# Machine learning for graphs and with graphs

Graph kernels

Titouan Vayer & Pierre Borgnat email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

October 10, 2023



### Table of contents

### Kernels in Machine Learning

A bit of kernels theory

Back to machine learning: the representer theorem

#### Kernels for structured data

Basics of graphs-kernels

Focus on Weisfeler-Lehman Kernel

Conclusion

# **Acknowledgments**

Some slides adapted from those of Jean-Philippe Vert and Rémi Flamary.

### What is a kernel?

### Measuring similarities between objects

- ► Two "objects" x, y in an abstract space X.
- ► A kernel aims at measuring "how similar" is **x** from **y**.
- ▶ e.g.  $\mathcal{X} = \mathbb{R}^d$ , kernel $(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$  or cosine similarity.





### What is a kernel?

### Measuring similarities between objects

- ► Two "objects" x, y in an abstract space X.
- ▶ A kernel aims at measuring "how similar" is x from y.
- e.g.  $\mathcal{X} = \mathbb{R}^d$ , kernel $(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$  or cosine similarity.





#### ML with kernels

- ► ML methods based on **pairwise comparisons**.
- ▶ By imposing constraints on the kernel (positive definite), we obtain a general framework for learning from data (RKHS).
- + without making any assumptions regarding the type of data (vectors, strings, graphs, images, ...)

### What is a kernel?

### Measuring similarities between objects

- ► Two "objects" x, y in an abstract space X.
- ▶ A kernel aims at measuring "how similar" is x from y.
- e.g.  $\mathcal{X} = \mathbb{R}^d$ , kernel $(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$  or cosine similarity.





#### ML with kernels

- ► ML methods based on **pairwise comparisons**.
- By imposing constraints on the kernel (positive definite), we obtain a general framework for learning from data (RKHS).
- + without making any assumptions regarding the type of data (vectors, strings, graphs, images, ...)

# A principle method for ERM

 $\min_{f \in ?} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{y}_i, f(\mathbf{x}_i)) \to \text{look for } f \text{ in specific space (RKHS)}$ 



### **Table of contents**

# Kernels in Machine Learning

A bit of kernels theory

Back to machine learning: the representer theorem

#### Kernels for structured data

Basics of graphs-kernels

Focus on Weisfeler-Lehman Kernel

Conclusion

### The definition

### Positive definite (PD) kernel

Let  $\mathcal{X}$  be some space. A function  $\kappa: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$  is a PD kernel if

- ▶ It is symmetric  $\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{y}, \mathbf{x})$ .
- ▶ For any  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}$  and  $c_1, \dots, c_n \in \mathbb{R}$

$$\sum_{i,j=1}^{n} c_i c_j \kappa(\mathbf{x}_i, \mathbf{x}_j) \ge 0.$$
 (1)

### The definition

### Positive definite (PD) kernel

Let  $\mathcal{X}$  be some space. A function  $\kappa: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$  is a PD kernel if

- ▶ It is symmetric  $\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{y}, \mathbf{x})$ .
- ▶ For any  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}$  and  $c_1, \dots, c_n \in \mathbb{R}$

$$\sum_{i,j=1}^{n} c_i c_j \kappa(\mathbf{x}_i, \mathbf{x}_j) \ge 0.$$
 (1)

#### Remarks

- ▶ (1) equiv.  $\mathbf{K} := (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{ij} \in \mathbb{R}^{n \times n}$  is a PSD matrix  $\forall \mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathcal{X}$ .
- ▶ For  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$  if  $\mathbf{X} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)^\top$  then  $\mathbf{c}^\top \mathbf{K} \mathbf{c} = \|\mathbf{X}^\top \mathbf{c}\|_2^2 \ge 0$ .
- ► Works also for  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$  for any Φ.
- Not entirely obvious  $\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} \mathbf{y}\|_2^2/2\sigma^2)$ . (see TD)



# Properties of PD kernel

### Basic properties (see TD)

Let  $\kappa_1, \kappa_2, \cdots$  be fixed PD kernels.

- $ightharpoonup \gamma \kappa_1$  for any  $\gamma > 0$  is a PD kernel.
- $ightharpoonup \kappa_1 + \kappa_2$  is a PD kernel.
- $ightharpoonup \kappa(\mathbf{x},\mathbf{y}) := \lim_{n \to +\infty} \kappa_n(\mathbf{x},\mathbf{y})$  is a PD kernel (provided it exists).
- $ightharpoonup \kappa(\mathbf{x},\mathbf{y}) := \kappa_1(\mathbf{x},\mathbf{y})\kappa_2(\mathbf{x},\mathbf{y})$  is a PD kernel.
- ▶ If  $f: \mathcal{X} \to \mathbb{R}$  then  $\kappa(\mathbf{x}, \mathbf{y}) := f(\mathbf{x})\kappa_1(\mathbf{x}, \mathbf{y})f(\mathbf{y})$  is a PD kernel.

# **Changing the features**



# **Changing the features**



### Polynomial kernel

Consider  $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$  defined by  $\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ . Then:

$$\kappa(\textbf{x},\textbf{y}) := \langle \Phi(\textbf{x}), \Phi(\textbf{y}) \rangle_{\mathbb{R}^3} = \dots = (\langle \textbf{x}, \textbf{y} \rangle_{\mathbb{R}^2})^2 \,.$$

Basic properties show that it defines a PD kernel.



# **Changing the features**



### Polynomial kernel

Consider  $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$  defined by  $\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ . Then:

$$\kappa(\mathbf{x},\mathbf{y}) := \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathbb{R}^3} = \cdots = (\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{R}^2})^2.$$

Basic properties show that it defines a PD kernel.

▶ More generally  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^m$ .



### **Translation invariant kernels**

A generic form of kernel on  $\mathcal{X} = \mathbb{R}^d$ 

▶ For  $\kappa_0 : \mathbb{R}^d \to \mathbb{R}$ , kernel defined by

$$\kappa(\mathbf{x}, \mathbf{y}) = \kappa_0(\mathbf{x} - \mathbf{y})$$

- ▶ e.g. Gaussian kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} \mathbf{y}\|_2^2/(2\sigma^2))$ .
- ▶ Recall Fourier transform:  $\widehat{f}(\omega) = \int_{\mathbb{D}^d} f(\mathbf{x}) e^{-i\langle \omega, \mathbf{x} \rangle} d\mathbf{x}$ .
- ▶ Based on Bochner's theorem (see Wendland 2004, Theorem 6.11):

$$\kappa$$
 is a PD kernel  $\iff \forall \omega \in \mathbb{R}^d, \widehat{\kappa_0}(\omega) \geq 0$ 





### Main property of PD kernel

### Main property: Moore-Aronszajn theorem Aronszajn 1950

A function  $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a PD kernel if and only if **there exists a Hilbert space**  $\mathcal{H}$  and **a mapping**  $\Phi: \mathcal{X} \to \mathcal{H}$  such that

$$\forall \textbf{x},\textbf{y} \in \mathcal{X}, \ \kappa(\textbf{x},\textbf{y}) = \langle \Phi(\textbf{x}), \Phi(\textbf{y}) \rangle_{\mathcal{H}} \,.$$

# Main property of PD kernel

#### Main property: Moore-Aronszajn theorem Aronszajn 1950

A function  $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a PD kernel if and only if **there exists a Hilbert space**  $\mathcal{H}$  and **a mapping**  $\Phi: \mathcal{X} \to \mathcal{H}$  such that

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}, \ \kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}.$$



# Main property of PD kernel

#### Some reminders

- $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R} \text{ is a bilinear, symmetric and such that } \langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{H}} > 0$  for any  $\mathbf{x} \neq 0$ .
- A vector space endowed with an inner product is called pre-Hilbert. It is endowed with  $\|\mathbf{x}\|_{\mathcal{H}} := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{H}}}$ .
- ► A Hilbert space is a pre-Hilbert space complete for the norm defined by the inner product.

Proof of the theorem in the discrete case

### On the board

Complete proof Steinwart and Christmann 2008, Theorem 4.16.



The feature map  $\Phi$  and feature space  $\mathcal{H}$ 

- ▶ The feature space may have **infinite dimension** and is **not unique**.
- ▶ Polynomial kernel in  $2D \kappa(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle)^2$ :

$$\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, x_2^2, x_1x_2, x_1x_2), \ \mathcal{H} = \mathbb{R}^4$$



The feature map  $\Phi$  and feature space  $\mathcal{H}$ 

- ▶ The feature space may have **infinite dimension** and is **not unique**.
- ▶ Polynomial kernel in  $2D \kappa(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle)^2$ :

$$\Phi(\mathbf{x}=(x_1,x_2))=(x_1^2,x_2^2,x_1x_2,x_1x_2),\ \mathcal{H}=\mathbb{R}^4$$

► Another possibility:

$$\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, x_2^2, \sqrt{2}x_1x_2), \ \mathcal{H} = \mathbb{R}^3$$





The feature map  $\Phi$  and feature space  $\mathcal{H}$ 

- ► The feature space may have **infinite dimension** and is **not unique**.
- ► Gaussian Kernel in 1D  $\kappa(x,y) = \exp(-|x-y|_2^2/(2\sigma^2))$ :

$$\Phi(x) = e^{-\frac{x^2}{2\sigma^2}} \left( 1, \sqrt{\frac{1}{1!\sigma^2}} x, \sqrt{\frac{1}{2!\sigma^4}} x^2, \sqrt{\frac{1}{3!\sigma^6}} x^3, \cdots \right)^\top \text{ (Taylor series)}$$



