Міністерство освіти і науки України Національний університет "Львівська політехніка"

Кафедра ЕОМ

Звіт

з лабораторної роботи №2

з дисципліни: "Моделювання комп'ютерних систем" на тему: "Структурний опис цифрового автомата"

Виконав: ст. гр. КІ-201 Кісіль В. І.

> Прийняв: Козак Н.Б.

Мета: "На базі стенда реалізувати цифровий автомат світлових ефектів".

Завдання до варіанту № 5:

Варіант – 5:

• Пристрій повинен реалізувати 8 комбінацій вихідних сигналів згідно таблиці:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	0	О	0	0	0	0	0	1
2	0	1	0	0	0	0	0	0
3	0	0	0	0	0	0	1	0
4	0	0	1	0	0	0	0	0
5	0	0	0	0	0	1	0	0
6	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда Elbert V2 – Spartan 3A FPGA. Тактовий сигнал заведено нв вхід LOC = P129 FPGA (див. Додаток – 1).
- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - Якщо MODE=0 то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - Якщо MODE=1 то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід (TEST) для подачі логічної «1» на всі виходи одночасно:
 - Якщо TEST=0 то автомат перемикає сигнали на виходах згідно заданого алгоритму.
 - Якщо TEST=1 то на всіх виходах повинна бути логічна «1» (всі LED увімкнені).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. Додаток – 1).
- Для керування сигналами RESET/TEST використати будь які з PUSH BUTTON кнопок (див. Додаток – 1).

Хід виконання:

1) Створюю TransitionLogic.vhd

2) Створюю OutputLogic.vhd

```
-- Project Name:
    -- Target Devices:
    -- Tool versions:
11
    -- Description:
12
13
    -- Dependencies:
14
    -- Revision:
15
    -- Revision 0.01 - File Created
16
    -- Additional Comments:
17
18
19
20 library IEEE:
    use IEEE.STD LOGIC 1164.ALL;
21
22
    entity Out_Logic_intf is
    Port ( IN_BUS : in std_logic_vector(2 downto 0);
25
            OUT_BUS : out std_logic_vector(7 downto 0)
26
27
    end Out Logic intf;
28
29
    architecture Out_Logic_arch of Out_Logic_intf is
31
32
         OUT BUS(0) <= (not(IN BUS(2)) and not(IN BUS(1)) and not(IN BUS(0)));
33
         OUT BUS(2) <= (not(IN BUS(2)) and not(IN BUS(1)) and IN BUS(0));
34
         OUT_BUS(4) <= (not(IN_BUS(2)) and IN_BUS(1) and not(IN_BUS(0)));
35
         OUT_BUS(6) <= (not(IN_BUS(2)) and IN_BUS(1) and(IN_BUS(0)));
36
         OUT_BUS(7) <= ((IN_BUS(2)) and not IN_BUS(1) and not(IN_BUS(0)));
OUT_BUS(5) <= ((IN_BUS(2)) and not IN_BUS(1) and(IN_BUS(0)));
37
38
         OUT_BUS(3) <= ((IN_BUS(2)) and IN_BUS(1) and not(IN_BUS(0)));
OUT_BUS(1) <= ((IN_BUS(2)) and IN_BUS(1) and(IN_BUS(0)));
39
40
41
    end Out_Logic_arch;
```

3) Створюю схему LightController.sch

4) Створюю файл TopLevel.sch

Також, щоб забезпечити можливість зменшення вхідної частоти в чотири рази – умова завдання, додаю мультиплексор.

5) Додаю Constraints.ucf файл

```
CONFIG VCCAUX = "3.3";
   # Clock 12 MHz
                       LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
  <u>---</u>
     NET "OUT_LED_0"
NET "OUT_LED_1"
NET "OUT_LED_2"
NET "OUT_LED_3"
NET "OUT_LED_4"
10
                         LOC = P46
                                  | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12:
                         LOC = P47
                                  | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
                                                              DRIVE = 12;
11
                         LOC = P48
LOC = P49
                                  | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
| IOSTANDARD = LVCMOS33 | SLEW = SLOW |
                                                              DRIVE = 12;
                                                              DRIVE = 12;
13
                         LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
14
     NET "OUT_LED_5"
NET "OUT_LED_6"
15
16
     NET "OUT_LED_7"
                         LOC = P55
                                | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
18
19
   20
21
                            DP Switches
   ......
     NET "MODE"
                  LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
23
24
  25
26
   27
28
29
                     LOC = P78 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                    LOC = P79 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
     NET "RESET"
30
31
  33
```

6) Симулюю роботу OutputLogic:

										7.200335 d3	
Name	Value	0 us	1 us	2 us	3 us	4 us	5 us	6 us	7 us		8 us
► in_bus[2:0]	111	000	001	010	011	100	101	110	\mathbf{x}	111	
out_bus[7:0]	00000010	0000001	00000100	00010000	01000000	10000000	00100000	00001000	Ж	00000010	

7) Симулюю роботу TransitionLogic:

	7.208333 US										
8 us		7 us	6 us	5 us	4us	3 us	2 us	1 us	10 us	Value	Name
	111	Ж	110	101	100	011	010	001	000	111	cur_state[2:0]
										0	la mode
	000	*	111	110	101	100	011	010	001	000	▶ ■ next_state[2:0]
	000	X	(111	110	101	100	011	010	001		i in mode ▶ ■ in next_state[2:0]

8) Симулюю роботу LightController:

			1.941667 us													
Name	Value	 1 us	2 us		3 us		4us		5 us		6 us		7 us		8 us	9
¼ clk	1															
l₁ mode	0															
l₁ reset	0															
▶ 🖥 out_bus[7:0]	00000001	0000001	00000	100	00010	0000	0100	0000	1000	0000	0010	0000	0000	1000	0000	0010
	000	000	00	1	01	0	0:	11	10	0	10	01	11	10	1	11
mext_state_bus[2:0]	001	001	01	0	01	1	10	00	10	1	1	10	11	1	0	00

9) Симулюю роботу TopLevel.sch :

10) Генерую BIN файл:

Ім'я	Дата змінення	Тип	Розмір
■ sch2HdlBatchFile	¹ 31.05.2023 1:18	Файл	0 K
testbench.v	02.05.2023 15:16	Файл V	2 K
top_level.bgn	02.05.2023 16:17	Файл BGN	7 K
top_level.bin	02.05.2023 16:17	Файл BIN	54 K
top_level.bit	02.05.2023 16:17	Файл BIT	54 K
Top_Level.bld	02.05.2023 16:17	Файл BLD	2 K
Top_Level.cmd_log	02.05.2023 16:17	Файл CMD_LOG	1 K
📤 top_level.drc	02.05.2023 16:17	DRC Video File (VL	1 K
Top_Level.jhd	02.05.2023 16:16	Файл JHD	1 K
Top_Level.lso	02.05.2023 16:17	Файл LSO	1 K
Top_Level.ncd	02.05.2023 16:17	Файл NCD	15 K
Top_Level.ngc	02.05.2023 16:17	Файл NGC	18 K

Висновок: На даній лабораторній роботі я на базі стенда Elbert V2- Spartan 3A FPGA реалізував цифровий автомат світлових ефектів. Навчився створювати нові елементи і описувати логіку їх роботи засобами VHDL.