

Parallel Processing - Spark

Amir H. Payberah payberah@kth.se 2025-09-09

Motivation (1/2)

► Acyclic data flow from stable storage to stable storage.

Motivation (1/2)

► Acyclic data flow from stable storage to stable storage.

Motivation (2/2)

▶ MapReduce is expensive (slow), i.e., always goes to disk and HDFS.

Spark vs. MapReduce (1/2)

Spark vs. MapReduce (1/2)

Spark vs. MapReduce (2/2)

Spark vs. MapReduce (2/2)

Spark Application

Spark Applications Architecture

- ► Spark applications consist of
 - A driver process
 - A set of executor processes

[M. Zaharia et al., Spark: The Definitive Guide, O'Reilly Media, 2018]

Driver Process

- ► The heart of a Spark application
- ▶ Runs the main() function

- ► The heart of a Spark application
- ▶ Runs the main() function
- Responsible for three things:
 - Maintaining information about the Spark application
 - Responding to a user's program or input
 - Analyzing, distributing, and scheduling work across the executors

Executors

- ► Executing code assigned to it by the driver
- ▶ Reporting the state of the computation on that executor back to the driver

► A driver process that controls a Spark application.

SparkSession.builder.master(master).appName(appName).getOrCreate()

- ► A driver process that controls a Spark application.
- ► A one-to-one correspondence between a SparkSession and a Spark application.

SparkSession.builder.master(master).appName(appName).getOrCreate()

- ► A driver process that controls a Spark application.
- ► A one-to-one correspondence between a SparkSession and a Spark application.
- ► Available in console shell as spark.

SparkSession.builder.master(master).appName(appName).getOrCreate()

- ► The entry point for low-level API functionality.
- ► You access it through the SparkSession.

```
val conf = new SparkConf().setMaster(master).setAppName(appName)
new SparkContext(conf)
```

- ► The entry point for low-level API functionality.
- ► You access it through the SparkSession.
- Available in console shell as sc.

```
val conf = new SparkConf().setMaster(master).setAppName(appName)
new SparkContext(conf)
```


SparkSession vs. SparkContext

- ▶ Prior to Spark 2.0.0, a the spark driver program uses SparkContext to connect to the cluster.
- ▶ In order to use APIs of SQL, Hive and streaming, separate SparkContexts should to be created.

SparkSession vs. SparkContext

- ▶ Prior to Spark 2.0.0, a the spark driver program uses SparkContext to connect to the cluster.
- ▶ In order to use APIs of SQL, Hive and streaming, separate SparkContexts should to be created.
- ► SparkSession provides access to all the spark functionalities that SparkContext does, e.g., SQL, Hive and streaming.
- ► SparkSession internally has a SparkContext for actual computation.

Programming Model

▶ Job is described based on directed acyclic graphs (DAG) data flow.

Spark Programming Model

- ▶ Job is described based on directed acyclic graphs (DAG) data flow.
- ▶ A data flow is composed of any number of data sources, operators, and data sinks by connecting their inputs and outputs.

Spark Programming Model

- ▶ Job is described based on directed acyclic graphs (DAG) data flow.
- ▶ A data flow is composed of any number of data sources, operators, and data sinks by connecting their inputs and outputs.
- ► Parallelizable operators

Resilient Distributed Datasets (RDD) (1/3)

- ► A distributed memory abstraction.
- ▶ Immutable collections of objects spread across a cluster.
 - Like a LinkedList <MyObjects>

Resilient Distributed Datasets (RDD) (2/3)

- ► An RDD is divided into a number of partitions, which are atomic pieces of information.
- ▶ Partitions of an RDD can be stored on different nodes of a cluster.

Resilient Distributed Datasets (RDD) (3/3)

- ▶ RDDs were the primary API in the Spark 1.x series.
- ► They are not commonly used in the Spark 2.x series.
- ▶ Virtually all Spark code you run, compiles down to an RDD.

