EE2000 Logic Circuit Design

Lecture 5 – Combinational Functional Blocks

What will you learn?

- 5.1 What is an equality comparator and how to implement it using a modular design
- 5.2 Learn various arithmetic functional blocks
 - Half adder, Full adder, Ripple carry adder
 - Half and Full subtractors, Ripple borrow subtractor
 - Carry-look-ahead adder
- 5.3 Learn various logical functional blocks
 - Decoder
 - Encoder
 - Multiplexer
 - Demultiplexer

5.1 Equality Comparator

- A circuit to compare two binary numbers to determine whether they are equal or not
- The inputs consist of two variables: A and B
- The output of the circuit is a variable E
- E is equal to 1 if A and B are equal
- E is equal to 0 if A and B are different

1-bit Equality Comparator

Formulation:

Inp	Output	
A_0	B_0	E
0	0	1
0	1	0
1	0	0
1	1	1

Optimization:

$$\blacksquare E(A_0, B_0) = \sum m(0, 3)$$

$$\blacksquare = A_0'B_0' + A_0B_0$$

$$\blacksquare = A_0 \otimes B_0$$

■ Final logic diagram:

or

2-bit Equality Comparator

	Inputs					
A ₁	A_0	B ₁	B ₀	E		
0	0	0	0	1		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	1		
0	1	1	0	0		
0	1	1	1	0		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	1		
1	0	1	1	0		
1	1	0	0	0		
1	1	0	1	0		
1	1	1	0	0		
1	1	1	1	1		

$$E(A_1, A_0, B_1, B_0)$$

$$= \sum m(0, 5, 10, 15)$$

$$= A_1'A_0'B_1'B_0' + A_1'A_0B_1'B_0 + A_1A_0'B_1B_0' + A_1A_0B_1B_0'$$

4-bit Equality Comparator

Formulation:

- ■How many inputs?
- ■How many outputs?
- ■How many rows?

Problem:

Not easy to design
Difficult in simplification
K-map? QM?

Solution:

Modular design
Functional circuit blocks

	Inputs							Output
A ₃	A_2	A ₁	A_0	B ₃	B ₂	B ₁	B ₀	E
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	1	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	1	0
0	0	0	0	0	1	1	0	0
0	0	0	0	0	1	1	1	0
0	0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	1	0
0	0	0	0	1	0	1	0	0
0	0	0	0	1	0	1	1	0
0	0	0	0	1	1	0	0	0
	_		- 7		· - ٦		>	
	- 7_		- 1_	. – –	- <u>\</u>	. – –	<u>- ٦</u>	. – – -
1	1	1	1	1	1	1	1	1

Modular Design

- Modular design
 - Decompose the problem into four 1-bit comparison
 - Compare bit by bit, then combine all results
- Logic diagram

Modular Design

- 1-bit Comparator Block
 - The output is 1 if the inputs are the same
 - The output is 0 if the inputs are different
 - i.e. 1-bit equality comparator $N_i = A_i \otimes B_i$

Equality Block

- The output E is 1 if all N_i values are 1
- The output *E* is 0 if not all *N*_i values are 1

$$\blacksquare E = N_3 \cdot N_2 \cdot N_1 \cdot N_0$$

Modular Design

Final logic diagram

Functional Blocks:

Summary

- Instead of designing a complex n-bit equality comparator circuit
- Design only a 1-bit comparator block and a simple equality block
- Re-use the 1-bit comparator block for n times
- Reusable small circuits are called combinational functional blocks

5.2 Arithmetic Functional Blocks

- Special class of functional blocks that perform arithmetic operations
- Operate on binary numbers (input) and produce binary numbers (output)
- Each bit position has the same sub-function
- Design a functional block for the sub-function and use repeatedly for each bit position
- Example arithmetic functional blocks
 - Adders, subtractors

Addition

 \blacksquare Compute the sum of $(0110)_2$ and $(0111)_2$

$$\blacksquare (0110)_2 = (6)_{10}$$

$$\blacksquare (0111)_2 = (7)_{10}$$

Half Adder (1-bit Adder)

Operation: 1-bit binary addition (the addition of two numbers, x and y)

Inputs: x and y Outputs: s (sum) and c (carry-out)

