

- 1. 高云半导体公司简介
- 2. 高云产品概述
- 3. 小蜜蜂家族GW1N-4详细介绍
- 4. PocketLab-F0开发板介绍
- 5. 开发平台使用简介
- 6. 附录

# 目 录 CATALOGUE

# 高云半导体公司简介



高云半导体科技股份有限公司成立于2014年1月,总部位于广州,是一家拥有完全自主知识产权的国产FPGA厂商,公司致力于提供FPGA芯片、软件、IP、参考设计、开发板以及FPGA整体解决方案.



2014年1月,广州



~150人,硕士占比>80% 核心团队经验>15年



打造一个技术创新,服务 高效的国产FPGA品牌

# 产品概述



#### 高云FPGA产品 概述

PRODUCT OVERVIEW



# 小蜜蜂家族产品概述





#### 非易失FPGA

1-9K 逻辑密度

#### 消费 移动设备 物联网

- •代替CPLD,
- •电源/平台管理, IO扩展
- •桥接,汇聚
- •MIPI



### 特征



更多接口

ADC, MIPI, I3C

GW1N



更丰富的缓存空间

最多128MB

GW1NR



硬核 MCU Arm Cortex-M3

**GW1NS** 



零功耗模式 休眠时最低10µW

GW1NZ



**GW1NSE** 

# 小蜜蜂家族市场定位





#### 覆盖传统CPLD市场;差异化设计拓展新兴市场













测试仪器

I0扩展

简单算法

接口转换

上电控制

通信

工业

消费电子

车

车载

© GOWIN Semiconductor-Confidential

# 小蜜蜂家族-GW1N系列选型列表



| 器件                     |        |         | GW1N-1 | GW1N-2   | GW1N-4   | GW1N-6   | GW1N-9   | GW1N-1S |
|------------------------|--------|---------|--------|----------|----------|----------|----------|---------|
| 逻辑单元(LUT)              |        |         | 1,152  | 2,304    | 4,608    | 6,912    | 8,640    | 1,152   |
| 寄存器( <b>FF)</b>        |        |         | 864    | 1,728    | 3,456    | 5,184    | 6,480    | 864     |
| 分布式静态随机存储器S-SRAM(bits) |        |         | 0      | 0        | 0        | 13,824   | 17,280   | 0       |
| 块状静态随机存储器B-SRAM(bits)  |        |         | 72K    | 180K     | 180K     | 468K     | 468K     | 72K     |
| 块状静态随机存储器数目B-SRAM(个)   |        |         | 4      | 10       | 10       | 26       | 26       | 4       |
| 用户闪存-bits              |        |         | 96K    | 256K     | 256K     | 608K     | 608K     | 96K     |
| 乘法器(18x18 Multiplier)  |        |         | 0      | 16       | 16       | 20       | 20       | 0       |
| 锁相环(PLLs+DLLs)         |        |         | 1+0    | 2+2      | 2+2      | 2+4      | 2+4      | 1+0     |
| I/O Bank 总数            |        |         | 4      | 4        | 4        | 4        | 4        | 3       |
| 最多用户 I/O               |        |         | 119    | 207      | 207      | 273      | 273      | 25      |
| 核电压(LV版本)              |        |         | 1.2V   | 1.2V     | 1.2V     | 1.2V     | 1.2V     | 1.2V    |
| 核电压(UV版本)              |        |         | -      | 2.5/3.3V | 2.5/3.3V | 2.5/3.3V | 2.5/3.3V | -       |
|                        | 间距(mm) | 尺寸(mm)  | GW1N-1 | GW1N-2   | GW1N-4   | GW1N-6   | GW1N-9   | GW1N-1S |
| MG196:MBGA             | 0.5    | 8x8     | -      | -        | -        | 113(35)  | 113(35)  | -       |
| CS30:WLCSP             | 0.4    | 2.3x2.4 | 24     | -        | -        | -        | -        | 23      |
| QN32:QFN               | 0.5    | 5x5     | 26     | 24(3)    | 24(3)    | -        | -        | -       |
| FN32:QFN               | 0.4    | 4x4     | -      | -        | -        | -        | -        | 25      |
| QN48:QFN               | 0.4    | 6x6     | 41     | 40(9)    | 40(9)    | 40(12)   | 40(12)   | -       |
| CM64:WLCSP             | 0.5    | 4.1x4.1 | -      | -        | -        | 55(16)   | 55(16)   | -       |
| CS72:WLCSP             | 0.4    | 3.6x3.3 | -      | 57(19)   | 57(19)   | -        | -        | -       |
| QN88:QFN               | 0.4    | 10x10   | -      | 70(11)   | 70(11)   | 70(19)   | 70(19)   | -       |
| LQ100:LQFP             | 0.5    | 16x16   | 79     | 79(13)   | 79(13)   | 79(20)   | 79(20)   | -       |
| LQ144:LQFP             | 0.5    | 22x22   | 116    | 119(22)  | 119(22)  | 120(28)  | 120(28)  | -       |
| EQ144:LQFP             | 0.5    | 22x22   | -      | -        | -        | 120(28)  | 120(28)  | -       |
| MG160:MBGA             | 0.5    | 8x8     | -      | 131(25)  | 131(25)  | 131(38)  | 131(38)  | -       |
| UG169:UBGA             | 8.0    | 11x11   | -      | -        | -        | 129(38)  | 129(38)  | -       |
| LQ176:LQFP             | 0.4    | 22x22   | -      | -        | -        | 147(37)  | 147(37)  | -       |
| EQ176:EQFP             | 0.4    | 22x22   | -      | -        | -        | 147(37)  | 147(37)  | -       |
| PG256:PBGA             | 1      | 17x17   | -      | 207(32)  | 207(32)  | 207(36)  | 207(36)  | -       |
| PG256M:PBGA            | 1      | 17x17   | -      | 207(32)  | 207(32)  | -        | -        | -       |
| UG256:UBGA             | 8.0    | 14x14   | -      | -        | -        | 207(36)  | 207(36)  | -       |
| UG332:UBGA             | 0.8    | 17x17   | -      | -        | -        | 273(43)  | 273(43)  | -       |
|                        |        |         |        |          |          |          |          |         |

