전 디지털화된 PWM파의 실시간 발생 기법 및 단일칩 마이크로프로세서에 의한 실현

田 奉 煥*○, 鄭 碩 權**, 金 相 奉***

* 부산수산대학교 대학원, ** 부산수산대학교 기관공학과, *** 부산수산대학교 기계공학과

A Real Time Generation Technique of Fully Digitalized PWM Wave and Its Realization by Single Chip Microprocessor

Bong Hwan Jeon*O, Seok Kwon Jeong**, Sang Bong Kim***

- * National Fisheries University of Pusan Department of Mechanical Engineering Graduated School
- ** National Fisheries University of Pusan Department of Marine Engineering
 *** National Fisheries University of Pusan Department of Mechanical Engineering

Abstract

The pulse width modulated inverters based on fully digitalized method are becoming an industrial standard. This paper describes a real time generation of fully digitalized PWM pulses and its realization by single chip microprocessor. To verify the effectiveness of the proposed technique, the algorithm is implemented by using single chip microprocessor, 8097BH. The proposed method is compared with the well known triangular comparison method through experimental results, and the speed control of a motor is experimentally done by voltage-to-frequency constant control based on the proposed PWM generation method.

1. 서본

최근 인버터의 필스폭 변조방식으로 희로기술에 기초한 아 날로그 발생법에 비해 디지탈적인 발생범이 일반화되고 있다. 디지탈 필스폭 변조방식은 크개 SPWM법과 공간백터법으로 나누어질 수 있다. Subharmonic PWM, Sine-PWM, Subosci -llation PWM, Sine-Triangular PWM, Natural PWM 등은 총칭하여 주로 SPWM법이라고 부르고 있고, SPWM방식은 디지탈 PWM방식중 가장 일반적인 방식으로, 이론과 실현에 관한 문제가 잘 정립되어 있어 현재까지 널리 쓰이고 있다 [1][2]. 그러나 SPWM방식은 출력전압 및 주파수의 변화에 따라 스위칭각을 계산하는 시간이 소요되기 때문에 상용주파 수(60Hz)보다 높은 주파수에서의 응용이 어렵고, 스위칭 횟수 가 많아 손실이 크며, 최고 출력전압이 낮다는 단점을 갖고 있어[1][3] 대용량의 인버터에서는 직합하지 않아 공간백터법 이나 수정된 SPWM방식 등이 연구되고 있다. 그러나 SPWM 방법은 전압이용률이 크게 문제되지 않는 소용량 인버터나 300Hz이상의 고속 운전을 필요로하지 않는 범용인버터에서는 단일침화가 용이하므로 적합하다.

소용량, 범용인버터는 대부분 전압형이며, 제어알고리즘으로는 주로 V/(제어가 사용되어지고 있다. 전압형 인버터에서는 파워소자의 동시단략에 의한 파손을 막기 위하여 단락방지시간이 필수적인데, 디지탈 인버터에서도 이러한 단락방지시간의 설정은 저항과 콘덴서의 시정수에 의한 하드웨이에 의존하는 경우가 대부분이다. V/(제어는 알고리즘이 간단하므로 DSP와 같은 고속의 연산소자보다는 단일침에 의한 인버디가 가격면에서 유리하다. 단일침에 의한 인버디가 가격면에서 유리하다. 단일침에 의한 인버디의 전 디지탈화는 마이크로프로세서와 파워소자 사이의 하드웨어 인터

페이스를 크게 줄인 수 있고, 인비더의 소형화, 고신뢰성, 유 연성 등의 면에서도 많은 발전을 가져올 수 있다.

본 논문에서는 단일침 마이크로프로세서에서 쉽게 실현되어 스위칭 손실 등이 크개 문제되지 않는 소용량의 범용인비터에서 용용될 수 있는 필스폭 변조이론을 실현 중심으로 개선하여 재안하고, 그 실현방법을 제안한다. 재안된 방법은 SPWM방법증 Sinc-PWM방식의 일종이라 할 수 있고, 스위칭각의 계산과 필스출력 시간을 줄이기 위해 반파 비대칭형으로 실현하였다. 특히, 단락방지 시간을 소프트웨어적으로 설정할 수 있도록 하여 하드웨어 인터페이스를 최소화할 수 있도록 하였고, 변조이론을 실제 실현문제에 중점을 두어 전개함으로써 실제 변조파형의 전압값이 전압 지령값에 보다근사할 수 있을 것으로 예상된다. 실험을 통하여, 제안된 방법을 범용인버터에서 널리 이용되는 V/f제어 알고리즘과 함께 단일침에서 실현하였고 실제 유도전동기에 적용하여 그유효성을 확인하였다.

