Method	Input	Iteration	Idea behind method	Required for convergence	Pros	Cons
Bisection	f(x), interval (a,b)	X _{n+1} = midpoint of the interval where f(a)f(b) < 0.	From a starting window (a,b), continually cut the window in half retaining that f(a _{new})f(b _{new}) < 1. This will make the window smaller and zoom it in on the true root.	F(x) is continuous, f(a)f(b) < 0	Always finds solution.	Linear of rate 0.5.
Fixed Point	F(x), x ₀	$G(x) = g(x_{n-1})$	We find a g(r) = r from a expression f(x) = 0. Then, g(r) = r will converge on our answer using g(x) = x + c*f(x) as long as the neighborhood of the solution has derivative less than 1.	G'(x) < 1 near x*, x ₀ near x.	At least linear	Can diverge for some functions.
Newton	F(x), x ₀	Xn=Xn-1- f(Xn-1) f(Xn-1)	We use the slope around each guess to find the next point, which can be faster	F(X) is twice differentiable, x ₀ near root	Quadratic once it is in neighborhood of root	Can move randomly until it gets near root.
Secant	F(x), x ₀	Kn=Xn, - Inger flynd)	Similar to Newton, but we don't need to find derivative of f(x)	Same as Newton	Rate of convergence is ~1.61, doesn't need derivative	Not as fast as Newton