超声波在固体中的传输 实验报告

姓名: 王炜致 学号: 2022010542 实验日期: 2024.3.26 实验台号: 5

实验目的 1

掌握超声波在固体中传播时的波速测量方法,观察超声波不同波型的转换,学习超声波探测的基本原理及应用。

实验仪器

超声波试验仪(含直探头、45°斜探头、可变角探头)、示波器、CSK-IB 铝测试样、纯净水耦合剂。

数据处理与分析

3.1 声速测量

	波型	衰减分贝 (dB)	示波器时间分度值 $M(\mu s/div)$	第一回波峰位 $t_1(\mu s)$	第二回波峰位 $t_2(\mu s)$	高度/半径 (mm)	声速 (m/s)
	纵波	83	25.0	20.00	39.00	H=60.00	$c_l \approx 6.32 \times 10^3$
Ī	横波	72	25.0	31.00	50.00	$R_1 = 30.00, R_2 = 60.00$	$c_s \approx 3.16 \times 10^3$

声速计算: $c_l = \frac{2H}{t_2 - t_1} = \frac{2 \cdot 60.00mm}{39.00\mu s - 20.00\mu s} \approx 6.32 \times 10^3 m/s$, $c_s = \frac{2(R_2 - R_1)}{t_2 - t_1} = \frac{2 \cdot 30.00mm}{50.00\mu s - 31.00\mu s} \approx 3.16 \times 10^3 m/s$; 试样(铝)密度: $\rho = 2700kg/m^3$; 速度比值: $T = \frac{c_l}{c_s} = 2$;

弹性模量: $E = \frac{\rho c_s^2 (3T^2 - 4)}{T^2 - 1} = \frac{2700 \cdot (3.16 \times 10^3)^2 (12 - 4)}{4 - 1} Pa \approx 71.9 GPa;$

泊松系数: $\sigma = \frac{T^2 - 2}{2(T^2 - 1)} = \frac{1}{3} \approx 0.33.$

图 1: 横波波速测量

3 数据处理与分析 2

图 2: 使用固定法时确定第一回波

3.2 波型转换观察及表面波测量

3.2.1 回波信号幅度、峰位随入射角的变化现象

初始入射角为 0° 时,示波器显示幅度较大、峰位等间隔分布的纵波;入射角为 0° -约 25° 时,示波器显示纵波,由于入射点与 圆心重合,波传输距离不随入射角变化(下同),纵波峰位基本不变,幅度随入射角增大而减小,直至消失;入射角为约 25° -约 60° 时,入射角显示两个单峰的横波,横波幅度随入射角增大而增大,至约 60° 消失;入射角在约 65° 时,出现表面波。

3.2.2 表面波波速

	方法	衰减分贝 (dB)	示波器时间分度值 $M(\mu s/div)$	起始波第一回波峰位 $t_1(\mu s)$	第二回波峰位 $t_2(\mu s)$	距离 (mm)	声速 $c_R(m/s)$
	固定法	45	25.0	31.00	44.00	$L_{EG} = 20.00$	$c_{fixed} \approx 3.08 \times 10^3$
- 7	移动法	52	25.0	55.00	62.00	$L_{EI} = 10.00$	$c_{mobile} \approx 2.86 \times 10^3$

声速计算: $c_{fixed} = \frac{2L_{EG}}{t_2 - t_1} = \frac{2 \cdot 20.00mm}{44.00\mu s - 31.00\mu s} \approx 3.08 \times 10^3 m/s$, $c_{mobile} = \frac{2L_{EI}}{t_2 - t_1} = \frac{2 \cdot 10.00mm}{62.00\mu s - 55.00\mu s} \approx 2.86 \times 10^3 m/s$;

注意到,经两种测量方法测得的表面波波速有所不同,这可能是示波器测量精度不足、试样刻度精度不足等因素造成的。考虑 到移动法测量表面波波速精度较高, c_{mobile} 值应当更可靠。

