具有AGC和低噪声麦克风偏置电路的 麦克风放大器

概述

MAX9814是一款低成本、高品质麦克风放大器,内置自动增益控制(AGC)以及低噪声麦克风偏置。该器件集成低噪声前置放大器、可变增益放大器(VGA)、输出放大器、麦克风偏压发生器以及AGC控制电路。

低噪声前置放大器的增益固定为12dB,而VGA增益可以根据输出电压和AGC门限在20dB和0dB之间自动调节。输出放大器具有8dB、18dB和28dB三种可选增益。在没有压缩的条件下,放大器级联可使总增益达到40dB、50dB或60dB。三态数字输入编程设置输出放大器的增益。外部电阻分压器控制AGC门限,单个电容可设置启动/释放时间。三态数字输入还可编程设置启动与释放时间的比,AGC的保持时间固定值为30ms。低噪声麦克风偏置发生器能为大多数驻极体麦克风提供偏压。

MAX9814采用节省空间的14引脚TDFN封装。该器件规定工作在-40℃至+85℃扩展级温度范围。

应用

数码相机娱乐系统(例如,卡拉OK)数字摄像机双向通信装置PDA高品质便携式录像机蓝牙耳机IP电话/电话会议

◆ 自动增益控制(AGC)

◆ 三种增益设置(40dB、50dB、60dB)

- ◆ 可编程启动时间
- ◆ 可编程启动与释放比
- ◆ 2.7V至5.5V电源电压范围
- ♦ 低达30nV/√Hz的输入参考噪声密度
- ◆ 低达0.04% (典型值)的THD
- ◆ 低功耗关断模式
- ◆ 内部提供低噪声麦克风偏置, 2V
- ◆ 采用节省空间的14引脚TDFN (3mm x 3mm)封装
- ◆ -40°C至+85°C扩展级温度范围

定购信息

PART	TEMP RANGE	PIN-PACKAGE
MAX9814ETD+T	-40°C to +85°C	14 TDFN-EP*

+表示无铅(Pb)/符合RoHS标准的封装。

T = 卷带包装。

*EP = 裸焊盘。

引脚配置在数据资料的最后给出。

简化框图

特性

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to +6V
All Other Pins to GND	$0.3V$ to $(V_{DD} + 0.3V)$
Output Short-Circuit Duration	
Continuous Current (MICOUT, MICBIAS).	±100mA
All Other Pins	

Continuous Power Dissipation ($T_A = +70^{\circ}$ C	2)
14-Pin TDFN-EP	
(derate 16.7mW/°C above +70°C)	1481.5mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Bump Temperature (soldering) Reflow	+235°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 3.3V, \overline{SHDN} = V_{DD}, C_{CT} = 470nF, C_{CG} = 2\mu F, GAIN = V_{DD}, T_{A} = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_{A} = +25^{\circ}C$.) (Note 1)

PARAMETER	PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS
GENERAL						•
Operating Voltage	V_{DD}	Guaranteed by PSRR test	2.7		5.5	V
Supply Current	I _{DD}			3.1	6	mA
Shutdown Supply Current	ISHDN			0.01	1	μΑ
Input-Referred Noise Density	en	BW = 20kHz, all gain settings		30		nV/√Hz
Output Noise		BW = 20kHz		430		μV _{RMS}
Signal-to-Noise Ratio	SNR	BW = 22Hz to 22kHz (500mV _{RMS} output signal)		61		dB
		A-weighted		64		
Dynamic Range	DR	(Note 2)		60		dB
Total Harmonic Distortion Plus Noise	THD+N	$\begin{split} f_{IN} &= 1 \text{kHz, BW} = 20 \text{Hz to 20kHz,} \\ R_L &= 10 \text{k}\Omega, V_{TH} = 1 \text{V (threshold} = 2 \text{Vp-p),} \\ V_{IN} &= 0.5 \text{mV}_{RMS}, V_{CT} = 0 \text{V} \end{split}$		0.04		%
	THD+N	$\begin{split} f_{IN} &= 1 \text{kHz, BW} = 20 \text{Hz to } 20 \text{kHz,} \\ R_L &= 10 \text{k}\Omega, V_{TH} = 0.1 \text{V (threshold} = \\ 200 \text{mV}_{P-P}), V_{IN} &= 30 \text{mV}_{RMS}, V_{CT} = 2 \text{V} \end{split}$		0.2		/0
Amplifier Input BIAS	V _{IN}		1.14	1.23	1.32	V
Maximum Input Voltage	V _{IN_MAX}	1% THD		100		mV _{P-P}
Input Impedance	Z _{IN}			100		kΩ
		GAIN = V _{DD}	39.5	40	40.5	
Maximum Gain	А	GAIN = GND	49.5	50	50.6	dB
		GAIN = unconnected	59.5	60	60.5	
		GAIN = V _{DD}	18.7	20	20.5	
Minimum Gain		GAIN = GND	29.0	30	30.8	dB
		GAIN = unconnected	38.7	40	40.5	
Maximum Output Level	Vout_rms	1% THD+N, V _{TH} = MICBIAS		0.707		V _{RMS}
Regulated Output Level		AGC enabled, V _{TH} = 0.7V	1.26	1.40	1.54	V _{P-P}
AGC Attack Time	tattack	C _{CT} = 470nF (Note 3)		1.1		ms
		A/R = GND		1:500		ms/ms
Attack/Release Ratio	A/R	$A/R = V_{DD}$	1:2000 1:4000			
		A/R = unconnected				

