GRUPO DE ESTUDIOS PREUNIVERSITARIO

Av. Gerardo Unger 261-B Urb. Ingeniería S.M.P.(Frente puerta # 3 UNI) **181-3444** / 796-0992 / 9728-2459

Sexta Práctica Dirigida de Trigonometría

Tema: Identidades Trigonométricas PROBLEMAS DE SIMPLIFICACION

- 1.- Simplificar:
 - $M = \frac{sen\alpha}{1 + \cos\alpha} \frac{sen\alpha}{1 \cos\alpha}$
 - A) -1 B) -2 C) $-2sen\alpha$ D) $-2ctg\alpha$

- E) 2ctga
- 2.- Simplificar:
 - $S = \frac{senx}{1 + \cos x} + \frac{1 + \cos x}{senx}$
- A) 2cscx B) 2secx C) 2tgx D) 2cosx
- E) 2senx
- 3.-Reducir la siguiente expresión:
 - $E = 1 + sen^2 x \cdot (1 + cos^2 x + cos^4 x) + cos^6 x$ A)1 B) 2 C) 3 D) -2 E) -1
- 4 Reducir
 - $sen^3x (\sqrt{1 + \cos^2 x \cos^4 x \cos^6 x})$
 - $x \in <\pi; 3\pi/2>$
- A) 2cosx B) tax C) senx D) cosx E) ctgx
- 5.-Calcular ctgx, a partir de cscx = ctgx + m
 - A) $\frac{1-m^2}{m}$ B) $\frac{1+m^2}{m}$
- - C) $\frac{1+m^2}{2m}$ D) $\frac{1-m^2}{2m}$
 - E) $\frac{1+m^2}{3m}$
- 5.- Simplificar:

$K = \frac{tg^2x}{\sec^2x - \sec^2y} + \frac{ctg^2x}{\csc^2x - \csc^2y}$

- A) sen^2x B) sen^2y C) 1
- D) $\cos^2 x$ E) $\cos^2 v$
- 6.- Simplificar:
 - $K = \sqrt{(1 \cos x \cdot \cos y)^2 \frac{\sin^2 x \cdot \sin^2 y}{\sin^2 x}}$
- Si: $x \in \langle \pi/4, \pi/2 \rangle$; $y \in \langle 0, \pi/4 \rangle$
- A) $\cos x \cos y$ B) $\cos y \cos x$
- C) senx cosy D) cosx seny
- E) senx senv
- 7.- Si $\alpha \in IC$; reducir:

$$E = \sqrt{\frac{\sec \alpha - 1}{\sec \alpha + 1}} + ctg\alpha$$

- A) $\sec \alpha$ B) $sen\alpha$ C) $\csc \alpha$
- D) $\cos \alpha$ E) $ctg\alpha$
- 8.- Reducir:
 - $E = \sec x.(senx.ctgx + \cos x.tgx) 1$
- A) senx B) cosx C) tgx D) ctgx E) 1
- 9.-Reducir:
- $M = (1 sen^2x)(1 + tg^2x) + (1 \cos^2x)(1 + ctg^2x)$ A) 1 B) 2 C) 3 D) 4 E) 5
- 10.- Reducir:
- A) $\frac{ctgx}{2}$ B) secx C) cscx D) tgx
- E) senx

EL NÚCLEO: ¡La manera más inteligente de estudiar!

- 11.- Simplificar:
 - $E = (\sec \theta 1)(\csc \theta + ctg\theta)$
 - A) 1 B) $tg\theta$ C) $tg^2\theta$ D) $ctg\theta$
 - E) $ctg^2\theta$
- 12.- Reducir:
 - $E = (\sec\theta + tg\theta)(1 sen\theta)$
 - A) $sen\theta$ B) $cos\theta$ C) 1 D) -1 E) 0
- 13.- Reducir:
- $E = \cos x \cdot (1 + \sec x) + tgx \cdot (1 ctgx) (ctgx)^{-1}$
- A) senx B) cosx C) tax D) ctax E) cscx
- 14.- Hallar n si:
- $(senx.\sqrt{tgx})^{-1} + (cos x.\sqrt{ctgx})^{-1} = (sec x. csc x)^n$ A) 1.5 B) 1.6 C) 1.7 D) 1.8 E) 1.9
- 15 Reducir ·
- $E = \sec x \cdot (\csc x 1) + \cos x \cdot (\sec^2 x \csc x)$
- A) cosx B) senx C) secx D) tgx
- E) 2tqx
- 16.- Reducir la expresión
 - $M = \frac{1}{3} \left(sen^6 x + \cos^6 x \right) \frac{1}{4} \left(\cos^2 x sen^2 x \right)^2$
 - A) 1/3 B) 1/4 C) 1/12 D) 1/5 E) 2/3
- 17.- Hallar "M" para que la siguiente igualdad sea un identidad :
 - $\frac{2senx.\cos x}{\cdot} = senx + \cos x + M$ A) -1 B) -2 C) 1 D) 2 E) 0
- 18.- Si: $0 < x < \frac{\pi}{4}$. Reducir
- $Q = \sqrt{\sec^2 x + \csc^2 x} \cdot \left\{ 1 + \sqrt{1 4sen^2 x \cdot \cos^2 x} \right\}$
- A) 2tgx B) -2tgx C) 2ctgx D) 2senx E) 2cosx

