STATISTICAL THEORY SUMMARY

ANDREW TULLOCH

1. Basic Concepts

Definition (Convergence almost surely). A sequence $X_n, n \in \mathbb{N}$ of random variables converges almost surely to a random variable X if

$$\mathbb{P}(X_n \to X) = \mu(\omega \in \Omega | X_n(\omega) \to X(\omega)) = 1 \tag{1.1}$$

We say that $X_n \stackrel{as}{\to} X$.

Definition (Convergence in probability). $X_n \stackrel{p}{\to} X$ (in probability) if for all $\epsilon > 0$,

$$\mathbb{P}(|X_n - X| > \epsilon) \to 0 \tag{1.2}$$

as $n \to \infty$. For random vectors, we define analogously with taking the norm in \mathbb{R}^n .

Definition (Convergence in distribution). $X_n \stackrel{d}{\to} X$ or X_n converges to X in distribution if

$$\mathbb{P}(X_n \le t) \to \mathbb{P}(X \le t) \tag{1.3}$$

whenever $t \mapsto \mathbb{P}(X \leq t)$ is continuous.

Proposition. Let $(X_n, n \in \mathbb{N})$, X taking values in $\mathcal{X} \subseteq \mathbb{R}^d$.

(i)

$$X_n \stackrel{as}{\to} X \Rightarrow X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$$
 (1.4)

- (ii) If $X_n \to X$ in any mode, and if $g: \mathcal{X} \to \mathbb{R}^d$ is continuous, then $g(X_n) \to g(X)$ in the same mode.
- (iii) Slutsky's lemma If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} c$ (a constant). Then (i) $Y_n \stackrel{p}{\to} c$
 - (ii) $X_n + Y_n \stackrel{d}{\to} X + c$
 - (ii) $\Lambda_n + I_n \to \Lambda + C$
 - (iii) $X_n Y_n \stackrel{d}{\to} cX$ where $Y_n \in \mathbb{R}$.
 - (iv) $X_n Y_n^{-1} \stackrel{d}{\to} c^{-1} X$ where $Y_n \in \mathbb{R}, c \neq 0$.
- (iv) If $(A_n, n \in \mathbb{N})$ are random matrices with $(A_n)_{ij} \stackrel{p}{\to} A_{ij}$ for all i, j and $X_n \stackrel{d}{\to} X$, then $A_n X_n \stackrel{d}{\to} AX$, and if A is invertible, $A_n^{-1} X_n \stackrel{d}{\to} A^{-1} X$, where $A = (A_{ij})$.

Theorem (Law of Large Numbers). let X_1, \ldots, X_n be IID copies of $X \mathbb{P}$ such that $\mathbb{E}(|X_i|) < \infty$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{as}{\to} \mathbb{E}(X) \tag{1.5}$$

Theorem (Central limit theorem). Let X_1, \ldots, X_n be IID copies of $X \sim \mathbb{P}$ on \mathbb{R} with $\mathbb{V}(X) = \sigma^2 < \infty$. Then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}(X)\right) \stackrel{d}{\to} N(0,\sigma^{2})$$
 (1.6)

In the multivariate case, where $X \sim \mathbb{P}$ on \mathbb{R}^d with the covariance of X as Σ , then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}(X)\right) \stackrel{d}{\to} N(0,\Sigma)$$
 (1.7)

Theorem (Gaussian Tail Inequality). If $X \sim N(0,1)$, then

$$\mathbb{P}(|X| > \epsilon) \le \frac{2e^{-\epsilon^2}}{\epsilon}.\tag{1.8}$$

Theorem (Chebyshev's Inequality). Let $\mu = \mathbb{E}(X)$, $\sigma^2 = \mathbb{V}(X)$. Then

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \tag{1.9}$$

Theorem (Markov's Inequality). Let X be a non-negative random variable and suppose EX exists. Then for any t>0,

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t} \tag{1.10}$$

Theorem (Hoeffding's Inequality). Suppose EX=0, and $a\leq X\leq b$. Then

$$\mathbb{E}\left(e^{tX}\right) \le e^{\frac{t^2(b-a)^2}{8}}.\tag{1.11}$$

2. Uniform Laws of Large Numbers

Theorem. Let \mathcal{H} be a class of functions from a measurable space T to \mathbb{R} . Assume that for every $\epsilon > 0$ there exists a finite set of brackets $[l_j, u_j], \ j = 1, \ldots, N(\epsilon)$, such that $\mathbb{E}(|l_j(X)|) < \infty$, $\mathbb{E}(|u_j(X)|) < \infty$, and $\mathbb{E}(|u_j(X) - l_j(X)|) < \epsilon$ for every j. Suppose moreover that for every $h \in H$ there exists j with $h \in [l_j, u_j] \iff h \in \{f : T \to \mathbb{R} | l(x) \le f(x) \le u(x), \forall x \in T\}$. Then we have a **uniform law of large numbers**,

$$\sup_{h \in H} \left| \frac{1}{n} \sum_{i=1}^{n} (h(X_i) - \mathbb{E}(h(X))) \right| \stackrel{as}{\to} 0 \tag{2.1}$$

Proof. Let $\epsilon > 0$, and choose brackets $[l_j, u_j]$ such that $\mathbb{E}(|u_j - l_j)(X) < \frac{\epsilon}{2}$ by hypothesis. Then for every $\omega \in T^{\infty}$ outside a null set A, there exists $n_0(\omega, \epsilon)$ such that

$$\max_{j=1,\dots,N(\frac{\epsilon}{2})} \left| \sum_{i=1}^{n} u_j - \mathbb{E}(u_j) \right| < \frac{\epsilon}{2}$$
 (2.2)

by the strong law of large numbers and taking a union over all j.

Then this gives for $h \in \mathcal{H}$, outside a set of zero measure,

$$\frac{1}{n} \sum_{i=1}^{n} h(X_i) - \mathbb{E}(h(X)) \frac{1}{n} \sum_{i=1}^{n} u_j - \mathbb{E}(h)$$
 (2.3)

$$= \frac{1}{n} \sum_{j=1}^{n} u_j - \mathbb{E}(u_j) + \mathbb{E}(u_j) - \mathbb{E}(h)$$
 (2.4)

which is bounded above by $\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$, as required.

