Requested Patent:

JP6319563A

Title:

HEPATITIS C VIRAL GENE, OLIGONUCLEOTIDE AND METHOD FOR DETERMINING HEPATITIS C VIRAL GENOTYPE :

Abstracted Patent:

JP6319563;

Publication Date:

1994-11-22;

Inventor(s):

OKAMOTO HIROAKI; others: 01;

Applicant(s):

IMUNO JAPAN:KK;

Application Number:

JP19930147133 19930513 ;

Priority Number(s):

IPC Classification:

C12N15/51; C07K7/08; C07K13/00; C12P21/02; C12Q1/68; G01N33/576;

Equivalents:

ABSTRACT:

PURPOSE:To obtain a gene of a newly elucidated hepatitis C virus (HCV), a specific oligonucleotide, a method for detection thereof and a method for determining the genotype of the HCV.

CONSTITUTION: The polynucleotide has a base sequence described in sequence Nos. 1 to 5. The oligonucleotide is described in sequence No 6. The methods for detecting an HCV gene and determining the genotype use the polynucleotide and oligonucleotide as a primer, a probe, etc. Furthermore, the polypeptide is described in sequence Nos. 15 to 19. Thereby, the HCV gene of the newly found genotype can be detected and the HCV genotype Can simultaneously be determined over a wide range.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-319563

(43)公開日 平成6年(1994)11月22日

(51) Int.Cl. ⁵ C 1 2 N 15/5 C 0 7 K 7/0 13/0 C 1 2 P 21/0	8318 – 4 8318 – 4	iH iH	技術表示箇所
	9050-4		
	1	審査請求 未請求 請求項	iの数22 書面 (全 41 頁) 最終頁に続く
(21)出願番号	特願平5-147133	(71)出願人	391039391 株式会社イムノ・ジャパン
(22)出願日	平成5年(1993)5月13日		東京都杉並区荻窪4丁目28番14-701号
		(72)発明者	岡本 宏明
			栃木県下都賀郡石橋町石橋1560-25
		(72)発明者	中村 徹雄
			東京都杉並区荻窪4丁目28番14-701号
		(74)代理人	弁理士 中島 敏
	•		

(54)【発明の名称】 C型肝炎ウイルス遺伝子、オリゴヌクレオチド、並びにC型 肝炎ウイルス遺伝子型判定方法

(57)【要約】

【目的】新規に解明されたC型肝炎ウイルス(HCV)の遺伝子、特異オリゴヌクレオチド、これら検出する方法、HCVの遺伝子型を判定する方法等を提供することを目的とする。

【構成】配列番号1ないし5記載の塩基配列を有するポリヌクレオチド、配列番号6記載のオリゴヌクレオチド、これらをプライマー、プロープ等として使用するHCV遺伝子の検出法、遺伝子型判定法の発明、ならびに配列番号15ないし19記載のポリペプタイドの発明である。

【効果】新たに発見された遺伝子型のHCV遺伝子を検出するとともに、広い範囲に渉ってHCV遺伝子型を判定することができる。

塩基配列決定に利用したHCV領域

- a (nti-160); b (nts3-847); c (nt32-1606); d (nti300-1867); e (nti798-2560)
- f (mt241-9018) ; g (mt2973-3383) ; h (mt3723-4737) ; i (mt4883-5050)
-] (nt5009-6170) ; k (nt6129-7086) ; l (nt7023-7833) ; m (nt7792-8630)
- n (nt8250-9400)

左端に5 蝶、右に3 畑が味るように示している。 性差のでは5 畑からの性を数 (n t) で示した。

【特許請求の範囲】

【請求項1】配列番号1記載の塩基配列、またはこれと 相補的な塩基配列を有するC型肝炎ウイルス遺伝子cD NA・HC-G9。

【請求項2】配列番号2記載の塩基配列、またはこれと相補的な塩基配列を有するポリヌクレオチドYS117・5′。

【請求項3】配列番号3記載の塩基配列、またはこれと相補的な塩基配列を有するポリヌクレオチドYS117・3′。

【請求項4】配列番号4記載の塩基配列、またはこれと 相補的な塩基配列を有するポリヌクレオチドSR037 ・5′。

【請求項5】配列番号5記載の塩基配列、またはこれと 相補的な塩基配列を有するポリヌクレオチドSR037 ・3′。

【請求項6】配列番号1~5記載の塩基配列の一部、またはこれと相補的な塩基配列の一部を構成するポリヌクレオチドまたはオリゴヌクレオチド。

【請求項7】請求項第6項記載のオリゴヌクレオチドか 20 らなるプライマーまたはプライマーペア。

【請求項8】配列番号6記載の塩基配列を有するオリゴ ヌクレオチド#321。

【請求項9】配列番号6記載の塩基配列を有するオリゴ ヌクレオチドプライマー。

【請求項10】配列番号6記載の塩基配列を有するオリゴヌクレオチドプライマーと配列番号7ないし9記載の塩基配列を有するオリゴヌクレオチドプライマーの1種以上からなるプライマーペア。

【請求項13】請求項第7項ないし第10項記載のオリゴヌクレオチドプライマーペアを使用するC型肝炎ウイルスの遺伝子検出法。

【請求項14】ポリメラーゼチエインリアクション法によりcDNAを増幅することを特徴とする請求項第12 項記載のC型肝炎ウイルス遺伝子型判定法または請求項第13項記載のC型肝炎ウイルス遺伝子換出法。

【請求項15】請求項第11項または第12項記載のオリゴヌクレオチドプライマーを複数紙使用し、複数回の増幅を行う請求項第13項記載のC型肝炎ウイルス遺伝子検出法または第14項記載のC型肝炎ウイルス遺伝子型判定法。

【請求項16】請求項第6項ないし第9項記載の標識プ 50

ロープ。

【請求項17】請求項第16項記載の標識プロープを使用したC型肝炎ウイルス遺伝子型判定法。

【請求項18】配列番号15記載のポリペプタイドHC ーG9Peotein、ならびにその部分ペプタイド。 【請求項19】配列番号16記載のポリペプタイドYS 117・5′Peptide、ならびにその部分ペプタ イド。

【請求項20】配列番号17記載のポリペプタイドYS 10 117・3′Peptide、ならびにその部分ペプタイド。

【請求項21】配列番号18記載のポリペプタイドSR037・5′Peptide、ならびにその部分ペプタイド。

【請求項22】配列番号19記載のポリペプタイドSR037・3′Peptide、ならびにその部分ペプタイド。

【発明の詳細な説明】

[0001]

「産業上の利用分野」本発明は、C型肝炎ウイルス(以下「HCV」と略記する)のcDNA遺伝子、これを構成する特異オリゴヌクレオチド、これに由来する蛋白質、ペプタイド、ならびにこれらを用いたHCV遺伝子型判定法に関する。

[0002]

【従来の技術】1988年にHCV遺伝子の一部が解明 され発表されて以来、HCV診断への応用可能な数多く の技術が開発され実用化されてきた。これまで、HCV 感染によって患者血液中に現われるHCV抗体を検出す る抗体検査法、ならびに体内に存在するHCV遺伝子を 検出する方法が開発され広く用いられてきたが、さらに HCVの遺伝子型を判定する方法が研究、開発され、本 発明者らもこれに深く関与してきた。これらの診断技術 に於ける現時点の最重要課題は、高い感度と各遺伝子型 に対する高い特異性を実現することである。この技術課 題を解決する為には、HCVの各遺伝子型に特異的な遺 伝子配列あるいは特異抗原の特定とそれに基づく診断技 術の確立が急務である。実際に、いくつかのHCV株に ついては遺伝子の全配列が解明されており、さらに他の 40 株については遺伝子配列の一部が解明され、HCV特異 遺伝子の配列の特定あるいはHCV特異アミノ酸配列の 特定に利用された。その結果、従来の検査法に比べ、こ れらの情報に基づいて開発された最近の診断法は高い特 異性と感度を有するようになり、これにもとづいて、適 切な治療方針を採用できるようになりはじめた。しか し、他方、これらの検査法を用いた場合でも、なお捕捉 できないHCV疾患例があることも判明しており、より 高い特異性と感度を有する診断法の開発が望まれてい

[0003]

【発明が解決しようとする課題】HCVはその遺伝子配 列が初めて解明されてからまだ時間が浅く、ウイルス本 体は未だ確認されていない。また、全遺伝子配列が解明 されたHCV株もまだ少数であり、HCVの遺伝特性を 完全に解明したとは言えないのが実態である。したがっ て、現在までに発表された遺伝子配列が全てのHCVに 共通の情報を提供しているものか否かは明らかでない。 完全なHCV診断法を完成させるためには、現在の診断 法では捕捉できないHCVの遺伝子特性を解明し、その 情報を反映させた診断法の構築が不可欠である。本発明 10 の目的は、今日までのHCV検査法では十分に特徴付け られないHCV株の遺伝子配列を明かにいるとともに し、その遺伝子特性を解明することにより、正確かつ広 範な適用範囲をもつ遺伝子型判定法と、これに用いるオ リゴヌクレオチド等を提供することである。

[0004]

【課題を解決するための手段】本発明者らは、今日まで の各種HCVの検査では十分に特徴付けられないHCV 株の遺伝子本体の解明を目的として、鋭意研究を進めた が、その結果、HCV-RNA陽性でありながら、従来 20 の遺伝子型判定法では型判定できなかったヒト検体から RNAを単離し、これを用いて未知のHCV株の全遺伝 子配列を決定した。さらに本発明者らは、この新規の遺 伝子配列と従来報告された各遺伝子型の公知のHCV遺 伝子配列とを比較した結果、本発明のHCV株が公知の 遺伝子型のいずれに相当するものでなく、全く別の新し い遺伝子型であることを解明した(発明者らは暫定的に この遺伝子型を1 c型と命名した)。これに基づいて、 本発明者らは、1 c 型遺伝子型に特異的で他の遺伝子型 には存在しない遺伝子配列を特定した。この配列を有す 30 るオリゴヌクレオチドをプライマーあるいはプローブと して使用することにより1 c型の遺伝子型判定が可能に なった。さらに公知の遺伝子型を含めた全ての遺伝子型 に共通な遺伝子配列を特定するとともに、この配列を有 するオリゴヌクレオチドと1 c型に特異的な配列を有す る本発明のオリゴヌクレオチドをプライマーとして利用 することによりで一度の検査で遺伝子型の判定が実現で きることを見出し、本発明を完成した。本発明のポリヌ クレオチドおよびオリゴヌクレオチドからなるプイラマ ーならびにプロープは、HCV各遺伝子型に共通する遺 40 伝子あるいは型特異的な遺伝子配列に対して特異的に結 合することにより作用を発揮するものである。ポリヌク レオチドならびにオリゴヌクレオチドの結合には配列上 若干のの差異があっても影響を受けないことは周知のこ とであるから、本発明のポリヌクレオチドまたはオリゴ ヌクレオチドに対して若干の置換を有するポリヌクレオ チドならびにオリゴヌクレオチドも当然本発明の範囲に 包含される。

【0005】すなわち、本発明は公知のHCVとは異な る新しい遺伝子型である1c型を有するHCVたるHC50 ア領域を特定した。この領域から1c型特異的配列を有

-G9のcDNA遺伝子の発明であり、またその特異的 遺伝子配列の一部を構成する、あるいはこれに相補的な 塩基配列を有するポリヌクレオチドまたはオリゴヌクレ オチドに関する発明であり、具体的には配列番号1ない し5記載の塩基配列、またはこれに相補的な塩基配列の 全部あるいは一部を有するポリヌクレオチドあるいはオ リゴヌクレオチドの発明である。本発明は、上記オリゴ ヌクレオチドからなるプライマー、プローブ、あるいは 標識されたプロープの発明であり、また配列番号6記載 の塩基配列の全部あるいは一部を有するプライマーある いはプローブに関する発明である。本発明は、上記プラ イマーと、配列番号7ないし14記載の遺伝子配列を有 するオリゴヌクレオチドからなるプライマーとを組み合 わせて利用し、HCV遺伝子の検出、遺伝子型の判定を 行うことができる混合プライマーに関する発明である。 また、本発明は上記プライマーあるいはプローブを単 独、あるいは同時に使用することによってHCVの遺伝 子を検出する方法、または遺伝子型を判定する方法の発 明である。

【0006】本発明者らは、実施例1に示すように、従 来の遺伝子型判定法では型判定ができなかったHCV抗 体陽性の複数のヒト検体より所定の方法でRNAを抽出 し、HC-G9については全域の遺伝子配列を特定し、 該HCVをHC-G9と命名し、残りの2検体について はその一部の配列を特定し、該検体をS117、SR0. 37と命名した。その塩基配列は配列番号1ないし5記 載のとおりである。HC-G9の全遺伝子配列は3′端 側に見られたTストレッチ部分を除いて9440個の塩 基から成り、5~端に341塩基からなる非翻訳領域 を、続いて9033塩基からなり3011アミノ酸をコ ードする領域が、更にこれに続く3'端に66塩基から なる非翻訳領域より構成されることが判明した。

【0007】本発明者は、実施例2に示すように本発明 の対象である上記各株の塩基配列と公知の4つの遺伝子 型に属する14株の塩基配列とを比較した、その結果、 上記株の塩基配列と既知の遺伝子型配列との間には20 %以上の非相同性があり、本発明の遺伝子およびポリヌ クレオチドは、いずれの公知遺伝子型にも分類できない 新規のものであることが見出された。さらに、本発明者 らは、本発明の遺伝子およびポリヌクレオチドについ て、一部の遺伝子配列のみが公知であるHCV株に対し ても遺伝子配列の比較を行った。その結果、本発明にか かる遺伝子およびポリヌクレオチドは、上記一部配列の み判明しているHCVとも別型である独立した遺伝子型 として分類されることを見出した。本発明者らは本発明 にかかる新規のHCVの遺伝子型を暫定的に1c型と命 名した。

【0008】本発明者らは、実施例2に示すように1c 型HCV株の遺伝子型判定に最適な遺伝子領域としてコ

する配列番号6記載のオリゴヌクレオチドを得た。

【0009】本発明者らは、HCVの遺伝子検出および 遺伝子型判定に用いるべき領域が、1 c 型遺伝子型にお いても他の遺伝子型判定の場合と同様にコア領域にある ことに注目し、配列番号6記載の本発明のポリヌクレオ チドと併用することができるポリヌクレオチドを公知の プライマーのなかから検索した。その結果、配列番号7 記載の公知のオリゴヌクレオチドの配列は1c型にもよ く保存されており、これがHCVの遺伝子検出および遺 **伝子型判定に於ける共通プライマーとして利用可能なこ 10 子、ポリヌクレオチド、オリゴヌクレオチドプライマ** とが見出した。配列番号6記載の1 c 型特異的オリゴヌ クレオチドプライマーを公知の共通プライマーたる配列 番号7記載のオリゴヌクレオチドプライマーとを組合せ て使用することによって、1 c型の遺伝子を特異的に増 幅できることを見出した。

