

#### МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Институт информационных и вычислительных технологий Кафедра управления и интеллектуальных технологий

# Прогноз энергетики: теоретическая справка по статистическим методам прогноза

Михайловский Михаил, А-03-21

Промежуточная версия от 21.04.24

### Содержание

| 1 | Линейная регрессия                                      |                                                            | 3 |
|---|---------------------------------------------------------|------------------------------------------------------------|---|
|   | 1.1                                                     | Постановка задачи                                          | 3 |
|   | 1.2                                                     | Предположения метода                                       | 3 |
|   | 1.3                                                     | Метод множественной линейной регрессии и его интерпретация | 3 |
|   | 1.4                                                     | Оценка адекватности модели                                 | 4 |
| 2 | Метод наименьших квадратов для прогноза временных рядов |                                                            | 5 |
|   | 2.1                                                     | Задача прогноза временных рядов                            | 5 |
|   | 2.2                                                     | Постановка задачи метода наименьших квадратов              |   |
|   | 2.3                                                     | Решение по методу МНК                                      | 6 |

### 1 Линейная регрессия

#### 1.1 Постановка задачи

Имеется некоторая выборка входных параметров и предсказываемого значения:  $\{\vec{x}_j, y_j\}_{j=1}^N$ . Здесь  $\vec{x}_j^\intercal = [x_j^{(1)} \dots x_j^{(M)}]$  – некоторый набор параметров, по которому требуется характеризовать предсказываемый параметр  $y_j$ .

Нужно найти линейную зависимость  $\hat{f}(\vec{x})$ , которая по входным параметрам  $\vec{x}_i^{\mathsf{T}}$  даст оценку  $\hat{y}_j$  предсказываемого параметра  $y_j$ , следующего вида:

$$\hat{y}_j = \hat{f}(\vec{x}_j) = \hat{b}_0 + \hat{b}_1 x_j^{(1)} + \dots + \hat{b}_M x_j^{(M)} = \vec{\hat{b}}^\intercal \vec{x}_j$$
, где  $\vec{\hat{b}}^\intercal = [\hat{b}_0 \ \hat{b}_1 \ \dots \ \hat{b}_m]$ 

При этом,  $\hat{f}(\vec{x})$  является оценкой реальной зависимости  $y_j = f(\vec{x}_j) \approx \hat{f}(\vec{x}_j)$ .

### 1.2 Предположения метода

Следующие предположения в реальных условиях часто не выполняются. Поэтому их влияние стоит учитывать при анализе результатов. Есть метода для анализа выполнения этих предположений.

1. Истинное значение  $y_j = f(\vec{x}_j) + e_j$ , где  $e_j$  – аддитивная нормальная выходная помеха со следующими статистическими параметрами:

$$e_j \sim N(0, \sigma_e), \ \sigma_e = \mathrm{const}, \ \mathrm{cov}(e_j, e_k) = 0$$

2. Входные величины  $x_j$  являются детерминированными и линейно независимыми.

## 1.3 Метод множественной линейной регрессии и его интерпретация

Для нахождения  $\hat{f}(\vec{x}) = \vec{\hat{b}}^{\mathsf{T}} \vec{x}$  нужно найти  $\vec{\hat{b}}$ .

$$\vec{\hat{b}} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} \vec{y}, \text{ где } X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(M)} \\ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(M)} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_N^{(1)} & x_N^{(2)} & \dots & x_N^{(M)} \end{bmatrix}$$

Математически такая оценка вектора  $\vec{b}$  является решением следующей оптимизационной задачи:

$$MSE = ||\vec{y} - X\vec{b}||_2^2 = \sum_{j=1}^N (y_j - \vec{b}^{\mathsf{T}}\vec{x}_j)^2 \to \min_{\vec{b} \in \mathbb{R}^M}$$

Графически через набор наблюдений проводится прямая, имеющая в среднем минимальное отклонение от набора наблюдений (рис. 1.1).



Рис. 1.1. Графическая интерпретация для M=1

**Важные моменты.** Такой метод структурно не может работать точно, если зависимость  $y(\vec{x})$  нелинейная (пример 2 на рисунке). Также, из-за вида критерия оптимизации метод ярко реагирует на выбросы. То есть даже небольшое количество значений, сильно отличающихся от основной массы, могут значительно изменить результат регрессии (пример 3 на рисунке).

### 1.4 Оценка адекватности модели

Для оценки адекватности можно использовать скорректированный коэффициент детерминации  $R^2_{\text{корр}}$ . Он рассчитывается с помощью:

$$S_{\text{ост}}^2 = \frac{1}{N - (M - 1)} ||\vec{\hat{y}} - \vec{y}||_2^2, \quad S_{\text{общ}}^2 = \frac{1}{N - 1} ||\vec{y} - X\vec{b}||_2^2,$$

$$R_{\text{kopp}}^2 = 1 - \frac{S_{\text{oct}}^2}{S_{\text{ofin}}^2}$$

При  $R_{\text{корр}}^2 \ge 0.75$  модель можно считать адекватной. Чем значение скорректированного коэффициента детерминации ближе к 1, тем лучше. С помощью этого коэффициента можно сравнивать модели с разным значением M.

