Linear Algebra Review

Arden Rasmussen

28 February 2017

Contents

1	\mathbf{Det}	erminant		
	1.1	Solving		
		1.1.1 Cofactor Expansion		
		1.1.2 Gaussian Operations		
		1.1.3 Permutations		
	1.2	Properties		
2	Inve	erse		
	2.1	Gaussian Elimination		
	2.2	Cofactor		
	2.3	Properties		
3	Tra	nsposse		
	3.1	symmetric and Anti-Symmetric		
	3.2	Properties		
4	Ran	ak and Nullity		
	4.1	Solve for Rank		
	4.2	Image and Pre-Image		
5	Eigenvalues and Eigenvectors			
	5.1	Eigenvalues		
	5.2	Eigenvectors		
6	Line	ear Independance		
7	Bas	is 3		
8	Mat	trix Properties		
	8.1	Algebra		
		8.1.1 Addition		
		8.1.2 Subtraction		
		8.1.3 Multiplication		
		8.1.4 Division		
	8.2	Commutative and Associative		

1 Determinant

1.1 Solving

1.1.1 Cofactor Expansion

$$det(A) = det \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\ \alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} \end{pmatrix}$$
(1)

$$det(A) = \alpha_{1,1}[\alpha_{2,2}\alpha_{3,3}] - \alpha_{1,2}[\alpha_{2,1}\alpha_{3,3}] - \alpha_{3,1}\alpha_{2,3}]$$
(2)

$$+\alpha_{1,3}[\alpha_{3,2}\alpha_{3,2} - \alpha_{3,1}\alpha_{2,2}] \tag{3}$$

1.1.2 Gaussian Operations

using row and column operations create a row echelon matrix from A, by following the rules;

- 1. Swapping two rows multiplies the determinant by -1.
- 2. Multipling a row by a nonzero scalar multiplies the determinant by the same scalar.
- 3. Adding to one row a scalar multiple of another does not change the determinant.

$$B = ref(A) \tag{4}$$

d =The product of scalars by which the determinant has been multiplied (5)

$$det(A) = \frac{\prod diagonal(B)}{d} \tag{6}$$

1.1.3 Permutations

sign(p) is the number of swaps necessary to achive that permutation.

$$det(A) = \sum_{p} sign(p)\alpha_{1,p(1)}\alpha_{2,p(2)}\cdots\alpha_{n,p(n)}$$
(7)

1.2 Properties

det(A) = 0 Then A is singular and A^{-1} does not exist.

 $det(A) \neq 0$ Then A is invertible and A^{-1} exists.

2 Inverse

2.1 Gaussian Elimination

Using row operations only, convert the matrix on the left form A to I, and the resulting matrix on the right will be A^{-1} .

$$A|II |A^{-1} (8)$$

2.2 Cofactor

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} \widehat{A}_{1,1} & \widehat{A}_{1,2} & \widehat{A}_{1,3} \\ \widehat{A}_{2,1} & \widehat{A}_{2,2} & \widehat{A}_{2,3} \\ \widehat{A}_{3,1} & \widehat{A}_{3,2} & \widehat{A}_{3,3} \end{bmatrix}^{T}$$
(9)

$$\widehat{A_{1,1}} = \det \begin{pmatrix} \alpha_{2,2} & \alpha_{2,3} \\ \alpha_{3,2} & \alpha_{3,3} \end{pmatrix}$$

$$\tag{10}$$

2.3 Properties

$$(AB)^{-1} = B^{-1}A^{-1}A^{-1}A = IAA^{-1} = I$$
 (11)

3 Transposse

Transpose is found by swapping the rows and columns of a matrix.

$$A^{T} = \begin{bmatrix} \alpha_{1,1} & \alpha_{2,1} & \alpha_{3,1} \\ \alpha_{1,2} & \alpha_{2,2} & \alpha_{3,2} \\ \alpha_{1,3} & \alpha_{2,3} & \alpha_{3,3} \end{bmatrix}$$
(12)

3.1 symmetric and Anti-Symmetric

If a matrix is symmetric then:

$$A^T = A (13)$$

If a matrix is anti-symmetric then:

$$A^T = -A (14)$$

3.2 Properties

$$(AB)^T = B^T A^T (15)$$

4 Rank and Nullity

Rank is the dimension of the image, nullity is the dimension of the kernel of A. Kernel is the vectors that are collapsed to a point.

