Q(4)

Theorem. Let V be a finite dimensional vector space over a field \mathbb{F} and $W\subseteq V$ a supspace. Then $\dim W=\dim V\iff W=V$.

Proof. Suppose V = W. Then dim $V = \dim W$.

Now suppose dim $V = \dim W = n$. Let the set $A = \{x_1, x_2, \dots, x_n\}$ be a basis for W. Since A is linearly independent in W, it is also linearly independent in V. Then since dim $V = \dim W$, A is also a basis for V.

Since V and W have the same basis, V = W.