Supplementary Material to: Direct Sparse Visual-Inertial Odometry with Stereo Cameras

Ziqiang Wang

March, 2018

Content

Chapter1 VISUAL-INERTIAL PRELIMINARIES	3
Chapter2 IMU RESIDUALS	4
1.1 INTRODUCTION	4
1.1.1 NOTATION	4
1.1.2 QUESTION IMPORT	4
1.2 SOLUTION	5
1.2.1 CONSTRUCT RESIDUAL	5
1.2.2 JACOBIAN CITATION	7
1.2.3 JACOBIAN DERIVATION	7
Chapter2 PHOTO RESIDUALS	11
1.1 INTRODUCTION	11
1.1.1 NOTATION	11
1.1.2 QUESTION IMPORT	11
1.2 SOLUTION	12
1.2.1 CONSTRUCT RESIDUAL	12
1.2.2 JACOBIAN CITATION	
1.2.3 JACOBIAN DERIVATION	14

Chapter 1 VISUAL-INERTIAL PRELIMINARIES

Throughout the paper, we will write matrices as bold capital letters (\mathbf{R}) and vectors as bold lower case letters ($\boldsymbol{\xi}$), light lower-case letters to denote scalars (\boldsymbol{s}), typewriter letters are used to represent functions (\mathbf{I}).

Rigid-body orientation directly is described as elements of $\mathfrak{so}(3)$ and poses as $\mathfrak{se}(3)$. We can identify every skew symmetric matrix with a vector in \mathbb{R}^3 using the hat (\land) operator [2, eq. (1)]. Exponential map associates Lie Algebra to a pose and logarithm is anti-mapping following [2, eq. (3)]:

$$\text{Exp} \triangleright \mathfrak{so}(3) \leftrightarrow SO(3), \mathfrak{se}(3) \leftrightarrow SE(3) \blacktriangleleft \text{Log}.$$

The term $J_r(\phi), J_r(\xi)$ is the right Jacobian of SO(3), SE(3). We write directly as vectors, i.e., $\phi \in \mathbb{R}^3$ and $\xi \in \mathbb{R}^6$. we use the right perturbation retraction for SO(3),

$$\mathbf{R}_2 = \mathbf{R}_1 \mathsf{Exp}(\delta \phi), \delta \phi \in \mathbb{R}^3 \tag{1}$$

and for SE(3), we perturb transformation on the right,

$$\mathbf{T}_2 = \mathbf{T}_1 \mathbb{E} \mathsf{xp}(\delta \boldsymbol{\xi}), \delta \boldsymbol{\xi} \in \mathbb{R}^6$$
 (2)

The input for our Stereo VI-DSO is a stream of IMU measurements and stereo camera frames. In IMU body fame(abbreviated as "B"), the gyroscope and accelerometer measurements at time k, namely $_{\rm B}\widetilde{\bf a}_k$ and $_{\rm B}\widetilde{\boldsymbol \omega}_k$, are affected by additive white noise η and a slowly varying sensor bias b. Δt is sampling intervals. The state of IMU at time i is described by the orientation, position, velocity from "B" to the world frame "W" and biases:

$$\mathbf{x}_i = [\mathbf{w}_{\mathsf{B}} \mathbf{R}_i, \mathbf{w}_i \mathbf{p}_i, \mathbf{w}_i \mathbf{v}_i, \mathbf{b}_i] \tag{3}$$

Velocities live in a vector space, i.e., $\mathbf{w}\mathbf{v}_i \in \mathbb{R}^3$. IMU biases can be written as $\mathbf{b}_i = [\mathbf{b}_i^g, \mathbf{b}_i^a] \in \mathbb{R}^6$, where $\mathbf{b}_i^g, \mathbf{b}_i^a \in \mathbb{R}^3$ are the gyroscope and accelerometer bias. We model them with "Brownian motion" which is integrated white noise.

Homogeneous camera calibration matrices are denoted by K. $_{BC}T$ is the pose of the camera frame "C" in the body frame, known from prior calibration. The "delta" pose from time j to time i is a homogeneous transformation consist by:

$$\Delta \mathbf{T}_{ij} = \mathbf{T}_i^{-1} \mathbf{T}_j \in \mathbb{R}^{4 \times 4} \tag{4}$$

where we dropped the coordinate frame subscripts for readability (the notation should be unambiguous from now on).

Chapter 2 IMU RESIDUALS

1. 1 INTRODUCTION

Windowed Optimization is a classic method in non-linear optimization.

1.1.1 NOTATION

Throughout the paper, we will write matrices as bold capital letters (\mathbf{R}) and vectors as bold lower case letters ($\boldsymbol{\xi}$), light lower-case letters to denote scalars (s). Light upper-case letters are used to represent functions (I).

Homogeneous camera calibration matrices are denoted by \mathbf{K} as (2.1). Camera poses are represented by matrices of the special Euclidean group $\mathbf{T} \in SE(3)$, which transform a 3D coordinate from the camera coordinate system to the world coordinate system. In this paper, a homogeneous 2D image coordinate point \mathbf{p} is represented by its image coordinate and inverse depth as (2.1) relative to its host keyframe I_i^L . The host keyframe is the frame the point got selected from. Corresponding homogeneous 3D world coordinate point \mathbf{p}_w is denoted as (2.1). $\Pi_{\mathbf{K}}$ are used to denote camera projection functions. The jacobian of I_i , $\Pi_{\mathbf{K}}$ is denoted as (2.1)

$$\mathbf{K} = \begin{pmatrix} f_{x} & 0 & c_{x} & 0 \\ 0 & f_{y} & c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \mathbf{K}^{-1} = \begin{pmatrix} f_{x}^{-1} & 0 & -f_{x}^{-1}c_{x} & 0 \\ 0 & f_{y}^{-1} & -f_{y}^{-1}c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\mathbf{p} = \begin{pmatrix} u^{i} \\ v^{i} \\ 1 \\ d_{\mathbf{p}} \end{pmatrix}, \mathbf{p}_{w} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, d_{\mathbf{p}} = z^{-1}, \mathbf{p} = d_{\mathbf{p}}\mathbf{K}\mathbf{p}_{w} = \Pi_{\mathbf{K}}(\mathbf{p}_{w})$$

$$\frac{\partial I_{i}^{L}(\mathbf{p})}{\partial \mathbf{p}} = (g_{x}, g_{y}, 0, 0), \frac{\partial \mathbf{p}}{\partial \mathbf{p}_{w}} = \begin{pmatrix} f_{x}z^{-1} & 0 & -xf_{x}z^{-2} & 0 \\ 0 & f_{y}z^{-1} & -yf_{y}z^{-2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & z^{-2} & 0 \end{pmatrix}$$

$$(2.1)$$

1.1.2 QUESTION IMPORT

Assume we observe 5 points $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_5\}$ in 4 keyframes $\mathcal{F} = \{I_1, I_2, I_3, I_4\}$, every keyframe has stereo vision (I_i^L, I_i^R) abbreviated as (iL, iR). A point can also

be observed by other frame as shown in Table(2.1). Question is how to use Windowed Optimization method to make our observation more accurate?

