COA(23CS304) OBJECTIVE QUESTIONS

UNIT-I

COA Multiple Choice Questions (20):

Digital Computers & Organization:

- 1. Which of the following is NOT a component of a digital computer?
 - a) Input Unit
 - b) Control Unit
 - c) Compiler
 - d) Arithmetic Logic Unit

Answer: c

- 2. The primary function of the Arithmetic Logic Unit (ALU) is?
 - a) Control execution of instructions
 - b) Perform arithmetic and logic operations
 - c) Manage I/O operations
 - d) Store data permanently

Answer: b

- 3. Computer Organization deals with?
 - a) The functional structure of a computer
 - b) The physical design of circuits
 - c) Programming languages
 - d) Application software

Answer: a

- 4. Computer Architecture focuses mainly on?
 - a) Instruction Set Design
 - b) Compiler design
 - c) Networking protocols
 - d) Operating system services

Answer: a

- 5. Which of the following represents the **flow of data** in a digital computer?
 - a) Input \rightarrow ALU \rightarrow Output
 - b) Input \rightarrow Memory \rightarrow Output
 - c) Input \rightarrow Process \rightarrow Output
 - d) Input \rightarrow Control \rightarrow Output

Answer: c

Register Transfer Language & Micro-operations:

- 6. Register Transfer Language (RTL) is used to describe?
 - a) Hardware connections
 - b) Data transfer and operations inside the CPU
 - c) Operating system functions

	d) Assembly instructions only Answer: b
7.	The symbol used in RTL for data transfer is? a) ← b) → c) = d): Answer: a
8.	The bus in computer organization is mainly a) Data storage

- n is mainly used for?
 - b) Data transfer between components
 - c) Instruction decoding
 - d) Error correction

Answer: b

- 9. Which of the following is an example of arithmetic micro-operation?
 - a) AND
 - b) ADD
 - c) OR
 - d) SHIFT

Answer: b

- 10. Which micro-operation shifts all bits of a register to the left or right?
 - a) Arithmetic
 - b) Logical
 - c) Shift
 - d) Register transfer

Answer: c

- 11. The Arithmetic Logic Shift Unit (ALSU) performs?
 - a) Only arithmetic operations
 - b) Only logic operations
 - c) Arithmetic, logic, and shift operations
 - d) Data transfer operations

Answer: c

- 12. In a bus system, control signals are required to?
 - a) Activate memory or I/O devices
 - b) Perform addition
 - c) Store results in registers
 - d) Execute programs

Answer: a

Basic Computer Organization & Design:

- 13. Instruction code is a group of?
 - a) Data bits
 - b) Memory addresses
 - c) Binary bits specifying an operation

	d) Control signals only Answer: c
14.	The Program Counter (PC) holds? a) The current instruction b) The address of the next instruction c) The result of execution d) The base address of memory Answer: b
15.	Which register stores the instruction currently being executed? a) PC b) MAR c) IR d) MDR Answer: c
16.	The Instruction Cycle consists of? a) Fetch and Decode b) Decode and Execute c) Fetch, Decode, Execute d) Store and Load Answer: c
17.	A memory-reference instruction requires? a) Access to I/O only b) Access to memory to fetch operands c) No memory access d) Access to accumulator Answer: b
18.	Which signal is used by I/O devices to gain attention of the CPU? a) Control Signal b) Interrupt Signal c) Status Signal d) Memory Request Answer: b
19.	Timing and control unit in CPU is responsible for? a) Performing arithmetic operations b) Synchronizing all activities c) Managing memory only d) Executing instructions only Answer: b
20.	In a basic computer design, which register acts as a buffer between CPU and memory? a) PC b) MAR c) MDR d) IR Answer: c

