Introduction to gene expression microarray data analysis

Outline

- Brief introduction:
 - Technology and data.
 - Statistical challenges in data analysis.
- Preprocessing
- Differential expression
- Useful Bioconductor packages

Still microarray?

- Microarray is still widely used because of lower costs, easier experiment and more comprehensive analysis methods.
- Similar problems are presented in newer technologies such as RNA-seq, and similar statistical techniques can be borrowed.

Introduction to technology and array designs

Goal: measure mRNA abundance

Gene expression microarray design

- A collection of DNA spot on a solid surface.
- Each spot contains many copies of the same DNA sequence (called "probes").
 - Probe sequences are designed to target specific genes.
- Genes with part of sequence complementary to a probe will hybridized on (stick to) that probe.
- The amount of hybridization on each probe measures the amount of mRNA for its target gene.

Experimental procedure

wet lab: perform experiment

dry lab: data analysis

Available platforms

- Affymetrix
- Agilent
- Nimblegene
- Illumina
- ABI
- Spotted cDNA

Affymetrix Gene expression arrays

The Affymetrix platform is one of the most widely used.

http://www.affymetrix.com/

Affymetrix GeneChip array design

Use U133 system for illustration:

- Around 20 probes per gene;
- Not necessarily evenly spaced: sequence property matters;
- The probes are located at random locations on the chip;

One-color vs. two-color arrays

- Two-color (two-channel) arrays hybridize two samples on the same array with different colors (red and green).
 - Each spot produce two numbers.
 - Agilent, Nimblegen
- One-color (single-channel) arrays hybridize one sample per array.
 - Easier when comparing multiple groups.
 - Have to use twice as many arrays.
 - Affymetrix, Illumina.

Data from microarray

- Data are fluorescent intensities:
 - extracted from the images with artifacts (e.g., cross-talk) removed, which Involves many statistical methods.
 - Final data are stored in a matrix: row for probes, column for samples.
 - For each sample, each probe has one number from one-color arrays and two numbers for twcolor arrays.

```
sample3 sample4
           sample1
                    sample2
          8.575758 8.915618 9.150667 8.967870
1007 s at
          6.959002 7.039825
1053 at
                             6.898245 7.136316
117 at
          7.738714
                   7.618013 7.499127 7.610726
121 at
         10.114529 10.018231 10.003332 9.809068
1255 g at 5.056204 4.759066 4.629297 4.673458
1294 at
          8.009337 7.980694 8.343183 8.025335
1316 at
          6.899290 7.045843 6.976185 7.063050
1320 at
          7.218898 7.600437 7.433031 7.201984
1405 i at 6.861933 6.042179 6.165090 6.200671
1431 at
          5.073265
                    5.114023 5.159933 5.063821
```

Statistical challenges

- Data normalization: remove systematic technical artifacts.
 - Within array: variations of probe intensities are caused by:
 - cross-hybridization: probes capture the "wrong" target.
 - probe sequence: some probes are "sticker".
 - others: spot sizes, smoothness of array surface, etc.
 - Between array: intensity-concentration response curve can be different from different arrays, caused by variations in sample processing, image reader, etc.
- Summarization of gene expressions:
 - summarize values for multiple probes belonging to the same gene into one number.
- Differential expression detection:
 - Find genes that are expressed differently between different experimental conditions, e.g., cases and controls.

Gene expression microarray data preprocessing

Within array normalization: two-color arrays

Normalization based on M vs. A plot, or MA plot: (Yang et al. 2002, *Nucleic Acids Research*).

- For spot *i*, let R_i and G_i be the intensities, define:
 - $M_i = log_2R_i log_2G_i$, $A = (log_2R_i + log_2G_i)/2$.
 - M measures relative expression, A measures total expression.
- MA plots is used to visualize relative vs. total expression dependence.
- The normalization is based on the assumption that M and A are independent.
- Normalization procedure:
 - Fit a smooth curve of M vs. A using loess, e.g., M=c(A)+epsilon, c(.) is smooth.
 - $-M_{norm}=M-c(A)$

Loess normalization: before and after

Pre-Norm Dilutions Dataset (array 20B v 10A)

Post-Norm: Dilutions Dataset (array 20B v 10A)

