

Affine Springer Fibers and Level-Rank Duality

Minh-Tâm Quang Trinh

Yale University

- 1 Springer Theory
- 3 Level–Rank Duality

Mainly about joint work with Ting Xue:

See also the extended abstract on my website, which we have submitted to FPSAC '25.

1 Springer Theory Work over C.

G connected reductive group with Lie algebra ${\mathfrak g}$

A maximal torus

B Borel containing A

$$W$$
 Weyl group $(=N_G(A)/A)$

The Grothendieck alteration is $\tilde{\mathfrak{g}} \to \mathfrak{g}$, where

$$\tilde{\mathfrak{g}} = \{ (\gamma, gB) \in \mathfrak{g} \times G/B \mid \gamma \in g\mathfrak{b}g^{-1} \}$$

Over the regular semisimple locus

$$\mathfrak{g}^{rs} = \{ \gamma \in \mathfrak{g} \mid G_{\gamma} \text{ is a maximal torus} \},$$

it restricts to an unramified W-cover.

In fact,
$$\widetilde{\mathfrak{g}^{\mathrm{rs}}} \to \mathfrak{g}^{\mathrm{rs}}$$
 is a pullback of $\mathfrak{a}^{\mathrm{rs}} \to \mathfrak{a}^{\mathrm{rs}} /\!\!/ W$.

$$W^{\text{aff}} = W \ltimes X_*(A) \qquad (= N_{G((z))}(A[[z]])/A[[z]])$$

(Kazhdan-Lusztig) A loop or affine analogue:

$$\mathfrak{g}(\!(z)\!)^{\mathrm{rs}} = \left\{ \gamma \in \mathfrak{g}(\!(z)\!) \left| \begin{array}{c} G(\!(z)\!)_{\gamma} \text{ is a possibly} \\ nonsplit \text{ maximal torus} \end{array} \right\},$$

$$\widehat{\mathfrak{g}(\!(z)\!)^{\mathrm{rs}}} = \{(\gamma, gI) \in \mathfrak{g}(\!(z)\!)^{\mathrm{rs}} \times G(\!(z)\!)/I \mid \gamma \in g \Im g^{-1}\},$$

where $I \subseteq G[[z]]$ is the preimage of $B \subseteq G$.

Unlike before, the map $\widehat{\mathfrak{g}(\!(z)\!)^{\mathrm{rs}}}\to \mathfrak{g}(\!(z)\!)^{\mathrm{rs}}$ is not even locally constant.

Yet the fibers $\mathcal{F}l_{\gamma}\subseteq G(\!(z)\!)/I$ are finite-dimensional.

For nonempty fibers, $W^{\mathrm{aff}} \cap \mathrm{H}_c^*(\mathcal{F}l_{\gamma})$.

Example Suppose that $G = SL_2$,

$$\begin{split} \mathfrak{g}(\!(z)\!) &= \left\{ \left(\begin{smallmatrix} a & b \\ c & -a \end{smallmatrix} \right) \middle| \ a,b,c \in \mathbf{C}[\![z]\!] \right\}, \\ \mathfrak{I} &= \left\{ \left(\begin{smallmatrix} a & b \\ c & -a \end{smallmatrix} \right) \middle| \ a,b \in \mathbf{C}[\![z]\!], \ c \in z\mathbf{C}[\![z]\!] \right\}. \end{split}$$

$$\gamma = \left(\begin{smallmatrix} 1 \\ & -1 \end{smallmatrix}\right) \qquad \mathcal{F}l_{\gamma} = \{\dot{w}I \mid w \in W^{\mathrm{aff}}\}$$

$$\gamma = \begin{pmatrix} 1 \\ z \end{pmatrix} \qquad \mathcal{F}l_{\gamma} = \{I\}$$

$$\gamma = \begin{pmatrix} z \\ -z \end{pmatrix}$$
 $\mathcal{F}l_{\gamma}$ is an *infinite* chain of projective lines, intersecting transversely at the $\dot{w}I$

$$\gamma = {2 \choose z^2}$$
 $\mathcal{F}l_{\gamma}$ is a union of two transverse projective lines

More complicated components are possible.

