Appendix 2

Definitions for Model Integration

I. DEFINITIONS FOR MODEL PARAMETERS, CONSTANTS, AND COEFFICIENTS

ADM1 model:

Variable	Definition	Units
C _i	Carbon content of component i	kmoleC kgCOD ⁻¹
Ni	Nitrogen content of component i	kmoleN kgCOD ⁻¹
$V_{i,j}$	Rate coefficients for component i on process j	Nominally kgCOD m ⁻³
Fproduct, substrate	Yield (catabolism only) of product on substrate	kgCOD kgCOD ⁻¹
H_{gas}	Gas law constant	bar M ⁻¹
$K_{a,acid}$	Acid-base equilibrium coefficient	М
K _H	Henry's law coefficient	M bar ⁻¹
рКа	-log ₁₀ [K _a]	
R	Gas law constant	bar M ⁻¹ K ⁻¹
ΔG	Free energy	J mole ⁻¹
k _{A/Bi}	Acid-base kinetic parameter	M ⁻¹ d ⁻¹
k _{dec}	First order decay rate	d ⁻¹
l _{inhibitor,process}	Inhibition function	
k _{process}	First order decay rate (normally for hydrolysis)	d ⁻¹
k _i a	Gas-liquid transfer coefficient	d ⁻¹
$K_{l,inhibit,substrate}$	50% inhibitory concentration	kgCOD m ⁻³
k _{m,process}	Monod maximum specific uptake rate	kgCOD_S kgCOD_X ⁻¹ d ⁻¹
K _{S,process}	Half saturation value	kgCOD_S m ⁻³
ρ	Kinetic rate of process j	kgCOD_S m ⁻³ d ⁻¹
Y _{substrate}	Yield of biomass on substrate	kgCOD_X kgCOD_S ⁻¹
μ_{max}	Monod maximum specific growth rate	d ⁻¹
рН	-log ₁₀ [H ⁺]	
p _{gas,i}	Pressure of gas i	bar
P _{gas}	Total gas pressure	bar
Si	Soluble component i	kgCOD m ⁻³
t _{res,x}	Extended retention of solids	d
Т	Temperature	К
V	Volume	m ³
	Particulate component i	kgCOD m ⁻³

ASM3 model:

Variable	Definition	Units
i _{N,SI}	N contet of inert soluble COD S _I	g-N g-COD ⁻¹
i _{N,SS}	N content of readily	g-N g-COD ⁻¹
	biodegradable substrate	
i _{N,XI}	N content of inert particulate	g-N g-COD ⁻¹
	COD X _I	
i _{N,XS}	N content of slowly	g-N g-COD ⁻¹
	biodegradable substrate	
i _{N,BM}	N content of biomass X_H , X_{AOB} ,	g-N g-COD ⁻¹
	X _{NOB}	
f _{SI}	Production of S ₁ in hydrolysis	g-COD gCOD ⁻¹
f_{xl}	Fraction of inert COD generated	g-COD gCOD ⁻¹
	in biomass lysis	
Y_{H,O_2}	Yield coefficient for	g-COD gCOD ⁻¹
	heterotrophs in aerobic growth	
Y_{H,NO_3}	Yield coefficient for	g-COD gCOD ⁻¹
	heterotrophs in anoxic growth	
Y_{H,NO_2}	Yield coefficient for	g-COD gCOD ⁻¹
	heterotrophs in anoxic growth	
Y_{STO,O_2}	Yield coefficient for X _{STO} in	g-COD gCOD ⁻¹
	aerobic growth	
Y_{STO,NO_3}	Yield coefficient for X _{STO} in	g-COD gCOD ⁻¹
	anoxic growth	
Y_{STO,NO_2}	Yield coefficient for X _{STO} in	g-COD g-N ⁻¹
	anoxic growth	
Y _{AOB}	Yield coefficient for X _{AOB}	g-COD g-N ⁻¹
Y _{NOB}	Yield coefficient for X _{NOB}	d ⁻¹
k _H	Hydrolysis rate coefficient	d ⁻¹
k _{sto}	Maximum storage rate	d ⁻¹
μн	Maximum growth rate on	d ⁻¹
	substrate of heterotrophs	. 1
µ _{АОВ}	Maximum growth rate of X _{AOB}	d ⁻¹
<u>µ</u> лов	Maximum growth rate of X _{NOB}	d ⁻¹
b _{H,O2}	Aerobic end. resp. rate for X _H	d ⁻¹
b _{STO,O2}	Aerobic end. resp. rate for X _{STO}	d ⁻¹
Ь	Decay rate of X _{AOB}	d ⁻¹
b _{NOB}	Decay rate of X _{NOB}	d ⁻¹
η _{H,NO₃}	Reduction factor for	
	denitrification	
η_{H,NO_2}	Reduction factor for	
	denitrification	
Ŋ _{H,end,NO₃}	Reduction factor for b _H , anoxic	
	condition	
Ŋ _{H,end,NO₂}	Reduction factor for b _H , anoxic	
	condition	

