

What is claimed is:

1. Use of hydroxydiphenyl ether compounds of the following formula

wherein when OH is in the para position with respect to the ether linkage

R₁ and R₂ are independently of each other hydrogen, hydroxy, C₁-C₂₀alkyl, C₅-C₈cycloalkyl, C₁-C₆alkylcarbonyl, C₁-C₂₀alkoxy, phenyl or phenyl-C₁-C₃alkyl;

R₃ is hydrogen, C₁-C₂₀alkyl or C₁-C₂₀alkoxy;

R₄ is hydrogen, C₁-C₂₀alkyl, hydroxy substituted C₁-C₂₀alkyl, C₅-C₈cycloalkyl, hydroxy, formyl, acetyl, C₁-C₆alkylcarbonyl, C₂-C₂₀alkenyl, carboxy, carboxyC₁-C₃alkyl, C₁-C₃alkylcarbonylC₁-C₃alkyl or carboxyallyl;

wherein when OH is in the meta position with respect to the ether linkage

R₂ is hydrogen, C₁-C₂₀alkyl, hydroxy substituted C₁-C₂₀alkyl or C₁-C₆alkylcarbonyl;

R₁ and R₃ are independently of each other hydrogen, C₁-C₆alkylcarbonyl or C₁-C₂₀alkyl;

R₄ is hydrogen, C₁-C₂₀alkyl, hydroxy substituted C₁-C₂₀alkyl, C₅-C₈cycloalkyl, hydroxy, formyl, acetyl, C₁-C₆alkylcarbonyl, C₂-C₂₀alkenyl, carboxy, carboxyC₁-C₃alkyl, C₁-C₃alkylcarbonylC₁-C₃alkyl or carboxyallyl;

wherein when OH is in the ortho position with respect to the ether linkage

R₁ is hydrogen, C₁-C₆alkyl carbonyl or C₁-C₂₀alkyl;

R₄ is hydrogen, C₁-C₂₀alkyl, hydroxy substituted C₁-C₂₀alkyl, C₅-C₈cycloalkyl, hydroxy, formyl, acetyl, C₁-C₆alkylcarbonyl, C₂-C₂₀alkenyl, carboxy, carboxyC₁-C₃alkyl, C₁-C₃alkylcarbonylC₁-C₃alkyl or carboxyallyl;

R₂ and R₃ are independently of each other hydrogen, C₁-C₆ alkyl carbonyl or C₁-C₂₀ alkyl; with the proviso that compounds wherein OH is in the para position with respect to the ether linkage and R₁ and R₃ are both hydrogen and R₂ is methoxy or methyl; or a compound wherein OH is in the para position with respect to the ether linkage R₂ is hydrogen, R₁ is isopropyl and R₃ is methyl are excluded;

as antimicrobial agents.

2. Use of the compounds according to claim 1 wherein in formula (1) when OH is in the para position with respect to the ether linkage

R₁ and R₂ are independently of each other hydrogen, C₁-C₂₀alkyl, C₁-C₆ alkyl carbonyl or C₁-C₂₀alkoxy;

R₃ is hydrogen, C₁-C₂₀alkyl or C₁-C₂₀alkoxy;

R₄ is hydrogen, C₁-C₂₀alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, carboxyallyl, hydroxy substituted C₁-C₂₀alkyl or C₁-C₆ alkyl carbonyl;

wherein when OH is in the meta position with respect to the ether linkage

R₂ is hydrogen, C₁-C₂₀alkyl, hydroxy substituted C₁-C₂₀alkyl or C₁-C₆ alkyl carbonyl;

R₁ and R₃ are independently of each other hydrogen, C₁-C₆ alkyl carbonyl or C₁-C₂₀alkyl;

R₄ is hydrogen, C₁-C₂₀alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, carboxyallyl, hydroxy substituted C₁-C₂₀alkyl or C₁-C₆ alkyl carbonyl;

wherein when OH is in the ortho position with respect to the ether linkage

R₁ is hydrogen, C₁-C₆ alkyl carbonyl or C₁-C₂₀alkyl;

