[Aula 21] Máquina de Turing – Computabilidade

Prof. João F. Mari

joaof.mari@ufv.br

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos, 6. ed., Bookman, 2011.
 - Capítulo 8.
 - + Slides disponibilizados pelo autor do livro.

- Nelma Moreira. Computabilidade: uma introdução, Departamento de Ciência de Computadores - Faculdade de Ciências, Universidade do Porto, 1996 (Revisão em 2003).
 - Disponível em: http://www.dcc.fc.up.pt/~nam/publica/compdec.pdf

Computabilidade

- O que significa ser computável?
 - Existir um método algorítmico de resolver,
 - Isto é, uma sequência finita de instruções que possa ser efetuada mecanicamente.
 - David Hilbert no início do sec. XX, pretendia-se reduzir a Matemática a manipulação pura de símbolos, e encontrar um algoritmo que determinasse a veracidade ou a falsidade de qualquer proposição matemática.
 - Foram propostos vários formalismos que se demonstrou serem equivalentes (no sentido de aceitarem as mesmas linguagens):
 - Máquinas de Turing (Alan Turing, 1936)
 - Funções recursivas parciais (Kurt Gödel, 1931)
 - λ-Calculus (Alonso Church, 1933)
 - Logica combinatoria (Haskell Curry, 1929)
 - Gramáticas não restritas ou Tipo 0 (Noam Chomsky, 1956)

Prof. João Fernando Mari (joaof.mari@ufv.br)

-

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

Máquinas Universais

- Todos os formalismos referidos são suficientemente poderosos para aceitarem a si próprios! Isto é,
 - Tem programas que aceitam como dados codificações de programas.
 - Existem máquinas de Turing que aceitam como dados palavras que são a descrição de máquinas de Turing.
 - Podemos escrever em C um programa que interprete programas em C.
- Note que a noção de Universalidade esta na base da noção de programa armazenado em memória e, portanto, na de software.
- Por exemplo (e infelizmente), pode-se demonstrar que não existem algoritmos que dado um programa em C determinem o seu resultado ou se ele <u>para</u>. → → → →

Tese de Church-Turing

- Embora não demonstrado, um problema computável (tem um método algorítmico para o resolver) se e somente se existe uma Máquina de Turing que o resolve.
- As razões pelas quais a quase totalidade dos pesquisadores pensa que a Tese de Church é válida são várias.
 - 1. As máquinas de Turing são tão gerais que parecem poder simular qualquer possível computação.
 - 2. Nunca ninguém descobriu um modelo "algorítmico" mais geral que as maquinas de Turing.
 - Vários pesquisadores, ao estudar modelos de computação suficientemente gerais, têm sempre chegado a "algo" que nunca é mais geral do que as MT, sendo apenas equivalentes.
- Um modelo de computação diz-se universal se todos os problemas efetivamente computável podem ser resolvido utilizando esse modelo.

Prof. João Fernando Mari (joaof.mari@ufv.br)

į

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

Problemas não computáveis - indecidíveis

- Existência de problemas não computáveis (indecidíveis)
 - Um problema corresponde a uma linguagem em um alfabeto.
 - Resolve-lo é determinar se uma palavra pertence a essa linguagem.
- O número de linguagens sobre um alfabeto não é numerável:
- Uma máquina (programa) que o resolva também pode ser visto como uma palavra num dado alfabeto.
 - Mas então só existe um numerável de máquinas...
- [CONCLUSÃO] Existem mais problemas que programas...
- Em que:
 - Têm que existir problemas indecidíveis;
 - Pode ser difícil demonstrar que um dado problema é indecidível.

O Problema da Parada

Um exemplo clássico de problema indecidível.

- Escreva um programa H que receber um outro programa P juntamente com sua entrada E.
 - H para e imprime "sim" se P para ao receber E.
 - H para e imprime "não" se P entra em loop ao receber E.
- Alguma estratégia para acompanhar o fluxo de execução de P.
- Para que H emita a resposta "sim" ou "não", é necessário que esta estratégia forneça uma conclusão em tempo finito.
- Porém, se o programa P entrar em loop, a estratégia reproduzirá o loop, e a resposta "não" nunca será emitida.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

O Problema da Parada

- Um algoritmo H, que toma como entrada um procedimento P e sua entrada E.
 - H retorna true se P termina para a entrada E.
 - H retorna false se P não termina com a entrada E.
- O algoritmo H não existe. A prova é por contradição.
 - Suponha que H exista: boolean H (P, E) { ... }

- Então eu posso escrever a minha função P como:
 - P NÃO termina com E. P termina com E.

```
- void P(int E) {
   while H(P, E) { }
— }
```

- TRUE: P termina com E. FALSE: P <u>NÃO</u> termina com E.

- Pergunta: P termina com a entrada E?
 - SIM: P termina sua execução quando recebe a entrada E.
 - Então H(P, x) é true e P não termina com a entrada E. Contradição!!!
 - NÃO: P não termina sua execução com a entrada E.
 - Então H(P,x) é false e P termina a sua execução com a entrada E. Contradição!!!