3. Consistency of M-estimators

Theorem. Let $\Theta \subseteq \mathbb{R}^p$ be compact. Let $Q: \Theta \to \mathbb{R}$ be a continuous, non-random function that has a unique minimizer $\theta_0 \in \Theta$.

Let $Q_n:\Theta\to\mathbb{R}$ be any sequence of random functions such that

$$\sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| \stackrel{p}{\to} 0 \tag{3.1}$$

as $n \to \infty$.

If θ_n is **any** sequence of minimizers of Q_n , then $\hat{\theta}_n \stackrel{p}{\to} \theta_0$ as $n \to \infty$.

Proof. The key is to consider the set $S_{\epsilon} = \{\theta \in \Theta : \|\theta - \theta_0\| \ge \epsilon\}$. This is compact, with Q continuous on this set, and so an infimum $Q(\theta_{\epsilon}) > Q(\theta_0)$ is attained on this set. Choose $\delta > 0$ so $Q(\theta_{\epsilon}) - \delta > Q(\theta_0) + \delta$. Then consider the set $A_n(\epsilon) = \{\sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| < \delta\}$. On this set, we have

$$\inf_{S_{\epsilon}} Q_n(\theta) \ge \inf_{S_{\epsilon}} Q(\theta) - \delta = Q(\theta_{\epsilon}) - \delta > Q(\theta_0) + \delta \ge Q_n(\theta_0). \tag{3.2}$$

So if $\hat{\theta}_n$ lay in S_{ϵ} , then $Q_n(\delta_0)$ would be strictly smaller than $Q_n(\hat{\theta}_n)$, contradicting that $\hat{\theta}_n$ is a minimizer. Conclude that $A_n(\epsilon) \Rightarrow \|\hat{\theta}_n - \theta_0\| < \epsilon$, but as $\mathbb{P}(A_n(\epsilon)) \to 1$, we have $\mathbb{P}(\|\hat{\theta}_n - \theta_0\| < \epsilon) \to 1$.

Theorem. Let Θ be compact in \mathbb{R}^p , and let $\mathcal{X} \subseteq \mathbb{R}^d$ and consider observing X_1, \ldots, X_n IID from $X \sim \mathbb{P}$ on X. Let $q: \mathcal{X} \times \Theta \to \mathbb{R}$ that is continuous in θ for all x and measurable in x for all $x \in \Theta$.

Assume

$$\mathbb{E}\left(\sup_{\theta\in\Theta}|q(X,\theta)|\right)<\infty\tag{3.3}$$

Then

$$\sup_{\theta \in \Theta} \left| \frac{1}{n} q(X_i, \theta) - \mathbb{E}(q(X, \theta)) \right| \stackrel{as}{\to} 0 \tag{3.4}$$

as $n \to \infty$

Proof. We seek to find suitable bracketing functions and proceed via the uniform law of large numbers. First, define the brackets $u(x,\theta,\eta)=\sup_{\theta'\in B(0,\eta)}$, so $\mathbb{E}(|u(X,\theta,\eta)|)<\infty$ by assumption. By continuity of $q(\cdot,x)$, the supremum is achieved at points $\|\theta^u(\theta)-\theta\|<\eta$, and so $\lim_{\eta\to 0}|u(x,\theta,\eta)-q(\theta,x)\to 0$ at every x and every θ , and using the dominated convergence theorem gives $\lim_{\eta\to 0}\mathbb{E}(|u(X,\theta,\eta)-q(\theta,X))\to 0$.

Then for $\epsilon > 0$ and $\theta \in \Theta$ we can choose $\eta(\epsilon, \theta)$ small so that

$$\mathbb{E}(u(X,\theta,\eta) - l(X,\theta,\eta)) < \epsilon. \tag{3.5}$$

L

The open balls $\{B(\theta, \eta(\epsilon, \theta))\}$ are an open cover of the compact set Θ , so there exists a finite subcover by Heine-Borel. This finite subcover $u_j(\cdot, \theta_j, \eta(\epsilon, \theta_j))$ constitutes a bracketing set of the q, and so we apply the uniform law of large numbers.

Theorem (Consistency of the Maximum Likelihood Estimator). Consider the model $f(\theta, y)$, $\theta \in \Theta \subseteq \mathbb{R}^p$, $y \in \mathcal{Y} \subset \mathbb{R}^d$. Assume $f(\theta, y) > 0$ for all $y \in \mathcal{Y}$ and all $\theta \in \Theta$, and that $\int_{\mathcal{Y}} f(\theta, y) dy = 1$ for every $\theta \in \Theta$. Assume further that Θ is compact and that the map $\theta \mapsto f(\theta, y)$ is continuous on Θ for every $y \in \mathcal{Y}$. Let Y_1, \ldots, Y_n be IID with common density $f(\theta_0)$, where $\theta_0 \in \Theta$. Suppose finally that the identification condition 13 and the domination condition

$$\int_{\mathcal{V}} \sup_{\theta' \in \Theta} |\log f(\theta', y)| f(\theta_0, y) dy < \infty \tag{3.6}$$

hold. If $\hat{\theta}_n$ is the MLE in the model $\{f(\theta,\cdot)|\theta\in\Theta\}$ based on the sample Y_1,\ldots,Y_n , then $\hat{\theta}_n$ is consistent, in that $\hat{\theta}_n\to^{p_{\theta_0}}\theta_0$ as $n\to\infty$.

Proof. Setting

$$q(\theta, y) = -\log f(\theta, y), \tag{3.7}$$

$$Q(\theta) = \mathbb{E}_{\theta_0} q(\theta, Y), \tag{3.8}$$

$$Q_n(\theta) = \frac{1}{n} \sum_{i=1}^n q(\theta, Y_i), \tag{3.9}$$

this follows from the previous results.

Definition (Uniform Consistency). An estimator T_n is uniformly consistent in $\theta \in \Theta$, if for every $\delta > 0$,

$$\sup_{\theta_0 \in \Theta} P_{\theta_0}(\|T_n - \theta_0\| > \delta) \to 0 \tag{3.10}$$

as $n \to \infty$.

