Machine Learning Data Science with Python

Keras Cheat Sheet

BecomingHuman.Al

Keras is a powerfuland easy-to-use deep learning library for Theano and TensorFlow that provides a high-level neural networks API to develop and evaluate deep learning models.

A Basic Example

- non-import mimely as no
- *** from kerus models import Sequential
- too from keras layers import Dones
- +++ data > rg random randomiK1000.1003
- 81:00011-axia District removaries a risdal exe-
- +++ model Sequential ()
- +++ model addiDense(32,

active/sprinting imput, plans 1004

- *** monel add/Dennel**, activations signisid?
- +++ model.compliatesforces virtuality.
- less-times immigrations

metrick-Commony 9

Data

Also see NumPy Paretes & Scikit-Learn

Your data needs to be stored as NumPy arrays or as a list of NumPy arrays, ideally, you split the data in training and lest sate, for which you can also report to the train less split mediate of second cross, whileholds

Keras Data Sets

- *** from Kersa Satasetts Import Boston, Neurolog.
 - minist.
- +++ (a train y frankla test y tenff = event load data))
- --- (a_train2.y_train2t.(a_test2.y_test2) = beston_fessing-load_sato()
- i--- is training training justily testily color/diteat matel.
- eas is training transit in testing testiff it multitud data/num worder/200001
- see name planes v 18.
- +++ model fittista tataria apoche-10 march, size-32)
- *** predictions * treatel predictislatal

www.from untilitarequest import unlayers

over state a np. load/attarlopers' http://www.nch.to/attaen/ number to a roug database pina e diam diabates (

- ove K = state(: 0 H)
- B. Lesety e. g +++

Model Architecture

Sequential Model

- non-from keray models import Seguential
- ex-model i Sequential II
- res modeld is Sequential !!
- evermodet3 + Sequentiat3

Multilayer Perceptron (MLP)

Binary Classification

- ere from keras layers import Dense >>> model.add/Demail 12.
 - eput densit, sempt estat personalment, ectivation rafulii
- ere model add Densell Kernel, in Nalizers untiers activations rout II.
- +++ model add Dense 1 karnet, initializery uniform activations signal till

Multi-Class Classification

- +++ from keran layers import Dropout
- non-model add/Dense/\$12.act valions retuings/, shapen T84.00
- *** model.ade/Orapa.tif.20
- *** medal sate/Desse/517 set Validon vinu/6
- *** model.and/Gropout/C2l/
- +++ model.adp/Dense/10 activation votorus/3/

new treadefuelt/ Censor \$4, in: Systems (ALL Exput, also others data shape) (1)) ex-model.add/Dense/Till

Convolutional Neural Network (CNN)

- +++ from Keras layers import Activation ConvID.Mai/Pooling2D.Flatter
- >>> modet2 addCory2003.03.03.00.audding=sumirlings1, shape-x, trixin shape11.04
- and tended) adelaceupment ratio is
- +++ modet[ade(Cor+20/32/3.5/0
- *** ProdetE adelALT+ationChitule
- +++ model0 sdc/Max*sixing20/pios, sins+62-25%
- *** model2 add/Drogoutt3 25H
- ere model2 add/Conv20tha ELSI, panding-yame St
- has model? add/Activation/helicit
- *** modet/ adelCon/2004-13, 3W
- *** model2 adelActivation, return
- >>> modet2 ade3Maxi*oo.org20kpaox.sips+12.20s
- *** model/ and/DepoutiO 25 ii
- *** modet2 add(F.attent)
- *** model2 adeiDensel5129
- *>> model(add/Active/or/Creluly
- 434 Chausage Clade: Tabbern +++
- *** modet2 additionsolvers, statues)!
- Free model) applications (softmax ii)

Recurrent Neural Network (RNN)

- +++ frem keres klayers import Embodeing LSTM
- >>> modet3.vox(E-novdateg/200001.128))
- www.medet3.idetLGTM1126.dropout+6.2./pourrent_dropout+3.2)+ +++ modelS adelDenselT activotish-irgmini ii

Model Fine-tuning

Optimization Parameters

- ore from keizer optimizers import RMSprop
- are out = RMSgrapit=0.0001, decay=1e-61
- *** model7.completoss/12/2004/2/ ordered to establish metrica-Decorary I

Early Stopping

- existrom herea call backs emport EarlyStopping
- *** sarry_strapping_monitor + EarlyStopping(patience+2)
- are model 17th trans
 - s trains. batch sign-37. spochs+15. validation data-lic testaly, festal.
 - calbacked early stopping monterly

Compile Model

MLP: Binary Classification

*** model completing ferrom * as are. matrice-Lucianary B

MLP: Multi-Class Classification

vie modificamplificipii modificati imprati leste colegorical, crisistermani motica-l'iscrutacy fi

MLP: Regression

exemple/apple/aprovaers missions. metrics-I mus I

Recurrent Neural Network

wer model frame ledows borns / mannerops matrice-Laurency II

Save/ Reload Models

- exe from sense models import load, model ere model 3 savel model. Na NS3
- examy model a load model rise audel NE1

Inspect Model

- over residui, putaut, scrape
- new model summary! vivinidelpet sunfail.
- essimulation, weighted
- Model output shape Model summary representation **Madel** configuration List all weight tensors in the model

Prediction

- eve condett propertie, sould match size-337
- ever model breedet rissaes/s tests harry specific

Model Training

ere modelá lita mané. trains batch_s-ze+32 spects+15 validation duba+(a testé y testél)

Evaluate Your Model's Performance

see score e model) evaluate(e test

Preprocessing

Sequence Padding

- exist from keras preprocessing import sequence
- *** x framé = sequence pad sequences(e, framé/musien=90)
- *** 4, frof4 Sequence part, sequences(x, frof4 /max/on-XU)

One-Hot Encoding

- ex-from kerws lattis import to calegorical
- was Y train to categorically train, num classes.
- www.Y. fest = to categorically test, num classes)
- are Y traind a to categorically traind, num classes) *** Y Set 2 = to categorically best linum stassest

Train and Test Sets

- wire from skileam mode: setection import true: test_split xxx X train5,X text5,y, train5,y, text5 = train, sext, sp. 103.
 - wint with -0.53 ramilion, state-471.

Standardization/Normalization

- new from swingers programming import StandardScalar
- *** Scoler StandartScaler() filix train(2)
- +++ standardized: X scalar transform(x train2)
- *** standardized, X test = scalertranstarrivia test21

Pandas Basics Cheat Sheet

BecomingHuman.Al

DataCamp

Use the following import convention: >>> import pandas as pd

The Pandas library is built on NumPy and provides easy-to-use data structures and data analysis tools for the Python programming language.

Pandas Data Structures

Series

A one-dimensional labeled array a

capable of holding any

>>> s = pd.Series [3, -5, 7, 4], index=[a, b, c, d1]

Data Frame

A two-dimensional labeled data structure with columns of potentially different

>>> data = { Country: | Belgium, India, Brazit | Capital: (Brussels, New Delhi, Brasilia), Population, 111190846, 1393171935, 20784 >>> df = pd: DataFrame(data,

columns=[Country, Capital, Population])

Dropping

>>> s.drop(a, 'c) >>> df.droof Country, axis=1)

Drop values from rows (axis=0) Drop values from columns(axis=1)

Sort & Rank

>>> df.sart index() =>> df sort_values(by='Country') >>> dtrank0

Sort by labels along an axis Sort by the values along an axis Assign ranks to entries

Retrieving Series/ **DataFrame Information**

see of shape >>> df.index >>> off.columns Describe DataFrame columns >>> df.infq0

Summary

>>> df.tm.ettl

see disurnil >>> df.cumsumi)

>>> df.minii/df.maxii >>> df.idemiol()/df.ide/nax()

>>> df.descrine() >>> df.mean! >>> pf.mediah()

Sum of values Cummulative sum of values Minimum/maximum values Minimum/Maximum index value

Summary statistics Mean of values Median of values

(rows.columns)

Describe index

Info on DataFrame

Number of non-NA values

Selection

Also see NumPy Arrays

Getting

Get one element *> + s[b] >>> ##[1] Get subset of a DataFrame Country Capital Ponucation New Delhi 1303171035 2 Brazil Brasilia 207847528

Selecting, Boolean Indexing & Setting

By Position Select single value by row & >>> of doc[[0][[0]]] Selgium' >>> ut.iat([0].[0]) Belgium

Select single value by row & By Label >>> of.loc(IO), [Country]

Belgium >>> gt.at([0], [Country]) "Belgium"

By Label/Position Select single row of sss attic 2 Country Capital Capital Brasilia Population 207847528

Select a single column of subset of columns see of a Capital O Brussels New De.hi

2 Brasilia >>> ct.ix[1, Capital] New Dolhi" Select rows and columns

Boolean Indexing

Series s where value is not >1 222 st-15 > 111 >>> s[ls < -1] (s > 2)] s where value is <-1 or >2 >>> of[dff Population()=12000000000) Use filter to adjust DataFrame

Setting Set index a of Series s to 6 >>> s[a] = 6

Asking For Help

>>> helpfpd Series lock

Applying Functions

>>+ f = lambda x x*2 --- ot applyfti >>> of.apolymap.lfi

Apply function Apply function element-wise

Data Alignment

Internal Data Alignment

NA values are introduced in the indices that don't overlap:

>>= s3 = pd.5enes([7,-2,3], index=[a, c, d]) >>> 5 + 53 = 10.0 b NaN

Arithmetic Operations with Fill Methods

You can also do the internal data alignment yourself with the help of the fill methods:

>>> s.add(s3. fit)_value=0) b -5.0 --- s.sub(s3, till_value-2) >>> s.div(s3, fill_value=4)

Read and Write to CSV

>>> pd.read_csv(file.csv, header=None, nrows=5) >>> df.to_csvf.myDataFrame.csv1

Read and Write to Excel

are pd.read.excell'life.sits()

>>> pd.to_excell dir/myDataFrame.xlsx; sheet_name= Sheet11

Read multiple sheets from the same file

>>> xisx = pd.ExcelFrieffile.xis() sse of a pricead, excelluisx. Sheet 13

Read and Write to SQL Query or Database Table

>>> from sqlatchemy import create_engine

>>> engine = create_enginel'sqlite:///:memory:3

>>> pd_read_sqll"SELECT " FROM my_table", engine!

