CHAPTER - 20

Vector Algebra and Three Dimensional Geometry

EE24BTECH11061 - Rohith Sai

I. A. FILL IN THE BLANKS

1) Let OA = a, OB = 10a + 2b and OC = b where O, A and C are non-collinear points. Let p denote the area of the quadrilateral OABC, and let q denote the area of the parallelogram with OA and OC as adjacent sides. If p = kq, then $k = \dots$ (1997 - 2 Marks)

II. B. TRUE/FALSE

- 1) Let \mathbf{A}, \mathbf{B} and \mathbf{C} be unit vectors suppose that $\mathbf{A}.\mathbf{B} = \mathbf{A}.\mathbf{C} = 0$, and that the angle between \mathbf{B} and \mathbf{C} is $\frac{\pi}{6}$. Then $\mathbf{A} = \pm 2 (\mathbf{B} \times \mathbf{C})$. (1981 2 Marks)
- 2) If $\mathbf{X}.\mathbf{A} = 0$, $\mathbf{X}.\mathbf{B} = 0$, $\mathbf{X}.\mathbf{C} = 0$ for some non-zero vector \mathbf{X} , then $[\mathbf{A} \ \mathbf{B} \ \mathbf{C}] = 0$ (1983 1 Mark)
- The points with position vectors a + b, a b and a + kb are collinear for all real values of k.
 (1984 1 Mark)
- 4) For any three vectors \mathbf{a}, \mathbf{b} and \mathbf{c} , $(\mathbf{a} \mathbf{b}) \cdot ((\mathbf{b} \mathbf{c}) \times (\mathbf{c} \mathbf{a})) = 2\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$. (1989 1 Mark)

III. C. MCQs with One Correct Answer

- 1) The scalar $\mathbf{A} \cdot ((\mathbf{B} + \mathbf{C}) \times (\mathbf{A} + \mathbf{B} + \mathbf{C}))$ equals:
 - b) $[\mathbf{A} \ \mathbf{B} \ \mathbf{C}] + [\mathbf{B} \ \mathbf{C} \ \mathbf{A}]$
 - c) [**A B C**]
 - d) None of these

(1981 - 2 Marks)

- 2) For non-zero vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, |(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}| = |\mathbf{a}| |\mathbf{b}| |\mathbf{c}|$ holds if and only if
 - a) a.b = 0, b.c = 0
 - b) b.c = 0, c.a = 0
 - c) c.a = 0, a.b = 0
 - d) a.b = b.c = c.a = 0

(1982 - 2 Marks)

- 3) The volume of the parallelopiped whose sides are given by $OA = 2\mathbf{i} 2\mathbf{j}$, $OB = \mathbf{i} + \mathbf{j} \mathbf{k}$, $OC = 3\mathbf{i} \mathbf{k}$, is
 - a) $\frac{4}{13}$
 - b) 4
 - c) $\frac{2}{7}$
 - d) None of these

(1983 - 1 Mark)

1

- 4) The points with position vectors $60\mathbf{i} + 3\mathbf{j}$, $40\mathbf{i} 8\mathbf{j}$, $a\mathbf{i} 52\mathbf{j}$ are collinear if
 - a) a = -40
 - b) a = 40
 - c) a = 20
 - d) None of these

(1983 - 1 Mark)

- 5) Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be three non coplanar vectors and $\mathbf{p}, \mathbf{q}, \mathbf{r}$ are vectors defined by the relations $\mathbf{p} = \frac{\mathbf{b} \times \mathbf{c}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}, \mathbf{q} = \frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}, \mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$ then the value of the expression $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{p} + (\mathbf{b} + \mathbf{c}) \cdot \mathbf{q} + (\mathbf{c} + \mathbf{a}) \cdot \mathbf{r}$ is equal to
 - a) 0
 - b) 1
 - c) 2
 - d) 3

(1988 - 2 Marks)

- 6) Let a, b, c be distinct non-negative numbers. If the vectors $\mathbf{ai} + \mathbf{aj} + \mathbf{ck}$, veci + k and $\mathbf{ci} + \mathbf{cj} + \mathbf{bk}$ lie in a plane, then c is
 - a) the Arithmetic Mean of a and b
 - b) the Geometric Mean of a and b
 - c) the Harmonic Mean of a and b
 - d) equal to zero

(1993 - 1 Mark)

7) Let **p** and **q** be the position vectors of P and Q respectively, with respect to O and $|\mathbf{p}| = p$, $(\mathbf{q}) = q$. The points R and S divide PQ internally and externally in the ratio 2: 3

respectively. If OR and OS are perpendicular then

- a) $9p^2 = 4q^2$ b) $4p^2 = 9q^2$
- c) 9p = 4q
- d) 4p = 9q

(1994)

- 8) Let α , β , γ be distinct real numbers. The points with position vectors $\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$, $\beta \mathbf{i} + \gamma \mathbf{j} + \alpha \mathbf{k}, \ \gamma \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$
 - a) are collinear
 - b) form an equilateral triangle
 - c) form a scalene triangle
 - d) form a right angles triangle

(1994)

- 9) Let $\mathbf{a} = \mathbf{i} \mathbf{j}$, $\mathbf{b} = \mathbf{j} \mathbf{k}$, $\mathbf{c} = \mathbf{k} \mathbf{i}$. If \mathbf{d} is a unit vector such that $\mathbf{a}.\mathbf{d} = 0 = [\mathbf{b} \ \mathbf{c} \ \mathbf{d}]$, then \mathbf{d} equals
 - a) $\pm \frac{i+j-2k}{\sqrt{6}}$ b) $\pm \frac{i+k-k}{\sqrt{3}}$

 - d) ±**k**

(1995S)

- 10) If **a**, **b**, **c** are non coplanar unit vectors such that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \frac{(\mathbf{b} + \mathbf{c})}{\sqrt{2}}$, then the angle between \mathbf{a} and **b** is

 - a) $\frac{3\pi}{4}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) π

(1995S)