5.1 Eigenvalues and Eigenversons

- . An eigenvector of an $n \times n$ matrix is a non-zero vertor y such that $A \times = \lambda$ where $\lambda \times i$ a scalar.
- . A scalar λ is called an eigenvalue of A if \exists a non-trivial solution x of $Ax = \lambda x$
- · So when we multiply vector x by matrix A, we get back x but just scalar multiplied
- . So A must be square
- · This constant, I, is what we call the eigenvalue of matrix A
- · There can be no more eigenvalues then the number of rows /
 - · Each In has an associated V. This is called the eigenvectors
- If we want to snow rF a certain value is an eigenvalue, multiply this value by I and subtract from A (A- λ I)
 - · If the resulting matrix is linearly independent, this means is investigated an eigenvalue
 - · If linearly dependent, then it Is an eigenvalue
- So essentially, det $(A-\lambda I) = 0$, and $A-\lambda I$ cannot be invertible.

 In finding eigenvectors, row reduce $A-\lambda I$ and solve for the variables:

Basis of Eigenspace: look at the basis for the null space of A-XI.

The eigensectors form a books for the eigenspace

Theorem 1: The Eyemalus of a triangular matrix are the enther along its main diagnol

Theorem 2: If $V_1, ..., V_n$ are eigenvectors corresponding to $\lambda_1, ..., \lambda_n$ for an nxn matrix, then the set $\{V_1, V_2, V_3, ..., V_n\}$ must be linearly independent.

a So distinct eigeninder and their corresponding eigenvalus
muct be linearly independent