Chapter 7

Optimization

Optimization

- Optimization is the process of creating something that is as effective as possible.
- From a mathematical perspective, optimization deals with finding the maxima and minima of a function that depends on one or more variables.

Multidimensional Optimization

- One-dimensional problems involve functions that depend on a single dependent variable : f (x)
- Multidimensional problems involve functions that depend on two or more dependent variables: f (x, y)

Global vs. Local

- A global optimum represents the very best solution while a local optimum is better than its immediate neighbors.
 - Cases that include local optima are called multimodal.
- Generally desire to find the global optimum.

Golden-Section Search

- Search algorithm for finding a min/max on an interval $[x_{L_i} x_{u}]$ with a single min/max (unimodal interval)
- Uses the *golden ratio* $\phi = 1.6180...$ to determine location of two interior points x_1 and x_2
 - by using the golden ratio, one of the interior points can be re-used in the next iteration.

Golden Ratio Examples

The Secret of the Universe: pentagon (Pythagoras 학파의 symbol)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

한 옥타브 피아노 건반의 수는 13 (흰 건반 8개, 검은 건반 5개), 검은 건반은 다시 3개와 2개로 나뉨 → 2,3,5,8,13

Golden-Section Search

- 1. Guess x_L , x_u (Assume max problem)
- 2. Estimate d = $R^*(x_u x_l) = 0.618^*(x_u x_l)$
- 3. $x_1 = x_L + d$, $x_2 = x_U d$, $f(x_1)$, $f(x_2)$ watch out $x_1 > x_2$
- 4. If $f(x_1) > f(x_2)$, eliminate the domain x
 - $x_1 = \text{old } x_2$
 - $x_2 = \text{old } x_1$
 - $x_u = old x_u$
 - $d = R^*(x_u x_l)$
 - $x_1 = x_1 + d$

- 5. If $f(x_1) < f(x_2)$, eliminate the domain $x_1 \sim x_u$
 - $x_u = \text{old } x_1$
 - $x_1 = \text{old } x_2$
 - $x_L = \text{old } x_L$
 - $d = R(x_u x_l)$
 - $x_2 = x_{11} d$

6. Repeat step 2~5 until converge

Convergence test

$$e_a = (1 - R) \times \frac{|\mathbf{x}_u - \mathbf{x}_l|}{\mathbf{x}_{opt}} \times 100 \le e_s$$

if
$$(x_1 - x_L) <= \delta$$
 (절대오차), stop
$$\delta = \epsilon_a * x_{opt}$$

Example 7.2

• Find the minimum of $f(x)=x^2/10 - 2*\sin(x)$, [0,4]

$$d = 0.61803(4-0) = 2.4721$$
$$x_1 = 0 + 2.4721 = 2.4721$$
$$x_2 = 4 - 2.4721 = 1.5279$$

$$f(x_2) = \frac{1.5279^2}{10} - 2\sin(1.5279) = -1.7647$$
$$f(x_1) = \frac{2.4721^2}{10} - 2\sin(2.4721) = -0.6300$$

- $f(x_2) < f(x_1)$ (min is between x_L, x_2, x_1): eliminate $[x_1, x_U]$
 - $(x_u \leftarrow x_1) (x_1 \leftarrow x_2) \rightarrow \text{new d} \rightarrow (\text{new } x_2 = x_u \text{d})$
 - [X_L , X_2 , X_1 , X_U] : [0, 1.5729, 2.4721, 4.0] \rightarrow [0, 0.9443, 1.5279, 2.4721]

Example 7.2

$$d = R(x_u - x_l) = 0.618*(x_u - x_l)$$

i	x_l	$f(x_l)$	\boldsymbol{x}_2	$f(x_2)$	x_1	$f(x_1)$	x_u	$f(x_u)$	d
1	0	0	1.5279	-1.7647	2.4721	-0.6300	4.0000	3.1136	2.4721
2	0	0	0.9443	-1.5310	1.5279	-1.7647	2.4721	-0.6300	1.5279
3	0.9443	-1.5310	1.5279	-1.7647	1.8885	-1.5432	2.4721	-0.6300	0.9443
4	0.9443	-1.5310	1.3050	-1.7595	1.5279	-1.7647	1.8885	-1.5432	0.5836
5	1.3050	-1.7595	1.5279	-1.7647	1.6656	-1.7136	1.8885	-1.5432	0.3607
6	1.3050	-1.7595	1.4427	-1.7755	1.5279	-1.7647	1.6656	-1.7136	0.2229
7	1.3050	-1.7595	1.3901	-1.7742	1.4427	-1.7755	1.5279	-1.7647	0.1378
8	1.3901	-1.7742	1.4427	-1.7755	1.4752	-1.7732	1.5279	-1.7647	0.0851

(cf) true min. is -1.7757 at x=1.4276

Parabolic Interpolation

- Another algorithm uses parabolic interpolation of three points to estimate optimum location. $(y=ax^2+bx+c)$
- The maximum/minimum of a parabola (y'=0) defined as the interpolation of three points (x_1 , x_2 , and x_3) is

$$x_4 = x_2 - \frac{1}{2} \frac{(x_2 - x_1)^2 [f(x_2) - f(x_3)] - (x_2 - x_3)^2 [f(x_2) - f(x_1)]}{(x_2 - x_1) [f(x_2) - f(x_3)] - (x_2 - x_3) [f(x_2) - f(x_1)]}$$

• The new point x_4 and the two surrounding it (either x_1 and x_2 or x_2 and x_3) are used for the next iteration of the algorithm.

