride		1.63 3	ug/l	GCK016
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN031
				CC8	Mercury	LT	1.00 -1	ug/l	GCN032
				UM25	Isodrin	LT	7.80 0	ug/1	GDZ002
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG005
				පයත	Potassium (filtered)		3.94 3	ug/l	GEP011
				GG8	Potassium		4.01 3	. ug/l	GEP012
				UM21	Toluene	LT	1.00 0	ug/1	GDX002
				AV8	Toluene	LT	1.47 0	ug/ $1 \sim$	GCS016
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GDX002
				GG8	Magnesium (filtered)		2.93 4	ug/l	GEP011
				GG8	Magnesium		2.82 4	ug/l	GEP012
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GDX002
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/1	GE1005
				UM25	Malathion	LT	2.10 1	ug/l	GDZ002
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ005
				GG8	Sodium (filtered)		1.20 5	ug/l	GEP011
				GG8	Sodium		1.20 5	ug/l	GEP012
				LL8	Nitrite,Nitrate - Non specific		8.74 1	ug/l	GCL016
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDZ002
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP011
				GG8	Lead	LT	7.40 1	ug/l	GEP012
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDZ002
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GEG005

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample -		Analytical Parameters	Re	esults	Units	Sample . Number	
5)(1) 1 1	SW24002	.0.1	STRM	UM25	Dichlorodiphenyltrichloro-	ΙŤ	1.80 1	ug/l	G0Z002	
89111	2MZ4COZ	-0.1	21 LU.I	01125	ethane	h f	1100 1	W 3/ Z	The last day and day day	
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/1	GEG005	
					ethane					
ł				UM25	Parathion	LT	3.70 1	ug/1	GDZ002	
				UH11	Parathion	LT	6.47 -1	ug/1	GEJ005	
•				HH8A	Sulfate		2.30 5	ug/l	GCK016	
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1,90 1	ug/l	GDZ002	
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ005	
				Uri21	1.1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GDX002	
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GDX002	
ŀ	÷			UM21	Trichloroethene	LT	1.00 0	ug/l	GDX002	
i				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GDX002	
1				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS016	
İ				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP011	
į				GG8	Zinc	LT	2.20 1	ug/l	GEP012	
69111	SW24002	3.0	STRM	AAAB	Benrothiarole	· LT	5.00 0	ug/l	GEF005	.,
J				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF005	
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	- GEFOOS	
			# · '	<b>AAA</b> 8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF005	-4.6
				AAA6	Dithiane	LT	1.34 0	ug/l	GEF005	
ı				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF005	
				<b>AA</b> A8	1,4-Oxathiane	LŤ	2.36 0	ug/l	GEF005	
89114 •	SW24002	0.1	STRM	<b>∞</b>	ALKALINITY		2.99 2	ug/l	GCJ016	
69111	SW24002B	0.2	STRM	NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDY006	
				PH4	1,1-Dichloroethene	LT	2.40 -1	ug/1	GDY006	
l				РИЯ	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY006	
1				РИЭ	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDY006	
-				ни9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY006	
l				AA9	m-Xylene	LT	2.60 -1	ug/l	GDW006	
l				KK9A	Aldrin	LT	1.90 -3	ug/l	GEB005	

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89111	SW24002B	0.2	STRM	KK9A	Aldrin	LT	1.90 -3	ug/l	GEBOO6
ODILL	311240020	V • £.	31741	B9	Arsenic	LT	2.50 0	ug/l	GDM018
				LH15	Atrazine	LT	1.54 -1	ug/l	GEA006
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKX008
				ннэ	Benzothiazole	LT	2.04 0	ug/l	GEC012
				669	Benzene	LT	8.50 -2	ug/l	GDW006
				еии	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY006
				P9	Cadmium	LT	7.40 -1	ug/l	GDK018
				PHN PHN	Methylene Chloride	LT	3.70 0	ug/l	GDY006
				инэ	Chloroform	LT	6.80 -2	ug/l	GDY006
				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l	GEBOOS
				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l	GE8006
				<b>6</b> 4 <b>N</b>	Chlorobenzene	LT	2.00 -1	ug/1	GDY006
				KK9A	Chlordane	LT	2.30 -2	ug/l	GE6005
				KK9A	Chlordane	LT	2.30 -2	ug/l	GEB006
				<b>H</b> H9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC012
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/1	GEC012
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GEC012
				P9	Chromium		1.28 1	ug/l	GDK018
				P9	Copper		1.15 1	ug/l	GDK018
				S9	Dibromochloropropane	LT	5.00 -3	ug/l	GED006
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX008
				LH15	Vapona	LT	6.00 -2	ug/1	GEA006
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST007
				HH9	Dithiane	LT	1.45 0	ug/l	GEC012
				KK9A	Dieldrin	LT	3.30 -3	ug/l	GEB005
				KK9A	Dieldrin		3.30 -3	ug/l	GEB006
				HH9	Dimethyldisulfide		3.12 0	ug/l	GEC012
				TT9	Dimethylmethyl Phosphate		1.33 -1	ug/l	KST007
				KK9A	Endrin	LT	5.80 -3	ug/l	GEB005
				KK9A	Endrin		5.60 -3	ug/l	GEBOO6
				<b>AA</b> 9	Ethylbenzene		1.60 -1	ug/l	GDW006
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR010
				Y9	Mercury	LT	5.00 -2	ug/l	GDL018

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 69

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number	
89111	SW240026	0.2	STRM	AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/l	KRR010	
					Acid	, ~~	4 4 6 72		CEDAAR	
<i>y</i>				KK9A	Isodrin	LT	1.10 -3	ug/l	GEBOOS CCDAAC	
				KK9A	Isodrin	LT	1.10 -3 1.90 -1	ug/l	GEB006	
				AA9 ZZ9	Toluene Methylisobutyl Ketone	LT LT	5.24 0	ug/l _ ug/l	IKX008 GDW006	
				LH15	Malathion	LT	1.26 -1	ug/l	GEA006	
•				HH9	1,4-Oxathiane	LT	1.74 0	ug/1	GEC012	
				P9	Lead		1.99 1	ug/l	GDK018	
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB005	
l				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB006	
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB005	
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB006	
				LH15	Parathion	LT	1.59 -1	ug/l	GEA006	
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA006	
_				ии9	Tetrachloroethene	LT	2.70 -1	ug/l	GDY006	
				инэ	Trichloroethene	LT	1.40 -1	ug/l	GDY006	
<del></del>				<b>AA</b> 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDW006	
1				P9	Zinc		4.54 1	ug/l	GDK018	
69111	SW24002BD	0.2	STRM	киэ	1,1,1-Trichloroethane	LT		ug/l	GDY005	
-				<b>PN9</b>	1,1,1-Trichloroethane	L.T	8.80 -2	ug/l	GDY006	
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDY005	-
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY005	
				РИЯ	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY005	
į				имэ	1,2-Dichloroethene		2.60 -1	ug/l	GDY005	
				NN9	1,2-Dichloroethane		6.50 -2	ug/l	GDY005	
I				AA9	m-Xylene		2.60 -1	ug/1	GDW005	
				B9 LH15	Arsenic Atrazine		2.50 0 1.54 -1	ug/l ug/l	GDM011 GEA005	
I				779	Bicycloheptadiene	LT	5.08 0	ug/l	IKX009	
				HH9	Benzothiazole		2.04 0	ug/l	GEC005	
_				,				<b></b>		

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Humber
<b>8</b> 9111	SW2400ZED	0.2	STRM	<b>A</b> A9	Benz ene	. LT	8.50 -2	ug/1	G0W005
02711	2WEARACKER	O . 2.	WIIII1	NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY005
				P9	Cadmium	LT	7.40 -1	ug/1	GDK011
				NN9	Methylene Chloride		3.70 0	ug/l	GDY005
				<b>Н</b> ИЭ	Chloroform		6.80 -2	ug/l	GDY005
				NN9	Chlorobenzene	LT	2.00 -1	ug/l-	GDY005
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC005
				HH9	p-Chlorophenylmethyl Sulfoxide	GT	2.00 1	ug/l	GEC005
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GEC005
				P9	Chromium	LT	6.50 0	ug/l	GDK011
				P9	Copper		1.08 1	ug/l	GDK011
				S9	Dibromochloropropane	LT	5.00 -3	ug/l	GED005
				ZZ9	Dicyclopentadiene	·LT	5.12 0	ug/1	IKX009
				LH15	Vapona	LT	8.00 -2	ug/l	GEA003
				<b>T</b> T9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST008
				нн9	Dithiane	LT	1.45 0	ug/l	GEC005
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GEC005
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KST008
				AA9	Ethylbenzene	LT	1.60 -1	ug/1	GDWOOS
				<b>AAA</b> 9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR011
				<b>Y</b> 9	Mercury		5.00 -2	ug/l	GDL011
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRR011
				AA9	Toluene	LT	1.90 -1	ug/l	GDW005
	• .			ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKX009
				LH15	Malathion	LT	1.26 -1	ug/l	GEA005
				нн9	1,4-Oxathiane	LT	1.74 0	ug/l	GEC005
				P9	Lead	LT	8.40 0	ug/l	GDK011
				LH15	Parathion		1.59 -1	ug/l	GEA005
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA005
				<b>РИН</b>	Tetrachloroethene	LT	2.70 -1	ug/l	GDY005
				еии	Trichloroethene	LT	1.40 -1	ug/l	GDY005
				<b>AA</b> 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/1	GDW005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	říte 	esults -	Units	Sample -
89111	SW24002BD	0.2	STRM	P9	Zinc		3.39 1	ug/l	GOK011
<b>8</b> 9135	SW24002ST	0.2	STRM	нв	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GJU015
_				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	-GJU015
				N8 .	1,1-Dichloroethene	LT	1.70 0	ug/l	GJU015
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GJU015
-				N6	1,2-Dichloroethene	LT	7.60 -1	ug/l	GJU015
				М8	1,2-Dichloroethane	LT	1.10 0	ug/l	GJU015
				AV6	m-Xylene	LT	1.32 0	ug/l	GJT015
				KK8	Aldrin	LT	5.00 -2	ug/l	61V008
				UM25	Aldrin	LT	1.30 1	ug/l	GKW003
-				00	ALKALINITY		2.88 2	ug/l	GMK006
				AX8	Arsenic	LT	2.35 0	ug/l	GKF022
				UH11	Atrazine	LT	4.03 0	ug/l	GJX008
				UM25	Atrazine	LT	5.90 0	ug/1	GKW003
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GKC013
				AAA8	Beniothiarole	LT	5.00 0	ug/l	GJY008
-				AV8	Benzene	LT	1.05 0	ug/l	GJT015
				GG8	Calcium (filtered)		8.46 4	ug/l	GKB014
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GJU015
				GG6	Cadmium (filtered)	LT	8.40 0	ug/l	GKB014
				И8	Methylene Chloride	LT	7.40 0	ug/l	GJU015
-		•		N6	Chloroform	LT	5.00 -1	ug/l	GJU015
				HH8A	Chloride		4.80 4	ug/1	GKH020
		•		KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GJV008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/1	GKWOO3
				N8	Chlorobenzene	LT	8.20 -1	ug/l	GJU015
				KK8	Chlordane	LT	9.50 -2	ug/l	GJV008
				UM25	Chlordane	LT	3.70 1	ug/l	GKW003
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GJY008
-				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GKM003
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	6JY008
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GKW003
_				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GJY008

Comprehensive Monitoring Program

Summary of Analytical Results

mpling Date	Station Number	Sample Depth (cm),	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Numbe
9135	SW24002ST	0.2	STRM	UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKWOOT
,,,,,,,,	Q7(22.10 Q 22.Q )	<b></b>	*	GG8	Chromium (filtered)	LT	2.40 1	ug/l	GK8014
				GG8	Copper (filtered)	LT	2.60 1	ug/1	GKB014
				TF20	Cyanide	LT	5.00 0	ug/l	GKE006
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GJW000
			UM25	Dibromochloropropane	L٣	1.20 1	ug/l	GKW00	
				P6	Dicyclopentadiene	LT	5.00 0	ug/1	GKC01
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GKWOO
				UH11	Vapona	LT	3.84 -1	ug/l	G3 X000
				UM25	Vapona	LT	8.50 0	ug/l	GKW00:
				ATB .	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GJ Z016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GKWOO
				8888	Dithiane	LT	1.34 0	ug/l	GJYOO
				UM25	Dithiane	LT	3.30 0	ug/1	GKWOO
				KK8	Dieldrin	LT	5.00 -2	ug/l	GJV00
				UMRS	Dieldrin	LT	2.60 1	ug/l	GKWOO
				AAAS	Dimethyldisulfide	LT	5.50 -1	ug/l	GJY00
				ATB	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GJZ01
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKW00
				KK8	Endrin	LT	5.00 -2	ug/l	GJVOO
				UM25	Endrin	LT	1.80 1	ug/l	GKWOO
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GJT01
				HH6A	Fluoride		1.35 3	ug/l	GKH02
				CC8	Mercury (filtered)	LT	1.00 -1	ug/1	GKG03
				KK8	Isodrin	LT	5.10 -2	ug/l	GJV00
				UM25	Isodrin	LT	7.80 0	ug/l	GKWOC
				GG8	Potassium (filtered)		6.44 3	ug/l	GKB01
				AV8	Toluene	LT	1.47 0	ug/l	GJT01
				<b>G</b> G8	Magnesium (filtered)		2.50 4	ug/l	GKB01
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKC01
				UH11	Malathion		3.73 -1	ug/l	GJX00
				UM25	Malathion	LT	2.10 1	ug/l	GKWOC
				GG6	Sodium (filtered)		6.69 4	ug/l	GKB01
				LL8	Nitrite, Nitrate - Non specific		1.90 2	ug/l	GKD03

R. L. Stollar and Associates Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-	Analytical Parameters	. Re	esults	Units	Sample Number
89135	SW24002ST	0.2	STRM	AAAS .	-1-1-4-Oxathiane	LT	2.38 0	ug/l	GJY008
1				UM25	·	LT	2.70 1	ug/l	GKW003
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GK8014
-				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GJV008 -
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKW003
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GJV008
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW003
				UH11	Parathion	LT	6.47 -1	ug/l	GJXOOS
				UM25	Parathion	LT	3.70 1	ug/l	GKW003
				HH8A	Sulfate		1.50 5	ug/l	GKH020
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GJX008
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GKW003
				М8	Tetrachloroethene	LT	7.50 -1	ug/l	GJU015
				N8	Trichloroethene	LT	5.60 -1	ug/l	GJU015
•				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GJT015
				GG6	Zinc (filtered)	.LT	2.20 1	ug/l	GKB014
69111	SW24003	0.3	POND .	- UM21	1,1,1-Trichloroethane		1.00 0	ug/l	GDX003 _ :
			1	UM21	1,1,2-Trichloroethane		1.00 0	ug/l	GDX003
				UM21	1,1-Dichloroethene	LT.	1.00 0	ug/l	GDX003
· ·				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GDX003
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GDX003
_				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GDX003
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GDX003 .
}				UM21	1,3-Dichlorobenzene		1.00 0	ug/l	GDX003
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GDX003
				UM21	m-Xylene	LT	1.00 0	ug/l	GDX003
				AV8	m-Xylene		1.32 0	ug/l	GCS017
1				UM21	2-Chloroethylvinyl Ether		3.50 0	ug/l	GDX003
				UM21	Acrylonitrile	LT		ug/l	GDX003
				UM25	Aldrin	LT	1.30 1	ug/l	GDZ003

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
00444	0104007	A 7°	POND	KK8	Aldrin	LT	5.00 -2	ug/l	GEG006
89111	SW24003	0.3	POND	00	ALKALINITY -		1.73 2	ug/l	GCJ017
				AX6	Arsenic (filtered)	LT	2.35 0	ug/l	GCM029
				AX8	Arsenic	LT	2.35 0	ug/l	GCM030
				UM25	Atrazine	LT	5.90 0	ug/l	GDZ003
				UH11	Atrazine	LT	4.03 0	ug/l	GEJ006
				P8	Bicycloheptadiene	LT	5.90 0	ug/1	GEI006
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GDX003
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GDX003
				UM21	Chloroethane	LT	8.00 0	ug/l	GDX003
				UM21	Benzene	LT	1.00 0	ug/l	GDX003
				AV8	Benzene	LT	1.05 0	ug/l	GCS017
				GG8	Calcium (filtered)		1.10 5	ug/1	GEP009
				GG8	Calcium		1.10 5	ug/l	GEP010
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GDX00
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GDX00
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GEP009
				GG8	Cadmium	LT	6.40 0	ug/1	GEP010
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GDX003
				UM21	Bromomethane	LT	1.40 1	ug/l	GDX000
				UM21	Chloromethane	LT	1.20 0	ug/l	GDX003
				UM21	Bromoform	LT	1.10 1	ug/l	GDX000
				UM21	Chloroform	LT	1.00 0	ug/1	GDX003
				HH8A	Chloride		2.40 5	ug/l	GCK017
				KK8	Hexachlorocyclopentadiene	LT	4.60 -2	ug/l	GEG006
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GDX003
				UM25	Chlordane	LT	3.70 1	ug/l	GDZ003
				KK8	Chlordane		9.50 -2	ug/l	GEG006
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDZ003
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDZ003
				UM25	p-Chlorophenylmethyl Sulfone		5.30 0	ug/l	GDZ003
				GG8	Chromium (filtered)		2.40 1	ug/l	GEP009
				GG8	Chromium		2.40 1	ug/l	GEP010
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP009

R. L. Stollar and Associates Comprehensive Monitoring Program 01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
69111	SW24003	0.3	POND	GG8	Copper	LT.	2.60	1	ug/l	GEP010
				TF20	Cyanide	LT:	5.00	0	ug/l	GCR017
<b>,</b>	F -			AY8	Dibromochloropropane	LT	-1.95	-1	ug/1	GEE006
				UM25	Dibromochloropropane	LT	1.20	1	ug/l	GDZ003
				UM21	Dibromochloromethane	LT	1.00	0	ug/l	GDX003
				UM21	1,4-Dichlorobenzene	LT	2.00	o	ug/l	GDX003
Ī				P6	Dicyclopentadiene	LT	5.00	0	ug/l	GEIOO6
				UM25	Dicyclopentadiene	LT	5.50	٥	ug/1	GDZ003
		•		UM25	Vapona	LT	8.50	0	ug/l	GDZ003
)				UH11	Vapona		6.35	-1	ug/l	GEJ006
ļ				UM25	Diisopropylmethyl Phosphonate	LT	2.10		ug/l	GDZ003
				AT8	Diisopropylmethyl Phosphonate		2.06		ug/l	GEHOO6
				UM25	Dithiane	LT	3.30		ug/l	GDZ003
		•		UM25	Dieldrin	LT	2.60		ug/l	GDZ003
				KK8	Dieldrin	LT	5.00	-2	ug/l	GEG006
				UM21	Acetone	LT	6.00		ug/l	GDX003
		•		UM25	Dimethylmethyl Phosphate	LT	1.30		ug/l	GDZ003
				AT8	Dimethylmethyl Phosphate	LT	1.88		ug/l	GEH006
				UM25	Endrin	LT	1.80		ug/l	GDZ003
•				KK8	Endrin	LT	5.00	-2	ug/l	GEGOO6
•			æ	UM21	Ethylbenzene	LT	1.00		ug/l	CDX003
			*. **	AV8	Ethylbenzene	LT	1.37		ug/1	GCS017
				HH8A	Fluoride		2.37		ug/l	
1				CC8	Mercury (filtered)	LT	1.00		ug/l	GCN029
				cce	Mercury	LT	1.00	-1	ug/l	GCN030
•				UM25	Isodrin		7.80		ug/l	GDZ003
				KK8	Isodrin	LT	5.10		ug/l	GEG006
				GG8	Potassium (filtered)		3.26		ug/l	GEP009
				GG8	Potassium		3.76		ug/l	GEP010
				UM21	Toluene	LT	1.00	0	ug/l	GDX003
,				AV8	Toluene		1.47		ug/l	GCS017
				UM21	Methylethyl Ketone	LT	1.00		ug/l	GDX003
				GG8	Magnesium (filtered)		6.35		ug/l	GEP009
				GG8	Magnesium		6.24	4	ug/1	GEP010

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type M	ethod	Analytical Parameters	Re	esults	Units	Sample Number
69111	SW24003	0.3	POND	UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GDX003 5
-				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GE1006
				UM25	Malathion	LT	2.10 1	ug/l	GDZ003
			1	UH11	Malathion	LT	3.73 -1	ug/l	GEJ006
			1	GG8	Sodium (filtered)		2.50 5	ug/l	GEP009
			ı	GG8	Sodium		2.60 5	ug/l .	GEP010
				LL6	Nitrite,Nitrate - Non specific		2.40 2	ug/l	GCL017
			+	UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDZ003
			* 4	GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP009
_				GG8	Lead	LT	7.40 1	ug/l	GEP010
			1	UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDZ003
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEG006
			• 1	UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDZ003
•				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GEG006
Ì			ţ	UM25	Parathion	LT	3.70 1	ug/l	GDZ003
			i	UH11	Parathion	LT	6.47 -1	ug/l	GEJ006
			1	HHSA	Sulfate		4.50 5	ug/l	GCK017
			1	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDZ003
			ŧ	UH11	2-Chloro-1(2,4-Dichlorophenyl). Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ006
			ŧ	UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/1	GDX003
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GDX003
			1	UM21	Trichloroethene	LT	1.00 0	ug/l	GDX003
			1	UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	CDX003
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS017
			1	GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP009
			1	GG8	Zinc	LT	2.20 1	ug/l	GEP010
89111	SW24003	8.0	POND	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF006
			. 1	AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF006
			i	AAA8	p-Chlorophenylmethyl Sulfoxide	LT			GEF006
			i	AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF006

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	. Method	Analytical Parameters	Re	esults	Units	Sample Number
89111	SW24003	8.0	POND	AAAB .	Dithiane	LT	1.34 0	ug/l	GEF006
1		2		AAA8	- Dimethyldisulfide	LT	5.50 -1	ug/l	GEF006
,				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GEF006
69114	SW24004	0.1	STRM	AV8	m-Xylene	LT	1.32 0	ug/l	GCS020
		-		KK8	Aldrin	LT	5.00 -2	ug/1	GEG009
				UM25	Aldrin	LT	1.30 1	ug/l	GEK004
•				00	ALKALINITY		3.03 2	ug/l	GCJ020
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFI011
•				AX8	Arsenic	LT	2.35 0	ug/l	GFI012
				UM25	Atrazine	LT	5.90 0	ug/l	GEK004
				UH11	Atrazine	LT	4.03 0	ug/l	GEJ009
-				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GE1009
				AV8	Benzene	LT	1.05 0	ug/l	GCS020
ļ				GG8	Calcium (filtered)		8.91 4	ug/l	GEP017
				GG8	Calcium		8.60 4	ug/l	GEP018
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GEP017
•				GG8	Cadmium	LT	6.40 0	ug/l	GEP018
<b>}</b>				HHOA	Chloride		5.50 4	ug/l	GCK020
				KK8	Hexachlorocyclopentadiene		4.60 -2	ug/l	GEG009
				UM25	Hexachlorocyclopentadiene		5.40 1	ug/l .	GEK004
	•			KK8	Chlordane	LT	9.50 -2	ug/l	GEG009
				UM25	Chlordane		3.70 1	ug/l	GEK004
	•			UM25	p-Chlorophenylmethyl Sulfide	LT	-1.00 1	ug/l	GEK004
l				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GEK004
l				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	GEK004
				GG8	Chromium (filter@d)	LT	2.40 1	ug/l	GEP017
				GG8	Chromium	LT	2.40 1	ug/l	GEP018
ŀ				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP017
l				GG8	Copper		2.60 1	ug/l	GEP018
				TF20	Cyanide	LT	5.00 0	ug/l	GCR020
•				AYO	Dibromochloropropane	LT	1.95 -1	ug/l	GEE009
ì				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GEK004
1				P6	Dicyclopentadiene	LT	5.00 0	ug/1	GE1009

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89114	SW24004	0.1	STRM	- UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GEK004
1				UM25	Vapona	LT	8.50 O	ug/l	GEK004
				UH11	Vapona	LT	3.84 -1	ug/l	GEJ009
•				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GEH009
•		,		UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GEK004
				UM25	Dithiane	LT	3.30 0	ug/l	GEK004
				KK8	Dieldrin	LT	5.00 -2	ug/l	GEG009
				UM25	Dieldrin	LT	2.60 1	ug/l	GEK004
				AT6	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GEH009
_				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GEK004
				KK8	Endrin	LT	5.00 -2	ug/l	GEGOO9
				UM25	Endrin	LT	1.80 1	ug/l	GEK004
•				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS020
				HH6A	Fluoride	• =	1.50 3	ug/l	GCK020
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN037
				cce	Mercury		1.00 -1	ug/l	GCN038
				KK8	Isodrin	LT 	5.10 -2	ug/l	GEGO09
				UM25	Isodrin	LI	_7.60 0	ug/1	GEK004
	a ar			GG8 GG8	Potassium (filtered) Potassium		4.00 3 4.15 3	ug/l ug/l	GEP017 GEP018
•				AV8	Toluene	LT	1.47 0	ug/l	GCS020
				GG8	Magnesium (filtered)		3.09 4	ug/l	GEP017
				GG8	Magnesium		3.04 4	ug/l	GEP018
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GE1009
ŀ				UM25	Malathion	LT	2.10 1	ug/l	GEK004
J				UH11	Malathion	LT	3.73 -1	ug/l	GEJ009
1				GG8	Sodium (filtered)		1.30 5	ug/l	GEP017
				GG8	Sodium -		1.30 5	ug/l	GEP018
				LL6	Nitrite, Nitrate - Non specific		7.91 1	ug/l	GCL020
•				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GEK004
ŀ				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP017
				GG8	Lead	LT	7.40 1	ug/l	GEP018
l				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEG009
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK004

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89114	SW24004	0.1	STRM	KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	GEG009
				UM25	ethane Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l	GEK004
		•			ethane				
				UM25	Parathion ·	LT	3.70 1	ug/l	GEK004
				UH11	Parathion	LT	6.47 -1	ug/1	GEJ009
				HH8A	Sulfate		2.40 5	ug/l	GCK020
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GEK004
			-	UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ009
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS020
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP017
			GG8	Zinc	LT	2.20 1	ug/l	GEP018	
00114	CU24C4	7.0	CTOM	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF009
89114 SW24	SW24004	3.0	STRM	AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF009
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF009
			,	AAA8	p-Chlorophenylmethyl Sulfone		7.46 0	ug/l	GEF009
				AAA8	Dithiane	LT	1.34 0	ug/l	GEF009
		w we have		AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l -	GEF <b>00</b> 9
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GEF009
89114	SW30002	0.2	STRM	AV8	m-Xylene	LT	1.32 0	ug/l	GCS019
				KK8	Aldrin	LT	5.00 -2	ug/l	GEG008
				UM25	Aldrin	LT	1.30 1	ug/l	GEK003
				00	ALKALINITY		3.09 2	ug/l	GCJ019
				AX8	Arsenic (filtered)	ĿT	2.35 0	ug/l	GFI009
				AX8	Arsenic	LT	2.35 0	ug/l	GFI010
				UM25	Atrazine	LT		ug/l	GEK003
				UH11	Atrazine	LT		ug/l	GEJ006
				P6	Bicycloheptadiene		5.90 0	ug/l	GEI008
				AV8	Benz ene	LT	1.05 0	ug/l	GCS019
				GG8	Calcium (filtered)		9.26 4	ug/l	GEP015
				GG8	Calcium		8.94 4	ug/l	GEP016

Comprehensive Monitoring Program

Summary of Analytical Results

Re LT LT	esults 	Units.	Sample Number
	8.40 O		
	8.40 O	. 23	~~~~~
L.I		11.	GEP015
			GEP016
. ~~			GCK019 GEG008
			GEKO03
L!	5.40 1	, ug/ 1	GENOUS
LT	9.50 -2	ug/l	GEG008
LT	3.70 1	ug/l	GEK003
LT	1.00 1	ug/l	GEK003
LT	1.50 1	ug/l	GEK003
LT	5.30 0	ug/l	GEK003
LT	2.40 1	ug/l	GEP015
LT	2.40 1	ug/l	GEP016
LT	2.60 1	ug/l	GEP015
LT	2.60 1	ug/l	GEP016
LT	5.00 0	ug/l	GCR019
LT	1.95 -1	ug/l	GEE006
LT	1.20 1	ug/1	GEK003
LT	5.00 0	ug/l	GEI008
LT	5.50 0	ug/l	GEK003
LT	6.50 0	ug/l	GEK003
	6.35 -1	ug/l	GEJ008
LT	3.92 -1	ug/l	GEH008
LT	2.10 1	ug/l	GEK003
LT	3.30 0	ug/l	GEK003
LT	5.00 -2	ug/l	GEG008
LT	2.60 1	ug/l	GEK003
LT	1.88 -1	ug/l	GEH008
LT	1.30 2	ug/l	GEK003
LT	5.00 -2	ug/l	GEG008
LT	1.80 1	ug/l	GEK003
LT	1.37 0	ug/l	GCS019
	1.55 3		GCK019
LT		ug/l	GCN035
			GCN036
	LT LTLLT CTLLT LTLLT LTLLT LTLLT LT LT LT LT LT LT	LT 4.80 -2 LT 5.40 1  LT 9.50 -2 LT 3.70 1 LT 1.00 1 LT 1.50 1 LT 5.30 0  LT 2.40 1 LT 2.40 1 LT 2.60 1 LT 2.60 1 LT 5.00 0  LT 1.95 -1 LT 5.00 0  LT 1.95 -1 LT 5.00 0  LT 3.92 -1 LT 3.92 -1 LT 3.92 -1 LT 3.92 -1 LT 3.92 -1 LT 3.92 -1 LT 3.92 -1 LT 3.90 -2  LT 1.60 1  LT 3.50 0  LT 5.00 -2  LT 1.60 1  LT 1.30 2 LT 1.30 2 LT 1.30 -1  LT 1.37 0 1.55 3  LT 1.00 -1	LT 5.40 1 ug/l  LT 9.50 -2 ug/l  LT 3.70 1 ug/l  LT 1.00 1 ug/l  LT 1.50 1 ug/l  LT 5.30 0 ug/l  LT 2.40 1 ug/l  LT 2.40 1 ug/l  LT 2.60 1 ug/l  LT 2.60 1 ug/l  LT 5.00 0 ug/l  LT 1.20 1 ug/l  LT 5.50 0 ug/l  LT 6.50 0 ug/l  LT 6.50 0 ug/l  LT 3.92 -1 ug/l  LT 3.30 0 ug/l  LT 3.30 0 ug/l  LT 2.60 1 ug/l  LT 3.30 0 ug/l  LT 3.30 0 ug/l  LT 3.30 0 ug/l  LT 3.30 0 ug/l  LT 5.00 -2 ug/l  LT 1.86 -1 ug/l  LT 1.88 -1 ug/l  LT 1.30 2 ug/l  LT 1.37 0 ug/l  LT 1.37 0 ug/l  LT 1.55 3 ug/l  LT 1.55 3 ug/l  LT 1.55 3 ug/l  LT 1.00 -1 ug/l

01/10/90

Summary of Analytical Results

					•				
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	, Re	esults	Units	Sample Number
·						***************************************			
89114	SW30002	0.2	STRM	KK8	Isodrin	LT	5.10 -2	ug/l	GEG008
	O1100002	W.L	<b></b>	UM25	Isodrin	LT		ug/1	GEK003
				GG8	Potassium (filtered)		4.18 3	ug/l	GEP015
				GG8	Potassium		3.89 3	ug/l	GEP016
				AV8	Toluene	LT	1.47 0	ug/l	GCS019
				. GG8	Magnesium (filtered)		3.02 4	ug/l	GEP015
				GG8	Magnesium		2.78 4	ug/l	GEP016
Ì				P8	Methylisobutyl Ketone	. LT		ug/l	GETO08
				го UM25	Malathion	LT		ug/l	GEK003
_				UH11	Malathion		3.73 -1	ug/1	GEJ008
							*		
				GG8	Sodium (filtered)		1.20 5	ug/l	GEP015
				GG6	Sodium		1.10 5	ug/l	GEP016
				LL6	Nitrite, Nitrate - Non specific		7.50 2	ug/l	GCL019
				UM25	1,4-Oxathiane		2.70 1	ug/1	GEKO03
•				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP015
				GG8	Lead	LT	7.40 1	ug/l	GEP016
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEGOO8
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK003
1				KK8	Dichlorodiphenyltrichloro- ethane	LT -	4.90 -2	ug/l	-GEGOO6
				UM25	Dichlorodiphenyltrichloro-	1 T	1.80 1	ug/l	GEK003
				VI25	ethane			~3/ ~	
				18407	Paragraph I an	1 7	3.70 1	um/1	GEK003
				UM25	Parathion			ug/l	GEJ008
				UH11	Parathion	L. (	6.47 -1 1.90 5	ug/l	
				HH8A	Sulfate	1 7	1.90 1	ug/l ug/l	GCK019 GEK003
•				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	L-1	1.90 1	ug/1	GENOOS
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ008
	,				TAILY AGAG ONLY A TOTAL PROPERTY OF STREET				
				AV8	Ortho- & Para-Xylene		1.36 0	ug/l	GCS019
				GG8	Zinc (filtered)		2.20 1	ug/l	GEP015
-				GG8	Zinc	LT	2.20 1	ug/l	GEP016
69114	SW30002	5.0	STRM	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF008
•				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF008

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number	•.
<del>6</del> 9114	SW30002	5.0	STRM	AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF008	
■ <b>**</b>	0,1,00002			AAA8	p-Chlorophenylmethyl Sulfone	LT	7.45 0	ug/l	GEF008	
				AAA6	Dithiane	LT	1.34 0	ug/l	GEF008	
				AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF008	
1				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GEF008	
69114	SW300026	0.2	STRM	<b>МИ</b> Э	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDY007	
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/1	GDY007	
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY007	
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY007	
1				ИИЭ	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDY007	
į				инэ	1,2-Dichloroethane	LT	6.50 -2	ug/l	GDY007	
				<b>AA</b> 9	m-Xylene	LT	2.60 -1	ug/l	GDW007	
				KK9A	Aldrin	LT	1.90 -3	ug/l	GEB007	
				69	Arsenic	LT	2.50 0	ug/l	GDM012	
				LH15	Atrarine		1.57 1	ug/l	GEA007	
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY006	
				HH9	Benrothiarole	LT	2.04 0	ug/l	GEC006	
				AA9	Benzene	LT	8.50 -2	ug/l	GDW007	
				. NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY007	
•				P9	Cadmium	LT	7.40 -1	ug/l	GDK012	
				ИН9	Methylene Chloride	LT	3.70 0	ug/l	GDY007	-
				NN9	Chloroform	LT	6.80 -2	ug/l	GDY007 GEB007	
_				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l		
				NN9 KK9A	Chlorobenzene Chlordane	LT LT	2.30 -2	ug/l ug/l	GDY007 GEB007	
_				нн9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC006	
1				нн9	p-Chlorophenylmethyl Sulfoxide		5.40 0	ug/l	GEC006	
}				НН9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GEC006	
				P9	Chromium		6.50 0	ug/l	GDK012	
1				P9	Copper		4.70 0	ug/l	GDK012	
J				\$9	Dibromochloropropane		5.00 -3	ug/l	GED007	
<b>.</b>				ZZ9	Dicyclopentadiene		5.12 0	ug/l	IKY006	
				LH15	Vapona	LT	8.00 -2	ug/l	GEA007	

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69114	SW30002B	0.2	STRM	TT9 ·	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU008
	2.1.0.0.0.0.0			нн9	Dithiane	LT	1.45 0	ug/l	GEC006
				KK9A	Dieldrin	LT	3.30 -3	ug/l	GEB007
				нн9	Dimethyldisulfide	LT	3.12 0	ug/1	GEC006
	-			TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU008
				KK9A	Endrin	LT	5.60 -3	ug/l	GEB007
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDW007
				<b>A</b> AA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS008
				Y9	Mercury	LT	5.00 -2	ug/l	GDL012
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS006
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB007
				<b>AA</b> 9	Toluene	LT	1.90 -1	ug/l	GDW007
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY006
				LH15	Malathion	LT	1.26 -1	ug/l	GEA007
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GEC <b>00</b> 6
				<b>P</b> 9	Lead	LT	8.40 0	ug/l	GDK012
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB007
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB007
				LH15	Parathion	LT	1.59 -1	ug/l	GEA007
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA007
				ии9	Tetrachloroethene	LT	2.70 -1	ug/l	GDY007
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDY007
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDW007
	•			<b>P9</b>	Zinc	LT	8.70 0	ug/l	GDK012
9114	SW31001	0.1	STRM	AV8	m-Xylene	LT	1.32 0	ug/l	GCS018
				KK8	Aldrin		5.00 -2	ug/l	GEG007
				UM25	Aldrin	LT	1.30 1	ug/l	GEK002
				00	ALKALINITY		2.74 2	ug/l	GCJ018
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GF1007
				AX6	Arsenic	LT	2.35 0	ug/l	GF1008
				UM25	Atrazine		5.90 0	ug/l	GEK002

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	. Re	eults		Units	Sample Number	
i,	CU74 004		CTDM	i #⊔1 1	Atrazine	LT	4.03	0	ug/l	GEJ007	
69114	SW31001	0.1	STRM	UH11 P8	Bicycloheptadiene	LT	5.90		ug/l	GE1007	
				AV8	Benzene	LT	1.05		ug/1	GCS018	
				GG8	Calcium (filtered)		5.81		ug/l	GEP013	
				GG8	Calcium		6.55		ug/l	GEP014	
				GG8	Cadmium (filtered)	LT	8.40	0	ug/l	GEP013	
1				GG8	Cadmium	LT	8.40	0	ug/l	GEP014	
				HH8A	Chloride		4.40	4	ug/l	GCK018	
				KK8	Hexachlorocyclopentadiene	LT	4.80		ug/1	GEG007	
•				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	GEK002	
				KK8	Chlordane	LT	9.50 -	-2	ug/l	GEG007	
				UM25	Chlordane	LT	3.70	1	ug/l	GEK002	
Ĭ				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/1	GEK002	
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	GEK002	
•				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GEK002	
				GG8	Chromium (filtered)	LT	2.40	1	ug/l	GEP013	
				GG8	Chromium	LT		1	ug/l	GEP014	
				GG8	Copper (filtered)	LT		1	ug/l	GEP013	
				GGS	Copper	LT		1	ug/l	GEP014	
				TF20	Cyanide	LT	5.00	O	ug/l	GCR018	
ì				AY8	Dibromochloropropane	LT	1.95 -	-1	ug/l	GEE007	
				UM25	Dibromochloropropane	LT	1.20	1	ug/l	GEK002	
				P8	Dicyclopentadiene	LT	5.00	0	ug/l	GEI007	
ı				UM25	Dicyclopentadiene	LT	5.50	0	ug/l	GEK002	
				UM25	Vapona	LT	8.50	0	ug/l	GEK002	
,				UH11	Vapona	LT	3.84 -		ug/l	GEJ007	
				AT6	Diisopropylmethyl Phosphonate		3.92 -		ug/l	GEH007	
				UM25	Diisopropylmethyl Phosphonate		2.10		ug/l	GEK002	
				UM25	Dithiane		3.30		ug/l	GEK002	
				KK8	Dieldrin	LT	5.00 -	-2	ug/l	GEG007	
<b>)</b>				UM25	Dieldrin		2.60		ug/l	GEK002	
l l				AT8	Dimethylmethyl Phosphate		1.68 -		ug/l	GEH007	
				UM25	Dimethylmethyl Phosphate		1.30		ug/l	GEKO02	
ı				KK8	Endrin	LT	5.00 -	-2	ug/l	GEGOO7	
					·						

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89114	SW31001	0.1	STRM	UM25	Endrin	LT	1.60 1	_ug/l	GEK002
09114	2M21001		21171	AV8	Ethylbenzene		1.37 0	ug/l	GCS018
				HHBA	Fluoride		1.95 3	ug/l	GCK018
				ccs	Mercury (filtered)	LT	1.00 -1	ug/l	GCN033
				CC8	Mercury	LT	1.00 -1	ug/l	GCN034
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG007
				UM25	Isodrin	LT	7.80 0	ug/l	GEK002
				GG8	Potassium (filtered)		3.78 3	ug/l	GEP013
				GG8	Potassium		3.65 3	ug/l	GEP014
				AV8	Toluene	LT	1.47 0	ug/l	GCS018
				GG8	Magnesium (filtered)		2.79 4	ug/l	GEP013
				GG8	Magnesium		3.04 4	ug/l	GEP014
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/1	GEI007
				UM25	Malathion	LT	2.10 1	ug/l	GEK002
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ007
				GG8	Sodium (filtered)		9.74 4	ug/l	GEP013
				GG8	Sodium		9.46 4	ug/l	GEP014
-				LL8	Nitrite,Nitrate - Non specific		5.20 3	ug/l	GCL018
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GEK.002
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP013
				GG8	Lead	LT	7.40 1	ug/l	GEP014
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEG007
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GEG007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEK002
				UM25	Parathion	LT	3.70 1	ug/l	GEK002
•				UH11	Parathion	LT	6.47 -1	ug/l	GEJ007
				HH8A	Sulfate		1.30 5	ug/l	GCK018
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LŦ	1.90 i	ug/l	GEK <b>00</b> 2
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.67 -1	ug/l	GEJ007

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
69114	SW31001	0.1	STRM	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS018
07114	34121001	0.1	<b>~</b> 1141	GG8	Zinc (filtered)	LT	2.20 1	ug/1	GEP013
				GG8	Zinc	LT	2.20 1	ug/l	GEP014
89114	SW31001	3.0	STRM	AAA8	Benrothiarole	LT	5.00 0	ug/l	GEF007
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF007
)				<b>AAA</b> 8	p—Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	GEF007
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF007
				AAA8	Dithiane	LT	1.34 0	ug/l	GEF007
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF007
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GEF007
69114	SW31001B	0.1	STRM	ии9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDY008
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDY008
	*	=		<b>НИЭ</b>	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY008
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY008
1				<b>NN</b> 9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDY008
				еии	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY008
,				AA9	m-Xylene	LT	2.60 -1	ug/l	GDW008
	*			KK9A	Aldrin	LT	1.90 -3	ug/l	GEB008
				B9	Arsenic	LT	2.50 0	ug/l	GDM013
i				LH15	Atrazine		4.55 0	ug/l	GEA008
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY007
				HH9	Benzothiazole	LT	2.04 0	ug/l	GEC007
				<b>A</b> A9	Benzene	LT	8.50 -2	ug/l	GDW008
	•			еии	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY008
,				P9	Cadmium	LT	7.40 -1	ug/l	GDK013
<b>!</b>				еии	Methylene Chloride		3.70 0	ug/l	GDY008
				<b>PNN</b>	Chloroform	LT	6.80 -2	ug/l	GDY008
1				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l	GEB008
				NN9	Chlorobenzene	LT	2.00 -1	ug/l	GDY008
				KK9A	Chlordane	LT	2.30 -2	ug/l	GEBOO8
I				нн9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC007
				нн9	p-Chlorophenylmethyl Sulfoxide	LT	4.61 0	ug/l	GEC007
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GEC007

R. L. Stollar and Associates

Summary of Analytical Results

Sampling a Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	. Re	ssults	Units	Sample .Number
89114	SW31001B	0.1	STRM	P9	Chromium		1.18 1	ug/l	GDK013
	011020020	W-1	O I I I I	P9	Copper		1.05 1	ug/l	GDK013
				. \$9	Dibromochloropropane	LT	5.00 -3	ug/l	GED008
<del>-</del>				ZZ9	Dicyclopentadiene	LT		ug/1	IKY007
				LH15	Vapona		8.00 -2	ug/l	GEA008
				<b>T</b> T9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU009
_				HH9	Dithiane	LT	1.45 0	ug/l	GECO07
				KK9A	Dieldrin		1.88 -2	ug/l	GEB008
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GEC007
<u>-</u>				<b>T</b> T9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU009
				KK9A	Endrin		1.88 -2	ug/l	GEB008
				<b>AA9</b>	Ethylbenzene	LT	1.60 -1	ug/l	GDW008
1				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS009
				Y9	Mercury	LT	5.00 -2	ug/l	GDL013
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS009
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB008
				<b>AA</b> 9	Toluene	LT.	1.90 -1	ug/l	GDW008
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY007
Ι.				LH15	Malathion	LT	1.26 -1	ug/1	GEA006
_				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GEC007
				P9	Lead	LT	8.40 0	ug/l	GDK013
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB008
Ĭ			•	KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB008
,				LH15	Parathion	LT	1.59 -1	ug/l	GEA008
Ē.				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA008
}				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GDY008
:				ниэ	Trichloroethene		1.40 -1	ug/l	GDY008
				AA9	Ortho- & Para-Xylene		3.90 -1	ug/l	GDW008
•				P9	Zinc		4.32 1	ug/l	GDK013
89115	SW31002	0.1	POND	AV8	m-Xylene	LT	1.32 0	ug/l	GCS022
•				KK8	Aldrin	LT	5.00 -2	ug/l	GEG011

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89115	SW31002	0.1	POND	UM25	- Aldrin	LT	1.30	1 ug/l	GEK005
03110	01102002		,	00	ALKALINITY	-	2.86	2 ug/l	GE0006
				AX8	Arsenic (filtered)	LT	2.35 (	) ug/l	GFI015
				AX6	Arsenic	LT	2.35	) ug/l	GFI016
				UM25	Atrazine	LT	5.90	) ug/l	GEK005
				UH11	Atrazine	LT	4.03	) ug/l	GEJ011
				P6	Bicycloheptadiene	LT	5.90 (	) ug/l	GEI011
				AV8	Benzene	LT	1.05	) ug/l	GCS022
•				GG8	Calcium (filtered)		8.37	1 ug/l	GEP021
				GG8	Calcium		8.71	1 ug/l	GEP022
				GG8	Cadmium (filtered)	LT	8.40 (	) ug/l	GEP021
				GG8	Cadmium	LT	6.40	) ug/l	GEP022
				HHBA	Chloride		4.40	1 ug/l	GCK022
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	2 ug/l	GEGO11
				UM25	Hexachlorocyclopentadiene	LT	5.40	i ug/l	GEK005
				KK8	Chlordane	LT	9.50 -2	2 ug/l	GEG011
				UM25	Chlordane	LT	3.70	i ug/l	GEK005
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	l ug/l	GEK005
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	<del>-</del>	GEK005
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 (	) ug/l	GEK005
				GG8	Chromium (filtered)	LT	2.40	ug/1	GEP021
				GG8	Chromium	LT	2.40	l ug/l	GEP022
				GG8	Copper (filtered)	LT	2.60	ug/l	GEP021
				GG8	Copper	LT	2.60	l ug/l	GEP022
				TF20	Cyanide	LT	5.00 (	) ug/l	GEN006
				AY8	Dibromochloropropane	LT	1.95 -	i ug/l	GEE <b>0</b> 11
				UM25	Dibromochloropropane	LT	1.20	i ug/l	GEK005
				P8	Dicyclopentadiene		5.00 (		GEI011
				UM25	Dicyclopentadiene		5.50 (		GEK005
				UM25	Vapona	LT	8.50 (	) ug/l	GEK005
				UH11	Vapona	LT	3.64 -		GEJ011
			-	ATS	Diisopropylmethyl Phosphonate	LT			GEH011
				UM25	Diisopropylmethyl Phosphonate	LT			GEK005
				UM25	Dithiane	LT	3.30	) ug/l	GEK005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	·_ F	Results	Units	Sample Number
				1446	Mark X days	. ~	r r nn n	/3	000011
69115	SW31002	0.1	POND	KK6	Dieldrin	Lĭ		ug/l	GEGO11
				UM25	Dieldrin	LT		ug/l	GEK005
				AT6	Dimethylmethyl Phosphate	LI		ug/l	GEH011 GEK005
				UM25 KK8	Dimethylmethyl Phosphate Endrin	L]		ug/l ug/l	GEGO11
				UM25	Endrin	LT	1.60 1	ug/l	GEKOO5
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS022
				HH8A	Fluoride		1.39 3	ug/l	GCK022
,				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN041
				CC8	Mercury	LT	1.00 -1	ug/l	GCN042
•				кка	Isodrin	LT		ug/l	GEGO11
				UM25	Isodrin	LT	7.80 0	ug/l	GEK005
				GG8	Potassium (filtered)		4.37 3	ug/l	GEP021
				GG8	Potassium		4.48 3	ug/l	GEP022
				AV8	Toluene	LT	1.47 0	ug/l	GCS022
				GG8	Magnesium (filtered)		2.39 4	ug/l	GEP021
				GG8	Magnesium		2.48 4	ug/l	GEP022
				P8	Methylisobutyl Ketone		4.90 0	ug/l	GEI011
	-			UM25	Malathion		2.10 1	ug/l	GEK005
				UH11	Malathion .	LT	3.73 -1	ug/l	GEJ011
i				GG8	Sodium (filtered)		9.03 4	ug/l	GEP021
				GG8	Sodium		8.96 4	ug/l	GEP022
				LL8	Nitrite, Nitrate - Non specific	1 70	7.65 1	ug/1	GCL022
				UM25 GG8	1,4-Oxathiane Lead (filtered)	LT	7.40 1	ug/l ug/l	GEK005 GEP021
				GG8	Lead	LT	7.40 1	ug/l	GEP022
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEGO11
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK005
,				кк8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GEG011
ı				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEKOO5
				UM25	Parathion	LT	3.70 1	ug/l	GEK005
				UH11	Parathion	LT	6.47 -1	ug/1	GEJ011

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type		Analytical Parameters	. Re	sults	Units	Sample Number
			m.m. 1 m	111100	Sulfate		1.50 5	ug/l	GCK022
89115	SW31002	0.1	POND	HH6A UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GEK005
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ011
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS022
			N.	GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP021
				GG8	Zinc	LT	2.20 1	ug/l	GEP022
89115	SW31002	4.0	POND	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF011
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF011
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF011
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF011
				AAA8	Dithiane	LT	1.34 0	ug/l	GEF011
				AAAS	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF011
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GEF011
89115	SW310026	0.1	POND	ии9	1,1,1-Trichloroethane	LT	6.80 -2	ug/l	GDY011
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDY011
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY011
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY011
				РИИ	1,2-Dichloroethene	LT.	2.60 -1	ug/l	GDY011
				ииэ	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY011
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDW011
				KK9A	Aldrin	LT	1.90 -3	ug/l	GEB011
				69	Arsenic	LT	2.50 0	ug/l	GDM016
				LH15	Atrazine		3.03 -1	ug/l	GEA011
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY008
				HH9	Benzothiazole	LT	2.04 0	ug/l	GEC010
				AA9	Benzene		8.50 -2	ug/l	GDW011
				PNN	Carbon Tetrachloride		1.20 -1	ug/l	GDY011
				P9	Cadmium	LT	7.40 -1	ug/l	GDK016
				ин9	Methylene Chloride	LT	3.70 0	ug/l	GDY011
				<b>NN9</b>	Chloroform		6.80 -2	ug/l	GDY011
				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l	GEB011

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	, Re	esults	Units	Sample Number
69115	SW310026	0.1	POND	NN9	Chlorobenzene	LT	2.00 -1	ug/l	GDY011
09110	34310020	U.1	, 0,10	KK9A	Chlordane	LT	2.30 -2	ug/l	GEB011
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC010
				ннэ	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GEC010
				ННЭ	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GECO10
				P9	Chromium		1.31 1	ug/l	GDK016
				P9	Copper		1.17 1	ug/l	GDK016
				<b>S</b> 9	Dibromochloropropane	LT	5.00 -3	ug/l	GED011
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/1	IKY008
				LH15	Vapona		3.88 -1	ug/l	GEA011
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU010
				HH9	Dithiane	LT	1.45 0	ug/l	GEC01
				KK9A	Dieldrin	LT	3.30 -3	ug/l	GEB01
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GECO1
•				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU010
				KK9A	Endrin	LT	5.60 -3	ug/l	GEB01
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDW01:
				<b>AAA</b> 9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS01
				Y9	Mercury	LT	5.00 -2	ug/l	GDL01
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS01
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB01:
				AA9	Toluene	LT	1.90 -1	ug/l	GDW01:
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY00
				LH15	Malathion	LT	1.26 -1	ug/l	GEA01
				ннэ	1,4-Oxathiane	LT	1.74 0	ug/l	GEC01
				P9 .	Lead		1.87 1	ug/l	GDK01
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB01
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB01
				LH15	Parathion	LT	1.59 -1	ug/l	GEA011
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates		1.48 -1	ug/l	GEA013
				<b>6</b> NN	Tetrachloroethene	LT	2.70 -1	ug/l	GDY011

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		. Re	esults	ι	Jnits	Sample Number
<b>6</b> 9115	SW31002B	0.1	POND	еии	Trichloroethene		LT	1.40 -	-1	ug/l	GDY011
	JN31002D			AA9	Ortho- & Para-Xylene		LT	3.90 -	-1	ug/l	GDW011
				P9	Zinc			4.94	1	ug/l	GDK016
<b>6</b> 9118	SW36001	0.1	STRM	UM21	1,1,1-Trichloroethane		L٣	1.00	0	ug/l	GFW007
				N8	1,1,1-Trichloroethane		LT	7.60 -		ug/l	GHE009
				UM21	1,1,2-Trichloroethane		LT	1.00	0	ug/l	GFW007
_				8И	1,1,2-Trichloroethane			1.20	1	ug/l	GHE009
				UM21	1,1-Dichloroethene		LT	1.00	0	ug/l	GFW007
_				Ив	1,1-Dichloroethene		LT	1.70		ug/l	GHE009
				UM21	1,1-Dichloroethane		LT	1.00	0	ug/1	GFW007
				N6	1,1-Dichloroethane		LT	7.30 -	-1	ug/l	GHE009
_				UM21	1,2-Dichloroethene		LT	5.00	0	ug/l	GFW007
				N8	1,2-Dichloroethene			7.30	1	ug/l	GHEOO9
				UM21	1,2-Dichloroethane		LT	1.00	0	ug/l	GFW007
_				N8	1,2-Dichloroethane		LT	1.10	0	ug/l	GHE009
				UM21	1,2-Dichloropropane		LT	1.00		ug/l	GFW007
				UM21	1,3-Dichlorobenzene		LT	1.00	0	ug/l	GFW007
				UM21	1,3-Dichloropropane	• • • •	LT	4.80	0	ug/l	GFW007
				UM21	m-Xylene			4.04		ug/l	GFW007
				AV8	m-Xylene			1.80		ug/l	CHDOO9
				UM21	2-Chloroethylvinyl Ether		LT	3.50	0	ug/l	GFW007
				UM21	Acrylonitrile		LT	6.40	0	ug/l	- GFW007
-				KK8	Aldrin			6.50	0	ug/l	GFG025
•				UM25	Aldrin		LT	1.30	1	ug/l	GFV011
				00	ALKALINITY			3.46	2	ug/l	GGX005
	•			AX8	Arsenic (filtered)					ug/l	GFX027
				AX6	Arsenic			2.60	2	ug/l	GFX028
				UH11	Atrazine			3.70	2	ug/l	GFK016
				UM25	Atrazine			5. <b>0</b> 6		ug/l	GFV011
				P6	Bicycloheptadiene			5.34	1	ug/l	GFD016
				UM21	Bromodichloromethane		LT	1.00	0	ug/l	GFW007
-				AAA8	Benzothiazole		LT	5.00	0	ug/l	GGK005
				UM21	Vinyl Chloride		LT	1.20	1	ug/l	GFW007

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters -	Re	- esults	-	Units	Sample Number
<b>-8</b> 9118	SW36001	0.1	STRM	UM21	Chloroethane	LT	8.00	0.	ug/l	GFW007
				UM21	Benzene		2.12		ug/l	GFW007
				AV8	Benzene		3.60	2	ug/l	GHD009
				GG8	Calcium (filtered)		6.66	4	ug/l	GHH026
				GG8	Calcium		6.46	4	ug/l	GHH027
		.*		UM21	Trichlorofluoromethane	LT	1.00	٥	ug/l	GFW007
				UM21	Carbon Tetrachloride	LT	1.00		ug/l	GFW007
				M8	Carbon Tetrachloride	LT	9.90	-1	ug/l	GHE009
				GG8	Cadmium (filtered)		1.35		ug/l	GHH026
	4			GG8	Cadmium		1.49	1	ug/l	GHH027
	,			UM21	Methylene Chloride	LT	1.00		ug/l	GFW007
•				N6	Methylene Chloride	LT	7.40		ug/l	GHE009
				UM21	Bromomethane	LT	1.40		ug/l	GFW007
				UM21	Chloromethane	LT	1.20		ug/l	GFW007
				UM21	Bromoform	LT	1.10	1	ug/l	GFW007
				UM21	Chloroform		7.45		ug/l	GFW007
				И8	Chloroform		9.40		ug/l	GHE009
1				HH8A	Chloride		1.10			GFL012
				KK8	Hexachlorocyclopentadiene	*	1.00		ug/l	GFG025
•				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	GFV011
				UM21	Chlorobenzene		5.72		ug/l	GFW007
				ИӨ	Chlorobenzene		7.50		ug/l	GHEO09
				KK8	Chlordane		6.40		ug/l	GFG025
				UM25	Chlordane	LT	3.70		ug/l	GFV011
				UM25	p-Chlorophenylmethyl Sulfide	*	9.81	1	ug/l	GFV011
•				AAA8	p-Chlorophenylmethyl Sulfide		1.20		ug/l	GGK005
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		ug/l	GFV011
•				AAA8	p-Chlorophenylmethyl Sulfoxide		7.37		ug/l	GGK005
_				UM25	p-Chlorophenylmethyl Sulfone	GT			ug/l	GFV011
				<b>AAA</b> 8	p-Chlorophenylmethyl Sulfone		1.60	3	ug/l	GGK005
-				GG8	Chromium (filtered)		2.40		ug/l	GHH026
1				GG8	Chromium	LT	2.40		ug/l	GHH027
				GG8	Copper (filtered)	LT	2.60		ug/l	GHH026
<del></del>				GG8	Copper	LT	2.60	1	ug/l	GHH027

