Capítulo: Grafos y Redes Aleatorias

Mauricio Castro C. mcastro@mat.uc.cl

Departamento de Estadística, Pontificia Universidad Católica de Chile

MAGISTER EN INTELIGENCIA ARTIFICIAL

Segundo Semestre 2023

Grafos

 \blacksquare Un grafo es una estructura $\mathcal K$ consistente en un conjunto de nodos y aristas.

- \blacksquare Un grafo es una estructura ${\mathcal K}$ consistente en un conjunto de nodos y aristas.
- $\mathfrak{X} = \{X_1, \dots, X_n\}$ representa el conjunto de nodos.

- \blacksquare Un grafo es una estructura ${\mathcal K}$ consistente en un conjunto de nodos y aristas.
- $\mathfrak{X} = \{X_1, \dots, X_n\}$ representa el conjunto de nodos.
- £ represente el conjunto de aristas. Las aristas conectan los nodos.

- $lue{}$ Un grafo es una estructura ${\mathcal K}$ consistente en un conjunto de nodos y aristas.
- $\mathfrak{X} = \{X_1, \dots, X_n\}$ representa el conjunto de nodos.
- E represente el conjunto de aristas. Las aristas conectan los nodos.
- Arista dirigida: $X_i \rightarrow X_j$.

- $lue{}$ Un grafo es una estructura ${\mathcal K}$ consistente en un conjunto de nodos y aristas.
- $\mathfrak{X} = \{X_1, \dots, X_n\}$ representa el conjunto de nodos.
- E represente el conjunto de aristas. Las aristas conectan los nodos.
- Arista dirigida: $X_i \rightarrow X_j$.
- Arista no dirigida: $X_i X_j$.

- $lue{}$ Un grafo es una estructura ${\mathcal K}$ consistente en un conjunto de nodos y aristas.
- $\mathfrak{X} = \{X_1, \dots, X_n\}$ representa el conjunto de nodos.
- lacktriangleright $\mathcal E$ represente el conjunto de aristas. Las aristas conectan los nodos.
- lacksquare Arista dirigida: $X_i o X_j$.
- Arista no dirigida: $X_i X_j$.
- \mathcal{E} es un conjunto de pares, donde cada par es uno de los $X_i \to X_j$, $X_j \to X_i$, o $X_i X_j$, para X_i , $X_j \in \mathcal{X}$, i < j.

 $\blacksquare \mbox{ Un grafo } \mathcal{G} \mbox{ ser\'a dirigido si todos las aristas son del tipo } X_i \to X_j \mbox{ o } X_j \to X_i.$

 $\blacksquare \mbox{ Un grafo } \mathcal{G} \mbox{ ser\'a dirigido si todos las aristas son del tipo } X_i \to X_j \mbox{ o } X_j \to X_i.$

lacksquare Un grafo ${\mathcal H}$ será no dirigido si todos las aristas son del tipo $X_i-X_j.$

 $\blacksquare \mbox{ Un grafo } \mathcal{G} \mbox{ ser\'a dirigido si todos las aristas son del tipo } X_i \to X_j \mbox{ o } X_j \to X_i.$

■ Un grafo $\mathcal H$ será no dirigido si todos las aristas son del tipo $X_i - X_j$.

Es posible convertir un grafo dirigido en un grafo no dirigido ignorando las direcciones de las aristas.

Dado un grafo $\mathcal{K}=(\mathcal{X},\mathcal{E})$, la versión no dirigida es un grafo $\mathcal{H}=(\mathcal{X},\mathcal{E}')$, donde $\mathcal{E}'=\{X-Y:X\longleftrightarrow Y\in\mathcal{E}\}$, donde \longleftrightarrow indica que los nodos están conectados por una arista (dirigida o no dirigida).

■ Si $X_i \to X_j \in \mathcal{E}$, X_j es hijo de X_i en \mathcal{K} y X_i es padre de X_j en \mathcal{K} .