Within array normalization: one-color arrays

- RMA (Robust Multi-array Average) background model (Irizarry et al. 2003, *Biostatistics*)
- For each array, assume:

$$PM = S + B$$

Signal: $S \sim Exp(\lambda)$

Background: $B \sim N(\mu, \sigma^2)$ left-truncated at zero

- Observed: PM; of interest: S.
- Predict S from PM using $E[S \mid PM]$
- Full derivation at

http://www.biochem.ucl.ac.uk/~harry/MAD/rma_bg.pdf

An extension: GCRMA

$$Y_{gij} = O_{gij} + N_{gij} + S_{gij}$$

$$= O_{gij} + \exp(\mu_{gij} + \varepsilon_{gij}) + \exp(s_g + \delta_g X_i + a_{gij} + b_i + \xi_{gij}).$$

Here Y_{gij} is the PM intensity for the probe j in probeset g on array i, ε_{gij} is a normally distributed error that account for NSB for the same probe behaving differently in different arrays, s_g represents the baseline log expression level for probeset g, a_{gij} represents the signal detecting ability of probe j in gene g on array i, b_i is a term used to describe the need for normalization, ξ_{gij} is a normally distributed term that accounts for the multiplicative error, and δ_g is the expected differential expression for every unit difference in covariate X. Notice δ_g is the parameter of interest. As described by Naef and Magnasco (2003) a_{gj} is a function of α .

Wu et al. (2005) JASA

Probe sequence effects

Probe affinity is modeled as:

$$\alpha = \sum_{k=1}^{25} \sum_{j \in \{A, T, G, C\}} \mu_{j,k} 1_{b_k = j} \text{ with } \mu_{j,k} = \sum_{l=0}^{3} \beta_{j,l} k^l,$$

 This kind of modeling is widely used in other microarrays and sequencing data!

Between array normalization

- Remember data from arrays (intensity values)
 estimate mRNA quantities, but the intensityconcentration response can be different from
 different arrays. So 5.5 on arrays 1 doesn't
 mean the same on array 2.
- This could be caused by:
 - Total amount of mRNA used
 - Properties of the agents used.
 - Array properties
 - Settings of laser scanners
 - etc.
- Goal: normalize so that data from different arrays are comparable!

Linear scaling method

- Used in Affymetrix software MAS:
 - Use a number of "housekeeping" genes and assume their expressions are identical across all arrays.
 - Shift and rescale all data so the average expression of these genes are the same across all arrays.

Non-linear smoothing based

- Implemented in dChip (Li and Wong 2001, Genome Bio.)
 - Find a set of genes invariant across arrays.
 - Find a "baseline" array
 - For every other arrays fit a smooth curve on expressions of invariant genes
 - Normalize based on the fitted curve.

dChip normalization

Quantile normalization

Proposed in Bolstad et al. 2003, Bioinformatics:

- Force the distribution of all data from all arrays to be the same, but keep the ranks of the genes.
- Procedures:
 - 1. Create a target distribution, usually use the average from all arrays.
 - 2. For each array, match its quantiles to that of the target. To be specific: $x_{norm} = F_2^{-1}(F_1(x))$:
 - x: value in the chip to be normalized
 - F₁: distribution function in the array to be normalized
 - F₂: target distribution function

A simple example for quantile normalization

Gene	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	2	7	15
3	3	6	5	8
4	1	5	2	9
5	9	13	6	11

1. Find the Smallest Value for each sample

Gene s	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	2	7	15
3	3	6	5	8
4	1	5	2	9
5	9	13	6	11

2. Average them

$$(1+2+2+8)/4=3.25$$

Replace Each Value by the Average

Gene	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	3.25	7	15
3	3	6	5	3.25
4	3.25	5	3.25	9
5	9	13	6	11

Find the Next Smallest Values, then average

Gene	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	3.25	7	15
3	3	6	5	3.25
4	3.25	5	3.25	9
5	9	13	6	11

$$(3+5+5+9)/4=5.5$$

Replace Each Value by the Average

Gene	sample1	sample2	sample3	sample4
1	8	15	9	13
2	7	3.25	7	15
3	5.50	6	5.50	3.25
4	3.25	5.50	3.25	5.50
5	9	13	6	11

Continue the process, we get the following matrix after finishing:

Gene	sample1	sample2	sample3	sample4
1	10.25	12.00	12.00	10.25
2	7.50	3.25	10.25	12.00
3	5.50	7.50	5.50	3.25
4	3.25	5.50	3.25	5.50
5	12.00	10.25	7.50	7.50

The result matrix has following properties:

- The values taken in each column are exactly the same.
- The ranks of genes in each column are the same as before normalization.

