Chapter 1c Advanced Predicate Logic

Discrete Mathematics II

(Materials drawn from Chapter 2 in:

"Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about Systems, 2nd Ed., Cambridge University Press, 2006.")

Nguyen An Khuong, Huynh Tuong NguyenFaculty of Computer Science and Engineering
University of Technology, VNU-HCM

Advanced Predicate Logic

Contents

Advanced Predicate Logic

Advanced Predicate Logic

 Propositional logic can easily handle simple declarative statements such as:

Example

Student Hung enrolled in DMII.

 Propositional logic can also handle combinations of such statements such as:

Example

Student Hung enrolled in Tutorial 1, and student Cuong is enrolled in Tutorial 2.

But: How about statements with "there exists..." or "every..."
 or "among..."?

What is needed?

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Example

Every student is younger than some instructor.

What is this statement about?

- Being a student
- Being an instructor
- Being younger than somebody else

These are *properties* of elements of a *set* of objects.

We express them in predicate logic using predicates.

Predicates

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Example

Every student is younger than some instructor.

- S(An) could denote that An is a student.
- *I*(*Binh*) could denote that Binh is an instructor.
- Y(An, Binh) could denote that An is younger than Binh.

The Need for Variables

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Example

Every student is younger than some instructor.

We use the predicate S to denote student-hood. How do we express "every student"?

We need variables that can stand for constant values, and a quantifier symbol that denotes "every".

The Need for Variables

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Example

Every student is younger than some instructor.

Using variables and quantifiers, we can write:

$$\forall x (S(x) \to (\exists y (I(y) \land Y(x,y)))).$$

Literally: For every x, if x is a student, then there is some y such that y is an instructor and x is younger than y.

Another Example

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

English

Not all birds can fly.

Predicates

B(x): x is a bird

F(x): x can fly

The sentence in predicate logic

$$\neg(\forall x (B(x) \to F(x)))$$

A Third Example

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

English

Every girl is younger than her mother.

Predicates

G(x): x is a girl

M(x,y): y is x's mother

Y(x,y): x is younger than y

The sentence in predicate logic

$$\forall x \forall y (G(x) \land M(x,y) \rightarrow Y(x,y))$$

ВК

The sentence in predicate logic

$$\forall x \forall y (G(x) \land M(x,y) \rightarrow Y(x,y))$$

Note that y is only introduced to denote the mother of x.

If everyone has exactly one mother, the predicate ${\cal M}(x,y)$ is a function, when read from right to left.

We introduce a function symbol m that can be applied to variables and constants as in

$$\forall x (G(x) \to Y(x, m(x)))$$

BK TP.HCM

English

An and Binh have the same maternal grandmother.

The sentence in predicate logic without functions

$$\forall x \forall y \forall u \forall v (M(y,x) \land M(\mathit{An},y) \land M(v,u) \land M(\mathit{Binh},v) \rightarrow x = u)$$

The same sentence in predicate logic with functions

$$m(m(\mathit{An})) = m(m(\mathit{Binh}))$$

Outlook

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Syntax: We formalize the language of predicate logic, including scoping and substitution.

Proof theory: We extend natural deduction from propositional to predicate logic

Semantics: We describe models in which predicates, functions, and formulas have meaning.

Further topics: Soundness/completeness (beyond scope of module), undecidability, incompleteness results, compactness results, extensions

Advanced Predicate Logic

Predicate Vocabulary

Logic Nguyen An Khuong, Huynh Tuong Nguyen

Advanced Predicate

At any point in time, we want to describe the features of a particular "world", using predicates, functions, and constants. Thus, we introduce for this world:

- ullet a set of predicate symbols ${\cal P}$
- ullet a set of function symbols ${\cal F}$
- ullet a set of constant symbols ${\mathcal C}$

Arity of Functions and Predicates

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Every function symbol in $\mathcal F$ and predicate symbol in $\mathcal P$ comes with a fixed arity, denoting the number of arguments the symbol can take.

Special case

Function symbols with arity 0 are called *constants*.

Terms

Nguyen An Khuong, Huynh Tuong Nguyen

$$t ::= x \mid c \mid f(t, \dots, t)$$

where

- x ranges over a given set of variables var,
- ullet c ranges over nullary function symbols in ${\mathcal F}$, and
- f ranges over function symbols in \mathcal{F} with arity n > 0.

Examples of Terms

Nguyen An Khuong, Huynh Tuong Nguyen

If n is nullary, f is unary, and g is binary, then examples of terms are:

- g(f(n), n)
- f(g(n, f(n)))

More Examples of Terms

Advanced Predicate
Logic

Nguyen An Khuong.

