Instruction Fine-tuning using Alpaca Best Practices and Learned Lessons

Motivation

Large language models are few shot and multitask learners

Outlines

- Prompt-based learning methods
- Instruction fine-tuning
- □ LoRa: Low-Rank Adaptation of Large Language Models
- Use Case: Instruction fine-tuning on Sentiment Analysis using Alpaca
- Lessons Learned

Prompt-based learning

Instruction Fine-tuning

Prompt fine-tune

Instruction Fine-tuning

LoRa: Low-Rank Adaptation of Large Language Models

$$h = W_0 x + \Delta W x$$

LoRa: Low-Rank Adaptation of Large Language Models

$$h = W_0 x + BAx$$

Implementation

- □ Model: wxjiao/alpaca-7b
- Github: https://github.com/tloen/alpaca-lora/

Hardware

- Nvidia A100 with 80GB
- 8-cores CPU with access to 128 GB RAM.

Details

- Float16 precision
- Early stopping on the training loss
- Linear Learning rate scheduler
- Adam Optimizer

Sentiment Analysis

Develop a classifier to categorize the sentiment of a review into positive or negative

Experimental Setup

Amazon Polarity Dataset

split	Reviews	Positive	Negative
Training	32,000	16,022	15,978
Validation	100	54	46
Test	4,000	2,007	1,993

Data Sample

Review 1: I have been programming in C++ for two years on the college level and found this book to be good at building a foundation knowledge of the language that can be expanded on with other book. I am on day 15 and alread have a good start on a bussiness program.

Sentiment: Positive

Prompting

Instruction

Classify the following review into two categories: 1) positive, and 2) negative based on its content, given the following examples.

Examples

```
Example 1 Example 2
```

Input

I have been programming in C++ for two years on the college level and found this book to be good at building a foundation knowledge of the language that can be expanded on with other book. I am on day 15 and alread have a good start on a bussiness program.

Response Positive

Instruction fine-tuning

Instruction

Classify the following review into two categories: 1) positive, and 2) negative based on its content.

Input

I have been programming in C++ for two years on the college level and found this book to be good at building a foundation knowledge of the language that can be expanded on with other book. I am on day 15 and alread have a good start on a bussiness program.

Response Positive

Sentiment Classification Results with Alpaca-7b

Approach	Shots	Accuracy
SVM		0.83
prompting	16	0.88
Instruction-fine-tuning	16	0.88

Lessons Learned

- Instruction fine tuning is faster than prompting
- Set multiple seeds and average over them
- Use the Alpaca template format for prompt engineering
- Balance the label distribution in the few shot as well
- Use sampling methods to choose your few shots
- Explicitly state the labels in the prompt and define them