Scilab Textbook Companion for Electronic and Electrical Measuring Instruments & Machines by Bakshi And Bakshi¹

Created by
Vivek Goklani
BE (EXTC)
Others
Mumbai University
College Teacher
Kanchan Chavan
Cross-Checked by
Chaitanya Potti

May 1, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

 ${\bf Title:}\,$ Electronic and Electrical Measuring Instruments & Machines

Author: Bakshi And Bakshi

Publisher: Technical Publications, Pune

Edition: 1

Year: 2009

ISBN: 978-81-8431-554-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Electronic Voltmeters	9
2	Digital To Analog Converters	15
3	Analog To Digital Converters And Digital Voltmeters	18
4	Frequency Meters And Phase Meters	23
6	Oscilloscopes	25
7	Basic Measuring Instruments	28
8	Measurement Of Resistance Capacitance And Inductance	46
9	DC Motors	60
10	Three Phase Induction Motors	83

List of Scilab Codes

Exa 1.1	calculate multiplier resistance	9
Exa 1.2	calculate multiplier resistance	9
Exa 1.3	calculate form factor and error	10
Exa 1.4	calculate percentage error	10
Exa 1.5	calculate series resistance	11
Exa 1.6	calculate meter current	11
Exa 1.7	calibrate meter	11
Exa 1.8	design FET voltmeter	12
Exa 1.9	calculate series resistance	12
Exa 1.10	find calibration resistance	13
Exa 1.11	design FET voltmeter	13
Exa 2.1	design 4 bit DAC	15
Exa 2.2	calculate resolution	15
Exa 2.3	calculate final output voltage	16
Exa 2.4	calculate full scale output	16
Exa 2.5	find step size and analog output	17
Exa 2.6	find output voltage	17
Exa 3.1	find resolution and digital output	18
Exa 3.2	calculate quantisation error	18
Exa 3.3	calculate time period	19
Exa 3.4	find digital output	19
Exa 3.5	find conversion time	20
Exa 3.6	find maximum input frequency	20
Exa 3.7	find resolution	20
Exa 3.8	find percentage error	21
Exa 3.9	find senstivity of meter	21
Exa 3.10	find resolution and display voltage	22
Exa 4.1	plot graph between phase voltage and output	23

Exa 4.2	calculate output voltage
Exa 6.1	calculate bandwidth of CRO 25
Exa 6.2	find minimum rise time of plulse
Exa 6.3	calculate amplitude and rms value
Exa 6.4	calculate frequency and rms value
Exa 6.5	find phase difference between two waves
Exa 6.6	find frequency at vertical plate
Exa 7.1	calculate deflection
Exa 7.2	find deflection
Exa 7.3	calculate value of shunt resistance
Exa 7.4	calculate shunt current and meter resistance 29
Exa 7.5	design multirange dc milliammeter
Exa 7.6	design aryton shunt
Exa 7.7	calculate multiplier resistance
Exa 7.8	calculate shunt and multiplier resistance
Exa 7.9	design D arsonoval movement voltmeter 32
Exa 7.10	senstivity method design
Exa 7.11	find multiplier resistance
Exa 7.12	sensitivity of meter comparison
Exa 7.13	accuracy of meter comparison
Exa 7.14	error and accuracy measurement
Exa 7.15	basic PMMC measurement
Exa 7.16	find shunt current and resistance for fsd
Exa 7.17	determine inductance of instrument
Exa 7.18	find deflecting torque
Exa 7.19	difference between dc and ac readings of voltmeter 38
Exa 7.20	find revolutions and percentage error
Exa 7.21	determine meter errror at half load
Exa 7.22	calculate power factor of load
Exa 7.23	find speed of disc and error of meter
Exa 7.24	find error at given power factor
Exa 7.25	limits of error of wattmeter
Exa 7.26	estimate line current
Exa 7.27	estimate line voltage
Exa 7.28	find percentage ratio error
Exa 7.29	calculate actual primary current and ratio error 44
Exa 8.1	calculate R1 and R2 of ohmmeter
Exa 8.2	find unknown resistance 40

6						
11AG J.10	carearane speed of motor					
Exa 9.13	calculate speed of motor					
Exa 9.12	find external resistance					
Exa 9.11	find new speed and armature current					
Exa 9.10	calculate speed on new load					
Exa 9.9	calculate speed on full load					
Exa 9.8	find armature current and back emf					
Exa 9.7	calculate speed					
Exa 9.6	calculate induced emf and lost torque					
Exa 9.4 Exa 9.5	calculate gross torque					
Exa 9.4	calculate back emf and speed 61					
Exa 9.2 Exa 9.3	calculate induced emf					
Exa 9.2	calculate speed and generated emf					
Exa 9.1	calculate generated emf					
Exa 8.27	find limiting values of unknown resistance					
Exa 8.26	find resistance and inductance of coil					
Exa 8.25	determine unknown parameters of arm AB 58					
Exa 8.24	find unknown impedance and dissipation factor 57					
Exa 8.23	find unknown impedance					
Exa 8.22	find constants of Zx					
Exa 8.21	find constants of arm CD					
Exa 8.20	find unknown resisance Rx					
Exa 8.19	find series resistance					
Exa 8.18	find unknown resisance and unbalance in bridge 54					
Exa 8.17	find value of unknown resistance					
Exa 8.16	calculate balance temperature and error					
Exa 8.15	calculate smallest change in resistance					
Exa 8.14	find current through galanometer					
Exa 8.13	find deflection of galvanometer					
Exa 8.12	find deflection of galvanometer					
Exa 8.11	calculate unknown capacitance and dissipation factor . 51					
Exa 8.10	find constants of unknown impedance					
Exa 8.9	find components of branch BC					
Exa 8.8	find equivalent series circuit					
Exa 8.7	find equivalent series circuit					
Exa 8.6	determine balance of bridge					
Exa 8.5	find constants of unknown impedance					
Exa 8.4	find unknown resisance					
Exa 8.3	find current through galvanometer					

Exa 9.14	find out speed of motor	67
Exa 9.15	find speed and torque of motor	68
Exa 9.16	find speed on full load	69
Exa 9.17	determine armature current ansd speed of machine	69
Exa 9.18	determine mechanical power on full load	70
Exa 9.19	calculate full load speed	71
Exa 9.20	determine full load speed and efficiency	72
Exa 9.21	find speed for parallel field groups	73
Exa 9.22	find new speed and armature current	73
Exa 9.23	find external resistance	74
Exa 9.24	estimate supply voltage	74
Exa 9.25	find efficiency and power input	75
Exa 9.26	calculate efficiency and armature current	76
Exa 9.27	calculate back emf	77
Exa 9.28	calculate torque and efficiency	77
Exa 9.29	determine efficiency and speed of motor	78
Exa 9.30	calculate efficiency of motor	79
Exa 9.31	calculate speed of motor combination	80
Exa 9.32	calculate efficiency and power output	80
Exa 9.33	calculate speed on given load	81
Exa 10.1	calculate full load slip	83
Exa 10.2	calculate full load speed	83
Exa 10.3	calculate rotor frequency	84
Exa 10.4	find full load slip and speed	84
Exa 10.5	calculate rotor frequency and induced emf	85
Exa 10.6	find rotor current and rotor power factor	85
Exa 10.7	calculate full load torque	86
Exa 10.8	calculate starting torque and full load torque	86
Exa 10.9	star connected induction motor	87
Exa 10.10	calculate external resistance	88
Exa 10.11	calculate rotor copper loss	89
Exa 10.12	calculate full load efficiency	89
Exa 10.13	calculate slip and rotor resistance per phase	90
Exa 10.14	calculate gross mechanical power and efficiency	91
Exa 10.15	calculate shaft torque and full load efficiency	91
Exa 10.16	calculate tapping and supply start current	93
Exa 10.17	determine ratios of torques	93
Exa 10.18	calculate rotor current and external resistance	93

Exa 10.19	calculate starting torque and speed	94
Exa 10.20	calculate efficiency on full load	95
Exa 10.21	calculate new speed	96
Exa 10.22	find rotor current and rotor emf per phase	96
Exa 10.23	calculate starting torque and speed	97
Exa 10.24	calculate full load torque and external resistance	98
Exa 10.25	calculate slip and line current	99
Exa 10.26	find power factor of rotor	100
Exa 10.27	determine full load speed and speed at max torque	100
Exa 10.28	calculate starting torque	101
Exa 10.29	calculate speed torque and external resistance	102
Exa 10.30	calculate motor output and efficiency	103
Exa 10.31	find ratio of torques	103

Chapter 1

Electronic Voltmeters

Scilab code Exa 1.1 calculate multiplier resistance

```
1 //Chapter -1, Example1_1, pg 1_17
2 Erms = 10
3 Ep = sqrt(2) * Erms
4 Eav = 0.6 * Ep
5 E = Eav / 2
6 Edc = 0.45 * Erms
7 Idc = 1 * 10 ^ - 3
8 Rm = 200
9 Rs = (Edc / Idc) - Rm
10 printf("required multiplier resistance")
11 printf("Rs=%.2 f ohm \n", Rs )
```

Scilab code Exa 1.2 calculate multiplier resistance

```
1 //Chapter -1, Example1_2, pg 1_18
2 Eav=9
3 Erms=10
4 Rm=500
```

```
5 Idc=2*10^-3
6 Edc=0.9*Erms
7 Rs=(Edc/Idc)-Rm
8 printf("required multiplier resistance")
9 printf("Rs=%.2 f ohm \n", Rs )
```

Scilab code Exa 1.3 calculate form factor and error

```
// Chapter -1, Example1_3, pg 1_20
Kf=1//Erms=Em for 1 time period
Kf1=1.11//Kf(sine)/Kf(square)
pere=(Kf-Kf1)/Kf*100//percentage error
printf("percentage error")
printf("pere=%.2f", pere)
```

Scilab code Exa 1.4 calculate percentage error

```
1 / Chapter -1, Example 1_4, pg 1_20
2 A = 50
3 T=2
4 function E=f(t), E=(50*t)^2, endfunction //e=At(ramp)
      function)
5 \text{ exact} = -2.5432596188;
6 I=intg(0,T,f)
7 abs(exact-I)
8 Erms = sqrt((1/T)*I)
9 function e=f1(t), e=50*t, //e=At(ramp function)
10 endfunction
11 exact = -2.5432596188;
12 I1=intg(0,T,f)
13 Eav = (1/T) * I1
14 Kf = Erms / Eav
15 kf1=0.961//Kf(sine)/Kf(sawtooth)
```

```
16 pere=(1-kf1)/1*100//percentage error
17 printf("percentage error")
18 printf("pere=%.2f",pere)
```

Scilab code Exa 1.5 calculate series resistance

```
1 //Chapter -1, Example1_5, pg 1_27
2 Idc=25*10^-3
3 Erms=200
4 Rm=100
5 Rf=500
6 Rd=2*Rf
7 Rm1=Rm+Rd//total meter resistance
8 Rs=(0.9*Erms)/Idc-Rm1
9 printf("total meter resistance")
10 printf("Rs=%.2 f ohm", Rs)
```

Scilab code Exa 1.6 calculate meter current

```
1 //Chapter -1, Example1_6, pg 1_38
2 V1=2
3 Rm=50
4 Rd=15*10^3
5 gm=0.006
6 rd=100*10^3
7 Im=(gm*rd*Rd/(rd+Rd)*V1)/((2*(rd*Rd/(rd+Rd))+Rm))
8 printf("meter current")
9 printf("Im=%.4 f A", Im)
```

Scilab code Exa 1.7 calibrate meter

```
1 // Chapter -1, Example1_7, pg 1_38
2 V1=1
3 Rm=50
4 Rd=15*10^3
5 gm=0.006
6 rd=100*10^3
7 Im=(gm*rd*Rd/(rd+Rd)*V1)/((2*(rd*Rd/(rd+Rd))+Rm))
8 printf("meter current")
9 printf("Im=%.4 f A", Im)
```

Scilab code Exa 1.8 design FET voltmeter

```
//Chapter -1, Example1_8, pg 1_39
V1=1
Vin=30
Rin=9*10^6
R4=Rin/100//for Vin=100V
R3=(Rin-50*R4)/50//for Vin=50V
R2=(Rin-30*R3-30*R4)/30//for Vin=30V
R1=Rin-R2-R3-R4
printf("resitance values are\n")
printf("R1=%.2 f ohm\n",R1)
printf("R2=%.2 f ohm\n",R2)
printf("R3=%.2 f ohm\n",R3)
printf("R4=%.2 f ohm\n",R4)
```

Scilab code Exa 1.9 calculate series resistance

```
1 //Chapter -1, Example1_9, pg 1_40
2 rd=10*10^3
3 gm=0.003
4 rdf=rd/(1+gm*rd)//actual rd
5 Rs=15*10^3
```

```
6 V1=1//input voltage
7 Vo=(gm*rdf*Rs)*V1/(rdf+Rs)
8 Rth=(2*Rs*rdf/(Rs+rdf))
9 Rm=1800
10 Im=Vo/(Rth+Rm)
11 Img=0.1*10^-3//meter current given
12 Rf=(Vo/Img)-Rth-Rm//series resistance
13 printf("current Im=%.5 f A\n",Im)
14 printf("seires resistance\n")
15 printf("Rf=%.2 f ohm\n",Rf)
```

Scilab code Exa 1.10 find calibration resistance

```
//Chapter -1, Example1_10, pg 1_41
rd=200*10^3
gm=0.004
Rs=40*10^3
Rm=1000
V1=1
rdf=rd/(1+gm*rd)//actual rd
Rth=(2*Rs*rdf/(Rs+rdf))
Vo=(gm*rdf*Rs)*V1/(rdf+Rs)
Im=50*10^-6
Rcal=(Vo/Im)-Rth-Rm//caliberation resistance
printf("caliberation resistance\n")
printf("Rcal=%.2f ohm",Rcal)
```

Scilab code Exa 1.11 design FET voltmeter

```
1 // Chapter -1, Example 1_11, pg 1_42
2 Vin = 3
3 V1 = 1
4 Rin = 1 * 10^6 // input resistance of FET
```

```
5 R4=Rin/100//for Vin=100V
6 R3=(Rin-30*R4)/30//for Vin=30V
7 R2=(Rin-3*R3-3*R4)/3//for Vin=3V
8 R1=Rin-R2-R3-R4
9 printf("Resistances are\n")
10 printf("R1=\%.2 f ohm\n",R1)
11 printf("R2=\%.2 f ohm\n",R2)
12 printf("R3=\%.2 f ohm\n",R3)
13 printf("R4=\%.2 f ohm",R4)
```

