Własności funkcji ciągłych:

- 1. Twierdzenie 7.1 : Każda funkcja ciągła $f: \langle a,b \rangle \to \mathbb{R}$ ma własność Darboux, to znaczy $f(a) \neq f(b) \implies \forall_{c \text{ miedzy } f(a), f(b)} \exists_{x_0 \in (a,b)} f(x_0) = c$
- 2. Twierdzenie 7.1: (twierdzenie Weierstrassa I) Jeśli funkcja $f: \langle a, b \rangle \to \mathbb{R}$ jest ciągła, to jest ograniczona
- 3. Twierdzenie 7.2: (twierdzenie Weierstrassa II)

Jeśli funkcja $f: \langle a,b \rangle \to \mathbb{R}$ jest ciągła, to przyjmuje wartość najmniejszą i największą - osiąga swoje kresy $\exists_{x_m, x_M \in \langle a, b \rangle} f(x_m) = \inf_{x \in \langle a, b \rangle} f(x) \, i \, f(x_M) = \sup_{x \in \langle a, b \rangle} f(x)$

Uwaga - z przedziału otwartego to niekoniecznie prawda

(a) Dowód: $f: \langle a,b \rangle \to \mathbb{R}$ - funkcja ciągła $\stackrel{\text{tw.Weierstrassa I}}{\Longrightarrow} f$ jest ograniczona, tzn ograniczony jest zbiór wartości tej funkcji $Y = \{f(x) : x \in \langle a, b \rangle\}$. Ponadto $Y \neq \emptyset$. Zatem istnieją skończone kresy zbioru Y. Oznaczmy $m=\inf Y=\inf_{x\in <a,b>}f(x)$ i $M=\sup Y=\sup_{x\in <a,b>}f(x)$. Pokażemy, że $\exists_{x_M\in <a,b>}f(x_m)=M$. Dowód tego, że

 $\exists_{x_m \in \langle a,b \rangle} f(x_m) = m$ przebiega analogicznie.

Dowód nie wprost: Zakładamy, że $\forall_{x \in \langle a,b \rangle} f(x) \neq M$, więc f(x) < M bo $M = \sup_{x \in \langle a,b \rangle} f(x)$

Zdefiniujmy funkcję $F: \langle a, b \rangle \to \mathbb{R}$, $F(x) = \frac{1}{M - f(x)}$. Funkcja ta jest dobrze zdefiniowana, bo mianownik się nie

 $F: \langle a,b \rangle \rightarrow \mathbb{R}$ jest funkcją ciągłą $\overset{\text{tw. Weierstrassa I}}{\Longrightarrow}$ jest ograniczona, tzn. $\exists_{K>0} \forall_{x \in \langle a,b \rangle} 0 < F(x) < K$ tzn $\exists_{K>0} \forall_{x \in \langle a,b \rangle} 0 < \frac{1}{M-f(x)} < K \Longrightarrow \exists_{K>0} \forall_{x \in \langle a,b \rangle} M - f(x) > \frac{1}{K}$ $\implies \exists_{K>0} \forall_{x \in \langle a,b \rangle} f(x) < M - \frac{1}{K}$, co oznacza że M nie jest największym ograniczeniem Y, czyli $M \neq \sup f(x)$ -

sprzeczność

Jednostajna ciągłość funkcji

Do końca wykładu będziemy zakładać, że $D \subset \mathbb{R}$.

Przypomnienie:

Funkcja $f: D \to \mathbb{R}$ jest ciągła $\iff \forall_{a \in D}$ funkcja f jest ciągła w $a \iff \forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x - a| < \delta \implies |f(x) - f(a)| < \epsilon$ - δ może zależeć od a.

Jeśli δ nie zależy od a, tzn jest taka sama dla każdego a, to wtedy mówimy, że funkcja f jest jednostajnie ciągła, tzn spełnia warunek:

- 1. Def: Funkcja $f: D \to \mathbb{R}$ jest jednostajnie ciągła $\iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{a \in D} \forall_{x \in D} |x a| < \delta \implies |f(x) f(a)| < \epsilon$
 - (a) Uwaga 7.1: Każda funkcja jednostajnie ciagła jest ciągła.
 - - i. $f:(0,+\infty)\to\mathbb{R}, f(x)=\frac{1}{x}$ nie jest jednostajnie ciągła Dowód nie wprost. Zakładamy, że f jest jednostajnie ciągła, czyli $\forall_{\epsilon>0}\exists_{\delta>0}\forall_{a\in D}\forall_{x\in D}|x-a|<\delta\implies|f(x)-a|$

W szczególności dla $\epsilon=1$ ptrzymujemy $\exists_{\delta>0} \forall_{x,y\in(0,\infty)} |x-y|<\delta \implies |f(x)-f(a)|<1$

Weżmy $x_n = \frac{1}{n}, t_n = \frac{1}{n+1}, n \in \mathbb{N}$. Wtedy $|x_n - y_n| = |\frac{1}{n} - \frac{1}{n+1}| \xrightarrow{n \to \infty} 0$. Stąd dla dostatecznie dużego n mamy $|x_n - y_n| < \delta \implies |f(x_n) - f(y_n)| < 1$

Z drugiej strony, $|f(x_n) - f(y_n)| = |n - n - 1| = 1$ - skąd sprzeczność.