	0	\mathcal{X}	0 x
(+)	0	У	(+) 1 <i>y</i>
0	0		0 1
C	S		c s
 	1	\mathcal{X}	1 <i>x</i>
(+)	0	У	(+) 1 <i>y</i>
0	1		1 0
c	S		C S

Inputs		Out	puts
x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$s = x \oplus y$$
$$c = x \cdot y = xy$$

Full Adder

Operation: 1-bit binary addition (the addition of two numbers, x and y; and a carry-in bit, c_{in}

Inputs: x, y and c_{in} Outputs: s (sum) and c_o (carry-out)

0 x	0 x	1 x	1 x
0 у	1 y	0 у	1 y
$(+)$ 0 c_{in}	$(+)$ 0 c_{in}	$(+)$ 0 c_{in}	$(+)$ 0 c_{in}
0 0	0 1	0 1	1 0
C_o S	C_o S	c_o s	c_o s
		,	
0 x	0 x	1 x	1 x
0 у	1 y	0 у	1 y
$(+)$ 1 c_{in}	$(+)$ 1 c_{in}	$(+)$ 1 c_{in}	$(+)$ 1 c_{in}
$\begin{vmatrix} (+) & 1 & c_{in} \\ \hline 0 & 1 & \end{vmatrix}$	$\frac{(+) 1 c_{in}}{1 0}$	$\frac{(+)}{1} \frac{1}{0} \frac{c_{in}}{1}$	$\left \frac{(+)}{1} \frac{1}{1} \frac{c_{in}}{1} \right $

Inputs			Out	puts
x	у	c_{in}	\mathcal{C}_{o}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

I	nput	Out	puts	
x	у	c_{in}	\mathcal{C}_{o}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- a) Work out the algebraic functions of s and c_o using K-map
- b) Draw the logic circuit diagram of full adder

ak	00	01	11	10
0	m_0	m ₂	<i>m</i> ₆	<i>m</i> ₄
1	<i>m</i> ₁	<i>m</i> ₃	m ₇	m ₅

$$c_{o} = xy + xc_{in} + yc_{in} = xy + c_{in}(x + y)$$

$$= xy + c_{in}(xy' + x'y + xy)$$

$$= xy(1 + c_{in}) + c_{in}(xy' + x'y)$$

$$= xy + c_{in}(x \oplus y)$$

$$s = x'y'c_{in} + xyc_{in} + x'yc'_{in} + xy'c'_{in}$$

$$= c_{in}(x'y' + xy) + c'_{in}(x'y + xy')$$

$$= c_{in}(x \oplus y)' + c'_{in}(x \oplus y)$$

$$= c_{in} \oplus (x \oplus y)$$

$$c_o = xy + c_{in}(x \oplus y)$$
 $s = c_{in} \oplus (x \oplus y)$

Half Adder and Full Adder

Logic circuit diagram

Logic circuit diagram

Symbol

Symbol

Ripple Carry Adder

Connect *n* 1-bit adders to build an *n*-bit adder

Example (0011 + 1011)

HA vs FA vs RCA

Augend (X) 1
Addend (Y) +) 0
Sum (S) 1

HA: performs simple two single-bit addition

FA: performs simple three single-bit addition

RCA: performs real two *n*-bit addition

Subtractors

Minuend (X) 1
Subtrahend (Y) -) 0
Difference (D) 1

Half Subtractor: perform simple two single-bit subtraction

Borrow-in (Z_i) 0

Minuend (X_i) 1

Subtrahend (Y_i) -) 1

Difference (D_i) 0

Full Subtractor: perform simple three single-bit subtraction

Ripple Borrow Subtractor: perform real two *n*-bit subtraction

Half Subtractor

Operation: 1-bit binary subtraction (x - y)

Inputs: x and y Outputs: d (difference) and b (Borrow-out)

b	0	0	X	b	1	0	X
(-)		0	У	(-)		1	y
		0				1	
		d				d	
b	0	1	\mathcal{X}	b	0	1	\mathcal{X}
	Ū			1 1	•	_	
(-)		0	y	(-)	Ü	1	у
(-)		0 1	y	(-)			У

