Project Report: Air Cargo Planning Agent

Ramy Rashad

In this project, we implement and study a forward planning agent to solve four air cargo planning problems, each with increasing complexity. We explore various uninformed search algorithms, as well as informed search algorithms in combination with various heuristics.

1 Problem Labels

The following table provides some useful labels that will be used to identify the various air cargo planning problems explored in this report:

Label	Problem Description
p1	Air Cargo Problem 1
p2	Air Cargo Problem 2
p3	Air Cargo Problem 3
p4	Air Cargo Problem 4

2 Algorithm Labels

The following table provides some useful labels that will be used to identify the various algorithms explored in this report:

Label	Search Algorithm	Heuristic
bfs	Breadth-First Search	n/a
dfs	Depth-First Search	n/a
ucs	Uniform Cost Search	n/a
gb-unmet	Greedy Best First Search	Unmet Goals
gb-level	Greedy Best First Search	Level Sum
gb- max	Greedy Best First Search	Max Level
gb-set	Greedy Best First Search	Set Level
as-unmet	A* Search	Unmet Goals
as-level	A* Search	Level Sum
as-max	A* Search	Max Level
as-set	A* Search	Set Level

3 Results

In this section, the data collected from exploring the various problems and algorithms are presented in table format. Based on findings from p1 and p2, the dfs algorithm was not executed for p4, primarily due to its inability to find the optimal path. I would have also omitted the as-max and as-set algorithms based on their computational expense, but I decided to run them anyway, just for fun!

Problem	Label	Actions	Expansions	Goal Tests	New Nodes	Plan Length	Time
p1	bfs	20	43	56	178	6	3.83E-02
p1	dfs	20	21	22	84	20	8.90E-03
p1	ucs	20	60	62	240	6	2.62E-02
p1	gb-unmet	20	7	9	29	6	3.65E-03
p1	gb-level	20	6	8	28	6	1.17E + 00
p1	gb- max	20	6	8	24	6	3.40E-01
p1	$\operatorname{gb-set}$	20	7	9	31	7	1.84E + 00
p1	as-unmet	20	50	52	206	6	4.05E-02
p1	as-level	20	28	30	122	6	6.36E-01
p1	as-max	20	43	45	180	6	3.51E-01
p1	as-set	20	51	53	208	6	1.24E+00

Problem	Label	Actions	Expansions	Goal Tests	New Nodes	Plan Length	Time
p2	bfs	72	3343	4609	30503	9	5.20E-01
p2	dfs	72	624	625	5602	619	6.22E-01
p2	ucs	72	5154	5156	46618	9	9.62E-01
p2	gb-unmet	72	17	19	170	9	2.49E-02
p2	gb-level	72	9	11	86	9	9.06E-01
p2	gb-max	72	27	29	249	9	1.19E+00
p2	$\operatorname{gb-set}$	72	26	28	232	10	6.05E+00
p2	as-unmet	72	2467	2469	22522	9	1.13E+00
p2	as-level	72	357	359	3426	9	2.09E+01
p2	as-max	72	2887	2889	26594	9	1.30E + 02
p2	as-set	72	2102	2104	19395	9	7.26E+02

Problem	Label	Actions	Expansions	Goal Tests	New Nodes	Plan Length	Time
p3	bfs	88	14663	18098	129625	12	1.56E+00
p3	dfs	88	408	409	3364	392	2.64E-01
p3	ucs	88	18510	18512	161936	12	2.57E+00
p3	gb-unmet	88	25	27	230	15	5.57E-02
p3	gb-level	88	14	16	126	14	2.36E+00
p3	gb-max	88	21	23	195	13	2.26E+00
p3	$\operatorname{gb-set}$	88	42	44	405	18	2.83E+01
p3	as-unmet	88	7388	7390	65711	12	1.68E + 00
p3	as-level	88	369	371	3403	12	4.17E + 01
p3	as-max	88	9580	9582	86312	12	7.56E + 02
p3	as-set	88	5963	5965	54668	12	3.42E+03

