Software Security COSC 466/566 Spring 2023

Dr. Doowon Kim

Today's class

- Introducing
- Security mindset
- What's the computer security?

Who are you? (Trying to remember your name)

- Preferred name
- Class year
- Academic program and advisor if possible
- Background in Security (a lot, a little, none)
- What do you expect to learn from this course?
- What topic interests you the most?
- Why do you choose this course?

What is computer security?

The key difference:

- Security involves an adversary who is active and malicious.
- Attackers seek to circumvent protective measures.

What's the diff between you and attackers?

Attackers are not normal users

- Normal users: try to avoid bugs/flaws
- Attackers: try to find the bugs/flaws out and to exploit them

Ex) The Heartbleed Bug

- A security bug in the OpenSSL cryptography library, which is widely used implementation of the Transport Layer Security (TLS) protocol [wikipedia]
 - This weakness allows stealing the information
 - user names & passwards
 - instant messgaes & emails
 - business critical documents & communication
 - more..

Ex) The Heartbleed Bug

- The vulnerability is a "buffer over-read"
 - Software (accidently) allows more data to be read than should be allowed

P Heartbeat – Normal usage

Heartbeat – Normal usage

Heartbeat – Malicious usage

Ex) The Heartbleed Bug

- The vulnerability is a "buffer over-read"
 - Software (accidently) allows more data to be read than should be allowed
- It is a simple programming bug, but it is hard to discover
 - Vulnerable OpenSSL was released on March 14, 2012
 - Google's security team reported Heartbleed on April 1, 2014

How to find a problem?

- Manual program inspection
 - Maybe effective
 - But humans are not good at
 - Repetitive and tedious tasks
 - Maintaining large amounts of detail
- Automated program analysis
 - Replace human inspection to find software problems
 - Support inspection by
 - Automated extracting and summarizing information
 - Automatically analyze extracted information

Capture The Flag (CTF)

What's the CTF?

 Capture the Flag (CTF) in computer security is an exercise in which "flags" are secretly hidden in purposefully-vulnerable programs or websites.

Demo

• SignUp Bonus

Demo

Play with images

Machine Programming: Basics

Basic Architecture Of a Computer

Central Processing Unit (CPU)

- Provides computation
 - The set of allowed operations is known as the instruction set
 - Machine code is the byte-level programs that the processor executes
 - Assembly code is a human-readable representation of machine code
- Provides limited storage
 - Registers
 - Cache
- Interfaces with rest of computer
 - PCI
 - Main memory
 - USB

CPU Architectures

- Instruction set
 - Reduced instruction set computer (RISC)
 - General operations
 - Power efficient
 - Example: ARM
 - Complex instruction set computer (CISC)
 - Complex and specialized operations
 - Pipelining allows for incredible throughput
 - Modern side-channel attacks take advantage of these complex pipelines
 - Example: Intel Core i7, AMD Ryzen
- Architecture also specifies the word size
 - Refers to the default numbers of bits for data and pointers
 - Modern systems use 64-bit (8-bytes) words

x86 Chipsets

- Intel released several backwards compatible chips
 - 80186, 80286, 80386, i486 (80486)
 - Shared instruction set known as x86
- Intel Pentium processors
 - Next evolution of the x86 architecture
 - Higher clock speeds, more pipelining
 - Pentium 4E was the first 64-bit consumer-grade CPU
- AMD Athlon processors
 - Used machine code that was compatible with intel
 - Cemented x86 as the dominant instruction set

x86 Chipsets

- Core processors
 - Transitioned from focusing on increasing clock frequency to increasing core counts
 - Marginal gains by increasing clock speed
 - More power efficient
 - Based on the Pentium 3 architecture
 - 64-bit architecture
- AMD continued to produce chips compatible with Intel's chips
 - Usually, less performant
 - Much cheaper

Moving to 64-bit Architectures

- IA-64
 - Intel's attempt to create a new instruction set for 64-bit processors
 - Was not backwards compatible with the x86 instruction set
 - Was a failure
- x86-64
 - AMD's proposed 64-bit instruction set
 - Was backwards compatible with the x86 instruction set
 - Currently used by Intel and AMD processors