In [351]:

0.1 Final Project Submission

Please fill out:

Student name: Brian Bentson

• Student pace: Full time

Scheduled project review date/time: Monday 3/22 @ 3pm CST

· Instructor name: James Irving

#import relevant modules

· Blog post URL:

0.2 Functions

```
import os, glob
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.style as style
import matplotlib.ticker as tick
plt.style.use('grayscale')
import warnings
import warnings
plant warnings('ignore')
In [352]: pd.set_option('display.max_rows', 100)
```

0.2.1 Function to Explore Table and Column Info

```
In [353]:
              def get_info(table_name, column=None):
                  if column == None:
                       print(f'Table Name: {table_name}')
                       print('\n')
                       print('Table Columns')
                       print(tables[table_name].columns)
                       print('\n')
                       print('Table Info')
                       print(tables[table_name].info())
                       print('\n')
                       print('Table Descriptive Statistics')
                       print(tables[table_name].describe())
                  else:
                       print(f'Table Name: {table name}')
                       print('\n')
                       print('Table Columns')
                       print(tables[table name].columns)
                       print('\n')
                       print('Table Info')
                       print(tables[table_name].info())
                       print('\n')
                       print(f'{column.title()} Descriptive Statistics')
                       print(tables[table name][column].describe())
                       print('\n')
                       print('Table Values')
                       print(tables[table_name][column].value_counts(dropna=False
                       print('\n')
                       print('Unique Values')
                       print(tables[table name][column].unique())
```

0.2.2 Function to Update Tick Labels

Sourced from: https://dfrieds.com/data-visualizations/how-format-large-tick-values.html)

(https://dfrieds.com/data-visualizations/how-format-large-tick-values.html)

```
In [354]:
```

```
def reformat_large_tick_values(tick_val, pos):
    Turns large tick values (in the billions, millions and thousar
    if tick_val >= 10000000000:
        val = round(tick_val/1000000000, 1)
        new_tick_format = '${:}B'.format(val)
    elif tick val >= 1000000:
        val = round(tick_val/1000000, 1)
        new_tick_format = '${:}M'.format(val)
    elif tick_val >= 1000:
        val = round(tick_val/1000, 1)
        new_tick_format = '${:}K'.format(val)
    elif tick val < 1000:</pre>
        new_tick_format = round(tick_val, 1)
    else:
        new_tick_format = tick_val
    # make new_tick_format into a string value
    new_tick_format = str(new_tick_format)
    # code below will keep 4.5M as is but change values such as 4.
    index_of_decimal = new_tick_format.find(".")
    if index of decimal !=-1:
        value_after_decimal = new_tick_format[index_of_decimal+1]
        if value_after_decimal == "0":
            # remove the 0 after the decimal point since it's not
            new tick format = new tick format[0:index of decimal]
    return new tick format
```

1 Business Statement

Based on the success of their peers, Microsoft has decided to create a new movie studio focused on creating original video content. They have no direct movie creation experience and want to leverage historical movie data in order to determine what are leading indicators of a successful movie. This analysis can be used to make data-driven decisions on parameters of a prospective first movie.

2 Analysis Methodology

I will be analyzing historic movie data to find actionable insights for the head of Mircrosoft's new movie studio on how to create a successful introduction to the movie industry.

A movie's success can be judged by many factors centered around financial and social measures. Since it is imperative to start on a good footing when entering a new industry, I have decided to focus my analysis on the financial aspect of measuring success. This will mean that a successful movie will have a high relative return on investment.

3 Data Collection

Since I am choosing to judge movie success on the financial metric of return on investment (ROI), I need to gather the correct data in order to make that calculation. The following data will be gathered:

- Movie-specific meta-data
- Production Cost
- Global Revenue

I have 11 separate files that provide movie meta-data which will be helpful in the analysis. I will import them using panda and determine which files should be utilized in the analysis

3.1 Import Movie Data into Pandas

3.1.1 Import Modules

```
In [355]: #import relevant modules
2 import os, glob
3 import pandas as pd
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import seaborn as sns
```

3.1.2 Preview All Files

```
In [356]:  #function to preview all available files
2  files = glob.glob(f'../dsc-phase-1-project/zippedData/*.[c,t]sv*')
4  tables = {}
5  dashes = '---'*25
```

```
uusiics -
for file in files:
    if 'csv' in file:
        table_name = file.replace('.csv.gz','').split('/')[-1].rep
        tables[table name] = pd.read csv(file)
        print(dashes)
        print(f'Table Name: {table_name}')
        display(tables[table name].head())
        table_name = file.replace('.tsv.gz','').split('/')[-1].rep
        tables[table_name] = pd.read_csv(file, delimiter='\t', end
        print(dashes)
        print(f'Table Name: {table_name}')
        display(tables[table name].head())
rt_reviews = tables['rt_reviews']
rt movie info = tables['rt movie info']
tmdb movies = tables['tmdb movies']
tn_movie_budgets = tables['tn_movie_budgets']
imdb_title_basics = tables['imdb_title_basics']
imdb_title_ratings = tables['imdb_title_ratings']
imdb_name_basics = tables['imdb_name_basics']
imdb_title_principals = tables ['imdb_title_principals']
imdb_title_crew = tables['imdb_title_crew']
imdb title akas = tables['imdb title akas']
bom_movie_gross = tables['bom_movie gross']
```

Table Name: imdb_title_crew

	tconst	directors	writers
0	tt0285252	nm0899854	nm0899854
1	tt0438973	NaN	nm0175726,nm1802864
2	tt0462036	nm1940585	nm1940585
3	tt0835418	nm0151540	nm0310087,nm0841532
4	tt0878654	nm0089502,nm2291498,nm2292011	nm0284943

Table Name: tmdb_movies

Analysis

It looks like the most relevant files to be analyzed are as follows:

- imdb title basics
 - Has tconst for linking to other files
 - Has genres for genre specific analysis
- imdb_title_akas
 - Has is_original_title to help filter duplicate movie titles from imdb_title_basics
- tn_movie_budgets
 - Has production_budget, gross domestic and worldwide revenue
- imdb_title_ratings
 - Has user ratings
- bom_movie_gross
 - Has movie studios

4 Data Cleaning

4.1 Understanding Raw Data

In order to determine if the right information is present and how to join different tables together for my analysis, I first need to understand what each piece of data is and how it can be used. I will do some short data exploration to understand the data better and decide which data processing techniques to use.

4.1.1 Column Meanings for Each Table

imdb_title_crew

• tconst: Unique identifier for each movie (PRIMARY KEY)

directors: Director codewriters: Writer code

tmdb movies

• Unnamed: 0: Can be removed or set as index

• genre_id's: Genre code

• id: Unknown

original_language: movie language

original_title: movie titlepopularity: Unknown

• release date: movie release date

• title: movie title

vote_average: Unknownvote_count: Number of votes

imdb_title_akas

title_id: movie idordering: Unknown

• title: movie title

region: Country of originlanguage: movie language

types: Unknownattributes: Unknownis_original_title: Unknown

imdb_title_ratings

• tconst: Unknown

averagerating: movie ratingnumvotes: Number of votes

imdb_name_basics

nconst: Unique identifier for person (PRIMARY KEY)

primary_name: Namebirth_year: Year borndeath_year: Year died

• primary profession: Job Roles

• known_for_titles: title id's

rt_reviews

• id: Unknown

review: Review comments

· rating: Movie rating

· fresh: fresh or rotten score

critic: Critic Nametop_critic: Unknown

publisher: Publisher Name

• date: Unknown

imdb_title_basics

tconst: Unique identifier for movieprimary_title: Common Movie Name

original_title: Native Movie Name

start_year: Year of release

• runtime_minutes: Movie length in minutes

• genres: movie genre

rt movie info

• id: Unknown

synopsis: Movie synopsisrating: movie parental rating

genre: Movie genre

• director: Movie director

writer: Movie writer

theater_date: Theater release data

dvd_date: DVD release date
currency: Currency type
box_office: Unknown
run_time: Movie length

• studio: Movie Production Studio

tn_movie_budgets

• id: Unknown

release_date: Movie release datemovie: Movie title (PRIMARY KEY)

production_budget: Movie production budget in USD

domestic_gross: Gross revenue domestically

• worldwide_gross: Gross revenue worldwide

bom_movie_gross

• title: Movie title (PRIMARY KEY)

• studio: Movie studio

• domestic_gross: Gross revenue domestically

- foreign_gross: Gross revenue worldwide
- year: Release year (PRIMARY KEY)

imdb_title_principals

- tconst: Unique identifier for movie (PRIMARY KEY)
- ordering: Unknown
- nconst: Unique identifier for person (PRIMARY KEY)
- category: Job role
- job: Unknown
- characters:Character played in movie

4.1.2 Entity Relationship Diagram

4.2 Clean Up Tables for Joins

4.2.1 tn_movie_budgets

```
In [357]:
```

- 1 #number of rows, columns and first 5 rows
- display(tn_movie_budgets.shape,tn_movie_budgets.head())

(5782, 6)

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

4.2.1.1 Remove Columns

In [358]:

- #removing id because it doesn't like up with any other id's in oth
- tn_movie_budgets = tn_movie_budgets.drop('id',axis=1)
- 3 tn_movie_budgets.head()

Out[358]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

4.2.1.2 Convert Values

In [359]:

#converting release_date to datetime object to be able to extract
tn_movie_budgets['release_date'] = pd.to_datetime(tn_movie_budgets
tn_movie_budgets['start_year'] = tn_movie_budgets['release_date'].
tn_movie_budgets.head()

Out[359]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	start_year
0	2009-12-18	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279	2009
1	2011-05-20	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875	2011
2	2019-06-07	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350	2019
3	2015-05-01	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963	2015
4	2017-12-15	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747	2017

In [360]:

#convert financial fields into integers for future calculations
tn_movie_budgets['production_budget'] = tn_movie_budgets['producti
tn_movie_budgets['domestic_gross'] = tn_movie_budgets['domestic_gr
tn_movie_budgets['worldwide_gross'] = tn_movie_budgets['worldwide_
tn_movie_budgets.head()

Out [360]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	start_year
0	2009-12-18	Avatar	425000000	760507625	2776345279	2009
1	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	2011
2	2019-06-07	Dark Phoenix	350000000	42762350	149762350	2019
3	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	2015
4	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	2017

4.2.1.3 Check for Duplicates

In [361]:

#check for any duplicates for the combination of movie and release
#those are going to the be the primary keys for future joins
tn_movie_budgets.loc[tn_movie_budgets.duplicated(subset=['movie','

Out[361]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	start_year
3455	2009-06-05	Home	12000000	0	0	2009
5459	2009-04-23	Home	500000	15433	44793168	2009

1 duplicate found. Both will be removed during innner join with imdb_title_basics because they are prior to 2010.

