5. Reducibility

- Reductions
 - Example, formal definition
 - Computable functions
 - Mapping reducibility
- Undecidable problems
 - computation histories
 - Rice's Theorem
 - Post Correspondence Problem
 - a non-RE and non-co-RE problem

Reductions

- Given a new problem NEW, want to determine if it is undecidable
 - prove from scratch that the problem is undecidable (dream up a diag. argument)
 - show how to transform a known undecidable problem OLD into NEW so that solution to NEW can be used to solve OLD
- A reduction is a way of converting one problem into another such that a solution to the second problem can be used to solve the first problem.

Reductions

Reductions are one of the most important and widely used techniques in theoretical Computer Science.

- especially for proving problems "hard"
 - often difficult to do "from scratch"
 - sometimes not known how to do from scratch
 - reductions allow proof by giving an algorithm to perform the transformation

Example Reduction

Try to prove undecidable:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ accepts input } w \}$$

We know this language is undecidable:

$$HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$$

Idea:

reduction

- ❖ show that we can use A_{TM} to decide HALT
- conclude HALT is decidable. Contradiction.

Example Reduction

- Deciding HALT using a procedure that decides A_{TM} ("reducing HALT to A_{TM} ").
 - ❖on input <M, w>
 - \cdot check if $\langle M, w \rangle \in A_{TM}$
 - if yes, then M halts on w; ACCEPT
 - if no, then M either rejects w or it loops in w
 - construct M' by swapping q_{accept}/q_{reject} in M
 - \cdot check if $\langle M', w \rangle \in A_{TM}$
 - if yes, then M' accepts w, so M rejects w; ACCEPT
 - if no, then M neither accepts nor rejects w; REJECT

Another Example

Try to prove undecidable:

$$E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

- which problem should we reduce from?
 - $Arr HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$
 - $A_{TM} = \{ < M, w > | M \text{ accepts input } w \}$
- Proof:

 - \diamond we showed how to use E_{TM} to decide A_{TM}
 - ❖ conclude A_™ is decidable. Contradiction.

Another Example

- On input <M, w>:
 - construct TM M' from description of M
 - on input x, if x ≠ w, then reject
 - else simulate M on x, and accept if M does.
 - - if no, M must accept w; ACCEPT
 - if yes, M cannot accept w; REJECT

Can you reduce co-HALT to HALT?

- We know that HALT is RE
- Does this show that co-HALT is RE?
 - recall, we showed co-HALT is not RE
- our notion of reduction cannot distinguish complements

- More refined notion of reduction:
 - "many-one" reduction (commonly)
 - "mapping" reduction (book)

function f should be computable

Definition: $f: \Sigma^* \to \Sigma^*$ is computable if there exists a TM M_f such that on every $w \in \Sigma^*$ M_f halts on w with f(w) written on its tape.

Definition: A is mapping reducible to B, written $A \leq_m B$, if there is a computable function f such that for all w

$$W \in A \Leftrightarrow f(W) \in B$$

"yes maps to yes and no maps to no" means:

 $w \in A$ maps to $f(w) \in B$

& w \notin A maps to f(w) \notin B

f is called the reduction of A to B

Using Reductions

Theorem: if $A \leq_m B$ and B is decidable, then A is decidable

- decider for A: on input w, compute f(w), run decider for B, do whatever it does.
- Main use: given language NEW, prove it is undecidable by showing OLD ≤_m NEW, where OLD is known to be undecidable
 - common to reduce in wrong direction!

Using Reductions

Theorem: if $A \leq_m B$ and B is RE, then A is RE

- TM for recognizing A: on input w, compute f(w), run TM that recognizes B, do whatever it does.
- Main use: given language NEW, prove it is not RE by showing OLD ≤_m NEW, where OLD is known to be not RE.

