Supplementary File of "Differential Evolution with Neighborhood Mutation for Multimodal Optimization"

Table XIV. Success Rate for test function set 1

fnc	NCDE	NShD E	NSDE	CDE [6]	ShDE	SDE [13]	FER- PSO [28]	SPSO [28]	r2pso [28]	r3pso [28]	r2pso- lhc [28]	r3pso- lhc [28]	SCMA -ES [35]
E1-F1	100(1)	100(1)	100 (1)	100(1)	100(1)	100 (1)	72 (10)	48 (13)	76 (9)	84 (8)	56 (12)	60 (11)	100(1)
E1-F2	100 (1)	100 (1)	100 (1)	100 (1)	100 (1)	100 (1)	100 (1)	44 (12.5)	88 (10)	96 (9)	44 (12.5)	56 (11)	100 (1)
E1-F3	100 (1)	100 (1)	100 (1)	100 (1)	100 (1)	96 (7)	20 (8)	4 (12.5)	8 (10)	8 (10)	4 (12.5)	8 (10)	100 (1)
E1-F4	100 (1)	100 (1)	100 (1)	28 (11)	4 (12)	72 (10)	84 (9)	88 (7.5)	92 (5.5)	88 (7.5)	100 (1)	92 (5.5)	0 (13)
E1-F5	100 (1)	100 (1)	100(1)	72 (12)	44 (13)	100(1)	100(1)	100(1)	100 (1)	100(1)	100(1)	100(1)	100 (1)
E1-F6	100(1)	100(1)	100(1)	28 (11)	8 (12)	60 (10)	100(1)	92 (6)	88 (8)	72 (9)	92 (6)	92 (6)	0 (13)
E1-F7	100(1)	100(1)	100(1)	60 (12)	40 (13)	100(1)	100(1)	100(1)	100(1)	100(1)	100(1)	100(1)	96 (11)
E1-F8	100 (1)	92 (3)	100 (1)	0 (12)	0 (12)	72 (4.5)	72 (4.5)	0 (12)	28 (7.5)	24 (9.5)	28 (7.5)	24 (9.5)	44 (6)
E1-F9	100 (1)	100 (1)	100 (1)	0 (12)	0 (12)	100 (1)	96 (6)	0 (12)	56 (8.5)	60 (7)	56 (8.5)	52 (10)	100 (1)
E1-F10	100 (1)	96 (4.5)	100 (1)	52 (11)	96 (4.5)	32 (12)	100 (1)	56 (10)	88 (6)	76 (7)	72 (8)	60 (9)	4 (13)
E1-F11	100(1)	100 (1)	100 (1)	72 (4)	28 (6)	0 (12)	52 (5)	0 (12)	4 (9)	4 (9)	4 (9)	20 (7)	0 (12)
E1-F12	84 (2.5)	88 (1)	84 (2.5)	56 (8.5)	68 (5.5)	48 (11.5)	60 (7)	72 (4)	68 (5.5)	56 (8.5)	52 (10)	48 (11.5)	0 (13)
E1-F13	88 (3)	96 (1)	24 (4)	8 (5)	92 (2)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)
E1-F14	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)
Total Rank	17.5	19.5	18.5	105.5	83	82.5	65	114	91.5	97	99.5	103	96.5

Table XV. Average number of peaks found for test function set 1

fnc	NCDE	NShDE	NSDE	CDE [6]	ShDE	SDE [13]	FER- PSO [28]	SPSO [28]	r2pso [28]	r3pso [28]	r2pso- lhc [28]	r3pso- lhc [28]	SCMA -ES [35]
E1-F1	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	0.72 (10)	0.48 (13)	0.76 (9)	0.84 (8)	0.56 (12)	0.6 (11)	1 (1)
E1-F2	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	0.44 (12.5)	0.88 (10)	0.96 (9)	0.44 (12.5)	0.56 (11)	1 (1)
E1-F3	2(1)	2 (1)	2 (1)	2 (1)	2 (1)	1.96 (7)	0.8 (8)	0.24 (13)	0.48 (11.5)	0.6 (9.5)	0.48 (11.5)	0.6 (9.5)	2 (1)
E1-F4	5 (1)	5 (1)	5 (1)	3.84 (11)	3.28 (12)	4.72 (10)	4.84 (9)	4.88 (7.5)	4.92 (5.5)	4.88 (7.5)	5 (1)	4.92 (5.5)	0.04 (13)
E1-F5	1 (1)	1 (1)	1 (1)	0.72 (12)	0.44 (13)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)
E1-F6	5 (1)	5 (1)	5 (1)	3.96 (11)	3.28 (12)	4.6 (10)	5 (1)	4.92 (5.5)	4.88 (7.5)	4.72 (9)	4.92 (5.5)	4.88 (7.5)	0 (13)
E1-F7	1 (1)	1 (1)	1 (1)	0.6 (12)	0.4 (13)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	0.96 (11)
E1-F8	4 (1)	3.92 (3)	4 (1)	0.32 (12)	0.16 (13)	3.72 (4)	3.68 (5)	0.84 (11)	2.92 (9)	2.76 (10)	3 (8)	3.12 (7)	3.44 (6)
E1-F9	2(1)	2 (1)	2(1)	0.04 (12.5)	0.04 (12.5)	2 (1)	1.96 (6)	0.08 (11)	1.44 (10)	1.56 (7.5)	1.56 (7.5)	1.48 (9)	2 (1)
E1- F10	1 (1)	0.96 (4.5)	1 (1)	0.52 (11)	0.96 (4.5)	0.32 (12)	1 (1)	0.56 (10)	0.88 (6)	0.76 (7)	0.72 (8)	0.6 (9)	0.04 (13)
E1- F11	18 (1)	18 (1)	18 (1)	17.7 (4)	16.56 (6)	12.4 (11)	17.4 (5)	8.52 (12)	15.2 (9)	15.6 (8)	15.1 (10)	16.2 (7)	2.16 (13)
E1- F12	5.8 (2)	5.88 (1)	5.84 (3)	5.56 (6)	5.6 (4.5)	4.88 (12)	5.36 (8.5)	5.6 (4.5)	5.52 (7)	5.16 (11)	5.36 (8.5)	5.28 (10)	1.52 (13)
E1- F13	35.9 (3)	35.96 (1)	30.6 (5)	33.8 (4)	35.92 (2)	22.8 (9)	23.6 (7)	25.7 (6)	21.8 (12)	22.2 (11)	22.5 (10)	23.1 (8)	1.4 (13)
E1- F14	179 (3)	198.96 (1)	84.28 (5)	152 (4)	197.88 (2)	50.6 (8)	68.6 (7)	70.1 (6)	40.6 (12)	45.4 (9)	42.2 (11)	43.3 (10)	0.04 (13)
Total Rank	19	19.5	24	102.5	97.5	88	70.5	114	110.5	108.5	107.5	106.5	113

