LO: Understand domain and range of a function; calculate

composite function.

1.

Sketch the graph of $y = x^2 - 5x + 4$

Solve by completing the square.
Round to 2 dp.

$$3x^2 - 5x - 7 = 0$$

Prerequisite	Prerequisite
Retrieval	Problem Solving

Fluency and understanding

A function is something which **provides a rule on how to map inputs to outputs**.

We saw at GCSE that functions were a formal way of describing a 'number machine':

Fluency and understanding

You'll cover functions extensively in future chapters, but for now, you need to understand the following concepts:

The **roots/zeroes** of a function are the values of x for which f(x) = 0.

If $f(x) = x^2 - 3x$ and g(x) = x + 5, $x \in \mathbb{R}$

- Find f(-4)a)
- Find the values of x for which f(x) = g(x)b)

$$f(x) = 10 - 4x$$
 and $g(x) = x^3$

- f(x) = 10 4x and $g(x) = x^3$ (i) Evaluate f(-1) and $g(\frac{1}{2})$.
- Write down an expression for f(3x). (ii)
- (iii) Solve g(x) = -64

Independent Practice- You do

- 1 f(x) = 2x 1 and $g(x) = x^2 + 2x$ Work out the value of
 - (i) f(-4)
 - (iv) g(-1)
- 4 f(x) = 8 3x and g(x) = 4(x + 3). Solve
 - (iii) g(x) = 20
- (5) h(x) = 3x 2

Write down expressions, giving answers in the simplest form, for

(i) h(2x)

(iii) h(x + 1)

(iii) $h(x^2)$.

 $f(x) = x^2$ for all real values of x.

Write down the range of f(x).

$$f(x) = 6 - 4x \qquad -2 \le x \le 3$$

Write down the range of f(x).

Independent Practice- You do

- (1) Write down the range of f(x) in each of the following.
- (ii) f(x) = x + 4 $x \ge 1$
- Write down the range of f(x) in each of the following.
- (ii) f(x) = x 3 0 < x < 10
- 3 Write down the range of f(x) in each of the following.

(ii)
$$f(x) = \frac{2x - 3}{4}$$
 $-2 \le x \le 2$

Fluency and understanding

A composite function occurs when two or more functions act in succession.

fg(x) means that the function next to x, which is g in this case, is the one that is applied first. Using $f(x) = x^2$ and g(x) = x + 2, it is often easier to think of this in words initially, rather than symbols.

fg(x) = f[g(x)] which means that you first apply the function g to x. g(x) = (x + 2) so you now have f(x + 2).

In this example the function f tells you to square what you have in the brackets, giving $(x + 2)^2$ so $fg(x) = (x + 2)^2$.

Similarly $gf(x) = x^2 + 2$

Examples - I do

Express $(5x + 6)^4$ in the form fg(x), stating the expressions corresponding to f(x) and g(x).

Examples - I do

Given that f(x) = 2x - 3, $g(x) = x^2$ and $h(x) = \frac{1}{x}$, write the following as functions of x.

(i)
$$fg(x)$$

(ii)
$$gf(x)$$

(iii)
$$fgh(x)$$

(iv)
$$f^2(x)$$

Independent Practice- You do

- ② (i) Given that f(x) = 2x 1 and $g(x) = x^3$, write
 - (a) fg(x) and
 - (b) gf(x).
 - (ii) Work out the values of
 - (a) fg(2)

(b) gf(2)

(c) fg(-3)

(d) gf(-3).

Plenary

Textbook

Page 43

Exercise 3A

Q2 odd

Q3. odd

Q6

Page 45

Exercise 3B

Q4

Q6 (p.46)

Q7 (p.47)

Textbook

Page 49

Exercise 3C

Q3

Q4