Endogenous Production Networks

Acemoglu and Azar(2018)

Yuya Furusawa

Graduate School of Economics, The University of Tokyo

2019/04/18

Motivation

- ▶ Supply chains today become more complex than in the past
 - ▶ agricultural production, automobile, telecommunication, ...
 - ▶ We can see this pattern both in micro level and macro level
- Questions
 - What explains the different structure of input usage over time and across countries?
 - ► Do these differences contribute to productivity abd growth differences across these economies?

Main Results

- Existence and uniqueness of equilibrium, and its efficiency properties
- Comparative static results
 - ▶ technology improvement → all prices in economy decrease
 - ▶ technology improvement with more conditions → expansion in the set of input for all industries
 - discontinuous change in network structure
- ► In dynamic model, the economy achieves sustained growth in the long run
- Cross sectional implications
 - limited inequality in the number of suppliers(indegree)
 - inequality in the number of customers(outdegree)

Model

- $ightharpoonup \mathcal{N} = \{1, \cdots, n\}$: industries
- Production technology

$$Y_i = F_i(S_i, A_i(S_i), L_i, X_i)$$

- $S_i \subset \{1, \cdots, n\} \setminus \{i\}$: the set of (endogeneous) suppliers, technology choice
- $ightharpoonup X_i = \{X_{ij}\}_{j \in S_i}$: vector of intermediate goods
- A_i(S_i): the productivity of technology by the use of inputs in the set S_i
- $ightharpoonup L_i$: the amount of labor used

Assumptions

- Each industry is contestable
 - a large number of firms have access to the same technology
 - lacktriangle ightarrow equilibrium profits are always equal zero
- ▶ F_i does not depend on X_{ij} for $j \notin S_i$

Assumption 1

For each $i=1,2,\cdots,n$, $F_i(S_i,A_i(S_i),L_i,X_i)$ is strictly quasi-concave, exhibits constant return to scale in (L_i,X_i) , and is increasing and continuous in $A_i(S_i),L_i$ and X_i , and strictly increasing in $A_i(S_i)$ when $L_i>0$ and $X_i>0$. Moreover, labor is an essential factor of production in the sense that $F_i(0,\cdot,\cdot,\cdot)=0$

Household

Utility function of representative household is:

$$u(C_1,\cdots,C_n)$$

- Household supplies labor inelastically
- ightharpoonup We choose the wage as the numeraire: W=1

Assumption 2

 $u(C_1,\cdots,C_n)$ is continuous, differentiable, increasing and strictly quasi-concave, and all goods are normal.

Distortions

- Industry i is subject to a distortions of $\mu_i \geq 0$, modeled as an effective ad valorem tax
- ightharpoonup A fraction λ_i of the revenues generated by distortions from industry i are distributed back to the representative household and the rest are waste
- ► That is, the budget constraint of representative household can be written:

$$\sum_{i=1}^{n} P_i C_i \le 1 + \sum_{i=1}^{n} \Lambda_i$$

where
$$\Lambda_i = \lambda_i \frac{\mu_i}{1+\mu_i} P_i Y_i$$

Cost Minimization

- Cost minimization problem follows two steps
- First step: determine the unit cost function

$$K_i(S_i, A_i(S_i), P) = \min_{X_i, L_i} \{L_i + \sum_{j \in S_i} P_j X_{ij}\}$$

subject to
$$F_i(S_i, A_i(S_i), L_i, X_i) = 1$$

ightharpoonup Choose technologies to minimize K_i

$$S_i^* \in \operatorname*{arg\ min}_{S_i} K_i(S_i, A_i(S_i), P)$$

lacktriangle Note that K_i is strictly decreasing and continuous in A_i

Definition of Equilibrium

An equilibrium is a tuple $(P^*, S^*, C^*, L^*, X^*, Y^*)$ such that

- ► Contestability : For each $i = 1, 2, \dots, n$, $P_i^* = (1 + \mu_i) K_i(S_i^*, A_i(S_i^*), P^*)$
- ▶ Consumer maximization : The consumption vector C^* maximizes household utility subject to budget constraint given prices P^*
- ▶ Cost miinimization : For each $i=1,2,\cdots,n$, factor demands L^* and X_i^* are the solution of cost miinimization problem, and the technology choice S_i^* is a solution to minimization of unit cost function given the price vector P^*
- ▶ Market clearing : For each $i = 1, 2, \dots, n$,

$$C_i^* + \sum_{j=1}^n X_{ji}^* = (1 - (1 - \lambda_i) \frac{\mu_i}{1 + \mu_i}) Y_i^*$$
$$Y_i^* = F_i(S_i^*, A_i^*(S_i^*), L_i^*, X_i^*)$$
$$\sum_{j=1}^n L_j^* = 1$$

Example of Production Technologies

Cobb-Douglas production functions with Hicks-neutral technology

$$F_{i}(S_{i}, A_{i}(S_{i}), L_{i}, X_{i}) = \frac{1}{\left(1 - \sum_{j \in S_{i}} \alpha_{ij}\right)^{1 - \sum_{j \in S_{i}} \alpha_{ij}} \prod_{j \in S_{i}} \alpha_{ij}^{\alpha_{ij}}} A_{i}(S_{i}) L_{i}^{1 - \sum_{j \in S_{i}} \alpha_{ij}} \prod_{j \in S_{i}} X_{ij}^{\alpha_{ij}}$$

Family of Cobb-Douglas function satisfies Assumption 1 Let $p_i = \log P_i$ and $a_i = \log A_i$. We can show that

log productivity

$$k_i(S_i, a_i(S_i), p) = -a_i(S_i) + \sum_{j \in S_i} \alpha_{ij} p_j$$

equilibrium log price

$$p_i^* = \log(1 + \mu_i) + \sum_{i \in S_i} (\alpha_{ij} + p_j^*) - a_i$$

in a matrix form

$$p^* = -(I - \alpha(S^*))^{-1}(\alpha(S^*) - \log(1 + \mu))$$

= $-\mathcal{L}(S^*)(\alpha(S^*) - m)$

Existence of Equilibrium

Lemma 1

Suppose Assumption 1 and 2 hold. Then given an exogenous network $S_i,\ P^*>0$ is an equilibrium price vector if and only if $P_i^*=(1+\mu_i)K_i(S_i^*,A_i(S_i^*),P^*)$ holds for each $i=1,2,\cdots,n$. [Proof]

