

Standard Rectifier

3~ Rectifier				
V_{RRM}	=	1200 V		
I_{DAV}	=	30 A		
I _{FSM}	=	150 A		

3~ Rectifier Bridge

Part number

FUO22-12N

Backside: isolated

Features / Advantages:

- Package with DCB ceramic
- Reduced weight
 Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For single and three phase bridge configurations

Package: i4-Pac

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mountingBackside: DCB ceramic
- · Reduced weight
- · Advanced power cycling

Rectifie	r				Ratings	3	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse block	ing voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking v	roltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current, drain current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			10	μΑ
		V _R = 1200 V	$T_{VJ} = 150^{\circ}C$			1	mΑ
V _F	forward voltage drop	I _F = 10 A	$T_{VJ} = 25^{\circ}C$			1.20	V
		I _F = 30 A				1.62	٧
		I _F = 10 A	T _{VJ} = 150 °C			1.12	V
		$I_F = 30 A$				1.73	٧
I _{DAV}	bridge output current	T _C = 120°C	T _{VJ} = 175°C			30	Α
		rectangular d = ⅓					:
V _{F0}	threshold voltage		T _{vJ} = 175°C			0.81	V
r _F	slope resistance \(\) for power is	oss calculation only				31	mΩ
R _{thJC}	thermal resistance junction to cas	е				3	K/W
R _{thCH}	thermal resistance case to heatsi	nk			0.20		K/W
P _{tot}	total power dissipation		$T_{c} = 25^{\circ}C$			50	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			150	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			160	Α
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			130	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			140	Α
I²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			115	A²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			105	A²s
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			85	A²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			82	A²s
CJ	junction capacitance	V _R = 400 V; f = 1 MHz	$T_{VJ} = 25^{\circ}C$		4		pF

Package i4-Pac				ı	Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				35	Α	
T _{stg}	storage temperature			-55		150	°C	
T _{VJ}	virtual junction temperature	virtual junction temperature		-55		175	°C	
Weight					9		g	
F _c	mounting force with clip			20		120	N	
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	1.7			mm	
d _{Spb/Apb}			terminal to backside	5.1			mm	
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz RMS: IIsoi ≤ 1 mA	3000			V	
1002		t = 1 minute		2500			V	

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	FUO22-12N	FUO22-12N	Tube	25	492426

Equivalent Circuits for Simulation			* on die level	T _{VJ} = 175°C
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.81		V
$R_{0\text{max}}$	slope resistance *	28		$m\Omega$

Outlines i4-Pac

Dim.	Millimeter		Inches		
DIIII.	min	max	min	max	
Α	4.83	5.21	0.190	0.205	
A1	2.59	3.00	0.102	0.118	
A2	1.17	2.16	0.046	0.085	
b	1.14	1.40	0.045	0.055	
b2	1.47	1.73	0.058	0.068	
b4	2.54	2.79	0.100	0.110	
С	0.51	0.74	0.020	0.029	
D	20.80	21.34	0.819	0.840	
D1	14.99	15.75	0.590	0.620	
D2	1.65	2.03	0.065	0.080	
D3	20.30	20.70	0.799	0.815	
Е	19.56	20.29	0.770	0.799	
E1	16.76	17.53	0.660	0.690	
е	3.81	BSC	0.150 BSC		
L	19.81	21.34	0.780	0.840	
L1	2.11	2.59	0.083	0.102	
Q	5.33	6.20	0.210	0.244	
R	2.54	4.57	0.100	0.180	
W	-	0.10	-	0.004	

Die konvexe Form des Substrates ist typ. < 0.05 mm über der Kunststoffoberfläche der Bauteilunterseite The convex bow of substrate is typ. < 0.05 mm over plastic surface level ofdevice bottom side

Rectifier

Fig. 2 Surge overload current

Fig. 3 I²t versus time per diode

Fig. 4 Power dissipation vs. direct output current & ambient temperature

Fig. 5 Max. forward current vs. case temperature

Fig. 6 Transient thermal impedance junction to case

Constants for Z_{thJC} calculation:

İ	R_{thi} (K/W)	t _i (s)
1	1.359	0.1015
2	0.3286	0.1026
3	0.4651	0.4919
4	0.8473	0.62