Probabilistic dimensionality reduction

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata" a.a. 2024-2025

Giorgio Gambosi

1 Factor Analysis

Factor analysis is one of the simplest and most fundamental generative latent models, the first one we consider here where both the observed variable \mathbf{x} and the latent variable \mathbf{z} are real. At the same time, the model is also simple enough to make it possible to make it feasible to compute the conditional probability $p(\mathbf{z}|\mathbf{x})$, and this Hypothesis 3 not holding.

In particular, the model assume that each element $\mathbf{x}_i \in \mathbb{R}^d$ in the observable dataset is related to the value of a latent variable (also called a factor here) $\mathbf{z}_i \in \mathbb{R}^p$ through:

- a linear projection from the p-dimensional space \mathbb{R}^p of \mathbf{z} to the d-dimensional space \mathbb{R}^d of \mathbf{x}
- a translation of the result within \mathbb{R}^d
- an additional (smaller) random translation within \mathbb{R}^d

This is specified by the equation

$$x = Wz + \mu + \epsilon$$

where (see Figure 1)

- $\mathbf{z} \in \mathbb{R}^p$ is a latent variable whose distribution is assumed gaussian with 0 mean and unitary covariance matrix: hence $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$
- $\mathbf{W} \in \mathbb{R}^{d imes p}$ is a linear projection of any point in \mathbb{R}^p to a point in \mathbb{R}^d
- $\mu \in \mathbb{R}^d$ is a translation of points in \mathbb{R}^d
- $\epsilon \in \mathbb{R}^d$ is a gaussian noise for the final random translation: noise covariance on different dimensions is assumed to be 0. That is, its distribution is $\mathcal{N}(\epsilon; \mathbf{0}, \mathbf{\Psi})$, where $\mathbf{\Psi} \in \mathbb{R}^{d \times d}$ is a diagonal matrix, with $\mathbf{\Psi}_{ii}$ the noise variance along the *i*-th dimension.

Background on Multivariate Gaussian Distribution

Consider two random variables $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{z} \in \mathbb{R}^p$ and let

$$\mathbf{y} = \begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} \in \mathbb{R}^{d+p}$$

Figure 1: The latent variables ϵ and z are normally distributed on the observed and the latent space, respectively: they can be both seen as random noise $p(\epsilon) = \mathcal{N}(\epsilon; 0, \Psi)$ and $p(z) = \mathcal{N}(z; 0, I)$. The observed variable x is deterministically dependent from them as $x = Wz + \mu + \epsilon$. However, a probabilistic dependence from z alone can be expressed through the conditional distribution $p(x|z) = \mathcal{N}(x|z; Wz + \mu, \Psi)$.

Assume that x and z are jointly multivariate Gaussian; hence, the variable y has a multivariate Gaussian distribution, i.e., $y \sim \mathcal{N}(\mu_y, \Sigma_y)$. The mean and covariance of such distribution can be decomposed as:

$$m{\mu}_{ ext{y}} = egin{bmatrix} m{\mu}_{ ext{x}} \\ m{\mu}_{ ext{z}} \end{bmatrix} \in \mathbb{R}^{d+p}$$

$$\Sigma_{ ext{y}} = egin{bmatrix} \Sigma_{ ext{x}} & \Sigma_{ ext{xz}} \\ \Sigma_{ ext{zx}} & \Sigma_{ ext{z}} \end{bmatrix} \in \mathbb{R}^{(d+p) imes (d+p)},$$

where $\mu_{\mathbf{x}} \in \mathbb{R}^d$, $\mu_{\mathbf{y}} \in \mathbb{R}^p$, $\Sigma_{\mathbf{x}} \in \mathbb{R}^{d \times d}$, $\Sigma_{\mathbf{z}} \in \mathbb{R}^{p \times p}$, $\Sigma_{\mathbf{xz}} \in \mathbb{R}^{d \times p}$, and $\Sigma_{\mathbf{zx}} = \Sigma_{\mathbf{xz}}^T \in \mathbb{R}^{p \times d}$.