>>> pd_read_sqt_table(my_table, engine) >>> pd_read_sql_query("SELECT" FROM my_table", engine)

read_sql()is a convenience wrapper around read_sql_table() and read_sql_query()

>>> pd to_sqlf myOf, engine!

Pandas Cheat Sheet

BecomingHuman.Al

Pandas Data Structures

Pivol

>>> df3= df2 pryotlindex=Date. columns= Type valuesa'Value1

> Date Type Matur 11 2016-03-01 2016-02-0 2 2016-03-0 3 2016-03-0 4 2916-03-03 6 2016-03-0

2076-03-0 1303 19.906 HIAN

Pivot Table

>>> df4 = prt.pivot_table/df2

values=Value. index= Date. columns='Type3'

		0	15
1	5	0.233482	0.390959
74	4	0.184713	0.237102
10	3	0.433522	0.429401

Unstacked

Spread rows into columns

0.390959

Gather columns into rows

Spread rows into columns

5 0 0.233482

4 0 0.184713 1 5.237102 3 0 0 433522 0.429401

Stacked

>>= pd/meltidf2.

Melt

id_vars= Date1. value_vars=[Type", "Value"]. value_name="Observations"

	Shire	Contract	Distriction
3	3816-03-01	Type	- 4
1	21/16/03/42	Type	- 0
7	2116-05-51	Terra	
1	71116-03-03	Tide	- 1
Ŧ	2016,97-01	Type	- 4
ī	2816-03-21	Type	
	2016-05-01	Vene:	SHARE
7	2116-15-12-	- Year	118333
1	3816-03-81	Vote	T0 764
+	2016-03:00	-Qüster	89 KJa
10	261e-03-61	Vane	1.00
11	2876-03-02	Vale	DETECTION OF

Advanced Indexing

Selecting

=== df3/ecl:/df3=1).anyfill Select cots with any vals >1 >>> df3 loch(df3>3),al(0) Select cols with vals > 1 See dt3 lech dt3.isruitt.any01 Select cots with NaN +++ d*3 loci; df3.notnuil() al.()(Select cels without NaN

Indexing With isin

>>> dflidf.Country.sinidf2.Typelli Find same elements >>> df3.f\terlitems="a",b"|| Filter on values +++ diselectilaritide x not k%5) Select specific elements

Where

see swherels + 01

Subset the data

Also see NumPy Arrays

Query

+++ d16 query('record + first').

Query DataFrame

Setting/Resetting Index

>>> diset_indexl'Country'l Sat the index --- d14 - dfreset_index0 Reset the index >>> d! = df.renamelindex>str. Rename DataFrame columns-("Country" chtry" Capital Copt.

Population Coultn's)

Reindexing

*** \$2 = \$reindex() \$10.00 to b

Forward Filling

ere differendex(range(4), --- sil - s.reindex!range!5l method- Itil. I Country Capital Population O Belgium Brussels 11190846 1 3 New Delhi 1303171835 2 3 1. India 2 Braze Brasilio 207847528

4 3

MultiIndexing

3 Bruzil Brandia

>>> arrays = [no.array][1,2,3]]

>>> df5 = pd.DataFrameInp.random.rand(3, 2), index=arrays)

207847528

>>> tuples = list(ripl*arrays))

=>> index - pd Multiindex.from_tupleshuples.

names - first, second D

+>> df8 - pd.DataFrameIng.random.rane(3, 2), index-index.

*** df2.set_indext['Date', 'Type']]

Duplicate Data

Beiging Earce

>>> if(2.dup.icated)(Type1)

--- dt2 drop_duplicates; Type: keep-Tast1)

eee dfindex.duolicated0

Return unique values

Check duplicates Drop duplicates **Drop duplicates**

Grouping Data

Aggregation

+>> if/2 groupby(by>[Date: Type]) mean!)

>>> d14 groupbylleve =01.sum0

--- d14 groupbyllevei-01 agg(f.a. lambda x.sum(xl/len(xl, 'b): np.sumi).

Transformation

>>> customSum = lambde x: (x+x%2)

+>> d14 groupbyllevel+01 transformicustom5um)

Missing Data

ess di drophal) === df2 Ethoddf2,meantll >>> df2.replace('a', 'f')

Drop NaN value Fill NaN values with a predetermined value Replace values with others

Combining Data

and a			
X1	XZ		
a	11,432		
b	1.303		
C	99.906		

data2 X1 X3 20,784 b NaN

Pivot

see pd.mergeldata1 pr=213

X1	X2	Х3:
a	11.432	20.78
ь	1.393	NaN
•	99.906	NaN

>>> bd.mergeldata1. 00+ 117

X1	X2	X3.
3	11,432	20.28
ь	1:300	NaN
d	NaN	20.78

per pd mergeldata1

(83)	7.7	W.3
0	11,432	20.7
b	1.303	Nat

>>> pd.mergeldata1 prex113

pri=317

The Part of the Pa	-	
X1	Ж2	Х3
a	11.432	20.784
b	1.303	NaN
· C	99,906	NaN
d	NaN	

Join

>>> data1.joinidata2, how= right."

Concatenate

Vertical

>>> s appendis Z)

Horizontal/Vertical

*** pri.concat([s,s?],avis=1; keys=1 (Inv. Two [) >>> pd.concat([data1.slata2], axis=1, juin=inner)

Bates

>>> df2f Date T= pd tq_dateterseidf2f Date D

>>> df2f Date lin ød døte_rangef 2000-1-11, periods-6.

--- dates - [databmei2017,9,1], datetime[2012,5,2]]

>>> index = pd.Datet meIndex(dates)

>>> index = pd.date_range(datetime(2012.2.1); end, freq=BM1

Visualization

>>> import matpiotilit pyplot as plt

iver siplot() (works.tig ess

>>> #12.p(a11)

>>> ptt.showth

Bokeh Cheat Sheet

BecomingHuman.Al

Data Types

The Python interactive visualization library Bokeh enables high-performance visual presentation of large datasets in modern web browsers.

Bokeh's mid-level general purpose boyeh platting interface is centered around two main components: data and glyphs.

The basic steps to creating plots with the bokeh plotting interface are:

- 1. Prepare some data:
- Python lists, NumPy arrays, Pandas DataFrames and other sequences of values
- 2. Create a new plot
- 2. Add renderers for your data, with visual customizations
- 4. Specify where to generate the output
- 5. Show or save the results

+x+ from bukeh plotting import figure >>> from bokets in import nutout. Tile, show >>> x = 11, 2, 3, 4, 51 === y = (6, 7, 2, 4, 5) >>> p = figure@ide="simple line example", 40000 a data labalwa. y_axis_label=y1. --- s.linela, y, legend- Temp., time_width-21 >>> output file! "lines.html") >>= show(p)

Datta

Also see Lists, NumPy & Pandas

Under the hood, your data is converted to Column Data Sources. You can also do this manually:

een import managy as op >>> import pandas as pd >>> df = pd DetaFrame(np.array)[IJ3.9.4.65, US L [32.4.4.66 Asia] [21 A,4,109, Europe]]), columns="mog.cyt, bp", urigin"). index-| Toyota, Fist: Velvo |

>>> from boker, models import ColumnCataSource >>> cas of = Column Jata Source(df)

Plotting

sassfrom bakeh platting impart figure look p1 = liquielplot_width=300, tools='pan.box_zoom') >>> p2 = figurefplot_width=300, plot_height=300. s_range=(0, 8), y_range=(0, 8) (tarupit = £q <++

Show or Save Your Plots

11q/worle <<< >>> shaw(layout)

>>> savelp11 >>> savel(ayout)

Renderers & Visual Customizations

Glyphs

Scatter Markers

*>> p1.circle(ng.array([1,2,3]), np.array([3,2,1]), fill_color='wivis' >>> p2.squarainp.array([) 5,3.5.5.5]) [1,4.3]. color= blue; size=1

Line Glyphs

--- p1 line([1,2,34], [3,4,5,6], line_width=2). --- p2 multi_line(pc.DataFramel[[1,2,3],[5,6,7]]). pd.DataFramal[[3,4,5],[3,2,1]]). color="blue")

Rows & Columns Layout

Rows

>>> from bokeh layouts import row. (Eq.Sq. [q]wor = tuoyes <<<</p>

Columns

>>> from bakeh byouts import columns (Eq.Sq. Eq)rmulop = tuoyal ece

Nesting Rows & Columns

>>>Layout = row(column(p1,p2), p3)

