BJT Hybrid Equivalent Model

Semiconductor Devices and Circuits (ECE 181302)

31st December 2021

BJT Transistor Modeling

- An equivalent circuit that represents the AC characteristics of the transistor.
- Uses circuit elements that approximate the behavior of the transistor.
- There are three models commonly used in small signal AC analysis of a transistor:
 - r_e model
 - Hybrid equivalent model
 - Hybrid ∏ model

Sketch an AC network:

- 1. Remove DC supplies (replaced by short)
- 2. The coupling capacitor and bypass capacitor can be replaced by a short

The Hybrid Equivalent Model

- h_i = input resistance
- h_r = reverse transfer voltage ratio $(V_i/V_o) \cong 0$
- h_f = forward transfer current ratio (I_o/I_i)
- h_o = output conductance $\cong \infty$

Simplified General H-Parameter Model: Approximate hybrid equivalent model

- h_i = input resistance
- $h_r = reverse transfer voltage ratio <math>(V_i/V_o) \cong 0$
- $h_f = forward transfer current ratio <math>(I_o/I_i)$
- $h_0 = \text{output conductance} \cong \infty$

Hybrid Equivalent Model

- General h-Parameters: hie, hre, hfe, hoe are developed and used to model the transistor.
- The h-Parameters can be found in a specification sheet for a transistor.

hi = input resistance

hr = reverse transfer voltage ratio (Vi/Vo)

hf = forward transfer current ratio (Io/Ii)

ho = output conductance

Simplified General h-parameter Model

- The general h-parameter model can be simplified based on approximations:
- hr \cong 0 therefore hrVo = 0 and ho \cong ∞

Two Port Networks

• The standard configuration of a two port:

Network Equations:

$$\begin{array}{c} \text{Impedance} \\ \text{Z parameters} \end{array} \begin{array}{c} V_{1} = z_{11}I_{1} + z_{12}I_{2} \\ V_{2} = z_{21}I_{1} + z_{22}I_{2} \end{array} \\ \\ \text{Admittance} \\ \text{Y parameters} \end{array} \begin{array}{c} I_{1} = y_{11}V_{1} + y_{12}V_{2} \\ I_{2} = y_{21}V_{1} + y_{22}V_{2} \end{array} \\ \\ \text{Transmission} \\ \text{A, B, C, D} \\ \text{parameters} \end{array} \begin{array}{c} I_{1} = z_{11}I_{1} + z_{12}I_{2} \\ I_{2} = z_{21}I_{1} + z_{22}I_{2} \end{array} \\ \\ \text{Transmission} \\ \text{A, B, C, D} \\ \text{parameters} \end{array} \begin{array}{c} I_{1} = z_{11}I_{1} + z_{12}I_{2} \\ I_{2} = z_{21}I_{1} + z_{22}I_{2} \end{array} \\ \\ \text{Transmission} \\ \text{Constant and } I_{1} = z_{11}I_{1} + z_{12}I_{2} \\ I_{2} = z_{21}I_{1} + z_{22}I_{2} \end{array}$$

- From the four variables V_1 , V_2 , i_1 and i_2 , two can be selected as independent variables and the remaining two can be expressed in terms of these independent variables.
- This leads to various two part parameters out of which the following three are more important.

Hybrid Parameters or h-parameters

- If the input current i_1 and output Voltage V_2 are takes as independent variables,
- Then input voltage V_1 and output current i_2 can be written as:

$$V_1 = h_{11} i_1 + h_{12} V_2$$

 $i_2 = h_{21} i_1 + h_{22} V_2$

- The four hybrid parameters : h_{11} , h_{12} , h_{21} and h_{22} are defined as follows.
 - $h_{11} = [V_1 / i_1]$ with $V_2 = 0$, :I/P Resistance with output port short circuited.
 - $h_{12} = [V_1 / V_2]$ with $i_1 = 0$, : reverse voltage transfer ratio with i/p port open circuited.
 - $h_{21} = [i_2 / i_1]$ with $V_2 = 0$, : Forward current gain with output part short circuited.
 - $h_{22} = [i_2 / V_2]$ with $i_1 = 0$, : Output admittance with input part open circuited.

$$h_{11} = [V_1 / i_1]$$
 with $V_2 = 0$

= Input Impedance with output part short circuited.

$$h_{22} = [i_2 / V_2]$$
 with $i_1 = 0$

= Output admittance with input part open circuited.

$$h_{12} = [V_1 / V_2]$$
 with $i_1 = 0$

= Reverse voltage transfer ratio with input part open circuited.

$$h_{21} = [i_2 / i_1]$$
 with $V_2 = 0$

= Forward current gain with output part short circuited.

Dimensions of the h-parameters

```
h_{11} - \Omega
h_{12} - dimension less
h_{21} - dimension less
```

 h_{22} – mhos

 As the dimensions are not alike, (i.e) they are hybrid in nature, these parameters are called as hybrid parameters.

