

UTHou-16UTL final.ST25 SEQUENCE LISTING

Board of Regents of the University of Texas System <110> <120> MUTATIONS IN A NOVEL PHOTORECEPTOR-PINEAL GENE ON 17P CAUSE LEBER CONGENITAL AMAUROSIS (LCA4) <130> 96606/16UTL <140> 09/765,061 <141> 2001-01-17 <150> 60/331362 <151> 2001-01-14 <160> 83 <170> PatentIn version 3.3 <210> 1 <211> 6689 <212> DNA <213> Homo sapiens <220> <221> gene <222> (1)..(6689) <223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1 <220> <221> misc feature <222> (1897)..(1906) <223> n is a, c, g, or t <220> <221> misc feature (3946)..(3946) <222> <223> n is a, c, g, or t <400> 1 ggcctcccaa agtgctggat tacaggcgtg agtcaccgcg cctggtcccc tgtcttcttt 60 aagaaagctc agcggacctt tttccttctt ggggtggaac aaaaagccaa atctagcaca 120 accctgggca ggggcccaga atcactggaa gcaaaggtgg atgggatagg aggcgaggct 180 gcctgtggac cacaggcccg gcccgagtgg ctctgatgag aagccggggc gcctaggtca 240 ccgccccac cgtctgccct tcccccact cctcctggct gggtaaatcc cagagtctca 300 gccgcctaag tgtcttcccc ggaggtgaga ttatctccgc ctgtgctgga cacctccctt 360 tctcctgcag ccatggatgc cgctctgctc ctgaacgtgg aaggggtcaa gaaaaccatt 420 ctgcacgggg gcacgggcga gctcccaaac ttcatcaccg gatcccgagt gagtggggcc 480 cctccggagc agacagggtc ccccacagca gctttcaaca ttccaggtgt gccccaaggc 540

Page 1

...

actgtaaaca	gctttcagct	gtgccaaaaa	aacagccagg	cagccccagc	gctgggcctc	600
cggggagctc	ccagcgttta	cccattcagg	gggcattttt	ggtactttgc	agattcaact	660
ttagcatggg	ctgaggggaa	gggcttttgg	gaattttctg	gggccctaaa	tgttgagtga	720
gaagaaaggg	agtccgagga	gtcttggtat	ttgtccccaa	atgtctgtta	ggcttccctg	780
gactgaaggg	tgcgtctgtg	gctacagaat	tcgggctttg	gccaggcgag	geggeteeeg	840
cctgtaatcc	cagcactttg	ggaggccaag	atgggcagat	catgaggtca	agagttcgag	900
accagcctga	ccaacatgtg	aaaccccatc	tctactgaaa	atacaaaaat	tagccagatg	960
tgctgtggcg	cctgtaatcc	cagttcagat	actcaggaga	cttgaggcag	gagaatcact	1020
tgagcccagg	aggtggaggt	tgcagtgagc	cgagatcata	ccactgcact	ccaacctggg	1080
caacagagtg	agactctgtc	tcagaaaaaa	aaaaaaaaa	aagaactcgg	gcttacttga	1140
ggaaggattt	ctggacgcac	agggctgtgg	ggagtggaat	ggggtctgta	gggaggggtg	1200
ggtccctcct	ccctgggggg	tgcaggcagg	gtggaggtgc	tccaggggtc	tgaggcatct	1260
gatggggtga	actgagtgag	ctgaccctgg	ggacagccct	gggtgtcggt	ggcaaggggg	1320
tggcttctgc	cgggccttga	acagtgtgtc	tagagcagag	tgcaccgtct	cggtgactag	1380
gtgatctttc	atttccgcac	catgaaatgt	gatgaggagc	ggacagtcat	tgacgacagt	1440
cggcaggtgg	gccagcccat	gcacatcatc	atcggaaaca	tgttcaagct	cgaggtctgg	1500
gagatcctgc	ttacctccat	gcgggtgcac	gaggtggccg	agttctggtg	cgacaccatc	1560
gtaagtaggc	cctgcgcgcc	tgtctcctgg	gactagtctt	ttctgggctc	acccacccgc	1620
tttgcggggc	tgctgtgttt	cgggaaagct	gggactcaag	cgaagctttg	caaagccagt	1680
cctgcaaact	tattccccac	cgtgtgcatg	tgaagatgga	gggaacaagg	gctggaaggg	1740
gtgacccatg	ctgtggctgg	ctggtgggga	gcagggctat	gaccagcagg	agtgagctgg	1800
cccacttcac	agtcctcaca	tctgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	1860
tgtgtgtgtg	agagagagag	agagagag	agagagnnnn	nnnnnntagc	cttaggactt	1920
attgcagaga	ccaacaccta	acaatgtaat	caggcagcca	gtgcaggaca	taaataagta	1980
aggcagtgtg	ctttgggcca	caaaagcacg	ctcagcttgc	tggaagccat	gggtgccgag	2040
ctgggggctg	ctgagtcagg	gccaaagggg	gcccctccct	gcagtaagct	ggttctgggg	2100
cctctccctc	ccttggtcca	gctcttaatc	ccaacaggct	caacagccat	ctgcttgtct	2160
cttccataaa	gaggcagaag	gcatttcggg	ctaatcccgg	ccggtggggc	gggcagggtg	2220
acctctgtct	ctgtgctggt	gacctggagg	cagagctgaa	ctgctgcata	gagtttcagc	2280

cccttcactt cacatgttgc	atgtggggcc	agtgctgggt	catctcagaa	gccggtccaa	2340
ggagatgggt tctcagggag	cctagttggg	gaaactgagg	cccagcatac	atacagcagg	2400
cctcgctgag gccgcacggc	ggatcttccc	agccctcctt	catcccaagg	gtggcaaact	2460
cagctcccat gctggctgaa	gctgtgatga	gccagatcta	tatctgcacc	atctcattta	2520
atccctacag cagccctaat	atcgaacagg	agcaacccag	ggaactgagt	ttcagagaag	2580
tgcagagacc tgggctcacc	gctaacctgc	agcactgcca	ggacaccaaa	gcgactctct	2640
tggaccctgg agtcctgctc	cttctactgc	cccacactgc	ccttcctgcg	agtcataggc	2700
tttgcagagg tcagggtttc	cctggggcag	agatgtgtta	cagtggacca	caagggccag	2760
aagaggcagc cggaggctaa	cagcatatgg	cctctggagc	caggtttgaa	tcctggctgc	2820
gtcatttcct agctgtgtga	ccttaagcaa	gttgcttgcg	tctctgggct	gtagtttccc	2880
catccgtaaa atgggataat	agtgcctgcc	ttgaattgtc	ataaggattg	aaggggctca	2940
taacagtgtg aagtgctttg	cctggcacac	agttaaccac	agttagtatg	agtggcatag	3000
tgagggagca ggattcctcc	caggagggc	tctgagtgga	ggccttttat	ggcccaccta	3060
gctctgggca ggtagcctgg	atgccatcca	tccgtttatc	cccacagcac	acgggggtct	3120
accccatcct rtcccggago	ctgaggcaga	tggcccaggg	caaggacccc	acagagtggc	3180
acgtgcacac gtgcgggctg	gccaacatgt	tcgcctacca	cacgctgggc	tacgaggacc	3240
tggacgagct gcagaaggag	cctcagcctc	tggtctttgt	gatcgagctg	ctgcaggtgg	3300
ggctggggtt ggcagggctg	gagggctgtg	ccagcactgg	agagggacag	cgggcatcat	3360
gggcaccccc accccactgg	ccactggaca	gtgccctgtt	tctgtttaga	taatacgaga	3420
gggttcataa gccatgggag	aatacgaatt	tgaaaaaaaa	gtcctctgat	ttttccacaa	3480
gaaaagtcct ttggtgctgg	gcatggtggc	ccacgcctgt	aatcctagca	ctttgggagg	3540
ccgagggggt tggatcacct	gaggtcagga	gttcgaagac	cagcctggcc	aacatggtaa	3600
aaccccgtct ctattaaaaa	cacaaaaatt	aaccgggtgt	ggtggtgcat	gcctgtaatc	3660
aatcccagct acttgggaat	ttgaggcatg	agaattgctt	gaacctggaa	gtggaggttg	3720
cagtgagcag agatcatgto	agtgcatttt	aacctgggtg	acagagtgag	actccatgtc	3780
caaaaaaaag aaaaaaaaaa	aaagtccact	tggaaccagt	ttttaaaaat	gtgattcatt	3840
ttcattgtgg aggcatttta	tccacttcca	ctttcatttt	caggagttgg	agattataac	3900
cgcctccttg gttcctgtgg	tttgtgggtt	cagacttggt	tctctngtgg	cgggagaggc	3960
tgcatggaac tccccacato	ctcccaacca	ggagccccag	agtgattggc	agcgcgtgtt	4020
tgtggattgg tgagagaggg	ttagggccag	ggtcaaggtc		tcagcttatg	4080