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Numbe
89118	SW36001	0.1	STRM	TF20	Cyanide	LT	5.00	0	ug/l	GHF00!
03110	3M30001	U.1	31141	AY8	Dibromochloropropane		1.30	2	ug/l	GFN02
				UM25	Dibromochloropropane		1.66		ug/l	GFV01:
				UM21	Dibromochloromethane	LT	1.00	٥	ug/l	GFW00
				UM21	1,4-Dichlorobenzene		7.91	3	ug/l	GFW00
				P6	Dicyclopentadiene		7.67	1	ug/l	GFD01:
				UM25	Dicyclopentadiene		1.01	2	ug/l	GFV01
				UH11	Vapona		5.70	1	ug/l	GFK01
				UM25	Vapona	LT	8.50	٥	ug/l	GFV01
				ATS	Diisopropylmethyl Phosphonate		4.13	0	ug/l	GFM01
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1	ug/l	GFV01
				UM25	Dithiane	LT	3.30	0	ug/l	GFV01
				AAA8	Dithiane		1.58	0	ug/l	GGK00
				KK8	Dieldrin		6.50	0	ug/l	GFG02
				UM25	Dieldrin	LT	2.60	1	ug/l	GFV01
				AAA8	Dimethyldisulfide		1.82	0	ug/l	GGKOO
				UM21	Acetone	LT	8.00	٥	ug/l	GFWOO
				AT6	Dimethylmethyl Phosphate		1.08	1	ug/l	GFM01
				UM25	Dimethylmethyl Phosphate	LT	1.30	2	ug/l	GFV01
				KK8	Endrin		6.80	-1	ug/l	GFG02
				UM25	Endrin	LT	1.80		ug/l	GFV01
				UM21	Ethylbenzene		3.65		ug/l	GFWOO
				6YA	Ethylbenzene		3.10		ug/l	GHD00
				HH8A	Fluoride		2.22		ug/l	GFL01
				CC8	Mercury (filtered)	LT	1.00	-1	ug/l	GGW02
				CC8	Mercury	LT	1.00		ug/l	GGW02
				KK8	Isodrin		4.55		ug/l	GFG02
				UM25	Isodrin,	LT	7.80		ug/l	GFV01
				GG8	Potassium (filtered)		3.21		ug/l	GHH02
				GG8	Potassium		2.99	3	ug/l	GHH02
				UM21	Toluene		8.50		ug/l	GFWOO
				AV6	Toluene		1.40		ug/l	GHD00
				UM21	Methylethyl Ketone	LT	1.00		ug/l	GFWOO
				GG6	Magnesium (filtered)		2.55	4	ug/l	GHH02

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
							2.40		(1	GHH027
<b>6</b> 9118	SW36001	0.1	STRM	GG8	Magnesium		2.49 3.20		ug/l ug/l	GFD016
				P8	Methylisobutyl Ketone Methylisobutyl Ketone		3.66		ug/l ug/l	GFW007
				UM21 UH11	Malathion	1 7	3.73		ug/l	GFK016
				UM25	Malathion	LT	2.10		ug/l	GFV011
				GG8	Sodium (filtered)		1.40	5	ug/l	GHH026
				GG8	Sodium		1.50	5	ug/1	GHH027
				LL8	Nitrite, Nitrate - Non specific		6.42	1	ug/l	GCL033
				UM25	1,4-Oxathiane	LT	2.70	1	ug/1	GFV011
				AAA8	1,4-Oxathiane	LT	2.38	0	ug/l	GGK005
				GG8	Lead (filtered)	LT	7.40	1	ug/l	GHH026
				GG8	Lead	LT	7.40	1	ug/l	GHH027
				KK8	Dichlorodiphenylethane		8.99	-1	ug/1	GFG025
				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/l	GFV011
				KK8	Dichlorodiphenyltrichloro- ethane		5.06	-1	ug/l	GFG025
				-UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GFV011
				UH11	Parathion	GT	5.00	1	ug/l	GFK016
				UM25	Parathion	LT	3.70	1	ug/l	GFV011
				HH8A	Sulfate		5.60	4	ug/l	GFL012
			•	ÜH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates		1.91	0	ug/l	GFK016
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1	ug/l	GFV011
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0	ug/l	GFW007
				UM21	Tetrachloroethene		2.12	2	ug/l	GFW007
				N8	Tetrachloroethene		3.40	2	ug/l	GHEO09
				UM21	Trichlaroethene		1.93	2	ug/l	GFW007
				M8	Trichloroethene		2.70		ug/l	GHE009
	,			UM21	Ortho- & Para-Xylene		6.89		ug/1	GFW007
				AV6	Ortho- & Para-Xylene		5.20	2	ug/l	GHD009
				GG8	Zinc (filtered)		3.27		ug/l	GHH026
				GG8	Zinc	LT	2.20	1	ug/l	GHH027

Summary of Analytical Results

mpling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	· · ·	Re	esults	Units	Sample Number
9118	SW36001B	0.1	STRM	.N9	1,1,1-Trichloroethane		LT	4.30 -1	ug/l -	GEQ008
				NN9	1,1,1-Trichloroethane		LT	8.80 -2	ug/1	GFS011
				М9	1,1,2-Trichloroethane		LT	3.90 -1	ug/l	GEQ008
				NN9	1,1,2-Trichloroethane		LT	2.60 -1	ug/1	GFS011
				<b>РИИ</b>	1,1-Dichloroethene		LT	2.40 -1	ug/l	GFS011
				N9	1,1-Dichloroethane		LT	1.70 0	ug/l	GEQ008
				NN9	1,1-Dichloroethane		LT	7.40 -2	ug/l	GFS011
				N9	1,2-Dichloroethene		LT	1.70 0	ug/l	GEQ008
				NN9	1,2-Dichloroethene		LT	2.60 -1	ug/l	GFS011
				И9	1,2-Dichloroethane		LT	5.60 -1	ug/l	GEQ008
				NN9	1,2-Dichloroethane		LT	8.50 -2	ug/l	GFS011
				N9	m-Xylene	-		1.07 0	ug/l	GEQOOS
				<b>A</b> A9	m-Xylene			9.49 -1	ug/l	GFT011
				B9	Arsenic			4.40 1	ug/l	GDM028
				LH15	Atrazine			1.30 1	ug/l	GFR011
				И9	Bicycloheptadiene	•	LT	3.60 -1	ug/l	GEQ008
				ZZ9	Bicycloheptadiene		LT	5.08 0	ug/l	IKY017
				М9	Benzene		LT	2.50 -1	ug/1	GEQ008
				<b>AA</b> 9	Benzene			2.81 -1	ug/l	GFT01
				N9	Carbon Tetrachloride		LT	2.50 -1	ug/l	GEQOO
				еии	Carbon Tetrachloride		LT	1.20 -1	ug/l	GFS011
				P9	Cadmium			1.93 0	ug/l	GDK028
	•			N9	Methylene Chloride		LT	1.50 0	ug/l	GEQ008
				ниэ	Methylene Chloride		LT	3.70 0	ug/l	GFS01
				N9	Chloroform		LT	2.90 -1	ug/l	GEQ006
				еии	Chloroform		LT	6.80 -2	ug/l	GFS01
				N9	Chlorobenzene			1.17 1	ug/l	GEQOO
				еии	Chlorobenzene			1.07 1	ug/l	GFS01
				P9	Chromium		LT	6.50 0	ug/l	GDK028
				P9	Copper			1.29 1	ug/l	GDK02
				· N9	Dibromochloropropane		LT	2.40 0	ug/l	GEQ008
				\$9	Dibromochloropropane			1.70 -1	ug/l	GF601
	~			N9	Dicyclopentadiene		LT	6.40 -1	ug/l	GEQ000

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89118	SW36001B	0.1	STRM	- ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKY017
				LH15	Vapona	LT	8.00 -2	ug/l	GFR011
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	K\$U020
				И9	Dimethyldisulfide	LT	2.00 1	ug/l	GEQ006
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU020
				N9	Ethylbenzene		1.15 0	ug/l	GEQOO8
				AA9	Ethylbenzene		5.80 -1	ug/l	GFT011
1				<b>AA</b> A9	Fluoroacetic Acid	LT	2.00 0	ug/1	KRS020
				Y9	Mercury		5.01 -1	ug/l	GDL028
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS020
				N9	Toluene	LT	2.50 -1	ug/l	GEQ008
				<b>AA9</b>	Toluene		5.61 -1	ug/l	GFT011
				N9	Methylisobutyl Ketone	LT	7.30 -1	ug/l	GEQ008
				ZZ9	Methylisobutyl Ketone	LT	5.24 <b>0</b>	ug/l	IKY017
				LH15	Malathion	LT	1.26 -1	ug/l	GFR011
				P9	Lead		1.03 2	ug/l	GDK028
				LH15	Parathion	LT	1.59 -1	ug/l	GFR011
1				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR011
				<b>N</b> 9	Tetrachloroethene		8.59 -1	ug/l	_ GEQ008 ···
_				<b>МИ</b> Э	Tetrachloroethene		1.00 0	ug/l	GFS011
				N9	Trichloroethene	LT	5.40 -1	ug/l	GEQ008
				RN9	Trichloroethene	LT	1.40 -1	ug/l	GFS011
<b>a</b>				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/1	GEQOO8
				669	Ortho- & Para-Xylene		2.10 0	ug/l	GFT011
				P9	Zinc		6.01 1	ug/l	GDK028
					a a see to the country of the	. ***		1.e. /3	000011
69110	SW37001	0.2	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GCQ011
_				UM21	1,1,2-Trichloroethane	LT . –	1.00 0	ug/l	GCQ011
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GCQ011
•		-		UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GCQ011
_				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GCQ011
5				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GCQ011

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Re	esults		Units	Sample Number
	ų, .						. ***				000016
69110	SW37001	0.2	STRM	UM21	1,2-Dichloropropane	1		1.00		ug/l	GCQ011
1				UM21	1,3-Dichlorobenzene		LT		0	ug/1	GCQ011
				UM21	1,3-Dichloropropane		LT		0	ug/l	GCQ011
				UM21 AV8	m-Xylene m-Xylene		LT LT	1.00		ug/l ug/l	GCQ011 GCS015
1				MVO	III—Ay I & II &		L. I	1.02	~	ug/ 1	GC3013
				UM21	2-Chloroethylvinyl Ether		LT	3.50	0	ug/l	GCQ011
-				UM21	Acrylonitrile		LT	8.40	0	ug/l	GCQ011
				KK6	Aldrin		LT	5.00	-2	ug/l	GCY017
				UM25	Aldrin		LT	1.30	1	ug/l	GCT007
•				00	ALKALINITY			2.48	2	ug/l	GCJ015
				AX8	Arsenic (filtered)		LT	2.35	0	ug/l	GCM027
				AX8	Arsenic		LT	2.35	0	ug/l	GCM028
		•		UH11	Atrazine			9.59	0	ug/l	GCW015
1				UM25	Atrazine		LT	5.90	0	ug/l	GCT007
				P6	Bicycloheptadiene		LT	5.90	0	ug/l	GCV015
•				UM21	Bromodichloromethane		LT	1.00	0	ug/l	GCQ011
				AAA8	Benzothiazole		LT	5.00	0	ug/l	GCZ017
•				UM21	Vinyl Chloride		LT	1.20	1	ug/l	GCQ011
				UM21	Chloroethane		LT	8.00	0	ug/l	GCQ011
				UM21	Benzene		LT	1.00	.0	ug/l	GCQ011
				AV8	Benz ene		LT	1.05	0	ug/l	GCS015
ì				GG8	Calcium (filtered)			9.04	4	ug/l	GEP007
				GG8	Calcium		-	8.79	4	ug/l	GEP008
•				UM21	Trichlorofluoromethane		LT	1.00	0	ug/l	GCQ011
ı				UM21	Carbon Tetrachloride		LT	1.00	0	ug/l	GCQ011
			•	GG8	Cadmium (filtered)		LT	8.40	0	ug/l	GEP007
				GG8	Cadmium		LT	8.40	0	ug/l	GEP008
f				UM21	Methylene Chloride	-		1.00		ug/l	GCQ011
				UM21	Bromomethane		LT			ug/l	GCQ011
_				UM21	Chloromethane		LT	1.20		ug/l	GCQ011
ł				UM21	Bromoform		LT	1.10	1	ug/l	GCQ011
•				UM21	Chloroform			1.00		ug/1	GCQ011
_				HHBA	Chloride		34- I	1.30		ug/l	GCK015
				KK8	Hexachlorocyclopentadiene			4.60		ug/l	GCY017

01/10/90

Summary of Analytical Results

Bampling Date	Station Number	ple oth (cm)	Sample Type	`Method	Analytical Parameters	Re	eults	Units	Sample Number	
		 	***************************************	***************************************		•				-
89110	SW37001	 0.2	STRM	UM25	Hexachlorocyclopentadiene	LT	5.40		GCT007	
1				UM21	Chlorobenzene	LT	1.00		GCQ011	
				KK8	Chlordane		2.68 -		GCY017	
				UM25	Chlordane	LT	3.70	1 ug/l	GCT007	
1				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0 ug/1	GCZ017	
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1 ug/l	GCT007	
				BAAA	p-Chlorophenylmethyl Sulfoxide	LT	1.15	1 ug/l	GCZ017	
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1 ug/l	GCT007	
		-		<b>AAA</b> 8	p-Chlorophenylmethyl Sulfone	LT	7.46	0 ug/l	GCZ017	
• . -	•			UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0 ug/l	GCT007	
				GG8	Chromium (filtered)	LT	2.40	1 ug/l	GEP007	
,				GG8	Chromium	LT	2.40	1 ug/l	GEP008	
				GG8	Copper (filtered)	LT	2.60	1 ug/l	GEP007	
				GGS	Copper	LT	2.60	1 ug/l	GEP008	
ł				TF20	Cyanide	LT	5.00	0 ug/l	GCR015	
1				AY8	Dibromochloropropane	LT	1.95 -	1 ug/l	GDA017	
				UM25	Dibromochloropropane	LT	1.20	1 ug/l	GCT007	
				UM21	Dibromochloromethane	LT	1.00	0 ug/l	GCQ011	
				UM21	1,4-Dichlorobenzene	LT	2.00	0 ug/l	GCQ011	
				P8	Dicyclopentadiene		2.11	1 ug/l	GCV015	
				UM25	Dicyclopentadiene		1.39	1 ug/l	GCT007	
				UH11	Vapona	LT	3.84 -	1 ug/l	GCW015	
				UM25	Vapona	LT	8.50	0 ug/l	GCT007	
		,		ATS -	Diisopropylmethyl Phosphonate		6.60	1 ug/l	GCX017	
1				UM25	Diisopropylmethyl Phosphonate		1.04	2 ug/l	GCT007	
ļ				AAA8	Dithiane	LT	1.34	0 ug/l	GCZ017	
•				UM25	Dithiane	LT	3.30	0 ug/l	GCT007	
				KK8	Dieldrin		5.77 -	2 ug/l	GCY017	
)				UM25	Dieldrin	LT	2.60	1 ug/l	GCT007	
•				AAA8	Dimethyldisulfide	LT	5.50 ~	1 ug/l	GCZ017	
				UM21	Acetone	LT	8.00	0 ug/l	GCQ011	
				AT8	Dimethylmethyl Phosphate	LT	1.88 -	i ug/l	GCX017	
•				UM25	Dimethylmethyl Phosphate	LT	1.30	2 ug/l	GCT007	
				KK8	Endrin		6.43 -	2 ug/l	GCY017	
•										

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type		Analytical Parameters	. ——	esults	Units	Sample _Number
69110	SW37001	0.2	STRM	UM25	Endrin	LT	1.60 1	ug/l	GCT007
03110	2M21001	W+2.	O1141	UM21	Ethylbenzene	LT	1.00 0	ug/l	GCQ011
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS015
				HH8A	Fluoride		2.05 3	ug/l	GCK015
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN027
				CC8	Mercury	LT	1.00 -1	ug/l	GCN028
				KK8	Isodrin	LT	5.10 -2	ug/1	GCY017
				UM25	Isodrin	LT	7.80 0	ug/l	GCT007
				GG8	Potassium (filtered)		4.66 3	ug/l	GEP007
				GG8	Potassium		4.44 3	ug/l	GEP008
				UM2i	Toluene	LT	1.00 0	ug/l	GCQ011
				AV6	Toluene	LT	1.47 0	ug/l	GCS015
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GCQ011
				GG8	Magnesium (filtered)		4.17 4	ug/l	GEP007
				GG8	Magnesium		4.04 4	ug/l	GEP008
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GCQ011
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV015
				UM25	Malathion	LT	2.10 1	ug/l	GCT007
				GG8	Sodium (filtered)		2.10 5	ug/l	GEP007
				GG8	Sodium		2.10 5	ug/l	GEP008
				LL6	Nitrite, Nitrate - Non specific	LŢ	1,00 1	ug/l	GCL015
				AAA8	1,4-Oxathiane	LT	2.36 0	ug/l	GCZ017
				UM25	1,4-0xathiane	LT	2.70 1	ug/l	GCT007
				<b>G</b> G8	Lead (filtered)	LT	7.40 1	ug/l	GEP007
				<b>GG</b> 8	Lead	LT	7.40 1	ug/l	GEP008
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY017
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GCT007
				KK8	Dichlorodiphenyltrichloro- ethane		5.71 -2	ug/l	GCY017
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GCT007
				UM25	Parathion	LT	3.70 1	ug/l	GCT007
				HH8A	Sulfate		3.20 5	ug/l	GCK015
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GCT007
ļ					Vinyldiethyl Phosphates				

Summary of Analytical Results

Sampling Date	Station - Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		esults	Units	Sample Number
89110	SW37001	0.2	STRM	UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GCQ011
1				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GCQ011
				UM21	Trichloroethene	LT	1.00 0	ug/l	GCQ011
)				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GCQ011
1		*		AV6	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS015
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP007
l				GG8	Zinc	LT	2.20 1	ug/l	GEP008
69110	SW37001B	0.2	BORE	Н9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GD1005
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJ007
1				Н9	1,1,2-Trichloroethane	LT	3.90 -1	ug/l	GDI005
				еии	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDJ007
				еии	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDJ007
				Н9	1,1-Dichloroethane	LT	1.70 0	ug/l	GD1005
				еии	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDJ007
				И9	1,2-Dichloroethene	LT	1.70 0	ug/l	GD1005
				РИ9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJ007
)				Н9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GD1005
ı				ннэ	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDJ007
				N9	m-Xylene	LT	7.40 -1	ug/l	GD1005
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDH007
				B9	Arsenic	LT	2.50 0	ug/l	GDMO09
				LH15	Atrazine		3.42 0	ug/l	GDF008
-				N9	Bicycloheptadiene	LT	3.60 -1	ug/l	GD1005
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKX007
				HH9	Benzothiazole	LT	2.04 0	ug/l	GDC009
				М9	Benzene	LT	2.50 -i	ug/1	GDI005
				AA9	Benzene	LT	8.50 -2	ug/l	GDH007
1				N9	Carbon Tetrachloride	LT	2.50 -1	ug/l	GD1005
				РИЯ	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDJ007
				P9	Cadmium	LT	7.40 -1	ug/l	GDK009
				N9	Methylene Chloride	LT	1.50 0	ug/l	GD1005
				ниэ	Methylene Chloride	LT	3.70 0	ug/l	GDJ007
ļ				И9	Chloroform	LT	2.90 -1	ug/l	GD1005

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
	<del></del>	<u> </u>		***************************************		***************************************	······································		
89110	SW370018	0.2	STRM	NN9	Chloroform	LT	6.80 -2	ug/l	GDJ007
				N9	Chlorobenzene	LT	1.50 0	ug/l	GDI005
		•		РИЯ	·Chlorobenzene	LT	2.00 -1	ug/1	GDJ007
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GDC009
•				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GDC009
				НН9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GDC009
				P9	Chromium	LT	6.50 0	ug/l	GDK009
ì				P9	Copper		9.11 0	ug/l	GDK009
İ				<b>S</b> 9	Dibromochloropropane	LT	5.00 -3	ug/l	GDB009
•		•		И9	Dibromochloropropane	LT	2.40 0	ug/l	GD1005
l				Н9	Dicyclopentadiens	LT	6.40 -1	ug/l	GD1005
j				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX007
				LH15	Vapona	LT	8.00 -2	ug/l	GDF008
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST006
ł				HH9	Dithiane	LT	1.45 0	ug/l	GDC009
ł				N9	Dimethyldisulfide	LT	2.00 1	ug/l	GD1005
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GDC009
_				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KST006
				N9	Ethylbenzene	LT	3.80 -1	ug/l	GD1005
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDH007
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR009
İ				Y9	Mercury	LT	5.00 -2	ug/l	GDL009
,				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRR009
1				И9	Toluene	LT	2.50 -1	ug/1	GD1005
				<b>AA</b> 9	Toluene	LT	1.90 -1	ug/l	GDH007
_				Н9	Methylisobutyl Ketone	LŤ	7.30 -1	ug/l	GD1005
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKX007
				LH15	Malathion		1.26 -1	ug/1	GDF008
	•			HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GDC009
				P9	Lead	LT	6.40 0	ug/l	GDK009
,				LH15	Parathion	LT	1.59 -1	ug/l	GDF008
				LH15	2—Chloro—1(2,4—Dichlorophenyl)	LT	1.48 -1	ug/l	GDF008
					Vinyldiethyl Phosphates				

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	 Results	Units	Sample Number
<b>6</b> 9110	SW37001B	0.2	60RE	N9	Tetrachloroethene	LT 2.50 -1	ug/l	GD1005
02110	34/370010	V + AL	DOLL	NN9	Tetrachloroethene	LT 2.70 -1	ug/1	GDJ007
				N9	Trichloroethene	LT 5.40 -1	ug/l	GD1005
				еии	Trichloroethene	 LT 1.40 -1	ug/1	GDJ007
1				N9	Ortho- & Para-Xylene	LT 4.90 0	ug/l	GD1005
				669	Ortho- & Para-Xylene	LT 3.90 -1	ug/l	GDH007
_				P9	Zinc	4.12 1	ug/l	GDK009

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results Surface Water Sediment Samples - Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
69117	SW02006B	.20	ртсн	LH15	Atrazine		6.23 o	ug/g	GFR010
				LH15	Vapona	LT	8.00 _2	ug/g	GFR010
				LH15 LH15 LH15	Malathion Parathion 2-Chloro-1(2,4-Dichlorophenyl)	LT LT LT	1.26 -1 1.59 -1 1.46 ₋₁	na/a na/a na/a	GFR010 GFR010 GFR010
					Vinyldiethyl Phosphates			437 3	
89117	<b>SW02006</b> B	0.2	DTCH	еии	1,1,1-Trichloroethane	ĹT	8.80 -2	ug/g	GFS010
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GFS010
				РИ9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GFS010
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GFS010
		•		ни9	1,2-Dichloroethene	LT	2.60 -1	ug/g	GFS010
				еии	1,2-Dichloroethane	LT	8.50 -2	ug/g	GFS010
				AA9	m-Xylene	LT	2.60 -1	ug/g	GFT010
				<b>B</b> 9	Arsenic	LT	2.50 0	ug/g	GDM026
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	IKY016
				AA9	Benzene	LT	8.50 -2	ug/g	GFT010
1				еии	Carbon Tetrachloride	LT	1.20 -1	ug/g	GFS010
				NN9	Methylene Chloride	LT	3.70 0	ug/g	GFS010
				NN9	Chloroform	LT	6.80 -2	ug/g	GFS010
				NN9	Chlorobenzene	LT	2.00 -1	ug/g	GFS010
				S9	Dibromochloropropane		2.01 -2	ug/g	GFB012
1				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	IKY016
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	KSU018
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	KSU018
'				AA9	Ethylbenzene	LT	1.60 -1	ug/g	GFT010
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRS018
ł				Y9	Mercury		8.00 0	ug/g	GDL026
1				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	na\a	KRS018
				AA9	Toluene	LT	1.90 -1	ug/g	GFT010
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	IKY016
				enn	Tetrachloroethene	LT	2.70 -1	ug/g	GFS010
				ни9	Trichloroethene	LT	1.40 -1	ug/g	GFS010

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Surface Water Sediment Samples - Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69117	SW02006B	0.2	DTCH	AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/g	GFT010
89117	SW02006B	2.0	DTCH	P9	Cadmium	LT	7.40 -1	ug/g	GDK027
	0			p9	Chromium		1.37 1	ug/g	GDK027
				P9	Copper		7.86 1	ug/g	GDK027
				P9	Lead		7.47 1	ug/g	GDK027
				P9	Zinc		1.59 2	nā\ā	GDK027
69115	SW08003B	·· · · · 0.2	STRM	н9 -	1,1,1-Trichloroethane	LT	4.30 -1	ug/g	GEQ006
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/g	GDY010
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/g	GEQOO6
•				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GDY010 -
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GDY010
				нэ	1,1-Dichloroethane	LT	1.70 0	ug/g	GEQ006
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GDY010
				Н9	1,2-Dichloroethene	LT	1.70 0	ug/g	GEQ006
		• •		NN9	1,2-Dichloroethene	LT	2.60 -1	ug/g	GDY010
				N9	1,2-Dichloroethane	LT	5.60 -1	ug/g	GEQ006
				еии	1,2-Dichloroethane	LT	6.50 -2	ug/g	GDY010
				Н9	m-Xylene	LT	7.40 -1	ug/g	GEQ006
-				KK9A	Aldrin	LT	1.90 -3	ug/g	GEB010
				69	Arsenic	LT	2.50 <b>0</b>	ug/g	GDM015
				<b>N</b> 9	Bicycloheptadiene	ĻΥ	3.60 -1	ug/g	GEQOO6
				ННЭ	Benzothiazole	LT	2.04 0	ug/g	GEC009
				N9	Benzene	LT	2.50 -1	ug/g	GEQ006
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/g	GEQ006
8				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/g	GDY010
J				N9	Methylene Chloride		8.70 0	ug/g	GEQ006
<u> </u>				NN9	Methylene Chloride		3.70 0	ug/g	GDY010
				N9	Chloroform		2.90 -1	ug/g	GEQ006
				NN9	Chloroform		6.80 -2	ug/g	GDY010
				KK9A	Hexachlorocyclopentadiene		1.80 -3	ug/g	GEB010
				N9	Chlorobenzene	LT	1.50 0	ug/g	GEQ006
				NN9	Chlorobenzene	LT	2.00 -1	ug/g	GDY010

03/23/90

Summary of Analytical Results

Surface Water Sediment Samples - Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample~	Method	Analytical Parameters	Re	sults	Units	Sample Number
								•	
89115	SW08003B	0.2	STRM	KK9A	Chlordane		2.30 -2	ug/g	GEB010
				HH9	p-Chlorophenylmethyl Sulfide	·LT	4.40 0	ug/g	GEC009
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/g	GEC009
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/g	GECO09
				<b>N9</b>	Dibromochloropropane	LT	2.40 0	ug/g	GEQ006
				N9	Dicyclopentadiene	LT	6.40 -1	ug/g	GEQ006
				нн9	Dithiane	LT	1.45 0	ug/g	GECO09
				KK9A	Dieldrin	LT	3.30 -3	ug/g	GEB010
				N9	Dimethyldisulfide	LT	2.00 1	ug/g	GEQ006
				HH9	Dimethyldisulfide	LT	3.12 0	ug/g	GEC009
				KK9A	Endrin	LT	5.80 -3	ug/g	GEB010
				N9	Ethylbenzene	LT	3.80 -1	ug/g	GEQ006
				Y9	Mercury	LT	5.00 -2	ug/g	GDL015
				KK9A	Isodrin	LT	1.10 -3	ug/g	GEB010
				N9	Toluene	LT	2.50 -1	ug/g	GEQ006
				<b>н</b> 9	Methylisobutyl Ketone	LT	7.30 -1	ug/g	GEQ006
				HH9	1,4-Oxathiane	LT	1.74 0	ug/g	GECO09
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/g	GEB010
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/g	GEB010
				N9	Tetrachloroethene	LT	2.50 -1	ug/g	GEQ006
				NN9	Tetrachloroethene	LT	2.70 -1	ug/g	GDY010
				N9	Trichloroethene	LT	5.40 -1	ug/g	GEQ006
				NN9	Trichloroethene	LT	1.40 -1	ug/g	GDY010
				<b>N</b> 9	Ortho- & Para-Xylene	LT	4.90 0	ug/g	GEQ006
89116	SW11001B	0.1	SURF	нн9	1,1,1-Trichloroethane		3.36 -1	ug/g	GFS005
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GFS005
				PHN 6HN	1,1-Dichloroethene	LT	2.40 -1	ug/g	GFS005
				NN9	1,1-Dichloroethane	LT	7.40 -2	nā/ā	GFS005
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/g	GFS005
				ннэ	1,2-Dichloroethane		8.50 -2	ug/g	GFS005
				<b>AA</b> 9	m-Xylene	LT	2.60 -1	ug/g	GFT005
				<b>6</b> 9	Arsenic	LT	2.50 0	ug/g	GDMO19
				LH15	Atrazine		4.58 0	ug/g	GFR005

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89116	SW110016	0.1	STSW	ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	IKY011
				HH9	Benzothiazole	LT	2.04 0	ug/g	GFA007
				AA9	Benzene	LT	8.50 -2	ug/g	GFT005
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/g	GFS005
				P9	Cadmium	LT	7.40 -1	ug/g	GDK019
				<b>NN9</b>	Methylene Chloride	LT	3.70 0	ug/g	GFS005
				PHH 6	Chloroform	LT	6.80 -2	ug/g	GFS005
				PN9	Chlorobenzene	LT	2.00 -1	ug/g	GFS005
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/g	GFA007
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/g	GFA007
				P9	Chromium		9.99 0	ug/g	GDK019
				P9	Copper		1.45 1	ug/g	GDK019
				<b>S</b> 9	Dibromochloropropane		2.29 -2	ug/g	GFB007
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	IKY011
				LH15	Vapona	LT	6.00 -2	ug/g	GFR005
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	KSU013
			•	HH9	Dithiane	LT	1.45 0	ug/g	GFA007
				HH9	Dimethyldisulfide	LT	3.12 0	ug/g	GFA007
				1179	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	KSU013
				AA9	Ethylbenzene	LT	1.60 -1	ug/g	GFT005
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRS013
				Y9	Mercury	LT	5.00 -2	ug/g	GDL021
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRS013
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	IKY011
				LH15	Malathion	LT	1.26 -1	ug/g	GFR005
				ННЭ	1,4-Oxathiane	LT	1.74 0	ug/g	GFA007
				P9	Lead		2.74 1	ug/g	GDK019
				LH15	Parathion		1.59 -1	ug/g	GFR005
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/g	GFR005
				<b>РИИ</b>	Tetrachloroethene	LT	2.70 -1	ug/g	GFS005
				нн9	Trichloroethene	LT	1.40 -1	ug/g	GFS005
				<b>AA</b> 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/g	GFT005

## Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	· Re	sults	Units	Sample Number
89116	SW11001B	0.1	SURF	P9	Zinc and and		1.02 2	ug/g	GDK019
89107	SW12005B	0.2	BORE	N9	1,1,1-Trichloroethane	LT	4.30 -1	ug/g	GD1002
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/g	GDJ005
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/g	GDI002
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GDJ 005
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GDJ005
				N9	1,1-Dichloroethane	LT	1.70 0	ug/g	GD1002
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GDJ005
				N9	1,2-Dichloroethene	LT	1.70 0	ug/g	GDI002
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/g	GDJ 005
				N9	1,2-Dichloroethane	LT	5.60 -1	ug/g	GD1002
				ннэ	1,2-Dichloroethane	LT	8.50 -2	ug/g	GDJ 005
				N9	m-Xylene	LT	7.40 -1	ug/g	GD1002
	*			AA9	m-Xylene	LT	2.60 -1	ug/g	GDH005
				L9	Aldrin	LT	3.00 -1	ug/g	GDG002
•				B9	Arsenic	LT	2.50 0	ug/g	GDM005
				LH15	Atrazine		3.00 0	ug/g	GDF005
				L9	Atrazine	LT	3.00 -1	ug/g	GDG002
				PP9	Bicycloheptadiene	LT	1.10 0	ug/g	GDE005
				N9	Bicycloheptadiene	LT	3.60 -1	ug/g	GD1002
				HH9	Benzothiazole	LT	2.04 0	ug/g	GDC005
				N9	Benz ene	LT	2.50 -1	ug/g	GD1002
				AA9	Benzene	LT	6.50 -2	ug/g	GDH005
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/g	GD1002
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/g	GDJ005
				P9	Cadmium	LT	7.40 -1	ug/g	GDK005
				N9	Methylene Chloride		1.50 0	ug/g	GD1002
				. NN9	Methylene Chloride		3.70 0	ug/g	GDJ005
				N9	Chloroform		2.90 -1	ug/g	GD1002
				NN9	Chloroform		6.80 -2	ug/g	GDJ 005
				L9	Hexachlorocyclopentadiene	LT	6.00 -1	ug/g	GDG002
				N9	Chlorobenzene		1.50 0	ug/g	GD1002
				NN9	Chlorobenzene	LT	2.00 -1	ug/g	GDJ005

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89107	SW12005B	0.2	STRM	L9	Chlordane	LT	2.00 0	ug/g	GDG002
09107	3W12003D	0.2	J1141	L9	p-Chlorophenylmethyl Sulfide	LT	9.00 -1	ug/g	GDG002
				HH9	p-Chlorophenylmethyl Sulfide	LT		ug/g	GDC005
				L9	p-Chlorophenylmethyl Sulfoxide	LT	3.00 -1	ug/g	GDG002
				нн9	p-Chlorophenylmethyl Sulfoxide	GT	2.00 1	ug/g	GDC005
•				L9	p-Chlorophenylmethyl Sulfone	LT	3.00 -1	ug/g	GDG002
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/g	GDC005
				P9	Chromium	LT	6.50 0	ug/g	GDK005
				P9 "	Copper	LT	4.70 0	ug/g	GDK005
1				S9	Dibromochloropropane	LT	5.00 -3	ug/g	GDB005
•				нэ	Dibromochloropropane	LT	2.40 0	ug/g	GD1002
				L9	Dibromochloropropane	LT	3.00 -1	ug/g	GDG002
	•			PP9	Dicyclopentadiene	LT	4.50 -1	ug/g	GDE005
				N9	Dicyclopentadiene	LT	6.40 -1	ug/g	GDI002
				L9	Dicyclopentadiene	LT	1.00 0	ug/g	GDG002
				LH15	Vapona	LT	8.00 -2	ug/g	GDF005
				L9	Vapona	LT	3.00 0	ug/g	GDG002
ł				L9	Diisopropylmethyl Phosphonate	LT	1.00 0	ug/g	GDG002 ···
				TT9	Diisopropylmethyl Phosphonate	LT	2.28 -1	. ug/g	KSS006
-				L9	Dithiane	LT	4.00 -1	ug/g	GDG002
Ì				ННЭ	Dithiane	LT		ug/g	GDC005
				L9	Dieldrin	LT	3.00 -1	ug/g	GDG002
				N9	Dimethyldisulfide	LT	2.00 1	ug/g	GD1002
				HH9	Dimethyldisulfide	LT		ug/g	GDC005
J				TT9	Dimethylmethyl Phosphate	LT	2.66 -1	ug/g	KSS006
				L9	Endrin	LT	5.00 -1	ug/g	GDG002
				N9	Ethylbenzene		3.80 -1	ug/g	GD1002
_				AA9	Ethylbenzene		1.60 -1	ug/g	GDH005
_				Y9	Mercury		5.00 -2	ug/g	GDL005
				L9	Isodrin	LT	3.00 -1	ug/g	GDG002
-				Н9	Toluene		2.50 -1	ug/g	GD1002
				AA9	Toluene		1.90 -1	ug/g	GDH005
				PP9	Methylisobutyl Ketone		6.40 -1	ug/g	GDE005
_				N9	Methylisobutyl Ketone	LT	7.30 -1	ug/g	GD1002

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R∈	sults	Units	Sample Number
69107	SW12005B	0.2	STRM	LH15	Malathion Called the region of the	LT	1.26 -1	ug/g	GDF005
OJIU)		0.2	01141	L9	Malathion	LT	7.00 -1	ug/g	GDG002
				L9	1,4-Oxathiane	LT	3.00 -1	ug/g	GDG002
				HH9	1,4-Oxathiane	LT	1.74 0	ug/g	GDC005
				P9	Lead	LT	8.40 0	ug/g	GDK005
				L9	Dichlorodiphenylethane	LT	6.00 -1	ug/g	GDG002
				L9	Dichlorodiphenyltrichloro- ethane	LT	5.00 -1	ug/g	GDG002
				LH15	Parathion	LT	1.59 -1	ug/g	GDF005
				L9	Parathion	LT	9.00 -1	ug/g	GDG002
;				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/g	GDF005
				L9	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	6.00 -1	ug/g	GDG002
				<b>N</b> 9	Tetrachloroethene	LT	2.50 -1	ug/g	GD1002
				NN9	Tetrachloroethene	LT	2.70 -1	ug/g	GDJ005
				N9	Trichloroethene	LT	5.40 -1	ug/g	GDI002
				ни9	Trichloroethene	LT	1.40 -1	ug/g	GDJ005
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/g	GD1002
				AA9 P9	Ortho- & Para-Xylene Zinc	LT	3.90 -1 5.61 1	ug/g ug/g	GDH005 GDK005
00110	CLTCA01D	0.1	STRM	N9	1,1,1-Trichloroethane	LT	4.30 -1	ug/g	GEQ008
<b>69</b> 116	SW36001B	0.1	211411	NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/g	GFS011
ı				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/g	GEQ008
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GFS011
ì				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GFS011
				<b>N</b> 9	1,1-Dichloroethane	LT	1.70 0	ug/g	GEQ008
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GFS011
				N9	1,2-Dichloroethene	LT	1.70 0	ug/g	GEQ006
				нн9	1,2-Dichloroethene	LT	2.60 -1	ug/g	GFS011
				<b>N</b> 9	1,2-Dichloroethane	LT	5.60 -1	ug/g	GEQ008
1				ннэ	1,2-Dichloroethane	LT		ug/g	GFS011
	•			N9	m-Xylene		1.07 0	ug/g	GEQ008
-				B9	Arsenic		4.40 1	ug/g	GDM028

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

N9	g/g GFR011 g/g GEQ008 g/g IKY017 g/g GEQ008 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008
N9       Bicycloheptadiene       LT 3.60 -1 u         ZZ9       Bicycloheptadiene       LT 5.06 0 u         N9       Benzene       LT 2.50 -1 u         N9       Carbon Tetrachloride       LT 2.50 -1 u         NN9       Carbon Tetrachloride       LT 1.20 -1 u         P9       Cadmium       1.93 0 u         N9       Methylene Chloride       LT 1.50 0 u         NN9       Methylene Chloride       LT 3.70 0 u         N9       Chloroform       LT 2.90 -1 u         NN9       Chloroform       LT 6.80 -2 u         N9       Chlorobenzene       1.17 1 u         NN9       Chlorobenzene       1.07 1 u         NN9       Chlorobenzene       1.07 1 u         P9       Copper       1.29 1 u         N9       Dibromochloropropane       LT 2.40 0 u         S9       Dibromochloropropane       LT 6.40 -1 u         N9       Dicyclopentadiene       LT 5.12 0 u         LH 5       Vapona       LT 8.00 -2 u	g/g IKY017 g/g GEQ008 g/g GEQ008 g/g GFS011 g/g GDK028 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008
ZZ9   Bicycloheptadiene	g/g GEQ008 g/g GEQ008 g/g GFS011 g/g GDK028 g/g GEQ008 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011
N9       Carbon Tetrachloride       LT 2.50 -1 ur         NN9       Carbon Tetrachloride       LT 1.20 -1 ur         P9       Cadmium       1.93 0 ur         N9       Methylene Chloride       LT 1.50 0 ur         NN9       Methylene Chloride       LT 3.70 0 ur         N9       Chloroform       LT 2.90 -1 ur         N9       Chloroform       LT 6.60 -2 ur         N9       Chlorobenzene       1.17 1 ur         N9       Chlorobenzene       1.07 1 ur         P9       Chromium       LT 6.50 0 ur         P9       Copper       1.29 1 ur         N9       Dibromochloropropane       LT 2.40 0 ur         N9       Dibromochloropropane       LT 6.40 -1 ur         N9       Dicyclopentadiene       LT 5.12 0 ur         LH15       Vapona       LT 8.00 -2 ur         TT9       Diisopropylmethyl Phosphonate       LT 1.14 -1 ur         N9       Dimethyldisulfide       LT 2.00 1 ur	g/g GEQ008 g/g GFS011 g/g GDK028 g/g GEQ008 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008
N9       Carbon Tetrachloride       LT 2.50 -1 ur.         NN9       Carbon Tetrachloride       LT 1.20 -1 ur.         P9       Cadmium       1.93 0 ur.         N9       Methylene Chloride       LT 1.50 0 ur.         NN9       Methylene Chloride       LT 3.70 0 ur.         N9       Chloroform       LT 2.90 -1 ur.         N9       Chloroform       LT 6.60 -2 ur.         N9       Chlorobenzene       1.17 1 ur.         N9       Chlorobenzene       1.07 1 ur.         P9       Chromium       LT 6.50 0 ur.         P9       Copper       1.29 1 ur.         N9       Dibromochloropropane       LT 2.40 0 ur.         N9       Dibromochloropropane       LT 6.40 -1 ur.         N9       Dicyclopentadiene       LT 5.12 0 ur.         LH15       Vapona       LT 5.12 0 ur.         TT9       Diisopropylmethyl Phosphonate       LT 1.14 -1 ur.         N9       Dimethyldisulfide       LT 2.00 1 ur.	g/g GFS011 g/g GDK028 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008
P9 Cadmium 1.93 0 um N9 Methylene Chloride LT 1.50 0 um NN9 Methylene Chloride LT 3.70 0 um NN9 Chloroform LT 2.90 -1 um NN9 Chloroform LT 6.60 -2 um NN9 Chlorobenzene 1.17 1 um NN9 Chlorobenzene 1.07 1 um P9 Chromium LT 6.50 0 um P9 Copper 1.29 1 um NN9 Dibromochloropropane LT 2.40 0 um S9 Dibromochloropropane LT 2.40 0 um S9 Dibromochloropropane LT 6.40 -1 um NN9 Dicyclopentadiene LT 6.40 -1 um NN9 Dicyclopentadiene LT 5.12 0 um LH15 Vapona LT 8.00 -2 um NN9 Dimethyldisulfide LT 2.00 1 um	g/g GDK028 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011
N9       Methylene Chloride       LT 1.50 0 um         NN9       Methylene Chloride       LT 3.70 0 um         N9       Chloroform       LT 2.90 -1 um         NN9       Chloroform       LT 6.80 -2 um         N9       Chlorobenzene       1.17 1 um         NN9       Chlorobenzene       1.07 1 um         P9       Chromium       LT 6.50 0 um         P9       Copper       1.29 1 um         N9       Dibromochloropropane       LT 2.40 0 um         S9       Dibromochloropropane       1.70 -1 um         N9       Dicyclopentadiene       LT 6.40 -1 um         ZZ9       Dicyclopentadiene       LT 5.12 0 um         LH15       Vapona       LT 8.00 -2 um         TT9       Diisopropylmethyl Phosphonate       LT 1.14 -1 um         N9       Dimethyldisulfide       LT 2.00 1 um	g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011
NN9       Methylene Chloride       LT 3.70 0 ur         N9       Chloroform       LT 2.90 -1 ur         NN9       Chloroform       LT 6.80 -2 ur         N9       Chlorobenzene       1.17 1 ur         NN9       Chlorobenzene       1.07 1 ur         P9       Chromium       LT 6.50 0 ur         P9       Copper       1.29 1 ur         N9       Dibromochloropropane       LT 2.40 0 ur         S9       Dibromochloropropane       1.70 -1 ur         N9       Dicyclopentadiene       LT 6.40 -1 ur         Z29       Dicyclopentadiene       LT 5.12 0 ur         LH15       Vapona       LT 8.00 -2 ur         TT9       Diisopropylmethyl Phosphonate       LT 1.14 -1 ur         N9       Dimethyldisulfide       LT 2.00 1 ur	g/g GFS011 g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011
N9       Chloroform       LT 2.90 -1 Ur         NN9       Chloroform       LT 6.80 -2 Ur         N9       Chlorobenzene       1.17 1 Ur         NN9       Chlorobenzene       1.07 1 Ur         P9       Chromium       LT 6.50 0 Ur         P9       Copper       1.29 1 Ur         N9       Dibromochloropropane       LT 2.40 0 Ur         S9       Dibromochloropropane       1.70 -1 Ur         N9       Dicyclopentadiene       LT 6.40 -1 Ur         ZZ9       Dicyclopentadiene       LT 5.12 0 Ur         LH15       Vapona       LT 8.00 -2 Ur         TT9       Diisopropylmethyl Phosphonate       LT 1.14 -1 Ur         N9       Dimethyldisulfide       LT 2.00 1 Ur	g/g GEQ008 g/g GFS011 g/g GEQ008 g/g GFS011
NN9       Chloroform       LT 6.80 -2 ur         N9       Chlorobenzene       1.17 1 ur         NN9       Chlorobenzene       1.07 1 ur         P9       Chromium       LT 6.50 0 ur         P9       Copper       1.29 1 ur         N9       Dibromochloropropane       LT 2.40 0 ur         S9       Dibromochloropropane       1.70 -1 ur         N9       Dicyclopentadiene       LT 6.40 -1 ur         ZZ9       Dicyclopentadiene       LT 5.12 0 ur         LH15       Vapona       LT 8.00 -2 ur         TT9       Diisopropylmethyl Phosphonate       LT 1.14 -1 ur         N9       Dimethyldisulfide       LT 2.00 1 ur	g/g GFS011 g/g GEQ008 g/g GFS011
N9       Chlorobenzene       1.17 1 ur         NN9       Chlorobenzene       1.07 1 ur         P9       Chromium       LT 6.50 0 ur         P9       Copper       1.29 1 ur         N9       Dibromochloropropane       LT 2.40 0 ur         S9       Dibromochloropropane       1.70 -1 ur         N9       Dicyclopentadiene       LT 6.40 -1 ur         ZZ9       Dicyclopentadiene       LT 5.12 0 ur         LH15       Vapona       LT 8.00 -2 ur         TT9       Diisopropylmethyl Phosphonate       LT 1.14 -1 ur         N9       Dimethyldisulfide       LT 2.00 1 ur	g/g GEQ008 g/g GFS011
NN9 Chlorobenzene 1.07 1 ur P9 Chromium LT 6.50 0 ur P9 Copper 1.29 1 ur N9 Dibromochloropropane LT 2.40 0 ur S9 Dibromochloropropane 1.70 -1 ur N9 Dicyclopentadiene LT 6.40 -1 ur ZZ9 Dicyclopentadiene LT 5.12 0 ur LH15 Vapona LT 8.00 -2 ur N9 Dimethyldisulfide LT 1.14 -1 ur N9 Dimethyldisulfide LT 2.00 1 ur	g/g GFS011
P9 Chromium LT 6.50 0 un P9 Copper 1.29 1 un N9 Dibromochloropropane LT 2.40 0 un S9 Dibromochloropropane 1.70 -1 un N9 Dicyclopentadiene LT 6.40 -1 un ZZ9 Dicyclopentadiene LT 5.12 0 un LH15 Vapona LT 8.00 -2 un N9 Dimethyldisulfide LT 1.14 -1 un N9 Dimethyldisulfide LT 2.00 1 un	
P9 Copper 1.29 1 un  N9 Dibromochloropropane LT 2.40 0 un  S9 Dibromochloropropane 1.70 -1 un  N9 Dicyclopentadiene LT 6.40 -1 un  ZZ9 Dicyclopentadiene LT 5.12 0 un  LH15 Vapona LT 8.00 -2 un  TT9 Diisopropylmethyl Phosphonate LT 1.14 -1 un  N9 Dimethyldisulfide LT 2.00 1 un	1/a GDK028
N9 Dibromochloropropane LT 2.40 0 un S9 Dibromochloropropane 1.70 -1 un N9 Dicyclopentadiene LT 6.40 -1 un ZZ9 Dicyclopentadiene LT 5.12 0 un LH15 Vapona LT 8.00 -2 un N9 Dimethyldisulfide LT 1.14 -1 un N9 Dimethyldisulfide LT 2.00 1 un	,,
S9 Dibromochloropropane 1.70 -1 up N9 Dicyclopentadiene LT 6.40 -1 up ZZ9 Dicyclopentadiene LT 5.12 0 up LH15 Vapona LT 8.00 -2 up N9 Dimethyldisulfide LT 2.00 1 up N9 Dimethyldisulfide	g/g GDK028
N9 Dicyclopentadiene LT 6.40 -1 ug ZZ9 Dicyclopentadiene LT 5.12 0 ug LH15 Vapona LT 8.00 -2 ug TT9 Diisopropylmethyl Phosphonate LT 1.14 -1 ug N9 Dimethyldisulfide LT 2.00 1 ug	g/g GEQ008
ZZ9 Dicyclopentadiene LT 5.12 0 up LH15 Vapona LT 8.00 -2 up TT9 Diisopropylmethyl Phosphonate LT 1.14 -1 up N9 Dimethyldisulfide LT 2.00 1 up	g/g GFB014
LH15 Vapona LT 8.00 -2 un TT9 Diisopropylmethyl Phosphonate LT 1.14 -1 un N9 Dimethyldisulfide LT 2.00 1 un	g/g GEQ008
TT9 Diisopropylmethyl Phosphonate LT 1.14 -1 u N9 Dimethyldisulfide LT 2.00 1 u	g/g IKY017
N9 Dimethyldisulfide LT 2.00 1 us	g/g GFR011
	g/g KSU020
	g/g GEQ008
TT9 Dimethylmethyl Phosphate LT 1.33 -1 us	g/g KSU020
N9 Ethylbenzene 1.15 0 us	g/g GEQ008
AAA9 Fluoroacetic Acid LT 2.00 0 us	g/g KR\$020
Y9 Mercury 5.01 -1 u	g/g GDL028
AAA9 Isopropylmethyl Phosphonic LT 2.11 0 u Acid	g/g KRS020
N9 Toluene LT 2.50 -1 u	g/g GEQ008
N9 Methylisobutyl Ketone LT 7.30 -1 u	g/g GEQ008
ZZ9 Methylisobutyl Ketone LT 5.24 0 ug	g/g IKY017
LH15 Malathion LT 1.26 -1 us	g/g GFR011
P9 Lead 1.03 2 us	g/g GDK028
LH15 Parathion LT 1.59 -1 u	g/g GFR011

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

ı											
	Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number	
	69116	SW36001B	0.1	STRM	LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/g	GFR011	
	ł				Н9	Tetrachloroethene		8.59 -1	ug/g	GEQ008	
					NN9	Tetrachloroethene		1.00 0	ug/g	GFS011	
				,	<b>N</b> 9	Trichloroethene	LT	5.40 -1	ug/g	GEQ008	
					еии	Trichloroethene	LT	1.40 -1	ug/g	GFS011	
	<b>!</b>				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/g	GEQ008	
					P9	Zinc		6.01 1	ug/g	GDK028	

APPENDIX B-3

High Event 1989 Water Quality Data

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89135	SW04001ST	0.2	DTCH	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GKN010
<b>0</b> 2100	0110400101	<b>0.1</b>	w	. NB	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GKN010
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GKN010
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GKN010
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GKN010
				МО	1 2 Dimbleventhens	LT	7.60 -1	ug/l	GKN010
		•		N8	1,2-Dichloroethene	LT	1.10 0	ug/l ug/l	GKN010
				N8	1,2-Dichloroethane		1.32 0	ug/l ug/l	GK0010
				AV8	m-Xylene	LT	5.00 -2	ug/l ug/l	GKK007
				KK8 UM25	Aldrin Aldrin	LT		ug/l	GKW004
				UFIZS	Midrin	L.I	1.30 1	ug/1	- GNWOOM
				00	ALKALINITY		2.29 1	ug/l	GMK008
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GKS016
				UH11	Atrazine	LT	4.03 0	ug/1	GKM007
				UM25	Atrazine	LT	5.90 0	ug/l	GKW004
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GKQ012
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GKJ007
				AV8	Benzene	LT	1.05 0	ug/1 =	GK0010
				GG8	Calcium (filtered)		6.21 3	ug/l	GKR013
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GKN010
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GKR013
				N8	Methylene Chloride	LT	7.40 0	ug/l	GKN010
		•		N8	Chloroform	LT	5.00 -1	ug/l	GKN010
				HH8A	Chloride		1.26 3	ug/l	GKP015
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GKK007
			-	UM25	Hexachlorocyclopentadiene	- LT	5.40 1	ug/l	GKW004
				NB	Chlorobenzene	LT	8.20 -1	ug/l	GKN010
				KK8	Chlordane		9.50 -2	ug/l	GKK007
				UM25	Chlordane	LT	3.70 1	ug/l	GKW004
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GKJ007
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW004
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GKJ007
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GKW004
				AAA8	p-Chlorophenylmethyl Sulfone		7.46 0	ug/l	GKJ007
					· · · · · · · · · · · · · · · · · · ·				

			•						
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R∈	sults	Units	Sample Number
00175	CHAAAATCT	0.2	DTCH	GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKR013
89135	SW04001ST	V-2	Dich	GG8	Copper (filtered)	LT	2.60 1	ug/l	GKR013
				TF20	Cyanide	LT	5.00 0	ug/l	GKT010
				AY8	Dibromochloropropane	LT	1.95 -1		GKL007
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GKW004
•				OFIZO	DISCONDENTAL OF SPACE			43/ 2	
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GKQ012
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	GKW004
				UH11	Vapona	LT	3.84 -1	ug/l	GKM007
				UM25	Vapona	LT	8.50 0	ug/l	GKW004
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GK1005
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GKW004
				AAA8	Dithiane	LT	1.34 0	ug/l	GKJ007
				UM25	Dithiane	LT	3.30 0	ug/l	GKW004
				KK8	Dieldrin		5.51 -2	ug/l	GKK007
		,		UM25	Dieldrin	LT	2.60 1	ug/l	GKW004
				AAA8	Dimethyldisulfide	- LT	5.50 -1	ug/l	GKJ007
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GK1005
				UM25	Dimethylmethyl Phosphate	LT.	1.30 2	ug/l	GKW004
				KK8	Endrin	LT	5.00 -2	ug/l	- GKK007
				UM25	Endrin	LT	1.80 1	ug/l	GKW004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GK0010
				HH8A	Fluoride		8.07 2	ug/1	GKP015
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GML006
				KK8	Isodrin	LT	5.10 -2	ug/l	GKK007
				UM25	Isodrin	LT	7.80 0	ug/l	GKW004
•				GG8	Potassium (filtered)		2.93 3	ug/l	GKR013
				AV8	Toluene	LT	1.47 0	ug/l	GK0010
				GG8	Magnesium (filtered)		8.65 2	ug/1	GKR013
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKQ012
				UH11	Malathion	LT	3.73 -1	ug/l	GKM007
				UM25	Malathion	LT	2.10 1	ug/l	GKW004
				GG8	Sodium (filtered)		1.23 3	ug/l	GKR013
				LL8	Nitrite, Nitrate - Non specific		6.60 2	ug/l	GKV018
				AAA8	1,4-0xathiane	17	2.38 0	ug/l	GKJ007

Comprehensive Monitoring Program

01/12/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	•sults	Units	Sample Number
89135	SW04001ST	0.2	DTCH	UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GKW004
02200	0.10 1.002.01			GG8	Lead (filtered)	LT	7.40 1	ug/l	GKR013
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GKK007
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKW004
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GKK007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW004
				UH11	Parathion	LT	6.47 -1	ug/l	GKM007
				UM25	Parathion	LT	3.70 1	ug/l	GKW004
				HH8A	Sulfate		3.46 3	ug/l	GKP015
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GKM007
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	·LT	1.90 1	ug/l	GKW004
				N8	Tetrachloroethene	LT	7.50 -1	ug/1	GKN010
				N8	Trichloroethene	LT	5.60 -1	ug/l	GKN010
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GK0010
				GG8	Zinc (filtered)		4.37 1	ug/l	GKR013
89134	SW08003ST	0.2	STRM	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GJU014
				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL004
	**			N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GJU014
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GLL004
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GJU014
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/1	GLL004
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/1	GJU014
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GLL004
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GJU014
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLL004
				N8	1,2-Dichloroethane		1.10 0	ug/l	GJU014
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GLL004
				UM21	1,2-Dichloropropane		1.00 0	ug/l	GLL004
				UM21	1,3-Dichlorobenzene		1.00 0	ug/l	GLL004
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GLL004