Before/after QN boxplot

Microarray data summarization

- There are usually multiple probes corresponding to a gene.
 The task is to summarize the readings from these probes into one number to represent the gene expression.
- Naïve methods: mean, median.
- From MAS 5.0: use one-step Tukey Biweight (TBW) to obtain a robust weighted mean that is resistant to outliers.
 - Probes with intensities far away from median will have smaller weights in the average.

RMA summarization

```
Y_{ijn} = \mu_{in} + \alpha_{jn} + \varepsilon_{ijn}, i = 1, \dots, I, j = 1, \dots, J, n = 1, \dots, n
log transformed PM intensities, denoted with Y
\mu_i representing the log scale expression level for array i, \alpha_j a probe affinity effect, each probe set n
```

- Borrow information from multiple samples to estimate probe effects.
- Model-fitting: Median Polish (robust against outliers)
 - Iteratively removing the row and column medians until convergence
 - The remainder is the residual;
 - After subtracting the residual, the row medians are the estimates of the expression, and column medians are probe effects.

Irizarry et al. (2003) Biostatistics.

Detect differentially expressed genes

Test for differential expression (DE)

- To compare two groups, the easiest is to perform two group t-test gene by gene, with multiple-testing corrected. But,
 - T-statistics from two-group t-test is: $(\overline{X} \overline{Y}) / \sqrt{S_X^2 / N_X + S_Y^2 / N_Y}$
 - By chance some genes have very small variance, which result in large t-statistics and tiny p-values even when the difference is small.
 - This motivates many different versions of modified t-test,
 empirical Bayes and variance shrinkage methods.

SAM t-test

 Add a small constant to the denominator in calculating t statistics:

$$d(i) = \frac{\bar{x}_{I}(i) - \bar{x}_{U}(i)}{s(i) + s_{0}}$$

- Coefficient of variation of d(i) is computed as a function of s(i) in moving window across the data.
- S_0 is chosen to minimize that coefficient of variation.
- Bioconductor package siggenes.

Empirical Bayes method from limma

- Use a Bayesian hierarchical model in multiple regression setting.
- Borrow information from all genes to estimate gene specific variances.
 - As a result, variance estimates will be "shrunk" toward the mean of all variances. So very small variance scenarios will be alleviated.
- Implemented in Bioconductor package "limma".

Smyth et al. (2004) Statistical Applications in Genetics and Molecular Biology

Let θ_{gj} be coefficient for gene g, factor j, assume

$$\hat{\beta}_{gj} \mid \beta_{gj}, \sigma_g^2 \sim N(\beta_{gj}, v_{gj}\sigma_g^2) \qquad s_g^2 \mid \sigma_g^2 \sim \frac{\sigma_g^2}{d_g} \chi_{d_g}^2 \quad \text{ with priors:}$$

$$P(\beta_{gj} \neq 0) = p_j$$
. $\beta_{gj} \mid \sigma_g^2, \beta_{gj} \neq 0 \sim N(0, v_{0j}\sigma_g^2)$. $\frac{1}{\sigma_g^2} \sim \frac{1}{d_0 s_0^2} \chi_{d_0}^2$.

Posterior variance estimator: $\tilde{s}_g^2 = \frac{d_0 s_0^2 + d_g s_g^2}{d_0 + d_g}$.

Moderated t-statistics for testing θ_{gj} =0 : $\tilde{t}_{gj} = \frac{\beta_{gj}}{\tilde{s}_g \sqrt{v_{gj}}}$.

Correct for multiple testing

- Multiple testing problem is severe in high throughput data analysis because a large number of tests were performed.
 - Under type I error α =0.05, 1000 out of 20000 genes will be falsely declared DE (false positive)by chance.
 - If there are a total of 2000 genes declared DE, the false discovery rate (FDR) is 0.5!
- Multiple testing correction
 - Bonferroni correction: use α =0.05/20000 (too conservative).
 - FDR control (Benjamini and Hochberg, 1995 JRSS-B)

After DE detection

- Identifying DE genes is not the end of the game. Possible downstream analysis:
 - Functional analysis of DE genes: GO (Gene Ontology) analysis.
 - Clustering.

Bioconductor packages for microarray analysis

Bioconductor for microarray data

- There're a rich collection of bioc packages for microarrays. In fact, Bioconductor started for microarray analysis.
- There are currently 228 packages for microarray.
- Important ones include:
 - affy: one of the earliest bioc packages. Designed for analyzing data from Affymetrix arrays.
 - limma and siggenes: DE detection using limma and SAM-t model.
 - oligo: preprocessing tools for many types of oligonecleotide arrays.
 This is designed to replace affy package.
 - Many annotation data package to link probe names to genes.

