Algorithm A.10 Simple gradient ascent algorithm

```
Procedure Gradient-Ascent ( \boldsymbol{\theta}^1, // Initial starting point f_{\mathrm{obj}}, // Function to be optimized \delta // Convergence threshold )  1 \qquad t \leftarrow 1   \mathbf{do}   3 \qquad \boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t + \eta \nabla f_{\mathrm{obj}}(\boldsymbol{\theta}^t)   4 \qquad t \leftarrow t+1   \mathbf{while} \ \|\boldsymbol{\theta}^t - \boldsymbol{\theta}^{t-1}\| > \delta   \mathbf{return} \ (\boldsymbol{\theta}^t)
```

search of algorithm A.5 (see appendix A.4.2). Using the Taylor expansion of a function, we know that, in the neighborhood of θ^0 , the function can be approximated by the linear equation

$$f_{\mathrm{obj}}(\boldsymbol{\theta}) \approx f_{\mathrm{obj}}(\boldsymbol{\theta}^0) + (\boldsymbol{\theta} - \boldsymbol{\theta}^0)^T \nabla f_{\mathrm{obj}}(\boldsymbol{\theta}^0).$$

Using basic properties of linear algebra, we can check that the slope of this linear function, that is, $\nabla f_{\text{obj}}(\boldsymbol{\theta}^0)$, points to the direction of the steepest ascent. This observation suggests that, if we take a step in the direction of the gradient, we increase the value of f_{obj} . This reasoning leads to the simple gradient ascent algorithm shown in algorithm A.10. Here, η is a constant that determines the *rate* of ascent at each iteration. Since the gradient ∇f_{obj} approaches 0 as we approach a maximum point, the procedure will converge if η is sufficiently small.

Note that, in order to apply gradient ascent, we need to be able to evaluate the function $f_{\rm obj}$ at different points, and also to evaluate its gradient. In several examples we encounter in this book, we can perform these calculations, although in some cases these are costly. Thus, a major objective is to reduce the number of points at which we evaluate $f_{\rm obj}$ or $\nabla f_{\rm obj}$.

The performance of gradient ascent depends on the choice of η . If η is too large, then the algorithm can "overshoot" the maximum in each iteration. For sufficiently small value of η , the gradient ascent algorithm will converge, but if η is too small, we will need many iterations to converge. Thus, one of the difficult points in applying this algorithm is deciding on the value of η . Indeed, in practice, one typically needs to begin with a large η , and decrease it over time; this approach leaves us with the problem of choosing an appropriate schedule for shrinking η .

A.5.2.2 Line Search

An alternative approach is to adaptively choose the step size η at each step. The intuition is that we choose a direction to climb and continue in that direction until we reach a point where we start to descend. In this procedure, at each point θ^t in the search, we define a "line" in the direction of the gradient:

$$g(\eta) = \vec{\boldsymbol{\theta}}^t + \eta \nabla f_{\text{obj}}(\boldsymbol{\theta}^t).$$

We now use a *line search* procedure to find the value of η that defines a (local) maximum of

1165

Figure A.2 Illustration of line search with Brent's method. The solid line shows a one-dimensional function. The three points, η_1 , η_2 , and η_3 , bracket the maximum of this function. The dashed line shows the quadratic fit to these three points and the choice of η' proposed by Brent's method.

 $f_{\rm obj}$ along the line; that is, we find:

$$\eta^t = \arg\max_{\eta} g(\eta).$$

We now take an η^t -sized step in the direction of the gradient; that is, we define:

$$\boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t + \eta^t \nabla f_{\text{obj}}(\boldsymbol{\theta}^t).$$

And the process repeats.

There are several methods for performing the line search. The basic idea is to find three points $\eta_1 < \eta_2 < \eta_3$ so that $f_{\rm obj}(g(\eta_2))$ is larger than both $f_{\rm obj}(g(\eta_1))$ and $f_{\rm obj}(g(\eta_3))$. In this case, we know that there is at least one local maximum between η_1 and η_3 , and we say that η_1,η_2 and η_3 bracket a maximum; see figure A.2 for an illustration. Once we have a method for finding a bracket, we can zoom in on the maximum. If we choose a point η' so that $\eta_1 < \eta' < \eta_2$ we can find a new, tighter, bracket. To see this, we consider the two possible cases. If $f_{\rm obj}(g(\eta')) > f_{\rm obj}(g(\eta_2))$, then η_1, η', η_2 bracket a maximum. Alternatively, if $f_{\rm obj}(g(\eta')) \le f_{\rm obj}(g(\eta_2))$, then η', η_2, η_3 bracket a maximum. In both cases, the new bracket is smaller than the original one. Similar reasoning applies if we choose η' between η_2 and η_3 .

The question is how to choose η' . One approach is to perform a binary search and choose $\eta' = (\eta_1 + \eta_3)/2$. This ensures that the size of the new bracket is half of the old one. A faster approach, known as *Brent's method*, fits a quadratic function based on the values of $f_{\rm obj}$ at the three points η_1 , η_2 , and η_3 . We then choose η' to be the maximum point of this quadratic approximation. See figure A.2 for an illustration of this method.

A.5.2.3 Conjugate Gradient Ascent

Line search attempts to maximize the improvement along the direction defined by $\nabla f_{\text{obj}}(\boldsymbol{\theta}^t)$. This approach, however, often has undesired consequences on the convergence of the search. To understand the problem, we start by observing that $\nabla f_{\text{obj}}(\boldsymbol{\theta}^{t+1})$ must be *orthogonal* to

Figure A.3 Two examples of the convergence problem with line search. The solid line shows the progression of gradient ascent with line search. The dashed line shows the progression of the conjugate gradient method: (a) a quadratic function $f_{\rm obj}(x,y)=-(x^2+10y^2)$; (b) its exponential $f_{\rm obj}(x,y)=\exp\{-(x^2+10y^2)\}$. In both cases, the two search procedures start from the same initial point (bottom left of the figure), and diverge after the first line search.

 $abla f_{\mathrm{obj}}(\boldsymbol{\theta}^t)$. To see why, observe that $\boldsymbol{\theta}^{t+1}$ was chosen to be a local maximum along the $abla f_{\mathrm{obj}}(\boldsymbol{\theta}^t)$ direction. Thus, the gradient of f_{obj} at $\boldsymbol{\theta}^{t+1}$ must be 0 in this direction. This implies that the two consecutive gradient vectors are orthogonal. As a consequence, the progress of the gradient ascent will be in a zigzag line. As the procedure approaches a maximum point, the size of each step becomes smaller, and the progress slows down. See figure A.3 for an illustration of this phenomenon.

A possible solution is to "remember" past directions of search and to bias the new direction to be a combination of the gradient at the current point and the direction implied by previous steps. This intuitive idea can be developed into a variety of algorithms. It turns out, however, that one variant of this algorithm can be shown to be optimal for finding the maximum of quadratic functions. Since, by the Taylor expansion, all functions are approximately quadratic in the neighborhood of a maximum, it follows that the final steps of the algorithm will converge to a maximum relatively quickly.

The algorithm, known as *conjugate gradient ascent*, is shown in algorithm A.11. The vector \boldsymbol{h}^t is the "corrected" direction for search. It combines the gradient \boldsymbol{g}^t with the previous direction of search \boldsymbol{h}^{t-1} . The effect of previous search directions on the new one depends on the relative sizes of the gradients.

If our function $f_{\rm obj}$ is a quadratic function, the conjugate gradient ascent procedure is guaranteed to converge in n steps, where n is the dimension of the space. Indeed, in figure A.3a we see that the conjugate method converges in two steps. When the function is not quadratic, conjugate gradient ascent might require more steps, but is still much faster than standard gradient ascent. For example, in figure A.3b, it converges in four steps (the last step is too small to be visible in the figure).

Finallly, we note that gradient ascent is the continuous analogue of the local hill-climbing approaches described in section A.4.2. As such, it is susceptible to the same issues of local maxima and plateaus. The approaches used to address these issues in this setting are similar to those outlined in the discrete case.

conjugate gradient ascent

Algorithm A.11 Conjugate gradient ascent

```
Procedure Conjugate-Gradient-Ascent (
               \theta^{\perp}, // Initial starting point
                             // Function to be optimized
                       // Convergence threshold
1
               t \leftarrow 1
               g^0 \leftarrow 1
2
               \boldsymbol{h}^0 \leftarrow \mathbf{0}
3
4
               do
                  oldsymbol{g}^t \leftarrow 
abla f_{	ext{obj}}(oldsymbol{	heta}^t) \ \gamma^t \leftarrow rac{(oldsymbol{g}^t - oldsymbol{g}^{t-1})^T oldsymbol{g}^t}{(oldsymbol{g}^{t-1})^T oldsymbol{g}^{t-1}}
5
6
7
                    Choose \eta^t by line search along the line \theta_t + \eta h^t
8
                   \boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t + \eta^t \boldsymbol{h}^t
9
                   t \leftarrow \ t+1
10
               while \|oldsymbol{	heta}^t - oldsymbol{	heta}^{t-1}\| > \delta
11
                return (\boldsymbol{\theta}^t)
12
```

A.5.3 Constrained Optimization

In appendix A.5.1, we considered the problem of optimizing a continuous function over its entire domain (see also appendix A.5.2). In many cases, however, we have certain constraints that the desired solution must satisfy. Thus, we have to optimize the function within a constrained space. We now review some basic methods that address this problem of *constrained optimization*.

constrained optimization

Example A.5

Suppose we want to find the maximum entropy distribution over a variable X, with $Val(X) = \{x^1, \ldots, x^K\}$. Consider the entropy of X:

$$H(X) = -\sum_{k=1}^{K} P(x^k) \log P(x^k).$$

We can maximize this function using the gradient method by treating each $P(x^k)$ as a separate parameter θ_k . We compute the gradient of $H_P(X)$ with respect to each of these parameters:

$$\frac{\partial}{\partial \theta_k} H(X) = -\log(\theta_k) - 1.$$

Setting this partial derivative to 0, we get that $\log(\theta_k) = -1$, and thus $\theta_k = 1/2$. This solution seems fine until we realize that the numbers do not sum up to 1, and hence our solution does not define a probability distribution!

The flaw in our analysis is that we want to maximize the entropy subject to a constraint on the parameters, namely, $\sum_k \theta_k = 1$. In addition, we also remember that we need to require that $\theta_k \geq 0$. In this case we see that the gradient drives the solution away from from $0 \ (-\log(\theta_k) \to \infty$ as $\theta_k \to 0$), and thus we do not need to enforce this constraint actively.

1168

equality constraint

Problems of this type appear in many settings, where we are interested in maximizing a function f under a set of *equality constraints*. This problem is posed as follows:

 $\begin{array}{ll} \text{Find} & \theta \\ \text{maximizing} & \textit{f}(\theta) \\ \text{subject to} & \end{array}$

$$c_1(\boldsymbol{\theta}) = 0$$

$$\dots$$

$$c_m(\boldsymbol{\theta}) = 0.$$
(A.5)

Note that any equality constraint (such as the one in our example above) can be rephrased as constraining a function c to 0. Formally, we are interested in the behavior of f in the region of points that satisfies all the constraints

$$\mathcal{C} = \{ \boldsymbol{\theta} : \forall j = 1, \dots, n, c_j(\boldsymbol{\theta}) = 0 \}.$$

To define our goal, remember that we want to find a maxima point within \mathcal{C} . Since \mathcal{C} is a constrained "surface" we need to adopt the basic definition of maxima (and similarly minima, stationary point, etc.) to this situation. We can define local maxima in two ways. The first definition is in term of neighborhood. We define the ϵ -neighborhood of θ in \mathcal{C} to be all the points $\theta' \in \mathcal{C}$ such that $\|\theta - \theta'\|_2 < \epsilon$. We then say that θ is a local maxima in \mathcal{C} if there is an $\epsilon > 0$ such that $f(\theta) > f(\theta')$ for all θ' in its ϵ -neighborhood. An alternative definition that will be easier for the following is in terms of derivatives. Recall that a stationary point (local maximum, local minimum, or a saddle point) of a function if the derivative is 0. In the constraint case we have a similar definition, but we must ensure that the derivatives are ones that do not take us outside the constrained surface. Stated differently, if we consider a derivative in the direction δ , we want to ensure that the constraints remain 0 if we take a small step in direction δ . Formally, this means that the derivative has to be *tangent* to each constraint c_i , that is $\delta^T \nabla c_i(\theta) = 0$.

Lagrange multipliers

A general approach to solving such constrained optimization problems is the method of Lagrange multipliers. We define a new function, called the Lagrangian, of θ and of a new vector of parameters $\lambda = \langle \lambda_1, \dots, \lambda_m \rangle$

$$\mathcal{J}(\boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathbf{f}(\boldsymbol{\theta}) - \sum_{j=1}^{m} \lambda_j c_j(\boldsymbol{\theta}).$$

Theorem A.7

If $\langle \boldsymbol{\theta}, \boldsymbol{\lambda} \rangle$ is a stationary point of the Lagrangian \mathcal{J} , then $\boldsymbol{\theta}$ is a stationary point of \boldsymbol{f} subject to the constraints $c_1(\boldsymbol{\theta}) = 0, \ldots, c_m(\boldsymbol{\theta}) = 0$.

PROOF We briefly outline the proof. A formal proof requires the use of more careful tools from functional analysis.

We start by showing that θ satisfies the constraints. Since $\langle \theta, \lambda \rangle$ is a stationary point of \mathcal{J} , we have that for each j

$$\frac{\partial}{\partial \lambda_j} \mathcal{J}(\boldsymbol{\theta}, \boldsymbol{\lambda}) = -c_j(\boldsymbol{\theta}).$$

Thus, at stationary points of \mathcal{J} , the constraint $c_j(\theta) = 0$ must be satisfied. Now consider $\nabla f(\theta)$. For each component θ_i of θ , we have that

$$0 = \frac{\partial}{\partial \theta_i} \mathcal{J}(\boldsymbol{\theta}, \boldsymbol{\lambda}) = \frac{\partial}{\partial \theta_i} \mathbf{f}(\boldsymbol{\theta}) - \sum_j \lambda_j \frac{\partial}{\partial \theta_i} c_j(\boldsymbol{\theta}).$$

Thus,

$$\nabla f(\theta) = \sum_{j} \lambda_{j} \nabla c_{j}(\theta). \tag{A.6}$$

In other words, the gradient of f is a linear combination of the gradients of c_i .

We now use this property to prove that $\boldsymbol{\theta}$ is a stationary point of \boldsymbol{f} when constrained to region \mathcal{C} . Consider a direction $\boldsymbol{\delta}$ that is tangent to the region \mathcal{C} at $\boldsymbol{\theta}$. As $\boldsymbol{\delta}$ is tangent to \mathcal{C} , we expect that moving infinitesimally in this direction will maintain the constraint that c_j is 0; that is, c_j should not change its value when we move in this direction. More formally, the derivative of c_j in the direction $\boldsymbol{\delta}$ is 0. The derivative of c_j in a direction $\boldsymbol{\delta}$ is $\boldsymbol{\delta}^T \nabla c_j$. Thus, if $\boldsymbol{\delta}$ is tangent to \mathcal{C} , we have

$$\boldsymbol{\delta}^T \nabla c_i(\boldsymbol{\theta}) = 0$$

for all j. Using equation (A.6), we get

$$\boldsymbol{\delta}^T \nabla \boldsymbol{f}(\boldsymbol{\theta}) = \sum_j \lambda_j \boldsymbol{\delta}^T \nabla c_j(\boldsymbol{\theta}) = 0.$$

Thus, the derivative of f in a direction that is tangent to C is 0. This implies that when moving away from θ within the allowed region C the value of f has 0 derivative. Thus, θ is a stationary point of f when restricted to C.

We also have the converse property: If f satisfies some regularity conditions, then for every stationary point of f in C there is a choice of λ so that $\langle \theta, \lambda \rangle$ is a stationary point of \mathcal{J} .

We see that the Lagrangian construction allows us to solve constrained optimization problems using tools for unconstrained optimization. We note that a local maximum of f always corresponds to a stationary point of \mathcal{J} , but this stationary point is not necessarily a local maximum of f. If, however, we restrict attention to nonnegative constraint functions f, then a local maximum of f must correspond to a local maximum of f.

We now consider two examples of using this technique.

Example A.6

Let us return to example A.5. In order to find the maximum entropy distribution over X, we need to solve the Lagrangian

$$\mathcal{J} = -\sum_{k} \theta_k \log \theta_k - \lambda \left(\sum_{k} \theta_k - 1\right).$$

Setting $\nabla \mathcal{J} = 0$ implies the following system of equations:

$$0 = -\log \theta_1 - 1 - \lambda$$

$$\vdots$$

$$0 = -\log \theta_K - 1 - \lambda$$

$$0 = \sum_{k=1}^{\infty} \theta_k - 1.$$

Each of the first K equations can be rewritten as $\theta_k = 2^{-1-\lambda}$. Plugging this term into the last equation, we get that $\lambda = \log(K) - 1$, and thus $P(x^k) = 1/K$. We conclude that we achieve maximum entropy with the uniform distribution.

To see an example with more than one constraint, consider the following problem.

Example A.7

M-projection

Suppose we have a distribution P(X,Y) over two random variables, and we want to find the closest distribution Q(X,Y) in which X is independent of Y. As we discussed in section 8.5, this process is called M-projection (see definition 8.4). Since X and Y are independent in Q, we must have that Q(X,Y) = Q(X)Q(Y). Thus, we are searching for parameters $\theta_x = Q(x)$ and $\theta_y = Q(y)$ for different values $x \in Val(X)$ and $y \in Val(Y)$.

Formally, we want to solve the following problem:

Find $\{\theta_x : x \in Val(X)\}$ and $\{\theta_y : y \in Val(y)\}$ that minimize

$$D(P(X,Y)\|Q(X)Q(Y)) = \sum_{x} \sum_{y} P(x,y) \log \frac{P(x,y)}{\theta_x \theta_y},$$

subject to the constraints

$$0 = \sum_{x} \theta_{x} - 1$$
$$0 = \sum_{y} \theta_{y} - 1.$$

We define the Lagrangian

$$\mathcal{J} = \sum_{x} \sum_{y} P(x, y) \log \frac{P(x, y)}{\theta_x \theta_y} - \lambda_x \left(\sum_{x} \theta_x - 1 \right) - \lambda_y \left(\sum_{y} \theta_y - 1 \right).$$

To simplify the computation of derivatives, we notice that

$$\log \frac{P(x,y)}{\theta_x \theta_y} = \log P(x,y) - \log \theta_x - \log \theta_y.$$

Using this simplification, we can compute the derivative with respect to the probability of a particular value of X, say θ_{x^k} . We note that this parameter appears only when the value of x in the summation equals x^k . Thus,

$$\frac{\partial}{\partial \theta_{x^k}} \mathcal{J} = -\sum_{y} \frac{P(x^k, y)}{\theta_{x^k}} - \lambda_x.$$

Equating this derivative to 0, we get

$$\theta_{x^k} = -\frac{\sum_y P(x^k, y)}{\lambda_x} = -\frac{P(x^k)}{\lambda_x}.$$

To solve for the value of λ_x , we use the first constraint, and get that

$$1 = \sum_{x} \theta_x = -\sum_{x} \frac{P(x)}{\lambda_x}.$$

Thus, we get that $\lambda_x = -\sum_x P(x)$. Thus, we can conclude that $\lambda_x = -1$, and consequently that $\theta_x = P(x)$. An analogous reasoning shows that $\theta_y = P(y)$.

This solution is very natural. The closest distribution to P(X,Y) in which X and Y are independent is Q(X,Y) = P(X)P(Y). This distribution preserves the marginal distributions of both X and Y, but loses all information about their joint behavior.

A.5.4 Convex Duality

convex duality

The concept of *convex duality* plays a central role in optimization theory. We briefly review the main results here for equality-constrained optimization problems with nonnegativity constraints (although the theory extends quite naturally to the case of general inequality constraints).

In appendix A.5.3, we considered an optimization problem of maximizing $f(\theta)$ subject to certain constraints, which we now call the *primal problem*. We showed how to formulate a Lagrangian $\mathcal{J}(\theta, \lambda)$, and proved that if $\langle \theta, \lambda \rangle$ is a stationary point of \mathcal{J} then θ is a stationary point of the objective function f that we are trying to maximize.

We can extend this idea further and define the $\mathit{dual}\ \mathit{function}\ \mathbf{g}(\lambda)$ as

$$g(\lambda) = \sup_{\theta > 0} \mathcal{J}(\theta, \lambda).$$

That is, the dual function $\mathbf{g}(\lambda)$, is the *supremum*, or maximum, over the parameters θ for a given λ . In general, we allow the dual function to take the value ∞ when $\mathcal J$ is unbounded above (which can occur when the primal constraints are unsatisfied), and refer to the points λ at which this happens as *dual infeasible*.

Example A.8

Let us return to example A.6, where our task is to find the distribution P(X) of maximum entropy. Now, however, we also want the distribution to satisfy the constraint that $\mathbb{E}_P[X] = \mu$. Treating each P(X = k) as a separate parameter θ_k , we can write our problem formally as:

Constrained-Entropy:

Find
$$P$$
 maximizing $H_P(X)$ subject to
$$\sum_{k=1}^K k\theta_k = \mu$$

$$\sum_{k=1}^K \theta_k = 1$$

$$\theta_k \geq 0 \qquad \forall k=1,\ldots,K$$
 (A.7)

1172

Lagrange multipliers

Introducing Lagrange multipliers for each of the constraints we can write

$$\mathcal{J}(\boldsymbol{\theta}, \lambda, \nu) = -\sum_{k=1}^{K} \theta_k \log \theta_k - \lambda \left(\sum_{k=1}^{K} k \theta_k - \mu \right) - \nu \left(\sum_{k=1}^{K} \theta_k - 1 \right).$$

Maximizing over θ *for each* $\langle \lambda, \nu \rangle$ *we get the dual function*

$$\begin{split} \mathbf{g}(\lambda,\nu) &= \sup_{\boldsymbol{\theta} \geq 0} \mathcal{J}(\boldsymbol{\theta},\lambda,\nu) \\ &= \lambda \mu + \nu + e^{-\nu - 1} \sum_k e^{-k\lambda}. \end{split}$$

Thus, the convex dual (to be minimized) is $\lambda \mu + \nu + e^{-\nu - 1} \sum_k e^{-k\lambda}$. We can minimize over ν analytically by taking derivatives and setting them equal to zero, giving $\nu = \log \mathbf{g}(\sum_k e^{-k\lambda}) - 1$. Substituting into \mathbf{g} , we arrive at the dual optimization problem

minimize
$$\lambda \mu + \log \left(\sum_{k=1}^K e^{-k\lambda} \right)$$
.

This form of optimization problem is known as a geometric program. The convexity of the objective function can be easily verified by taking second derivatives. Taking the first derivative and setting it to zero provides some insight into the solution to the problem:

$$\frac{\sum_{k=1}^{K} k e^{-k\lambda}}{\sum_{k=1}^{K} e^{-k\lambda}} = \mu,$$

indicating that the solution has $\theta_k \propto \alpha^k$ for some fixed α .

Importantly, as we can see in this example, the dual function is a pointwise maximization over a family of linear functions (of the dual variables). Thus, the dual function is always convex even when the primal objective function \mathbf{f} is not.

One of the most important results in optimization theory is that the dual function gives an upper bound on the optimal value of the optimization problem; that is, for any primal feasible point θ and any dual feasible point λ , we have $\mathbf{g}(\lambda) \geq f_{\text{obj}}(\theta)$. This leads directly to the property of weak duality, which states that the minimum value of the dual function is at least as large as the maximum value of the primal problem; that is,

$$extbf{g}(\lambda^\star) = \inf_{\lambda} extbf{g}(\lambda) \geq extbf{f}(heta^\star).$$

The difference $f(\theta^*) - g(\lambda^*)$ is known as the *duality gap*. Under certain conditions the duality gap is zero, that is, $f(\theta^*) = g(\lambda^*)$, in which case we have *strong duality*. Thus, duality can be used to provide a *certificate* of optimality. That is, if we can show that $g(\lambda) = f(\theta)$ for some value of $\langle \theta, \lambda \rangle$, then we know that $f(\theta)$ is optimal.

The concept of a dual function plays an important role in optimization. In a number of situations, the dual objective function is easier to optimize than the primal. Moreover, there are methods that solve the primal and dual together, using the fact that each bounds the other to improve the search for an optimal solution.