Grid Layout

- +>> from bokeh layouts import gridplat
- >>> row1 = [p1,p2]
- *** row2 = [p3]
- >>> layout griopleti[[p1,p2],[p3]])

Legends

Lagend Location

Inside Plot Area

>>> p.legend location - bottom lieft

Outside Plot Area

Output

Output to HTML File

Notebook Output

*** output notebookil

Standalone HTML

Components

>>> from bakeh is import sutput_file, show

>>> from baken embed import file html

>> ntml = file_htmlip, CDN, "my_plat")

>>> script_div = components(p)

>>> from bolish smbod import components

>>> output file('my bar chart.html, mode+'cdo')

>>> from bakeh is import output_notebook. show

- *** *1 = p2.esterisking.acray(1.2,3)], np.array((3,2.1))
- >>> 72 = g2.line([1.2,3.6], [3.4,5.6])
- >>> legend + Legendlitems=[("One", [p1, r1]),("Iwa", [r2])], location=(0, -30]) >>> p.add_layoutliegend, 'right'l

Customized Glyphs

Also see data

Selection and Non-Selection Glyphs

>>> p + figure(tools= box_select1) >>> p.circlef.mpg', 'cyl', source=cds_df. selection calon='red nonselection_alpha=0.1)

Hover Glyphs

>>> hover = HaverToo (tooltips=None, made= vtine) >>> p3 add_tpols(hover)

Colormapping 0.00

>>> color_mapper = CategoricalColorMapper(

factors=[US, Asia, Europe]. palette=[blue, red, green]) >>> p3.circle| mpg, 'cyl', spurce=cds_df,

color=dict(field='origin', transform=color mapperl.

(egend=Origin)

Linked Plots

Also see data

Linked Axes

>>> p2.x_range > p1.x_range >>> p2.y_range = p1.y_range

Linked Brushing

- >>> p4 = figure(plot_width = 100, tools="box_select lasso_select")
- >>> p4_circle('ripg', 'cyl', source=cds_df)
- >>> p5 = figure(piot_width = 200 tools= box_select lasso_select)

Tabbed Layout

- >>> from bokeh.models.widgets import Panel, Tabs
- >>> tab1 = Panel(child=p1, title="tab1")
- >>> tab2 = Punelichiid=p2, title="lab2"|
- >>> layout = Tabs(tabs=[tab1, tab2])

Legend Orientation

>>> p.legend.orientation = "horizontal." >>> p legend orientation = "vertical"

Legend Background & Border

>>> p legend border_line_color = "navy" ses pilegend background_fitt_color = "white"

Statistical Charts With Bokeh

Also see Data

Bokeh's high-level bokeh, charts interface is ideal for quickly creating statistical charts

Bar Chart

>>> from bokeh charts import Bar >>> p = Baridf, stacked= ____ galette=['red_blue']

>>> from bokeh charts import BoxPlot >>> p = BoxPlot(df, values= vals, tabel= cyl. legend='hottom_right'l

>>> from bokeh.charts import -listogram >>> p = HistogramIdf, title="Histogram")

>>> from boken, charts import Scatter >>> p = Scatter(df, x= mpg, y = hp), marker='square',

stabel='Mites Per Galion',

NumPy Basics Cheat Sheet

BecomingHuman.Al

The NumPy Library is the core Library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays.

10 array

Creating Arrays

>>> a = np.array([1,2:3]) >>> b = np.array([(1,5:2:3), (4,5.6)], dtype = floati >>> c = np.array([[(1,5:2:3), (4,5.6)], [(3,2,1), (4,5.6)], dtype = floati

Initial Placeholders

*** np.zems(3,4))	Create an array of zero
>>> np.nnesi(2,3,4),(ttype=np.int1a)	Create an array of one
>>> d = np.arange(10,25,5)	Create an array of evenly space values (step value
>>> np linspace(0,2,9)	Create an array of event spaced values inumber of sample:
*** = + np.full(2,2).7)	Create a constant arra
>>> f = rq; eye(2)	Create a 2X2 identity matri
>>> op random random (12,21)	Create an array with random value
The second of th	Franks on amount times

1/0

Saving & Loading On Disk

*** np.save(my_array, a)
*** np.savezfarray.npz, a, b)
*** np.tpadf.mv_array.npy/)

Saving & Loading Text Files

>>> np.toodbdl'myflie.bd')
>>> np.genfromtat("my_flie.cau" dallenitec=")
>>> np.bavebdl'myarray.bd', a, delimitec="")

Inspecting Your Array

>>> a.shape	Array dimensions
ana lenia)	Length of array
>>> b.ndim	Number of array dimensions
>>> e.5/2#	Number of array elements
>>> b.dtype	Data type of array elements
>>> b.dtype.name	Name of data type
>>> b.autype(int)	Convert an array to a different type

Data Types

www.mp.int66	Signed 64-bit integer types
>>> np float32	Standard double-precision floating point
>>> np.complex	Complex numbers represented by 128 floats
>>> np ood	Boolean type storing TRUE and FALSE
>>> np.object	Python object type values
>>> opstring_	Fixed-length string type
www.np.unicode_	Fixed-length unicode type

Asking For Help

>>> np infolnp.ndarray.dtype)

Array Mathematics

Arithmetic Operations

>>> g = a - b array(IJ-0.5, g . 0.1 I-333 III	Subtraction
>>> np.subtract(a,b)	Subtraction
>>> 0 + a array(0 2 5 4 . 6 .).	Addition
*** inplade(b,a)	Addition
>>> a / b array(0.66566667, t 1. l 0.25 0.4 0.5	Division
>>> np divide(a.b)	Division
array(] 15.4.9.].	Multiplication
>>> np multiply(a.b)	Multiplication
>>> npexplb)	Exponentiation
>>> np.sgrt(b)	Square root
>>> np.sinla)	Print sines of an array
*>> ⊓p.cos(b)	Element-wise cosine
eee ng log(a)	Element-wise natural logarithm
>>> e dotift array(] 7 - 7]	Dot product

Comparison

30	0 8 ** D		Element-wise compariso
	arrayil	II dtype=boot	
31	⇒g<2 arrayi		Element-wise compariso
-30	> np.array_equalita.	b)	Array-wise compariso

Aggregate Functions

Control of the Contro	
>>> a.sum()	Array-wise sum
>>> a.min()	Array-wise minimum value
>>> o.maxiaxis=(7)	Maximum value of an array row
>>> o.cumsumlaxis=1]	Cumulative sum of the elements
a.mean()	Mean
>>> b.med anti)	Median

Copying Arrays

>>> h = a.view() >>> rp.copy(a) >>> h = a.copy() Create a view of the array with the same data Create a copy of the array Create a deep copy of the array

Sorting Arrays

>>> c.sort(axis=0)

Sort an array Sort the elements of an array's axis

Subsetting, Slicing, Indexing

Subsetting	
>>> a[2]	Select the element at the 2nd index
>>> b(1,2) 6.0	Select the element at row 1 column 2 (equivalent to b[1][2])
Sticing	
>>> a[0,2] arcay(1,.2)	Select items at index 0 and 1
>>> b(0.2.1) array([2.5.3)	Select items at rows 0 and 1 in column 1
>>> bl:1) arroyd[1.5, 2., 3,]]]	Select all items at row 9 (equivalent to 6/0.1, 1)
>>> c[1] array([[] 3_2_, 1_], [4_5_4_][])	Same as (1 :::)
array([3, 2, 1])	Reversed array a
Boolean Indexing	
эээ afa<2) array([1])	Select elements from a less than 2
Fancy Indexing	
>-> til3 0.1.01.10, 1.2.011 array([4. 2. 6. 1.5])	Select elements (1,0),(0,1),(1,2) and (0,0)
>>> t[]1.0.1.0][[.[0,1.2.0]] array([] 4.56.4.[1.5.2.3.15] 45.6.4.[1.5.2.3.15]]	Select a subset of the matrix's rows and columns

Array Manipulation

Transposing Array

>>> (= np.transpose(b) >>> i,T Permute array dimensions Permute array dimensions

Changing Array Shape

>>> b.ravel() >>> g.resnape(3,-2)

->> np.c. [a.d]

Flatten the array Reshape, but don't change data

Create stacked

column-wise arrays

Adding/Removing Elements

>>> h.resue([2,6]) Return a new array with shape (2,6)
>>> np.append(h.g) Append items to an array
>>> np.insert(a, 1, 5) Insert items in an array
>>> np.delete(a,[1]) Delete items from an array

Splitting Arrays

>>> np.hsplit(a,3) |array([1]).array([2]).array([2])) index

Split the array horizontally at the 3rd

>>> np.vsplitic.2) Split the array vertically at the 2nd index [array[L] 1.5, 2, 1,], [4, 5, 6,][b].

Combining Arrays

Python For Data Science Cheat Sheet

PySpark - RDD Basics

BecomingHuman.Al

Retrieve SparkContext version

Path where Spark is installed on

Retrieve Python version

Master URL to connect to

partitions for RODs

PySpark is the Spark Python API that exposes the Spark programming model to Python.

Initializing Spark

Spark Context

>>> from pyspark import SparkContext >>> sc = SparkContext(master = 'local(2)')

Calculations With Variables

xxx sc.varsion eee ac pythuniler >>> str\sc.sparkHomel *** atrosc sparkUserIII

Retrieve name of the Spark User running SparkContext see scappliame Return application name >>> sc.applicationid Retrieve application ID >>> sc defaultParallelism Return default level of parallelism >> scidefaultMirPartitions Default minimum number of

Configuration

>>> from pyspark import SparkConf. SparkContest *>> conf * (SparkConfi) setMaster[local]. setAppNamel My app") setf spark executor memory; "Ie'll) ->> sc = SparkContext[conf = conf)

Configuration

In the PySpark shell, a special interpreter-aware SparkContext is already created in the variable called sc.

