Study of ants' collective behaviours and mechanisms [missing something about the simulation]

Author^a and *Corresponding Author^b and Author^{b,c}

^aDepartment, Faculty, University, Address, alva@itu.dk

^bDepartment, Faculty, University, Address, account@domain.com

^cDepartment, Faculty, University, Address, account@domain.com

Abstract

Ants are among the most simple beings out there. Yet, they can do great things such as building structures, communicating in a very non-conventional fashion, concentrating their workforce to gather supplies, and defending their nest. This document references the lives of ants from what they are and where they come from to how they behave to see if it is possible to collect emerging collective behaviors to implement in simulations. While gathering the information, how to simulate the accumulated information in different manners will be discussed. The first approach will be a software-based simulation where programming languages such as Javascript or C will be studied to evaluate if they fit such a task's needs and how good they will replicate the ants' behaviors. The second simulation will be robotic-based and aim to fetch one or two actions to replicate the complexity of these when applied to swarm robotic in a reduced setup. Finally, a third approach, a mix of the first two approached, will briefly be discussed.

1 Introduction

This project is part of the Research project (K-CS and K-SD) Autumn 2020 (KIREPRO1PE)] ITU course, which intends to be a bridge between the specialization course and the master thesis (that is, a preliminary work for the Master thesis). Its aim is the study of the abstract mechanisms employed by ants. Ants are one of the various social species that can be studied to create bioinspired algorithms and collective behaviors models. They are fascinating because, as a single unit, an ant is a straightforward being. However, as a swarm, they show many exciting collective behaviors.

Their underlying mechanisms can be studied and used for everyday problems.

The art of studying nature to replicate its behaviors into a robotic/algorithm to solve complex human problems is called "bio-inspired robotic" (also more commonly know as "Biomimetic"). There are numerous examples, such as the very famous "Japanese Bullet train" (Shinkansen), which gets its nose design from the Kingfisher bird's beak (who's aerodynamic), reducing the train's energy consumption by 15%, making it 10% faster and quieter [1].

[image]

The hook and loop fastener (also known as the Velcro), created by the Swiss engineer George de Mestral in the 1950s, is also a very famous biomimetic example. This two-part binding system was inspired by burrs, which de Mestral studied under a microscope after he figured how surprisingly easy these would stick to its dog's hair. He discovered that burrs had micro hooks that we're able to catch anything with a loop. Nowadays, many of the global population knows and uses the hook and loop fastener throughout the world [1].

[image]

Bio-mimetic is also very useful in robotics as today's human problems get more complicated, risky, and costly. For instance, Amazon uses an extensive network of swarm robots in their warehouse to control the package so that the human workers on site don't even have to move. The ordered package comes to them; they fill the box, staple it, and put it back on the robot to be ready for delivery [2]. Another excellent and relevant example is the network's Honey bee algorithm. Back in 1988, in the Georgia Institute of Technology, Professor John Hagood Vande Vate discovered, after some discussion, how effectively nectar foragers honey bee could distribute themselves effectively among the local clusters of flowers without any central authority. The professor and his team of com-

puter scientists built up an algorithm to reflect the seen behavior. For a decade, this algorithm sat unused until an Oxford student named Sunil Nakrani needed inspiration for a web hosting problem. Sunil and the professor refined the honey bee algorithm to fit the situation and dramatically made Internet Web hosting services more efficient [3].

1.1 State of the art

1.1.1 Software

1.1.2 Robotic

2 The ant kingdom

This section is about ants. Their history, birth, life, and how they function and behave in groups and individually. As we are restrained in time and space, we will talk about only a very few of the enormous amount of exciting species that exist out there. The end goal is to give ourselves an Idea of which ant species are good candidates for a simulation and highlights fascinating biological behaviors that emerge within each species. At the end of the section, a set of these natural behaviors will be chosen, based on preferences and interests, to be used later for the simulation.

2.1 Ants

Ants are ancient beings that emerge around 140 to 168 million years ago, even though they started to diversify only about 60 million years after [4] [5]. From the dinosaur era to the Human realm, no kingdom has ever been as large and as powerful as the ants' superkingdom. They are estimated to be about 10'000'000'000'000'000 (10'000 trillion) individuals [6], which account for 20% of the total animal biomass [7] [8]. This superkingdom, however, is far from being an unified and coherent heaven. From the 16'000 classified species and the 20'000 estimated species [5], rare are the ant species that resemble one another. Indeed, from the very early age of their existence, ants have been evolving and adapting to a large amount of environment. They now come in a large variety of colors, from yellow to black. They live in every environment, from extreme heat desert to rainy forests and swamps. The only places that remain (almost) untouched are cold and high places on earth, as ants need a heat source to survive [9]. Individually, ants cannot do much, they are too simple, and their brain is only capable of performing a limited set of actions. To become what ants are today, they needed something fundamentally important: Collaboration. It is like the human race. We, throughout the years, had to come up with some very complex collaboration tools and framework to construct the society we have nowadays.

