Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2. (Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

a) BUFFER

Hvilken blanding av stoffer løst i vann kan gi en buffer?

- A. NH₄Cl og HCl
- B. HCl og NaCl
- C. NaCl og NaOH
- D. NaOH og NH₄Cl

b) BUFFER

Hvilket av disse syre-base-parene kan gi en bufferløsning med pH = 7,0?

- A. NH₄CI/NH₃
- B. H₂PO₄-/HPO₄²-
- C. CH₃COOH/CH₃COO
- D. HSO₄⁻/SO₄²-

c) UORGANISK ANALYSE

Du har to forskjellige kolber som inneholder hver sin saltløsning. De oppløste saltene er hvite og løselige i vann. Når du blander de to løsningene, blir det dannet en hvit felling.

Hvilke av disse saltene kan være oppløst i de to kolbene?

- A. CaCl₂ og Na₂CO₃
- B. NH₄NO₃ og NaCH₃COO
- C. BaCl₂ og NaBr
- D. Na₂SO₄ og KI

d) ORGANISKE REAKSJONER

Figur 1 viser tre isomere pentanoler.

Ved eliminasjon av vann fra disse pentanolene blir det dannet penten.

Hvilke(n) av pentanolene i figur 1 kan gi trans-pent-2-en som produkt?

- A. bare pentan-1-ol
- B. både pentan-1-ol og pentan-2-ol
- C. både pentan-2-ol og pentan-3-ol
- D. bare pentan-3-ol

e) UORGANISK ANALYSE

Du har en kald løsning med to ukjente kationer. Det blir ingen felling ved tilsetning av HCl, men ved tilsetning av H_2SO_4 blir det dannet et hvitt bunnfall.

Hvilke kationer kan det være i løsningen?

- A. Cu²⁺ og K⁺
- B. NH₄⁺ og Na⁺
- C. K+ og Ba²⁺
- D. Pb2+ og Ba2+

Tabell 1 viser fire alkoholer.

Tabell 1

Strukturfomel	Navn
н 	metanol
H H H—C—C—H H OH	etanol
H H H—c—c—H OH OH	etan-1,2-diol
H H H H—C—C—C—H H OH H	propan-2-ol

Hvilken blanding av disse alkoholene kan skilles best ved enkel destillasjon?

- A. metanol og etanol
- B. etan-1,2-diol og metanol
- C. etanol og propan-2-ol
- D. propan-2-ol og metanol

g) REDOKSREAKSJONER

Reaksjonen $Br_2 + 2Cl^- \rightarrow Cl_2 + 2Br^-$ er en redoksreaksjon. Under følger tre påstander om denne reaksjonen.

- i) Kloridioner er oksidasjonsmiddelet.
- ii) Brom blir redusert.
- iii) Reaksjonen er spontan.

Hvilke(n) av påstandene om denne reaksjonen er riktig(e)?

- A. i)
- B. ii)
- C. i) og ii)
- D. ii) og iii)

h) POLYMERER

Figur 2 viser et utsnitt av en addisjonspolymer. Utsnittet består av tre repeterende enheter.

Figur 2

Hvilken monomer er opphavet til denne polymeren?

- A. but-1-en
- B. but-2-en
- C. 2-metylpropen
- D. butan-1,3-dien

i) ORGANISKE REAKSJONER

Hvilket av stoffene i figur 3 vil reagere med både 2,4-dinitrofenylhydrazin og Fehlings væske?

Figur 3

- A. glyseraldehyd
- B. aceton
- C. glyserol
- D. glysersyre

j) OKSIDASJONSTALL

I hvilken av disse forbindelsene har svovel oksidasjonstall +II?

- A. H₂S
- B. NaHSO₃
- C. (NH₄)₂SO₄
- D. Na₂S₂O₃

k) HALVREAKSJONER

Den balanserte reaksjonslikningen for reaksjon mellom dikromationer og jern(II)ioner skrives slik:

$$\text{Cr}_2\text{O}_7^{\ 2-} + 6\text{Fe}^{2+} + 14\text{H}^+ \rightarrow 2\text{Cr}^{3+} + 6\text{Fe}^{3+} + 7\text{H}_2\text{O}$$

Hva er oksidasjonsmiddelet i denne reaksjonen?

- A. Fe³⁺
- B. Fe²⁺
- C. $Cr_2O_7^{2-}$
- D. Cr³⁺

I) AMINOSYRER

Figur 4 viser aminosyren lysin. Lysin har isoelektrisk punkt ved pH = 9,7.

Ved hvilken pH vil lysin, i stor grad, foreligge som vist i figuren?

- A. 2,0
- B. 7,5
- C. 9,7
- D. 12,5

Figur 4

m) REDOKSREAKSJONER

Hvilket av disse stoffene vil gi en spontan reaksjon med Sn²⁺ - ioner?

- A. Fe, jern
- B. NaCl, natriumklorid
- C. HCI, saltsyre
- D. H₂, hydrogengass

n) GALVANISK CELLE

Figur 5 viser en galvanisk celle. Saltbroen inneholder en løsning av et stoff som er løselig i vann, og denne løsningen må være en elektrolytt. Stoffet i saltbroen må ikke reagere med noen av stoffene i den galvaniske cellen.

Hvilket av disse stoffene, løst i vann, vil være best egnet til bruk i saltbroen?

- A. fruktose, C₆H₁₂O₆
- B. kaliumnitrat, KNO₃
- C. sølvklorid, AgCl
- D. tinn(II)klorid, SnCl₂

Figur 5

o) GALVANISK CELLE

Hva er cellespenningen til den galvaniske cellen i figur 5?

- A. +1,10 V
- B. +0,34 V
- C. -0,42 V
- D. -0,76 V

p) ORGANISKE REAKSJONER

Figur 6 viser forbindelsen glyseraldehyd, 2,3-dihydroksypropanal.

Hvor mange av påstandene under er riktige?

- i) Glyseraldehyd gir en basisk løsning i vann.
- ii) Glyseraldehyd har to speilbildeisomerer.
- iii) Glyseraldehyd reagerer med bromvann.
- iv) Glyseraldehyd kan danne ester med metanol.
- v) Glyseraldehyd kan oksideres til glysersyre, 2,3-dihydroksypropansyre.

Glyseraldehyd

A. to B. tre

C. fire

D. fem

Figur 6

q) OKSIDASJONSTALL

I denne reaksjonen øker oksidasjonstallet til hvert svovelatom med 8.

$$2MoS_2 + 9O_2 \rightarrow 2MoO_3 + 4SO_3$$

Hva er endringen i oksidasjonstall til molybden?

- A. Oksidasjonstallet avtar med 2.
- B. Oksidasjonstallet endrer seg ikke.
- C. Oksidasjonstallet øker med 2.
- D. Oksidasjonstallet øker med 4.

r) ORGANISK KJEMI

Hvilke to stoffer blir brukt for å lage esteren med kjemisk formel CH₃CH₂CH₂COOCH₂CH₃?

- A. pentanol(I) og etanol(I)
- B. pentanol(I) og etansyre(I)
- C. pentansyre(I) og etansyre(I)
- D. pentansyre(I) og etanol(I)

s) KARBOHYDRATER

Raffinose er et trisakkarid. De tre monosakkaridene som bygger opp raffinose, er glukose, galaktose og fruktose, alle med kjemisk formel $C_6H_{12}O_6$.

Hva er den kjemiske formelen for dette trisakkaridet?

- A. C₁₈H₃₆O₁₆
- B. C₁₈H₃₄O₁₄
- C. C₁₈H₃₂O₁₆
- D. C₁₈H₃₂O₁₄

t) BUFFER

Sitronsyre er en treprotisk syre. Sitronsyre og salter av sitronsyre (sitrater) er mye brukt til å lage bufferløsninger.