# **2** Метод наименьших квадратов для прогноза временных рядов

### 2.1 Задача прогноза временных рядов

Для прогноза значений временных рядов может быть использован метод наименьших квадратов (МНК). Обычный вид временных рядов представлен на рис. 2.1. Это зависимость некоторого показателя y(t). В отличие от рассмотренной постановки задачи для линейной регрессии здесь наблюдения упорядочены по времени отсчёта.



Рис. 2.1. Пример временного ряда

Такой ряд можно разбить на низкочастотную составляющую — тренд и высокочастотную составляющую — шум. Для получения тренда можно использовать метод скользящего среднего. При некоторых параметрах скользящее среднее даёт результат, как на рис. 2.2. Красная кривая является приближением к общему тренду временного ряда.

Если шум является пренебрежимо малым относительно составляющей тренда, то в качестве предсказания можно ограничиваться лишь трендом. Для этого и используется метод МНК. Если шумом нельзя пренебречь, то можно отдельно изучать его статистические характеристики, проверить предположение на нормальность, и для нормального шума можно строить доверительные интервалы



Рис. 2.2. Пример выделения тренда методом скользящего среднего

его значений. То есть можно указать интервал, в котором находится это значение с заданной исследователем вероятностью (обычно 95%).

### 2.2 Постановка задачи метода наименьших квадратов

**Даны** узловые значения  $\{x_i\}_{i=0}^N$  и значения функции в них  $\{y_i\}_{i=0}^N$ . **Найти** функцию  $\Phi_m(x): \Phi_m(x_i) \approx y_i \ \forall i$ .

При этом структура этой функции задаются следующим образом:

$$\Phi_m(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_m \varphi_m(x) = \sum_{j=0}^m a_j \varphi_j(x)$$

Набор функций  $\{\varphi_i(x)\}_{i=0}^m$  задаётся исследователем.

### 2.3 Решение по методу МНК

Пусть набор функций  $\{\varphi_i(x)\}_{i=0}^m$  уже задан. Тогда, для заданного набора узлов и значений в них неизвестные коэффициенты  $a_j$  в функции  $\Phi_m(x) = \sum_{j=0}^m a_j \varphi_j(x)$  можно найти из следующей системы алгебраических линейных уравнений:

$$M\vec{a} = \vec{b}, \ \vec{a} = \begin{bmatrix} a_0 \\ a_1 \\ \dots \\ a_m \end{bmatrix}, \ \vec{b} = \begin{bmatrix} \sum_{i=0}^N y_i \varphi_0(x_i) \\ \sum_{i=0}^N y_i \varphi_1(x_i) \\ \dots \\ \sum_{i=0}^N y_i \varphi_m(x_i) \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{i=0}^{N} \varphi_0(x_i) \varphi_0(x_i) & \sum_{i=0}^{N} \varphi_0(x_i) \varphi_1(x_i) & \dots & \sum_{i=0}^{N} \varphi_m(x_i) \varphi_0(x_i) \\ \sum_{i=0}^{N} \varphi_1(x_i) \varphi_0(x_i) & \sum_{i=0}^{N} \varphi_1(x_i) \varphi_1(x_i) & \dots & \sum_{i=0}^{N} \varphi_1(x_i) \varphi_m(x_i) \\ \dots & \dots & \dots & \dots \\ \sum_{i=0}^{N} \varphi_m(x_i) \varphi_0(x_i) & \sum_{i=0}^{N} \varphi_m(x_i) \varphi_1(x_i) & \dots & \sum_{i=0}^{N} \varphi_m(x_i) \varphi_m(x_i) \end{bmatrix}$$

Итого общая формула для вычисления коэффициентов  $a_i$ :

$$\vec{a} = M^{-1}\vec{b}$$

Полученная функция  $\Phi_m(x)$  является решением следующей оптимизационной задачи:

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=0}^{N} (\Phi_m(x_i) - y_i)^2} \to \min_{\vec{a} \in \mathbb{R}^m}$$

То есть данная функция имеет наименьшее среднее отклонение от узловых значений для заданного базиса  $\varphi_i$ 

Пример полученной нелинейной МНК аппроксимации набора узлов представлен на рис. 2.3.



Рис. 2.3. Пример нелинейной аппроксимации методом МНК

**Примечание**. Рассмотренный ранее метод множественной линейной регрессии является по своей сути тоже частным случаем обобщения МНК на функции многих переменных. В рассматриваемых применениях эти методы различаются. Метод линейной регрессии предсказывает значения по другим параметрам, которые как-то могут характеризовать предсказываемую величину. МНК для временного ряда предсказывает параметр по набору предыдущих значений этого параметра.