Theorem. An estimator is uniformly consistent if, for every $\epsilon > 0$,

$$\inf_{\theta_0 \in \Theta} \inf_{\theta \in \Theta: \|\theta - \theta_0\| \ge \epsilon} (Q(\theta) - Q(\theta_0)) > 0 \tag{3.11}$$

and that

$$\sup_{\theta_0 \in \Theta} \mathbb{P}_{\theta_0}(\sup_{\theta \in \Theta} |Q_n(\theta; Y_1, \dots, Y_n) - Q(\theta)| > \delta) \to 0.$$
 (3.12)

4. Asymptotic Distribution Theory

Theorem. Consider the model $f(\theta, y), \theta \in \Theta \subset \mathbb{R}^p, y \in \mathcal{Y} \subset \mathbb{R}^d$. Assume $f(\theta, y) > 0$ for all $y \in \mathcal{Y}$ and all $\theta \in \Theta$, and that $\int_{\mathcal{Y}} f(\theta, y) dy = 1$ for every $\theta \in \Theta$. Let Y_1, \ldots, Y_n be IID from density $f(\theta_0, y)$ for some $\theta_0 \in \Theta$. Assume moreover

- (i) θ_0 is an interior point on Θ .
- (ii) There exists an open set U satisfying θ₀ ∈ U ⊂ Θ such that f(θ, y) is, for every y ∈ Y, twice continuously differentiable with respect to θ on U,
- (iii) $\mathbb{E}_{\theta_0} \frac{\partial^2 \log f(\theta_0, Y)}{\partial \theta \partial \theta^T}$ is nonsingular, and

$$\mathbb{E}_{\theta_0} \left\| \frac{\partial \log f(\theta_0, Y)}{\partial \theta} \right\|^2 < \infty \tag{4.1}$$

(iv) There exists a compact ball $K \subset U$ with nonempty interior centered at θ_0 such that

$$\mathbb{E}_{\theta_0} \sup_{\theta \in K} \left\| \frac{\partial^2 \log f(\theta, Y)}{\partial \theta \partial \theta^T} \right\| < \infty \tag{4.2}$$

$$\int_{\mathcal{V}} \sup_{\theta \in K} \|\frac{\partial f(\theta, y)}{\partial \theta}\| dy < \infty \tag{4.3}$$

$$\int_{\mathcal{V}} \sup_{\theta \in K} \|\frac{\partial^2 f(\theta, y)}{\partial \theta \partial \theta^T} \| dy < \infty \tag{4.4}$$

Let $\hat{\theta}_n$ be the MLE in the model $\{f(\theta,\cdot); \theta \in \Theta\}$ based on the sample Y_1, \ldots, Y_n , and assume $\hat{\theta}_n \to^{P_{\theta_0}} \theta_0$ as $n \to \infty$. Define the Fisher information

$$i(\theta_0) = \mathbb{E}_{\theta_0} \frac{\partial \log f(\theta_0, Y)}{\partial \theta} \frac{\partial \log f(\theta_0, Y)^T}{\partial \theta}$$
(4.5)

Then $i(\theta_0) = -\mathbb{E}_{\theta_0} \frac{\partial^2 \log f(\theta_0, Y)}{\partial \theta \partial \theta^T}$, and

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, i^{-i}(\theta_0)) \tag{4.6}$$

Proof. First, note that as $\int f(\theta, y) dy = 1$ for all $\theta \in J$, then $\frac{\partial}{\partial \theta} \int f(\theta, y) dy = \int \frac{\partial \log f(\theta, y)}{\partial \theta} f(\theta, y) dy = 0$ for every $\theta \in \text{int } K$, so

$$\mathbb{E}_{\theta_0} \frac{\partial \log f(\theta_0, Y)}{\partial \theta} = 0. \tag{4.7}$$

Since $\hat{\theta}_n \stackrel{p}{\to} \theta_0$, we have $\hat{\theta}_n$ is an interior point of Θ on events of probability approaching one, so $\frac{\partial Q_n(\hat{\theta}_n)}{\partial \theta} = 0$. Applying the mean value theorem, we have

$$0 = \sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta} + \overline{A}_n \sqrt{n} (\hat{\theta}_n - \theta_0)$$
 (4.8)

where \hat{A}_n is the matrix of second derivatives of Q_n evaluated at a mean value $\bar{\theta}_{nj}$ on the line segment between θ_0 and $\hat{\theta}_n$.

For the first component, we have

$$\sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta} = -\frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\partial \log f(\theta_0, Y_i)}{\partial \theta} \xrightarrow{d} N(0, i(\theta_0))$$
(4.9)

by the central limit theorem.

For the second component, we show $\overline{A}_n \stackrel{p}{\to} -\mathbb{E}\Big(\frac{\partial^2 \log f(\theta_0, Y)}{\partial \theta \partial \theta^T}\Big)$, which we do component-wise. We have $(\overline{A}_n)_{kj} = \frac{1}{n} \sum_{i=1}^n h_{kj} (\overline{\theta}_{nj}, Y_i)$, where h_{jk} is the second mixed partial derivative of $-\log f(\theta, Y_i)$, and we seek to show each $h_{jk} \stackrel{p}{\to} \mathbb{E}(h_{jk}(\theta_0, Y))$. This follows by

$$\left| \frac{1}{n} \sum_{i=1}^{n} h_{jk}(\theta_{nj}, Y_i) - \mathbb{E} \left(h_{jk}(\theta_0, Y) \right) \right| \tag{4.10}$$

$$\leq \sup_{\theta \in K} \left| \frac{1}{n} \sum_{i=1}^{n} h_{jk}(\theta, Y_i) - \mathbb{E} \left(h_{jk}(\theta, Y) \right) \right| + \left| \mathbb{E} \left(h_{jk}(\overline{\theta}_{nj}, Y) \right) - \mathbb{E} \left(h_{jk}(\theta_0, Y) \right) \right|$$

$$(4.11)$$

then by the uniform law of large numbers, the first term converges to zero, and the fact that $\overline{\theta}_{nj} \to \theta_0$ in probability implies the second term converges to zero. Hence, $-\overline{A}_n \to^{p_{\theta_0}} \mathbb{E}(\theta_0) \frac{\partial^2 \log f(\theta_0, Y)}{\partial \theta \partial \theta^T} \equiv \Sigma(\theta_0)$.

As the limit is invertible we have that \overline{A}_n is invertible on sets with measure approaching one, so we can rewrite the previous result as

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -\overline{A}_n^{-1} \sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta} \stackrel{d}{\to} N(0, \Sigma^{-1}(\theta_0 i(\theta_0) \Sigma^{-1}(\theta_0))). \tag{4.12}$$

from Slutsky's lemma.

