# Trabalho Prático - Hashing Extensível

### Isabela Aguilar, Lucas Milard

<sup>1</sup>Pontificia Universidade Católica de Minas Gerais (PUC MG) Rua Cláudio Manoel, 1.162 – Funcionários – Belo Horizonte – MG – Brasil

#### 1. Acessos

Todo o codigo pode ser acessado no repositório: https://github.com/ Kronomant/CRUD-arquivo-AED-III

Planilhas e gráficos com as análises estão disponiveis em: https://ldrv.ms/x/s!AkOwS9prkWArgZlbuGhNtoStbwNasw?e=q3UzTa

### 2. Introdução

Por meio dos conhecimentos adquiridos ao longo das aulas de Algoritmos e Estrutura de Dados III foi possível a implementação de um sistema de prontuários baseado em hashing dinâmico. Sendo assim, essa documentação abordará todos os aspectos que foram considerados durante a criação dessa solução, além de exemplificar o seu funcionamento por meio de diversos testes. Além disso, foi realizada uma comparação entre os tempos dos processos de inserção e busca de prontuários. Essa análise é importante para medir a eficácia e aplicabilidade da solução que foi codificada.

#### 3. Descrição do problema

O sistema deve criar três arquivos, o arquivo mestre que contém todos os prontuários, que são compostos pelos dados dos pacientes. Um arquivo diretório que possui a profundidade global, e um vetor onde cada índice tem o endereço de um bucket. E por fim um arquivo índice que é composto por uma série de Buckets que tem seus tamanhos determinados pelo usuário e carregam o cpf e o endereço desse cpf no arquivo mestre. Assim que um novo prontuário é criado é necessário inserir o cpf correspondente no arquivo de índice, se um bucket está cheio é necessário inserir algum registro um split deve ocorrer. O arquivo do diretório e do índice formam o hashing extensível, que cresce conforme a necessidade e deixa a busca muito mais rápida no arquivo indexado, nesse caso o arquivo mestre de prontuários.

#### 3.1. Modelagem e técnicas utilizadas

A linguagem escolhida para desenvolver a aplicação foi a linguagem Java. Essa escolha foi tomada devido ao extenso número de recursos que ela oferece, principalmente por ser uma linguagem orientada a objetos. Além disso, durante grande parte do curso de Ciência da Computação estamos utilizando Java para fins acadêmicos e isso contribuiu para um melhor entendimento de como a solução desse trabalho seria executada.

Foram criadas cinco classes para conseguir resolver o problema sendo duas classes, ArquivoMestre.java e Diretorio.java as principais classes para inserir nos três arquivos. A classe ArquivoMestre ficou responsável por inserir no arquivo prontuario.db que é o arquivo mestre com todos os prontuários. Além disso, essa classe chama a Diretorio sempre que insere ou busca algum registro. A classe Diretorio gerencia tanto o

arquivo diretorio.db quanto o indice.db, ela é reponsavel por inserir ou buscar um cpf fornecido pela ArquivoMestre dentro do índice e também realizar a expansão do diretório e do índice quando necessário. As outras 2 classes são Bucket.java e Registro.java que são estruturas de dados que vão ser inseridas nos arquivos.



Figure 1. Diagrama de Classes

#### 4. Testes

Foram realizados testes com inúmeras combinações distintas de quantidade de registros, profundidades globais, tamanhos de bucket e tamanhos de campos de anotações. Todos os testes foram realizados em ambos os computadores para permitirem uma comparação posterior entre as máquinas.

# 4.1. Máquina 1

Aluno: Lucas Milard

Sistema Operacional: Linux Mint

Memória RAM: 4GB

Processador: Intel Core i3-6100U

Disco Rígido: 500GB

| Simulação - Lucas Milard |                         |                         |                      |                              |                            |           |         |
|--------------------------|-------------------------|-------------------------|----------------------|------------------------------|----------------------------|-----------|---------|
| Teste                    | Quantidade de Registros | Tempo de Inserção (seg) | Tempo de Busca (seg) | Pronfundidade Global Inicial | Pronfundidade Global Final | Anotações | Buckets |
| 1                        | 5000                    | 3,395985                | 0,623432             | 2                            | 3                          | 1000      | 1000    |
| 2                        | 5000                    | 3,27038                 | 0,558797             | 2                            | 4                          | 1000      | 500     |
| 3                        | 5000                    | 1,626695                | 0,427824             | 5                            | 7                          | 1000      | 100     |
| 4                        | 10000                   | 4,879229                | 0,845884             | 2                            | 5                          | 1000      | 500     |
| 5                        | 10000                   | 12,25656328             | 65,67350156          | 8                            | 8                          | 5000      | 5000    |
| 6                        | 20000                   | 14,473353               | 2,211835             | 2                            | 5                          | 1000      | 1000    |
| 7                        | 30000                   | 38,13987963             | 90,39667684          | 8                            | 8                          | 5000      | 5000    |
| 8                        | 100000                  | 70,66495812             | 9,990745086          | 2                            | 7                          | 1000      | 1000    |
| 9                        | 200000                  | 191,8310184             | 22,06419479          | 2                            | 8                          | 1000      | 1000    |
| 10                       | 500000                  | 279,0998554             | 276,2958789          | 2                            | 8                          | 1000      | 5000    |
| 11                       | 900000                  | 438,54552               | 65,05892002          | 2                            | 7                          | 120       | 1000    |