Inputs		Outputs		
х	у	b	d	
0	0	0	0	
0	1	1	1	
1	0	0	1	
1	1	0	0	

$$d = x \oplus y$$
$$b = x' \cdot y = x'y$$

Full Subtractor

Operation: 1-bit binary subtraction $(x - y - b_{in})$

Inputs: x, y and b_{in} Outputs: d and b_o

-	(-) 1 y		(-) 1 y
(-) 0 y	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-) 0 y	(-) 1 y

Inputs			Out	puts
х	у	b_{in}	b_o	d
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Exercise

$ \begin{vmatrix} b_o & 0 & 0 & x \\ (-) & 0 & y \\ (-) & 0 & b_{in} \\ \hline 0 & d \end{vmatrix} $		(-) 0 y	(-) 1 y
(-) 0 y	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-) 0 y	(-) 1 y

Inputs			Out	puts
X	у	b_{in}	b_o	d
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

- a) Work out the algebraic functions of d and b_o using K-map
- b) Draw the logic circuit diagram of full subtractor \Im

cak	00	01	11	10
0	m_0	m ₂	m_6	m ₄
1	<i>m</i> ₁	m ₃	m ₇	m ₅

Exercise

$$b_o = x'y + x'b_{in} + yb_{in}$$

$$d = x'y'b_{in} + xyb_{in} + x'yb'_{in} + xy'b'_{in}$$

Exercise

cak	00	01	11	10
0	m_0	m ₂	<i>m</i> ₆	<i>m</i> ₄
1	<i>m</i> ₁	<i>m</i> ₃	m ₇	<i>m</i> ₅

 \mathcal{X} y

 b_{in}

Ripple Borrow Subtractor

Connect *n* 1-bit subtractors to build an *n*-bit subtractor

Propagation Delay in RCA

- The carry output of each full-adder stage is connected to the carry input of the next stage
- Assume that the delay for generating the carry output is $\Delta \tau$, for ${\bf n}$ -bit adder, the total delay is ${\bf n}$ $\Delta \tau$
- Serious delay problem if *n* is a large number
- Solution: Calculate the carry bits beforehand, then construct the carry-look-ahead adder

Carry Bits Calculation

 $c_{out} = xy + c_{in}(x \oplus y)$

 G_i is defined as the generate bit

$$G_i = x_i y_i$$

• P_i is defined as the propagate bit $P_i = x_i \oplus y_i$

$$P_i = x_i \oplus y_i$$

$$c_i = x_{i-1}y_{i-1} + c_{i-1}(x_{i-1} \oplus y_{i-1}) = G_{i-1} + c_{i-1}(P_{i-1})$$

i	G_i	P_i	c_i
0	$G_0 = x_0 y_0$	$P_0 = (x_0 \oplus y_0)$	c_0
1	$G_1 = x_1 y_1$	$P_1 = (x_1 \oplus y_1)$	$c_1 = G_0 + c_0 P_0$
2	$G_2 = x_2 y_2$	$P_2 = (x_2 \oplus y_2)$	$c_2 = G_1 + c_1 P_1 = G_1 + P_1 (G_0 + c_0 P_0)$
			$= G_1 + P_1 G_0 + c_0 P_0 P_1$
3	$G_3 = x_3 y_3$	$P_3 = (x_3 \oplus y_3)$	$c_3 = G_2 + c_2 P_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + c_0 P_0 P_1 P_2$

4-Bit Carry-Look-Ahead Adder

Summary

5.3 Logical Functional Blocks

Decoder

• A decoder is a combinational circuit that converts coded inputs into coded outputs.

Each input produces a different output (1-to-1)

mapping)

Binary Decoder

- Accept an n-bit binary input code and activate only one of the 2^n outputs
- Outputs $m \le 2^n$, but usually $m = 2^n$
- A very important functional blocks.
 - Select different banks of memory
 - Select different devices
 - Enable different functional units
 - - ...

1-to-2 Decoder

• Input: 1-bit (A_0)

• Output: 2-bit $(D_0 \& D_1)$

Input	Output				
A_0	D_1	D_0			
0	0	1			
1	1	0			

$$D_0 = A_0' = m_0$$

$$D_1 = A_0 = m_1$$

2-to-4 Decoder

• Input: 2-bit $(A_0 \& A_1)$

• Output: 4-bit (D_0, D_1, D_2, D_3)

Inp	Input			Output					
A_1	A_0	D_3	D_2	D_1	D_0				
0	0	0	0	0	1				
0	1	0	0	1	0				
1	0	0	1	0	0				
1	1	1	0	0	0				

$$D_0 = A'_1 A'_0 = m_0$$
 $D_2 = A_1 A'_0 = m_2$ $D_1 = A'_1 A_0 = m_1$ $D_3 = A_1 A_0 = m_3$

Active high decoder!