Fill in the Blanks (20)	
1.	A digital computer processes information in the form of Answer: binary digits (0s and 1s)
2.	The control unit directs the flow of data between and Answer: CPU, other units (memory/I/O)
3.	Computer Organization is concerned with the structure of a computer. Answer: operational
4.	Computer Architecture mainly focuses on the set design. Answer: instruction
5.	The symbol ← in RTL indicates Answer: data transfer
6.	In Register Transfer, the right-hand side specifies the, and the left-hand side specifies the Answer: source, destination
7.	The set of lines used for data transfer in a bus system is called Answer: data bus
8.	An example of a logic micro-operation is Answer: AND/OR/NOT/XOR
9.	A shift micro-operation that fills vacant bits with zeros is called shift. Answer: logical
10.	The unit that performs arithmetic, logic, and shift operations is called Answer: Arithmetic Logic Shift Unit (ALSU)
11.	The binary representation of an operation to be performed is called Answer: opcode (operation code)
12.	The register that contains the address of the next instruction to be executed is Answer: Program Counter (PC)
13.	The instruction currently being executed is stored in the register. Answer: Instruction Register (IR)
14.	The process of fetching, decoding, and executing an instruction is called the cycle. Answer: instruction cycle
15.	Memory-reference instructions operate on data stored in Answer: memory
16.	Input/Output devices communicate with CPU through signals. Answer: control
17.	The signal used by I/O devices to interrupt CPU processing is called Answer: interrupt

18.	The register that holds the address of a memory location is Answer: Memory Address Register (MAR)
19.	The register that holds the actual data fetched from or written to memory is Answer: Memory Data Register (MDR)
20.	The part of CPU responsible for synchronizing operations is the unit. Answer: control
	<u>UNIT-II</u>
Multipl	e Choice Questions (20)
Microp	rogrammed Control:
1.	The storage used to hold microprograms is called? a) Cache b) Control Memory c) Main Memory d) RAM Answer: b
2.	In microprogrammed control, the control signals are generated by? a) Hardware circuits b) Software programs c) Microinstructions stored in control memory d) I/O devices Answer: c
3.	The sequence of microinstructions to execute a single machine instruction is called? a) Instruction set b) Microprogram c) Macroinstruction d) Opcode Answer: b
4.	Address sequencing in microprogram control is used to? a) Select the next memory location b) Determine the next microinstruction to execute c) Access stack memory d) Perform logic operations Answer: b
5.	A microinstruction contains information about? a) Only opcodes b) Control signals to be activated c) Instruction format d) Data representation Answer: b

- 6. The control unit designed using microprogramming is?
 - a) Faster but complex
 - b) Slower but flexible
 - c) Faster and flexible
 - d) None of these

Answer: b

- 7. Horizontal microinstructions use?
 - a) Fewer bits and more decoding
 - b) More bits and direct control
 - c) Both a and b
 - d) None of these

Answer: b

- 8. The unit responsible for fetching microinstructions is?
 - a) ALU
 - b) Control Address Register (CAR)
 - c) MDR
 - d) IR

Answer: b

- 9. A microprogram example typically demonstrates?
 - a) Hardware wiring
 - b) Sequence of micro-operations to execute a machine instruction
 - c) Stack pointer design
 - d) Data path optimization

Answer: b

- 10. The control unit designed using hardwired logic is generally?
 - a) Easier to modify
 - b) Faster but less flexible
 - c) Slower but flexible
 - d) More memory efficient

Answer: b

CPU Organization:

- 11. General Register Organization provides?
 - a) Single accumulator
 - b) Multiple registers for data storage and processing
 - c) Only program counter
 - d) Cache memory organization

Answer: b

- 12. The register that points to the top of the stack is called?
 - a) PC
 - b) MAR
 - c) SP

d) IR

Answer: c

- 13. In stack organization, arithmetic expressions are evaluated using?
 - a) Prefix notation
 - b) Postfix notation
 - c) Infix notation
 - d) Binary notation

Answer: b

- 14. An instruction format consists of?
 - a) Opcode and operand fields
 - b) Data and stack pointer
 - c) Only opcode
 - d) Microoperations

