Practice questions:

- 1. Let $\mathbb{Z}/n\mathbb{Z}$ be defined as the equivalence classes on \mathbb{Z} where $x \sim y$ if and only if $n \mid x-y$. Verify that \sim is an equivalence relation.
- 2. We say G is a group if G is closed under an operation \cdot , which is a map $G \times G \mapsto G$ where
 - For all $g_1, g_2, g_3 \in G$, $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$ (· associative)
 - There exists $e \in G$ (called the identity) such that for all $g \in G$, $g \cdot e = g$
 - For all $g \in G$, there exists $g^{-1} \in G$ (called g inverse) such that $g \cdot g^{-1} = e$

And we call a group abelian if for all $g_1, g_2 \in G$, $g_1 \cdot g_2 = g_2 \cdot g_1$. Verify that $\mathbb{Z}/n\mathbb{Z}$ forms an abelian group under addition mod n.

- 3. Consider $\mathbb{Z}/n\mathbb{Z}-[0]_n$.
 - (a) When does this set form a group under multiplication mod n?
 - (b) What is the biggest subset $U_n \subseteq \mathbb{Z}/n\mathbb{Z}$ such that U_n is a group under multiplication with $[1]_n$ as the identity? (This is called the multiplicative group of integers mod n)
- 4. (a) Let G be a finite set closed under an associative operation with a left identity e_L such that for all $g, g \cdot e_L$ and for all g, there exists a left inverse $g_L^{-1} \cdot g = e_L$. Verify that G forms a group with $e_L = e$ and $g_L^{-1} = g^{-1}$
 - (b) Show that it is not necessarily true that if G has a left identity and every element has a right inverse $g \cdot g_R^{-1} = e_L$ that G forms a group.
 - (c) Let G be a finite set closed under an associative operation such that for all $a, b, c \in G$, $a \cdot b = a \cdot c \implies b = c$ and $b \cdot a = c \cdot a \implies b = c$. Show that G is a group.
 - (d) Hence show that the multiplicative group of integers mod n, call it U_n , is a group.
- 5. We say G is a cyclic group if $G = \{g^k : k \in \mathbb{Z}\}$ for some $g \in G$. Then, we call g a generator of G.
 - (a) Verify that $\mathbb{Z}/n\mathbb{Z}$ under addition mod n is a cyclic group.
 - (b) We say G is isomorphic to H, written $G \cong H$, where G, H are groups under the operations \cdot, \diamond respectively, if there exists a bijection $\phi : G \mapsto H$ such that for all $g_1, g_2 \in G$, $\phi(g_1 \cdot g_2) = \phi(g_1) \diamond \phi(g_2)$. Show that if G is cyclic, then G is isomorphic to \mathbb{Z} under addition or $\mathbb{Z}/n\mathbb{Z}$ under addition mod n.
 - (c) Let G, H be groups with the operations \cdot, \diamond respectively, and we define an (external) direct product $G \times H$ with the operation * where $(g, h') * (g, h) = (g \cdot g', h \diamond h')$. Use the Chinese remainder theorem to show that if m, n are coprime, then $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

- 6. We say H is a subgroup of G if H is a group contained in G with the same operation as G.
 - (a) Show that every subgroup of a cyclic group is also cyclic.
 - (b) We say the order of an element g, written #g, is the smallest natural number n such that $g^n = e$ where g^n denotes g multiplied by itself n times. Show that for $\prod_i^r \mathbb{Z}/n_i\mathbb{Z} = \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \ldots \times \mathbb{Z}/n_r\mathbb{Z}$, we have that $\#(g_1, g_2, \ldots, g_r) = \text{lcm}(\#g_1, \#g_2, \ldots, \#g_r)$.
 - (c) We say the order of a group G, denoted #G, is the cardinality of G. Let H be a subgroup of G where G is a finite group. Prove that $\#H \mid \#G$.
 - (d) Every subgroup H induces a partition on G under the relation $g \sim g'$ if and only if there exists $h \in H$ such that g = g'h. Show that every equivalence class, call it gH (also known as a coset of H), has the same number of elements as H, and hence conclude that #G = #H[G:H] where [G:H] is called the index of H and represents the number of distinct cosets of H.
 - (e) Show that if #g = k then $\#\langle g^d \rangle = \frac{d}{\gcd(d,k)}$.
 - (f) Show that every group of prime order is cyclic.
 - (g) Show that if $g_1, g_2 \in G$ have the same order, then $\langle g_1 \rangle = \langle g_2 \rangle$.
 - (h) Show that the generators of $\mathbb{Z}/n\mathbb{Z}$ under addition mod n are $[d]_n$ such that d is coprime to n and that there are $\varphi(n)$ generators of $\mathbb{Z}/n\mathbb{Z}$ under addition mod n where φ denotes the Euler totient function.
- 7. Let R be a relation on $\mathbb{Z}/n\mathbb{Z}$ where $[x]_n R[y]_n$ if and only if there exists an invertible $[u]_n$ (under multiplication mod n) such that $[x]_n \cdot [u]_n = [y]_n$ where \cdot is the usual multiplication mod n.
 - (a) Show that for every divisor d of n, there exists a unique subgroup of order d contained in $\mathbb{Z}/n\mathbb{Z}$.
 - (b) Show that xRy if and only if x and y have the same order in $\mathbb{Z}/n\mathbb{Z}$ under addition mod n.
 - (c) Hence show that distinct equivalence classes of R are precisely the set of generators for distinct subgroups of $\mathbb{Z}/n\mathbb{Z}$
 - (d) Using this, prove that $n = \sum_{d:d|n} \varphi(d)$.
- 8. Let G be a finite abelian group in which the number of solutions in G of the equation $x^n = e$ is at most n for every positive integer n. For every $d \in \mathbb{N}$, define a set $A_d = \{x \in G : x^d = e, \#x = d\}$. Prove that G is cyclic. (Hint: Use a counting argument involving the result from 6d and show that $A_n \neq \emptyset$ for all $n \in \mathbb{N}$, so $A_{\#G} \neq \emptyset$ and thus we have an element of order #G).
- 9. Let P be a maximal subgroup in a finite group G (so a subgroup that is only contained by G) such that its order is p^k where p is prime, so P is called a Sylow p-subgroup. Sylow's theorems state that