5 /bin/spark-shall -master local[2] 5 /bin/pyspark -- master local(4) -- py-files code by

Set which master the context connects to with the --master. argument, and add Python .zip, .egg or .py files to the runtime path by passing a comma-separated list to -py files.

Loading Data

Parallelized Collections

*>> rdd = sc.paralletize((*a.71,(*a.2),(*b.2))) $\sim rdd2 = sc.parallelize([l'a,2),(d',1),['b',1]))$ >>> rdd3 = sc paralielize(range[100]) >>> rdol4 = sc.parallelize(l/a,[x/y,z]). (b) p: r 00

External Data

Read either one text file from HDFS, a local file system or or any Hadoop-supported file system URI with textFile I, or read in a directory. of text files with whole Text Hideal

>>= textFile = sc.textFile("/my/directory/".txt") >>> textFile2 = 5c.wholeTextFilest*/my/directory/*).

Selecting Data

Getting

*** rdd.collect() [[a:7], (a:2i, (b), 2i)] (Fa. 7), Fa. 20 >>> rdd firstl) (w. 7)

Return a list with all RDD elements

Take first 2 RDD elements

Take first RDD element

Take top Z RDD elements

Sampling

>>> rdd3.samptelFalse, 0.15, 81).collectl) [3.4.27.31,40.41,42,43.60,76,79,80.86,97]

Return sampled subset of rad3.

Filtering

>>> rdd filter llambda x: "a" in xl collecti) [[a.7], [a.2)] >>> rdd5.distinct().coilect() [4.2,5.7] >>> rdd keys().collect() 10. 0. 57

Filter the RDD Return distinct RDD values Return (key, value) RDD's keys

Iterating

Getting

>>> det g(x), print(x) >>> rdd foreachig!

Retrieving RDD Information

Basic Information

>>> rdo.getNumPartitions()

--- rdd countl) Count RDD instances >>> rdd countByRey() defaultdicti-type int > (a-2.0.1)/ Count RDD instances by key Count HDD instances

>>> rde.countByValue() defaultoict(<type 'nr > Jrn(2)1,fa; 2)1,fa; 7) 1)) rdd.cotlectAsMap() Return (key,value) pairs as a

>>> rdp3.sum() Sum of RDD elements Sum of RDO elements

Check whether RDD is empty >>> accorationed(I) is Empty()

Summary

>>> rdd3.stdevi) 28.866070047722118

>>> rdd3.histogram(3) ([0.33,66.99] [33.33,34])

>>> rdd3.variance() 833.25

>>> rdd3.stats()

>>> rdd3.max() Maximum value of RDD elements Minimum value of RDD elements per rdd3.min()

>>> rdd3.meanl) 49.5 Mean value of RDD elements

> Standard deviation of RDD elements Compute variance of RDD elements

Compute histogram by bins Collecto II a 9L(tr.23)

Summary statistics (count, mean,

Apply a function to each ROD element

List the number of partitions

Applying Functions

>>> rdd:mapllambga x: x+lx[1],x[0])) collect() [(a,7.7,a)(a,22,a)(b,2,2,b)] ->= rdd5 = rdd.f:atMap|lamode.x: $n + ln \le 1 \le n l \le 0$ >>> rdd5 collect[] [a,7.7.a, e,2.2.a,5.2,2.6] >>> rdd4.flatMapValues(lambda e. v)

collect()
[[a] * [[a] * [[a] * [[b] * [[a] *

Apply a function to each RDD ment and flatten the result

Apply a flatMap function to each changing the keys

Mathematical Operations

>>> rdd.subtract(rdd2) [(b,2),(a,7)] >>> rdd2.subtract@yKeylrddl [(d, 1)] collect()

>>= rdd cartesian(rdd2).collect()

Return each rdd value not contained

Return each (key,value) pair of rdd? with no matching key in rdd

Return the Cartesian product

Sort

>>> rdd2 sortByllambda x: x[1]) (collect) >>+ rdd2.cortByKey(| Sort (key, value) (collect)

Sort RDD by given function

RDD by key

Reshaping Data

Reducing

*** rdd.reduce8yKey(lambda x.y | x+y) (a.9),(b,2)]

>>> rdd.reduce(lambda a.b; a + b) (a,7,a,2,b,2)

Merge the rdd values

Merge the rod values for

Grouping by

*** rdd3.groupByllambda x: * % 2I .mapValues[list] collecti

ass rdd.groupByKey! mapValues(list) cottect() [(a.[7,2]),[a.[2])]

Return RDD of grouped values

Group rdd by key

Aggregating

--- seqOp = (tambda x.y: (x[0]-y.x[1]+1)) >>> combDo = 9ambda e.x (x)01+y(81,a(1)+y(1))).

>>> rdd3.aggregate((0,0),seq0p.com6Cp)

>>> rdd aggregateByKey(IO,III,segop.combop) E = (9,251.15-12.10)

>>> edut3.fold(0,adc) 4.950

555 rdd foldByKeyffl, addi

>>> rdd3 keyByllambda =: +++i)

Aggregate RDO elements of each partition and then the results

Aggregate values of each RDO key

Aggregate the elements of each 4950 partition, and then the results. Merge the values for each key

Create tuples of RDD elements by applying a function

Reshaping Data

>>> rdd.repartition(4) ** > rdd.cnalesce(1)

New RDD with 4 partitions Decrease the number of partitions in the

Saving

>>> rdd saveAsTextFile! rdid tot?]

>>> rdd.saveAsHadoopFile ("hdfs://namenadehost/parent/child",

org apache hadeop.mapred TextOutputFormel 1

Stopping SparkContext

>>> ac atopo

Execution

5 /bin/spark-submit examples/src/main/python/pl.py

Phyton For Data Science

Cheat-Sheet Phyton Basic

BecomingHuman.Al

Variables and Data Types

Variable Assignment

*** #*5 *** # 5

Calculations With Variables

>>> #+2	Sum of two variables
7 >>> =-2	Subtraction of two variables
3 x*2 10	Multiplication of two variables
>>> #"".2 25	Exponentiation of a variable
>>> x%2	Remainder of a variable
>>> W/float(2) 2.5	Division of a variable

Calculations With Variables

stril	5, 3,45', True'	Variables to strings
intth	5.3.1	Variables to integers
float()	5.0, 1.0	Variables to floats
bootl)	True, True, True	Variables to booleans

Asking For Help

>>> help(str)

Lists Also see NumPy Arrays 332 8 9 5 ass b = nice >>> my_list = I'my', list', a, b) >>> my_list2 = [[4.5,6,7], [3,4,5,6]] Selecting List Elements ides starts at 0 Subset >>> my_list[1] Select item at index 1 >>> my_list[-3] Select 3rd last item Slice Select items at index 1 and 2 >>> my_list[1:3] Select items after index 0 >>> my_list[1:] >>> my_list[:3] Select items before index 3 >>> my_list[.] Copy my_list Subset Lists of Lists >>> my_list2[1][0] my_list[list][itemOfList] >>> my_list2[1][-7] List Operations >>> my_list + my_list Pmy, list, is, nice, my, list, is, nice >>> my_list * 2 I'my, list, is, nice, my, list, is, nice. >>> my_list2 > 4 List Methods

Get the index of an item

Append an item at a time

Count an item

Remove an item

Remove an item

Reverse the list

Append an item

Remove an item

Insert an item

Sort the list

>>> my_list.index(a)

>>> my_list countfal

>>> inv_list.appendl*[]

>>> my_list.remove(")

>>> delimy_list(C-1))

>>> my_list.reverse()

>>> my_list.extend(1)

>>> my_list.insert(0.11)

>>> my_list.popl-T)

>>> my_list.sort()

>>> my_list = [1, 2, 3, 4] >>> my_array = np.array(my_list) >>> my_2darray = np.array([1,2,3],[4,5,6]) Selecting Number

Selecting Numpy Array Elements

rray[1] Select item at index 1

ses my_array[1]
2
Slice

>>> my_array[0:2]

Subset 20 Numpy errays >>> my_2darrayl.,0; arred! 49

my_2darray(rows, columns)

Select items at index 0 and 1

Also see Lists

ndex starts at 0

Numpy Array Operations

>>> my_array > 3 =ray() >>> my_array * 2 =ray(2 + 6.81 >>> my_array + np.array((5, 6, 7, 8)) =ray(6.8.10.120

Numpy Array Operations

>>> my_array shape	Get the dimensions of the array
>>> np.append(other_array)	Append items to an array
>>> np.insert(my_array, 1, 5)	Insert items in an array
>>> rip.deletetroy_array.[1][Delete items in an array
>>> rip.mean(my_array)	Mean of the array
>>> np.median(my_array)	Median of the array
>>> my_array.correpef(l	Correlation coefficient
>>> np.std(my_array)	Standard deviation

Strings

Also see NumPy Arrays

>>> my_string = "this5trmulsAwesame >>> my_string

String Operations

>>> my_string * 2

*** roy_string + 'Innit'

*** roy_string + 'Innit'

*** m' in my_string

String Operations

Index starts at 0

>>> my_string[3] >>> my_string[4.4]

String Methods

>>> my_string.upper() String to uppercase
>>> my_string.lower() String to lowercase
>>> my_string.count(w) Count String elements
>>> my_string.replace(o, 1) Replace String elements
>>> my_string.strip() Strip whitespaces

Libraries

Import libraries >>> import numpy

>>> import numpy >>> import numpy as np Selective import >>> from math import pr

Install Python

Leading open data science platform powered by Pytho

Free IDE that is included with Anaconda

Create and share documents with live code, visualizations, text, ...

