Revision Class

Song Liu (song.liu@bristol.ac.uk)

General Stuff

What might be given?

- 2 by 2 Matrix Inversion Formula.
- Formulas of
 - Radial Basis Function;
 - Polynomial Kernel function;
 - Radial Basis Kernel function.
- Comp. complexity of matrix inversion.

 You should assume no other information will be given (at least for this part of SPS).

Facts of Exam

- Multiple choices:
 - Concepts: e.g. which of ... is true/false
 - Calculation: e.g. given info, calculate sth.
 - **Practical**: e.g. given a problem setting, which one of the following XXX should be used...
- Part III is new this year!
 - No previous exam available!
- Test yourself using all the mock questions (marked as "M" in this presentation).
- Live demonstrations happened off the slides will not be tested

Overview

- Feature Transform
 - Different Types of Feature Transforms
 - Variance and Bias Decomposition
 - Kernel Methods
- Feature Redundancy Removal
 - PCA and FDA
- Feature Dependency Modelling
 - Markov Net
 - Bayesian Net

Focus

Prerequisites

- What is Least squares?
 - How to solve it?
- What is Training data/Testing data?
 - What is training error/testing error?
- What is overfitting?

Feature Transforms

Lecture 1.

Key Messages

- Polynomial Transform
 - What is "Polynomial feature transform, with degree b=X"?
 - How choices of b affect classification boundary?

- RBF Transform
 - What is "RBF feature transform, with number of basis, b=X"?
 - How do you select centroids?
 - What does the hyper para. σ do?

Polynomial Transform

- Let f(x) be polynomial functions:
- When $x \in R$, $f(x) := [x^0, x^1, x^2, ..., x^b]$.
 - b is called the degree of f.
 - $f(x) = [0, x, x^2]$ is called a degree 2 polynomial trans. on x.

Polynomial Transform

- When $x \in R^d$,
 - f(x): = $[h(x^{(1)}), h(x^{(2)}), ..., h(x^{(d)})]$.
 - h(t): = $[t^0, t^1, t^2, ..., t^b] \in R^{b+1}$.
 - $f(x) \in R^{d(b+1)}$, which means $\beta \in R^{d(b+1)}$.

Polynomial Transform on Data Matrix

• $X \in \mathbb{R}^{n \times d}$ is data matrix with n observations and d dimensions.

•
$$f(X)$$
: =
$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ \dots \\ f(x_n) \end{bmatrix} \in R^{n \times d(b+1)}.$$

- We expanded our data matrix.
 - from d to d(b+1)

LS Solution

•
$$\widehat{\boldsymbol{\beta}}$$
: = arg min $\sum_{i=1}^{n} (y_i - \langle \boldsymbol{\beta}, \boldsymbol{f}(\boldsymbol{x}_i) \rangle)^2$

$$\bullet \widehat{\boldsymbol{\beta}} := (f(\boldsymbol{X})^{\top} f(\boldsymbol{X}))^{-1} f(\boldsymbol{X})^{\top} \boldsymbol{y}$$

• M: what is the computational complexity of calculating $\hat{\beta}$?

Radial Basis Function (RBF)

• RBF is another widely used basis function for function approximation.

•
$$f^{(i)}(x) \coloneqq \exp\left(-\frac{||x-x_i||^2}{\sigma^2}\right)$$

- $\sigma > 0$ is called width and is a hyper parameter.
- $\bullet \sigma$ is determined before fitting
- A practice is setting σ as the median of all pairwise distances of x in your data.

Radial Basis Function (RBF)

- • x_i are called **RBF** centroids.
- • x_i can be **randomly chosen** from the x in your dataset
- • $f(x) := [1, f^{(1)}(x), f^{(2)}(x), ..., f^{(b)}(x)]$
 - Do not forget 1!

M: How to choose f given data

- Given a dataset D (see next slide), what f should you use for classification? Hint: consider computational cost and overfitting
 - Polynomial, b = 1
 - Polynomial, b = 2
 - Polynomial, b = 3
 - RBF, b = 100

Use an *f* that is **just enough** for doing your
job without causing
heavy
computation/overfitting!

M: How to choose f given data

Feature Transforms

Lecture 2. Bias and variance decomposition

Key Messages

- How the choices of b in feature transform affects training and testing error?
 - Training error -> goes down as b increases.
 - Testing error -> goes down and then raise up as b increases.
- What is the expected error at a data point x_i in regression problem?
 - How does it decompose?
 - Remember the decomposition formulas.

