数值解析入門

- 1. 常微分方程式の時間積分(発展)
- 1. Time Integration of Ordinary Differential Equations

コンテンツ

1

SIR モデル

2

SEIR モデル

常微分方程式の形で書かれた, 感染症の数理モデル

コンテンツ

1

SIR モデル

SEIR モデル

1. SIRモデル

最も基本的な数理モデル

Susceptible(無免疫者)

Infected(発症者)

Recovered (回復者)

の頭文字をとっている

1. SIRモデル

微分方程式

離散化した式

$$\frac{dS(t)}{dt} = -bS(t)I(t)$$

$$\frac{S_{n+1} - S_n}{\Delta t} = -bS_n I_n$$

$$\frac{dI(t)}{dt} = bS(t)I(t) - gI(t)$$

$$\frac{I_{n+1}-I_n}{\Delta t} = bS_nI_n - g I_n$$

$$\frac{dR(t)}{dt} = gI(t)$$

$$\frac{R_{n+1} - R_n}{\Delta t} = gI_n$$

g:回復率 b:感染率

1. SIRモデル

長所

- ・計算が高速
 - → 少ないパラメータ

短所

- 詳細な設定ができない
 - → これも少ないパラメータによる

コンテンツ

1

SIR モデル

2

SEIR モデル

2. SEIRモデル

SIRモデルにExposed

(感染しているが発症

していない人)を追加

したモデル。

SIRモデルよりは詳細な 設定が可能

パラメータ

a:発症率, b:感染率, g:回復率

2. SEIRモデル

微分方程式

$$\frac{dS(t)}{dt} = -bS(t)I(t)$$

$$\frac{dE(t)}{dt} = bS(t)I(t) - aE(t)$$

$$\frac{dI(t)}{dt} = aE(t) - gI(t)$$

$$\frac{dR(t)}{dt} = gI(t)$$

a:発症率

離散化した式

$$\frac{S_{n+1} - S_n}{\Delta t} = -bS_n I_n$$

$$\frac{E_{n+1}-E_n}{\Delta t} = bS_nI_n - aE_n$$

$$\frac{I_{n+1}-I_n}{\Delta t} = aE_n - g I_n$$

$$\frac{R_{n+1}-R_n}{\Delta t} = gI_n$$

g:回復率

b:感染率