Bibliography

- Abbeel, P., D. Koller, and A. Ng (2006, August). Learning factor graphs in polynomial time & sample complexity. *Journal of Machine Learning Research* 7, 1743–1788.
- Ackley, D., G. Hinton, and T. Sejnowski (1985). A learning algorithm for Boltzmann machines. *Cognitive Science* 9, 147–169.
- Aji, S. M. and R. J. McEliece (2000). The generalized distributive law. *IEEE Trans. Information Theory* 46, 325–343.
- Akaike, H. (1974). A new look at the statistical identification model. *IEEE Transactions on Automatic Control* 19, 716–723.
- Akashi, H. and H. Kumamoto (1977). Random sampling approach to state estimation in switching environments. *Automatica* 13, 429–434.
- Allen, D. and A. Darwiche (2003a). New advances in inference by recursive conditioning. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 2–10.
- Allen, D. and A. Darwiche (2003b). Optimal time-space tradeoff in probabilistic inference. In *Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 969–975.
- Altun, Y., I. Tsochantaridis, and T. Hofmann (2003). Hidden Markov support vector machines. In *Proc. 20th International Conference on Machine Learning (ICML).*
- Andersen, S., K. Olesen, F. Jensen, and F. Jensen (1989). HUGIN—a shell for building Bayesian belief universes for expert systems. In *Proc. 11th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1080–1085.
- Anderson, N. (1974). Information integration theory: A brief survey. In *Contemporary developments in Mathematical Psychology*, Volume 2, pp. 236–305. San Francisco, California: W.H. Freeman and Company.
- Anderson, N. (1976). How functional measurement can yield validated interval scales of mental quantities. *Journal of Applied Psychology 61*(6), 677–692.
- Andreassen, S., F. Jensen, S. Andersen, B. Falck, U. Kjærulff, M. Woldbye, A. R. Sørensen, A. Rosenfalck, and F. Jensen (1989). MUNIN an expert EMG assistant. In J. E. Desmedt (Ed.), Computer-Aided Electromyography and Expert Systems, Chapter 21. Amsterdam: Elsevier Science Publishers.
- Anguelov, D., D. Koller, P. Srinivasan, S. Thrun, H.-C. Pang, and J. Davis (2004). The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In *Proc. 18th Conference on Neural Information Processing Systems (NIPS)*.
- Arnauld, A. and P. Nicole (1662). Port-royal logic.

Arnborg, S. (1985). Efficient algorithms for combinatorial problems on graphs with bounded, decomposability—a survey. *BIT 25*(1), 2–23.

- Arnborg, S., D. Corneil, and A. Proskurowski (1987). Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284.
- Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 21–30.
- Avriel, M. (2003). Nonlinear Programming: Analysis and Methods. Dover Publishing.
- Bacchus, F. and A. Grove (1995). Graphical models for preference and utility. In *Proc. UAI-95*, pp. 3–10.
- Bach, F. and M. Jordan (2001). Thin junction trees. In *Proc. 15th Conference on Neural Information Processing Systems (NIPS)*.
- Balke, A. and J. Pearl (1994a). Counterfactual probabilities: Computational methods, bounds and applications. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 46–54.
- Balke, A. and J. Pearl (1994b). Probabilistic evaluation of counterfactual queries. In *Proc. 10th Conference on Artificial Intelligence (AAAI)*, pp. 230–237.
- Bar-Shalom, Y. (Ed.) (1992). Multitarget multisensor tracking: Advanced applications. Norwood, Massachusetts: Artech House.
- Bar-Shalom, Y. and T. Fortmann (1988). *Tracking and Data Association*. New York: Academic Press.
- Bar-Shalom, Y., X. Li, and T. Kirubarajan (2001). *Estimation with Application to Tracking and Navigation*. John Wiley and Sons.
- Barash, Y. and N. Friedman (2002). Context-specific Bayesian clustering for gene expression data. *Journal of Computational Biology* 9, 169–191.
- Barber, D. and W. Wiegerinck (1998). Tractable variational structures for approximating graphical models. In *Proc. 12th Conference on Neural Information Processing Systems (NIPS)*, pp. 183–189.
- Barbu, A. and S. Zhu (2005). Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. *IEEE Trans. on Pattern Analysis and Machine Intelligence* 27(8), 1239–1253.
- Barnard, S. (1989). Stochastic stero matching over scale. *International Journal of Computer Vision* 3, 17–32.
- Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. Wiley.
- Barron, A., J. Rissanen, and B. Yu (1998). The minimum description length principle in coding and modeling. *IEEE Transactions on Information Theory* 44(6), 2743–2760.
- Bartlett, M. (1935). Contingency table interactions. *Journal of the Royal Statistical Society, Series B 2*, 248–252.
- Bauer, E., D. Koller, and Y. Singer (1997). Update rules for parameter estimation in Bayesian networks. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 3–13.
- Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London* 53, 370–418.
- Beal, M. and Z. Ghahramani (2006). Variational Bayesian learning of directed graphical models with hidden variables. *Bayesian Analysis 1*, 793–832.
- Becker, A., R. Bar-Yehuda, and D. Geiger (1999). Random algorithms for the loop cutset problem. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 49–56.
- Becker, A. and D. Geiger (1994). The loop cutset problem. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 60–68.
- Becker, A. and D. Geiger (2001). A sufficiently fast algorithm for finding close to optimal clique

- trees. Artificial Intelligence 125(1-2), 3-17.
- Becker, A., D. Geiger, and C. Meek (2000). Perfect tree-like Markovian distributions. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 19–23.
- Becker, A., D. Geiger, and A. Schäffer (1998). Automatic selection of loop breakers for genetic linkage analysis. *Human Heredity 48*, 49–60.
- Beeri, C., R. Fagin, D. Maier, and M. Yannakakis (1983). On the desirability of acyclic database schemes. *Journal of the Association for Computing Machinery* 30(3), 479–513.
- Beinlich, L., H. Suermondt, R. Chavez, and G. Cooper (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In *Proceedings of the Second European Conference on Artificial Intelligence in Medicine*, pp. 247–256. Springer Verlag.
- Bell, D. (1982). egret in decision making under uncertainty. Operations Research 30, 961-981.
- Bellman, R. E. (1957). Dynamic Programming. Princeton, New Jersey: Princeton University Press.
- Ben-Tal, A. and A. Charnes (1979). A dual optimization framework for some problems of information theory and statistics. *Problems of Control and Information Theory 8*, 387–401.
- Bentham, J. (1789). An introduction to the principles of morals and legislation.
- Berger, A., S. Della-Pietra, and V. Della-Pietra (1996). A maximum entropy approach to natural language processing. *Computational Linguistics 16*(2).
- Bernardo, J. and A. Smith (1994). Bayesian Theory. New York: John Wiley and Sons.
- Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis (exposition of a new theory on the measurement of risk). English Translation by L. Sommer, *Econometrica*, 22:23–36, 1954.
- Berrou, C., A. Glavieux, and P. Thitimajshima (1993). Near Shannon limit error-correcting coding: Turbo codes. In *Proc. International Conference on Communications*, pp. 1064–1070.
- Bertelé, U. and F. Brioschi (1972). Nonserial Dynamic Programming. New York: Academic Press.
- Bertsekas, D. (1999). Nonlinear Programming (2nd ed.). Athena Scientific.
- Bertsekas, D. P. and J. N. Tsitsiklis (1996). Neuro-Dynamic Programming. Athena Scientific.
- Besag, J. (1977a). Efficiency of pseudo-likelihood estimation for simple Gaussian fields. *Biometrika 64*(3), 616–618.
- Besag, J. (1977b). Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical Society, Series B* 36, 192–236.
- Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion). *Journal of the Royal Statistical Society, Series B* 48, 259–302.
- Bethe, H. A. (1935). Statistical theory of superlattices. *in Proceedings of the Royal Society of London A*, 552.
- Bidyuk, B. and R. Dechter (2007). Cutset sampling for bayesian networks. *Journal of Artificial Intelligence Research* 28, 1–48.
- Bilmes, J. and C. Bartels (2003). On triangulating dynamic graphical models. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Bilmes, J. and C. Bartels (2005, September). Graphical model architectures for speech recognition. *IEEE Signal Processing Magazine 22*(5), 89–100.
- Binder, J., D. Koller, S. Russell, and K. Kanazawa (1997). Adaptive probabilistic networks with hidden variables. *Machine Learning* 29, 213–244.
- Binder, J., K. Murphy, and S. Russell (1997). Space-efficient inference in dynamic probabilistic networks. In *Proc. 15th International Joint Conference on Artificial Intelligence (IJCAI)*.
- Bishop, C. (2006). Pattern Recognition and Machine Learning. Information Science and Statistics

- (M. Jordan, J. Kleinberg, and B. Schökopf, editors). New York: Springer-Verlag.
- Bishop, C., N. Lawrence, T. Jaakkola, and M. Jordan (1997). Approximating posterior distributions in belief networks using mixtures. In *Proc. 11th Conference on Neural Information Processing Systems (NIPS)*.
- Blalock, Jr., H. (1971). Causal Models in the Social Sciences. Chicago, Illinois: Aldine-Atheson.
- Blum, B., C. Shelton, and D. Koller (2006). A continuation method for nash equilibria in structured games. *Journal of Artificial Intelligence Resarch* 25, 457–502.
- Bodlaender, H., A. Koster, F. van den Eijkhof, and L. van der Gaag (2001). Pre-processing for triangulation of probabilistic networks. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 32–39.
- Boros, E. and P. Hammer (2002). Pseudo-Boolean optimization. *Discrete Applied Mathematics* 123(1-3).
- Bouckaert, R. (1993). Probabilistic network construction using the minimum description length principle. In *Proc. European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty*, pp. 41–48.
- Boutilier, C. (2002). A POMDP formulation of preference elicitation problems. In *Proc. 18th Conference on Artificial Intelligence (AAAI)*, pp. 239–46.
- Boutilier, C., F. Bacchus, and R. Brafman (2001). UCP-Networks: A directed graphical representation of conditional utilities. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 56–64.
- Boutilier, C., T. Dean, and S. Hanks (1999). Decision theoretic planning: Structural assumptions and computational leverage. *Journal of Artificial Intelligence Research* 11, 1 94.
- Boutilier, C., R. Dearden, and M. Goldszmidt (1989). Exploiting structure in policy construction. In *Proc. 14th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1104–1111.
- Boutilier, C., R. Dearden, and M. Goldszmidt (2000). Stochastic dynamic programming with factored representations. *Artificial Intelligence 121*(1), 49–107.
- Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller (1996). Context-specific independence in Bayesian networks. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 115–123.
- Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.
- Boyen, X., N. Friedman, and D. Koller (1999). Discovering the hidden structure of complex dynamic systems. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 91–100.
- Boyen, X. and D. Koller (1998a). Approximate learning of dynamic models. In *Proc. 12th Conference on Neural Information Processing Systems (NIPS)*.
- Boyen, X. and D. Koller (1998b). Tractable inference for complex stochastic processes. In *Proc.* 14th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 33–42.
- Boyen, X. and D. Koller (1999). Exploiting the architecture of dynamic systems. In *Proc. 15th Conference on Artificial Intelligence (AAAI)*.
- Boykov, Y., O. Veksler, and R. Zabih (2001). Fast approximate energy minimization via graph cuts. *IEEE Transactions on Pattern Analysis and Machine Intelligence 23*(11), 1222–1239.
- Braziunas, D. and C. Boutilier (2005). Local utility elicitation in GAI models. In *Proc. 21st Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 42–49.
- Breese, J. and D. Heckerman (1996). Decision-theoretic troubleshooting: A framework for repair and experiment. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp.

- 124-132.
- Breese, J., D. Heckerman, and C. Kadie (1998). Empirical analysis of predictive algorithms for collaborative filtering. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 43–52.
- Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). *Classification and Regression Trees*. Monterey,CA: Wadsworth & Brooks.
- Buchanan, B. and E. Shortliffe (Eds.) (1984). Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading, MA: Addison-Wesley.
- Bui, H., S. Venkatesh, and G. West (2001). Tracking and surveillance in wide-area spatial environments using the Abstract Hidden Markov Model. *International Journal of Pattern Recognition and Artificial Intelligence*.
- Buntine, W. (1991). Theory refinement on Bayesian networks. In *Proc. 7th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 52–60.
- Buntine, W. (1993). Learning classification trees. In D. J. Hand (Ed.), *Artificial Intelligence Frontiers in Statistics*, Number III in AI and Statistics. Chapman & Hall.
- Buntine, W. (1994). Operations for learning with graphical models. *Journal of Artificial Intelligence Research* 2, 159–225.
- Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. *IEEE Transactions on Knowledge and Data Engineering 8*, 195–210.
- Caffo, B., W. Jank, and G. Jones (2005). Ascent-based Monte Carlo Expectation-Maximization. *Journal of the Royal Statistical Society, Series B.*
- Cannings, C., E. A. Thompson, and H. H. Skolnick (1976). The recursive derivation of likelihoods on complex pedigrees. *Advances in Applied Probability* 8(4), 622–625.
- Cannings, C., E. A. Thompson, and M. H. Skolnick (1978). Probability functions on complex pedigrees. *Advances in Applied Probability 10*(1), 26–61.
- Cano, J., L.D., Hernández, and S. Moral (2006). Importance sampling algorithms for the propagation of probabilities in belief networks. *International Journal of Approximate Reasoning 15*(1), 77–92.
- Carreira-Perpignan, M. and G. Hinton (2005). On contrastive divergence learning. In *Proc. 11thWorkshop on Artificial Intelligence and Statistics*.
- Casella, G. and R. Berger (1990). Statistical Inference. Wadsworth.
- Castillo, E., J. Gutiérrez, and A. Hadi (1997a). *Expert Systems and Probabilistic Network Models*. New York: Springer-Verlag.
- Castillo, E., J. Gutiérrez, and A. Hadi (1997b). Sensitivity analysis in discrete Bayesian networks. *IEEE Transactions on Systems, Man and Cybernetics 27*, 412–23.
- Chajewska, U. (2002). *Acting Rationally with Incomplete Utility Information*. Ph.D. thesis, Stanford University.
- Chajewska, U. and D. Koller (2000). Utilities as random variables: Density estimation and structure discovery. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 63–71.
- Chajewska, U., D. Koller, and R. Parr (2000). Making rational decisions using adaptive utility elicitation. In *Proc. 16th Conference on Artificial Intelligence (AAAI)*, pp. 363–369.
- Chan, H. and A. Darwiche (2002). When do numbers really matter? *Journal of Artificial Intelligence Research* 17, 265–287.
- Chávez, T. and M. Henrion (1994). Efficient estimation of the value of information in Monte Carlo

- models. In Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 119-127.
- Cheeseman, P., J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman (1988). Autoclass: a Bayesian classification system. In *Proc. 5th International Conference on Machine Learning (ICML)*.
- Cheeseman, P., M. Self, J. Kelly, and J. Stutz (1988). Bayesian classification. In *Proc. 4th Conference on Artificial Intelligence (AAAI)*, Volume 2, pp. 607–611.
- Cheeseman, P. and J. Stutz (1995). Bayesian classification (AutoClass): Theory and results. In *Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95)*. AAAI Press.
- Chen, L., M. Wainwright, M. Cetin, and A. Willsky (2003). Multitarget-multisensor data association using the tree-reweighted max-product algorithm. In *Proceedings SPIE Aerosense Conference*, Orlando, Florida.
- Chen, R. and S. Liu (2000). Mixture Kalman filters. *Journal of the Royal Statistical Society, Series B*. Cheng, J. and M. Druzdzel (2000). AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. *Journal of Artificial Intelligence Research* 13, 155–188.
- Cheng, J., R. Greiner, J. Kelly, D. Bell, and W. Liu (2002). Learning bayesian networks from data: An information-theory based approach. *Artificial Intelligence*.
- Chesley, G. (1978). Subjective probability elicitation techniques: A performance comparison. *Journal of Accounting Research 16*(2), 225–241.
- Chickering, D. (1996a). Learning Bayesian networks is NP-Complete. In D. Fisher and H. Lenz (Eds.), *Learning from Data: Artificial Intelligence and Statistics V*, pp. 121–130. Springer-Verlag.
- Chickering, D. (2002a, February). Learning equivalence classes of Bayesian-network structures. *Journal of Machine Learning Research* 2, 445–498.
- Chickering, D., D. Geiger, and D. Heckerman (1995, January). Learning Bayesian networks: Search methods and experimental results. In *Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics*, pp. 112–128.
- Chickering, D., C. Meek, and D. Heckerman (2003). Large-sample learning of Bayesian networks is hard. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 124–133.
- Chickering, D. and J. Pearl (1997). A clinician's tool for analyzing non-compliance. *Computing Science and Statistics* 29, 424–31.
- Chickering, D. M. (1995). A transformational characterization of equivalent Bayesian network structures. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 87–98.
- Chickering, D. M. (1996b). Learning equivalence classes of Bayesian network structures. In *Proc.* 12th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 150–157.
- Chickering, D. M. (2002b, November). Optimal structure identification with greedy search. *Journal of Machine Learning Research* 3, 507–554.
- Chickering, D. M. and D. Heckerman (1997). Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. *Machine Learning* 29, 181–212.
- Chickering, D. M., D. Heckerman, and C. Meek (1997). A Bayesian approach to learning Bayesian networks with local structure. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 80–89.
- Chow, C. K. and C. N. Liu (1968). Approximating discrete probability distributions with dependence trees. *IEEE Transactions on Information Theory* 14, 462–467.
- Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In *Proc. Conference on Empirical Methods in Natural*

- Language Processing (EMNLP).
- Cooper, G. (1990). Probabilistic inference using belief networks is NP-hard. Artificial Intelligence 42, 393–405.
- Cooper, G. and E. Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data. *Machine Learning* 9, 309–347.
- Cooper, G. and C. Yoo (1999). Causal discovery from a mixture of experimental and observational data. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 116–125.
- Cooper, G. F. (1988). A method for using belief networks as influence diagrams. In *Proceedings* of the Fourth Workshop on Uncertainty in Artificial Intelligence (UAI), pp. 55–63.
- Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001). *Introduction to Algorithms*. Cambridge, Massachusetts: MIT Press. 2nd Edition.
- Covaliu, Z. and R. Oliver (1995). Representation and solution of decision problems using sequential decision diagrams. *Management Science* 41(12), 1860–81.
- Cover, T. M. and J. A. Thomas (1991). Elements of Information Theory. John Wiley & Sons.
- Cowell, R. (2005). Local propagation in conditional gaussian Bayesian networks. *Journal of Machine Learning Research* 6, 1517–1550.
- Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter (1999). *Probabilistic Networks and Expert Systems*. New York: Springer-Verlag.
- Cox, R. (2001). Algebra of Probable Inference. The Johns Hopkins University Press.
- Cozman, F. (2000). Credal networks. Artificial Intelligence 120, 199-233.
- Csiszàr, I. (1975). I-divergence geometry of probability distributions and minimization problems. *The Annals of Probability 3*(1), 146–158.
- Culotta, A., M. Wick, R. Hall, and A. McCallum (2007). First-order probabilistic models for coreference resolution. In *Proc. Conference of the North American Association for Computational Linguistics*.
- D. Rusakov, D. G. (2005). Asymptotic model selection for naive Bayesian networks. *Journal of Machine Learning Research* 6, 1–35.
- Dagum, P. and M. Luby (1993). Appoximating probabilistic inference in Bayesian belief networks in NP-hard. *Artificial Intelligence 60*(1), 141–153.
- Dagum, P. and M. Luby (1997). An optimal approximation algorithm for Baysian inference. *Artificial Intelligence* 93(1–2), 1–27.
- Daneshkhah, A. (2004). Psychological aspects influencing elicitation of subjective probability. Technical report, University of Sheffield.
- Darroch, J. and D. Ratcliff (1972). Generalized iterative scaling for log-linear models. *Annals of Mathematical Statistics* 43, 1470–1480.
- Darwiche, A. (1993). Argument calculus and networks. In *Proc. 9th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 420–27.
- Darwiche, A. (2001a). Constant space reasoning in dynamic Bayesian networks. *International Journal of Approximate Reasoning* 26, 161–178.
- Darwiche, A. (2001b). Recursive conditioning. Artificial Intelligence 125(1-2), 5-41.
- Darwiche, A. (2003). A differential approach to inference in Bayesian networks. *Journal of the ACM 50*(3), 280–305.
- Darwiche, A. and M. Goldszmidt (1994). On the relation between Kappa calculus and probabilistic reasoning. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Dasgupta, S. (1997). The sample complexity of learning fixed-structure Bayesian networks. Ma-

- chine Learning 29, 165-180.
- Dasgupta, S. (1999). Learning polytrees. In Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 134–141.
- Dawid, A. (1979). Conditional independence in statistical theory (with discussion). *Journal of the Royal Statistical Society, Series B 41*, 1–31.
- Dawid, A. (1980). Conditional independence for statistical operations. *Annals of Statistics* 8, 598-617.
- Dawid, A. (1984). Statistical theory: The prequential approach. *Journal of the Royal Statistical Society, Series A 147*(2), 278–292.
- Dawid, A. (1992). Applications of a general propagation algorithm for probabilistic expert system. *Statistics and Computing 2*, 25–36.
- Dawid, A. (2002). Influence diagrams for causal modelling and inference. *International Statistical Review 70*, 161–189. Corrections p437.
- Dawid, A. (2007, September). Fundamentals of statistical causality. Technical Report 279, RSS/EPSRC Graduate Training Programme, University of Sheffield.
- Dawid, A., U. Kjærulff, and S. Lauritzen (1995). Hybrid propagation in junction trees. In *Advances in Intelligent Computing*, Volume 945. Springer-Verlag.
- de Bombal, F., D. Leaper, J. Staniland, A. McCann, and J. Harrocks (1972). Computer-aided diagnosis of acute abdominal pain. *British Medical Journal* 2, 9–13.
- de Finetti, B. (1937). Foresight: Its logical laws, its subjective sources. *Annals Institute H. Poincaré* 7, 1–68. Translated by H. Kyburg in Kyburg et al. (1980).
- de Freitas, N., P. Højen-Sørensen, M. Jordan, and S. Russell (2001). Variational MCMC. In *Proc.* 17th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 120–127.
- Dean, T. and K. Kanazawa (1989). A model for reasoning about persistence and causation. *Computational Intelligence* 5(3), 142–150.
- Dechter, R. (1997). Mini-Buckets: A general scheme for generating approximations in automated reasoning. In *Proc. 15th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1297–1303.
- Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. *Artificial Intelligence* 113(1–2), 41–85.
- Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.
- Dechter, R., K. Kask, and R. Mateescu (2002). Iterative join-graph propagation. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 128–136.
- Dechter, R. and I. Rish (1997). A scheme for approximating probabilistic inference. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- DeGroot, M. H. (1989). Probability and Statistics. Reading, MA: Addison Wesley.
- Della Pietra, S., V. Della Pietra, and J. Lafferty (1997). Inducing features of random fields. *IEEE Trans. on Pattern Analysis and Machine Intelligence* 19(4), 380–393.
- Dellaert, F., S. Seitz, C. Thorpe, and S. Thrun (2003). EM, MCMC, and chain flipping for structure from motion with unknown correspondence. *Machine Learning* 50(1–2), 45–71.
- Deming, W. and F. Stephan (1940). On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. *Annals of Mathematical Statistics 11*, 427–444.
- Dempster, A., N. M. Laird, and D. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B* 39(1), 1–22.
- Deng, K. and A. Moore (1989). Multiresolution instance-based learning. In Proc. 14th International

- Joint Conference on Artificial Intelligence (IJCAI), pp. 1233–1239.
- Deshpande, A., M. Garofalakis, and M. Jordan (2001). Efficient stepwise selection in decomposable models. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 128–135.
- Diez, F. (1993). Parameter adjustment in Bayes networks: The generalized noisy OR-gate. In *Proc.* 9th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 99–105.
- Dittmer, S. L. and F. V. Jensen (1997). Myopic value of information in influence diagrams. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 142–149.
- Doucet, A. (1998). On sequential simulation-based methods for Bayesian filtering. Technical Report CUED/FINFENG/TR 310, Department of Engineering, Cambridge University.
- Doucet, A., N. de Freitas, and N. Gordon (Eds.) (2001). *Sequential Monte Carlo Methods in Practice*. New York: Springer-Verlag.
- Doucet, A., N. de Freitas, K. Murphy, and S. Russell (2000). Rao-Blackwellised particle filtering for dynamic Bayesian networks. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Doucet, A., S. Godsill, and C. Andrieu (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. *Statistics and Computing* 10(3), 197–208.
- Drummond, M., B. O'Brien, G. Stoddart, and G. Torrance (1997). *Methods for the Economic Evaluation of Health Care Programmes, 2nd Edition.* Oxford, UK: Oxford University Press.
- Druzdzel, M. (1993). *Probabilistic Reasoning in Decision Support Systems: From Computation to Common Sense*. Ph.D. thesis, Carnegie Mellon University.
- Dubois, D. and H. Prade (1990). Inference i possibilistic hypergraphs. In *Proc. of the 6th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems*.
- Duchi, J., D. Tarlow, G. Elidan, and D. Koller (2006). Using combinatorial optimization within max-product belief propagation. In *Proc. 20th Conference on Neural Information Processing Systems (NIPS)*.
- Duda, R., J. Gaschnig, and P. Hart (1979). Model design in the PROSPECTOR consultant system for mineral exploration. In D. Michie (Ed.), *Expert Systems in the Microelectronic Age*, pp. 153–167. Edinburgh, Scotland: Edinburgh University Press.
- Duda, R. and P. Hart (1973). Pattern Classification and Scene Analysis. New York: John Wiley & Sons.
- Duda, R., P. Hart, and D. Stork (2000). Pattern Classification, Second Edition. Wiley.
- Dudík, M., S. Phillips, and R. Schapire (2004). Performance guarantees for regularized maximum entropy density estimation. In *Proc. Conference on Computational Learning Theory (COLT)*.
- Durbin, R., S. Eddy, A. Krogh, and G. Mitchison (1998). *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids*. Cambridge: Cambridge University Press.
- Dykstra, R. and J. Lemke (1988). Duality of I projections and maximum likelihood estimation for log-linear models under cone constraints. *Journal of the American Statistical Association 83*(402), 546–554.
- El-Hay, T. and N. Friedman (2001). Incorporating expressive graphical models in variational approximations: Chain-graphs and hidden variables. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 136–143.
- Elfadel, I. (1995). Convex potentials and their conjugates in analog mean-field optimization. *Neural Computation* 7, 1079–1104.
- Elidan, G. and N. Friedman (2005). Learning hidden variable networks: The information bottleneck approach. *Journal of Machine Learning Research* 6, 81–127.