■ Si $X_i \to X_j \in \mathcal{E}$, X_j es hijo de X_i en \mathcal{K} y X_i es padre de X_j en \mathcal{K} .

■ Si $X_i - X_j \in \mathcal{E}$, X_i es vecino de X_j en \mathcal{K} (y viceversa).

■ Si $X_i \to X_j \in \mathcal{E}$, X_j es hijo de X_i en \mathcal{K} y X_i es padre de X_j en \mathcal{K} .

■ Si $X_i - X_j \in \mathcal{E}$, X_i es vecino de X_j en \mathcal{K} (y viceversa).

■ X e Y son adjacentes si $X \longleftrightarrow Y \in \mathcal{E}$.

■ Si $X_i \to X_j \in \mathcal{E}$, X_j es hijo de X_i en \mathcal{K} y X_i es padre de X_j en \mathcal{K} .

■ Si $X_i - X_j \in \mathcal{E}$, X_i es vecino de X_j en \mathcal{K} (y viceversa).

■ $X \in Y$ son adjacentes si $X \longleftrightarrow Y \in \mathcal{E}$.

■ Frontera de X: padres y vecinos. En grafos dirigidos, la frontera son los padres y para grafos no dirigidos, la frontera son los vecinos.

Grado

■ Degree del nodo X: número de aristas en la cual el nodo participa.

Grado

■ Degree del nodo X: número de aristas en la cual el nodo participa.

 $\blacksquare \ \, \text{Indegree} \ \, \text{del} \ \, \text{nodo} \ \, X \colon \text{n\'umero} \ \, \text{de aristas dirigidas del tipo} \ \, Y \longrightarrow X.$

Grado

■ Degree del nodo X: número de aristas en la cual el nodo participa.

■ Indegree del nodo X: número de aristas dirigidas del tipo $Y \longrightarrow X$.

■ Degree del grafo: máximo degree de un nodo en el grafo.

Subgrafos

Sea $\mathcal{K}=(\mathcal{X},\mathcal{E})$, y sea $\mathbf{X}\in\mathcal{X}$. Se define el subgrafo $\mathcal{K}[\mathbf{X}]$ a ser el grafo $(\mathbf{X},\mathcal{E}')$ donde \mathcal{E}' son todas las aristas $\mathbf{X}\longleftrightarrow\mathbf{Y}\in\mathcal{E}$ tales que $\mathbf{X},\mathbf{Y}\in\mathbf{X}$.

Subgrafos

Sea $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, y sea $\mathbf{X} \in \mathcal{X}$. Se define el subgrafo $\mathcal{K}[\mathbf{X}]$ a ser el grafo $(\mathbf{X}, \mathcal{E}')$ donde \mathcal{E}' son todas las aristas $\mathbf{X} \longleftrightarrow \mathbf{Y} \in \mathcal{E}$ tales que $\mathbf{X}, \mathbf{Y} \in \mathbf{X}$.

Se dice que un subconjunto de nodos $X \in \mathcal{X}$ es cerrado hacia arriba en \mathcal{K} , si para cualquier $X \in \mathbf{X}$ se tiene que la frontera de X está incluida en \mathbf{X} . La clausura hacia arriba se define como el subconjunto \mathbf{Y} mínimo cerrado hacia arriba que contiene \mathbf{X} .

Subgrafos

Trayectorias y Caminos

■ Trayectoria: X_1, \ldots, X_k forman una trayectoria en el grafo $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, si para cada $i = 1, \ldots, k-1$, se tiene que $X_i \longrightarrow X_{i+1}$ o $X_i - X_{i+1}$. La trayectoria es dirigida si, para al menos un i, se tiene $X_i \longrightarrow X_{i+1}$.

Trayectorias y Caminos

■ Trayectoria: X_1, \ldots, X_k forman una trayectoria en el grafo $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, si para cada $i = 1, \ldots, k-1$, se tiene que $X_i \longrightarrow X_{i+1}$ o $X_i - X_{i+1}$. La trayectoria es dirigida si, para al menos un i, se tiene $X_i \longrightarrow X_{i+1}$.