Sampling	Station	Sample	Sample				*:-		-	Sample
Date	Number	Depth (cm)	Туре	Method	Analytical Parameters		Re	eults	Units	Number
00174	SW08003ST	0.2	STRM	AV8	m-Xylene		LT	1.32	) ug/1	GJT014
89134	2MODOO221	0.2	\$1mn	UM21	m-Xylene	•	LT	1.00		GLL004
				UM21	2-Chloroethylvinyl Ether		LT	3.50		GLL004
				UM21	Acrylonitrile		LT	8.40		GLL004
				KK8	Aldrin		LT	5.00 -2		GJV007
				UM25	Aldrin		LT	1.30	l ug/l	GKW002
				00	ALKALINITY	5.54		1.03	2 ug/l	GMK005
				AX8	Arsenic		LT	2.35	) ug/l	GKF021
				UH11	Atrazine		LT	4.03 (	ug/l	GJX007
				UM25	Atrazine		LT	5.90 (	) ug/l	GKW002
				P8	Bicycloheptadiene		LT	5.90	ug/l	GKC012
			-	UM21	Bromodichloromethane		LT	1.00	) ug/l	GLL004
				AAA8	Benzothiazole		LT	5.00	) ug/l	GJY007
				UM21	Vinyl Chloride		LT	1.20	l ug/l	GLL004
				UM21	Chloroethane		LT	8.00 (	) ug/l	GLL004
				AV8	Benzene		LT	1.05		GJT014
		. •		UM21	Benzene		LT	1.00		GLL004
				GG8	Calcium (filtered)			3.02		GKB013
				UM21	Trichlorofluoromethane		LT	1.00		GLL004
				N8	Carbon Tetrachloride		LT	9.90 -	l ug/l	GJU014
				UM21	Carbon Tetrachloride		LT	1.00	) ug/l	GLL004
				GG8	Cadmium (filtered)		LT	8.40	) ug/l	GKB013
				N8	Methylene Chloride		LT	7.40	) ug/l	GJU014
				UM21	Methylene Chloride		LT	1.00	) ug/l	GLL004
				UM21	Bromomethane		LT	1.40	l ug/l	GLL004
				UM21	Chloromethane		LT	1.20	) ug/l	GLL004
				UM21	Bromoform		LT	1.10	l ug/l	GLL004
				N8	Chloroform		LT	5.00 -		GJU014
				UM21	Chloroform		LT			GLL004
				HH8A	Chloride			1.30	4 ug/l	GKH019
				KK8	Hexachlorocyclopentadiene			4.80 -		GJV007
				UM25	Hexachlorocyclopentadiene			5.40		GKW002
				N8	Chlorobenzene		LT			GJU014
				UM21	Chlorobenzene		LT	1.00	) ug/l	GLL004

Comprehensive Monitoring Program

01/12/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89134	<b>SW08003</b> ST	0.2	STRM	KK8	Chlordane	LT	9.50 -2	ug/l	GJV007
****				UM25	Chlordane	LT	3.70 1	ug/1	GKW002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW002
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GKW002
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW002
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKB013
	•			GG8	Copper (filtered)	LT	2.60 1	ug/l	GKB013
				TF20	Cyanide	LT	5.00 0	ug/l	GKE005
			•	AY8	Dibromochloropropane		2.41 -1	ug/l	GJW007
				UM25	Dibromochloropropané	LT	1.20 1	ug/l	GKW002
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLL004
		•		UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GLL004
			•	P8	Dicyclopentadiene	LT	5.00 0	ug/l	GKC012
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GKW002
	-			UH11	Vapona	LT	3.84 -1	ug/1	GJX007
				UM25	Vapona	LT	8.50 0	ug/1	GKW002
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GJZ015
				UM25	Diisopropylmethyl Phosphonate	LT		ug/l	GKW002
				AAA8	Dithiane		1.34 0	ug/l	GJY007
				UM25	Dithiane	LT		ug/l	GKW002
				KK8	Dieldrin	LT	5.00 -2	ug/l	GJV007
				UM25	Dieldrin	LT	2.60 1	ug/l	GKW002
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GJY007
				AT8	Dimethylmethyl Phosphate		1.88 -1	ug/l	GJZ015
				UM25	Dimethylmethyl Phosphate		1.30 2	ug/l	GKW002
				KK8	Endrin	LT	5.00 -2	ug/l	GJV007
				UM25	Endrin	LT	1.80 1	ug/l	GKW002
				AV8	Ethylbenzene		1.37 0	ug/l	GJT014
				UM21	Ethylbenzene		1.00 0	ug/l	GLL004
				HH8A	Fluoride		4.82 2	ug/l	GKH019
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GKG030

			• •						
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89134	TZEOOBOWZ	0.2	STRM	KK8	Isodrin	LT	5.10 -2	ug/l	GJV007
				UM25	Isodrin	LT	7.80 0	ug/l	GKW002
				GG8	Potassium (filtered)		2.70 3	ug/1	GKB013
			,	AV8	Toluene	LT	1.47 0	ug/l	GJT014
	**			UM21	Toluene	LT	1.00 0	ug/l	GLL004
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL004
				GG8	Magnesium (filtered)		6.21 3	ug/1	GKB013
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKC012
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLL004
				UH11	Malathion	LT	3.73 -1	ug/l	GJX007
•		•		UM25	Malathion	LT	2.10 1	ug/l	GKW002
				GG8	Sodium (filtered)		2.49 4	ug/l	GKB013
				LL8	Nitrite, Nitrate - Non specific		4.10 2	ug/l	GKD038
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GJY007
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GKW002
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GKB013
				KK6	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GJV007
				UM25	Dichlorodiphenylethane	· LT	1.40 1	ug/l	GKW002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GJÝ007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW002
			·	UH11	Parathion	LT	6.47 -1	ug/l	GJX007
				UM25	Parathion	LT	3.70 1	ug/l	GKW002
				HH8A	Sulfate		3.10 4	ug/l	GKH019
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GJX007
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GKW002
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GLL004
				N8	Tetrachloroethene		7.50 -1	ug/1	GJU014
				UM21	Tetrachloroethene		1.00 0	ug/l	GLL004
				N8	Trichloroethene	LT	5.60 -1	ug/l	GJU014
				UM21	Trichloroethene		1.00 0	ug/l	GLL004

Comprehensive Monitoring Program

01/12/90

Summary of Analytical Results

			***						
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Results	Units	Sample Number
:00174	CINOAATET	0.2	STRM	AV8	Ortho- & Para-Xylene	L.	1.36 (	) ug/l	GJT014
89134	SWO8003ST	0.2	SIMI	UM21	Ortho- & Para-Xylene	Ľ			GLL004
				GG8	Zinc (filtered)	L		*	GKB013
89130	SW11001ST	0.2	STSW	ттв	1,1,1-Trichloroethane	Ľ	1.09	) ug/l	GBY008
				UU8	1,1,1-Trichloroethane	r.	2.40	) ug/l	GSH007
				TT8	1,1,2-Trichloroethane	r.	1.63	) ug/l	GBY008
				UU8	1,1,2-Trichloroethane	· L	1.60 (	) ug/l	GSH <b>007</b>
				TT8	1,1-Dichloroethene	L.	1.85	) ug/l	GBY008
•				тта	1,1-Dichloroethane	۲.	1.93 (	) ug/l	GBY008
				UU8	1,1-Dichloroethane	L.	1.40 (	) ug/l	GSH007
				TT8	1,2-Dichloroethene	L'		) ug/l	600Y3
				UUS	1,2-Dichloroethene	Ľ	3.20	) ug/1	GSH007
				TTE	1,2-Dichloroethane	Ľ	2.07 (	) ug/l	68Y008
				uus	1,2-Dichloroethane	Ľ	7.20 -	ug/l	GSH007
				UM18	1,3-Dichlorobenzene	Ľ			PHF005
				SS8	m-Xylene	r.			GAX015
				UU8	m-Xylene	L,			GSH007
				MM8A	Aldrin	Lī	8.30 -2	2 ug/l	GPL014
				UM18	Aldrin	NI			PHF005
				W8	Arsenic	r.			GH0021
				UU8	Bicycloheptadiene	L			GSH007
				PP8A	Benzothiazole	Ľ			GIQ011
				SS8	Benzene	L	1.92 (	) ug/l	GAX015
				uus	Benzene	L			GSH007
				TT8	Carbon Tetrachloride	Ľ			GBY008
				UU8	Carbon Tetrachloride	Ľ			GSH007
- 2-				R9D	Cadmium	L			QSD008
				TTE	Methylene Chloride	LT.	2.48 (	) ug/l	GBY008
				UU8	Methylene Chloride	N			GSH007
				TT8	Chloroform	L			GBY008
				UUB	Chloroform	L	1.70		GSH007
		•		нив	Chloride	4	8.63		GJK008
	*			MMSA	Hexachlorocyclopentadiene	L1	8.30 -2	2 ug/l	GPL014

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
00170	SW11001ST	0.2	STSW	UM18	Hexachlorocyclopentadiene	LT	8.60 <b>0</b>	ug/l	PHF005
89130	SW1100151	V-2	₩ .	TT8	Chlorobenzene	LT	1.36 0	ug/l	GBY008
				uus	Chlorobenzene	LT	1.80 0	ug/l	GSH007
				MM8A	Chlordane	LT	1.52 -1	ug/l	GPL014
		•		PP8A	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	GIQ011
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98 0	ug/l	GIQ011
				PP8A	p-Chlorophenylmethyl Sulfone	LT	2.24 0	ug/l	GIQ011
				R9D	Chromium	LT	2.20 1	ug/l	QSD008
				R9D	Copper	LT	1.00 1	ug/l	QSD008
				TF18	Cyanide	LT	2.50 0	ug/l	LCN007
				Q8 · · ·	Dibromochloropropane	LT	1.30 -1	ug/l	GKU022
				UU8	Dibromochloropropane	LT	5.60 0	ug/l	GSH007
				UU8	Dicyclopentadiene	LT	3.70 0	ug/l	GSH007
				QQS	Diisopropylmethyl Phosphonate	LT	1.01 1	ug/l	GGS008
				PP8A	Dithiane	LT	3.34 0	u <u>9/</u> 1	GIQ011
				MM8A	Dieldrin	LT	5.39 -2	ug/l	GPL014
			•	UM18	Dieldrin	ND	5.00 0	ug/l	PHF005
				PP8A	Dimethyldisulfide	LT	1.16 0	ug/l	GIQ011
				uus	Dimethyldisulfide	LT	3.70 0	ug/l	GSH007
				QQ8	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS008
	,			MM8A	Endrin	LT		ug/l	GPL014
				UM18	Endrin	ND	8.00 0	ug/l	PHF005
				SS8	Ethylbenzene	LT	6.20 -1	ug/l	GAX015
				uua a	Ethylbenzene	LT	2.40 0	ug/l	GSH007
				вии	Fluoride		1.22 3	ug/l	GJK008
				WW8	Mercury	LT	5.00 -1	ug/1	GWA011
				MM8A	Isodrin	LT	5.60 -2	ug/l	GPL014
				XX8	Potassium		2.98 3	ug/l	DYW008
				SS8	Toluene	LT		ug/l	GAX015
				UU8	Toluene	LT	3.50 0	ug/l	GSH007
				uua	Methylisobutyl Ketone	LT	1.20 0	ug/l	GSH007
				TF22	Nitrite, Nitrate - Non specific		1.00 3	ug/l	PCD018
				UM18	N-Nitrosodimethylamine		2.00 0	ug/l	PHF005
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40 0	ug/l	PHF005

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89130	SW11001ST	0.2	STSW	PP6A	1,4-Oxathiane	. LT	1.35 0	ug/l	- GIQ011
05100	011220201	<del>** * **</del>		R9D	Lead	LT	5.20 1	ug/l	QSD006
				MM8A	Dichlorodiphenylethane	LT	4.60 -2	ug/l	GPL014
				UM18	Dichlorodiphenylethane	ND	5.00 0	ug/l	PHF005
				MM8A	Dichlorodiphenyltrichloro- ethane	LT	5.90 -2	ug/l	GPL014
				UM18	Dichlorodiphenyltrichloro- ethane	ИD	9.00 0	ug/l	PHF005
				UN07	Parathion		1.04 0	ug/l	PGB008
				NNB	Sulfate		1.11 4	ug/l	GJK008
				TT8	Tetrachloroethene	LT	2.76 0	ug/l	GBY006
				UU6	Tetrachloroethene	LT	2.90 0	ug/l	GSH007
				TT8	Trichloroethene	LT	1.31 0	ug/l	GBY008
				<b>UU</b> 8	Trichloroethene	LT	2.00 0	ug/l	GSH007
				<b>SS8</b>	Ortho- & Para-Xylene		1.46 0	ug/l	GAX015
				UU6	Ortho- & Para-Xylene	LT		ug/l	GSH007
				R90	Zinc		3.81 1	ug/l	QSD006
89130	SW11002ST	0.2	STRM	TT8	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY006
				UU8	1,1,1-Trichloroethane	LT	2.40 0	ug/l	GSH005
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/l	GBY006
				UU8	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH005
				TTB	1,1-Dichloroethene	LT	1.85 0	ug/l	GBY006
				TT8	1,1-Dichloroethane	LT	1.93 0	ug/l	GBY006
				UU8	1,1-Dichloroethane	LT	1.40 0	ug/l	GSH005
				TT8	1,2-Dichloroethene	LT	1.75 0	ug/l	GBY006
				UU8	1,2-Dichloroethene	LT	3.20 0	ug/l	GSH005
				TT6	1,2-Dichloroethane	LT	2.07 0	ug/l	GBY006
				UU8	1,2-Dichloroethane	LT		ug/l	GSH005 PHF003
				UM16	1,3-Dichlorobenzene	LT	1.70 0	ug/l	GAX006
				SS8	m-Xylene	LT LT	1.04 0 2.90 0	ug/l ug/l	GSH005
				UU6	m-Xylene	LT			GPL012
				MM8A	Aldrin	l. I	0.JV -Z	ug/l	OF LVIZ
				MM8A	Aldrin	LT	8.30 -2	ug/l	GPL013

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89130	SW11002ST	0.2	STRM	UM18	Aldrin	ND	4.70 0	ug/l	PHF003
				<b>VV</b> 8	Arsenic	LT	2.50 0	ug/l	GH0019
				UU8	Bicycloheptadiene	LT	1.80 0	ug/l	GSH005
				PP8A	Benzothiazole	LT	1.14 0	ug/l	GIQ009
				UM18	Benzothiazole		3.00 0	ug/l	PHF003
				SS8	Benzene	LT	1.92 0	. ug/l	GAX006
				UU8	Benzene	LT	2.70 0	ug/l	GSH005
				TT8	Carbon Tetrachloride	LT	1.69 0	ug/l	GBY006
				UU8	Carbon Tetrachloride	LT	4.90 0	ug/l	GSH005
				R9D	Cadmium	LT	5.00 0	ug/l	QSD006
			-	тта	Methylene Chloride	LT	2.48 0	- ug/l	GBY006
				UU8	Methylene Chloride	ND	5.00 0	ug/l	GSH005
				TT8	Chloroform	LT	1.88 0	ug/l	GBY006
				UU6	Chloroform	LT	1.70 0	ug/l	GSH005
				нив	Chloride		1.16 4	ug/l	GJK006
	•			MM8A	Hexachlorocyclopentadiene	LT	8.30 -2	ug/l	GPL012
				MM8A	Hexachlorocyclopentadiene	LT	8.30 -2	ug/l	GPL013
				UM18	Hexachlorocyclopentadiene	LT	8.60 0	. ug/l	PHF003
				TT8	Chlorobenzene	LT	1.36 0	ug/l	GBY006
				UU8	Chlorobenzene	LT	1.80 0	ug/l	GSH005
				MM8A	Chlordane	LT	1.52 -1	ug/l	GPL012
				MM8A	Chlordane	LT	1.52 -1	ug/l	GPL013
			` <del>.</del>	PP6A	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	GIQ009
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98 0	ug/l	GIQ009
				PP8A	p-Chlorophenylmethyl Sulfone	LT	2.24 0	ug/l	GIQ009
				R9D	Chromium	LT		ug/l	QSD006
				R9D	Copper		1.05 1	ug/1	QSD006
*				TF18	Cyanide	LT	2.50 0	ug/l	LCN005
				Q8	Dibromochloropropane	LT	1.30 -1	ug/1	GKU020
			•	UU8	Dibromochloropropane	LT	5.60 0	ug/l	GSH005
				R8	Dicyclopentadiene	LT		ug/l	GXA020
				UU8	Dicyclopentadiene	LT	3.70 0	ug/l	GSH005
				QQ8	Diisopropylmethyl Phosphonate	LT	1.01 1	ug/l	GGS006
				PP6A	Dithiane	LT	3.34 0	ug/l	GIQ009

## Comprehensive Monitoring Program

Summary of Analytical Results

Sampling	Station	Sample	Sample			_			Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Number
	·								
89130	SW11002ST	0.2	STRM	MM8A	Dieldrin	LT	5.39 -2	ug/l	GPL012
0,7,50	O#######			MM8A	Dieldrin	LT	5.39 -2	ug/l	GPL013
				UM18	Dieldrin	ND	4.70 0	ug/1	PHF003
				PP6A	Dimethyldisulfide	LT	1.16 0	ug/l	GIQ009
				UU8	Dimethyldisulfide	LT	3.70 0	ug/1	GSH005
				QQ8	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS006
				MM8A	Endrin	LT	6.00 -2	ug/l	GPL012
				MM8A	Endrin	LT	6.00 -2	ug/l	GPL013
				UM18	Endrin	ND	7.60 0	ug/l	PHF003
				SS8	Ethylbenzene	LT	6.20 -1	ug/l	GAX006
				UU8	Ethylbenzene	LT	2.40 0	ug/l	GSH005
				NN8	Fluoride	LT	1.00 3	ug/l	GJK0 <b>0</b> 6
				₩W8	Mercury	LT	5.00 -1	ug/1	GWA009
				MM6A	Isodrin	LT	5.60 -2	ug/l	GPL012
				MM6A	Isodrin	LT	5.60 -2	ug/l	GPL013
				жжа	Potassium		2.62 3	ug/l	DYW006
				SS8	Toluene	LT	2.10 0	ug/1	GAXOO6
	•			UU8	Toluene	LT	3.50 0	ug/l	GSH005
				R8	Methylisobutyl Ketone	LT	1.29 1	ug/l	GXA020
				uus	Methylisobutyl Ketone	LT	1.20 0	ug/l	GSH005
				TF22	Nitrite, Nitrate - Non specific		1.00 3	ug/l	PCD016
				UM18	N-Nitrosodimethylamine	ND	2.00 0	ug/l	PHF003
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40 0	ug/l	PHF003
				PP8A	1,4-Oxathiane	LT	1.35 0	ug/l	GIQ009
				R9D	Lead	LT	5.20 1	ug/l	QSD006
				MM8A	Dichlorodiphenylethane	LT	4.60 -2	ug/l	GPL012
				MMSA	Dichlorodiphenylethane	LT		ug/1	GPL013
				UM18	Dichlorodiphenylethane		4.70 0	ug/l	PHF003
				MMSA	Dichlorodiphenyltrichloro- ethane	. LT	5.90 -2	ug/l	GPL012
				UM18	Dichlorodiphenyltrichloro- ethane	ND	9.20 0	ug/l	PHF003
				UN07	Parathion	LT.	2.50 -1	ug/l	PGB006
				нив	Sulfate		1.34 4	ug/l	GJK006

			-						
Sampling	Station	Sample	Sample		•				Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Number
							i		
89130	SW11002ST	0.2	STRM	TT8	Tetrachloroethene	LT	2.76 0	ug/l	GBY006
09130	3W1100201	<b>w - 2</b>	*****	uua	Tetrachloroethene	LT	2.90 0	ug/l	GSH005
				TT8	Trichloroethene	LT	1.31 0	ug/1	GBY006
				UU8	Trichloroethene	LT	2.00 0	ug/l	GSH005
				\$\$8	Ortho- & Para-Xylene	LT	1.34 0	ug/l	GAX006
				¥					
				UU8	Ortho- & Para-Xylene	LT	2.40 0	ug/l	GSH005
				R9D	Zinc		2.94 1	ug/l	QSD006
89135	SW12002ST	0.2	DTCH	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GKN011
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GKN011
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GKN011
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GKN011
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GKN011
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GKN011
				AV8	m-Xylene	LT	1.32 0	ug/1	GK0011
				KK8	Aldrin	LT	5.00 -2	ug/l	GKK008
				UM25	Aldrin	LT	1.30 1	ug/1	GKW005
				00	ALKALINITY	LT	9.61 1	ug/l	GMK007
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GKS017
				UH11	Atrazine	LT.	4.03 0	ug/l	GKM008
				UM25	Atrazine	LT	5.90 0	ug/l	GKW005
				P8	Bicycloheptadiene	LT	5.90 0	ug/1	GKQ013
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GKJ008
				AV8	Benzene	LT	1.05 0	ug/l	GK0011
		-		GG8	Calcium (filtered)		2.00 3	ug/l	GKR014
				М8	Carbon Tetrachloride	LT	9.90 -1	ug/1	GKN011
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GKR014
				N8	Methylene Chloride	rí	7.40 0	ug/l	GKN011
				нв	Chloroform	LT	5.00 -1	ug/l	GKN011
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GKK008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GKW005
				N8	Chlorobenzene	LT	8.20 -1	ug/l	GKN011
				KK8	Chlordane	LT	9.50 -2	ug/l	GKK008
				UM25	Chlordane	LT	3.70 1	ug/l	GKW005

C1:	Chabian	Samala	Sample						Sample
Sampling Date	Station Number	Sample Depth (cm)	Туре	Method	Analytical Parameters	Re	sults	Units	Number
						1.70	5.69 0	um (1	GKJ <b>00</b> 8
89135	SW12002ST	0.2	DTCH	AAA8	p-Chlorophenylmethyl Sulfide			ug/l ug/l	GKW005
•				UM25	p-Chlorophenylmethyl Sulfide	··LT	1.00 1	ug/l	GKJ008
				AAA6	p-Chlorophenylmethyl Sulfoxide p-Chlorophenylmethyl Sulfoxide	LT LT	1.50 1	ug/l	GKW005
				UM25	•	LT	7.46 0	ug/l ug/l	GKJ008
				AAA6	p-Chlorophenylmethyl Sulfone	LI	7.40 U	u9/ 1	ansovo
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW005
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKR014
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GKR014
				TF20	Cyanide	LT	5.00 0	ug/l	GKT011
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GKL008
				UM25	Dibromochloropropane -	LT	1.20 1	ug/l	GKW005
-		* .		P8	Dicyclopentadiene	LT	5.00 0	ug/1	GKQ013
				UM25	Dicyclopentadiene	LT	5.50 O	ug/1	GKW005
				UH11	Vapona	LT	3.84 -1	ug/l	GKM008
				UM25	Vapona	LT	8.50 0	ug/l	GKW005
				ATS	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GK1006
		-		UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GKW005
				AAA8	Dithiane	LT	1.34 0	ug/1	GKJ008
				UM25	Dithiane	LT	3.30 0	ug/1	GKW005
				KK8	Dieldrin	LT	5.00 -2	ug/l	GKK008
				UM25	Dieldrin	LT	2.60 1	ug/l	GKW005
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/1	GK1008
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	GK1006
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GKW005
				KK8	Endrin	LT	5.00 -2	ug/l	GKK008
				UM25	Endrin	LT	1.80 1	ug/l	GKW005
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GK0011
				622	Mercury (filtered)	LT	1.00 -1	ug/1	GML007
		-		KK8	Isodrin		5.10 -2	ug/l	GKK008
				UM25	Isodrin	LT	7.80 0	ug/l	GKW005
				GG8	Potassium (filtered)		1.47 3	ug/l	GKR014
				AV6	Toluene	LT	1.47 0	ug/l	GK0011
				GG8	Magnesium (filtered)	LT	5.00 2	ug/l	GKR014
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKQ013

Summary of Analytical Results Surface Water Storm Samples for 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
	01400000		DTCU	111111	Malathion	1 T	3.73 -1	ug/l	GKM008
89135	SW12002ST	0.2	DTCH	UH11 UM25	Malathion		2.10 1	ug/l	GKW005
				GG8	Sodium (filtered)	} I	2.14 3	ug/1	GKR014
				LL8	Nitrite, Nitrate - Non specific		4.60 2	ug/l	GKV019
•				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GKJ008
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	GKW005
				GG8	Lead (filtered)	LT	7.40 1	ug/1	GKR014
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GKK008
				UM25 .	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKW005
			·	KK8	Dichlorodiphenyltrichloro- ethane		4.90 -2	ug/l	GKK008
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80. 1	ug/l	GKW005
				UH11	Parathion	LT	6.47 -1	ug/1	GKM008
				UM25	Parathion	LT	3.70 1	ug/l	GKW005
				UH11	2—Chloro—1(2,4—Dichlorophenyl)	LT	7.87 -1	ug/l	GKM008
				UM25	Vinyldiethyl Phosphates 2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GKW005
					Vinyldiethyl Phosphates				
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	GKN011
				N8	Trichloroethene	LT	5.60 -1	ug/l	GKN011
			•	AV8	Ortho- & Para-Xylene		1.36 0	ug/1	GK0011
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GKR014
89130	SW12005ST	0.2	STRM	тта	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY007
				UUB	1,1,1-Trichloroethane	LT	2.40 0	ug/l	GSH006
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/l	GBY007
				uua -	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH006
				TT8	1,1-Dichloroethene	LT	1.85 0	ug/l	-GBY007
				TT8	1,1-Dichloroethane	LT	1.93 0	ug/l	GBY007
				UU8	1,1-Dichloroethane	LT		ug/l	GSH006
				TT8	1,2-Dichloroethene		1.75 0	ug/l	GBY007
				UU8	1,2-Dichloroethene		3.20 0	ug/l	GSH006
				TT8	1,2-Dichloroethane	LT	2.07 0	ug/l	GBY007
				UUS	1,2-Dichloroethane	LT	7.20 -1	ug/l	GSH006

			~ · · · · · · · · · · · · · · · · · · ·							Sample
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		esults		Units	Number
			2724	1844.00	a w Minkingan	LT	1.70	. ^	ug/l	PHF004
89130	SW12005ST	0.2	STRM	UM18	1,3-Dichlorobenzene	LT		0	ug/l	GAX001
				SS8 UU8	m-Xylene m-Xylene	LT		0	ug/l	GSH006
				UM18	Aldrin	ND			ug/l	PHF004
				VV8	Arsenic	LT			ug/l	GH0020
				UU8	Bicycloheptadiene	LT	1.80	0	ug/l	GSH006
				PP8A	Benzothiazole	LT	1.14	0	ug/l	GIQ01
				SS8	Benzene	LT	1.92	0	ug/l	GAX00
				บบอ	Benzene	LT	2.70	0	ug/l	GSH00
				TT8	Carbon Tetrachloride	LT	1.69	0	ug/l	GBY00
				UU8	Carbon Tetrachloride	LT			ug/l	GSH00
				R9D	Cadmium	LT			ug/l	QSD00
				TT8	Methylene Chloride	LT			ug/l	GBY00
				UU8	Methylene Chloride	ИD	5.00	0	ug/l	GSH00
				TT8	Chloroform	LT	1.88	0	ug/l	GBY00
				UU8	Chloroform	LT			ug/l	GSH00
				NN8	Chloride		1.81		ug/l	GJKOO
				UM18	Hexachlorocyclopentadiene	LT		0	ug/l	PHF00
				TT6	Chlorobenzene	LT		0	ug/l	GBY00
				UU8	Chlorobenzene	LT	1.80	0	ug/l	GSH00
				PP6A	p-Chlorophenylmethyl Sulfide	LT	1.08	0	ug/l	GIQ01
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98	0	ug/l	GIQ01
				PP8A	p-Chlorophenylmethyl Sulfone	LT	2.24	0	ug/l	GIQ01
				R9D	Chromium	LT	2.20	1	ug/l	QSD00
				R9D	Copper	LT	1.00	1	ug/l	QSD00
				TF18	Cyanide	LT			ug/l	LCN00
				Qa	Dibromochloropropane	LT			ug/l	GKU02
				UU8	Dibromochloropropane	LT			ug/l	GSH00
				R8	Dicyclopentadiene	LT			ug/l	GXA02
				R8	Dicyclopentadiene	LT	9.31	0	ug/l	GXA02
				UU8	Dicyclopentadiene	LT			ug/l	GSH00
				QQ8	Diisopropylmethyl Phosphonate		1.01		ug/l	GGS00
				PP8A	Dithiane	LT			ug/l	GIQ01
				UM18	Dieldrin	ND	4.70	0	ug/l	PHF00

Comprehensive Monitoring Program

01/12/90

Summary of Analytical Results

Sampling	Station	Sample	Sample	Method	Analytical Parameters	Re	sults	Units	Sample Number	
Date	Number	Depth (cm)	Type ——	THE CHOO	- Filaly Clear 1 at all Colo					
69130	SW12005ST	0.2	STRM	PP8A	-Dimethyldisulfide	LT	1.16 0	ug/l	GIQ010	
				UU8	Dimethyldisulfide	LT	3.70 0	ug/l	GSH006	
				QQ8	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS007	
				UM18	Endrin	ND	7.60 0	ug/l	PHF004	
				SS8	Ethylbenzene	LT	6.20 -1	ug/l	GAX007	
				UU8	Ethylbenzene	LT	2.40 0	ug/l	GSH006	
				NN8	Fluoride	LT	1.00 3	ug/l	GJK007	
				WW8	Mercury	LT	5.00 -1	ug/l	GWA010	
				XX8	Potassium		5.05 3	ug/l	DYW007	
				SS8	Toluene	LT	2.10 0	ug/l	GAX007	
				UU8	Toluene	LT	3.50 0	ug/l	GSH006	
				R8	Methylisobutyl Ketone	LT	1.29 1	ug/l	GXA021	
				R⊜	Methylisobutyl Ketone	LT	1.29 1	ug/l	GXA022	
				UU8	Methylisobutyl Ketone	LT	1.20 0	ug/l	GSH006	
				TF22	Nitrite, Nitrate - Non specific		1.60 3	ug/l	PCD017	
				UM18	N-Nitrosodimethylamine	ND	2.00 0	ug/l	PHF004	
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40 0	ug/l	PHF004	
				PP6A	1,4-Oxathiane	LT	1:35 0	ug/l	GIQ010	
				R9D	Lead	LT	5.20 1	ug/1	QSD007	
				UM18	Dichlorodiphenylethane	ND	4.70 0	ug/l	PHF004	
				MM8A	Dichlorodiphenyltrichloro- ethane	LT	5.90 -2	ug/l	GPL013	
				UM18	Dichlorodiphenyltrichloro- ethane	ND	9.20 0	ug/l	PHF004	
				UN07	Parathion	LT	2.50 -1	ug/l	PGB007	
				NN8	Sulfate		2.44 4	ug/1	GJK007	
				TT8	Tetrachloroethene	LT	2.76 0	ug/l	GBY007	
				UU8	Tetrachloroethene :	LT	2.90 0	ug/l	GSH006	
				TT8	Trichloroethene	LT	1.31 0	ug/1	GBY007	
				UU8	Trichloroethene	LT	2.00 0	ug/l	GSH006	
				SS8	Ortho- & Para-Xylene	LT	1.34 0	ug/l	GAX007	
				UU8	Ortho- & Para-Xylene	LT	2.40 0	ug/l	GSH006	
				R9D	Zinc		2.73 1	ug/l	QSD007	
	SW24002ST	0.2	STRM	N8	1,1,1-Trichloroethane		7.60 -1	ug/l	GJU015	

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	. R	esults	Units	Sample Number
89135	SW24002ST	0.2	, STRM	N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GJU015
09133	342400231	0.2	Ond:	N8	1,1-Dichloroethene	LT	1.70 0	ug/1	GJU015
				N8	1,1-Dichloroethane	LT		ug/l	GJU015
				N8	1,2-Dichloroethene	LT		ug/l	GJU015
				NS	1,2-Dichloroethane	LT		ug/l	GJU015
				AV8	m-Xylene	LT	1.32 0	ug/l	GJT015
				KK8	Aldrin	LT	5.00 -2	ug/l	GJV008
				UM25	Aldrin	LT	1.30 1	ug/l	GKW003
				00	ALKALINITY		2.88 2	ug/l	GMK006
				AX8	Arsenic	LT	2.35 0	ug/l	GKF022
				UH11	Atrazine	LT		ug/l	GJX008
				UM25	Atrazine	LT	5.90 0	ug/l	GKW003
				P8	Bicycloheptadiene	LT		ug/l	GKC013
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GJY008
				AV8	Benzene	LT	1.05 0	ug/l	GJT015
				GG8	Calcium (filtered)		8.46 4	ug/l	GKB014
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GJU015
				GG8	Cadmium (filtered)	, LT	8.40 O	ug/l	GKB014
	-			NS	Methylene Chloride	LT	7.40 0	ug/l	GJU015
				N8	Chloroform	LT	5.00 -1	ug/l	GJU015
				ннеа	Chloride		4.80 4	ug/l	GKH020
			-	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GJV008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GKW003
				ИВ	Chlorobenzene	LT		ug/l	GJU015
				KK8	Chlordane	LT	9.50 -2	ug/l	GJV008
				UM25	Chlordane	LT	3.70 1	ug/l	GKW003
				AAA8	p-Chlorophenylmethyl Sulfide		5.69 0	ug/l	GJY008
				UM25	p-Chlorophenylmethyl Sulfide	LT		ug/l 	GKW003
				BAAA	p-Chlorophenylmethyl Sulfoxid		1.15 1	ug/l	GJY008
				UM25	p-Chlorophenylmethyl Sulfoxid	e LT	1.50 1	ug/l	GKW003
				AAA8	p-Chlorophenylmethyl Sulfone	LT		ug/l	GJY008
				UM25	p-Chlorophenylmethyl Sulfone	LT		ug/l	GKW003
				GG8	Chromium (filtered)	LT		ug/l	GKB014
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GKB014

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89135	SW24002ST	0.2	STRM	TF20	Cyanide	LT	5.00 0	ug/l	GKE006
07133	OHZ-100ZO!	0.1	~	AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GJW008
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GKW003
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GKC013
				UM25	Dicyclopentadiene	LT	5.50 O	ug/l	GKW003
				UH11	Vapona	LT	3.84 -1	ug/l	GJX008
				UM25	Vapona	LT	8.50 O	ug/l	GKW003
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GJZ016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GKW003
				AAA8	Dithiane	LT	1.34 0	ug/l	GJY008
				UM25	Dithiane	LT	3.30 0	ug/l	GKW003
				KK8	Dieldrin	LT	5.00 -2	ug/l	GJV008
				UM25	Dieldrin	LT	2.60 1	ug/l	GKW003
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GJY008
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GJZ016
	•			UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKW003
				KK8	Endrin	LT	5.00 -2	ug/l	GJV008
				UM25	Endrin	LT	1.80 1	ug/l	GKW003
				AV8	Ethylbenzene	LT	1.37 0	ug/1	GJT015
				HH8A	Fluoride		1.35 3	ug/l	GKH020
				CCS	Mercury (filtered)	LT		ug/l	GKG031
				KK8	Isodrin	LT	5.10 -2	ug/l	GJV008
				UM25	Isodrin	LT	7.80 0	ug/l	GKW003
				GG8	Potassium (filtered)		6.44 3	ug/l	GKB014
			-	AV8	Toluene	LT	1.47 0	ug/l	GJT015
				GG8	Magnesium (filtered)		2.50 4	ug/l	GKB014
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKC013
				UH11	Malathion		3.73 -1	ug/l	GJX008
				UM25	Malathion	LT	2.10 1	ug/l	GKW003
				GG8	Sodium (filtered)		6.89 4	ug/l	GKB014
				LL8	Nitrite, Nitrate - Non specific		1.90 2	ug/l	GKD039
				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	GJY008
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GKW003
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GKB014

Comprehensive Monitoring Program

01/12/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
						***************************************	······································		
69135	SW24002ST	0.2	STRM	KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GJV008
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GKW003
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GJV008
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW003
				UH11	Parathion	LT	6.47 -1	ug/l	GJX008
				UM25	Parathion	LT	3.70 1	ug/l	GKW003
				HH8A	Sulfate		1.50 5	ug/l	GKH020
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GJX008
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GKW003
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	GJU015
				N8	Trichloroethene	LT	5.60 -1	ug/l	GJU015
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GJT015
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GKB014

APPENDIX B-4

Fall 1989 Water Quality Data

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method .	Analytical Parameters	Re	esults	Units	Sample Number
\$000c		A1	ртсн	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/ <u>l</u>	HHU009
89269	SW01001	0.1	Dich	NS	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU009
				N8	1,1-Dichloroethene	LT-	1.70 0	ug/l	HHU009
		•		N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU009
•				N8	1,2-Dichloroethene	LT	7.60 -1	· ug/l	HHU009
				м8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU009
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV009
l				KK8	Aldrin	LT	5.00 -2	ug/l	HHD009
				00	ALKALINITY		1.82 5	ug/l	HHW006
r				AXS	Arsenic	LT	2.35 0	. ug/l	HIB009
				UH11	Atrazine	LT	4.03 0	ug/l	HHG009
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	HHF009
				8848	Benzothiazole	LT	5.00 0	ug/l	HHC009
				AV8	Benzene	LT	1.05 0	ug/l	HHV009
]		•		SS12	Calcium		6.46 4	ug/l	HICOO9
				И8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU009
				SS12	Cadmium	LT	6.78 0	ug/l	HICO09
				N8	Methylene Chloride	LT	7.40 0	ug/l	HHU009
				М8	Chloroform	LT	5.00 -1	ug/1 -	HHU009
		-		TT <b>0</b> 9 .	Chloride	-	4.10 4	ug/l	HHZ009
					The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				
				KK8	Hexachlorocyclopentadiene	LT	4.802	ug/l	HHD009
	•			И8	Chlorobenzene	LT.	8.20 -1	ug/l	HHU009
				KK8	Chlordane 🔪		9.50 -2	ug/l	HHD009
				AAAB	p-Chlorophenylmethyl Sulfide		5.69 0	ug/l	HHC009
			-	AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC009
				AAA8	p-Chlorophenylmethyl Sulfone		7.45 0	ug/l	HHC009
				<b>S</b> S12	Chromium		1.68 1	ug/l	HICO09
				SS12	Copper		1.88 1	ug/l	HICO09
				TF20 AY8	Cyanide Dibromochloropropane	LT LT	5.00 0 1.95 -1	ug/l ug/l	HHX009
				DC.	Diamlanastadiasa	1 7	5.00 0	ua A	HHF009
				P6	Dicyclopentadiene	LT	3.84 -1	ug/l	HHGOO9
				UH11 ATS	Vapona Diisopropylmethyl Phosphonate	LT LT	3.92 -1	ug/l ug/l	HHEOO9
				HIO	OTTROUTODY THE CHYT MINDRUNCHATE	11	1 7 7 7 7 1	UW/L	11111

Summary of Analytical Results Surface Water Samples for FALL 69

Sampling Date	Station Number	nple oth (cm)	<u> </u>	Sample Type	- Method	Analytical Parameters		Re	sults		Units	Sample Number
69269	SW01001	0.1		DTCH	KK8	Dieldrin		LT	-5 <b>.0</b> 0	-2	ug/l	. ннрооэ
					AAA8	Dimethyldisulfide		LT	5.50	-1	ug/1	HHC009
					AT8	Dimethylmethyl Phosphate	. 2	LT	1.88	-1	ug/l	HHE009
					KK8	Endrin		LT	5.00	-2	ug/1	HHD009
					AV8	Ethylbenzene		LT	1.37	٥	ug/l	HHV009
					TT09	Fluoride			1.29	3	ug/l	HHZ009
					CC8	Mercury		LT	1.00	-1	ug/l	HIA009
					KK8	Isodrin		LT	5.10	-2	ug/1	HKD009
					SS12	Potassium			5.11	3	ug/1	HICO09
					AV8	Toluene		LT	1.47	0	ug/l	HHV009
					SS12	Magnesium			2.09	4	ug/l	HIC003
					P8	Methylisobutyl Ketone		LT	4.90	0	ug/l	HHF009
					UH11	-Malathion		LT	3.73	-1	ug/l	HHG009
					SS12	Sodium			6.90	4	ug/l	HICO09
					LL8	Nitrite, Nitrate - Non specific			1.50	.3	ug/l	HHY009
					AAA8	1,4-Oxathiane		LT	2.38	0	ug/l	HHC009
					\$\$12	Lead		LT	4.34	1	ug/l	HICO09
					KK8	Dichlorodiphenylethane		LT	5.40	-2	ug/l	HHD009
					KK8	Dichlorodiphenyltrichloro- ethane		LT	4.90	2	ug/l	HHD009
					UH11	Parathion		LT	6.47	-1	ug/l	HHG009
		•			TT <b>0</b> 9	Sulfate			1.00	5	ug/l	HHZ009
					UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates		LT	7.87	-1	ug/l	HHG009
					на	Tetrachloroethene		LT	7.50	-1	ug/l	HHU009
					N8	Trichloroethene		LT	5.60	-1	ug/l	HHU009
					AV8	Ortho- & Para-Xylene		LT	1.36	0	ug/l	HHV009
					SS12	Zinc		LT	1.80	1	ug/l	HICO09
89270	SW02006	0.2		DTCH	UM21	1,1,1-Trichloroethane		LT	1.00	O	ug/l	HHJ0 <b>0</b> 5
					N8	1,1,1-Trichloroethane		LT	7.60	-1	ug/l	HHU013
					UM21	1,1,2-Trichloroethane		LT	1.00	0	ug/l	HHJ005
					ΝΘ	1,1,2-Trichloroethane		LT	7.80	-1	ug/l	HHU013
					UM21	1,1-Dichloroethene		LT	1.00	0	ug/l	HHJ005

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Re	sults		Units	Sample :Number
			- 5701		1,1-Dichloroethene	•	LT	1.70	0 -	ug/l	
89270	SW02006	- <b>0.2</b>	DICH	N8	•		LT	1.00	0	ug/1	HHJ005
•				UM21	1,1-Dichloroethane			7.30			HHU013
				N8	1,1-Dichloroethane		LT LT		~ı.	ug/l ug/l	HHJ005
				UM21	1,2-Dichloroethene						HHU013
•				И8	1,2-Dichloroethene		LT	7.60	J.	ug/l	UUOOTO
				UM21	1,2-Dichloroethane		LT	1.00	0	ug/l	ННЈ005
				N8	1,2-Dichloroethane		LT	1.10	0	ug/l	HHU013
•				UM21	1,2-Dichloropropane		LT	1.00	0	ug/l	HHJ005
	-			UM21	1,3-Dichlorobenzene		LT	1.00	0	ug/l	HHJ005
				UM21	1,3-Dichloropropane		LT	4.80	0	ug/l	HHJ005
				UM21	m-Xylene		LT	1.00	0	ug/l	ннј005
				AV8	m-Xylene		LT	1.32	0	ug/l	HHV013
_				UM21	2-Chloroethylvinyl Ether		LT	3.50	٥	ug/1	<b>ННЈ00</b> 5
•	•			UM21	Acrylonitrile		- LT	8.40	٥	ug/l	HHJ005
				KK8	Aldrin	**	LT	5.00	-2	ug/l	HHD013
				UM25	Aldrin		LT	1.30	1	ug/l	HHH005
				00	ALKALINITY			6.26	4	ug/1	HHW010
ľ				AX8	Arsenic			2.64	O	ug/l	HIB013
				UH11	Atrazine		LT	4.03	0	ug/1	HHG013
				UM25	Atrazine		LT	5.90	0 -	- ug/l	HHH <b>0</b> 05
				P6	Bicycloheptadiene		LT	5.90	0	ug/l	HHF013
				UM21	Bromodichloromethane		LT	1.00	O.	ug/1	. ннјоо5
				AAA8	Benzothiazole	100	ŁT	5.00	0	- ug/l	HHC013
•				UM21	Vinyl Chloride		LT	1.20	1	ug/l	ННЈ005
				UM21	Chloroethane		LT	8.00	٥.	ug/l	ннј005
ŀ				UM21	Benzene		LT	1.00	0	ug/l	HHJ005
_				AV8	Benzene		LT	1.05	0	ug/l	HHV013
				SS12	Calcium			2.14	4	ug/l	HICO13
				UM21	Trichlorofluoromethane		LT	1.00		ug/l	HHJ005
<u>.</u>				UM21	Carbon Tetrachloride		LT	1.00	٥	ug/l	HHJ005
				не	Carbon Tetrachloride			9.90		ug/l	HHU013
•				SS12	Cadmium		LT	6.78		ug/1	HICO13
				UM21	Methylene Chloride		LT	1.00		ug/l	HHJ005
				ив	Methylene Chloride		LT	7.40	0	ug/l	HHU013

Sampling Date	Station Number	Sample Depth (cm)	Sample Type - Me	thod	Analytical Parameters	Re	esults	Units	Sample Number
89270	SW02006	0.2	DTCH U	M21	Bromomethane	LT	1.40 1	ug/l	HHJ005
-			U	M21	Chloromethane	LT	1.20 0	ug/l	<b>ННЈ00</b> 5
			- U	M21	Bromoform	LT	1.10 1	ug/l	HHJ005
}			U	M21	Chloroform		3.00 0	ug/l	HHJ005
<b>1</b>			N	8	Chloroform		4.26 0	ug/l	HHU013
İ			т	T09	Chloride		5.20 4	ug/l	HHZ013
			K	K8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD013
1			U	M25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	HHH005
			U	M21	Chlorobenzene	LT	1.00 0		HHJ005
<del>-</del> .			N	á	Chlorobenzene	LT	8.20 -1	ug/l	HHU013
			K	K8	Chlordane	LT	9.50 -2	ug/l	HHD013
			U	M25	Chlordane	LT	3.70 1	ug/l	HHH005
_			A	AA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC013
			Ui	M25	p-Chlorophenylmethyl Sulfide	LT	1.00 1		HHH005
			A	AA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC013
ĺ			U	M25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1		HHH005
				AA6	p-Chlorophenylmethyl Sulfone	LT	7.46 0		HHC013
-				M25	p-Chlorophenylmethyl Sulfone	LT	5.30 0		HHH005
1				S12	Chromium	LT	1.68 1		HICO13
			S	S12	Copper	LT	1.68 1	ug/l	HICO13
, -				F20	Cyanide	LT	5.00 0		HHX013
-				M25	Dibromochloropropane	LT	1.20 1	ug/l	HHH005
				Y8	Dibromochloropropane	LT	1.95 -1	ug/l	HH1013
				M21 M21	Dibromochloromethane 1,4-Dichlorobenzene	LT LT	1.00 0 2.00 0		HHJ005 HHJ005
			Pi	8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF013
			· Ut	M25	Dicyclopentadiene	LT	5.50 0	ug/l	HHH <b>0</b> 05
			Ut	H11	Vapona	LT	3.84 -1	ug/l	HHG013
B			Ut	M25	Vapona	LT	8.50 0	ug/l	HHH005
ì			A`	T6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE013
ł	•		U	M25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHH005
				AA6	Dithiane	LT	1.34 0		HHC013
1		•	U	M25	Dithiane	LT	3.30 0		HHH005
			KI	K8	Dieldrin	LT	5.00 -2	ug/l	HHD013

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	.Units	Sample Number
89270	SW02006	0.2	DTCH	UM25	Dieldrin - Alaman Lawrence	LT	2.60 1	ug/l	HHH005
03270	31102000	w •	2	AAA8	Dimethyldisulfide		5.50 -1	ug/l	HHC013
				AT8	Dimethylmethyl Phosphate		1.88 -1	ug/l	HHE013
				UM25	Dimethylmethyl Phosphate		1.30 2	ug/l	HHH005
				KK8	Endrin		5.00 -2	ug/l	HHD013
				UM25	Endrin	LT	1.80 1	ug/l	HHH005
				UM21	Ethylbenzene	LT	1.00 0	ug/l	HHJ005
				AV8	Ethylbenzene	LŢ	1.37 0	ug/1	HHV013
				TT09	Fluoride		1.24 3	ug/l	HHZ013
				CC8	Mercury		2.94 -1	ug/l	HIA013
				KK8	Isodrin	LT	5.10 -2	ug/l	HHD013
				UM25	Isodrin	LT	7.80 0	ug/1	HHHOOS
				SS12	Potassium		2.83 3	ug/1	HICO13
				UM21	Toluene	LT	1.00 0	ug/l	ННЈ009
				AV8	Toluene .	LT	1.47 0	ug/l	HHV013
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	HHJ005
				SS12	Magnesium		1.48 4	ug/l	HICO13
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF013
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	HHJ005
				UH11	Malathion	LT	3.73 -1	ug/l	HHG013
				UM25	Malathion	LT	2.10 1		HHH005
				\$\$12	Sodium		7.60 4		HICO13
				LL8	Nitrite, Nitrate - Non specific		2.90 2	ug/l	HHY013
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	HHC013
				UM25	1,4-Oxathiane	LT	2.70   1	ug/l	ннноо5
				SS12	Lead		4.34 1	ug/l	HICO13
				KK8	Dichlorodiphenylethane		5.40 -2	ug/1	HHD013
				UM25	Dichlorodiphenylethane		1.40 1	ug/l	HHHOOS
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	HHD013
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	HHH005
				UH11	Parathion	LT	6.47 -1	ug/l	HHG013
				UM25	Parathion	LT	3.70 1	ug/l	нннооз

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	sults	Units	Sample Number
69270	SW02006	0.2	DTCH	TT <b>0</b> 9	Sulfate		9.40 4	ug/l	HHZ013
	************			UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1		HHG013
		•		UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	HHH005
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	ug/l	HHJ005
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	ннјоо5
	•			яя	Tetrachloroethene	LT	7.50 -1	ug/l	HHU013
				UM21	Trichloroethene	LT	1.00 0	ug/1	HHJ005
				N8	Trichloroethene	LT	5.60 -1	ug/l	HHU013
				UM21	Ortho- & Para-Xylene	LT	2.00	ug/l	HHJ005
				SVA	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV013
				SS12	Zinc	LT	1.80 1	ug/l	HICO13
89270	SW02006B	0.0	DTCH	FF03	Benzothiazole		3.55 C	ug/l	RGA009
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0		RGA009
				FF03	p-Chlorophenylmethyl Sulfoxide	LT	2.25	-	RGA009
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37		RGA009
				<b>QQ</b> 9	Dibromochloropropane	LT	5.00 ~3	ug/l	GTC008
				LL03	Dithiane	LT	1.47 0	ug/l	RGA009
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA009
				HG9	Mercury		4.90 0	ug/l	QUD008
				LL03	1,4-Oxathiane	LT	8.56 -1	ug/l	RGA009
<b>692</b> 68	SW07001	0.2	STSW	N8	1,1,1-Trichloroethane	LT	7.60 ~1	ug/l	# HHU005
				N8	1,1,2-Trichloroethane	LT	7.80 -1		HHU005
				N8	1,1-Dichloroethene	LT	1.70 0		HHU005
			•	N8	1,1-Dichloroethane	LT	7.30 -1	=-	HHU005
		,		N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU005
				N8	1,2-Dichloroethane		1.10		HHU005
				AV8	m-Xylene		1.32 0		HHV005
				KK8	Aldrin	LT	5.00 -2		HHD005
				.00	ALKALINITY		2.75 5		HHW002
				AX8	Arsenic	L.T	<b>2.3</b> 5 0	ug/l	HIBOO5
				UH11	Atrazine '	LT	4. <b>0</b> 3 0	ug/l	HHG005

