Line Assignment

Bhavani Kanike

October 2022

Problem Statement - ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig). AC is a diagonal. Show that:

- 2. PQ = SR
- 3. PQRS is a parallelogram.

Figure 1: Figure

Solution

Given: ABCD is a Quadrilateral P,Q,R and S are the midpoints of line AB,BC,CD,DA.We can obtain the points P,Q,R and S from A,B,C and D and are given by

$$P = \frac{(A+B)}{2}$$

$$Q = \frac{(C+B)}{2}$$

$$R = \frac{(C+D)}{2}$$

$$S = \frac{(D+A)}{2}$$

(3) To prove that PQRS is a parallelogram we need to prove PQ // SR To prove SR \parallel PQ

Direction vector of line SR $(R-S) = \frac{(C-A)}{2}$

Direction vector of line PQ $(Q - P) = \frac{(C - A)}{2}$

$$(R-S) = (Q-P) = \frac{(C-A)}{2}$$
 (1)

Since the direction vectors of line SR and PQ are in same direction

 $SR \parallel PQ$

Therefore, PQRS is a parallelogram

(1) Directional vector of line SR = $(R - S) = \frac{(C - A)}{2}$ Directional vector of line AC = (C - A)

It is observed that the constant k is $\frac{1}{2}$ Therefore

$$SR \parallel AC$$
 (2)

and from equation 1

$$SR = \frac{1}{2}AC \tag{3}$$

(2) To prove PQ = SRFrom equation 1

$$(Q - P) = (R - S) = \frac{(C - A)}{2}$$
 (4)

1 Execution

The below python code realizes the construction:

https://github.com/bhavani360/FWC_assignments

Construction

The dimensions of the Quadrilateral ABCD are taken as be-

.OW	
symbol	value
r	8
θ	pi/2.5
d	7
A	(0,0)
В	(d,0)
D	$(rcos\theta, rsin\theta)$
С	(D/1.5)+B

low