Final Examination

Date: 29/01/2024; Duration: 120 minutes

Open-book and NO electronic devices

SUBJECT: Algorithms & Data Struc	ctures (IT013IU)
Approval by The SCSE	Lecturer:
Signature	Signature
und	
Full name: Tran Thank Tung	Full name: Vi Chi Thanh
Proctor 1	Proctor 2
Signature	Signature
Full name:	Full name:
STUDENT INFO	
Student name: Student ID:	

INSTRUCTIONS: the total point is 100 (equivalent to 40% of the course)

Purpose:

- Test your knowledge on data structures and algorithms in the following topics: Binary Tree,
 Hash Table, Graphs, Advanced graph algorithms
- Examine your skill in analysis and design algorithms

1. Binary search tree (30 marks)

Given a list of items, take items one by one from left to right.

40	73	6	24	33	29	50	45	12	67	52	15	18	24	67	9
		-		00	20	00	.0		0.						

- 1.a. Insert all items into a binary search tree and draw the tree (15 marks)
- 1.b. Delete the root node and redraw the tree (15 marks)

2. Graph - Elementary Algorithms (20 marks)

Find the topological sort order of all nodes in the graph Gs.

Show the order

3. Search and Print Leaves in a Binary Search Tree with Insertion

You are given the definition of a binary search tree (BST) node as follows:

```
class TreeNode {
  int data;
  TreeNode left, right;

public TreeNode(int data) {
    this.data = data;
    this.left = this.right = null;
}
```

Student Name:	 	***	***	***	 ***			***	***	
Student ID:	 				 ***	***	***	***		

Your task is to implement the following Java methods:

- a. (20 marks) insert(TreeNode root, int value) Takes the root of a binary search tree and an integer value as arguments and inserts a new node with the given value into the tree.

 Returns the root of the modified binary search tree after insertion.
- b. (20 marks) findAndPrintDivisibleByFive (TreeNode root) Takes the root of a binary search tree and prints all nodes in the tree whose values are divisible by 5.
- c. (10 marks) printLeaves (TreeNode root) Takes the root of a binary search tree where each node has an integer value and prints the values of leaves in the tree.

Function Signatures:

```
public static TreeNode insert(TreeNode root, int value)
public static void printLeaves(TreeNode root)
public static void findAndPrintDivisibleByFive(TreeNode root)
```

Example:

Input:

```
TreeNode root = new TreeNode(10);
insert(root, 5);
insert(root, 15);
insert(root, 3);
insert(root, 7);
insert(root, 12);
insert(root, 18);

printLeaves(root);
findAndPrintDivisibleByFive(root)
```

Output:

```
Nodes divisible by 5: 5 10 15
Leaf Values: 3 7 12 18
```

--- The end ---