Diseño de un router CNC de 3 ejes para el maquinado de PCB

Diseño de Máquinas IMT-212 P1 12 del mes de junio del 2022

Brayan Gerson Durán Toconás

Ingeniería Macatrónica Universidad Católica Boliviana brayan.duran.t@ucb.edu.bo

Resumen—El correcto diseño de una CNC compromete a realizar ciertos cálculos y consideraciones. Por lo tanto, en el presente informe se presentarán los cálculos y dibujos CAD de una máquina CNC router de 3 ejes capaz de desbastar la ruta de cobre de una PCB.

Index Terms—CNC, Maquinado, Máquina, PCB.

I. Introducción

Una máquina de control numérico por computadora de 3 ejes, consiste de dos superficies deslizantes en los ejes "x" y "y", además, un eje en "z"que está conectada a una herramienta de corte. Por otra parte, una CNC capaz de maquinar placas de circuito impreso, requiere de una precisión y exactitud en los movimientos de esta, además de una herramienta tipo fresa de un diámetro pequeño.

Por todo lo anterior, el documento está divido en dos partes, parte de diseño teórico y diseño CAD. El diseño teórico consiste en el análisis mediante cálculos y conceptos adquiridos en la materia de diseño de máquinas, se presentarán ecuaciones y resultados en el análisis de: Potencia de corte, Velocidad de trabajo, Caculo de motores, y resistencia del material. El diseño CAD consiste en el diseño de la máquina con los resultados en la anterior parte, se utilizará Autodesk Inventor para la creación y ensamble de las piezas.

Figura 1. Concepto de CNC

El movimiento que se requiere es horizontal, vertical y de altura. Por último, la máquina tendrá un área de trabajo útil de 20x20cm y una precisión de corte de 0.1 mm

II. DISEÑO TEÓRICO

II-A. Potencia de corte

Para el cálculo de la potencia de corte, se realizó el siguiente procedimiento:

Se tomará en cuenta la dureza del material que es de 50 en la escala Vickers y 35HB, considerando que es el cobre el material a desgastar [1].

Tabla de fuerzas de cortes:

	Resistencia		Fuerza de corte	Valor de	Grupo de arranque
	mín.	máx.	específica	conicidad	de viruta Walter
	F	Rm		m _c	
Descripción	[N/s	[N/mm²]			
Aceros no aleados y de baja aleación, C > 0,25%, baja y media resistencia	350	750	1500	0.21	P1. P6
Aceros no aleados y de baja aleación, C > 0,55%, no bonificados	400	900	1700	0,25	P2, P3, P4, P7, P14
Aceros de baja y alta aleación, bajo nivel de bonificado	750	1100	2000	0.25	P5, P8, P11, P12
Aceros inoxidables ferritico/martensiticos, bonificados	800	1400	2200	0,25	P15
Aceros de baja y alta aleación, nivel medio de bonificado	1100	1400	2500	0,25	P9
Aceros de baja y alta aleación, nivel alto de bonificado	1200	1600	3000	0,25	P10, P13
Aceros inoxidables, austeníticos	400	900	1800	0,21	M1
Aceros inoxidables, austeníticos/ferríticos + dúplex	600	1000	2000	0.21	M3
Aceros inoxidables, austeníticos, endurecidos por precipitado (aceros PH)	700	1500	2400	0.21	M2
Fundición gris + CGI + fundición maleable, baja resistencia	200	400	800	0,28	K1, K3, K7
Fundición de grafito esferoidal baja resistencia + fundición maleable alta resistencia	400	600	950	0.28	K2, K5
Fundición gris alta resistencia	300	400	1200	0.28	K4,
Fundición de grafito esferoidal alta resistencia + ADI alta resistencia, no aleada + aleada	600	800	1400	0,28	К6
Aleación de forja de alumínio, no templada			350	0.25	N1
Aleación de forja de alumínio, templada			600	0,25	N2
Aleación de fundición de aluminio < 12% Si, no templada			600	0,25	N3
Aleación de fundición de alumínio < 12% Si, templada, Aleación de fundición de alumínio ≥ 12%			700	0,25	N4, N5
Cobre puro, aleación de cobre (latón, bronce) de baja resistencia			550	0.25	N7, N8, N9
Aleaciones de cobre de alta resistencia, bronce de alta resistencia			1000	0,25	N10
Aleaciones termorresistentes base férrica, recocidas			2400	0.25	S1
Aleaciones termorresistentes base férrica, templadas			2500	0.25	52
Titanio puro			1300	0,25	S6
Aleaciones de titanio, aleaciones alfa, alfa/beta y beta			1500	0,25	S7, S8
Aleaciones termorresistentes, base niquel/cobalto, recocidas			2800	0.25	53
Aleaciones termorresistentes, base níquel/cobalto, templadas			2900	0,25	S4
Aleaciones termorresistentes, base niquel/cobalto, coladas			3000	0,25	S5
Aceros templados 46 – 52 HRC			3000	0,25	H1
Aceros templados 52 – 58 HRC			3700	0,25	H2
Aceros templados 58 – 62 HRC			4300	0.25	H3
Fundición de hierro templada 50 – 60 HRC			3500	0,25	H4
Termoplásticos y plásticos duros, sin materiales de relleno abrasivos			150	0,2	01, 02
Plásticos reforzados con fibras			300	0,3	03, 04, 05
Grafito			400	0.25	06

Figura 2. Fuerzas de corte

Tomando en cuenta que es un acero no aleado con una fuerza de corte específica de $1500\ N/mm^2$ y un desplazamiento de 0.001mm por rotación. Por otro parte, se considerará una eficiencia del motor de $85\,\%$ con una velocidad de 32500 según el mini drill existente.

