F00 - Kursintroduktion 5DV149 Datastrukturer och algoritmer

Niclas Börlin niclas.borlin@cs.umu.se

Datavetenskap, Umeå Universitet

2024-03-20 Ons

Innehåll

- Vad går kursen ut på?
- ► Kurspresentation:
 - Personal
 - Målsättning
 - Examination
 - Kursutvärdering
 - Upplägg
 - Översikt

Vad går kursen ut på?

- ► Abstrakta...
- ▶ ...datatyper...
- och algoritmer...

...datastrukturer...

- Vi kommer att gå igenom många datatyper som används för att lagra annat data (eng: containers), t.ex. listor, fält, köer, osv.
- ► Olika datastrukturer är olika effektiva
 - Åtkomst direkt eller sekvensiell
 - Organisation Ordnat? Sorterat? Hierarkiskt ordnat?
- Att fundera på vid valet av datastruktur
 - ► Hur mycket data ska lagras/hanteras?
 - Hur ofta används datat?
 - ► Vilka operationer vill vi kunna utföra?
 - ▶ Sätta in, Ta bort, Söka, Sortera, ...
 - ► Vad är syftet med strukturen?
 - Bygga upp och söka någon gång?
 - Starta med färdig konstruktion, söka många gånger?

\dots och algoritmer (1)

- Algoritmer används idag till många beslut
- ▶ I samhället:
 - Väderprognoser
 - Simuleringar/modeller:
 - Befolkningsutvecklingen, Klimatpåverkan, Aktieportföljer, Epidemier, . . .
 - Felanmälan
 - Självkörande bilar
- ► I det privata:
 - Appar
 - Baserats på tidigare val, andras val
 - Prioritera sökresultat, föreslå
 - ► Google, Youtube, Facebook

... och algoritmer (2)

- På denna kurs:
 - Algoritmer är regler för att bearbeta data.
- Exampel:
 - Fastställa kortaste vägen mellan två punkter
 - ► Säkerhet i datorsystem/kommunikation
 - ▶ Bildkomprimering (jpeg (bl.a Huffman), gif...)
 - Beslutsstöd
 - Röntgenanalys
 - Sjukdomsdiagnostik
 - Finansiell rådgivning
 - Sortera datamängder

Abstrakta...

- ► Vi kommer att gå igenom abstrakta datatyper
- Det betyder bl.a. att de är oberoende av
 - hur (om!) de är implementerade,
 - vilket språk de är implementerade i

Andra mål med kursen

- Ett av målen med kursen är att visa på likheter och skillnader mellan datatyperna
 - Alla kan skapas och förstöras
 - ► Olika sätt att läsa av , lägga till, ta bort element
 - ► Går det att navigera i datatypen?
- Några andra mål med kursen är att göra det tydligt
 - när innehållet i datatyp förändras,
 - när en datatyp kopieras eller jämförs

Vad går kursen ut på?

- Att bygga komplexa program som består av många funktioner och olika datatyper
- Att jobba med existerande byggblock kod som är skriven av andra — för att lösa problem
- ► Att konstruera egna byggblock enligt specifika regler
- Att förstå standardalgoritmer för t.ex. traversering, sökning och sortering
- Att förstå effektivitet
- Att förstå datatyper på ett så språk-oberoende sätt som möjligt, samtidigt som ni implementerar kod i C

Personal

- Lärare, kursansvarig
 - Niclas Börlin, niclas.borlin@cs.umu.se

- Handledare
 - Gabriel Morberg
 - Gustaf Elf Andersson
 - Mohammed Al-Dory
 - Simon Cederfjärd

OBS! Hur kontakta mig?