En bufferløsning består av et av disse syre-base-parene:

- sitronsyre natriumdihydrogensitrat
- natriumdihydrogensitrat dinatriumhydrogensitrat
- dinatriumhydrognsitrat trinatriumsitrat

Bufferen har god kapasitet mot både sur og basisk side. Bruk p K_a -verdiene som du finner i tabellvedlegget til å løse denne oppgaven.

Hva er pH i bufferen?

- A. pH = 2,0
- B. pH = 4.9
- C. pH = 5.6
- D. pH = 7.3

Oppgave 2

a) Figur 7 viser propan-1-ol og propen.

Figur 7

- 1. Forklar hva slags reaksjonstype omdanning av propan-1-ol til propen er.
- 2. Propen kan reagere med brom, Br₂, og danne et nytt stoff. Tegn strukturformelen til produktet. Hva slags reaksjon er dette?
- 3. Propan-1-ol kan oksideres. Tegn strukturformelen til det oksidasjonsproduktet som reagerer med 2,4-dinitrofenylhydrazin.
- b) Blybromid, PbBr₂, smelter ved 373 °C. Ved elektrolyse av smeltet blybromid blir det dannet bly, Pb, og brom, Br₂.

Halvreaksjonene, skrevet som reduksjoner, er:

$$Br_2 + 2e^- \rightarrow 2Br^ E^\circ = +1,09 \text{ V}$$

 $Pb^{2+} + 2e^- \rightarrow Pb$ $E^\circ = -0,13 \text{ V}$

- Figur 8 viser elektrolysekaret.
 Ved elektrode B skjer det en oksidasjon.
 Skriv halvreaksjonen for denne reaksjonen.
- 2. Forklar hva som må være negativ elektrode i dette elektrolysekaret.

Figur 8

3. Beregn den minste teoretiske spenningen som må til for at reaksjonen skal finne sted.

- c) En buffer er laget ved å løse fast natriumacetat i en løsning av eddiksyre. pH i bufferen er 5.00.
 - 1. Skriv den kjemiske formelen til den basiske bufferkomponenten.
 - 2. Du tilsetter saltsyre, HCl(aq), til bufferen. pH i bufferen etter denne tilsetningen er 4,00. Forklar hvordan bufferkapasiteten mot sur og basisk side har endret seg.
 - 3. Forklar hvorfor en blanding av eddiksyre og natriumacetat ikke er egnet til å lage en buffer med pH = 7,0.
- d) For å bestemme innholdet av kloridioner i en løsning ble den titrert med en løsning av sølvnitrat, AgNO₃(aq).

Reaksjonen som skjer i titreringskolben, er en fellingsreaksjon og skrives slik:

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

25,00 mL av prøveløsningen ble titrert med 0,100 mol/L AgNO₃. Det ble tilsatt 12,5 mL sølvnitrat før endepunktet for titreringen var nådd.

- 1. Hvor mange mol sølvioner var tilsatt til prøveløsningen akkurat idet endepunktet for titreringen var nådd?
- 2. Beregn konsentrasjonen av kloridioner i prøveløsningen i mol/L. Svaret skal gis med riktig antall gjeldende siffer.
- 3. Indikatoren i denne titreringen er kromationer, CrO₄²⁻. Kromationer felles med sølvioner ved endepunktet for titreringen, slik reaksjonslikningen viser:

$$2Ag^{+}(aq) + CrO_{4}^{2-}(aq) \rightarrow Ag_{2}CrO_{4}(s)$$

Forklar hvilke av disse stoffene og ionene som finnes i titreringskolben når halvparten av kloridionene er brukt opp:

Cl-

Ag+

Ag₂CrO₄

AgCl

CrO₄2-

Del 2

Oppgave 3

Frihetsgudinnen i New York er en stor statue bygget i 1886 av den franske skulptøren Frederic Bartholdi. Statuen består av et reisverk av jern som er belagt med kobberplater. På 1980-tallet ble statuen fullstendig restaurert på grunn av store korrosjonsskader på reisverket.

- a) Kobberplatene er dekket av et grønt lag med irr, se figur 9. Irr blir dannet når kobber står ute i friluft. Irr består av Cu(OH)₂· CuCO₃.
 - Beregn oksidasjonstallet til kobber i irr.
- b) Statuen står ute i havnebassenget og blir utsatt for sjøvann. Sjøvann inneholder 3,5 % oppløste salter. Figur 10 viser reisverket av jern. Forklar hvorfor det er viktig at jernet i reisverket er beskyttet mot sjøvann og fuktighet i luft.

Kobberplatene var opprinnelig festet til reisverket av jern slik figur 11 viser. Jernet var dekket av asbest og skjellakk (Shellac) for å hindre kontakt mellom jern og kobber.

c) Skjellakk (Shellac) er en kondensasjonspolymer satt sammen av to monomere. De to monomerene er vist i figur 12.

Figur 12

Tegn en skisse av hvordan de to monomerene kan binde seg sammen. Du skal bare tegne én av de mange mulighetene.

d) De største korrosjonsskadene var der kobberplatene var festet til reisverket. Isolasjonen av skjellakk og asbest hadde blitt vasket bort, og kobberplatene kom i kontakt med jern og sjøvann.

Forklar hvilke reaksjoner som skjedde der kobberplatene er festet til reisverket, og hvorfor. Ta med reaksjonslikninger i forklaringen din.

e) For å hindre korrosjon i områdene der kobberplatene er festet til reisverket, ble jernbjelkene ved restaureringen belagt med en polymer. Viktige egenskaper for denne polymeren er at den ikke må være biologisk nedbrytbar, at den ikke tar opp vann, og at den reagerer lite med andre stoffer.

Vurder om én eller flere av disse polymerene kan være egnet til dette formålet:

- polypropen (addisjonspolymer)
- cellulose (kondensasjonspolymer)
- polyglycin (kondensasjonspolymer av aminosyren glysin)
- polypropensyre (addisjonspolymer)

Oppgave 4

Figur 13 viser pyrodruesyre (2-oksopropansyre) og melkesyre (2-hydroksypropansyre). Disse forbindelsene deltar i biokjemiske reaksjoner i kroppen.

Figur 13

- a) Vis at karbon blir redusert ved dannelse av melkesyre fra pyrodruesyre.
- b) Figur 14 viser et ¹H-NMR-spekter. Hvilken av de to forbindelsene, melkesyre eller pyrodruesyre, er vist i dette spekteret? Begrunn svaret.

Figur 14

c) Figur 15 viser et utsnitt av polymeren polymelkesyre. Polymelkesyre er biologisk nedbrytbar. Forklar hva slags reaksjon nedbryting av denne polymeren er, og hva som blir dannet.

Figur 15

d) Omdannelse av pyruvat (korresponderende base til pyrodruesyre) til laktat (korresponderende base til melkesyre) med NADH er en redoksreaksjon. Skriv den balanserte reaksjonslikningen for denne reaksjonen. Bruk de oppgitte verdiene for biologiske reduksjonspotensialer til å finne ut om reaksjonen er spontan:

Omdannelse av pyruvat til laktat: -0,19 V Omdannelse av NAD+ til NADH: -0,32 V

e) Omdannelse av pyruvat til laktat skjer ved hjelp av enzymet laktat dehydrogenase. Figur 16 viser pyruvat i det aktive setet. Pyruvat er markert med rødt.

Bruk figuren og forklar hvordan pyruvat blir holdt fast i det aktive setet.

