Universidad Central del Ecuador Facultad de Filosofía, Letras y Ciencias de la Educación Pedagogía Técnica de la Mecatrónica

Electrotecnia, Electrónica Digital y de Potencia

Docente: Andrés Leonardo Chávez E.

noviembre 2021

Contenido

- Introducción y motivación
- Electrotecnia
 - Naturaleza de la corriente eléctrica
 - Análisis de circuitos eléctricos
 - Generación de energía eléctrica
 - Motores de corriente continua y alterna

Presentación

Acerca de mi...

Andrés Leonardo Chávez Enríquez

- ☐ Ingeniero Eléctrico EPN
 - ☐ Sistemas eléctricos de potencia, Generación,

Transmisión y distribución de energía eléctrica.

- ☐ Magister en Ciencias de la Ingeniería Uchile
- ☐ Investigador Uchile Distribution Power Systems:
 - ☐ Resilience, reliability, Smart grids,
- ☐ EEQ Estudios y análisis post-operativo

Introducción y motivación

Escenario de aprendizaje

Curso: Electrotecnia, Electrónica digital y de Potencia

N° semanas:

Unidades de estudio: 4

Horarios: Martes 08h00 – 11h00, Jueves 08h00 – 10h00

Bibliografía:

- Circuitos Eléctricos Joseph Edminister, Serie Schaum, 1975
- Introducción al Análisis de Circuitos, Robert L. Boylestad, 12va edición 2011
- Fundamentos de Circuitos Eléctricos Charles K. Alexander Matthew. Sadiku, Mc Graw Hill, 5ta Edición 2013
- Electrónica Teoría de Circuitos y dispositivos Electrónicos, Robert Boylestad, Louis Nashelsky, Prentice Hall, 10Edicion 2009
- Tiristores y Triacs, Circuiteca de Electrónica, Henri Lilen, Marcombo, 1985

Escenario de aprendizaje

Evaluación:

Tareas, trabajos en clase, grupales, asistencia, participación, etc.	30 %	6 puntos
Evaluaciones parciales	35 %	7 puntos
Evaluación Final	35 %	7 puntos
Total	100 %	20 puntos

Asistencia:

No obligatoria, pero indispensable

Participación no obligatoria, pero indispensable

Tareas, no obligatorias, pero indispensables

Evaluaciones:

2 parciales y un examen por bimestre.

Apuntes: ¡Indispensables!

Representante de la materia

Contacto: andres.chavez@ug.uchile.cl

0987687518

"Lo que oigo, lo olvido Lo que veo, lo recuerdo Lo que hago, lo comprendo Lo que comprendo, aprendo"

Contenido

- Introducción y motivación
- Electrotecnia
 - ❖ Naturaleza de la corriente eléctrica
 - Análisis de circuitos eléctricos
 - Generación de energía eléctrica
 - Motores de corriente continua y alterna

Conocimientos previos

Sistemas de medición

- Mediciones físicas dentro del mundo de la electricidad y electrónica
- Sistema métrico MKS, sistema inglés CGS

- Sistemas de conversión entre unidades
- Notación científica
- Prefijos:

Inglés	Métrico				
	MKS	CGS	SI		
Longitud:	Metro (m)	Centímetros (cm)	Metro (m)		
Yarda (yd)	(39.37 pulg)	(2.54 cm = 1 pulg)			
(0.914 m)	(100 cm)				
Masa:					
Slug	Kilogramo (kg)	Gramos (g)	Kilogramo (kg)		
(14.6 kg)	(1000 g)				
Fuerza:					
Libra (lb)	Newton (N)	Dina	Newton (N)		
(4.45 N)	(100,000 dinas)				
Temperatura:	Galaina a	C1/1 (2C)	V-lata (V)		
Fahrenheit (°F)	Celsius o	Centígrados (°C)	Kelvin (K)		
$\left(=\frac{9}{5}^{\circ}C + 32\right)$	Centígrados (°C)		$K = 273.15 + {}^{\circ}C$		
(5 0 + 32)	$\left(=\frac{5}{9}(^{\circ}F-32)\right)$				
Energía:	(9)				
Pie-libra (pie-lb)	Newton-metro (N•m)	Dinas-centímetros o erg	Joule (J)		
(1.356 joules)	o joule (J)	$(1 \text{ joule} = 10^7 \text{ ergs})$	Joure (J)		
(1.550 Joures)	(0.7376 pie-1b)	(1 jour 10 01g0)			
Tiempo:	(
Segundo (s)	Segundo (s)	Segundo (s)	Segundo (s)		