- 1. (Bäst) Skicka mail till niclas.borlin@cs.umu.se
 - ▶ I ärenderaden (subject), skriv "DOA 2024 LP4: <ert ärende>"
 - I mailet, se till att inkludera
 - 1.1 Ert namn
 - 1.2 Er CS-user
 - 1.3 Ert UmU-id
 - 1.4 Vad ni vill
- 2. (Ok) Som meddelande på Canvas
 - I ärenderaden (*subject*), skriv "DOA 2024 LP4: <ert ärende>"
 - Inkludera
 - 2.1 Ert namn
 - 2.2 Fr CS-user
 - 2.3 Ert UmU-id
 - 2.4 Vad ni vill
- 3. (Sämst) Mail till niclas.borlin@umu.se (läser sällan)
 - ▶ I ärenderaden (subject), skriv "DOA 2024 LP4: <ert ärende>"
 - Inkludera
 - 3.1 Ert namn
 - 3.2 Er CS-user
 - 3.3 Ert UmU-id
 - 3.4 Vad ni vill

Mina yrkesmässiga målsättingar

- Ni ska höja er ett par snäpp som problemlösare och programmerare!
 - Känna till standardlösnings för typiska problem
 - ► Konstruera robusta och korrekta program
 - Konstruera och beskriva algoritmer och datatyper
- ► Ni ska förstå komplexitetsbegreppet:
 - Om ett program tar 10s att sortera en lista på 1 miljon element, hur lång tid tar det för 2 miljoner?
- Ni ska behärska de viktigaste algoritmerna och datatyperna
 - Ni ska ha upptäckt hur många datatyper liknar varandra
- Ni är bekväma med att skriva algoritmer i pseudokod
- Ni ska vara bekväma med att använda andras kod utan att förstå alla detaljerna
- Ni ska sett igenom C:s syntax och insett hur den är ett specialfall av något generellare och abstraktare

Mina personliga målsättingar

- ► Ni ska tycka att kursen är rolig!
- ▶ Ni ska tycka att kursen är viktig (nu eller senare)!

Hur får ni ut mest av kursen?

- Var med på schemalagda inslag!
- Läs boken för att förstå vad som står där
 - En snabb genomläsning före och en noggrann efter ger minst stress.
 - Om något är oklart fråga!
- Skumma föreläsningsanteckningarna före föreläsningarna
 - Använd fjolårets om så behövs
- Arbeta på gruppövningarna och workshops!
 - Det ger mer tid att jobba med typiska problem (och typiska tentauppgifter).
- Börja med laborationerna så fort schemat tillåter!
 - ▶ I planeringen framgår när all nödvändig teori är genomgången.
 - Utnyttja handledningen! Sitt inte och slit ert hår i onödan.
- Säg till om det är något som inte funkar!
- Ni har ansvaret för att lära er! Vi finns här för att hjälpa er.

Examination

- Kursen består av två moduler:
 - ► Teori 4.5 hp
 - Examineras med skriftlig tentamen som sker digitalt i skrivsal (Inspera)
 - Problemlösning 3 hp
 - Examineras med fyra obligatoriska uppgifter
 - Lämnas in vid speciella deadlines i Labres
- Du har tre chanser att examineras på kursen i år
 - Se sidan Examination på Canvas för vilka datum som gäller.
- Jag höll en likadan DoA-kurs i C under LP3 (samma kurskod)
 - Om ni mailar till mig, se till att nämna vilken DoA-kurs och läsperiod det gäller!
- Det ges också DoA-kurser i Python
 - Tentan är delvis gemensam för kurserna

Tentamen, boken och föreläsningsanteckningarna

- Ni tenteras på FSR (förväntade studieresultat) enligt kursplanen!
 - ...ej på föreläsningsanteckningarna...
 - Däremot är föreläsningsanteckningarna vår bästa sammanfattning av kursmaterialet (kursboken, m.m.)
 - ...inte ens på boken...
 - Däremot är boken den bästa sammanfattning av kursinnehållet vi vet
- ► Väljer ni att plugga föreläsningsanteckningarna utan att läsa i boken så tar ni en risk

