MATEMATIKA ANGOL NYELVEN

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Instructions to examiners

Formal requirements:

- 1. Mark the paper in **ink, different in colour** from the one used by the candidate. Indicate the errors, incomplete solutions, etc. in the conventional way.
- 2. The first one of the rectangles under each problem shows the maximum attainable score on that problem. The **points** given by the examiner are to be entered **in the rectangle** next to that.
- 3. **If the solution is perfect,** it is enough to enter the maximum scores in the appropriate rectangles.
- 4. If the solution is incomplete or incorrect, please indicate the individual **partial scores** in the body of the paper, too.
- 5. Except diagrams, do not assess anything that is written in pencil.

Assessment of content:

- 1. The markscheme may contain more than one solution for some of the problems. If the **solution by the candidate is different**, allocate the points by identifying the parts of the solution equivalent to those of the one given in the markscheme.
- 2. The subtotals in the markscheme can be **further divided**, but the scores awarded should always be whole numbers.
- 3. If it is clear that the reasoning and the final answer are both correct, you may award the maximum score even if the solution is **less detailed** than the one in the markscheme.
- 4. If there is a **calculation error** or inaccuracy in the solution, only take off the points for that part where the error occurs. If the reasoning remains correct and the error is carried forward, the points for the rest of the solution should be awarded.
- 5. In the case of a **principal error**, no points should be awarded at all for that section of the solution, not even for steps that are formally correct. (These logical sections of the solutions are separated by double lines in the markscheme.) However, if the wrong information obtained owing to the principal error is carried forward to the next section or in the next part of the problem and is used correctly, the maximum score is due for the next part, provided that the error has not changed the nature of the task to be completed.
- 6. Where the markscheme shows a **unit** or a **remark** in brackets, the solution should be considered complete without that unit or remark as well.
- 7. If there are more than one different approaches to a problem, assess only the one indicated by the candidate.
- 8. **Do not give extra points** (i.e. more than the score due for the problem or part of problem).
- 9. **Do not take off points** for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- 10. Assess only two out of the three problems in part B of Paper II. The candidate was requested to indicate in the appropriate square the number of the problem not to be assessed and counted in their total score. Should there be a solution to that problem, it does not need to be marked. However, if it is still not clear which problem the candidate does not want to be assessed, assume automatically that it is the last one in the question paper, and do not assess that problem.

I.

1.		
The simplified fraction: $\frac{a-2b}{3}$.	2 points	The 2 points cannot be divided.
Total:	2 points	

2.			
A right circular cylinder is obtained. Base radius is 5 cm, height is 12 cm.		1 point	The point is due if these ideas appear in a diagram.
$V = 25\pi \cdot 12 \text{ (cm}^3).$		1 point	
The volume of the right circular cylinder is $300\pi \text{cm}^3$.		1 point	The answer is also accepted in decimal form.
Tot	al:	3 points	

3.		
The number of real roots is 1.	2 points	1 point if the answer is $x = 5$, no points if the answer is 5.
Total:	2 points	

4.		
$x_1 = 14, x_2 = -14$	2 points	I point for each correct answer.
Total:	2 points	

5.		
The position vector of the midpoint is $\vec{f} = \frac{\vec{a} + \vec{b}}{2}$.	1 point	
Rearranged: $\vec{b} = 2\vec{f} - \vec{a}$.	1 point	
Total:	2 points	

6.		
The smallest positive angle is 30°.	2 points	1 point for stating that $750^{\circ} = 2.360^{\circ} + 30^{\circ}$.
Total:	2 points	

7.		
$x^2 + 18x + 81 = (x+9)^2$	1 point	
The square of a number is a minimum when 0 is squared. The smallest value of the function occurs at $x = -9$.	1 point	
Total:	2 points	

8.	
There are 2^4 =16 positive five-digit numbers.	2 points
Total:	2 points
9.	
Group I: 180 people,	1 noint

9.		
Group I: 180 people, Group II: 240 people, Group III: 300 people.	1 point each	
Total:	3 points	

10.		
Rearranged: $2x - 7y = 0$.	1 point	
A normal vector of a perpendicular line e is \mathbf{n} (7; 2),	1 point	
Thus the equation of line <i>e</i> is $7x + 2y = 33$.	1 point	The equations of the lines are accepted in any correct form.
Total:	3 points	