Elidan, G., I. McGraw, and D. Koller (2006). Residual belief propagation: Informed scheduling for asynchronous message passing. In *Proc. 22nd Conf. on Uncertainty in Artificial Intelligence*.

- Elidan, G., N. Lotner, N. Friedman, and D. Koller (2000). Discovering hidden variables: A structure-based approach. In *Proc. 14th Conf. on Neural Information Processing Systems (NIPS)*.
- Elidan, G., I. Nachman, and N. Friedman (2007). "Ideal Parent" structure learning for continuous variable networks. *Journal of Machine Learning Research* 8, 1799–1833.
- Elidan, G., M. Ninio, N. Friedman, and D. Schuurmans (2002). Data perturbation for escaping local maxima in learning. In *Proc. 18th National Conference on Artificial Intelligence (AAAI)*.
- Ellis, B. and W. Wong (2008). Learning causal Bayesian network structures from experimental data. *Journal of the American Statistical Association* 103, 778–789.
- Elston, R. C. and J. Stewart (1971). A general model for the analysis of pedigree data. *Human Heredity* 21, 523–542.
- Ezawa, K. (1994). Value of evidence on influence diagrams. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 212–220.
- Feller, W. (1970). *An Introduction to Probability Theory and Its Applications* (third ed.), Volume I. New York: John Wiley & Sons.
- Felzenszwalb, P. and D. Huttenlocher (2006, October). Efficient belief propagation for early vision. *International Journal of Computer Vision 70*(1).
- Fertig, K. and J. Breese (1989). Interval influence diagrams. In *Proc. 5th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Fine, S., Y. Singer, and N. Tishby (1998). The hierarchical Hidden Markov Model: Analysis and applications. *Machine Learning* 32, 41–62.
- Fishburn, P. (1967). Interdependence and additivity in multivariate, unidimensional expected utility theory. *International Economic Review 8*, 335–42.
- Fishburn, P. (1970). Utility Theory for Decision Making. New York: Wiley.
- Fishelson, M. and D. Geiger (2003). Optimizing exact genetic linkage computations. In *Proc. International Conf. on Research in Computational Molecular Biology (RECOMB)*, pp. 114–121.
- Fishman, G. (1976, July). Sampling from the gamma distribution on a computer. *Communications of the ACM* 19(7), 407–409.
- Fishman, G. (1996). *Monte Carlo Concept, Algorithms, and Applications*. Series in Operations Research. Springer.
- Fox, D., W. Burgard, and S. Thrun (1999). Markov localization for mobile robots in dynamic environments. *Journal of Artificial Intelligence Research 11*, 391–427.
- Freund, Y. and R. Schapire (1998). Large margin classification using the perceptron algorithm. In *Proc. Conference on Computational Learning Theory (COLT)*.
- Frey, B. (2003). Extending factor graphs so as to unify directed and undirected graphical models. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 257–264.
- Frey, B. and A. Kannan (2000). Accumulator networks: suitors of local probability propagation. In *Proc. 14th Conference on Neural Information Processing Systems (NIPS)*.
- Frey, B. and D. MacKay (1997). A revolution: Belief propagation in graphs with cycles. In *Proc.* 11th Conference on Neural Information Processing Systems (NIPS).
- Frey, B. J. (1998). *Graphical Models for Machine Learning and Digital Communication*. Cambridge, Massachusetts: MIT Press.
- Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden variables. In *Proc. 14th International Conference on Machine Learning (ICML)*, pp. 125–133.

Friedman, N. (1998). The Bayesian structural em algorithm. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 129–138.

- Friedman, N., D. Geiger, and M. Goldszmidt (1997). Bayesian network classifiers. *Machine Learning* 29, 131–163.
- Friedman, N., D. Geiger, and N. Lotner (2000). Likelihood computations using value abstraction. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Friedman, N., L. Getoor, D. Koller, and A. Pfeffer (1999). Learning probabilistic relational models. In *Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1300–1307.
- Friedman, N. and M. Goldszmidt (1996). Learning Bayesian networks with local structure. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 252–262.
- Friedman, N. and M. Goldszmidt (1998). Learning Bayesian networks with local structure. See Jordan (1998), pp. 421–460.
- Friedman, N. and D. Koller (2003). Being Bayesian about Bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks. *Machine Learning* 50(1–2), 95–126.
- Friedman, N., K. Murphy, and S. Russell (1998). Learning the structure of dynamic probabilistic networks. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Friedman, N. and I. Nachman (2000). Gaussian process networks. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 211–219.
- Friedman, N. and Z. Yakhini (1996). On the sample complexity of learning Bayesian networks. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Frogner, C. and A. Pfeffer (2007). Discovering weakly-interacting factors in a complex stochastic process. In *Proc. 21st Conference on Neural Information Processing Systems (NIPS)*.
- Frydenberg, J. (1990). The chain graph Markov property. Scandinavian Journal of Statistics 17, 790–805.
- Fudenberg, D. and J. Tirole (1991). Game Theory. MIT Press.
- Fung, R. and K. C. Chang (1989). Weighting and integrating evidence for stochastic simulation in Bayesian networks. In *Proc. 5th Conference on Uncertainty in Artificial Intelligence (UAI)*, San Mateo, California. Morgan Kaufmann.
- Fung, R. and B. del Favero (1994). Backward simulation in Bayesian networks. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 227–234.
- Galles, D. and J. Pearl (1995). Testing identifiability of causal models. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 185–95.
- Gamerman, D. and H. Lopes (2006). *Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference*. Chapman & Hall, CRC.
- Ganapathi, V., D. Vickrey, J. Duchi, and D. Koller (2008). Constrained approximate maximum entropy learning. In *Proc. 24th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Garcia, L. D. (2004). Algebraic statistics in model selection. In *Proc. 20th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 177–18.
- Geiger, D. and D. Heckerman. A characterization of the bivariate normal-Wishart distribution. *Probability and Mathematical Statistics 18*, 119–131.
- Geiger, D. and D. Heckerman (1994). Learning gaussian networks. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 235–243.
- Geiger, D. and D. Heckerman (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. *Artificial Intelligence 82*(1-2), 45–74.
- Geiger, D., D. Heckerman, H. King, and C. Meek (2001). Stratified exponential families: Graphical

- models and model selection. Annals of Statistics 29, 505-529.
- Geiger, D., D. Heckerman, and C. Meek (1996). Asymptotic model selection for directed networks with hidden variables. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 283–290.
- Geiger, D. and C. Meek (1998). Graphical models and exponential families. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 156–165.
- Geiger, D., C. Meek, and Y. Wexler (2006). A variational inference procedure allowing internal structure for overlapping clusters and deterministic constraints. *Journal of Artificial Intelligence Research* 27, 1–23.
- Geiger, D. and J. Pearl (1988). On the logic of causal models. In *Proc. 4th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 3–14.
- Geiger, D. and J. Pearl (1993). Logical and algorithmic properties of conditional independence and graphical models. *Annals of Statistics 21*(4), 2001–21.
- Geiger, D., T. Verma, and J. Pearl (1989). d-separation: From theorems to algorithms. In *Proc. 5th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 139–148.
- Geiger, D., T. Verma, and J. Pearl (1990). Identifying independence in Bayesian networks. Networks 20, 507–534.
- Gelfand, A. and A. Smith (1990). Sampling based approaches to calculating marginal densities. *Journal of the American Statistical Association 85*, 398–409.
- Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995). *Bayesian Data Analysis*. London: Chapman & Hall.
- Gelman, A. and X.-L. Meng (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. *Statistical Science 13*(2), 163–185.
- Gelman, A. and D. Rubin (1992). Inference from iterative simulation using multiple sequences. *Statistical Science* 7, 457–511.
- Geman, S. and D. Geman (1984, November). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. *IEEE Trans. on Pattern Analysis and Machine Intelligence* 6(6), 721–741.
- Getoor, L., N. Friedman, D. Koller, A. Pfeffer, and B. Taskar (2007). Probabilistic relational models. See Getoor and Taskar (2007).
- Getoor, L., N. Friedman, D. Koller, and B. Taskar (2002). Learning probabilistic models of link structure. *Journal of Machine Learning Research* 3(December), 679–707.
- Getoor, L. and B. Taskar (Eds.) (2007). Introduction to Statistical Relational Learning. MIT Press.
- Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. *Econometrica* 57, 1317–1339.
- Geyer, C. and E. Thompson (1992). Constrained Monte Carlo maximum likelihood for dependent data. *Journal of the Royal Statistical Society, Series B*.
- Geyer, C. and E. Thompson (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. *Journal of the American Statistical Association* 90(431), 909–920.
- Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In *Computing Science and Statistics: Proceedings of 23rd Symposium on the Interface Interface Foundation*, pp. 156–163. Fairfax Station.
- Ghahramani, Z. (1994). Factorial learning and the em algorithm. In *Proc. 8th Conference on Neural Information Processing Systems (NIPS)*, pp. 617–624.
- Ghahramani, Z. and M. Beal (2000). Propagation algorithms for variational Bayesian learning. In

- Proc. 14th Conference on Neural Information Processing Systems (NIPS).
- Ghahramani, Z. and G. Hinton (1998). Variational learning for switching state-space models. *Neural Computation 12*(4), 963–996.
- Ghahramani, Z. and M. Jordan (1993). Supervised learning from incomplete data via an EM approach. In *Proc. 7th Conference on Neural Information Processing Systems (NIPS)*.
- Ghahramani, Z. and M. Jordan (1997). Factorial hidden Markov models. *Machine Learning 29*, 245–273.
- Gibbs, J. (1902). *Elementary Principles of Statistical Mechanics*. New Haven, Connecticut: Yale University Press.
- Gidas, B. (1988). Consistency of maximum likelihood and pseudo-likelihood estimators for Gibbsian distributions. In W. Fleming and P.-L. Lions (Eds.), *Stochastic differential systems*, *stochastic control theory and applications*. Springer, New York.
- Gilks, W. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. In J. Bernardo, J. Berger, A. Dawid, and A. Smith (Eds.), *Bayesian Statistics 4*, pp. 641–649. Oxford, UK: Clarendon Press.
- Gilks, W., N. Best, and K. Tan (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. *Annals of Statistics* 44, 455–472.
- Gilks, W., S. Richardson, and D. Spiegelhalter (Eds.) (1996). *Markov Chain Monte Carlo in Practice*. Chapman & Hall, London.
- Gilks, W., A. Thomas, and D. Spiegelhalter (1994). A language and program for complex Bayesian modeling. *The Statistician* 43, 169–177.
- Gilks, W. and P. Wild (1992). Adaptive rejection sampling for Gibbs sampling. *Annals of Statistics 41*, 337–348.
- Giudici, P. and P. Green (1999, December). Decomposable graphical Gaussian model determination. *Biometrika* 86(4), 785–801.
- Globerson, A. and T. Jaakkola (2007a). Convergent propagation algorithms via oriented trees. In *Proc. 23rd Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Globerson, A. and T. Jaakkola (2007b). Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. In Proc. 21st Conference on Neural Information Processing Systems (NIPS).
- Glover, F. and M. Laguna (1993). Tabu search. In C. Reeves (Ed.), *Modern Heuristic Techniques for Combinatorial Problems*, Oxford, England. Blackwell Scientific Publishing.
- Glymour, C. and G. F. Cooper (Eds.) (1999). *Computation, Causation, Discovery*. Cambridge: MIT Press.
- Godsill, S., A. Doucet, and M. West (2000). Methodology for Monte Carlo smoothing with application to time-varying autoregressions. In *Proc. International Symposium on Frontiers of Time Series Modelling*.
- Golumbic, M. (1980). Algorithmic Graph Theory and Perfect Graphs. London: Academic Press.
- Good, I. (1950). Probability and the Weighing of Evidence. London: Griffin.
- Goodman, J. (2004). Exponential priors for maximum entropy models. In *Proc. Conference of the North American Association for Computational Linguistics*.
- Goodman, L. (1970). The multivariate analysis of qualitative data: Interaction among multiple classification. *Journal of the American Statistical Association* 65, 226–56.
- Gordon, N., D. Salmond, and A. Smith (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *IEE Proceedings-F* 140(2), 107–113.

Gorry, G. and G. Barnett (1968). Experience with a model of sequential diagnosis. *Computers and Biomedical Research* 1, 490–507.

- Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika 82*, 711–732.
- Green, P. J. (1990). On use of the EM algorithm for penalized likelihood estimation. *Journal of the Royal Statistical Society, Series B* 52(3), 443–452.
- Greig, D., B. Porteous, and A. Seheult (1989). Exact maximum a posteriori estimation for binary images. *Journal of the Royal Statistical Society, Series B* 51(2), 271–279.
- Greiner, R. and W. Zhou (2002). Structural extension to logistic regression: Discriminant parameter learning of belief net classifiers. In *Proc. 18th Conference on Artificial Intelligence (AAAI)*.
- Guestrin, C. E., D. Koller, R. Parr, and S. Venkataraman (2003). Efficient solution algorithms for factored MDPs. *Journal of Artificial Intelligence Research* 19, 399–468.
- Guyon, X. and H. R. Künsch (1992). Asymptotic comparison of estimators in the Ising model. In *Stochastic Models, Statistical Methods, and Algorithms in Image Analysis, Lecture Notes in Statistics*, Volume 74, pp. 177–198. Springer, Berlin.
- Ha, V. and P. Haddawy (1997). Problem-focused incremental elicitation of multi-attribute utility models. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 215–222.
- Ha, V. and P. Haddawy (1999). A hybrid approach to reasoning with partially elicited preference models. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 263–270.
- Haberman, S. (1974). *The General Log-Linear Model*. Ph.D. thesis, Department of Statistics, University of Chicago.
- Halpern, J. Y. (2003). Reasoning about Uncertainty. MIT Press.
- Hammer, P. (1965). Some network flow problems solved with pseudo-Boolean programming. *Operations Research 13*, 388–399.
- Hammersley, J. and P. Clifford (1971). Markov fields on finite graphs and lattices. Unpublished manuscript.
- Handschin, J. and D. Mayne (1969). Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. *International Journal of Control 9*(5), 547–559.
- Hartemink, A., D. Gifford, T. Jaakkola, and R. Young (2002, March/April). Bayesian methods for elucidating genetic regulatory networks. *IEEE Intelligent Systems* 17, 37–43. special issue on Intelligent Systems in Biology.
- Hastie, T., R. Tibshirani, and J. Friedman (2001). *The Elements of Statistical Learning*. Springer Series in Statistics.
- Hazan, T. and A. Shashua (2008). Convergent message-passing algorithms for inference over general graphs with convex free energies. In *Proc. 24th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Heckerman, D. (1990). Probabilistic Similarity Networks. MIT Press.
- Heckerman, D. (1993). Causal independence for knowledge acquisition and inference. In *Proc.* 9th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 122–127.
- Heckerman, D. (1998). A tutorial on learning with Bayesian networks. See Jordan (1998).
- Heckerman, D. and J. Breese (1996). Causal independence for probability assessment and inference using Bayesian networks. *IEEE Transactions on Systems, Man, and Cybernetics* 26, 826–831
- Heckerman, D., J. Breese, and K. Rommelse (1995, March). Decision-theoretic troubleshooting.

- Communications of the ACM 38(3), 49–57.
- Heckerman, D., D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie (2000). Dependency networks for inference, collaborative filtering, and data visualization. *jmlr 1*, 49–75.
- Heckerman, D. and D. Geiger (1995). Learning Bayesian networks: a unification for discrete and Gaussian domains. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 274–284.
- Heckerman, D., D. Geiger, and D. M. Chickering (1995). Learning Bayesian networks: The combination of knowledge and statistical data. *Machine Learning* 20, 197–243.
- Heckerman, D., E. Horvitz, and B. Nathwani (1992). Toward normative expert systems: Part I. The Pathfinder project. *Methods of Information in Medicine 31*, 90–105.
- Heckerman, D. and H. Jimison (1989). A Bayesian perspective on confidence. In *Proc. 5th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 149–160.
- Heckerman, D., A. Mamdani, and M. Wellman (1995). Real-world applications of Bayesian networks. *Communications of the ACM 38*.
- Heckerman, D. and C. Meek (1997). Embedded Bayesian network classifiers. Technical Report MSR-TR-97-06, Microsoft Research, Redmond, WA.
- Heckerman, D., C. Meek, and G. Cooper (1999). A Bayesian approach to causal discovery. See Glymour and Cooper (1999), pp. 141–166.
- Heckerman, D., C. Meek, and D. Koller (2007). Probabilistic entity-relationship models, PRMs, and plate models. See Getoor and Taskar (2007).
- Heckerman, D. and B. Nathwani (1992a). An evaluation of the diagnostic accuracy of Pathfinder. *Computers and Biomedical Research 25(1)*, 56–74.
- Heckerman, D. and B. Nathwani (1992b). Toward normative expert systems. II. Probability-based representations for efficient knowledge acquisition and inference. *Methods of Information in Medicine 31*, 106–16.
- Heckerman, D. and R. Shachter (1994). A decision-based view of causality. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 302–310. Morgan Kaufmann.
- Henrion, M. (1986). Propagation of uncertainty in Bayesian networks by probabilistic logic sampling. In *Proc. 2nd Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 149–163.
- Henrion, M. (1991). Search-based algorithms to bound diagnostic probabilities in very large belief networks. In *Proc. 7th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 142–150.
- Hernández, L. and S. Moral (1997). Mixing exact and importance sampling propagation algorithms in dependence graphs. *International Journal of Intelligent Systems 12*, 553–576.
- Heskes, T. (2002). Stable fixed points of loopy belief propagation are minima of the Bethe free energy. In *Proc. 16th Conference on Neural Information Processing Systems (NIPS)*, pp. 359–366.
- Heskes, T. (2004). On the uniqueness of loopy belief propagation fixed points. *Neural Computation 16*, 2379–2413.
- Heskes, T. (2006). Convexity arguments for efficient minimization of the Bethe and Kikuchi free energies. *Journal of Machine Learning Research* 26, 153–190.
- Heskes, T., K. Albers, and B. Kappen (2003). Approximate inference and constrained optimization. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 313–320.
- Heskes, T., M. Opper, W. Wiegerinck, O. Winther, and O. Zoeter (2005). Approximate inference techniques with expectation constraints. *Journal of Statistical Mechanics: Theory and Experiment.*
- Heskes, T. and O. Zoeter (2002). Expectation propagation for approximate inference in dynamic

- Bayesian networks. In Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI).
- Heskes, T. and O. Zoeter (2003). Generalized belief propagation for approximate inference in hybrid Bayesian networks. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics.
- Heskes, T., O. Zoeter, and W. Wiegerinck (2003). Approximate expectation maximization. In *Proc.* 17th Conference on Neural Information Processing Systems (NIPS), pp. 353–360.
- Higdon, D. M. (1998). Auxiliary variable methods for Markov chain Monte Carlo with applications. *Journal of the American Statistical Association* 93, 585–595.
- Hinton, G. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation 14, 1771–1800.
- Hinton, G., S. Osindero, and Y. Teh (2006). A fast learning algorithm for deep belief nets. *Neural Computation 18*, 1527–1554.
- Hinton, G. and R. Salakhutdinov (2006). Reducing the dimensionality of data with neural networks. *Science* 313, 504–507.
- Hinton, G. and T. Sejnowski (1983). Optimal perceptual inference. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 448–453.
- Hinton, G. E., P. Dayan, B. Frey, and R. M. Neal (1995). The wake-sleep algorithm for unsupervised neural networks. *Science 268*, 1158–1161.
- Höffgen, K. (1993). Learning and robust learning of product distributions. In *Proc. Conference on Computational Learning Theory (COLT)*, pp. 77–83.
- Hofmann, R. and V. Tresp (1995). Discovering structure in continuous variables using bayesian networks. In *Proc. 9th Conference on Neural Information Processing Systems (NIPS)*.
- Horn, G. and R. McEliece (1997). Belief propagation in loopy bayesian networks: experimental results. In *Proceedings if IEEE International Symposium on Information Theory*, pp. 232.
- Horvitz, E. and M. Barry (1995). Display of information for time-critical decision making. In *Proc.* 11th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 296–305.
- Horvitz, E., J. Breese, and M. Henrion (1988). Decision theory in expert systems and artificial intelligence. *International Journal of Approximate Reasoning 2*, 247–302. Special Issue on Uncertainty in Artificial Intelligence.
- Horvitz, E., H. Suermondt, and G. Cooper (1989). Bounded conditioning: Flexible inference for decisions under scarce resources. In *Proc. 5th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 182–193.
- Howard, R. (1970). Decision analysis: Perspectives on inference, decision, and experimentation. *Proceedings of the IEEE 58*, 632–643.
- Howard, R. (1977). Risk preference. In R. Howard and J. Matheson (Eds.), *Readings in Decision Analysis*, pp. 429–465. Menlo Park, California: Decision Analysis Group, SRI International.
- Howard, R. and J. Matheson (1984a). Influence diagrams. See Howard and Matheson (1984b), pp. 721–762.
- Howard, R. and J. Matheson (Eds.) (1984b). *The Principle and Applications of Decision Analysis*. Menlo Park, CA, USA: Strategic Decisions Group.
- Howard, R. A. (1966). Information value theory. IEEE Transactions on Systems Science and Cybernetics SSC-2, 22–26.
- Howard, R. A. (1989). Microrisks for medical decision analysis. *International Journal of Technology Assessment in Health Care* 5, 357–370.
- Huang, C. and A. Darwiche (1996). Inference in belief networks: A procedural guide. International

