课程名称: <u>物理实验 B</u> 实验名称: <u>动态 主属杨晓昊</u>实验日期: <u>2024</u> 年 <u>5</u> 月 <u>16</u> 日晚上班 级: <u>630[23]8 -</u> 教学班级: \_\_\_\_\_ 学 号: <u>1120232535</u> 姓 名: <u>汪建宁</u>

### 一、实验目的

- (1) 学习用共振法测定金属细棒杨氏模量
- [2] 了解压力传感器的工作原理及特性

### 二、实验原理

一根细长棒 (L>>d) 在做横振动时,满足以下动力学方程: 于于 + ps · 放本 = 0 (3-6);

若长棒的轴线沿x方向,式中ŋ为长棒x处截面的对的位移。E为该棒杨氏模量,p为材料密度,S为棒横截面积,I为惯量矩 I= Sfeèds。对直径为d的细圆棒,I= Sfeèds= 2000 元 2000

L为样品长度,m为质量,d为直径,f为样品基物固有频率。各样的。固有频率通过失振法,测量。而样品失振频率f与其固有频率关系如下:

Q为样品 机械品质因数。由于构实证 Q>50,因此f5f′基值小于石近一。故可用f′代替f<sup>®</sup>算E。.

实际测量中, 若d以L不能满足,式(3-7)应修正为 $E=1.6067\frac{L^3m}{d^4}f^2.T$ , (3-9)

「爆中畫 ●是 0.02 0.04 0.06 0.08 0.10

T, 1.002 1.008 1.019 1.033 1.051.

## 三、实验榜及好聚

(1) 信号发生器 输出的正弦波信号加在激振器上, 激发试样发生振动。拮振器将试样振动信号转为电信号输入示波器。改变信号发生器频率, 当其与试样某种振动模式固剂检查一致

| 联系方式: | 指导教师签字: |
|-------|---------|
|       |         |

北京理工大学良乡校区管理处监制

电话: 81382088





|                     | 课程名称:          | 实验名称:             | 实验日                  | 刊期:                                     | 年            | 月          | 日             |
|---------------------|----------------|-------------------|----------------------|-----------------------------------------|--------------|------------|---------------|
|                     |                | 教学班级:             |                      |                                         |              |            |               |
|                     | 时,样品发生 节振。     |                   |                      |                                         |              |            | 川山基频          |
| 共振                  | 美颜季代人(3~9),可求E |                   |                      | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | •            |            |               |
|                     | (2) 利用悬挂式 测试器  | •                 | 建旦 在任6章              | on tein!                                | 计的排          | 尼基粉        | <b>非测定生</b> 援 |
| 江立                  | 生与悬点位置的关系      | 长,双里加加<br>曲线 5里位上 | 1700 正100 g<br>桂二 生虫 | 9年7年9年                                  | 县线县          | 占点署        | 平线二节点         |
|                     |                |                   |                      |                                         |              |            |               |
|                     | 但节点处振幅始终       | 4 , ,             | えばんなんり               | 在天9三7                                   | れけた          | 沙山里丁       | 1=111 1T00    |
| 術師                  | 的测点,测定此时       |                   | E 1018-              | L 416 EZ                                | . J. 46 :    | Wick #     | = 4 C         |
| F1 / 1 <sup>1</sup> | 然后,同时改变两是      |                   | j 5mm 次リギー           | 况 共引民为农                                 | 学ノスル         | 8182 · ·   | e a j~x       |
| 曲线                  | ,以确定节点处对应当     |                   |                      | 7 4 LY a                                | E 1          | 1 II 16 ml | a ezemik      |
|                     | 用支撑式测试架,用      |                   |                      |                                         |              |            | 重,每下次们尽       |
| 长约                  | 相距 0.5cm,选行。   | 由结果求出平均           | 自基频共振                | 频率了                                     | 确定本          | 丰品E。.      |               |
|                     | 的用游标识测量        | 各被测样品长            | 度上;用物                | 沢洌dl3                                   | 次平均)         | ; 用电子无     | 平测多样的         |
| 质量                  | _m_            |                   |                      |                                         |              |            |               |
|                     |                |                   |                      |                                         |              |            |               |
|                     | 四. 数据处理        | Ž.                |                      |                                         |              |            |               |
|                     | (1) 用坐标级作出钢    | 結構 f-x曲线          | ,确定其2                | 在节点位                                    | 置共振          | 杨率.1       | <b>以确定基础</b>  |
| F                   | 值。             | 17                |                      | , an                                    |              |            |               |
|                     | (2) 由两根 同材质,不同 | 司 4 64 泽宁 :刚 着    | 生物 夕测                | 巨似智精                                    | 堑.           |            |               |
|                     | of=2Hz, om=0.0 |                   |                      |                                         | <b>Z</b> 1   |            |               |
|                     | 包含因子统一取收       | 2g, 52 排导相;       | , 13.4万度 1           |                                         | 4211         | Z角山东 公     | i u H         |
|                     |                | -21, 1E 3 ID      | 可加止反                 | nouelt,                                 | 16×4 1       | 加速发        | w ub, j       |
|                     | E(us) 表述结果     |                   |                      |                                         |              |            |               |
|                     | (3) 根据各样的 也不   | 可数据 ,参考表          | 3-1,用内档              | <b>锰装得</b>                              | 终带品个         | <b>红系数</b> | Tis.          |
|                     |                |                   |                      |                                         |              |            |               |
|                     |                |                   |                      |                                         |              |            |               |
|                     | 联系方式:          | _                 |                      | 指导                                      | <b>异教师签字</b> | ;          |               |



