¡Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Para Aprobar 80 % o más

Ir al siguiente elemento

Problem Set #1

Calificación de la entrega más reciente: 100 %

It is a tree, with all edges directed away from s.

1.	Consider a directed graph with real-valued edge lengths and no negative-cost cycles. Let s be a source vertex. Assume that there is a unique shortest path from s to every other vertex. What can you say about the subgraph of G that you get by taking the union of these shortest paths? [Pick the strongest statement that is guaranteed to be true.]	1/1
	igcirc It is a path, directed away from $s.$	
	O It has no strongly connected component with more than one vertex.	

igcup It is a directed acyclic subgraph in which s has no incoming arcs.

2. Consider the following optimization to the Bellman-Ford algorithm. Given a graph G=(V,E) with real-valued edge lengths, we label the vertices $V=\{1,2,3,\ldots,n\}$. The source vertex s should be labeled "1", but the rest of the labeling can be arbitrary. Call an edge $(u,v)\in E$ forward if u< v and backward if u>v. In every odd iteration of the outer loop (i.e., when $i=1,3,5,\ldots$), we visit the vertices in the order from 1 to n. In every even iteration of the outer loop (when $i=2,4,6,\ldots$), we visit the vertices in the order from n to 1. In every odd iteration, we update the value of A[i,v] using only the forward edges of the form (w,v), using the most recent subproblem value for w (that from the current iteration rather than the previous one). That is, we compute $A[i,v]=\min\{A[i-1,v],\min_{(w,v)}A[i,w]+c_{wv}\}$, where the inner minimum ranges only over forward edges sticking into v (i.e., with w< v). Note that all relevant subproblems from the current round A[i,v] for all A[i,v]

1/1 punto

It correctly computes shortest paths if and only if the input graph has no negative-cost cycle.

This algorithm has an asymptotically superior running time to the original Bellman-Ford algorithm.

It correctly computes shortest paths if and only if the input graph is a directed acyclic graph.

It correctly computes shortest paths if and only if the input graph has no negative edges.

Indeed. Can you prove it? As a preliminary step, prove that with a directed acyclic graph, considering destinations in topological order allows one to compute correct shortest paths in one pass (and thus, in linear time). Roughly, pass i of this optimized Bellman-Ford algorithm computes shortest paths amongst those comprising at most i "alternations" between forward and backward edges.

3. Consider a directed graph with real-valued edge lengths and no negative-cost cycles. Let s be a source vertex. Assume that each shortest path from s to another vertex has at most k edges. How fast can you solve the single-source shortest path problem? (As usual, n and m denote the number of vertices and edges, respectively.) [Pick the strongest statement that is guaranteed to be true.]

1/1 punto

O(km)

 \bigcirc O(kn)

O(m+n)

O(mn)

4.	Consider a directed graph in which every edge has length 1. Suppose we run the Floyd-Warshall algorithm with the following modification: instead of using the recurrence $A[i,j,k] = \min\{A[i,j,k-1], A[i,k,k-1] + A[k,j,k-1]\}$, we use the recurrence $A[i,j,k] = A[i,j,k-1] + A[i,k,k-1] + A[i,k,k-1]$. For the base case, set $A[i,j,0] = 1$ if (i,j) is an edge and 0 otherwise. What does this modified algorithm compute specifically, what is $A[i,j,n]$ at the conclusion of the algorithm?	1 / 1 punto
	igcirc The number of shortest paths from i to j .	
	igcap The number of simple (i.e., cycle-free) paths from i to j .	
	None of the other answers are correct.	
	igcup The length of a longest path from i to j .	
	Correcto Indeed. How would you describe what the recurrence is in fact computing?	
5.	Suppose we run the Floyd-Warshall algorithm on a directed graph $G=(V,E)$ in which every edge's length is either -1, 0, or 1. Suppose further that G is strongly connected, with at least one u - v path for every pair u , v of vertices. The graph G may or may not have a negative-cost cycle. How large can the final entries A[i,j,n] be, in absolute value? Choose the smallest number that is guaranteed to be a valid upper bound. (As usual, n denotes $ V $.) [WARNING: for this question, make sure you reference the implementation of the Floyd-Warshall algorithm given in lecture, rather than to some alternative source.]	1/1 punto
	$\bigcap n-1$	
	\bigcirc $+\infty$	
	\bigcirc n^2	
	\bigcirc 2 ⁿ	
	Correcto By induction. Can you prove a sharper (exponential) bound, or is this tight?	

Right, you can stop the Bellman-Ford algorithm after \boldsymbol{k} iterations