APPENDIX A

Let:

 n_1 = real index of refraction of air

 n_2 = real index of refraction of photoresist

 n_3 = real index of refraction of ARL

 n_4 = real index of refraction of substrate

 k_1 = imaginary index of refraction of air

 k_2 = imaginary index of refraction of photoresist

 k_3 = imaginary index of refraction of ARL

 k_4 = imaginary index of refraction of substrate

t = ARL thickness

m = odd integer

 λ = wavelength of incident radiation

 I_3 = intensity of beam #3

 I_5 = intensity of beam #5

 I_1 = intensity of beam #1

 T_{12} = transmittance from air to photoresist

 R_{23} = reflectance from ARL in photoresist

 a_2 = absorption factor in photoresist

 T_{23} = transmittance from photoresist to ARL

 a_3 = absorption factor in ARL

 R_{34} = reflectance from substrate in ARL

 $\triangle \emptyset$ = change in phase angle

Using equations (1) and (2):

$$n_3 \cdot 2t = \frac{1}{2} (m\lambda)$$
 $m = 3 (540^\circ)$ (1)

for $|n_2| < |n_3| < |n_4|$

 $I_3 = I_5 \tag{2}$

$$I_3 = I_1 \cdot T_{12} \cdot R_{23} \cdot a_2$$

$$I_5 = I_1 \cdot T_{12} \cdot a_2 \cdot T_{23} \cdot a_3 \cdot R_{34} \cdot a_3 \cdot T_{23}$$

Therefore, because $I_3 = I_5$

$$R_{23} = T_{23} \cdot a_3 \cdot R_{34} \cdot a_3 \cdot T_{23}$$

$$R_{23} = (T_{23})^2 \cdot (a_3)^2 \cdot R_{34}$$

These operations can be satisfied for n_2 , n_3 , n_4 , t, λ , k_2 , k_3 , and k_4 where

$$R_{23} = \frac{(n_2 - n_3)^2 + (k_2 - k_3)^2}{(n_2 + n_3)^2 + (k_2 + k_3)^2}$$

$$T_{23} = 1 - R_{23}$$

$$R_{34} = \frac{(n_3 - n_4)^2 + (k_3 - k_4)^2}{(n_3 + n_4)^2 + (k_3 + k_4)^2}$$

$$(a_3)^2 = \exp - 2 \left(\frac{2nk_3}{\lambda} \cdot 2t \right)$$

For 248 nm with A1 substrate, $n_2 = 1.8$, $k_2 = 0.011$

ARL
$$n_3 = 2.3$$
, $k_3 = 0.33$, $\tau = 700 - 850$ Å

$$A\ell$$
 - Si $n_4 = 0.089$, $k_4 = 2.354$

$$R_{23} = 0.0197$$

$$(T_{23})^2 = 0.961$$

$$R_{34} = 0.714$$

$$(a_3)^2 = 0.0814$$

$$R_{23} = 0.0197$$

$$(T_{23})^2 \cdot (a_3)^2 R_{34} = 0.0559$$