

## Modeling Maternal Mortality Rates (MMR)

Data Science Part Time Course Rebecca Minich 11.29.16

# What factors contribute to global MMR?



## Could other factors contribute to MMR?

#### **Datasets**

### Maternal Mortality Rates (MMR):

- A. Birth attendant
- B. Antenatal (prenatal) care
- C. Adolescent Birth Rates
- D. Contraceptives modern methods
- E. Abortion policy scale
- F. Education: Primary School Enrollment
- G. Technology: Cellphone Subscribers
- H. War: Homicides
- Health: Life Expectancy
- J. Wealth: GNI Per Capita Data by Country(PPP)





# Dataframe and Feature Engineering

- 190 countries
- 12 different datasets, 33 total columns
- Missing data filled with median values:



| AOD_FMLE           | 76.06    |
|--------------------|----------|
| attend%            | 96.60    |
| GNI                | 10080.00 |
| ABR%               | 4.54     |
| EDFMLE_MLE%        | 99.82    |
| cell_Subscription% | 105.00   |
| homicide100K       | 5.40     |
| contraceptives%    | 33.73    |
| prenat%            | 77.60    |
| ED_FMLE%           | 95.37    |
| Abortion_scale     | 2.00     |

# Response Variable Engineering



- 1. MMR100K Maternal deaths per 100,000 births
- MMRClassifier Created for logistic regression model based on min, max and 25, 50, 75% of MMR.
- 3. MMRBinary Binary variable for logistic regression model.

# Optimizing Features: Random Forest Regressor



|         | RMSE Null | RMSE Total | RMSE Optimized |  |
|---------|-----------|------------|----------------|--|
| MMR100K | 228.39    | 91.88      | 82.65          |  |

Table 2: Optimized demographics include: 'ABR%', 'AOD\_FMLE', 'GNI', 'EDFMLE\_MLE%', 'cell\_Subscription%', 'attend%'. The Random Forest Regressor model was. Null RMSE is with y\_predict = mean.

# Model Comparisons

|                        | Null     | Log Reg     | Log Reg (Optimized) | Ran For         | Ran For (Optimized) |
|------------------------|----------|-------------|---------------------|-----------------|---------------------|
| MMRBinary              | 0.526316 | 0.873684211 | 0.857894737         | 0.8895          | 0.8947              |
| MMRClassifier          | 0.268421 | 0.692464986 | 0.674336644         | 0.7558          | 0.7482              |
| MMR100K ( <u>oob</u> ) | 0.052632 | Na          | Na                  | 0.81 <u>5</u> * | 0.8348*             |

Table 2: Optimized demographics include: 'ABR%', 'AOD\_FMLE', 'GNI', 'EDFMLE\_MLE%', 'cell\_Subscription%', 'attend%'. The Random Forest Classifier model was used for MMRBinary and MMRClassifier. \*Random Forest Regressor was used as the model for MMR100K. Null accuracy scores are the percent chance of selecting the most frequent value (MMRBinary = 1, MMRClassifier = 2, MMR100K = 54).

- All of the models improve null accuracy.
- The random forest classifier performs better than the logistic regression model.
- Reducing the number of demographics improves model accuracy.

\*The random forest regressor model was used for MMR100K and is the only model run that produces MMR predictions.

### Conclusions

#### OPTIMIZED FEATURES included in the model:

- \* AOD FMLE 0.810598
- \* attend% 0.077110
- \* GNI 0.029861
- \* ABR% 0.019747
- \* EDFMLE\_MLE% 0.012234
- \* cell\_Subscription% 0.011530

#### Features excluded from the model:

- \* ED FMLE% 0.011345
- \* prenat% 0.010079
- \* homicide100K 0.008285
- \* contraceptives% 0.006246
- \* Abortion scale 0.002966

### Demographic contributions to model:

- Successful hypothesis: Education
- Surprising outcomes: Abortion policy, cell phone subscriptions

#### Future Work

- Build a model that lacks well known causal demographics and determine the predictability.
- Add more demographics from the WHO website.