CONTENTS

1	Cha	in Complexes	1
	1.1	Chain Complexes	1
	1.2	Chain Homotopies	2
	1.3	Homology	3
		Derived Functors	
		Resolutions	
	2.2	Derived Functors	7
	2.3	The Ext Functor	8

1 CHAIN COMPLEXES

1.1 CHAIN COMPLEXES

Definition 1. A **chain complex** C is a sequence of R-morphisms

$$\cdots \xrightarrow{d_{i+2}} C_{i+1} \xrightarrow{d_{i+1}} C_i \xrightarrow{d_i} C_{i-1} \xrightarrow{d_{i-1}} \cdots$$

such that $d^2 = 0$ for all *i*. **Cochain complexes** are the same, except the boundary maps take you up a level instead of down.

$$\cdots \xrightarrow{d_{i-1}} C^{i-1} \xrightarrow{d_i} C^i \xrightarrow{d_{i+1}} C^{i+1} \xrightarrow{d_{i+2}} \cdots$$

The map d_i is the **boundary operator**, as it is a generalization of the geometric concept of a boundary (note $d^2 = 0$). Thus an element of Im d is a **boundary**. Since usual geometric cycles have no boundary, we call the elements of Ker d cycles.

Example 1. Chain complexes generalize the concept of boundaries to objects that don't necessarily have clear cyclic geometric properties. Let $\Omega_n(M)$ denote the space of differential n-forms on a manifold M, then we have a cochain complex

$$\Omega_0(M) \xrightarrow{d} \Omega_1(M) \xrightarrow{d} \Omega_2(M) \xrightarrow{d} \cdots$$

where d is the exterior derivative. From this we see that the cycles of $\Omega_0(M)$ (the space of differentiable functions on M) are the constant functions.

A morphism of complexes/chain morphism $f: \mathcal{C} \to \mathcal{D}$ is a sequence of morphisms $f_i: C_i \to D_i$ respecting the boundary map, i.e. making the following diagram commute.

$$\begin{array}{c|c} C_i & \xrightarrow{d_{\mathcal{C}}} & C_{i-1} \\ f_i \downarrow & & \downarrow f_{i-1} \\ D_i & \xrightarrow{d_{\mathcal{D}}} & D_{i-1} \end{array}$$

1.2 **CHAIN HOMOTOPIES**

Definition 2. Given two chain complexes \mathcal{A}, \mathcal{B} , two chain morphisms $f, g : \mathcal{A} \to \mathcal{B}$ are (chain) homotopic, written $f \simeq g$, if there are morphisms $s_i : A_i \to B_{i-1}$ such that

$$d's + sd = f - g.$$

If \mathcal{A}, \mathcal{B} are cochain complexes instead, then $s_i : A_i \to B_{i+1}$.

Motivation for this?

Proposition 1. Additive functors preserve homotopy equivalence.

Proof. Let $f \simeq g$. If \mathcal{F} is additive and covariant, then $d's + sd = f - g \implies \mathcal{F}(d')\mathcal{F}(s) + g$ $\mathcal{F}(s)\mathcal{F}(d)=\mathcal{F}f-\mathcal{F}g$. Thus $\mathcal{F}f\simeq\mathcal{F}g$. If \mathcal{G} is additive and contravariant, then $\mathcal{G}(d)\mathcal{G}(s)=\mathcal{F}(s)\mathcal{F}(d)$ $\mathcal{G}(s)\mathcal{G}(d')=\mathcal{G}f-\mathcal{G}g$. Since all the arrows are reversed, the LHS is the right form, so $\mathcal{G}f\simeq\mathcal{G}g$. \qed

1.3 HOMOLOGY

Definition 3. The *n*-th **homology group** of a chain complex C is

$$H_n(\mathcal{C}) = \frac{\operatorname{Ker} d_n}{\operatorname{Im} d_{n+1}}.$$

The n-th **cohomology group** is

$$H^n(\mathcal{C}) = \frac{\operatorname{Ker} d_{n+1}}{\operatorname{Im} d_n}.$$

Proposition 2. A chain/cochain complex is exact \iff all its homology/cohomology groups are trivial.