$\eta_{N,end}$	Reduction factor for b _{AOB} and	
	b _{NOB} , anoxic conditions	
K _X	Hydrolysis saturation constant	g X _S g ⁻¹ X _H
K_{H,O_2}	Saturation coefficient for oxygen, het. Growth	g O ₂ m ⁻³
K _{H,O2,inh}	Inhibition coefficient for oxygen, het. Growth	g O ₂ m ⁻³
K _{H,SS}	Saturation coefficient for readily biodegradable substrates, het. growth	g COD m ⁻³
K_{H,NH_4}	Saturation/inhibition coefficient for ammonium, het. growth	g N m ⁻³
K_{H,NO_3}	Saturation/inhibition coefficient for nitrate, het. growth	g N m ⁻³
K _{H,NO2}	Saturation/inhibition coefficient for nitrite, het. growth	g N m ⁻³
K _{H,ALK}	Saturation/inhibition coefficient for alkalinity, het. growth	mol HCO ₃ - m- ³
Кн,ѕто	Saturation coefficient for storage products	g COD m ⁻³
K _{AOB,O2}	Saturation coefficient for oxygen, AOB	g O ₂ m ⁻³
K _{NOB,O2}	Saturation coefficient for oxygen, NOB	g O₂ m ⁻³
K_{AOB,NH_4}	Saturation coefficient for ammonium, AOB	g N m ⁻³
K _{NOB,NO₂}	Saturation coefficient for nitrite, NOB	g N m ⁻³
K _{N,ALK}	Saturation/inhibition coefficient for alkalinity, aut. Growth	mol HCO ₃ - m- ³

Algae model:

μ_{ALG}	Maximum growth rate of	d ⁻¹
	microalgae	
k _{resp,ALG}	Endogenous respiration	d ⁻¹
	constant	
k _{death,ALG}	Inactivation constant	d ⁻¹
K _{C,ALG}	Affinity constant of microalgae	gC m ⁻³
	on carbon species	
I _{CO2,ALG}	CO ₂ inhibition constant of	gC m ⁻³
	microalgae	
K _{N,ALG}	Affinity constant of microalgae	gN m ⁻³
	on nitrogen species	
K _{O2,ALG}	Affinity constant of microalgae	gO₂ m ⁻³
	on dissolved oxygen	

