Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

Análisis y diseño de algoritmos - Catedrático: Tomás Galvéz 17 de marzo de 2023

Tarea

Problema 1. Use el método de substitución para determinar la solución a la siguiente recurrencia: $T(n) = 4T(\frac{n}{2}) + n$. La solución de acuerdo con el Master Method es $\Theta(n^2)$, pero usar la hipótesis $T(n) = cn^2$ falla. Realice el procedimiento bajo esa hipótesis para comprobar que falla y luego modifique la hipótesis para que funcione.

Solución. Por el método de substitución, suponemos que $T(n) \le cn^2 \implies T\left(\frac{n}{2}\right) \le c\left(\frac{n}{2}\right)^2$, entonces:

$$T(n) \le 4c \left(\frac{n}{2}\right)^2 + n$$
$$= cn^2 + n$$
$$\le cn^2$$

Por lo que la hipótesis falla. Ahora, se propone otra hipótesis:

$$T(n) = cn^2 - n$$

Ahora tenemos dos casos, encontrar $O(n^2)$ y $\Omega(n^2)$.

- Para $T(n) = O(n^2)$,
 - Paso inductivo, $T(n) \le cn^2 n \implies T\left(\frac{n}{2}\right) \le c\left(\frac{n}{2}\right)^2 \left(\frac{n}{2}\right)$, tal que:

$$T(n) \le 4\left(c\left(\frac{n}{2}\right)^2 - \left(\frac{n}{2}\right)\right) + n$$
$$= cn^2 - 2n + n$$
$$= cn^2 - n$$

• Paso base, sea n=1, T(1)=O(1)=1 y $T(1)\leq c-1$, para $c\geq 2$ lo cual es cierto.

$$T(n) = O(n^2)$$

- Para $\Omega(n^2)$,
 - Paso inductivo, $T(n) \ge cn^2 n \implies T\left(\frac{n}{2}\right) \ge c\left(\frac{n}{2}\right)^2 \left(\frac{n}{2}\right)$, tal que:

$$T(n) \ge 4\left(c\left(\frac{n}{2}\right)^2 - \left(\frac{n}{2}\right)\right) + n$$
$$= cn^2 - 2n + n$$
$$= cn^2 - n$$

• Paso base, sea $n=1, T(1)=\Omega(1)=1$ y $T(1)\geq c-1$ para c=1 lo cual es cierto.

$$T(n) = \Omega(n^2)$$

Por lo tanto, la hipótesis es cierta. Tenemos que $T(n) = 4T\left(\frac{n}{2}\right) + n$ es $\Theta\left(n^2\right)$

Problema 2. Resuelva la recurrencia $T(n) = 3T(\sqrt{n}) + \log_2 n$. Para hacerlo demuestre primero que se puede convertir en $S(m) = 3S\left(\frac{m}{2}\right) + m$; y luego resuelva esta recurrencia con el método de substitución. Con este resultado provea la respuesta para la recurrencia original.

Hint: note que, en S(m), m parece ocupar el lugar que $\log_2 n$ tiene en T(n).

Solución. Sea $T(n) = 3T(\sqrt{n}) + \log_2 n$, entonces hacemos $m = \log_2 n \implies 2^m = 2^{\log_2 n} = n$. Entonces,

$$T(n) = 3T(\sqrt{n}) + \log_2 n$$

$$T(2^m) = 3T(\sqrt{2^m}) + m = 3T(2^{m/2}) + m$$

Sea $S(m) = T(2^m)$

$$S(m) = 3S\left(\frac{m}{2}\right) + m$$

Por medio del Master Method, tenemos que f(m) = m, a = 3, b = 2, tal que $m^{\log_2 3}$. Es decir

$$m^1 \leq m^{\log_2 3} = m^{1,58}$$

Entonces, podemos aplicar el primer caso del Master Method, $S(m) = \Theta(m^{\log_2 3})$. A partir de esto, procedemos a usar substitución:

- $Para S(m) = O(m^{\log_2 3})$
 - Paso inductivo, sea $c \ge 0$, ahora sea $S(m) \le cm^{\log_2 3} dm \implies S\left(\frac{m}{2}\right) \le c\left(\frac{m}{2}\right)^{\log_2 3} d\left(\frac{m}{2}\right)$, tal que:

$$S(m) = 3S\left(\frac{m}{2}\right) + m \le 3\left(c\left(\frac{m}{2}\right)^{\log_2 3} - d\left(\frac{m}{2}\right)\right) + m$$

