

Magnetostatic self-interaction effect on bulk magnetic skyrmion textures in chiral ferromagnets

Paul Leask
February 24, 2025 — Joint Condensed Matter Seminar, NORDITA

Motivation

Motivation

- The magnetization in a ferromagnet has a dipolar moment associated with it
- This induces an internal demagnetizing magnetic field
- In turn, this generates a magnetostatic self-energy
- Want to find topological solitons (static energy minimizers)
- ⇒ There is back-reaction from the self-induced magnetic field on the magnetization
 - How can this back-reaction be determined?

Static energy of the model

Ising vs Heisenberg

5/47 Paul Leask

Heisenberg magnet

• Consider the Heisenberg model of a system of spins \vec{S}_i that are localised on the sites of a d-dimensional lattice:

$$H_{H} = -\sum_{i,j} \mathbb{J}_{ij} \vec{S}_{i} \cdot \vec{S}_{j}, \quad \mathbb{J}_{ij} = \begin{cases} J & \text{if } i, j \text{ are neighbours} \\ 0 & \text{else} \end{cases}$$

- Mean field approximation: a proper dynamical variable is the expectation value of the spins, i.e. the unit magnetization $\vec{n} \in S^2 \subset \mathbb{R}^3$
- Heisenberg Hamiltonian becomes

$$H_{H} = -J \sum_{i,j} \vec{n}_{i} \cdot \vec{n}_{i+a\vec{e}_{j}},$$

where $a\vec{e}_j$ is the vector connecting a lattice site i with its neighbouring sites $i+a\vec{e}_j$

Heisenberg magnet

• Taylor expansion of $\vec{n}_{i+a\vec{e}_i}$ for small lattice constant a gives

$$\vec{n}_i \cdot \vec{n}_{i+a\vec{e}_j} = \underbrace{\vec{n}_i \cdot \vec{n}_i}_{=1} + a \underbrace{\left(\vec{n}_i \cdot \partial_j \vec{n}_i\right)}_{=0} + \frac{a^2}{2} \vec{n}_i \cdot \partial_j^2 \vec{n}_i + O(a^3)$$

• Ignoring the constant $\vec{n}_i \cdot \vec{n}_i = 1$, the Heisenberg Hamiltonian in the continuum limit is

$$H_{H} \approx -\frac{Ja^{2}}{2} \sum_{i,j} \vec{n}_{i} \cdot \partial_{j}^{2} \vec{n}_{i} \quad \rightarrow \quad E_{\text{exch}}[\vec{n}] = -\frac{Ja^{2-d}}{2} \int_{\mathbb{R}^{d}} \mathsf{d}^{d}x \left(\vec{n} \cdot \partial_{j}^{2} \vec{n} \right)$$

• Integration by parts gives us the static energy of the O(3) sigma model

$$E_{\text{exch}}[\vec{n}] = \frac{Ja^{2-d}}{2} \int_{\mathbb{R}^d} d^d x \left(\partial_j \vec{n} \cdot \partial_j \vec{n} \right), \quad \vec{n} \cdot \vec{n} = 1$$

Dzyaloshinksii-Moriya interaction

At the lattice level, the DMI (an antisymmetric exchange interaction) is [Sov. Phys. JETP 19, 960 (1964)]

$$H_{D} = \mathcal{D} \sum_{i,j} \vec{d}_{j} \cdot \left(\vec{n}_{i} \times \vec{n}_{i+a\vec{e}_{j}} \right)$$

Taylor expanding again gives

$$\vec{n}_i \times \vec{n}_{i+a\vec{e}_j} = \underbrace{\vec{n}_i \times \vec{n}_i}_{=\vec{0}} + a\vec{n}_i \times \partial_j \vec{n}_i + O(a^2)$$

DMI in the continuum limit is

$$H_{D} \approx \mathcal{D}a \sum_{i,j} \vec{d}_{j} \cdot \left(\vec{n}_{i} \times \partial_{j} \vec{n}_{i} \right) \quad \rightarrow \quad E_{\mathsf{DMI}}[\vec{n}] = \mathcal{D}a^{1-d} \int_{\mathbb{R}^{d}} \mathsf{d}^{d}x \sum_{i} \vec{d}_{i} \cdot \left(\vec{n} \times \partial_{i} \vec{n} \right)$$

- Topological spin textures arise due to competition between Heisenberg exchange interaction and DMI
- Heisenberg exchange energy promotes parallel alignment of spins whereas DMI favors non-collinear alignment of spins (spin canting)