■ Camino: X_1, \ldots, X_k forman un camino en el grafo $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, si para cada $i = 1, \ldots, k-1$, se tiene que $X_i \longleftrightarrow X_{i+1}$.

Trayectorias y Caminos

■ Trayectoria: X_1, \ldots, X_k forman una trayectoria en el grafo $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, si para cada $i = 1, \ldots, k-1$, se tiene que $X_i \longrightarrow X_{i+1}$ o $X_i - X_{i+1}$. La trayectoria es dirigida si, para al menos un i, se tiene $X_i \longrightarrow X_{i+1}$.

■ Camino: X_1, \ldots, X_k forman un camino en el grafo $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, si para cada $i = 1, \ldots, k-1$, se tiene que $X_i \longleftrightarrow X_{i+1}$.

■ Un grafo se dice conectado si para cada X_i , X_j , existe un camino entre X_i y X_j .

■ Ciclo: un ciclo en $\mathcal K$ es una trayectoria dirigida X_1,\ldots,X_k donde $X_1=X_k$. Un grafo es acíclico si no contiene ciclos.

■ Ciclo: un ciclo en \mathcal{K} es una trayectoria dirigida X_1, \ldots, X_k donde $X_1 = X_k$. Un grafo es acíclico si no contiene ciclos.

■ DAG: grafo acíclico dirigido.

■ Ciclo: un ciclo en $\mathcal K$ es una trayectoria dirigida X_1, \ldots, X_k donde $X_1 = X_k$. Un grafo es acíclico si no contiene ciclos.

■ DAG: grafo acíclico dirigido.

Una red Bayesiana se puede representar a través de un DAG.

■ Ciclo: un ciclo en $\mathcal K$ es una trayectoria dirigida X_1, \ldots, X_k donde $X_1 = X_k$. Un grafo es acíclico si no contiene ciclos.

■ DAG: grafo acíclico dirigido.

Una red Bayesiana se puede representar a través de un DAG.

■ PDAG: grafo acíclico parcialmente dirigido. Grafo que contiene aristas dirigidas y no dirigidas.

■ Bucle: un bucle en \mathcal{K} es un camino donde $X_1 = X_k$. Un grafo es uniconexo si no contiene bucles.

- Bucle: un bucle en \mathcal{K} es un camino donde $X_1 = X_k$. Un grafo es uniconexo si no contiene bucles.
- Un nodo en un grafo uniconexo se llama hoja si tiene exactamente un solo nodo adyacente.

- Bucle: un bucle en \mathcal{K} es un camino donde $X_1 = X_k$. Un grafo es uniconexo si no contiene bucles.
- Un nodo en un grafo uniconexo se llama hoja si tiene exactamente un solo nodo adyacente.
- Un grafo uniconexo dirigido se llama un poliárbol.

- Bucle: un bucle en \mathcal{K} es un camino donde $X_1 = X_k$. Un grafo es uniconexo si no contiene bucles.
- Un nodo en un grafo uniconexo se llama hoja si tiene exactamente un solo nodo adyacente.
- Un grafo uniconexo dirigido se llama un poliárbol.
- Un grafo uniconexo no dirigido se llamado bósque. Si el grafo es conexo, se llama árbol.

- Bucle: un bucle en \mathcal{K} es un camino donde $X_1 = X_k$. Un grafo es uniconexo si no contiene bucles.
- Un nodo en un grafo uniconexo se llama hoja si tiene exactamente un solo nodo adyacente.
- Un grafo uniconexo dirigido se llama un poliárbol.
- Un grafo uniconexo no dirigido se llamado bósque. Si el grafo es conexo, se llama árbol.
- Un grafo dirigido es un árbol si cada nodo tiene a lo más un padre.

