Unit 1

Function Estimation Probability theory Bayes' Nets

Hypotheses

- A hypothesis is a guess at what an appropriate action (or set of actions) is
 - Some actions are obvious
 - Some require experimentation to find the best fit
- Traffic light hypothesis?
- In this course, we will talk about different ways to make hypotheses

Pick a number

Let's play a game...

- What are the variables?
- What is your hypothesis about the game function?

Evaluating hypotheses

- It is important to validate your hypothesis
- May develop hypothesis by training on some data
 - Very important to have different testing data
- Quantitative evaluation
 - I got x% of the test scenarios correct
 - The average car takes x seconds to go down the street
- Qualitative evaluation
 - My hypothesis explains such-and-such phenomenon, where the competing hypothesis doesn't

Inductive Learning

- A form of supervised learning
- Hypothesizes a function mapping inputs to correct outputs
- \blacksquare Presented with example Tuples (x,f(x)):
 - x is input
 - \blacksquare f(x) is output of function applied to x

Hypotheses

- A hypothesis h is an approximation of the true function f that you are trying to learn
- Pure inductive inference
 - Given {(x,f(x))}, return h(x) which approximates f(x)
- The space of all hypothesis functions is H
 - This is chosen by the person designing the learning algorithm

Deriving Linear Regression

- Want to predict y=f(x)
 - Hypothesis h_w(x) is parameterized by w
- What is the error?

Loss function (error)

■ For linear regression

$$Loss(h_w) = \sum_{j=1}^{N} L_2(y_j, h_w(x_j))$$

$$= \sum_{j=1}^{N} (y_j - h_w(x_j))^2$$

$$= \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

Searching for parameter settings: L₂ Loss

Convex optimization

- Since L₂ loss is convex, it has a global minimum
 - This can be solved analytically in this case

$$\frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0, \frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0$$

$$w_1 = \frac{N \sum_j x_j y_j - (\sum_j x_j)(\sum_j y_j)}{N(\sum_j x_j^2) - (\sum_j x_j)^2}, w_0 = \frac{(\sum_j y_j - w_1(\sum_j x_j))}{N}$$

Function Approximation #2: Approximating histograms

Probability distributions

- Probability theory drives much of machine learning
- Learning == function approximation
 - What are parameters?
 - What is loss function?

Predicting bedrooms from price

Simplest predictor: most likely #bedroom given price

Why is this not right?

A real classifier: Incorporate *prior* information

Transition: Probability Theory

- We can approach problems
 - by positing a hypothesis function class,
 - estimating parameters of the hypothesis function,
 - using a loss function to guide us
 - Do the right thing!
- First example of regression, classification
- Now we explore topics in probability theory for making classification decisions

Logical reasoning

■ In 630/5521, we talked about logic

Mary loves John	
Betty loves John	
John loves John	
Q: Does everyone love John?	

Logical reasoning

■ Here, the "variables" are logic sentences

Mary loves John	S1: loves(M,J)	
Betty loves John	S2: loves(B,J)	
John loves John	S3: loves(J,J)	
Q: Does everyone love John?	$\begin{array}{c} S1^{S}2^{S}3=>\forall\\ x \text{ loves}(x,J) \end{array}$	

Logical reasoning

■ Values are true, false

Mary loves John	S1: loves(M,J)	true
Betty loves John	S2: loves(B,J)	true
John loves John	S3: loves(J,J)	true
Q: Does everyone love John?	$S1^S2^S3=>\forall$ x loves(x,J)	true (if world only consists of M,B,J)

Reasoning with uncertainty

■ What if we don't know the answers?

It's likely Mary loves John	P(loves(M,J))	
I'm not sure if Betty loves John	P(loves(B,J))	
John almost certainly loves John	P(loves(J,J))	
Q: Does everyone love John?	$P(\forall x loves(x,J))$	

Reasoning with uncertainty

Can give the probability of values

It's likely Mary loves John	P(loves(M,J)=true)=0.8
I'm not sure if Betty loves John	P(loves(B,J)=true)=0.5
John almost certainly loves John	P(loves(J,J)=true)=0.95
Q: Does everyone love John?	$P(\forall x \text{ loves}(x,J)=\text{true})=$ $0.8*0.5*0.95=0.38$ (assuming above are independent)

Where do probabilities come from?

