Forex Forecasting

Combining statistical methods with neural networks

Eustathios Kotsis ¹ Darmanis Michael ¹ Vasilios Venieris ¹ September 26, 2023

¹National and Kapodistrian University of Athens

Network (S-CNN)

Smoothed Convolutional Neural

S-CNN: Origin and basic idea

- Implementation based on the paper "Time-series analysis with smoothed Convolutional Neural Network" [1].
- Model is univariate, multi-step.
- · Simple exponential smoothing (remove outliers, average) + CNN.

S-CNN: Simple Exponential Smoothing i

$$S_t = \alpha X_t + (1 - \alpha)S_{t-1} = S_{t-1} + \alpha(X_t - S_{t-1})$$

- For α values close to 1 we get very little influence of the previous smoothed value.
- For α close to 1 we also see that the previous unsmoothed series observation influences the result more than the smoothed values.
- For the calculation of α , since there is no golden rule, we adopted the α value from the aforementioned publication.

S-CNN: Simple Exponential Smoothing ii

• In particular the authors argue that α should be dependent on the dataset and must be of course between 0 and 1. Also the average value of the series should be less than the difference between max and min.

So we end up with the following formula

$$\alpha_{\text{Optimum}} = \frac{\left(X_{\text{max}} - X_{\text{min}}\right) - \frac{1}{n} \sum_{t=1}^{n} X_{t}}{X_{\text{max}} - X_{\text{min}}},$$

and the simple smoothing becomes

$$S_{t} = S_{t-1} + \frac{\left(X_{\max} - X_{\min}\right) - \frac{1}{n} \sum_{t=1}^{n} X_{t}}{X_{\max} - X_{\min}} \left(X_{t} - S_{t-1}\right).$$

S-CNN: Architecture

Basic architecture from Wibawa et al.[1] and experimented with different number of hidden layers.

S-CNN: Training i

HOW TO PICK THE NUMBER OF HIDDEN LAYERS?

We used the Lucas numbers suggested. They derive from the Fibonacci Sequence if instead of adding every 2 successive observations we skip the intermediate and add the K with the K+2 together.

S-CNN: Training ii

Model yielded the lower MSE, for the most stable currencies, for 76 layers of training.

Table 1: Training time for different numbers of hidden layers

Number of Hidden Layers	Training Time (hh:mm:ss)	
3	0:27:43.15	
11	0:34:27.77	
47	1:05:21.78	
76	1:28:47.70	

S-CNN: Training iii

TRAINING STEPS...

- Split the dataset into series of different frequencies.
- For each time series we normalise + smooth.
- Feed the output into the convolutional model and train the model to predict a horizon of K steps for this frequency, where K is a model's designers choice.

S-CNN: Training iv

TRAINING HISTORY.

In order to balance training with only recent data, or feeding with irrelevant outdated history, we train with a list of possible training lengths.

- Daily: [14, 20, 240]
- Weekly: [52, 13, 26]
- Monthly: [24, 18]
- Quarterly: [12, 8]
- · Yearly: [6]

S-CNN: Training v

TRAIN/VALIDATION/TEST SPLIT.

- We focused on data after 2010 since in 2008 2010 there was the European debt crisis. A plot from the data can show that the economy and the currency fell rapidly in most countries in the European continent and in many other countries.
- For the frequencies except Yearly, we trained with splits of 80%-20%, 70%-30%, and approximately 60%-40% for quarterly (training/validation).

S-CNN: Training vi

- We split the dataset accordingly and fed the created datasets to the generators.
- The models were trained for 250 epochs, using the MSE loss function and the Adam optimiser.

S-CNN: Results i

For stable currencies, longer training tends to yield more accurate predictions.

Table 2: sMAPE for Daily with 76 Hidden Layers (Biggest Lucas Number Tested)

	SMAPE			
	Training length 20 days	Training length 240 days		
CAD	104.24	26.63		
AUD	226.39	79.63		
DKK	1.357	0.937		

S-CNN: Results ii

Unpredictable currencies benefit from short-term history and possibly higher α for forecasting. More hidden layers may overfit. Fewer hidden layers excel for daily predictions of unstable currencies.

Table 3: sMAPE for 76 Hidden Layers

	sMAPE				
	T.L. 20 days	T.L. 240 days	T.L. 8 quarters	T.L. 12 quarters	
USD	59.67	138.76	72.69	82.30	

S-CNN: Results iii

Quarterly and monthly predictions outperform daily ones for stable currencies. Daily and weekly forecasts show many fluctuations and are less accurate.

S-CNN: Results iv

Model struggles with unpredictable currencies like USD and GBP.

Exponentially Smoothed

Recurrent Neural Network

ES-RNN: Origin and basic idea

ES-RNN: Holts-Winters model

ES-RNN: Architecture

ES-RNN: Training i

ES-RNN: Results i

References i

