Билеты Высшая Математика - 2

Тимур Адиатуллин | telegram, github

Содержание

Ин	гегралы
1.1	Определение и свойства первообразной. Теорема о связи первообразных одной функции
1.2	Таблица основных неопределенных интегралов (с доказательствами)
1.3	Интегрирование с помощью замены переменной. Вычисление
1.4	Интегрирование по частям. Вычисление
1.5	Интегрирование рациональных дробей.
1.6	Интегральные суммы Римана. Определение определенного интеграла. Теорема об ограничен-
	ности функции, интегрируемой на отрезке.(с доказательством)
1.7	Теорема об интегрируемости функции на более узком промежутке, о связи интегралов от f
	на промежутках [a,b], [a,c], [c,b]
1.8	Интегрируемость непрерывной функции, монотонной и ограниченной функции.
1.9	Действия над интегрируемыми функциями
1.10	Теорема об интегрировании функции, равной нулю всюду, за исключением конечного числа
	точек, и функции, у которой изменены значения в конечном числе точек
1.11	
1.12	Неравенства для определенных интегралов
1.13	
1.14	
1.15	
	Формулы интегрирования по частям и замены переменных в определенном интеграле.
1.17	
2.11	теграла II рода от неотрицательной функции.
1 18	Первый и второй признаки сравнения. Сходимость интеграла
	Абсолютная и условная сходимость несобственных интегралов II рода
1.20	
1.20	димость интеграла
1 91	Признак Дирихле. Сходимость интеграла при р>0
	Признак дирихле. Сходимость интеграла при p>0. Площадь криволинейной трапеции. Вычисление площади эллипса с помощью параметризации
1.44	Площадь криволинеиной транеции. Вычисление площади эллинса с помощью нараметризации кривой
1 09	
	Площадь криволинейного сектора.
1.24	
1.25	Объем тела вращения. Объем тела с известными площадями поперечных сечений. Объем
1.00	эллипсоида.
	Длина кривой, заданной параметрически. Следствия. Вычисление длины окружности
	гебра
2.1	Группы, кольца, поля
2.2	Определение линейного пространства. Теорема о линейно зависимых и независимых системах
	векторов
2.3	Теорема о линейной зависимости системы из k векторов, каждый из которых является линей-
	ной комбинацией некоторой системы из m векторов $(k>m)$
2.4	Базис линейного пространства. Теорема об инвариантности числа элементов базиса. Теорема
	о количестве элементов линейно независимой системы (Т. 1.3, Т.1.4).
2.5	Координаты вектора. Теоремы о координатах вектора (Т.1.5 и Т1). ????????
2.6	Определение и свойства скалярного произведения. Угол между векторами.
2.7	Пространства R^n и R_n
2.8	Подпространство линейного пространства. Линейная оболочка системы векторов
2.9	Ортогональные матрицы
2.10	
,,	имеют единственное решение. ????????
2 11	11. Метод Гаусса решения систем линейных уравнений в случае, когда системы имеют беско-
⊸ .⊥1	нечно много решений. Структура общего решения систем. ?????????
9 19	Однородные системы линейных уравнений. ????????
4.12	однородные системы липеиных уравнений. ::::::