Answer: a

- 15. The addressing mode that uses a constant operand inside the instruction is?
 - a) Immediate
 - b) Direct
 - c) Indirect
 - d) Indexed

Answer: a

- 16. Which addressing mode uses the contents of a register plus a displacement to compute the effective address?
 - a) Direct
 - b) Indirect
 - c) Indexed
 - d) Immediate

Answer: c

- 17. Data transfer instructions include?
 - a) ADD, SUB
 - b) MOV, LOAD, STORE
 - c) JMP, CALL
 - d) AND, OR

Answer: b

- 18. Program control instructions include?
 - a) Arithmetic operations
 - b) Data transfer operations
 - c) Branch and jump instructions
 - d) Input-output operations

Answer: c

- 19. A key feature of RISC architecture is?
 - a) Complex instructions with many cycles
 - b) Simple instructions executed in one cycle
 - c) Large instruction set

20	Compared to CISC, RISC generally uses?
	a) Fewer registers
	b) More registers and simpler instructions
	c) Slower execution
	d) Complex microprogramming
	Answer: b
Fill in	the Blanks (20)
Microp	programmed Control:
1.	Control signals in a microprogrammed control unit are generated by Answer: microinstructions
2.	The storage unit used for microinstructions is called Answer: control memory
3.	The register that holds the address of the next microinstruction is Answer: Control Address Register (CAR)
4.	The sequence of microinstructions to execute a single instruction is called a Answer: microprogram
5.	In horizontal microinstructions, control signals are specified Answer: directly
6.	In vertical microinstructions, control signals require Answer: decoding
7.	Microprogrammed control is but compared to hardwired control. Answer: flexible, slower
8.	Address sequencing is used to select the microinstruction. Answer: next
9.	A microinstruction specifies a set of to be activated. Answer: control signals
10	The unit that executes microinstructions is called the unit. Answer: control
CPU O	rganization
11	General Register Organization provides multiple for temporary storage. Answer: registers
12.	The register that always points to the top of the stack is Answer: Stack Pointer (SP)

d) Microprogrammed control only

Answer: b

13.	In stack organization, arithmetic expressions are usually represented in form. Answer: postfix (Reverse Polish notation)
14.	The binary code that specifies the operation to be performed is called Answer: opcode
15.	An instruction format consists of and fields. Answer: opcode, operand
16.	The addressing mode in which the operand is part of the instruction itself is Answer: immediate addressing
17.	The addressing mode where the effective address is obtained by adding a constant to a register is Answer: indexed addressing
18.	Instructions that move data from one place to another are called instructions. Answer: data transfer
19.	Instructions that alter the sequence of execution are called instructions. Answer: program control
20.	RISC stands for Answer: Reduced Instruction Set Computer
	<u>UNIT-III</u>
Data Re	epresentation
1.	The binary system uses which base? a) 2 b) 8 c) 10 d) 16 Answer: a
2.	The number of bits in a nibble is? a) 2 b) 4 c) 8 d) 16 Answer: b
3.	The 1's complement of binary number 101100 is? a) 010011 b) 101011 c) 111000 d) 110100 Answer: a
4.	The 2's complement of binary number 11001 is? a) 00110 b) 11001

- c) 00111
- d) 11111

Answer: c

- 5. Fixed-point representation is mainly used to represent?
 - a) Real numbers
 - b) Integers
 - c) Floating numbers
 - d) Complex numbers

Answer: b

- 6. Floating-point numbers are represented using?
 - a) Sign, exponent, and mantissa
 - b) Opcode and operand
 - c) Address and data field
 - d) Integer only

Answer: a

- 7. In IEEE 754 single precision, the exponent field consists of?
 - a) 4 bits
 - b) 6 bits
 - c) 8 bits
 - d) 11 bits

Answer: c

- 8. Normalization in floating-point representation ensures?
 - a) Smaller exponent
 - b) Unique representation
 - c) More mantissa bits
 - d) Faster computation

Answer: b

- 9. The main disadvantage of floating-point representation is?
 - a) Low precision
 - b) Limited range
 - c) Hardware complexity
 - d) Easy overflow

