Ingeniería de Organización

Grado en Ingeniería de la Tecnologías de Telecomunicación.

Bloque I: Métodos Cuantitativos

Tema 1: Introducción a la investigación operativa

Tema 2: Métodos generales de resolución

Tema 3: Dualidad y Análisis de sensibilidad

Tema 1: Introducción a la IO

- 1. Origen y Evolución de la IO
- 2. Campos de Aplicación
- 3. Conceptos Básicos

1. Origen y evolución de la IO

- Como mucho de los grandes avances científicos tuvo su origen en el ámbito militar
- De ahí su nombre
- Estudio sobre el uso de un radar en la 2ª Guerra Mundial desencadenó el desarrollo de lo que hoy se conoce como IO.
- Se atribuye el éxito de la fuerza aérea inglesa

1. Origen y evolución de la IO

- Estos desarrollos
 inmediatamente aplicados a problemas estratégicos y tácticos en el ámbito bélico.
 - Inmediata aplicación a casos de asignación de recursos escasos en operaciones militares
- En el ámbito empresarial...
 - No fueron ajenos a estos desarrollos y comenzaron a aplicar las técnicas de IO para aumentar los beneficios.
 - Hay que tener en cuenta el contexto donde se desarrolló la aplicación de la IO:
 - Plena revolución industrial (expansión)
 - Pasó de producción artesanal a producción en masa → la asignación de recursos (administración de recursos escasos) juega un papel muy importante en los resultados empresariales.
 - Ejemplos

Origen y evolución de la IO

Objetivos:

- Producción de información sobre los sistemas que permita mejorar la efectividad de la organización.
 - Los métodos empleados tienen carácter objetivo y están basados en el método científico
 - Basados en medidas, análisis y validación y no en gustos o intuiciones

Definición de IO:

 Aplicación del método científico a la mejora de la eficiencia de las operaciones, las decisiones y la gestión.

1. Origen y evolución de la IO

Otras denominaciones:

- Operations Research
- Management Science
- Decision Technology
- Decision Support
- Police Science
- System Analysis
- Management Technology
- Management Analitics

1. Origen y evolución de la IO

Herramientas de la IO:

- Programación Lineal, PMO
- Programación No Lineal, PLE, MIP
- Programación Dinámica
- Ta de redes y grafos
- Cadenas de Markov
- Ta de colas
- Modelos de Gestión de inventarios
- Ta de Decisión y juegos
- Gestión de Proyectos
- Fiabilidad, mantenimiento y renovación de equipos

2. Campos de Aplicación

Aplicaciones de la PL, Redes, PNL y PMO:

- Diseño de nuevos productos
- Localización de servicios públicos
- Asignación de medios (recursos) de producción
- Logística, Distribución y Transpórte
- Planificación del mto dé instalaciones
- Planificación de la agricultura
- Selección de inversiones (carteras eficientes)
- Construcción
- Planificación, programación y control de proyectos
- Estudios grupos sociales
- Mezclas de materiales y Enlaces químicos
- Planificación cirugía compleja
- Planificación de KR en los Hospitales
- Programación de medios de publicidad

2. Campos de Aplicación

Aplicaciones de otras técnicas como:

- Ta colas
- Ta de inventarios
- Ta de juegos
- Simulación
- 0
- En una gran variedad de contextos

- 3.1. **Ejemplo** ←
- 3.2. El modelo
- 3.3. Región factible y solución gráfica
- 3.4. Variables de holgura
- 3.5. Análisis de sensibilidad
- 3.6. Resolución de modelos con software de optimización

3.1. Ejemplo "Producción en una planta de generación de energía"

- Supongamos una planta termoeléctrica que emplea carbón como combustible.
- Según leyes de contaminación ('ficticias') ->
 cumplimiento de tasas de emisión máxima permitida

3.1. Ejemplo: Datos

- Tasas de emisión máxima permitida:
 - Máx. emisión de Óxido de Azufre: 3000 ppm
 - Máx. emisión de partículas (humo): 12 kg/h
- 2 Tipos de Carbón:
 - Tipo A \rightarrow C. Duro
 - Quema limpia (0.5 kg/ton)
 - Bajo contenido en S (1800 ppm)
 - Valor térmico, prop. a ud de vapor: 24000 lb/ton
 - Tipo B \rightarrow C. Blando
 - Produce + humo: 1.0 kg/ton
 - Mayor contenido en S: 3800 ppm
 - Valor térmico: 20000 lb/ton

3.1. Ejemplo: Datos

- Sistema de carga (cinta transportadora):
 - Capacidad de:
 - 20 ton/h independiente del tipo de Carbón
- Pulverizadora:
 - Puede manejar a lo sumo:
 - 16 ton/h de C tipo A
 - 24 ton/h de C tipo B
 - ... Carbón A es más duro que el B

Objetivo:

 ¿Cuál es la máxima producción de energía que puedo conseguir estando dentro de los límites de emisión medio ambientales?