2.13	Горизонтальный и вертикальный ранги матрицы. Ранг по минорам. Их совпадение для тра-	
	пециевидной матрицы(с доказательством)	57
2.14	Неизменность ранга матрицы при умножении ее на невырожденную. Теорема о равенстве	
	рангов для произвольной матрицы.	60
2.15	Теорема Кронекера - Капелли	61
2.16	Собственные числа и векторы матрицы. Совпадение характеристических многочленов у по-	
	добных матриц. Линейная независимость собственных векторов, соответствующих различным	
	собственным числам.	62
2.17	Связь между линейной зависимостью системы векторов и соответствующей системы коорди-	
	натных столбцов. Связь координатных столбцов одного вектора в разных базисах	64
2.18	Линейное отображение линейных пространств. Матрица отображения в некоторых базисах.	
	Ее использование для вычисления образа вектора. Связь матриц отображения в разных базисах.	66
2.19	Ядро и образ отображения	67
2.20	20. Собственные числа и собственные векторы оператора. Матрица оператора в базисе из	
	собственных векторов. (с доказательсвом)	69
2.21	Линейная независимость собственных векторов, соответствующих различным собственным	
	числам оператора. Собственные подпространства, их размерность. Следствия.	71
2.22	Евклидовы и унитарные пространства. Процесс ортогонализации Грама-Шмидта. Линейная	
	независимость ортонормированной системы векторов	73
2.23	Теорема о собственных числах и собственных векторах вещественной симметричной матрицы.	75
2.24	Теорема об ортогональном подобии вещественной симметричной матрицы некоторой диаго-	
	нальной матрице. Следствия	76
2.25	Определение билинейной и квадратичной форм. Матрица билинейной формы в некотором ба-	
	зисе, ее использование для вычисления билинейной формы. Связь матриц одной билинейной	
	формы в разных базисах.	79
2.26	Теорема о существовании ортогонального преобразования базиса, приводящего квадратич-	
2.20	ную форму к каноническому виду. Практический метод приведения квадратичной формы к	
	каноническому виду с помощью ортогонального преобразования базиса (метод собственных	
	векторов)	81
2.27	Теорема о необходимом и достаточном условии положительной (отрицательной) определен-	01
2.21	ности квадратичной формы.	82
2.20	Теорема о существовании треугольного преобразования базиса, приводящего квадратичную	02
2.28		83
	форму к каноническому виду. Критерий Сильвестра.	
	оференциальное исчисление функций нескольких переменных.	84
	Последовательность точек в R_p . Теорема о покоординатной сходимости	84
3.2	Предел функции p переменных. Непрерывность функции p переменных. Теорема Вейерштрасса.	86
3.3	Дифференцируемость функции p переменных. Дифференцируемость суммы и произведения	
	дифференцируемых функций. (с доказательством)	88
3.4	Частные производные функции p переменных. Связь между дифференцируемостью функции	
	и существованием частных производных. Пример функции, которая имеет частные производ-	
	ные в точке A , но не дифференцируема в этой точке	90
3.5	Дифференцируемость функции в случае существования и непрерывности частных производ-	
	ных. (с доказательством)	92
3.6	Производная сложной функции. Частные производные сложной функции. Инвариантность	
	формы первого дифференциала.	93
3.7	Частные производные высших порядков. Теорема о равенстве смешанных производных	96
3.8	Дифференциалы высших порядков. Отсутствие инвариантности формы у дифференциалов	
	порядка выше первого.	97
3.9	Формула Тейлора функции р переменных	99
3.10	Теорема о существовании и дифференцируемости неявно заданной функции одной переменной.	100
3.11	Теорема о существовании и дифференцируемости неявно заданных функций р переменных,	
	заданных системой функциональных уравнений. Приемы вычисления производных . Вычис-	
	ление первых производных функций $y(x)$, $z(x)$, $u(x)$, заданных неявно системой	101
3.12		
		104
3.13	Определение точек условного экстремума функции нескольких переменных. Необходимые	
	и достаточные условия существования точек условного экстремума. Пример: найти точки	
	условного экстремума функции $f(x,y)=x^3+y^3-9xy$ при условии $x+y=0$, используя	
	метод нахождения точек условного экстремума	105

1 Интегралы

1.1 Определение и свойства первообразной. Теорема о связи первообразных одной функции.

Определение 1.1.

Пусть функция f(x) определена на промежутке $\langle a,b \rangle$. Функция F(x), определенная на промежутке $\langle a,b \rangle$, называется **первообразной** функции f(x) на $\langle a,b \rangle$, если

$$F'(x) = f(x), \quad \forall x \in \langle a, b \rangle.$$

На концах промежутка имеем в виду односторонние производные функции F(x).

Следствие.

Если F(x) является первообразной некоторой функции на $\langle a,b\rangle$, то F(x) непрерывна на $\langle a,b\rangle$.

Теорема о связи первообразных одной функции

Пусть F(x) — первообразная функции f(x) на $\langle a,b\rangle$. Тогда:

1. $\forall c \in R$ F(x) + c также первообразная функции f(x) на $\langle a, b \rangle$. 2. Если $\Phi(x)$ — некоторая первообразная функции f(x) на $\langle a, b \rangle$, то $\exists c \in R \colon \Phi(x) = F(x) + c$.

Доказательство

1. (F(x) + c)' = f(x). 2. $(\Phi(x) - F(x))' = f(x) - f(x) = 0$ на $\langle a, b \rangle$. Следовательно, $\Phi(x) - F(x) = c$ на $\langle a, b \rangle$.

Следствие

Если F(x) — некоторая первообразная функции f(x) на $\langle a,b \rangle$, то каждая функция семейства функций $\{F(x)+c\}$ $(c \in R)$ является **первообразной**, и других первообразных нет.

1.2 Таблица основных неопределенных интегралов (с доказательствами).