【0010】本発明では遺伝子の増幅方法としてポリメ ラーゼ、チエイン、リアクション法 (PCR法) を好適 に利用することができる。その際、プライマーペアとし ては、配列番号6記載のオリゴヌクレオチドと配列番号 9記載のプライマーペアの組合せも好適である。

【0011】PCR法に於いては、第一段階として各遺 伝子型に共通な領域を増幅し、第二段階として型特異的 な増福を行うことにより、より高感度にHCV遺伝子の 検出と遺伝子型の判定がなされる。この様態のPCR法 に使用する好適なオリゴヌクレオチドペアーとしては、 第一段階用として配列番号7記載のオリゴヌクレオチド と配列番号8記載のオリゴヌクレオチド、第二段階用と して配列番号6記載のオリゴヌクレオチドと配列番号9 記載のオリゴヌクレオチドを例示することができる。

【0012】また、本発明の方法によれば本発明の新規 30 オリゴヌクレオチド (配列番号6) を配列番号7記載な いし配列番号14の各既知遺伝子型特異的オリゴヌクレ オチドプライマーまたは、共通オリゴヌクレオチドプラ イマーとを同時に使用し、PCR法あるいは公知の2段 階PCR法使用して、一度の操作によりHCV遺伝子を 検出し、また遺伝子型を判定することができる。

【0013】また、本発明者らは公知の宿主に組み込ん で発現させ、また常法により化学合成して、本発明のポ リペプタイドを得た。

【0014】本発明のポリペプタイドにおけるアミノ酸 40 いRNAを得た。 配列は、公知の遺伝子型HCVにおけるポリペプタイド とコア領域において高い相同性を有するが、エンベロー ブ(E1) およびE2/NS1ではその相同性が低く、 型特異的であることを示している。 E1、E2/NS1 はウイルス粒子表面に存在する蛋白質と考えられ、この 部分に対する抗体を有する症例も少なからず見出され る。したがって、本発明のポリペプタイドおよびその部 分オリゴペプタイドは1c型特異的に抗エンペローブ抗 体の検出系の作成や、HCVワクチンに使用することが

構造蛋白質をコードしていると考えられ、本発明のポリ

ペプタイドおよびその部分オリゴペプタイドは非特異的 な抗体検出系やHCV増殖阻害剤の開発に用いることが

[0015]

【作用】本発明は、新たに見いだされた遺伝子型である 1c型のHCVを含め、従来よりも広汎な遺伝子型のH CVを高感度に検出し、またそのHCVの各遺伝子型と 同時に特異的に判定することができる。本発明の遺伝 ー、蛋白質、ペプタイドはCV遺伝子の検出ならびに遺 伝子型判定に供することができる。

[0016]

【実施例】以下、本発明の実施例についての述べるが、 もとより本発明がこれらの実施例に眼定されるものでは

【0017】 実施例1

従来の遺伝子型に分類されない複数の新規HCV株を見 出し、その全塩基配列および一部の塩基配列を次のよう 20 にして決定した。

【0018】 (1) RNAの抽出

市販のHCV抗体検査薬および本発明者らによって開発 され特許出願中の抗体検査法(特願平2-15340 1) ならびに、本発明者らによって別途特許出願された オリゴヌクレオチドプライマーを用いたHCV検出法 (特開平5-23200) によりHCV感染が確認され ているが、本発明者により別途特許出願されているHC V遺伝子型判定に関する方法(特願平3-30729 6、4-093960) ではその遺伝子型判定ができな かった肝炎患者出来の血液検体(HC-G9、YS11 7, およびSR037) から次のようにしてRNAを抽 出した。血清50μ1に適当量のトリス緩衝液(10m M、pH8. 0) を加え、90×103rpmにて15 分間の遠心分離を行った。 得られたペレットに200m MのNaCI、10mMEDTA、2% (重量/容積) のドデシル硫酸ナトリウム (SDS) と1mg/mlの プロテナーゼKを含むトリス級衝液(50mM, pH 8.0) を加え、60℃で1時間加温し、フェノール/ クロロフォルムで抽出を行った後、エタノール沈澱を行

【0019】 (2) cDNAの作製

各検体より得たRNAを70℃で1分間加温した後、こ れを急冷し鋳型RNAとした。この鋳型RNAサンプル に100ユニットの逆転写酵素(Superscrip t;GIBCO, BRL) およびオリゴヌクレオチドブ ライマー20pmolを加え、42℃、1時間反応させ て c DNAを得た。

【0020】(3) cDNAのポリメラーゼチェインリ アクション (PCR) による増幅

できる。またNS2~NS5領域はプロテアーゼ等の非 50 上記の操作により得られた単鎖cDNAについて、図1

に示す領域別に、表1に示す各領域毎に設定したセンス 個オリゴヌクレオチドプライマーならびにアンチセンス 倒オリゴヌクレオチドプライマーからなるプライマーペ アーを用て増幅を行った。増福は、DNAサーマルサイ クラー (Perkin-Elmer. Cetus) にG ene Amp DNA增幅試薬キット (Perkin -Elmer・Cetus) を用いてSaikiらの方*

*法[Science、Vol. 239、p487-49 1 (1988)] に従って35回の増幅サイクルからな るPCR法にて実施した。

[0021] 【図1】 [0022] 【表1】

配列番号:1

配列の長さ:9487

配列の型:核酸 頸の数:一本鎖 トポロジー:直線状

配列の種類:cDNA to genomic RNA (HC-G9 cDNA)

GCCAGCECCE TGATGGGGGC GACACTCCGC CATGAATCAC TCCCCTGTGA GGAACTACTG 60 TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG TGTCGTGCAG CCTCCAGGAC 120 CCCCCCCCC GGGAGAGCCA TAGTGGTCTG CGGAACCGGT GAGTACACCG GAATTGCCAG 180 GACGACCGGG TCCTTTCTTG GATTAACCCG CTCAATGCCT GGAGATTTGG GCGTGCCCCC 240 GCAAGACIGC TAGCCGAGTA GTGTTGGGTC GCGAAAGGCC TTGTGGTACT GCCTGATAGG 300 GTGCTTGCGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAC CATGAGCACG AATCCTAAAC 360 CTCAAAGAAA AACCAAACGT AACACCAACC GCCGCCCACA GGACGTTAAG TTCCCGGGTG 420 GCGGCCAGAY CGTTGGCGGA GTTTACTTGT TGCCGCGCAG GGGCCCCAGA GTGGGTGTGC 480 GCGCGACGAG GAAGACTTCC GAGCGGTCGC AACCTCGCGG GAGGCGTCAG CCTATTCCCA 540 AGGCCCGCCG ACCCGAGGGA AGGTCCTGGG CGCAGCCCGG GTACCCTTGG CCCCTCTATG 600 GCAACGAGGG CTGTGGGTGG GCGGGATGGC TCCTGTCCCC CCGCGGCTCT CGGCCTAGTT 660 GGGGCCCTTC TGACCCCGG CGGAGGTCAC GCAATTIGGG TAAGGTCATC GATACCCTCA 720 CGTGTGGCTT CGCCGACCTC ATGGGGTACA TCCCGCTCGT CGGCGCTCCT CTAGGGGGCG 780 CTGCCAGAGC TCTGGCACAT GGTGTTAGAG TCCTGGAAGA CGGCGTGAAT TACGCAACAG 840 GGAACCTCCC CGGTTGCTCT TTTTCTATCT TCTTGCTCGC TCTTCTATCC TGCCTGACAG 900 TCCCTGCTTC GGCCGTCGGA GTGCGCAACT CTTCGGGGGT GTACCATGTC ACCAATGATT 960 GCCCCAATGC GTCCGTTGTG TACGAGACGG AGAACCTGAT CATGCATCTG CCCGGGTGTG 1020 IGCCCTACGT ACGCGAGGGC AACGCCTCGA GGTGTTGGGT CTCCCTTAGT CCCACCGTAG 1080 CCGCCAGGGA TTCGCGCGTC CCCGTCAGTG AGGTTCGGCG TCGTGTCGAC TCGATTGTCG 1140 GGGCCGCTGC GTTCTGTTCG GCTATGTATG TAGGGGACCT ATGCGGCTCC ATCTTCCTTG 1200 TIGGCCAGAT CITCACCITC ICTCCCAGGC ACCAITGGAC GACGCAAGAC IGCAATIGCT 1260 CCATCTACCC AGGCCATGTG ACAGGTCATC GAATGGCTTG GGACATGATG ATGAATTGGT 1320

【0023】(4) c DNAライプラリーの構築による HC-G9、YS117, およびSR037の塩基配列 の決定

リヌクレオチドカイネース (New England Biolabs)、T4 DNAポリメラーゼ (Tak ara Biochemicals)で処理後、M13 PCRにて増幅した各検体由来の各領域遺伝子をT4ポ 50 ファージベクターに挿入し、クローン化した。塩基配列

決定はdideoxy chain terminat ion法にて、S equencenase sequ encekit ver 2.0 (United Sr are Biochemnicals) あるいはAut oRead Sequencing kit (Pha rmacia)を用いて行った。各検体について、各領 域3クローンを得、それぞれについて配列を決定し、各 クローンに共通する塩基、あるいは一致率の高い塩基を 採用して配列を決定した。HC-G9については全領域 を、YS117ならびにSR037については5 端よ 10 呼ばれる分類に属し、その分類にはすでにI 型、II 型 り63番目の塩基から1867番目の塩基までの配列と 8259番目から9440番目までの配列について決定 した。配列表1にHC-G9、配列表2にYS117、 の5′ 倒、配列表3にYS117、の3′ 倒、配列表4 にSR037の5′側、配列表5にSR037の塩基配 列の3′ 側の各塩基配列を示す。表2にHC-G9、Y S117、SR037の配列間の相同性を示す。その結 果、これら3検体の塩基配列の相同性は95%あり、上

記の3検体のHCVは同一の遺伝子型に分類される。図 2にHC-G9とこれまでに全域の塩基配列が解明され ている14のHCV株との塩基配列の相同性を示す。そ の結果、HC-G9はいずれの既知の遺伝子型株の塩基 配列とも20%以上の非相同性をしめすことが判明し た。このことからHC-G9を含む3検体由来のHCV は従来の遺伝子型とは異なる新しい遺伝子型に分類され ることを確認した。遺伝子配列に基づく系統分類の推定 より、この新たに見いだされた遺伝子型は大きく1型と が存在し、これらは1 a ならびに1 b と呼称されている ことから、これに倣って1c型と暫定的に呼ぶこととし

10

[0024]

[図2]

[0025]

【表2】

CACCCACTGG CGCCTTAGTG GTGGCACAGC TACTCCGGAT CCCACAAGCT ATCGTGGATA 1380 TGATAGCTGG TGCCCACTGG GGTGTCCTAG CGGGCCTGGC ATACTACTCC ATGGTGGGGA 1440 ACTGGGCTAA GGTTGTGGTC GTGCTGCTGC TCTTCGCTGG CGTTGACGCA GAGACCCGGG 1500 TCACAGGGGG GGCCGCTGGC CACACCGCGT TCGGGTTTGC TAGCTTCCTC GCCCCAGGCG 1560 CTAAGCAAAA GATCCAGCTC ATAAATACCA ACGGCAGCTG GCACATCAAC AGAACTGCCT 1620 TGAACTGTAA TGAAAGCTTG GATACTGGCT GGCTAGCAGG GCTGCTCTAC TACCACAAGT 1680 TCAACTCCTC AGGGTGTCCC GAGAGGATGG CTAGTTGCCA ACCTCTTACC GCCTTCGACC 1740 AAGGGTGGGG ACCCATCACT CACGAGGGGA ATGCTAGTGA TGACCAGCGG CCATAITGTT 1800 GGCACTATGC CCTACGCCCG IGTGGCATTG TGCCAGCGAA AAAGGTTTGC GGGCCTGTAT 1860 ACTGTTTCAC ACCCAGCCCC GTGGTAGTGG GGACGACGGA CAGAGCCGGC GTTCCTACCT 1920 ACAGATGGGG TGCCAATGAG ACGGATGTAC TGCTCCTCAA CAACTCTAGG CCGCCAATGG 1980 GGAATTGGTT TGGGTGTACG TGGATGAATT CTAGTGGCTT CACCAAGACG TGCGGGGCTC 2040 CGGCCTGCAA CATCGGCGGG AGCGGGAACA ATACCCTGCT GTGCCCAACA GATTGCTTCC 2100 GTAAACATCC GGATGCCACA TACAGCAGGT GCGGCTCTGG TCCCTGGCTT ACCCCTCGAT 2160 GCTTGGTAGA CTACCCATAC AGGCTCTGGC ACTACCCCTG TACAGTCAAT TACACCATTI 2220 TCAAGATCAG GATGTTTGTG GGCGGGGTTG AGCACAGGCT TGACGCCGCG TGCAACTGGA 2280 CGCGGGGAGA GCGCTGCGAT TTGGACGACA GGGATCGGGC CGAGTTGAGC CCTCTGTTGC 2340 TGTCCACTAC GCAATGGCAG GTCCTCCCCT GCTCATTCAC AACACTGCCC GCCCTGTCAA 2400 CTGGCCTGAT ACATCTCCAC CAGAACATCG TGGACGTGCA GTACCTCTAT GGGTTGAGCT 2460 CGGCAGTCAC ATCCTGGGTC ATAAAGTGGG AGTACGTTGT GCTCCTCTTC TTGCTGCTAG 2520 CAGATGCTCG CATTTGTGCC TGCTTGTGGA TGATGCTTCT CATATCTCAG GTAGAGGCGG 2580 CGCTGGAGAA CTTGATAGTT CTCAACGCTG CTTCCCTAGT CGGGACACAT GGCATCGTCC 2640 CCTTCTTCAT CTITTTITGT GCAGCTIGGT ACCTAAAAGG CAAGTGGGCC CCTGGACTCG 2700 CCTAITCCGI CIATGGGATG IGGCCACTGC ICCTGCTICT CCTGGCGTTG CCCCAACGGG 2760 CATACGCCTT GGATCAGGAG ITGGCCGCGT CGTGTGGGGC CACGGTCTTC ATCTGCCTAG 2820 CGGTGCTCAC TCTATCGCCA TATTACAAAC AGTACATGGC CCGCGGCATC IGGTGGCTGC 2880 AGTACATGCT GACCAGAGCA GAGGCGCTCC TACAGGTTTG GGTCCCCCCG CTCAACGCCC 2940 GAGGAGGGCG CGACGGAGTC GTACTGCTCA CGTGTGTGCT CCACCCGCAC TTGCTCTTTG 3000 AAATCACCAA GATCATGCTG GCCATTCTCG GGCCTTTGTG GATCTTGCAG GCCAGTCTGC 3060 TCAAGGTACC GTACTICGTG CGTGCCCACG GTCTCATTAG GCTCTGCATG CTGGTGCGCA 3120 AGACAGCGGG CGGTCAGTAT GTGCAGATGG CTCTGTTAAA GCTGGGAGCA TTTGCCGGCA 3180