- Journal of Approximate Reasoning 15(3), 225–263.
- Huang, F. and Y. Ogata (2002). Generalized pseudo-likelihood estimates for Markov random fields on lattice. *Annals of the Institute of Statistical Mathematics* 54, 1–18.
- Ihler, A. (2007). Accuracy bounds for belief propagation. In *Proc. 23rd Conference on Uncertainty* in Artificial Intelligence (UAI).
- Ihler, A. T., J. W. Fisher, and A. S. Willsky (2003). Message errors in belief propagation. In *Proc.* 17th Conference on Neural Information Processing Systems (NIPS).
- Ihler, A. T., J. W. Fisher, and A. S. Willsky (2005). Loopy belief propagation: Convergence and effects of message errors. *Journal of Machine Learning Research* 6, 905–936.
- Imoto, S., S. Kim, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano (2003). Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. *Journal of Bioinformatics and Computational Biology* 1, 231–252.
- Indyk, P. (2004). Nearest neighbors in high-dimensional spaces. In J. Goodman and J. O'Rourke (Eds.), *Handbook of Discrete and Computational Geometry* (2nd ed.). CRC Press.
- Isard, M. (2003). PAMPAS: Real-valued graphical models for computer vision. In *Proc. Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 613–620.
- Isard, M. and A. Blake (1998a). Condensation conditional density propagation for visual tracking. *International Journal of Computer Vision* 29(1), 5–28.
- Isard, M. and A. Blake (1998b). A smoothing filter for condensation. In *Proc. European Conference on Computer Vision (ECCV)*, Volume 1, pp. 767–781.
- Isham, V. (1981). An introduction to spatial point processes and Markov random fields. *International Statistical Review 49*, 21-43.
- Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors. *IEEE Trans.* on Pattern Analysis and Machine Intelligence 25(10), 1333–1336.
- Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253-258.
- Jaakkola, T. (2001). Tutorial on variational approximation methods. In M. Opper and D. Saad (Eds.), *Advanced mean field methods*, pp. 129–160. Cambridge, Massachusetts: MIT Press.
- Jaakkola, T. and M. Jordan (1996a). Computing upper and lower bounds on likelihoods in intractable networks. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 340–348.
- Jaakkola, T. and M. Jordan (1996b). Recursive algorithms for approximating probabilities in graphical models. In *Proc. 10th Conference on Neural Information Processing Systems (NIPS)*, pp. 487–93.
- Jaakkola, T. and M. Jordan (1997). A variational approach to bayesian logistic regression models and their extensions. In *Proc. 6thWorkshop on Artificial Intelligence and Statistics*.
- Jaakkola, T. and M. Jordan (1998). Improving the mean field approximation via the use of mixture models. See Jordan (1998).
- Jaakkola, T. and M. Jordan (1999). Variational probabilistic inference and the QMR-DT network. Journal of Artificial Intelligence Research 10, 291–322.
- Jarzynski, C. (1997, Apr). Nonequilibrium equality for free energy differences. Physical Review Letters 78(14), 2690–2693.
- Jaynes, E. (2003). Probability Theory: The Logic of Science. Cambridge University Press.
- Jensen, F., F. V. Jensen, and S. L. Dittmer (1994). From influence diagrams to junction trees. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 367–73.
- Jensen, F. and M. Vomlelová (2003). Unconstrained influence diagrams. In Proc. 19th Conference

- on Uncertainty in Artificial Intelligence (UAI), pp. 234–41.
- Jensen, F. V. (1995). Cautious propagation in Bayesian networks. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 323–328.
- Jensen, F. V. (1996). An introduction to Bayesian Networks. London: University College London Press.
- Jensen, F. V., K. G. Olesen, and S. K. Andersen (1990, August). An algebra of Bayesian belief universes for knowledge-based systems. *Networks* 20(5), 637–659.
- Jerrum, M. and A. Sinclair (1997). The Markov chain Monte Carlo method. In D. Hochbaum (Ed.), *Approximation Algorithms for NP-hard Problems*. Boston: PWS Publishing.
- Ji, C. and L. Seymour (1996). A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood. *Annals of Applied Probability*.
- Jimison, H., L. Fagan, R. Shachter, and E. Shortliffe (1992). Patient-specific explanation in models of chronic disease. *AI in Medicine 4*, 191–205.
- Jordan, M., Z. Ghahramani, T. Jaakkola, and L. K. Saul (1998). An introduction to variational approximations methods for graphical models. See Jordan (1998).
- Jordan, M. I. (Ed.) (1998). Learning in Graphics Models. Cambridge, MA: The MIT Press.
- Julier, S. (2002). The scaled unscented transformation. In *Proceedings of the American Control Conference*, Volume 6, pp. 4555–4559.
- Julier, S. and J. Uhlmann (1997). A new extension of the Kalman filter to nonlinear systems. In *Proc. of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Simulation and Controls.*
- Kahneman, D., P. Slovic, and A. Tversky (Eds.) (1982). *Judgment under Uncertainty: Heuristics and Biases*. Cambridge: Cambridge University Press.
- Kalman, R. and R. Bucy (1961). New results in linear filtering and prediction theory. *Trans. ASME, Series D, Journal of Basic Engineering*.
- Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. *Transactions of the ASME–Journal of Basic Engineering 82*(Series D), 35–45.
- Kanazawa, K., D. Koller, and S. Russell (1995). Stochastic simulation algorithms for dynamic probabilistic networks. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 346–351.
- Kass, R. and A. Raftery (1995). Bayes factors. *Journal of the American Statistical Association* 90(430), 773–795.
- Kearns, M., M. L. Littman, and S. Singh (2001). Graphical models for game theory. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 253–260.
- Kearns, M. and Y. Mansour (1998). Exact inference of hidden structure from sample data in noisy-or networks. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 304–31.
- Kearns, M., Y. Mansour, and A. Ng (1997). An information-theoretic analysis of hard and soft assignment methods for clustering. In *Proc. 13th Conference on Uncertainty in Artificial Intelli*gence (UAI), pp. 282–293.
- Keeney, R. L. and H. Raiffa (1976). *Decisions with Multiple Objectives: Preferences and Value Tradeoffs.* John Wiley & Sons, Inc.
- Kersting, K. and L. De Raedt (2007). Bayesian logic programming: Theory and tool. See Getoor and Taskar (2007).
- Kikuchi, R. (1951). A theory of cooperative phenomena. Physical Review Letters 81, 988-1003.

Kim, C.-J. and C. Nelson (1998). State-Space Models with Regime-Switching: Classical and Gibbs-Sampling Approaches with Applications. MIT Press.

- Kim, J. and J. Pearl (1983). A computational model for combined causal and diagnostic reasoning in inference systems. In *Proc. 7th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 190–193.
- Kirkpatrick, S., C. Gelatt, and M. Vecchi (1983). Optimization by simulated annealing. Science 220, 671–680.
- Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. *Journal of Computational and Graphical Statistics* 5(1), 1–25.
- Kjærulff, U. (1990, March). Triangulation of graph Algorithms giving small total state space. Technical Report R90-09, Aalborg University, Denmark.
- Kjærulff, U. (1992). A computational scheme for reasoning in dynamic probabilistic networks. In *Proc. 8th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 121–129.
- Kjærulff, U. (1995a). dHugin: A computational system for dynamic time-sliced Bayesian networks. *International Journal of Forecasting 11*, 89–111.
- Kjærulff, U. (1995b). HUGS: Combining exact inference and Gibbs sampling in junction trees. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 368–375.
- Kjaerulff, U. (1997). Nested junction trees. In Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 294–301.
- Kjærulff, U. and L. van der Gaag (2000). Making sensitivity analysis computationally efficient. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 317–325.
- Koivisto, M. and K. Sood (2004). Exact Bayesian structure discovery in Bayesian networks. *Journal of Machine Learning Research* 5, 549–573.
- Kok, J., M. Spaan, and N. Vlassis (2003). Multi-robot decision making using coordination graphs. In *Proc. International Conference on Advanced Robotics (ICAR)*, pp. 1124–1129.
- Kok, J. and N. Vlassis (2005). Using the max-plus algorithm for multiagent decision making in coordination graphs. In *RoboCup-2005: Robot Soccer World Cup IX*, Osaka, Japan.
- Koller, D. and R. Fratkina (1998). Using learning for approximation in stochastic processes. In *Proc. 15th International Conference on Machine Learning (ICML)*, pp. 287–295.
- Koller, D., U. Lerner, and D. Anguelov (1999). A general algorithm for approximate inference and its application to hybrid Bayes nets. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 324–333.
- Koller, D. and B. Milch (2001). Multi-agent influence diagrams for representing and solving games. In *Proc. 17th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1027–1034.
- Koller, D. and B. Milch (2003). Multi-agent influence diagrams for representing and solving games. *Games and Economic Behavior 45*(1), 181–221. Full version of paper in IJCAI '03.
- Koller, D. and R. Parr (1999). Computing factored value functions for policies in structured MDPs. In *Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1332–1339.
- Koller, D. and A. Pfeffer (1997). Object-oriented Bayesian networks. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 302–313.
- Kolmogorov, V. (2006). Convergent tree-reweighted message passing for energy minimization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- Kolmogorov, V. and C. Rother (2006). Comparison of energy minimization algorithms for highly connected graphs. In *Proc. European Conference on Computer Vision (ECCV)*.
- Kolmogorov, V. and M. Wainwright (2005). On the optimality of tree reweighted max-product

- message passing. In Proc. 21st Conference on Uncertainty in Artificial Intelligence (UAI).
- Kolmogorov, V. and R. Zabih (2004). What energy functions can be minimized via graph cuts? *IEEE Transactions on Pattern Analysis and Machine Intelligence 26*(2).
- Komarek, P. and A. Moore (2000). A dynamic adaptation of AD-trees for efficient machine learning on large data sets. In *Proc. 17th International Conference on Machine Learning (ICML)*, pp. 495–502.
- Komodakis, N., N. Paragios, and G. Tziritas (2007). MRF optimization via dual decomposition: Message-passing revisited. In *Proc. International Conference on Computer Vision (ICCV)*.
- Komodakis, N. and G. Tziritas (2005). A new framework for approximate labeling via graph-cuts. In *Proc. International Conference on Computer Vision (ICCV)*.
- Komodakis, N., G. Tziritas, and N. Paragios (2007). Fast, approximately optimal solutions for single and dynamic MRFs. In *Proc. Conference on Computer Vision and Pattern Recognition (CVPR).*
- Kong, A. (1991). Efficient methods for computing linkage likelihoods of recessive diseases in inbred pedigrees. *Genetic Epidemiology 8*, 81–103.
- Korb, K. and A. Nicholson (2003). Bayesian Artificial Intelligence. CRC Press.
- Koster, J. (1996). Markov properties of non-recursive causal models. *The Annals of Statistics 24*(5), 2148–77.
- Kočka, T., R. Bouckaert, and M. Studený (2001). On characterizing inclusion of Bayesian networks. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 261–68.
- Kozlov, A. and D. Koller (1997). Nonuniform dynamic discretization in hybrid networks. In *Proc.* 13th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 314–325.
- Krause, A. and C. Guestrin (2005a). Near-optimal nonmyopic value of information in graphical models. In *Proc. 21st Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Krause, A. and C. Guestrin (2005b). Optimal nonmyopic value of information in graphical models: Efficient algorithms and theoretical limits. In *Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI)*.
- Kreps, D. (1988). Notes on the Theory of Choice. Boulder, Colorado: Westview Press.
- Kschischang, F. and B. Frey (1998). Iterative decoding of compound codes by probability propagation in graphical models. *IEEE Journal on Selected Areas in Communications* 16, 219–230.
- Kschischang, F., B. Frey, and H.-A. Loeliger (2001a). Factor graphs and the sum-product algorithm. *IEEE Transactions on Information Theory* 47, 498–519.
- Kschischang, F., B. Frey, and H.-A. Loeliger (2001b). Factor graphs and the sum-product algorithm. *IEEE Trans. Information Theory* 47, 498–519.
- Kullback, S. (1959). Information Theory and Statistics. New York: John Wiley & Sons.
- Kumar, M., V. Kolmogorov, and P. Torr (2007). An analysis of convex relaxations for MAP estimation. In *Proc. 21st Conference on Neural Information Processing Systems (NIPS)*.
- Kumar, M., P. Torr, and A. Zisserman (2006). Solving Markov random fields using second order cone programming relaxations. In *Proc. Conference on Computer Vision and Pattern Recognition* (CVPR), pp. 1045–1052.
- Kuppermann, M., S. Shiboski, D. Feeny, E. Elkin, and A. Washington (1997, Jan-Mar). Can preference scores for discrete states be used to derive preference scores for an entire path of events? An application to prenatal diagnosis. *Medical Decision Making* 17(1), 42–55.
- Kyburg, H., , and H. Smokler (Eds.) (1980). Studies in Subjective Probability. New York: Krieger.
- La Mura, P. (2000). Game networks. In Proc. 16th Conference on Uncertainty in Artificial Intelligence

- (UAI), pp. 335-342.
- La Mura, P. and Y. Shoham (1999). Expected utility networks. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 366–73.
- Lacoste-Julien, S., B. Taskar, D. Klein, and M. Jordan (2006, June). Word alignment via quadratic assignment. In *Proceedings of the Human Language Technology Conference of the NAACL, Main Conference*, pp. 112–119.
- Lafferty, J., A. McCallum, and F. Pereira (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In *Proc. 18th International Conference on Machine Learning (ICML)*.
- Lam, W. and F. Bacchus (1993). Using causal information and local measures to learn Bayesian networks. In *Proc. 9th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 243–250.
- Lange, K. and R. C. Elston (1975). Extensions to pedigree analysis. I. Likelihood calculations for simple and complex pedigrees. *Human Heredity* 25, 95–105.
- Laskey, K. (1995). Sensitivity analysis for probability assessments in Bayesian networks. *IEEE Transactions on Systems, Man, and Cybernetics* 25(6), 901 909.
- Lauritzen, S. (1982). *Lectures on contingency tables* (2 ed.). Aalborg: Denmark: University of Aalborg Press.
- Lauritzen, S. (1992). Propagation of probabilities, means, and variances in mixed graphical association models. *Journal of the American Statistical Association* 87(420), 1089–1108.
- Lauritzen, S. (1996). Graphical Models. New York: Oxford University Press.
- Lauritzen, S. and D. Nilsson (2001). Representing and solving decision problems with limited information. *Management Science* 47(9), 1235–51.
- Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. *Computational Statistics and Data Analysis 19*, 191–201.
- Lauritzen, S. L. and F. Jensen (2001). Stable local computation with conditional Gaussian distributions. *Statistics and Computing 11*, 191–203.
- Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabilities on graphical structures and their application to expert systems. *Journal of the Royal Statistical Society, Series B B 50*(2), 157–224.
- Lauritzen, S. L. and N. Wermuth (1989). Graphical models for associations between variables, some of which are qualitative and some quantitative. *Annals of Statistics 17*, 31–57.
- LeCun, Y., S. Chopra, R. Hadsell, R. Marc'Aurelio, and F.-J. Huang (2007). A tutorial on energy-based learning. In G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. Vishwanathan (Eds.), *Predicting Structured Data*. MIT Press.
- Lee, S.-I., V. Ganapathi, and D. Koller (2006). Efficient structure learning of Markov networks using L1-regularization. In *Proc. 20th Conference on Neural Information Processing Systems (NIPS).*
- Lehmann, E. and J. Romano (2008). Testing Statistical Hypotheses. Springer Texts in Statistics.
- Leisink, M. A. R. and H. J. Kappen (2003). Bound propagation. *Journal of Artificial Intelligence Research* 19, 139–154.
- Lerner, U. (2002). *Hybrid Bayesian Networks for Reasoning about Complex Systems*. Ph.D. thesis, Stanford University.
- Lerner, U., B. Moses, M. Scott, S. McIlraith, and D. Koller (2002). Monitoring a complex physical system using a hybrid dynamic Bayes net. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 301–310.

Lerner, U. and R. Parr (2001). Inference in hybrid networks: Theoretical limits and practical algorithms. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 310–318.

- Lerner, U., R. Parr, D. Koller, and G. Biswas (2000). Bayesian fault detection and diagnosis in dynamic systems. In *Proc. 16th Conference on Artificial Intelligence (AAAI)*, pp. 531–537.
- Lerner, U., E. Segal, and D. Koller (2001). Exact inference in networks with discrete children of continuous parents. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 319–328.
- Li, S. (2001). Markov Random Field Modeling in Image Analysis. Springer.
- Liang, P. and M. Jordan (2008). An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. In *Proc. 25th International Conference on Machine Learning (ICML)*.
- Little, R. J. A. (1976). Inference about means for incomplete multivariate data. *Biometrika* 63, 593–604.
- Little, R. J. A. and D. B. Rubin (1987). Statistical Analysis with Missing Data. New York: John Wiley & Sons.
- Liu, D. and J. Nocedal (1989). On the limited memory method for large scale optimization. *Mathematical Programming* 45(3), 503–528.
- Liu, J., W. Wong, and A. Kong (1994). Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and sampling schemes. *Biometrika 81*, 27–40.
- Loomes, G. and R. Sugden (1982). Regret theory: An alternative theory of rational choice under uncertainty. *The Economic Journal* 92, 805–824.
- MacEachern, S. and L. Berliner (1994, August). Subsampling the Gibbs sampler. *The American Statistician* 48(3), 188–190.
- MacKay, D. J. C. (1997). Ensemble learning for hidden markov models. Unpublished manuscripts, http://wol.ra.phy.cam.ac.uk/mackay.
- MacKay, D. J. C. and R. M. Neal (1996). Near shannon limit performance of low density parity check codes. *Electronics Letters* 32, 1645–1646.
- Madigan, D., S. Andersson, M. Perlman, and C. Volinsky (1996). Bayesian model averaging and model selection for Markov equivalence classes of acyclic graphs. *Communications in Statistics: Theory and Methods 25*, 2493–2519.
- Madigan, D. and E. Raftery (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. *Journal of the American Statistical Association* 89, 1535–1546.
- Madigan, D. and J. York (1995). Bayesian graphical models for discrete data. *International statistical Review 63*, 215–232.
- Madsen, A. and D. Nilsson (2001). Solving influence diagrams using HUGIN, Shafer-Shenoy and lazy propagation. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 337–45.
- Malioutov, D., J. Johnson, and A. Willsky (2006). Walk-sums and belief propagation in Gaussian graphical models. *Journal of Machine Learning Research* 7, 2031–64.
- Maneva, E., E. Mossel, and M. Wainwright (2007, July). A new look at survey propagation and its generalizations. *Journal of the ACM 54*(4), 2–41.
- Manning, C. and H. Schuetze (1999). Foundations of Statistical Natural Language Processing. MIT Press.
- Marinari, E. and G. Parisi (1992). Simulated tempering: A new Monte Carlo scheme. *Europhysics Letters* 19, 451.

Marinescu, R., K. Kask, and R. Dechter (2003). Systematic vs. non-systematic algorithms for solving the MPE task. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*.

- Marthi, B., H. Pasula, S. Russell, and Y. Peres (2002). Decayed MCMC filtering. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Martin, J. and K. VanLehn (1995). Discrete factor analysis: Learning hidden variables in Bayesian networks. Technical report, Department of Computer Science, University of Pittsburgh.
- McCallum, A. (2003). Efficiently inducing features of conditional random fields. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 403–10.
- McCallum, A., C. Pal, G. Druck, and X. Wang (2006). Multi-conditional learning: Generative/discriminative training for clustering and classification. In *Proc. 22nd Conference on Artificial Intelligence (AAAI)*.
- McCallum, A. and B. Wellner (2005). Conditional models of identity uncertainty with application to noun coreference. In *Proc. 19th Conference on Neural Information Processing Systems (NIPS)*, pp. 905–912.
- McCullagh, P. and J. Nelder (1989). Generalized Linear Models. London: Chapman & Hall.
- McEliece, R., D. MacKay, and J.-F. Cheng (1998, February). Turbo decoding as an instance of Pearl's "belief propagation" algorithm. *IEEE Journal on Selected Areas in Communications* 16(2).
- McEliece, R. J., E. R. Rodemich, and J.-F. Cheng (1995). The turbo decision algorithm. In *Proc.* 33rd Allerton Conference on Communication Control and Computing, pp. 366–379.
- McLachlan, G. J. and T. Krishnan (1997). The EM Algorithm and Extensions. Wiley Interscience.
- Meek, C. (1995a). Causal inference and causal explanation with background knowledge. In *Proc.* 11th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 403–418.
- Meek, C. (1995b). Strong completeness and faithfulness in Bayesian networks. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 411–418.
- Meek, C. (1997). *Graphical Models: Selecting causal and statistical models.* Ph.D. thesis, Carnegie Mellon University.
- Meek, C. (2001). Finding a path is harder than finding a tree. *Journal of Artificial Intelligence Research* 15, 383–389.
- Meek, C. and D. Heckerman (1997). Structure and parameter learning for causal independence and causal interaction models. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 366–375.
- Meila, M. and T. Jaakkola (2000). Tractable Bayesian learning of tree belief networks. In *Proc.* 16th Conference on Uncertainty in Artificial Intelligence (UAI).
- Meila, M. and M. Jordan (2000). Learning with mixtures of trees. *Journal of Machine Learning Research 1*, 1–48.
- Meltzer, T., C. Yanover, and Y. Weiss (2005). Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation. In *Proc. International Conference on Computer Vision (ICCV)*, pp. 428–435.
- Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equation of state calculation by fast computing machines. *Journal of Chemical Physics* 21, 1087–1092.
- Meyer, J., M. Phillips, P. Cho, I. Kalet, and J. Doctor (2004). Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection. *Physics in Medicine and Biology* 49, 1637–53.
- Middleton, B., M. Shwe, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and G. Cooper (1991). Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base.

II. Evaluation of diagnostic performance. Methods of Information in Medicine 30, 256-67.

- Milch, B., B. Marthi, and S. Russell (2004). BLOG: Relational modeling with unknown objects. In *ICML 2004 Workshop on Statistical Relational Learning and Its Connections to Other Fields*.
- Milch, B., B. Marthi, S. Russell, D. Sontag, D. Ong, and A. Kolobov (2005). BLOG: Probabilistic models with unknown objects. In *Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1352–1359.
- Milch, B., B. Marthi, S. Russell, D. Sontag, D. Ong, and A. Kolobov (2007). BLOG: Probabilistic models with unknown objects. See Getoor and Taskar (2007).
- Miller, R., H. Pople, and J. Myers (1982). Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. *New England Journal of Medicine* 307, 468–76.
- Minka, T. (2005). Discriminative models, not discriminative training. Technical Report MSR-TR-2005-144, Microsoft Research.
- Minka, T. and J. Lafferty (2002). Expectation propagation for the generative aspect model. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI).*
- Minka, T. P. (2001a). Algorithms for maximum-likelihood logistic regression. Available from http://www.stat.cmu.edu/~minka/papers/logreg.html.
- Minka, T. P. (2001b). Expectation propagation for approximate Bayesian inference. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 362–369.
- Møller, J. M., A. Pettitt, K. Berthelsen, and R. Reeves (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalisation constants. *Biometrika* 93(2), 451–458.
- Montemerlo, M., S. Thrun, D. Koller, and B. Wegbreit (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem. In *Proc. 18th Conference on Artificial Intelligence (AAAI)*, pp. 593–598.
- Monti, S. and G. F. Cooper (1997). Learning Bayesian belief networks with neural network estimators. In *Proc. 11th Conference on Neural Information Processing Systems (NIPS)*, pp. 579–584.
- Mooij, J. M. and H. J. Kappen (2007). Sufficient conditions for convergence of the sum-product algorithm. *IEEE Trans. Information Theory* 53, 4422–4437.
- Moore, A. (2000). The anchors hierarchy: Using the triangle inequality to survive high-dimensional data. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 397-405.
- Moore, A. and W.-K. Wong (2003). Optimal reinsertion: A new search operator for accelerated and more accurate bayesian network structure learning. In *Proc. 20th International Conference on Machine Learning (ICML)*, pp. 552–559.
- Moore, A. W. and M. S. Lee (1997). Cached sufficient statistics for efficient machine learning with large datasets. *Journal of Artificial Intelligence Research* 8, 67–91.
- Morgan, M. and M. Henrion (Eds.) (1990). *Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis.* Cambridge University Press.
- Motwani, R. and P. Raghavan (1995). Randomized Algorithnms. Cambridge University Press.
- Muramatsu, M. and T. Suzuki (2003). A new second-order cone programming relaxation for max-cut problems. *Journal of Operations Research of Japan 43*, 164–177.
- Murphy, K. (1999). Bayesian map learning in dynamic environments. In *Proc. 13th Conference on Neural Information Processing Systems (NIPS)*.
- Murphy, K. (2002). Dynamic Bayesian Networks: A tutorial. Technical report, Mas-

sachussetts Institute of Technology. Available from http://www.cs.ubc.ca/~murphyk/Papers/dbnchapter.pdf.

