

1. Inhaltsverzeichnis

1.	Inhaltsverzeichnis	2
2.	Mathematik	4
2.1.	Allgemeines	4
2.1.1.	Wichtige Winkel	4
2.1.2.	Allgemeine Rechengesetze	4
2.1.3.	Rechenregeln e-Funktion u. Potenzen	4
2.1.4.	Rechenregeln Logarithmus	5
2.1.5.	2er Potenzen	5
2.1.6.	"Mitternachtsformel" zum Lösen von quadratischen Gleichungen	5
2.1.7.	Wurzelrechnung	5
2.1.8.	Trigonometrische Funktionen	6
2.2.	Vektorrechnung	8
2.2.1.	Normieren eines Vektors	8
2.2.2.	Addition und Subtraktion von Vektoren	8
2.2.3.	Skalarprodukt (inneres Produkt)	
2.2.4.	Kreuzprodukt (nur bei 3 dimensionalen Vektoren möglich)	8
2.2.5.	Spatprodukt (Volumen des Parallelepipeds)	
2.2.6.	Projektion eines Vektors auf einen anderen	8
2.2.7.	Lineare Abhängigkeit bei Vektoren	9
2.2.8.	Bildung Orthonormalsystem (Gram-Schmidt)	9
2.3.	Matrizen	
2.3.1.	Addition und Subtraktion von Matrizen	10
2.3.2.	Multiplikation von Matrizen mit Skalaren	10
2.3.3.	Matrizenmultiplikation:	10
2.3.4.	Symmetrie von Matrizen	
2.3.5.	Determinanten	11
2.3.6.	Direktes Bestimmen (bis maximal 3x3 Matrix)	11
2.3.7.	Ausrechnen mit Gauß	11
2.3.8.	Transponierte einer Matrix	11
2.3.9.	Einheitsmatrix	
2.3.10.	Orthogonale Matrix	12
2.3.11.	Inverse Matrix bilden	12
2.3.12.	Reguläre/Singuläre Matrix	12
2.3.13.	Rang einer Matrix	
2.3.14.	Umformungen die den Rang nicht ändern	
2.3.15.	Lineare Gleichungssysteme	13
2.4.	Komplexe Zahlen	
2.4.1.	Komplexe Zahl im Nenner	18
2.4.2.	Multiplikation von komplexen Zahlen	18
2.4.3.	Konjugiert komplexe Zahl	
2.4.4.	Gaußsche Zahlenebene	
2.4.5.	Betrag einer komplexen Zahl	19
2.4.6.	Darstellung von komplexen Zahlen	19
2.4.7.	Umrechnung der Darstellungen	19
2.4.8.	Rechenregeln Exponentialform	20
2.4.9	Potenzierung von komplexen Zahlen	

2.4.10.	Radizieren von komplexen Zahlen	20
2.4.11.	Logarithmus von komplexen Zahlen	.20
2.5.	Analysis	.21
2.5.1.	Nullstellen	.21
2.5.2.	Symmetrie	.21
2.5.3.	Monotonie	.21
2.5.4.	Hochpunkte, Tiefpunkte, Wendepunkte	22
2.5.5.	Periodizität	.22
2.5.6.	Umkehrfunktion	.22
2.5.7.	Koordinatentransformation	.22
2.6.	Gebrochenrationale Funktionen	.23
2.6.1.	Nullstellen	.23
2.6.2.	Polstellen	
2.6.3.	Asymptotisches Verhalten im Unendlichen	.23
2.7.	Differentialrechnung	.28
2.7.1.	Ableiten mit Differentialquotient	.28
2.7.2.	Grundableitungen	.28
2.7.3		.28
2.7.4.	Ableitungsregeln	.28
2.7.5.	Logarithmische Ableitung	
2.8.	Integralrechnung	.30
2.8.1.	Grundintegrale	
2.8.2.	Integration durch Substitution	
2.8.3.	Produktintegration	
2.8.4.	Uneigentliche Integrale	
2.8.5.	Volumen von Rotationskörpern	
2.8.6.	Bogenlänge	
2.8.7.	Mittelwert	-
2.9.	Grenzwerte	
2.9.1.	Rechenregeln für Grenzwerte	
2.9.2.	Beispiele Grenzwerte	
2.9.3.	Regel von L'Hôpital	
2.10.	Reihen	-
2.10.1.	Potenzreihen	
2.10.2.	Konvergenzradius von Potenzreihen	
2.10.3.	Potenzreihenentwicklung (Mac Laurinsche Reihe)	
2.10.4.	Taylorreihe	.35

2. Mathematik

2.1. Allgemeines

2.1.1. Wichtige Winkel

α	0	30°	45°	60°	90°	120°	135°	150°	180°
х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tan x	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	± 8	-√3	-1	$-\frac{1}{\sqrt{3}}$	0

2.1.2. Allgemeine Rechengesetze

Bruchrechnen

Addition: $\frac{a}{b} + \frac{c}{d} = \frac{a*d + b*c}{b*d}$ \Rightarrow Hauptnenner bilden

Subtraktion: $\frac{a}{b} - \frac{c}{d} = \frac{a*d - b*c}{b*d}$ \Rightarrow Hauptnenner bilden

Multiplikation: $\frac{a}{b}*\frac{c}{d} = \frac{a*c}{b*d}$ \Rightarrow zusammenfassen

Division: $\frac{a}{b}: \frac{c}{d} = \frac{a*d}{b*c}$ \Rightarrow mit dem Kehrwert multiplizieren

Binomische Formeln

Erste binomische Formel: $(a+b)^2 = a^2 + 2ab + b^2$

Zweite binomische Formel: $(a-b)^2 = a^2 - 2ab + b^2$

Dritte binomische Formel: $(a+b)(a-b) = a^2 - b^2$

2.1.3. Rechenregeln e-Funktion u. Potenzen

 $e^{a} * e^{b} = e^{a+b}$ $\frac{e^{a}}{e^{b}} = e^{a-b}$ $\frac{1}{e^{a}} = e^{-a}$ $(e^{a})^{b} = e^{a*b}$ $(a*b)^{n} = a^{n} * b^{n}$

2.1.4. Rechenregeln Logarithmus

$$\ln(a*b) = \ln(a) + \ln(b) \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b) \qquad \ln(a^b) = b*\ln(a)$$

2.1.5. 2er Potenzen

2^0=1	2^1=2	2^2=4	2^3=8
2^4=16	2^5=32	2^6=64	2^7=128
2^8=256	2^9=512	2^10=1024	2^11=2048
2^12=4096	2^13=8192	2^14=16384	2^15=32768
2^16=65536	2^17=131072		

2.1.6. "Mitternachtsformel" zum Lösen von quadratischen Gleichungen

pq-Formel (Gleichung in Form:
$$x^2 + px + q = 0$$
): $x_{1/2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$

abc-Formel (Gleichung in Form:
$$ax^2 + bx + c = 0$$
): $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2.1.7. Wurzelrechnung

allgemein: wenn
$$a^n = b$$
, dann heißt $a = \sqrt[n]{b}$ bei $a > 0 \land b > 0$

Umwandlung in Potenz: $\sqrt[n]{b} = b^{\frac{1}{n}}$ zu schreiben

Wurzeln multiplizieren:
$$\sqrt[n]{a}*\sqrt[n]{a} = a^{\frac{n+m}{n^*m}} = \sqrt[nm]{a^{n+m}}$$

Wurzeln aus Wurzeln ziehen:
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n^*]{a}$$

Wurzeln aus Produkten ziehen:
$$\sqrt[\eta]{a*b} = \sqrt[\eta]{a}*\sqrt[\eta]{b}$$

Rationalmachen des Nenners:
$$\frac{b}{\sqrt{a}} = \frac{b*\sqrt{a}}{\sqrt{a}*\sqrt{a}} = \frac{b*\sqrt{a}}{a}$$
 $Bsp: \frac{10}{\sqrt{5}} = \frac{10*\sqrt{5}}{5} = 2*\sqrt{5}$

2.1.8. Trigonometrische Funktionen

allgemein: a: Gegenkathete

b: Ankathete

c: Hypothenuse

Sinus:

$$\sin \alpha = \frac{a}{c}$$

Tangens:

$$\tan \alpha = \frac{a}{b} = \frac{\sin \alpha}{\cos \alpha}$$

Kosinus:

$$\cos \alpha = \frac{b}{c}$$

Kotangens:

$$\cot \alpha = \frac{b}{a} = \frac{\cos \alpha}{\sin \alpha} = \frac{1}{\tan \alpha}$$

Sinus: $\sin(x+y) \neq \sin x + \sin y$

 $\sin(x \pm y) = \cos y \cdot \sin x \pm \cos x \cdot \sin y$

 $\sin(2x) = 2 \cdot \sin x \cdot \cos x$

Kosinus: $\cos(x+y) = \cos x * \cos y - \sin x * \sin y$

 $\cos(x-y) = \cos x \cdot \cos y + \sin x \cdot \sin y$

 $\cos(2x) = \cos^2 x - \sin^2 x$

 $\cos^2 x + \sin^2 x = 1 \rightarrow \cos^2 x = 1 - \sin^2 x$ $\rightarrow \cos x = \sqrt{1 - \sin^2 x}$

2.1.9. Horner Schema

Beispiel Berechnung des Funktionswertes der Funktion $f(x) = 5x^3 + 10x^2 - 20x + 100$ an der Stelle x=4 berechen.

