Herbst 23 Themennummer 2 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

In dieser Aufgabe bezeichne $D(r) := \{z \in \mathbb{C} : |z| < r\}$ die offene Kreisscheibe in \mathbb{C} mit Radius r > 0 und mit Mittelpunkt im Ursprung.

a) Es sei $\varepsilon > 0$, und

$$f: D(1+\varepsilon) \longrightarrow D(1)$$

sei eine holomorphe Funktion. Zeigen Sie: Es gibt ein eindeutiges $p \in D(1)$, so dass f(p) = p.

b) Charakterisieren Sie alle in der offenen Einheitskreisscheibe D(1) holomorphen Funktionen $f:D(1)\longrightarrow \mathbb{C}$, für die es ein $N\in \mathbb{N}$ gibt, so dass für alle n>N gilt:

$$\left| f\left(\frac{1}{n}\right) \right| \le e^{-n}$$

Lösungsvorschlag:

a) Wir definieren die holomorphen Funktionen $g: D(1+\varepsilon) \to \mathbb{C}$, $h: D(1+\varepsilon) \to \mathbb{C}$ durch g(z) := -z für alle $z \in D(1+\varepsilon)$ und h:=f+g. Es gilt für $z \in \partial D(1)$:

$$|\underbrace{f(z)}_{\in D(1)}| < 1 = |g(z)| = |z|$$

g hat genau eine Nullstelle in D(1), nämlich den Nullpunkt. Nach dem Satz von Rouché haben g und h damit beide genau eine Nullstelle in D(1). Die Nullstellen von h in D(1) sind aber gerade jede Punkte $p \in D(1)$, die f(p) = p erfüllen. Damit ist die Aussage gezeigt.

b) Da f holomorph ist, gibt es eine Potenzreihe mit Konvergenzradius 1 (Potenzreihenentwicklungssatz!) und Koeffizienten $(a_k)_{k\in\mathbb{N}_0}\subseteq\mathbb{C}$, sodass

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

für alle $z \in D(1)$.

Es gilt nach Voraussetzung

$$\lim_{n \to \infty} \left| f\left(\frac{1}{n}\right) \right| \le \lim_{n \to \infty} e^{-n} = 0, \quad \lim_{n \to \infty} \left| f\left(\frac{1}{n}\right) \right| = \lim_{n \to \infty} \left| a_0 + \sum_{k=1}^{\infty} a_k \left(\frac{1}{n}\right)^k \right| = a_0.$$

Der letzte Grenzwert gilt, da die Potenzreihe $P_0: D(1) \ni z \mapsto \sum_{k=1}^{\infty} a_k z^k$ nach Voraussetzung Konvergenzradius 1 hat, also eine stetige Funktion ist mit $P_0(0) = \sum_{k=1}^{\infty} a_k 0^k = 0$. Daher gilt $a_0 = 0$.

Jetzt wandelt man das Argument leicht ab und wiederholt es. Man hat (man beachte $a_0 = 0$):

$$\lim_{n\to\infty} \frac{\left|f\left(\frac{1}{n}\right)\right|}{\frac{1}{n}} \le \lim_{n\to\infty} ne^{-n} = 0, \quad \lim_{n\to\infty} \frac{\left|f\left(\frac{1}{n}\right)\right|}{\frac{1}{n}} = \lim_{n\to\infty} \left|a_1 + \sum_{k=2}^{\infty} a_k \left(\frac{1}{n}\right)^{k-1}\right| = a_1.$$

Hierbei wurde verwendet, dass die Exponentialfunktion schneller wächst als jedes Polynom ($\Longrightarrow \lim_{n\to\infty} ne^{-n} = 0$; Das könnte man auch durch Anwendung von l'Hôpital auf $\frac{n}{e^n}$ selbst zeigen) und, dass die Potenzreihe $D(1) \ni z \mapsto a_k z^{k-1}$ den gleichen Konvergenzradius wie P_0 hat (das folgt aus $1 = \frac{1}{|\lim \sup k \to \infty|a_{k+1}|} = \frac{1}{|\lim \sup k \to \infty|a_{k+1}|}$).

Jetzt setzt man dieses Argument induktiv fort. Allgemein lautet das Argument für $m \in \mathbb{N}_0$:

$$\lim_{n\to\infty} \frac{\left|f\left(\frac{1}{n}\right)\right|}{\frac{1}{n^m}} \le \lim_{n\to\infty} n^m e^{-n} = 0, \quad \lim_{n\to\infty} \frac{\left|f\left(\frac{1}{n}\right)\right|}{\frac{1}{n^m}} = \lim_{n\to\infty} \left|a_m + \sum_{k=m+1}^{\infty} a_k \left(\frac{1}{n}\right)^{k-m}\right| = a_m.$$

Damit ist $a_k = 0$ für alle $k \in \mathbb{N}$ und nach der Darstellung von f als Potenzreihe kann nur f = 0 für eine Funktion mit den geforderten Eigenschaften infrage kommen.

(JR)