Exercise 1.4.1: Recall that \mathbb{I} stands for the set of rational numbers.

- (a) Show that if $a, b \in \mathbb{Q}$ then ab and $a + b \in \mathbb{Q}$ as well.
- (b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$ and if $a \neq 0$ then $at \in \mathbb{I}$ as well.
- (c) Part (a) says that the rational numbers are closed under multiplication and addition. What can be said about st and s + t when $s, t \in \mathbb{I}$?

Proof.

Exercise 1.4.2: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}$, s + (1/n) is an upper bound for A but s - (1/n) is not an upper bound for A. Show that $s = \sup A$.

Proof.

Exercise 1.4.3: Show that $\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$.

Proof.

Exercise 1.4.4: (W) (Hand this one in to David.)

Let a < b be real numbers and let $T = [a, b] \cap \mathbb{Q}$. Show that sup T = a.

Proof.

Exercise 1.4.5: Use Exercise 1.4.1 to provide a proof of Corollary 1.4.4 by considering real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$.

Proof.

Exercise Supplemental 1: Show that the sets [0, 1) and (0, 1) have the same cardinality.