This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) A compound of formula I:

$$\mathbb{R}^{5}$$
 \mathbb{N}
 $\mathbb{N$

wherein

n is 1;

m is 2;

 $\mathbf{R}^{\mathbf{1}}$ is ethyl or vinyl;

 \mathbf{R}^2 is selected from -CH₂- \mathbf{R}^{20} , -NH- \mathbf{R}^{20} , -O- \mathbf{R}^{20} , and -O- \mathbf{X} - \mathbf{R}^{20} , wherein

X is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and

 $\mathbf{R^{20}}$ is $(C_6 \text{ or } C_{10})$ aryl or \mathbf{Het} , wherein said $(C_6 \text{ or } C_{10})$ aryl or \mathbf{Het} is optionally substituted with $\mathbf{R^{200}}$; wherein

 ${f R^{200}}$ is one to four substituents each independently selected from H, halogen, cyano, $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, aryl- $(C_{1\text{-}6})$ alkyl-, aryl, oxo, thioxo, $-OR^{201}$, $-SR^{201}$, $-SOR^{201}$, $-SO_2R^{201}$, $-N(R^{202})R^{201}$, and $-CON(R^{202})R^{201}$; wherein each of said alkyl, cycloalkyl, and aryl is optionally further substituted with ${f R^{2000}}$;

 ${f R}^{201}$ in each case is independently selected from H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, and aryl, wherein each of said alkyl and aryl is optionally further substituted with ${f R}^{2000}$:

 \mathbf{R}^{202} in each case is independently selected from H and (C_{1-6}) alkyl;

 \mathbf{R}^{2000} in each case is one to three substituents each independently selected from

halogen, aryl, **Het**, $-OR^{2001}$, cyano, $-N(R^{2002})(R^{2001})$, and R^{2003} , wherein said aryl and **Het** are optionally substituted with one, two or three substituents each independently selected from (C_{1-6}) alkyl and $-O-(C_{1-6})$ alkyl;

 \mathbf{R}^{2001} in each case is independently selected from aryl, aryl- (C_{1-6}) alkyl-, -C(O)- \mathbf{R}^{2003} , -C(O)O- \mathbf{R}^{2003} ;

 \mathbf{R}^{2002} in each case is independently selected from H and (C_{1-6}) alkyl;

 ${f R}^{2003}$ in each case is independently selected from (C₁₋₈)alkyl, and (C₃₋₇)cycloalkyl;

- ${f R}^3$ is (C_{1-8}) alkyl or (C_{3-7}) cycloalkyl, each optionally substituted with one substituent selected from, $-{f OR}^{30}$, $-{f C}(={f O}){f OR}^{30}$, wherein ${f R}^{30}$ is H, (C_{1-6}) alkyl, aryl, or aryl (C_{1-6}) alkyl-;
- \mathbf{R}^{5} is selected from \mathbf{B} -C(=O)-, \mathbf{B} -O-C(=O)-, and \mathbf{B} -N(\mathbf{R}^{51})-C(=O)-; wherein \mathbf{B} is selected from:
 - $\label{eq:condition} \begin{tabular}{ll} (i) & (C_{1\text{-}10}) alkyl \ optionally \ substituted \ with \ one \ or \ more \ substituents \ each \ selected \ independently \ from -COO(C_{1\text{-}6}) alkyl, -OH, \ halogen, \ -OC(=O)(C_{1\text{-}6}) alkyl, -O(C_{1\text{-}6}) alkyl, -NH_2, -NH(C_{1\text{-}6}) alkyl, -N((C_{1\text{-}6}) alkyl)_2, \ -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \end{tabular}$
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, halogen, -COOH, -COO (C_{1-6}) alkyl, -OH, -O (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-6}) alkyl, -N $((C_{1-6})$ alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N $((C_{1-6})$ alkyl) $_2$;

 \mathbf{R}^{51} is selected from H and (C₁₋₆)alkyl;

provided that B is not (C_{1-10}) alkyl unsubstituted or (C_{1-10}) alkyl substituted with halogen when \mathbf{R}^5 is B-O-C(=O)-;

 \mathbf{Y} is \mathbf{H} :

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, -O- $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl, **Het**, and aryl- $(C_{1\text{-}6})$ alkyl-; wherein said $(C_{1\text{-}6})$ alkyl, -O- $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl,

 (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl) $_2$, -COOH, and -COO((C_{1-6}) alkyl; or