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 3.3V, \overline{SHDN} = V_{DD}, C_{CT} = 470nF, C_{CG} = 2\mu F, GAIN = V_{DD}, T_{A} = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_{A} = +25^{\circ}C$.) (Note 1)

MICOUT High Output Voltage VOH IouT sourcing 1mA 2.45 V	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MICOUT Bias MICOUT unconnected 1.14 1.23 1.32 V Output Impedance Zout 50 Ω Ω	MICOUT High Output Voltage	VoH	IOUT sourcing 1mA		2.45		V
Minimum Resistive Load RLOAD_MIN S	MICOUT Low Output Voltage	VoL	IOUT sinking 1mA		3		mV
Minimum Resistive Load RLOAD_MIN S KΩ Maximum Capacitive Drive CLOAD_MAX S D200 DF Maximum Qutput Current IOUT_MAX NTHD, Ri_ = 500Ω 1 2 mA Output Short-Circuit Current ISC AGC mode; VDD = 2.7V to 5.5V (Note 4) 35 50 S F = 17Hz, VRIPPLE = 100mVp.p (Note 5) 5.5 S S F = 18Hz, VRIPPLE = 100mVp.p (Note 5) 5.5 S S F = 10kHz, VRIPPLE = 100mVp.p (Note 5) 5.5 S S S F = 10kHz, VRIPPLE = 100mVp.p (Note 5) 5.5 S S F = 10kHz, VRIPPLE = 100mVp.p (Note 5) 5.5 S S S F	MICOUT Bias		MICOUT unconnected	1.14	1.23	1.32	V
Maximum Capacitive Drive CLOAD_MAX 1% THD, RL = 500Ω 1 2 mA	Output Impedance	Zout			50		Ω
Maximum Output Current So	Minimum Resistive Load	RLOAD_MIN			5		kΩ
Output Short-Circuit Current Isc AGC mode; VDD = 2.7V to 5.5V (Note 4) 35 50 55 56 56 56 56 56 5	Maximum Capacitive Drive	CLOAD_MAX			200		рF
Power-Supply Rejection Ratio PSRR	Maximum Output Current	I _{OUT_MAX}	1% THD, $R_L = 500Ω$		1	2	mA
Power-Supply Rejection Ratio PSRR	Output Short-Circuit Current	Isc		3	8		mA
Power-Supply Rejection Hatio PSHR f = 1kHz, VRIPPLE = 100mVp.p (Note 5) 52.5			AGC mode; V _{DD} = 2.7V to 5.5V (Note 4)	35	50		
F = 1KHz, VRIPPLE = 100mVp-p (Note 5) 52.5	Davier Cusely Dejection Detic	DCDD	$f = 217Hz$, $V_{RIPPLE} = 100mV_{P-P}$ (Note 5)		55		٩D
Microphone Bias Voltage VMICBIAS MICBIAS = 0.5MA 1.84 2.0 2.18 V Output Resistance RMICBIAS MICBIAS = 1mA 1 1 Ω Output Noise Voltage VMICBIAS_NOISE MICBIAS = 0.5mA, BW = 22Hz to 22kHz 5.5 µVRMS Output Noise Voltage VMICBIAS_NOISE MICBIAS = 0.5mA, BW = 22Hz to 22kHz 5.5 µVRMS Output Noise Voltage PSRR MICBIAS_0.5mV 70 80	Power-Supply Rejection Ratio	FORR	f = 1kHz, V _{RIPPLE} = 100mV _{P-P} (Note 5)		52.5		иь
Microphone Bias Voltage VMicBiAS IMicBiAS = 0.5mA 1.84 2.0 2.18 V			f = 10kHz, V _{RIPPLE} = 100mV _{P-P} (Note 5)		43		
Output Resistance RMICBIAS MICBIAS = 1mA 1 Ω	MICROPHONE BIAS						
Micbias Voltage Micbias Noise Micbias Micbias S.5. Micbias Mi	Microphone Bias Voltage	VMICBIAS	IMICBIAS = 0.5mA	1.84	2.0	2.18	V
