

Sep 11, 2024

### \_

# Rapid Bacterial Isolate Whole Genome Sequencing

DOI

#### dx.doi.org/10.17504/protocols.io.kqdg32ndev25/v1

Adela Alcolea-Medina<sup>1</sup>, Luke Blagdon Snell<sup>1</sup>, CIDR RESEARCH<sup>2</sup>

<sup>1</sup>King's College London; <sup>2</sup>Guy's & St. Thomas' NHS Foundation Trust.



### Adela Alcolea-Medina

Infectious research

# OPEN ACCESS



DOI: dx.doi.org/10.17504/protocols.io.kqdg32ndev25/v1

**Protocol Citation:** Adela Alcolea-Medina, Luke Blagdon Snell, CIDR RESEARCH 2024. Rapid Bacterial Isolate Whole Genome Sequencing . **protocols.io** <a href="https://dx.doi.org/10.17504/protocols.io.kgdg32ndev25/v1">https://dx.doi.org/10.17504/protocols.io.kgdg32ndev25/v1</a>

**License:** This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: September 05, 2024

Last Modified: September 11, 2024

Protocol Integer ID: 106992

#### **Abstract**

Please cite the original publication where this process was described: Charalampous, T., Alcolea-Medina, A., Snell, L.B. *et al.* Evaluating the potential for respiratory metagenomics to improve treatment of secondary infection and detection of nosocomial transmission on expanded COVID-19 intensive care units. *Genome Med* **13**, 182 (2021). https://doi.org/10.1186/s13073-021-00991-y



## Set-up and sample sheet

1

| Sample number (IS1 etc<br>or IS-N1 for negative<br>control) | Lab number | Organism (Use 5 letter code – E. coli = ESCCOL) |
|-------------------------------------------------------------|------------|-------------------------------------------------|
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |
|                                                             |            |                                                 |

Table for sample information

#### 1.1 Before beginning:

Ensure that culture purity plate has been left for 48 hours in the incubator and colonies have matured based on the amount of growth.

# Isolate DNA extraction (bead-beating and bead wash):

- 2 Bead-beating/mechanical lysis of bacterial isolates:
- 2.1 For each isolate, add 500uL PBS to a Lysing Matrix E 2mL (MP Biomedicals) bead-beating tube including one for negative control.
- 2.2 For each culture plate, take an entire quadrant using a 10uL loop and add to a bead-beating tube.
- 2.3 Start bead-beating at 1x40s 4m/s.
- 2.4 Centrifuge at 14,000 RPM for 5 minutes.



| 3 | Bead | wash  |
|---|------|-------|
| 0 | Doug | wasii |

- 3.1 Transfer 150uL of supernatant from each Lysing Matrix E tube to new 1.5mL DNA Lobind Tube, one per sample.
- 3.2 Add **75uL** of AMPure XP beads to each tube
- 3.3 Mix by flicking and incubate at RT for **5 minutes** with frequent agitation.
- 3.4 Pulse spin briefly.
- 3.5 Place tubes magnetic rack for 3 minutes for beads to pellet.
- 3.6 Wash twice with **80% ethanol** whilst keeping tube on magnetic rack.
- 3.7 Pulse spin briefly.
- 3.8 Dry the beads for 1 minute.
- 3.9 Take each tube from the magnetic rack, add 50uL of PBS to each tube, and allow DNA to elute during 5 minute incubation at room temperature.
- 3.10 Place each tube back on the magnetic rack, allow beads to pellet, and retrieve 35uL to 50uL of the eluted DNA into a new 1.5mL DNA Lobind Tube.

# Library preparation and sequencing:

4 <u>Library preparation for **SQK-RBK114.96**</u>:



- 4.1 Qubit the samples and record the amount of DNA (found on page 4) with the BroadRange/BR Qubit reaction kit. Use 2uL of sample into 198uL of Qubit mastermix.
- 4.2 Add 7.5uL of the extracted DNA for each sample to 2.5uL of RBK114.96 barcodes in 0.2mL PCR tubes, one unique barcode per sample.
- 4.3 Incubate the tubes on a thermocycler at 30°C for 2 minute and 80°C for 2 minute\*.
- 4.4 Pulse spin briefly.
- 4.5 Pool all barcoded samples together in a 1.5mL Lobind tube
- 4.6 Add equal amount of AMPure XP beads.
- 4.7 Mix by flicking till homogenise.
- 4.8 Incubate on hula-mixer for 5 minutes.
- 4.9 Pulse spin briefly.
- 4.10 Place on magnetic rack for 3 minute.
- 4.11 Remove supernatant.
- 4.12 Wash twice with 80% ethanol whilst keeping tube on magnetic rack.
- 4.13 Pulse spin briefly.
- 4.14 Remove remaining ethanol and air dry for 1 minute.

- 4.15 Remove tube from magnetic rack, add 11uL EB to elute the DNA
  - 5 Incubate for 5 minutes on the hula-mixer.
  - 6 Place on magnetic rack for 1 minute
  - 7 Transfer 10uL of eluate into a fresh 1.5mL DNA Lobind Tube to give the final library.
  - 8 Use 1uL of final library from the original tube for Qubit measurement
  - 9 Wait for 2 minutes, and record Qbit concentration of final library (found on page 4).
  - 10 Create a RA + ADB mix: Add 1.5ul of RA to 3.5ul of ADB.
  - 11 Add 1ml of RA+ADB mix to 10ml of final library.
  - 12 Mix by flicking and pulse spin briefly
  - 13 Incubate the mixture for 5 minutes at RT on the hula-mixer. Move to library sequencing steps 1-2 during incubation
  - 14 In the tube, add as follows:

**37.5uL** Sequencing Buffer (SB)

**25.5uL** Library Beads (LIB)

**11uL** DNA library

15



| Sample number | Barcode | Qubit concentration (ng/ul) |       |
|---------------|---------|-----------------------------|-------|
|               |         | PCR                         | Final |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |
|               |         |                             |       |

| Libr | ary sequencing:                                                                       |
|------|---------------------------------------------------------------------------------------|
| 16   | Begin flowcell check on GridION for selected flowcell.                                |
| 17   | Record the number of pores.                                                           |
| 18   | Slide open the flow cell priming port and draw back a small volume to remove bubbles. |
| 19   | Add 800uL of flush buffer through the priming port                                    |
| 20   | Wait for 5 minutes.                                                                   |
| 21   | Open SpotON sample port cover.                                                        |
| 22   | Load 200uL of the flush buffer into the flow cell priming port (not the SpotON port). |
| 23   | Flick prepared library gently.                                                        |
| 24   | Add dropwise 75uL of the prepared library through the SpotON sample port.             |



- 25 Close all the ports and click start sequencing.
- Input the run name in the following way: 26 <yymmdd>\_<operator>\_<isolate\_run-number> and for sample name <operator>\_<isolate\_run-number>.
- 27 Select the correct library kit: SQK-RBK114.96
- 28 Do not change any other settings and ensure FASTQ files are kept