CAHIERS MATHÉMATIQUES MONTPELLIER 1979

GROUPOÏDE FONDAMENTAL ET THÉORÈME DE VAN KAMPEN EN THÉORIE DES TOPOS Oliver LEROY

UNIVERSITÉ DES SCIENCES
ET TECHNIQUES
DU LANGUEDOC
U. E. R. DE MATHÉMATIQUES
Place Eugène Bataillon
34060 MONTPELLIER CEDEX

Ce travail m'a été suggéré par C. CONTOU-CARRÈRE et A. GROTHENDIECK. Mes résultats ont été exposés lors de séances de géométrie algébrique faites avec D. ALIBERT et C. CONTOU-CARRÈRE. Ce texte a été transcrit par Mateo Carmona

TABLE ANALYTIQUE

Le titre suffit à délimiter le sujet ; j'ai mis les explications indispensables dans la table des matières, formant ainsi une table analytique.

1. Objets connexes dans un topos

Bref exposé des notions nécessaires pour définir un topos localement connexe.

2. Objets localement constants et objets galoisiens

- **2.1.** Les objets localement constants d'un topos correspondent aux revêtements d'un espace topologique ou d'un schéma, regardés comme des faisceaux.
- 2.2. On démontre pour les objets localement constants d'un topos localement connexe les principales propriétés des revêtements d'un espace localement connexe.
- **2.3.** Les objets galoisiens correspondent aux revêtements galoisiens. La "théorie de Galois" classe les objets localement constants trivialisés par un objet galoisien donné d'un topos connexe. (Dans le topos étale du spectre d'un corps k, les objets galoisiens sont les extensions galoisiennes de k; on retrouve ainsi la théorie de Galois classique).
- **2.4.** Topos engendré par les objets localement constants d'un topos localement connexe donné E: les résultats du chapitre suivant permettront de regarder ce topos, qui est formé des sommes directes d'objets localement constants de E, comme le groupoïde fondamental de E.

3. Topos localement galoisiens et groupoïde fondamental

La notion de topos localement galoisien nous tiendra lien d'une fastidieuse théorie des "progroupoïdes"; et elle permet de définir le groupoïde fondamental d'un topos par une propriété universelle.

4. Limites inductives de topos et théorème de Van Kampen

On définit un système inductif de topos à l'aide d'une catégorie fibrée en topos au-dessus d'une catégorie d'indices. Les sections cartésiennes de cette catégorie fibrée sont les objets du topos limite inductive du système. Ainsi les objets d'une limite inductive de topos apparaissent comme des objets de la somme directe munis d'une certaine donnée de descente. Le théorème 4.5. sert à décrire le groupoïde fondamental d'une limite inductive de topos localement connexes connaissant leurs groupoïdes fondamentaux. L'énoncé et le démonstration de ce théorème font intervenir un topos auxiliaire, sorte de recollement intermédiaire entre la somme directe et la limite inductive, qui est décrit en (4.3.) et (4.4.). Je l'ai éliminé dans le corollaire de la proposition 4.6.2., qui décrit directement les objets localement constants de la limite inductive. L'avantage de la forme (4.5.) est de permettre des calculs explicites, qui sont développées dans les poins 4.6.3. à 4.6.7.

A. Appendice

Catégories fibrées en topos

5. Compléments

- 5.1. Groupe fondamental d'un topos localement connexe en un point.
 - **5.2.** Groupoïde fondamental profini.

CONVENTIONS AND NOTATIONS

1) *Univers*: Dans tout le texte on fixe un univers \underline{U}

- 2) Morphismes de topos
 - a) Étant donné un morphisme de topos $E \xrightarrow{u} F$, on note u^{-1} le foncteur image inverse ;
 - b) Étant donnés deux morphismes de topos $E \xrightarrow[v]{u} F$, on prend comme morphismes de morphismes de topos $u \longrightarrow v$ les morphismes fonctoriels $v^{-1} \longrightarrow u^{-1}$
- 3) Objets constants: Pour tout \underline{U} -topos T, on note e_T l'objet final de T. Pour tout ensemble \underline{U} -petit I, on note I_T l'objet constant de T correspondant. Pour tout objet X de T, on désigne alors par I_X l'objet $I_{T/X} = X \times I_T$.

§ I. — OBJETS CONNEXES DANS UN TOPOS

Tous les topos considérés sont des \mathcal{U} -topos

1.1. Définitions

- a) Un objet d'un topos est *connexe* s'il n'est pas somme directe de deux objets non-vides.
- b) Soit X un objet d'un topos. On appelle *composante connexe* de X tout sous-objet connexe et non-vide C de X tel que X soit somme directe de C et d'un autre objet.
- c) Un topos est connexe si son objet final est connexe.
- d) Un topos est localement connexe s'il est engendré par ses objets connexes.
- **1.2.** Soir C un objet d'un topos E. Les propriétés suivantes sont équivalentes :
- a) C est connexe et non-vide.
- b) Le foncteur

$$Hom_F(C,-): E \longrightarrow Ens$$

commute aux sommes directes.

c) Pour tout ensemble I, l'application naturelle $I \longrightarrow Hom(C, I_E)$ est bijective (c'est immédiat).

- **1.3.** Soit $(U_i \xrightarrow{f_i} V)_{i \in I}$ une famille épimorphique d'un topos E. Considérons les propriétés:
- (a) V est connexe et non-vide.
- (b) Le graphe $R \subset I \times I$ de la relation

"
$$U_i \times_V U_j$$
 n'est pas vide"

est connexe (en tant que graphe ayant I pour ensemble de sommets). On a

- (i) si les U_i sont non-vides, (a) entraı̂ne (b).
- (ii) si les U_i sont connexes, et non-vides, (b) entraı̂ne (a).

C'est trivial si $I = \emptyset$. On suppose donc $I \neq \emptyset$.