Nguyen An Khuong, Huynh Tuong Nguyen

If $0,1,\ldots$ are nullary, s is unary, and +,- and * are binary, then

$$*(-(2,+(s(x),y)),x)$$

is a term.

Occasionally, we allow ourselves to use infix notation for function symbols as in

$$(2 - (s(x) + y)) * x$$

Formulas

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\exists x \phi)$$

where

- $P \in \mathcal{P}$ is a predicate symbol of arity $n \ge 1$,
- ullet t_i are terms over ${\mathcal F}$ and
- x is a variable.

Conventions

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Just like for propositional logic, we introduce convenient conventions to reduce the number of parentheses:

- \neg , $\forall x$ and $\exists x$ bind most tightly;
- then ∧ and ∨;
- ullet then ullet, which is right-associative.

Parse Trees

$$\forall x ((P(x) \to Q(x)) \land S(x,y))$$

has parse tree

Advanced Predicate Logic

Another Example

Advanced Predicate Logic

Every son of my father is my brother.

Every 30th of thry faction is thry brother.

Nguyen An Khuong, Huvnh Tuong Nguyen

Predicates

S(x,y): x is a son of y

B(x,y): x is a brother of y

Functions

m: constant for "me"

f(x): father of x

The sentence in predicate logic

$$\forall x(S(x, f(m)) \to B(x, m))$$

Does this formula hold?

Equality is a common predicate, usually used in infix notation.

$$=\in\mathcal{P}$$

Example

Instead of the formula

$$= (f(x), g(x))$$

we usually write the formula

$$f(x) = g(x)$$

Free and Bound Variables

Consider the formula

$$\forall x((P(x) \to Q(x)) \land S(x,y))$$

What is the relationship between variable "binder" x and occurrences of x?

Advanced Predicate Logic

Free and Bound Variables

Consider the formula

$$(\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y))$$

Which variable occurrences are free; which are bound?

Advanced Predicate Logic

Variables are *place*holders. Re*plac*ing them by terms is called *substitution*.

Definition

Given a variable x, a term t and a formula ϕ , we define $[x\Rightarrow t]\phi$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t.

Example

$$[x \Rightarrow f(x,y)](\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y)))$$
$$= \forall x (P(x) \land Q(x)) \to (\neg P(f(x,y)) \lor Q(y))$$

A Note on Notation

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Instead of

$$[x\Rightarrow t]\phi$$

the textbook uses the notation

$$\phi[t/x]$$

(we find the order of arguments in the latter notation hard to remember)

Example as Parse Tree

$$\begin{split} [x \Rightarrow f(x,y)] ((\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y))) \\ &= (\forall x (P(x) \land Q(x))) \to (\neg P(f(x,y)) \lor Q(y)) \end{split}$$

Advanced Predicate Logic

Example as Parse Tree

Advanced Predicate Logic

Example

$$[x \Rightarrow f(y,y)](S(x) \land \forall y (P(x) \to Q(y)))$$

$$\uparrow \\ S \qquad \forall y \\ | \qquad | \qquad | \\ x \qquad \to \\ P \qquad Q \\ | \qquad | \qquad | \\ x \qquad y$$

Advanced Predicate Logic

Avoiding Capturing

Nguyen An Khuong, Huynh Tuong Nguyen

Definition

Given a term t, a variable x and a formula ϕ , we say that t is free for x in ϕ if no free x leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

Free-ness as precondition

In order to compute $[x\Rightarrow t]\phi$, we demand that t is free for x in ϕ .

What if not?

Rename the bound variable!

Example of Renaming

$$[x \Rightarrow f(y,y)](S(x) \land \forall y(P(x) \rightarrow Q(y)))$$

$$[x \Rightarrow f(y,y)](S(x) \land \forall z (P(x) \to Q(z)))$$

$$\Downarrow$$

$$S(f(y,y)) \land \forall z (P(f(y,y)) \rightarrow Q(z))$$

Advanced Predicate Logic

Advanced Predicate Logic

Relationship between propositional and predicate logic

If we consider propositions as nullary predicates, propositional logic is a sub-language of predicate logic.

Inheriting natural deduction

We can translate the rules for natural deduction in propositional logic directly to predicate logic.

