MIPS Reference Data

			once butt	`	
CORE INSTRUCTI	ON SE	Т			OPCODE
NAME ADDITAG		FOR-			/ FUNCT
NAME, MNEMO		MAT		(1)	(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	/	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	11071
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm	(2)	
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	Ι	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	Ι	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	Ι	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	Ι	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	Ι	R[rt] = (R[rs] < SignExtImm)?	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	Ι	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	Ι	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, (3) ZeroExtImm = { 16{1b'0}, immediate (4) BranchAddr = { 14{immediate[15]}, i (5) JumpAddr = { PC+4[31:28], address (6) Operands considered unsigned numbe (7) Atomic test&set pair; R rt] = 1 if pair				ediate, 00 } s. 2's o	2'b0 }
BASIC INSTRUCTI	ON FO	RΜΔ	TS		

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate	
	31 26	25 21	20 16	15		
J	opcode			address		
	31 26	25				

ARITHMETIC CORE INSTRUCTION SET

				FMT/FT
]	FOR-		/ FUNCT
NAME, MNEMON	NIC :	MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \qquad (6)$	0///1b
FP Add Single a	idd.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	dd.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			{F[ft],F[ft+1]}	
FP Compare Single	c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	*.x.d	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double			$\{F[ft],F[ft+1]\}\)?1:0$	11/11/ /y
			=, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
	ilV.S	FK	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	liv.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
	,	FR	{F[ft],F[ft+1]}	11/10//2
FP Multiply Single m FP Multiply	lu1.S		F[fd] = F[fs] * F[ft]	11/10//2
Double	nul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
	ub.s	FR	{\r[\text{III},\r[\text{III}]}\] F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	uD.S		$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} -$	
Double	ub.d	FR	{F[ft],F[ft+1]}	11/11//1
	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	11101	-	F[rt]=M[R[rs]+SignExtImm]; (2)	
Double	ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	${Hi,Lo} = R[rs] * R[rt]$	0///18
	ultu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0///3
~ ~ ~ .	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP			M[R[rs]+SignExtImm] = F[rt]; (2)	
Double	sdc1	I	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	;
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1 2-3		Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

OPCOL	FS BASI	E CONVER	SION A	ASCII	SVMR	OI S		(3)	
MIPS	(1) MIPS	(2) MIPS				ASCII		Hexa-	ASCII
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Dinary	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
(-)		$\mathrm{sub}.f$	00 0001	1	1	SOH	65	41	Ã
j	srl	$\mathtt{mul.} f$	00 0010	2	2	STX	66	42	В
jal	sra	$\operatorname{div} f$	00 0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs f	00 0101	5	5	ENQ	69	45	E
blez	srlv	mov f	00 0110		6	ACK	70	46	F
bgtz	srav	neg f	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000		8	BS	72	48	Н
addiu	jalr		00 1001	9	9	HT	73	49	Ĭ
slti	movz		00 1010		a	LF	74	4a	J
sltiu	movn	, ,	00 1011	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100		c	FF	76	4c	L
ori	break	trunc.w.f	00 1101 00 1110	13 14	d e	CR SO	77 78	4d 4e	M N
lui	sync	ceil.w.f	00 1110	15	f	SI	79	4f	O
TUI	mfhi	11001.w. <i>j</i>	01 0000		10	DLE	80	50	P
(2)	mthi		01 0000	17	11	DC1	81	51	Q
(2)	mflo	movz.f	01 0010		12	DC2	82	52	Ř
	mtlo	movn.f	01 0011	19	13	DC3	83	53	S
			01 0100	20	14	DC4	84	54	Т
			01 0101	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010		1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b	[
			01 1100		lc	FS	92	5c	\
			01 1101 01 1110	29 30	1d	GS	93	5d 5e	,
			01 1110	31	le lf	RS US	95	5f	
1b	add	cvt.s.f	10 0000		20	Space	96	60	-
lh	addu	cvt.s.f	10 0000	33	21	!	97	61	a
lwl	sub	cvc.a.j	10 0001		22	i	98	62	b
lw	subu		10 0011	35	23	#	99	63	c
lbu	and	cvt.w.f	10 0100		24	\$	100	64	d
lhu	or	,	10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	39	27	,	103	67	g
sb			10 1000		28	(104	68	h
sh			10 1001	41	29) *	105	69	i
swl	slt		10 1010		2a		106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k 1
			10 1100	44	2c	,	108	6c	-
			10 1101 10 1110		2d 2e	-	109	6d 6e	m n
swr			10 1110	47	2f	,	111	6f	0
11	tge	c.f.f	11 0000		30	0	1112	70	p
lwc1	tgeu	c.un.f	11 0000	49	31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	s
	teq	c.olt.f	11 0100		34	4	116	74	t
ldc1	-	c.ult.f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110		36	6	118	76	v
		c.ule.f	11 0111	55	37	7	119	77	w
sc		c.sf.f	11 1000		38	8	120	78	X
swc1		c.ngle f	11 1001	57	39	9	121	79	У
swc2		c.seq f	11 1010		3a	:	122	7a	Z
		c.ngl.f	11 1011	59	3b	;	123	7b	{

