DEPARTMENT OF INFORMATION TECHNOLOGY

UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY

PANJAB UNIVERSITY, CHANDIGARH

Class: B.E. (I.T.), 5TH sem

Int. Exam-I (Nov,2020)

Section A

Time: 90mins

SUB: Design and Analysis of Algorithms

Max. Marks: 30

Note: All questions are compulsory. Each question carries equal marks (5X2=10).

1. a) Use recursive tree method to determine an asymptotic bound for the following recurrence:

 $T(n) = 3T(n/2) + n^3$

b) Compute the tight asymptotic bounds for the following recurrence using the master method:

 $T(n) = 9T(n/3) + n^2$

2. a) Apply quick sort and explain the sorting steps for the following sequence:

55, 44, 33, 66, 22, 11, 77

b) Compute the following matrix product using Strassen's algorithm.

 $\begin{vmatrix} 5 & 2 & 2 & 6 \\ 3 & 7 & 4 & 1 \end{vmatrix}$

3. a) Find an optimal solution for the following knapsack instance:

(n=6, m=20)

$\mathbf{P_{i}}$	$\mathbf{W_i}$
13	6
4	2
17	7
6	4
8	1
20	5

b) Determine a minimum cost spanning tree for the following graph using Kruskal's algorithm.