At the same time, $\mathbf{C}[\mathfrak{a}] = \mathrm{H}_I^*(point) \curvearrowright \mathrm{H}_c^*(\mathcal{F}l_{\gamma})$. For special γ , the $(\mathbf{C}W^{\mathrm{aff}} \ltimes \mathbf{C}[\mathfrak{a}])$ -action deforms.

Let \underline{m} be a positive integer and $\rho^{\vee} = \frac{1}{2} \sum_{\alpha} \alpha^{\vee}$.

$$\mathbf{C}^{ imes} \curvearrowright \mathfrak{g}((z^{1/2})),$$
 $c \cdot_m \gamma(z^{1/2}) = \operatorname{Ad}(z^{
ho^{ imes}}) \gamma(z^{m/2}).$

We say* that γ is *homogeneous* of slope $\frac{d}{m}$ iff

$$c \cdot_m \gamma = c^d \gamma.$$

In this case, $\mathcal{F}l_{\gamma}$ is stable under $\mathbf{C}^{\times} \curvearrowright G((z))/I$. The preceding examples: slopes $0, \frac{1}{2}, 1, \frac{3}{2}$. (Oblomkov–Yun) Take G simply-connected, simple. If γ has slope $\frac{d}{m}>0,$ then

$$D_{d/m}^{\text{trig}} \cap H_{\mathbf{C}^{\times}}^*(\mathcal{F}l_{\gamma})^{\pi_0(A_{\gamma})}|_{\epsilon \to 1}.$$

- ϵ is the generator of $H^*_{\mathbf{C}^{\times}}(point)$.
- $D_{d/m}^{\text{trig}}$ is a *graded DAHA*, deforming $CW^{\text{aff}} \ltimes C[\mathfrak{a}]$.

If $\mathcal{F}l_{\gamma}$ is projective, then the action degenerates to

$$\mathrm{D}^{\mathrm{rat}}_{d/m} \curvearrowright \mathrm{gr}^{\mathsf{P}}_{*} \mathrm{H}^{*}_{\mathbf{C}^{\times}} (\mathcal{F} l_{\gamma})^{\pi_{0}(A_{\gamma})}|_{\epsilon \to 1},$$

- $\bullet~$ P is a perverse~filtration arising from a Ngô-type global model.
- $D_{d/m}^{\text{rat}}$ is a rational DAHA, deforming $CW \ltimes \mathcal{D}(\mathfrak{a})$.

^{*} Differs by conjugation from the γ in Oblomkov–Yun.

$$\begin{array}{ccc} \mathrm{D}_{d/m}^{\mathrm{rat}} & \mathrm{U}\mathfrak{g} \\ \mathrm{PBW} & \mathbf{C}[\mathfrak{a}] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathfrak{a}^*] & \mathrm{U}\mathfrak{n}_{-} \otimes \mathbf{C}[\mathfrak{a}] \otimes \mathrm{U}\mathfrak{n}_{+} \\ \mathrm{Verma} & \Delta_{d/m}(\chi) & \Delta(\lambda) \\ \mathrm{simple} & L_{d/m}(\chi) & L(\lambda) \\ \mathrm{character} & [M]_{\mathbf{x}} \in \mathrm{K}_0(W)(\!(\mathbf{x})\!) & [M] \in \mathbf{Z}[X^*(A)] \end{array}$$

Problem Compute the module/character structure of

$$\mathcal{E}_{\gamma, \mathsf{x}, \mathsf{y}} = \sum_{i, j} \mathsf{x}^{i} \mathsf{y}^{j} \operatorname{gr}_{i}^{\mathsf{p}} H_{\mathbf{C}^{\times}}^{j} (\mathcal{F} l_{\gamma})^{\pi_{0}(A_{\gamma})}|_{\epsilon \to 1}.$$

Idea Over a certain locus $\mathfrak{c}^{\mathrm{rs}}_{d/m} \subseteq \mathfrak{g}(\!(z)\!)^{\mathrm{rs}}$, the \mathcal{E}_{γ} form a local system.

The actions of $D_{d/m}^{\rm rat}$ and $\pi_1(\mathfrak{c}_{d/m}^{\rm rs})$ commute.