2. 변조 이론

그림2.1과 같은 인비터 최로에서 Sine-PWM방법을 이용해 필스폭 변조하면, 변조된 필스폭은 다음과 같이 나타낼 수 있다.

$$t_{\mu\nu}^{u} = T_{c}m\cos(\omega_{m}t) \tag{2-1}$$

여기서 Tc는 생품링 주기, ωm은 변조파의 주파수, m은 변 조지수로 0≤m≤1 이다[4]. (2-1)식을 그림21에 맞추어 음의 부분을 없에면 (2-2)식으로 나타낼 수가 있다.

$$t_{p\omega}^{u} = \frac{1}{2} T_{c} m(\cos(\omega_{m} t) + 1)$$
 (2-2)

그림21 3상 인버터 희로 Fig.2.1 3 Phase inverter circuit

(2-2)식에서 디지탈 실현을 위해 샘플링 구간내의 최소 필 스폭을 고려하여 최소 필스폭을 tø라고 하면 다음식과 같다.

$$t_{p\omega}^{u} = \frac{1}{2} T_{c} m(\cos(\omega_{m} t) + 1) + t_{\beta}$$

$$m_{\max} = \frac{T_{c} - t_{\beta}}{T_{c}}$$
(2-3)

te는 m이 0일 때의 필스폭을 나타내고 있지만 상과 상사 이의 출력전압에서는 나타나지 않는 값이고, 변조지수 m의 최대값은 t#에 따라 제한되어야 함을 알 수 있다.

변조파형의 주파수를 fm. 샘플링 주파수를 fc. fm과 fc의 비블 N이라 하여 이산화 하면 (2-3)식은 다음과 같이 나타낼 수 있다.

$$t_{pw}^{u}(k) = \frac{1}{2Nf_{m}} m(\cos(2\pi Nf_{m}k) + 1) - t_{\beta}$$

$$N = \frac{f_{c}}{f_{m}} \qquad k = 1, 2, \dots, N$$
(2-4)

펄스패튼은 대칭 변조법이 출력의 고조파 성분을 억제하는 데 유리하다는 것이 알려져 있으나[5], 본 논문에서는 소용량 범용인버터의 단일칩 실현을 목표로하고 있으므로 고조파 성 분의 억제보다는 스위칭각 계산의 시간용 중이기 위해 비대 칭형으로 실현하였다. 즉, 그림2.2와 같이 샘플링 지점에서 3 상의 필스가 동시에 온되고 각각의 필스폭 tow후에 오프되도 록 하였다.

그림2,1의 Q2에 인가해야할 변조필스는 Q1에 인가하는 변 조필스의 반전된 형태이고, Q1, Q2에 인가되는 필스를 그림 으로 나타내면 그림2.3과 같다.

그림2.2 펄스패튼

Fig.2.2 Pulse pattern

그림2.3 Q1과 Q2에 대한 게이트 신호의 파형 Fig.2.3 Wave forms of base signals for Q1 and Q2

3. 단락방지시간

그림23은 파워소자의 오프지연시간에 따른 단락방지시간이 고려되어 있지 않은 경우로 실제로는 Q1과 Q2의 동시 도통 시간을 없애기 위해서 단락방지시간 ta가 고려되어야 한다. 그림2.3의 한 생품링 구간을 단락방지시간을 고려해서 확대하 이 그리면 그림3.1과 같다.