4.2.1.4 Final Table View

In [362]:

1 tn_movie_budgets

Out[362]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	start_y
0	2009-12-18	Avatar	425000000	760507625	2776345279	2(
1	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	2(
2	2019-06-07	Dark Phoenix	350000000	42762350	149762350	2(
3	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	2(
4	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	2(

4.2.2 imdb_title_basics

In [363]:

- 1 #number of rows, columns and first 5 rows
- display(imdb_title_basics.shape,imdb_title_basics.head())

(146144, 6)

	tconst	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy, Drama, Fantasy

4.2.2.1 Remove Columns

In [364]:

#remove original_title because primary_title looks to be most accu imdb_title_basics = imdb_title_basics.drop('original_title',axis=1 imdb_title_basics.head()

Out [364]:

genres	runtime_minutes	start_year	primary_title	tconst	
Action,Crime,Drama	175.0	2013	Sunghursh	tt0063540	0
Biography,Drama	114.0	2019	One Day Before the Rainy Season	tt0066787	1
Drama	122.0	2018	The Other Side of the Wind	tt0069049	2
Comedy, Drama	NaN	2018	Sabse Bada Sukh	tt0069204	3
Comedy, Drama, Fantasy	80.0	2017	The Wandering Soap Opera	tt0100275	4

4.2.2.2 Check for Duplicates

In [365]:

#check for any duplicates for the combination of primary_title and
imdb_title_basics.loc[imdb_title_basics.duplicated(subset=['primary_title_basics.duplicated)]

Out[365]:

	tconst	primary_title	start_year	runtime_minutes	genres
21	tt0250404	Godfather	2012	NaN	Crime, Drama
117	tt0443465	Before We Go	2014	95.0	Comedy, Drama, Romance
133	tt0452664	Party Crashers	2012	88.0	Comedy
211	tt0490075	Aftermath	2013	84.0	Crime,Thriller
276	tt0800054	The Guardians	2010	88.0	Comedy,Family
145919	tt9886934	The Projectionist	2019	81.0	Documentary
145937	tt9889072	The Promise	2017	NaN	Drama
146068	tt9905256	The Cross	2012	NaN	Thriller
146119	tt9913594	Bacchanalia	2017	72.0	Drama, Mystery, Thriller
146120	tt9913936	Paradise	2019	NaN	Crime, Drama

3942 rows × 5 columns

Because there are almost 4000 duplicates, I will use the imdb_title_akas table to remove duplicates by ensuring imdb_title_basics holds only original titles

4.2.2.3 Final Table View

In [366]:

1 imdb_title_basics

Out[366]:

	tconst	primary_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	2013	175.0	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	2019	114.0	Biography,Drama
2	tt0069049	The Other Side of the Wind	2018	122.0	Drama
3	tt0069204	Sabse Bada Sukh	2018	NaN	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	2017	80.0	Comedy, Drama, Fantasy
146139	tt9916538	Kuambil Lagi Hatiku	2019	123.0	Drama
146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN	Documentary
146141	tt9916706	Dankyavar Danka	2013	NaN	Comedy
146142	tt9916730	6 Gunn	2017	116.0	NaN
146143	tt9916754	Chico Albuquerque - Revelações	2013	NaN	Documentary

146144 rows × 5 columns

4.2.3 imdb_title_akas

```
In [367]:
```

#number of rows, columns and first 5 rows
display(imdb_title_akas.shape,imdb_title_akas.head())

(331703, 8)

	title_id	ordering	title	region	language	types	attributes	is_original_title
0	tt0369610	10	Джурасик свят	BG	bg	NaN	NaN	0.0
1	tt0369610	11	Jurashikku warudo	JP	NaN	imdbDisplay	NaN	0.0
2	tt0369610	12	Jurassic World: O Mundo dos Dinossauros	BR	NaN	imdbDisplay	NaN	0.0
3	tt0369610	13	O Mundo dos Dinossauros	BR	NaN	NaN	short title	0.0
4	tt0369610	14	Jurassic World	FR	NaN	imdbDisplay	NaN	0.0

4.2.3.1 Remove Columns

In [368]:

- 1 #remove unnecessary columns for future joins
- imdb_title_akas = imdb_title_akas.drop(['ordering','language','type']
 imdb_title_akas.head()

Out[368]:

	title_id	title	is_original_title
0	tt0369610	Джурасик свят	0.0
1	tt0369610	Jurashikku warudo	0.0
2	tt0369610	Jurassic World: O Mundo dos Dinossauros	0.0
3	tt0369610	O Mundo dos Dinossauros	0.0
4	tt0369610	Jurassic World	0.0

4.2.3.2 Check for Duplicates

In [369]:

1 #check for duplicates in title id

imdb_title_akas.loc[imdb_title_akas.duplicated(subset=['title_id']

Out[369]:

	title_id	title	is_original_title
0	tt0369610	Джурасик свят	0.0
1	tt0369610	Jurashikku warudo	0.0
2	tt0369610	Jurassic World: O Mundo dos Dinossauros	0.0
3	tt0369610	O Mundo dos Dinossauros	0.0
4	tt0369610	Jurassic World	0.0
331698	tt9827784	Sayonara kuchibiru	1.0
331699	tt9827784	Farewell Song	0.0
331700	tt9880178	La atención	1.0
331701	tt9880178	La atención	0.0
331702	tt9880178	The Attention	0.0

254087 rows × 3 columns

In [370]:

imdb_title_akas.loc[imdb_title_akas['title_id'] == 'tt0369610']

Out[370]:

	title_id	title	is_original_title
0	tt0369610	Джурасик свят	0.0
1	tt0369610	Jurashikku warudo	0.0
2	tt0369610	Jurassic World: O Mundo dos Dinossauros	0.0
3	tt0369610	O Mundo dos Dinossauros	0.0
4	tt0369610	Jurassic World	0.0
5	tt0369610	Jurassic World	0.0
6	tt0369610	Jurassic World	0.0
7	tt0369610	Jurski svijet	0.0
8	tt0369610	Olam ha'Yura	0.0
9	tt0369610	Jurassic World: Mundo Jurásico	0.0
10	tt0369610	Jurassic World: Sauruste maailm	0.0

Many duplicates found. Removing all rows where the is_original_title is 0.0

```
In [371]:
```

```
#only keep rows where is_original_title equal 1
imdb_title_akas = imdb_title_akas.loc[imdb_title_akas['is_original]
imdb_title_akas
```

Out[371]:

	title_id	title	is_original_title
38	tt0369610	Jurassic World	1.0
80	tt0401729	John Carter	1.0
83	tt10010134	Versailles Rediscovered - The Sun King's Vanis	1.0
86	tt10027708	Miguelito - Canto a Borinquen	1.0
90	tt10050722	Thing I Don't Get	1.0
•••			
331690	tt9723084	Anderswo. Allein in Afrika	1.0
331692	tt9726638	Monkey King: The Volcano	1.0
331696	tt9755806	Big Shark	1.0
331698	tt9827784	Sayonara kuchibiru	1.0
331700	tt9880178	La atención	1.0

44700 rows × 3 columns

In [372]:

#recheck for duplicates

imdb_title_akas.loc[imdb_title_akas.duplicated(subset=['title_id']

Out [372]:

	title_id	title	is_original_title
19255	tt1226736	Against the Wind	1.0
19256	tt1226736	Alexander Jamieson	1.0
23989	tt2392386	The Sugar Wars: The Life Story of Angelo Lonardo	1.0
23990	tt2392386	Sugar Wars - The Rise of the Cleveland Mafia	1.0
33369	tt1754830	Being Us	1.0
33372	tt1754830	Us	1.0
37514	tt2445698	Entre Nós	1.0
37517	tt2445698	A Pele do Cordeiro	1.0
42571	tt2219210	Crawl Bitch Crawl	1.0
42574	tt2219210	Crawl or Die	1.0
63392	tt1842446	Rafina	1.0

In [373]:

1 #example check

imdb_title_akas.loc[imdb_title_akas['title_id'] == 'tt2219210']

Out[373]:

	title_id	title	is_original_title
42571	tt2219210	Crawl Bitch Crawl	1.0
42574	tt2219210	Crawl or Die	1.0

Still have a small number of duplicates. Will remove these rows now

In [374]:

#remove duplicates for rows with duplicate title_id
imdb_title_akas.drop_duplicates(subset=['title_id'], inplace=True)
imdb_title_akas