Horner Schema für Polynomdivision

Beispiel: Nullstellenberechung für Funktion $y = x^3 - 2x^2 - 5x + 6$

Erste Nullstelle raten	x ₁ =1				
Horner Schema					
erstellen		1	-2	-5	6
	1	1	-1	<i>-</i> 6	0
	→ neue Funktion Bleibt im letzten handelt es sich u	Feld ein and		s eine 0 stehe	en, so

2.2. Vektorrechnung

2.2.1. Normieren eines Vektors

$$\vec{r} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \qquad \qquad \frac{1}{|\vec{r}|} * \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \qquad \qquad |\vec{r}| = \sqrt{2^2 + 3^2 + 1^2} \quad \text{(Betrag des Vektors)}$$

2.2.2. Addition und Subtraktion von Vektoren

2.2.3. Skalarprodukt (inneres Produkt)

$$\vec{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

$$a \bullet b = a_x b_x + a_y b_y + a_z b_z = 2 * 1 + 3 * 3 + 1 * 5 = 16$$

$$\text{oder: } \vec{a} \bullet \vec{b} = |\vec{a}| * |\vec{b}| * \cos(\varphi)$$

$$\cos(\varphi) = \frac{\vec{a} \bullet \vec{b}}{|\vec{a}| * |\vec{b}|}$$

2.2.4. Kreuzprodukt (nur bei 3 dimensionalen Vektoren möglich)

$$\begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \end{pmatrix} = 3*2-1*1 = \begin{pmatrix} 2-9 \\ 6-2 \\ 3-4 \end{pmatrix} = \begin{pmatrix} -7 \\ 4 \\ -1 \end{pmatrix}$$
 - entstehender Vektor steht senkrecht auf den Vektoren - Betrag = Fläche des aufgespannten Parallelogramms

2.2.5. Spatprodukt (Volumen des Parallelepipeds)

$$(a \times b) \bullet c = \det \begin{pmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{pmatrix}$$

2.2.6. Proiektion eines Vektors auf einen anderen

 \vec{a} projiziert auf \vec{b}

$$\vec{a}_b = \left(\frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}\right) * \vec{b}$$

2.2.7. Lineare Abhängigkeit bei Vektoren

→ Vektoren sind <u>linear unabhängig</u>, wenn der Rang der Matrix (S. 12) Rg A = n (Anzahl der Vektoren)

Beispiel

$$\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \quad \det = 1*5 - 3*2 = -1 \quad \Rightarrow \quad linear \; unabh \ddot{a}nig$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix} \quad \det = 1*0 - 3*0 = 0 \quad \Rightarrow \quad linear \; abh \ddot{a}nig$$

2.2.8. Bildung Orthonormalsystem (Gram-Schmidt)

Alle Vektoren in einem Orthonormalsystem stehen senkrecht aufeinander und sind normiert.

$$u_1 = v_1 \qquad \qquad u_2 = v_2 - \frac{v_2 \bullet u_1}{u_1 \bullet u_1} * u_1 \qquad \qquad u_3 = v_3 - \frac{v_3 \bullet u_1}{u_1 \bullet u_1} * u_1 - \frac{v_3 \bullet u_2}{u_2 \bullet u_2} * u_2$$

Beispiel:

$$\vec{v}_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \vec{v}_3 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$$

$$\vec{u}_1 = \vec{v}_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$\vec{u}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{4} * \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$\vec{u}_3 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} - \frac{-2}{4} * \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \frac{2}{2} * \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

Die Vektoren müssen abschließend noch normiert werden (S. 8)!

2.3. Matrizen

2.3.1. Addition und Subtraktion von Matrizen

$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 4 & 5 \end{pmatrix}$$

- wie Vektoren komponentenweise
- müssen gleich groß sein

2.3.2. Multiplikation von Matrizen mit Skalaren

$$3*\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}$$

bei Skalar wie Vektor

2.3.3. Matrizenmultiplikation:

$$\begin{pmatrix} 1 & 2 \\ 4 & 7 \end{pmatrix} * \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 8 & 9 \\ 29 & 31 \end{pmatrix}$$

Berechnung mit Tabelle:

$$\Rightarrow 1*2+2*3=8$$

Schnittstelle der Matrizen muss passen:

$$A_{(m,n)} * B_{(n,p)} = C_{(m,p)}$$

Schnittstelle n muss passen (Zeilen, Spalten)

Hinweis: nicht kommutativ $A*B \neq B*A$

2.3.4. Symmetrie von Matrizen

→ Matrix ist symmetrisch

- symmetrisch zur Hauptdiagonalen

 $A = -^t A \rightarrow Matrix ist schiefsymmetrisch$

- bei Spiegelung an der Diagonalen ändern sich die Vorzeichen der Elemente
 Hauptdiagonalelemente müssen
 - verschwinden

2.3.5. Determinanten

- Matrix muss quadratisch sein
- bei Zeilentausch ändert sich das Vorzeichen
- Multiplikation oder Division einer Zeile → Det, mult, bzw. div. mit Faktor
- keine Änderung, wenn Zeile/Spalte (mit Vielfachem) zu einer <u>anderen</u> addiert wird

Ausrechnen mit Laplace

Entwicklung nach einer Zeile/Spalte, Vorzeichen entsprechend dem "Schachbrettmuster" Beispiel Entwicklung nach Zeile 1:

$$\begin{bmatrix} +1 & -2 & +5 \\ -6 & +8 & -9 \\ +7 & -5 & +3 \end{bmatrix} = 1 * \begin{vmatrix} 8 & 9 \\ 5 & 3 \end{vmatrix} - 2 * \begin{vmatrix} 6 & 9 \\ 7 & 3 \end{vmatrix} + 5 * \begin{vmatrix} 6 & 8 \\ 7 & 5 \end{vmatrix} = \det(-61)$$

Unterdeterminanten bestimmen

2.3.6. Direktes Bestimmen (bis maximal 3x3 Matrix)

Hauptdiagonalen jeweils multiplizieren und addieren, Nebendiagonalen multiplizieren und addieren und von den Hauptdiagonalen subtrahieren.

2-reihig:
$$\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} = 1*4 - 2*3 = -2$$
 3-reihig:
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad D = (a_{11}*a_{22}*a_{33} & + & a_{12}*a_{23}*a_{31} & + & a_{13}*a_{21}*a_{32}) \\ & -(a_{13}*a_{22}*a_{31} & + & a_{12}*a_{21}*a_{33} & + & a_{11}*a_{23}*a_{32})$$

2.3.7. Ausrechnen mit Gauß

 obere oder untere Dreiecksmatrix auf 0 bringen (durch Zeilenumformungen, siehe 2.3.5), dann Hauptdiagonale multiplizieren.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix} = 1*(-2) = -2$$
 erste Zeile (-3) * zu zweiter Zeile addieren, Hauptdiagonale multiplizieren

2.3.8. Transponierte einer Matrix

Zeilen und Spalten werden vertauscht, Beispiel:
$$\begin{pmatrix} 1 & 7 & 8 \\ 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 7 & 4 \\ 8 & 2 \end{pmatrix}$$

2.3.9. **Einheitsmatrix**

Die Einheitsmatrix besitzt auf ihrer Hauptdiagonalen jeweils den Wert 1, restliche Elemtente 0.

Es gilt:
$$A * E = A$$

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.3.10. Orthogonale Matrix

Matrix ist orthogonal, wenn $A^{-1} = A^{t}$ bzw. $A * A^{t} = E$ (transponierte ist gleichzeitig die inverse Matrix).

2.3.11. Inverse Matrix bilden

$$A*A^{-1} = E$$
 (Einheitsmatrix)

his 2x2 Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
Ansonsten Gauß-J

$$A^{-1} = \frac{1}{a*d - b*c} * \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Ansonsten Gauß-Jordan-Verfahren:

$$\begin{bmatrix} 3 & 4 & 5 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 5 & 0 & 2 & 0 & 0 & 1 \end{bmatrix}$$

- Einheitsmatrix an Matrix anhängen
- Zeilenumformungen bis vorne die Einheitsmatrix steht, dann steht hinten die inverse Matrix und kann abgelesen werden
 - Nur Zeilenumformungen möglich
 - Vorgehen: zuerst untere Dreiecksmatrix erzeugen, dann obere
 - inverse nur bei regulären Matrizen möglich

2.3.12. Reguläre/Singuläre Matrix

reguläre Matrix: $det \neq 0$ det = 0singuläre Matrix

2.3.13. Rang einer Matrix

- Zeilenanzahl der größten Unterdeterminante von A ≠ 0

2.3.14. Umformungen die den Rang nicht ändern

- 2 Zeilen / Spalten vertauschen
- Zeile / Spalte mit λ≠0 multiplizieren
- Vielfaches einer Zeile / Spalte zu einer anderen addieren

Beispiel:

$$A = \begin{pmatrix} 1 & 2 & 5 \\ 7 & 4 & 3 \\ 0 & 8 & 0 \end{pmatrix} - 7 * I \cong \begin{pmatrix} 1 & 2 & 5 \\ 0 & -10 & -32 \\ 0 & 8 & 0 \end{pmatrix} \cong \begin{pmatrix} 1 & 5 & 2 \\ 0 & 32 & -14 \\ 0 & 0 & 8 \end{pmatrix} \Rightarrow Rang = 3$$

2.3.15. Spur einer Matrix

Summe der Diagonalelemente einer Matrix

Beispiel:
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 $Sp(A) = a_{11} + a_{22}$

2.3.16. Lineare Gleichungssysteme

$$A*\vec{x} = \vec{c}$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = c_1$$

$$a_{21}x_2 + a_{22}x_2 + a_{23}x_3 = c_2$$

$$a_{31}x_3 + a_{32}x_2 + a_{33}x_3 = c_3$$

In Form bringen (untere Dreiecksmatrix herstellen):

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & c_1 \\ 0 & a_{22} & a_{23} & c_2 \\ 0 & 0 & a_{33} & c_3 \end{bmatrix}$$

Lösungen:

	1	2	5	3	
	0	1	7	5	
1.Variante:	0	0	0	0	Variable frei wählbar (0=0)
2.Variante:	0	0	1	7	eindeutige Lösung (x3=7)
3.Variante:	0	0	0	8	keine Lösung für LGS

Ermittelte Variable in nächste Ebene einsetzen und nächste Variable berechnen.

Hinweis: Nur Zeilenumformungen sind erlaubt, Tausch und Addition einer Zeile mit Faktor!

2.3.17. Eigenwerte und Eigenvektoren

Beispiel Berechnung Eigenwerte und Eigenvektoren: $A = \begin{pmatrix} -2 & -5 \\ 1 & 4 \end{pmatrix}$

	(1 4)
1. Aufstellen der charakteristischen Gleichung $\begin{vmatrix} -2 - \lambda & -5 \\ 1 & 4 - \lambda \end{vmatrix} = 0$ $\Rightarrow (-2 - \lambda)^* (4 - \lambda) - (-5^*1) = 0$ $\Rightarrow \underline{\lambda^2 - 2\lambda - 3} = 0 \qquad (\lambda^2 - Sp(A)^* \lambda + \det(A) = 0)$	Auf Hauptdiagonale λ subtrahieren.
2. Lösen der charakteristischen Gleichung $\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{4 + 12}}{2} = \frac{2 \pm 4}{2}$ $\frac{\lambda_1 = 3}{2}$ $\frac{\lambda_2 = -1}{2}$	Die charakteristische Gleichung muss gelöst werden, die Nullstellen des Polynoms sind die Eigenwerte der Matrix.
3. λ_1 einsetzen in das LGS $ \begin{pmatrix} -2-3 & -5 \\ 1 & 4-3 \end{pmatrix} * \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $ $ \begin{pmatrix} -5 & -5 \\ 1 & 1 \end{pmatrix} * \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + 5 * 2.Zeile $ $ \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} * \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $	Eigenwerte jeweils in A einsetzen und das LGS lösen. Matrix ist immer det(0), das LGS daher unterbestimmt, eine Variable frei wählbar (S. 13)
$ \begin{aligned} v_{11} + v_{12} &= 0 \\ v_{11} &= -v_{12} & v_{12} &= \alpha \ setzen \\ v_{11} &= -\alpha \end{aligned} $	v_{12} wird als Parameter α gesetzt.
4. Eigenvektor normieren $v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1 \end{pmatrix}$	Bei der Normierung verschwindet der Parameterα.
5. Probe $Sp(A) = \lambda_1 + \lambda_2$ $det(A) = \lambda_1 * \lambda_2$	Anschließend den zweiten Eigenvektor mit λ_2 analog bestimmen.