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units -	Sample Number
89268	SW07001	0.2	STSW	P6	Bicycloheptadiene	LT	5.90 0	ug/l	HHF005
~~~~				AAA8	Benzothiazole	LT	5.00 0	ug/l	HHC005
	÷			AV8	Benzene	LT	1.05 0	ug/l	HHV005
				SS12	Calcium		8.00 4	ug/l	HICO05
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU005
				SS12	Cadmium	LT	6.78 0	ug/l	HICOO5
				N8	Methylene Chloride	LT	7.40 0	ug/l	XXU005
•				N8	Chloroform	LT	5.00 -1	ug/1	HHU005
				TT09	Chloride		5.20 4	ug/l	HHZ005
l.				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD005
j				NB	Chlorobenzene	LT	8.20 -1	ug/l	HHU005
				KK8	Chlordane	LT	9.50 -2	ug/1	HHD005
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC005
1				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC005
				AAA8 .	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHCO05
•				SS12	Chromium	LT	1.68 1	ug/l	HIC005
				SS12	Copper	LT	1.88 1	ug/l	HICO05
				TF20	Cyanide	LT	5.00 0	ug/1	HHX005
_				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HH1005
			-	P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF005
				UH11	Vapona		3.84 -1	ug/l	HHG005
ŀ			. 1.2	AT8	Diisopropylmethyl Phosphonate		3.92 -1	ug/l	HHEO05
				AAA8	Dithiane	LT	1.34 0	ug/l	HHC005
				KK8	Dieldrin	LT	5.00 -2	ug/l	HHD005
-				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC005
t				AT8	Dimethylmethyl Phosphate		1.88 -1	ug/l	HHE005
•				KK8	Endrin		5.00 -2	ug/l	HHD005
				AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV005
				TT09	Fluoride		2.14 3	ug/l	HHZ005
•				CC8	Mercury	LT	1.00 -1	ug/l	HIAOOS
ĺ				KK8	Isodrin	LT	5.10 -2	ug/l	HHD005
~				SS12	Potassium		3.54 3	ug/l	HICO05
1				AV8	Toluene	LT	1.47 0	ug/l	HHV005
				SS12	Magnesium		3.42 4	ug/l	HICO05

Sampling Date	Station Number	ample epth (cm)	Sample Type	~ Method	Analytical Parameters	Re	esults		Units	Sample Number
69268-	SW07001	 0.2	STSW	P8	Methylisobutyl Ketone	. LŤ	4.90	0	ug/l	HHF005
-	O1107001	0.2	0.011	UH11	Malathion	·LT	3.73	•	ug/l	HHG005
				SS12	Sodium			4	ug/l	HICO05
				LL8	Nitrite, Nitrate - Non specific		3.70	3	ug/l	HHY005
				AAA8	1,4-Oxathiane	LT	2.38	O	ug/l	HHC005
				SS12	Lead	LŢ	4.34	1	ug/l	HICO05
*				KK8	Dichlorodiphenylethane	LT	5.40	-2	ug/l	HHD005
<u> </u>				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2	ug/l	RHD005
				UH11	Parathion	LT	6.47	-1	ug/1	HHG005
				TT09	Sulfate		1.20	5	ug/l	HHZ005
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87	-1	ug/l	HHG005
•				84	Tetrachloroethene	LT	7.50	i	ug/l	HHU005
				ИВ	Trichloroethene	LT	5.60	-1	ug/l	HHU005
				AV8	Ortho- & Para-Xylene	LT	1.36	0	ug/l	HHV005
				SS12	Zinc	LT	1.80	1	ug/l	HICO05
89268	SW07002	0.5	STSW	N8	1,1,1-Trichloroethane	LT	7.60	-1	ug/l	HHU'006
				Na	1,1,2-Trichloroethane	LT	7.80	-1	ug/l	HHU006
				М8	1,1-Dichloroethene	LT	1.70	۵	ug/l	HHU006
				не	1,1-Dichloroethane	LT	7.30	-1	ug/l	HHU006
				88	1,2-Dichloroethene	LT	7.60	-1	ug/l	HHU006
,				ИЗ	1,2-Dichloroethane	LT	1.10	0	ug/l	HHU006
				8VA	m-Xylene	LT		٥	ug/l	HHV006
				KK8	Aldrin	LT	5.00		ug/l	HHD006
				00	ALKALINITY		1.55	5	ug/l	HHM003
				AX8	Arsenic		2.64	٥	ug/l	8008IH
				UH11	Atrazine		4.03		ug/l	HHG006
				P8	Bicycloheptadiene	LT			ug/l	HHF006
				AAA6	Benzothiazole				ug/l	HHC006
				AV8 SS12	Benzene Calcium	Li	1.05 7.61		ug/l ug/l	HHV006
				N8	Carbon Tetrachloride	LT	9.90	-1	ug/l	HHU006

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
60366	SW07002	0.5	STSW	SS12	Cadmium	LT	6.78 0	-ug/l	HIC006
89268	SW07002		3134	3312 N8	Methylene Chloride	LT	7.40 0	ug/l	HHU006
ŀ				N8	Chloroform	LT	5.00 -1	ug/l	HHU006
				TT09	Chloride	h 1	4.40 4	ug/l	HHZ006
•				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD006
				N8	Chlorobenzene	LT	8.20 -1	ug/l	HHU006
ľ		Marian III .		KK8	Chlordane	LT	9.50 -2	ug/l	HHD006
1				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC006
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC006
į.		-		AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC006
				SS12	Chromium	LT	1.68 1	ug/l	HIC006
ļ				SS12	Copper	LT	1.88 1	ug/l	HICO06
				TF20	Cyanide	LT	5.00 0	ug/l	HHX006
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HH1006
				P8	Dicyclopentadiene	LT	5.00 0	/ug/l	HHF006
				UH11	Vapona	LT	3.84 -1	ug/l	HHG006
				AT8	Diisopropylmethyl Phosphonate		6.41 -1	ug/l	HHE006
~				AAA8	Dithiane	LT	1.34 0	ug/l	HHC006
				KK8	Dieldrin	LT	5.002	ug/1	HHD006
		# · · ·		AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC006
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l -	HHE006
		**··		KK8	Endrin	LT	5.00 -2	ug/1	HHD006
				AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV006
				TT09	Fluoride		1.52 3	ug/l	HHZ006
				ccs	Mercury	LT	1.001	ug/l	HIA006
				KK8	Isodrin	LT	5.10 -2	ug/l	HHD006
				SS12	Potassium		2.94 3	ug/l	HICO06
				AV8	Tolue ne	LT	1.47 0	ug/l	HHV006
				SS12	Magnesium		2.52 4	ug/l	HICO06
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF006
				UH11	Malathion	LT	3.73 -1	ug/l	HHG006
				\$\$12	Sodium		8.80 4	ug/l	HICO06
				LL8	Nitrite, Nitrate - Non specific		4.103	ug/l	HHY006
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	HHC006

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type -	Method	Analytical Parameters	Re	esults	Units	Sample Number
			CTO!!				4 74 4		
89 268	SW07002	0.5	STSW	SS12	Lead	LT	4.34 1	ug/1	HICO06
				KK8	Dichlorodiphenylethane Dichlorodiphenyltrichloro-	LT LT	5.402 4.902	ug/l ug/l	HHD006
				KK8	ethane	L. I	4.50 ~2	ug/1	HHD006
				UH11	Parathion	LT	6.47 -1	ug/l	HHG006
				TT09	Sulfate		9.90 4	ug/l	HHZ006
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	_ug/l	HHG006
				на	Tetrachloroethene	LT	7.50 -1	ug/l	HHU006
				на	Trichloroethene	LT	5.60 -1	ug/l	HHU006
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV006
				SS12	Zinc	LT	1.80 1	ug/l	HICO06
				•					
89272	SW08001S	0.2	CREK					• • • •	
69269	SW08003	0.2	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	HHJ002
				н8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU010
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	HHJ002
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU010
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	HHJ002
				N6	1,1-Dichloroethene	LT	1.70 0	ug/l	KHU010
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	ННЈ002
				ИВ	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU010
	-			UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	HHJ002
				NB	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU010
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	HHJ002
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU010
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	HH1002
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	HHJ002
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	HHJ002
				UM21	m-Xylene	LT	1.00 0	ug/l	HHJ002
				8VA	m-Xylene	LT	1.32 0	ug/l	HHV010
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/1	HHJ002
				UM21	Acrylonitrile	LT	8.40 0	ug/1	HHJ002
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD010
				UM 25	Aldrin	LT	1.30 1	ug/l	HHH002

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
89269	SW08003	0.2	STRM	0 0°,"	ALKALINITY		2.52	5	ug/l	HHW007
				AXS	Arsenic			0.	ug/l	HIBO10
1				UH11	Atrazine	LT	4.03	0	ug/l	HHG010
				UM25	Atrazine	LT	5.90	0	ug/l	HHH002
				P 6	Bicycloheptadiene	LT	5.90	0	ug/l	HHF010
				UM21	Bromodichloromethane	·LT	1.00	0	ug/l	HHJ002
•				AAA8	Benzothiazole	LT	5.00	٥	ug/l	HHC010
•				UM21	Vinyl Chloride	LT	1.20	1	_ug/l	HHJ002
				UM21	Chloroethane	LT	8.00	0	ug/l	HHJ002
l				UM21	Benzene	LT	1.00	0	ug/l	HHJ002
ŀ				AV8	Benzene	LT	1.05	o	ug/1	HHV010
J				SS12	Calcium		1.13	5	ug/1	HICO10
				UM21	Trichlorofluoromethane	LT	1.00	٥	ug/1	HHJ002
			1 2 -	UM21	Carbon Tetrachloride	. LT	1.00	٥	ug/l	HHJ002
				И8	Carbon Tetrachloride	LT	9,90	~1	ug/l	HHU010
•				SS12	Cadmium	LT	6.78	0	ug/l	HICO10
				UM21	Methylene Chloride	LT	•	0	ug/l	HHJ002
				81	Methylene Chloride	LT		0	ug/l	HHU010
				UM21	Bromomethane	LT		1	ug/l	HHJ002
ľ				UM21	Chloromethane	LT	1.20	0	ug/l	HHJ002
				UM21	Bromoform	LT	1.10	1	ug/l	HHJ002
			20.00	UM21	Chloroform	LT	1.00	٥	ug/l	HHJ002
				N 8	Chloroform	LT	5.00	-1	ug/l	HHU010
				TT09	Chloride			4	ug/l	HHZ010
ł				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	HHD010
t				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	HHH002
				UM21	Chlorobenzene	LT	1.00	٥	ug/l	HHJ002
				И8	Chlorobenzene		8.20		ug/l	HHU010
ļ				KK8	Chlordane	LT			ug/l	HHD010
				UM25	Chlordane	LT	3.70	1	ug/l	HHH002
j				AAA8	p-Chlorophenylmethyl Sulfide		5.69		ug/l	HHC010
-	a.			UM25	p-Chlorophenylmethyl Sulfide		1.00		ug/l	HHH002
1				AAA 6	p-Chlorophenylmethyl Sulfoxide		1.15		ug/l	HHC010
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	HHH002

Sampling Date	Station Number	Sample Depth (cm)	Sample Type -	Method	Analytical Parameters	Re	esults	Units	Sample Number
692 69	SW08003	0.2	STRM	AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC010
_				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	HHH002
	•			5512	Chromium	LT	1.68 1	ug/l	HICO10
				- SS12	Copper	LT	1.86 1	ug/l	HICO10
_				TF20	Cyanide	LT	5.00 0	ug/l	HHX010
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	HHH002
	•		* .	AY8	Dibromochloropropane	LT	1.95 -1	ug/l	- HHIO10
6 '				UM21	Dibromochloromethane	LT	1.00 0	ug/1	HHJ002
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	HHJ002
•				P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF010
			4	UM25	Dicyclopentadiene	LT	5.50 0	ug/l	HHH002
				UH11	Vapona	LT	3.84 -1	ug/1	HHG010
_				UM25	Vapona	LT	8.50 0	ug/l	HHH002
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	HHE010
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHH002 ·
1				AAA8	Dithiane		1.34 0	ug/l	HHC010
	•			UM25	Dithiane	LT	3.30 0	ug/l	HHH002
				KK8	Dieldrin		6.21 -2	ug/l	HHD010
6				UM25	Dieldrin		2.60 1	ug/l	HHH002
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC010
_	,			AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHEO10
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	HHH002
3				KK8	Endrin		6.25 -2	ug/l	HHD010
•				UM25 UM21	Endrin Ethylbenzene	LT LT	1.80 1 1.00 0	ug/l	ННН002 НН J0 02
•				AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV010
_				TT09	Fluoride	-	1.11 3	ug/l	HHZO10
				CC8	Mercury	LT	1.00 -1	ug/l	HIA010
•				KK8	Isodrin	LT	5.10 -2	ug/1	HHD010
				UM25	Isodrin	LT	7.80 0	ug/l	HHH002
				SS12	Potassium		4.35 3	ug/l	HICO10
				UM21	Toluene		1.00 0	ug/l	HHJ002
1				AV8	Toluene		1.47 0	ug/l	HHV010
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	HHJ002

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
	44					-			
89269	SM08003	0.2	STRM	SS12	Magnesium		2.37 4	ug/l	- HICO10
				P8	Methylisobutyl Ketone	LT		ug/l	HHF010
				UM21	Methylisobutyl Ketone	LT	1.40 0 3.73 -1	ug/l	HHJ002 HHG010
•				UH11	Malathion Malathion	LT LT	2.10 1	ug/l ug/l	HHH002
_				UM25	Malathion	L I	2.10 1	ug/ i	HITIOOL
				SS12	Sodium		7.60 4	ug/l	HICO10
•				LL6	Nitrite, Nitrate - Non specific		1.04 2	ug/l	HHY010
	- ·			AAA8	1,4-Oxathiane	LT	2.38 0	ug/1	HHC010
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	HHH002
		•		SS12	Lead	LT	4.34 1	ug/1	HICO10
					:				
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	HHD010
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	HHH002
-				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	HHD010
I					ethane				
				UM25	Dichlorodiphenyltrichloro	LT	1.60 1	ug/l	HHH002
				UH11	Parathion	LT	6.47 -1	ug/l	HHG010
				UM25	Parathion	LT	3.70 1	ug/l	HHH002
_				TT09	Sulfate		1.50 5	ug/l	HHZ010
				UH11 :	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	E LT	7.87 -1	ug/l	HHG010
		·		UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	ннноо2
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	ннјоо2
_				UM21	Tetrachloroethene	- LT	1.00 0	ug/1	HHJ002
				NB	Tetrachloroethene .	LT	7.50 -1	ug/l	HHU010
				UM21	Trichloroethene	LT	1.00 0	ug/l	HHJ002
_				N8	Trichloroethene	LT	5.60 -1	ug/1	HHU010
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	HHJ002
				AV8	Ortho- & Para-Xylene		1.36 0	ug/l	HHV010
				SS12	Zinc	LT	1.80 1	ug/l	HICO10
8926 <u>9</u>	SW080038	0.0	STRM	QQ9	Dibromochloropropane		5.00 ~3	ug/l	GTC006
				HG9	Mercury	LT	2.70 -2	ug/l	900000
89269	SW08003B	0.5	STRM	FF03	Benzothiazole	LT	1.08 0	ug/l	RGA006

Comprehensive Monitoring Program

01/19/90

Summary of Analytical Results

•										
Sampling Date	Station Number	Sample Depth (cm)	Sample Type -	Method	Analytical Parameters	Re	esults	Units	Sample Number	
										~
892 69	SW08003B	0.5	STRM	LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	RGA006	
_				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA006	
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/l	RGA006	
				LL03	Dithiane	LT	1.47 0	ug/l	RGA006	
•				LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA006	
		*		LL03	1,4-Oxathiane	LT	8.56 -1	ug/l	RGA006	
69269	SW08003BD	0.0	STRM	QQ 9	Dibromochloropropane	LT	5.00 -3	ug/l	GTC007	
l				HG9	Mercury	LT	2.70 -2	ug/l	QUD007	
89269	SW08003BD	0.5	STRM	LL03	Benzothiazole		3.37 0	ug/l	RGA007	
i				FF03	p—Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	RGA007	
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA007	
				LL03 -	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/l	RGA007	
l				FF03	Dithiane	LT	1.47 0	ug/l	RGA007	
,				LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA007	
i				LL03	1,4-Oxathiane	LT	8.56 -1	ug/l	RGA007	
89269	SW08003D	0.2	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	HHJ003	
				ив	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU011	
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	HHJ003	
i		V		N 8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU011	
1				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	EOOTHH	
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU011	
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HH1003	
			•	84	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU011	
İ				UM21	1,2-Dichloroethene	LT	5.00 0	ug/1	HHJ003	
J				HS	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU011	
Ì				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	ННЈ00 З	
j				на	1,2-Dichloroethane	LT	1.10 0	ug/1	HHU011	
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	HHJ003	
}				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	HHJ003	
İ				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	HHJ003	
1 .				UM21	m-Xylene	LT	1.00 0	ug/l	HH1003	
				AY8	m-Xylene	LT	1.32 0	ug/l	HHV011	

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Re	sults		Units	Sample Number
89269	SW06003D	0.2	STRM	UM21	2-Chloroethylvinyl Ether		LT	3.50	0	ug/l	E00THH
0,20,	347000000	U + 1	01.41	UM21	Acrylonitrile		LT		0	ug/1	нн јооз
		-		KK8	Aldrin		LT	5.00		ug/l	
				UM25	Aldrin		LT		1	ug/l	нннооз
_		,		00	ALKALINITY				5	ug/l	HH W00 8
				AX8	Arsenic		LT	2.35	O.	ug/l	HIB011
				UH11	Atrazine		LT	4.03	0	ug/1	HHG011
				UM25	Atrazine		LT	5.90	0	ug/l	E00HHH
				P 8	Bicycloheptadiene		LT	5.90	0	ug/l	HHF011
ı				UM21	Bromodichloromethane		LT	1.00	0	ug/l	ННЈ0 03
				AAA8	Benrothiarole	* ***	LT	5.00	0	ug/l	HHC011
				UM21	Vinyl Chloride		LT	1.20	1	ug/l	HHJ003
				UM21	Chloroethane		LT	8.00	0	ug/1	HH1003
				UM21	Benzene		LT	1.00	0	ug/l	HHJOO3
j				8VA	Benzene		LT	1.05	٥	ug/l	HHV011
•				\$\$12	Calcium			1.19	5	ug/l	HICO11
				UM21	Trichlorofluoromethane		LT	1.00	0	u9/1	ннјооз
				UM21	Carbon Tetrachloride		LT	1.00	0	ug/l	HH1003
				N8	Carbon Tetrachloride		LT	9.90		-ug/1	HHU011
				S S12	Cadmium		LT	6.78	0	ug/l	HICO11
	•			UM21	Methylene Chloride		LT	1.00	0	ug/l	HHJ003
1				NB	Methylene Chloride		LT	7.40	0	ug/l	HHU011 .
				UM21	Bromomethane		LT	1.40	1	ug/l	HH1002
•				UM21	Chloromethane		LT	1.20	0	ug/l	EOOTHH
}				UM21	Bromoform		LT	1.10	-1	ug/l	HHJ003
l				UM21	Chloroform		LT	1.00	О	ug/l	ннјооз
_				М8	Chloroform		LT	5.00	-1	ug/l	HHU011
				TT09	Chloride			4.80	4	ug/l	HHZ011
				KK8	Hexachlorocyclopentadiene		LT	4.80	-2	ug/l	HHD011
				UM25	Hexachlorocyclopentadiene		LT	5.40	1	ug/l	HHH003
				UM21	Chlorobenzene		LT	1.00		ug/l	HHJ003
				N8	Chlorobenzene		LT	8.20		ug/l	HHU011
1				KK8	Chlordane		LT	9.50		ug/l	HHD011
ĺ				UM25	Chlordane		LT	3.70	1	ug/1	тинооз

Sampling Date	Station Number	Sample Depth (cm)	Sample Type -	- Method	Analytical Parameters	Re	esults	Units	Sample Number
89269	SW06003D	0.2	STRM	AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0 ug/l	HHC011
				UM25	p-Chlorophenylmethyl Sulfide	LT		1 ug/l	HHH003
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT			HHC011
				UM25	p-Chlorophenylmethyl Sulfoxide	LT		1 ug/l	HHH003
•				AAA6	p-Chlorophenylmethyl Sulfone	LT			HHC011
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0 ug/l	нннооз
				S\$12	Chromium	LT	1.68	1 ug/l	HICO11
1				SS12	Copper	LT	1.88	1 ug/l	HICO11
				TF20	Cyanide	LT	5.00	0 ug/l	HHX011
•				UM25	Dibromochloropropane	LT	1.20	1 ug/l	нннооз
l				AY8	Dibromochloropropane	LT	1.95 -		HHIO11
				UM21	Dibromochloromethane	LT	1.00	0 ug/l	HHJOOZ
·				UM21	1,4-Dichlorobenzene	LT	2.00		EOOTHH
				P6	Dicyclopentadiene	LT		0 ug/l	HHF011
•				UM25	Dicyclopentadiene	LT	5.50	0 ug/l	НННООЗ
1	ć			UH11	Vapona	LT	3.84 -		HHG011
				UM25	Vapona	LT	8.50		EOOHHH
•				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -		HHE011
1				UM25	Diisopropylmethyl Phosphonate	LT	2.10		нннооз
				AAAG	Dithiane	LT	1.34	0 ug/l	HHC011
				UM25	Dithiane	LT	3.30	0 ug/l	нинооз
				KK8	Dieldrin	LT	5.00 -	2 ug/l	HHD011
}				UM25	Dieldrin	LT	2.60	1 ug/l	HHH003
				AAAB	Dimethyldisulfide	LT	5.50 ~	1 ug/l	HHC011
1				AT8	Dimethylmethyl Phosphate	LT	1.88 -	1 ug/l	HHE011
ı				UM25	Dimethylmethyl Phosphate	LT		2 ug/l	нннооз
				KK8	Endrin		5.00 -		HHD011
	*			UM25	Endrin		1.80		HHHOO3
)				UM21	Ethylbenzene	LT	1.00		HHJOO3
				AV8	Ethylbenzene	LT	1.37	0 ug/l	HHV011
				TT09	Fluoride		1.10		HHZ011
				CC8	Mercury	LT	1.00 -		HIA011
				KK8	Isodrin	LT	5.10 -		HHD011
				UM25	Isodrin	LT	7.80	0 ug/l	E00HHH

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type _	Method	Analytical Parameters	Re	esults	Units	Sample Number
	<u> </u>			***************************************					
69269	SW08003D	0.2	STRM	SS12	Potassium		4.89 3	ug/l	HICO11
				UM21	Toluene	LT	1.00 0	ug/l	HHJ003
				AV8	Toluene	LT	1.47 0	ug/l	HHV011
J				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	KHJ003
				SS12	Magnesium		2.47 4	ug/l	HICO11
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF011
-				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	EOOTHH
1				UH11	Malathion	LT	3.73 -1	ug/l	HHG011
				UM25	Malathion	LT	2.10 1	ug/l	HHH003
ı				SS12	Sodium		7.90 4	ug/l	HICO11
1				LL6	Nitrite, Nitrate - Non specific		1.05 2	ug/l	HHY011
				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	HHC011
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	K00HHH
				SS12	Lead	LT	4.34 1	ug/l	HICO11
ļ				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	HHD011
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	тинооз
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	HHD011
1 .				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	нннооз
				UH11	Parathion	LT	6.47 -1	ug/l	HHG011
_				UM25	Parathion	LT	3.70 1	ug/l	ННН003
				TT09	Sulfate		1.40 5	ug/l	HHZ011
1				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHG011
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	HHH003
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	ECOTHH
				UM21	Tetrachloroethene		1.00 0	ug/l	HHJÓO3
•				N8	Tetrachloroethene		7.50 -1	ug/l	HHU011
ı		•		UM21	Trichloroethene	LT	1.00 0	ug/1	HHJ003
				ИВ	Trichloroethene	LT	5.60 -1	ug/l	HHU011
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	HHJ003
l				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV011

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	. Method	Analytical Parameters	Re	sults	Units	Sample Number
89269	SW08003D	0.2	STRM	SS12	Zinc	LT	1.80 1	ug/l	HICO11
00070	euroraye	Λ >	CREK						
89272	SW08003S	0.2							
89272	SW08004S	0.2	CREK	1.0401	4 4 7		1.00 0	ug/l	нн <u>ј</u> 006
89270	SW11001	0.0	DTCH		1,1,1-Trichloroethane	LT			
				N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	HHU014
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	HHJ006
				N8	1,1,2-Trichloroethane	LT	7.60 -1	ug/1	HHU014
	•			UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	HHJ006
. .				NB	1,1-Dichloroethene	LT	1.70 0	. ug/l	HHU014
_				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HHJ 0 06
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/1	HHU014
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	HHJ 0 06
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU014
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	HHJ006
				ИВ	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU014
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	HHJ006
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	HHJ006
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	HHJ006
				UM21	m-Xylene	LT	1.00 0	ug/l	ННЈ00 6
				AV8	m-Xylene	LT	1.32 0	ug/1	HHV014
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	HHJ006
_		-		UM21	Acrylonitrile	LT	8.40 0	ug/l	HHJ006
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD014
				UM25	Aldrin	LT	1.30 1	ug/l	HHH006
•				00	ALKALINITY	. 1	4.03 4	ug/l	HHW011
				AX8	Arsenic	LT	2.35 0	ug/l	HIB014
				UH11	Atrazine		4.03 0	ug/l	HHG014
							5.90 0	ug/l	HHH006
				UM25 P6	Atrazine Bicycloheptadiene	LT	5.90 0	ug/1 ug/1	HHF014
•					Bromodichloromethane	LT	1.00 0	ug/l	ннјоо6
Ì				AAA8	Benzothiazole	LT	5.00 0	ug/l	HHC014
				UM21	Vinyl Chloride		1.20 1	ug/l	HHJ006
			**	UM21	Chloroethane	LT	8.00 O	ug/l	HHJ006
							1.00 0		HHJ006
				UM21	Benzene	LT	1.00 0	ug/l	THIS OUG

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	sults	Units	Sample. Number
									111111111111111111111111111111111111111
89270	SW11001	0.0	DTCH	AV8	Benzene	LI	1.05 0	ug/l	HHV014
•				SS12	Calcium	. ~~	2.24 4	ug/l	HICO14
•				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	HHJ006
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	HHJ006
4				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU014
(SS12	Cadmium	LT	6.78 O	ug/l	HICO14
				UM21	Methylene Chloride	LT	1.00 0	ug/l	HHJ006
				N8	Methylene Chloride	LT	7.40 0	ug/l	HHU014
`				UM21	Bromomethane	LT	1.40 1	ug/l	HHJ006
				UM21	Chloromethane	LT	1.20 0	ug/l	HHJ006
				UM21	Bromoform	LT	1.10 1	ug/l	HHJ006
				UM21	Chloroform	LT	1.00 0	ug/l	HHJ006
				N8	Chloroform	LT	5.00 -1	ug/l	HHU014
-				TT09	Chloride		8.21 3	ug/l	HHZ014
	***			KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD014
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	HHH006
				UM21	Chlorobenzene	LT	1.00 0	ug/l	ннј006
•				N8	Chlorobenzene	LT	8.20 -1	ug/l	HHU014
				KK8	Chlordane	LT	9.50 -2	ug/l	HHD014
		-		UM25	Chlordane	LT	3.70 1	ug/l	HHH006
				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC014
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	ннноо6
			= .	AA A8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC014
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	HHH006
· ·				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC014
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	HHH006
			7	SS12	Chromium	LT	1.68 1	ug/l	HICO14
				SS12	Copper	LT	1.88 1	ug/l	HICO14
•				TF20	Cyanide	LT	5.00 0	ug/l	HHX014
-				UM25	Dibromochloropropane	LT	1.20 1	ug/l	HHH006
l			•	AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HHI014
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	HHJ006
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	HHJ006
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF014

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling	Station	Sample	Sample					- ·-	Sample	
Date	Number	Depth (cm)	Type . Me	ethod	Analytical Parameters	Re	sults	Units	Number	
89270	SW11001	0.0	DTCH (JM25	Dicyclopentadiene	LT	5.50 0	ug/l	∴ ННН00 6	
			ι	JH11	Vapona	LT	3.84 -1	ug/l	HHG014	
			٠. ر	JM25	Vapona	LT	8.50 0	ug/l	HHH006	
			f	ата	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE014	
_			ι	JM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	HHH006	
			f	- 3AA	Dithiane	LT	1.34 0	ug/l	HHC014	
			ι	JM25	Dithiane	LT	3.30 0	ug/1	HHH006	
			ķ	KK8	Dieldrin	LT	5.00 -2	ug/l	HHD014	
			t	JM25	Dieldrin	LT	2.60 1	ug/l	HHH006	
				3 AAA8	- Dimethyldisulfide	LT	5.50 -1	ug/l	HHC014	
			f	814	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE014	
			ť	M25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	HHH006	
			ĸ	KK8	Endrin	LT	5.00 -2	ug/l	HHD014	
			ر	M25	Endrin	LT	1.80 1	ug/l	HHH006	
ļ			L	M21	Ethylbenzene	LT	1.00 0	ug/l	HHJ006	
1			e	8V6	Ethylbenzene	LT	1.37 0	ug/l	HHV014	
			1	T09	Fluoride		9.43 2	ug/1	HHZ014	
•				C8	Mercury	LT	1.00 -1	ug/l	HIA014	
			к	K8	Isodrin	LT	5.10 -2	ug/l	HHD014	
			Ĺ	M25	Isodrin	LT	7.80 0	ug/l	HHH006	
				S12	Potassium		3.76 3	ug/l	HICO14	
				M21	Toluene	LT	1.00 0	ug/l	HHJ006	
				8V8	Toluene	LT	1.47 0	ug/l	HHV014	
				M21	Methylethyl Ketone	LT	1.00 1	ug/l	HHJ006	
1			S	S12	Magnesium		3.51 3	ug/l	···HIC014	
		•		P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF014	
•				M21	Methylisobutyl Ketone		1.40 0	ug/l	HHJ006	
				H11	Malathion		3.73 -1	ug/l	HHG014	
				M 25	Malathion	LT	2.10 1	ug/l	HHH006	
•			S	S12	Sodium		1.11 4	ug/l	HICO14	
				.L8	Nitrite, Nitrate - Non specific	,	2.80 2	ug/l	HHY014	
				AAA8	1,4-Oxathiane		2.38 0	ug/l	HHC014	
1				M25	1,4-Oxathiane		2.70 1	ug/l	HHH006	
			S	\$12	Lead	LT	4.34 1	ug/l	HICO14	

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69270	SW11001	0.0	DTCH	KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	HHD014
03270	O11111001	7.		UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	нннооб
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	HHD014
					ethane				
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	ннноо6
				UH11	Parathion	LT	6.47 -1	ug/l	HHG014
-				UM25	Parathion	LT	3.70 1	ug/l	ннноо6
				TT09	Sulfate		2.40 4	ug/1	HHZ014
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHG014
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	HHH006
_				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	HHJ006
				UM21	Tetrachloroethene	LT	1.00 0.	ug/l	ННЈ006
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU014
_				UM21	Trichloroethene	LT	1.00 0	ug/l	HHJ006
				N8	Trichloroethene	LT	5.60 -1	ug/1	HHU014
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	HHJ006
•	•			AVS	Ortho- & Para-Xylene	LT	1.36 -0	ug/l	HHV014
				SS12	Zinc	LT	1.80 1	ug/l	HICO14
								1.1	
89270	SW11001B	0.0	DTCH	LL03	Benzothiazole	LT	1.08 0	ug/l	RGA008
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	RGA008
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA008
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/l	RGA008
				QQ9	Dibromochloropropane	LT	5.0 0 -3	ug/l	GTC009
				LL03	Dithiane		1.47 0	ug/l	RGA008
				LL03	Dimethyldisulfide		6.92 -1	ug/l	RGA008
•				HG9	Mercury		2.70 -2	ug/l	QUD009
_				LL03	1,4-Oxathiane	- LT	8.56 -1	ug/l	RGA008
89270	SW11002	0.1	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	ННЈ007
				N6	1,1,1-Trichloroethane		7.60 -1	ug/1	HHU015
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	HHJ007
				ВИ	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU015

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	F	Results	Units	Sample Number
89270	SW11002	0.1	DTCH	UM21	1,1-Dichloroethene	LI	1.00 0	ug/l	HHJ007
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU015
				UM21	1,1-Dichloroethane	. L1	1.00 0	ug/l	HHJ007
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU015
				UM21	1,2-Dichloroethene	LI	5.00 0	ug/1	HHJ007
				N8	1,2-Dichloroethene	LI	7.60 -1	ug/1	HHU015
_				UM21	1,2-Dichloroethane	· LT	1.00 0	ug/l	HHJ007
	-			N 8	1,2-Dichloroethane	LT	1.10 0	ug/1	HHU015
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	HHJ007
				UM21	1,3-Dichlorobenzene	· LT	1.00 0	ug/l	HHJ007
1				UM21	1,3-Dichloropropane	LT	4.60 0	ug/l	ННЈ007
				UM21	m-Xylene	Lĭ	1.00 0	ug/1	HHJ007
				8VA	m-Xylene	LT	1.32 0	ug/1	HHV015
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	HHJ007
,				UM21	Acrylonitrile	LT	8.40 0	ug/l	ННЈ007
				KK6	Aldrin	LT	5.002	ug/l	HHD015
	-	· ·		UM25	Aldrin	LT	1.30 1	ug/l	HHH007
•				00	ALKALINITY		3.38 4	ug/l	HHW012
_				AXS	Arsenic	· LT	2.35 0		HIB015
				UH11	Atrazine	LT	4.03 0	ug/l	HHG015 .
				UM25	Atrazine	LT	5.90 0	ug/l	HHH007
		and the second		P8	Bicycloheptadiene	LT			HHF015
J				UM21	Bromodichloromethane	LT		ug/l	· HHJ007
				AAA8	Benzothiazole	LT		ug/l	HHC015
				UM21	Vinyl Chloride	Lĭ	1.20 1	ug/l	ННЈ 007
ŀ				UM21	Chloroethane	LT		ug/l	HHJ007
_				UM21	Benzene	L1		ug/l	HHJ007
				6VA	Benz ene	LT	1.05 0	ug/l	HHV015
				SS12	Calcium		2.29 4	ug/l	HICO15
•				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	ННЈ007
				UM21	Carbon Tetrachloride		1.00 0	ug/l	ННЈ007
-				Н8	Carbon Tetrachloride		9.90 -1	ug/l	HHU015
1				SS12	Cadmium		6.78 0	ug/l	HICO15
		•		UM21	Methylene Chloride	LT	1.00 0	ug/l	HHJ007

R. L. Stollar and Associates

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89270	SW11002	0.1	DTCH	N8	Methylene Chloride	LT	7.40 0	ug/l	HHU015
				UM21	Bromomethane	LT	1.40 1	ug/l	HHJ007
				UM21	Chloromethane	LT	1.20 0	ug/l	ННЈ007
				UM21	Bromoform	LT	1.10 1	ug/l	HHJ007
				UM21	Chloroform	LT	1.00 0	ug/l	ННЈ007
				N8	Chloroform	LT	5.00 -1	ug/l	HHU015
				TT09	Chloride		2.10 4	ug/l	HHZ015
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD015
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	HHH007
				UM21	Chlorobenzene	LT	1.00 0	ug/l	HHJ007
				N8	Chlorobenzene	LT	8.20 -1	ug/l	HHU015
				KK8	Chlordane	LT	9.50 -2	ug/l	HHD015
				UM25	Chlordane	LT	3.70 1	ug/l	HHH007
		_		AAA8	p—Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC015
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	ННН007
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC015
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	HHH007
		-		AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC015
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	HHH007
- •				SS12	Chromium	LT	1.68 1	ug/l	HICO15
				SS12	Copper	LT	1.88 1	ug/l	HICO15
				TF20	Cyanide	LT	5.00 0	ug/l	HHX015
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	ннноо7
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HHIO15
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	ННЈ007
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	ННЈ007
				P 6	Dicyclopentadiene	LT	5.00 0	ug/l	HHF015
				UM25	Dicyclopentadiene	LT		ug/l	HHH007
				UH11	Vapona	LT	3.84 -1	ug/l	HHG015
				UM25	Vapona	LT	8.50 0	ug/l	HHH 0 07
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE015
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHH007
				AAA8	Dithiane	LT	1.34 0	ug/l	HHC015
				UM25	Dithiane	LT	3.30 0	ug/l	HHH007

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type - Method	Analytical Parameters	Re	esults	Units		ample umber
89270	SW11002	0.1	DTCH KK8	Dieldrin	LT	5.00 -2	ug/l	нн	ID015
_			UM25	Dieldrin	LT	2.60 1	ug/l	HH	1007
			AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	·H	C015
			AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HH	E015
ī			UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	- HH	H007
			KK8	Endrin	LT	5.00 -2	ug/l	HH	1D015
			UM25	Endrin	LT	1.80 1	ug/1		H007
			UM21	Ethylbenzene	LT	1.00 0	ug/l		13007
			AV8	Ethylbenzene	LT	1.37 0	ug/l	нн	W015
			TT09	Fluoride		8.83 2	ug/l	HH	IZ015
			CC8	Mercury	LT	1.00 -1	ug/l	ні	(A015
			кка	Isodrin	LT	5.10 -2	ug/l	HH	ID015
			UM25	Isodrin	LT	7.80 0	ug/l	HH	H007
			SS12	Potassium		3.30 3	ug/l	HI	C015
J			UM21	Toluene	LT	1.00 0	ug/l	НН	1007
			AV8	Toluene	LT	1.47 0	ug/l		IV015
			UM21	Methylethyl Ketone	LT	1.00 1	ug/l	-	1007
			SS12	Magnesium		5.11 3	ug/l		C015
-			P6	Methylisobutyl Ketone		4.90 0	ug/l		IF015
· -			UM21 -	Methylisobutyl Ketone	LT	1.40 0	ug/l	НН	13007
_	-		UH11	Malathion	LT	3.73 -1	ug/l		IG015
			UM25	Malathion	LT		ug/l		H007
•			SS12	Sodium		1.79 4	ug/1		C015
-			LL8 AAAS	Nitrite, Nitrate - Non specific - 1,4-0xathiane	LT	1.80 3 2.38 0	ug/l ug/l		IY015 IC015
			UM25	1,4-Oxathiane	LT	2.70 1	ug/1	HH	H007
•			SS12	Lead		4.34 1	ug/l		C015
			KK8	Dichlorodiphenylethane		5.402	ug/l		D015
			UM25	Dichlorodiphenylethane		1.40 1	ug/l		H007
1		•	KK6	Dichlorodiphenyltrichloro- ethane	LT	4.902	ug/l	НН	ID015
_			UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	НН	H007
			UH11 -	Parathion	L.T	6.47 -1	ug/l	НН	IG015

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R∈	sults	Units	Sample Number
	<u></u>						······································		
89270	SW11002	0.1	DTCH	UM25	Parathion	LT	3.70 1	ug/l	ннноо7
09270	SW11002	0.1	DIGI	TT09	Sulfate		3.20 4	ug/l	HHZ015
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHG015
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/1	HHH007
•		-		UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	HHJ007
		•		18404	Water and Tarranthama	, 4	1.00 0	ug/l	HHJ007
				UM21	Tetrachloroethene		7.50 -1	ug/l	HHU015
				N8	Tetrachloroethene		1.00 0	ug/1	HHJ007
				UM21	Trichloroethene		5.60 -1		HHU015
				N8 UM21	Trichloroethene Ortho- & Para-Xylene		2.00 0	ug/l ug/l	HHJ007
				AV8	Ortho- & Para-Xylene		1.36 0	ug/l	HHV015
				SS12	Zinc	LT	1.80 -1	ug/l	HICO15
89268	SW12001	0.2	DTCH	NB	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU007
				N 8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU007
•				NB	1,1-Dichloroethene	LT	1.70 0	ug/1	HHU007
•				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU007
				NB	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU007
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU007
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV007
				KK8	Aldrin	LT	5.00 -2	ug/l	- HHD007
				00	ALKALINITY		1.50 5	ug/l	HHW004
			-	AX8	Arsenic	LT	2.35 0	ug/l	- HIBO07
				UH11	Atrazine	LT	4.03 0	ug/l	HHG007
			-	P8	Bicycloheptadiene	LT	5.90 0	ug/l	HHF007
		·		AAA8	Benzothiazole		5.00 0	ug/l	HHC 0 07
				AV8	Benzene		1.05 0	ug/l	HHV007
				SS12	Calcium		8.03 4	ug/l	HIC 0 07
	. •			N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU007
				SS12	Cadmium		6.78 0	ug/l	HICO07
				N8	Methylene Chloride		7.40 0	ug/l	HHU007
									HHU007
				N8	Chloroform	1.1	5.00 -1	ug/l	nnuuu

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
		÷		-					
8 92 68	SW12001	0.2	DTCH	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD007
				М8	Chlorobenzene	LT	8.20 -1	ug/l	HHU007
				KK8	Chlordane	LT	9.50 -2	ug/l	HHD007
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	HHCO07
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC007
				AAAS	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC007
				SS12	Chromium	LT	1.68 1	ug/l	HICO07
				SS12	Copper	LT	1.88 1	ug/l	HIC007
				TF20	Cyanide	LT	5.00 0	ug/l	HHX007
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HH1007
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF007
				UH11	Vapona	LT	3.64 -1	ug/l	HHGO07
t _a				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE007
				AAA6	Dithiane	LT	1.34 0	ug/l	HHC007
	•			KK8	Dieldrin	LT	5.00 -2	ug/l	HHD007
				AAA8	Dimethyldisulfide .	LT	5.50 -1	ug/l	HHC007
		•,		AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE007
				KK8	Endrin	LT	5.00 -2	ug/l	HHD007
				AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV007
				TT09	Fluoride		1.43 3	ug/l	HHZ007
					Managemen		1 001	um/1	HIA007
				CC8	Mercury		1.00 -1 5.10 -2	ug/l ug/l	HHD007
				KK8 SS12	Isodrin	LT	3.57 3	ug/l	HICO07
				9217 9217	Potassium Toluene		1.47 0	ug/1	HHV007
				SS12	Magnesium		2.55 4	ug/1	HIC007
				3312	Pagnesium			43/1	1110007
			-	P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF007
				UH11	Malathion	LT	3.73 -1	ug/l	HHG007
				SS12	Sodium		9.30 4	ug/l	HICO07
				LL8	Nitrite, Nitrate - Non specific		4.30 3	ug/l	HHY007
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	HHC007
				SS12	Lead	LT	4.34 1	ug/l	HIC007
				KK8	Dichlorodiphenylethane		5.40 -2	ug/l	HHD007
-				KK8	Dichlorodiphenyltrichloro-		4.90 -2	ug/1-	HHD007
				/ -	ethane	*** *			

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
						***************************************		•	
89 268	SW12001	0.2	DTCH	UH11_	Parathion	LT	6.47 -1	ug/l -	HHG007
				TT09	Sulfate		1.20 5	ug/l	HHZ007
ì				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	ug/l	HHG007
					Vinyldiethyl Phosphates				
_				М8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU007
•				М8	Trichloroethene	LT	5.60 -1	ug/l	HHU007
	*								
.				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV007
				SS12	Zinc	LT	1.80 1	ug/l	HICO07
	* . *	-							
89268	SW12004	0.2	STSW	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU008
03200				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	HHU008
· ·				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU006
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU008
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU008
•									
				NB	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU008
	•			AV8	m-Xylene	LT	1.32 0	ug/l	HH/008
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD008
	•			00	ALKALINITY		5.22 4	ug/l	HHW005
				AX8	Arsenic	LT	2.35 0	ug/l	8008IH
	•								
8 -				UH11 =	Atrazine		4.28 0	ug/l	HHG008
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	HHF008
				AAA8	Benzothiazole	LT	5.00 0	ug/l	HHC008
				AV8	Benzene	LT	1.05 0	ug/l	. HHV008
		•		SS12	Calcium	-	3.12 4	ug/l	HICO08
				ИВ	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU008
			-	\$\$12	Cadmium	LT	6.78 0	ug/l	HIC008
				N8	Methylene Chloride	LT	7.40 0	ug/1	HHU006
				N8	Chloroform	LT	5.00 -1	ug/1	HHU008
T .				TT 0 9	Chloride		1.80 4	ug/1	HHZ008
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	8000HH
				N8	Chlorobenzene	LT	8.20 -1	ug/l	HHU008
				KK8	Chlordane	LT	9.50 -2	ug/l	BOOCHH
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC008
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC008

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
								·	
89268	SW12004	0.2	STSW	AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC008
09200	3W12004	V.2	31377	SS12	Chromium	LT	1.68 1	ug/l	HICO08
Ŧ	·			SS12	Copper		1.88 1	ug/l	HICO08
				TF20	Cyanide		5.00 0	ug/l	HHX008
-				AY8	Dibromochloropropane		1.95 -1	ug/1	HHI008
					Data diliberta opi opulic				
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF008
	•			UH11	Vapona		7.03 -1	ug/1	HHG008
-				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	HHE008
				AAA8	Dithiane	LT	1.34 0	ug/l	HHC008
•	•			кка	Dieldrin	LT	5.00 -2	ug/l	HHD008
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC008
	•			AT8	Dimethylmethyl Phosphate	LT.	1.88 -1	ug/l	HHEO08
				KK8	Endrin	- LT	5.00 -2	ug/1	HHD008
•				AV8	Ethylbenzene	LT	1.37 0	ug/l	8 00VHH
				TT09	Fluoride		1.81 3	ug/1	HHZ00 8
						•			
				CC8	Mercury	LT	1.00 -1	ug/l	HIA008
				KK8	Isodrin	LT	5.10 -2	ug/l	HHD008
				SS12	Potassium		8.57 3	ug/l	HICOO8
_				AV8	Toluene	LT	1.47 0	ug/l	HHV008
				SS12	Magnesium		6.03 3	ug/l	HICOO8
			•	P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF008
				UH11	Malathion	LT	3.73 -1	ug/l	HHG008
				SS12	Sodium		1.61 4	ug/l	HICO08
				LL8	Nitrite,Nitrate - Non specific		2.30 2	ug/l	BOOYHH
.				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	HHC008
				SS12	Lead	LT	4.34 1	ug/l	HICO08
-				KK8	Dichlorodiphenylethane		5.402	ug/l	HHD008
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	HHD008
					ethane		e 4 4	11er /3	HILODAO
_				UH11	Parathion	LI	6.47 -1	ug/1	HHG008
				TT09	Sulfate		5.00 4	ug/l	HHZ008
l .				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	ug/l	HHG008
1			***		Vinyldiethyl Phosphates				
				Н8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU008

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
		***************************************	-	-					
89268	SW12004	0.2	STSW	N6	Trichloroethene		5.60 -1	ug/l	HHU008
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV008
				5512	Zinc	LT	1.80 1	ug/l	HICOO8
89269	SW12005	0.2	DTCH	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	HHU012
			•	N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU012
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU012
				N8	1,1-Dichloroethane	LT.	7.30 -1	ug/l	HHU012
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU012
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU012
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV012
				ккө	Aldrin	LT	5.00 -2	ug/l	HHD012
				00	ALKALINITY		2.32 5	ug/l	HHW0 0 9
				AX6	- Arsenic		2.43 0	ug/l	HIB012
				UH11	Atrazine	LT	4.03 0	ug/l	HHG012
•				P8	Bicycloheptadiene	LT	5.90 0	ug/1	HHF012
				AAA8	Benzothiazole	LT	5.00 0	ug/l	HHC012
				AV8	Benzene	LT	1.05 0	ug/l	HHV012
				SS12	Calcium		7.95 4	ug/l	HICO12
	•	• • • • • • • • • • • • • • • • • • •			ender in the second of the sec			• •	
		•		N8	Carbon Tetrachloride	LT	9.90 -1	ug/1	HHU012
				SS12	Cadmium -	LT	6.78 0	ug/l	HICO12
				N8	Methylene Chloride	LT	7.40 0	ug/l	HHU012
				N8	Chloroform	LT	5.00 -1	ug/1	HHU012
				TT09	Chloride		4.30 4	ug/l	HHZ012
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD012
				N8	Chlorobenzene	LT	8.20 -1	ug/l	HHU012
				KK8	Chlordane	LT	79.50 -2	ug/l	HHD012
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	_ug/1	HHC012
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC012
	•			AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC012
			=1	SS12	Chromium	LT	1.68 1	ug/l	HICO12
				S S12	Copper		1.88 1	ug/l	HICO12
			•	TF20	Cyanide		5.00 0	ug/l	HHX012
				AY8	Dibromochloropropane		1.95 -1	ug/l	HHIO12

Comprehensive Monitoring Program

01/19/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	. Method	Analytical Parameters	Re	esults	Units	Sample Number
89269	SW12005	0.2	DTCH	P6	Dicyclopentadiene	LT	5.00 0	ug/l	HHF012
				UH11	Vapona	LT	3.84 -1	ug/l	HHG012
				AT8	Diisopropylmethyl Phosphonate	LŤ	3.92 -1	ug/l	HHE012
}				AAAG	Dithiane	LT	1.34 0	ug/l	HHC012
				KK8	Dieldrin	LT	5.00 -2	ug/l	HHD012
		4.		-					
				AAA8	Dimethyldisulfide		5.50 -1	ug/l	HHC012
				AT8	Dimethylmethyl Phosphate	LT	1.881	ug/l	HHEO12
1				KK8	Endrin	LT	5.00 -2		HHD012
				AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV012
				TT09	Fluoride		1.41 3	ug/l	HHZ012
i				ccs	Mercury	ΙT	1.00 -1	ug/l	HIA012
				KK8	Isodrin		5.10 -2	ug/l	HHD012
				SS12	Potassium		2.94 3	ug/1	HICO12
l.				AV8	Toluene	LT	1.47 0	ug/l	HHV012
				SS12	Magnesium		2.39 4	ug/1	HICO12
İ									
ı			No. of the second	P8 .	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF012
				UH11	Malathion	LT	3.73 -1	ug/1	HHG012
J				SS12	Sodium		7.60 4	ug/1	HICO12
-				LL8	Nitrite, Nitrate - Non specific		4.00 3	ug/l	HHY012
	when			AAA 8	1,4-Oxathiane	LT	2.38 0	ug/l	HHC012
1				CC1.0	Lead	·,	4.34 1	ug/l	HICO12
1				SS12 KK8	Dichlorodiphenylethane		5.40 -2	ug/l	HHD012
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.902	ug/l	HHD012
ı				UH11	Parathion	LT	6.47 -1	ug/l	HHG012
ĺ				11109	Sulfate		1.10 5	ug/l	HHZ012
)									
1				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	-ug/l	HHG012
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU012
				N8	Trichloroethene	LT	5.60 -1	ug/l	HHU012
ì				AVS	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV012
]				SS12	Zinc	LT	1.80 1	ug/l	HICO12
_					er en en en en en en en en en en en en en				
89269	SW12005B	0.0	DTCH	QQ9	Dibromochloropropane	LT	5.00 -3	ug/l	GTC005

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	M ethod	Analytical Parameters	R	esults	Units	Sample Number
							ş		
89269	SW12005B	0.0	DTCH	HG9	Mercury	LT	2.70 -2	ug/l	QUD005
89269	SW12005B	0.2	DTCH	LL03	Benzothiazole	LT	1.08 0	ug/l	RGA005
		-		LL03	p-Chlorophenylmethyl Sulfi	de LT	1.06 0	ug/l	RGA005
			-	LL03	p-Chlorophenylmethyl Sulfo	xide LT	2.25 0	ug/l	RGA005
				LL03	p-Chlorophenylmethyl Sulfo		2.37 0	ug/1	RGA005
				LL03	Dithiane		1.47 0	ug/l	RGA005
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA005
-				LL03	1,4-Oxathiane	LT	6.56 -1	ug/l	RGA005
89270	SW24001	0.0	STP	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/1	HHJ008
0,52,70				N 8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU016
			-	UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	HHJ008
				NB	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU016
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	ннјоо8
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU016
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HHJ008
				нв	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU016
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	HHJ006
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU016
•				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	HHJ008
			****	N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU016
			•	UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	HHJ008
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	HHJ008
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	HHJ008
				UM21	m-Xylene	. LT		ug/l	HHJ006
				AV8	m-Xylene	LT		ug/l	HHV016
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	HHJ008
* *				UM21	Acrylonitrile		8.40 0	ug/1	HHJ008
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD016
				UM25	Aldrin	LT	1.30 1	ug/l	ннноов
				00	ALKALINITY		9.16 4	ug/l	HHW013
				AX8	Arsenic		3.02 1	ug/l	HIB016
				UH11	Atrazine	LT	4.03 0	ug/l	HHG01€
				UM25	Atrazine		5.90 0	ug/1	HHH008

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type -	Method	Analytical Parameters	Re	esults	Units	Sample Number
	,							<u> </u>	
00070	OLD ARRI	0.0:	- CTD	P6	Bicycloheptadiene	LT	5.90	0 ug/l	HHF016
89270	SW24001	0.0	STP	UM21	Bromodichloromethane	LT	1.00		ннјооз
				AAA8	Benzothiazole	LT	Contract to the second	0 ug/l	HHC016
j			•	UM21	Vinyl Chloride	LT		1 ug/l	HHJ008
				UM21	Chloroethane	LT		0 ug/l	HHJ006
ı				Oriz.1	Cittor de cilatie	-	0.00	U 45/1	,,,,,,,,,
				UM21	Benz ene	LT	1.00	0 ug/l	HHJ008
•				AV8	Benzene	LT	1.05		HHV016
•		•		SS12	Calcium	-	3.27		HICO16
			-	UM21	Trichlorofluoromethane	LŤ		0 ug/l	HHJ008
		•		UM21	Carbon Tetrachloride	LT			HHJ008
				0,					
				N8	Carbon Tetrachloride	LT	9.90	1 ug/l	HHU016
}		*		SS12	Cadmium	LT	6.78		HICO16
				UM21	Methylene Chloride	LT	1.00		HHJ008
1 ·	. •		-	N8	Methylene Chloride	LT	7.40		HHU016
-		· .		UM21	Bromomethane			•	HHJ008
•									
ā				UM21	Chloromethane Chloromethane	LT	1.20	0 ug/l	HHJ008
			***	UM21	Bromoform	LT	All the second	1 ug/l	800CHH
				UM21	Chloroform	LT	1.00		HHJ008
_				N8	Chloroform	LT	5.00 -		HHU016
				TT09	Chloride		5.50		HHZ016
				KK8	Hexachlorocyclopentadiene	LT	4.80 -	2 ug/l	HHD016
.				UM25	Hexachlorocyclopentadiene	LT	5.40	1 ug/l	HHH008
-				UM21	Chlorobenzene	LT	1.00	0 ug/l	HHJ008
-				N8	Chlorobenzene	LT	8.20 -	1 ug/l	HHU016
			-	KK8	Chlordane	LT	9.50 -	2 ug/l	HHD016
•		-		UM25	Chlordane	LT	3.70	1 ug/l	800HHH
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0 ug/l	- HHC016
	•			UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1 ug/l	HHH008
}				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15		HHC016
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	i ug/l	800HHH
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46	0 ug/l	HHC016
-				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0 ug/l	800HHH
				S S12	Chromium	LT	1.68	1 ug/l	HICO16
				SS12	Copper	LT	1.88	1 ug/l	HICO16
-									

R. L. Stollar and Associates

}									
Sampling	Station Sample	Sample						Sample	
Date	Number Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Number	
			·		·				
						erjan in in Geografia			
89270	SW24001 0.0	STP	TF20	Cyanide	LT	5.00 0	ug/1	HHX016	ú
			UM25	Dibromochloropropane	LT	1.20 1	ug/l	HHH008	
			AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HH1016	
			UM21	Dibromochloromethane	LT	1.00 0	ug/l	HHJ008	
			UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	HHJ008	 1.
						<i>z</i> '			
-			P8 -	Dicyclopentadiene	LT	5.00 0	ug/l	HHF016	
•			UM25	Dicyclopentadiene		5.50 0	ug/l	HHH008	
			UH11	Vapona	LT	3.84 -1	ug/1	HHG016	
	· · · · · · · · · · · · · · · · · · ·		UM25	Vapona	LT	8.50 0	ug/l	HHH008	
			AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE016	
•									
	· ·		UM25	Diisopropylmethyl Phosphonate		2.10 1	ug/l	HHH008	
,			AAA8	Dithiane		1.34 0	ug/l	HHC016	
			UM25	Dithiane	LT	3.30 0	ug/l	HHH008	
			KK8	Dieldrin	LT	5.00 -2	ug/l	HHD016	
			UM25	Dieldrin	LT	2.60 1	ug/l	ннноов	
			AAA8	Dimethyldisulfide	1 T	5.50 -1	ug/l	HHC016	
*** ** **.	an amerika 🎉 eran ara		AT8	Dimethylmethyl Phosphate		5.08 -1	ug/l	HHE016	
			UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	HHH008	
			KK8	Endrin	LT	5.00 -2	ug/l	HHD016	
l			UM25	Endrin	LT	1.80 1	ug/l	HHH008	
			Orizo	Substitute Att				1.7	
			UM21	Ethylbenzene	LT	1.00 0	ug/l	HHJ008	
			AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV016	
			TT09	Fluoride		1.33 3	ug/l	HHZ016	
			CC8	Mercury	LŤ	1.00 -1	ug/1	HIA016	
			KK8	Isodrin	LT	5.10 -2	ug/1	HHD016	
			UM25	Isodrin	LT	7.80 0	ug/l	HHH008	
			SS12	Potassium		5.29 3	ug/l	HICO16	
1			UM21	Toluene	LŦ	1.00 0	ug/l	HHJ008	
	•		AV8	Toluene		1.47 0	ug/l	HHV016	
•			UM21	Methylethyl Ketone		1.00 1	ug/l	800CHH	
1									
			SS12	Magnesium		8.92 3	ug/1	HICO16	٠.
-			P8	Methylisobutyl Ketone		4.90 0	ug/l	HHF016	
								HHJ008	
			UH11	Malathion	LT	3.73 -1	ug/l	HHG016	
			UM21 UH11	Methylisobutyl Ketone Malathion		1.40 0 3.73 -1	ug/l ug/l		

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number

89270	SW24001	0.0	STP	UM25	Malathion	LT	2.10	1	ug/l	HHH008
, , , , , , , , , , , , , , , , , , ,				S S12	Sodium		5.70	4	ug/l	HICO16
				LL8	Nitrite, Nitrate - Non specific	- 2 D	2.00	3	ug/l	HHY016
				AAA6	1,4-Oxathiane	LT	2.38	0	ug/l	HHC016
				UM25	1,4-Oxathiane	LT	2.70	1	ug/l	HHH00 8
						1				
			. + 1	\$\$12	Lead	LT	4.34	1	ug/l	HICO16
				кка	Dichlorodiphenylethane	LT	5.40	-2	ug/l	HHD016
				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/l	800444
			·	KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90	2	ug/l	HHD016
•				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	800HHH
				UH11	Parathion	LT	6.47	-1	ug/l	HHG016
١				UM25	Parathion	LT	3.70	1	ug/l	800HHH
;	•			TT09	Sulfate		5.20	4	ug/l	HHZ016
				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87	-1	ug/l	HHG016
•					Vinyldiethyl Phosphates					
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90	1	ug/1	HHH008
-				±	Vinyldiethyl Phosphates					
1.				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0	ug/l	. HHJ008
				UM21	Tetrachloroethene	LT	1.00	o	ug/l	HHJ008
-	1. 1			N8	Tetrachloroethene	LT	7.50	-	ug/l	HHU016
· •		Annual Section		UM21	Trichloroethene	LT	1.00		ug/l	HHJ008
	• • • • • • • • • • • • • • • • • • •			N8	Trichloroethene	LT	5.60		ug/l	HHU016
1				UM 21	Ortho- & Para-Xylene	LT	2.00	o	ug/1	
		•	٠	AV8	Ortho- & Para-Xylene	LT	1.36	0	.ug/l	HHV016
				S S12	Zinc	LT	1.80	1	ug/l	HICO16
89271	SW36001	0.2	DTCH .	UM21	1,1,1-Trichloroethane	LT	1.00		ug/l	ННЈ00 9
j				N8	1,1,1-Trichloroethane	LT	7.60		ug/1	HHU017
				UM21	1,1,2-Trichloroethane	LT	1.00		ug/l	HHJ009
				N8	1,1,2-Trichloroethane		9.69		ug/1	. HHU017
				UM21	1,1-Dichloroethene	LT	1.00	0	ug/l	HHJ 00 9
				N8	1,1-Dichloroethene	LT	1.70	0	ug/l	HHU017

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
								<u> </u>	
	O. 17.001		DTCH	N8	1,1-Dichloroethane	۱۳	7.30 -	ug/l	HHU017
89271	SW36001	0.2	Dich	UM21	1,2-Dichloroethene		5.00	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ННЈ009
					1,2-Dichloroethene		8.20 (HHU017
				N8	1,2-Dichloroethane	LT	1.00		HHJ009
				UM21		LT	1.10		HHU017
				N8	1,2-Dichloroethane	اسا	1.10	, u g/ ‡	1810017
				UM21	1,2-Dichloropropane	LT	1.00 () ug/l	HHJ009
				UM21	1,3-Dichlorobenzene	LT	1.00) ug/l	HHJ009
				UM21	1,3-Dichloropropane	LT	4.80 (HHJ009
•				UM21	m-Xylene	LT	1.00 (ННЈ009
				AV8	m-Xylene	LT	1.32 (HHV017
	•	•		UM21	2-Chloroethylvinyl Ether	LT	3.50 () ug/l	HHJ009
		•		UM21	Acrylonitrile	LT	8.40 () ug/l	HHJ009
				KK8	Aldrin		1.30		HHD017
				UM25	Aldrin	LT	1.30		. нннооэ
				00	ALKALINITY		1.46		HHW014
		•							
				AX8	Arsenic		1.18 2	2 ug/l	HIB017
		e selection in a	i, e .	UH11	Atrazine		8.06 (ug/1	HHG017
				UM25	Atrazine -		6.17) ug/l	HHH009
				P8	Bicycloheptadiene		1.09	ug/1	HHF017
		_		UM21	Bromodichloromethane	LT	1.00) ug/l	HHJ009
					Company of the Company of the Company				
				8666	Benzothiazole	LT	5.00 () ug/l	HHC017
				UM21	Vinyl Chloride	LT	1.20	ug/1	HHJ009
				UM21	Chloroethane	LT	8.00 () ug/l	HHJ009
				UM21	Benzene	LT	1.00 (ug/l	HHJ009
				AV8	Benzene		1.86	ug/1	HHV017
					V.				
	·	-		SS12	Calcium		4.19	1 ug/l	HICO17
1				UM21	Trichlorofluoromethane	LT	1.00 () ug/l	ННЈ009
		•		UM21	Carbon Tetrachloride	LT	1.00 () ug/l	HHJ009
				_N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU017
				SS12	Cadmium	LT	6.78	ug/l	HICO17
l									,
				UM21	Methylene Chloride	LT	1.00) ug/l	нн 1009
				N8	Methylene Chloride	LT	7.40 () ug/l	HHU017
				UM21	Bromomethane		1.40		HHJ009
•		-		UM21	Chloromethane	LT	1.20 () ug/l	HHJ009

					and the second second second				
Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Type -	Method	Analytical Parameters	Re	sults	Units	Number
		<u></u>	· .						
· 89271	SW36001	0.2	DTCH	UM21	Bromoform	LT:	1.10	1 ug/l	ннлооэ
_				UM21	Chloroform		7.60	1 ug/l	HHJ009
				N8	Chloroform		1.28	2 ug/l	HHU017
•				TT09	Chloride		8.60	4 ug/l	HHZ017
			4	KK8	Hexachlorocyclopentadiene		6.73 -	1 ug/l	HHD017
							*		and the second
				UM25	Hexachlorocyclopentadiene	LT	5.40	1 ug/l	HHH009
				UM21	Chlorobenzene	÷	4.23	2 ug/l	ННЈ00 9
•				N8	Chlorobenzene	GT	2.00	2 ug/l	HHU017
Į.				KK8	Chlordane		6.60	0 ug/l	HHD017
•				UM25	Chlordane	LT	3.70	1 ug/l	HHH009
				400				-	, · · · · · · · · · · · · · · · · · · ·
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0 ug/l	HHC017
•				UM25	p-Chlorophenylmethyl Sulfide		1.26	1 ug/l	HHH009
		• .		AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15	1 ug/l	HHC017
1				UM25	p-Chlorophenylmethyl Sulfoxide		3.80	1 ug/l	ннн009
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46	0 ug/l	HHC017
•							114		
			4 (14.)	UM25	p-Chlorophenylmethyl Sulfone	GT	3.00	2 ug/l.	нннооэ
	•			SS12	Chromium	- LT	1.68	1 ug/l	HICO17
		*		SS12	Copper	LT	1.88	1 ug/l	HICO17
_		-		TF20	Cyanide	LT	5.00	0 ug/l	HHX017
				UM25	Dibromochloropropane	LT	1.20	1 ug/l	HHH009
		0 - 1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				AY8	Dibromochloropropane		6.23	0 ug/l	HHIO17
		and the second second		UM21	Dibromochloromethane	LT	1.00	0 ug/l	ННЈ009
	-			UM21	1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	2,90	2 ug/l	ННЈ009
7				P6	Dicyclopentadiene		2.29	1 ug/l	HHF017
		. 1 =		UM25	Dicyclopentadiene		1.51	1 ug/l	HHH009
I					a Albania de La				
8	•			UH11	Vapona		6.29	0 ug/l	HHG017
	. 1			UM25	Vapona	LT	8.50	0 ug/l	HHH009
				AT8	Diisopropylmethyl Phosphonate		4.96 -	-1 ug/l	HHE017
}				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1 ug/l	-HHH009
				AAA8	Dithiane	LT	1.34	0 ug/l	HHC017
				UM25	Dithiane	LT	3.30	0 ug/l	HHH009
•		•		KK8	Dieldrin		4.80	0 ug/l	HHD017
-				UM25	Dieldrin	LT	2.60	1 ug/l	HHH009
				AAA8	Dimethyldisulfide	LT	5.50 -	-1 ug/l	HHC017
l .				•				The Figure 2	

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Station	Sample	Sample						Sample
Date Number	Depth (cm)	Туре	Method	Analytical Parameters	Results	•	Units	Number
and the state of t					*			
89271 SW36001	0.2	DTCH	AT8	Dimethylmethyl Phosphate	1.70	Ö	ug/l	HHE017
			UM25	Dimethylmethyl Phosphate	LT 1.30	2	ug/l	ниноо9
		· ·	KK8	Endrin	3.70	0	ug/l	HHD017
			UM25	Endrin	LT 1.80	1	ug/l	нннооэ
		*	UM21	Ethylbenzene	2.70	1	ug/l	HHJ009
			AV8	Ethylbenzene	2.88	1	ug/l	HHV017
			TT09	Fluoride	1.62	3	ug/l	HHZ017
			CC8	Mercury	2.36	-1	ug/l	HIA017
			KK8	Isodrin	1.60	O	ug/l	HHD017
	**		UM25	Isodrin	LT 7.80	0	ug/l	HHH009
•							• -	-
			SS12	Potassium	3.43	3	ug/l	HICO17
			UM21	Toluene	LT 1.00	0	ug/l	ННЈ009
			AV8	Toluene	5.79	0	ug/l	HHV017
1			UM21	Methylethyl Ketone	LT 1.00	1	ug/l	HHJ009
			SS12	Magnesium	2.44		ug/l	HICO17
•			P8	Methylisobutyl Ketone	8.77	.0	ug/l	HHF017
			UM21	Methylisobutyl Ketone	LT 1.40	0	ug/l	HHJ009
			UH11	Malathion	LT 3.73	-1	ug/l	HHG017
			UM25	Malathion	LT 2.10	1	ug/l	нинооэ
and the second	20 F		SS12	Sodium	1.10		ug/1	-HIC017
en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de			LL8	Nitrite, Nitrate - Non specific	5.0 6	1	ug/l	HHY017
the state of the s		4	AAA8	1,4-Oxathiane	LT 2.38		ug/l	HHC017
-			UM25	1,4-Oxathiane	LT 2.70		ug/l	ннноо9
			SS12	Lead	LT 4.34		ug/l	HICO17
			KK8	Dichlorodiphenylethane	2.60		ug/l	HHD017
	4.5		INNO	DIGHTO COLPHENY TO CHARLE		_	~ ~ ~	
			UM25	Dichlorodiphenylethane	LT 1.40	1	ug/l	нннооэ
. L .			KK8	Dichlorodiphenyltrichloro-	2.80		ug/l	HHD017
				ethane				
			UM25	Dichlorodiphenyltrichloro-	LT 1.80	1	ug/l	нннооэ
			• mo	ethane				
	4		UH11	Parathion	LT 6.47	-1	ug/1	HHG017
•	4	-	UM25	Parathion	LT 3.70		ug/l	HHH009
			0.120			-		
			TT09	Sulfate	1.30	5	ug/l	HHZ017
			UH11	2-Chloro-1(2,4-Dichlorophenyl)	4.44		ug/1	HHG017
			OHAL	Vinyldiethyl Phosphates	च • चिच	w	~2/ *	
			•	ATHATOTECHAT LIMPANGOES	•			

Sampling	Station	Sample	Sample _			· .			Sample
Date	Number	Depth (cm)	Туре	_ Method	Analytical Parameters	Ke	sults	Units	Number
						•	·		
89271	SW36001	0.2	DTCH	UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	HHH009
02271	3430001		D . O		Vinyldiethyl Phosphates				
_	• p *			UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/1	HHJ009
	5. W.		3	UM21	Tetrachloroethene		3.80 1	ug/l	HHJ009
				N8	Tetrachloroethene		4.47 0	ug/l	HHU017
				UM21	Trichloroethene		1.00 1	ug/l	ННЈ009
								• •	
				нв	Trichloroethene		2.04 1	ug/l	HHU017
		•		UM21	Ortho- & Para-Xylene		3.27 1	ug/l	ННЈ009
				AV8	Ortho- & Para-Xylene		4.12 1	ug/l	HHV017
				SS12	Zinc	LT	1.80 1	ug/l	HICO17
		*		i e +					
89271	SW36001B	0.0	DTCH	QQ9	Dibromochloropropane	LT	5.00 -3	ug/1	GTC010
			,	HG9	Mercury		5.70 -1	ug/l	QUD010
				_	in distribution of the conjugate of the				
89271	SW36001B	0.2	DTCH	LLO3	Benzothiazole	LT	1.08 0	ug/l	RGA010
				LL03	p-Chlorophenylmethyl Sulfide	LT.	1.08 0	ug/l	RGA010
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA010
1				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/l	RGA010
				LL03	Dithiane	LT	1.47 0	ug/1	RGA010
						• .			
		•		LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA010
	: · · · · · · · · · · · · · · · · · · ·			LL03	1,4-Oxathiane	LT	8.56 -1	ug/1	RGA010
						• •			
89271	SW36001FB	0	QCFB	UM21	1,1,1-Trichloroethane	_	1.00 0	ug/l	HHJ010
	7.0	*		N8	1,1,1-Trichloroethane		7.60 -1	ug/l	HHU018
	-			UM21	1,1,2-Trichloroethane		1.00 0	ug/l	HHJ010
•				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU018
1		:		UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	- ННЈО10
					d d Dinkinganahan	, -	1 70 0	/3	DOI INTO
=				N8	-1,1-Dichloroethene	LT	1.70 0	ug/l	HHU018
			**	UM21	1,1-Dichloroethane	LT	1.00 0	ug/1	HHJ010
				N6	1,1-Dichloroethane		7.30 -1	ug/l	HHU018
				UM21	1,2-Dichloroethene	LT		ug/l	HHJ010
_				. N8	1,2-Dichloroethene	. L. I	7.60 -1	ug/l	HHU018
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	ННЈ010
•			. •	N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU018
		•		um21	1,2-Dichloropropane	LT	1.00 0	ug/1	HHJ010
•				UM21	1,3-Dichlorobenzene	LT		ug/l	HHJ010
,				wi sa.a.	mg w mawrianer weediin willw			~	
					· · · · · · · · · · · · · · · · · · ·				

R. L. Stollar and Associates

Summary of Analytical Results

Sampling	Station	Sample	Sample		Auglikian Bawanakawa		D-	sults	Uni	t cs	Sample Number
Date	Number	Depth (cm)	Type	. Method	Analytical Parameters		Me	antea	Offi	rea	. Nulliuer
										-	. "
00271	CUTEAA1 ED		QCFB	UM21	1,3-Dichloropropane		LT	4.80	O ug	/1	ннјо10
89271	SW36001FB		GC P	UM21	m-Xylene		LT	-	0 ug		ННЈО10
١.				AV8	m-Xylene			1.32			HHV018
				UM21	2-Chloroethylvinyl Ether		LT	3.50			ННЈ010
				UM21	Acrylonitrile		LT	8.40			ннјо10
				O, IA. A	PIOT Y ZOTIZ OF ZZO						
				KK8	Aldrin		LT	5.00	-2 ug	/1	HHD018
				UM25	Aldrin		LT	1.30	1 ug	/1	HHH010
				00	ALKALINITY		LT	7.30			HHW015
				AX8	Arsenic				O ug		HIB018
				UH11 -	Atrazine		LT	4.03	0 ug	/1 -	HHG018
					$\label{eq:controller} \Phi_{ij}\rangle = \Phi_{ij}\rangle $		•	*			
				UM25	Atrazine		LT	5.90	0 ug	/1	HHH010
				P8	Bicycloheptadiene		LT	5.90	0 ug	/1	HHF018
•				UM21	Bromodichloromethane		LT	1.00	0 ug	/1	HHJ010
· · · · · · · · · · · · · · · · · · ·				AAA8	Benzothiazole		LT	5.00	O ug	/1	HHC018
				UM21	Vinyl Chloride		LT	1.20	1 ug	/1	ННЈ010
			·	•							* * * * * * * * * * * * * * * * * * * *
1				UM21	Chloroethane		LT	6.00	0 ug	/1	ННЈ010
	e e e e e e e e e e e e e e e e e e e		k	UM21	Benzene		LT		0 ug		ННЈ010
	* .			AV8	Benz ene		LT		0 ug		HHV018
				\$\$12.	Calcium	-	LT	1.05	2 ug		HICO18
				UM21	Trichlorofluoromethane		LT	1.00	0 ug	/1	ННЈО10
								1.00		/1	UUTA1A
		4 4 4 A		UM21	Carbon Tetrachloride		LT	1.00			HHJ010
		and the second		N8	Carbon Tetrachloride		LT	9.90 - 6.78			HHU018 HIC018
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	SS12	Cadmium Methylene Chloride		LT	1.00	0 ug		HHJ010
				UM21				7.40	0 ug		HHU018
1				N8	Methylene Chloride		LT	7.40	o ug	, 1	1110010
		• .		UM21	Bromomethane		1.7	1.40	1 ug	71	ННЈ010
				UM21	Chloromethane		LT		0 ug		ннјо10
		•		UM21	Bromoform			1.10			ННЈ010
				UM21	Chloroform	•	LT	1.00	-		ннј010
				N8	Chloroform		LT	5.00			HHU018
1	•		•								***
		,	•	TT09	Chloride		LT	2.78	2 ug	/1	HHZ018
l				KK8	Hexachlorocyclopentadiene		LT.	4.80 ~			HHD018
				UM25	Hexachlorocyclopentadiene	•	LT	5.40			HHH010
i				UM21	Chlorobenzene		LT	1.00			HHJ010

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling	Station	Sample	Sample					Sample
Date	Number	Depth (cm)	Type _ Method	Analytical Parameters	Re	sults	Units	Number
						<u> </u>		
89271	SW36001FB	0	QCFB N8	Chlorobenzene	LT	8.20 -1	ug/l	HHU018
03271	3W300011 D		кка	Chlordane	LT	9.50 -2	ug/l	HHD018
			UM25	Chlordane	LT	3.70 -1	ug/1	HHH010
			AAAG	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC018
_		* .	UM25	p-Chlorophenylmethyl Sulfide	LT		ug/1	ннно10
•								
-			AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC016
-	; ,	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	UM25	p-Chlorophenylmethyl Sulfoxide	ĹТ	1.50 1	ug/1	HHH010
			AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC018
			UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	HHH010
J			SS12	Chromium	LT	1.68 1	ug/l	HICO18
			SS12	Copper	LT	1.88 1	ug/1	HICO18
			TF20	Cyanide	LT	5.00 0	ug/l	HHX018
			UM25	Dibromochloropropane	LT	1.20 1	ug/l	HHHO10
1			AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HH1018
			UM21	Dibromochloromethane	LT	1.00 0	ug/l	ннјо10
•			UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	ННЈ010
			P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF018
•			UM25	Dicyclopentadiene	LT	5.50 0	ug/l	HHH010
_			UH11	Vapona	LT	3.84 -1	ug/1	HHG018
=			UM25	Vapona	LT	8.50 0	ug/l	ннно10
J	<u> </u>		AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	HHE018
	_	·	UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHH010
			AAA8	Dithiane	LT	1.34 0	ug/1	HHC018
•			- UM25	Dithiane	LT	3.30 O	ug/l	HHH010
_			KK8	Dieldrin	LT	5.00 -2	ug/l	HHD018
J			UM25	Dieldrin	LT	2.60 1	ug/l	HHH010
			AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC018
			AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE018
			ÚM25	Dimethylmethyl Phosphate	·LT	1.30 2		HHH010
-		•	кка	Endrin	LT	5.00 -2	ug/1	HHD018
, B				•				
			UM25	Endrin	LT	1.80 1	ug/l	ННН010
•		•	UM21	Ethylbenzene	LT	1.00 0	ug/l	ННЈО10
•			AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV016
			TT09	Fluoride	LT	1.53 2	ug/l	HHZ018
1		4						

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Results	Units	Sample . Number
		-						
89271	SW36001FB	0	QCFB	CC8	Mercury	LT 1.00 -1	ug/1	HIA018
				KK8	Isodrin	LT 5.10 -2	ug/l	HHD018
		•		UM25	Isodrin	LT 7.80 0	ug/l	ннно10
• •				SS12	Potassium	LT 1.24 3	ug/1	HICO18
				UM21	Toluene	LT 1.00 0	ug/l	ннјо10
				AV8	Toluene	LT 1.47 0	ug/l	HHV018
	•			UM21	Methylethyl Ketone	LT 1.00 1	_ug/l	<u>HHJ</u> 010
				SS12	Magnesium	LT 1.35 2	ug/l	HICO18
		· · · · · · · · · · · · · · · · · · ·		P8	Methylisobutyl Ketone	LT 4.90 0	ug/l	HHF018
				UM21	Methylisobutyl Ketone	LT 1.40 0	ug/l	ннјо10
				UH11	Malathion	LT 3.73 -1	ug/l	HHG018
				UM25	Malathion	LT 2.10 1	ug/l	HHH010
				SS12	Sodium	LT 2.79 2	ug/l	HICO18
				LL8	Nitrite, Nitrate - Non specific	1.05 2	ug/l	HHY018
				AAA8	1,4-Oxathiane	LT 2.38 0	ug/l	HHC018
				UM25	1,4-Oxathiane	LT 2.70 1	ug/l	HHH010
				S S12	Lead	LT 4.34 1	ug/l	HICO18
				KK8	Dichlorodiphenylethane	LT 5.40 -2	ug/l	HHD018
				UM25	Dichlorodiphenylethane	LT 1.40 1	ug/l	HHHO10
e				KK8	Dichlorodiphenyltrichloro-	LT 4.90 -2	ug/l	HHD018
			• • •		ethane	#		
	- -			UM25	Dichlorodiphenyltrichloro- ethane	LT 1.80 1	ug/l	ннно10
				UH11	Parathion	LT 6.47 -1	ug/l	HHG018
				UM25	Parathion	LT 3.70 1	ug/l	HHH010
				TTO9	Sulfate	LT 1.75 2	ug/l	HHZO18
• •.				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT 7.87 -1	ug/l	HHG018
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT 1.90 1	ug/l	ннн010
				UM21	1,1,2,2-Tetrachloroethane	LT 1.50 0	ug/l	HHJ010
			•	UM21	Tetrachloroethene	LT 1.00 0	ug/l	ННЈО10
				N8	Tetrachloroethene	LT 7.50 -1	ug/l	HHU018
				UM21	Trichloroethene	LT 1.00 0	ug/l	ннјо10

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
89271	SW36001FB	0	QCFB	N8	Trichloroethene		5.60 -1	ug/l	HHU018
OJZ/1	343000110	v	QCI D	UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	HHJ010
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	HHV018
				SS12	Zinc	LT	1.80 1	ug/1	HICO18
•		•							
89271	SW36001TB	o	QCTB	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	ННЈ011
		_		ИЗ	1.1.1-Trichloroethane	LT	7.60 -1	ug/1	HHU019
	•			UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	ннјо11
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	HHU019
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	ннјо11
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU019
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HHJ011
			•	нв	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU019
*				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	ннј011
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU019
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/1	HHJ011
			5	N8	1,2-Dichloroethane	LT	1.10 0	ug/1	HHU019
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	ННЈО11
-				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	HHJ011
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	ННЈО11
						-			
				UM21	m-Xylene	LT	1.00 0	ug/l	HHJ011
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV019
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	HHJ011
į	-			UM21	Acrylonitrile	LT	8.40 0	ug/l	HHJ011
	÷			KK8	Aldrin	LT	5.00 -2	ug/l	HHD019
			•						
				UM25	Aldrin	LT	1.30 1	ug/l	HHHO11
		•		00	ALKALINITY	LT	7.30 4	ug/l	HHW016
				AX8	Arsenic	LT	2.35 0	ug/l	HIBO19
				UH11	Atrazine	· ·LT	4.03 .0	ug/l	HHG019
				UM25	Atrazine	LT	5.90 0	ug/l	HHHO11
ı				. P8	Bicycloheptadiene	LT	5.90 0	ug/l	HHF019
i		•		UM21	Bromodichloromethane	LT	1.00 0	ug/l	ННЈ011
				AAA8	Benzothiazole	LT	5.00 0	ug/l	HHC019
		•		UM21	Vinyl Chloride	LT	1.20 1	ug/l	ННЈО11
					Chloroethane				ННЈ011
		.*		UM21 UM21		LT LT	8.00 0	ug/l ug/l	

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
			.,,,,,,						
			•		en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co			•	4.5
89271	SW36001TB	O	QCTB	UM21	Benzene	LT	1.00 () ug/l	ННЈО11
•	-		*	AV8	Benzene	LT	1.05) ug/l	HHV019
		•		SS12	Calcium	LT	1.05	2 ug/l	HICO19
				UM21	Trichlorofluoromethane	LT	1.00	ug/1	HHJ011
		•		UM21	Carbon Tetrachloride	LT	1.00) ug/l	HHJ011
				NB	Carbon Tetrachloride	LT	9.90	ug/l	HHU019
) .				SS12	Cadmium	LT	6.78		HICO19
_				UM21	Methylene Chloride	LT	1.00 0) ug/l	ННЈ011
				N8	Methylene Chloride	LT	7.40) ug/l	. HHU019
,				UM21	Bromomethane	LT	1.40 1	ug/l	ННЈ011
1				UM21	Chloromethane	ĹT	1.20) ug/l	HHJ011
				UM21	Bromoform	LT	1.10 1	ug/1	- ННЈО11
				UM21	Chloroform	LT	1.00 0		ННЈО11
				N8	Chloroform	LT	5.001	ug/l	HHU019
				TT09	Chloride	LT	2.78 2	2 ug/l	HHZ019
ı									
_				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD019
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/1	HHH011
}				UM21	Chlorobenzene	LT	1.00	ug/1	ННЈ011
				NB	Chlorobenzene	LT	8.20 -1	ug/l	HHU019
				KK8	Chlordane	LŢ	9.50 -2	ug/l	HHD019
			-						- ··-
				UM25	Chlordane	LT	3.70 1	ug/l	HHH011
1				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	ug/l	HHC019
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	HHH011
•				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC019
• •				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	HHHO11
				AAA6	p-Chlorophenylmethyl Sulfone	LT	7.46	ug/1	HHC019
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	HHH011
				\$\$12	Chromium	LT	1.68 1	ug/l	HICO19
				\$\$12	Copper	LT	1.88 1	ug/l	HICO19
-				TF20	Cyanide	LT	5.00 0	ug/l	HHX019
]				UM25	Dibromochloropropane	IΤ	1.20 1	ug/l	HHH011
J				AY8	Dibromochloropropane		1.95 -1		HHIO19
				UM21	Dibromochloromethane	LT	1.00		HHJ011
i				UM21	1,4-Dichlorobenzene	LT	2.00		HHJ011
				V1 14.1	ay i wawiiawi wwwiilagila		#++## %	~3/ A	THIWWAA

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

			-					
Sampling	Station	Sample S	ample					Sample
Date	Number	Depth (cm)	Type - Method	Analytical Parameters	Re	sults .	Units	Number

89271	SW36001TB	0	QCTB P8	Dicyclopentadiene	LT	5.00 O	ug/l	HHF019
_			UM25	Dicyclopentadiene	LT	5.50 O	ug/l	HHH011
			UH11	Vapona	LT	3.84 -1	ug/1	HHG019
•			UM25	Vapona	LT	8.50 O	ug/l	HHH011
			AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE019
		1	•	C				
			UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHHO11
			AAA8	Dithiane	LT	1.34 0	ug/l	HHC019
n * *		•	UM25	Dithiane	LT	3.30 0	ug/l	HHHO11
			KK8	Dieldrin	LT	5.00 -2	ug/l	HHD019
			UM25	Dieldrin	LT	2.60 1	ug/l	HHH011
			AAA8	Dimethyldisulfide	·LT	5.50 -1	ug/l	HHC019
			ATS	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE019
			UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	HHH011
•	-		кка	Endrin		5.00 -2	ug/l	HHD019
		•.	UM25	Endrin	LT	1.80 1	ug/l	ннно11
	·		## 1	·				••
1		e jagasi	UM21	Ethylbenzene	LT	1.00 0	ug/1	ННЈО11
			AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV019
		· 21	TT09	Fluoride	LT	1.53 2	ug/l	HHZ019
			CC8	Mercury	LT	1.00 -1	ug/l	HIAO19
			ккв	Isodrin	LT	5.10 -2	ug/l	HHD019
•			UH25	Isodrin	LŤ	7.80 0	ug/l	HHH011
			S S12	Potassium	LT	1.24 3	ug/l	HICO19
1			UM21	Toluene	LT	1.00 0	ug/l	HHJ011
			AV6	Toluene	LT	1.47 0	ug/l	HHV019
			UM21	Methylethyl Ketone	LT	1.00 1	ug/l	ННЈО11
			~~~	Manus maritum	1 7	1.35 2	ug/l	HICO19
			SS12 P6	Magnesium Methylisobutyl Ketone	LT LT	4.90 0	ug/l ug/l	HHF019
i			UM21	Methylisobutyl Ketone		1.40 0	ug/l	нн от э нн јот 1
			UH11	Malathion	LT	3.73 -1	ug/l	HHG019
•			UM25	Malathion		2.10 1	ug/l	HHH011
<b>-</b>			Vi I.a. w	t man wh VII do WII				11111022
			\$\$12	Sodium	LT	2.79 2	ug/l	HICO19
			LL8	Nitrite, Nitrate - Non specific	LT	1.00 1	ug/l	HHY <b>0</b> 19
			<b>AA</b> A8	1,4-Oxathiane		2.38 O	ug/l	HHC019
			UM25	1,4-Oxathiane	LT	2.70 1	ug/l	HHH011
•				•				

