21 de noviembre de 2012 Total: 34 puntos Tiempo: 2 horas

III EXAMEN PARCIAL

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos necesarios o procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma ordenada, clara y utilice bolígrafo para resolver el examen. No son procedentes la apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono móvil.

1. Para cada una de las siguientes funciones, determine si es o no una transformación lineal

(a)
$$T: \mathbb{R}^2 \to M_{2\times 2}$$
 dada por $T\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a & -b \\ 0 & a \end{pmatrix}$. (4 puntos)

(b)
$$T: P_2 \to \mathbb{R}$$
 dada por $T(ax^2 + bx + c) = a + bc + 1$. (4 puntos)

- 2. Sea $T: V \to V$ una transformación lineal. Un vector $u \in V$ se llama **punto fijo de** T si T(u) = u. Determine todos los puntos fijos de la tranformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x-y \\ y \end{pmatrix}$. (4 **puntos**)
- 3. Sea $T: \mathbb{R}^2 \to P_2$ dada por $T \begin{pmatrix} a \\ b \end{pmatrix} = (2a b)x^2 + a 3b$.
 - (a) Encuentre una base para el Ker(T). (4 puntos)
 - (b) Determine la dimensión del Ker(T) y la dimensión de la Im(T).

 (3 puntos)
- 4. Sea $T: V \to W$ una transformación lineal biyectiva y sea T^{-1} la función inversa de T. Demuestre que T^{-1} también es una transformación lineal. (5 puntos)
- 5. Considere la transformación lineal $T: \mathbb{R}^2 \to P_1$ tal que

$$T\left(\begin{array}{c} a\\ b \end{array}\right) = (2a - 3b)x - 4b$$

- (a) Demuestre que T es biyectiva. (4 puntos)
- (b) Determine T^{-1} . (4 puntos)
- (c) Calcule $T^{-1}(4x-2)$. (2 puntos)