Table XVI. *t*-test and Wilcoxon test on the average number of peaks found for test function set 1 presented as "t-test / Wilcoxon"

fnc	<u>NCDE</u>	NShDE	NSDE	<u>CDE</u> [6]	ShDE	<u>SDE</u> [13]	FER- PSO [28]	<u>SPSO</u> [28]	<u>r2pso</u> [28]	<u>r3pso</u> [28]	r2pso- lhc [28]	<u>r3pso-</u> <u>lhc</u> [28]	<u>SCMA</u> - <u>ES</u> [35]
<u>E1-F1</u>	<u>N.A.</u>	<u>0/0</u>	0/0	0/0	<u>0/0</u>	0/0	1/1	<u>1/1</u>	1/1	1/1	<u>1/1</u>	<u>1/1</u>	0/0
<u>E1-F2</u>	<u>N.A</u>	0/0	0/0	0/0	0/0	0/0	0/0	1/1	1/1	1/0	1/1	1/1	0/0
<u>E1-F3</u>	<u>N.A.</u>	0/0	0/0	0/0	0/0	0/0	1/1	1/1	1/1	1/1	1/1	1/1	0/0
<u>E1-F4</u>	<u>N.A.</u>	0/0	0/0	1/1	1/1	1/1	1/1	0/0	0/0	0/0	0/0	0/0	<u>1/1</u>
<u>E1-F5</u>	<u>N.A.</u>	0/0	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0
<u>E1-F6</u>	<u>N.A.</u>	0/0	0/0	1/1	1/1	1/1	0/0	0/0	0/0	1/1	0/0	0/0	<u>1/1</u>
<u>E1-F7</u>	<u>N.A</u>	0/0	0/0	0/0	1/1	1/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0
<u>E1-F8</u>	<u>N.A.</u>	<u>1/0</u>	0/0	1/1	1/1	1/1	1/1	<u>1/1</u>	<u>1/1</u>	1/1	1/1	<u>1/1</u>	<u>1/1</u>
<u>E1-F9</u>	<u>N.A.</u>	0/0	0/0	<u>1/1</u>	<u>1/1</u>	0/0	0/0	<u>1/1</u>	<u>1/1</u>	1/1	<u>1/1</u>	<u>1/1</u>	0/0
<u>E1-</u> <u>F10</u>	<u>N.A.</u>	0/0	0/0	<u>1/1</u>	0/0	<u>1/1</u>	0/0	<u>1/1</u>	0/0	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>
<u>E1-</u> <u>F11</u>	<u>N.A.</u>	0/0	0/0	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>
<u>E1-</u> <u>F12</u>	0/0	<u>N.A.</u>	<u>0/0</u>	0/0	0/0	<u>1/1</u>	<u>1/1</u>	0/0	<u>0/0</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>
<u>E1-</u> <u>F13</u>	<u>0/0</u>	<u>N.A.</u>	<u>1/1</u>	<u>1/1</u>	<u>0/0</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>
<u>E1-</u> <u>F14</u>	<u>1/1</u>	<u>N.A.</u>	1/1	<u>1/1</u>	0/0	1/1	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	1/1	<u>1/1</u>

