Doomsday Equilibria for Omega-Regular Games

Jean-François Raskin, ULB

based on a joint work together with K. Chatterjee (IST), L. Doyen (ENS), and E. Filiot (U Paris 12)

Freely inspired by

The **Doomsday machine** of Dr. Strangelove (Stanley Kubrick)

Motivations

- ▶ 2-player zero-sum games are useful for:
 - controller synthesis (system vs environment)
 - **)** ...
 - relation with tree automata (emptiness algorithm)
 - notion of simulation relation
- to reason about multi-component systems, we need multi-player non-zero sum games (with imperfect info)
 - note that imperfect info and multi-player quickly lead to undecidability

Solution concepts

To predict/analyze how players behave in multi-player games, several notions have been proposed:

- Admissibility [Aum76,Ber07]:
 - ▶ A strategy of a player **dominates** another one if the outcome of the first strategy is better than the outcome of the second no matter how the other players play.
 - ▶ Rationality: a player does not play a strategy that is strictly dominated by another one
 - ▶ Iterate: once we know that some strategies are not played by other players, new strategies may become strictly dominated → iterate up to a fixpoint.
 - see talk by Mathieu Sassolas

Solution concepts

To predict/analyze how players behave in multi-player games, several notions have been proposed:

Nash equilibria [Nash51]: a strategy profile(St₁,St₂,...,St_n) is a NE if no player has an incentive to unitarily deviate: Out₁(St₁',St₂,...,St_n) ≤ Out₁(St₁,St₂,...,St_n)

with imperfect info: constrained existence is undecidable

Secure equilibria (2 players) [CHJ06]: NE+deviation does not harm the other player: Out₁(St¹₁,St₂) ≥ Out₁(St₁,St₂) ⇒ Out₂(St¹₁,St₂) ≥ Out₂(St1,St2)

Doomsday threatening equilibria: refinement/extension of secure equilibria to n players

Secure/Doomsday equilibria An example

- ▶ Alice and Bob want to exchange messages m_{AB} and m_{BA}
- ▶ Either
 - both have received their message (preferred)
 - or none (sub-optimal)
- ▶ If one receives and the other not, this is not acceptable (for the one that does not receive)
 - ≈ spec. of "Fair Exchange Protocols"
 - no easy solution (e.g. need for a TTP)

A wants to reach {2,4} B wants to reach {3,4}

A preference: 2>4>1>3

B preference: 3>4>1>2

Unique secure equilibrium:

not send m_{AB}, not send m_{BA}

Not satisfactory!

A preference: 2>4>1>3

B preference: 3>4>1>2

Unique secure equilibrium:

not send m_{AB}, not send m_{BA}

Not satisfactory!

A preference: 2>4>1>3

B preference: 3>4>1>2

morium:

Idea: add cancel (*TTP) MAB, not send mBA

Not sausfactory!

A wants to reach {3,7} B wants to reach {5,7}

A preference: 3>7>1=2=4=6=8>5

B preference: 5>7>1=2=4=6=8>3

Unique secure equilibrium:

A preference: 3>7>1=2=4=6=8>5

B preference: 5>7>1=2=4=6=8>3

Unique secure equilibrium:

A preference: 3>7>1=2=4=6=8>5

B preference: 5>7>1=2=4=6=8>3

Unique secure equilibrium:

A preference: 3>7>1=2=4=6=8>5

B preference: 5>7>1=2=4=6=8>3

Unique secure equilibrium:

Doomsday threatening equilibria

A strategy profile (St₁,St₂,...,St_n) is a doomsday threatening equilibrium (DE) if:

- 1. Outcome(St₁,St₂,...,St_n) is "winning" for all players
- For all player i, Outcome(St_i) is such that:
 either player i wins or all players lose (doomsday)
 i.e. St_i is good for retaliation

Setting: n-player games

With omega-regular objectives: Win_i ⊆ S^ω Win_i∈{safety, reachability, Büchi,coBüchi,parity,LTL}

Setting: n-player games

With omega-regular objectives: Win_i \subseteq S^{ω} Win_i \in {safety, reachability, Büchi,coBüchi,parity,LTL}

Main results

	Safety	Reach	Büchi	coBüchi	Parity	LTL
Perfect info	PSpace-C	PTime-C	PTime-C	PTime-C	in PSpace NP-Hard coNP-Hard	2ExpTimeC
Imperfect	ExpTime-C	ExpTime-C	ExpTime-C	ExpTime-C	ExpTime-C	2ExpTimeC

Main results

	Safety	Reach	Büchi	coBüchi	Parity	LTL
Perfect info	PSpace-C	PTime-C	PTime-C	PTime-C	in PSpace NP-Hard coNP-Hard	2ExpTimeC
Imperfect info	ExpTime-C	ExpTime-C	ExpTime-C	ExpTime-C	ExpTime-C	2ExpTimeC

Doomsday Equilibria in Büchi Games

Büchi games

PTime algorithm for Büchi

Generic algorithm for tail objectives:

- **1** compute $R_i = \langle \langle i \rangle \rangle$ Win_i $\cup \cap_{j=1,...,n} \neg$ Win_j
- 2 check for a path in $\cap_{j=1,...,n} (\square R_j \cap Win_j)$

PTime algorithm for Büchi

Generic algorithm for tail objectives:

- **1** compute $R_i = \langle \langle i \rangle \rangle$ Win_i $\cup \cap_{j=1,...,n} \neg$ Win_j
- **2** check for a path in $\cap_{j=1,...,n}$ ($\square R_j \cap Win_j$)

PTime algorithm for Büchi

Correctness:

(completness): Let $(St_1,St_2,...,St_n)$ be a **DE then** Out $(St_1,St_2,...,St_n)$ is winning for all players and never leaves $R_1 \cap ... \cap R_n$

(soundness): A *universally* winning path in $R_1 \cap ... \cap R_n$ witnesses a **DE**

Complexity:

(easyness): Computing $R_i = \langle \langle i \rangle \rangle$ Win_i $\cup \cap_{j=1,...,n} \neg$ Win_j in **PTIME** (Street game with one pair):

$$\langle\langle i \rangle\rangle \square \diamondsuit B_i \lor \diamondsuit \square \land_{j=1,..,n} \neg B_j$$

(hardness): PTIME-hard (reduc. from 2-pla. zero-sum Büchi games)

Witness a doomsday equilibrium if in addition, every player retaliates by skipping his loop when other players deviates.

Witnesses a doomsday equilibrium if in addition, every player retaliates by skipping his loop when other players deviates.

Now consider strategies of Player 2 and 3 s.t. Player 1 loses.

Clearly, this appends only if Players 2 and 3 eventually never take their loop, but if it is the case, then Player 1 retaliates by avoiding his loop and all the players lose.

does also witness a DE!

Doomsday Equilibria in Safety Games

Safety games

Algorithm for safety

1 compute $R_i = \langle \langle i \rangle \rangle \square Safe_i \vee \bigwedge_{j=1..n} \lozenge \neg Safe_j$

This can be computed in PSpace [Alur et al. 04]

2 check for a path in $\bigcap_{i=1,...,n}$ (Safe_i \cap R_i)

This can be compute in PTime.

PSpace-Hardness for safety

Reduction from generalized reachability games

$$\langle\langle 1 \rangle\rangle \diamondsuit T_1 \wedge \diamondsuit T_2 \wedge ... \wedge \diamondsuit T_n$$
 (PSpace-C) [AL04,FH11].

Player 1 can retaliate **iff** in modified copy of G, he can force a visit to Unsafe₂= T_1 , ..., Unsafe_{n+1}= T_n .

This is equivalent to ask if Player 1 wins the generalized reachability game.

Safety: an example

Safety: an example

Any deviation leads to doomsday!

Doomsday Equilibria in Games with Imperfect Info

Imperfect information

Ex: Observations of Player 1

For each player, there is a **partition** of the state space into **observation** classes

Strategies must be observation-based, i.e.

$$\lambda_i:S^*S_i \rightarrow \Sigma$$

 $\lambda_i:Obs_i^*Obs_i \rightarrow \Sigma$

Imperfect information

An important difficulty:

A player cannot always detect deviation, he can only detect deviation from the expected observation sequence!

Solution:

A seq. of obs. $\eta \in (Obs)^{\omega}$ is doomsday compatible (for Player i) if all plays that are compatible with η are either:

- -winning for Player i,
- -or losing for all the players (doomsday).

Imperfect information

When Player i **observes** deviation, he should be able to retaliate:

a prefix $\kappa \in (Obs_i)^* \cdot Obs_i$ of a seq. of obs. is good for retaliation (for Player i)

if

there exists an observation-based strategy $\lambda_{i,R}$ of Player i s.t. for all prefixes π compatible with κ : outcome(π , $\lambda_{i,R}$) implies Player i wins or all players lose.

Solving games with imperfect info

Let G be an n-player game arena with imperfect information and winning objectives ϕ_i , $1 \le i \le n$.

There exists a doomsday equilibrium in G

iff

there exists a play p in G such that:

- ▶ $\rho \in \cap_{i=1..n} \Phi_i$, i.e. ρ is winning for all the players,
- for all Player i, for all pref. κ of Obs_i(ρ), κ is i-good for retaliation,
- \blacktriangleright for all Player i, Obs_i(ρ) is **i-doomsday compatible**.

leads to an **EXPTIME** algorithm!

Conclusion

- Introduction of doomsday threatening equilibrium
- ▶ DE refines and extends secure equilibrium
- Useful e.g. to reason on/synthesize security protocols (like fair exchange protocols)
- We have settled the exact complexity in most cases and Safraless approach for LTL
- ▶ DE leads to a decidable notion of equilibria in imperfect information games: DE avoids the usual undecidability results of n-player games with imperfect information