gccaagactg	aggctcagcc	tgagagctat	gtgggtgaat	aaaataaaat	aagaactgtg	4140
tcaaccaagg	gccccttaca	ggcttgctgt	cacagttgtg	tggtctgtgc	actgcacaag	4200
gtgcaccggc	atctcctcca	aggtgctcat	tatagacatt	gtatattggt	atttccataa	4260
tgagaagttt	ccagcagatg	gcaatagtgt	attgttctaa	caaaacgagt	attcgtgaca	4320
attttctgaa	tattagaagt	gaagtgtctt	gatgaacggg	caccttttcc	tagtttgcac	4380
aaagacattg	atttagggca	gggttttcgg	cgttgttgct	tctttccctt	gtctgtatgc	4440
acttgaccag	caagcatgac	ttcagggaga	tgtgccacag	ggtcctgttt	ttcgggtctc	4500
tgatggggtg	caggcccctg	gggtccctgc	ctcactgacc	tgcagctctg	gggccaggtt	4560
gatgccccga	gtgattacca	gagggagacc	tggaacctga	gcaatcatga	gaagatgaag	4620
gcggtgcccg	tcctccacgg	agagggaaat	cggctcttca	agctgggccg	ctacgaggag	4680
gcctcttcca	agtaccagga	ggccatcatc	tgcctaagga	acctgcagac	caaggtcaga	4740
ggccgctggc	caggggtggg	aagtggcgct	gactctgggg	ggcctgccca	gtgccggcca	4800
gggtggggcg	ggggttgggc	agctgcctga	ggtcatggct	gaccttctcc	ctgggcagga	4860
gaagccatgg	gaggtgcagt	ggctgaagct	ggagaagatg	atcaatactc	tgatcctcaa	4920
ctactgccag	tgcctgctga	agaaggagga	gtactatgag	gtgctggagc	acaccagtga	4980
tattctccgg	caccacccag	gtgcgcgggg	ctgcaggggc	ggacagtgag	ggggcgccca	5040
gcccagggcc	acggagacac	ctgccatagc	cttcctggac	ttttctttcc	accccaccag	5100
ggcaccaaac	cttgtctcca	cccagccggg	tttccccgag	tgtgtaactg	aattgtgggt	5160
gatggatggg	cagtgcttgg	cgcggggcgg	cctttatttt	aatgtgtgtt	tgaacactta	5220
cccaggaagc	tcgccaagct	tgtgatttca	gcggaacggt	aaacaggcgt	ttaaaaagag	5280
gggcaatcaa	tatagggaaa	aatattatga	tgtcggtact	agtactggtg	ttgcgaggat	5340
atggcaccgc	agtactagat	tgacttaatg	ctcgaatcgt	gctcacagta	aaaacatcca	5400
gcccctggct	catgcatcag	gcacacgtcg	tctgcgttta	ttatctcatt	taatcctcat	5460
aatcctcata	atcaccatat	gagggaggtg	cagggaaagg	ggcctgaagg	ttatctaatt	5520
taggtagcgt	ctataagaaa	aataaaacaa	agttatgaat	ataaaattac	tcacagggcc	5580
ttaaaaagga	gaggaggagg	tactgctatt	atgatcatca	tctccatctt	acagttgagg	5640
aaaccgaggg	atgggggata	cagagaggtt	aaggatcatg	gcggggctga	gggtcttgga	5700
ggctggtgag	tcccagctgg	gctggggctg	cctctgaggc	tgggaaggga	gctgtagctg	5760
gatgctccct	gctccccaca	ggcatcgtga	aggcctacta	cgtgcgtgcc	cgggctcacg	5820

cagaggtgtg	gaatgaggcc	gaggccaagg	cggacctcca	gaaagtgctg	gagctggagc	5880
cgtccatgca	gaaggcggtg	cgcagggagc	ttgaggctgc	tggagaaccg	catggcggag	5940
aacaggagga	ggagcggctg	cgctgccgga	acatgctgag	ccagggtgcc	acgcagcctc	6000
ccgcagagcc	acccacagag	ccacccgcac	agtcatccac	agagccacct	gcagagccac	6060
ccacagcacc	atctgcagag	ctgtccgcag	ggccccctgc	agagccagcc	acagagccac	6120
ccccgtcccc	agggcactcg	ctgcagcact	gagccccctg	aggcccacag	ccacccaggc	6180
agggagcaag	tggcctggtc	acttctggtt	cgattgacca	ggatcgtggt	gtcacttttt	6240
aaaatttaaa	attaattttt	gaaatcaaag	tcagacacac	ccatggtaaa	aaaaaaaaa	6300
aaaacaatcc	caagggtaca	gaagagctta	tgaataaaag	tagttttctc	ctctacccct	6360
ctcattcctt	ccgtgccatg	gttttaattg	accctgtttt	taattcttct	ggtagttttc	6420
tctatttcca	agtaatctgt	ttaaatcagt	ttctagattt	taccccatgt	caatgacaaa	6480
tgaggatttg	atgctctgat	cctttctcat	gcctgatacc	cctccctgtc	tccccatttt	6540
ggatagttac	atttgggggt	catctcggtg	atttttgtaa	ctttacgcag	gacacttaga	6600
gctctctaga	atcccactga	ctttagtggg	gtcttgatgt	agggtgggca	agccccgaca	6660
ctggagctta	gcctgagagg	ggttcttgc				6689

<210> 2

<211> 1119

<212> DNA

<213> Papio anubis

<220>

<221> gene

<222> (1)..(1119)

<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

. <400> 2

atggatgccg ctctgctcct gaacgtggaa ggggtcaaga aaaccattct gcacggaggc 60 acgggcgagc tcccaaactt catcaccgga tcccgagtga tctttcattt ccgcaccatg 120 aaatgtgatg aggagcgcac ggtcatcgac gacagccggc aggtggacca gcccatgcac 180 atcatcatcg ggaacatgtt caagctcgag gtctgggaga tcctgctcac ctccatgagg 240 gtgcacgagg tggccgagtt ctggtgcgac accatccaca cgggggtcta ccccatcctg 300 teceggagee tgeggeagat ggeecaggge aaggaeecea eggagtggea egtgeacaca 360 tgcgggctgg ccaacatgtt cgcctaccac acactgggct acgaggacct ggacgagctg 420 cagaaggagc ctcagcctct gatctttgtg atcgagctgc tgcaggttga cgccccgagt 480

540

540

600

660

gattaccaga gggagacctg gaacctgagc aatcatgaga agatgaaggt ggtgcccgtc

_						
ctccacggag	agggaaatcg	gctcttcaag	ctgggccgct	acgaggaggc	ctcttccaag	600
taccaggagg	ccatcatctg	cctaaggaac	ctgcagacca	aggagaagcc	atgggaggtg	660
cagtggctga	agctggagaa	gatgatcaac	accctgaccc	tcaactactg	ccagtgcctg	720
ctgaagaagg	aggagtatta	cgaggtgctg	gagcacacca	gtgacattct	ccggcaccac	780
ccaggcatcg	tgaaggccta	ctatgtgcgt	gcccgggctc	acgcagaggt	gtggaatgag	840
gccgaggcca	aggcggacct	ccagaaagtg	ctggagctgg	agccatccat	gcagaaggcg	900
gtgcgcaggg	agctgaggct	gctggagaac	cgcatggcag	agaagcagga	ggaggagcgg	960
ctgcgctgcc	ggaacatgct	gagccaggga	gccacgcagc	ctcccacaga	gccaccggca	1020
gagccccaca	cagcaccacc	tgcggagctg	tccacagggc	cacctgcaga	gccacccgca	1080
gagctccccc	tgtccccagg	gcactcactg	cagcactga			1119
<220> <221> gene <222> (1) <223> The	troglodytes		ne aryl-hydi	cocarbon red	ceptor inter	acting
	ctctgctcct	gaacgtggaa	ggggtcaaga	aaaccattct	gcacgggggc	60
acgggcgagc	tcccaaactt	catcaccgga	tcccgagtga	tctttcattt	ccgcaccatg	120
aaatgtgatg	aggagcggac	agtcattgac	gacagccggc	aggtgggcca	gcccatgcac	180
atcatcatcg	gaaacatgtt	caagctcgag	gtctgggaga	tcctgcttac	ctccatgcgg	240
gtgcacgagg	tggccgagtt	ctggtgcgac	accatccaca	caggggtcta	ccccatcctg	300
tcccggagcc	tgaggcagat	ggcccagggc	aaggacccca	cagagtggca	cgtgcacaca	360
tgcgggctgg	ccaacatgtt	cgcctaccac	acgctgggct	acgaggacct	ggacgagctg	420
cagaaggagc	ctcagcctct	ggtctttgtg	atcgagctgc	tgcaggttga	tgccccgagt	480

