MATERNAL HEALTH RISK PREDICTION IN MACHINE LEARNING

A PROJECT REPORT

Submitted by

RAJESHKUMAR M (422520205032)

RANJITH V (422520205035)

SRIDHARSAN S (422520205042)

In partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

UNIVERSITY COLLEGE OF ENGINEERING VILLUPURAM

ANNA UNIVERSITY: CHENNAI 600 025

MAY 2024

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "MATERNAL HEALTH RISK PREDICTION USING MACHINE LEARNING" is the bonafide work of "RAJESHKUMAR M (422520205032), RANJITH V (422520205035), SRIDHARSAN S (422520205306) " who carried out the project work under my supervision on our campus.

SIGNATURE	SIGNATURE
Dr. E. KAVITHA, M.Tech., Ph.D.,	Dr. E. KAVITHA, M.Tech., Ph.D.,
HEAD OF THE DEPARTMENT,	SUPERVISOR,
Department of Information Technology,	Department of Information Technology
University College of Engineering Villupuram,	University College of Engineering Villupuram
Kakuppam, Villupuram – 605 103.	Kakuppam, Villupuram – 605 103.

Submitted for IT8811 project viva voice examination held on

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We are grateful to our Dean **Dr. R. SENTHIL**, **M.E.**, **Ph.D.**, for his constant encouragement to do this project and during the entire course period.

We are very thankful to **Dr. E. KAVITHA**, **M.Tech.**, **Ph.D.**, Head of the Department, project guide, Department of Information Technology for giving us the opportunity to do the project and for providing constant support and academic guidance, and also for her valuable suggestion and guidance for the development and completion of this project.

We would like to thank, **Dr. P. SEENUVASAN**, **M.E.**, **Ph.D.**, project coordinator, Department of Information Technology for her constant guidance and encouragement in making this project successful.

Finally, we express our heartful thanks to our friends, staff members and many well-wishers for helping in the successful completion of our project.

Above all, we thank our parents who are responsible for what we are today.

RAJESHKUMAR M (422520205032) RANJITH V (422520205035) SRIDHARSAN S (422520205042)

ABSTRACT

Maternal mortality is a major, but often overlooked, public health problem and is unacceptably big nowadays. About 2,95,000 women died during and following pregnancy and childbirth in an average year. Most of these deaths (94%) occurred in low-resource settings, and most could have been prevented with proper care. Sub-Saharan Africa and Southern Asia accounted for approximately 86% (2,54,000) of the estimated global maternal deaths. Sub-Saharan Africa alone accounted for roughly two-thirds (1,96,000) of maternal deaths, while Southern Asia accounted for nearly one- fifth (58,000). At the same time, between 2000 and 2021, Southern Asia achieved the greatest overall reduction in MMR: a decline of almost 60% (from an MMR of 384 down to 157). Despite its very high MMR in 2021, sub-Saharan Africa as a sub-region also achieved a substantial reduction in MMR of nearly 40% 2000. Additionally, four other sub-regions roughly halved their MMRs during this period: Central Asia, Eastern Asia, Europe and Northern Africa. Overall, the maternal mortality ratio (MMR) in less- developed countries declined by just under 50%. In this project, the primary goal is to predict and prevent the maternal mortality rate. This prediction includes use of Machine Learning techniques in data cleaning and processing, feature extraction, classification and data modelling. By achieving this we can able to predict and prevent the maternal mortality during the CTG test with the help of FHR values.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO
	ABSTRACT	iii
	LIST OF FIGURES	viii
	LIST OF ABBREVIATIONS	ix
1	INTRODUCTION	1
	1.1 Overview	1
	1.2 Introduction to Machine Learning	3
	1.2.1 Types of Machine Learning	3
	1.3.2 Machine Learning Algorithms	4
2	LITERATURE SURVEY	6
	2.1 Introduction	6
	2.2 Related Works	6
3	SYSTEM ANALYSIS	14
	3.1 Existing System	14
	3.1.1 Input Parameters	15
	3.1.2 Disadvantages of the Existing System	15
	3.2 Proposed System	15

	3.2.1 XGBoost Algorithm	16
	3.2.2 Advantages of the Proposed System	18
4	SYSTEM DESIGN AND IMPLEMENTATION	19
	4.1 System Requirements	19
	4.1.1 Software Requirements	19
	4.1.2 Hardware Requirements	20
	4.2 Software Specification	20
	4.2.1 Google Colab	20
	4.2.2 Jupyter Notebook	22
	4.2.3 Python	24
	4.2.4 XGBoost	24
	4.2.5 Seaborn	25
	4.2.6 Pandas	25
	4.2.7 Matplotlib	26
	4.2.8 SKLearn	26
	4.3 System Architecture	27
	4.4 Data flow Diagram	29
	4.5 UML Diagrams	30

4.5.1 Class Diagram	30
4.5.2 Sequence Diagram	31
4.5.3 Activity Diagram	32
4.6 System Modules	
4.7 Modules Description	
4.7.1 Data Collection Module	33
4.7.2 Data Preprocessing Module	34
4.7.3 Feature Selection Module	35
4.7.4 Model Training Module	35
4.7.5 Model Evaluation Module	36
4.7.6 Model Deployment Module	38
4.7.7 Monitoring and Maintenance	39
4.8 Performance Metrics	
4.9 System Testing	42
4.9.1 Unit Testing	42
4.9.2 Integration Testing	42
4.9.3 System Testing	43
4 9 4 Validation Testing	13

	4.9.5 Usability Testing	43
5	RESULTS AND ANALYSIS	44
	5.1 Input	44
	5.2 Output	46
6	CONCLUSION	48
	APPENDIX	49
	REFERENCES	66

LIST OF FIGURES

FIGURE NO	FIGURE NAME	PAGE NO
1.1	Overview	2
3.1	Architecture of XGBoost Algorithm	17
4.1	Google Colab	21
4.2	Google Colab setup	22
4.3	Jupyter Notebook Setup	23
4.4	Python	24
4.5	System Architecture	28
4.6	Data flow Diagram	29
4.7	Class Diagram	30
4.8	Sequence Diagram	31
4.9	Activity Diagram	32
4.10	Accuracy of the Test	41
5.1	Input Datas(CSV)	46
5.2	Mean value of Short-Term and Long-Term variability in FHR	46
5.3	Fetal Heart Rate	47
5.4	Output	47

LIST OF ABBREVIATIONS

CTG Cardio Toco Graphy

FHR Fetal Heart Rate

XGBOOST Extreme Gradient Boost

BPM Beats Per Minute

EHR Electronic Health Report

CSV Comma-Separated Values