Key Results 1

General TST Expression for Rate Constant

$$k = \frac{k_{\rm B}T}{h} \frac{(q_{\rm ts^{\ddagger}}/V)}{\prod (q_{\rm react}/V)}$$
(1.1)

Factorised into Electronic and Nuclear Components

$$k = \frac{k_{\rm B}T}{h} \left(\frac{\left[(q_{\rm ts^{\dagger}}^{\rm trans}/V) q_{\rm ts^{\dagger}}^{\rm rot} q_{\rm ts^{\dagger}}^{\rm vib} \right]}{\prod \left[(q_{\rm react}^{\rm trans}/V) q_{\rm react}^{\rm rot} q_{\rm react}^{\rm vib} \right]} \right) e^{-\frac{(E_{\rm AB^{\ddagger}} - \sum E_{\rm react})}{k_{\rm B}T}}$$
(1.2)

Translational Partition Function

$$q^{\rm trans} = \frac{V}{\Lambda^3} \qquad \qquad \Lambda = \frac{h}{\sqrt{2\pi \, m \, k_{\rm B} T}} \tag{1.3}$$

Rotational Partition Function

$$q^{\text{rot}} = \frac{\sqrt{\pi}}{\sigma} \left(\frac{T}{\Theta_{A}}\right)^{1/2} \left(\frac{T}{\Theta_{B}}\right)^{1/2} \left(\frac{T}{\Theta_{C}}\right)^{1/2}$$
(1.4)

$$q^{\text{rot,linear}} = \frac{1}{\sigma} \frac{T}{\Theta}$$
 (1.5)

$$\Theta_{A/B/C} = \frac{\hbar^2}{2I_{A/B/C}k_B}$$

$$\Theta = \frac{\hbar^2}{2Ik_{\rm B}}$$

Vibrational Partition Function

$$q^{\text{vib}} = \prod_{i=1}^{n_{\text{mode}}} \frac{1}{1 - e^{-h\nu_i/k_{\text{B}}T}}$$
 (1.6)

Name	Symbol	Value
Boltzmann constant	$k_{ m B}$	$1.380649 \times 10^{-23} \text{ J K}^{-1}$
Planck constant	h	$6.62607015 \times 10^{-34} \text{ J s}$
hbar	ħ	$h/2\pi = 1.05457182 \times 10^{-34} \text{ J s}$
Avogadro's number	$N_{ m A}$	$6.02214076 \times 10^{23}$ particles/mole
speed of light	С	$29979245800~{ m cm}~{ m s}^{-1}$

Quantity	Reported Units	Required Units	Conversion process
Electronic energy, E	Hartree	J	$1E_{\rm h} = 4.35974472 \times 10^{-18} \rm J$
Zero-point vib'l energy, ZPVE	kcal/mol	J	Multiply by $4.184 \rightarrow kJ/mol$ Multiply by $1000 \rightarrow J/mol$ Divide by $N_A = 6.02214076 \times 10^{23}$
Mass, m	g mol ⁻¹ (amu)	kg	Divide by $1000 \rightarrow \text{kg/mol}$ Divide by $N_A = 6.02214076 \times 10^{23}$
Moment of inertia, I	amu Bohr²	kg m ²	Convert amu to kg as above Convert Bohr to m, 1 Bohr = $0.529177249 \times 10^{-10}$ m
Vibrational frequency, v	cm ⁻¹	s ⁻¹	Multiply by speed of light in cm s ⁻¹ $c = 29979245800 \text{ cm s}^{-1}$