MODERN HEURISTIC TECHNIQUES FOR COMBINATORIAL PROBLEMS

Edited by

COLIN R REEVES BSc, MPhil

Department of Statistics and Operational Research School of Mathematical and Information Sciences Coventry University

McGRAW-HILL BOOK COMPANY

 $\textbf{London} \, \cdot \, \text{New York} \, \cdot \, \text{St Louis} \, \cdot \, \text{San Francisco} \, \cdot \, \text{Auckland}$

Bogotá · Caracas · Lisbon · Madrid · Mexico · Milan

Montreal · New Delhi · Panama · Paris · San Juan · São Paulo

 $Singapore \cdot Sydney \cdot Tokyo \cdot Toronto$

Contents

1	Intr	oducti	on	1
	1.1	Combi	inatorial Problems	1
		1.1.1	Links with linear programming	3
	1.2	Local	and Global Optima	4
	1.3	Heuris	tics	5
		1.3.1	The case for heuristics	7
		1.3.2	Modern methods	11
		1.3.3	Evaluation of heuristics	14
2	Sim	ulated	Annealing	20
	2.1	Introd	uction	20
	2.2		asic Method	24
		2.2.1	Local optimization	24
		2.2.2	The annealing algorithm	26
		2.2.3	A brief overview of the theory	27
		2.2.4	Generic decisions	29
		2.2.5	Problem-specific decisions	32
		2.2.6	Examples	34
		2.2.7	Aids to fine-tuning	40
	2.3	Enhan	cements and Modifications	42
		2.3.1	Acceptance probability	43
		2.3.2	Cooling	44
		2.3.3	The neighbourhoods	46
		2.3.4	Sampling	48
		2.3.5	The cost function	49
		2.3.6	In combination with other methods	51
		2.3.7	Parallel implementations	53
	2.4	Applio	$\operatorname{cations}$	55

vi Contents

		2.4.1	Classical problems
		2.4.2	VLSI and computer design 57
		2.4.3	Sequencing and scheduling 59
		2.4.4	Other problems 62
	2.5	Conclu	sions
3	Tab	u Sear	ch 70
	3.1	Introd	uction
	3.2	The Ta	abu Search Framework 71
		3.2.1	An illustrative example 71
		3.2.2	Notation and problem description 82
		3.2.3	Neighbourhood search 83
		3.2.4	Tabu search characteristics 85
		3.2.5	Tabu search memory
		3.2.6	Recency-based tabu memory functions 94
		3.2.7	Aspiration criteria
		3.2.8	Frequency-based memory 104
		3.2.9	Frequency-based memory in simple intensifica-
			tion and diversification processes 109
	3.3	Broade	er Aspects of Intensification and Diversification . 111
		3.3.1	Diversification versus randomization 112
		3.3.2	Reinforcement by restriction
		3.3.3	Extrapolated relinking
		3.3.4	Solutions evaluated but not visited
		3.3.5	Interval-specific penalties and incentives 119
		3.3.6	Candidate list procedures
		3.3.7	Compound neighbourhoods 121
		3.3.8	Creating new attributes—vocabulary building
			and concept formation
		3.3.9	Strategic oscillation
	3.4	Tabu S	Search Applications
	3.5		ctions and conclusions
		3.5.1	Simulated annealing
		3.5.2	Genetic algorithms
		3.5.3	Neural networks
4	Ger	netic A	lgorithms 151
	4.1	Introd	uction
	4.2	Basic	Concepts

Contents vii

		4.2.1	Intrinsic parallelism and the schema theorem .	154
		4.2.2	Recent developments	159
	4.3	A Sim	ple Example	162
	4.4	Extens	sions and Modifications	164
		4.4.1	Population-related factors	165
		4.4.2	Modified operators	170
		4.4.3	Chromosome coding and representation	175
		4.4.4	Hybridization	179
		4.4.5	Parallel implementations	180
		4.4.6	Computer software	181
	4.5	Applic	cations	181
		4.5.1	Travelling salesman problem	181
		4.5.2	Sequencing and scheduling	182
		4.5.3	Graph colouring	
		4.5.4	Steiner trees	
		4.5.5	Knapsack problems	
		4.5.6	Set covering problems	
		4.5.7	Bin packing	
		4.5.8	Neural networks	
		4.5.9	Other problems	
	4.6	Conclu	usions	188
5	Δrt	ificial l	Neural Networks	197
Ü	5.1		luction	
	5.2		l Networks	
	0.2	5.2.1	Biological neural networks	
		5.2.1	Artificial neural networks	
	5.3	•	inatorial Optimization Problems	
	5.4		Graph Bisection Problem	
	0.1	5.4.1	Neural mapping	
		5.4.2	The mean field equations	
		5.4.3	Mean field dynamics	
	5.5	-	Graph Partition Problem	
	0.0	5.5.1	Neuron multiplexing—Ising representation	
		5.5.2	K-state neurons—Potts representation	
		5.5.2	Mean field Potts equations	214
		5.5.4	Mean field dynamics	
		5.5.5	A generic algorithm	
		5.5.6	Numerical results	

viii Contents

Problem
ple 223
le
243
rature 246
ation 247
lem 249
e multiplier values 253
gean relaxation 253
nd Problem Reduction 260
stic 260
n
266
ge Multipliers 266
nization 267
dient optimization 270
ment
$ent algorithm \dots 278$
g rule 283
1000000000000000000000000000000000000

		6.7.6 Computer programs	. 286
	6.8	Applications	. 290
		6.8.1 Journals	. 290
		6.8.2 Summary	. 297
	6.9	Conclusions	. 298
7	Eva	luation of Heuristic Performance	304
	7.1	Introduction	304
	7.2	Analytical Methods	305
		7.2.1 Worst-case and average performance analysis .	305
		7.2.2 Bounds	307
	7.3	Empirical Testing	308
	7.4	Statistical Inference	311
	7 5	Conclusion	212