- 19.-Simplificar
- $E = tg^2x + ctg^2x + 2 \sec^2x \cdot \csc^2x$ A) 0 B) 1 C) 2 D) -2 E) 2
- 20.-Reducir:
- (tgx + ctgx)(senx + cos x + 1)(senx + cos x 1)
- A) 0 B) -1 C) 1 D) -2 E) 2
- 21.- Simplificar:
- $M = (tgx + ctgx)(\csc x senx)(\sec x \cos x)$
- A) senx.cosx B) 2senx.cosx C) tg^2x
- D) cte^2x E) 1
- 22.-Reducir lo siguiente:

 - A) senx B) cosx C) tgx D) senx.cosx
- E) ctax
- 23.-Hallar N:
 - $N = \frac{tg^{2}x + ctg^{2}x 2}{tgx + ctgx 2} \frac{tg^{2}x + ctg^{2}x + 1}{tgx + ctgx + 1}$

D) 4

E) 5

- A) 1 B) 2 C) 3
- PROBLEMAS CONDICIONALES
- 24.- Si : $sen\theta + cos\theta = \frac{2}{3}$. Calcular
 - $E = sen\theta . cos\theta$
 - A) 1 B) -5/2 C) -5/3 D) -5/18 E) -3/17
- 25.-Sabiendo que: m.ctgA=n; Calcular:
 - $E = \frac{m \cdot \cos A n \cdot senA}{m \cdot senA}$ n.senA + m.cos A
- A) m B) n C) m+n D) m-n E) 0
- 26.- Sabiendo que : senx + cos x = n. Hallar C = tgx + ctgx
- A) $\frac{1}{n^2-1}$ B) $\frac{2}{n^2+1}$ C) $\frac{2}{n^2-1}$
- D) $\frac{1}{n^2+1}$ E) $\frac{n}{n^2-1}$

EL NÚCLEO: ¡La manera más inteligente de estudiar!

3 UNI Telf.: 481-3444 / 796-0992

GERARDO UNGER 261-B.

NÚCLEO": AV.

27.-Sabiendo que:

$$sen\theta + cos\theta = a$$

$$sen^3\theta + cos^3\theta = b$$

Calcule el valor de $E = a^3 + 2b$

28.- Si:
$$tg^2x + ctg^2x = n$$
;

$$x \in \langle 0; \pi/2 \rangle$$
; $n > 2$

$$\frac{\sec^3 x \cdot \left(\sec^2 x + \sqrt{n+2}\right) + \csc^3 x \cdot \left(\csc^2 x + \sqrt{n+2}\right)}{\left(\sec x + \csc x\right)}$$

A)
$$n^2$$
 B) $n^2 + 2n$ C) $n^2 - 2n$

D)
$$n^2 - 1$$
 E) $n^2 + 1$

28 - Siendo:

$$1 + sen^2\theta = 2\cos^2 x$$

Además:

$$\cos^4 \theta - sen^4 \theta + 1 = 2m.sen^2 x$$

Calcular

$$M = sen^m x \cdot (1 + \cos^m x) + \cos^{2m} x$$

A)
$$-1$$
 B) 0 c) 1 D) -2 E) $\frac{1}{2}$

29.-Si se cumple:

$$a.senx + b.\cos x = c$$

Además :
$$(a + b + c)(a + b - c) = 2ab$$

Calcular:
$$\frac{a^2.ctg^2x + b^2.tg^2x}{2}$$

30.- Sabiendo que:

$$\frac{1+sen^4x}{1+\cos^4x} = tgx$$

¿ A qué es igual ?