Power-Supply Rejection Ratio PSRR DC, VDD = 2.7V to 5.5V 70 80	Output Resistance	RMICBIAS	IMICBIAS = 1mA		1		Ω
Power-Supply Rejection Ratio PSRR IMICBIAS = 0.5mA, VRIPPLE = 100mVP-P, fIN = 1 kHz T1 T2 T3 T4 T4 T4 T4 T4 T4 T4	Output Noise Voltage	VMICBIAS_NOISE	IMICBIAS = 0.5mA, BW = 22Hz to 22kHz		5.5		μV _{RMS}
TRILEVEL INPUTS (A/R, GAIN) Tri-Level Input Leakage Current A/R or GAIN = VDD			DC, V _{DD} = 2.7V to 5.5V	70	80		
	Power-Supply Rejection Ratio	PSRR			71		dB
Tri-Level Input Leakage Current A/R or GAIN = VDD	TRILEVEL INPUTS (A/R, GAIN)						
$A/R \text{ or } \text{GAIN} = \text{GND} \hspace{1cm} \begin{matrix} 0.5\text{V}_{DD} \\ /180\text{k}\Omega \end{matrix} & 0.5\text{V}_{DD} \\ /180\text{k}\Omega \end{matrix} & 0.5\text{V}_{DD} \\ /180\text{k}\Omega \end{matrix} & /50\text{k}\Omega \end{matrix}$ $Input \text{ High Voltage} \hspace{1cm} \text{VIH} \hspace{1cm} \text{V}_{DD} \times 0.7 \hspace{1cm} \text{V}_{DD} \times 0.3 \hspace{1cm}$	Tri Lough Inguit Locks as Current		A/R or GAIN = V _{DD}				A
Input Low Voltage VIL VDD x 0.3 V Shutdown Enable Time tON 60 ms Shutdown Disable Time tOFF 40 ms DIGITAL INPUT (SHDN) SHDN Input Leakage Current -1 +1 μA Input High Voltage VIH 1.3 V Input Low Voltage VIL 0.5 V AGC THRESHOLD INPUT (TH)	Tri-Level Input Leakage Current		A/R or GAIN = GND				MA
Shutdown Enable Time toN 60 ms Shutdown Disable Time toFF 40 ms DIGITAL INPUT (SHDN) SHDN Input Leakage Current -1 +1 μA Input High Voltage VIH 1.3 V Input Low Voltage VIL 0.5 V AGC THRESHOLD INPUT (TH)	Input High Voltage	VIH		V _{DD} x 0.	7		V
Shutdown Disable Time tOFF 40 ms DIGITAL INPUT (SHDN) SHDN Input Leakage Current -1 +1 μA Input High Voltage VIH 1.3 V Input Low Voltage VIL 0.5 V AGC THRESHOLD INPUT (TH)	Input Low Voltage	VIL			\	/ _{DD} x 0.3	V
DIGITAL INPUT (SHDN) SHDN Input Leakage Current -1 +1 μA Input High Voltage VIH 1.3 V Input Low Voltage VIL 0.5 V AGC THRESHOLD INPUT (TH)	Shutdown Enable Time	ton			60		ms
SHDN Input Leakage Current -1 +1 μA Input High Voltage VIH 1.3 V Input Low Voltage VIL 0.5 V AGC THRESHOLD INPUT (TH)	Shutdown Disable Time	toff			40		ms
Input High Voltage VIH 1.3 V Input Low Voltage VIL 0.5 V AGC THRESHOLD INPUT (TH) 0.5 V	DIGITAL INPUT (SHDN)						
Input Low Voltage V _{IL} 0.5 V AGC THRESHOLD INPUT (TH)	SHDN Input Leakage Current			-1		+1	μΑ
AGC THRESHOLD INPUT (TH)	Input High Voltage	VIH		1.3			V
	Input Low Voltage	VIL				0.5	V
TH Input Leakage Current -1 +1 μA	AGC THRESHOLD INPUT (TH)						
	TH Input Leakage Current			-1		+1	μΑ

Note 1: Devices are production tested at $T_A = +25^{\circ}C$. Limits over temperature are guaranteed by design.