Oppgave 5

Figur 17 viser Paracetamol, som er et smertestillende og febernedsettende legemiddel.

a) Utgangsstoffet for syntese av paracetamol er 4-aminofenol. Dette stoffet blir framstilt fra 4-nitrofenol, se figur 18.

HO paracetamol
Figur 17

Vis at reaksjonen fra 4-nitrofenol til 4-aminofenol er en reduksjon.

$$HO \longrightarrow NO_2 \longrightarrow HO \longrightarrow NH_2$$
4-nitrofenol 4-aminofenol

Figur 18

- b) Forklar hvorfor 4-nitrofenol vil ha tre hovedtopper i et ¹H -NMR-spekter, mens 4-aminofenol vil ha fire.
- c) Skriv den balanserte reaksjonslikningen for syntese av paracetamol fra 4-aminofenol.

En gruppe elever skulle bestemme innholdet av paracetamol i en tablett.

Først isolerte de paracetamol fra tabletten.

Paracetamolen ble deretter renset ved omkrystallisering. Løseligheten til paracetamol er 14,9 mg per mL ved 25 °C og over 50 mg pr mL i varmt vann. Krystallene ble filtrert fra ved 25 °C. Elevene brukte 10,0 mL vann til å omkrystallisere paracetamolen,

d) Innholdet av paracetamol i tabletten er oppgitt å være 500 mg. Beregn hvor mange mg paracetamol som maksimalt kan isoleres ved denne omkrystalliseringen.

(Oppgaven fortsetter på neste side.)

Paracetamolen ble deretter hydrolysert til 4-aminofenol med svovelsyre og løsningen ble fortynnet med vann til 100,0 mL.

25,0 mL av denne løsningen ble titrert med en løsning med Ce^{4+} - ioner. Da skjer denne reaksjonen:

Forbruket av 0,100 mol/L Ce⁴⁺-løsning var 11,2 mL.

e) Beregn innholdet av paracetamol i tabletten.

Tabeller og formler i kjemi – REA3012 Kjemi 2

Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C I VANN

Halvreaksjon	E^{o} i V			
oksidert form	+ <i>n</i> e ⁻	→	redusert form	
F ₂	+ 2e ⁻	\rightarrow	2F ⁻	2,87
O ₃ (g) + 2H ⁺	+ 2e ⁻	\rightarrow	O ₂ (g) +H ₂ O	2,08
$H_2O_2 + 2H^+$	+ 2e ⁻	\rightarrow	2H ₂ O	1,78
Ce ⁴⁺	+ 2e ⁻ + e ⁻	\rightarrow	Ce ³⁺	1,72
$PbO_2 + SO_4^{2-} + 4H^+$	+ 2e ⁻	\rightarrow	PbSO ₄ + 2H ₂ O	1,69
$MnO_4^- + 4H^+$	+ 3e ⁻ +2e ⁻	\rightarrow	MnO ₂ +2H ₂ O	1,68
2HClO + 2H ⁺	+2e ⁻	\rightarrow	Cl ₂ + 2H ₂ O	1,63
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	\rightarrow	Mn ²⁺ + 4H ₂ O	1,51
Au ³⁺	+ 3e ⁻	\rightarrow	Au	1,40
Cl ₂	+ 2e ⁻ + 6e ⁻	\rightarrow	2Cl ⁻	1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	\rightarrow	2Cr ³⁺ + 7H ₂ O	1,36
$Cr_2O_7^{2-} + 14H^+$ $O_2 + 4H^+$ $MnO_2 + 4H^+$	+ 4e ⁻	\rightarrow	2H ₂ O	1,23
$MnO_2 + 4H^+$	+ 2e ⁻	\rightarrow	Mn ²⁺ + 2H ₂ O	1,22
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	\rightarrow	I ₂ + 6H ₂ O	1,20
Br ₂	+ 2e ⁻	\rightarrow	2 Br ⁻	1,09
$NO_{2}^{-} + 4H^{+}$	+ 3e ⁻	\rightarrow	NO + 2H ₂ O	0,96
2Hg ²⁺ Cu ²⁺ + I ⁻ Hg ²⁺	+ 3e ⁻ + 2e ⁻ + e ⁻	\rightarrow	Hg ₂ ²⁺	0,92
Cu ²⁺ + I ⁻	+ e ⁻	\rightarrow	Cul(s)	0,86
Hg ²⁺	+ 2e ⁻	\rightarrow	Hg	0,85
CIO + H ₂ O	+ 2e ⁻	\rightarrow	Cl + 2OH	0,84
Hg ₂ ²⁺	+ 2e ⁻	\rightarrow	2Hg	0,80
CIO ⁻ + H ₂ O Hg ₂ ²⁺ Ag ⁺ Fe ³⁺	+ 2e ⁻ + 2e ⁻ + e ⁻	\rightarrow	Ag	0,80
Fe ³⁺	+ e ⁻	\rightarrow	Fe ²⁺	0,77
O ₂ + 2H ⁺	+ 2e ⁻	\rightarrow	H ₂ O ₂	0,70
	+ 2e ⁻ + e ⁻	\rightarrow	21	0,54
I ₂ Cu ⁺	+ e ⁻	\rightarrow	Cu	0,52
	+ 4e ⁻	\rightarrow	40H ⁻	0,40
$O_2 + 2H_2O$ Cu^{2+}	+ 2e ⁻	\rightarrow	Cu	0,34
Ag ₂ O + H ₂ O	+ 2e ⁻	\rightarrow	2Ag + 2OH	0,34
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	\rightarrow	H ₂ SO ₃ + H ₂ O	0,17
SO ₄ ²⁻ + 4H ⁺ Cu ²⁺	+ e ⁻	\rightarrow	Cu ⁺	0,16
Sn ⁴⁺	+ 2e ⁻	\rightarrow	Sn ²⁺	0,15
S + 2H ⁺	+ 2e ⁻	\rightarrow	H ₂ S	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	\rightarrow	2S ₂ O ₃ ²⁻	0,08
S ₄ O ₆ ²⁻ 2H ⁺ Fe ³⁺ Pb ²⁺	+ 2e ⁻	\rightarrow	H ₂	0,00
Fe ³⁺	+ 3e ⁻	\rightarrow	Fe	-0,04
Pb ²⁺	+ 2e ⁻	\rightarrow	Pb	-0,13
Ni ²⁺	+ 2e ⁻	\rightarrow	Ni	-0,26
	+ 2e ⁻	\rightarrow	Pb + SO ₄ ²⁻	-0,36
PbSO ₄ Cd ²⁺	+ 2e ⁻	\rightarrow	Cd	-0,40
Sn ²⁺	+ 2e ⁻	\rightarrow	Sn	-0,14
Sn ²⁺ Cr ³⁺	+ e ⁻	\rightarrow	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	\rightarrow	Fe	-0,45

oksidert form	+ <i>n</i> e ⁻	→	redusert form	E° i V
S	+ 2e ⁻	\rightarrow	S ²⁻	-0,48
2CO ₂ + 2H ⁺ Zn ²⁺	+ 2e ⁻	\rightarrow	$H_2C_2O_4$	-0,49
Zn ²⁺	+ 2e ⁻	\rightarrow	Zn	-0,76
2H ₂ O Mn ²⁺	+ 2e ⁻	\rightarrow	H ₂ + 2OH ⁻	-0,83
Mn ²⁺	+ 2e ⁻	\rightarrow	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	\rightarrow	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	\rightarrow	Al	-1,66
Mg ²⁺	+ 2e ⁻	\rightarrow	Mg	-2,37
Na ⁺	+ e ⁻	\rightarrow	Na	-2,71
Mg ²⁺ Na ⁺ Ca ²⁺	+ 2e ⁻	\rightarrow	Ca	-2,87
K ⁺	+ e ⁻	\rightarrow	K	-2,93
Li [†]	+ e ⁻	\rightarrow	Li	-3,04