The feature map  $\Phi$  and feature space  $\mathcal{H}$ 

- ► The feature space may have **infinite dimension** and is **not unique**.
- ► Gaussian Kernel in 1D  $\kappa(x,y) = \exp(-|x-y|_2^2/(2\sigma^2))$ :

$$\Phi(x) = e^{-\frac{x^2}{2\sigma^2}} \left( 1, \sqrt{\frac{1}{1!\sigma^2}} x, \sqrt{\frac{1}{2!\sigma^4}} x^2, \sqrt{\frac{1}{3!\sigma^6}} x^3, \cdots \right)^\top \text{ (Taylor series)}$$

▶ Or  $\mathcal{H} = L_2(\mathbb{R})$  using  $\kappa(x,y) = \frac{1}{\sigma} \sqrt{\frac{2}{\pi}} \int_{-\infty}^{+\infty} \exp(-\frac{(x-t)^2}{\sigma^2}) \exp(-\frac{(y-t)^2}{\sigma^2}) dt$ :

$$\Phi(x) = t \rightarrow rac{2^{rac{1}{4}}}{\sqrt{\sigma}\pi^{rac{1}{4}}} \exp(-rac{(x-t)^2}{\sigma^2})$$

From kernels to functions: motivating example

ightharpoonup Kernels can be used to define functions from  $\mathcal{X}$  to  $\mathbb{R}$ .

$$\Phi:\mathbb{R}^2\to\mathbb{R}^3=\mathcal{H}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \Phi(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix} \text{ and } f(\mathbf{x}) = a \cdot x_1 + b \cdot x_2 + c \cdot x_1 x_2 (\mathbb{R}^2 \to \mathbb{R})$$

- ► Consider  $\theta = (a, b, c)^{\top} \in \mathcal{H}$  then  $f(\mathbf{x}) = \langle \theta, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$ .
- ► Evaluation of f at x is an inner product in feature space.

From kernels to functions: motivating example

 $\blacktriangleright$  Kernels can be used to define functions from  $\mathcal{X}$  to  $\mathbb{R}$ .

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^3 = \mathcal{H}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \Phi(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix} \text{ and } f(\mathbf{x}) = a \cdot x_1 + b \cdot x_2 + c \cdot x_1 x_2 (\mathbb{R}^2 \to \mathbb{R})$$

- ► Consider  $\theta = (a, b, c)^{\top} \in \mathcal{H}$  then  $f(\mathbf{x}) = \langle \theta, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$ .
- Evaluation of f at x is an inner product in feature space.

Go into higher dimensions to **linearly** separate the classes!





#### From kernels to functions: first idea

- ▶ Given  $\mathcal{H}$  and  $\Phi: \mathcal{X} \to \mathcal{H}_0$ : defines a kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}_0}$
- ▶ And a space of functions from  $\mathcal{X}$  to  $\mathbb{R}$ .

$$\mathcal{H} := \{ f : \exists \boldsymbol{\theta} \in \mathcal{H}_0, \forall \mathbf{x} \in \mathcal{X}, f(\mathbf{x}) = \langle \boldsymbol{\theta}, \Phi(\mathbf{x}) \rangle_{\mathcal{H}_0} \}.$$

Endowed with the norm

$$||f||_{\mathcal{H}} := \inf\{||\boldsymbol{\theta}||_{\mathcal{H}_0} : \boldsymbol{\theta} \in \mathcal{H}_0 \text{ with } f = \langle \boldsymbol{\theta}, \Phi(\cdot) \rangle_{\mathcal{H}_0}\}$$
 (2)

- ▶ It is a Hilbert space of functions called the RKHS of  $\kappa$ .
- ► We can stop here... but...

### From kernels to functions: first idea

- ▶ Given  $\mathcal{H}$  and  $\Phi: \mathcal{X} \to \mathcal{H}_0$ : defines a kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}_0}$
- ▶ And a space of functions from  $\mathcal{X}$  to  $\mathbb{R}$ .

$$\mathcal{H} := \left\{ f : \exists \boldsymbol{\theta} \in \mathcal{H}_0, \forall \boldsymbol{x} \in \mathcal{X}, f(\boldsymbol{x}) = \langle \boldsymbol{\theta}, \Phi(\boldsymbol{x}) \rangle_{\mathcal{H}_0} \right\}.$$

Endowed with the norm

$$||f||_{\mathcal{H}} := \inf\{||\boldsymbol{\theta}||_{\mathcal{H}_0} : \boldsymbol{\theta} \in \mathcal{H}_0 \text{ with } f = \langle \boldsymbol{\theta}, \Phi(\cdot) \rangle_{\mathcal{H}_0}\}$$
 (2)

- ▶ It is a Hilbert space of functions called the RKHS of  $\kappa$ .
- ▶ We can stop here... but...

#### From kernels to functions: second idea

- ▶ Given a PSD kernel  $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ .
- ▶ 1°) Find a "suitable"  $(\Phi, \mathcal{H})$  such that  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}$  (recall: many possible)
- ▶ 2°) Build upon it to define a suitable space of functions.



#### From kernels to functions: first idea

- ▶ Given  $\mathcal{H}$  and  $\Phi: \mathcal{X} \to \mathcal{H}_0$ : defines a kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}_0}$
- ▶ And a space of functions from  $\mathcal{X}$  to  $\mathbb{R}$ .

$$\mathcal{H} := \{ f : \exists \boldsymbol{\theta} \in \mathcal{H}_0, \forall \mathbf{x} \in \mathcal{X}, f(\mathbf{x}) = \langle \boldsymbol{\theta}, \Phi(\mathbf{x}) \rangle_{\mathcal{H}_0} \}.$$

Endowed with the norm

$$||f||_{\mathcal{H}} := \inf\{||\boldsymbol{\theta}||_{\mathcal{H}_0} : \boldsymbol{\theta} \in \mathcal{H}_0 \text{ with } f = \langle \boldsymbol{\theta}, \Phi(\cdot) \rangle_{\mathcal{H}_0}\}$$
 (2)

- ▶ It is a Hilbert space of functions called the RKHS of  $\kappa$ .
- ▶ We can stop here... but...

#### From kernels to functions: second idea

- ▶ Given a PSD kernel  $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ .
- ▶ 1°) Find a "suitable"  $(\Phi, \mathcal{H})$  such that  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}$  (recall: many possible)
- ▶ 2°) Build upon it to define a suitable space of functions.(**RKHS**).



#### Let $\kappa$ be fixed

- Among all  $(\Phi, \mathcal{H})$  mentioned in Aronszjan's theorem one  $\mathcal{H}$ , called **RKHS**, is of interest to us.
- ▶ This is a **space of functions from**  $\mathcal{X}$  **to**  $\mathbb{R}$ .
- ▶ Each data point  $x \in \mathcal{X}$  will be represented by a function given by the canonical feature map

$$\Phi(\mathbf{x}) = \kappa(\cdot, \mathbf{x}) : \mathcal{X} \to \mathbb{R}$$

#### Let $\kappa$ be fixed

- Among all  $(\Phi, \mathcal{H})$  mentioned in Aronszjan's theorem one  $\mathcal{H}$ , called **RKHS**, is of interest to us.
- ▶ This is a space of functions from  $\mathcal{X}$  to  $\mathbb{R}$ .
- ▶ Each data point  $x \in \mathcal{X}$  will be represented by a function given by the canonical feature map

$$\Phi(\mathbf{x}) = \kappa(\cdot, \mathbf{x}) : \mathcal{X} \to \mathbb{R}$$

### Example

▶ Consider  $\mathcal{X} = \mathbb{R}$  we could decide to represent  $x \in \mathbb{R}$  as a Gaussian function centered at x:

$$\Phi(x) = y \to \exp(-(x-y)^2/(2\sigma^2))$$

▶ What is the corresponding space H (if it exists)? What would be the inner-product?



### Reproducing kernel and RKHS

Let  $\mathcal{H}$  be a **Hilbert space** of functions from  $\mathcal{X}$  to  $\mathbb{R}$  with inner product  $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ .  $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is called a **reproducing kernel** of  $\mathcal{H}$  if

- $\forall \mathbf{x} \in \mathcal{X}, \kappa(\cdot, \mathbf{x}) \in \mathcal{H}$
- $ightharpoonup \kappa$  satisfies the reproducing property: for any  $f \in \mathcal{H}$ ,

$$\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.$$

If a reproducing kernel of  $\mathcal{H}$  exists, then  $\mathcal{H}$  is called a **RKHS**.

### Reproducing kernel and RKHS

Let  $\mathcal H$  be a **Hilbert space** of functions from  $\mathcal X$  to  $\mathbb R$  with inner product  $\langle\cdot,\cdot\rangle_{\mathcal H}.$   $\kappa:\mathcal X\times\mathcal X\to\mathbb R$  is called a **reproducing kernel** of  $\mathcal H$  if

- $\forall \mathbf{x} \in \mathcal{X}, \kappa(\cdot, \mathbf{x}) \in \mathcal{H}$
- $ightharpoonup \kappa$  satisfies the reproducing property: for any  $f \in \mathcal{H}$ ,

$$\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.$$

If a reproducing kernel of  $\mathcal{H}$  exists, then  $\mathcal{H}$  is called a **RKHS**.

### Important properties

- ▶ If  $\mathcal{H}$  is a RKHS, then it has a unique reproducing kernel  $\kappa$ .
- ▶ (the feature map is not unique only the kernel is)
- ightharpoonup A function  $\kappa$  can be the reproducing kernel of at most one RKHS.

### Reproducing kernel and RKHS

Let  $\mathcal{H}$  be a **Hilbert space** of functions from  $\mathcal{X}$  to  $\mathbb{R}$  with inner product  $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ .  $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is called a **reproducing kernel** of  $\mathcal{H}$  if

- $\forall \mathbf{x} \in \mathcal{X}, \kappa(\cdot, \mathbf{x}) \in \mathcal{H}$
- $\blacktriangleright$   $\kappa$  satisfies the reproducing property: for any  $f \in \mathcal{H}$ ,

$$\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.$$

If a reproducing kernel of  $\mathcal{H}$  exists, then  $\mathcal{H}$  is called a **RKHS**.

