Client Server

Messaggio client hello

L'utente U invia al sistema S un messaggio con il quale:

- si richiede la creazione di una connessione SSL;
- specifica i cifrari e meccanismi che supporta e le prestazioni di sicurezza richieste;
- invia una sequenza di byte casuali.

Tutto questo è mandato in chiaro!

Client Client hello Pre-master secret (Certificato del client) Finished Scambio sicuro dei dati

Messaggio server hello

Il sistema S riceve il messaggio dell'utente U.

- \bullet Seleziona una cipher suite che anche lui supporta (cerca di soddisfare le richieste dell'utente U)
- ullet Invia un messaggio all'utente U dove specifica la sua scelta.
- Appende dei byte casuali alla risposta.

Anche questo è mandato in chiaro!

Autenticazione

Il sistema S si autentica con U inviandogli il proprio certificato digitale (e gli eventuali altri certificati fino al primo nodo comune nella catena delle CA).

 ${f NB}~$ Se i servizi offerti da S devono essere protetti negli accessi anche S può richiedere a U di autenticarsi inviando il suo certificato digitale. Avviene raramente in quanto la maggior parte degli utenti non ha un proprio certificato e in genere ci si accerta dell'identità di un utente in un secondo modo (autenticazione sul sito web ad esempio).

Messaggio server hello done

Messaggio con il quale il server S sancisce la fine degli accordi sulla cipher suite ed i parametri crittografici associati.

Controllo da parte del client

L'utente U accerta l'autenticità del certificato ricevuto dal sistema S tramite la data, tramite la CA che lo ha firmato, ecc. Estrae la chiave pubblica dal certificato. L'utente U:

- $\bullet\,$ costruisce il $pre\text{-}master\,secret\,$ costituito da una nuova sequenza casuale di byte;
- lo cifra con la chiave pubblica estratta dal certificato.
- \bullet spedisce il crittogramma al sistema S.

Costruzione del master secret

Sempre l'utente U costruisce il $master\ secret$ partendo da:

- il pre-master secret (cifrato con RSA, si usa la chiave pubblica presente nel certificato di S);
- i byte casuali di *client hello* e *server hello* (*client hello* lo ha di suo, mentre *server hello* è stato inviato dal server).

Applica a tutte queste sequenze delle funzioni hash one-way secondo una combinazione opportuna. Il nuovo valore ottenuto è il master secret.

Server Server hello Certificato del server (Richiesta certificato del client) Server hello done Finished handshake Scambio sicuro dei dati

Ricostruzione del master secret

Anche il sistema S si calcola localmente il master secret. Può farlo perchè possiede:

- $\bullet\,$ il $pre-master\,secret,$ appena ricevuto dall'utente Ue decriptato con la sua chiave privata
- i byte casuali di client hello e server hello (client hello lo ha ricevuto dall'utente U, mentre server hello lo ha di suo)

Entrambi gli utenti hanno il master secret!

Messaggio finished

E' il primo messaggio protetto da $master\ secret\ e\ cipher\ suite\ accordati$. Il messaggio è costruito dall'utente U e inviato al sistema S, poi costruito dal sistema S ed inviato all'utente U. Il messaggio ha la stessa struttura ma cambiano i dati (la history).