2.3.18. Diagonalmatrix

- alle Elemente außerhalb der Diagonale sind 0
- Berechnung der Inversen: Diagonalmatrix ist genau dann invertierbar, wenn kein Eintrag der Hauptdiagonale 0 ist. Inverse Matrix berechnet sich dann wie folgt:

$$\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 2^{-1} & 0 \\ 0 & 4^{-1} \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/4 \end{pmatrix}$$

 <u>Eigenwerte von Diagonalmatrizen:</u> die Eigenwerte von Diagonalmatrizen sind die Elemente der Hauptdiagonalen:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \qquad \lambda_1 = 1 \quad \lambda_2 = 3$$

$$Eigenvektoren: v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

2.3.19. Matrizen potenzieren mit Eigenwerten

Es gelten folgende Zusammenhänge: $A^{15} = V * \Lambda^{15} * V^{-1} \text{ (inverse)}$ bzw. wenn A symmetrisch und die Eigenvektoren normiert sind: } $A^{15} = V * \Lambda^{15} * V \text{ (transponierte)}$	V = Matrix der Eigenvektoren Λ = Matrix der Eigenwerte in Form: $\begin{vmatrix} \lambda_1^{15} & 0 \\ 0 & \lambda_2^{15} \end{vmatrix} = \Lambda^{15}$
Beispiel:	1. Schritt Berechnung der Eigenwerte
$A^{15} = \begin{pmatrix} 5 & -2 \\ 6 & -2 \end{pmatrix}^{15}$ Eigenwerte: $\lambda_1 = 1$; $\lambda_2 = 2$	und Eigenvektoren (S. 14). Diese müssen nicht normiert
Eigenvektoren: $v_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	werden, da sich die Normierung durch Multiplikation mit der inversen wieder herauskürzt.
$A^{15} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} * \begin{pmatrix} 1^{15} & 0 \\ 0 & 2^{15} \end{pmatrix} * \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$	Eigenvektoren in Matrix schreiben, multipliziert mit Λ^{15} , multipliziert mit der inversen Matrix der Eigenvektoren (S. 12).
$A^{15} = \begin{vmatrix} 131.069 & -65.534 \\ 196.602 & -98.300 \end{vmatrix}$	Matrixmultiplikation durchführen (S. 10).

2.3.20. Hauptachsentransformation

Ziel: Durch Überführung einer Funktion in die Normalform, soll eine Klassifizierung erfolgen um welchen Typ von Fläche es sich handelt

erfolgen um welchen Typ von Fläche es sich handelt.	
Beispiel:	
$a_{11}x^2 + a_{22}y^2 + a_{12,21}xy + b_1x + b_2y + d = 0$	
$6x^2 + 9y^2 + 4xy - 40x - 30y + 55 = 0$	
$(x, y) \cdot \begin{pmatrix} a_{11} & \frac{a_{12,21}}{2} \\ \frac{a_{12,21}}{2} & a_{12} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$	1. Matrix aufstellen
$(x,y)\cdot\begin{pmatrix}6&2\\2&9\end{pmatrix}\cdot\begin{pmatrix}x\\y\end{pmatrix}$	
$\lambda_1 = 10$ $v_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\lambda_2 = 5$ $v_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$	Eigenwerte und Eigenvektoren der Matrix bestimmen (S. 14) mit anschließender Normierung
$V = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \qquad \Lambda = \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix}$	3. Matrizen V und Λ aufstellen
$\sqrt{5}\begin{pmatrix} 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 5 \end{pmatrix}$	Hinweis: det(V) = 1, bei
	det(V)=-1 muss die
	Reihenfolge der Eigenvektoren vertauscht werden.
	Reihenfolge in Λ beliebig
$(\varepsilon,\eta)\cdot\Lambda\cdot\begin{pmatrix}\varepsilon\\\eta\end{pmatrix}+(b_1,b_2)\cdot V\cdot\begin{pmatrix}\varepsilon\\\eta\end{pmatrix}+d=0$	4. Einsetzen in Gleichung
$(\varepsilon,\eta) \cdot \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} \varepsilon \\ \eta \end{pmatrix} + (-40, -30) \cdot \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \varepsilon \\ \eta \end{pmatrix} + 55 = 0$	
1.) $(\varepsilon, \eta) \cdot \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} \varepsilon \\ \eta \end{pmatrix} = 10\varepsilon^2 + 5\eta^2$	
2.) $(-40, -30) \cdot \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \varepsilon \\ \eta \end{pmatrix} = -\frac{100\varepsilon}{\sqrt{5}} + \frac{50\eta}{\sqrt{5}}$	
ergibt:	
$10\varepsilon^2 + 5\eta^2 - \frac{100\varepsilon}{\sqrt{5}} + \frac{50\eta}{\sqrt{5}} + 55 = 0 /:5$	
$\frac{2\varepsilon^{2} + \eta^{2} - \frac{20\varepsilon}{\sqrt{5}} + \frac{10\eta}{\sqrt{5}} + 11 = 0}{}$	

$2\varepsilon^{2} + \eta^{2} - \frac{20\varepsilon}{\sqrt{5}} + \frac{10\eta}{\sqrt{5}} + 11 = 0$	5. Verschiebung durch quad. Ergänzung beseitigen
$2\varepsilon^{2} + \eta^{2} - 4\sqrt{5}\varepsilon + 2\sqrt{5}\eta + 11 = 0$ $2\left(\varepsilon^{2} - 2\sqrt{5}\varepsilon\right) \left(+\eta^{2} + 2\sqrt{5}\eta\right) +11 = 0$ $2\left(\varepsilon - \sqrt{5}\right)^{2} - 10 + \left(\eta + \sqrt{5}\right)^{2} - 5 +11 = 0$ $2\left(\varepsilon - \sqrt{5}\right)^{2} + \left(\eta + \sqrt{5}\right)^{2} = 4$	Formel für quad. Ergänzung: $a \cdot x^2 + b \cdot x = a \cdot \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a}$
$v = \varepsilon - \sqrt{5} \qquad w = \eta + \sqrt{5}$ Einsetzen: $2v^2 + w^2 = 4 /: 4$ $\frac{v^2}{2} + \frac{w^2}{4} = 1 \implies \frac{v^2}{\sqrt{2}^2} + \frac{w^2}{2^2} = 1$	6. Einführung neuer Koordinaten und Ablesen der neuen Funktion → hier Ellipse.

2.4. Komplexe Zahlen

$$\sqrt{-1} = i \qquad \left(\sqrt{-1}\right)^2 = \left(-1\right)$$

 \rightarrow Alle Rechnungen wie gewohnt aber $i^2 = -1$.

Komplexe Zahl: $5\pm 3i$ (Realteil, Imaginärteil)

2.4.1. Komplexe Zahl im Nenner

$$\frac{2}{1-i} = \frac{2*(1+i)}{(1-i)(1+i)} = \frac{2+2i}{1^2-i^2} = \frac{2+2i}{2} = \underbrace{\frac{1+i}{2}} \qquad \text{Erweiterung mit dem konjugiert komplexen Term.}$$

2.4.2. Multiplikation von komplexen Zahlen

$$(a+bi)*(c+di) = (ac-bd)+(ad+bc)i$$

 $Bsp: (3+4i)*(2+3i) = (6-12)+(9+8)i = -6+17i$

2.4.3. Konjugiert komplexe Zahl

$$z = a + bi$$
 $\bar{z} = a - bi$ (Vorzeichen des Imaginärteils ändert sich)

2.4.4. Gaußsche Zahlenebene

Darstellung der komplexen Zahl im zweidimensionalen Raum.

→ Dadurch keine Vergleichbarkeit von komplexen Zahlen, da sich diese nicht anordnen lassen, wie auf einen Zahlenstrahl.

2.4.5. Betrag einer komplexen Zahl

$$a \pm bi$$

$$|z| = \sqrt{a^2 + b^2} = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}$$

→ im Betrag taucht die komplexe 7ahl i nicht auf

2.4.6. Darstellung von komplexen Zahlen

kartesische Darstellung:

$$z = a + bi$$
 $z.B. 5 + 3i$

<u>trigonometrische Darstellung:</u> $z = r * (\sin \varphi + i * \cos \varphi)$ (in Praxis nicht verwendbar)

Exponentialform:

$$z = 5 + e^{i\phi}$$
 (geeignet für Multiplikation, Division und

Potenzierung von komplexen Zahlen)

2.4.7. Umrechnung der Darstellungen

Polar nach Kartesisch

$$a = r * \cos \varphi$$
$$b = r * \sin \varphi$$

Kartesisch nach Polar

$$r = \sqrt{a^2 + b^2}$$

$$\varphi = \arctan \frac{b}{a}$$

(Winkel ist mehrdeutig!)

tan ist π periodisch z.B.:

$$z = 1 + i$$
 $\varphi = \arctan \frac{1}{1} = \frac{\pi}{4} = 45^{\circ}$

$$z = -1 - i \quad \varphi = \arctan \frac{-1}{-1} = \frac{\pi}{4}$$

→ überlegen wo der Winkel liegt!