gattaccaga gggagacctg gaacctgagc aatcatgaga agatgaaggc ggtgcccgtc

ctccacggrg agggaaatcg gctcttcaag ctgggacgct acgaggaggc ctcttccaag

taccaggagg ccatcatctg cctaaggaac ctgcagacca aggagaagcc gtgggaggtg

cagtggctga	agctggagaa	gatgatcaat	actctgatcc	tcaactactg	ccagtgcctg	720
ctgaagaagg	aggagtacta	tgaggtgctg	gagcacacca	gcgacattct	ccggcaccac	780
ccaggcatcg	tgaaggccta	ctacgtgcgt	gcccgggctc	acgcagaggt	gtggaatgag	840
gccgaggcca	aggcagacct	ccggaaagtg	ctggagctgg	agccgtccat	gcagaaggcg	900
gtgcgcaggg	agctgaggct	gctggagaac	cgcatggcgg	agaagcagga	ggaggagcgg	960
ctgcgctgcc	ggaacatgct	gagccagggt	gccacgcagc	ctccggcaga	gccacccaca	1020
gagccacccg	cacagtcatc	cacagagcca	cctgcagagc	cacccccagc	accatctgca	1080
gagctgtccg	cagggccacc	tgcagagaca	gccacagagc	cacccccgtc	cccagggcac	1140
tcgctgcagc	actga					1155

<210> 4

<211> 1060

<212> DNA

<213> Bos taurus

<220>

<221> gene

<222> (1)..(1060)

<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

<400> 4 atggatgcca ctctgctcct gaatgtggaa gggatcaaga aaaccattct gcatgggggc 60 acaggggacc tccccaactt cattactgga gcccgagtga cctttcattt ccgaaccatg 120 aaatgtgatg aggageggac ggtgatagac gacagcaagc aggtgggcca teccatgcac 180 atcatcattg ggaacatgtt caagctggag gtctgggaga tcttgctgac gtccatgcgg 240 gtcagcgagg tggccgagtt ttggtgcgac accatccaca caggggtcta ccccatcctg 300 teceggagee tgeggeagat ggeggagggt aaggaeeeea cagagtggea egtgeaeaeg 360 tgtggcttgg ccaacatgtt cgcttaccac acgctgggct acgaggacct ggacgagctg 420 cagaaggagc ctcagccact gatcttcata atcgagttgc tgcaggtcga ggccccgagc 480 cagtaccaga gggagacctg gaacctgaat aaccaggaga agatgcaggc ggtgcccatc 540 ctccatggag aaggaaaccg gctcttcaag ctgggccgct acgaggaggc ctccaacaag 600 taccaggaag ccatcgtctg cctgaggaac ctgcagacca aggagaaacc ctgggaggtg 660 cagtggctga agctggagaa gatgatcaac accctgatcc tgaactactg tcagtgtctg 720 ctgaagaagg aggagtacta cgaggtgctg gaacacacta gtgacatcct ccggcatcac 780 ccaggcatcg tgaaggccta ctatgtgagg gcccgggctc acgccgaggt gtggaatgag 840

gcggaagcca	aggcggatct	ggagaaagtg	ctggagctgg	agccgtccat	gcggaaggcg	900
gtgcagaggg	agctgaggct	gctggagaac	cggctggagg	agaaacgcga	ggaggagcga	960
ctgcgctgcc	ggaacatgct	gggctagtgc	gcaggcgcca	agcctcctgc	ctccgccccc	1020
cgcycctcca	ccccccaa	aaaaaaaaa	aaaaattttt			1060

<210> 5 <211> 925

<212> DNA

<213> Canis familiaris

<220>

<221> gene

<222> (1)..(925)

<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

<400> 5 tgtacggggg caccggcgag ctcccaaact tcctcacggg gtcccgggtc atctttcact 60 teegeacaac gaaatgegae gaggegegga cagtgatega egacageaag egtgtgggee 120 atcccatgca catcatcatc gggaacatgt tcaagctgga ggtctgggag gtgctgctga 180 catecatgeg eqtgggegag gtggeegagt tetggtgega etetatteae acaggagtet 240 accocatect gtcccggage ctgcggcagg tggcggaggg caaggacccc actgagtggc 300 atgtacacac gtgcggcttg gccaacatgt ttgcctatca cacgctgggc tacgaggacc 360 tggacgaget acagaaggag cegeageeee teatetteat gatagagetg etgeaggtgg 420 aggccccaag tgagtaccag agggagacgt ggagcctgaa caatgagaga agatgcagcg 480 gtacccatct catggagagg ggaaccggct cttcaagctg ggccgctaca atgatgcctc 540 caccaagtac caggagccat cgtctgctga ggaacctgca gaccaaggag aagcctggga 600 ggtgcagtgg ctaaagctgg agaagctgat caacaccttg attctcaact actgccagtg 660 tctgctgaag aaggaggagt actacgaggt gctggagcac actagcgaca tcctgcggct 720 tcacccagga atcgtgaagg cctactacgt gcgcgcccgg gctcacgcgg aggtgtggaa 780 cgaggccgag gccagggcgg accttcagaa agtgctggag ctggagccat ccatggggaa 840 ggctgtgcgc agggagctgc ggcttctgga aaatcgcctg gaggaaaagc gggaggagga 900 gcggctgcgc tgccggaaca tgcta 925

<210> 6 <211> 1075 <212> DNA

<213> Mus musculus

```
<220>
<221> gene
<222>
      (1)..(1075)
<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting
       protein-like 1
<400> 6
                                                                       60
atggacgtct ctctactcct caatgtggag ggtgtcaaga agaccattct gcatgggggg
acaggagage tececaactt cateactgge tecagagtga cettteattt eegaacaatg
                                                                      120
aagtgtgatg aagaacgcac ggtgatcgat gacagcaagc aggtgggcca gcccatgagc
                                                                      180
atcatcatcg gcaacatgtt caagctggag gtgtgggaga cgctgctgac ctccatgcgg
                                                                      240
ctgggcgagg tggctgagtt ctggtgcgac accattcaca caggggtcta ccctatgttg
                                                                      300
tecegeagte tgeggeaggt ggetgaggge aaggaceeca caagetggea tgtgeacaeg
                                                                      360
tgcgggttgg ccaacatgtt tgcataccac acgctgggct acgaggacct ggatgagctg
                                                                      420
cagaaagagc cacagcctct tgtcttcctg tatgaactgt tgcaggtgga ggccccaaat
                                                                      480
gagtaccaga gggagacgtg gaacctgaat aatgaagaga ggatgcaggc ggtacctctt
                                                                      540
cttcatggag aaggcaacag gctctacaag ctgggacgct atgatcaggc cgccaccaag
                                                                      600
taccaggagg ccattgtgtg cctgaggaac cttcagacca aggagaagcc ctgggaggtt
                                                                      660
gagtggctga agctggagaa gatgatcaac accctgatcc tcaactactg ccagtgcctg
                                                                      720
ctgaagaagg aggagtacta cgaggtgttg gagcacacca gcgacattct acgacaccac
                                                                      780
ccagggatcg tgaaggccta ctatatgcgc gcacgtgctc acgcagaggt gtggaacgct
                                                                      840
gaggaggcca aggcggacct ggagaaagtg ctggagttgg agccatccat gcgcaaggcg
                                                                      900
gtgctcaggg aactgcggct gctggagagc cgcctggcgg acaaacagga ggaggagcgg
                                                                     960
cagcgctgcc ggagcatgct gggctaggct gggctggatt ccactgagtt agactgggtt
                                                                     1020
aggttgggtg ggagctgcgg gttgaaccct ggggcgaggg ctggggctat ggact
                                                                     1075
      7
```

<210>

¹¹⁷⁹ <211>

<212> DNA

<213> Macaca mulatta

<220>

<221> gene

<222> (1)..(1179)