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	$\textbf{Massetetthet} \ \frac{g}{mL}$	Konsentrasjon $\frac{\text{mol}}{\text{L}}$
Saltsyre	HCl	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H ₂ O	100	1,00	55,56

ROMERTALL 1-10

1	2	3	4	5	6	7	8	9	10
I	П	Ш	IV	V	VI	VII	VIII	IX	X

Grunnstoff	Isotop	Relativ forekomst (%)
		i jordskorpen
Hydrogen	¹ H	99,985
	² H	0,015
Karbon	¹² C	98,89
	¹³ C	1,11
Nitrogen	¹⁴ N	99,634
	¹⁵ N	0,366
Oksygen	¹⁶ O	99,762
	¹⁷ 0	0,038
	¹⁸ O	0,200
Silisium	²⁸ Si	92,23
	²⁹ Si	4,67
	³⁰ Si	3,10
Svovel	³² S	95,02
	³³ S	0,75
	³⁴ S	4,21
	³⁶ S	0,02
Klor	³⁵ Cl	75,77
	³⁷ Cl	24,23
Brom	⁷⁹ Br	50,69
	⁸¹ Br	49,31

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	K _a	p <i>K</i> a
Acetylsalisylsyre	C ₉ H ₈ O ₄	3,3 · 10 ⁻⁴	3,5
Ammonium	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	C ₆ H ₈ O ₆	7,9 · 10 ⁻⁵	4,04
Hydrogenaskorbat	C ₆ H ₇ O ₆	1,6 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,4 · 10 ⁻⁵	4,2
Benzylsyre, (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	5,2 · 10 ⁻⁵	4,3
Borsyre	B(OH) ₃	5,8 · 10 ⁻¹⁰	9,3
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,8
Eplesyre, malinsyre	C ₄ H ₆ O ₅	4,0 · 10 ⁻⁴	3,4
Hydrogenmalat	C ₄ H ₅ O ₅	7,9 · 10 ⁻⁶	5,1
Etansyre (Eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,76
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	10,0
Fosforsyre	H ₃ PO ₄	$6,9 \cdot 10^{-3}$	2,16
Dihydrogenfosfat	H ₂ PO ₄	6,2 · 10 ⁻⁸	7,2
Hydrogenfosfat	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,3
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfitt	H ₂ PO ₃	2,0 · 10 ⁻⁷	6,7
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,3 · 10 ⁻³	2,9
Hydrogenftalat	C ₆ H ₄ (COOH)COO ⁻	4,0 · 10 ⁻⁶	5,4
Hydrogensulfid	H ₂ S	7,9 · 10 ⁻⁸	7,1
Hydrogensulfidion	HS ⁻	1,0 · 10 ⁻¹⁹	19
Hydrogensulfat	HSO ₄	1,0 · 10 ⁻²	2,0

Navn	Formel	K _a	p <i>K</i> a
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,2
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,2
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,6
Karbonsyre	H ₂ CO ₃	4,0 · 10 ⁻⁷	6,4
Hydrogenkarbonat	HCO ₃	4,7 · 10 ⁻¹¹	10,3
Klorsyrling	HCIO ₂	1,3 · 10 ⁻²	1,9
Kromsyre	H ₂ CrO ₄	2,0 · 10 ⁻¹	0,7
Hydrogenkromat	HCrO ₄	3,2 · 10 ⁻⁷	6,5
Maleinsyre, cis-butendisyre	C ₄ H ₄ O ₄	1,2·10 ⁻²	1,9
Hydrogenmaleat	$C_4H_3O_4^-$	5,9 · 10 ⁻⁷	6,2
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,9
Metansyre (mausyre)	HCHO ₂	1,5 · 10 ⁻⁴	3,8
Oksalsyre	H ₂ C ₂ O ₄	5,6 · 10 ⁻²	1,3
Hydrogenoksalat	HC ₂ O ₄	1,5 · 10 ⁻⁴	3,8
Propansyre	HC ₃ H ₅ O ₂	1,3 · 10 ⁻⁵	4,9
Salisylsyre	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	3,0
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,3
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,9
Hydrogensulfitt	HSO ₃	6,3 · 10 ⁻⁸	7,2
Sitronsyre	$H_3C_6H_5O_7$	7,4 · 10 ⁻⁴ 1,7 · 10 ⁻⁵	3,1
Dihydrogensitrat	$H_2C_6H_5O_7^-$	1,7 · 10 ⁻⁵	4,8
Hydrogensitrat	HC ₆ H ₅ O ₇ ²⁻	$4,1\cdot 10^{-7}$	6,4
Vinsyre (2,3-dihydroksybutandisyre, tartarsyre)	(CH(OH)COOH) ₂	6,8 · 10 ⁻⁴	3,2
Hydrogentartrat	HOOC(CH(OH))₂COO¯	1,2 · 10 ⁻⁵	4,9
Hypoklorsyre (underklorsyrling)	HOCI	4,0 · 10 ⁻⁸	7,4
Urea	CH ₄ N ₂ O	0,8 · 10 ⁻¹	0,1

BASEKONSTANTER (K_b) I VANNLØSNING VED 25 $^{\circ}\text{C}$

Navn	Formel	K _b	р <i>К</i> _b
Acetat	CH₃COO¯	5,0 · 10 ⁻¹⁰	9,3
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,7
Metylamin	CH ₃ NH ₂	5,0 · 10 ⁻⁴	3,3
Dimetylamin	(CH ₃)₂NH	5,0 · 10 ⁻⁴	3,3
Trimetylamin	(CH₃)₃N	6,3 · 10 ⁻⁵	4,2
Etylamin	CH ₃ CH ₂ NH ₂	4,6 · 10 ⁻⁴	3,4
Dietylamin	(C ₂ H ₅) ₂ NH	6,3 · 10 ⁻⁴	3,2
Trietylamin	(C ₂ H ₅) ₃ N	5,0 · 10 ⁻⁴	3,3
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,9 · 10 ⁻¹⁰	9,1
Pyridin	C ₅ H ₅ N	1,6 · 10 ⁻⁹	8,8
Hydrogenkarbonat	HCO ₃	2,0 · 10 ⁻⁸	7,7
Karbonat	CO ₃ ²⁻	2,0 · 10 ⁻⁴	3,7

Indikator	Fargeforandring	pH-omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rød	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	Cl¯	CO ₃ ²⁻	CrO ₄ ²⁻	Ī	O ²⁻	OH [−]	S ²⁻	SO ₄ ²⁻
Ag⁺	U	U	U	U	U	U	Uk	U	T
Al ³⁺	R	R	Uk	Uk	R	U	U	R	R
Ba ²⁺	L	L	U	U	L	R	L	Т	U
Ca ²⁺	L	L	U	T	L	Т	U	Т	Т
Cu ²⁺	L	L	Uk	U	Uk	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	Uk	U	Uk	U	U	U	L
Hg ₂ ²⁺	U	U	J	U	U	Uk	U	Uk	U
Hg ²⁺	Т	L	Uk	U	U	U	U	U	R
Mg ²⁺	L	L	J	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	Т	Т	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	Uk	R	U	U	U	R
Sn ⁴⁺	R	R	Uk	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

Uk = Ukjent forbindelse, R = reagerer med vann.