Equations for the Hybrid Parameters

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

$$h_{11} = \frac{V_1}{I_1} \Big|_{V_2 = 0}$$
 $h_{12} = \frac{V_1}{V_2} \Big|_{I_1 = 0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1 = 0}$$

$$h_{21} = \frac{I_2}{I_1} \bigg|_{\mathbf{V}_2 = 0}$$

$$h_{21} = \frac{I_2}{I_1} \bigg|_{V_2 = 0}$$
 $h_{22} = \frac{I_2}{V_2} \bigg|_{I_1 = 0}$

$$V_1 = h_{11} i_1 + h_{12} V_2$$
 \downarrow
 $V_1 = h_i i_1 + h_r V_2$

$$I_2 = h_{21} i_1 + h_{22} V_2$$
 \downarrow
 $I_2 = h_f i_1 + h_0 V_2$

 $h_i(\Omega)$

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_i & h_r \\ h_f & h_o \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

$$h_i = \frac{V_1}{I_1} \mid \mathbf{V}_2 = \mathbf{0}$$

$$h_f = \frac{I_2}{I_1} \mid \mathbf{V}_2 = \mathbf{0}$$

$$h_r = \frac{V_1}{V_2} \mid_{\mathbf{I}_1 = 0}$$

$$H_r = \frac{1}{V_2} \quad | \quad \mathbf{I}_1 = \mathbf{0}$$

$$I_o = \frac{I_2}{V_2} \quad | \quad I_1 = 0$$

h_o(U)

Transistor Model

• We can write the following equations:

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_i & h_r \\ h_f & h_o \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

h-parameters Advantages

- h-parameters are real numbers up to radio frequencies.
- They are easy to measure.
- They can be determined from the transistor static characteristics curves.
- They are convenient to use in circuit analysis and design.
- Easily convert able from one configuration to other.
- Readily supplied by manufactories.

Hybrid Model CE Configuration

- In the common emitter transistor configuration, the input signal is applied between the base and emitter terminals of the transistor and output appears between the collector and emitter terminals.
- The input voltage (V_{be}) and the output current (i_c) are given by the following equations:

$$V_{be} = h_{ie}.i_b + h_{re}.V_c$$

$$i_e = h_{fe}.i_b + h_{oe}.V_c$$

Hybrid h-Parameter Model for an Amplifier

- The equivalent circuit of a transistor can be drawn using simple approximation by retaining its essential features.
- The equivalent circuit aids in analyzing transistor circuits easily and rapidly.
- A transistor can be treated as a two part network.
- The terminal behavior of any two part network can be specified by the terminal voltages $V_1 \& V_2$ at parts 1 & 2 respectively and current i_1 and i_2 , entering parts 1 & 2, respectively, as shown in figure.

RC Coupled Amplifier

- Response of an amplifier depends on frequency considerations.
- There are 3 regions of frequency: low, mid and high
- The difference between high and low frequency is the bandwidth

Transistor Amplifier Analysis using Complete h-Parameter Model

- Small signal response is analyzed using the h-parameter model
- In the h-parameter model consider the load Resistance R_L and input signal V_s .
- The expressions for Current gain, Voltage gain, input and output impedance are:

1. Current Gain:

$$A_i = -h_f/(1+h_oR_L)$$

• Where A_i is the current amplification or current gain.

• The overall current gain taking source resistance is given by:

$$A_{is}=A_i * (R_s/Z_i + R_s)$$

- Where,
 - Z_i input impedance
 - R_s source resistance
- 2) Input Impedance(Zi)

$$Z_i = h_i + h_r A_i R_L$$

3) Voltage Gain(A,):

$$A_v = (A_i * R_L) / Z_i$$

Voltage gain taking source resistance is given by

$$A_{vs} = (A_v * Z_i)/(Z_i + R_s)$$

4) Output Admittance(Y₀)

$$Y_0 = h_0 - h_f * h_r/(h_i + R_s)$$

Analysis of Transistor Amplifier using Simplified h-Parameter Model

- Common Emitter Configuration
- Fixed Bias configuration:

```
Input Impedance Z_i = R_B \mid \mid h_{ie}

Output Impedance Z_o = R_C \mid \mid (1/h_{oe})

Voltage gain A_v = -h_{fe} * (R_C \mid \mid (1/h_{oe}) / h_{ie})

Current Gain A_i = h_{fe} * R_B / (R_B + h_{ie})
```

Voltage Divider Configuration:

```
Input impedance Z_i=(R_{B1} \mid \mid R_{B2}) \mid \mid h_{ie}

Output Impedance Z_o=R_C \mid \mid (1/h_{oe})

Voltage gain Av=-h<sub>fe</sub> * [R_C \mid \mid (1/h_{oe})]/h_{ie}

Current gain A<sub>i</sub>=h<sub>fe</sub> * (R_{B1} \mid \mid R_{B2})/(R_{B1} \mid \mid R_{B2}) + h_{ie}
```


References:

- Microelectronic Circuits, 7th edition by Adel S. Sedra Kenneth C. Smith.
- G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.
- D. Neamen, D. Biswas, "Semiconductor Physics and Devices," McGraw-Hill Education.
- Electronic Devices and Circuit Theory 11th Edition by Boylestad, Robert . L, Louis Nashelskyl.
- http://ecee.colorado.edu/~bart/book/book/contents.htm
- http://www.ecse.rpi.edu/~schubert/Course-ECSE-2210-Microelectronics-Technology-2010/
- https://inst.eecs.berkeley.edu/~ee105/fa14/lectures/?C=M;O=D