Oblomkov–Yun showed that $\pi_1(\mathfrak{c}_{d/m}^{\mathrm{rs}})$ is the braid group for some *complex* reflection group C.

Conjecture (T–Xue) Given $G, \frac{d}{m}, \gamma$:

1 The monodromy of \mathcal{E}_{γ} factors through a Hecke algebra for C with parameter q=1.

2 There exist $\{\chi_{\rho}\}_{\rho} \subseteq \operatorname{Irr}(W)$, $\{\psi_{\rho}\}_{\rho} \subseteq \operatorname{Irr}(C)$, and signs ε_{ρ} such that

$$\mathcal{E}_{\gamma,\mathbf{x},-1} = \sum_{\rho} \varepsilon_{\rho} \left([\Delta_{d/m}(\chi_{\rho})]_{\mathbf{x}} \otimes (\psi_{\rho})_{\mathbf{q}=1} \right)$$

as a virtual $(D_{d/m}^{rat}, Hecke)$ -bimodule.

The rest of this talk is about the explicit recipe for $\rho, \chi_{\rho}, \psi_{\rho}, \varepsilon_{\rho}$, which was surprising to us.

Much of this setup lets us replace G with a *quasi-split* form $G_{\mathbf{C}((z))}$ over $\mathbf{C}((z))$.

Replace A with the maximal torus $A_{\mathbf{C}(\!(z)\!)}$ defined by the Dynkin automorphism.

Observe that, up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}((z))}|\mathbf{C}((z))).$$

Fix a "good" q for G.

$$\begin{array}{cccc} \mathbf{G}_{\mathbf{F}_q} & \leftrightarrow & G_{\mathbf{C}(\!(z)\!)} \\ \\ \mathbf{A}_{\mathbf{F}_q} & \leftrightarrow & A_{\mathbf{C}(\!(z)\!)} \\ \\ \mathbf{T}_{\mathbf{F}_q} & \leftrightarrow & G_{\mathbf{C}(\!(z)\!),\gamma} \end{array}$$

Our Hecke algebra will arise from the \mathbf{F}_q side.

2 Deligne-Lusztig Theory

$$F = \operatorname{Frob} \otimes \operatorname{id} \quad \curvearrowright \quad \mathbf{G} = \mathbf{G}_{\mathbf{F}_q} \otimes_{\mathbf{F}_q} \bar{\mathbf{F}}_q.$$

$$\mathbf{G}^F = \mathbf{G}_{\mathbf{F}_q}(\mathbf{F}_q)$$
 forms a finite group of Lie type.

For any F-stable maximal torus \mathbf{T} contained in a Borel $\mathbf{B} = \mathbf{T} \ltimes \mathbf{U}$, set

$$Y_{\mathbf{B}}^{\mathbf{G}} = \{g \in \mathbf{G} \mid g^{-1}F(g) \in F(\mathbf{U})\}/(\mathbf{U} \cap F(\mathbf{U})).$$

Commuting actions:

$$\mathbf{G}^F \quad \curvearrowright \quad \mathrm{H}^*_c(Y_{\mathbf{B}}^{\mathbf{G}}) \quad \curvearrowleft \quad \mathbf{T}^F.$$

For
$$\theta \in \operatorname{Irr}(\mathbf{T}^F)$$
, set $R_{\mathbf{T}}^{\mathbf{G}}(\theta) = \sum_{i} (-1)^i H_c^i(Y_{\mathbf{B}}^{\mathbf{G}})[\theta]$.

Conjecturally, independent of ${\bf B}$ when q is good.

Every irrep of \mathbf{G}^F occurs in $R_{\mathbf{T}}^{\mathbf{G}}(\theta)$ for some \mathbf{T}, θ .

