Proposal: A Cost-Effective AI Computing Network Solution with Flexilink and FPGA-Based RDMA Integration

1. Introduction: Al Computing Network and the Need for Two Networks

Al data centers require **high-performance computing (HPC) networks** to support large-scale deep learning training and inference tasks. These networks must handle two critical types of data traffic:

- 1. Computing Network High-speed, low-latency inter-GPU communication for distributed Al training.
- 2. **Data Network** Large-scale data storage and retrieval, supporting datasets, model weights, and inference results.

Current solutions include:

- **NVIDIA InfiniBand**: The de facto high-performance computing network, offering ultra-low latency and high bandwidth with **proprietary RDMA technology**.
- Open RDMA over Converged Ethernet (RoCE): An alternative to InfiniBand that runs on standard Ethernet infrastructure, reducing cost while maintaining high performance.

Both networks play distinct roles:

- Computing Network (InfiniBand or RoCE) handles Al workloads, where GPUs must synchronize model parameters at high speeds.
- Data Network (Ethernet or NVMe-oF) ensures efficient data retrieval and model storage.

Our goal is to provide a **cost-effective alternative** that maintains low latency while reducing deployment costs, making Al computing more accessible.

2. RDMA Standards, Open Protocols, and Chip Suppliers

Remote Direct Memory Access (RDMA) enables direct memory-to-memory communication between devices **without CPU intervention**, significantly reducing latency and increasing bandwidth efficiency.

RDMA Protocols & Standards:

- InfiniBand (IBTA Standard): Proprietary solution controlled by NVIDIA (Mellanox).
- RoCE (RDMA over Converged Ethernet):
 - RoCE v1 Layer 2 Ethernet-based RDMA, limited to local networks.
 - RoCE v2 Layer 3 (IP-based) RDMA, enabling long-distance scalability.
- iWARP: An alternative RDMA implementation over TCP/IP but with higher latency.

Major RDMA Chip Suppliers:

Supplier	RDMA Solutions	Notes
NVIDIA (Mellanox)	InfiniBand, RoCE (ConnectX-7, Quantum-2)	Market leader, but high cost
Broadcom	RoCE-based NICs	Open alternative, lower cost

Supplier	RDMA Solutions	Notes
Intel	Ethernet RDMA (E810 series)	Moderate performance, open- standard
Marvell	RoCE & iWARP NICs	Emerging player
AMD/Xilinx	FPGA-based RDMA acceleration	Programmable and customizable

By leveraging **open RDMA standards like RoCE**, we can build an alternative to InfiniBand using **FPGA-based networking solutions** with Flexilink's dynamic Time-Division Multiplexing (TDM) approach.

3. Flexilink's FPGA-Based Solution for Al Computing Networks

Flexilink, as a **low-latency networking protocol**, was originally developed for real-time multimedia streaming. It integrates a dynamic **TDM-based scheduling mechanism**, which provides guaranteed quality for time-sensitive traffic while also accommodating best-effort traffic.

How Flexilink Works for Al Networks

- TDM-like scheduling: Ensures predictable latency and bandwidth allocation for critical Al workloads.
- **Hybrid traffic management**: Time-critical Al synchronization traffic is prioritized, while other background tasks (e.g., storage access) are handled in available slots.
- FPGA-based acceleration: Our FPGA network processing unit (NPU) provides hardwareoptimized packet handling with deterministic timing.

Our Proposed Solution

1. FPGA-Based RoCE NICs:

- Implement RDMA acceleration with custom Flexilink scheduling.
- Reduce latency by optimizing memory access patterns in Al workloads.
- Offer **low-cost**, **high-performance alternatives** to NVIDIA's proprietary network cards.

2. FPGA-Based RoCE Switches:

- **Custom soft-core switching** for efficient packet forwarding in Al clusters.
- Supports 100GbE / 200GbE RoCE v2, integrated with Flexilink's scheduling.
- Lower cost vs. traditional RoCE switches (e.g., Broadcom Tomahawk).

3. Integration with Al Compute Infrastructure:

- Works with ICUBE AI servers and other AI compute nodes.
- Provides NCCL-compatible networking for deep learning frameworks like TensorFlow and PyTorch.

4. Advantages: Performance, Cost, and Market Differentiation

Performance Benefits

• Lower latency than standard Ethernet: Flexilink ensures sub-microsecond timing precision, improving GPU-to-GPU synchronization.

- Better resource utilization: Dynamic time slot allocation prevents congestion and packet loss.
- **Deterministic data transfer**: Unlike traditional Ethernet, which suffers from jitter, Flexilink ensures **consistent end-to-end latency**.

Cost Savings

- 30-50% cheaper than NVIDIA's InfiniBand by leveraging FPGA-based RDMA NICs & switches.
- Standardized Ethernet infrastructure means compatibility with existing data center hardware, avoiding costly vendor lock-in.

Market Differentiation

- **Designed for mid-sized AI data centers** that need high-performance networking but cannot afford the premium cost of InfiniBand.
- Flexible architecture that supports both RDMA traffic and best-effort traffic in a unified network.
- Integration with ICUBE AI compute servers, providing a complete AI cluster solution.

5. Conclusion: A New Path for Cost-Effective Al Networking

The Al computing industry requires high-performance yet **cost-effective** networking solutions. While **InfiniBand dominates the high-end market**, its proprietary nature and high costs create a gap in the market.

Our **FPGA-based Flexilink solution** offers: **V Lower-cost AI networking alternative** to InfiniBand.

- Optimized RDMA performance via RoCE (100GbE / 200GbE).
- Seamless integration with AI frameworks (NCCL, GPUDirect).
- Dynamic traffic allocation using TDM principles, reducing congestion.

By combining Flexilink's low-latency protocol, FPGA-accelerated RoCE, and ICUBE Al compute servers, we can deliver a high-performance Al computing network at a fraction of the cost of existing solutions.

Next Steps:

- Work with ICUBE to integrate RoCE RDMA support.
- Develop FPGA-based RoCE NICs and switches.
- Benchmark Flexilink against InfiniBand and standard RoCE to validate performance.

Appendix: Key Terms

- RoCE (RDMA over Converged Ethernet): An RDMA protocol that runs over Ethernet, allowing direct memory access between servers without CPU intervention.
- RDMA (Remote Direct Memory Access): A networking technology that enables fast data transfer with low latency.
- NCCL (NVIDIA Collective Communications Library): A GPU communication library used for Al
 training, requiring RDMA compatibility.

• Flexilink: A TDM-based network protocol designed for low-latency multimedia and Al applications.

• FPGA (Field-Programmable Gate Array): A customizable hardware platform for accelerating networking tasks.

Proposal Summary

Goal: Develop a low-cost, high-performance Al network using Flexilink + FPGA-based RoCE.

Impact: Reduce Al cluster networking costs while maintaining **RDMA-grade performance**.

Next Steps: Collaborate with ICUBE, prototype FPGA RoCE NICs, and benchmark against existing Al networking solutions.

Would you like me to refine this further or add technical diagrams for clarity? 🚀