Определение 1.2

Описанное выше семейство функций $\{F(x)+c\}$ называется неопределенным интегралом функции f(x) на $\langle a,b\rangle$ и обозначается

$$\int f(x) \, dx.$$

Таблица основных неопределенных интегралов

$$\int 0 \, dx = c \tag{1}$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \quad \alpha \neq -1$$
 (2)

$$\int \frac{1}{x} dx = \ln|x| + c \tag{3}$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + c \tag{4}$$

$$\int \sin x \, dx = -\cos x + c \tag{5}$$

$$\int \cos x \, dx = \sin x + c \tag{6}$$

$$\int \frac{1}{\cos^2 x} \, dx = \tan x + c \tag{7}$$

$$\int \frac{1}{\sin^2 x} \, dx = -\cot x + c \tag{8}$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c, \quad a > 0$$
(9)

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c, \quad a \neq 0$$
 (10)

$$\int \sinh x \, dx = \cosh x + c \tag{11}$$

$$\int \cosh x \, dx = \sinh x + c \tag{12}$$

$$\int \frac{1}{\cosh^2 x} \, dx = \tanh x + c \tag{13}$$

$$\int \frac{1}{\sinh^2 x} \, dx = \coth x + c \tag{14}$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c, \quad a \neq 0$$
 (15)

$$\int \frac{1}{\sqrt{x^2 + \alpha}} dx = \ln\left|x + \sqrt{x^2 + \alpha}\right| + c, \quad \alpha \neq 0$$
 (16)

Комментарий

Формулы справедливы на всех промежутках $\langle a,b \rangle$, на которых существуют функции, стоящие под знаком интеграла.

Доказательство

Формулы доказываются непосредственной проверкой того, что производная выражения, стоящего справа, совпадает с подынтегральной функцией.

Проверим формулы (15) и (16):

$$\left(\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|\right)' = \frac{1}{4a}\ln\left(\frac{x-a}{x+a}\right)^2' = \frac{1}{4a}\left(\frac{x-a}{x+a}\right)^2\left(\frac{x-a}{x+a}\right)' =$$
(17)

$$= \frac{1}{4a} \left(\frac{x-a}{x+a}\right)^2 \frac{(x-a)(x+a) - (x-a)(x+a)}{(x+a)^2} = \frac{1}{x^2 - a^2}$$
(18)

$$\left(\ln\left|x+\sqrt{x^2+\alpha}\right|\right)' = \frac{1}{2}\left(x+\sqrt{x^2+\alpha}\right)^2\left(x+\sqrt{x^2+\alpha}\right)' = \tag{19}$$

$$=\frac{1}{2}\left(x+\sqrt{x^2+\alpha}\right)^2 2\left(x+\sqrt{x^2+\alpha}\right)\left(1+\frac{x}{\sqrt{x^2+\alpha}}\right) = \frac{x+\sqrt{x^2+\alpha}}{\sqrt{x^2+\alpha}} = \frac{1}{\sqrt{x^2+\alpha}}$$
(20)

1.3 Интегрирование с помощью замены переменной. Вычисление

Теорема: Простейшие свойства неопределенного интеграла

Пусть F(x) дифференцируема на $\langle a,b\rangle$. Тогда

$$\int dF(x) = F(x) + c.$$

Пусть существует $\int f(x)dx$. Тогда

$$d\left(\int f(x)dx\right)=f(x)dx,\quad \text{то есть}\quad \left(\int f(x)dx\right)'=f(x)\quad \text{на}\quad \langle a,b\rangle.$$

Пусть существуют $\int f_1(x)dx$, $\int f_2(x)dx$ на $\langle a,b\rangle$. Тогда существует

$$\int (af_1(x) + bf_2(x))dx = a \int f_1(x)dx + b \int f_2(x)dx$$
 на $\langle a, b \rangle$.

Теорема 1.4: Интегрирование при помощи замены переменной

Пусть существует

$$\int f(t)dt = F(t) + c \text{ Ha } \langle a, b \rangle.$$

Пусть $\varphi(x)$ дифференцируема на $\langle \alpha, \beta \rangle$, $\varphi(\langle \alpha, \beta \rangle) = \langle a, b \rangle$. Тогда существует

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + c \text{ Ha } \langle \alpha, \beta \rangle.$$

Теорема 1.5: Интегрирование при помощи замены переменной (подстановка)

Пусть существует

$$\int f(\varphi(t))\varphi'(t)dt = G(t) + c \text{ Ha } \langle \alpha, \beta \rangle.$$

Пусть $\varphi(t)$ дифференцируема и строго монотонна на $\langle \alpha, \beta \rangle$, $\varphi(\langle \alpha, \beta \rangle) = \langle a, b \rangle$. Тогда существует

$$\int f(x)dx = G(\varphi^{-1}(x)) + c \text{ Ha } \langle a, b \rangle.$$

Пример:

$$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c \quad (a > 0).$$

1.4 Интегрирование по частям. Вычисление

Теорема 1.6: Интегрирование по частям

Пусть функции u(x), v(x) дифференцируемы на $\langle a,b\rangle$ и существует

$$\int v(x)du(x).$$

Тогда существует

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x).$$

Доказательство

Поскольку $d(uv)=u\,dv+v\,du$, то $u\,dv=d(uv)-v\,du$, следовательно, существует $\int u\,dv=uv-\int v\,du$ на $\langle a,b\rangle$.

