题号	_	=	=	四	五	六	七	八	九	+	总分
得分											

一、单项选择题(每小题 2 分, 共 14 分)

-)1、下列说法中错误的是
 - (A) 若数列 $\{x_n\}$ 有界,则数列 $\{x_n\}$ 必收敛;
 - (B) 若数列 $\{x_n\}$ 收敛于a,则它的任一子列也收敛于a;
 - (C) 若数列 $\{x_n\}$ 收敛,则数列 $\{x_n\}$ 必有界;
 - (D) 数列 $\{x_n\}$ 不能收敛于两个不同的数值.
-)2、下列极限中正确的是

江

- (A) $\lim_{x\to\infty}\frac{\sin x}{x}=1$;
- (B) $\lim_{x\to\infty} x \sin\frac{1}{x} = 1$;
- (C) $\lim_{x \to 0} (1+3x)^{\frac{1}{x}} = e$; (D) $\lim_{n \to \infty} (1+\frac{2}{n})^n = e$.
-) 3、若 $\lim_{x \to a} f(x) = k_1$, $\lim_{x \to a} f(x) = k_2$,其中 k_1 , k_2 为确定的常数,则点 x = a 不 可能是 f(x) 的
 - (A) 可去间断点;
- (B) 连续点;
- (C) 跳跃间断点;
- (D) 无穷间断点.
-) 4、设函数 f(x) 在 x_0 处可导,则 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{h} =$

- (A) $f'(x_0)$; (B) $-f'(x_0)$; (C) $2f'(x_0)$; (D) $-2f'(x_0)$.
-)5、设f'(x) = (x-1)(2x+1), $x \in (-\infty, +\infty)$, 则在 $(\frac{1}{2}, 1)$ 内,f(x)单调
 - (A) 减少, 曲线 y = f(x) 为凸的; (B) 增加, 曲线 y = f(x) 为凸的;
- - (C) 减少, 曲线 y = f(x) 为凹的; (D) 增加, 曲线 y = f(x) 为凹的.

-) 6、设函数 f(x) 可导,且 F'(x) = f(x),则下列说法正确的是
 - (A) $\left[\int f(x)dx \right]' = f(x) + C;$ (B) $\int dF(x) = F(x);$
 - (C) $\int f'(x)dx = f(x) + C$; (D) $d \int \int f(x)dx = f(x)$.
-)7、下列反常积分收敛的是

(A)
$$\int_0^1 \frac{1}{x} dx$$
; (B) $\int_0^1 \frac{1}{x^2} dx$; (C) $\int_1^{+\infty} \frac{1}{x^2} dx$; (D) $\int_1^{+\infty} \frac{1}{x} dx$.

得分 二、填空题(每小题 3 分, 共 18 分)

- $1 \cdot \lim_{x \to 0} \frac{(\sin x^3) \tan x}{1 \cos x^2} = \underline{\hspace{1cm}};$
- 2、设 $y = \ln(x + \sqrt{1 + x^2})$,则 dy = ;
- 3、函数 $f(x) = \int_{0}^{x} (2t-1)dt$ 的极小值为______;
- 4、曲线 $y = \cos 2x$ 在 x = 0 处的曲率为
- $\begin{cases} x = t \sin t \\ v = 1 \cos t \end{cases}$ 一拱 $(0 \le \theta \le 2\pi)$ 的狐长为_____.

三、计算题(每小题 6 分, 共 42 分)

1、求极限 $\lim_{x\to 0} \frac{\int_0^{x^2} \arctan t dt}{\int_0^{x^2} \arctan t dt}$.

专业班级

 $\begin{cases} e^{2x} & x \ge 0 \\ 2x+1 & x < 0 \end{cases}$ 在 x = 0 处的连续性和可导性.

5、求不定积分 $\int x \cos \frac{x}{2} dx$.

- 3、设 $\begin{cases} x = f'(t) \\ y = tf'(t) f(t) \end{cases}$, 其中 f(t) 具有连续的二阶导函数,且 $f''(t) \neq 0$,求 $\frac{d^2y}{dx^2}$.

 6、设函数 $f(x) = \begin{cases} xe^{-x^2}dx & x \geq 0 \\ \frac{1}{1+\cos x} & -1 < x < 0 \end{cases}$,求 $\int_{1}^{4} f(x-2)dx$.

得分

江

四、应用题(每小题 7 分, 共 14 分)

得分

五、证明题(每小题 6 分, 共 12 分)

- 1、设平面图形 A 是由曲线 $y = \sqrt{x}$, x = 4 及 x 轴所围成的
 - (1)求平面图形A的面积;
 - (2) 求平面图形 A 绕 y 轴旋转一周所得旋转体的体积.

1、证明: 当 $0 < x < \frac{\pi}{2}$ 时, $\sin x + \tan x > 2x$.

- 2、在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 内作一内接矩形,问其长,宽各为多少时,矩形面积最大? 此时最大面积等于多少?
- 2、设奇函数 f(x) 在 [-1,1] 上具有二阶导数,且 f(1)=1,

证明: (1) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;

(2) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$.