<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

		U.	INOU-1601D	LINAI.SIZJ		
<400> 7 atggatgccg	ctctgctcct	gaacgtggaa	ggggtcaaga	aaaccattct	gcacggaggc	60
acgggcgagc	tcccaaactt	catcaccgga	tcccgagtga	tctttcattt	ccgcaccatg	120
aaatgtgatg	aggagcgcac	ggtcatcgac	gacagccgtc	aggtggacca	gcccatgcac	180
atcatcatcg	ggaacatgtt	caagctcgag	gtctgggaga	tcctgctcac	ctccatgagg	240
gtgcacgagg	tggccgagtt	ctggtgcgac	accatccaca	cgggggtcta	ccccatyctg	300
tcccggagcc	tgcggcagat	ggcccagggc	aaggacccca	cggagtggca	cgtgcacaca	360
tgcgggctgg	ccaacatgtt	cgcctaccac	acgctgggct	acgaggacct	ggacgagctg	420
cagaaggagc	ctcagcctct	gatctttgtg	atcgagctgc	tgcaggttga	cgccccgagt	480
gattaccaga	gggagacctg	gaacctgagc	aatcatgaga	agatgaaggt	ggtgcccgtc	540
ctccacggag	agggaaatcg	gctcttcaag	ytgggccgct	acgaggaggc	ctcttccaag	600
taccaggagg	ccatcatctg	cctaaggaac	ctgcagacca	aggagaagcc	gtgggaggtg	660
cagtggctga	agctggagaa	gatgatcaac	accctgaccc	tcaactactg	ccagtgcctg	720
ctgaagaagg	aggagtatta	cgaggtgctg	gagcacacca	gtgacattct	ccggcaccac	780
ccaggcatcg	tgaaggccta	ctatgtgcgt	gcccgggctc	acgcggaggt	gtggaacgag	840
gccgaggcca	aggcggacct	ccagaaagtg	ctggagctgg	agccatccat	gcagaaggcg	900
gtgcgcaggg	agctgaggct	gctggagaac	cgcatggcgg	agaagcagga	ggaggagagg	960
ctgcgctgcc	ggaacatgct	gagccaggga	gccacgcagc	ctcccgcaga	gccaccggca	1020
cagcccccca	cagcaccacc	tgcagagctg	tccacagggc	cacctgcgga	cccaccggcg	1080
gagcccccca	cagcaccacc	tgcggagctg	tccacagggc	cacctgcaga	gccacccgca	1140
gagctccccc	tgtccccagg	gcactcactg	cagcactga			1179

<210> 8 <211> 1119 <212> DNA

<213> Saimiri sciureus

<220>

<221> gene

<222> (1)..(1119)

<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting
 protein-like 1

<400> 8

atggatgccg ctctgctcct gaacgtggaa ggggtcaaga agaccattct gcacgggggc 60 acgggcgagc tcccaaattt catcaccgga tcccgagtga tctttcattt ccgcaccatg 120

UTHou-16UTL final.ST25 aaatgtgatg aggagcggac ggtgattgac gacagcaggg aggtgggcca gcccatgcac 180 atcatcatcq qqaacatgtt caagetggag gtctgggaga teetgeteac gteeatgegg 240 gtgcgagagg tggccgagtt ctggtgcgac accatccaca cgggggtcta ccccatcctg 300 teceggagee tgeggeagat ggeeeaggge aaggaeeega eggagtggea tgtgeaeaeg 360 tgcgggctgg ccaacatgtt cgcctaccac acgctgggct acgaggacct ggatgagctg 420 cagaaggagc ctcagcctct gatctttgtg atcgagctgc tgcaggttga tgccccaagt 480 gattaccaga gggagacctg gaacctgagc aatcacgaga agatgaaggt ggtgcccgtc 540 ctccatggag aaggaaatag gctcttcaag ctgggccgct acgaggaggc ctcttccaag 600 taccaqqaqq ccatcatctg cctaaggaac ctgcagacca aggagaaacc ctgggaggtg 660 cagtggctga agctggagaa gatgatcaat accctgatcc tcaactactg tcagtgtctg 720 ctgaagaagg aggagtacta cgaggtcctg gagcatacca gtgacattct ccggcaccac 780 ccaggcattg tgaaggccta ctatgtgcgc gcccgggctc acgcggaggt gtggaacgag 840 gccgaggcca aggcggacct ccagaaagtg ctggagctgg agccgtccat gcagaaggcg 900 gtgcgcaggg agctgaggct gctggagaac cgcatggcgg agaagcagga ggaggagcgg 960 ctqcqctqcc qcaacatgct gagccagggg gccacgtggt cccccgcgga gccacccgca 1020 qaqccacctq caqaqtcatc cacaqaqcca cccqcaqaqc cacctqcaqa qccacctqca 1080 gagetaacet tgaceceggg geacecacta cageactga 1119 <210> 9 <211> 15 <212> DNA <213> Homo sapiens <220> <221> mutation <222> Amino Acid codon position 79: Met to Thr mutation <223> <400> 9 15 acctccacgc gggtg <210> 10 <211> 15 <212> DNA <213> Homo sapiens <220> <221> mutation <222> (7)..(9)

```
UTHou-16UTL final.ST25
<223> Amino Acid condon 88 mutation: Trp to X
<400> 10
                                                                      15
gagttctgat gcgac
<210> 11
<211> 15
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid condon 96 mutation: Val to Ile mutation
<400> 11
                                                                      15
acggggatct acccc
<210>. 12
<211> 15
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222>
      (7)..(9)
      Amino Acid codon 124 mutation: Thr to Ile mutation
<400> 12
                                                                     15
gaccccatag agtgg
<210> 13
<211> 15
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222>
      (7)..(9)
<223> Amino Acid codon 376 mutation: Pro to Ser mutation
<400> 13
ccacctcgt cccca
                                                                      15
<210> 14
<211> 15
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
```

Page 12

,

1

```
UTHou-16UTL final.ST25
<222> (7)..(9)
<223> Amino Acid codon 163 mutation: Gln to X mutation
<400> 14
                                                                     15
gattactaga gggag
<210> 15
<211> 15
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222>
      (7)..(9)
<223> Amino Acid codon 197 mutation: Ala to Pro mutation
<400> 15
                                                                     15
gaggagccct cttcc
<210> 16
<211> 15
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon 278 mutation: Trp to X mutation
<400> 16
gaggtgtgaa atgag
                                                                     15
<210> 17
<211> 15
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
      (7)..(7)
<222>
<223> a to g mutation: IVS2-2A to G
<400> 17
tccccacggc acacg
                                                                     15
<210> 18
<211> 15
<212> DNA
<213> Homo sapiens
```

Page 13

<220>

UTHou-16UTL final.ST25 <221> mutation <222> (7)..(9)Amino Acid codon 262 mutation: Glu to Ser <223> <400> 18 cacccaagtg cgcgg 15 <210> 19 <211> 15 <212> DNA <213> Homo sapiens <220> <221> mutation <222> (7)..(9) <223> Amino Acid codon 302 mutation: Arg to Leu <400> 19 gcggtgctca gggag 15 <210> 20 <211> 13 <212> DNA <213> Homo sapiens <220> <221> mutation <222> (5)..(5) Deletion of "tgcagagccacc" at location 5 <400> 20 gccacccaca gca 13 <210> 21 <211> 15 <212> DNA <213> Homo sapiens <220> <221> mutation (7)..(9) <222> <223> Amino Acid codon 239 mutation: Cys to Arg <400> 21 tgccagcgcc tgctg 15 <210> 22 <211> 13

<212> DNA

<213> Homo sapiens

UTHou-16UTL final.ST25 <220> <221> mutation <222> (5)..(5) <223> two base deletion at location 5: "ag" <400> 22 tcccgcagcc acc <210> 23 <211> 15

<212> DNA <213> Homo sapiens

<220> <221> mutation <222> (7)..(9)

<223> Amino Acid codon 42 mutation: Cys to X

<400> 23

15 atgaaatgag atgag

<210> 24 <211> 12 <212> DNA

<213> Homo sapiens

<220> <221> mutation <222> (7)..(7)

<223> nine base deletion at location 7: "ctccggcac"

<400> 24

gatattcacc ca 12

<210> 25 <211> 21 <212> DNA

<213> Homo sapiens

<220>

<221> mutation <222> (7)..(7)

<223> eight base insertion: "gtgatctt"