Finally, we show $\Sigma(\theta_0) = i(\theta_0)$. This follows from interchanging integration and differentiation to show

$$\frac{\partial}{\partial \theta^T} \int \frac{\partial f(\theta, y)}{\partial \theta} dy = \int \frac{\partial^2 f(\theta, y)}{\partial \theta \partial \theta^T} dy = 0 \tag{4.13}$$

for all $\theta \in \text{int } K$. Then, use the chain rule to show

$$\frac{\partial^2 \log f(\theta, y)}{\partial \theta \partial \theta^T} = \frac{1}{f(\theta, y)} \frac{\partial^2 f(\theta, y)}{\partial \theta \partial \theta^T} - \frac{\partial \log f(\theta, y)}{\partial \theta} \frac{\partial \log f(\theta, y)}{\partial \theta}^T$$
(4.14)

and using this identity at θ_0 .

Theorem. In the framework of the previous theorem with p=1 and for $n \in \mathbb{N}$ fixed, let $\tilde{\theta} = \tilde{\theta}(Y_1, \dots, Y_n)$, be any unbiased estimator of θ — that is, it satisfies $\mathbb{E}_{\theta}\tilde{\theta} = \theta$ for all $\theta \in \Theta$. Then

$$\mathbb{V}_{\theta}(\tilde{\theta}_n) \ge \frac{1}{ni(\theta)} \tag{4.15}$$

for all $\theta \in int(\Theta)$.

Proof. Cauchy-Swartz and $\mathbb{E}_{\theta_0} \frac{\partial \log f(\theta, Y)}{\theta}$. Specifically, letting $l(\theta, Y) = \sum_{i=1}^n \frac{d}{d\theta} \log f(\theta, Y_i)$,

$$\mathbb{V}_{\theta}(\tilde{\theta}) \ge \frac{\operatorname{Cov}_{\theta}^{2}(\tilde{\theta}, l'(\theta, Y))}{\mathbb{V}_{\theta}(l'(\theta, Y))} = \frac{1}{ni(\theta)}$$
(4.16)

since

$$Cov_{\theta}(\tilde{\theta}, l'(\theta, Y)) = \int \tilde{\theta}(y)l'(\theta, y) \prod_{i=1}^{n} f(\theta, y_i) dy$$
(4.17)

$$= \int \tilde{\theta}(y) \frac{d}{d\theta} f(\theta, y) dy = \frac{d}{d\theta} \mathbb{E}_{\theta} \tilde{\theta} = \frac{d}{d\theta} \theta = 1.$$
 (4.18)

as $n \to \infty$.

Theorem (Delta Method). Let Θ be an open subset of \mathbb{R}^p and let $\Phi: \Theta \to \mathbb{R}^p$ \mathbb{R}^m be differentiable at $\theta \in \Theta$, with derivative $D\Phi_{\theta}$. Let r_n be a divergent sequence of positive real numbers and let X_n be random variables taking values in Θ such that $r_n(X_n - \theta) \stackrel{d}{\to} X$ as $n \to \infty$. Then

$$r_n(\Phi(X_n) - \Phi(\theta)) \stackrel{d}{\to} D\Phi_{\theta}(X)$$
 (4.19)

as $n \to \infty$. If $X \sim N(0, i^{-1}(\theta))$, then

$$D\Phi_{\theta}(X) \sim N(0, \Sigma(\Phi, \Theta)).$$
 (4.20)

Definition (Likelihood Ratio test statistic). Suppose we observe Y_1, \ldots, Y_n from $f(\theta,\cdot)$, and consider the testing problem $H_0:\theta\in\Theta_0$ against $H_1:$ $\theta \in \Theta$, where $\Theta_0 \subset \Theta \subset \mathbb{R}^p$. The Neyman-Pearson theory suggests to test these hypothesis by the likelihood ratio test statistic

$$\Lambda_n(\Theta, \Theta_0) = 2 \log \frac{\sup_{\theta \in \Theta} \prod_{i=1}^n f(\theta, Y_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n f(\theta, Y_i)}$$
(4.21)

which in terms of the maximum likelihood estimators $\hat{\theta}_n, \hat{\theta}_{n,0}$ of the models Θ, Θ_0 is

$$\Lambda_n(\Theta, \Theta_0) = -2\sum_{i=1}^n \log f(\hat{\theta}_{n,0}, Y_i) - \log f(\hat{\theta}_n, Y_i). \tag{4.22}$$

Theorem. Consider a parametric model $f(\theta, y), \theta \in \Theta \subset \mathbb{R}^p$ that satisfies the assumptions of the theorem on asymptotic normality of the MLE. Consider the simple null hypothesis $\Theta_0 = \{\theta_0\}, \ \theta_0 \in \Theta$. Then under H_0 , the likelihood ratio test statistic is asymptotically chi-squared distributed,

$$\Lambda_n(\Theta, \Theta_0) \stackrel{d}{\to} \chi_p^2 \tag{4.23}$$

as $n \to \infty$ under P_{θ_0} .

Proof. Since $\Lambda_n(\Theta,\Theta_0) = 2nQ_n(\theta_0) - 2nQ_n(\hat{\theta}_n)$, we can expand this in a Taylor series around θ_n , obtaining

$$2n\frac{\partial Q_n(\hat{\theta}_n)}{\partial \theta}^T(\theta_0 - \hat{\theta}_n) + n(\theta_0 - \hat{\theta}_n)^T \frac{\partial^2 Q(\overline{\theta}_n)}{\partial \theta \partial \theta^T}(\theta_0 - \hat{\theta}_n)$$
(4.24)

for some vector $\overline{\theta}_n$ on the line segment between $\hat{\theta}_n$ and θ_0 .

As in the proof of the previous theorem, we show that \overline{A}_n converges to $i(\theta_0)$ in probability. Thus, by Slutsky's lemma and consistency, $\sqrt{n}(\hat{\theta}_n (\theta_0)^T (\overline{A}_n - i(\theta_0))$ converges to zero in distribution and probability (as the limit is constant), so we can repeat the argument and obtain

$$\sqrt{n}(\hat{\theta}_n - \theta_0)^T (\overline{A}_n - i(\theta_0)) \sqrt{n}(\hat{\theta}_n - \theta_0) \to^{p_{\theta_0}} 0 \tag{4.25}$$

and so $\Lambda_n(\Theta,\Theta_0)$ has the same limit distribution as the random variable

$$\sqrt{n}(\hat{\theta}_n - \theta_0)^T i(\theta_0) \sqrt{n}(\hat{\theta}_n - \theta_0). \tag{4.26}$$

By continuity of $x \mapsto x^T i(\theta_0 x)$, we obtain the limiting distribution is $X^T i(\theta_0 X)$, with $X \sim N(0, i^{-1})(\theta_0)$, which is the squared Euclidean norm of the MVN $N(0, I_p)$, which has a χ_p^2 distribution.