Пример:

$$\int \sqrt{a^2 + x^2} \, dx = \frac{a^2}{2} \ln|x + \sqrt{a^2 + x^2}| + \frac{x}{2} \sqrt{a^2 + x^2} + c.$$

1.5 Интегрирование рациональных дробей.

Теорема 2.1: Интегрирование правильных рациональных дробей вида $\frac{A}{(x-a)^k}$

$$\int \frac{A}{x-a} dx = \int \frac{A}{x-a} d(x-a) = A \ln|x-a| + c. \tag{1}$$

$$\int \frac{A}{(x-a)^k} dx = \int \frac{A}{(x-a)^k} d(x-a) = \frac{A}{(1-k)(x-a)^{k-1}} + c \quad (k \neq 1).$$
 (2)

Теорема 2.2: Интегрирование правильных рациональных дробей вида $\frac{Bx+C}{(x^2+px+q)^n}$

Выделим полный квадрат из квадратного трехчлена:

$$x^2 + px + q = (x + (p/2))^2 + q^*$$
, где $q^* = q - p^2/4 > 0$, так как $p^2 - 4q < 0$.

Сделаем замену t = x + (p/2), тогда x = t - (p/2) и dx = dt.

Следовательно,

$$\int \frac{Bx+C}{(x^2+px+q)^n} dx = \int \frac{B(t-(p/2))+C}{(t^2+q^*)^n} dt =$$

$$= \int \frac{Bt}{(t^2+q^*)^n} dt + \int \frac{C^*}{(t^2+q^*)^n} dt, \quad \text{где} \quad C^* = -B(p/2) + C.$$

Разберем, как вычисляются интегралы $\int \frac{t}{(t^2+q^*)^n} dt$ и $\int \frac{1}{(t^2+q^*)^n} dt$. После вычисления интегралов следует заменить t на $x+\frac{p}{2}$.

a)
$$\int \frac{t}{(t^2 + q^*)^n} dt = \frac{1}{2} \int \frac{2t \, dt}{(t^2 + q^*)^n} = \frac{1}{2} \int \frac{d(t^2 + q^*)}{(t^2 + q^*)^n}$$
$$= \begin{cases} \frac{1}{2} \ln(t^2 + q^*) + c, & n = 1\\ \frac{1}{2(1-n)(t^2 + q^*)^{1-n}} + c, & n \neq 1 \end{cases}$$

Вычисление интеграла I_n

Рассмотрим интеграл:

$$I_n = \int \frac{1}{(t^2 + q^*)^n} dt.$$

Для случая n = 1:

$$I_1 = \int \frac{1}{t^2 + q^*} dt = \frac{1}{\sqrt{q^*}} \arctan \frac{t}{\sqrt{q^*}} + C.$$

Для $n \ge 2$, используем метод интегрирования по частям:

$$I_n = \int \frac{1}{(t^2 + q^*)^n} dt = \left[u = (t^2 + q^*)^{-n}, \quad dv = dt \right].$$

Тогда:

$$du = -n(t^2 + q^*)^{-n-1}2tdt, \quad v = t.$$

$$I_n = \frac{t}{(t^2 + q^*)^n} + 2n \left[\int \frac{t^2}{(t^2 + q^*)^{n+1}} dt \right].$$

Учитывая, что $t^2 = (t^2 + q^*) - q^*$, преобразуем:

$$I_n = \frac{t}{(t^2 + q^*)^n} + 2nI_n - 2nq^*I_{n+1}.$$

Получаем рекуррентную формулу:

$$I_{n+1} = \frac{1}{2nq^*} \left[\frac{t}{(t^2 + q^*)^n} + (2n - 1)I_n \right].$$

Эта формула позволяет вычислять I_2, I_3, \dots последовательно.

Определение 1.2: Определенный интеграл как предел интегральных сумм

Пусть f(x) ограничена на отрезке [a,b]. Рассмотрим разбиение $\tau = \{x_k\}_{k=0}^n$ этого отрезка:

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

Определим интегральную сумму:

$$\sigma_{\tau} = \sum_{k=1}^{n} f(\xi_k) \Delta x_k,$$

где ξ_k — произвольные точки в $[x_{k-1}, x_k]$, а $\Delta x_k = x_k - x_{k-1}$.

