JÄYKÄN KAPPALEEN TASOKINETIIKKA

TASOLIIKKEEN LIIKEYHTÄLÖT

Mielivaltaisen partikkelisysteemin voima- ja momenttiliikeyhtälö

$$\vec{R} = m\vec{a}_G = \dot{\vec{p}}$$
 $\vec{M}_G = \dot{\vec{L}}_G$

ovat voimassa myös jäykän kappaleen liikkeelle, sillä jäykkä kappale on partikkelisysteemi, jossa partikkelien keskinäiset etäisyydet eivät voi muuttua.

Selvitetään, mihin muotoon liikeyhtälöt menevät jäykän kappaleen tasoliikkeen tapauksessa.

Massakeskiön G kiihtyvyys on \vec{a}_G ja kappaleen kulmanopeus ja -kiihtyvyys ovat $\vec{\omega} = \omega \, \vec{k}$ ja $\vec{\alpha} = \alpha \, \vec{k}$, jolloin niiden suuruudet ovat ω ja α .

Liikemäärän momentti massakeskiön suhteen:

$$\vec{L}_G = \sum_{i=1}^n \vec{r}_{i/G} \times m_i \, \dot{\vec{r}}_{i/G}$$

 $\vec{r}_{i/G}$ on partikkelin P_i paikkavektori ja $\dot{\vec{r}}_{i/G}$ nopeus massakeskiöön nähden.

Suhteellinen liike massakeskiöön nähden on rotaatiota, joten $\dot{\vec{r}}_{i/G} = \vec{\omega} \times \vec{r}_{i/G}$. Vektorin $\dot{\vec{r}}_{i/G}$ suuruus on $r_{i/G} \omega$ ja suunta kohtisuoraan vektoria $\vec{r}_{i/G}$ vastaan. \Rightarrow vektorin $\dot{\vec{r}}_{i/G} \times \dot{\vec{r}}_{i/G}$ suuruus on $r_{i/G}^2 \omega$ ja suunta vektorin $\vec{\omega}$ suurtaan. \Rightarrow Liikemäärän momentin \vec{L}_G suuruudeksi tulee

$$L_G = \sum_{i=1}^n r_{i/G}^2 m_i \omega = \omega \sum_{i=1}^n r_{i/G}^2 m_i = I_G \omega$$

 $I_G = \sum_{i=1}^n r_{i/G}^2 \, m_i$ on kappaleen hitausmomentti massakeskiön G kautta kulkevan liiketason normaalin suhteen. Saadaan siis

$$M_G = \dot{L}_G = I_G \dot{\omega} = I_G \alpha$$

Tasoliikkeen liikeyhtälöiksi tulevat

$$\vec{R} = m \vec{a}_G$$
 $M_G = I_G \alpha$

Jos käytetään xy-koordinaatistoa, saavat liikeyhtälöt muodon

$$R_x = ma_{Gx}$$
 $R_y = ma_{Gy}$
 $M_G = I_G \alpha$

Mielivaltaisen liikkuvan pisteen Q suhteen yleinen momenttiliikeyhtälö on

$$\vec{M}_Q = \dot{\vec{L}}_G + \vec{r}_{G/Q} \times m\vec{a}_G$$

jossa $\vec{r}_{G/Q}$ on massakeskiön paikkavektori pisteeseen Q nähden. Tasoliikkeellä $\dot{\vec{L}}_G = I_G \alpha \bar{k}$ ja termi $\vec{r}_{G/Q} \times m \vec{a}_G$ voidaan tulkita suureen $m \vec{a}_G$ momentiksi pisteen Q suhteen, jolloin sitä vastaa termi $\pm m a_G d \bar{k}$. d on momenttivarsi ja etumerkki valitaan suureen $m \vec{a}_G$ pyörityssuunnan mukaan. Momenttiliikeyhtälö mielivaltaisen liikkuvan momenttipisteen Q suhteen on tasoliikkeelle

$$M_Q = I_G \alpha \pm ma_G d$$

Erityisesti on huomattava, että hitausmomentti on massakeskiön G suhteen.

