

4-BIT D LATCH

The TTL/MSI SN54/74LS75 and SN54/74LS77 are latches used as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the Enable is HIGH and the Q output will follow the data input as long as the Enable remains HIGH. When the Enable goes LOW, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the Enable is permitted to go HIGH.

The SN54/74LS75 features complementary Q and Q output from a 4-bit latch and is available in the 16-pin packages. For higher component density applications the SN54/74LS77 4-bit latch is available in the 14-pin package with Q outputs omitted.

CONNECTION DIAGRAMS DIP (TOP VIEW)

PIN NAMES

		HIGH	LOW
D ₁ -D ₄	Data Inputs	0.5 U.L.	0.25 U.L.
E ₀₋₁	Enable Input Latches 0, 1	2.0 U.L.	1.0 U.L.
E ₂₋₃	Enable Input Latches 2, 3	2.0 U.L.	1.0 U.L.
$Q_1 - Q_4$	Latch Outputs (Note b)	10 U.L.	5 (2.5) U.L.
Q ₁ –Q ₄	Complimentary Latch Outputs (Note b)	10 U.L.	5 (2.5) U.L.
NOTES:			•

- a) 1 Unit Load (U.L.) = 40 μA HIGH.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

TRUTH TABLE (Each latch)

t _n	tn+1
D	Q
Н	Н
L	L

 $\begin{aligned} &\text{NOTES:}\\ &t_n = \text{bit time before enable}\\ &\text{negative-going transition}\\ &t_{n+1} = \text{bit time after enable}\\ &\text{negative-going transition} \end{aligned}$

SN54/74LS75 SN54/74LS77

4-BIT D LATCH LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

LOADING (Note a)

SN54/74LS75

LOGIC SYMBOLS

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits				
Symbol	Parameter		Min	Тур	Max	Unit	Test C	onditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Inputs	ut HIGH Voltage for
\/	Innut I OW Valtage	54			0.7	V	Guaranteed Inp	ut LOW Voltage for
VIL	Input LOW Voltage	74			0.8]	All Inputs	
VIK	Input Clamp Diode Voltage	-		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
V	0		2.5	3.5		V	V _{CC} = MIN, I _O	H = MAX, VIN = VIH
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table	Table
V	Output LOW/ Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
1	land the life is the same of	D Input E Input			20 80	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
ΊΗ	Input HIGH Current	D Input E Input			0.1 0.4	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
կլ	Input LOW Current	D Input E Input			-0.4 -1.6	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
Icc	Power Supply Current				12	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH ^t PHL	Propagation Delay, Data to Q		15 9.0	27 17	ns	
^t PLH ^t PHL	Propagation Delay, Data to Q		12 7.0	20 15	ns	V _{CC} = 5.0 V C _L = 15 pF
^t PLH ^t PHL	Propagation Delay, Enable to Q		15 14	27 25	ns	C _L = 15 pF
^t PLH ^t PHL	Propagation Delay, Enable to Q		16 7.0	30 15	ns	

SN54/74LS77

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test C	onditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage All Inputs	
V	Innuit I OW Voltage	54			0.7	V	Guaranteed Inpu	ut LOW Voltage for
VIL	Input LOW Voltage	74			0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN}	= –18 mA
V	Output IIIOI I Value ne		2.5	3.5		V		H = MAX, VIN = VIH
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table	Table
Voi	Output LOW/ Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
1	lanut IIICI I Current	D Input E Input			20 80	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
ΉΗ	Input HIGH Current	D Input E Input			0.1 0.4	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
IIL	Input LOW Current	D Input E Input			-0.4 -1.6	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
Icc	Power Supply Current				13	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C, V_{CC} = 5.0 \text{ V})$

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH ^t PHL	Propagation Delay, Data to Q		11 9.0	19 17	ns	V _{CC} = 5.0 V
tPLH tPHL	Propagation Delay, Enable to Q		10 10	18 18	ns	C _L = 15 pF

SN54/74LS75 • SN54/74LS77

LOGIC DIAGRAM

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loн	Output Current — High	54, 74			-0.4	mA
l _{OL}	Output Current — Low	54 74			4.0 8.0	mA

AC SETUP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tw	Enable Pulse Width High	20			ns	
t _S	Setup Time	20			ns	V _{CC} = 5.0 V
th	Hold Time	0			ns	

AC WAVEFORMS

DEFINITION OF TERMS

SETUP TIME (t_S) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH-to-LOW in order to be recognized and transferred to the outputs.

 ${\sf HOLD\ TIME\ }(t_h)$ — is defined as the minimum time following the clock transition from ${\sf HIGH\text{-}to\text{-}LOW}$ that the logic level must be maintained at the input in order to ensure continued recognition. A negative ${\sf HOLD\ TIME\ }$ indicates that the correct logic level may be released prior to the clock transition from ${\sf HIGH\text{-}to\text{-}LOW}$ and still be recognized.