Если существует конечный предел интегральных сумм при стремлении λ_{τ} (ранга разбиения) к нулю, то этот предел называют определенным интегралом функции f(x) на [a,b]:

$$I = \lim_{\lambda_{\tau} \to 0} \sigma_{\tau} = \int_{a}^{b} f(x) dx.$$

1.6 Интегральные суммы Римана. Определение определенного интеграла. Теорема об ограниченности функции, интегрируемой на отрезке. (с доказательством)

Определение 1.1: Интегральные суммы Римана

1) Говорят, что выбрано разбиение $\tau = \{x_k\}_{k=0}^n$ отрезка [a,b], если выбраны точки $x_0 = a, x_1, x_2, \dots, x_{n-1}, b$, такие что:

$$x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n$$
.

Длину і-го отрезка разбиения обозначим Δx_i ($\Delta x_i = x_i - x_{i-1}$). Число $\lambda_{\tau} = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\}$ называется рангом разбиения τ .

2) Пусть функция f(x) определена на отрезке [a,b]. Выберем разбиение τ отрезка [a,b]. Выберем в каждом из получившихся отрезков разбиения по точке:

$$\xi_1 \in [x_0, x_1], \quad \xi_2 \in [x_1, x_2], \quad \dots, \quad \xi_n \in [x_{n-1}, x_n].$$

Вычислим значение функции f(x) в этих точках и составим интегральную сумму Римана:

$$\sigma_{\tau} = \sum_{k=1}^{n} f(\xi_k) \Delta x_k.$$

3) Если существует конечный предел I интегральных сумм при стремлении ранга разбиения к нулю, и этот предел не зависит ни от выбора разбиения τ , ни от выбора точек $\xi_1, \xi_2, \ldots, \xi_n$, то этот предел называют определенным интегралом от функции f(x) по отрезку [a,b] и обозначают:

$$\int_{a}^{b} f(x)dx.$$

То есть,

$$\lim_{\lambda_{\tau}\to 0}\sigma_{\tau}$$

то есть,

$$\forall \varepsilon > 0 \,\exists \, \delta > 0 : (\lambda_{\tau} < \delta \implies |\sigma_{\tau} - I| < \varepsilon) \,\forall \, \tau, \, \forall \, \{\xi_k\}_{k=0}^n$$

Замечания

- 1) $\lambda_{\tau} \to 0 \Rightarrow n \to \infty$. Обратное неверно.
- 2) Геометрический смысл σ_{τ} для $f(x) \geq 0$.

Определение 1.2

Если существует $\int_a^b f(x)dx$, то говорят, что f(x) интегрируема на отрезке [a,b] и пишут $f(x) \in R([a,b])$ (читается: f(x) принадлежит классу функций, интегрируемых на отрезке [a,b]).

Теорема 1.1

Если f(x) интегрируема на отрезке [a,b], то f(x) ограничена на [a,b].

Замечание

Обратное неверно.

Пример

Функция Дирихле:

$$f(x) = \begin{cases} 1, & x \in Q \\ 0, & x \notin Q \end{cases}$$

где Q — множество рациональных чисел.

1.7 Теорема об интегрируемости функции на более узком промежутке, о связи интегралов от f на промежутках [a,b], [a,c], [c,b].

Теорема

1) Пусть

$$f(x) \in R([a,b]), [a_1,b_1] \subseteq [a,b]$$
 Тогда $f(x) \in R([a_1,b_1])$

2) Пусть

$$c \in [a, b], f(x) \in R([a, c]), f(x) \in R([c, b])$$

Тогда

$$f(x) \in R([a,b])$$
 и $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

(без доказательства)

1.8 Интегрируемость непрерывной функции, монотонной и ограниченной функции.

Теорема

1) Если f(x) непрерывна на [a,b], то f(x) интегрируема на [a,b].

$$f(x) \in C([a,b]) \Rightarrow f(x) \in R([a,b]).$$

- 2) Если f(x) ограничена на [a,b] и непрерывна там всюду, за исключением конечного числа точек, то f(x) интегрируема на [a,b].
 - 3) Если f(x) монотонна и ограничена на [a,b], то f(x) интегрируема на [a,b]. (без доказательства)

1.9 Действия над интегрируемыми функциями.