For
$$A_{nxn}$$
 (16)

$$Rank(A) = dim(Im(A)) \tag{17}$$

$$Nullity(A) = dim(Ker(A))$$
 (18)

$$det(A) \neq 0 \Rightarrow \text{Columns are linearindependent} \Rightarrow Rank(A) = n$$
 (19)

$$Rank(A) + Nullity(A) = n (20)$$

4.1 Solve for Rank

Use Gaussian Elimination on
$$A$$
 (21)

$$Rank(A) =$$
The number of pivots (22)

4.2 Image and Pre-Image

$$A\vec{v} = \vec{w} \tag{23}$$

$$\vec{v}$$
 is the pre-image of \vec{w} (24)

$$\vec{w}$$
 is the image of \vec{w} (25)

5 Eigenvalues and Eigenvectors

$$A\vec{v} = \lambda \vec{v} \tag{26}$$

5.1 Eigenvalues

 λ is an eigenvalue of A if $A\vec{v} = \lambda \vec{v}$ and \vec{v} is non zero. To find eigen values solve the following equation fo λ .

$$det(A - \lambda I) = 0 (27)$$

5.2 Eigenvectors

 \vec{v} is an eigenvector of A if $A\vec{v} = \lambda \vec{v}$ and \vec{v} is non zero. To find eigenvectors find the rref of the augmented matrix.

$$\vec{v} = rref(A - \lambda I) \tag{28}$$

6 Linear Independance

Vectors are linear independent if the nullity of the matrix formed by the vectors is zero.

$$\vec{v_1} \ \vec{v_2} \ \vec{v_3} \tag{29}$$

$$Nullity \left(\vec{v_1} \quad \vec{v_2} \quad \vec{v_3} \right) = 0 \tag{30}$$

$$\Rightarrow \vec{v_1}, \vec{v_2}, \text{ and } \vec{v_3} \text{ are linear independent.}$$
 (31)

7 Basis

A basis is a span of linear independent vectors which can express everything (within the space) as a linear comination of the vectors.

8 Matrix Properties

8.1 Algebra

8.1.1 Addition

Matrix addition is done term by term.

$$\begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\ \alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} \end{bmatrix} + \begin{bmatrix} \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} \\ \beta_{3,1} & \beta_{3,2} & \beta_{3,3} \end{bmatrix} = \begin{bmatrix} \alpha_{1,1} + \beta_{1,1} & \alpha_{1,2} + \beta_{1,2} & \alpha_{1,3} + \beta_{1,3} \\ \alpha_{2,1} + \beta_{2,1} & \alpha_{2,2} + \beta_{2,2} & \alpha_{2,3} + \beta_{2,3} \\ \alpha_{3,1} + \beta_{3,1} & \alpha_{3,2} + \beta_{3,2} & \alpha_{3,3} + \beta_{3,3} \end{bmatrix}$$
(32)

8.1.2 Subtraction

Matrix subtraciton is done term by term.

$$\begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\ \alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} \end{bmatrix} - \begin{bmatrix} \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} \\ \beta_{3,1} & \beta_{3,2} & \beta_{3,3} \end{bmatrix} = \begin{bmatrix} \alpha_{1,1} - \beta_{1,1} & \alpha_{1,2} - \beta_{1,2} & \alpha_{1,3} - \beta_{1,3} \\ \alpha_{2,1} - \beta_{2,1} & \alpha_{2,2} - \beta_{2,2} & \alpha_{2,3} - \beta_{2,3} \\ \alpha_{3,1} - \beta_{3,1} & \alpha_{3,2} - \beta_{3,2} & \alpha_{3,3} - \beta_{3,3} \end{bmatrix}$$
(33)

8.1.3 Multiplication

For matrix multiplication to work, the columns of the first matrix must match the rows of the second matrix.

$$A ext{ is a nxm matrix}$$
 (34)

$$B$$
 is a mxp matrix (35)

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,m} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \cdots & A_{n,m} \end{bmatrix}$$

$$\begin{bmatrix} P_{n} & P_{n} & P_{n} & P_{n} \end{bmatrix}$$
(36)

$$B = \begin{bmatrix} B_{1,1} & B_{1,2} & \cdots & B_{1,p} \\ B_{2,1} & B_{2,2} & \cdots & B_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m,1} & B_{m,2} & \cdots & B_{m,p} \end{bmatrix}$$
(37)

$$AB = \begin{bmatrix} (AB)_{1,1} & (AB)_{1,2} & \cdots & (AB)_{1,p} \\ (AB)_{2,1} & (AB)_{2,2} & \cdots & (AB)_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ (AB)_{n,1} & (AB)_{n,2} & \cdots & (AB)_{n,p} \end{bmatrix}$$
(38)

$$(AB)_{i,j} = \sum_{k=1} A_{i,k} B_{k,j} \tag{39}$$

8.1.4 Division

Matrix division is just multiplicaiton by the inverse matrix.

$$\frac{B}{A} = B * \frac{1}{A} = B * A^{-1} \tag{40}$$

8.2 Commutative and Associative

$$AB \neq BA \tag{41}$$

$$ABC = (AB)C = A(BC) \tag{42}$$