Roary user manual

By Andrew Page based on version 3.3.3 (2-Oct-2015)

Roary is a high speed stand alone pan genome pipeline, which takes annotated assemblies in GFF3 format (produced by Prokka (Seemann, 2014)) and calculates the pan genome. Using a standard desktop PC, it can analyse datasets with thousands of samples, something which is computationally infeasible with existing methods, without compromising the quality of the results. 128 samples can be analysed in under 1 hour using 1 GB of RAM and a single processor. To perform this analysis using existing methods would take weeks and hundreds of GB of RAM. Roary is not intended for meta-genomics or for comparing extremely diverse sets of genomes.

Citation and further details of the method

Andrew J. Page, Carla A. Cummins, Martin Hunt, Vanessa K. Wong, Sandra Reuter, Matthew T. G. Holden, Maria Fookes, Daniel Falush, Jacqueline A. Keane, Julian Parkhill (2015), "Roary: Rapid large-scale prokaryote pan genome analysis", Bioinformatics, doi:10.1093/bioinformatics/btv421

Installation instructions

Details on how to install Roary can be found here: https://github.com/sanger-pathogens/Roary/blob/master/README.md

Inputs

Roary takes GFF3 files as input. They must contain the nucleotide sequence at the end of the file.

Input files from Prokka

All GFF3 files created by Prokka are valid with Roary and this is the recommended way of generating the input files. Each input file should have a unique prefix for the gene IDs (--prefix) to make it easier for you to identify where genes came from.

Input files from GenBank

On NCBI's website, GFF3 files only contain annotation and not the nucleotide sequence so cannot be used. You need to download the GenBank files plus nucleotide sequence and convert them. When downloading, click on the 'show sequence' option, 'Update View' then 'Send' to a 'File' of type 'GenBank'. You can then use the Bio::Perl script 'bp_genbank2gff3.pl' to convert to GFF3. Just be aware that mixing different gene prediction methods and annotation pipelines can give noisier results.

Input files from GenBank draft WGS

Install Bio-RetrieveAssemblies which will allow you to download draft WGS assemblies from GenBank.

sudo cpanm -f Bio::RetrieveAssemblies

To download all Salmonella typhi annotated assemblies as GFF3 files:

retrieve_assemblies -a -f gff typhi

Software usage

To run the software and create a pan genome you use the 'roary' script. It takes in GFF files and outputs various analysis.

roary

```
Usage: roary [options] *.gff

Options: -p INT number of threads [1]
-o STR clusters output filename [clustered_proteins]
-f STR output directory [.]
-e create a multiFASTA alignment of core genes using PRANK
-n fast core gene alignment with MAFFT, use with -e
-i minimum percentage identity for blastp [95]
-cd FLOAT percentage of isolates a gene must be in to be core [99]
-z dont delete intermediate files
-t INT translation table [11]
-v verbose output to STDOUT
-y add gene inference information to spreadsheet
-g INT maximum number of clusters [50000]
-qc generate QC report with Kraken
-k STR path to Kraken database for QC, use with -qc
-w print version and exit
-a check dependancies and exit
-h this help message
```

For example: Default usage roary *.gff

Quickly generate a core gene alignment using 8 threads roary -e --mafft -p 8 *.gff

Save results to a different directory roary –f output_dir *.gff

Change the minimum blastp percentage identity. Its not advised to go below 90% unless you know what your doing.

```
roary -i 90 *.gff
```

Check that the software is installed correctly.

roary -a

query_pan_genome

Perform set operations on the pan genome to see the gene differences between groups of isolates.

```
Options: -g STR groups filename [clustered_proteins]
-a STR action

(union/intersection/complement/gene_multifasta/difference) [union]
-c FLOAT percentage of isolates a gene must be in to be core [99]
-o STR output filename [pan_genome_results]
-n STR comma separated list of gene names for use with

gene_multifasta action
-i STR comma separated list of filenames, comparison set one
-t STR comma separated list of filenames, comparison set two
verbose output to STDOUT
-h this help message
```

Examples:

Union of genes found in isolates query_pan_genome -a union *.gff

Intersection of genes found in isolates (core genes) query_pan_genome -a intersection *.gff

Complement of genes found in isolates (accessory genes) query_pan_genome -a complement *.gff

Extract the sequence of each gene listed and create multi-FASTA files query_pan_genome -a gene_multifasta -n gryA,mecA,abc *.gff