Theorem 1 (Existence)

Suppose Assumption 1 and 2 hold. Then an equilibrium $(P^*,S^*,C^*,L^*,X^*,Y^*)$ exists. [Proof]

Uniqueness of Equilibrium

Let
$$A_i=(A_i(\emptyset),A_i(\{1\}),\cdots,A_i(\{1,\cdots,n\}\setminus\{i\}))\in\mathbb{R}^{l\times 2^{n-1}}$$
 and $A=(A_1,\cdots,A_n)\in\mathbb{R}^{n\times l\times 2^{n-1}}$

Definition 2 (**Genericity**)

The equilibrium network is generically unique if the set

 $\mathcal{A}=\{A: \text{There exist at least two distinct equilibrium networks } S^*, S^{**}\}$ has Lebesgue measure zero in $\mathbb{R}^{n\times l\times 2^{n-1}}$

Theorem 2 (Uniqueness)

Suppose Assumption 1 and 2 hold. Then an equilibrium prices P^* and quantities C^*, L^*, X^* and Y^* are uniquely determined, and the equilibrium network S^* is generically unique. [Proof]

Efficiency properties

Theorem 3 (Efficiency)

Suppose Assumption 1 and 2 hold. Suppose also that the production function F_i is differentiable for each $i = 1, \dots, n$

- 1. If $\mu_i=0$ for all $i=1,\cdots,n$ so that all distortions are equal to zero, then the equilibrium is Pareto efficient.
- 2. If $\mu_i = \mu_0 > 0$ and $\lambda_i = 1$ for all $i = 1, \cdots, n$ and $(\emptyset, \cdots, \emptyset)$ is the unique Pareto efficient production network, then the equilibrium is Pareto efficient.
- 3. If $\mu_i = \mu_0 > 0$ and $\lambda_i = 1$ for all $i = 1, \cdots, n$ and $(\emptyset, \cdots, \emptyset)$ is not a Pareto efficient production network, then the equilibrium is not Pareto efficient.
- 4. If there exist i and i' such that $\mu_i > 0$ and $\mu_i \neq \mu_{i'}$ or there exists i such that $(1 \lambda_i)\mu_i > 0$, then the equilibrium is not Pareto efficient.

Comparative Statics

- Direct Effect
 - $ightharpoonup A_i(S_i)$ increases, then industry i reduces its unit cost because it has access to better technology
- ► Indirect Effect
 - industry i's price is lower
 - → customers will face lower unit cost
 - → their customers also will face lower unit cost
 - **▶** → ...
- ► Change structure of the network
 - ▶ industry *i*'s price decreases
 - lacktriangle ightarrow other industries are more likely to adopt it as a supplier

Comparative Statics for Prices

Theorem 4

Suppose Assumptions 1 and 2 hold. Consider a shift in technology from A to $A'(\geq A)$ and/or a decline in distortions from μ to $\mu'(\leq \mu)$, and let P^* and P^{**} be the respective equilibrium price vectors. Then, $P^{**} < P^*$ [Proof]

Comparative Statics for Technology Choices (Network)

Definition 3 (Positive technology shock)

A change from A to A' is a positive technology shock if

- 1. (higer level) $A' \geq A$
- 2. (quasi-submodularity) for each $i=1,2,\cdots,n$, and for all P, $K_i(S_i,A_i(S_i),P)$ is quasi-submodular in $(S_i,A_i(S_i))$

[Def]

Definition 4 (**Technology-price single-crossing condition**)

For each $i=1,2,\cdots,n$, $K_i(S_i,A_i(S_i),P)$ satisfies the technology-price single-crossing condition in the sense that for all sets of inputs S_i,S_i' with $S_i\subset S_i'$ and all prices vectors P,P' with $P_{-i}'\leq P_{-i}$, we have

$$K_i(S_i', A_i(S_i'), P) - K_i(S_i, A_i(S_i), P) \le 0$$

 $\Rightarrow K_i(S_i', A_i(S_i'), P') - K_i(S_i, A_i(S_i), P') \le 0$

Comparative statics of the production network

Lemma 2

Suppose that for each $i=1,2,\cdots,n,\ K_i(S_i,A_i(S_i),P)$ is quasi-submodular in $(S_i,A_i(S_i))$. Then for each $i=1,2,\cdots,n$, and for all P and for all $S_i\subset S_i'$, we have

$$K_i(S_i', A_i(S_i'), P) - K_i(S_i, A_i(S_i), P) \le 0$$

 $\Rightarrow K_i(S_i', A_i'(S_i'), P) - K_i(S_i, A_i'(S_i), P) \le 0$

[Proof]

Theorem 5

Suppose Assumptions 1 and 2 and the technology-price single-crossing condition hold. Then a positive technology shock or a decrease in distortions (weakly) increases the equilibrium network from S^* to S^{**} [Proof]

Discontinuous Effects

- Samall changes in productivity can lead to a large change in GDP and the equilibrium production network.
- Example 2 shows that small change in technology can make larger GDP
- ► Example 3 shows that small change in industry 1's technology alters production network significantly

Growth with Endogeneous Production Networks

- ▶ Countably infinite period : $t \in \{1, 2, \dots\}$
- At each time t, a new product arrives in the economy
- lacktriangle All endogeneous variables are indexed by t: $P_i(t)$, $L_i(t)$, $Y_i(t)$...
- ightharpoonup Assume W(t)=1 for all t

Assumption 1'

Production functions are in the Cobb-Douglas family with Hicksneutral technologies

Assumption 3

There exists $\mu_0 < \infty$ such that $\sup \{\mu_t\}_{t=1}^{\infty} \leq \mu_0$

Preference in Growth Setting

Assumption 2'