LØSELIGHETSPRODUKT, K_{sp} , FOR SALT I VANN VED 25 °C

Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰
Bly (II) bromid	PbBr ₂	6,60 · 10 ⁻⁶
Bly (II) hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰
Bly (II) jodid	PbI ₂	9,80 · 10 ⁻⁹
Bly (II) karbonat	PbCO ₃	7,40 · 10 ⁻¹⁴
Bly (II) klorid	PbCl ₂	1,70 · 10 ⁻⁵
Bly (II) oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹
Bly (II) sulfat	PbSO ₄	2,53 · 10 ⁻⁸
Bly (II) sulfid	PbS	3 · 10 ⁻²⁸
Jern (II) fluorid	FeF ₂	2,36 · 10 ⁻⁶
Jern (II) hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷
Jern (II) karbonat	FeCO ₃	3,13 · 10 ⁻¹¹
Jern (II) sulfid	FeS	8 · 10 -19
Jern (III) fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶
Jern (III) hydroksid	Fe(OH) ₃	2,79 · 10 ⁻³⁹
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³
Kalsiumhydroksid	Ca(OH) ₂	5,02 · 10 ⁻⁶
Kalsiumkarbonat	CaCO ₃	3,36 · 10 ⁻⁹
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵
Kobolt(II) hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵
Kopper(I) bromid	CuBr	6,27 · 10 ⁻⁹
Kopper(I) klorid	CuCl	1,72 · 10 ⁻⁷
Kopper(I) oksid	Cu ₂ O	2 · 10 ⁻¹⁵
Kopper(I) jodid	Cul	1,27 · 10 ⁻¹²
Kopper(II) fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷
Kopper(II) oxalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰
Kopper(II) sulfid	CuS	8 · 10 ⁻³⁷
Kvikksølv (I) bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Kvikksølv (I) jodid	Hg ₂ l ₂	5,2 · 10 ⁻²⁹
Kvikksølv (I) karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Kvikksølv (I) klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Kvikksølv (II) bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Kvikksølv (II) jodid	Hgl ₂	2,9 · 10 ⁻²⁹
Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10 ⁻²⁴
Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Mangan(II) karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Mangan(II) oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷

Navn	Kjemisk formel	K _{sp}
Nikkel(II) fosfat	Ni ₃ (PO ₄) ₂	$4,74 \cdot 10^{-32}$
Nikkel(II) hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Nikkel(II) karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Nikkel(II) sulfid	NiS	2 · 10 ⁻¹⁹
Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Sinksulfid	ZnS	2 · 10 ⁻²⁴
Sølv (I) acetat	AgCH ₃ COO	1,94 · 10 ⁻³
Sølv (I) bromid	AgBr	5,35 · 10 ⁻¹³
Sølv (I) jodid	AgI	8,52 · 10 ⁻¹⁷
Sølv (I) karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Sølv (I) klorid	AgCl	1,77 · 10 ⁻¹⁰
Sølv (I) kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Sølv (I) sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹
Tinn(II) hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷

α -AMINOSYRER

Vanlig navn	Forkortelse	Strukturformel	pH isoelektrisk punkt
Alanin	Ala	H ₂ N—CH—COOH CH ₃	6,0
Arginin	Arg	H ₂ N—CH—COOH CH ₂ -CH ₂ -CH ₂ -NH—C—NH ₂ NH	10,8
Asparagin	Asn	H ₂ N—CH—COOH CH ₂ -C—NH ₂ O	5,4
Asparaginsyre	Asp	H ₂ N—CH—COOH I CH ₂ -COOH	2,8
Cystein	Cys	H ₂ N—CH—COOH CH ₂ -SH	5,1
Fenylalanin	Phe	H ₂ N—CH—COOH CH ₂	5,5
Glutamin	Gln	H ₂ N—CH—COOH CH ₂ -CH ₂ -C—NH ₂ O	5,7

Vanlig navn	Forkortelse	Strukturformel	pH isoelektrisk punkt
Glutaminsyre	Glu	H ₂ N—CH—COOH CH ₂ -CH ₂ -COOH	3,2
Glysin	Gly	H₂N—CH—COOH H	6,0
Histidin	His	H ₂ N—CH—COOH CH ₂ N N H	7,6
Isoleucin	Ile	H ₂ N—CH—COOH H ₃ C—CH—CH ₂ -CH ₃	6.0
Leucin	Leu	H ₂ N—CH—COOH CH ₂ H ₃ C—CH—CH ₃	6,0
Lysin	Lys	H ₂ N—CH—COOH CH ₂ -CH ₂ -CH ₂ -CH ₂ -NH ₂	9,7
Metionin	Met	H ₂ N—CH—COOH CH ₂ -CH ₂ -S—CH ₃	5,7
Prolin	Pro	COOH	6,3

Vanlig navn	Forkortelse	Strukturformel	pH isoelektrisk punkt
Serin	Ser	H ₂ N—CH—COOH CH ₂ -OH	5,7
Treonin	Thr	H ₂ N—CH—COOH H ₃ C—CH-OH	5,6
Tryptofan	Тгр	H ₂ N—CH—COOH CH ₂	5,9
Tyrosin	Tyr	H ₂ N—CH—COOH CH ₂	5,7
Valin	Val	H₂N—CH—COOH H₃C—CH—CH₃	6,0

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, **HAL=** halogen (CI, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Type proton	Kjemisk skift, ppm
-C H ₃	0,9 – 1,0
-CH ₂ -R	1,3 – 1,4
-CHR ₂	1,4 – 1,6
–C≡C– H	1,8 – 3,1
-CH ₂ - HAL	3,5 – 4,4
R-O-CH ₂ -	3,3 – 3,7
R-O-H	0,5 – 6,0
-CH=CH ₂	4,5 – 6,0
O 	2,0 – 2,5
O R^C O-C H	3,8 - 4,1
O 	2,2 – 2,7
O = C O- H	9,0 – 13,0
O = C \ H	9,4 – 10,0
O H	Ca. 8

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

HYDROKARBONER, METTEDE (alkaner)										
Navn	Formel	Smp	Кр	Diverse						
Metan	CH ₄	-182	-161							
Etan	C ₂ H ₆	-183	-89							
Propan	C ₃ H ₈	-188	-42							
Butan	C ₄ H ₁₀	-138	-0,5							
Pentan	C ₅ H ₁₂	-130	36							
Heksan	C ₆ H ₁₄	-95	69							
Heptan	C ₇ H ₁₆	-91	98							
Oktan	C ₈ H ₁₈	-57	126							
Nonan	C ₉ H ₂₀	-53	151							
Dekan	C ₁₀ H ₂₂	-30	174							
Syklopropan	C₃H ₆	-128	-33							
Syklobutan	C ₄ H ₈	-91	13							
Syklopentan	C ₅ H ₁₀	-93	49							
Sykloheksan	C ₆ H ₁₂	7	81							
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan						
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan						
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan						
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan						
3-Metylpentan	C ₆ H ₁₄	-163	63							
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan						
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58							
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan						
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110							
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115							
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114							