Table (2.1)		
Image point	Host keyframe	Observe by
\mathbf{p}_1	1L	1R, 2L
\mathbf{p}_2	2L	2R, 1L, 3L
\mathbf{p}_3	2L	3L
\mathbf{p}_4	3L	1L, 2L
D _E	4L	3L.4L

Table (2.1)

1.2 SOLUTION

We use direct method to construct residual, Windowed Gauss-Newton method to optimization residual.

1.2.1 CONSTRUCT RESIDUAL

Dynamic multi-view stereo residuals $E_{ij}^{\mathbf{p}}$ are defined as

$$E_{ij}^{\mathbf{p}} = w_{\mathbf{p}} || (r_{\mathbf{p}}^d)_{ij} ||_{\gamma}, \quad (r_{\mathbf{p}}^d)_{ij} := I_j^L(\mathbf{p}') - b_j^L - \frac{e^{a_j^L}}{e^{a_i^L}} (I_i^L(\mathbf{p}) - b_i^L)$$
 (2.2)

 γ is Huber norm. a_i^L, b_i^L is affine brightness parameters to frame iL. $w_{\mathbf{p}}$ is a gradient-dependent weighting parameters, \mathbf{p} in frame I_i^L projected to I_j^L is \mathbf{p}' as:

$$w_{\mathbf{p}} := \frac{c^{2}}{c^{2} + ||\nabla I_{i}(\mathbf{p})||_{2}^{2}}, \quad \mathbf{p}' = d_{\mathbf{p}}^{jL} \mathbf{K} (\mathbf{T}_{j} \mathbf{T}_{i}^{-1} ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p}))$$
(2.3)

Static one-view stereo residuals $E_{is}^{\mathbf{p}}$ are modified to

$$E_{is}^{\mathbf{p}} = w_{\mathbf{p}} ||r_{\mathbf{p}}^{s}||_{\gamma}, \quad r_{\mathbf{p}}^{s} := I_{i}^{R}(\mathbf{p}') - b_{i}^{R} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$
 (2.2)

Hostframe of \mathbf{p} is I_i^L , a_i^R , b_i^R is affine brightness parameters to frame iR, \mathbf{p} in frame I_i^L projected to I_i^R is \mathbf{p}' as:

$$\mathbf{p}' = d_{\mathbf{p}}^{iR} \mathbf{K} (\mathbf{T}_{RL} ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p}))$$
(2.2)

Total residuals

$$E(\delta) = \sum_{i \in \mathcal{F}} \sum_{\mathbf{p} \in \mathcal{P}_i} \left(\sum_{j \in obs^t(\mathbf{P})} E_{ij}^{\mathbf{p}} + \lambda E_{is}^{\mathbf{p}} \right)$$
(2.2)

To balance the relative weights of temporal multi-view and static stereo, we

introduce a coupling factor λ to weight the constraints from static stereo differently. \mathcal{P}_i is a set of all image point host by frame iL. $obs^t(\mathbf{p})$ are the observations of \mathbf{p} from

$$\boldsymbol{\delta} = \begin{pmatrix} (\boldsymbol{\xi}_{1}^{T}, \dots, \boldsymbol{\xi}_{N_{f}}^{T})^{T} \\ (d_{\mathbf{p}_{1}}, \dots, d_{\mathbf{p}_{N_{p}}})^{T} \\ (a_{1}^{L}, a_{1}^{R}, b_{1}^{L}, b_{1}^{R})^{T} \\ \vdots \\ (a_{N_{f}}^{L}, a_{N_{f}}^{R}, b_{N_{f}}^{L}, b_{N_{f}}^{R})^{T} \\ (f_{x}, f_{y}, c_{x}, c_{y})^{T} \end{pmatrix} \in \mathbb{R}^{10N_{f} + N_{p} + 4}, \boldsymbol{\xi}_{i} = (\ln \mathbf{T}_{i})^{\vee} \in \mathbb{R}^{6}$$

$$(2.1)$$

temporal multi-view stereo. If there are N_p image point and N_f keyframes in \mathcal{F} , optimization variable δ is

In this example, there are 7 dynamic residuals and 3 static residuals, Factor graph of the residuals function is

Total residuals is

$$\begin{split} E(\delta) &= E_{1L2L}^{\mathbf{p}_1} + E_{2L1L}^{\mathbf{p}_2} + E_{2L3L}^{\mathbf{p}_2} + E_{2L3L}^{\mathbf{p}_3} + E_{3L1L}^{\mathbf{p}_4} + E_{3L2L}^{\mathbf{p}_4} + E_{4L3L}^{\mathbf{p}_5} \\ &+ E_{1L1R}^{\mathbf{p}_1} + E_{2L2R}^{\mathbf{p}_2} + E_{4L4R}^{\mathbf{p}_5} \\ &= E_d(\delta) + E_s(\delta) \end{split}$$

$$E_{s}(\delta) = \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \\ r_{\mathbf{p}_{5}}^{s} \end{pmatrix}^{T} \begin{pmatrix} \lambda w_{\mathbf{p}_{1}} & 0 & 0 \\ 0 & \lambda w_{\mathbf{p}_{2}} & 0 \\ 0 & 0 & \lambda w_{\mathbf{p}_{5}} \end{pmatrix} \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \\ r_{\mathbf{p}_{5}}^{s} \end{pmatrix} = (\mathbf{r}^{s})^{T} \mathbf{W}^{s} \mathbf{r}^{s}$$

