

Packet Tracer - Praktyka projektowania i wdrażania VLSM

Topologia sieci

Otrzymasz jedną z trzech możliwych topologii.

Tabela adresowania

Urządzenie	Interfejs	Adres IP	Maska podsieci	Brama domyślna
	G0/0			nd.
	G0/1			nd.
	S0/0/0			nd.
	G0/0			nd.
	G0/1			nd.
	S0/0/0			nd.
	VLAN 1			
	karta sieciowa			

Cele

- Część 1: Gromadzenie wymagań dotyczących sieci.
- Część 2: Projekt schematu adresacji z wykorzystaniem masek o zmiennej długości (VLSM)
- Część 3: Konfiguracja adresów na urządzeniach i sprawdzenie łączności między urządzeniami

Wprowadzenie

W tym ćwiczeniu otrzymujesz sieć z prefiksem /24 do zaprojektowania schematu adresacji używając VLSM.W oparciu o zestaw wymagań stworzysz podsieci i adresację, skonfigurujesz urządzenia i zweryfikujesz łączność między urządzeniami.

Instrukcje

Część 1: Gromadzenie wymagań dotyczących sieci

Krok 1: Określ ilość wymaganych podsieci.

Do podziału użyjesz adresu sieci .Wymagania dotyczące sieci są następujące:

•	Sieć LAN	będzie potrzebowała adresów IP dla	hostów
•	Sieć LAN	będzie potrzebowała adresów IP dla	hostów
•	Sieć LAN	będzie potrzebowała adresów IP dla	hostów
•	Sieć LAN	będzie potrzebowała adresów IP dla	hostów

Ile podsieci jest potrzebnych w tej topologii?

Krok 2: Określ długość maski dla każdej z tych podsieci.

- a. Jaka maska podsieci spełni wymagania ilości adresów IP w sieci ?
 Ile używalnych adresów zapewnia ta podsieć?
- b. Jaka maska podsieci spełni wymagania ilości adresów IP w sieci Ile używalnych adresów zapewnia ta podsieć?
- c. Jaka maska podsieci spełni wymagania ilości adresów IP w sieci ? lle używalnych adresów zapewnia ta podsieć?
- d. Jaka maska podsieci spełni wymagania ilości adresów IP w sieci ?
 Ile używalnych adresów zapewnia ta podsieć?
- e. Jaka maska podsieci spełni wymagania ilości adresów IP dla połączenia między oraz

Część 2: Projektowanie odpowiedniego schematu adresacji wykorzystującego technikę VLSM

Krok 1: Podziel sieć w oparciu o ilość hostów w każdej podsieci.

- a. Użyj pierwszej podsieci dla największej sieci (z topologii).
- b. Użyj drugiej podsieci dla drugiej co do ilości hostów sieci (z topologii).
- c. Użyj trzeciej podsieci dla trzeciej co do ilości hostów sieci (z topologii).
- d. Użyj czwartej podsieci dla czwartej co do ilości hostów sieci (z topologii).
- e. Użyj piątej podsieci dla połączenia pomiędzy i .

Krok 2: Dokumentowanie podsieci VLSM.

Uzupełnij **tabelę podsieci**, wpisując opis podsieci (np. [[S1Name]] LAN), ilość wymaganych hostów, następnie adres dla tej podsieci, pierwszy używalny adres hosta oraz adres rozgłoszeniowy. Wypełnij w ten sposób informacje dotyczące wszystkich adresów.

Tabela podsieci

Opis podsieci	llość wymaganych hostów	Adres sieci/CIDR	Pierwszy użyteczny adres hosta	Adres rozgłoszeniowy

Krok 3: Udokumentuj schemat adresowania.

- a. Przypisz pierwsze używalne adresy poszczególnych podsieci LAN oraz łącza WAN do odpowiednich interfejsów routera .
- b. Przypisz pierwsze używalne adresy poszczególnych podsieci LAN do odpowiednich interfejsów routera .Przypisz ostatni użyteczny adres IP dla łącza WAN.
- c. Użyj drugich użytecznych adresów IP do przełączników.
- d. Użyj ostatni użyteczny adres IP dla hostów.

Część 3: Skonfiguruj adresy IP na urządzeniach i przetestuj łączność między nimi.

Większość adresowania IP jest skonfigurowana w tej sieci. Wykonaj następujące czynności, aby dokończyć konfigurację adresowania.

Krok 1: Skonfiguruj adresy IP na interfejsach LAN routera

Krok 2: Skonfiguruj IP na przełączniku , włączając w to bramę domyślną.

Krok 3: Skonfiguruj ustawienia IP dla , włączając bramę domyślną.

Krok 4: Sprawdź łączność.

Możesz sprawdzić łączność tylko z routera , przełącznika oraz hosta .Jednakże, powinieneś być w stanie połączyć się, podczas testów ping, na każdy adres IP podany w tabeli adresowania.