

MATRIKS (INTERPOLASI DAN GRAF)

APRIANI PUTI PURFINI, S. Kom., M.T.

Operasi Baris Elementer (OBE)

1. Pertukaran Baris

2. Perkalian suatu baris dengan konstanta bukan nol

Operasi Baris Elementer (OBE)

3. Penjumlahan hasil perkalian suatu baris dengan konstanta bukan nol terhadap baris lain

$$0 \leftarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 1 & -3 & 1 \end{bmatrix} -2B_1 + B_2 \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & -5 \\ 1 & -3 & 1 \end{bmatrix} -B_1 + B_3 \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & -5 \\ 0 & -5 & -2 \end{bmatrix}$$

Operasi Baris Elementer (OBE)

- 1. Pada baris tak nol maka unsur tak nol pertama adalah 1 (dinamakan satu utama)
- 2. Pada baris yang berurutan , baris yang lebih rendah memuat 1 utama yang lebih ke kanan
- 3. Jika ada baris nol (baris semua yang unsurnya nol), maka ia diletakkan pada baris paling bawah
- 4. Pada kolom yang memuat unsur 1 utama, ma ka unsur yang lainnya adalah nol
- Matriks dinamakan eselon baris jika dipenuhi sifat 1,2 dan 3 (Proses Eliminasi Gauss)
- Matriks dinamakan eselon baris tereduksi jika dipenuhi semua sifat (Proses Eliminasi Gauss Jordan)

$$\leftarrow \begin{bmatrix}
1 & -3 & 1 & 2 \\
0 & 1 & 1 & 3 \\
0 & 0 & 1 & 4
\end{bmatrix}$$

Eliminasi Gauss

$$\begin{bmatrix} 2 & 4 & -3 \\ 1 & 1 & 2 \\ 3 & 6 & -5 \end{bmatrix} \xrightarrow{OBE} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{7}{2} \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{Eliminasi} Gauss$$

$$\begin{bmatrix} 2 & 4 & -3 \\ 1 & 1 & 2 \\ 3 & 6 & -5 \end{bmatrix} \xrightarrow{OBE} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{Eliminasi} Gauss Jordan$$

Interpolasi

Interpolasi

Misalkan ada sekumpulan data yang menggambarkan hubungan antara tegangan pada baja antikarat dengan waktu patah sbb

Tegangan kg/mm2 (x)	5	10	15	20	25	30	31
Waktu patah jam (y)	40	30	25	40	18	20	

Interpolasi

Teknik mencari nilai suatu variabel yang hilang pada rentang data yang diketahui

Interpolasi

Linear

Kuadratik

Polinom

Interpolasi vs Regresi

INTERPOLASI

- Data memiliki ketelitian sangat tinggi
- Kurva melalui semua titik dari data yang diberikan
- Contoh : fungsi trigonometri, In, exp

$$f(x) = \frac{\ln(2x^{1/2} - 4x^2)^3}{\sqrt{1 + 2x^5}}$$

REGRESI

- Pencocokan data dimana tidak semua titik data perlu dilalui
- Kurva hampiran dibuat agar selisih titik data dengan titik hampiran di kurva sekecil mungkin

Interpolasi Polinom

Cara menginterpolasi salah satunya dengan menggunakan fungsi polinom Fungsi Polinom dapat dituliskan dengan

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

a)
$$p_1(x) = a_0 + a_1(x)$$

b)
$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

c)
$$p_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Interpolasi Polinom

Interpolasi menggunakan dua titik $P_1(x_0, y_0)$ dan $P_2(x_1, y_1)$ dengan sebuah garis lurus

$$\frac{y - y_0}{y_1 - y_0} = \frac{x - x_0}{x_1 - x_0}$$

$$y - y_0 = \frac{x - x_0}{x_1 - x_0} (y_1 - y_0)$$

$$\underline{\underline{y}} = \underline{\underline{x} - x_0}_{x_1 - x_0} (y_1 - y_0) + y_0$$

Interpolasi menggunakan dua titik $P_1(x_0, y_0)$ dan $P_2(x_1, y_1)$ dengan sebuah garis lurus

misalkan $p_1(x) = a_0 + a_1x$ dengan substitusi diperoleh dua persamaan yaitu

$$y_0 = a_0 + a_1 x_0$$

$$y_1 = a_0 + a_1 x_1 ... (*)$$

Substitusi kedua titik ke persamaan (*) lalu hitung nilai a_0 dan a_1 dengan menggunakan eliminasi gauss

Berikut ini adalah nilai data dari hasil pengukuran suatu fungsi f(x)

Nilai x	1.5	2	2.5
y=f(x)	0.04979	0.01832	0.00674

Gunakan interpolasi linear (2 titik) untuk menghitung nilai y saat x = 1.8.

