1. Consider sentiment classification through logistic regression. For a given text, consider the following feature and their values:

Var	Definition	Value in Fig.
x_1	$count(positive lexicon words \in doc)$	3
x_2	$count(negative lexicon words \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
χ_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	ln(66) = 4.19

Let the corresponding six weights be [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and b = 0.1. For decision boundary, consider:

$$decision(x) = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

where, 1 denotes positive sentiment.

Compute the sentiment classification of the above.

- 2. Consider the task of period disambiguation. What sort of features would you suggest that will be helpful in the corresponding classification problem.
- 3. Compare logistic regression and Naïve Bayes.
- 4. Why do we need regularization? Compare L1 vs. L2 regularization.