

Object localization

What are localization and detection?

Image classification

" Car"

Classification with localization

"Car

bjert

Detection

Classification with localization

4 - background

Defining the target label y

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

$$\begin{cases}
(\dot{y}_{1}, y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2} \\
+ \dots + (\dot{y}_{8} - y_{8})^{2} & \text{if } y_{1} = 1 \\
(\dot{y}_{1} - y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2}
\end{cases}$$

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Andrew Ng

Landmark detection

Landmark detection

 b_x , b_y , b_h , b_w

ConvNet ConvNet

129

Object detection

Car detection example

Training set:

Sliding windows detection Corportation cost

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Andrew Ng

Convolution implementation of sliding windows

Bounding box predictions

Output accurate bounding boxes

YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Specify the bounding boxes

Intersection over union

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Non-max suppression

Non-max suppression example

Non-max suppression example

19x19

Non-max suppression example

Pc

Non-max suppression algorithm

Each output prediction is:

Discard all boxes with $p_c \leq 0.6$

- ->> While there are any remaining boxes:
 - Pick the box with the largest p_c Output that as a prediction.
 - Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

Anchor boxes

Overlapping objects:

$$\mathbf{y} = \begin{bmatrix} b_c \\ b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

3x3x 2x8

Anchor box example

Anchor box 1: Anchor box 2:

Andrew Ng

Putting it together: YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Making predictions

Outputting the non-max supressed outputs

- For each grid call, get 2 predicted bounding boxes.
- Get rid of low probability predictions.
- For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions.

Region proposals (Optional)

Region proposal: R-CNN

[Girshik et. al, 2013, Rich feature hierarchies for accurate object detection and semantic segmentation] Andrew Ng

Faster algorithms

 \rightarrow R-CNN:

Propose regions. Classify proposed regions one at a time. Output <u>label</u> + bounding box.

Fast R-CNN:

Propose regions. Use convolution implementation of sliding windows to classify all the proposed regions.

Faster R-CNN: Use convolutional network to propose regions.

[Girshik et. al, 2013. Rich feature hierarchies for accurate object detection and semantic segmentation] [Girshik, 2015. Fast R-CNN]

[Ren et. al, 2016. Faster R-CNN: Towards real-time object detection with region proposal networks]

Andrew Ng

Convolutional Neural Networks

Semantic segmentation with U-Net

Object Detection vs. Semantic Segmentation

Input image

Object Detection

Semantic Segmentation

Motivation for U-Net

Chest X-Ray

Brain MRI

Per-pixel class labels

- 1. Car
- 0. Not Car

Per-pixel class labels

- 1. Car
- 2. Building
- 3. Road

```
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
   13333333333331
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
```

Segmentation Map

Deep Learning for Semantic Segmentation

Transpose Convolution

Normal Convolution

Transpose Convolution

Transpose Convolution

filter $f \times f = 3 \times 3$

padding p = 1 stride s = 2

Deep Learning for Semantic Segmentation

U-Net

