

Part II: Models

Nicola Conci nicola.conci@unitn.it

Why do we need models?

They represent a good approximation of the real world

They allow describing events through a parametric representation

Parameters can be extracted and used for processing

The pinhole camera model

- It's an abstract model
- It's the most common model

The pinhole camera model

New coordinates: Z' = -f, $X' = -f\frac{X}{Z}$, $Y' = -f\frac{Y}{Z}$ x = -X', y = -Y'

From the camera: $(X,Y,Z) \rightarrow (x,y,f) = (f\frac{X}{Z},f\frac{Y}{Z},f)$

P' = (X', Y', Z')

Features of the pinhole model

■ If the object is far, it appears smaller

Features of the pinhole model

- Parallel lines converge to a single point
- Parallel lines on the same plane lead to collinear vanishing points.
- The line is called the *horizon* for that plane
- Vertical lines are perpendicular to the horizon

Vanishing Points and Horizon

Computer Vision 2022-23

Vanishing Points and Horizon

Computer Vision 2022-23

Projections

Capturing devices record 2D projections of 3D (+ time) scenes:

$$f: \Re^4 \to \Re^3$$
$$(X, Y, Z, t) \to (x, y, t)$$

- (X, Y, Z), (x, y), and t, are continuous variables.
- Two types of projection:
 - Perspective (central)
 - Ortographic (parallel)

Perspective projection

- Using the pinhole model, all rays pass through the center of projection, which corresponds to the lens.
- In the picture, the center is between the object and the image plane
- The image plane corresponds to the (X, Y) plane of the 3-D space.

Perspective projection

From the pairs of triangles:

$$(x,0,0),(0,0,f),(0,0,0);$$
 and $(X,0,Z),(0,0,f),(0,0,Z)$
 $(y,0,0),(0,0,f),(0,0,0);$ and $(Y,0,Z),(0,0,f),(0,0,Z)$

We obtain the following formulation:

$$\frac{x}{f} = \frac{X}{Z - f} \quad \text{and} \quad \frac{y}{f} = \frac{Y}{Z - f} \Rightarrow$$

$$\Rightarrow x = \frac{fX}{Z - f} \quad \text{and} \quad y = \frac{fY}{Z - f}$$

Perspective projection and the pinhole model

■ For simplicity we usually consider the image plane on the same side of the "real world", to avoid the picture flip

Simplified perspective projection

- The center of projection corresponds to the origin of the 3D space.
- The plane (X,Y) is parallel to (x,y)

Computer Vision 2022-23

Orthographic projection

- It is assumed that all rays originated from the 3D object, and from the scene in general, are parallel among each other.
- In the drawing, the image plane is parallel to (X, Y)

Orthographic projection

Assuming that the image plane is parallel to (X,Y), the orthographic projection can be simply described in Cartesian coordinates:

$$x = X$$
 and $y = Y$

Or in form of a matrix:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

- Notes:
 - The **distance** of the object from the camera **does not affect** the intensity of the image projected onto the 2D plane.
 - It is a good approximation when the distance of the object is much bigger than the depth of the object itself

Illumination models

- Illumination is a key element
- It models the appearance/perception of objects
- When a light source hits an object, light can be:
 - Absorbed
 - Reflected
 - Transmitted

Illumination models

- It's complex to model
 - We perceive objects because they reflect light in specific wavelengths
 - Reflection can be:
 - Specular (more energy is concentrated in the light source direction)
 - Diffuse (constant in all directions, and the position of the observer is irrelevant)

Illumination

- Surfaces vary in specularity
- Some of them (matte) reflect light uniformly in all directions
- Glossy objects reflect light in specific directions
- It also depends on the distance and the inclination of the light source

Illumination from one light source

- Problem: determine how the surface is irradiated by the light source
- Assumption: light is far, we can assume all rays can be represented by a single unit vector s (orthographic projection)
- For each surface element (btw dashed lines) the light is irradiated considering the cosine of the angle between the surface normal and the light direction
- i= n•s

Lambertian surface

- Model for diffuse reflection
- The specular component is neglected
- The luminance of the surface is the same regardless of the viewing angle
- Possible when the surface if rough enough w.r.t. the light wavelength
- → each surface element reflects light evenly in all directions

Light source

s (direction of light)

Reflectance model

$$| = \rho \mathbf{n} \cdot \mathbf{s} = |n| |s| \cos \alpha$$

- **n**, s unit vectors
- ρ is the albedo
 - Ratio of the reflected illumination to the total illumination
 - In general intrinsic property of the surface
 - Not true in all cases, since some surfaces may reflect light differently depending on the view angle
 - An element is not visible if n < 0, with v the angle of the viewer
- The pixel in image I(r,c) depends on:
 - The light source direction s
 - The normal of the element direction **n**

Remarks: Cameras and Lenses

- Cameras are equipped with lenses (no pinhole in real life!)
- This means that the object is **on focus** if the distance from the center of the camera and the image plane obeys to the *thin lens* equation
- If not, we have aberrations
- We typically assume the object is on focus, but let's see what this means first!