- From life experience
- From guessing
- From controlled sample pools
- The quality of the judgments made using this data will depend on the sample that the probabilities came from
 - How well does the source match the test conditions?
 - Language statistics from newswire applied to childrens books

What are probabilities in terms of logic?

- Probabilities describe the degree of belief in a particular proposition
 - No longer just true or false
 - "The chance of rain today is 10%" P(rain) = .1
 - "80% of the time, squealing indicates bad brakes"
 ... means that we believe 80% of the time
 Squeal => BadBrakes
- It is not that the proposition is x% true
 - P(rain)=.1 does not mean it is raining 10%

Random variables

- In order to determine the probability of events, we have to know how many different possibilities there are
- A random variable takes on one or more values
 - 6-sided die roll: Roll=1, Roll=2, ..., Roll=6
 - Squealing: Squeal=true, Squeal=false
- Random variables have three components:
 - The name of the variable
 - The range of its elements
 - A probability associated with each element
 - This is called a probability distribution

Random variables

- Typically written with a capital letter (particularly in R&N)
- 3 types, depending on domain
 - boolean: <true, false>
 - Logical propositions
 - Can abbreviate P(Rain=true)=P(rain), P(Rain=false)=P(~rain)
 - discrete: <a,b,c,d>
 - continuous: [0,1]
- Examples of each?

Unconditional probabilities

- What you think of as "regular" probabilities
- Gives the probability of a variable taking a particular value without any conditions
 - P(Roll=2)=1/6
 - P(rainToday)=0.1
- Probabilities must sum to 1 over all values of the variable
 - Implies that P(~rainToday)=0.9
 - P(Roll=1vRoll=3vRoll=4vRoll=5vRoll=6)=5/6
- Also called the "prior"

Unconditional probabilities

- Often, we want to write out a whole distribution
 - P(Cavity)=<0.1,0.9>
 - P(Weather)=<0.2,0.1,0.6,0.1>
 - Weather: <sun,rain,cloudy,snow>
 - P(Temperature=x)=U[50,70](x)
 - Continuous distribution: we'll come back to this

The Axioms of Probability

- All probabilities are between 0 and 1
 - $0 \le P(a) \le 1 \ \forall \ a$
- A proposition which is true has probability
 1, false has probability 0
 - \blacksquare P(true) = 1, P(false) = 0
- The probability of a disjunction (a v b):
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Joint probabilities

- We can consider probabilities of more than one variable
 - E.g. P(rainToday ^ windToday)
- This is a joint probability table (JPT):

	rainToday	~rainToday
windToday	0.08	0.2
~windToday	0.02	0.7

marginalization

0.9

0.28

Joint probabilities

- We can consider probabilities of more than one variable
 - E.g. RainToday & WindToday
- This is a joint probability table:

	rainToday	~rainToday
windToday	0.08	0.2
~windToday	0.02	0.7

Marginalization

	rainToday	~rainToday
windToday	0.08	0.2
~windToday	0.02	0.7

- We can calculate the probability of individual variables by summing the columns or rows
 - P(windToday)=0.28
 - P(~rainToday)=0.9

- What is P(cavity) given the following JPT?
 - To answer this, sum wherever cavity is true

	toothache		~toothache	
	catch	~catch	catch	~catch
cavity	0.108	0.012	0.072	0.008
~cavity	0.016	0.064	0.144	0.576

- What is P(cavity) given the following JPT?
 - To answer this, sum wherever cavity is true P(cavity)=0.108+0.012+0.072+0.008=0.20

	toothache		~toothache	
	catch	~catch	catch	~catch
cavity	0.108	0.012	0.072	0.008
~cavity	0.016	0.064	0.144	0.576

What is P(cavity v toothache)?

	toothache		~toothache	
	catch	~catch	catch	~catch
cavity	0.108	0.012	0.072	0.008
~cavity	0.016	0.064	0.144	0.576

- What is P(cavity v toothache)?
 - P(cavity v toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28

	toothache		~toothache	
	catch	~catch	catch	~catch
cavity	0.108	0.012	0.072	0.008
~cavity	0.016	0.064	0.144	0.576

- What is P(cavity ^ toothache)?
 - P(cavity ^ toothache) = 0.108 + 0.012 = 0.12
 - = $\sum_{c \in Catch} P(cavity, toothache, c)$

	toothache		~toothache	
	catch	~catch	catch	~catch
cavity	0.108	0.012	0.072	0.008
~cavity	0.016	0.064	0.144	0.576

How many parameters (distinct numbers that can't be calculated) are needed to specify JPT with binary variables?

	toothache		~toothache	
	catch	~catch	catch	~catch
cavity	0.108	0.012	0.072	0.008
~cavity	0.016	0.064	0.144	0.576

Conditional Probabilities

- Sometimes we know some things to be true, and want to find out how that affects other variables
 - I know my brakes are squealing, are they bad?
 - I know I have a toothache, do I have a cavity?
 - I know I got an 80 on the exam, will I pass the class?

