Dense Matrix Algorithms

1 Matrix-Vector Multiplication

1.1 Serial Situation

Suppose we need to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield $n \times 1$ result vector y, so:

$$Ax = y \tag{1}$$

Then the serial algorithm will require n^2 multiplications and additions, so the runtime is $O(n^2)$.

1.2 1D Partitioning

Figure 1: 1D Partitioning

1.2.1 When n = p

Now matrix A is partitioned among p processors, each processor stores **complete** row of the matrix. Vector x is also partitioned, each process owns one element of x. The algorithm includes the following steps:

1. **Step 1**: Use AllGather to distribute all of x to each processor. Recall the communication primitive knowledge:

$$T_{comm} = O(\tau \log n + \mu n) \tag{2}$$

2. **Step 2**: Now each processor will compute:

$$y[i] = \sum_{j=0}^{n-1} A[i,j] \cdot x[j]$$
 (3)

The computation runtime will be O(n)

1.2.2 When n > p

Now each processor stores n/p complete rows of the matrix A, and n/p elements of the vector x

The algorithm includes the following steps:

1. **Step 1**: Distribute all of x vector to each processor. This will use AllGather operation among p processors, including messages of size n/p. Therefore:

$$T_{comm} = O(\tau \log p + \mu \cdot \frac{n}{p} \cdot p) = O(\tau \log p + \mu n)$$
 (4)

2. **Step 2**: Then on each processor, n/p local dot products on vectors of length n. So:

$$T_{comp} = O(\frac{n^2}{p}) \tag{5}$$

1.3 2D Partitioning

1.3.1 $p = n^2$

Suppose $n \times n$ matrix is partitioned among n^2 processors, so each processor owns a single element. In addition, we have $n \times 1$ vector x distributed in the last column of n processors.

Figure 2: 2D Partition Steps

For step a:

- 1. The $n \times n$ matrix A is divided into $\sqrt{p} \times \sqrt{p}$ blocks. At this case, $\sqrt{p} = n$. Each processor P_{ij} holds (n/\sqrt{p}) messages.
- 2. The vector x is also partitioned and distributed along the diagonal processors P_{ii} because each processor requires the corresponding element of vector x to multiply with its block of matrix A.

For step b:

- 1. After aligning the vector x on the diagonal, a **one-to-all broadcast** is performed within each column of processors.
- 2. Each diagonal processor P_{ii} sends its portion of the vector to all other processors in the same column. This step ensures that every processor in a column has the necessary part of the vector x to proceed with the multiplication with its local block of the matrix A.

For step c:

- 1. Each processor multiplies its block of the matrix A with the corresponding elements of vector x to compute a partial result of the resulting vector y.
- 2. Once all processors have computed their partial results, an **all-to-one reduction** is performed within each row of processors to sum up the partial results. This reduction step is necessary to construct the elements of the resulting vector y as each processor in a row holds a part of the sum needed for a single element of y.

For step d:

1. After the reduction step, each end of row processor will have a complete element of the resulting vector y. This is ready for final distribution.

All the steps could be summarized as:

- 1. Align vector along the main diagonal: **one-to-one communication**
- 2. Broadcast vector element to n processors in column: one-to-all broadcast
- 3. Local multiplication
- 4. Sum partial y values in each row: all-to-one reduction

Recall that the expressions of the communication time for **one-to-all broadcast** and **all-to-one reduction** are both $O(\tau \log p + \mu m \log p)$. Here p is should be the number of processors in row and column, they are both n. Each processor only has one element, so m = 1. The local multiplication does not need communication, and the **one-to-one communication** takes $O(\tau + \mu)$. Therefore:

$$T_{Comm} = O(\tau \log n + \mu \log n) \tag{6}$$

For the computation time, we need to add each partial results to get single element in y using **all-to-one reduction**. For each level, it requires 1 computation, and it has $\log n$ levels in this case. Therefore:

$$T_{Comp} = O(\log n) \tag{7}$$

1.3.2 $p < n^2$

Figure 3: p less than n^2 case

Basically the same as the general form in the last subsection. Now:

- 1. Each processor owns an $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ block of the matrix
- 2. The vector is distributed in portions of $\frac{n}{\sqrt{p}}$ elements in the last processor-column
- 3. The message sizes for the alignment, broadcast, and reduction are all $\frac{n}{\sqrt{p}}$. For the reduction, after local computation it will just be a $\frac{n}{\sqrt{p}}$ vector.

4. The local computation is a product of an $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ submatrix with a vector of length $\frac{n}{\sqrt{p}}$

The algorithm is the same as previous case, but different runtime.

- 1. To align vector along the main diagonal, we use **one to one communication**, the runtime is $O(\tau + \mu \frac{n}{\sqrt{p}})$
- 2. Broadcast vector elements to \sqrt{p} processors in column, this will take $O(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}} \log \sqrt{p})$
- 3. Local multiplication will take $O(\frac{n^2}{p})$
- 4. Sum partial y values in each row using **reduce** in \sqrt{p} processors, this will take $O(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}} \log \sqrt{p})$

Therefore, the communication time at this case will be:

$$T_{Comm} = O(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}} \log \sqrt{p})$$
 (8)

And the computation will be:

$$T_{Comp} = O(\frac{n^2}{p}) \tag{9}$$

Therefore the total runtime will be:

$$T = O\left(\frac{n^2}{p} + \left(\tau + \mu \frac{n}{\sqrt{p}}\right) \log \sqrt{p}\right) = O\left(\frac{n^2}{p} + \frac{n}{\sqrt{p}} \log \sqrt{p}\right) \tag{10}$$

To achieve maximum efficiency, we have:

$$\frac{O(n^2)}{p \cdot O(\frac{n^2}{p} + \frac{n}{\sqrt{p}}\log\sqrt{p})} = 1 \tag{11}$$

$$\frac{O(n^2)}{O(n^2 + n\sqrt{p}\log\sqrt{p})} = 1 \tag{12}$$

$$O(n\sqrt{p}\log\sqrt{p}) = O(n^2) \tag{13}$$

$$O(\sqrt{p}\log\sqrt{p}) = O(n) \tag{14}$$

Therefore, we get:

$$p = O(\frac{n^2}{\log^2 n}) \tag{15}$$

So this algorithm is efficient up to $O(\frac{n^2}{\log^2 n})$ processors.