$$\mathbf{J}_{s} = \begin{pmatrix} \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \xi_{1}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \xi_{4}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial d\mathbf{p}_{1}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial d\mathbf{p}_{5}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial a_{1}^{t}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial b_{4}^{t}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial f_{x}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial c_{y}} \\ \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial \xi_{1}} & \cdots & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \xi_{4}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial d\mathbf{p}_{1}} & \cdots & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial d\mathbf{p}_{5}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial a_{1}^{t}} & \cdots & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial b_{4}^{t}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial f_{x}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial c_{y}} \\ \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial \xi_{1}} & \cdots & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial \xi_{4}} & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial d\mathbf{p}_{1}} & \cdots & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial d\mathbf{p}_{5}} & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial a_{1}^{t}} & \cdots & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial b_{4}^{t}} & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial f_{x}} & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial f_{x}} & \cdots & \frac{\partial r_{\mathbf{p}_{5}}^{s}}{\partial c_{y}} \end{pmatrix}$$

$$(2.2)$$

$$E_d(\delta) = \begin{pmatrix} (r_{\mathbf{p}_1}^d)_{12} \\ (r_{\mathbf{p}_1}^d)_{21} \\ \vdots \\ (r_{\mathbf{p}_5}^d)_{43} \end{pmatrix}^T \begin{pmatrix} w_{\mathbf{p}_1} & 0 & \dots & 0 \\ 0 & w_{\mathbf{p}_1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_{\mathbf{p}_5} \end{pmatrix} \begin{pmatrix} (r_{\mathbf{p}_1}^d)_{12} \\ (r_{\mathbf{p}_1}^d)_{21} \\ \vdots \\ (r_{\mathbf{p}_5}^d)_{43} \end{pmatrix} = (\mathbf{r}^d)^T \mathbf{W}^d \mathbf{r}^d$$

$$\mathbf{J}_{d} = \begin{pmatrix} \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial \xi_{1}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial \xi_{4}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial d_{\mathbf{p}_{1}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial d_{\mathbf{p}_{5}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial b_{\mathbf{q}_{5}}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial b_{\mathbf{q}_{5}}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial b_{\mathbf{q}_{5}}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{21}}{\partial a_{\mathbf{p}_{5}}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d}$$

Iteration δ^* can be calculated by

$$(\mathbf{J}_{s}^{T}\lambda\mathbf{W}^{s}\mathbf{J}_{s} + \mathbf{J}_{d}^{T}\mathbf{W}^{d}\mathbf{J}_{d})\delta^{*} = -(\mathbf{J}_{s}^{T}\lambda\mathbf{W}^{s}\mathbf{r}^{s} + \mathbf{J}_{d}^{T}\mathbf{W}^{d}\mathbf{r}^{d})$$

$$\mathbf{J}_{s} \in \mathbb{R}^{3\times49}, \mathbf{W}^{s} \in \mathbb{R}^{3\times3}, \mathbf{J}_{s} \in \mathbb{R}^{7\times49}, \mathbf{W}^{s} \in \mathbb{R}^{7\times7},$$

$$(2.2)$$

We construct residuals and its formulation.

1.2.2 JACOBIAN CITATION

We know for a Lie algebra $\ oldsymbol{
ho}\in\mathbb{R}^3, oldsymbol{\phi}\in\mathbb{R}^3, oldsymbol{\xi}=egin{pmatrix}oldsymbol{
ho}\\oldsymbol{\phi}\end{pmatrix}\in\mathbb{R}^6$ and \mathbf{p}_m :

$$\boldsymbol{\xi}^{\wedge} = \begin{pmatrix} \boldsymbol{\rho} \\ \boldsymbol{\phi} \end{pmatrix}^{\wedge} = \begin{pmatrix} \boldsymbol{\phi}^{\wedge} & \boldsymbol{\rho} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

$$\boldsymbol{\epsilon} \in \mathbb{R}^{3}, \begin{pmatrix} \boldsymbol{\epsilon} \\ 1 \end{pmatrix}^{\odot} = \begin{pmatrix} \mathbf{E} & -\boldsymbol{\epsilon}^{\wedge} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{pmatrix} \in \mathbb{R}^{4 \times 6}$$

$$\frac{\partial (exp(\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} = \frac{\partial (\mathbf{T}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} = (\mathbf{T}\mathbf{p}_{w})^{\odot}$$

$$\mathbf{T}\mathbf{p}_{w} = exp(\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w} \approx (\mathbf{E} + \boldsymbol{\xi}^{\wedge})\mathbf{p}_{w}$$

$$\frac{\partial (exp(\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} \approx \frac{\partial (\mathbf{E} + \boldsymbol{\xi}^{\wedge})}{\partial \boldsymbol{\xi}} = \mathbf{0} + \frac{\partial (\boldsymbol{\xi}^{\wedge}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} \approx (\mathbf{T}\mathbf{p}_{w})^{\odot}$$

$$since, \frac{\partial (\mathbf{T}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} = (\mathbf{T}^{-1}\mathbf{p}_{w})^{\odot} = \frac{\partial (exp(-\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w})}{\partial \boldsymbol{\xi}}$$

$$= \frac{\partial (\mathbf{E} - \boldsymbol{\xi}^{\wedge})}{\partial \boldsymbol{\xi}} = -(\mathbf{T}\mathbf{p}_{w})^{\odot}$$

1.2.3 JACOBIAN DERIVATION

1.2.3.1 Dynamic Parameter

Firstly, if p is neither observed by frame mL, mR nor hosted by nL, nR:

$$\frac{\partial (r_{\mathbf{p}}^d)_{ij}}{\partial \boldsymbol{\xi_m}} = \frac{\partial (r_{\mathbf{p}}^d)_{ij}}{\partial \boldsymbol{\xi_n}} = \mathbf{0}^T, so \quad \frac{\partial (r_{\mathbf{p}_1}^d)_{12}}{\partial \boldsymbol{\xi}_3} = \frac{\partial r_{(\mathbf{p}_1}^d)_{12}}{\partial \boldsymbol{\xi}_4} = \dots = \mathbf{0}^T,$$
(2.2)

otherwise, we follow

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial \boldsymbol{\xi}_{i}} = \frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \boldsymbol{\xi}_{i}} = \frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \mathbf{p}'} \frac{\partial \mathbf{p}'}{\partial \mathbf{p}'_{w}} \frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{i}}$$

$$\mathbf{p}'_{w} = \mathbf{T}_{j} \mathbf{T}_{i}^{-1} \mathbf{p}_{w} = \mathbf{T}_{j} \mathbf{T}_{i}^{-1} ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p})$$
(2.2)