Out[374]:

	title_id	title	is_original_title
38	tt0369610	Jurassic World	1.0
80	tt0401729	John Carter	1.0
83	tt10010134	Versailles Rediscovered - The Sun King's Vanis	1.0
86	tt10027708	Miguelito - Canto a Borinquen	1.0
90	tt10050722	Thing I Don't Get	1.0
331690	tt9723084	Anderswo. Allein in Afrika	1.0
331692	tt9726638	Monkey King: The Volcano	1.0
331696	tt9755806	Big Shark	1.0
331698	tt9827784	Sayonara kuchibiru	1.0
331700	tt9880178	La atención	1.0

44653 rows × 3 columns

In [375]:

- #recheck for duplicates
 imdb_title_akas.loc[imdb_title_akas.duplicated(subset=['title_id']
- Out[375]:

title_id title is_original_title

No more duplicate title_id's

4.2.3.3 Final Table View

In [376]: | 1 | imdb_title_akas

Out[376]:

	title_id	title	is_original_title
38	tt0369610	Jurassic World	1.0
80	tt0401729	John Carter	1.0
83	tt10010134	Versailles Rediscovered - The Sun King's Vanis	1.0
86	tt10027708	Miguelito - Canto a Borinquen	1.0
90	tt10050722	Thing I Don't Get	1.0
331690	tt9723084	Anderswo. Allein in Afrika	1.0
331692	tt9726638	Monkey King: The Volcano	1.0
331696	tt9755806	Big Shark	1.0
331698	tt9827784	Sayonara kuchibiru	1.0
331700	tt9880178	La atención	1.0

44653 rows × 3 columns

4.3 Joining Tables

I will be joining the tables in the following order:

- imdb_title_basics
- imdb_title_akas
- tn_movie_budgets
- imdb_title_ratings
- imdb_title_principals
- imdb_title_crew
- imdb_name_basics (TBD)

4.3.1 Join imdb_title_basics and imdb_title_akas

I am starting with this join because there are many duplicate primary_titles in the imdb_title_basics table. I will use the is_original_title field to filter down the titles before joining to imdb_title_basics. This will ensure that when I join with tn_movie_budgets that I am not applying financials to the wrong movies with identical names.

I will be joining these tables on:

- imdb_title_basics: tconstimdb_title_akas: title_id
- In [377]:
- #review the shape of the dataframes prior to join
 display(imdb_title_basics.shape, imdb_title_akas.shape)

(146144, 5)

(44653, 3)

4.3.1.1 Join the tables

In [378]:

movies_df = imdb_title_basics.merge(imdb_title_akas,how='inner',le
movies_df

Out[378]:

	tconst	primary_title	start_year	runtime_minutes	genres	title
0	tt0063540	Sunghursh	2013	175.0	Action,Crime,Drama	tt0063
1	tt0066787	One Day Before the Rainy Season	2019	114.0	Biography,Drama	tt0066
2	tt0069049	The Other Side of the Wind	2018	122.0	Drama	tt0069
3	tt0069204	Sabse Bada Sukh	2018	NaN	Comedy,Drama	tt0069
4	tt0100275	The Wandering Soap Opera	2017	80.0	Comedy, Drama, Fantasy	tt0100
44648	tt9911774	Padmavyuhathile Abhimanyu	2019	130.0	Drama	tt9911

4.3.1.2 Check for Duplicates

```
In [379]: 1 #check for duplicates in the primary_title field
2 movies_df.loc[movies_df.duplicated(subset=(['tconst']))]
```

Out [379]:

tconst primary_title start_year runtime_minutes genres title_id title is_original_title

4.3.1.3 Remove Duplicates

Out [381]:

tconst primary_title start_year runtime_minutes genres title_id title is_original_title

No more duplicates

4.3.1.4 Final Table View

In [382]:

1 movies_df

Out[382]:

	tconst	primary_title	start_year	runtime_minutes	genres	title_i
0	tt0063540	Sunghursh	2013	175.0	Action,Crime,Drama	tt006354
1	tt0066787	One Day Before the Rainy Season	2019	114.0	Biography,Drama	tt006678
2	tt0069049	The Other Side of the Wind	2018	122.0	Drama	tt006904
3	tt0069204	Sabse Bada Sukh	2018	NaN	Comedy,Drama	tt006920
4	tt0100275	The Wandering Soap Opera	2017	80.0	Comedy, Drama, Fantasy	tt010027
		•••				
44648	tt9911774	Padmavyuhathile Abhimanyu	2019	130.0	Drama	tt991177
44649	tt9913248	Nepal - Homebird	2019	52.0	Documentary	tt991324
44650	tt9914254	A Cherry Tale	2019	85.0	Documentary	tt991425
44651	tt9915436	Vida em Movimento	2019	70.0	Documentary	tt991543
44652	tt9916170	The Rehearsal	2019	51.0	Drama	tt991617

44606 rows × 8 columns

4.3.2 Join movies_df and tn_movie_budgets

I will be joining these tables on:

- movies_df: [primary_title, start_year]
- tn_movie_budgets: [movie, start_year]

In [383]:

#review the shape of the dataframes prior to join
display(movies_df.shape, tn_movie_budgets.shape)

(44606, 8)

(5782, 6)

4.3.2.1 Join The Tables

Out[384]:

	tconst	primary_title	start_year	runtime_minutes	genres	title_i
0	tt0249516	Foodfight!	2012	91.0	Action, Animation, Comedy	tt024951
1	tt0359950	The Secret Life of Walter Mitty	2013	114.0	Adventure,Comedy,Drama	tt035995
2	tt0365907	A Walk Among the Tombstones	2014	114.0	Action,Crime,Drama	tt036590
3	tt0369610	Jurassic World	2015	124.0	Action,Adventure,Sci-Fi	tt036961
4	tt0376136	The Rum Diary	2011	119.0	Comedy,Drama	tt037613
1444	tt8155288	Happy Death	2019	100.0	Drama,Horror,Mystery	tt815528

4.3.2.2 Check for Duplicates

In [385]:

Out[385]:

	tconst	primary_title	start_year	runtime_minutes	genres	titl
156	tt1085492	The Prince	2014	93.0	Action,Thriller	tt108!
157	tt3918106	The Prince	2014	71.0	NaN	tt391≀
158	tt4161288	The Prince	2014	92.0	Drama	tt416 ⁻
220	tt1216492	Leap Year	2010	100.0	Comedy,Romance	tt121(
221	tt1537401	Leap Year	2010	94.0	Drama,Romance	tt153
313	tt1327709	Cyrus	2010	87.0	Crime, Horror, Mystery	tt132
314	tt1336617	Cyrus	2010	91.0	Comedy, Drama, Romance	tt133(
474	tt1554091	A Better Life	2011	98.0	Drama,Romance	tt155 [,]
475	tt2027265	A Better Life	2011	110.0	Drama	tt202

In [386]:

- 1 #example check
- movies_df.loc[movies_df['primary_title'] == 'The Prince']

Out[386]:

_		tconst	primary_title	start_year	runtime_minutes	genres	title_id	title	is_o
_	156	tt1085492	The Prince	2014	93.0	Action,Thriller	tt1085492	The Prince	
	157	tt3918106	The Prince	2014	71.0	NaN	tt3918106	Ksiaze	
	158	tt4161288	The Prince	2014	92.0	Drama	tt4161288	Shah- zadeh	

4.3.2.3 Remove Duplicates

In [387]:

- 1 #remove 39 duplicates
- movies_df.drop_duplicates(subset=['primary_title','start_year'],ir

Out[388]:

tconst primary_title start_year runtime_minutes genres title_id title is_original_title release

No duplicates for primary_title and start_year as well as tconst

4.3.2.4 Final Table View

In [389]: 1 movies_df

Out[389]:

tconst		primary_title	start_year	runtime_minutes	genres	title_id
0	tt0249516	Foodfight!	2012	91.0	Action, Animation, Comedy	tt0249516
1	tt0359950	The Secret Life of Walter Mitty	2013	114.0	Adventure,Comedy,Drama	tt0359950
2	tt0365907	A Walk Among the Tombstones	2014	114.0	Action,Crime,Drama	tt0365907
3	tt0369610	Jurassic World	2015	124.0	Action,Adventure,Sci-Fi	tt0369610
4	tt0376136	The Rum Diary	2011	119.0	Comedy,Drama	tt0376136
1444	tt8155288	Happy Death Day 2U	2019	100.0	Drama,Horror,Mystery	tt8155288
1445	tt8266310	Blinded by the Light	2019	117.0	Biography,Comedy,Drama	tt8266310
1446	tt8364368	Crawl	2019	NaN	Action, Horror, Thriller	tt8364368
1447	tt8632862	Fahrenheit 11/9	2018	128.0	Documentary	tt8632862
1448	tt9024106	Unplanned	2019	106.0	Biography,Drama	tt9024106

1428 rows × 13 columns

4.3.3 Join movies_df and imdb_title_ratings

I will be joining these tables on:

- movies_df: [tconst]
- imdb_title_ratings: [tconst]

```
In [390]:
```

```
#review the shape of the dataframes prior to join
display(movies_df.shape, imdb_title_ratings.shape)
```

(1428, 13)

(73856, 3)

4.3.3.1 Join the Tables

In [391]:

#join tables together
movies_df = movies_df.merge(imdb_title_ratings, how='inner', on='t
movies_df