Thus the (co)homology groups of a (co)chain complex measure how much it fails to be exact.

Proposition 3. A morphism of complexes $f : \mathcal{A} \to \mathcal{B}$ induces group morphisms between the complexes' homology/cohomology groups given by $[a] \mapsto [f_n(a)]$.

Proof. This follows from the morphism of complexes respecting the boundary map and thus mapping the kernels and images of the first complex to the kernels and images of the second. \Box

Proposition 4. If f_* is the induced (co)homology map of f, then $(gf)_* = g_*f_*$.

Definition 4. $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$ is a **short exact sequence of complexes** if each $0 \to A^n \to B^n \to C^n \to 0$ is short exact.

Maybe build up to this with snake lemma?

Theorem 1 (Long Exact Sequence in Cohomology). If $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$ is a short exact sequence of complexes, then there is a long exact sequence of cohomologies

$$0 \to H^0(\mathcal{A}) \to H^0(\mathcal{B}) \to H^0(\mathcal{C})$$
$$\to H^1(\mathcal{A}) \to H^1(\mathcal{B}) \to H^1(\mathcal{C})$$
$$\to H^2(\mathcal{A}) \to \cdots$$

where the morphisms $H^n(\mathcal{C}) \to H^{n+1}(\mathcal{A})$ are the **connecting morphisms**.

Proof. Construct connecting morphisms.

Intuition?

Corollary 1. If $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$ is exact and any 2 of the complexes are exact themselves, then so is the third.

Proof. The LES of cohomologies becomes all 0, except for each $H^n(\mathcal{X})$, where \mathcal{X} is the third complex. Now $0 \to H^n(\mathcal{X}) \to 0$ exact $\Longrightarrow H^n(\mathcal{X}) \cong 0$, so \mathcal{X} is exact.

Definition 5. A morphism of complexes is a **quasi-isomorphism** if the (co)homology maps it induces are all iso.

Lemma 1. If $f \simeq g$ then they induce the same (co)homology maps, i.e. $f_* = g_*$.

Proof. Suppressing subscripts, suppose f = d's + sd, then the induced map is

$$[a] \mapsto [f(a)] = [(d's)(a) + (sd)(a)] = [d'(s(a)) + s(0)] = [0].$$

Then if $f \simeq g$, we have [f(a)] = [(g + d's + sd)(a)] = [g(a)].

Proposition 5. A homotopy equivalence is a quasi-iso.

Proof. Suppose f and g are inverse chain homotopies, then by the lemma, $f_*g_*=(fg)_*=(1_B)_*=$ $1_{H(\mathcal{B})}$ and, similarly, $g_*f_*=1_{H(\mathcal{A})}$. Thus $H^n(\mathcal{A})\cong H^n(\mathcal{B})$ for all n.

2 DERIVED FUNCTORS

2.1 RESOLUTIONS

Definition 6. Suppose A is an R-module, then a **projective resolution** over A is an exact sequence of projective R-modules

$$\cdots \longrightarrow P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_1} P_0 \xrightarrow{\varepsilon} A \longrightarrow 0$$

and a **injective resolution** over A is an exact sequence of injective R-modules

$$0 \longrightarrow A \xrightarrow{\varepsilon} I_0 \xrightarrow{d_1} \cdots \xrightarrow{d_{n-1}} I_{n-1} \xrightarrow{d_n} I_n \longrightarrow \cdots$$

Theorem 2 (Existence). Every *R*-module has a projective **and injective** resolution.

Proof. Let A be an R-module, and let P_0 be free on A. Then there's a unique R-morphism $\varepsilon: P_0 \to A$ extending 1_A . It's clearly epic, so $P_0 \stackrel{\varepsilon}{\to} A \to 0$ is exact. Now let P_1 be free on $\operatorname{Ker} \varepsilon$, then there's a unique R-morphism $d_1: P_1 \twoheadrightarrow \operatorname{Ker} \varepsilon$, so $P_1 \stackrel{d_1}{\to} P_0 \stackrel{\varepsilon}{\to} A$ is exact. Continue inductively, with P_{n+1} free on $\operatorname{Ker} d_n$. Since each P_i is free, each is projective.