Data Wrangling with pandas Cheat Sheet

BecomingHuman.Al

Syntax Creating DataFrames

		b.	c
1	A	7	10
2	5	8	1.1
3	6	9	12

df = pd.DataFrame(("a": [4.5, 6].

"b": [7, 8, 9]. 'c': [10, 11, 12]).

index = [1, 2, 3]) Specify values for each column.

df = pd.DataFramel II4. 7, 10L 15, 8, 111, [6, 9, 12]]. index=[1, 2, 3]. columns=['a', 'b', 'c'])

Specify values for each fow

		9	b	c
n	٧			
100	107	4	7	10
d :	2	5	8	11
e	2	6	9	12

df = pd.DataFramel

("a": [4.5.6]. "b": [7, 8, 9].

'c": [10, 11, 12]).

index = pd.MultiIndex.from_tuples([('d',1),('d',2),('e',2)], names=['n','v']))

Create DataFrame with a MultiIndex

Method Chaining

Most candas methods return a DataFrame so that another pandas method can be applied to the result. This improves readability of cade.

dt = ipd.mett(dt)rename(columns=1

'variable' : 'var'. value': 'val')) query('vai >= 200')

Windows

df.expanding()

Return an Expanding object allowing summary functions to be applied cumulatively.

df.rolling(n)

Return a Rolling object allowing summary functions to be applied to windows of senoth in.

Windows

df.plot.hist() Histogram for each column

df.plot.scatter(x='w',y='h') Scatter chart using pairs of points

Tidy Data A foundation for writing in pages.

Each variable is saved in its own column

Each observation

is saved in its

vectorized operations, pandas will automatically preserve observations as you manipulate variables. No other format works as intuitively with pandas

Tidy data complements pandas's

Reshaping Data competitions of warman

Append columns of DataFrames

df.sort_values('mpg')

Order rows by values of a column (low to high)

df.sort_values('mpg',ascending=False)

Order rows by values of a column (high to low).

df.rename(columns = {'y':'year'}) Rename the columns of a DataFrame

df.sort_index() Sort the index of a Data-Frame.

df.reset_index0

Reset index of DataFrame to row mumbers. moving index to columns.

df.drop(columns=("Length","Height"))

Erop columns from DataFrame

Subset Observations

df[df.Length > 7]

Extract rows that meet logical criteria.

Append rows of DataFrames

df.drop_duplicatus()

rows (anly considers columns).

df.head(n)

Select first in rows.

df.tail(n)

Select last n rows.

Windows

Additional Grouptly functions:

df.sample(frac=0.5) Randomly select fraction of rown.

df.sample(n=10)

Randomly select nirows

df.iloc[10:20]

Select rows by position.

df.nlargest(n, 'value') Select and order too nientness

df.nsmallestin, 'value') Select and order bottom

Logical and or, not

sec my at.

df.groupby(by="col")

values in column named "col"

df.groupby(level="ind")

values in index level named 'ind'

Return a GroupBy object, grouped by

Logic in Python (new panels) Less than Greater than pd isruffold) In Nati

All of the summary functions listed above can be applied to a group.

agg(function)

Subset Variables Committee

Select multiple columns with specific names

Select single-column with specific name.

df.filteriregex='regex')

Select columns whose name matches regular expression regex.

Matches sorings containing a ported Matches strings ending with word Length

Matches straigs beginning with the word Sepal Matches change beginning with a land miding with 1,2,3 6,5 Matches straigs accept the straig Species

Select all columns between x2 and x4 finclusive)

df.iloc[: [1.2.5]]

Select columns in positions 1, 2 and 5 thirst column is 0).

df.loc[df['a'] > 10, ['a',c']]

shift(1)

Select rows meeting logical condition, and only the specific columns:

Summarise Data

dfl'w'Lvalue counts()

Count number of rows with each unique value of variable.

of rows in DataFrame

dfl'w'l.nunique() # of distinct values in a column.

df.describe()

Basic descriptive statistics for each column Int GroupBy)

pandas provides a large set of summary functions. that operate on different winds of pandas objects. (DataFrame columns, Series, GroupBy, Expanding and Rolling (see below)), and produce single values for each of the croups. When applied to a DataFrome, the result is returned as a pantles. Series for each column Tramples:

samti

Sum values of each object. Minimum value in each object.

count()

Count non-NA/ruil. values of each object.

median()

Median value of each object.

quantile([0.25.0.75]) Quantiles of each object.

apply(function)

Standard deviation

ward)

maxO

each object.

Massroom value in

Mean value of each object

Variance of each object.

Apply function to nach object. of each object.

Handling Missing Data

Drop rows with any column having NA/null data.

df.filtna(vatue)

Make New Columns

df.assign(Area=lambda df: df.Length*df.Height)

Compute and append one or more new colur

df['Volume'] = df.Length*df.Height*df.Depth

pd.qcut(df.col, n, labels=False)

Bin culumn into a buckets

paradas provides a large set of vector functions that operate on aticolumns of a DataFrame or a single solected culumn (a panday Series). These functions produce vectors of values for each of the columns, or a single Series for the individual Saries, Examples:

max(axis=1) Element-wise max

clipflower=-10,upper=10)

Trim values at input thresholds.

min(axis=1) Element-wise min

how='left', on='x1')

how right on at!

how inner, on x11

Join data. Retain only rows in both sets.

Join matching rows from adf to bdf.

Join matching rows from bdf to adf.

abs()

Absolute value.

Combine Data Sets

pd.merge(ydf, zdf)

Rows that appear in both yelf and zelf Unternection pd.merge(ydf, zdf, how='outer') Rows that appear in either or both yill and zill

pd.mergelydl, zdl, hown'outer', indicator=True! queryl'_merge == "left_unly")

.drop(columns=f_merge'l)

Rows that appear to yell but not zelf. (Setdiff)

Cumulative mirs.

cumprod() Compative product

hows'outer', one's 17 Join data. Retain all values, all rows.

not not polymerye (adf, bdf,

mater was a dpd.mergeladf, bdf.

ad merge(adf, bdf,

CONTRACTOR STATE

adfladf.x1.isin(bdf.x1)[All rows in adf that have a match in tidl,

adf[-adf.ix1.isin(bdf.ix1)]

All rows in adf that do not have a match

in bdf

Size of each group. Aggregate group using function.

returned vectors are of the length of the pripinal CataFrame.

The examples below can also be applied to groups. In this case, the function is applied on a per-group basis, and the

Data Wrangling with dplyr and tidyr

Cheat Sheet

BecomingHuman.Al

Reshaping Data Enange the Jayout of a state se

Converts data to thi class, this are easier to examine than data frames. R displays only the data that fits onscreen

Syntax Helpful conventions for whample

Source: local data frame [150 x 5]

dpter: glimpse(iris)

Species (fctr)

dplyratbl dfliris)

Information dense summary of thi data.

utils::View(iris)

View data set in spreadsheet-like display (note capital V)

	E 78	w		9	
	Sepallargeli	Sept. Name	Produces	POLUMEN:	Species
1	3.1	31	1.4	0.2	settent.
2	4.9	9.00	1.4	6.2	intend
1	4.7	3.0	1.5	5.0	setete
	46	3.1	1.5		settina.
1	10	1.6	1.4	0.2	befold.
۲	5.4	5.3	1.7	15/4	antoni
1	4.6	34	1.4	31.8	setteni-
	5.0	3.4	- 4.5	0.2	mieta.

Passes object on lef hand side as first argument (or argument) of function on righthand side. x %>% fly) is the same as flx, y) y %>% f(x, _ z) is the same as f(x, y, z)

"Piping" with %>% makes code more readable, e.g.

iris %>%

group_by(Species) %>% summarise(avg = mean(Sepat.Width)) %>% arrange(avg)

Tidy Data A toundation for wranging in

In a tidy data set:

Tidy data complements R's vectorized operations. R will automatically preserve observations as you manipulate variables. No other format works as Intuitively with R

Unite several columns into one

Scread rows into columns

data frame(a = 1:3, b = 4:6) spread(pollution, size, amount)

Combine vectors into data frame (optimized). plyer arrange(mtcars, mpg) Order rows by values of a column flow to high).

dplyr arrange(mtcars, desc(mpg)) Order rows by values of a column (high to low).

dplyr::rename(tb, y = year) Rename the columns of a data frame.

Subset Observations 🗈

uptyr: filter(iris, Sepal Length > 7) Extract rows that meet logical criteria.

separate(storms, date, c('y', 'm', 'd')

dplym distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE) Randomly select fraction of rows.

dptyr: sample_n(iris, 10, replace = TRUE) Randomly select n rows.

dplyn. slice(iris, 10:15)

Select rows by position.

daily: top_n(storms, 2, date)

Select and order top it entries (by group if grouped data).