- Murphy, K. and M. Paskin (2001). Linear time inference in hierarchical HMMs. In *Proc. 15th Conference on Neural Information Processing Systems (NIPS)*.
- Murphy, K. and Y. Weiss (2001). The factored frontier algorithm for approximate inference in DBNs. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Murphy, K. P. (1998). Inference and learning in hybrid Bayesian networks. Technical Report UCB/CSD-98-990, University of California, Berkeley.
- Murphy, K. P., Y. Weiss, and M. Jordan (1999). Loopy belief propagation for approximate inference: an empirical study. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 467–475.
- Murray, I. and Z. Ghahramani (2004). Bayesian learning in undirected graphical models: Approximate MCMC algorithms. In *Proc. 20th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Murray, I., Z. Ghahramani, and D. MacKay (2006). MCMC for doubly-intractable distributions. In *Proc. 22nd Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Myers, J., K. Laskey, and T. Levitt (1999). Learning Bayesian networks from incomplete data with stochastic search algorithms. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 476–485.
- Narasimhan, M. and J. Bilmes (2004). PAC-learning bounded tree-width graphical models. In *Proc. 20th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Ndilikilikesha, P. (1994). Potential influence diagrams. *International Journal of Approximate Reasoning 10*, 251–85.
- Neal, R. (1996). Sampling from multimodal distributions using tempered transitions. *Statistics and Computing* 6, 353–366.
- Neal, R. (2001). Annealed importance sampling. Statistics and Computing 11(2), 25–139.
- Neal, R. (2003). Slice sampling. Annals of Statistics 31(3), 705-767.
- Neal, R. M. (1992). Asymmetric parallel Boltzmann machines are belief networks. *Neural Computation* 4(6), 832–834.
- Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, University of Toronto.
- Neal, R. M. and G. E. Hinton (1998). A new view of the EM algorithm that justifies incremental and other variants. See Jordan (1998).
- Neapolitan, R. E. (2003). Learning Bayesian Networks. Prentice Hall.
- Ng, A. and M. Jordan (2000). Approximate inference algorithms for two-layer Bayesian networks. In *Proc. 14th Conference on Neural Information Processing Systems (NIPS)*.
- Ng, A. and M. Jordan (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In *Proc. 16th Conference on Neural Information Processing Systems (NIPS)*.
- Ng, B., L. Peshkin, and A. Pfeffer (2002). Factored particles for scalable monitoring. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 370–377.
- Ngo, L. and P. Haddawy (1996). Answering queries from context-sensitive probabilistic knowledge bases. *Theoretical Computer Science*.
- Nielsen, J., T. Kočka, and J. M. Peña (2003). On local optima in learning Bayesian networks. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 435–442.

Nielsen, T. and F. Jensen (1999). Welldefined decision scenarios. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 502–11.

- Nielsen, T. and F. Jensen (2000). Representing and solving asymmetric Bayesian decision problems. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 416–25.
- Nielsen, T., P.-H. Wuillemin, F. Jensen, and U. Kjærulff (2000). Using robdds for inference in Bayesian networks with troubleshooting as an example. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 426–35.
- Nilsson, D. (1998). An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. *Statistics and Computing* 8(2), 159–173.
- Nilsson, D. and S. Lauritzen (2000). Evaluating influence diagrams with LIMIDs. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 436–445.
- Nodelman, U., C. R. Shelton, and D. Koller (2002). Continuous time Bayesian networks. In *Proc.* 18th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 378–387.
- Nodelman, U., C. R. Shelton, and D. Koller (2003). Learning continuous time Bayesian networks. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Norman, J., Y. Shahar, M. Kuppermann, and B. Gold (1998). Decision-theoretic analysis of prenatal testing strategies. Technical Report SMI-98-0711, Stanford University, Section on Medical Informatics.
- Normand, S.-L. and D. Tritchler (1992). Parameter updating in a Bayes network. *Journal of the American Statistical Association* 87, 1109–1115.
- Nummelin, E. (1984). *General Irreducible Markov Chains and Non-Negative Operators*. Cambridge University Press.
- Nummelin, E. (2002). Mc's for mcmc'ists. International Statistical Review 70(2), 215-240.
- Olesen, K. G., U. Kjærulff, F. Jensen, B. Falck, S. Andreassen, and S. Andersen (1989). A Munin network for the median nerve A case study on loops. *Applied Artificial Intelligence 3*, 384–403.
- Oliver, R. M. and J. Q. Smith (Eds.) (1990). *Influence Diagrams, Belief Nets and Decision Analysis*. New York: John Wiley & Sons.
- Olmsted, S. (1983). *On Representing and Solving Influence Diagrams*. Ph.D. thesis, Stanford University.
- Opper, M. and O. Winther (2005). Expectation consistent free energies for approximate inference. In *Proc. 19th Conference on Neural Information Processing Systems (NIPS)*.
- Ortiz, L. and L. Kaelbling (1999). Accelerating em: An empirical study. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 512–521.
- Ortiz, L. E. and L. P. Kaelbling (2000). Adaptive importance sampling for estimation in structured domains. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 446–454.
- Osborne, M. and A. Rubinstein (1994). A Course in Game Theory. The MIT Press.
- Ostendorf, M., V. Digalakis, and O. Kimball (1996). From HMMs to segment models: A unified view of stochastic modeling for speech recognition. *IEEE Transactions on Speech and Audio Processing* 4(5), 360–378.
- Pakzad, P. and V. Anantharam (2002). Minimal graphical representation of Kikuchi regions. In *Proc. 40th Allerton Conference on Communication Control and Computing*, pp. 1585–1594.
- Papadimitriou, C. (1993). Computational Complexity. Addison Wesley.
- Parisi, G. (1988). Statistical Field Theory. Reading, Massachusetts: Addison-Wesley.
- Park, J. (2002). MAP complexity results and approximation methods. In Proc. 18th Conference on

- *Uncertainty in Artificial Intelligence (UAI)*, pp. 388–396.
- Park, J. and A. Darwiche (2001). Approximating MAP using local search. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 403–âĂŞ410.
- Park, J. and A. Darwiche (2003). Solving MAP exactly using systematic search. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Park, J. and A. Darwiche (2004a). Complexity results and approximation strategies for MAP explanations. *Journal of Artificial Intelligence Research 21*, 101–133.
- Park, J. and A. Darwiche (2004b). A differential semantics for jointree algorithms. Artificial Intelligence 156, 197–216.
- Parter, S. (1961). The user of linear graphs in Gauss elimination. SIAM Review 3, 119-130.
- Paskin, M. (2003a). Sample propagation. In Proc. 17th Conference on Neural Information Processing Systems (NIPS).
- Paskin, M. (2003b). Thin junction tree filters for simultaneous localization and mapping. In *Proc.* 18th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1157–1164.
- Pasula, H., B. Marthi, B. Milch, S. Russell, and I. Shpitser (2002). Identity uncertainty and citation matching. In *Proc. 16th Conference on Neural Information Processing Systems (NIPS)*, pp. 1401–1408.
- Pasula, H., S. Russell, M. Ostland, and Y. Ritov (1999). Tracking many objects with many sensors. In *Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI)*.
- Patrick, D., J. Bush, and M. Chen (1973). Methods for measuring levels of well-being for a health status index. *Health Services Research* 8, 228–45.
- Pearl, J. (1986a). A constraint-propagation approach to probabilistic reasoning. In *Proc. 2nd Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 357–370.
- Pearl, J. (1986b). Fusion, propagation and structuring in belief networks. *Artificial Intelligence* 29(3), 241–88.
- Pearl, J. (1987). Evidential reasoning using stochastic simulation of causal models. *Artificial Intelligence* 32, 245–257.
- Pearl, J. (1988). *Probabilistic Reasoning in Intelligent Systems*. San Mateo, California: Morgan Kaufmann.
- Pearl, J. (1995). Causal diagrams for empirical research. Biometrika 82, 669-710.
- Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge Univ. Press.
- Pearl, J. and R. Dechter (1996). Identifying independencies in causal graphs with feedback. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 420–26.
- Pearl, J. and A. Paz (1987). GRAPHOIDS: A graph-based logic for reasoning about relevance relations. In B. Du Boulay, D. Hogg, and L. Steels (Eds.), *Advances in Artificial Intelligence*, Volume 2, pp. 357–363. Amsterdam: North Holland.
- Pearl, J. and T. S. Verma (1991). A theory of inferred causation. In *Proc. Conference on Knowledge Representation and Reasoning (KR)*, pp. 441–452.
- Pe'er, D., A. Regev, G. Elidan, and N. Friedman (2001). Inferring subnetworks from preturbed expression profiles. *Bioinformatics* 17, S215–S224.
- Peng, Y. and J. Reggia (1986). Plausibility of diagnostic hypotheses. In *Proc. 2nd Conference on Artificial Intelligence (AAAI)*, pp. 140–45.
- Perkins, S., K. Lacker, and J. Theiler (2003, March). Grafting: Fast, incremental feature selection by gradient descent in function space. *Journal of Machine Learning Research* 3, 1333–1356.
- Peterson, C. and J. R. Anderson (1987). A mean field theory learning algorithm for neural

- networks. Complex Systems 1, 995-1019.
- Pfeffer, A., D. Koller, B. Milch, and K. Takusagawa (1999). spook: A system for probabilistic object-oriented knowledge representation. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 541–550.
- Poh, K. and E. Horvitz (2003). Reasoning about the value of decision-model refinement: Methods and application. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 174–182.
- Poland, W. (1994). *Decision Analysis with Continuous and Discrete Variables: A Mixture Distribution Approach.* Ph.D. thesis, Department of Engineering-Economic Systems, Stanford University.
- Poole, D. (1989). Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities. In *Proc. 13th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 606–612.
- Poole, D. (1993a). Probabilistic Horn abduction and Bayesian networks. *Artificial Intelligence* 64(1), 81–129.
- Poole, D. (1993b). The use of conflicts in searching Bayesian networks. In *Proc. 9th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 359–367.
- Poole, D. and N. Zhang (2003). Exploiting causal independence in Bayesian network inference. *Journal of Artificial Intelligence Research* 18, 263–313.
- Poon, H. and P. Domingos (2007). Joint inference in information extraction. In *Proc. 23rd Conference on Artificial Intelligence (AAAI)*, pp. 913–918.
- Pradhan, M. and P. Dagum (1996). Optimal Monte Carlo estimation of belief network inference. In *Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 446–453.
- Pradhan, M., M. Henrion, G. Provan, B. Del Favero, and K. Huang (1996). The sensitivity of belief networks to imprecise probabilities: An experimental investigation. *Artificial Intelligence* 85, 363–97.
- Pradhan, M., G. M. Provan, B. Middleton, and M. Henrion (1994). Knowledge engineering for large belief networks. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 484–490.
- Puterman, M. L. (1994). *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John Wiley and Sons, New York.
- Qi, R., N. Zhang, and D. Poole (1994). Solving asymmetric decision problems with influence diagrams. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 491–497.
- Qi, Y., M. Szummer, and T. Minka (2005). Bayesian conditional random fields. In *Proc. 11thWorkshop on Artificial Intelligence and Statistics*.
- Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. *Proceedings of the IEEE 77*(2), 257–286.
- Rabiner, L. R. and B. H. Juang (1986, January). An introduction to hidden Markov models. *IEEE ASSP Magazine*, 4–15.
- Ramsey, F. (1931). *The Foundations of Mathematics and other Logical Essays*. London: Kegan, Paul, Trench, Trubner & Co., New York: Harcourt, Brace and Company. edited by R.B. Braithwaite.
- Rasmussen, C. and C. Williams (2006). Gaussian Processes for Machine Learning. MIT Press.
- Rasmussen, C. E. (1999). The infinite gaussian mixture model. In *Proc. 13th Conference on Neural Information Processing Systems (NIPS)*, pp. 554–560.
- Ravikumar, P. and J. Lafferty (2006). Quadratic programming relaxations for metric labelling and Markov random field MAP estimation. In *Proc. 23rd International Conference on Machine*

- Learning (ICML).
- Renooij, S. and L. van der Gaag (2002). From qualitative to quantitative probabilistic networks. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 422–429.
- Richardson, M. and P. Domingos (2006). Markov logic networks. Machine Learning 62, 107-136.
- Richardson, T. (1994). Properties of cyclic graphical models. Master's thesis, Carnegie Mellon University.
- Riezler, S. and A. Vasserman (2004). Incremental feature selection and l1 regularization for relaxed maximum-entropy modeling. In *Proc. Conference on Empirical Methods in Natural Language Processing (EMNLP)*.
- Ripley, B. D. (1987). Stochastic Simulation. New York: John Wiley & Sons.
- Rissanen, J. (1987). Stochastic complexity (with discussion). *Journal of the Royal Statistical Society, Series B* 49, 223–265.
- Ristic, B., S. Arulampalam, and N. Gordon (2004). *Beyond the Kalman Filter: Particle Filters for Tracking Applications*. Artech House Publishers.
- Robert, C. and G. Casella (1996). Rao-Blackwellisation of sampling schemes. *Biometrika 83*(1), 81–94.
- Robert, C. and G. Casella (2005). *Monte Carlo Statistical Methods* (2nd ed.). Springer Texts in Statistics.
- Robins, J. M. and L. A. Wasserman (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In *Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 409–420.
- Rose, D. (1970). Triangulated graphs and the elimination process. *Journal of Mathematical Analysis and Applications* 32, 597–609.
- Ross, S. M. (1988). A First Course in Probability (third ed.). London: Macmillan.
- Rother, C., S. Kumar, V. Kolmogorov, and A. Blake (2005). Digital tapestry. In *Proc. Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology* 66(5), 688–701.
- Rubin, D. R. (1976). Inference and missing data. Biometrika 63, 581-592.
- Rusmevichientong, P. and B. Van Roy (2001). An analysis of belief propagation on the turbo decoding graph with Gaussian densities. *IEEE Transactions on Information Theory 48*(2).
- Russell, S. and P. Norvig (2003). Artificial Intelligence: A Modern Approach (2 ed.). Prentice Hall.
- Rustagi, J. (1976). Variational Methods in Statistics. New York: Academic Press.
- Sachs, K., O. Perez, D. Pe'er, D. Lauffenburger, and G. Nolan (2005, April). Causal protein-signaling networks derived from multiparameter single-cell data. *Science* 308(5721), 523–529.
- Sakurai, J. J. (1985). Modern Quantum Mechanics. Reading, Massachusetts: Addison-Wesley.
- Santos, A. (1994). A linear constraint satisfaction approach to cost-based abduction. *Artificial Intelligence* 65(1), 1–28.
- Santos, E. (1991). On the generation of alternative explanations with implications for belief revision. In *Proc. 7th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 339–347.
- Saul, L., T. Jaakkola, and M. Jordan (1996). Mean field theory for sigmoid belief networks. *Journal of Artificial Intelligence Research* 4, 61–76.
- Saul, L. and M. Jordan (1999). Mixed memory Markov models: Decomposing complex stochastic processes as mixture of simpler ones. *Machine Learning* 37(1), 75–87.
- Saul, L. K. and M. I. Jordan (1996). Exploiting tractable substructures in intractable networks. In

- Proc. 10th Conference on Neural Information Processing Systems (NIPS).
- Savage, L. (1951). The theory of statistical decision. *Journal of the American Statistical Association* 46, 55–67.
- Savage, L. J. (1954). Foundations of Statistics. New York: John Wiley & Sons.
- Schäffer, A. (1996). Faster linkage analysis computations for pedigrees with loops or unused alleles. *Human Heredity*, 226–235.
- Scharstein, D. and R. Szeliski (2003). High-accuracy stereo depth maps using structured light. In *Proc. Conference on Computer Vision and Pattern Recognition (CVPR)*, Volume 1, pp. 195–202.
- Schervish, M. (1995). Theory of Statistics. Springer-Verlag.
- Schlesinger, M. (1976). Sintaksicheskiy analiz dvumernykh zritelnikh singnalov v usloviyakh pomekh (syntactic analysis of two-dimensional visual signals in noisy conditions). *Kibernetika* 4, 113–130.
- Schlesinger, M. and V. Giginyak (2007a). Solution to structural recognition (max,+)-problems by their equivalent transformations (part 1). *Control Systems and Computers 1*, 3–15.
- Schlesinger, M. and V. Giginyak (2007b). Solution to structural recognition (max,+)-problems by their equivalent transformations (part 2). *Control Systems and Computers 2*, 3–18.
- Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464.
- Segal, E., D. Pe'er, A. Regev, D. Koller, and N. Friedman (2005, April). Learning module networks. *Journal of Machine Learning Research* 6, 557–588.
- Segal, E., B. Taskar, A. Gasch, N. Friedman, and D. Koller (2001). Rich probabilistic models for gene expression. *Bioinformatics* 17(Suppl 1), S243–52.
- Settimi, R. and J. Smith (2000). Geometry, moments and conditional independence trees with hidden variables. *Annals of Statistics*.
- Settimi, R. and J. Q. Smith (1998a). On the geometry of Bayesian graphical models with hidden variables. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 472–479.
- Settimi, R. and J. Q. Smith (1998b). On the geometry of Bayesian graphical models with hidden variables. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 472–479.
- Shachter, R. (1988, July-August). Probabilistic inference and influence diagrams. *Operations Research* 36, 589-605.
- Shachter, R. (1999). Efficient value of information computation. In *Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 594–601.
- Shachter, R., S. K. Andersen, and P. Szolovits (1994). Global conditioning for probabilistic inference in belief networks. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 514–522.
- Shachter, R. and D. Heckerman (1987). Thinking backwards for knowledge acquisition. *Artificial Intelligence Magazine 8*, 55 61.
- Shachter, R. and C. Kenley (1989). Gaussian influence diagrams. Management Science 35, 527–550.
 Shachter, R. and P. Ndilikilikesha (1993). Using influence diagrams for probabilistic inference and decision making. In Proc. 9th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 276–83.
- Shachter, R. D. (1986). Evaluating influence diagrams. Operations Research 34, 871-882.
- Shachter, R. D. (1989). Evidence absorption and propagation through evidence reversals. In *Proc.* 5th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 173–190.
- Shachter, R. D. (1998). Bayes-ball: The rational pastime. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 480–487.

Shachter, R. D., B. D'Ambrosio, and B. A. Del Favero (1990). Symbolic probabilistic inference in belief networks. In *Proc. 6th Conference on Artificial Intelligence (AAAI)*, pp. 126–131.

- Shachter, R. D. and M. A. Peot (1989). Simulation approaches to general probabilistic inference on belief networks. In *Proc. 5th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 221–230.
- Shachter, R. D. and M. A. Peot (1992). Decision making using probabilistic inference methods. In *Proc. 8th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 276–83.
- Shafer, G. and J. Pearl (Eds.) (1990). *Readings in Uncertain Reasoning*. Representation and Reasoning. San Mateo, California: Morgan Kaufmann.
- Shafer, G. and P. Shenoy (1990). Probability propagation. *Annals of Mathematics and Artificial Intelligence 2*, 327–352.
- Shannon, C. (1948). A mathematical theory of communication. *Bell System Technical Journal* 27, 379–423; 623–656.
- Shawe-Taylor, J. and N. Cristianini (2000). *Support Vector Machines and other kernel-based learning methods*. Cambridge University Press.
- Shenoy, P. (1989). A valuation-based language for expert systems. *International Journal of Approximate Reasoning* 3, 383–411.
- Shenoy, P. (2000). Valuation network representation and solution of asymmetric decision problems. *European Journal of Operational Research 121*(3), 579–608.
- Shenoy, P. and G. Shafer (1990). Axioms for probability and belief-function propagation. In *Proc.* 6th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 169–198.
- Shenoy, P. P. (1992). Valuation-based systems for Bayesian decision analysis. *Operations Research* 40, 463–484.
- Shental, N., A. Zomet, T. Hertz, and Y. Weiss (2003). Learning and inferring image segmentations using the GBP typical cut algorithm. In *Proc. International Conference on Computer Vision*.
- Shimony, S. (1991). Explanation, irrelevance and statistical independence. In *Proc. 7th Conference on Artificial Intelligence (AAAI)*.
- Shimony, S. (1994). Finding MAPs for belief networks in NP-hard. *Artificial Intelligence* 68(2), 399–410.
- Shoikhet, K. and D. Geiger (1997). A practical algorithm for finding optimal triangulations. In *Proc. 13th Conference on Artificial Intelligence (AAAI)*, pp. 185–190.
- Shwe, M. and G. Cooper (1991). An empirical analysis of likelihood-weighting simulation on a large, multiply connected medical belief network. *Computers and Biomedical Research* 24, 453–475.
- Shwe, M., B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and G. Cooper (1991). Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. *Methods of Information in Medicine 30*, 241–55.
- Silander, T. and P. Myllymaki (2006). A simple approach for finding the globally optimal Bayesian network structure. In *Proc. 22nd Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Singh, A. and A. Moore (2005). Finding optimal bayesian networks by dynamic programming. Technical report, Carnegie Mellon University.
- Sipser, M. (2005). Introduction to the Theory of Computation (Second ed.). Course Technology.
- Smith, A. and G. Roberts (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. *Journal of the Royal Statistical Society, Series B* 55, 3–23.

Smith, J. (1989). Influence diagrams for statistical modeling. Annals of Statistics 17(2), 654-72.

- Smith, J., S. Holtzman, and J. Matheson (1993). Structuring conditional relationships in influence diagrams. *Operations Research* 41(2), 280–297.
- Smyth, P., D. Heckerman, and M. Jordan (1997). Probabilistic independence networks for hidden Markov probability models. *Neural Computation* 9(2), 227–269.
- Sontag, D. and T. Jaakkola (2007). New outer bounds on the marginal polytope. In *Proc. 21st Conference on Neural Information Processing Systems (NIPS)*.
- Sontag, D., T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss (2008). Tightening LP relaxations for MAP using message passing. In *Proc. 24th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Speed, T. and H. Kiiveri (1986). Gaussian Markov distributions over finite graphs. *The Annals of Statistics* 14(1), 138–150.
- Spetzler, C. and C.-A. von Holstein (1975). Probabilistic encoding in decision analysis. *Management Science*, 340–358.
- Spiegelhalter, D. and S. Lauritzen (1990). Sequential updating of conditional probabilities on directed graphical structures. *Networks* 20, 579–605.
- Spiegelhalter, D. J., A. P. Dawid, S. L. Lauritzen, and R. G. Cowell (1993). Bayesian analysis in expert systems. *Statistical Science 8*, 219–283.
- Spirtes, P. (1995). Directed cyclic graphical representations of feedback models. In *Proc. 11th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 491–98.
- Spirtes, P., C. Glymour, and R. Scheines (1991). An algorithm for fast recovery of sparse causal graphs. *Social Science Computer Review* 9, 62–72.
- Spirtes, P., C. Glymour, and R. Scheines (1993). *Causation, Prediction and Search*. Number 81 in Lecture Notes in Statistics. New York: Springer-Verlag.
- Spirtes, P., C. Meek, and T. Richardson (1999). An algorithm for causal inference in the presence of latent variables and selection bias. See Glymour and Cooper (1999), pp. 211–52.
- Srebro, N. (2001). Maximum likelihood bounded tree-width Markov networks. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Srinivas, S. (1993). A generalization of the noisy-or model. In *Proc. 9th Conference on Uncertainty* in *Artificial Intelligence (UAI)*, pp. 208–215.
- Srinivas, S. (1994). A probabilistic approach to hierarchical model-based diagnosis. In *Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Studený, M. and R. Bouckaert (1998). On chain graph models for description of conditional independence structures. *Annals of Statistics 26*.
- Sudderth, E., A. Ihler, W. Freeman, and A. Willsky (2003). Nonparametric belief propagation. In *Proc. Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 605–612.
- Sutton, C. and T. Minka (2006). Local training and belief propagation. Technical Report MSR-TR-2006-121, Microsoft Research.
- Sutton, C. and A. McCallum (2004). Collective segmentation and labeling of distant entities in information extraction. In *ICML Workshop on Statistical Relational Learning and Its Connections to Other Fields*.
- Sutton, C. and A. McCallum (2005). Piecewise training of undirected models. In *Proc. 21st Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Sutton, C. and A. McCallum (2007). An introduction to conditional random fields for relational learning. In L. Getoor and B. Taskar (Eds.), *Introduction to Statistical Relational Learning*. MIT