Conditional Probabilities

- We write P(alb) to mean "what's the probability of A being true given that B is true"
 - I know my brakes are squealing, are they bad?
 - P(badBrakes I squeal)
 - I know I have a toothache, do I have a cavity?
 - P(cavity I toothache)
 - I know I got an 80 on the exam, will I pass the class?
 - P(pass I Score=80)

Conditional probabilities

The conditional probability P(AIB) is related to the joint P(A,B) and the prior P(B):

P(A|B) = P(A,B) / P(B)

Conditional probabilities

What's P(rainTodayl~windToday)?

	rainToday	~rainToday
windToday	0.08	0.2
~windToday	0.02	0.7

- P(rainToday,~windToday)/P(~windToday)
 - 0.02/0.72 ~= 0.027

Conditional probabilities

What's P(rainTodaylwindToday)?

	rainToday	~rainToday
windToday	0.08	0.2
~windToday	0.02	0.7

- P(rainToday,windToday)/P(windToday)
 - **0.08/0.28** ~= 0.285

Marginalization (again)

- In general, if you have P(X,Y,Z) and you want P(X,Y):
 - $P(X,Y) = \sum_{z \in \mathcal{I}} P(X,Y,z)$

■ Similarly, want P(XIZ) and have P(X,YIZ)

■ P(XIZ) =
$$\sum_{y \in Y} P(X,y|Z)$$
 $= \sum_{y \in Y} P(X,y|Z)$

Moral: if you want to remove a variable, sum over it $P(X) \neq EP(X/2)$

Derivation of Bayes' Rule

We defined conditional probability as:

$$P(A|B) = P(A,B)/P(B) P(A,B) = 7(A|B) P(B)$$

Which means:

Which means:
$$P(B,A) = P(B,B)$$

P(AIB) P(B) = P(A,B) $P(A,B) = P(B,A) P(A,B)$

But:

So:

- \blacksquare P(AIB) P(B) = P(BIA) P(A)
- (P(A|B)P(B))/P(A) = P(B|A)Bayes' Rule

Bayes' rule in action

- Suppose a patient came in with a stiff neck; what's the probability of meningitis?
 - What's P(mls)?
 - Could estimate this directly, but might have other evidence that makes it easier
 - P(slm) = 0.5, P(m)=1/50000, P(s)=1/20
 - P(mls) = (P(slm)P(m))/P(s) = 0.0002
- What if there's a meningitis epidemic?

Independence

- Random variables can influence each other, or be independent
- We say a and b are absolutely independent if P(a,b) = P(a)P(b)
 - P(heads,tails) in 2 coin flips is 0.25
 - P(heads)=0.5, P(tails)=0.5
 - Coin flips are independent
- Can also say P(alb)=P(a)

Conditional independence

- Things are not always completely independent:
 - toothache and catch are not independent (they are both more likely if you have a cavity)
 - HOWEVER, you can say that they are independent GIVEN that you have a cavity:
 - P(toothache ^ catch I cavity) =
 P(toothache I cavity) P(catch I cavity)

Combining evidence with conditional independence

- Want P(cavity I toothache, catch)
 - P(toothache, catch I cavity) P(cavity) / P(toothache, catch)
 - = P(toothache I cavity) P(catch I cavity) P(cavity) / P(toothache, catch) conditional independence
- Ignore P(toothache, catch) for a minute
- We can combine causal information from different sources to give a probability of diagnosis

Alpha-normalization

- Notice in Bayes' rule, we need 3 distributions to describe 1 other:
 - \blacksquare P(Alb) = P(blA) P(A) / P(b)
- When we have a single value on conditioning side (e.g., b), P(b) just normalizes the other two distributions $\ll = \frac{1}{p(b)}$
- Can re-write this as
 - \blacksquare P(Alb) = α P(blA) P(A)
 - or $P(Alb) = \alpha P(b,A)$

