Алгебра и геометрия Лекция 6

Определение эллипса было дано на предыдущей лекции. Напомним его.

Определение

Эллипсом называется линия, которая в некоторой ПДСК (канонической) имеет уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad a \ge b > 0.$$

(каноническое уравнение эллипса.)

Далее мы будем считать, что эллипс не является окружностью, т.е. $a \neq b$.

Определение

Числа a и b называются большой и малой полуосями эллипса.

Определение

Точки $(\pm a, 0)$; $(0, \pm b)$ в КСК называются вершинами эллипса.

Утверждение 11.1

Оси КСК — оси симметрии эллипса, а начало КСК — центр симметрии эллипса.

Доказательство

Если $(x, y) \in Э$, то из уравнения следует, что (-x, y), (x, -y) и $(-x, -y) \in Э$.

Определение

Точки $F_1(c,0)$ и $F_2(-c,0)$, где $c^2=a^2-b^2,c>0$, называются фокусами эллипса (правым и левым соответственно).

Определение

Число $\varepsilon = \frac{c}{a}$ называется эксцентриситетом эллипса.

Следствие $0 < \varepsilon < 1$.

Определение

Для точки $M \in$ эллипсу $r_1 = MF_1$ и $r_2 = MF_2$ называются фокальными радиусами этой точки.

Определение

Прямые $x=\pm \frac{a}{\varepsilon}$ называются директрисами эллипса. Обозначим их d_1 , d_2 .

$$F_1(c,0)$$

$$F_2(-c,0)$$

Утверждение 11.2

$$r_1 = a - \varepsilon x$$
, $r_2 = a + \varepsilon x$

Доказательство

$$r_1^2 = (x - c)^2 + y^2 = (x - c)^2 + \frac{a^2 - x^2}{a^2}b^2 =$$

$$= x^2 - 2cx + \underbrace{c^2 + b^2}_{a^2} - \frac{b^2x^2}{a^2} =$$

$$= a^2 - 2cx + \frac{c^2x^2}{a^2} = (a - \varepsilon x)^2$$

Так как $0<\varepsilon<1$ и $|x|\leq a$, то $a-\varepsilon x>0\Rightarrow r_1=a-\varepsilon x$.

Второе равенство доказывается аналогично.

Теорема 11.1

$$M(x,y) \in \mathfrak{I} \Leftrightarrow r_1 + r_2 = 2a$$
.

Доказательство

$$\Rightarrow$$
 $r_1 + r_2 = (a - \varepsilon x) + (a + \varepsilon x) = 2a.$

Возводя в квадрат и приводя подобные, получаем

$$xc + a^2 = a\sqrt{(x+c)^2 + y^2}.$$

Снова возводя в квадрат и, приводя подобные, получаем (с учетом $c^2 = a^2 - b^2$) уравнение эллипса

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Теорема 11.2

$$M(x,y) \in \mathfrak{I} \Leftrightarrow \varepsilon = \frac{\rho(M,F_i)}{\rho(M,d_i)}, i = 1,2.$$

Доказательство

Докажем для i=2 (для i=1 аналогично).

$$(\Rightarrow \sqrt{(x+c)^2 + y^2} = \varepsilon \left(x + \frac{a}{\varepsilon} \right) \Leftrightarrow$$

$$\Leftrightarrow \sqrt{(x+c)^2 + y^2} = \varepsilon x + a = \frac{c}{a} x + a \Rightarrow$$

$$\Rightarrow a\sqrt{(x+c)^2 + y^2} = xc + a^2 \Leftrightarrow$$

$$\Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Уравнение касательной к эллипсу

Теорема 11.3

Уравнение касательной к эллипсу в $M_0(x_0, y_0)$ есть

$$\left|\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1\right|.$$

Доказательство

 $M(x_0,y_0)\in \Im,y_0\neq 0.$ При $y_0=0$ $x=\pm a-$ касаются эллипса. Через y_0 проходит график функции y=f(x).

Из уравнения Э
$$\Rightarrow \frac{2x}{a^2} + \frac{2ff'}{b^2} = 0 \Rightarrow f'(x_0) = -\frac{b^2}{a^2} \frac{x_0}{y_0} \Rightarrow$$

$$\Rightarrow y - y_0 = -\frac{b^2}{a^2} \frac{x_0}{y_0} (x - x_0)$$
 и так как $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$,

то уравнение приводится к виду $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$.

Определение

Кривая, которая в некоторой ПДСК (канонической), имеет уравнение

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, ab \neq 0,$$

называется гиперболой.

a — действительная полуось, b — мнимая полуось;

Прямые $y = \pm \frac{b}{a} x$ называются асимптотами гиперболы;

 $F_1(c,0)$ и $F_2(-c,0)$, где $c^2=a^2+b^2,c>0$ называются фокусами гиперболы;

$$\varepsilon = \frac{c}{a} > 1$$
 называется эксцентриситетом гиперболы.

Утверждение 11.3

$$r_1 = |a - \varepsilon x|$$

$$r_2 = |a + \varepsilon x|$$

(для правой ветви гиперболы $r_1 = \varepsilon x - a, r_2 = a + \varepsilon x,$ где $r_{1,2}$ — фокальные радиусы, определяемые аналогично случаю эллипса).

Доказательство аналогично доказательству для эллипса.

Утверждение 11.4

Пусть h_1 и h_2 — расстояния от точки M(x,y) гиперболы до асимптот. Тогда

$$h_1 h_2 = \frac{a^2 b^2}{a^2 + b^2}$$

Доказательство

ОУ асимптот: ay - bx = 0 и ay + bx = 0.