2.4.8. Rechenregeln Exponentialform

$$z_1 * z_2 = r_1 * r_2 * e^{i(\varphi 1 + \varphi 2)} \qquad \frac{z_1}{z_2} = \frac{r_1}{r_2} * e^{i(\varphi 1 + \varphi 2)} \qquad z^b = (r * e^{i\varphi}) = r^b * e^{i\varphi^*b}$$

2.4.9. Potenzierung von komplexen Zahlen

$$i^9$$
 $(0+1i)^9 = (1*e^{i90^\circ})^9 = (1*e^{i\frac{\pi}{2}})^9 = 1^9*e^{i\frac{\pi}{2}*9} = 1*e^{9\frac{\pi}{2}i}$

 $9\frac{\pi}{2}$ = mehrmaliges Umrunden des Zeigers (2π = eine Umdrehung)

Ergebnis: $1*e^{i\frac{\pi}{2}} = i$ (Zeiger hat 4-mal umrundet)

2.4.10. Radizieren von komplexen Zahlen

→ Jede n-te Wurzel hat n-Lösungen!

$$\sqrt[b]{z} = (r * e^{i(\phi + 2\pi k)})^{1/b} = r^{1/b} * e^{i\frac{\phi * 2\pi k}{b}} = \sqrt[b]{r} * e^{i(\frac{\phi}{b} + \frac{2\pi k}{b})}$$
 Beispiel 1:

$$\sqrt{4} = (4 * e^{i*0})^{1/2} = \sqrt{4} * e^{i*0*\frac{1}{2}} = 2 * e^{i*0} = \underline{2}$$

$$\sqrt{4} = (4 * e^{i*2\pi})^{1/2} = \sqrt{4} * e^{i*2\pi * \frac{1}{2}} = 2 * e^{i*\pi} = \underline{-2}$$

Beispiel 2:

$$\begin{split} \sqrt[3]{1} &= (1*e^{i*0})^{1/3} = \sqrt[3]{1}*e^{i*0*\frac{1}{3}} = 1*e^{i*0} = \underline{1} \\ &= (1*e^{i*2\pi})^{1/3} = \sqrt[3]{1}*e^{i*2\pi*\frac{1}{3}} = \underline{1*e^{120^{\circ}}} \\ &= (1*e^{i*4\pi})^{1/3} = \sqrt[3]{1}*e^{i*4\pi*\frac{1}{3}} = \underline{1*e^{240^{\circ}}} \end{split}$$

$$\sqrt{i} = (1 * e^{i * \frac{\pi}{2}})^{1/2} = \sqrt{1} * e^{i * \frac{\pi}{4}}$$

$$\sqrt{i} = (1 * e^{i * \frac{\pi}{2} + 2\pi})^{1/2} = \sqrt{1} * e^{i * \frac{\pi}{4} + \frac{2\pi}{2}} = 1 * e^{\frac{i 5\pi}{4}}$$

2.4.11. Logarithmus von komplexen Zahlen

→ Rechenregeln für Logarithmen siehe S. 5.

$$\begin{split} \ln(1) &= \ln(1*e^{i*0}) = \ln(1) + \ln(e^{i*0}) = \underbrace{\underline{0+i*0}}_{} \\ &= \ln(1*e^{i*2\pi k}) = \ln(1) + \ln(e^{i*0+2\pi k}) = \underbrace{\underline{0+i*2\pi k}}_{} \quad k \ni Z \end{split}$$

0 = Hauptwerk, Imaginärteil $[0,2\pi]$

Beispiel:

$$\ln(-e) = \ln(e) + \ln(e^{i*(\pi + 2\pi k)}) = 1 + i(\pi + 2\pi k)$$

2.5. Analysis

2.5.1. Nullstellen

$$y = x^2 + 2$$
 $y = 0$ setzen $0 = x^2 + 2$ $x^2 = -2$ $x = \sqrt{-2}$ \Rightarrow keine reelle Nullstelle

$$y = x^2 - 2$$
 $y = 0$ setzen $0 = x^2 - 2$ $x^2 = 2$

Mitternachtsformel:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 $x_{1,2} = \frac{-0 \pm \sqrt{0 - 4*1*(-2)}}{2} = \frac{\pm \sqrt{8}}{2} \approx \pm \frac{2,83}{2}$ $x_{1,2} = \frac{-0 \pm \sqrt{0 - 4*1*(-2)}}{2} = \frac{\pm \sqrt{8}}{2} \approx \pm \frac{2,83}{2}$

2.5.2. Symmetrie

$$f(-x)=f(x) \rightarrow Achsensymmetrisch$$

 $Bsp.: f(x)=x^2$ $-2^2=4$ $2^2=4$

-f(x)=f(-x) → punktsymmetrisch im Ursprung
Bsp.:
$$f(x)=x^3$$
 -2³=-8 2³=8

2.5.3. Monotonie

Streng monoton wachsend:	f'(x) > 0
Streng monoton fallend:	f'(x) < 0
Monoton wachsend:	$f'(x) \ge 0$

Streng monoton, wenn Funktion immer ansteigt, d.h. keine Sattelpunkte

2.5.4. Hochpunkte, Tiefpunkte, Wendepunkte

Vorgehen: Ableiten, Gleichung lösen und mit Bedingung überprüfen.

Hochpunkt: f'(x)=0 und $f''(x_0)<0$ Tiefpunkt: f'(x)=0 und $f''(x_0)>0$

Wendepunkt: f''(x) = 0 und $f'''(x_0) \neq 0 \rightarrow$ Hinweis: einfache Nullstelle

2.5.5. Periodizität

 $f(x \pm p) = f(x)$ Beispiel: $sin(x + 2\pi) = sin(x)$ Periode: $p = 2\pi$

2.5.6. Umkehrfunktion

Vorgehen: - x und y vertauschen und nach y auflösen

- Definitionsbereich und Wertebereich vertauschen sich

y = 2x + 1 (f(x)) Umkehrung: x = 2y + 1 / -1

x-1 = 2y / :2

0.5x-0.5 = y (g(x))

- Umkehrfunktion wird an f(x) = x gespiegelt
- jede streng monoton wachsende oder fallende Funktion ist umkehrbar

2.5.7. Koordinatentransformation

Bei Umwandlung Kartesisch nach Polar: $x = r * \cos \varphi$ $y = r * \sin \varphi$ $r^2 = x^2 + y^2$

2.6. Gebrochenrationale Funktionen

Beispiel:
$$f(x) = \frac{x^3 - 6x^2 + 12x - 8}{x^2 - 4}$$

2.6.1. Nullstellen

Nullstelle wo das Zählerpolynom den Wert 0 annimmt, aber Nennerpolynom von 0 verschieden ist

2.6.2. Polstellen

- Nullstellen des Nennerpolynoms
- kann die Nullstelle über Linearfaktoren mit Zähler gekürzt werden, so kann Definitionslücke behoben werden, ansonsten Polstelle

2.6.3. Asymptotisches Verhalten im Unendlichen

- zuerst Definitionslücken beheben
- anschließend Polynomdivision Z\u00e4hler/Nenner
- es entstehen Lineare Funktion + Rest → lineare Funktion → Asymptote

Beispiel 1 (Behebung der Definitionslücken):

$$f(x) = \frac{x^3 - 6x^2 + 12x - 8}{x^2 - 4}$$

1. Nullstellen ermitteln Zähler

x₁=2 (raten, weitere durch Polynomdivision)

$$(x^{3} - 6x^{2} + 12x - 8) : (x - 2) = x^{2} - 4x + 4$$

$$-(x^{3} - 2x^{2})$$

$$-4x^{2} + 12x$$

$$-(-4x^{2} + 8x)$$

$$4x - 8$$

$$-(4x - 8)$$

$$0$$

$$x_{2,3} = \frac{4 \pm \sqrt{16 - 16}}{2} = \frac{4 \pm \sqrt{0}}{2} = \frac{2}{2}$$

→ doppelte Nullstelle

2. Nullstellen ermitteln Nenner

$$x^2 - 4 = 0$$
 $x_1 = -2$, $x_2 = 2$

3. Zerlegung in Linearfaktoren

$$\frac{(x-2)(x-2)(x-2)}{(x-2)(x+2)}$$
behebbar bei x=2

4. Behebung

- einsetzen von x=2 in die gekürzte Formel:

$$\frac{(2-2)(2-2)}{(2+2)} = \frac{0}{4} = 0 \qquad \qquad \underbrace{f(2) = 0}_{=====}$$

Beispiel 2 (Asymptote im Unendlichen) Restfunktion aus Beispiel 1 → Polynomdivision

$$\frac{(x-2)(x-2)}{(x+2)} = (x^2 - 4x + 4) : (x+2) = \boxed{x-6} + \frac{16}{x+2} \Rightarrow \text{Asymptote im unendlichen}$$

$$\frac{-(x^2 + 2x)}{-6x + 4}$$

$$\frac{-(-6x - 12)}{16}$$

2.7. Mehrdimensionale Extremwertberechnung

2.7.1. Berechnung von Extremalstellen mehrdimensionaler Funktionen

Beispiel:	$f(x,y) = 3xy - x^3 - y^3$
Partiell Ableiten (siehe S. 29)	$f_x = 3y - 3x^2$
(5.5 5. 25)	$f_y = 3x - 3y^2$
	$f_{xx} = -6x \qquad f_{xy} = 3$
	$f_{yy} = -6y \qquad f_{yx} = 3$
Erste Ableitungen gleich 0 setzen	$0 = 3y - 3x^2 /:3$
gleich o setzen	$0 = 3x - 3y^2 /:3$
	$0 = y - x^2$
	$0 = x - y^2$
	Es entsteht ein Gleichungssystem welches zu lösen ist durch entsprechende Umformungen:
	$0 = x - y^2 \implies x = y^2$
	Einsetzen in erste Gleichung:
	$0 = y - \left(y^2\right)^2 \Rightarrow 0 = y - y^4 \Rightarrow 0 = y\left(1 - y^3\right)$
	Lösungen:
	$y_1 = 0 x_1 = 0$
	$y_2 = 1$ $x_2 = 1$
Ermittelte Punkte untersuchen ob	Notwendiges Kriterium:
Extremstelle	$D = f_{xx}(x_0, y_0) \cdot f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2 > 0$
	(einsetzen x und y Wert in zweite Ableitungen)
	Ist dieses erfüllt, dann bedeutet:

2.8. Extremwertberechnung mit Nebenbedingungen

2.8.1. Direktes Auflösen der Nebenbedingung

 Hinweis: direktes Auflösen ist nur bei einfachen Problemen möglich und beinhaltet in der Regel eine Menge Rechenarbeit

Beispiel:	Maximum der Funktion $f(x, y) = xy$ unter der	
	Nebenbedingung $x + y = 1$	
Auflösen der NB nach x	x=1-y	
Einsetzen in Funktion	$f(y) = (1-y)y = y - y^2$	
	Funktion ist nur noch von einer Variable abhängig.	
Ableiten der Funktion und	f'(y) = 1 - 2y	
erste Ableitung gleich 0 setzen	f''(y) = -2	
	0 = 1 - 2y	
	$0 = 1 - 2y$ $2y = 1 / \div 2$	
	$v = \frac{1}{1}$	
	====	
Einsetzen von y in NB	$x + \frac{1}{2} = 1$ $-\frac{1}{2}$	
	$x = \frac{1}{x}$	
	$x = \frac{\overline{2}}{2}$	
	Die zweite Ableitung ist negativ für alle Y → Maximum.	