4.1. Local Asymptotic Normality and Contiguity.

Definition (Local Asymptotic Normality). Consider a parametric model $f(\theta) \equiv f(\theta, \cdot), \theta \in \Theta \subset \mathbb{R}^p$ and let $q(\theta, y) = -\log f(\theta, y)$. Suppose $\frac{\partial}{\partial \theta}q(\theta_0,y)$ and the Fisher information $i(\theta_0)$ exist at the interior point $\theta_0 \in \Theta$. We say that the model $\{f(\theta) : \theta \in \Theta\}$ is locally asymptotically normal at θ_0 if for every convergent sequence $h_n \to h$ and for Y_1, \ldots, Y_n IID $\sim f(\theta_0)$, we have, as $n \to \infty$.

$$\log \prod_{i=1}^{n} \frac{f(\theta_{0} + \frac{h_{n}}{\sqrt{n}})}{f(\theta_{0})}(Y_{i}) = -\frac{1}{\sqrt{n}} \sum_{i=1}^{n} h^{T} \frac{\partial q(\theta_{0}, Y_{i})}{\partial \theta} - \frac{1}{2} h^{T} i(\theta_{0}) h + o_{P_{\theta_{0}}}(1).$$
(4.27)

We say that the model $\{f(\theta): \theta \in \Theta\}$ is locally asymptotically normal if it is locally asymptotically normal for every $\theta \in \operatorname{int} \Theta$.

Theorem. Consider a parametric model $\{f(\theta), \theta \in \Theta\}, \Theta \subset \mathbb{R}^p$, that satisfies the assumptions of the theorem on the asymptotic normality of the MLE. Then $\{f(\theta): \theta \in \Theta_0\}$ is locally asymptotically normal for every open subset Θ_0 of Θ .

Proof. We prove for $n_n = h$ fixed. As before, we can expand $\log f(\theta_0 + \frac{h}{\sqrt{n}})$ about $\log f(\theta_0)$ up to second order, and obtain

$$-\frac{1}{\sqrt{n}}\sum_{i=1}^{n}h^{T}\frac{\partial q(\theta_{0},Y_{i})}{\partial\theta} - \frac{1}{2n}h^{T}\sum_{i=1}^{n}\frac{\partial^{2}q(\overline{\theta}_{n},Y_{i})}{\partial\theta\partial\theta^{T}}h \tag{4.28}$$

for some vector $\overline{\theta}_n$ on the line segment between θ_0 and $\theta_0 + \frac{h}{\sqrt{n}}$. By the uniform law of large numbers, we have

$$\frac{1}{2n}h^T \sum_{i=1}^n \frac{\partial^2 q(\overline{\theta}_n, Y_i)}{\partial \theta \partial \theta^T} h - \frac{1}{2}h^T i(\theta_0 h) \to^{p_{\theta_0}} 0 \tag{4.29}$$

as
$$n \to \infty$$
.

Definition (Contiguity). Let P_n , Q_n be two sequences of probability measures. We say that Q_n is contiquous with respect to P-n if for every sequence of measurable sets A_n , the hypothesis $P_n(A_n \to 0)$ as $n \to \infty$ implies $Q_n(A_n) \to 0$ as $n \to \infty$, and write $Q_n \triangleleft P - n$. The sequences are mutually contiguous if both $Q_n \triangleleft P_n$ and $P_n \triangleleft Q_n$, and write $P_n \triangleleft \triangleright Q_n$.

Theorem (LeCam's First Lemma). Let P-n, Q_n be probability measures on measurable spaces $(\Omega_n, \mathcal{A}_n)$. Then the following are equivalent:

- (i) $Q_n \triangleleft P_n$. (ii) If $\frac{dP_n}{dQ_n} \to \stackrel{d}{Q}_n U$ along a subsequence of n, then P(U>0)=1.
- (iii) If $\frac{dQ_n}{dP_n} \to_{P_n}^d V$ along a subsequence of n, then $\mathbb{E}(V) = 1$. (iv) For any sequence of statistics (measurable functions $T_n : \Omega_n \to \mathbb{R}^k$), we have $T_n \to_{P_n}^{P_n} 0$ as $n \to \infty$ implies $T_n \to_{Q_n}^{Q_n} 0$ as $n \to \infty$.

Proof. (i) \iff (iv): follows by taking $A_n = \{||T_n|| > \epsilon\}$, so $Q_n(A_n) \to 0$ implies $T_n \to Q_n$ 0. Conversely, take $T_n = 1_{A_n}$. (i) \implies (ii)

Theorem. Let P_n , Q_n be sequences of probability measures on measurable spaces $(\Omega_n, \mathcal{A}_n)$ such that $\frac{dP_n}{dQ_n} \to_{Q_n}^d e^X$ where $X \sim N(-\frac{1}{2}\sigma^2, \sigma^2)$, for some $\sigma^2 > 0$ as $n \to \infty$. Then $P_n \triangleleft \triangleright Q_n$.

Proof. Since
$$P(e^X > 0) = 1$$
, so $Q_n \triangleleft P_n$ from (ii) and since $\mathbb{E}\left(e^{N(\mu, \sigma^2)}\right) = 1 \iff \mu = -\frac{\sigma^2}{2}$, this follows from (iii).

Theorem. If $\{f(\theta): \theta \in \Theta\}$ is locally asymptotically normal and if $h_n \to h \in \mathbb{R}^p$, then the product measures $P_{\theta + \frac{h_n}{\sqrt{n}}}^n$ and P_{θ}^n corresponding to samples X_1, \ldots, X_n from densities $f(\theta + \frac{h_n}{\sqrt{n}})$ and $f(\theta)$, respectively, are mutually contiguous. In particular, if a statistic $T(Y_1, \ldots, Y_n)$ converges to zero in probability under P_{θ}^{n} then it also converges to zero in $P_{\theta+\frac{h_{n}}{c}}^{n}$

Proof. This follows from the fact that the asymptotic expansion converges to $N(-\frac{h^T i(\theta)h}{2}, h^T i(\theta)h)$ under P_{θ} . Then we can apply (iv).