【0026】実施例2

1c型HCV遺伝子型判定法

(1) 1 c型HCVの遺伝子型判定に適したプライマー の選択

11

1 c型HCVの遺伝子型の判定に使用するプライマーを 選択するために、実施例1によって明らかになった配列 に基づき、1c型HCVに於て最も塩基配列がよく保存 されており且つ既存の遺伝子型のHCV株とは相同性が 低い遺伝子領域を検索した。その結果、遺伝子判定に適 した保存領域は他の遺伝子型と同様にコア領域であるこ とが判明した。これに基づき、コア領域より1c型に特 50 3960)公知の遺伝子型判定法で使用されているオリ

40 異的な遺伝子断片の増幅に適した配列を有するオリゴヌ クレオチドプライマーの選択を行った。その結果、第一 段階の遺伝子増幅に使用するオリゴヌクレオチドプライ マーとして配列表7および配列表8に記載した#186 と#256を選択し、続く第二段階増幅に使用するオリ ゴヌクレオチドプライマーとして配列表9に記載した# 104と本発明の#321(配列表6)プライマーを選 択した。#186、#256ならびに#104のオリゴ ヌクレオチドプライマーは、本発明者らにより既に報告 されており(特願平3-307296、特願平4-09

ゴヌクレオチドプライマーであるが、実施例1によって 解明された1c型HCVの配列にもとづき、本発明に於 いても利用可能であると判断された。これらのオリゴヌ クレオチドプライマーは、本発明に於いて遺伝子型に特 異的な保存塩基配列を増幅する為に使用される。他方、 本発明の#321オリゴヌクレオチドプライマーは実施 例1で解明した1c型についてのみ特異性を有するオリ ゴヌクレオチドプライマーである。

【0027】(2)本発明の#321を使用したHCV 遺伝子の検出と1c型HCVの遺伝子型判定

各遺伝子型のHCV株 (HC-J1: I型、HC-J 4: II型、HC-J6: III型、HC-J8: IV 型)ならびにHC-G9由来のRNAから、#186の プライマーを使用してcDNAを得た。続いてcDNA を#256ならびに#186のプライマーを使用したP CRを利用して第一段階の増幅を行った。第一段階のP CRは、94℃による変性1分、55℃によるプライマ 一結合反応1分30秒、72℃によるプライマー伸長反 応2分を1サイクルとし35サイクル行った。第二段階 の増幅は、型特異オリゴヌクレオチドプライマーである 20 各国別の1c型HCVの出現頻度 配列番号11~14記載の#296、#133、#13 4、#135および本発明の#321プライマー、なら びに型共通オリゴヌクレオチドプライマーである配列番 号9記載の#104プライマーを用いたPCRにて実施 した。第一段階にて増幅された増幅産物の50分の1用 量を第二段階増幅のサンプルとしてPCRを行った。反 応条件は94℃による変性反応30秒、60℃によるブ ライマー結合反応30秒、72℃よりなるプライマー伸 長反応30秒で、各反応からなる1サイクルを合計30

14

回繰り返した。第二段階終了後、増幅産物を1.5%の NuSieveならびに1.5%のSeaKem (FM C Bioproducts, U.S.A) を用いたア ガロース電気泳動し、終了後エチジウムプロマイド染色 にてDNAを染色し、各パンドの移動位置より遺伝子型 を判定した。各検体の増幅産物の移動度は、各遺伝子型 別に設定されたプライマーの位置より予想された移動 度、すなわち49、144、174、123、200b p(I型、II型、III型、IV型、1c型)の位置 10 に泳動され、各遺伝子型が判別できることが確認され た。また、各検体の電気泳動像には予想される遺伝子型 のパンドのみが見られ、別の型に相当するパンドが現わ れることはなかった。従って、本発明によるHCVの遺 伝子型判定法は1 c型を含めた全ての遺伝子型について 十分に高い特異性を有することが証明された。泳動のパ ターンを図3に示した。

[0028]

【図3】

【0029】 実施例3

日本、中華人民共和国、タイ、インドネシア、ニュージ ーランドのHCV患者検体を対象に1c型の出現頻度を 本発明の実施例2の方法を使用して調べた。その結果は 表3に示すように1c型HCVはインドネシアに於いて のみ9.9%の頻度で発見され、限局された地域性を有 することが判明した。

[0030]

【表3】

16

CCTACATITA CAACCACCTI TCCCCGCTCC AAGACTGGGC TCACAGCGGT CTGCGCGACC 3240 TGGCGGTAGC CACTGAACCC GTCATCTTCT CCCGGATGGA AATCAAGACT ATCACCTGGG 3300 GGGCGGATAC TGCGGCTTGT GGAGACATCA TCAACGGGCT GCCTGTTTCC GCCCGGAGAG 3350 GGAGAGAGGT GTTGCTGGGA CCAGCCGATG CCCTGACTGA CAAAGGATGG AGGCTTTTAG 3420 CCCCCATCAC GGCTTACGCC CAGCAGACAC GGGGTCTCTT GGGCTGCATC ATCACCAGCC 3480 TCACCGGTCG GGACAAAAAT CAAGTGGAGG GGGAAGTCCA GATTGTGTCT ACCGCAACCC 3540 AGACGITCII GGCTACITGI GITAATGGAG ITTGCTGGAC IGTGTATCAI GGGGCCGGAI 3600 CGAGGACCAT CGCTTCGGCG TCGGGCCCTG TGATCCAGAT GTACACTAAT GTGGACCAGG 3660 ATTYGGTGGG CTGGCCAGCG CCTCAGGGAG CGCGCTCCCT GACGCCGTGC ACATGCGGCG 3720 CCTCGGATCT GTACTTGGTC ACGAGGCACG CGGACGTCAT TCCAGTGCGG CGTCGGGGCG 3780 ATAACAGGGG AAGTITACTA TCTCCCCGGC CAATITCATA TCTAAAGGGA TCCTCGGGAG 3840 GCCCCCTGCT CTGTCCCATG GGACATGCCG TGGGCATTTT CAGGGCCGCG GTGTGCACCC 3900 GTGGGGTCGC AAAGGCGGTC GACTITGTGC CCGTTGAATC CCTAGAGACC ACCATGAGGT 3960 CCCCAGIGIT TACCGACAAT TCCAGCCCTC CGACAGTGCC CCAGAGCTAC CAGGTGGCGC 4020 ATCTGCACGC TCCCACTGGA AGTGGTAAGA GCACGAAGGT GCCGGCCGCC TATGCGGCTC 4080 AAGGGTACAA GGTTCTTGTG CTGAACCCGT CTGTTGCTGC CACCCTAGGG TTCGGCGCTT 4140 ATATGTCAAA GGCCCATGGG ATTGACCCAA ACGTCAGGAC TGGCGTAAGG ACCATTACCA 4200 CAGGCTCCCC CATCACCCAC TCCACCTACG GCAAATTCCT GGCTGACGGT GGGTGTTCAG 4260 GAGGTGCGTA TGACATCATA ATATGTGACG AATGTCACTC AGTGGACGCC ACCTCGATTC 4320 TAGGCATAGG GACTGTCTTG GACCAAGCGG AGACAGCGGG GGTTAGGCTC ACTATCCTCG 4380 CCACCGCTAC ACCACCTGGC TCCGTCACCG TGCCACATTC CAACATCGAG GAAGTTGCAT 4440 TGTCCACTGA GGGGGAGATA CCATTCTATG GTAAGGCCAT CCCCCTAAAT TACATCAAGG 4500 GGGGGAGGCA TCTCATTTTC TGTCATTCCA AGAAGAAGTG CGACGAGCTC GCTGCAAAGC 4560 TGGTTGGCCT GGGCGTCAAC GCAGTGGCCT ITTACCGCGG CCTCGACGTG TCTGTCATCC 4620 CAACCACAGG AGACGTCGTT GTTGTGGCGA CCGACGCCTT AATGACTGGC TACACCGGCG 4680 ATTICGACTC CGTGATAGAC TGCAACACCT GTGTCGTCCA GACAGTCGAT TTCAGCCTAG 4740 ACCCTACATI CTCTATTGAG ACTICCACCG TGCCCCAGGA CGCCGTGTCC CGCTCCCAAC 4800 GGAGAGGTAG AACCGGTCGG GGGAAGCATG GTATCTACAG ATATGTGTCA CCCGGGGAGC 4860 GGCCGTCTGG CATGTTTGAC TCCGTGGTCC TCTGTGAGTG CTATGACGCG GGTTGTGCTT 4920 GGTATGAGCT TACACCCGCC GAGACCACGG ITAGGTTACG GGCATATCTT AACACCCCAG 4980 GGTTGCCCGT GTGCCAGGAC CACTTGGAGT TTTGGGAGAG CGTCTTCACC GGCCTCACCC 5040

[0031]

【発明の効果】従来4つの型に分類されていたHCVの 遺伝子型は、本発明者らによって新たに5つに分類さ れ、それぞれ特徴的な塩基配列を有することが見出され たことにもとづき、本発明では、型特異的な配列を有す る、あるいは型特異的配列に相補性を有するオリゴヌク レオチドが提供される。当然、これらのオリゴヌクレオ チドは遺伝子増幅に於けるプライマーとしてHCV遺伝 子の検出と遺伝子レベルの型判定に利用できる。また適 当な標識を加えることによりプローブとして単独に、あ るいは遺伝子増幅と組み合わせることで遺伝子レベルの 50

40 型判定に利用できる。本発明により新たに設定されたオ リゴヌクレオチドプライマーを利用することで、従来法 では判定不可能であった1c型HCVの遺伝子型も判定 可能になることから、より完全な判定技術が確立された と考えられる。また、本発明によって明らかにされた1 c型HCVの遺伝子配列より型特異的な抗原位置の推定 が可能であり、本発明の蛋白質またはポリペプタイドは 遺伝子産物を利用した治療薬開発にも利用できる。

[0032] 【配列表】

配列番号:1

配列の長さ:9487

配列の型:核酸

頸の数:一本鎖

トポロジー: 直線状

配列の種類:cDNA to genomic RNA (HC-G9 cDNA)

GCCAGCCCC	C TGATGGGGG	GACACTCCGC	CATGAATCA	C TCCCCTGT6	GGAACTACT	G 60
TCTTCACGC	A GAAAGCGTC	AGCCATGGCG	TTAGTATGA	G TGTCGTGCA	CCTCCAGGA	120
CCCCCCTCC	C GGGAGAGCCA	TAGTGGTCTG	CGGAACCGG	F GAGTACACC	GAATTGCCAC	180
GACGACCGG	G TCCTTTCTTC	GATTAACCCG	CTCAATGCCT	GGAGATTTG	GCGTGCCCCC	240
GCAAGACTG	C TAGCCGAGTA	GTGTTGGGTC	GCGAAAGGCC	TIGTGGTACT	GCCTGATAGG	300
		AGGTCTCGTA				
CTCAAAGAA	AACCAAACGT	AACACCAACC	GCCGCCCACA	GGACGTTAAG	TTCCCGGGTG	420
		GTTTACTTGT				
GCGCGACGAG	GAAGACTTCC	GAGCGGTCGC	AACCTCGCGG	GAGGCGTCAG	CCTATTCCCA	540
AGGCCCGCCG	ACCCGAGGGA	AGGTCCTGGG	CGCAGCCCGG	GTACCCTTGG	CCCCTCTATG	600
GCAACGAGGG	CTGTGGGTGG	GCGGGATGGC	TCCTGTCCCC	CCGCGGCTCT	CGCCTAGTT	660
GGGGCCCTTC	TGACCCCCGG	CGGAGGTCAC	GCAATTTGGG	TAAGGTCATC	GATACCETCA	720
		ATGGGGTACA				780
CTGCCAGAGC	TCTGGCACAT	GGTGTTAGAG	TCCTGGAAGA	CGGCGTGAAT	TACGCAACAG	840
GGAACCTCCC	CGGTTGCTCT	TTTTCTATCT	TOTTGCTCGC	TCTTCTATCC	TGCCTGACAG	900
		GTGCGCAACT				960
GCCCCAATGC	GTCCGTTGTG	TACGAGACGG	AGAACCTGAT	CATGCATCTG	CCCGGGTGTG	1020
TGCCCTACGT	ACGCGAGGGC	AACGCCTCGA	GGTGTTGGGT	CTCCCTTAGT	CCCACCGTAG	1080
		CCCGTCAGTG				1140
GGGCCGCTGC	GTTCTGTTCG	GCTATGTATG	TAGGGGACCT	ATGCGGCTCC	ATCTTCCTTG	1200
TTGGCCAGAT	CTTCACCTTC	TCTCCCAGGC	ACCATTGGAC	GACGCAAGAC	TGCAATTGCT	1260
CCATCTACCC	AGGCCATGTG	ACAGGTCATC	GAATGGCTTG	GGACATGATG	ATGAATTGGT	1320