- ► Two types of RDDs:
 - Generic RDD
 - Key-value RDD
- ▶ Both represent a collection of objects.
- ► Key-value RDDs have special operations, such as aggregation, and a concept of custom partitioning by key.

Creating RDDs

Creating RDDs - Parallelized Collections

- ▶ Use the parallelize method on a SparkContext.
- ► This turns a single node collection into a parallel collection.
- ► You can also explicitly state the number of partitions.
- ▶ In the console shell, you can either use sc or spark.sparkContext

Creating RDDs - Parallelized Collections

- ▶ Use the parallelize method on a SparkContext.
- ► This turns a single node collection into a parallel collection.
- ► You can also explicitly state the number of partitions.
- ▶ In the console shell, you can either use sc or spark.sparkContext

```
val numsCollection = Array(1, 2, 3)
val nums = sc.parallelize(numsCollection)
```


Creating RDDs - Parallelized Collections

- ▶ Use the parallelize method on a SparkContext.
- ▶ This turns a single node collection into a parallel collection.
- ► You can also explicitly state the number of partitions.
- ▶ In the console shell, you can either use sc or spark.sparkContext

```
val numsCollection = Array(1, 2, 3)
val nums = sc.parallelize(numsCollection)

val wordsCollection = "take it easy, this is a test".split(" ")
val words = spark.sparkContext.parallelize(wordsCollection, 2)
```

Creating RDDs - External Datasets

- ► Create RDD from an external storage.
 - E.g., local file system, HDFS, Cassandra, HBase, Amazon S3, etc.
- ► Text file RDDs can be created using textFile method.

```
val myFile1 = sc.textFile("file.txt")
val myFile2 = sc.textFile("hdfs://namenode:9000/path/file")
```


RDD Operations

- ▶ RDDs support two types of operations:
 - Transformations: allow us to build the logical plan
 - Actions: allow us to trigger the computation

Transformations

Transformations

- ► Create a new RDD from an existing one.
- ► All transformations are lazy.
 - Not compute their results right away.
 - Remember the transformations applied to the base dataset.
 - They are only computed when an action requires a result to be returned to the driver program.

► map applies a given function on each RDD record independently.


```
val nums = sc.parallelize(Array(1, 2, 3))
val squares = nums.map(x => x * x)
// 1, 4, 9
```

- ► Lineage: transformations used to build an RDD.
- ▶ RDDs are stored as a chain of objects capturing the lineage of each RDD.

```
file: HDFS Text File path = hdfs://...

sics: Filtered Dataset func = _.contains(...)

cachedSics: Cached Dataset

ones: Mapped Dataset func = _ => 1
```

```
val file = sc.textFile("hdfs://...")
val sics = file.filter(_.contains("SICS"))
val cachedSics = sics.cache()
val ones = cachedSics.map(_ => 1)
val count = ones.reduce(_+_)
```

https://tinyurl.com/4bys7j7t

Key-Value RDD Transformations

▶ In a (k, v) pairs, k is is the key, and v is the value.

- ▶ In a (k, v) pairs, k is is the key, and v is the value.
- ► To make a key-value RDD:
 - map over your current RDD to a basic key-value structure.

```
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword1 = words.map(word => (word, 1))
// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)
```


Key-Value RDD Transformations - Aggregation

Aggregate the values associated with each key.


```
def addFunc(a:Int, b:Int) = a + b

val kvChars = ...
// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val grpChar = kvChars.groupByKey().map(row => (row._1, row._2.reduce(addFunc)))
// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))
```


Key-Value RDD Transformations - Aggregation

Aggregate the values associated with each key.


```
def addFunc(a:Int, b:Int) = a + b

val kvChars = ...
// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val grpChar = kvChars.groupByKey().map(row => (row._1, row._2.reduce(addFunc)))
// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))
```

```
val redChar = kvChars.reduceByKey(addFunc)
// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))
```