(1) opcode(31:26) == 0 (2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f$ = s (single); if fmt(25:21)== $17_{\text{ten}} (11_{\text{hex}}) f$ = d (double)

11 1100

11 1101

11 1110

11 1111

c.1t.1

c.nge.f

c.ngt.f

c.le.f

sdc1

sdc2

60 3c

61

62 3e

3d

IEEE 754 FLOATING-POINT STANDARD

3

(-1)^S × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and

DATA ALIGNMENT

	Double Word									
	Wo	ord			W	ord				
Halfv	vord	Half	word	Hal	fword	Half	word			
Byte	Byte	Byte	Byte	Byte	Byte	Byte Byte				
0	1	2	3	4	5	6	7			

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 	 		_	 _				
В		Interrupt			Exception			
D		Mask			Exception Code			
31	15		8	6		2		
		Pending	٦		U		Е	Ι
		Interrupt			M		L	Е
	15		8		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Name	Cause of Exception	Number	Name	Cause of Exception
Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
Adei	Address Error Exception	10	DI	Reserved Instruction
Auel	(load or instruction fetch)) 10 Ki		Exception
AJEC	Address Error Exception	11	CnII	Coprocessor
AuLS	(store)	11	СрС	Unimplemented
IDE	Bus Error on	12	Ov	Arithmetic Overflow
IBE	Instruction Fetch	12	Ov	Exception
DDE	Bus Error on	12	Т.,	Trap
DDE	Load or Store	13	11	пар
Sys	Syscall Exception	15	FPE	Floating Point Exception
	Int AdEL AdES IBE DBE	Int Interrupt (hardware) AdEL Address Error Exception (load or instruction fetch) AdES Address Error Exception (store) IBE Bus Error on Instruction Fetch DBE Bus Error on Load or Store	Int	Int Interrupt (hardware) 9 Bp AdEL Address Error Exception (load or instruction fetch) 10 RI AdES Address Error Exception (store) 11 CpU IBE Bus Error on Instruction Fetch 12 Ov DBE Bus Error on Load or Store 13 Tr

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

•	TIET IXEO (TO TOT DISK, COMMUNICATION, 2 TOT MICHOTY)											
		PRE-		PRE-		PRE-		PRE-				
	SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX				
	$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-				
	$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10 ⁻⁶	micro-	10 ⁻¹⁸	atto-				
	$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10 ⁻⁹	nano-	10-21	zepto-				
	$10^{12}, 2^{40}$	Tera-	10 ²⁴ , 2 ⁸⁰	Yotta-	10-12	pico-	10-24	yocto-				

The symbol for each prefix is just its first letter, except μ is used for micro.

124

125

126

127

7c

7d

7e

DEL