Continuum energy

• The energy in the continuum limit (for d=3) is $E=E_{\rm exch}+E_{\rm DMI}+E_{\rm pot}$ where [Zh. Eksp. Teor. Fiz. 95, 178-182 (1989)]

$$\begin{split} E_{\text{exch}} &= \frac{J}{2} \int_{\mathbb{R}^3} \mathsf{d}^3 x \, |\mathsf{d}\vec{n}|^2, \\ E_{\text{DMI}} &= \mathcal{D} \int_{\mathbb{R}^3} \mathsf{d}^3 x \sum_{i=1}^3 \vec{d}_i \cdot (\vec{n} \times \partial_i \vec{n}), \\ E_{\text{pot}} &= \int_{\mathbb{R}^3} \mathsf{d}^3 x \left(K_m (1 - n_z^2) + M_s B_{\text{ext}} (1 - n_z) \right), \end{split}$$

- Skyrmions are topological solitons in this model [e.g. New J. Phys. 18, 065003 (2016)]
- These are static solutions to the Euler-Lagrange field equations
- Chiral magnet can also be derived from string theory [J. High Energ. Phys. 11, 212 (2023)]

Magnetic skyrmions

Topological magnetic spin textures

- Ground state configuration found by minimizing $E_{\rm pot} \Rightarrow \vec{n}_{\rm vac} = \vec{n}_{\uparrow} = (0,0,1)$
- Finite (static) energy requires $\vec{n}(\vec{x}) \to \vec{n}_{\uparrow}$ as $|\vec{x}| \to \infty$
- \Rightarrow One-point compactification of space $\mathbb{R}^2 \cup \{\infty\} \cong S^2$
 - Magnetization \vec{n} is effectively a based map $\vec{n}: S^2 \mapsto S^2$
 - Gives rise to a non-trivial homotopy group $\pi_2(S^2) = \mathbb{Z}$
 - · Configuration space is seen to consist of disconnected manifolds,

$$M = \bigcup_{i \in \mathbb{Z}} M_i$$

Magnetization configurations are identified by the topological degree

$$\deg(\vec{n}) = \frac{1}{4\pi} \int_{\mathbb{R}^2} d^2x \, \vec{n} \cdot \left(\frac{\partial \vec{n}}{\partial x_1} \times \frac{\partial \vec{n}}{\partial x_2} \right) \in \pi_2(S^2) = \mathbb{Z}$$

Magnetic vortices

- Magnetic vortices are **minimizers** of the static energy functional
- Consider the radially symmetric ansatz

$$\vec{n}(r,\theta) = (\sin f(r)\cos\theta, \sin f(r)\sin\theta, \cos f(r))$$

- Reduces problem to solving a non-linear ODE in f(r)
- Profile function f(r) decreases monotonically with boundary conditions $f(0) = k\pi$ and $f(\infty) = 0$
- This gives us $\vec{n}(r=0) = \vec{n}_{\perp}$ and $\vec{n}(r=\infty) = \vec{n}_{\uparrow}$
- Gives rise to $k\pi$ -vortices
- k=1 yields a π -vortex, more commonly known as a **Néel skyrmion** with $deg(\vec{n})=-1$
- k=2 yields a 2π -vortex, known as **skyrmionium** with $deg(\vec{n})=0$ [J. Magn. Magn. Mater. **195**, 182-192 (1999)]

Magnetic vortices

Figure: The magnetization $\vec{n}=(n_1,n_2,n_3)\in S^2$ is coloured using the Runge colour sphere. Spin-up states $\vec{n}_\uparrow=(0,0,1)$ are white, whereas spin-down states $\vec{n}_\downarrow=(0,0,-1)$ are black. The hue is determined by the phase $\arg(n_1+in_2)$.

Magnetic skyrmions

- Other radially symmetric ansätze can be considered
- ⇒ Different vortex/skyrmion solutions
 - Skyrmion type is actually determined by the DMI term used
- We consider three different DMI terms: [Lifshitz invariants $\Lambda_{ij}^{(k)} = n_i \frac{\partial n_j}{\partial x_k} n_j \frac{\partial n_i}{\partial x_k}$]

	Dresselhaus	Rashba	Heusler
$\{\vec{d}_1, \vec{d}_2\}$	$\{-\vec{e}_1,\vec{e}_2\}$	$\{\vec{e}_2, -\vec{e}_1\}$	$\{\vec{e}_1, -\vec{e}_2\}$
DMI	$\Lambda_{xz}^{(y)} - \Lambda_{yz}^{(x)}$	$\Lambda_{zx}^{(x)} - \Lambda_{yz}^{(y)}$	$\Lambda_{xz}^{(y)} + \Lambda_{yz}^{(x)}$
Skyrmion	Bloch	Néel	Antiskyrmion
$deg(\vec{n})$	-1	-1	+1
	$\int -\sin f(r)\sin\theta$	$\int \sin f(r) \cos \theta$	$\int -\sin f(r)\sin\theta$
\vec{n}	$\sin f(r) \cos \theta$	$\int \sin f(r) \sin \theta$	$-\sin f(r)\cos\theta$
	$\int \cos f(r)$	$\setminus \cos f(r)$	$\left(\begin{array}{c} \cos f(r) \end{array}\right)$