Example

$$\frac{\phi \quad \psi}{\phi \wedge \psi} [\wedge i]$$

Built-in Rules for Equality

Advanced Predicate Logic

$$t_1 = t_2 [x \Rightarrow t_1]\phi$$

$$t = t$$

$$[= i]$$

$$[x \Rightarrow t_2]\phi$$

Properties of Equality

We show:

$$f(x) = g(x) \vdash h(g(x)) = h(f(x))$$

using

$$t_1 = t_2 [x \Rightarrow t_1]\phi$$

$$t = t [x \Rightarrow t_2]\phi$$

$$\begin{array}{lll} 1 & f(x)=g(x) & \text{premise} \\ 2 & h(f(x))=h(f(x)) & =i \\ 3 & h(g(x))=h(f(x)) & =e \ 1,2 \end{array}$$

Advanced Predicate Logic

Rules for Universal Quantification

Advanced Predicate Logic

$$\frac{\forall x \phi}{[x \Rightarrow t] \phi} [\forall x \ e]$$

Example

We prove: $F(g(\mathit{Duong})), \forall x(F(x) \to \neg M(x)) \vdash \neg M(g(\mathit{Duong}))$

1	F(g(Duong))	premise
2	$\forall x (F(x) \to \neg M(x))$	premise
3	F(g(Duong)) o eg M(g(Duong))	$\forall x \ e \ 2$
4	$ eg M(g(\mathit{Duong}))$	ightarrow e 3,1

Advanced Predicate Logic

Rules for Universal Quantification

If we manage to establish a formula ϕ about a fresh variable x_0 , we can assume $\forall x\phi$.

Advanced Predicate Logic

Example

$$\begin{bmatrix} x_0 \\ \vdots \\ [x \Rightarrow x_0]\phi \end{bmatrix}$$

 $\forall x \phi$

1 2	$\forall x (P(x) \to Q(x)) \\ \forall x P(x)$	premise premise	
3	$x_0 P(x_0) \to Q(x_0)$	$\forall x \ e \ 1$	
4	$P(x_0)$	$\forall x \ e \ 2$	
5	$Q(x_0)$	ightarrow e 3,4	
6	$\forall x Q(x)$	∀ <i>x i</i> 3–5	

 $\forall x (P(x) \to Q(x)), \forall x P(x) \vdash \forall x Q(x) \text{ via } \cdot$

Rules for Existential Quantification

Advanced Predicate Logic

Example

$$\forall x (P(x) \to Q(x)), \exists x P(x) \vdash \exists x Q(x)$$

(D(D(A), O(A))

T	$\forall x (P(x) \to Q(x))$	premise	
2	$\exists x P(x)$	premise	
3	$x_0 P(x_0)$	assumption	
4	$P(x_0) \to Q(x_0)$	$\forall x \ e \ 1$	
5	$Q(x_0)$	ightarrow e 4,3	
6	$\exists x Q(x)$	$\exists x \ i \ 5$	
7	$\exists x Q(x)$	∃ <i>x e</i> 2,3–6	

Advanced Predicate Logic

Examples of Quantifier Equivalences

$$\neg \forall x \phi \quad \dashv \vdash \quad \exists x \neg \phi$$
$$\neg \exists x \phi \quad \dashv \vdash \quad \forall x \neg \phi$$
$$\exists x \exists y \phi \quad \dashv \vdash \quad \exists y \exists x \phi$$

Assume x is not free in ψ :

$$\forall x \phi \land \psi \quad \dashv\vdash \quad \forall x (\phi \land \psi)$$

$$\exists x (\psi \to \phi) \quad \dashv\vdash \quad \psi \to \exists x \phi$$

Advanced Predicate Logic

Advanced Predicate Logic

Definition

Let $\mathcal F$ contain function symbols and $\mathcal P$ contain predicate symbols. A model $\mathcal M$ for $(\mathcal F,\mathcal P)$ consists of:

- \bullet A non-empty set A, the *universe*;
- **2** for each nullary function symbol $f \in \mathcal{F}$ a concrete element $f^{\mathcal{M}} \in A$;
- 3 for each $f \in F$ with arity n > 0, a concrete function $f^{\mathcal{M}}: A^n \to A$;
- **4** for each $P \in \mathcal{P}$ with arity n > 0, a set $P^{\mathcal{M}} \subseteq A^n$.

Example

Let $\mathcal{F} = \{e, \cdot\}$ and $\mathcal{P} = \{\leq\}$.

Let model $\mathcal M$ for $(\mathcal F,\mathcal P)$ be defined as follows:

- **1** Let A be the set of binary strings over the alphabet $\{0,1\}$;
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- **4** let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Logic

- 1 Let A be the set of binary strings over the alphabet $\{0,1\}$;
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- **4** let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of ${\cal A}$

- 10001
- \bullet ϵ
- $1010 \cdot^{\mathcal{M}} 1100 = 10101100$
- \bullet ϵ
- $000 \cdot \mathcal{M} \epsilon = 000$

Equality Revisited

Nguyen An Khuong, Huynh Tuong Nguyen

Interpretation of equality

Usually, we require that the equality predicate = is interpreted as same-ness.