R₄ is hydrogen, C₁-C₂₀alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, carboxyallyl, hydroxy substituted C₁-C₂₀alkyl or C₁-C₆ alkyl carbonyl;

R₂ and R₃ are independently of each other hydrogen, C₁-C₆ alkyl carbonyl or C₁-C₂₀alkyl;

with the proviso that compounds wherein OH is in the para position with respect to the ether linkage and R₁ and R₃ are both hydrogen and R₂ is methoxy or methyl; or a compound wherein OH is in the para position with respect to the ether linkage R₂ is hydrogen, R₁ is isopropyl and R₃ is methyl are excluded.

3. Use of the compounds of formula

R₁ is C₁-C₆alkyl.

4. Use of the compounds of formula

R₄ is C₁-C₅ alky.

5. Use of the compounds according to one of claims 1 to 4 for finishing of undyed and dyed or printed fibre materials.

6. Use of the compounds according to one of claims 1 to 4 for the antimicrobial treatment of skin, mucous membrane or hair.

7. Use of the compounds according to one of claims 1 to 4 for the incorporation into and for the antimicrobial finishing of polymeric materials.

8. Use of the compounds according to one of claims 1 to 4 for the antimicrobial treatment of hard surfaces.

9. Use of the compounds according to one of claims 1 to 4 for the antimicrobial treatment of teeth and gums.

10. A personal care composition comprising at least one compound of formula (1) according to claim 1 and cosmetically tolerable carriers or auxiliaries.

11. An oral care composition comprising at least one compound of formula (1) according to claim 1.

12. A detergent composition comprising at least one compound of formula (1)) according to claim 1.

13. Compounds of formula (1) wherein OH is in the ortho position with respect to the ether linkage and R₂, R₃ and R₄ are hydrogen and R₁ is C₁-C₂₀ alkyl.

14. Compounds of formula (1) wherein OH is in the meta position with respect to the ether linkage and R₂, R₃ and R₄ are hydrogen and R₁ is C₁-C₂₀ alkyl.

15. Compounds of formula (1) wherein OH is in the para position with respect to the ether linkage and R₂ and R₄ are hydrogen and R₁ and R₃ are C₁-C₂₀ alkyl.

16. A process for the preparation of compounds according to one of claims 13 to 15 comprising reacting a substituted phenol with an ether substituted halogenphenol in the presence of alkali and a catalytically active quantity of copper or of a copper compound, then heating the resulting alkyloxybenzol compound in the presence of hydrogen halide and acid.

17. Compounds of formula (1) wherein OH is in the ortho position with respect to the ether linkage and R₁, R₂ and R₃ are hydrogen and R₄ is in the meta position with respect to the ether linkage and is C₁-C₆ alkyl carbonyl.

18. Compounds of formula (1) wherein OH is in the meta position with respect to the ether linkage and R₁, R₂ and R₃ are hydrogen and R₄ is in the para position with respect to the ether linkage and is C₁-C₆ alkyl carbonyl.

19. A process for the preparation of compounds according to claims 17 and 18 which comprises reacting an acyl chloride with a phenoxyphenol in the presence of activated zinc at a temperature of between 70°C to 80°C, then heating the resulting acyl compound at a temperature of 145°C to 150°C in the presence of aluminium chloride.

20. Compounds of formula (1) wherein OH is in the meta position with respect to the ether linkage and R₁, R₂ and R₃ are hydrogen and R₄ is in the para position with respect to the ether linkage and is C₁-C₂₀alkyl.

21. A process for the preparation of compounds according to claims 17 and 18 which comprises reacting an acyl chloride with a phenoxyphenol in the presence of activated zinc at a temperature of between 70°C to 80°C, then heating the resulting acyl compound at a temperature of 145°C to 150°C in the presence of aluminium chloride, then refluxing the resulting acylated phenol in the presence of amalgamated zinc, hydrochloric acid and a solvent such as toluene.