For one frame iL, we have p and K, then we can get

$$\begin{cases}
\mathbf{p}_{w} = \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix} \\
\frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{i}} = \mathbf{T}_{j} \frac{\partial (\mathbf{T}_{i}^{-1}\mathbf{p}'_{w})}{\partial \boldsymbol{\xi}_{i}} = -\mathbf{T}_{j}(\mathbf{T}_{i}\mathbf{p}_{w})^{\odot} \\
\frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{j}} = \frac{\partial (\mathbf{T}_{j}^{-1}\mathbf{T}_{i}^{-1}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}_{i}} = (\mathbf{T}_{j}^{-1}\mathbf{T}_{i}^{-1}\mathbf{p}_{w})^{\odot} \\
= \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix}^{\odot} = \begin{pmatrix} 1 & 0 & 0 & 0 & z' & -y' \\ 0 & 1 & 0 & -z' & 0 & x' \\ 0 & 1 & 0 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \\
\Rightarrow \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial \boldsymbol{\xi}_{j}} = \frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \mathbf{p}'} \frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{j}} \\
= (g'_{x}, g'_{y}, 0, 0) \begin{pmatrix} f_{x}(z')^{-1} & 0 & -x' f_{x}(z')^{-2} & 0 \\ 0 & f_{y}(z')^{-1} & -y' f_{y}(z')^{-2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
= (g'_{x}, g'_{y}, 0, 0) \begin{pmatrix} f_{x}(z')^{-1} & 0 & -x' f_{x}(z')^{-2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & (z')^{-2} & 0 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 & 0 & 0 & z' & -y' \\ 0 & 1 & 0 & -z' & 0 & x' \\ 0 & 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 & (z')^{-2} & 0 \end{pmatrix} \\
\begin{pmatrix} g'_{x} f_{x}(z')^{-1} & -(g'_{x} x' f_{x} + g'_{y} y' f_{y})(z')^{-2} \\ -g'_{y} f_{y} - (g'_{x} x' f_{x} + g'_{y} y' f_{y})(z')^{-2} \\ g'_{x} f_{x} + (g'_{x}(x')^{2} f_{x} + g'_{y} y' f_{y})(z')^{-2} \end{pmatrix}^{T} \\
\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 1$$

Secondly, according to

$$(r_{\mathbf{p}}^{d})_{ij} := I_{j}^{L}(\mathbf{p}') - b_{j}^{L} - \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$
(2.2)

We have:

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial a_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L}), \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial a_{j}} = -\frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial b_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}, \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial b_{j}} = -1$$
(2.2)

$$\begin{split} \mathbf{p}' &= d_{\mathbf{p}}^{jL} \mathbf{K} (\mathbf{T}_{j} \mathbf{T}_{i}^{-1} \mathbf{p}_{w}) \\ assume &: \mathbf{T}_{j} \mathbf{T}_{i}^{-1} = \begin{pmatrix} r_{11}^{ji} & r_{12}^{ji} & r_{13}^{ji} & t_{1}^{ji} \\ r_{21}^{ji} & r_{22}^{ji} & r_{23}^{ji} & t_{23}^{ji} \\ r_{31}^{ji} & r_{32}^{ji} & r_{33}^{ji} & t_{33}^{ji} \end{pmatrix} \\ \mathbf{p}'_{w} &= \begin{pmatrix} r_{11}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (u^{i} - c_{x}) + r_{12}^{ji} f_{y}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (v^{i} - c_{y}) + r_{13}^{ji} (d_{\mathbf{p}}^{jL})^{-1} + t_{1}^{ji} \\ r_{21}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (u^{i} - c_{x}) + r_{22}^{ji} f_{y}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (v^{i} - c_{y}) + r_{23}^{ji} (d_{\mathbf{p}}^{jL})^{-1} + t_{1}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (u^{i} - c_{x}) + r_{22}^{ji} f_{y}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{jL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (u^{i} - c_{x}) + r_{32}^{ji} f_{y}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{jL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (u^{i} - c_{x}) + r_{32}^{ji} f_{y}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{jL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (u^{i} - c_{x}) + r_{32}^{ji} f_{y}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{jL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{jL})^{-1} (u^{i} - c_{x}) + r_{32}^{ji} f_{y}^{-1} (u^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{jL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} f_{y}^{ji} f_{y}^{-1} - f_{y}^{ji} f_{y}^{-1} f_{y}^{-1}$$

1.2.3.2 Static Parameter

Firstly, For a stereo frame i: inverse depth $d_{\mathbf{p}}^{iL} = d_{\mathbf{p}}^{iR}$, a left frame iL pixel \mathbf{p} is projected to right frame iR with \mathbf{p}' :

$$\mathbf{p} = \begin{pmatrix} u^{i} \\ v^{i} \\ 1 \\ d_{\mathbf{p}}^{L} \end{pmatrix}, \mathbf{p}_{w} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, d_{\mathbf{p}}^{iL} = z^{-1}, \mathbf{p}_{w} = (d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p}$$

$$= \begin{pmatrix} f_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix}, \mathbf{T}_{RL} = \begin{pmatrix} 1 & 0 & 0 & t_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{p}' = d_{\mathbf{p}}^{iR} \mathbf{K}(\mathbf{T}_{RL} \mathbf{p}_{w})$$

$$= d_{\mathbf{p}}^{iL} \begin{pmatrix} f_{x} & 0 & c_{x} & 0 \\ 0 & f_{y} & c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) + t_{1} \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix} = \begin{pmatrix} u^{i} + t_{1}f_{x}d_{\mathbf{p}}^{iL} \\ v^{i} \\ 1 \\ d_{\mathbf{p}}^{iL} \end{pmatrix}$$