- n = 32500rpm
- f = 0.001mm
- $D_c = 0.1mm$
- $K_c = 1500N/mm^2$
- $\eta = 85\%$

Velocidad de avance

$$V_f = f \cdot n = 0.001 \cdot 32500 = 32.5[mm/min] \tag{1}$$

Volumen de arranque de viruta

$$Q = \frac{V_f \cdot \pi \cdot D_c^2}{4 \cdot 1000} = \frac{32.5 \cdot \pi \cdot 0.1^2}{4 \cdot 1000} = 0.0002553[cm^3/min]$$
(2)

Demanda de potencia

$$P_{mot} = \frac{Q \cdot K_c}{60000 \cdot \eta} = \frac{0.000255 \cdot 1500}{60000 \cdot 0.85} = 0.000008[kW]$$
 (3)

II-B. Velocidad de trabajo

II-B1. Modo taladro: Para el cálculo de la velocidad de trabajo, se realizó el siguiente procedimiento:

Se toma en cuenta que las velocidades de la máquina seleccionada es de 8000 - 32500 rpm, en este caso el mini taladro trabajará a máxima velocidad. Por último, el diámetro de fresa que se utilizará es de 0.1mm, ya que es la precisión que tendrá la máquina:

- n = 32500rpm
- $D_c = 0.1mm$

$$Vc = \frac{\pi \cdot D_c \cdot n}{1000} = \frac{\pi \cdot 0.1 \cdot 32500}{1000} = 10.21[m/min] \quad (4)$$

II-B2. Modo fresa: Para el cálculo de la velocidad de avance en modo fresadora se realizó el siguiente procedimiento:

- $S_z = 0.2$
- *z* = 2
- n = 32500rpm

$$S' = S_z \cdot z \cdot n = 0.2 \cdot 2 \cdot 32500 = 13000[mm/min]$$
 (5)

II-C. Resistencia

Para el cálculo de resistencia, se realizó el siguiente procedimiento:

$$e=(\frac{S^{'}}{z\cdot n})\cdot (\sqrt{\frac{a}{b}})=(\frac{13000}{2\cdot 32500})\cdot (\sqrt{\frac{2}{3}})=0.163mm \ \ (6)$$

$$ks = K_{s0} \cdot e^{-z} = 19 \cdot 0.163^{-0.3} = 32.7414N/mm^2$$
 (7)

Cálculo de F_c

$$Fc = Ks \cdot Sv = 32.7414 \cdot 0.4 = 13.09656N$$
 (8)

II-C1. eje y: Cálculo de la ubicación L Se considera el peso de la herramienta y del husillo como 2Kg (W) = 19.6N.

$$L = W + F_c = 19.6 + 13.09656 = 32.69656N$$
 (9)

Tomando en cuenta que la ubicación del husillo está en el centro, la fuerza es:

$$F = \frac{L}{2} \cdot \frac{d_2}{d_1} = \frac{32.69656}{2} \cdot \frac{40}{20} = 32.7N \tag{10}$$

Con acero AISI L2 Sy=365.4

$$\sigma = \frac{S_y}{n} = \frac{365.4}{2} = 184.7 N/mm^2 \tag{11}$$

Teniendo en cuenta un máximo de momento M= 8941.35Nmm

$$S = \frac{M}{\sigma_{max}} = \frac{8941.35}{184.7} = 48.94mm^3 \tag{12}$$

$$S = \frac{M}{\sigma_{max}} = \frac{8941.35}{184.7} = 48.94 mm^3 \tag{13}$$

Diámetro

$$d = sqrt[3] \frac{32 \cdot S}{pi} = sqrt[3] \frac{32 \cdot 48.94}{pi} = 7.93mm$$
 (14)

II-C2. eje x: Cálculo de la ubicación L Se considera el peso de la herramienta y del husillo como 2Kg(W) = 19.6N.

$$L = W + F_c = 19.6 + 13.09656 = 32.69656N$$
 (15)

Tomando en cuenta que la ubicación del husillo está en el centro, la fuerza es:

$$F = \frac{L}{2} \cdot \frac{d_2}{d_1} = \frac{32.69656}{2} \cdot \frac{40}{20} = 32.7N \tag{16}$$

Con acero AISI L2 Sy=365.4

$$\sigma = \frac{S_y}{n} = \frac{365.4}{2} = 184.7N/mm^2 \tag{17}$$

Teniendo en cuenta un máximo de momento M= 8941.35Nmm

$$S = \frac{M}{\sigma_{max}} = \frac{8941.35}{184.7} = 48.94mm^3 \tag{18}$$

$$S = \frac{M}{\sigma_{max}} = \frac{8941.35}{184.7} = 48.94mm^3 \tag{19}$$

Diámetro

$$d = sqrt[3] \frac{32 \cdot S}{ni} = sqrt[3] \frac{32 \cdot 48.94}{ni} = 11.74mm \quad (20)$$

Figura 3. Sistema electrónico

III. DISEÑO CAD

III-A. Piezas Inventor

Figura 4. Piezas

III-B. Resultado

Figura 5. FINAL

[1] S. Bravo Vargas, "Manufactura, ingeniería y tecnología", Ingenio y Conciencia Boletín Científico de la Escuela Superior Ciudad Sahagún, vol. 3, n.º 5, enero de 2016. Accedido el 13 de junio de 2022. [En línea]. Disponible: https://doi.org/10.29057/ess.v3i5.1399