The time- $\!t$ preference of the representative household take a Cobb-Douglas form,

$$u(C_1(t), \dots, C_t(t), \beta) = \left[\prod_{i=1}^t \left(\frac{\beta_i}{\sum_{i=1}^t \beta_i} \right)^{-\beta_i} \prod_{i=1}^t C_i(t)^{\beta_i} \right]^{\frac{1}{\sum_{i=1}^t \beta_i}}$$

where the vector β satisfies $\beta_t \geq 0$ for all t and $\sum_{t=1}^\infty \beta_t = 1$

- ► The overall utility is given by a discounted sum of time-t preferences
- ▶ This specification implies that $\lim_{t\to\infty} \beta_t = 0$

Growth Rate

Nominal GDP is given by

$$Y^{N}(t) = \sum_{i=1}^{t} P_{i}(t)C_{i}(t) = 1 + \sum_{i=1}^{t} \lambda_{i} \frac{\mu_{i}}{1 + \mu_{i}} P_{i}(t)Y_{i}(t)$$

Real GDP which is equal to the HH's utility is given by

$$Y(t) = \frac{Y^{N}(t)}{\prod_{i=1}^{t} P_{i}(t)^{\frac{\beta_{i}}{\sum_{j=1}^{t} \beta_{j}}}}$$

Define the asymptotic growth rate of real GDP as:

$$g^* := \lim_{t \to \infty} \left(\frac{\log Y(t)}{t} \right) = \lim_{t \to \infty} \left(-\frac{\pi(t)}{t} \right)$$

- where $\pi(t) = \sum_{i=1}^t \frac{\beta_i}{\sum_{j=1}^t \beta_j} p_i(t)$
- last equality is shown as Lemma 3

Additional Assumptions

Assumption 4

For a fixed t and $i\in\{1,\cdots,t\}$, the log productivity vector $a_i(t)=\{a_i(S_i,t)\}_{S_i\subset\{1,\cdots,t\}\setminus\{i\}}$ is drawn from a distribution $\Phi_i(t)$. Furthermore, there exists a constant D>0 such that, if $\{a_i(t)\}_{t\in\mathbb{N}}$ is a sequence of log productivity vectors for industry i, then

$$\lim_{t \to \infty} \max_{S_i \subset \{1, \dots, n\} \setminus \{i\}} \frac{a_i(S_i, t)}{t} = D \text{ almost surely}$$

lacktriangle This rules out too thin or too thick tail of the distribution a_i

Assumption 5

- 1. There exists $\theta < 1$ such that $\sum_{i=1}^{\infty} \alpha_{ij} \leq \theta$ for all $i \in \mathbb{N}$
- 2. Furthermore, for every $\epsilon > 0$, there exists a constant T such that for all $i \in \mathbb{N}, \sum_{i=T}^{\infty} \alpha_{ij} \leq \epsilon$

▶ Labor is essential input and shares of inputs after *T* is bounded.

Sustained Growth

Theorem 6

Suppose that Assumptions 1', 2', 3, 4 and 5 hold, and let D>0 be as defined in Assumption 4. Each industry chooses its set of suppliers $S_i^*(t)\subset\{1,\cdots,t\}\backslash\{i\}$. Then for each $i=1,2,\cdots,t$, the equilibrium log price vector $p^*(t)$ satisfies

$$\lim_{t \to \infty} -\frac{p_i^*(t)}{t \sum_{j=1}^t \mathcal{L}_{ij}} = D > 0 \text{ almost surely}$$

and thus

$$g^* = D \sum_{i,j=1}^{\infty} \beta_i \mathcal{L}_{ij} > 0 \text{ almost surely}$$

[Proof]

- ▶ When firms can choose their input suppliers in an unrestricted fashion, the economy achives sustained growth
- ▶ When we restrict the choice of inputs , there is no longer sustained growth

Generalization

- We can have sustained growth even when some assumptions are relaxed
 - ► A subset of industries can choose their suppliers (Corollary 1)
 - ightharpoonup The number of products is function of t (Corollary 2)
 - Relax Assumption 4 and the second part of Assumption 5 (Corollary
 3)
 - Not Cobb-Douglas production functions, in particular, continuously differentiable and Hicks-neutral technologies (Theorem 7)

Alternative Stories

- Essential Inputs (Theorem 8)
 - Some agricultural products need for food manufacturing
 - Various restrictions on combination of inputs can be imposed with sustained growth
- ► Creative Destruction (Theorem 9)
 - New products replace older ones in either consumptions or production or in both
 - Sustained growth is possible in an environment in which new inputs replace old ones

Cross-Sectional Implications

- Consider static economy again with large n
- ightharpoonup Assume a_i 's are random variable

Assumption 4'

Log-productivities are given by $a_i(S_i)=\sum_{j\in S_i}b_j+\epsilon(S_i)$, where $\epsilon(S_i)$ is an (independent) drawn from a Gumbel distribution with cdf $\Phi(x;\sigma)=e^{-e^{-x/\sigma}}$ for each $S_i\in\{1,2,\cdots\}\setminus\{i\}$

Assumption 5'

Suppose that Assumption 5 holds. In addition, for every industry j, the limit $\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\alpha_{ij}$ of average exogenous outdegrees always exists

Definitions of Indegrees and Outdegrees

- $ightharpoonup \{\mathcal{E}(n)\}_{n=1}^{\infty}$: a sequence of economies
- ightharpoonup S(n) : the equilibrium network in economy $\mathcal{E}(n)$
- ▶ (Normalized) indegree of industry i in $\mathcal{E}(n)$

$$\mathcal{I}_i(n) = \frac{1}{n} \sum_{j=1}^n \alpha_{ij}(S(n))$$

- $\blacktriangleright \ \mathcal{I}(n) = \{\mathcal{I}_i(n)\}_{i=1}^n$: sequence of (normalized) indegrees
- ▶ (Normalized) outdegree of industry i in $\mathcal{E}(n)$

$$\mathcal{O}_j(n) = \frac{1}{n} \sum_{i=1}^n \alpha_{ij}(S(n))$$

- $ightharpoonup \mathcal{O}(n) = \{\mathcal{O}_i(n)\}_{i=1}^n$: sequence of (normalized) outdegrees
- ▶ Both $\mathcal{I}(n)$ and $\mathcal{O}(n)$ are random variables over \mathbb{R}^n and can be interpreted as elements of l^∞