Logic by H - T	Terrorism Street	Augus
Dreater Date:		THE WHAT TO SERVE THE SERVE
Dank	9.96	1
make that is specific		STATEM OFFICE

Subset Variables

dplyr: select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

referries contains()

Select columns whose name contains a character string.

ends with("Longon"))

Select columns whose name ends with a character string.

everything()

Select every column.

matchest 1.1

Select columns whose name matches a regular expression.

num_range(> 1:5)

Select columns named x1, x2 x3 x4, x5

one offst Species", "Denus")))

Select columns whose names are in a group of names.

irin starts with (in)

Select columns whose name starts with a character string.

Select all columns between Sepal Length and Petal Width (inclusive).

Select all columns except Species.

Group Data

Group data into rows with the

same value of Species.

dolyr: ungroup(iris)

Remove grouping information from data frame.

group_by(iris, Species) iris %>% group_by(Species) %>% summariss(...) Compute separate summary row for each group.

iris %>% group_by(Species) %>% mutate(...) Emmoute new variables by group

Summarise Data

summariseliris, avg = meantSepat.Lengthill Summarise data into single row of values

ply summarise_each(iris, funs(mean)) Apply summary function to each column.

dplyr countfiris, Species, wt = Sepal Longth) Count number of rows with each unique value of variable livith or without weights).

Summarise uses summary functions, furiet ons that take a vertex of values and return a single value. much as:

total first

First vaine of a vector, duly last

Last value of a vector deliver nth

Nth value of a vector.

of values in a vector.

n_distinct # of distinct values in

a wester ICR et a vector

1 1 6 1 7 6 X 44

A 1 7 B 2 2 C 2 M

Filtering Joi

Manmum value in a vector. Maximum value in a vector.

mean.

Mean value of a vector. median Median value of a vector.

Varience of a vertor.

Combine Data Sets

tef_join(a, b, by = "x1")

right_join(a, b, by = "x1")

lyr inner_join(a, b, by = "x1")

olymituli_join(a, b, by = "x1")

dailyt: somi_join(a, b, by = "x1")

oplyr: anti_join(a, b, by = "x1")

All rows in a that have a match in b.

All rows in a that do not have a match in ti

Join data Retain all values all rines

Join data. Retain only rows in both sets.

Join matching rows from 6 to a

Join matching rows from a to h

Standard deviation of a

ye raw number Ranks. Tres got to first value. siplymetite

Gin vector into n buckets. between

dolyn tead

Helyn-Lag

oply dense rank

Hanks with no paps

Ranks. They get min rank.

percent_rank

Ranks regrated to 10: 13

plymmin_rank

Are values between a and 57 cume_dist

Element-wise max

Element-wise min

Make New Variables

ply: mutate_eachliris, funsimin_rank)).

Apply window function to each column

mutateliris, sepal = Sepal Length + Sepal Width)

transmutefiris, sepal - Sepal Langth + Sopal Width)

Mutate Uses window functions, functions that take a vector of

Cumany

del cumment

Cumulative mean

Comulative som

Corrutative man

Cumutative min

Cumulative prod.

cumsum

cummax

values and return another vector of values, such as

Copy with values shifted by 1. Cumulative all

Copy with values lagged by 3. Cumulative any

unionly, zi Rows that appear in either or both y and z.

CONTRACT CONTRACTORY, 2) Hows that appear in y but not it.

duly chind, runsig, 27 Appendix to y as new rows.

bind colaly, zi Append a to yes new columns. Caution: matches rows by position.

Ensative Commons Data Wrongling with dollyr and tidyr by RStudio is Iconsed uniter CC BY SA 4.0

Tensor Flow Cheat Sheet

BecomingHuman.Al

Installation

How to install new package in Python

no install sparkage names

Example: plo install requests

How to install tensorflow?

device = college

python_version = cp27/cp34

sinds aim mist

https://sterspe.googlespis.com/tensorflow/imusi Stevice/tensorflow 0,8.0-Soython version-none linux x88-54 whilsude pip install.

How to install Skflow

nig matali sklavn

How to install Keras

sip inklutt kera

update -/ keras/keras ison - replace "theans" by "tensorflow"

Info

TensorFlow

to 11.5 petaflops.

TensorFlow™ is an open source software library created by Google for numerical computation and large scale computation. Tensorflow bundles together Machine Learning. Deep tearning models and frameworks and makes them useful by way of common metaphor.

In May 2017 Google

second-generation of

announced the

TensorFlow the TPU, as well as

the availability of the TPUs in

up to 180 teraflops of perfor-

Google Compute Engine.[12] The

second-generation TPUs deliver

mance, and when organized into

clusters of 64 TPUs provide up

Keras

Keras is an open sourced neural networks library, written in Python and is built for fast experimentation via deep neural networks and modular design. It is capable of running on top of TensorFlow, Theano, Microsoft Cognitive Toolkit, or PlaidML

Skflow

Scikit Flow is a high level interface base on tensorflow which can be used like sklearn. You can build you own model on your own data quickly without rewriting extra code provides a set of high level model classes that you can use to easily integrate with your existing Scikit-learn pipeline code.

Helpers

Python helper Important functions

type outers

Get object type

haiplobies

Get help for object (list of available methods, attributes, signatures and so on)

ir abject

Get (ist of object attributes (fields, functions)

tricolect

Transform an object to string object? Shows documentations about the object

plobais

Return the dictionary containing the current scope's global variables.

models

Update and return a dictionary containing the current scope's local variables.

diobiest)

Return the identity of an object. This is guaranteed to be unique among simultaneously existing objects.

Import Building

Other built-in functions

Tensor Flow

Main classes

of Graphi)

of Operation()

If Session()

Some useful functions

tf.get_default_session tf.get_perault_graph()

throat delayl graphs

nos reset getauit graphii

(Links Could)

Moame, sempetvalue)

thronvers by temportroller

TensorFlow Optimizers

Gradient Descare Optimize

AdadeltaOplanize

AdagrantOptimizer
ManientumOptimizer

AgamOpt Impair

EtriOptienten

HM5PriipOptimizar

Reduction

reduce sum

reduce prod

refluce_max

reduce make

reduce all

accumulate n

Activation functions

ttiin7

retu reluá

elu

softplus

softsign

drapout

tanh

bias add

sigmoid

sigmoid_crass_entropy_with_logits

softmax

log_softmax

softmax_cross_entropy_with_logits sparse_softmax_cross_entropy_with_logits weighted_cross_entropy_with_logits

etc.

Skflow

Main classes

Terrino Flow Classifie

TensorFlowRegresser
TensorFlowDisNClassRen

TentorFlowDNNRsurlesson

Terran Flow Linear Classifier

Tentor Flow Linear Regression Ingnar Flow RM Classifier

Tecsor Slow Philipperson

Tenner-low/commate

Each classifier and regressor have following fields n_classes=0 (Regressor), n_classes are expected to be input (Classifier)

heprh, appen 32

stems=200; // excent

Tensor FlowRMMC aparties - there is 50

aprimitate Adagraid

hearning_rate=2.7

Each class has a method fit

MCK y montoryllone logoryllone

X: matrix or tensor of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model.

Y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of targets. The training target values (class labels in classification, real numbers in regression).

monitor: Monitor object to print training progress and invoke early stopping

logdin: the directory to save the log file that can be used for optional visualization.

predict Ocases I, batch_size-Rune)

Args.

X: array-like matrix, [n_samples, n_features,..] or iterator, axis: Which axis to argmax for classification.

By default axis 1 Inext after batch! is used. Use 2 for sequence predictions.

batch_size: If test set is too big, use batch size to split il into mini batches. By default the batch_size member variable is used.

Returns

y: array of shape [n_samples]. The predicted classes or predicted value. The SciPy library is one of the core packages for scientific computing that provides mathematical algorithms and convenience functions built on the NumPy extension of Python.

Scipy Linear Algebra Cheat Sheet

Also see NumPy

SVD

Interacting With NumPy

Also see NumPy

**> import numpy as no *>> a = na.array(1.2.3b) *>> b = np.arrayi[(1+5j,2j,3j), (4j,5j,6j)]] +++ c = np.array([[(1.5,2,3), [4,5,6)], [(3,2,1), (4,5,6)]])

Index Tricks

>>> ng.mgrid [0:5,0:5] Create a dense meshgrid >>> np.ogrid 0:2,0:2 Create an open meshgrid >>> np.r_[3]0[*5,-1.1.10] Stack arrays vertically (row-wise) *>> np.c [h.c] Create stacked column-wise arrays

Shape Manipulation

ese on transpose(b) Permute array dimensions >>> b.flatten() Flatten the array >>> np.hstack(lb.cl) Stack arrays horizontally (column-wise) >>> ng.vstack(La.b)} Stack arrays vertically (row-wise) >>> np.haplit(c,2) Split the array horizontally at the 2nd index >>> np.vpslit(d,2) Split the array vertically at the 2nd index

Polynomials

>>> from numby import poly1d >>> p = poly1d([3,4,5])

Create a polynomial object

Vectorizing Functions

>>> del myturicla): if a < D: ceturn a*2 return a/2 >>> ng.vectorize(myfunc)

Vectorize functions

Type Handling

ass np.reallb) ess np.imag(b>>> np.real_if_close(c.tot=1000) >>> np.castl* l(np.pii

Return the real part of the array elements Return the imaginary part of the array elements Return a real array if complex parts close to 0 Cast object to a data type