Figure 2. Simulação - Lucas Milard



Figure 3. Comparação entre Tempo de Inserção e de Busca - Lucas Milard



Figure 4. Tempo de Inserção e de Busca por Tamanho do Bucket - Lucas Milard

## 4.2. Máquina 2

Aluna: Isabela Aguilar

Sistema Operacional: Windows 10

Memória RAM: 8GB Processador: i5 8th Gen Disco Rígido: 2TB

| Simulação - Isabela Aguilar |                         |                         |                      |                              |                            |           |         |
|-----------------------------|-------------------------|-------------------------|----------------------|------------------------------|----------------------------|-----------|---------|
| Teste                       | Quantidade de Registros | Tempo de Inserção (seg) | Tempo de Busca (seg) | Pronfundidade Global Inicial | Pronfundidade Global Final | Anotações | Buckets |
| 1                           | 5000                    | 6,2295937               | 0,9664638            | 2                            | 3                          | 1000      | 1000    |
| 2                           | 5000                    | 6,8510956               | 0,8639571            | 2                            | 4                          | 1000      | 500     |
| 3                           | 5000                    | 5,5067719               | 0,776642             | 5                            | 7                          | 1000      | 100     |
| 4                           | 10000                   | 13,1833521              | 1,7894728            | 2                            | 6                          | 1000      | 500     |
| 5                           | 10000                   | 13,4941622              | 3,4470372            | 8                            | 8                          | 5000      | 5000    |
| 6                           | 20000                   | 28,9299075              | 4,9060673            | 2                            | 5                          | 1000      | 1000    |
| 7                           | 30000                   | 75,1826041              | 17,4271411           | 8                            | 8                          | 5000      | 5000    |
| 8                           | 100000                  | 191,0842035             | 135,6147608          | 2                            | 7                          | 1000      | 1000    |
| 9                           | 200000                  | 430,7150418             | 331,1946835          | 2                            | 8                          | 1000      | 1000    |
| 10                          | 500000                  | 1537,837618             | 867,3257942          | 2                            | 7                          | 1000      | 5000    |
| 11                          | 900000                  | 2923,029009             | 1928,406709          | 2                            | 10                         | 120       | 1000    |

Figure 5. Simulação - Isabela Aguilar



Figure 6. Comparação entre Tempo de Inserção e de Busca - Isabela Aguilar



Figure 7. Tempo de Inserção e de Busca por Tamanho do Bucket - Isabela Aguilar

### 5. Testes com pen-drive

| Simulação - Pen-drive |                         |                         |                      |                              |                            |           |         |
|-----------------------|-------------------------|-------------------------|----------------------|------------------------------|----------------------------|-----------|---------|
| Teste                 | Quantidade de Registros | Tempo de Inserção (seg) | Tempo de Busca (seg) | Pronfundidade Global Inicial | Pronfundidade Global Final | Anotações | Buckets |
| 1                     | 5000                    | 222,81987               | 0,7593431            | 2                            | 3                          | 1000      | 1000    |
| 2                     | 5000                    | 312,2840928             | 1,7588923            | 2                            | 4                          | 1000      | 500     |
| 3                     | 5000                    | 178,1279302             | 1,429103             | 5                            | 7                          | 1000      | 100     |
| 4                     | 10000                   | 379,3563231             | 3,584213             | 2                            | 6                          | 1000      | 500     |
| 5                     | 10000                   | 572,6488944             | 4,7894728            | 8                            | 8                          | 5000      | 5000    |
| 6                     | 10000                   | 332,5482044             | 2,2092156            | 2                            | 5                          | 1000      | 1000    |

Figure 8. Simulação - Pen-drive

#### 6. Análise de Resultados

Por meio de todos os testes realizados podemos perceber a nítida diferença entre as operações realizadas em sistemas operacionais diferentes. O sistema operacional Linux se apresentou muito mais eficiente durante as ações de inserção e busca da aplicação codificada. Além dsso, em um dos testes realizados foram inseridos muitos registros de uma só vez o que contribuiu para que o tempo de busca fosse muito mais elevado do que nos outros testes. Esse comportamento pode ser explicado pela quantidade de registros que precisam ser percorridos durante a busca.

Outro ponto observado foi quanto aos testes realizados com arquivos alocados em um pen-drive. Foi notória a diferença entre os tempos de inserção e busca, onde foi percebido que o tempo de inserção foi bem maior que o tempo de busca para a grande maioria dos testes realizados. Nota-se também que, devido ao fato de que os arquivos Diretorio, Indice e Prontuario não se encontravam na mesma pasta que o código fonte, o tempo tanto de busca quanto de inserção foi extremamente elevado em comparação aos tempos obtidos nas duas máquinas.



Figure 9. Comparação entre as duas máquinas - Inserção



Figure 10. Comparação entre as duas máquinas - Busca



Figure 11. Análise pen-drive - Inserção



Figure 12. Análise pen-drive - Busca