

SRMInstituteofScienceandTechnologyK attankulathur

DEPARTMENTOFMATHEMATICS

18MAB201T-TRANSFORMSAND BOUNDARYVALUEPROBLEMS

T	T	N	T	1	٦_	T	7

		Z-Transforms Tutorial Sheet -3						
	Sl.No.	Questions	Answer					
Part -A								
1	Find Z	$ \left[\frac{2z^2 + 3z}{(z+2)(z-4)}\right] $ by partial fraction method	$\frac{(-2)^n}{6} + \frac{11 \cdot 4^n}{6}$					
2	If $F(z) = -$	$3\cdot 2^n$						
3	If $F(z)$:	$\frac{2}{3}(-1)^n$						
4	Using co	onvolution theorem evaluate $Z^{-1} \left[\frac{z^2}{(z-1)(z-3)} \right]$	$\frac{1}{2} \left(3^{n+1} - 1 \right)$					
5	Solve y_{n+1}	$-2y_n = 0$ given $y_0 = 3$ using Z transforms.	$3\cdot 2^n$					
Part -B								
6		$e z - transforms of \frac{8z^2}{(2z-1)(4z-1)}$ by using	$2\left\lceil \left(\frac{1}{2}\right)^n - \left(\frac{1}{2}\right)^{2n+1} \right\rceil$					
	convolution theorem.							
7	Find by Residue	e method if $Z^{-1} \left[\frac{2z^2 + 4z}{(z-2)^3} \right]$.	$n^2 \cdot 2^n$					
8	Find Z^{-1} $ \frac{1}{(1-z^{-1})^{-1}} $ fraction.	$\left[\frac{z^{-2}}{(1-2z^{-1})(1-3z^{-1})}\right]$ by using method of partial	$\frac{1}{2} - 2^n + \frac{1}{2} 3^n$					
9		$y_{n+1} + 9y_n = 2^n$ given $y_0 = y_1 = 0$, using Z – transforms.	$\frac{1}{25}2^n - \frac{1}{25}(-3)^n + \frac{1}{15}n(-3)^n$					
10	Solve: $y_{n+2} - 7y_n$ transforms.	$y_0 = 0$, given $y_0 = 0$, $y_1 = 0$, using Z –	$\frac{1}{2}2^n - 3^n + \frac{1}{2}4^n$					