Skyrmion types

Magnetostatic self-energy and its back-reaction

Magnetostatic problem

- The magnetization behaves as a magnetic dipole
- This induces an **internal** magnetic field (demagnetizing field)
- → Generates a magnetostatic self-energy
 - Computing this energy and the back-reaction on the magnetization is difficult
 - Dzyaloshinksii-Moriya interaction assumed to be more significant
 - Stripe domain structures in ordinary ferromagnets with no interfacial DMI were studied analytically [Phys. Rev. B 48, 10335 (1993)]
 - Analytic investigation including dipolar interactions for Dresselhaus DMI with Néel type modulations [Phys. Rev. Lett. 105, 197202 (2010)]
 - Numerical study of dipolar interaction with Monte-Carlo simulations [J. Magn. Magn. Mater 324, 2171 (2012)]

Self-induced magnetic field

• The magnetic field induced by an isolated dipole of moment \vec{m} at $\vec{0}$ is

$$\vec{B} = -\frac{\mu_0}{4\pi r^3} \left(\vec{m} - 3 \frac{\vec{m} \cdot \vec{x}}{r^2} \vec{x} \right)$$

• This can be expressed as the gradient of a magnetic potential $\psi: \mathbb{R}^3 \to \mathbb{R}$, that is,

$$\vec{B} = -\vec{\nabla}\psi, \quad \psi = -\mu_0 \vec{m} \cdot \vec{\nabla} \left(\frac{1}{4\pi r}\right)$$

• Consider now a continuous distribution of magnetic dipole density $\vec{m}: \Omega \to \mathbb{R}^3$, where $\Omega \subseteq \mathbb{R}^3$ is some domain. The magnetic field it induces, at a point $\vec{x} \in \mathbb{R}^3$, is given by integrating the field induced at \vec{x} by $\vec{m}(\vec{y})$ at $\vec{y} \in \Omega$ over $\vec{y} \in \Omega$:

$$\vec{B}(\vec{x}) = -\frac{\mu_0}{4\pi} \int_{\Omega} d^3 \vec{y} \frac{1}{|\vec{x} - \vec{y}|^3} \left\{ \vec{m}(\vec{y}) - 3 \frac{\vec{m}(\vec{y}) \cdot (\vec{x} - \vec{y})}{|\vec{x} - \vec{y}|^2} (\vec{x} - \vec{y}) \right\}$$

The magnetic potential

• Again, this is the gradient of the magnetic potential $\psi:\Omega\to\mathbb{R}$,

$$\vec{B} = -\vec{\nabla}\psi, \quad \psi(\vec{x}) = -\mu_0 \int_{\Omega} d^3\vec{y} \left\{ \vec{m}(\vec{y}) \cdot \vec{\nabla}_x \left(\frac{1}{4\pi |\vec{x} - \vec{y}|} \right) \right\}$$

• We now note that the Green's functions for the Laplacian $\Delta = -\nabla^2$ on $\Omega \subseteq \mathbb{R}^3$ is

$$G(\vec{x}, \vec{y}) = \frac{1}{4\pi |\vec{x} - \vec{y}|} \quad \Rightarrow \quad \Delta_x G(\vec{x}, \vec{y}) = \delta(\vec{x} - \vec{y})$$

The Laplacian of the potential is

$$\begin{split} \Delta_{x} \psi(\vec{x}) &= -\mu_{0} \int_{\Omega} \mathsf{d}^{3} \vec{y} \, \left\{ \vec{m}(\vec{y}) \cdot \vec{\nabla}_{x} \left[\Delta_{x} G(\vec{x}, \vec{y}) \right] \right\} \\ &= -\mu_{0} \int_{\Omega} \mathsf{d}^{3} \vec{y} \, \left\{ \delta(\vec{x} - \vec{y}) \left[\vec{\nabla}_{y} \cdot \vec{m}(\vec{y}) \right] \right\} \\ &= -\mu_{0} \vec{\nabla}_{x} \cdot \vec{m}(\vec{x}) \end{split}$$

Interaction energy of a distribution of magnetic dipoles

• Therefore, we see that the magnetic potential ψ satisfies Poisson's equation

$$\Delta \psi = \mu_0 \rho, \quad \rho = -\left(\vec{\nabla} \cdot \vec{m}\right)$$

