INÉGALITÉS ET INÉQUATIONS

Résumé

Ce chapitre est la suite logique du chapitre sur le calcul littéral : après avoir étudié l'égalité, étudions l'inégalité.

1 Propriétés des inégalités

Propriété | Ordre dans ℝ

Si a, b et c sont des réels tels que a < b et b < c alors a < c.

Propriétés | Somme

Soient $a, b, x, y \in \mathbb{R}$.

 $ightharpoonup a < x \Leftrightarrow a+b < x+b$

- $ightharpoonup a < x \Leftrightarrow a b < x b$
- ightharpoonup Si a < x et b < y, alors a + b < x + y.

Remarque Ces propriétés sont analogues à celles connues pour les égalités.

Propriétés | Produit

Soient $a, x \in \mathbb{R}$ et $b \in \mathbb{R}^*$.

- ► Si b > 0, alors $a < x \Leftrightarrow ba < bx$
- ► Si b < 0, alors $a < x \Leftrightarrow ba > bx$

A Attention

Quand on multiplie (ou divise) une inégalité par un nombre nombre négatif, le sens de l'inégalité est inversé!

Remarque On a plusieurs conséquences du résultat précédent.

- $ightharpoonup 0 < a < b \Leftrightarrow 0 < \frac{1}{b} < \frac{1}{a}$
- ▶ Si $n \in \mathbb{N}^*$ et $a, b \in \mathbb{R}_+$, alors $a \leq b \Leftrightarrow a^n \leq b^n$.

Exercice

- 1. Comparer 2¹⁰⁰⁰⁰ et 3¹⁰⁰⁰
- **2.** Démontrer que pour tout *p* positif, on a :

$$\sqrt{p} \leqslant \frac{p+1}{2}$$
.

2 Valeur absolue

Définition | Valeur absolue

Soit $x \in \mathbb{R}$. On définit |x| la **valeur absolue** de x comme suit :

ightharpoonup Si x > 0, alors |x| = x

ightharpoonup Si x < 0, alors |x| = -x

Exemples \blacktriangleright |5| = 5

|-2,5| = -(-2,5) = 2,5

Remarques • Une valeur absolue est toujours positive.

Soit $x \in \mathbb{R}$, alors $\sqrt{x^2} = |x|$

Propriété

Soient $a, x \in \mathbb{R}$ et $r \in \mathbb{R}_+^*$.

$$|x-a| \leqslant r \Leftrightarrow a-r \leqslant x \leqslant a+r \Leftrightarrow x \in [a-r,a+r]$$

Exercice

Représenter les inégalités suivantes sur un axe gradué et donner l'ensemble solution sous forme d'un intervalle ou d'une réunion d'intervalles :

1.
$$|x-2| < 5$$

3.
$$|x-1.5| \le 0.5$$

5.
$$||x-8|+4| \le 6$$

2.
$$|x+1| < 4$$

4.
$$|x+3| \ge 1$$

6.
$$||x-4|-5| \le 2$$

3 Encadrements de réels et arrondis

Propriétés

Soient *x* un nombre réel et *n* un nombre entier relatif.

► Il existe un unique nombre entier relatif a tel que $\frac{a}{10^n} \le x < \frac{a+1}{10^n}$.

Cet encadrement est **l'encadrement décimal de** x à 10^{-n} **près**.

▶ L'arrondi de x à 10^{-n} près est celui des deux nombres $\frac{a}{10^n}$ ou $\frac{a+1}{10^n}$ qui est le plus proche de x.

Exemple On a:

$$\frac{16812}{10^3} \leqslant 16,8127 < \frac{16813}{10^3}$$

donc l'**encadrement** de 16,8127 à 10^{-3} près est 16,812 \leq 16,8127 < 16,813 et l'**arrondi** de 16,8127 à 10^{-3} près est 16,813.

4 Inéquations

Définition | Inéquations

Une **inéquation** d'inconnue *x* est une inégalité qui peut être vraie pour certaines valeurs de *x* et fausse pour d'autres.

Résoudre dans \mathbb{R} une inéquation d'inconnue x, c'est trouver l'ensemble de ses **solutions**, c'est-à-dire l'ensemble des nombres réels pour lesquels l'inégalité est vraie.

Exemples

$$3x+2>7$$

$$\Leftrightarrow 3x+2-2>7-2$$

$$\Leftrightarrow 3x>5$$

$$\Leftrightarrow \frac{3x}{3} > \frac{5}{3}$$

$$\Leftrightarrow x > \frac{5}{3}$$

L'ensemble des solutions de 3x + 2 > 7 dans \mathbb{R} est $\mathscr{S} = \left| \frac{5}{3}; +\infty \right|$.

$$-x+9 \geqslant -2$$

$$\Leftrightarrow -x+9-9 \geqslant -2-9$$

$$\Leftrightarrow -x \geqslant -11$$

$$\Leftrightarrow (-1) \times (-x) \leqslant (-1) \times (-11)$$

Notons bien que l'inégalité **a changé de sens** puisque nous avons multiplié par un nombre **négatif**.