- Press.
- Sutton, C., A. McCallum, and K. Rohanimanesh (2007, March). Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. *Journal of Machine Learning Research* 8, 693–723.
- Suzuki, J. (1993). A construction of Bayesian networks from databases based on an MDL scheme. In *Proc. 9th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 266–273.
- Swendsen, R. and J. Wang (1987). Nonuniversal critical dynamics in Monte Carlo simulations. *Physical Review Letters* 58(2), 86–88.
- Swendsen, R. H. and J.-S. Wang (1986, Nov). Replica Monte Carlo simulation of spin-glasses. *Physical Review Letters* 57(21), 2607–2609.
- Szeliski, R., R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother (2008, June). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. *IEEE Trans. on Pattern Analysis and Machine Intelligence* 30(6), 1068–1080. See http://vision.middlebury.edu/MRF for more detailed results.
- Szolovits, P. and S. Pauker (1992). Pedigree analysis for genetic counseling. In *Proceedings of the Seventh World Congress on Medical Informatics (MEDINFO '92)*, pp. 679–683. North-Holland.
- Tanner, M. A. (1993). Tools for Statistical Inference. New York: Springer-Verlag.
- Tarjan, R. and M. Yannakakis (1984). Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Computing 13(3), 566–579.
- Taskar, B., P. Abbeel, and D. Koller (2002). Discriminative probabilistic models for relational data. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 485–492.
- Taskar, B., P. Abbeel, M.-F. Wong, and D. Koller (2007). Relational Markov networks. See Getoor and Taskar (2007).
- Taskar, B., V. Chatalbashev, and D. Koller (2004). Learning associative Markov networks. In *Proc.* 21st International Conference on Machine Learning (ICML).
- Taskar, B., C. Guestrin, and D. Koller (2003). Max margin Markov networks. In *Proc. 17th Conference on Neural Information Processing Systems (NIPS)*.
- Tatikonda, S. and M. Jordan (2002). Loopy belief propagation and Gibbs measures. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Tatman, J. A. and R. D. Shachter (1990). Dynamic programming and influence diagrams. *IEEE Transactions on Systems, Man and Cybernetics* 20(2), 365–379.
- Teh, Y. and M. Welling (2001). The unified propagation and scaling algorithm. In *Proc. 15th Conference on Neural Information Processing Systems (NIPS)*.
- Teh, Y., M. Welling, S. Osindero, and G. Hinton (2003). Energy-based models for sparse over-complete representations. *Journal of Machine Learning Research* 4, 1235–1260. Special Issue on ICA.
- Teyssier, M. and D. Koller (2005). Ordering-based search: A simple and effective algorithm for learning bayesian networks. In *Proc. 21st Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 584–590.
- Thiele, T. (1880). Sur la compensation de quelques erreurs quasisystematiques par la methode des moindres carrees. Copenhagen: Reitzel.
- Thiesson, B. (1995). Accelerated quantification of Bayesian networks with incomplete data. In *Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-*

- 95), pp. 306-311. AAAI Press.
- Thiesson, B., C. Meek, D. M. Chickering, and D. Heckerman (1998). Learning mixtures of Bayesian networks. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Thomas, A., D. Spiegelhalter, and W. Gilks (1992). BUGS: A program to perform Bayesian inference using Gibbs sampling. In J. Bernardo, J. Berger, A. Dawid, and A. Smith (Eds.), *Bayesian Statistics* 4, pp. 837–842. Oxford, UK: Clarendon Press.
- Thrun, S., W. Burgard, and D. Fox (2005). Probabilistic Robotics. Cambridge, MA: MIT Press.
- Thrun, S., D. Fox, W. Burgard, and F. Dellaert (2000). Robust Monte Carlo localization for mobile robots. *Artificial Intelligence 128*(1–2), 99–141.
- Thrun, S., Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte (2004). Simultaneous localization and mapping with sparse extended information filters. *International Journal of Robotics Research* 23(7/8).
- Thrun, S., C. Martin, Y. Liu, D. Hähnel, R. Emery-Montemerlo, D. Chakrabarti, and W. Burgard (2004). A real-time expectation maximization algorithm for acquiring multi-planar maps of indoor environments with mobile robots. *IEEE Transactions on Robotics* 20(3), 433–443.
- Thrun, S., M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot (2004). FastSLAM: An efficient solution to the simultaneous localization and mapping problem with unknown data association. *Journal of Machine Learning Research*.
- Tian, J. and J. Pearl (2002). On the testable implications of causal models with hidden variables. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 519–527.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society, Series B* 58(1), 267–288.
- Tierney, L. (1994). Markov chains for exploring posterior distributions. *Annals of Statistics* 22(4), 1701–1728.
- Tong, S. and D. Koller (2001a). Active learning for parameter estimation in Bayesian networks. In *Proc. 15th Conference on Neural Information Processing Systems (NIPS)*, pp. 647–653.
- Tong, S. and D. Koller (2001b). Active learning for structure in Bayesian networks. In *Proc. 17th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 863–869.
- Torrance, G., W. Thomas, and D. Sackett (1972). A utility maximization model for evaluation of health care programs. *Health Services Research* 7, 118–133.
- Tsochantaridis, I., T. Hofmann, T. Joachims, and Y. Altun (2004). Support vector machine learning for interdependent and structured output spaces. In *Proc. 21st International Conference on Machine Learning (ICML)*.
- Tversky, A. and D. Kahneman (1974). Judgment under uncertainty: Heuristics and biases. *Science 185*, 1124–1131.
- van der Merwe, R., A. Doucet, N. de Freitas, and E. Wan (2000a, Aug.). The unscented particle filter. Technical Report CUED/F-INFENG/TR 380, Cambridge University Engineering Department.
- van der Merwe, R., A. Doucet, N. de Freitas, and E. Wan (2000b). The unscented particle filter. In *Proc. 14th Conference on Neural Information Processing Systems (NIPS).*
- Varga, R. (2000). Matrix Iterative Analysis. Springer-Verlag.
- Verma, T. (1988). Causal networks: Semantics and expressiveness. In *Proc. 4th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 352–359.
- Verma, T. and J. Pearl (1988). Causal networks: Semantics and expressiveness. In *Proc. 4th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 69–76.

Verma, T. and J. Pearl (1990). Equivalence and synthesis of causal models. In *Proc. 6th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 255 –269.

- Verma, T. and J. Pearl (1992). An algorithm for deciding if a set of observed independencies has a causal explanation. In *Proc. 8th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 323–330.
- Vickrey, D. and D. Koller (2002). Multi-agent algorithms for solving graphical games. In *Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02)*, pp. 345–351.
- Vishwanathan, S., N. Schraudolph, M. Schmidt, and K. Murphy (2006). Accelerated training of conditional random fields with stochastic gradient methods. In *Proc. 23rd International Conference on Machine Learning (ICML)*, pp. 969–976.
- Viterbi, A. (1967, April). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. *IEEE Transactions on Information Theory 13*(2), 260–269.
- von Neumann, J. and O. Morgenstern (1944). *Theory of games and economic behavior* (first ed.). Princeton, NJ: Princeton Univ. Press.
- von Neumann, J. and O. Morgenstern (1947). *Theory of games and economic behavior* (second ed.). Princeton, NJ: Princeton Univ. Press.
- von Winterfeldt, D. and W. Edwards (1986). *Decision Analysis and Behavioral Research*. Cambridge, UK: Cambridge University Press.
- Vorobev, N. (1962). Consistent families of measures and their extensions. Theory of Probability and Applications 7, 147–63.
- Wainwright, M. (2006). Estimating the "wrong" graphical model: Benefits in the computation-limited setting. *Journal of Machine Learning Research* 7, 1829–1859.
- Wainwright, M., T. Jaakkola, and A. Willsky (2003a). Tree-based reparameterization framework for analysis of sum-product and related algorithms. *IEEE Transactions on Information Theory* 49(5).
- Wainwright, M., T. Jaakkola, and A. Willsky (2003b). Tree-reweighted belief propagation and approximate ML estimation by pseudo-moment matching. In *Proc. 9thWorkshop on Artificial Intelligence and Statistics*.
- Wainwright, M., T. Jaakkola, and A. Willsky (2004, April). Tree consistency and bounds on the performance of the max-product algorithm and its generalizations. *Statistics and Computing 14*, 143–166.
- Wainwright, M., T. Jaakkola, and A. Willsky (2005). MAP estimation via agreement on trees: Message-passing and linear programming. *IEEE Transactions on Information Theory*.
- Wainwright, M., T. Jaakkola, and A. S. Willsky (2001). Tree-based reparameterization for approximate estimation on loopy graphs. In *Proc. 15th Conference on Neural Information Processing Systems (NIPS).*
- Wainwright, M., T. Jaakkola, and A. S. Willsky (2002a). Exact map estimates by (hyper)tree agreement. In *Proc. 16th Conference on Neural Information Processing Systems (NIPS).*
- Wainwright, M., T. Jaakkola, and A. S. Willsky (2002b). A new class of upper bounds on the log partition function. In *Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Wainwright, M. and M. Jordan (2003). Graphical models, exponential families, and variational inference. Technical Report 649, Department of Statistics, University of California, Berkeley.
- Wainwright, M. and M. Jordan (2004). Semidefinite relaxations for approximate inference on graphs with cycles. In *Proc. 18th Conference on Neural Information Processing Systems (NIPS)*.
- Wainwright, M., P. Ravikumar, and J. Lafferty (2006). High-dimensional graphical model selection using ℓ_1 -regularized logistic regression. In *Proc. 20th Conference on Neural Information*

- Processing Systems (NIPS).
- Warner, H., A. Toronto, L. Veasey, and R. Stephenson (1961). A mathematical approach to medical diagnosis — application to congenital heart disease. *Journal of the American Madical Association* 177, 177–184.
- Weiss, Y. (1996). Interpreting images by propagating bayesian beliefs. In *Proc. 10th Conference on Neural Information Processing Systems (NIPS)*, pp. 908–914.
- Weiss, Y. (2000). Correctness of local probability propagation in graphical models with loops. *Neural Computation 12*, 1–41.
- Weiss, Y. (2001). Comparing the mean field method and belief propagation for approximate inference in MRFs. In M. Opper and D. Saad (Eds.), *Advanced mean field methods*, pp. 229–240. Cambridge, Massachusetts: MIT Press.
- Weiss, Y. and W. Freeman (2001a). Correctness of belief propagation in Gaussian graphical models of arbitrary topology. *Neural Computation* 13.
- Weiss, Y. and W. Freeman (2001b). On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. *IEEE Transactions on Information Theory* 47(2), 723–735.
- Weiss, Y., C. Yanover, and T. Meltzer (2007). MAP estimation, linear programming and belief propagation with convex free energies. In *Proc. 23rd Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Welling, M. (2004). On the choice of regions for generalized belief propagation. In *Proc. 20th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Welling, M., T. Minka, and Y. Teh (2005). Structured region graphs: Morphing EP into GBP. In *Proc. 21st Conference on Uncertainty in Artificial Intelligence (UAI).*
- Welling, M. and S. Parise (2006a). Bayesian random fields: The Bethe-Laplace approximation. In *Proc. 22nd Conference on Uncertainty in Artificial Intelligence (UAI).*
- Welling, M. and S. Parise (2006b). Structure learning in Markov random fields. In *Proc. 20th Conference on Neural Information Processing Systems (NIPS)*.
- Welling, M. and Y.-W. Teh (2001). Belief optimization for binary networks: a stable alternative to loopy belief propagation. In *Proc. 17th Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Wellman, M. (1985). Reasoning about preference models. Technical Report MIT/LCS/TR-340, Laboratory for Computer Science, MIT.
- Wellman, M., J. Breese, and R. Goldman (1992). From knowledge bases to decision models. Knowledge Engineering Review 7(1), 35–53.
- Wellman, M. and J. Doyle (1992). Modular utility representation for decision-theoretic planning. In *Procec. First International Conference on AI Planning Systems*, pp. 236–42. Morgan Kaufmann.
- Wellman, M. P. (1990). Foundamental concepts of qualitative probabilistic networks. *Artificial Intelligence* 44, 257–303.
- Wellner, B., A. McCallum, F. Peng, and M. Hay (2004). An integrated, conditional model of information extraction and coreference with application to citation matching. In *Proc. 20th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 593–601.
- Wermuth, N. (1980). Linear recursive equations, covariance selection and path analysis. *Journal of the American Statistical Association* 75, 963–975.
- Werner, T. (2007). A linear programming approach to max-sum problem: A review. *IEEE Trans. on Pattern Analysis and Machine Intelligence* 29(7), 1165–1179.
- West, M. (1993). Mixture models, Monte Carlo, Bayesian updating and dynamic models. Comput-

- ing Science and Statistics 24, 325-333.
- Whittaker, J. (1990). *Graphical Models in Applied Multivariate Statistics*. Chichester, United Kingdom: John Wiley and Sons.
- Wiegerinck, W. (2000). Variational approximations between mean field theory and the junction tree algorithm. In *Proc. 16th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 626–636.
- Wold, H. (1954). Causality and econometrics. Econometrica 22, 162-177.
- Wood, F., T. Griffiths, and Z. Ghahramani (2006). A non-parametric bayesian method for inferring hidden causes. In *Proc. 22nd Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 536–543.
- Wright, S. (1921). Correlation and causation. Journal of Agricultural Research 20, 557-85.
- Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics 5, 161-215.
- Xing, E., M. Jordan, and S. Russell (2003). A generalized mean field algorithm for variational inference in exponential families. In *Proc. 19th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 583–591.
- Yanover, C., T. Meltzer, and Y. Weiss (2006, September). Linear programming relaxations and belief propagation an empirical study. *Journal of Machine Learning Research* 7, 1887–1907.
- Yanover, C., O. Schueler-Furman, and Y. Weiss (2007). Minimizing and learning energy functions for side-chain prediction. In *Proc. International Conference on Research in Computational Molecular Biology (RECOMB)*, pp. 381–395.
- Yanover, C. and Y. Weiss (2003). Finding the M most probable configurations using loopy belief propagation. In *Proc. 17th Conference on Neural Information Processing Systems (NIPS)*.
- Yedidia, J., W. Freeman, and Y. Weiss (2005). Constructing free-energy approximations and generalized belief propagation algorithms. *IEEE Trans. Information Theory* 51, 2282–2312.
- Yedidia, J. S., W. T. Freeman, and Y. Weiss (2000). Generalized belief propagation. In *Proc. 14th Conference on Neural Information Processing Systems (NIPS)*, pp. 689–695.
- York, J. (1992). Use of the Gibbs sampler in expert systems. Artificial Intelligence 56, 115-130.
- Yuille, A. L. (2002). CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent alternatives to belief propagation. *Neural Computation 14*, 1691–1722.
- Zhang, N. (1998). Probabilistic inference in influence diagrams. In *Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 514–522.
- Zhang, N. and D. Poole (1994). A simple approach to Bayesian network computations. In *Proceedings of the 10th Biennial Canadian Artificial Intelligence Conference*, pp. 171–178.
- Zhang, N. and D. Poole (1996). Exploiting contextual independence in probabilistic inference. *Journal of Artificial Intelligence Research* 5, 301–328.
- Zhang, N., R. Qi, and D. Poole (1993). Incremental computation of the value of perfect information in stepwise-decomposable influence diagrams. In *Proc. 9th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 400–407.
- Zhang, N. L. (2004). Hierarchical latent class models for cluster analysis. *Journal of Machine Learning Research* 5, 697–723.
- Zoeter, O. and T. Heskes (2006). Deterministic approximate inference techniques for conditionally Gaussian state space models. *Statistical Computing 16*, 279–292.
- Zweig, G. and S. J. Russell (1998). Speech recognition with dynamic Bayesian networks. In *Proc.* 14th Conference on Artificial Intelligence (AAAI), pp. 173–180.

Notation Index

```
|A| — Cardinality of the set A, 20
                                                                 \mathcal{B}_{
ightarrow} — Transition Bayesian network (DBN), 204
                                                                 \mathcal{B}_{Z=z} — Mutilated Bayesian network, 499
\phi_1 \times \phi_2 — Factor product, 107
\gamma_1 \bigoplus \gamma_2 — Joint factor combination, 1104
                                                                 Boundary X — Boundary around X (in
p(\mathbf{Z}) \bigoplus g(\mathbf{Z}) — Marginal of g(\mathbf{Z}) based on
                                                                      graph), 34
     p(Z), 631
                                                                 \mathcal{C}(K, \boldsymbol{h}, q) — Canonical form, 609
\sum_{V} \phi — Factor marginalization, 297
X \rightleftharpoons Y — Bi-directional edge, 34
                                                                 \mathcal{C}(X; K, h, g) — Canonical form, 609
                                                                 \mathcal{C}[v] — Choices, 1085
X \to Y — Directed edge, 34
                                                                 Ch_X — Children of X (in graph), 34
X-Y — Undirected edge, 34
                                                                 C_i — Clique, 346
X \leftrightarrow Y — Non-ancestor edge (PAGs), 1049
                                                                 oldsymbol{x} \sim oldsymbol{c} — Compatability of values , 20
X \circ \rightarrow Y — Ancestor edge (PAGs), 1049
                                                                 cont(\gamma) — Joint factor contraction, 1104
\langle x, y \rangle — Inner product of vectors x and y, 262
                                                                 Cov[X;Y] — Covariance of X and Y, 248
||P - Q||_1 - L_1 distance, 1143
||P - Q||_2 - L_2 distance, 1143
                                                                 D − A subclique, 104
||P-Q||_{\infty} - L_{\infty} distance, 1143

    Δ — Discrete variables (hybrid models), 605

(X \perp Y) — Independence of random

 d — Value of a subclique, 104

     variables, 24
                                                                 \mathcal{D}^+ — Complete data, 871
(X \perp Y \mid Z) — Conditional independence of

 — Empirical samples (data), 698

     random variables, 24
                                                                 D — Sampled data, 489
(X \perp_c Y \mid Z, c) — Context-specific
                                                                 \mathcal{D}^* — Complete data, 912
     independence, 162
                                                                 D — Decisions, 1089
                                                                 Descendants X — Descendants of X (in
I\{\cdot\} — Indicator function, 32
                                                                      graph), 36
\mathcal{A}(\boldsymbol{x} \to \boldsymbol{x}') — Acceptance probability, 517
                                                                 \delta_{i \to j} — Approximate sum-product message,
\alpha(A) — The argument signature of attribute
                                                                 \delta_{i \to j} — Sum-product message, 352
                                                                 Dim[G] — Dimension of a graph, 801
                                                                 Dirichlet(\alpha_1, \ldots, \alpha_K) — Dirichlet
Ancestors X — Ancestors of X (in graph), 36
argmax, 26
                                                                      distribution, 738
A — A template attribute, 213
                                                                 \mathbb{D}(P||Q) — Relative entropy, 1141
                                                                 \mathbb{D}_{var}(P;Q) — Variational distance, 1143
Beta(\alpha_1, \alpha_0) — Beta distribution, 735
                                                                 \mathbf{Down}^*(r) — Downward closure, 422
\beta_i — Belief potential, 352
                                                                 \mathbf{Down}^+(r) — Extended downward closure,
\mathcal{B}_{\mathcal{I}[\sigma]} — Induced Bayesian network, 1093
                                                                      422
\mathcal{B} — Bayesian network, 62
                                                                 \mathbf{Down}(r) — Downward regions, 422
\mathcal{B}_0 — Initial Bayesian network (DBN), 204
                                                                 do(Z := z), do(z) — Intervention, 1010
```

1212 NOTATION INDEX

d-sep_G $(X; Y \mid Z)$ — d-separation, 71 K_i — Member of a chain, 37 $\mathcal{K}[X]$ — Induced subgraph, 35 \mathcal{E} — Edges in MRF, 127 $\mathrm{EU}[\mathcal{D}[a]]$ — Expected utility, 1061 $\ell_{\rm PL}(\boldsymbol{\theta}:\mathcal{D})$ — Pseudolikelihood, 970 $\mathrm{EU}[\mathcal{I}[\sigma]]$ — Expected utility of σ , 1093 $L(\theta:\mathcal{D})$ — Likelihood function, 721 $E_{\mathcal{D}}(f)$ — Empirical expectation, 490 $Local[\mathcal{U}]$ — Local polytope, 412 $E_{\mathcal{D}}[f]$ — Empirical expectation, 700 $\ell(\boldsymbol{\theta}_{G}:\mathcal{D})$ — Maximum likelihood value, 791 $E_P[X]$ — Expectation (mean) of X, 31 $\ell(\theta:\mathcal{D})$ — Log-likelihood function, 719 $E_P[X \mid y]$ — Conditional expectation, 32 $\ell_{Y|X}(\theta:\mathcal{D})$ — Conditional log-likelihood $E_{X \sim P}[\cdot]$ — Expectation when $X \sim P$, 387 function, 951 $loss(\xi : \mathcal{M})$ — Loss function, 699 $f(\mathbf{D})$ — A feature, 124 $F[\tilde{P},Q]$ — Energy functional, 385, 881 \mathcal{M}^* — Model that generated the data, 698 $\tilde{F}[\tilde{P}_{\Phi}, oldsymbol{Q}]$ — Region Free Energy functional, M-project-distr_{i, i} — M-projection, 436 M[x] — Counts of event x in data, 724 $F[P_{\Phi}, \mathbf{Q}]$ — Factored energy functional, 386 $Marg[\mathcal{U}]$ — Marginal polytope, 411 $\operatorname{FamScore}(X_i \mid \operatorname{Pa}_{X_i} : \mathcal{D})$ — Family score, $marg_{W}(\gamma)$ — Joint factor marginalization, 1104 $MaxMarg_f(x)$ — Max marginal of f, 553 \mathcal{F} — Feature set, 125 $\mathcal{M}[\mathcal{G}]$ — Moralization of \mathcal{G} , 134 F — Factor graph, 123 \mathcal{M} — A model, 699 $\bar{M}_{\theta}[x]$ — Expected counts, 871 G — Directed graph, 34 M — Learned/estimated model, 698 G — Partial ancestral graph, 1049 Γ — Continuous variables (hybrid models), 605 $\mathcal{N}(\mu; \sigma^2)$ — A Gaussian distribution, 28 γ — Template assignment, 215 $\mathcal{N}(X \mid \mu; \sigma^2)$ — Gaussian distribution over $Gamma(\alpha, \beta)$ — Gamma distribution, 900 X, 616 $\Gamma(x)$ — Gamma function, 736 Nb_X — Neighbors of X (in graph), 34 NonDescendants X — Non-descendants of X \mathcal{H} — Missing data, 859 (in graph), 36 H — Undirected graph, 34 \mathcal{NP} , 1151 $H_P(X)$ — Entropy, 1138 $H_P(X \mid Y)$ — Conditional entropy, 1139 O — Outcome space, 1060 $\tilde{H}_{Q}^{\kappa}(\mathcal{X})$ — Weighted approximate entropy, 415 $O(f(\cdot))$ — "Big O" of f, 1148 $\mathcal{O}^{\kappa}[\mathsf{Q}]$ — Objects in κ (template models), 214 Influence diagram, 1090 $\mathcal{I}(\mathcal{G})$ — Markov independencies of \mathcal{G} , 72 P, 1151 $\mathcal{I}_{\ell}(\mathcal{G})$ — Local Markov independencies of \mathcal{G} , $P(X \mid Y)$ — Conditional distribution, 22 57 P(x), P(x, y) — Shorthand for P(X = x), $\mathcal{I}(P)$ — The independencies satisfied by P, P(X = x, Y = y), 21 P^* — Distribution that generated the data, 698 $I_P(X;Y)$ — Mutual infromation, 1140 $P \models \dots \vdash P$ satisfies ..., 23 Interface $_{\mathcal{H}}(X;Y) - Y$ -interface of X, 464 Pa_X — Parents of X (in graph), 34 pa_X — Value of Pa_X , 157 J — Lagrangian, 1168 $\operatorname{Pa}_{X_i}^{\mathcal{G}}$ — Parents of X_i in \mathcal{G} , 57 J — Precision matrix, 248 $\hat{P}_{\mathcal{D}}(A)$ — Empirical distribution, 703 $\hat{P}_{\mathcal{D}}(\boldsymbol{x})$ — Empirical distribution, 490 K - Partially directed graph, 34 θ — Parameters, 262, 720 $\mathcal{K}^+[X]$ — Upward closed subgraph, 35 $\hat{\boldsymbol{\theta}}$ — MLE parameters, 726 κ — Object skeleton (template models), 214 φ — A factor (Markov network), 104