Arboles

 Redes: concepto abstracto que se refiere a un sistema de entidades interrelacionadas.

 Redes: concepto abstracto que se refiere a un sistema de entidades interrelacionadas.

■ Una red no es un grafo.

 Redes: concepto abstracto que se refiere a un sistema de entidades interrelacionadas.

■ Una red no es un grafo.

■ Sin embargo, una red puede ser representada o modelada como un grafo.

 Redes: concepto abstracto que se refiere a un sistema de entidades interrelacionadas.

■ Una red no es un grafo.

■ Sin embargo, una red puede ser representada o modelada como un grafo.

 Una red está asociada al concepto de dato complejo (interacción entre entidades compleja).

R: relación de elementos en un conjunto $[n] = \{1, ..., n\}$.

R: relación de elementos en un conjunto $[n] = \{1, ..., n\}$.

■ Cada elemento tiene una única etiqueta.

R: relación de elementos en un conjunto $[n] = \{1, ..., n\}$.

■ Cada elemento tiene una única etiqueta.

■ $(i, j) \in R$ significa que i exhibe una relación R con j.

R: relación de elementos en un conjunto $[n] = \{1, ..., n\}$.

■ Cada elemento tiene una única etiqueta.

■ $(i, j) \in R$ significa que i exhibe una relación R con j.

■ Ejemplo: $\{1, \ldots, n\}$ son estudiantes de un curso, entonces $(i, j) \in R$ podría indicar que i considera a j como un amigo.

■ Para una relación binaria R, se puede construir $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, una matriz de adyacencia:

$$Y_{ij} = \begin{cases} 1, & (i,j) \in R, \\ 0, & \text{caso contrario.} \end{cases}$$

■ Para una relación binaria R, se puede construir $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, una matriz de adyacencia:

$$Y_{ij} = \begin{cases} 1, & (i,j) \in R, \\ 0, & \text{caso contrario.} \end{cases}$$

 \blacksquare Y puede ser vista como un grafo, con nodos dados por el conjunto [n] y aristas (dirigidas) de i a j si $Y_{ij}=1.$

■ Para una relación binaria R, se puede construir $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, una matriz de adyacencia:

$$Y_{ij} = \begin{cases} 1, & (i,j) \in R, \\ 0, & \text{caso contrario.} \end{cases}$$

 $lackbox{ Y puede ser vista como un grafo, con nodos dados por el conjunto $[n]$ y aristas (dirigidas) de i a j si $Y_{ij}=1$.}$

■ El grafo será no dirigido si $Y_{ij} = Y_{ji}$, para todo $1 \leqslant i,j \leqslant n$.

$$\mathbf{y} = \left(\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right)$$

■ Para $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, el dyad D_{ij} es el par (Y_{ij},Y_{ji}) para cada $1 \leqslant i \neq j \leqslant n$.

- Para $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, el dyad D_{ij} es el par (Y_{ij},Y_{ji}) para cada $1 \leqslant i \neq j \leqslant n$.
- Si Y es representada gráficamente, D_{ij} describe como el vértice i y j se relacionan:

- Para $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, el dyad D_{ij} es el par (Y_{ij},Y_{ji}) para cada $1 \leqslant i \neq j \leqslant n$.
- Si Y es representada gráficamente, D_{ij} describe como el vértice i y j se relacionan:
 - D(0,0): no hay relación entre i y j.

- Para $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, el dyad D_{ij} es el par (Y_{ij},Y_{ji}) para cada $1 \leqslant i \neq j \leqslant n$.
- Si Y es representada gráficamente, D_{ij} describe como el vértice i y j se relacionan:
 - D(0,0): no hay relación entre i y j.
 - D(1,0): relación en dirección de i a j pero no de j a i.

- Para $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, el dyad D_{ij} es el par (Y_{ij},Y_{ji}) para cada $1 \leqslant i \neq j \leqslant n$.
- Si Y es representada gráficamente, D_{ij} describe como el vértice i y j se relacionan:
 - D(0,0): no hay relación entre i y j.
 - D(1,0): relación en dirección de i a j pero no de j a i.
 - D(0,1): relación en dirección de j a i pero no de i a j.