11.		
A: true;		
B: false;	1 point	
C: true;	1 point each	•
A: true; B: false; C: true; D: true.		
Total:	4 points	

12.		
The terms of the sequence are $a_1 = -1$, $a_2 = 1$, $a_3 = 0$, $a_4 = 1$, $a_5 = 1$, $a_6 = 2$.	2 points	
Therefore $S_6 = 4$.	1 point	
Total:	3 points	

II. A

13. a)		
The side of the square is a , the sides of the rectangles are a and $\frac{a}{3}$.	1 point	The point is also due if the notations only appear in a diagram.
The perimeter of one rectangle is $2a + \frac{2a}{3} = 24$,	2 points	
hence $a = 9$ cm.	1 point	
The area of the square is 81 cm ² .	1 point	
Total:	5 points	

13. b) Solution 1		
From the Pythagorean theorem: $13^2 - 12^2 = x^2$ (or: 13, 12, 5 are a Pythagorean triple),	1 point	
the other leg of the right-angled triangle (BP) is 5 cm.	1 point	
The area T of the right-angled triangle can be expressed in two ways: $T = \frac{a \cdot b}{2} = \frac{c \cdot m_c}{2},$ where m_c is the height drawn to hypotenuse c).	2 points	
Hence $a \cdot b = c \cdot m_c$,	1 point	
that is, $m_c = \frac{a \cdot b}{c} = \frac{60}{13}$.	1 point	
The height drawn to the hypotenuse is 4.6 cm long.	1 point	
Total:	7 points	

13. b) Solution 2		
From the Pythagorean theorem: $13^2 - 12^2 = x^2$ (or: 13, 12, 5 are a Pythagorean triple),	1 point	
the other leg of the right-angled triangle (BP) is 5 cm.	1 point	
It is known that the leg is the geometric mean of its projection and the hypotenuse: $5 = \sqrt{13 \cdot p}$,	2 points	
$p = \frac{25}{13} \approx 1.92 \ .$	1 point	
From the Pythagorean theorem the square of the height m_c drawn to the hypotenuse is $m_c^2 = 5^2 - \left(\frac{25}{13}\right)^2$	1 point	
The height drawn to the hypotenuse is 4.6 cm long.	1 point	
Total:	7 points	

13. b) Solution 3		
Let α denote the angle at vertex A in the right-angled triangle ABP , and let Q be the foot of the altitude drawn to the hypotenuse. In the right-angled triangle ABP , $\cos \alpha = \frac{AB}{AP} = \frac{12}{13}$.	2 points	
$\alpha \approx 22.62^{\circ}$.	1 point	This point is also due if the value of sin \alpha is calculated correctly later on.
In the right-angled triangle AQB , $\sin \alpha = \frac{BQ}{AB} = \frac{BQ}{12}$.	2 points	
$BQ = 12 \cdot \sin \alpha \approx 12 \cdot 0.3846 \approx 4.6152.$	1 point	
The height drawn to the hypotenuse is 4.6 cm long.	1 point	
Total:	7 points	

14. a)		
Domain of definition: (since $2x - 5 > 0$ and $x > 0$), $x > \frac{5}{2}$.	1 point	This point is also due if the candidate uses the equation obtained by cancelling the logarithms, but checks the root by substitution.
(It follows from the identities of logarithms that) $2x-5 = \frac{x}{3}$.	2 points	
Hence $x = 3$.	1 point	
This root is in the domain of definition, therefore it is the solution of the equation.	1 point	
Total:	5 points	