그림3.1 단락방지시간을 고려한 펄스패론 Fig.3.1 Pulse pattern with dead time

그림3.1 에서와 같이 Ql과 Q2는 각각 ta만큼 지연되어 온되 어야 하므로 (2.4)식의 tau는 (3-1)식과 같이 ta만큼 줄어져야

$$t_{pec}^{u}(k) = \frac{1}{2Nf_{me}} m(\cos(2\pi Nf_{me}k) + 1) - t_{\beta} - t_{d} (3-1)$$

결국 ta의 ta는 tpm의 최대값과 최소값을 제한하는 요소로 작용하며 최대 최소값은 다음과 같이 제한된다.

$$t_{per}^{max} = T_c - 2t_d - t_\beta$$

$$t_{per}^{min} = t_\beta$$
(3-2)

(3-1)식을 그림21의 Q1에 인가되는 파형으로 하면, Q2, Q3, Q4, Q5 및 Q6에 인가되는 파형은 다음식으로 나타낼 수 있다.

Q1:
$$t_{\mu\nu}^{ul}(k) = \frac{1}{2Nf_m} m(\cos(2\pi Nf_m k) + 1) - t_{\beta} - t_d$$

Q2:
$$t_{\mu\nu}^{u2}(k) = T_c - t_{\mu\nu}^{u1}(k) - 2t_d$$

Q3:
$$t_{pw}^{vl}(k) = \frac{1}{2Nf_{m}} m(\cos(2\pi Nf_{m}k - \frac{2}{3}\pi) + 1) - t_{\beta} - t_{d}$$

$$Q4: t_{bw}^{v2}(k) = T_c - t_{bw}^{v1}(k) - 2t_d$$

Q4:
$$t_{pw}^{12}(k) = T_c - t_{pw}^{11}(k) - 2t_d$$

Q5: $t_{pw}^{10}(k) = \frac{1}{2Nf_m} m(\cos(2\pi Nf_m k + \frac{2}{3}\pi) + 1) - t_B - t_d$

Q6:
$$t_{pw}^{u2}(k) = T_c - t_{pw}^{w1}(k) - 2t_d$$

$$T_c = \frac{1}{N f_{nt}}$$
(3-3)

(3-3)식은 3상 필스폭 변조를 실행함에 있어, 마이크로 프로 세서에서 필스를 출력하는데 소요되는 최소의 시간과 단락방 지시간이 고려된 필스폭 계산식으로 PWM파 발생 프로그램 에 직접 사용되는 식이다.

4. 단일컵 실현을 위한 소프트웨어

필스폭 변조 알고리즘과 제어알고리즘을 단일칩 마이크로 프로세서로 실현시키기 위해서 인텔사의 8097BH를 사용하였 다. 8097BH에는 CPU의 부담을 최소화하면서 주어진 시간마 다 A/D변환의 시작, 타이머 2의 리셋, 4개의 소프트웨어 품 래그에 대한 설정, 6개의 고속출력 채널(HSO)에 대한 스위칭 등의 기능을 발휘할 수 있는 고속 출력 장치인 HSO(High Speed Output)의 기능이 있다. HSO는 6채널의 온·오프 명 령과 그 명령이 수행될 시간을 흘당래지스터에 써넣음으로써 원하는 시간에 채널의 스위칭이 가능하고 명령이 수행되는 시간마다 HSO 인터럼트를 발생시킬 수도 있다[7].

진채 프로그램은 그림4.1와 같이 새 부분으로 구성되어 있 다. 메인 루틴은 각종 레지스터와 출력 채널을 초기화하고, HSO 인터럽트와 소프트웨어 타이머 인터럽트의 초기 발생시 간을 선정하며, 전동기의 현재 속도를 표시한다. 소프트웨어 타이머 인터립트 루틴은 V/f제어 루틴으로써 지정된 주파수 중감의 기울기에 따라 주파수를 연산하고, V/대트에 따라 변조지수를 연산한다. 또한, T2 클릭을 이용하여 엔코더의 필스수를 카운트하여 전동기의 회전속도를 연산한다. HSO 인터립트 루틴에서는 변조지수와 주파수에 따라 (3-3)식에 의해 t∞를 연산하고 HSO의 여섯 채널을 스위칭한다. 그림2.4의 t1은 HSO 인터립트가 발생하는 시간이다. 즉, HSO 인터립트루틴은 매 생물링 시간마다 발생한다. 인터립트 루틴 내에서 12, t3, t4, t5를 연산하여 각 시간마다 채널의 스위칭 상태를 설정한다. Q3~Q6에 대해서는 t3와 t4만 각각 연산하고 t1, t2 및 t5는 Q1, Q2의 경우와 같다.

