INTRODUCTION TO MATHEMATICAL ANALYSIS MIDTERM

TA: SINGYUAN YEH

1. [Courant & John] Chapter 7.2 Let $a_n \ge 0$ for all n and fix $\epsilon > 0$. If

$$\frac{\log \frac{1}{a_n}}{\log n} > 1 + \epsilon \,,$$

show that $\sum a_n$ converge.

Hint: Compute directly,

$$\frac{\log \frac{1}{a_n}}{\log n} > 1 + \epsilon$$

$$\log \frac{1}{a_n} > \log n^{1+\epsilon}$$

$$a_n < \frac{1}{n^{1+\epsilon}}$$

By comparison test, you can prove it.

2. [Courant & John] Chapter 7.5

Let $a_k \in \mathbb{R}$ be sequence satisfy $\limsup_{k\to\infty} |a_k|^{\frac{1}{k}} < 1$. Show that $\sum a_k$ converge absolutely.

Hint: Let $\limsup |a_k|^{\frac{1}{k}} = r < 1$, i.e.

$$\lim_{m \to \infty} \sup\{|a_k|^{\frac{1}{k}} : k \ge m\} = r.$$

Take $\epsilon = \frac{1-r}{2}$, i.e. $r + \epsilon < 1$. Exist M such that if k > M then $|a_k|^{\frac{1}{k}} < r + \epsilon$. That is,

$$|a_k| < (r + \epsilon)^k.$$

Since $r+\epsilon < 1$, $\sum_{k=M}^{\infty} (r+\epsilon)^k$ converge, which implies $\sum_{k=1}^{\infty} (r+\epsilon)^k$ converge. By comparison test,

$$\sum_{k=1}^{\infty} a_k$$

converge.

[Courant & John] Chapter 3.15

For what values of s is the following integral convergent?

$$\int_0^\infty \frac{\sin x}{x^s} dx$$

Hint: Write down integral as

$$\int_0^\infty \frac{\sin x}{x^s} dx = \int_0^1 \frac{\sin x}{x^s} dx + \int_1^\infty \frac{\sin x}{x^s} dx.$$

Since $\frac{\sin x}{x} \ge 0$ for $x \in [0, 1]$, by ratio test,

$$\lim_{x \to 0} \frac{\sin x/x}{1/x^{s-1}} = 1 > 0$$

Hence, both $\int_0^1 \frac{\sin x}{x^s} dx$ and $\int_0^1 \frac{1}{x^{s-1}} dx$ have same convergent behavior. Thus, they converge when s < 2 and divergent when $s \ge 2$.

On the other hands, Since $\lim_{x\to\infty} \frac{\sin x}{x^s}$ doesn't exist when s<0, $\int_1^\infty \frac{\sin x}{x^s} dx$ diverge if s<0. Moreover,

$$\int_{1}^{\infty} \frac{\sin x}{x^{s}} dx = \left. \frac{-\cos x}{x^{s}} \right|_{1}^{\infty} - \int_{1}^{\infty} \frac{s \cos x}{x^{s+1}} dx$$

Focus on

$$\left| \int_1^\infty \frac{s \cos x}{x^{s+1}} dx \right| \le s \int_1^\infty \frac{|\cos x|}{x^{s+1}} dx \le \int_1^\infty \frac{1}{x^{s+1}} dx$$

which converge when s + 1 > 1, s > 0. Therefore,

$$\int_0^\infty \frac{\sin x}{x^s} dx$$

converge if 0 < s < 2.

4. Marsden & Hoffman

Show the following series converge by integral test

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n \right)$$

5. [Folland] Chapter 2

Let sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} . Show that the following definition is equivalent.

- (a) Define $\limsup_{n\to\infty} x_n := \lim_{n\to\infty} \sup\{x_k : k \ge n\}$.
- (b) This set E contains all subsequential limits. Define $\limsup_{n\to\infty} x_n := \sup E$.

