INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

What is a counter?

A register that goes through a prescribed sequence of states upon the application of input pulses is called a *counter*

A counter that follows the binary number sequence is called a binary counter.

An n -bit binary counter consists of n flip-flops and can count in binary from 0 through 2^n - 1.

Ripple vs synchronous counters

Two types of counters: ripple (asynchronous) and synchronous.

Ripple: a flip-flop output transition serves as a source for triggering other flip-flops.

In other words: C input of some or all flip-flops are triggered, not by the common clock pulses, but rather by the transition that occurs in other flip-flop outputs.

Synchronous: C inputs of all flip-flops receive the common clock.

Ripple (asynchronous)

Synchronous

Background: How to design complementing flip-flop

- 1. From a JK flip-flop with the J and K inputs tied together
- 2. From a T flip-flop.
- 3. Use a *D* flip-flop with the complement output connected to the *D* input. In this way, the *D* input is always the complement of the present state, and the next clock pulse will cause the flip-flop to complement.

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Asynchronous (ripple) counter

Binary ripple counter

It has a series connection of complementing flip-flops, with the output of each flip-flop connected to the *C* input of the next higher order flip-flop.

The flip-flop holding the least significant bit receives the incoming count pulses.

Lets observe the pattern of bit-flips

Pattern of flips

A0 is complemented with each count pulse input.

Every time A0 goes from 1 to 0, it complements A1.

Every time that A1 goes from 1 to 0, it complements A2.

Every time that A2 goes from 1 to 0, it complements A3.

Based on this observation, we design the circuit.

Binary Count Sequence (0 to 8)

A ₃	A ₂	<i>A</i> ₁	A ₀
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0

Circular counting from $0 \rightarrow 15 \rightarrow 0$

Four-bit binary ripple counter

D Flip-Flop

D	Q(t +	1)
0	0	Reset
1	1	Set

T Flip-Flop

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

Output of each flip-flop is connected to the C input of the next flip-flop.

In (a), Each flip-flop complements if the signal in its C input goes through a negative transition (negative edge triggered, i.e., when output of previous flip-flop goes from 1 to 0).

Signal propagation in ripple fashion

Consider transition from 0011 to 0100. A0 is complemented with the count pulse.

Since A0 goes from 1 to 0, it triggers A1 and complements it.

As a result, A1 goes from 1 to 0, which in turn complements A2, changing it from 0 to 1.

A2 does not trigger A3, because A2 produces a positive transition and the flip-flop responds only to negative transitions.

Thus, the count from 0011 to 0100 is achieved by changing the bits one at a time.

Binary countdown counter

Counts from 15 to 0.

LSB is complemented with every count pulse.

Any other bit is complemented if its previous LSB goes from 0 to 1.

Therefore, a countdown counter looks the same as the binary ripple counter shown earlier, except that all flip-flops trigger on the positive clock-edge. (Bubble in the C inputs must be absent.)

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

BCD Ripple Counter

BCD Ripple Counter

A decimal counter is similar to a binary counter, except that the state after 1001_2 (9) is 0000_2 (0).

Counting sequence

Q1 changes state after each clock pulse.

Q2 complements every time Q1 goes from 1 to 0, as long as Q8 = 0.

When Q8 becomes 1, Q2 remains at 0.

Q4 complements every time Q2 goes from 1 to 0.

Q8 remains at 0 as long as Q2 or Q4 is 0.

When both Q2 and Q4 become 1, Q8 complements when Q1 goes from 1 to 0.

Q8 is cleared on the next transition of Q1.

Clock	Counter Output			put	State Number	BCD Number
	Q8	Q4	Q2	Q1		
Initially	0	0	0	0	S121	0000
1 st	0	0	0	1	1	0001
2 nd	0	0	1	0	2	0010
3 rd	0	0	1	1	3	0011
4 th	0	1	0	0	4	0100
5 th	0	1	0	1	5	0101
6 th	0	1	1	0	6	0110
7 th	0	1	1	1	7	0111
8 th	1	0	0	0	8	1000
9 th	1	0	0	1	9	1001
10 th	0	0	0	0	0	0000

BCD Ripple Counter

Table 5.1 Flip-Flop Characteristic Tables

JK Flip-Flop					
J	K	Q(t + 1))		
0	0	Q(t)	No change		
0	1	0	Reset		
1	0	1	Set		
1	1	O'(t)	Complement		

Complement Output of Q1 is applied to the C inputs of both Q2 and Q8 and output of Q2 is applied to the C input of Q4. The *J* and *K* inputs are connected either to a permanent 1 signal or to outputs of other flip-flops.

Remember that when the C input goes from 1 to 0, flip-flop is set if J = 1, is cleared if K = 1, is complemented if J =K=1, and is left unchanged if J=K=0.

BCD Ripple Counter

Table 5.1 Flip-Flop Characteristic Tables

<i>JK</i> Flip-Flop						
J	K	Q(t + 1)				
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
1	1	Q'(t)	Complement			

Q1 changes state after each clock pulse.

Q2 complements every time Q1 goes from 1 to 0, as long as Q8 = 0.

When Q8 becomes 1, Q2 remains at 0.

Q4 complements every time Q2 goes from 1 to 0.

Q8 remains at 0 as long as Q2 or Q4 is 0.

When both Q2 and Q4 become 1, Q8complements when Q1 goes from 1 to 0.

Q8 is cleared on the next transition of Q1.

Multi-decade counter

BCD counter shown previously was a decade counter (counts from 0 to 9).

To count from 0 to 999, we need a three-decade counter.

The inputs to second and third decades come from Q8 of previous decade.

When Q8 in one decade goes from 1 to 0, it triggers the count for the next higher order decade while its own decade goes from 9 to 0.

Block diagram of a three-decade decimal BCD counter

Limitation of asynchronous counter

They suffer from "Propagation Delay" in which the timing signal is delayed a fraction through each flip-flop.

In **synchronous counter**, the external clock signal is connected to the clock input of EVERY individual flip-flop within the counter so that all of the flip-flops are clocked together simultaneously at the same time giving a fixed time relationship.

- ==> Changes in the output occur in "synchronisation" with the clock signal.
- ==> no ripple effect and no propagation delay.
- ==> The maximum operating frequency of this counter is much higher than that for a similar asynchronous counter.