(Broué–Malle) For certain m-regular $\mathbf T$, a specific algebra $H^{\mathbf G}_{\mathbf T}(\mathsf q)$ such that

$$H_{\mathbf{T}}^{\mathbf{G}}(\zeta_{m}) = \bar{\mathbf{Q}}W_{\mathbf{T}}^{\mathbf{G}}, \text{ where } W_{\mathbf{T}}^{\mathbf{G}} = N_{\mathbf{G}^{F}}(\mathbf{T}^{F})/\mathbf{T}^{F}.$$

They conjecture:

- 1 $H_{\mathbf{T}}^{\mathbf{G}}(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_{\mathbf{G}^F}(\mathrm{H}_c^*(Y_{\mathbf{B}}^{\mathbf{G}})[1_{\mathbf{T}^F}]).$
- 2 As a virtual $(\mathbf{G}^F, H_{\mathbf{T}}^{\mathbf{G}}(q))$ -bimodule,

$$R_{\mathbf{T}}^{\mathbf{G}}(1_{\mathbf{T}^F}) = \sum_{\substack{\rho \in \mathrm{Irr}(\mathbf{G}^F) \\ (\rho, R_{\mathbf{T}}^{\mathbf{G}}(1_{\mathbf{T}^F})) \neq 0}} \varepsilon_{\mathbf{T}, \rho} \left(\rho \otimes (\chi_{\mathbf{T}, \rho})_{\mathsf{q} = q}\right)$$

where $\chi_{\mathbf{T},\rho} \in \operatorname{Irr}(W_{\mathbf{T}}^{\mathbf{G}})$ and $\varepsilon_{\mathbf{T},\rho} \in \{\pm 1\}$.

Back to $\mathbf{C}((z))$. Assume that $\gcd(d, m) = 1$ and

$$\mathbf{G}_{\mathbf{F}_q}, \mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \quad \leftrightarrow \quad G_{\mathbf{C}(\!(z)\!)}, A_{\mathbf{C}(\!(z)\!)}, G_{\mathbf{C}(\!(z)\!),\gamma}.$$

The *F*-stable tori **A** and **T** are 1- and *m*-regular. The braid group of $W_{\mathbf{T}}^{\mathbf{G}}$ is $\pi_1(\mathfrak{c}_{d/m}^{\mathrm{rs}})$.

Conjecture (T-Xue)

- 1 The monodromy of \mathcal{E}_{γ} factors through $H_{\mathbf{T}}^{\mathbf{G}}(1)$.
- 2 Using $W_{\mathbf{A}}^{\mathbf{G}}$ to define $\mathcal{D}_{d/m}^{\mathrm{rat}}$ for nonsplit $G_{\mathbf{C}(\!(z)\!)}$,

$$\mathcal{E}_{\gamma,\mathsf{x},-1} = \sum_{\rho} \varepsilon_{\mathbf{T},\rho} \left([\Delta_{d/m}(\chi_{\mathbf{A},\rho})]_{\mathsf{x}} \otimes (\chi_{\mathbf{T},\rho})_{\mathsf{q}=1} \right)$$

as a virtual $(D_{d/m}^{rat}, H_{\mathbf{T}}^{\mathbf{G}}(1))$ -bimodule.

Here, require both $(\rho, R_{\mathbf{A}}^{\mathbf{G}}(1_{\mathbf{A}^F})), (\rho, R_{\mathbf{T}}^{\mathbf{G}}(1_{\mathbf{T}^F})) \neq 0.$

Theorem (T–Xue) True for $(G_{\mathbf{C}((z))}, m)$ in any of these cases:

- m is the (twisted) Coxeter number of $G_{\mathbf{C}((z))}$.
- $(^2A_2, 2), (C_2, 2), (G_2, 3), (G_2, 2).$
- $(^2A_3, 2), (^2A_4, 2), (^3D_4, 6), (^3D_4, 3)$, assuming a conjecture of Oblomkov–Yun.

Example Take $G_{\mathbf{C}((z))}$ split, m its Coxeter number. $\chi_{\mathbf{A},\rho}$ runs over "wedge" characters of W.

 $\chi_{\mathbf{T},\rho}$ runs over all characters of $W_{\mathbf{T}}^{\mathbf{G}}=\mathbf{Z}/m\mathbf{Z}$.