 $a\Rightarrow b$ (U_i non-vides). Soit (I_1,I_2) une partition de I telle que [pour] tout $i\in I_1$ et tout $j\in I_2$, $U_i\times_V U_j$ soit vide. Si on désigne par V_1 et V_2 respectivement les images des morphismes

$$\coprod_{i\in I_1} U_i \longrightarrow V, \quad \coprod_{i\in I_2} U_i \longrightarrow V$$

alors V est somme de V_1 et V_2 . Donc V_1 ou V_2 est vide. [] U_i n'est vide, I_1 ou I_2 est vide.

 $b\Rightarrow a$ (U_i connexes et non-vides). Soit $(Y_\alpha)_{\alpha\in A}$ une famille d'objets de E, et considérons un morphisme

$$V \longrightarrow Y = \coprod_{\alpha} Y_{\alpha}.$$

Pour chaque $\alpha \in A$, soit I_{α} l'ensemble des $i \in I$ tels que le composé

$$U_i \longrightarrow V \longrightarrow Y$$

se factorise par Y_{α} . Puisque les U_i sont connexes et non-vides, I est réunion disjointe des I_{α} . Soient α et β deux indices distincts. Si $i \in I_{\alpha}$ et $j \longrightarrow I_{\beta}$, $U_i \times_V U_j$ est vide puisque c'est un sous-objet de $U_i \times_V U_j$. Appliquant (b), on voit que $I = I_{\alpha_0}$ pour un []. Donc V est connexe et non-vide par (1.2).

1.4. Tout objet d'un topos localement connexe est somme directe d'objets connexes (donc somme directe de ses composantes connexes).

Soit E un topos localement connexe. Soient Y un objet de E et $(U_i \longrightarrow Y)_{i \in I}$ une famille épimorphique de E, où les U_i sont connexes et non-vides. Soit R le graphe de la relation " $U_i \times U_j$ n'est pas vide". Pour chaque composante connexe r de R, soit C_r l'image dans Y de la somme des U_i , i parcourant l'ensemble des $i \in I$ qui sont sommets de r. Y est somme directe des C_Y , qui sont connexes et non-vides d'après (1.3).

1.5. Pour qu'un topos E soit localement connexe, il faut et il suffit que le foncteur

$$I \longrightarrow I_E$$

Ens
$$\longrightarrow E$$

admette un adjoint à gauche

$$c: E \longrightarrow \operatorname{Ens}$$
.

Dans ce cas, étant donné un objet X de E, les produits fibrés

$$\begin{array}{ccc} X_Y & \longrightarrow e_E \\ \downarrow & & \downarrow^{\gamma} \\ X & \longrightarrow c(X)_F \end{array}$$

(γ parcourant c(X)) sont les composantes de X.

(i) Supposons E localement connexe. Pour tout objet X de E, désignons par c(X) l'ensemble des classes de X-isomorphisme de composantes connexes de X (cet ensemble est bien sûr 𝒰-petit). Soit f: X → Y un morphisme de E; étant donnée une composante connexe C de X, il existe une composante connexe D de Y, unique à Y-isomorphisme près, telle que f_C se factorise par D. D'où une application

$$c(X) \longrightarrow c(Y)$$
.

On a ainsi obtenu un foncteur covariant

$$c: E \longrightarrow \operatorname{Ens}$$
.

Le foncteur c est adjoint à gauche de $I \longrightarrow I_E$: en effet, étant donnés un objet X de E et un ensemble I, on définit une application :

$$App(c(X),I) \longrightarrow Hom(X,I_E)$$

en associant à l'application

$$a: c(X) \longrightarrow I$$

le morphisme $X \longrightarrow I_E$ dont la restriction à chaque composante connexe C de X est la section de I_E au-dessus de C définie par $a(C) \in I$; cette application est bijective par (1.2), et celle est fonctorielle en X et I.

(ii) Inversement, supposons qu'on ait un adjoint à gauche $c: E \longrightarrow \text{Ens}$ du foncteur $I \longrightarrow I_E$.

Soit X un objet de E. Avec les notations de l'énoncé, X est somme directe des X_{γ} , $\gamma \in c(X)$. Il suffit donc de prouver que les X_{γ} sont connexes et non-vides. Or, pour tout ensemble I, les applications naturelles

$$I \longrightarrow Hom(X_{\gamma}, I_{E})$$

fournissant une application

$$I^{c(X)} \longrightarrow \prod_{\gamma} Hom(X_{\gamma}, I_{E})$$

qui rend commutatif le diagramme [] donc chacune des applications

$$I \longrightarrow Hom(X_{\gamma}, I_{E})$$

est bijective; on conclut par (1.2).

§ II. — OBJETS LOCALEMENT CONSTANTS ET OBJETS GALOISIENS

On se donne un \mathcal{U} -topos E.

2.1. Objets localement constants

2.1.1. Définitions :

- 1) Soient A et B deux objets de E. On dit que A trivialise B si $A \times B \xrightarrow{pr_1} A$ est un objet constant du topos $E_{/A}$.
- 2) Nous dirons qu'un objet *L* de *E* est *localement constant* si les objets de *E* qui trivialisent *L* recouvrent *E*.
- 3) Enfin nous dirons qu'un préfaisceau F sur une catégorie C est localement constant si pour tout morphisme $X \longrightarrow Y$ de C, l'application $F(Y) \longrightarrow F(X)$ est bijective.
- **2.1.2.** Soient Y un objet de E et $D \xrightarrow{u} C$ un morphisme de E.
- (i) Si C trivialise Y, D trivialise Y;
- (ii) Si, en outre, C et D sont connexes et non-vides, l'application $f \longrightarrow f \circ u$ de Hom(C,Y) dans Hom(D,Y) est bijective.

Prenons un ensemble I et un C-isomorphisme $\alpha: C \times Y \simeq I_C$.

(i) On a des diagrammes cartésiens

[]

d'où un D-isomorphisme

$$\beta: D \times Y \longrightarrow I_D$$
.