 ${f R}^4$ and ${f R}^6$ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH₂, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl)₂, -CO-NH₂, -CO-NH (C_{1-4}) alkyl, -CO-N((C_{1-4}) alkyl)₂, -COOH, and -COO((C_{1-6}) alkyl;

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

- **2.** (Currently Amended) The compound according to claim 1 wherein
 - **n** is 1;
 - **m** is 2;
 - $\mathbf{R}^{\mathbf{1}}$ is ethyl or vinyl;
 - ${f R^2}$ is selected from -CH₂- ${f R^{20}}$, -NH- ${f R^{20}}$, -O- ${f R^{20}}$, and -O-X- ${f R^{20}}$, wherein X is (C₂₋₃)alkynyl, or (C₁₋₃)alkyl; and

- \mathbf{R}^{20} is $(\mathbf{C}_6 \text{ or } \mathbf{C}_{10})$ aryl or **Het**, wherein said $(\mathbf{C}_6 \text{ or } \mathbf{C}_{10})$ aryl or **Het** is optionally substituted with \mathbf{R}^{200} ; wherein
- ${f R^{200}}$ is one to four substituents each independently selected from H, halogen, cyano, $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, aryl- $(C_{1\text{-}6})$ alkyl-, aryl, oxo, thioxo, $-O{f R^{201}}$, $-S{f R^{201}}$, $-SO{f R^{201}}$, $-SO_2{f R^{201}}$, $-N({f R^{202}}){f R^{201}}$, and $-CON({f R^{202}}){f R^{201}}$; wherein each of said alkyl, cycloalkyl, and aryl is optionally further substituted with ${f R^{2000}}$;
- ${f R}^{201}$ in each case is independently selected from H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, and aryl, wherein each of said alkyl and aryl is optionally further substituted with ${f R}^{2000}$:
- \mathbf{R}^{202} in each case is independently selected from H and (C_{1-6}) alkyl;
- ${f R^{2000}}$ in each case is one to three substituents each independently selected from halogen, aryl, ${f Het}$, $-{f OR^{2001}}$, cyano, $-{f N(R^{2002})(R^{2001})}$, and ${f R^{2003}}$, wherein said aryl and ${f Het}$ are optionally substituted with one, two or three substituents each independently selected from $(C_{1\text{-}6})$ alkyl and $-{f O-(C_{1\text{-}6})}$ alkyl;
- ${f R^{2001}}$ in each case is independently selected from aryl, aryl-(C₁₋₆)alkyl-, -C(O)- ${f R^{2003}}$:
- \mathbf{R}^{2002} in each case is independently selected from H and (C_{1-6}) alkyl;
- \mathbf{R}^{2003} in each case is independently selected from (C_{1-8}) alkyl and (C_{3-7}) cycloalkyl;
- \mathbf{R}^3 is (C_{1-8}) alkyl, or (C_{3-7}) cycloalkyl;
- \mathbf{R}^5 is selected from \mathbf{B} -C(=O)-, \mathbf{B} -O-C(=O)-, $\underline{\mathrm{and}}$ \mathbf{B} -N(\mathbf{R}^{51})-C(=O)- wherein \mathbf{B} is selected from:
 - (i) (C_{1-10}) alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C_{1-6})alkyl, -OH, halogen, -OC(=O)(C_{1-6})alkyl, -O(C_{1-6})alkyl, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and -C(=O)N((C_{1-6})alkyl)₂;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently

$$\begin{split} &\text{from } (C_{1\text{-}6}) \text{alkyl, halogen, -COOH, -COO}(C_{1\text{-}6}) \text{alkyl, -OH, -O}(C_{1\text{-}6}) \text{alkyl,} \\ &\text{-NH}_2, \text{-NH}(C_{1\text{-}6}) \text{alkyl, -N}((C_{1\text{-}6}) \text{alkyl})_2, \text{-C}(=O) \text{NH}_2, \text{-C}(=O) \text{NH}(C_{1\text{-}6}) \text{alkyl} \\ &\text{and -C}(=O) \text{N}((C_{1\text{-}6}) \text{alkyl})_2; \end{split}$$

R⁵¹ is H;

provided that B is not (C_{1-10}) alkyl unsubstituted <u>or (C_{1-10}) alkyl substituted with halogen</u> when \mathbb{R}^5 is B-O-C(=O)-;

 \mathbf{Y} is \mathbf{H} ;