### **RKHS** and feature spaces

Let  $\mathcal{H}$  be a RKHS with reproducing kernel  $\kappa$ . Then  $\mathcal{H}$  is **one** feature space associated to  $\kappa$ , where the feature map is  $\forall \mathbf{x} \in \mathcal{X}, \Phi(\mathbf{x}) = \kappa(\cdot, \mathbf{x})$ .



So far these functions are a little bit abstract:

### Two questions

- Given a PD kernel  $\kappa$  what is the RKHS associated to  $\kappa$ ?
- ▶ Given a function space, is it a RKHS and what is the reproducing kernel ?

So far these functions are a little bit abstract:

### Two questions

- Given a PD kernel  $\kappa$  what is the RKHS associated to  $\kappa$ ?
- ► Given a function space, is it a RKHS and what is the reproducing kernel ?

### Battery of examples

• (on the board) The RKHS associated to  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$  is

$$\mathcal{H} = \{ f_{\boldsymbol{\theta}} = \mathbf{x} \to \langle \boldsymbol{\theta}, \mathbf{x} \rangle; \boldsymbol{\theta} \in \mathbb{R}^d \}$$

endowed with the dot product  $\langle f_{\theta_1}, f_{\theta_2} \rangle_{\mathcal{H}} := \langle \theta_1, \theta_2 \rangle$ .

- (homework) What is the RKHS associated to  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^2$ ?
- ▶ The space  $L_2(\mathbb{R}^d)$  is not a RKHS.

### Battery of examples

► The Paley-Wiener space (bandwidth limited Fourier transform):

$$\mathcal{F}_{\pi} := \{ f \in L_2(\mathbb{R}) : \operatorname{\mathsf{supp}} \hat{f} \in [-\pi, \pi] \}$$

where  $\hat{f}$  is the Fourier transform of f.

### Battery of examples

► The Paley-Wiener space (bandwidth limited Fourier transform):

$$\mathcal{F}_{\pi}:=\{f\in L_2(\mathbb{R}): \operatorname{\mathsf{supp}} \widehat{f}\in [-\pi,\pi]\}$$

where  $\hat{f}$  is the Fourier transform of f.

► Inverse Fourier transform

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{f}(\omega) e^{i\omega t} d\omega = \langle \hat{f}, \omega \rightarrow \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([-\pi,\pi])}$$

► Plancherel-Parseval theorem

$$\forall t \in \mathbb{R}, \ f(t) = \langle \hat{f}, \omega \to \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([-\pi,\pi])} = \langle f, \frac{\sin(\pi(\cdot - t))}{\pi(\cdot - t)} \rangle_{L_2(\mathbb{R})}$$

▶ The kernel  $\kappa(s,t) = \frac{\sin(\pi(s-t))}{\pi(s-t)}$ 

### Battery of examples

► The Paley-Wiener space (bandwidth limited Fourier transform):

$$\mathcal{F}_{\pi}:=\{f\in L_2(\mathbb{R}): \mathsf{supp}\, \hat{f}\in [-\pi,\pi]\}$$

where  $\hat{f}$  is the Fourier transform of f.

► Inverse Fourier transform

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{f}(\omega) e^{i\omega t} d\omega = \langle \hat{f}, \omega \to \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([-\pi,\pi])}$$

► Plancherel-Parseval theorem

$$\forall t \in \mathbb{R}, \ f(t) = \langle \hat{f}, \omega \to \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([-\pi,\pi])} = \langle f, \frac{\sin(\pi(\cdot - t))}{\pi(\cdot - t)} \rangle_{L_2(\mathbb{R})}$$

▶ The kernel  $\kappa(s,t) = \frac{\sin(\pi(s-t))}{\pi(s-t)}$ 



### **Examples of RKHS**

### Battery of examples

► Translation invariant PD kernels on  $\mathbb{R}^d$   $\kappa(\mathbf{x}, \mathbf{y}) = \kappa_0(\mathbf{x} - \mathbf{y})$  with  $\kappa_0 \in L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$  and  $\forall \boldsymbol{\omega} \in \mathbb{R}^d, \widehat{\kappa_0}(\boldsymbol{\omega}) \geq 0$ .

### **Examples of RKHS**

#### Battery of examples

- ► Translation invariant PD kernels on  $\mathbb{R}^d$   $\kappa(\mathbf{x}, \mathbf{y}) = \kappa_0(\mathbf{x} \mathbf{y})$  with  $\kappa_0 \in L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$  and  $\forall \omega \in \mathbb{R}^d, \widehat{\kappa_0}(\omega) \geq 0$ .
- ► The corresponding RKHS is

$$\mathcal{H} = \{ f \in L_2(\mathbb{R}^d) \cap C(\mathbb{R}^d) : \hat{f} / \sqrt{\widehat{\kappa_0}} \in L_2(\mathbb{R}^d) \}$$

► The inner product is given by:

$$\langle f, g \rangle_{\mathcal{H}} := (2\pi)^{-d/2} \int_{\mathbb{R}^d} \frac{\hat{f}(\omega) \overline{\hat{g}(\omega)}}{\widehat{\kappa_0}(\omega)} d\omega.$$

### **Examples of RKHS**

#### Battery of examples

- ► Translation invariant PD kernels on  $\mathbb{R}^d$   $\kappa(\mathbf{x}, \mathbf{y}) = \kappa_0(\mathbf{x} \mathbf{y})$  with  $\kappa_0 \in L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$  and  $\forall \omega \in \mathbb{R}^d, \widehat{\kappa_0}(\omega) \geq 0$ .
- ► The corresponding RKHS is

$$\mathcal{H} = \{ f \in L_2(\mathbb{R}^d) \cap C(\mathbb{R}^d) : \hat{f} / \sqrt{\widehat{\kappa_0}} \in L_2(\mathbb{R}^d) \}$$

► The inner product is given by:

$$\langle f, g \rangle_{\mathcal{H}} := (2\pi)^{-d/2} \int_{\mathbb{R}^d} \frac{\hat{f}(\omega) \overline{\hat{g}}(\omega)}{\widehat{\kappa_0}(\omega)} d\omega.$$

- ▶ Special case: Matèrn kernel  $\widehat{\kappa_0}(\omega) \propto (\alpha^2 + \|\omega\|_2^2)^{-s}, s > d/2$
- ▶ Sobolev spaces of order s:  $||f||_{\mathcal{H}}^2 = \text{smoothness of the functions as its derivatives in } L_2(\mathbb{R}^d)$ .

# Reproducing Kernel Hilbert Space (RKHS)

### Reproducing kernels are PD kernels

A function  $\kappa:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$  is a reproducing kernel if and only if it is a PD kernel.

# Reproducing Kernel Hilbert Space (RKHS)

### Reproducing kernels are PD kernels

A function  $\kappa:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$  is a reproducing kernel if and only if it is a PD kernel.

#### Remarks

- ▶ One direction easy: a reproducing kernel is a PD kernel (on the board).
- ▶ The other more work: use Moore–Aronszajn theorem  $+ \mathcal{F} + \text{Steinwart}$  and Christmann 2008, Theorem 4.21.

# Reproducing Kernel Hilbert Space (RKHS)

### Reproducing kernels are PD kernels

A function  $\kappa:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$  is a reproducing kernel if and only if it is a PD kernel.

#### Remarks

- ▶ One direction easy: a reproducing kernel is a PD kernel (on the board).
- ▶ The other more work: use Moore–Aronszajn theorem  $+ \mathcal{F} + \text{Steinwart}$  and Christmann 2008, Theorem 4.21.

### Important consequence

- ▶ Any PSD kernel defines a Hilbert space of functions from  $\mathcal{X}$  to  $\mathbb{R}$ .
- These functions satisfy

$$\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.$$

► Abstract view of H:

$$\mathcal{H} = \overline{\mathsf{Span}\{\kappa(\cdot,\mathbf{x});\mathbf{x}\in\mathcal{X}\}}$$
.

#### Table of contents

#### Kernels in Machine Learning

A bit of kernels theory

Back to machine learning: the representer theorem

Kernels for structured data

Basics of graphs-kernels

Focus on Weisfeler-Lehman Kernel

Conclusion

### Recap on supervised ML

Samples 
$$+$$
 labels:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

#### Classification

### Supervised learning

- ▶ The dataset contains the samples  $(\mathbf{x}_i, y_i)_{i=1}^n$  where  $\mathbf{x}_i$  is the feature sample and  $y_i \in \mathcal{Y}$  its label.
- ▶ Prediction space  $\mathcal{Y}$  can be:
  - $\mathcal{Y} = \{-1, 1\}$  or  $\mathcal{Y} = \{1, \dots, K\}$  for classification problems.
  - $\mathcal{Y} = \mathbb{R}$  for regression problems ( $\mathbb{R}^p$  for multi-output regression).

### Recap on supervised ML

Samples + labels: Classification Regression 
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

### Supervised learning

- ▶ The dataset contains the samples  $(\mathbf{x}_i, y_i)_{i=1}^n$  where  $\mathbf{x}_i$  is the feature sample and  $y_i \in \mathcal{Y}$  its label.
- ▶ Prediction space  $\mathcal{Y}$  can be:
  - $\mathcal{Y} = \{-1, 1\}$  or  $\mathcal{Y} = \{1, \dots, K\}$  for classification problems.
  - $\mathcal{Y} = \mathbb{R}$  for regression problems ( $\mathbb{R}^p$  for multi-output regression).