$$= cm^{\log_2 3} - \frac{3dm}{2} + m$$

$$\le cm^{\log_2 3} - dm + m$$

$$= cm^{\log_2 3} + m(1 - d)$$

Como
$$m(1-d) \leq dm$$
, cuando $d \geq 1$
$$< cm^{\log_2 3} + dm$$

- Paso base, se cumple trivialmente.
- Para $S(m) = \Omega(m^{\log_2 3})$
 - Paso inductivo, sea $c \geq 0$, ahora sea $S(m) \geq cm^{\log_2 3} dm \implies S\left(\frac{m}{2}\right) \geq c\left(\frac{m}{2}\right)^{\log_2 3} d\left(\frac{m}{2}\right)$, tal que:

$$S(m) = 3S\left(\frac{m}{2}\right) + m \ge 3\left(c\left(\frac{m}{2}\right)^{\log_2 3} - d\left(\frac{m}{2}\right)\right) + m$$

$$= cm^{\log_2 3} - \frac{3dm}{2} + m$$

$$\ge cm^{\log_2 3} - dm + m$$

$$= cm^{\log_2 3} + m(1 - d)$$

Como $m(1-d) \ge dm$, cuando $d \le 0$

$$\geq cm^{log_23} + dm$$

• Paso base, se cumple trivialmente.

Por lo tanto, $S(m) = \Theta(m^{\log_2 3})$, como se propuso. Hacemos el retroceso de variables

$$T(n) = T(2^m)$$

$$= S(m)$$

$$= \Theta(m^{\log_2 3})$$

$$= \Theta((\log_2 n)^{\log_2 3})$$

Problema 3. Use un árbol de recursión para proveer una cota ajustada a la recurrencia T(n-a)+T(a)+cn, donde $a \geq 1, c > 0$; ambas constantes. Puede suponer que n es múltiplo de a.

Solución. Sea

Entonces, tenemos:

$$T(n) = cn + cn + cn - ca + cn - 2ca + cn - 3ca + \dots + \Theta(1)$$

$$= cn + \sum_{i=0}^{n/a} (cn - ica)$$

$$= cn + \sum_{i=0}^{n/a} (cn) - ca \sum_{i=0}^{n/a} (i)$$

$$= cn + \left(\frac{n}{a}\right) (cn) - ca \sum_{i=0}^{n/a} (i)$$

$$= cn + \left(\frac{n}{a}\right) (cn) - \left[ca0 + ca \sum_{i=1}^{n/a} (i)\right]$$

$$= cn + \left(\frac{n}{a}\right) (cn) - ca \sum_{i=1}^{n/a} (i)$$

$$= cn + \left(\frac{n}{a}\right) (cn) - ca \left(\frac{n}{a} \left(\frac{n}{a} + 1\right)\right)$$

$$= cn + \frac{cn^2}{a} - \frac{ca}{2} \left(\frac{n^2}{a^2} + \frac{n}{a}\right)$$

$$= cn + \frac{cn^2}{a} - \frac{cn^2}{2a} - \frac{cn}{2}$$

$$= \Theta(n^2)$$

Por lo tanto, por recurrencia T(n-a)+T(a)+cn tiene una cota ajustada $\Theta(n^2)$.

Problema 4. Use el Master Method (si es posible) para dar cotas ajustadas a las siguientes recurrencias:

1.
$$T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$$

Solución. Por Master Method, $\log_4 2 = 1/2$ y como $\sqrt{n} = n^{1/2}$. Entonces, $n^{\log_4 2} = \sqrt{n}$. Tenemos el segundo caso del teorema, por lo tanto, $T(n) = \Theta\left(n^{\log_4 2} \log_4 n\right)$. \square

2.
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \log_2 n$$

Solución. Por Master Method, $\log_2 4 = 2$. Ahora bien, $f(n) = n^2 \log_2 n$, por lo que descartamos el segundo caso del teorema, entonces verificaremos si es el primero o el segundo caso. Por comparación al límite, si da ∞ , f(n) crece más rápido que g(n), si es 0, entonces g(n) crece mas rápido que f(n). Sea entonces,

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{n^2\log_2 n}{n^{\log_2 4}}=\lim_{n\to\infty}\frac{n^2\log_2 n}{n^2}=\lim_{n\to\infty}\log_2 n=\infty$$

Entonces, $n^{\log_2 4} \le n^2 \log n$. Y además, la condición de regularidad nos da:

$$a * f(n/b) = 4\left(\frac{n}{2}\right)^2 \log_2\left(\frac{n}{2}\right) = n^2 \log_2\left(\frac{n}{2}\right) \le c * f(n) = cn^2 \log_2 n$$

Al despejar c,

$$\frac{\log_2\left(\frac{n}{2}\right)}{\log_2 n} \le c \implies 1 - \frac{1}{\log_2 n} \le c$$

Pero de esto, no podemos extraer una c que satisfaga la hipotesis de que c < 2. Por lo tanto, el problema no se puede resolver con master method.