<400> 25

gactaggtga tcttgtgatc t

21

13

<210> 26 <211> 12 <212> DNA

<213> Homo sapiens

```
<220>
<221> mutation
<222>
      (4)..(4)
<223> g to a polymorphism: IVS1-9 g to a benigh mutation
<400> 26
                                                                     12
ctcagtgact ag
<210> 27
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (4)..(4)
<223> g to c polymorphism: IVS2+66G to C Benign
<400> 27
                                                                     12
tttgccgggc tg
<210> 28
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
     (4)..(4)
<223> c to t polymorphism: IVS2-88C to T Benign
<400> 28
tcctctcagg ag
                                                                     12
<210> 29
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (4)..(4)
<223> g to a polymorphism: IVS2-14G to A Benign
<400> 29
atccatttat cc
                                                                     12
<210> 30
<211> 12
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> mutation
<222> (4)..(4)
<223> a to c mutation: IVS2-10A to C Benign
<400> 30
                                                                      12
cgtttctccc ca
<210> 31
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (4)..(4)
<223> t to c mutation: IVS3-25T to C Benign
<400> 31
ctgccccact ga
                                                                      12
<210> 32
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (7)..(7)
<223> t to c mutation: IVS3-21T to C Benign
<400> 32
                                                                      12
cctcaccgac ct
<210> 33
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (7)..(7)
<223> g to a mutation: IVS5+18G to A Benign
<400> 33
aggagcggac ag
                                                                      12
<210> 34
<211> 12
<212> DNA
```

UTHOU-16UTE final STOP

<213>	Homo sapiens	
<220>	mutation	
<222>	(7)(9)	
<223>	Amino Acid codon mutation: Asp 90 His Benign	
<400>		10
tggtgc	caca cc	12
<210>	35	
<211>	12	
<212> <213>	DNA Homo sapiens	
	-	
<220>		
	mutation (4)(6)	
	Amino Acid mutation: Phe 37 Phe Benign	
<400>	35	
catttc	cgca cc	12
<210> <211>		
<212>	DNA Homo sapiens	
(213)	nomo saprens	
<220>		
	mutation (6)	
	(4)(6) Amino Acid mutation: Ser 78 Ser Benign	
<400>	36	
	atgc gg	12
<210> <211>	37 12	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<221>	mutation	
<222> <223>	(4)(6) Amino Acid mutation: Cys 89 Cys Benign	
<400>	37 gaca cc	12
	-	
<210>	38	
<211>	12	

```
UTHou-16UTL final.ST25
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid codon mutation: Leu 100 Leu Benign
<400> 38
atcctgtccc gg
                                                                      12
<210> 39
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> mutation
<222>
      (4)..(6)
      Amino Acid codon mutation: His 172 His
<400> 39
aatcacgaga ag
                                                                      12
<210> 40
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221>
      mutation
<222>
      (4)..(6)
<223> Amino Acid codon mutation: Pro 217 Pro Benign
<400> 40
aagccgtggg ag
                                                                      12
<210> 41
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221>
      mutation
     Amino Acid codon mutation: Asp 255 Asp Benign
<223>
<400> 41
agtgacattc tc
                                                                      12
<210> 42
```

11

```
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222> (1)..(20)
<223> PCR primer 1 page 57
<400> 42
                                                                     20
aagaaaacca ttctgcacgg
<210> 43
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222> (1)..(19)
<223> PCR primer 2 page 57
<400> 43
tgcagctcgt ccaggtcct
                                                                     19
<210> 44
<211> 17
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222> (1)..(17)
<223> PCR primer 1 page 58
<400> 44
gacacctccc tttctcc
                                                                     17
<210> 45
<211> 18
<212> DNA
<213> Homo sapiens
<400> 45
                                                                     18
gctggggctg cctggctg
<210> 46
<211> 20
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> primer
<222> (1)..(20)
<223> PCR primer 3 page 58
<400> 46
                                                                     20
ccgagtgatt accagaggga
<210> 47
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222>
      (1)..(20)
<223> PCR primer 4 page 58
<400> 47
                                                                     20
tgagctccag cacctcatag
<210> 48
<211> 18
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222> (1)..(18)
<223> PCR primer 1 page 60
<400> 48
acgcagaggt gtggaatg
                                                                     18
<210> 49
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222> (1)..(19)
<223> PCR primer 2 page 60
<400> 49
aaaaagtgac accacgatc
                                                                     19
<210> 50
<211> 34
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> exon
<222> (1)..(34)
<223> exon - donor splice site 1 of Table 1 page 49
      {\tt CGGATCCCGAgtgagtggggccctccggagcaga}
<400> 50
cgg atc ccg agt gag tgg ggc cct ccg gag cag a
                                                                      34
Arg Ile Pro Ser Glu Trp Gly Pro Pro Glu Gln
<210> 51
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (1)..(35)
<223> exon - acceptor splice site 1 of Table 1 page 49
      cagagtgcaccgtctcggtgactagGTGATCTTTC
<400> 51
cag agt gca ccg tct cgg tga cta ggt gat ctt tc
                                                                      35
Gln Ser Ala Pro Ser Arg Leu Gly Asp Leu
<210> 52
<211> 35
<212> DNA
<213> Homo sapiens
<22.0>
<221> exon
<222> (1)..(35)
<223> exon - donor splice site 2 of Table 1 page 49
      CSACACCATCgtaagtaggccctgcgcgcctgtct
<400> 52
csa cac cat cgt aag tag gcc ctg cgc gcc tgt ct
                                                                      35
                    Ala Leu Arg Ala Cys
Xaa His His Arg Lys
<210> 53
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (1)..(35)
```

```
UTHou-16UTL final.ST25
<223> exon - acceptor splice site 2 of Table 1 page 49
      gccatccatccgtttatccccacagCACACGGGGG
<400> 53
                                                                      35
gcc atc cat ccg ttt atc ccc aca gca cac ggg gg
Ala Ile His Pro Phe Ile Pro Thr Ala His Gly
<210> 54
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (1)..(35)
<223> exon - donor splice site 3 of Table 1 page 49
      GCTGCTGCAGgtggggctggggttggcagggctgg
gct gct gca ggt ggg gct ggg gtt ggc agg gct gg
                                                                      35
Ala Ala Ala Gly Gly Ala Gly Val Gly Arg Ala
<210> 55
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (1)..(35)
<223> exon - acceptor splice site 3 of Table 1 page 49
      cactgacctgcagctctggggccagGTTGATGCCC
<400> 55
cac tga cct gca gct ctg ggg cca ggt tga tgc cc
                                                                      35
      Pro Ala Ala Leu Gly Pro Gly
<210> 56
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (1)..(35)
<223> exon - donor splice site 4 of Table 1 page 49
```

UTHou-16UTL final.ST25 GCAGACCAAGgtcagaggccgctggccacggggtg

```
<400> 56
                                                                      35
gca gac caa ggt cag agg ccg ctg gcc acg ggg tg
Ala Asp Gln Gly Gln Arg Pro Leu Ala Thr Gly
<210> 57
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (1)..(35)
<223> exon - acceptor splice site 4 of Table 1 page 49
       catggctgaccttctccctgggcagGAGAAGCCRT
<400> 57
                                                                      35
cat ggc tga cct tct ccc tgg gca gga gaa gcc rt
His Gly
           Pro Ser Pro Trp Ala Gly Glu Ala
                   5
<210> 58
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (1)..(35)
<223> exon - donor splice site 5 of Table 1 page 49
       CACCACCCAGgtgcgcggggctgcaggggggaca
<400> 58
cac cac cca ggt gcg cgg ggc tgc agg ggc gga ca
                                                                      35
His His Pro Gly Ala Arg Gly Cys Arg Gly Gly
<210> 59
<211> 35
<212> DNA
<213> Homo sapiens
<220>
<221>
     exon
<222> (1)..(35)
<223> exon - acceptor splice site 5 of Table 1 page 49
```

gctggatgctccctgctccccacagGCATCGTGAA

```
<400> 59
gct gga tgc tcc ctg ctc ccc aca ggc atc gtg aa
                                                                      35
Ala Gly Cys Ser Leu Leu Pro Thr Gly Ile Val
               5
<210> 60
<211>
      18
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222> (1)..(18)
<223> PCR Primer 1 for AIPL1 fragment amplification Table 5 page 61
<400> 60
ggacacctcc ctttctcc
                                                                      18
<210> 61
<211> 18
<212> DNA
<213> Homo sapiens
<220>
<221> primer
<222>
      (1)..(18)
      PCR Primer 2 for AIPL1 fragment amplification Table 5 page 61
<400> 61
                                                                      18
gctggggctg cctggctg
<210> 62
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<221>
     primer
      (1)..(20)
     PCR Primer 3 for AIPL1 fragment amplification Table 5 page 61
<223>
<400> 62
gggccttgaa cagtgtgtct
                                                                      20
<210> 63
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> primer
```