Throughout this collaboration, ants are capable of achieving the greatest. They can assemble themselves into complex structure such as bridges or boats to overcome environmental challenges, they achieve agriculture through foraging and maintenance, and have complex symbiotic relationships [10]. However, this collaborative behavior only emerges within ants of the same colonies (and sometimes, but less likely, of the same species). Ant colonies are more likely to fight or avoid contact than discuss peacefully what would be the best strategy to get the piece of bread from a picnic and how it would be beneficial for each of them. So what is the difference? What makes them less able to collaborate than humans? As described earlier, they have a minimal brain, they have eyes, and they can somewhat distinguish between dark and light. They have a limited set of communication tools and understanding of the world, which have made them less able to develop collectiveness compared to other species during the evolution. At their level, everything but the colony and the queen's survival is meaningless.

2.2 Interesting species

2.2.1 The army ants (Marabunta)

There is a category of ant legitimately called "the army ants from all the known ants' species." This category that the evolutionary tree has brought to be combatants are dreadful warriors among the ground. They have large mandibles, painful sting, and armor, and it exists about 200 species of them [11]. If two colonies encounter one another in nature, it is unlikely that they will fight against each other. Indeed, this makes sense from an evolutionary standpoint as, throughout time, army ants attacking other army ants eradicated themselves to extinction [12]. They don't have a nest; they would rather crawl on the ground in a very long and narrow group, consuming up to 500'000 prey animals each day [13] [14]. The behavior of crawling on the floor is something specific to the army ants called the "Army ant syndrome" [15] (see Figure N).

In the first two to three weeks, a long phase called the stationary phase, the preys previously used to feed to the larvae are now reserved to the queen for her to prepare her birth cycle. The queen lays her eggs, and once the colony reaches the end of the stationary phase, the newborn larvae emerge from their cocoons, and the colony prepares itself to enter the second phase. [13]

The second phase, called the "Nomadic phase," lasts approximately 15 days, giving the newborn larvae time to develop into fully functional workers. In this phase, the colony moves during the day, etching on the ground

and capturing everything they can, from insects, spiders, and even dead ant bodies. Usually, an ant colony would send one or a few scouts to look around the colony and seek food or threats. However, the army ants are leaderless foragers and like to overwhelm the prey at once by sending many combatants. At the end of the 15 days, the larvae no longer require food, and the colony can again enter the stationary phase. [13] [16] [image]

2.2.2 Carpenter ants (Camponotus spp)

[image]

Carpenter ants, represented in Figure N, are inhabitants of many forests in the world. They like to build their nest in high humidity woods, and they alone account for approximately 1000 ant species. If carpenter ants are among the most known species globally, they are sadly famous for being a nuisance to many buildings and structures made of wood, causing structural damages. Nevertheless, carpenter ants are interesting little beings. A mechanism to highlight from their collective behavior is that, once their primary nest is big enough, carpenter ants like do build satellite nest containing workers while the eggs, the newly hatched larvae, and the queen remain in the primary nest. [17]

2.2.3 Leafcutter ants (genera Atta - Acromyrmex)

[image] Leafcutter ants are tiny ants of about 47 species that can carry around 20 times their bodyweight. If an average-sized human could do that, he would be able to pull up to 1400kg [19]. As their name may imply, Leafcutter ants cut leaf's fragments, which they bring back to the nest to feed the fungus garden. The fungus garden is the primary source of the colony's supply, and they take good care of it. The fungus garden can generate chemicals to tell the ants if the fragments they brought back from the foraging are toxic or not. This collaboration between ants and fungus is called an ant-fungus mutualism. But the care of the fungus garden does not end here. Indeed, a worker category specialized in taking care of it, brings the toxic leaf and dead leaves to a waste heap. These waste transporters are the older, more dispensable leafcutter ants that ensure that the younger and more functional workers can work safely in the fungus garden. Once the waste is deposed in the waste heap, workers frequently organize the debris to help decomposition [20] [21] Colony hierarchy Like any other ant species, Leafcutter ants are a well-organized group. It exists four main classes, starting with the "minims." The minims are the smallest worker; they take care

of growing the brood and ensure the fungus garden is in safe hands. The second category, the minors, are slightly larger workers, which are the first line of defense against external threats. Their main occupation is to patrol around the nest and making its surrounding a safe place. The third category, depicted in all photography (yes, it is the one in Figure N), is the "real" Leafcutters. They are generalized foragers and wander outside the nest to cut leaves fragments and bring them back to the nest. The fourth and last category is the Majors, which are the largest worker ants. They are the soldier of the nest, defending and attacking against outside threats. Moreover, this ants category also helps in other tasks such as cleaning the foraging extensive debris trails. [19]

2.2.4 Pharaoh ants (Monomorium pharaonis)

[image] Pharaoh ants are infamously known as the largest indoor nuisance pest as they can establish themselves in most parts of the world, given a reliable heat source. Their vast territory is due to high human migration movements and exponentially growing access to transports such as boats, planes, or cars. Pharaoh ant colonies are polygynous, which means they can contain more than a single queen. The highest number of queens found in a single colony is 200. Each of these queens will lay up to a hundred eggs in their lifetime. To move and choose a convenient nest, they use decision-making behavior to minimize the time the colony is without a nest. [22] [23]

Pheromones [24] [22]

Pharaoh ants have three exciting types of pheromones. The first one is a long-lasting attractive chemical used to build trail networks that can remain detectable even if it is unused for several days. This durable chemical has been studied on this particular type of ants. It has been seen that pharaoh ants cease activity at night and begin each day of work at around 8 am, yet parts of the trail network are identical each day. The second one is a mid-lasting pheromone, which usually disappears in a matter of minutes. This type of pheromone is used to indicate a path to a food supply. Finally, the last type, which decays after two hours, is a repellent pheromone (or negative trail), which indicates that a path to a food supply is inefficient.