Out[391]:

tconst		primary_title	start_year	runtime_minutes	genres	title_id
0	tt0249516	Foodfight!	! 2012 91.0 Action,Anima		Action, Animation, Comedy	tt0249516
1	tt0359950	The Secret Life of Walter Mitty	2013	114.0	Adventure,Comedy,Drama	tt0359950
2	tt0365907	A Walk Among the Tombstones	2014	114.0	Action,Crime,Drama	tt0365907
3	tt0369610	Jurassic World	2015	124.0	Action,Adventure,Sci-Fi	tt0369610
4	tt0376136	The Rum Diary	2011	119.0	Comedy,Drama	tt0376136
1413	tt8043306	Teefa in Trouble	2018	155.0	Action,Comedy,Crime	tt8043306
1414	tt8155288	Happy Death Day 2U	2019	100.0	Drama,Horror,Mystery	tt8155288
1415	tt8266310	Blinded by the Light	2019	117.0	Biography,Comedy,Drama	tt8266310
1416	tt8632862	Fahrenheit 11/9	2018	128.0	Documentary	tt8632862
1417	tt9024106	Unplanned	2019	106.0	Biography,Drama	tt9024106

1418 rows × 15 columns

4.3.3.2 Final Table View

In [392]:

l movies_df

Out[392]:

	tconst	primary_title	start_year	runtime_minutes	genres	title_id
0	tt0249516	Foodfight!	2012	91.0	Action, Animation, Comedy	tt0249516
1	tt0359950	The Secret Life of Walter Mitty	2013	114.0	Adventure,Comedy,Drama	tt0359950
2	tt0365907	A Walk Among the Tombstones	2014	114.0	Action,Crime,Drama	tt0365907
3	tt0369610	Jurassic World	2015	124.0	Action,Adventure,Sci-Fi	tt0369610
4	tt0376136	The Rum Diary	2011	119.0	Comedy,Drama	tt0376136
1413	tt8043306	Teefa in Trouble	2018	155.0	Action,Comedy,Crime	tt8043306
1414	tt8155288	Happy Death Day 2U	2019	100.0	Drama,Horror,Mystery	tt8155288
1415	tt8266310	Blinded by the Light	2019	117.0	Biography,Comedy,Drama	tt8266310
1416	tt8632862	Fahrenheit 11/9	2018	128.0	Documentary	tt8632862
1417	tt9024106	Unplanned	2019	106.0	Biography,Drama	tt9024106

1418 rows × 15 columns

4.3.4 Join movies_df and bom_movies_gross

I will be joining these tables on:

- movies_df: [movie,start_year]
- bom_movies_gross: [title,year]

In [393]:

#join tables
movies_df = movies_df.merge(bom_movie_gross, how='inner', left_on=
movies_df

Out[393]:

	tconst	primary_title	start_year	runtime_minutes	genres	title_id
0	tt0359950	The Secret Life of Walter Mitty	2013	114.0	Adventure,Comedy,Drama	tt0359950
1	tt0365907	A Walk Among the Tombstones	2014	114.0	Action,Crime,Drama	tt0365907
2	tt0369610	Jurassic World	2015	124.0	Action,Adventure,Sci-Fi	tt0369610
3	tt0376136	The Rum Diary	2011	119.0	Comedy,Drama	tt0376136
4	tt0383010	The Three Stooges	2012	92.0	Comedy,Family	tt0383010
1018	tt7388562	Paul, Apostle of Christ	2018	108.0	Adventure,Biography,Drama	tt7388562
1019	tt7401588	Instant Family	2018	118.0	Comedy,Drama	tt7401588
1020	tt7535780	The Great Wall	2017	72.0	Documentary	tt7535780
1021	tt7784604	Hereditary	2018	127.0	Drama,Horror,Mystery	tt7784604
1022	tt7959026	The Mule	2018	116.0	Crime,Drama,Thriller	tt7959026

1023 rows × 20 columns

4.3.5 Join movies_df and imdb_title_principals (not proceeding yet)

I will be joining these tables on:

- movies_df: [tconst]
- imdb_title_principals: [tconst]

Question: How do I deal with the expansion of rows when trying to bring in directors and writers?

4.4 Post-Join Clean-Up of movies_df

It is now time to clean up the joined dataset in order to minimize noise in the data. This will include looking for:

- · deleting columns
- · deleting rows
- duplicates
- nulls
- changing data types

In [395]:

1 movies_df

Out [395]:

	tconst	primary_title	start_year	runtime_minutes	genres	title_id
0	tt0359950	The Secret Life of Walter Mitty	2013	114.0	Adventure,Comedy,Drama	tt0359950
1	tt0365907	A Walk Among the Tombstones	2014	114.0	Action,Crime,Drama	tt0365907
2	tt0369610	Jurassic World	2015	124.0	Action,Adventure,Sci-Fi	tt0369610
3	tt0376136	The Rum Diary	2011	119.0	Comedy,Drama	tt0376136
4	tt0383010	The Three Stooges	2012	92.0	Comedy,Family	tt0383010
1018	tt7388562	Paul, Apostle of Christ	2018	108.0	Adventure,Biography,Drama	tt7388562
1019	tt7401588	Instant Family	2018	118.0	Comedy,Drama	tt7401588
1020	tt7535780	The Great Wall	2017	72.0	Documentary	tt7535780
1021	tt7784604	Hereditary	2018	127.0	Drama, Horror, Mystery	tt7784604
1022	tt7959026	The Mule	2018	116.0	Crime,Drama,Thriller	tt7959026

1023 rows × 20 columns

4.4.1 Deleting Rows

I want to look at the statistics around production budget to ensure that the dataset is not dominated by movies from indie studios. In order to determine which studios are considered the "top studios", I will join the tn_movie_budgets and bom_movie_gross tables and find the studios which have had at least one film in the top 50% of production budget.

I will be joining these tables on:

- tn_movie_budgets: [movie,start_year]
- bom_movie_gross: [title,year]

In [396]:

Out [396]:

	release_date	movie	production_budget	domestic_gross_x	worldwide_gross	start_ye
0	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	20
1	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	20
2	2018-04-27	Avengers: Infinity War	300000000	678815482	2048134200	20
3	2017-11-17	Justice League	300000000	229024295	655945209	20
4	2015-11-06	Spectre	300000000	200074175	879620923	20
1210	2012-04-27	Sound of My Voice	135000	408015	429448	20
1211	2012-06-15	Your Sister's Sister	120000	1597486	3090593	20
1212	2015-07-10	The Gallows	100000	22764410	41656474	20
1213	2017-07-07	A Ghost Story	100000	1594798	2769782	20
1214	2010-11-12	Tiny Furniture	50000	391674	424149	20

1215 rows × 11 columns

```
In [398]:
               #number and names of unique top studios
               print(len(top_studio_list))
               list(top_studio_list)
           40
Out[398]: ['MNE',
            'Sony',
            'STX',
            'SPC',
            'Annapurna',
            'WB',
            'Magn.',
            'CBS',
            'MGM',
            'BG',
            'EOne',
            'Focus',
            'TriS',
            'RAtt.'
            'Fox',
            'Gold.',
            'SGem',
            'BST',
            'Uni.',
            'WB (NL)',
            'GrtIndia',
            'Free',
            'Wein.',
            'Studio 8',
            'RTWC',
            'Par.',
            'BV',
            'LG/S',
            'Sum.',
            'NM',
            'P/DW',
            'W/Dim.',
            'BSC',
            'Rela.',
            'FoxS',
            'ENTMP',
            'LGF',
            'FD',
            'VE'
            'ORF'1
```

In [399]:

#filter movies_df to include only movies from top_studios_list
movies_df = movies_df.loc[movies_df['studio'].isin(top_studio_list
movies_df

Out[399]:

	tconst	primary_title	start_year	runtime_minutes	genres	title_
0	tt0359950	The Secret Life of Walter Mitty	2013	114.0	Adventure,Comedy,Drama	tt03599{
1	tt0365907	A Walk Among the Tombstones	2014	114.0	Action,Crime,Drama	tt036590
2	tt0369610	Jurassic World	2015	124.0	Action, Adventure, Sci-Fi	tt03696 ⁻
3	tt0376136	The Rum Diary	2011	119.0	Comedy, Drama	tt037610
4	tt0383010	The Three Stooges	2012	92.0	Comedy,Family	tt03830 ⁻
1016	tt7334528	Uncle Drew	2018	103.0	Comedy,Sport	tt733452
1017	tt7349662	BlacKkKlansman	2018	135.0	Biography,Crime,Drama	tt734966
1019	tt7401588	Instant Family	2018	118.0	Comedy, Drama	tt740158
1020	tt7535780	The Great Wall	2017	72.0	Documentary	tt75357{
1022	tt7959026	The Mule	2018	116.0	Crime, Drama, Thriller	tt795902

945 rows × 20 columns

4.4.2 Deleting Columns

Out [400]:

	tconst	start_year	runtime_minutes	genres	release_date	n
0	tt0359950	2013	114.0	Adventure,Comedy,Drama	2013-12-25	The Secre of Walter
1	tt0365907	2014	114.0	Action,Crime,Drama	2014-09-19	A Walk A
2	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	2015-06-12	Jurassic \
3	tt0376136	2011	119.0	Comedy, Drama	2011-10-28	The Rum
4	tt0383010	2012	92.0	Comedy,Family	2012-04-13	The Stc
1016	tt7334528	2018	103.0	Comedy,Sport	2018-06-29	Uncle
1017	tt7349662	2018	135.0	Biography, Crime, Drama	2018-08-10	BlacKkKlan
1019	tt7401588	2018	118.0	Comedy, Drama	2018-11-16	Instant F
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Grea
1022	tt7959026	2018	116.0	Crime,Drama,Thriller	2018-12-14	The

945 rows × 13 columns

QUESTION:Do higher ratings correlate with more revenue?

