INF 331 - Prova 2

Questão 1 (22 pontos = 4 + 1 + 5 + 2 + 5 + 5)

Sejam M_1 e M_2 os autômatos finitos abaixo:

- (A) Apresente expressões regulares que representem os conjuntos $L(M_1)$ e $L(M_2)$.
- (B) Use transições λ para obter um autômato M_3 que aceite a linguagem $L(M_1) \cup L(M_2)$.
- (C) Apresente uma gramática regular que gere a linguagem $L(M_3)$.
- (D) Apresente a função de transição de entrada t para M_3 .
- (E) Construa um autômato finito determinístico M_4 , equivalente a M_3 .
- (F) Aplique o algoritmo de minimização de estados sobre M_4 .

Questão 2 (18 pontos = 4 + 4 + 4 + 6)

Seja *M* o autômato de pilha abaixo:

Considere como critério de aceitação o alcance de estado final e pilha vazia.

- (A) Mostre as configurações para o processamento das entradas λ , a, bbba e abba. Indique se são aceitas ou não pelo autômato.
- (B) M é determinístico ou não determinístico? Se a resposta for "não", indique transições que implicam em não determinismo.
- (C) Qual é a linguagem aceita pelo autômato *M*?
- (D) Apresente um autômato de pilha que aceita a linguagem $L(M) \cap L(M_1)$, considerando o autômato finito M_1 da Questão 1.