K _{PR}	Inhibition constant of	
	photorespiration	
τ	Coefficient of excess dissolved	
	oxygen	
S _{O2} SAT	Saturation concentration of	gO₂ m ⁻³
	oxygen in the air	
Торт	Optimum temperature for	°C
	microalgae growth	
S	Normalized parameter	
α	Parameter activation	(μE m ⁻²) ⁻¹
β	Parameter inhibition	(μE m ⁻²) ⁻¹
γ	Parameter production	s ⁻¹
δ	Parameter recovery	s ⁻¹
E _f	Photosynthetic efficiency of	μΕ J ⁻¹
	solar radiation	
Х	Index atmospheric clarity	
ζ	Universal solar constant	W m ⁻²
ω	Hour angle	0
ω _s	Sunset hour angle	0
ф	Latitude	0
δ	Sun declination	0
K _{a,O2}	Mass transfer coefficient for	d ⁻¹
	oxygen	
K _{a,CO2}	Mass transfer coefficient for	d ⁻¹
	carbon dioxide	
K _{a,NH3}	Mass transfer coefficient for	d ⁻¹
	ammonia	
$K_{eq,1}$	Chemical equilibrium CO ₂ ↔	
	HCO ₃	
$K_{eq,2}$	Chemical equilibrium HCO ₃ ↔	
	Character and a suitibution NU+	
$K_{eq,3}$	Chemical equilibrium NH ₄ ↔ NH ₂	
K _{eq,w}	Chemical equilibrium H ⁺ ↔ 0H ⁻	
k _{eq,1}	Dissociation constant CO ₂ ↔	d ⁻¹
req,1	HCO ₃	
k _{eq,2}	Dissociation constant HCO ₃ ↔	d ⁻¹
	CO ₃ ²⁻	
$k_{eq,3}$	Dissociation constant NH ₄ ⁺ ↔	d ⁻¹
	NH ₃	1 . 1
k _{eq,w}	Dissociation constant H ⁺ ↔ OH ⁻	g m ⁻¹ d ⁻¹
İC,ALG	Fraction of carbon in microalgae	gC gCOD ⁻¹
İH,ALG	Fraction of hydrogen in	gH gCOD ⁻¹
	microalgae	1
i _{O,ALG}	Fraction of oxygen in	gO₂ gCOD ⁻¹
	microalgae	

i _{N,ALG}	Fraction of nitrogen in	gN gCOD ⁻¹
	microalgae	
$ ho_{1a}$	Microalgae growth rate on	M L ⁻³ T ⁻¹
	ammonia	
$ ho_{1b}$	Microalgae growth rate on	M L ⁻³ T ⁻¹
	nitrate	
ρ ₂	Microalgae endogenous	M L ⁻³ T ⁻¹
	respiration rate	
ρ ₃	Microalgae inactivation rate	M L ⁻³ T ⁻¹
ρ ₄	Chemical equilibrium CO ₂ ↔	M L ⁻³ T ⁻¹
	HCO ₃	
ρ_5	Chemical equilibrium HCO ₃ ↔	$M L^{-3} T^{-1}$
	CO ₃ ²⁻	
$ ho_6$	Chemical equilibrium NH ₄ ↔	$M L^{-3} T^{-1}$
	NH ₃	
ρ_7	Chemical equilibrium H ⁺ ↔ OH ⁻	M L ⁻³ T ⁻¹
ρ ₀₂	Oxygen transfer rate to the	M L ⁻³ T ⁻¹
	atmosphere	
ρ _{co2}	Cardon dioxide transfer rate to	M L ⁻³ T ⁻¹
	the atmosphere	
р _{NH3}	Ammonia transfer rate to the	M L ⁻³ T ⁻¹
	atmosphere	

II. DEFINITIONS FOR MODEL OUTPUTS:

ADM1 model:

Variable	Definition	Units
X _c	Composite	kgCOD m ⁻³
X _{ch}	Carbohydrates	kgCOD m ⁻³
X _{pr}	Proteins	kgCOD m ⁻³
X _{li}	Lipids	kgCOD m ⁻³
Xı	Particulate inerts	kgCOD m ⁻³
Sı	Soluble inerts	kgCOD m ⁻³
S _{su}	Monosaccharides	kgCOD m ⁻³
Saa	Amino acids	kgCOD m ⁻³
S _{fa}	Total LCFA	kgCOD m ⁻³
S _{va}	Total valerate	kgCOD m ⁻³
S _{bu}	Total butyrate	kgCOD m ⁻³
S _{pro}	Total propionate	kgCOD m ⁻³
S _{ac}	Total acetate	kgCOD m ⁻³
S _{h2}	Hydrogen	kgCOD m ⁻³

