

ECESSE Project: inear Programming

Adham Ragab, Martin Staadecker, Ahmed Hamoda, Abnash Bassi

<mark>at are we doing? • What are we doin</mark>

Implement a linear programming solver on an FPGA

Solve such problems using an implementation of the Simplex Method

Minimize Costs of Electricity Grids

The Equivalent Linear Program

Minimize cost:

30 * x + 50 * z

Such that:

CleanVille's power is balanced

x - y = 100

DirtyVille's power is balanced

y + z = 100

The hydro plant operates within its limits

 $0 \le x \le 190$

The gas plant operates within its limits

 $0 \le z \le 200$

The transmission line is within its limits $-80 \le y \le 80$

*This is one of many possible models!

Depending on your application you might want to consider transmission losses, intracity distribution networks, etc.

Initial Proposal

Final Design

Major Components: Problem

Setup

Problem Setup

- Converting real energy model into equations
- Converting equations into matrix
- Presolving matrix
- Converting matrix to standard form

Presolver

- Remove empty rows
- Remove unused variables
- Remove variables fixed by constraint
- Remove variables fixed by bounds
- Convert constraints to bounds
- Remove variables by snapping to bound or constraint
- Tighten inequalities to equalities
- Remove equality constraints
- Remove weak constraints

Major Components: Data Transfer

Data Transfer

- After setting up tableau:
 - a. We send elements over Ethernet
 - b. Store them in DDR and other caches
 - c. Notify LP control unit (LPC) to start
- We were able to reduce time it takes to send 100MB sample problem from 30m to less than 4m
- Read & write interfaces for memory components with FIFOs to stream in data to/from LP Core Modules.

Major Components: Control, Caching, and Buffering

Control

- Control Unit to steer data + logic throughout the LP Subsystem
- Responsible for driving progress from solving core to solving core + data transfer to/from BRAM blocks and DDR

Caching

 BRAM blocks to cache rows and cols to use in solving cores without having to fetch from DDR each time

Buffering

- FIFOs for streaming data to/from solving cores
- Ensure cores can start
 processing data without
 having to wait for all
 elements to arrive

Control Unit Diagram

LP Core Modules

Four modules:

- 1. Choose pivot column
- 2. Choose pivot row
- 3. Update pivot row
- 4. Update tableau

1	2	1	0	0	0	16
1	1	0	1	0	0	9
3	2	0	0	1	0	24
-40	-30	0	0	0	1	0

Choose Pivot Row Module::

Computed Difficulty Score

	Complexity Score	
	Custom LP Algorithm Solver Cores	3.00
	Application-Level Ethernet Protocol for Sending/Receiving Data	0.25
S. S	LP Control Unit	0.50
	Buffering (FIFO) IP Cores	0.75
	4.75	

Future Work

More Optimized (But Complex) LP Modules

- We designed multi-stage choose_pivot_row module with cross-mult --> too complex for project timeline
- Experiment with other architectures for LP modules
- Try third-party FP IP

Alternative LP Algosi

- We implemented Simplex
- Alternative algorithms exist for exploration such as Revised Simplex

Multi-Iteration Parallelism in Control

- Control flow runs each algorithm iteration sequentially
- Could experiment with running specific independent stages in parallel