Note 2: Dynamic range is calculated using the EIAJ method. The input is applied at -60dBFS (0.707 μ V_{RMS}), f_{IN} = 1kHz.

Note 3: Attack time measured as time from AGC trigger to gain reaching 90% of its final value.

Note 4: CG is connected to an external DC voltage source, and adjusted until V_{MICOUT} = 1.23V.

Note 5: CG connected to GND with 2.2µF.

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

典型工作特性

 $(V_{DD} = 5V, C_{CT} = 470nF, C_{CG} = 2.2\mu F, V_{TH} = V_{MICBIAS} \times 0.4, GAIN = V_{DD} (40dB), AGC disabled, no load, R_L = 10k<math>\Omega$, $C_{OUT} = 1\mu F$, $T_A = +25^{\circ}C$, unless otherwise noted.)

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

典型工作特性(续)

 $(V_{DD} = 5V, C_{CT} = 470nF, C_{CG} = 2.2\mu F, V_{TH} = V_{MICBIAS} \times 0.4, GAIN = V_{DD} (40dB), AGC disabled, no load, R_L = 10k<math>\Omega$, C_{OUT} = 1 μ F, T_A = +25°C, unless otherwise noted.)

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

典型工作特性(续)

 $(V_{DD}=5V, C_{CT}=470nF, C_{CG}=2.2\mu F, V_{TH}=V_{MICBIAS} \times 0.4, GAIN=V_{DD}$ (40dB), AGC disabled, no load, $R_{L}=10k\Omega$, $C_{OUT}=1\mu F$, $T_{A}=+25^{\circ}C$, unless otherwise noted.)

VMICOUT 500mV/div OV CCT = 47nF A/R = VDD 40ms/div

引脚说明

引脚	名称	功能
TDFN	10 10 10 10 10 10 10 10 10 10 10 10 10 1	初能
1	СТ	定时电容连接,将电容连接至CT控制AGC的启动时间和释放时间。
2	SHDN	低电平有效关断控制。
3	CG	放大器直流失调调节,连接一只2.2μF的电容至GND,确保输出端零失调。
4, 11	N.C.	无连接,接GND。
5	V _{DD}	电源,采用一只1μF电容旁路至GND。
6	MICOUT	放大器输出。
7	GND	地。
8	MICIN	麦克风放大器同相输入。
9	A/R	三态启动与释放比选择,控制AGC电路的启动时间与释放时间比: $A/R = GND: 启动/释放比为1:500$ $A/R = V_{DD}: 启动/释放比为1:2000$ $A/R = 悬空: 启动/释放比为1:4000$
10	GAIN	三态放大器增益控制: GAIN = V _{DD} ,增益设置为40dB。 GAIN = GND,增益设置为50dB。 GAIN = 悬空,无压缩增益设置为60dB。
12	BIAS	放大器偏置,采用一只0.47μF的电容旁路至GND。
13	MICBIAS	麦克风偏置输出。
14	TH	AGC门限控制,TH电压设置增益控制门限。将TH连接至MICBIAS,禁止AGC。
_	EP	裸焊盘,将TDFN封装的EP连接至GND。

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

详细说明

MAX9814是一款低成本、高品质麦克风放大器,内置自动增益控制(AGC)以及低噪声麦克风偏置。MAX9814是由低噪声前置放大器、可变增益放大器(VGA)、输出放大器、麦克风偏置发生器以及AGC控制电路等多个不同电路组成。

内部麦克风偏置发生器提供2V的偏压,适用于大多数驻极体电容式麦克风。MAX9814分为三级,对输入进行放大。在第一级,输入通过增益为12dB的低噪声前置放大器进行缓冲和放大;第二级则由AGC控制的VGA组成,VGA/AGC组合能够使增益在20dB与0dB之间变化;输出放大器是最后一级,具有8dB、18dB、20dB三个不同的固定增益,可通过一个三态逻辑输入编程设置。AGC无压缩时,MAX9814能够提供40dB、50dB或60dB的增益。

自动增益控制(AGC)

