TC4047BP

TC4047BP LOW-POWER MONOSTABLE/ASTABLE MULTIVIBRATOR

TC4047BP is the multivibrator equipped with both astable function and mono-stable function, and retrigger operation and reset operation are also achievable.

For both operational modes, the pulse width can be varied by externally connected capacitor (C) and resistor (R).

Establish RETRIG="L". +TRIG="L", -TRIG="H" for astable operation and AST="L", AST="H" for mono-stable operation. (Refer to FUNCTION TABLE and OPERATING CONSIDERATIONS).

When EXTERNAL RESET input is set at "H", both operational modes of astable and mono-stable operations are reset to Q="L" and \overline{Q} ="H".

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+20	V
Input Voltage	VIN	$v_{SS}-0.5 \sim v_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300	mW
Operating Temperature Range	$T_{\mathbf{A}}$	-40 ~ 85	°C
Storage Temperature Range	Tstg	-65∼150	°C
Lead Temp./Time	Tsol	260°C · 10 se	c

PIN ASSIGNMENT

LOGIC DIAGRAM

FUNCTION TABLE

FUNCTION								OUTPUT PERIOD
FUNCTION	AST. ASTTRIG. +TRIG. RETRIG. I		EXT.	RESET	OR PULSE WIDTH			
ASTABLE MULTIVIBRATOR								Q, \overline{Q}
Free Running	*	Н	Н	L	L		L	T=4.40RC
Free Kunning	L	*	Н	L	L		L	OSC OUT
Inhibit	Н	L	Н	L	L		L	T=2.20RC
MONOSTABLE MULTIVIBRATOR					-			
Positive-Edge Trigger	Н	L	L	-	L		L	Q, \overline{Q}
Negative-Edge Trigger	Н	L	7_	Н	L		L	tw=2.48RC
Retrigger	Н	L	L				L	

* Don't care

OPERATING CONSIDERATION

- 1. Astable Operation
 - By connecting inputs of -TRIGGER, +TRIGGER, RETRIGGER AND EXTERNAL RESET as shown in FUNCTION TABLE, stable operation of astable multivibrator can be obtained.
 - . When ASTABLE input is placed at "H", oscillation is continued regardless of ASTABLE input. When ASTABLE input is placed at "L", oscillation is continued regardless of ASTABLE input. (Free Running).
 - . Having ASTABLE input at "H", if ASTABLE input is set at "L", oscillation stops as long as it is at "L". (True Gating)
 - . Having ASTABLE input at "L". if ASTABLE input is set at "H", oscillation stops as long as it is at "H". (Complement Gating) The oscillating period is determined by the external resistor and capacitor to be approximately T=2.2RC. This oscillation waveform is obtained as it is at OSC OUT and the oscillation waveform with double period and 50% duty cycle is obtained at outputs Q and \overline{Q} .
- 2. Mono-Stable Operation
 - By connecting ASTABLE and ASTABLE inputs to "L" level and "H" level respectively, mono-stable multivibrator with the capabilities of retrigger operation and external asynchronous reset operation is obtained. This is normally used with RETRIGGER input and EXTERNAL RESET input connected to "L" level.
 - . When -TRIGGER input is set to "L", mono-stable pulse is obtained at the rising edge of +TRIGGER input at Q and \overline{Q} outputs. (Positive-edge Trigger)
 - . When +TRIGGER input is set to "H", mono-stable pulse is obtained at the falling edge of -TRIGGER input at Q and \overline{Q} outputs. (Negative-edge Trigger)
 - . Keeping-TRIGGER input at "L", if the same pulse input(T < 2.48RC) is applied to both +TRIGGER input and RETRIGGER input, retrigger operation is achieved. However, the last transition of this pulse input must be negative going. (Retrigger) The width of mono-stable pulse is determined by the external resistor and capacitor to be approximately $t_w=2.48RC$.

Note: The external resistor and capacitor should be connected as shown by broken lines in the logical diagram for both mono-stable and astable operations. The capacitor used should be non-directional.

TIMING DIAGRAM

$$\mathtt{t}_1 = - \mathtt{RC} \; \boldsymbol{\ell}_{\mathrm{B}} \; \frac{\mathtt{v}_{\mathrm{TH}}}{\mathtt{v}_{\mathrm{DD}} + \mathtt{v}_{\mathrm{TH}}} \quad \text{,} \qquad \mathtt{t}_{\mathrm{2}} = - \mathtt{RC} \; \boldsymbol{\ell}_{\mathrm{B}} \; \frac{\mathtt{v}_{\mathrm{DD}} - \mathtt{v}_{\mathrm{TH}}}{\mathtt{2} \mathtt{v}_{\mathrm{DD}} - \mathtt{v}_{\mathrm{TH}}}$$

$$t_{a} = 2 (t_{1} + t_{2}) = -2 \, \text{RC} \, \ell n \, \frac{v_{TH} (v_{DD} - v_{TH})}{(v_{DD} + v_{TH}) (2 v_{DD} - v_{TH})}$$

