

AD-A067 982 OREGON STATE UNIV CORVALLIS SCHOOL OF OCEANOGRAPHY F/G 8/10
EXPOSURE. A NEWSLETTER FOR OCEAN TECHNOLOGISTS. VOLUME 7, NUMBER--ETC(U)
MAR 79 R MESECAR N00014-67-A-0007

UNCLASSIFIED NL

| OF |
AD
A0679B2

END
DATE
FILMED
6 -79
DDC

ADA067982

DDC FILE COPY
DDC

EXPOSURE

vol. 7 no. 1

a newsletter for ocean technologists

The NORDA Vertical Profiler

INTRODUCTION

The vertical profiler, being developed by the Naval Ocean Research and Development Activity (NORDA) under sponsorship of the Ocean Programs Office, is a controlled buoyancy package which carries a modularly constructed data-collection payload. The profiler is normally tethered with a buoyant line from a taut-moored, subsurface float, as shown in Figure 1, and deployment is by the anchor-last technique. In this mooring configuration, the profiler can traverse from the air/sea interface to the maximum design depth (1000 m for the present experimental unit). In applications where horizontal motions of the profiler might be objectionable, the device can traverse a taut wire with a subsurface float close to the surface. In this alternate arrangement, the profiler motions are constrained to the vertical but its capability to profile all the way to the air/sea interface is lost.

SYSTEM DESIGN DESCRIPTION

The profiling system consists of a variable buoyancy vehicle which contains the ballasting and data collection subsystems and the mooring system which holds it in place. The ballasting subsystem controls the buoyancy of the profiler vehicle by pumping oil, on command, from an internal sump into an external bladder or by allowing sea pressure to force the oil from the external bladder into the internal sump. The transfer of oil is controlled by a programmable timer within the instrumentation sphere and can be set for various dive and ascent times. Ascent and descent rates are not controlled in the present unit but the somewhat complex circuits necessary for these functions could be added. Present travel rates for low-current conditions average about 0.5 m/s of vertical motion.

March 1979

DISTRIBUTION STATEMENT A	
Approved for public release Distribution Unlimited	
MAY 1 1979	
WILSONVILLE	

DDC

PPR114

MAY 1 1979

79 04 24 032

FIGURE 1

NORDA VERTICAL PROFILER

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Vol. 7, No. 1	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER <i>(9)</i>
4. TITLE (and Subtitle) EXPOSURE	VOL 614 - B030850	5. TYPE OF REPORT & PERIOD COVERED =technical report,
7. AUTHOR(S) <i>(10)</i> Dr. Roderick/Mesecar (Ed.)	15	6. PERFORMING ORG. REPORT NUMBER 7 Number 1.
9. PERFORMING ORGANIZATION NAME AND ADDRESS School of Oceanography, Oregon State University Corvallis, OR 97331	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 083-102	
11. CONTROLLING OFFICE NAME AND ADDRESS NORDA, NSTL Bay St. Louis, MS 39520 Attn: Code 410	12 9p. <i>(11)</i>	12. REPORT DATE March 1979
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 8	
16. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report) (U)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Published every two months by the School of Oceanography, Oregon State University, Corvallis, OR 97331		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Ocean technology; instrumentation		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The NORDA Vertical Profiler Table of Contents		

The data-collection system consists of parameter sensors interfaced to a 16-channel digitizing and recording system. The sensors and interfaces can be selected in such a manner that the profiler can be configured for a specific measurement program. The present experimental unit is configured for temperature, pressure, and heading information. It is planned to add conductivity in the near future so that profile measurements of density as well as temperature can be accomplished. Sensors can be added or deleted as necessary to optimize the package for a specific experiment. Data are stored in digital form on cassette tape. Approximately 120,000 data values can be stored before the tape is filled. All recorded data is time-tagged by entering the clock time of the buoyancy control timer each time a file of data is recorded. In the present experimental unit, all data is stored internally but it could be telemetered via satellite

rather easily with the addition of an appropriate antenna and R. F. transmitter.