- 3.1. Ejemplo
- 3.2. **El modelo** ←
- 3.3. Región factible y solución gráfica
- 3.4. Variables de holgura
- 3.5. Análisis de sensibilidad
- 3.6. Resolución de modelos con software de optimización

3.2. El modelo. Variables

- A corto plazo las instalaciones de la planta son fijas
- Lo único que puede controlarse es la cantidad de C que se puede quemar de cada tipo:
 - x_I cantidad de C de tipo A [ton/h]
 - x_2 cantidad de C de tipo B [ton/h]
- Usualmente las variables de decisión: actividades
- El valor que alcanzan x_1 y x_2 : **niveles** de las actividades

3.2. Modelo. Variables → hipótesis 1 y 2

- H1: Divisibilidad "todas las variables pueden asumir cualquier valor real"
 - Generalmente válido para multitud de situaciones reales
 - Ejemplo:
 - Kg/h Carbón tipo A y B
 - Otros casos sólo admiten valores enteros:
 - Programación entera...
 - Ejemplos:
 - Nº de viajes que ha de hacer un camión para trasladar cierta carga de un sitio a otro
 - Nº de equipos informáticos que ha de adquirir una empresa
 - Nº vigilantes

3.2. Modelo. Variables → hipótesis 1 y 2

- H2: No negatividad "todas las variables son no negativas"
 - Los niveles negativos de actividad rara vez tienen sentido en mundo real.
 - Un nº 'libre' puede expresarse como diferencia de 2 nºs positivos:
 - Ejemplo:
 - Compra/venta de bonos: $x = x^+ x^-$

3.2. **Modelo. FO**

Objetivo de la gerencia:

- Maximizar producción de energía eléctrica
- Hemos considerado proporcional a producción de vapor
- - Expresión matemática:
 - FO: Max $Z = 24000 x_1 + 20000 x_2$
 - Expresado en [miles de lb/h]: FO: Max $Z = 24 x_1 + 20 x_2$
- Como vemos la FO es lineal

3.2. Modelo. FO

La FO forma una familia de rectas (isoproducción o isocoste) :

3.2. Modelo. FO y Restricciones → hipótesis 3

- H3: Linealidad "todas las relaciones entre variables son lineales"
 - Esto implica:
 - Proporcionalidad de las contribuciones de las variables (en el rango de funcionamiento).
 - Aditividad de las contribuciones: la contribución total a la FO es la suma de las contribuciones individuales.

- Además de las hipótesis anteriores, los niveles de actividad deben cumplir ciertas restricciones.
- R1: Restricción en la emisión de partículas (humo)
 - Limitada a 12 [kg/h]:

o 0.5 [kg/ton]
$$\cdot x_1$$
 [ton/h] + 1.0 [kg/ton] $\cdot x_2$ [ton/h] \leq 12 [kg/h] -Término independiente - Coeficiente del 2º miembro

- RHS (Right Hand Side)
- R2: Restricción en las instalaciones de carga
 - Limitada a 20 [ton/h]:
 - $x_1[\tanh h] + x_2[\tanh h] \le 20[\tanh h]$

- R3: Restricción de la capacidad del pulverizador
 - Es capaz de pulverizar:
 - 16 ton de A en 1 hora ó
 - 24 ton de B en 1 hora
 - Por tanto en 1 h, para x_1 [ton/h] y x_2 [ton/h] se debe cumplir que:
 - $1/16 \text{ [h/ton]} \cdot x_1 \text{ [ton/h]} \cdot 1 \text{ [h]} + 1/24 \text{ [h/ton]} \cdot x_2 \text{ [ton/h]} \cdot 1 \text{ [h]} \le 1 \text{ [h]}$
 - Es decir (24):
 - $0 1.5 \cdot x_1 + x_2 \le 24$