3 Ant behaviours and mechanisms

This section is about ants behaviours and mechanisms, we will go through the behaviours we mentioned in the early paragraphs of this paper as well as some new ones to see how collective behaviours can emerge when every element of the colony activate itself to a task. The

aim is also to define a set of interesting behaviours that can be used either from a robotic stand point or a software stand point later in the master project.

Firstly, let's define what "collective behaviours" truly means. Collective behaviour is a process without central control that brings together multiple participants to achieve some outcome [25]. Now that we have clearly defined what collective behaviours are let's think of something; Ants are capable of building complex structures, they can defend their nest as a group when a threat knocks to their door and are capable to organise to achieve such tasks. So how is it that such simple being are capable of the greatest thing? This is the question that we will elaborate on in the next subchapters.

3.1 Organization

How do ants organize? Even though ants are simple beings, their collaborative behaviors are extraordinarily complex and close to being on a military level. Each colony has the same structure, but it may slightly variate from a species to another. A colony begins with its queen. The queen is not a hierarchal label as she does not have absolute power over what the ant colony is doing, but she is the only type of ant that will give birth to young workers. It has been found that some queen may lay up to 1000 eggs a day for up to seven years (a total of 2'492'000 eggs). The larvae are the growing workers laid by the queen and are sources of high tension between colonies when an attack occurs as some species like to steal them as food supply or even use them as new workers in the opponent's colony [26]. Growing to be adult, the larvae will then perform tasks rather than being attributed a role; see Task allocation section.

3.2 Communication [27][28]

As mentioned already in this paper, ants don't have as complex communication tools as humans do. Yet, they can generate collective behaviors in colonies that sometimes contain up to a few ten million individuals. Ants can communicate through 3 distinct channels; The first one is low resonance sounds, which ants can produce by scraping their legs in some specific part of their body to create different sounds. This communication method is mostly used when deposing pheromone trails would not suit the situation, such as helping a lost ant to find its way back through a tunnel or a narrow set of rocks. The second one is body language, which they can use to generate primitive reflexes in other ants by touching them in specific areas. Finally, the scent, which ants use to detect the pheromone trail left by other ants. As mentioned earlier in this paper, pheromones are a unique chemical badge among ant colonies, which serves many purposes. These pheromones can be used for navigation, telling an ant to find a food supply or a source of water, and used by the queen to influence the workers. It has been found that some pheromones used by the queen had the effect of calming or exciting the workers in specific situations [29].

3.3 Navigation and pheromone trails [30] [31] [32]

The pheromones mentioned in the previous section are mainly used for ants to orientate. Whenever a forager comes back from a food supply leaving behind it a pheromone trail indicating the source's location, another ant is likely to fall upon it and follow it, ultimately leading it to the source. If there is different trail to choose from, this is decided given a probabilistic model where the more pheromone there is on a path (that is, left by multiple other workers), the more likely the ant is to follow it. Some other types of pheromones are also used as a repellent, as depicted in the Pharaoh ants section of this document. This navigation tool has already been studied a lot and has given birth to many papers and a fascinating algorithm used today to find optimal (shortest/fastest) path for maps and graphs; The ant pathfinder algorithm.

The ant pathfinder algorithm works as follows: The ants are dispatch randomly from a given starting point to the adjacent edges of the graph, wandering to other edges, replicating foraging behaviors. Once an ant finds the destination node, it backtracks to the graph's starting point, leaving behind it the so-called "pheromone trail" indicating its destination. Likely, other ants will also find a path and return to the nest, leaving behind them the trail. Now that we have multiple likely paths, how does one figure which one has the shortest distance? Exactly like ants do. Indeed, as mentioned above, the shorter the route is, the more likely another ant will encounter it and mark it with its pheromone, the higher the level on the trail will be, leading to even more ants following this track and so on (see Figure N). After a few generations, the shortest pheromone trail will be visible, where longer trail who suffered from a lack of pheromone has been evap-

[image] Figure N depicts the ant pathfinder algorithm in three phases. The first phase is the algorithm's exploration phase, where ants are dispatched randomly on the edge of the graphs' neighboring nodes, eventually finding the destination and coming back to the source. The second phase is the reinforcement phase; the shorter path will be reinforced as more ants fall

upon them. The third phase is the eventual evaporation of the longer path. Note that, as seen in phase three and said above, choosing if the ant will be going on a given trail or not follows a probabilistic model, meaning that ants may explore other paths. After a while, the longer paths evaporate, and the shortest remains and is finally visible.

