Devoir maison 2 - Calcul de l'intégrale de Gauss

L'objectif de ce problème est le calcul de $I = \int_0^{+\infty} e^{-x^2} dx$.

1. Montrer que I converge. La fonction $f: x \mapsto e^{-x^2}$ est continue sur \mathbb{R} , donc localement intégrable.

 $\lim_{x\to +\infty} x^2 f(x) = 0$ (croissances comparées) donc $f(x) = o_{+\infty}\left(\frac{1}{x^2}\right)$; par comparaison à une intégrale de référence, I converge.

- **2.** Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{2}} \cos^n(x) dx$.
 - **a.** Calculer $a_0 = \frac{\pi}{2}$ et $a_1 = 1$.
 - **b.** Montrer que $\forall n \in \mathbb{N}, 0 < a_{n+1} < a_n$. $\forall n \in \mathbb{N}, \forall x \in \left] 0; \frac{\pi}{2} \right[, \cos^n x > 0 \text{ et } \cos^n x \cos^{n+1} x = \cos^n x (1 \cos x) > 0; \text{ le résultat s'obtient par positivité de l'intégrale.}$
 - c. Pour $n \in \mathbb{N}$, établir une relation de récurrence entre a_n et a_{n+2} . Une intégration par parties, avec $u = \cos^{n+1}$ et $v = \sin$ de classe C^1 sur \mathbb{R} , donne : $a_{n+2} = \left[\cos^{n+1} x \sin x\right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \cos^n x \sin^2 x dx = (n+1) \int_0^{\frac{\pi}{2}} \cos^n x (1-\cos^2 x) dx$ $= (n+1)a_n - (n+1)a_{n+2}, \text{ d'où } : (n+2)a_{n+2} = (n+1)a_n.$
 - **d.** Montrer que pour tout $n \in \mathbb{N}^*$, $na_na_{n-1} = \frac{\pi}{2}$. L'égalité est vraie pour n=1; soit $n \in \mathbb{N}^*$, si $na_na_{n-1} = \frac{\pi}{2}$, alors d'après la question précédente : $(n+1)a_{n+1}a_n = na_{n-1}a_n = \frac{\pi}{2}$; par principe de récurrence la propriété est montrée pour tout $n \in \mathbb{N}^*$.
 - e. Soit $n \in \mathbb{N}^*$. A l'aide de l'encadrement $a_{n+1} < a_n < a_{n-1}$, déterminer $\lim_{n \to +\infty} \frac{a_n}{a_{n-1}}$. Pour $n \in \mathbb{N}^*$, on a : $\frac{n}{n+1}a_{n-1} < a_n < a_{n-1}$ ainsi, la suite ne s'annulant pas : $\frac{n}{n+1} < \frac{a_n}{a_{n-1}} < 1$, le théorème des gendarmes donne : $\lim_{n \to +\infty} \frac{a_n}{a_{n-1}} = 1$.
 - **f.** A l'aide des résultats précédents, montrer que $a_n \underset{+\infty}{\sim} \frac{\sqrt{\pi}}{\sqrt{2n}}$. Le résultat précédent donne $a_n \underset{+\infty}{\sim} a_{n-1}$ avec la relation $na_n a_{n-1} = \frac{\pi}{2}$, on obtient : $na_n^2 \underset{+\infty}{\sim} \frac{\pi}{2}$, d'où $a_n \underset{+\infty}{\sim} \frac{\sqrt{\pi}}{\sqrt{2n}}$.

- 3. Montrer que $\forall x \in]-1; +\infty[, \ln(1+x) \le x]$ La fonction h définie sur $]-1; +\infty[$ par $h(x)=x-\ln(1+x)$ est dérivable sur son domaine, de dérivée $h'(x)=\frac{x}{x+1}$; h est donc décroissante sur]-1;0] puis croissante sur $[0;+\infty[$. Son minimum atteint en 0 est 0, ainsi la fonction h est positive sur $]-1;+\infty[$.
- **4.** Pour $n \in \mathbb{N}^*$, on définit $b_n = \int_0^{\sqrt{n}} \left(1 \frac{x^2}{n}\right)^n dx$ et $c_n = \int_0^{+\infty} \left(1 + \frac{x^2}{n}\right)^{-n} dx$.
 - a. Montrer que pour tout $n \in \mathbb{N}^*$, c_n converge. Soit n > 0. La fonction intégrée est continue sur $[0; +\infty[$ donc localement intégrable. $\left(1 + \frac{x^2}{n}\right)^{-n} \underset{+\infty}{\sim} \frac{n^n}{x^{2n}}$; par comparaison à une intégrale de référence, c_n converge.
 - **b.** Montrer que pour tout $n \in \mathbb{N}^*$, $b_n \leq \int_0^{\sqrt{n}} \mathrm{e}^{-x^2} \mathrm{d}x \leq c_n$. $\forall x \in \left[0; \sqrt{n} \left[, -\frac{x^2}{n} \in]-1; 0\right] \text{ donc, d'après l'inégalité prouvée à la question 3,} \right. \ln\left(1-\frac{x^2}{n}\right) \leq -\frac{x^2}{n} \text{ et, par croissance de la fonction exponentielle : } \mathrm{e}^{n\ln\left(1-\frac{x^2}{n}\right)} \leq \mathrm{e}^{-n\frac{x^2}{n}}.$ Par positivité de l'intégrale, on obtient : $b_n \leq \int_0^{\sqrt{n}} \mathrm{e}^{-x^2} \mathrm{d}x$.

 $\forall x \geq 0$, d'après l'inégalité prouvée à la question 3, $-\frac{x^2}{n} \leq -\ln\left(1 + \frac{x^2}{n}\right)$ et, par croissance de la fonction exponentielle : $e^{-n\frac{x^2}{n}} \leq e^{-n\ln\left(1 + \frac{x^2}{n}\right)}$.

Par positivité de l'intégrale, $\int_0^{\sqrt{n}} e^{-x^2} dx \le \int_0^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} dx \le c_n$, la deuxième inégalité résultant de la positivité de la fonction intégrée et de la croissance de l'intégrale.

c. A l'aide de changements de variable, exprimer b_n et c_n à l'aide de a_{2n+1} et a_{2n-2} . Pour b_n , on effectue le changement de variable $x=\sqrt{n}$ sin t: $b_n=\int_0^{\frac{\pi}{2}}\sqrt{n}\cos t(1-\sin^2 t)^n\mathrm{d}t=\sqrt{n}a_{2n+1}.$ Pour $c_{n,\pi}$ on effectue le changement de variable $x=\sqrt{n}$ tant:

$$c_n = \int_0^{\frac{\pi}{2}} \sqrt{n} \frac{\mathrm{d}t}{(1+\tan^2 t)^{n-1}} = \sqrt{n}a_{2n-2}.$$

5. Déduire de ce qui précède la valeur de I. $b_n = \sqrt{n} \, a_{2n+1} \underset{+\infty}{\sim} \frac{\sqrt{\pi}}{2} \, ; \, c_n = \sqrt{n} \, a_{2n-2} \underset{+\infty}{\sim} \frac{\sqrt{\pi}}{2} \, \text{ et } \lim_{n \to +\infty} \int_0^{\sqrt{n}} \mathrm{e}^{-x^2} \mathrm{d}x = I.$ On obtient $I = \frac{\sqrt{\pi}}{2}$.