Binary Number System

- Two digits: 0 and 1.
 - Every digit position has a weight that is a power of 2.
 - Base or radix is 2.
- Examples:

```
110 = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}
101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}
```

Binary to Decimal Conversion

- · Each digit position of a binary number has a weight.
 - Some power of 2.
- A binary number:

$$B = b_{n-1} b_{n-2} \dots b_1 b_0 \cdot b_{-1} b_{-2} \dots b_{-m}$$

where b, are the binary digits.

Corresponding value in decimal:

$$D = \sum_{i=-m}^{n-1} b_i 2^i$$

Some Examples

- 1. $101011 \rightarrow 1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 43$ $(101011)_2 = (43)_{10}$
- 2. .0101 \rightarrow 0x2⁻¹ + 1x2⁻² + 0x2⁻³ + 1x2⁻⁴ = .3125 (.0101)₂ = (.3125)₁₀
- 3. $101.11 \rightarrow 1x2^2 + 0x2^1 + 1x2^0 + 1x2^{-1} + 1x2^{-2} = 5.75$ $(101.11)_2 = (5.75)_{10}$

Decimal to Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part:
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders in reverse order.
- For the fractional part:
 - Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
 - Arrange the integer parts in the order they are obtained.

Examples

```
2 | 239

2 | 119 | --- 1

2 | 59 | --- 1

2 | 29 | --- 1

2 | 14 | --- 1

2 | 7 | --- 0

2 | 3 | --- 1

2 | 1 | --- 1

2 | 0 | --- 1
```

```
2 | 64

2 | 32 | --- 0 | 16 | --- 0

2 | 8 | --- 0

2 | 4 | --- 0

2 | 2 | --- 0

2 | 1 | --- 0

2 | 0 | --- 1
```

```
.634 x 2 = 1.268

.268 x 2 = 0.536

.536 x 2 = 1.072

.072 x 2 = 0.144

.144 x 2 = 0.288 

:

(.634)<sub>10</sub> = (.10100.....)<sub>2</sub>
```

```
37.0625
(37)_{10} = (100101)_2
(.0625)_{10} = (.0001)_2
\therefore (37.0625)_{10} = (100101 \cdot 0001)_2
```

Hexadecimal Number System

- A compact way to represent binary numbers.
 - Group of four binary digits are represented by a hexadecimal digit.
 - Hexadecimal digits are 0 to 9,
 A to F.

Hex	Binary	Hex	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

32-bit number.

$$(A | 2)_{H} = (1010 0001 0010)_{2}$$

Binary to Hexadecimal Conversion

- For the integer part:
 - Scan the binary number from right to left.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add leading zeros if necessary.
- For the fractional part:
 - Scan the binary number from left to right.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add trailing zeros if necessary.

Examples

1.
$$(101101000011)_2 = (B43)_{16}$$

2.
$$(101010001)_2 = (2A1)_{16}$$
 Two leading 0s are added

3.
$$(.1000010)_2$$
 = $(.84)_{16}$ A trailing 0 is added

4.
$$(101.0101111)_2 = (5.5E)_{16}$$
A leading 0 and trailing 0 are added

Hexadecimal to Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent.
- Examples:

```
(3A5)_{16} = (0011 1010 0101)_2

(12.3D)_{16} = (0001 0010 .0011 1101)_2

(1.8)_{16} = (0001 .1000)_2
```

How are Hexadecimal Numbers Written?

- Using the suffix "H" or using the prefix "0x".
- Examples:

```
    ADDI R1,2AH // Add the hex number 2A to register R1
    0x2AB4 // The 16-bit number 0010 1010 1011 0100
    0xFFFFFFF // The 32-bit number for the all-1 string
```

Unsigned Binary Numbers

- An n-bit binary number can have 2ⁿ distinct combinations.
 - For example, for n=3, the 8 distinct combinations are:
 000, 001, 010, 011, 100, 101, 110, 111 (0 to 2³-1 = 7 in decimal).

Number of bits (n)	Range of Numbers	
8	0 to 28-1 (255)	
16	0 to 216-1 (65535)	
32	0 to 232-1 (4294967295)	
64	0 to 264-1	

An n-bit binary integer:

$$b_{n-1}b_{n-2}...b_2b_1b_0$$

Equivalent unsigned decimal value:

$$D = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_22^2 + b_12^1 + b_02^0$$

Each digit position has a weight that is some power of 2.

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
 - Question:: How to represent sign?
- Three possible approaches:
 - a) Sign-magnitude representation
 - b) One's complement representation
 - c) Two's complement representation

(a) Sign-magnitude Representation

- For an n-bit number representation:
 - The most significant bit (MSB) indicates sign (0: positive, 1: negative).
 - The remaining (n-1) bits represent the magnitude of the number.
- Range of numbers: (2ⁿ⁻¹ 1) to + (2ⁿ⁻¹ 1)

A problem: Two different representations for zero.

+0: 0.00 000 and -0: 1.00 000

SIGN MAGNITUDE

Example:
$$n = 4$$

RANGE: $-(z^3-1)$ to $+(z^3-1)$

0111: +7

(b) Ones Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in sign-magnitude form.
 - Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
 - Complement every bit of the number (1→0 and 0→1).
 - MSB will indicate the sign of the number (0: positive, 1: negative).

Example for n=4

Decimal	1's complement	Decimal	1's complement
+0	0000	-7	1000
+1	0001	-6	1001
+2	0010	-5	1010
+3	0011	-4	1011
+4	0100	-3	1100
+5	0101	-2	1101
+6	0110	-1	1110
+7	0111	-O	1111

To find the representation of, say, -4, first note that

+4 = 0100

-4 = 1's complement of 0100 = 1011

Range of numbers that can be represented in 1's complement:

Maximum :: $+(2^{n-1}-1)$

Minimum :: $-(2^{n-1}-1)$

A problem:

Two different representations of zero.

- +0 → 0000....0
- -0 → 1111....1
- Advantage of 1's complement representation:
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.

(c) Twos Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in sign-magnitude form.
 - Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
 - Complement every bit of the number (1→0 and 0→1), and then add one to the resulting number.
 - MSB will indicate the sign of the number (0: positive, 1: negative).

Example for n=4

Decimal	2's complement	Decimal	2's complement
+0	0000	-8	1000
+1	0001	-7	1001
+2	0010	-6	1010
+3	0011	-5	1011
+4	0100	-4	1100
+5	0101	-3	1101
+6	0110	-2 R	1110
+7	0111	-1	1111

To find the representation of, say, -4, first note that

Range of numbers that can be represented in 2's complement:

Maximum :: + (2ⁿ⁻¹ - 1)

Minimum :: -2^{n-2}

- Advantage of 2's complement representation:
 - Unique representation of zero.
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.
- Almost all computers today use 2's complement representation for storing negative numbers.

- Some other features of 2's complement representation
 - a) Weighted number representation, with the MSB having weight -2^{n-1} .

b) Shift left by k positions with zero padding multiplies the number by 2^k .

11100011 = -29 :: Shift left by 2 :: 10001100 = -116

-20: 101100 in 2's complement

SIGN EXTENSION IN 2'S COMPLEMENT

c) Shift right by k positions with sign bit padding divides the number by 2^k .

11100100 = -28 :: Shift right by 2 :: 11111001 = -7

d) The sign bit can be copied as many times as required in the beginning to extend the size of the number (called sign extension).

```
X = 00101111  (8-bit number, value = +47)
```

Sign extend to 32 bits:

00000000 00000000 00000000 00101111

```
X = 10100011 (8-bit number, value = -93)
```

Sign extend to 32 bits:

11111111 11111111 11111111 10100011