(ii) Soient $f: C \longrightarrow Y$ et $g: D \longrightarrow Y$. Pour que $f \circ u = g$, il faut et il suffit que le diagramme

[]

d'où le point (ii) par (1.3).

2.1.3.

(i) Soient C et X deux objets de E. On a un morphisme naturel

$$p: \operatorname{Hom}(C,X)_C \longrightarrow X$$

c'est le morphisme qui, pour tout $f \in \text{Hom}(C,X)$, rend commutatif le diagramme

[]

où i_f désigne la section de $Hom(C,X)_C$ au-dessus de C définie par f.

On a donc aussi un *C*-morphisme naturel :

$$m = (q, p) : \text{Hom}(C, X)_C \longrightarrow C \times X$$

où q désigne le C-morphisme $\operatorname{Hom}(C,X)_C \longrightarrow C$.

(ii) Si C est connexe non-vide et trivialise X, le C-morphisme naturel

$$\operatorname{Hom}(C,X)_C \longrightarrow C \times X$$

est un isomorphisme.

En effet, prenons un ensemble I et un C-isomorphisme $I_C \longrightarrow C \times X$. On en tire une bijection :

$$\operatorname{Hom}(C, I_C) \simeq \operatorname{Hom}_{\mathbb{C}}(C, C \times X) \simeq \operatorname{Hom}(C, X)$$

d'où un diagramme de $E_{/C}$:

[]

[donc] la commutativité prouve notre assertion.

2.1.4. Soient p un point de E, C un objet connexe de E, y_0 un point de la fibre $p^{-1}(C)$ et X un objet de E. Si C trivialise X, l'application

$$f \longrightarrow f(y_0)$$

$$\operatorname{Hom}(C,X) \longrightarrow p^{-1}(X)$$

est bijective.

En effet, elle se déduit de l'application

$$(y, f) \longrightarrow (y, f(y))$$

$$p^{-1}(C) \times \operatorname{Hom}(C,X) \longrightarrow p^{-1}(C) \times p^{-1}(X)$$

qui provient, par passage aux fibres, de l'isomorphisme naturel

$$\operatorname{Hom}(C,X)_C \longrightarrow C \times X \quad (2.1.3,ii)$$

2.1.5. Soient L un objet localement constant de E et U l'image de $L \longrightarrow e_E$. Il existe un objet V de E tel que $U \coprod V$ soit isomorphe à e_E .

Démonstration. Recouvrons e_E par des objets $(U_i)_{i\in I}$ qui trivialisent L. Soit I_0 (resp. I_1) l'ensemble des $i\in I$ tels que $U_i\times L$ soit vide (resp. non-vide). Pour tout $i\in I_0$ et tout $j\in I_1$, $U_i\times U_j$ est vide; en effet, il existe un ensemble non-vide F tel que $F_{U_i\times U_j}$ soit vide.

Soient V_0 et V_1 respectivement les images de :

$$\coprod_{i\in I_0} U_i \longrightarrow e_E, \quad \coprod_{i\in I_1} U_i \longrightarrow e_E.$$

Évidement, V_1 est un sous-objet de U, et $U \times V_0$ est vide. Comme e_E est somme de V_0 et V_1 , on conclut que $V_1 \simeq U$ et $U \coprod V_0 \simeq e_E$.

- **2.2.** Nous supposons maintenant le topos *E localement connexe*
- **2.2.1.** Soient Z un objet de E et S une sous-catégorie génératrice de E dont les objets sont connexes et non-vides dans E. Les propriétés suivantes sont équivalentes :
 - a) Tout objet de S trivialise Z;

b) Pour tout morphisme $D \longrightarrow C$ de S, l'application correspondante $\operatorname{Hom}(C,Z) \longrightarrow \operatorname{Hom}(D,Z)$ est bijective; autrement dit, $\operatorname{Hom}(-,Z)$ est un préfaisceau localement constant sur S.

Démonstration. (a) \Rightarrow (b) : c'est (2.1.2). (b) \Rightarrow (a) : soit C_0 un objet de S. Pour tout objet D de S, l'application

$$(u, f) \longrightarrow (u, f \circ u)$$

$$\operatorname{Hom}(D, C_0) \times \operatorname{Hom}(C_0, Z) \longrightarrow \operatorname{Hom}(D, C_0) \times \operatorname{Hom}(D, Z)$$

au-dessus de $\text{Hom}(D, C_0)$ est bijective, d'où un C_0 -isomorphisme

$$\operatorname{Hom}(C_0, Z)_{C_0} \longrightarrow C_0 \times Z.$$

2.2.2. Soit *S* une sous-catégorie génératrice de *E* dont les objets sont connexes et nonvides dans *E*. Munissons *S* de la topologie induite par *E*. Tout préfaisceau localement constant sur *S* est un faisceau.

Démonstration. Soit F un préfaisceau localement constant sur S. Il est clair que F est un préfaisceau séparé ; prouvons que c'est un faisceau.

Soient U un objet de S et R un crible couvrant U (i.e. R contient une famille épimorphique de E); soit enfin une section

$$t: R \longrightarrow F$$
.

Pour tout objet V de S et toute $f:V\longrightarrow R$, désignons par x(V,f) la section de F audessus de U, image inverse de $t(f)\in F(V)$ par la bijection $F(U)\longrightarrow F(V)$ correspondant à $f:V\longrightarrow U$. Étant donné un diagramme commutatif

on a $x(V_0, f_0) = x(V_1, f_1)$; donc (d'après (1.3) les x(V, f) sont tous égaux à un même $x \in F(U)$; et on a $x_{/R} = t$ par construction de x).

2.2.3. (Définition auxiliaire)

(i) Soit L un objet localement constant de E. Soit S une sous-catégorie génératrice de E, dont les objets sont connexes non-vides dans E et trivialise L. On appellera site générateur adapté à L une telle sous-catégorie, munie de la topologie induite par E.