Chapter 2

Digital To Analog Converters

Scilab code Exa 2.1 design 4 bit DAC

```
1
2 //Chapter -2, Example2_1, pg 2_9
3 Vr=10
4 n=4
5 Res=0.5//resolution
6 Rt=Vr/((2^n)*Res)
7 Rf=10*10^3
8 R=Rt*Rf
9 printf("input resistance\n")
10 printf("r=%.2 f ohm\n",R)
11 printf("feedback resistance\n")
12 printf("Rf=%.f ohm",Rf)
```

Scilab code Exa 2.2 calculate resolution

```
1 //Chapter -2, Example2_2, pg 2_11
2 n=8
3 Res1=2^n
```

```
4 Vofs=2.55//full scale output voltage 5 Res2=Vofs/(Res1-1) 6 printf("resolution through method-1\n") 7 printf("Res1=%.2 f\n",Res1) 8 printf("resolution through method-2\n") 9 printf("Res2=%.2 f\n",Res2)
```

Scilab code Exa 2.3 calculate final output voltage

```
1 //Chapter -2, Example2_3, pg 2_12
2 n=4
3 Vofs=15
4 Res=Vofs/((2^n)-1)
5 D=bin2dec('0110')//decimal equivalent
6 Vo=Res*D
7 printf("output voltage\n")
8 printf("Vo=%.2 f V", Vo)
```

Scilab code Exa 2.4 calculate full scale output

```
1 //Chapter -2, Example 2.4, pg 2.12
2 Res = 20 * 10^ -3
3 n = 8
4 Vofs = Res * ((2^n) - 1)
5 D = bin 2 dec ('100000000')
6 Vo = Res * D
7 printf ("output voltage \n")
8 printf ("Vo=%.2 f V\n", Vo)
9 printf ("full scale output voltage \n")
10 printf ("Vofs=%.2 f V", Vofs)
```

Scilab code Exa 2.5 find step size and analog output

```
//Chapter -2, Example 2.5, pg 2.12
n=4
Vofs=5
Res=Vofs/((2^n)-1)
D1=bin 2dec('1000')
Vo1=Res*D1
D2=bin 2dec('1111')
Vo2=Res*D2
printf("output voltage 1\n")
printf("Vo1=\%.2 f V\n", Vo1)
printf("output voltage 2\n")
printf("Vo2=\%.2 f V\n", Vo2)
```

Scilab code Exa 2.6 find output voltage

```
1 //Chapter -2, Example2.6, pg 2.13
2 n=12
3 Res=8*10^-3
4 Vofs=Res*((2^n)-1)
5 perR=Res/Vofs*100
6 Vo=Res*bin2dec('010101101101')
7 printf("percentage resolution\n")
8 printf("perR=%.2 f \n", perR)
9 printf("output voltage\n")
10 printf("Vo=%.2 f V", Vo)
```

Chapter 3

Analog To Digital Converters And Digital Voltmeters

Scilab code Exa 3.1 find resolution and digital output

```
//Chapter -3, Example3_1, pg 3_5
n=8
Res1=2^n
Vifs=5.1
Res2=Vifs/((2^n)-1)
Res=Res2*1000//in mv/LSB
Vi=1.28
D=Vi/Res2
str=dec2bin(64)
printf("Resolution\n")
printf("Res2=%. f mv/LSB\n", Res)
printf("digital output voltage \n")
printf("D=%. f LSBs\n",D)
```

Scilab code Exa 3.2 calculate quantisation error

```
1 //Chapter -3, Example 3.2, pg 3.6
2 Vifs = 4.095
3 n = 12
4 Qe = Vifs / (((2^n) - 1) * 2)
5 printf("quantisation error \n")
6 printf("Qe=%.5 f V", Qe)
```

Scilab code Exa 3.3 calculate time period

```
1 //Chapter -3, Example3_3, pg 3_10
2 V1=100*10^-3
3 Vr=100*10^-3
4 t1=83.33
5 t2=(V1/Vr)*t1
6 printf("t2=%.5 f ms\n",t2)
7 Vi=200*10^-3//input voltage
8 t2=(Vi/Vr)*t1
9 printf("t2=%.5 f ms",t2)
```

Scilab code Exa 3.4 find digital output

```
1 // Chapter -3, Example3_4, pg 3_10
2 fclk=12*10^3//clock frequency
3 t1=83.33*10^-3
4 V1=100*10^-3
5 Vr=100*10^-3
6 D=fclk*t1*(V1/Vr)
7 printf("digital output\n")
8 printf("D=%. f counts", D)
```

Scilab code Exa 3.5 find conversion time

```
1 // Chapter -3, Example3_5, pg 3_13
2 F=1*10^6
3 T=1/F
4 n=8
5 Tc=T*(n+1)
6 printf("converstion time\n")
7 printf("Tc=%.7f sec", Tc)
```

Scilab code Exa 3.6 find maximum input frequency

```
1 //Chapter -3, Example 3_6, pg 3_15
2 Tc = 9*10^-6
3 n = 8
4 fmax = 1/(2*%pi*Tc*(2^n))
5 printf("maximum input frequency\n")
6 printf("fmax=%.2 f Hz", fmax)
```

Scilab code Exa 3.7 find resolution

```
1 //Chapter -3, Example3_7, pg 3_37
2 n=3//3 full digits
3 R=1/(10^n)
4 //for 1V range
5 Res1=1*R
6 //for 50V range
7 Res2=50*R
8 printf("least diffrence in readings for 50V range\n"
)
9 printf("Res=%.2 f V", Res2)
```

Scilab code Exa 3.8 find percentage error

```
\frac{2}{\sqrt{\text{Chapter}-3}}, Example 3_8, pg 3_38
3 n=3
4 R=1/(10^n)
5 //for 10V range
6 R = R * 10
7 err1=R//1-digit error
8 //reading is 5V
9 err=(0.5/100)*5//error due to reading
10 errt=err1+err//total error
11 printf("error when reading is 5V\n")
12 printf ("errt=\%.4 \text{ f V} \setminus \text{n}", errt)
13 //reading is 0.1V
14 err = (0.5/100)*0.1//error due to reading
15 errt=err+err1//total error
16 \text{ errp} = (\text{errt}/0.1) * 100
17 printf("percent error when reading is 0.1V\n")
18 printf ("errp=%.1 f ",errp)
```

Scilab code Exa 3.9 find sensitivity of meter

```
1 //Chapter -3, Example 3_9, pg 3_38  
2 n=4  
3 fsmin=10*10^-3//full scale value on min. range  
4 R=1/(10^n)  
5 S=fsmin*R  
6 printf("s=\%.7f",S)
```

Scilab code Exa 3.10 find resolution and display voltage

```
1 //Chapter -3, Example3_10, pg 3_39
2 n=4
3 R=1/(10^n)
4 //for 10V range
5 R=10*R
6 printf("12.98 would be displayed as 12.980 for 10V range\n")
7 //for 1V range
8 R=1*R
9 printf("0.6973 would be displayed as 0.6973 for 1V range\n")
10 //for 10V range
11 printf("0.6973 would be displayed as 0.697 for 10V range\n")
```

Chapter 4

Frequency Meters And Phase Meters

Scilab code Exa 4.1 plot graph between phase voltage and output

```
1
2 //Chapter -4, Example 4_1, pg 4-22
3 E1mag=[0 3 5 7 9 12 15 18 21]
4 E1rms=E1mag/sqrt(2)
5 \text{ Erms} = 5 // \text{given}
6 Einrms=(((E1rms)^2)+((Erms)^2))^(1/2)
7 Eab=(2*sqrt(2).*Einrms)/%pi
8 xlabel('E1(Volts)', 'fontsize',5)
9 ylabel('Eab(Volts)', 'fontsize',5)
10 title ('Phase Meter', 'fontsize', 5)
11 printf("E1 mag
                       E1 rms
                                   Ein Rms
                                               Eab output")
12 k = [0
            0
                        4.501;
13
      3
            2.121
                      5.431
                                4.889;
14
      5
            3.53
                     6.123
                                5.513;
15
      7
            4.949
                      7.035
                                 6.334;
16
            6.363
                      8.093
                                7.286;
17
      12
             8.485
                       9.848
                                  8.867;
18
      15
             10.606
                         11.726
                                    10.557;
19
      18
             12.727
                         13.674
                                    12.311;
```

```
20 21 14.849 15.668 14.106 ]
21 disp(k)
22 plot(E1mag, Eab)
```

Scilab code Exa 4.2 calculate output voltage

```
//Chapter -4, Example4_2, pg 4-24
E1rms = 10
E2rms = 15
E1m = E1rms * sqrt(2)
E2m = E2rms * sqrt(2)
//voltage across AB is proportional to E1+E2 in positive half cycle
Ep = (1/(2*%pi))*(2*E1m+E2m)//output in positive half cycle
//voltage across AB is proportional to E1-E2 in negative half cycle
En = (1/(2*%pi))*(2*E1m-E2m)//output in negative half cycle
Eab = Ep - En
printf("output voltage\n")
printf("Eab = %.2 f V", Eab)
```

Chapter 6

Oscilloscopes

Scilab code Exa 6.1 calculate bandwidth of CRO

```
1 // Chapter -6, Example6_1, pg 6-26
2 Trs=17*10^-6
3 Trd=21*10^-6
4 Tro=sqrt((Trd^2)-(Trs^2))
5 BW=0.35/Tro
6 printf("bandwidth of CRO\n")
7 printf("BW=%.2 f Hz", BW)
```

Scilab code Exa 6.2 find minimum rise time of plulse

```
1 // Chapter -6, Example 6_2, pg 6-53
2 SR=200*10^6//sampling rate
3 trmin=1/SR
4 printf("minimum rise time of pulse\n")
5 printf("trmin=%.10 f s", trmin)
```

Scilab code Exa 6.3 calculate amplitude and rms value

```
//Chapter -6, Example6_3, pg 6-63
//from plot 1 subdivision =0.2 units
pp=2+3*0.2//positive peak
np=2+3*0.2//negative peak
Nd=pp+np//no. of divisions
Vd=2*10^-3//volts per division
Vpp=Nd*Vd
Vm=Vpp/2
Vrms=Vm/sqrt(2)
printf("peak value of voltage\n")
printf("Vm=%.4 f V\n", Vm)
printf("RMS value of voltage\n")
printf("Vrms=%.4 f V\n", Vrms)
```

Scilab code Exa 6.4 calculate frequency and rms value

```
//Chapter -6, Example 6.4, pg 6-64
Vd=2
Tb=2*10^-3//time base
Vd=2
Nd=3
Vpp=Nd*Vd
Vm=Vpp/2
Vrms=Vm/sqrt(2)
Hd=2//horizontal occupancy
T=Tb*Hd
f=1/T
printf("RMS value of voltage\n")
printf("Vrms=%.2f V\n", Vrms)
printf("frequency of voltage across resistor\n")
printf("f=%.2f Hz",f)
```

Scilab code Exa 6.5 find phase difference between two waves

```
// Chapter -6, Example6_5, pg 6-67
y1=8
y2=10
phi=asin(y1/y2)//phase difference
phi=phi*(180/%pi)
printf("phase difference\n")
printf("phi=%.2 f deg", phi)
```

Scilab code Exa 6.6 find frequency at vertical plate

```
1 // Chapter -6, Example 6 - 6, pg 6 - 69
2 Nv = 2
3 Nh = 5
4 fh = 1 * 10^3
5 fv = (5/2) * fh // (fv / fh) = (Nh/Nv) = (5/2)
6 printf("vertical signal frequency \n")
7 printf("fv = %. f Hz", fv)
```

Chapter 7

Basic Measuring Instruments

Scilab code Exa 7.1 calculate deflection

```
1 //Chapter -7, Example7_1, pg 7-13
2 N=100
3 B=0.15
4 A=10*8*10^-6
5 I=5*10^-3
6 Td=N*B*A*I//deflecting torque
7 K=0.2*10^-6//spring const.
8 theta=Td/K//deflecting angle
9 printf("deflection theta=%.2f deg",theta)
```

Scilab code Exa 7.2 find deflection

```
1 //Chapter -7, Example 7_2, pg 7-21
2 x=poly(0,"x")
3 L=(12+6*x-(x^2))//x is deflection in rad from zero
4 dl=derivat(L)
5 K=12
6 I=8
```

```
7 x=6/(((2*K)/(I^2))+2)//x=((I^2)dl)/(2*k)
8 z=x*(180/%pi)
9 y=horner(L,x)
10 printf("deflection for given current\n")
11 printf("x=%.2f deg\n",z)
12 printf("inductance for given deflection\n")
13 printf("L=%.2f uH",y)
```

Scilab code Exa 7.3 calculate value of shunt resistance

```
1 //Chapter -7, Example 7_3, pg 7-23
2 Rm = 100
3 Im = 2*10^-3
4 I = 150*10^-3
5 Rsh = (Im * Rm) / (I - Im)
6 printf("value of shunt resistance \n")
7 printf("Rsh=%.2 f ohm", Rsh)
```

Scilab code Exa 7.4 calculate shunt current and meter resistance

```
//Chapter -7, Example 7_4, pg 7-23
Vsh1=400*10^-3
Rsh=0.01
Ish=Vsh1/Rsh
printf("current through shunt\n")
printf("Ish=%.2 f A\n", Ish)
Ish=50
Vsh=Ish*Rsh
printf("voltage through shunt\n")
printf("voltage through shunt\n")
printf("Ish=%.2 f V\n", Vsh)
Rm=750//coil resistance
Im=Vsh1/Rm
Rm1=Vsh/Im//meter resistance
```

```
14 printf("meter resistance\n")
15 printf("Rm1=\%.2 f ohm\n",Rm1)
```

Scilab code Exa 7.5 design multirange de milliammeter

```
1 // Chapter -7, Example 7.5, pg 7-25
2 I1=10*10^-3
3 Im=2*10^-3
4 Rm=75
5 R1=(Im*Rm)/(I1-Im)
6 I2=50*10^-3
7 R2=(Im*Rm)/(I2-Im)
8 I3=100*10^-3
9 R3=(Im*Rm)/(I3-Im)
10 printf("designed multi-range ammeter\n")
11 printf("full scale deflection Im=%.5 f A\n", Im)
12 printf("meter resistance Rm=%.2 f ohm\n", Rm)
13 printf("R1=%.2 f ohm\n", R1)
14 printf("R2=%.2 f ohm\n", R2)
15 printf("R3=%.2 f ohm\n", R3)
```