2.8.2. Lagrange-Multiplikatoren

Methode der Lagrange-Multiplikatoren ist eleganter las das direkte Einsetzen, es basiert auf den Ansatz:

$$L(x, y) = f(x, y) + \lambda \cdot g(x, y)$$

Man bildet die partiellen Ableitungen f_x, f_y, g_x, g_y und löst das folgende homogene Gleichungssystem:

$$f_x + \lambda \cdot g_x = 0$$
$$f_y + \lambda \cdot g_y = 0$$

Beispiel:	Funktion: $T(x, y) = 1 + xy$
	Nebenbedingung: $g(x, y) = x^2 + y^2 - 1$
Partiell ableiten	$T_x = y$ $g_x = 2x$
	$T_y = x$ $g_y = 2y$
	$T_{xx} = 0 T_{xy} = 1$
	$T_{yy} = 0 T_{yx} = 1$
Lagrange-Gleichungen	$0 = y + 2x\lambda$
	$0 = x + 2y\lambda$
Gleichungssystem lösen	 erste Gleichung nach λ auflösen:
103611	$0 = y + 2y\lambda /-y$ $-y = 2y\lambda / x$
	$-\frac{y}{x} = 2\lambda / \div 2$
	$-\frac{y}{2x} = \lambda$
	2x - in zweite Gleichung einsetzen:
	$0 = x - \frac{y^2}{x}$
	$\frac{y^2}{x} = x / x \implies y^2 = x^2 / $
	λ
In Nebenbedingung	$y = x$ $x^2 + x^2 - 1 = 0$
einsetzen	
	$2x^2 = 1 / \div 2 \qquad \Rightarrow x^2 = \frac{1}{2}$
	$x = \pm \frac{1}{\sqrt{2}} \qquad y = \pm \frac{1}{\sqrt{2}}$
Nun Maxima bestimmen	Punkte in T(x,y) einsetzen, Maximum ist T _{max} =1,5 für die Punkte:
	$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ und $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
	Bsp.:
	$T(x, y) = 1 + \left(-\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) = 1,5$
	$T(x, y) = 1 + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) = 1,5$
	$T(x, y) = 1 + \left(\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) = 0,5$

2.9. Differentialrechnung

2.9.1. Ableiten mit Differentialquotient

Bsp.:
$$y = x^2$$
 $y' = 2x$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^2 + 2\Delta x x + \Delta x^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2\Delta x x + \Delta x^2}{\Delta x} = \underbrace{\frac{2x}{\Delta x}}$$

2.9.2. Grundableitungen

f(x)	f'(x)	f(x)	f'(x)
X ⁿ	n*x ⁿ⁻¹	tan ⁻¹ (x)	1
			$\overline{1+x^2}$
1	1	e ^x	e ^x
$\frac{-}{x}$	$-\frac{1}{x^2}$		
sin(x)	cos(x)	a ^x	(ln a)*a ^x
cos(x)	-sin(x)	ln(x)	1
			$\frac{-}{x}$
tan(x)	1	log _a (x)	1
	$\frac{1}{\cos^2 x}$		$\overline{(\ln a)^*x}$
sin ⁻¹ (x)	1	Ableitung Sinus-Kosir	nus:_
	$\sqrt{1-x^2}$	sin(x) c	DS(X
cos ⁻¹ (x)	- <u>1</u>	-sin(x)	
	$\sqrt{1-x^2}$	-cos(x)	

2.9.3. Ableitungsregeln

Kettenregel:

äußere Ableitung mal innerer Ableitung

$$(f(g(x)))' = f'(g(x))*g'(x)$$

$$Bsp : \left[e^{\sin(\sqrt{\ln x})}\right]' = e^{\sin(\sqrt{\ln x})}*\cos(\sqrt{\ln x})*\frac{1}{2\sqrt{\ln x}}*\frac{1}{x}$$

$$= \frac{e^{\sin(\sqrt{\ln x})}*\cos(\sqrt{\ln x})}{2x\sqrt{\ln x}}$$

Trick: Ableitung von e hoch roter Kasten, mal Ableitung von roter Kasten, mal Ableitung von grüner Kasten ...

2.9.4. Logarithmische Ableitung

Bsp.:

2.9.5. Differentiation mit mehreren Variablen

Partielle Ableitung: Jeweils nach einer Variablen ableiten, die anderen als Konstante ansehen.

Beispiel:

$$f(x, y) = 2xy + 5x^{2}y + 7xy$$

$$f_{x} = 2y + 10xy + 7y$$

$$f_{y} = 2x + 5x^{2} + 7x$$

gleiche Ableitung

Gradient:

 $\vec{\nabla}$ Nabla Operator

$$\vec{\nabla} f(x, y) = \begin{pmatrix} f_x \\ f_y \end{pmatrix}$$

Gradientenvektor liefert immer die größte Steigung:

$$\begin{pmatrix} 2y + 10xy + 7y \\ 2x + 5x^2 + 7x \end{pmatrix} \vec{\nabla}f \ (P1)$$
 P1 (1,1) x,y einsetzen
$$= \begin{pmatrix} 2*1 + 10*1 + 7*1 \\ 2*1 + 5*1^2 + 7*1 \end{pmatrix} = \begin{pmatrix} 19 \\ 14 \end{pmatrix}$$
 höchste Steigung in P1

Totales Differential: Komplette Ableitung der Funktion nach allen Variablen.

Steigung in Richtung bestimmen

Bsp.: $P_1(1,1)$ in Richtung $P_2(5,3)$

1. Vektor von P₁ nach P₂ bestimmen

$$P_2 - P_1 = {5 - 1 \choose 3 - 1} = {4 \choose 2}$$

2. Betrag des Vektors

$$r = \frac{1}{\sqrt{16+4}} = \frac{1}{\sqrt{20}} \approx \frac{1}{4}$$

3. Einheitsvektor in Richtung

$$\frac{1}{4} * \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0, 5 \end{pmatrix}$$

$$\vec{\nabla} f \begin{pmatrix} 1 \\ 0,5 \end{pmatrix} = \begin{pmatrix} 2+10+7 \\ 1+2,5+3,5 \end{pmatrix} = \begin{pmatrix} 19 \\ 7 \end{pmatrix}$$

(Steigung in Richtung P2)

2.10. Integralrechnung

2.10.1. Grundintegrale

f(x) n*x ⁿ⁻¹	F(x) x ⁿ + C
n*x ⁿ⁻¹	x ⁿ + C
x ⁿ	$\frac{x^{n+1}}{n+1} + C$
cos(x)	sin(x) + C
sin(x)	-cos(x) + C
e ^x	e ^x + C
$\frac{1}{x}$	e ^x + C ln(x) + C
X	
_1	tan(x) + C
$\cos^2 x$	

$$\int_{a}^{b} f(x) dx$$
$$= F(b) - F(a)$$

Hinweis:

nicht über Polstellen und Definitionslücken integrieren!

Integration durch Substitution

Beispiel 1:
$$\int x * \cos(x^2) dx$$

1. Substitution durchführen:

$$u = x^2 \qquad \frac{du}{dx} = 2x \quad /* \, dx / : 2x$$

$$\frac{du}{2x} = dx$$

Einsetzen:

$$= \int x * \cos(u) \frac{du}{2x} = \frac{1}{2} \int \cos(u) du = \frac{1}{2} \sin(u) + C$$

→ anschließend Rücksubstitution

$$=\frac{1}{2}\sin(x^2)+C$$

Beispiel 2: $\int \sqrt[3]{1-t} dt$

1. Substitution durchführen:

$$u = 1 - t$$
 $\frac{du}{-1} = dt$

Einsetzen:

$$= -\int u^{1/2} du = -\frac{3}{4} u^{4/3} + C$$

→ anschließend Rücksubstitution durchführen:

$$= -\frac{3}{4}(1-t)^{4/3} + C = -\frac{3}{4}\sqrt[3]{(1-t)^4} + C$$

2.10.3. Produktintegration

$$\int u(x) * v'(x) dx = u(x) * v(x) - \int u'(x) * v(x) dx$$

Einsetzen:

$$= x * e^{x} - \int 1 * e^{x} dx = x * e^{x} - e^{x} + C = \underline{e^{x}(x-1) + C}$$

Bsp. 2:
$$\int x * \ln(x) dx$$

$$u = \ln(x) \quad v' = x$$

$$u' = \frac{1}{x}$$
 $v = \frac{1}{2}x^2$

$$= \frac{1}{2}x^{2} * \ln(x) - \int \frac{1}{x} * \frac{1}{2}x^{2} dx = \frac{1}{2}x^{2} * \ln(x) - \frac{1}{2}\int \frac{x^{2}}{x} dx = \frac{1}{2}x^{2} * \ln(x) - \frac{1}{2} * \frac{1}{2}x^{2} = \underbrace{\frac{1}{2}x^{2} \left(\ln(x) - \frac{1}{2}\right)}_{=}$$

2.10.4. Uneigentliche Integrale

Bsp.:

$$\int_{1}^{\infty} \frac{1}{x^{3}} dx \qquad F(x) = \left[-\frac{1}{2x^{2}} \right]$$

$$= \lim_{x \to \infty} \left(-\frac{1}{2x^{2}} \right) - \left(-\frac{1}{2 \cdot 1^{2}} \right) = \lim_{x \to \infty} \left(-\frac{1}{2 \cdot x^{2}} + \frac{1}{2} \right) = 0 + \frac{1}{2} = \frac{1}{2}$$

$$\int_{-\infty}^{2} e^{x} dx \qquad F(x) = \begin{bmatrix} e^{x} \\ e^{x} \end{bmatrix}$$

$$=\lim_{x\to-\infty} (e^2 - e^x) = e^2 - 0 = \underline{\underline{e^2}}$$

2.10.5. Volumen von Rotationskörpern

$$V = \int_{a}^{b} \pi * f(x)^{2} dx$$

2.10.6. Bogenlänge

Länge des "Weges" auf der Funktion.

