ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

SUMMER SEMESTER, 2015-2016

pURATION: 3 Hours

FULL MARKS: 200

Math 4241: Integral Calculus and Differential Equations

programmable calculators are not allowed. Do not write anything on the question paper.

There are 8 (eight) questions. Answer any 6 (six) of them. Figures in the right margin indicate marks.

		rightes in the right margin indicate marks.							
ا ا	a)	What is the physical meaning of $\int_a^b f(x)dx$? Find the area under the curve represented by the following data:							
		X:	5	10	15	20	25	20	
		Y:	1.5	5.12	4.25	6.65	5.75	2.45	
	b)	Evaluate and sketch the region whose area is represented by the integral $\int_0^a \sqrt{a^2 - x^2} dx$							12
		and then verify it using appropriate formula from geometry							
	c)	Find the total area between the curve $y = 1-x^2$ and the x-axis over the interval [0, 2] by using anti-derivative method.							
	3)	whether they are divergent or convergent:							
		i. $\int_0^1 \frac{1}{\sqrt{x}(x+1)} dx$, ii. $\int_{-1}^\infty \frac{x}{1+x^2} dx$							
	b)								10
	c)								8.33
		Littlan	Evaluate $\int_0^\infty e^{-x^2} dx$ and hence show that $\left[\frac{1}{2} = \sqrt{\pi}\right]$						
1	2)	Sketch the region enclosed by the curves $y^2=4x$ and $y=2x-4$ then find its area.							
	b)	Find the volume of the solid that is obtained when the regions between the curves $f(x) =$							20
		$x^2 + 2$, and $g(x) = x$ over the interval [1, 3] is revolved about x-axis.							
1	a)	Define the arc length for a curve and for parametric equations. Find the circumference of a							13.33
	",	circle of radius 15 meters from the parametric equations $x = 15 \cos\theta$ and y						$y = 15 \sin\theta$,	
		0<0<2=							••
	b)	Find the area of the surface that is generated by revolving the portion of the curve $y = x$							20
		for $0 \le x \le 1$ about x-axis and for $0 \le y \le 3$ about y-axis.							
1	a)	Define linear and nonlinear ordinary differential equations (DE) with examples. Fir							13.33
		differer	nnear and n	ommear on	onding to the	family of cu	rves $y=k(x-k)$	k^2 , where k is an	
									20
	b)	Determine the constant A such that the given DE (Aryrzy) at 1 (x 14xy) ay 0 is an exact							20
1		and then solve it.							
6	a)	What .	2 * 00	C 1 . 0 C-	nsider the DE	$(y^2 + 2xy) dx$	$+ x^2 dy = 0, f$	ind the integrating	13.33
7	,	What is integrating factor? Consider the DE $(y^2 + 2xy) dx + x^2 dy = 0$, find the integrating factor of the form y^n for which the given DE transformed into an exact DE, where n is an integrating							
1		integer	. the form y	101 WHICE				16	
				9					

Solve the following differential equations:

i.
$$(xy + 2x + y + 2)dx + (x^2 + 2x)dy = 0$$

ii. $(2xy + 3y^2)dx - (2xy + x^2)dy = 0$

ii.
$$(2xy + 3y^2)dx - (2xy + x^2)dy = 0$$

- Define Bernoulli's DE. State in what conditions the Bernoulli's DE reduces to a first order
 - Solve the following initial value problems:

i.
$$x \frac{dy}{dx} - 2y = 2x^4$$
, $y(2) = 8$

i.
$$x \frac{dy}{dx} - 2y = 2x^4$$
, $y(2) = 8$
ii. $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$, $y(1) = 2$

Define partial differential equation and solve the following PDE:

i.
$$(y+z)\frac{\partial z}{\partial x} + (z+x)\frac{\partial z}{\partial y} = x+y$$

ii.
$$(x^2 - yz)\frac{\partial z}{\partial x} + (y^2 - zx)\frac{\partial z}{\partial y} = z^2 - xy$$

Find the integral surface of the linear partial differential equation $x(y^2 + z) \frac{\partial z}{\partial r}$ $y(x^2 + z)\frac{\partial z}{\partial y} = (x^2 - y^2)z$, which passes through the curve $xz = a^3$, y = 0.