Indegrees and Outdegrees

Theorem 10

Write $\alpha_j = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \alpha_{ij}$. Suppose Assumption 1', 4', and 5' hold. Then:

- 1. $\mathcal{I}(n)$ converges uniformly and almost surely to a degenerate distribution at $0 \in l^\infty$
- 2. $\bar{\mathcal{O}}=\limsup_{n\to\infty}\mathcal{O}(n)$ is a non-degenerate distribution and $\bar{\mathcal{O}}_j\leq\alpha_j$ for all j
- 3. $\underline{\mathcal{O}} = \liminf_{n \to \infty} \mathcal{O}(n)$ is a non-degenerate distribution and $\underline{\mathcal{O}}_j \geq \alpha_j \frac{e^{bj}}{1 + e^{bj}}$ for all j
- ► Theorem 10 implies that the distribution of outdegrees (# of customers) will be much more unequal than the distribution of indegrees (# of suppliers)
- When the distribution of α_{ij} can be approximated by a power law distribution, \mathcal{O}_j also has a power raw distribution (Corollary 4)

Estimating the contribution of new input combinations

- ▶ Use US data of input-output, capital stock, employment ...
- ► A sizable contribution to aggregate TFP growth from changes in the input-output matrix
- Quite large gains in industry productivity from new input combinations, which might account for the majority of aggregate TFP growth over the last several decades

Conclusion

- ► Economic tradeoffs and comparative statics
 - ► Change in technologies → all prices decrease
 - \blacktriangleright (Under some conditions) Change in technologies \rightarrow expands technology sets
 - A small change can cause large change in GDP or structure of network
- ► In dynamic setting, choosing suppliers forces towards sustained economic growth

Proof of Lemma 1

"only if" part

ightharpoonup Suppose P^* is a vector of equilibrium prices. Then from the contestability condition, we have

$$P_i^* = (1 + \mu_i) K_i(S_i, A_i(S_i), P^*)$$

"if" part

- ▶ Suppose that $P_i^* = (1 + \mu_i)K_i(S_i, A_i(S_i), P^*)$ for each $i = 1, \dots, n$
- Let X_i^* and L_i^* be the solutions to the cost minimization problem for given P^*
- Let x_{ij}^* and l_i^* be the unit requirements
- ightharpoonup From the quasi-concavity of F_i , these are uniquely determined
- lackbox Since F_i exhibits constant return to scale, these are also independent of Y_i^*
- lacktriangle Clearly, $X_{ij}^* = x_{ij}^* Y_i^*$ and $L_i^* = l_i^* Y_i^*$

- $Y^{N} = 1 + \sum_{i=1}^{n} \lambda_{i} \frac{\mu_{i}}{1 + \mu_{i}} P_{i}^{*} Y_{i}^{*}$: Income of HH
- $ightharpoonup C_j^* = C_j^*(Y^N, P^*)$: Optimal consumption of good j
- From the market clearing condition, we have

$$C_{j}^{*} + \sum_{i=1}^{n} x_{ij}^{*} Y_{i}^{*} = (1 - (1 - \lambda_{j}) \frac{\mu_{j}}{1 + \mu_{j}}) Y_{j}^{*}$$

$$P_{j}^{*} C_{j}^{*} + \sum_{i=1}^{n} \frac{P_{j}^{*}}{P_{i}^{*}} x_{ij}^{*} P_{i}^{*} Y_{i}^{*} = (1 - (1 - \lambda_{j}) \frac{\mu_{j}}{1 + \mu_{j}}) P_{j}^{*} Y_{j}^{*}$$

$$\hat{C}_{j}^{*} + \sum_{i=1}^{n} \frac{P_{j}^{*}}{P_{i}^{*}} x_{ij}^{*} \hat{Y}_{i}^{*} = (1 - (1 - \lambda_{j}) \frac{\mu_{j}}{1 + \mu_{j}}) \hat{Y}_{j}^{*}$$

$$\hat{C}_{j}^{*} + \sum_{i=1}^{n} \frac{P_{j}^{*}}{P_{i}^{*}} x_{ij}^{*} \frac{1}{1 - (1 - \lambda_{i}) \frac{\mu_{i}}{1 + \mu_{i}}} \tilde{Y}_{i}^{*} = \tilde{Y}_{j}^{*}$$

- ▶ In a matrix form, $\hat{C}^* + \bar{X}'\tilde{Y}^* = \tilde{Y}^*$
 - lack ar X is a n imes n matrix, (i,j) th element is $ar X_{ij}=rac{1}{1-(1-\lambda_i)rac{\mu_i}{1+\mu_i}}rac{P_j^*}{P_i^*}x_{ij}^*$
- ▶ Since \hat{C}^* depends on \tilde{Y}^* and P, we have

$$\tilde{Y}^* = \hat{C}^*(\tilde{Y}^*, P) + \bar{X}'\tilde{Y}^* \equiv \Phi(\tilde{Y}^*)$$

- ▶ Since the utility function is differentiable, $\hat{C}^*(\tilde{Y}^*,P)$ and thus $\Phi(\tilde{Y}^*)$ are also differentiable
- ▶ Denote the Jacobian of $\Phi(\tilde{Y}^*)$ by J and we have

$$J_{ij} = \frac{\partial \hat{C}_{i}^{*}}{\partial \tilde{Y}_{i}^{*}} + \frac{1}{1 - (1 - \lambda_{i}) \frac{\mu_{i}}{1 + \mu_{i}}} \frac{P_{i}^{*}}{P_{j}^{*}} x_{ji}^{*} \ge 0$$

last inequality comes from Assumption 2, all goods are normal

Note that HH's budget constraint is

$$\sum_{i=1}^{n} \hat{C}_{i}^{*} = 1 + \sum_{i=1}^{n} \lambda_{i} \frac{\mu_{i}}{1 + \mu_{i}} \hat{Y}_{i}^{*}$$