CACCCACTGG CGCCTTAGTG GTGGCACAGC TACTCCGGAT CCCACAAGCT ATCGTGGATA 1380 TGATAGCTGG TGCCCACTGG GGTGTCCTAG CGGGCCTGGC ATACTACTCC ATGGTGGGGA 1440 ACTGGGCTAA GGTTGTGGTC GTGCTGCTGC TCTTCGCTGG CGTTGACGCA GAGACCCGGG 1500 TCACAGGGGG GGCCGCTGGC CACACCGCGT TCGGGTTTGC TAGCTTCCTC GCCCCAGGCG 1560 CTAAGCAAAA GATCCAGCTC ATAAATACCA ACGGCAGCTG GCACATCAAC AGAACTGCCT 1620 TGAACTGTAA TGAAAGCTTG GATACTGGCT GGCTAGCAGG GCTGCTCTAC TACCACAAGT 1680 TCAACTCCTC AGGGTGTCCC GAGAGGATGG CTAGTTGCCA ACCTCTTACC GCCTTCGACC 1740 AAGGGTGGGG ACCCATCACT CACGAGGGGA ATGCTAGTGA TGACCAGCGG CCATATTGTT 1800 GECACTATEC CCTACECCCE TETESCATTE TECCACCEAA AAAGETTTEC GEGCCTETAT 1860 ACTGTTTCAC ACCCAGCCCC GTGGTAGTGG GGACGACGGA CAGAGCCGGC GTTCCTACCT 1920 ACAGATGGGG TGCCAATGAG ACGGATGTAC TGCTCCTCAA CAACTCTAGG CCGCCAATGG 1980 GGAATTGGTT TGGGTGTACG TGGATGAATT CTAGTGGCTT CACCAAGACG TGCGGGGCTC 2040 CGGCCTGCAA CATCGGCGGG AGCGGGAACA ATACCCTGCT GTGCCCAACA GATTGCTTCC 2100 GTAAACATCC GGATGCCACA TACAGCAGGT GCGGCTCTGG TCCCTGGCTT ACCCCTCGAT 2160 GCTTGGTAGA CTACCCATAC AGGCTCTGGC ACTACCCCTG TACAGTCAAT TACACCATTI 2220 TCAAGATCAG GATGTTTGTG GGCGGGGTTG AGCACAGGCT TGACGCCGCG TGCAACTGGA 2280 CGCGGGGAGA GCGCTGCGAT TIGGACGACA GGGATCGGGC CGAGTTGAGC CCTCTGTTGC 2340 TGTCCACTAC GCAATGGCAG GTCCTCCCCT GCTCATTCAC AACACTGCCC GCCCTGTCAA 2400 CTGGCCTGAT ACATCTCCAC CAGAACATCG TGGACGTGCA GTACCTCTAT GGGTTGAGCT 2460 CGGCAGTCAC ATCCTGGGTC ATAAAGTGGG AGTACGTTGT GCTCCTCTTC TTGCTGCTAG 2520 CAGATGCTCG CATTTGTGCC TGCTTGTGGA TGATGCTTCT CATATCTCAG GTAGAGGCGG 2580 CGCTGGAGAA CITGATAGTI CTCAACGCTG CTICCCTAGT CGGGACACAT GGCATCGTCC 2640 CCTTCTTCAT CTTTTTTIGT GCAGCTIGGT ACCTAAAAGG CAAGTGGGCC CCTGGACTCG 2700 CCTATTCCGI CTATGGGATG IGGCCACTGC ICCTGCTICT CCTGGCGTTG CCCCAACGGG 2760 CATACGCCTT GGATCAGGAG ITGGCCGCGT CGTGTGGGGC CACGGTCTTC ATCTGCCTAG 2820 CGGTGCTCAC TCTATCGCCA TATTACAAAC AGTACATGGC CCGCGGCATC TGGTGGCTGC 2880 AGTACATGCT GACCAGAGCA GAGGCGCTCC TACAGGTTTG GGTCCCCCCG CTCAACGCCC 2940 GAGGAGGGCG CGACGGAGTC GTACTGCTCA CGTGTGTGCT CCACCCGCAC TTGCTCTTTG 3000 AAATCACCAA GATCATGCTG GCCATTCTCG GGCCTTTGTG GATCTTGCAG GCCAGTCTGC 3060 TCAAGGIACC GTACTTCGTG CGTGCCCACG GTCTCATTAG GCTCTGCATG CTGGTGCGCA 3120 AGACAGCGGG CGGTCAGTAT GTGCAGATGG CTCTGTTAAA GCTGGGAGCA IITGCCGGCA 3180

22

CCTACATITA CAACCACCTT TCCCCGCTCC AAGACTGGGC TCACAGCGGT CTGCGCGACC 3240 TGGCGGTAGC CACTGAACCC GTCATCTTCT CCCGGATGGA AATCAAGACT ATCACCTGGG 3300 GGGCGGATAC TGCGGCTTGT GGAGACATCA TCAACGGGCT GCCTGTTTCC GCCCGGAGAG 3360 GGAGAGAGGT GTTGCTGGGA CCAGCCGATG CCCTGACTGA CAAAGGATGG AGGCTTTTAG 3420 CCCCCATCAC GGCTTACGCC CAGCAGACAC GGGGTCTCTT GGGCTGCATC ATCACCAGCC 3480 TCACCGGTCG GGACAAAAAT CAAGTGGAGG GGGAAGTCCA GATTGTGTCT ACCGCAACCC 3540 AGACGITCTI CGCTACTTGT GTTAATGGAG ITTGCTGGAC IGTGTATCAT GGGGCCGGAT 3600 CGAGGACCAT CGCTTCGGCG TCGGGCCCTG TGATCCAGAT GTACACTAAT GTGGACCAGG 3660 ATTTGGTGGG CTGGCCAGCG CCTCAGGGAG CGCGCTCCCT GACGCCGTGC ACATGCGGCG 3720 CCTCGGATCT GTACTT6GTC ACGAGGCACG CGGACGTCAT TCCAGTGCGG CGTCGGGGCG 3780 ATAACAGGGG AAGTITACTA TCTCCCCGGC CAATTTCATA TCTAAAGGGA TCCTCGGGAG 3840 GCCCCCTGCT CTGTCCCATG GGACATGCCG TGGGCATTTT CAGGGCCGCG GTGTGCACCC 3900 GTGGGGTCGC AAAGGCGGTC GACTTTGTGC CCGTTGAATC CCTAGAGACC ACCATGAGGT 3960 CCCCAGIGIT TACCGACAAT TCCAGCCCTC CGACAGTGCC CCAGAGCTAC CAGGTGGCGC 4020 ATCTGCACGC TCCCACTGGA AGTGGTAAGA GCACGAAGGT GCCGGCCGCC TATGCGGCTC 4080 AAGGGTACAA GGTTCTTGTG CTGAACCCGT CIGTTGCTGC CACCCTAGGG TTCGGCGCTT 4140 ATATGTCAAA GGCCCATGGG ATTGACCCAA ACGTCAGGAC TGGCGTAAGG ACCATTACCA 4200 CAGGCTCCCC CATCACCCAC TCCACCTACG GCAAATTCCT GGCTGACGGT GGGTGTTCAG 4260 GAGGTGCGTA TGACATCATA ATATGTGACG AATGTCACTC AGTGGACGCC ACCTCGATTC 4320 TAGGCATAGG GACTGTCTTG GACCAAGCGG AGACAGCGGG GGTTAGGCTC ACTATCCTCG 4380 CCACCGCTAC ACCACCTGGC TCCGTCACCG TGCCACATTC CAACATCGAG GAAGTTGCAT 4440 TGTCCACTGA GGGGGAGATA CCATTCTATG GTAAGGCCAT CCCCCTAAAT TACATCAAGG 4500 GGGGGAGGCA TCTCATITIC TGTCATTCCA AGAAGAAGTG CGACGAGCTC GCTGCAAAGC 4560 IGGITGGCCT GGGCGTCAAC GCAGTGGCCI IITACCGCGG CCICGACGIG ICIGICAICC 4620 CAACCACAGG AGACGTCGTT GTTGTGGCGA CCGACGCCTT AATGACTGGC TACACCGGCG 4680 ATTICGACTC CGTGATAGAC TGCAACACCT GTGTCGTCCA GACAGTCGAT TTCAGCCTAG 4740 ACCCTACATT CTCTATTGAG ACTTCCACCG TGCCCCAGGA CGCCGTGTCC CGCTCCCAAC 4800 GGAGAGGTAG AACCGGTCGG GGGAAGCATG GTATCTACAG ATATGTGTCA CCCGGGGAGC 4860 GGCCGTCTGG CATGTTTGAC TCCGTGGTCC TCTGTGAGTG CTATGACGCG GGTTGTGCTT 4920 GGTATGAGCT TACACCCGCC GAGACCACGG TTAGGTTACG GGCATATCTT AACACCCCAG 4980 GGTTGCCCGT GTGCCAGGAC CACTTGGAGT TTTGGGAGAG CGTCTTCACC GGCCTCACCC 5040

ACATAGATGC CCACTTCCTG TCTCAGACGA AACAGAGCGG GGAAAATTTC CCCTACCTAG 5100 TCGCATACCA AGCCACCGTG TGCGCTAGAG CTAAAGCTCC TCCCCCGTCA TGGGACCAAA 5160 TGTGGAAGTG CTTGATACGG CTCAAGCCCA CCCTCACTGG GGCTACCCCC CTACTATACA 5220 GACTGGGTGG TGTGCAGAAT GAGATCACCC TAACACCCC AATCACCAAG TACATCATGG 5280 CTTGTATGTC GGCTGACCTG GAGGTCGTCA CTAGCACGTG GGTGCTGGTG GGCGGCGTCC 5340 TEGCCECTTT EGCCECTTAC TECCTETCTA CAGGCAGCET EGTCATAGTE EGCAGGATAA 5400 TCCTAAGCGG GAAGCCGGCA GTCATTCCTG ACAGGGAGGT TCTCTACCGA GAGTTTGATG 5460 AGATGGAAGA GTGCGCCGCC CACATCCCCT ACCTTGAGCA GGGGATGCAT TYGGCTGAAC 5520 AGTTCAAGCA GAAAGCTCTC GGGTTGCTCC AGACAGCATC CAAGCAAGCA GAGACGATCA 5580 CTCCCGCTGT CCATACCAAT TGGCAGAAAC TCGAGTCCTT CTGGGCTAAG CACATGTGGA 5640 ACTICGTCAG CGGGATACAA TACCTGGCGG GCCTGTCAAC GCTGCCCGGT AATCCCGCTA 5700 TAGCGTCGCT GATGTCGTTT ACAGCCGCGG TGACGAGTCC ACTAACCACC CAGCAAACCC 5760 TCCTCTTTAA CATCCTTGGG GGGTGGGTGG CCGCCCAGCT TGCCGCCCCA GCTGCCGCCA 5820 CTGCTTTCGT CGGCGCTGGT ATTACCGGCG CTGTCATCGG CAGTGTGGGC CTAGGGAAGG 5880 TCCTAGTGGA CATTCTTGCT GGCTACGGGG CTGGTGTGGC GGGGGCCCTT GTGGCTTTCA 5940 AGATCATGAG CGGGGAGGCC CCCACCGCCG AGGATCTAGT CAACCTTCTG CCTGCCA1CC 6000 TCTCGCCAGG AGCTCTCGTT GTAGGCGTGG TGTGCGCAGC AATACTACGC CGGCACGTGG 6060 GCCCTGGCGA GGGCGCGGTG CAGTGGATGA ACCGACTGAT AGCGTTTGCT TCTCGGGGTA 6120 ACCACGTCTC CCCTACACAC TATGTGCCAG AGAGCGACGC GTCAGTCCGT GTCACACATA 6180 TCCTCACCAG CCTCACTGTC ACTCAGCTCC TGAAAAGGCT CCACGTGTGG ATAAGCTCAG 6240 ATTGCACCGC CCCGTGTGCT GGTTCTTGGC TCAAAGATGT CTGGGACTGG ATATGCGAGG 6300 TGCTGAGCGA CTICAAGAGT TGGCTGAAGG CCAAACTTAT GCCGCAACTG CCCGGGATCC 6360 CATTCGTATC CTGTCAACGC GGGTACCGTG GGGTCTGGCG GGGCGAAGGC ATCATGCACG 6420 CCCGTTGCCC GTGTGGAGCC GATATAACTG GTCATGTCAA AAACGGTTCG ATGAGAATCG 6480 TCGGCCCTAA GACTTGCAGC AACACCTGGC GTGGGTCGTT CCCCATCAAC GCCCACACTA 6540 CGGGCCCTTG CACACCCTCC CCAGCGCCGA ACTACACGTI CGCGTTATGG AGGGTGTCGG 6600 CAGAGGAGTA TGTGGAGGTA AGGCGGCTGG GGGATTTCCA TTACATCACG GGGGTGACCA 6660 CTGATAAGAT CAAGTGTCCA TGCCAGGTCC CCTCGCCCGA GTTCTTCACA GAGGTGGATG 6720 GGGTGCGCCT ACATAGGTAC GCCCCCCCT GCAAACCCCT GCTACGGGAT GAGGTGACGT 6780 TTAGCATCGG GCTCAATGAA TACTTGGTGG GGTCCCAGTT GCCCTGCGAG CCCGAGCCAG 6840 ACGTAGCTGT ACTGACATCA ATGCTTACAG ACCCCTCCCA CATCACTGCA GAGACGGCGG 6900

CGCGTAGACT GAATCGGGGG TCTCCCCCCT CCCTGGCTAG CTCTTCTGCC AGCCAATTGT 6960 CIGCGCCGTC CCTGAAAGCA ACATGTACCA CCCACCATGA CICTCCAGAC GCTGACCTCA 7020 TAACAGCCAA CCTCCTGTGG AGGCAGGAGA TGGGGGGGAA CATTACCAGA GTGGAGTCGG 7080 AGAATAAGAT CGTCATCCTG GATTCTTTCG ACCCGCTCGT GGCGGAGGAG GATGATCGGG 7140 AGATTICTGT CCCAGCTGAG ATTCTGCTGA AGTCTAAGAA GITTCCCCCC GCCATGCCTA 7200 TATGGGCACG GCCAGATTAT AATCCTCCCC TTGTGGAACC ATGGAAGCGC CCGGACTACG 7260 AACCACCCTT AGTTCACGGG TGCCCCCTAC CACCTCCCAA ACCAACTCCG GTGCCGCCAC 7320 CCCGGAGAAA GAGGACAGTG GTGCTGGATG AGTCTACAGT ATCATCTGCT CTGGCTGAGC 7380 TIGCCACTAA GACCTTIGGC AGCTCTACAA CCTCAGGCGI GACAAGTGGT GAAGCGGCCG 7440 AATCBTCCCC GGCGCCTTCC TGCGACGGTG AACTGGACTC CGAAGCTGAA TCTTACTCCT 7500 CCATGCCCCC TCTCGAGGGG GAACCGGGGG ACCCCGATCT CAGCGACGGG TCTTGGTCTA 7560 CCGTAAGCAG TGATGGCGGT ACGGAGGACG TCGTGTGCTG CTCGATGTCC TACTCGTGGA 7620 CGGGCGCCCT AATTACGCCC TGTGCCGCAG AGGAAACCAA ACTCCCCATC AACGCACTGA 7680 GTAACTCGCT GCTGCGCCAC CACAATTTGG TGTATTCCAC CACCTCTCGC AGCGCTGGCC 7740 AGAGGCAGAA AAAAGTCACA TTTGACAGGC TGCAGGTCCT GGACGATCAT TACCQGGACG 7800 TGCTCAAGGA GGCTAAGGCC AAGGCATCCA CAGTGAAGGC TAAATTGCTA TCCGTAGAGG 7860 AGGCATGTAG CCTGACGCCC CCGCACTCCG CCAGATCAAA ATTTGGCTAT GGGGCGAAGG 7920 ATGTCCGAAG CCATTCCAGT AAGGCCATAC GCCACATTAA CTCCGTGTGG CAAGACCTTC 7980 TGGAGGACAA TACAACACCT ATAGACACTA CCATCATGGC AAAGAATGAG GTCTTCTGCG 8040 TGAAGCCCGA AAAGGGGGGC CGCAAGCCCG CTCGTCTTAT CGTGTACCCC GACCTGGGAG 8100 TGCGCGTATG CGAGAAGAGG GCTTTGTATG ACGTAGTCAA ACAGCTCCCC ATTGCCGTGA 8160 CGTGGAAATC AAAGAAAAAT CCTATGGGGT TTTCCTATGA CACCCGTTGC TTTGACTCGA 8280 CAGTCACTGA GGCTGATATC CGTACGGAGG AAGACCTCTA CCAATCTTGT GACCTGGTCC 8340 CTGAGGCCCG CGCGGCCATA AGGTCTCTCA CAGAGAGGCT ITACATCGGG GGCCCGCTTA 8400 CCAACTCTAA GGGACAAAAC TGCGGCTATC GGCGATGCCG CGCGAGCGGC GTGCTGACCA 8460 CTAGCTGCGG TAACACCATA ACCTGTTATC TCAAGGCCAG TGCAGCCTGT CGAGCTGCAA 8520 AGCTCCGGGA CTGCACTATG CTCGTGTGCG GCGACGACCT CGTCGTTATC TGTGAGAGCG 8580 CCGGTGTCCA GGAGGACGCT GCGAACCTGA GAGCCTTCAC GGAGGCTATG ACCAGGTACT 8640 CCGCCCCCC GGGAGACCCG CCTCAACCAG AATACGACTT GGAGCTTATA ACATCTTGTT 8700 CCTCCAATGT TTCAGTCGCG CACGACGGCG CTGGCAAAAG GGTCTACTAT CTGACCCGTG 8760

