May 24 Optimization

Tuesday, May 24, 2022 3:07 PM

$$f(x) = 3e^{-2x} - 5e^{7x} + 15e^{x}$$

$$f'(x) = -6e^{-2x} - 35e^{7x} + 15e^{x}$$

$$f''(x) = 12e^{-2x} - 245e^{7x} + 15e^{x}$$
Candy bars stert at 0¢ for price 5¢ at a fine price = 5.x
$$f''(x) = 3e^{-2x} - 245e^{7x} + 15e^{x}$$

$$f''(x) = 12e^{-2x} - 245e^{x} + 15e^{x}$$

$$f''(x) = 12e^{x} - 245e^{x} + 15e^{x}$$

$$f''(x) = 12e^$$

§8.13: Max/Min problems

Often want to find the biggest, smallest, most, least, maximum, minimum of something.

Here's the graph of
$$y = f(x) = -x^2 + 4x + 3$$

The maximum value or just maximum of the function is 7.

$$\int_{6x}^{6x} \left(\left(\frac{1}{2} \right) = -2x + 4 = 0 \right)$$

$$\chi = 2$$

1. Use this method to find the maximum of $f(x) = -x^2 + 8x + 5$. The maximum value is...

A = 4 B = 5 C = -2x + 8 D = 21 E = 15 D

2. Find the value of x which neckes f(x) = (2-x)(x+6) a

A=16 B=1 C=-1 D=2 E=-2 Scale Mathematics 124, 2022: Calculus Intro

More Examples

What is the minimum of f(x) = (x+2)(x+4) + 3?

$$A = 0$$
 $B = 1$ $C = 2$ $D = 3$ $E = 4$

Answer: C

More Examples

3. What is the minimum of f(x) = (x+2)(x+4) + 3?

$$A = 0$$
 $B = 1$ $C = 2$ $D = 3$ $E = 4$

Answer: C

4. What is minimum of
$$f(x) = x^2 + 16x^{-2}$$
?

$$A = 2 \quad B = 4 \quad C = 6 \quad D = 8 \quad E = 16$$

Answer: D

- **5.** Find the value of x which makes $f(x) = -e^x e^{-2x}$ a maximum.

$$A = 0$$
 $B = ln(2)$ $C = -ln(2)$ $D = ln(2)/3$ $E = ln(2)/3$

Word Problem #1

A ball is thrown into the air. After t seconds the height in meters above the ground of the ball is $h(t) = 40t - 10t^2$. How many meters he ball go? $A = 2 \quad B = 40 - 20t \quad C = 20$ 40 = 20t 40 = 20thigh did the ball go?

$$A = 2$$
 $B = 40 - 20t$ $C = 20$ $D = 40$

Word Problem #2

If an airline sells tickets at a price of \$200 + 5x each the number of tickets it sells is 1000 - 20x. What price should the tickets be if the airline wants to get the most money?

$$A=5 \quad B=25 \quad C=175 \quad D=200 \quad E=225$$

(1005-20x)(20045x) = 20.5(50-x)(404x) = 100(50-x)(404x) $(50-x)(404x) = 2500 + 10x-x^{2}$ $100(2,000+(0x-x^{2}))$

$$f(x) = 100(10 - 2x) = 0$$

Word Problem #3 100=1.w

A fenced garden with an area of 100 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. What length and width should be used so the least amount of fence is $P = 2012w = 21 + 2\left(\frac{100}{l}\right) = 21 + 2000^{l}$ needed?

Approach:

- (1) Express the total length of fence in terms of only one variable, either L = length of field, or W = width of field. This gives a formula for P = (total length of fence) involving, say, W.
- (2) Find minimum by solving $\frac{dP}{dW} = 0$. P(1) = 2 200 = 0
 Students always find (1) the hardest part.

Students always find (1) the hardest part. You have been prepared for this by word problems from chapter 3!