Extensionality restriction

This means that allowable models are restricted to those in which $a=^{\mathcal{M}}b$ holds if and only if a and b are the same elements of the model's universe.

- 1 Let A be the set of binary strings over the alphabet $\{0,1\}$;
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- **4** let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Equality in ${\mathcal M}$

- $000 = ^{\mathcal{M}} 000$
- $001 \neq^{\mathcal{M}} 100$

Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$.

Let model \mathcal{M} for $(\mathcal{F},\mathcal{P})$ be defined as follows:

- \bigcirc Let A be the set of natural numbers;
- $2 \text{ let } z^{\mathcal{M}} = 0;$
- 3 let $s^{\mathcal{M}}$ be defined such that s(n) = n + 1; and
- **4** let $\leq^{\mathcal{M}}$ be defined such that $n_1 \leq^{\mathcal{M}} n_2$ iff the natural number n_1 is less than or equal to n_2 .

Advanced Predicate Logic

ВК

Idea

We can give meaning to formulas with free variables by providing an environment (lookup table) that assigns variables to elements of our universe:

$$l: \mathsf{var} \to A.$$

Environment extension

We define environment extension such that $l[x\mapsto a]$ is the environment that maps x to a and any other variable y to l(y).

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment l, written $\mathcal{M} \models_l \phi$:

- in case ϕ is of the form $P(t_1,t_2,\ldots,t_n)$, if the result (a_1,a_2,\ldots,a_n) of evaluating t_1,t_2,\ldots,t_n with respect to l is in $P^{\mathcal{M}}$;
- in case ϕ has the form $\forall x \psi$, if the $\mathcal{M} \models_{l[x \mapsto a]} \psi$ holds for all $a \in A$;
- in case ϕ has the form $\exists x \psi$, if the $\mathcal{M} \models_{l[x \mapsto a]} \psi$ holds for some $a \in A$;

Advanced Predicate Logic

Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_l \psi$ does not hold;
- in case ϕ has the form $\psi_1 \vee \psi_2$, if $\mathcal{M} \models_l \psi_1$ holds or $\mathcal{M} \models_l \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_l \psi_1$ holds and $\mathcal{M} \models_l \psi_2$ holds; and
- in case ϕ has the form $\psi_1 \to \psi_2$, if $\mathcal{M} \models_l \psi_1$ holds whenever $\mathcal{M} \models_l \psi_2$ holds.

Advanced Predicate Logic

Satisfaction of Closed Formulas

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

If a formula ϕ has no free variables, we call ϕ a sentence. $\mathcal{M}\models_l\phi$ holds or does not hold regardless of the choice of l. Thus we write $\mathcal{M}\models\phi$ or $\mathcal{M}\not\models\phi$.

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

 $\Gamma \models \psi$ iff for all models \mathcal{M} and environments l, whenever $\mathcal{M} \models_{l} \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \models_{l} \psi$.

Satisfiability of Formulas

 ψ is satisfiable iff there is some model $\mathcal M$ and some environment l such that $\mathcal M \models_l \psi$ holds.

Satisfiability of Formula Sets

 Γ is satisfiable iff there is some model $\mathcal M$ and some environment l such that $\mathcal M\models_l \phi$, for all $\phi\in\Gamma$.

Semantic Entailment and Satisfiability

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Validity

 ψ is valid iff for all models $\mathcal M$ and environments l, we have $\mathcal M \models_l \psi$.

The Problem with Predicate Logic

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Entailment ranges over models

Semantic entailment between sentences: $\phi_1,\phi_2,\ldots,\phi_n\models\psi$ requires that in *all* models that satisfy $\phi_1,\phi_2,\ldots,\phi_n$, the sentence ψ is satisfied.

How to effectively argue about all possible models?

Usually the number of models is infinite; it is very hard to argue on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?

Central Result of Natural Deduction

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

$$\phi_1, \dots, \phi_n \models \psi$$
 iff

$$\phi_1,\ldots,\phi_n\vdash\psi$$

proven by Kurt Gödel, in 1929 in his doctoral dissertation

ВК

Decision problems

A decision problem is a question in some formal system with a yes-or-no answer.

Decidability

Decision problems for which there is an algorithm that returns "yes" whenever the answer to the problem is "yes", and that returns "no" whenever the answer to the problem is "no", are called *decidable*.

Decidability of satisfiability

The question, whether a given propositional formula is satisifiable, is decidable.