Gene differences between sets of isolates

query_pan_genome -a difference --input_set_one 1.gff,2.gff --input_set_two 3.gff,4.gff,5.gff

iterative cdhit

Iteratively cluster a set of proteins with CD-hit, lower the threshold each time and extracting core genes (1 per isolate) to another file, and remove them from the input proteins file.

```
Options: -p INT number of threads [1]

-m STR output filename for combined proteins [_combined_files]
-n INT number of isolates [1]
-c STR cd-hit output filename [_clustered]
-f STR output filename for filtered sequences
[_clustered_filtered.fa]
-l FLOAT lower bound percentage identity [98.0]
-u FLOAT upper bound percentage identity [99.0]
-s FLOAT step size for percentage identity [0.5]
-v verbose output to STDOUT
-h this help message
```

roary_plots.py

This contributed script by Marco Galardini is not installed by default but can be very useful. Additional details can be found here:

https://github.com/sanger-pathogens/Roary/tree/master/contrib/roary_plots It provides 3 figures, showing the tree compared to a matrix with the presence and absence of core and accessory genes. The next is an pie chart of the

breakdown of genes and the number of isolate they are present in. And finally there is a graph with the frequency of genes versus the number of genomes.

roary_plots.py my_tree.tre gene_presence_absence.csv

Recipe for using Roary

- 1.) Annotate FASTA files with PROKKA
- 2.) Roary -e -mafft *.gff
- 3.) FastTree -nt -gtr core_gene_alignment.aln > my_tree.newick

Output files

Table of output files and brief description

File	Description
summary_statistics.txt	Number of genes in the core and accessory
gene_presence_absence.csv	Spreadsheet with presence and absence of genes in each sample. Open in Excel.
pan_genome_reference.fa	FASTA file of nucleotide sequences with 1 sequence for every gene.
*.Rtab	Tab files for use in R
accessory_binary_genes.fa.newick	Tree in Newick format based on the binary presence and absence of genes in the accessory.
accessory_graph.dot	A graph in DOT format of how genes are linked together at the contig level in the accessory genome
core_accessory_graph.dot	A graph in DOT format of how genes are linked together at the contig level in the pan genome
clustered_proteins	Groups file where each line lists the sequences in a cluster
core_gene_alignment.aln	Multi-FASTA alignment of core genes

Summary Statistics

A text file with an overview of the genes and how frequently they occur in the input isolates. If the number of core genes is 0 it can indicate you have some contamination. Likewise if the total number of genes is very high.

```
Core genes (99% <= strains <= 100%): 1830
Soft core genes (95% <= strains < 99%): 157
Shell genes (15% <= strains < 95%): 1471
Cloud genes (0% <= strains < 15%): 2987
Total genes: 6445
```

Gene Presence and absence spreadsheet

The gene presence and absence spreadsheet lists each gene and which samples it is present in. The view below shows how it looks in Excel.