Minimizing the averaged error on the training data

To find  $f: \mathcal{X} \to \mathcal{Y}$  the idea is to minimize:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \operatorname{Reg}(f)$$

$$(ERM)$$

# **Supervised learning**

Minimizing the averaged error on the training data To find  $f: \mathcal{X} \to \mathcal{Y}$  the idea is to minimize:

$$\min_{f \in ???} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \operatorname{Reg}(f)$$
 (ERM)

#### **Problems**

- ▶ How to choose the adequate space of functions for *f* ?
- ► How to properly regularize ?
- How to efficiently minimize the quantity ?

# **Supervised learning**

Minimizing the averaged error on the training data

To find  $f: \mathcal{X} \to \mathcal{Y}$  the idea is to minimize:

$$\min_{f \in ???} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \operatorname{Reg}(f)$$
 (ERM)

#### **Problems**

- ▶ How to choose the adequate space of functions for *f* ?
- ► How to properly regularize ?
- ► How to efficiently minimize the quantity ?

#### One solution

- ▶ When  $\mathcal{Y} \subset \mathbb{R}$  we can consider  $f \in \mathcal{H}$  where  $\mathcal{H}$  is a RKHS.
- ▶ A natural candidate  $Reg(f) = ||f||_{\mathcal{H}}^2$ : the higher the smoother f is.
- ► How to ensure that this is not so difficult?

lacktriangle Suppose  $\mathcal{X}=\mathbb{R}^d$  and  $\mathcal{H}$  a RKHS. Consider ERM

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2$$

- ▶ Since  $f \in \mathcal{H}$ , then  $f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$ .
- Rewriting ERM in RKHS as

$$\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda \|\boldsymbol{\theta}\|_{\mathcal{H}}^2$$

lacksquare Suppose  $\mathcal{X}=\mathbb{R}^d$  and  $\mathcal{H}$  a RKHS. Consider ERM

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda ||f||_{\mathcal{H}}^2$$

- ▶ Since  $f \in \mathcal{H}$ , then  $f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$ .
- Rewriting ERM in RKHS as

$$\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda \|\boldsymbol{\theta}\|_{\mathcal{H}}^{2}$$

#### Important interpretation

- $lackbox{\Phi}: \mathcal{X} 
  ightarrow \mathcal{H}$  pushes the points to a potentially very high-dimensional space (even  $\infty$ ): more powerful representation.
- lacktriangle Then linear classification/regression is made on this high-dim space  ${\cal H}$
- ▶ We can deduce the function in low-dim from the high-dim.

ightharpoonup Suppose  $\mathcal{X} = \mathbb{R}^d$  and  $\mathcal{H}$  a RKHS. Consider ERM

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2$$

- ▶ Since  $f \in \mathcal{H}$ , then  $f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$ .
- ► Rewriting ERM in RKHS as

$$\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda \|\boldsymbol{\theta}\|_{\mathcal{H}}^2$$

Go into higher dimensions to **linearly** separate the classes!





ightharpoonup Suppose  $\mathcal{X}=\mathbb{R}^d$  and  $\mathcal{H}$  a RKHS. Consider ERM

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2$$

- ▶ Since  $f \in \mathcal{H}$ , then  $f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$ .
- ► Rewriting ERM in RKHS as

$$\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda \|\boldsymbol{\theta}\|_{\mathcal{H}}^2$$

Go into higher dimensions to **linearly** separate the classes!

- ▶ But how to implement  $\Phi(\mathbf{x}) \in \mathcal{H}$  on a computer if dim  $\mathcal{H} = \infty$  ??????
- ► How to solve ERM in *H* ????





### The representer theorem

#### Main result

- ▶ Let  $\mathcal{X}$  be any space,  $\mathcal{D} = \{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \subset \mathcal{X}$  a finite set of points.
- $ightharpoonup \mathcal{H}$  a RKHS with reproducing kernel  $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ .
- ▶ Let  $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$  any function that is strictly increasing with respect to the last variable.
- ▶ Then any solution  $f^*$  of the minimization problem

$$\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), ||f||_{\mathcal{H}})$$

can be written as

$$\forall \mathbf{x} \in \mathcal{X}, \ f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_{i} \kappa(\mathbf{x}, \mathbf{x}_{i}) \ ext{for some} \ \boldsymbol{\theta} \in \mathbb{R}^{n}.$$

### The representer theorem

#### Main result

- ▶ Let  $\mathcal{X}$  be any space,  $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subset \mathcal{X}$  a finite set of points.
- $ightharpoonup \mathcal{H}$  a RKHS with reproducing kernel  $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ .
- ▶ Let  $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$  any function that is strictly increasing with respect to the last variable.
- ▶ Then any solution  $f^*$  of the minimization problem

$$\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), ||f||_{\mathcal{H}})$$

can be written as

$$\forall \mathbf{x} \in \mathcal{X}, \ f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_{i} \kappa(\mathbf{x}, \mathbf{x}_{i}) \text{ for some } \boldsymbol{\theta} \in \mathbb{R}^{n}.$$

### Important remarks

- ▶ Although the RKHS can be of infinite dimension any solution lives in Span{ $\kappa(\cdot, \mathbf{x}_1), \dots, \kappa(\cdot, \mathbf{x}_n)$ } which is a subspace of dimension n.
- ▶ Works for any  $\mathcal{X}$  and  $\Psi = \Psi_0 + g$  with  $g \nearrow !!!$

# Practical use of the representer theorem (1/2)

▶ When the representer theorem holds we can simply look for f as

$$\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}, \mathbf{x}_i) \text{ for some } \boldsymbol{\theta} \in \mathbb{R}^n.$$

- ▶ Define  $\mathbf{K} := (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{ii}$ .
- ▶ Then , for any  $j \in \llbracket n \rrbracket$

$$f(\mathbf{x}_j) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}_i, \mathbf{x}_j) = [\mathbf{K}\boldsymbol{\theta}]_j.$$

# Practical use of the representer theorem (1/2)

▶ When the representer theorem holds we can simply look for *f* as

$$\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}, \mathbf{x}_i) \ ext{for some} \ oldsymbol{ heta} \in \mathbb{R}^n \,.$$

- ▶ Define  $\mathbf{K} := (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{ii}$ .
- ▶ Then , for any  $j \in \llbracket n \rrbracket$

$$f(\mathbf{x}_j) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}_i, \mathbf{x}_j) = [\mathbf{K}\boldsymbol{\theta}]_j.$$

Also

$$\|\mathbf{f}\|_{\mathcal{H}}^{2} = \|\sum_{i=1}^{n} \theta_{i} \kappa(\cdot, \mathbf{x}_{i})\|_{\mathcal{H}}^{2} = \langle \sum_{i=1}^{n} \theta_{i} \kappa(\cdot, \mathbf{x}_{i}), \sum_{j=1}^{n} \theta_{j} \kappa(\cdot, \mathbf{x}_{j}) \rangle_{\mathcal{H}}$$
$$= \sum_{ij} \theta_{i} \theta_{j} \langle \kappa(\cdot, \mathbf{x}_{i}), \kappa(\cdot, \mathbf{x}_{j}) \rangle_{\mathcal{H}} = \sum_{ij} \theta_{i} \theta_{j} \kappa(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$= \boldsymbol{\theta}^{\top} \mathbf{K} \boldsymbol{\theta}.$$

# Practical use of the representer theorem (2/2)

► Therefore the problem

$$\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), ||f||_{\mathcal{H}}^2)$$

▶ is equivalent to

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \Psi([\mathbf{K}\boldsymbol{\theta}]_1, \cdots, [\mathbf{K}\boldsymbol{\theta}]_n, \boldsymbol{\theta}^{\top} \mathbf{K}\boldsymbol{\theta})$$

- ▶ 1°) To tackle it we only need the Gram matrix **K**: **kernel trick**!
- $\triangleright$  2°) Can be used whatever  $\mathcal{X}, \kappa$ !
- ▶ 3°) We can solve it on a computer since finite dimensional!
- ▶ 4°) It can usually be solved analytically or by numerical methods.

# Practical use of the representer theorem (2/2)

► Therefore the problem

$$\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), ||f||_{\mathcal{H}}^2)$$

is equivalent to

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \Psi([\mathbf{K}\boldsymbol{\theta}]_1, \cdots, [\mathbf{K}\boldsymbol{\theta}]_n, \boldsymbol{\theta}^{\top} \mathbf{K}\boldsymbol{\theta})$$

- ▶ 1°) To tackle it we only need the Gram matrix **K**: **kernel trick**!
- $\triangleright$  2°) Can be used whatever  $\mathcal{X}, \kappa$ !
- ▶ 3°) We can solve it on a computer since finite dimensional!
- ▶ 4°) It can usually be solved analytically or by numerical methods.

### Application to ERM

If we look for f in a RKHS then we need to solve

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{y}_i, [\mathbf{K}\boldsymbol{\theta}]_i) + \lambda \boldsymbol{\theta}^{\top} \mathbf{K}\boldsymbol{\theta}$$

### Setting

- $ightharpoonup \mathbf{x}_i \in \mathcal{X}$  (not necessarily  $\mathbb{R}^d$ !) and  $y_i \in \mathbb{R}, \mathbf{y} = (y_1, \cdots, y_n)^{\top} \in \mathbb{R}^n$
- We consider the square loss  $\ell(y, y') = (y y')^2$
- ► The ERM in the RKHS is

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda ||f||_{\mathcal{H}}^2.$$

### Setting

- $ightharpoonup \mathbf{x}_i \in \mathcal{X}$  (not necessarily  $\mathbb{R}^d$ !) and  $y_i \in \mathbb{R}, \mathbf{y} = (y_1, \cdots, y_n)^{\top} \in \mathbb{R}^n$
- We consider the square loss  $\ell(y, y') = (y y')^2$
- ► The ERM in the RKHS is

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda ||f||_{\mathcal{H}}^2.$$

#### Kernel Ridge Regression

The ERM in the RKHS is equivalent to the minimization problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \frac{1}{n} \|\mathbf{y} - \mathbf{K}\boldsymbol{\theta}\|_2^2 + \lambda \boldsymbol{\theta}^{\top} \mathbf{K}\boldsymbol{\theta}$$

How can we solve it? What is the time/memory complexity?