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl, ${f Het}$, and aryl- $(C_{1\text{-}6})$ alkyl-; wherein said $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- are each optionally substituted with one or more substituents each independently selected from halogen, $(C_{1\text{-}6})$ alkyl, hydroxy, cyano, $O\text{-}(C_{1\text{-}6})$ alkyl, $-NH_2$, $-NH(C_{1\text{-}4})$ alkyl, $-N((C_{1\text{-}4})$ alkyl)₂ and -COOH, or

 ${f R}^4$ and ${f R}^6$ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH₂, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl)₂, -CO-NH₂, -CO-NH (C_{1-4}) alkyl, -CO-N((C_{1-4}) alkyl)₂, -COOH, and -COO((C_{1-6}) alkyl;

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated,

unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

- 3. (Currently amended) The compound according to claim 1 wherein \mathbb{R}^5 is selected from \mathbf{B} -O-C(=O)-, and \mathbf{B} -N(\mathbb{R}^{51})-C(=O)-; wherein \mathbf{B} and \mathbb{R}^{51} are defined as in claim 1, provided that B is not (C₁₋₁₀)alkyl unsubstituted or (C₁₋₁₀)alkyl substituted with halogen when \mathbb{R}^5 is \mathbb{B} -O-C(=O)-.
- 4. (Currently Amended) The compound according to claim 3 wherein R⁵¹ is H and B is selected from:
 - (i) (C_{1-7}) alkyl optionally substituted with one or two or three substituents each independently selected from fluoro, chloro, bromo, hydroxy, methoxy and ethoxy; or optionally substituted with -COOCH₃;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl-methyl-, each optionally substituted with one or two substituents each independently selected from methyl, ethyl, hydroxy, methoxy and ethoxy;

provided that B is not (C_{1-7}) alkyl unsubstituted or (C_{1-7}) alkyl substituted with halogen when \mathbb{R}^5 is B-O-C(=O)-.

- **5.** (**Previously presented**) The compound according to claim 1 wherein **Y** is H.
- 6. (Previously presented) The compound according to claim 1 wherein \mathbb{R}^3 is tert-butyl.
- 7. (Previously presented) The compound according to claim 1 wherein \mathbb{R}^2 is selected from $-O-\mathbb{R}^{20}$ and $-O-X-\mathbb{R}^{20}$, wherein \mathbb{R}^{20} and X are defined as in claim 1.

- 8. (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O-X- \mathbb{R}^{20} , wherein X is (C_3) alkynyl and \mathbb{R}^{20} is $(C_6$ or $C_{10})$ aryl.
- 9. (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O- \mathbb{R}^{20} , wherein \mathbb{R}^{20} is

wherein

 $\boldsymbol{R^{200d}}$ is -O $\boldsymbol{R^{201}}$, wherein $\boldsymbol{R^{201}}$ is (C $_{l\text{-}6}$)alkyl;

 R^{200e} is H or -O R^{201} , wherein R^{201} is (C₁₋₆)alkyl; and

 $\mathbf{R^{200f}}$ is $(C_{1\text{-}6})$ alkyl, halogen, $-S\mathbf{R^{201}}$, $-SO_2\mathbf{R^{201}}$, or $-O\mathbf{R^{201}}$, wherein $\mathbf{R^{201}}$ is $(C_{1\text{-}6})$ alkyl optionally further substituted with $(C_{3\text{-}7})$ cycloalkyl or phenyl.

- 10. (Original) The compound according to claim 9 wherein R^{200d} is $-OR^{201}$ wherein R^{201} is ethyl.
- 11. (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O- \mathbb{R}^{20} , wherein \mathbb{R}^{20} is

wherein

one of **A**, **D**, and **E** represents a S atom and the other two of **A**, **D**, and **E** represent C atoms;

---- represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 $\mathbf{R^{200g}}$ is H or -O $\mathbf{R^{201}}$, wherein $\mathbf{R^{201}}$ is (C₁₋₆)alkyl or (C₂₋₆)alkenyl; and

 \mathbf{R}^{200h} is one or two substituents each independently selected from H, cyano, (C_{1-6}) alkyl

and $-SO_2$ - (C_{1-6}) alkyl; wherein each \mathbf{R}^{200h} is bonded to a C atom which would otherwise bear a hydrogen atom.