Kursbok

- ▶ "Datatyper och algoritmer", Janlert, Wiberg, 2000.
 - ► ISBN: 91-44-01364-7

► En av de få böckerna som är värd att köpa — citat från en tidigare handledare

Canvas

- https://www.canvas.umu.se/, finns också en Canvas-app
- Examination alla examinationsdatum, deadlines
 - Vid otydligheter, det som står på denna sida gäller!
- Planering
 - Planering, översikt för kursen
 - Länkar till gruppövningar, workshops
- ▶ Filer
 - Föreläsningsanteckningar, exempelkod
 - Obligatoriska uppgifter
 - Gamla tentor
- Anslag sökbara meddelanden
 - Skickas också som mail
- ▶ Uppgifter obligatoriska uppgifter (OU).
- Diskussionsforum en tråd för varje OU.
 - Använd dessa istället för mail för handledningsfrågor
- Övningsquiz
 - ► Mycket populära

Schema

- Föreläsningar
- ► Gruppövningar ("lektioner" i TimeEdit)
- ► Handledningstider
 - ► Tisdag, fredag kl. 13-15 i labbet, ev. via Zoom
 - Onsdag kl. 13-15 endast via Zoom
 - Länk från Planering
- Workshops
 - När det är workshop i labbet utgår handledningen

Föreläsningar

- ▶ Jag kommer att sträva efter att lägga upp föreläsningsanteckningar dagen före respektive föreläsning
 - ► En handout med fyra bilder/sida
 - Överblick
 - ► En slides med en bild per sida
 - Detaljer, animeringar
 - Skriv inte ut!
- Fjolårets föreläsningsanteckningar finns i en undermapp.
- Ni vinner mycket på att skumma igenom boken och föreläsningsantecknarna före föreläsningen!
 - Även fjolårets anteckningar

Övningsquiz

- Kursmaterialet innehåller ett stort antal quiz som behandlar olika sektioner av materialet
- Quizen har ingen tidsbegränsning och går att göra hur många gånger som helst
- I allmänhet mycket uppskattade
- Quizen gör det möjligt att komma i gång med materialet tidigt under kursen
 - ► Erfarenheten är att det är bra för inlärningen

Obligatoriska uppgifter (labbar) (1)

- ► Fyra stycken obligatoriska uppgifter (OU)/labbar:
 - ▶ OU1: Testning hur ni slår ihjäl någon annans kod.
 - ► OU2: Komplexitetsanalys hur argumenterar ni att er algoritm är bättre än grannens?
 - OU3: Tabeller hur ni byter implementation på en datatyp utan att nån märker det
 - ▶ OU4: Grafer hur hittar Google maps till Skövde?
- ► OU2 är en Quiz i Canvas, resten är kod + rapport och lämnas in i labres

Obligatoriska uppgifter (labbar) (2)

- Labspecifikationen publiceras senast så fort vi har gått igenom den teori ni behöver
- Schemat, handledningstillfällena och deadlines är planerade utifrån att ni börjar med labben så snart det är praktiskt möjligt
 - ▶ Efter "har allt" för labben alt. deadline för föregående lab
 - Väntar ni till sista veckan före deadline tar ni en risk
- Grov uppskattning av den relativa arbetsmängden för labbarna:
 - ► OU1: 2 enheter
 - ► OU2: 1 enhet
 - OU3: 3 enheter
 - ► OU4: 5 enheter

Gruppövningar ("lektioner" i TimeEdit)

- Alla gruppövningar ger er chans att öva på och ställa frågor kring typiska problem (och tentauppgifter)
 - ► GÖ 1+2 täckte 36% av senaste tentapoängen
- ► GÖ1-3 är 2h och GÖ4-7 är 1h
- ► Innehåll:
 - Gruppövning 1 Algoritmer, pseudokod, stack och kö
 - Gruppövning 2 Komplexitet
 - Gruppövning 3 Träd
 - Gruppövning 4 Heap
 - Gruppövning 5 Hashtabeller
 - Gruppövning 6 Grafer, grafalgoritmer
 - Gruppövning 7 Binära sökträd, Huffman
- Gruppövningarna är utspridda i schemat efter tillhörande föreläsningar

