Inference in Linear Gaussian Bayesian Network

Karthik Bangalore Mani Department Of Computer Science Illinois Institute of Technology

April 10, 2016

Abstract

The goal of this assignment is to predict the readings for temperature and humidity by estimating Linear Gaussian parameters for train datasets. There are 2 kinds of model, which are stationary at hour and day levels. The first model will have 5 parameters per sensor: μi , σi , $\beta 0$, $\beta 1$, σ . The second model will have similar parameters, except that every random variable will have it's own $\beta 0$, $\beta 1$.

Implementation Details

Function	Description
get_data_matrix(file_path)	Strip out the first row and first column and return
	data matrix
create_matrix_for_regression(sensor_readings)	I/P : a np array [1,2,3,4]
	O/P : a np matrix of form
	12
	2 3
	3 4
compute_regression_coeffs(data_matrix)	I/P : a data_matrix
	O/P: The coefficients of the regressed model
	with a polynomial order of 1.
<pre>get_cond_variance(actual_lst,predicted_lst)</pre>	I/P : Actual and predicted readings.
	O/P: Conditional Variance, which is the
	variance of errors.
<pre>get_mean(beta_0,beta_1,prev_mean)</pre>	Mu_i = B_0 + B_1*Mu_i-1
<pre>get_var(cond_var,beta_1,prev_sigma)</pre>	sigma_i = cond_var + (B_1^2)*sigma_i-1
<pre>get_model_1_params(data_set)</pre>	
compute_regression_coeffs(data_matrix)	I/P : a data_matrix
	O/P: The coefficients of the regressed model
	with a polynomial order of 1.
get_cond_variance(actual_lst,predicted_lst)	I/P : Actual and predicted readings.
	O/P: Conditional Variance, which is the
	variance of errors.
<pre>get_model_2_matrix(data_set,train_days)</pre>	Fit the model 2 for the train set
chunks(_list,size)	Get Chunks of size size from a list _list
<pre>get_windows(no_of_sensors,no_of_cols,budget)</pre>	Get the window indices for each column/each
	time-stamp

Results and Discussion:

Window Sliding on Temperature:

- Model2 was the winner as it had lesser Mean Absolute error
- Upon increasing budgets, MAE was found to decrease

Window Sliding on Humidity:

- Again, Model2 was the winner as it had lesser Mean Absolute error
- Upon increasing budgets, MAE was found to decrease

Note: I could not complete inference using Variance approach due to lack of time.