Problema 5. Dé una recurrencia que cumpla con las condiciones del tercer caso del Master Method excepto la condición de regularidad.

Solución. Sea

$$T(n) = T\left(\frac{n}{2}\right) + e^n$$

Entonces, $\log_2 1 = 0$. Es decir, $n^{\log_2 1} = n^0 = 1 \le e^n$. Pero,

$$a * f\left(\frac{n}{b}\right) = 1\left(\exp\left(\frac{n}{2}\right)\right) \le cf(n) = c\left(\exp\left(n\right)\right)$$

Al despejar c:

$$\left(\frac{\exp\left(\frac{n}{2}\right)}{\exp\left(n\right)}\right) \le c \implies \exp\left(-\frac{n}{2}\right) \le c$$

Pero nótese que n es un positivo lo suficientemente grande y c < 1. Entonces la regularidad nunca se cumple, ya que si n = 1 (el positivo mas pequeño),

$$\exp\left(-\frac{1}{2}\right) = 0.6 \le c$$

Por lo tanto, la recurrencia es correcta.

Problema 6. Sea G = (V, E) un grafo dirigido. Deseamos determinar si existe un camino que conecte a dos nodos, $u, v \in V$; esto se conoce como el problema de conectividad-st o STCON. El algoritmo de Savitch, presentado a continuación, determina si existe un camino con tamaño máximo 2^i entre dos nodos u, v del grafo G:

```
1: if i=0 then
2:
        if
            u=v then
3:
            return T
        else if (u, v) is an edge then
4:
5:
            return T
6:
        end if
7: else
8:
        for every vertex w do
            if R(G, u, w, i-1) and R(G, w, v, i-1) then
9.
9:
                return T
10:
            end if
11:
        end for
12: end if
14: return F
```

Identifique las partes Divide, Conquer y Combine de este algoritmo, y determine (con notación asintótica) una cota superior para su tiempo de ejecución si se ejecuta para $i = \log_2 n$, donde n es el número de vértices en el grafo. El tiempo de ejecución que encuentre, ¿será indicador de eficiencia (es decir, será que el algoritmo es rápido") o de ineficiencia ("lento")?

Solución. Las partes de Divide, Conquer y Combine son las siguientes:

- 1. Divide: El problema de encontrar una ruta entre nodos u y v se divide en dos subproblemas de encontrar rutas entre u y un nodo intermedio w, y entre w y v. Esto se hace en las líneas 8-11 del algoritmo.
- 2. Conquer: Los subproblemas se resuelven recursivamente llamando a la función R(G,u,w,i-1) y R(G,w,v,i-1) para encontrar caminos entre u y w, y entre w y v, respectivamente. Esto se hace en la línea 9 del algoritmo.
- 3. Combine: Si ambos subproblemas devuelven T, lo que indica que existen rutas entre u y w, y entre w y v, entonces existe una ruta entre los nodos u y v. Esto se hace en la línea 9 del algoritmo.

En primer lugar, G(V, E) es un grafo dirigido, es decir que su matrix de adyacencia A_G de dimensiones $n \times n$, donde n = |V|, tal que:

$$(i,j) = \begin{cases} 1, & (i,j) \in \text{arista} \\ 0, & (i,j) \in \text{vértice} \end{cases}$$

En resumen, lo que nos da la hipótesis, es $R(u, v, i) \iff$ hay una trayectoria en G de u a v de longitud a lo sumo 2^i . Que en el algoritmo está representado por un punto medio w tal que se cumple que hay una distancia 2^{i-1} entre u a w, y de w a v. Entonces, nos damos cuenta que el algoritmo que nos proporcionan, en la linea 9, la recurrencia nos quiere decir que,

$$R(G, u, v, i) \iff (\exists w)[R(G, u, w, i - 1) \land R(G, w, v, i - 1)]$$

Ahora bien, nótese que este tipo de recursión ya lo habíamos estudiado en la prueba del Master Method, es decir que tenemos la profundidad $i = \log_2 n$, además que el tamaño entre dos nodos decrece a la mitad en cada llama recursiva, es decir de 2^i a 2^{i-1} , es decir que la cantidad de llamadas recursivas se puede expresar como $n^{\log_2 n}$. Es decir que el algoritmo de Savitch es de $O(n^{\log_2 n})$, el cual es una cota superior por su definición. Por último, veáse que $O(n^{\log_2 n})$ es un pésimo indicador de eficiencia, ya que con cada n la complejidad va aumentando, entonces es ineficiente.