Particle spectrograph

Wave operator and propagator

	Massive particle													
- ?	Pole residue:	$-\frac{1}{r_1} > 0$												
	Polarisations:	5												
	Square mass:	$-\frac{t_1}{2r_1} > 0$												
	Spin:	2												
	Parity:	Odd												

Unitarity conditions

	αβ	$^{\alpha}$ $^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$		$\chi \chi \beta ==$	3χα +		r ^x - x - x - x - x - x - x - x - x - x -	$\partial_{\chi}\partial^{\alpha}t^{\alpha r}$ - $\partial_{\chi}\partial^{\beta}t^{\alpha}$ +	$^{\lambda}_{\delta}$							$_{\delta}^{\delta}$ == 0		$\chi^{-}6t_1 \omega_{\alpha \theta}^{\theta}$	$^{\alpha}_{\alpha}$ -6 r_{1} $\partial_{\beta}\omega_{\rho}^{\theta}$	$_{\theta}f_{\alpha}^{\ \ \theta}+6t_{1}\partial^{\prime}$	$\alpha \partial_{\theta} \omega_{\beta'}$	$\alpha^{\vee\theta}\omega_{I}\beta^{\vee}$ " $-2t_{1}\partial_{\alpha}f_{\theta_{I}}$	$'+t_1\partial_{\theta}f_{\prime\alpha}\partial^{\epsilon}$	$\omega_{\alpha\theta_l}$ ($\omega^{\alpha_l\theta}$ +	$^{\prime}_{\theta}\sigma^{\sigma}\omega^{\prime}+$ $^{\prime}_{\theta}\omega^{\alpha\beta\prime} ^{\prime}_{\theta}\omega^{\alpha\beta\prime}$	$(\alpha^{\partial^{\alpha}\omega^{\alpha r'}} - (\alpha^{\partial^{\alpha}\omega^{\alpha r'}} - (\alpha^{\partial^{\alpha}\omega^{\alpha r'}} + 2r_1))$ $2r_1\partial_{\theta}\omega_{\alpha r\beta}\partial_{\theta}\omega_{\alpha r\beta}\partial_{\phi}\omega_{\alpha r\beta}\partial_{\theta}\omega_{\alpha r\beta}\partial_{\theta}$	$a_{\lambda}^{*}a_{\lambda}^{*}a_{\lambda}^{*}a_{\lambda}^{*}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)}$	σ ₀ ^{#1} †		0		0		$\frac{1}{x^2 r_2}$	$\sigma_{2}^{\sharp 1}$ † lphaeta	0	0	$\frac{2}{2k^2r_1+t}$	1			
U		$a^{\alpha\beta} + 2 \partial_{\delta} \partial^{\alpha}$	$+ \frac{1}{2} $	$-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{c}$ $\times + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{c}$	$-2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{4}$	$\partial_\chi \sigma^{\alpha\chi\beta}$	$2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^$	$3^{\alpha} x^{\alpha} - 3 \partial_{\delta} \partial_{\delta}$	$({}^{1}\alpha\beta+3\partial_{\delta}\theta)$	$\partial^{\beta}\partial^{\alpha}\sigma^{\delta \epsilon}{}_{\delta}$ -	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\delta\epsilon}$	$\partial_{\chi}\partial^{\beta}\sigma^{\mu\nu\epsilon} + X\delta_{\perp}$	$\partial_{\delta} \partial_{\chi} U + \partial_{\delta} \partial_{\chi} \partial_{\alpha} \partial_{\beta} +$	$\partial_{\delta}\partial_{\chi}\sigma^{\beta\delta\alpha}$	$\partial_{\delta}\partial_{\delta} \tau^{\chi}$ -	