28

[0033]

29

配列番号:2

配列の長さ:1765

配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:cDNA to genomic RNA (YS117-5' cDNA)

CCATGGCGTT	AGTATGAGTG	TCGTGCAGCC	TCCAGGACCC	CCCCTCCCGG	GAGAGCCATA	60
GTGGTCTGCG	GAACCGGTGA	GTACACCGGA	ATTGCCAGGA	CGACCGGGTC	CTTTCTTGGA	120
TCAACCCGCT	CAATGCCTGG	AGATTIGGGC	GTGCCCCCGC	AAGACTGCTA	GCCGAGTAGT	180
GTTGGGTCGC	GAAAGGCCTT	GTGGTACTGC	CTGATAGGGT	GCTTGCGAGT	GCCCCGGGAG	240
GTCTCGTAGA	CCGTGCACCA	TGAGCACAAA	TCCTAAACCT	CAAAGAAAAA	CCAAACGTAA	300
CACCAACCGC	CGCCCACAGG	ACGTTAAGTT	CCCGGGTGGC	GGCCAGATCG	TTGGCGGAGT	360
TTACTTGTTG	CCGCGCAGGG	GCCCCAGAGT	GGGTGTGCGC	GCGACGAGGA	AGACTTCCGA	420
GCGGTCGCAA	CCTCGCGGAA	GGCGTCAGCC	TATCCCCAAG	GCCCGCCGAC	CCGAGGGTAG	480
GTCCTGGGCG	CAGCCCGGGT	ACCCTTGGCC	CCTCTATGGC	AACGAGGGCT	GCGGGTGGGC	540
GGGATGGCTC	CTGTCCCCCC	GCGGCTCTCG	GCCTAGTTGG	GGCCCCACTG	ACCCCGGCG	600
GAGGTCACGC	AATTTGGGTA	AGGTCATCGA	TACTCTCACG	TGTGGCTTCG	CCGACCTCAT	660
GGGGTACATC	CCGCTCGTCG	GIGCTCCTCT	AGGGGGCGCT	GCCAGAGCTC	TGGCACACGG	720
TGTTAGAGIT	CTGGAAGACG	GCGTGAACTA	CGCAACAGGG	AACCTTCCTG	GTTGCTCCTT	780
TTCTATCTTC	TTGCTCGCTC	TTCTATCCTG	CCTGACAGTC	CCTGCTTCGG	CCGTCGAAGT	840
GCGCAACTCA	TCAGGGGTGT	ACCATGTCAC	CAATGATTGC	CCCAATGCGT	CCGTTGTGTA	900
CGAGACAGAG	AGCCTGATCA.	TGCATCTGCC	CGGGTGTGTG	CCCTGCGTAC	GCGAGGGCAA	960
CGCCTCGAGG	TGCTGGGTCT	CCCTTAGCCC	TACCATTGCC	GCTAAGGATC	CGAGCGTCCC	1020
CGTCAGTGAG	ATTCGGCGTC	ACGTCGACTT	GATCGTCGGG	GCCGCCGCGT	TCTGTTCGGC	1080
TATGTATGTA	GGGGACCTAT	GCGGCTCCAT	CTTCCTCGTT	GGCCAGATTT	TCACCTTCTC	1140
TCCCAGGCGC	CATTGGACGA	CGCAGGACTG	TAATTGCTCC	ATCTACCCGG	GCCATGTGAC	1200
AGGTCATCGA	ATGGCTTGGG	ACATGATGAT	GAATTGGTCA	CCCACTGGCG	CCCTAGTGAT	1260
GGCGCAGCTA	CTCCGGATCC	CACAAGCTGT	CGTGGATATG	ATAGCCGGTG	CCCACTGGGG	1320
-		ACTACTCCAT		_	-	1380
		TCGACGCGGA				1440
		CCCTTTTCAC				1500
		ACATCAACAG				1560
		TGTTCTACTA				
		CCCTCACCGC				
		ACCAACGGCC				
		AGGTT 1765		VIIVIIII UUVV	VIIVUVVVV I U	1170
חותועוותות	VARABARANA	114411 1100				

32

[0034]

配列番号:3

配列の長さ:1191

配列の型:核酸 鎖の数:一本鎖

トポロジー: 直線状

配列の種類: cDNA to genomic RNA (YS117-3' cDNA)

A	ACAGTCACT	GAGGCTGATA	TCCGTACGGA	GGAAGACCTC	TACCAATCT	T GTGACCTGGT	60
C	CCCGAGGC	CGCACGGCCA	TAAGGTCTCT	CACAGAGAGG	CTTTACATCO	GGGGCCCCCT	120
T	ACCAATTCO	: AAGGGACAAA	ACTGCGGCTA	TCGGCGATGC	CGTGCAAGC	GCGTGCTGAC	180
C	ACTAGCTGC	GGTAACACCA	TAACCTGTTA	TCTCAAGGCC	AGCGCAGCCT	GTCGAGCTGC	240
A	MAGCTCCAG	GACTGCACCA	TGCTCGTGTG	CGGCGACGAC	CTCGTCGTTA	TCTGTGAGAG	300
C	CCGGTGTC	CAGGAGGACG	CTGCGAGCCT	GAGAGCCTTC	ACGGAGGCTA	TGACCAGGTA	360
C	rececece	CCGGGAGACC	CGCCTCAACC	AGAATACGAC	TTGGAGCTCA	TAACATCCTG	420
T	CCTCCAAC	GTGTCAGTCG	CGCACGACGG	CTCTGGCAAA	AGGGTCTACT	ATCTGACCCG	480
T	ATCCTGAG	ACTCCCCTCG	CGCGTGCCGC	TTGGGAGACA	GCAAGACACA	CTCCAGTGAA	540
CI	CCTGGCTA	GGCAACATCA	TCATGTTTGC	CCCCACTCTG	TGGGTACGGA	TGGTTCTTAT	600
G/	CCCATTTT	TTTTCCATAC	TCATAGCCCA	GGAGCACCTT	GAAAAGGCTC	TAGATTGTGA	660
AA	TCTATGGA	GCCGTACACT	CCGTCCAACC	GCTGGACCTA	CCTGAAATCA	TTCAAAGACT	720
CC	ACGGCCTC	AGCGCGTTTT	CGCTCCACAG	TTACTCTCCA	GGTGAAATCA	ATAGGGTGGC	780
TG	CATGCCTC	AGAAAACTTG	GGGTTCCGCC	CTTGCGAGCT	TGGAGACACC	GGGCCCGGAG	840
CG	TCCGCGCC	ACACTCCTAT	CCCAGGGGGG	GAAAGCTGCT	ATATGCGGTA	AGTACCTCTT	900
CA	ACTGGGCG	GTGAAAACCA	AACTCAAACT	CACTCCATTA	CCGTCCGCGT	CTCAGTTGGA	960
CT	TGTCCAAT	TGGTTCACGG	GCGGCTACAG	CGGGGGAGAC	ATTTATCACA	GCGTGTCTCA	1020
TG	TCCGGCCC	CGTTGGTTCT	TCTGGTGCCT	ACTCCTACTT	TCAGTGGGGG	TAGGCATCTA	1080
TC	TCCTTCCC	AACCGATAGA	CGGTTGGGCA	ATCACTCCTA	GCCTTTAGGC	CTTATTTAAA	1140
CA	CTCCAGGC	CTTTAGGCCC	TGTTTTTTT	TITITITITI	mmm	T 1191	

[0035]

33

配列番号: 4

配列の長さ:1765

配列の型:核酸 鎖の数:一本鎖

トポロジー: 直線状

配列の種類:cDNA to genomic RNA (SR037-5'cDNA)

CCATGGCGTT AGTATGAGTG TCGTGCAGCC TCCAGGACCC CCCCTCCGG GAGAGCCATA 60 GTGGTCTGCG GAACCGGTGA GTACACCGGA ATTGCCAGGA CGACCGGGTC CTTTCTTGGA 120 TTAACCCGCT CAATGCCTGG AGATTTGGGC GTGCCCCGC AAGACTGCTA GCCGAGTAGT 180 GTTGGGTCGC GAAAGGCCTT GTGGTACTGC CTGATAGGGT GCTTGCGAGT GCCCCGGGAG 240 GTCTCGTAGA CCGTGCACCA TGAGCACGAA TCCTAAACCT CAAAGAAAAA CCAAACGTAA 300 CACCAACCGC CGCCCACAGG ACGTCAAGTT CCCGGGTGGC GGCCAGATCG TTGGCGGAGT 360 TTACTTGTT6 CCGCGCAGGG GCCCCAGAAT GGGTGTGCGC GCGACGAGGA AGACTTCCGA 420 GCGGTCGCAA CCTCGCGGAA GGCGTCAGCC TATTCCCAAG GCCCGCCGAC CCGAGGGTAG 480 GTCCTGGGCG CAGCCCGGGT ACCCTTGGCC CCTCTATGGT AACGAGGGCT GTGGGTGGGC 540 GGGATGGCTT CTGTCCCCC GCGGTTCCCG GCCTAGTTGG GGCCCCTCTG ACCCCCGGCG 600 GAGGICACGC AACTIGGGIA AGGICATCGA TACCCTCACG TGIGGCTICG CCGACCTCAT 660 GGGGTACATC CCGCTCGTCG GTGCTCCTTT AGGGGGCGCT GCCAGAGCTC TGGCGCATGG 720 TGTCAGAGTT CTGGAAGACG GCGTGAATTA TGCAACAGGG AACCTTCCCG GTTGCTCTT 780 TICTATOTIC ITECTTECCC ITCTATCCTE CCTEACAGTC CCTECTTCEE CCGTCGEAGT 840 GCGCAACTCT TCGGGGGTGT ACCATGTCAC CAATGATTGC CCCAATGCGT CTGTTGTGTA CGAGACAGAG AGCCTGATCA TACATCTGCC CGGGTGTGTG CCCTGCGTAC GCGAGGGCAA 960 CGCCTCGAGG TGCTGGGTCT CCCTTAGTCC TACTGTTGCC GCTAAGGATC CGAGCGTCCC 1020 CGTCAGTGAG ATTCGACGCC ATGTCGACCT GATTGTCGGG GCCGCTGCGT TCTGTTCGGC 1080 TATGTACGTA GGGGACCTAT GCGGCTCCAT CTTCCTCGTT GGCCAGATTT ICACCCTCTC 1140 TCCCAGGCGT CACTGGACGA CGCAGGACTG TAATTGTTCC ATCTACCCAG GCCATGTGAC 1200 AGGICATCGA ATGGCTIGGG ACATGATGAT GAATIGGTCA CCTACTGGCG CCCTAGTGGT 1260 GGCGCAGCTA CTCCGGATCC CACAAGCTGT CGTGGATATG ATAGCCGGTG CCCACTGGGG 1320 TGTCCTAGCG GGCCTGGCAT ACTATTCCAT GGTGGGGAAC TGGGCTAAGG TTGTGGTTGT 1380 GCTGCTACTT TTTGCTGGCG TCGATGCAGA GACCCAGGTC TCAGGAGGCT CCGCTGCCCA 1440 AACCACGTAC GGTCTTACTG CCCTCTTCAG GACAGGCCCT AATCAAAAAA TCCAGCTCAT 1500 AAATACCAAC GGCAGCTGGC ATATCAACAG GACCGCCTTG AACTGTAATG AGAGCTTGCA 1560 CACCGCTGG CIGGCAGCGC IGTICTACAC CCACAAGTIC AACTCTTCGG GGTGTTTGGA 1620 GAGGATGGCC AGTTGCCAGC CTCTTTCCGC CTTCGACCAA GGGTGGGGAC CCATCACTTA 1680 CGGGGGGAAT GCTAGCGACG GCCAACGGCC ATATTGCTGG CACTATGCCC CACGCCCGTG 1740 CGGTATTGTG CCGGCGAGAG AGGTT 1765

36

[0036]

配列番号:5

配列の長さ:1179

配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類: cDNA to genomic RNA (SR037-3 cDNA)