- **12.** (**Previously presented**) The compound according to claim 1 wherein **n** is 1.
- 13. (Previously presented) The compound according to claim 1 wherein \mathbb{R}^1 is vinyl.
- 14. (Canceled)
- **15.** (**Previously presented**) The compound according to claim 1 wherein:
 - (i) $\mathbf{R^4}$ and $\mathbf{R^6}$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl-; wherein said $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl- are each optionally substituted with one to three substituents each independently selected from halogen, $(C_{1\text{-}6})$ alkyl, hydroxy, cyano, $O\text{-}(C_{1\text{-}6})$ alkyl, and -COOH; or
 - (ii) R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl.
- **16.** (Currently Amended) The compound according to claim 1 wherein:
 - **n** is 1;
 - **m** is 2;

```
R<sup>1</sup> is ethyl or vinyl;
```

R² is selected from -O-R²⁰ and -O-X-R²⁰, wherein

X is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and

 ${f R}^{20}$ is $(C_6$ or $C_{10})$ aryl or ${f Het}$, wherein said $(C_6$ or $C_{10})$ aryl or ${f Het}$ is optionally mono-, di-, tri- or tetra-substituted with ${f R}^{200}$, wherein each ${f R}^{200}$ is independently selected from H, halogen, cyano, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl- (C_{1-6}) alkyl-, aryl, oxo, thioxo, $-{f OR}^{201}$, $-{f SR}^{201}$, $-{f SOR}^{201}$, $-{f N}({f R}^{202}){f R}^{201}$, and $-{f CON}({f R}^{202}){f R}^{201}$; wherein each of said alkyl, cycloalkyl, and aryl is optionally further substituted with ${f R}^{2000}$;

 \mathbf{R}^{201} in each case is independently selected from H, (C₁₋₆)alkyl and aryl, wherein each of said alkyl and aryl is optionally further substituted with \mathbf{R}^{2000} ;

 \mathbf{R}^{202} is H or (C₁₋₆)alkyl;

 ${\bf R^{2000}}$ is one to three substituents each independently selected from halogen, aryl, ${\bf Het}$, $-{\bf OR^{2001}}$, cyano, $-{\bf N(R^{2002})(R^{2001})}$, and ${\bf R^{2003}}$, wherein said aryl and ${\bf Het}$ are optionally substituted with one, two or three substituents selected from (C_{1-6}) alkyl and $-{\bf O-(C_{1-6})}$ alkyl;

 ${f R^{2001}}$ in each case is independently selected from aryl, aryl-(C₁₋₆)alkyl-, -C(O)- ${f R^{2003}}$

 \mathbf{R}^{2002} is H or (C_{1-6}) alkyl;

 \mathbf{R}^{2003} is (C_{1-8}) alkyl and (C_{3-7}) cycloalkyl;

 \mathbb{R}^3 is (C_{1-8}) alkyl;

 \mathbf{R}^5 is selected from $\mathbf{B}\text{-O-C}(=\mathrm{O})$ -, and $\mathbf{B}\text{-N}(\mathbf{R}^{51})$ -C(=O)-; wherein \mathbf{B} is selected from:

- (i) (C_{1-10}) alkyl optionally substituted with one or more substituents each selected independently from -COOH, -OH, halogen, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂,
- (ii) (C_{3-7}) cycloalkyl, optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, halogen, -COOH, -COO (C_{1-6}) alkyl, -OH, -O (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-6}) alkyl, -N $((C_{1-6})$ alkyl) $_2$,

 \mathbf{R}^{51} is selected from H and (C_{1-6}) alkyl; provided that \mathbf{B} is not (C_{1-10}) alkyl unsubstituted or (C_{1-10}) alkyl substituted with halogen,

when \mathbb{R}^5 is **B**-O-C(=O)-;

Y is H;

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl-; wherein said $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl- are optionally substituted with one or more substituents independently selected from halogen, $(C_{1\text{-}6})$ alkyl, hydroxy, cyano, $O\text{-}(C_{1\text{-}6})$ alkyl, -NH₂, -NH $(C_{1\text{-}4})$ alkyl, -N($(C_{1\text{-}4})$ alkyl)₂, -COOH, and -COO($(C_{1\text{-}6})$ alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, said heterocycle and heteropolycycle optionally containing from one to three further heteroatoms independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one or more substituents independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl;

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

17. (Currently Amended) The compound according to claim 1 wherein:

 \mathbf{R}^{5} is **B**-O-C(=O)-; wherein **B** is selected from:

- (i) (C_{1-10}) alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C_{1-6})alkyl, -OH, halogen, -OC(=O)(C_{1-6})alkyl, -O(C_{1-6})alkyl, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂,
- (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, provided that **B** is not (C_{1-10}) alkyl unsubstituted or (C_{1-10}) alkyl substituted with halogen, when \mathbf{R}^5 is \mathbf{B} -O-C(=O)-;