ANSWER: there is a weak positive correlation between average rating and domestic_gross

4.4.3 Fixing Duplicates

Out[402]: 0

4.4.4 Fixing Nulls

```
In [403]:
               #checking the number of null values in each column
               movies_df.isna().sum()
Out[403]: tconst
                                 0
           start_year
                                 0
           runtime_minutes
                                 0
           genres
                                 0
           release_date
                                 0
           movie
                                 0
           production_budget
                                 0
           domestic gross
                                 0
           worldwide_gross
                                 0
           averagerating
                                 0
           numvotes
           studio
                                 0
           year
                                 0
           dtype: int64
In [404]:
               #checking for zeros
               movies_df.loc[(movies_df['domestic_gross'] == 0) & (movies_df['wor
Out[404]: tconst
                                 0
                                 0
           start_year
                                 0
           runtime_minutes
           genres
                                 0
           release_date
                                 0
           movie
                                 0
           production_budget
                                 0
           domestic_gross
                                 0
           worldwide gross
                                 0
                                 0
           averagerating
           numvotes
                                 0
           studio
                                 0
           year
                                 0
           dtype: int64
```

4.4.5 Changing Data Types

```
In [405]:
```

```
#checking the current data types of all columns
display(movies_df.info(),movies_df.head(2))
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 945 entries, 0 to 1022 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	tconst	945 non-null	object
1	start_year	945 non-null	int64
2	runtime_minutes	945 non-null	float64
3	genres	945 non-null	object
4	release_date	945 non-null	datetime64[ns]
5	movie	945 non-null	object
6	production_budget	945 non-null	int64
7	domestic_gross	945 non-null	int64
8	worldwide_gross	945 non-null	int64
9	averagerating	945 non-null	float64
10	numvotes	945 non-null	int64
11	studio	945 non-null	object
12	year	945 non-null	int64
dtyp	es: datetime64[ns](1), float64(2),	<pre>int64(6), object(4)</pre>

memory usage: 103.4+ KB

None

ŗ	movie	release_date	genres	runtime_minutes	start_year	tconst	
	The Secret Life of Walter Mitty	2013-12-25	Adventure,Comedy,Drama	114.0	2013	tt0359950	0
	A Walk Among the Tombstones	2014-09-19	Action,Crime,Drama	114.0	2014	tt0365907	1

Data types are reasonable for the values

4.4.6 Adding Release Month

Adding a column for the release month will allow me to see which months are most common to release a movie

```
movies_df['release_month'] = movies_df['release_date'].dt.month
In [406]:
```

4.4.7 Final Table View

In [407]: 1 movies_df

Out[407]:

	tconst	start_year	runtime_minutes	genres	release_date	n
0	tt0359950	2013	114.0	Adventure,Comedy,Drama	2013-12-25	The Secre of Walter
1	tt0365907	2014	114.0	Action,Crime,Drama	2014-09-19	A Walk Althe Tombs
2	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	2015-06-12	Jurassic \
3	tt0376136	2011	119.0	Comedy, Drama	2011-10-28	The Rum
4	tt0383010	2012	92.0	Comedy,Family	2012-04-13	The Stc
1016	tt7334528	2018	103.0	Comedy,Sport	2018-06-29	Uncle
1017	tt7349662	2018	135.0	Biography,Crime,Drama	2018-08-10	BlacKkKlan
1019	tt7401588	2018	118.0	Comedy, Drama	2018-11-16	Instant F
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Grea
1022	tt7959026	2018	116.0	Crime,Drama,Thriller	2018-12-14	The

945 rows × 14 columns

4.5 Calculations

4.5.1 Calculating Return on Investment

Return on Investment is the quantitative metric I am using to determine which movies are historically successful. This metric takes into account how much was invested to make the film and how much more revenue was received versus that cost. Also, return on investment does not need to be inflation adjusted.

Return on Investment takes the amount of profit (worldwide_gross - production_budget) and divides it by the initial investment cost (production_budget). This metric will give a sense of which movies were successful relative to how much they spent instead of making it an absolute metric on total profit. Later I will analyze if you can spending more is effective in profiting more.

To calculate Return on Investment, I will use the following equation: (worldwide_gross - production_budget) / (production_budget) Why am i using worldwide_gross vs domestic_gross?

Out[409]:

pro	movie	release_date	genres	runtime_minutes	start_year	tconst	
	The Gallows	2015-07-10	Horror, Mystery, Thriller	81.0	2015	tt2309260	694
	The Devil Inside	2012-01-06	Horror	83.0	2012	tt1560985	384
	Paranormal Activity 2	2010-10-20	Horror	91.0	2010	tt1536044	372
	Get Out	2017-02-24	Horror, Mystery, Thriller	104.0	2017	tt5052448	960
	Chernobyl Diaries	2012-05-25	Horror, Mystery, Thriller	86.0	2012	tt1991245	605

4.5.2 Calculating Worldwide Profit

I want to have visibility on how profitability varies with movie variables. I will focus on worldwide profit as I believe Microsoft should release globally based on potential for more revenue.

Out[410]:

	tconst	start_year	runtime_minutes	genres	release_date	n
0	tt0359950	2013	114.0	Adventure,Comedy,Drama	2013-12-25	The Secre of Walter
1	tt0365907	2014	114.0	Action,Crime,Drama	2014-09-19	A Walk Althe Tombs
2	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	2015-06-12	Jurassic \
3	tt0376136	2011	119.0	Comedy, Drama	2011-10-28	The Rum
4	tt0383010	2012	92.0	Comedy,Family	2012-04-13	The Stc
1016	tt7334528	2018	103.0	Comedy,Sport	2018-06-29	Uncle
1017	tt7349662	2018	135.0	Biography,Crime,Drama	2018-08-10	BlacKkKlan
1019	tt7401588	2018	118.0	Comedy, Drama	2018-11-16	Instant F
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Grea
1022	tt7959026	2018	116.0	Crime,Drama,Thriller	2018-12-14	The

945 rows × 16 columns

5 EDA and Visualization

I am going to explore the data and create specific visualizations based on questions I'd like to ask.

```
In [411]:
```

#current state of the dataframe
movies_df

Out [411]:

	tconst	start_year	runtime_minutes	genres	release_date	n
0	tt0359950	2013	114.0	Adventure,Comedy,Drama	2013-12-25	The Secre of Walter
1	tt0365907	2014	114.0	Action,Crime,Drama	2014-09-19	A Walk A
2	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	2015-06-12	Jurassic \
3	tt0376136	2011	119.0	Comedy, Drama	2011-10-28	The Rum
4	tt0383010	2012	92.0	Comedy,Family	2012-04-13	The Stc
1016	tt7334528	2018	103.0	Comedy,Sport	2018-06-29	Uncle
1017	tt7349662	2018	135.0	Biography, Crime, Drama	2018-08-10	BlacKkKlan
1019	tt7401588	2018	118.0	Comedy, Drama	2018-11-16	Instant F
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Grea
1022	tt7959026	2018	116.0	Crime,Drama,Thriller	2018-12-14	The

945 rows × 16 columns

5.1 Q1: How has the movie industry grown over time?

I want to understand the overall landscape of the movie industry and how it has done both domestically and worldwide.

```
In [412]:
```

In [413]:

#view the dataframe
financials_by_year

Out[413]:

	start_year	domestic_gross	worldwide_gross	production_budget
0	2010	6.297399e+07	1.427252e+08	5.058240e+07
1	2011	5.758976e+07	1.424199e+08	5.057118e+07
2	2012	7.092585e+07	1.787259e+08	5.560105e+07
3	2013	7.932322e+07	1.974203e+08	6.211574e+07
4	2014	7.659738e+07	1.953114e+08	5.378010e+07
5	2015	7.292466e+07	1.846366e+08	5.317925e+07
6	2016	8.035124e+07	1.947212e+08	5.710727e+07
7	2017	8.869387e+07	2.515364e+08	6.849872e+07
8	2018	9.691103e+07	2.442186e+08	6.007000e+07

In [414]:

```
#create line graph of financials over time
fig, ax = plt.subplots(figsize=(15,10))
x = financials_by_year['start_year']
y1 = financials_by_year['domestic_gross']
y2 = financials_by_year['worldwide_gross']
y3 = financials_by_year['production_budget']
ax.plot(x,y1, label='Domestic Gross')
ax.plot(x,y2, label='Worldwide Gross', color='red')
ax.plot(x,y3, label='Production Budget', color='black')
ax.text(2014.4,59000000,'Production Budget', fontsize='large')
ax.text(2014.5,80000000, 'Domestic Gross', fontsize='large')
ax.text(2014.2,200000000, 'Worldwide Gross', color='red', fontsize=
ax.set_title('Movie Financials Per Year', fontsize='xx-large')
ax.set_xlabel('Release Year', fontsize='xx-large')
ax.set_ylabel('Mean Revenue or Production Budget', fontsize='xx-la
ax.yaxis.set major formatter(tick.FuncFormatter(reformat large tid
ax.grid(axis='y')
ax.tick_params(axis='both', which='major', labelsize=20)
```


Analysis

The graph shows that worldwide gross revenue has increased at a faster rate than domestic in the past 10 years. This informs us that a worldwide release is preferred over domestic only.

5.1.1 Calculate percentage increase in worldwide revenue in last 10 years

Out[415]: 71.11104004494872

Analysis

There has been a 71% increase in worldwide gross revenue from 2010-2018

5.1.2 Calculate percentage of movies that do not make their money back

Out[416]: 14.920634920634921

Analysis

15% of movies do not make their money back

5.2 Q2: Which genres produced the best ROI?

I want understand which genres produce the best ROI historically. I will use median because of the presence of outliers which I believe should be kept in the dataset because they are accurate.

Adding Genre Columns

Splitting the genres into columns will allow for the analysis of financial information by genre to see which genres are most successful.

Out[417]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	productio
0	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Comedy	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Drama	2013-12-25	The Secret Life of Walter Mitty	
1	tt0365907	2014	114.0	Action	2014-09-19	A Walk Among the Tombstones	
1	tt0365907	2014	114.0	Crime	2014-09-19	A Walk Among the Tombstones	
				•••			
1019	tt7401588	2018	118.0	Drama	2018-11-16	Instant Family	
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Great Wall	1
1022	tt7959026	2018	116.0	Crime	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Drama	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	

2497 rows × 16 columns