The mooring configuration shown in Figure 1 is for the case where profiling to the air/sea interface or radio communications to a remote receiving site is required. The subsurface mooring buoy provides a "false bottom" for tethering of the variable buoyancy package. This buoy is connected via a low-stretch, high-strength Kevlar line to the deadweight anchor which holds the entire assemblage in position. An acoustic release enables recovery of all system components except the anchor. The depth of the subsurface buoy is not critical so long as sufficient tether line exists for the profiling unit to reach the surface. The depth of the subsurface buoy and the tether line length can be varied to suit the actual profiling depth desired.

FIGURE 2 Present NORDA Experimental Vertical Profiler

3
79 04 24 032

The full-length tether line permits profiling in the present experimental unit to 1000 m and provides sufficient buoyancy to just balance the profiling package when it is suspended on 1000 m of tether line. Profiling to more shallow depths can be easily accomplished by shortening the tether line and placing a small float or floats on the tether line at a distance from the profiling package equal to the desired profiling depth.

The present experimental unit (Figure 2) is powered by a 20-ampere-hour lithium battery pack which is capable of powering approximately 25 round trips to a depth of 1000 meters. As the profiling depth is decreased, more round trips can be made because less energy is required to pump the oil at shallower depths. The energy versus depth ratio for buoyancy control is rather linear so that 50 trips to 500 m or 100 trips to 250 m, etc., are possible. Figure 2 shows the experimental unit being given a final check prior to a sea test.

SYSTEM APPLICATIONS

The system configuration illustrated in Figure 1 can be used to satisfy two important requirements. The first is measurement of ocean parameter profiles over some predetermined length of water column, including the surface. The second is transmission of data collected from fixed sensors on the bottom or beneath the subsurface buoy via telemetry (such as satellite) to a remote receiving location.

Ocean profiling can easily be accomplished for temperature, conductivity, and pressure, from which one can infer thermal and density structures. The present experimental unit will have conductivity measuring capability added in calendar year 1979.

When the profiler is used as a submersible telemetry transmitter, data from a number of fixed sensors can be collected and transmitted. The principal advantage in using this type profiler as a submersible telemetry transmitter is that the equipment remains below the sea surface except during short transmission periods. Thus, the telemetry system could minimize the risks associated with typical surface buoy telemetry.

FOR FURTHER INFORMATION CONTACT:

Mr. C. Randy Holland
Naval Ocean R&D Activity
Ocean Technology, Code 351
NSTL Station, MS 39529

Telephone: (601) 688-4742/4743
(FTS) 494-4742/4743

Randy Holland is a senior project engineer in the Ocean Technology Division of the Naval Ocean R&D Activity. Prior to his recent arrival at NORDA, he was senior project engineer for the Naval Coastal Systems Center, Panama City, Florida. He has BSEE and MSEE degrees from Washington University, St. Louis, Missouri. During the last 6 years, Randy has specialized in the design and development of self-contained ocean instrumentation packages for the measurement of physical parameters (non-acoustic), which are important to Naval operations.

EXPOSURE

TABLE OF CONTENTS

VOLUMES 4, 5, & 6

March 1976 to January 1979

a newsletter for ocean technologists

<u>Page</u>	<u>Title</u>	<u>Author</u>
Vol 4, No 1		
1	A Non-Magnetic Pressure Gauge Designed for External Face Seal Mounting	Koehler
4	Damped Spar Drifting Buoy	McNally
8	Hybrid Thermo/Conductivity System	Mesecar/ Dillon/ Barstow
Vol 4, No 2		
1	A Positive Seal Water Bottle	Mesecar
6	Magnetically Actuated Event Counter	Linse
9	Aanderaa Compass Calibrations	Woodward/ Callahan
Vol 4, No 3		
1	A Land-Based System for Measuring Nearshore Ocean Waves	Zopf
5	Stable, Ship-Deployable Transducer Fixture	Stawnychy/ Berstis
9	New Oceanographic Wire Rope Terminating Technique	O'Malley
Vol 4, No 4		
1	Inexpensive Event Initiator and Slow Code Generator Combined with Visual Display	Jones
5	Modular Anchor System	Clay
6	Modification of Braincon 381 Current Meter for Identification of Start/Stop Frame of Film	Saunders/ Van Loon
10	Card Extender: Troubleshooting Aid	Vito