The virtual $D_{d/m}^{rat}$ -module is

$$\sum_{k=0}^{m-1} (-1)^k [\Delta_{d/m}(\chi_{\wedge^k(\mathfrak{a})})]_{\mathsf{x}} = [L_{d/m}(1_W)]_{\mathsf{x}}.$$

3 Level-Rank Duality

Compare $\mathcal{E}_{\gamma,x,-1}$ given by

(1)
$$\sum_{\rho} \varepsilon_{\mathbf{T},\rho} \left([\Delta_{d/m}(\chi_{\mathbf{A},\rho})]_{\mathsf{X}} \otimes (\chi_{\mathbf{T},\rho})_{\mathsf{q}=1} \right)$$

with $R_{\mathbf{A}}^{\mathbf{G}}(1_{\mathbf{A}^F}) \otimes R_{\mathbf{T}}^{\mathbf{G}}(1_{\mathbf{T}^F})$ given by

(2)
$$\sum_{\rho} \varepsilon_{\mathbf{T},\rho} \left((\chi_{\mathbf{A},\rho})_{\mathbf{q}=q} \otimes (\chi_{\mathbf{T},\rho})_{\mathbf{q}=q} \right).$$

(Note that
$$\varepsilon_{\mathbf{A},\rho}=1$$
 for all ρ in $R_{\mathbf{A}}^{\mathbf{G}}(1_{\mathbf{A}^F})$.)

Problem How to make (1) look more symmetric, the way that (2) is symmetric?

Idea Would need to replace $D_{d/m}^{\mathrm{rat}}$ with $H_{\mathbf{A}}^{\mathbf{G}}(\zeta_m)$.

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

$$\frac{\mathsf{KZ} : \underbrace{\mathsf{Rep}(\mathbf{D}^{\mathrm{rat}}_{d/m})}_{\mathrm{category\ O}} \to \mathsf{Rep}(H^{\mathbf{G}}_{\mathbf{A}}(\zeta^d_m))$$

such that $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\mathsf{q} = \zeta_m^d}$ for all χ .

$$\begin{array}{ll} \text{Deligne-Lusztig} & \text{affine Springer} \\ & & & & & & & \\ \mathbf{F}_q & & & & & & \\ R_{\mathbf{A}}^{\mathbf{G}}(1_{\mathbf{A}^F}) \otimes R_{\mathbf{T}}^{\mathbf{G}}(1_{\mathbf{T}^F}) & & & & & & \\ (\mathsf{KZ} \otimes \mathsf{id})(\mathcal{E}_{\gamma,\mathsf{x},-1}) \\ & & & & & & & \\ H_{\mathbf{A}}^{\mathbf{G}}(q) \otimes H_{\mathbf{T}}^{\mathbf{G}}(q)^{\mathrm{op}} & & & & & & \\ H_{\mathbf{A}}^{\mathbf{G}}(\zeta_m^d) \otimes H_{\mathbf{T}}^{\mathbf{G}}(\zeta_1)^{\mathrm{op}} \end{array}$$

Note the "reciprocity" between ζ_m and ζ_1 .

Let $Uch(\mathbf{G}^F)$ be the set of *unipotent* irreps of \mathbf{G}^F : the irreps that occur in $R^{\mathbf{G}}_{\mathbf{T}}(1_{\mathbf{T}^F})$ for some \mathbf{T} .

(Broué–Malle–Michel) Fix l > 0. An l-cuspidal pair for \mathbf{G} consists of:

- A Levi subgroup $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where \mathbf{S} is a torus with $|\mathbf{S}^F|$ a power of $\Phi_I(q)$.
- $\lambda \in \mathrm{Uch}(\mathbf{L}^F)$ such that $(\lambda, R_{\mathbf{M}}^{\mathbf{L}}(\mu)) = 0$ for any l-split $\mathbf{M} \subset \mathbf{L}$ and μ .

As we run over l-cuspidal pairs up to conjugacy,

$$\mathrm{Uch}(\mathbf{G}^F) = \coprod_{[\mathbf{L},\lambda]} \mathrm{Uch}(\mathbf{G}^F)_{\mathbf{L},\lambda}$$

where $\operatorname{Uch}(\mathbf{G}^F)_{\mathbf{L},\lambda} = \{ \rho \mid (\rho, R_{\mathbf{L}}^{\mathbf{G}}(\lambda)) \neq 0 \}.$

For l=1, these are classical Harish-Chandra series.