```
In [418]:
               #create the necessary series of median roi by genre
               roi by genres = movies df genres.groupby('genres').median()['roi']
                roi_by_genres
Out[418]: genres
           Western
                          -0.054538
                            0.646412
           Musical
           Sport
                            0.822305
           Family
                           1.106108
                            1.218164
           Crime
           Fantasy
                            1.234364
           War
                            1.240222
           Drama
                            1.306136
           Biography
                           1.318634
                           1.431779
           History
           Action
                           1.443181
           Comedy
                           1.711576
           Romance
                           1.748406
           Adventure
                           1.779868
           Music
                            1.955618
           Sci-Fi
                            2.231891
           Thriller
                           2.278181
           Animation
                           2.292976
           Documentary
                           2.312333
           Mystery
                           3.508959
           Horror
                           4.163727
           Name: roi, dtype: float64
In [419]:
               #ordering roi by genre from most to least
               genre roi order = movies df genres.groupby('genres').median()['roi
               genre_roi_order_list = list(genre_roi_order)
               genre roi order list.reverse()
In [420]:
               #create a barplot of median roi per genre
               fig, ax = plt.subplots(figsize=(10,15))
               y = genre_roi_order list
               width = roi_by_genres
               ax.barh(y=y,width=width, color=['black','black','black','black','black','black','black','black','black','black','black','black','black','black','red'])
               ax.set_title('Median ROI by Genre',fontsize='xx-large')
               ax.set_xlabel('ROI', fontsize='xx-large')
               ax.set_ylabel('Genres', fontsize='xx-large')
               ax.tick_params(axis='both', which='major', labelsize=20)
               ax.grid(axis='x')
```


Analysis

The graph shows that Horror has twice the ROI over the median of other genres. This is mostly due to their low cost per film. I recommend that Microsoft start off safe and pick a primary genre of Horror and secondary genres of Mystery and Thriller to create a storyline.

5.2.1 Median Cost per Film Horror/Thriller/Mystery vs **Others**

I want to see what the median production cost is for a horror/mystery/thriller film vs other genres

```
In [421]:
              #find the median cost per horror/thriller/mystery film
              horror_production_cost = movies_df_genres.loc[movies_df_genres['ge
              horror_production_cost.groupby('movie').median()['production_budge
```

Out[421]: 27250000.0

The median production cost of a Horror/Thriller/Mystery movie is \$27,250,000

```
In [422]:
              #find the median cost for all other types of genres
              other production cost = movies df genres.loc[~movies df genres['ge
              other production cost.groupby('movie').median()['production budget
Out[422]: 35000000.0
In [423]:
              horror_production_cost['genres'].value_counts()
Out[423]: Thriller
                      163
                       89
          Horror
```

Mystery Name: genres, dtype: int64

76

The median production cost of a non-Horror/Thriller/Mystery movie is \$35,000,000

Analysis

Horror/Thriller/Mystery movies are about 28% cheaper to produce

5.2.2 What if Microsoft wants to invest in the top 90% of production spend? What Genre?

In [424]:

movies_df

Out [424]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	proc
0	tt0359950	2013	114.0	[Adventure, Comedy, Drama]	2013-12-25	The Secret Life of Walter Mitty	
1	tt0365907	2014	114.0	[Action, Crime, Drama]	2014-09-19	A Walk Among the Tombstones	
2	tt0369610	2015	124.0	[Action, Adventure, Sci-Fi]	2015-06-12	Jurassic World	
3	tt0376136	2011	119.0	[Comedy, Drama]	2011-10-28	The Rum Diary	
4	tt0383010	2012	92.0	[Comedy, Family]	2012-04-13	The Three Stooges	
1016	tt7334528	2018	103.0	[Comedy, Sport]	2018-06-29	Uncle Drew	
1017	tt7349662	2018	135.0	[Biography, Crime, Drama]	2018-08-10	BlacKkKlansman	
1019	tt7401588	2018	118.0	[Comedy, Drama]	2018-11-16	Instant Family	
1020	tt7535780	2017	72.0	[Documentary]	2017-02-17	The Great Wall	
1022	tt7959026	2018	116.0	[Crime, Drama, Thriller]	2018-12-14	The Mule	

945 rows × 16 columns

```
In [425]: | 1 | #look at the spend at the 90% percentile
```

2 movies_df_genres.groupby('movie').mean()['production_budget'].quar

Out[425]: 150000000.0

Top 90% of spend is \$150,000,000

```
#determine number of movies that fit production budget criteria by
In [427]:
              top_spend.groupby('genres').count()['movie']
Out[427]: genres
          Action
                          76
                          93
          Adventure
          Animation
                          20
                          19
          Comedy
          Crime
                           2
                           1
          Documentary
          Drama
                          14
          Family
                          11
          Fantasy
                          23
          History
                           2
          Horror
                           4
                           1
          Mystery
          Sci-Fi
                          36
          Thriller
                           6
          Western
          Name: movie, dtype: int64
In [428]:
               #going to eleminate any genres where the count is < 10
              top_spend = top_spend.loc[~top_spend['genres'].isin(['Crime','Docu
                                                                'History','Horror',
                                                                'Thriller', 'Westerr
              top_spend['genres'].value_counts()
Out[428]: Adventure
                        93
          Action
                        76
          Sci-Fi
                        36
          Fantasy
                        23
          Animation
                        20
                        19
          Comedy
          Drama
                        14
          Family
                        11
          Name: genres, dtype: int64
```

Comedy

```
In [429]:
              #create median profit dataframe
              profit_top_spend = top_spend.groupby('genres').median()['ww_profit
              profit_top_spend
Out[429]: genres
          Drama
                        93408207.0
          Family
                        106928112.0
          Fantasy
                        376072059.0
                       447077953.5
          Action
          Adventure
                        452220086.0
          Sci-Fi
                        470071588.0
          Animation
                        501177456.0
```

Name: ww_profit, dtype: float64

543588329.0

Analysis

The chart shows that Comedy and Animation movies return the best profit in movies which spend over \$150M

```
In [431]:
              #create roi series for graphing
              roi_top_spend = top_spend.groupby('genres').median()['roi'].sort_v
               roi_top_spend
Out[431]: genres
          Drama
                        0.468726
          Family
                        0.628989
          Fantasy
                        1.995511
                        2.261100
          Adventure
                        2,276625
          Action
          Sci-Fi
                        2.599421
          Animation
                        3.101203
                        3.250116
          Comedy
          Name: roi, dtype: float64
```

```
black', 'red', 'red'])
ax.set_title('Median ROI by Genre', fontsize='xx-large')
ax.set_xlabel('ROI', fontsize='xx-large')
ax.set_ylabel('Genres', fontsize='xx-large')
ax.tick_params(axis='both', which='major', labelsize=20)
ax.grid(axis='x')
ax.xaxis.set_major_formatter(tick.FuncFormatter(reformat_large_tick))
```


ROI

Analysis

The chart shows that Comedy and Animation movies return the best ROI in movies which spend over \$150M

Out[433]: 501177456.0

The median profit for a comedy or animated movie is 501M dollars when spending over 150M dollars

Out[434]: 172500000.0

The median production cost for a comedy or animated movie is 172.5M dollars when spending over 150M dollars

Out[435]: 55989590.0

The median profit for a horror movie is 56M dollars

Out[436]: 10000000.0

The median production cost for a horror movie is 10M dollars

In [437]:

movies_df

Out [437]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	pro
0	tt0359950	2013	114.0	[Adventure, Comedy, Drama]	2013-12-25	The Secret Life of Walter Mitty	
1	tt0365907	2014	114.0	[Action, Crime, Drama]	2014-09-19	A Walk Among the Tombstones	
2	tt0369610	2015	124.0	[Action, Adventure, Sci-Fi]	2015-06-12	Jurassic World	
3	tt0376136	2011	119.0	[Comedy, Drama]	2011-10-28	The Rum Diary	
4	tt0383010	2012	92.0	[Comedy, Family]	2012-04-13	The Three Stooges	
1016	tt7334528	2018	103.0	[Comedy, Sport]	2018-06-29	Uncle Drew	
1017	tt7349662	2018	135.0	[Biography, Crime, Drama]	2018-08-10	BlacKkKlansman	
1019	tt7401588	2018	118.0	[Comedy, Drama]	2018-11-16	Instant Family	
1020	tt7535780	2017	72.0	[Documentary]	2017-02-17	The Great Wall	
1022	tt7959026	2018	116.0	[Crime, Drama, Thriller]	2018-12-14	The Mule	

945 rows × 16 columns

The median production budget for a comedy or animated movie is 172.5M dollars when spending over 150M dollars

5.3 Q3: Which genres have the highest chance of success?

I will define success of a movie where the roi is greater than or equal to 2 which is that the film has returned 2 times more profit than the initial cost.

Out[438]:

	genres	roi	Success
0	Adventure	1.064409	False
0	Comedy	1.064409	False
0	Drama	1.064409	False
1	Action	1.218164	False
1	Crime	1.218164	False
1019	Drama	1.494504	False
1020	Documentary	1.229912	False
1022	Crime	2.417154	True
1022	Drama	2.417154	True
1022	Thriller	2.417154	True

2497 rows × 3 columns

