Singular Value Decomposition

SVD is based on a theorem from linear algebra which says that a rectangular matrix *M* can be split down into the product of three new matrices:

- An orthogonal matrix *U*;
- A diagonal matrix S;
- The transpose of an orthogonal matrix *V*.

$$A_{\rm mn} = U_{\rm mm} S_{\rm mn} V^{\rm T}_{\rm nn}$$

Singular Value Decomposition

Usually written as follows:

$$A_{\rm mn} = U_{\rm mm} S_{\rm mn} V_{\rm nn}^{\rm T}$$

where

- $U^{\mathsf{T}}U = I_{;} V^{\mathsf{T}}V = I_{;}$
- the columns of U are orthonormal eigenvectors of AA',
- the columns of V are orthonormal eigenvectors of A^TA , and
- S is a diagonal matrix containing the square roots of eigenvalues from U or V in decreasing order, called singular values. The singular values are always real numbers.
- If the matrix A is a real matrix, then U and V are also real.

Calculating the SVD $A_{mn} = U_{mm}S_{mn}V^{T}_{nn}$

$$A_{\rm mn} = U_{\rm mm} S_{\rm mn} V^{\rm T}_{\rm nn}$$

Calculating the SVD consists of finding the eigenvalues and eigenvectors of AA^{T} and $A^{T}A$.

- the eigenvectors of A^TA will produce the columns of V
- the eigenvectors of AA^{T} will produce the columns of

Calculating the SVD $A_{mn} = U_{mm}S_{mn}V^{T}_{nn}$

- 1. Compute A^{T} , $A^{\mathsf{T}}A$ (or AA^{T})
- 2. Compute eigenvalues of $A^{\mathsf{T}}A$ and sort them in descending order along its diagonal by resolving:

$$||A^{\mathsf{T}}A - \lambda I|| = 0$$

- Characteristic equation above: its resolution gives eigenvalues of $A^{\dagger}A$.
- Square root the eigenvalues of $A^{T}A$ to obtain the singular values of A.
- Build a diagonal matrix S by placing singular values in descending order along its diagonal and compute S
- Re-use eignenvalues from step 2 in descending order and compute the eigenvectors of A'A. Place these eigenvectors along the columns of V and compute its transpose V'.
- 3. Compute *U* as $U = AS^{-1}V$
- 4. Compute the true scores T as T = US

Truncated SVD

- Only the t column vectors of U and t row vectors of V^* corresponding to the t largest singular values S_t are calculated.
- The rest of the matrix is discarded.
 - much quicker and more economical.
- The matrix U_t is thus $m \times t$, S_t is $t \times t$ diagonal, and V_t^* is $t \times n$.

The truncated SVD is no longer an exact decomposition of the original matrix M, the approximate matrix M is the closest approximation to M that can be achieved by a matrix of rank t.

Truncated SVD

Truncated SVD