Scilab code Exa 7.6 design aryton shunt

```
1 //Chapter -7, Example 7-6, pg 7-27

2 I1=10

3 Im=1*10^-3

4 Rm=50

5 //in position -1 R1 is in shunt with R2+R3+Rm

6 //R1=10^-4(R2+R3+50).....(1)

7 //in position -2 (R1+R2) is in shunt with R3+Rm

8 //R1+R2=2*10^-4(R3+50)....(2)

9 //in position -3 R1+R2+R3 is in shunt with Rm

10 //R1+R2+R3 = 0.05.....(3)
```

```
11 //from .....(3)
12 //R1+R2=0.05-R3
13 //substituting in ......(2)
14 R3=0.04/1.0002
15 //R2=0.01-R1 .....(4)
16 //substituing in (1)
17 R1=5.00139*10^-3/1.0001
18 R2=0.01-R1//from .....(4)
19 printf("various sections of aryton shunt are\n")
20 printf("full scale deflection Im=%.4 f A\n", Im)
21 printf("meter resistance Rm=%.2 f ohm\n", Rm)
22 printf("R1=%.4 f ohm\n", R1)
23 printf("R2=%.4 f ohm\n", R2)
24 printf("R3=%.4 f ohm\n", R3)
```

Scilab code Exa 7.7 calculate multiplier resistance

```
1 // Chapter -7, Example 7.7, pg 7-30
2 Rm = 500
3 Im = 40*10^-6
4 V = 10
5 Rs = (V/Im) - Rm
6 printf("multiplier resistance \n")
7 printf("Rs=%.2 f ohm", Rs)
```

Scilab code Exa 7.8 calculate shunt and multiplier resistance

```
1 //Chapter -7, Example 7_8, pg 7-30
2 Im = 20*10^-3
3 Vm = 200*10^-3
4 Rm = (Vm/Im)
5 I = 200
6 Rsh = (Im*Rm)/(I-Im)
```

```
7 printf("required shunt resistance\n")
8 printf("Rsh=%.4f ohm\n",Rsh)
9 V=500
10 Rs=(V/Im)-Rm
11 printf("required multipler resistance\n")
12 printf("Rs=%.2f ohm",Rs)
```

Scilab code Exa 7.9 design D arsonoval movement voltmeter

```
1 / Chapter -7, Example 7_9, pg 7-33
2 \text{ Rm} = 50
3 \text{ Im} = 2 * 10^{-3}
4 //for position V4 multipler is R4
5 V4 = 10
6 R4=(V4/Im)-Rm//Rs=(V/Im)-RmV3 m
7 //for position V3 multipler is R3+R4
8 V3=50
9 R3 = (V3/Im) - Rm - R4
10 // for position V2 multiplier is R2+R3+R4
11 V2=100
12 R2 = (V2/Im) - Rm - R3 - R4
13 //for position V1 multiplier is R1+R2+R3+R4
14 V1=500
15 R1 = (V1/Im) - Rm - R3 - R4 - R2
16 printf("series string of multipliers\n")
17 printf ("R1=\%. 2 f ohm\n", R1)
18 printf ("R2=\%.2 \text{ f ohm} \n", R2)
19 printf ("R3=\%.2 f ohm\n",R3)
20 printf ("R4=\%.2 f ohm\n", R4)
```

Scilab code Exa 7.10 senstivity method design

```
1 / Chapter -7, Example 7_10, pg 7-35
```

```
2 \text{ Rm} = 50
3 \text{ Im} = 2 * 10^{-3}
4 V1=500
5 V2=100
6 V3 = 50
7 V4=10
8 S=1/Im//senstivity
9 R4 = S * V4 - Rm
10 R3 = S * V3 - (R4 + Rm)
11 R2=S*V2-(R4+Rm+R3)
12 R1=S*V1-(R4+Rm+R3+R2)
13 printf("series string of multipliers\n")
14 printf ("R1=\%.2 f ohm\n",R1)
15 printf("R2=\%.2 f ohm\n",R2)
16 printf ("R3=\%.2 f ohm\n",R3)
17 printf("R4=%.2 f ohm\n", R4)
```

Scilab code Exa 7.11 find multiplier resistance

```
1 // Chapter -7, Example7_11, pg 7-36
2 Im=50*10^-6
3 S=1/Im
4 Rm=200
5 V=500//V is voltage range
6 Rs=S*V-Rm
7 printf("multipler resistance\n")
8 printf("Rs=%.2 f ohm", Rs)
```

Scilab code Exa 7.12 sensitivity of meter comparison

```
1
2  // Chapter -7, Example7_12, pg 7-36
3  // for meter A
```

```
4 Rs=25*10^3
5 Rm=1*10^3
6 V=100
7 S=(Rs+Rm)/V
8 printf("senstivity of meter A\n")
9 printf("S=%.2 f ohm/volt\n",S)
10 //for meter B
11 Rs=150*10^3
12 Rm=1*10^3
13 V=1000
14 S=(Rs+Rm)/V
15 printf("senstivity of meter B\n")
16 printf("S=%.2 f ohm/volt",S)
```

Scilab code Exa 7.13 accuracy of meter comparison

```
1 / Chapter -7, Example 7_13, pg 7-37
2 R1=20*10^3
3 R2 = 25 * 10^3
4 V=250//voltage supply
5 VR2=R2*V/(R1+R2)//voltage across R2
6 // case -1
7 S = 500
8 Vr=150//voltage range of resistor
9 \text{ Rv} = \text{S} * \text{Vr}
10 Req=R2*Rv/(R2+Rv)
11 VReq=Req*V/(Req+R1)//voltage across Req
12 printf ("first voltmeter reading \n")
13 printf ("VReq=\%.2 \text{ f V} \text{ N}", VReq)
14 / case -2
15 S = 10 * 10^3
16 \text{ Rv} = \text{S} * \text{Vr}
17 Req=R2*Rv/(R2+Rv)
18 VReq=Req*V/(Req+R1)
19 printf("second voltmeter reading\n")
```

Scilab code Exa 7.14 error and accuracy measurement

```
1 / Chapter -7, Example 7_14, pg 7-38
2 Rb=1*10^3
3 Ra = 5 * 10^3
4 V=25
5 VRb=Rb*V/(Ra+Rb)//voltage across Rb
6 \text{ Vr}=5
7 / case -1
8 S=1*10^3
9 \text{ Rv} = \text{S} * \text{Vr}
10 Req=Rb*Rv/(Rb+Rv)
11 VReq=Req*V/(Req+Ra)
12 err = (VRb - VReq) * 100 / VRb
13 acc=100-err
14 printf ("voltmeter reading case -1 \ ")
15 printf ("VReq=\%.2 f V n", VReq)
16 printf("percentage error\n")
17 printf ("err=\%.2 f \ n", err)
18 printf("percentage accuracy\n")
19 printf ("acc=\%.2 \text{ f} \n",acc)
20 / case - 2
21 S = 20 * 10^3
22 \text{ Rv=S*Vr}
23 Req=Rb*Rv/(Rb+Rv)
24 \text{ VReq=Req*V/(Req+Ra)}
25 \text{ err} = (VRb - VReq) * 100 / VRb
26 \text{ acc} = 100 - \text{err}
27 printf ("voltmeter reading case -2\n")
28 printf ("VReq=\%.2 \text{ f V} \text{ n}", VReq)
29 printf ("percentage error \n")
30 printf("err=\%.2 f \ \n",err)
31 printf("percentage accuracy\n")
```

```
32 printf ("acc=\%.2 \text{ f} \n", acc)
```

Scilab code Exa 7.15 basic PMMC measurement

```
1 / Chapter -7, Example 7_15, pg 7-41
2 \text{ Rm} = 50
3 \text{ Im} = 20 * 10^{-3}
4 I=10
5 \text{ Rsh} = (\text{Im} * \text{Rm}) / (\text{I} - \text{Im})
6 printf("shunt resistance for I=10A\n")
7 printf ("Rsh=\%.2 \text{ f ohm} \n", Rsh)
8 I=20
9 Rsh = (Im * Rm) / (I - Im)
10 printf ("shunt resistance for I=20A\n")
11 printf ("Rsh=\%.2 \text{ f ohm} \n", Rsh)
12 V=150
13 Rs = (V/Im) - Rm
14 printf ("series resistance for V=150V \ n")
15 printf ("Rs=\%.2 \text{ f ohm} \n", Rs)
16 V = 300
17 Rs = (V/Im) - Rm
18 printf ("series resistance for V=300V n")
19 printf ("Rs=%.2 f ohm", Rs)
```

Scilab code Exa 7.16 find shunt current and resistance for fsd

```
1 // Chapter -7, Example 7_16, pg 7-42
2 Rsh = 0.02
3 R = 1000
4 Vm = 500 * 10^-3
5 Im = Vm/R
6 Ish = Vm/Rsh
7 printf("shunt current\n")
```

```
8 printf("Ish=%.2f A\n",Ish)
9 Ish1=10
10 V=Ish1*Rsh
11 R=V/Im
12 printf("resistance for Ish=10A\n")
13 printf("R=%.2f ohm\n",R)
14 Ish2=75
15 V=Ish2*Rsh
16 R=V/Im
17 printf("resistance for Ish=75A\n")
18 printf("R=%.2f ohm\n",R)
```

Scilab code Exa 7.17 determine inductance of instrument

```
//Chapter -7, Example7_17, pg 7-50
K=5.73*10^-6
I=20
theta=110*(%pi/180)//full scale deflection
theta=theta//change in theta
L=4*10^-6
dm=(theta*K/(I^2))*dtheta//change in inductance
Lf=L+dm
printf("final inductance\n")
printf("Lf=%.8f H", Lf)
```

Scilab code Exa 7.18 find deflecting torque

```
6 printf("deflecting torque\n")
7 printf("Td=%.8f Nm",Td)
```

Scilab code Exa 7.19 difference between dc and ac readings of voltmeter

```
1 / Chapter -7, Example 7_19, pg 7-51
2 I=100*10^-3
3 \text{ Td} = 0.8 * 10^{-4}
4 dtheta=90*%pi/180//in radians
5 theta=90//deflection
6 dM=Td*dtheta/(I^2)
7 Mo=0.5//original M
8 M = Mo + dM / / total M
9 / \cos -1
10 \, \text{Vdc} = 100
11 R = Vdc/I
12 w = 2 * \%pi * 50
13 Z=R+(\%i*w*M)
14 \quad Z = abs(Z)
15 Vac=R*Vdc/Z
16 dif=Vdc-Vac//difference between readings
17 / \cos e - 2
18 Vdc1=50
19 I1 = Vdc1/R
20 theta1=theta*((I1/I)^2)//theta=kI^2
21 theta1=theta1*%pi/180//in radians
22 	ext{ dM1=Td*theta1/(I^2)}
23 M1 = dM1 + Mo
24 Z1 = R + (\%i*w*M1)
25 \quad Z1 = abs(Z1)
26 \text{ Vac1}=R*Vdc1/Z1
27 dif1=Vdc1-Vac1
28 printf("difference in readings Vdc=100V\n")
29 printf ("dif=\%.2 f V n", dif)
30 printf("difference in readings Vdc=50V\n")
```

```
31 printf(" dif1=\%.2 f V n", dif1)
```

Scilab code Exa 7.20 find revolutions and percentage error

```
1 / Chapter -7, Example 7_20, pg 7-65
2 I=20
3 V = 230
4 Pf=0.8//power factor
5 t = 3600
6 K = 100
7 Et=V*I*Pf*t
8 Et=Et/(3600*10^3)//in kWh
9 N = 360
10 Er=3.6//in kWh
11 err=(Er-Et)/Et
12 err=err*100
13 printf("percentage error\n")
14 printf ("err=%.2 \text{ f} \n", err)
15 printf("negative sign shows that meter is slow and
      Er < Et")
```

Scilab code Exa 7.21 determine meter errror at half load

```
1 //Chapter -7, Example 7_21, pg 7-65
2 K=1800
3 V=230
4 I=10
5 Pf=1//half load
6 Ihl=I/2//half load current
7 t=138
8 Et=V*Ihl*Pf*t
9 Et=Et/(3600*10^3)
10 N=80//no. of revolutions
```

```
11 Er=N/K//in kWh
12 err=(Er-Et)/Et
13 err=err*100
14 printf("percentage error\n")
15 printf("err=%.2f\n",err)
16 printf("positive sign shows that meter is fast and Er>Et")
```

Scilab code Exa 7.22 calculate power factor of load

```
1 / Chapter -7, Example 7_2 2, pg 7-66
2 V = 230
3 I = 4
4 t=6
5 Pf = 1
6 N = 2208
7 Et=V*I*Pf*t
8 \text{ K=N/Et}
9 printf("meter constant\n")
10 printf ("K=\%.2 \text{ f rev/Wh/n}", K)
11 V=230
12 I=5
13 t = 4
14 N = 1472
15 Et=V*I*Pf*t
16 \text{ Er=N/K}
17 Pf = (Er/Et)
18 printf("power factor\n")
19 printf ("Pf=%.2f lagging", Pf)
```

Scilab code Exa 7.23 find speed of disc and error of meter

```
1 / Chapter -7, Example 7_2 3, pg 7-66
```

```
2 I = 5
3 V = 220
4 Pf=1
5 K = 3275
6 t = 1/60//in hr
7 E=V*I*Pf*t
8 E=E/10^3/in kWh
9 Rev=E*K//no. of revolutions
10 printf("speed of disc\n")
11 printf ("s=\%.2 \text{ f r.p.m/n}", Rev)
12 //at half load
13 I = I/2
14 t = 59.5
15 \quad \text{Et=V*I*Pf*t}
16 Et=Et/(3600*10^3)//in kWh
17 N = 30
18 Er=N/K
19 err=(Er-Et)/Et
20 err=err*100
21 printf("percentage error\n")
22 printf ("err=\%.2 \text{ f} \n", err)
23 printf("Er>Et meter is fast")
```

Scilab code Exa 7.24 find error at given power factor

```
1 //Chapter -7, Example 7_24, pg 7-67
2 V=240
3 I=10
4 Pf=0.8
5 t=1/60
6 K=600
7 E=V*I*Pf*t
8 E=E/10^3//in kWh
9 Rev=E*K//no. of revolutions
10 printf("speed of disc\n")
```

```
printf("s=%.2f r.p.m\n",Rev)

del=90//for correct lag adjustment

del1=86*%pi/180//given in radian

phi=0//case-1 unity power factor

err=(sin(del1-phi)-cos(phi))/cos(phi)

err=err*100

printf("percentage error in case-1\n")

printf("err=%.2f \n",err)

Pf=0.5//case-2

phi=60*%pi/180//in radians

err=(sin(del1-phi)-cos(phi))/cos(phi)

err=err*100

printf("percentage error in case-2\n")

printf("percentage error in case-2\n")

printf("err=%.2f \n",err)
```