$$\frac{senx - sen^3x + sen^5x - sen^7x}{\cos x - \cos^3 x + \cos^5 x - \cos^7 x}$$

$$\cos x - \cos^2 x + \cos^2 x - \cos^2 x$$

A) 1 B) 2 C) 1/2 D) 1/3 E) 1/4

31.- Sabiendo que : $tg\theta = 2ctg\theta$, calcular :

$$E = \frac{2sen^4\theta + 3\cos^4\theta}{3sen^4\theta + 2\cos^4\theta}$$

E) 11/15

32.- Siendo x un ángulo agudo v además :

$$tgx = \frac{sen\theta - \cos\theta}{sen\theta + \cos\theta}$$

Calcular :

$$M = \csc x.(sen\theta - \cos\theta)$$

A) 1 B) -1 C)
$$\sqrt{2}$$
 D) $\sqrt{3}$ E) $\sqrt{5}$

33.- Si se cumple que:

$$A = (senx + \cos x)(tgx + ctgx - 1)$$

$$B = (senx - \cos x)(tgx + ctgx + 1)$$

Hallar el equivalente de :

$$K = \frac{\sec x - \cos x}{\csc x - senx}$$

A)
$$\frac{A+B}{A-B}$$

A)
$$\frac{A+B}{A-B}$$
 B) $\frac{A-B}{A+B}$ C) $\frac{A}{B}$ D) $\frac{B}{A}$

D)
$$\frac{B}{A}$$

34.- De la siguiente relación:

$$sen^3x + sen^2x + ctg^2x = csc^2x$$

Hallar el valor de:

$$E = \sec^2 x - \csc x$$

35.- De las siguientes expresiones:

$$tgx + senx = a$$

$$ctgx + \cos x = b$$

A)
$$\frac{a+b}{b}$$
 B) $\frac{a+1}{b+1}$ C) $\frac{a-1}{b-1}$

D)
$$\frac{a+b}{a}$$
 E) $\frac{a+1}{b-1}$

PROBLEMAS DE ELIMINACION ANGULAR

36.- Determinar una relación entre " a " v " b " independiente de "θ".

$$\sec \theta - 1 = b$$
(i)

$$tg\theta - a = 0$$
(ii)
A) $(1+b)(1-b) = a^2$

EL NÚCLEO: ¡La manera más inteligente de estudiar!

B)
$$(1+a)(1-a)=b^2$$

C)
$$(1+b+a)(a+b)=1$$

D)
$$(1+b)(1+a)=1$$

E)
$$(1+b+a)(1+b-a)=1$$

37.- Eliminar "x" de las ecuaciones :

$$\sec x - \csc x = m$$
(1)

$$tg^2x + 1 = n.tgx$$
(2)

A)
$$n^2 - m^2 = 2n$$
 B) $n^2 - m^2 = 2m$

C)
$$m^2 - n^2 = 2n$$
 D) $m^2 + n^2 = 2n$

E)
$$m^2 + n^2 = 2m$$

38.- Eliminar " θ ":

$$\sec\theta - \cos\theta = x.\csc\theta$$

$$\csc\theta - sen\theta = y \sec\theta$$

A)
$$\sqrt{xy^2} + \sqrt{yx^2} = 1$$

B)
$$\sqrt[4]{x^3y} - \sqrt[4]{xy^3} = 1$$

C)
$$\sqrt[4]{x^3y} + \sqrt[4]{y^3x} = 1$$

D)
$$\sqrt{x^3y} + \sqrt{xy^3} = 1$$

$$\mathsf{E)} \ \sqrt{x^3 y} - \sqrt{xy^3} = 1$$

39.- Eliminar " x " si:

$$tgx + ctgx = \sqrt{2}m$$

$$sen^4x + \cos^4 x = n$$

A)
$$m^2 + n = 1$$
 B) $m^2 \cdot (n+1) = 1$

C)
$$(m^2 + 1)n =$$

C)
$$(m^2 + 1)n = 1$$
 D) $(m^2 + 2)m = 1$

E)
$$m^2 \cdot (1-n) = 1$$

40.-Eliminar " θ " de

$$x.sen\theta + y.\cos\theta = \sqrt{x^2 + y^2}$$

$$\frac{\cos^2\theta}{a^2} + \frac{sen^2\theta}{b^2} = \frac{1}{x^2 + y^2}$$

$$A)\left(\frac{x}{b}\right)^2 + \left(\frac{y}{a}\right)^2 = 1 \ B\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

E) $\left(\frac{x}{a}\right) + \left(\frac{y}{b}\right) = 1$

41.- Eliminar x de las ecuaciones

$$tg^2x + 1 = n.tgx$$

A)
$$n^2-m^2 = 2n$$
 B) $n^2-m^2=2m$ C) $m^2-n^2=2n$

D)
$$m^2+n^2=2n$$
 E) $m^2+n^2=2m$

42.- Eliminar "x" si :

$$senx - sen^3x = m$$

$$\cos x - \cos^3 x = n$$

A)
$$m^2 + n^2 = \sqrt[3]{m.n}$$

B)
$$m^2 - n^2 = \sqrt[3]{m.n}$$

C)
$$m^2 + n^2 = \sqrt[3]{m.n^2}$$

D) $m^2 + n^2 = m^2.n^2$

E)
$$m^2 - n^2 = m^2 n^2$$

43.-Eliminar "x", si:

$$tgx.(1 + \cos x) = 4a$$

$$tgx.(1-\cos x)=4b$$

A)
$$\frac{a-b}{a+b} = 1$$
 B) $\frac{\sqrt{ab}}{a+b} = 1$

C)
$$\sqrt{ab} = (a^2 - b^2)$$
 D) $\frac{\sqrt{ab}}{a - b} = 1$

E)
$$\sqrt{ab} = (a+b)$$

44.-¿ Qué valor debe tomar k, de tal manera que la igualdad:

$$\frac{(sen\phi + \cos\phi)^2}{tg\phi + ctg\phi + 2} + \frac{(sen\phi - \cos\phi)^2}{tg\phi + ctg\phi - 2} = k.sen\phi.\cos\phi$$

sea una identidad?