Alpha normalization

P(Toothachelcavity)=<.6,.4> P(Toothachel~cavity)=<.1,.9> P(Cavity)=<.2,.8>

■ P(CavityItoothache) =
$$\alpha$$
 P(toothache,Cavity) = α (<.6*.2,.1*.8>) = α (<.12,.08>) = <.12/.20,.08/.20> = <.6,.4>

Alpha normalization

P(Toothachelcavity)=<.6,.4> P(Toothachel-cavity)=<.1,.9> P(Cavity)=<.2,.8>

■ P(CavityItoothache) = in probability given new information α P(toothache,Cavity) = α (<.6*.2,.1*.8>) = α (<.12,.08>) = <.12/.20,.08/.20> = <.6,.4>

Note difference

Combining evidence (again)

- The bank is closed, and I didn't receive mail today. What is the probability that today is a holiday?
- Assume:
 - Banks are always closed on holidays
 - No mail on holidays
 - 62 holidays a year
 - Bank is closed on 1 non-holiday/year
 - I don't receive mail 18 (non-holiday) days a year

Combining evidence (again)

The bank is closed, and I didn't receive mail today. What is the probability that today is a holiday?

```
■ P(HI ~bank , ~mail) = \alpha P(~bank , ~mail | H ) P(H) = \alpha P(~bank|H) P(~mail | H) P(H) = \alpha < 1 * 1 * 62/365, 1/303 * 18/303 * 303/365 > = \alpha < 0.1699,0.000162> = < 0.999,0.001>
```

Problems with Joint Probability Tables

- A joint probability table expresses all of the possible situations given a set of variables
- When # of variables gets large, the JPT is often too big to express
 - Remember: binary case is 2^k-1
- Need more efficient mechanism for larger problems

Back to conditional probabilities...

The joint distribution can always be specified as a product of conditional distributions

$$\begin{split} P(X_{1}, X_{2}, \dots X_{n}) &= P(X_{1} | X_{2}, \dots X_{n}) P(X_{2}, \dots, X_{n}) \\ &= P(X_{1} | X_{2}, \dots, X_{n}) P(X_{2} | X_{3}, \dots, X_{n}) P(X_{3}, \dots, X_{n}) \\ &= \Pi_{i=1:n} P(X_{i} | X_{i+1} \dots X_{n}) \\ &= \Pi_{i=1:n} P(X_{i} | X_{1} \dots X_{i-1}) \end{split}$$

Conditional probability tables

- Given conditioning variables, what is probability of other variable?
 - $P(Xle_1,e_2)$, where X, e_1 , and e_2 are binary

e_1	e_2	X=true	X=false
T	Т	a	1-a
T	F	b	1-b
F	Т	c	1-c
F	F	d	1-d

Conditional probability tables

- Given conditioning variables, what is probability of other variable?
 - $P(Xle_1,e_2)$, where X, e_1 , and e_2 are binary

e_1	e_2	X=true	X=false/
T	Т	a	1-à
T	F	b	1-b
F	Т	c	1/c
F	F	d	1-d

Another CPT example

- Block is either square or round
- Block is either red, blue, or yellow

Shape	P(Color=red)	P(Color=blue)
round	1/3	0
square	3/7	3/7

Why all the hoopla?

- Remember conditional independence:
 - If A is conditionally independent of B given C:
 - \blacksquare P(A,BIC) = P(AIC) P(BIC)
 - \blacksquare P(AIB,C) = P(AIC)
- So?

Why all the hoopla?

Look at what happens to CPT:
P(AIB,C) = P(AIC)

В	C	P(AlB,C)	C	P(AlC)
T	T	a	T	a
T	F	b	F	b
F	T	a	'	
F	F	b		

What CI assumption can be made here?

W	X	Y	P(ZIW,X,Y)
T	T	Т	0.3
T	T	F	0.4
T	F	T	0.3
T	F	F	0.4
F	T	T	0.7
F	T	F	0.3
F	F	T	0.7
F	F	F	0.3

Summary: counting parameters

- Sometimes we are concerned with the number of parameters (probabilities)
- Numbers that we don't have to specify explicitly don't count
- Full joint distribution has n₁*n₂*..n_k-1 parameters (why?)
 - Boolean variables: 2^k-1 parameters
- Independence assumptions can reduce the number of parameters
- How does this relate to Occam's Razor?

