Мини конспект по теме: Теорема Пифагора

Маргарита Кирьянова

Сентябрь 2025г.

Содержание

1	Введение	2
2	Формулировка теоремы	2
3	Доказательство (набросок)	2
4	Примеры расчёта	2
5	Таблица значений	2
6	Иллюстрация	3
7	Заключение	3
8	Ссылки и литература	3

1 Введение

Теорема Пифагора — одна из важнейших теорем евклидовой геометрии. Она находит применение в самых разных областях:

- геометрия и тригонометрия
- физика
- инженерные расчёты
- компьютерная графика

2 Формулировка теоремы

Слова: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

$$c^2 = a^2 + b^2 (1)$$

Как видно из формулы 1, знание двух сторон позволяет найти третью.

3 Доказательство (набросок)

Одно из доказательств основывается на площади квадрата, составленного из четырёх одинаковых прямоугольных треугольников и малого квадрата в центре. Раскладывая площадь двумя способами, получаем $c^2 = a^2 + b^2$.

4 Примеры расчёта

Пример 1

$$a = 3, b = 4$$

$$c = \sqrt{a^2 + b^2} = \sqrt{9 + 16} = 5$$

Пример 2

- 1. Дано: a = 5, b = 12
- 2. Решениие:

$$c = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = 13$$

5 Таблица значений

Катет а	Kатет b	Γ ипотенуза c
3	4	5
5	12	13
7	24	25

6 Иллюстрация

Ниже пример изображения

7 Заключение

Теорема Пифагора — один из краеугольных камней геометрии, помогающий решать множество практических задач.

8 Ссылки и литература

- Википедия: Теорема Пифагора
- Классические учебники геометрии