SCALING ERLANG WEB APPLICATIONS 100 to 100K users at one web server

Fernando Benavides (@elbrujohalcon)

Inaka Labs

March 20, 2012

INAKA NETWORKS

presents ...

INAKA NETWORKS

presents ...

El Brujo Halcón

in . . .

El Brujo Halcón

in . . .

SCALING ERLANG

Based on a true story

SCALING ERLANG

Based on a true story

A not so long time ago

A not so long time ago

in a country far far away...

A FRIEND

Hey! Let's watch the superclásico!!!

BRUJO

I can't, I'm at the office

A Friend

- - -

BRUJC

A Friend

Hey! Let's watch the superclásico!!!

BRUJO

I can't, I'm at the office

A Friend

- - -

Brujo

A FRIEND

Hey! Let's watch the superclásico!!!

BRUJO

I can't, I'm at the office

A FRIEND

. . .

Brujo

A Friend

Hey! Let's watch the superclásico!!!

Brujo

I can't, I'm at the office

A Friend

. . .

BRUJO

Let's call it MATCHSTREAM

A Friend

Ok, then... We know there will be hundreds of thousands of users, right?

We need the system to **scale**

Bruic

Of course! We should use Erlang!

Let's call it MATCHSTREAM

A FRIEND

Ok, then...We know there will be hundreds of thousands of users, right?
We need the system to **scale**

Brillo

Of course! We should use Erlang!

Brujo

Let's call it MATCHSTREAM

A Friend

Ok, then...We know there will be hundreds of thousands of users, right?
We need the system to **scale**

Brujo

Of course! We should use Erlang!

A while later...

MATCHSTREAM System Description

MATCHSTREAM

ARCHITECTURE

Brujo

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

USER I

Wow! MATCHSTREAM is awesome!

. . .

USER. 100

Hey! this system is a total crap! It doesn't even let me connect to it!

Brujo

WTF?! The system doesn't scale!!

A Friend

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

USER 1

Wow! MATCHSTREAM is awesome!

User 100

Hey! this system is a total crap! It doesn't even let me connect to it!

Brujo

WTF?! The system doesn't scale!!

A FRIEND

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

User 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A FRIEND

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

USER 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A Frieni

Brujo

Boca plays again today, let's try our system out with this game!

What can **possibly** go wrong?

User 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A Frieni

Brujo

Boca plays again today, let's try our system out with this game!

What can **possibly** go wrong?

User 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A Friend

LESSON LEARNED

Just using Erlang is not enough to make your system scale

So, we made it scale...


```
    We built a simulator
```

```
    We improved the logging mechanisms
```

```
    We tested the system
```


- We built a simulator
- We improved the logging mechanisms
- We tested the system
- We found its initial scale limits

- We built a simulator
- We improved the logging mechanisms
- We tested the system
- We found its initial scale limits

- We built a simulator
- We improved the logging mechanisms
- We tested the system
- We found its initial scale limits

- We built a simulator
- We improved the logging mechanisms
- We tested the system
- We found its initial scale limits

N = 1024 / C = 4

Once we knew the system was fine, we decided to tune up the server where it was installed. So, we checked the kernel variables and system limits for

Goncurrent TCP connections

Open files limit

TCP backlog size

TCP memory allocation

Erlang VM process limit

Once we knew the system was fine, we decided to tune up the server where it was installed. So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

Once we knew the system was fine, we decided to tune up the server where it was installed. So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

Once we knew the system was fine, we decided to tune up the server where it was installed. So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

Once we knew the system was fine, we decided to tune up the server where it was installed. So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

Once we knew the system was fine, we decided to tune up the server where it was installed. So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

◆□▶◆御▶◆恵▶◆恵▶ 恵

N = 4096 / C = 4

Then we decided to start improving the different components of the system.

We called a friend to help us...

Then we decided to start improving the different components of the system.

We called a friend to help us...

Then we decided to start improving the different components of the system.

We called a friend to help us...

STEP 3 CONNECTION TWEAKS

BACKLOG

- Allow more concurrent connections
- Remember HTTP runs on TCP

Connections

- Don't use just one of them
- Check inbound and outbound connections

STEP 3 CONNECTION TWEAKS

BACKLOG

- Allow more concurrent connections
- Remember HTTP runs on TCP

Connections

- Don't use just one of them
- Check inbound and outbound connections

TODO users / TODO at a time

SUP_HANDLER

- Don't use it
- Monitor the processes instead

Long Delivery Queues

Use repeaters

SUP_HANDLER

- Don't use it
- Monitor the processes instead

Long Delivery Queues

• Use repeaters

TODO users / TODO at a time

CALL TIMEOUTS

Remember gen_server:reply/2

Memory Footprint

Remember hibernate

Long init/1

Use 0 timeout

STEP 3 GEN_SERVER

CALL TIMEOUTS

Remember gen_server:reply/2

Memory Footprint

Remember hibernate

LONG INIT/1

Use 0 timeout

STEP 3 GEN_SERVER

CALL TIMEOUTS

Remember gen_server:reply/2

Memory Footprint

Remember hibernate

LONG INIT/1

Use 0 timeout

TODO users / TODO at a time

- Sometimes simple_one_for_one supervisors get overburdened because they have too many children
- Try a supervisor hierarchy with several managers below the main supervisor
- Turn supervisor:start_child/2 calls into something like

TODO users / TODO at a time

STEP 3 OTHER PROCESSES

TIMERS

- Don't use the timer module
- Use erlang:send_after

Logging

- Don't log too much
- Use a good logging system

REGISTRATION

- Sometimes it's better to register processes instead of keeping track of their pids manually
- You can always register processes both locally and globally

STEP 3 OTHER PROCESSES

TIMERS

- Don't use the timer module
- Use erlang:send_after

Logging

- Don't log too much
- Use a good logging system

REGISTRATION

- Sometimes it's better to register processes instead of keeping track of their pids manually
- You can always register processes both locally and globally

STEP 3 OTHER PROCESSES

TIMERS

- Don't use the timer module
- Use erlang:send_after

Logging

- Don't log too much
- Use a good logging system

REGISTRATION

- Sometimes it's better to register processes instead of keeping track of their pids manually
- You can always register processes both locally and globally

N = 65536 / C = 8192

TODO: Img of what the system looks like at this point

Step 4

Well, let's add some nodes to it!

STEP 4 ADDING NODES

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

STEP 4 Adding Nodes

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

STEP 4 ADDING NODES

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

STEP 4 Adding Nodes

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

STEP 4 RESULTS