- ii. $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$, jest jednostajnie ciągła $\forall_{\epsilon>0} \exists_{\delta>0} \forall_{a \in D} \forall_{x \in D} |x-a| < \delta \implies |f(x)-f(a)| = |\cos x \cos a| = |-2\sin\frac{x-a}{2}\sin\frac{x+a}{2}| = 2|\sin\frac{x-y}{2}||\sin\frac{x+y}{2}| \leq 2|\frac{x+y}{2}| \cdot 1 = |x-y| < \epsilon$ Więc wystarczy wybrać $\delta = \epsilon$
- 2. Twierdzenie 7.4: (twierdzenie Cantora):

Jeśli $f: \langle a, b \rangle \to \mathbb{R}$ jest ciągła, to jest jednostajnie ciągła.

Dowód nie wprost: Zakładamy, że $f: \langle a, b \rangle \to \mathbb{R}$ jest ciągła ale nie jest jednostajnie ciągła. Wtedy $\exists_{\epsilon>0}\forall_{\delta>0}\exists_{a\in D}\exists_{x\in D}|x-y|<\delta\wedge|f(x)-f(y)|\geq\epsilon$. W szczególności biorąc $\delta=\frac{1}{n},n\in\mathbb{N}$ otrzymujemy $\exists_{\epsilon>0}\forall_{n\in\mathbb{N}}\exists_{x_n,y_n\in < a,b>}|x_n-y_n|$ $|y_n| < \frac{1}{n} \operatorname{i} |f(x_n) - f(y_n)| \ge \epsilon$

W ten sposób otrzymaliśmy dwa ciągi $\{x_n\}$ i $\{y_n\}$. Ciąg $\{x_n\}$ jest ograniczony, bo $\forall_{n\in\mathbb{N}}x_n\in[a,b]$ $\overset{\mathrm{tw.Bolzano-Weierstrassa}}{\Longrightarrow}\{x_n\}$ zawiera podciąg zbieżny; oznaczmy $x_{n_k} \overset{k \to \infty}{\longrightarrow} x_0$

Z twierdzenia o przechodzeniu do granicy w nierównościach, mamy $x_0 \in [a,b]$ $\forall_{n \in \mathbb{N}} | x_n - y_n | < \frac{1}{n} \implies \forall_{n \in \mathbb{N}} x_n - \frac{1}{n} < y_n < x_n + \frac{1}{n} \implies \forall_{k \in \mathbb{N}} x_{n_k} - \frac{1}{n_k} < y_{n_k} < x_{n_k} + \frac{1}{n_k}$ lewa i prawa strona zbiegają do x_0 , więc z tw o 3 ciągach $y_{n_k} \stackrel{k \to \infty}{\longrightarrow} x_0$

Z ciągłości funkcji f w punkcie $x_0, f(x_{n_k}) \xrightarrow{k \to \infty} f(x_0)$ i $f(y_{n_k}) \xrightarrow{k \to \infty} f(x_0)$ Stąd $|f(x_{n_k}) - f(y_{n_k})| \xrightarrow{k \to \infty} 0$,co jest sprzeczne z $\exists_{\epsilon > \mathbf{0}} \forall_{n \in \mathbb{N}} \exists_{x_n, y_n \in \langle a, b \rangle} |f(x_n) - f(y_n)| \ge \epsilon$, bo z drugiej strony $\exists_{\epsilon > \mathbf{0}} \forall_{n \in \mathbb{N}} \exists_{x_n, y_n \in \langle a, b \rangle} |f(x_n) - f(y_n)| \ge \epsilon$ $\Longrightarrow \exists_{\epsilon > \mathbf{0}} \forall_{n \in \mathbb{N}} \exists_{x_n, y_n \in \langle a, b \rangle} |f(x_{n_k}) - f(y_{n_k})| \ge \epsilon$

- 3. Def: Funkcja $f: D \to \mathbb{R}$ spełnia warunek Lipschitza na $D \iff \exists_{L>0} \forall_{x,y \in D} |f(x) f(y)| \leq L|x-y|$ Przykład: Funkcja $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \cos x$ spełnia warunek Lipschitza, bo już dzisiaj pokazaliśmy, że $\forall_{x,y \in \mathbb{R}} |f(x) - f(y)| = |\cos x - \cos y| \leq |x-y|$, tzn istnieje L spełniające warunek Lipschitza (L=1)
- 4. Twierdzenie 7.5: Jeśli $f: D \to \mathbb{R}$ spełnia warunek Lipschitza, to jest jednostajnie ciągła. Dowód: Niech $f: D \to \mathbb{R}$ spełnia warunek Lipschitza. Wtedy $\forall_{\epsilon>0} \exists_{\delta>0} \forall_{a \in D} \forall_{x \in D} |x-a| < \delta \implies |f(x)-f(a)| \le L|x-y| < \epsilon \ (\delta = \frac{\epsilon}{L})$, co oznacza, że f jest jednostajnie ciągła.