

Victorian Certificate of Education

Year 2020

Key

deletions red-coloured text and strikethrough changes blue-coloured text and highlight

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$	
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$	
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$	
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		

Probability

Pr(A) = 1 - Pr(A')		$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$			
mean	$\mu = E(X)$	variance	$\operatorname{var}(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	Pr(X-x) - p(x)	$\mu - \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Probability distribution		Mean	Variance
Bernoulli	$\Pr(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0 \end{cases}$	$\mu = p$	$\sigma^2 = p(1-p)$
binomial	$\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$	$\mu = np$	$\sigma^2 = np(1-p)$
normal	$\Pr(X \le a) = \int_{-\infty}^{a} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$	μ	σ ²

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard- deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\frac{\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)}{n}$