$\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\epsilon}$		$\omega^{\alpha\beta\chi}$	$^{1}\partial_{i}f^{\theta}_{\theta}\partial^{i}f^{\alpha}$	$-3t_1\partial_i f^{\alpha i}\partial_i$	$12r_1\partial'\omega^{\alpha_r}$	$\frac{1}{2} \frac{\partial^2 f}{\partial a^2} = \frac{\partial^2 f}{\partial a^2}$	$\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime}$	$\partial^{\theta}f^{\alpha\prime}$) + t_1 ($+4 r_2 o_\beta \omega_{\alpha_l}$ $-2 r_2 \partial_\beta \omega_{\alpha \theta_l}$	$+2 r_2 \partial_\beta \omega_{,\theta}$ $-r_2 \partial_i \omega_{\alpha\beta\theta} \partial_i \partial_i \partial_i \partial_i \partial_i \partial_i \partial_i \partial_i \partial_i \partial_i$	$\int_{\Gamma} \Gamma(x, x, y, z)$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\alpha f_{1^-}^{\#1} \alpha f$	0	0		0	0 0	0					<u> </u>	$\frac{1}{2} - \frac{i k t_1}{\sqrt{2}}$ $\frac{k t_1}{\sqrt{2}} k^2 t_1$	0	\exists
leit leine	$^{3}=0$ $^{3}=8$	$\frac{\alpha}{\beta^{X}} == \frac{\alpha}{\beta_{X}} \frac{\alpha}{\beta^{B}}$	$t^{\beta X} == \partial_X \partial^X \partial_{\beta}$ $(+ \partial_X \partial^\beta T^{X\alpha} +$	$^{1}{}_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\chi\delta}+$	$a_{\lambda} = a_{\lambda} a_{\lambda} a_{\lambda} a_{\lambda} a_{\lambda}$	$+\partial_{\chi}\sigma^{\beta\chi\alpha}==$	$\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta}$ +	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\delta}$	$3 \partial_{\delta} \partial_{\delta} \partial_{\chi} \partial^{\lambda}$	$4 i k^{X} \partial_{\epsilon} \partial_{\chi}$	$6 i k^{X} \partial_{\epsilon} \partial_{\delta}$	$6 i k^{X} \partial_{\epsilon} \partial_{\delta}$	6 i k ^X 0 _e 0	6 i k ^X 0 _e 0 ^e	2 η ^{αβ} ∂ _ε ∂ ^ε	$4 i n^{\alpha p} k^{\chi}$ erators:		$f^{\alpha\beta} \tau_{\alpha\beta} + \bar{\epsilon}$	$\theta = \frac{\partial}{\partial r} f^{\alpha} - 3t$	$ u_{\beta}^{\theta} \partial' \omega^{\alpha\beta}_{\alpha} $	$\omega^{\alpha\beta\prime}\partial_{\theta}\omega_{\beta'}$ $\alpha\beta'$	$\alpha = \frac{\sigma_{\theta}\omega_{I}}{\theta_{\theta}}$	$\frac{1}{2}\partial^{\theta}f^{\alpha\prime}+2t_{1}$	$(\omega^{\alpha\prime\theta} + 2)$	$\omega_{\alpha_I \theta} \sigma^{\alpha} \omega^{\beta}$. $\omega_{\alpha \theta_I} \partial^{\theta} \omega^{\alpha \beta_I}$.	$\omega_{1etalpha} \partial^{\alpha}\omega^{\omega\omega}$. $\omega_{1etalpha} \partial^{eta}\omega^{lphaeta}$. $\omega_{lphaeta} + r_2 \partial_{eta}\omega_{lpha}$	$ \lambda_{\alpha l \beta} \circ \omega $	6 1 1 kg k	$(3+2k^2)^2 t_1$ $\frac{12ik}{(2+2)^2 t_2}$	$\frac{12 k^2}{(3+2 k^2)^2 t_1}$	0	0	0	0	α			<i>t</i> 1	7 1 - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0	$-ikt_1$ 0)#1]		$k^2 r_1 +$	<u>t1</u> 2