Bayesian Networks

- Graphical formalism to help keep track of independence assumptions
- Each Bayes' Net has the following properties
 - Contains a set of random variables, each represented by the nodes of a network
 - Contains a set of directed links between nodes
 - If X->Y, then X is the parent of Y
 - Each node has a CPT associated with it
 - P(XIParents(X))
 - The links have no directed cycles
 - Bayes' nets are directed, acyclic graphs (DAGs)

- Cavity example: 4 variables
 - Weather, Cavity, Toothache, Catch

Now draw links from X to Y if X directly influences Y

Cavity directly affects whether you have a Toothache

Cavity directly affects whether the probe Catches

If you know if you have a cavity or not, then Toothache and Catch are independent

Weather

Weather is (in theory) independent of all other variables. (Is this true?)

If stormy weather makes toothaches more likely...

Directions of arrows

- Can have P(A,B) represented as
 - P(AIB), P(B)

■ P(BIA), P(A)

- How do you know which way to draw the arrows?
 - Usually best to go from causes to effects

Alarm example (Judea Pearl)

- Currently at work
- John (neighbor) calls to say alarm is ringing
- Mary (other neighbor) doesn't call
- Sometimes alarm is set off by small earthquakes
- Is there a burglar?

Alarm example

- Variables:
 - Burglar (B): binary
 - Earthquake (E): binary
 - Alarm (A): binary
 - John calls (J): binary
 - Mary calls (M): binary
- [Example worked out on board, can be found R&N]

Global semantics

- Can get any joint distribution from Bayes net:
 - $P(X_1,X_2,...X_n)=\Pi_{i=1:n} P(X_i | P(X_i | P(X_i)))$
- What is probability of John calling, Mary calling, Alarm is on, but no burglary or earthquake?

Global semantics

- Can get any joint distribution from Bayes net:
 - $P(X_1,X_2,...X_n)=\Pi_{i=1:n} P(X_i|Parents(X_i))$
- What is probability of John calling, Mary calling, Alarm is on, but no burglary or earthquake?
 - P(j,m,a,~b,~e)=
 P(jla)P(mla)P(al~b,~e) P(~b) P(~e) =
 .9 * .7 * .001 * .999 * .998 = 0.000628

Local semantics

- There are two ways to express conditional independence relationships in Bayes nets:
 - 1) Each node is CI of non-descendants given its parents
 - 2) Each node is CI of others given its Markov blanket
 - Markov blanket: parents + children+ children's parents

Local semantics

- There are two ways to express conditional independence relationships in Bayes nets:
 - 1) Each node is CI of non-descendants given its parents
 - 2) Each node is CI of others given its Markov blanket
 - Markov blanket: parents + children+ children's parents

Building Bayes Nets: Algorithm

- Choose an ordering of variables X₁...X_n
- for i = 1..n
 - add X_i to the network
 - select Parents from X₁...X_{i-1} s.t. P(X_iIParents(X_i))=P(X_iIX₁...X_{i-1})

M

Start with ordering M, J, A, B, E

- Start with ordering M, J, A, B, E
- P(JIM)=P(J)?

- P(JIM)=P(J)? NO
- P(AIJ,M) = P(AIJ)?
 P(AIJ,M) = P(A)?

■ P(AIJ,M) = P(AIJ)? NO P(AIJ,M) = P(A)? NO

■ P(BIA,J,M) = P(BIA)?
P(BIA,J,M) = P(B)?

■ P(BIA,J,M) = P(BIA)? YES P(BIA,J,M) = P(B)? NO

P(EIB,A,J,M) = P(EIA)?
P(EIB,A,J,M) = P(EIA,B)?

P(EIB,A,J,M) = P(EIA)? NO P(EIB,A,J,M) = P(EIA,B)? YES

- Conditional independence is hard in non-causal directions
 - How do you find P(JIM) in real life?
 - Difficult to know since the two are not causally related

Computing the joint probability

- Alarm example
- Compute: P(j,m,a,~b,~e)=
 P(jla)P(mla)P(al~b,~e) P(~b) P(~e) =
 .9 * .7 * .001 * .999 * .998 = 0.000628

Missing information

What's the probability distribution over Burglary given that John calls and Mary calls?

Missing information

- What's P(Blj,m)?
- The state of A, E are unknown.
 - So we must "sum them out" (marginalize).
 - These are called hidden variables.