- (ii) Si $(L_i)_{1 \le i \le n}$ est une famille finie d'objets localement constants de E, il existe un site générateur de E adapté à chacun des L_i : cela découle de (2.1.2, (i)) par récurrece sur n.
 - 2.2.4. (lim et lim d'objets localement constants).

Soient I une petite catégorie et $L:I\longrightarrow E$ un foncteur tel que L(i) soit localement constant pour tout $i\in Ob(I)$. Supposons qu'il existe un site générateur S adapté à tous les L(i); alors :

- (i) $P = \prod L(i)$ est localement constant et S est un site générateur adapté à p (2.2.1).
- (ii) Le préfaisceau sur S :

$$C \longrightarrow L(C) = [] \operatorname{Hom}(C, L(i))$$

est un faisceau ; donc [] est un objet localement constant, isomorphe à L en tant que faisceau sur S (en particulier, S est un site générateur adapté à $\lim_{n \to \infty} L(i)$).

(iii) Corollaire : Soit $u: L \longrightarrow M$ un morphisme entre objets localement constants de E, et soit S un site générateur adapté à L et M. En tant que faisceau sur S, l'image de u est isomorphe à

$$C \longrightarrow \mathfrak{J}(\operatorname{Hom}(C, L) \longrightarrow \operatorname{Hom}(C, M)).$$

- **2.2.5.** Soit *L* un objet localement constant de *E*.
- (i) Tout sous-objet localement constant K de L est somme directe de composantes connexes de L.
- (ii) Soient C un objet connexe non-vide de E et K un sous-objet de L qui est somme directe de composantes connexes de L. Si C trivialise L, C trivialise K.

Démonstration.

(i) Soit S un site générateur adapté à K et à L. Le préfaisceau sur S

$$C \longrightarrow M(C) = \text{Hom}(C, L) \longrightarrow \text{Hom}(C, K)$$

est un faisceau (2.2.2), et L est somme directe de K de M, c.q.f.d.

(ii) Si L est somme directe de deux sous-objets K de K', alors $C \times L$ qui est constant dans $E_{/C}$ est somme directe de $C \times K$ et $C \times K'$, qui sont donc constants dans $E_{/C}$ puisque C est connexe et non-vide.

2.2.6. Corollaires

- (a) Tout morphisme d'un objet localement constant non-vide de *E* dans un objet localement constant connexe de *E* est un épimorphisme.
- (b) Soient des morphismes de *E* :

[]

où L et M sont localement constants et L en outre, connexe. Si le noyau de (f,g) est non-vide, alors f=g.

((a) découle de 2.2.4, (iii) et (b) de 2.2.4, (i)).

2.3. Objets galoisiens

On ne suppose plus le topos E localement connexe.

2.3.1. Définition. — Nous dirons qu'un objet Y de E est galoisien s'il est localement constant, connexe et non-vide, et s'il est un pseudo-torseur sous le groupe constant $Aut(Y)_E$.

Remarques.

- (i) D'après (2.1.5.), cela revient à dire que l'image U de $Y \longrightarrow e_E$ est une composante connexe de e_E (1.1), que Y est connexe, et qu'il est un torseur, dans $E_{/U}$, sous le groupe constant $\operatorname{Aut}(Y)_U$.
- (ii) Tout objet galoisien se trivialise lui-même.
- **2.3.2.** Soient A et B deux objets connexes de E tel que $A \times B$ soit non-vide. Si A et B se trivialisent l'un l'autre, ils sont isomorphes.

Démonstration. En effet, il existe alors des ensembles non-vides I et J tels que I_A et J_B soient tous deux isomorphes à $A \times B$. Puisque les composantes connexes de I_A (resp. J_B) sont toutes isomorphes à A (resp. B), A et B sont isomorphes.

- **2.3.3.** Corollaire: Soient A et B deux objets galoisiens de E. Si Hom(A,B) et Hom(B,A) sont non-vides, alors A et B sont isomorphes.
- **2.3.4.** Soient A et B deux objets galoisiens de E. Si A et B sont isomorphes, tout morphisme de A dans B est un isomorphisme.

Démonstration. Il suffit de prouver que tout morphisme $A \longrightarrow A$ est un automorphisme. Or (2.1.3.) le A-morphisme canonique

$$\operatorname{Hom}(A,A)_A \longrightarrow A \times A$$

est un isomorphisme, et sa restriction à $\operatorname{Aut}(A)_A$ est un isomorphisme puisque A est un pseudo-torseur sous $\operatorname{Aut}(A)_A$. Donc

$$\operatorname{Hom}(A,A) = \operatorname{Aut}(A)$$
.

2.3.5. Soient G un groupe, B^G le topos des G-ensembles à droite et $T^G \in Ob(B^G)$ l'ensemble G muni de l'opération de G par translations à droite.

L'opération de G sur l'ensemble G par translations à gauche fait de T^G un torseur de B^G sous le groupe constant G_{B^G} . Pour tout morphisme de topos $E^U \longrightarrow B^G$, on a donc une structure de G_E -torseur à gauche sur $u^{-1}(T^G)$; d'où un foncteur

(*)
$$\operatorname{Homtop}(E, B^G)^{\circ} \longrightarrow \operatorname{Tors}(E, G_E)$$

de la catégorie opposée à $\mathsf{Homtop}(E,B^G)$ dans la catégorie des G_E -torseurs à gauche de E .

Lemme. — Le foncteur (*) est une équivalence de catégories.

Démonstration abrégée.

- a) Le foncteur (*) est pleinement fidèle parce que (T^G) engendre B^G .
- b) Pour tout objet F de B^G , l'opération de G sur l'ensemble F fournis une opération du groupe constant G_E sur l'objet constant F_E .

