Véletlen fizikai folyamatok

4. beadandó

Márton Tamás

${\it PJF19C}$ martontamas@caesar.elte.hu

Feladat leírás.

Kétségbeesett telefon érkezik a rendőrségre. A közelben levő erdő közepén egy család táborozott. Este 10 órakor lefeküdtek, s reggel 6-kor arra ébredtek, hogy 3 éves gyerekük eltűnt. Feltéve, hogy nem vadállat, vagy emberrabló az eltűnés oka, határozzuk meg, hogy a rendőrség mekkora terület gyors átkutatására küldjön embereket!

Feladat megoldása.

Egy átlag ember sétálási sebessége 3-5 km/h, de figyelembe kell vennünk, hogy a gyermek az erdős környezetben az átlag alatt fog haladni ezért a gyermek gyaloglási sebességét én 2 km/h-nak veszem. Este 10 és reggel 6 óra között 8 óra telt el. Ennyi idő alatt a gyermek, ha radiális irányban halad és feltételezem azt, hogy nem állt meg pihenni akkor a sugár nagysága:

$$s = v \cdot t = r = 2\frac{km}{h} \cdot 8h = 16km \tag{1.1}$$

utat tudott megtenni, tehát a legrosszabb esetben egy 16 km sugarú kör alakú területet kell átkutatni.

A kör területe:

$$T = r^2 \cdot \pi = 16^2 \cdot km^2 \cdot \pi = 804.25km^2 \tag{1.2}$$

Ez Esztergom területének 8 szorosa, ezért meg kell próbálnunk optimalizálni a keresést, úgy hogy figyelembe vesszük, hogy egy kisgyermekről van szó:

- A kisgyermek az első pár órában nagy valószínűséggel nem fog megállni pihenni, de egy idő után biztos elfárad, megijed, megéhezik. Ezért nagy szinte biztos, hogy visszafordul (legalább is Ő azt hiszi, hogy a kiindulási pont felé indul majd vissza). Ezt a pontot én 2 órára becsülöm, hiszen este 10 kor indul el a gyermek és az erdőben előre haladva ekkor már biztosan korom sötét van. Ez kb $4 \pm 1k/m$ becsülöm. Így a kisgyermek $4 \pm 1km$ távolságban bolyong.
- Mikor felkeltek a szülők nyilván azonnal elkezdték keresni, kiabálni és kutatni. A hang intenzitása I $1/r^2$ változik, valamint a fák miatt az érték jobban csökken, valamint nehezebben en is látni miattuk a sötétben. De azt is hozzá kell vennünk, hogy feltehetően nincsen más zaj, tehát a szülők hangja zavartalanul terjedhet a térben. Ezért úgy becsülöm, hogy ha egy 2km-es körön belül lenne a gyermek akkor meghallaná a hangod és visszatalálna.

Tehát a legnagyobb terület, amit át kell vizsgálni, ha hatékonyak szeretnénk lenni:

$$T = 5^2 km \cdot \pi - 2^2 km \cdot \pi = 65.973 km^2. \tag{1.3}$$

Ezt a területet már jóval könnyebben át lehet kutatni, mint az eredet, még le nem csökkentett erdőrészt.

Feladat leírás.

Határozzuk meg Monte Carlo-szimulácó segítségével az origóhoz gumiszállal kötött, T hőmérsékletű hőtartállyal kapcsolatban levő részecske egyensúlyi tulajdonságait. A részecske egydimenziós rácson ugrál, energiája az állapotát meghatározó koordinátán keresztül (a hosszúságú ugrásokat feltételezünk; $x = -\infty, ..., -a, 0, a, ..., na, ...\infty$) a következőképpen fejezhető ki:

$$U(x) = \frac{1}{2}kx^2 = \frac{1}{2}k(an)^2$$
(2.1)

ahol k a gumiszál rugóállandója. Válasszunk ugrási rátának olyan alakot, ami kielégíti a részletes egyensúly elvét. Ilyen lesz például a következő kifejezés:

$$w(n \to n \pm 1) = \begin{cases} 1 & ha \ \Delta E < 0 \\ exp(-\beta \Delta E), & ha \ \Delta E > 0 \end{cases}$$
 (2.2)

$$\Delta E = \frac{1}{2}ka^2[(n\pm 1)^2 - n^2]. \tag{2.3}$$

Indítsuk a részecskét az origóból (az egyensúlyi átlagok nem függhetnek a kezdeti feltételtől, tehát ellenőrizzük eredményeink helyességét azzal, hogy az origótól távolabb indítjuk a részecskét, s megnézzük ugyanazt kapjuk-e). A számolás a következő lépésekből áll.