2-to-4 Decoder (Active Low decoder)

3.3V

• Input: 2-bit $(A_0 \& A_1)$

• Output: 4-bit (D_0, D_1, D_2, D_3)

Inp	Output					
A_1	A_0	D_3	D_2	D_1	D_0	
0	0	1	1	1	0	
0	1	1	1	0	1	
1	0	1	0	1	1	
1	1	0	1	1	1	

$$D_{0} = (A'_{1}A'_{0})'$$

$$D_{1} = (A'_{1}A_{0})'$$

$$D_{2} = (A_{1}A'_{0})'$$

$$D_{3} = (A_{1}A_{0})'$$
GND

3-to-8 Decoder

	Input					Out	put			
A_2	A_1	A_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Use simpler block to build higher order decoder

$$D_{2-4-0} = A'_1 A'_0$$
 $D_{2-4-2} = A_1 A'_0$
 $D_{2-4-1} = A'_1 A_0$ $D_{2-4-3} = A_1 A_0$

Decoder with Enable Input (2-to-4)

- Input: 3-bit (A_0, A_1, EN)
- Output: 4-bit (D_0, D_1, D_2, D_3)
- Decoder is activated only when EN = 1

	Input	Output				
EN	A_1	A_0	D_3	D_2	D_1	D_0
0	Х	X	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Decoder with Enable Input (2-to-4)

The corresponding symbol of 2-to-4-line decoder with enabling

Decoder with Enable Input (2-to-4)

	Input	Output				
EN'	A_1	A_0	D_3	D_2	D_1	D_0
1	X	X	0	0	0	0
0	0	0	0	0	0	1
0	0	1	0	0	1	0
0	1	0	0	1	0	0
0	1	1	1	0	0	0

	Input	Output				
EN'	A_1	A_0	D_3	D_2	D_1	D_0
1	X	X	1	1	1	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1

Given that

$$f(a,b,c) = \sum m(0,2,3,7)$$

$$g(a, b, c) = \sum m(1,3,4,6)$$

Use (a) active high, and (b) active low 3-to-8 decoder to realize the functions.

Build a 16-bit decoder using Active Low 2-to-4 decoders and mapped all the minterms.

- 16-bit = 16 outputs = 4 decoders
- Use 2 bits to control the 4 decoders via EN input

In	put		Output				
EN'	а	b	D_3	D_2	D_1	D_0	
1	Х	Х	1	1	1	1	
0	0	0	1	1	1	0	
0	0	1	1	1	0	1	
0	1	0	1	0	1	1	
0	1	1	0	1	1	1	

Example (4-variable K-map)

Binary Encoder

- A functional block that performs the inverse operation of a decoder
- m inputs and n outputs
- $m \le 2^n$, but usually $m = 2^n$
- Only one input can be '1' at a time.

Example (Octal-to-Binary Encoder)

- 8 inputs and 3 outputs
- Only one input can be '1' at a time

No				Inp	out				C)utpu	ıt
	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A_1	A_0
0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	0	0	0	1
2	0	0	0	0	0	1	0	0	0	1	0
3	0	0	0	0	1	0	0	0	0	1	1
4	0	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	0	0	0	0	1	0	1
6	0	1	0	0	0	0	0	0	1	1	0
7	1	0	0	0	0	0	0	0	1	1	1

Example (Octal-to-Binary Encoder)

No				C	Outpu	ıt					
	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A_1	A_0
0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	0	0	0	1
2	0	0	0	0	0	1	0	0	0	1	0
3	0	0	0	0	1	0	0	0	0	1	1
4	0	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	0	0	0	0	1	0	1
6	0	1	0	0	0	0	0	0	1	1	0
7	1	0	0	0	0	0	0	0	1	1	1

$$A_0 = D_1 + D_3 + D_5 + D_7$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

Exercise (Decimal-to-Binary Encoder)

Limitation

- Only one input can be active (i.e., 1)
- If two or more inputs active simultaneously, the output produces an incorrect combination

Solution – Priority Encoder

- Only one input can be active (i.e., 1)
- If two or more inputs are active simultaneously, the output produces an incorrect combination

Solution:

- To resolve this ambiguity, introduce an input priority
- Each input pin has a different priority
- If two or more inputs are 1 at the same time, only consider input that has a higher priority
- This kind of encoder is called a priority encoder

Example (4-input Priority Encoder)

- Design a 4-input priority encoder whereby inputs with higher subscript numbers has higher priority.
- Add an extra output V stands for valid output.
- If all inputs are 0, V is 0; else V is 1.