Typical issues with lenses

- Spherical aberration (causes blurring)
- Chromatic aberrations
- Vignetting (two lenses, dirt, cheap cameras)
- Barrel distortion (short focal length – wide angle lenses)

Using lenses

- Pinhole is an abstract model
- Thin lens

$$\frac{X}{f} = \frac{x'}{z'} \qquad \frac{X}{Z+f} = \frac{x'}{z'+f}$$

Drawing taken from Shapiro/Stockman

Substituting X: $f^2 = Zz'$

where: Z = u - f, z' = v - f

leads to: uv = f(u + v)

dividing by (uvf): $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$

Notice: $u \to \infty \Rightarrow \frac{1}{f} = \frac{1}{v}$

Focus

- If we move the image plane, point p' is out of focus $\rightarrow v$ changes $\rightarrow v'$
- If **P** is moved $\rightarrow u$ changes $\rightarrow u$

- Result: the image is blurred on the image plane.
- Instead of a point I see a circle!

Focus

■ Considering that the blur can be acceptable if the circle is within b, what is the range of u?

$$v' = \frac{a+b}{a}v : in \ case \ v' > v$$
 $v' = \frac{a-b}{a}v : in \ case \ v' < v$

$$u_n = \frac{u(a+b)}{a+\frac{bu}{f}}$$

$$u_r = \frac{u(a-b)}{a - \frac{bu}{f}}$$

Notice that:

- In general u>f => u_n<u</p>
- If f becomes smaller, u_n is closer to the camera
- U_r>U
- If f becomes smaller, u_r is farther from the camera
- If $u \rightarrow \infty$ rays are parallel and converge to the camera center
- Depth of field: difference between the far and near planes limiting b

Resolution and blur

- A camera with a NxM CCD can detect N/2 horizontal lines (one pixel left between two lines)
- If blur is larger than 1 pixel, the image will be grey
- Depending on the problem you have to solve, the appropriate lens must be chosen

Resolving power

- \blacksquare R_p = 1/(2 \triangle) [lines/mm]
- Δ = pixel spacing (inches or mm)
- Example:
 - $CCD_{size} = 10$ mm square, 500x500px
 - \blacksquare R_D = 1/[2x(2x10⁻²⁾] = 25 [lines/mm]
- Example:
 - Spacing of cones in the fovea = $\Delta = 10^{-4}$ inches
 - $R_p = 5x10^3$
 - f = 20mm=0.8in. (diameter of the eye)
 - Subtended angle θ = 2.5x10⁻⁴ rad = 1 min of arc = 1/60 deg = 0.016 deg
 - Human eye can see a pencil stroke 0.5mm wide at 2m distance.

Autofocus

- What is it?
 - Capability of focusing a specific portion of the image
- Hows
 - Active
 - Passive
 - Combination of the two

Active autofocus

- Mainly used for point-and-shoot cameras
- Polaroid in 1986: SONAR
- Today: Infrared, up to 6m
- Example:
 - an infrared signal is sent and the time between sending and receiving is computed
- Issues
 - Obstacles
 - Glossy and bright surfaces

Passive autofocus

- More expensive SLR (single-lens reflex) cameras
- Distance computed using image analysis
 - Take a strip of pixels and analyze the distribution
 - If values are too similar object is out of focus
 - If contrast is high, object is on focus
 - Problems with flat surfaces
 - Good cameras compute the metric on the vertical and horizontal axes

What camera do I have?

- Is there an infrared emitter?
- Otherwise:
 - Go outdoors and point at an area of the sky with no clouds (or in general a flat surface).
 - Press the shutter button halfway down. If you get a "focus okay" indication, it's an active autofocus system.
 - If you get a "focus not okay" indication, it's a passive autofocus system. The CCD cannot find any contrast in a blue sky, so it gives up.

The whole system