Scilab code Exa 7.25 limits of error of wattmeter

```
1 / Chapter -7, Example 7_25, pg 7-67
2 V = 240
3 I = 5
4 K = 1200
5 N = 40
6 \text{ Er=N/K}
7 \quad V = V * I
8 t = 99.8
9 Td=500//total divisions
10 \operatorname{div}=K/\operatorname{Td}//1 \operatorname{division}
11 We=0.1*div//wattmeter error
12 Ce=0.05*K/100//construction wattmeter error
13 Te=We+Ce//total error
14 \text{ Wru=K+Te}
15 Wrl=K-Te//wattmeter reading limits
16 He=0.05//human error
17 Se=0.01//stopwatch error
18 Tte=He+Se//total timing error
```

```
19 Sru=t+Tte//stopwatch reading limits
20 Srl=t-Tte
21 Eu=Wru*Sru*1/(3600*10^3)//energy obtained limits
22 El=Wrl*Srl*1/(3600*10^3)
23 errl=(Er-El)/El
24 errl=errl*100
25 erru=(Er-Eu)/Eu//error limits
26 erru=erru*100
27 printf("percentage error upperlimt\n")
28 printf("erru=%.3 f \n",erru)
29 printf("percentage error lowerlimt\n")
30 printf("errl=%.3 f \n",errl)
```

Scilab code Exa 7.26 estimate line current

```
1 // Chapter -7, Example 7_26, pg 7-79
2 I1 = 250
3 I2 = 5
4 I = I1 / I2
5 // as ammeter is in secondary I2 = 2.7
6 I1 = I * 2.7 // line current
7 printf("line current \n")
8 printf("I1 = %.2 f A", I1)
```

Scilab code Exa 7.27 estimate line voltage

```
1 //Chapter -7, Example 7_27, pg 7-82
2 V1=11000
3 V2=110
4 V=V1/V2
5 V2=87.5
6 V1=87.5*V//line voltage
7 printf("line voltage\n")
```

```
8 printf("V1=\%.2 f V", V1)
```

Scilab code Exa 7.28 find percentage ratio error

```
//Chapter -7, Example 7-28, pg 7-88
Im=120
Ic=38
Kn=1000/5
//at full load
Is=5
Ns=1000
Np=5
n=Ns/Np//turns ratio
R=n+(Ic/Is)
err=(Kn-R)/R//ratio error
err=err*100
printf("percentage ratio error\n")
printf("err=%.2f",err)
```

Scilab code Exa 7.29 calculate actual primary current and ratio error

```
1 //Chapter -7, Example 7.29, pg 7-88
2 Im = 90
3 Ic = 40
4 delta = 28*(%pi/180) // in radians
5 Is = 5
6 Ns = 400
7 Np = 1
8 n = Ns/Np
9 Kn = n
10 R = n + ((Im * sin(delta) + Ic * cos(delta)) / Is)
11 Ip = R*Is // actual primary current
12 err = (Kn - R)/R
```

```
13 err=err*100
14 printf("percentage ratio error\n")
15 printf("err=%.2f",err)
```

Chapter 8

Measurement Of Resistance Capacitance And Inductance

Scilab code Exa 8.1 calculate R1 and R2 of ohmmeter

```
//Chapter -8, Example 8_1, pg 8_6
Rh=1000
Rm=50
V=3
Ifsd=1*10^-3
R1=Rh-(Ifsd*Rm*Rh)/V
R2=(Ifsd*Rm*Rh)/(V-Ifsd*Rh)
printf("R1=%.2 f ohm\n",R1)
printf("R2=%.2 f ohm\n",R2)
//due to 5% voltage drop
V=V-0.05*V
R2=(Ifsd*Rm*Rh)/(V-Ifsd*Rh)
printf("change in value R2 \n")
printf("R2=%.2 f ohm",R2)
```

Scilab code Exa 8.2 find unknown resistance

```
1 //Chapter -8, Example 8_2, pg 8_18
2 R1=10*10^3
3 R2=2*10^3
4 R3=5*10^3
5 //R4=Rx
6 R4=(R1*R3)/R2
7 printf("unknown resistance\n")
8 printf("R4=%.2 f ohm", R4)
```

Scilab code Exa 8.3 find current through galvanometer

```
1 //Chapter -8, Example 8_3, pg 8_18
2 R1=7*10^3
3 R2=2*10^3
4 R3=4*10^3
5 R4=20*10^3
6 E=8
7 Rg=300
8 Vth=(E*R4/(R3+R4))-(E*R1 /(R1+R2))//voltage divider rule
9 Req=(R1*R2/(R1+R2))+(R3*R4/(R3+R4))
10 Ig=Vth/(Req+Rg)
11 printf("current through galvanometer\n")
12 printf("Ig=%.7 f A", Ig)
```

Scilab code Exa 8.4 find unknown resisance

```
1 //Chapter -8, Example 8_4, pg 8_25
2 R3=100.03*10^-6
3 R2=100.24
4 R1=200
5 b=100.31
6 a=200
```

```
7 Ry=700*10^-6
8 Rx=R1*R3/R2
9 Rx=Rx+(b*Ry/(Ry+a+b))*((R1/R2)-(a/b))
10 printf("unknown resistance\n")
11 printf("Rx=%.7 f ohm",Rx)
```

Scilab code Exa 8.5 find constants of unknown impedance

```
//Chapter -8, Example 8_5, pg 8_35
2 Z2=250
3 Z3=200
4 Z1=50
5 Z4=Z2*Z3/Z1// magnitude condition
6 theta1=80
7 theta2=0
8 theta3=30
9 theta4=theta2+theta3-theta1// angle condition
10 theta4=theta4*%pi/180// in radians
11 Rx=Z4*cos(theta4)// real part
12 Ry=Z4*sin(theta4)// imag. part
13 Z4=Rx+%i*Ry
14 printf("unknown impedance\n")
15 disp(Z4)
```

Scilab code Exa 8.6 determine balance of bridge

```
5 Z4 = sqrt(((30*cos(30*%pi/180))^2) + (30*sin(30*%pi/180))
6 // mag(Z1*Z4) = mag(Z2*Z3) \dots magnitude condition
7 \text{ magl}=Z1*Z4//lhs
8 \text{ magr} = Z2*Z3//rhs
9 printf ("magl=\%. f\n", magl)
10 printf ("magr=\%. f\n", magr)
11 printf("lhs=rhs hence, magnitude condition is
      satisfied \n")
12 theta1=40
13 \text{ theta2=-90}
14 \text{ theta3=45}
15 theta4=30
16 //theta1+theta4=theta2+theta3.....angle condition
17 thetal=theta1+theta4//lhs
18 thetar=theta2+theta3//rhs
19 printf ("thetal=\%. f\n", thetal)
20 printf ("thetar=%. f \n", thetar)
21 printf("angle condition is not satisfied \n")
```

Scilab code Exa 8.7 find equivalent series circuit

```
1 //Chapter -8, Example 8_7, pg 8_37
2 C3=10*10^-6
3 R1=1.2*10^3
4 R2=100*10^3
5 R3=120*10^3
6 Rx=R2*R3/R1
7 Cx=R1*C3/R2
8 printf("equivalent series circuit\n")
9 printf("Rx=\%. f ohm\n", Rx)
10 printf("Cx=\%.9 f F", Cx)
```

Scilab code Exa 8.8 find equivalent series circuit

```
1 //Chapter -8, Example 8_8, pg 8_39
2 L3=8*10^-3
3 R1=1*10^3
4 R2=25*10^3
5 R3=50*10^3
6 Rx=R2*R3/R1
7 Lx=R2*L3/R1
8 printf("equivalent series circuit\n")
9 printf("Rx=%. f ohm\n", Rx)
10 printf("Lx=%.5 f H", Lx)
```

Scilab code Exa 8.9 find components of branch BC

```
1 //Chapter -8, Example 8_9, pg 8_44
2 //from the bridge
3 C1=0.5*10^-6
4 R1=1200
5 R2=700
6 R3=300
7 Rx=R2*R3/R1
8 Lx=R2*R3*C1
9 printf("components of branch RC\n")
10 printf("Rx=%. f ohm\n", Rx)
11 printf("Lx=%.5 f H\n", Lx)
```

Scilab code Exa 8.10 find constants of unknown impedance

```
1 //Chapter -8, Example 8_10, pg 8_49
2 //from hay's balance bridge
3 w=1000
4 R1=5.1*10^3
```

```
5 C1=2*10^-6
6 R2=7.9*10^3
7 R3=790
8 Rx=((w^2)*R1*(C1^2)*R2*R3)/(1+((w^2)*(R1^2)*(C1^2)))
9 Lx=R2*R3*C1/(1+((w^2)*(R1^2)*(C1^2)))
10 printf("unknown inductance and resistance\n")
11 printf("Rx=%.f ohm\n",Rx)
12 printf("Lx=%.5 f H",Lx)
```

Scilab code Exa 8.11 calculate unknown capacitance and dissipation factor

```
1 //Chapter -8, Example 8_11, pg 8_56
2 R1=1.2*10^3
3 R2=4.7*10^3
4 C1=1*10^-6
5 C3=1*10^-6
6 f=0.5*10^3
7 w=2*%pi*f
8 Rx=R2*C1/C3
9 Cx=R1*C3/R2
10 D=w*Cx*Rx
11 printf("unknown capacitance and resistance\n")
12 printf("Rx=%. f ohm\n", Rx)
13 printf("Cx=%.8 f F\n", Cx)
14 printf("dissipation factor\n")
15 printf("D=%.3 f", D)
```

 ${f Scilab\ code\ Exa\ 8.12}$ find deflection of galvanometer

```
1 //Chapter -8, Example 8_12, pg 58
2 R1 = 200
3 R2 = 100
```

```
4 R3=1000
5 R4=2000
6 Rg=200
7 R41=2005//changed by delR
8 Si=12//senstivity
9 E=10
10 Vth=E*((R41/(R3+R41))-(R1/(R1+R2)))
11 Req=(R1*R2/(R1+R2))+(R3*R41/(R3+R41))
12 Ig=Vth/(Rg+Req)
13 theta=Si*Ig*10^6//deflection of galvanometer(mm)
14 printf("deflection of galvanometer\n")
15 printf("theta=%.4f mm",theta)
```

Scilab code Exa 8.13 find deflection of galvanometer

```
1 //Chapter -8, Example 8_13, pg 59
2 R1=1000
3 R2=1000
4 R3=119
5 R4=121
6 Rg=200
7 S1=1
8 E=5
9 Vth=E*((R4/(R3+R4))-(R1/(R1+R2)))
10 Req=(R1*R2/(R1+R2))+(R3*R4/(R3+R4))
11 Ig=Vth/(Rg+Req)
12 theta=S1*Ig*10^6//deflection of galvanometer(mm)
13 printf("deflection of galvanometer\n")
14 printf("theta=%.4 f mm", theta)
```

Scilab code Exa 8.14 find current through galanometer

```
1 / Chapter - 8, Example 8_14, pg 59
```

```
2 R=500
3 delR=20
4 E=10
5 Vth=E*delR/(4*R)
6 Req=R
7 Rg=125
8 Ig=Vth/(Req+Rg)
9 printf("current through galvanometer\n")
10 printf("Ig=%.8f A", Ig)
```

Scilab code Exa 8.15 calculate smallest change in resistance

```
1 //Chapter -8, Example 8_15, pg 60
2 R=1000
3 E=20
4 Ig=1*10^-9
5 Req=R
6 //Ig=Vth/Req.....Rg=0
7 delR=Ig*4*R^2/E
8 printf("change in resitance\n")
9 printf("delR=%.8 f ohm", delR)
```

Scilab code Exa 8.16 calculate balance temperature and error

```
1 //Chapter -8, Example 8_16, pg 61
2 //R4=Rv
3 R1=10*10^3
4 R2=10*10^3
5 R3=10*10^3
6 R4=R1*R3/R2
7 E=10
8 printf("bridge is balanced at 80 deg. from graph when Rv=10k\n")
```

```
9 //at 60 deg bridge is unbalanced
10 R4=9*10^3//from graph
11 e=E*((R4/(R3+R4))-(R1/(R1+R2)))//thevenin's voltage
12 printf("error voltage\n")
13 printf("e=%.4 f V\n",e)
14 printf("negative sign indicates opposite polarity of error voltage")
```

Scilab code Exa 8.17 find value of unknown resistance

```
1 / Chapter - 8, Example 8_17, pg 8_62
2 R1=100
3 R2 = 10
4 R3 = 4
5 R4 = 50
6 E = 10
7 \text{ Rg} = 20
8 Vth=E*((R4/(R3+R4))-(R1/(R1+R2)))
9 Req=(R1*R2/(R1+R2))+(R3*R4/(R3+R4))
10 Ig=Vth/(Rg+Req)
11 //for null deflection
12 R4 = R3 * R1 / R2
13 printf("unbalanced current in galvanometer\n")
14 printf ("Ig=\%.5 f A n", Ig)
15 printf("resistance for null deflection\n")
16 printf("R4=%. f ohm", R4)
```

Scilab code Exa 8.18 find unknown resisance and unbalance in bridge

```
1 //Chapter -8, Example 8_18, pg 8_62
2 R1=1000
3 R2=100
4 R3=4*10^3
```

```
5 R4=40*10^3
6 Rth=(R1*R2/(R1+R2))+(R3*R4/(R3+R4))
7 Si=70
8 theta=3*10^-6//deflection
9 E=10
10 Rg=80
11 delR=(theta*(Rth+Rg)*((R3+R4)^2))/(Si*E*R3)
12 printf("change in resistance\n")
13 printf("delR=%.4f ohm",delR)
```

Scilab code Exa 8.19 find series resistance

```
1 //Chapter -8, Example 8_19, pg 8_63
2 P=0.4
3 Rarm=150//resistance in each arm
4 I=sqrt(P/Rarm)//P=(I^2)*R
5 //applying KVL to loop ABCEFA
6 r=1
7 E=25
8 R=(-I*Rarm-I*Rarm+E-2*I*r)/(2*I)
9 printf("series resistance\n")
10 printf("R=%.4 f ohm", R)
```

Scilab code Exa 8.20 find unknown resisance Rx

```
1 //Chapter -8, Example 8_20, pg 8_63
2 R1=10
3 R2=R1/0.5//given
4 Rba=1/1200//Rb/Ra
5 Rx=R2*Rba
6 printf("unknown resistance\n")
7 printf("Rx=%.4 f ohm", Rx)
```

Scilab code Exa 8.21 find constants of arm CD

```
1 / Chapter - 8, Example 8_21, pg 8_64
2 w = 2 * \%pi * 1000
3 C1 = 0.2 * 10^- - 6
4 R2 = 500
5 R3=300
6 \quad C3 = 0.1 * 10^{-6}
7 Z4 = (\%i*w*C1*R2)/((1/R3) + (\%i*w*C3))/from basic
      balance equaton
8 Zx=Z4//unknown impedance
9 Rx=real(Zx)
10 Xl = imag(Zx)
11 Lx = X1/w/Xl = w*Lx
12 printf("unknown resistance\n")
13 printf("Rx=\%.2 \text{ f ohm} \n", Rx)
14 printf("unknown inductance\n")
15 printf("Lx=%.5 f H",Lx)
```

