An Investigation of Compression Techniques to Speed up Mutation Testing

Qianqian Zhu

Ph.D. student

Co-authors: Annibale Panichella and Andy Zaidman

Software Engineering Research Group, Delft University of Technology, Netherlands

ICST 2018, April 9th, 2018

Apache Commons Lang: 113 classes, 3869 tests

Apache Commons Lang: 113 classes, 3869 tests

Test execution: 1 minute and 14 seconds

Apache Commons Lang: 113 classes, 3869 tests

Test execution: 1 minute and 14 seconds

- >> Generated 13021 mutations Killed 11113 (85%)
- >> Ran 51176 tests (3.93 tests per mutation)
- >> Total: 31 minutes and 38 seconds

Apache Commons Lang: 113 classes, 3869 tests

```
Test execution: 1 minute and 14 seconds
```

- >> Generated 13021 mutations Killed 11113 (85%)
- >> Ran 51176 tests (3.93 tests per mutation)
- >> Total: 31 minutes and 38 seconds

PiTest's optimisations:

- "selective mutation"
- coverage-based test selection
- bytecode translation

PiTest's optimisations:

- "selective mutation"
- coverage-based test selection
- bytecode translation

Others:

- mutant clustering
- mutant subsumption
- state infection
- test case prioritisation

PiTest's optimisations:

- "selective mutation"
- coverage-based test selection
- bytecode translation

Others:

- mutant clustering
- mutant subsumption
- state infection
- test case prioritisation

our approach: ComMT

2

Mutation data compression

Assumption: mutants which have high similarity in weak mutation are very likely to have the same outcome in strong mutation.

Mutation data compression

Assumption: mutants which have high similarity in weak mutation are very likely to have the same outcome in strong mutation.

Mutation data compression

Assumption: mutants which have high similarity in weak mutation are very likely to have the same outcome in strong mutation.

Experimental study

- 6 open-source projects
- automatically generated test suites (by Evosuite)
- comparison of test case selection random, set cover, sorting
- ComMT vs. other optimisations coverage-based, infection-based

Comparison of test case selection in each stage for jsecurity

Based on random mutant selection

Comparison of test case selection in each stage for jsecurity

Based on random mutant selection

Comparison of test case selection in each stage for jsecurity

Based on random mutant selection

ComMT vs. other optimisations

• coverage-based: baseline

- coverage-based: baseline
- **infection-based:** 11.37% execution time reduction

- coverage-based: baseline
- infection-based: 11.37% execution time reduction
- **ComMT:** trade-offs between execution time reduction and error rate (%)

mutant	test	red.	err.	
random	no selection	83.93	0.257	
	random	89.82	-19.36	
	set cover	86.84	-4.76	
	sorting	84.51	0.262	

- coverage-based: baseline
- infection-based: 11.37% execution time reduction
- **ComMT:** trade-offs between execution time reduction and error rate (%)

mutant	test	red.	err.		
random	no selection	83.93	0.257		
	random	89.82	-19.36		
	set cover	86.84	-4.76		
	sorting	84.51	0.262		

• Generalise to other test suites
Update: manually-written vs. generated

- Generalise to other test suites
 Update: manually-written vs. generated
- Investigate other approximation methods
 E.g. mutant subsumption, Principal Component
 Analysis (PCA)

- Generalise to other test suites
 Update: manually-written vs. generated
- Investigate other approximation methods
 E.g. mutant subsumption, Principal Component
 Analysis (PCA)
- Improve clustering accuracy
 E.g. explore the relationships between clustering accuracy and other metrics

- Generalise to other test suites
 Update: manually-written vs. generated
- Investigate other approximation methods
 E.g. mutant subsumption, Principal Component
 Analysis (PCA)
- Improve clustering accuracy
 E.g. explore the relationships between clustering accuracy and other metrics
- Implement on top of an existing mutation tool

FCA grouping

• Trade-offs between execution time reduction and error rate (%):

Project	Cov. based	Inf. based	ComMT							
· · · · · · · · · · · · · · · · · · ·			No se	lection	Set cover		Random		Sorting	
baseline <	Exec.	Red.	Red.	Err.	Red.	Err.	Red.	Err.	Red.	Err.
jsecurity	1.39 min	16.78	87.71	0.13	90.27	-17.42	88.55	-2.46	87.31	-0.04
summa	1.54 min	13.57	90.97	0.74	93.58	-14.1	92.18	-2.25	90.87	0.69
db-everywhere	0.02 min	3.65	59.29	-0.26	80.81	-18.83	70.43	-6.22	63.95	-0.26
noen	1.58 min	6.09	88.52	0.30	91.08	-30.69	89.52	-7.29	87.98	0.14
jtailgui	0.31 min	18.7	87.66	0.07	91.33	-13.11	89.86	-3.42	87.89	0.07
caloriecount	19.21 mir	9.39	89.44	0.04	91.83	-21.99	90.5	-6.89	89.06	-0.38
Mean	-	11.37	83.93	0.257	89.82	-19.36	86.84	-4.76	84.51	0.262