### Setting

- $ightharpoonup \mathbf{x}_i \in \mathcal{X}$  (not necessarily  $\mathbb{R}^d$ !) and  $y_i \in \mathbb{R}, \mathbf{y} = (y_1, \cdots, y_n)^{\top} \in \mathbb{R}^n$
- We consider the square loss  $\ell(y, y') = (y y')^2$
- ► The ERM in the RKHS is

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda ||f||_{\mathcal{H}}^2.$$

#### Kernel Ridge Regression

The ERM in the RKHS is equivalent to the minimization problem:

$$\min_{oldsymbol{ heta} \in \mathbb{R}^n} \frac{1}{n} \|\mathbf{y} - \mathbf{K} oldsymbol{ heta}\|_2^2 + \lambda oldsymbol{ heta}^{ op} \mathbf{K} oldsymbol{ heta}$$

How can we solve it? What is the time/memory complexity?

#### Solution

Given by 
$$\boldsymbol{\theta}^{\star} = (\mathbf{K} + \lambda n \mathbf{I})^{-1} \mathbf{y}, \ \forall \mathbf{x} \in \mathcal{X}, f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_{i}^{\star} \kappa(\mathbf{x}, \mathbf{x}_{i}).$$



- Gaussian kernel  $\kappa(x, x') = \exp(-|x x'|^2/(2\sigma^2))$
- ightharpoonup Regularization parameter  $\lambda$



# Kernel ridge regression vs linear regression

- ▶ Take  $\mathcal{X} = \mathbb{R}^d$  and the linear kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ .
- ▶ Let  $\mathbf{X} = (\mathbf{x}_1, \cdot, \mathbf{x}_n)^{\top} \in \mathbb{R}^{n \times d}$  the data. The Gram matrix is  $\mathbf{K} = \mathbf{X}\mathbf{X}^{\top}$ .
- Then corresponding function is

$$f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_{i}^{\star} \kappa(\mathbf{x}, \mathbf{x}_{i}) = \langle \mathbf{x}, \sum_{i=1}^{n} \theta_{i}^{\star} \mathbf{x}_{i} \rangle = \langle \mathbf{x}, \mathbf{w}^{\star} \rangle.$$

• We have  $\mathbf{w}^{\star} = \mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top} + \lambda n \mathbf{I}_n)^{-1} \mathbf{y}$ .

# Kernel ridge regression vs linear regression

- ► Take  $\mathcal{X} = \mathbb{R}^d$  and the linear kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ .
- ▶ Let  $\mathbf{X} = (\mathbf{x}_1, \cdot, \mathbf{x}_n)^{\top} \in \mathbb{R}^{n \times d}$  the data. The Gram matrix is  $\mathbf{K} = \mathbf{X}\mathbf{X}^{\top}$ .
- ▶ Then corresponding function is

$$f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_{i}^{\star} \kappa(\mathbf{x}, \mathbf{x}_{i}) = \langle \mathbf{x}, \sum_{i=1}^{n} \theta_{i}^{\star} \mathbf{x}_{i} \rangle = \langle \mathbf{x}, \mathbf{w}^{\star} \rangle.$$

• We have  $\mathbf{w}^{\star} = \mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top} + \lambda n \mathbf{I}_n)^{-1} \mathbf{y}$ .

 $\ell_2$  penalized linear regression: ridge regression The problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_2^2 \text{ has solution } \mathbf{w}^\star = (\mathbf{X}^\top \mathbf{X} + \lambda n \mathbf{I}_d)^{-1} \mathbf{X}^\top \mathbf{y}.$$

# Kernel ridge regression vs linear regression

- ▶ Take  $\mathcal{X} = \mathbb{R}^d$  and the linear kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ .
- ▶ Let  $\mathbf{X} = (\mathbf{x}_1, \cdot, \mathbf{x}_n)^{\top} \in \mathbb{R}^{n \times d}$  the data. The Gram matrix is  $\mathbf{K} = \mathbf{X}\mathbf{X}^{\top}$ .
- Then corresponding function is

$$f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_{i}^{\star} \kappa(\mathbf{x}, \mathbf{x}_{i}) = \langle \mathbf{x}, \sum_{i=1}^{n} \theta_{i}^{\star} \mathbf{x}_{i} \rangle = \langle \mathbf{x}, \mathbf{w}^{\star} \rangle.$$

• We have  $\mathbf{w}^{\star} = \mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top} + \lambda n \mathbf{I}_n)^{-1} \mathbf{y}$ .

 $\ell_2$  penalized linear regression: ridge regression The problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_2^2 \text{ has solution } \mathbf{w}^* = (\mathbf{X}^\top \mathbf{X} + \lambda n \mathbf{I}_d)^{-1} \mathbf{X}^\top \mathbf{y}.$$

#### Matrix inversion lemma

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda n \mathbf{I}_d)^{-1}\mathbf{X}^{\top} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top} + \lambda n \mathbf{I}_n)^{-1}$$

- ► Both agree!
- ► Complexity roughly: KRR  $O(n^3)$ , RR  $O(\min\{d^3, n^3\})$ .

# **Binary classification**



### Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\}$$

- ▶ Train a function  $f(\mathbf{x}) = y \in \mathcal{Y}$  predicting a binary value  $(\mathcal{Y} = \{-1, 1\})$ .
- $f(\mathbf{x}) = 0$  defines the boundary on the partition of the feature space.

#### ERM in RKHS

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda ||f||_{\mathcal{H}}^2.$$



### **Loss functions**

A focus on classification problems  $\mathcal{Y} = \{-1, 1\}$ 

$$\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$$
 with  $\Phi$  non-increasing.

### Loss functions

A focus on classification problems  $\mathcal{Y} = \{-1,1\}$ 

$$\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$$
 with  $\Phi$  non-increasing.

- $y_i f(\mathbf{x}_i)$  is **the margin** (on the board).
- $\ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) < 0} (0/1 \text{ loss})$
- $\blacktriangleright$   $\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 y_i f(\mathbf{x}_i)\}$  (hinge loss: **SVM**)

### Loss functions

A focus on classification problems  $\mathcal{Y} = \{-1, 1\}$ 

$$\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$$
 with  $\Phi$  non-increasing.

- $\triangleright$   $y_i f(\mathbf{x}_i)$  is **the margin** (on the board).
- $\ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) < 0} \ (0/1 \text{ loss})$
- $\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 y_i f(\mathbf{x}_i)\} \text{ (hinge loss: } \mathbf{SVM})$





# Support Vector Machines (SVM)

#### Definition

▶ The hinge-loss is the function  $\mathbb{R} \to \mathbb{R}_+$ :

$$egin{aligned} \Phi_{\mathsf{hinge}}(x) &= \mathsf{max}(1-x,0) \ &= egin{cases} 0 & \mathsf{if} \ x \geq 1 \ 1-x & \mathsf{otherwise} \end{cases} \end{aligned}$$

► SVM is the corresponding large-margin classifier, which solves:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \Phi_{\text{hinge}}(y_i f(\mathbf{x}_i)) + \lambda ||f||_{\mathcal{H}}^2.$$



# Support Vector Machines (SVM)

#### Definition

▶ The hinge-loss is the function  $\mathbb{R} \to \mathbb{R}_+$ :

$$egin{aligned} \Phi_{\mathsf{hinge}}(x) &= \mathsf{max}(1-x,0) \ &= egin{cases} 0 & \mathsf{if} \ x \geq 1 \ 1-x & \mathsf{otherwise} \end{cases} \end{aligned}$$

SVM is the corresponding large-margin classifier, which solves:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \Phi_{\text{hinge}}(y_i f(\mathbf{x}_i)) + \lambda ||f||_{\mathcal{H}}^2.$$



Solving for the SVM (details in Steinwart and Christmann 2008)

- ▶ Representer theorem: sol. of the form  $f^*(\mathbf{x}) = \sum_{i=1}^n \theta_i^* \kappa(\mathbf{x}, \mathbf{x}_i)$ .
- $\theta^{\star}$  can be found by solving a quadratic program (QP).
- Again: we only need to know the Gram matrix  $\mathbf{K} = (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{ij}$ .



### What is SVM doing?

Find a separating hyperplane in the RKHS



### What is SVM doing?



But there could be an infinity of separating hyperplanes or zero!









+ We allow **some errors** to be made



In practice the overall **error** is controlled by a regularization param. C

# **E**xample



### **Conclusion**

- ► Kernel theory is very rich, kernels are quite simple but also versatile.
- Defines a very general way of learning classifiers/regressors on any kind of space.
- ▶ Based on the representer theorem: we only need the Gram matrix!
- ▶ Difficulties: the choice of the kernel (see TD), also can be expensive.

#### Table of contents

#### Kernels in Machine Learning

A bit of kernels theory Back to machine learning: the representer theorem

# Kernels for structured data

Basics of graphs-kernels

Focus on Weisfeler-Lehman Kernel Conclusion

### Kernels for structured data

### Objective

Given a dataset of graphs  $(G_1, \dots, G_n)$  can we build machine learning models to do:

- ▶ Supervised learning: each graph associated to  $y_i \in \mathcal{Y}$ .
- Unsupervised learning: PCA, Kernel PCA, graph embedding...