Scilab code Exa 8.22 find constants of Zx

```
1 //Chapter -8, Example 8_22, pg 8_67
2 Z1=300
3 R2=200
4 w=2*%pi*10^3
5 C2=5*10^-6
6 Z2=R2-%i*(1/(w*C2))
7 R3=500
8 C3=0.2*10^-6
9 Z3=R3-%i*(1/(w*C3))
10 Z4=Z2*Z3/Z1//balance equation
11 Zx=Z4
```

```
12 printf("unknown impedance\n")
13 disp(Zx)
```

Scilab code Exa 8.23 find unknown impedance

```
1 / Chapter - 8, Example 8_23, pg 8_67
2 Z1 = 10 * 10^3
3 \quad Z2 = 50 * 10^3
4 w=2*%pi*2*10^3
5 \quad C3 = 100 * 10^{-6}
6 R3 = 100 * 10^3
7 Z3=R3-\%i*(1/(w*C3))
8 \quad Z4 = Z2 * Z3 / Z1
9 \quad Zx = Z4
10 Rx = real(Zx)
11 Xc = -imag(Zx)
12 Cx=1/(Xc*w)
13 printf("unknown resistance\n")
14 printf("Rx=\%. f ohm\n", Rx)
15 printf("unknown capacitance\n")
16 printf("Cx=\%.8 f F", Cx)
```

Scilab code Exa 8.24 find unknown impedance and dissipation factor

```
1 //Chapter -8, Example 8_24, pg 8_68
2 R2=4.8
3 r2=0.4
4 w=2*%pi*450
5 C2=0.5*10^-6
6 Z2=R2+r2-%i*(1/(w*C2))
7 Z3=200
8 Z4=2850
9 //I1*Z1=I2*Z2.....null deflection detector
```

```
10 Z1=Z2*Z3/Z4

11 R1=real(Z1)

12 Xc1=-imag(Z1)

13 C1=1/(w*Xc1)

14 D=w*R1*C1//dissipation factor

15 printf("arm-1 resistance\n")

16 printf("R1=%.4 f ohm\n",R1)

17 printf("arm-1 capacitance\n")

18 printf("C1=%.6 f F\n",C1)

19 printf("dissipation factor\n")

20 printf("D=%.6 f \n",D)
```

Scilab code Exa 8.25 determine unknown parameters of arm AB

```
1 / Chapter - 8, Example 8_25, pg 8_70
2 R2=842
3 w = 2 * \%pi * 10^3
4 C2=0.135*10^-6
5 Z2=R2-\%i*(1/(w*C2))
6 Z3=10
7 C4 = 10^{-6}
8 \quad Z4 = -\%i * (1/(w * C4))
9 \quad Z1 = Z2 * Z3 / Z4
10 R1=real(Z1)
11 Xl1 = imag(Z1)
12 L1=X11/w
13 printf ("resistance of arm AB \setminus n")
14 printf ("R1=\%.3 f ohm\n",R1)
15 printf("inductance of arm AB \setminus n")
16 printf ("L1=%.4 f H",L1)
```

Scilab code Exa 8.26 find resistance and inductance of coil

```
//Chapter -8, Example 8_26, pg 8_71
//balance is obtained when
L1=47.8*10^-3
R1=1.36
//at balance 100(r1+jwL1)=100((R2+r2)+jwL2)
L2=L1
r1=32.7
r2=r1-R1
printf("inductance of branch-CD\n")
printf("L2=%.4f H\n", L2)
printf("resistance of branch-CD\n")
printf("resistance of branch-CD\n")
printf("r2=%.2f ohm", r2)
```

Scilab code Exa 8.27 find limiting values of unknown resistance

```
//Chapter -8, Example 8.27, pg 8.72
R1=100
R2=100
R3=230
R4=R1*R3/R2
lerrR1=0.02/100
lerrR3=0.01/100
lerrR2=0.02/100//lerrR.....limiting error in R
lerrR4=lerrR1+lerrR3+lerrR2
R4u=R4+lerrR4*R4
R41=R4-lerrR4*R4//limiting ranges of R4
printf("limiting range of R4\n")
printf("upper limit=%.3 f ohm\n", R4u)
printf("lower limit=%.3 f ohm", R41)
```

Chapter 9

DC Motors

Scilab code Exa 9.1 calculate generated emf

```
1 //Chapter -9, Example 9_1, pg 9_14
2 P=4
3 Z=440
4 phi=0.07//flux(in Wb)
5 N=900
6 //for lap-wound
7 A=P
8 E=phi*P*N*Z/(60*A)
9 printf("e.m. f for lap wound\n")
10 printf("E=%. f V\n",E)
11 //for wave wound
12 A=2
13 E=phi*P*N*Z/(60*A)
14 printf("e.m. f for wave wound\n")
15 printf("E=%. f V\n",E)
```

Scilab code Exa 9.2 calculate speed and generated emf

```
1 / Chapter -9, Example 9_2, pg 9_15
3 phi=21*10^{-3} / flux (in Wb)
4 N = 1120
5 \text{ C=} 42 // \text{coils}
6 tpC=8//turns per coil
7 t=C*tpC//total turns
8 \ Z = 2 * t
9 //for lap wound
10 A=P
11 E=phi*P*N*Z/(60*A)
12 printf("e.m. f for lap wound\n")
13 printf ("E=\%. f V\n",E)
14 //for wave wound
15 \quad A = 2
16 E=263.424
17 N=E*60*A/(phi*P*Z)
18 printf("speed of generator for wave wound\n")
19 printf ("N=\%. f r.p.m\n", N)
```

Scilab code Exa 9.3 calculate induced emf

```
1 // Chapter -9, Example9_3, pg 9_20
2 V=220
3 Ia=30
4 Ra=0.75
5 Eb=V-Ia*Ra
6 printf("back e.m.f of motor\n")
7 printf("Ebb=%.2 f V", Eb)
```

Scilab code Exa 9.4 calculate back emf and speed

```
1 / Chapter -9, Example 9_4, pg 9_21
```

```
2 P=4
3 A=P
4 V=230
5 Ra=0.6
6 Z=250
7 phi=30*10^-3//flux(in Wb)
8 Ia=40
9 Eb=V-Ia*Ra
10 N=Eb*60*A/(phi*P*Z)
11 printf("back e.m.f\n")
12 printf("Eb=%.f V\n",Eb)
13 printf("speed of motor\n")
14 printf("N=%.f r.p.m",N)
```

Scilab code Exa 9.5 calculate gross torque

```
1 //Chapter -9, Example9_5, pg 9_24
2 P=4
3 A=P
4 Z=480
5 phi=20*10^-3//flux(in Wb)
6 Ia=50
7 Ta=0.159*phi*Ia*(P*Z/A)
8 printf("gross torque\n")
9 printf("Ta=%.3 f N", Ta)
```

Scilab code Exa 9.6 calculate induced emf and lost torque

```
1 //Chapter -9, Example 9_6, pg 9_25
2 P=4
3 A=P
4 No=1000//speed of motor
5 Z=540
```

```
6 V = 230
7 phi=25*10^{-3} / flux (In Wb)
8 Ra=0.8
9 Ebo=phi*P*No*Z/(60*A)//induced e.m. f
10 Iao=(V-Ebo)/Ra//armature current
11 SL=Ebo*Iao//stray losses
12 wo=2*%pi*No/60//angular velocity
13 Tf=Ebo*Iao/wo//loss torque
14 printf("induced e.m.f\n")
15 printf ("Ebo=\%. f V\n", Ebo)
16 printf("armature current\n")
17 printf ("Ia=\%.2 \text{ f A} \text{ n}", Iao)
18 printf ("stray losses \n")
19 printf ("Sl=\%.2 f W n", SL)
20 printf("loss torque\n")
21 printf ("Tf=%.3 f Nm", Tf)
```

Scilab code Exa 9.7 calculate speed

```
1 //Chapter -9, Example 9_7, pg 9_37
2 P=4
3 Z=200
4 V=250
5 A=2
6 phi=25*10^-3
7 Ia=60
8 I1=Ia
9 Ra=0.15
10 Rse=0.2
11 Eb=V-Ia*(Ra+Rse)
12 N=Eb*60*A/(phi*P*Z)
13 printf("speed of motor\n")
14 printf("N=%. f r.p.m", N)
```

Scilab code Exa 9.8 find armature current and back emf

```
1 //Chapter -9, Example 9_8, pg 9_38
2 V = 250
3 I1 = 20
4 Ra = 0.3
5 Rsh = 200
6 Ish = V/Rsh
7 Ia = I1 - Ish
8 Eb = V - Ia * Ra
9 printf("back e.m. f\n")
10 printf("Eb = %.3 f V", Eb)
```

Scilab code Exa 9.9 calculate speed on full load

```
1 / Chapter -9, Example 9_9, pg 9_38
2 No = 1000
3 V = 220
4 \text{ Rsh} = 110
5 Ra=0.3
6 \quad Ish=V/Rsh
7 Ilo=6
8 Iao=Ilo-Ish
9 \text{ Rao} = 0.3
10 Ebo=V-Iao*Ra
11 //on full load
12 I1=50
13 IaFL=Il-Ish
14 EbFL=V-IaFL*Ra
15 / N = k * Eb / phi
16 NFL=No*EbFL/Ebo
17 printf("speed at full load\n")
```

```
18 printf("NFL=%.3 f r.p.m", NFL)
```

Scilab code Exa 9.10 calculate speed on new load

```
1 / Chapter - 9, Example 9_{10}, pg 9_{39}
2 N1=800
3 I1=20
4 V=250
5 Ia1=I1
6 I2 = 50
7 Ia2=I2
8 Ra=0.2
9 Ise1=I1
10 \operatorname{Ise2=I2}
11 Rse=0.3
12 Eb1=V-Ia1*Ra-Ise1*Rse
13 Eb2=V-Ia2*Ra-Ise2*Rse
14 //from speed equation
15 N2=N1*(Eb2/Eb1)*(Ia1/Ia2)
16 printf("speed of motor on new load\n")
17 printf("N2=%.3f r.p.m", N2)
```

Scilab code Exa 9.11 find new speed and armature current

```
1 // Chapter -9, Example 9_11, pg 9_45
2 V=250
3 Rsh=250
4 Ra=0.25
5 Rx=Rsh
6 Ia1=20
7 Ish1=V/Rsh
8 Ish2=V/(Rsh+Rx)
9 N1=1500
```

```
10 Eb1=V-Ia1*Ra

11 //phi=k*Ish

12 //T1=T2

13 Ia2=Ish1*Ia1/Ish2//new current

14 Eb2=V-Ia2*Ra

15 //from speed equation

16 N2=N1*(((Eb1/Eb2)*(Ish2/Ish1))^-1)//new speed

17 printf("new current\n")

18 printf("Ia2=%.f A\n",Ia2)

19 printf("new speed\n")

20 printf("N2=%.3 f r.p.m",N2)
```

Scilab code Exa 9.12 find external resistance

```
1 / Chapter -9, Example 9_12, pg 9_46
2 V = 250
3 Ra = 0.5
4 Rsh=250
5 Ia1=20
6 \quad Ish1=V/Rsh
7 Eb1=V-Ia1*Ra
8 N1=600
9 N2 = 800
10 / T1 = T2
11 / I sh 1 * I a 1 = I sh 2 * I a 2
12 // \operatorname{Ish} 2 * \operatorname{Ia} 2 = 20 \dots (1)
14 // using (1) and (2)
15 //240*(Ish2^2) - 187.5*Ish2 + 7.5 = 0....(3)
16 b = -187.5
17 a = 240
18 c=7.5
19 Ish2=(-b+sqrt(((b^2)-4*a*c)))/(2*a)/neglecting
      lower value
20 \text{ Rx} = (V/Ish2) - Rsh
```

```
21 printf("resistance in shunt feild\n")
22 printf("Rx=%.3f ohm",Rx)
```

Scilab code Exa 9.13 calculate speed of motor

```
1 / Chapter - 9, Example 9_13, pg 9_51
2 V = 250
3 \text{ Ra} = 0.15
4 \text{ Rx} = 0.1
5 \text{ Rse} = 0.1
6 N1=800
7 Ise1 = 30
8 Ia1=30/Ia1=Ise1
9 I1=Ia1
10 // phi = k * Ise
11 //T2=T1+0.5*T1 (increased by 50%).....(1)
12 // \operatorname{Ise} 2 = \operatorname{Ia} 2 * \operatorname{Rx} / (\operatorname{Rx} + \operatorname{Rse})
13 //putting values of Rx and Rse Ise2=0.5*Ia2
       . . . . . . . . (2)
14 //putting (1) and (2) in torque equation
15 Ia2=sqrt (2700)
16 Ise2=0.5*Ia2//from (2)
17 Eb1=V-Ia1*Ra-Ise1*Rse
18 Eb2=V-Ia2*Ra-Ise2*Rse
19 //using speed equation
20 N2=N1*Eb2*Ise1/(Eb1*Ise2)
21 printf("speed of motor\n")
22 printf("N2=%.3f r.p.m", N2)
```

Scilab code Exa 9.14 find out speed of motor

```
\begin{array}{ll} 1 & //\operatorname{Chapter} -9, \operatorname{Example} 9\_14, \operatorname{pg} & 9\_52 \\ 2 & V = 220 \end{array}
```

Scilab code Exa 9.15 find speed and torque of motor

```
1 / Chapter - 9, Example 9_{15}, pg 9_{64}
2 P=6
3 V = 500
4 A=2//\text{wave wound}
5 Z = 1200
6 phi=20*10^{-3}//flux
7 \text{ Ra} = 0.5
8 \text{ Rsh} = 250
9 I1=20
10 Ish=V/Rsh
11 Ia=Il-Ish
12 \quad \mathsf{Eb} = \mathsf{V} - \mathsf{Ia} * \mathsf{Ra}
13 N=Eb*60*A/(phi*P*Z)
14 Pm=Eb*Ia//mechanical power
15 w=2*\%pi*N/60//angular velocity
16 \text{ Tg=Pm/w}
17 ML=900//mechanical losses
18 Pout=Pm-ML
```

```
19 Tsh=Pout/w// usefull torque
20 Pin=V*Il
21 n=Pout*100/Pin//efficiency at load
22 printf("usefull torque\n")
23 printf("Tsh=%.2 f Nm\n", Tsh)
24 printf("efficiency at load\n")
25 printf("n=%.2 f",n)
```