Table XVII. Average number of peaks found for test function set 2

fnc	NCDE	NSHD E	NSDE	CDE [6]	SHDE	SDE [13]	FER- PSO [28]	SPSO [28]	r2pso [28]	r3pso [28]	r2pso- lhc [28]	r3pso- lhc [28]	SCMA -ES [35]
E1- CF1	5.18 (2)	3.7 (3)	6.7 (1)	0 (10)	0 (10)	1.79 (5)	1.08 (6)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	2 (4)
E1- CF2	3.6 (2)	2.8 (3)	4 (1)	1.2 (6.5)	1.1 (8)	1.2 (6.5)	2 (4)	0 (11)	0 (11)	0 (11)	0 (11)	0 (11)	1.9 (5)
E1- CF3	5.8 (2)	4 (3)	6 (1)	0.7 (8)	1.11 (7)	1.5 (6)	2.5 (5)	0 (11)	0 (11)	0 (11)	0 (11)	0 (11)	2.7 (4)
E1- CF4	4.8 (2)	4.5 (3)	5.4 (1)	0 (9)	0 (9)	0 (9)	0 (9)	0 (9)	0 (9)	0 (9)	0 (9)	0 (9)	0.2 (4)

E1- CF5	5.2 (2)	3.6 (3)	5.9 (1)	1.1 (8)	1.3 (7)	1.3 (6)	2 (4)	0 (11)	0 (11)	0 (11)	0 (11)	0 (11)	1.9 (5)
E1- CF6	3 (1)	3 (1)	3 (1)	0 (10)	0 (10)	1.4 (5)	1.2 (6)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	2.6 (4)
E1- CF7	1.8 (2)	1 (4)	1.9 (1)	0 (10)	0 (10)	1 (4)	0.5 (6)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	1 (4)
E1- CF8	3 (1)	3 (1)	3 (1)	0 (10)	0 (10)	1.4 (6)	1.5 (5)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	2.3 (4)
E1- CF9	3 (1)	3 (1)	3 (1)	0 (10)	0 (10)	1.8 (4)	1.5 (6)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	1.7 (5)
E1- CF10	1.3 (2)	1 (6)	2(1)	0 (10)	0 (10)	1.1 (4.5)	1.1 (4.5)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	1.2 (3)
E1- CF11	2.8 (2)	2.2 (3)	4 (1)	0 (9.5)	0 (9.5)	1.3 (4)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)	0 (9.5)	0.7 (5)
E1- CF12	2.5 (2)	2 (3)	2.9 (1)	0 (10)	0 (10)	1.6 (5.5)	1.6 (5.5)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	1.7 (4)
E1- CF13	2.3 (2)	1 (4)	3.8 (1)	0 (10)	0 (10)	0.9 (5)	0.3 (6)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	1.4 (3)
E1- CF14	1 (1)	1 (1)	1 (1)	0 (10)	0 (10)	1 (1)	1 (1)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	1 (1)
CF15	3.8 (2)	2.4 (3)	4 (1)	0 (10)	0 (10)	1.6 (5)	1.2 (6)	0 (10)	0 (10)	0 (10)	0 (10)	0 (10)	2 (4)
Total Rank	26	42	15	141	140.5	76.5	82	151.5	151.5	151.5	151.5	151.5	59

Table XVIII. *t*-test and Wilcoxon test on the average number of peaks found for test function set 2 presented as "t-test / Wilcoxon"

fnc	<u>NCDE</u>	NSHD <u>E</u>	<u>NSDE</u>	<u>CDE</u> [6]	<u>SHDE</u>	<u>SDE</u> [13]	<u>FER-</u> <u>PSO</u> [28]	<u>SPSO</u> [28]	<u>r2pso</u> [28]	<u>r3pso</u> [28]	<u>r2pso-</u> <u>lhc</u> [28]	<u>r3pso-</u> <u>lhc</u> [28]	<u>SCMA</u> - <u>ES</u> [35]
<u>E1-</u> <u>CF1</u>	<u>1/1</u>	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	1/1	<u>1/1</u>	1/1	<u>1/1</u>
<u>E1-</u> <u>CF2</u>	<u>1/0</u>	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	1/1	<u>1/1</u>	1/1	<u>1/1</u>
<u>E1-</u> <u>CF3</u>	0/0	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>
<u>E1-</u> <u>CF4</u>	0/0	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>
<u>E1-</u> <u>CF5</u>	0/0	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	1/1

<u>E1-</u> <u>CF6</u>	0/0	0/0	<u>N.A.</u>	<u>1/1</u>	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/0
E1- CF7	<u>0/0</u>	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>									
<u>E1-</u> <u>CF8</u>	0/0	0/0	<u>N.A.</u>	<u>1/1</u>									
<u>E1-</u> <u>CF9</u>	0/0	0/0	<u>N.A.</u>	<u>1/1</u>									
<u>E1-</u> <u>CF10</u>	<u>1/1</u>	<u>1/1</u>	<u>N.A.</u>	1/1	<u>1/1</u>								
<u>E1-</u> <u>CF11</u>	<u>1/1</u>	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>									
<u>E1-</u> <u>CF12</u>	0/0	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>									
<u>E1-</u> <u>CF13</u>	<u>1/1</u>	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>									
<u>E1-</u> <u>CF14</u>	0/0	0/0	<u>N.A.</u>	1/1	<u>1/1</u>	0/0	0/0	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	<u>1/1</u>	0/0
<u>E1-</u> <u>CF15</u>	<u>0/0</u>	<u>1/1</u>	<u>N.A.</u>	<u>1/1</u>									

