Major Presentation

DSL 810

Project Brief

- A printer sized device (or a little bigger) capable of storing physical documents for quick retrieval at will.
- While inserting pages, the user is asked to name the document and organise them in folders (just like electronic documents are stored in PCs).
- The user can then browse through the files or perform a name search to retrieve the document as and when required

Features of the Device

- Multiple pages document
- A4, letter and legal sized pages
- On board touchscreen display
- Schedule a scan of the stored documents.
- Max time of retrieval: 30s
- An additional space (box) to store small notes or bills

Building the Prototype

- We have four major mechanisms:
 - Embedded systems: controlling microcontrollers, motors, display
 - Scanning Mechanism: scanner, rollers and separator lifter
 - Retrieval Mechanism: rollers along with clamper and separator lifter
 - Counting Mechanism : counts using suction motor

Figure: Counting mechanism (already developed)

For the purpose of DSL810 the deliverables were associated with EMBEDDED SECTION

Embedded Tasks

- UI
 - Onboard Display
 - App
- Digital Sorting : DBMS
 - Security Profiles
 - Algo
 - Data Structure
- WiFi Module Integration
- TouchScreen LED Integration
- Control
 - Microprocessor
 - DC DC Convertors
- Scanner Integration
- Power Supply

- Activity Diagrams & FSMs for States
 - Insertion
 - Retrieval
 - Scanning
 - Idle
 - Truly idle
 - Physical Sorting/ Troubleshooting
- Controlling the individual components
 - Clamper Clamp
 - Clamper Wheels
 - Counter
 - Suction Fan Motor
 - Pin Motor
 - Leadscrew Motor
 - Cam (for engagement/ disengagement of counter)
 - Retrieval mechanism
 - Actuator for physical separation 2
 - Actuator for lifting
 - Ejector

Benchmarking different Components

- Wifi Module
 - Frequency Band: 2.4GHz/5GHz (both are available usually)
 - Range: 10 meters (Onboard Pi)
- Microcontroller
 - Raspberry Pi 3 Model B V1.2
- Suction Motor (for counting mechanism)
 - 12V brushless dc suction motor (2A current), IFD04048B12C
- Scanner Module
 - CIS scan head
 - Hp/Canon

Benchmarking different Components

- Display
 - 7 inch LCD display (TFT LCD Display)
- Driving motors
 - 5/12V DC motors (depending on the operation)

Activity Diagrams

- The activity diagrams are drawn to map the states of the machine at various time frames
- We draw the activity maps for the mechanisms as well as for the individual components

Insertion Mechanism

Post Processing

Scanning Mechanism

Post-processing

Retrieval Mechanism

Post-processing

Scanning Assembly

- 1. Upper to Lower rack transfer
- 2. Lower to upper rack transfer
- 3. Retrieval from upper rack

Finite State Machines

- FSM are made for each of the mechanism for microcontroller coding
- In FSM diagrams we have specified the changes in the states for the mechanism as well as for the individual components

Insertion Process

Retrieval Process

Scanning Process

Counting Mechanism

Scanning Assembly

A : All actuators functioning? : Sensors

T : Time (in s) elapsed in a state (resets to 0 after every state transition and after every count update) : MCU

ER : All errors resolved? : Troubleshooting Algorithm

Note : After Error Resolution, reset command is invoked

Separator Lifter

Actuators
A1. Separator
A2. Leadscrew Motor (Vertical Motion)

A2 is stopped

A Possible Encoding (Reducing no. of variables) Drop 4: it is equivalent to (2 and ~3)

Controlling Suction motor using PWM

- Microcontroller used: Rpi
- Code is available here
- Video available <u>here</u>

Scanner Integration with RPi

- Tried with two scanners:
 - HP scanjet 200
 - HP deskjet 1050
- Problems:
 - HPLIP was available only for Linux (we were using Raspbian)
 - A package was available from SANE for deskjet 1050, but since deskjet 1050 is a printer and scanner integrated module, not possible to have only scanner functioning due to internal security checks of the board
- While dismantling HP deskjet 1050, we came across interesting mechanism of working of printer (video available on right or click <u>here</u>)
- Meanwhile, Lockdown Happened

UI Design

- Initial proposed the flow diagrams for different screens
- Creation of screen layouts
- Platform for building the UI: Kivy (comparison available <u>here</u>)

UI Flow Diagrams

Retrieval flow diagram

General flow diagram

Scanning flow diagram

Insertion flow diagram 24

UI Screens

- Glimpse of Some UI screens is given on the Right
- All the screens are available here

Progress Till now

- Counting Mechanism completed
- Backend Coding has been completed(in C++)
- Scanning assembly, retrieval mechanism, separator lifter design and CAD modelling completed
- Embedded Systems design are completed

Future Goals

- Manufacturing of the Prototype once the institute reopens
- Henceforth Integration of the Embedded components
- Completion of First Prototype
- Improvements in the Capacity and Insertion/Retrieval time
- Integration of disinfection of the paper while storage

Thank You