- The magnetic field induced by the dipole distribution \vec{m} coincides, therefore, with the electric field induced by the charge distribution $-(\vec{\nabla} \cdot \vec{m})$ [Phys. Rev. B **20**, 33 (1979)]
- Can think of $-(\vec{\nabla} \cdot \vec{m})$ as "electric charge density"
- The interaction energy of a pair of magnetic dipoles $\vec{m}^{(1)}$, $\vec{m}^{(2)}$, is $-\vec{m}^{(1)} \cdot \vec{B}^{(2)}$, where $\vec{B}^{(2)}$ is the magnetic field induced by $\vec{m}^{(2)}$ at the position of $\vec{m}^{(1)}$
- Hence, the total dipole-dipole interaction energy of a continuous dipole density distribution is

$$E_{\text{DDI}} = -\frac{1}{2} \int_{\Omega} d^3 \vec{x} \left(\vec{B}(\vec{x}) \cdot \vec{m}(\vec{x}) \right)$$

Paul Leask KTH 20/47

DDI energy = electrostatic self-energy

• It is useful to rewrite the DDI energy as a functional of the magnetic potential ψ :

$$\begin{split} E_{\text{DDI}} &= \frac{1}{2} \int_{\Omega} \mathsf{d}^{3} \vec{x} \, \vec{m} \cdot \vec{\nabla} \psi \\ &= -\frac{1}{2} \int_{\Omega} \mathsf{d}^{3} \vec{x} \, \left(\vec{\nabla} \cdot \vec{m} \right) \psi + \frac{1}{2} \int_{\partial \Omega} \mathsf{d} \vec{s} \cdot \left(\psi \vec{m} \right) \\ &= \frac{1}{2 \mu_{0}} \int_{\Omega} \mathsf{d}^{3} \vec{x} \, \psi \Delta \psi + \frac{1}{2} \int_{\partial \Omega} \mathsf{d} \vec{s} \cdot \left(\psi \vec{m} \right) \end{split}$$

- We will use this formula only in situations where the boundary conditions ensure that the boundary term vanishes. In this case, $E_{\rm DDI}$ coincides with the "electrostatic" self-energy of the "charge" distribution $-(\nabla \cdot \vec{m})$
- To see this, we use the general identity $\psi \Delta \phi = \vec{\nabla} \psi \cdot \vec{\nabla} \phi \vec{\nabla} \cdot (\psi \vec{\nabla} \phi)$ and the divergence theorem to express the DDI energy as

$$E_{\rm DDI} = \frac{1}{2\mu_0} \int_{\Omega} d^3 \vec{x} \, |\vec{\nabla} \psi|^2 = \frac{1}{2\mu_0} \int_{\Omega} d^3 \vec{x} \, |\vec{B}|^2$$

Interaction energy summary

• Can compute the electrostatic self-energy in a few ways, most computationally expensive is:

$$E_{\text{DDI}} = -\frac{1}{2} \int_{\Omega} d^3 \vec{x} \, \left(\vec{B}(\vec{x}) \cdot \vec{m}(\vec{x}) \right), \quad \vec{B}(\vec{x}) = -\frac{\mu_0}{4\pi} \int_{\Omega} d^3 \vec{y} \frac{1}{|\vec{x} - \vec{y}|^3} \left\{ \vec{m}(\vec{y}) - 3 \frac{\vec{m}(\vec{y}) \cdot (\vec{x} - \vec{y})}{|\vec{x} - \vec{y}|^2} (\vec{x} - \vec{y}) \right\}$$

• Better to determine the magnetic vector potential $\psi:\Omega\to\mathbb{R}$ first, such that

$$E_{\rm DDI} = \frac{1}{2\mu_0} \int_{\Omega} d^3 \vec{x} \, \left(\psi(\vec{x}) \Delta_x \psi(\vec{x}) \right)$$

You can choose to do it non-locally (computationally expensive)

$$\psi(\vec{x}) = -\mu_0 \int_{\Omega} d^3 \vec{y} \left\{ \vec{m}(\vec{y}) \cdot \vec{\nabla}_x \left(\frac{1}{4\pi |\vec{x} - \vec{y}|} \right) \right\}$$

• This non-locality can be avoided by instead introducing the constraint that the magnetic potential ψ must satisfy the Poisson equation $\Delta_x \psi(\vec{x}) = -\mu_0 \left(\vec{\nabla}_x \cdot \vec{m}(\vec{x}) \right)$