Gene No	n-unique Gene name Annotation	D E No. isolates No. seguen	es. Ave sequences per lent	te Genome France	nt Order within Fragment Accessory Fragment	Accessory Order with Fragmen OC	ERR664778	ERR664779	ERR664780	ERR664782
group 10	hypothetical protein	58	S8	1	1 5539	Accessory Groce with Fragmen Qc		ERR664779 02712		
od .	Ditydrolipovi detydrogenase	58	58	1	1 4950			ERR664779_00082		
uk2	Butyrate kinase 2	58	58	î	1 4949			ERR664779 00081		
lyA	165/235 rRNA (cytidine-2'-O)-methyltransferase TlyA	58	58	i	1 4945			ERR664779_00077		
group 1003	Farnesyl diphosphate synthase	58	58	1	1 4943			ERR664779 00074		
group_1004	Tfp pilus assembly protein FimT	58	58	1	1 4920			ERR664779 00054		
group_1004 group_1006	YceG-like family	58	58	1	1 4920			ERR664779 00043		
group_1006 ribF 2		58	58 58	1	1 4909					
	Riboflavin biosynthesis protein ribF Protein of unknown function (DUFS03)	58	58	1	1 4906			ERR664779_00038		
group_1009		58	58	1	1 4902			ERR664779_00035		
uppS	Undecaprenyl pyrophosphate synthase			1				ERR664779_00024		
hfDC_2	GTP-binding protein HfIX	58	58 58	1	1 4862			ERR664779_00005		
yccU	hypothetical protein	58		1	1 4848			ERR664779_02150		
trmFO	MethylenetetrahydrofolatetRNA-(uracil-5-)-methyltransferase TrmFO	58	58	1	1 4837			ERR664779_02159		
sipS	Signal peptidase I S	58	58	1	1 4830			ERR664779_02164		
treR	Trehalose operon transcriptional repressor	58	58	1	1 4805			ERR664779_02183		
ndk	Nucleoside diphosphate kinase	58	58	1	1 5683			ERR664779_00720		
tyrC	Arogenate dehydrogenase	58	58	1	1 5678			ERR664779_00715		
maeA	Probable NAD-dependent malic enzyme 2	58	58	1	1 5669			ERR664779_00706		
ycgG	hypothetical protein	58	58	1	1 5668			ERR664779_00705		
ycdT_1	Probable diguanylate cyclase YcdT	58	58	1	1 5664			ERR664779_00702		
Ojqy	hypothetical protein	58	58	1	1 5661		ERR654778_00503	ERR664779_00699	ERR664780_01196	6 ERR664782
ypmB	hypothetical protein	58	58	1	1 5649		ERR664778_00613	ERR664779_00689	ERR664780_01201	6 ERR664782
nth	Endonuclease III	58	58	1	1 5645		ERR664778_00617	ERR664779_00685	ERR664780_01210	0 ERR664782
ypsA	hypothetical protein	58	58	1	1 5639		ERR664778_00622	ERR664779_00680	ERR664780_01215	5 ERR664782
mhA	14.7 kDa ribonuclease H-like protein	58	58	1	1 5629		ERR664778_00634	ERR664779_00668	ERR664780_0122	7 ERR564782
dedA_3	hypothetical protein	58	58	1	1 5619		ERR664778_00643	ERR664779_00659	ERR664780_01236	6 ERR664782
group 1040	GDSL-like Lipase/Acylhydrolase	58	58	1	1 5611		ERR664778 00651	ERR664779 00651	ERR664780 01244	4 ERR664782
msr8	Peptide methionine sulfaxide reductase MsrB	58	58	1	1 5608		ERR664778 00654	ERR664779 00648	ERR664780 0124	7 ERR664782
group 1042	D-alanyl-D-alanine carboxypeptidase	58	58	i	1 5604			ERR664779 00644		
cooZ	Copper chaperone CopZ	58	58	i	1 5599			ERR664779 00641		
pyrC	Dihydroprotase	58	58	1	1 5580			ERR664779 00624		
carB	Carbamoyl-phosphate synthase large chain	58	58	1	1 5578			ERR664779 00622		
pyrE	Orotate phosphoribosyltransferase	58	58	1	1 5574			ERR664779 00618		
group 1048	short chain dehydrozenase	58	58	i	1 5572			ERR664779 00617		
priA	Primosomal protein N'	58	58	i	1 5565			ERR664779 00611		
fmt	Methionyl-tRNA formyltransferase	58	58	1	1 5564			ERR664779 00610		
prkC	Serine/threonine-protein kinase PrkC	58	58	1	1 5561			ERR664779 00607		
fapR	Fatty acid and phospholipid biosynthesis regulator	58	58	1	1 5550			ERR664779 00597		
nemR	HTH-type transcriptional repressor nemR	58	58	1	1 2555			ERR664779_02402		
emrB 3	Multidrug resistance protein B	58	58	1	1 2554			ERR664779 02403		
vidA 5	Phosphatase YidA	58	58	1	1 2554			ERR664779_02403		
group 1059	nicotinamidase/pyrazinamidase	58	58	1	1 2542			ERR664779_02410		
lipt lipt	Octanovi-(GcvH) protein N-octanovitransferase	58	58	1	1 2532					
	octanoyi-(ucvH):protein N-octanoyitransferase outative dGTPase	58	58	1	1 2527			ERR664779_02428		
group_1062		58	58	1	1 2526			ERR664779_02429		
glyA	Pyridoxal-phosphate-dependent serine hydroxymethyltransferase		58	1				ERR664779_01357		
mnaA	UDP-N-acetylglucosamine 2-epimerase	58	58 58	1	1 2495			ERR664779_01355		
group_1059	conserved hypothetical integral membrane protein			1	1 2484			ERR664779_01345		
wecA	Undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase	58	58	1	1 2474			ERR664779_01336		
degV	hypothetical protein	58	58	1	1 2467			ERR664779_01331		
prf8	Peptide chain release factor 2	58	58	1	1 2457			ERR664779_01326		
group_1074	Predicted methyltransferase (contains TPR repeat)	58	58	1	1 2425			ERR664779_01296		
ngJ	Arginine biosynthesis bifunctional protein Argi	58	58	1	1 5211		ERR664778_00849	ERR664779_00862	ERR664780_00109	5 ERR66478
pepQ	Uncharacterized peptidase SA1530	58	58	1	1 5187		ERR664778_00857	ERR664779_00874	ERR664780_0011	7 ERR66478
eccA	Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha	58	58	1	1 5178		ERR664778_00863	ERR664779_00880	ERR664780_0012	3 ERR66478
dna8	Replication initiation and membrane attachment protein	58	58	1	1 5167		ERR664778_00874	ERR664779_00891	ERR664780_00134	4 ERR664782
hemB	Delta-aminolevulinic acid dehydratase	58	58	1	1 5160			ERR664779 00899		
group 1085	hypothetical protein	58	58	4	1 5129			ERR664779 00927		

