2. 関係と関数

2022 秋期「哲学者のための数学」授業資料(大塚淳)

ver. 2022年8月31日

1 関係

1章では、(適用基準が明確な) 述語が部分集合と対応することを見た。ただしここでの「述語」とは、「歌手である」や「偶数である」といったように、主語のみを空欄とする一項述語であった。では「~は…を愛する」や「~は…で割り切れる」といったような二項述語ないし**関係** (relation) は何に対応するだろうか?これらはデカルト積の部分集合に対応する.

これを例で考えるため、 $A := \{Alice, Bob, Chris\}$ を人の集合、 $B := \{ 清水寺、 金閣寺、 銀閣寺 \}$ を寺社仏閣の集合として、誰がどこを訪れたことがあるかを示す表を作ってみよう。

	清水寺	金閣寺	銀閣寺
Alice	\checkmark		✓
Bob		\checkmark	\checkmark
Chris	\checkmark		

この表はそのまま, $A \times B$ のデカルト積を表しており,f ェックマークがついているところはその部分集合になっている.なので「~は… に行ったことがある」という二項関係は,この部分集合 $R \in A \times B$ と考えることができる.具体的には

 $R := \{ (Alice, 清水寺), (Alice, 銀閣寺), (Bob, 金閣寺), (Bob, 銀閣寺), (Chris, 清水寺) \}$ であり、内包的には

$$R := \{(x, y) \in A \times B | x \text{ は } y \text{ に行ったことがある } \}$$

となる. 「Bob は銀閣寺に行ったことがある」という事実は (Bob, 銀閣寺) $\in R$ によって表される. ちなみに a が b に対し R という関係を持つ,とわざわざ書くのは長いので,短く aRb と表すことにする.

また自然数について「~は…以下である」という関係 ≤ は,

$$L := \{(x, y) \in \mathbb{N} \times \mathbb{N} | x \le y\}$$

で表すことができる. 例えば $(2,5) \in L$, $(100,84) \notin L$ である.

同様の仕方で、三項以上の関係も定義できる.一般に n 関係は (n-ary relationship) は n 項 積 $S_1 \times \cdots \times S_n$ の部分集合である.

練習問題 1.1 自然数について、「 \sim は… で割り切れる」という関係を内包的に定義せよ。

2 関係の特徴

関係それ自体は単に積集合の部分集合に過ぎない。しかし関係には様々な性質を持つものがあり、これは部分集合のあり方に何らかの構造的制約を課すことに対応する。ここでは特に、一つの集合 A を定め、そのデカルト積の中での関係 R \subset A \times A を考えることにしよう。

すべての対象が自分自身と R という関係を持つとき, R は**反射的** (reflexive) であると言われる。 つまり

$$\forall x \in A((x, x) \in R)$$

が成立する. これは $A \times A$ の表で考えると、対角線上にすべてチェックマークがついているということである. 逆にいかなる x についても $(x,x) \notin R$ のとき、R は非反射的といわれる.

R が**対称的** (symmetric) であるとは, xRy ならば必ず yRx であるとき, つまり

$$\forall x, y \in A((x, y) \in R \Rightarrow (y, x) \in R)$$

が成立するときである。 $A \times A$ の表では、チェックマークの分布が対角線を折り目として線対称であることである。

逆に, xRy であれば必ず $\neg yRx$ であるとき, つまり

$$\forall x, y \in A((x, y) \in R \Rightarrow (y, x) \notin R)$$

のとき、R は**非対称的** (asymmetric) だといわれる。このとき、線対称となる箇所 (x,y),(y,x) のどちらかは必ず空欄である(両方空欄でも問題ない)。しかし対角線はすべて空欄にならなければならない。なぜなら $(x,x) \in R$ であればその前後を入れ替えたものも R に入ってしまうからである。つまり非対称的な関係は非反射的である。

ややこしいが、非対称性と**反対称性** (anti-symmetric) を混同しないように. R が反対称であるとは、xRy かつ yRx なら x=y であること、つまり

$$\forall x, y \in A(((x, y) \in R \land (y, x) \in R) \Rightarrow x = y).$$

反対称的な表は対角線以外では非対称的な表と同じだが、対角線上にチェックマークが入っていてもよい、というところが異なる。つまり反対称的な関係は非対象的だが、逆は必ずしもそうではない(反対象性は非反射性を含意しないため)。

最後に、関係が**推移的** (transitive) であるとは、aRb, bRc なら aRc であること、つまり

$$\forall x, y, z \in A((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R)$$

が成り立つことである.

練習問題 $2.1 = <, <, \le$ について、それぞれ反射的/対称的/反対称的/推移的であるかどうか調べよ。

練習問題 2.2 身近な関係性で、反射性/対称性/推移性を満たすものをそれぞれ挙げよ.