Étant donné un G_E -torseur à gauche T, le foncteur

$$u_T^{-1}: B^G \longrightarrow E$$

$$F \longrightarrow T \wedge_{G_E} F_E$$

(produit contracté) définit un morphisme de topos $u_T: E \longrightarrow B^G$ et $u_T^{-1}(T^G)$ est isomorphe à T en tant que G_E -torseur.

2.3.6. ("Théorie de Galois")

Nous supposons le topos *E* connexe.

Soient Y un objet galoisien de E et G le groupe des automorphismes de Y.

On a une structure de G_E -torseur à gauche sur Y (2.3.1., remarque (i)), d'où, suivant 2.3.5., un morphisme de topos

$$u: E \longrightarrow B^G$$

tel que le G_E -torseur $u^{-1}(T^G)$ soir isomorphe au G_E -torseur Y.

Le foncteur image directe u_* est isomorphe au foncteur

$$\varphi: E \longrightarrow B^G$$

qui associe à l'objet X de E l'ensemble

$$\varphi(X) = \operatorname{Hom}(Y, X)$$

muni de l'opération à droite de $G = \operatorname{Aut}(Y)$ par composition (en effet, tout faisceau F sur B^G est canoniquement représenté par l'ensemble $F(T^G)$ muni de l'opération à droite de G déduite de l'opération de G sur l'objet G.

Soit LC(E, Y) la sous-catégorie pleine de E formée des objets qui sont trivialisés par Y (N. B. ces objets sont localement constants puisque Y recouvre l'objet final). Nous allons prouver que

(i) Le foncteur image inverse

$$u^{-1}: B^G \longrightarrow E$$

est pleinement fidèle et prend ses valeurs dans LC(E, Y).

- (ii) La restriction à LC(E, Y) du foncteur image directe u_* [] φ est pleinement fidèle. D'où les corollaires:
- (iii) Les foncteurs $\varphi_{/LC(E,Y)}$ et u^{-1} fournissent des équivalences quasi-inverses

(iv) La catégorie LC(E, Y) est un \mathscr{U} -topos et l'inclusion $LC(E, Y) \longrightarrow E$ définit un morphisme de topos $E \longrightarrow LC(E, Y)$.

Démonstration.

(i) T^G trivialise tous les objets de B^G ; donc, étant donné un objet F de B^G , $u^{-1}(T^G) \simeq Y$ trivialise $u^{-1}(F)$. Prouvons maintenant que le morphisme canonique

$$F \longrightarrow \varphi u^{-1}(F)$$

donné par l'adjonction entre φ et u^{-1} est un isomorphisme (ce qui entraîne la pleine fidélité de u^{-1}).

a) Le morphisme

$$T^G \longrightarrow \varphi u^{-1}(T^G)$$

est un isomorphisme. En effet, $\varphi u^{-1}(T^G)$ est un G-torseur puisque $u^{-1}(T^G)$ est isomorphe à Y (2.3.4).

- b) φ commute aux sommes directes. (1.2)
- c) Puisque T trivialise F, le morphisme

$$T^G \times F \longrightarrow \varphi u^{-1}(T^G \times F) \simeq \varphi u^{-1}(T^G) \times \varphi u^{-1}(F)$$

est un isomorphisme par (a) et (b) ; donc il en est de même du morphisme

$$F \longrightarrow \varphi u^{-1}(F)$$

puisque T^G recouvre l'objet final de B^G .

(ii) Soit L un objet de LC(E, Y). Le Y-isomorphisme :

(2.1.3.)
$$\varphi(L)_Y = \operatorname{Hom}(Y, L)_Y \xrightarrow{\sim} Y \times L$$

montre qu'on obtient pour tout objet M de E une bijection :

$$\operatorname{Hom}(Y \times L, M) \xrightarrow{\sim} \operatorname{App}(\varphi(L), \varphi(M))$$

en associant au morphisme $m: Y \times L \longrightarrow M$ l'application

$$f \longrightarrow m(f) = m \circ (1_Y, f)$$

$$\varphi(L) \longrightarrow \varphi(M)$$
.

Or on a le diagramme commutatif

[]

(où la flèche verticale désigne la composition avec la projection $Y \times L \longrightarrow L$). L'application

$$\operatorname{Hom}(L,M) \longrightarrow \operatorname{App}(\varphi(L),\varphi(M))$$

est donc injective ; il reste seulement à prouver que son image est formée des applications qui sont de morphismes de G-ensembles.

- 2.4.
- 2.4.1.
- 2.4.2.
- 2.4.3.
- 2.4.4.
- 2.4.5.
- 2.4.6.
- 2.4.7.
- 2.4.8.
- 2.4.9.
- 2.4.10.
- 2.4.11.

2.4.12. Soient F un second \mathscr{U} -topos localement connexe et $E \longrightarrow F$ un morphisme. Le foncteur image inverse transforme les objets de SLC(F) en objets de SLC(E), d'où un morphisme de topos $SLC(E) \longrightarrow SLC(F)$.

§ III. — TOPOS LOCALEMENT GALOISIENS ET GROUPOÏDE FONDAMENTAL

On maintient l'hypothèse (2.4) que l'univers $\mathscr U$ admet un élément de cardinal infini.

Définition 3.1. — Nous dirons qu'un topos E est localement galoisien s'il est engendré par ses objets galoisiens (2.3). Suivant (2.4), cela revient à dire que E est localement connexe et que :

$$SLC(E) = E$$
.

Dans les numéros (3.2) et (3.3) on montre que les topos localement galoisiens se comportent comme des "pro-groupoïdes". On passe ensuite à la définition du (pro-) groupoïde fondamental (3.4).