3.4 Task

Tasks may variate slightly from a colony to another, as in leafcutter ant's colony where some ants have to maintain the fungus garden, but overall we can sum them up in 4 tasks:

- Foraging
- Scouting
- Patrolling
- Nest maintenance

Scouting

Scouting is the action of going outside alone or with a minimal crew to search for food. Once the scout has found a food source, it will rush back to the nest (leaving behind it a pheromone trail) to "warn" the colony that supply is available. Scouting can also serve as attack planning. If an ant found a potential threat (that is, an enemy colony), it will go back to its nest to prepare a defense if needed.

Foraging

When foraging, ants will move randomly in many different directions to increase their chances of encountering food or a positive pheromone trail. If the ant ever finds food, it will subsequently crawl home, leaving behind it a pheromone trail indicating the other ants where the food is. As more ants encounter the trail left by our lucky ants, the pheromone trail gets bigger and bigger, leading to even more ants finding it. The more appealing the food is (in quantity), the more ant will switch their current task to get to the food area. If the ant fails to return to the colony in time, the pheromone trail eventually evaporates, and no ant will follow the trail back to the food supply [27]. Ants also have a system of "memory of high reward foraging sites"; the more food there is at a specific site, the higher the reward is going to be, leading to the ant returning to this foraging site in the future, given that it is a static site (not a spontaneous drop of supply). [33] [34]

Patrolling

Patrollers are the ants keeping guard of the nest, making sure no threat is near around. Like the scouts, if

they encounter danger, they will rush back to the nest and warn everyone, keeping the nest a safe and sound place.

Nest maintenance

Nest maintenance is the most massive task an ant can perform; it goes from moving the newly laid eggs from the queen to the eggs chamber, taking care of a fungus garden as for the Pharaoh ants or other ant-fungus like types of ant, making the nest bigger, to cleaning it from dead bodies, food waste and such. Ants who perform such tasks are older than the ones performing off-site tasks such as foraging and patrolling. Their low performance in these tasks could be explained due to their older body [35].

3.4.1 Task allocation

As we have mentioned earlier, there is no central control unit in a colony of ants, meaning that there's no one to tell an ant what to do at any given time, and yet ants seem to have a pretty busy day-to-day calendar. Few studies have suggested that ants can select a task based on their age, body size, genetic background, position in the nest, the way they eat, and receiving signals from other ants [36]. The earliest studies have highlighted that ants can determine what task it should do with a brilliant decision model [25]. This decision is based on the rate at which an ant encounters another one. Indeed, every time an ant makes contact, there is a small probability that the ant will switch to the encountered ant's task. This also means that the more ants with the same task our ant encounters, the more likely it is to change (note that this decision-making is only based on interaction and location). Ultimately, larger ant colonies are better at task allocation than smaller

Switching to a task is a thing; being aware of what the other ant's task is, is another. How is it that an ant knows what task to switch to even though we have stated multiple times in this paper that ants don't have any complex communication tools? It is because ants have been given antennas which they rob against encountered ants' antennas. This contact tells the ant the other ant performs and does so by analyzing the cuticular hydrocarbon the antennas carry—these cuticular hydrocarbons variate regarding where the ant previously was and what task it was performing. TODO plagia: For example, when ants are foraging out in the sun, the proportion of n-alkanes in their hydrocarbon profile increases, leading the forager to smell recognizably different from an ant that works inside the nest [25]. Age is also a variable to take into consideration. Even though it has been found that this does not impact task allocation on a large scale, studies have found that

older ants would usually take care of the maintenance of the nest and any task that happens inside the nest.

In contrast, younger workers would more likely be outside to forage and defend the nest in case of attack. Deborah M. Gordon, a worldwide known scientist famous for her lifetime studies on ants, has discovered that not every ant would switch to a specific task even though the probability is high. She found that ants have "preferences" to which job they would be willing to change to, and she has then dressed a map of this behavior: [image] This map shows that only in-nest ants (the older or/and inactive ants) would switch to nest maintenance if the demand were high in more critical tasks such as foraging and that the highest task priority is foraging as every ant can eventually ending in switching up their duty to become a forager.

Environmental challenges

The way an ant chooses what to do is also environment-based as there's a notion of operating cost of tasks that an ant takes into consideration when performing a task. Indeed, In some places in the world, such as deserts or highly dry terrains, the task's operating cost is very high as finding resources is hard, meaning that an ant will think twice before allocating some of its time scouting for food outside as it only does it if the returned income is higher than the one spent to get to the supply. This high operating cost behavior can be summed up as "Don't go unless something positive happens." In some other places of the world, the operating cost is low (houses, groceries, tropical forest, etc.), meaning that the energy an ant has to spend to reach a resource is little compared to the income it will return. This is the "Go unless something bad happens" behavior [37]. Such studies have also been conducted in threatening human environments such as space, where a small colony was filmed to study these behaviors. The research has shown that ants wouldn't move unless the colony's existence were at stake [38].