$$\frac{\partial r_{\mathbf{p}}^{s}}{\partial d_{\mathbf{p}}^{iL}} = \frac{\partial (I_{i}^{R}(\mathbf{p}')) - \frac{e^{a_{i}^{s}}}{e^{a_{i}^{t}}}(I_{i}^{L}(\mathbf{p}))}{\partial d_{\mathbf{p}}^{iL}} = (\frac{\partial (I_{i}^{R}(\mathbf{p}'))}{\partial \mathbf{p}'} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{t}}}\frac{\partial (I_{i}^{L}(\mathbf{p}))}{\partial \mathbf{p}'}) \frac{\partial \mathbf{p}'}{\partial d_{\mathbf{p}}^{iL}}$$

$$= [(g_{x}^{iR}, g_{y}^{iR}, 0, 0) - \mathbf{0}^{T}] \begin{pmatrix} t_{1}f_{x} \\ 0 \\ 0 \\ 1 \end{pmatrix} = g_{x}^{iR}t_{1}f_{x}$$

Secondly, according to:

$$r_{\mathbf{p}}^{s} := I_{i}^{R}(\mathbf{p}') - b_{i}^{R} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$
(2.2)

We have:

$$\frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial a_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L}), \frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial a_{j}} = -\frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$

$$\frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial b_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}, \qquad \frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial b_{j}} = -1$$
(2.2)

Chapter 2 PHOTO RESIDUALS

1. 1 INTRODUCTION

Windowed Optimization is a classic method in non-linear optimization.

1.1.1 NOTATION

Throughout the paper, we will write matrices as bold capital letters (\mathbf{R}) and vectors as bold lower case letters ($\boldsymbol{\xi}$), light lower-case letters to denote scalars (s). Light upper-case letters are used to represent functions (I).

Homogeneous camera calibration matrices are denoted by \mathbf{K} as (2.1). Camera poses are represented by matrices of the special Euclidean group $\mathbf{T} \in SE(3)$, which transform a 3D coordinate from the camera coordinate system to the world coordinate system. In this paper, a homogeneous 2D image coordinate point \mathbf{p} is represented by its image coordinate and inverse depth as (2.1) relative to its host keyframe I_i^L . The host keyframe is the frame the point got selected from. Corresponding homogeneous 3D world coordinate point \mathbf{p}_w is denoted as (2.1). $\Pi_{\mathbf{K}}$ are used to denote camera projection functions. The jacobian of I_i , $\Pi_{\mathbf{K}}$ is denoted as (2.1)

$$\mathbf{K} = \begin{pmatrix} f_{x} & 0 & c_{x} & 0 \\ 0 & f_{y} & c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \mathbf{K}^{-1} = \begin{pmatrix} f_{x}^{-1} & 0 & -f_{x}^{-1}c_{x} & 0 \\ 0 & f_{y}^{-1} & -f_{y}^{-1}c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \\
\mathbf{p} = \begin{pmatrix} u^{i} \\ v^{i} \\ 1 \\ d_{\mathbf{p}} \end{pmatrix}, \mathbf{p}_{w} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, d_{\mathbf{p}} = z^{-1}, \mathbf{p} = d_{\mathbf{p}}\mathbf{K}\mathbf{p}_{w} = \Pi_{\mathbf{K}}(\mathbf{p}_{w}) \\
\frac{\partial I_{i}^{L}(\mathbf{p})}{\partial \mathbf{p}} = (g_{x}, g_{y}, 0, 0), \frac{\partial \mathbf{p}}{\partial \mathbf{p}_{w}} = \begin{pmatrix} f_{x}z^{-1} & 0 & -xf_{x}z^{-2} & 0 \\ 0 & f_{y}z^{-1} & -yf_{y}z^{-2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & z^{-2} & 0 \end{pmatrix}$$

1.1.2 QUESTION IMPORT

Assume we observe 5 points $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_5\}$ in 4 keyframes $\mathcal{F} = \{I_1, I_2, I_3, I_4\}$, every keyframe has stereo vision (I_i^L, I_i^R) abbreviated as (iL, iR). A point can also

be observed by other frame as shown in Table(2.1). Question is how to use Windowed Optimization method to make our observation more accurate?

Table (2.1)

Image point	Host keyframe	Observe by
\mathbf{p}_1	1 <i>L</i>	1R, 2L
\mathbf{p}_2	2L	2R, 1L, 3L
\mathbf{p}_3	2L	3L
\mathbf{p}_4	3L	1L, 2L
\mathbf{p}_5	41,	3L,4L

1.2 SOLUTION

We use direct method to construct residual, Windowed Gauss-Newton method to optimization residual.

1.2.1 CONSTRUCT RESIDUAL

Dynamic multi-view stereo residuals $E_{ij}^{\mathbf{p}}$ are defined as

$$E_{ij}^{\mathbf{p}} = w_{\mathbf{p}} || (r_{\mathbf{p}}^d)_{ij} ||_{\gamma}, \quad (r_{\mathbf{p}}^d)_{ij} := I_j^L(\mathbf{p}') - b_j^L - \frac{e^{a_j^L}}{e^{a_i^L}} (I_i^L(\mathbf{p}) - b_i^L)$$
 (2.2)

 γ is Huber norm. a_i^L, b_i^L is affine brightness parameters to frame iL. $w_{\mathbf{p}}$ is a gradient-dependent weighting parameters, \mathbf{p} in frame I_i^L projected to I_j^L is \mathbf{p}' as:

$$w_{\mathbf{p}} := \frac{c^{2}}{c^{2} + ||\nabla I_{i}(\mathbf{p})||_{2}^{2}}, \quad \mathbf{p}' = d_{\mathbf{p}}^{jL} \mathbf{K} (\mathbf{T}_{j} \mathbf{T}_{i}^{-1} ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p}))$$
(2.3)

Static one-view stereo residuals $E_{is}^{\mathbf{p}}$ are modified to

$$E_{is}^{\mathbf{p}} = w_{\mathbf{p}} ||r_{\mathbf{p}}^{s}||_{\gamma}, \quad r_{\mathbf{p}}^{s} := I_{i}^{R}(\mathbf{p}') - b_{i}^{R} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$
 (2.2)