Expected Square Error Decomposition

- Given dataset, $D = \{(x_i, y_i)\},\$
- $y_i = g(x_i) + \epsilon, \epsilon \sim N(0, \sigma^2)$
- Bias and Variance Decomposition: $\mathbb{E}_{\epsilon}[(y \hat{y}_i)^2 | \mathbf{x}_i] = \frac{\text{var}[\epsilon]}{\text{treducible error}} + \frac{[g(x) \mathbb{E}_{\epsilon}[\hat{y}_i | \mathbf{x}_i]]^2}{\text{bias}} + \text{var}[\hat{y}_i | \mathbf{x}_i]$

"Variance and Bias decomposition"

M: Calculate Variance.

- Given a data generation scheme, $y_i = x_i + \epsilon$, $\epsilon \sim N(0, \sigma^2)$, $\sum_{i=1} x_i^2 = C$ and a regression model $\hat{y} = \hat{\beta} \cdot x$, where $\hat{\beta}$ is calculated using least squares.
- 1. Write down bias and irreducible error.
 - irr. error = σ^2 , bias = 0
- 2. Calculate variance term at a data point x = 1. (see next slide for a cheat)

A Closer Look at In Sample var $[\hat{y}]$

- $\operatorname{var}[\hat{y}|\mathbf{x}_i] = \langle h(\mathbf{x}_i), h(\mathbf{x}_i) \rangle \cdot \sigma^2$
 - Where $h(x_i) := f(x_i)(f(X)^{\top}f(X))^{-1}f(X)^{\top}$
- Figure out what is f(x), f(X) and g(x) in this example, then you can use this formula to calculate the result.

• var[
$$\hat{y}|x_i$$
] = $\frac{\sigma^2}{C}$

Feature Transforms

Lecture 3. Kernel methods

Key Messages

- How do we perform kernel least squares?
- Prediction rule: $\hat{y} := k(K + \lambda I)^{-1}y$
 - What are k, K, I, y, λ ?
 - How do you use this rule to make a prediction?
 - Remember this prediction rule.

- What is
 - Linear kernel function
 - Polynomial kernel function
 - RBF kernel function?

M: Example

- Given a dataset $\{(y_1 = 1, x_1 = 1), (y_2 = -1, x_2 = -1)\}$, calculate $\textbf{\textit{K}}$ in the kernel least square prediction rule using
 - Linear kernel

$$\bullet \quad \mathbf{K} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

• Polynomial kernel $k(x, x') := (\langle x, x' \rangle + 1)^2$.

•
$$K = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

- Calculate k for a prediction \hat{y} at data point x = 2 using
 - Linear kernel: k = [2, -2]
 - Polynomial kernel: k = [9,1]

Feature Redundancy

Lecture 4. PCA

Key Messages

- What is curse of dimensionality?
 - The performance of machine learning algorithm degrades when the dimensionality of dataset increases.
- What kind of information is most likely preserved in a PCA projection?

Minimizing Projection Error

•
$$\min_{\boldsymbol{B},\boldsymbol{B}\boldsymbol{B}^{\mathsf{T}}=\boldsymbol{I}} \sum_{i=1}^{n} \left| \left| \boldsymbol{x}_{i}^{\mathsf{T}} - \boldsymbol{B}^{\mathsf{T}}\boldsymbol{B}\boldsymbol{x}_{i}^{\mathsf{T}} \right| \right|^{2}$$

• We minimize square error between original data points and its projection.

Example

 v_1 always points at the direction where your dataset has the largest variance! Intuitively explain why.

Feature Redundancy

Lecture 5. FDA

Key Messages

- Why PCA does **NOT** preserve cluster/class information?
 - It does not take class information into account
- What is within class scatterness?
- What is between class scatterness?

 What kind of information is most likely preserved in a FDA projection?

Objective of FDA

- Maximizing between class scatterness \forall_k .
 - Minimize within class scatterness \forall_k .

Example: Binary Classification Dataset

FDA embeds samples to a subspace that is the most **linearly** separable.

Example: embedding, $\boldsymbol{v}_1^\mathsf{T} \boldsymbol{x}^\mathsf{T}$

Class separation is preserved after embedding.

Feature Dependency

Lecture 6. Markov Net

Key Messages

- Cond. independence in a distribution can be encoded by a graph.
- The density of such a distribution factorizes over the same graph.

• What is Gaussian Markov net?