	Inp	out		Output							
D_3	D_2	D_1	D_0	A_1	A_0	V					
0	0	0	0	X	Χ	0					
0	0	0	1	0	0	1					
0	0	1	Х	0	1	1					
0	1	Х	Х	1	0	1					
1	Χ	Х	Х	1	1	1					

Example (4-input Priority Encoder)

	Inp	out	Output			
D_3	D_2	D_1	D_0	A_1	A_0	V
0	0	0	0	Χ	X	0
0	0	0	1	0	0	1
0	0	1	Х	0	1	1
0	1	Х	Х	1	0	1
1	Х	Х	Х	1	1	1

X

0

 A_0

$A_1(D_3, D_2, D_1, D_0)$
$= D_3 + D_2$

$$V' = D_3'D_2'D_1'D_0'$$

$$V = D_3 + D_2 + D_1 + D_0$$

Exercise (Active Low)

- Design an Active Low 4-input priority encoder whereby inputs with higher subscript numbers has higher priority.
- Output IDLE is High when all inputs are high.

Input				Output		
I_3	I_2	I_1	I_0	A_1 A_0 IDLE		

Exercise (Active Low)

Multiplexer (MUX)

- Basically a digital switch
- Pass one of the inputs to the output
- Selected by the control input.

- **k** control inputs
- n data inputs, $n \le 2^k$
- 1 output

Applications

- In computers, select signals
- To implement different functions
- Trip controller in a car to choose different displays

•

2-to-1 Multiplexer (MUX)

	Input	Output	
S	D_1 D_0		
0	Х	Х	D_0
1	Х	Х	D_1

$$OUT = S'D_0 + SD_1$$

4-to-1 Multiplexer (MUX)

Specification:

- $\blacksquare m = 4$
- $\blacksquare n = \log_2 m = 2$
- Formulation:

Inputs						Output
I ₀	<i>I</i> ₁	I ₂	I ₃	S ₁	S ₀	Υ
Х	X	X	X	0	0	<i>I</i> ₀
Х	X	X	Х	0	1	<i>I</i> ₁
Х	X	X	Х	1	0	<i>I</i> ₂
Х	Х	Х	Х	1	1	<i>I</i> ₃

Optimization:

$$Y(I_0,I_1,I_2,I_3,S_1,S_0) = S_1'S_0'/0 + S_1'S_0/1 + S_1S_0'/2 + S_1S_0/3$$

Realize the function $f(w, x, y, z) = \sum m(1, 2, 5, 7, 9, 11, 13)$ using a 4-to-1 MUX

STEP 1: Plot the K-map

STEP 2: Since 4-to-1 MUX has 2 control inputs, choose two variables for these inputs

$$w = S_1$$
 $x = S_0$

STEP 3:

$$f(w = 0, x = 0) = y'z + yz'$$

 $f(w = 0, x = 1) = z$
 $f(w = 1, x = 1) = y'z$
 $f(w = 1, x = 0) = z$

$$w = S_1$$
 $x = S_0$
 $f(w = 0, x = 0) = y'z + yz'$
 $f(w = 0, x = 1) = z$
 $f(w = 1, x = 1) = y'z$

Question: How can we realize the function using 2-to-1 muxs?

f(w = 1, x = 0) = z

Exercise

Realize the function $f(w, x, y, z) = \sum m(1, 2, 5, 7, 9, 11, 13)$ using a 2-to-1 MUX