Example 7.2

• Find the minimum of $f(x)=x^2/10 - 2\sin x$, $[x_1=0, x_2=1, x_3=4]$

$$x_1 = 0$$
 $f(x_1) = 0$
 $x_2 = 1$ $f(x_2) = -1.5829$
 $x_3 = 4$ $f(x_3) = 3.1136$

$$x_4 = 1 - \frac{1}{2} \frac{(1-0)^2 [-1.5829 - 3.1136] - (1-4)^2 [-1.5829 - 0]}{(1-0)[-1.5829 - 3.1136] - (1-4)[-1.5829 - 0]} = 1.5055$$

$$f(1.5055) = -1.7691$$

• [0,1,1.5055,4]

$$x_1 = 1$$
 $f(x_1) = -1.5829$
 $x_2 = 1.5055$ $f(x_2) = -1.7691$
 $x_3 = 4$ $f(x_3) = 3.1136$

$$x_4 = 1.5055 - \frac{1}{2} \frac{\left(1.5055 - 1\right)^2 \left[-1.7691 - 3.1136\right] - \left(1.5055 - 4\right)^2 \left[-1.7691 - \left(-1.5829\right)\right]}{\left(1.5055 - 1\right) \left[-1.7691 - 3.1136\right] - \left(1.5055 - 4\right) \left[-1.7691 - \left(-1.5829\right)\right]}$$

i	<i>x</i> ₁	$f(x_1)$	x_2	$f(x_2)$	<i>x</i> ₃	$f(x_3)$	X4	$f(x_4)$
1	0.0000	0.0000	1.0000	-1.5829	4.0000	3.1136	1.5055	-1.7691
2	1.0000	-1.5829	1.5055	-1.7691	4.0000	3.1136	1.4903	-1.7714
3	1.0000	-1.5829	1.4903	-1.7714	1.5055	-1.7691	1.4256	-1.7757
4	1.0000	-1.5829	1.4256	-1.7757	1.4903	-1.7714	1.4266	-1.7757
5	1.4256	-1.7757	1.4266	-1.7757	1.4903	-1.7714	1.4275	-1.7757

true min. is -1.7757 at x=1.4276

fminbnd: Optimization in one variable

- MATLAB has a built-in function, fminbnd, which combines the golden-section search and the parabolic interpolation.
 - [xmin, fval] = fminbnd(function, x1, x2)

```
>> g=9.81; v0=55; m=80; c=15; z0=100;
>> z=@(t)-(z_0+m/c*(v_0+m*g/c)*(1-exp(-c/m*t))-m*g/c*t);
\rangle [x,f]=fminbnd(z,0,8)
\mathbf{x} =
     3.8317
 -192.8609
                                                                    Func-count
                                                                                          f(x)
                                                                                                      Procedure
                                                                                  X
                                                                              3.05573
                                                                                        -189.759
                                                                                                       initial
                                                                              4.94427
                                                                                        -187.19
                                                                                                       golden
                                                                              1.88854
                                                                                        -171.871
                                                                                                       golden
                                                                              3.87544
                                                                                        -192.851
                                                                                                       parabolic
>> options = optimset ('display', 'iter');
                                                                              3.85836
                                                                                        -192.857
                                                                                                       parabolic
                                                                              3.83332
                                                                                        -192.861
                                                                                                       parabolic
>> fminbnd(z, 0, 8, options)
                                                                              3.83162
                                                                                        -192.861
                                                                                                       parabolic
                                                                              3.83166
                                                                                        -192.861
                                                                                                       parabolic
                                                                              3.83169
                                                                                        -192.861
                                                                                                       parabolic
                                                                    Optimization terminated:
                                                                    the current x satisfies the termination criteria using
                                                                    OPTIONS.TolX of 1.000000e-004
                                                                    ans =
                                                                       3.8317
```

fminsearch: Multidimensional optimization

- [xmin, fval] = fminsearch(function, x0)
- The function must be written in terms of a single variable, where different dimensions are represented by different indices of that variable.
 - To minimize $f(x,y)=2+x-y+2x^2+2xy+y^2$
 - Rewrite as $f(x(1), x(2)) = 2 + x(1) x(2) + 2 + (x(1))^2 + 2 + x(1) + (x(2))^2$

```
| Solution | Solution
```

Multidimensional Visualization

- MATALB 2-dimension plot commands
 - contour
 - Mesh
 - mesh(X, Y, Z): draws a wireframe mesh with color determined by Z so color is proportional to surface height
 - surfc(X,Y, Z)) : draws a contour plot beneath the mesh
 - Surf
 - surf(X,Y, Z): creates a a three-dimensional shaded surface
 - surfc(X,Y, Z)) : draws a contour plot beneath the surface

$$f(x_1, x_2) = 2 + x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$

$$-2 \le x_1 \le 0$$
, $0 \le x_2 \le 3$


```
subplot (nrows,ncols,plot_number) : display multiple plots in the same window
clabel(C) : adds labels to the current contour plot
Plot command allow the use of underscore '_' and cap '^' to be used as subscript and
superscript command, respectively.
floor(x) : closest integer less than or equal to x (floor(-3.1)=-4, floor(2.9)=2)
ceil(x) : closest integer greater than or equal to x (ceil(-3.1)=-3, ceil(2.9)=3)
round(x) : closest integer (round(-1.9)=-2.0)
fix(x) : closest integer toward zero (fix(-1.9)=-1.0)
```


Homework: MATLAB 예제 7.1, m-file 실행

Report : 연습문제 7.7, 7.24