3.5 Lifecycle of an ant colony [39] [35]

Ant colonies are part of an endless cycle in which one colony will give birth to some others, giving birth to some others. The only way a colony could come to its extinction is if a natural or human catastrophe wipes them down. The same way humans give birth to a descendent tree, the ants will give birth to "child" colonies and even "grandchild colonies" where chemical badge between generations only variate from a few degrees. To give birth to a new colony, the original colony must first come to a certain level of maturity where the winged male will eventually fly out to mate with the winged female (and die from this process). The newly proclaimed queen then dig a hole and lay

her first eggs, feeding them from her body fat reserve. The queen will use the sperm from the first time she mated with males and will keep it to lay eggs for the rest of her life (up to 15-20 years).

4 Simulations

This section goes through many behaviors we have seen throughout this paper and how they could be used to create a simulator. We will traverse ways of creating such simulations both on the software side, studying languages, technics, and framework, and on the robotic side with a more pragmatic approach and definition of needs and environmental restrictions to replicate a limited predefined set of collective behavior.

4.1 Robot

This section describes and defines a limited set of collective behaviors taken from ants and transposed to real-life robot condition and environment. This set of collective behavior is purely arbitrary and can always be disregarded. We will also go through the definition of a swarm in robotic and describe the requirements and limitations of implementing such behaviors in real life.

Swarm robotic is the art of collectively run many robots to solve problems by forming complex structures and behaviors such as the one observed in nature. They are scalable systems made of simple, often homogeneous agents. As in ant or bee colonies, swarm robotic does not have any central control unit, meaning that each agent knows what to do and how to communicate with nearby individuals. [40]

[image] todo Figure N shows a small agent named "KiloBots" created by Harvard University. By vibrating small legs with a motor, these tiny robots can realize horizontal, vertical, and diagonal motion. They are equipped with transmitters and receivers, and light detectors, allowing them to perform complex tasks such as arranging themselves in complex shape structures or following light sources to replicate low-level swarm behaviours.

4.1.1 Relevant collective behaviours

Where in the software simulation, almost everything is possible since it is computer-generated, the real-life setup restrains our field of possibilities. The setup cost is also to take into consideration as the budget is not and never unlimited. There are also some out-of-the-box problems, such as recharging the robot's battery every time it runs off power, leading to losing time to perform the actual real-life simulation. Fear of battery

loss also means that the robot cannot venture as far he wants and is limited in what kind of modules (sensors, motors, actuators,...) it adopts. Space and time are also concerns as the setup in which the agents will be moving will not be as large as in a software simulation. Indeed, such design usually takes place at home or at school where only a few square meters are given. Time is also a variable because one cannot imagine speeding up the real world to see the results more quickly (or at least this is not yet possible at the time this paper is written).

The last bit of thing to keep in mind is the hardware problem. Indeed, when you write software, the only problem there is usually stands between the seat and the screen (you), which means you cannot blame your computer if something does not work as expected. But in real life when dealing with hardware, many problems can occur such as loss of power leading to less energy in the wheel and strange behaviour, unexpected sensor feedback because of the current environment, in-accuracy in robot's movement, and way more. A paper written in 2013 by Madhav Patil, Tamer Abukhalil, and Tarek Sobh depicts more of these problems as they try to build and design a robot system, see ref. [41]

Having so many limitations also means that the collective behaviors one can simulate are somewhat limited. Nevertheless, there is three collective behavior that stands out as they are quite complex, interesting to implement, and answer modern and real-life questions and concerns:

- · Task allocation
- Operating cost of a task
- Pathfinders with Pheromone trails.

Task allocation is interesting because it is a modern problem. Indeed, if swarm robotic is tomorrow's future, we will need to precisely be able to tell an agent what it is its task, or more precisely, it will have to decide itself what job to do. Imagine building a bridge with the help of a robotic swarm to counter a flood in a small village, each agent composing the safety bridge needs to be able to know what location to go to. This task allocation will work as described in the subsection "Task allocation" where an agent decides to switch to another task based on a probabilistic model. The operating cost of a task could be defined as a subsection of task allocation or as a variable. What will be the cost for an agent to move at a given area? Will it have enough battery to perform the task, or is he even capable of enduring the journey? Operating cost of tasks coupled with task allocations, will answer these questions. Finally, even though pathfinder already is a widely studied topic, it is still interesting to include a pathfinder algorithm as it's how an ant ultimately moves. If the simulation gets too elaborate, it could be imagined to invent a less complicated way of movement, such as random or based on a specific probabilistic distribution.