- R4: Restricción en la emisión de dióxido de azufre
 - Limitada a 3000 ppm
 - Como la combustión es simultánea en cada momento hay una mezcla homogénea de A y B.
 - ¿Qué parte es de cada?
 - $x_1/(x_1+x_2)$ es Carbón de tipo A, con una emisión de:
 - $\bullet 1800 \cdot x_1 / (x_1 + x_2)$
 - $x_2/(x_1+x_2)$ es Carbón de tipo B, con una emisión de:
 - $3800 \cdot x_2/(x_1 + x_2)$
 - Por tanto: $1800 \cdot x_1/(x_1 + x_2) + 3800 \cdot x_2/(x_1 + x_2) \le 3000$
 - Despejando: $1200 \cdot x_1 800 \cdot x_2 \ge 0$

3.2. Modelo. Formulación → hipótesis 4

Ejemplo

$$Max: 24x_1 + 20x_2$$

s.a.

$$0.5x_1 + 1x_2 \le 12$$
 [Humo]

$$1.0x_1 + 1.0x_2 \le 20$$
 [Carga]

$$1.5x_1 + 1x_2 \le 24$$
 [Pulver.]

$$1200x_1 - 800x_2 \ge 0$$
 [Azufre]

$$x_1, x_2 \ge 0$$

Formulación General del problema

$$Max: \sum_{j=1}^{n} c_{j} x_{j}$$

s.a.

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}, \ \forall i = 1,...,m$$

$$x_j \ge 0, \ \forall j = 1, \dots, n$$

Parámetros: $\{c_i, a_{ij}, b_i\}$

 H4: Certidumbre: "Se asume que todos los parámetros del modelo son constantes conocidas"

3.3. Región Factible y Solución Gráfica

Región Factible (RF)

- Una solución es admisible (<u>factible</u>) si la combinación de niveles de actividad satisface de forma simultánea todas las restricciones (incluyendo la de no negatividad)
- El conjunto de todas las soluciones factibles forma la región factible

Observaciones:

- La RF no depende de la FO
- Si la frontera de una restricción no tiene puntos en común con la región factible > restricción redundante, se puede eliminar

3.3. Región Factible y Solución Gráfica

3.3. Región Factible y Solución Gráfica

Solución Gráfica

- Consiste en determinar la recta de la FO más 'alta' que contenga al menos una solución factible.
- En nuestro ejemplo viene determinado por las rectas de las restricciones R1 y R3 (humo y pulverizador)
 - $0.5 \cdot x_1 + x_2 \le 12$
 - $0 1.5 \cdot x_1 + x_2 \le 24$
- Ejercicio:
 - Determinar los niveles de actividad en el óptimo: $x^* = x_1^*$, x_2^*
 - Determinar el valor óptimo de la FO: Z*

3.3. Región Factible y Solución Gráfica

$$x_1^* = 12$$

 $x_2^* = 6$
 $Z^* = 408$

3.3. Región Factible y Solución Gráfica

Solución Gráfica

- Observaciones:
 - Desde punto de vista intuitivo parece lógico que el óptimo esté situado en
 - un punto extremo
 - Lado o arista del polígono (sol. ópt. alternativas)

Casos:

- 1. Solución única
- 2. Soluciones alternativas (infinitas)
- 3. No hay solución
- 4. Solución no acotada

3.3. Región Factible y Solución Gráfica

Casos:

3.4. Variables de Holgura

- Para cualquier solución factible hay una diferencia entre el valor que toma la restricción (para dicha solución) y el coeficiente b_i del segundo miembro.
- En el ejemplo:
 - Las restricciones R1 y R3 se cumplen para la igualdad, ya que la solución es óptima es la intersección de ambas rectas.
 - Veamos R2 y R4 para $x^* = (12, 6)$:
 - R2: $x_1 + x_2 \le 20 \rightarrow 12 + 6 = 18 \le 20 \rightarrow \text{Holgura de 2 unidades}$ de carga medida en [ton/h].
 - R4: $1200 x_1 800 x_2 \ge 0 \rightarrow 1200 \cdot 12 800 \cdot 6 = 14400 4800 = 9600 \ge 0 \rightarrow$ Holgura de 9600 unidades (difícil interpretación física)

3.4. Variables de Holgura

- A menudo es útil mostrar explícitamente esa diferencia, mediante una variable adicional en cada restricción → Holgura.
 - (+) Holgura: para desigualdades del tipo ≤
 - (-) Exceso: para desigualdades del tipo ≥
- En nuestro ejemplo: $Max: 24x_1 + 20x_1$

s.a.

