

LECTURE 22

Shortest Paths I

- Properties of shortest paths
- Dijkstra's algorithm
- Correctness
- Analysis
- Breadth-first search

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The **weight** of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The **weight** of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

Example:

Shortest paths

A *shortest path* from u to v is a path of minimum weight from u to v. The *shortest-path weight* from u to v is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from *u* to *v* exists.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Example:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v).$

Proof.

Single-source shortest paths (nonnegative edge weights)

Problem. Assume that $w(u, v) \ge 0$ for all (u, v) $\in E$. (Hence, all shortest-path weights must exist.) From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

IDEA: Greedy.

- 1. Maintain a set S of vertices whose shortestpath distances from s are known.
- 2. At each step, add to S the vertex $v \in V S$ whose distance estimate from s is minimum.
- 3. Update the distance estimates of vertices adjacent to ν .

Dijkstra's algorithm

```
for each v \in V - \{s\}
     do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V
```


Dijkstra's algorithm

```
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V
                   \triangleright Q is a priority queue maintaining V - S,
                     keyed on d[v]
while Q \neq \emptyset
    do \widetilde{u} \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
              do if d[v] > d[u] + w(u, v)
                       then d[v] \leftarrow d[u] + w(u, v)
```


Dijkstra's algorithm

$$d[s] \leftarrow 0$$
for each $v \in V - \{s\}$

$$do \ d[v] \leftarrow \infty$$
 $S \leftarrow \emptyset$
 $Q \leftarrow V$

$$\Rightarrow Q \text{ is a priority queue maintaining } V - S,$$

$$\text{keyed on } d[v]$$
while $Q \neq \emptyset$

$$do \ u \leftarrow \text{Extract-Min}(Q)$$
 $S \leftarrow S \cup \{u\}$

$$for \text{ each } v \in Adj[u]$$

$$do \ \text{if } d[v] > d[u] + w(u, v)$$

$$\text{then } d[v] \leftarrow d[u] + w(u, v)$$

$$\text{Implicit Decrease-Key}$$

Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm Relax all edges leaving A: 10 10 14 8

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then, $d[v] < \delta(s, v)$ supposition $\leq \delta(s, u) + \delta(u, v)$ triangle inequality $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path $\leq d[u] + w(u, v)$ v is first violation

Contradiction.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part III (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$. But, $d[u] \le d[y]$ by our choice of u. Contradiction.

Analysis of Dijkstra

```
while Q \neq \emptyset

\mathbf{do} \ u \leftarrow \operatorname{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

\mathbf{for} \ \operatorname{each} \ v \in Adj[u]

\mathbf{do} \ \mathbf{if} \ d[v] > d[u] + w(u, v)

\mathbf{then} \ d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra

Analysis of Dijkstra

```
|V| \begin{cases} \textbf{while } Q \neq \varnothing \\ \textbf{do } u \leftarrow \text{Extract-Min}(Q) \\ S \leftarrow S \cup \{u\} \\ \textbf{for } \text{each } v \in Adj[u] \\ \textbf{do if } d[v] > d[u] + w(u,v) \\ \textbf{then } d[v] \leftarrow d[u] + w(u,v) \end{cases}
```

Analysis of Dijkstra

$$|V| \begin{cases} \text{while } Q \neq \emptyset \\ \text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\ S \leftarrow S \cup \{u\} \\ \text{for each } v \in Adj[u] \\ \text{do if } d[v] > d[u] + w(u, v) \\ \text{then } d[v] \leftarrow d[u] + w(u, v) \end{cases}$$

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Dijkstra

$$|V| \\ \text{times} \begin{cases} & \textbf{while } Q \neq \varnothing \\ & \textbf{do } u \leftarrow \text{Extract-Min}(Q) \\ & S \leftarrow S \cup \{u\} \\ & \textbf{for } \text{each } v \in Adj[u] \\ & \textbf{do if } d[v] > d[u] + w(u,v) \\ & \textbf{then } d[v] \leftarrow d[u] + w(u,v) \end{cases}$$

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Time =
$$\Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-KEY}})$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

Analysis of Dijkstra (continued)

$$\begin{aligned} & \text{Time} &= \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}} \\ & Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total} \end{aligned}$$

Analysis of Dijkstra (continued)

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	¹ Extract-Min	¹ DECREASE-KEY	Total
array	O(V)	O(1)	$O(V^2)$

ALGORITHMS

Analysis of Dijkstra (continued)

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

Q	$T_{\rm EXTRACT ext{-}MIN}$	$T_{ m DECREASE-KEY}$	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$

Analysis of Dijkstra (continued)

 $Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	$O(\lg V)$ amortized	O(1) amortized	$O(E + V \lg V)$ worst case

Unweighted graphs

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

Unweighted graphs

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Unweighted graphs

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Breadth-first search

```
while Q \neq \emptyset

\mathbf{do} \ u \leftarrow \mathrm{Dequeue}(Q)

\mathbf{for} \ \mathrm{each} \ v \in Adj[u]

\mathbf{do} \ \mathbf{if} \ d[v] = \infty

\mathbf{then} \ d[v] \leftarrow d[u] + 1

\mathrm{Enqueue}(Q, v)
```


Unweighted graphs

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Breadth-first search

```
while Q \neq \emptyset
    \mathbf{do} \ \widetilde{u} \leftarrow \mathsf{Dequeue}(Q)
         for each v \in Adj[u]
              do if d[v] = \infty
                        then d[v] \leftarrow d[u] + 1
                                ENQUEUE(Q, v)
```

Analysis: Time = O(V + E).

Example of breadth-first

Example of breadth-first

Example of breadth-first search

O: *a b d*

Example of breadth-first

Example of breadth-first search

Q: abdce

Example of breadth-first search

Example of breadth-first search

Example of breadth-first search

Q: abdcegif

Example of breadth-first search

Example of breadth-first search

Q: abdcegifh

ALGORITHMS E

Example of breadth-first search

Q: abdcegifh

ALGORITHMS

Correctness of BFS

```
 \begin{aligned} & \textbf{while} \ Q \neq \varnothing \\ & \textbf{do} \ u \leftarrow \text{Dequeue}(Q) \\ & \textbf{for} \ \text{each} \ v \in Adj[u] \\ & \textbf{do} \ \textbf{if} \ d[v] = \infty \\ & \textbf{then} \ d[v] \leftarrow d[u] + 1 \\ & \text{Enqueue}(Q, v) \end{aligned}
```

Key idea:

The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1.