Problem	Label	Actions	Expansions	Goal Tests	New Nodes	Plan Length	Time
p4	bfs	104	99736	114953	944130	14	1.01E+01
p4	dfs	-	-	-	-	-	-
p4	ucs	104	113339	113341	1066413	14	1.36E + 01
p4	gb-unmet	104	29	31	280	18	6.06E-02
p4	gb-level	104	17	19	165	17	5.29E+00
p4	gb- max	104	56	58	580	17	5.50E+00
p4	$\operatorname{gb-set}$	104	114	116	1229	24	1.13E + 02
p4	as-unmet	104	34330	34332	328509	14	7.27E+00
p4	as-level	104	1208	1210	12210	15	2.01E+02
p4	as-max	104	62077	62079	599376	14	6.51E + 03
p4	as-set	104	37912	37914	373328	14	3.14E + 04

3.1 Complexity Studies

In this section, the search complexity is analyzed as a function of domain size, search algorithm, and heuristic. In Figure 1, the number of expansions is plotted against the number of actions. Note that the number of available actions in the planning graph represents the complexity of the problem (how many aircraft, airports, and pieces of cargo are involved), whereas the number of expansions represents the efficiency and scalability of the algorithm (search and heuristic).

A planning agent that expands fewer number of nodes is generally considered more efficient. The smaller the slope in Figure 1, the better the given algorithm will scale as the domain size increases. Note that this plot does not say anything about **optimality**, that is, whether or not each algorithm was able to find the optimal path.

Figure 1: Expansions vs. Actions

3.2 Time Studies

In this section, the search time is analyzed as a function of domain size, search algorithm, and heuristic. In Figure 2, the number of expansions is plotted against the number of actions. Note that the number of available **actions** in the planning graph represents the complexity of the problem (how many aircraft, airports, and pieces of cargo are involved), whereas the **time** represents the efficiency and scalability of the algorithm (search and heuristic).

A planning agent that requires less computational time is generally considered more computationally efficient. The smaller the slope in Figure 2, the better the given algorithm will scale as the domain size increases. Note that this plot does not say anything about **optimality**, that is, whether or not each algorithm was able to find the optimal path.

Figure 2: Time vs. Actions

3.3 Optimality Studies

In this section, the solution optimality is analyzed as a function of domain size, search algorithm, and heuristic. In Table 7, the computed plan length is provided for each algorithm and each problem.

Table 7: Computed Plan Lengths

Algorithm	p1	p2	p3	p4
bfs	6	9	12	14
dfs	20	619	392	-
ucs	6	9	12	14
gb-unmet	6	9	15	18
gb-level	6	9	14	17
gb-max	6	9	13	17
gb-set	7	10	18	24
as-unmet	6	9	12	14
as-level	6	9	12	15
as-max	6	9	12	14
as-set	6	9	12	14

Since we know that the bfs is guaranteed to find the optimal path, we can examine the bfs results in Table 7 to know the correct optimal values for each problem. As such, we can state that the following algorithms were able to find the optimal path for all problems:

bfs. ucs. as-unmet. as-max. and as-set.

It was also observed that the dfs algorithm struggles to find the optimal path for all problems studied.

4 Q & A

4.1 Question 1

Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?

The most appropriate algorithm for planning in a very restricted domain that needs to operate in real time is the algorithm that has the smallest computational time for the smallest number of actions that we studied. Looking at the bottom left-hand quadrant of Figure 2, I would select the gb-unmet algorithm, followed by ucs, as-set, and as-unmet. The dfs algorithm is fast for restricted problems, but is disqualified since it was not able to find the optimal path length, even for restricted domains.

4.2 Question 2

Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)

The most appropriate algorithm for planning in a very large domain is the algorithm with the best scalability in terms of number of expansions and computational cost (or time). Scalability can be determined by examining the slope of the lines in Figures 1 and 2. The algorithm with the overall best scalability in terms of both time and number of expansions is the gb-unmet and gb-level algorithms, however, both algorithms failed to find the optimal path for the largest domain problem, p4. In terms of algorithms that were able to find the optimal paths for large domains in the least amount of time, I would select the as-set algorithm followed closely by the ucs algorithm.

4.3 Question 3

Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?

Since we know that the bfs algorithm is guaranteed to find the optimal path, we can select that algorithm as the most appropriate. That being said, the following algorithms were able to find the optimal path for all problems:

bfs, ucs, as-unmet, as-max, and as-set.