Assignment 6

1. Consider the following "addition checker" language $\{a^ib^jc^{i+j}:i,j\geq 0\}$ where the number of c's is equal to the sum of the number of a's and b's. Provide a grammar for that language and formally prove that the grammar accepts the language. You may use without proof the fact that the grammar $S \to 0S1|\epsilon$ generates the language $\{0^i1^i:i\geq 0\}$.

We have the grammar: $G = (\{S\}, \{a, b, c\}, P, S)$ with the productions: $S \to aSc|X$

 $X \to bXc|\epsilon$

We claim that this grammar is for the above language, which means L(G) = L.

Firstly, we prove $L(G) \subseteq L$. That means, if $w \in \Sigma^*$ such that $S \Rightarrow^* w$ then $w \in L$. Prove by induction on number of steps in a derivation.

Base case: Number of steps is 2.

If we derive a word in 2 steps, the word that is derived is $S \Rightarrow X \Rightarrow \epsilon$ which is in L.

Inductive Hypothesis: Assume there exists some $n \ge 2$ such that for all n steps derivations, the word that is derived is $a^i b^j c^{i+j}$ and i+j=n-2. Inductive Step: Prove this is true for n+1 steps derivation. Suppose that $w \in \Sigma^*$ such that $S \Rightarrow^{n+1} w$.

We can start at S and rewrite w = axc such that $S \Rightarrow^n x$. By our induction hypothesis, the word $x = a^i b^j c^{i+j}$. This means that $w = axc = aa^i b^j c^{i+j} c = a^{i+1} b^j c^{i+j+1}$ after n+1 steps, which is in L as needed.

The other case start at $S \Rightarrow X \Rightarrow^n b^{n-1}c^{n-1}$ which is in L as needed. Therefore, $L(G) \subseteq L$.

Now we prove $L \subseteq L(G)$.

Suppose that $z \in L$ and $z = a^i b^j c^{i+j}$ for some i, j > 0. We want to show that $S \Rightarrow^* z$.

Prove by induction on the value of i in the word z.

Base case: $z = a^0 b^j c^j$. Then $S \Rightarrow b^j c^j$ is a derivation of z.

Inductive Hypothesis: Assume that there is some value n such that $a^n b^j c^{n+j}$ has a derivation in L.

Inductive Step: Show that there is a derivation for $a^{n+1}b^{j}c^{n+1+j}$.

We start with $S \Rightarrow aSc$. By our Inductive Hypothesis, we have that $S \Rightarrow^{\star} a^n b^j c^{n+j}$. We use that as the last derivation of S in the sentinel form aSc. Thus, $S \Rightarrow aSc \Rightarrow^n aa^n b^j c^{n+j} c = a^{n+1} b^j c^{n+1+j}$, as needed.

Therefore, $L \subseteq L(G)$.

Since $L(G) \subseteq L$ and $L \subseteq L(G)$, then L(G) = L, means the grammar accepts the language.

- 2. (Note: this question has two parts that are each worth one third of the assignment's marks.) In class we showed that the language $\mathtt{prefix}(L)$ is closed for context-free languages, meaning that if L is context-free then $\mathtt{prefix}(L)$ is also context free. This does not imply, however, that if L is not regular then $\mathtt{prefix}(L)$ is not regular.
 - (a) Give an example non-regular context-free language L_1 and prove that $prefix(L_1)$ is regular.

Let $L_1 = \{x \in \{a, b\}^* : x = x^r\}$, a language for palindromes. We proved that palindromes is non regular context-free language.

The grammar for this language has productions: $P \to \epsilon |a|b|aPa|bPb$. The prefix $(L_1) = (a+b)^*$. We prove this as followed:

We prove that $prefix(L_1) \subseteq (a+b)^*$. This is trivial since a palindrome over the alphabet $\{a,b\}$ will have its prefix generated from some number of a and b.

Then we prove that $(a + b)^* \subseteq \operatorname{prefix}(L_1)$. For every word $w \in (a + b)^*$, there is a word p in L_1 that $p = ww^r$. Therefore, w will be a prefix of some words in L_1 .

Since the prefix of L_1 is regular expression, therefore the prefix is also regular.

(b) Give an example non-regular context-free language L_2 and prove that $prefix(L_2)$ is not regular.

Let $L_2 = \{0^i 1^i : i \geq 0\}$. We have proven that this language is not regular in class.

We have the grammar that generates the language L_2 is $G = (V, \Sigma, P, S)$ with productions $S \to 0S1|\epsilon$.

 $prefix(L_2) = 0^i 1^j$ such that $j \leq i$.

We will use pumping lemma to show L_2 is not regular. We prove this by contradiction.

Assume L_2 is regular. Therefore there exists some pumping length n.

We choose a word $z = 0^n 1^n$ which is in $prefix L_2$ and it is also longer than n. We consider z = uvw where $|uv| \le n$ and $|v| \ge 1$.

We have $uv = 0^{i+j}$ and let $u = 0^i$ and $v = 0^j$. Then $w = 0^{n-i-j}1^n$.

Now we consider $w^0 = uv^0w = 0^i0^{n-i-j}1^n$ where $j \ge 1$. But we have i+n-i-j=n-j < n thus the word is not an element of $\mathtt{prefix}(L_2)$.

Therefore, the language $prefix(L_2)$ is not regular.

Note that you may specify L_1 or L_2 using math notation and give a grammar without doing a proof that the grammar generates the language. If you use a language that we have not shown was non-regular for L_1 or L_2 , however, you must prove that the language you use is non-regular (i.e., with pumping lemma, etc.).