AACAGTCACT	GAGGCTGATA	TCCGCACGG	GGAAGACCT	CTACCAATCTI	GTGACCTGGT	60
CCCTGAGGCC	CGCACGGCCA	TAAGGTCCCT	CACAGAGAG	CTTTACATCO	GGGGCCCGCT	120
TACCAATTCT	AAGGGACAAA	ACTGCGGCTA	TCGGCGATG	CGCGCAAGCG	GCGTGCTGAC	180
CACTAGCTGC	GGTAACACCA	TAACCTGTTA	TCTCAAGGC	AGTGCAGCCT	GTCGAGCTGC	240
AAAGCTCCGG	GACTGCACTA	TECTCETETO	CGGCGATGAC	CTTGTCGTTA	TCTGTGAGAG	300
CGCCGGTGTC	CAGGAGGACG	CTGCGAGCCT	GAGAGCCTTC	ACGGAGGCTA	TGACCAGGTA	360
CTCTGCCCCC	CCGGGAGACC	CGCCTCAACC	AGAATACGAC	TTGGAGCTTA	TAACATCCTG	420
TTCCTCCAAT	GTGTCAGTCG	CGCACGACGG	CGCTGGCAAA	AGGGTCTACT	ATCTGACCCG	480
TGATCCTGAG	ACCCCCCTCG	CGCGTGCCGC	TTGGGAGACA	GCAAGACACA	CTCCAGTGAA	540
CTCCTGGCTA	GGCAACATCA	TTATGTTTGC	CCCCACTTIG	TGGGTACGGA	TGGTCCTCAT	600
GACCCATTTT	TTCTCCATAC	TCATAGCCCA	GGAGCACCTT	GAAAAGGCTC	TAGATTGTGA	660
AATCTATGGA	GCCGTACACT	CCATCCAACC	GCTGGACCTA	CCTGAAATCA	TTCAAAGACT	720
CCACGGCCTC	AGCGCGTTTT	CGCTCCACAG	TTACTCTCCA	GGTGAAATCA	ATAGGGTGGC	780
TGCATGCCTC	AGAAAACTTG	GGGTTCCGCC	CTTGCGAGCT	TGGAGACACC	GGGCCCGGAG	840
CGTCCGCGCC	ACACTCCTAT	CCCAGGGGGG	GAAAGCCGCT	ATATGCGGTA	AGTACCTCTT	900
CAACTGGGCG	GTGAAAACCA	AACTCAAACT	CACTCCATTA	CCGTCCGCGT	CTCAGTTGGA	960
CTTGTCCAAT	TGGTTCACGG	GCGGCTACAA	CGGGGGAGAC	ATTTATCACA	GCGTGTCTCG	1020
TGTCCGGCCC	CGTTGGTTCT	TCTGGTGCCT	ACTECTACIC	TCAGTGGGGG	TAGGCATCTA	1080
TCTCCTTCCC A	AACCGATAGA	CGGTTGGGTA	ATCACTCCAA	GCCTTTAGGC	CCTTTTTAAA	1140
CACTCCAGGC (CITTIGGCCC	TGTTTTTTTT	TTTTTT 1	1179		

【0037】配列番号:6

配列の長さ:20

配列の型: 核酸 鎖の数: 一本鎖 トポロジー: 直線状

配列の種類:cDNA to genomic RNA

特徴を決定した方法:E

配列(#321)

AACCTCCGCC GGGGATCAGA 20

【0038】配列番号:7

配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 40 トポロジー:直線状

配列の種類:cDNA to genomic RNA

特徴を決定した方法:E

配列(#186)

AYGTACCCCA YGAGRTCGGC 20

(YはTまたはC 。 RはGまたはA)

【0039】配列番号:8

配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

50 トポロジー: 直線状

配列の種類:cDNA to genomic RNA

特徴を決定した方法:E

配列(#256)

CGCGCGMCNA GGAARRCTTC 20

(MtAattic . Nta, T, Cattic . Rt

AまたはG)

【0040】配列番号:9

配列の長さ:20 配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:cDNA to genomic RNA

特徴を決定した方法:E

配列(#104)

AGRAARRCTT CSGAGCGRTC 20

(RはGまたはA 。SはCまたはG 。)

【0041】配列番号:10

配列の長さ:20 配列の型:核酸

鎖の数:一本鎖

トポロジー: 直線状

配列の種類:cDNA to genomic RNA

特徴を決定した方法:E

配列(#132)

YRCCTTGGGC ATAGGCTGAC 20

(YUTERLIC . RUGERLIA .)

【0042】配列番号:11

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:cDNA to genomic RNA

特徴を決定した方法:E

配列(#133)

38

GARCCAWCCT GCCCAYCCYA 20

(Ridgithal . Widgithal . Yidgithal . Yidgithal

T .)

【0043】配列番号:12

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:cDNA to genomic RNA

10 特徴を決定した方法:E

配列(#134)

CCAARAGGGA CGGGARCCTC 20

(RはGまたはA 。)

【0044】配列番号:13

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:cDNA to genomic RNA

20 特徴を決定した方法:E

配列(#135)

RCCYTCGTTT CCRTACAGRG 20

(RtGstktA . YtCstktT .)

【0045】配列番号:14

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖 トポロジー:直線状

配列の種類: cDNA to genomic RNA

30 特徴を決定した方法: E

配列(#296)

GGATAGGCTG ACGTCTACCT 20

[0046]

配列番号:15

配列の長さ:3011 配列の型:アミノ酸

配列の種類:蛋白質 (HC-G9 amino acid)

Het	Ser	Thr	Asn	Pro	Lys	Pro	Gin	Arg	Lys	Thr	Lys	Arg	Asn	Thr
				5					10					15
Asn	Arg	Arg	Pro	Gin	Asp	Val	Lys	Phe	Pro	Gly	Gly	Gly	Gin	He
				20					25					30
Val	Gly	Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	Gly	Pro	Arg	Val	Gly
				35					40					45
Val	Arg	Ala	Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	Gin	Pro	Arg	Gly
				50					55					60
Arg	Arg	Gin	Pro	He	Pro	Lys	Ala	Arg	Arg	Pro	Glu	Gly	Arg	Ser
				65					70					75
Trp	Ala	Gin	Pro	Gly	Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu	Gly
				80					85					90
Cys	Gly	Trp	Ala	Gly	Trp	Leu	Leu	Ser	Pro	Arg	Gly	Ser	Arg	Pro
				95					100					105
Ser	Trp	Gly	Pro	Ser	Asp	Pro	Arg	Arg	Arg	Ser	Arg	Asn	Leu	Gly
				110					115					120
Lys	Val	He	Asp	Thr	Leu	Thr	Çys	Gly	Phe	Ala	Asp	Leu	Het	Gly
				125					130					135
Tyr	lle	Pro	Leu	Val	Gly	Ala	Pro	Leu	Gly	Gly	Ala	Ala	Arg	Ala
				140					145					150
Leu	Ala	His	Gly	Val	Arg	Val	Leu	Glu	Asp	Gly	Val	Asn	Tyr	Ala
				155					160					165
Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	Ser	He	Phe	Leu	Leu	Ala
•				170					175					180
Leu	Leu	Ser	Cys	Leu	Thr	Val	Pro	Ala	Ser	Ala	Val	Gly	Val	Arg

							(22	2)						特
	4.	1											42	
				185					190					195
Asn	Ser	Ser	Gly	Val	Туг	His	Val	Thr	Asn	Asp	Cys	Pro	Asn	Ala
				200					205					210
Ser	Val	Val	Tyr	Glu	Thr	Glu	Asn	Leu	He	Het	His	Leu	Pro	Gly
				215					220					225
Cys	Val	Pro	Tyr	Val	Arg	Glu	Gly	Asn	Ala	Ser	Arg	Cys	Trp	Val
				230					235					240
Ser	Leu	Ser	Pro	Thr	Val	Ala	Ala	Arg	Asp	Ser	Arg	Val	Pro	Vai
				235					240					245
Ser	Glu	Val	Arg	Arg	Arg	Val	Asp	Ser	He	Val	Gly	Ala	Ala	Ala
				250					255					260
Phe	Cys	Ser	Ala	Het	Tyr	Val	Gly	Asp	Leu	Cys	Gly	Ser	He	Phe
				26Ś					270					275
Leu	Val	Gly	Gln	He	Phe	Thr	Phe	Ser	Pro	Arg	His	His	Trp	Thr
				280					285					290
Thr	Gin	Asp	Cys	Asn	Cys	Ser	He	Tyr	Pro	Gly	His	Val	Thr	Gly
				295					300					305
His	Arg	Het	Ala	Trp	Asp	Het	Het	Het	Asn	Trp	Ser	Pro	Thr	Gly
				315					320					325
Ala	Leu	Val	Val	Ala	Gln	Leu	Leu	Arg	He	Pro	Gln	Ala	11e	Val
				330					335					340

ASP Het Ile Ala Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala

Tyr Tyr Ser Het Val Gly Asn Trp Ala Lys Val Val Val Leu

350

355

		43												44	
H	is	He	Asn	Arg	Thr	Ala	Leu	Asn	Cys	Asn	Giu	Ser	Leu	Asp	Thr
					420					425					430
G	ly	Trp	Leu	Ala	Gly	Leu	Leu	Tyr	Tyr	His	Lys	Phe	Asn	Ser	Ser
					435					440					445
G	ly	Cys	Pro	Glu	Arg	Het	Ala	Ser	Cys	Gin	Pro	Leu	Thr	Ala	Phe
					450					455					460
A	SP	Gin	Gly	Trp	Gly	Pro	lie	Thr	His	Glu	Giy	Asn	Ala	Ser	Asp
					465					470					475
A	SP	Gin	Arg	Pro	Tyr	Cys	Trp	His	Туг		Leu	Arg	Pro	Cys	
					480					485					490
I	le	Vai	Pro	Ala		Lys	Val	Cys	Gly		Val	Tyr	Cys	Phe	
					495					500					505
P	LO	Ser	Pro	Val		Val	Gly	Thr	Thr		Arg	Ala	Gly	Val	
_		_		_	510				¥1	515		•			520
1	ክቦ	Tyr	Arg	Irp		Ala	ASN	GIU	Inr		Va!	Leu	Leu	Leu	
		0	.	3	525	14	01	4	T	530	A1	^	Th	¥	535
A	Sn	26L	Arg	Pro		Het	GIY	ASII	irp	545	GIY	LYS	INT	TUD	550
4		Can	c a n	614	540	Thr	Lvo	The	^uc		Ala	D no	Ala	Cve	
A	211	961	36 1	GIY	555	T LEET	L y o	1 (1)	CA9	560	nia	rių	WIG	Cy3	575
Ţ	ما	Glv	GIV	Sar		Asn	ñ e n	The	l an		Cue	Pro	Thr	Aen	
•		uiy	Giy	361	570	KSII	MOII	1 141	LCu	575	cys	110		NOP	580
р	he	Ara	l vs	His		Asp	Ala	Thr	Tvr		Ara	Cvs	Glv	Ser	
•			_,_		585	*****		•	.,.	590	,	0,0	,		595
P	ro	Тгр	Leu	Thr		Arg	Cys	Leu	Val		Tyr	Pro	Tyr	Arg	
		·			600	·	-			605	•		•	•	610
T	гр	His	Tyr	Pro	Cys	Thr	Val	Asn	Туг	Thr	He	Phe	Lys	He	Arg
					615					620					625
H	et	Phe	Val	Gly	Gly	Val	Glu	His	Arg	Leu	Asp	Ala	Ala	Cys	Asn
					630					635					640
T	rp	Thr	Arg	Gly	Glu	Arg	Cys	Asp	Leu	Asp	Asp	Arg	Asp	Arg	Ala

40		*	U
	650	655	660
Glu Leu Ser P	ro Leu Leu Leu Ser Ti	hr Thr Gin Trp Gin 1	Val Leu
_	665	670	675
Pro Cys Ser P	he Thr Thr Leu Pro Al	la Leu Ser Thr Gly (eu Ile
	680	685	690
His Leu His G	in Asn lie Val Asp Va	il Gin Tyr Leu Tyr G	ily Leu
	695	700	705
Ser Ser Ala Va	I Thr Ser Trp Val II	e Lys Trp Glu Tyr v	al Val
	710	715	720
Leu Leu Phe Le	u Leu Leu Ala Asp Ala	a Arg Ile Cys Ala C	ys Leu
Tun 11 a 41	72 5	730	735
TED HET HET LE	u Leu Ile Ser Gin Val	l Glu Ala Ala Leu G	lu Asn
law fla Mai a	740	745	750
rea tie Asi fe	u Asn Ala Ala Ser Leu		ly [le
Val Dog Dhe Dh.	755	760	765
Agt to the but	Ile Phe Phe Cys Ala		s Gly
ivs Ten Ala Dec	770	775	78 0
-30 TIP RIG FIL	Gly Leu Ala Tyr Ser 785		
leu leu leu leu		790	795
200 200 200	Leu Leu Ala Leu Pro 800		
ASD GIN GIU Len	Ala Ala Ser Cys Gly	805	810
	810	815	
Leu Ala Val Leu	Thr Leu Ser Pro Tyr		820
	A 4 4	835	
Arg Gly Ile Trp	Trp Leu Gin Tyr Het		840
	A 15	850	
Leu Leu Gin Val	Trp Val ProP ro Leu		855 A'na
		865	870
Asp Gly Val Val	Leu Leu Thr Cys Val		Leu
		890	895
			300

4		
/."		
-		

#/ #0	
Phe Giu Ile Thr Lys Ile Het Leu Ala Ile Leu Gly Pro Leu	Trp
900 905	910
lle Leu Gin Ala Ser Leu Leu Lys Val Pro Tyr Phe Val Arg	Ala
915 920	925
His Gly Leu Ile Arg Leu Cys Het Leu Val Arg Lys Thr Ala	
930 935	940
Gly Gin Tyr Va iGin Het Ala Leu Leu Lys Leu Gly Ala Phe	
945 950	955
Gly Thr Tyr lie Tyr Asn His Leu Ser Pro Leu Gin Asp Trp	
960 965	970
His Ser Gly Leu Arg Asp Leu Ala Val Ala Thr Glu Pro Val	He
975 980	985
Phe Ser Arg Het Glu Ile Lys Thr Ile Thr Trp Gly Ala Asp	Thr
333	000
Ala Ala Cys Gly Asp lie lie Asn Gly Leu Pro Val Ser Ala	
4005	015
Arg Gly Arg Glu Val Leu Leu Gly Pro Ala Asp Ala Leu Thr	
4888	
Lys Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala Tyr Ala Gin	030
4687	
1035 1040 10 Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly 1	045
1000	
ASP Lys Ash Gin Val Gi ugly Giu Val Gin lie Val Ser Thr A)60
1046	
Thr Gin Thr Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp T	75
4000	
Val Tyr His Gly Ala Gly Ser Arg Thr Ile Ala Ser Ala Ser G	90
1000	
	05
Pro Val Ile Gin Het Tyr Thr Asn Val Asp Gin Asp Leu Val G	ly
1110 1115 11	
Trp Pro Ala Pro Gin Gly Ala Arg Ser Leu Thr Pro Cys Thr C	ys

(26)

