Detecting selection: methods (II)

Matteo Fumagalli

Outline

- Brief introduction to natural selection
- Modes of selection
- Inferring selection at the intra-species level
 - Genetic differentiation
 - Haplotype variation
 - Model-based approaches
 - Testing for significance
- Inferring selection at the inter-species level
- Detecting selection from low-depth sequencing data

Inter-species variation

events in the deep past, macro-evolutionary trends, selection between species

Polar bears vs. Brown bears

Question: what are the genetic signatures of polar bears' adaptation to the Arctic environment?

Expected genetic differentiation

Expected genetic differentiation

Expected genetic differentiation

Inferring inter-species selection

As both depend on mutation rates, and levels are expected to be proportional.

Positive selection (or negative selection)

Balancing selection (or relaxation of functional constraints)

HKA test

Hudson-Kreitman-Aguadè (HKA, Hudson et al. 1987) test

Contingency table 2x2: chi-square test

HKA test

Empirical distribution (-log10)

HKA test

Empirical distribution (-log10)

Coding polymorphisms

Substitutions in the coding regions may alter (non-synonymous) or not (synonymous) the protein sequence:

dN/ds

Comparison between rate of **nonsynonymous** substitutions and rate of **synonymous** substitutions (also called K_a/K_s or ω)

Non-synonymous

Synonymous

Positive selection (novel proteins) K_a/K > 1

Negative selection (against deleterious mutations $K_a/K < 1$

Coding polymorphisms and divergence

Compare the amount of variation within a species to the divergence between species at non-synonymous and synonymous variants.

2x2 contingency table

Comparative genomics

Identify multiple-species conserved genomic elements or accelerated rates of substitution in specific lineages (e.g. PAML software).

Software available

DnaSP (http://www.ub.edu/dnasp/)

Arlequin (http://cmpg.unibe.ch/software/arlequin35/)

BayeScan (http://cmpg.unibe.ch/software/BayeScan/)

libsequence (http://www.molpopgen.org/software.html)

sweep (http://www.broadinstitute.org/mpg/sweep/)

iHS (http://coruscant.itmat.upenn.edu/software.html)

nSL (http://cteg.berkeley.edu/~nielsen/resources/software/)

Pre-computed values (USCS genome browser tables)

Homemade scripts

. . .

Summary

Methods to detect signatures of selection are grouped based on:

time of selection summary statistics used

- Assessing statistical significance through empirical or expected distributions
- Investigating complex models of selection and adaptation