

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A retainer for a rolling bearing comprising:

a rolling element receiving pocket for receiving a rolling element, said pocket being formed by finish-machining a blank pocket with a tool member while a machining part of said tool member is inserted into said blank pocket in a radial direction of said retainer and then translated in an axial and revolving directions of said retainer,

wherein said machining part of said tool member has a sectional contour which coincides with a sectional configuration of said pocket in a cross section taken along the radial direction of said retainer after the formation of said pocket is completed,

wherein said rolling element is a roller,

said pocket is defined by a pair of ring-shaped side plates and a pair of pillars each having end portions which are respectively connected to said ring-shaped side plates,

said a first pocket surface is formed on each of said pillar pillars and said a second pocket surface is formed on each of said ring-shaped side plates,

said first pocket surface is formed in an arc-shaped configuration in a cross section along the radial direction of said retainer, and

wherein roller run-out preventing portions are formed at end portions of said pillars in the radial direction of said retainer, the width of said pocket in the revolving direction of the retainer is made smaller than the diameter of said roller, said width being defined between adjacent roller run-out preventing portions and formed at an end thereof in the radial direction of said retainer,

wherein a run out preventing portion is equal to or less than a roller effective length e and more than 0.75 of the roller effective length e.

2. (Original) The retainer for rolling bearings as set forth in Claim 1, wherein said pocket comprises a first pocket surface facing toward the revolving direction of said retainer, a second pocket surface facing toward the axial direction of said retainer and an escaping recess disposed between said first and second pocket surfaces, and wherein said tool member comprises a first

tool for finish-machining said first pocket surface and a second toll for finish-machining said second pocket surface and said escape recess.

3. (Canceled)

4. (Previously Presented) The retainer for rolling bearings as set forth in Claim 2, wherein end portions of said run-out preventing portion in the axial direction of said retainer are separated from one of said side plates by escaping recesses.

5. (Currently Amended) A retainer for rolling bearings comprising:

a rolling element receiving pocket for receiving a rolling element, said pocket being formed by finish-machining a blank pocket with a tool member while a machining part of said tool member is inserted into said blank pocket in a radial direction of said retainer and then translated in an axial and revolving directions of said retainer,

wherein said machining part of said tool member has a sectional contour which coincides with a sectional configuration of said pocket in a cross section taken along the radial direction of said retainer after the formation of said pocket is completed,

wherein said pocket comprises a first pocket surface facing toward the revolving direction of said retainer, a second pocket surface facing toward the axial direction of said retainer and an escaping recess disposed between said first and second pocket surfaces, and wherein said tool member comprises a first tool for finish-machining said first pocket surface and a second tool for finish-machining said second pocket surface and said escape recess,

wherein said rolling element is a roller,

said pocket is defined by a pair of ring-shaped side plates and a pair of pillars each having end portions which are respectively connected to said ring-shaped side plates,

said a first pocket surface is formed on each of said pillar pillars and said a second pocket surface is formed on each of said ring-shaped side plates,

said first pocket surface is formed in an arc-shaped configuration in a cross section along the radial direction of said retainer, and

wherein roller run-out preventing portions are formed at end portions of said pillars in the radial direction of said retainer, the width of said pocket in the revolving direction of the retainer is made smaller than the diameter of said roller, said width being defined between adjacent roller run-out preventing portions and formed at an end thereof in the radial direction of said retainer, and

a sectional configuration of said run-out preventing portion along the radial direction of the retainer on the pillar side is formed into a curved line smoothly connecting to said first pocket surface and having a radius of curvature protruding toward said pocket.

6. (Canceled)

7. (Previously Presented) A retainer for a roller bearing comprising:

a pair of ring-shaped side plates;

a plurality of pillars arranged in a retainer revolving direction and each having end portions respectively connected to said ring-shaped side plates;

a roller receiving pocket defined by said ring-shaped side plates and adjacent pillars of said pillars for receiving a roller,

wherein pocket surfaces are formed on sides of said pillars and side plates, recesses of said pocket are formed at portions where said pillars and said side plates are joined to each other, at least a portion of said pocket surface formed on the side of said pillar with which said roller is brought into contact is formed in an arc-shaped configuration in a cross section along a retainer radial direction, and

wherein a minimum plate width of each of said side plates at said recesses is made uniform along the retainer radial direction,

wherein a roller run out preventing portion is provided at an end portion of said pillars, a and said roller run out preventing portion is equal to or less than a roller effective length e and more than 0.75 of the roller effective length e.

