[221125] Reamostragem espacial

Reduzir o tamanho da imagem

Procedimento: Eliminar cada linha e coluna alternadamente para criar uma imagem que seja a metade do tamanho original.

Conhecido como amostra da vizinhança próxima ou vizinho mais próximo.

Problemas: Aliasing em imagens sintéticas.

Aliasing pode aparecer quando se amostra um sinal contínuo (ou imagem).

Para evitar o *aliasing*:

- A taxa de amostragem deve ser maior que 2x a máxima frequência da imagem
 - Ou seja, são necessárias mais que duas amostragens por período.
- A taxa de amostragem mínima é chamada de taxa de Nyquist.

Solução:

Aplica-se o filtro Gaussiano, suavizando-a, e depois reduzi-la pela metade.

Pirâmide

Princípio: representar uma imagem N imes N como uma pirâmide de imagens 1 imes 1, 2 imes 2, 4 imes 4, ..., $2^k imes 2^k$ (assumindo $N=2^k$)

Construção

faça: Filter Sub-amostragem Até a resolução mínima ser atingida

- Pode-se especificar o número desejado de níveis (por exemplo, pirâmide nível
 3).
- A pirâmide completa é apenas 4/3 do tamanho total da imagem original.

Interpolação Bilinear

Para a reconstrução da imagem, é feito uma interpolação.

Interpolação: Processo através do qual é possível determinar o valor de uma função, dentro de um intervalo, a partir do conhecimento dos valores extremos desse intervalo.

Ou seja, busca-se obter uma função que descreva a imagem por meio das amostras da imagem original.

$$f(x,y) = (1-a)(1-b) g_s(l,k) + a (1-b) g_s(l+1,k) + b (1-a) g_s(l,k+1) + ab g_s(l+1,k+1) ,$$

$$l = ceil (x) , \quad a = x - l ,$$

$$k = ceil (y) , \quad b = y - k .$$

cv2.resize()

void cv::resize	(<u>InputArray</u>	Src,
		<u>OutputArray</u>	dst,
		<u>Size</u>	dsize,
		double	fx = 0,
		double	fy = 0,
		int	interpolation = INTER LINEAR
)		

Python:

```
cv.resize( src, dsize[, dst[, fx[, fy[, interpolation]]]] ) -> dst
```

Tipos de Interpolação:

Enumerator	
INTER_NEAREST Python: cv.INTER_NEAREST	nearest neighbor interpolation
INTER_LINEAR Python: cv.INTER_LINEAR	bilinear interpolation
INTER_CUBIC Python: cv.INTER_CUBIC	bicubic interpolation
INTER_AREA Python: cv.INTER_AREA	resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method.
INTER_LANCZOS4 Python: cv.INTER_LANCZOS4	Lanczos interpolation over 8x8 neighborhood
INTER_LINEAR_EXACT Python: cv.INTER_LINEAR_EXACT	Bit exact bilinear interpolation
INTER_NEAREST_EXACT Python: cv.INTER_NEAREST_EXACT	Bit exact nearest neighbor interpolation. This will produce same results as the nearest neighbor method in PIL, scikit-image or Matlab.
INTER_MAX Python: cv.INTER_MAX	mask for interpolation codes
WARP_FILL_OUTLIERS Python: cv.WARP_FILL_OUTLIERS	flag, fills all of the destination image pixels. If some of them correspond to outliers in the source image, they are set to zero
WARP_INVERSE_MAP Python: cv.WARP_INVERSE_MAP	flag, inverse transformation $ \text{For example, linearPolar or logPolar transforms:} $ • flag is not set: $dst(\rho,\phi)=src(x,y)$ • flag is set: $dst(x,y)=src(\rho,\phi)$

Enumerador	
INTER_NEAREST Python: cv.INTER_NEAREST	interpolação do vizinho mais próximo
INTERLINEAR Python: cv.INTER_LINEAR	interpolação bilinear
INTER_CUBIC Python: cv.INTER_CUBIC	interpolação bicúbica
INTER_AREA Python: cv.INTER_AREA	reamostragem usando relação de área de pixel. Pode ser um método preferido para decimação de imagem, pois fornece resultados livres de moiré. Mas quando a imagem é ampliada, é semelhante ao método INTER_NEAREST.
INTER_LANCZOS4 Python: cv.INTER_LANCZOS4	Interpolação Lanczos sobre a vizinhança 8x8
INTER_LINEAR_EXATO Python: cv.INTER_LINEAR_EXACT	Interpolação bilinear exata de bits
INTER_NEAREST_EXACT Python: cv.INTER_NEAREST_EXACT	Bit de interpolação exata do vizinho mais próximo. Isso produzirá os mesmos resultados que o método do vizinho mais próximo em PIL, scikit-image ou Matlab.
INTER_MAX Python:	máscara para códigos de interpolação

[221125] Reamostragem espacial 5

Enumerador	
cv.INTER_MAX	
WARP_FILL_OUTLIERS Python: cv.WARP_FILL_OUTLIERS	sinalizador, preenche todos os pixels da imagem de destino. Se algum deles corresponder a outliers na imagem de origem, eles serão definidos como zero
WARP_INVERSE_MAP Python: cv.WARP_INVERSE_MAP	bandeira, transformação inversa Por exemplo, transformações linerPolar ou logPolar : - sinalizador não está definido: $dst(\rho,\phi) = src(x,y)$ - sinalizador está definido: $dst(x,y) = src(\rho,\phi)$

Google Colaboratory G https://colab.research.google.com/drive/1MpbTpfemYNjzAp_liv84el_pql4dHvM2#scrollTo=UAGPCw8Y7rj6&line=6&uniqifier= 1

<u>Image Interpolation using OpenCV-Python | TheAILearner</u>

Representação

As técnicas de segmentação produzem pixels com propriedades comuns:

- Em uma fronteira
- Em uma região

Os pixels resultantes do processo não são representados adequadamente

• Ainda são elementos de uma matriz (imagem)