▶ Differentiate w.r.t \tilde{Y}_j^* , we obtain

$$\sum_{i=1}^{n} \frac{\partial \hat{C}_{i}^{*}}{\partial \tilde{Y}_{j}^{*}} = \frac{\lambda_{j} \mu_{j}}{1 + \lambda_{j} \mu_{j}}$$

▶ Rearranging assumption, we have

$$\frac{1}{1+\mu_j} = \frac{K_j(S_j, A_j(S_j), P^*)}{P_j^*} = \sum_{i=1}^n \frac{l_j^* + P_i^* x_{ji}^*}{P_j^*} > \sum_{i=1}^n \frac{P_i^* x_{ji}^*}{P_j^*}$$

Last inequality comes from the fact that labor is an essential input

► We obtain

$$\sum_{i=1}^{n} J_{ij} = \sum_{i=1}^{n} \left(\frac{\partial \hat{C}_{i}^{*}}{\partial \tilde{Y}_{j}^{*}} + \frac{1}{1 - (1 - \lambda_{j}) \frac{\mu_{j}}{1 + \mu_{j}}} \frac{P_{i}^{*}}{P_{j}^{*}} x_{ji}^{*} \right)$$

$$< \left(\lambda_{j} \frac{\mu_{j}}{1 + \lambda_{j} \mu_{j}} + \frac{1}{1 - (1 - \lambda_{j}) \frac{\mu_{j}}{1 + \mu_{j}}} \frac{1}{1 + \mu_{j}} \right) = 1$$

- ▶ Thus, we have $||J||_1 = \max_j \sum_{i=1}^n J_{ij} < 1$
- \blacktriangleright By definition of matrix norm, for any \tilde{Y}^* and \tilde{Y}^{**}

$$\|\Phi(\tilde{Y}^*) - \Phi(\tilde{Y}^{**})\|_1 \leq \|J\|_1 \|\tilde{Y}^* - \tilde{Y}^{**}\|_1$$

- ▶ Since $||J||_1 \le 1$, this implies that $\Phi(\tilde{Y}^*)$ is a contraction, and thus given P^* , there exists a unique fixed point \tilde{Y}^* of Φ
- ► Furthermore, all equilibrium quantities are determined from fixed point
- ▶ Thus, given S, a price vector P^* that satisfies contestability condition uniquely define equilibrium

Proof of Theorem 1

- Let $\kappa(P) = ((1 + \mu_1) \min_{S_1} K_1(S_1, A_1(S_1), P), \cdots, (1 + \mu_n) \min_{S_n} K_n(S_n, A_n(S_n), P))$
- ▶ In the proof, we use following lemma

Lemma A1

Let $\mathbb{L}=\{P\geq 0: P_i=(1+\mu_i)\min_{S_i}K_i(S_i,A_i(S_i),P)\}$. Then, \mathbb{L} is a non-empty complete lattice with respect to the operations $P\wedge Q=(\min(P_1,Q_1),\cdots,\min(P_n,Q_n)),\ P\vee Q=(\max(P_1,Q_1),\cdots,\max(P_n,Q_n))$

Proof of Lemma A1

- Let $\mathbb{O} = \{(x_1, \cdots, x_n) : x_i \ge 0\}$ and then by definition $\kappa : \mathbb{O} \to \mathbb{O}$
- ▶ Define $\bar{P}_i = (1 + \mu_i)K_i(\emptyset, A_i(\emptyset), \{P_j\}_{j \in \emptyset})$
- ▶ We have $\kappa(P) \leq (\bar{P}_1, \cdots, \bar{P}_n)$ for any P
- ▶ Define $P_i = \kappa_i(0) = (1 + \mu_i) \min_{S_i} K_i(S_i, A_i(S_i), 0)$
- We have $\kappa(P) \geq \kappa(0) = (\underline{P_1}, \cdots, \underline{P_n})$
- ▶ Then, $\tilde{\mathbb{O}} = \times_{i=1}^n [P_i, \bar{P}_i]$ is a complete lattice
- $\qquad \qquad \blacktriangle \text{ And, } \kappa: \tilde{\mathbb{O}} \to \tilde{\mathbb{O}}$
- ▶ If $P' \leq P$, for any i and S_i , we have

$$(1 + \mu_i)K_i(S_i, A_i(S_i), P') \le (1 + \mu_i)K_i(S_i, A_i(S_i), P)$$

► Taking minima on both sides,

$$(1+\mu_i) \min_{S_i} K_i(S_i, A_i(S_i), P') \le (1+\mu_i) \min_{S_i} K_i(S_i, A_i(S_i), P)$$

Proof of Lemma A1 (cont)

- ▶ This implies $\kappa(P') \le \kappa(P)$
- ▶ So, κ is order-preserving function
- ▶ Since $\tilde{\mathbb{O}}$ is a complete lattice, from the Tarski's Fixed Point Theorem, the set of fixed points of κ , \mathbb{L} , is a complete lattice.

Tarski's Fixed Point Theorem

Let L be a complete lattice and let $f:L\to L$ be an order-preserving function. Then, the set of fixed points of f in L is also complete lattice.

- From Lemma A1, $\mathbb L$ is a non-empty complete lattice, κ has fixed points and a smallest fixed point
- ▶ Such fixed point satisfies $P_i^* = (1 + \mu_i)K_i(S_i^*, A_i(S_i^*), P^*)$ and $S_i^* \in \operatorname*{arg\ min}_{S_i} K_i(S_i, A_i(S_i), P^*)$
- From the same argument as in Lemma 1, there exists unique equilibrium quantities X^* , L^* and C^*
- ▶ Thus, $(P^*, S^*, C^*, L^*, X^*, Y^*)$ is an equilibrium