Table XIX. Success rate in locating both global and local peaks

fnc	NCDE	NSHD E	NSDE	CDE [6]	SHDE	SDE [13]	FER- PSO [28]	SPSO [28]	r2pso [28]	r3pso [28]	r2pso- lhc [28]	r3pso- lhc [28]	SCMA -ES [35]
E1-F1	100 (1)	100 (1)	100 (1)	100 (1)	100 (1)	84 (7)	64 (9)	44 (13)	72 (8)	56 (10)	48 (12)	52 (11)	100 (1)
E1-F2	100 (1)	100 (1)	100 (1)	100 (1)	84 (7)	68 (10)	88 (6)	72 (9)	56 (11)	32 (13)	52 (12)	76 (8)	100 (1)
E1-F3	100 (1)	100 (1)	40 (4)	44 (3)	12 (5)	4 (7)	0 (10.5)	0 (10.5)	0 (10.5)	0 (10.5)	8 (6)	0 (10.5)	0 (10.5)
E1-F5	100 (1)	100 (1)	76 (4)	48 (6)	4 (7.5)	0 (11)	0 (11)	100 (1)	0 (11)	0 (11)	64 (5)	4 (7.5)	0 (11)
E1- F10	100 (1)	100 (1)	100 (1)	0 (11.5)	96 (4)	0 (11.5)	0 (11.5)	92 (5)	60 (8)	52 (9)	84 (6)	76 (7)	0 (11.5)
Total Rank	5	5	11	22.5	24.5	46.5	48	38.5	48.5	53.5	41	44	35

Table XX. Average of optima found in locating both global and local peaks

fnc	NCDE	NSHD E	NSDE	CDE [6]	SHDE	SDE [13]	FER- PSO [28]	SPSO [28]	r2pso [28]	r3pso [28]	r2pso- lhc [28]	r3pso- lhc [28]	SCMA -ES [35]
E1-F1	2(1)	2 (1)	2 (1)	2 (1)	2 (1)	1.84 (7)	1.48 (11)	1.44 (13)	1.72 (8)	1.48 (11)	1.48 (11)	1.52 (9)	2 (1)
E1-F2	2 (1)	2(1)	2 (1)	2(1)	1.84 (7)	1.68 (10)	1.88 (6)	1.72 (9)	1.36 (12)	1.24 (13)	1.52 (11)	1.76 (8)	2(1)
E1-F3	5 (1)	5 (1)	3.76 (4)	4.44 (3)	3.6 (5)	3.04 (7)	0.64 (12)	3.08 (6)	0.8 (11)	0.4 (13)	3 (8)	2.16 (9)	2 (10)
E1-F5	5 (1)	5 (1)	4.76 (4)	4.28 (6)	3.12 (7)	1.52 (9)	1 (11)	5 (1)	1 (11)	1 (11)	4.52 (5)	2.8 (8)	0.48 (13)
E1- F10	25 (1)	25 (1)	25 (1)	12.5 (10)	24.96 (4)	1.32 (12)	5.16 (11)	24.9 (5)	24.4 (8)	24.3 (9)	24.8 (6)	24.6 (7)	0.88 (13)
Total Rank	5	5	11	21	24	45	51	34	50	57	41	41	38

Table XXI. The effect of varying neighborhood size parameter m

fnc	ε	m	SR	Average no. of optima found
E1-F1 (two-peak trap)	0.05	5	1	1
E1-F1 (two-peak trap)	0.05	10	1	1
E1-F4 (Equal Maxima)	0.000001	5	1	5
E1-F4 (Equal Maxima)	0.000001	10	1	5
E1-F11 (2D inverted Shubert function)	0.05	20	0.96	17.96
E1-F11 (2D inverted Shubert function)	0.05	30	1	18
E1-F11 (2D inverted Shubert function)	0.05	40	1	18
E1-F11 (2D inverted Shubert function)	0.05	50	1	18