יה לכני ביים ביים ביים ביים ביים ביים ביים ביי	$\partial_{\beta}\partial_{\alpha} \tau^{\alpha\beta}$	$0 \frac{\partial_{\beta} \partial_{\alpha}}{\partial_{\lambda} \partial_{\beta} \partial^{\alpha}}$	$\begin{array}{c c} & \partial_{\chi}\partial_{\beta}\partial^{\alpha}\iota \\ \vdots & \vdots \\ & \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} \end{array}$	2 9	$\frac{o_{\chi}o_{\chi}}{2}$	$0 \partial_{\chi} \sigma^{\alpha \beta \chi}$	$= 0 \left -\vec{i} \left(4 \partial_{\delta} \vec{c} \right) \right $									auge gene	\$ \$ -	$\alpha \omega_{\theta}^{\theta} + 3$	$6t_1 \omega'$	$6r_1\partial_{\mu}$	$6r_1\partial_{\alpha}c$ $6r_1\partial_{\alpha}c$	$2t_1\omega_n$	$t_1 \partial_{\scriptscriptstyle } f_{lpha \ell}$	$t_1 \omega_{lpha eta}$	$4r_1 o_{eta} c$ $2r_1 o_{eta} c$	$8r_1\partial_{eta} c$ $2r_1\partial_{eta} a$ $\partial^{ heta} \omega^{lpha}$	$\sigma_{1+\alpha\beta}^{*2}$	6 1/2	$\frac{(3+2k^2)^2 t_1}{12}$ $\frac{12}{3+2k^2)^2 t_2}$	$\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0	$f_{1}^{\#1}$	$-\frac{ikt_1}{3\sqrt{2}}$		×1	0	0 0	0					_	t_1 0	,	0
ource constraints	$^{*}_{1}^{*}=0$ $^{*}_{1}^{*}=0$ $^{*}_{1}^{*}=0$	$\alpha + 2ik \sigma_{1}^{\#2\alpha} = 0$	$\tau_{1}^{\#1}\alpha == 0$ $\tau_{1}^{\#1}\alpha\beta - 2ik \ \sigma_{1}^{\#1}\alpha\beta ==$	1		8 ::	$_{2}^{\#1}^{\alpha\beta}$ -2 ik $\sigma_{2}^{\#1}^{\#1}^{\alpha\beta}$ ==									Total constraints/gau) (((())) () + () () () ()	Quadiatic (iffee) ac $S = \iiint \left(\frac{1}{2} (3t_1 \omega^{\alpha}) \right)$,								$\sigma_{1+\alpha\beta}^{\#1}$	$\frac{1}{1} + \alpha \beta$	$\frac{(3+2k^2)^2 t_1}{(3+2k^2)^2 t_1}$	$\frac{1}{4} + \alpha \beta \frac{6i\sqrt{2}k}{(3+2k^2)^2 t_1} = \frac{1}{4}$	1+α	+α	$t_{1}^{\#1} + \alpha \qquad 0$		$\omega_{1}^{\#1}$ $\omega_{1}^{\#2}$ $\omega_{1}^{\#2}$	$+^{\alpha\beta}$ $\frac{t_1}{6}$	$+^{\alpha\beta} - \frac{\zeta_1}{3\sqrt{2}}$	$\frac{a\beta}{3\sqrt{2}} = \frac{1}{3}$	0 +	$\vec{t_1} + \alpha = 0 = 0$	ο 0 +						$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 0 +
Massi	ve and		•		ctra		7									11-	C	۵۱ م										σ_{+}^{*1}	-1 - 0#2	1 1 1 1 1 1	Ď	Ъ.	12	F		$\omega_1^{\#1}$	$\omega_{1}^{#2}$	f#1. 1+ 	ω_1^*	ω_1^{+2} . $f_1^{\#1}$.	f^{*}						$\omega_{0}^{\#1}$	/ 0+ <i>f</i> #2 - #1	$\omega_0^{"-}$

 $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$

 $-\frac{2k^2}{(1+2k^2)^2t_1}$

 $\sigma_{2^{+}}^{\#1} \dagger^{\alpha\beta} \left[\frac{2}{(1+2\,k^{2})^{2}\,t_{1}} \right] - \frac{2\,i\,\sqrt{2}\,k}{(1+2\,k^{2})^{2}\,t_{1}}$

 $-\frac{1}{(1+2\,k^2)^2\,t_1}$

 $-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

0 0 0 0 0

0 0