Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering	Semester	V
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory		
Academic year	2025-2026 (Odd)	Batch:2023-2028	Due date: 25/07/2025

Experiment 2: Loan Amount Prediction using Linear Regression

Aim:

To predict the loan amount using Linear Regression using historical data and measure the model's performance

Libraries used:

- Numpy
- Pandas
- Matplotlib
- Seaborn
- sklearn

Mathematical Description

In this experiment, Linear Regression is used to predict the loan sanction amount based on several input features.

The mathematical model for Linear Regression is represented as:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

where:

- y is the dependent variable (Loan Sanction Amount),
- x_1, x_2, \ldots, x_n are independent variables (features such as Age, Income, Credit Score, etc.),
- β_0 is the intercept,
- $\beta_1, \beta_2, \ldots, \beta_n$ are the coefficients of the features,
- ε is the error term representing noise or unexplained variance.

The coefficients β are estimated by minimizing the Residual Sum of Squares (RSS), defined as:

$$RSS = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{m} \left(y_i - \left(\beta_0 + \sum_{j=1}^{n} \beta_j x_{ij} \right) \right)^2$$

where m is the number of observations. The model is evaluated using the following metrics:

- Mean Absolute Error (MAE) average absolute difference between actual and predicted values,
- Mean Squared Error (MSE) average squared difference between actual and predicted values,
- Root Mean Squared Error (RMSE) square root of MSE, providing error in original units,
- R-squared (R^2) proportion of variance explained by the model,
- Adjusted R^2 adjusted for number of predictors to prevent overfitting.

Objectives:

Apply Linear Regression to predict the loan amount sanctioned to users using the dataset provided, visualize and interpret the results to gain insights into the model performance

Importing Required Libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split, KFold, learning_curve

from sklearn.preprocessing import StandardScaler, OneHotEncoder, OrdinalEncoder

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.impute import SimpleImputer

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error

Loading the dataset:

```
"' Load data "' df = pd.read_csv("C:/Users/Kavi/Downloads/train.csv/train.csv") df.head()
```

Output:

Figure 1: Displaying first 5 rows

Exploratory Data Analysis:

• Descriptive statistics:

print(df.info())
print(df.describe())

Figure 2: Descriptive Statistics

Descriptive statistics summarize and organize the characteristics of a dataset, providing insights into its central tendency, dispersion, and distribution. Key metrics such as mean, median, mode, standard deviation, minimum, and maximum values offer a foundational understanding of each feature's behavior. These statistics are essential for identifying data quality issues, such as skewness, outliers, or missing values, and guide appropriate preprocessing steps before advanced modeling.

• Visualizing numerical features distribution:

```
df.drop(['Customer ID', 'Name', 'Property ID'], axis=1, inplace=True) numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns df[numeric_cols].hist(figsize=(15, 10), bins=30) plt.suptitle("Initial Distribution of Numerical Features (Raw Data)") plt.show()
```


Figure 3: Numerical features distribution

Summary:

- Age: Bimodal, possible outliers.
- Income: Strong right skew, heavy outliers.
- Loan Amount Request/Sanction: Right-skewed, lower values dominate.
- Loan Expenses: Nearly normal, mild skew.
- Dependents: Discrete, mode at 0.
- Credit Score: Bell-shaped, well-centered.
- Defaults / Co-Applicant: Binary, mostly 0s.
- Property Age: Right-skewed, most are new.
- Property Type: Categorical (4 types).
- Property Price: Right-skewed, wide range.

• Removing unneeded columns and plotting correlation heatmap:

```
"'Correlation Heatmap"'
plt.figure(figsize=(12,8))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


Figure 4: Correlation Heatmap

Highly Correlated features with Target: Loan Amount Request, Property price, Loan Expenses

Moderate Correlation: Current Loan Expenses with Credit Score

Negligibly Correlated features with Target : Age, Income, Dependents, Property Age, Co-Applicant, No.of Defaults

```
• Outlier Detection and Removal
```

```
"' Boxplots for outlier detection "'
         num\_cols = df.select\_dtypes(include=['int64', 'float64']).columns
         for col in num_cols:
                plt.figure(figsize=(6, 2))
                sns.boxplot(data=df, x=col)
                plt.title(f"Boxplot for col")
                plt.show()
         "' Outlier removal using IQR method "'
         Q1 = df[num\_cols].quantile(0.25)
         Q3 = df[num\_cols].quantile(0.75)
         IQR = Q3 - Q1
         df = df[((df[num\_cols] < (Q1 - 1.5 * IQR)) | (df[num\_cols] > (Q3 + 1.5 * IQR))).any(axis = 1.5 * IQR)))
1)
   "' Recompute column types after dropping "'
```

• Data Cleaning and Preprocessing:

```
num_cols = df.select_dtypes(include=['int64', 'float64']).columns.tolist()
        cat_cols = df.select_dtypes(include='object').columns.tolist()
        ordinal_cols = ['Income Stability', 'Location', 'Has Active Credit Card', 'Expense Type
1', 'Expense Type 2']
        cat_cols = [col for col in cat_cols if col not in ordinal_cols]
        num_cols.remove('Loan Sanction Amount (USD)')
        df = df[df]'Loan Sanction Amount (USD)'] > 0].reset_index(drop=True)
        X = df.drop('Loan Sanction Amount (USD)', axis=1)
        y = df['Loan Sanction Amount (USD)']
        numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='mean')),('scaler',
StandardScaler())])
        categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')),('encode
```

OneHotEncoder(handle_unknown='ignore'))])

```
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')),
('ordinal', OrdinalEncoder())])
```

"' Update categorical transformer"' preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, num_cols),('ord', ordinal_transformer, ordinal_cols), ('cat', categorical_transformer, list(set(cat_cols) - set(ordinal_cols)))])

• Learning Curve: Shows model performance with increasing data

Figure 5: Training vs Cross Validation

Low Bias : Small gap b/w training and validation as the number oof data increases = not much underfitting

Low Variance : Training and validation scores shrinks as data increases = Not overly sensitive to training data

Model Generalization: Both lines converge around $0.985 \text{ R}^2 = \text{Good Generalization}$

• K-Fold Cross Validation:

```
"' Define the full pipeline "'
         pipeline = Pipeline(steps=[('preprocessor', preprocessor'), ('regressor', LinearRegres-
sion())])
         "' K-Fold CV "'
         kfold = KFold(n_splits=5, shuffle=True, random_state=42)
         scores = []
         mse\_scores = []
         mae\_scores = []
         rmse\_scores = []
         for train_idx, val_idx in kfold.split(X):
                 X_{\text{train\_fold}}, X_{\text{val\_fold}} = X_{\text{iloc}}[\text{train\_idx}], X_{\text{iloc}}[\text{val\_idx}]
                 y_train_fold, y_val_fold = y.iloc[train_idx], y.iloc[val_idx]
                 pipeline.fit(X_train_fold, y_train_fold)
                 y_pred = pipeline.predict(X_val_fold)
                 mae = mean_absolute_error(y_val_fold,y_pred)
                 mse = mean\_squared\_error(y\_val\_fold,y\_pred)
                 rmse = np.sqrt(mse)
                 r2 = r2\_score(y\_val\_fold, y\_pred)
                print(f'MAE: {mae:.2f}, MSE: {mse:.2f}, RMSE: {rmse:.2f}, R2: {r2:.2f}')
                 scores.append(r2)
                 mae_scores.append(r2)
                 mse_scores.append(r2)
                 rmse_scores.append(r2)
         print(f"Average R<sup>2</sup> across 5 folds: np.mean(scores):.4f")
         print(f"Average MAE across 5 folds: np.mean(scores):.4f")
         print(f"Average MSE across 5 folds: np.mean(scores):.4f")
         print(f"Average RMSE across 5 folds: np.mean(scores):.4f")
```

Table 1: Cross-Validation Results (K = 5)

Fold	MAE	MSE	RMSE	\mathbb{R}^2 Score
Fold 1	3129.42	18551597.737	4307.16	0.99
Fold 2	3079.05	18188836.99	4264.84	0.99
Fold 3	3115.78	18223159.98	4268.86	0.99
Fold 4	3152.64	18691139.54	4323.33	0.99
Fold 5	3173.19	19185272.34	4380.10	0.99
Average	3130.0141	18568001.3171	4308.8556	0.9858

• Train/Validate/Test:

```
Step 1: Train/Test Split (80% train, 20% test)
X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 2: Further split training into Train/Validation (75% train, 25% val of the 80%)
X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42)
# Final Split: 60% train, 20% val, 20% test
# Step 3: Fit the pipeline on training data
pipeline.fit(X_train, y_train)
# Step 4: Predict on validation data
y_val_pred = pipeline.predict(X_val)
val_mse = mean_squared_error(y_val, y_val_pred)
val_mae = mean_absolute_error(y_val, y_val_pred)
val_rmse = np.sqrt(val_mse)
val_r2 = r2_score(y_val, y_val_pred)
print("---- Validation Metrics ----")
print(f"Validation MAE: {val mae:.2f}")
print(f"Validation RMSE: {val_rmse:.2f}")
print(f"Validation R2: {val_r2:.4f}")
# Step 6: Final training on combined train+val for final test eval (optional)
# Step 7: Predict on test data
y_test_pred = pipeline.predict(X_test)
test_mse = mean_squared_error(y_test, y_test_pred)
test_mae = mean_absolute_error(y_test, y_test_pred)
test_rmse = np.sqrt(test_mse)
test_r2 = r2_score(y_test, y_test_pred)
print("\n---- Test Metrics ----")
print(f"Test MAE: {test_mae:.2f}")
print(f"Test RMSE: {test_rmse:.2f}")
print(f"Test R2: {test_r2:.4f}")
```

Figure 6: Training, Validating and Testing

Phase	MAE	MSE	RMSE	${ m R}^2$ Score
Validation	3148.68	18439475.88	4294.12	0.9862
Testing	3126.74	18565888.59	4308.82	0.9855

Table 2: Validation/ Test Metrics

• Residual Plot and Model Performance assessment:

```
"' Residual Plot "'
residuals = y_test - y_test_pred
plt.figure(figsize=(6,4))
sns.histplot(residuals, kde=True)
plt.title("Residual Distribution")
plt.xlabel("Residuals")
plt.show()
"' Predicted vs Actual "'
plt.figure(figsize=(6,6))
sns.scatterplot(x=y_test, y=y_test_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r-')
plt.title("Predicted vs Actual")
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.grid()
plt.show()
```


Figure 7: Model Performance Assessment

INTERPRETATION:

- Residual Distribution: Looks reasonably tight and Gaussian-ish(though slightly skewed) = Errors are small and almost normally distributed
- Predicted vs Actual: Points are closely scattered around the best fit line. Visible spread at high values but general prediction trend is tight = Good generalization with minor underfitting at high targets

Table 3: Summary of Results for Loan Amount Prediction

Description	Result	
Dataset Size (after prepro-	14,516	
cessing)		
Train/Validation/Test Split	60/20/20	
Ratio		
Feature(s) Used for Prediction	Gender, Age, Income (USD), Income	
	Stability, Location, Loan Amount	
	Request (USD), Current Loan Expenses	
	(USD), Expense Type 1, Expense Type	
	2, Dependents, Credit Score, No. of	
	Defaults, Has Active Credit Card, Property	
	Age, Property Type, Property Location,	
	Co-Applicant, Property Price, Loan Sanction Amount (USD)	
Model Used	Linear Regression	
Cross-Validation Used?	Yes	
If Yes, Number of Folds (K)	5	
Reference to CV Results Ta-	Table 1	
ble		
Mean Absolute Error (MAE)	3126.74	
on Test Set		
Mean Squared Error (MSE)	18565888.59	
on Test Set		
Root Mean Squared Error	4308.82	
(RMSE) on Test Set		
\mathbb{R}^2 Score on Test Set	0.9855	
Most Influential Feature(s)	Income (USD), Loan Amount Request (USD),	
	Property price, Loan Expenses, Credit	
	Score	
Observations from Residual	Residuals appear tight and Gaussian-like (centered	
Plot	at 0, slight right tail), suggesting errors are small	
Interpretation of Deadists 1	and normally distributed.	
Interpretation of Predicted vs Actual Plot	Data points are tightly clustered around the best-	
Actual I lot	fit line, indicating good generalization with slight underfitting.	
Any Overfitting or Underfit-	Minor underfitting at higher loan amounts.	
ting Observed?	winor undernoting at inguer loan amounts.	
Justification	Spread in residuals increases at higher target val-	
	ues.	

Best Practices

- Data Preprocessing: Handle missing values carefully (drop or impute), and remove irrelevant columns such as IDs and names that do not contribute to prediction and removing the outliers.
- **Feature Engineering:** Create new meaningful features (e.g., total income) and apply transformations (e.g., log transformation for skewed data) to improve model performance.
- Scaling and Encoding: Use scaling (e.g., StandardScaler) for numerical features and one-hot encoding for categorical features to prepare data for linear regression.
- Train-Validate-Test Split: Use proper splits (e.g., 60/20/20) and consider cross-validation to ensure the model generalizes well and to prevent overfitting.
- Model Evaluation: Use multiple metrics (MAE, MSE, RMSE, R²) to assess different aspects of model performance.
- Residual Analysis: Analyze residual plots to detect model bias or heteroscedasticity and decide if further feature engineering or alternative models are needed.

Learning Outcomes

- Able to identify and handling missing values, outliers and further scaling operations
- Able to interpret the variable distributions and relationships between the target and remaining features
- Able to train and evaluate linear regression model using CV and multiple performance metrics
- Able to assess model behaviour using residual and predicted vs actual plots to detect overfitting/underfitting patterns