

报告人:路尚润

组员: 黄维政、古志谦、肖文昊、杨凯锋

指导教师: 黄敏、唐强

2023.12.26

项目背景 01 项目历程 02 模块展示 03 成果展示 04 总结 05

项目背景

・光功率计

光功率计(optical power meter)是用来测量光功率大小的仪器,是光电领域或是更为宽广的、与光相关的领域必备的光信号测量的基本工具。

市面上常见的光功率计

项目历程

中山大學

姓名	负责内容
路尚润	统筹规划 电路搭建及焊接 光电转换模块 设计外形 数据拟合
古志谦 黄维政	数据采集 A/D转换 显示模块
肖文昊	设计程控放大器 绘制PCB板 测量定标
杨凯锋	放大器模块 绘制原理图 测量定标

·项目进程

面包板初步实现

备用焊接模块

仪器雏形实现

PCB板

模块展示

项目背景

·模块展示

光电转换及仪表放大器

STM32及显示屏模块

部分STM32代码模块

·电源模块展示

解决问题:提供电工作路板电压,包括芯片以及STM32。

使用芯片: 12V转-12V、12V转5V芯片

困难: 电源并非稳定直流, 需滤波。

负责人:路尚润、杨凯锋

项目背景

电源及滤波模块

・光电模块

解决问题:将微弱光信号转换为较大电信号,并输入到STM32进行测量。

使用芯片:数据选择器4051、放大器LM324、OP07 困难:如何设计转换电路?选定电阻参数?如何接 入程控放大器?

负责人:路尚润、肖文昊、杨凯锋

光电模块

项目背景

·拟合标定曲线

解决问题:解决测量值与输出值之间

的关系,从电压转换为功率。

困难: 如何选取最优拟合曲线? 如何

定标非线性?

负责人:路尚润、杨凯锋、肖文昊

光电转换及仪表放大器

· A/D显示模块

解决问题:将连续信号转换并进行运算显示。

使用材料: STM32单片机、OLED显示屏。

困难:

- 1.配置keil uVision5的编译环境,以及软件内的设置;
- 2.解读STM32配套的AD转换例程,理解每个端口的作用;
- 3.改写AD转换程序,配置新的输入端口并在此基础上进 行读入电压的数据处理;
- 4.学习购置的OLED显示屏,并利用keil进行编程显示。

负责人: 黄维政、古志谦

部分STM32代码模块

成果展示

・成果展示

中山大學

光功率计PCB板

集成仪器内部示意图

·测量精度

SUN YAT-SEN UNIVERSITY

标准值与测量值的线性拟合

绝对误差值

拟合参数	数值
斜率	0.973
Pearson's r	0.99966
R-Square	0.99931

测量指标	精度数值
最小分辨精度	0.1μW
最大量程	865.9μW
平均相对误差	0.01575

总结

・总结

- 项目意义:用途广泛且重要,是光电领域必备的基本测试仪器
- 2 项目分工:人员分工明确,专注于自己的模块。
- 3 项目推进:项目基本按照预期推进,进展顺利。
- 4 项目成果:项目完全实现了光功率计的基本功能,并实现了程控换挡。
- 5 项目改进:由于电源非完全直流,产生了低频谐波,可以进一步改进。

报告人:路尚润

组员: 黄维政、古志谦、肖文昊、杨凯锋

指导教师: 黄敏、唐强

2023.12.26