### 小蜜蜂家族GW1N系列产品-产品结构



器件内部是一个逻辑单元阵列,外围是输入输出模块(IOB),器件内嵌了静态随机存储器(B-SRAM)模块、数字信号处理模块 DSP、PLL 资源、DLL 资源、片内晶振和用户闪存资源 User Flash,支持瞬时启动功能。



# 小蜜蜂家族GW1N系列产品-可配置逻辑单元



每个查找表可以被配置为一个 4 输入查找表(LUT4),可配置逻辑单元可实现高阶查找表功能:

- 一个可配置功能片可配置成一个 5 输入查找表(LUT5)。
- 两个可配置功能片可配置成一个 6 输入查找表(LUT6)。
- 四个可配置功能片可配置成一个 7 输入查找表(LUT7)。
- 八个可配置功能片(两个 CLU)可配置成成一个 8 输入查找表 (LUT8)。



### 小蜜蜂家族GW1N系列产品-10



- GW1N-4的 I/O 包括 4 个 Bank, 每个 Bank 支持单独 供电,有独立的 I/O 电源 VCCO。
- 支持的电平标准: LVCMOS33/25/18/15/12; LVTTL33,
  SSTL33/25/18 I, SSTL33/25/18 II, SSTL15; HSTL18
  I, HSTL18 II, HSTL15 I; PCI, LVDS25, RSDS,
  LVDS25E, BLVDSE MLVDSE, LVPECLE, RSDSE -
- 提供输入信号去迟滞选项
- 支持 4mA、8mA、16mA、24mA 等驱动能力
- 对每个 I/O 提供独立的 Bus Keeper、上拉/下拉电阻 及 Open Drain 输出选项



#### 小蜜蜂家族GW1N系列产品-BRAM



GW1N 系列 FPGA 产品提供了丰富的块状静态随机存储器资源。这些存储器资源按照模块排列,以行的形式,分布在整个 FPGA 阵列中。因此称为块状静态随机存储器(B-SRAM)。在 FPGA 阵列中每个 B-SRAM 模块占用 3 个CFU 的位置。每个 B-SRAM 可配置最高18,432bits(18Kbits)。

提供的 操作模式包括:

- 单端口模式 Single Port
- 双端口模式 Dual Port
- 伪双端口 模式 Semi Dual Port
- 只读存储器模式

- 1 个模块最大容量为 18,432bits
- ▶ 时钟频率达到 190MHz
- 单端口模式 Single Port
- 双端口模式 Dual Port
- 伪双端口模式 Semi Dual Port
- 提供校验位 Parity Bits
- 提供只读存储器模式 ROM
- 数据宽度从1位到36位
- 多时钟操作模式 Mixed Clock Mode
- 多数据宽度模式 Mixed Data Width Mode
- 在双字节以上的数据宽度支持字节使能功能 Enable Byte 异步复位,可同步释放
- 正常读写 Normal Read and Write Mode
- 先读后写 Read-before-write Mode
- 通写 Write-through Mode

### 小蜜蜂家族GW1N系列产品-DSP



#### DSP 支持下列功能:

- 3 种宽度乘法器(9-bit, 18-bit, 36-bit)
- 54-bit 的算术/逻辑运算单元
- 多个乘法器可级联以增加数据宽度
- 桶形移位器(Barrel Shifter)
- 通过反馈信号做自适应滤波(Adaptive filtering through signal feedback)
- 运算可以自动取正(Computing with options of rounding to positive number or prime number)
- 支持寄存器输出和旁路输出