Mapping Reduction Example

E_{TM} is undecidable. Consider:

$$co-E_{TM} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

- f(<M, w>) = <M'>
 where M' is TM that
 - on input x, if x ≠ w,
 then reject
 - else simulate M on x, and accept if M does
- f clearly computable

Mapping Reduction

Example

- f(<M, w>) = <M'>
 where M' is TM that
 - on input x, if x ≠ w,
 then reject
 - else simulate M on x, and accept if M does
- f clearly computable

- yes maps to yes?
 - \Leftrightarrow if $\langle M, w \rangle \in A_{TM}$, then $f(M, w) \in \text{co-E}_{TM}$
- no maps to no?
 - \Leftrightarrow if $\langle M, w \rangle \notin A_{TM}$, then $f(M, w) \notin co-E_{TM}$

Undecidable Problems

Theorem: The language

REGULAR = $\{<M> \mid M \text{ is a TM and L(M) is regular}\}$

is undecidable.

- ❖ reduce from A_{TM} (i.e. show $A_{TM} \leq_m REGULAR$)
- ❖ what should f(<M, w>) produce?

Undecidable Problems

Proof:

f(<M, w>) = <M'> described below

M' on input x:

- if x has form 0ⁿ1ⁿ, accept
- else simulate M on w and accept if M accepts w

- is f computable?
- YES maps to YES?

$$\in A_{TM} \Rightarrow f(M, w) \in REGULAR$$

NO maps to NO?

$$\langle M, w \rangle \notin A_{TM} \Rightarrow f(M, w) \notin REGULAR$$

Computation Histories

- Recall configuration of a TM: string uqv with u,v $\in \Gamma^*$, $q \in Q$
- The sequence of configurations M goes through on input w is a computation history of M on input w
 - may be accepting, or rejecting
 - reserve the term for halting computations
 - nondeterministic machines may have several computation histories for a given input.

Linear Bounded Automata

- LBA definition: TM that is prohibited from moving head off **right** side of input.
 - machine prevents such a move, just like a TM prevents a move off left of tape
- How many possible configurations for a LBA M on input w with |w| = n, m states, and $p = |\Gamma|$?
 - counting gives: mnpⁿ

- two problems we have seen with respect to TMs, now regarding LBAs:
 - LBA acceptance:

```
A_{LBA} = \{ \langle M, w \rangle \mid LBA M \text{ accepts input } w \}
```

LBA emptiness:

$$E_{LBA} = \{ \langle M \rangle \mid LBA M \text{ has } L(M) = \emptyset \}$$

Both decidable? both undecidable? one decidable?

Theorem: A_{I BA} is decidable.

- ❖input <M, w> where M is a LBA
- *key: only mnpⁿ configurations
- if M hasn't halted after this many steps, it must be looping forever.
- ❖ simulate M for mnpⁿ steps
- if it halts, accept or reject accordingly,
- else reject since it must be looping

Theorem: E_{I BA} is undecidable.

- ❖ reduce from co- A_{TM} (i.e. show co- $A_{TM} \le_m E_{LBA}$)
- ❖what should f(<M, w>) produce?
- ❖Idea:
 - produce LBA B that accepts exactly the accepting computation histories of M on input w

Proof:

f(<M, w>) = described below

on input x, check if x has form

- check that C₁ is the start configuration for M on input w
- check that $C_i \Rightarrow^1 C_{i+1}$
- check that C_k is an accepting configuration for M

- is B an LBA?
- is f computable?
- YES maps to YES?

$${M, w} \in \text{co-A}_{TM} \Rightarrow f(M, w) \in E_{LBA}$$

NO maps to NO?

$$\notin co-A_{TM} \Rightarrow f(M, w) \notin E_{LBA}$$

- two problems regarding Context-Free Grammars:
 - does a CFG generate all strings:

```
ALL<sub>CFG</sub> = {<G> | G is a CFG and L(G) = \Sigma*}
```

CFG emptiness:

$$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

Both decidable? both undecidable? one decidable?

Theorem: ALL_{CFG} is undecidable.

