# Sprawozdanie

## Projekt z przedmiotu Metody Statystyczne

Temat ćwiczenia: Projekt nr 8

Skład sekcji:

Przemyslaw Pawlas Radosław Wojaczek Zbigniew Kmonk Rafał Grzelec Dawid Kubów W poniższej tabeli zawarte są wyniki miar uzyskanych w trakcie realizacji zadań projektowych. Jest ona podzielona na szeregi oraz poszczególne sklepy.

|                                           | Szereg szczegółowy |             | Szereg rozdzielczy |             |
|-------------------------------------------|--------------------|-------------|--------------------|-------------|
|                                           | Sklep pierwszy     | Sklep drugi | Sklep pierwszy     | Sklep drugi |
| Średnia                                   | 44,065             | 44,09       | 44,347             | 44,243      |
| Mediana                                   | 44,615             | 43,53       | 46,403             | 43,239      |
| Moda (dominanta)                          | Brak               | Brak        | 50,654             | 40,252      |
| Kwartyl pierwszy                          | 36,795             | 35,82       | 37,152             | 36,37       |
| Kwartyl trzeci                            | 51,525             | 51,74       | 52,289             | 51,959      |
| Wariancja<br>obciążona                    | 93,791             | 130,508     | 86,984             | 128,315     |
| Wariancja<br>nieobciążona                 | 96,078             | 133,345     | 89,106             | 131,105     |
| Odchylenie<br>standardowe<br>obciążone    | 9,685              | 11,424      | 9,327              | 11,328      |
| Odchylenie<br>standardowe<br>nieobciążone | 9,802              | 11,548      | 9,44               | 11,45       |
| Odchylenie<br>ćwiartkowe                  | 7,365              | 7,96        | 7,569              | 7,794       |
| Odchylenie<br>przeciętne od<br>średniej   | 8,141              | 9,223       | 7,929              | 9,344       |
| Odchylenie<br>przeciętne od<br>mediany    | 8,141              | 9,211       | 7,538              | 9,366       |
| Rozstęp                                   | 43,17              | 50,17       | 43,17              | 50,17       |
| Współczynnik<br>zmienności                | 454,997%           | 385,946%    | 475,49%            | 390,572%    |
| Współczynnik<br>asymetrii                 | -0,178             | 0,348       | -0,312             | 0,331       |

| Skosność | -0,171 | 0,147  | -0,661 | 0,266  |
|----------|--------|--------|--------|--------|
| Kurtoza  | 2,381  | 2,519  | 2,18   | 2,424  |
| Eksces   | -0,619 | -0,481 | -0,82  | -0,576 |

Histogramy dla poszczególnych sklepów utworzone przez środowisko R:

## Histogram of dane\_sklepu1\_vec



## Histogram of dane\_sklepu2\_vec



## Zadanie 1

Wprowadziliśmy do programu dane, które są zawarte w treści zadania, dla każdego sklepu osobno. Korzystając z tych danych dokonaliśmy analizy statystycznej, wyznaczając miary przeciętne, zróżnicowania, asymetrii i koncentracji. Dane rozpatrzyliśmy w dwóch szeregach: szczegółowym oraz rozdzielczym. Dla każdego z nich przeprowadziliśmy obliczenia, a następnie zestawiliśmy uzyskane wyniki. Są one widoczne powyżej, wraz z histogramami.

#### Wnioski:

Porównując wyniki szeregów zauważamy, że pomimo tych samych danych wyniki niekoniecznie są identyczne, takie same uzyskaliśmy tylko w rozstępie, w innych miejscach wyniki różnią się już nieznacząco, lecz występują również większe różnice. Obliczenie i użycie naszych własnych punktów przerwań przedziałów w funkcji hist() zmniejszyło różnice pomiędzy niektórymi wartościami.

W przypadku mody (dominanty) zauważamy zasadniczą różnicę pomiędzy szeregami, mianowicie dla szeregu szczegółowego nie byliśmy w stanie uzyskać wyniku (wszystkie wartości występują tylko jeden raz), a dla szeregu rozdzielczego uzyskaliśmy.