소프트웨어 타이머 인터럽트는 5ms 마다 발생하도록 하였으며 그 수행시간은 12MHz 클럭을 사용하였을 경우 최대 54 μ s이고, HSO 인터럽트 루틴의 수행시간은 최대 180 μ s 장도이다. 따라서 N을 12, 30, 60, 120 으로 선택했을 경우, 최대출력 주파수는 각각 462, 185, 92, 46Hz로 된다.

int.: interrupt fr: reference frequency fm: next frequency tpw: pulse width

(a) 메인 루틴
(b) 소프트웨어타이머 인터럽트 루틴
(c) HSO 사건 인터럽트 루틴 그립4.1 PWM파 발생 프로그램 흐름도

(a) Main routine

(b) Software timer interrupt routine
(c) HSO event interrupt routine
Fig.4.1 Flow chart of PWM generation program

5. 하드웨어 구성

하드웨이는 컨버디부, 인비티부, 계이트 구동회로부 및 809 7BH 마이크로프로세서부로 구성되어 있으며 모두 자작하였다. 인비디부의 파워 MOSFET는 SanRex사의 FBA50BA (VDS 500V, ID 50A)를 사용하였고, 8097BH 보드는 EPROM 27C256을 사용하여 구성하였다. 그림5.1은 본 알고리즘에 의해 발생된 PWM파를 실제 3상 유도모터에 적용시키기 위해 구성한 전체 실험 장치를 보인 것이다. PC(Personal Computer)는 A-D/D-A 변환기(PCL-812) 그리고 디지털 스토레이지 오실로스코프 인터페이스카드(GPIB)를 내장시켜 속도지링 및 데이터 수집에 이용하였다.

먼저 PC는 속도 지령치를 8097BH에 입력한다. 8097BH는 속도 지령치에 따라 제어입력 주파수와 그에 따른 전압치를 연산하고, 이에 따라 3상 PWM파를 발생시켜 게이트 드라이브 회로로 출력한다. 게이트 드라이브 회로는 8097BH에서 입력반은 3상 PWM파를 증폭하고 MOSFET를 구동하여 전동기를 회전시킨다. 8097BH에서 출력되는 PWM파와 전동기로 입력되는 3상의 전류는 디지털 스토리지 오실로스코프를 통해, 각각 PC로 전송된다. 또한 전동기의 회전속도는 엔코디에서 8097BH의 T2 클릭핀으로 입력되어 그 속도가 계산된 다

음 D/A포트로 출력되어, PC의 A/D변환기로 입력된다. PC는 입력받은 데이터를 그래픽하고 프린트한다. 시험에 사용된 유 도전동기는 출력 1.5kw, 4극의 것으로, 정격전압 및 정격주파 수는 각각 220V, 60Hz이며, 정격회전수는 1710rpm의 전동기 를 사용하였다.

그림5.1 시스템의 하드웨어 구성 Fig.5.1 System hardware configuration

6. 실험 결과

그림6.1 에 N이 12일 때와 30일 때, 제안된 방법에 따라 시 뮬레이선하여 각 상의 전압과 상간전압(U-V)뿔 나타냈다.

(a) N = 12

(b) N = 30

그립6.1 제안된 방법에 의한 PWM파형의 시뮬레이션 Fig.6.1 simulation of PWM with proposed method

그림6.2는 범용인버터에 널리 채택되고 있는 삼각파 비교법에 의한 떨스폭 변조법과 본 방법에 의한 떨스폭 변조방법으로 각각 유도전동기를 구동시켰을 때의 전류파형을 보인 것이다. 삼각파 비교법은 제품으로 시판되고 있는 인버터중 선택했으며, 본 방법은 자작한 인버터를 이용했다. 본 방법은 N이 인정한 동기식이지만 주파수 구간별로 N을 120, 60, 30, 12로 나누어 0~180Hz까지 실험을 행하였다. 주파수 구간별 N은 다음과 같다.