不具备AGC的器件在输入增益过大时,输出将会出现削波;而在输入增益过大时,AGC能够避免输出削波。图1 所示为增益过大的麦克风输入在具有AGC和不带AGC的情况下的比较。 MAX9814的AGC对增益进行控制,首先检测输出电压是否超过预设门限。随后,通过可选的时间常数降低麦克风放大器增益,以修正过大的输出电压幅值。这一过程称为启动时间。当输出信号幅值降低后,增益在很短时间内保持衰减状态,随后输出信号缓慢增加到正常值。该过程称为保持和释放时间。放大器调节输入信号的速度由外部定时电容C_{CT}和A/R端电压设置。AGC门限可通过V_{TH}调节。增益衰减量为输入信号幅值的函数,最大AGC衰减为20dB。图2给出了输入突然超出预设门限时,对输出启动时间、保持时间和释放时间的影响。

如果配置的启动时间和释放时间响应太快,增益随信号动态变化而快速调节,常常会产生类似"砰然"声(pumping)或"喘息"声(breathing)的音频噪声。调节AGC的时间常数使其与声源匹配,从而达到最佳效果。对于那些以CD音乐为主要音源的应用来说,推荐启动时间为160µs,释放时间为80ms。通常情况下,音乐播放设备要比语音或电影等设备需要更短的释放时间。

图1. 带有AGC和没有AGC的麦克风输入

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

图2. 输入突然超过AGC门限

启动时间

启动时间是指当输入信号超过门限电平后,AGC降低增益所需的时间。增益在启动时间内以指数形式衰减,定义为一个时间常数。该时间常数为2400 x C_{CT}秒(其中C_{CT} 是外部定时电容):

- 选取较短的启动时间,以保证AGC快速响应瞬态信号, 例如击鼓声(音乐)或枪击声(DVD)。
- 选用较长的启动时间、AGC将忽略瞬时峰值、只有当声响明显增加时才降低增益。瞬时峰值并不被衰减、 但较响的声音将被衰减。这样可从音量上降低响声, 使动态范围最大化。

保持时间

保持时间是指信号降到门限以下、释放过程开始以前的延迟。保持时间内部设置为30ms,并且不可调。当信号超过门限,重新进入启动阶段时,保持时间终止。

释放时间

释放时间是指信号跌落至门限以下,并且经过30ms的保持时间之后,增益回到其正常水平所需的时间。释放时间定义为当输入信号跌落至TH门限以下,并且经过30ms的保持时间之后,增益从20dB压缩释放到正常增益的10%的时间。释放时间可调,其最小值为25ms。释放时间由CCT设置的启动时间以及利用A/R(如表1所示)设置的启动/释放时间比确定:

- 采用小比值, 使AGC的速度达到最大。
- 采用大比值,使音质达到最佳,防止AGC重复调节短时间内超出门限的信号。

AGC输出门限

激活AGC工作的输出门限可通过外部电阻分压器调节。 完成对分压器的设置后,AGC将降低增益,使输出电压 与TH输入端设置的电压相匹配。

麦克风偏置

MAX9814由内部提供低噪声麦克风偏置电压,可驱动大多数驻极体电容式麦克风。调节麦克风偏置至2V,以保证进人低噪声前置放大器的输入信号不被箝位到地。

应用信息

设置启动时间和释放时间

启动时间和释放时间分别由CT和GND之间的电容以及A/R的逻辑状态(表1)决定。A/R为三态逻辑输入,可设置启动与释放时间比。

表1. 启动与释放比

A/R	ATTACK/RELEASE RATIO
GND	1:500
V _{DD}	1:2000
Unconnected	1:4000

根据表2所列的相应电容,可以选择启动时间和释放时间。

表2. 启动-释放时间

			trelease (ms)			
ССТ	tattack (ms)	A/R = GND	A/R = V _{DD}	A/R = UNCONNECTED		
22nF	0.05	25	100	200		
47nF	0.11	55	220	440		
68nF	0.16	80	320	640		
100nF	0.24	120	480	960		
220nF	0.53	265	1060	2120		
470nF	1.1	550	2200	4400		
680nF	1.63	815	3260	6520		
1µF	2.4	1200	4800	9600		

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

设置AGC门限

若要设置麦克风输出箝位时的输出电压门限,应在MICBIAS和地之间连接外部电阻分压器,电阻分压器输出连接到TH。电压V_{TH}可确定输出箝位时的峰值电压门限。此时,输出端的最大信号摆幅为V_{TH}的2倍,并保持不变,直到输入信号幅值衰减为止。若要禁止AGC,可将TH连接至MICBIAS。

