The 3rd Universal Cup Stage 11: Sumiyosi, October 5-6, 2024

Problem G. Many Common Segment Problems

Time limit: 8 seconds

Memory limit: 1024 megabytes

PCT has created the following problem.

Common Segment

You are given N segments $[L_1, R_1], [L_2, R_2], \dots, [L_N, R_N]$. Here, [L, R] represents the set of all integers from L to R inclusive.

There are $2^N - 1$ ways to choose one or more segments, among these, find the number of ways where the intersection of all chosen segments is non-empty. Output the result modulo 998244353.

PCT accidentally lost some of the L_i and R_i values in the test cases. To help him out, solve the following problem.

Many Common Segment Testcases

You are given test cases for **Common Segment**. However, the missing L_i , R_i values are replaced with '-1'.

It is known that the original test cases satisfied $1 \le L_i \le R_i \le M$ ($1 \le i \le N$). For all possible original test cases, solve **Common Segment** and find the sum of all answers modulo 998244353.

Constraints

- $1 < N, M < 10^5$
- $L_i = -1$ or $1 \le L_i \le M$
- $R_i = -1$ or $1 \le R_i \le M$
- If $L_i, R_i \geq 1$, then $L_i \leq R_i$

Input

The input is given in the following format from standard input:

N M

 $L_1 R_1$

 $L_2 R_2$

:

 $L_N R_N$

Output

Output the answer.

The 3rd Universal Cup Stage 11: Sumiyosi, October 5-6, 2024

Examples

standard input	standard output
3 3	18
1 -1	
2 2	
2 3	
5 8	15
1 7	
2 3	
4 8	
6 8	
1 5	
10 13	841024210
4 -1	
-1 -1	
7 11	
-1 -1	
-1 -1	
-1 -1	
11 -1	
3 8	
-1 9	
-1 -1	

Note

For the first sample case:

All possible test cases and their corresponding answers for Common Segment are as follows:

- When $(L_i, R_i) = (1, 1), (2, 2), (2, 3)$, the answer is 4.
- When $(L_i, R_i) = (1, 2), (2, 2), (2, 3)$, the answer is 7.
- When $(L_i, R_i) = (1, 3), (2, 2), (2, 3)$, the answer is 7.

Therefore, the total answer is 4 + 7 + 7 = 18.