 $0.5x_1 + 1x_2 + h_1 = 12$ [Humo]

 $1.0x_1 + 1.0x_2 + h_2 = 20$ [Carga]

 $1.5x_1 + 1x_2 + h_3 = 24$ [Pulver.]

 $1200x_1 - 800x_2 - h_4 = 0$ [Azufre]

 $x_1, x_2, h_1, h_2, h_3, h_4 \ge 0$

3.5. Análisis de Sensibilidad (AS)

- ¿Cuánto se pueden variar los parámetros del modelo sin que varíe la solución?
- ¿Cómo responde el modelo al variar los coeficientes?
- Tipos de análisis:
 - \triangleright AS de los coeficiente de la FO $(c_i$'s)
 - \triangleright AS de los 2° miembros de las restricciones (b_i 's)
- AS de los coeficientes de la FO $(c_i$'s)
- Al variar los c_i 's varía la pendiente de la recta de la FO.
- \circ ¿Cuánto puede variar un coeficiente $\underline{c_i}$ sin que varíe la solución?

3.5. Análisis de Sensibilidad (AS). (c_i) s)

- En nuestro ejemplo:
- Recordemos que los $\underline{c_i}$ representaban las lb de vapor producidas en [lb/ton]
- Si $c_1 = 24$ (-1000) para el C tipo A
- \circ ¿Cuánto puedo incrementar c_I sin cambiar de solución?

$$x_1^* = 12$$

 $x_2^* = 6$
 $Z^* = 408$

→ Hasta que FO sea paralela a R3 pulverizador

3.5. Análisis de Sensibilidad (AS). $(b_i$'s)

- AS de los 2^{os} miembros de las restricciones $(b_i$'s)
- ¿Qué ocurre con la solución óptima cuando se varía el 2º miembro en una restricción?
- Las restricciones vienen determinadas por rectas
- Al variar un b_i la recta se desplaza de forma paralela

3.5. Análisis de Sensibilidad (AS). $(b_i$'s)

- AS de los 2^{os} miembros de las restricciones (b_i 's)
- En el ejemplo:
- Supongamos que la gerencia instala un equipo que puede reducir emisión de humos un 25%.
 - ¿Cómo modelamos esta situación?
 - Al instalar el nuevo equipo podemos producir un 25% más de humo: por tanto la R1 quedaría:
 - $0.5 \cdot x_1 + x_2 \le 12 (1+0.25) = 15 \rightarrow 0.5 \cdot x_1 + x_2 \le 15$

Vamos a estudiar el incremento unitario de 12 a 13

 χ_2

30

3.5. Análisis de Sensibilidad (AS). $(b_i$'s)

- AS de los 2^{os} miembros de las restricciones (b_i 's)
- En el ejemplo:

de R1':
$$0.5x_1 + x_2 = 13$$

de R3: $1.5x_1 + x_2 = 24$
 $x_1^* = 24 - 13 = 11$
 $x_2^* = 13 - 0.5x_1 = 13 - 5.5 = 7.5$
 $Z^* = 24.11 + 20.7.5 = 264 + 150 = 414$

3.5. Análisis de Sensibilidad (AS). $(b_i$'s)

- Δ AS de los 2^{os} miembros de las restricciones (b_i 's)
- En el ejemplo:
 - Si observamos el incremento de la FO:

$$Z_0^* = 408 \Rightarrow Z_1^* = 414$$

 $\Delta Z(b_1) = 414 - 408 = 6$

De otra manera:

$$x_1$$
 pasa de 12 a 11 $\Rightarrow \downarrow$ 1 ud $\Rightarrow \Delta Z(x_1) = -24$
 x_2 pasa de 6 a 7.5 $\Rightarrow \uparrow$ 1.5 uds $\Rightarrow \Delta Z(x_2) = 1.5 \cdot 20 = 30$
 $\Delta Z = \Delta Z(x_1) + \Delta Z(x_2) = -24 + 30 = 6$