4.2. Bayesian Inference.

Definition. $||P-Q||_{TV} = \sup_{B \in \mathcal{B}(\mathbb{R}^p)} |P(B)-Q(B)|$ is the total variation distance on the set of probability measures on the Borel σ -algebra $\mathcal{B}(\mathbb{R}^p)$

Theorem (Bernstein-von Mises Theorem). Consider a parametric model $\{f(\theta), \theta \in \Theta\}, \Theta \subset \mathbb{R}^p$, that satisfies the assumptions of the theorem on the asymptotic normality of the MLE. Suppose the model admits a uniformly consistent estimator T_n . Let X_1, \ldots, X_n be IID from density $f(\theta_0)$, let $\hat{\theta}_n$ be the MLE based on that sample, assume the prior measure Π is defined on the Borel sets of \mathbb{R}^p and that Π possesses a Lebesgue-density π that is continuous and positive in a neighborhood of θ_0 . Then, if $\Pi(\cdot|X_1,\ldots,X_n)$ is the posterior distribution given the sample, we have

$$\|\Pi(\cdot|X_1,\dots,X_n) - N(\hat{\theta}_n, \frac{1}{n}i^{-1}(\theta_0))\|_{TV} \to^{P_{\theta_0}} 0$$
 (4.30)

5. HIGH DIMENSIONAL LINEAR MODELS

Here, we consider the model $Y = X\theta = \epsilon$, $\epsilon \sim N(0, \sigma^2 I_n)$, $\theta \in \Theta =$ \mathbb{R}^p , $\sigma^2 > 0$, where X is an $n \times p$ design matrix, and ϵ is a standard Gaussian noise vector in \mathbb{R}^n . Throughout, we denote the resulting $p \times p$ Gram **matrix** as $\hat{\Sigma} = \frac{1}{n}X^TX$ which is symmetric and positive semidefinite.

Write a < b for $a \le Cb$ for some fixed (ideally harmless) constant

Theorem. In the case $p \leq n$, the classical least squares estimator introduced by Gauss solves the problem

$$\min_{\theta \in \mathbb{R}^p} \frac{\|Y - X\theta\|^2}{n} \tag{5.1}$$

П

on X having full column rank so X^TX is invertible. Assuming $\frac{X^TX}{n}=I_p,$

$$\frac{1}{n} \mathbb{E}_{\theta} \| X(\hat{\theta} - \theta) \|_{2e^2} = \mathbb{E}_{\theta} \| \hat{\theta} - \theta \|_2^2 \frac{\sigma^2}{n} \operatorname{tr}(I_p) = \frac{\sigma^2 p}{n}.$$
 (5.2)

Definition. $\theta^0 \in B_0(k) \equiv \{\theta \in \mathbb{R}^p, at most k nonzero entries\}.$ For $\theta^0 \in B_0(k)$, call $S_0 = \{j : \theta_j^0 \neq 0\}$ the active set of θ^0 .

Definition (The LASSO). The $\tilde{\theta} = \tilde{\theta}_{LASSO} = \arg\min_{\theta \in \mathbb{R}^p} \frac{\|Y - X\theta\|_2^2}{n} +$

Theorem (The LASSO performs almost as well as the LS estimator). Let $\theta^0 \in B_0(k)$ be a k-sparse vector in \mathbb{R}^p with active set S_0 . Suppose $Y = X\theta_0 + \epsilon$ where $\epsilon \sim N(0, I_n)$, and let $\tilde{\theta}$ be the LASSO estimator with penalization parameter

$$\lambda = 4\overline{\sigma}\sqrt{\frac{t^2 + 2\log p}{n}}, \overline{\sigma}^2 = \max_{j=1,\dots,p} \hat{\Sigma}_{jj}, \tag{5.3}$$

and assume the $n \times p$ matrix X is such that, for some $r_0 > 0$,

$$\frac{1}{r} \|\tilde{\theta}_{S_0} - \theta^0\|_1^2 \le k r_0 (\tilde{\theta} - \theta^0)^T \hat{\Sigma} (\tilde{\theta} - \theta^0)$$
 (5.4)

on an event of probability at least $1 - \beta$. Then with probability at least $1 - \beta - \exp^{-\frac{t^2}{2}}$ we have

$$\frac{1}{n} \|X(\tilde{\theta} - \theta^0)\|_2^2 + \lambda \|\tilde{\theta} - \theta^0\|_1 \le 4\lambda^2 k r_0 \lesssim \frac{k}{n} \times \log p.$$
 (5.5)

Proof. Note that by definition we have

$$\frac{1}{n} \|Y - X\theta\|_2^2 + \lambda \|\theta\|_1 \le \frac{1}{n} \|Y - X\theta^0\|_2^2 + \lambda \|\theta^0\|_1$$
 (5.6)

$$\frac{1}{n} \|X(\theta^0 - \tilde{\theta})\|_2^2 + \lambda \|\tilde{\theta}\|_1 \le \frac{2}{n} \epsilon^T X(\tilde{\theta} - \theta^0) + \lambda \|\theta^0\|_1.$$
 (5.7)

by inserting the model equation.

Using the tail bound on the next theorem, we have on an event A,

$$\left|\frac{2\epsilon^T X(\tilde{\theta} - \theta^0)}{n}\right| \le \frac{\lambda}{2} \|\tilde{\theta} - \theta^0\|_1. \tag{5.8}$$

and thus combining with the above result obtain

$$\frac{2}{\pi} \|X(\theta^0 - \tilde{\theta})\|_2^2 + 2\lambda \|\tilde{\theta}\|_1 \le \|\tilde{\theta} - \theta^0\|_1 + 2\lambda \|\theta^0\|_1.$$
 (5.9)