### Kernels for structured data

### Objective

Given a dataset of graphs  $(G_1, \dots, G_n)$  can we build machine learning models to do:

- ▶ Supervised learning: each graph associated to  $y_i \in \mathcal{Y}$ .
- Unsupervised learning: PCA, Kernel PCA, graph embedding...

### Application of RKHS for graphs

Let  $\mathcal{X}=\{$  set of all graphs  $\}$  can we build interesting kernels  $\kappa:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$  ?

- ▶ For  $G, G' \in \mathcal{X}, \kappa(G, G')$  is a notion of "similarity" between graphs.
- Gram matrix  $\mathbf{K} = (\kappa(G_i, G_j))_{(i,j) \in \llbracket n \rrbracket^2}$ .
- ► Then do stuff...

### Kernels for structured data

### Objective

Given a dataset of graphs  $(G_1, \dots, G_n)$  can we build machine learning models to do:

- ▶ Supervised learning: each graph associated to  $y_i \in \mathcal{Y}$ .
- Unsupervised learning: PCA, Kernel PCA, graph embedding...

### Application of RKHS for graphs

Let  $\mathcal{X}=\{$  set of all graphs  $\}$  can we build interesting kernels  $\kappa:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$  ?

- ▶ For  $G, G' \in \mathcal{X}, \kappa(G, G')$  is a notion of "similarity" between graphs.
- Gram matrix  $\mathbf{K} = (\kappa(G_i, G_j))_{(i,j) \in \llbracket n \rrbracket^2}$ .
- ► Then do stuff...

#### Some notations

A graph G=(V,E). Labeling function if attributes/labels  $\ell_G:V\cup E\to S$  (S discrete or continuous  $\subset \mathbb{R}^N$ )



### What is a good graph kernel?

### Properties of the graph kernel

- Handle graphs that are directed (or undirected) ?
- ► Handle node or edge labels or attributes that are present in the graphs?
- ▶ Efficient to compute ? Complexity w.r.t. |V|, |E|, dim ?
- ▶ Is there a particular relevant substructure (e.g. tree patterns) that would preclude the choice of a particular kernel?



### The kernel jungle

# Surveys: K. Borgwardt et al. 2020; Nikolentzos, Siglidis, and Vazirgiannis 2021



| Graph Kernel                            | Exp. $\phi$ | Node<br>Labels | Node<br>Attributes | Type          | Complexity                            |
|-----------------------------------------|-------------|----------------|--------------------|---------------|---------------------------------------|
| Vertex Histogram                        | /           | /              | ×                  | R-convolution | O(n)                                  |
| Edge Histogram                          | /           | /              | ×                  | R-convolution | O(m)                                  |
| Random Walk                             | X†          | /              | /                  | R-convolution | $O(n^3)$                              |
| Subtree                                 | ×           | /              | /                  | R-convolution | $O(n^24^{deg^*}h)$                    |
| Cyclic Pattern                          | /           | /              | ×                  | intersection  | O((c+2)n + 2m)                        |
| Shortest Path                           | X†          | /              | /                  | R-convolution | $O(n^4)$                              |
| Graphlet                                | /           | ×              | ×                  | R-convolution | $O(n^k)$                              |
| Weisfeiler-Lehman Subtree               | /           | /              | ×                  | R-convolution | O(hm)                                 |
| Neighborhood Hash                       | /           | /              | ×                  | intersection  | O(hm)                                 |
| Neighborhood Subgraph Pairwise Distance | /           | /              | ×                  | R-convolution | $O(n^2 m \log(m))$                    |
| Lovász θ                                | /           | ×              | ×                  | R-convolution | $O(n(s + \frac{nm}{\epsilon}) + s^2)$ |
| SVM- $\vartheta$                        | /           | ×              | ×                  | R-convolution | $O(n(s + n^2) + s^2)$                 |
| Ordered Decomposition DAGs              | /           | /              | ×                  | R-convolution | $O(n \log n)$                         |
| Pyramid Match                           | ×           | /              | ×                  | assignment    | O(ndL)                                |
| Weisfeiler-Lehman Optimal Assignment    | ×           | /              | ×                  | assignment    | O(hm)                                 |
| Subgraph Matching                       | ×           | /              | /                  | R-convolution | $O(kn^{k+1})$                         |
| GraphHopper                             | ×           | /              | /                  | R-convolution | $O(n^4)$                              |
| Graph Invariant Kernels                 | ×           | 1              | /                  | R-convolution | $O(n^6)$                              |
| Propagation                             | /           | 1              | /                  | R-convolution | O(hm)                                 |
| Multiscale Laplacian                    | ×           | /              | /                  | R-convolution | $O(n^5h)$                             |

### Bag of structures

A majority of graph kernels are instances of the *convolution kernels* Haussler et al. 1999.

### Principle

- Compare graphs by first dividing them into substructures of various granularity.
- ► E.g. vertices, subgraphs, all shortest paths of a graph.
- ▶ Defining base kernels at the fine granularity and combine them.
- ▶ Of the form  $\kappa(G, G') = \sum_{r \in \mathcal{R}, r' \in \mathcal{R}'} \kappa_{\text{substructure}}(r, r')$ .

## Bag of structures

A majority of graph kernels are instances of the *convolution kernels* Haussler et al. 1999.

### Principle

- Compare graphs by first dividing them into substructures of various granularity.
- E.g. vertices, subgraphs, all shortest paths of a graph.
- ▶ Defining base kernels at the fine granularity and combine them.
- ▶ Of the form  $\kappa(G, G') = \sum_{r \in \mathcal{R}, r' \in \mathcal{R}'} \kappa_{\text{substructure}}(r, r')$ .

### Advantages & limitations

- ► Intuitive definitions + relatively good results.
- Sometimes computational limitations.
- ► Expressiveness limitations.
- ▶ "Diagonal dominance problem" Yanardag and Vishwanathan 2015.

# All node-pairs kernel

#### A first idea

- Given G = (V, E), G' = (V', E'),
- ▶ Suppose the labels of the nodes of both graphs are in *S*.
- Consider a kernel on the nodes

$$\kappa_{\mathsf{node}}: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$$

► The all node-pairs kernel is defined by

$$\kappa(G, G') = \sum_{v \in V} \sum_{v' \in V'} \kappa_{\mathsf{node}}(\ell_G(v), \ell_{G'}(v'))$$

# All node-pairs kernel

#### A first idea

- Given G = (V, E), G' = (V', E'),
- Suppose the labels of the nodes of both graphs are in S.
- Consider a kernel on the nodes

$$\kappa_{\mathsf{node}}: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$$

► The all node-pairs kernel is defined by

$$\kappa(G, G') = \sum_{v \in V} \sum_{v' \in V'} \kappa_{\mathsf{node}}(\ell_G(v), \ell_{G'}(v'))$$

#### Remarks

- ▶ Runtime in  $O(|V| \times |V'| \times \dim(S))$ .
- ► Can handle discrete/continuous labels.
- ▶ Does not take into account the structures of the graphs.

### Node histogram kernel

### A baseline kernel (1/2)

 Suppose the labels are discrete over a finite alphabet

$$\Sigma = \{\sigma_1, \cdots, \sigma_{|\Sigma|}\}$$

The node histogram kernel is defined as

$$\kappa_{\mathsf{NH}}(\mathsf{G},\mathsf{G}') = \langle \Phi(\mathsf{G}),\Phi(\mathsf{G}') \rangle.$$

where

$$\Phi(G) = \left(\sum_{v \in V} \mathbf{1}_{\ell_G(v) = \sigma_1}, \cdots, \sum_{v \in V} \mathbf{1}_{\ell_G(v) = \sigma_{|\Sigma|}}\right).$$

Simply corresponds to an unnormalised histogram that counts the occurrence of each node label in the graph.

#### Node histogram kernel





## Node histogram kernel

### A baseline kernel (1/2)

 Suppose the labels are discrete over a finite alphabet

$$\Sigma = \{\sigma_1, \cdots, \sigma_{|\Sigma|}\}$$

The node histogram kernel is defined as

$$\kappa_{\mathsf{NH}}(\mathsf{G},\mathsf{G}') = \langle \Phi(\mathsf{G}), \Phi(\mathsf{G}') \rangle$$
.

where

$$\Phi(G) = (\sum_{v \in V} \mathbf{1}_{\ell_G(v) = \sigma_1}, \cdots, \sum_{v \in V} \mathbf{1}_{\ell_G(v) = \sigma_{|\Sigma|}}).$$

Simply corresponds to an unnormalised histogram that counts the occurrence of each node label in the graph.

#### Node histogram kernel



#### Remarks

- ► Can be computed in O(|V| + |V|').
- Does not take into account the structures of the graphs.

### Node histogram kernel

### A baseline kernel (1/2)

 Suppose the labels are discrete over a finite alphabet

$$\Sigma = \{\sigma_1, \cdots, \sigma_{|\Sigma|}\}$$

The node histogram kernel is defined as

$$\kappa_{\mathsf{NH}}(\mathsf{G},\mathsf{G}') = \langle \Phi(\mathsf{G}), \Phi(\mathsf{G}') \rangle.$$

where

$$\Phi(G) = (\sum_{v \in V} \mathbf{1}_{\ell_G(v) = \sigma_1}, \cdots, \sum_{v \in V} \mathbf{1}_{\ell_G(v) = \sigma_{|\Sigma|}}).$$

Simply corresponds to an unnormalised histogram that counts the occurrence of each node label in the graph.