## Zadanie 2

Kolejnym zadaniem było przeprowadzenie testu Kołmogorowa – *Lillieforse'a*, który sprawdza czy rozkład w populacji dla pewnej zmiennej losowej różni się od założonego rozkładu teoretycznego, gdy znana jest pewna skończona liczba obserwacji tej zmiennej (próba statystyczna). Dodatkowo test ten często wykorzystywany jest w celu sprawdzenia czy zmienna ma rozkład normalny, co było naszym głównym celem.

Na podstawie danych pobranych z zadania wyznaczyliśmy dystrybuantę skumulowaną, wartość testową oraz różnicę między dystrybuantą skumulowaną a dystrybuantą dla rozkładu normalnego niezbędne do przeprowadzenia testu.

Następnie dla wyznaczonej maksymalnej różnicy między dystrybuantą skumulowaną a dystrybuantą dla rozkładu normalnego oraz wartości krytycznej sprawdziliśmy, czy podane rozkłady są normalne (tzn. czy wartość krytyczna jest większa od maksymalnej różnicy). W obu przypadkach założenie to się sprawdza – oba testy podają, iż występuje rozkład normalny.

Wyniki z konsoli po uruchomieniu programu:

"Wynik testu Kołmogorowa - Lillieforse'a dla zestawu danych sklepu 1

(H0 - podane dane mają... rozkład normalny

H1 - nie mają...): brak podstaw do odrzucenia hipotezy zerowej - rozkład jest normalny."

"Wynik testu Kolmogorowa - Lillieforse'a dla zestawu danych sklepu 2

(H0 - podane dane mają rozkład normalny

H1 - nie mają): brak podstaw do odrzucenia hipotezy zerowej - rozkład jest normalny."

#### Wnioski:

Udało nam się potwierdzić przypuszczenia, że wartości obu sklepów mają rozkład normalny. Pozwoliło nam to wykorzystać wzory dla rozkładu normalnego w kolejnych zadaniach, co znacznie uprościło pracę.

#### Zadanie 3

Używając współczynnika ufności 0.95 oraz danych sklepu 1 wraz z uzyskanymi wynikami z zadania 1 przystąpiliśmy do oszacowania przedziałów przeciętnej wartości.

Na poziomie istotności 0.05 i na podstawie liczebności danych możemy wyznaczyć przedziały:

a) gdy liczebność jest mała - n <= 30:

$$(\overline{x} - t(1 - \frac{\alpha}{2}, n - 1) * \frac{s}{\sqrt{n-1}}, \overline{x} + t(1 - \frac{\alpha}{2}, n - 1) * \frac{s}{\sqrt{n-1}})$$

b) gdy liczebność jest duża - n > 30:

$$(\overline{x} - u(1 - \frac{\alpha}{2}) * \frac{s}{\sqrt{n}}, \overline{x} + u(1 - \frac{\alpha}{2}) * \frac{s}{\sqrt{n}})$$

Wyniki z konsoli po uruchomieniu programu:

"Przedzial sredniej: ( 41.135629126748 , 46.9934184922996 )"

"Precyzja wzgledna: 6.646832% jest miedzy 5% a 10%, wiec możemy stwierdzic, ze istnieją podstawy do uogólnienia, jednak musimy pozostac ostrożni"

#### Wnioski:

Precyzja względna pozwala nam uogólnić średnią próby, jednakże musimy być ostrożni.

## Zadanie 4

Używając współczynnika ufności 0.95 oraz danych sklepu 2 wraz z uzyskanymi wynikami z zadania 1 przystąpiliśmy do oszacowania przedziałów odchylenia standardowego.

Na poziomie istotności 0.05 i na podstawie liczebności danych możemy wyznaczyć przedziały:

a) gdy liczebność jest mała - n <= 30:

$$\left(\sqrt{\frac{n*s^2}{\chi^2(1-\frac{\alpha}{2},n-1)}},\ \sqrt{\frac{n*s^2}{\chi^2(\frac{\alpha}{2},n-1)}}\right)$$

b) gdy liczebność jest duża - n > 30:

$$\left(\sqrt{\frac{s}{1+u(1-\frac{\alpha}{2})/\sqrt{2n}}}, \sqrt{\frac{s}{1-u(1-\frac{\alpha}{2})/\sqrt{2n}}}\right)$$

Wyniki z konsoli po uruchomieniu programu:

"Przedzial odchylenia: ( 9.5029334266443 , 14.3185648211095 )"

"Precyzja wzgledna: 21.076823% jest większe od 10%, wiec nalezy odrzucic teze, ze istnieją podstawy do uogólnienia"

#### Wnioski:

Precyzja względna nie pozwala nam na uogólnienie.