- ❖ reduce from co- A_{TM} (i.e. show co- $A_{TM} \le_m ALL_{CFG}$)
- ❖what should f(<M, w>) produce?
- ❖Idea:
 - produce CFG G that generates all strings that are not accepting computation histories of M on w

Proof:

- build a NPDA, then convert to CFG
- want to accept strings not of this form,

$$\#C_1\#C_2\#C_3\#...\#C_k\#$$

plus strings of this form but where

- C₁ is not the start config. of M on input w, or
- C_k is not an accept config. of M on input w, or
- C_i does not yield in one step C_{i+1} for some i

- our NPDA nondeterministically checks one of:
 - C₁ is not the start config. of M on input w, or
 - C_k is not an accept config. of M on input w, or
 - C_i does not yield in one step C_{i+1} for some i
 - input has fewer than two #'s
- to check third condition:
 - nondeterministically guess C_i starting position
 - how to check that C_i doesn't yield in 1 step C_{i+1}?

- checking:
 - C_i does not yield in one step C_{i+1} for some i
- ❖ push C_i onto stack
- ❖at #, start popping C_i and compare to C_{i+1}
 - accept if mismatch away from head location, or
 - symbols around head changed in a way inconsistent with M's transition function.
- is everything described possible with NPDA?

Proof:

- ❖ Problem: cannot compare C_i to C_{i+1}
- could prove in same way that proved $\{ww: w \in \Sigma^*\}$ not context-free
- recall that

 $\{ww^R: w \in \Sigma^*\}$ is context-free

- free to tweak construction of G in the reduction
- solution: write computation history:

$$\#C_1\#C_2^R\#C_3\#C_4^R...\#C_k\#$$

Proof:

f(<M, w>) = <G> equiv. to NPDA below:

on input x, accept if not of form:

- accept if C₁ is the not the start configuration for M on input w
- accept if check that C_i does not yield in one step C_{i+1}
- accept if C_k is not an accepting configuration for M

- is f computable?
- YES maps to YES?

$$\in co-A_{TM} \Rightarrow f(M, w) \in ALL_{CFG}$$

NO maps to NO?

```
\langle M, w \rangle \notin \text{co-A}_{TM} \Rightarrow f(M, w) \notin \text{ALL}_{CFG}
```

- We have seen that the following properties of TM's are undecidable:
 - TM accepts string w
 - TM halts on string w
 - TM accepts the empty language
 - TM accepts a regular language
- Can we describe a single generic reduction for all these proofs?
- Yes. Every property of TMs is undecidable!

- A TM property is a language P for which
 - \Leftrightarrow if $L(M_1) = L(M_2)$ then $<M_1> \in P$ iff $<M_2> \in P$
- TM property P is nontrivial if
 - *there exists a TM M_1 for which $\langle M_1 \rangle \in P$, and
 - ♦ there exists a TM M_2 for which $\langle M_2 \rangle \neq P$.

Rice's Theorem: Every nontrivial TM property is undecidable.

The setup:

- \bullet let T_{\emptyset} be a TM for which $L(T_{\emptyset}) = \emptyset$
 - technicality: if $\langle T_{\emptyset} \rangle \in P$ then work with property co-P instead of P.
 - conclude co-P undecidable; therefore P undec.
 due to closure under complement
- ⋄non-triviality ensures existence of TM M₁ such that <M₁> ∈ P

Proof:

- ❖ reduce from A_{TM} (i.e. show $A_{TM} \leq_m P$)
- ❖what should f(<M, w>) produce?
- f(<M, w>) = <M'> described below:

M' on input x,

accept iff M accepts w
 and M₁ accepts x

(intersection of two RE languages)

- f computable?
- YES maps to YES?

$${M, w} \in A_{TM} \Rightarrow L(f(M, w)) = L(M_1) \Rightarrow f(M, w) \in P$$

Proof:

- ❖ reduce from A_{TM} (i.e. show $A_{TM} \leq_m P$)
- ❖what should f(<M, w>) produce?
- f(<M, w>) = <M'> described below:

M' on input x,

accept iff M accepts w
 and M₁ accepts x

(intersection of two RE languages)