Тогда
$$h_1=\dfrac{|bx-ay|}{\sqrt{a^2+b^2}}$$
 и $h_2=\dfrac{|bx+ay|}{\sqrt{a^2+b^2}}\Rightarrow$
$$\Rightarrow h_1h_2=\dfrac{|b^2x^2-a^2y^2|}{a^2+b^2}=\dfrac{a^2b^2}{a^2+b^2}.$$

Замечание

Из утверждения 11.4 следует, что асимптоты гиперболы являются ее асимптотами в том смысле, который придается понятию асимптоты в курсе математического анализа.

Определение

Директрисами гиперболы называются прямые $x=\pm \frac{a}{\varepsilon}$.

ABCD — "характеристический прямоугольник"

Определение

Если a = b, то гипербола называется равносторонней.

Теорема 11.4

$$M(x, y) \in \Gamma \Leftrightarrow |r_1 - r_2| = 2a = \text{const} > 0.$$

Доказательство аналогично доказательству теоремы 11.1 для эллипса.

Теорема 11.5

$$M(x,y) \in \Gamma \Leftrightarrow \frac{\rho(M,F_i)}{\rho(M,d_i)} = \varepsilon.$$

Доказательство аналогично доказательству теоремы 11.3 для эллипса.

Уравнение касательной к гиперболе

Теорема 11.6

Уравнение касательной к гиперболе в $M_0(x_0, y_0)$ есть

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$$

Доказательство аналогично доказательству теоремы 11.3 для эллипса.

Определение

Кривая, которая в некоторой ПДСК (канонической), имеет уравнение _______

$$y^2 = 2px, p > 0,$$

называется параболой.

p — параметр параболы.

Определение

Для параболы $\varepsilon=1$.

Определение

Точка $F\left(\frac{p}{2},0\right)$ называется фокусом параболы, а прямая $x=-\frac{p}{2}$ — ее директрисой.

Теорема 11.7

$$M(x_0, y_0) \in \Pi \Leftrightarrow \rho(M, F) = \rho(M, d) \Rightarrow \varepsilon = 1.$$

Доказательство (⇒)

$$M \in \Pi \Rightarrow r^{2} = \left(x - \frac{p}{2}\right)^{2} + y^{2} = \left(x - \frac{p}{2}\right)^{2} + 2px =$$

$$= x^{2} - px + \frac{p^{2}}{4} + 2px = \left(x + \frac{p}{2}\right)^{2} \Rightarrow$$

$$\Rightarrow r = x + \frac{p}{2}$$
, так как $x > 0$ и $p > 0$.

$$\rho(M,d) = x + \frac{p}{2} = \rho(M,F).$$

Доказательство (=)

$$\rho(M,F) = \rho(M,d) \Leftrightarrow \rho^{2}(M,F) = \rho^{2}(M,d) \Leftrightarrow$$

$$\left(x - \frac{p}{2}\right)^{2} + y^{2} = \left(x + \frac{p}{2}\right)^{2} \Leftrightarrow y^{2} = 2px.$$

Уравнение касательной к параболе

Теорема 11.8

Уравнение касательной к параболе в $M_0(x_0, y_0)$ есть

$$yy_0 = p(x + x_0).$$

Доказательство

Для вершины O(0,0) x = 0 — касательная.

Для
$$M \neq 0$$
 $f_1(x) = \sqrt{2px}$, $f_2(x) = -\sqrt{2px}$.
$$y^2 = 2px$$
, $(f(x))^2 = 2px$, $2ff' = 2p \Rightarrow ff' = p$.
$$y - y_0 = f'(x_0)(x - x_0) = \frac{p}{f(x_0)}(x - x_0) \Leftrightarrow yy_0 - y_0^2 = p(x - x_0) \Leftrightarrow yy_0 = p(x + x_0)$$
.

Эллипс, гипербола и парабола в полярной системе координат (ПСК)

ПСК:

Связь между полярными и декартовыми координатами точки M:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$.

Эллипс, парабола и гипербола в полярной системе координат (ПСК)

1. Эллипс

$$\begin{cases} r = a + \varepsilon x \\ x = r \cos \varphi - c \end{cases} \Leftrightarrow r = a + \varepsilon r \cos \varphi - \varepsilon c \Leftrightarrow$$

$$\Leftrightarrow r(1 - \varepsilon \cos \varphi) = \underbrace{a - \varepsilon c}_{p} = r\left(\frac{\pi}{2}\right) \Leftrightarrow$$

$$\Leftrightarrow r = \frac{p}{1 - \varepsilon \cos \varphi}$$

Эллипс, парабола и гипербола в полярной системе координат (ПСК)

2. Гипербола

Для правой ветви поместим O в правый фокус $F_1(c,0)$.

$$\begin{cases} r = \varepsilon x - a \\ x = r \cos \varphi + c \end{cases} \Leftrightarrow r = \frac{p}{1 - \varepsilon \cos \varphi}, p = r\left(\frac{\pi}{2}\right).$$

Аналогично, для левой ветви
$$r = -\frac{p}{1 + \varepsilon \cos \varphi}$$
 .

Эллипс, парабола и гипербола в полярной системе координат (ПСК)

3. Парабола

Поместим
$$O$$
 в $F = \left(\frac{p}{2}, 0\right)$.

$$\begin{cases} r = \frac{p}{2} + x \\ x = r \cos \varphi + \frac{p}{2} \end{cases} \Leftrightarrow \boxed{r = \frac{p}{1 - \cos \varphi}}$$

Замечание

Не рассматривая левую ветвь гиперболы, мы получили для всех трёх кривых уравнение

$$r = \frac{p}{1 - \varepsilon \cos \varphi}$$