- Para $\mathbf{Y} = (Y_{ij})_{1 \leqslant i,j \leqslant n}$, el dyad D_{ij} es el par (Y_{ij},Y_{ji}) para cada $1 \leqslant i \neq j \leqslant n$.
- Si Y es representada gráficamente, D_{ij} describe como el vértice i y j se relacionan:
 - D(0,0): no hay relación entre i y j.
 - D(1,0): relación en dirección de i a j pero no de j a i.
 - D(0,1): relación en dirección de j a i pero no de i a j.
 - lacksquare D(1, 1): relación en dirección de i a j y viceversa.

Este modelo, asigna probabilidades p_{ij} a cada dyad, asumiendo que estos dyads se comportan independientemente:

Este modelo, asigna probabilidades p_{ij} a cada dyad, asumiendo que estos dyads se comportan independientemente:

$$P(D_{ij} = (z, z')) = p_{ij}(z, z'), \quad z, z' \in \{0, 1\}.$$

Este modelo, asigna probabilidades p_{ij} a cada dyad, asumiendo que estos dyads se comportan independientemente:

$$P(D_{ij} = (z, z')) = p_{ij}(z, z'), \quad z, z' \in \{0, 1\}.$$

Bajo este supuesto,

Este modelo, asigna probabilidades p_{ij} a cada dyad, asumiendo que estos dyads se comportan independientemente:

$$P(D_{ij} = (z, z')) = p_{ij}(z, z'), \quad z, z' \in \{0, 1\}.$$

Bajo este supuesto,

$$P(\mathbf{Y} = \mathbf{y} \mid \mathbf{p}) = \prod_{1 \leqslant i < j \leqslant n} p_{ij} (y_{ij}, y_{ji}), \quad \mathbf{y} \in \{0, 1\}^{n \times n}.$$

Euros Con notificity

■ El modelo dyad de independencia (Holland and Leinhardt, 1981, JASA) puede ser expresado como:

Con position

■ El modelo dyad de independencia (Holland and Leinhardt, 1981, JASA) puede ser expresado como:

$$\begin{split} & P\left(\boldsymbol{Y} = \boldsymbol{y} \mid \left(\rho_{ij}\right)_{1\leqslant i < j\leqslant n}, \left(\boldsymbol{\theta}_{ij}\right)_{1\leqslant i \neq j\leqslant n}\right) \quad \propto \\ & \exp\left\{\sum_{1\leqslant i < j\leqslant n} \rho_{ij} y_{ij} y_{ji} + \sum_{1\leqslant i \neq j\leqslant n} \boldsymbol{\theta}_{ij} y_{ij}\right\}, \end{split}$$

donde

$$\rho_{ij} = log \left(\frac{p_{ij}(0,0)p_{ij}(1,1)}{p_{ij}(0,1)p_{ij}(1,0)} \right) \hspace{0.5cm} y \hspace{0.5cm} \theta_{ij} = log \left(p_{ij}(1,0)/p_{ij}(0,0) \right).$$

■ El modelo dyad de independencia (Holland and Leinhardt, 1981, JASA) puede ser expresado como:

$$\begin{split} & P\left(Y = y \mid \left(\rho_{ij}\right)_{1\leqslant i < j\leqslant n}, \left(\theta_{ij}\right)_{1\leqslant i \neq j\leqslant n}\right) \quad \propto \\ & \exp\left\{\sum_{1\leqslant i < j\leqslant n} \rho_{ij} y_{ij} y_{ji} + \sum_{1\leqslant i \neq j\leqslant n} \theta_{ij} y_{ij}\right\}, \end{split}$$

donde

$$\rho_{ij} = log \left(\frac{p_{ij}(0,0)p_{ij}(1,1)}{p_{ij}(0,1)p_{ij}(1,0)} \right) \quad \text{ y } \quad \theta_{ij} = log \left(p_{ij}(1,0)/p_{ij}(0,0) \right).$$

■ El modelo anterior está expresado en términos de la familia exponencial, con parámetros naturales $(\rho_{ij})_{1 \leq i \leq j \leq n}$ y $(\theta_{ij})_{1 \leq i \neq j \leq n}$.

