COMP90042

Workshop Week 03

Workshops

□ 10 sessions in total

Mon 11-12pm Alice Hoy-108

Mon 6:15-7:15pm Alice Hoy-108

Mon 7:15-8:15pm Alice Hoy-108 *

Tues 10-11am Alice Hoy-222 *

Tues 6:15-7:15pm Alice Hoy-108 *

Wed 8-9am Alice Hoy-109

Fri 1-2pm Alice Hoy-222

Fri 3:15-4:15pm Alice Hoy-210

Fri 5:15-6:15pm Alice Hoy-211

Fri 6:15-7:15pm Alice Hoy-222

Questions...

☐ Post on the LMS discussion board

- Trevor / Daniel
 - □ t.cohn@unimelb.edu.au / d.beck@unimelb.edu.au
 - □ Weekly office hour, Wed 12pm-1pm, DMD 7.02 (new time)

- ☐ My contact
 - ☐ Yuan Li
 - unimelb.edu.au

Homework 1 released

- ☐ Due data: 11pm, Sunday March 18th
- ☐ We accept submissions written in Python 2.7 or 3.5
 - ☐ But 2.7 is still the recommended version

□ LMS -> Assessment

Assessment

Homework 1

Attached Files: 📋 Homework_1.ipynb 🥯 (10.716 KB)

Please see attached notebooks for instructions. Please submit the complete notebook, at or before, the due date.

When using code from notebooks...

```
lemmatizer = nltk.stem.wordnet.WordNetLemmatizer()

def lemmatize(word):
    lemma = lemmatizer.lemmatize(word,'v')
    if lemma == word:
        lemma = lemmatizer.lemmatize(word,'n')
    return lemma
Code from

WSTA_N1B_prepr

ocessing.ipynb
```

According to Trevor's reply on LMS: ... *indicate with comments what code is not original*, at the top and bottom of the snippet, and attribute the source clearly...

```
## Code below taken from WSTA_N1B_preprocessing.ipynb
lemmatizer = nltk.stem.wordnet.WordNetLemmatizer()

def lemmatize(word):
    lemma = lemmatizer.lemmatize(word,'v')
    if lemma == word:
        lemma = lemmatizer.lemmatize(word,'n')
    return lemma

## End of copied code
```

Syllabus

1	Introduction and Preprocessing	Text classification			
2	Lexical semantics	Distributional semantics			
3	Part of Speech Tagging	Probabilistic Sequence Modelling			
4	Probabilistic Sequence Modelling	Context-Free Grammars			
5	Probabilistic Parsing	Dependency parsing			
	Easter holiday break				
6	N-gram language modelling	Deep learning for language models			
		and tagging			
7	Information Extraction	Question Answering			
8	Topic Models	ANZAC day holiday			
9	Information Retrieval Boolean	Indexing and querying in the vector			
	search and the vector space model	space model, evaluation			
10	Index and vocabulary compression	Efficient query processing			
11	The Web as a Graph: Page-rank & HITS	Machine Translation (word based)			
12	Machine translation (phrase based) and neural encoder-decoder	Subject review			

Outline

- ☐ Lexical semantics
 - Relationship between words
 - ☐ Wu & Palmer word similarity
- ☐ Distributional semantics (WSTA_N4_distributional_semantics.ipynb)
 - ☐ Point-wise Mutual Information (PMI)
 - ☐ Singular Value Decomposition (SVD)
 - Word embeddings

Relationship between words

http://milyvicente2.blogspot.com.au/2013/03/the-nym-words.html

Relationship between words

http://milyvicente2.blogspot.com.au/2013/03/the-nym-words.html

Wu & Palmer word similarity

$$\operatorname{simwup}(c_1, c_2) = \frac{2*\operatorname{depth}(\operatorname{LCS}(c_1, c_2))}{\operatorname{depth}(c_1) + \operatorname{depth}(c_2)}$$

simwup(nickel, money) = 2*2/(3+6) = .44

 $simwup(nickel,Richter\ scale) = 2*1/(3+6) = .22$

LCS --- lowest common subsumer

- □ LCS(currency, money) = medium of exchange
- □ LCS(currency, scale) = standard
- □ LCS(nickel, money) = medium of exchange
- \square LCS(nickel, dime) = coin

Depth

$$\operatorname{simwup}(c_1, c_2) = \frac{2*\operatorname{depth}(\operatorname{LCS}(c_1, c_2))}{\operatorname{depth}(c_1) + \operatorname{depth}(c_2)}$$

simwup(nickel, money) = 2*2/(3+6) = .44

 $simwup(nickel,Richter\ scale) = 2*1/(3+6) = .22$

Outline

- ☐ Lexical semantics
 - Relationship between words
 - ☐ Wu & Palmer word similarity
- Distributional semantics

(WSTA_N4_distributional_semantics.ipynb)

- ☐ Point-wise Mutual Information (PMI)
- ☐ Singular Value Decomposition (SVD)
- Word embeddings

Pointwise mutual information

For two events *x* and *y*, pointwise mutual information (PMI) comparison between the actual joint probability of the two events (as seen in the data) with the expected probability under the assumption of independence

$$PMI(x,y) = \log_2 \frac{p(x,y)}{p(x)p(y)}$$

An example

Corpus

□ D1: a b c

□ D2: a c d

□ D3: b c d

$$PMI(a,c) = \log_2 \frac{\frac{2}{18}}{\left(\frac{4}{18}\right) \times \left(\frac{6}{18}\right)}$$

	•
Context-word	pairs:

□ a-b, a-c, b-a, b-c, c-a, c-b

□ a-c, a-d, c-a, c-d, d-a, d-c

□ b-c, b-d, c-b, c-d, d-b, d-c

	а	b	С	d	Σ
а		1	2	1	4
b	1		2	1	4
С	2	2		2	6
d	1	1	2		4
Σ	4	4	6	4	18

Another example

Corpus

Context-word pairs:

□ D1: a b c

□ a-b, b-a, b-c, c-b

□ D2: a c d

□ a-c, c-a, c-d, d-c

□ D3: b c d

□ b-c, c-b, c-d, d-c

	1
$PMI(a,c) = \log_{a}$	<u>12</u>
$PMI(a,c) = \log_2$	$\left(\frac{2}{12}\right) \times \left(\frac{5}{12}\right)$
	(12) (12)

	а	b	С	d	Σ
а		1	1		2
b	1		2		3
С	1	2		2	5
d			2		2
Σ	2	3	5	2	12

CBOW & Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Embeddings from predictions

- ☐ Framed as learning a classifier...
 - Skip-gram: predict words in local context surrounding given word

- □ CBOW: predict word in centre, given words in the local surrounding context
- □ Local context means words within L positions, e.g., L=2