ASTR 541 - Interstellar Medium

Problem Set 6 Tom Wagg

November 7, 2022

For reference, if you'd ever like to see the code that I've used to get my answers to these, here's a link to my GitHub repo! (#astropy.units for life)

1. Spectroscopy

I'm going to summarise my results in a single table to make it a bit easier to parse.

Galaxy	Redshift	SII Ratio	ОЗНВ	N2	O3N2	Oxygen Abundance
J0929+4644_172_157	0.017	1.27	5.45	0.05	2.06	8.17
J0943+0531 ₋ 106 ₋ 34	0.228	1.30	0.43	0.55	-0.11	8.77

Density regimes: Both of these galaxies are in a low density regime since the SII ratios are both close to 1.44 (which we calculated in the last homework).

Spectrum Noise: The second galaxy is noisier because it is at a higher redshift and therefore all fluxes are lower.

Galaxy Masses: The second galaxy has a higher oxygen abundance. Therefore I think this means that the second galaxy must be more massive. The reason for this is that massive stars enrich the gas and increase the oxygen abundance. So a higher stellar mass would result in a larger oxygen abundance.