Y is H;

R³ is *tert*-butyl;

 \mathbf{R}^2 is -O-X- \mathbf{R}^{20} , wherein X is (C₃)alkynyl and \mathbf{R}^{20} is (C₆ or C₁₀)aryl; or

 \mathbf{R}^2 is -O- \mathbf{R}^{20} wherein \mathbf{R}^{20} is

wherein

 \mathbf{R}^{200d} is $-\mathbf{OR}^{201}$, wherein \mathbf{R}^{201} is (C_{1-6}) alkyl;

 R^{200e} is H or -O R^{201} , wherein R^{201} is (C₁₋₆)alkyl; and

 $\boldsymbol{R^{200f}}$ is (C_{1-6})alkyl, halogen, -S $\boldsymbol{R^{201}}$, -SO_2 $\boldsymbol{R^{201}}$, or -O $\boldsymbol{R^{201}}$, wherein $\boldsymbol{R^{201}}$ is

 $(C_{\text{1-6}}) \text{alkyl optionally further substituted with } (C_{\text{3-7}}) \text{cycloalkyl or phenyl;}$ or R^{20} is

wherein

one of **A**, **D**, and **E** represents a **S** atom and the other two of **A**, **D**, and **E** represent C atoms;

---- represents a single bond between a C atom and an S atom, and represents a

single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 ${f R^{200g}}$ is H or -OR²⁰¹, wherein ${f R^{201}}$ is $(C_{1\text{-}6})$ alkyl or $(C_{2\text{-}6})$ alkenyl; and ${f R^{200h}}$ is one or two substituents each independently selected from H, cyano, $(C_{1\text{-}6})$ alkyl and $-SO_2$ - $(C_{1\text{-}6})$ alkyl; wherein each ${f R^{200h}}$ is bonded to a C atom which would otherwise bear a hydrogen atom;

 $\mathbf{R}^{\mathbf{1}}$ is ethyl or vinyl;

n is 1;

m is 2; and

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl-; wherein said $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl- are optionally substituted with one to three substituents independently selected from halogen, $(C_{1\text{-}6})$ alkyl, hydroxy, cyano, $O\text{-}(C_{1\text{-}6})$ alkyl, -COOH, and -COO $(C_{1\text{-}6})$ alkyl; or

 ${f R}^4$ and ${f R}^6$ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three further heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, $O-(C_{1-6})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl, $-N((C_{1-4})$ alkyl)₂,—COOH, and $-COO(C_{1-6})$ alkyl;

or a diastereomer thereof or a salt thereof.

- 18. (Previously presented) A pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.
- **19. (Original)** The pharmaceutical composition according to claim 18 additionally comprising a therapeutically effective amount of at least one other antiviral agent.
- 20. (Withdrawn) A method of treating a hepatitis C viral infection in a mammal comprising administering to the mammal an anti-hepatitis C virally effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising said compound or pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.

21. – 22. (Canceled)

23. (Withdrawn) A method of inhibiting the replication of hepatitis C virus by exposing the virus to a hepatitis C viral NS3 protease inhibiting amount of the compound according to claim 1, or a pharmaceutically acceptable salt thereof.

24. (Canceled)

25. (Previously Presented) An article of manufacture comprising a composition effective to treat an HCV infection or to inhibit the NS3 protease of HCV; and packaging material comprising a label which indicates that the composition can be used to treat infection by the hepatitis C virus; wherein the composition comprises a compound according to claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier medium or auxiliary agent.

- **26.** (**Previously Presented**) A process for the preparation of a compound according to claim 1, comprising:
 - a) reacting a compound of formula (II):

wherein \mathbf{R}^4 , \mathbf{R}^6 and \mathbf{m} are defined as in claim 1, with a strong base so as to form the corresponding amide anion and

b) reacting an azalactone of formula (III):

wherein \mathbf{R}^1 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^5 , \mathbf{Y} and \mathbf{n} are defined as in claim 1, with the amide anion formed in step a).

27. (Original) An azalactone intermediate compound of formula (III):

$$\mathbb{R}^{5}$$
 \mathbb{N}
 $\mathbb{N$

wherein \mathbf{R}^1 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^5 , \mathbf{Y} and \mathbf{n} are defined as in claim 1.

28. (Canceled)