It can be shown that the marginal distributions $p(\mathbf{x})$ and $p(\mathbf{z})$ are Gaussian distributions with $E[\mathbf{x}] = \boldsymbol{\mu}_{\mathbf{x}}$ and $E[\mathbf{z}] = \boldsymbol{\mu}_{\mathbf{z}}$. The covariance matrix of the joint distribution can be simplified as:

$$\Sigma_{\mathbf{y}} = \mathbb{E}_{\mathbf{y}} \left[(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})^T \right] = \begin{bmatrix} \mathbb{E}_{\mathbf{x}} \left[(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^T \right], \mathbb{E}_{\mathbf{x},\mathbf{z}} \left[(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{z} - \boldsymbol{\mu}_{\mathbf{z}})^T \right] \\ \mathbb{E}_{\mathbf{x},\mathbf{z}} \left[(\mathbf{z} - \boldsymbol{\mu}_{\mathbf{z}})(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^T \right], \mathbb{E}_{\mathbf{z}} \left[(\mathbf{z} - \boldsymbol{\mu}_{\mathbf{z}})(\mathbf{z} - \boldsymbol{\mu}_{\mathbf{z}})^T \right] \end{bmatrix}$$

This shows that:

$$\begin{split} p(\mathbf{x}) &= \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}), \\ p(\mathbf{z}) &= \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}}). \end{split}$$

According to the definition of the multivariate Gaussian distribution, the conditional distribution is also Gaussian, i.e., $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}|\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{z}})$ where:

$$\begin{aligned} \boldsymbol{\mu}_{\mathbf{x}|\mathbf{z}} &= \boldsymbol{\mu}_{\mathbf{x}} + \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}\boldsymbol{\Sigma}_{\mathbf{z}}^{-1}(\mathbf{z} - \boldsymbol{\mu}_{\mathbf{z}}) \in \mathbb{R}^{d} \\ \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{z}} &= \boldsymbol{\Sigma}_{\mathbf{x}} - \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}\boldsymbol{\Sigma}_{\mathbf{z}}^{-1}\boldsymbol{\Sigma}_{\mathbf{z}\mathbf{x}} = \boldsymbol{\Sigma}_{\mathbf{x}} - \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}\boldsymbol{\Sigma}_{\mathbf{z}}^{-1}\boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}^{T} \in \mathbb{R}^{d \times d} \end{aligned}$$

and likewise for $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}})$:

$$\begin{aligned} \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}} &= \boldsymbol{\mu}_{\mathbf{z}} + \boldsymbol{\Sigma}_{\mathbf{z}\mathbf{x}}\boldsymbol{\Sigma}_{\mathbf{x}}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}) \in \mathbb{R}^{p}, \\ \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}} &= \boldsymbol{\Sigma}_{\mathbf{z}} - \boldsymbol{\Sigma}_{\mathbf{z}\mathbf{x}}\boldsymbol{\Sigma}_{\mathbf{x}}^{-1}\boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}} = \boldsymbol{\Sigma}_{\mathbf{z}} - \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}^{T}\boldsymbol{\Sigma}_{\mathbf{x}}^{-1}\boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}} \in \mathbb{R}^{p \times p}. \end{aligned}$$

All marginal and conditional distributions turn out to be Gaussian also under the following different hypotheses:

- 1. **z** is normally distributed $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}})$
- 2. there exist $\mathbf{A} \in \mathbb{R}^{d \times p}$, $\mathbf{b} \in \mathbb{R}^d$ such that the conditional distribution of \mathbf{x} given \mathbf{z} is a gaussian $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{A}\mathbf{z} + \mathbf{b}, \Sigma_{\mathbf{x}\mathbf{z}})$

this is denoted as linear gaussian model and, in this framework, both the marginal distribution of \mathbf{z} and the inverse conditional distribution of $\mathbf{z}|\mathbf{x}$ are also Gaussian. In particular