Hostframe of \mathbf{p} is I_i^L , a_i^R , b_i^R is affine brightness parameters to frame iR, \mathbf{p} in frame I_i^L projected to I_i^R is \mathbf{p}' as:

$$\mathbf{p}' = d_{\mathbf{p}}^{iR} \mathbf{K} (\mathbf{T}_{RL} ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p}))$$
(2.2)

Total residuals

$$E(\delta) = \sum_{i \in \mathcal{F}} \sum_{\mathbf{p} \in \mathcal{P}_i} \left(\sum_{j \in obs^t(\mathbf{P})} E_{ij}^{\mathbf{p}} + \lambda E_{is}^{\mathbf{p}} \right)$$
(2.2)

To balance the relative weights of temporal multi-view and static stereo, we

introduce a coupling factor λ to weight the constraints from static stereo differently. \mathcal{P}_i is a set of all image point host by frame iL. $obs^t(\mathbf{p})$ are the observations of \mathbf{p} from

$$\boldsymbol{\delta} = \begin{pmatrix} (\boldsymbol{\xi}_{1}^{T}, \dots, \boldsymbol{\xi}_{N_{f}}^{T})^{T} \\ (d_{\mathbf{p}_{1}}, \dots, d_{\mathbf{p}_{N_{p}}})^{T} \\ (a_{1}^{L}, a_{1}^{R}, b_{1}^{L}, b_{1}^{R})^{T} \\ \vdots \\ (a_{N_{f}}^{L}, a_{N_{f}}^{R}, b_{N_{f}}^{L}, b_{N_{f}}^{R})^{T} \end{pmatrix} \in \mathbb{R}^{10N_{f} + N_{p} + 4}, \boldsymbol{\xi}_{i} = (\ln \mathbf{T}_{i})^{\vee} \in \mathbb{R}^{6}$$

$$(2.1)$$

$$(f_{x}, f_{y}, c_{x}, c_{y})^{T}$$

temporal multi-view stereo. If there are N_p image point and N_f keyframes in \mathcal{F} , optimization variable δ is

In this example, there are 7 dynamic residuals and 3 static residuals, Factor graph of the residuals function is

Total residuals is

$$\begin{split} E(\delta) &= E_{1L2L}^{\mathbf{p}_1} + E_{2L1L}^{\mathbf{p}_2} + E_{2L3L}^{\mathbf{p}_2} + E_{2L3L}^{\mathbf{p}_3} + E_{3L1L}^{\mathbf{p}_4} + E_{3L2L}^{\mathbf{p}_4} + E_{4L3L}^{\mathbf{p}_5} \\ &+ E_{1L1R}^{\mathbf{p}_1} + E_{2L2R}^{\mathbf{p}_2} + E_{4L4R}^{\mathbf{p}_5} \\ &= E_d(\delta) + E_s(\delta) \end{split}$$

$$E_{s}(\delta) = \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \\ r_{\mathbf{p}_{5}}^{s} \end{pmatrix}^{T} \begin{pmatrix} \lambda w_{\mathbf{p}_{1}} & 0 & 0 \\ 0 & \lambda w_{\mathbf{p}_{2}} & 0 \\ 0 & 0 & \lambda w_{\mathbf{p}_{5}} \end{pmatrix} \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \\ r_{\mathbf{p}_{5}}^{s} \end{pmatrix} = (\mathbf{r}^{s})^{T} \mathbf{W}^{s} \mathbf{r}^{s}$$

$$\mathbf{J}_{s} = \begin{pmatrix} \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \xi_{1}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \xi_{4}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial d_{\mathbf{p}_{1}}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial d_{\mathbf{p}_{5}}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial a_{1}^{t}} & \cdots & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial f_{x}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial f_{x}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial f_{y}} \end{pmatrix} = (\mathbf{r}^{s})^{T} \mathbf{W}^{s} \mathbf{r}^{s}$$

$$\mathbf{J}_{s} = \begin{pmatrix} \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \xi_{1}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \xi_{4}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial d_{\mathbf{p}_{1}}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial d_{\mathbf{p}_{5}}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial a_{1}^{t}} & \cdots & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial h_{4}^{t}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial f_{x}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial c_{y}} \end{pmatrix} = (\mathbf{r}^{s})^{T} \mathbf{W}^{s} \mathbf{r}^{s}$$

$$(2.2)$$

$$E_d(\delta) = \begin{pmatrix} (r_{\mathbf{p}_1}^d)_{12} \\ (r_{\mathbf{p}_1}^d)_{21} \\ \vdots \\ (r_{\mathbf{p}_5}^d)_{43} \end{pmatrix}^T \begin{pmatrix} w_{\mathbf{p}_1} & 0 & \dots & 0 \\ 0 & w_{\mathbf{p}_1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_{\mathbf{p}_5} \end{pmatrix} \begin{pmatrix} (r_{\mathbf{p}_1}^d)_{12} \\ (r_{\mathbf{p}_1}^d)_{21} \\ \vdots \\ (r_{\mathbf{p}_5}^d)_{43} \end{pmatrix} = (\mathbf{r}^d)^T \mathbf{W}^d \mathbf{r}^d$$

$$\mathbf{J}_{d} = \begin{pmatrix} \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial \xi_{1}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial \xi_{4}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial d_{\mathbf{p}_{1}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial d_{\mathbf{p}_{5}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{1}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial b_{1}^{R}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial f_{1}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial c_{y}} \\ \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{21}}{\partial \xi_{1}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{21}}{\partial \xi_{4}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{21}}{\partial d_{\mathbf{p}_{1}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{21}}{\partial d_{\mathbf{p}_{5}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{21}}{\partial a_{1}^{L}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial b_{1}^{R}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial f_{1}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial c_{y}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{43}}{\partial \xi_{1}} & \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{43}}{\partial \xi_{4}} & \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{43}}{\partial d_{\mathbf{p}_{1}}} & \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{43}}{\partial d_{\mathbf{p}_{5}}} & \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{43}}{\partial a_{1}^{L}} & \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{12}}{\partial b_{1}^{R}} & \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{12}}{\partial f_{1}} & \frac{\partial (r_{\mathbf{p}_{5}}^{d})_{12}}{\partial c_{y}} \end{pmatrix}_{7 \vee 40} \end{cases}$$

