MATH 612 (HOMEWORK 2)

HIDENORI SHINOHARA

Exercise 1)

Work on the first part.

Fix H and let $f: G \to G'$ be given. Let $0 \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_2} H \to 0$ be a free resolution of H. We obtain two cochain complexes where f_* is a chain map from the top one to the bottom one.

$$0 \leftarrow \operatorname{Hom}(F_1, G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G) \xleftarrow{f_2^*} \operatorname{Hom}(H, G) \leftarrow 0$$
$$0 \leftarrow \operatorname{Hom}(F_1, G') \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G') \xleftarrow{f_2^*} \operatorname{Hom}(H, G') \leftarrow 0.$$

 f_* indeed makes the diagram commute because For any $\sigma \in \text{Hom}(H,G)$,

$$f_*(f_2^*(\sigma)) = f_*(\sigma \circ f_2)$$

$$= f \circ (\sigma \circ f_2)$$

$$= (f \circ \sigma) \circ f_2$$

$$= f_2^*(f \circ \sigma)$$

$$= f_2^*(f_*(\sigma)).$$

Similarly, $f_*(f_1^*(\sigma)) = f_1^*(f_*(\sigma))$ for every $\sigma \in \text{Hom}(F_0, G)$. Since a chain map induces a homomorphism on cohomology groups, f induces a map from $\text{Ext}(H, G) \to \text{Ext}(H, G')$.