• For the marginal distribution, $p(\mathbf{x}) = \mathcal{N}(\pmb{\mu}_{\mathbf{x}}, \Sigma_{\mathbf{x}})$, with

$$\mu_{x} = A\mu_{z} + b$$

$$\Sigma_{x} = \Sigma_{xz} + A\Sigma_{z}A^{T}$$

• For the conditional distribution, $\mathbf{z}|\mathbf{x} = \mathcal{N}(\pmb{\mu}_{\mathbf{z}|\mathbf{x}}, \Sigma_{\mathbf{z}|\mathbf{x}}),$ with

$$\begin{split} \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}} &= (\boldsymbol{\Sigma}_{\mathbf{z}}^{-1} + \mathbf{A}^T \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}^{-1} \mathbf{A})^{-1} (\mathbf{A}^T \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}^{-1} (\mathbf{x} - \mathbf{b}) + \boldsymbol{\Sigma}_{\mathbf{z}}^{-1} \boldsymbol{\mu}_{\mathbf{x}}) \\ \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}} &= (\boldsymbol{\Sigma}_{\mathbf{z}}^{-1} + \mathbf{A}^T \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{z}}^{-1} \mathbf{A})^{-1} \end{split}$$

The Factor Analysis Model

As already stated, the prior distribution of the latent variable is assumed to be a multivariate Gaussian distribution.

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$

and the observed value x is obtained from z through

- 1. the linear projection of **z** by **W** $\in \mathbb{R}^{d \times p}$,
- 2. applying some linear translation $\mu \in \mathbb{R}^d$, and
- 3. adding a Gaussian noise $\epsilon \in \mathbb{R}^d$ with mean 0 and covariance $\Psi \in \mathbb{R}^{d \times d}$.

As a consequence, the conditional distribution of x given z is

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

Factor Analysis is then a linear Gaussian model with $\mu_z = 0$, $\Sigma_z = I$, A = W, $b = \mu$, $\Sigma_{x|z} = \Psi$. By applying its properties, we get:

- the marginal distribution, $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \boldsymbol{\Psi})$
- the inverse conditional distribution, $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mathbf{x}; \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}})$, with

$$\begin{split} & \Sigma_{\mathbf{z}|\mathbf{x}} = \left(\mathbf{I} + \mathbf{W}^T \mathbf{\Psi}^{-1} \mathbf{W}\right)^{-1} \\ & \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}} = \Sigma_{\mathbf{z}|\mathbf{x}} \left(\mathbf{W}^T \mathbf{\Psi}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right) \end{split}$$

This distribution can be exploited to map points onto the latent space. In particular, the conditional expectation

$$\mathop{\mathbb{E}}_{p(\mathbf{z}|\mathbf{x})}[\mathbf{z}] = (\mathbf{I} + \mathbf{W}^T \mathbf{\Psi}^{-1} \mathbf{W})^{-1} \mathbf{W}^T \mathbf{\Psi}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

can be assumed as the point in latent space corresponding to x.

Maximization of likelihood in FA

The log-likelihood of the observed dataset in the model is

$$\log p(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \boldsymbol{\Psi}) = \sum_{i=1}^{n} \log p(\mathbf{x}_{i}|\mathbf{W}, \boldsymbol{\mu}, \boldsymbol{\Psi}) = \sum_{i=1}^{n} \log \mathcal{N}(\mathbf{x}_{i}; \boldsymbol{\mu}, \boldsymbol{\Psi} + \mathbf{W}\mathbf{W}^{T})$$

$$= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log|\boldsymbol{\Psi} + \mathbf{W}\mathbf{W}^{T}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{\Psi} + \mathbf{W}\mathbf{W}^{T})^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu})^{T}$$

Setting the gradient wrt μ to 0 results into

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

However, no closed form solution for W and Ψ can be obtained by setting the corresponding gradients to 0. Iterative techniques such as EM can then be applied to maximize the log-likelihood with respect to these parameters.

