## 2017-09-20

- Contradictions ( $\bot$ ): sentences of the form  $\phi \land \neg \phi$  or  $\neg \phi \land \phi$ .
- Proof rules for connectives (continued):



- Negation elimination ( $\neg e$ ):  $\frac{\phi \neg \phi}{\bot} \neg e$
- Contradiction elimination ( $\perp$ e):  $\frac{\perp}{\phi}$   $\perp$ e
- Reductio ad absurdum (RAA):  $\neg p \Rightarrow \bot \vdash p \text{ (RAA)}$
- Law of the excluded middle (LEM):  $\vdash p \lor \neg p$  (LEM)
- Proof rules for natural deduction:
  - Fundamental:  $\land i, \land e, \lor i, \lor e, \lnot i, \lnot e, \lnot \lnot e, \Longrightarrow i, \Longrightarrow e, \bot e$
  - o Derived: ¬¬i, MT, RAA, LEM
- Provable equivalence ( $\dashv \vdash$ ):  $\phi$  and  $\psi$  are provably equivalent ( $\phi \dashv \vdash \psi$ ) if both  $\phi \vdash \psi$  and  $\psi \vdash \phi$ .
- Indirect proofs (or proof by contradiction):
  - An argument for a proposition that shows its negation to be incompatible with a previously accepted or established premise.
  - *Non-constructive*. We do not show why  $\phi$  holds; we only know  $\neg \phi$  is impossible.
  - Intuitionistic logicians are averse to prove indirectly.
  - Examples of proof rules: ¬¬e, RAA, LEM.
- Well-formedness:
  - A **well-formed** formula is constructed by applying the following rules finitely many times: atom,  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\Longrightarrow$ .
  - Backus Naur form (BNF):  $\phi ::= p|(\neg \phi)|(\phi \land \phi)|(\phi \lor \phi)|(\phi \Rightarrow \phi)$
  - **Inversion principle**: the construction process of a well-formed formula can always be inverted.
  - Subformulae are the well-formed formulae corresponding to its parse tree.
- A **valuation** or **model** of a formula  $\phi$  is an assignment from each proposition atom in  $\phi$  to a truth value.
- Semantic sequent:  $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ 
  - **Holds** if for every valuations where  $\phi_1, \phi_2, ..., \phi_n$  are true,  $\psi$  is also true.
  - Reads  $\phi_1, \phi_2, ..., \phi_n$  semantically entail  $\psi$  (semantic entailment).

- **Soundness theorem**: If  $\phi_1, \phi_2, ..., \phi_n \vdash \psi$  is valid, then  $\phi_1, \phi_2, ..., \phi_n \models \psi$  holds.
- Proof for soundness: proof by introduction.
- Completeness theorem: If  $\phi_1, \phi_2, ..., \phi_n \vDash \psi$  holds, then  $\phi_1, \phi_2, ..., \phi_n \vdash \psi$  is valid.
- Proof for completeness:
  - Assume  $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$  holds.
  - $\circ \ \vDash \phi_1 \implies (\phi_2 \implies (\dots (\phi_n \implies \psi))) \text{ holds}.$
  - $\circ \vdash \phi_1 \implies (\phi_2 \implies (\dots(\phi_n \implies \psi)))$  is valid.
  - $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$  is valid.
- The natural deduction proof system is both *sound* and *complete*, i.e.  $\phi_1, \phi_2, ..., \phi_n \vdash \psi$  is *valid* iff  $\phi_1, \phi_2, ..., \phi_n \models \psi$  holds.
- Semantic equivalence ( $\equiv$ ):  $\phi$  and  $\psi$  are semantically equivalent ( $\phi \equiv \psi$ ) if both  $\phi \vDash \psi$  and  $\psi \vDash \phi$ .
- A sentence (formula)  $\phi$  such that  $\models \phi$  is called a **tautology**, and  $\phi$  is a **valid** formula.