Kiinteän pisteen O suhteen kirjoitettu momenttiliikeyhtälö menee tasoliikkeen tapauksessa muotoon

$$M_O = I_O \alpha$$

jossa on huomattava, että IO on hitausmomentti pisteen O suhteen

TRANSLAATIO

(a) Suoraviivainen translaatio

Vapaakappalekuva

Kineettinen kuva

(b) Käyräviivainen translaatio

Kulmanopeus $\bar{\omega}$ ja -kiihtyvyys $\bar{\alpha}$ ovat nollia. Kappaleen hitausmomenttia ei tarvita. Liikeyhtälöt xy-koordinaatistossa ovat

$$R_x = ma_{Gx}$$
 $R_y = ma_{Gy}$
 $M_G = 0$

Suoraviivaiselle translaatiolle voidaan x-akseli valita liikesuuntaan, jolloin voimayhtälöt ovat

$$R_x = ma_{Gx}$$
 $R_y = 0$

Käyräviivaiselle translaatiolle voidaan käyttää ratakoordinaatistoa. Voimaliikeyhtälöt ovat tällöin

$$R_t = ma_{Gt} \quad R_n = ma_{Gn}$$

Momenttiyhtälö mielivaltaisen momenttipisteen Q suhteen on

$$M_Q = \pm ma_G d$$

ROTAATIO

Piste O on rotaatiokeskus. Liikeyhtälöt kannattaa yleensä kirjoittaa ratakoordinaatistossa. Massakeskiön kiihtyvyyskomponentit ovat tällöin $a_{Gn}=r\omega^2$ ja $a_{Gt}=r\alpha$, jossa r=OG. Liikeyhtälöt ovat

$$R_n = m r \omega^2$$
 $R_t = m r \alpha$
 $M_G = I_G \alpha$

Momenttiliikeyhtälö on usein kätevämpää kirjoittaa rotaatiokeskuksen O suhteen. Koska O on kiinteä piste, liikeyhtälöksi tulee

$$M_O = I_O \alpha$$

YLEINEN TASOLIIKE

Voimaliikeyhtälö on

$$\vec{R} = m\vec{a}_G$$

ja sisältää kaksi komponenttiyhtälöä.

Momenttiliikeyhtälö massakeskiön G suhteen

$$M_G = I_G \alpha$$

Momenttiliikeyhtälö mielivaltaisen liikkuvan pisteen Q suhteen

$$M_Q = I_G \alpha \pm ma_G d$$

Momenttiliikeyhtälö kiinteän pisteen O suhteen

$$M_O = I_O \alpha$$

Momenttiliikeyhtälön eri muotoja käytettäessä on syytä olla perillä siitä, minkä akselin suhteen laskettua hitausmomenttia kulloinkin tarvitaan.

JÄYKÄN KAPPALEEN TYÖLAUSE

Työlause sopii tapauksiin, joissa voimat ja momentit tunnetaan siirtymien funktiona ja halutaan laskea nopeus tai kulmanopeus tietyllä hetkellä.

Muuttuvan momentin tekemä työ

$$W = \int_{\theta_1}^{\theta_2} M d\theta$$

Vakiomomentin tekemä työ

$$W = M(\theta_2 - \theta_1) = M\Delta\theta$$

Liike-energian lauseke menee jäykällä kappaleella muotoon

$$T = \frac{1}{2} m v_G^2 + \frac{1}{2} I_G \omega^2$$

Jos liike on rotaatiota pisteen O ympäri, voidaan käyttää myös kaavaa

$$T = \frac{1}{2}I_{O} \omega^{2}$$

Työlausetta sovellettaessa voidaan käyttää hyväksi gravitaatiopotentiaalienergiaa ja kimmoenergiaa.

$$W = \Delta T$$
 tai $W = \Delta T + \Delta V_g + \Delta V_e$

Työlause soveltuu myös useamman jäykän kappaleen systeemille, jolloin W tarkoittaa systeemissä vaikuttavien voimien kokonaistyötä ja energiamuutokset systeemin osien yhteenlaskettuja energiamuutoksia.

JÄYKÄN KAPPALEEN IMPULSSILAUSEET

Impulssilauseet soveltuvat tilanteisiin, joissa voimat ja momentit tunnetaan ajan funktiona ja halutaan laskea nopeus tai kulmanopeus tietyllä hetkellä.

Voiman impulssilause

$$\int_{t_1}^{t_2} \vec{R} \, dt = m(\vec{v}_{G2} - \vec{v}_{G1})$$

Momentin impulssilause massakeskiön G suhteen

$$\int_{t_1}^{t_2} M_G dt = I_G (\omega_2 - \omega_1)$$

Momentin impulssilause mielivaltaisen liikkuvan pisteen Q suhteen

$$\int_{t_1}^{t_2} M_Q dt = L_{Q2} - L_{Q1}$$

$$L_Q = I_G \omega \pm m v_G d$$

$$L_Q = I_G \omega \pm m v_G d$$

Momentin impulssilause kiinteän pisteen O suhteen

$$\int_{t_1}^{t_2} M_O dt = I_O (\omega_2 - \omega_1)$$

Impulssilauseet soveltuvat myös useamman jäykän kappaleen systeemille, jolloin voima- ja momenttisummissa ovat ulkoisten voimien ja momenttien vaikutukset ja liikemäärä ja liikemäärän momentit tarkoittavat systeemin kappaleiden yhteenlaskettuja suureita.