NO maps to NO?

$$\notin A_{TM} \Rightarrow$$

 $L(f(M, w)) = L(T_{\emptyset}) \Rightarrow$
 $f(M, w) \notin P$

Post Correspondence Problem

There are many undecidable problems unrelated to TMs and automata

classic example: Post Correspondence Problem

$$\begin{aligned} & \text{PCP} = \{<(x_1, \, y_1), \, (x_2, \, y_2), \, ..., \, (x_k, \, y_k) > \mid \\ & x_i, \, y_i \in \Sigma^* \text{ and there exists } (a_1, \, a_2, \, ..., \, a_n) \text{ for } \\ & \quad \text{which } x_{a_1} x_{a_2} ... x_{a_n} = y_{a_1} y_{a_2} ... y_{a_n} \} \end{aligned}$$

Theorem: PCP is undecidable.

Proof:

- ❖ reduce from A_{TM} (i.e. show $A_{TM} \le_m PCP$)
- two-step reduction makes it easier
- ⋄next, show MPCP \le _m PCP

```
\begin{split} \text{MPCP} &= \{<(x_1,\,y_1),\,(x_2,\,y_2),\,...,\,(x_k,\,y_k)> \mid \\ x_i,\,y_i \in \Sigma^* \text{ and there exists } (a_1,\,a_2,\,...,\,a_n) \text{ for which} \\ x_1x_{a_1}x_{a_2}...x_{a_n} &= y_1y_{a_1}y_{a_2}...y_{a_n} \} \end{split}
```

Proof of MPCP \leq_m PCP:

```
\bullet notation: for a string u = u_1u_2u_3...u_m
```

```
*u means the string *u<sub>1</sub>*u<sub>2</sub>*u<sub>3</sub>*u<sub>4</sub>...*u<sub>m</sub>
```

Proof of MPCP \leq_m PCP:

- \diamond given an instance $(x_1, y_1), ..., (x_k, y_k)$ of MPCP
- produce an instance of PCP:

$$(*X_1, *Y_1*), (*X_1, Y_1*), (*X_2, Y_2*), ..., (*X_k, Y_k*), (* •, •)$$

- YES maps to YES?
 - given a match in original MPCP instance, can produce a match in the new PCP instance
- ❖NO maps to NO?
 - given a match in the new PCP instance, can produce a match in the original MPCP instance

- YES maps to YES?
 - given a match in original MPCP instance, can produce a match in the new PCP instance

X ₁	X ₄	X ₅	X ₂	X ₁	X ₃	X ₄	X ₄
y ₁	y ₄	y ₅	y ₂	y ₁	y ₃	y ₄	y ₄

*X ₁	*X ₄	*X ₅	*X ₂	*X ₁	*X ₃	*X ₄	*X ₄	* •
*y ₁ *	y ₄ *	y ₅ *	y ₂ *	y ₁ *	y ₃ *	y ₄ *	y ₄ *	*

♦ NO maps to NO?

can't match unless start with this tile

 given a match in the new PCP instance, can produce a match in the original MPCP instance

*X ₁	*X ₄	*X ₅	*X ₂	*X ₁	*X ₃	*X ₄	*X ₄	* •
*y ₁ *	y ₄ *	y ₅ *	y ₂ *	y ₁ *	y ₃ *	y ₄ *	y ₄ *	♦

X ₁	X ₄	X ₅	X ₂	X ₁	X ₃	X ₄	X ₄
y ₁	y ₄	y ₅	y ₂	y ₁	y ₃	y ₄	y ₄

"*" symbols must align

can only appear at the end

Proof of $A_{TM} \leq_m MPCP$:

- \diamond given instance of A_{TM} : < M, w>
- idea: a match will record an accepting computation history for M on input w
- start tile records starting configuration:
 - add tile (#, #q₀w₁w₂w₃...w_n#)