```
In [439]:
```

#create success dataframe and calculating percentage success for
movies_df_5_3.loc[movies_df_5_2['Success'] == True]

Out [439]:

	genres	roi	Success
2	Action	6.669092	True
2	Adventure	6.669092	True
2	Sci-Fi	6.669092	True
9	Horror	4.923219	True
9	Mystery	4.923219	True
1017	Crime	5.201156	True
1017	Drama	5.201156	True
1022	Crime	2.417154	True
1022	Drama	2.417154	True
1022	Thriller	2.417154	True

1088 rows × 3 columns

In [440]:

```
#calculate percentage successful for Horror, Thriller and Mystery
table_5_3 = pd.DataFrame(movies_df_5_3.groupby(by='genres').sum()|
table_5_3 = table_5_3.sort_values('Success').reset_index()
table_5_3.loc[table_5_3['genres'].isin(['Horror','Thriller','Myste')
#used both 0 and 2 as roi thresholds in cell above to get numbers
```

Out[440]: 60.59648760005757

Analysis

Horror/Thriller/Mystery has a 61% chance of getting a ROI above 2

In [441]:

```
#calculating percentage successful for all other genres
table_5_3 = pd.DataFrame(movies_df_5_3.groupby(by='genres').sum()[
table_5_3 = table_5_3.sort_values('Success').reset_index()
table_5_3.loc[~table_5_3['genres'].isin(['Horror','Thriller','Myst #used both 0 and 2 as roi thresholds in cell above to get numbers
```

Out[441]: 40.74711937639691

Analysis

All other genres have a 41% chance of getting a ROI above 2

In [442]:

```
#create a barplot of percentage success per genre
fig, ax = plt.subplots(figsize=(10,15))
y = table_5_3['genres']
width = table_5_3['Success']

ax.barh(y=y,width=width, color=['black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','black','
```


Analysis

Horror movies have a 61% chance of having a ROI of greater than or equal to 2. This is the highest chance of any genre with Mystery and Thriller being extremely high as well.

5.4 Q4: Which month should a Horror movie be released?

I want to know what months are successful Horror movies released

In [443]:

#look at dataframe
movies_df_genres

Out[443]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	productio
0	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Comedy	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Drama	2013-12-25	The Secret Life of Walter Mitty	
1	tt0365907	2014	114.0	Action	2014-09-19	A Walk Among the Tombstones	
1	tt0365907	2014	114.0	Crime	2014-09-19	A Walk Among the Tombstones	
1019	tt7401588	2018	118.0	Drama	2018-11-16	Instant Family	
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Great Wall	1
1022	tt7959026	2018	116.0	Crime	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Drama	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	

2497 rows × 16 columns

In [444]:

#add success column
movies_df_genres['Success'] = np.where(movies_df_5_3['roi'] >= 2,
movies_df_genres

Out[444]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	productio
0	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Comedy	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Drama	2013-12-25	The Secret Life of Walter Mitty	
1	tt0365907	2014	114.0	Action	2014-09-19	A Walk Among the Tombstones	
1	tt0365907	2014	114.0	Crime	2014-09-19	A Walk Among the Tombstones	
1019	tt7401588	2018	118.0	Drama	2018-11-16	Instant Family	
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Great Wall	1
1022	tt7959026	2018	116.0	Crime	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Drama	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	

2497 rows × 17 columns

In [445]:

Out [445]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	production_b
9	tt0431021	2012	92.0	Horror	2012-08-31	The Possession	140
20	tt0464154	2010	88.0	Horror	2010-08-20	Piranha 3D	240
38	tt0498381	2017	102.0	Horror	2017-02-03	Rings	250
154	tt1179933	2016	103.0	Horror	2016-03-11	10 Cloverfield Lane	50
166	tt1204977	2014	89.0	Horror	2014-10-24	Ouija	50
183	tt1220634	2010	96.0	Horror	2010-09-10	Resident Evil: Afterlife	575
235	tt1314655	2010	80.0	Horror	2010-09-17	Devil	100
000	#1200044	2010	07 n	Цаггаг	0010 00 07	The Last	10

In [446]:

Out [446]:

	release_month	movie_count	roi_median
0	Jan	8	10.611761
1	Feb	6	6.793661
2	Mar	4	6.929399
3	Apr	2	22.428512
4	May	1	41.411721
5	Jun	2	18.778922
6	Jul	6	13.146386
7	Aug	7	4.410423
8	Sep	10	3.522098
9	Oct	10	25.782825
10	Nov	1	6.130898
11	Dec	1	3.119226

In [447]:

```
#create a barplot showing count of movie releases by month for Hor
fig, ax = plt.subplots(figsize=(30,10))
x=graph_release_month['release_month']
y=graph_release_month['movie_count']

ax.bar(x=x, height=y, color=['black', 'black', 'black', 'black', 'black', 'black', 'black', 'red', 'red', 'black'
black', 'black', 'red', 'red', 'black'
ax.set_title('Horror Movie Releases by Month', fontsize='xx-large')
ax.set_xlabel('Months', fontsize='xx-large')
ax.set_ylabel('Count of Movie Releases', fontsize='xx-large')
ax.tick_params(axis='both', which='major', labelsize=40)
ax.grid(axis='y')
```


Analysis

This graph shows that the most frequent month that a horror movie gets releases is in September and October.

In [448]:

Analysis

This graph shows that the highest median ROI for a horror movie is in October. I believe releasing a movie in October would be ideal.

5.4.1 What Does Release Count and ROI Look Like For All Genres?

I want to see what the distribution of movie release count and roi are for each release month for all movies

In [449]:

Out [449]:

	release_month	movie_count	roi_median
0	Jan	53	1.383301
1	Feb	60	2.198686
2	Mar	76	1.335502
3	Apr	55	1.622187
4	May	65	1.771521
5	Jun	80	1.799111
6	Jul	90	2.232599
7	Aug	81	1.287002
8	Sep	92	1.482396
9	Oct	91	1.447092
10	Nov	105	1.932070
11	Dec	97	1.678453

In [450]:

```
#create a barplot showing count of movie releases by month for all
fig, ax = plt.subplots(figsize=(30,10))
x=graph_release_month_all['release_month']
y=graph_release_month_all['movie_count']

ax.bar(x=x, height=y, color=['black', 'black', 'b
```


Analysis

The most common month for a movie release is in November

In [451]:

```
#create a barplot showing median roi of movie releases by month for
fig, ax = plt.subplots(figsize=(30,10))
x=graph_release_month_all['release_month']
y=graph_release_month_all['roi_median']

ax.bar(x=x, height=y, color=['black', 'black', 'b
```


Analysis

The most successful month for ROI to release a movie is in July

5.5 Q5: How much should be spent on a Horror movie to get the best ROI?

I want to understand how production budget relates to roi for a horror film so that I can recommend a production budget range.

In [452]: 1 movi

movies_df_horror

Out [452]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	production_b
9	tt0431021	2012	92.0	Horror	2012-08-31	The Possession	140
20	tt0464154	2010	88.0	Horror	2010-08-20	Piranha 3D	240
38	tt0498381	2017	102.0	Horror	2017-02-03	Rings	250
154	tt1179933	2016	103.0	Horror	2016-03-11	10 Cloverfield Lane	50
166	tt1204977	2014	89.0	Horror	2014-10-24	Ouija	50
183	tt1220634	2010	96.0	Horror	2010-09-10	Resident Evil: Afterlife	575
235	tt1314655	2010	80.0	Horror	2010-09-17	Devil	100
200	#1200044	2010	07 n	Цаггаг	0010 00 07	The Last	10

In [453]:

Out[453]:

	movie	production_budget	roi	worldwide_gross	ww_profit
9	The Possession	14000000	4.923219	82925064	68925064
20	Piranha 3D	24000000	2.485840	83660160	59660160
38	Rings	25000000	2.316691	82917283	57917283
154	10 Cloverfield Lane	5000000	20.657284	108286422	103286422
166	Ouija	5000000	19.660126	103300632	98300632
183	Resident Evil: Afterlife	57500000	4.145638	295874190	238374190
235	Devil	10000000	5.335411	63354114	53354114
239	The Last Exorcism	1800000	37.981056	70165900	68365900
277	When the Bough Breaks	10000000	2.076845	30768449	20768449
283	It	35000000	18.927371	697457969	662457969
331	The Conjuring	20000000	14.900007	318000141	298000141

In [454]:

Out [454]:

	movie	production_budget	roi	worldwide_gross	ww_profit	cat
9	The Possession	14000000	4.923219	82925064	68925064	10- 25M
20	Piranha 3D	24000000	2.485840	83660160	59660160	10- 25M
38	Rings	25000000	2.316691	82917283	57917283	10- 25M
154	10 Cloverfield Lane	5000000	20.657284	108286422	103286422	0-5M
166	Ouija	5000000	19.660126	103300632	98300632	0-5M
183	Resident Evil: Afterlife	57500000	4.145638	295874190	238374190	25M+
235	Devil	10000000	5.335411	63354114	53354114	5- 10M
239	The Last	1800000	37.981056	70165900	68365900	0-5M

In [455]:

#creating dataframe to graph roi by quartile production budget
graph_roi_vs_prod_budget = roi_vs_production_budget.groupby('cat')
graph_roi_vs_prod_budget = graph_roi_vs_prod_budget.reindex(['0-5Mgraph_roi_vs_prod_budget])

Out [455]:

	production_budget	roi	worldwide_gross	ww_profit
cat				
0-5M	4000000	26.179241	91266581	88266581
5-10M	10000000	5.335411	54104225	44104225
10-25M	15000000	7.597060	118763442	105763442
25M+	40000000	2.875279	240647629	175647629