UTHou-16UTL final.ST25 <222> (1)..(19) <223> PCR Primer 4 for AIPL1 fragment amplification Table 5 page 61 <400> 63 19 tttcccgaaa cacagcagc <210> 64 <211> 18 <212> DNA <213> Homo sapiens <220> <221> primer <222> (1)..(18) PCR Primer 5 for AIPL1 fragment amplification Table 5 page 61 <400> 64 18 agtgagggag caggattc <210> 65 <211> 20 <212> DNA <213> Homo sapiens <220> <221> primer <222> (1)..(20) <223> PCR Primer 6 for AIPL1 fragment amplification Table 5 page 61 <400> 65 tgcccatgat gcccgctgtc 20 <210> 66 <211> 18 <212> DNA <213> Homo sapiens <220> <221> PRIMER <222> (1)..(18) <223> PCR Primer 7 for AIPL1 fragment amplification Table 5 page 61 <400> 66 tttcgggtct ctgatggg 18 <210> 67 <211> 17 <212> DNA <213> Homo sapiens

<220>

UTHou-16UTL final.ST25 <221> primer <222> (1)..(17) PCR Primer 8 for AIPL1 fragment amplification Table 5 page 61 <400> 67 17 gcaggctccc cagagtc <210> 68 <211> 19 <212> DNA <213> Homo sapiens <220> <221> primer <222> (1)..(19) PCR Primer 9 for AIPL1 fragment amplification Table 5 page 61 <223> <400> 68 gcagctgcct caggtcatg 19 <210> 69 <211> 18 <212> DNA <213> Homo sapiens <220> <221> primer <222> (1)..(18)PCR Primer 10 for AIPL1 fragment amplification Table 5 page 61 <223> <400> 69 18 gtggggtgga aagaaaag <210> 70 <211> 18 <212> DNA <213> Homo sapiens <220> <221> primer (1)..(18) <222>

<223> PCR Primer 11 for AIPL1 fragment amplification Table 5 page 61

<210> 71 <211> 19 <212> DNA <213> Homo sapiens

ctgggaaggg agctgtag

<400> 70

18

19

<220> <221> primer <222> (1)..(19) PCR Primer 12 for AIPL1 fragment amplification Table 5 page 61 <223> <400> 71 aaaagtgaca ccacgatcc <210> 72 <211> 384 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(384) <223> Human AIPL1 Protein <400> 72 Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val 40 Ile Asp Asp Ser Arg Gln Val Gly Gln Pro Met His Ile Ile Gly 55 Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg 65 70 80 Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val 90 85 Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp 100 105 Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala 115 120 125 Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro 130 135 140

Gln Pro Leu Val Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser

							J	JΤΗοι	ı-16t		inal	L.ST2	25		160
145					150					155					160
Asp	Tyr	Gln	Arg	Glu 165	Thr	Trp	Asn	Leu	Ser 170	Asn	His	Glu	Lys	Met 175	Lys
Ala	Val	Pro	Val 180	Leu	His	Gly	Glu	Gly 185	Asn	Arg	Leu	Phe	Lys 190	Leu	Gly
Arg	Tyr	Glu 195	Glu	Ala	Ser	Ser	Lys 200	Tyr	Gln	Glu	Ala	Ile 205	Ile	Cys	Leu
Arg	Asn 210	Leu	Gln	Thr	Lys	Glu 215	Lys	Pro	Trp	Glu	Val 220	Gln	Trp	Leu	Lys
Leu 225	Glu	Lys	Met	Ile	Asn 230	Thr	Leu	Ile	Leu	Asn 235	Tyr	Cys	Gln	Cys	Leu 240
Leu	Lys	Lys	Glu	Glu 245	Tyr	Tyr	Glu	Val	Leu 250	Glu	His	Thr	Ser	Asp 255	Ile
Leu	Arg	His	His 260	Pro	Gly	Ile	Val	Lys 265	Ala	Tyr	Tyr	Val	Arg 270	Ala	Arg
Ala	His	Ala 275	Glu	Val	Trp	Asn	Glu 280	Ala	Glu	Ala	Lys	Ala 285	Asp	Leu	Gln
Lys	Val 290	Leu	Glu	Leu	Glu	Pro 295	Ser	Met	Gln	Lys	Ala 300	Val	Arg	Arg	Glu
Leu 305	Arg	Leu	Leu	Glu	Asn 310	Arg	Met	Ala	Glu	Lys 315	Gln	Glu	Glu	Glu	Arg 320
Leu	Xaa	Cys	Arg	Asn 325	Met	Leu	Ser	Gln	Gly 330	Ala	Thr	Gln	Pro	Pro 335	Ala
Glu	Pro	Pro	Thr 340	Glu	Pro	Pro	Ala	Gln 345	Ser	Ser	Thr	Glu	Pro 350	Pro	Ala
Glu	Pro	Pro 355	Thr	Ala	Pro	Ser	Ala 360	Glu	Leu	Ser	Ala	Gly 365	Pro	Pro	Ala

Glu Pro Ala Thr Glu Pro Pro Pro Ser Pro Gly His Ser Leu Gln His

375

380

<210> 73 <211> 384 <212> PRT <213> Pan troglodytes <220> <221> Peptide <222> (1)..(384) <400> 73 1 5

<223> Chimpansee AIPL1 Protein

Met Asp Ala Ala Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val 40

Ile Asp Asp Ser Arg Gln Val Gly Gln Pro Met His Ile Ile Gly 50

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val 90

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp 105

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro

Gln Pro Leu Val Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys

Ala Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly 185

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Let 195 200 205	u
Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys 210 215 220	s
Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Let 225 230 235 240	
Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ilo 245 250 255	e
Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg 260 265 270	g
Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Arg 275 280 285	g
Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Gl 290 295 300	u
Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg 305 310 315 326	_
Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Ala 325 330 335	a
Glu Pro Pro Thr Glu Pro Pro Ala Gln Ser Ser Thr Glu Pro Pro Ala 340 345 350	a
Glu Pro Pro Pro Ala Pro Ser Ala Glu Leu Ser Ala Gly Pro Pro Ala 355 360 365	a
Glu Thr Ala Thr Glu Pro Pro Pro Ser Pro Gly His Ser Leu Gln His	s
<210> 74 <211> 372 <212> PRT <213> Papio anubis	
<220> <221> peptide <222> (1)(372)	

<223> Baboon AIPL1 Protein

<400> 74

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile 1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Arg Gln Val Asp Gln Pro Met His Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg 65 70 75 80

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val 85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp 100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala 115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro 130 135 140

Gln Pro Leu Ile Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser 145 150 155 160

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys 165 170 175

Val Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu 195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys 210 225 220

UTHou-16UTL final.ST25 Leu Glu Lys Met Ile Asn Thr Leu Thr Leu Asn Tyr Cys Gln Cys Leu 225 230 Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg 265 Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu 295 Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg 315 Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Thr Glu Pro Pro Ala Glu Pro His Thr Ala Pro Pro Ala Glu Leu Ser Thr Gly Pro Pro Ala Glu Pro Pro Ala Glu Leu Pro Leu Ser Pro Gly His Ser Leu Gln His 370 <210> 75 <211> 328 <212> PRT <213> Bos taurus <400> 75 Met Asp Ala Thr Leu Leu Leu Asn Val Glu Gly Ile Lys Lys Thr Ile 5