8. (Previously Presented) A retainer for a roller bearing comprising:
a pair of ring-shaped side plates;
a plurality of pillars arranged in a retainer revolving direction and each having end portions respectively connected to said ring-shaped side plates;
a roller receiving pocket defined by said ring-shaped side plates and adjacent pillars of said pillars for receiving a roller,
wherein pocket surfaces are formed on sides of said pillars and said side plates, recesses of said pocket are formed at portions where said pillars and said side plates are joined to each other, and at least a portion of said pocket surface formed on the side of said pillar with which said roller is brought into contact is formed into an arc-shaped configuration in a cross section along a retainer radial direction,
- D1*
C
- wherein roller run-out preventing portions are formed at end portions of said pillars in the retainer radial direction, the width of said pocket in a retainer revolving direction which is defined between adjacent roller run-out preventing portions and formed at an end thereof in the retainer radial direction is made smaller than the diameter of said roller, and end portions of each of said run-out preventing portion in a retainer axial direction are separated from said side plates by said recesses, whereby the length of said run-out preventing portion in the retainer axial direction is made shorter than an effective length e of said roller but more than 0.75 of the roller effective length e .

9. (Previously Presented) A retainer for a roller bearing comprising:
a pair of ring-shaped side plates;
a plurality of pillars arranged in a retainer revolving direction and each having end portions respectively connected to said ring-shaped side plates;
a roller receiving pocket defined by said ring-shaped side plates and adjacent pillars of said pillars for receiving a roller,
wherein pocket surfaces are formed on sides of said pillars and said side plates, recesses of said pocket are formed at portions where said pillars and said side plates are joined to each other, at least a portion of said pocket surface formed on the side of said pillar with which said

roller is brought into contact is formed into an arc-shaped configuration in a cross section along a retainer radial direction.

a roller run-out preventing portion is formed at an end portion of said pillar in the retainer radial direction,

the width of said pocket in a retainer revolving direction which is defined by adjacent roller run-out preventing portions and formed at an end thereof in the retainer radial direction is made smaller than the diameter of said roller, and

a sectional configuration of said run-out preventing portion along the retainer radial direction on the pillar side is formed into a curved line smoothly connecting to said arc-shaped configuration of said pocket surface formed on the side of said pillar and having a radius of curvature protruding toward said pocket,

wherein said run out preventing portion is equal to or less than a roller effective length e and more than 0.75 of the roller effective length e.

10-13. (Cancelled)

14. (New) A method of making a retainer for a rolling bearing, comprising the steps of:
forming a rolling element receiving pocket-blank for receiving a rolling element, wherein
the rolling element is a roller;

defining said pocket-blank by a pair of ring-shaped side plates and a pair of pillars each
having end portions which are respectively connected to said ring-shaped side plates;

finish-machining said pocket-blank with a tool member while a machining part of said
tool member is inserted into said pocket-blank in a radial direction of said retainer and then
translated in an axial and revolving directions of said retainer so as to form said pocket with a
first pocket surface facing toward the revolving direction of said retainer, a second pocket
surface facing toward the axial direction of said retainer and an escaping recess disposed
between said first and second pocket surfaces;

wherein said machining part of said tool member is provided with a sectional contour
which coincides with a sectional configuration of said pocket in a cross section taken along the
radial direction of said retainer after the formation of said pocket is completed,

wherein said finish-machining comprises finish-machining said first pocket surface with
a first tool provided on said tool member so as to form said first pocket surface on each of said
pillars, and so as to form said first pocket surface into an arc-shaped configuration in a cross
section along the radial direction of said retainer, and

wherein said finish-machining further comprises finish-machining said second pocket
surface and said escape recess with a second tool provided in said tool member so as to form said
second pocket surface on each of said ring-shaped side plates, and so as to provide a minimum
plate width of said ring shaped side plates at said escaping recess which is uniform along the
radial direction of said retainer.