EL NÚCLEO: ¡La manera más inteligente de estudiar!

3 UNI Telf.: 481-3444 / 796-0992

UNGER 261-B. Fte

GERARDO

VARIOS

1.-Reducir:

$$K = \frac{a^2 - b^2 sen^2 x - ab \cos^2 x}{a^2 + b^2 sen^2 x + ab(1 + sen^2 x)}$$

- A) $\frac{a+b}{a-b}$ B) $\frac{a-b}{a+b}$ C) $\frac{2a}{a+b}$

- 2.- Hallar " m " para que la siguiente expresión sea independiente de " x ". Si : $E = m \cdot (\sec^4 x + \sec^2 x) + (3 + tg^2 x) tg^2 x$ A) 1 B) B) -1 C) 1/2 D) 2 E) 0
- 3.- Calcular el valor de " m " si la expresión es independiente de " x ". $E = sen^2 x - sen^4 x + m.(sen^4 x + cos^4 x)$
- A) 0.125 B) 0.25 C) 0.5 D) 0.075 E) 1
- 4.- Hallar el valor de M para que sea una identidad.

$$\frac{\cos x}{1 + senx} + \frac{\cos x}{1 - senx} = \frac{2}{M}$$

- A) cosx B) senx C) senx.cosx D) cscx E) tax
- 5.- Simplificar:

$$E = \frac{\sec^4 \alpha \cdot (1 - sen^4 \alpha) - 2tg^2 \alpha}{\csc^4 \alpha \cdot (1 - \cos^4 \alpha) - 2ctg^2 \alpha}$$

- A) 1 B) 2 C) 4 D) 9/2 E) 5
- 6.- Simplificar:

$$M = \frac{\sec^2 x . \csc x - senx.tg^2 x}{(tgx + ctgx)\cos x}$$

- A) 1 B) 1 + senx C) $1 + sen^2x$
- D) $1 + \cos x$
- E) $1 + \cos^2 x$

7.- Para que valor de k se cumple la identidad.

$$\frac{ctgx + \csc x - 1}{ctgx - \csc x + 1} = k.(1 + \cos x)$$

- A) senx B) cosx C) secx D) cscx
- 8.- Simplificar:

$$E = \frac{\cos x.(1 + senx) + versx.(1 + \cos x)}{tgx.\cos x + sen^2x.\csc x}$$

- A) senx B) cosx C) $\frac{1}{2}$ senx D) $\frac{1}{2}$ csc x
- E) $\frac{1}{2} \sec x$
- 9.- Reducir :

 $E = (ctgx + \cos x)(\sec x - tgx).\sec x$

- A) tax B) ctax C) 1 D) 2 E) secx
- 10.- Del gráfico calcular el mínimo valor de \overline{AC}

- 11.- Si tgx + ctgx > a; ($a \in R$) para cualquier valor del ángulo x en el primer cuadrante el mayor valor de a para el cual es válida la desigualdad es :
 - A) 1 B) $\frac{\sqrt{2}}{2}$ C) $\sqrt{3}$ D) 2 E) $\sqrt{2}$
- 12.- Reducir:

$$E = (vers\theta - ctg\theta)^{2} + (sen\theta + 1 - vers\theta)^{2}$$

Dato: $vers\theta = 1 - \cos\theta$; $\cos\theta = 1 - \sin\theta$ A) 1 B) 2 C) 3 D) 4

Grupo "EI NÚCLEO": AV. grupo el nucleo@hotmail.com

EL NÚCLEO: ¡La manera más inteligente de estudiar!

13.- De acuerdo al gráfico calcular ctga

- B) 3/2 A) 3
 - C) 5/2
- D) 9/2 E) 5

14.- Si se cumple que:

- u = (senx + cos x)(tgx + ctgx 1)v = (senx - cos x)(tgx + ctgx + 1)
- Calcular el valor de :

$$E = (u + v) \cdot \cos x + (u - v) \cdot senx$$

A) u B) v C) 2 D) 1 E) u + v

Grupo "El NÚCLEO": AV. GERARDO UNGER 261-B. Fte Pta # 3 UNI Telf.: 481-3444 / 796-0992