Learning ground states of quantum Hamiltonians with graph networks

Daniele Montagnani

24 January 2024

Project @ https://github.com/danmonuni/quant_sim_fp

Introduction

The Problem: Finding the Ground states of an Heisenber Hamiltonian

Why is it difficult? Exponential Growth in Complexity

SOTA

Variational Monte Carlo with Ansatz f

Paper Contribution

- Use a GNN as Ansatz f
- Highly Expressive and amenable to optimisation
- Distributer representation
- Better one shot transfer capabilities

Variational Monte Carlo

Address the complexity of the Hilbert Space by:

- Working in a low dimensional variational manifold $V \subseteq H$
- Use stochastic sample-based approximations for evaluation and optimisation

The manifold:
$$|\psi_{f,w}\rangle = \sum f(w,c_i)|c_i\rangle$$

Stochastic method:

- Sample computational basis states from f, with Metropolis Hastings
- Obtain stochastic estimates of physical observables (Overlap, Energy)

Optimisation:

- Energy gradient descent
- Imaginary Time Evolution

GNN as a Variational Model

GNN to predict log(amp) and pha

Architecture:

- Input basis element and sublattice encoding
- 2. Compute a distributed latent representation with an encode opposess decod GNN
- 3. Sum pool node and edge features, obtain a final latent vector (size invariance)
- 4. Process it with a linear layer to predict scalar outputs

Optimisation

Imaginary Time Supervised Wave Optimisation:

- Compute the current state
- Obtain an imaginary time evolved state: $|\phi\rangle = (1 \beta H)|\psi\rangle$
- Maximize the overlap between the current state and the time evolved one
- A beautiful view of the Schrödinger equation

Energy Gradient Descent:

- Compute the current state
- Compute its energy
- Use it as the loss fro gradient descent

Test Problem

9x9 Square Lattice with Continuity Condition

512 x 512 Quantum Hamiltonian:

$$\widehat{H} = \sum_{\langle i,j \rangle} \widehat{S}_i \widehat{S}_i$$

Diagonalizable with traditional methods so that I could check my results

Approach Followed

Incremental Approach

Follow a Diamond Progression:

- Root: exhaustive evaluation, classical mixture
- Branch 1: stochastic evaluation, classical mixture
- Branch 2: exhaustive evaluation, quantum superposition
- Merge: stochastic evaluation, quantum superposition

Why the classical mixture? Isn't it pointless?

root - exhaustive evaluation, classical mixture

Optimization Method: Energy gradient descent

Result: obtain an indicator on the state fully magnetized in the external field direction

root - stochastic evaluation, classical mixture

Optimization Method: Energy gradient descent with a stochastically estimated energy

Result: obtain an indicator on the state fully magnetized in the external field direction

root - stochastic evaluation, classical mixture

Optimization Method: ITSWO Results:

best overlap with ground states ~25% Difficulty in overcoming numerical issues Tried different solutions (clipping, regularization terms)

