	TP1 Multi - Marin Mrabet	Pt		АВС) Note	
1	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α		1	
_	alimentations, générateurs nécessaires. Faire apparaître les polarités.	_	,,		-	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В		2,25	L'image est de mauvaise qualité
III.	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D		0,075	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α		1,5	
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1	Vous pouvez mettre Ti à zéro
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	D		0,075	Même courbe que précédemment !!!
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075	
			Not	e sur : 20	14,0	

TP1 Multi

I. Préparation du travail

1/ Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.

2/ Quel est le nom de la grandeur réglée ?

La grandeur réglée est la température d'évacuation de l'eau.

3/ Quel est le principe utilisé pour mesurer la grandeur réglée ?

Le principe utilisé pour mesurer la grandeur réglée est PT100. C'est une résistance qui varie en fonction de la température . Elle vaut 100ohms pour 0°C.

4/ Quelle est la grandeur réglante ?

La grandeur réglante est le débit d'eau chaude.

5/ Donner une grandeur perturbatrice.

La grandeur perturbatrice est la température de l'arrivée d'eau de ville.

6/ Établir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.

II. Étude du procédé

1/ Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.

Entrée

sortie

PID

sortie 2

TagName	02P02_08		LIN Name	02P02_08
Туре	AO_UIO		DBase	<local></local>
Task	3 (110ms)		Rate	0
MODE	AUTO		Alarms	
Fallback	AUTO		Node	>00
			Sitello	2
OP	0.0	%	Channel	2
HR	100.0	%	OutType	mA
LR	0.0	%	HR_out	20.00
			LR_out	4.00
Out	0.0	%	AO	0.00
Track	0.0	%		
Trim	0.000	mA	Options	>0000
			Status	>0000

2/ Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).

OP	PV
0	23,17
50	48,73
90	49,12

3/ En déduire le gain statique du procédé autour du point de fonctionnement.

k=delta X/delta Y = (49,12-48,73)/(90-50) = 0,76

4/ En déduire le sens d'action à régler sur le régulateur.

Lorsque que Y augmente X aussi augmente, donc le procédé est direct.

Donc le sens d'action du régulateur est inverse.

5/ Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

Delta
$$X = 53,5-48,5=5\%$$

Delta
$$Y = 58-48=10\%$$

$$T0 = 9:46:33s = 0s$$

$$T1 = 9:47:12 = 39s$$

$$T2 = 9:47:30 = 58s$$

$$T=2.8(t1-t0)-1.8(t2-t0)$$

$$T=2.8(39-0)-1.8(58-0)$$

T=4.8s

Le gain statique = K = Delta X / Delta Y = 5/10 = 0.5

III. Etude du régulateur (3pt)

1/Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.

$$Kr = T/t = 4.8 / 104.5 = 0.046$$

Donc c'est un PID proportionnelle.

2/En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.

$$A = 0.8/k*Kr = 0.8 * 0.5/0.046 = 34.8$$

$$Xp = 100/A = 100/34,8 = 2,9$$

ti = Infini

td = 0s

IV. Performances et optimisation (5pt)

1/ Programmer votre régulateur pour assurer le fonctionnement de la régulation.

TimeBase	Secs	
XP	2.9	%
TI	99.99	
TD	0.00	

2/ Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et l'erreur statique.

Dépassement : aucun

Erreur statique : W-W = 58-53, 5 = 4,5

Temps de réponse

$$Trép = 9:47:34s = 101s$$

3/ Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.

On a augmenter Xp et Td puis on diminuer Ti:

TimeBase	Secs	
XΡ	14.5	%
TI	40.00	
TD	7.00	

4/ Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.
On observe qu'il n'y a plus d'erreur statique contrairement à la première courbe.