Using $\|\tilde{\theta}\|_1 = \|\tilde{\theta}_{S_0}\|_1 + \|\tilde{\theta}_{S_0^c}\|_1 \ge \|\theta_{S_0}^0\|_1 - \|\tilde{\theta}_{S_0} - \theta_{S_0}^0\|_1 + \|\tilde{\theta}_{S_0}^c\|_1$ we obtain on this event, noting $\theta_{S_0^c}^0 = 0$ by definition of S_0

$$\frac{2}{n} \|X(\theta^0 - \tilde{\theta})\|_2^2 + 2\lambda \|\tilde{\theta}_{S_0^c}\|_1 \le 3\lambda \|\tilde{\theta}_{S_0} - \theta_{S_0}^0\|_1 + \lambda \|\tilde{\theta}_{S_0^c}\|_1 \tag{5.10}$$

and so

$$\frac{2}{\pi} \|X(\theta^0 - \tilde{\theta})\|_2^2 + \lambda \|\tilde{\theta}_{S_0^c}\|_1 \le 3\lambda \|\tilde{\theta}_{S_0} - \theta_{S_0}^0\|_1 \tag{5.11}$$

holds on the event.

$$\frac{2}{n} \|X(\tilde{\theta} - \theta^0)\|_2^2 + \lambda \|\tilde{\theta} - \theta^0\|_1 = \frac{2}{n} \|X(\tilde{\theta} - \theta^0)\|_2^2 + \lambda \|\tilde{\theta}_{S_0} - \theta_{S_0}^0\|_1 + \lambda \|\tilde{\theta}_{S_0^c}\|_1 Proof \text{ (Nontrivial!)}. \text{ Note (5.12)}$$

$$\leq 4\lambda \|\tilde{\theta}_{S_0} - \theta_{S_0}^0\|_1$$
 (5.13)

$$\leq 4\lambda \sqrt{\frac{kr_0}{n}} \|X(\tilde{\theta} - \theta^0)\|_2$$
(5.14)

$$\leq \frac{1}{n} \|X(\tilde{\theta} - \theta^0)\|_2^2 + 4\lambda^2 k r_0 \tag{5.15}$$

using the previous inequalities and $4ab \le a^2 + 4b^2$.

Theorem. Let $\lambda_0 = \frac{\lambda}{2}$. The for all t > 0,

$$\mathbb{P}\left(\max_{j=1,\dots,p} \frac{2}{n} |(\epsilon^T X)_j| \le \lambda_0\right) \ge 1 - \exp(-\frac{t^2}{2}). \tag{5.16}$$

with the solution $\hat{\theta} = (X^T X)^{-1} X^T Y \sim N(0, \sigma^2 (X^T X)^{-1})$ where we rely *Proof.* Note that $\frac{\epsilon^T X}{\sqrt{n}}$ are $N(0, \hat{\Sigma})$ distributed. We then have the probability in questions exceeds one minus

$$\mathbb{P}\left(\max_{j=1,\dots,p} \frac{1}{\sqrt{n}} |(\epsilon^T X)| > \overline{\sigma} \sqrt{t^2 + 2\log p}\right)$$
 (5.17)

$$\leq \sum_{i=1}^{p} \mathbb{P}\left(|Z| > \sqrt{t^2 + 2\log p}\right) \tag{5.18}$$

$$\leq pe^{-\frac{t^2}{2}\exp^{-\log p}} = e^{-\frac{t^2}{2}}.$$
 (5.19)

5.2. Coherence Conditions for Design Matrices. The critical condition is

$$\|\tilde{\theta}_{S_0} - \theta^0\|_1^2 \le k r_0 (\tilde{\theta} - \theta^0)^T \hat{\Sigma} (\tilde{\theta} - \theta^0)$$
 (5.20)

holding true with high probabilit

Theorem. The theorem on LASSO holds true with the crucial condition (5.20) replaced with the following condition: For S_0 , the active set of $\theta^0 \in B_0(k), k \leq p$, assume the $n \times p$ matrix X satisfies, for all θ in

$$\{\theta \in \mathbb{R}^p : \|\theta_{S_0^c}\|_1 \le 3\|\theta_{S_0} - \theta_{S_0}^0\|_1\}$$
 (5.21)

and some universal constant r_0 ,

$$\|\theta_{S_0} - \theta^0\|_1^2 \le kr_0(\theta - \theta^0)^T \hat{\Sigma}(\theta - \theta^0). \tag{5.22}$$

Theorem. Let the $n \times p$ matrix X have entries $(X_{ij}) \sim^{\text{IID}} N(0,1)$ and let $\hat{\Sigma} = \frac{X^T X}{n}$. Suppose $\frac{n}{\log p} \to \infty$ as $\min(p, n) \to \infty$. Then for every $k \in \mathbb{N}$ fixed and every $0 < C < \infty$, there exists n large enough such that $\mathbb{P}\left(\theta^T \hat{\Sigma} \theta \ge \frac{1}{2} \|\theta\|_2^2 \,\forall \theta \in B_0(k)\right) \ge 1 - 2 \exp(-Ck \log p).$

Proof. For $\theta = 0$, the result is trivial. Thus, it suffices to bound

$$\mathbb{P}\left(\theta^T \hat{\Sigma} \theta \ge \frac{1}{2} \|\theta\|_2^2 \forall \theta \in B_0(k) \setminus \{0\}\right)$$
(5.23)

$$= \mathbb{P}\left(\frac{\theta^T \hat{\Sigma} \theta}{\|\theta\|_2^2} - 1 \ge -\frac{1}{2} \forall \theta \in B_0(k) \setminus \{0\}\right)$$
 (5.24)

$$\geq \mathbb{P}\left(\sup_{\theta \in B_0(k), \|\theta\|_2^2 \neq 0} \left| \frac{\theta^T \hat{\Sigma} \theta}{\theta^T \theta} - 1 \right| \leq \frac{1}{2} \right)$$
 (5.25)

from below by $1 - 2\exp(-Ck\log p)$. We can then do this over each kdimensional subspace \mathbb{R}_S^p for each $S \subset \{1, \dots, p\}$ with |S| = k, then use

$$\mathbb{P}\left(\sup_{\theta \in B_0(k), \|\theta\|_2^2 \neq 0} \left| \frac{\theta^T \hat{\Sigma} \theta}{\theta^T \theta} - 1 \right| \leq \frac{1}{2} \right)$$
 (5.26)

$$\leq \sum_{S \subseteq \{1,\dots,p\}} \mathbb{P} \left(\sup_{\theta \in \mathbb{P}_{S}^{p}, \|\theta\|_{2}^{2} \neq 0} \left| \frac{\theta^{T} \hat{\Sigma} \theta}{\theta^{T} \theta} - 1 \right| \geq \frac{1}{2} \right). \tag{5.27}$$

Then we just need a bound of $2e^{-(C+1)k\log p} = 2e^{-Ck\log p}p^{-k}$ and sum over the $\binom{p}{k} \leq p^k$ subsets.