Other Useful Functions >>> np.angle(b.dog= mill) Return the angle of the complex argumen *** g - np.linspace(0,np.pi,num-5) Create an array of evenly spaced values >>> g [3:] += np pi (alastwanu.nn eee >>> ng.logspace(0,10,3) Create an array of evenly spaced values me scale! >>> np.select@c<41.fc*20 Return values from a list of arrays >>> misc.factorial(a) levi =tassa,E.01Idmaa.aeim <<< Combine N things taken at k time >>> misc.central_diff_weights(3) Weights for Np-point central derivative >>> misc.derivative/myfunc,1.0) Find the n-th derivative of a function at a point

Linear Algebra

You'll use the linalg and sparse modules. Note that scipy, linalg contains and expands on numpy, linalg

>>> from scipy import linalg, sparse

Creating Matrices

>>> A = np.matris(np.random.random)(2,2))) lejvintamas en = B <<= >>> C = np.mat(np.random.random()10,5)9 >>> D = np.matif(3.41, [5,6])

tmrersio	
>>+ A.1	Inverse
(A)vni.planit <<<	Inverse
Transposition	
>>> A.T	Tranpose matrix
»»» AH	Conjugate transposition
Trace	
*>> op.trace(A)	Trace
Norm	
linalg norm(A)	Frobenius norm
>>> linatg.norm	L1 norm (max column sum)
>>> linalg.normlA,np,n/I	L inf norm (max row sum)
Rank	
Oldner, xintem glacil.qn	Matrix rank
Octorminant	
>>> tinalg det(A)	Determinant
Solving linear problems	
>>> tinalg.sulve(A.bl	Solver for dense matrices
>>> E = np.mat(a).T	Solver for dense matrices

--- lineig istsqlF,E) Generalized inverse

Chyrig planif ecc Compute the pseudo-inverse of a matrix (least-squares solver) >>> finalg.pinv2(C) Compute the pseudo-inverse of a matrix (SVD) **Creating Matrices**

>>> F = np.//yel3, k=11

>>> 6 = np.mating.identity(2)] >>> C(C > 0.5) = 0 >>> H = sparse csr_matrox(E) >>> | = sparse.csc_matrix(0) >>> J = sparse.dok_matrix(A) >>> E.todensel) >>> sparse isspiratrix_csctAl Create a 2X2 identity matrix Create a 2x2 identity matrix

Compressed Sparse Row matrix Compressed Sparse Column matrix Dictionary Of Keys matrix Sparse matrix to full matrix Identify sparse matrix

Least-squares solution to linear matrix

Matrix Functions

Addition	
>>> rig addIA,D[Addition
Subtraction	
>>> np.subtract(A.D)	Subtraction
Division	
>>> np.divide(A.D)	Division
Multiplication	
*** A Ø D	Multiplication operator (Python 3)
np.multipty(D,A)	Multiplication
>>> np.dot(A,D)	Dot product
>>> np.vdat(A,D)	Vector dot product
>>> np.inner(A.D)	Inner product
>>> np.nuter(A.Cl)	Outer product
(C,A)tobrosenst.qn <<<	Tensor dot product
>>> np.sron(A,D)	Kronecker product

Exponential Functions >>> linalg expm(A)

Matrix exponential >>= linalg.expm2(A) Matrix exponential (Taylor Sones) >>= linalg expm3(0) Matrix exponential leigenvalue

Logarithm Function

>>> linalg.logm(A) Matrix logarithm

Trigonometric Functions

>>> linaig.sinm(D) Matrix sine >>> (inalg.cosm(E)) Matrix cosine >>> linaig tanm[A] Matrix tangent

Hyperbolic Trigonometric Functions

>>= linalg.sinhm(D). Hypberbolic matrix sine >>= linalg.coshm(U) Hyperbolic matrix cosine >>> (inalg.tanhm(A) Hyperbolic matrix tangent

Matrix Sign Function

Almapia.qn <<< Matrix sign function Matrix Square Root

>>= linalg.scrtm(A)

Matrix square root

Evaluate matrix function

Arbitrary Functions

>>> linkig funmiA, lambda x: x*xl

Sparse Matrix Routines

loverse	
>>> sparse linalg inviti	Invers
Norm	
>>> sparse.linalg.norm(l)	Norn
Solving linear problems	
>>> sparse,linalg.spsolve(HJI)	Solver for sparse matrice

Sparse Matrix Functions

Sparse matrix exponential >>> sperse.linelg.expmll

Decompositions

Eigenvalues and Eigenvectors

>>> fa, v = limatg.eig(A) Solve ordinary or generalized 200 F. 12 + la eigenvalue problem for D.ly eee First eigenvector 1. ly ecc Second eigenvector Unpack eigenvalues >>> linaig.eigvalstA)

Singular Value D

www.U.s.Vb + linalg.svdlBl Singular Value Decomposition (SVD) >>> M,N = B.shape >>> Sig = linalg.ti agsvd(SM.N) Construct sigma matrix in SVD see PLU = line(g.lu(C) LU Decomposition

Sparse Matrix Decompositions

Eigenvalues and eigenvectors >>> to, v = sparse linalg eigs(F,1) >>> sparse linaig syds(H, 2)

Asking For Help

>>> help(scipy.linalg.diagsvd) >>> np.info(np.matrix)

Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms.

Matplotlib Cheat Sheet

BecomingHuman.Al

Anatomy & Workflow

Workflow Prepare data Customize plot Create plot Plot Show plot >>> import matplotlib pypiot as plt >>> x = [1,2,3;4] >>> y = [10,20,25,30] exx fig = plt figured) --- ax - fig add_subplot(111) >>> ax.plotlx, y, color=lightblue, linewidth=3) >>> ax.scatteri[2,4,6]. [5,15,25]. >>> ak set_stim(1. 6.5) >>> plt savefig! houring Dwarte.flg <<=

Prepare The Data

Also see Lists & NumPy

Index Tricks

>>> import numpy as no x== x = np.linspace(0, 10, 100) >>> y = np.cps(x)

>>> 2 = np.sin(x)

20 Data or Images

>>> data + 2 * np.random.random((10, 10)) >>> data2 = 3 * np.random.random(10, 10))

>>> Y, X = ng.mgrid[-3:3:100], -3:3:100]

>>> U = -1 - X**2 + Y

555 V = 1 + X - Y"2

>>> from matplotlib.cbcok import gat_sample_data

>>> img = np.leaciget_sample_dataCaxes_grid/bivariate_normal.npy 10

Create Plot

as import matplotlib pypiot as alt

Figure

>>> fig = plt figure()

xxx fig2 = plt.figure(figs:ze=plt.figsspect(2.0)).

Axes

All plotting is done with respect to an Axes, In most cases, a subplot will fit your needs. A subplot is an axes on a grid system.

arrays cmap- gist parch.

interpolation= nearest,

>>> fig.add_axest!

>>> ax1 = fig.add_subplot(221) # row-cot-num

>>> ax3 = fig.add_subplot(212)

>>> fig3, wers = pft.subplots/r/rows=2,ncols=2)

>>> fig4, axes2 = plt.subplotsIncols+3)

Customize Plot

Colors, Color Bars & Color Maps

aba pit piotis, s, s, s**2, s, s**31 +>> ax.plotix, y. alpha = 0.4)

>>> amplot(s, y, c='k')

>>> fig colongar(im, orientation="horizontal")

>>> im = ax.mshawtimg. cmap# seismic1

Markers

>>> fig. air = pit.subplots()

>>> ay.scatter(x.y.marker=")

>>> ax plotts,y.marker="o"?

Linestyles

>>> plt.plot(x,y,linewidth=4.3)

>>> pli.plot(x,y,is= solid)

>>> pit.piot(x,y,is= --)

>>> pit plot(x,y, -- x**2,y**2, -1

>>> pit setpli nes.color="r.linewidth=4.0")

Text & Annotations

see autentif.

style="talic"

>>> ax annotate! Sine , xy=(B, 0), xypapros= data xytext=(10.5, 0)

textcoords= da arrowprops=dictlarrowstyle= >: connectionstyle= are33)

>>> pit.titleic'\$sigma_i=155; fontsize=20)

Limits, Legends & Layouts

Limits & Autoscaling

>>> ax.margins(x=0.0,y=0.1)

Add padding to a plot Set the aspect ratio of the plot to 1

Set a title and x-and

>>> ax.axis[equal] >>> ax.set(xlim=[0,10.5],ylim=[-1.5.1.5])

Set limits for x-and y-axis

>>> ax.set_ntim(0,10.5) Set limits for s-axis

>>> ax.selffitle='An Example Ares.

ylabel-Y-Axis, xlabel-X-Axis

>>> ax.legend(loc='bost') No overlapping plot elements

>>> ax.xaxis.setflicks=range[1.5], ticklabe(s=[3,100,-12,100]) directions i length=10i

Manually set x-ticks

Make y-ticks longer and

Subplot Spacing

>>> fig3.subplots_adjust(wspace=0.5 right=0.9. top=0.9. bottom=0.11

>>> fig tight_layout()

Axis Spines

>>> ax1.spines[top = | set_visible|

Make the top axis Line for a plot invisible

>>> ax1.spines[bottom].set_position[foutward;10t]

Move the bottom axis line outward

Plotting Routines

10 Data

>>> lines = aw pintls v)

>>> ax scatter(x,v)

>>> axes[0,0] bard[1,2,3],[3,4,50 >>> axes[1.0].barb[[0.5.1.2.5].[0.1.2]]

>>> axes[1,1] axhline[0,45] >>> axes[0.1] axytine(0.65)