Interaction energy summary

- The magnetization \vec{m} behaves like a magnetic dipole moment
- \Rightarrow Induces an internal demagnetizing magnetic field $ec{B}$
 - Want to include the magnetostatic self-energy $\mathcal{E}_{\text{DDI}} = |\vec{B}|^2/2$
- \Rightarrow Minimization problem \Rightarrow **constrained** minimization problem $\mathcal{E}_{DDI} = \frac{1}{2\mu_0} \psi \Delta \psi$, where $\Delta \psi = -\mu_0 \vec{\nabla} \cdot \vec{m}$
 - Also want to determine the back-reaction of \vec{B} on \vec{m}
- \Rightarrow Need to compute the variation of $\mathcal{E}_{\mathrm{DDI}}$ w.r.t. \vec{m}

Reduction to planar magnetic skyrmions

Translation invariant solutions

- Case of interest: dipole-dipole interaction energy of a chiral ferromagnet in a translation invariant configuration
- We impose translation invariance in the direction $\vec{e}_3 = (0, 0, 1)$, so \vec{n} is independent of x_3
- Consider fields $\vec{n}:\mathbb{R}^2\to S^2$ which have compact support in the sense that there exists $R_0>0$ such that, for all $r:=|(x_1,x_2)|\geq R_0$, $\vec{n}(x_1,x_2)=\vec{n}_\uparrow$
- Since \vec{n} is translation invariant, total dipole interaction energy either vanishes (for example, if \vec{n} is constant) or diverges
- The energy per unit length (in the $\vec{\epsilon}_3$ direction) may be finite however
- Coincides with the total energy of the slab $\Omega = \mathbb{R}^2 \times [0,1]$, which we compute as the limit of the energy of the thick disk $\Omega_R = \{\vec{x} : x_1^2 + x_2^2 \le R^2, \ 0 \le x_3 \le 1\}$ as $R \to \infty$

Boundary conditions

- Boundary term $d\vec{s} \cdot (\psi \vec{m})$ vanishes identically for all $R > R_0$
- Hence

$$E_{\rm DDI} = \frac{1}{2\mu_0} \int_{\mathbb{R}^2} \mathrm{d}^2 x \, \psi \Delta \psi, \quad \Delta \psi = -\mu_0 M_{\rm s} \left(\frac{\partial n_1}{\partial x_1} + \frac{\partial n_2}{\partial x_2} \right)$$

- Consider the large r behaviour of $\psi : \mathbb{R}^2 \to \mathbb{R}$
- Any solution of the Poisson equation $\Delta \psi = \rho$ on \mathbb{R}^2 has a multipole expansion

$$\psi = -\frac{q}{2\pi} \log r + O(r^{-1}), \quad q = \int_{\mathbb{R}^2} d^2 x \rho$$

- In general, such functions are logarithmically unbounded
- In our case ρ is (proportional to) the divergence of the in-plane field (n_1, n_2) , so q = 0 by the divergence theorem
- $\Rightarrow \psi$ is (at least) 1/r localized

Variation of the magnetostatic self-energy

Variation of the dipolar energy

- Let \vec{n}_t be a smooth variation of $\vec{n} = \vec{n}_0$ and define $\vec{\epsilon} = \partial_t \vec{n}_t |_{t=0}$
- Denote ψ_t the associated solution of $\Delta \psi_t = -\mu_0 M_s \vec{\nabla} \cdot \vec{n}_t$ decaying to 0 at infinity, and $\dot{\psi} = \partial_t \psi_t |_{t=0}$
- The variation of E_{DDI} induced by \vec{n}_{t} is

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} E_{\mathrm{DDI}}(\vec{n}_t) &= \frac{1}{2\mu_0} \int_{\mathbb{R}^2} \mathrm{d}^2 x \left(\dot{\psi} \Delta \psi + \psi \Delta \dot{\psi} \right) \\ &= \frac{1}{\mu_0} \int_{\mathbb{R}^2} \mathrm{d}^2 x \, \psi \Delta \dot{\psi} + \lim_{R \to \infty} \frac{1}{2\mu_0} \int_{\partial B_R(0)} (\dot{\psi} \star \mathrm{d}\psi - \psi \star \mathrm{d}\dot{\psi}) \\ &= \frac{1}{\mu_0} \int_{\mathbb{R}^2} \mathrm{d}^2 x \, \psi \Delta \dot{\psi} + \lim_{R \to \infty} \frac{R}{2\mu_0} \int_0^{2\pi} (\dot{\psi} \psi_r - \psi \dot{\psi}_r) \mathrm{d}\theta \\ &= \frac{1}{\mu_0} \int_{\mathbb{R}^2} \mathrm{d}^2 x \, \psi \Delta \dot{\psi} \end{split}$$

since $\psi, \dot{\psi} = O(r^{-1})$ and $\psi_r, \dot{\psi}_r = O(r^{-2})$.