Теорема 1.4: Действия над интегрируемыми функциями

Если $f(x) \in R([a,b])$ и $g(x) \in R([a,b])$, то: 1) $\alpha f(x) + \beta g(x) \in R([a,b])$, и

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

2) $f(x)g(x) \in R([a,b])$.

1.10 Теорема об интегрировании функции, равной нулю всюду, за исключением конечного числа точек, и функции, у которой изменены значения в конечном числе точек.

Теорема 1.5

1) Пусть f(x) определена и ограничена на [a,b] и равна нулю всюду, за исключением конечного числа точек. Тогда

$$\int_{a}^{b} f(x)dx = 0.$$

2) Пусть $g(x) \in R([a,b])$.

Если в конечном числе точек изменить значения функции g(x), то функция останется интегрируемой, и величина интеграла не изменится.

1.11 Свойства определенного интеграла.

Теорема 1.6: Свойства определенного интеграла

1)

$$\int_{a}^{b} dx = b - a.$$

2) Пусть a,b,c — три числа, $p = \max\{a,b,c\},\ q = \min\{a,b,c\}.$ Если $f(x) \in R([q,p]),$ то

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

3) Если $f(x) \in R([a,b])$, то $|f(x)| \in R([a,b])$, и

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

1.12 Неравенства для определенных интегралов.

Теорема 1.7

Пусть $f(x) \in R([a,b]), A \leq f(x) \leq B$ на [a,b]. Тогда

$$A(b-a) \le \int_a^b f(x)dx \le B(b-a).$$

Следствия

1) Пусть $f(x) \in R([a,b])$ и $f(x) \ge 0$ на [a,b]. Тогда

$$\int_a^b f(x)dx \ge 0 \quad \text{(взять } A = 0).$$

2) Пусть $f(x),g(x)\in R([a,b])$ и $f(x)\geq g(x)$ на [a,b]. Тогда

$$\int_a^b f(x)dx \ge \int_a^b g(x)dx$$

$$\int_a^b (f(x) - g(x))dx \ge 0, \text{ то есть},$$

$$\int_a^b f(x)dx \ge \int_a^b g(x)dx \ge 0.$$

3) Пусть $f(x) \in R([a,b])$ и $|f(x)| \leq K$ на [a,b]. Тогда

$$\left| \int_{a}^{b} f(x)dx \right| \le K(b-a)$$

$$-K \le f(x) \le K \quad \Rightarrow \quad -K(b-a) \le \int_{a}^{b} f(x)dx \le K(b-a).$$

1.13 Теорема о среднем значении функции на промежутке.

Теорема 1.8: о среднем значении функции на промежутке

Пусть $f(x) \in C([a,b])$. Тогда существует $x^* \in [a,b]$, такое что:

$$\int_{a}^{b} f(x)dx = f(x^*)(b-a).$$

Замечание

Формула

$$\int_{a}^{b} f(x)dx = f(x^{*})(b-a)$$

справедлива и при b < a (умножим обе части равенства на -1).

1.14 Непрерывность функции (с доказательством)

Определение 1.4

Пусть $f(x) \in R([a,b])$.

Рассмотрим функцию $\Phi(x) = \int_a^x f(t)dt$, определенную на [a,b].

Функция $\Phi(x)$ называется функцией верхнего предела интеграла от f(x).

Теорема 1.9

Функция $\Phi(x)$ непрерывна на [a, b].

Доказательство

Зафиксируем произвольную точку $x_0 \in [a, b]$. Тогда для любой точки $x \in [a, b]$:

$$\int_{a}^{x} f(t)dt = \int_{a}^{x_0} f(t)dt + \int_{x_0}^{x} f(t)dt,$$

то есть,

$$\Phi(x) - \Phi(x_0) = \int_{x_0}^x f(t)dt.$$

Поскольку $f(x) \in R([a,b])$, то f(x) ограничена на [a,b], то есть,

$$\exists K : |f(x)| \leq K$$
 на $[a, b]$.

Тогда

$$\left| \int_{x_0}^x f(t)dt \right| \le K|x - x_0|.$$

Следовательно,

$$|\Phi(x) - \Phi(x_0)| \le K|x - x_0| \xrightarrow{x \to x_0} 0.$$

Таким образом,

$$\lim_{x \to x_0} \Phi(x) = \Phi(x_0),$$

то есть, $\Phi(x)$ непрерывна в точке x_0 .

Поскольку x_0 — произвольная точка отрезка [a,b], то $\Phi(x)$ непрерывна на [a,b].

Теорема 1.10

В каждой точке x промежутка [a,b], в которой f(x) непрерывна, существует $\Phi'(x) = f(x)$.