特別平6-319563

	49)											<i>50</i>	
				1025					1030	•			10	35
Giy	/ Ala	Ser	ASP	Leu	Tyr	Leu	Vai	Thr	Arg	His	Ala	Asp	Val I	le
				1040	ı				1045				10	50
Pro) Val	Arg	Arg	Arg	Gly	Asp	Asn	Arg	Gly	Ser	Leu	Leu	Ser P	۲٥
				1055					1060				10	65
Arg	Pro	He	Ser	Tyr	Leu	Lys	Gly	Ser	Ser	Gly	Gly	Pro	Leu L	eu
				1070					1075				10	80
Cys	Pro	Het	Gly	His	Ala	Val	Gly	He	Phe	Arg	Ala	Ala	Val C	ys
				1085					1090				10	95
The	Arg	Gly	Val	Ala	Lys	Ala	Val	Asp	Phe	Val	Pro	Val	Glu S	er
				1100					1105				11	10
l eu	Glu	Thr	Thr	Het	Arg	Ser	Pro	Vai	Phe	Thr	Asp	Asn	Ser S	er
				1115					1120				11:	25
Pro	Pro	Thr	Val	Pro	Gin	Ser	Tyr	Gin	Val	Ala	His	Leu	His A	la
				1130					1135				11-	
Pro	Thr	Gly	Ser	Gly	Lys	Ser	Thr				Ala	Ala	Tyr A	la
				1145					1150				11.	
Ala	Gin	Gly	Tyr	Lys	Val	Leu	Val	Leu	Asn	Pro	Ser	Val	Ala A	i a
				1160					1165				11	
Thr	Leu	Gly			Ala	Туг	Het	Ser	Lys	Ala	His	Gly	He As	SP
				1175					1180				118	15
Pro	Asn	Val			Gly	Val	Arg			Thr	Thr	Gly	Ser Pi	
				1190					1195				120	
Ile	Thr	His			Tyr	Gly	Lys			Ala	ASP	Gly	Gly Cy	/S
				205					1210				121	
Ser	Gly	Gly			Asp	He	He			Asp	Glu	Cys	His Se	
				1225					1230				123	
Val	Asp	Ala			[le	Leu	Gly			Thr	Val	Leu	Asp GI	
				240					1245				125	
Ala	Glu	Thr	Ala	Gly	Val	Arg	Leu	Thr	He	Leu	Afa	Thr	Ala Th	ır

1260

1265

		51	!											52	
Pr	.0	Pro	Gly	Ser	Val	Thr	Vai	Pro	His	Ser	Asn	He	Glu	Glu Va	Į
					1270					1275				128	0
Al	a	Leu	Ser	Thr	Glu	Gly	Glu	He	Pro	Phe	Туг	Gly	Lys	Ala II	e
					1385					1290				129	5
Pr	0	Leu	Asn	Tyr	He	Lys	Gly	Gly	Arg	His	Leu	He	Phe	Cys Hi	S
				•	1300					13 0 5				131	0
Se	r	Lys	Lys	Lys	Cys	Asp	Glu	Leu	Ala	Ala	Lys	Leu	Val	Gly Le	U
				•	1315					1320				132	5
GI	y	Val	Asn	Ala	Val	Ala	Phe	Tyr	Arg	Gly	Leu	Asp	Val	Ser Va	l
				•	13 30					1335				134	0
II	e	Рго	Thr	Thr	Gly	Asp	Val	Val	Val	Val	Ala	Thr	Asp	Ala Le	U
				•	1345					1350				135.	5
e	ŧ	Thr	Gly	Tyr	Thr	Gly	Asp	Phe	Asp	Ser	Val	He	Asp	Cys As	n
				•	1360				,	1365				137	0
Th	ır	Cys	Val			Thr	Val	Asp			Leu	Asp	Pro	The Ph	
					1375					1380				138	
Se	r	He	Glu			Thr	Val	Pro			Ala	Val	Ser	Arg Se	
					1390					1395				140	
Gl	n	Arg	Arg			Thr	Gly	Arg			His	Gly	[le	Tyr Arg	
_			_		1405					1410				141	
Ту	r	Val	Ser		_	Glu	Arg	Pro		-	Het	Phe	Asp	Ser Va	
					1420	_				1525		_	_	1430	
V	a	Lei	ı Cys			SIYC	Asp	Ala	_	-	Ala	Trp	Tyr	Glu Let	
		_			1435					1440		_		1445	
ın	r	Рго	Ala			Ihr	Val	Arg					Leu	Asn The	
					1450		••			1450			_	1455	
Pr	0	GIY	Leu			Cys	GIN	ASD			GIU	Phe	l rp	Glu Sei	
			_,		1465					1470				1475	
٧a	Ī	Pne	IUL			חמו	HIS	116			HIS	rne	ren	Ser Gli	
T.	_	1	O1 :-		1480	Δ1	A = =	N.L -		1485			41-	1490	
10	r	Lys	GIN	Ser	GIY	GIU	ครถ	rne	P F 0	IYC	Leu	vai	Ala	Tyr Glr	١

<i>53</i>		54
149		1903
Ala Thr Val Cys Al	a Arg Ala Lys Ala Pro	Pro Pro Ser Trp Asp
1510		.020
Gin Het Trp Lys Cys	Leu lle Arg Leu Lys	Pro Thr Leu Thr Gly
1525		1000
Ala Thr Pro Leu Leu	Tyr Arg Leu Gly Gly	Val Gin Asn Glu lie
1540	1545	1550
Thr Leu Thr His Pro	Ile Thr Lys Tyr Ile	Het Ala Cys Het Ser
1555		1565
Ala Asp Leu Glu Val	Val Thr Ser Thr Trp	Val Leu Val Gly Gly
15 70	1575	1580
Val Leu Ala Ala Leu	Ala Ala Tyr Cys Leu	Ser Thr Gly Ser Val
1585	1590	1595
Val Ile Val Gly Arg	Ile Ile Leu Ser Gly	Lys Pro Ala Val Ile
1600	1605	1610
Pro Asp Arg Glu Val	Leu Tyr Arg Glu Phe	Asp Glu Met Glu Glu
1615	1620	1625
Cys Ala Ala His Ile	Pro Tyr Leu Glu Gln	Gly Met His Leu Ala
1730	1635	1640
Glu Gin Phe Lys Gin	Lys Ala Leu Gly Leu	Leu Gin Thr Ala Ser
1645	1650	1655
Lys Gin Ala Giu Thr	lle Thr Pro Ala Val I	lis Thr Asn Trp Gln
1660	1665	1670
Lys Leu Glu Ser Phe	Trp Ala Lys His Het 1	rp Asn Phe Val Ser
1675	1680	1685
Gly lie Gin Tyr Leu	lla Gly Leu Ser Thr L	eu Pro Gly Asn Pro
1690	1695	1700
Ala Ile Ala Ser Leu I	let Ser Phe Thr Ala A	la Val Thr Ser Pro
1705	1710	1715
Leu Thr Thr Gin Gin 1	hr Leu Leu Phe Asn I	le Leu Gly Gly Trp
1720	1725	1730

	_	_												
Val	5. Ala		. Gir	a Leu	دا۵،	ı. Ala	Pro	\	ı dı a	Ala	The	. 11:	<i>56</i>	e Val
,,,,	• ••••	• ••••		1735				, ,,,,,	1740		1 141	AIC	. rin	1745
GIV	r Ala	. Glu	r ile			/ Ala	Val	Tia			Val	C Iv	, lac	1743 I Gly
٠.,		,	, , , ,	1750		n iu	741	110	1755		741	uty	LGC	
lve	Val	بما	. Val			ىنما	Αls	- Clv			41-	. C.I.	. Val	1760 Ala
Lyo	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LOU	741	1765		, LGU	MIG		1770		HIA	. uly	VAI	
e i v	. Ala	الما	Val			: Lys	T I A				<u>۸۱.,</u>	410	0	1775
U I y	nia	Lou	va:	1780		Lys	110		3ei 1715	ury	GIU	Ald	Pro	
Δla	A la	Aen	الما			Leu	Lon			Ha) au	ç _a ,	D no	1790
ntu	. uiu	noy	CCu	1795	nan	LCU	rea		1800	116	Leu	261	PIU	1805
Ala	l en	Val	Val		i eV	Vai	Cve			Ila	نيم ا	A na	A ra	
nra	Lou	Tu:		1810	, vai	rui	Uys		1815	116	LGU	KIY		1820
Val	Giv	Pro			Glv	Ala	Val			Hat	ñ e n	A ra		
• • •	u.,			1825	u.,	n.u	741		1830	HEL	non	A) y		1835
Ala	Phe	Ala			GIV	Asn	His			Pra	The	Hic		
				1840	,				1845	110		1113		1850
Pro	Glu	Ser			Ser	Val	Ara			His	He	Len		
				1855			3		1860		•••			1865
Leu	Thr	Val			Leu	Leu	Lvs			His	Val	Tro		
				1870					1875					1880
Ser	Asp	Cys	Thr	Ala	Pro	Cys	Ala			Tro	Leu	Lvs		
				1885					1890	Ť		•		1895
Trp	Asp	Trp	He	Cys	Glu	Val	Leu	Ser	Asp	Phe	Lys	Ser	Тгр	Leu
				1900					905					910
Lys	Ala	Lys	Leu	Met	Pro	Gin	Leu	Pro	Gly	l le	Pro	Phe	Val	Ser
				1915				1	920				1	1925
Cys	Gin	Arg	Gly	Туг	Arg	Gly	Val	Trp	Arg	Gly	Glu	Gly	He	Het
				1930					935					940
l!is	Ala	Arg	Cys	Pro	Cys	Gly	Ala	Asp	[le	Thr	Gly	His	Val	Lys
			1	1945				1	950				1	955

Asn Gly Ser Het Arg lie Val Gly Pro Lys Thr Cys Ser Asn Thr

特開平6-319563

58

1	960	1965	1970
Trp Arg Gly Ser	Phe Pro [le Asn	Ala His Thr Thr	Gly Pro Cys
19	975	1980	1985
Thr Pro Ser Pro	Ala Pro Asn Tyr	Thr Phe Ala Leu	Trp Arg Val
19	990	1995	2000
Ser Ala Glu Glu 1	Tyr Val Glu Val	Arg Arg Leu Gly	Asp Phe His
	005	2010	2015
Tyr Ile Thr Gly V	al Thr Thr Asp	Lys Ile Lys Cys	Pro Cys Gin
	20	2025	2030
Val Pro Ser Pro G	lu Phe Phe Thr	Glu Val Asp Glý	Val Arg Leu
20		2040	2045
His Arg Tyr Ala P	ro Pro Cys Lys	Pro Leu Leu Arg	Asp Glu Val
20		2055	2360
Thr Phe Ser 11e G	ly Leu Asn Glu	Tyr Leu Val Gly:	Ser Gin Leu
20		2070	2375
Pro Cys Glu Pro G	lu Pro Asp Val	Ala Val Leu Thr	Ser Het Leu
20		2085	2390
Thr Asp Pro Ser	His Ile Thr Ala	Glu Thr Ala Ala	Arg ArgLeu
200		2040	2445
Asn Arg Gly Ser Pi	ro Pro Ser Leu i	Ala Ser Ser Ser A	lla Ser Gin
21		2115	2420
Leu Ser Ala Pro Se	er Leu Lys Ala 1	Thr Cys Thr Thr H	is His Asp
212		2130	2435
Ser Pro Asp Ala As		lla Asn Leu Leu T	rp Arg Gin
214		2145	2450
Glu Het Gly Gly As	in fle Thr Arg V	lal Glu Ser Glu A	sn Lys Ile
215		2160	2465
Val lie Leu Asp Se		.eu Val Ala Glu G	lu Asp Asp
217		2175	2480
Arg Glu lle Ser Va		le Leu Leu Lys S	er Lys Lys
218	5	2190	2495

The Pro Pro Ala Het Pro Ile Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Pro Trp Lys Arg Pro Asp Tyr Glu Pro Pro Leu Val His Gly Cys Pro Leu Pro Pro Pro Lys Pro Thr Pro Val Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Asp Glu Ser Thr Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Thr Thr Ser Gly Val Thr Ser Gly Glu Ala Ala Glu Ser Ser Pro Ala Pro Ser Cys Asp Gly Glu Leu Asp SerGlu Ala Glu Ser Tyr Ser Ser Het Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser Ser Asp Gly Gly Thr Glu Asp Val Val Cys Cys Ser Het Ser Tyr Ser Trp Thr Gly Ala Leu lle Thr Pro Cys Ala AlaG lu Glu Thr LysLeu Pro Ile Asn Ala Leu Ser Asn Ser Leu Leu Arg His His Asn Leu Val Tyr Ser Thr Thr Ser Arg Ser Ala Gly Gln Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gin Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Giu Ala Lys Ala Lys Ala Ser Thr Val Lys Alalys Leu Leu Ser Val Glu Glu Ala Cys Ser Leu Thr Pro Pro His Ser Ala Arg Ser Lys

62

Phe Gly Tyr Gly Ala Lys Asp Val Arg Ser His Ser Ser Lys Ala Glu Glu Ala Cys Ser Leu Thr Pro Pro His Ser Ala Arg Ser Lys Tyr Asp Val Val Lys Gin Leu Pro Ile Ala Val Het Gly Thr Ser Cys Val Lys Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg Leu He Val Tyr Pro Asp Leu Gly Val Arg Val Cys Glu Lys Arg Ala Leu Tyr Asp Val Val Lys Gin Leu Pro Ile Ala Val Het Gly Thr Ser Tyr Gly Phe Gin Tyr Ser Pro Ala Gin Arg Val Asp Phe Leu Leu Ash Ala Trp Lys Ser Lys Lys Ash Pro Het Gly Phe Ser Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Ala Asp Ile Arg Thr Glu Glu Asp Leu Tyr Gln Ser Cys Asp Leu Val Pro Glu Ala Arg Ala Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Ile Thr Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Arg Asp Cys Thr Het Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu

Ser Ala Gly Val Gin Giu Asp Ala Ala Asn Leu Arg Ala Phe Thr

Giu Ala Het Thr Arg Tyr Ser Ala Pro Pro Giy Asp Pro Pro Gin Pro Giu Tyr Asp Leu Giu Leu Ile Thr Ser Cys Ser Ser Asn Val

Ser Val Ala His Asp Gly Ala Gly Lys Arg Val Tyr Tyr Leu Thr

Arg Asp Pro Glu Thr Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala

Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn [le 1le Het Phe

Ala Pro Thr Leu Trp Val Arg Het Val Leu Het Thr His Phe Phe

Ser Ile Leu Ile Ala Gln Glu His Leu Glu Lys Ala Leu Asp Cys

Glu Ile Tyr Gly Ala Val His Ser Val Gln Pro Leu Asp Leu Pro

Glu Ile Ile Gln Arg Leu His Gly Leu Ser Ala Phe Ser Leu His

Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala Ala Cys Leu Arg

Lys Leu Gly Val Pro Pro Leu Arg Ala Trp Arg His Arg Ala Arg

Ser Val Arg Ala Thr Leu Leu Ser Gin Gly Gly Arg Ala Ala Ile

s Gly Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu Lys

Leu Thr Pro Leu Pro Ser Ala Ser Gin Leu Asp Leu Ser Asn Trp

Phe Thr Gly Gly Tyr Ser Gly Gly Asp lle Tyr His Ser Val Ser His Val Arg Pro Arg Trp Phe Phe Trp Cys Leu Leu Leu Ser

