FTML Exercices 4 solutions

TABLE DES MATIÈRES

1	Cor	Convexity															1								
	1.1	C2																				 		1	
		1.1.1	Enoncé .																			 		1	
		1.1.2	Solution																			 		1	
	1.2	C ₃																				 		1	
		1.2.1	Enoncé .																			 		1	
			Solution																			 		1	
2	Log	Logistic regression															2	_							

1 CONVEXITY

1.1 C2

1.1.1 Enoncé

 $x \mapsto \theta^\mathsf{T} x$ is convex on \mathbb{R}^d with $\theta \in \mathbb{R}^d$ (linear form)

1.1.2 Solution

$$\theta^{\mathsf{T}}(\alpha x + (1-\alpha)y) = \alpha \theta^{\mathsf{T}} x + (1-\alpha)\theta^{\mathsf{T}} y \tag{1}$$

Remark. Actually, all linear forms are convex.

1.2 C3

1.2.1 Enoncé

if Q is a symmetric definite positive matrix (matrice définie positive) with smallest eigenvalue $\lambda_{\min} > 0$, then $x \mapsto x^T Q x$ is $2\lambda_{\min}$ - strongly convex.

1.2.2 Solution

Let $\mu = 2\lambda_{\min}$.

We want to show that

$$(\alpha x + (1-\alpha)y)^{\mathsf{T}}Q(\alpha x + (1-\alpha)y) \leqslant \alpha x^{\mathsf{T}}Qx + (1-\alpha)y^{\mathsf{T}}Qy - \frac{\mu}{2}\alpha(1-\alpha)||x-y||^2 \tag{2}$$

which means

$$(\alpha x + (1 - \alpha)y)^{\mathsf{T}} Q(\alpha x + (1 - \alpha)y) - \alpha x^{\mathsf{T}} Qx - (1 - \alpha)y^{\mathsf{T}} Qy \leqslant -\frac{\mu}{2} \alpha (1 - \alpha) ||x - y||^2$$
(3)

We compute the left-hand side:

$$\begin{split} &(\alpha x + (1-\alpha)y)^T Q(\alpha x + (1-\alpha)y) - \alpha x^T Q x + (1-\alpha)y^T Q y \\ &= \alpha^2 x^T Q x + (1-\alpha)^2 y^T Q y + \alpha (1-\alpha)(x^T Q y + y^T Q x) - \alpha x^T Q x - (1-\alpha)y^T Q y \\ &= \alpha (\alpha - 1) x^T Q x + (1-\alpha)((1-\alpha) - 1) y^T Q y + \alpha (1-\alpha)(x^T Q y + y^T Q x) \\ &= \alpha (\alpha - 1) x^T Q x + \alpha (\alpha - 1) y^T Q y + \alpha (1-\alpha)(x^T Q y + y^T Q x) \\ &= \alpha (1-\alpha) \Big(-x^T Q x - y^T Q y + x^T Q y + y^T Q x \Big) \\ &= -\alpha (1-\alpha) \Big((x-y)^T Q (x-y) \Big) \\ &\leqslant \lambda_{\min} \alpha (1-\alpha) ||x-y||^2 \end{split}$$

which is exactly what we wanted.

2 LOGISTIC REGRESSION

1]

$$\forall z \in \mathbb{R}, \sigma'(z) = \left(-\frac{1}{(1+e^{-z})^2}\right)\left(-e^{-z}\right)$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}}$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}e^z}{(1+e^{-z})e^z}$$

$$= \frac{1}{1+e^{-z}} \frac{1}{1+e^z}$$

$$= \sigma(z)\sigma(-z)$$
(5)

2] We compute the second order derivative.

$$\begin{split} \frac{\partial l}{\partial \hat{y}}(\hat{y}, y) &= \frac{-ye^{-\hat{y}y}}{1 + e^{-\hat{y}y}} \\ &= \frac{-ye^{-\hat{y}y}}{1 + e^{-\hat{y}y}} \frac{e^{\hat{y}y}}{e^{\hat{y}y}} \\ &= \frac{-y}{e^{\hat{y}y} + 1} \\ &= -y\sigma(-\hat{y}y) \end{split} \tag{6}$$

Hence,

$$\frac{\partial^{2} l}{\partial \hat{y}^{2}}(\hat{y}, y) = -y\sigma(-\hat{y}y)\sigma(\hat{y}y) \times -y$$

$$= y^{2}\sigma(-\hat{y}y)\sigma(\hat{y}y) > 0$$
(7)

Hence, the second-order derivative is strictly positive, and $l(\hat{y}, y)$ is strictly convex in its first argument.

3] We introduce the following functions:

$$g_{i} = \begin{cases} \mathbb{R}^{d} \to \mathbb{R} \\ \theta \mapsto l(x_{i}^{T}\theta, y_{i}) \end{cases}$$
$$u_{i} = \begin{cases} \mathbb{R} \to \mathbb{R} \\ \hat{u} \mapsto l(\hat{u}, y_{i}) \end{cases}$$

$$\nu_i = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R} \\ \theta \mapsto x_i^\mathsf{T} \theta \end{array} \right.$$

Then, ∀i

$$l(x_i^\mathsf{T}\theta, y_i) = g_i(\theta) = (u_i \circ v_i)(\theta) \tag{8}$$

a] (convexity) It is sufficient to show that each $g_i:\theta\to l(x_i^\mathsf{T}\theta,y_i)$ is convex, because the sum of convex functions is convex. By definition, (equation 8), g_i is a convex function u_i applied to a linear mapping v_i , which prooves that g_i is convex.

b] (gradient) By composition of the jacobian matrices,

$$L_{\theta}^{g_i} = L_{\nu_i(\theta)}^{u_i} L_{\theta}^{\nu_i} = u_i'(\nu_i(\theta)) L_{\theta}^{\nu_i} \tag{9}$$

Or equivalently:

$$\nabla_{\theta} g_{i}(\theta) = u'_{i}(v_{i}(\theta)) \nabla_{\theta} v_{i}(\theta) \tag{10}$$

We already know that $\nabla_{\theta} v_i(\theta) = x_i$.

In question 2, we have seen that $\forall y, \hat{y}$,

$$\frac{\partial l}{\partial \hat{y}}(\hat{y}, y) = -y\sigma(-\hat{y}y) \tag{11}$$

Hence,

$$\begin{split} u_i'(\nu_i(\theta)) &= -y_i \sigma(-\nu_i(\theta) y_i) \\ &= -y_i \sigma(-x_i^T \theta y_i) \end{split} \tag{12}$$

Finally,

$$\nabla_{\theta} g_{i}(\theta) = -y_{i} \sigma(-x_{i}^{\mathsf{T}} \theta y_{i}) x_{i} \tag{13}$$

and

$$\begin{split} \nabla_{\theta} R_{n}(\theta) &= \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} g_{i}(\theta) \\ &= \frac{1}{n} \sum_{i=1}^{n} -y_{i} \sigma(-x_{i}^{T} \theta y_{i}) x_{i} \end{split} \tag{14}$$