Se define

$$\rho_{\mathfrak{i}\mathfrak{j}}=\rho,\quad 1\leqslant\mathfrak{i}<\mathfrak{j}\leqslant\mathfrak{n},\quad \text{ y }\quad \theta_{\mathfrak{i}\mathfrak{j}}=\theta+\alpha_{\mathfrak{i}}+\beta_{\mathfrak{j}},\quad 1\leqslant\mathfrak{i}\neq\mathfrak{j}\leqslant\mathfrak{n}.$$

Se define

$$\rho_{ij} = \rho, \quad 1 \leqslant i < j \leqslant n, \quad \text{ y } \quad \theta_{ij} = \theta + \alpha_i + \beta_j, \quad 1 \leqslant i \neq j \leqslant n.$$

■ Bajo lo anterior, el modelo se escribe como

$$\begin{split} P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\rho}, \boldsymbol{\theta}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \\ & \frac{\exp\left\{\rho \sum_{\mathbf{1} \leqslant i < j \leqslant n} y_{ij} y_{ji} + \boldsymbol{\theta} y_{\bullet \bullet} + \sum_{i=1}^{n} \alpha_{i} y_{i\bullet} + \sum_{j=1}^{n} \beta_{j} y_{\bullet j}\right\}}{\prod_{\mathbf{1} \leqslant i < j \leqslant n} \eta_{ij}} \end{split}$$

Se define

$$\rho_{ij} = \rho, \quad 1 \leqslant i < j \leqslant n, \quad \text{ y } \quad \theta_{ij} = \theta + \alpha_i + \beta_j, \quad 1 \leqslant i \neq j \leqslant n.$$

■ Bajo lo anterior, el modelo se escribe como

$$\begin{split} P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\rho}, \boldsymbol{\theta}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \\ & \frac{\exp \left\{ \boldsymbol{\rho} \sum_{\mathbf{1} \leqslant i < j \leqslant n} y_{ij} y_{ji} + \boldsymbol{\theta} y_{\bullet \bullet} + \sum_{i=\mathbf{1}}^{n} \alpha_{i} y_{i\bullet} + \sum_{j=\mathbf{1}}^{n} \beta_{j} y_{\bullet j} \right\}}{\prod_{\mathbf{1} \leqslant i < j \leqslant n} \eta_{ij}} \end{split}$$

■ Aqui, $y_{i\bullet} = \sum_{j=1}^n y_{ij}$ es el out-degree del vértice i y $y_{\bullet j} = \sum_{i=1}^n y_{ij}$ es el in-degree del vértice j.

Se define

$$\rho_{ij} = \rho, \quad 1 \leqslant i < j \leqslant n, \quad \text{ y } \quad \theta_{ij} = \theta + \alpha_i + \beta_j, \quad 1 \leqslant i \neq j \leqslant n.$$

■ Bajo lo anterior, el modelo se escribe como

$$\begin{split} P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\rho}, \boldsymbol{\theta}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \\ & \frac{\exp \left\{ \boldsymbol{\rho} \sum_{\mathbf{1} \leqslant i < j \leqslant n} y_{ij} y_{ji} + \boldsymbol{\theta} y_{\bullet \bullet} + \sum_{i=\mathbf{1}}^{n} \alpha_{i} y_{i\bullet} + \sum_{j=\mathbf{1}}^{n} \beta_{j} y_{\bullet j} \right\}}{\prod_{\mathbf{1} \leqslant i < j \leqslant n} \eta_{ij}} \end{split}$$

- Aqui, $y_{i\bullet} = \sum_{j=1}^n y_{ij}$ es el out-degree del vértice i y $y_{\bullet j} = \sum_{i=1}^n y_{ij}$ es el in-degree del vértice j.
- $\mathbf{y}_{\bullet \bullet} = \sum_{i,j=1}^{n} y_{ij}$ es el total-degree de \mathbf{y} .