4.1.2 implementation

As for the software implementation, we will define a set of features the physical robot needs to complete the tasks. A collection of features can go from wheels, motors, or even wings, to the many types of sensors a robot can be equipped of. This way, we will be able to define what kind of robot should be used and how the task should be implemented. The first need is a brain, even though ants are simple beings, we still need to be able to send information to the different parts of the robot and control them. This brain can be simulated with a Raspberry Pi (which in short, is a small computer) or a robot that already contains a motherboard and a control unit. Secondly, a communication system will be useful to share the robot's chemical badge to another one as to imitate the transfer of information when ants touch antennas, which will make possible to do "task allocations" by sharing pieces of data on the currently performed task. Thirdly, we need a way to simulate movement, and since ants are not flying insects (unless they are winged males or females) wheels is the easiest way to replicate their movement. Fourthly, it would be nice if our ant robots wouldn't collide every time they run onto each other, and to do that the robot will have to be equipped with proximity sensors, probably at the front to avoid a collision. Finally, we need to simulate the pheromone trails in some way, and it is likely going to be the biggest challenge because the robots are not yet capable of "sensing" odour as ants or humans do, or they do it minimally.

A study from 2014 made by Ryusuke Fujisawa, Shigeto Dobota, Ken Sugawara, and Fumitoshi Matsuno [42] demonstrates the complexity of such an implementation, where the robots were capable of diffusing ethanol on the ground for the other robots to sense, using an alcohol sensor which detects the proportions of alcohol gas in the air. The main problem of such a solution is that it considerably raises the complexity of the build as to depose alcohol on the ground the robot requires to have a tank (which serves as a container for the ethanol), a pump, and a diffuser. This threecomponent design would have to be implemented on as many robots as needed to simulate the defined behaviour, which also raises the cost and the maintenance complexity of the task. Even though this solution is quite complex, it still fits the swarm robotic definition of having no central unit. Some other ways of doing it would be to know the position of the robot in the given space. Imagine if we keep a map of where the robot went and go, we are then able to tell whether it goes on a trail left by another robot and vice versa. This solution is decent because it only requires a predefined space with no obstacle (to avoid complexity in the execution) but defeats the idea of swarm robotic as we continuously need to tell the robots where they are and if they are currently on a pheromone trail, which involves a central unit. Nevertheless, this position system could also resolve the "high and low" operating cost of task simulation as if we define areas in our map as being high or low cost then it is easier to tell the robot whether or not the task is worth the shot. There are many ways to localize a robot in a given space, and we will go through 2 of these methods that can potentially be used for our implementation.

The first way would be to use SLAM (Simultaneous Localization And Mapping) which according to Wikipedia is "the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it" [43]. This localization method has been used in many modern problems such as the localization of autonomous vehicles [44] or the localization of indoor vacuum robots [45]. To localize the position of the robot in a given space one could use a range or an optical sensor, such as a Lidar, on top of the robot. Coupled with a localization algorithm such as the Markov localization algorithm [46] we can precisely tell the robot's position on the map. This solution is great because it is somewhat easy to implement, requires less material than the ethanol diffuser solution, and one can change the computing cost of the localization to fit the computing power of the brain by using fewer samples in the algorithm. *However, this solution is only this good when one robot is present on the map as other robots could add undesirable noise in the optical/range sensors.* A second way would be to equip each robot with Bluetooth transmitters and receiver to perform triangulation as it is done nowadays to approximate our position in space with systems such as the Global Positioning System (GPS) or the Galileo Positioning System (Galileo). Triangulation works by collecting the distance of the subject from at least three receiver/transmitter towers and using a function to approximate its position. In 2013, a team of 5 researchers (Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, L. Cuthbert) had conduct experiments for such technics and had concluded that the accuracy was good enough to be used in elaborated system [47]. This solution works better than the two others as it requires less computing power at a given time T and does not lose accuracy if other robots are present nearby.

Another way of simulating these pheromone trails would be to use other robots acting as a beacon and forming a path to a food supply. If a few of these robots are placed in a grid-like manner, one can imagine that our robotic ant could navigate in this grid, continually communicating with these beacons. These beacons would keep a state of how many times it has been contacted by an ant, incrementing the "pheromone trail" and also give to the ant a sense of how much pheromone there are in that area (allowing pathfinders and operating cost of task implementation).

This definition of needs yields that the robot has to be equipped with a "brain" (a control unit), wheels, proximity sensors, and either an optical/range sensors -Bluetooth transmitter and receiver, or a pump and diffuser system to sense and spread, to simulate the fake pheromone trails. The wheels and the proximity sensors can easily be achieved by using a Thymio-II robot [48], which is a pre-built ready-to-use robot equipped with many features. Thymio-II also comes with a builtin central unit, but its capacities are somewhat limited; thus, the use of a central external unit such as a RaspberryPi is required. Using a RaspberryPi will also make more comfortable the addition of new module and sensors. Whether it is chosen to simulate the pheromone trail with the localization or with the alcohol sensors does not put at risk the choice of using Thymio-II. Indeed, one can easily build a structure on top of the Thymio-II (see Figure N), which can support both options. In the case of using beacons arranged in a grid-like manner, the implementation would require to use enough of small IR (Infra-Red) transmitters/receivers to accurately simulate a path from at least a source (the nest) and a few destinations (it could be either food supply, task areas, high or low cost areas).

