Análise Complexa e Equações Diferenciais

Problemas propostos para as aulas práticas

Semana 3 - 6 a 9 de Outubro de 2020

1. Para cada um dos seguintes conjuntos, determine se é aberto, fechado, limitado e compacto. Além disso, indique o interior, exterior, fronteira e aderência.

```
a) \{z \in \mathbb{C} : 1 < |z| < 2\}

b) \{z \in \mathbb{C} : 1 < |z| \le 2\}

c) \{z \in \mathbb{C} : 1 \le |z| \le 2\}

d) \{z \in \mathbb{C} : |z| > 3\}

e) \{z \in \mathbb{C} : |z| \ge 3\}

f) \{z \in \mathbb{C} : \text{Re}(z) > 0\}

g) \{z \in \mathbb{C} : \text{Re}(z) > 0\} \cup \{0\}

i) \{z \in \mathbb{C} : \text{Re}(z) = 0, \ 1 \le \text{Im}(z) \le 2\}

k) \{z \in \mathbb{C} : z = p + iq, \ p, q \in \mathbb{Q}\}

m) \{z \in \mathbb{C} : z = e^{2\pi i s n}, \ n \in \mathbb{Z}\} s \in \mathbb{R} \setminus \mathbb{Q} fixo
```

2. Calcule os seguintes limites ou mostre que não existem

```
a) \lim \frac{n+2i}{7+3ni} b) \lim \frac{\operatorname{senh}(ni)}{n} c) \lim e^{in} d) \lim (1+i)^{-n}
e) \lim_{z\to -i} \frac{z^2+3iz-2}{z+i} f) \lim_{z\to 0} \frac{\operatorname{sen} z}{z} g) \lim_{z\to 0} \frac{\operatorname{sen} z}{\operatorname{senh}(iz)} h) \lim_{z\to 0} \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}
```

3. Ao longo de que semi-rectas começando na origem (identificadas por Arg(z) = const.), existe o limite $\lim_{z\to\infty} |e^z|$?

4. Para que valores de z é convergente a sucessão nz^n ?

5. Mostre que, se |z| > 1 então $\lim \frac{z^n}{n} = \infty$.

6. Determine as partes real e imaginária das seguintes funções de variável complexa e indique os pontos de $\mathbb C$ onde são contínuas:

a)
$$\operatorname{Re}(z)$$
 b) \overline{z} c) $|z|$ d) z^2 e) $z|z|$ f) $e^{\cos z}$ g) $\log(z+2)$ (Ramo Principal) h) $\frac{1}{(3-5z)^3}$ i) $\frac{1+z}{(\sin z)^2}$

7. Mostre que, se f é contínua em $z_0 \in D_f$ e $f(z_0) \neq 0$, então existe uma bola centrada em z_0 tal que $f(z) \neq 0$ para todos os pontos $z \in D_f$ nessa bola.

8. Seja $f: D_f \to \mathbb{C}$. Mostre que f é contínua no seu domínio D_f se e só se, qualquer que seja o aberto $A \subset \mathbb{C}$, existe um aberto O tal que $f^{-1}(A) = O \cap D_f$.

1

- 9. Seja $f: D_f \to \mathbb{C}$ e $K \subset D_f$ um subconjunto compacto. Mostre que, se f é contínua em D_f , então f(K) é compacto.
- 10. Considere a esfera de Riemann dada por $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$ e a correspondente projecção estereográfica sobre o plano complexo, que a cada ponto $(x_1, x_2, x_3) \in S$, exceptuando o pólo norte (0, 0, 1), faz corresponder um ponto do plano $z \in \mathbb{C}$. Mostre que a correspondência entre z e (x_1, x_2, x_3) é dada por

$$x_1 = \frac{z + \bar{z}}{|z|^2 + 1}, \qquad x_2 = \frac{-i(z - \bar{z})}{|z|^2 + 1}, \qquad x_3 = \frac{|z|^2 - 1}{|z|^2 + 1},$$

ou inversamente

$$z = \frac{x_1 + ix_2}{1 - x_3}.$$

- 11. Determine os domínios de diferenciabilidade e de analiticidade das seguintes funções, isto é, os conjuntos de pontos de $\mathbb C$ onde admitem derivada e onde são analíticas, calculando a derivada onde ela exista:
 - a) xy ix b) $x^2 y^2 + 2ixy$ c) $x^2 y + i(x y^2)$ d) $x^2 y^2 + 2i|xy|$ e) $z^2 3z$
 - f) $\cos(3z) i$ g) $\operatorname{Im}(z^2)$ h) $\operatorname{Re}(z) + \operatorname{Im}(z)$ i) $z(e^{iz} e^{-iz})$ j) $|z|\bar{z}$
 - k) $\overline{e^z}$ l) $ze^{\overline{z}}$ m) $\frac{1}{z} \overline{z}$
- 12. Calcule as derivadas das seguintes funções:
 - a) $\operatorname{sen}(z) + 3z^2 ze^{z^3}$ b) $\cos(z) + (2z+1)^z$ c) $f(z) = \frac{az+b}{cz+d}$
- 13. Deduza as equações de Cauchy-Riemann, em coordenadas polares, da seguinte forma. Seja $f:A\subset\mathbb{C}\to\mathbb{C}$ uma função definida num conjunto aberto A, tal que f(z)=u(z)+iv(z), para $z\in A$. Seja $T:\mathbb{R}^+\times]0, 2\pi[\to\mathbb{R}^2\setminus\{(x,0):x\geq 0\}$ a aplicação da mudança de coordenadas polares dada por $T(\rho,\theta)=(\rho\cos\theta,\rho\sin\theta)=\rho\,e^{i\theta}$ (Naturalmente, qualquer outro intervalo de comprimento 2π , para domínio dos ângulos θ , serviria igualmente). Defina $\tilde{u}(\rho,\theta)=u\circ T(\rho,\theta)=u(\rho\cos\theta,\rho\sin\theta)=u(\rho\,e^{i\theta})$ e $\tilde{v}(\rho,\theta)=v\circ T(\rho,\theta)=v(\rho\cos\theta,\rho\sin\theta)=v(\rho\,e^{i\theta})$.
 - a) Mostre que T, como aplicação de \mathbb{R}^2 em \mathbb{R}^2 , é continuamente diferenciável e tem uma inversa, também continuamente diferenciável.
 - b) Usando o teorema da diferenciação de funções compostas, em \mathbb{R}^2 , mostre que f é analítica no conjunto $A \setminus \{x+iy: x \geq 0, y=0\}$ se e só se $(\tilde{u}, \tilde{v}): T^{-1}(A) \to \mathbb{R}^2$ é diferenciável e satisfaz as equações de Cauchy-Riemann polares, em $T^{-1}(A)$

$$\frac{\partial \tilde{u}}{\partial \rho} = \frac{1}{\rho} \frac{\partial \tilde{v}}{\partial \theta} \qquad \frac{\partial \tilde{v}}{\partial \rho} = -\frac{1}{\rho} \frac{\partial \tilde{u}}{\partial \theta}.$$

- c) Determine a fórmula para $f'(z) = f'(\rho e^{i\theta})$ em coordenadas polares, em função das derivadas parciais de \tilde{u} e \tilde{v} em ordem a ρ e θ .
- d) Sabendo que a função $\log z$ é dada em coordenadas polares por $\log z = \log (\rho e^{i\theta}) = \log \rho + i\theta$ verifique que é diferenciável e determine a sua derivada.