- Let P^* be the minimal element of $\mathbb L$ and P^{**} be the vector in $\mathbb L$ such that $P^{**}>P^*$
- ▶ Since $K_i(S_i, A_i(S_i), P)$ is concave in P given S_i , $\kappa_i(P) = (1 + \mu_i) \min_{S_i} K_i(S_i, A_i(S_i), P)$ is also concave
- Let $\nu \in (0,1)$ be such that $\nu P^{**} \leq P^*$, with at least some $r=1,\cdots,n$ such that $\nu P^{**}_r=P^*_r$

$$\kappa_{r}(P^{*}) - P_{r}^{*} \geq \kappa_{r}(\nu P^{**}) - \nu P_{r}^{**}
\geq (1 - \nu)\kappa_{r}(0) + \nu \kappa_{r}(P^{**}) - \nu P_{r}^{**}
\geq (1 - \nu)\kappa_{r}(0)
> 0$$

- ightharpoonup This contradicts that P^* is a fixed point
- ► This establishes the uniqueness of equilibrium prices, and then the uniqueness of equilibrium allocations

- ▶ Next, we show the equilibrium network is generically unique
- ▶ Let $S^* \neq S^{**}$ be two arbitrary networks
- Let $A(S^*, S^{**}) = \{A : S^* \text{ and } S^{**} \text{ are both equilibrium networks} \}$
- Define

$$\Delta_i(S_i^*, S_i^{**}, A) = (1 + \mu_i) K_i(S_i^*, A_i(S_i^*), P^*) - (1 + \mu_i) K_i(S_i^{**}, A_i(S_i^{**}), P^*)$$

- Note that for all parameters $A \in \mathcal{A}(S^*, S^{**})$ and each $i \in \{1, \cdots, n\}$, we have $\Delta_i(S_i^*, S_i^{**}, A) = 0$
- ▶ Since $S^* \neq S^{**}$, there is at least i such that $S_i^* \neq S_i^{**}$
- ▶ If we keep $A_{i,-S_i^*}$ and $A_{i,-1}(S_i^*)$ constant, then $\Delta_i(S_i^*, S_i^{**}, A)$ is continuous and strictly decreasing in $A_{i,1}(S_i^*)$
- ▶ This implies that there exists a unique value of $A_{i,1}(S_i^*)$ that satisfies $\Delta_i(S_i^*, S_i^{**}, A) = 0$
- ▶ Hence $\mathcal{A}(S^*, S^{**}) = \{A: \Delta_i(S_i^*, S_i^{**}, A) = 0 \text{ for all } i\}$ has measure zero
- The equilibrium network is generically unique

- Let $P^0=P^*$ and $S^0=S^*$ be the initial vector of equilibrium prices and networks
- $\blacktriangleright \ P^0$ satisfies $P_i^0 = (1 + \mu_i) \min_{S_i} K_i(S_i, A_i(S_i), P^0)$ for all i
- Suppose that $A_i(\cdot)$ increases to $A'(\cdot)$, and define P^1 so that $P^1_i = (1 + \mu_i) \min_{S_i} K_i(S_i, A'_i(S_i), P^0)$
- ightharpoonup Since K_i is decreasing in A_i , we have

$$P_i^1 = (1 + \mu_i) \min_{S_i} K_i(S_i, A_i'(S_i), P^0) \le (1 + \mu_i) \min_{S_i} K_i(S_i, A_i(S_i), P^0) = P_i^0$$

- ▶ Define $\kappa_i(P) = (1 + \mu_i) \min_{S_i} K_i(S_i, A'_i(S_i), P)$
- For $t \ge 1$,define $P^t = \kappa(P^{t-1})$
- ▶ Since κ is increasing in P, we have $\lim_{t\to\infty} P^t \leq P^1 \leq P^0 = P^*$
- lackbox Since κ is continuous, $\lim_{t \to \infty} P^t$ is a fixed point of κ
- ightharpoonup Since P^{**} is the minimal fixed point, we must have

$$P^{**} \le \lim_{t \to \infty} P^t \le P^0 = P^*$$

Proof of Lemma 2

- ▶ Let $i = 1, \dots, n$ and let $S_i \subset S_i'$, $A_i \leq A_i'$
- ▶ Let $\mathcal{X} = (S_i, A_i')$ and $\mathcal{Y} = (S_i', A_i)$
- ▶ Product of lattice ordering : $\mathcal{X} \vee \mathcal{Y} = (S'_i, A'_i)$, $\mathcal{X} \wedge \mathcal{Y} = (S_i, A_i)$
- ▶ Suppose that $K_i(S_i', A_i(S_i'), P) K_i(S_i, A_i(S_i), P) \leq 0$
- ▶ In lattice notation, $K_i(\mathcal{Y}) \leq K_i(\mathcal{X} \wedge \mathcal{Y})$
- ▶ From quasi-submodularity of K_i , $K_i(\mathcal{X} \vee \mathcal{Y}) \leq K_i(\mathcal{X})$
- ▶ This is equivalent to $K_i(S_i', A_i'(S_i'), P) K_i(S_i, A_i'(S_i), P) \leq 0$
- ► Thus, we have

$$K_i(S_i', A_i(S_i'), P) - K_i(S_i, A_i(S_i), P) \le 0$$

 $\Rightarrow K_i(S_i', A_i(S_i'), P') - K_i(S_i, A_i(S_i), P') \le 0$

- Let $S^0 = S^*$ be the initial equilibrium network
- Note that S^0 satisfies $S_i^0 = \operatorname*{arg\;min}_{S_i} (1 + \mu_i) K_i(S_i, A_i(S_i), P^*)$ for all i
- lacksquare Suppose that the shift from $A_i(\cdot)$ to $A_i'(\cdot)$ is a positive shock
- ▶ Define $S_i^1 \in \underset{S_i}{\operatorname{arg \, min}} (1 + \mu_i) K_i(S_i, A_i'(S_i), P^*)$
- lacktriangle From Milgrom and Shannon(1994), $S_i^0\subset S_i^1$

Theorem 4 in Milgrom and Shannon (1994) ¹

Let $f:X\times T\to\mathbb{R}$, where X is a lattice and T is a partially ordered set and $S\subset X$. Then $\mathop{\arg\max}_{x\in S}f(x,t)$ is monotone nondecreasing in (t,S) if and only if f is quasi-supermodular in x and satisfies the single crossing property in (x;t)

