Curso de Estatística Básica

Pavel Dodonov

pdodonov@gmail.com

Aula 2b – Trabalhando (mais um pouco) com uma amostra

Estatística

Inferencial

Descritiva

Estatística inferencial

Usualmente, testar hipóteses

Estatística descritiva

Descrever a nossa amostra

Envolve decidir: Quais aspectos dela merecem atenção?

Operacionalizando [mais ainda] a teoria

Operacionalizando [mais ainda] a teoria

DAP = (10, 40, 20, 19, 25, 24, 30, 60, 28, 30, 42, 20) cm

O que importa

Estatística descritiva – uma amostra

- Tendência central
- Variação
- Forma da distribuição
- Outras

Onde está o "centro" da distribuição?

• Média

Aplicação prática: Fator de Impacto

$$IF = \frac{n\'{u}mero de cita\~{c}\~{o}es}{n\'{u}mero de artigos}$$

Muito influenciada por valores extremos

Diferenças menores que uma ou duas unidades são irrelevantes na prática

Situação hipotética...

Revista Aleatória de Coisas (IF=2.37)

# citações	# artigos
0	2
1	6
2	10
3	6
4	3
5	3

Revista de Coisas Aleatórias (IF=1.80)

# citações	# artigos
0	4
1	12
2	9
3	8
4	1
5	1

Situação hipotética...

Revista Aleatória de Coisas (IF=2.37)

# citações	# artigos
0	2
1	6
2	10
3	6
4	3
5	3

Revista de Coisas Aleatórias (IF=4.53)

# citações	# artigos
0	4
1	12
2	9
3	8
4	1
5	1
100	1

Aplicação prática: Fator de Impacto

Para saber mais:

https://dynamicecology.wordpress.com/2016/06/21/impact-factors-are-means-and-therefore-very-noisy/

- Mediana
 - Metade de valores acima, metade de valores abaixo

- Moda
 - O valor mais comum

- Amplitude
 - Diferença entre valor mínimo e máximo

Variância

Desvio-padrão

 Coeficiente de variação

$$CV = \frac{m\acute{e}dia}{desvio\ padr\~{a}o}$$

Distância interquantis

Quantis

- Quantil x%: x% dos dados está abaixo deste valor
- Mediana é o quantil 50% :-)

Forma da distribuição

Assimetria

Curtose

 Quão "íngreme" é o pico da distribuição

Curtose

 Aplicação na vida real code = or ask us at the BAR

Outras

 Valores máximo e mínimo

Erro-padrão e Intervalo de confiança

População simulada

População simulada

População simulada

Média = 5.97

Amostragem

Amostra 1

Média = 5.2

Amostragem

Amostra 2

Média = 6.4

Amostra 5

Média = 5.05

Onde estará a média da população?

Onde estará a média da população?

Onde poderia estar a média da população?

Onde poderia estar a média da população?

Erro amostral

Resulta de termos amostras da população, e não a população inteira

Erro amostral

Resulta de termos amostras da população, e não a população inteira

Diminui com o esforço amostral

Erro amostral

Resulta de termos amostras da população, e não a população inteira

Diminui com o esforço amostral

Erro padrão =
$$\frac{\sigma}{\sqrt{n}}$$

A probabilidade de que a média real está dentro deste intervalo = 95% (Gotelli & Ellison 2004)

A probabilidade de que a média real está dentro deste intervalo = 95% (Gotelli & Ellison 2004)

Ou está ou não está; o experimento já foi feito. (Vários autores...)

Se o procedimento fosse repetido em múltiplas amostras, o IC calculado englobaria a média da população 95% das vezes (Cox & Hinkley 1974)

Calculado a partir da variação nas médias

Erro-padrão da média: variação nas médias com repetições do experimento

 Pode ser calculado analiticamente

$$CI = \overline{X} \pm Z_{\alpha(2)} \sigma_{\overline{X}}$$

$$Z_{\alpha(2)} = 1.96$$

 Pode ser calculado analiticamente

$$CI = \overline{X} \pm Z_{\alpha(2)} \sigma_{\overline{X}}$$

 $Z_{\alpha(2)} = 1.96$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$

Assumindo normalidade dos dados