## Centrifugation

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Separation Processes

## Sedimentation is driven by gravity and follows Stoke's law at low velocity

- Sedimentation separates solid particles dispersed in liquid
- Stoke's law describes flow around a sphere at low velocity (Re < 1)

$$\circ oxed{v_{\infty} = rac{(
ho_p - 
ho_f)}{18 \mu} D_p^2 oldsymbol{g}} \hspace{1cm} ext{for} \hspace{1cm} ext{Re} = rac{D_p v_{\infty} 
ho_f}{\mu} < 1$$

- $v_{\infty}$  terminal velocity
- $\rho_p$  particle density
- $\rho_f$  fluid density
- $\blacksquare$   $\mu$  fluid viscosity
- $D_p$  particle diameter
- Sedimentation is slow... How can we speed it up?

## Centrifugation is driven by centrifugal force and also follows Stoke's law

- Centrifugation separates solid particles dispersed in liquid faster
- Stoke's law describes flow around a sphere at low velocity (Re < 1)

$$\circ oxed{v_{\infty} = rac{(
ho_p - 
ho_f)}{18 \mu} D_p^2 \omega^2 r} \qquad ext{for} \qquad ext{Re} = rac{D_p v_{\infty} 
ho_f}{\mu} < 1$$

- ullet  $\omega$  angular velocity of centrifuge bowl
- r centrifuge bowl radius



• **G-force** normalizes centrifugal driving force by gravitational driving force

$$\circ \ oxed{Z = rac{\omega^2 r}{g}}$$

## Sigma factor compares performance of continuous centrifuges of the same type

• **Sigma factor** - effective area of a continuous centrifuge

$$\circ oxedsymbol{ } \Sigma = rac{\dot{V}}{2v_{\infty}}$$

• Ex. At small scale, cells can be centrifuged at  $\Sigma_1=200$  and  $\dot{V}_1=15~\mathrm{mL/min}$ . At large scale, cells can be centrifuged at  $\Sigma_2=9000$  and  $\dot{V}_2=700~\mathrm{mL/min}$  at the same speed. The densities and viscosity are unchanged. Quantify the changed physical property.