Expectation-Maximization for FA

By definition, the algorithm operates by alternatively computing (in the E-step)

$$p(\boldsymbol{Z}|\mathbf{X};\boldsymbol{\theta}^{(k)}) = \sum_{i=1}^{n} p(\mathbf{z}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}^{(k)})$$

given the parameter value $\boldsymbol{\theta}^{(k)}$ and then (in the M-step) maximizing

$$\mathbb{E}_{p(\boldsymbol{Z}|\mathbf{X};\boldsymbol{\theta}^{(k)})}[\log p(\mathbf{X},\boldsymbol{Z};\boldsymbol{\theta})] = \sum_{i=1}^{n} \mathbb{E}_{p(\mathbf{z}_{i}|\mathbf{x}_{i};\boldsymbol{\theta}^{(k)})}[\log p(\mathbf{x}_{i},\mathbf{z}_{i};\boldsymbol{\theta})]$$

with respect to the parameter $\boldsymbol{\theta}$, obtaining the new value $\boldsymbol{\theta}^{(k+1)}$.

M-step Let us first observe that in the case of FA, we have $\theta = (W, \mu, \Psi)$.

For what regards maximization wrt μ , we already observed that the optimum value for such parameter is

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

regarding maximization wrt W and Ψ , we skip some technical details, stating, without proof, that

$$\begin{split} \overline{\mathbf{W}} &= \left(\sum_{i=1}^{n} \overline{\mathbf{x}}_{i} \boldsymbol{\mu}_{\mathbf{z}_{i} \mid \mathbf{x}_{i}}\right) \left(\sum_{i=1}^{n} \boldsymbol{\mu}_{\mathbf{z}_{i} \mathbf{z}_{i}^{T} \mid \mathbf{x}_{i}}\right)^{-1} \\ \overline{\boldsymbol{\Psi}} &= \frac{1}{n} \text{diag} \left(\mathbf{S} - \mathbf{W} \sum_{i=1}^{n} \boldsymbol{\mu}_{\mathbf{z}_{i} \mid \mathbf{x}_{i}} \overline{\mathbf{x}}_{i}^{T}\right) \end{split}$$

where

1. $\mu_{\mathbf{z}_i|\mathbf{x}_i}$ and $\mu_{\mathbf{z}_i\mathbf{z}_i^T|\mathbf{x}_i}$ are the expectations wrt distribution $p(\mathbf{z}_i|\mathbf{x}_i;\boldsymbol{\theta}^{(k)})$ of \mathbf{z}_i and $\mathbf{z}_i\mathbf{z}_i^T$, respectively

$$oldsymbol{\mu}_{\mathbf{z}_i | \mathbf{x}_i} \overset{\Delta}{=} \mathop{\mathbb{E}}_{p(\mathbf{z}_i | \mathbf{x}_i; oldsymbol{ heta}^{(k)})}[\, \mathbf{z}_i \,] \ oldsymbol{\mu}_{\mathbf{z}_i \mathbf{z}_i^T | \mathbf{x}_i} \overset{\Delta}{=} \mathop{\mathbb{E}}_{p(\mathbf{z}_i | \mathbf{x}_i; oldsymbol{ heta}^{(k)})}[\, \mathbf{z}_i \mathbf{z}_i^T \,]$$

2. $\bar{\mathbf{x}}_i$ is the difference between \mathbf{x}_i and the centroid $\bar{\mathbf{x}}$

$$\bar{\mathbf{x}}_i \stackrel{\Delta}{=} \mathbf{x}_i - \bar{\mathbf{x}}$$

- 3. the diag operator sets to 0 all non diagonal elements
- 4. S is the scatter matrix of X

$$\mathbf{S} \stackrel{\Delta}{=} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{x}_i - \overline{\mathbf{x}})^T$$

E-step For the M-step, the conditional expectations $\mu_{\mathbf{z}_i|\mathbf{x}_i}$ and $\mu_{\mathbf{z}_i\mathbf{z}_i^T|\mathbf{x}_i}$ are computed in the E-step. They can be shown to be

$$\begin{split} \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}} &= \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}} \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}} \mathbf{W}^T \boldsymbol{\Psi}^{-1} (\mathbf{x} - \overline{\mathbf{x}}) \\ \boldsymbol{\mu}_{\mathbf{z}\mathbf{z}^T|\mathbf{x}} &= \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}} \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}}^T + \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}} \end{split}$$

where, as shown above,

$$\Sigma_{\mathbf{z}|\mathbf{x}} = \left(\mathbf{I} + \mathbf{W}^T \mathbf{\Psi}^{-1} \mathbf{W}\right)^{-1}$$

