	Lec 38	
	Lec 39	
14	Lec 40	Computational Learning Theory
	Lec 41	
	Lec 42	

ASSESSMENT STRATEGY

Comp	onents	Grading	СО	Blooms Taxonomy
	Test 1-3	20%	CO1	C1, C2
Continuous	16811-3	2070	CO2	C3, C4
Assessment (40%)	Class Participation	5%	CO3	A2
	Mid term	15%	CO3	C4, P6
Eimal	Exam	60%	CO1, CO3	C1-C4, C6
Fillal	Exam	0070	CO4	P3, A4
Total	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Pattern Recognition and Machine Learning Christopher M. Bishop; Springer
- 2. Machine Learning Tom Mitchell, McGraw Hill (International Edition)
- 3. Introduction to Machine Learning, Second Edition Ethem Alpaydin (2nd Edition)
- 4. Pattern Recognition Sergios Theodoridis and Konstantinos Koutroumbas; Elsevier Inc.
- 5. Machine Learning: An Algorithmic Perspective Stephen Marsland

REFERENCE SITE

CSE-442: Machine Learning Sessional

COURSE INFORMATION							
Course Code	: CSE 442	Lecture Contact Hours	: 3.00 hrs in alternative week				
Course Title	: Machine Learning Sessional	Credit Hours	: 0.75				
PRE-REQUISITE							
Course Code: Nil							
Course Title: N	Course Title: Nil						

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The Machine Learning Sessional course is structured to orient different algorithm of machine learning practically to best suit the current need. This course will help understand the iterative aspect of machine learning as models are exposed to new data, they are able to independently adapt. Models learn from previous computations to produce reliable, repeatable decisions and results and helps in implementing the enhanced learning parameters for maximum performance.

OBJECTIVE

- 1. To implement the appropriate learning algorithm to best suit the current need.
- 2. To use practical knowledge to enhance the learning parameters to achieve maximum performance and enhance the learning parameters to achieve maximum performance.

LEAF	LEARNING OUTCOMES & GENERIC SKILLS								
No.	Course Learning Outcome (Upon completion of the course, the students will be able to)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Develop a good understanding of the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc.	C2-C6, P1, P6	1	1	6	T, Q			
CO2	Evaluate the strengths and weaknesses of many popular machine learning approaches.	C3, C6, A4, A5, P6	2	2	8	ASG, T			
CO3	Appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning.	C2 – C6 P1, A1, A2	6	4	2	R, Q, Pr			
CO4	Design and implement various machine learning algorithms in a range of real-world applications.	P3, A4, C3, C4, C6	3, 7, EP2	3	5	T, Q			

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Supervised Learning: Regression, Model Selection and Generalization, Dimensions of a supervised learning algorithm; Bayesian Decision: Association Rules, Discriminant Functions; Clustering: k-means cluster, Hierarchical cluster, Expectation-Maximization Algorithm, Supervised Learning after Clustering; Decision Tree: Classification tress, Regression trees, Pruning, Multivariate trees; Hidden Markov Model: Basic problems of HMM, Evaluation problem, Model Selection in HMM, Find State Sequence; Kernel Machines: SVM, Victorian Kernels, Multiple Kernel Learning, One-Class Kernel Machine, Kernel Dimensionality Reduction; Design and Analysis of ML Experiment: Randomization, Interval Estimation, McNemer's Test, K-Fold Cross-Validated Paired t Test, Binomial Test, Approximate Normal Test.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Able to develop a good understanding of the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc.		Н										
CO2	Able to evaluate the strengths and weaknesses of many popular machine learning approaches.					Н							
CO3	Appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning.				M								
CO4	Able to design and implement various machine learning algorithms in a range of real-world applications.			Н									

(H – High, M- Medium, L-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level	Justifications
CO1-PO2	High	Able to understand the complexity in analysis of data. Model selection, challenges and fundamental issues of machine learning.
CO2-PO5	High	Able to identify the appropriate modern tools or learning algorithms and evaluate their strengths and weaknesses.

CO3-PO4	Medium	Able to appreciate the mathematical relationships and in depth investigation and experimentation of the paradigms of supervised and unsupervised learning.
CO4-PO3	High	Able to implement Machine Learning algorithms and develop unique solutions to engineering problems from real-world.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	-
Practical / Tutorial / Studio	21
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision	-
Assessment Preparations	-
Formal Assessment	
Continuous Assessment	2
Mid-Term Exam	-
Final Examination	3
Total	26

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week	Lecture	Topics	Remarks
1	Lab -1, 2	Supervised Learning: Regression, Model Selection and Generalization, Dimensions of a supervised learning algorithm;	
3	Lab -3, 4	Bayesian Decision: Association Rules, Discriminant Functions;	
5	Lab -5, 6	Clustering: k-means cluster, Hierarchical cluster, Expectation-Maximization Algorithm, Supervised Learning after Clustering;	
7	Lab -7, 8	Decision Tree: Classification tress, Regression trees, Pruning, Multivariate trees;	3.00 in alternate week
9	Lab -9, 10	Hidden Markov Model: Basic problems of HMM, Evaluation problem, Model Selection in HMM, Find State Sequence;	
11	Lab -11, 12	Kernel Machines : SVM, Victorian Kernels, Multiple Kernel Learning, One-Class Kernel Machine, Kernel Dimensionality Reduction;	
13	Lab -13, 14	Design and Analysis of ML Experiment: Randomization, Interval Estimation, McNemer's Test, K-Fold Cross-Validated Paired t Test, Binomial Test, Approximate Normal Test.	

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy
Comp	onents	Grading	CO	Blooms Taxonomy
Continuous	Test and	400/	CO1	C2, P6
Assessmen	Assignment	40%	CO2	C3, A5

307

t (40%)	Class Participation	10%	CO3	C4, A2, A1
	Presentation	10%	CO2	C6, A4, P3
Final Exam (Online Test +		40%	CO1, CO3	C2-C6, P1
Qı	uiz)	4070	CO4	P3, A4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Pattern Recognition and Machine Learning Christopher M. Bishop; Springer
- 2. Machine Learning Tom Mitchell, McGraw Hill
- 3. Introduction to Machine Learning, Second Edition Ethem Alpaydin
- 4. Pattern Recognition Sergios Theodoridis and Konstantinos Koutroumbas; Elsevier Inc.
- 5. Machine Learning: An Algorithmic Perspective Stephen Marsland

REFERENCE SITE

CSE-443: Pattern Recognition

COURSE INFO	COURSE INFORMATION					
Course Code	: CSE-443	Lecture Contact Hours	: 3.00			
Course Title	: Pattern Recognition	Credit Hours	: 3.00			

PRE-REQUISITE

Course Code: Nil Course Title: Nil

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

This course motivates to recognize patterns, regularities and also irregularities in data by using various pattern recognition algorithms and techniques to find useful information for science, business and organizational decisions as well as contributing to the field of machine learning, data mining and artificial intelligence.

OBJECTIVE

- 1. To provide a comprehensive introduction to pattern recognition techniques leading to the ability to understand contemporary terminology, progress, issues, and trends.
- To specify sectors and context where the application of pattern recognition can provide a fruitful solution.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Learning Outcome (Upon completion of the course, the students will be able to)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Identify areas where pattern recognition techniques can offer a solution	C1-C3	1		3	T, F
CO2	Analyze the strength and limitations of some techniques used in pattern recognition for classification, regression and density estimation problems.	C4	1		1, 3	MT
CO3	Solve problems in regression and classification.	Р3	7	3	6	F
CO4	Develop communication skill by presenting topics on pattern recognition	A2		1	5	Q, Pr