Einführung in das Wissenschaftliche Rechnen Praktikumsblatt 6 Aufgabe 15 (Transportgleichung)

Lena Hilpp Matr.Nr.: 1941997 Jan Frithjof Fleischhammer Matr.Nr.: 2115491

08.06.2020

Problemstellung

In dieser Aufgabe betrachtet man das Randwertproblem

$$\begin{cases} -\varepsilon \Delta u + b \cdot \nabla u = f & \text{in } \Omega \\ u = 0 & \text{auf } \partial \Omega, \end{cases} \tag{1}$$

mit $\varepsilon=0.02$ b=[1,1/2] und als Gebiet $\Omega=(0,1)^2$. Die rechte Seite f von (1) wird so gewählt, dass die exakte Lösung durch

$$u(x,y) = x \left(1 - \exp\left(-\frac{b1}{\varepsilon} (1-x) \right) \right) y \left(1 - \exp\left(-\frac{b2}{\varepsilon} (1-y) \right) \right)$$

gegeben ist.

Mit Hilfe der Finiten-Differenzen-Methode wird eine numerische Lösung berechnet und die experientelle Konvergenzordnung der 5-Punkte-Stern-Approximation mit dem zentralen Differenzenquotienten, für die Diskretisierung des Gradienten, bestimmt.

Ergebnis

In *Abbildung 1* sieht man die numerische Lösung des Transportproblems für verschiedene ε auf dem Gebiet mit 11 Knoten pro Dimension. Man kann erkennen, dass die Lösung für größere ε flacher wird.

Abbildung 1: Gitter \mathcal{G}_h und numerische Lösung u_h für $\varepsilon = 0.001/0.02/0.1$

In Abbildung 2 ist die numerische Lösung für die selben ε und für 100 Knoten pro Dimension abgebildet.

Abbildung 2: Gitter \mathcal{G}_h und numerische Lösung u_h für $\varepsilon=0.001/0.02/0.1$

Dieses Randwertproblem ist für kleine $\varepsilon>0$ ein Beispiel für ein konvektionsdominiertes Modellproblem (Transportgleichung) und zeigt die typisch auftretenden Schwierigkeiten dieser Klasse von partiellen Differentialgleichungen. Dies kann man für die verschiedenen ε in *Abbildung 3* deutlich erkennen. Die Konvergenz für sehr kleine ε ist sehr schlecht und die Lösung instabil. Das zentrale Differenzenverfahren versagt für $\varepsilon\ll h$.

Abbildung 3: Konvergenzordnung und Rechenzeit für $\varepsilon = 0.001/0.02/0.1$

Abhilfe schafft das *upwind-Verfahren*. Hier erhält man auch für kleine ε eine gute Approximation an die Lösung. Dies kann man für $\varepsilon=0.001$ in *Abbildung 4* sehen.

Abbildung 4: upwind-Verfahren für $\varepsilon=0.001$