<b>.</b>	i i								
Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Туре	Method	Analytical Parameters	Re	sults	Units	Number
								<u></u>	
•									
89271	SW36001TB	Ó	QCTB	SS12	Lead	LT	4.34 1	ug/l	HICO19
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		KK8	Dichlorodiphenylethane	LT	-5.40 -2	ug/l	HHD019
		₹		UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	HHH011
•	, in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second			KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	HHD019
	***	42			ethane			F : 1	
•				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l-	HHH011
					ethane				
	4							***	
· · ·		n film film seem seem seem seem seem seem seem se		UH11	Parathion	LT	6.47 -1	ug/l	HHG019
				UM25	Parathion	LT	3.70 1	ug/l	HHH011
J		•		TT09	Sulfate	LT.	1.75 2	ug/l	HHZ019
	•			UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	ug/l	HHG019
					Vinyldiethyl Phosphates	*			
	1	100		UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	HHH011
_					Vinyldiethyl Phosphates				
-			- ring also						
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	HHJ011
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	HHJ011
<del>-</del>	9.			N8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU019
				UM21	Trichloroethene	LT	1.00 0	ug/l	HHJ011
				N8	Trichloroethene	ĻT	5.60 -1	ug/1	HHU019
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/1	ННЈО11
•			-	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV019
-	.0			SS12	Zinc	LT	1.80 1	ug/l	HICO19
									1,7

Summary of Analytical Results

								•	
Sampling	Station	Sample	Sample		Analytical Parameters	· · · · · · · · · · · · · · · · ·	esults	Units	Sample Number
Date	Number	Depth (cm)	Type ——	Method ———	Analytical Parameters				
89271	SW36001FB	0	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00	0 ug/1	HHJ010
				N8	1,1,1-Trichloroethane	LT	7.60 ~	-1 ug/1	HHU018
				UM21	1,1,2-Trichloroethane	LT	1.00	0 ug/1	HHJ010
				N8	1,1,2-Trichloroethane	LT	7.80 -	-1 ug/1	HHU018
				UM21	1,1-Dichloroethene	LT	1.00	0 ug/1	HHJ010
				N8	1,1-Dichloroethene	LT	1.70	0 ug/1	HHU018
_				UM21	1,1-Dichloroethane	· LT	1.00	0 ug/1	HHJ010
				N8	1,1-Dichloroethane	LT	7.30 -	·1 ug/1	HHU018
•				UM21	1,2-Dichloroethene	LT	5.00	0 ug/1	HHJ010
_				И8	1,2-Dichloroethene	LT	7.60 -	·1 ug/1	HHU018
				UM21	1,2-Dichloroethane	LT	1.00	0 ug/1	ННЈ010
				И8	1,2-Dichloroethane	LT		_	HHU018
				UM21	1,2-Dichloropropane	LT		0 ug/1	HHJ010
				UM21	1,3-Dichlorobenzene	LT		0 ug/1	HHJ010
				UM21	1,3-Dichloropropane	LT	4.80	0 ug/1	HHJ010
				UM21	m-Xylene	LT		0 ug/1	ННЈ010
-				AV8	m-Xylene	LT		-	HHV018
_				UM21	2-Chloroethylvinyl Ether	LT		-	HHJ010
				UM21	Acrylonitrile	LT			HHJ010
				KK8	Aldrin	LT	5.00 -	2 ug/1	HHD018
				UM25	Aldrin	LT		1 ug/1	HHH010
				00	ALKALINITY	LT		_	HHW015
				8XA	Arsenic		2.43	•	HIBO18
				UH11	Atrazine	LT		-	HHG018
				UM25	Atrazine	LT	5.90	0 ug/1	ННН010
				P8	Bicycloheptadiene	LT		0 ug/1	HHF018
				UM21	Bromodich1oromethane	LT	1.00	0 ug/1	HHJ010
				BAAA	Benzothiazole	LT		0 ug/1	HHC018
				UM21	Vinyl Chloride	LT		1 ug/1	HHJ010
				UM21	Chloroethane	ŁT	8.00	0 ug/1	HHJ010
				UM21	Benzene		1.00	_	HHJ010
				AV8	Benzene	LT		_	HHV018
				SS12	Calcium	LT		_	HICO18
				UM21	Trichlorofluoromethane	LT	1.00	0 ug/1	HHJ010

02/02/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
·	· · · · · · · · · · · · · · · · · · ·						·			
89271	SW36001FB	0	DTCH	UM21	Carbon Tetrachloride	LT	1.00	. 0	ug/1	HHJ010
002.1				N8	Carbon Tetrachloride	LT	9.90	-1	ug/1	HHU018
	•		:	SS12	Cadmium	LT	6.78		ug/1	HICO18
				UM21	Methylene Chloride		1.00		ug/1	HHJ010
				N8	Methylene Chloride		7.40		ug/1	HHU018
	•			110	1100119 10110 011101 120					
				UM21	Bromomethane	LT	1.40	4	ug/1	HHJ010
		•		UM21	Chloromethane	LT	1.20	0	ug/1	ННЈ010
***	·			UM21	Bromoform	LT	1,10		ug/1	HHJ010
				UM21	Chloroform	LT	1.00		ug/1	ннјо10
				N8	Chloroform		5.00		ug/1	HHU018
					0.1101 01 01 1.11			•	37.	
	•			TT09	Chloride	ĹT	2.78	2	ug/1	HHZ018
		- -		KK8	Hexachlorocyclopentadiene	LT	4.80		ug/1	HHD018
				UM25	Hexachlorocyclopentadiene	LT	5.40		ug/1	HHH010
				UM21	Chlorobenzene	LT	1.00		ug/1	HHJ010
				N8	Chlorobenzene	LT	8.20		ug/l	HHU018
				No	Cit for operizerie	<b>L</b> .	0.20		<b>49</b> / .	11110010
		•		KK8	Chlordane	IT.	9.50	-2	ug/1	HHD018
		• •		UM25	Chlordane		3.70		ug/1	ннно10
				AAA8	p-Chlorophenylmethyl Sulfide			0	ug/1	HHC018
				UM25	p-Chlorophenylmethyl Sulfide			1	ug/1	HHH010
				AAA8	p-Chlorophenylmethyl Sulfoxide		1.15	1	ug/1	HHC018
				ANAO	p-office options the city is dutility to			•		
				UM25	p-Chlorophenylmethyl Sulfoxide	LT .	1.50	1	ug/1	. ннно10
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46		ug/1	HHC018
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/1	HHH010
				SS12	Chromium	LT	1.68	1	ug/1	HICO18
				SS12	Copper	LT	1.88	1	ug/1	HICO18
				3312	ooppe:			•	<b>-</b> 3, .	,,_,,,
				TF20	Cyanide	LT	5.00	0	ug/1	HHX018
				UM25	Dibromochloropropane	LT	1.20	1	ug/1	HHH010
				AY8	Dibromochloropropane		1.95		ug/1	HHI018
				UM21	Dibromochloromethane	LT	1.00		ug/1	нн јо 10
				UM21	1,4-Dichlorobenzene		2.00		ug/1	HHJ010
				Vri2 I	ty a Digition obolization			-	-37 .	
	•			P8	Dicyclopentadiene	LT	5.00	0	ug/1	HHF018
				UM25	Dicyclopentadiene		5.50		ug/1	ннно10
				UH11	Vapona	LT	3.84		ug/1	HHG018

R. L. Stollar and Associates

Summary of Analytical Results

	Chation	Sample	Camp ¹ c		2000				Sample
Sampling Date	Station Number	Sample Depth (cm)	Sample .		Analytical Parameters	. Re	sults	Units	Number
									-
		. <del>-</del>		٠.		:			
89271	SW36001FB	0	DTCH	AT8	Diisopropylmethyl Phosphonate		3.92 -		HHE018
	•		the second	UM25	Diisopropylmethyl Phosphonate		2.10	. •	and the second second
				AAAB	Dithiane	LT	1.34		HHC018
				UM25	Dithiane	LT			ннно10
				KK8	Dieldrin	LT	5.00 -	2 ug/1	HHD018
									• .
				UM25	Dieldrin	LT.	2.60		ннно10
				SAAA.	Dimethyldisulfide	LT	5.50 -	ug/1	HHC018
				AT8	Dimethylmethyl Phosphate	LT	1.88 -	•	HHE018
				UM25	Dimethylmethyl Phosphate	LT	1.30		ннно10
				KK8	Endrin	LT	5.00 -2	2 ug/1	HHD018
				•					
				UM25	Endrin	LT	1.80	ug/1	HHH010
				UM21	Ethylbenzene	LT	1.00	ug/1	HHJ010
				AV8	Ethy1benzene	LT	1.37 (	) ug/1	HHV018
	energy energy			TT09	Fluoride	LT	1.53	2 ug/1	HHZ018
				CC8	Mercury	LT	1.00 -	ug/1	HIA018
				KK8	Isodrin	LT	5.10 -2	2 ug/1	HHD018
				UM25	Isodrin	LT	7.80	ug/1	HHH010
				SS12	Potassium	LT	1.24	ug/1	HICO18
	·			UM21	Toluene	LT	1.00	ug/1	HHJ010
				AV8	Toluene	LT	1.47	ug/1	HHV018
*		•							
	_			UM21	Methylethyl Ketone	LT	1.00	ug/1	HHJ010
		•		<b>S</b> S12	Magnesium	LT	1.35	ug/1	HICO18
				P8	Methylisobutyl Ketone	LT	4.90	ug/1	HHF018
				UM21	Methylisobutyl Ketone	LT	1.40	ug/1	HHJ010
				UH 1 1	Malathion	LT	3.73 -	ug/1	HHG018
				UM25	Malathion	LT	2.10	ug/1	<b>HHH010</b>
				<b>SS12</b>	Sodium	LT	2.79	2 ug/1	HICO18
				LL8	Nitrite, Nitrate - Non specific		1.05	ug/1	HHY018
				8AAA	1,4-Oxathiane	LT	2.38	ug/1	HHC018
				UM25	1,4-0xathiane	LT	2.70	ug/1	ннно10
				SS12	Lead	LT	4.34	ug/1	HICO18
				KK8	Dichlorodiphenylethane		5.40 -2	_	HHD018
				UM25	Dichlorodiphenylethane	LT	1.40	-	HHH010
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2		HHD018
				••••	ethane			3/ •	50.10

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89271	SW36001FB	0	DTCH	UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/1	ннно10
				UH 1 1	Parathion	LT	6.47 -1	ug/1	HHG018
				UM25	Parathion	LT	3.70 1	ug/1	HHH010
				TT09	Sulfate	LT	1.75 2	ug/1	HHZ018
	•			UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	ug/1	HHG018
				01111	Vinyldiethyl Phosphates			-3, .	
•			•	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/1	ннно10
	-			UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/1	HHJ010
				UM21	Tetrachloroethene		1.00 0	ug/1	HHJ010
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU018
				UM21	Trichloroethene	LT	1.00 0	ug/1	HHJ010
				N8	Trichloroethene	LT	5.60 -1	ug/l	HHU018
			•	UM21	Ortho- & Para-Xylene		2.00 0	ug/1	HHJ010
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	HHV018
				<b>S</b> S12	Zinc	LT	1.80 1	ug/1	HICO18
89271	SW36001TB	0	DTCH -	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/1	HHJ011
				N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	HHU019
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	HHJ011
	· · · ·	-		N8	1,1,2-Trichloroethane	LT .	7.80 -1	ug/1	HHU019
		· <del></del>		UM21	1,1-Dichloroethene	LT	1.00 0	ug/1	HHJ011
			. :	N8	1,1-Dichloroethene	LT	1.70 0	ug/1	HHU019
	:			UM21	1,1-Dichloroethane	· LT	1.00 0	ug/1	- HHJ011
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/1	HHU019
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/1	HHJ011
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU019
				UM21	1,2-Dichloroethane		1.00 0	ug/1	HHJ011
				N8 -	1,2-Dichloroethane	LT	1.10 0		HHU019
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/1	HHJ011
				UM21	1,3-Dichlorobenzene		1.00 0	ug/1	HHJ011
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/1	HHJ011
				UM21	m-Xylene	LT	1.00 0	ug/1	HHJ011
				AV8	m-Xylene	LT	1.32 0	ug/1	HHVO19

#### R. L. Stollar and Associates

## Comprehensive Monitoring Program

Summary of Analytical Results

			-								
Sampling	Station	Sample	Sample	•	ent utak kilotak (b. 1991). Buga kabanén dalah k						Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters		Re	sults		Units	Number
		(									
89271	SW36001TB	o	DTCH	UM21	2-Chloroethylvinyl Ether		LT	3.50	0	ug/1	HHJ01
				UM21	Acrylonitrile		LT	8.40	o	ug/1	HHJ01
				KK8	Aldrin		LT	5.00	-2	ug/1	HHD01
				UM25	Aldrin		LT	1.30	1	ug/1	ннно1
				00	ALKALINITY		LŤ	7.30	4	ug/1	HHW01
					r i v						
				AX8	Arsenic		LT	2.35	0	ug/1	HIB01
				UH11	Atrazine		LT	4.03	0	ug/1	HHG01
				UH25	Atrazine		LT	5.90	0	ug/1	ннно1
				P8	Bicycloheptadiene		LT	5.90	0	ug/1	HHF01
				UM21	Bromodichloromethane		LT	1.00	0	ug/1	HHJ01
										<u>.</u>	
				AAA8	Benzothiazole		LT	5.00	.0	ug/l	HHC01
				UM21	Vinyl Chloride		LT	1.20	1	ug/1	HHJ01
•				UM21	Chloroethane		LT	8.00	0	ug/1	HHJ01
				UM21	Benzene		- LT	1.00	0	ug/1	HHJ01
				AV8	Benzene		LT	1.05	0	ug/1	HHV01
					en en en en en en en en en en en en en e			•		-	
	• •			<b>SS12</b>	Calcium		LT	1.05	2	ug/1	HIC01
				UM21	Trichlorofluoromethane		LT	1.00	0	ug/1	HHJ01
				UM21	Carbon Tetrachloride		LT	1.00	0	ug/1	HHJ01
				N8	Carbon Tetrachloride	, j=:	LT	9.90	-1	ug/1	HHUO1
				<b>SS12</b>	Cadmium		LT	6.78	0	ug/1	HICO1
							5. 3			-	
				UM21	Methylene Chloride		LT	1.00	0	ug/1	HHJ01
				N8	Methylene Chloride		LT	7.40	٥.	ug/1	HHU01
•				UM21	Bromomethane		LT	1.40	1	ug/1	HHJ01
***				UM21	Chloromethane		LT	1.20	0	ug/1	HHJ01
				UM21	Bromoform		LT	1.10	1	ug/l	HHJ01
	*								_		
				UM21	Chloroform		LT		0	ug/1	HHJ01
				N8	Chloroform		LT	5.00		ug/1	HHU01
				TT09	Chloride		LT		2	ug/1	HHZ01
			** :- = "	KK8	Hexachlorocyclopentadiene		LT	4.80		ug/1 -	HHD01
				UM25	Hexachlorocyclopentadiene		LT	5.40	1	ug/1	HHH01
		:		15104	<b>A.3</b>					, <b></b>	
				UM21	Chlorobenzene			1.00		'ug/1	HHJ01
				N8	Chlorobenzene	-		8.20		ug/1	HHU01
				KK8	Chlordane		LT	9.50		ug/1	HHD01
				UN25	Chlordane		LT	3.70	1	ug/1	HHH01

#### R. L. Stollar and Associates

#### Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89271	SW36001TB	0	DTCH	8888	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	HHC019
03211	SW300011B		DION	UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	HHH011
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC019
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/1	HHH011
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/1	HHC019
								-0.	1,41
		grade and the second	'-	UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	HHH011
	^			<b>S</b> S12	Chromium	LT	1.68 1	ug/1	HICO19
		·		<b>S</b> S12	Copper	LT	- 1.88 1	ug/1	HICO19
				TF20	Cyanide	LT	5.00 0	ug/1	HHX019
				UM25	Dibromochloropropane	LT	1.20 1	ug/1	HHH011
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	HHIO19
				UM21	Dibromochloromethane	LT	1.00 0	ug/1	HHJ011
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/1	HHJ011
				P8	Dicyclopentadiene	LT	5.00 0	ug/1	HHF019
•				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	HHH011
	¥							-	
				UH11	Vapona	LT	3.84 -1	ug/1	HHG019
				UM25	Vapona	LT	8.50 0	. ug/1	HHH01
				8TA	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	HHE019
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	HHH01
				8AAA	Dithiane	LT	1.34 0	ug/1	HHC019
				UM25	Dithiane	LT	3.30 0	ug/1	HHH01:
				KK8	Dieldrin	LT	5.00 -2	ug/1	HHD019
				UM25	Dieldrin	LT	2.60 1	ug/1	HHH01
				AAAB	Dimethyldisulfide	LT	5.50 -1	ug/1	HHC019
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	HHE019
			•						
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	HHH01
				KK8	Endrin	LT	5.00 -2	ug/1	HHD01
				UM25	Endrin	LT	1.80 1	ug/1	HHHO11
				UH21	Ethylbenzene	LT	1.00 0	ug/1	HHJ011
				AV8	Ethylbenzene	LT	1.37 0	ug/1	HHV019
				TT09	Fluoride		1.53 2	ug/1	HHZ019
				CC8	Mercury		1.00 -1	_ug/1	HIAO19
				KKB	Isodrin	LT	5.10 -2	ug/1	HHD019
				UH25	Isodrin	LT	780 0	ug/1	HHH01

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample.	Method	Analytical Parameters	Results	Units	Sample Number
Date		Depth (Cil)		Herriod	Analytical randictors			
		÷						
89271	SW36001TB	· O	DTCH	SS12	Potassium	LT 1.24 3	ug/1	HICO19
		·		UM21	Toluene	LT 1.00 0	ug/1	HHJ011
		*	-	AV8	Toluene	LT 1.47 0	ug/1	HHV019
			•	UM21	Methylethyl Ketone	LT 1.00 1	ug/1	HHJ011
				<b>S</b> S12	Magnesium	LT 1.35 2	ug/1	HICO19
				P8 .	Methylisobutyl Ketone	LT 4.90 0	ug/1	HHF019
				UM21	<b>Methylisobutyl</b> Ketone	LT 1.40 0	ug/1	HHJ011
		•		UH 1 1	Malathion	LT 3.73 -1	ug/1	HHG019
				UM25	<b>Halathion</b>	LT 2.10 1	ug/1	HHH011
		•		8812	Sodium	LT 2.79 2	ug/1	HICO19
				L£8	Nitrite,Nitrate - Non specific	LT 1.00 1	ug/1	HHY019
				8AAA	1,4-0xathiane	LT 2.38 0	ug/1	HHC019
				UM25	1,4-0xathiane	LT 2.70 1	ug/1	HHH011
	and the second	m • • · · · · · · · · · · · · · · · · ·		<b>S</b> S12	Lead	LT 4.34 1	ug/1	HICO19
				KK8	Dichlorodiphenylethane	LT 5.40 -2	ug/1	HHD019
				UM25	Dichlorodiphenylethane	LT 1.40 1	ug/1	HHH011
				KK8	Dichlorodiphenyltrichloro-	LT 4.90 -2	ug/1	HHD019
	•				ethane			•
				UM25	Dichlorodiphenyltrichloro- ethane	LT 1.80 1	ug/1	ННН011
				UH11	Parathion	LT 6.47 -1	ug/1	HHG019
				UM25	Parathion	LT 3.70 1	ug/1	HHH011
•				TT09	Sulfate	LT 1.75 2	ug/1	HHZ019
	•			UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT 7.87 -1	ug/1	HHG019
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT 1.90 1	ug/1	<b>HHHO11</b>
					Vinyldiethyl Phosphates		_	
•				UM21	1,1,2,2-Tetrachloroethane	LT 1.50 0	ug/l	HHJ011
				UM21	Tetrachloroethene	LT 1.00 0	ug/1	HHJ011
				N8	Tetrachloroethene	LT 7.50 -1	ug/1	HHU019
				UM21	Trichloroethene	LT 1.00 0	ug/1	HHJ011
	•			N8	Trichloroethene	LT 5.60 -1	ug/l	HHU019
				UM21	Ortho- & Para-Xylene	LT 2.00 0	ug/1	HHJ011
				AV8	Ortho- & Para-Xylene	LT 1.36 0	ug/1	HHV019

R. L. Stollar and Associates

Comprehensive Monitoring Program

02/02/90

Summary of Analytical Results

							,			
Sampling	Station	Sample	Sample							Sample
Date	Number	Depth (cm)	Туре	Method	Analytical	Parameters		Resúlts	Units	Number
	<del></del>	·			-		-			
					**.		C			
89271	SW36001TB	0	DTCH	SS12	Zinc			LT 1.80 1	ug/1	HICO19

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89270	SW02006B	0.0	DTCH	ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	RHA009
				LL03	Benrothiarole		3.55 o	ug/g	RGA009
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA009
-				LL03	p-Chlorophenylmethyl Sulfoxide	LT		ug/g	RGA009
•		•		LL03	p-Chlorophenylmethyl Sulfone	LT		ug/g	RGA009
	-								
_				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA009
		•		TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD009
}				LL03	Dithiane	LT	1.47 0	ug/g	RGA009
	.•			LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA009
1				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD009
j				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	<b>RHA00</b> 9
•				LL03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA009
89270	SW02006B	0.5	DTCH	MK9	Aldrin		3.00 0	ug/g	QTIOO6
				AS9	Arsenic	LT	9.10 -1	ug/g	GMC008
•				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1008
				MK9	Chlordane	LT	1.38 -2	ug/g	QTIOOS
<del>-</del>	12			<b>QQ9</b>	Dibromochloropropane	- LT	5.00 -3	ug/g	GTC008
				MK9	Dieldrin	- *:	3.50 0	ug/g	QTI008
•	-			MK9	Endrin		2.90 -1	ug/g	QTIO08
_				AAA9	Fluoroscetic Acid	LT	2.00 0	ug/g	KRY011
				HG9	Mercury	***	4.90 0	ug/g	QUD006
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRY011
1					en en en en en en en en en en en en en e		•		
			-	MK9	Isodrin		6.00 -2	ug/g	QTIOO8
<del>-</del>		•		MK9	Dichlorodiphenylethane		6.20 -2	ug/g	QTIOO8
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QTIOO8
					ethane				
89269	SW08003B	0.5	STRM	MK9	Aldrin	LT	2.59 -3	ug/g	QT1006
				AS9	Arsenic	LT	9.10 -1	ug/g	QWC006
5				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	RHA006
				LL03	Benzothiarole	LT	1.06 0	ug/g	RGA006
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1006
	•			MK9	Chlordane	LT	1.38 -2	ug/g	QT1006

R. L. Stollar and Associates

Summary of Analytical Results

	•	•							
Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	esults	Units	Number
	SW06003B		CTDM	1107	a Chiarrahan Jameh J. Cristida	,	1.00.0	arm (m	RGA006
<del>89</del> 269	2M/SOO2D	0.5	STRM	FF03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA006
	40		•		p-Chlorophenylmethyl Sulfoxide	LT	2.37 0	ug/g	RGA006
•				rro2	p-Chlorophenylmethyl Sulfone	LT	5.00 -3	ug/g	GTC006
_				QQ9	Dibromochloropropane	LT		ug/g	
			•	ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA006
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD006
-		•		LL03	Dithiane	LT	1.47 0	ug/g	RGA006
				MK9	Dieldrin		3.20 -2	ug/g	QTIOO6
•				LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA006
		•	•	TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD006
ŀ									
				MK9	Endrin	LT	2.00 -3	ug/g	QT1006
				AAA9	Fluoroacetic Acid	LŤ	2.00 0	ug/g	KRY008
				HG9	Mercury	LT	2.70 -2	ug/g	QUD006
	•			AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRY008
•			ng sangan Pr	MK9	Isodrin	LT	1.69 -3	ug/g	QT1006
				ZZ9	Methylisobutyl Ketone	·LT	5.24 0	ug/g	RHA006
<del>.</del>				LL03	1.4-Oxathiane	LT	6.56 -1	ug/g	RGA006
<b>.</b>				MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1006
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QT1006
				1402	ethane	t- 1	2.20	43/3	4,200
							0.50.7		QT1007
89269	SM08003BD	0.5	STRM	MK9	Aldrin		2.59 -3	ug/g:	-
				AS9	Arsenic	LT	9.10 -1 5.08 0	ug/g ug/g	QWC007 RHA007
		• • •		ZZ9	Bicycloheptadiene	L. 1	3.37 0	ug/g	RGA007
				LL03	Benzothiazole	LIPS	3.74 -3		QTIO07
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	G11007
ı				MK9	Chlordane		1.36 -2	ug/g	QT1007
				LL03	p-Chlorophenylmethyl Sulfide		1.06 0	ug/g	RGA007
		-		LL03	p-Chlorophenylmethyl Sulfoxide		2.25 0	ug/g	RGA007
r				LL03	p-Chlorophenylmethyl Sulfone		2.37 0	ug/g	RGA007
				QQ9	Dibromochloropropane	LT	5.00 -3	ug/g	GTC007
•				ZZ9	Dicyclopentadiene	LT.	5.12 0	ug/g	RHAO07
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD007
J				LL03	Dithiane	LT	1.47 0	ug/g	RGA007

Summary of Analytical Results

J .									
Sampling Date	Station Number	Sample Depth (cm)	Sample. Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
Dave	number	Depth (Gil)	1720	1,6,0,00	relativities i at and ver a				101110-27
89269	CHECOOSOMS	0.5	STRM	MK9	Dieldrin		2.90 -2	ug/g	QT1007
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	- RGA007
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PL0007
				MK9	Endrin	LT	2.00 -3	ug/g	QT1007
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY009
				HG9	Mercury	LT	2.70 -2	ug/g	QUD007
				AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/g	KRY009
		÷			Acid				
				MK9	Isodrin	LT	1.69 -3	ug/g	QT1007
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	RHA007
			•	FF03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA007
				MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1007
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QT1007
					ethane			•	
89270	SW11001B	0.0	DTCH	MK9	Aldrin	LT	2.59 -3	ug/g	QT1009
				AS9	Arsenic	LT	9.10 -1	ug/g	QMC009
				ZZ9	Bicycloheptadiene	LT	5.06 0	ug/g	RHA008
				LL03	Benrothiarole	LT	1.06 0	ug/g	RGA006
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QTI009
				MK9	Chlordane	LT	1.36 -2	ug/g	QT1009
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA008
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/g	RGA008
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/g	RGA006
		· ·	•	QQ9	Dibromochloropropane	LT	5.00 -3	ug/g	GTC009
				<b>ZZ</b> 9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA006
				<b>TT9</b>	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD008
				LL03	Dithiane	LT	1.47 0	ug/g	RGA006
				MK9	Dieldrin	LT	1.93 -3	ug/g	QTI009
				LF03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA008
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD006
				MK9	Endrin	LT	2.00 -3	ug/g	QT1009
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY010
				HG9	Mercury	LT	2.70 -2	ug/g	QUD009
				AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/g	KRY010
					Acid				

R. L. Stollar and Associates

Summary of Analytical Results

Camalina	Ctation	Sample	Sample_				1		Sample
Sampling Date	Station Number	Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Number
89270	SW11001B	0.0	DTCH	MK9	Isodrin	LT	1.69 -3	ug/g	QT1009
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	RHA008
				LL03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA008
				MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1009
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QT1009
					ethane				
				3,4	gali makiji, kalendari				
		•						. •	
89269	SW12005B	0.2	DTCH	MK9	Aldrin	LT	2.59 -3	ug/g	QTI005
				AS9	Arsenic		1.23 0	ug/g	QWC005
	-			<b>ZZ9</b>	Bicycloheptadiene	LT	5. <b>0</b> 6 <b>0</b>	ug/g	RHA005
				LL03	<b>Benzothiazole</b>	LT	1.08 0	ug/g	RGA005
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1005
				MK9	Chlordane	LT.	1.38 -2	ug/g	QT1005
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA005
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/g	RGA005
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/g	RGA005
				QQ9	Dibromochloropropane	LT	5.00 -3	ug/g	GTC005
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA005
		4 4		TT9 -	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD005
				LL03	Dithiane	LT	1.47 0	ug/g	RGA005
				MK9	Dieldrin		6.94 -3	ug/g	QT1005
				LL03	Dimethyldisulfide	LT	6.92 -1	na/a	RGA005
				TT9	Dimethylmethyl Phosphate		5.34 -1	ug/g	PLD005
	-			MK9	Endrin	LT	2.00 -3	ug/g	QT1005
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY007
				HG9	Mercury	LT	2.70 -2	ug/g	QUD005
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRY007
				MK9	Isodrin	LT	1.69 -3	uġ/g	QT1005
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	RHA005
				LL03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA005
			-	MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1005
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QT1005
					ethane				

Summary of Analytical Results

Sampling	Station	Sample	Sample-			,			Sample
Date	Number	Depth (cm)	Туре	Method	Analytical Parameters	Re	sults	Units	Number
		·							
89271	SW36001B	0.0	DTCH	SV9	Aldrin		1.65 1	ug/g	QVM002
}				SV9	Atrazine	LT	1.86 0	ug/g	QVM002
				SV9	Hexachlorocyclopentadiene	LT	7.04 -1	ug/g	QVM002
				SV9	Chlordane		2.56 0	ug/g	QVM002
				SV9	p-Chlorophenylmethyl Sulfide	LT	2.66 -1	ug/g	QVM002
				SV9	p-Chlorophenylmethyl Sulfoxide	LT	1.11 0	ug/g	QVM002
				SV9	p-Chlorophenylmethyl Sulfone	LT	6.66 -1	ug/g	QVM002
			*	SV9	Dibromochloropropane	LT	3.63 -1	ug/g	QVM002
	•			SV9	Dicyclopentadiene	LT	4.50 -1	ug/g	QVM002
				SV9	Diisopropylmethyl Phosphonate	LT	2.66 -1	. ug/g	QVM002
				SV9	Dithiane	LT:	8.89 -1	ug/g	QVM002
			•	<b>SV9</b>	Dieldrin	-	2.36 1	ug/g	QVM002
				<b>SV</b> 9	Endrin	LT	2.66 -1	ug/g	QVM002
				<b>SV9</b>	Isodrin		4.80 -1	ug/g	QVM002
			. 5	SV9	Malathion	LT	8.84 -1	ug/g	QVM002
				SV9	1,4-Oxathiane	LT	1.21 0	ug/g	QVM002
				SV9	Dichlorodiphenylethane	LT	5.13 -1	ug/g	QVMO02
•				SV9	Dichlorodiphenyltrichloro-		2.22 0	ug/g	QVM002
					ethane				
				SV9	Parathion		5.43 -1	ug/g	QVM002
			-	SV9	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.72 -1	ug/g	QVM002
			•		Vinyldiethyl Phosphates			•	
				MK9	Aldrin		3.70 1	ug/g	QTIO10
89271	SW36001B	0.2	DTCH	AS9	Arsenic		1.90 1	ug/g	. QWC010
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	RHA010
				LL03	Benzothiarole	LT	1.08 0	ug/g	RGA010
			•	MK9	Hexachlorocyclopentadiene	ND	3.74 -3.		QTIO10
				MK9	Chlordane	LŤ	1.38 -2	ug/g	QTIO10
				1107	A.Chlorophonylmothyl Sulfide	` 1 T	1.08 0.	ug/g	RGA010
		•		FF03	p-Chlorophenylmethyl Sulfide				RGA010
				LL03	p-Chlorophenylmethyl Sulfoxide		2.25 0	ug/g	
				FF03	p-Chlorophenylmethyl Sulfone		2.37 0	ug/g	RGA010
ı				009	Dibromochloropropane		5.00 -3	ug/g	GTC010
				<b>ZZ</b> 9	Dicyclopentadiene	L. I	5.12 0	ug/g	RHA010

03/23/90

Summary of Analytical Results

Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Туре	Method	Analytical Parameters	Re	sults	Units	Number
						<u>.</u>			
89271	SW36001B	0.2	DTCH	TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD010
				LL03	Dithiane	LT	1.47 0	ug/g	. RGA010
		٠		MK9	Dieldrin		1.80 1	ug/g	QTI010
4				LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA010
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD010
				MK9	Endrin		1.60 1	ug/g	QTI010
į.				<b>AA</b> A9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY012
				HG9	Mercury		5.70 -1	ug/g	QUD010
	· · · · · · · · · · · · · · · · · · ·			AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRY012
				MK9	Isodrin		3.30 0	ug/g	QTI010
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	RHA010
				LL03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA010
				MK9	Dichlorodiphenylethane		4.90 -1	ug/g	QTI010
				MK9	Dichlorodiphenyltrichloro- ethane	LT	2.25 -3	ug/g	QTI010

APPENDIX B-5

Ion Balance Calculations

SITE/DATE: SW01005 18-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	44.40	2.22	42.52
MG	13.50	1.12	21.37
K	3.50	0.09	1.71
NA	41.30	1.80	34.39
CATION TOTAL		5.22	100.00
SO4	71.00	1.48	22.45
$\mathtt{CL}$	33.00	0.93	14.15
NO3 MG/L-N	0.06	0.00	0.07
FL	1.00	0.05	0.80
HCO3	226.92	3.72	56.46
CO3	12.00	0.40	6.07
ANION TOTAL		6.59	100.00

CHARGE-BALANCE ERROR (%) : 11.58 pH : 8.13

## ION BALANCE CALCULATIONS

SITE/DATE: SW02003 18-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	43.50	2.18	32.88
MG	18.80	1.55	23.49
K	2.50	0.06	0.97
NA	64.90	2.82	42.66
CATION TOTAL		6.61	100.00
SO4	93.00	1.94	31.12
CL	46.00	1.30	20.87
NO3 MG/L-N	0.07	0.01	0.08
FL	1.20	0.06	1.01
HCO3	156.65	2.57	41.25
CO3	10.56	0.35	5.65
ANION TOTAL		6.23	100.00

CHARGE-BALANCE ERROR (%) : -3.03 pH : 8.73

SITE/DATE : SW02004 19-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	40.30	2.01	29.82
MG	15.10	1.25	18.47
K	3.38	0.09	1.28
NA	78.40	3.41	50.44
CATION TOTAL		6.76	100.00
SO4	76.00	1.58	23.06
$\mathtt{CL}$	60.00	1.69	24.69
NO3 MG/L-N	0.07	0.01	0.07
FL	1.18	0.06	0.90
HCO3	143.96	2.36	34.38
CO3	34.80	1.16	16.90
ANION TOTAL		6.87	100.00

CHARGE-BALANCE ERROR (%) : 0.79 pH : 8.78

## ION BALANCE CALCULATIONS

SITE/DATE: SW02006 27-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	34.00	1.70	28.58
MG	14.80	1.22	20.56
K	2.35 .	0.06	1.01
NA	68.20	2.97	49.85
CATION TOTAL		5.95	100.00
SO4	89.00	1.85	31.60
CL	48.00	1.36	23.11
NO3 MG/L-N	0.17	0.01	0.21
FL	1.23	0.06	1.10
HCO3	118.34	1.94	33.07
CO3	19.20	0.64	10.91
ANION TOTAL		5.87	100.00

CHARGE-BALANCE ERROR (%) : -0.69 pH : 8.74

SITE/DATE : SW07001 27-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	44.30	2.22	35.10
MG	12.10	1.00	15.85
K	7.98	0.20	3.23
NA	66.50	2.89	45.82
CATION TOTAL		6.31	100.00
SO4	68.00	1.42	22.72
CL	53.00	1.50	24.01
NO3 MG/L-N	3.30	0.24	3.78
FL	1.63	0.09	1.38
HCO3	183.00	3.00	48.11
CO3	0.00	0.00	0.00
ANION TOTAL		6.24	100.00

CHARGE-BALANCE ERROR (%) : -0.60 pH : 8.09

# ION BALANCE CALCULATIONS

SITE/DATE : SW08001 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	80.10	4.01	50.22
MG	17.30	1.43	17.93
K	3.78	. 0.10	1.21
NA	56.20	2.44	30.64
CATION TOTAL	•	7.97	100.00
SO4	90.00	1.88	22.84
$\mathtt{CL}$	32.00	0.90	11.01
NO3 MG/L-N	0.10	0.01	0.09
FL	1.22	0.06	0.78
HCO3	290.36	4.76	57.98
CO3	18.00	0.60	7.31
ANION TOTAL		8.21	100.00