3.3 超声波探测缺陷

3.3.1 直探头扩散角测量与缺陷深度测量

衰减: 83dB, 示波器: 时间分度值 $M=25.0\mu s/div$, 幅度分度值 $5.00\times 10^3 mV/div$

				<i>'</i>					
x_0	x_1	x_2 缺陷回波幅值 $U_{max}(V)$		通孔 B 距测试面距离 $H_B(mm)$	扩散角 θ(°)	缺陷回波峰位 $t_1(\mu s)$	底面回波峰位 $t_2(\mu s)$	竖孔 C 深度 (mm)	
$5.00 \mathrm{cm}$	4.50cm	5.50cm	11.2	50.00	11.42	15.00	20.00	15.80	

计算直探头扩散角 $\theta = 2tan^{-1}(\frac{x_2 - x_1}{2H_B}) = 2tan^{-1}(\frac{5.50cm - 4.50cm}{2 \cdot 50.00mm}) \approx 11.42^\circ;$ 计算竖孔 C 深度 $d_c = \frac{c_l(t_2 - t_1)}{2} = \frac{6.32 \times 10^3 m/s \cdot 5\mu s}{2} \approx 15.80mm.$

3.3.2 45° 斜探头

探头前沿到左边缘距离 $x_A(cm)$	探头前沿到左边缘距离 $x_B(cm)$	$H_A(mm)$	$L_A(mm)$	$H_B(mm)$	$L_B(mm)$	折射角 β(°)	扩散角 θ(°)	入射点到探头前沿 $L_0(mm)$
3.12	9.00	20.00	20.00	50.00	50.00	43.83	5.96	8.00

4 实验总结 3

图 3: 斜探头扩散角示意图

据图推导斜探头扩散角表达式。直线 OX 为中心轴线,能量最大;偏离中线到位置 A.A' 时,能量减少到最大值的一半。通过 移动斜探头、观察示波器幅度减半处可得 A,A' 相对位置 x_1,x_2 ,经测量 $|AA'|=x_2-x_1=1.00cm$ 。而 OX 与法线方向夹角为折射 角,记为 β ,如图作辅助线,则有

$$tan(\frac{\theta}{2}) = \frac{|IX|}{|OX|}$$

由扩散角较小,可近似认为 X 为线段 AA' 中点,则 $|AX|=rac{x_2-x_1}{2};$ 同样近似认为 $\angle OIX=90^\circ$,则由角度互余关系容易得到

$$|IX| = \frac{x_2 - x_1}{2} \cos\beta$$

而

 $|OX| = \frac{H_B}{\cos\beta}$

故

$$tan(\frac{\theta}{2}) = \frac{x_2 - x_1}{2H_B}cos^2\beta$$

即得到斜探头扩散角计算式

$$\theta = 2tan^{-1}(\frac{x_2 - x_1}{2H_B}cos^2\beta)$$

计算斜探头折射角 $\beta=tan^{-1}(\frac{(x_B-x_A)-(L_B-L_A)}{H_B-H_A})=tan^{-1}(\frac{5.88cm-30.00mm}{30.00mm})\approx 43.83^\circ;$ 计算斜探头扩散角 $\theta=2tan^{-1}(\frac{x_2-x_1}{2H_B}cos^2\beta)=2tan^{-1}(\frac{1.00cm}{2\cdot50.00mm}cos^2(43.83^\circ))\approx 5.96^\circ;$

计算入射点到探头前沿 $L_0 = H_B tan\beta + L_B - x_B = 50.00mm \cdot tan(43.83^\circ) + 50.00mm - 9.00cm \approx 8.0mm$.

4 实验总结

通过本次实验,我了解了超声波在固体中传播时波速测量的方法,了解了超声波在固体中随入射角度变化波型的转换情况,在 实操中领会了超声波探测缺陷的基本思想方法,以及利用已知缺陷测算探头折射角、扩散角的方法。本次实验同时巩固了我对示波 器的操作技能。通过声速测量实验,明确了在固体试样中超声波纵波速度较横波、表面波要快(一倍),验证了现实生活中地震来临 时先感受到上下震动的纵波、后感受到左右震动的横波的经验事实。通过波形转换观察实验,明确了横波、纵波、表面波存在临界 入射角,入射角较小时主要产生纵波,适中时主要产生横波,较大时形成表面波。在实验过程中,由于示波器测量精度等因素,测 量误差比较明显,特别反映在用两种方法测量表面波波速中。

5 原始数据记录 4

5 原始数据记录

