

## IPv4 vs IPv6 Why IPv6? ■ Need for larger address space ■ IPv4 has 32-bit address field ■ Support for new applications like real-time audio and video that require network guarantees in the network ■ header format helps speed processing/forwarding ■ header changes to facilitate QoS ■ new "anycast" address: route to "best" of several replicated servers

## IPv6 Rationale Larger address space Efficient address allocation Simpler header processing Autoconfiguration Support for QoS Support for Security Header TCP Payload IPv4 Address Space Exhaustion Currently, about 75% of the total IPv4 address space is either assigned or reserved.

## IPv6: Benefits (1): Address length 32 bits in IPv4, 128 bits in IPv6 340282366920938463463374607431768211456 addresses restores end-to-end transparency New possibilities for applications (p2p, voip, . . ) Static network assignments for every customer dynamic addresses still possible (privacy reasons) IPSec QoS capabilities

## IPv6: new address format IPv4: 32 bits, 4 x 8 bits, decimal notation, separated by '.' { examples: 203.178.141.194, 195.30.0.2, 10.0.0.1 IPv6: { 128 bits, 8 x 16 bits, hexadecimal notation, separated by '.' { leading zeroes can be left away (:0123:0001' = ':123:1') { exactly one series of zeroes can be reduced to ':.' { examples: 2001:200:0:8002:203:47ff:fea5:3085 2001:608::2 fe80::210:60ff:fe80:3a16