2 Matrix-Matrix Multiplication

2.1 Serial Situation

Suppose we need to multiply a dense $n \times n$ matrix A with an $n \times n$ matrix B to yield $n \times n$ result matrix C, so:

$$AB = C (16)$$

The implementation is shown below:

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j) {
        double sum = 0;
        for (k = 0; k < n; ++k)
            sum += A[i][k] * B[k][j];
        C[i][j] = sum;
    }
}</pre>
```

Figure 4: Serial Matrix-Matrix Multiplication

Then the serial algorithm will require n^3 multiplications and additions, so the runtime is $O(n^3)$.

2.2 Normal Block Algorithm

2.2.1 Algorithm

In parallel case, we can use **block** operations to decompose the problem:

- 1. Divide $n \times n$ matrix A can be recomposed into $q \times q$ array of blocks
- 2. $A_{i,j}(0 \le i, j \le q)$ will be used for block notation, each block contains $(\frac{n}{q} \times \frac{n}{q})$ submatrix.
- 3. With this decomposition, we need to perform q^3 matrix multiplications, each involving $(\frac{n}{q} \times \frac{n}{q})$ matrices, as shown below.

Figure 5: Matrix-Matrix Multiplication Example

The algorithm details are shown below:

- 1. Suppose now the decomposition is done, matrices A and B partitioned into p blocks A_{ij} and $B_{ij} (0 \le i, j \le \sqrt{p})$, each block has a $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ submatrix
- 2. Processor P_{ij} initially stores A_{ij} and B_{ij} . In order to compute submatrix C_{ij} requires all A_{ik} and B_{kj} , where $0 \le k < \sqrt{p}$.
- 3. This is done by **AllGather** operation, gather blocks of A along rows and B along columns. Notice that the function of **AllGather** is assembling, not adding the matrix.
- 4. After **AllGather**, the local multiplication will be applied, and C_{ij} will be calculated.

2.2.2 Runtime Analysis

- 1. First we need to do the **AllGather** operations in row and column, within \sqrt{p} processors. Each processor has $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}} = \frac{n^2}{p}$ elements. Therefore the communication time is $O(\tau \log \sqrt{p} + \mu \frac{n^2}{p} \sqrt{p})$.
- 2. For each processor, the computation requires \sqrt{p} (number of processors in row) multiplications of two $(\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}})$ sized submatrices, this will require $O(\sqrt{p} \times (\frac{n}{\sqrt{p}})^3) = O(\frac{n^3}{p})$.
- 3. Notice that here each processor already stores one row in A and one column in B, so the local computation could just get the corresponding value (same position) in C.
- 4. Therefore the total runtime is $O(\frac{n^3}{p} + \tau \log \sqrt{p} + \mu \frac{n^2}{p} \sqrt{p})$
- 5. This will be efficient for $p = O(n^2)$
- 6. This algorithm has a very high memory requirement because each processor need to store the whole row or column's message. So it is not memory optimal.

2.3 Cannon's Algorithm

2.3.1 Algorithm

1. First align the blocks depending on their positions in the matrix. Suppose we have matrix A and matrix B as shown below:

Figure 6: Matrix A and Matrix B

Notice that for each row and column, the shifting distances are different. After the alignment process, $P_{i,j}$ will have $A_{i,(j+1)mod\sqrt{p}}$ and $B_{(i+j)mod\sqrt{p},j}$. After the alignment, the matrices are shown below, and we calculate the C matrix using the formula:

$$C_{ij} = A_{ij} \cdot B_{ij} \tag{17}$$

Figure 7: After Alignment

2. Then do the 1 left shift in matrix A and 1 up shift in matrix B, and calculate C_2 :

Figure 8: Shifting process

3. Then repeat these steps for $\sqrt{p}-1$ times, and the final C matrix will be:

$$C = C_1 + C_2 + C_3 + C_4 (18)$$

2.3.2 Runtime Analysis

- 1. In the alignment step, the maximum distance for a block to shift is $\sqrt{p}-1$, so two shift operations require $O(2*(\tau(\sqrt{p}-1)+\mu\frac{n^2}{p}(\sqrt{p}-1)))=O(\tau\sqrt{p}+\mu\frac{n^2}{p}\sqrt{p})$
- 2. The compute and shift phase has $\sqrt{p}-1$ steps. In each step, the computation requires the multiplications of two $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ submatrices, so the computation time is $O((\sqrt{p}-1)\times(\frac{n}{\sqrt{p}})^3)=O(\frac{n^3}{p})$
- 3. The communication time for $\sqrt{p}-1$ steps shifts will take $O(\tau(\sqrt{p}-1)+\mu\frac{n^2}{p}(\sqrt{p}-1))=O(\tau\sqrt{p}+\mu\frac{n^2}{p}\sqrt{p})$
- 4. So the final total time is $O(\frac{n^3}{p} + \tau \sqrt{p} + \mu \frac{n^2}{\sqrt{p}})$. Notice that this runtime is larger than the block algorithm, but Cannon's algorithm is more memory optimal.