Universidad de Sevilla

Escuela Técnica Superior de Ingeniería Informática

Sprint 4

Performance report

Diseño y Pruebas II Curso 2021 – 2022

Grupo de prácticas	E3.03
Autores	Email
Toledo Vega, Jorge	jortolhur@alum.us.es
Márquez López, José Antonio	josmarlop16@alum.us.es
Rodríguez García, Luis	luirodgar3@alum.us.es
Mira Otero, Antonio	antmirote@alum.us.es
Cáceres Gómez, José	joscacgom@alum.us.es
Oñate Parra, Julián	julonapar1@alum.us.es

Repositorio:

https://github.com/jvegax/Acme-Toolkits

Índice

1. Introducción	2
2. Test-case report	2
3. Request report	4
4. Intervalos de confianza	5
5. Hipótesis de contraste	7

1. Introducción

En este reporte de rendimiento se analizarán diferentes aspectos sobre el proyecto "Acme-Toolkits":

- Calcular cuánto tarda de media en ejecutarse cada método de test, sobre 2 ordenadores diferentes (Test-Case report).
- Calcular cuánto tarda de media en procesar cada petición o request invocada desde los tests (Request report), en 2 ordenadores diferentes.
- Calcular los intervalos de confianza de las requests procesadas en ambos ordenadores.
- Realizar una hipótesis de contraste sobre los resultados de los tiempos obtenidos de las request en los 2 ordenadores.

El estudio de rendimiento se hará sobre los resultados obtenidos en los ordenadores de Jorge Vega y de Jose Antonio

2. Test-case report

Calcular cuánto tarda de media en ejecutarse cada método de test, sobre 2 ordenadores diferentes

Jorge Vega PC

Jose Marquez PC

Tenemos un promedio general entre ambos PC de un tiempo de ejecución total entre (7,8 - 10,1) segundos por método de test, siendo el listado de componentes y tools los dos métodos que consumen más tiempo de ejecución

3. Request report

Calcular cuánto tarda de media en procesar cada petición o request invocada desde los tests (Request report), en 2 ordenadores diferentes.

Jorge Vega PC

Jose Márquez PC

Tenemos un promedio de entre (0,52 - 0,63) segundos de media en procesar las peticiones de cada método.

Podemos observar ciertos picos en **announcement-list** de Jorge PC y **toolkit-show** de Jose PC, pero nada que sea demasiado preocupante en cuanto rendimiento.

4. Intervalos de confianza

Primero, para cada ordenador, hemos realizado un análisis estadístico descriptivo para obtener datos básicos como la media, la varianza, el nivel de confianza etc.

Un intervalo de confianza sirve para dar un rango de valores en los que se mueve la muestra de la población con un porcentaje de confianza, en este caso es de un 95%, es decir, si tenemos un intervalo de confianza de [X,Y], quiere decir que el 95% de los datos, en nuestro caso cada request, se va a procesar entre X e Y milisegundos.

Jorge Vega PC

time		
Media	634,263097	
Error típico	11,2396033	
Mediana	565	
Moda	553	
Desviación estándar	329,418182	
Varianza de la muestra	108516,339	
Curtosis	86,7794237	
Coeficiente de asimetría	6,32726095	
Rango	5749	
Mínimo	255	
Máximo	6004	
Suma	544832	
Cuenta	859	
Nivel de confianza(95,0%)	22,0603371	
Intervalo de confianza	612,20276	656,323434

Jose Marquez PC

time		
Media	526,7497	
Error típico	7,935684	
Mediana	528	
Moda	528	
Desviación estándar	232,5846	
Varianza de la muestra	54095,6	
Curtosis	287,6956	
Coeficiente de asimetría	13,9333	
Rango	5460	
Mínimo	205	
Máximo	5665	
Suma	452478	
Cuenta	859	
Nivel de confianza (95,0%)	15,57563	
Intervalo de confianza	511,1741	542,3253

Intervalo de confianza de Jorge PC [0,61 - 0,65] Intervalo de confianza de Jose PC [0,51 - 0,54]

El mayor de los valores de confianza se encuentra en 0,65 segundos, lo cual es bastante por debajo de 1 segundo.

Como conclusión, podemos decir que cumple los requisitos de performance del sistema.

5. Hipótesis de contraste

Hipótesis de contraste sobre los resultados de los tiempos obtenidos de las request en los 2 ordenadores.

oefore	after			
777	580	Prueba z para medias de dos muestras	:	
782	624			
772	530		before	after
809	548	Media	735,7	589,05
736	582	Varianza (conocida)	249139	128695
797	796	Observaciones	20	20
781	525	Diferencia hipotética de las medias	0	
833	723	z	1,06695609	
733	558	P(Z<=z) una cola	0,14299583	
521	525	Valor crítico de z (una cola)	1,64485363	
528	542	Valor crítico de z (dos colas)	0,28599166	
1056	833	Valor crítico de z (dos colas)	1,95996398	
1299	553			
529	525			
520	530			
520	666			
772	539			
655	559			
635	512			
659	531			

Podemos observar que el valor P(Z)= 0.46 es mayor que Alfa, que tenía el valor 0.05. Por tanto, se puede considerar que la media entre las dos muestras del ordenador de Jorge y Jose, son estadísticamente iguales.

Podemos extraer como conclusión que las prestaciones de los ordenadores de Jorge y Jose, son prácticamente iguales en la ejecución del proyecto.