>>> fig. ax = pit.subplots0

him - aximshow;img

>>> ax.fillix.v.color='blue') >>> ax.fil. betweentx.y.color='yellow').
2D Data

Draw points with lines or markers connecting them Draw unconnected points, scaled or colored Plot vertical rectangles (constant width) Plot horiontal rectangles (constant height) Draw a horizontal line across axes Draw a vertical line across axes Draw filled polygons

Colormapped or RGB

Fill between y-values and 0

Vector Fields

>>> axes [0,1].arrow(0,0.0.5,0.5] >>> axes[1,1],quiver(y,z) >>> axes[0,1].streamplot(X,Y,U,V) Add an arrow to the axes Plot a 20 field of arrows Plot 2D vector fields

Data Distributions

+++ axes2(0).pcolor(data2)

>>> C5 = pit.contour(Y,X/U)

>>> axes2[2].contourficata1]

>>> axes2[2]= ax ctabel(CS)

>>> axes2[0] pco;ormeshidata)

>>> art histly! >>> ax3 boxplot(y) >>> ax3 violinglot(z)

Plot a histogram Make a box and whisker plot Make a violin plot

Pseudocolor plot of 2D array Pseudocolor plot of 2D array Plot contours Plot filled contours Label a contour plot

Save Plot

Save figures

>>= pit savefig(foo png)

Save transparent figures

>>> pit.savefig(foo.ong) transparent=True)

Show Plot

sss pitshow()

Close & Clear

>>= pit.clail

>>> pitciff) >>> pitclosel)

Data Visualisation with ggplot2 Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same few components: a data set. a set of geoms - visual marks that represent data points, and a coordinate system

To display data values, map variables in the data set to pestnet it. properties of the geam like size, color, and a and y locations.

fluid a graph with aplot() or againt()

qplet(+ = cty, y = hwy, color = cyl. data = mpg, geom = "point") Creates a conscient plat with given data geors, and mappings. Supplies many useful defaults.

ggptotfdata = mpg. seets = cte, y = hwyD Begins a part that you finish by adding layers to. No debailty, but provides more postero than aposti-

gaplot(mpg, aesthwy; ctyl) + peom_cointlaestcolor = cvttl + geam smaoth/method = 7m1 + coord cartesian() +

scale color gradient() + theme_bw0

Add a new layer to a plot with a grown 10 or stat 1) function. Each provides a given, a set of aesthetic mappings, and a default stat and position adjustment

tast_plottl

ggsavel 'plot.png', width = 5, height = 5) Saves last plot as 5' x 8' file named 'plot and in working stractory. Matches file type in file extension.

Coordinate Systems

T A TO B WHEN THE BEAUTY

coord_cartesian(stim = ±10, 53) The Details Cartenia's Investigation applies

- count fixedfram - 1775

courd_flip()

coord_potar(theta = 'v', Grection=1')

cound_transfytrans = "sort")

coerd_map(arojection = faithef, prientation of A1, >74, 3(\$) prientation arbitration give this prientation from their appropriatage their state 30 feets. A sequelative, Legrangia state

Geoms Use a general represent data policies use the gappics are their projection to represent variables. Each function returns a layer

One Variable

+ geom_area(stat = 'bin')

estra ester fill interper sine. ports also serve > construit is tild > 3 m? geom_density(surrent = "gaussian") p. state case ht. hortype, seet, argett - geom, treatylands = Literty.2

geom_detplot()

geom_histogram(biowidth = 5)

Graphical Primitives

peam_palygoniassigroup = group/i

geam_path@neend="butt"

geom_ribbon(ass);moneumen maxeumemptoy + 900() yras yets jets lets (8 (seess)us

geam_segment(ass wend = long + deite_long, yend = lat + delta_latik

geom_rectfaustamin = lung, ymin = fat. armaco long + delta long, ymax = lat + delta (atl) max one, ymax on a spiz pax fill mittao arv

Three Variables

male of the second state of the second state of the second second

geom_contourtaes.z = zil

geum_rester(ass|Hit = r), Poust=0.5, 1=0.5, Interpolate=FALSE)

geom_titelaestfill = zit

Faceting

Fample divide a plot into substitut based on the values of time or more discrete variables.

" facet_gridt. - ft) - facet_grid(year - .)

facet_grid(year - ft)

For facet_wrap(- ft)

Set agains to let are limits very acress tacyta

acates - 'free'

a part y axis limits actual to includual facets

+ 'free_y' + y axis (en to adjust

Set leveller to askust facet labors. | labeller = label both NAME OF THE OWNER OF THE OWNER, - n. labeller = label_both DIRECTOR THAT IS WAS IN STRAINS THAT Labetler = tabel_both

STATES STREET, STATES STREET, SCHOOL

Two Variables

antimopus A. Cantin

| geom_blank()

Graffi_most

geom_point() geom_quantile()

geom_rug(sides = 'bi') geom_emouth(model = lm) geom_text[ass]labe(- cts/)

Discrete A. Continuous Y

geom_bar(stat = "identity") geom_boxplot() wearn detailet(liminis = v.

stackdir = center's geom_violiniscale = 'area')

Discrete X, Discrete Y.

Continuous Riversate Distribution

geom_bin2d|binwidth = c/5, 0.50

geom_density2d() geum_hexi)

geom_area() geom_line() geom_stepfd rection = "he")

Contracting and Research and Colors

geom_map(sestmap_id = state), map = map() + expand_limits(s = map(stong, y = map(stat))

Position Adjustments

Position adjustments determine how to arrange geoms that would otherwise occupy the

ortinois, aas/IL fill = deeli

Arrange markets cale by sale

- grant bariposition - 'RIE'

Such exercision as all our areful

For pursue popul position = "litter"| Each position adjustment can be recast as a function with manual width and height

position = position_dadge[width = 1]

Labels

Days the late of the Vices

L+ Colos(tifle ="New title", x = "New x", y.= "Note y") M. At the secur

Use scale functions to update legend

Legends

themetegend position = "bottom"?

guides(color = none)

- scale_till_discrete(name = Title", labels = cl'A', B', Till

that, upon a view by language,

Stats An alternative way to built a tree

Some plots visualize a transfermation of the original data set. Use a stat to choose a common transformation to visualize.

e.p. a + geom_bar(stat = "bin") DE NO 100 HIMIM

Each star creates additional variables to map posthotics to. These variables use a common ... name... syntax, stat functions and geomfunctions both combine a stat with a geam to make a layer, i.e. stat, bin(geom="bar") does the same as geom, bar(stat="bin")

- stat dessity2d(am) lif - Janel J.

- stat_bin(binwidth = 1, or gin = 10) stat_bindot(b nw dth = 1, binusis = "4")

 stat_densitylaclust + 1, kerrel + "gaussian") stat_hin2d(hins = 30, drop = TRUE)

stat_binhar@rins = 30)

stat_density2d(contour - TRIJE n - 100) what contour(sests = sil

stat_spoketaestradk.s- z, angle = zi)

stat_summary_hextressiz = zi. bins = 30 fun = meant stat_besplot(cost + 1.5)

stat_ydensity(adjust = 1, kernel = "gaussian", scale = "area")

stat ecdf(n = 40)

stat_quantile(quantiles = c(0.25, 0.5, 0.75), formula = y = log(s).

elet_emouth(method = "euto", formula = y = x, se = TRUE; n = 60 eltrange = FALSE, level = 0.969

stat_ecdf(n = 40)

stat_quantile(quantiles = c01.25, 0.5, 0.75), formula = y = log(s),

* stat_amouth(method = "auto", formula = y - x, se = TRUE n = 80 futrange = FALSE (eve) = 0.95)

- stat_function(ses(x = -3:3) fun = dnorm, r = 101, args = list(sd=0.5))

1 stat identity()

Omue tate

ppplot() + stat_qq(aes(sample=1:100), distribution = qt, dparams = list(df=51)

Flood is neam's state or "weam of boot" ()eupinu_tate +1

Themes

theme_kw()

· themo_gray()

theme_minimal()

syttemes. Fackage with additional gaplot? themes:

Scales

Scales control how a plot maps data values to the visual values of or austhetic. To change the macping, add a ustom scale.

General Purpose scalled

scale * continuousQ - respond asset to asset asset scale_*_discreteO - map discrete access to record before scale_*_identity() - product recent account of the

K and Y Invalles scales

scale_x_date(abels - date_former) Seni Sel'). breaks + date_breaks[2 weeks])

bed a date_proble; Ser Most re la bed Server. scale_x_datetime() processes our reterior to

scale_x_log100 Fire and in Figure scale_x_reverse() - the event professor and

scale x sqrt() that are made and took Color and Jill scales.

scale_fill_gradienti - scale fill brewert high a "vollow"

o - scale_fill_gradient2[tow = 'cest', fright = 'blue', mid = 'white', midpoint = 259 - scale MI gray!

- scale_fit_gradiented Non-rendered test returnit.

etart - iD; arm -na.vatier - rid7

Shape scales. * * * * yeum_point

AN AN HER DA DE TO THE STATE OF 10 1+ × 0 H · · · •

1+ 10 11 11 11 0 + 50 112 IF A 11 0 10

Size scales

0

- scale_stan_areatrics = 68

Without clipping (preferred)

. 71

Zooming

1.4 coord cartesiant 1.1000, yim = c.10, 200

With stipping (remeses unuses data points)

1 + xlim(0, 100) + ylim(10, 20)

scale_x_centinuouslimas = cl0, 1000 + scale_y_continuouslimits = ci0, 100))