^{1&}quot; Monotone Comparative Statics", Milgrom and Shannon, 1994, Econometrica

- ▶ Define $\kappa(P) = (1 + \mu_i) \min_{S_i} K_i(S_i, A'_i(S_i), P)$
- ▶ Let $P^0 = P^*$ and define $P^t = \kappa(P^{t-1})$ for $t \ge 1$
- From the proof of Theorem 4, P^t is decreasing sequence with $P^{**} < P^*$
- ▶ Applying Milgrom and Shannon (1994), we have

$$S_{i}^{*} = S_{i}^{0}$$

$$\subset S_{i}^{1}$$

$$= \underset{S_{i}}{\operatorname{arg min}}(1 + \mu_{i})K_{i}(S_{i}, A'_{i}(S_{i}), P^{*})$$

$$\subset \underset{S_{i}}{\operatorname{arg min}}(1 + \mu_{i})K_{i}(S_{i}, A'_{i}(S_{i}), P^{**})$$

$$= S_{i}^{**}$$

▶ We conclude that $S^* \subset S^{**}$

- ▶ Let $\epsilon > 0$ and $T(\epsilon)$ be such that for $i \in \mathbb{N}$, $\sum_{i=T(\epsilon)}^{\infty} \alpha_{ij} \leq \epsilon$
- ▶ Assumption 5 implies that if $\{1, \dots, T(\epsilon)\} \subset S_i$ for all i, we have $\sum_{i=1}^{t} \alpha_{ij}(S) \geq \sum_{i=1}^{t} \alpha_{ij} - \epsilon$
- ► We use the following lemma

Lemma A2

Let α and β be non-negative $n\times n$ matrices. Let $A=(I-\alpha)^{-1}$ and $B=(I-\beta)^{-1}.$ If

- $\|\alpha\|_{\infty} \leq \theta, \ \|\beta\|_{\infty} \leq \theta \ \text{for some} \ \theta < 1, \ \text{and}$

Proof of Lemma A2

- Let α_{ij}^l be the (i,j) th element of the matrix α^l
- ▶ Note $A = \sum_{l=0}^{\infty} \alpha^l$, $B = \sum_{l=0}^{\infty} \beta^l$ and $\sum_{l=1}^{\infty} l\theta^{l-1} = \frac{1}{(1-\theta)^2}$
- It suffices to show that for all $l \ge 0$, $\sum_{j=1}^{n} \beta_{ij}^{l} \ge \sum_{j=1}^{n} \alpha_{ij}^{l} l\theta^{l-1}\epsilon$
- ► We show this by induction
- ▶ When l=1, we have $\sum_{i=1}^{n} \beta_{ij} \geq \sum_{j=1}^{n} \alpha_{ij} \epsilon$ by assumption
- \blacktriangleright Assume $\sum_{j=1}^n \beta_{ij}^l \geq \sum_{j=1}^n \alpha_{ij}^l l\theta^{l-1}\epsilon$
- ► We have

$$\sum_{j} \beta_{ij}^{l+1} = \sum_{j} \sum_{k} \beta_{ik} \beta_{kj}^{l} = \sum_{k} \beta_{ik} \sum_{j} \beta_{kj}^{l}$$

$$\geq \sum_{k} \beta_{ik} (\sum_{j=1}^{n} \alpha_{kj}^{l} - l\theta^{l-1} \epsilon)$$

$$\geq (\sum_{k} \alpha_{ik} - \epsilon) (\sum_{j=1}^{n} \alpha_{kj}^{l} - l\theta^{l-1} \epsilon)$$

Proof of Lemma A2 (cont)

▶ Right-hand side is, since $\sum_k \alpha_{ik} - \epsilon \le \sum_k \beta_{ik} \le \theta$,

$$\sum_{k} \alpha_{ik} \sum_{j} \alpha_{kj}^{l} - \epsilon \sum_{j} \alpha_{kj}^{l} - \theta l \theta^{l-1} \epsilon$$

▶ Since $\sum_j \sum_k \alpha_{ik} \alpha_{kj}^l = \sum_j \alpha_{ij}^{l+1}$ and $\sum_j \alpha_{kj}^l \leq \|\alpha^l\|_\infty \leq \theta^l$, we can conclude that

$$\sum_{j=1}^{n} \beta_{ij}^{l+1} \ge \sum_{j=1}^{n} \alpha_{ij}^{l+1} - (l+1)\theta^{l} \epsilon$$

▶ Adding up over all $l \in \mathbb{N}$, we obtain

$$\sum_{j} B_{ij} \ge \sum_{j} A_{ij} - \frac{1}{(1-\theta)^2} \epsilon$$

- ▶ Recall that $\mathcal{L}(S) = (I \alpha(S))^{-1}$
- From Lemma A2, We have for any $S \supset \{1, \dots, T(\epsilon)\}$, $\sum_{j=1}^t \mathcal{L}_{ij}(S) \ge \sum_{j=1}^t \mathcal{L}_{ij} \frac{1}{(1-\theta)^2} \epsilon$
- ▶ Define $S_i^{\max}(t) = \underset{S_i \supset \{1, \cdots, T(\epsilon)\} \setminus \{i\}}{\arg \max} a_i(S_i)$ and $S^{\max}(t) = \{S_i^{\max}(t)\}_{i=1}^t$
- ▶ Define $p_i^{\max}(t) = -\sum_{j=1}^t \mathcal{L}_{ij}(S^{\max}(t))(a_j(S^{\max}_j(t)) \log(1 + \mu_j))$
- ▶ Since $a_i(S_i^{\max}(t))$ is the maximum of $2^{t-1-T(\epsilon)}$ random variables drawn jointly from $\Phi_i(t-1-T(\epsilon))$, we have, from Assumption 4, $\lim_{t\to\infty} \frac{a_i(S_i^{\max}(t))}{t-1-T(\epsilon)} = D$
- ightharpoonup Since $T(\epsilon)$ is constant, we have

$$\lim_{t \to \infty} \frac{a_i(S_i^{\max}(t))}{t} = D \ almost \ surely$$

▶ Since $S_i^{\max}(t) \supset \{1, \cdots, T(\epsilon)\} \setminus \{i\}$, we have $\sum_{j=1}^t \mathcal{L}_{ij}(S^{\max}(t)) \geq \sum_{j=1}^t \mathcal{L}_{ij} - \frac{1}{(1-\theta)^2}\epsilon$