Def: la mejora en el valor óptimo de la FO debido a incremento unitario en un b_i se denomina **Coste de Oportunidad (COP)** o **Precio Sombra (PS)** o **Precio Dual** de la restricción

3.5. Análisis de Sensibilidad (AS). (b_i) 's)

- AS de los 2ºs miembros de las restricciones (b; 's)
- Observaciones/Cuestiones:
 - ¿Cuál es COP de una restricción que no se verifica estrictamente en la solución óptima?
 - Si una parte del recurso no se utiliza (h>0) → las cantidades adicionales de recurso no tienen valor, sólo incrementan h → el PS de dicha restricción es cero.
 - De la misma manera si h=0 el COP de dicha restricción es distinto de cero.

```
Si estamos en Z*:
```

- •si h>0 en una restricción ←→ COP =0
- •si h=0 en una restricción ←→ COP <>0
- ¿Hasta qué punto me interesa aumentar un recurso?
- Los COP indican información valiosa a la gerencia

3.6. Resolución de modelos con Software de Optimización

- Resolución gráfica sólo válida para 2(3?) variables
- Problemas mayores → procedimiento matemático (alg. Simplex Tema 2)
- Problemas reales -> Software de optimización
 - WinQSB (Quantitative Systems for Business) Académico
 - LINGO → Modelado mediante lenguaje
 - EXCEL → Solver
 - Libre !!: GLPK Lab (GLPSOL)

3.6. Resolución de modelos con Software de Optimización

Ejemplo: Resolución del Ejemplo con LINGO

```
MODEL:
!EJEMPLO1: LA CAPACIDAD DE UNA PLANTA GENERADORA DE ENERGÍA Y CONTROL DE LA CONTAMINACIÓN;
[OBJ] MAX = 24*X1 + 20*X2;
[HUMO] 0.5*X1 + X2 <= 12;
[CARGA] X1 + X2 <= 20;
[PULVERIZADOR] 1.5*X1 + X2 <= 24;
[AZUFRE] 1200*X1 - 800*X2 >=0;
END
```

- * para multiplicación
- ; para final de sentencia, comentarios, FO y restricciones
- Comentarios comienzan con!
- Identificación de FO y restricciones en []

3.6. Resolución de modelos con Software de Optimización

Ejemplo: Resultados

Global optimal solution found. Objective value:

Total solver iterations:

408.0000

2

Variable	Value	Reduced Cost
X1	12.00000	0.00000
X2	6.000000	0.00000
Row	Slack or Surplus	Dual Price
OBJ	408.0000	1.000000
HUMO	0.00000	6.00000
CARGA	2.00000	0.00000
PULVERIZADOR	0.00000	14.00000
AZUFRE	9600.000	0.000000

3.6. Resolución de modelos con Software de Optimización

- Ejemplo: Información indicada
 - Variables:
 - Valor óptimo de la FO
 - Nivel de actividad de cada variable
 - Coste reducido, en este caso es 0 para ambas variables

Def: Coste Reducido de una variable

Representa la cantidad (incremento) que debe mejorarse la FO para que la variable tome un valor <>0 en la solución óptima

También se interpreta como el <u>coste penal</u> por introducir una variable en la solución

3.6. Resolución de modelos con Software de Optimización

- Ejemplo: Información indicada
 - Variables de holgura → Slack o Surplus
 - Coste de Oportunidad (COP)→ Precio Sombra → Dual Price
 - Observar que:

Si estamos en Z*:

- •si h>0 en una restricción ←→ COP =0
- •si h=0 en una restricción ←→ COP <>0

3.6. Resolución de modelos con Software de Optimización

- Ejemplo: Análisis de Sensibilidad
 - De los coef. de la FO (c_i) incrementos y decrementos
 - De los segundos miembros de las restricciones $(b_i$'s) \rightarrow rango en que se mantiene constante el COP.

Ranges in which the basis is unchanged:

	Obje	ective Coefficient	Ranges
	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X1	24.00000	6.000000	14.00000
X2	20.00000	28.00000	4.000000
		Righthand Side Ra	anges
Row	Current	Allowable	Allowable
	RHS	Increase	Decrease
HUMO	12.00000	4.000000	4.000000
CARGA	20.00000	INFINITY	2.000000
PULVERIZADOR	24.00000	4.000000	6.000000
AZUFRE	0.0	9600.000	INFINITY