Proposition 6. R-morphisms lift to morphisms of projective/injective resolutions that are unique up to chain homotopy.

Proof. Inductively use the fact that all the P_i, P'_i are projective and I_i, I'_i are injective to get each f_n and g_n . Chain homotopy bit.

Corollary 2. Any two projective/injective resolutions of the same module are homotopy equiv-

Proof. Consider the following lifts to projective resolutions (the case of injective resolutions is similar).

The identity map is a valid candidate for each $g_n f_n$, so $g_n f_n \simeq 1$. Now flip the diagram upside down and use the same f_n and g_n maps, yielding $f_n g_n \simeq 1$.

Corollary 3. Any two projective/injective resolutions have isomorphic (co)homology groups.

Proof. They're homotopy equivalent, so they're quasi-isomorphic by Proposition 5.

DERIVED FUNCTORS

Suppose we apply an additive functor \mathcal{F} to some projective/injective resolution of a module A. The (co)homology groups of the resulting complex are unique up to isomorphism:

- Let \mathcal{X}, \mathcal{Y} be projective/injective resolutions of A, then they're homotopy equivalent by Corollary 2.
- By Proposition 1, additive functors preserve homotopy equivalence, so \mathcal{FX} and \mathcal{FY} are also homotopy equivalent.
- By Proposition 5, homotopy equivalent complexes have isomorphic (co)homology groups.

Thus we can define the (co)homology groups of the sequence gotten by applying an additive functor \mathcal{F} to a projective/injective resolution of A using any resolution.

Define left and right derived functors.

Make sure to include chopping off the first term.

Proposition 7. If \mathcal{F} is left exact, then $R_0\mathcal{F} = \mathcal{F}$.

Proof. Covariant: If $0 \to A \xrightarrow{f} I_0 \xrightarrow{g} I_1$ is exact, then so is $0 \to \mathcal{F}A \xrightarrow{\mathcal{F}f} \mathcal{F}I_0 \xrightarrow{\mathcal{F}g} \mathcal{F}I_1$. Then $R^0\mathcal{F}(A) = \text{Ker}(\mathcal{F}g) = \text{Im}(\mathcal{F}f) \cong \mathcal{F}(A) \text{ (since } \mathcal{F}f \text{ monic)}.$

Contravariant: Use a projective resolution instead. The process is the same.

left exact -> right derived / right exact -> left derived????

When to use proj/inj resolutions?

LES of left/right derived functors

If A projective, then can determine derived functors very easily with projective resolution $0 \to A \to A \to 0$.

THE EXT FUNCTOR

Note 1. Big idea: the hom functors are left exact, but we can use cohomology to measure how much they fail to be right exact.

Definition 7. The **Ext functors** are the (right) derived functors of the hom functors.

Given an *R*-module *A*, there are two equivalent ways to construct them:

1. Using $\operatorname{Hom}(-, M)$ (contravariant): Take a projective resolution

$$\cdots \longrightarrow P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_1} P_0 \xrightarrow{\varepsilon} A \longrightarrow 0$$

and apply $\operatorname{Hom}(-, M)$ to it. Removing $\operatorname{Hom}(A, M)$ from the sequence gives

$$0 \longrightarrow \operatorname{Hom}(P_0, M) \xrightarrow{d_1^*} \operatorname{Hom}(P_1, M) \xrightarrow{d_2^*} \cdots.$$

This is a cochain complex since for any map f, applying d^* twice gives $d^{*2}(f) = fd^2 = 0$. Then $\operatorname{Ext}_R^n(A, M)$ is the *n*-th cohomology group of this complex.

2. Using $\operatorname{Hom}(M,-)$ (covariant): Take an injective resolution, apply $\operatorname{Hom}(M,-)$, remove Hom(M, A), then take homology.

Proposition 8. $\operatorname{Ext}_R^0(A, M) \cong \operatorname{Hom}_R(A, M)$.

Proof. The hom functors are left exact, so apply Proposition 7.