Key-Value RDD Transformations - Join

- ▶ join performs an inner-join on the key.
- ► fullOtherJoin, leftOuterJoin, rightOuterJoin, and cartesian.


```
 \begin{array}{l} \text{val keyedChars} = \dots \\ // \ (t,4), \ (h,6), \ (,,9), \ (e,8), \ (a,3), \ (i,5), \ (y,2), \ (s,7), \ (k,0) \\ \\ \text{val kvChars} = \dots \\ // \ (t,1), \ (a,1), \ (k,1), \ (e,1), \ (i,1), \ (t,1), \ (e,1), \ (a,1), \ (s,1), \ (y,1), \ (,,1), \ \dots \\ \\ \text{val joinedChars} = \text{kvChars.join(keyedChars)} \\ // \ (t,(1,4)), \ (t,(1,4)), \ (t,(1,4)), \ (t,(1,4)), \ (t,(1,4)), \ (h,(1,6)), \ (,,(1,9)), \ (e,(1,8)), \ \dots \\ \end{array}
```


Actions

- ► Transformations allow us to build up our logical transformation plan (lineage graph).
- ▶ We run an action to trigger the computation.
 - Instructs Spark to compute a result from a series of transformations.

▶ collect returns all the elements of the RDD as an array at the driver.

```
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect()
// Array(1, 2, 3)
```

- ▶ reduce aggregates the elements of the dataset using a given function.
- ► The given function should be commutative and associative so that it can be computed correctly in parallel.

```
sc.parallelize(1 to 20).reduce(_ + _)
// 210
```

- ▶ saveAsTextFile writes the elements of an RDD as a text file.
 - Local filesystem, HDFS or any other Hadoop-supported file system.
- saveAsObjectFile explicitly writes key-value pairs.

```
val words = sc.parallelize("take it easy, this is a test".split(" "))
words.saveAsTextFile("file:/tmp/words")
```

```
val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))
val ones = words.map(word => (word, 1))
val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")
```



```
val uni = sc.parallelize(Seq(("RISE", 1), ("KTH", 2)))
uni.foreach(println)
```


Cache and Checkpoints

Caching

- When you cache an RDD, each node stores any partitions of it that it computes in memory.
- ► An RDD that is not cached is re-evaluated each time an action is invoked on that RDD.
- ▶ A node reuses the cached RDD in other actions on that dataset.

- When you cache an RDD, each node stores any partitions of it that it computes in memory.
- ► An RDD that is not cached is re-evaluated each time an action is invoked on that RDD.
- ▶ A node reuses the cached RDD in other actions on that dataset.
- ▶ There are two functions for caching an RDD:
 - cache caches the RDD into memory
 - persist(level) can cache in memory, on disk, or off-heap memory

```
val words = sc.parallelize("take it easy, this is a test".split(" "))
words.cache()
```

- checkpoint saves an RDD to disk.
- ► Checkpointed data is not removed after SparkContext is destroyed.
- ▶ When we reference a checkpointed RDD, it will derive from the checkpoint instead of the source data.

```
val words = sc.parallelize("take it easy, this is a test".split(" "))
sc.setCheckpointDir("/path/checkpointing")
words.checkpoint()
```


Execution Engine

▶ A DAG representing the computations done on the RDD is called lineage graph.

```
val rdd = sc.textFile(...)
val filtered = rdd.map(...).filter(...).persist()
val count = filtered.count()
val reduced = filtered.reduce()

map, filter

filtered

reduce
```

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

reduced

input file

count

Dependencies

▶ RDD dependencies encode when data must move across network.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

Two Types of Dependencies (1/2)

- Narrow transformations (dependencies)
 - Each input partition will contribute to only one output partition.
 - With narrow transformations, Spark can perform a pipelining

Narrow dependencies:

Each partition of the parent RDD is used by at most one partition of the child RDD.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

Two Types of Dependencies (2/2)

- Wide transformations (dependencies)
 - Each input partition will contribute to many output partition.
 - Usually referred to as a shuffle

Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

join

with inputs not co-partitioned

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

 $[\verb|https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies|]$

The Anatomy of a Spark Job

- ► A Spark job is the highest element of Spark's execution hierarchy.
 - Each Spark job corresponds to one action.
 - Each action is called by the driver program of a Spark application.