Доказательство

Зафиксируем произвольную точку $x_0 \in [a,b]$, в которой функция непрерывна. Возьмем произвольное $\varepsilon > 0$.

$$\exists \delta > 0 : (|t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \varepsilon),$$

то есть,

$$f(x_0) - \varepsilon < f(t) < f(x_0) + \varepsilon, \quad \forall t \in (x_0 - \delta, x_0 + \delta).$$

Пусть $|\Delta x| < \delta$. Тогда на отрезке с концами в точках x_0 и $x_0 + \Delta x$ функция f(t) удовлетворяет неравенству.

- 1) Тогда:
- a) Пусть $\Delta x \ge 0$,

$$(f(x_0) - \varepsilon)\Delta x \le \int_{x_0}^{x_0 + \Delta x} f(t)dt \le (f(x_0) + \varepsilon)\Delta x;$$

б) Пусть $\Delta x < 0$,

$$(f(x_0) - \varepsilon)(-\Delta x) \le \int_{x_0 + \Delta x}^{x_0} f(t)dt \le (f(x_0) + \varepsilon)(-\Delta x).$$

Разделим все части неравенства из пункта а) на Δx , а все части неравенства из пункта б) на $-\Delta x$. Получим:

$$f(x_0) - \varepsilon \le \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt \le f(x_0) + \varepsilon,$$

что эквивалентно:

$$\left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt - f(x_0) \right| \le \varepsilon.$$

2) Рассмотрим

$$\Phi(x_0 + \Delta x) - \Phi(x_0) = \int_a^{x_0 + \Delta x} f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^{x_0 + \Delta x} f(t)dt.$$

Следовательно,

$$\frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} = \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt.$$

3) Получили, что

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \quad (|\Delta x| < \delta \Rightarrow \left| \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} - f(x_0) \right| \le \varepsilon).$$

Отсюда

$$\lim_{\Delta x \to 0} \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} = f(x_0),$$

то есть, существует $\Phi'(x_0) = f(x_0)$.

1.15 Дифференцируемость функции. Формула Ньютона – Лейбница.

Следствия

1) Частный случай (теорема Барроу):

Пусть $f(x) \in C([a,b])$. Тогда F'(x) = f(x) на [a,b].

(То есть, у любой непрерывной на отрезке функции существует первообразная.)

2) Формула Ньютона-Лейбница:

Пусть $f(x) \in C([a,b]), F(x)$ — некоторая первообразная функции f(x) на [a,b]. Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Доказательство

2) Так как $\Phi(x) = \int_a^x f(t) dt$ также является первообразной функции f(x) на [a,b], то существует число c:

$$\Phi(x) = \int_{a}^{x} f(t)dt = F(x) + c,$$

то есть,

$$\int_{a}^{x} f(t)dt = F(x) + c \quad \forall x \in [a, b].$$

Пусть x = a.

$$0 = F(a) + c.$$

Следовательно, c = -F(a). Пусть x = b.

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

1.16 Формулы интегрирования по частям и замены переменных в определенном интеграле.

Теорема 1.11

Пусть $u(x), v(x) \in C^1([a,b])$. Тогда:

$$\int_{a}^{b} u(x)dv(x) = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)du(x)$$

$$(u(x)v(x)\Big|_a^b = u(b)v(b) - u(a)v(a)).$$

Теорема 1.12

Пусть $f(x) \in C([a,b])$ (или $f(x) \in C([b,a])$); $\varphi(t) \in C^1[\alpha,\beta]$, причем $\varphi([\alpha,\beta]) = [a,b]$ (или $\varphi([\alpha,\beta]) = [b,a]$), $\varphi(\alpha) = a$, $\varphi(\beta) = b$ (например, $\varphi(t)$ монотонна на $[\alpha,\beta]$). Тогда

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{a}^{b} f(x)dx.$$

Несобственные интегралы II рода: определение, главное значение. 1.17Критерий сходимости интеграла II рода от неотрицательной функции.

Определение 2.1

1) Пусть f(x) определена на (a, b] и не ограничена в любой правой полукрестности точки a. Пусть $f(x) \in R([\alpha, b]) \ \forall \alpha \in (a, b].$

$$\int_{a}^{b} f(x)dx$$

Символ $\int_a^b f(x) dx$ называется несобственным интегралом II рода. Если существует конечный предел $I = \lim_{\alpha \to a+0} \int_{\alpha}^b f(x) dx$, то символу $\int_a^b f(x) dx$ приписывают значение I, то есть,

$$\int_{a}^{b} f(x)dx = \lim_{\alpha \to a+0} \int_{\alpha}^{b} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

2) Пусть f(x) определена на [a,b) и не ограничена в любой левой полукрестности точки b. Пусть $f(x) \in R([a,\beta)) \ \forall \beta \in [a,b).$

Символ $\int_a^b f(x)dx$ называется несобственным интегралом II рода.

