Optimal Spring Sizing

Landon Wright

January 24, 2018

Summary

0.1 Design variable values

The optimal cost was found to be \$400,140. The determined optimum values for the design variables are as follows:

Table 1: Optimum values for design

Variable	Value
Velocity	$7.8161 \frac{ft}{s}$
Pipe Diameter	0.1816 ft
Particle Size	0.0005 ft
Water Flow Rate	$0.1128 \frac{ft^3}{s}$
Volumetric Concentration	0.4
Slurry Density	$104.84 \frac{lbm}{ft^3}$

0.2 Design function values

Table 2: Values of design functions at optimum

Design Function	Value
Maximize F_0	6.4541lbs
$h_S + 0.05 \le h_{def}$	$0.60in \leq 0.60in$
$\tau_a \leq \frac{s_e}{s_f}$	$18352psi \leq 30000psi$
$\tau_a + \tau_m \leq \frac{s_y}{s_f}$	$70576psi \leq 70576psi$
$4 \ge \frac{D}{d} \le 16$	$4in \leq 9.359in \leq 16in$
$D + \overset{\circ}{d} \le 0.75$	$0.75in \le 0.75in$
$\tau_{solid} \le s_y$	$75165psi \leq 105860psi$

0.3 Binding Constraints

The binding constraints are:

- $h_S + 0.05 \le h_{def}$
- $D + d \le 0.75$
- $\tau_a + \tau_m \le \frac{s_y}{s_f}$

1 Setup

1.1 Variable Mapping

Table 3: My caption

Analysis Variables

Wire Diameter
Coil Diameter
Number of Coils
Free height
Preload Height
Preload Deflection
Shear Modulus
Safety Factor
Endurance Limit

Design Variables Wire Diameter

Wire Diameter Coil Diameter Number of Coils Free height

Analysis Functions

Force
Spring Stiffness
Whal Factor
Solid Height
Alternating Stress
Mean Stress
Yield Strength
Coil to Wire Ratio
Spring Diameter
Deflected Height

Design Functions

 $\begin{array}{|c|c|c|} \hline \text{Maximize} \\ \hline \text{Solid Height} \leq \text{Deflected height} \\ \hline \text{Alternating Stress} \leq \frac{s_e}{s_f} \\ \hline \text{Alternating and Mean Stress} \leq \frac{s_y}{s_f} \\ \hline 4 \leq \text{Coil to Wire Ratio} \leq 16 \\ \hline \text{Solid Stress} \leq s_y \\ \hline \end{array}$

2 Results

2.1 Optimum values of variables and functions

Table 4: Optimum Values of Variables and Functions (binding functions are highlighted)

Variable/Function	Value
Wire Diameter	0.0724 in
Coil Diameter	0.6776 in
Number Coils	0.5928
Free Height	1.3691
Preload Height	1.0 in
δ_0	0.4 in
h_{def}	0.6 in
h_s	0.55in
F_0	6.454 lbs
k	17.4853 lbs/in
K	1.1561
$ au_{max}$	70576 psi
$ au_{min}$	33871 psi
$ au_a$	18353 psi
$ au_m$	52224 psi
$\tau_a + \tau_m$	70576 psi
$\frac{S_e}{S_f}$ $\frac{S_y}{S_f}$ $\frac{D}{d}$	30000 psi
$\frac{\widetilde{S}_y^J}{\widetilde{S}_y^J}$	70576 psi
$\overset{S_f}{D}$	9.3539
D+d	0.75

2.2 Starting points and obtained values

Table 5: Optimized Values from Given Starting Point

	Initial Values				Optimized Values			
Trial	Wire Diameter	Coil Diameter	Number of Coils	Free Height	Wire Diameter	Coil Diameter	Number of Coils	Free Height
1	0.04735309758	0.2632045077	13.47275949	1.525959964	0.07243674785	0.6775631377	7.592829475	1.369115417
2	0.07681530634	0.6400386081	12.94948955	1.594751247	0.07243674785	0.6775631377	7.592829475	1.369115417
3	0.1842667961	0.2857953622	15.87240389	1.778356185	0.07243674785	0.6775631377	7.592829475	1.369115417
4	0.08228471093	0.4690840665	4.289522923	1.148555107	0.07243674785	0.6775631377	7.592829475	1.369115417
5	0.1108515351	0.6064586996	18.87818163	1.216915588	0.07243674785	0.6775631377	7.592829475	1.369115417
6	0.1180764956	0.4051039167	3.202335182	1.40341038	0.07243674785	0.6775631377	7.592829475	1.369115417
7	0.04081463856	0.6162849514	8.290655715	1.575679822	0.07243674785	0.6775631377	7.592829475	1.369115417
8	0.0414732586	0.4912882619	7.470511837	1.688671189	0.07243674785	0.6775631377	7.592829475	1.369115417
9	0.1409507556	0.5862985353	10.65920717	1.17543924	0.07243674785	0.6775631377	7.592829475	1.369115417
10	0.05350562406	0.693669285	5.590426322	1.84323528	0.07243674785	0.6775631377	7.592829475	1.369115417

2.3 Design space contour plot

Figure 1: Contour plot showing the design space

2.4 Feasible design space contour plot

Figure 2: Contour plot showing the feasible design space

3 Discussion

As can be seen in figure 1 the design space for this problem is quite restricted. There are several contraints and the feasible design space is quite small compared to the total design space, at least when viewed on a contour plot of wire diameter and spring diameter. Due to the fact that the contours shown in Figure 1 are quite linear and that the various initial values tried all converged to the same value as shown in Table 5 I conclude that we have found a global optimum for the spring given the applied constraints. It is also of interest that the optimum appears to be bound by three constraints, meaning that if we wanted to increase the increase the rate of the spring by only changing the spring or wire diameter we would need to either relax the alternating and mean stress constraint(ie. find a stronger material), or we would need to relax both the solid height and spring size constraints. It is important to remember that Figures 1 and 2 are only showing a portion of the design space and other options should also be considered

4 Appendix

- 4.1 Matlab files
- 4.1.1 Optmization code
- 4.1.2 Plotting Code