Preview of TinyML Applications

Acoustic SensorsUltrasonic, <u>Microphones</u>,
Geophones, Vibrometers

Image Sensors Thermal, **Image**

Motion Sensors
Gyroscope, Radar,
Accelerometer

Keyword Spotting

Questions

- How do we capture the data to feed into the neural network?
- How do you design the neural network to take in the speech signal?
- What dataset does the neural network need to be trained?
- How do we pre-process the data for neural network inference?
- How do you post-process the neural network output?
- How do you make sure there is no bias in the dataset?
- How do you deploy this on the microcontroller?

Image Sensors Thermal, **Image**

ML Model Evolution

- MobileNet (2015)
 - MobileNetv1
 - 70.6% accuracy
 - 16.9MB in size

Problem

Our board (in your kit for Course 3) only has 256KB of RAM (memory) yet *MobileNetv1* needs 16.9MB!

Source: S. Bianco, R. Cadene, L. Celona, and P. Napoletano, "Benchmark analysis of representative deep neural network architectures," *IEEE Access*, vol. 6, pp. 64 270–64 277, 2018

How do we engineer a TinyML vision network?

Think:

- Compute operations
- Operator numerics
- Compression
 methods (e.g.,
 pruning, quantization)

What is the **end-to-end** workflow?

Questions

- How do we capture the data to feed into the neural network?
- How do you design the neural network to take in the image?
- What dataset does the neural network need to be trained?
- How do we pre-process the data for neural network inference?
- How do you post-process the neural network output?
- How do you make sure there is no bias in the dataset?
- How do you deploy this on the microcontroller?
- How do we ensure that the neural network is resilient?
- How do we get the neural network to **train faster**?

Motion Sensors
Gyroscope, Radar,
Accelerometer

Autoencoder

?

Questions

- How do we capture the time-series data to feed into the neural network?
- How do we pre-process the data for neural network inference?
- How do you design the autoencoder neural network?
- What dataset does the neural network need to be trained?
- How do you post-process the neural network output?
- How do you make sure there is no bias in the dataset?
- How do you deploy this on the microcontroller?