LÒGICA I LLENGUATGES

CURSO 2021-22

SEGUNDA PRUEBA PARCIAL (Grupo A)

- (a) Consideremos el vocabulario $\sigma=\{f^1,P^2,Q^2\}$ y la σ -interpretación I definida de la siguiente forma:
 - dominio de $I = \{1, 2, 3\},\$
 - I(f)(1) = 2, I(f)(2) = 3, I(f)(3) = 1,
 - $I(P) = \{(1,2), (1,3), (2,1), (2,2), (2,3), (3,2)\},\$
 - $I(Q) = \{(1,1), (2,2), (3,3)\}.$

Determinar entonces, razonando la respuesta, si las siguientes fórmulas son verdaderas o falsas en I:

- (1) $\forall x Px f(x)$,
- (2) $\exists x Q x f(x)$,
- (3) $\exists x \exists y (\neg Pxy \land \neg Qxy),$
- (4) $\forall x \forall y (Pxy \rightarrow Pf(x)f(y)),$
- (5) $\forall y \exists x P f(x) y \rightarrow \exists x \forall y P f(x) y$ (7,5 puntos)
- (b) Demostrar por resolución que la cláusula vacía \square se deduce de las siguientes cláusulas:

$$\varphi_1 = \neg Px \lor \neg Pf(a) \lor Qx,$$

$$\varphi_2 = \neg Pa \lor \neg Qb,$$

$$\varphi_3 = Py.$$

(2.5 puntos)

Solución: (a) (1) es falsa y ello se puede comprobar tomando x=3. Se tiene que I(f)(3)=1 y $(3,1)\not\in I(P)$. Por tanto, $\overline{P}\,3\overline{f}(3)=F$.

- (2) es falsa, ya que para x=1 tenemos que $(1,2)\not\in I(Q)$, para x=2 tenemos que $(2,3)\not\in I(Q)$, y para x=3 tenemos que $(3,1)\not\in I(Q)$
- (3) es verdadera, lo cual se comprueba con x=3 e y=1. Como $(3,1)\not\in I(P)$ y $(3,1)\not\in I(Q)$, se tiene que la fórmula es cierta.

- (4) es falsa y ello se puede comprobar tomando x=2 e y=2. Se tiene que $(2,2)\in I(P),\ I(f)(2)=3$ y $(3,3)\not\in I(P)$. Por tanto $\overline{P}22=V$ y $\overline{P}\,\overline{f}(2)\overline{f}(2)=F$, de lo cual se obtiene que $(\overline{P}22\to\overline{P}\,\overline{f}(2)\overline{f}(2))=F$.
- (5) es verdadera ya que $\exists x \forall y P f(x) y$ es verdadera. Esto último lo podemos justificar con x=1. Tenemos que $\overline{f}(1)=2$ y podemos comprobar que para cada valor n de y vamos a tener que $\overline{P}2n=V$, pues $(2,1)\in I(P), (2,2)\in I(P)$ y $(2,3)\in I(P)$. Por tanto, para cada valor n de y se tiene $\overline{P}f(1)n$.
 - (b) Tenemos los siguientes inputs:
 - 1. $\neg Px \lor \neg Pf(a) \lor Qx$.
 - $2. \ \neg Pa \vee \neg Qb.$
 - 3. *Py*.

Resolviendo (1) y (2), obtenemos:

4. $\neg Pb \lor \neg Pf(a) \lor \neg Pa$ (tomando $\{x = b\}$).

Resolviendo ahora (3) y (4), obtenemos:

5. $\neg Pf(a) \lor \neg Pa \text{ (tomando } \{y = b\}).$

Resolviendo entonces (3) y (5), obtenemos:

6. $\neg Pa$ (tomando $\{y = f(a)\}$).

Por último, resolviendo (3) y (6), obtenemos:

7. \square (tomando $\{y = a\}$).