14. b)		
$0 \le 13 - 2x$, so $x \le 6.5$.	1 point	These points are also due if the candidate uses the equation obtained by squaring, checks the results by substitution and rejects the extraneous root.
$0 \le \sqrt{13 - 2x} = x - 5$, hence $5 \le x$. Thus the equation may only have a solution $5 \le x \le 6.5$.	1 point	
If both sides are squared, the left-hand side will be $13-2x$.	1 point	
The square of the right-hand side: $x^2 - 10x + 25$.	1 point	
The quadratic equation obtained: $0 = x^2 - 8x + 12$	1 point	
Hence $x = 6$ or $x = 2$.	1 point	
The only solution on the domain of the equation is 6.	1 point	_
Total:	7 points	

15. a)		
There are 20 employees who have both kinds of diploma,	1 point	
since the total number of diplomas is 42+28=70, which is 20 more than the number of diploma holders.	1 point	Award this point for a correct set diagram, too.
Thus there are 22 with technician's certificates only.	1 point	
Total:	3 points	

15. b)			
If the number of those under 30 is x ,		1 point	The point is also due if this idea is only reflected by the solution.
then the mean is $\frac{x \cdot 148000 + (50 - x) \cdot 173000}{50} = 165000.$		1 point	
x=16		1 point	
There are 16 employees under 30 in the lab.		1 point	
	Total:	4 points	

15. c)		
5 participants will receive financial support.	1 point	
The number of all cases is $\binom{25}{5}$,	1 point	
The number of favourable cases is $\binom{17}{5}$.	1 point	
(According to the classical model, the probability is) $\frac{\binom{17}{5}}{\binom{25}{5}} = \frac{6188}{53130} \approx 0.1165.$	1 point	
The probability of selecting 5 women is 0.12 (that is, 11.65%).	1 point	
Total:	5 points	

II. B

16. a)		
If c is the length of the third side of the triangle, (it follows from the triangle inequality that) $20+c>22$	1 point	
and $c < 20 + 22$.	1 point	
Therefore $2 < c < 42$.	1 point	
If the third side is also an integer then the smallest possible value of <i>c</i> is 3, and its largest possible value is 41.	1 point	
That means 39 possible triangles.	1 point	
Total:	5 points	

16. b)		
(If γ denotes the angle enclosed by the two given sides,) $88 = \frac{20 \cdot 22 \cdot \sin \gamma}{2}$	1 point	
Hence $\sin \gamma = 0.4$.	1 point	
$\gamma_1 \approx 23.6^{\circ}$	1 point	
$\gamma_2 \approx 156.4^{\circ}$	1 point	
Total:	4 points	

16. c)		
For $\gamma_1 \approx 23.6^\circ$, the length (c_1) of the third side is obtained by using the cosine rule.	1 point	The point is also due if this idea is only reflected by the solution
$c_1^2 \approx 20^2 + 22^2 - 2 \cdot 20 \cdot 22 \cdot \cos 23.6^\circ$	1 point	
$c_1^2 \approx 77.568$.	1 point	
Hence $c_1 \approx 8.8$ units long.	1 point	
For $\gamma_2 \approx 156.4^\circ$ and the length (c_2) of the third side: $c_2^2 \approx 20^2 + 22^2 - 2 \cdot 20 \cdot 22 \cdot \cos 156.4^\circ.$	1 point	
$c_2^2 \approx 884 - 880 \cdot (-0.9164)$, that is $c_2^2 \approx 1690.4$ and hence	1 point	
$c_2 \approx 41.1$ units long.	1 point	
The length of the third side of the triangle may be ≈ 8.8 units or ≈ 41.1 units long.	1 point	
Total:	8 points	Award 4 points at most for this part if only one of the two cases is investigated.

17. a)		
The rent to be paid by Gábor increases as a	1	
geometric progression: $a_1 = 100$ and $a_{24} = 200$.	1 point	
$100 \cdot q^{23} = 200$, $q^{23} = 2$ (where the common ratio is		
$q = 1 + \frac{p}{100}$	1 point	
$q = \sqrt[23]{2} = 2^{\frac{1}{23}} \ (\approx 1.0306)$	1 point	
p = 3.06,	1 point	
that is, Gábor pays 3.06% more each month.	1 point	
Total:	5 points	