3.2. (Les groupoïdes comme topos). Soient Top la 2-catégorie des \mathcal{U} -topos et Grpd la 2-catégorie des groupoïdes qui sont \mathcal{U} -petits à équivalence près ; soit enfin \mathcal{G} la sous-catégorie pleine de Top formée des topos dont tous les objets sont localement constants (ces topos sont donc a fortiori localement galoisiens). Nous allons établir des équivalences

3.2.1. Le 2-foncteur [].

Pour tout objet C de Grpd, la catégorie \widehat{C} des \mathscr{U} -préfaisceaux sur C est un \mathscr{U} -topos. La construction du topos \widehat{C} est 2-fonctorielle en C:

(a) A tout foncteur $C \xrightarrow{m} D$ entre objets de Grpd correspond un morphisme de topos

$$\widehat{m}:\widehat{C}\longrightarrow\widehat{D}$$

défini par le foncteur image inverse

$$\widehat{m}^{-1}:\widehat{D}\longrightarrow\widehat{C}$$

$$G \longrightarrow G \circ m$$

(b) A tout morphisme de Grpd:

$$G(n(X)) \longrightarrow G(m(X))$$

d'où un morphisme fonctoriel

$$\widehat{n}^{-1} \longrightarrow \widehat{m}^{-1}$$

c'est-à-dire un morphisme de morphismes de topos

$$\widehat{m} \longrightarrow \widehat{n}$$

- (c) Et la compatibilité de ces données avec les diverses opérations de composition se vérifie immédiatement.
- **3.2.2.** Pour tout objet C de Grpd, le topos \widehat{C} est objet de \mathcal{G} : tout préfaisceau représentable sur C
 - (i) est connexe et non-vide dans \widehat{C} (clair)
 - (ii) trivialise tous les objets de C (2.2.1).
- **3.2.3.** Soit C un objet de Grpd. Tout foncteur fibre de \widehat{C} est représentable par un objet de C, autrement dit, est isomorphe à un foncteur de la forme $F \longrightarrow F(X)$, où X est un objet de C.

Démonstration. Soit $\varphi:\widehat{C}\longrightarrow \text{Ens}$ un foncteur libre de \widehat{C} . Il existe un préfaisceau représentable X sur C tel que $\varphi(X)\neq\varnothing$. D'après (3.2.2. (ii)) et (2.1.4), φ est isomorphe à $F\longrightarrow F(X)$.

3.2.4. L'équivalence naturelle $C \longrightarrow \operatorname{Point}(\widehat{C})$. Soit C un objet de Grpd. A tout objet X de C, associons le point P_X de \widehat{C} défini par le foncteur fibre $F \longrightarrow F(X)$ de \widehat{C} ; cela nous donne un foncteur de C dans la catégorie des points de \widehat{C} :

$$X \longrightarrow p_X$$

$$C \longrightarrow Point(\widehat{C})$$

On çait que ce foncteur est pleinement fidèle ; donc c'est une équivalence de catégories d'après (3.2.3).

3.2.5. Soit E un topos objet de \mathscr{G} . La sous-catégorie pleine C de E formée des objets galoisiens qui trivialisent tous les objets de E est un objet de Grpd, et elle engendre E; d'où une équivalence $\widehat{C} \simeq E$.

[]

Corollaire **3.2.6.** — La catégorie Point(E) des points de E est un objet de Grpd (3.2.4.).

- **3.2.7.** L'équivalence naturelle $E \longrightarrow (Point(E))$
- a) Soit E un objet de G. On définit un foncteur

$$(*) E \longrightarrow (Point(E))^{\hat{}}$$

en associant à l'objet X de E le préfaisceau

$$p \longrightarrow p^{-1}(X)$$

sur Point(E) (l'action sur les morphismes est évidente).

b) Le foncteur (*) est une équivalence de catégories (donc il définit une équivalence de topos (Point(E)) $\widehat{\longrightarrow} E$).

D'après (3.2.5), il suffit de le prouver pour $E = \widehat{C}$, où C est un objet de Grpd. L'équivalence naturelle $C \longrightarrow \operatorname{Point}(\widehat{C})$ fournit une équivalence de catégories

$$(\operatorname{Point}(\widehat{C})) \longrightarrow \widehat{C}$$

et le foncteur composé

$$\widehat{C} \longrightarrow (\operatorname{Point}(\widehat{C})) \widehat{\longrightarrow} \widehat{C}$$

n'est autre que le foncteur identique de \widehat{C} .

3.2.8. Conclusion. Les foncteurs

$$C \longrightarrow \widehat{C}$$

$$Point(E) \leftarrow E$$

définissent des équivalences quasi-inverses entre Grpd et G.

- 3.3. (Les topos localement galoisiens comme limites projectives filtrantes de groupoïdes)
- **3.3.0.** Dans tout ce numéro 3.3, on entend par "ordonnés filtrantes" les ensembles ordonnés filtrantes à gauche \mathcal{U} -petits, que l'on regarde aussi bien comme des catégories.
- **3.3.1.** Notre propos est d'établir pour tout \mathcal{U} -topos E l'équivalence des propriétés suivantes :
 - (i) E est localement galoisien.
 - (ii) Il existe un ordonné filtrant I (3.3.0) et une catégorie fibrée en \mathscr{U} -topos $F \longrightarrow I$ (A. 1) qui remplit les conditions suivantes :
 - 1) Les fibres de F sont des objets de \mathcal{G} (3.2).
 - 2) Les foncteurs changement de base de F sont pleinement fidèles.
 - 3) E est une 2-famille projective de F dans la 2-catégorie des \mathscr{U} -topos (A. 4)
 - 3.3.2.
 - 3.3.3.
 - 3.3.4.
 - 3.3.5.
 - 3.3.6.
 - 3.3.7.
 - 3.4. Le groupoïde fondamental

Définition 3.4.1. — Nous appellerons (par abus de langage) groupoïde fondamental d'un \mathcal{U} -topos E la donnée d'un \mathcal{U} -topos localement galoisien S et d'un morphisme de topos :

$$p: E \longrightarrow S$$

tel que pour tout \mathscr{U} -topos localement galoisien T le foncteur

$$\operatorname{Homtop}(S,T) \longrightarrow \operatorname{Homtop}(E,T)$$

donné par la composition avec p soit une équivalence de catégories.