Gaussian Markov Network

- Multivariate Gaussian distribution:
- • $x \in R^d$, $x \sim N(0, \Sigma)$

•
$$p(\mathbf{x}) \propto \exp\left[-\frac{\mathbf{x}(\mathbf{\Sigma})^{-1}\mathbf{x}^{\mathsf{T}}}{2}\right] \operatorname{Let} \mathbf{\Theta} = (\mathbf{\Sigma})^{-1}$$

$$\propto \exp\left[-\frac{\sum_{u,v} \Theta^{(u,v)} \mathbf{x}^{(u)} \mathbf{x}^{(v)}}{2}\right]$$

$$\propto \prod_{u,v;\Theta^{(u,v)}\neq 0} \exp\left(-\Theta^{(u,v)} \mathbf{x}^{(u)} \mathbf{x}^{(v)}\right)$$

Gaussian Markov Network

•
$$p(\mathbf{x}) \propto \prod_{u,v;\Theta(u,v)\neq 0} g_{u,v}(\mathbf{x}^{(u)},\mathbf{x}^{(v)})$$

- •p(x) factorizes over G!
 - G defined by the adjacency matrix A

$$A^{(u,v)} = \begin{cases} 0, \Theta^{(u,v)} = 0 \\ 1, \Theta^{(u,v)} \neq 0 \end{cases}$$

- G must be an undirected graph (why?)
- $\Leftrightarrow p(x)$ satisfies the conditional independence encoded in G.

Example

This G encodes cond. independence in a Gaussian MN p(x)

$$\bullet \mathbf{O} = \begin{bmatrix} \Theta_{11} & 0 & \Theta_{13} & 0 \\ 0 & \Theta_{22} & \Theta_{23} & \Theta_{24} \\ \Theta_{13} & \Theta_{23} & \Theta_{33} & \Theta_{34} \\ 0 & \Theta_{24} & \Theta_{34} & \Theta_{44} \end{bmatrix}$$

Notice how the sparsity of *G* translates into the sparsity of Θ!

Diagonal must be filled!

M

- Suppose graph G encodes all cond. indep. in your Gaussian MN p. G contains three edges, five nodes. How many non-zero elements are there in inverse covariance matrix of p?
- A.3
- B.8
- C.6
- D.10
- E.11

- #Edges *2 + #Vertices
- Understand why #Edges times 2
- Understand why vertices must be non-zero

Feature Dependency

Lecture 7. Bayesian Net

Important Concepts

- What is a DAG?
- How a density is represented by a DAG? (Chain rule)
- How do you read conditional independence from a DAG?
- How Naïve Bayes Classifier is derived from a Bayesian net?

Representing Factorization using DAG

- DAG can also be used to represent the factorization of a probability dist.
- We say a probability dist. p(X) factorizes over a DAG G if

•
$$p(X) = \prod_{v \in V} p(X_v | X_{\text{parent}(X_v)})$$

M: Expressing Density using DAG

 Write down the Bayesian net represented by this graph:


```
p(Ma, Py, SPS, ML)
= p(Ma)p(Py)p(SPS|Ma, Py)p(ML|SPS, Py)
```

Represent Cond. Indep. using DAG

- Given DAG G.
- • X_v is independent of $X_{\text{non-desc}(X_v)}$ given $X_{\text{parent}(X_v)}$, $\forall v$.
 - This is an analogy to Markov net, as X_v and all non-descendants of X_v are "blocked" by the parents of X_v .
 - Knowing $X_{\text{parent}(X_v)}$, $X_{\text{non-desc}(X_v)}$ tell us nothing new about X_v .

M: Expressing Cond. Indep. Using DAG

- Which of the following Cond. Indep. is **not** encoded by the graph?
 - ML ⊥ Math | SPS, Python
 - Math ⊥ Python
 - SPS ⊥ ML | Math

Bayesian Network for Classification

Bayesian Network for Classification

• Write down the conditional probability P(Y|X).

$$\bullet P(Y|X) = \frac{\prod_i P(X_i|Y)P(Y)}{P(X)}$$

This is how Naïve Bayes is derived!

M: "useless feature"

- Given this Bayesian Net for a classification task, should you include feature X^\prime for training? Why?
- $P(Y|X) = \frac{\prod_{i} P(X_{i}|Y)P(Y)}{P(X)} p(X'|X)$ • $\hat{y} \coloneqq \operatorname{argmax}_{y} p\left(\frac{\prod_{i} P(X_{i}|Y)P(Y)}{P(X)} p(X'|X)\right)$, for a specific x!
- You should not include X' for training.

In Conclusion...

- Take your time to do all questions.
- Bring a Calculator!

- Office Hour:
 - next week Tuesday 3-5pm;
 - next week Thursday 3-5pm.