- For every $p \mid \#G$, there exists a Sylow p-subgroup of order p^k (Corollary: For every $p^r \mid \#G$, there exists a group of order p^r)
- If P_1, P_2 are Sylow p-subgroups, there exists g such that $P_1 = gP_2g^{-1}$
- Let n_p be the number of distinct Sylow p-subgroups. Then, n_p divides the index of the Sylow p-subgroups, $n_p \equiv 1 \mod p$, and $n_p = [G:N_G(P)]$ where P is any Sylow p-subgroup, $N_G(P) = \{g \in G: gPg^{-1} = P\}$
- If H is a group of order p^r where $r \leq k$ then H is contained in a Sylow p-subgroup.
- (a) Show that $N_G(P)$ is a subgroup of G
- (b) We say H is normal in G, denoted $H \subseteq G$, if for all $g \in G$, $gHg^{-1} = H$
- (c) Show that if P is a unique Sylow p-subgroup of G, then $P \subseteq G$.
- (d) Show that $N_G(N_G(P)) = N_G(P)$
- (e) Let $K \subseteq G$. Show that if P is a Sylow p-subgroup such that $P \subseteq K$, then $P \subseteq G$.
- (f) A group G is called simple if $\{e\}$, G are the only normal subgroups of G. Show that if #G = 8896 then G is not simple.
- (g) Show that if #G = 56 then G is not simple.
- (h) Let p, q be primes with p < q. Show that if #G = pq then G is not simple.
- (i) Let p, q be primes and assume $p \nmid q 1$, p < q. Show that if #G = pq, then G is cyclic.
- (j) Let p, q be primes and assume $p \mid q-1, p < q$. Show that if #G = pq, then G has a unique non-abelian group of order pq.
- 10. We say $G = G_1 \trianglerighteq G_2 \trianglerighteq \ldots \trianglerighteq G_{r+1} = \{1\}$ if at every stage, G_{i+1} is maximal in G_i . Using normal groups $K \unlhd G$, we can form quotient groups G/K where its order is [G:K] and its elements are cosets of K with multiplication being defined as $g_1K*g_2K = (g_1 \cdot g_2)K$ where \cdot is the multiplication in G.
 - (a) Show that if G is abelian, G is finite if and only if it has a composition series.
 - (b) Show that if G is a finite cyclic group, G has a composition series $G = G_1 \trianglerighteq G_2 \trianglerighteq \ldots \trianglerighteq G_{r+1} = \{1\}$ where $\#G_i/\#G_{i+1}$ is prime.
 - (c) Show that if $n = n_1, n_2, \ldots, n_{r+1} = 1$ is a sequence of integers such that n_i/n_{i+1} is prime, then G has a composition series $G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_{r+1} = \{1\}$.
- 11. We say G is supersolvable if G has a composition series $G = G_1 \trianglerighteq G_2 \trianglerighteq \ldots \trianglerighteq G_{r+1} = \{1\}$ where at every stage, the quotient group G_i/G_{i+1} is cyclic and $G_i \unlhd G$.
 - (a) Show that every group of square free order is supersolvable.
 - (b) Show that every group with cyclic Sylow p-subgroups is supersolvable.
 - (c) Show that if G is finite and supersolvable then every maximal subgroup has a prime index.