Broué–Malle define a Hecke algebra $H_{\mathbf{L},\lambda}^{\mathbf{G}}(\mathsf{q})$ such that

$$H_{\mathbf{L},\lambda}^{\mathbf{G}}(\underline{\zeta_{\boldsymbol{l}}}) = \bar{\mathbf{Q}}W_{\mathbf{L},\lambda}^{\mathbf{G}}, \text{ where } W_{\mathbf{L},\lambda}^{\mathbf{G}} = N_{\mathbf{G}^{F}}(\mathbf{L}^{F},\lambda)/\mathbf{L}^{F}.$$

For an appropriate Deligne–Lusztig variety $Y_{\mathbf{p}}^{\mathbf{G}}$, they conjecture:

- $1 \quad H_{\mathbf{L},\lambda}^{\mathbf{G}}(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_{\mathbf{G}^F}(\mathrm{H}_c^*(Y_{\mathbf{P}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(\mathbf{G}^F, H_{\mathbf{L},\lambda}^{\mathbf{G}}(q))$ -bimodule,

$$R_{\mathbf{L}}^{\mathbf{G}}(\lambda) = \sum_{\rho \in \mathrm{Uch}(\mathbf{G}^F)_{\mathbf{L},\lambda}} \varepsilon_{\mathbf{L},\lambda,\rho} \left(\rho \otimes (\chi_{\mathbf{L},\lambda,\rho})_{\mathsf{q}=q} \right)$$

where $\chi_{\mathbf{L},\lambda,\rho} \in \mathrm{Irr}(W_{\mathbf{T}}^{\mathbf{G}})$ and $\varepsilon_{\mathbf{L},\lambda,\rho} \in \{\pm 1\}$.

If $m \neq l$, then $H_{\mathbf{L},\lambda}^{\mathbf{G}}(\zeta_m)$ need not be semisimple. Via the decomposition map

$$\chi \mapsto \chi_{\mathsf{q}=\zeta_m} : \mathrm{Irr}(W_{\mathbf{L},\lambda}^{\mathbf{G}}) \to \mathrm{K}_0(H_{\mathbf{L},\lambda}^{\mathbf{G}}(\zeta_m)),$$

we can define a partition of $\operatorname{Irr}(W_{\mathbf{L},\lambda}^{\mathbf{G}})$ into subsets to be called $(H_{\mathbf{L},\lambda}^{\mathbf{G}},m)$ -blocks.

Conjecture (T–Xue) Fix l, m > 0, an l-cuspidal (\mathbf{L}, λ), and an m-cuspidal (\mathbf{M}, μ).

1 The images of

$$\operatorname{Uch}(\mathbf{G}^F)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(\mathbf{G}^F)_{\mathbf{M},\mu} \xrightarrow{\chi_{\mathbf{L},\lambda,-}} \operatorname{Irr}(W_{\mathbf{L},\lambda}^{\mathbf{G}})$$

$$\operatorname{Uch}(\mathbf{G}^F)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(\mathbf{G}^F)_{\mathbf{M},\mu} \xrightarrow{\chi_{\mathbf{M},\mu,-}} \operatorname{Irr}(W_{\mathbf{M},\mu}^{\mathbf{G}})$$

are unions of $(H_{\mathbf{L},\lambda}^{\mathbf{G}},m)$ - and $(H_{\mathbf{M},\mu}^{\mathbf{G}},l)$ -blocks.

2 They induce a matching between these blocks.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T-Xue) In the preceding setup:

3 The bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational DAHAs.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

Note that here, $W_{\mathbf{L},\lambda}^{\mathbf{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\mathsf{Rep}(H_{\mathbf{L},\lambda}^{\mathbf{GL}_n}(\zeta_m))$$
 and $\mathsf{Rep}(H_{\mathbf{M},\mu}^{\mathbf{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level Fock spaces

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathsf{q}}^{\vec{s}} \xleftarrow{\sim} \Lambda_{\mathsf{q}}^s \xrightarrow{\sim} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathsf{q}}^{\vec{r}}.$$

Above,
$$\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q}), \ etc.$$

Use the *level-rank duality* of Frenkel, Uglov, Chuang–Miyachi, Shan–Varagnolo–Vasserot, . . .

In other words: Our conjectures generalize level-rank duality from \mathbf{GL}_n to arbitrary \mathbf{G} .

Thank you for listening.