S _{ch4}	Methane	kgCOD m ⁻³
S _{IC}	Inorganic carbon	M
S _{IN}	Inorganic nitrogen	M
X _{su-h2}	Biomass	kgCOD m ⁻³
S _{cat}	Cations	M
San	Anions	M

ASM3 model:

Variable	Definition	Units
S _{O2}	Dissolved oxygen	gO ₂ m ⁻³
Ss	Soluble substrate	gCOD m ⁻³
S _{NH4}	Ammonium	gN m ⁻³
S _{NO2}	Nitrite	gN m ⁻³
S _{NO₃}	Nitrate	gN m ⁻³
S_{N_2}	Nitrogen	gN m ⁻³
S _{ALK}	Alkalinity	mole HCO ₃ - m-3
Sı	Soluble inert organics	gCOD m ⁻³
X _i	Particulate inerts	gCOD m ⁻³
X _H	Heterotrophic biomass	gCOD m ⁻³
Xs	Slowly biodegradable substrate	gCOD m ⁻³
X _{STO}	Organics stored by	gCOD m ⁻³
	heterotrophs	
X _{AOB}	Ammonium-oxidizing bacteria	gCOD m ⁻³
X _{NOB}	Nitrite-oxidizing bacteria	gCOD m ⁻³

Algae model:

Variable	Definition	Units
S _{NH4}	Ammonium nitrogen	gNH ₄ ⁺ -N m ⁻³
S _{NH₃}	Ammonia nitrogen	gNH ₃ -N m ⁻³
S _{NO₃}	Nitrate nitrogen	gNO ₃ ⁻ N m ⁻³
S _{O2}	Dissolved oxygen	$gO_2 m^{-3}$
S _{CO2}	Carbon dioxide	gCO ₂ -C m ⁻³
S _{HCO₃}	Bicarbonate	gHCO ₃ C m ⁻³
S _{CO₃}	Carbonate	gCO ₃ ² -C m ⁻³
S _H	Hydrogen ions	gH m ⁻³
S _{OH}	Hydroxide ions	gOH ⁻ -H m ⁻³
X _{ALG}	Microalgae biomass	gCOD m ⁻³

III. Conversions for Model Integration

Summary of Key Integration Variables for Each Model:

ADM1	ASM3	Algae
Ssu	SO2	SNH4_alg
Saa	SS	SNH3
Sfa	SNH4_asm3	SNO3
Sva	SNO2	SO2
Sbu	SNO3	SCO2
Spro	SN2	SHCO3
Sac	SALK	SH
Sh2	SI_asm3	SOH
Sch4	XI_asm3	Xalg
Sic	XH	
Sin	XS	
Si	XSTO	
Xc	XAOB	
Xch	XNOB	
Xpr		
Xli		
Xsu		
Xaa		
Xfa		
Xc4		
Xpro		
Xac		
Xh2		
Xi		
Sva_m		
Sbu_m		
Spro_m		
Sac_m		
Shco3_m		
Snh3_m		
Sgas_h2		
Sgas_ch4		
Sgas_co2		

Response Variables Conversions:

Since all of the models ADM1, ASM3 and Algae model follow the same mathematical structures of defining the dynamics of the bioprocesses, the integration of the three models eventually became a simple set of basic operations as follows.

1. From ADM1 to ASM3:

```
XS = 1000*(Xc + Xch + Xpr + Xli + Xsu + Xaa + Xfa + Xc4 + Xpro + Xac + Xh2)

SS = 1000*(Ssu + Saa + Sfa + Sva + Sbu + Spro + Sac)

SALK = 1000*(Sva + Sbu + Spro + Sac + Sic + Sin)
```

2. From ASM3 to Algae:

SNH4_alg = SNH4_asm3 SNO3 = SNO3 SO2 = SO2