MATH2033 Mathematical Statistics Assignment 8

Due Date: 12/May/2024(Sunday), on or before 16:00, on iSpace.

- Write down your **CHN** name and **student ID**. Write neatly on **A4-sized** paper and **show your steps**. Hand in your homework in **one pdf file** on iSpace.
- Late submissions, answers without details, or unrecognizable handwritings will NOT be graded.
- 1. If $H_0: \mu = 30$ is tested against $H_1: \mu > 30$ using n = 16 observations (normally distributed) and if $1 \beta = 0.85$ when $\mu = 34$, what does α equal? Assume that $\sigma = 9$.
- 2. Let X have a binomial distribution with the number of trials n = 10 and with p either 1/4 or 1/2. The simple hypothesis $H_0: p = 1/2$ is rejected, and the alternative simple hypothesis $H_1: p = 1/4$ is accepted, if the observed value of X_1 , a random sample of size 1, is less than or equal to 3.
 - (a) Should we consider it as a large sample test or small sample test?
 - (b) Find the significance level and the power of the test.
- 3. Construct a power function $\gamma(\mu)$ for the $\alpha = 0.05$ test of $H_0: \mu = 60$ versus $H_1: \mu \neq 60$ if the data consist of a random sample of size 16 from a normal distribution having $\sigma = 4$ by finding $\gamma(56)$, $\gamma(58)$ and $\gamma(60)$.
- 4. A sample of size 1 from the pdf $f_Y(y) = (1 + \theta)y^{\theta}$, $0 \le y \le 1$, is to be the basis for testing $H_0: \theta = 1$ versus $H_1: \theta < 1$

The critical region will be $\{y \leq 1/2\}$. Express $1 - \beta$ as a function of θ .

5. Let X_1, \ldots, X_n be iid samples from the distribution that has the pdf

$$f(x|\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\theta)^2}{2}\right), \quad -\infty < x < \infty$$

It is desired to test the simple hypothesis $H_0: \theta = \theta_0 = 0$ against the alternative simple hypothesis $H_1: \theta = \theta_1 = 1$.

- (a) Find the best critical region with $\alpha = 0.05$ and n = 25.
- (b) Based on your result in part (a), find the power of this best test of H_0 against H_1 when H_1 is true.