Easy strategies in complex games

Finite memory strategies in POMDPs with long-run average objective

K. Chatterjee¹ R. Saona¹ B. Ziliotto²

¹IST Austria

²CEREMADE, CNRS, Université Paris Dauphine, PSL Research Institute

Signal S_m

Signal S_m

$$\begin{split} v_{\infty}(p_1) &\coloneqq \sup_{\sigma \in \Sigma} \mathbb{E}_{\sigma}^{p_1} \quad \left(\liminf_{n \to \infty} \frac{1}{n} \sum_{m=1}^n G_m \right) \\ &= \lim_{n \to \infty} v_n \quad = \lim_{n \to \infty} \sup_{\sigma \in \Sigma} \mathbb{E}_{\sigma}^{p_1} \left(\frac{1}{n} \sum_{m=1}^n G_m \right) \\ &= \lim_{\lambda \to 0^+} v_{\lambda} \quad = \lim_{\lambda \to 0^+} \sup_{\sigma \in \Sigma} \mathbb{E}_{\sigma}^{p_1} \left(\sum_{m=1}^{\infty} \lambda (1 - \lambda)^{m-1} G_m \right) \end{split}$$

Model
Previous results
About POMDPs

Characterizations of the value function Approximately optimal strategies Importance of POMDPs

Icons made by Freepik from www.flaticon.com

Approximation.

$$|v-v_{\infty}(p_1)|\leq \varepsilon$$
.

This is impossible.

Lower bound.

Upper bound.

$$(v_n) \nearrow v_{\infty}(p_1).$$

$$(v_n) \searrow v_{\infty}(p_1).$$

Our result.

This is impossible.

Continuity(?).

$$v_{\infty}(p_1) = F(\text{rewards}, \text{transitions})$$
.

Continuous with respect to rewards and lower semi-continuous with respect to transitions.

Most recent history.

Are last actions and signals enough to approximate the value?

No in general, but it is enough in blind MDP

Other objectives.

Consider the lim sup:

$$w_{\infty} := \sup_{\sigma \in \Sigma} \mathbb{E}_{\sigma}^{p_1} \left(\limsup_{n \to \infty} \frac{1}{n} \sum_{m=1}^n G_m \right)$$

Finite memory is not enough

Property. We need to recall the first signal to play ε -optimally.

Property. We need to recall the first signal to play ε -optimally.

Blind MDP

$$\mathbb{E}_{\sigma}^{p_1}\left(\limsup_{n\to\infty}\frac{1}{n}\sum_{m=1}^nG_m\right)$$

$$\sigma=(wait)^{2^{0^2}}(change)(wait)^{2^{1^2}}\cdots(change)(wait)^{2^{N^2}}\cdots$$

Continuity.

$$v_{\infty}(p_1) = F(\text{rewards}, \text{transitions})$$
.

Is v_{∞} continuous with respect to transitions?

Belief partition.

$$v_{\infty}(p_1) = \sup_{\sigma \in \ref{eq:p_1}} \mathbb{E}_{\sigma}^{p_1} \left(\liminf_{n \to \infty} \frac{1}{n} \sum_{m=1}^n G_m \right) .$$

Do belief partition strategies have this property?

Decidability.

Is there a class of POMDPs which is decidable?

Probability objective.

$$w_{\infty}(p_1;\gamma) = \sup_{\sigma \in \Sigma} \mathbb{P}_{\sigma}^{p_1} \left(\liminf_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} G_m \right)$$
.

Do finite-memory strategies approximate the value?

Consequences Examples Open questions

Reference.

This presentation is based in the following paper:

K. Chatterjee, R. Saona and B. Ziliotto.

The Complexity of POMDPs with Long-run Average Objectives.

arXiv prepint, abs/1904.13360, 2020.

https://arxiv.org/abs/1904.13360