Scilab code Exa 9.16 find speed on full load

```
1 / Chapter -9, Example 9_16, pg 9_65
2 V = 120
3 Ra=0.2
4 \text{ Rsh} = 60
5 //for full load
6 Il1=40
7 N1 = 1800
8 //for shunt motor
9 Ish=V/Rsh
10 Ia1=Il1-Ish
11 Eb1=V-Ia1*Ra
12 //for half load T2=T1/2
13 Ia2=Ia1*0.5//T=k*Ia
14 Eb2=V-Ia2*Ra
15 N2=N1*Eb2/Eb1//from torque equation
16 printf("speed of motor\n")
17 printf("N2=%.2 f r.p.m", N2)
```

Scilab code Exa 9.17 determine armature current ansi speed of machine

```
1 //Chapter -9, Example 9_17, pg 9_66
2 Ra=0.08
3 Eb1=242
```

```
4  V=250
5  Ia=87
6  Vt=V//generator supply
7  Nm=1500
8  Ia1=(V-Eb1)/Ra
9  //at  start N=0, Eb=0
10  Ias=V/Ra//Ia(start)
11  Ia2=120
12  Eb2=V-Ia2*Ra
13  Eg=Vt+Ia*Ra//generator e.m. f
14  Ng=Nm*Eg/Eb1//speed as generator
15  printf("speed as generator\n")
16  printf("Ng=%.2 f r.p.m",Ng)
```

Scilab code Exa 9.18 determine mechanical power on full load

```
1 / Chapter - 9, Example 9_18, pg 9_67
2 V = 250
3 Po=59680
4 Rsh = 250
5 \text{ Ra} = 0.04
6 n=80//efficiency
7 N1=1200
8 Il=Po*100/(V*n)//Pi=V*Il
9 \quad Ish=V/Rsh
10 Ia=Il-Ish
11 Eb=V-Ia*Ra
12 Pm=Eb*Ia//gross mechanical power
13 SL=Pm-Po//stray losses
14 printf("gross mechanical power\n")
15 printf ("Pm=\%.3 \text{ f W} \setminus \text{n}", Pm)
16 printf ("stray losses \n")
17 printf ("SL=\%.2 \text{ f W} \text{ n}", SL)
18 //on no load
19 / Pg=S, Ebo*Iao=SL . . . . . . . . (1)
```

```
20  //Ebo=V-Iao*Ra.....(2)
21  //putting (2) in (1)
22  //(Iao^2)-6250*Iao+278303.24=0
23 b=-6250
24 a=1
25 c=278303.24
26 Iao=(-b-sqrt((b^2)-4*a*c))/(2*a)
27 I=Iao-Ish//current drawn on no load
28 Ebo=V-Iao*Ra
29 No=N1*Ebo/Eb
30 printf("no load speed\n")
31 printf("No=%.3 f r.p.m",No)
```

Scilab code Exa 9.19 calculate full load speed

```
1 / Chapter -9, Example 9_19, pg 9_69
2 V = 250
3 P=4
4 Ra=0.1
5 \text{ Rsh} = 125
6 Vbr=2//brush drop
7 //no load condition
8 Ilo=4
9 \text{ No} = 1200
10 Il1=61
11 Ish=V/Rsh
12 Iao=Ilo-Ish
13 Ebo=V-Iao*Ra-Vbr
14 //full load condition
                             (weakened by 5%)
15 // phi1 = phio - o.o5 * phio
16 //phi=phi1/phio
17 \text{ phi} = 0.95
18 Ia1=Il1-Ish
19 Eb1=V-Ia1*Ra-Vbr
20 N1 = No*Eb1/(Ebo*phi)
```

```
21 printf ("full load speed\n")
22 printf ("N1=%.3 f r.p.m", N1)
```

Scilab code Exa 9.20 determine full load speed and efficiency

```
1 / Chapter -9, Example 9_20, pg 9_70
2 V = 250
3 \text{ Ra} = 0.15
4 Rsh=166.67
5 \text{ No} = 1280
6 Il1=67
7 Ish=V/Rsh
8 Ia1=Il1-Ish
9 Eb1=V-Ia1*Ra
10 //on no load
11 Ilo=6.5
12 \text{ Ish} = 1.5
13 Iao=Ilo-Ish
14 Ebo=V-Iao*Ra
15 \text{ N1} = \text{Eb1} * \text{No/Ebo}
16 Sr=(No-N1)*100/No//speed regulation
17 SL=Ebo*Iao
18 Po=Eb1*Ia1-SL//full load shaft output
19 hp=Po/746//horse power rating
20 Pi=V*I11
21 n = Po * 100/Pi
22 printf("full load speed\n")
23 printf ("N1=\%.3 \, \text{fr.p.m} \, \text{n}", N1)
24 printf("speed regulation\n")
25 printf ("Sr=\%.2 f \n", Sr)
26 printf ("hp rating of machine \n")
27 printf("hp=\%.2 f hp n, hp)
28 printf("full load efficiency\n")
29 printf("n=%.2 f ",n)
```

Scilab code Exa 9.21 find speed for parallel field groups

```
1 / Chapter - 9, Example 9_21, pg 9_71
2 Ra=0.1
3 V = 110
4 P = 4
5 Ia1=50
6 I1=Ia1
7 \text{ Rse} = 0.02
8 N1 = 700
9 Eb1=V-Ia1*Ra-Ia1*Rse
10 //using torque
                    equation T=k*phi*Ia
11 Ia2=sqrt(2)*Ia1
12 Eb2=V-Ia2*Ra-Ia2*Rse/4//parallel speed groups
13 //using speed equation N=k*Eb/phi
14 N2=N1*Eb2*2*Ia1/(Eb1*Ia2)
15 printf("speed of motor\n")
16 printf("N2=%.3 f r.p.m", N2)
```

Scilab code Exa 9.22 find new speed and armature current

```
1 //Chapter -9, Example 9_22, pg 9_73
2 P=4
3 Ia1=50
4 N1=2000
5 V=230
6 //coils connected in series
7 //phi1=k*Ia1*(4*n)=k*200*n
8 //coils connected in parallel groups of series coils
9 //phi2=k*((Ia2*2*n/2)+(Ia2*2*n/2))=k*2*n*Ia2
10 //phi1/phi2=100/Ia2.....(1)
11 //N1/N2=phi2/phi1.....(2)
```

```
12 //T=kN^2.....(3)

13 Ia2=(Ia1*(100^3))^(1/4)//using (1) in (3)

14 N2=(((N1^3)*Ia2)/Ia1)^(1/3)

15 printf("new speed of motor\n")

16 printf("N2=%.3 f r.p.m", N2)
```

Scilab code Exa 9.23 find external resistance

```
1 / Chapter - 9, Example 9_23, pg 9_76
2 V = 200
3 Ia1=30
4 \text{ Ra} = 0.75
5 \text{ Rse} = 0.75
6 R = Ra + Rse
7 Eb1=V-Ia1*R
8 / N2 = 0.6 * N1
9 N = 0.6 / N = N2/N1
10 // using T=k*Ia^2 and T=k*N^3
11 Ia2=sqrt(((0.6^3)*30^2))
12 //using speed equation N=k*Eb/Ia
13 \quad \text{Eb2=N*Eb1*Ia2/Ia1}
14 / Eb2 = V - Ia2 * (R + Rx)
15 Rx = -(Eb2 - V + Ia2 * R) / Ia2
16 printf("extra resistance to reduce speed\n")
17 printf ("Rx=%.3 f ohm", Rx)
```

Scilab code Exa 9.24 estimate supply voltage

```
1 //Chapter -9, Example 9_24, pg 9_77
2 R=1
3 V1=230
4 N1=300
5 Ia1=15
```

```
6 N2=375
7 //using torque equation T=k*N^2
8 Ia2=N2*Ia1/N1
9 //using speed equation N=k*Eb/Ia.....(1)
10 Eb1=V1-Ia1*R
11 //case-2
12 //Eb2=V2-Ia2*R=V2-18.75.....(2)
13 //putting (2) in (1)
14 V2=(N2*Eb1*Ia2/(N1*Ia1))+18.75
15 printf("new supply voltage\n")
16 printf("V2=%.3 f V", V2)
```

Scilab code Exa 9.25 find efficiency and power input

```
1 / Chapter -9, Example 9_2 5, pg 9_7 8
2 V = 400
3 \text{ Po1} = 18.5 * 10^3
4 Pi1=22.5*10<sup>3</sup>
5 \text{ Rsh} = 200
6 \text{ Ra} = 0.4
7 \text{ Po2} = 9 * 10^3
8 I1=Pi1/V
9 Ish=V/Rsh
10 Ia1=I1-Ish
11 Acl=(Ia1^2)*Ra//armature copper loss
12 Scl=(Ish^2)*Rsh//shunt feild copper loss
13 TL=Pi1-Po1//total losses
14 SF1=TL-(Acl+Scl)//stray and friction loss
15 / case - 2
16 Pm=Po2+SF1//mechanical power
17 / \text{Pm} = \text{Eb2} * \text{Ia2} .....(1)
18 // \text{Eb2=V-Ia2}* \text{Ra}....(2)
19 //using (1) and (2)
20 / 0.4*(Ia2^2) - 400*Ia2 + 11022.75 = 0
21 a=0.4
```

Scilab code Exa 9.26 calculate efficiency and armature current

```
1 / Chapter -9, Example 9_26, pg 9_79
2 V = 250
3 Ilo=4
4 Ra=1
5 \text{ Rsh} = 250
6 \quad Ish=V/Rsh
7 Il1=20
8 Iao=Ilo-Ish
9 Ia1=Il1-Ish
10 Ebo=V-Iao*Ra
11 Po=Ebo*Iao
12 Eb1=V-Ia1*Ra
13 P1=Eb1*Ia1
14 Pout=P1-Po
15 Pi=V*I11
16 n=Pout *100/Pi
17 //fro max. efficiency
18 //const. losses=variable losses
19 Ia=sqrt(Po+(Ish^2)*Rsh)
20 \quad \text{Ebm} = V - Ia * Ra
21 \text{ Pm} = \text{Ebm} * \text{Ia}
22 \quad Pout = Pm - Po
```

```
23 Pi=V*(Ia+Ish)
24 nm=Pout*100/Pi
25 printf("maximum efficiency\n")
26 printf("nm=%.2 f",nm)
```

Scilab code Exa 9.27 calculate back emf

```
1 / Chapter -9, Example 9_27, pg 9_81
2 V = 250
3 FLo=16*10^3//full scale output
4 n = 80
5 I = FLo * 100/n / / input
6 I1=I/V
7 I1=I1
8 Ia=1.5*Il
9 //at start
10 Ra=V/Ia
11 Rac=0.18//Ra actual
12 Ras=Ra-Rac//Ra starter
13 Ia=I1//Ia drops as motor starts
14 Eb=V-Ia*(Ra)
15 printf ("back e.m. f \setminus n")
16 printf ("Eb=%.2 f V", Eb)
```

Scilab code Exa 9.28 calculate torque and efficiency

```
1 //Chapter -9, Example 9_28, pg 9_82
2 Po = 20*735.5 //(in W)
3 V = 230
4 N = 1150
5 P = 4
6 A = P
7 Z = 882
```

Scilab code Exa 9.29 determine efficiency and speed of motor

```
1 / Chapter -9, Example 9_29, pg 9_83
2 Pr=12*10^3//rated output
3 V = 200
4 \text{ Rsh} = 80
5 N1=800
6 n=0.9//efficiency
7 Out=0.8*Pr//output is 80% of rated
8 In=Out/n//input
9 TL=In-Out
10 //for max. efficiency
11 Iln=70//new current
12 //TL=Wc+(Ia1^2)*Ra
13 / bur Wc = (Ia1^2) *Ra
14 \text{ Wc} = \text{TL}/2
15 Il=In/V
16 Ish=V/Rsh
17 Ia1=Il-Ish
18 Ra=Wc/(Ia1^2)
19 Ia2=Iln-Ish
```

```
20 Wcn=Wc//const. losses remain same
21 TL=(Ia2^2)*Ra+Wcn
22 Pi=V*Iln
23 n=(Pi-TL)*100/Pi
24 Eb1=V-Ia1*Ra
25 Eb2=V-Ia2*Ra
26 N2=N1*Eb2/Eb1
27 printf("speed of motor\n")
28 printf("N2=%.3 f r.p.m", N2)
```

Scilab code Exa 9.30 calculate efficiency of motor

```
1 / Chapter -9, Example 9_30, pg 9_85
2 \text{ Po=8.952*10}^3
3 V = 440
4 Ra=1.1
5 \text{ Rsh} = 650
6 Rint=0.4
7 \text{ Rreg} = 50
8 M1 = 450
9 Vbr=2//brush drop
10 I1=24
11 Rat=Ra+Rint//series connection
12 Rsht=Rsh+Rreg//series connection
13 Ish=V/Rsht
14 Ia=Il-Ish
15 Acl=(Ia^2)*Rat//armature copper loss
16 Fcl=(Ish^2)*Rsht//feild copper loss
17 Bdl=Vbr*Ia//brush drop loss
18 \text{ TL} = Acl + Fcl + Bdl + Ml
19 n = Po * 100 / (Po + TL)
20 printf("efficiency of motor\n")
21 printf("n=\%.2 f ",n)
```

Scilab code Exa 9.31 calculate speed of motor combination

```
1 / Chapter -9, Example 9_31, pg 9_85
2 //for first motor
3 N1 = 700
4 R=0.5/Ra+Rse
5 I1=70
6 V=500
7 Eb1=V-I1*R
8 \text{ K1=Eb1/(N1*I1)}
9 // for second motor
10 N2 = 750
11 R = 0.5
12 I2=70
13 V=500
14 Eb2=V-I2*R
15 K2 = Eb2/(N2 * I2)
16 //motors in series
17 It = 70
18 Rt = 2 * R
19 \quad \text{Eb=V-It*Rt}
20 N=Eb/(K1*It+K2*It)
21 printf("speed of motors\n")
22 printf ("N=%.3 f r.p.m", N)
```

