```
In [28]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import sklearn as sk
In [29]: data=pd.read_csv(r"C:\Users\karis\Documents\breast_cancer.csv")
         data.head()
Out[29]:
                  id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavit
              842302
         0
                           M
                                    17.99
                                                 10.38
                                                               122.80
                                                                         1001.0
                                                                                         0.11840
                                                                                                          0.27760
              842517
         1
                           M
                                     20.57
                                                 17.77
                                                               132 90
                                                                         1326.0
                                                                                         0.08474
                                                                                                          0.07864
         2 84300903
                           М
                                     19.69
                                                 21.25
                                                               130.00
                                                                         1203.0
                                                                                         0.10960
                                                                                                          0.15990
         3 84348301
                                     11.42
                                                 20.38
                                                               77.58
                                                                          386.1
                                                                                         0.14250
                                                                                                          0.28390
         4 84358402
                                                                                         0.10030
                           M
                                     20.29
                                                 14.34
                                                               135.10
                                                                         1297.0
                                                                                                          0.13280
        5 rows × 32 columns
In [30]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 569 entries, 0 to 568
        Data columns (total 32 columns):
                                      Non-Null Count Dtype
         #
            Column
         0
            id
                                      569 non-null
                                                      int64
                                     569 non-null
             diagnosis
                                                      object
         2
            radius mean
                                     569 non-null
                                                      float64
         3
             texture mean
                                      569 non-null
                                                      float64
         4
             perimeter_mean
                                      569 non-null
                                                      float64
                                      569 non-null
                                                      float64
            area mean
            smoothness_mean
                                                      float64
         6
                                      569 non-null
             compactness mean
                                      569 non-null
                                                      float64
                                      569 non-null
                                                      float64
         8
             concavity_mean
                                      569 non-null
                                                      float64
             concave points_mean
                                      569 non-null
                                                      float64
         10 symmetry_mean
         11 fractal dimension mean
                                      569 non-null
                                                      float64
         12 radius se
                                      569 non-null
                                                      float64
         13 texture_se
                                      569 non-null
                                                      float64
                                                      float64
         14 perimeter_se
                                     569 non-null
         15
             area se
                                      569 non-null
                                                      float64
                                     569 non-null
                                                      float64
         16 smoothness se
         17 compactness se
                                     569 non-null
                                                      float64
                                                      float64
         18 concavity_se
                                      569 non-null
         19
             concave points se
                                      569 non-null
                                                      float64
                                      569 non-null
                                                      float64
         20 symmetry_se
         21 fractal_dimension_se
                                      569 non-null
                                                      float64
                                      569 non-null
                                                      float64
         22 radius_worst
         23
            texture_worst
                                      569 non-null
                                                      float64
                                     569 non-null
                                                      float64
         24 perimeter_worst
         25 area_worst
                                     569 non-null
                                                      float64
                                    569 non-null
                                                      float64
         26 smoothness_worst
         27 compactness worst
                                      569 non-null
                                                      float64
                                      569 non-null
                                                      float64
         28 concavity worst
         29 concave points worst
                                      569 non-null
                                                      float64
         30 symmetry worst
                                      569 non-null
                                                      float64
         31 fractal dimension worst 569 non-null
                                                      float64
        dtypes: float64(30), int64(1), object(1)
        memory usage: 142.4+ KB
In [31]: data.hist(bins=22,figsize=(30,20))
```

plt.show()

In [32]: data.describe()

Out[32]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.0
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.0
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.0
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.0
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.0
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.0
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.1
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.4

8 rows × 31 columns

```
In [33]: data.isnull().values.any()
```

Out[33]: np.False_

```
In [34]:    numeric_data = data.select_dtypes(include=['float64', 'int64'])
    correat = numeric_data.corr()
    plt.figure(figsize=(20, 20))
    sns.heatmap(correat, annot=True, cmap="coolwarm", linewidths=0.5)
    plt.show()
```



```
In [35]: from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
data['diagnosis'] = label_encoder.fit_transform(data['diagnosis'])
data
```