- 1. Véletlenszerűen kiválasztunk egy irányt.
- 2. Megnézzük, hogy ha az adott irányba lép a részecske, akkor mennyit változik a rendszer energiája, azaz kiszámítjuk ΔE -t.
- 3. Ha $\Delta E < 0$, akkor megtesszük a lépést.
- 4. Ha $\Delta E > 0$, akkor húzunk egy véletlen számot P -t a [0,1] intervallumból, és ha $P < exp(-\beta \Delta E)$, akkor megtesszük a lépést, egyébként pedig megyünk az (1)-es ponthoz.

Az (1)-(4) pontokat sokszor, N -szer elvégezve azt mondjuk, hogy $t=N\tau_0$ idő telt el. Egy rendszernek van általában egy relaxációs ideje, τ , és ha $t>\tau$, akkor a rendszer elérkezik az egyensúlyba, s attól kezdve a különböző mennyiségek, mint például a részecske koordinátájának átlagos értéke

$$\langle x \rangle = \frac{1}{N} \sum_{k=1}^{N} a n_k \tag{2.4}$$

vagy a koordináta fluktuációja, $\langle x^2 \rangle - \langle x \rangle^2$, az egyensúlyi értéke körül fluktuál. Az egyensúlyi átlagokat tehát kiszámíthatjuk mint a relaxáció utáni időkre $(t > \tau)$ vett időátlagokat. Ez azt jelenti, hogy meg kell becsülnünk $\tau - t$ (pl. távolból indítva mikor ér a részecse $x \approx 0$ környékére), majd t_1 időnként kiszámítjuk (megmérjük) az x és az x^2 értékét, s elég sok ilyen mérésből átlagokat számolunk, és ezek megadják a T hőmérsékleti termodinamikai átlagokat, $\langle x \rangle - t$ és $\langle x_2 \rangle - t$. Határozzuk meg az $\langle x \rangle = a \langle n \rangle, \langle x^2 \rangle = a^2 \langle n^2 \rangle$ átlagokat az alábbiakban megadott egyéni βka^2 értékeknek megfelelő hőmérsékleteken! Értelmezzük az eredményt! Határozzuk meg, hogy egyensúlyban hogy néz ki a $P_{(n)}^{(e)}$ eloszlásfüggvény! Ismerjük egzaktul a $P_{(n)}^{(e)}$ eloszlásfüggvényt? A számoláshoz használt βka^2 értékek a következők:

$$\beta ka^2 = [0.15, 0.35, 0.75, 1.50] \tag{2.5}$$

Feladat megoldása.

A feladat megoldásához az általam legtöbbet használt, gyorsan írható script programnyelvet választottam a Python-t.

Első lépésben importáltam a feladat megoldásához szükséges csomagokat, valamint egy olyan tömböt, ami tartalmazza a személyes βka^2 paramétereket.

```
%pylab inline import random bka2 = [0.15, 0.35, 0.75, 1.50]
```

Mivel ΔE kiszámítása is feladat, így definiáltam egy függvényt a kiszámítására, figyelembe véve azt, hogy a két energia különbsége nem fog függeni a $k \cdot a^2$ konstansoktól.

Következő lépésben egy léptetés függvényt definiáltam, melynek két paramétert kell megadni, (n) a rácspont ahol éppen tartózkodunk valamint, hogy a személyes βka^2 paraméterek közül melyiket használom:

```
\begin{array}{llll} \mbox{\bf def Leptetes}\,(n\,,index\,): & pm1 = (random\,.\,randint\,(0\,,1)\ *\ 2)\ -\ 1 \\ p\_n = \ n\ +\ pm1 \\ \mbox{\bf if DeltaE}\,(p\_n,\ n)\ <\ 0: & \\ n = p\_n \\ \mbox{\bf else}: & \\ r\_n = random\,.\,random\,() \\ \mbox{\bf if } r\ <\ exp(-bka2\,[\,index\,]\ *\ DeltaE\,(p\_n,n\,)): \\ n = p\_n \\ \mbox{\bf else}: & \\ n = n \\ \mbox{\bf return } n \end{array}
```

Ami elvégzi a fent leírt lépéseket 4.