Hint: For convenience, let $y_n = \sup\{x_k : k \ge n\}$ and $\alpha = \lim_{n \to \infty} \sup\{x_k : k \ge n\}$, $\beta = \sup E$. WLOG, we only consider $\alpha, \beta < \infty$ here.

First, claim $\alpha \geq \beta$. We have to construct a subsequence bounded below by y_n . Since y_n is supreme of $\{x_k : k \geq n\}$ for all n, there exist x_n such that $y_n - \epsilon < x_n < y_n$. Choose $\epsilon = \frac{1}{i}$ for all $i \in \mathbb{N}$. We can construct subsequence $\{x_{n_i}\}$ by

$$y_1 - 1 < x_{n_1} < y_1$$
$$y_2 - \frac{1}{2} < x_{n_2} < y_2$$
.

Page 2 of 4

where the index $n_i \neq n_j$ if $i \neq j$. By Sandwich theorem, $\{x_{n_i}\}$ converges to $\alpha = \lim_{i \to \infty} y_i$. However, x_{n_i} bounded above by y_i , so $\alpha \geq \beta$.

Second, claim $\alpha - \epsilon < \beta \leq \alpha$, for all ϵ . Take $r \in (\alpha - \epsilon, \alpha)$. Now, we hope to construct a subsequence converge to $[r, \alpha] \subset (\alpha - \epsilon, \alpha]$. Now, claim that exist infinitely many x_i greater than r. So, we can construct the subsequence $\{x_{n_i}\}$ by

$$\alpha - \epsilon < r < x_{n_1} < y_1$$

$$\alpha - \epsilon < r < x_{n_2} < y_2$$
:

by the claim, where the index $n_i \neq n_j$ if $i \neq j$. Since the subsequence $\{x_{n_i}\}$ bounded by r and y_1 , exist sub-subsequence of $\{x_{n_i}\}$ such that the sub-subsequence converges in $[r, y_1]$. However, y_i decreasing to α , so exist a subsequence converge in $[r, \alpha] \subset (\alpha - \epsilon, \alpha]$. Since ϵ is arbitrary chosen, we have $\alpha = \beta$, which the desired results follows. Finally, we have to prove the claim, do it by yourself¹.

Remark: You have to claim that there are infinitely many points to choose as subsequence, otherwise we cannot find $n_i \neq n_j$ for $i \neq j$.

6. [Courant & John] Chapter 1

Prove that the following principles are equivalent in the sense that any one can be derived as a consequence of any other.

- (a) Every nested sequence of intervals with real end points contains a real number.
- (b) Every bounded monotone sequence converges.
- (c) Every bounded infinite sequence has at least one accumulation or limit point.
- (d) Every Cauchy sequence converges.
- (e) Every bounded set of real numbers has an infimum and a supremum.

7. [Courant & John] Chapter 1

Determine the set the following function continuous and discontinuous

$$g(x) = \begin{cases} 0, & x \text{ irrational} \\ \frac{1}{q}, & x = \frac{p}{q} \text{ rational in lowest terms} \end{cases}$$

8. [Lee] Chapter 2

Show the following space X is topological space.

- (a) Let $d(\cdot, \cdot)$ is discrete distance and \mathcal{T} is collection of all open set. Then, $X = (\mathbb{R}, \mathcal{T})$.
- (b) $X = (\mathbb{R}, {\mathbb{R}, \emptyset}).$

¹Please refer to G. Folland, Advanced Calculus.

9. Stewart

Determine the convergence (absolute convergent/conditional convergent/divergent) of following series.

- lowing series.

 (a) $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$ (b) $\sum_{n=1}^{\infty} (n^{\frac{1}{n}} 1)$ (c) $\sum_{n=1}^{\infty} ne^{-n}$ (d) $\sum_{n=1}^{\infty} \sinh(\frac{1}{n^2})$ (e) $\sum_{n=9}^{\infty} \frac{1}{n \ln(n) \cdot (\ln(\ln(n)))^2}$