Using the below result and taking $t = (C+1)k \log p$ is then sufficient.

Theorem. Under the conditions of the previous theorem, we have for some universal constant $c_0 > 0$, every $S \subset \{1, \ldots, p\}$ such that |S| = k

$$\mathbb{P}\left(\sup_{\theta \in \mathbb{R}_{S}^{p}, \|\theta\|_{2}^{2} \neq 0} \left| \frac{\theta^{T} \hat{\Sigma} \theta}{\theta^{T} \theta} - 1 \right| \ge 18\left(\sqrt{\frac{t + c_{0}k}{n}} + \frac{t + c_{0}k}{n}\right) \right) \le 2e^{-t}. \quad (5.28)$$

$$\sup_{\theta \in \mathbb{R}_{S}^{p}, \|\theta\|_{2}^{2} \neq 0} \left| \frac{\theta^{T} \hat{\Sigma} \theta}{\theta^{T} \theta} - 1 \right| = \sup_{\theta \in \mathbb{R}_{S}^{p}, \|\theta\|_{2}^{2} \leq 1} |\theta^{T} (\hat{\Sigma} - 1) \theta|$$
 (5.29)

By compactness, we can cover the unit ball $B(S) = \{\theta \in \mathbb{R}_S^p : \|\theta\|_2 \le 1\}$ by a net of points θ^l such that for every $\theta \in B(S)$ there exists l with $\|\theta - \theta^l\|_2 \le \delta$. Then with $\Phi = \hat{\Sigma} - I$, we have

$$\theta^T \Phi \theta = (\theta - \theta^l) \Phi (\theta - \theta^l) + (\lambda^l)^T \Phi \theta^l + 2(\theta - \theta^l)^T \Phi \theta^l. \tag{5.30}$$

The second term is bounded by $\delta^2 \sup_{v \in B(S)} |v^T \Phi v|$. The third term is bounded by $2\delta \sup_{v \in B(S)} |v^T \Phi v|$. Thus,

$$\sup_{\theta \in B(S)} |\theta^T \Phi \theta| \le \max_{l \in 1, \dots, n(\theta)} |\theta^l \Phi \theta^l| + (\delta^2 + 2\delta) \sup_{v \in B(S)} |v^T \Phi v| \qquad (5.31)$$

which gives the bound

$$\sup_{\theta \in B(S)} |\theta^T \Phi \theta| \le \frac{9}{2} \max_{l=1,\dots,N(\delta)} |\theta^l \Phi \theta^l|$$
 (5.32)

at $\delta = \frac{1}{3}$. At $\theta^l \in B(S)$ fixed, we have

$$(\theta^{l})^{T} \Phi \theta^{l} = \frac{1}{n} \sum_{i=1}^{n} ((X \theta^{l})_{i}^{2} - \mathbb{E}((X \theta^{l})_{i}^{2}))$$
 (5.33)

and the random variables $(X\theta^l)_i$ are IID $N(0, \|\theta^l\|_2^2)$ distributed with variance $\|\theta^l\|_2^2 \leq 1$. Thus for $g_i IIDN(0,1)$, we have

$$\mathbb{P}\left(\frac{9}{2} \max_{l=1,...,N(\frac{1}{3})} |(\theta^l)^T \Phi \theta^l| > 18\left(\sqrt{\frac{t+c_0 k}{n}} + \frac{t+c_0 k}{n}\right)\right)$$
 (5.34)

$$\leq \sum_{l=1}^{N(\frac{1}{3})} \mathbb{P}\left(|(\theta^l)^T \Phi \theta^l| > 4\|\theta^l\|_2^2 \left(\sqrt{\frac{t + c_0 k}{n}} + \frac{t + c_0 k}{n} \right) \right)$$
 (5.35)

$$= \sum_{l=1}^{N(\frac{1}{3})} \mathbb{P}\left(\left|\sum_{i=1}^{n} (g_i^2 - 1)\right| > 4(\sqrt{n(t + c_0 k)} + t + c_0 k)\right)$$
 (5.36)

$$\leq 2N(\frac{1}{3})e^{-t}e^{-c_0k}$$
(5.37)

$$\leq 2e^{-t} \tag{5.38}$$

where we apply the next inequality with $z = t + c_0 k$, and rely on the covering numbers of the unit ball in k-dimensional Euclidean space satisfying $N(\delta) \leq \left(\frac{A}{\delta}\right)^{\kappa}$ for some universal A > 0.

Theorem. Let g_{i} , i = 1, ..., n be IID N(0, 1), and set $X = \sum_{i=1}^{n} (g_{i}^{2} - 1)$. Then for all $t \geq 0$ and $n \in \mathbb{N}$,

$$\mathbb{P}(|X| \ge t) \le 2\exp(-\frac{t^2}{4(n+t)}). \tag{5.39}$$

Proof. For $|\lambda|<\frac{1}{2}$, we can compute the MGF of $\mathbb{E}\Big(e^{\lambda(g^2-1)}\Big)=\frac{e^{-\lambda}}{\sqrt{1-2\lambda}}=$ $\exp(\frac{1}{2} - \log(1 - 2\lambda) - 2\lambda).$

Then taking Taylor expansions, we have

$$\frac{1}{2}[-\log(1-2\lambda)-2\lambda] = \lambda^2(1+\frac{2}{3}2\lambda+\dots+\frac{2}{k+2}(2\lambda)^k+\dots) \le \frac{\lambda^2}{(5.40)}$$

and by IID, $\log \mathbb{E}(e^{\lambda X}) \leq \frac{n\lambda^2}{1-2\lambda}$.

Then by Markov's inequality, $\mathbb{P}(X > t) \leq \mathbb{E}(e^{\lambda X - \lambda t}) \leq \exp(\frac{n\lambda^2}{1 - 2\lambda} - \frac{n\lambda^2}{1 - 2\lambda})$ $\begin{array}{l} \lambda t)=\exp(-\frac{t^2}{4(n+t)}), \text{ when taking } \lambda=\frac{t}{2n+2t}. \\ \\ \text{Then taking } t=4(\sqrt{nz}+z), \text{ we obtain the required result.} \end{array}$

References