$$l = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} \, dx$$

2.10.7. Mittelwert

$$\int_{a}^{b} f(x)dx$$

$$\frac{a}{b-a}$$

2.10.8. Mantelfäche berechnen

$$A_{mantel} = 2\pi \cdot \int_{a}^{b} f(x) \cdot \sqrt{1 + f'(x)^{2}} dx$$

2.11. Grenzwerte

Begriffe: - konvergent, wenn Folge einen Grenzwert besitzt

- divergent, wenn Folge keinen Grenzwert besitzt

$$\frac{1}{\infty} = 0 \qquad \frac{1}{0} = \infty$$

$$\infty - \infty \quad \rightarrow unbestimmt$$

Beispiel:

$$a_n = \frac{21n+2}{3n-3} \qquad \lim_{n \to \infty} \left(\frac{21n+2}{3n-3} \right) = \lim_{n \to \infty} \left(\frac{n\left(21+\frac{2}{n}\right)}{n\left(3-\frac{3}{n}\right)} \right) = \lim_{n \to \infty} \left(\frac{21+\frac{2}{n}}{3-\frac{3}{n}} \right) = \frac{21}{\frac{3}{2}} = 7$$

2.11.1. Rechenregeln für Grenzwerte

1.)
$$\lim_{x \to x0} (f(x) + g(x)) = \lim_{x \to x0} f(x) + \lim_{x \to x0} g(x)$$

2.)
$$\lim_{x \to x0} (C * f(x)) = C * \left(\lim_{x \to x0} f(x) \right)$$

3.)
$$\lim_{x \to x0} (f(x) * g(x)) = \lim_{x \to x0} f(x) * \lim_{x \to x0} g(x)$$

4.)
$$\lim_{x \to x0} (\sqrt[n]{f(x)}) = \sqrt[n]{\lim_{x \to x0} f(x)}$$

2.11.2. Beispiele Grenzwerte

$$\lim_{x \to 0} = \left(2 + \frac{1}{x} - \frac{1}{x}\right) = 2$$

$$\lim_{x \to 0} = \left(2 + \frac{1}{x}\right) = 2 + \infty \quad \text{and} \quad \frac{\sin(x)}{\sqrt{x}} = 0$$

$$\lim_{x \to \infty} = (2x - x) = \infty \quad \frac{\sin(x)}{x^2} = \infty$$

2.11.3. Regel von L'Hôpital

Grenzwert weist folgende Eigenschaft auf:

$$\lim_{x \to 0} (f(x)) = \frac{0}{0} \text{ oder } \lim_{x \to 0} (f(x)) = \pm \frac{\infty}{\infty}$$

dann gilt:
$$\lim_{x \to x0} \frac{f(x)}{g(x)} = \lim_{x \to x0} \frac{f'(x)}{g'(x)}$$
Beispiel:
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$$

2.12. Reihen

2.12.1. Potenzreihen

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots a_n x^n = \sum_{n=0}^{\infty} a_n x^n$$

2.12.2. Konvergenzradius von Potenzreihen

$$r = \lim_{n \to \infty} \left(\frac{a_n}{a_n + 1} \right)$$

Bsp.:
$$P(x) = -x + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \frac{1}{4}x^4 - \frac{1}{5}x^5 \dots$$

$$r = \lim_{n \to \infty} \frac{\frac{-1}{n}}{\frac{1}{n+1}} = \frac{-n+1}{n} = \frac{n*\left(1+\frac{1}{n}\right)}{n} = 1+\frac{1}{n} \approx \underbrace{\frac{1+0}{n}} \longrightarrow \text{Konvergenz radius} = 1$$

(bei ∞ ist Konvergenzradius = R)

Anschließend Überprüfung ob 1 und -1 im Konvergenzradius enthalten sind.

$$P(1) = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} \dots \rightarrow \text{Konvergiert}$$

 $P(-1) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} \dots \rightarrow \text{divergiert}$

$$\rightarrow \underline{-1 < r \le 1}$$

2.12.3. Potenzreihenentwicklung (Mac Laurinsche Reihe)

Zweck: Annäherung einer Funktion f(x) mit Polynomen in einem Punkt

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} * x^n$$

→ Näherung um x = 0

Beispiel: $f(x)=\sin(x)$

	f(0)	!	Х
$f(x)=\sin(x)$	0	0!	x^0
$f'(x)=\cos(x)$	1	1!	x^1
$f''(x)=-\sin(x)$	0	2!	x^2
f'''(x)=-cos(x)	-1	3!	x^3
$f(4)(x)=\sin(x)$	0	4!	x^4
$f(5)(x)=\cos(x)$	1	5!	x^5
$f(6)(x)=-\sin(x)$	0	6!	x^6
$f(7)(x) = -\cos(x)$	-1	7!	x^7
$f(8)(x)=\sin(x)$	0	8!	x^8
$f(9)(x)=\cos(x)$	1	9!	x^9

$$f(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9 \dots$$

Die Reihe ist unendlich lang, allerdings ist die Reihe nach einigen Termen bereits hinreichend genau.

2.12.4. Taylorreihe

Wie MacLaurinsche Reihe, aber Entwicklung um einen beliebigen Punkt.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} * (x - x_0)^n$$

Beispiel: $f(x) = \sqrt{x}$	$x_0 = 0$
$f(x) = \sqrt{x} = x^{1/2}$	
$f'(x) = \frac{1}{2}x^{-1/2}$	
$f''(x) = -\frac{1}{4}x^{-3/2}$	
$f'''(x) = \frac{3}{8}x^{-5/2}$	
$f^{"}(x) = -\frac{15}{16}x^{-7/2}$	

f(x)	!	X
1	0!	1
$\frac{1}{2}$	1!	X
$-\frac{1}{4}$	2!	x ²
$\frac{3}{8}$	3!	x ³
$-\frac{15}{16}$	4!	x ⁴

$$f(x) = 1 + \frac{1}{2}(x-1) - \frac{1}{4*2!}(x-1)^2 + \frac{3}{8*3!}(x-1)^3 - \frac{15}{16*4!}(x-1)^4$$

- → Berechnung Konvergenzradius ganz normal möglich
- → Konvergenzradius um Punkt x₀

2.13. Differentialrechnung

2.13.1. Trennung der Variablen

$$y' = f(x) * g(y)$$
$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

Beispiel 1:
$y' = \frac{x}{\sin(y)} / \sin(y)$
$\sin(y) * y' = x$ $y' = \frac{dy}{dx}$
$\sin(y)\frac{dy}{dx} = x /* dx$
$\sin(y)dy = x dx / \int$
$\sin(y)dy = \frac{1}{2}x^2 + C$
$-\cos(y) = \frac{1}{2}x^2 + C$
$\int_{\cos(y)} = -\frac{1}{2}x^2 - C / \cos^{-1}$
$y = \cos^{-1}\left(-\frac{1}{2}x^2 - C\right)$

"allgemeine Lösung"

Vorgehensweise:

- beide Variablen auf je eine Seite bringen
 - $\frac{dy}{dx}$ für y' einsetzen
- integrieren

Beispiel 2:	Anfangswertproblem:
y' = y	y(0) = 1
$\frac{dy}{dx} = y /: y /* dx$	$1 = C * e^0 = C * 1$ $\underline{C = 1}$
	<u>C = 1</u>
$\frac{1}{y}dy = dx / \int$	
$\int \frac{1}{y} dy = \int dx$	
$\ln(y) = x + K - /e^{\wedge}$	
$y = e^{x+k}$	
$y = C * e^x$	

2.13.2. Lineares DGL 1. Ordnung (Variation der Konstanten)

Allgemeine Form:	y'+f(x)*y=g(x) (y' u. y müssen linear sein)			
	Bsp.: $\dot{x} - 3x = t * e^t$			
1. Schritt:	Lösen des homogenen Gleichungssystems:			
	$\dot{x} - 3x = 0$ Lösungsformel: $y = C * e^{-\int f(x)dx}$			
	Trennung der Variablen:			
	$\underline{\underline{x} = e^{3t} * K}$			
Schritt Variation der Konstanten	$x = K(t) * e^{3t}$ (für K wird K(x) gesetzt)			
	$\dot{x}(t) = K(t) * e^{3t} * 3 + \dot{K}(t) * e^{3t}$ (ableiten mit Produktregel)			
	→ einsetzen in Ursprungsformel:			
	$\underline{K(t)} * e^{3t} * 3 + \dot{K}(t) * e^{3t} = 3* \underline{K(t)} * e^{3t} = t * e^{t}$			
	→ 2 Terme müsse sich herauskürzen			
	$\dot{K}(t) * e^{3t} = t * e^t / : e^{3t}$			
	$\dot{K}(t) = t * e^{-2t} / \int$			
	$K(t) = \int t * e^{-2t}$			
	$K(t) = -\frac{1}{4}(2t+1)e^{-2t} + C$			
	→ einsetzen in homogene Lösung			
	$x = e^{3t} * K$			
	$x(t) = e^{3t} \left(-\frac{1}{4} (2t+1)e^{-2t} + C \right)$			

2.14. System linearer Differentialgleichungen

2.14.1. Eulerscher Lösungsansatz

Beispiel: Lösung DGL 3. Ordnung $y = 5y + 17y - 13y = 0$		
$\lambda^3 - 5\lambda^2 + 17\lambda - 13 = 0$ Nullstellen: $\lambda_1 = 1 , \lambda_2 = 2 \pm 3i$		Charakterisches Polynom bilden (Ableitung wird zu Potenz) und Nullstellen des Polynoms finden
Lösungsschema für Fundamenta	lsystem:	
1-fache reelle Nullstelle:	$\lambda \Rightarrow e^{\lambda t}$	
m-fache reelle Nullstelle (Nullstelle mehrfach vorhanden):	$\lambda \Rightarrow e^{\lambda t}, \ t \cdot e^{\lambda t}, \ t^2 \cdot e^{\lambda t}, \dots$	
1-fache komplexe Nullstelle:	$e^{(\alpha \pm \beta i)t} = \begin{cases} e^{\alpha t} \cdot \cos(\beta t) \\ e^{\alpha t} \cdot \sin(\beta t) \end{cases}$	
m-fache komplexe Nullstelle	$\lambda \Rightarrow e^{\alpha t} \cdot \cos(\beta t), e^{\alpha t} \cdot \sin(\beta t)$	
(Nullstelle mehrfach vorhanden):	$e^{\alpha t} \cdot t \cdot \cos(\beta t), e^{\alpha t} \cdot t \cdot \sin(\beta t)$	$\beta t)$
Fundamentalsystem:		Fundamentalsystem
e^t , $e^{2t} \cdot \cos(3t)$, $e^{2t} \cdot \cos(3t)$		aus Nullstellen bilden
Allgemeine Lösung:		
$y = c_1 \cdot e^t + c_2 \cdot e^{2t} \cdot \cos(3t) + c_3 \cdot e^{2t} \cdot \cos(3t)$	s(3t)	

2.14.2. Überführung DGL n-ter Ordnung in n Differentialgleichungen 1. Ordnung

Durch Substitution lässt sich das obige DGL in ein Differentialgleichungssystem 1. Ordnung überführen.