Iteration δ^* can be calculated by

$$(\mathbf{J}_{s}^{T}\lambda\mathbf{W}^{s}\mathbf{J}_{s} + \mathbf{J}_{d}^{T}\mathbf{W}^{d}\mathbf{J}_{d})\delta^{*} = -(\mathbf{J}_{s}^{T}\lambda\mathbf{W}^{s}\mathbf{r}^{s} + \mathbf{J}_{d}^{T}\mathbf{W}^{d}\mathbf{r}^{d})$$

$$\mathbf{J}_{s} \in \mathbb{R}^{3\times49}, \mathbf{W}^{s} \in \mathbb{R}^{3\times3}, \mathbf{J}_{s} \in \mathbb{R}^{7\times49}, \mathbf{W}^{s} \in \mathbb{R}^{7\times7},$$

$$(2.2)$$

We construct residuals and its formulation.

1.2.2 JACOBIAN CITATION

We know for a Lie algebra $\ oldsymbol{
ho} \in \mathbb{R}^3, oldsymbol{\phi} \in \mathbb{R}^3, oldsymbol{\xi} = \begin{pmatrix} oldsymbol{
ho} \\ oldsymbol{\phi} \end{pmatrix} \in \mathbb{R}^6 \ \ ext{and} \ \ \mathbf{p}_w$:

$$\boldsymbol{\xi}^{\wedge} = \begin{pmatrix} \boldsymbol{\rho} \\ \boldsymbol{\phi} \end{pmatrix}^{\wedge} = \begin{pmatrix} \boldsymbol{\phi}^{\wedge} & \boldsymbol{\rho} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

$$\boldsymbol{\epsilon} \in \mathbb{R}^{3}, \begin{pmatrix} \boldsymbol{\epsilon} \\ 1 \end{pmatrix}^{\odot} = \begin{pmatrix} \mathbf{E} & -\boldsymbol{\epsilon}^{\wedge} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{pmatrix} \in \mathbb{R}^{4 \times 6}$$

$$\frac{\partial (exp(\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} = \frac{\partial (\mathbf{T}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} = (\mathbf{T}\mathbf{p}_{w})^{\odot}$$

$$\mathbf{T}\mathbf{p}_{w} = exp(\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w} \approx (\mathbf{E} + \boldsymbol{\xi}^{\wedge})\mathbf{p}_{w}$$

$$\frac{\partial (exp(\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} \approx \frac{\partial (\mathbf{E} + \boldsymbol{\xi}^{\wedge})}{\partial \boldsymbol{\xi}} = \mathbf{0} + \frac{\partial (\boldsymbol{\xi}^{\wedge}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} \approx (\mathbf{T}\mathbf{p}_{w})^{\odot}$$

$$since, \frac{\partial (\mathbf{T}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}} = (\mathbf{T}^{-1}\mathbf{p}_{w})^{\odot} = \frac{\partial (exp(-\boldsymbol{\xi}^{\wedge})\mathbf{p}_{w})}{\partial \boldsymbol{\xi}}$$

$$= \frac{\partial (\mathbf{E} - \boldsymbol{\xi}^{\wedge})}{\partial \boldsymbol{\xi}} = -(\mathbf{T}\mathbf{p}_{w})^{\odot}$$

1.2.3 JACOBIAN DERIVATION

1.2.3.1 Dynamic Parameter

Firstly, if p is neither observed by frame mL, mR nor hosted by nL, nR:

$$\frac{\partial (r_{\mathbf{p}}^d)_{ij}}{\partial \boldsymbol{\xi_m}} = \frac{\partial (r_{\mathbf{p}}^d)_{ij}}{\partial \boldsymbol{\xi_n}} = \mathbf{0}^T, so \quad \frac{\partial (r_{\mathbf{p}_1}^d)_{12}}{\partial \boldsymbol{\xi_3}} = \frac{\partial r_{(\mathbf{p}_1}^d)_{12}}{\partial \boldsymbol{\xi_4}} = \dots = \mathbf{0}^T,$$
(2.2)

otherwise, we follow

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial \boldsymbol{\xi}_{i}} = \frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \boldsymbol{\xi}_{i}} = \frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \mathbf{p}'} \frac{\partial \mathbf{p}'}{\partial \mathbf{p}'_{w}} \frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{i}}$$

$$\mathbf{p}'_{w} = \mathbf{T}_{j} \mathbf{T}_{i}^{-1} \mathbf{p}_{w} = \mathbf{T}_{j} \mathbf{T}_{i}^{-1} ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p})$$
(2.2)

For one frame iL, we have p and K, then we can get

$$\begin{cases} \mathbf{p}_{w} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} f_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ d_{\mathbf{p}}^{iL} - c_{y} \end{pmatrix}$$

$$\frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{i}} = \mathbf{T}_{j} \frac{\partial (\mathbf{T}_{i}^{-1}\mathbf{p}'_{w})}{\partial \boldsymbol{\xi}_{i}} = -\mathbf{T}_{j}(\mathbf{T}_{i}\mathbf{p}_{w})^{\odot}$$

$$\frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{j}} = \frac{\partial (\mathbf{T}_{j}^{-1}\mathbf{T}_{i}^{-1}\mathbf{p}_{w})}{\partial \boldsymbol{\xi}_{i}} = (\mathbf{T}_{j}\mathbf{T}_{i}^{-1}\mathbf{p}_{w})^{\odot}$$

$$= \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix}^{\odot} = \begin{pmatrix} 1 & 0 & 0 & 0 & z' & -y' \\ 0 & 1 & 0 & -z' & 0 & x' \\ 0 & 1 & 0 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial \boldsymbol{\xi}_{j}} = \frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \mathbf{p}'} \frac{\partial \mathbf{p}'_{w}}{\partial \mathbf{p}'_{w}} \frac{\partial \mathbf{p}'_{w}}{\partial \boldsymbol{\xi}_{j}}$$

$$= (g'_{x}, g'_{y}, 0, 0) \begin{pmatrix} f_{x}(z')^{-1} & 0 & -x' f_{x}(z')^{-2} & 0 \\ 0 & f_{y}(z')^{-1} & -y' f_{y}(z')^{-2} & 0 \\ 0 & 0 & 0 & (z')^{-2} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & z' & -y' \\ 0 & 1 & 0 & -z' & 0 & x' \\ 0 & 0 & 1 & y' & -x' & 0 \\ 0 & 0 & 0 & 0 & (z')^{-2} & 0 \end{pmatrix} = \begin{pmatrix} g'_{x} f_{x}(z')^{-1} & -g'_{y} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{-2} & -g'_{y} f_{y}(z')^{-2} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^{2} f_{y}(z')^{-2} & -g'_{y} f_{y}(z')^{-1} & -g'_{x} f_{y}(z')^{2} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^{2} f_{y}(z')^{2} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^{-1} & -g'_{y} f_{y}(z')^{2} f_{y}(z')^$$