Answer: c

- 10. Which data type is most suitable for storing characters?
 - a) Integer
 - b) Floating-point
 - c) Boolean
 - d) ASCII/Character encoding

Answer: d

Computer Arithmetic:

- 11. In binary addition, 1 + 1 = ?
 - a) 0 with carry 1

- b) 1 with carry 0
- c) 2
- d) 11

Answer: a

- 12. In 2's complement subtraction, subtraction is performed as?
 - a) A B = A + (1's complement of B)
 - b) A B = A + (2's complement of B)
 - c) A B = A (2's complement of A)
 - d) A B = A XOR B

Answer: b

- 13. Which multiplication algorithm is commonly used in computers?
 - a) Newton's method
 - b) Booth's algorithm
 - c) Dijkstra's algorithm
 - d) Divide-and-conquer

Answer: b

- 14. Restoring and non-restoring methods are used for?
 - a) Addition
 - b) Subtraction
 - c) Multiplication
 - d) Division

Answer: d

- 15. Floating-point addition requires?
 - a) Aligning the exponents
 - b) Aligning the mantissas
 - c) Both exponents and mantissas aligned
 - d) No alignment

Answer: a

- 16. When two floating-point numbers with very different exponents are added, the result may suffer from?
 - a) Overflow
 - b) Underflow
 - c) Loss of significance
 - d) Rounding error only

Answer: c

- 17. Decimal arithmetic operations are usually implemented using?
 - a) ASCII codes
 - b) BCD (Binary-Coded Decimal)
 - c) Hexadecimal codes
 - d) Floating-point registers

Answer: b

- 18. A decimal arithmetic unit is mainly used to?
 - a) Perform logical operations
 - b) Perform arithmetic on BCD numbers

	c) Perform binary multiplication d) Convert binary to octal Answer: b
19.	Overflow occurs when? a) The result exceeds the word size b) There is no carry bit c) Mantissa is normalized d) Decimal unit fails Answer: a
20.	Which algorithm is used to perform efficient multiplication with signed numbers? a) Restoring algorithm b) Booth's algorithm c) Euclidean algorithm d) Shift-add algorithm only Answer: b
	he Blanks (20)
Data Re	epresentation:
1.	A group of 8 bits is called a Answer: byte
2.	The 1's complement of a binary number is obtained by replacing 0 with and 1 with Answer: 1, 0
3.	The 2's complement is obtained by taking 1's complement and adding Answer: 1
4.	Fixed-point representation is used to represent numbers. Answer: integers
5.	Floating-point representation consists of three parts:,, and
	Answer: sign, exponent, mantissa
6.	In IEEE 754 single precision, the mantissa field contains bits. Answer: 23
7.	In IEEE 754 double precision, the exponent field contains bits. Answer: 11
8.	Floating-point numbers are usually stored in notation. Answer: normalized

9. The base of the binary number system is ______.

Answer: 2

10.	Characters are represented in computers using codes. Answer: ASCII/Unicode
Compu	ter Arithmetic:
11.	In binary addition, 1 + 1 results in a sum of and a carry of Answer: 0, 1
12.	Subtraction using complements is performed by adding the complement of the subtrahend. Answer: 2's
13.	The multiplication algorithm used in most computers for signed numbers is Answer: Booth's algorithm
14.	Division in computers can be performed using and algorithms. Answer: restoring, non-restoring
15.	In floating-point addition, the first step is aligning the Answer: exponents
16.	Loss of precision in floating-point arithmetic is called Answer: loss of significance
17.	Decimal arithmetic in computers is generally handled using representation. Answer: BCD (Binary-Coded Decimal)
18.	The arithmetic unit that handles decimal operations is called Answer: Decimal Arithmetic Unit
19.	Overflow in binary arithmetic means the result cannot be represented within the available size.
	Answer: word
20.	When the result of a floating-point operation is too small to be represented, it is called
	Answer: underflow