ÁLGEBRAS DE LIE

EXERCÍCIOS :: AULA 03

- 3.1. Dada uma álgebra de Lie \mathfrak{g} e duas representações $\rho_1 \colon \mathfrak{g} \to \mathfrak{gl}(V_1), \, \rho_2 \colon \mathfrak{g} \to \mathfrak{gl}(V_2)$, verifique que $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V_1 \oplus V_2)$ dada por $\rho(x)(v_1, v_2) = (\rho_1(x)(v_1), \rho_2(x)(v_2))$ define uma representação de \mathfrak{g} em $V_1 \oplus V_2$.
- 3.2. Dada uma álgebra de Lie \mathfrak{g} e duas representações $\rho_1 \colon \mathfrak{g} \to \mathfrak{gl}(V_1), \, \rho_2 \colon \mathfrak{g} \to \mathfrak{gl}(V_2)$, verifique que $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V_1 \otimes V_2)$ dada por $\rho(x)(v_1 \otimes v_2) = \rho_1(x)(v_1) \otimes v_2 + v_1 \otimes \rho_2(x)(v_2)$ define uma representação de \mathfrak{g} em $V_1 \otimes V_2$.
- 3.3. Dada uma álgebra de Lie \mathfrak{g} e uma representação $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V)$, verifique que $\rho^* \colon \mathfrak{g} \to \mathfrak{gl}(V^*) \qquad \text{dada por} \qquad \rho^*(x)(f) = -f(\rho(x)(-))$ define uma representação de \mathfrak{g} em V^* .
- 3.4. Dada uma álgebra de Lie \mathfrak{g} e duas representações $\rho_1 \colon \mathfrak{g} \to \mathfrak{gl}(V_1), \ \rho_2 \colon \mathfrak{g} \to \mathfrak{gl}(V_2)$, use essas representações para construir uma representação

$$\rho \colon \mathfrak{g} \to \mathfrak{gl}(\mathcal{L}(V_1, V_2)).$$

- 3.5. Dada uma álgebra de Lie $\mathfrak g$ e um $\mathfrak g$ -módulo V de dimensão finita, mostre que V é irredutível se, e somente se, V^* é irredutível.
- 3.6. Dada uma álgebra de Lie $\mathfrak g$ e um $\mathfrak g$ -módulo V de dimensão finita, considere o $\mathfrak g$ -módulo $V\otimes V.$ Mostre que

 $S=\mathrm{span}\{v\otimes w+w\otimes v\mid v,w\in V\}\qquad \mathrm{e}\qquad A=\mathrm{span}\{v\otimes w-w\otimes v\mid v,w\in V\}$ são submódulos de $V\otimes V.$

Entregar dia: 09 de abril de 2019.