 κ_r — Counting number of region r, 415

NOTATION INDEX 1213

 $\phi[\boldsymbol{U}=\boldsymbol{u}]$ — Factor reduction, 110 π — Lottery, 1060 $\pi(X)$ — Stationary probability, 509 $P_{\Phi}(\mathcal{X})$ — Unnormalized measure defined by Φ , 345 $\psi_i(\mathbf{C}_i)$ — Initial potential, 349 P — Learned/estimated distribution, 698 Q — Approximating distribution, 383 Q — Template classes, 214 R — Region graph, 419 IR — Real numbers, 27 ρ — A rule, 166 \mathcal{R} — Rule set, 168 S — Event space, 15 σ — Std of a Gaussian distribution, 28 σ — Strategy, 1092 $\sigma^{(t)}(\cdot)$ — Belief state, 652 $Scope[\phi]$ — Scope of a factor, 104 $score_B(\mathcal{G} : \mathcal{D})$ — Bayesian score, 795 $score_{BIC}(\mathcal{G} : \mathcal{D})$ — BIC score, 802 $score_{CS}(\mathcal{G}:\mathcal{D})$ — Cheeseman-Stutz score, 913 $score_L(\mathcal{G} : \mathcal{D})$ — Likelihood score, 791 $\operatorname{score}_{L_1}(\boldsymbol{\theta} : \mathcal{D}) - L_1 \operatorname{score}, 988$ $score_{Laplace}(\mathcal{G} : \mathcal{D})$ — Laplace score, 910 $score_{MAP}(\boldsymbol{\theta} : \mathcal{D})$ — MAP score, 898 $sep_{\mathcal{H}}(X; Y \mid Z)$ — Separation in \mathcal{H} , 114 $\operatorname{sigmoid}(x)$ — Sigmoid function, 145 $S_{i,j}$ — Sepset, 140, 346 succ(v, c) — Successor (decision trees), 1085 T — Clique tree, 140, 347 Υ — Template clique tree, 656 T — Decision tree, 1085 $t(\theta)$ — Natural parameters function, 261 $\tau(\xi)$ — Sufficient statistics function, 261, 721 ⊖ — Parameter space, 261, 720 $\mathcal{T}(x \to x')$ — Transition probability, 507 U — Cluster graph, 346 \mathcal{U} — Response variables, 1029 μ — Mean of a Gaussian distribution, 28 U(o) — Utility function, 1060 $\mu_{i,j}$ — Sepset beliefs, 358 Unif[a, b] — Uniform distribution on [a, b], 28 $\mathbf{Up}^*(r)$ — Upward closure, 422

 $\mathbf{Up}(r)$ — Upward regions, 422 U — Utility variables, 1090 U^X — Response variable, 1029 Val(X) — Possible values of X, 20 $Var_P[X]$ — Variance of X, 33 $VPI_{\mathcal{I}}(D \mid X)$ — Value of perfect information, 1122 $\nu_r, \nu_i, \nu_{r,i}$ — Convex counting numbers, 416 $W_{<(i,j)}$, 348 \mathcal{X} — The set of all variables in the domain, 21 ξ — An assignment to \mathcal{X} , 79 X, Y, Z — Random variables, 20 X, Y, Z — Random variable sets, 20 x, y, z — Values of random variable sets, 20 x^0, x^1 — False/True values of X, 20 $x\langle Y\rangle$ — Assignment in x to variables in Y, x[m]x[m] - m'th data instance (i.i.d. samples), 698 x^i — The *i*'th value of X, 20 $\mathcal{X}_{\kappa}[A]$ — Ground random variables, 214 $\xi[m] - m$ 'th data instance (i.i.d. samples), 488 ξ^{map} — MAP assignment, 552 $X^{(t)} - X$ at time t, 200 $X^{(t_1:t_2)} - X$ in the interval $[t_1, t_2]$, 200 $X \sim \dots - X$ is distributed according to ...,

Z — Partition function, 105

28

Subject Index

2-TBN, 202	Conditioning, 604
3-SAT, 288, 1151	Conjugate-Gradient-Ascent, 1167
	Convex-BP-Msg, 418
abduction, 1134	Cross-Validation, 707
action, 1061	DP-Merge-Split-Proposal, 942
joint, 1117	Data-Dependent-LW, 502, 502, 504
active learning, 1055	EP-Message, 440, 441, 443, 628
activity recognition, 952	Estimate-Parameters, 922, 941
Algorithm	Evaluate, 707, <i>707</i>
Alpha-Expand, 593, <i>5</i> 93	Expectation-Maximization, 873, 922
Alpha-Expansion, 593	Factor-Product, 359
BU-Message, 367, 367, 368, 440, 441	Factored-Project, 434, 435
BU-message, 400	Fibonacci, 1150, <i>1150</i>
Beam-Search, 1158	Find-Immoralities, 89
Branch-and-Bound, 1161, <i>1161</i>	Forward-Sample, 489
Build-Minimal-I-Map, 80, 80, 142, 786	Generalized-MP-BP, 573
Build-PDAG, 89, 90–92, 786, 787, 790, 839,	Generalized-VE-for-IDs, 1105, 1106, 1107
843, 1042, 1043	Gibbs-Sample, 506
Build-PMAP-Skeleton, 787	Gradient-Ascent, 1164
Build-PMap-Skeleton, 85, 86, 89, 90, 101, 787,	Greedy-Local-Search, 815, 1155, 1156
980, 1005, 1051	Greedy-MN-Structure-Search, 986, 990, 992
Build-Saturated-Region-Graph, 423	Greedy-Ordering, 314, 340
CGraph-BU-Calibrate, 398, 400, 413	Holdout-Test, 707
CGraph-SP-Calibrate, 397, 413, 428	Incremental-E-Step, 939, 939
CLG-M-Project-Distr, 622, 628	Incremental-EM, 939
CSI-sep, 173	Initialize-CGraph, 397, 397, 573
CTree-BU-Calibrate, 367, 398, 628	Initialize-CTree, 367, 367
CTree-BU-calibrate, 391	Initialize-Cliques, 353, 353, 357
CTree-Filter-DBN, 657	Iterated-Optimization-for-IDs, 1116, 1116, 1131
CTree-Query, 371	K-Best, 1158
CTree-SP-Calibrate, 357, 364, 365, 368, 398,	LW-2TBN, 666, 666, 670
413, 436	LW-DBN, 666
CTree-SP-Upward, 353, 378, 612	LW-Sample, 493, 493, 502
CTree-SP-calibrate, 388, 413	LearnProc, 706, 707
Compute-ESS, 873, 873, 938	LegalOp, 1157, <i>1157</i> , 1158
Compute-Gradient, 867, 867	M-Project-Distr, 443, 621
Cond-Prob-VE, 304, 317	

MCMC-Sample, 509	object-valued, 234
MEU-for-Decision-Trees, 1088, 1098	average causal effect, 1032
Mark-Immoralities, 86, 87, 89, 102, 787	avorago caasar circot, 1002
Max-Cardinality, 312, 312, 313	back-door
Max-Message, 562	criterion, 1020–1021
Max-Product-Eliminate-Var, 557, 557	trail, 1020
Max-Product-VE, 557	backward induction, 1098
Max-Weight-Spanning-Tree, 1147	decision tree, 1087
Mean-Field, 455, <i>455</i> , 459	bag of words, 766
MinCut-MAP, <i>591</i> , 593	barren node, 98, 136
MinCut, 591	basin flooding, 816, 1156
Msg-Truncated-1-Norm, 603	Bayes' rule, 18
Parameter-Optimize, 986	BayesBall, 94
Particle-Filter-DBN, 670	Bayesian classifier, 727
Perturb, 817, 818	Bayesian estimation, 735, 739, 752, 781, 782, 824
Proposal-Distribution, 941	Bayesian networks, 741–750
Reachable, 75, 76, 102	BDE prior, see BDe prior
Rule-Split, 332, 332, 333	BGe prior, see BGe prior
Rule-Sum-Product-Eliminate-Var, 333, 601	Dirichlet prior, 739, 740
SP-Message, 353, 353, 357, 368, 378, 397, 397,	Gaussian, 779–780
407, 437, 567, 612	incomplete data, 898-908, 1052
Search-with-Data-Perturbation, 817	MCMC, 899-904
Search-with-Restarts, 1159	variational, see variational Bayes
Search, 817, 1159	nonparametric, 730-731, 928-930
Structural-EM, 922	shared parameters, 762-763
Structure-Learn, 922	Bayesian model averaging, 785, 824-832, 928,
Sum-Product-Conditioning, 317	1043
Sum-Product-Eliminate-Var, 298, 298, 306,	computational complexity, 827
347, 611	MCMC, 829-832
Sum-Product-VE, 298, 299, 304, 313, 331, 371,	Bayesian network, 5, 62
611	conditional, see conditional Bayesian network
Tabu-Structure-Search, 1157	gradient, 339, 483
Topological-Sort, 1146	structure, 57
Traceback-MAP, 557, <i>557</i> , 558, 561, 601	Bayesian score, 983
Train-And-Test, 707, 707	BDe prior, 749, 806, 835, 844, 848
alignment, see correspondence	shared parameters, 780
alpha-beta swap, 592, 602	beam search, 890
alpha-expansion, 592	belief propagation
ancestor, 36	asynchronous, 408, 417
argument, 213	clique tree, 355–358
factor, 216	cluster graph, 396–399
feature, 229	convergence, 392, 401–403, 407–411, 417–419
signature, 213, 223	convergence point, 412–413, 479
parent, 221, 223	stability, 408, 413
assignment	convex, 416–419
local optimality, 566–567, 569	damping, 408, 479
MAP, 26, 967	EM, 897 frustrated loop, 568
strong local maximum, 570–572, 602	frustrated loop, 568 Gaussian, <i>see</i> Gaussian, belief propagation
attribute, 213	Gaussian, see Gaussian, bener propagation

local marines, 400	marginalization C10 C21
local maxima, 409	marginalization, 619–621
loopy, 393, 405, 962	weak, 620
Markov network learning, 963–965	operations, 618–621
max-product, 562, 593, 602	causal
convergence, 602	effect, 1014
message scheduling, 408	independence, 1056
nonparametric, 646, 649	mechanism, 175, 1014
operator, 402	model, 1014–1030
region graph, 423–428	augmented, 1017–1020, 1022–1024
residual, 408	functional, 1029–1030
sum-product, 356	identifiability, 1042
synchronous, 402, 408	causal Markov assumption, 1041
tree reparameterization, 408	causal model learning, 1040-1053
tree-CPDs, 478	Bayesian model averaging, 1043
tree-reweighted, 418, 576, 593, 968	constraint-based, 1042–1043
belief state, 652	functional causal model, 1051–1053, 1056
prior, 653	interventional data, 1044–1047
projection, 663	latent variables, 1048–1051
reduced, 656	constraint-based, 1048-1051, 1056
beliefs, 358	score-based, 1048
Beta distribution, 735-737	cellular network reconstruction, 1046-1047
BGe prior, 840	central limit theorem, 1144
bias, 710	Markov chain, 521
bias-variance trade-off, 704	certainty equivalent, 1066
bigram model, 764	chain component, 37, 148
bipartite matching, 534	chain graph, 37, 148
BK algorithm, 690	c-separation, see c-separation
BN2O network, 177, 197	distribution, 149
Boltzmann distribution, 126	model, 148
Bonferroni correction, 843	chain rule
bootstrap, 1046	Bayesian networks, 54, 62
bow pattern, 1024	conditional probabilities, 18, 47
BUGS system, 525–526, 543	entropy, 1139
2000 5/50011, 020 020, 010	mutual information, see mutual information,
c-separation, 150, 156	chain rule
CAI-map, 1076	relative entropy, 1142
minimal, 1077	chance variable, 1089
perfect, 1077	Chebyshev's inequality, 33
calibrated, 358	Cheeseman-Stutz score, see marginal likelihood
CAMEL, 964, 1004	approximation, Cheeseman-Stutz
canonical form, 609, 649	Chernoff bound, 491, 501, 1145
division, 610	χ^2
marginalization, 610	· -
well-defined, 611	distribution, 790
	statistic, 788, 843, 848
operations, 610–611	child, 34
product, 610	Chinese restaurant process, 930
reduction, 611	chordal graph, 311
vacuous, 610	clarity test, 64
canonical table, 618	class, 213

classification, 50, 727	template, 656
collective, 952	upward pass, 356, 378, 654
error, 701	cluster graph, 346, 396
task, 700	Bayesian network, 478
text, 766	beliefs, 396
CLG, see Gaussian, conditional linear	low-temperature-limit, 583
CLG network, 190, 645, 684	Bethe, 405, 414, 415, 573
computational complexity, 615–617	calibrated, 396–398, 412
clique, 35	construction, 404–411
clique potentials, 109	family preservation, 346, 420
clique tree, 140, 346–348, 481, 549, 673, 937	induced subgraph, 570
algorithm	invariant, 399–400
correctness, 353–355	max-calibrated, 583
beliefs, 352, 357, 365	message passing, see message passing
calibrated, 355–358, 384	out-of-cluster inference, 481
CLG network, 626–630	residual, 401, 477
clique, 348	running intersection property, 396, 407
downstream, 347	sepset, 346
initial potential, 351	template, 664
ready, 350, 356	tree consistency, 401
upstream, 347	clustering, 875
computational complexity, 358, 374	Bayesian, <i>see</i> naive Bayes, clustering, 875,
construction, 372–376, 379, 380	902–908, 915–916
downward pass, 356, 655	collaborative filtering, 823, 877
family preservation, see cluster graph, family	collapsed sampling, see Gibbs, collapsed, see
preservation	importance sampling, collapsed, see
incremental update, 369–370, 379	MCMC, collapsed, 526–532, 645, 650
inference as optimization, 387–390	compression, 1137
influence diagram, 1109, 1117, 1131, 1132	computational complexity, 1147–1149
invariant, 361–363, 368	asymptotic, 1147
max-product, 564, 568	running time, 1148
max-calibrated, 563	theory, 1150
max-product, 562–565	concentration phenomenon, 777
traceback, 566	condensation, see filter, particle
measure, 361–364, 383–384, 564	conditional Bayesian network, 191
message, 345	conditional covariance, 259
scheduling, 357	conditional expectation, 32, 451
message passing, see message passing	conditional independence, see independence
multiple queries, 371–372	conditional preference structure, 1072
nested, 377	conditional probability, 18
out-of-clique inference, 370-371, 379	conditional probability distribution, see CPD
reparameterization, 362	conditional probability table, see table-CPD
rule-based CPDs, 379	conditional random field, 113, 143, 191, 197, 710,
running intersection property, 347-348, 353	950, 952
sampling, 544	linear-chain, 146
sepset, 140	skip-chain, 146
strong root, 627	conditioning, 315–325
structure changes, 378, 379	bounded, 540
sum-product, 352	computational complexity, 320-325
	• •

cutset, 318	context-specific independence, 341
incremental, 540	deterministic, 158
induced graph, 322	encapsulated, 192
marginal MAP, 604	Gaussian, see Gaussian, linear
rule-based CPDs, 334	linear Gaussian, 187
confidence interval, 719	logistic, 145, 179, 197, 225, 483
confounding factor, 1012-1014	multinomial, 181, 970
constraint, 388	multiplexer, 165
equality, 1168	noisy-and, 196
expectation consistency, 446, 447	noisy-max, 183, 196
local polytope, see local polytope	noisy-or, 176, 196, 197, 225, 936, 1037
marginal consistency, 384, 387, 416	requisite, 100, 1018, 1112
region graph, 421	rule-based, 168, 195, 601
marginal polytope, see marginal polytope	inference, see variable elimination,
mean field, 455	rule-based CPDs
constraint generation, 976, 1005	table-CPD, 157, 725
constraint propagation, 89	tree-CPD, 164, 195, 196
constraint satisfaction problem, 569	CPT, see CPD, table
context-specific independence, see	CRF, see conditional random field
independence, context-specific	cross-validation, 706, 844, 960
contingency table, 152	CSI-separation, 173, 196
contingent dependency model, 223	computational complexity, 196
contraction, 402	cycle, 37
contrastive	cyclic graphical model, 95
divergence, 974-975	
objective, 970	d-separation, 71
convergence bound, 489, 771, 1145-1146	completeness, 72
convergence rate, 888	soundness, 72
convex optimization, 976	DAG, 37, 57
coordinate ascent, 881	data
coordination graph, 1117	complete, 712
correspondence, 165, 236, 532-536, 544, 550	completion, 869, 881, 912, 921
correlated, 535	incomplete, 712, 849
EM, 534	interventional, 1040, 1044, 1056
Metropolis Hastings, 534	observability, 712
mutual exclusion, 533-534	observational, 1040
variable, 166, 533, 893	weighted, 817, 870
counterfactual	data association, see correspondence, 165, 244
query, 1010, 1026-1027, 1034-1040	532, 550, 680, 893, 940
twinned network, 1035–1037	data fragmentation, 726, 784
world, 1034	data imputation, 869
counterfactual twinned network, 1125	data perturbation, 816
counting numbers, 415, 420, 573	data-driven approach, 6
convex, 416, 419, 574	decision diagram, 170
CPD, 47, 53, 62	decision rule, 1091
aggregator, 225, 245	deterministic, 1091
conditional linear Gaussian, 190, 618	fully mixed, 1111
decomposition	locally optimal, 1109, 1110
causal independence 325-329	ontimization, 1107, 1108, 1130

iterated, 1115-1117, 1131	prior, 47
local, 1111	support, 494
decision theory, 1059, 1068	uniform, 28
decision tree, 1085, 1096–1097	duality, 957, 1171–1172
strategy, 1087	convex, 470
decision variable, 1017, 1089	dynamic Bayesian network, 202–205, 837
decision-making situation, 1061	fully persistent, 658
declarative representation, 1, 1133	parameter estimation, 781
deep belief networks, 1000	structure learning, 846
degree, 34	dynamic programming, 292–296, 337, 356, 371,
bounded, 992	482, 596, 1149
density estimation, 699, 784	dynamical system, see filter
density function, 27–31	continuous time Bayesian network, 242
conditional, 31	Dynamic Bayesian network, see dynamic
joint, 29	Bayesian network
dependency network, 96, 822, 823	hidden Markov model, <i>see</i> hidden Markov
descendant, 36	model
detailed balance, 515, 546	linear, 211
deterministic separation, 160	Markovian, 201
digamma function, 907	semi-Markov, 202, 243
directed acyclic graph, see DAG	semi-Markovian, 243
Dirichlet distribution, see BDe prior, 738,	stationary, 202
746–750	switching linear, 212, 684
mixture, 779	ownering mean, 212, 001
posterior, 738	E-step, 872, 874, 907
sampling, 900	variational, 896
variational update, 906–907	edge
Dirichlet process, 929–930, 941–942	covered, 78, 100
discretization, 606	covering, 78
discriminative training, 709, 950, 997	directed, 34
distance measure, 1140–1143	fill, 307, 340
distance metric, 1140, 1143	inter-time-slice, 204
distribution, 16	intra-time-slice, 204
Bernoulli, 20	reversal, 78, 99, 545, 673
conditional, 22	spurious, 173
cumulative, 28	undirected, 34
empirical, 703	EKF, see Kalman filter, extended
Gamma, 765, 780, 900	EM, 535, 907
Gaussian, see Gaussian, 720	accelerated, 892
joint, 3, 21	approximate inference, 893-897
Laplacian, 959	Bayesian network, 868-897
marginal, 21	computational complexity, 891
mixture, see Gaussian, mixture, 484, 713, 875,	table-CPD, 872–874
915	belief propagation, 897
multinomial, 20, 720	clustering, 875–877
normal-Gamma, 751	convergence, 887
Poisson, 283	practice, 885-887, 890-892
positive, 25, 116	theory, 874-875, 877-884
posterior, 3	dynamic Bayesian network, 937

exponential family, 874	relative, 291, 491, 544
hard assignment, 876, 884-885, 889, 937	estimator, 1145
incremental, 892, 938	Bayesian, see Bayesian estimation
initialization, 889–890	consistent, 769
local maxima, 886, 888-890	MAP, see MAP estimation
log-linear model, 955–956	maximum likelihood, see maximum likelihood
MAP, 898, 940	estimation
noisy-or, 936	representation independence, 752–754
overfitting, 891	unbiased, 1145
single family, 937	variance, 495
tree-CPD, 936	event, 15
variational, 895–897	measurable, 16
empirical distribution	evidence, 26
Gaussian, 722	evidence retraction, 339
endogenous variable, 1027	expectation
energy function, 124	linearity of, 32
canonical, 129	random variable, 31
restricted, 592	expectation maximization, see EM
submodular, 590, 595	expectation propagation, 430, 441, 444, 664
truncation, 602	and belief propagation, 482
energy functional, 385, 450, 881-882, 905, 914,	convergence point, 447
940	Gaussian
convex, 416, 962	message passing, 621
energy term, 385	mixture, 621-626, 686-688
entropy term, 385	nonlinear, 630, 637-642
factored, 386-387, 411	message passing, see message passing,
optimization, 411–414	expectation propagation
generalized, 414–428	expectation step, see E-step
Gibbs distribution, 458	Expectimax, 1087
optimization, 459–468	expert system, 67
temperature-weighted, 582-585	expert systems, 13
energy minimization, 553, 599	explaining away, see reasoning, intercausal, 55,
entanglement, 656–660	196
entropy, 477, 1138–1142	exponential family, 261, 442, 874, 879
Bayesian network, 271	Bayesian network, 268–269
conditional, 1139	Bernoulli, 265
convex, 417	composition, 266
exponential family, 270	CPD, 267
factored, 386, 964	EM, 874
Gaussian, 270	factor, 266
joint, 1139	Gaussian, 263
Markov network, 270	invertible, 263, 278, 283
relative, 1141	linear, 264, 757
conditional, 1142	linear Gaussian, 267
weighted approximate, 415	multinomial, 265
EP, see expectation propagation	parameter estimation, 732
equivalent sample size, 740	exponential time, 1148
error	onpononium timo, mo
absolute, 290, 544	factor, 5, 104, 296
absolute, 200, 011	, 0, 101, 200

division, 365	free energy, 385
expected utility, 1108	Bethe, 414
generalized, 342, 1130	frequentist interpretation, 16
joint, 1103–1107, 1130, 1131	function
log-space, 360	concave, 41
marginalization, 297, 360, 378	convex, 41
maximization, 555	,
nonnegative, 104	game theory, 1130
operations, 358–361	Gamma distribution, see distribution, Gamma
stride, 358	Gamma function, 735, 798
product, 107, 359	Gaussian, 28, 1144
reduction, 111, 303	Bayesian network, 251-254, 1084
scope, 104	belief propagation, 612-614
set, 432	clique tree, 611-612
marginalization, 432	covariance matrix, 247
product, 432	exponential family, 264
factor graph, 123, 154, 418	independencies, 250-251, 258
factorization, 50	information matrix, 248
bayesian network, 62	linearization, 631-637, 650
factor graph, 123	incremental, 640
Markov network, 109	mean vector, 247
faithful, 72, 786	mixture, 190, 616
faithfulness assumption, 1042	collapsing, 620–621, 624–626, 685–688
family score, 805	pruning, 685
feature	MRF, 254–257
indicator, 125	diagonally dominant, 255
linear dependence, 132	pairwise normalizable, 256, 614
log-linear model, 125	walk-summable, 648
features, 50	multivariate, 247–251
filtering, 652	normalizable, 622–624, 639
assumed density, 664	standard, 28, 248
bootstrap, 668	Gaussian processes, 778
particle, 667–674, 680	general pseudo-Bayes, 685, 687
collapsed, 674, 693, 694	generalization, 704–708, 784
posterior, 671	generalized linear model, 178
Rao-Blackwellized, 674	generative training, 709
recursive, 654	genetic inheritance, 57–60
state-observation model, 653-654	GES algorithm, 821
fixed point	Gibbs distribution, 108
equations, 482	parameterization, see Markov network,
fixed-point, 402	parameterization
equations, 390, 412, 424, 447, 451, 458, 479	reduced, 111
forest, 38	Gibbs sampling, 505–507, 512–515, 547
forward pass, 654	block Gibbs, 513
forward sampling, 488–492, 541	collapsed, 531, 549, 550, 1056
convergence bounds, 490–491	incomplete data, 901–904, 929, 940
estimator, 490	continuous state, 644
sample size, 490, 544	incomplete data, 899–904
forward-backward algorithm, 337, 655	Markov chain, 512

