Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_şt-nat* Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	-	
1.	$2(a+ib)+(a-ib)=6+i \Leftrightarrow 3a+ib=6+i$, unde $z=a+ib$ și $a,b \in \mathbb{R}$	2p
	a = 2, $b = 1$, deci $z = 2 + i$	3 p
2.	$f(1) + f(2) + + f(10) = (4 \cdot 1 - 5) + (4 \cdot 2 - 5) + + (4 \cdot 10 - 5) = 4(1 + 2 + + 10) - 10 \cdot 5 = 4(1 + 2 + $	3 p
	=220-50=170	2 p
3.	$\log_2(x+3) = \log_2 2 + \log_2(x+1) \Rightarrow x+3 = 2(x+1)$	3p
	x=1, care verifică ecuația	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere cu cifrele egale, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	$m_{AB} = 1 \Rightarrow m_d = -1$, unde d este dreapta care trece prin C și este perpendiculară pe AB	2p
	Ecuația dreptei d este $y = -x + 4$	3 p
6.	$\frac{AB}{\sin C} = \frac{BC}{\sin A} \Rightarrow BC = \frac{3\sqrt{2} \cdot \sin 45^{\circ}}{\sin 30^{\circ}} =$	2p
	$=\frac{3\sqrt{2}\cdot\frac{\sqrt{2}}{2}}{\frac{1}{2}}=6$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 9 & 1 \end{pmatrix}, \ A(0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 4 & 9 & 0 \end{pmatrix}$	2p
	$A(1) - A(0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	3p
b)	$\det(A(x)) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^2 \end{vmatrix} = 3x^2 + 18 + 4x - 12 - 9x - 2x^2 =$	3p
	$=x^2-5x+6=(x-2)(x-3)$, pentru orice număr real x	2 p
c)	$\det(A(x)) = x^2 - 5x + 6 = \left(x - \frac{5}{2}\right)^2 - \frac{1}{4}$	2p
	Valoarea minimă se obține pentru $a = \frac{5}{2}$	3 p

Probă scrisă la matematică *M_şt-nat*

2.a)	$x \circ y = 4xy - 4x - 4y + 4 + 1 =$	2 p
	=4x(y-1)-4(y-1)+1=4(x-1)(y-1)+1, pentru orice numere reale x şi y	3 p
b)	$N = 4(2016-1)(2017-1)+1=4 \cdot 2015 \cdot 2016+1=$	2p
	$= 4 \cdot 2015 \cdot (2015 + 1) + 1 = 4 \cdot 2015^{2} + 4 \cdot 2015 + 1 = (2 \cdot 2015 + 1)^{2} = 4031^{2}$	3 p
c)	$a \circ b = 13 \Leftrightarrow 4(a-1)(b-1)+1=13 \Leftrightarrow (a-1)(b-1)=3$	2p
	Cum a şi b sunt numere naturale, obținem $a=2$, $b=4$ sau $a=4$, $b=2$	3 p

SUBIECTUL al III-lea (30 de puncte)

SUDII	SUBIECTUL al III-lea (30 de pu	
1.a)	$f'(x) = 2x \ln x + x^2 \cdot \frac{1}{x} =$	3p
	$=2x \ln x + x = x(2 \ln x + 1), x \in (0, +\infty)$	2p
b)	f(1) = 0, f'(1) = 1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = x-1$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = \frac{1}{\sqrt{e}}$	1p
	$x \in \left(0, \frac{1}{\sqrt{e}}\right] \Rightarrow f'(x) \le 0$, deci f descrescătoare pe $\left(0, \frac{1}{\sqrt{e}}\right]$	1p
	$x \in \left[\frac{1}{\sqrt{e}}, +\infty\right] \Rightarrow f'(x) \ge 0$, deci f crescătoare pe $\left[\frac{1}{\sqrt{e}}, +\infty\right]$	1p
	Cum $f\left(\frac{1}{\sqrt{e}}\right) = -\frac{1}{2e}$, obținem $f(x) \ge -\frac{1}{2e} \Leftrightarrow 1 + 2ef(x) \ge 0$, pentru orice $x \in (0, +\infty)$	2p
2.a)	$\int_{0}^{1} f(x)e^{-x} dx = \int_{0}^{1} (x-1)e^{x}e^{-x} dx = \int_{0}^{1} (x-1)dx = \left(\frac{x^{2}}{2} - x\right)\Big _{0}^{1} =$	3 p
	$=\frac{1}{2}-1=-\frac{1}{2}$	2p
b)	$F'(x) = (x+a+1)e^x, x \in \mathbb{R}$	2p
	$F'(x) = f(x) \Rightarrow (x+a+1)e^x = (x-1)e^x$ pentru orice număr real x, de unde obținem $a = -2$	3 p
c)	$x^{3} f(x) = (x^{4} - x^{3}) e^{x}$ şi, cum $x \in [0,1] \Rightarrow 1 \le e^{x}$ şi $x^{4} - x^{3} \le 0$, obţinem $x^{3} f(x) \le x^{4} - x^{3}$	3p
	$\int_{0}^{1} x^{3} f(x) dx \le \int_{0}^{1} \left(x^{4} - x^{3}\right) dx = \left(\frac{x^{5}}{5} - \frac{x^{4}}{4}\right) \Big _{0}^{1} = -\frac{1}{20}$	2p