诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试

2023-2024-1 学期《电路与电子技术》A 卷

注意事项: 1. 开考前请将密封线内各项信息填写清楚;

- 2. 所有答案请直接答在答卷上;
- 3. 考试形式: 闭卷;
- 4. 本试卷共 (3) 大题, 满分 100 分, 考试时间 120 分钟。
- 一、选择题(每题2分,共20分)
- 1. 电路如图 1 所示,则下列说法正确的是(()

3V-2V+3V+16=0 1A-3A 2 -2A

- A. 电压源吸收 2W 功率, 电流源发出 4W 功率。
- B. 电压源发出 2W 功率, 电流源发出 2W 功率。
- C. 电压源发出 6W 功率, 电流源吸收 4W 功率。
- D. 电压源发出 6W 功率, 电流源吸收 2W 功率。
- (2.) 电路如图 2 所示, 电流 *I*=(1)
 - A. 1A

B. 3A

C. -1.25 A

图 4

A. 1.26 A C. 1.45 A B. 1.4 A

D. -0.6A

- 4.电路如图 4 所示, R_1 =1Ω, R_2 =1Ω, L=10⁴H, C=200 μ F, ω =10⁴rad/s, 则阻抗 Z_{ab} 为(人)。
 - A. 1.2+j0.6Ω

B. 1.5+j1.5Ω

C. $1.2+j1.5\Omega$;

D. 1.5+j0.6Ω

5.图 5 所示电路中,假设二极管 D_1 为理想元件,则电压 U_{AB} 为(

《电路与电子技术》试卷 A 第 1 页 共 5 页

$$\frac{1}{6} + \frac{1}{3} = \frac{18}{98}$$

$$\frac{1}{6} + \frac{1}{3} = \frac{18}{9}$$

$$= \frac{18}{141} = \frac{18}{141$$

2. (8分)图 11 所示电路换路前已稳定, $\underline{t=0}$ 时将开关 S 断开,求 S 断开后的 u(t)。(8分) $6-97_4+3$:

$$0 - 14 + 3 = 16$$

3.(10 分)图 12 所示电路,U=220V, R_1 =20 Ω , $X_C=20\Omega$, $X_L=10\sqrt{3}\Omega$, R_2 =10 Ω ,试求 各支路的电流和电源U输出的功率P和Q。

4.(12 分)共射极放大电路如图 13 所示, 其中 U_{CC} =12V, R_{B1} =60k Ω , R_{B2} =20k Ω , R_{E1} =300 Ω , R_{E2} =2.7kΩ, R_C =4kΩ, R_L =6kΩ, β =40, U_{BE} =0.7V,试:(1)求电路的静态工作点;(2)画出 该电路的微变等效电路;(3)计算电压放大倍数 Au、输入电阻 rin 和输出电阻 roo

《电路与电子技术》试卷 A 第 3 页 共 5 页

Created with Scanner Mini

5. (8分) 电路如图 14 所示,已知 $R_1 = R_f = R_3 = R_4 = 10$ k Ω , $u_i = 2$ V,求输出电压 u_o 。

图 14

6. (8 分) 图 15 所示电路中,二极管为理想二极管, $C=20~\mu\text{F}$, $R_L=3~\text{k}\Omega$, $R=1~\text{k}\Omega$, $U_Z=6~\text{V}$, $I_{Z\,\text{min}}=5~\text{mA}$, $I_{Z\,\text{max}}=20~\text{mA}$,变压器副边电压有效值 $U_2=15~\text{V}$,求: (1) 直流电压表的读数; (2) u_o 平均值 U_O 能否稳定在 6~V? 说明原因。

三、分析设计题(共3题,共24分)

1. (8分) 如图 16 所示,某工厂安装了 8 个位置传感器用于测量某一机械臂的位置。当机械臂进入某一传感器范围时,所对应位置的传感器的输出为高电平(逻辑 1),这组传感器与一个 8-3 编码器相连接,并转为二进制编码。其中位置 0 对应的编码输出为 000,位置 7 对应的编码输出为 111。机械臂途经的路径上有两个人行通道,机械臂在没有位于人行通道范围时(安全区域),绿灯亮起。请写出位置编码与逻辑输出之间的逻辑表达式,并基于74LS151 数据选择器的状态表,连接以下交通指挥电路中 74LS151 的输入部分($D_0 - D_7$ 、 \bar{S})。

图 16. 机械臂与位置位	感器示意图
---------------	-------

选通	选择			输出
Ī	A ₂	A ₁	Ao	Y
1	X	X	X	0
0	0	0	0	D_{0}
0	0	0	1	D_1
0	0	1	0	D_2
0	0	1	1	D_3
0	1	0	0	D4
0	1	0	1	D_5
0	1	1	0	D_6
0	1	1	1	D_7

74LS151 状态表

《电路与电子技术》试卷 A 第 4 页 共 5 页

Created with Scanner Mini

U

3(4-1)

100

12

75

1-1-

141)

2. (8 分)逻辑电路如图 17 所示,写出各触发器输入 J,K 的逻辑式,列出其状态表(设 Q_0 , Q_1 , Q_2 初始状态均为"0"),并说明该电路为几进制计数器。

3. (8分)由集成十六进制计数器 74LS161 构成的电路如图 18 所示,试写出该电路的状态转换表,画出状态转换图,分析该电路的计数功能。

《电路与电子技术》试卷 A 第 5 页 共 5 页

Created with Scanner Mini