Table XXII. The results of peak accuracy

	NCDE	NShDE	NSDE	TSC2	CDE	TSC	NCMA- ES	SCGA	DFS
E2-F1	0.10(1)	0.14 (2)	6.72 (5)	1.84 (4)	1.59 (3)	7.7 (6)	8.89 (7)	18.59 (8)	20.93 (9)
E2-F2	2.75E- 04 (1)	0.14 (2)	5.14 (6)	2.91 (3)	3.3 (4)	6.18 (7)	3.9 (5)	6.37 (8)	7.27 (9)
E2-F3	3.01E- 33 (2)	6.85E- 30 (3)	6.56E- 47 (1)	1.81E- 07 (4)	4.48E- 04 (9)	4.90E- 06 (8)	3.92E- 06 (6)	2.86E- 07 (5)	4.17E- 06 (7)
E2-F4	0 (1)	0.0028 (3)	0 (1)	1.63 (8)	0.11 (6)	1.73 (9)	0.19 (7)	0.01 (4)	0.02 (5)
E2-F5	51.10 (2)	179.56 (5)	10.92 (1)	369.93 (7)	134.64 (3)	934.45 (8)	1840 (9)	317.24 (6)	164.85 (4)
E2-F6	1.95E- 04 (1)	0.21 (2)	5.8 (7)	2.77 (4)	1.78 (3)	2.99 (5)	5.12 (6)	7.06 (9)	6.89 (8)
E2-F7	1.70E- 04 (2)	3.51E- 04 (3)	1.58E- 05 (1)	0.02 (5)	0.1 (6)	1.79 (8)	1.96 (9)	0.73 (7)	3.42E- 04 (4)
E2-F8	4.99 (3)	6.09 (4)	2.96 (2)	727.9 (6)	115.4 (7)	1628.46 (9)	52.6 (5)	1381.05 (8)	0.11(1)
E2-F9	9.73E- 04 (2)	1.10E- 03 (3)	7.60E- 14 (1)	0.85 (9)	0.24 (8)	0.23 (7)	0.01 (6)	0.003 (4.5)	0.003 (4.5)
E2-F10	4.39E- 05 (1)	4.39E- 05 (1)	0.02 (6)	0.009 (4)	0.006	0.01 (5)	0.07 (7)	0.48 (9)	0.37 (8)
E2-F11	3.18E- 05 (1)	3.18E- 05 (1)	3.18E- 05 (1)	0.1 (6)	0.002 (4)	0.005 (5)	0.64 (7)	0.76 (8)	0.92 (9)
E2-F12	1.69E- 04 (1)	4.26E- 04 (2)	0.40 (5)	0.32 (4)	0.1 (3)	1.68 (6)	1.89 (7)	4.28 (8)	4.3 (9)
E2-F13	1.37E- 06 (1)	9.20E- 04 (3)	1.37E- 06 (1)	0.28 (5)	0.12 (4)	0.89 (6)	1.02 (7)	2.53 (9)	2.11 (8)
Total Rank	19	34	38	69	63	89	88	93.5	85.5

Table XXIII. The results of distance accuracy

	NCDE	NShDE	NSDE	TSC2	CDE	TSC	NCMA- ES	SCGA	DFS
E2-F1	0.02 (1)	0.037 (2)	1.55 (5)	0.79 (4)	0.41 (3)	3.26 (6)	3.87 (7)	11.56 (9)	11.52 (8)
E2-F2	4.80E- 03 (1)	0.10 (2)	2.23 (5)	2.09 (4)	1.99 (3)	6.18 (7)	3.19 (6)	7.02 (9)	6.22 (8)
E2-F3	2.63E- 17 (2)	6.36E- 016 (3)	1.87E- 24 (1)	9.32E- 05 (5)	5.25E- 03 (9)	9.08E- 05 (4)	5.84E- 04 (7)	1.65E- 04 (6)	8.12E- 04 (8)
E2-F4	8.00E- 05 (2)	7.72E- 04 (3)	0 (1)	0.05 (7)	0.03 (6)	0.07 (8)	0.14 (9)	0.01 (4)	0.02 (5)
E2-F5	0.02 (2)	0.0304 (3)	6.30E- 03 (1)	0.49 (5)	0.07 (4)	1.07 (7)	0.71 (6)	2.51 (8)	3.05 (9)
E2-F6	3.30E- 03 (1)	0.03 (2)	0.28 (4)	0.54 (5)	0.22 (3)	3.94 (7)	1.48 (6)	5.31 (9)	4.55 (8)
E2-F7	0.01 (2)	0.02 (3)	1.80E- 03 (1)	0.45 (5)	0.21 (4)	5.48 (8)	4.56 (7)	6.04 (9)	3.63 (6)
E2-F8	0.16(2)	0.18 (3)	0.03 (1)	33.2 (7)	3.12 (4)	59.2 (8)	31.0 (6)	22.1 (5)	88.2 (9)
E2-F9	3.42E- 04 (2)	3.76E- 04 (3)	2.70E- 14 (1)	0.21 (9)	0.05 (7)	0.06 (8)	2.96E- 03 (6)	9.78E- 04 (5)	8.18E- 04 (4)
E2-F10	1.00E- 05 (1)	3.20E- 05 (2)	0.05 (6)	0.02 (4)	0.01 (3)	0.03 (5)	0.15 (7)	0.92 (9)	0.72 (8)
E2-F11	1.32E- 06 (2)	6.80E- 04 (3)	1.28E- 09 (1)	0.21 (6)	9.00E- 03 (4)	0.01 (5)	1.42 (7)	1.55 (8)	1.87 (9)
E2-F12	6.81E- 04 (1)	1.00E- 03 (2)	0.43 (5)	0.34 (4)	0.12 (3)	1.77 (6)	1.99 (7)	4.32 (9)	4.29 (8)
E2-F13	4.93E- 10 (2)	6.93E- 04 (3)	1.05E- 16 (1)	0.95 (5)	036 (4)	7 (7)	5.42 (6)	7.68 (9)	7.36 (8)
Total Rank	21	34	33	65	57	86	87	99	98

Description of Test Function

Test Function Set 1

F1: Two-Peak Trap

$$f_1(x) = \begin{cases} \frac{160}{15}(15 - x), & \text{for } 0 \le x \le 15\\ \frac{200}{5}(x - 15), & \text{for } 15 \le x \le 20 \end{cases}$$