Val Gly Val Gly Ile Tyr Leu Leu Pro Asn Arg

[0047]

特開平6-319563

66

65

配列番号:16

配列の長さ:502 配列の型:アミノ酸

配列の種類:蛋白質 (YS117-5' amino acid)

HetSerThrAsnPro LysProGinArgLys ThrLysArgAsnThr AsnArgArgProGin AspVailysPhePro GlyGlyGlyGinIle ValGlyGlyVaiTyr LeuLeuProArgArg GlyProArgValGly ValArgAlaThrArg LysThrSerGluArg SerGlnProArgGly ArgargGinProlle ProLysalaargarg ProGluGlyargSer TrpalaGinProGly TyrProTrpProLeu TyrGlyAsnGluGly CysGlyTrpAlaGly TrpLeuLeuSerPro ArgGlySerArgPro SerTrpGlyProThr AspProArgArgArg SerArgAsnLeuGly LysVallleAspThr LeuThrCysGlyPhe AlaAspLeuHetGly TyrlleProLeuVal GlyAlaProleuGly GlyAlaAlaArgAla LeuAlaHisGlyVal ArgValLeuGluAsp GlyValAsnTyrAla ThrGlyAsnLeuPro GlyCysSerPheSer IlePheLeuLeuAla LeuLeuSerCysLeu ThrValProAlaSer AlaValGluValArg AsnSerSerGlyVal TyrHisValThrAsn AspCysProAsnAla SerValValTyrGlu ThrGluSerLeulle HetHisLeuProGly CysValProCysVal ArgGluGlyAsnAla SerArgCysTrpVal SerLeuSerProThr IleAlaAlaLysAsp ProSerValProVal SerGlulleArgArg HisValAspLeulle ValGlyAlaAlaAla PheCysSerAlaHet TyrValGlyAspLeu CysGlySerIlePhe LeuValGlyGlnfle PheThrPheSerPro ArgArgHisTrpThr ThrGInAspCysAsn CysSerIleTyrPro GlyHisValThrGly HisArgHetAlaTrp AspHetHetAsn TrpSerProThrGly AlaLeuValHetAla GinLeuLeuArglie ProGinAlaValVal AspHetIleAlaGly AlaHisTrpGlyVal LeuAlaGlyLeuAla TyrTyrSerHetVal GlyAsnTrpAlatys ValValValValLeu LeuteuPheAlaGly ValaspalaaspThr GinValThrGlyGly SeralaalaTvrasp AlaargGlyLeuAla SerLeuPheThrPro GlyProLysGlnAsn IleGlnLeuIleAsn ThrAsnGlySerTrp HislleAsnArgThr AlaLeuAsnCysAsn GluSerLeuAsnThr GlyTrpValAlaGly LeuPheTyrTyrHis LysPheAsnSerSer GlyCysProGluArg HetAlaSerCysGln ProleuthralaPhe AspGInGlyTrpGly ProllethrTyrGlu GlyAsmalaSerGly AspGInArgProTyr CysTrpHisTyrAla ProArgProCysGly IleValProAlaArg

GluVal

[0048]

(35)

特願平6-319563

68

配列番号:17

配列の長さ:365

67

配列の型:アミノ酸

配列の種類:蛋白質 (YS117-3' amino acid)

ThrValThrGluAla AsplieArgThrGlu GluAspLeuTyrGin SerCysAspLeuVal ProGluAlaArgThr AlalleArgSerLeu ThrGluArgLeuTyr IleGlyGlyProLeu ThrasnSerLysGly GinasnCysGlyTyr ArgargCysArgAla SerGlyValLeuThr ThrSerCysGlyAsn ThrIleThrCysTyr LeuLysAlaSerAla AlaCysArgAlaAla LysLeuGInAspCys ThrHetLeuValCys GlyAspAspLeuVal VallleCysGluSer AlaGlyValGinGlu AspAlaAlaSerLeu ArgAlaPheThrGlu AlaMetThrArgTyr SerAlaProProGly AspProProGlnPro GluTyrAspLeuGlu LeuIleThrSerCys SerSerAsnValSer ValAlaHisAspGly SerGlyLysArgVal TyrTyrLeuThrArg AspProGluThrPro LeuAlaArgAlaAla TrpGluThrAlaArg HisThrProValAsn SerTrpLeuGlyAsn [le]leHetPheAla ProThrLeuTrpVal ArgHetValLeuHet IleTyrGlyAlaVal HisSerValGlnPro LeuAspLeuProGlu IleIleGlnArgLeu HisGlyLeuSerAla PheSerLeuHisSer TyrSerProGlyGlu IleAsnArgValAla AlaCysLeuArglys LeuGlyValProPro LeuArgAlaTrpArg HisArgAlaArgSer ValargalaThrLeu LeuSerGinGlyGly LysalaAlaIleCys GlyLysTyrLeuPhe AsnTrpAlaVallys ThrLysLeuLysLeu ThrProLeuProSer AlaSerGinLeuAsp LeuSerAsnTrpPhe ThrGlyGlyTyrSer GlyGlyAspIleTyr HisSerValSerHis ValargProArgTrp PhePheTrpCysLeu LeuLeuLeuSerVal GlyValGly[leTyr LeuLeuProAsnArg

[0049]

70

配列番号:18

配列の長さ:502 配列の型:アミノ酸

配列の種類:蛋白質 (SRO37-5 amino acid)

HetserthrasnPro LysProGinargLys ThrLysArgAsnThr AsnArgArgProGin AspValLysPhePro GlyGlyGlyGlnIle ValGlyGlyValTyr LeuLeuProArgArg GlyProArgHetGly ValArgAlaThrArg LysThrSerGluArg SerGlnProArgGly ArgargGinProlle ProLysalaArgarg ProGluGlyArgSer TrpAlaGinProGly TyrProTrpProLeu TyrGlyAsnGluGly CysGlyTrpAlaGly TrpLeuLeuSerPro ArgGlySerArgPro SerTrpGlyProSer AspProArgArgArg SerArgAsnLeuGly LysVallleAspThr LeuThrCysGlyPhe AlaAspLeuMetGly TyrlleProLeuVal GIYAlaProLeuGIY GIYAlaAlaArgAla LeuAlaHisGIYVal ArgValLeuGluAsp GlyValAsnTyrAla ThrGlyAsnLeuPro GlyCysSerPheSer HePheLeuLeuAla LeuleuSerCysleu ThrValProAlaSer AlaValGlyValArg AsnSerSerGlyVal TyrHisValThrAsn AspCysProAsnAla SerValValTyrGlu ThrGluSerLeulle IleHisLeuProGly CysValProCysVal ArgGluGlyAsnAla SerArgCysTrpVal SerleuSerProThr ValAlaAlaLysAsp ProSerValProVal SerGlulleArgArg HisValAspLeuIle ValGlyAlaAlaAla PheCysSerAlaHet TyrValGlyAspLeu CysGlySerIlePhe LeuValGlyGlnIle PheThrLeuSerPro ArgArgHisTrpThr ThrGlnAspCysAsn CysSerlleTyrPro GlyHisValThrGly HisArgHetAlaTrp AspHetHetAsn TrpSerProThrGly AlaLeuValValAla GinLeuLeuArglie ProGinAlaValVal AspHetIleAlaGly AlaHisTrpGlyVal LeuAlaGlyLeuAla TyrTyrSerHetVal GlyAsnTrpAlaLys ValValValValLeu LeuLeuPheAlaGly ValaspalaGluThr GlnValSerGlyGly SerAlaAlaGlnThr ThrTyrGlyLeuThr AlaLeuPheArgThr GlyProAsnGlnLys IleGInLeuIleAsn ThrAsnGlySerTrp HislleAsnArgThr AlaLeuAsnCysAsn GluSerLeuHisThr GlyTrpLeuAlaAla LeuPheTyrThrHis LysPheAsnSerSer GlyCysLeuGluArg HetAlaSerCysGln ProLeuSerAlaPhe AspGinGlyTrpGly ProlleThrTyrGly GlyAsnAlaSerAsp GlyGlnArgProTyr CysTrpHisTyrAla ProArgProCysGly IleValProAlaArg

GluVal

[0050]

71

配列番号:19

配列の長さ:365

配列の型:アミノ酸

配列の種類:蛋白質 (SR037-3' amino acid)

ThrValThrGiuAla AsplieArgThrGiu GluAspLeuTyrGin SerCysAspLeuVal ProGluAlaArgThr AlaIleArgSerLeu ThrGluArgLeuTyr IleGlyGlyProLeu ThrasnSerLysGly GinAsnCysGlyTyr ArgArgCysArgAla SerGlyValLeuThr ThrSerCysGlyAsn ThrIleThrCysTyr LeuLysAlaSerAla AlaCysArgAlaAla LysleuArgAspCys ThrMetleuValCys GlyAspAspLeuVal VallleCysGluSer AlaGiyValGinGlu AspAlaAlaSerLeu ArgAlaPheThrGlu AlaMetThrArgTyr SerAlaProProGly AspProProGlnPro GluTyrAspLeuGlu LeulleThrSerCys SerSerAsnValSer ValAlaHisAspGly AlaGlyLysArgVal TyrTyrLeuThrArg AspProGluThrPro LeuAlaArgAlaAla TrpGluThrAlaArg HisThrProValAsn SerTrpLeuGiyAsn IleIleHetPheAla ProThrLeuTrpVal ArgMetValLeuHet ThrHisPhePheSer IleLeuIleAlaGln GluHisLeuGluLys AlaLeuAspCysGlu lieTyrGlyAlaVal HisSerIleGlnPro LeuAspLeuProGlu IleIleGlnArgLeu HisGlyLeuSerAla PheSerLeuHisSer TyrSerProGlyGlu IleAsnArgValAla AlaCysLeuArglys LeuGlyValProPro LeuArgAlaTrpArg HisArgAlaArgSer ValargalaThrleu LeuSerGinGlyGly LysalaAlaIleCys GlyLysTyrLeuPhe AsnTrpAlaVailys ThrLysleuLysleu ThrProLeuProSer AlaSerGinLeuAsp LeuSerAsnTrpPhe ThrGlyGlyTyrAsn GlyGlyAspIleTyr HisSerValSerArg ValargProArgTrp PhePheTrpCysLeu LeuLeuLeuSerVal GlyValGlyIleTyr LeuLeuProAsnArg

【表1】

配列決定に使用したプライマーの配列ならびに位置

番号	配列(5′増より3′増へ)	5 端からの位置
1345	5' -GTTGGCACTATGCCCTACGC-3'	nt1798-1817 (S)
1344	GCAGGAGTTTGGTGATGTCA	nt2999-3018 (A)
#347	TETETECTCCACCCGCACTT	nt2973-2992 (S)
₹352	TATEGECECGACGCCGCACT	nt3864-3883 (A)
#350	TCGGACCTTTACTTGGTCAC	nt3723-3742 (S)
#349	GGCTGAAATCGACTGTCTGG	nt4718-4737 (A)
#354	GTTTTGGGAGAGCGTCTTCA	nt5009-5028 (S)
1356	AGCGACTGACGCGTCGCTCT	Rt6151-6178 (A)
#342	TCCCCCACGCACTACGTGCC	nt6129-6148 (S)
#344	GTGATGTTGCCGCCCATCTC	nt7049-7066 (A)
‡358	ACAGCCAACCTCCTGTGGAG	nt7023-7042 (S)
1360	CTGTGGATGCCTTGGCCTTA	nt7814-7833 (A)
1335	ACCAGGACGTGCTCAAGGAG	nt7792-7811 (S)
1316	CATAGGCTCCGTGAAGGCTC	nt8611-8630 (A)

(S):センス、(A):アンチセンス

【表2】

HC-G9、YS117、SR037間の領域別塩基配列相同性

	塩基長 (アミノ酸長)	配列の相同性 (%)				
領域		塩基配列 アミノ酸配列				
5′非翻訳域	259	99. 6-100				
コア領域	573(191)	96. 2-97. 499. 0-99. 5				
エンベローブ	576 (192)	92. 9-95. 093. 2-97. 4				
E2/NS1	357(119)	84. 3-87. 476. 5-82. 4				
NS5	1096 (365)	96. 5-97. 698. 6-98. 9				
3 非翻訳域	66	90. 5-92. 1				
습 計	2927 (867)	94. 5-95. 694. 7-96. 2				

【表3】

1c型HCVの出現頻度

	1c型HCVの出現率			
国名	1 c型の数/検査総数(%)			
日本	0/670(0%)			
中華人民共和国	0/262(0%)			
タイ	0/64(0%)			
インドネシヤ	8/81 (9. 9%)			
ニュージーランド	0/60(0%)			

【図面の簡単な説明】

50 図1:HCV遺伝子配列決定に利用した増幅領域を示す

(39)

特開平6-319563

27

図2:HC-G9とこれまでに全域の塩基配列が解明されている14のHCV株との塩基配列の相同性を示す図。

75

図3: 実施例2にて行った電気泳動試験の泳動パターン を示す電気泳動写真。(a)に従来法による判定を示

【図1】

塩基配列決定に利用したHCV領域

-C E 22/831 KS2 KS3 KS4 KS5

- a (nt1-160); b(nt63-847); c(nt732-1606); d(nt1300-1857); e (nt1798-2560)
- f (mt241-3018) ; g (mt2973-3383) ; h (mt3723-4737) ; i (mt683-5750)
- I (nt5009-6170) ; k (nt6129-7086) ; l (nt7023-7833) ; m (nt7792-8630)
- n (nt8259-9440)

左翼に5: 婦、右に3: 婦が休るように示している。 性器を可は5: 婦からの性器数(nt)で示した。 76 す。1 c 型は検出されない。 (b) に#321と#10

4 での判定を示す。 1 c 型以外は検出されない。 1 はH C-J1、2はHC-J4、3はHC-J6、4はHC -J8、5はHC-G9、6はYS117、7はSR0

37を示す。

【図3】

阿拉州平角

各遺伝子型サンアルの電気泳動写真

a)

b) 1234567

(40)

特開平6-319563

[図2] これまでに全塩基配列が公表されたHCV株との塩基配列の相同 性

相司性%(全塩基配列の一数率)

フロントページの続き

(51) Int. Cl. 5

識別記号 庁内整理番号

FΙ

技術表示箇所

C 1 2 Q 1/68

A 7823-4B Z 8310-2 J

G 0 1 N 33/576

(41)

特開平6-319563

// G01N 33/53 C07K 99:00 D 8310-2J