į	주파수(Hz)	1~ 30	31~ 60	61~120	121~200	
	N	120	. 60	30	12	

그림에서 알 수 있듯이 주파수가 높을 수록 삼각파 비교법에 비해 제안된 방법은 왜형률이 낮게 나타나고, 낮은 주파수에서도 구간별로 N을 달리 함으로써 왜형률을 낮게 유지함수 있음을 알 수 있다. 이것은 범용인비터에서 필스폭 변조를위한 하드웨어와 마이크로 프로세서 주변희로를 대폭 줄이면서도 보다 나은 성능을 소프트웨어적으로 구현할 수 있음을 의미한다.

(a): triangular comparison method (b): proposed method

(b) 30Hz, N=120

(b) 180Hz, N=12 그림6.2 삼각파비교법과 제안방법의 전류파형 비교 Fig.6.2 Comparison of output current wave forms between triangular comparison method and proposed method

7. 결론

본 논문에서는 법용인버터의 단인첩화를 위해, Sine-PWM 방법을 프로그램의 수행시간을 줄일 수 있는 간단한 알고리즘으로 단락방지시간을 고려하여 제안하였고, 단일첩 마이크로프로세서에서 쉽게 실현하기 위한 소프트웨어와 하드웨어 대해 설명하였다. 본 방법의 유효상을 건증하기 위해, 전압 파형의 시뮬레이션을 보였고, 단일첩 마이크로프로세서 8097BH를 이용하여 본 알고리즘을 실현하여, 실제 유도전동기에 적용하여 실험함으로써 중래의 삼각파 발생법과 그 전류 파형을 비교 건토하였다.

실험을 통해, 단일첩 마이크로프로세서에 의해 프로세서와 개이트 드라이브회로 사이의 인터페이스회로를 전혀 필요로 하지 않고도 단락방지시간을 고려한 변조파형을 소프트웨어 적으로 실현할 수 있었고, 실제 유도전동기를 구동할 경우에도 전류파형의 왜형률이 기존의 인버터에 비해 낮게 나타남을 알 수 있었다. 따라서 법용인버터에 유용하게 이용될 수 있을 것으로 생각되고, 이 경우 인버디의 소형화 고신뢰성, 보수성 및 유연성을 향상시키는 데 크게 도움이 될 수 있을 것으로 생각된다.

앞으로 수행되어야 할 문제는 고조파의 함유율의 억제나 출력전압의 증가 등의 문제를 해결하는 방법이 알고리즘 내 에 추가되어야 하겠다. 단일칩 마이크로프로세서의 기능이 항 상되어 그 연산속도가 더욱 빨라짐에 따라 어렵지 않을 것으 로 생각된다.

참고문헌

[1]김종구,최옥돈,"IGBT 지압대용량 유도전동기의 구동 시스 템",전기학회논문지,43권 2호, pp.36-44,1994

[2]An Efficient Microprocessor-Based Pulse-Width Modulator using Spacd Vector Modulation Strategy

[3]金權浩의 5명,"線形化한 스위칭角 特性波形을 搬送波로 使用한 SHE PWM 인버어터에 관한 硏究"전기학회논문지,39권 7호,1990

[4]김한대, 권봉한, "농형유도전동기의 전 디지탈화된 PWM 발생 및 백대제어",전기학회논문지,40권 6호, pp.567-573,1991

[5]H.V.D.Broeck,"Anlaysis of the Harmonics in Voltage Fed Inverter Drives Caused by PWM Scheme with Discontinuous Switching Operation"EPE,Firenze,Vol3,pp.261-266, 1991

[5]B.K.Bose, "Power Electronics and AC Drives", Prentice -Hail, Englewood Cliffs, New Jersey, 1986

[6]電氣露院編輯部編,"汎用インバ-タ活用ガイドブック",電氣雲院1985

[7]16-bit Embedded Controller Handbook, Intel Corporation,

[8] S.R.Bowes, "Advanced Regular-sampled PWM Control Techniques for Drives and Static Power Converters", IECON'93. P.662-669.1993

[9] S.R.Bowes, " Efficient Microprocessor Real-Time PWM Drive Control Using Regular-Sampled Harmonic Minimisation Techniques", IECON'93, P.211-217,1993

[10]S.K.Sethuraman and M.G.Saravanan," PWM Strategies for the Real-Time Embedded Control and Condition Monitoring of AC. Drives", IECON'93, P.219-224,1993

[11]A.Boglietti, G.Grivq, M.Pastorrelli, F.Progun, T.Adam,"