My suggestion

- Use oligo to reading in data, normalization and summarization.
- Use siggenes or limma for detecting DE genes.

An exmple of Analyzing a set of Affymetrix data

- Data generated by MAQC (MicroArray Quality Control) project.
- Five brain samples and five reference samples on human exon arrays.
- Raw data are CEL files (binary file generated by factory).
- Each CEL file is around 65Mb.
- The platform design package (pd.huex.1.0.st.v2) needs to be installed.

Read in data

```
## load in necessary libraries
> library(oligo)
> library(limma)
## get a list of CEL files
> CELfiles=dir(pattern="CEL")
## read in all raw data
> rawdata=read.celfiles(CELfiles)
> rawdata
ExonFeatureSet (storageMode: lockedEnvironment)
assayData: 6553600 features, 10 samples
  element names: exprs
protocolData
  rowNames: ambion A1.CEL, ambion A2.CEL, ..., stratagene K2.CEL
(10 total)
Annotation: pd.huex.1.0.st.v2
```

Normalization and summarization

```
## using RMA
> normdata=rma(rawdata, target = "core")
> normdata
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22011 features, 10 samples
  element names: exprs
## extract expression values using expr function
> data=exprs(normdata)
> head(data)
         sample 1 sample 2 sample 3 sample 4
1007 s at 10.160224 10.214496 10.090697 11.020649
1053 at 9.501826 9.500412 9.574311 7.361141
117 at
         5.669447 5.478072 5.648788 6.048142
121 at 8.061479 8.154549 8.156215 7.902597
1255 g at 4.307739 4.017903 3.992333 4.668972
1294 at 7.108730 7.185586 7.122404 6.597161
```

check data distribution after RMA
> boxplot(data)

The boxplot looks really good after RMA, so between array normalization is unnecessary. But in case you need it, use normalizeQuantiles function from limma for quantile normalization:

> data2=normalizeQuantiles(data)

Now the new boxplot after quantile normalization:

DE detection using SAM t-test

```
> library(siggenes)
## create a vector for design.
> design <- c(rep(0,5),rep(1,5))
> sam.result=sam(data2, cl=design)
> sam.result
SAM Analysis for the Two-Class Unpaired
Case Assuming Unequal Variances
```

DE detection using limma

```
## create design matrix. Intercept must be included
> design=cbind(mu=1,beta=c(rep(0,5),rep(1,5)))
## fit linear model and compute estimates
> limma.result=lmFit(data2, design=design)
## Empirical Bayes method to get p-values
> limma.result=eBayes(limma.result)
## get p-values for the comparison
> pval=limma.result$p.value[,"beta"]
```

Compare results from limma and SAM

- Agreement is good, 0.95 Spearman rank correlation.
- Limma seems to be more liberal.

Obtain gene annotations

- Now you get p-values for all genes, but you also need gene names for generating report. This could be very troublesome!
- Easiest: use getNetAffx from oligo (but it's not always working):
- > anno=getNetAffx(normdata, "transcript")
- > genes=pData(anno)\$geneassignment

- Alternatively, there are many annotation packages available for different array platforms. For example, hgu133a.db is for HGU133A arrays.
- These packages contain comprehensive information for all probes, including their sequences, chromosome, position, corresponding gene IDs, GO terms, etc.
- A typical way to convert probeset names to accession number or gene alias is:

```
> library(hgu133a.db)
## convert to accession numbers:
> geneAcc=as.character(hgu133aACCNUM[rownames(data)])
## convert to gene names
> geneNames=as.character(hgu133aSYMBOL[rownames(data)])
```

Finally generate a report table

```
> ix=sam.result@q.value<0.1</pre>
> result=data.frame(gene=geneNames[ix],
   pvalue=sam.result@p.value[ix],
   fold=sam.result@fold[ix])
## sort by fold change
> ix2=sort(result$fold, decreasing=TRUE, index.return=TRUE)$ix
> result=result[ix2,]
> head(result)
                  gene pvalue
                                  fold
                         0 185.5720
2731192
          NM 000477
3457336
          NM 006928 0 155.7143
2772566
          NM 144646 0 152.8232
2731230
          NM 001134 0 132.8515
> write.table(result, file="report.txt", sep="\t")
```

Review

- We have covered microarray analysis, including:
 - Data preprocessing: within and between array normalization.
 - Summarization.
 - DE detection.

To do list

- Review the slides.
- Read the review article on *Nature Reviews Genetics* (link on the class webpage).