We obtain

$$-p_{i}^{\max}(t) = \sum_{j=1}^{t} \mathcal{L}_{ij}(S^{\max}(t))(a_{j}(S_{j}^{\max}(t)) - \log(1 + \mu_{j}))$$

$$\geq \min_{k \leq t}(a_{k}(S_{k}^{\max}(t)) - \log(1 + \mu_{k})) \sum_{j=1}^{t} \mathcal{L}_{ij}(S^{\max}(t))$$

$$\geq \min_{k \leq t}(a_{k}(S_{k}^{\max}(t)) - \log(1 + \mu_{k})) (\sum_{j=1}^{t} \mathcal{L}_{ij} - \frac{1}{(1 - \theta)^{2}} \epsilon)$$

▶ Devide both sides by $t \sum_{j=1}^{t} \mathcal{L}_{ij}$ and by $\sum_{j=1}^{t} \mathcal{L}_{ij} \geq 1$,

$$-\frac{p_i^{\max}(t)}{t\sum_{j=1}^t \mathcal{L}_{ij}} \geq \frac{\min_{k \leq t} (a_k(S_k^{\max}(t)) - \log(1 + \mu_k))}{t} - \epsilon \frac{\min_{k \leq t} (a_k(S_k^{\max}(t)) - \log(1 + \mu_k))}{t(1 - \theta)^2 \sum_{j=1}^t \mathcal{L}_{ij}}$$

$$\geq \frac{\min_{k \leq t} (a_k(S_k^{\max}(t)) - \log(1 + \mu_k))}{t} - \epsilon \frac{\min_{k \leq t} (a_k(S_k^{\max}(t)) - \log(1 + \mu_k))}{t(1 - \theta)^2}$$

▶ Since μ_k is constant, take \liminf on both sides,

$$\liminf_{t \to \infty} -\frac{p_i^{\max}(t)}{t \sum_{j=1}^t \mathcal{L}_{ij}} \ge D - \epsilon D \frac{1}{(1-\theta)^2}$$

ightharpoonup Since ϵ is arbitrary small, we conclude that

$$\lim_{t \to \infty} \inf -\frac{p_i^{\max}(t)}{t \sum_{j=1}^t \mathcal{L}_{ij}} \ge D$$

► Let

$$\kappa(p) = (\min_{S_1} \log(1 + \mu_1) + k_1(S_1, a_i(S_1), p), \cdots, \min_{S_t} \log(1 + \mu_t) + k_t(S_t, a_i(S_t), p))$$

- $ightharpoonup \kappa(p)$ has a smallest fixed point $p^*(t)$, and we have $p^*(t) \leq p^{\max}(t)$
- ► So, we have

$$\liminf_{t \to \infty} -\frac{p_i^*(t)}{t \sum_{j=1}^t \mathcal{L}_{ij}} \ge D$$

We have

$$-p_{i}^{*}(t) = \sum_{j=1}^{t} \mathcal{L}_{ij}(S(t))(a_{j}(S_{j}(t)) - \log(1 + \mu_{j}))$$

$$\leq \max_{k \leq t} (a_{k}(S_{k}(t)) - \log(1 + \mu_{k})) \sum_{j=1}^{t} \mathcal{L}_{ij}$$

$$\leq \max_{k \leq t} \max_{S'_{k}} (a_{k}(S'_{k})) - \min_{k} (\log(1 + \mu_{k})) \} \sum_{j=1}^{t} \mathcal{L}_{ij}$$

As we argued above,

$$\lim_{t \to \infty} \frac{\max_{k \le t} \max_{S'_k} (a_k(S'_k))}{t} = D \ almost \ surely$$

▶ Divide by $t \sum_{j=1}^{t} \mathcal{L}_{ij}$ and take \limsup on both sides

$$\limsup_{t\to\infty} -\frac{p_i^*(t)}{t\sum_{j=1}^t \mathcal{L}_{ij}} \leq \limsup_{t\to\infty} \frac{\max_{k\leq t} \max_{S_k'} (a_k(S_k')) - \min_k (\log(1+\mu_k))}{t} \leq D$$

► Thus, we can conclude that

$$\lim_{t \to \infty} -\frac{p_i^*(t)}{t \sum_{j=1}^t \mathcal{L}_{ij}} = D \ almost \ surely$$

 \blacktriangleright and since $\pi(t) = \sum_{i=1}^t \frac{\beta_i}{\sum_{i=1}^t \beta_i} p_i(t)$

$$g^* = \lim_{t \to \infty} \left(-\frac{\pi(t)}{t} \right) = D \sum_{i,j=1}^{\infty} \beta_i \mathcal{L}_{ij} \ almost \ surely$$

Quasi-submodularity

Definition of quasi-submodularity -

A set function $F:2^N\to\mathbb{R}$ is quasi-submodular function if $\forall X,Y\subset N$, both of the following conditions are satisfied

- $F(X \cap Y) \ge F(X) \Rightarrow F(Y) \ge F(X \cup Y)$
- $\blacktriangleright \ F(X\cap Y) > F(X) \Rightarrow F(Y) > F(X\cup Y)$
- In our context, for all S_i, T_i, A_i, P , both of the following conditions are satisfied

$$K_i(S_i, A_i(S_i), P) \le K_i(S_i \cap T_i, A_i(S_i \cap T_i), P)$$

$$\Rightarrow K_i(S_i \cup T_i, A_i(S_i \cup T_i), P) \le K_i(T_i, A_i(T_i), P)$$

$$K_i(S_i, A_i(S_i), P) < K_i(S_i \cap T_i, A_i(S_i \cap T_i), P)$$

$$\Rightarrow K_i(S_i \cup T_i, A_i(S_i \cup T_i), P) < K_i(T_i, A_i(T_i), P)$$