## Zadanie 5

Ostatnie zadanie polegało na sformułowaniu i zweryfikowaniu hipotezy czy na poziomie istotnosci 0.05 mozna twierdzić, że wartość przeciętna miesięcznych wydatków na jedna osobę, na pieczywo i produkty zbożowe jest większa dla klientów pierwszego marketu.

Hipoteza  $H_0$ :  $m_1 = m_2$ Kontrhipoteza  $H_1$ :  $m_1 > m_2$ 

Na początku sprawdziliśmy równość wariancji w obu populacjach:

H<sub>0</sub> - są równe

H₁ - wariancje są różne

Wykorzystujemy do tego test Fishera o statystyce:

 $F=rac{wariancja\ nieobciążona\ pierwszego\ sklepu}{wariancja\ nieobciążona\ drugiego\ sklepu}$ 

oraz obszarze krytycznym:

$$(-\infty, f(1-\frac{\alpha}{2}, m-1, n-1))$$

gdzie:

 $\alpha$  - poziom istotności

m - liczebność danych pierwszego sklepu

n - liczebność danych drugiego sklepu

f - wartość odczytana funkcją qf()

Gdy otrzymamy wynik testu, na jego podstawie należy sprawdzić wartości przeciętne:

a) gdy wariancje są równe wykonujemy test t-Studenta o statystyce:

$$C_{n} = \frac{\overline{x_{1} - \overline{x}_{2}}}{\sqrt{\frac{(m-1)s_{1}^{2} + (n-1)s_{2}^{2}}{m+n-2} \cdot \frac{m+n}{mn}}}$$

gdzie:

 $\overline{x}$  - średnia próby

s<sup>2</sup> - wariancja próby

i obszarze krytycznym:

$$(t(1-\alpha, m+n-2), \infty)$$

adzie:

t - wartość odczytana funkcją qt()

b) z kolei gdy wariancje są różne, przeprowadzamy test Cochrana-Coxa o statystyce:

$$C_n = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

i obszarze krytycznym:

$$\left(\frac{S_{1}^{2*}t(1-\alpha, m-1)}{\frac{m}{m}} + \frac{S_{2}^{2*}t(1-\alpha, n-1)}{\frac{S_{1}^{2}}{m} + \frac{S_{2}^{2}}{n}}, \infty\right)$$

Na podstawie wyznaczonych wartości oraz tego czy zawierają się w przedziałach można stwierdzić czy nie ma podstaw do odrzucenia hipotezy zerowej H<sub>o</sub>.

Wyniki z konsoli po uruchomieniu programu:

Wynik testu: rowne odchylenia populacji, wiec: statystyka t = -0.011465, przedzial <1.662557, ∞). Wartosc nie nalezy do przedzialu - przyjmujemy hipoteze zerowa - wartości przeciętne sa rowne.

#### Wnioski:

Test na danym poziomie istotności wykazał, że wartości przeciętne dla obu sklepów są równe, więc nasze założenie było niepoprawne.

#### Wnioski

Projekt zebrał całą wiedzę, którą nabyliśmy w trakcie ćwiczeń i wykładu. Zadania rozwiązane przez nas w projekcie wykorzystały wiele wzorów statystycznych, których działanie oraz zastosowanie mieliśmy okazję przetestować w trakcie realizacji celu.

Poznaliśmy nowy język programowania, którym jest R. Na początku sprawił nam on kilka trudności z powodu braku wiedzy na temat jego funkcjonowania, jednakże praca w środowisku sprawiła, że nauczyliśmy się nim posługiwać i zrobienie zadań nie stanowiło już większych przeszkód.

Wnioski do wyników poszczególnych zadań zostały zamieszczone powyżej.