• We need to evaluate $\Delta \dot{\psi}$

Variation of the dipolar energy

• Differentiating Poisson's equation with respect to t, we deduce that

$$\Delta \dot{\psi} = -\mu_0 M_{\varsigma} \vec{\nabla} \cdot \vec{\epsilon},$$

• Hence

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} E_{\mathrm{DDI}}(\vec{n}_{t}) &= -M_{s} \int_{\mathbb{R}^{2}} \mathrm{d}^{2}x \, \psi \left(\vec{\nabla} \cdot \vec{\epsilon}\right) \\ &= M_{s} \int_{\mathbb{R}^{2}} \mathrm{d}^{2}x \, \vec{\epsilon} \cdot \vec{\nabla} \psi - \lim_{R \to \infty} M_{s} \int_{\partial B_{R}(0)} \psi \star \varepsilon \\ &= M_{s} \int_{\mathbb{R}^{2}} \mathrm{d}^{2}x \, \vec{\epsilon} \cdot \vec{\nabla} \psi \end{split}$$

by Stokes's Theorem, since $\varepsilon = \varepsilon_1 dx_1 + \varepsilon_2 dx_2$ has compact support

Evading the Hobart-Derrick Theorem

Rescaling energy and length scales

- Let us consider an energy and length rescaling with $E=E_0\hat{E}$ and $x=L_0\hat{x}$
- Then the rescaled energy is

$$\hat{E} = \hat{E}_{\text{DDI}} + \int_{\mathbb{R}^3} \left\{ \frac{JL_0}{2E_0} |\mathbf{d}\vec{n}|^2 + \frac{\mathcal{D}L_0^2}{E_0} \vec{d}_i \cdot (\vec{n} \times \partial_i \vec{n}) + \frac{K_m L_0^3}{E_0} (1 - n_z^2) + \frac{M_s B_{\text{ext}} L_0^3}{E_0} (1 - n_z) \right\} \mathbf{d}^3 \hat{x}$$

- For this to be dimensionless, we choose $L_0 = J/\mathcal{D}$ and $E_0 = J^2/\mathcal{D}$
- Hence, the energy can be expressed in the dimensionless form

$$\hat{E} = \hat{E}_{DDI} + \int_{\mathbb{R}^{3}} \left\{ \frac{1}{2} |d\vec{n}|^{2} + \vec{d}_{i} \cdot (\vec{n} \times \partial_{i}\vec{n}) + \frac{K_{m}J}{D} (1 - n_{z}^{2}) + \frac{M_{s}B_{\text{ext}}J}{D^{2}} (1 - n_{z}) \right\} d^{3}\hat{x}$$

$$= \hat{E}_{DDI} + \int_{\mathbb{R}^{3}} \left\{ \frac{1}{2} |d\vec{n}|^{2} + \vec{d}_{i} \cdot (\vec{n} \times \partial_{i}\vec{n}) + K(1 - n_{z}^{2}) + h(1 - n_{z}) \right\} d^{3}x$$

Rescaling energy and length scales

- Consider the rescaling of the magnetic potential $\psi = \lambda \hat{\psi}$
- The rescaled magnetostatic energy and Poisson equation are

$$\hat{E}_{\mathrm{DDI}} = \frac{1}{2} \frac{L_0 \lambda^2}{\mu_0 E_0} \int_{\mathbb{R}^3} \hat{\psi} \Delta_{\hat{x}} \hat{\psi} \, \mathrm{d}^3 \hat{x}, \quad \Delta_{\hat{x}} \hat{\psi} = -\frac{\mu_0 M_{_{\mathcal{S}}} L_0}{\lambda} \vec{\nabla}_{\hat{x}} \cdot \vec{n}$$

• Introduce the dimensionless vacuum magnetic permeability

$$\mu = \frac{\mu_0 M_s L_0}{\lambda} = \left(\frac{L_0 \lambda^2}{\mu_0 E_0}\right)^{-1}.$$

Necessary magnetic potential rescaling is given by

$$\lambda = \frac{\mathcal{D}}{M_s} \implies \mu = \frac{\mu_0 M_s^2 L_0}{\mathcal{D}} = \frac{\mu_0 J M_s^2}{\mathcal{D}^2}.$$

Evading the Hobart–Derrick Theorem

• The dimensionless energy and Poisson equation are

$$E = \int_{\mathbb{R}^2} \left\{ \frac{1}{2} |\mathbf{d}\vec{n}|^2 + \vec{d}_i \cdot (\vec{n} \times \partial_i \vec{n}) + K(1 - n_z^2) + h(1 - n_z) + \frac{1}{2} \vec{n} \cdot \vec{\nabla} \psi \right\} d^2 x, \quad \Delta \psi = -\mu \vec{\nabla} \cdot \vec{n}$$

- Can stable topological solitons even exist in this model?
- Derrick's Theorem: If the energy functional $E[\vec{n}]$ is not stationary against spatial rescaling, then \vec{n} cannot be a solution of the field equations [J. Math. Phys. 5, 1252–1254 (1964)]
- It is a non-existence theorem
- Can we evade the Derrick Theorem?