高云提供 FIR, FFT IP



# 小蜜蜂家族GW1N系列产品-全局时钟



GW1N 系列 FPGA 产品提供了专用全局时钟网络(GCLK), 直接连接到器件的所有资源。除了 GCLK 资源,还提供了 高速时钟 HCLK 资源。此外,还提供了锁相环(PLL) 和延 迟锁相环(DLL)等时钟资源。

GCLK 在器件中按象限分布,分成 L、R 两个象限,每个象限提供 8 个 GCLK 网络。GCLK 的可选时钟源包括专用的时钟输入管脚和普通布线资源,使用专用的时钟输入管脚具有更好的时钟性能。



# PocketLab-F0开发板



#### Pocket Lab-FO开发套件特色:

- 以高云小蜜蜂家族GW1N4-LQ144 FPGA 为核心
- 自带下载器电路,只需一根USB电缆线即可进行开发
- 集成自带蓝牙和WIFI模块,能方便的与 手机、电脑进行无线通信



# PocketLab-F0开发板







# 开发平台及下载工具





- □ 支持Linux CentOS6/7(x64), Windows 7/8/10(x64, x32)
- □ 提供单独的Programmer, 支持Windows XP (x32) 以及以上 操作系统
- □ IP Core 生成器
- □ 物理约束/时序约束编辑器
- □ 在线逻辑分析仪GAO
- □ 功耗分析工具
- □ 提供高云自主开发的综合及仿真工具

# 开发平台介绍



开发平台的使用主要从以下几个方面进行讲解:

- 1) 软件的获取和安装
  - 1) 软件的获取
  - 2) 软件的license申请
  - 3) 软件的安装
  - 4) 软件安装失败故障排查
- 2) 软件功能使用介绍
  - 1) 工程的建立
  - 6) 内部逻辑分析仪高的使用

# 开发平台的获取和安装



#### 通过我司官网免费下载

- ① 登陆: http://www.gowinsemi.com.cn
- ② 选择: 开发者专区/高云云源软件
- ③ 选择最新的软件版本,点击下载
- ④ 下载完成后根据提是进行安装





### 软件License的申请



- ① 登陆高云官网后,选择:开发者专区/高云云源软件/License申请
- ② 点击立即申请
- ③ 填写相关信息,最后点击提交





注意: license申请需提供联系人姓名、联系人电话、联系人邮箱、以及电脑MAC地址(否则会导致license申请失败),客户在官网提出申请后,2个工作日内license会邮件发给客户。

### 软件的安装及License导入



- ① 解压下载文件,并按照步骤进行安装
- ② 完成安装后,打开软件界面,选择Help/Manage License,弹出窗口,选择Use Local License File,点击 browse,选择之前已经申请到的云源软件license。界面示例如下:



温馨提示:申请到的license有2个,其中文件名中含有 "synplifypro"字符的为synplify软件license,另一个 为高云云源软件license, license目前有效期是1年,1 年后客户可再次免费申请。

#### 设置环境变量



- ① 选择:我的电脑/属性/高级系统设置/高级/环境变量
- ② 用户变量中新建变量名: LM\_LICENSE\_FILE 变量值为synplify的license(注意保证路径的正确性)
- ③ 当2个license都导入后,高云云源软件即可正常使用了。如图所示:软件运行正常





#### 软件使用-新建工程





① 新建工程

New project:新建工程;

Open project:打开以前创建的工程

Open example project:打开软件自带

的工程(供参考学习用)

Recent projects:最近使用的工程

- ② 添加RTL文件
- ③ 添加约束
- ④ 编译(其中综合工具可选择高云syn 或者synplify pro)

⑤ 加载





#### 添加高配置文件:

- ① 返回软件界面 File/New /GAO Config File
- ② 给GAO配置文件命名,点击OK



GOWIN FPGA Designer - [E:\softtraining\pll cnt\top\src\cnt top.v]

File Edit Project Tools Window Help





#### 触发设置

- ① 双击test0.gao;
- ② 勾选触发端口
- ③ 选择触发信号

#### 匹配设置

- ① 勾选匹配单元
- ② 选择匹配数值
- ③ 填写匹配表达式

此含义表示: 当cnt[2:0]为"001"时信号触发





#### 采样设置

- ① 选择上升沿采样;
- ② 采样时钟选择sys\_clk;
- ③ 选择存储深度为1024;
- ④ 选择抓取的信号为cnt[2;0];
- ⑤ 表示在第32个采样深度时触发;

#### GAO文件烧录

保存好高文件后,重新综合,布局布线,选择工程目录下ao\_0.fs文件(是含有高配置的烧录文件),烧录到芯片中





- ① 打开逻辑分析仪:
  - 烧录完毕,返回软件主界面,选择Tools/Gowin Analyzer Oscilloscope,打开内部分析仪界面
- ② 打开高配置文件: 点击文件夹图标,现在之前创建的test0.gao文件
- ③ 点击start,内部逻辑分析仪开始运行





# Thank you!