Navn	Formel	Smp	Кр	Diverse
HYDR	OKARBONER	R, UMETTED	E, alkener	
Eten	C ₂ H ₄	-169	-104	Etylen
Propen	C ₃ H ₆	-185	-48	Propylen
But-1-en	C ₄ H ₈	-185	-6	
<i>cis-</i> But-2-en	C ₄ H ₈	-139	4	
trans-But-2-en	C ₄ H ₈	-106	1	
Pent-1-en	C ₅ H ₁₀	-165	30	
cis-Pent-2-en	C ₅ H ₁₀	-151	37	
trans-Pent-2-en	C ₅ H ₁₀	-140	36	
Heks-1-en	C ₆ H ₁₂	-140	63	
cis-Heks-2-en	C ₆ H ₁₂	-141	69	
trans-Heks-2-en	C ₆ H ₁₂	-133	68	
<i>cis</i> -Heks-3-en	C ₆ H ₁₂	-138	66	
trans-Heks-3-en	C ₆ H ₁₂	-115	67	
Hept-1-en	C ₇ H ₁₄	-119	94	
cis-Hept-2-en	C ₇ H ₁₄	_	98	
trans-Hept-2-en	C ₇ H ₁₄	-110	98	
cis-Hept-3-en	C ₇ H ₁₄	-137	96	
trans-Hept-3-en	C ₇ H ₁₄	-137	96	
Okt-1-en	C ₈ H ₁₆	-102	121	
Non-1-en	C ₉ H ₁₈	-81	147	
Dek-1-en	C ₁₀ H ₂₀	-66	171	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
Penta-1,2-dien	C ₅ H ₈	-137	45	
trans-Penta-1,3-dien	C ₅ H ₈	-87	42	
cis-Penta-1,3-dien	C ₅ H ₈	-141	44	
Heksa-1,2-dien	C ₆ H ₁₀	- 11	76	
cis-Heksa-1,3-dien	C ₆ H ₁₀		73	
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73	
Heksa-1,5-dien	C ₆ H ₁₀	-141	59	
Heksa-1,3,5-trien	С ₆ Н ₈	-12	78,5	
, ,	OKARBONEF		-	
Etyn	C ₂ H ₂	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	Week a decision
But-2-yn	C ₄ H ₆	-32	27	
Pent-1-yn	C ₅ H ₈	-90	40	
Pent-2-yn	C ₅ H ₈	-109	56	
Heks-1-yn	C ₅ H ₁₀	-132	71	
Heks-2-yn	C ₆ H ₁₀	-132 -90	85	
Heks-3-yn	C ₆ H ₁₀	-103	81	
	ROMATISKE I			
Benzen Metylhonzen	C ₆ H ₆	5 -95	80	
Metylbenzen	C ₇ H ₈		111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95 21	136	Styron vinulas
Fenylbenzen	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Difenylmetan	C ₁₃ H ₁₂	25	265	Tribon
Trifenylmetan	$C_{19}H_{16}$	94	360	Tritan

Navn	Formel	Smp	Кр	Diverse
1,2-Difenyletan	C ₁₄ H ₁₄	53	284	Bibenzyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
Antracen	C ₁₄ H ₁₀	216	340	PAH
Phenatren	C ₁₄ H ₁₀	99	340	PAH
	ALK	OHOLER		
Metanol	CH₃OH	-98	65	Tresprit
Etanol	C ₂ H ₆ O	-114	78	·
Propan-1-ol	C₃H ₈ O	-124	97	<i>n</i> -propanol
Propan-2-ol	C₃H ₈ O	-88	82	Isopropanol
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	<i>n</i> -Pentanol, amylalkohol
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, n-heksanol
Heksan-2-ol	C ₆ H ₁₄ O		140	
Heksan-3-ol	C ₆ H ₁₄ O		135	
Heptan-1-ol	C ₇ H ₁₆ O	-33	176	Heptylalkohol, n-heptanol
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, n-oktanol
Sykloheksanol	C ₆ H ₁₂ O	26	161	
Etan-1,2-diol	C ₂ H ₆ O ₂	-13	197	Etylenglykol
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten
				triglyserid
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol
	KARBONYL	FORBINDEL	SER	
Metanal	CH ₂ O	-92	-19	Formaldehyd
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd
2-Metylpropanal	C ₄ H ₈ O	-65	65	
Butanal	C ₄ H ₈ O	-97	75	
3-Hydroksybutanal	C ₄ H ₈ O ₂		83	
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd
Heptanal	C ₇ H ₁₄ O	-43	153	
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd
Propanon	C₃H ₆ O	-95	56	Aceton
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon
4-Metyl-pentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon
2-Metylpentan-3-on	C ₆ H ₁₂ O	·	114	Etylisopropylketon
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon

Navn	Formel	Smp	Кр	Diverse			
<i>trans</i> -Fenylpropenal	C ₉ H ₈ O	-8	246	<i>trans</i> -Kanelaldehyd			
	ORGAN	ISKE SYRER					
Navn	Formel	Smp	Кр	Diverse			
Metansyre	CH ₂ O ₂	8	101	Maursyre, $pK_a = 3,75$			
Etansyre	$C_2H_4O_2$	17	118	Eddiksyre, p $K_a = 4,76$			
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, $pK_a = 4.87$			
2-Metyl-propansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84			
2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, $pK_a = 3,86$			
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved			
				oppvarming,			
				$pK_a = 4,51$			
Butansyre	$C_4H_8O_2$	-5	164	Smørsyre, p $K_a = 4.83$			
3-Metylbutansyre	C ₅ H ₁₀ O ₂	-29	177	Isovaleriansyre, $pK_a = 4,77$			
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, p $K_a = 4,83$			
Hexansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, p K_a = 4,88			
Propensyre	$C_3H_4O_2$	12	139	$pK_a = 4,25$			
cis-But-2-ensyre	$C_4H_6O_2$	15	169	<i>cis</i> -Krotonsyre, $pK_a = 4,69$			
trans-But-2-ensyre	C ₄ H ₆ O ₂	72	185	<i>trans</i> -Krotonsyre, $pK_a = 4,69$			
But-3-ensyre	$C_4H_6O_2$	-35	169	$pK_a = 4,34$			
Etandisyre	$C_2H_2O_4$			Oksalsyre, p K_{a1} = 1,25, p K_{a2} =			
				3,81			
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70			
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), $pK_{a1} = 4,21$, $pK_{a2} = 5,64$			
Pentandisyre	C ₅ H ₈ O ₄	98		Glutarsyre, p K_{a1} = 4,32, p K_{a2} = 5,42			
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, p K_{a1} = 4,41, p K_{a2} = 5,41			
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$			
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, $pK_a = 4,44$			
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		$pK_a = 3,88$			
Benzosyre	C ₇ H ₆ O ₂	122	250	1 % /			
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31			
,		STERE		, ,			
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær			
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas			
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær			
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel			
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær			
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron			
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple			
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas			
3-Metyl-1-butyletanat	C ₇ H ₁₁ O ₂	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan			
Metyl- <i>trans</i> -cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær			
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin			

Navn	Formel	Smp	Кр	Diverse			
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og			
				ananas			
Pentyletanat	C ₇ H ₁₄ O ₂	-71	149	Amylacetat, lukter banan og			
				eple			
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple			
ORGANI	SKE FORBIN	DELSER MED	O NITROGEN				
Metylamin	CH₅N	-94	-6	pK _b = 3,34			
Dimetylamin	C ₂ H ₇ N	-92	7	pK _b = 3,27			
Trimetylamin	C ₃ H ₉ N	-117	2,87	$pK_b = 4,20$			
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35			
Dietylamin	$C_4H_{11}N$	-28	312	$pK_b = 3,16$			
Etanamid	C ₂ H ₃ NO	79-81	222	Acetamid			
Fenylamin	C ₆ H ₇ N	-6	184	Anilin			
1,4-diaminbutan	$C_4H_{12}N_2$	27	158-160	Engelsknavn: putrescine			
1,6-Diaminheksan	$C_6H_{16}N_2$	9	178-180	178-180 Engelsknavn: cadaverine			
ORGAN	ISKE FORBIN	DELSER ME	D HALOGEN				
Klormetan	CH ₃ Cl	-98	-24	Metylklorid			
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt			
				som løsemiddel			
Triklormetan	CHCl ₃	-63	61	Kloroform			
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid			
Kloretansyre	C ₂ H ₃ ClO ₂	63	189	Kloreddiksyre, p K_a = 2,87			
Dikloretansyre	C ₂ H ₂ Cl ₂ O ₂	9,5	194	Dikloreddiksyre, p K_a = 1,35			
Trikloretansyre	C ₂ HCl ₃ O ₂	57	196	Trikloretansyre, p K_a = 0,66			
Kloreten	C ₂ H ₃ Cl	C ₂ H ₃ Cl -154		Vinylklorid,monomeren i			
				polymeren PVC			