#### Node histogram kernel



#### Remarks

- Can be computed in O(|V| + |V|').
- Does not take into account the structures of the graphs.
- Of the form  $\kappa_{NH}(G, G') = \sum_{v \in V, v' \in V'} \mathbf{1}_{\ell_G(v) = \ell_{G'}(v')}.$

# Edge histogram kernel

### A baseline kernel (2/2)

 Suppose the edges labels are discrete over a finite alphabet

$$\Sigma = \{\sigma_1, \cdots, \sigma_{|\Sigma|}\}$$

The edge histogram kernel is defined as

$$\kappa_{\mathsf{EH}}(G,G') = \langle \Phi(G), \Phi(G') \rangle$$
.

where  $\Phi(G) = (\sum_{e \in E} \mathbf{1}_{\ell(e) = \sigma_1}, \cdots, \sum_{e \in E} \mathbf{1}_{\ell(e) = \sigma_{|\Sigma|}})$ .

#### Edge histogram kernel





## Edge histogram kernel

### A baseline kernel (2/2)

 Suppose the edges labels are discrete over a finite alphabet

$$\Sigma = \{\sigma_1, \cdots, \sigma_{|\Sigma|}\}$$

 The edge histogram kernel is defined as

$$\kappa_{\mathsf{EH}}(\mathsf{G},\mathsf{G}') = \langle \Phi(\mathsf{G}), \Phi(\mathsf{G}') \rangle.$$

where 
$$\Phi(G) = (\sum_{e \in E} \mathbf{1}_{\ell(e) = \sigma_1}, \cdots, \sum_{e \in E} \mathbf{1}_{\ell(e) = \sigma_{|\Sigma|}})$$
.

#### Edge histogram kernel



#### Remarks

- ▶ Can be computed in O(|E| + |E|').
- Does not take into account the labels of the nodes.
- ► Can be combined with the previous one as

$$\kappa(G, G') = \kappa_{\mathsf{EH}}(G, G') \times \kappa_{\mathsf{NH}}(G, G')$$

# The shortest-path kernel

### K. M. Borgwardt and Kriegel 2005

- Compute all pair-to-pair shortest-paths in G, G' with Floyd-Warshall.
- ► The kernel is defined as

$$v_1 \qquad G$$

$$d(v_1, v_2) = 2$$

$$\kappa_{\mathsf{SP}}(G,G') = \sum_{(v_1,v_2) \in V} \sum_{(v_1',v_2') \in V'} \kappa_0(d(v_1,v_2),d(v_1',v_2')).$$

where  $d(v_1, v_2)$  is the shortest-path distance between  $v_1, v_2$ .

- $\triangleright$   $\kappa_0$  is a kernel that compares the lengths of the two shortest-paths.
- $\kappa_0(x,y) = x \times y$  (linear kernel) or  $\kappa_0(x,y) = \mathbf{1}_{x=y}$  (dirac).

### The shortest-path kernel

### K. M. Borgwardt and Kriegel 2005

- Compute all pair-to-pair shortest-paths in G, G' with Floyd-Warshall.
- The kernel is defined as

$$\kappa_{\mathsf{SP}}(G,G') = \sum_{(v_1,v_2) \in V} \sum_{(v_1',v_2') \in V'} \kappa_0(d(v_1,v_2),d(v_1',v_2')).$$

where  $d(v_1, v_2)$  is the shortest-path distance between  $v_1, v_2$ .

- $\triangleright$   $\kappa_0$  is a kernel that compares the lengths of the two shortest-paths.
- $ightharpoonup \kappa_0(x,y) = x \times y$  (linear kernel) or  $\kappa_0(x,y) = \mathbf{1}_{x=y}$  (dirac).



#### Remarks

- Complexity Floyd-Warshall on  $G, O(|V|^3)$ .
- Variants with Bellman-Ford's, Dijkstra's algorithms.
- ▶ General complexity for  $\kappa_{SP}$  $O(|V|^2|V'|^2)$ .
- ► Many variants with



## **GraphHopper kernel**

Undirected graphs with edge weights and node attributes.

- Even for real-valued/vector attributes Feragen et al. 2013.
- Kernel is defined as

$$\kappa_{\mathsf{GH}}(G,G') = \sum_{p \in \mathcal{P}_G} \sum_{p' \in \mathcal{P}_{G'}} \kappa_0(p,p')$$
 where  $\mathcal{P}_G$ : set of all shortest-paths.

### **GraphHopper kernel**

Undirected graphs with edge weights and node attributes.

- ► Even for real-valued/vector attributes Feragen et al. 2013.
- Kernel is defined as

$$\kappa_{\mathsf{GH}}(\mathsf{G},\mathsf{G}') = \sum_{p \in \mathcal{P}_{\mathsf{G}}} \sum_{p' \in \mathcal{P}_{\mathsf{G}'}} \kappa_0(p,p')$$
 where  $\mathcal{P}_{\mathsf{G}}$ : set of all shortest-paths.

$$\kappa_{0}(p, p') = \kappa_{\text{node}}( \bigcirc, \bigcirc) + \kappa_{\text{node}}( \bigcirc, \bigcirc) + \kappa_{\text{node}}( \bigcirc, \bigcirc)$$

### GraphHopper kernel

### Undirected graphs with edge weights and node attributes.

- ► Even for real-valued/vector attributes Feragen et al. 2013.
- ▶ Interestingly averaged overall worst-case complexity  $O(|V||V'|\dim(S))$ .
- Kernel is defined as

$$\kappa_{\mathsf{GH}}(\mathsf{G},\mathsf{G}') = \sum_{p \in \mathcal{P}_{\mathsf{G}}} \sum_{p' \in \mathcal{P}_{\mathsf{G}'}} \kappa_0(p,p')$$
 where  $\mathcal{P}_{\mathsf{G}}$ : set of all shortest-paths.

$$\kappa_0(p, p') = \kappa_{\text{node}}( \bigcirc, \bigcirc) + \kappa_{\text{node}}( \bigcirc, \bigcirc) + \kappa_{\text{node}}( \bigcirc, \bigcirc) + \kappa_{\text{node}}( \bigcirc, \bigcirc)$$

## The Graphlet kernel

# Principle Shervashidze, Vishwanathan,

et al. 2009

- Count substructures in graphs.
- ▶ Graphlet = subgraph with k vertices.
- ▶  $\mathbb{G} := \{\mathfrak{g}_1, \cdots, \mathfrak{g}_{N_k}\}$  set of k-graphlets (asymptotically  $N_k \approx 2^{\binom{k}{2}}/k!$ ).
- Kernel  $\kappa(G, G') = \langle \Phi(G), \Phi(G') \rangle$

$$\Phi(G) \propto (|\{\mathfrak{g}_i \in G\}|, \cdots, |\{\mathfrak{g}_{N_k} \in G\}|)^{\top}$$



## The Graphlet kernel

# Principle Shervashidze, Vishwanathan, et al. 2009

- ► Count substructures in graphs.
- ▶ Graphlet = subgraph with k vertices.
- ▶  $\mathbb{G} := \{\mathfrak{g}_1, \cdots, \mathfrak{g}_{N_k}\}$  set of k-graphlets (asymptotically  $N_k \approx 2^{\binom{k}{2}}/k!$ ).
- Kernel  $\kappa(G, G') = \langle \Phi(G), \Phi(G') \rangle$

$$\Phi(G) \propto (|\{\mathfrak{g}_i \in G\}|, \cdots, |\{\mathfrak{g}_{N_k} \in G\}|)^{\top}$$

#### Remarks

- Ignores all labels.
- Computational bottleneck: enumeration of all graphlets.
- ► Complexity in  $O(|V|^k)$  time.
- ► Typically  $k \in \{3, 4, 5\}$ .
- Counting all possible subgraphs is NP-hard Gärtner, Flach, and Wrobel 2003.



### The graph isomorphism problem

#### Checking if two graphs are "identical"

Two graphs G = (V, E), G' = (V', E') are **isomorphic**  $(G \cong G')$  if there exists a **bijection**  $\Psi : V \to V'$  such that

$$(u,v) \in E \iff (\Psi(u),\Psi(v)) \in E'$$
.

## The graph isomorphism problem

### Checking if two graphs are "identical"

Two graphs G = (V, E), G' = (V', E') are **isomorphic**  $(G \cong G')$  if there exists a **bijection**  $\Psi : V \to V'$  such that

$$(u,v) \in E \iff (\Psi(u),\Psi(v)) \in E'$$
.



#### Remark

- Same graphs up to a permutation.
- Currently no known polynomial-time algorithms for solving this problem.
- ▶ Not known to be NP-complete.
- Quasi-polynomial algorithm Babai 2016.

# The graph isomorphism problem

### Checking if two graphs are "identical"

Two graphs G = (V, E), G' = (V', E') are **isomorphic**  $(G \cong G')$  if there exists a **bijection**  $\Psi : V \to V'$  such that

$$(u,v) \in E \iff (\Psi(u),\Psi(v)) \in E'$$
.



#### Remark

- Same graphs up to a permutation.
- Currently no known polynomial-time algorithms for solving this problem.
- ▶ Not known to be NP-complete.
- Quasi-polynomial algorithm Babai 2016.

Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

#### On the board



#### Table of contents

#### Kernels in Machine Learning

A bit of kernels theory

Back to machine learning: the representer theorem

#### Kernels for structured data

Basics of graphs-kernels

Focus on Weisfeler-Lehman Kernel

Conclusion

A very popular graph kernel based on Shervashidze, Schweitzer, et al. 2011

- Originally handle graphs with discrete labels.
- Uses iterative label refinement.
- ► Concepts from the Weisfeiler-Lehman test of isomorphism.

# A very popular graph kernel based on Shervashidze, Schweitzer, et al. 2011

- Originally handle graphs with discrete labels.
- Uses iterative label refinement.
- ► Concepts from the Weisfeiler-Lehman test of isomorphism.

