§0.1 Homework: Read 2.1 on your own

§1 Absolute Values

Definition: Let $x \in \mathbb{R}$, then

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x \le 0 \end{cases}$$

Note that $|x| = \sqrt{x^2}$

§1.1 Discussing properties of absolute value

Theorem

(a) $\forall x, y \in \mathbb{R} : |x * y| = |x| * |y|$

(b) Let a > 0. Then $|x| \le a \Leftrightarrow -a \le x \le a$

(c) $\forall x \in \mathbb{R} : -|x| \le x \le |x|$

Review: Math notation so that I can confidently write it myself instead of copying from the board. This will propably improve my retention.

§1.2 Proof

(a) $|xy| = \sqrt{(xy)^2} = \sqrt{x^2y^2} = \sqrt{x^2}\sqrt{y^2} = |x||y|$ \checkmark

(b) " \Rightarrow " Let $|x| \leq a$. First case: $x \geq 0$. If this is true, then if follows that $x = |x| \leq a \Rightarrow x \leq a$ and $-a \leq 0 \leq x \Rightarrow -a \leq x \leq a \checkmark$. Second case: x < 0. If this is true then $-x = |x| \leq a \Rightarrow x \geq -a \Rightarrow -a \leq x$ and $x \leq 0 \leq a \Rightarrow x \leq a \Rightarrow -a \leq x \leq a$. Combining these cases gives that $-a \leq x \leq a$ in all cases.

(b) " \Leftarrow ". Let $-a \le x \le a \Rightarrow a \ge -x \ge -a \Rightarrow -a \le -x \le a$. Because |x| = x or |x| = -x, it follows that $-a \le |x| \le a \Rightarrow |x| \le a$

(c) Let $a \equiv |x| \ge 0$, then $|x| \le a = |x|$. Also, it follows from (b) that $-a \le x \le a$ which can also be seen as $-|x| \le x \le |x|$.

§1.3 The triangle inequality

About estimating absolute values of sums. Very important to analysis. Possibly most important in all of mathematics.

$$\forall x, y \in \mathbb{R} : |x + y| \le |x| + |y|$$

§1.4 Proof

By Previous theorem part c we have $-|x| \le x \le |x|$ and $-|y| \le y \le |y|$. The trick to the proof involves adding these inequalities together.

This gives $-(|x|+|y|)_{\text{Let this be "-a"}} \le x+y \le (|x|+|y|)_{\text{Let this be "a"}}$. It follows from previous theorem part b that $|x+y| \le a = |x|+|y| \Rightarrow |x+y| \le |x|+|y|$. This theorem (the triangle inequality) is used to find the upper bounds of sums.

Next theorem helps with lower bounds:

Theorem - $\forall x, y \in \mathbb{R} : |x - y| \ge |x| - |y|$ and $|x - y| \ge |y| - |x|$. This one is called the triangle inequality for sums.

§1.5 Proof

 $|x| = |x - y + y| \le |x - y| + |y| \Rightarrow |x| - |y| \le |x - y| \Rightarrow |x - y| \ge |x| - |y|$. Interchange x and y (to avoid redoing the proof): $|y - x| = |x - y| \ge |y| - |x| \Rightarrow$

 $|x - y| \ge |y| - |x|$

Remark: $|x-y| \ge |x| - |y|$ and $|x-y| \ge |y| - |x|$ can be combined to $\Rightarrow |x-y| \ge ||x| - |y||$. This final equation looks nice but can be hard to but into practice. It is normally easier to pick the correct of the other two equations.

Theorem - Generalized Triangle Inequality. Let $x_1, \ldots, x_n \in \mathbb{R}$, then $|x_1 + \cdots + x_n| \le |x_1| + \cdots + |x_n|$

Proof of this is on assignment 3.

§1.6 Moving on. Absolute values are needed in the following definition:

Definition: ϵ neighborhood

Let $\epsilon > 0$ and let $a \in \mathbb{R}$, the ϵ neighborhood of a is defined as $V_{\epsilon}(a) \equiv \{x \in \mathbb{R} : |x - a| \le \epsilon\}$

 $|x-a| < \epsilon \Leftrightarrow -\epsilon < x-a < \epsilon \Leftrightarrow a-\epsilon < x < a+\epsilon$. This leads to $V_{\epsilon}(a) =]a-\epsilon, a+\epsilon[$ Theorem - if $x \in V_{\epsilon}(a)$ for all $\epsilon > 0$, then x = a

§1.7 Proof

Assume that $x \neq a$ and find a contradiction.

First case: x > a. Let $\epsilon = x - a > 0$, then $a + \epsilon = x \Rightarrow x \ni |a - \epsilon, a + \epsilon| = V_{\epsilon}(a)$

Second case: x < a. Let $\epsilon = a - x$. Prove the rest yourself.

This theorem implies the following.

$$\bigcap_{\epsilon>0} V_{\epsilon}(a) = \{a\}$$

§2 Supremum and Infimum

Def: Let $s \subset \mathbb{R}, s \neq \emptyset$. We say that:

S is bounded from above if $\exists u \in \mathbb{R}$ such that $\forall s \in S : s \leq u$. Upper bound follows same idea.

§2.1 Examples

(1) S = [0, 1[.

Then 1, 2, π , 1.5 are all upper bounds for S, and 0, -1, ... are lower bounds for S.(This answers my question about whether or not an upper or lower bound has to be right at the bound.)

(2) $A = [1, \infty]$ is not bounded from above.

Definition: Let $S \subset \mathbb{R}, S \neq \emptyset$, S is bounded from above. $s \in \mathbb{R}$ is called the SUPREMUM or Least upper bound of S. Symbolically: s = supr S if:

(1) s is an upper bound for S. (2) $\forall t$ upper bounds of S, $s \leq t$.

Similary for Infimum. Definition: Let $S \subset \mathbb{R}, S$ is bounded from below. A number $u \in \mathbb{R}$ is called the infimum of S if u is a lower bound of S and $\forall t$ lower bounds of S, $u \geq t$

§2.2 Examples

S = [0, 1[. Claim that $\inf S = 0$. Proof: 0 is indeed lower bound of S \checkmark . Let v be any lower bound for S. This lower bound cannot be positive because if it was 0 < v and so it wouldn't be a lower bound. $\Rightarrow v \le 0 \Rightarrow 0$ is the infimum of S.

No supremum in this case (THIS IS WHAT I THOUGHT INITIALLY BUT I WAS WRONG). Claim: $\sup S = 1$. Proof: 1 is an upper bound of S \checkmark . Let v be any upper bound of S. If we assume that v is less than 1, we get contradiction that v is not an upper bound of S. Therefore $v \ge 1$. Therefore $1 = \sup(S)$.

Questions: Given any non empty set $S \subset \mathbb{R}$ bounded from above, must there be a supremum? Same idea of question for bounded below infimum. Complicated answers to these questions. Postpone this to next class.