KVALITATIV UORGANISK ANALYSE. REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING

	нсі	H₂SO ₄	NH ₃	KI	KSCN	K₃Fe(CN) ₆	K₄Fe(CN) ₆	K₂CrO₄	Na₂S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Lakserødt
Fe ²⁺			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe ³⁺			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Gulhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gulhvitt kan forekomme	Hvitt	Hvitt	
Ca ²⁺									Gulehvitt kan forekomme	Hvitt	Hvitt	

Grunnstoffenes periodesystem med elektronfordeling

Gruppe 1	Gruppe 2				Forklariı	ng						Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,01 H						mnummer tommasse Symbol	35 79,9 Br	Fargekoder		metall	_						2 4,0 He
1 Hydrogen					Eletro	nfordeling Navn	2, 8, 18, 7		нагуг	netall	-						2
3	4				() betyr m		Brom	Aggregat-				5	6	7	8	9	Helium 10
6,94 Li	9,01 Be				til den mes isotopen * Lantanoi	st stabile		tilstand ved 25 °C og 1 atm	Fast s	e Hg		10,8 B	12,0 C	14,0 N	16,0 O	19,0 F	20,2 Ne
2, 1 Lithium	2, 2 Berylliu m				** Aktinoi				Gas			2, 3 Bor	2,4 Karbon	2, 5 Nitrogen	2, 6 Oksygen	2, 7 Fluor	2, 8 Neon
11 22,99 Na	12 24,3 Mg							·			-	13 27,0 Al	14 28,1 Si	15 31,0 P	16 32,1 S	17 35,5 Cl	18 39,9 Ar
2, 8, 1 Natrium	2, 8, 2 Magnesi um	3	4	5	6	7	8	9	10	11	12	2, 8, 3 Aluminiu m	2, 8, 4 Silisium	2, 8, 5 Fosfor	2, 8, 6 Svovel	2, 8, 7 Klor	2, 8, 8 Argo n
19 39,1	20 40,1	21 45	22 47,9	23 50,9 V	24 52,0	25 54,9	26 55,8	27 58,9	28 58,7	29 63,5	30 65,4	31 69,7	32 72,6	33 74,9	34 79,0	35 79,9	36 83,8
2, 8, 8, 1 Kalium	Ca 2, 8, 8, 2 Kalsium	Sc 2, 8, 9, 2 Scandiu m	Ti 2, 8, 10, 2 Titan	2, 8, 11, 2 Vanadiu m	Cr 2, 8, 12, 1 Krom	Mn 2, 8, 13, 2 Manga n	Fe 2, 8, 14, 2 Jern	2, 8, 15, 2 Kobolt	Ni 2, 8, 16, 2 Nikkel	Cu 2, 8, 18, 1 Kobber	Zn 2, 8, 18, 2 Sink	Ga 2, 8, 18, 3 Gallium	Ge 2, 8, 18, 4 Germani um	As 2, 8, 18, 5 Arsen	Se 2, 8, 18, 6 Selen	2, 8, 18, 7 Brom	2, 8, 18, 8 Krypton
37 85,5	38 87,6	39 88,9	40 91,2	41 92,9	42 95,9	43 (99)	44 102,9	45 102,9	46 106,4	47 107,9	48 112,4	49 114,8	50 118,7	51 121,8	52 127,6	53 126,9	54 131,3
Rb 2, 8, 18, 8, 1 Rubidium	Sr 2, 8, 18, 8, 2	Y 2, 8, 18, 9, 2	Zr 2, 8, 18, 10,	Nb 2, 8. 18, 12, 1	Mo 2, 8, 18, 13, 1	Tc 2, 8, 18, 14, 1	Ru 2, 8, 18, 15, 1	Rh 2, 8, 18, 16, 1	Pd 2, 8, 18, 17,	Ag 2, 8, 18, 18, 1	Cd 2, 8, 18, 18, 2	In 2, 8, 18, 18, 3	Sn 2, 8, 18, 4 Tinn	Sb 2, 8, 18, 18, 5	Te 2, 8, 18, 18, 6	2, 8, 18, 18, 7	Xe 2, 8, 18, 18, 8
55	Strontiu m 56	Yttrium 57	Zirkoniu m 72	Niob 73	Molybde n 74	Techne tium 75	Rutheniu m 76	Rhodiu m 77	Palladiu m 78	Sølv 79	Kadmiu m 80	Indium 81	82	Antimon 83	Tellur 84	Jod 85	Xenon 86
132,9 Cs	137,3 Ba	138,9 La	178,5 Hf	180,9 Ta	183,9 W	186,2 Re	190,2 Os	192,2 Ir	195,1 Pt	197,0 Au	200,6 Hg	204,4 TI	207,2 Pb	209,0 Bi	(210) Po	(210) At	(222) Rn
2, 8, 18, 18, 8, 1 Cesium	2, 8, 18, 18, 8, 2 Barium	2, 8, 18, 18, 9, 2 Lantan*	2, 8, 18, 32, 10, 2 Hafnium	2, 8, 18, 32, 11, 2 Tantal	2, 8, 18, 32, 12, 2 Wolfram	2, 8, 18, 32, 13, 2 Rheniu m	2, 8, 18, 32, 14, 2 Osmium	2, 8, 18, 32, 17, 0 Iridium	2, 8, 18, 32, 17, 1 Platina	2, 8, 18, 32, 18, 1 Gull	2, 8, 18, 32, 18, 2 Kvikksøl V	2, 8, 18, 32, 18, 3 Thallium	2, 8, 18, 32, 18, 4 Bly	2, 8, 18, 32, 18, 5 Vismut	2, 8, 18, 32, 18, 6 Poloniu m	2, 8, 18, 32, 18, 7 Astat	2, 8, 18, 32, 18, 8 Radon
87 (223)	88 (226)	89 (227)	104 (261)	105 (262)	106 (263)	107 (262)	108 (265)	109 (266)			V						
Fr 2, 8, 18, 32, 18, 8, 1	Rd 2, 8, 18, 32, 18, 8, 2	Ac 2, 8, 18, 32, 18, 9, 2	Rf 2, 8, 18, 32, 32, 10, 2	Db 2, 8, 18, 32, 32, 11, 2	Sb 2, 8, 18, 32, 32, 12, 3	Bh 2, 8, 18, 32, 32,	Hs 2, 8, 18, 32, 32, 14, 2	Mt 2, 8, 18, 32, 32, 15, 2									
Francium	Radium	Actinium **	Rutherfor dium	Dubniu m	Seaborg ium	13, 2 Bohriu m	Hassium	Meitneri um									
		*	57 138,9	58 140,1	59 140,9	60 144,2	61 (147)	62 150,5	63 152	64 157,3	65 158,9	66 162,5	67 164,9	68 167,3	69 168,9	70 173,0	71 175,0
			La 2, 8, 18, 18,	Ce 2, 8, 18, 20,	Pr 2, 8, 18, 21,	Nd 2, 8, 18,	Pm 2, 8, 18, 23,	Sm 2, 8, 18, 24,	Eu 2, 8, 18, 25,	Gd 2, 8, 18, 25,	Tb 2, 8, 18, 27,	Dy 2, 8, 18, 28,	Ho 2, 8, 18, 29,	Er 2, 8, 18, 30,	Tm 2, 8, 18, 31,	Yb 2, 8, 18, 32,	Lu 2, 8, 18, 32,
			9, 2 Lantan	8, 2 Cerium	8, 2 Praseod ym	22, 8, 2 Neody m	8, 2 Promethi um	8, 2 Samariu m	8, 2 Europiu m	9, 2 Gadolini um	8, 2 Terbium	8, 2 Dysprosi um	8, 2 Holmiu m	8, 2 Erbium	8, 2 Thulium	8, 2 Ytterbiu m	8, 2 Lutetiu m
		**	89 (227)	90 232,0	91 231,0	92 238,0	93 (237)	94 (242)	95 (243)	96 (247)	97 (247)	98 (249)	99 (254)	100 (253)	101 (256)	102 (254)	103 (257)
			Ac 2, 8, 18, 32, 18, 9, 2	Th 2, 8, 18, 32, 18, 10, 2	Pa 2, 8, 18, 32, 20, 9, 2	2, 8, 18, 32, 21, 9, 2	Np 2, 8, 18, 32, 22, 9, 2	Pu 2, 8, 18, 32, 24, 8, 2	Am 2, 8, 18, 32, 25, 8, 2	2, 8, 18, 32, 25, 9, 2	Bk 2, 8, 18, 32, 26, 9, 2	Cf 2, 8, 18, 32, 28, 8, 2	2, 8, 18, 32, 29, 8, 2	Fm 2, 8, 18, 32, 30, 8, 2	Md 2, 8, 18, 32, 31, 8, 2	No 2, 8, 18, 32, 32, 8, 2	Lr 2, 8, 18, 32, 32, 9, 2
			Actinium	Thorium	Protactini um	Uran	Neptuniu m	Plutoniu m	Americu m	Curium	Berkeliu m	Californi um	Einsteini um	Fermiu m	Mendelevi um	Nobeliu m	Lawrenc ium