Fungsi f(x) dihampiri dengan menggunakan fungsi interpolasi $p_2(x)$ maka didapatkan (Gunakan 2 titik terdekat x = 1.8)

$$p_1(x) = a_0 + a_1 x$$
 menjadi

$$\begin{bmatrix} 1 & 1.5 & 0.04979 \\ 1 & 2 & 0.01832 \end{bmatrix} \approx \begin{bmatrix} 1 & 1.5 & 0.04979 \\ 0 & 0.5 & -0.03147 \end{bmatrix} \approx \begin{bmatrix} 1 & 1.5 & 0.04979 \\ 0 & 1 & -0.06294 \end{bmatrix}$$

Solusi:
$$a_0 = 0.1442$$
 $a_0 = 0.1442$ $a_1 = -0.06294$

$$y = f(x) \approx p_1(x) = 0.1442 - 0.06294.x$$

Saat x = 1.8 maka nilai $f(1.8) \approx p_1(1.8) = 0.1442 - 0.06294 * 1.8 = 0.030908$

Nilai x	1.5	1.8	2	2.5
y=f(x)	0.04979	0.030908	0.01832	0.00674

Nilai taksiran dengan menggunakan fungsi interpolasi linear $p_1(x)$

Interpolasi Kuadratik (menggunakan 3 titik)

Misalkan tiga buah data $(x_0, y_0), (x_1, y_1), (x_2, y_2)$

maka dengan substitusi ke $p_2(x) = a_0 + a_1x + a_2x^2$

sehingga diperoleh:
$$y_0 = a_0 + a_1 x_0 + a_2 x_0^2$$

$$y_1 = a_0 + a_1 x_1 + a_2 x_1^2$$

$$y_2 = a_0 + a_1 x_2 + a_2 x_2^2$$

Hitung nilai a_0, a_1, a_2 dari SPL

Pengantar Teori Graf

- Graph adalah himpunan di mana diantara anggota memiliki relasi.
- Contoh hubungan antara dua anggota, A dan B, bisa jadi
 - orang A mendominasi orang B,
 - hewan A memakan hewan B,
 - negara A secara militer mendukung negara B,
 - perusahaan A menjual produknya ke perusahaan B,
 - tim olahraga A secara konsisten mengalahkan tim olahraga B,
 - kota A memiliki penerbangan langsung ke kota B.
- Bagaimana teori graf dapat digunakan untuk secara model matematis seperti p ada contoh sebelumnya.

Graf Berarah

- Himpunan berhingga, {P1, P2, . . . , Pn}, yang membentuk koleksi berhing ga dari pasangan terurut (Pi, Pj) dari elemen-elemen berbeda dari himpu nan ini, tanpa ada pasangan yang berulang.
- P1, P2, ..., Pn disebut vertex
- Pasangan terurut disebut tepi berarah (directed edges), dari graf berarah.
 Notasi Pi → Pj (Pi terhubung ke Pj)

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

M adalah matriks verteks

Contoh Penerapan

Sebuah keluarga terdiri dari ibu, ayah, anak perempuan dan dua anak laki-laki.

Setiap anggota keluarga memiliki pengaruh dan kekuatan ant ara satu dengan yang lain.

- Ibu bisa mempengaruhi anak perempuan dan anak lakilaki tertua.
- 2. Ayah bisa mempengaruhi kedua anak laki-lakinya.
- 3. Anak perempuan dapat mempengaruhi ayahnya.
- 4. Anak laki-laki tertua dapat mempengaruhi anak laki-laki yang terkecil.
- 5. Anak yang terkecil dapat mempengaruhi ibunya.

Buatlah graf dan matriks verteks M dari kasus ini.

$$M = \begin{array}{c} \text{i} & \text{a} & \text{ap al1 al2} \\ \text{i} & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \text{al2} & 0 & 0 & 0 & 0 \end{array}$$

Latihan

1. Tentukan matriks verteks M dari graf berarah berikut ini

2. Dari matriks verteks M berikut ini buatlah graf berarahnya

$$M = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Sifat matriks verteks : Diagonalnya selalu 0 dan elemen lainnya bernilai 0 atau 1

Latihan

3. Berikut adalah graf dari rute perjalanan pesawat dengan 4 kota P_1 , P_2 , P_3 , P_4 .

Dengan matriks verteks sebagai berikut

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Gambarkan graf dari matriks tersebut!

Quote of the Day