- Each job breaks down into a series of stages.
 - Stages in Spark represent groups of tasks that can be executed together.
 - Wide transformations define the breakdown of jobs into stages.

- ► A stage consists of tasks, which are the smallest execution unit.
 - Each task represents one local computation.
 - All of the tasks in one stage execute the same code on a different piece of the data.

Lineages and Fault Tolerance (1/2)

- ► No replication.
- ▶ Lineages are the key to fault tolerance in Spark.
- ▶ Recompute only the lost partitions of an RDD.

Lineages and Fault Tolerance (2/2)

► Assume one of the partitions fails.

Lineages and Fault Tolerance (2/2)

- Assume one of the partitions fails.
- ▶ We only have to recompute the data shown below to get back on track.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

▶ If Spark became the standard tool for public decision-making (e.g., healthcare, housing, employment), what risks of reinforcing inequities might arise?

Possible Answers

 $\blacktriangleright \ \mathsf{Biased} \ \mathsf{inputs} \to \mathsf{biased} \ \mathsf{outputs}$

- ightharpoonup Biased inputs ightarrow biased outputs
 - If the input data reflects past discrimination (e.g., in jobs or housing), Spark will repeat those patterns at scale.

- ightharpoonup Biased inputs ightarrow biased outputs
 - If the input data reflects past discrimination (e.g., in jobs or housing), Spark will repeat those patterns at scale.
- Unfair results may look objective

ightharpoonup Biased inputs ightarrow biased outputs

• If the input data reflects past discrimination (e.g., in jobs or housing), Spark will repeat those patterns at scale.

Unfair results may look objective

 Because decisions come from data and code, they can appear neutral even when they reinforce existing inequities.

- ▶ Biased inputs → biased outputs
 - If the input data reflects past discrimination (e.g., in jobs or housing), Spark will repeat those patterns at scale.
- Unfair results may look objective
 - Because decisions come from data and code, they can appear neutral even when they reinforce existing inequities.
- ▶ Big players control the system

▶ Biased inputs → biased outputs

• If the input data reflects past discrimination (e.g., in jobs or housing), Spark will repeat those patterns at scale.

Unfair results may look objective

• Because decisions come from data and code, they can appear neutral even when they reinforce existing inequities.

▶ Big players control the system

 Large companies or agencies with the most resources shape how Spark is used, leaving smaller communities behind.

► Feminist Spark alternatives?

► Transparency and provenance

- ► Transparency and provenance
 - OpenLineage/Marquez: open standards for tracking pipeline provenance.

- ► Transparency and provenance
 - OpenLineage/Marquez: open standards for tracking pipeline provenance.
- ► Lightweight and community-friendly

- ► Transparency and provenance
 - OpenLineage/Marquez: open standards for tracking pipeline provenance.
- ► Lightweight and community-friendly
 - Dask: Python-native distributed system, runs on laptops or clusters, more accessible than Spark.

Summary

Summary

- ▶ RDD: a distributed memory abstraction
- ▶ Two types of operations: transformations and actions
- ► Lineage graph
- Caching
- ► Wide vs. narrow dependencies
- ► Alternatives: Openlineage, Marquez, Dask

References

- ► M. Zaharia et al., "Spark: The Definitive Guide", O'Reilly Media, 2018 Chapters 2, 12, 13, and 14
- M. Zaharia et al., "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing", USENIX NSDI, 2012.
- ► Dask: https://www.dask.org
- ► OpenLineage: https://openlineage.io
- ► Marquez: https://marquezproject.ai/

Questions?