北京理工大学良乡校区管理处监制 电话:81382088

### 实验三 金属的杨氏弹性模量

### 动态支撑法测定金属的杨氏模量

千分尺零读数:  $d_0 = -0.05$  mm

| 样品             | 钢         | 棒              | 铜棒                 |                | 细铝棒                |       | 粗铝棒              |       |       |                |
|----------------|-----------|----------------|--------------------|----------------|--------------------|-------|------------------|-------|-------|----------------|
| L(mm)          | 199.9     | 2              | 200.16             |                | 200.48             |       | 200.04           |       |       |                |
| m (g)          | 29.7      | 4              | 32.                | 32.79          |                    | 10.72 |                  | 15.38 |       |                |
|                | d         | $\overline{d}$ | d                  | $\overline{d}$ |                    | d     | $\overline{d}$   |       | d     | $\overline{d}$ |
| 1(             | 1 4.877   |                | 1 4.92             |                | 1                  | 4.876 |                  | 1     | 5.956 |                |
| d(mm)          | 2 4.869   | 4.872          | 2 4.929            | 4.923          | 2                  | 4.891 | 4.883            | 2     | 5,965 | 5.966          |
|                | 3 4.871   |                |                    | 3              | 4.881              |       | 3                | 5.976 |       |                |
|                | f         | $\bar{f}$      | f                  | Ī              |                    | f     | $ar{f}$          |       | f     | $ar{f}$        |
| 44 45 11. h-   | 1 571     |                | 1 400              |                | 1                  | 579   |                  | 1     | 680   |                |
| 基频共振<br>频率(Hz) | 2 567     | 566.25         | 2 393              | 391.75         | 2                  | 571   | 569.25           | 2     | 675   | 673.5          |
|                | 3 565     |                | 3 388              |                | 3                  | 565   |                  | 3     | 671   |                |
|                | 4 562     |                | 4 386              |                | 4                  | 562   |                  | 4     | 668   |                |
| E(Pa)          | 2.0917    | 40"            | 1.005x10"          |                | 7.61 × 10 10       |       | 6.88 X 1010      |       |       |                |
| $u_E/E(\%)$    | 0.383     | lo             | 0.498%             |                | 0.394%             |       | 0.291%           |       |       |                |
| $u_E(Pa)$      | 8 1/1     | 08             | 5 X10 <sup>8</sup> |                | 3×108              |       | 2 X 10 8         |       |       |                |
| $E(u_E)(Pa)$   | 2.091(0.0 | 108) X10"      | 1.005 (0.005)X10°  |                | 7.61 (0.03) \$1010 |       | 6.88 (0.02) 1010 |       |       |                |

- ightarrow 扩展不确定度:  $\Delta d=0.004mm$ ,  $\Delta m=0.02g$ ,  $\Delta L=0.02mm$ ,  $\Delta f=2Hz$ , 包含因子都取 k=2。
- ▶ 根据样品的d/L值,利用内插或外延法计算各样品的修正系数 T.