- tiles for head motions to the right:
 - for all a, b $\in \Gamma$ and all q, r \in Q with q \neq q_{reject}, if δ (q, a) = (r, b, R), add tile (qa, br)
- tiles for head motions to the left:
 - for all a,b,c $\in \Gamma$ and all q, $r \in Q$ with $q \neq q_{reject}$, if $\delta(q, a) = (r, b, L)$, add tile (cqa, rcb)

br

- for all $a \in \Gamma$, add tile (a, a)
- tiles for copying # marker
 - add tile (#, #)
- tiles for copying # marker and adding _ to end of tape
 #
 - add tile (#, _#)

- tiles for deleting symbols to left of q_{accept}
 - for all $a \in \Gamma$, add tile (aq_{accept}, q_{accept})

aq_{accept}

```
# ? ... ? = #uq<sub>accept</sub>av# # #uq<sub>accept</sub>av#uq<sub>accept</sub>v#
```

- tiles for deleting symbols to right of q_{accept}
 - for all $a \in \Gamma$, add tile $(q_{accept}a, q_{accept})$


```
# ? ... ? = #q_{accept}## ? ... ? | #q_{accept}##
```

- tiles for completing the match
 - add tile (q_{accept}##, #)

```
q<sub>accept</sub>##
#
```

YES maps to YES?

by construction, if M accepts w, there is a way to assemble the tiles to achieve this match:

```
#C<sub>1</sub>#C<sub>2</sub>#C<sub>3</sub>#...#C<sub>m</sub>#
#C<sub>1</sub>#C<sub>2</sub>#C<sub>3</sub>#...#C<sub>m</sub>#
```

where #C₁#C₂#C₃#...#C_m# is an accepting computation history

❖NO maps to NO?

 sketch: at any step if the "intended" next tile is not used, then it is impossible to recover and produce a match in the end (case analysis)

We have proved:

Theorem: PCP is undecidable.

by showing:

- $A_{TM} \leq_m MPCP$
- ◆MPCP ≤_m PCP
- \diamond conclude $A_{TM} \leq_m PCP$

- We saw (by a counting argument) that there is some language that is neither RE nor co-RE.
- We will prove this for a natural language:

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

- Recall:
 - ♣A_{TM} is undecidable, but RE, therefore not in co-RE
 - ❖ co-A_{TM} is undecidable, but co-RE, therefore not in RE

Theorem: EQ_{TM} is neither RE nor co-RE.

Proof:

- ❖not RE:
 - reduce from co- A_{TM} (i.e. show co- A_{TM} ≤_m EQ_{TM})
 - what should f(<M, w>) produce?
- ◆not co-RE:
 - reduce from A_{TM} (i.e. show $A_{TM} \le_m EQ_{TM}$)
 - what should f(<M, w>) produce?

Proof $(A_{TM} \leq_m EQ_{TM})$

 $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$ described below:

TM M_1 : on input x,

accept

TM M_2 : on input x,

- simulate M on input w
- accept if M accepts w

•YES maps to YES?

$$\in A_{TM} \Rightarrow$$

 $L(M_1) = \Sigma^*, L(M_2) = \Sigma^*, \Rightarrow$
 $f() \in EQ_{TM}$

NO maps to NO?

$$\notin A_{TM} \Rightarrow$$

 $L(M_1) = \Sigma^*, L(M_2) = \emptyset \Rightarrow$
 $f() \notin EQ_{TM}$

Proof (co- $A_{TM} \leq_m EQ_{TM}$)

 $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$ described below:

TM M_1 : on input x,

reject

TM M_2 : on input x,

- simulate M on input w
- accept if M accepts w

•YES maps to YES?

$$\in co-A_{TM} \Rightarrow$$

 $L(M_1) = \emptyset, L(M_2) = \emptyset \Rightarrow$
 $f() \in EQ_{TM}$

NO maps to NO?

$$\notin co-A_{TM} \Rightarrow$$

 $L(M_1) = \emptyset, L(M_2) = \Sigma^*, \Rightarrow$
 $f() \notin EQ_{TM}$

Summary