Range: $0 \le x \le 20$

F2: Central Two-Peak Trap

$$f_2(x) = \begin{cases} \frac{160}{10}x, & \text{for } 0 \le x \le 10\\ \frac{160}{5}(15 - x) & \text{for } 10 \le x \le 15\\ \frac{200}{5}(x - 15), & \text{for } 15 \le x \le 20 \end{cases}$$

Range: $0 \le x \le 20$

F3: Five-Uneven-Peak Trap

$$f_3(x) = \begin{cases} 80(2.5-x) & \text{for } 0 \le x < 2.5 \\ 64(x-2.5) & \text{for } 2.5 \le x < 5 \\ 64(7.5-x) & \text{for } 5 \le x < 7.5 \\ 28(x-7.5) & \text{for } 7.5 \le x < 12.5 \\ 28(17.5-x) & \text{for } 12.5 \le x < 17.5 \\ 32(x-17.5) & \text{for } 17.5 \le x < 22.5 \\ 32(27.5-x) & \text{for } 22.5 \le x < 27.5 \\ 80(x-27.5) & \text{for } 27.5 \le x \le 30 \end{cases}$$

Range: $0 \le x \le 20$

F4: Equal Maxima

$$f_4(x) = \sin^6(5\pi x)$$

Range: $0 \le x \le 1$

F5: Decreasing Maxima

$$f_5(x) = \exp[-2\log(2) \cdot (\frac{x - 0.1}{0.8})^2] \cdot \sin^6(5\pi x)$$

Range: $0 \le x \le 1$

F6: Uneven Maxima

$$f_6(x) = \sin^6(5\pi(x^{3/4} - 0.05))$$

Range: $0 \le x \le 1$

F7: Uneven Decreasing Maxima

$$f_7(x) = \exp[-2\log(2) \cdot (\frac{x - 0.08}{0.854})^2] \cdot \sin^6(5\pi(x^{3/4} - 0.05))$$

Range: $0 \le x \le 1$

F8: Himmelblau's function

$$f_8(x, y) = 200 - (x^2 + y - 11)^2 - (x + y^2 - 7)^2$$

Range: $-6 \le x, y \le 6$

F9: Six-Hump Camel Back

$$f_9(x, y) = -4[(4-2.1x^2 + \frac{x^4}{3})x^2 + xy + (-4+4y^2)y^2]$$

Range: $-1.9 \le x \le 1.9$; $-1.1 \le y \le 1.1$

F10: Shekel's foxholes

$$f_{10}(x, y) = 500 - \frac{1}{0.002 + \sum_{i=0}^{24} \frac{1}{1 + i + (x - a(i))^6 + (y - b(i))^6}}$$

where $a(i) = 16(i \mod 5) - 2$, and b(i) = 16(|(i/5)| - 2)

Range: $-65.536 \le x, y \le 65.535$

F11: 2D Inverted Shubert function

$$f_{11}(\vec{x}) = -\prod_{i=1}^{2} \sum_{j=1}^{5} j \cos[(j+1)x_i + j]$$

Range: $-10 \le x_1, x_2 \le 10$

F12-14: Inverted Vincent function

$$f(\vec{x}) = \frac{1}{n} \sum_{i=1}^{n} \sin(10.\log(x_i))$$

where n is the dimesnion of the problem

Range: $0.25 \le x_i \le 10$

Test Function Set 2

The set 2 composition function are defined as follow:

F(x): new composition function

 $f_i(x)$: ith basic function used to construct the composition function.

n: number of basic functions (number of optima)

D: dimensions (can be chosen from 1-100)

 M_i : linear transformation matrix for each $f_i(x)$

 o_i : new shifted optima position for each $f_i(x)$

$$F(x) = \sum_{i=1}^{n} \left\{ w_i * [f_i^{'}((x - o_i) / \lambda_i * M_i)] \right\}$$

 w_i : weight value for each $f_i(x)$, calculated as follow:

$$w_i = \exp(-\frac{\sum_{k=1}^{D} (x_k - o_{ik})}{2D\sigma_i^2})$$

$$w_i = \begin{cases} w_i & w_i == \max(w_i) \\ w_i * (1 - \max(w_i) .^10) & w_i \neq \max(w_i) \end{cases}$$

Then normalize the weight $w_i = w_i / \sum_{i=1}^n w_i$

 σ_i : used to control each $f_i(x)$'s coverage range.

 λ_i : used to stretch compress the function.

 $f_i(x) = C * f_i(x) / |f_{\text{max}i}|$, C is a predefined constant.

