

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 4

Building the Processor

Part B

Full Datapath (from previous slide set)

ALU Control

ALU used for

Load/Store: F = add

Branch: F = subtract

R-type: F depends on funct field

ALU control	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set-on-less-than
1100	NOR

Simplified implementation of MIPS contain:

memory-reference instructions: lw, sw

arithmetic-logical instructions: add, sub, and, or, slt

control flow instructions: beq, j

ALU Control

- Assume 2-bit ALUOp derived from opcode
 - Combinational logic derives ALU control

opcode	ALUOp	Operation	funct	ALU function	ALU control
lw	00	load word	XXXXXX	add	0010
sw	00	store word	XXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

ALU Control

Instruction opcode	ALUOp	Instruction operation	Funct field	Desired ALU action	ALU control input
LW	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	AND	100100	AND	0000
R-type	10	OR	100101	OR	0001
R-type	10	set on less than	101010	set on less than	0111

2-bit ALUOp derived from opcode

Figure 4.12 (260)

ALI	ALUOp		Funct field					
ALUOp1	ALUOp0	F5	F4	F3	F2	F1	FO	Operation
0	0	Х	Х	Х	Х	Х	Х	0010
X	1	Х	Х	Х	Х	Х	Х	0110
1	X	Х	Х	0	0	0	0	0010
1	X	Х	Х	0	0	1	0	0110
1	Х	Х	Х	0	1	0	0	0000
1	X	Х	Х	0	1	0	1	0001
1	X	Х	Х	1	0	1	0	0111

Figure 4.13 (261)

ALU Control Unit

The Main Control Unit

Control signals derived from instruction

Datapath (including ALU control block)

Figure 4.16 & Figure 4.18

Signal name	Effect when deasserted	Effect when asserted
RegDst	The register destination number for the Write register comes from the rt field (bits 20:16).	The register destination number for the Write register comes from the rd field (bits 15:11).
RegWrite	None.	The register on the Write register input is written with the value on the Write data input.
ALUSrc	The second ALU operand comes from the second register file output (Read data 2).	The second ALU operand is the sign-extended, lower 16 bits of the instruction.
PCSrc	The PC is replaced by the output of the adder that computes the value of PC + 4.	The PC is replaced by the output of the adder that computes the branch target.
MemRead	None.	Data memory contents designated by the address input are put on the Read data output.
MemWrite	None.	Data memory contents designated by the address input are replaced by the value on the Write data input.
MemtoReg	The value fed to the register Write data input comes from the ALU.	The value fed to the register Write data input comes from the data memory.

Instruction	RegDst	ALUSrc	Memto- Reg	Reg- Write		Mem- Write	Branch	ALUOp1	ALUOp0
R-format	1	0	0	1	0	0	0	1	0
1w	0	1	1	1	1	0	0	0	0
SW	Х	1	Х	0	0	1	0	0	0
beq	Х	0	Х	0	0	0	1	0	1

Main Control Unit

Datapath With Control

4B — 11

R-Type Instruction

Load Instruction

Branch-on-Equal Instruction

Implementing Jumps

- Jump uses word address
- Update PC with concatenation of
 - Top 4 bits of old PC
 - 26-bit jump address
 - **00**
- Need an extra control signal decoded from opcode

Datapath With Jumps Added

Performance Issues

- Longest delay determines clock period
 - Critical path: load instruction
 - Instruction memory → register file → ALU → data memory → register file
- Not feasible to vary period for different instructions
- Violates design principle
 - Making the common case fast
- We will improve performance by pipelining

Pipelining Analogy

- Pipelined laundry: overlapping execution
 - Parallelism improves performance

Four loads:

- Speedup= 8/3.5 = 2.3
- Non-stop:
 - Speedup
 - $= 2n/0.5n + 1.5 \approx 4$
 - = number of stages

MIPS Pipeline

- Five stages, one step per stage
 - 1. IF: Instruction fetch from memory
 - 2. ID: Instruction decode & register read
 - 3. EX: Execute operation or calculate address
 - 4. MEM: Access memory operand
 - 5. WB: Write result back to register

Pipeline Performance

- Assume time for stages is
 - 100ps for register read or write
 - 200ps for other stages
- Compare pipelined datapath with single-cycle datapath

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
lw	200ps	100 ps	200ps	200ps	100 ps	800ps
sw	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

Pipeline Performance

Pipeline Speedup

- If all stages are balanced
 - i.e., all take the same time
 - Time between instructions_{pipelined}
 Time between instructions_{nonpipelined}
 - Number of stages
- If not balanced, speedup is less
- Speedup due to increased throughput
 - Latency (time for each instruction) does not decrease

Pipelining and ISA Design

- MIPS ISA designed for pipelining
 - All instructions are 32-bits
 - fetch the instructions in the first pipeline stage and decode them in the second pipeline stage
 - c.f. x86: 1- to 17-byte instructions
 - Few and regular instruction formats
 - Can decode and read regs in one step (2nd stage)
 - Load/store addressing
 - Can calculate address in 3rd stage, access memory in 4th stage
 - Alignment of memory operands
 - Memory access takes only one cycle

Hazards

Situations that prevent starting the next instruction in the next cycle

- Structure hazards
 - A required resource is busy
- Data hazard
 - Need to wait for previous instruction to complete its data read/write
- Control hazard
 - Deciding on control action depends on previous instruction

Structure Hazards

- Conflict for use of a resource
- In MIPS pipeline with a single memory
 - Load/store requires data access
 - Instruction fetch would have to stall for that cycle
 - Would cause a pipeline "bubble"
- Hence, pipelined datapaths require separate instruction/data memories
 - Or separate instruction/data caches

Data Hazards

- An instruction depends on completion of data access by a previous instruction
 - add \$s0, \$t0, \$t1
 sub \$t2, \$s0, \$t3

Forwarding (aka Bypassing)

- Use result when it is computed
 - Don't wait for it to be stored in a register
 - Requires extra connections in the datapath

Load-Use Data Hazard

- Can't always avoid stalls by forwarding
 - If value not computed when needed
 - Can't forward backward in time!

Code Scheduling to Avoid Stalls

- Reorder code to avoid use of load result in the next instruction
- C code for A = B + E; C = B + F;

Single-Cycle Datapath

Control Hazards

- Branch determines flow of control
 - Fetching next instruction depends on branch outcome
 - Pipeline can't always fetch correct instruction
 - Still working on ID stage of branch
- In MIPS pipeline
 - Need to compare registers and compute target early in the pipeline
 - Add hardware to do it in ID stage

Stall on Branch

 Wait until branch outcome determined before fetching next instruction

Branch Prediction

- Longer pipelines can't readily determine branch outcome early
 - Stall penalty becomes unacceptable
- Predict outcome of branch
 - Only stall if prediction is wrong
- In MIPS pipeline
 - Can predict branches not taken
 - Fetch instruction after branch, with no delay

MIPS with Predict Not Taken

Prediction correct

Prediction incorrect

Program

More-Realistic Branch Prediction

- Static branch prediction
 - Based on typical branch behavior
 - Example: loop and if-statement branches
 - Predict backward branches taken
 - Predict forward branches not taken
- Dynamic branch prediction
 - Hardware measures actual branch behavior
 - e.g., record recent history of each branch
 - Assume future behavior will continue the trend
 - When wrong, stall while re-fetching, and update history

Pipeline Summary

The BIG Picture

- Pipelining improves performance by increasing instruction throughput
 - Executes multiple instructions in parallel
 - Each instruction has the same latency
- Subject to hazards
 - Structure, data, control
- Instruction set design affects complexity of pipeline implementation