Workshops

- Här går vi igenom mer praktiska, C-specifika saker ni behöver
- ► Innehåll:
 - WS1 Övningar i terminalen med kodbasen (fredag)
 - WS2 Debugging (tisdag)
 - WS3 Dynamiskt minne (efter påsk)
 - WS4 Filhantering (senare)

Handledning

- ► Handledning sker på plats i labben (LL) och via Zoom (Z)
 - Experiment: Mixad handledning LL (Z), där belastningen i labbet bestämmer om det blir handledning via Zoom
 - ▶ Vi kommer justera relationen labbet/Zoom om så behövs
- ► Under handledningstid (se schema), gå till tutorqueue (https://webapps.cs.umu.se/tutorqueue) och ställ dig i kö genom att skriva vad du behöver hjälp med
- ► Handledningsschemat finns delat på google drive
 - Länk från Planering
 - Uppdateras direkt n\u00e4r handledare bokar in sig p\u00e4 handledningspass
- Du kan också använda diskussionsforumen på Canvas för att ställa frågor
 - ► Har du svaret på en fråga som ställts? Hjälp gärna din medstudent genom att skriva ett svar. Då lär du dig lite bättre också!

Omregistrering — komplettera labbar

- Om du gått kursen förut och ska komplettera delar av den i år måste du omregistrera dig
 - Skicka ett mail till studentexp@cs.umu.se och be dem omregistrera dig på 5DV149 VT24.
 - Anmälningskoden för detta kurstillfälle är 57319
 - Glöm inte att ange namn och personnummer
- Om du har gått kursen tidigare utan att få samtliga laborationer godkända så måste du göra årets laborationer
 - Men...om årets laborationer liknar de från ditt tidigare tillfälle så kan du få tillgodoräkna dig godkända resultat
- Gör quiz "Tillgodoräknande av gamla godkända labbar".
 - Kursansvarig verifierar godkända resultat och markerar dem som tillgodoräknade
 - ► Gamla resultat på labres kommer att föras över till denna kurs
 - OBS! Gör detta redan nu! Sen ansökan kan medföra att ni missar ett inlämningstillfälle!

Nytt för i år

- Kursen är helt fysisk i år
- Föreläsningarna
 - Kommer förenkla materialet
 - Starkare koppling mellan det abstrakta och konkreta (C)
- Uppdaterad OU1 i fjol
 - En del utan dynamiskt minne, en med
- Uppdaterad OU4
 - Mindre fokus på texthantering
 - Större fokus på datatyperna
- Uppdaterad OU1, OU3 och OU4
 - ► Tydligare rapportmall
- ► Uppdaterad kodbas med stöd för visualisering av minneshantering (kommer)

Fusk och plagiat

- Reglerna säger att uppgifterna ska utföras enskilt, i par (OU3) eller i grupper om tre (OU4):
 - Du ska i princip lösa uppgiften själv (eller i grupp)
 - Att kopiera någon annans lösning, inkl. ChatGTP, är inte okej
 - Du ska alltid förstå och kunna motivera hela lösningen
 - Några av er kommer att få beskriva era lösningar muntligt för handledarna
 - Diskutera lösningsidéer och algoritmer med alla
 - Skriv all kod själv
 - Kopiera ingen kod!
 - Diskutera struktur och innehåll i rapporterna med alla
 - Skriv rapporten själv
 - Om du tar hjälp av webb/kompisar/andra källor skriv det i rapporten!

Hur får jag ut det mesta av kursen?

- 1. Skumma föreläsningsanteckningarna och kapitel i boken före
- 2. Gå på föreläsningen
 - 2.1 Ställ frågor på föreläsningen
- 3. Ställ frågor i diskussionsforumen
 - 3.1 Besvara frågor i diskussionsforumen
- 4. Utnyttja gruppövningar och workshops
- 5. Börja med labbarna så snart som möjligt
 - 5.1 Jobba i par eller i grupp på de labbar som tillåter det