Column	Description
A	The gene name, which is the most frequently occurring gene name
	from the sequences in the cluster. If there is no gene name, then it is
	given a generic unique name 'group_XXX'.
В	A non unique gene name, where sequences with the same gene name
	have ended up in different groups. It might be because of split genes, or
	miss annotation.
С	Functional annotation
D	Number of isolates represented in the cluster
Е	Number of sequences in the cluster
F	Average number of sequences per isolate. This is normally 1. If this is
	greater than 1 then there is over clustering and the paralogs couldn't
	be split.
G	Genome fragment, where there is evidence at the contig level that the
	genes are linked.
Н	Order within fragment, combined with the genome fragment this gives
	an indication of the order of genes within the graph. In Excel, sort on
	Column G and H.
I	Accessory Fragment is where core genes are excluded and there is
	evidence at contig level that the genes are linked.
J	Accessory order with fragment, combined with the Accessory fragment
	this gives an indication of the order of genes within the accessory
	graph. In Excel, sort on columns I and J.
K	Comments on the quality of the cluster. Miss predictions are noted, as
	are single genes on single contigs, which can be evidence of low level
	contamination.
Others	Presence and absence of genes in each sample, with the corresponding
	source Gene ID.

Pan genome reference

This is a FASTA file which contains a single representative nucleotide sequence from each of the clusters in the pan genome (core and accessory). The name of each sequence is the source sequence ID followed by the cluster it came from.

This file can be of use for reference guided assembly, whole genome MLST or for mapping raw reads to it.

Accessory binary genes tree

This is a tree created using the binary presence and absence of accessory genes. It is in Newick format and can be viewed in FigTree. It is only a quick and dirty tree to roughly group isolates together based on their accessory genome and is in no way reliable other than to give a quick insight into the data. If you want a more accurate tree you need to use the core gene alignment as your starting point.

Rtab files

There is an additional script called 'create_pan_genome_plots.R' which requires R and the ggplot2 library. It takes in the *.Rtab files and produces graphs on how the pan genome varies as genomes are added (in random orders).

Core gene alignment

If you pass in the '-e' parameter to roary, a multi-FASTA alignment of all of the core genes is created. By default it uses PRANK (Löytynoja, 2014) which performs a codon aware alignment. It is slow but accurate. If you pass in '-e -- mafft' it will use MAFFT which performs a nucleotide alignment. It is very fast but less accurate. This can then be used as input to build a phylogenetic tree. To reduce the memory and run time, you can pre filter the alignment using snp_sites https://github.com/sanger-pathogens/snp_sites

Just be aware that recombination is not taken care of with this method.

Software availability

All of the source code is available under the GNU GPL 3 open source license from: https://github.com/sanger-pathogens/Roary

Contact us

If you have any queries about Roary or wish to report any bugs please email roary@sanger.ac.uk

If you are having problems installing the software you should contact your local system administrator in the first instance as they will be best placed to assist you.

FAQ

Strange errors

Check the dependencies with 'roary -a'. If theres something missing, then you'll need to install it.

cdhit seg faults

Old versions of cdhit have a bug, so you need to use at least version 4.6.1. The cdhit packages for Ubuntu 12.04 seem to be effected, so installing from the source is the only option.

Kraken installed via homebrew throws an error.

Theres a bug and you'll need to install it from source on older versions of OSX (like Mountain Lion).

Why dont you bundle a Kraken database for the QC?

Its massive (2.7GB currently) and changes as RefSeq is updated. The authors have prebuilt databases and details about how to make your own.

References

Löytynoja, A. (2014) Phylogeny-aware alignment with PRANK. *Methods Mol. Biol.*, **1079**, 155–170.

Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation. *Bioinformatics*, **30**, 2068–2069.