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	conca
0	842302	1	17.99	10.38	122.80	1001.0	0.11840	0.27760	
1	842517	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960	0.15990	
3	84348301	1	11.42	20.38	77.58	386.1	0.14250	0.28390	
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030	0.13280	
564	926424	1	21.56	22.39	142.00	1479.0	0.11100	0.11590	
565	926682	1	20.13	28.25	131.20	1261.0	0.09780	0.10340	
566	926954	1	16.60	28.08	108.30	858.1	0.08455	0.10230	
567	927241	1	20.60	29.33	140.10	1265.0	0.11780	0.27700	
568	92751	0	7.76	24.54	47.92	181.0	0.05263	0.04362	

569 rows × 32 columns

In [36]: data.describe()

Out[36]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mear
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000
mean	3.037183e+07	0.372583	14.127292	19.289649	91.969033	654.889104	0.096360	0.10434
std	1.250206e+08	0.483918	3.524049	4.301036	24.298981	351.914129	0.014064	0.05281
min	8.670000e+03	0.000000	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380
25%	8.692180e+05	0.000000	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920
50%	9.060240e+05	0.000000	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630
75%	8.813129e+06	1.000000	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400
max	9.113205e+08	1.000000	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400

8 rows × 32 columns

In [37]: data_Cancer = data[data["diagnosis"] == 1]
 data_NonCancer = data[data["diagnosis"] == 0]

In [38]: data_Cancer .describe()

Out[38]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean
count	2.120000e+02	212.0	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000
mean	3.681805e+07	1.0	17.462830	21.604906	115.365377	978.376415	0.102898	0.145188
std	1.378965e+08	0.0	3.203971	3.779470	21.854653	367.937978	0.012608	0.053987
min	8.670000e+03	1.0	10.950000	10.380000	71.900000	361.600000	0.073710	0.046050
25%	8.613450e+05	1.0	15.075000	19.327500	98.745000	705.300000	0.094010	0.109600
50%	8.953665e+05	1.0	17.325000	21.460000	114.200000	932.000000	0.102200	0.132350
75%	8.911290e+06	1.0	19.590000	23.765000	129.925000	1203.750000	0.110925	0.172400
max	9.112962e+08	1.0	28.110000	39.280000	188.500000	2501.000000	0.144700	0.345400

8 rows × 32 columns

In [39]: data_NonCancer.describe()

	Iu	diagnosis	radius_inican	texture_incum	perimeter_mean	arca_mcan	3mootime33_mean	compactness_mean
count	3.570000e+02	357.0	357.000000	357.000000	357.000000	357.000000	357.000000	357.000000
mean	2.654382e+07	0.0	12.146524	17.914762	78.075406	462.790196	0.092478	0.080085
std	1.167397e+08	0.0	1.780512	3.995125	11.807438	134.287118	0.013446	0.033750
min	8.913000e+03	0.0	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380
25%	8.746620e+05	0.0	11.080000	15.150000	70.870000	378.200000	0.083060	0.055620
50%	9.089160e+05	0.0	12.200000	17.390000	78.180000	458.400000	0.090760	0.075290
75%	8.812816e+06	0.0	13.370000	19.760000	86.100000	551.100000	0.100700	0.097550
max	9.113205e+08	0.0	17.850000	33.810000	114.600000	992.100000	0.163400	0.223900

8 rows × 32 columns

```
In [40]: columns = data_Cancer.columns
   plt.figure(figsize=(10,6))
   for column in columns:
        plt.plot(data_Cancer[column])
   plt.title('Line Plot')
   plt.legend()
   plt.show()
```

C:\Users\karis\AppData\Local\Temp\ipykernel_2568\1205333819.py:6: UserWarning: No artists with labels found to p ut in legend. Note that artists whose label start with an underscore are ignored when legend() is called with n o argument.

plt.legend()


```
In [41]:
    columns = data_NonCancer.columns
    plt.figure(figsize=(10,6))
    for column in columns:
        plt.plot(data_NonCancer[column])
    plt.title('Line Plot')
    plt.legend()
    plt.show()
```

C:\Users\karis\AppData\Local\Temp\ipykernel_2568\1270843764.py:6: UserWarning: No artists with labels found to p ut in legend. Note that artists whose label start with an underscore are ignored when legend() is called with n o argument.

plt.legend()