Granang abonamon.	y'' - 5y' + 6y = 0
Substitution und einsetzen in ursprüngliche Gleichung	$y = z_1$, $y' = z_1' = z_2$, $y'' = z_2' = z_3$, $y''' = z_3'$ $\Rightarrow z_2' - 5z_2 + 6z_1 = 0$
Gleichung u. Matrixschreibweise allgemein	$z_n' + a_1 z_n + a_2 z_{n-1} + \dots + a_{n-1} z_2 + a_n z_1 = 0$
	$ \begin{pmatrix} z_1 \\ z_2 \\ \dots \\ z_{n-1} \\ z_n \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_1 \end{pmatrix} \cdot \begin{pmatrix} z_1 \\ z_2 \\ \dots \\ z_{n-1} \\ z_n \end{pmatrix} $
Gleichungssystem für Beispiel	
Eigenwerte der Koeffizientenmatrix bestimmen	$\lambda_1 = 2$ $\lambda_2 = 3$
Eigenvektoren der Matrix bestimmen	$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} , v_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$
Aufstellen des Fundamentalsystems	$e^{2t} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $e^{3t} \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix}$
Allgemeine Lösung DGL	$ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = $
	Ergebnis von y wie beim Eulerschen Lösungsansatz, jedoch liefert diese Methode auch die Lösung von y'. Durch ableiten von y lässt sich eine Rechenprobe durchführen

2.14.3. Allgemeine Systeme linearer DGLn (ohne Störterm)

1. Fall, es existieren n verschiedene reelle Eigenwerte

Beispiel:	x' = -13x + 30y
	y' = -9x + 20y
Vektordifferentialgleichung aufstellen	$ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -13 & 30 \\ -9 & 20 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} $
Eigenwerte und	$\lambda_1 = 5$ $\lambda_2 = 2$
Eigenvektoren bestimmen	$v_1 = \begin{pmatrix} 5 \\ 3 \end{pmatrix} v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
Aufstellen des Fundamentalsystems	$e^{5t} \cdot \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, $e^{2t} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
Allgemeine Lösung des DGL-Systems	$ \begin{pmatrix} x \\ y \end{pmatrix} = C_1 \cdot e^{5t} \cdot \begin{pmatrix} 5 \\ 3 \end{pmatrix} + C_2 + e^{2t} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} $

2. Fall, es existieren weniger als n verschiedene reelle Eigenwerte λ

Beispiel:	s n verschiedene reelle Eigenwerte k		
Beispiel.	x' = 2x + 4y		
	y' = -x - 2y		
Vektordifferentialgleichung aufstellen	$ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} $		
Eigenwert und Eigenvektoren bestimmen	$\lambda_{1,2} = 0 \qquad v_1 = \begin{pmatrix} -2\\1 \end{pmatrix}$		
	 doppelter Eigenwert → Hauptvektor bilden 		
Hauptvektor bilden - lineares Gleichungssystem aufstellen mit Matrix abzgl. Eigenwert - Ergebnisvektor = Eigenvektor	$\begin{pmatrix} 2-\lambda & 4 \\ -1 & 2-\lambda \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 4 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ Lin. Gleichungssystem ist linear abhängig \rightarrow Parameter frei wählbar. $2u_1 + 4u_2 = -2 \qquad u_2 \rightarrow \alpha \rightarrow 1$		
	$2u_1 + 4 = -2 /-4$ $2u_1 = -6 /:2$ $u_1 = -3$ $\Rightarrow \text{Hauptvektor } u = \begin{pmatrix} -3\\1 \end{pmatrix}$		
Aufstellen Fundamentalsystem	$e^{0t} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} , e^{0t} \begin{pmatrix} -3-2t \\ 1+t \end{pmatrix}$ Der zweite Termin berechnet sich wie folgt: $e^{\lambda \tau} = (u+t \cdot v)$		
Allgemeine Lösung des DGL- Systems	$ \begin{pmatrix} x \\ y \end{pmatrix} = C_1 \cdot e^{0t} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} + C_2 \cdot e^{0t} \cdot \begin{pmatrix} -3 - 2t \\ 1 + t \end{pmatrix} \qquad \Rightarrow e^{0t} = 1 $ $ \begin{pmatrix} x \\ y \end{pmatrix} = C_1 \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} + C_2 \cdot \begin{pmatrix} -3 - 2t \\ 1 + t \end{pmatrix} $ Allgemeine Lösung in der Regel nicht eindeutig, da Eigenvektoren und Hauptvektoren nicht eindeutig sind. Eindeutige Lösung erst nach Einsetzen von Anfangswerten, bzw. Lösung des Anfangswertproblems (AWP).		

2.15. Numerik

2.15.1. Nullstellenberechnung durch Bisektion

Beispiel: gesucht ist eine Nullstelle im Intervall [0,2] mit Genauigkeit 0,1	$y = 3x^{3} - 4x^{2} + 2x - 3$ $f(0) = -3$ $f(2) = 9$					
	Schritt	а	b	С	У	
	1	0	2	1	-2	→ Grenze [c,b]
	2	1	2	1,5	1,125	→ Grenze [a,c]
	3	1	1,5	1,25	-0,89	→ Grenze [c,b]
	4	1,25	1,5	1,375	-0,013	→ Genauigkeit
						erreicht y < 0,1
	→ Nullstell	le bei ca	ı. 1,375			

2.15.2. Nullstellenberechnung mit dem Newton-Verfahren

Nullstelle wird über Steigungstangente von einem Startpunkt (x_0) aus immer weiter angenähert. Schnittpunkt der Tangente mit X-Achse wird neuer Punkt (x_1) , von diesem wird erneut Steigungstangente erstellt. Dies wird solange durchgeführt bis gewünschte

Näherung erreicht ist.

Iterationsvorschrift:

$$x_{k+1} = x_K - \frac{f(x)}{f'(x)}$$

Für die Konvergenz sind folgende Bedingungen notwendig für alle Punkte x_k und die Lösung:

$$f'(x)\neq 0$$

$$\left| \frac{f(x) \cdot f''(x)}{\left[f'(x) \right]^2} \right| < 1$$

Beispiel:	Schnittpunkt der Funktionen:		
	$f(x) = x^2 + 2$		
	$g(x) = e^x$		
Gleichsetzen der beiden	$h(x) = x^2 + 2 - e^x$		
Gleichungen und umformen, Nullstelle der neuen Funktion =	$h'(x) = 2x - e^x$		
x-Wert des Schnittpunktes. Anschließend wird noch die Ableitung der neuen Funktion	Startwert x ₀ =1.5		
aufgestellt.	Überprüfen ob Punkt geeignet ist:		
	$h'(1,5) = 2 \cdot 1, 5 - e^{1.5} \approx 1,48$		
	$\left \frac{h(1,5) \cdot h"(1,5)}{\left[h'(1,5)\right]^2} \right = \left \frac{(-0,23) \cdot (-2,48)}{\left[-1,48\right]^2} \right = 0,26 \implies erf\ddot{u}llt$		
Iteratives Annähern	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \approx 1, 5 - \frac{-23}{-148} \approx 1,3436$		
	$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx 1,3195$		
	$\underbrace{x_3 \approx 1,3190}_{}$		

2.15.3. Regula Falsi

Interationsvorschrift:

$$x^* = a_{k-1} - \frac{b_{k-1} - a_{k-1}}{f(b_{k-1}) - f(b_{k-1})} \cdot f(a_{k-1})$$

1. Schritt:

a und b Startpunkte mit unterschiedlichen Vorzeichen, x* ist der Schnittpunkt der Sekante mit der x-Achse.

Zum x* Wert wird der dazugehörte y* Wert berechnet.

Haben a und x^* das gleiche Vorzeichen wird x^* zum neue a.

Haben b und x^* das gleiche Vorzeichen wird x^* zum neuen b.

2. Schritt:

Verfahren wird wiederholt bis gewünschte Genauigkeit erreicht ist.

Beispiel:	$\sqrt{2}$ $\Rightarrow f(x) = x^2 - 2$
Bereich festlegen	a = 0; $b = 2$
1. Schritt:	a=0 f(a)=-2
	b=2 f(b)=2
	$x^* = 0 - \frac{2 - 0}{2 - (-2)} \cdot (-2) = -\frac{2}{4} \cdot (-2) = \frac{1}{4}$
	$f(x^*) = -1$
	→ f(x*) hat gleiches Vorzeichen wie f(a), daher wird x* zum
	neuen a
2. Schritt:	a = 1 $f(a) = -1$
→ Wiodorholung bio	b=2 f(b)=2
→ Wiederholung bis gewünschte Genauigkeit erreicht	$x^* = 1 - \frac{2-1}{2-(-1)} \cdot (-1) = 1 - \frac{1}{3} \cdot (-1) = 1 + \frac{1}{3} = \frac{3}{4}$
ist	$f(x^*) = -0.22$
	→ f(x*) hat gleiches Vorzeichen wie f(a), daher wird x* zum
	neuen a

2.15.4. Numerische Differentiation

Verfahren ersten Grades

1)
$$\frac{dy}{dx}(k) \approx \frac{\Delta y_r}{\Delta x_r} = \frac{y_k - y_{k-1}}{x_k - x_{k-1}}$$
 Rückwärtsdreieck

2) $\frac{dy}{dx}(k) \approx \frac{\Delta y_v}{\Delta x_v} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$ Vorwärtsdreieck

2) $\frac{dy}{dx}(k) \approx \frac{\Delta y_v}{\Delta x_v} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$ Vorwärtsdreieck

Rückwärtssteigung:

$$\frac{dy}{dx}(k) \approx \frac{\Delta y_r}{\Delta x_r} = \frac{2^2 - 1.9^2}{2 - 1.9} = 3.9$$