Scilab code Exa 9.32 calculate efficiency and power output

```
1 //Chapter -9, Example 9_32, pg 9_86
2 Po=7.46*10^3
3 V=250
4 Ilo=5
5 Ra=0.5
```

```
6 \text{ Rsh} = 250
7 Ish=V/Rsh
8 Iao=Ilo-Ish
9 Acl=(Iao^2)*Ra
10 Fcl=(Ish^2)*Rsh
11 Pi=V*Ilo
12 FWl=Pi-Acl-Fcl//friction and windage loss
13 / Pin = Eb * Ia = (V - Ia * Ra) * Ia
14 / 0.5*(Ia^2) - 250*Ia + 8452 = 0
15 b = -250
16 a=0.5
17 c=8452
18 Ia=(-b-sqrt((b^2)-4*a*c))/(2*a)/neglecting higher
      value
19 TL=(Ia^2)*Ra+(Ish^2)*Rsh+FWl
20 n = Po * 100/(Po + TL)
21 //for max. efficiency
22 Ia=sqrt((FW1+Fc1)/Ra)
23 \quad \text{Eb=V-Ia*Ra}
24 \text{ Pm=Eb*Ia}
25 //Po at nmax
26 \quad Po = Pm - FW1
27 printf("maximum efficiency output\n")
28 printf ("Po=%.3 f W", Po)
```

Scilab code Exa 9.33 calculate speed on given load

```
1 // Chapter -9, Example 9_33, pg 9_87
2 V=500
3 Ra=1.2
4 Rsh=500
5 Ish=V/Rsh
6 Ilo=4
7 Iao=Ilo-Ish
8 Ebo=V-Iao*Ra
```

```
9 Il1=26
10 \ \text{Ish1=1}
11 Ia1=Il1-Ish1
12 Eb1=V-Ia1*Ra
13 \text{ No} = 1000
14 N1=No*Eb1/Ebo
15 Rx=2.3//connected in series with armature
16 Eb2=V-Ia1*(Ra+Rx)
17 N2 = N1 * Eb2 / Eb1
18 printf("speed of motor case -1\n")
19 printf ("N2=\%.3 \text{ f r.p.m/n}", N2)
20 Ish3=Ish1-0.15*Ish1//reduced by 15\%
21 Ia3=Ish1*Ia1/(Ish3)
22 Eb3=V-Ia3*Ra
23 N3=N1*Eb3*Ish1/(Eb1*Ish3)
24 printf("speed of motor case -2\n")
25 printf("N3=\%.3 f r.p.m\n",N3)
```

Chapter 10

Three Phase Induction Motors

Scilab code Exa 10.1 calculate full load slip

```
1 //Chapter -10, Example10_1, pg10_14
2 P=4
3 f=50
4 N=1410
5 Ns=120*f/P
6 s=(Ns-N)/Ns
7 s=s*100//%s
8 printf("full load slip\n")
9 printf("s=%.f",s)
```

Scilab code Exa 10.2 calculate full load speed

```
1  // Chapter -10, Example 10_2, pg 10_14
2  P=4
3  f=50
4  sfl=4/100
5  Ns=120*f/P
6  Nfl=Ns-sfl*Ns
```

```
7 printf("full load speed of motor\n")
8 printf("Nfl=%.f r.p.m",Nfl)
```

Scilab code Exa 10.3 calculate rotor frequency

```
1 // Chapter -10, Example 10_3, pg 10_16
2 P=4
3 f=50
4 N=1470
5 Ns=120*f/P
6 s=(Ns-N)/Ns
7 fr=s*f
8 printf("frequency of induced e.m. f\n")
9 printf("fr=%. f Hz", fr)
```

Scilab code Exa 10.4 find full load slip and speed

```
//Chapter -10, Example 10_4, pg 10_20
P=8
f=50
fr=2
s=fr/f
s=s*100
printf("full load slip\n")
printf("s=%. f \n",s)
s=s/100
Ns=120*f/P
N=Ns*(1-s)
printf("speed of motor\n")
printf("N=%. f r.p.m",N)
```

Scilab code Exa 10.5 calculate rotor frequency and induced emf

```
1 / Chapter -10, Example 10_5, pg 10_20
2 P = 4
3 f = 50
4 N = 1455
5 Elline=415
6 \text{ Ns} = 120 * f/P
7 s = (Ns - N) / Ns
8 \text{ fr=s*f}
9 E1ph=E1line/sqrt(3)
10 E2ph=0.5*E1ph//K=2
11 \quad E2r=s*E2ph
12 printf("frequency of rotor e.m. f \setminus n")
13 printf("fr=\%.2 f Hz \n",fr)
14 printf("magnitude of induced e.m.f standstill\n")
15 printf ("E2ph=\%.2 f V\n", E2ph)
16 printf("magnitude of induced e.m.f running\n")
17 printf ("E2r=\%.3 f V", E2r)
```

Scilab code Exa 10.6 find rotor current and rotor power factor

```
//Chapter -10, Example 10_6, pg 10_21
P=4
f=50
R2=0.2
X2=1
E2line=120
E2ph=E2line/sqrt(3)
Ns=120*f/P
//at start
pf=R2/sqrt((R2^2)+(X2^2))//power factor
12=E2ph/sqrt((R2^2)+(X2^2))
printf(" at start\n")
printf("pf=%.3f lagging\n",pf)
```

```
14 printf("I2=%.2f A\n",I2)
15 //on full load
16 N=1440
17 s=(Ns-N)/Ns
18 pf=R2/sqrt((R2^2)+((s*X2)^2))
19 I2=E2ph*s/sqrt((R2^2)+((s*X2)^2))
20 printf(" on full load\n")
21 printf("pf=%.3f lagging\n",pf)
22 printf("I2=%.2f A",I2)
```

Scilab code Exa 10.7 calculate full load torque

```
1 / Chapter -10, Example 10_7, pg 10_24
2 P = 4
3 f = 50
4 R2 = 0.1
5 X2 = 1
6 N = 1440
7 K = 0.5
8 \text{ Ns} = 120 * f/P
9 Elline=400
10 E1ph=E1line/sqrt(3)
11 E2ph=0.5*E1ph
12 s = (Ns - N) / Ns
13 ns=Ns/60//synchronous speed (r.p.s)
14 T = (3/(2*\%pi*ns))*(s*(E2ph^2)*R2/((R2^2)+((s*X2)^2)))
15 printf("torque on full load\n")
16 printf("T=%.2 f N-m",T)
```

Scilab code Exa 10.8 calculate starting torque and full load torque

```
1 / Chapter -10, Example 10_8, pg 10_27
2 P=4
```

```
3 f = 50
4 K = 1/4
5 R2 = 0.01
6 X2 = 0.1
7 Elline=400
8 E1ph=E1line/sqrt(3)
9 E2=E1ph/4
10 \text{ Ns} = 120 * f/P
11 //at start
12 s = 1
13 \text{ ns} = \text{Ns}/60
14 k=3/(2*\%pi*ns)
15 Tst=k*(E2^2)*R2/((R2^2)+(X2^2))
16 printf("starting torque\n")
17 printf ("Tst=\%.3 f N-m n", Tst)
18 //slip at max torque
19 \text{ sm}=R2/X2
20 \text{ sm} = \text{sm} * 100
21 printf("slip at which max torque occurs\n")
22 printf ("sm=\%. f \n", sm)
23 //speed at max torque
24 \, \text{sm} = \text{sm} / 100
25 N = Ns * (1 - sm)
26 printf ("speed at which max torque occurs\n")
27 printf("N=\%. f r.p.mn", N)
28 //max. torque
29 Tm=k*(E2^2)/(2*X2)
30 \text{ sf} = 0.04
31 Tfl=k*sf*(E2^2)*R2/((R2^2)+((sf*X2)^2))
32 printf("max torque\n")
33 printf ("Tm=\%.2 \text{ f N-m/n}", Tm)
34 printf("full load torque\n")
35 \text{ printf} ("Tfl=\%.2 f N-m",Tfl)
```

Scilab code Exa 10.9 star connected induction motor

```
// Chapter -10, Example10_9, pg10_33
P=24
f=50
R2=0.016
X2=0.265
N=247
Ns=120*f/P
sf=(Ns-N)/Ns
sm=R2/X2
Tfm=2*sm*sf/((sm^2)+(sf^2))
Tsm=2*sm/(1+(sm^2))
printf("full load torque to max torque\n")
printf("Tfm=%.4f \n", Tfm)
printf("starting torque to max torque\n")
printf("Tsm=%.4f \n", Tsm)
```

Scilab code Exa 10.10 calculate external resistance

```
1 / Chapter -10, Example 10_{-10}, pg 10_{-36}
2 R2 = 0.04
3 X2 = 0.2
4 // for Tm=Tst, sm=1
5 R21=X2
6 \text{ Rex} = \text{R2} - \text{R21}
7 // for Tst=Tm/2....(1)
8 // Tst = k * (E2^2) * R21 / ((R21^2) + (X2^2)) \dots (2) with
       added resistance
9 / \text{from} (1) \text{ and } (2)
10 / (R21^2) - 0.8 R21 + 0.04 = 0
11 a=1
12 b = -0.8
13 c = 0.04
14 R21=(-b-sqrt((b^2)-4*a*c))/(2*a)//neglecting higher
       value
15 \text{ Rex} = R21 - R2
```

```
16 printf("external resistance\n")
17 printf("Rex=%.4f ohm per phase", Rex)
```

Scilab code Exa 10.11 calculate rotor copper loss

```
//Chapter -10, Example 10_11, pg 10_42
Tsh = 190
P=8
f = 50
fr = 1.5
ML = 700
s = fr/f
Ns = 120*f/P
N=Ns*(1-s)
Po=Tsh*(2*%pi*N/60)
Pm=Po+ML
Pc=Pm*s/(1-s)
printf("rotor copper loss\n")
printf("Pc=%.3 f W", Pc)
```

Scilab code Exa 10.12 calculate full load efficiency

```
1 //Chapter -10, Example10_12, pg10_43
2 P=4
3 f=50
4 Pi=50*10^3
5 N=1440
6 S1=1000
7 F1=650
8 Ns=120*f/P
9 s=(Ns-N)/Ns
10 P2=Pi-S1
11 Pc=s*P2
```

```
12  Pm=P2-Pc
13  Po=Pm-F1
14  n=Po*100/Pi
15  printf("full load efficiency\n")
16  printf("n=%.2f",n)
```

Scilab code Exa 10.13 calculate slip and rotor resistance per phase

```
1 / Chapter -10, Example 10_{-13}, pg 10_{-44}
 2 P = 4
 3 f = 50
 4 Tsh = 300
 5 \text{ Tlost} = 50
6 \text{ fr} = 120/60//\text{Hz}
 7 s=fr/f
 8 s = s * 100
 9 printf("slip s=\%.f \n",s)
10 Ns = 120 * f/P
11 \ s=s/100
12 N = Ns * (1-s)
13 Po=Tsh*2*%pi*N/60
14 Fl=Tlost*2*%pi*N/60
15 \text{ Pm} = \text{Po} + \text{Fl}
16 \text{ Pc=Pm*s/(1-s)}
17 Rcl=Pc/3//rotor copper loss per phase
18 P2=Pc/s
19 n = Pm * 100 / P2
20 I2r=60
21 R2=Rc1/(I2r^2)
22 printf("net output power\n")
23 printf ("Po=\%.3 f W\n", Po)
24 printf("rotor copper loss per phase\n")
25 printf ("Rcl=\%.3 f W\n", Rcl)
26 printf("rotor efficiency\n")
27 printf ("n=\%.2 f \ n", n)
```

```
28 printf("rotor resistance per phase\n")
29 printf("R2=%.4 f ohm/ph", R2)
```

Scilab code Exa 10.14 calculate gross mechanical power and efficiency

```
1 / Chapter -10, Example 10_{14}, pg 10_{45}
2 \text{ Po} = 25 * 10^3
3 f = 50
4 P=4
5 \text{ Ns} = 120 * f/P
6 N = 1410
7 s = (Ns - N) / Ns
8 M1 = 850
9 \text{ Pm} = \text{Po} + \text{Ml}
10 Pc=Pm*s/(1-s)
11 I2r=65
12 R2=Pc/(3*(I2r^2))
13 S1=1.7*Pc
14 P2=Pc/s
15 Pin=P2+S1
16 n = Po * 100 / Pin
17 printf("gross mechanical power\n")
18 printf ("Pm=\%. f W\n", Pm)
19 printf("rotor copper losses\n")
20 printf ("Pc=\%. f W\n", Pc)
21 printf("rotor resistance per phase\n")
22 printf("R2=\%.3 \text{ f ohm/ph/n}", R2)
23 printf("full load efficiency\n")
24 printf ("n=%.2 f",n)
```

Scilab code Exa 10.15 calculate shaft torque and full load efficiency

```
1 / Chapter -10, Example 10_{-15}, pg 10_{-47}
```

```
2 \text{ Po} = 24 * 10^3
3 I1=57
4 Is=I1
5 P = 8
6 N = 720
7 f = 50
8 V1=415
9 \text{ pf} = 0.707
10 Ns = 120 * f/P
11 s = (Ns - N) / Ns
12 M1 = 1000
13 \text{ Pm} = \text{Po} + \text{Ml}
14 Pc=Pm*s/(1-s)
15 Tsh=Po*60/(2*\%pi*N)
16 T = Pm * 60 / (2 * \%pi * N)
17 Rcl=1041.66//rotor copper loss
18 P2=Pc/s
19 Pi=sqrt(3)*V1*I1*pf
20 \text{ Rs} = 0.1
21 Scl=3*(Is^2)*Rs//stator copper loss
22 S1=Pi-P2
23 Sil=Sl-Scl//stator iron loss
24 n = Po * 100/Pi
25 printf("shaft torque\n")
26 printf ("Tsh=\%.3 \text{ f N-m/n}", Tsh)
27 printf("gross torque \n")
28 printf ("T=\%.3 \text{ f N-m/n}", T)
29 printf("rotor copper losses\n")
30 printf ("Pc=\%.2 f W n", Pc)
31 printf("stator copper losses\n")
32 printf ("Scl=\%.2 \text{ f W} \text{n}", Scl)
33 printf("stator iron losses\n")
34 printf ("Sil=\%.2 f W n", Sil)
35 printf("overallefficiency\n")
36 printf("n=\%.2 f",n)
```

Scilab code Exa 10.16 calculate tapping and supply start current

```
1 // Chapter -10, Example 10_16, pg 10_52
2 sf = 0.05
3 // Tst = Tfl
4 If s = 1/6 // Isc / If l = 6
5 x = sqrt ((If s^2)/sf) // tapping on transformer
6 t = x * 100
7 Ist = (x^2) * 6
8 printf("supply current\n")
9 printf("Ist = %.2 f times If l", Ist)
```

Scilab code Exa 10.17 determine ratios of torques

```
1 //Chapter -10, Example 10_17, pg 10_54
2 R2 = 0.4
3 X2 = 4
4 //Tm=k*(E2^2)/(2*X2)
5 //Tfl=Tm/2.5
6 //Tfl=k*(E2^2)/20
7 //Tst=k*(E2^2)*R2/((R2^2)+(X2^2))
8 //E2=E2/sqrt(3)
9 T=20*R2/(3*(((R2^2)+(X2^2))))
10 printf("ratio of starting torque to full load torque \n")
11 printf("T=%.3f",T)
```