CHARGE-BALANCE ERROR (%) : 1.45 pH : 8.74

SITE/DATE: SW08003 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	88.90	4.45	50.59
MG	18.80	1.55	17.68
K	3.78	0.10	1.10
NA	61.90	2.69	30.63
CATION TOTAL		8.79	100.00
SO4	94.00	1.96	22.42
CL	33.00	0.93	10.67
NO3 MG/L-N	0.28	0.02	0.23
FL	1.20	0.06	0.72
HCO3	351.36	5.76	65.95
CO3	0.00	0.00	0.00
ANION TOTAL		8.73	100.00

CHARGE-BALANCE ERROR (%) : -0.30 pH : 8.21

## ION BALANCE CALCULATIONS

SITE/DATE: SW11002 26-Apr-89

SPECIES	MG/L		MEQ/L	% TOTAL MEQ/L
CA	23.70		1.19	47.48
MG	3.73		0.31	12.35
K	4.52		0.12	4.63
NA	20.40	-	0.89	35.54
CATION TOTAL			2.50	100.00
SO4	31.00		0.65	27.98
CL	17.00		0.48	20.80
NO3 MG/L-N	0.05		0.00	0.15
FL	0.74		0.04	1.69
HCO3	28.06		0.46	19.93
CO3	20.40		0.68	29.4 <i>6</i>
ANION TOTAL			2.31	100.00

CHARGE-BALANCE ERROR (%) : -3.90 pH : 9.96

SITE/DATE : SW11003 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	18.40	0.92	13.46
MG	1.71	0.14	2.07
K	4.81	0.12	1.80
NA	130.00	5.65	82.68
CATION TOTAL	1	6.84	100.00
S04	27.00	0.56	10.15
CL	140.00	3.95	71.33
NO3 MG/L-N	0.30	0.02	0.39
FL	0.87	0.05	0.83
HCO3	14.64	0.24	4.33
CO3	21.60	0.72	12.99
ANION TOTAL		5.54	100.00

CHARGE-BALANCE ERROR (%) : -10.44 pH : 9.95

# ION BALANCE CALCULATIONS

SITE/DATE : SW12001 20-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	75.80	3.79	41.78
MG	22.70	1.88	20.68
K	2.95 .	0.08	0.83
NA	76.60	3.33	36.71
CATION TOTAL	ı	9.07	100.00
S04	110.00	2.29	27.70
CL	36.00	1.02	12.29
NO3 MG/L-N	3.50	0.25	3.02
FL	1.40	0.07	0.89
HCO3	283.04	4.64	56.09
CO3	0.00	0.00	0.00
ANION TOTAL		8.27	100.00

CHARGE-BALANCE ERROR (%) : -4.61 pH : 8.19

SITE/DATE: SW12003 20-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	110.00	5.50	39.00
MG	42.50	3.51	24.91
K	12.00	0.31	2.18
NA	110.00	4.78	33.91
CATION TOTAL		14.10	100.00
SO4	240.00	5.00	36.92
CL	80.00	2.26	16.68
NO3 MG/L-N	0.39	0.03	0.21
FL	1.84	0.10	0.71
HCO3	375.76	6.16	45.48
CO3	0.00	0.00	0.00
ANION TOTAL		13.54	100.00

CHARGE-BALANCE ERROR (%) : -2.02 pH : 7.50

## ION BALANCE CALCULATIONS

SITE/DATE : SW12004 19-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L	
CA	30.50	1.53	50.04	
MG	5.23	0.43	14.18	
K	10.00 ,	0.26	8.39	
NA	19.20	0.83	27.39	
CATION TOTAL		3.05	100.00	
S04	36.00	0.75	26.63	
CL	15.00	0.42	15.05	
NO3 MG/L-N	0.38	0.03	0.9 $\epsilon$	
FL	1.81	0.10	3.38	
HCO3	92.72	1.52	53.97	
CO3	0.00	0.00	0.00	
ANION TOTAL		2.82	100.00	

CHARGE-BALANCE ERROR (%) : -3.95 pH : 7.16

SITE/DATE : SW12005 17-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	65.60	3.28	39.92
MG	21.20	1.75	21.32
K	3.31	0.08	1.03
NA	71.30	3.10	37.73
CATION TOTAL		8.22	100.00
S04	110.00	2.29	27.73
CL	36.00	1.02	12.30
NO3 MG/L-N	3.00	0.21	2.59
FL	1.42	0.07	0.90
HCO3	247.42	4.06	49.07
CO3	18.36	0.61	7.40
ANION TOTAL		8.27	100.00

CHARGE-BALANCE ERROR (%) : 0.30 pH : 8.90

## ION BALANCE CALCULATIONS

SITE/DATE: SW24002 21-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	89.30	4.47	36.58
MG	29.30	2.42	19.84
K	3.94 .	0.10	0.83
NA	120.00	5.22	42.75
CATION TOTAL		12.20	100.00
SO4	230.00	4.79	37.97
CL	54.00	1.53	12.09
NO3 MG/L-N	0.09	0.01	0.05
FL	1.63	0.09	0.68
HCO3	352.00	5.77	45.73
CO3	13.20	0.44	3.49
ANION TOTAL		12.62	100.00

CHARGE-BALANCE ERROR (%) : 1.67 pH : 8.60

SITE/DATE : SW24003 21-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	110.00	5.50	25.34
MG	63.50	5.25	24.18
K	3.26	0.08	0.38
NA	250.00	10.87	50.09
CATION TOTAL		21.70	100.00
SO4	450.00	9.38	52.04
CL	240.00	6.78	37.63
NO3 MG/L-N	0.24	0.02	0.10
FL	2.37	0.12	0.69
HCO3	73.20	1.20	6.66
CO3	15.60	0.52	2.89
ANION TOTAL		18.02	100.00

CHARGE-BALANCE ERROR (%) : -9.28 pH : 8.45

#### ION BALANCE CALCULATIONS

SITE/DATE: SW24004 24-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	89.10	4.46	34.91
MG	30.90	2.55	20.01
K	4.00	. 0.10	0.80
NA	130.00	5.65	44.28
CATION TOTAL		12.76	100.00
S04	240.00	5.00	51.88
CL	55.00	1.55	16.12
NO3 MG/L-N	0.08	0.01	0.0€
FL	1.50	30.0	0.82
HCO3	183.00	3.00	31.13
CO3	0.00	0.00	0.00
ANION TOTAL		9.64	100.00

CHARGE-BALANCE ERROR (%) : -13.95

pH : 5.96

SITE/DATE : SW31001 24-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	58.10	2.91	30.44
MG	27.90	2.31	24.16
K	3.78	0.10	1.01
NA	97.40	4.23	44.38
CATION TOTAL		9.54	100.00
SO4	130.00	2.71	27.91
CL	44.00	1.24	12.81
NO3 MG/L-N	5.20	0.37	3.83
FL	1.95	0.10	1.0€
HCO3	312.32	5.12	52.75
CO3	4.80	0.16	1.65
ANION TOTAL		9.71	100.00

CHARGE-BALANCE ERROR (%) : 0.85 pH : 8.68

## ION BALANCE CALCULATIONS

SITE/DATE: SW31002 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	83.70	4.19	41.04
MG	23.90	1.98	19.37
K	4.37	0.11	1.10
NA	90.30	3.93	38.50
CATION TOTAL		10.20	100.00
			e tua
SO4	150.00	3.13	29.91
CL	44.00	1.24	11.90
NO3 MG/L-N	0.08	0.01	0.0E
FL	1.39	0.07	0.79
HCO3	366.00	6.00	57.43
CO3	0.00	0.00	0.05
ANION TOTAL		10.45	100.69

CHARGE-BALANCE ERROR (%) : 1.20 pH : 8.18

SITE/DATE: SW36001 28-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	66.60	3.33	28.69
MG	25.50	2.11	18.16
K	3.21	0.08	0.71
NA	140.00	6.09	52.44
CATION TOTAL		11.61	100.00
S04	56.00	1.17	9.89
CL	110.00	3.11	26.34
NO3 MG/L-N	0.06	0.00	0.04
FL	2.22	0.12	0.99
HCO3	451.40	7.40	62.74
CO3	0.00	0.00	0.00
ANION TOTAL		11.80	100.00

CHARGE-BALANCE ERROR (%) : 0.81 pH : 7.79

#### ION BALANCE CALCULATIONS

SITE/DATE: SW37001 20-Apr-89

		**	
SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA MG K NA	90.40 41.70 4.66 210.00	4.52 3.45 0.12 9.13	26.25 20.02 0.69 53.03
CATION TOTAL	210.00	17.22	100.00
SO4 CL NO3 MG/L-N FL HCO3 CO3 ANION TOTAL	320.00 130.00 0.01 2.05 256.20 19.20	6.67 3.67 0.00 0.11 4.20 0.64 15.29	43.61 24.02 0.00 0.71 27.47 4.19 100.00

CHARGE-BALANCE ERROR (%): -5.93 pH: 8.72

SITE/DATE: GW Well 01047 - Spring 1989

MG/L	MEQ	/L	% TOTAL MEQ/L
96.20	4	81	21.64
25.50	2.	.11	9.48
3.68	0,	.09	0.42
350.00	15.	. 22	68.46
	22.	. 23	100.00
450.00	9.	.38	47.79
220.00	6.	.21	31.68
5.70	0.	.41	2.08
2.09	0.	.11	0.56
214.00	3.	.51	17.89
0.00	0.	.00	0.00
	19.	62	100.00
	96.20 25.50 3.68 350.00 450.00 220.00 5.70 2.09 214.00	96.20 4. 25.50 2. 3.68 0. 350.00 15. 22.  450.00 9. 220.00 6. 5.70 0. 2.09 0. 214.00 3. 0.00 0.	96.20 4.81 25.50 2.11 3.68 0.09 350.00 15.22 22.23 450.00 9.38 220.00 6.21 5.70 0.41 2.09 0.11 214.00 3.51

CHARGE-BALANCE ERROR (%) : -6.25 Ph : 7.30

### ION BALANCE CALCULATIONS

SITE/DATE: GW Well 01073 - Spring 1989

SPECIES	MG/L	. MEQ/L	% TOTAL MEQ/L
CA	47.90	2.40	25.04
MG	17.70	1.46	15.29
K	2.16	0.06	0.58
NA	130.00	5.65	59.09
CATION TOTAL		9.57	100.00
S04	98.00	2.04	19.27
CL	64.00	1.81	17.67
NO3 MG/L-N	0.39	0.03	0.25
FL	3.01	0.16	1.50
HCO3	400.00	6.56	61.90
CO3	0.00	0.00	0.60
ANION TOTAL		10.59	100.00

CHARGE-BALANCE ERROR (%) : 5.10 Ph : 7.49

SITE/DATE: GW Well 01074 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	58.00	2.90	39.23
MG	17.20	1.42	19.23
K	2.92	0.07	1.01
NA	68.90	3.00	40.53
CATION TOTAL		7.39	100.00
SO4	77.00	1.60	20.35
CL	32.00	0.90	11.47
NO3 MG/L-N	0.63	0.05	0.57
FL	`1.00	0.05	0.6€
HCO3	322.00	5.28	66.95
CO3	0.00	0.00	0.00
ANION TOTAL		7.88	100.00

CHARGE-BALANCE ERROR (%) : 3.22 Ph : 7.53

#### ION BALANCE CALCULATIONS

SITE/DATE: GW Well 02034 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MED/I	
CA	84.30	4.22	31.88	
MG	18.70	1.55	11.63	
K	2.65	0.07	0.51	
NA	170.00	7.39	55.91	
CATION TOTAL		13.22	100.00	
SO4	160.00	3.33	19.61	
CL	90.00	2.54	14.9 <i>5</i>	
NO3 MG/L-N	17.00	1.21	7.14	
FL	1.99	0.10	0.62	
HCO3	598.00	9.26	57.67	
CO3	0.00	0.06	0.00	
ANION TOTAL		17.00	100.00	

CHARGE-BALANCE ERROR (%) : 12.50 Ph: 7.42

ION BALANCE CALCULATIONS

SITE/DATE: GW Well 02055 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	126.00	6.30	45.37
MG	22.40	1.85	13.33
K	3.24	0.08	0.60
NA	130.00	5.65	40.70
CATION TOTAL		13.89	100.00
S04	230.00	4.79	30.71
CL	140.00	3.95	25.35
NO3 MG/L-N	>0.01	0.00	0.00
FL	.1.32	0.07	0.45
HCO3	414.00	6.79	43.50
CO3	0.00	0.00	0.00
ANION TOTAL		15.60	100.00

CHARGE-BALANCE ERROR (%) : 5.82 Ph : 7.51

### ION BALANCE CALCULATIONS

SITE/DATE : GW Well 02056 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MED/L	
CA	130.00	6.50	45.10	
MG	26.70	2.21	15.31	
K	2.04	0.05	0.3€	
NA	130.00	5.65	39.22	
CATION TOTAL		14.41	100.00	
SO4	160.00	3.33	21.75	
CL	60.00	1.69	11.6€	
NO3 MG/L-N	23.00	1.64	10.72	
FL	1.54	0.08	0.53	
HCO3	523.00	8.57	55.94	
CO3	0.00	0.00	0.06	
ANION TOTAL		15.33	100.00	

CHARGE-BALANCE ERROR (%) : Ph : 3.08

7.62

SITE/DATE: GW Well 02059 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L		
CA	66.80	3.34	49.94		
MG	16.40	1.36	20.27		
K	1.76	0.05	0.67		
NA	44.80	1.95	29.12		
CATION TOTAL		6.69	100.00		
S04	76.00	1.58	13.83		
CL	47.00	1.33	11.60		
NO3 MG/L-N	>0.01	0.00	0.01		
FL	1.81	0.10	0.83		
HCO3	515.00	8.44	73.74		
CO3	0.00	0.00	0.00		
ANION TOTAL		11.45	100.00		

CHARGE-BALANCE ERROR (%) : 26.25 Ph : 7.60

### ION BALANCE CALCULATIONS

SITE/DATE : GW Well 02060 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	44.70	2.24	19.88
MG	3.32	0.27	2.44
K	1.44	0.04	0.33
NA	200.00	8.70	77.35
CATION TOTAL	,	11.24	100.06
SO4	96.00	2.00	23.22
CL	21.00	0.59	6.89
NO3 MG/L-N	0.14	0.01	0.11
FL	1.10	0.06	0.67
HCO3	363.00	5.95	69.16
CO3	0.00	0.00	0.00
ANION TOTAL		8.61	100.06

CHARGE-BALANCE ERROR (%) : -13.25

Ph: 7.81

SITE/DATE: GW Well 24188 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	400.00	20.00	33.13
MG	140.00	11.57	19.16
Κ .	4.35	0.11	0.18
NA	660.00	28.70	47.53
CATION TOTAL		60.38	100.00
S04	2000.00	41.67	71.23
CL	250.00	7.06	12.07
NO3 MG/L-N	0.28	0.02	0.03
FL	3.90	0.21	0.35
HCO3	582.00	9.54	16.31
CO3	0.00	0.00	0.06
ANION TOTAL		58.50	100.00
		<b></b>	

CHARGE-BALANCE ERROR (%) : -1.58 Ph : 7.36

ION BALANCE CALCULATIONS

SITE/DATE: GW Well 31016 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEDIA		
CA	96.10	4.81	31.75		
MG	34.30	2.83	18.73		
K	4.11	0.11	0.63		
NA	170.00	7.39	48.83		
CATION TOTAL		15.14	100.00		
SO4	230.00	4.79	38.84		
CL	74.00	2.09	16.95		
NO3 MG/L-N	>0.01	0.00	0.01		
FL	2.07	0.11	38.0		
HCO3	326.00	5.34	43.32		
CO3	0.00	0.00	0.00		
ANION TOTAL		12.34	100.00		

CHARGE-BALANCE ERROR (%) : -10.19

Ph: 7.58

APPENDIX B-6

Water Quality Field Data

COMPREHENSIVE MON	NTORING PROJECT/ROCKS SAMPLING FIELD DAT	MOUNTAIN ARSEN	N_	Paga	1 01
Sie O Number	Hydrogeologist(s)	Sample Numbers (range	ool .	Date	
SW01001	KH JK LB	K2496-K K2698-K	2529	89117	4/27/89
Analytical Equipment	Meter Calibration	Tons	Discharge (CFS)	Mo	asurement #
pH Motor: 5/4 Beckman phi 21	pH 700 = 7.06 at pH 1000 = 10.11 at	7.5 c 1206	NA NO	POSSIBLE	NA
☐ Omega pHH6SA ☐ Orion SA2SO	pH 10.00 = 10 . 1 . 1	92-12:101	Equipment Used	S	erial No.
Other	Conductance Standard: 100	^	Ī		0 ( )
Serial No. <u>OHI5035</u>	Meesured Value: G-10 umtos/om	Time	Long-THRON Staff Gauge Reading	HED FLVME _	NA_
Conductivity Mater: 50 YSI Model 33	1		San Gable readily	,1	
Other	Calibrated Conductivity Measured (measured conductance) (25°C - Act	Conductance + (0.02 ual Templ): _Time		0.04	
Serial No. 15596	(mossured conductance) (25°C - Act	zeh 89118**** zsc 1200	Sampling Method	Sample Type	
Dissolved Oxygen Meter:  U YSI Model 518	pen orn+	time			4.4
G (34 NOOS 516	Dissolved Oxygen Mg/	at NA +c NA	GRAB	STR	IVI
Serial No.			Conductivity / TEM	ip'	
Temperature Meter:	Titration Results (Acid Concentration:	□ 0.16, pg. 1.6)		_	
① Other	рн 8.3 4.8	4.5 (7.0)	410	11.5°C	umhos/cm
Serial No. <u>045035</u>	#Clicks 10 110	174 63	PH TEMP (	Ossolved O, /TEMP	
Fitration Equipment:  Secretary Parastatic Pump	1.	<del>                                     </del>	Tank and	NA	
Geotech 0.45 micron ther	com war pinc	pink green	904 10.0	01	mg/liter
Sample Location Description	*		-ttt		
WATER SAMPLE	D IN NOTCH	OF WEIR; SE	DIMENT SA	MPLED I FT	- UPSTREAM
Appearance of Stream or Lake			F WER		
LOW FLOW	, FREE OF	DEBRIS			
Appearance of Sample				7771	
LT BROW	$\sim$				
Condition of Station					
6000 BU	T STEVENS	TYPE E METER	2 INDPERA	BIE	
i	,				
(D)1-D 450F	12:10 of 89121 12:10 of (210	INDS 0-S	MPH RA	IN (SNOW	
THREATENS	12111 OF 89121	v			
Previous Precipitation	12.10 [210	HAIL BEB	INS		
LT RAIN + HA	IL DURING SAME	CING; NOTHIN	6 FUR 2	DAYL PRE	VIOUS
<u></u>	\$	,		, 0 . 1 / 1 . 2	
Resulented  FF  MS  MENT	NA NA	Rema	arks:		
			PRIP BLAN	K DONE	
18 L W 2	BUMIK X/MS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		c out
	1		LUME WOOL	D NOT WORK	0/0
TARGET GC/MS SEDIMENT	W W		THIS LO	OE TAKEN	NO
3 FON 1			DIJCHAR ler Signature:	GE TAKEN	
ANALYSIS XXX TARG XX SEOU		1 1   Samp	IM 9 Ch	There -	
FOPM130	77	1 1 1 1 1	IM CA	WWWY	

			Page of
Hydrogeologist(s)		)	Oate
TG, SEG	14097- L	4113	89269
Meter Calibration	Tene	Osdares (CFS)	Measurement #
p170 = 201 = 30.5	€ 1128	111112000	See Acrond NIA
PH 1000 = 10.06 = 20.5	8 ·c 1127	Equipment Used	Serial No.
Conductance Standard: 1434	21.6		
1	tare		KOATEO FLUNE NA
	,	our cury. Tearly	
(measured conductance) (2545 - Actual Terry	P)): Timo	.19 @	1127   Sarrole Type   07-89006
	1/29 Time		1
\$		GRAB	STRM
		Conductivity / TEM	PHIME
		• •	
pH 8.3 4.8 4	4.5 (7.0)	470 / 16.5	C/1152 umhos/cm
#Circles			
coix / / A		8.46 Bolis	NA morticer
	4 FROM CONTE	C of Citics 3	DANDY Parent
CCHIC			
ÖK.	·		
PARTLY GOUDY 15750F			
	Remark	421	
	Hydrogeologiss(s)  TG, SEG  Hother Calibration  pH 700 = 701 x 20.5  pH 1000 = 10.06 x 20.5  Cordicance Standard: 1434  Hoccard Value: 180 untroven x 2  Calibrated Conductivity: Measured Conductivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardictivity and Cardic	Motor Calibration  pt 700 = 701 = 20.5 = 1128  Time  pt 1000 = D.D6 = 20.8 = 1127  Corductance Standard: 1434 univoxon at 250  Time  thecaused Value: 1800 univoxon at 23.5 = 0 1129  Calibrated Conductivity = Massured Conductance + 1002  (massured conductance) per - Act Tempo)): Time  1/35 univoxon at 250 1/29  Time  Dissolved Organ NA most at NA = NA  Trasion Results (Acid Concentration: 00.16. 01.6)  ph 8.3 4.8 4.5 (7.0)  #Cicks  Colox NA  BROWN THE WEIR  VERY NAPHOLO GRASSES GRASSING FROM CONTE	AMPLING FIELD DATA SHEET  Hydrogoodogis(s)  Survice Numbers (ange)  TG, SEG

COMPREHENSIVE MON	ITORING PROJE	CT/ROCKY MO	OUNTAIN ARSEN	<b>N</b>		
SURFACE-WATER S	SAMPLING FIE	LD DATA SI	HEET			Page/ of/_
Sie O Number 3rd Pord	Hydrogeologist(s) /	il alland	Sample Numbers (range of 19501 - H	9500 9500	Date	125
Analytical Equipment		rea berg	1 772 7 70		87	/38
pH Motor:	Motor Calibration	CT TIE	Time	Discharge (CFS)		Measurement #
Beckman phi 21	pH 7.00 = 7 i	a <u>14.5</u>	-c 0904	N	4	
☐ Omega pH16SA	4-0	211.	time			
☐ Orion SA2S0	pH 10.00 = 10.0	32 a 24.6	1 ·c 0904	Equipment Used		Serial No.
Serial No. 0/44 748	Conductance Standar	d: 1000	unhos/on at 25°C	NI	4	NA
Conductivity Motor:  (1) YSI Model 33	Moasurod Value: 86	30 untos/on at 2	20 ·c 0905	Staff Gauge Reading		
C) Other	(measured conductang	= Measured Conduct  e) (25°C - Actual Term	ujj. ~		NA	
Serial No. #8016755	968 \$80 M	gailf umhos/on at 25°C	0906	Sampling Method	Sample	Туре
Dissolved Oxygen Meler:    YSI Model 518			Time			0
Serial No.	Dissalved Oxygen	NA mod as _		GRAB	1 '	OND
Temperature Meter:	Tiration Results (Acid	Concentration: 0	).16, [] 1.6)	Conductivity / TEM		,
Other	pH <b>8.3</b>	4.8	4.5 (7.0)	450	/14.5/	0914 umhos/cm
Serial No. 15 above Figuration Equipment:	#Clicks	145	Mes	PH TEMP (	Assolved O, /TE	mp /TIME
2 Geotech Parastatic Pump		lieut		9,05 13.3	NA	
2 Geotech 0.45 micron ther	Color	light f			•	mg/liter
Sample Location Description 5,000 WW Worn or of metal 29 tural H	nall aver	of acrds	d writer	1 3 0 1 1 a	٠	my mer
NW woner of	Largar 5.	ed ment a	tion Poro	1. Directly	sE of	and of
metal caturalt	r	•				
Appearance of Stream or Lake	11 -1 0	<i>C</i> /	, , ,	7	1. 1	<del></del>
is wet. Say	1634 04	Dedima	referen P	and is	dry - A	13 . Yanga
13 4001. 3447	ned avea	was x	· I deep	, .		
Appearance of Sample 5/19	htly do	uch:	1 ellow 1st	brown		
	,		,	• •		
					-	
Continue ( C )						
Condition of Station  WA						
10 11						
		•				
Owner Wheeter Confiden						
Ourrent Weather Condition	65°F	LLEAR	LICAT	BRUEZI	- topa	n WEST
			/			
Previous Precipitation LIGH	T TO H	MANY R	ATN HAD	OLCURP	on For	-d-
DAILY	FOR THE	- WISIST	- UP TO	Sample	O DHY	IT
DINNOT	RAIN YES	TIFRIDAY	•			
0.2.2,	723					
9	TTTT		Rema	orke:		
5			1 1 1			
3				or sam	pic cont	finued 9 (29.2) sed. (~ 6min)
Resugnig eff NS NS				to anot tro	n over	7 (~ T.C)
- 18 5 8 1				to ~ 5,0 of	time pas	
TARGET GC/MS SEDIMEN						
3151616						
TAR GC SEO			Samp	er Signature:		
41111				(X on R	mulla	D

	ITORING PROJECTIROCKY MOL SAMPLING FIELD DATA SH		Ĺ	P	ageor
Sie O Number	Hydrogeologist(s) Sample Numbers (range) Date				
SW01004	KH, SG, LB	K1706 - K	<1726	8910	99
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)	<u> </u>	Measurement #
pH Motor: 129 Beckman phi 21	pH 700 = 7.04 a 14.9	_ ℃ <u>1009</u>	NA	\	AA
☐ Ornega pHH-6SA ☐ Orion SA2SO	p4 1000 = 10.13 = 14.0	· · · · <del>-</del>	Equipment Used		Serial No.
Other	Conductance Standard: 1000	umhos/on at 25°C	NA		NA
Serial No. 0145035 Conductivity Motor:	Messured Value: 680 unitosom at 15	5.8 -c 1013	Staff Gauge Reading	·;	
Ø YSI Model 33 □ Other	Calibrated Conductivity = Measured Conductivity	ance + (0.02	1.1.4		
Serial No. 15596	(massing conductance) (25°C - Actual Temp	1	Sampling Method		Туре
Dissolved Oxygen Meter:  VD YSI Model 518	805.12 unhos/cm at 25°C 114  Dissorted Oxypen 7.9 mg/ at \$2	o. O Time		L	
Serial No. 13634	Dissolved Oxygen 117 mg/ at 2	5+ 4asic 1024		1	
Temperature Meter:    ☑ Beckman	Tirasion Results (Acid Concentration: 0.:	16, p <u>x</u> 1.6)	Conductivity / TEM		
Other	рн 8.3 4.8 4	1.5 (7.0)	500 16.0	•	umhos/cm
Serial No.0145035 Fittration Equipment:	#CGO'S NA 185 18	36 41	PH TEMP O		
(2) Geotech Parastatic Pump (3) Geotech 0.45 micron ster	1 1 ,	rk green	8.16 17.0 1027	5.5 /15.2	2C/10Z6
Sample Location Description	0 1				
Just south	of catwalk; n	vater gou	ta stagn	ant wh	ere sampled
water very los	w-lots of m	uck - p	iants abo	ne wat	Les .
Appearance of Sample					_
brown, mui	rky though still -	translucev	t; contai	ns float	ing objects-
Condition of Station	M Majerial - Wood	dy mater	rof		
murky, stagnant	conditions (10W	water)	near bot	tom of	Staff gage
Current Weather Condition		<del></del>			İ
mgh clouds	, slight breeze	. 68°F			: :
Previous Precipitation					
	Law days	0.61)			:
snow fall	ten days	ago			
9   B		Remar	i		redi
W 7 N N			luxage +	$O_{i}$	
S S S S S S S S S S S S S S S S S S S			t lake	sed?	use skel
MALYSIS REQUESTE TARGET GC/MS SECIMENT		buc buc	nplitaten unker and	Sing SO	esses shed
ANA		Sample	Syrange Sting Sol	lodka	1 8/

FOPM130

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL  SURFACE-WATER SAMPLING FIELD DATA SHEET  Page / of /			
Six D North	Hydrogeologist(s) 5. 6cLOBCRC   Sample Numbers (range)   Date	Page of	
pety 60	K 1-20-m K1727 - K1747		
SW01005-0 9/981	L BROWNED K 1748-1768 DIRICATE 89108	3	
Analytical Equipment	Meter Calibration Time Discharge (CFS)	Measurement #	
pH Motor:	pt 700 = 708 x 10.3 = 0932	}	
82 Bedoman phi 21	Turne NA	NA	
☐ Omega pH16SA ☐ Orion SA2S0	pH 10.00 = 10.19 a 9.1 •C 0930 Equipment Used	Serial No.	
Other	100	4 ( 4	
Serial No. 0145035	Conductance Standard: 7000 unhos/cm x 250		
Conductivity Meter,	Measured Value: 490 untros/om at 27 °C 0934 Sall Gauge Reading		
CDVYSI Model 33	Colleged Control of the Atlanta of Control of Control		
Other	Calibrated Conductivity = Measured Conductance + (0,02) (measured conductance) (25°C - Adual Templ)): Time 15.77	15.7'	
Serial No. 15596	umhos/cm at 25°CSampling Method   Sample	15.7' Sampling Method   Sample Type	
Dissolved Oxygen Maler:	Terre	•	
YSI Model 51B	Dissolved Oxygen mg/ at c _ GRAB	KÉ	
Serial No. NA	Conductivity / TEM: P	NC	
Temperature Meter:	Titration Results (Acid Concentration: 0.16, 1.6)		
☐ Beckman ☐ Other	250 1 100		
	pH 8.3 4.8 4.5 (7.5) 350 MM = 125/09	40 massa	
Serial No. 0H5035 Fitration Equipment:	#Clicks 10 125 127 PH TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 02000 0, / TEMP : 0	mp /TIME	
☐ Geotech Parastatic Pump	Color 10 45 125 45 8.1. 0941 8 majs 14°	C 1124	
II) Georech 0.45 micron ster	Color FREEN GREEN SPINK GREEN 313 12.8 14°C	A ben 4/15	
Sample Location Description			
END OF CATWALK, LOWER A BUCKET VIA ROSE			
Appearance of Stream or Lake	LAKE IS SURROUNDED BY MUSHY ARCHS + TROES SALL WENES	<u> </u>	
	OF MEDIUM SAND SOME WHITE FOLK OCCUPS AT THE WAT		
EDTE WATER IS	ABOUT I FT - 3FT FROM THE BANK LOTS OF ORGANZ WETER LIEBER	ESTWIGSETE).	
Appearance of Sample	ALSO, ABUNDANT FISH IN LAKE.	A LO GO DO SET SET	
	•		
LT BROWN, CLOUDY			
Condition of Station			
	•		
Current Weather Condian			
Court 10 5005			
Previous Precipization  SUNNY V 50°F 5 WINDY			
	G11, 250, 9 Days A.		
91111	SNOWFAIL 9 DAYS AGO		
民	AUO POUS = -		
Reauestep et ent			
13 F N 5	A STAINLESS STEEL C	up	
1 1 41 51 51 1 1		schhlis	
TARGET GC/MS SEOIMENT	30 Meter not constitut = 5	W (WW )	
NO 4 6	under cercorate		
4NALYSIS FOC SEOL	Sarcie Sonaire:		
4 7	Sarcie Spraine:		
ОРМ130			

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL  SURFACE-WATER SAMPLING FIELD DATA SHEET  Page										
Sie O Number	I tydrogeologist(s)	Sample Humbers (range	e) [ ;	Саке						
SW02003	KH, 5G, LB	K1640-K1684	; K1769-K1771	89108 4/18/85						
Analytical Equipment	Meter Calibration	Tme	Discharge (CFS)	Measurement #						
pH Motor: 153 Bedoman phi 21	pH 700 = 7.03 at 17.2	℃ <u>1307</u> Time	N/A	NA						
Orion SA250 DUM	pH 10.00 = 10.11 at 16.2	·c_1312_	Equipment Used	Serial No.						
1 Other 0145035 4/18/81	Conductance Standard: 1000		NA	NA						
Serial No. <u>0145035</u> Conductivity Mater:	Moasured Value: 700 umhos/om at 17	Time -C <u>1311</u>	Staff Gauge Reading							
1 Other 155 Kich 4 551	Calibrated Conductivity Measured Conduct (measured conductance) (25°C - Actual Temp		13 18h	19 12.   feet						
Serial No. <u>15596</u>	812 untros/om at 25°C _	1312	Sampling Method	Sample Type						
Dissolved Oxygen Meder: SI YSI Model 518	Dissolved Oxygen NA mg/ at	ine ;	GRAB	LAKE						
Serial No. 13634 Temperature Meter:			Conductivity / TEM F	,						
Ø Beckman ☐ Other	Titrasion Results (Acid Concentration: 180.		500 /16.	S						
Serial No. 01450.35	1/11/00/1/4	7.5 (7.0)		DIE O, / TEMP / TIME						
Fittration Equipment:	#CHORS 88 144 14	6		SEC INOPERABLE						
Georech 0.45 micron flex	color clear pink p	inK	0.15	ಬರ್ಧೇ						
Sample Location Description 20 feet 501	oth of pump statio	n, 8 feet	from water	's edge						
Appearance of Steam of Lake	BOTTOM OF LAKE	- BLACK A	NO TAR-L	KE						
HYDROGEN S	ULFIDE SMELL;	CLEAR WAT	TER; MUCH	LAVATIC GROWT-						
Appearance of Sample	:		KEL .	6 EDGE						
cloudy -	slightly brownish	,								
Condition of Station	· · · · · · · · · · · · · · · · · · ·									
gage d	afficult to read									
Current Weather Condition										
partly d	oudy, warm 69	5°F, int	crmillent =	TEELES 0-10-77						
Previous Precipitation										
Snow fall	1 9 days ag	0								
Resulested eff N.S.			STOOD IN _=	IE AND TOSSES SECRET - SOCKET -						
			ET SAMELE							
ANALYSIS TARE GC/ SEO!			er Signature:	1						
			VIII GALLE	in the						
FOPM130				- /						

	ATTORING PROJECT/ROCKY MOL		<b>1</b> _		. 1 /
Sie D Number	SAMPLING FIELD DATA SH				Page
1	Hydrogeologist(s)	Sample Numbers (rang	•	Date	_
5w02004	TH 36 LB	K1685-	t 1705	891	09
Analytical Equipment	Meter Catibration	Time	Discharge (CFS)		Measurement #
off Motor:	p4700 = 7.06 a 9.5	_ tc_0&3Z_	NIA	L	NA
Ø Bookman phi 21 □ Omoga pHH6SA	1, 22, 0,6	Time			
Orion SA2SO	pH 1000 = 10.20 at 8.8	19189 - 0834	Equipment Used		Serial No.
Other	Conductance Standard: 570 1000	Umhos/on at 25°C	404	1	NK
Serial No. 0145035	620	Time	24.6		
Conductivity Meter: [2] YSI Model 33	Moesured Value: 520 unthos/on at 9.	.0 ·c <u>0815</u>	Staff Gauge Reading	213	
Other	Calbraed Conductivity = Measured Conducta (measured conductance) (25°C - Actual Temp		850	0.85	0818
Serial No. 15596			Sampling Method	Sample	Tuna
Dissolved Oxygen Meter:		Time			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DYSI Model 518	Dissolved Oxygen 7.2 mg/ at 19	8 -c 0826	GRAG	4	LAKE
Serial No. 13634			Conductivity / TEM	<u> </u>	
Temperature Meter:  [] Beckman	Trazion Results (Acid Concentration: 0.)	16. 15 1.6)			/ - 2
Other	рн 8.3 4.8 4	1.5 (2.0)	480	/ 13,5	108-7
Serial No. 01450.35			PH TEMP D	cole: 0,/TG	np /TIME
Fittration Equipment:  12 Geotech Parastatic Pump	#Clicks 29 174 17	16 69	9.78 0905	- 1	0. /2011-
Geoved 0.45 micron ster	color dear pink pi	nk green	8.78 16.1°C	7.4/13.5	C / U84:
Sample Location Description	<del></del>			- i 0 -	
$\omega$	est side of L	the Man	, near	572PT	jage
			•		
Appearance of Stream or Lake	clear to sightly	musty,	some v	eschotio	n in
water na	clear to sightly or shore, sandy.	- silty 4	oc Hery		
	•	,			
Appearance of Sample		,	/		
	lear to light	murky	bowy		
Condition of Station	_				
4	gerd.				
0	•				
0 111 1 0 11					
Current Weather Condition	clear, very 1	1524 bre	420		
	~ 70° F	_			
	2 10 1				
Previous Precipitation					
	Soon Lel 10	days pre	= 1045/-j		
		J	,		
		Fierra	ks:		
3			souple -	<del></del>	4812
Reauester FT NS NS		1 1 1 1 3	3tmm/255	3-07	6-62-
13121		.	and mess	July	ladle.
TARGET GC/MS SEO(MEA			and mers vaded - late te	۵۰ - <i>خدکا شا</i> مسدد د د	TITE
1 NO 1 1 E			19HC te	2000	/
3 A-X-1		Sample	Sonatire:	Lake	12/
			VM7		
DPM130 VK 89109	•		,		

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL SURFACE-WATER SAMPLING FIELD DATA SHEET Page _/_ o' _/_ Site 10 Number Hydrogrokojssys) lland Sample Numbers (range) Date 02006 tochnen K2467-K249S 89117 Analytical Equipment Meter Calibration Discharge (CFS) Measurement : Torr 04700 - 7.04 x 13.0 0 1546 pH Motor. 6 Bediman phi 21 ☐ Omega pH16SA pH 1000 = 10.15 a 12.4 c 1546 Equipment Used Serial No. Orion SA2S0 Other . Conducance Standard: / COO umhosion z 25°C NA LONG THREFIED FLOME Serial No. 0145035 Moosured Value: <u>730</u> untrooforn at <u>15</u> °C <u>1547</u> Staff Gauge Reading Conductivity Meter: EL POOM ISA IS Calbraed Conductivity = Measured Conductance + (D.C.) (measured conductance) (25°C - Adual Templ): Time Other _ NONE INSTALLED Terre Serial No. 15571 876 Sampling Method Sample Type Dissolved Oxygen Meter: YSI Model 51B GRAG DTCH Dissolved Oxygen NA mod at Serial No. Conductivity / TEMP Temperature Meter: Terasion Results (Acid Concentration: 0.16, 01.5) ☑ Beckman 16°C 500/ Other _ pΗ 2.3 4.8 4.5 (7.0) LITTE COM Serial No. 0 145.095 TEMP : See 0, / TEMP / TIME 129 #Clids 16 128 Fitration Equipment: 8,74 15.8 Geotech Parastatic Pump Ishi NH green Color Pin h ☑ Georech 0.45 micron Ber ۰ ر सम्बद्ध Sample Location Description STEAM PLAWT EFFLUENT DITCH. SAMPLE TAFEN FU FT DOWNSTREAM OF CULVERT Appearance of Stream or Lake WATEK OITCH IW RELATIVEY ALLUDES SILTY - SAWPY BUTTOM. DITCH 3-4' WIDE Appearance of Sample ERRON CORRECTION CLETK - SUGHTLY CLOSOY 5,-E 10 SWST'S Condition of Station FULL OF TUMB LE WEEDS Current Weather Condition APPROX 50°F, LOOL, OVERCAST LIGHT MAKED WITH HAIL EARLIER IN DAY Previous Precipitation SHOWER - NO MENSURABLE LIGHT CHEP EUNIER IN ONY, NO MAJOR THE WELL PREIP FOR LIST WARM AND DRY PREVIOUS TO Peraks: eet

Sampler Signature:

COMPREHENSIVE MON SURFACE-WATER S	IITORING PROJECTIROCKY MO SAMPLING FIELD DATA S	DUNTAIN ARSENAL	Page 1	21 <u> </u>
Sie O Number	Hydrogeologist(s)	Sample Numbers (range)	Date	'
02006	SE6, TG, GPP	14114-14137	89270	
Analytical Equipment	Meter Calibration, QV	Time Dische	roe (CES) Measures	mea: =
pH Motor:  (D) Beckman phi 21	Meter Calibration pH 700 = # 31.6	_ c_132/	2,1327 11 89278 rb	
☐ Omega pH16SA	000	Time A/C	$\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$	
Orion SA2S0	pH 10.00 = 9.96 at 30.0	1 ·c 3ds Equipm	ent Used Serial :	No.
Other	Conductance Standard: 1434	umhoc/on at 25°C	Λ.	A
Serial No. <u>015781</u> Gonductivity Meter:	Moosured Value: 490 untos/on as_	78 - 1227 Sept 6	auge Reading	
□ 1/21 Wodel 33		, -	and the second	
☐ Other	Calibrated Conductivity = Massured Condu (measured conductance) (25°C - Actual Ten	ctance + (0.02 np)): Time	NA - NONE INSTA	115
Serial No. 13076		1322 Samplin	NA - NONE INSTA	
Dissolved Oxygen Meler:    YSI Model 518				سے آ
Serial No. NA	Dissolved Oxygen NA mg/ at N		TRAG DITCH	T TEOR
Jemperature Meter:	Treation Results (Acid Concentration:	0.16,	ivily/TEMP	115:40
□ Other	_		- / 355	
Serial No. 01578		4.5 (7.0) 7/4	TEMP : 000000 0, / TEMP / TI	) <u>recolor</u>
Editation Equipment:	#Clicks WA	. 1 1	<b>#</b>	ME.
Geotech Parastatic Pump	Color .	863	22.6/ NA	
Sample Location Description			/-3-7	
	•			
Appearance of Stream or Lake	STATION STAKE SIES	270	AL FLG= 12 , FIRDIUM FL	
The state of Steam of Care	MUDDY, ORGANIC BOTTOM	DREADIC PLE MATERI	AL FLO="12", FIRDIUM FL	a:
Appearance of Sample	CLEAR		· · · · · · · · · · · · · · · · · · ·	
	CL MIC			
Condition of Station .				:
	CK			
	•			
Outers Weather Conding and				
0180	OF, HOT, MUGGY, PARTL	+ Ciawi-		
		·		
Previous Precipitation VIII	DAYS AGO RAINED FOR	S Dire-		
B		Ferreds:		
REQUESTED CFT N.S.				
\$ L W 5				
TAR GC/ SEO				
ANALYSIS X GC/ X SEO		5		
* XXX	<del>                                     </del>	Sampler Signatur	e.	
	1 1 1 1 1 1	III Mu	lay Today	٠

	ITORING PROJECT/ROCKY MOI SAMPLING FIELD DATA SH		J	ſ	Pagea
Sie O Number	Hydrogeologist(s)	Sample Harters (range	(15)	Date	Page a
SW04001 51	BS, TX			89135	5/15/84
Analytical Equipment	Motor Calibration	Tema	Discharge (CFS)	0.70	Measurement #
pH Motor: 10 Bookman phi 21	pt 700 = 1.03 = 15.3	T	NA		NA
Omoga pHH6SA Orion SA2SO	pH 1000 = 10,12 x 15,1	-c1821	Equipment Uses		Serial No.
Other	Conductance Standard: 1000	umhodon z 25°C	NA		NA
Serial No. 044150 Conductivity Mater:	Moosured Value: 825 untros/on at 10				
Ø YSI Model 33 □ Other	Calibrated Conductivity = Measured Conduction (measured conductance) (25°C - Actual Term	ance + 10to	l	NSTALLE	D
Serial No. /405/ Dissolved Oxygen Medec	973,5 untoson at 25°C	1822	Sampling Method	Sample	
TSI Model 518	Dissolved OxygenNA mg/ at		GRAG		DTCH
Serial No			Conductivity / TEM		7 7 01.
Of Beckman	_	16, D 1£,	75 protos	100 C	16°C
Serial No. <u>D144750</u>	#Clicks 7.0 4	-5 (7.0)	PH TEMP D	con conso, /TE	mp / TIME
Fitration Equipment:  10 Geotech Parastatic Pump  12 Geotech 0.45 micron füer	Color		9.17 10.8	NA	
Sample Location Description			/// / / / /		म्द्रांख
NEAR MOTOR	FOOL OUST WEST OF	TRACKS @	NORTH SIL	OF OF FA	בויע דדובי
Appearance of Sceam or Lake					GRIII)
1	NG UP FROM GROU	INO THEN I	FLOWING 20	WINGEAD.	ENT
Appearance of Sample	PIRTY WATER				
					3
VERY DIRT	SILTY, CLOUPY				7
Condition of Station					<u>=</u>
NO STATI	ION INSTALLED, ONL	4 SAMPLE	POINT		
Current Weather Condition					
RAIN, COO	01				
		·			1
Previous Precipitation	,				
	4" / RAINING	HEHNLY	AS SAMEL	US DCC	VRJ
4NALYSIS REQUESTED  STARGET  GC/MS  SEOIMENT		=	Serves m.		
PPM130			John!	off	en
∠ mi <b>u</b>		//			

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL

	ITTORING PROJECT/ROCKY MOU SAMPLING FIELD DATA SH		0 1
Sie O Number	<del></del>	,	Page o
SW07001	Hydrogeologist(s) GREG PUDLIK, SUSAN GOLDBERG	Sample Humbors (2001)   LY138 - LY154	9/25/89 89268
Analytical Equipment	Meter Calibration	Dectario (CCC	\$9278   Measurement :
pH Motor: SEC Bedwan phi 21	pH 700 = 7.02 = 19.5	~ 0923 0 DC	11
☐ Omega pH16SA	10.00	Time 1001	7
Orion SA2S0	pH 10.00 = 10.06 a 19.9		Serial No.
Other	Conductance Standard: 1434		LUME NA
Serial No. 01.5781	1260	14.00	
Conductivity Motor:  XI YSI Model 33	Measured Value: 1250 unitoston at 24		
Other	Calibrated Conductivity = Measured Conductivity (measured conductance) (25°C - Actual Temp	ance + (0.02 o)): Time	NONE INSTALLED
Serial No. 13076 Dissolved Oxygen Motor:	umbos/on at 25°C	Sampling Method	Sample Type TK 1306
☐ YSI Model 51B	Dissolved Oxygen	Time GRAB	EREEK
Serial No	Dissolved Oxygen _/V/1 _ mg/ at	÷ G2A	DTCH
Temperature Meter	Titration Results (Acid Concentration: 0.	16 D 16 Conductivity / TEM	np
ØkBeckman ☐ Other		610 umte	€ @ 14.1°C
	рн 8.3 4.8 4	7.5 (7.5;	rea/ca
Serial No. 015781 Fatration Equipment: UA	#Clicks // /	PH TEMP	Desice O, / TEMP / TIME
Georech Parastatic Pump Georech 0:45 micron frer	Color	240 12.9°C	NA notice
	ow, scattered debris	(glass, plastic, paper,	)
Appearance of Sample			
Condition of Station			
OK	• ;		
Current Weather Condition  CLOM, 75°F	, wind 1-3 W		
Previous Precipitation and he	vary rains for 20	lays	
MALYSIS REQUESTED TARGET GC/MS SECIMENT		Sarpler Signature:	
4 X		Dregory P	Kudsp
FOPM130		0 1	

	TORING PROJECT/ROCKY MOI			
Sie O Number	SAMPLING FIELD DATA SH	,		Page a
SW 07001	Hydrogeologist(s) GREG PUDLIK,	Sample Numbers (except)	Date 0/25/00	. <i>6</i> 01/0
Analytical Equipment	SUSAN GOLD BERG-	L4138- L415		89.268   Measurement =
pH Motor:	Į.	14.40	e (CFS) 69278	weakerings 2
Bedwan phi 21	pH 700 = 7.02 x 19.5	_ \cdot \frac{0923}{1000}	175:4	
☐ Omega pH165A	pH 10.00 = 10,06 = 19,9		nt Used	Serial No.
Orion SA2SO Other	Conductance Standard: 14,34			
Samue ALETAL	Corollare Standard: 14.)	_ unhaden z zec   100	MM ILUME	NA
Serial No. 015781 Conductivity Mater:	Moasured Value: 1250 untroston at 24	5 -c 0923 Sall Gau	ge Reading	
KI AZI Woopel 33	Calibrated Conductivity = Measured Conduct		Λ	
Other			A - NONE 1	NOTALLED
Serial No. <u>13076</u>	(meesured conductance) (25°C - Actual Temp	0923 Sampling		ie Type VK 7306
Dissolved Oxygen Meter:  TSI Model 518		irre	RAB	EEK—
Serial No. NA	Dissolved Oxygen mg/ at	¢	RAG	DTCH
Temperature Meter:	Trazion Results (Acid Concentration: 0.	Conductiv	ity/TEMP	
Beckman C. Other		610	sumtion @ 14.	1°C
Other	рн 8.3 4.8 4	·5 (7£)	<u></u>	unerston.
Serial No. 01.5781 Fittration Equipment: UA	#Clicks // /	pH [	TEMP Desire 0, 17	EMP /TIME
Googlech Parastatic Pump	- NA-	240	12.9°C 1/A	
☐ Georech 0:45 micron fizer	nple collected n 20° d		$\sim$	. उत्पंदल
Appearance of Streem or Lake CLION, LOW file	our, scattered debits	(glass, plastic, ,	saper)	
Appearance of Sample				
Condition of Station				
OK	• /			
Current Weather Condition				
dear, 75°F,	wind 1-3 W			
revious Precipitation and he	avy rains for n 20	lays		
Reauested 37 AS IEAT		Ferrers:		
8 1, 5				
四四岁到				
12873				
JAKGET GC/MS SEDIMENT				
TAR GC/ SEO		Sampler Signature	:	_
4 X		Moan o	y P Pudlo	
OPM130	<del></del>	- July	y · · · · · ·	
		<i>y</i>	•	

	IITORING PROJECT/ROCKY MO SAMPLING FIELD DATA SI		<b>d</b> _	Page or
Sie O Number	Hydrogeologist(s) GPP, TG	Sample Harrows (range	e) ! Date	1 age _1 _ 0: _[
SW08001	3 7 7		j	172 9/29/89
Analytical Equipment	Meter Calibration	Tene	Discharge (CFS;	Measurement #
pH Modor: ≥ Bedyman phi 21	p4700 = 7001 # 22.6	-c <u>1152</u> Tere	.24 = .1697	cfs NA
☐ Omega pHH6SA ☐ Orion SA2SO	pH 1000 = 10.05 a 21.1	_ c <u>1152</u>	Equipment Used	Serial No.
Other	Conductance Standard: 1434	unhove \$250	DH-48	NA
Serial No.01578/ Conductivity Malar:	Moosured Value: 1200 umtos/on at 24	• • • • •	Saf Gauge Reading	7011
X YSI Model 33	Calibrated Conductivity = Measured Conductivity	=noc + 1012	NA	
Serial No13076	(moasured conductance) (25°C - Actual Term		Samelar Materia	I Complete Total
Dissolved Oxygen Meler:	unthos/on at 25°C _	Titre	Sampling Method	Sample Type  SUSPENDED
Serial No.	Dissolved Oxygen		GRAB	SED
Temperature Meter:	Tiration Results (Acid Concentration: 0	16 D 16	Conductivity / TEMP	
☑ Beckman 67 ^P ☐ Other <u>Ot 578</u> 1	_	1.5 (7.E)	650/17°C	
Serial No. <u>015761</u>	#Clicks /	1.5 (11)	PH TEMP : Desired	O, / TEMP / TIME
Fitration Equipment:	A/A		8,23 15.3c	110
☐ Georech 0.45 micron ther	Color		19,50	MA motion
Sample Location Description 5  Nightation (sm Appearance of Stream or Lake	Ist Cruk, Stream A. rall cettenwoods, cattou	has channel	~4' wids, ="a	
clean, with	some oil spots on	surfore		
Appearance of Sample CLEGA				
Condition of Station				
good	·			
0			_	
Clean, 85 F,	1-5 mph SW wind	b		
Previous Precipitation	,			
217 days ogs, 1	for a days			
8		Ferza		
Reauestep et eart			<b>-</b>	
I MISISIM I				
15 SEO				
4NALVSIS TAR GC/ SEO!		Service	Sonature:	
4			Inez Funtil	
OPM130			<u> </u>	

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL  SURFACE-WATER SAMPLING FIELD DATA SHEET  Page   of										
Sie O Nurber	Hydrogeologist(s)		1) KZZ65-KZZ73 Dan	Page of						
SW08003	KH, LB, JK, BS	K2235-K	²²⁵⁵	89115 4/25/89						
Analytical Equipment	Motor Calibration 101 22.2	but Time	Discharge (CFS)	Measurement #						
pH Modor: Beckman phi 21	Motor Calibration 1.01 22.2  pH 700 = 100 at 24.8  10.05 21.4  pH 1000 = 1000 at -20.5	89115 -c 1018 1029	0,72							
☐ Oπoga pHH6SA . ☐ Orion SA2S0	pH 1000 = 10-00 at -20.5	89115 1030	Equipment Used	Serial No.						
Other	Conductance Standard:1000		PORTABLE FL	LUME NA						
Serial No. 0145035 Conductivity Moloc:	Messured Value: \$00 umtos/om at 19	Time	Stall Gauge Reading	LUME NA						
D Other _	Calibrated Conductivity = Measured Conduct		0.47 fee							
	(measured conductance) (25°C - Actual Temp	)): Time								
Serial No. 15596 Dissolved Oxygen Meter:	896 untros/om ai 25°C	1015	Sampling Method	Sample Type						
TYSI Model 518	Dissolved Oxypen mg/ at	1	GRAB	STRM						
Serial No.		<u> </u>	Conductivity / TEMP							
Temperature Meter:  (SKBeckman	Titration Results (Acid Concentration: 0.1	16, <b>5</b> 2, 1.6,		/ -00						
☐ Other	рн 8.3 4.8 4	-5 (2.0)	620 /	150						
Serial No. 0145035		<u></u>	PH TEMP DESIGN							
Fittration Equipment:  Sign Geolech Parastatic Pump	1/ 0		8.21 16.5° N,	A						
Georech 0.45 micron &er	color NA pink p	int green	10,30	ಪ್ರಾಕ್ಟ್ -						
	WETR; SEDS J	OST UPSTR	ZEAM							
Appearance of Stream or Lake		tech \$9115								
LOW TO MOD	ERATE UNIFORM	FLE FL	)W; CLEAR L	HER						
Appearance of Sample	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							
CLEAR										
Condition of Station										
	71144 8 1 1 1 1 1 1	Maril 1								
	TUMBLEWEEDS 1	orich at	ext clem							
Current Weather Condition										
YNNY	70°F BREEZY	0-5 MP1	<del>1</del>							
Previous Precipitation										
0- TRACE	THREE DAYS	PREVIOUSLY	1							
4NALVSIS REQUESTED TARGET GC/MS SEOLMENT SEOLMENT SED GC/MS		Aft a pri	er combinating wared on read so librated	et mater a !!						
X 1 1 X		Saroier	Sonature:	- Ex						
FOPM130	<u> </u>	<u> </u>	1101							

	ITORING PROJECT/ROCKY S <i>AMPLING FIELD DAT</i>		11/1_	Page of
Sie O Number	Etydrogeologist(s)	Samole tumoers (ra	nge)	Date
5W08003 8T	JK	K7426	- 7446	89134 5/4/89
Analytical Equipment	Meter Calibration	Term	Discharge (CFS)	Measurement =
pH Motor: Of Bedoman phi 21	p4 700 = 7.05 at 10	1.8 = 1608	NA	NA
Omega pHH6SA	p4 1000 = 10.17 at 1	109 Time	1 .	
Oron SA2S0	Conductance Standard: 100			Seral No.
Serial No. 0144750	700	unnoson at 25°C Time	154	NA -
Conductivity Meter:	Mozzured Value: 775 umtos/om	x 12 = 1610	Staff Gauge Fleading	10
□ Other Qt_A21 Model 33	Calibrated Conductivity = Measured (measured conductance) (25°C - Actu		START 1.	
Serial No. 14051	976.5 untros/on at	1	FINISH !	Sample Type
Dissolved Oxygen Meler:    YSI Model 51B		Time		
	Dissolved CaypenM_ mg/l	at NA = NA	GZAB	STRM
Serial No	Trazion Results (Acid Concentration:	□0.16, □:੩	Conduction / TEM	iP .
DUBeckman □ Other			225	1.1 A 12°C
Serial No. 0/44750	<b>н 8.3</b> 4.8	4.5 (7.0)	OH THE	shorting of 12°C ustraces
Fatration Equipment:	#Crids	,		of the Little
CALGeotech Parastatic Pump CALGeotech 0.45 micron steer	Coior		8.7/ 6-9	
Sample Location Description				to Comment of the Comment
			17LE YERS 1	ET SIDES TO HELP
Appearance of Stream or Lake	OUCE ATR IN BOTT			
	FYSH FLOW, PLOW	JING CIZE 21	2 AC WET?	(MORETHAN 1-9000)
SLIGHT	TLY MUPPY WATER	016	, 0, 2272	
Appearance of Sample				
SUGHTLY	MUADY, BROWN	OLOK		
Condition of Station				
GOOD CONO.	CTION, ALL BOUTP	MENT SLADOI	VAL	
	•			
Outers Wisather Condition				
STORMY - C	real, cloudy, ci	T 10140		
Previous Precipitation				
WETHIN 1	HOUR PRIOR TH	E EMMEDIATE	ABFC FEE	CIED HAIL FRETZ
•	, ,	37.07.3	77,60,2	·
9				
Reduestra		nem	arks: NO COSTELLE	SE PAKEN, OFFEC TO
3 1 5			4FF 5315	LUGHER BAMAL
1 41 61 51 1 1			/	7, 19, 1
TARGET GC/MS SEOIMENT				
AMALVSIS TARG SEOU		c	Her Signazory / ;	
31111		Samp		
~17171 1 1			1 15/11	of homen
2PM130			(JOH)	36 kmen