T A B L E O F C O N T E N T S

<u>Page</u>	<u>Title</u>	<u>Author</u>
Vol 4, No 5		
1	Submersible Smoke Signal Device	Armstrong
5	Flux-Gate Compass	Sessions
9	Quick Mooring Line Termination Grip	Ciuffetelli
Vol 4, No 6		
1	CUBE--A Simple, Low Cost Call-Up Buoy	Anderson/ Magnuson
5	Explosive Bolts as Separation Devices For Pop-Up Instruments	Byrne/ Mitiguy
Vol 5, No 1		
1	A Fairied Taut-Line Mooring	Milburn
5	Film Recording Deep Sea Compass/Inclinometer	Daniel
9	A Component-Structured Semispar Buoy System	Mesecar .
Vol 5, No 2		
1	Slipring & Adaptor Assembly	Mesecar
5	Current Meter Performance in a Near-Surface Simulated Environment	Appell
10	A Handy New Radio Float	Carlsen/ Zenk
11	(Abstract) Salinity - Its Definition and Calculation	Lewis/ Perkin
Vol 5, No 3		
1	Distributed Instrumentation Profiling System	Mesecar/ Evans
8	Design and Operation of Variable-Height Plankton Sled	Higley/ Holton/ Christian
Vol 5, No 4		
1	Moored Temperature and Conductivity Measurements	Irish
7	Some Response Characteristics of a Fluid-Damped Magnetic Compass to Dynamic Azimuth Inputs	Der
Vol 5, No 5		
1	Ocean Bottom Seismometer Gimbal Systems	Byrne/ Ichinose
8	An Electronic Gyro Repeater System	Mesecar/ Vito

T A B L E O F C O N T E N T S

<u>Page</u>	<u>Title</u>	<u>Author</u>
Vol 5, No 6		
1	An Efficient Winch/Controller for Battery-Powered Applications	Hinchman
6	O-Ring Seal MOD For RCM-5 Pressure Transducer	Simpkins/ Rowland
9	Normalizing A Set Of Thermistors For Maximum Sensitivity	Evans
Vol 6, No 1		
1	A Velocity-Sensitive Bottom-Contact Release	Phillips/ Mather
7	A Method For Faired-Cable Winch Assembly	Mesecar/ Rowland/ Page
Vol 6, No 2		
1	A Method of Attaching Anodes to Metal Mooring Lines	Glazebrook
4	Battery Powered Microprocessors For Oceanography	Lahore
6	A Miniature Submersible Wire Splice	Wagner
Vol 6, No 3		
1	A Partitioned Data Communications System	Mesecar/ Vito
5	Direction Errors Induced by Case Magnetization For The RCM-5 Current Meter	Hartling/ Hendry
Vol 6, No 4		
1	A 20-mA Current Loop Interface for the Commodore (PET) Microprocessor	Dillon
6	Rotor Protection of VACM-Type Current Meters	Altman
Vol 6, No 5		
1	A Digital-XBT Recorder	Wagner/ Mesecar
6	Titanium Alloys in Oceanographic Equipment	Parks/ Weller
Vol 6, No 6		
1	Effect of the Inhomogeneity of Composition on Conductivity of IAPSO Standard Seawater	Chen/ Gordon
7	Response Characteristics of the NBIS CTD Sensors to Step Changes in Temperature and Conductivity	Paige

T A B L E O F C O N T E N T S

Page	Article	Author
1	The NORDA Vertical Profiler	Holland
5	Table of Contents, Vols. 4,5,& 6	

DON'T HOARD YOUR
ACCOMPLISHMENTS (or problems)
IN MARINE TECHNOLOGY; SHARE
THEM WITH OTHERS THROUGH THE
E X P O S U R E NEWSLETTER.

Mail your article for the
newsletter to:

Rod Mesecar, Editor
Department of Oceanography
Oregon State University
Corvallis, OR 97331

Telephone: (503) 754-2206

E X P O S U R E
Dr. Rod Mesecar, Editor
School of Oceanography
Oregon State University
Corvallis, OR 97331

FIRST CLASS MAIL