Secondly, according to

$$(r_{\mathbf{p}}^{d})_{ij} := I_{j}^{L}(\mathbf{p}') - b_{j}^{L} - \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$
(2.2)

We have:

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial a_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L}), \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial a_{j}} = -\frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})
\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial b_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}, \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial b_{j}} = -1$$
(2.2)

$$\begin{aligned} \mathbf{p}' &= d_{\mathbf{p}}^{jL} \mathbf{K} (\mathbf{T}_{j} \mathbf{T}_{i}^{-1} \mathbf{p}_{w}) \\ assume &: \mathbf{T}_{j} \mathbf{T}_{i}^{-1} &= \begin{pmatrix} r_{ji}^{ji} & r_{ji}^{jj} & r_{ji}^{jj} & t_{ji}^{jj} \\ r_{2i}^{jj} & r_{2i}^{jj} & r_{2i}^{jj} & t_{2i}^{jj} \\ r_{2i}^{jj} & r_{2i}^{jj} & r_{2i}^{jj} & t_{2i}^{jj} \\ r_{3i}^{jj} & r_{3i}^{jj} & r_{3i}^{jj} & t_{3i}^{jj} \\ r_{3i}^{jj} & r_{3i}^{jj} & r_{3i}^{jj} & t_{3i}^{jj} \end{pmatrix} \\ \mathbf{p}'_{w} &= \begin{pmatrix} r_{11}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{i})^{-1} (u^{i} - c_{x}) + r_{12}^{jj} f_{y}^{-1} (d_{\mathbf{p}}^{i})^{-1} (v^{i} - c_{y}) + r_{13}^{ji} (d_{\mathbf{p}}^{iL})^{-1} + t_{1}^{ji} \\ r_{21}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (u^{i} - c_{x}) + r_{22}^{jj} f_{y}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (v^{i} - c_{y}) + r_{23}^{ji} (d_{\mathbf{p}}^{iL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (u^{i} - c_{x}) + r_{32}^{jj} f_{y}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{iL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (u^{i} - c_{x}) + r_{32}^{jj} f_{y}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{iL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (u^{i} - c_{x}) + r_{32}^{jj} f_{y}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{iL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (u^{i} - c_{x}) + r_{32}^{jj} f_{y}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{iL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (u^{i} - c_{x}) + r_{32}^{jj} f_{y}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (v^{i} - c_{y}) + r_{33}^{ji} (d_{\mathbf{p}}^{iL})^{-1} + t_{3}^{ji} \\ r_{31}^{ji} f_{x}^{-1} f_{y}^{ij} f_{y}^{-1} f_{y}^{ij} f_{y}^{-1}$$

1.2.3.2 Static Parameter

Firstly, For a stereo frame i: inverse depth $d_{\mathbf{p}}^{iL} = d_{\mathbf{p}}^{iR}$, a left frame iL pixel \mathbf{p} is projected to right frame iR with \mathbf{p}' :

$$\mathbf{p} = \begin{pmatrix} u^{i} \\ v^{i} \\ 1 \\ d_{\mathbf{p}}^{iL} \end{pmatrix}, \mathbf{p}_{w} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, d_{\mathbf{p}}^{iL} = z^{-1}, \mathbf{p}_{w} = (d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p}$$

$$= \begin{pmatrix} f_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix}, \mathbf{T}_{RL} = \begin{pmatrix} 1 & 0 & 0 & t_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{p}' = d_{\mathbf{p}}^{iR} \mathbf{K}(\mathbf{T}_{RL} \mathbf{p}_{w})$$

$$= d_{\mathbf{p}}^{iL} \begin{pmatrix} f_{x} & 0 & c_{x} & 0 \\ 0 & f_{y} & c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) + t_{1} \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix} = \begin{pmatrix} u^{i} + t_{1}f_{x}d_{\mathbf{p}}^{iL} \\ v^{i} \\ 1 \\ d_{\mathbf{p}}^{iL} \end{pmatrix}$$

$$\frac{\partial r_{\mathbf{p}}^{s}}{\partial d_{\mathbf{p}}^{iL}} = \frac{\partial (I_{i}^{R}(\mathbf{p}')) - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}}(I_{i}^{L}(\mathbf{p}))}{\partial d_{\mathbf{p}}^{iL}} = (\frac{\partial (I_{i}^{R}(\mathbf{p}'))}{\partial \mathbf{p}'} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} \frac{\partial (I_{i}^{L}(\mathbf{p}))}{\partial \mathbf{p}'}) \frac{\partial \mathbf{p}'}{\partial d_{\mathbf{p}}^{iL}}$$

$$= [(g_{x}^{iR}, g_{y}^{iR}, 0, 0) - \mathbf{0}^{T}] \begin{pmatrix} t_{1}f_{x} \\ 0 \\ 0 \\ 1 \end{pmatrix} = g_{x}^{iR}t_{1}f_{x}$$

Secondly, according to:

$$r_{\mathbf{p}}^{s} := I_{i}^{R}(\mathbf{p}') - b_{i}^{R} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$
(2.2)

We have:

$$\frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial a_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L}), \frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial a_{j}} = -\frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$

$$\frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial b_{i}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}, \qquad \frac{\partial (r_{\mathbf{p}}^{s})_{ij}}{\partial b_{j}} = -1$$
(2.2)