Examen Redes Bayesianas, CSI, Noviembre 2021

1. (3 puntos) Un test de embarazo standard produce falsos positivo y falsos negativos con probabilidad 0.01 y 0.03, respectivamente. La probabilidad de un embarazo trás un coito sin protección y en el momento más fértil del ciclo menstrual es de 0.88. Cual es la probabilidad de embarazo si el test sale positivo? y si sale negativo?

Solución: Tenemos que calcular P(e|t) y $P(e|\neg t)$. El procedimiento es el mismo para los dos valores, por lo que lo hago solo para el primero. Aplico el teorema de bayes $P(e|t) = \frac{P(t|e)P(e)}{P(t)} = \frac{(1-0.03)0.88}{P(t)} = \frac{0.8536}{P(t)}$. Para no tener que calcular P(t), calculo $P(\neg e|t) = \frac{P(t|\neg e)P(e)}{P(t)} = \frac{(0.01)0.12}{P(t)} = \frac{0.0012}{P(t)}$ y normalizo para que sumen 1.

$$P(e|t) = \frac{0.854}{0.854 + 0.001} = 0.9986$$

- 2. (3 puntos) Di si son ciertas o no las siguientes propiedades respeto a la red bayesiana de la imagen. Cada respuesta correcta vale 0.5 puntos. Cada respuesta incorrecta resta 0.25 puntos
 - Rushhour \(\triangle Ambulance Siren \)
 - Rushhour⊥BadWeather
 - \bullet Rushhour \perp BadWeather |TrafficJam
 - TrafficJam⊥AmbulanceSiren
 - TrafficJam⊥AmbulanceSiren|Accident
 - TrafficJam⊥AmbulanceSiren|RushHour

Solucion: Falso, Cierto,

Falso, Falso, Cierto, Falso

3. (4 puntos) Considera un concurso en el que hay 10 sobres cerrados. 2 de ellos tienen un premio de 1000 Euros. El concursante escoge 3 sobres al azar uno tras otro. Diseña una red bayesiana que permita saber la probabilidad de que el concursante lleve ganados 0, 1000 y 2000 Euros en cada momento de la secuencia. Además de especificar la red bayesiana, indica qué tipo de pregunta le harías a la red para averiguar las probabilidades de la frase anterior.

Solución:

Es suficiente con tener una red con tres variables G_0, G_1, G_2 , donde los valores de G_i representan el dinero ganado despues de escoger i sobres. Lógicamente las variables tienen 3 valores posibles, 0, 1000, 2000. La red tiene una flecha entre G_0 y G_1 , y otra entre G_1 y G_2 .

G_0	$P(G_0)$	
0	1	
1000	0	
2000	0	
G_1	G_0	$P(G_1 G_0)$
0	0	8/10
1000	0	2/10
2000	0	0
0	1000	*
1000	1000	*
2000	1000	*
0	2000	*

1000

2000

2000 | * 2000 | *

Las probabilidades condicionales son:

*) da igual lo que pongamos aquí, porque no puede pasar que G_0 tenga esos valores. En realidad podriamo haber hecho que G_0 solo tuviera el valor 0 en su dominio. O incluso no poner G_0 en la red, porque es una variable que viene fijada.

G_2	G_1	$P(G_2 G_1)$
0	0	7/9
1000	0	2/9
2000	0	0
0	1000	0
1000	1000	8/9
2000	1000	1/9
0	2000	0
1000	2000	0
2000	2000	1