[PIC of our robot with the liar]

4.2 Software

4.2.1 Relevant collective behaviours

The collective behaviors that one can include in a simulator are countless, and the only limits are today's computer power. Having this much freedom means the simulation can consist of almost everything as long as it remains coherent. There are three main categories of behaviours, internal, external and minor. We will define external behaviors as behavior triggered by external sources such as the temperature or the time of the day, and internal behavior are the one directly induced by ant collectiveness. Minors are complex behaviour that might not be worth the attention. It is good to keep in mind that the development of an agent has to remain as simple as possible and self-centred (an ant hardly

knows its outside world) as it is in real life. Individuals are simple; collectivity is where complex behaviors emerge.

External

Throughout the section "The ant kingdom" and "Ant behaviours and mechanisms" we have seen that many behaviours were directly linked to the outside environment of ant life. We have been talking about the operating cost of a task which introduces a notion of time and environmental condition to the simulation. That being said, the following are possible behaviour to implement in the simulation. There exists more, but this is a good start.

- Time (Seasons, days)
- Environmental conditions (temperature, humidity?)
- Operating cost of a task

Internal

The section "Ants behaviours and mechanisms" has shown us how complex simple mechanisms can become when applied to the colony. We have been through the way ants communicate and navigate but also through the different tasks the colony has to perform and how they are allocated to individuals. The following tasks are possible behaviors and mechanisms to implement in the simulation.

- Task (Foraging, nest maintenance, ..) Task allocation
- Queen's control over the colony
- Pheromones
- Food and resources management
- Breeding and population growth

We also discussed more species-dependent behaviour such as the Nomadic and Stationary phase of the army ant colonies or the satellite nest of the carpenter ant colonies, which would be interesting to pick, out of many others.

Minor [NOK], while re-reading the document it would be nice to put more in this and the two above

Other mechanisms will be considered as minor as they will not affect the simulation as deep as the external or internal would. These are the one with the smallest priority and include

- · Ant body degradation
- Which affects how well an ant can perform a task
- Types of ant
- As it will be more important do define a set of task than a hierarchy and organisation

To conclude this brief definition of possibilities, it is crucial to keep in mind that an infinite amount of behaviour could be implemented. However, it would only make development even more complicated. The simulation has to be agent-based, and the internal mechanisms are the most important to develop as they are the core of what defines an ant. However, externals mechanisms are also essential to implement as they will show their influence on internal mechanisms and are not to be disregarded. Appendix 8.1 is an abstract implementation model of all the above behavior and mechanisms which can be used to develop the simulation and gives a wider perspective of the overall possible implementation.

4.2.2 Exploration of simulator, languages and drawing frameworks

Many technics can be used to build a good simulator. Yet, it is difficult for one to select the best within the ocean of languages and framework that exists as they each usually fit specifics kinds of implementation. This chapter is a deep through of some of the most relevant ones, we will through a more in-depth understanding of a useful drawing tool in the specific case of the ant simulation and this will also be the occasion to have the first sight at the overall software implementation.

The first step before plunging into google and look at every language and framework that exists is to specify the needs. As we have not yet a good understanding of the complexity of the simulation (this problem will arise at a later, deeper phase), one needs to think on a more abstract level. Figure Ntodo is a first straightforward high-level not to scaled representation of an ongoing epoch in the simulator. Firstly, we need to be able to draw. It might sound a bit too abstract, but it already narrows down the scope as many languages such as C or C++ are low-level language, which would only add more complexity to the project (don't get me wrong, one can use these languages to draw, but there are a lot of easier ways to do it with higher-level languages). Server-side languages like PHP, which depends on client-side action to be able to draw, are also out of the basket. Secondly, we will need to draw elementary shapes (mainly pixel alike) in a large quantity. Thirdly We don't need to perform a lot of complex

mathematical operations (such as integration, derivative, or trigonometry), as the agents will be evolving in a 2D plane. Finally, threads will likely be useful in the simulation (controlling the time, nests and such), so we need a language where using these is more or less easy. This concludes the first good definition of preliminary needs.

[image]

Because I do not master every language that exists, and since this project is not about the discovering and use of a new language, this narrows down the scope even more. In the above section, we got rid of the low-level languages and the server-side ones since they would only add more complexity in an already quite complicated task, leaving me with Javascript, Python and Java, three exciting candidates. From there, it is more of a personal choice than an actual language to language comparison. Each of these three languages implements drawing technics and can perform all of the above-described needs. I will nonetheless explain the advantages and inconveniences of each, based on my personal experiences and knowledge acquired throughout my developer's life.

Let's start with Python. Python is a very light and high-level language and is surprisingly satisfying and straightforward to work with. Being non-typed and almost "Human language" alike makes it a very appealing language to choose. It has good support of threads and includes powerful drawing frameworks such as PyGame or Arcade. Python almost looks like the perfect candidate. However, it is the slowest of the three at "Calculation steps per seconds" (as shown in Figure todo N), which is highly essential when one needs to create a simulation as it will define how many items can the program handle at a given time T. That being said, Python remains quite an interesting candidate, but ultimately not the one which will be used for the simulation.