The EM algorithm in factor analysis is then summarized as follows. The centroid of data, $\bar{\mathbf{x}}$, is computed and, from it, all $\bar{\mathbf{x}}_i$. Then, at every step k, we iteratively solve as:

for
$$i = 1, ..., n$$
:
$$\mu_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k)} \leftarrow \Sigma_{\mathbf{z} | \mathbf{x}}^{(k-1)} (\mathbf{W}^{(k-1)})^{T} (\mathbf{\Psi}^{(k-1)})^{-1} \overline{\mathbf{x}}_{i}$$

$$\mu_{\mathbf{z}_{i} \mathbf{z}_{i}^{T} | \mathbf{x}_{i}}^{(k)} \leftarrow \mu_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k-1)} \mu_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k-1)^{T}} + \Sigma_{\mathbf{z} | \mathbf{x}}^{(k-1)}$$

$$\mathbf{W}^{(k)} \leftarrow \left(\sum_{i=1}^{n} \overline{\mathbf{x}}_{i} (\boldsymbol{\mu}_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k)})^{T}\right) \left(\sum_{i=1}^{n} \boldsymbol{\mu}_{\mathbf{z}_{i} \mathbf{z}_{i}^{T} | \mathbf{x}_{i}}^{(k)}\right)^{-1}$$

$$\boldsymbol{\Psi}^{(k)} \leftarrow \frac{1}{n} \operatorname{diag} \left(\mathbf{S} - \mathbf{W}^{(k)} \sum_{i=1}^{n} \boldsymbol{\mu}_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k)} \overline{\mathbf{x}}_{i}^{T}\right)$$

$$\Sigma_{\mathbf{z} | \mathbf{x}}^{(k)} \leftarrow \left(\mathbf{I} + (\mathbf{W}^{(k)})^{T} (\boldsymbol{\Psi}^{(k)})^{-1} \mathbf{W}^{(k)}\right)^{-1}$$

until convergence.

2 Probabilistic PCA

Probabilistic PCA is defined through a simplification of the factor analysis model. In particular, all the rest being equal, the noise covariance matrix is assumed to have equal variance for all dimensions. That is,

$$\Psi = \sigma^2$$

The resulting model is described graphically in Figure 2.

Figure 2: The latent variables ϵ and z are normally distributed on the observed and the latent space, respectively: they can be both seen as random noise $p(\epsilon; \sigma^2) = \mathcal{N}(\epsilon; \mathbf{0}, \sigma^2 \mathbf{I})$ and $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$. The observed variable \mathbf{x} is deterministically dependent from them as $\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$. However, a probabilistic dependence from \mathbf{z} alone can be expressed through the conditional distribution $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \mathbf{I}\sigma^2)$.

Expectation-Maximization for Probabilistic PCA

Clearly, Hypothesis 3 does not hold also in this case, and expectation maximization can still be applied to maximize the log-likelihood of the observed dataset X wrt the parameters W, μ , σ^2 .

Being PPCA a particular case of factor analysis, the E and M steps can be derived from the ones defined for FA, substituting the new noise covariance matrix $\sigma^2 I$ to the more general Ψ .

This results in the following:

$$\begin{aligned} \boldsymbol{\mu}_{\mathbf{z}_i|\mathbf{x}_i} &= \beta \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}} \mathbf{W}^T \overline{\mathbf{x}}_i \\ \boldsymbol{\mu}_{\mathbf{z}\mathbf{z}^T|\mathbf{x}} &= \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}} \boldsymbol{\mu}_{\mathbf{z}|\mathbf{x}}^T + \boldsymbol{\Sigma}_{\mathbf{z}|\mathbf{x}} \end{aligned}$$

where $\beta = \frac{1}{\sigma^2}$ is the **precision**.