 $|f_{\max i}|$ is estimated using: $|f_{\max i}| = f_i((x'/\lambda_i) * M_i), x' = [5, 5, ..., 5]$

Composition Function 1 (F15, n=8)

 $f_{1-2}(x)$: Rastrigin's Function

$$f_i(x) = \sum_{i=1}^{D} (x_i^2 - 10\cos(2\pi x_i) + 10)$$

 $f_{3-4}(x)$: Weierstrass Function

$$f_i(x) = \sum_{i=1}^{D} \left(\sum_{k=0}^{k \max} \left[a^k \cos(2\pi b^k (x_i + 0.5)) \right] \right) -$$

$$a = 0.5, b = 3, k_{\max} = 20$$

 $f_{5-6}(x)$: Griewank's Function

$$f_i(x) = \sum_{i=1}^{D} \frac{x_i^2}{4000} - \prod_{i=1}^{D} \cos(\frac{x_i}{\sqrt{i}}) + 1$$

 $f_{7-8}(x)$: Sphere Function

$$f_i(x) = \sum_{i=1}^D x_i^2$$

 $\sigma_i = 1$ for all i

$$\lambda = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32]$$

 M_i : are all identity matrices

These formulas are basic functions; shift and rotation should be added to these functions. Take f_1 as an example, the following function should be evaluated:

$$f_i(z) = \sum_{i=1}^{D} (z_i^2 - 10\cos(2\pi z_i) + 10)$$

where
$$z = ((x - o_i) / \lambda_1) * M_1$$
.

Composition Function 2 (F16 n=6)

 $f_{1-2}(x)$: Griewank's Function

 $f_{3-4}(x)$: Weierstrass Function

 $f_{5-6}(x)$: Sphere Function

 $\sigma_i = 1$ for all i

 $\lambda = [1, 1, 10, 10, 5/60, 5/60,]$

 M_i : are all identity matrices

Composition Function 3 (F17 n=6)

 $f_{1-2}(x)$: Rastrigin's Function

 $f_{3-4}(x)$: Griewank's Function

 $f_{5-6}(x)$: Sphere Function

 $\sigma_i = 1$ for all i

 $\lambda = [1, 1, 10, 10, 5/60, 5/60,]$

 M_i : are all identity matrices

Composition Function 4 (F18 *n*=6)

 $f_{1-2}(x)$: Rastrigin's Function

 $f_{3-4}(x)$: Weierstrass Function

 $f_{5-6}(x)$: Griewank's Function

$$\sigma_i = 1$$
 for all i

$$\lambda = [1, 1, 10, 10, 5/60, 5/60,]$$

 M_i : are all identity matrices

Composition Function 5 (F19 n=6)

 $f_{1-2}(x)$: Rastrigin's Function

 $f_{3-4}(x)$: Weierstrass Function

 $f_{5-6}(x)$: Sphere Function

 $\sigma_i = 1$ for all i

 $\lambda = [1, 1, 10, 10, 5/60, 5/60,]$

 M_i : are all identity matrices

Composition Function 6 (F20 n=6)

 $f_{1-2}(x)$: F8F2 Function

$$F8(x) = \sum_{i=1}^{D} \frac{x_i^2}{4000} - \prod_{i=1}^{D} \cos(\frac{x_i}{\sqrt{i}}) + 1$$

$$F2(x) = \sum_{i=1}^{D-1} (100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2)$$

$$f_i(x) = F8(F2(x_1, x_2)) + F8(F2(x_2, x_3)) + \ldots + F8(F2(x_{D-1}, x_D) + F8(F2(x_{D, x_1})) + \ldots + F8(F2(x_{D-1}, x_D) + F8(F2(x_{D-1}, x_D)) + \ldots + F8(F2(x_{D-1}, x_D) + F8(F2(x_{D-1}, x_D)) + \ldots + F8(F2(x_{D-1}, x_D) + \ldots + F8(F2(x_{D-1}, x_D)) + \ldots + F8(F2(x_{D-1}, x_D) + \ldots + F8(F2(x_{D-1}, x_D)) + \ldots + F8(F2(x_{D-1}, x_D) + \ldots + F8(F2(x_{D-1}, x_D)) + \ldots + F8(F2(x_{D-1}, x_D)) + \ldots + F8(F2(x_{D-1}, x_D) + \ldots + F8(F2(x_{D-1}, x_D)) + \cdots + F8(F2(x_{D-1}, x$$

 $f_{3-4}(x)$: Weierstrass Function

 $f_{5-6}(x)$: Griewank's Function

 $\sigma = [1,1,1,1,1,2],$

 $\lambda = [5*5/100;5/100;5*1;1;5*1;1]$

 M_i : are all orthogonal matrix

Composition Function 7 (F21 n=6)

 $f_{1-2}(x)$: Rotated Expanded Scaffer's F6 Function $F(x, y) = 0.5 + \frac{(\sin^2(\sqrt{x^2 + y^2}) - 0.5)}{(1 + 0.001(x^2 + y^2))^2}$

 $f_i(x) = F(x_1, x_2) + F(x_2, x_3) + ... + F(x_{D-1}, x_D) + F(x_D, x_1)$

 $f_{3-4}(x)$: F8F2 Function

 $f_{5-6}(x)$: Weierstrass Function

 $\sigma = [1,1,1,1,1,2],$

 $\lambda = [5;10;5;1;5*5/100;5/100]$

 M_i : are all orthogonal matrix

Composition Function 8 (F22 n=6)