### Graphs relabeling/refinement

Recursively refine the node labels by applying local transformations

$$\begin{split} & a_v = \mathsf{AGGREGATE}\left(\{\{\ell_G^{(\mathsf{old})}(v'); v' \in \mathcal{N}(v)\}\}\right) \\ & \mathsf{and} \ \ell_G^{(\mathsf{new})}(v) = \mathsf{COMBINE}\left(\ell_G^{(\mathsf{old})}(v), a_v\right) \,. \end{split}$$

- ► This general idea can give rise to a multitude of distinct graph kernels:
- ▶ (i) the specific form of COMBINE, AGGREGATE.
- (ii) which kernels are used to compare the resulting modified graphs.
- ▶ (iii) how the graph at multiple scales are aggregated into a single value.









#### The Weisfeiler-Lehman kernel

- ▶ The function AGGREGATE sorts in alphabetic order.
- ➤ The function COMBINE hashes to compress the tuple into a single integer-valued label.
- ▶ Produces a sequence of graphs  $(G_0, \dots, G_h)$ .
- ► The Weisfeiler-Lehman kernel is

$$\kappa_{\mathsf{WL}}(G,G') = \sum_{i=0}^h \kappa_0(G_i,G_i'),$$

for a base kernel  $\kappa_0$ .

#### The Weisfeiler-Lehman kernel

- ▶ The function AGGREGATE sorts in alphabetic order.
- ➤ The function COMBINE hashes to compress the tuple into a single integer-valued label.
- ▶ Produces a sequence of graphs  $(G_0, \dots, G_h)$ .
- ► The Weisfeiler-Lehman kernel is

$$\kappa_{\mathsf{WL}}(G, G') = \sum_{i=0}^{h} \kappa_0(G_i, G'_i),$$

for a base kernel  $\kappa_0$ .

- Most common  $\kappa_0$  subtree kernel:  $\Phi(G)$  = number of occurrences of each label in the alphabet of all compressed labels at each step.
- ▶ Complexity: for one graph  $O(|E| \times h)$ .
- Runtime scales only linearly with the number of edges!

# Optimal assignment kernel

### General setting (Kriege, Giscard, and Wilson 2016)

- ▶ Different than "bag of structure" kernels.
- ▶ Let  $X, Y \subset \Omega$  with |X| = |Y|.

$$\kappa_{\mathit{OA}}(X,Y) = \max_{B \in \mathcal{B}(X,Y)} \sum_{x \in X} \kappa_0(x,B(y)) \text{ where } \mathcal{B}(X,Y) = \text{all bijections}.$$

 $\blacktriangleright$   $\kappa$  is a valid PSD kernel if  $\kappa_0: \Omega \times \Omega \to \mathbb{R}_+$  is *strong*:

$$\kappa_0(x,y) \ge \min\{\kappa_0(x,z), \kappa_0(z,y)\} \ \forall (x,y,z).$$

Assign the parts of one objects to the parts of the other *s.t.* the total similarity is maximum possible.

# Optimal assignment kernel

### General setting (Kriege, Giscard, and Wilson 2016)

- ▶ Different than "bag of structure" kernels.
- ▶ Let  $X, Y \subset \Omega$  with |X| = |Y|.

$$\kappa_{\mathit{OA}}(X,Y) = \max_{B \in \mathcal{B}(X,Y)} \sum_{x \in X} \kappa_0(x,B(y)) \text{ where } \mathcal{B}(X,Y) = \text{all bijections}.$$

 $\blacktriangleright$   $\kappa$  is a valid PSD kernel if  $\kappa_0: \Omega \times \Omega \to \mathbb{R}_+$  is *strong*:

$$\kappa_0(x,y) \ge \min\{\kappa_0(x,z),\kappa_0(z,y)\} \ \forall (x,y,z).$$

Assign the parts of one objects to the parts of the other *s.t.* the total similarity is maximum possible.

### Weisfeiler-Lehman optimal assignment kernel

- ▶  $i \in \llbracket h \rrbracket, \tau_i(v)$  denotes the color of vertex v at step i of the WL process.
- ▶ The base kernel is  $\kappa_0(v, v') = \sum_{i=0}^h \mathbf{1}_{\tau_i(v) = \tau_i(v')} + \text{padding.}$
- ▶ Can also be computed in O(hm).



### Continuous alternative to Weisfeiler-Lehman

### Hash graph kernel Morris et al. 2016

- Let  $\kappa$  be a graph kernel (such as WL).
- $\mathfrak{H} = \{\mathfrak{h}_1, \mathfrak{h}_2 \cdots\}$  a family of hash functions.
- ▶  $\mathfrak{h}_i : \mathbb{R}^d \to \mathbb{N}$  is a hash function.
- ▶  $\mathfrak{h}_i(G)$ : the discretised graph resulting from applying  $\mathfrak{h}_i$  to continuous attributes of the graph.
- ► The kernel is defined as

$$\kappa_{\mathsf{HGK}}(G,G') = \frac{1}{|\mathfrak{H}|} \sum_{i \in \mathfrak{H}} \kappa(\mathfrak{h}_i(G),\mathfrak{h}_i(G')).$$

### Continuous alternative to Weisfeiler-Lehman

### Hash graph kernel Morris et al. 2016

- Let  $\kappa$  be a graph kernel (such as WL).
- $\blacktriangleright$   $\mathfrak{H} = \{\mathfrak{h}_1, \mathfrak{h}_2 \cdots\}$  a family of hash functions.
- ▶  $\mathfrak{h}_i : \mathbb{R}^d \to \mathbb{N}$  is a hash function.
- ▶  $\mathfrak{h}_i(G)$ : the discretised graph resulting from applying  $\mathfrak{h}_i$  to continuous attributes of the graph.
- ► The kernel is defined as

$$\kappa_{\mathsf{HGK}}(G,G') = \frac{1}{|\mathfrak{H}|} \sum_{i \in \mathfrak{H}} \kappa(\mathfrak{h}_i(G),\mathfrak{h}_i(G')).$$

#### Example of hash functions

- ► Locality-sensitive hashing schemes Datar et al. 2004.
- ▶ Idea: if  $\mathbf{x}, \mathbf{y}$  are "close" then  $\mathbb{P}[\mathfrak{h}_1(\mathbf{x}) = \mathfrak{h}_2(\mathbf{y})]$  is "high" and conversely.
- ► More collusion for nearby points.
- e.g.  $\mathfrak{h}(\mathbf{x}) = \lfloor \frac{\langle \mathbf{x}, \mathbf{a} \rangle + b}{r} \rfloor$ ,  $\mathbf{a} \sim \mu$ ,  $b \sim \mathsf{unif}([0, r])$



#### Table of contents

#### Kernels in Machine Learning

A bit of kernels theory Back to machine learning: the representer theorem

#### Kernels for structured data

Basics of graphs-kernels Focus on Weisfeler-Lehman Kernel

Conclusion

### **Conclusion**

- Graph kernels are very simple but powerful way of using all the ML machinery on graphs.
- ► The big question is to choose the "right" kernel.
- No straight answer, it depends on the task.
- ▶ In practice: always use simple graph kernels as baselines.

### References I

- Aronszajn, Nachman (1950). "Theory of reproducing kernels". In:

  Transactions of the American mathematical society 68.3, pp. 337–404.
- Babai, László (2016). "Graph isomorphism in quasipolynomial time". In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pp. 684–697.
- Borgwardt, Karsten et al. (2020). "Graph kernels: State-of-the-art and future challenges". In: Foundations and Trends® in Machine Learning 13.5-6, pp. 531–712.
- Borgwardt, Karsten M and Hans-Peter Kriegel (2005). "Shortest-path kernels on graphs". In: Fifth IEEE international conference on data mining (ICDM'05). IEEE, 8-pp.
- Datar, Mayur et al. (2004). "Locality-sensitive hashing scheme based on p-stable distributions". In: *Proceedings of the twentieth annual symposium on Computational geometry*, pp. 253–262.
- Feragen, Aasa et al. (2013). "Scalable kernels for graphs with continuous attributes". In: *Advances in neural information processing systems* 26.

#### References II

- Gärtner, Thomas, Peter Flach, and Stefan Wrobel (2003). "On graph kernels: Hardness results and efficient alternatives". In: Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings. Springer, pp. 129–143.
  - Haussler, David et al. (1999). Convolution kernels on discrete structures. Tech. rep. Citeseer.
- Kriege, Nils M, Pierre-Louis Giscard, and Richard Wilson (2016). "On valid optimal assignment kernels and applications to graph classification". In: *Advances in neural information processing systems* 29.
- Leman, AA and Boris Weisfeiler (1968). "A reduction of a graph to a canonical form and an algebra arising during this reduction". In: Nauchno-Technicheskaya Informatsiya 2.9, pp. 12–16.
- Morris, Christopher et al. (2016). "Faster kernels for graphs with continuous attributes via hashing". In: 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, pp. 1095–1100.

### References III

- Nikolentzos, Giannis, Giannis Siglidis, and Michalis Vazirgiannis (2021). "Graph kernels: A survey". In: *Journal of Artificial Intelligence Research* 72, pp. 943–1027.
  - Shervashidze, Nino, Pascal Schweitzer, et al. (2011). "Weisfeiler-lehman graph kernels." . In: *Journal of Machine Learning Research* 12.9.
  - Shervashidze, Nino, SVN Vishwanathan, et al. (2009). "Efficient graphlet kernels for large graph comparison". In: *Artificial intelligence and statistics*. PMLR, pp. 488–495.
  - Steinwart, Ingo and Andreas Christmann (2008). Support vector machines. Springer Science & Business Media.
    - Wendland, Holger (2004). *Scattered data approximation*. Vol. 17. Cambridge university press.
  - Yanardag, Pinar and SVN Vishwanathan (2015). "Deep graph kernels". In: *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1365–1374.