MT como calculadoras de funções parciais

- Números inteiros
 - Representação binária:
 - Sistema posicional (aula anterior!).
 - Representação Unária
 - O número inteiro i >= 0 é representado pela cadeia 0ⁱ.
 - Se a função possui mais de dois ou mais argumento, separar por 1's.
 - Ex: $000 \rightarrow f(3)$; $001000 \rightarrow f(2,3)$; $00010100 \rightarrow f(3,1,2)$; $00110 \rightarrow f(2,0,1)$
- MT: Soma de dois números naturais: f(a,b) = a + b
 - Fita (inicio): $0_a 10_b \beta ...$; Fita (final): $0_a 0_b \beta ...$;
- MT: Multiplica um número natural por 2: f(a) = 2*a
 - Fita (inicio): $O_a\beta...$; Fita (final): $O_{a+a}\beta...$;
- MT: Subtração própria: f(a,b) = a b, se a >= b; 0, se a < b;
 - Fita (inicio): $O_a 1 O_b \beta ...$; Fita (final): $O_{a-b} \beta ...$ (a>=b); $\beta ...$ (a<b);

Prof. João Fernando Mari (joaof.mari@ufv.br)

٤

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

Máquina de Turing Universal

- Uma máquina de Turing pode simular outras máquinas de Turing adequadamente codificadas:
- Considere a linguagem definida pelos pares (MT, x):
 - MT é uma máquina de Turing codificada em binário e alfabeto de entrada {0, 1}
 - $-x \in \{0, 1\}^*$
 - MT aceita x
- Máquinas que aceitam essas linguagens são denominadas Máquinas de Turing Universais MT_{II}:
 - $ACEITA(MTU) = \{ (MT, x) \mid x \in ACEITA(MT) \}$

Enumeração das palavras {0, 1}*

- Considere a bijeção entre {0, 1}* e N
 - $-\{0, 1\}^* f \to N$
 - ε 1
 - **-** 0 2
 - **-1** 3
 - **00** 4
 - **01** 5
 - **–** 10
 - **–** 11 7
 - **000** 8
 - **–** ...

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

Máquina de Turing Universal

Codificação de Máquinas de Turing

- Podemos codificar qualquer MT com alfabeto {0,1} em palavra de {0,1}*.
 - Para isso, considere a definição alternativa da MT M = (S; Σ; Γ; δ; s₀; •; F):
 - S : Conjunto finito de estados:
 - Σ : Alfabeto de entrada;
 - Γ:ΣU •
 - s₀: Estado inicial;
 - : branco;
 - F: Subconjunto de estados finais;
 - Representamos os estados, símbolos lidos da fita e direção por valores em unário:
 - Estados, q: $q_0 \rightarrow 0$, $q_1 \rightarrow 00$, $q_2 \rightarrow 000$, $q_k \rightarrow 0^k$
 - Símbolos lidos (ou escritos na fita), X: $0 \rightarrow 0$, $1 \rightarrow 00$, $\rightarrow 000$
 - Direção da leitura, D: D1 (esq) \rightarrow 0, D2 (dir) \rightarrow 00.
 - A transição $\delta(q_i, X_j) = (q_k, X_l, D_m)$
 - 0ⁱ10^j10^k10^l10^m
 - Os códigos das transições são separadas por 11:
 - C₁11C₂11C₃11C_n
 - A máquina de Turing é separada da palavra por 111

11

[EX] Codificação de MT

- MT = $(\{s_1, s_2, s_3\}, \{0, 1\}, \{0, 1, \bullet\}, \delta, s_1, \bullet, \{s_2\})$
 - $-\delta(s_1,1)=(s_3,0,d)$
 - $-\delta(s_3,0) = (s_1, 1, d)$
 - $-\delta(s_3,1) = (s_2, 0, d)$
 - $-\delta(s_3,1) = (s_3, 1, d)$

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

Máquina de Turing Universal

Linguagem de diagonalização

- Deve-se construir uma tabela N x N -> {0,1}:
 - Cada célula (i,j) tem valor 1 se MT_i aceita x_i e 0 caso contrário.

$i \setminus j$	1	2	3	4	
1	0	1	1	0	
2	1	1	0	0	
3	0	0	1	1	• • •
4	0	1	0	0 0 1 1	
•		•	•	•	
•		•	•		

- A linguagem de diagonalização LD é constituída pelas palavras x tal que:
 - MT codificada como x não aceita x;
 - L_D é obtida pelo complemento da diagonal da matriz N x N.
 - Como ${\rm L}_{\rm D}$ é diferente em pelo menos uma coluna de todas as linhas da tabela:
 - Não existe MT que aceita L_D .
 - Então L_D não é recursivamente enumerável (não é computável).

BIBLIOGRAFIA AUXILIAR

- O Problema da Parada: Alan Turing, de Leibniz a Gödel Centenário de Alan Turing – Unicamp
 - https://www.youtube.com/watch?v=593mK9I2P6Q
- Teoria da Computação: uma abordagem prática Centenário de Alan Turing
 Unicamp
 - https://www.youtube.com/watch?v=mNlogpMQnG8
- Palestra Especial: A Vida e o Legado de Alan Turing para a Ciência
 - https://www.youtube.com/watch?v=QmXnc2Ljid8

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 21] Máquina de Turing – Computabilidade

SIN 131 – Introdução à Teoria da Computação (PER-3)

[FIM]

- FIM:
 - [AULA 21] Máquina de Turing Computabilidade
- FIM DA DISCIPLINA!