 $f_{1-2}(x)$: Rotated Expanded Scaffer's F6 Function

 $f_{3-4}(x)$: F8F2 Function

 $f_{5-6}(x)$: Griewank's Function

 $\sigma = [1,1,1,1,1,2],$

 $\lambda = [5*5/100; 5/100; 5*1; 1; 5*1; 1]$

 M_i : are all orthogonal matrix

Composition Function 9 (F23 n=6)

 $f_{1-2}(x)$: Rotated Expanded Scaffer's F6 Function

 $f_{3-4}(x)$: Weierstrass Function

 $f_{5-6}(x)$: Griewank's Function

 $\sigma = [1,1,1,1,1,2],$

 $\lambda = [5;10;5*5/100;5/100;5;1]$

M_i : are all orthogonal matrix

Composition Function 10 (F24 n=6)

 $f_{1-2}(x)$: Rastrigin's Function

 $f_{3-4}(x)$: F8F2 Function

 $f_{5-6}(x)$: Weierstrass Function

 $\sigma = [1,1,1,1,1,2],$

 $\lambda = [5;10;5*5/100;5/100;5;1]$

 M_i : are all orthogonal matrix

Composition Function 11 (F25 n=8)

 $f_{1-2}(x)$: Rastrigin's Function

 $f_{3-4}(x)$: F8F2 Function

 $f_{5-6}(x)$: Weierstrass Function

 $f_{7-8}(x)$: Griewank's Function

 $\sigma = [1,1,1,1,1,2,2,2]$,

 $\lambda = [5;1;5;1;50;10;5*5/200;5/200]$

 M_i : are all orthogonal matrix

Composition Function 12 (F26 n=8)

 $f_{1-2}(x)$: Rotated Expanded Scaffer's F6 Function

 $f_{3-4}(x)$: F8F2 Function

 $f_{5-6}(x)$: Weierstrass Function

 $f_{7-8}(x)$: Griewank's Function

$$\sigma = [1,1,1,1,1,2,2,2] ,$$

 $\lambda = [5*5/100; 5/100; 5; 1; 5; 1; 50; 10]$

 M_i : are all orthogonal matrix

Composition Function 13 (F27 n=10)

 $f_{1-2}(x)$: Rotated Expanded Scaffer's F6 Function

 $f_{3-4}(x)$: Rastrigin's Function

 $f_{5-6}(x)$: F8F2 Function

 $f_{7-8}(x)$: Weierstrass Function

 $f_{9-10}(x)$: Griewank's Function

 $\sigma = [1,1,1,1,1,2,2,2,2,2]$,

 $\lambda = [5*5/100;5/100;5;1;5;1;50;10;5*5/200;5/200]$

 M_i : are all orthogonal matrix

Composition Function 14 (F28 n=10)

All settings are the same as F13, except M_i 's condition numbers are [10 20 50 100 200 1000 2000 3000 4000 5000]

Composition Function 15 (F29 n=10)

 $f_1(x)$: Weierstrass Function

 $f_2(x)$: Rotated Expanded Scaffer's F6 Function

 $f_3(x)$: F8F2 Function

 $f_4(x)$: Ackley's Function

 $f_i(x) = -20 \exp(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_i^2}) - \exp(\frac{1}{D} \sum_{i=1}^{D} \cos(2\pi x_i)) + 20 + e \ f_5(x)$: Rastrigin's Function

 $f_6(x)$: Griewank's Function

 $f_7(x)$: Non-Continuous Expanded Scaffer's F6 Function

$$F(x, y) = 0.5 + \frac{(\sin^2(\sqrt{x^2 + y^2}) - 0.5)}{(1 + 0.001(x^2 + y^2))^2}$$

$$f_i(x) = F(y_1, y_2) + F(y_2, y_3) + ... + F(y_{D-1}, y_D) + F(y_D, y_1)$$

$$y_{i} = \begin{cases} x_{j} & |x_{j}| < 1/2 \\ round(2x_{j})/2 & |x_{j}| > 1/2 \end{cases}$$
 for $j = 1, 2, ..., D$

$$round(x) = \begin{cases} a-1 & \text{if } x \le 0 \& b \ge 0.5 \\ a & \text{if } b < 0.5 \\ a+1 & \text{if } x > 0 \& b \ge 0.5 \end{cases}$$

 $f_8(x)$: Non-Continuous Rastrigin's Function

$$f_i(x) = \sum_{i=1}^{D} (y_i^2 - 10\cos(2\pi y_i) + 10)$$

$$y_{i} = \begin{cases} x_{j} & |x_{j}| < 1/2\\ round(2x_{j})/2 & |x_{j}| > 1/2 \end{cases}$$
 for $j = 1, 2, ..., D$

 $f_9(x)$: High Conditioned Elliptic Function

$$f(x) = \sum_{i=1}^{D} (10^{6})^{\frac{i-1}{D-1}} x_{i}^{2}$$

 $f_{10}(x)$: Sphere Function with Noise in Fitness

$$f_i(x) = (\sum_{i=1}^{D} x_i^2)(1 + 0.1 |N(0,1)|)$$

n = 10

 $\sigma_i = 2$ for all i

 $\lambda = [10; 5/20; 1; 5/32; 1; 5/100; 5/50; 1; 5/100; 5/100]$

 M_i are all rotation matrices, condition number are [100 50 30 10 5 5 4 3 2 2];