麦克风偏置电阴

MICBIAS可源出20mA的电流。选择适当的R_{MICBIAS},从而为驻极体麦克风提供所需要的偏置电流。一般来说,2.2kΩ的阻值对于典型灵敏度的麦克风已经足够了。关于偏置电阻的选择,请参考麦克风数据资料。

偏置电容

MAX9814的BIAS输出在内部经过缓冲,提供低噪声偏压。 采用一只470nF的电容将BIAS旁路至地。

输入电容

麦克风放大器的输入交流耦合电容($C_{\rm IN}$)和输入阻抗($R_{\rm IN}$)组成了一个高通滤波器,可滤除输入信号中的所有直流偏置(参见*典型应用电路/功能框图*)。 $C_{\rm IN}$ 可防止输入信号源的直流成分出现在放大器的输出。假设输入信号源阻抗为零,则高通滤波器的-3dB点为:

$$f_{-3dB_IN} = \frac{1}{2\pi \times R_{IN} \times C_{IN}}$$

选择适当的 C_{IN} 使 $f_{.3dB_IN}$ 远低于敏感频率。 $f_{.3dB_IN}$ 设置过高,会影响放大器的低频响应,选择低电压系数的电介质电容。对于交流耦合电容来说,铝电解电容、钽电容或薄膜电介质电容都是很好的选择。高电压系数的电容,诸如陶瓷电容(非COG电介质),会加剧低频失真。

输出电容

MAX9814的输出偏置在1.23V,若要消除直流失调,应采用交流耦合电容(C_{OUT})。考虑到下一级的输入阻抗(R_L), C_{OUT} 和 R_L 组成高通滤波器。假设输出阻抗为零,高通滤波器的-3dB点为:

$$f_{-3dB_OUT} = \frac{1}{2\pi \times R_L \times C_{OUT}}$$

关断

MAX9814具有低功耗关断模式。当 \overline{SHDN} 为低电平时,电源电流跌落至 $0.01\mu A$,输出进人高阻状态,麦克风的偏置电流关断。驱动 \overline{SHDN} 为高电平,使能放大器。请勿将 \overline{SHDN} 悬空。

电源旁路与PCB布局

采用一只0.1µF的电容将电源旁路至地。缩短引线长度可降低寄生电容,外部元件应尽可能靠近器件放置,推荐选用表贴元件。在同时具有模拟地和数字地的系统中,MAX9814的地与模拟地相连。

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

引脚配置

芯片信息

PROCESS: BiCMOS

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

封装信息

如需最近的封装外形信息和焊盘布局,请查询 <u>china.maxim-ic.com/packages</u>。

封装类型	封装编码	文档编号
14 TDFN-EP	T1433-2	<u>21-0137</u>

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

封装信息(续)

如需最近的封装外形信息和焊盘布局,请查询 china.maxim-ic.com/packages。

COMMON DIMENSIONS							
SYMBOL	MIN.	MAX.					
Α	0.70	0.80					
D	2.90	3.10					
E	2.90 3.10						
A1	0.00	0.05					
L	0.20	0.40					
k	0.25 MIN.						
A2	0.20 REF.						

PACKAGE VARIATIONS							
PKG. CODE	N	D2	E2	е	JEDEC SPEC	b	[(N/2)-1] x e
T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF
T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF
T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF
T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
T1033-2	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF
T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF

- 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
 2. COPLANARITY SHALL NOT EXCEED 0.08 mm.
- 3. WARPAGE SHALL NOT EXCEED 0.10 mm.
- 4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
- 5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 & T1433-2.
- 6. "N" IS THE TOTAL NUMBER OF LEADS.
- 7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- A MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

TITLE: PACKAGE DUTLINE, 6,8,10 & 14L, TDFN, EXPOSED PAD, 3×3×0.80 mm

PPROVAL | DOCUMENT CONTROL NO. | REV.

21-0137

-DRAWING NOT TO SCALE-

具有AGC和低噪声麦克风偏置电路的 麦克风放大器

修订历史

修订次数	修订日期	说明	修改页
0	3/07	最初版本。	_
1	2/09	更新了 <i>定购信息、Absolute Maximum Ratings、引脚说明和引脚配置</i> 部分,为TDFN封装添加了EP相关内容。	1, 2, 6, 11
2	6/09	删除了UCSP封装的相关内容。	1, 2, 6, 11, 12