Derrick's theorem applied to a linear scalar field

• Consider some arbitrary scalar field $\Phi(\vec{x})$ with associated energy

$$E[\Phi] = \int d^d x \left\{ \vec{\nabla} \Phi(\vec{x}) \cdot \vec{\nabla} \Phi(\vec{x}) + V(\Phi(\vec{x})) \right\} = E_2 + E_0 \ge 0$$

- Consider coordinate rescaling $\vec{x} \mapsto \vec{x}' = \lambda \vec{x} \implies \Phi_{\lambda} = \Phi(\lambda \vec{x})$
- Rescaled energy becomes

$$e(\lambda) = E[\Phi(\lambda \vec{x})] = \int \mathsf{d}^d x' \lambda^{-d} \left\{ \vec{\nabla}' \Phi(\vec{x}') \cdot \vec{\nabla}' \Phi(\vec{x}') \lambda^2 + V(\Phi(\vec{x}')) \right\} = \lambda^{2-d} E_2 + \lambda^{-d} E_0$$

- d=1: $e(\lambda)=\lambda E_2+\frac{1}{\lambda}E_0$ \Rightarrow $e'(\lambda)=E_2-\frac{1}{\lambda^2}E_0=0$ \Rightarrow Stable topological solitons in 1D
- d = 2: $e(\lambda) = E_2 + \frac{1}{12}E_0 \implies e'(\lambda) = -\frac{2}{12}E_0 = 0 \implies$ No stable topological solitons in 2D
- $d \ge 3$: $e(\lambda) = \lambda^{2-d} E_2 + \lambda^{-d} E_0 \implies e'(\lambda) = (2-d)\lambda^{1-d} E_2 d\lambda^{-(d+1)} E_0 \implies \text{No stable topological solitons in } d > 3$

Evading the Hobart–Derrick Theorem

• The dimensionless energy and Poisson equation are

$$E = \int_{\mathbb{R}^2} \left\{ \frac{1}{2} |d\vec{n}|^2 + \vec{d}_i \cdot (\vec{n} \times \partial_i \vec{n}) + K(1 - n_z^2) + h(1 - n_z) + \frac{1}{2} \vec{n} \cdot \vec{\nabla} \psi \right\} d^2 x$$

• Rescaled Poisson equation, under $\vec{x} \mapsto \vec{x}' = \lambda \vec{x}$, becomes

$$\lambda^2 \Delta' \psi_{\lambda} = -\mu \lambda \nabla' \cdot \vec{n}_{\lambda} = -\mu \lambda \nabla' \cdot \vec{n} (\lambda \vec{x}) = \lambda \Delta' \psi (\lambda \vec{x}),$$

- Magnetic potential scaling behavior is $\psi_{\lambda}(\vec{x}) = \frac{1}{2}\psi(\lambda\vec{x})$
- Derrick scaling

$$E(\lambda) = E_{\text{exch}} + \frac{1}{\lambda} E_{\text{DMI}} + \frac{1}{\lambda^2} \left(E_{\text{pot}} + E_{\text{DDI}} \right) \quad \rightarrow \quad \frac{\text{d}E}{\text{d}\lambda} \Big|_{\lambda=1} = E_{\text{DMI}} + 2 \left(E_{\text{pot}} + E_{\text{DDI}} \right) = 0$$

- Can have stable topological solitons since E_{DMI} can be negative
- Solitons can be stabilized with DMI and DDI only, potential not required

Numerical method

Numerical method

Convenient to express everything in index notation

$$\mathcal{E} = \frac{1}{2} \left(\partial_j n_i \right)^2 + (\vec{d}_i)_j \epsilon_{jkl} n_k \partial_i n_l + K(1 - n_3^2) + h(1 - n_3) + \frac{1}{2} n_i \partial_i \psi$$

Associated Euler–Lagrange field equations are

$$\frac{\partial \mathcal{E}}{\partial n_i} = -\partial_j \partial_j n_i + 2(\vec{d}_a)_b \epsilon_{bij} \partial_a n_j - \delta_i^3 \left(2K n_3 + h \right) + \partial_i \psi = 0$$