TYPICAL : $v_{TH} = 1/2\,v_{DD}$ $\rm t_{a} = 4.4\,0\,RC$

(MONO STABLE MODE)

$$\mathtt{t_1} = -\mathtt{RC} \; \boldsymbol{\ell} \mathtt{n} \; \frac{\mathtt{v_{TH}}}{\mathtt{v_{DD}} + \mathtt{v_{TH}}} \quad \text{,} \quad \mathtt{t_2} = -\mathtt{RC} \; \boldsymbol{\ell} \mathtt{n} \; \frac{\mathtt{v_{DD}} - \mathtt{v_{TH}}}{\mathtt{2v_{DD}} - \mathtt{v_{TH}}}$$

$${\rm t}_3 = - {\rm RC} \; \ell {\rm n} \; \frac{{\rm v}_{\rm TH}}{2 {\rm v}_{\rm DD}} \ , \qquad {\rm t}_1 + {\rm t}_2 \! < \! {\rm t}_4 \! < \! 2 \; (\; {\rm t}_1 \! + \! {\rm t}_2) \;$$

$$\mathbf{t_m} = \mathbf{t_3} + \mathbf{t_2} = -\text{RC}\; \boldsymbol{\ell}_{\text{D}} \;\; \frac{\mathbf{v}_{\text{TH}}(\mathbf{v}_{\text{DD}} - \mathbf{v}_{\text{TH}})}{2\mathbf{v}_{\text{DD}}(2\mathbf{v}_{\text{DD}} - \mathbf{v}_{\text{TH}})}$$

Typical : $v_{TH} = 1/2 v_{DD}$ $t_m = 2.48 \text{ RC}$

Note: VTH: Threshold Level

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v _{DD}	3	_	18	v
Input Voltage	VIN	0	_	V _{DD}	v
External Resistance	RX	5	-	1000	kΩ
External Condenser	C _X		μF		

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40°C		25°C			85	UNIT	
Old Milot Exterior	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01(11
		I _{OUT} <1 <i>µ</i> A	5	4.95	-	4.95	5.00	-	4.95	-	
High-Level Output Voltage	v _{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	_	9.95	-	
		1N -35, UD	15	14.95		14.95	15.00	_	14.95	-	v
		 I _{OUT} < 1#A	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Voltage	V _{OL}	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
		-1N -33, -DD	15	-	0.05	-	0.00	0.05	_	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
Output High		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
		V _{IN} =V _{SS} ,V _{DD}									
		V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	-	mA
Output Low	I _{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current	"	V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8		
		$v_{IN}=v_{SS}, v_{DD}$									
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High	V _{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	
Voltage	"	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		I _{OUT} < 1µA									v
		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	l v
Input Low	$ _{v_{IL}}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	""	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} < 1 µA									

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

I CHARACTERISTIC		SYM-	TTEST CONDITION I		TEST CONDITION V		TTEST CONDITION I		TTEST CONDITION I		TTEST CONDITION		TTEST CONDITION		TIEST CONDITION I		TTEST CONDITION I		TTEST CONDITION I		TTEST CONDITION I		-40)°C		25°C		8.	5°C	UNIT
	BOL			(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.																			
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	μΑ																		
1	"L" Level	IIL	VIL=OV	18	_	-0.1	-	-10-5	-0.1	-	-1.0																			
				5	-	1	_	0.005	1	-	30																			
Quiescent Device Current	Device	IDD	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	2	-	0.010	2	-	60	μА																		
		*	15	-	4	_	0.015	4	_	120																				

* All valid input combinations. DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)	t _{TLH}		5 10 15		80 50 40	200 100 80	ns
Output Transition Time (High to Low)	tTHL		5 10 15	1 1	80 50 40	200 100 80	ns
Propagation Delay Time (ASTABLE, ASTABLE - OSC OUT)	t _{pLH}		5 10 15	- - -	290 110 70	580 220 160	ns
Propagation Delay Time (ASTABLE, ASTABLE - Q, Q)	t _{pLH}		5 10 15	-	480 170 110	960 350 250	ns
Propagation Delay Time (+TRIGGER, -TRIGGER - Q, Q)	t _{pLH}		5 10 15	- - -	550 200 130	1100 450 300	ns
Propagation Delay Time (RETRIGGER - Q, \overline{Q})	t _{pLH}		5 10 15	- - -	250 100 65	600 300 200	ns
Propagation Delay Time (EXTERNAL RESET - Q, Q)	t _{pLH} t _{pHL}		5 10 15	- - -	270 100 65	540 200 140	ns

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CULD LOWER LOWER	GTD (DOI			мтм	my/n	MAY	INTO	
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	
Min. Pulse Width	twH		5	-	370	740		
(+TRIGGER, -TRIGGER)			10	-	130	260	ns	
(TRIGGER, -TRIGGER)	tWL		15	-	70	140		
Min. Pulse Width			5	-	100	200		
(EXT. RESET)	t _{WH}		10	-	35	100	ns	
(LAT: REOLI)			15	-	25	60		
Min. Pulse Width			5	-	95	600		
(RETRIGGER)	twH		10	-	40	230	ns	
(KLIKIGOLK)		•	15	-	25	150		
Max. Clock Input Rise	tr		5	20	_	_		
Time	tf		10	2.5	-	-	μS	
Max. Clock Input Fall Time	-1		15	1.0	-	-		
Deviation from 50%			5	-	±0.2	_		
Duty Facter (Q, \overline{Q})		$\frac{t_{W}(H) - t_{W}(L)}{t_{W}(L)}$	10	-	±0.2	-	%	
		× 100 (%)	15	-	±0.1	-		
Input Capacitance	c_{IN}		•	-	5	7.5	pF	

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.