Finalement, $-x + 9 \ge -2 \Leftrightarrow x \le 11$.

L'ensemble des solutions de $-x+9 \ge -2$ dans \mathbb{R} est $\mathcal{S} =]-\infty;11[$.

Exercice

Résoudre dans R les inéquations suivantes.

1.
$$4x - 7 < 0$$

3.
$$5x - 8 > -3 + 8$$

2.
$$x \le 10$$

4.
$$11 \geqslant 4 - 2.5x$$

5 Inéquations produits

Propriété | Signe d'un produit

On donne la règle des signes d'un produit $A(x) \times B(x)$ avec A(x) et B(x) deux expressions algébriques.

Signe de A	+	+	-	-
Signe de B	+	-	+	_
Signe de $A \times B$	+	_	-	+

Exemple La règle des signes d'un produit nous permet de résoudre certaines inéquations dites produits.

Résolvons, par exemple, l'inéquation produit (2x+4)(x-1) < 0.

Nous construisons dans un premier temps le tableau de signe de toutes les expressions en jeu, y compris le produit à partir des lignes précédentes.

x	$-\infty$		-2		1		+∞
2x + 4		_	0	+		+	
x-1		_		_	0	+	
(2x+4)(x-1)		+	0	_	0	+	

Il ne reste qu'à lire dans quels ensembles l'expression (2x+4)(x-1) est strictement négative.

$$(2x+4)(x-1) < 0 \Leftrightarrow x \in]-2;1[$$

Remarque Le tableau de signe précédent nous permet même de résoudre trois autres inéquations produits : (2x+4)(x-1) > 0, $(2x+4)(x-1) \le 0$ et $(2x+4)(x-1) \ge 0$. Ainsi,

$$(2x+4)(x-1) \geqslant 0 \Leftrightarrow x \in]-\infty;-2] \cup [1;+\infty[.$$

Exercice

Résoudre dans R les inéquations suivantes.

1.
$$(2-x)(x+7) < 0$$

2.
$$(2x+4)(1-5x) \ge 0$$

3.
$$(2+x)(8x-2) < (2+x)(x+1)$$

4.
$$(9x-4)(5x+2)(-3-6x) > 0$$

5.
$$16x^2 - 16x + 4 \le 0$$

6 Inéquations quotients

Propriété | Signe d'un quotient

On donne la règle des signes d'un quotient $\frac{A(x)}{B(x)}$ avec A(x) et B(x) deux expressions algébriques.

Signe de A	+	+	-	-
Signe de B $(B \neq 0)$	+	_	+	_
Signe de $\frac{A}{B}$	+	_	_	+

Remarque Dans le cas général, il faut exclure les **valeurs interdites** : les x tels que B(x) = 0.

Exemple Résolvons $\frac{5x+40}{-3x+1} \geqslant 0$ et $\frac{5x+40}{-3x+1} < 0$. Nous avons besoin, à nouveau, d'un tableau de signes.

x	$-\infty$		-8		$\frac{1}{3}$		+∞
5x + 40		_	0	+		+	
-3x+1		+		+	0	_	
$\frac{5x+40}{-3x+1}$		_	0	+		_	

On peut enfin résoudre $\frac{5x+40}{-3x+1} \geqslant 0$. L'ensemble des solutions réelles de $\frac{5x+40}{-3x+1} \geqslant 0$ est $\left[-8; \frac{1}{3}\right[$.

Pour $\frac{5x+40}{-3x+1} < 0$, on consulte encore le tableau de signes et l'ensemble des solutions réelles est $]-\infty; -8[\cup]\frac{1}{3}; +\infty[$.

Remarque La double barre dans le tableau de signes signifie que la valeur est **interdite**. Elle est donc à **exclure** des solutions comme pour la résolution d'équations quotients.

Exercice

Résoudre dans R les équations quotients suivantes.

1.
$$\frac{2x+4}{3-7x} > 0$$

2.
$$\frac{(3-x)(5x+3)}{2x-1} \geqslant 0$$

3.
$$\frac{6x+2}{2x} < 0$$

4.
$$\frac{x^2+2x+1}{2x-7} \leqslant 0$$

$$5. \ \frac{11x+12}{81x^2-64} < 0$$

6.
$$\frac{1}{6-x} > 5$$