Rückwärtssteigung:

$$\frac{dy}{dx}(k) \approx \frac{\Delta y_v}{\Delta x_v} = \frac{2.1^2 - 2^2}{2.1 - 2} = 4.1$$

Verfahren zweiten Grades

Es wird der Mittelwert zwischen der Vorwärtssteigung und der Rückwärtssteigung gebildet	Beispiel:
1) $\frac{dy}{dx}(k) \approx \frac{1}{2} \cdot \left(\frac{\Delta y_r}{\Delta x_r} + \frac{\Delta y_v}{\Delta x_v} \right)$	$\frac{dy}{dx}(k) \approx \frac{1}{2} \cdot (3,9+4,1) = 4$
Bei gleichem Abstand der vorwärts und	Beispiel:
Rückwärtswerte nimmt die Formel eine	
einfache Form an:	$\frac{dy}{dx}(k) \approx \frac{1}{2 \cdot 0.1} \cdot (2.1^2 - 1.9^2) = \frac{0.8}{0.2} = 4$
$\frac{dy}{dx}(k) \approx \frac{1}{2 \cdot \Delta x} \cdot \left(y_{k+1} - y_{k-1} \right)$	$\frac{dx}{dx} = \frac{(x, y)^2}{2 \cdot 0.1} = \frac{(2, 1)^2 - 1.9}{0.2} = \frac{-4}{0.2}$

2.15.5. Numerische Integration

Trapez-Formel

Simpson Formel

- Aufteilung der Flächen in gerade Anzahl von Gebieten, ähnlich Trapezformel jedoch Annäherung durch Parabeln

Simpsonsche Formel	$\int_{a}^{b} f(x)dx \approx$ $\approx \left((y_0 + y_{2n} + 4(y_1 + y_3 + \dots + y_{2n-1}) + 2(y_2 + y_4 + \dots + y_{2n-2}) \right) \cdot \frac{h}{3}$
	$\approx \left((y_0 + y_{2n} + 4(y_1 + y_3 + \dots + y_{2n-1}) + 2(y_2 + y_4 + \dots + y_{2n-2}) \right) \cdot \frac{h}{3}$ $\approx \left(\sum_1 + 4 \cdot \sum_2 + 2 \cdot \sum_3 \right) \cdot \frac{h}{3}$ $h = \frac{b - a}{2n}$
	2n y _k : Stürzwerte der Funktion y=f(x), $x_k = a + k \cdot h$
	h: Streifenbreite, bzw. Schrittweite $h = \frac{b-a}{2n}$
	n: Anzahl der Schritte \sum_1 : Summe der beiden äußeren Stützwerte
	\sum_2 : Summe der inneren Stützwerte mit <i>ungeradem</i> Index
	\sum_3 : Summe der inneren Stützwerte mit <i>geradem</i> Index
Beispiel	$\int_{1}^{2} \frac{1}{x} dx \; ; \; 2n=4$
	$h = \frac{2-1}{2n} = \frac{1}{4} = 0,25$
	$x_0 = 1$
	$x_1 = 1 + 1 \cdot h = 1 + 1 \cdot 0, 25 = 1, 25$ $x_2 = 1 + 2 \cdot 0, 25 = 1, 5$
	$x_3 = 1,75$
	$x_n = 2$
	$\int_{1}^{2} \frac{1}{x} dx \approx \left(\left(1 + \frac{1}{2} \right) + 4 \left(\frac{1}{1,25} + \frac{1}{1,75} \right) + 2 \left(\frac{1}{1,5} \right) \right) \cdot \frac{0,25}{3}$ $= 0,693253$

${\it 2.15.6.} \quad {\it Numerische Integrations verfahren f\"ur Differentialgleichungen}$

Streckenzugverfahren von Euler

Aufgabe: Lösung des Anfangswertproblems von y' = f(x, y); Anfangswert: $y(0) = y_0$ im Intervall a bis b.

Aufteilung Intervall in gleiche Teile der Länge h: $h = \frac{b-a}{n}$	$x_0 = a$; $x_1 = a + 1 \cdot h$; $x_2 = a + 2 \cdot h$ $x_n = b$ $\Rightarrow x_k = a + k \cdot h$
	$y_0 = y_0; y_1 = y_0 + h \cdot f(x_0; y_0); y_2 = y_1 + h \cdot f(x_1; y_1) \dots$ $\Rightarrow y_k = y_{k-1} + h \cdot f(x_{k-1}; y_{k-1})$
	, Jk Jk-1 J (***k-1**)

Rechenschema:

k	x	у	$h \cdot f(x; y)$
0	x_0	y ₀ (Anfangswert)	$h \cdot f(x_0; y_0)$
1	$x_1 = x_0 + 1 \cdot h$	$y_1 = y_0 + h \cdot f(x_0; y_0)$	$h \cdot f(x_1; y_1)$
2	$x_2 = x_1 + 2 \cdot h$	$y_2 = y_1 + h \cdot f(x_1; y_1)$	$h \cdot f(x_2; y_2)$
3	$x_3 = x_2 + 3 \cdot h$	$y_3 = y_2 + h \cdot f(x_2; y_2)$	$h \cdot f(x_3; y_3)$
		•	
		•	•

Beispiel 1: $y' = y + e^x$; $y_0 = 1$; h = 0.05

k	X	у	$h \cdot f(x; y)$
0	$x_0 = 0$	$y_0 = 1$	$h \cdot (y + e^x) = 0.05 \cdot (1 + e^0) = 0.1$
1	$x_1 = 0 + 1 \cdot 0,05 = 0,05$	$y_1 = 1 + 0, 1 = 1, 1$	$0.05 \cdot (1.1 + e^{0.05}) = 0.1076$
2	$x_2 = 0 + 2 \cdot 0,05 = 0,1$	$y_2 = 1,1+0,1076 = 1,2076$	$0.05 \cdot (1.2076 + e^{0.1}) = 0.1156$
3	$x_3 = 0.15$	$y_3 = 1,3232$	0,1243
	•		•

Beispiel 2: y' = 2x ; y(0) = 0; y(x) numerisch bestimmen in 4 Schritten; $h = \frac{x - a}{4} = \frac{x}{4}$

k	X	у	$h \cdot f(x; y)$
0	$x_0 = 0$	$y_0 = 0$	$h \cdot (2x) = \frac{x}{4} \cdot (2 \cdot 0) = 0$
1	$x_1 = 0 + 1 \cdot \frac{x}{4} = \frac{x}{4}$	$y_1 = 0 + 0 = 0$	$\frac{x}{4} \cdot (2 \cdot \frac{x}{4}) = \frac{2x^2}{16} = \frac{x^2}{8}$
2	$x_2 = 2 \cdot \frac{x}{4} = \frac{x}{2}$	$y_2 = 0 + \frac{x^2}{8}$	$\frac{x}{4} \cdot \left(2 \cdot \frac{x}{2}\right) = \frac{2x^2}{8} = \frac{x^2}{4}$
3	$x_3 = \frac{3x}{4}$	$y_3 = \frac{x^2}{8} + \frac{x^2}{4} = \frac{3x^2}{8}$	$\frac{x}{4} \cdot \left(2 \cdot \frac{3x}{4}\right) = \frac{6x^2}{16} = \frac{3x^2}{8}$
3	$x_3 = x$	$y_3 = \frac{3x^2}{8} + \frac{3x^2}{8} = \frac{6x^2}{8} = \frac{3x^2}{4}$	

Verbessertes Eulerverfahren (Mittelpunktsregel)

es wird ein Zwischen Integrationsschritt eingefügt

Aufteilung Intervall in gleiche Teile der Länge h:	$y_{k-1/2} = y_{k-1} + \frac{h}{2} \cdot (y_{k-1}; x_{k-1})$
$h = \frac{b - a}{n}$	$y_k = y_{k-1} + h \cdot f(x_{k-1/2}; y_{k-1} + \frac{h}{2})$

Beispiel 1: $y' = y + e^x$; $y_0 = 1$; h = 0.05

k	x	У	$y_{1/2} = y_k + \frac{h}{2} \cdot f(y_k; x_k)$	$h \cdot f(y_{k1/2}; x_k + \frac{h}{2})$
0	0	1	$y_{1/2} = 1 + 0.025 \cdot (1 + e^0) = 1.05$	$ 0.05 \cdot (1.05 + e^{(0+0.25)}) = 0.10377 $
1	0,05	1,10377	$y_{1/2} = 1,10377 + 0,025 \cdot (1,10377 + e^{0,05})$ = 1,1576	$0.05 \cdot \left(1.1576 + e^{0.75}\right) = 0.11177$
2	0,1	1,12155	1,127356	0,12355
3	0,15	1,3358		

Runge-Kutta-Verfahren 4. Ordnung

Rechenschema:

k	x	у	f(x;y)	k=h·f(x;y)
0	x_0	y_0	$f(x_0; y_0)$	k_1
	$x_0 + \frac{h}{2}$	$y_0 + \frac{k_1}{2}$	$f\left(x_0 + \frac{h}{2}; y_0 + \frac{k_1}{2}\right)$	k_2
	$x_0 + \frac{h}{2}$	$y_0 + \frac{k_2}{2}$	$f\left(x_0 + \frac{h}{2}; y_0 + \frac{k_2}{2}\right)$	k_3
	$x_0 + h$	$y_0 + k_3$	$f\left(x_0+h;y_0+k_3\right)$	k_4
		$K = \frac{1}{6} \cdot (k_1 + 2k_2 + 2k_3 + k_4)$		
1	$x_1 = x_0 + h$	$y_1 = y_0 + K$		

Beispiel 1: $y' = y + e^x$; $y_0 = 1$; h = 0.05

k	X	у	$f(x; y) = y + e^x$	$0.05 \cdot (y + e^x)$	
0	0	1	$1 + e^0 = 2$	$0,05 \cdot 2 = 0,1$ k_1	
	$0 + \frac{0,05}{2} = 0,025$	$1 + \frac{0,1}{2} = 1,05$	2,075	0,1037 (k ₂)	
	0,025	$1 + \frac{0,1037}{2} \approx 1,05188$	2,077	$0,1038 (k_3)$	
	0,05	1+0,1038=1,104	2,155	0,1077 k_4	
			$K = \frac{1}{6} \cdot (k_1 + 2k_2 + 2k_3 + k_4) = 0,10383$		
1	$x_1 = 0 + 0,05 = 0,05$	$y_1 = 1 + K \approx 1,104$			