Se define

$$\rho_{ij} = \rho, \quad 1 \leqslant i < j \leqslant n, \quad \text{ y } \quad \theta_{ij} = \theta + \alpha_i + \beta_j, \quad 1 \leqslant i \neq j \leqslant n.$$

■ Bajo lo anterior, el modelo se escribe como

$$\begin{split} P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\rho}, \boldsymbol{\theta}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \\ & \frac{\exp \left\{ \boldsymbol{\rho} \sum_{\mathbf{1} \leqslant i < j \leqslant n} y_{ij} y_{ji} + \boldsymbol{\theta} y_{\bullet \bullet} + \sum_{i=\mathbf{1}}^{n} \alpha_{i} y_{i\bullet} + \sum_{j=\mathbf{1}}^{n} \beta_{j} y_{\bullet j} \right\}}{\prod_{\mathbf{1} \leqslant i < j \leqslant n} \eta_{ij}} \end{split}$$

- Aqui, $y_{i\bullet} = \sum_{j=1}^n y_{ij}$ es el out-degree del vértice i y $y_{\bullet j} = \sum_{i=1}^n y_{ij}$ es el in-degree del vértice j.
- $y_{\bullet \bullet} = \sum_{i,j=1}^{n} y_{ij}$ es el total-degree de y.
- $\qquad \qquad \eta_{ij} = 1 + e^{\rho + \alpha_i + \beta_j} + e^{\rho + \alpha_j + \beta_i} + e^{\rho + 2\theta + \alpha_i + \alpha_j + \beta_i + \beta_j}, 1 \leqslant i < j \leqslant n \text{ es la constante de normalización}.$

• ρ: parámetro de reciprocidad, captura la probabilidad relativa que dos vértices genéricos tengan una relación recíproca.

• ρ: parámetro de reciprocidad, captura la probabilidad relativa que dos vértices genéricos tengan una relación recíproca.

 $f lpha_i$: cómo el vértice i tiene conexiones que salen (relativo al resto de vértices).

Modelo de Independencia Dyad

• ρ: parámetro de reciprocidad, captura la probabilidad relativa que dos vértices genéricos tengan una relación recíproca.

 $f lpha_i$: cómo el vértice i tiene conexiones que salen (relativo al resto de vértices).

lacksquare eta_i : cómo el vértice i tiene conexiones que entran (relativo al resto de vértices).

■ Sea $\theta_1, \ldots, \theta_k \in \mathbb{R}$, parámetros reales-valorados.

- \blacksquare Sea $\theta_1,\ldots,\theta_k\in\mathbb{R},$ parámetros reales-valorados.
- Considere $T_1, ..., T_k : \{0, 1\}^{n \times n} \longrightarrow \mathbb{R}$, estadísticos.

- \blacksquare Sea $\theta_1,\ldots,\theta_k\in\mathbb{R},$ parámetros reales-valorados.
- Considere $T_1, ..., T_k : \{0, 1\}^{n \times n} \longrightarrow \mathbb{R}$, estadísticos.
- Modelo de grafo aleatorio exponencial:

- \blacksquare Sea $\theta_1,\ldots,\theta_k\in\mathbb{R},$ parámetros reales-valorados.
- Considere $T_1, \ldots, T_k : \{0, 1\}^{n \times n} \longrightarrow \mathbb{R}$, estadísticos.
- Modelo de grafo aleatorio exponencial:

$$P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, T) \propto exp \left\{ \sum_{i=1}^k \theta_i T_i(\mathbf{y}) \right\},$$

con $\theta=(\theta_1,\ldots,\theta_k)$ parámetro natural y $\mathbf{T}=(T_1,\ldots,T_k)$ estadístico suficiente canónico.