17. b)		
Péter's rent follows an arithmetic progression: $b_1 = 100$ and $b_{24} = 200$,	1 point	
$200 = 100 + 23 \cdot d$	1 point	
$d = \frac{100}{23} \approx 4.35$, that is, the monthly increment is 4.35 dollars.	1 point	
Total:	3 points	

17. c)		
The sums of the first 24 terms of the individual sequences:	1 point	The point is also due if this idea is only reflected by the solution.
$S_{Gábor} = 100 \cdot \frac{\left(\frac{23}{\sqrt{2}}\right)^{24} - 1}{\frac{23}{\sqrt{2}} - 1} \approx 3468.45$.	2 points	
$S_{P\acute{e}ter} = \frac{100 + 200}{2} \cdot 24 = 3600 .$	2 points	
Péter pays 132 dollars more rent than Gábor during the 24 months.	1 point	
Total:	6 points	

If the monthly rents are represented graphically, it shows that Péter would pay more rent than Gábor in each month (except the 1st and 24th months)

Therefore Péter would clearly pay more during the 24 months than Gábor.

3 points may be awarded for a reasoning based on clear graphs.

17. d)		
During the first 12 months, Péter pays a total rent of		
$2 \cdot 100 + 11 \cdot \frac{100}{22}$	1 point	
$S_{12} = \frac{2100 \cdot 11}{2} \cdot 12 \approx 1487 \text{ dollars},$	•	
and he pays 2113 dollars in the second 12 months.	1 point	
$\frac{2113}{1487} \approx 1.421$, thus Péter pays 42.1% more rent in	1 point	
the second year than in the first year.		
Total:	3 points	

18. a) Solution 1		
If we disregard the restriction that the two products cannot pe placed next to each other then the number of orders is 6!	1 point	
If the two products are placed next to each other but their order is not considered, the number of possible arrangements is 5!.	1 point	
If the order of the two product is also considered, there are $2 \cdot 5!$ arrangements of the six products.	1 point	
The number of orders in question is obtained by subtracting these from the number of all cases: $6!-2\cdot 5!$.	2 points	The 2 points are also due for a reasoning less detailed.
Thus the number of possible orders of the six products is 480.	1 point	
Total:	6 points	Award at most 1 point if the restriction on two kinds of product not being next to each other is disregarded.

18. a) Solution 2		
Semolina and bread crumbs alone can be placed on		
the shelf in 6.5 , that is, 30 ways if they are allowed	1 point	
to be next to each other as well.		
If their order is not considered, they may be next to	1 point	
each other in 5 places.	1 point	
Since order also matters, that makes 10 cases.	1 point	
Thus there are $(30-10=)$ 20 ways to place these		
two product on the shelf so that they are not next to	1 point	
each other.		
In each of the 20 cases, the remaining four products	1 point	
may be arranged in 4! different ways.	1 point	
Therefore the total number of possible orders is	1 noint	
$20 \cdot 4! = 480.$	1 point	
Total:	6 points	

18. b)			
The number of bread loaves was 325 (=176+109+40), and 42 were sent back.		1 point	
This is 12.9% of the quantity ordered.		1 point	
The total number of rolls and croissants was 695 (=314+381), and 34 were sent back.		1 point	
This is 4.9% of the quantity ordered.		1 point	
То	tal:	4 points	

18. c)		
The numbers of rolls and croissants together, sold on the individual days are 124; 133; 132; 122; 150.	1 point	
The two days can be selected in $\binom{5}{2}$ ways.	1 point	
(There were 3 days when at least 130 pieces were sold.) The two days can be selected in $\binom{3}{2}$ ways,	1 point	
Thus the probability in question is $\frac{\binom{3}{2}}{\binom{5}{2}} = 0.3$	1 point	
Total:	4 points	

18. d)		
The quantities ordered were:		
1-kg loaves of white bread: $(\frac{155}{5}) = 31$,		I point for two correct answers, no points for
1/2-kg loaves of white bread: $(\frac{95}{5}) = 19$,	2 points	answers, no points for only one correct answer.
loaves of rye bread: $(\frac{33}{5} = 6.6)$ 7,		Ž
bread rolls: 58, croissants: 74.	1 point	
Total:	3 points	