- Magnetic skyrmions are are local minimizers of the energy functional
- \Rightarrow Solutions of the Euler–Lagrange field equations and satisfy the Derrick scaling constraint $E_{\rm DMI} + 2\left(E_{\rm pot} + E_{\rm DDI}\right) = 0$
- We choose to numerically relax the energy using an accelerated gradient descent based method with flow arresting criteria, $\partial_{tt}\vec{n} = -\text{grad}\,E(\vec{n})$ [J. High Energ. Phys. **07**, 184 (2020)]

Numerical method

- Inclusion of the DDI introduces non-locality into the minimization problem
- During every iteration of the magnetization minimization, ψ must solve Poisson's equation $\Delta \psi = \mu \rho$ with source $\rho = -(\vec{\nabla} \cdot \vec{n})$
- This can be approached by reformulating the problem as an unconstrained optimization problem: minimize the functional

$$F(\psi) = \frac{1}{2} \| d\psi \|_{L^2}^2 + \mu \int_{\mathbb{R}^2} d^2x \left(\vec{\nabla} \cdot \vec{n} \right) \psi$$

with respect to ψ , where the magnetization \vec{n} is fixed

• We will use a non-linear conjugate gradient method with a line search strategy to solve this unconstrained problem, based on method in [J. High Energ. Phys. **06**, 116 (2024)]

Results

Isolated magnetic skyrmions

 Before implementing the numerical algorithm, we can gain some intuition by computing the divergence of the magnetization ansätze

$$\vec{n}_{\text{Bloch}} = (-\sin f(r)\sin\theta, \sin f(r)\cos\theta, \cos f(r)) \quad \Rightarrow \quad \vec{\nabla} \cdot \vec{n}_{\text{Bloch}} = 0$$

$$\vec{n}_{\text{N\'eel}} = (\sin f(r)\cos\theta, \sin f(r)\sin\theta, \cos f(r)) \quad \Rightarrow \quad \vec{\nabla} \cdot \vec{n}_{\text{N\'eel}} = \frac{\mathrm{d}f}{\mathrm{d}r}\cos f(r) + \frac{1}{r}\sin f(r)$$

$$\vec{n}_{\text{Heusler}} = (-\sin f(r)\sin\theta, -\sin f(r)\cos\theta, \cos f(r)) \quad \Rightarrow \quad \vec{\nabla} \cdot \vec{n}_{\text{Heusler}} = \left(\frac{1}{r}\sin f(r) - \frac{\mathrm{d}f}{\mathrm{d}r}\cos f(r)\right)\sin 2\theta$$

- Dipolar interaction has no effect on Bloch skyrmions as the Bloch ansatz is solenoidal
- However, it does have an effect on Néel skyrmions and Heusler antiskyrmions

Magnetic potential of isolated magnetic skyrmions

Magnetic skyrmion crystals

- Next, we investigate the DDI effect on magnetically ordered crystals
- In absence of DDI, optimal crystalline structure is hexagonal
- Restrict geometry to be equianharmonic \Rightarrow rectangular unit cell of size $L \times \sqrt{3}L$
- Vary the lattice parameter L
- Initial configuration consists of two separated (anti)skyrmions
- Carried out using a product ansatz $u = u_1 + u_2$ in the $\mathbb{C}P^1$ formalism (S^2 and $\mathbb{C}P^1$ are diffeomorphic)
- In all cases, as $L \to \infty$, the energy per unit topological charge approaches that of the isolated single magnetic skyrmion

Magnetic skyrmion crystals

- For our parameter set, interaction energy is repulsive without DDI
- \Rightarrow Negative binding energy $E_{\text{bind}} = 2E_1 E_{\text{latt}} < 0$
 - Skyrmions prefer to be infinitely separated
 - Remains true for Dresselhaus and Rashba DMI related skyrmions with DDI
 - Heusler antiskyrmions have positive binding energy ⇒ finite optimal lattice size
 - Heusler lattice symmetry also changes from hexagonal to square
 - ! DDI has noticeable effect on antiskyrmions in bulk of Heusler compounds

Conclusion

Conclusion

- We have shown how to include the magnetostatic self-energy and how to compute the back-reaction
- Crystalline symmetry changed in Heusler type compounds [MRS Bull. 47, 600 (2022)]
- Method can be extended to 3d chiral magnets (B.C.s require some care though)
- If considering thin films, stray field outside magnet needs to be determined [SIAM J. Math. Anal.
 52, 3580-3599 (2020)]
- How does the dipolar interaction effect skyrmion dynamics?
- Can our method be generalized to other systems such as skyrmions in liquid crystals? [Phys. Rev. E 90, 042502 (2014)]