Ennek segítségével lefuttattam egy 500000 iterációból álló for ciklust a megadott személyes paraméterekkel először úgy, hogy az origóból indítottam el a részecskét. Jól látható, hogy az origó körül fluktuál (2..1), tehát ez az egyensúlyi pontja.

2..1. ábra. A szimuláció az origóból indítva.

Ezek után a 666. rácspontból indítva újra lefuttattam a szimulációt (2..2) és megmértem a relaxációs idejét a részecskének, azaz azt az időt, amikor eléri az origót. Miután a részecske elérte az origót, azaz az egyensúlyi állapotát, kiátlagoltam minden második időpillanathoz tartozó kitérések és kitérés négyzeteket, hogy azokból szórásnégyzetet számolhassak. Megfigyeltem, hogy a $\sigma^2 \cdot \beta ka^2$ 2 szorzat 0.5 körül fluktuál kicsivel mind a négy paraméterértékre.

2..2. ábra. A szimuláció a 666. rácspontból indítva.

A mért adatokat táblázatba rögzítem:

1. táblázat. A szimuláció adatai.

βka^2	Kiindulas [a]	Ciklusszám	$\langle x \rangle$	$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$	τ [lépésszám]	$\sigma^2 = \beta k a^2$
0.15	666	500000	0.010066	3.263	1400	0.4894
0.36	666	500000	0.000782	1.416133	1375	0.495647
0.75	666	500000	-0.002790	0.666358	1396	0.499769
1.5	666	500000	0.000034	0.329154	1335	0.493731

Jól látható, hogy $\langle x \rangle$ értéke közelítéssel zéró és független a személyes βka^2 értékétől. Azonban a σ^2 ha ábrázoljuk a βka^2 függvényében akkor egy csökkenő trendet láthatunk. Egy illesztés segítségével megmondható a csökkenés mértéke is.

2..3. ábra. σ^2 ábrázolva a βka^2 függvényében az -1/x alakú illesztéssel együtt.

Majd lefuttattam újból a programot különböző kezdeti feltételekre, hogy meg tudjam vizsgálni a relaxációs időt az indítás helyének függvényében, a kapott adatokat az alábbi táblázat tartalmazza:

2. táblázat. A relaxációs idő kiindulóhely függése

x(0)	$\beta ka^2 = 0.15$	$\beta ka^2 = 0.35$	$\beta ka^2 = 0.75$	$\beta ka^2 = 1.5$
-1000	2083	2033	2060	2046
-800	1620	1648	1653	1629
-600	1204	1155	1198	1214
-400	833	834	823	770
-200	438	405	412	382
0	6	2	2	3
200	443	462	386	383
400	826	827	799	803
600	1197	1197	1195	1189
800	1558	1541	1605	1597
1000	1989	1971	2066	2011

A táblázatból jól látható, hogy a relaxációs idő nem függ a kitérés előjelétől, de nagysága körülbelül $|x| \cdot 2$.

Az eloszlásfüggvényét egyensúlyban a $P_{(n)}^{(e)}$ -nek, úgy kaptam meg, hogy megnéztem az egyensúly beállta után a kitérések relatív gyakoriságát, és erre a normális eloszlás sűrűségfüggvényét illesztettem.

2..4.ábra. $\beta ka^2=0.15$ egyensúlyban a kitérések relatív gyakorisága.

Az illesztett függvény:

$$\rho(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{2.6}$$

Az illesztés paraméterei:

$$\sigma^2 = 6.74241606 \pm 0.00700286$$

$$\mu = -0.00981588 \pm 0.00165152$$

Az illesztésből jól látszik, hogy a Gauss-görbe tökéletesen illeszkedik az egyensúlyi relatív gyakoriságokra, tehát ezzel az illesztéssel jól becsülhetjük a $P_{(n)}^{(e)}$ függvény alakját.