First: redefine your quantity as the normalized sum over a joint distribution

■ P(Blj,m) = P(B,j,m) / P(j,m)
=
$$\alpha$$
 P(B,j,m)
= α Σ_e Σ_a P(B,e,a,j,m)
"e" here means e or ~e

Next, replace joint distribution by CPT entries

$$\alpha \Sigma_{e} \Sigma_{a} P(B,\underline{e},\underline{a},j,m) = \alpha \Sigma_{e} \Sigma_{a} P(B) P(\underline{e}) P(\underline{a}|B,\underline{e}) P(j|\underline{a}) P(m|\underline{a})$$

Where do these come from?

Now, push summations inwards

$$\alpha \Sigma_e \Sigma_a P(B) P(\underline{e}) P(\underline{a}|B,\underline{e}) P(\underline{j}|\underline{a}) P(\underline{m}|\underline{a}) =$$

$$\alpha P(B) \Sigma_e P(\underline{e}) \Sigma_a P(\underline{a}|B,\underline{e}) P(j|\underline{a}) P(m|\underline{a})$$

This reduces the number of products you need to do.

- Now, start computing summations.
- Need two cases for inner summation
 - e is true, e is false
- Inner sum: $\Sigma_a P(\underline{a}|B,\underline{e}) P(j|\underline{a}) P(m|\underline{a})$
 - e is true:

```
• (<.95,.29> * .9 * .7) + (<.05,.71> * .05 * .01)
= <0.5985,0.1827> + <2.5e-05,3.55e-04>
= <0.598525,0.183055>
(vector is over <b, ~b>)
```

- Now, start computing summations.
- Need two cases for inner summation
 - e is true, e is false
- Inner sum: $\Sigma_a P(\underline{a}|B,\underline{e}) P(j|\underline{a}) P(m|\underline{a})$
 - e is true:
 - <0.598525,0.183055>
 - e is false:
 - (<.94,.001> * .9 * .7)+(<.06,.999> * .05 * .01>) = <0.592236,0.0011295>

Bringing in the inner summation:

$$\alpha P(B) \Sigma_e P(\underline{e}) \Sigma_a P(\underline{a}|B,\underline{e}) P(j|\underline{a}) P(m|\underline{a}) =$$

$$\alpha P(B) \Sigma_{e} P(\underline{e}) <<0.599,0.1839>_{Ble}, <0.593,0.001>_{Bl\sim e}>$$

■ Multiply each vector by P(e) or P(~e)

```
\alpha P(B) (0.002*<0.599,0.1839> + 0.998*<0.593,0.001>) = \alpha P(B) <.541,.0014> = \alpha <.001,.999>*<.541,.0014> = \alpha <.00054,.0014> = <.278,.722> (diff from book because of rounding)
```

Hints for enumeration

- You will need to sum over hidden variables
- Basic math operations:
 - <a,b> * c = <a*c,b*c>
 - <a,b> + <c,d> = <a+c,b+d>
 - < a,b > * < c,d > = < a*c,b*d >
 - Not matrix multiplication!
- Keep track of what each part of the vector represents
- If you end up getting confused, break it down into individual cases.

Stathere

Can you pass CSE 5522?

- Break into small groups (5-6 people)
- Think of 8 or so variables that affect whether you will pass 5522
 - Be creative, go deeper into root causes
- Build the corresponding Bayes' net
- When time is up, we'll put them on the board to share

Compact CPT representations

- CPTs get big depending on number, arity of parents
- Even with many parents, there are several ways to get smaller CPTs

Parameters and continuous distributions

- What about continuous ranges?
 - Infinite number of probabilities
 - Can't explicitly enumerate parameters
- Probability density function: express a continuous distribution in a succinct manner
 - Uniform distribution: even probability over range
 - 2 parameters
 - Gaussian (normal) distribution: "bell curve"
 - 2 parameters in univariate case
 - Other distributions, e.g. binomial*, Beta, Dirichlet, Poisson* (*discrete)