Remarque. Si E est localement connexe, le morphisme de topos $E \longrightarrow SLC(E)$ défini par l'inclusion $SLC(E) \longrightarrow E$ (2.4) fait de SLC(E) un groupoïde fondamental de E.

3.4.2. (Condition suffisante pour qu'un topos connexe admette un groupoïde fondamental)

Soit E un \mathscr{U} -topos connexe. Supposons qu'il existe une petite famille (Y_{α}) d'objets galoisiens de E, telle que tout objet de E qui admet une structure de torseur sous un groupe constant puisse être trivialisé par un Y_{α} . Soient K la sous-catégorie pleine de E formée des objets qui peuvent être trivialisés par un objet galoisien, et S la sous-catégorie pleine de E formée des sommes directes d'objets de K. S est un \mathscr{U} -topos localement galoisien, et l'inclusion $S \longrightarrow E$ qui fait de S un groupoïde fondamental de E.

Démonstration. []

3.4.3. Question. Soient E un \mathcal{U} -topos et $p:E\longrightarrow S$ un groupoïde fondamental de E. Le foncteur $p^{-1}:S\longrightarrow E$ est-il toujours pleinement fidèle? Si la réponse à cette question était affirmative, on obtiendrait aisément une condition nécessaire et suffisante pour l'existence d'un groupoïde fondamental.

§ IV. — LIMITES INDUCTIVES DE TOPOS ET THÉORÈME DE VAN KAMPEN

Soient I une petite catégorie, $F \xrightarrow{\Pi} I$ une catégorie fibrée en \mathscr{U} -topos (A,1), et

$$L = \operatorname{Cart}_I(I, F)$$

La catégorie des sections cartésiennes de ${\cal F}$ au-dessus de ${\cal I}$.

- 4.1.
- 4.1.1.
- 4.1.2.
- 4.2.
- 4.3.
- 4.4.
- 4.4.1.
- 4.4.2.
- 4.4.3.
- 4.4.4.

- 4.4.5.
- 4.4.6.
- 4.4.7.
- 4.4.8.
- 4.4.9.
- 4.5.
- 4.5.1.
- 4.5.2.
- 4.6.
- 4.6.1.
- 4.6.2.
- 4.6.3.
- 4.6.4.
- 4.6.5.
- 4.6.6.
- 4.6.7.

APPENDICE: CATÉGORIES FIBRÉES EN TOPOS

Soit I une catégorie \mathcal{U} -petite.

A.1. J'appelle catégorie fibrée en \mathcal{U} -topos au dessus de I toute catégorie fibrée [] qui vérifie les axiomes suivantes :

- 1) Pour tout $i \in Ob(I)$, la fibre F_i est un \mathcal{U} -topos.
- 2) Pour toute flèche $u: i \longrightarrow j$ de I, le foncteur changement de base $F_j \longrightarrow F_i$ définit un morphisme de topos $F_i \longrightarrow F_j$.
- **A.2.** Définissons maintenant la 2-catégorie Fibtop(I) des catégories fibrées en \mathcal{U} -topos au-dessus de I: étant données deux catégories fibrées en topos F, G au-dessus de I, nous prenons comme catégorie des morphismes de F dan G

$$Cartop_I(F, G)$$

la sous-catégorie pleine de

$$\operatorname{Cart}_I(G,F)^\circ$$

(catégorie opposée de la catégorie des I-foncteurs cartésiens $G \longrightarrow F$) définie comme voici : un I-foncteur cartésien $\varphi: G \longrightarrow F$ définit un morphisme de catégories fibrées en topos $F \longrightarrow G$ si pour tout $i \in Ob(I)$ le foncteur $G_i \longrightarrow F_i$ déduit de φ par restriction définit un morphisme de topos $F_i \longrightarrow G_i$.

A.3. La 2-catégorie Fibtop(I) est équivalente à la 2-catégorie des 2-foncteurs de I dans la catégorie des \mathscr{U} -topos: les catégories fibrées de la forme $I \times E$ (E un \mathscr{U} -topos) correspondant aux 2-foncteurs constants ; d'où une définition des 2-limites inductives et projectives de topos:

A.4. Soit F une catégorie fibrée en \mathcal{U} -topos au-dessus de I. Nous appellerons 2-limite inductive de F le 2-foncteur covariant

$$E \longrightarrow \operatorname{Cartop}_{I}(F, I \times E)$$

et 2-limite projective de F le 2-foncteur contravariant

$$E \longrightarrow \operatorname{Cartop}_{I}(I \times E, F)$$

La 2-limite inductive (resp. projective) de F se représente donc, quand c'est possible, par un \mathscr{U} -topos L muni d'un morphisme de catégories fibrées en topos

$$F \longrightarrow I \times L$$

(resp.
$$I \times L \longrightarrow F$$
).

§ V. – COMPLÉMENTS

5.1. Groupe fondamental d'un topos localement connexe en un point

5.1.1. Soient T un topos localement galoisien et p un point de T. Nous appellerons groupe fondamental de T en p le groupe $\Pi_1 = \Pi_1(T,p)$ des automorphismes du foncteur fibre p^{-1} . On a donc pour tout objet X de T une opération à gauche naturelle de $\Pi_1(T,p)$ sur la fibre $p^{-1}(X)$; c'est-à-dire un foncteur

$$f: T \longrightarrow \operatorname{Ens}_{\Pi_1}$$

de T dans la catégorie des Π_1 -ensembles à gauche.

