Universidade Federal de Santa Catarina FSC5132 - Física Teórica A - P4 Prof. Rafael Heleno Campos Florianópolis, 13 de julho de 2016.

Parte 1

- 1. Considere um recipiente de ferro de massa $3,0000~{\rm kg}$ e volume interno de $5,0000~{\rm L}$ que está completamente preenchido com água e o sistema está inicialmente à uma temperatura de $25,150~{\rm ^oC}$.
 - (a) Se são fornecidos ao sistema $1,8000 \times 10^6$ J de calor, calcule a massa de água que evapora.
 - (b) Considerando, de modo simplificado, que a massa do item anterior evapora **antes** que o sistema sofra os efeitos da dilatação, calcule a massa de água que transborda.
- 2. (a) Qual é a taxa de perda de energia em watts por metro quadrado através de uma janela de vidro de 4,00 mm de espessura se a temperatura externa é -20 °C e a interna é 22 °C?
 - (b) Calcule novamente, para uma janela composta de duas placas de vidro como a anterior separadas por uma camada de ar de 5,0 cm de espessura.
- 3. Uma caixa térmica que tem divisória móvel de material condutor de calor. Inicialmente, a divisória esta dividindo a caixa em partes iguais, mas de um lado da caixa tem uma quantidade duas vezes maior de um gás ideal do que do outro lado. Moléculas são impedidas de transpor a divisória, e o sistema esta à temperatura de 300 K. O dispositivo que prende a divisória é solto e ele então pode mover-se até que o sistema entre em equilíbrio. Calcule:
 - (a) A temperatura final do sistema.
 - (b) O volume final da parte esquerda, como função do volume inicial V_0 .
- 4. Um gás ideal, a uma temperatura inicial T_1 e com um volume inicial de 2,0 m³, sofre uma expansão adiabática para um volume de 4,0 m³, depois uma expansão isotérmica para um volume de 10 m³ e, finalmente, uma compressão adiabática de volta para T_1 . Qual é o volume final?
- 5. O *Ciclo Otto*, que move motores a gasolina está representado no diagrama abaixo, onde os processos **1-2** e **3-4** são processos adiabáticos. Considere 1,0 mol de gás ideal monoatômico realizando o ciclo e que $V_b = 3V_a = 6,00 \times 10^{-4}$ m³ e que $P_3 = 2P_2 = 8,00 \times 10^5$ Pa.
 - (a) Determine em quais dos quatro processos do ciclo há troca de calor, e calcule-as, individualmente.
 - (b) Qual o trabalho líquido produzido a cada ciclo e qual é a eficiência dele?

- 6. Os ciclos Carnot-Diaz são ciclos de Carnot altamente eficientes. Considere então um ciclo como esse, realizado entre duas fontes a $T_a=1200~{\rm K}$ e $T_b=200~{\rm K}$ por 1,0 mol de gás ideal monoatômico.
 - (a) Sabendo que na expansão isotérmica temos $V_f=3V_i$, calcule o calor trocado neste processo.
 - (b) Calcule o trabalho líquido produzido no ciclo.
 - (c) Calcule o rendimento do ciclo.