数据处理见顶

ightharpoonup 推导钢棒杨氏模量的相对不确定度公式  $u_F/E$ , 并写出钢棒的  $E(u_F)$  的计算过程。

#### 思考题: 1.

由上礼影。向精度的主要因素是修度上和直径对

措施:使用精度更高的测量仪器

多次测量取平均减小减误差。





| 课程名 | <b>3称:</b> | 实验名称: | 实验日期: | 年_ | 月  | 日. |
|-----|------------|-------|-------|----|----|----|
| 班   | 级:         | 教学班级: | 学 号:  | 姓  | 名。 |    |

数据处理

代入各单值 有 根据书上表3-1.

钢棒: d= dodo= 0.02462

离四根棒兰值最近的两点

T=1.0034

铜棒: 4= 100=0.02485

地中 =0.02, 1,=11.002

7=1.0035

细铝棒, = = = 0.02461

#e of =0.04, T, = 1.008

7 = 1.0034

粗铝棒: 4= 1-0.03008

抄点直线: T1=0.3℃+0.996

7=1.0050

推导签钢棒杨氏模量相对不能度管

 $\oplus E = 1.6067 \frac{L^3m}{d^4} f^2 \cdot T_1 = 1.6122 \frac{L^3m}{d^4} f^2$ 

E=2.091X10"Pa.

 $u_{E} = \int \left[ \frac{\partial E}{\partial u} u_{c}(u) \right]^{2} + \left[ \frac{\partial E}{\partial m} u_{c}(m) \right]^{2} + \left[ \frac{\partial E}{\partial d} u_{c}(d) \right]^{2} + \left[ \frac{\partial E}{\partial f} u_{c}(f) \right]^{2}$ 

 $\frac{u_{E}}{E} = 1.6122 \cdot \left[ \left( 3 \frac{L^{2}m}{d^{4}} f^{2} \cdot \frac{\triangle L}{k} \right)^{2} + \left( \frac{L^{3}}{d^{4}} f^{2} \cdot \frac{\triangle m}{k} \right)^{2} + \left( -4 \cdot \frac{L^{3}m}{d^{5}} f^{2} \cdot \frac{\triangle d}{k} \right)^{2} + \left( 2 \cdot \frac{L^{3}m}{d^{4}} f \cdot \frac{\triangle f}{k} \right)^{2} \right]$ 1.6122 L3m f2

接下来计算作

 $\frac{dL}{k} = \frac{0.02}{2} = 0.01 \text{ mm}, \quad \frac{dM}{k} = \frac{0.02}{2} = 0.01q, \quad \frac{dQ}{k} = \frac{0.004}{2} = 0.002 \text{ mm}, \quad \frac{dQ}{k} = \frac{2}{2} = 1 \text{ Hz}.$ 将以上不确定度和 L=199.92mm, m=29.74q, d=4.923mm, f=566.25Hz代入则

$$UE = 8 \times 10^8 \text{ Pa}.$$
  $\frac{U_E}{E} = \frac{8 \times 10^8}{2.091 \times 10^{11}} = 0.383\%.$ 

联系方式:

北京理工大学良乡校区管理处监制

电话: 81382088







| 课程     | 名称:         |            | 实验名称:  | 实验日期: 4 | F月日    |
|--------|-------------|------------|--------|---------|--------|
| 班      | 级:          |            | 教学班级:  | 学 号:    | 生 名:   |
| 原始数    | 据           | 包          | 钊      | 组铝      | 粗铝     |
| LO     | mm)         | 199.92     | 200.16 | 200.48  | 200.04 |
| ml     | <i>(</i> 9) | 29.74      | 32.79  | 10.72   | 15,38  |
|        | 1           | 4.877      | 4.921  | 4.876   | 5,956  |
| d (mm) | 2           | 4.869      | 4.929  | 4.891   | 5.965  |
|        | 3           | 4.871      | 4.918  | 4,881   | 5.976  |
|        | 1           | 571        | 400    | 579     | 680    |
| flHz)  | 2           | 567        | 393    | 571     | 675    |
| Jule)  | 3           | <i>5b5</i> | 388    | 565     | 67[    |
|        | 4           | 562        | 386    | 562     | 668    |

 $d_0 = -0.051$ mm

| 序号。 | 376 | 动张 |
|-----|-----|----|
| 时间: | 年   | 月日 |
|     | ·FF | 晚上 |

| 联系方式: | 指导教师签字: |
|-------|---------|
|       |         |

北京理工大学良乡校区管理处监制

电话: 81382088