Exercise

Realize the function $f(w, x, y, z) = \sum m(1, 2, 5, 7, 9, 11, 13)$ using an 8-to-1 MUX

wxyz	F
0000	0
0001	1
0010	1
0011	0
0100	0
0101	1
0110	0
0111	1

wxyz	F
1000	0
1001	1
1010	0
1011	1
1100	0
1101	1
1110	0
1111	0

Summary

	With	2-to-1 Mux	4-to-1 Mux	8-to-1 Mux
wxyz	F	$S_0=w$	$S_1 = w, S_0 = x$	$S_2 = w$, $S_1 = x$, $S_0 = y$
0000	0			l ₀ =z
0001	1		$I_0 = y \oplus z$	10-2
0010	1		$r_0 - y \oplus z$	I ₁ =z'
0011	0	1 - 2 - 1 2 - 1 2 2 2 2 2 2 2 2 2 2 2 2		71-2
0100	0	$I_0 = xz + y'z + x'yz'$		I₂=z
0101	1		I ₁ =z	72-2
0110	0			1 7
0111	1			I ₃ =z
1000	0			1
1001	1		1	$I_4=z$
1010	0		l ₂ =z	1 - 7
1011	1	I ₁ =x'z+y'z		I ₅ =z
1100	0			1 -7
1101	1		1 -11/7	I ₆ =z
1110	0		I ₃ =y'z	1 -0
1111	0			I ₇ =0

Cascading Multiplexers

Inputs						Output
I ₀	<i>I</i> ₁	I ₂	I ₃	S ₁	S ₀	Y
Х	X	X	X	0	0	<i>I</i> ₀
Х	Х	Х	Х	0	1	I_1
Х	Χ	Χ	Х	1	0	<i>I</i> ₂
Х	Х	Х	Х	1	1	<i>I</i> ₃

Demultiplexer (DMUX)

- Reverse the function of MUX
- Route a single input to one of the many outputs
- Selected by the control input.

Demultiplexer (DMUX)

- Remember the decoder with Enable?
- The decoder can perform demultiplexer if we take EN as the input line, A_i (input lines of decoder) as the selection inputs

Demultiplexer (DMUX)

- Can be realized using decoder with enable input
- Input lines -> Select/Control lines
- Enable -> Data input

Example of MUX & DMUX Application

- A MUX allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination
- A DMUX basically reverses the multiplexing function

Summary

Binary Decoder

MUX

Binary Encoder

DMUX

Supplementary Information (For your own interest)

Signed Numbers

- In ordinary arithmetic, a plus(+)/minus(-) sign is used to represent positive or negative numbers (+4 or -4)
- In digital electronic circuits, everything is represented with a bit (0 or 1)
- There are several ways to represent the signed binary numbers using a bit
- Sign magnitude representation: The MSB is a sign bit

e.g.
$$01101 = +13$$
 $11101 = -13$

$$00000 = +0$$
 $10000 = -0$

Disadvantages: (1) 2 patterns represent 0,

(2) handle sign bit separately

One's Complement

- Positive numbers and the corresponding negative numbers complement each other
- Complement of 0 is 1; 1 is 0

e.g.
$$01101 = +13$$
 $10010 = -13$ $00000 = +0$ $11111 = -0$

- Advantage: Symmetry and easy
- Disadvantage: 2 patterns to represent 0

Two's Complement

 Positive numbers and negative numbers are their corresponding 1's complement number + 1

e.g.
$$01101 = +13$$

 $10010 + 1 = 10011 = -13$
 $00000 = +0$
 $11111 + 1 = 00000 = +0$

- Advantages: (1) Only 1 pattern represents 0
 - (2) Handle sign bit as other bits

Value of a Two's Complement Number

• For an ${\it n}$ -bit Two's Complement number $a_{n-1}a_{n-2}\dots a_1$ a_0 , it has a value of

$$N = (-1)a_{n-1} \times 2^{n-1} + a_{n-2} \times 2^{n-2} + \dots + a_1 \times 2^1 + a_0 \times 2^0$$

e.g.
$$-9_{10}$$
 Add a "0" bit for MSB for +ve number $+9 = 01001$

Invert bits: 10110

Plus 1: $10111 = -9_{10}$

Check: -16 + 0 + 4 + 2 + 1 = -9

Binary Addition

- Two's complement numbers can be added in ordinary binary addition
- Any carry beyond the MSB will be discarded/ignored