In [42]:
 row_count = len(data_Cancer)
 n = min(400, row_count)
 cancer_sample = data_Cancer.sample(n=n)

In [43]: new_dataset=pd.concat([cancer_sample,data_NonCancer],axis=0)
 new_dataset.head()

16.03

Out[43]: id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean conc 196 875938 1 13.77 22.29 90.63 588.9 0.12000 0.1267 70 859575 18.94 21.31 123.60 1130.0 0.09009 0.1029 339 89812 23.51 24.27 155.10 1747.0 0.10690 0.1283 **449** 911157302 20.52 138.10 0.09684 0.1175 21.10 1384.0

105.80

793.2

0.09491

0.1371

15.51

5 rows × 32 columns

896839

In [44]: new_dataset.tail()

330

Out[44]: id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavit **558** 925277 0 14.59 22.68 96.39 657.1 0.08473 0.13300 925291 0 11.51 23.93 74.52 403.5 0.09261 0.10210 559

925292 0 14.05 27.15 91.38 600.4 0.09929 0.11260 560 561 925311 0 11.20 29.37 70.67 386.0 0.07449 0.03558 0.05263 0.04362 568 92751 0 7.76 24.54 47 92 181 0

5 rows × 32 columns

In [45]: new_dataset.groupby("diagnosis").mean()

Out[45]:

```
diagnosis
```

```
0 2.654382e+07
                   12.146524
                                  17.914762
                                                  78.075406 462.790196
                                                                                   0.092478
                                                                                                       0.080085
1 3.681805e+07
                    17.462830
                                  21.604906
                                                  115.365377 978.376415
                                                                                   0.102898
                                                                                                        0.145188
```

2 rows × 31 columns

```
In [46]:
        X = new dataset.drop(columns = "diagnosis",axis= 1)
         Y= new dataset["diagnosis"]
In [47]: from sklearn.model selection import train test split
         X train, X test, Y train, Y test = train test split(X, Y, test size=0.2, stratify=Y, random state=2)
In [48]: print(X.shape, X train.shape, X test.shape)
        (569, 31) (455, 31) (114, 31)
In [49]: import pandas as pd
         import numpy as np
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import train_test_split, RandomizedSearchCV
         from sklearn.metrics import classification report, confusion matrix, roc auc score
         rf = RandomForestClassifier(random_state=42, n_jobs=-1)
         param dist = {
             'n_estimators': [100, 200, 500],
             'max_features': ['sqrt', 'log2'],
             'max_depth': [None, 10, 20, 30],
              'min_samples_split': [2, 5, 10],
             'min samples leaf': [1, 2, 4],
             'bootstrap': [True, False]
         random search = RandomizedSearchCV(estimator=rf,
                                             param distributions=param dist,
                                             n iter=100, # Number of parameter combinations to try
                                             scoring='roc_auc',
                                             cv=3, # 3-fold cross-validation
                                             verbose=2,
                                             random state=42,
                                             n_jobs=-1
         random search.fit(X train, Y train)
         best_rf = random_search.best_estimator_
         Y pred = best rf.predict(X test)
         Y_prob = best_rf.predict_proba(X_test)[:, 1]
         print("Classification Report:\n", classification report(Y test, Y pred))
         print("Confusion Matrix:\n", confusion matrix(Y test, Y pred))
         roc auc = roc auc score(Y test, Y prob)
         print(f"AUC-ROC Score: {roc_auc}")
         print("Best Hyperparameters:\n", random search.best params )
        Fitting 3 folds for each of 100 candidates, totalling 300 fits
        Classification Report:
                       precision
                                    recall f1-score
                                                        support
                   0
                           0.99
                                     0.97
                                                0.98
                                                            72
                           0.95
                                     0.98
                                                0.96
                                                            42
                   1
                                                0.97
                                                           114
            accuracy
                           0.97
                                     0.97
           macro avg
                                                0.97
                                                           114
        weighted avg
                           0.97
                                     0.97
                                                0.97
                                                           114
        Confusion Matrix:
         [[70 2]
         [ 1 41]]
        AUC-ROC Score: 0.998015873015873
        Best Hyperparameters:
         {'n_estimators': 100, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'max_depth': None,
        'bootstrap': True}
```