nomilarity 514	demotion 244
regularity, 514	duration, 244
stationary distribution, 512, 546	factorial, 204, 482
goodness of fit, 708, 839	hierarchical, 210, 244
GPB, see general pseudo-Bayes	mixed memory, 244
gradient, 1162	phylogenetic, 206, 483
ascent, 863, 1163–1166	segment, 244
Bayesian network, 867–868	hidden variable, 65, 713, 849, 925–932
conjugate, 1166	cardinality, 928–930
convergence, 887	model selection, 928
L-BFGS, 950, 991	hierarchical, 931
line search, 1164	information, 926–928
Bayesian network, 863-866, 936-937	overlapping, 931
log-likelihood, 864	partition, 929
chain rule, 864	hierarchical Bayes, 765, 779
Gaussian, 937	HMM, see hidden Markov model
hidden variable, 937	Hoeffding bound, 490, 771, 1145
log-linear model, 948	holdout testing, 705-708, 795
partition function, 947–948	Hugin, 377
unstable, 962	algorithm, see message passing, belief update
grafting, 992	hybrid network, 186
graph	hyperbolic tangent, 403
acyclic, 37	hyperparameter, 958
chordal, 38, 155, 374	Beta, 735
connected, 36	Dirichlet prior, 738
directed, 34	hierarchical distribution, 765
moralized	hypothesis space, 702, 712, 718, 785
Bayesian network, 134	hypothesis testing, 787–790
chain graph, 148	decision rule, 788
singly connected, 38	deviance, 788
skeleton, 77	multiple hypotheses, 790, 843
triangulated, 38	null hypothesis, 787
undirected, 34	· -
	p-value, 789, 843
undirected version, 34	I-equivalence, 76, 784, 815
graph cut, 588	
ground	class, 76, 815, 821
Bayesian network, 217, 221, 224	I-map, 60
Gibbs distribution, 229	Markov network
random variable, 215	construction, 120–122
guard, 223	minimal, 79, 786
1 01:00 1 1 10 1077	construction, 79–81
Hammersley-Clifford theorem, 116, 1077	I-projection, 274, 282, 383
Hessian, 1163	Gaussian, 274
Bayesian network	ICI, see independence, causal
incomplete data, 909	ICU-Alarm, 749, 796, 802, 820, 830, 885
log-likelihood, 950	identifiability, 702, 861
Markov network, 983	Bayesian network structure, 784, 841
partition function, 947	hidden variable, 861
hidden Markov model, 146, 203, 208, 952	incomplete data, 860-862
coupled, 148, 204	intervention query, 1055

local, 862	test, 783, 786-790, 843, 848
identity resolution, <i>see</i> correspondence, 165, 532	independence test
IID, 698, 1144	Markov network, 979–981
image denoising, 112	independencies
image registration, 532	Bayesian network, 56–57
image segmentation, 113, 478	global, 72
immorality, 78	local, 57
potential, 86	chain graph
importance sampling, 494–505, 545, 547, 966,	global, 151
1004	local, 150
adaptive, 542	pairwise, 150
annealed, 543, 548	distribution, 60
backward, 505	Gaussian, see Gaussian, independencies
Bayesian network, 498-505	inclusion, 94
collapsed, 527–530	Markov network, 117-120
normalized, 496-498, 503, 545	global, 115
bias, 497	local, 118, 120-122, 979
estimator, 497	pairwise, 118, 120-122, 154, 979
variance, 497	indicator function, 32
sample size	induced width, 310
effective, 498	inference, 5
sequential, 667–672	inferential loss, 1080
variance, 671	influence diagram, 93, 1089-1090
unnormalized, 494–496, 502	expected utility, 1093-1094
bias, 495	limited memory, 1093
estimator, 495	reduction, 1120, 1132
variance, 495	influence graph, 658
incremental update, 369-370	information edge, 1090
indegree, 34, 804	irrelevant, 1119–1121
bounded, 85, 786, 787, 811, 814, 826, 841-842	information form, 248
independence, 23–25	information state, 1091
causal, 182, 196, 197	insurance premium, 1066
symmetric, 183	interface, 464
conditional	interface variable, 202
continuous, 31	intervention, 1092, 1112
events, 24	ideal, 1010
random variables, 24	query, 1010, 1015
context-specific, 162, 171–175, 196, 1127	identifiability, 1017-1026, 1031-1034
events, 23	simplification, 1018-1026, 1055
marginal, 24	Ising model, 126, 127
persistent, 657	iterated conditional modes, 599
properties, 24–25, 154	iterative proportional fitting, 998
contraction, 25	iterative proportional scaling, 998, 1002
decomposition, 25	$I_{\mathcal{X}}$ -equivalence, 1049
intersection, 25	T to di
strong union, 154	Jensen inequality, 41
symmetry, 24	join tree, see clique tree
transitivity, 154	junction tree, see clique tree
weak union, 25	

1 077	10 10 1 + 1 + 1 10 10 1
k-means, 877	likelihood, marginal, see marginal likelihood
K2 prior, 806, 844	linear program, 579
Kalman filter, 211, 259, 676–684	integer, 577
extended, 212, 631, 678	optimization variables, 577
information form, 677	relaxation, 576, 579
observation update, 677	local consistency polytope, 412, 477, 580, 964
state transition update, 676	local maximum, 1156
unscented, 635, 678	local probability model, 53
kernel density, 730	log-likelihood, see likelihood, 699, 719
KL-divergence, see entropy, relative	expected, 699, 878-881
knowledge discovery, 701, 783	log-linear model, 125, 155, 946
knowledge-based model construction, 241, 242,	shared parameters, 228, 965, 1002
651	log-odds, 179
	logical variable, 213
label bias problem, 953	logit, see sigmoid
Lagrange multipliers, 388, 868, 1168-1172	loop, 38
language model, 209	loopy belief propagation, see belief propagation,
Laplace's correction, 735	loopy
latent Dirichlet allocation, 769	loss function, 699
latent variable, 1012	0/1 loss, 701
latent variable network, 1048	Hamming loss, 701, 978
Lauritzen's algorithm, 626	log-loss, 699
Lauritzen-Spiegelhalter algorithm, see message	lottery, 1059, 1060
passing, belief update	compound, 1062
leaf, 38	preference, 1060
leak probability, 176	lower bound, 386, 412, 469–473, 897
lifted inference, 689	variational, see variational, lower bound
likelihood, 699	
Bayesian network, 723-726	M-projection, 274, 277-283, 383, 433, 443, 620,
conditional, 701, 725, 950	621, 624, 632, 774, 1170–1171
decomposability, 723-726, 857	Bayesian network, 284
global, 725, 859	chain network, 280, 284
local, 726, 859	exponential family, 278
shared parameters, 755	factor set, 433–436
function, 719, 721	Gaussian, 274, 279, 283
incomplete data, 856-860	M-step, 873, 874, 907
computational complexity, 860	MAP, see query, marginal MAP, 26, 574
local, 725	assignment, 534, 537, 1155
log-likelihood, 699	computational complexity, 551–552
log-linear model, 944–949	integer program, 577–579
incomplete data, 954–955	k-best, 559, 601–603, 977, 1005
likelihood score, 805	linear program, 579–581
likelihood weighting, 493–494, 541	marginal, 27, 554, 559–561, 595
data dependent, 502	MAP estimation, 751, 753, 898, 983
expected sample size, 502	Beta, 754
DBN, 665-667	log-linear model, 958–961, 984–985
estimator, 493, 500	block L ₁ prior, 984
normalized, 503, 504	Gaussian prior, see regularization, L_2
ratio, 502, 504	hyperbolic prior, 1003
1440, 000, 001	Typerbone prior, 1000

L_1 prior, 988–992	utility, 1076
Laplacian prior, see regularization, L_1	Markov random field, see Markov network, 105
margin-based estimation, 976–978	labeling, 127, 547
marginal independence, <i>see</i> independence	metric, 128, 588–595
marginal likelihood, 738, 744, 795–799, 826	semimetric, 128, 588–595
approximation, 909–916	max-calibrated, 563, 574
BIC, 911–912, 915	Max-Clique Problem, 1152
candidate, 913–915	max-margin, 1005
Cheeseman-Stutz, 912–913, 915	max-marginal, 553, 562, 563
Laplace, 909–911, 915	decoding, 553, 556–559, 565–567
variational, 914	pseudo, <i>see</i> pseudo-max-marginal
marginal MAP, see MAP, marginal, 685	ratio optimality, 566
computational complexity, 552, 560–561	unambiguous, 553
marginal polytope, 411, 477, 580	max-product, 552, 582
marginalization, see factor, marginalization	max-sum, 553, 577, 1117
strong, 627	max-sum-product, 559
weak, 621–630	maximization step, see M-step
Markov assumption	maximum entropy, 956–958
dynamical system, 201	approximate, 964–965
Markov blanket, 512	distribution, 1169
Bayesian network, 135, 155	expectation constraints, 956
distribution, 121	maximum entropy Markov model, 952
undirected graph, 118, 980	maximum expected utility, see MEU
Markov chain, 507	maximum likelihood estimation, 719, 722
conductance, 519	Bayesian network, 723–732
ergodic, 510	conditional random field, 950–953
homogeneous, 507	consistent, 949, 1002
kernel, 511	Gaussian, 722, 778
mixing, 515, 519–520, 543, 831, 832	incomplete data
empirical, 522–523	computational complexity, 887
multi-kernel, 511, 546	linear Gaussian, 728–730
periodic, 510	log-linear model, 949–950
reducible, 510, 546	dual, 956–958, 1002
regular, 510, 546	using belief propagation, 963–965
reversible, 515	using MCMC, 966–967
temperature, 524	multinomial, 722
transition model, 507	plate models, 757–760
Markov chain Monte carlo, see MCMC	shared parameters, 756–761
Markov decision process, 1129	table-CPD, 725
Markov inequality, 40	maximum spanning tree, 374
Markov model, see hidden Markov model	MCMC, see Markov chain, 507, 644, 673, 966,
Markov network, 5, 103–133	975, 1159
decomposition, 155	burn-in time, 519
pairwise, 110, 404, 478	collapsed, 531–532, 831
parameterization, 106–109	estimator, 521
canonical, 129–132, 154	variance, 521–522
redundancy, 132-133, 948	Gibbs sampling, see Gibbs sampling
tree, 195	Metropolis-Hastings, see Metropolis-Hastings
reduced, 111	network structures, 829–831

roversible jump 025	value, 1094, 1119
reversible jump, 935	micromort, 1070, 1081
sampling, 508, 520–523 autocovariance, 521, 522	min-fill, 314
variable ordering, 831–832	weighted, 314
mean field, 449–456, 895, 906	min-neighbors, 314
algorithm, 454–456	min-weight, 314
cluster, 467	minimax risk, 1083
convergence point, 451–453	minimum description length, 802
energy, 449–450	missing at random, 854, 936
mean prediction, 740	missing completely at random, 853 MLE, <i>see</i> maximum likelihood estimation
medical diagnosis, 51, 67–68, 177, 183, 197, 1124 message decoding, 393	
turbocode, 395	model dimension, 801, 983 model selection, 785, 978
message passing	module network, 846
belief-update, 364–368	moment matching, 278, 949
CLG network, 624–626	Monte Carlo localization, see filter, particle, see
max-product, 563	robot, localization, 680, 691
clique tree, 351–352	moral graph, 135
DBN, 654-655	MPE, see query, MAP
expectation propagation belief-update, 440–442	MRF, see Markov random field
exponential family, 442–445	multiconditional training, 1004
· ·	multinet, 170, 195
Gaussian, 641 sum-product, 437–439	mutilated network, 499, 1014
*	interventional, 1014–1017, 1044
max-product, 563, 603 counting numbers, 573	proposal distribution, 499–500, 530 mutual information, 789, 792, 848, 1140
order-constrained, 623, 639	chain rule, 41
region graph, 425–428, 480–481	conditional, 41
sum-product, 352, 368, 397, 413	Conditional, 41
generalized, 418	naive Bayes, 49, 727
sum-product-divide, 365–368	Bernoulli, 767
meta-network, 742, 858, 899	clustering, 875, 877, 915
global decomposition, 743	multinomial, 767
local decomposition, 746	tree augmented, 842
shared parameters, 763	naive Markov, 144, 197, 710
metric, 127	natural bounds, 1033
Metropolis-Hastings, 516–518, 542, 547, 832, 942,	negative definite, 1163
1159	neighbor, 34
acceptance probability, 517	network polynomial, 304, 339, 378
collapsed	noise parameter, 176
incomplete data, 940	noisy-or model, see CPD, noisy-or
continuous state, 644	normal-Gamma distribution, 780
random walk, 645, 903	NP-hardness, 1150–1153
MEU	CSI-separation, 196
principle, 1061	elimination ordering, 310
strategy	inference
decision rule, 1107, 1108	approximate, 291–292
decision tree, 1098–1100	exact, 288–290
influence diagram, 1094, 1115, 1131	MAP, 551
	,

polytree CLG, 617	prior, 733
reduction, 1152	parameter independence, 799, 834, 857
structure learning	global, 742, 805–806, 837
directed, 811, 841	local, 747
undirected, 1000	parameter modularity, 805
triangulation, 313	CPD-tree, 835
numerical integration, 633	parameter posterior, 734, 738
exact monomials, 634–637	parameter prior, see parameter distribution,
precision, 635	prior, 738
Gaussian quadrature, 633–634	Bayesian network, 748, 805–806
precision, 633	conjugate, 737
integration rule, 633, 634	log-linear model
precision, 633	conjugate, 961
p100101011, 000	L_1 , 959
object, 213	L_2 , 958
object skeleton, 214, 229	parameters, 46, 720
object uncertainty, 233	independent, 46, 259, 801
object-oriented Bayesian networks, 192	incomplete data, 912
objective function, 702, 718, 1154	legal, 262
concave	natural, 263
over the constraints, 417	function, 262
observability	space, 264
model, 851	space, 262
variable, 851	parametric family, 261, 720
observation model, 207	parametric model, 720
observed variable, 24, 71, 114, 142	parent, 34
optimization	partial ancestral graph, 1049–1051
constrained, 381, 1167–1171	partial correlation coefficient, 259
optimization problem, 1154	partially directed acyclic graph, see PDAG, 148
outcome, 1061, 1090	particle, 487
anchor, 1064	collapsed, 487, 526, 543, 674
atomic, 22	data completion, 903–904, 940
space, 15	parameter, 901–903
canonical, 22	deterministic, 536–540, 675
overfitting, 704-708, 726, 769, 794, 801, 886	deterministic search, 549
	weighted, 493
P-map, see perfect map	particle filtering
PAC-bound, 709, 770	smoothing, 692
Bayesian network, 773-776	partition function, 105, 108, 262, 543
log-linear model, 991, 1000-1001	approximate, 966
multinomial, 771–773	convex, 947
parameter	lower bound, 386, 470
sharing, see shared parameters	upper bound, 1004–1005
space, 720	Pascal's wager, 1082
parameter distribution	path, 36
Bernoulli, see Beta distribution	active, 114
conjugate prior, 739	Pathfinder, 67
Gaussian, see normal Gamma distribution	PDAG, 37, 843
multinomial, see Dirichlet distribution	boundary, 34, 149

class, 87, 786, 821, 1042	MCMC, see Metropolis Hastings, 516
PDF, see probability density function	protein structure prediction, 968–969
peeling, 337	pseudo-counts, 740
perfect map, 81, 787	pseudo-marginal, 412, 580
construction, 83–92	pseudo-max-marginal, 562, 568
persistence	decoding, 568–572
edge, 204, 658	pseudo-moment matching, 963, 1004
variable, 204	pseudolikelihood, 970–974
piecewise training, 1003, 1004	consistent, 972
plate, 217	generalized, 973
intersection, 218	generalized, 575
nested, 218	QALY, 1070
plate model, 216–222, 837	quadratic program, 976
text, 767	qualitative probabilistic networks, 94
plateau, 1156	query variable, 26
point estimate, 737	query variable, 20
polynomial time, 1148	random variable, 3, 20-23
polytree, 38, 313, 340, 552, 617	Rao-Blackwellization, see collapsed sampling
positive definite, 248	rationality
positive definite, 248	human, 1067–1068
posterior, 26	postulates, 1062–1064, 1084
potential	recall
edge, 110	edge, 1092
node, 110	imperfect, 1093, 1109, 1116, 1119
Potts model, 127	perfect, 1092, 1098, 1131
prediction, 652	record matching, see correspondence
preference independence, 1071–1072	redundant
prenatal diagnosis, 1079, 1094	feature, 133
prequential analysis, 796	parameterization, 263
prior, 19	reference class, 17
improper, 740	region graph, 419-428, 572
probabilistic context-free grammar, 243	belief propagation, see belief propagtion,
probabilistic finite-state automaton, 209	region graph
probabilistic relational model, 223, 837	calibrated, 421
parameter estimation, 781	construction, 421–423
probability distribution, see distribution	saturated, 422
probability query, 26, 287	regularization, 705, 751
approximate, 290–292	block- L_1 , 984
computational complexity, 288–292	L ₁ , 959, 984
lower bound, 537	L ₂ , 958, 984
reasoning, 54–55	log-linear model, 958-961
causal, 54	rejection sampling, 491, 643
evidential, 55	relation, 213
intercausal, 55	relational Markov network, 229, 1002
probability theory, 2	relational skeleton, 224
probably approximately correct, 709	relational uncertainty, 225, 233
projection, see M-projection; I-projection	relative entropy, 771
proposal distribution, 644, 1160	Bayesian network, 273
importance sampling, 494, 498, 528–530, 542	exponential family, 272
1 0 /	

relevance graph, 1114-1115, 1131	state, 1154
renormalization, 287, 339	systematic, 595
reparameterization, 574, 868	tabu, 596, 816, 1156
max-product	selection bias, 1013
clique tree, 564–565	selector variable, 165
cluster graph, 568	semimetric, 128
counting numbers, 574	sensitivity analysis, 67, 95, 305, 339
sum-product	separation, 115
clique tree, 362	completeness, 116–117
cluster graph, 399	CA-independence, 1077
response variable, 1028–1030, 1035	soundness, 115–116
constraints, 1031–1033	sepset, <i>see</i> clique tree, sepset, <i>see</i> cluster graph,
risk, 700, 1066	sepset
	sequence labeling, 952
averse, 1066 empirical, 700	shared parameters, 754, 780–781
excess, 709, 774	global, 755–760
neutral, 1067	local, 760–761
seeking, 1067 RoboSoccer, 1117	#P, 1153 shrinkage, 243, 764
robot	simmage, 243, 764 sigmoid, 145, 179
	8
localization, 187, 678–684	similarity network, 95, 171 Simpson's paradox, 1015–1016, 1021
mapping, 681, 892–893, 938	simulated annealing, 524, 1159
SLAM, 681, 694	
RP, 1153	smoothing, 652
rule, 166	computational complexity, 692
product, 330	particle, 692
reduced, 172	spanning forest, <i>see</i> spanning tree
scope, 166	spanning tree
split, 331 sum, 330	maximum weight, 809, 1146, 1148
running intersection property, see clique tree,	speech recognition, 209, 675 standard deviation, 33
	standard gamble, 1069
running intersection property	state-observation model, 207
s-reachable, 1112–1114, 1131	
Saint Petersburg paradox, 1065	stationary distribution, 509–511 stationary point, 1162
sample complexity, 709	stereo reconstruction, 113, 593
sample size, 501	stick-breaking prior, 930
search, 675	Stirling's approximation, 843
assignment, 536–540, 595–597	strategic relevance, 1110–1115
beam, 595, 675, 685, 693, 1158	strategy, 1087
branch-and-bound, 595, 603, 604, 1160–1161	complete, 1091
hill-climbing	MEU, see MEU strategy
first-ascent, 815, 1155	structural uncertainty, 232
greedy, 1155	structural uncertainty, 232 structure discovery, 825
local, 595, 812, 814, 985, 1154–1160	confidence estimation, 825
operators, 596, 1154	network features, 825, 827–828
random restart, 1159	structure learning
randomization, 1158–1160	constraint-based, 785–790, 1042
space, 595, 812, 1154	Markov network, 979–981, 1005
space, 555, 512, 1151	Markov Helwork, 373-301, 1003

score-based, 785, 790–824	operators, 835
undirected model, 981–995	trees, 808-809
convergence, 990	undirected model, 985-995
global maximum, 989	computational complexity, 987
hypothesis space, 981-982	delta-score, 987, 992–995
L_1 prior, 988–992	gain heuristic, 993-995, 1005
structure modularity, 804	gradient heuristic, 992
structure score	local maximum, 988
Bayesian, 794-807, 843, 983-984	variable ordering, 809–811
decomposable, 799-801, 805	structured variational, 448-469, 895
BIC, 802, 843, 911, 983	algorithm, 459–468, 482
consistent, 803, 822	convergence point, 458, 482
decomposability, 808, 818-820, 917-919, 986	update, 460-468, 482
decomposable, 805	subgraph
equivalence, 808	complete, 35
Laplace approximation, 983	induced, 35
likelihood, 791-794, 982-983	subjective interpretation, 17
decomposable, 792	subutility function, 1071, 1073, 1117
MAP, 984–985	sufficient statistics, 721
L ₁ , 984, 988-995	aggregate, 756
score equivalence, 807, 821, 844	Bernoulli, 265
structure prior, 804	collection, 819-820
tree-CPD, 834	expected, 278, 871-874, 880
template model	belief propagation, 962
decomposable, 837	conditional random field, 951
tree-CPD	log-linear model, 949
decomposable, 834	MAP assignment, 967-968
structure search, 807-824, 1155	MCMC, 966-967, 1004
computational complexity, 809, 811, 814-815,	function, 262
818-820	Gaussian, 263, 721
delta score, 818, 917	interventional data, 1044-1046, 1056
hidden variable	log-linear model, 947
initialization, 932	multinomial, 265, 721
I-equivalence classes, 821–824	sum-max-sum rule, 1098
incomplete data, 917-925	sum-product, 299, 582, 611
heuristics, 919-920	message passing, see message passing,
structural EM, 920-925, 932, 941	sum-product
local maximum, 815-818	support vector machine, 999
operators, 812-814, 845	survey propagation, 601
edge addition, 812	Swendson-Wang algorithm, 547
edge deletion, 812	system state, 200
edge reversal, 812, 813	•
reinsertion, 847	t-node, 1085
ordering space, 848	table-CPD, see CPD, table
parent constraints, 845	target distribution, 494
plateau, 815	target tracking, 678-684
template model, 837	target variable, 142
tree-CPD, 835-836	Taylor series, 631
delta-score, 846	temperature, 582

temperature parameter, 126, 524, 1160	independence, 1072–1073, 1081
template	variable, 1090
variable	utility function, 1061
instantiated, see ground random variable	curve, 1065–1067
template model	decomposition, 1073
dependency graph, 227, 245	additive, 1073–1080, 1117
factor, 203, 216	multilinear, 1073
instantiated, 216	multiplicative, 1073
feature, 228	distribution, 1084
lifted inference, 689	elicitation, 1069, 1080–1081
parent, 221, 223	factorization, 1076
structure learning, 837–838, 846	human life, 1069-1070
variable, 200, 213	indifference point, 1069
template variable, see attribute	money, 1065-1066
temporal ordering, 1092, 1097, 1131	
test set, 705	v-structure, 71
time slice, 201	validation set, 708, 891
time trade-off, 1069	value of control, 1132
topological ordering, 36, 62, 1146	value of information, 1121-1125, 1132
trail, 36	myopic, 1125, 1126
active, 71	perfect, 1122
minimal, 100	variable elimination, 299, 372, 1099
training set, 705, 720	and conditioning, 319-322, 340
trajectory, 200	causal independence, 325-329
transition model	chordal graph, 310-313
dynamical system, 202	cliques, 308
state-observation model, 207	computational complexity, 305-310, 336
tree, 38, 808	context-specific independence, 329-334
tree reparameterization, see belief propagation,	expected utility, 1100-1107
tree reparameterization	factor semantics, 301, 338
tree-CPD, see CPD, tree-CPD, 834, 936	generalized, 342-343, 1103-1107, 1130, 1131
structure learning, 834-836, 845	induced graph, 306-310
tree-width, 310	max-product, 556
bounded, 982, 1000	traceback, 558
triangle inequality, 1140	max-sum-product, 559-561
triangulation, 139, 313, 374	traceback, 561, 601
troubleshooting, 166, 1027, 1037, 1055, 1124, 1132	ordering, 299-301, 310
truncated norm, 128, 603	computational complexity, 310
TRW, see belief propagation, tree-reweighted	constrained, 561, 596, 629, 1100, 1109
	heuristics, 310-315, 340
uncertainty, 2	maximum cardinality, 312, 340
unrolled Bayesian network, 204	rule-based CPDs, 329-334, 341
unscented transformation, 634	sum-product, 299
upward closure, 35, 136	variational, 470-473, 483
utility, 1060	with evidence, 303
additive independence, 1074–1075	variable ordering, 79-81, 809, 826
CA-independence, 1075–1078, 1084	variance, 33
expected, 1060, 1061, 1064, 1087, 1093	variational
GA-independence, 1078–1079, 1084	Bayesian network, 483
•	•

lower bound, 469–472, 484
method, 386, 469–473
mixture distribution, 484
parameter, 470
sigmoid, 483
variable elimination, 470, 472–473
variational Bayes, 904–908
variational distance, 1143
variational, Markov network, see Gibbs variational
visual-analog scale, 1069
Viterbi algorithm, 598, 675
Viterbi training, 967

witness, 85