It can be proved that the algorithm behaves, at each step, as follows (d is the dimensionality, that is the size of data items).

for
$$i = 1, ..., n$$
:
$$\mu_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k)} \leftarrow \beta^{(k-1)} \sum_{\mathbf{z} | \mathbf{x}}^{(k-1)} (\mathbf{W}^{(k-1)})^{T} \mathbf{x}_{i}$$

$$\mu_{\mathbf{z}_{i} \mathbf{z}_{i}^{T} | \mathbf{x}_{i}}^{(k)} \leftarrow \mu_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k-1)} \mu_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k-1)^{T}} + \sum_{\mathbf{z} | \mathbf{x}}^{(k-1)}$$

$$\mathbf{W}^{(k)} \leftarrow \left(\sum_{i=1}^{n} \mathbf{x}_{i} (\boldsymbol{\mu}_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k)})^{T} \right) \left(\sum_{i=1}^{n} \boldsymbol{\mu}_{\mathbf{z}_{i} \mathbf{z}_{i}^{T} | \mathbf{x}_{i}}^{(k)} \right)^{-1}$$

$$\beta^{(k)} \leftarrow nd \left(\sum_{i=1}^{n} \left(\bar{\mathbf{x}}_{i} \bar{\mathbf{x}}_{i}^{T} - 2\boldsymbol{\mu}_{\mathbf{z}_{i} | \mathbf{x}_{i}}^{(k)} \mathbf{W}^{(k)} \bar{\mathbf{x}}_{i} + \operatorname{tr} \left(\boldsymbol{\mu}_{\mathbf{z}_{i} \mathbf{z}_{i}^{T} | \mathbf{x}_{i}}^{(k)} (\mathbf{W}^{(k)})^{T} \mathbf{W}^{(k)} \right) \right) \right)^{-1}$$

Maximization of the observed set log-likelihood

The probabilistic PCA model also makes it possible to analytically maximize its likelihood directly and, as a consequence, to express the linear projection of any D-dimensional point onto the d-dimensional subspace in a closed form.

The log-likelihood of the dataset in the model is

$$\log p(\mathbf{X}; \mathbf{W}, \boldsymbol{\mu}, \sigma^2) = \sum_{i=1}^n \log p(\mathbf{x}_i; \mathbf{W}, \boldsymbol{\mu}, \sigma^2)$$
$$= -\frac{nD}{2} \log(2\pi) - \frac{n}{2} \log |\Sigma_{\mathbf{x}}| - \frac{1}{2} \sum_{i=1}^n (\mathbf{x}_i - \boldsymbol{\mu}) \Sigma_{\mathbf{x}}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})^T$$

Maximization wrt μ can be easily done by setting the corresponding gradient to zero, which results into

$$\boldsymbol{\mu}^* = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$$

Maximization wrt **W** is more complex: however, a closed form solution exists:

$$\mathbf{W}^* = \mathbf{U}_d (\mathbf{L}_d - \sigma^2 \mathbf{I})^{1/2}$$

where

• U_d is the $D \times d$ matrix whose columns $1, \ldots, d$ are the eigenvectors corresponding to the d largest eigenvalues of the scatter matrix

$$\mathbf{S} \stackrel{\Delta}{=} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

• L_d is the $d \times d$ diagonal matrix of the largest eigenvalues $\lambda_1, \ldots, \lambda_d$

The columns of \mathbf{W}^* are the eigenvectors $1, \ldots, d$, each i scaled by the square root of the difference $\lambda_i - \sigma^2$.

Indeed, any rotation of \mathbf{W}^* in latent space is a solution of the likelihood maximization problem. Hence, the general solution is given by

$$\mathbf{W}^* = \mathbf{U}_d (\mathbf{L}_d - \sigma^2 \mathbf{I})^{1/2} \mathbf{R}$$

where **R** is an arbitrary $d \times d$ orthogonal matrix, corresponding to a rotation in \mathbb{R}^d . For what concerns the maximization wrt σ^2 , it results

$$\sigma^2 = \frac{1}{D-d} \sum_{i=d+1}^{D} \lambda_i$$

Since eigenvalues provide measures of the dataset variance along the corresponding eigenvector direction, this corresponds to the average variance along the discarded directions.