5.1.2. Pour tout objet localement constant L de T, soit V_L l'ensemble des $\alpha \in \Pi_1$ qui laissent fixe chaque point de $p^{-1}(L)$. Les ensembles V_L forment un système fondamental de voisinages de 1 pour une topologie de groupe sur Π_1 . Pour tout objet X de T, l'opération de Π_1 sur $p^{-1}(X)$ est alors continue pour la topologie discrète de $p^{-1}(X)$; d'où un nouveau foncteur

$$\overline{f}: T \longrightarrow \mathrm{Dis}_{\Pi_1}$$

à valeurs dans la catégorie des Π_1 -espaces discrètes.

5.1.3. Soit I la catégorie des voisinages galoisiens de p: les objets de I sont les couples (Y,y) formés d'un objet galoisien Y de T et d'un $y \in p^{-1}(Y)$; et les morphismes $(Y,y) \longrightarrow (Z,z)$ sont les $Y \longrightarrow Z$ qui transforment y en z. I est en fait un ensemble préordonné filtrant. Pour toute flèche $u:(Y,y) \longrightarrow (Z,z)$ de I, on définit un morphisme de groupes surjectif $\operatorname{Aut}(Y) \longrightarrow \operatorname{Aut}(Z)$ en associant à l'automorphisme a de Y l'automorphisme b de

Z tel que b(z) = u(a(y)); d'où un système projectif de groupes discrets

$$\operatorname{Aut}(Y)_{(Y,y)\in I}$$

Le groupe topologique Π_1 s'identifie à la limite projective de ce système si on fait correspondre à chaque $\alpha \in \Pi_1$ la famille $(a_{(Y,y)})$ déterminée par les relations

$$a_{(Y,y)}(\alpha y) = y$$

- **5.1.4.** Supposons maintenant le topos T connexe. Les propositions suivantes sont alors équivalentes :
 - (a) Le foncteur $\overline{f}: T \longrightarrow \mathrm{Dis}_{\Pi_1}$ est une équivalence de catégories
 - (b) Pour tout voisinage galoisien (Y, y) de p, la projection

$$pr_{(Y,y)}: \Pi_1 \longrightarrow \operatorname{Aut}(Y)$$

est surjective.

(b') Pour tout objet connexe M de T, Π_1 opère transitivement sur $p^{-1}(M)$.

Ces propositions sont vérifiées dans les deux cas suivants :

- (i) Tout objet galoisien de T est fini (cf. 5.2.)
- (ii) T admet une famille génératrice dénombrable.

Notons qu'un topos localement galoisien qui remplit la condition (i) ou la condition (ii) admet toujours un point.

5.1.5. Soit maintenant E un topos localement connexe. A chaque point p de E, le morphisme de topos $E \longrightarrow SLC(E)$ (2.4.1.) fait correspondre un point \overline{p} de SLC(E).

Le foncteur fibre p^{-1} n'est autre que la restriction de p^{-1} à la sous-catégorie SLC(E) de E. On peut appeler groupe fondamental de E en p le groupe fondamental en \overline{p} du topos localement galoisien SLC(E).

Les propriétés (i) et (ii) de 5.1.4., pour le topos SLC(E), reviennent aux propriétés suivantes de E:

- (i') Tout objet galoisien de *E* est fini.
- (ii') Il existe une *suite* (R_n) de cribles couvrants e_E , telle que chaque objet localement constant de E puisse être trivialisé par un R_n (cf. 3.3.2. et 3.2.5.)

5.2. Groupoïde fondamental profini

5.2.1. Disons qu'un objet localement constant L d'un topos T est *fini* s'il existe un recouvrement (U_{α}) de e_T par des objets de T et des U_{α} -isomorphismes

$$U_{\alpha} \times L \simeq I_{U_{\alpha}}^{\alpha}$$

où les I^{α} sont des ensembles finis.

On prouve sans peine les propositions suivantes :

- 1) Soient *L* un objet l.c.f. de *T* et *R* une relation d'équivalence sur *L*. Si *R* est un objet l.c.f., le quotient l'est aussi.
- 2) Toute limite projective finie d'objets l.c.f. est l.c.f.

Et, si T est somme directe de topos connexes :

- 3) Tout objet L de T qui est l.c.f. est somme directe d'objets l.c.f. connexes ; et tout sousobjet de L qui est l.c.f. de T. Au-dessus de chaque composantes connexe de T, il y a un objet galoisien fini qui trivialise L.
- 4) Soit L un objet l.c.f. de T. Au-dessus de chaque composante connexe de T, il y a un objet galoisien fini qui trivialise L.
- **5.2.2.** Nous supposons le topos *T* somme directe de topos connexes, et qui l'univers de référence admet un élément infini.

Soit SLCF(T) la sous-catégorie pleine de T formée des sommes directes d'objets l.c.f. Les propositions 1 à 3 ci-dessus montrent que la catégorie K des objets l.c.f. de T vérifie les hypothèses du lemme 2.4.2.. Or, on prouve aisément que cette catégorie est petite à équivalence près ; donc SLCF(T) est un topos et l'inclusion $SLCF(T) \longrightarrow T$ définit un morphisme de topos en sens inverse. Enfin, d'après la proposition 4 ci-dessus et le lemme 2.4.10., SLCF(T) est un topos localement galoisien.

5.2.3. Disons qu'un topo localement galoisien est *profini* s'il est engendré par ses objets galoisiens finis. Le topos localement galoisien SLCF(T) est profini, et le morphisme $T \longrightarrow SLCF(T)$ fournit pour tout topos localement galoisiens profini P une équivalence de catégories

$$\mathsf{Homtop}(\mathsf{SLCF}(T),P) {\:\longrightarrow\:} \mathsf{Homtop}(T,P)$$

REFERENCES

- [1] P. GABRIEL ET P. ZISMAN Calculus of fractions and homotopy theory
- [2] J. GIRAUD Cohomologie non abélienne (pour les catégories fibrées)
- [3] A. GROTHENDIECK ET J. L. VERDIER Exposés I à IV du séminaire de géométrie algébrique SGA 4
- [4] A. GROTHENDIECK Exposés V et IX du séminaire SGA 1