Grunnstoffenes periodesystem med elektronegativitetsverdier

Gruppe 1	Gruppe 2			Forklaring								Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,01 H 2,1 Hydrogen						42 95,9 Mo 1,8 Molybden											2 4,0 He Helium
3 6,94 Li	9,01 Be				Navn	<u> </u>	l					5 10,8 B	6 12,0 C	7 14,0 N	8 16,0 O	9 19,0 F	10 20,2 Ne
1,0 Lithium	1,5 Berylliu m											2,0 Bor	2,5 Karbon	3,0 Nitrogen	3,5 Oksygen	4,0 Fluor	Neon
11 22,99 Na	12 _{24,3} Mg											13 27,0 Al	14 28,1 Si	15 31,0 P	16 32,1 S	17 35,5 Cl	18 39,9 Ar
0,9 Natrium	1,2 Magnesi um	3	4	5	6	7	8	9	10	11	12	1,5 Aluminiu m	1,8 Silisium	2,1 Fosfor	2,5 Svovel	3,0 Klor	Argon
19 39,1	20 40,1	21 45	22 47,9	23 50,9	24 52,0	25 54,9	26 55,8	27 58,9	28 58,7	29 63,5	30 65,4	31 69,7	32 72,6	33 74,9	34 79,0	35 79,9	36 83,8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0,8 Kalium	1,0 Kalsium	1,3 Scandiu m	1,5 Titan	1,6 Vanadiu m	1,6 Krom	1,5 Mangan	1,8 Jern	1,9 Kobolt	1,9 Nikkel	1,9 Kobber	1,6 Sink	1,6 Gallium	1,8 Germani um	2,0 Arsen	2,4 Selen	2,8 Brom	Krypton
37 85,5	38 87,6	39 88,9	40 91,2	41 92,9	42 95,9	43 (99)	44 102,9	45 102,9	46 106,4	47 107,9	48 112,4	49 114,8	50 118,7	51 121,8	52 127,6	53 126,9	54 131,3
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0,8 Rubidium	1,0 Strontiu m	1,2 Yttrium	1,4 Zirkoniu m	1,6 Niob	1,8 Molybde n	1,9 Techneti um	2,2 Rutheni um	2,2 Rhodiu m	2,2 Palladiu m	1,9 Sølv	1,7 Kadmiu m	1,7 Indium	1,7 Tinn	1,8 Antimon	2,1 Tellur	2,4 Jod	Xenon
55 132,9	56 137,3	57 138,9	72 178,5	73 180,9	74 183,9	75 186,2	76 190,2	77 192,2	78 195,1	79 197,0	80 200,6	81 204,4	82 207,2	83 209,0	84 (210)	85 (210)	86 (222)
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0,7 Cesium	0,9 Barium	1,0 - 1,2 Lantan*	1,3 Hafnium	1,5 Tantal	1,7 Wolfram	1,9 Rheniu m	2,2 Osmium	2,2 Iridium	2,2 Platina	2,4 Gull	1,9 Kvikksøl v	1,8 Thallium	1,8 Bly	1,9 Vismut	2,0 Poloniu m	2,3 Astat	Radon
87 (223)	88 (226)	89 (227)	104 (261)	105 (262)	106 (263)	107 (262)	108 (265)	109 (266)				•			•	•	
Fr	Rd	Ac	Rf	Db	Sb	Bh	Hs	Mt									
0,7 Francium	0,9 Radium	1,1 Actinium **	Rutherfor dium	Dubniu m	Seaborg ium	Bohrium	Hassium	Meitneri um									
		*	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			138,9	140,1	140,9	144,2	(147)	150,5	152	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
			La 1,1	Ce	Pr 1,1	Nd 1,1	Pm 1,1	Sm	Eu 1,2	Gd 1,2	Tb 1,1	Dy 1,2	Ho 1,2	Er 1,2	Tm 1,3	Yb 1,1	Lu 1,3
			Lantan	Cerium	Praseod ym	Neodym	Prometh ium	Samariu m	Europiu m	Gadolini um	Terbium	Dysprosi um	Holmiu m	Erbium	Thulium	Ytterbiu m	Lutetiu m
		**	89 (227)	90 232,0	91 231,0	92 238,0	93 (237)	94 (242)	95 (243)	96 (247)	97 (247)	98 (249)	99 (254)	100 (253)	101 (256)	102 (254)	103 (257)
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			1,1 Actinium	1,3 Thorium	1,4 Protactini um	1,4 Uran	1,4 Neptuni um	1,3 Plutoniu m	1,1 Americu m	1,3 Curium	1,3 Berkelium	1,3 Californiu m	1,3 Einsteiniu m	1,3 Fermiu m	1,3 Mendelevi um	1,3 Nobeliu m	1,3 Lawrenciu m

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel
acetat, etanat	CH ₃ COO ⁻	jodat	10 ₃
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	ClO ₃
arsenitt	AsO ₃ ³⁻	kloritt	ClO ₂
borat	BO ₃ ³⁻	nitrat	NO ₃
bromat	BrO ₃	nitritt	NO ₂
fosfat	PO ₄ ³⁻	perklorat	ClO ₄
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO	sulfitt	SO ₃ ²⁻

Kilder:

- De fleste opplysningene er hentet fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGAVE (2008–2009), ISBN 9781420066791
- Tabeller og formler i kjemi, Gyldendal, ISBN 82-05-25901-1
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.9.2013)
- Stabilitetskonstanter: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (SIST BESØKT 3.12.2013), http://www.cem.msu.edu/~cem333/EDTATable.htm (sist besøkt 3.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er hentet fra Kjemi 3KJ, Studiehefte (Brandt mfl), Aschehough (2003), side 203
- Opplysninger i periodesystemet: http://en.wikipedia.org/wiki/Chemical_element (sist besøkt 3.12.2013)