Secondly, Java. It is broadly known and can be used for more or less everything, which makes it one of the most documented language in the market. It already implements a lot of structure, function, drawing technics and basic graphic tools because it has been designed to be a somewhat higher-level version of C with oriented object programming. It uses the JVM (Java Virtual Machine) to run the Java compiled byte-code which adds much overhead at the start compared to interpreted languages (but it saves you from dummy mistakes). It, however, has the highest "Calculation steps per second" score compared to the two others, as Figure todo N demonstrates it. All of that being said, Java would almost be the perfect candidates. The only downside one could think of is the lack of "good"

drawing frameworks. It becomes quickly frustrating to work with drawing and threading in Java (but this is highly personal). Finally Javascript. Javascript is the kind of candidate who is a clever mix between the advantages of Java and Python. It has a reasonable "Calculation steps per second" score, it is easy to use, and it is web-based which makes it easy to distribute on multiple platforms. It has a good community and supports a lot of user-made libraries, plus, its documentation is also very significant (as Python and Java). It has very good vanilla drawing libraries and excellent drawing frameworks such as Preprocess, ThreeJS or WebGL which can be used on top of VanillaJS and offer a wide variety of tools and a broad range of possibilities. This language and its framework are used for a lot of physics simulation such as liquid simulation [48] or even planetary orbit simulation [49]. The only thing one could reproach to Javascript is its lack of coherence in the way it has been built (a short video about how incoherent Javascript is: https://archive.org/details/wat_destroyallsoftware), butthisisnot going to b

In conclusion, there is not a top of the list language as they all have their advantages and weaknesses. However, it is very likely that Javascript is going to be used over Python and Java as it is the most straight forward and flexible of the three, with its large variety of open-source libraries and its excellent documentation.

[image]

5 Conclusion

The study of living things' mechanisms and behaviors is called biomimetic. This art of replicating into a human-built model, programs, robots and more, what nature can do has enabled great discovery in many fields such as engineering, design or computer science, where these inspirations are used to build better structures (home, buildings and such...), to engineer better robots and even to design better clothes or simple tools. Nature has often helped humans in the understanding of its society, and it is again through it and the reflexivity of biomimetic that this paper has been written.

The focus is on the study of ants and their collective mechanisms and behaviors as a swarm to create a somewhat accurate simulation. Ant is a particular type of insect; it exists more than 10'000'000'000'000'000 individuals with over 12000 classified species which makes it the biggest earth insect-kingdom. Ants exist in a large variety and have overcome more than 160'000'000 years of evolutionary selection which has brought them to develop behaviors based on their interactions with the environment and location. They organize in a very structured fashion even though they do

not have any central unit. This organization is the reflection of a very complicated task allocation system where each ant is given what task to perform following a probabilistic model based on their interaction rate. The more an ant meet with and ant performing a specific task, the more likely it is to switch to this task. Helped with their pheromones, ants can create complex networks of trails leading the colony to food supply or resources, and it also servers to prevent them from going to a location if the leading resource is not worth it (negative trails, Pharaoh ants). The nest's queen also uses these pheromones to calm or excite the workers depending on the situation, acting as a stimulant to attack or defend the nest under specific circumstances. Evolution has brought some species to be combatant and to develop particular behaviour to survive, like army ant colonies and their two-phase cycle, the nomadic and stationary phase.

This conclusion does not draw a stop to this project as it has been written in the sense of a foot in the door for the coming master thesis. The next step is the implementation of simulations to observe the studied behaviour. From here there are a few possibilities to study; One can choose to develop a software (or to use an already existing simulation-oriented software), with which it should be possible to implement almost, if not all the studied behaviors, and to have a higher level of control on the overall process. Oppositely, one can choose to use a robots-oriented simulation in which few mechanisms should be elaborated. With the help of robots like a Thymio-II, one would be able to simulate a pre-defined limited set of these behaviors and mechanisms, task allocation, operating cost of a task, pheromone trails, to study ants at a smaller scale but in a more hands-on engineering-oriented manner. Finally, the possibility is to implement a mix of the two first options. Nowadays, it is always interesting to simulate the expected behaviour of a robot in software as it is an excellent way to reflect on the design choices and the development part. As the behaviours of individuals are relatively simple (recall that is the collectivity that brings the complexity), one could imagine to select a few behaviours from the studied set and to develop them in the simulation. Once the simulation is working, it should be relatively easy to transpose the simulated actions to the real-life robots and study it. This way of engineering is seen in a lot of modern robotic paradigms, such as evolutionary robotic or reinforcement learning where simulating hundreds of individuals is critical to get a decent result. Even though this could be done without simulation, it is hardly imaginable to use hundreds of real robots and wait to form them to perform their task and get the result (this would take ages).

This project has given me a great understanding of the underlying behaviors of these extraordinary insects. Each element of this paper will be very useful in the future to develop and engineer the solutions for the simulations.

6 Figures

All figures must be centered like Figure 1.

Figure 1: The number and caption of the figure must always appear below the figure.

Acknowledgement

For the acknowledgement use predefined environment. The word "Acknowledgement" must be aligned to the left, boldfaced and not numbered.

References