Uniform distribution

- "The temperature is evenly distributed between 18 and 26 degrees C"
- P(Temperature=x)=U[18,26](x)=0.125/C
 - NOTE: the probability that the temperature is 20 degrees is NOT 0.125
 - For any continuous distribution, meaning of P(X=c) is the prob. that X falls into an interval around c divided by the width of the interval, as the interval size goes to zero:

$$P(X=c) = \lim_{dx\to 0} P(c \le X \le c + dx)/dx$$

Uniform distribution

- P(Temperature=x)=U[18,26](x)=0.125/C
 - P(20<Temp<22) = 2C * 0.125/C = 0.25
 - P(19 < Temp < 19.5) = 0.5C * 0.125/C = 0.0625
 - P(17<Temp<19)= 1C*0/C + 1C*0.125/C = 0.125
- Distribution characterized by 2 numbers:
 - upper bound, lower bound
 - U[lb,ub](x) = 1/(ub-lb) /unit

Normal Distribution

- Also characterized by two parameters (for one-dimensional case)
 - Mean: μ
 - Standard deviation: σ
- One-dimensional formula:

$$P(x) = N(\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Gaussian (normal) distributions

Another view of the same data

It's all a matter of scaling

Finding probabilities from PDFs

Two dimensional Gaussian

- We can have data points with more than one dimension
 - e.g. height and weight
- One dimensional gaussian:

$$P(x) = N(\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multidimensional gaussian

$$N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2} ((\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))}$$

Two dimensional Gaussian

Two dimensional Gaussian

- Mean is just a vector
 - Height/weight: (57,160)
- Covariance is a matrix
 - If variables are independent, then covariance is diagonal
 - Diagonal:

$$egin{bmatrix} \sigma_1 & 0 \ 0 & \sigma_2 \end{bmatrix}$$

Non-diagonal:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Deterministic nodes

If one node can be expressed as deterministic function of others, then more compact

Noisy-or

- Like "or" in logic, but with uncertainty
 - \blacksquare x or y -> z in logic: P(zlx,y)=1, P(\sim zlx, \sim y)=0
 - With uncertainty: P(~zlx,~y) >0
 - · "Inhibition" probability
- Assume we know all causes of an event
- We assume that inhibition of parents is independent

Noisy-or

- Specify inhibition probabilities
 - P(~p | u, ~k, ~s) = .05
 P(~p | ~u, k, ~s) = .10
 P(~p | ~u, ~k, s) = .5
 P(~p | ~u, ~k, ~s) = 1 (assumption)
- Can calculate "noisy-or" from these
 - P(plu, \sim k, s) = 1-P(\sim plu, \sim k, s) = 1-(.05*.5)=.975
- Linear in number of parents

Problem: the perceived temperature (wind chill) depends on whether its sunny and the wind speed; if the wind chill is low then I'll wear a jacket

Problem: the perceived temperature (wind chill) depends on whether its sunny and the wind speed; if the wind chill is low then I'll wear a jacket

- $P(S) = \langle a, 1-a \rangle$
- \blacksquare P(W) = N(μ , σ)
- P(CIW,s)=??? (continuous)

- $P(S) = \langle a, 1-a \rangle$
- $P(W) = N(\mu, \sigma)$
- P(CIW,s)= N(a_s w+ b_s , σ_s)
- P(CIW,~s)=N($a_{\sim s}$ w+ $b_{\sim s}$, $\sigma_{\sim s}$)

Linear Gaussian

 Example from book: cost depends on harvest (continuous), subsidy (binary)

What about P(jacket I Chill)?

- Need to threshold -- at some temperature, I will get my jacket
 - P(j | C< θ)=1, P(j | C>= θ)=0
- In real life, don't know where boundary is
- Probit distribution: assume there is noise around decision boundary

$$\Phi(x) = \int_{-\infty}^{x} N(0,1)(x) dx \qquad P(j \mid c) = \Phi(-(c - \theta) / \sigma)$$
threshold/inflection point noise deviation

Probit distribution

Bayesian Inference Algorithms

- Already showed exact inference
 - Can always use this
 - However, exact inference is NP-hard in multiply-connected networks
 - Singly-connected network (polytree) is linear in #CPT entries
 - (at most one undirected path between nodes)
 - Enumeration is also inefficient

Enumeration Evaluation Tree

Inference options

- Variable elimination
 - Exact inference, still NP-hard
- Approximate inference
 - Randomly generate instances according to CPTs
 - Compute probabilities by counting instances

What happens when you have evidence?

What happens when you have evidence?

What happens when you have evidence?

What happens when you have

Markov Chain Monte Carlo

Markov Chain Monte Carlo

Gibbs Sampling

Markov Chain Monte Carlo