	ITORING PROJECT/ROCKY M			2 1
SURPACE-WATER S	SAMPLING FIELD DATA:  Hydrogeologiss(s)  SECO, GPP, TG  Morter Calibration  pH 700 = 6.98 x 34.	SHEET		Page / of /
Sie O Number	Hydrogeologist(s)	Sample Numbers (range	Date Date	
SWOBOO3/ PUPLICA	E 550 C-92 T	13309=1	1603 11229 EX	1215
Analytical Equipment	Seg, GFF, 16	1 1 1 1 1 1 1 L 1 1 1 1 L 1 1 1 1 1 1 1	- 1211 0°	Measurement =
Anayaca exception	Nigher Calibration	- 1 Tring - 112	10 87278 T	Weatherners =
pH Moder:	p4700 = 6.78 = 341	3 ×1505	12 11 2	4/4
© Bedoman phi 21 □ Omega pHH6SA	1	(4tt/G		NA
O Oron SA2SO	pH 1000 = 9.93 = 34.	<u>~~2507</u>	Equipment Used	Serial No.
☐ Other	Conductance Standard: 1434			
Serial No. 01578)		Time	100 mm winds m	outled Flience AM
Serial No. (13 78) Conductivity Mater:	Measured Value: 1390 untros/on at	******	Staff Gauge Reading	
III XSI Model 33				
Other	Calbrated Conductivity = Measured Conductivity		221 2	
1207	(measured conductance) (25°C - Actual Ti	••••	· dd (A	1425
Serial No. 3076 Dissolved Oxygen Melec	934 unthos/cm at 25°C	1001	.22' C Sampling Method GRAB	Sample Type TL 1936
TST Model-SIB		16.00		STRM
1/1	Dissolved Oxygen NA mg/ at	NA C NA	GRAB	STREAM
Serial No. NA			Conductivity / TEMP / IME	
Temperature Meter:	Titration Results (Acid Concentration: [	J0.16, 🗆 1.6	and desired of the	
Other			2-121	
5/6261	рн 8.3 4.8	4.5 (7.0)	110/21/	1508 wassen
Serial No. <u>DIS 781</u> Filtratiog, Equipment:	#Clicks 114		PH TEMP Dessies	0, TEMP /TIME
☐ Geored Parasetic Pump	7033		10.44	
Geolegh 1.45/Thioron ther	Color		8.46/8.4/ Kin	A/A
Sample Location Description			8.46/8.4/15/2	V/I nojae
			71.995	
V 155 1.05000	00000			
Appearance of Stream or Lake	DE WER WATER 16	DEEP, SHUPUN	16 " 3" Briow Sussian	
	ed to asserb a statily	ANIC WITH SOME	which prending see	TERES BOILDISHIE
	or carry we ordinate 19033	T Chair Co i	P. Low Less	•
American of Samula	· .			·
Appearance of Sample	CLEAR			
Appearance of Sample	CLEAR			
Appearance of Sample	CLEAR			
Appearance of Sample  Condition of Station	CLEAR GOOD			
		·		
Condition of Station	G∞D •			
	G∞D .	-Hori		
Condition of Station	G∞D •	-Hor:		
Condition of Station	G∞D •	-Hor!		
Condition of Station	G∞D •	-Hor!		
Condition of Station  Current Weather Condition PAR	GOOD.	-Hor:		
Condition of Station  Current Weather Condition PAR	GOOD.	•		
Condition of Station  Current Weather Condition PAR	GOOD.	•		
Condition of Station  Current Weather Condition PAR	GOOD.	•		
Condition of Station  Current Weather Condition PAR  Previous Precipitation V 15	GOOD.	DAYS		
Condition of Station  Current Weather Condition PAR  Previous Precipitation V 15	GOOD.	•	c	
Condition of Station  Current Weather Condition PAR  Previous Precipitation V 15	GOOD.	DAYS	c.	
Condition of Station  Current Weather Condition PAR  Previous Precipitation 15	GOOD.	DAYS		
Condition of Station  Current Weather Condition PAR  Previous Precipitation 15	GOOD.	DAYS	c.	
Condition of Station  Current Weather Condition PAR  Previous Precipitation VIS	GOOD.	DAYS	c.	
Condition of Station  Current Weather Condition PAR  Previous Precipitation VIS	GOOD.	DAYS	£.	
Condition of Station  Current Weather Condition PAR  Previous Precipitation VIS	GOOD.	DAYS	Sgraire:	
Condition of Station  Current Weather Condition PAR  Previous Precipitation VIS	GOOD.	DAYS		

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL SURFACE-WATER SAMPLING FIELD DATA SHEET Sie O Number S. 1st Cr. Hydrogeologist(s) GPP, TG Sample Numbers (earge) SW 08003 9/29/89 59272 Analytical Equipment Meter Calibration Discharge (CFS) Measurement = Time pH Motor: M1700 - 701 # 22,6 0 1150 .0814 cfs Bodoman phi 21 NA □ Omega pHHeSA pH 1000 = 10,05 at 21.1 Equipment Used Orion SA250 Serial No. DH-48 Other | Conductance Standard: 1434 NA 100 mm flund Serial No. 015 78/ Measured Value: 1200 untrostom at 24.3 c 1205 Conductivity Meter: Staff Gauge Reading DX YSI Model 33 Calibrated Conducting - Measured Conductance + (0.02 0.20 Other _ (measured conductance) (25°C - Actual Temp)): Serial No. 13076 Sampling Method umbos/on at 25°C _ Sample Type Dissolved Oxygen Meler: Trae Suspended ☐ YSI Model 51B GRAB Dissolved Oxygen Sed Señal No. __WA Conductivity / TEMP Temperature Meter: Titration Results (Acid Concentration: □0.16, □ 1.£; **⊘** Bedoman 675/18,3°C @ 1233 Other _ 8.3 4.8 pН 4.5 (7.C) MERCE CO. Serial No. 015781 TEMP : DEDEC O, / TEMP / TIME #Clicks Fittration Equipment: 7.95 15.8°C ☐ Geotech Parastatic Pump Color ☐ Geoech 0.45 micron ster Sample Location Description 50 @1230 Sample taken a 13' ucetian of wer, crannel a 10' with 1st Cr. 8" dup, cottonuceds along bank of various sessous and weith with some oil spots on surface Appearance of Sample clear Condion of Station Ourient Weather Condition clear, 85°F, 1-3 mph 5W WIND Previous Precipization ~ 17 days ago, roin for 2 dags

8 E													Genzer:
1			.										
8	1	N	2					1					
3	3	3	3 0								į	į	
3	18	0	श्रीर	3				1				•	
14	[7]	9	AIL			- 1							Sarsay Sgnaure:
Ą			X		1	i	11		11	i	Ť		Inex Pudet
ОРМ	1130				!-	<del>'</del> -	<u> </u>			 			Lang (WI)

SURFACE-WATER S	ITORING PROJECT/ROCKY ME SAMPLING FIELD DATA:	10UNTAIN ARSENA SHEET	N_		0 1 1
Sie O Number S. (st. Cv.	Hydrogeologiss(s) GPP, TG	Sample Numbers (range	21		Pageor
SW 08004	311, 18	la C	7-1	Date 89373	9/29/85
Analytical Equipment	Meter Calibration	Tene	Oscharge (CFS)	37070	Measurement #
pH Modar: 18 Bedoman phi 21	p11700 = 6,99 # 29,1	<u> ~ 1328</u>		1100 O-	İ
☐ Omega pHH6SA		Time	.12' = .0	1492 Cts	NA
☐ Orion SA2SO	pH 1000 = 9,98 # 28,	5 - 1328	Equipment Used		Serial No.
Other	Conducance Standard:		DH-48		Serial 140.
Serial No015781		umhos/on at 25°C Time	100 mon flee	no	LA
Conductivity Meter:	Moosured Value: 1450 umfos/on at		Staff Gauge Reading		
XX A2I WOON 33					
Other	Calibrated Conductivity = Measured Cond (measured conductance) (25°C - Actual Te	annile.		NA	
Serial No. <u>13076</u>		10.00	See also the see		
Dissolved Oxygen Meter:	umhos/cm at 25°C	Time	Sampling Method	Samoie	pended sed.
☐ YSI Model 51B	Dissolved Oxygen WA most as		GRAB	1307	sed.
Serial No. <u>WA</u>	Total mon at _		<u> </u>		
Temperature Meter:	Trazion Results (Acid Concentration:	0.16, 0 1.6)	Conductivity / TEM	P	
Ø Beckman ☐ Other Ø		1,	790/28	. 6	13.34/
	рн 8.3 4.8	4.5 (7.0)	170 / 28	,	
Serial No. <u>015781</u>	#Clicks /		PH TEMP 10	Assolved O, /TE	no / TIME
Fittration Equipment:  Geotech Parastatic Pump	- 1 1/A		8,26 32.88	110	1 / Ince
☐ Geotech 0.45 micron ther	Color	1 1	1335	NM	
Sample Location Description 5.	15+ 600 04000	<u> </u>	1750		mg/liter
care of months	CALL WITH IN A PROPERTY	in a 18 well	1-2" d	up with	vegetation
are of many of	1st Cr. channel cross. Water is clear	Law plas	with sand	y channs	bed
Appearance of Stream or Lake					<del></del>
dear					
Appearance of Sample					
		•			
dear					
Condition of Station					
and					
Jessi	•				
	<u> </u>				
Current Weather Condition		_			
clear, hot go	5 P : 1-3 mph SE	wind			
		·			
Previous Precipitation				<del></del>	
0-17 dais 000	7 200				
~17 days ago,	aug of nan				
3		Remarks			
Reducento PT NS NS VENT		1	•		
8 . 5					
四三四四					
1312 2161 1					
2 4 5 9 5					
\$ 10 0 M					
TAR GC/		Sampler	Sometime Pudla	/	
DPM130			Meg Pudlh	)	· 

	SAMPLING FIELD DATA SHEET 1100180 2452-2461 Page / 01/
Sie O Number	Hydrogeologist(s)   Sample Numbers (range)   Date
SW 11001	14/drogoologist(s)  L. Bosnilland  11001-172336-12319  Date  11001-1723369  B-2360-2369  J. Harring 110010. 2428-2451  89116
Analytical Equipment	Meter Calibration 15 % 23 Time Displayer (CFS) Measurement #
pH Motor:	pH 700 = 7.03 = 4917 0 0912 Time 128
☐ Beckman phi 21 ☐ Omega pHH6SA	Time .128
Orion SA2SO	pH 1000 = 10.11 at 15.6 · C 0912 Equipment Used Serial No.
Other	Conducance Standard: 1000 univocion at 25°C LONG-THROATED FLUME NA
Serial No. 0145035	Time LONG - HKO TIPE PEOPLE AND
Conductivity Meter:	Moosured Value: 750 unitos/om at 16 ·C 0 913 Staff Gauge Reading
DJ A21 Wodel 33	
Other	Calbraed Conductivity = Measured Conductance + (0.02
Serial No. 15392	885 unhos/on at 25°C 0913 Sampling Method Sample Type
Dissolved Oxygen Meter:    YSI Model 51B	time
C 131 WOOD 316	Dissolved Oxygen NA mod at c GRAB STSW
Serial No.	Conductivity / TEMP
Temperature Meter:	Tiraxon Results (Acid Concentration: 0.16, 0.16)
Ø Beckman  ☐ Other	15 / 13°C
	рн 8.3 4.8 4.5 (7.0) umhos/cm
Serial No. 0 145735	#Clicks Missed 49 51 PH TEMP OSSONED O, / TEMP / TIME
Fittration Equipment:    Geovern Parastatic Pump	
☑ Geotech 0.45 micron ster	coor fint find
Sample Location Description	Indiana
<i>f</i>	Peeria. gazing Station. water sample tatton from . Sediment sample tation 1-2' upstream of notch in weir
noteh in Weir	scolument sample testion 1-2 upstream of notch in weil
Appearance of Stream or Lake	21. Elia as Guitare of the training
Sugar bubble	Dily film on surface of water white, formy is have formed approx 4-5' down stream of weir
soup y 2001	is that ferriced appropriate to the contract of the
Amongon of Samula	
Appearance of Sample 5/15	itly 264dy
Condition of Station 4/.	1/
_	V-notch metal were place installed last week
Appeo	is to be functioning preparing
	•
Ourrent Weather Condition A	and life the state of the state of
7 h	prex 60° F, partly cloudy, sight breeze tum
$N_{\nu}$	the west
Previous Precipitation / An	major precip in last I weeks. Dry and worry
6051	writ.
PEQUESTE FIT NS NS FAUT Towns	Remarks: pt continued to drop
की । प्रिंही	after tating sample stabilized
81, 10, 5, 3, 3	at about 7.85. Very lew
四回到到时间	Conductivity
2 2 4 2 9 9	4
TARGET GC/MS SECIMENT OUP TO	
TAR TAR	Sampler Sefatire:
\$121/1/1/1	An Brief
	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SURFACE-WATER S	1	27.171 37	14-4-1			-,	r ag	e of	
Sie O Number	Hydrogeologist(s)		Sample Numbers (ran	Gc)		Date			,
5W11601	TK, LB		K7468-1	K7482	8	8	79130	2/10/	/89
Analytical Equipment	Meter Catibration		Tene	1	e (CFS)		1 10	feasurement #	
pH Motor: DI Bedyman phi 21	pH 700 = 7.02 at	17.7	_ ·c _1725		NA			NA	
Omega pHH65A	10 00	176	Time	ļ					
Orion SA2S0	pH 1000 = 10.09 a			Equipme	nt Used			Serial No.	
Other	Conductance Standard: /	1000	umhos/om at 25°C		NA			NA	
Serial No. <u>0145035</u>	_		Time				·		
Conductivity Malar: (3) YSI Model 33	Moosured Value: 825 unt	hos/on at	47 -c 1729	Sat Ga	uge Reading	0/	561	@ 154	0
D Other	Calbrased Conductivity Mos	asured Conduct	znoe + (0.02	57.	AKI (	= /1 .	ארט אויי	<i>a</i>	
Treat-	(measured conductance) (25°C		1	FI	NISH	@ /	.48'	@ 155	3
Serial No. 15596 Dissolved Oxygen Meter:		on at 25°C _	1/2/	Sampling	Method		Sample Type	•	
☐ YSI Model SIB	1/4		Time		RAB		47	. 1	
Commit At-	Dissolved Oxygen NA	_ mg/ at/	NA C NA				573	$\omega$	
Serial No	Titrasion Results (Acid Concentr	nior OA	.16, 🔲 1.6)	Conducti	vity / TEM	np.	_		
<b>¥</b> Beckman	THESE PLANT CONTRACT	auci (10)	.10, () 1.0)	1	00	Q 21	OC		
3 Other	рн 8.3	9.8 4	7.5 (7.0)	10	N			umh	s/cr
Serial No. 01450.35	#Clicks			рН	TEMP 1	Ossolved (	0, / TEMP		
Fittration Equipment:	- Columbia			1.					
7 Geotech Parastatic Pump 7 Geotech 0.45 micron ster	Color			8.16	16.4	NA			
								mg/	iter
SAMPLED AT ppearance of Stream or Lake HIGH FLOWS WATER FLO ppearance of Sample	NOTCH OF WEIR,  DUE TO STORM W FULL OF DE	I, SHEL BRIS	EN ON TO FNO OLGA	P OF	WATE	ER. PIAL	·		
SAMPLED AT  ppearance of Stream or Lake  HTGH FLOWS  WATER FLO  ppearance of Sample  BROWN 4	DUE TO STORM	I, SHEL BRIS	EN ON TO FNO OLGA	P OF	WATE	ER. PIAL	·		
SAMPLED AT ppearance of Stream or Lake HIGH FLOWS WATER FLO ppearance of Sample BROWN G	DVE TO STORM W FULL OF DE	I, SHEC BRIS I, FUL	EN ON TO AND ORGA L OF DE	P OF INIC .	WATE	ER. PIAL	·		
SAMPLED AT ppearance of Stream or Lake HIGH FLOWS WATER FLO ppearance of Sample BROWN G ondition of Station ALL FACE	DUE TO STORM W FULL OF DE VERY MURKY	I, SHEC BRIS I, FUL	EN ON TO AND ORGA L OF DE	P OF INIC .	WATE	ER. PIAL	·		
SAMPLED AT ppearance of Stream or Lake HIGH FLOWS WATER FLO ppearance of Sample BROWN G  ondrion of Station ALL FACE  when Weather Condition COOL, CLO	DUE TO STORM W FULL OF DE VERY MURKY LETTES SEEM	I, SHECEBRIS	EN ON TO AND ORGA L OF DE	P OF INIC . TBRIS	WATE MATEI AND	ER. RIAL BRG	P. Mic	MATERI	
SAMPLED AT Appearance of Stream or Lake HIGH FLOWS WATER FLO Appearance of Sample BROWN Condition of Station ALL FACE Author Condition COOL, CLO	DUE TO STORM W FULL OF DE VERY MURKY	I, SHECEBRIS	EN ON TO AND ORGA L OF DE	P OF INIC . TBRIS	WATE MATEI AND	ER. RIAL BRG	P. Mic	MATERI	
Appearance of Stream or Lake  #IGH FLOWS  WATER FLO  Appearance of Sample  BROWN  Condition of Station  ALL FACE  Aument Weather Condition  COOL, CLO  LIGHT SA  Trevious Precipitation  AS WE	DUE TO STORM W FULL OF DE VERY MURKY LETTES SEEM	IN G	EN ON TO AND ORGA  L OF DE  COOD SHA  TLH FOLIO  THAT AN	P OF INIC . FBRIS PE	WATE MATEI AND HEAVY	ER. RIAL BRG	ANIC TRA	MATERI,	

COMPREHENSIVE MON	VITORING PROJECT/ROCKY MC	NUNTAIN ARSENA	N_		
SURFACE-WATER .	SAMPLING FIELD DATA S	HEET		P	agei
Sie O Number	Hydrogeologist(s)	Sample Numbers (range	201		age
SW 11001	6PD, SEG, TG	L4193 - L4		99270	9/27/29
Analytical Equipment	Meter Calibration	Tme	Oct 1000	6 278	Measurement :
pH Motor:	pH 700 = 7.06 a 25,5	2000	.0643	chs 89 278	
PC Bookman phi 21 ☐ Onega pH+16SA		Time	11/	,05	NA
Oion SA250	pH 10.00 = 10.02 at 24.7		Equipment Used	·	
Oqua			1		Serial No.
	Conductance Standard: 1434		100 mm long &	bornt flue	WA
Serial No. 01578   Conductivity Mater:	1 Married 1200	Time		2 1041 110047	
XX XSI Woods 33	Measured Value: 1200 untros/on at 2	14 ·c <u>0923</u>	Staff Gauge Reading		
Other	Calibrated Conductivity = Measured Conduc	12002 + 10.002	0.72 6	1 0020	
	(measured conductance) (25°C - Actual Term	ρ)): T _{ime}	10.10 G	0825	•
Serial No. 13076		0922	Sampling Method	Sample T	vpe com
Dissolved Oxygen Meter:  O YSI Model 518				DIT	CH OK 19:07
	Dissolved Oxygen WA mot at		GRAG		CH OK 89307
Serial No				10/3	SW
Temperature Meter:	Titration Results (Acid Concentration: 0	16 🖸 16	Conductivity / TEM	P	
Ø Beckman  Other		,,	130 /110		
i	рн <b>8.</b> 3 4.8 4	1.5 00	130/16		
Serial No. <u>015781</u>	#Clicks		PH TEMP : 0	Tried O /Tries	C (St. C
Fittration Equipment:	A A A		4 _ t	some of them	r / IIME
Geotech Parachtic Pump Geotech Outs migron ther	Color		7.43 15.2°C	114	
			P 0924	$\sim$ 71	-
Salpe Location Description 9/1	am drainage ditch a	5-6' UYNI	ONN 5" des	7 /4- 1	TALLE TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE
some debrial	Augusta and a start	To dead to	and o deep	i, san b	1000
and and (w	orm drainag ditch, r luminum, paper, plast	u, deod fw	1. 2")		
Appearance of Stream or Lake &	tream is slightly of	20010	<del>// / / / / / / / / / / / / / / / / / /</del>		
~	secon so sugicity of	sagar axi	n film a		
•	•	U			
A					
Appearance of Sample	41			· · · · · · · · · · · · · · · · · · ·	
opag	v Ç				
Condition of Station good					
good					
	•				
Current Weather Condition //					
pantle	cloudy, 168°F,	usind 15			
Theresay	may, -00 1, 1	JUNU 1-3	SW		•
	•				
Paris					
Previous Precipitation					
rain for I day	16, 16 days ago				
9					
Reauester St AS REAT		Ference	:		
181   1					
181,1115111					
I WE SE					
VSIS REG TARGET SC/MS SEDIMENT					,
12 2 3 3					
1311011					
4NALVSIS TARGE SEOI		Sarper	Sgrave:		
X X X		<del></del>	Mars D. JI	/	
FOPM130		1111	Spare: Pres Pudle	<del></del>	:
<del></del>			(7		•

COMPREHENSIVE MON	ITTORING PROJECT/ROCKY MC	DUNTAIN ARSENA	L	) <u>1</u>
Sie D Nurbor	SAMPLING FIELD DATA S Hydrogeologisus)			Page o ]
Sw 1100 2	KH LB JK	Sample Numbers (and K 2370 - K 3 FB = K2404-	- 1	89116 4/26/85
Analytical Equipment	Meter Calibration	Trne	Discharge (CFS)	Measurement :
pH Motor:	pH 700 = 1.00 at 26.2	~ NF9		
Di Beckman phi 21 □ Omega pHH-6SA	1	Time	,365	
Orion SA2SO	PH 1000 = 10.02 a . 24. L	· c 120[	Equipment Used	Senal No.
Other	Conductance Standard: 1000	umhos/cm at 25°C	EVELEY + 62	5 PYGMY NN6349
Serial No. <u>0145035</u>	on	Time		<u> </u>
Conductivity Motor: \$21 YSI Model 33	Measured Value: 900 untros/on at <		Staff Gauge Reading	
Other	Calibrated Conductivity = Measured Conduction (measured conductance) (25°C - Actual Term	#2nce + (0.02 (P)): Time	NA	
Serial No. 15596	900 umhos/om at 25°C		Sampling Method	Sample Type
Dissolved Oxygen Meter:  TYSI Model 518	· · · · · · · · · · · · · · · · · · ·	T		
	Dissolved Oxygen mg/ at	JAT & NA	GRAB	STRM
Serial No	Titration Results (Acid Concentration: 0		Conductivity / TEMP	
DB Beckman CD Other	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	).16, <b>(1)</b> 1.5)	200 1	25,5°C
	pH 8.3 4.8	4.5 17.9	250 unhos/	W racs/ca
Serial No. 0145035 Fittration Equipment:	#Clicks 17 56	57 155-4	pH TEMP DES	tes 0, / TEMP / TIME
189 Geotech Parastatic Pump		2016	9.82 24.0	NA
Sample Location Description	color Clear pink	piny clear	196 26.2	mg/ker
	WEST LONGER	. >	-0	
Appearance of Stream or Lake	WEST CUPSTREAM	M) OF 1	BRIDGE	
LOW FLOW	, CLEAR WATER	; LOTS	OF GRAVE	L IN SEDIMENT
Appearance of Sample				
LIGHT BROW	JU			
Condition of Station				
GOOD				
Current Weather Condition				
SUNNY, C	LEAR, 70°F,	LT BRET	EZE c-s	5 MPH
Previous Precipitation				
0-TRACE	4 DAYS AGO			
TARGET  GC/MS  SECIMENT		pen of H	BCANK all bothes both war	CDISTILLED (Into both)
\$ XXX \$		Sampler	Sonaturo	KI I SI
FOPM130	1 1 1 1 1	_ <u>'</u> _ <u>'</u> _ <u> </u> _	M C 14 1/	11/2-X

SURFACE-WATER SAMPLING FIELD DATA SHEET Page __/_ of __ Sie O Number HAN INT Hydrogeologist(s) Sample Numbers (range) K7489 - K7509 89130 SW11002 JK LB Analytical Equipment pH 7.00 = 7,02 a 17.7 & 1725 pH Motor: Bedoman phi 21 Omega pHH-6SA pH 1000 = 10.09 at 17.6 -c 1725 C) Orion SA250 □ Other Conductance Standard: _ /000 umhos/cm at 25°C NA Serial No. <u>0145035</u> Staff Gauge Reading WITH STAFF FED IN STREAM Measured Value: 825 umtos/on at 21 °c /724 Conductivity Meter: FULCTUATING @ (1608) VSI Model 33 Calibrated Conductivity = Measured Conductance + (0.02 Other , 96 - . 99 START 1.95 - 1.00 FINISH (measured conductance) (25°C - Actual Temp)): Serial No. ___/5596 Sample Type _ umhos/on at 25°C ___ Dissolved Oxygen Meter: ☐ YSI Model 51B GRAB STRIL Dissolved Oxygen 11 mg/ at NA Serial No. Conauciony/TEMP Temperature Meter: Titration Results (Acid Concentration: □ 0.16, □ 1.6) **⊠** Beckman 125 @ 21°C Other _ pН 2.3 4.8 4.5 (7.0) TEMP DESSORED O, / TEMP / TONE Serial No. 0/45035 #Clicks Fittration Equipment: 08 Geotech Parastatic Pump 85 72 Color 00 Geotech 0.45 micron ster Sample Location Description SAMPLE IN CANAL BOTTOM APPOXIMATELY 10 FT 17 STEAM OF BRILL STEWERE @ BUBBLER LINE ACROSS CANAL Appearance of Stream or Lake WITH ABUNDANCE OF DEBRIS AND CREANTES HIGH FLOWS DIRTY BROWN APPEARANCE Appearance of Sample BROWN, MURKY APPEARANCE, WETH DEBRIS AND CECHNICS Condition of Station GOOD SHAPE, WITH CRID DATA-LOGGER EN NO STEVELS OR STAFF GAGE Current Weather Condition COOL, PARTLY CLOUDY WINDY STORM IS PASSING TO THE EAST, WEATHER Previous Precipitation "H IN IMMEDIATE DRAINAGE AREAS Remarks: I W- MBE TAKES. STEEL NO FOR EXPERING OFFER ---WITH PERKING FULL Sampler Syran In Kolfusy

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL

	ITORING PROJECT/ROCKY MOU SAMPLING FIELD DATA SH		L	Page / o	
Sie IO Number	Hydrogeologist(s)	Sample turnoers (range	2)	Date	
500 11002	556, TG, GPP	44217-1	14236		
Analytical Equipment	Meter Calibration	र्गेलक	0.4	\$9278 Measurement :	
pH Moter: CD Bookman phi 21	pH 700 = 700 at 25.5	_ € <u>6920</u>	0022	767	
☐ Omega pHH-6SA	pH 10.00 = 10.02 at 24.	Time 7 - (A.)(D.)	Equipment Uses	Serial No	
☐ Orion SA2S0 ☐ Other		21/		•	
Serial No. 016781	Conductance Standard: 1434	unhosem a 2±°C . Time	200 Mill 20	= THECKTED FLUME NA	
Conductivity Meter:	Measured Value: 1200 untros/on at 20	<u> ~ 6922</u>	Staff Gauge Fleading	DETH C. BUBBLE	E
© Other	Calibrated Conductivity Measured Conduct	suce + lott		BUBBLE -	
Serial No. 1307(a	(messured conductance) (25°C - Actual Temp	*****	Samples Marca	- U.	ァリ <u></u> -
Dissolved Oxygen Meter:		012 <u>Z</u>	Sampling Matrice	Sample Type SE	~26
☐ YSI Model 51B	Dissolved Oxygen NA mg/ at 1		GRAG	Diai	
Serial No. W/t			Conductivity / TERM	1 DICI	
Temperature Meter:  19 Bedoman	Tritation Results (Acid Concentration: 0.	16. 🗀 1육	•		
□ Other	pH 8.3 4.8 4	·5 (2p)	165/18=	ESS O, TEMP / TIME	iwa:
Serial No. 016781	#Clids A / 1	/	PH TEMP = =	ESE O, / TEMP / TIME	
Fittration Equipment:	- MA		087 16.751	111	
George O.A.S Triprofi Ster Sample Location Description	Color / V / I		8.87 16.7C.	<u> </u>	ರ್ಷ
Appearance of Sample	OF BUBBLER. CONCRETT BANKS. CHANNEL IME, MUSS. ALGEA GROWIN ON CA	#175 52004 Bo	Man with Es	ETT FREES WITH MISS S	نِي حد ۽
	indy 1:750f				
	DAME AGS RAINCO FOR 2 DAM				
ANALYSIS REQUESTED  TARGET  GC/MS  SECIMENT		Sampler	Signature:	- Ming	
OPM130	1 1 1 1 1		De 1000-1-		

	ITORING PROJECT/ROCKY MOU SAMPLING FIELD DATA SH			Page _ ( of <u>/ _</u>
Sie 10 Number Uvalder Ditch C	Hydrogeologist(s)	Sample Numbers (rang	pe) Date	
12001	L.B., 56., K.H., J.K	K 1826 - KI	1846 8	39110
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)	Measurement #
pH Moter: ☑ Beckman phi 21	pH 7.00 = 7.01 at 22.6	℃ 755 Time	<i>-325</i>	
Omega pHH-65A	pH 10.00 = 10-05 at 21.8	·c 855	Equipment Used	Serial No.
Orion SA250	Conductance Standard: 1000		Pygny current	Inde NN 6347
Serial No. <u>O 145035</u> Conductivity Mater:	Measured Value: 880 umhos/om at 2		Staff Gauge Feating	
☐ YSI Model 33 ☐ Other	Calibrated Conductivity = Measured Conduct (measured conductance) (25°C - Actual Temp		No stall a	of this sistem
Serial No.	932.8 umhos/om at 25°C	956	Sampling Memoc	Sample Type
Dissolved Oxygen Meter:  YSI Model 51B		ime	1112	D+1
Serial No. <u>/55</u> 9C	Dissolved OxygenM mg/l_at	¢	6 KAB Conductiva	Ptch
	Titration Results (Acid Concentration: 0.	16, 15 1.5)	•	
Ď Beckman □ Other	8.3	4.5 (7.0)	750	7 / 15,8° <
Serial No. 0145035			pH _ Described	
Fittration Equipment:	#Clicks — 230 2	32	85	NA
Geotech Parastaltic Pump Geotech 0.45 micron filter	color - lishet p	nt	8.19/13 8 -	-gree
Sample Location Description	ast branch of Uva	lda Ditel	1 545-cm - 1	
of junction wi	ast branch of Uva In N-5 uvaldes Int , current meter reading	then 22.	Sample Latte	of a 35 est
	Outch initrally full			
weeds before	current rending. Both	om of dite	y very sitty	, about z'-6"
	Moving water 15 Cl		, ,	- 3
Appearance of Sample	1 <1 h.15.	· lande		•
Clea	r to Slightly a	Jours y		
ondition of Station	bk weeds in dite	4 in son	e pieces. C	266-500-1
trash ale	n bantis			
	<b>J</b>			· ·
irrent Weather Condition p	My cloudy, 80	° F		
	11 y = 0 = 1/	-		
Previous Precipitation Sovo	w fall 11 days	pieviers	, no read	puz-g
v v	w for 11 days	not day	S	, ,
		Fernar	ks:	
2 2				
12/10 1		Camelo	x Signature	
			Signatur	lled
FOPM130			<u> </u>	

	SAMPLING FIELD DATA S		u_	Р	age of
Site O Number	Hydrogeologist(s)	Sample Numbers (rang	ye)	Date	<u> </u>
12001	S GOOBERG G. PUPGK T. GEISEMAN	L4237 - L	:10 ~~	9001	C
Analytical Equipment	T. GEISGUMAN  Motor Calibration		Dscharge (CFS)	8926	Measurement #
pH Moter:	1	Time 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		872.78	
Deckman phi 21	pH 7.00 = 6.99 at 30.5	C	NA	.27	NA
Omega pHH6SA	pH 1000 = 9.98 at 28.4	1 . 1514	Equipment Used		Serial No.
Orion SA2SO	Conductance Standard: 1434				41 A
6 3 4 4 6 7 7 7 7	Conducance Standard: 1939	umhos/on at- <del>25*C</del> Time 21:6	NA		NA
Serial No. <u>015781</u> Conductivity Meter:	Measured Value: 1290 umtos/om at 3	0 ·c 1516	Szf Gauge Reading	·	
ON AZI Woodel 33	Calibrated Conductivity = Measured Conduc				
Other	(measured modurance) (294C) - Actual Terr	vili. x	- /	VA -	
Serial No. 13076	1073 21.6 untros/cm at 25°C	1516	Sampling Method	Sample	المكارا المكارا
Dissolved Oxygen Meter:				_	DTCH "
	Dissolved Oxygen NA mg/ at N	VA ~ NA	GRAB	<del></del>	EH-
Serial No. MA Temperature Meter:	Tering Control (1997)		Conductivity / TEM	P	
© Beckman	Titration Results (Acid Concentration: ()	J.16, [] 1.6)	- "/	10.60	/
Other	pH <b>3.</b> 3 4.8	4.5 (7.0)		199 /	
Serial No. <u>015781</u>	#Clicks N/A		PH TEMP C	assie 0, /Ten	RP /TIME
Fittration Equipment:	// / T				
Geolech 0.45 micron ther	Color		9.63 16.6	$\sim$ $\sim$ $\sim$ $\sim$	- mg/liter
Appearance of Sample	CIEAR WI SOME ORGANICT	Dergie Elexui	Y		
•	CALLE TOT SOME TROPIONE	DESIGN PROMIC	1-		
Condition of Station		<u> </u>			
	OK				
Aurrent Weather Condition 1	45- 10 00- 01-	***************************************			
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	HOT. IN BOOF CLEAR				
Previous Precipitation	MIYDAYS AGO, HEA	UY DALL ==	2 7 7 1 1 1		
	12 140, 110,	- 1 MALO HOX	- CUAYS		
	·				
MENT		Fierz	ks:		
11 1 1 1 1 1					
TARGET SEDIMENT					
TAR SEO SEO					
			× 50000		
SEOU SEOU			Sgrature:	1 .	
		1 1 1 /	hisan Gold	<u> </u>	
M130			•	_	

COMPREHENSIVE MON SURFACE-WATER S				N	Pag	ge
Sie O Number	Hydrogeologist(s)	O DATA C	Samle terres	( <u> </u>	Date	gc
SW12002	JK, BS		K1847-	K1867	89135	5/15/89
Analytical Equipment	Motor Calibration		Tem.	Osdange (CFS)		Measurement :
pH Moder: Bookman phi 21	pH 700 = 7.03	/5.	3 c 1820	NA		NA
☐ Omoga pHH6SA ☐ Orion SA2SO	pH 10.00 = 10, 10	2 x 15.	[c_1821	Equipment Uses		Serial No.
Other	Conductance Standard:	1000	umhodem_z 25°0	NA		NE
Serial No. 0/44750 Conductivity Motor:	Measured Value: 825	untos/on at	16 ·c/820	Saf Gauge Reading	(000)	9412005 = 4pc
YSI Model 33	Calibrated Conductivity =	Measured Cond	ucance + m co	ALBAIS	_	
Serial No. 14051	(measured conductance)	(25°C - Actual Te	iπρ)): Τ _{ιπε}		INSTALLE	
Dissolved Oxygen Meter:  Standard Oxygen Meter:	<u>973.5</u> .		Tare	Sampling Method	Sample Ty	
	Dissolved Oxygen	UA mod at _	NA ~ NA	GRAG	D10	CH
Serial No	Titration Results (Acid Co	noentration:	10.16, [] 1.5j	Conductivity / TE		
Ø Other	рн 2.3	4.8		25 14	sposjem @ /l	6°C
Serial No. 0144750	#Clicks	1.0	4.5 (7.E)		Desired O, / TEM	
Fatration Equipment: Geotech Parastatic Pump				7.57 9.6	NE	·
Sample Location Description	Color			1,01 110	, , , , , , , , , , , , , , , , , , ,	ग्युटिस
Appearance of Sample  CCB VOM, SI		A FA	IR AMOUNT	- OF ORER	NIC MATE	ERMIS :
Condition of Station		<u> </u>				
NO STATIO	N	•				•
Current Weather Condition						
RAINING, C	OOL					
Previous Precipitation						
21/4" RAIN	IING AS	WE SA	MPLE			
8 1 1 1 1	<del></del>	111				
[3]			Fera	<b>35</b> :		
Requested Set Mean						
1 17 1						
SEO!			10-	Sand		
4 h			3250	Sonawe:	elan-	
FOPM130			7	· • • · · · · · · · · · · · · ·		

	NTORING PROJECT/ROCKY MOUNTAIN ARSENAL  SAMPLING FIELD DATA SHEET  Page	1
Sie D Norber ROD+GUN CLUB POND	Hydrogeologist(s) S. GOLDBEEL Sample Numbers (args)  K. HEDBOLC K1807 - K1907	<u>-L</u>
JWQ12003	L. BROWN 000 K 1942 - K1951 89110	
Analytical Equipment	Meter Calibration Time Discharge (CFS) Measurement =	
pht Moder:  10 Beckman phi 21	pH 700 = 6.99 = 27.6 C 1157 NA -	
☐ Omega pHH6SA ☐ Orion SA2S0	pH 10:00 = 9.99 at 87.5 ·C 11.58 Equipment Used Serial No.	
Other	Conducance Standard: 1000 umhos/cm at 25°C NA	
Serial No. <u>0145035</u> Conductivity Motor:	Measured Value: 762 untros/on at 30 to 1204 Staff Gauge Reading	
Other	Calibrated Conductivity = Measured Conductance + (0.02 (measured conductance) (25°C - Actual Temp)): Time	
Serial No. 15596 Dissolved Oxygen Meter:	909 unhos/on at 25°C   204   Sampling Method   Sample Type	
TO YESI Model 51B	Dissolved Oxygen 5.9 mg/ at 25 c 1210 GRAG LAKE	
Serial No. 13634 Jemperature Meter:	Titration Results (Acid Concentration: 0.16, 1971.6; Conductivity / TEMP	
Beckman Other <u>PHY 603</u>	ph 8.3 4.8 4.5 (7.0) 1200 ments / 22°C ments	/cm
Serial No0145035	#Olids MA ] A A PH TEMP Description O, / TEMP / TIME	
Fituration Equipment:  ☑ Geotech Parastatic Pump	1.00	
Sample Location Description	COOK - LICHK PINK GREEN 1201 19.3°C 3.6 /200/12/0 TIGGE	<u>:</u>
American of Somm of American	POND, MORT FROM WATERS FROM WATERS	
) , <u>Use</u>	MASH REEDS. ABOUT 20FT FROM WATERS EDGE, ERWO IS SATURATED	
Appearance of Sample		
·		
Condition of Station	V SUGHTLY BROOD, A LITTLE B. T. PARTICIUNTER	
	OK.	
Current Weather Condition	DR. 780F, SL. CLOUPY SCIENT BREEZE	
Previous Precipitation	11 DAYS AGD SNOW	
	VERY HOT LAST Z DAYS (>30'F)	
Resuested of nevr	Remarks: STOCK = FIRE BFT OF ITE	
100	PONO PILICO GATEL E RECTOU FRUM	
1 1 2 2 3		
VSIS REGITALET SECTIONS		
TAR(GC)	Sampler Signature:	
本と一人	Augu Frieden	
FOPM130		_

	ITORING PROJECT/ROCKY MOI SAMPLING FIELD DATA SE		7	Page / o
Sire 10 Number	Hydrogeologist(s)	Sample Numbers (sare)	e) Date	- dge '
SW12004	KH SG LB	K1775-KI		89109
Analytical Equipment	Meter Calibration	Tme	Discharge (CFS);	Measurement :
pH Moter: ☑ Bedoman phi 21	pH 700 = 1.01 = 20.7	_	NA	NA
Omega pHH-6SA	pH 10.00 = 10.06 at 20.6	Time - 1217	Equipment Used	Serial No.
☐ Orion SA2S0				•
	Conductance Standard: 1000	umhos/cm at 25°C Time	NA.	NA
Serial No. 0145035 Conductivity Meter:	Measured Value: $750$ umhos/om at $2$	2 0.1342	Staff Gauge Reading	
D Other	Calibrated Conductivity = Measured Conductivity		NA	
	(measured conductance) (25°C - Actual Temp	P)): Time		
Serial No. 15596 Dissolved Oxygen Meler:	195umhos/on at 25°C _	1345	Sampling Method	Sample Type
YO YSI Model 51B	Dissolved Oxygen 7.5 mg/ at 1		GRAB	STSW
Serial No. 13634	District Cayyor not at	<u>U. J. C. 1.741</u>	Conductivity / TEMP	
Temperature Meter: ☑ Beckman	Titration Results (Acid Concentration: 0	.16, 🖔 1.5;		· · · · · · · · · · · · · · · · · · ·
□ Other	pH ' <b>8.3</b> 4.8 4	1.5 (7.0)	250 18°	<u>C</u>
Serial No. 0145035	#Clicks NA 108 7		PH TEMP DESOLUTION	0, / TEMP / TIME
Fittration Equipment:		0 0	7.16 237 77	/ :0 100 125=
Ga Geotech 0.45 micron Ster			7.16 23.77.7mg/	
Sample Location Description 20-30 feet No	ORTH OF STORM S	EWER; just	PAST STA	ENANT WATER
1	WHICH CREATED S	STAGNANT P	ian L	·
Appearance of Stream or Lake				
BLACK IN C	COLOR, OILY SH	EEN ON	SURFACE,	, LOTS OF THEH
IN STORM	SEWER INCLUDING	OIL CONTAIN	NERS STYREFOR	M, ALUM, CANE
Abbearance or Sauble			·	•
CLOUDY, BR	ZOWN ; FLOATABLES	- ORGANIC	AND INDRESAN	* MANER
Condition of Station	PACH = MALEUR	TEDS OFF	111/ 11/1-1-1	- 4105-0
ł dan dan dan dan dan dan dan dan dan dan	RASH , TUMBLEWE	•		
THROUGH SEDIT	un 1119/89 CEMENT TUNNEL	BUT WATER	R 15 FLGamests	-NOER TUNNEL
Current Weather Condition	CLOUDS: light brook	70 10:5 %	22 \ 750 =	
SUNNY , MIGH	CLOUDS; slight bree;	ce to mi	, 12	
Previous Precipitation				
ID DANG O	REVIOUSLY: SNOWFALL			
10 1115 7	Reviouse / . Should the	•		
8		Feren	<u> </u>	
5				
8 . 45				
M				
HYSIS REST GC/MS SECIMENT				
ANALYSIS REQUESTE X TARGET GC/MS X SEOIMENT		Sarria	Signature:	
₹X X			11.20 4 FM	

FOPM130

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUTTAIN ARSENAL SURFACE-WATER SAMPLING FIELD DATA SHEET Page ___ of __ Sie 10 Number Hydrogeologist(s) Sample Numbers (range) Date SUSAN GOLDBERG GEG PLOUK 5W12004 89a68 TERRY GESSELMAN <u> --4354-1427</u>0 Analytical Equipment Meter Calibration Dorse 1555, Mercarener = pH 700 = 6.99 x 28.3 pH Motor: (D) Bedoman phi 21 1. - STAGNANT NA ☐ Omega pHH-6SA pH 1000 = 9.98 x 28.3 Eastmen Used == 1759 See No. Orion SA2SO Other | Conducence Standard: 1434 ti A N A Serial No. <u>015781</u> Messared Value: 1290 untoston at 30 - 1457 Staff Gauge Reading Conductivity Meter: DVSI Model 33 Cabraed Conductivity - Measured Conductive - 1.22 Other (messured conductance) (25°G- Actual Terror; 21.6 Serial No. 13076 Sample Type umhos/on at 25°C _ TL 1306 Dissolved Oxygen Meter: ☐ YSI Model 51B (-z4B Dissored Oxygen NA mg/ at 12 0 NA Serial No. NA CORDING/ TEMP FINE Temperature Meter: Terzion Results (Acid Concentration: D Bedoman 0 Other _ 015 65 122/1400 4.8 ρH 8.3 4.5 (7.0)unnesen Dissolved O, / TEMP ! TIDE Serial No. <u>01578/</u> #Cids Fetration Equipment: NA ☐ Georgi Parastatic Pump NACócr ☐ Geolectr 0.45 Inviction Steer ...Ç/iter Sample Location Description 1-50 FT NORTH OF CULVERY WATER 1525 TES SAMPLING 1- - 3" CHAUNEL WICH IN ET Appearance of Stream or Lake STAGNANT MUCKY ON SUBSTANCE FLOMING SEFTION ON BALL THERES FORE SMELLS, FLORING ORGANIC MARKEIN, SONE - COSIL CHANNEL ELE-SEND, MUD Appearance of Sample (:LOUDT, NOT MUCH SEDIME-Condition of Station DΚ Current Weather Condition CLEAR, HOT, HAPROXIMATELY 75==-80°F Previous Precipization 14 DAYS AGO RAINED FOR ATTRIBUTELY 2 --ニーナーハルナーNO DITHE Remarks: MENSILEMENT FEE. FO MAY S S y Ğ Sampler Syram OPM130

	TORING PROJECT/ROCKY MO		L		
SURFACE-WATER S	SAMPLING FIELD DATA SE	· · · · · · · · · · · · · · · · · · ·			Page or
	Hydrogeologist(s)	Sample Humbers (rang	e) 14. 39	Date 891	n <b>7</b>
SW/2005 Analytical Equipment	LB, KH PW, BS SG, JK	111600 11.	Cartana (SSS	071	Measurement :
pH Motor:	Meter Calibration  pH 7.00 = 6.99 at 26.8	14.10	Discharge (CFS)		}
12 Beckman phi 21	pa /w = 20, 8	Time			NO
☐ Omega pHH-6SA ☐ Orion SA2S0	pH 1000 = 10,00 a 26,5	_ ·c_1342	Equipment Used		Serial No.
Other	Conductance Standard: 1000		Pramy Eu	and meta	+625 NO.NILE349
Serial No. 0145039 Conductivity Meter:	Moosured Value: 560 unthos/orn at 2	Time 6 •c 1345	Staff Gauge Reading		at 1401
DSDYSI Model 33	Calibrated Conductivity = Measured Conduct	tance + lott		3,02	
Serial No. 15596	(measured conductance) (25°C - Actual Temp 677 unhos/om at 25°C	ρ)): Tare 1346	Sampling Method	Sample	Туре
Dissolved Oxygen Meter:  TSI Model 51B				i	
Serial No.	Dissolved Oxygen//A mg/ at	<u> </u>	GRAG		STRM
Temperature Meter:	Tritation Results (Acid Concentration:	.16, 🛘 1.5)	Conductivity / TEM	<b>.</b>	
□ Other	рн 8.3 4.8 4	4.5 (7.0)	690/1		וחומונים
Serial No. <u>0145035</u> Fittration Equipment:	#Clids 153 2258 2	2334	PH TEMP 3	530 O, /TE	mp /TIME
15 Geotech Parastatic Pump 15 Geotech 0.45 micron liter	color light parts do	entr	8.9 18.5	NA	
Sample Location Description					nglier
5.	onple dates in v	restrict	Control	STUYET	ure
Appearance (Stream on Lake			·		
	stream botten.	plasty +	rest in	stream	6 W
			· ·		
Appearance of Sample		1.1+ 4			
	clean to very	150	15004		
Condition of Station					-
al	1 equipment fu	netional.	- 64642	- cod	Stilling
	•				
Current Weather Condition	lear to partly	didy.	5/15/4	1117 6	
	lear to partly from the NW	Air tony	0 ~ 70° F	-	
Previous Precipitation	Lays preversty	had a	340	نوريد	
0	and here in				
5 3		Ferre	ks:		
REQUESTED MS MS MENT					
1 1 1 1 2 2 1 21 1					
TARGET GC/MS SEDIMEN SCOLMEN					
TARGE SEOU		Samo	r Sonature:		
<b>*                </b>	<del>+                                     </del>		X .	المسؤر	

SURFACE-WATER S	SAMPLING I	-11-111 1111111		· <del> </del>			
Sie D Number 3, VVALPA	Hydrogeologist(s)		<del></del>	ample Numbers (ra:	(sg)	Date	Page/_ o'
SW12005	1 TE	LB		K7510	- K7530	8913	0 5/10/
Analytical Equipment	Meter Calibratio			Tene	Discharge (CFS)		Measurement =
pH Motor: 180 Beckman phi 21	pH 7.00 =	7.02 a 17	77	c 1725	NA		NA
☐ Omega pHH6SA ☐ Orion SA2SO	pH 10.00 = /	2.09 at 17	7.6	-c 1725	Equipment Used		Serial No.
Other	Conductance State	ndard: 1000	0		NA		NA
Serial No. <u>0145035</u> Conductivity Meter:	Measured Value:	825 untos/on at	21	Time +c 1224	Sall Gauge Reading		
Q( YSI Model 33 Other	Calibrated Conduc	zivity = Measured Co zance) (25°C - Actual	onductano	e + (0.02	4.58		VENS 1 1106
Serial No. <u>15596</u>	_	unthos/on at 25		141-6	Sampling Method		14.35 Type ox 89/3
Dissolved Oxygen Meler:  TSI Model 518		NA mod a		Tere	GRAB	1	5
Serial No.			at 10 A	*C _ <i></i>	Conductivity / TE	1 &	3 IKM
Temperature Meter: • 124 Beckman	Tration Results (	Acid Concentration:	□ 0.16,	🗆 រស្		@ 210	) C-
Serial No. <u>014503</u> 5	рн <b>9.</b>	3 4.8	4.5	(7.0)		0,/TE	<u> ಚನಕವರ</u>
Fittration Equipment:	#Clicks						ant I line
120 Geotech 0.45 micron ther	Color				8.40 18.4	NA	ದಲ್ಲಿ ಕ
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake	9						
SAMPLED OUT FS CLOSE Appearance of Stream or Lake HIGH FLOW SHEEN	WITH A ON SURFA	FAIR AN	моил	UT OF DE	EBRIS AND	CESNI	CS. 476=
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SIMEEN  Appearance of Sample  BROWN MU  Condition of Station	WITH A ON SURFA URKY LOC	FAIR AN	тоил	DEBRIS 1	EBRIS ARIE	CREANIS	CS. 476=
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU	WITH A ON SURFA URKY LOC	FAIR AN	тоил	DEBRIS A	EBRIS ARIE	CREANIS CEL INTO	CS. LIB == ERMIXED
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION IN	E WITH A ON SURFA IRKY LOC I GOOD S	FAIR AN	TILLE,	DEBRIS A	ND ORGEN	CREANIS CEL INTO	CS. LIGHT ERMIXED ME LAG
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION IN  Current Weather Condition  COOL PARTIL	WITH A ON SURFA  IRKY LOC  I GOOD S	FAIR AND WIT	TILLE,	DEBRIS A NG WELL RELATIVE	EBRIS AND NO ORGEAL ENLETS	CREANING TIME	CS. LIB ==  ERMINEU  ME LAB  S  TK 87=-
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SIMEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION IN  Course Weather Condition  COOL; PARTL  STORW Will	WITH A ON SURFA  IRKY LOC  I GOOD S	FAIR AND WIT	TILLE,	DEBRIS A NG WELL RELATIVE	EBRIS AND NO ORGEAL ENLETS	CREANING TIME	CS. LIB ==  ERMINEU  ME LAB  S  TK 87=-
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION IN  Current Weather Condition  COOL; PARTL  STORW W:	WITH A ON SURFA  IRKY LOC  I GOOD S  I 'ELOUO'I  HICH CAU	FAIR AND STATE OF A STATE OF A STATE OF A STATE OF A SED HIGH A	TILLI,	DEBRIS A  NE WELL  RELATIVE  S HAS P	ENLETS : TO CHART	CREANING THE REASONS	CS. LIB ==  ERMINEU  ME LAB  S  TK 87=-
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION EN  Current Weather Condition  COOL PARTL  STORW We  revious Precipitation  MAY HAVE	WITH A ON SURFA  IRKY LOC  I GOOD S  I 'ELOUO'I  HICH CAU	FAIR AND STATE OF LT WIN	TILLI,	DEBRIS A  NE WELL  RELATIVE  S HAS P	EBRIS AND NO ORGEN.  ENLETS: TO CHART  ESSED TO TO	CREANING ENTER FEASING	CS. LIBER  ERMINED  ME LAB  S  THE EAST  THING  /2 House 23
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION EN  Current Weather Condition  COOL; PARTL  STORW W:  Previous Precipitation  MAY HAVE	WITH A ON SURFA  IRKY LOC  I GOOD S  I 'ELOUO'I  HICH CAU	FAIR AND STATE OF LT WIN	TILLI,	DEBRIS A  NE WELL  RELATIVE  S HAS P.  OF FAIR	EBRIS ANE  NO ORGEN.  ENLETS: TO CHART  APPROXIN	CREANING  B-CL TIM  B-CL TIM  BELSING  CE LORD  US-EV	CS. LIBET  ERMINED  AE LAB  S  TIC 845-  EAST  THUSE  A HOSE 25
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION IN  Current Weather Condition  COOL; PARTL  STORW We  Previous Precipitation  MAY HAVE	WITH A ON SURFA  IRKY LOC  I GOOD S  I 'ELOUO'I  HICH CAU	FAIR AND STATE OF LT WIN	TILLI,	DEBRIS A  NE WELL  RELATIVE  S HAS P.  OF FAIR	EBRIS AND NO ORGEN.  ENLETS: TO CHART  APPROXI  NO DISCONDINCE	CREANIC ELECTION FELEVISE LE LETE CE LE LETE CE LE LETE CE LE LETE CE LE LETE CE	ERMINED  THE LAG  S  THE EAST  THUS  A HOSE 25  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS LOSE  TOURS
Appearance of Stream or Lake HIGH FLOW SHEEN  Appearance of Sample BROWN MU  Condition of Station STATION IN  STORIN WI  Previous Precipitation MAY HAVE	WITH A ON SURFA  IRKY LOC  I GOOD S  I 'ELOUO'I  HICH CAU	FAIR AND STATE OF LT WIN	TILLI,	DEBRIS A  NE WELL  RELATIVE  S HAS P.	EBRIS ANE  NO ORGEN  ENLETS  TO CHAR  APPROXING  LOWERING  LOWERING  LOMPIETE  AND PRE	ERGANIA  ELENTO  ELENTO  ELENTO  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR	ERMINED  THE LAG  S  THE EAST  THUS  A HOSE 25  TOURS LOSE  PARAMETE
SAMPLED OUT  FS CLOSE  Appearance of Stream or Lake  HIGH FLOW  SHEEN  Appearance of Sample  BROWN MU  Condition of Station  STATION IN  STORW WE  Previous Precipitation  MAY HAVE	WITH A ON SURFA  IRKY LOC  I GOOD S  I 'ELOUO'I  HICH CAU	FAIR AND STATE OF LT WIN	TILLI,	DEBRIS A  NE WELL  RELATIVE  S HAS P.	EBRIS AND NO ORGEN.  ENLETS TO CHART  APPROXI  LOWERING  LOWERING  LOWPLETE AND PRES	ERGANIA  ELENTO  ELENTO  ELENTO  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR  ELETTOR	ERMINED  ME LAG  S  THE EAST  THUS  LAG  EAST  THUS  EAST  THUS  PARSIE  IPPING

COMPREHENSIVE MON	ITORING PROJECT/ROCKY MOI SAMPLING FIELD DATA SE	UNTAIN ARSENAI HEET		Page 1
Sie D Number	Hydrogeologist(s)	Samule Numbers (range	)	Page / of _
5W12005	SEG, GPP, T.G.	L4291- 1	117:11	89269
Analytical Equipment	Meter Calibration	Tree	Disparite (252)	Measurement #
pH Motor: CD Beckman phi 21	pH 700 = 7.0) = 208.	~ 090c		81278
☐ Omega pHH-6SA	2	Time	<del>-+6113</del>	·30 NA
Orion SA2SO	pH 10.00 = 10.05 a 21.1	_ ~ <u>D907</u>	Equipment Used	Seria No.
Other Serial No. <i>DIS 18 l</i>	Conductance Standard: 1434	unhavan z <del>-za-a</del>	200 mm Lowy	THEORIED FLUME NA
Conductivity Motor:	Measured Value: [100 untoston at 21	_ = 0909	Staff Gauge Fleading	
☐ YSI Model 33	Calibrated Conductivity = Measured Conduct	suce + 015.	-51'19	
Serial No. 13076	(measured conductance) (25°C - Actual Tempo	))): _{Teres}	Sampling Metrod	@ 0931
Dissolved Oxygen Meler:	1/13 21.6 unthos/on at 25°C	0707	Samping Metroc	Sample Type 7 89306
☐ YSI Model 51B	Dissorted Oxygen MA mg/ at M		GRAB	STRM
Serial No. NA Temperature Motor:			Conductive / TEM I	P DRUK
© Beckman	Trazion Results (Acid Concentration: 0.	16. D 1.6,	"EID / 1	124 /
Other <u>DY</u>	pH 8.3 4.8 4	.5 (20)	HDD19/ 2	1 19 0937 umboodes
Serial No. 015781. Filtratjog Equipment:	#Clicks 1/A -		PH TEAR Q	ssolved O, / TEMP / TIME
Georgia Parastatic Pump Georgia 10.45 micron ster	Color		840 45	A 1 A
Sample Location Description	COO		75134	1VA motion
	•			
UZ-3FT DOWNSTA	REAL OF GAGE, USET (			
Appearance of Stream or Lake	Salar Salar C	LPSIKEAM OF	WEIR	25000
WILLOWS GROWING	TO WATERIS EDGE.	onom whi so	ome disalu	C DEBRIS ON BOTTOM
Appearance of Sample				
•	CLEAR			,
				·
Condition of Station	OK			
<b>0</b> /				
•				
Current Weather Condition	1 CAO H 1. 7.10	-		
	LEAR, HOT, U70°F	•		
Previous Precipitation () 16	DAYS AGO LAST RA			
	DINAS ROO LAGE REP	RAINE	O AUFECT AN	LIELY Z DAY!
KEAUESTED ST		: Semarks:		
7 L				
교민집회				
りいけば				
TARGET TO SEDIMEN				
TAR		Sampler S	Signature:	
ニーススズン			(1)	<i>(</i>