```
In [456]:
```

```
#create a barplot showing the median roi by production_budget quar
fig, ax = plt.subplots(figsize=(10,10))
x=graph_roi_vs_prod_budget.index
y=graph_roi_vs_prod_budget['roi']
ax.bar(x=x, height=y, color=['black','black','red','black'])
ax.set_title('Horror Movie Median ROI by Production Budget', fonts
ax.set_xlabel('USD Production Budget', fontsize='xx-large')
ax.set_ylabel('Median ROI', fontsize='xx-large')
ax.tick_params(axis='both', which='major', labelsize=30)
ax.grid(axis='y')
```


Analysis

This graph shows that ROI drops drastically the more you spend. Spending less than 5 million dollars will ensure a very high ROI. However, spending more will get you a still outstanding ROI compared to other genres.

5.5.1 Getting movie names and studios for examples of success.

In [457]:

#sort horror dataframe to get examples
movies_df_horror.sort_values('roi', ascending=False)

Out [457]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	production_b
694	tt2309260	2015	81.0	Horror	2015-07-10	The Gallows	1
384	tt1560985	2012	83.0	Horror	2012-01-06	The Devil Inside	10
372	tt1536044	2010	91.0	Horror	2010-10-20	Paranormal Activity 2	30
960	tt5052448	2017	104.0	Horror	2017-02-24	Get Out	50
605	tt1991245	2012	86.0	Horror	2012-05-25	Chernobyl Diaries	10
524	tt1778304	2011	83.0	Horror	2011-10-21	Paranormal Activity 3	50
823	tt3322940	2014	99.0	Horror	2014-10-03	Annabelle	65

5.6 Q6: Expected profit from a successful Horror film

I want to give Microsoft an understanding of how much money they can expect to make after investing around 5 million dollars on a Horror film.

Out[458]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	production_b
9	tt0431021	2012	92.0	Horror	2012-08-31	The Possession	140
20	tt0464154	2010	88.0	Horror	2010-08-20	Piranha 3D	240
38	tt0498381	2017	102.0	Horror	2017-02-03	Rings	250
154	tt1179933	2016	103.0	Horror	2016-03-11	10 Cloverfield Lane	50
166	tt1204977	2014	89.0	Horror	2014-10-24	Ouija	50
183	tt1220634	2010	96.0	Horror	2010-09-10	Resident Evil: Afterlife	575
235	tt1314655	2010	80.0	Horror	2010-09-17	Devil	100
222	#1000011	2010	07 n	Нагкаг	0010 00 07	The Last	10

Out[459]: 85513231.0

In [460]:

#create a lmplot showing the correlation between production budget
sns.lmplot(x='production_budget', y='roi', data=roi_vs_production_

Out[460]: <seaborn.axisgrid.FacetGrid at 0x7fbe3a5ba790>

5.7 Q8: How does horror ratings relate to revenue?

I want to understand how spending relates to the popularity of a horror film

In [461]:

#grab starting dataframe
movies_df_genres

Out[461]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	productio
0	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Comedy	2013-12-25	The Secret Life of Walter Mitty	
0	tt0359950	2013	114.0	Drama	2013-12-25	The Secret Life of Walter Mitty	
1	tt0365907	2014	114.0	Action	2014-09-19	A Walk Among the Tombstones	
1	tt0365907	2014	114.0	Crime	2014-09-19	A Walk Among the Tombstones	
		•••			•••		
1019	tt7401588	2018	118.0	Drama	2018-11-16	Instant Family	
1020	tt7535780	2017	72.0	Documentary	2017-02-17	The Great Wall	1
1022	tt7959026	2018	116.0	Crime	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Drama	2018-12-14	The Mule	
1022	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	

2497 rows × 17 columns

The Vetices

	In [462]:	2 horror_r	<pre>new dataframe tgs_trends = n tgs_trends</pre>	novies_df_ger	nres.loc[movie	s_df_genre	s['genre
rror	2010-06-18	Cyrus	7000000	7468936	10062896	4.7	944
rror	2016-02-05	Pride and Prejudice and Zombies	28000000	10907291	16638300	5.8	46187
rror	2016-09-09	When the Bough Breaks	10000000	29747603	30768449	5.1	4729
rror	2017-09-08	It	35000000	327481748	697457969	7.4	359120
rror	2014-01-24	I, Frankenstein	65000000	19075290	74575290	5.1	7491(
rror	2012-08-24	The Apparition	17000000	4936819	10637281	4.1	18112
rror	2013-07-19	The Conjuring	20000000	137400141	318000141	7.5	397230
rror	2011-03-11	Red Riding Hood	42000000	37662162	91678442	5.5	102369

ax.tick_params(axis='both', which='major', labelsize=30)

ax.set_ylabel('Median ROI', fontsize='xx-large')

Out[464]: <seaborn.axisgrid.FacetGrid at 0x7fbe91b64820>

Analysis

The scatter plot shows that there is a positive correlation between spending more on a horror film and the average rating. I will recommend to spend a bit more on the movie.

6 Appendix

Things I explored but aren't part of recommendations

6.1 Q7:What director should be considered?

I want to see if there has been a director who stands out as producing the best film as it pertains to experience, average movie rating and ROI.

I will be joining these tables on:

- movies_df: [tconst]
- imdb_title_principals: [tconst]

In [465]:

```
#join dataframe 1
movies_df_directors = movies_df_genres.merge(imdb_title_principals
movies_df_directors
```

Out [465]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	production_budg
0	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	910000
1	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	910000
2	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	910000
3	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	910000
4	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	910000

24932	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	500000
24933	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	500000
24934	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	500000
24935	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	500000
24936	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	500000

24937 rows × 22 columns

I will be joining these tables on:

- movies_df: [nconst]
- imdb_name_basics: [nconst]

In [466]:

#join dataframe 2
movies_df_directors = movies_df_directors.merge(imdb_name_basics,
movies_df_directors

Out[466]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	production_bud
0	tt0359950	2013	114.0	Adventure	2013-12-25	The Secret Life of Walter Mitty	91000
1	tt0359950	2013	114.0	Comedy	2013-12-25	The Secret Life of Walter Mitty	91000
2	tt0359950	2013	114.0	Drama	2013-12-25	The Secret Life of Walter Mitty	91000
3	tt1430626	2012	88.0	Adventure	2012-04-27	The Pirates! Band	55000

						of Misfits	
4	tt1430626	2012	88.0	Animation	2012-04-27	The Pirates! Band of Misfits	55000
24932	tt7959026	2018	116.0	Drama	2018-12-14	The Mule	50000
24933	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	50000
24934	tt7959026	2018	116.0	Crime	2018-12-14	The Mule	50000
24935	tt7959026	2018	116.0	Drama	2018-12-14	The Mule	50000
24936	tt7959026	2018	116.0	Thriller	2018-12-14	The Mule	50000

24937 rows × 27 columns

```
Out[467]: actor
                                   200
          producer
                                   196
          writer
                                   164
          actress
                                   156
          director
                                    93
                                    40
          composer
          cinematographer
                                    25
          editor
                                    10
          production_designer
                                     5
          Name: category, dtype: int64
```

In [468]:

#filter directors

movies_df_directors = movies_df_directors.loc[movies_df_directors[movies_df_directors

Out[468]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	produc
763	tt0431021	2012	92.0	Horror	2012-08-31	The Possession	
778	tt1204977	2014	89.0	Horror	2014-10-24	Ouija	
1539	tt0780653	2010	103.0	Horror	2010-02-12	The Wolfman	
1638	tt0464154	2010	88.0	Horror	2010-08-20	Piranha 3D	
2607	tt5690360	2018	93.0	Horror	2018-08-10	Slender Man	
3138	tt0498381	2017	102.0	Horror	2017-02-03	Rings	
4494	tt0816711	2013	116.0	Horror	2013-06-21	World War Z	
4659	tt2387433	2013	97.0	Horror	2013-02-22	Dark Skies	
5108	tt0872230	2010	107.0	Horror	2010-10-08	My Soul to Take	
5111	tt1262416	2011	111.0	Horror	2011-04-15	Scream 4	

In [469]:

#looking at different directors
movies_df_directors.loc[movies_df_directors['primary_name'] == 'Ch'

Out [469]:

	tconst	start_year	runtime_minutes	genres	release_date	movie	production_bu
16183	tt1727776	2015	93.0	Horror	2015-10-30	Scouts Guide to the Zombie Apocalypse	1500
16190	tt2473682	2014	84.0	Horror	2014-01-03	Paranormal Activity: The Marked Ones	500
16193	tt5308322	2017	96.0	Horror	2017-10-13	Happy Death Day	500

3 rows × 27 columns

In [470]:

#determine count of movies, median roi and averagerating by direct
movie_count = pd.DataFrame(movies_df_directors.groupby('primary_na
movie_count['roi'] = movies_df_directors.groupby('primary_name').m
movie_count['averagerating'] = movies_df_directors.groupby('primar
movie_count.sort_values('averagerating',ascending=False)

Out [470]:

	movie	roi	averagerating
primary_name			
Jordan Peele	1	50.073590	7.70
James Wan	1	14.900007	7.50
Jeff Nichols	1	0.046740	7.40
Dan Trachtenberg	1	20.657284	7.20
Marc Forster	1	1.797446	7.00
Jonathan Levine	1	2.837387	6.90
Andy Muschietti	2	13.900204	6.80
Scott Derrickson	1	28.242602	6.80
Brad Anderson	1	4.454803	6.70
Guillermo del Toro	1	0.363034	6.50

Analysis

It is hard to determine a specific director to target since most directors have only directed a single movie. I will not recommend a specific director.

6.2 Percentage of Movies that do not make their money back

INTERESTING FACT: 36% of movies do not make any profit when using all data in tn_movie_budgets and 28% when using the tn_movie_budgets when joined with other tables. This is 15% when look at only the top 40 studios.