- \blacksquare Sea $\theta_1,\ldots,\theta_k\in\mathbb{R},$ parámetros reales-valorados.
- Considere $T_1, \ldots, T_k : \{0, 1\}^{n \times n} \longrightarrow \mathbb{R}$, estadísticos.
- Modelo de grafo aleatorio exponencial:

$$P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathsf{T}) \propto \exp \left\{ \sum_{i=1}^k \theta_i \mathsf{T}_i(\mathbf{y}) \right\},$$

con $\theta = (\theta_1, \dots, \theta_k)$ parámetro natural y $\mathbf{T} = (T_1, \dots, T_k)$ estadístico suficiente canónico.

La constante de normalización es dificil de obtener.

$$P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, T) \quad \propto \quad \exp\{\theta T(\mathbf{y})\}$$

$$\begin{aligned} \mathsf{P}(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathsf{T}) & \propto & \exp\{\theta \mathsf{T}(\mathbf{y})\} \\ &= & \exp\{\mathsf{T}(\mathbf{y}) \log(\mathfrak{p}) - \mathsf{T}(\mathbf{y}) \log(1-\mathfrak{p})\} \end{aligned}$$

■ El modelo anterior puede además ser reescrito como

$$\begin{split} P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathsf{T}) & \propto & \exp\{\theta \mathsf{T}(\mathbf{y})\} \\ &= & \exp\{\mathsf{T}(\mathbf{y}) \log(p) - \mathsf{T}(\mathbf{y}) \log(1-p)\} \\ &= & p^{\mathsf{T}(\mathbf{y})} (1-p)^{-\mathsf{T}(\mathbf{y})} \end{split}$$

■ El modelo anterior puede además ser reescrito como

$$\begin{aligned} P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, T) & \propto & \exp\{\theta T(\mathbf{y})\} \\ &= & \exp\{T(\mathbf{y}) \log(p) - T(\mathbf{y}) \log(1-p)\} \\ &= & p^{T(\mathbf{y})} (1-p)^{-T(\mathbf{y})} \end{aligned}$$

• Aqui, $\theta = \log(p/(1-p))$.

$$\begin{aligned} P(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, T) & \propto & \exp\{\theta T(\mathbf{y})\} \\ &= & \exp\{T(\mathbf{y}) \log(p) - T(\mathbf{y}) \log(1-p)\} \\ &= & p^{T(\mathbf{y})} (1-p)^{-T(\mathbf{y})} \end{aligned}$$

- Aqui, $\theta = \log(p/(1-p))$.
- $\qquad \text{Además, } T(\mathbf{y}) = \textstyle \sum_{1 \leqslant i \neq j \leqslant n} y_{ij}, \quad \mathbf{y} \in \{0,1\}^{n \times n}.$

■ El uso de estadísticos suficientes permite incorporar propiedades de las redes de forma interesante en el modelo (p.e., cerradura transitiva medida como el número de triángulos $\sum_{i,j,k=1}^{n} y_{ij}y_{jk}y_{ki}$).

■ El uso de estadísticos suficientes permite incorporar propiedades de las redes de forma interesante en el modelo (p.e., cerradura transitiva medida como el número de triángulos $\sum_{i,j,k=1}^{n} y_{ij} y_{jk} y_{ki}$).

El problema es disponer de la constante de normalización (para realizar inferencia).

■ El uso de estadísticos suficientes permite incorporar propiedades de las redes de forma interesante en el modelo (p.e., cerradura transitiva medida como el número de triángulos $\sum_{i,j,k=1}^{n} y_{ij} y_{jk} y_{ki}$).

■ El problema es disponer de la constante de normalización (para realizar inferencia).

■ Sin embargo, si se dispone de esta, el modelo aleatorio exponencial es un modelo bastante razonable.