

高等数学 (二) 综合练习

练习二:微分中值定理与洛必达法则

理学院朱健民教授

主要内容

名称	条	件	结 论
Fermat 费马	$f(x)$ 在 x_0 处可导并取极值		$f'(x_0) = 0$

主要内容

名称	条	件	结 论
Fermat 费马	$f(x)$ 在 x_0 处可导并取极值		$f'(x_0) = 0$
Rolle 洛尔	f(x), g(x) 在 [a,b] 上连续, (a,b) 内可导,	f(a) = f(b)	f'(c) = 0

主要内容

名称	条	件	结论
Fermat 费马	$f(x)$ 在 x_0 处可导并取极值		$f'(x_0)=0$
Rolle 洛尔	f(x), g(x) 在 [a,b] 上连续, (a,b) 内可导,	f(a) = f(b)	f'(c) = 0
Lagrange 拉格朗日		f(b) - f(a) = f'(c)(b - a)	

主要内容

名称	条	件	结论
Fermat 费马	$f(x)$ 在 x_0 处可导并取极值		$f'(x_0)=0$
Rolle 洛尔	f(x), g(x) 在 [a,b] 上连续, (a,b) 内可导,	f(a) = f(b)	f'(c) = 0
Lagrange 拉格朗日		f(b) - f(a) = f'(c)(b - a)	
Cauchy 柯西		$g'(x) \neq 0$	$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$

主要内容

● 洛必达法则

定理1 $\left(\frac{0}{0}\right)$ 设

(1)
$$f(x)$$
, $g(x)$ 在 $(a, a + \eta)$ $(\eta > 0)$ 内可微, 且 $g'(x) \neq 0$;

$$(2) \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} g(x) = 0$$
;

(3)
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \ (|l| < \infty \text{ or } l = \infty)$$
, \mathbb{N}

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} .$$

主要内容

● 洛必达法则

定理2 $\left(\frac{\infty}{\infty}\right)$ 设

(1)
$$f(x)$$
, $g(x)$ 在 $(a, a + \eta)$ $(\eta > 0)$ 内可微, 且 $g'(x) \neq 0$;

(2)
$$\lim_{x \to a^{+}} f(x) = \infty$$
, $\lim_{x \to a^{+}} g(x) = \infty$;

(3)
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \ (|l| < \infty \text{ or } l = \infty)$$
, \mathbb{N}

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} .$$

例题讲解

1. 已知 $f''(x_0)$ 存在,则

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}$$

$$= \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0 - h)}{2h}$$

$$= \lim_{h \to 0} \frac{f''(x_0 + h) + f''(x_0 - h)}{2}$$

$$= \frac{1}{2} [f''(x_0) + f''(x_0)] = f''(x_0)$$

上述计算过程对吗?

2. 计算下列极限

$$(1) \lim_{x\to 1} (\frac{1}{1-x} - \frac{1}{\ln x})$$

(3)
$$\lim_{x\to\infty} \left(\sin\frac{1}{x} + \cos\frac{1}{x}\right)^x$$

$$(5) \lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4}$$

$$(2) \lim_{x\to+\infty} x(\frac{\pi}{2} - \arctan x)$$

(4)
$$\lim_{x\to 0} \frac{\cos x (e^{\sin x} - 1)^2}{\tan^2 x}$$

(6)
$$\lim_{x\to 0} \frac{\tan(\tan x) - \sin(\sin x)}{x^3}$$

3. 设
$$f(x) = \begin{cases} \frac{\phi(x) - \cos x}{x}, & x \neq 0, \\ a, & x = 0, \end{cases}$$
, 其中 $\phi(x)$ 具有二阶导数,且 $\phi(0) = 1$, $\phi'(0) = 0$, $f'(0)$ 存在,求 $f'(0)$.

4.设f(x)具有二阶导数,在x = 0的某邻域内有 $f(x) \neq 0$,且

$$\lim_{x \to 0} \frac{f(x)}{x} = 0, f''(0) = 4, 求极限 \lim_{x \to 0} \left[1 + \frac{f(x)}{x} \right]^{\frac{1}{x}}.$$

5. 设f(x) 在[0,1]上连续,在 (0,1)内可导,且 f(0) = f(1) = 0, f(1/2) = 1.

证明:存在 $\xi \in (0,1)$ 使得 $f'(\xi) = 1$.

- 6.设f(x) 可导,证明:在f(x)的两个零点之间一定有 $\lambda f(x) + f'(x)$ 的零点,其中 λ 为任意常数.
- 7.设f(x)在[0,1]上二次可导,且f(0) = f(1) = 0.证明:存在 $\xi \in (0,1)$,使得 $f''(\xi) = \frac{2f'(\xi)}{1-\xi}$.