Leu His Gly Gly Thr Gly Asp Leu Pro Asn Phe Ile Thr Gly Ala Arg 20

Val Thr Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val 40 35

Ile	Asp 50	Asp	Ser	Lys	Gln	Val 55	Gly	His	Pro	Met	His 60	Ile	Ile	Ile	Gly
Asn 65	Met	Phe	Lys	Leu	Glu 70	Val	Trp	Glu	Ile	Leu 75	Leu	Thr	Ser	Met	Arg 80
Val	Ser	Glu	Val	Ala 85	Glu	Phe	Trp	Cys	Asp 90	Thr	Ile	His	Thr	Gly 95	Val
Tyr	Pro	Ile	Leu 100	Ser	Arg	Ser	Leu	Arg 105	Gln	Met	Ala	Glu	Gly 110	Lys	Asp
Pro	Thr	Glu 115	Trp	His	Val	His	Thr 120	Cys	Gly	Leu	Ala	Asn 125	Met	Phe	Ala
Tyr	His 130	Thr	Leu	Gly	Tyr	Glu 135	Asp	Leu	Asp	Glu	Leu 140	Gln	Lys	Glu	Pro
Gln 145	Pro	Leu	Ile	Phe	Ile 150	Ile	Glu	Leu	Leu	Gln 155	Val	Glu	Ala	Pro	Ser 160
Gln	Tyr	Gln	Arg	Glu 165	Thr	Trp	Asn	Leu	Asn 170	Asn	Gln	Glu	Lys	Met 175	Gln
Ala	Val	Pro	Ile 180	Leu	His	Gly	Glu	Gly 185	Asn	Arg	Leu	Phe	Lys 190	Leu	Gly
Arg	Tyr	Glu 195	Glu	Ala	Ser	Asn	Lys 200	Tyr	Gln	Glu	Ala	Ile 205	Val	Cys	Leu
Arg	Asn 210	Leu	Gln	Thr	Lys	Glu 215	Lys	Pro	Trp	Glu	Val 220	Gln	Trp	Leu	Lys
Leu 225	Glu	Lys	Met	Ile	Asn 230	Thr	Leu	Ile	Leu	Asn 235	Tyr	Cys	Gln	Cys	Leu 240
Leu	Lys	Lys	Glu	Glu 245	Tyr	Tyr	Glu	Val	Leu 250	Glu	His	Thr	Ser	Asp 255	Ile
Leu	Arg	His	His 260	Pro	Gly	Ile	Val	Lys 265	Ala	Tyr	Tyr	Val	Arg 270	Ala	Arg

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Glu

280

275

285

Lys Val Leu Glu Leu Glu Pro Ser Met Arg Lys Ala Val Gln Arg Glu 290 295 300

Leu Arg Leu Leu Glu Asn Arg Leu Glu Glu Lys Arg Glu Glu Glu Arg 305 310 315 320

Leu Arg Cys Arg Asn Met Leu Gly 325

<210> 76

<211> 328

<212> PRT

<213> Mus musculus

<220>

<221> peptide

<222> (1)..(328)

<223> Mouse AIPL1 Protein

<400> 76

Met Asp Val Ser Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile

5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Thr Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val 35 40 45

Ile Asp Asp Ser Lys Gln Val Gly Gln Pro Met Ser Ile Ile Ile Gly 50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Thr Leu Leu Thr Ser Met Arg 70 75 80

Leu Gly Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val 85 90 95

Tyr Pro Met Leu Ser Arg Ser Leu Arg Gln Val Ala Glu Gly Lys Asp 100 105 110

Pro Thr Ser Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala 115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro 130 140

Gln Pro Leu Val Phe Leu Tyr Glu Leu Leu Gln Val Glu Ala Pro Asn 145 150 155 160

Glu Tyr Gln Arg Glu Thr Trp Asn Leu Asn Asn Glu Glu Arg Met Gln 165 170 175

Ala Val Pro Leu Leu His Gly Glu Gly Asn Arg Leu Tyr Lys Leu Gly
180 185 190

Arg Tyr Asp Gln Ala Ala Thr Lys Tyr Gln Glu Ala Ile Val Cys Leu 195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Glu Trp Leu Lys 210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu 225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile 245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Met Arg Ala Arg

Ala His Ala Glu Val Trp Asn Ala Glu Glu Ala Lys Ala Asp Leu Glu 275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Arg Lys Ala Val Leu Arg Glu 290 295 300

Leu Arg Leu Leu Glu Ser Arg Leu Ala Asp Lys Gln Glu Glu Glu Arg 305 310 315 320

Gln Arg Cys Arg Ser Met Leu Gly 325

<210> 77

<211> 392

<212> PRT

<213> Macaca mulatta

<220>

<221>	pep	ti	.de
-------	-----	----	-----

<222> (1)..(392)

<223> Rhesus Monkey AILP1 Protein

<400> 77

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile 1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val 35 40 45

Ile Asp Asp Ser Arg Gln Val Asp Gln Pro Met His Ile Ile Gly 50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg 70 75 80

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val 85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp 100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala 115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro 130 135 140

Gln Pro Leu Ile Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser 145 150 155 160

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys 165 170 175

Val Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu 195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys
Page 37

210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Thr Leu Asn Tyr Cys Gln Cys Leu 225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile 245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg 260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln 275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu 290 295 300

Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg 305 310 315 320

Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Ala 325 330 335

Glu Pro Pro Ala Gln Pro Pro Thr Ala Pro Pro Ala Glu Leu Ser Thr 340 345 350

Gly Pro Pro Ala Asp Pro Pro Ala Glu Pro Pro Thr Ala Pro Pro Ala 355 360 365

Glu Leu Ser Thr Gly Pro Pro Ala Glu Pro Pro Ala Glu Leu Pro Leu 370 380

Ser Pro Gly His Ser Leu Gln His 385 390

<210> 78

<211> 372

<212> PRT

<213> Saimiri sciureus

<220>

<221> peptide

<222> (1)..(372)

<223> Squirrel Monkey AIPL1 Protein

<400> 78

Met 1	Asp	Ala	Ala	Leu 5	Leu	Leu	Asn	Val	Glu 10	Gly	Val	Lys	Lys	Thr 15	Ile
Leu	His	Gly	Gly 20	Thr	Gly	Glu	Leu	Pro 25	Asn	Phe	Ile	Thr	Gly 30	Ser	Arg
Val	Ile	Phe 35	His	Phe	Arg	Thr	Met 40	Lys	Сув	Asp	Glu	Glu 45	Arg	Thr	Val
Ile	Asp 50	Asp	Ser	Arg	Glu	Val 55	Gly	Gln	Pro	Met	His 60	Ile	Ile	Ile	Gly
Asn 65	Met	Phe	Lys	Leu	Glu 70	Val	Trp	Glu	Ile	Leu 75	Leu	Thr	Ser	Met	Arg 80
Val	Arg	Glu	Val	Ala 85	Glu	Phe	Trp	Cys	Asp 90	Thr	Ile	His	Thr	Gly 95	Val
Tyr	Pro	Ile	Leu 100	Ser	Arg	Ser	Leu	Arg 105	Gln	Met	Ala	Gln	Gly 110	Lys	Asp
Pro	Thr	Glu 115	Trp	His	Val	His	Thr 120	Cys	Gly	Leu	Ala	Asn 125	Met	Phe	Ala
Tyr	His 130	Thr	Leu	Gly	Tyr	Glu 135	Asp	Leu	Asp	Glu	Leu 140	Gln	Lys	Glu	Pro
Gln 145	Pro	Leu	Ile	Phe	Val 150	Ile	Glu	Leu	Leu	Gln 155	Val	Asp	Ala	Pro	Ser 160
Asp	Tyr	Gln	Arg	Glu 165	Thr	Trp	Asn	Leu	Ser 170	Asn	His	Glu	Lys	Met 175	Lys
Val	Val	Pro	Val 180	Leu	His	Gly	Glu	Gly 185	Asn	Arg	Leu	Phe	Lys 190	Leu	Gly
Arg	Tyr	Glu 195	Glu	Ala	Ser	Ser	Lys 200	Tyr	Gln	Glu	Ala	Ile 205	Ile	Cys	Leu
Arg	Asn 210	Leu	Gln	Thr	Lys	Glu 215	Lys	Pro	Trp	Glu	Val 220	Gln	Trp	Leu	Lys
Leu 225	Glu	Lys	Met	Ile	Asn 230	Thr	Leu	Ile		Asn 235 age	-	Cys	Gln	Cys	Leu 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile 250 Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg 265 Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln 280 Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu 295 Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Arg 315 310 Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Trp Ser Pro Ala 325 330 Glu Pro Pro Ala Glu Pro Pro Ala Glu Ser Ser Thr Glu Pro Pro Ala 340 345 Glu Pro Pro Ala Glu Pro Pro Ala Glu Leu Thr Leu Thr Pro Gly His 360 Pro Leu Gln His 370 <210> 79 <211> 328 <212> PRT <213> Rattus norvegicus <220> <221> PEPTIDE <222> (1)..(328) <223> AIPL1 Protein rat - from Figure 1 <400> 79 Met Asp Ala Ala Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg

Val	Thr	Phe	His	Phe	Arg	Thr	Met	Lys	Cys	Asp	Glu	Glu	Arg	Thr	Val
		35					40					45			