pico	nano	micro	mili	Unidad	kilo	mega	giga	Tera
p	n	μ	m	m	<i>k</i> m	Mm	Gm	Tm

Origen de la electricidad

Tiempo	Avance
600 AC	Electricidad estática
1600	Electricidad y magnetismo
1752	Benjamin Franklin – naturaleza de los rayos – invención del pararrayos
1776	Charles Coulomb - Balanza de torsión – fuerza entre dos cargas eléctricas
1800	Alejandro Volta – celda electrostática – medición del potencial eléctrico
1816	Christian Oersted – relación de la electricidad y el electromagnetismo – medida de la reluctancia
1820	André Marie Ampere – interacción de las corrientes en un conductor – invención del galvanómetro – Ampere como unidad de intensidad de corriente
1826	George Simon Ohm – formulación de la oposición al paso de la corriente eléctrica – Ley de Ohm
1870	James Maxwell – formulación de la teoría electromagnética – transmisión de energía en ondas – Maxwell como unidad de flujo magnético
1881	Thomas Edison – primera lámpara incandescente en DC
1884	Heinrich Hertz – trabajos sobre ondas electromagnéticas – unidad de medida de la frecuencia

Ley de Coulomb

El origen de todos los fenómenos eléctricos es la existencia de la carga eléctrica q(t) y el movimiento de la misma.

$$F = k \frac{Q_1 Q_2}{r^2} [N]$$

$$q_e = -1.602 \cdot 10^{-19} [C]$$

$$k = 9 * 10^9 \left[\frac{N * m^2}{C^2} \right]$$

Intensidad de corriente eléctrica

La corriente eléctrica es el movimiento de las cargas eléctricas a lo largo de un elemento conductor

Fuerzas externas sobre los átomos

Electrones libres

Iones positivos

Intensidad de corriente = flujo de carga en el tiempo

$$I = \frac{Q[C]}{t[s]} [A]$$

$$i(t) = \frac{dq(t)}{dt} [A]$$

Potencial eléctrico

El potencial eléctrico v en un punto de una red es la energía potencial por unidad de carga, de una carga colocada en ese punto.

Diferencia de potencial

Fuerzas externas ejercen un trabajo.

Se crea una capacidad de ejercer un trabajo entre los polos

Se establece una diferencia de potencial (por acumulación de cargas negativas).

El voltaje se define como la diferencia de potencial para realizar un trabajo (desplazamiento de cargas)

$$V = \frac{W[J]}{Q[C]} [V] \qquad v_{AB} = v_A - V_b = \Delta v = u(t) = \frac{dw}{dq} [V]$$

Aclarando términos usualmente utilizados:

Potencial, diferencia de potencial, Voltaje, diferencia de voltaje, fuerza electromotriz.

Potencial eléctrico

Entendamos una analogía entre energía potencial gravitatoria y eléctrica

$$v_{AB} = v_A - V_b = \Delta v = u(t) = \frac{dw}{dq}$$
 [V]

a) Potencial gravitatorio

b) Potencial eléctrico

Potencia eléctrica

Una carga dq que se mueve desde un potencial v_A hasta un potencial v_B , desarrolla un trabajo , de tal manera que:

$$dw = dq(v_A - v_B) = dq \cdot u_{AB} = (i \cdot dt) \cdot u_{AB}[J]$$

Se define escalarmente como el producto del voltaje (o diferencia de potencial) por la intensidad de corriente

Su unidad es el Watt (vatio) [W]

$$p(t) = \frac{dw}{dt} = u(t)\frac{dq}{dt} = u(t) \cdot i(t) \quad [W]$$

Energía eléctrica

Se define como la potencia suministrada en un intervalo de tiempo

$$W = \int_0^t P(t) \, dt$$