Scilab code Exa 10.18 calculate rotor current and external resistance

```
1
\frac{2}{\sqrt{\text{Chapter}}} - 10, Example \frac{10}{18}, pg \frac{10}{57}
3 V1=1000
4 f = 50
5 K = 3.6
6 R2 = 0.01
7 \quad X2 = 0.2
8 Elline=1000
9 E1=E1line/sqrt(3)
10 E2 = E1/K
11 //at start, s=1
12 I2=160.37/sqrt((R2^2)+(X2^2))
13 pf=R2/sqrt((R2^2)+(X2^2))
14 printf("rotor current at start\n")
15 printf ("I2=\%.2 \text{ f A} \text{ n}", I2)
16 printf("rotor power factor\n")
17 printf("pf=\%.3 f lagging (answer in book is wrong)\n"
       ,pf)
18 / at s = 0.03
19 s = 0.03
20 I2r=s*160.37/sqrt((R2^2)+((s*X2)^2))
21 printf("rotor current at slip 0.03\n")
22 printf ("I2r=\%.2 \text{ f A} \text{ n}", I2r)
23 I2=200
24 R21=sqrt(((E2/I2)^2)-(X2^2))
25 \text{ Rex} = R21 - R2
26 printf("external resistance \n")
27 printf("Rex=%.4f ohm/ph (answer in book is wrong)",
      Rex)
```

Scilab code Exa 10.19 calculate starting torque and speed

```
1 //Chapter -10, Example10_19, pg10_58
2 P=12
3 f=50
```

```
4 R2 = 0.15
5 X2 = 0.25
6 E2 = 32
7 \text{ Ns} = 120 * f/P
8 \text{ ns=Ns/60}
9 Tst=3*(E2^2)*R2/((2*\%pi*ns)*((R2^2)+(X2^2)))
10 N = 480
11 s = (Ns - N) / Ns
12 Tfl=3*s*(E2^2)*R2/((2*\%pi*ns)*((R2^2)+((s*X2)^2)))
13 Tm=3*(E2^2)/(2*\%pi*ns*2*X2)
14 \text{ sm}=R2/X2
15 N = Ns * (1 - sm)
16 printf ("starting torque\n")
17 printf("Tst=\%.2 f Nm\n", Tst)
18 printf("full load torque\n")
19 printf ("Tfl=\%.3 \text{ f Nm} \text{ n}", Tfl)
20 printf ("maximum torque \n")
21 printf("Tm=\%.3 f Nm n", Tm)
22 printf ("speed at max torque n")
23 printf ("N=%. f r.p.m", N)
```

Scilab code Exa 10.20 calculate efficiency on full load

```
1 //Chapter -10, Example 10_20, pg 10_59
2 Po = 50 * 735.5 // (in W)
3 s = 0.04
4 //Rcl=X......rotor copper loss
5 //Sil = 1.25X.....stator iron loss
6 //Ml=Y, Y=(Y+1.25X)/3, Y=0.625X
7 //TL=Sil+Rcl+Scl+Ml, TL=3.875X.....(a)
8 //Pm=Po+Y, 36775+625X.....(1)
9 //Pc=Pm*s/(1-s).....(2)
10 //Pc=X, from (1) and (2)
11 X=(s*Po)/(1-s-s*0.625)
12 TL=3.875*X//from (a)
```

```
13 n=Po*100/(Po+TL)
14 printf("efficiency on full load\n")
15 printf("n=%.2 f ",n)
```

Scilab code Exa 10.21 calculate new speed

```
1 / Chapter -10, Example 10_{21}, pg 10_{61}
2 P = 4
3 f = 50
4 R2 = 0.25
5 \quad X2 = 0.55
6 \text{ Ns} = 120 * f/P
7 N1 = 1440
8 	 s1 = (Ns - N1) / Ns
9 \text{ Rex} = 0.2
10 R21 = R2 + Rex
11 / T1 at s1=T2 at s2
12 / (0.3025 * s2^2 - 2.8342 * s2 + 0.2025 = 0, s1 = 0.04
13 a=0.3025
14 b = -2.8342
15 c=0.2025
16 s2=(-b-sqrt((b^2)-4*a*c))/(2*a)/neglecting higher
       value
17 N2 = Ns * (1 - s2)
18 printf("new speed of motor\n")
19 printf ("N2=%. f r.p.m", N2)
```

Scilab code Exa 10.22 find rotor current and rotor emf per phase

```
1 // Chapter -10, Example10_22, pg10_62
2 E2line=50
3 R2=0.5
4 X2=3
```

```
5 E2=E2line/sqrt(3)
6 //at start
7 s = 1
8 I2r=s*E2/(sqrt((R2^2)+((s*X2)^2)))
9 printf("rotor current atstart\n")
10 printf ("I2r=\%.3 f A\n", I2r)
11 Rx = 6
12 I2r=s*E2/(sqrt(((R2+Rx)^2)+((s*X2)^2)))
13 printf("rotor current for rheostat of 6 ohm\n")
14 printf ("I2r=\%.3 f A n", I2r)
15 //at full load
16 \text{ s} = 0.04
17 I2r=s*E2/(sqrt((R2^2)+((s*X2)^2)))
18 pf=R2/(sqrt((R2^2)+((s*X2)^2)))
19 printf("full load rotor current\n")
20 printf ("I2r=\%.3 f A n", I2r)
21 printf("full load power factor\n")
22 printf("pf=\%.3 f lagging \n", pf)
23 \quad \text{E2r=s*E2}
24 printf ("rotor e.m. f on full load n")
25 printf ("E2r=\%.3 f V", E2r)
```

Scilab code Exa 10.23 calculate starting torque and speed

```
1 //Chapter -10, Example 10_23, pg 10_63
2 P=12
3 f=50
4 R2=0.15
5 X2=0.25
6 E2=32
7 Ns=120*f/P
8 ns=Ns/60
9 k=3
10 Tst=k*(E2^2)*R2/((2*%pi*ns)*((R2^2)+(X2^2)))
11 N=480
```

Scilab code Exa 10.24 calculate full load torque and external resistance

```
1 / Chapter -10, Example 10_{24}, pg 10_{64}
2 P = 4
3 f = 50
4 R2 = 0.4
5 X2 = 2
6 E2b=520//between slip rings
7 E2ph=E2b/sqrt(3)
8 \text{ Ns} = 120 * f/P
9 N = 1425
10 sf = (Ns - N)/Ns
11 \text{ ns=Ns/60}
12 Tfl=3*sf*(E2ph^2)*R2/((2*%pi*ns)*((R2^2)+((sf*X2)^2)
      ))
13 Tst=3*(E2ph^2)*R2/((2*\%pi*ns)*((R2^2)+((X2)^2)))
14 T=Tst/Tfl
15 Tm=3*(E2ph^2)/((2*\%pi*ns)*((R2^2)+((X2)*2)))
16 \quad T1 = Tm / Tf1
17 //at start
18 \text{ sm}=1
```

```
19 R21=X2
20 Rex=R21-R2
21 printf("full load torque\n")
22 printf("Tfl=%.2 f Nm\n",Tf1)
23 printf("ratio of Tst to Tfl\n")
24 printf("T=%.4 f \n",T)
25 printf("ratio of Tm to Tfl\n")
26 printf("T1=%.4 f \n",T1)
27 printf("external resistance required\n")
28 printf("Rex=%.2 f ohm/ph",Rex)
```

Scilab code Exa 10.25 calculate slip and line current

```
1 / Chapter -10, Example 10_{-25}, pg 10_{-65}
 2 \text{ Po} = 33.73 * 10^3
3 P = 4
 4 V1=400
 5 f = 50
 6 \text{ Nfl} = 1440
 7 pf = 0.8
8 Ml = 1.3 * 10^3
9 \text{ Ns} = 120 * f/P
10 s = (Ns - Nfl)/Ns
11 \text{ fr=s*f}
12 \text{ Pm} = \text{Po} + \text{Ml}
13 Pc = Pm * s / (1 - s)
14 Pcp=Pc/3//copper loss per phase
15 P2=Pc/s
16 S1=1.4*10<sup>3</sup>
17 Pi=P2+S1
18 n=Po*100/Pi
19 Il=Pi/(sqrt(3)*Vl*pf)
20 printf("slip at full load\n")
21 printf("s=\%.3 f \ n",s)
22 printf("rotor frequency\n")
```

```
printf("fr=%.f Hz\n",fr)
printf("rotor copper loss per phase\n")
printf("Pcp=%.2f W\n",Pcp)
printf("total copper loss\n")
printf("Pc=%.2f W\n",Pc)
printf("efficiency at full load\n")
printf("n=%.2f \n",n)
printf("line current drawn\n")
printf("line current drawn\n")
```

Scilab code Exa 10.26 find power factor of rotor

```
// Chapter -10, Example 10_26, pg 10_66
R2=0.04
X2=0.2
sfl=0.03
//at Tst, s=1
//Tfl=Tst
//(R21^2) -1.3633*R21+0.04=0
a=1
b=-1.3633
c=0.04
R21=(-b+sqrt((b^2)-4*a*c))/(2*a)
Rex=R21-R2
pf=R21/sqrt((R21^2)+(X2^2))
printf("pf=%.3f lagging",pf)
```

Scilab code Exa 10.27 determine full load speed and speed at max torque

```
1 //Chapter -10, Example 10_27, pg 10_67
2 P=4
3 f=50
```

```
4 Po=8*10^3
5 // Tst = 1.5 * Tfl and Tm = 2 * Tfl
6 //(R2^2) + ((sfl*X2)^2) = 1.5*sfl*((R2^2) + (X2^2))
       7 / (R2^2) + ((sfl*X2)^2) = 2*(sfl/sm)*((R2^2) + ((sm*X2)^2)
      ) . . . . . . . . (2)
  //dividing (1) and (2) by (X2^2) on both sides and
      R2/X2=sm
  //(sm^2) + (sfl^2) = 5*(1+(sm^2))*sfl....(3)
10 //(sm^2) + (sfl^2) = 2*(2*(sm^2))*(sfl/sm) = 4*sm*sfl
       11 // \text{dividing} (3) \text{ by } (4)
12 / (\text{sm}^2) - 2.667*\text{sm} + 1 = 0
13 a = 1
14 b = -2.667
15 c=1
16 sm = (-b - sqrt((b^2) - 4*a*c))/(2*a)
17 \text{ Ns} = 120 * f/P
18 //substituting sm in (4)
19 //(sfl^2) -1.8052*sfl +0.2036=0
20 \, a=1
21 b = -1.8052
22 c=0.2036
23 sfl=(-b-sqrt((b^2)-4*a*c))/(2*a)
24 N = Ns * (1 - sfl)
25 \text{ Nm} = \text{Ns} * (1 - \text{sm})
26 printf("full load speed\n")
27 printf ("N=\%.2 \text{ f r.p.m/n}", N)
28 printf ("speed at max. torque n")
29 printf ("Nm=\%. 2 f r.p.m\n", Nm)
```

Scilab code Exa 10.28 calculate starting torque

```
1 //Chapter -10, Example 10_{-28}, pg 10_{-68}
2 Po = 10*735.5 // (in W)
```

```
3 Nfl=1410
4 P=4
5 f=50
6 Ns=120*f/P
7 sfl=(Ns-Nfl)/Ns
8 Nm=1200
9 sm=(Ns-Nm)/Ns
10 T=2*sfl*sm/((sm^2)+(sfl^2))//Tfl/Tm
11 T1=(1+(sm^2))/(2*sm)//Tm/Tst
12 T2=T1*T//Tfl/Tst
13 Tfl=Po*60/(2*%pi*Nfl)
14 Tst=Tfl/T2
15 printf("starting torque\n")
16 printf("Tst=%.2f Nm",Tst)
```

Scilab code Exa 10.29 calculate speed torque and external resistance

```
1 / Chapter -10, Example 10_{-29}, pg 10_{-70}
     2 P = 4
     3 f = 50
     4 R2 = 0.025
     5 \quad X2 = 0.15
     6 \text{ sfl} = 0.04
     7 Tfl=150
     8 \text{ sm} = R2/X2
    9 Tm=Tf1*((R2^2)+((sf1*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((R2^2)+((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*sm/(sf1*((sm*X2)^2))*s
                                          )^2)))
10 Ns = 120 * f/P
11 N = Ns * (1 - sm)
12 //at start
13 R21=X2
14 \text{ Rex} = R21 - R2
15 printf ("maximum torque \n")
16 printf("Tm=\%.2 \text{ f Nm} \ \text{n}", Tm)
17 printf ("speed N=\%. f r.p.m\n", N)
```

```
18 printf("external resistance\n")
19 printf("Rex=%.3 f ohm/ph", Rex)
```

Scilab code Exa 10.30 calculate motor output and efficiency

```
1 / Chapter -10, Example 10_30, pg 10_70
 2 \text{ Tsh} = 162.84
 3 P = 6
 4 f=50
 5 \text{ Tlost} = 20.36
 6 \text{ fr=} 1.5
 7 s=fr/f
 8 \text{ Ns} = 120 * f/P
9 N = Ns * (1-s)
10 Po=Tsh*(2*%pi*N)/60
11 Fl=Tlost*(2*%pi*N)/60
12 \quad Pm = Po + F1
13 Pc=Pm*s/(1-s)
14 P2=Pc/s
15 S1=830
16 Pi=P2+S1
17 n = Po * 100/Pi
18 printf ("motor output \n")
19 printf("Po=\%.4 f W n", Po)
20 printf("copper loss in rotor\n")
21 printf("Pc=\%.3 f W\n",Pc)
22 printf("motor input\n")
23 printf ("Pi=\%.3 f W n", Pi)
24 printf ("efficiency of motor\n")
25 \text{ printf} ("n=\%.2 f ",n)
```

Scilab code Exa 10.31 find ratio of torques

```
1 / Chapter -10, Example 10_31, pg 10_71
2 f = 50
3 P=8
4 R2 = 0.01
5 X2 = 0.1
6 \text{ sfl} = 0.04
7 // for Tmax
8 \text{ sm}=R2/X2
9 //for Tfl
10 \text{ s=sfl}
11 T=sm*R2*((R2^2)+((sf1*X2)^2))/((sf1*R2)*((R2^2)+((sm^2)^2)))
       *X2)^2)))//Tmax/Tfl
12 \text{ Ns} = 120 * f/P
13 \text{ sm} = 0.1
14 \ N = Ns * (1 - sm)
15 printf("ratio of max to full load torque\n")
16 printf ("T=\%.2 \text{ f} \setminus \text{n}", T)
17 printf("speed at max torque\n")
18 printf ("N=%. f r.p.m", N)
```