- Ile Asp Asp Ser Lys Gln Val Gly Gln Pro Met Asn Ile Ile Ile Gly 50 55 60
- Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg 65 70 75 80
- Leu Gly Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
 85 90 95
- Tyr Pro Met Leu Ser Arg Ser Leu Arg Gln Val Ala Glu Gly Lys Asp 100 105 110
- Pro Thr Ser Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala 115 120 125
- Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro 130 135 140
- Gln Pro Leu Ile Phe Leu Ile Glu Leu Gln Val Glu Ala Pro Asn 145 150 155 160
- Glu Tyr Gln Arg Glu Thr Trp Asn Leu Asn Asn Glu Glu Arg Met Gln
 165 170 175
- Ala Val Pro Leu Leu His Gly Glu Gly Asn Arg Leu Tyr Lys Leu Gly
 180 185 190
- Arg Tyr Asp Gln Ala Ala Thr Lys Tyr Gln Glu Ala Ile Ile Cys Leu 195 200 205
- Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Glu Trp Leu Lys 210 215 220
- Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu 225 230 235 240
- Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile 245 250 255
- Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Met Arg Ala Arg

Ala His Ala Glu Val Trp Asn Ala Glu Glu Ala Lys Ala Asp Leu Glu 275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Arg Lys Ala Val Leu Arg Glu 290 295 300

Leu Arg Leu Leu Glu Ser Arg Leu Ala Asp Lys Gln Glu Glu Glu Arg 305 310 315 320

Gln Arg Cys Arg Ser Met Leu Gly 325

<210> 80

<211> 330

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(330)

<223> AIP Protein human - From Figure 1

<400> 80

Met Ala Asp Ile Ile Ala Arg Leu Arg Glu Asp Gly Ile Gln Lys Arg
1 5 10 15

Val Ile Gln Glu Gly Arg Gly Glu Leu Pro Asp Phe Gln Asp Gly Thr
20 25 30

Lys Ala Thr Phe His Tyr Arg Thr Leu His Ser Asp Asp Glu Gly Thr 35 40 45

Val Leu Asp Asp Ser Arg Ala Arg Gly Lys Pro Met Glu Leu Ile Ile 50 55 60

Gly Lys Lys Phe Lys Leu Pro Val Trp Glu Thr Ile Val Cys Thr Met 65 70 75 80

Arg Glu Gly Glu Ile Ala Gln Phe Leu Cys Asp Ile Lys His Val Val 85 90 95

Leu Tyr Pro Leu Val Ala Lys Ser Leu Arg Asn Ile Ala Val Gly Lys
100 105 110

Asp Pro Leu Glu Gly Gln Arg His Cys Cys Gly Val Ala Gln Met Arg Page 42

115 120 125

Glu	His	Ser	Ser	Leu	Gly	His	Ala	Asp	Leu	Asp	Ala	Leu	Gln	Gln	Asn
	130					135					140				

Pro Gln Pro Leu Ile Phe His Met Glu Met Leu Lys Val Glu Ser Pro 145 150 155 160

Gly Thr Tyr Gln Gln Asp Pro Trp Ala Met Thr Asp Glu Glu Lys Ala 165 170 175

Lys Ala Val Pro Leu Ile His Gln Glu Gly Asn Arg Leu Tyr Arg Glu 180 185 190

Gly His Val Lys Glu Ala Ala Ala Lys Tyr Tyr Asp Ala Ile Ala Cys 195 200 205

Leu Lys Asn Leu Gln Met Lys Glu Gln Pro Gly Ser Pro Glu Trp Ile 210 215 220

Gln Leu Asp Lys Gln Ile Thr Pro Leu Leu Leu Asn Tyr Cys Gln Cys 225 230 235 240

Lys Leu Val Val Glu Glu Tyr Tyr Glu Val Leu Asp His Cys Ser Ser 245 250 255

Ile Leu Asn Lys Tyr Asp Asp Asn Val Lys Ala Tyr Phe Lys Arg Gly 260 265 270

Lys Ala His Ala Ala Val Trp Asn Ala Gln Glu Ala Gln Ala Asp Phe 275 280 285

Ala Lys Val Leu Glu Leu Asp Pro Ala Leu Ala Pro Val Val Ser Arg 290 295 300

Glu Leu Arg Ala Leu Glu Ala Arg Ile Arg Gln Lys Asp Glu Glu Asp 305 310 315 320

Lys Ala Arg Phe Arg Gly Ile Phe Ser His 325 330

<210> 81

<211> 330

<212> PRT

<213> Mus musculus

<220 <221 <222 <223	L> 2>	PEPT: (1). AIP I	. (330		nouse	e - I	rom	Figu	ıre 1	L					
<400	<400> 81														
Met 1	Ala	Asp	Leu	Ile 5	Ala	Arg	Leu	Arg	Glu 10	Asp	Gly	Ile	Gln	Lys 15	Arg
Val	Ile	Gln	Glu 20	Gly	Arg	Gly	Glu	Leu 25	Pro	Asp	Phe	Gln	Asp 30	Gly	Thr
Lys	Ala	Thr 35	Phe	His	Phe	Arg	Thr 40	Leu	His	Ser	Asp	Asn 45	Glu	Gly	Ser
Val	Ile 50	Asp	Asp	Ser	Arg	Thr 55	Arg	Gly	Lys	Pro	Met 60	Glu	Leu	Ile	Val
Gly 65	Lys	Lys	Phe	Lys	Leu 70	Pro	Val	Trp	Glu	Thr 75	Ile	Val	Cys	Thr	Met 80
Arg	Glu	Gly	Glu	Ile 85	Ala	Gln	Phe	Leu	Cys 90	Asp	Ile	Lys	His	Val 95	Val
Leu	Tyr	Pro	Leu 100	Val	Ala	Lys	Ser	Leu 105	Arg	Asn	Ile	Ala	Glu 110	Gly	Lys
Asp	Pro	Leu 115	Glu	Gly	Gln	Arg	His 120	Сув	Cys	Gly	Ile	Ala 125	Gln	Met	His
Glu	His 130	Ser	Ser	Leu	Gly	His 135	Ala	Asp	Leu	Asp	Ala 140	Leu	Gln	Gln	Asn
Pro 145	Gln	Pro	Leu	Ile	Phe 150	His	Ile	Glu	Met	Leu 155	Lys	Val	Glu	Ser	Pro 160
Gly	Thr	Tyr	Gln	Gln 165	Asp	Pro	Trp	Ala	Met 170	Thr	Asp	Glu	Glu	Lys 175	Ala
Lys	Ala	Val	Pro 180	Val	Ile	His	Gln	Glu 185	Gly	Asn	Arg	Leu	Tyr 190	Arg	Glu
Gly	Gln	Val 195	Lys	Glu	Ala	Ala	Ala 200	Lys	Tyr	Tyr	Asp	Ala 205	Ile	Ala	Cys

Leu Ly 21		Leu	Gln	Met	Lys 215	Glu	Gln	Pro	Gly	Ser 220	Pro	Asp	Trp	Ile	
Gln Le 225	u Asp	Leu	Gln	Ile 230	Thr	Pro	Leu	Leu	Leu 235	Asn	Tyr	Сув	Gln	Cys 240	
Lys Le	u Val	Ala	Gln 245	Glu	Tyr	Tyr	Glu	Val 250	Leu	Asp	His	Cys	Ser 255	Ser	
Ile Le	u Asn	Lys 260	Tyr	Asp	Asp	Asn	Val 265	Lys	Ala	Tyr	Phe	Lys 270	Arg	Gly	
Lys Al	a His 275	Ala	Ala	Val	Trp	Asn 280	Ala	Gln	Glu	Ala	Gln 285	Ala	Asp	Phe	
Ala Ly 29		Leu	Glu	Leu	Asp 295	Pro	Ala	Leu	Ala	Pro 300	Val	Val	Ser	Arg	
Glu Le 305	u Arg	Ala	Leu	Glu 310	Thr	Arg	Ile	Arg	Gln 315	Lys	Asp	Glu	Glu	Asp 320	
Lys Al	a Arg	Phe	Arg 325	Gly	Ile	Phe	Ser	His 330							
<210> <211>	82 8														
<212> <213>	DNA Homo	sap:	iens												
<220> <221>	misc	stri	uctui	re											
<222> <223>	(1). Eigh	. (8)			cion	as '	Val 3	33 iı	n the	e AII	PL1 9	gene			
<400> gtgatc	82 tt														8
<210> <211>	83 9														
<212> <213>	DNA Homo	sap	iens												
<220> <221>	misc	_str	uctu	re											
<222> <223>	(1). Nine		e de:	letio	on at	Lei	ı 251	7 of	the	AIPI	.1 g∈	ene			

<400> 83 ctccggcac

9