Range and Overflow

Unsigned	0000 → 1111	0 → 15
1's Complement	$1000 \rightarrow 1111$ $0000 \rightarrow 0111$	$ \begin{array}{c} -7 \to -0 \\ 0 \to 7 \end{array} $
2's Complement	$1000 \rightarrow 1111$ $0000 \rightarrow 0111$	-8 → -1 0 → 7

- For 4-bit binary, the range is
- Overflow occurs when the addition operation produces a result that exceed the range of the number system
- Overflow is detected when addition of 2 numbers with same signs produces a different sign

Ripple Carry Subtractor

• How can we build an n-bit subtractor using n 1-bit Full Adder? $(X_3X_2X_1X_0) + (-Y_3Y_2Y_1Y_0)$

- How to represent negative binary number?
 - 1) Sign-magnitude Format

2) Complement Format

Sign-Magnitude Binary

- The MSB is a sign bit
 - 0 means positive "+"
 - 1 means negative "-"

For example:

```
4-bit system (+5 = 0101; -5 = 1101)
```

Last 3 bits used for magnitude/value

Problems

 Incorrect result for the addition of negative number

```
e.g. Compute the sum of +5 and -3
+5 = 0101 -3 = 1011
Sum = 10000 (???) not 0010
```

2) Two zeros (0000 and 1000)

Two-Complement (4-bit)

1) MSB (0 as positive and 1 as negative)

2) Negative number $(-a) = 2^n - a = 16 - a$ for n-bit

Decimal	2's complement	
0	0000	
+1	0001	
+2	0010	
+3	0011	
+4	0100	
+5	0101	
+6	0110	
+7	0111	

Decimal	2's complement	
-1	1111	
-2	1110	
-3	1101	
-4	1100	
-5	1011	
-6	1010	
-7	1001	
-8	1000	

4-bit system

```
(+5 = 0101; -5 = 1101) Sign-Magnitude Binary (+5 = 0101; -5 = 1011) Two's Complement Binary
```

Easier Way to Find Negative Binary

- 1) Find the binary equivalent magnitude
- 2) Complement each bit
- 3) Add 1

	-5	-0
Step 1)	5 ₁₀ = 0101 ₂	0 ₁₀ = 0000 ₂
Step 2)	1010	1111
Step 3)	1010 +) 1 1011	1111 +) 1 *0000
Answer =	1011 ₂	00002

The carry bit can be ignored.

2-Complement Binary to Decimals

- 1) Complement each bit
- 2) Add 1 and find the magnitude
- 3) Add to represent negative number

·	1011 ₂
Step 1)	01002
Step 2)	0100 +) 1 0101
Step 3)	0101 ₂ = 5 ₁₀
Magnitude	5
Answer =	-5 ₁₀

Addition using 2-Complement

■ (a)
$$(-5) + 3$$
, (b) $(-5) + 7$
(a) (b)

Carries 0.11 1.11

Augend -5 1.011 -5 1.011

Addend $+3$ 0.011 $+7$ 0.111

Sum -2 1.110 2 1.10 2 Carry out is ignored

The results are correct now!

Binary Subtraction using 2-Complement

A – B = A + (-B) = A + (2's complement of B)
 e.g. 5 – 7

```
Input: 5 = 0101 and 7 = 0111
```

Step 1: Complement each bit 7 = 1000

Step 2: Add 1 7 = 1001

Step 3: Perform addition 0101 + 1001 = 1110 (-2)

Ripple Carry Subtractor

How can we build an n-bit subtractor using n 1-bit Full Adder?

$$(X_3X_2X_1X_0) + (-Y_3Y_2Y_1Y_0)$$

Step1: Complement each bit

Step 2: Add 1

Exercise

Build an n-bit adder + subtractor using n 1-bit Full Adder, i.e. combine ripple carry adder and subtractor.

Exercise

For addition, $C_0 = 0$, $Y_i = Y_i$ For subtraction, $C_0 = 1$, $Y_i = Y_i'$

y_i	M	f
0	0	0
1	0	1
0	1	1
1	1	0

M is the mode selection cable (0 means addition, 1 means subtraction)

- For addition (M = 0), $C_0 = 0$, $Y_i = Y_i \oplus 0 = Y_i$
- For subtraction (M = 1), $C_0 = 1$, $Y_i = Y_i \oplus 1 = Y_i'$