Undecidability of Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

Proof

- Establish that the Post Correspondence Problem (PCP) is undecidable (here only as sketch).
- Translate an arbitrary PCP, say C, to a formula ϕ .
- Establish that $\models \phi$ holds if and only if C has a solution.
- Conclude that validity of pred. logic formulas is undecidable.

Post Correspondence Problem

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Informally

Can we line up copies of the cards such that the top row spells out the same sequence as the bottom row?

Formally

Given a finite sequence of pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$ such that all s_i and t_i are binary strings of positive length, is there a sequence of indices i_1,i_2,\ldots,i_n with $n\geq 1$ such that the concatenations $s_{i_1}s_{i_2}\ldots s_{i_n}$ and $t_{i_1}t_{i_2}\ldots t_{i_n}$ are equal?

Turing machines

Basic abstract symbol-manipulating devices that can simulate in prinicple any computer algorithm. The input is a string of symbols on a *tape*, and the machine "accepts" the input string, if it reaches one of a number of *accepting states*.

Termination of Programs is Undecidable

It is undecidable, whether program with input terminates.

Proof idea

For a Turing machine with a given input, construct a PCP such that a solution of the PCP exists if and only if the Turing machine accepts the solution.

Translate Post Correspondence Problem to Formula

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Bits as Functions

Represent bits 0 and 1 by functions f_0 and f_1 .

Strings as Terms

Represent the empty string by a constant e. The string $b_1b_2 \dots b_l$ corresponds to the term

$$f_{b_l}(f_{b_{l-1}}\dots(f_{b_2}(f_{b_1}(e)))\dots)$$

Towards a Formula for a PCP

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Idea

P(s,t) holds iff there is a sequence of indices (i_1,i_2,\ldots,i_m) such that s is $s_{i_1}s_{i_2}\ldots s_{i_m}$ and t is $t_{i_1}t_{i_2}\ldots t_{i_m}$.

The Formula ϕ

$$\phi = \phi_1 \wedge \phi_2 \rightarrow \phi_3$$
, where

$$\phi_1 = \bigwedge_{i=1}^k P(f_{s_i}(e), f_{t_i}(e))$$

$$\phi_2 = \forall v \forall w (P(v, w) \to \bigwedge_{i=1}^k P(f_{s_i}(v), f_{t_i}(w)))$$

$$\phi_3 = \exists z P(z, z)$$

Advanced Predicate Logic

Undecidability of Predicate Logic

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

So Far

Post correspondence problem is undecidable. Constructed ϕ_C for Post correspondence problem C.

To Show

 $\models \phi_C$ holds if and only if C has a solution.

Proof

Proof via construction of ϕ_C . Formally construct an interpretation of strings and show that whenever there is a solution, the formula ϕ_C holds and vice versa.

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

Proof

- Establish that the Post Correspondence Problem (PCP) is undecidable
- Translate an arbitrary PCP, say C, to a formula ϕ .
- Establish that $\models \phi$ holds if and only if C has a solution.
- Conclude that validity of pred. logic formulas is undecidable.

Compactness Theorem

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Let Γ be a set of sentences of predicate logic. If all finite subsets of Γ are satisfiable, then Γ is satisfiable.

Proof of Compactness Theorem

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Assume Γ is not satisfiable.

We thus have $\Gamma \models \bot$.

Via completeness, we have $\Gamma \vdash \bot$.

The proof is finite, thus only uses a finite subset $\Delta \subset \Gamma$ of premises.

Thus, $\Delta \vdash \bot$, and $\Delta \models \bot$ via soundness.

Reachability not Expressible in Predicate Logic

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

There is no predicate logic formula $\phi_{G,u,v}$ with u and v as its only free variables and R as its only predicate symbol, such that $\phi_{G,u,v}$ holds iff there is a path from u to v in G.

Löwenheim-Skolem Theorem

Advanced Predicate Logic

Nguyen An Khuong, Huynh Tuong Nguyen

Let ψ be a sentence of predicate logic such that for any natural number $n\geq 1$ there is a model of ψ with at least n elements. Then ψ has a model with infinitely many elements.

ВК

Homeworks

It is recommended that you should do as much as you can ALL marked exercises in [2, Sect. 2.8] (notice that sample solutions for these exercises are available in [3]). For this lecture, the following are recommended exercises [2]:

- 2.1: 1a); 2a)
- 2.2: 6
- 2.3: 1a); 1b); 6a); 6b); 6c); 7b); 9b); 9c); 13d)
- 2.4: 2); 3); 11a); 11c); 12e); 12f); 12h); 12k)
- 2.5: 1c); 1e).

Next Weeks?

- Exercises Session;
- Applications of FoL.