FOPM130

	1 1 2	Same surces (larg	(a)	
SW 24001	L. Brouillard	K1997		89138
	H. Hedberg	1 1 2/20	-2145(0)	
Analytical Equipment	Meter Calibration	Time	Osciarie 1758	Mezseren =
pH Mater:	pH 700 = 6,99 at 3	0.7 - 1108	2.5 78	m }
2 Bedeman phi 21		Time	At end of sa	
☐ Omega pHH6SA	997 7			
Orion SA250	pH 10.00 = 9,97 at 2	€1.3 € 1108	Equipment Usec	Sera No.
Other	Conductance Standard: 107	770 (moreon a 290)	MERSIRING	
Serial No. 0 144748		Time	LROEL	
Conductivity Meter:			Staff Gauge Reading	
YSI Model 33	Measured Value: 1000 umhos/om	a <u> </u>	ou. cag. toa.	
Other _	Calibrated Conductivity = Measured	Conducance + p.22	Λ	14
	(measured conductance) (25°C - Act.	al Temp)): The	'	•
Serial No. H & 01675	5 860 unhos/on at	290 1109	Sampling Metrics	Sample Type
		Tirre		
YSI Model 51B	Dissolved Oxygen NA mg/		GZAG	S7, ²
a	Descred Caygenmg/	at	]	
Serial No			Conduction/TEMP	/TIME
Beckman	Titration Results (Acid Concentration:	□ 0.16, <del>□ 1.</del> 5	_	
Other			500/	16" 4 1118
<del></del>	рн <b>3.</b> 3 <b>4.</b> 8	4.5 (7.0)	·	UTFCS/CTI
Serial No. 10 abave	#Clicks (52	153 100	PH TENE DESS	ies 0, / TEMP ITUE
Fittration Equipment:	752	130 100		
Geotech Parassabic Pump	Color light	pint green	8,69 13 2	NA
Cl'Georech 0.45 micron ther		1	ļ <b>\$</b>	こうしゅ こうしゅ こうしゅ こうしゅ こうしゅ こうしゅ こうしゅ こうしゅ
Sample Location Description 5 #	AMPLE TATIEN	FROM FUL	PIPE SESLET	tabinb to
SEWACE TRE	THT MENT PLA	NT. DISCHARGI	NO PIPE ET	RPTYS INTE
DITCH WHIL	H CONNECTS TO	O FIRST IN	211-1-1-	_
Appearance of Stream or Lake				
	ISCHARGIAG WA	7100 15 01	isux la	TE OF DIZLARGE
	HANGES PERIOUIC.		22 1772	
_,	THOSES TELLIONES	400)		
		······································		
Appearance of Sample				
	CLEAR			
	LEAR			
	LEAR			
	L154 R			
Carting 10				
Condition of Sezion 6000	REENS 6 Pour	_	CH IN TO	-reH
Condition of Sezion 6000		_	CH 12 2	-reH
Condition of Sezion 6000	REENS 6 Pour	_	CH IN N	meH
Condition of Section 6000	REENS 6 Pour	_	CH IN -	-reH
Condition of Sezion Good 1015.	REENS 6104 CHARLE 15.0	PLLUPRING		
Condition of Station 6000 1015.  Current Weather Condition 60	CHURCE IS . C	PLLUPRING		
Condition of Station 6000 1015.  Current Weather Condition 60	REENS 6104 CHARLE 15.0	PLLUPRING		
Condition of Station 6000 1015.  Current Weather Condition 60	CHURCE IS . C	PLLUPRING		
Condition of Seaton 60000 1015.  Current Weather Condition	CHARLE IS . C	- 70°F, LIG	, 47 B/US	2 <i>E</i>
Condition of Seaton 60000 1015.  Current Weather Condition	CHARLE IS . C	- 70°F, LIG	, 47 B/US	2 <i>E</i>
Condition of Station 60000 1015.  Current Weather Condition 60 Previous Precipitation 41614	LEMR, WHEM A	PHIN FOL	WUZ- 13	ZĒ ZFOKG
Condition of Station 60000 1015.  Current Weather Condition 60 Previous Precipitation 41614	CHARLE IS . C	PHIN FOL	WUZ- 13	ZĒ ZFOKG
Condition of Station 60000 1015.  Current Weather Condition 60 Previous Precipitation 41614	LEMR, WHEM A	PHIN FOL	WUZ- 13	ZĒ ZFOKG
Condition of Sezion 6000 1015.  Ourrent Weather Condition 6000 Previous Precipiation 6000 5000 5000 5000 5000 5000 5000 500	LEMR, WHEM A	PLLUPRING - 70°F, LIG PAIN FEL DIGNE FAI	WE - P	ZE ZEFORG ZAY
Condition of Sezion 6000 1015.  Ourrent Weather Condition 6000 Previous Precipiation 6000 5000 5000 5000 5000 5000 5000 500	LEMR, WHEM A	PLLUPRING - 70°F, LIG PAIN FEL DIGNE FAI	WE - P	ZE ZEFORG ZAY
Condition of Sezion 6000 1015.  Ourrent Weather Condition 6000 Previous Precipiation 6000 5000 5000 5000 5000 5000 5000 500	LEMR, WHEM A	PHIN FLA	W 11= 12 12 12 12 12 12 12 12 12 12 12 12 12	ZE ZEFORG ZAY
Condition of Seaton 60000 1015  Current Weather Condition Confirm Condition Previous Precipitation L1614 54411	LEMR, WHEM A	PRIN FEL DIGNET HAN	WHEN BLUE WHENTERN  AS: ph 1 2 2  France	ZE ZEFORE ZAY Zened to day
Condition of Seaton 60000 1015  Current Weather Condition Confirm Condition Previous Precipitation 21614 5411	LEMR, WHEM A	PRIN FEL DIGNET HAN	WHEN BLUE WHENTERN  AS: ph 1 2 2  France	ZE ZEFORE ZAY Zened to day
Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condi	LEMR, WHEM A	PRIN FEL DIGNET HAN	WHEN BLUE WHENTERN  AS: ph 1 2 2  France	ZE ZEFORE ZAY Zened to day
Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condi	LEMR, WHEM A	PRIN FEL DIGNET HAN	WHEN BLUE WHENTERN  AS: ph 1 2 2  fta 22 -	ZE ZEFORE ZAY Zened to day
Condition of Season 60000 1015  Current Weather Condition Control Visit of Season 1016  Previous Precipizion 11614  Season 101614	LEMR, WHEM A	PRIN FEL DIGNET HAN	WHEN BLUE WHENTERN  AS: ph 1 2 2  fta 22 -	ZE ZEFORE ZAY Zened to day
Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condi	LEMR, WHEM A	PRIN FLA  DIGNO FAN  Remar	WHEN BLUE WHENTER  Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin	ZE  ZEFORE  LAY  Land to day  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control
Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condition  Current Weather Condi	LEMR, WHEM A	PRIN FLA  DIGNO FAN  Remar	WHEN BLUE WHENTER  Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin Schange Lin	ZE  ZEFORE  LAY  Land to day  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control
Condition of Seaton 60000 1015  Current Weather Condition Confirm Condition Previous Precipitation 21614 54111	LEMR, WHEM A	PRIN FLA  DIGNO FAN  Remar	KS: ph who to the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of the school of th	ZE  ZEFORE  LAY  Land to day  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control  Control

COMPREHENSIVE MON SURFACE-WATER S	ITORING PROJECT/ROCKY MO SAMPLING FIELD DATA SI	DUNTAN ARSEN. HEET	W	Pag	e of
Sie 10 Number	Hydrogeologist(s) GPP, TG,	Samue teatres (non	(ge)	Date	e
5W 24001	SEG	14271- LL			7/59
Analytical Equipment	Motor Calibration	Teta	Domage (CFS		leasurement #
pH Motor:	04700 = 6.98 = 31.6	_ s <u>1321</u>	1		
☐ Omeoa pHH6SA	pH 10.00 = 9.96 at 30.9	_ +o <i>1323</i>	Equipment Upsat		Socia Vo
1 Other 0157841		vances zele		· / <del>/</del>	+/ A
Serial No.		Time	Calle and X	KICKI!	NA_
Conductivity Motor:  XSI Model 33	Massured Value: $1490$ untoston at $3$	_	Staff Gauge Flessing		
6 on≈ 13076	Calibrated Conductivity = Measured Conduction (measured conductance) (2546 - Actual Term	oli. Ime	NA		
Serial No.	91.6 	-	Samping Marca	Sample Type	SRM F
Dissolved Oxygen Meler:  TSI Model 518	Dissolved Oxygen NA mg/ at	Time	GRAS	1 5	EUTEE RETURENT
Serial No. MA	Dissolved Oxygen 10/1 mg/ at _	•		PERP F	125
Temperature Meter:	Tirrasion Results (Acid Concentration: 0	.16, 🗀 :5	Conductivity / TEM	6	G-2;
□ Other <u>0157841</u> 67P	рн 8.3 4.8 4	4.5 (7.0)	400 / 32.	.5°C	### T
Serial No.	#Clicks	(1.0)	PH TEME TO	issolved O, / TEMP	I TAKE
Fitration Equipment:  ☐ Geotech (Farbstatic Pump	- NA		7.51 323	4/4	
Geotech loks Inicron ster	coox treatment pla lastic lines) heavey v			NR	mc/liter
uppearance of Sample					<u>.</u>
CUOI					1
iondion of Station			1.00		
good	•				
ument Weather Condition					
partly cloudy,	85°F, WIND 1-3	5			:
evious Precipitation					
rain for 2 day,	16 days ago				
		Ferrad		, FRED 700 MJ.	
		· · · · · · · · ·	Mac - 1-	THE RIC DISCE	
MENT MENT			Merchanism a		
				59270	
SEO SEO					: : : :
TARE SEO.		Sampler	Signature	11./	
			Ing "	den	<u>.</u>
1130			6		

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL SURFACE-WATER SAMPLING FIELD DATA SHEET Page _/___ of ____ Site 10 Number Hydrogeologist(s) Sample Numbers (range) Date 5 Gaoger K2021-K2041Swagewa L. BROWNARD 89111 JWAYODA KZOUZ - KZOU SW GCM K. HEDBERG Analytical Equipment Meter Calibration Commerce (CFS) teamer = Time pH Motor: pH 700 = 7.02 at 19.7 _ c <u>0922</u> D/Bedoman phi 21 23/ ☐ Omega pHH-6SA pH 10.00 = 10.08 at 18.7 _-c_0925 Orion SA250 Examer Used See No Other _ Conducance Standard: 1000 _umhos/on at 25°C MV6349 PIGNY Time Serial No. 0145035 State Gauge Reading Conductivity Meter: DVSI Model 33 Calibrated Conductivity = Measured Conductance + (0.02 Other _ (measured conductance) (25°C - Actual Temp)): Time Serial No. 15591 912 0929 Sarrole Tose _ umhos/cm at 25°C __ Dissolved Oxygen Meler: Time COLYSI Model 51B GZAB Dissolved Oxygen 7.8 mg/ at 20 °C 1035 STREEL Serial No CONCURRY / TEMP Temperature Meter: Trazion Results (Acid Concentration: □0.16, □ 1.6) Beckman Other DHYSO \$5111 STC/170 8.3 4.8 4.5 (7.0) Serial No. <u>0145</u>035 Dissolved O, /TEX.S #Clids Fittration Equipment: 99 303 311 E-5 ☐ Geotech Parastatic Pump Di Geolechi 0.45 micron ster GREEN) PINK GREEN Sample Location Description NOTCH 199111 WATER SAMRE TAKED IN V NOTHER OF WEIR SEDMENT SAMPLES TAKEN 2 FT UPSREAM OF WEIR Appearance of Stream of Lake BANKS ARC STEEP AND CONFRED WITH VEGET TO BOTTOM OF STREET COT AND SILTY WITH GRASSY VEGETATION UP AND DANUSTRETHY == SITTLE POINT Appearance of Sample CLEAR Condition of Station Current Weather Condition DUNNY, HOT BREZY, M70°F Previous Precipitation SNOWED IZ DAYS AGO THE LAST 3 DAYS HAVE THE - TELLY HOT TO THE Remarks - January STREAM 1655 VACTURE STEEL WATER FIRE THE FO MAY VERY CITY TOOKS OR HIELENT 6et ₹ J Sampler Trans duca- Fratus FOPM130

	TORING PROJECT/ROCKY MOUNTAIN ARSENA	•		
Sie O Nurber	SAMPLING FIELD DATA SHEET  Hydrogeologist(s)   Sample Numbers (and)	Page/_ of		
5w 24002 ST	$\mathcal{D}_{\mathcal{A}}$			
Analytical Equipment	Meter Calibration Trace	Distance (CES)   JK 89156   Mesources :		
pH Motor: 100 Bockman phi 21	pH 700 = 7.03 at 17.3 = 14/14	3,35 NA		
☐ Omega pHH6SA ☐ Orion SA2S0	pH 10.00 = 10.09 at 17.2 - 14/4	1		
Other	Conductance Standard: /000 uninosism at 25°C	PUEDLY 4625 121/2349		
Serial No. 0/4/756 Conductivity Meter:	Measured Value: $850$ untoston at $17 - 1415$	Sal Carpe Feeding		
DOther	Calbraed Conductivity = Measured Conductance = 0.02 (measured conductance) (25°C - Actual Temp));	STATE 0.93		
Serial No. <u>1405/</u>	(measured conductance) (25°C - Actual Temp)): Time / ////	ENC 6.97 Sample Type		
Dissolved Oxygen Meter: [] YSI Model 518	Dissolved Oxygen	GZEB STEM		
Serial No Temperature Meter:		Conducting/TEMP		
128 Beckman	Thration Results (Acid Concentration: 0.16, 0.16)	750 unios/cm @ 17°C		
Serial No. 0/447.50	pH <b>8.3 4.8 4.5</b> (7.0)	pH Desched O, Temp / Tax		
Fituration Equipment:  Sp Geotech Parastatic Pump	#Clicks			
Ø Geotech 0.45 micron fiter Sample Location Description	Color	8.27 11.6 NA =give		
SAMPLED AT NOTET IN WETR. DIRECTLY A V-NOTEH  Appearance of Stream or Lake  FLOW IS HIGHER THAN NORMAL AND WATER HAS A SUFFILY BROWN NOTE.				
Appearance of Sample				
SAMPLE IS SCIENTLY BROWN AND MUREY				
Condition of Station STATION TS	IN GOOD CONDITION AND ALL FRE	DUSTRIES = TS OPERATIONE		
STATION IS IN 6000 CONDITION AND ALL EQUIPMENT IS OPERATION.				
Current Weather Condition				
COOL, CLOUDY, LIGHT WIND. ETGH- SPRINGLES				
Previous Precipitation				
PRECIPETATION LAST NIGHT, SOUTH FIRST CREEZ -ITH RISE				
TA	KES APPROXIMATELY 20 HRS 10	REKS WORTH FIRE 259		
KEQUESTED NS NS NS NS NS NS NS NS NS NS NS NS NS	Remark	s:		
TARGE GC/MG				
X	Sampler	Jahr- Sher		
PM130		AV.		

	ITORING PROJECT/ROCKY MOUNTAIN ARSEN	IAL	Page / -/ /	
Sie D Number		rge) _ ! Date	Page _ / _ ;i _ / _	
500 24003	Hydrogeologist(s) tr. Hedberg Sample Numbers (as tr. 1952  L. Bruilland, S. Goldberg tr 2 312	-H2335(5)	89111	
Analytical Equipment	Meter Calibration	Discharge (CFS)	Measuremen =	
pH. Moler: 12 Bookman phi 21	pH 7.00 = 6.99 at 29.0 °C /438	NA	V+	
Omega pHH6SA	pH 1000 = 9.98 a 29.0 °C 1438		Serial No	
Orion SA2SO		1		
Serial No. 0145075	Conducance Standard: 1000 umhos/cm at 25°C Time		N/-	
Conductivity Meter:	Measured Value: 1010 umhos/on at 30 +0 143 8	Staff Gauge Reading		
☐ YSI Model 33	Calibrated Conductivity = Measured Conductance + (0.02 (measured conductance) (25°C - Actual Templ): Time	NA		
Serial No. 15596		Sampling Method	Sample Type	
Dissolved Oxygen Meter:	909 unifosion at 29°C 14°39	July 100		
☐ YSI Model 51B	Dissolved OxygenM mg/l atC	GRAG	POND	
Serial No.		- Conductivity / TEMP		
Temperature Meter:	Titration Results (Acid Concentration: 0.16, 1.6)		•	
Ø Beckman □ Other	01 10 15	1850 / 24	° C	
Serial No. 0145035	pH <b>8.3</b> 4.8 4.5 (7.0)	III ITEMA É DIVINA		
Serial No	#Clicks 13 80 86	pH TEMP Desired	O, / TEMP / TIME	
☐ Geotech Parastatic Pump	color green posts port	8,45 22.2 N	4	
Geotech 0.45 micron ther Sample Location Description	Color great party pratt		स्तृत्व	
American of Source address	OF METAL ID SAMPLE STATE. SAMPLE TAKEN IN ABOUT IFT WATER			
1	MURKY GREEN BROWN CO	cex. 31LTY	1307 (OM	
4				
Appearance of Sample	Appearance of Sample  Brown CLOUDY TPANSLUCIONT			
	<b>,</b>			
Condition of Station				
6				
	•			
Current Weather Condition	BUT 85°F			
000	CLUBSIONAL LIGHT BREEZE FROM SONT			
Previous Precipitation SNOW FALL ABOUT 2 WEEKS AGO.				
WARM AND PRY LAST WEST				
9	I I Sem	arks.		
Formarks:				
\$ L W 5				
1 1 % 1	1 %   %   %   1   1   1   1   1   1   1			
174815 GC / SEO				
3/F(0) N				
Sarroler Signature:  Surgery Signature:  Aug of the surgery signature:				
FOPM130		Jew /-		
O: WIDO				

SURFACE-WATER S	SAMPLING FIELD DATA SHEET	1	Page of	
Sie O Number	Hydrogeologist(s) Sample Numbers (rang	)e)	Date	
SW24004	JK, LB, KH K1976-1	K1996	89114	
Analytical Equipment	Meter Calibration	ರಿಚಾತ್ರಾಕ (CFS)	Mezurement #	
pH Motor:	pH 7.00 = 1.03 at 15.3 = 0913	.142		
Ø Bedoman phi 21 ☐ Omega pHH-6SA	1011 16 2 6001	.172		
□ Orion SA2S0	pH 1000 = 10.12 a 15.0 = 0924	Equipment Used	Seral No.	
Other	Conductance Standard: 1000 uninos/cm at 25°C	PORTEGIE FL	IME NA	
Serial No. 0/4/5035 Conductivity Metor: 12 YSI Model 33	Measured Value: \$50 unthos/on at \$18.0 \times (19.25)	Saf Gauge Reading		
Other	Calbrated Conductivity = Measured Conductance - (0.02 (measured conductance) (25°C - Actual Temp)): Time	Ni/A		
Serial No. 15596	(measured conductance) (25°C - Actual Temp)): Time  969 unhos/om at 25°C 0927  Time	Sarping Menod	Sample Tyse	
Dissolved Oxygen Meter:	Time		1,52	
Serial No.	Dissolved Oxygen _N A _ mg/ at≎	GZAB	STR V	
Temperature Meter:	Titration Results (Acid Concentration: 0.15, 08/15)	Coracin/TEM	ρ . ——	
© Bedoman ☐ Other	рн <b>8.3 4.8</b> 4.5 (7.0)	875	13.3° unhosem	
Serial No. 0145035 Fittration Equipment:	pH 8.3 4.8 A.5 (7.0)  #Clicks — 1815   505 —	DH TOP O	issolved O, / TEMP I TIME	
Geotech Parastatic Pump	color - PINK PINK -	5.10 [33]	NA	
Sample Location Description	1 171000	i i	mg/iiii	
100 YARTS UPS	STREAM OF ARSENAL BOUNDAR	<b>A</b> .		
Appearance of Stream or Lake				
LOW FLOW, FREE	E OF TUMBLEWEEDS, CLEAR			
Appearance of Sample				
CLERR				
CLETIC				
Condition of Station				
	Condition of Station			
6000				
Current Weather Condition		-		
MOSTLY CLOUP,	DY LIGHT WINDS (C-SMPH)	, 6===		
Previous Precipitation				
D TONK A IS				
O-TRACE AMOUNTS OVER WEEKEND				
4515 REQUESTED TARGET SC/MS SEDIMENT	Remark	PH THE	IMAY BERETIE	
TARGET TARGET SEO(MES SEO(MES )				
3 4 3 3				
ANALYSIS TARG GC/ SEOU	Sampler	51720	W 1/	
~ \rangle		Siza.	of Men	

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL

	NITORING PROJECT/ROCKY MC SAMPLING FIELD DATA S		V.		Page / of /
	<del></del>	<del></del>	····		Page _ / of _/
Sie D Number SW 3000 2	Hydrogeologisus) L. Brouillard tt. Hedberg	Sample Numbers (range )	早 2171	Date 5	9114
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)		Measurement #
pH Moder. 1 Bodoman phi 21	pH 700 = 7.01 a 21.2	- *C ///8	0.464	16	
☐ Omega pH146SA	pH 10.00 = 10.05 a 21.3	2 14 17	Equipment Used		S-i-t M
Orion SA2SO	pH 10.00 = 70.00 a 27.5	> ·c <u>/// b</u>	LONG T	4 RO 4 TH	Serial No. 7 89114
Other	Conductance Standard: 1000	umhos/om at 25°C Time	FLUM		NAHE
Serial No. <u>0145035</u> Conductivity Meter: YSI Model 33	Measured Value: 870 unthos/on at 2	22 ·c ///8	Staff Gauge Reading		
Other	Calibrated Conductivity = Measured Conduc (méasured conductance) (25°C - Actual Terr		NA		
Serial No. 15596	422, 2 unthos/on at 25°C	1119	Sampling Method	1:	Sample Type
Dissolved Oxygen Meler:	01103011 at 250	Time	, ,	1	•
TSI Model 51B	NA	******	GRAB	1	STRM
	Dissolved OxygenNA mg/ at		GENO		
Serial No.			Conductivity / TEN	1P	
Temperature Meter:	Titration Results (Acid Concentration: 🔲 (	0.16, 🖳 (.6)		,	0
Bedkman 5 35		. – .	8	50/	15°C
Other 0145 035	рн <b>9.</b> 3 4.8	4.5 (7.0)	j	1	umhas/an
Coriot Ato	· · · · · · · · · · · · · · · · · · ·		OH TEMP 1	Occobed O	ITEMP /TIME
Serial No Editration Equipment:	#Clicks 1.450d 285 2	257	pri l'estit	Desoved O	Theme Time
2 Geotech Parastatic Pumo	<u> </u>		00/ 128		
12 Georech 0.45 micron strer	Color - /15 Nt p	int	8.86 13.8		
Sample Location Description			1-61		mg/ter
Appearance of Stream or Lake	PPROX 10' UPSTA CONFLUENCE WIT CLEAR FLOW, S	TH NORTH	4. pinat	<u> </u>	DITCH
	AND RIDED VE			one	CHAR
	LIAR				
	•				
Current Weather Condition	when v. Z. of	0.41-		·/	
	NAKM ~ 72°F INTERMITTENT BR	METE P	your E	7 - 5E	<u>-</u>
Previous Precipitation					
540	BSTANTIA SVOWE NCE THEN DRY	and with	CM. MINO	PRE	TRACES
	RECIP IN LAST L			_ ,_	
MALYSIS REQUESTED TARGET GC/MS SEOIMENT		Rema	ns: H dupped Hating san 1.3 point co	guici pie +	till affar Gen Stream. Ge tituted
ANAL		Sampk	r Signature:	>~~ >	illand
FOPM130		<del>1 - 2 - 1 - 1</del>	V 1		

	ITORING PROJECT/ROCKY MC		¥L.		. , ,
Sie O Number WEggily	SAMPLING FIELD DATA S			<del></del>	age of
1	Hydrogeologist(s)	Sample Numbers (range K 2172 - Kg		Date	. 1
5W30001	LB KH, JK			89114	t
Analytical Equipment	Motor Calibration	/ Time	Discharge (CFS)	FLOW FOR	Measurement #
pH Motor:	pH 700 = 6.99 # 28.5	1 ·c 1448		premy of	}
Ø Bedoman phi 21 ☐ Omega pHH-6SA	10.0	Time	NA	PLUHE	
☐ Orion SA2S0	pH 10.00 = 10.00 at 24.0	·c/449	Equipment Used		Serial No.
Other	Conductance Standard: 1000	umhos/on at 25°C	NA		NA
Serial No. 0 145035	1	Time			
Conductivity Motor:  15 YSI Model 33	Measured Value: 975 untros/on at 6	Le ·c 1490	Staff Gauge Reading		
Other	Calibrated Conductivity - Measured Conductivity	tance + (0.02	Alax	IE INSTA	
Serial No /559,6	(measured conductance) (25°C - Actual Term			<del></del>	
Dissolved Oxygen Meler:	Umhos/om at 25°C _	745Z	Sampling Method	Sample	Туре
☐ YSI Model 51B	Dissolved Oxygenmg/ at		GRAB		L-04
Serial No.	mg/ atmg/ at	~~~			STRM
Temperature Meter:	Titration Results (Acid Concentration: 0	0.16, 200 1.6)	Conductivity / TEM	P .	•
Ø2 Beckman □ Other		• •	900	260	
Serial No. 0145035	рн <b>9.</b> 3 4.8	4.5 (7.0)			umhos/en
Fitration Equipment:	#Clicks 4 259 8	64 61	1 1 1	Ossolved O, /TEM	AP /TIME
Geotech Parastatic Pump	Color Co. CLEAR	~	7.68 22.9	NA	
Sample Location Description	16KN 1-LT FING PIN	UL GREEN	0		mg/se
	S APPROXIMATELY 70	YARDS UPSTE	EAM AF JUI	NCTTON W	/= 1057 COST -
FUW DOES	S APPROXIMATELY 70 NT EXTEND TO FIRST CO	REEK AREA TH	MECK W/VFGET	ATION ON S	TREAM BOTTON
Appearance of Stream or Lake					THE RIT DOMES
VERY LOW	FLOW, VEGETATION OR	BOTTOM OF	STREAM		
Appearance of Sample	,		· · · · · · · · · · · · · · · · · · ·		
CLOUPY W	PARTICULATE MATT	ER			
'					
Condition of Station	_			-	
NO STA	TION				
Current Weather Condition					
WARM DU	INNY, LIGHT WING	- TEMP A	750 W	NDS 5-	-10 MP4
/	• •	0 , , ,			
Previous Precipitation					
0- TRAC	E IN I WEEKS				
		<del>, , , , , , , , , , , , , , , , , , , </del>			
Reauester et m s ment		Rema	rks: MAD TO	SAMPLE A	× 70 405
3			PSTREAM OF		
8 1 1 8		1 1 1			, C 1-
1 1 1 1 2 2 1 1		+0	low C STAC	t	
TARGET GC/MS SEOLMENT					
4NALYSIS TARG GC/ SEO!		Samil	er Signature: //		
3 111	+ + + + + + + + -	Sample		Kelm	<i>p.</i>
OPM130			John	V. BONNIE	<u>n</u>
-OFM130					
			<i>:</i> /		

1	COMPREHENSIVE MON	IITORING PROJECT/ROCKY MOI SAMPLING FIELD DATA SE	UNTAIN ARSENA	<u>.</u>		(	
	Sie O Number	Hydrogeologist(s)	Sample Numbers (rang	-	r	age of	
51	V31002		K2Z04-	-	89115	4/25/89	
	Analytical Equipment	Meter Calibration	Time	Discharge (CFS)		Measurement #	
r	pH Motor:  Beckman phi 21	pH 7.00 = 7.03 at 15.6	_ c <u>0827</u>	NA	Ţ	NA	
	☐ Omega pHHeSA ☐ Orion SA2S0	pH 10.00 = 10.12 at 15.3	_ ·c <u>0828</u>	Equipment Used		Serial No.	
,	Other Serial No. <u>0145035</u>	Conductance Standard; 1000	umhos/om at 25°C Time	NA		NA	
	Conductivity Meter:  STYSI Model 33	Moasured Value: 750 untrockom at 15.	.5 ·c0829	Staff Gauge Reading			
	Other	Calibrated Conductivity = Measured Conduct (measured conductance) (25°C - Actual Tempo	))): Time	NA	f		
	Serial No. 15596 Dissolved Oxygen Meter:	892.5 umhos/cm at 25°C	0829	Sampling Method	Sample 1	уре	
	☐ YSI Model 51B	Dissolved Oxygen NA mg/ at	NA -c	GRAB	ST	RM	
	Seria' No	Titration Results (Acid Concentration: 0.	16, (2) 1.6)	Conductivity / TEM	P		
	Beckman Other		.5 (7.0)	750	15°C	บกก่อร/cm	
	Serial No. 0145035 Fiftration Equipment:	#Clicks NA 296 30		PH TEMP O	ssolved O, /TEM		
	XI Geotech Parastatic Pump XI Geotech 0.45 micron faer	10 2.44	ý green	8.18 14.7	NA		
	Sample Location Description		<u> </u>	000	· · · · · · · · · · · · · · · · · · ·	mg/liter	
	JUST UPSTREA	M OF TONDED A	REA IN	REEDS			
	Appearance of Stream or Lake	a-ma.					
		STREAM LEADING -	TO POND				
	Appearance of Sample						
	SUGHLY CLOU	DY; MUCH ORGANIC	MATERIA	Z IN S	EDIMENT	5	
	Condition of Station			· · · · · · · · · · · · · · · · · · ·			
	600D	•				; ;	
'  -	Current Weather Condition						
	PARTLY CU	DUDY : 60°F ;	U6HT	BREEZE		`	
,	PREVIOUS Precipitation						
	0-TRACE	3 DAYS AGO					
	9		Remark				
	A S N S N S N S N S N S N S N S N S N S		nenak	<b>ა</b> .			
٩	TARGET GC/MS SECIMENT						
	TARGET GC/MS SEOLMEN						
	TAR SEO!		Sampler	Signature:	1 / //		
L				Im 27	+ M	X	
	PM130		,	•		~	

		ITORING PROJECT/ROCKY MOUNTAIN ARSENAL  SAMPLING FIELD DATA SHEET  Page 1 of 1	
	Sie O Number	SAMPLING FIELD DATA SHEET Page 1 01 1  Hydrogeologist(s) Sample Numbers (range) Date	
	5W36001	KHEDBERG, J KOEHNEN K2530-K2563 89118 4/28/	37
	Analytical Equipment	Meter Calibration Trac Discharge (CFS) Measurement #	
	pH Motor: LS Bedoman phi 21	pH 700 = 7.10 = 2.4 c 0859 NA	
	☐ Omega pHH-6SA ☐ Orion SA2S0	pH 10.00 = 10, 29 at 2, 3 •c 0900 Equipment Used Serial No.	
	Other	Conductance Standard: 1000 unhos/cm at 25°C NA NA	
	Serial No. <u>0145035</u> Conductivity Meter:	Measured Value: 100 unthos/om at 10 •c 0918 Staff Gauge Reading	_
	1923 YSI Model 33 □ Other	Calibrated Conductivity = Measured Conductance + (0.02 (measured conductance) (25°C - Actual Temp)): Time	
	Serial No. 15596	IDIO unhos/on at 25°C OG IB Sampling Method Sample Type	
	Dissolved Oxygen Meler:  U YSI Model 51B	Dissolved Oxygen NA mod at NA & NA GRAB STRM	
	Serial No.	Conductivity / TEMP	
	Temperature Meter:  [X] Beckman	I firation Hesuts (Acid Concentration: 0.16, N.C) 1.6)	
	Serial No. 6145035	pH 8.3 4.8 4.5 (7.0) 740 windows/cm withouted and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta	<del>.</del>
	Fittration Equipment:		
	70 Geotech Parastatic Pump 50 Geotech 0.45 micron ster	color NA pink pink green 7.19 7.60 NA	
	Sample Location Description	· CAPPROX IUFT DOWNSTREAM FROM PONDED AREA	Ţ
	60-70 FEE	T UPSTREAM FROM CONTRUL STRUCTURE	
	Appearance of Stream or Lake		
	LOW UNIF	orm flow	
	Appearance of Sample		
	CLEAR TO	SLIGHTLY CLOUDY - LT BROWNISH	
	Condition of Station	7 2 3/1000 0(1)	
	(n/p)		
	- G001) - 5 	TRIP CHART. OPERATIONAL	
	Current Weather Condition		
	COLD 4001	F-35°F CLOUDY, NO WIND	
-	Previous Precipitation		
	2 1/ h -		
	U-14 rain	and hail yesterday	
	2150	Remarks: NUDISCHARGE BECAUSE LARGE	
	PEQUESTED NS NS NS NS NS NS NS NS NS NS NS NS NS	PONDED AREA WOULD CAUSE	
- 1	12/2/2		
	TARGET GC/MS SEOIMENT SEO 6C/L	TOO MUCH BACK UP	
	TAR TAR SEO SEO	Sampler Signature:	
L	PPM130	11111111111111111111111111111111111111	
		·	

	NITORING PROJECT/ROCKY MO		J.	
	SAMPLING FIELD DATA S	<del></del>		Page of
Sile 10 Number	Hydrogeologist(s)	Sample Numbers (rang	L6533-L6572	
5W36001	SEG, TG, GPP	1-4315-L	.4338 896	
Analytical Equipment	Meter Calibration	Time	Dischargé (CFS)	Measurement #
pH Motor: 13 Bookman phi 21	pH 10.00 = 7.04 x /4.  pH 10.00 = /0.12 x /5.  Conductance Standard: /43.4	6 0848	/	110
☐ Omega pHH6SA	10.00	OS ingg och	I NONE TAKEN	EMPUTED NA
Orion SA250	pH 1000 = 1012 = 15.	0 · 09147	Equipment Used	Serial No.
· ·	Conductance Standard: 1434	umhos/cm at 25/6	NA	NA
Serial No. <u>015781</u> Conductivity Mater:	Moesured Value: 950_ untros/orn at		Staff Gauge Reading	
10 YSI Model 33	Calbrated Conductivity = Measured Condu		11	
Other	(messured conductance) (25°C - Actual Te	mp)): Time	.//	
Serial No. 13076	1056 untros/on at 25°C	0852	Sampling Method	Sample Type OK 89306
Dissolved Oxygen Meter:  TYSI Model 518		time	GRAB	DTCH
Serial No. NA	Dissolved OxygenNAmg/ at	NA C NA	į .	≥ACH-
Temperature Meter:	Tiration Results (Acid Concentration:	0.16, [] 1.6)	Conductivity / TEMP / 1	TME .
☐ Beckman ☐ Other	Ì		600	20001
	рн 8.3 4.8	4.5 (7.0)	OUULHOS/ 1	75 °C / 8917 umcoom
Serial No. 015781. Fittration Equipment:	#Clicks - WA		pH TEMP 1 Ossolved	O, THAT TIME
Geolechi Perastatic Pump Geolechi (7.45 micron ster	Color			NA
Sample Location Description			794 16.7 4	ாரிக்
WATERSAMPLES	TAKEU SUST BELOW WE	IR. SEDIMENT	CACS SAMRES TAKEC U	75 FT UPSTREAMOR
WEIR.				
Appearance of Stream or Lake	COUCRCIE STRUCTURE. LOTS	3 OF "TUMBLEL	DEEDS IN DITZIE SE	INT FLOET GROWNT
	ON BOTTOM IN 15" OF SEDIA	NEUT BUILTUP	ON UPSTREAM SIG	e tr wein
	2			
Appearance of Sample	CLETE	·		
Condition of Station	OK			
	•			
Current Weather Condition	Y10101 5215215 22 -			
	LOUDY, SOMEWHAT MEET	4 4654		
				; ;
Previous Precipitation U	17 DAYS AGO -HEAVY T	LAWS FOR ZO	i j-Ac	
8		Remar	rks:	
[5]			-	
REQUESTEC ET MS MENT GANK				
MEN MEN MEN				
TARGET GC/MS SECIMENT FIELD BAN				
TAR SEO				
ANALYSIS  R TAR  GC/  X FIELL  X TX/P G	1 1 1 1 1 1	Sangie	y Signature:	
マイ マイト マ			usan Goldbury	
O044420				

	IMORING PROJECT/ROCKY MC SAMPLING FIELD DATA S		T.		Page of
Sie O Number	Hydrogeologisus 2.8, 5.6.	Sample Numbers (rang	e)	Date	<u> </u>
37001	K.H., J.K.	11908 -	K1941	891	10
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)		Measurement #
pH Motor:  121 Beckman phi 21	pt 700 = 6.99 a 28,8	~ 1549	0.31		
☐ Ornega pH+6SA	900, 00	Time			<u> </u>
☐ Orion SA250	pH 10.00 = 9.98 at 28.	8 ·c 1547	Equipment Used		Serial No.
Other	Conductance Standard: 1000		PYGMY #6	79	NN 6349
Serial No. 0 145035 Conductivity Motor:	Measured Value: 1050 umbos/on at	Time 30 •c (55)	Staff Gauge Reading		
Ø YSI Model 33 □ Other	Calibrated Conductivity .« Measured Conductivity .« Measured Conductance) (25°C - Actual Tent	tance + (0.02,	0.	52	
Serial No. <u>15596</u>	445 untoston at 25°C _		Sampling Method	Sample	Туре
Dissolved Oxygen Meter:    YSI Model 51B	ł		_		
Serial No.	Dissolved Oxygen	•€	GRAB		TRM
Temperature Meter:	Titration Results (Acid Concentration: 0	0.16, 🖸 1.6)	Conductivity / TEM		
☐ Beckman ☐ Other	рн 8.3 4.8	4.5 (7.0)	1600	12500	umnosiem
Serial No. 0145035	#Clicks 16 240 24	I	PH TEMP C	Issolved 0, /TE	
Fitration Equipment:  © Geolech Parastatic Pump	color gran 11524 pr		8,72 24.0	NA	
Geotech 0.45 micron ther Sample Location Description					mgine
	~ 5 Ft upstream			cture	
Wate	er Surface Rough	due to roa	CKY bottom		
				hore su	Cara has
smooth uniform flow except at control where surface becomes					
	rough	•			
Appearance of Sample // eac	r to slightly clo	udu NO S	uchonded	sedino	n4<
	10 311g.11.7 910	$0$ $\alpha$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$	openaca	0 -0.17.0	, c. i J
Condition of Station	not functioning of	model wat	er flamin	a 11 Clde	C fluma
dome	not functioning pr	offer 19, was	1 10011	19 0.10 0	אוונטו
Ourrent Weather Condition  Id I a C M -	but cooling, 5/19	Atly cloud	by slight	wind	
700011	1 / 51.17	/	1701.71.		
Previous Preopitation					
22	WEEKS PRIOR				
	MOCCH) [KINK	<del></del>			
		Remar	ks:		
KEQUESTED  ST  N.S  KENT  LENT  (A)					
可有有高品					
880 C & 62					
44AALVS13 K TAR SEO X SEO		Samole	Y Signature;		
* IXIXIXI				nend	2 l

FOPM130

APPENDIX B-7

Laboratory Analytical Procedures

APPENDIX B-7.1

Procedure for Water Analysis

## B-7.1 Procedure for Water Analysis

• Determination of purgeable aromatic compounds in water by purge and trap gas chromatography is by Method #AV8 from DataChem.

A 5 millimeter (ml) water sample is purged, trapped and desorbed with Tekmar Automatic Liquid Sampler (ALS), then analyzed by SP 1000 Carbopak B packed column on a gas chromatography with a 10.0 eV photoionization detector. Sensitivities range from .5 to 1.5 part per billion (ppb) and are quantitive.

 Determination of volatile halocarbon compounds in water samples by purge and trap gas chromatography using a Hall detector by Method #N8 from DataChem.

A 5 ml water sample is purged, trapped and desorbed with a Tekmar ALS on to a 8 ft packed glass column with 1 percent SP 1000 Carbopak B and analyzed by a gas chromatograph equipped with a Hall (electrolyte conductivity detector). Sensitivities range from .5 to 7.5 ppb depending on the analyte.

 Determination of 1,2-dibromo 3-chloropropane in water samples by Method #AY8 from Datachem.

A 30 ml sample is extracted with 3 ml hexane, shaken for four minutes, and pipetted into an amber vial containing anhydrous sodium sulfate ( $Na_2SO_4$ ). Then 2 microliters ( $\mu$ l) of extract is injected into a gas chromatograph equipped with a fused silica DB5 capillary column and electron capture detector. Sensitivity is near 2 ppb.

 Determination of organosulfur compounds in water samples by gas chromatography by Method #AAA8 from DataChem.

An 800 ml sample is extracted with three 50 ml portions of methylene chloride. The portions are combined through anhydrous sodium sulfate. The extract is condensed to 2 ml final volume. An aliquot is injected into a gas chromatograph equipped with a fused silica DB-1 capillary column and flame photometric detector with sulfur filter. Sensitivities are from .55 to 11.5 ppb.

 Determination of organochlorine pesticides in water samples by Method #KK8 from DataChem.

An 800 ml aliquot sample is extracted with three 50 ml portions of methylene chloride. The portions are combined through anhydrous sodium sulfate. The extract is condensed to 1 ml,

then 50 ml hexane is added to solvent exchange, which is condensed down to 2 ml. The volume is adjusted to 50 ml, and then 3  $\mu$ l is injected into a gas chromatograph equipped with a DB 17 fused-silica capillary column and an electron capture detector. Sensitivities are from .048 to .095 ppb.

• Determination of bicycloheptadiene, and methylisobutyl ketone in water samples by Method #P8 from DataChem.

A 100 ml aliquot of sample is extracted with 5 ml methylene chloride. The extract is drained through anhydrous  $Na_2SO_4$  into a 5 ml volumetric, 1  $\mu$ l of extract is injected onto a gas chromatograph equipped with a DB-5 fused silica capillary column and a flame ionization detector. Sensitivities are from 4.90 to 5.90 ppb.

• Determination of the anions, bromine, chloride, fluoride, and sulfate by ion chromatography in water samples by Method #HH8A from DataChem.

One ml of effluent is added to 100 ml of sample and filtered. A 2 ml aliquot of filtrate is added to a sample vial for analysis by a Dionex ion chromatograph equipped with a Waters 710 B autosampler and a conductivity detector. Sensitivity ranges from 150 to 400 ppb.

• Determination of nitrate in water samples by Method #LL8 from DataChem.

The sample is neutralized to pH between 5 and 9 and is analyzed by a Technicon Auto Analyzer (AA) can with a nitrate and cartridge and 520 nanometer (NM) colimetric filter. Sensitivity is approximately 10 ppb.

• Determination of arsenic in water samples by graphite-furnace atomic spectrometry (GF-AA) by Method AX8 from DataChem.

A 100 ml sample is digested, filtered and brought to a 100 ml total volume with American Society for Testing and Materials (ASTM) Type 1 water. A small portion, 1 to 50  $\mu$ l, is mixed with a modifier solution and analyzed using a Perkin-Elmer atomic absorption spectrophotometer equipped with a graphite furnace. Sensitivity for the method is in the 2.35 ppb range.

 Determination of mercury in water samples by cold vapor atomic absorptions spectrometry by Method #CC8 from DataChem. A 100 ml aliquot of sample is added to a 300 ml Biological Oxygen Demand (BOD) bottle and digested. The sampled is aerated and analyzed by a Perkin-Elmer 305A atomic absorption spectrophotometer equipped with a quartz window cell, peristaltic pump, bubbler, and strip chart recorder. Sensitivity for the method is in the low ppb (1.0 range).

• Determination of metals in water samples by inductivity coupled argon plasma spectroscopy (ICP) by Method SS12 from DataChem.

A 50 ml portion of the sample is heated in the presence of nitric and hydrochloric acids. The volume is reduced to between 10 and 20 ml. The sample is collected and diluted to 50 ml with ASTM Type 1 water. The resulting digest is analyzed using a Thermo Jarrell Ash ICAP 61 equipped with an IBM Personal Computer - AT and Thermo spec software.

• Determination of volatile organics in water samples by gas chromatography/mass spectrometry (GC/MS) by Method UM21 from DataChem.

A 5 ml portion of the sample is spiked with internal standard and surrogates and then transferred to the purging device. The sample is purged with helium and the analytes are trapped on a 3-phase sorbent tube. The analytes are desorbed at 180° C into a Finnigan 5100 Gas Chromatograph/Mass Spectrometer with electron impact ionization source and quadrapole detector.

• Determination of semi-volatiles in water samples by GC/MS by Method UM25 from DataChem.

A 1000 ml of the sample is extracted with methylene chloride and then concentrated to 1 ml. The resulting is analyzed using a Finnigan 5100 B Gas Chromatograph/Mass Spectrometer with an electron impact ionization source and a quadrapole detector. The extract is passed through anhydrous sodium sulfate and condensed to a 1 ml final volume. A 2  $\mu$ l aliquot is injected on a wide bore DB5 fused silica column and analyzed by GC/MS equipped with electron impact source and electron multiplier detector. Sensitivities range from 1 to 200 ppb depending on the analyte.

- Determination of total cyanide in water samples by a colormetric auto analyzer by Method #TF20 from DataChem. A 250 ml portion of sample is treated with acid, distilled, and collected into a sodium hydroxide solution. The distillate is analyzed by a Technicon Auto Analyzer II equipped with a colorimeter detector fitted with a 570 nm filter. Sensitivity is near 5 ppb.
- Determination of nitrogen/phosphorus pesticides in water by GC by Method #UH11 by

Datachem. An 800 ml portion of sample is serially extracted with methylene chloride. The extract is funneled through anhydrous sodium sulfate and condensed to 50 ml. A 50 ml portion of hexane is added to solvent exchange and condensed to a final volume of 5 ml. An aliquot of extract is injected on to a DB5 fused silica capillary column and analyzed by GC equipped with an electron capture detector. Sensitivities range from .500 ppb to 4 ppb depending on the analyte.

APPENDIX B-7.2

Procedures for Sediment Analysis

• Determination of purgeable aromatic compounds in soil samples by Purge and Trap Gas Chromatography (GC) using a photoionization detector by Method AA9 from DataChem.

Weight 10 grams (g) of soil sample into a 40 ml Volatile Organic Analysis (VOA) bottle, add 10 ml of High Pressure Liquid Chromatography (HPLC) grade (or better) methanol. Cap tightly with a teflon-lined septa and shake for four hours using a wrist action shaker. Allow to settle. Remove a 100  $\mu$ l portion of the methanol extract and transfer to a syringe containing 5 ml organic free water. Analyze sample by a Tekmar Automatic Liquid Sampler (ALS) purger and trap device compound with a gas chromatograph equipped with a 1 percent SP1000 Carbopak column and photoionization detector. The system is then interfaced with a laboratory automation system. Sensitivities range from 0.09 to 0.39  $\mu$ g/g depending on the compound.

Determination of purgeable organohalogen compounds in soil samples by purge and trap GC using a Hall Detector by Method NN9 from DataChem.

Transfer 10 g of soil sample to a 40 ml VOA bottle, add 10 ml HPLC grade (or better) methanol, cap tightly and shake for four hours on a wrist action shaker. Allow to settle. Remove 100  $\mu$ g of the methanol extract to a syringe containing 5 ml of organic free water. Analyze by a purge trap Tekmar automatic liquid sample compiled with a gas chromatograph with a 1 percent SP1000 Carbopak B column and a Hall electrolytic conductivity detector. The entire system is interfaced to a Laboratory Automation System Sensitivities range from 0.068 to 3.7  $\mu$ g/g depending on the target analyte.

 Determination of dibromochloropropane (DBCP) in soil samples by GC/EC by Method S9 from DataChem.

A 10 g portion of the soil sample is transferred to a 40 ml amber glass VOA vial equipped with a teflon-lined screw cap. Then 20 ml of 1:1 acetone/hexane mixture is added and shaken of four hours on a wrist action shaker. This is allowed to settle and 10 ml of the extract is removed and added to a 125 ml separatory funnel containing 50 ml hexane extracted water. This is shaken for 15 seconds until all phases separate. Then the hexane extract is drained into a 10 ml volumetric flash and brought to volume. A portion of the extract is injected onto a 30 meter DB05 fused silica capillary column and analyzed by a gas chromatograph equipped with an 63Ni electron capture detector and integrated with a laboratory automation system. Sensitivity for this method is approximately  $0.005 \mu g/g$ .

• Determination of organosulfur compounds in soil samples by Method HH9A from DataChem.

Transfer a 10 g soil portion to 1 60 ml amber vial and mix with 10 g of anhydrous sodium sulfate. Add 20 ml methylene chloride and cap tightly. Shake for four hours on a wrist action shaker. Allow to settle and transfer 1-2 ml of extract to autosampler vial. A 5  $\mu$ l volume of extract is injected onto a DB-1 fused silica capillary column and analyzed by a gas chromatograph equipped with a flame photometric detector operated with a sulfur filter. Sensitivities range from 1.45  $\mu$ g/g to 9.01  $\mu$ g/g depending on the compound.

• Determination of organochlorine pesticides in soil samples by Method KK9B from DataChem.

Transfer a 20 g portion of soil sample to a 40 ml screw-cap septum vial. Add 20 ml of 1:1 acetone/hexane solvent mixture, cap, and shake for four hours on a wrist action shaker. Allow to settle. Remove 10 ml of extract and place into a 125 ml separatory funnel containing 50 ml hexane-extracted water. Extract is analyzed on a 30 meter DB-17 fused silica capillary column with a gas chromatograph equipped with an electron capture detector and a laboratory data system. Sensitivities range from 0.0018  $\mu$ g/g to 0.23  $\mu$ g/g depending on the compound.

• Determination of bicycloheptadiene, dicyclopentadiene, and methylisobutyl ketone (hydrocarbons) in soil samples by Method PP9 DataChem.

Transfer 10 g of the soil sample to a 50 ml culture tube and mix with anhydrous sodium sulfate. Add 20 ml of methylene chloride and cap tightly. Shake for four hours on a wrist action shaker. Allow to settle. Transfer 1-2 ml of extract to an autosampler vial. A 10  $\mu$ l volume of the extract is injected onto a 30 meter DB-5 fused silica capillary column and analyzed by a gas chromatograph with a flame ionization detector and interfaced to an integrator. Sensitivities from approximately 0.45 to 1.06  $\mu$ g/g depending on the target analyte.

• Determination of Arsenic in samples by Graphite Furnace Atomic Absorption Spectroscopy (GF-AA) by Method B9 from DataChem.

Weigh 0.995 - 1.005 g of the soil sample in a 125 ml beaker. Add 10 ml 1:1 nitric acid, cover with a watch glass, and heat to 95° C for 10 minutes without boiling. Cool and add 5 ml concentrated nitric acid and reflux for 30 minutes. Add 2 ml Type II water and 3 ml of 30 percent hydrogen peroxide and heat. Then add hydrogen peroxide until sample is unchanged. Reduce to 2 ml and add 10 ml Type II water and warm, then cool. Filter and dilute to 100 ml. The digestate is analyzed by injecting 15  $\mu$ l with 15  $\mu$ l modifier onto an Atomic Absorption Spectrophotometer equipped with a graphite furnace/autosampler accessory. Sensitivity is near 2.5  $\mu$ g/g.

 Determination of mercury in soil samples by Cold Vapor Absorption Spectroscopy (CVAA) by Method Y9 from DataChem.

Weight a 1.0-1.5 g portion of the soil sample into a 250 ml Phillips beaker. Add 25 ml aqua regia and heat 5 minutes on steam bath. Cool and add 50 ml distilled water and 20 ml potassium permanganate solution. The color should remain purple. repeat addition of potassium permanganate solution. Add 50 ml to a BOD bottle, add 50 ml distilled water. Add 5 ml 20 percent hydroxylamine hydrochloride solution. Add 5 ml stannous chloride, insert bubbler, and analyze by atomic absorption spectrometer equipped with Hg EDL lamp, cold vapor accessory and strip chart recorder. Sensitivity is approximately 0.0543  $\mu$ g/g.

 Determination of metals in soil samples by Inductively Coupled Argon Plasma Spectroscopy by Method P9 from DataChem.

Weight 1.0 to 1.5 g of soil sample into a 125 ml Phillips beaker. Digest sample with 3.0 ml concentrated nitric acid to near dryness. Cool. Repeat until digestion is complete. Add 2.0 ml 1:1 HNO and 2.0 ml 1:1 HCL and heat for four minutes. Wash sides of beaker and filter through Whatman filter paper. Dilute sample to final volume of 50.0 ml with deionized water. A portion of the digestate is analyzed using sequential inductively coupled argon plasma emission spectrometer equipped with software for background correction and inter-element correction. Sensitivities range from approximately 0.7 to 8.7  $\mu$ g/g depending on the target analyte.

Determination of volatile organics in soil samples by gas chromatography/mass spectrometry
 Method LM23 from DataChem.

A 10 g portion of the sample is extracted with 9 ml of methanol and 1 ml of the surrogate solution. A 50  $\mu$ l of water containing the internal standard and then transferred to the purging device. The sample is purged with helium, and the analytes are trapped on a 3-phase sorbent tube. The analytes are desorbed at 180° C into a Finnigan Gas Chromatograph/Mass Spectrometer with an electron impact ionization source and a quadrapole detector.

 Determination of semivolatile organics in soil samples by gas chromatography/mass spectrometry by Method L9 from DataChem.

A 15 g portion of sample is mixed with 30 grams of anhydrous sodium sulfate, 300 ml of methylene chloride and 12 ml of surrogate spike solution are placed into a soxhlet extractor and extracted. The extract is then concentrated and analyzed by a Finnigan Model 5100 gas chromatograph-mass spectrometer equipped with a fused silica capillary column.

• Determination of semivolatile organics in soil samples by chromatography.mass spectrometry by Method SV-9 from Hunter/ESE, Inc. Denver.

An extraction is performed on a 30 g soil sample into a 1:1 solution of methylene chloride/acetone. Extraction solvent is decanted from soil, dried with  $Na_2SO_4$  and concentrated to 1 milliliter. Extract is loaded onto a gel permeation chromatographic column for cleanup. a 2  $\mu$ l aliquot of the cleaned extract is injected onto the gas chromatograph/mass spectrometer (Hewlett Packard 5995C) equipped with electron impact ionization source and quadrapole detector. GC column is a DB-5 fused-silica capillary column. CRLs range from 0.266-1.857  $\mu$ g/g. Upper Certified Ranges are 6.00-10.700  $\mu$ g/g.

Determination of 1,2-dibromo-3-chloropropane (DBCP) in soil samples by gas chromatography
 by Method QQ-9 from Hunter/ESE, Inc. Denver.

A 10 g soil sample is extracted into 20 ml of a 1:0 acetone/hexane solvent mixture. The extract is decanted, mixed with Na₂SO₄ to remove water and brought to volume in a 10 ml volumetric flask. A 1  $\mu$ l aliquot is injected into a gas chromatograph (HP 5890) using a 30 meter DB-5 fused-silica capillary column equipped with an electron capture detector. The CRL is 0.005  $\mu$ g/g with an upper tested concentration of 0.098  $\mu$ g/g.

• Determination of dicyclopentadiene (DCPD) and methylisobutyl ketone (MIBK) in soil samples by gas chromatography by Method ZZ9 from Hunter/ESE, Inc. Gainsville.

In a culture tube, a measured weight of sample is mixed with an equal weight of anhydrous sodium sulfate and then extracted on a mechanical shaker with methylene chloride. The supernatant extract is collected, and an aliquot of the extract is injected into a Gas Chromatograph which is equipped with a packed column. Chromatograph conditions were developed to allow the separation of the target analytes for the analysis. Qualitative identification is performed by comparing the absolute retention times of the standards peaks with the sample chromatogram peaks. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant calibration curve with the sample analyte responses.

• Determination of phosphonates in soil by Method TT-9 from Hunter/ESE, Inc. Gainsville.

In an amber glass vial, a measured weight of sample is extracted with distilled water. This extract is then analyzed via Gas Chromatography using packed GC column Chromatographic conditions were developed that resolve the two analytes in the Rocky Mountain Arsenal

"standard" soil to allow quantitation. Qualitative identification is performed by comparing the absolute retention times with the retention times of peaks in the sample chromatograms. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant calibration curve with the sample responses.

Determination of organosulfur compounds in soil samples by Method LL03 from Hunter/ESE,
 Inc. Gainsville.

Ten grams of soil are dried with an equal amount of anhydrous sodium sulfate and then extracted with methylene chloride for four hours on a wrist action shaker. The supernatant extract is collected, and an aliquot of the extract is injected into a Gas Chromatograph which is equipped with a packed column and a flame photometric detector set in the sulfur detection mode. Chromatographic conditions were developed to allow the separation of the target analytes for the analysis. Qualitative identification is performed by comparing the absolute retention times of the standards peaks with the sample chromatogram peaks. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant calibration curve with the sample analyte responses.

• Determination of Arsenic in soil samples by Method AS-9 from Hunter/ESE, Inc. Gainsville.

A measured weight of soil/sediment is digested with an oxidizing-acid solution on a hot plate for a fixed period of time. The digestate is cooled and filtered through a glass fiber filter and diluted to a fixed volume of 100 ml. Analysis of the digestate is performed using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAA) the has been calibrated for arsenic. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant curve with the sample analyte responses.

• Determination of mercury in soil samples by Method HG-9 from Hunter. ESE, Inc. Gainsville.

A measured weight of soil/sediment is digested with an aqua regia acid solution (HCI/HNO₃), followed by further oxidation with potassium permanganate. This digestate is then placed in a cold vapor purge apparatus that is connected to an Atomic Absorption Spectrophotometer (AA). Stannous chloride is added to the digestate to convert all the mercury in the sample to its metallic state. The sample is purged with air, and the vapor is swept through a cell mounted in the light path of the AA instrument. The absorbance of the mercury vapor is measured and compared against a calibration curve of known calibration standards.

APPENDIX B-7.3

Procedure for Suspended Solids Analysis

## B-7.3 Procedure for Suspended Solids

Total suspended solids were determined by EPA Method 160 for non-filterable residue. Non-filterable residue is defined as those solids which are retained by a glass filter and dried to constant weight at 103-105° C. After drying to constant weight, non-filterable residue is determined by weighing the filter with the residue and calculating the concentrations by:

$$mg/I = \frac{(A-B) \times 10000}{C}$$

where:

A = weight of filter and residue in mg;

B = weight of filter in mg; and

C = ml of sample filtered.

The practical range of the determination is 4 mg/l to 20,000 mg/l.