Если существует конечный предел

б)

$$I = \lim_{\beta \to b-0} \int_{a}^{\beta} f(x) dx,$$

то символу $\int_a^b f(x)dx$ приписывают значение I, то есть,

$$\int_{a}^{b} f(x)dx = \lim_{\beta \to b-0} \int_{a}^{\beta} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

3) Пусть f(x) определена на [a,b] всюду, за исключением точки $c \in (a,b)$, и не ограничена в любой окрестности точки c.

Пусть f(x) интегрируема на любом отрезке, содержащемся в [a,b] и не содержащем точку c.

$$\int_{a}^{b} f(x)dx$$

В этом случае символ $\int_a^b f(x)dx$ также называется несобственным интегралом II рода.

Есть два равносильных способа приписать символу $\int_a^b f(x)dx$ числовое значение: a)

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

$$\int_a^b f(x)dx$$
 сходится, если $\int_a^c f(x)dx$ и $\int_c^b f(x)dx$ сходятся.

$$\int_{a}^{b} f(x)dx = \lim_{\delta_1 \to 0, \delta_2 \to 0} \left(\int_{a}^{c-\delta_1} f(x)dx + \int_{c+\delta_0}^{b} f(x)dx \right).$$

Замечание

Если не существует конечный

$$\lim_{\delta_1 \to +0} \left(\int_a^{c-\delta_1} f(x) dx \right) + \int_{c+\delta_2}^b f(x) dx,$$

но существует конечный

$$\lim_{\delta \to +0} \left(\int_a^{c-\delta} f(x) dx + \int_{c+\delta}^b f(x) dx \right),$$

то этот предел называют главным значением интеграла

$$\int_{a}^{b} f(x)dx$$

и обозначают **v.p.**

$$\int_{a}^{b} f(x)dx.$$

(то есть,

$$v.p. \int_{a}^{b} f(x)dx = \lim_{\delta \to +0} \left(\int_{a}^{c-\delta} f(x)dx + \int_{c+\delta}^{b} f(x)dx \right).$$

Лемма 2.1

Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

1) Пусть $a' \in (a, b)$. Тогда

$$\int_a^b f(x) dx \, \operatorname{сходится} \Leftrightarrow \int_a^{a'} f(x) dx \, \operatorname{сходится} \, \operatorname{u} \, \int_{a'}^b f(x) dx \, \operatorname{сходится}$$

(II)
$$\int_{a}^{b} f(x)dx = \int_{a}^{a'} f(x)dx + \int_{a'}^{b} f(x)dx$$
).

2) Пусть $c \neq 0$. Тогда

$$\int_a^b cf(x)dx \ \text{еходится} \Leftrightarrow \int_a^b f(x)dx \ \text{еходится}$$

$$(\text{и} \ \int_a^b cf(x)dx = c \int_a^b f(x)dx).$$

Теорема 2.1

Критерий сходимости несобственного интеграла II рода от неотрицательной функции.

Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

Пусть $f(x) \ge 0$ на [a,b). Тогда

$$\int_a^b f(x)dx \, \operatorname{сходится} \, \Leftrightarrow \exists K \geq 0 : \int_a^\beta f(x)dx \leq K \quad \forall \beta \in [a,b).$$

Лемма 2.2

Пусть F(x) возрастает на [a,b). Тогда

 $\lim_{x\to b-0}F(x)$ конечный $\Leftrightarrow F(x)$ ограничена сверху на [a,b).

(без доказательства)

Первый и второй признаки сравнения. Сходимость интеграла 1.18

Теорема 2.2

Первый признак сравнения несобственных интегралов II рода от неотрицательных функций. Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

- Пусть $f(x) \geq g(x) \geq 0$ на [a,b). Тогда: 1) Если $\int_a^b f(x) dx$ сходится, то $\int_a^b g(x) dx$ тоже сходится. 2) Если $\int_a^b g(x) dx$ расходится, то $\int_a^b f(x) dx$ тоже расходится.

Теорема 2.3

Второй признак сравнения несобственных интегралов ІІ рода от неотрицательных функций. Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

Пусть f(x), q(x) > 0 на [a, b), и

$$\lim_{x \to b-0} \frac{f(x)}{g(x)} = l, \quad l \neq 0, l \neq \infty$$

(например, $f(x) \sim g(x)$). Тогда

$$\int_a^b f(x)dx$$
 сходится \iff $\int_a^b g(x)dx$ сходится.

Примеры

Пусть p > 0.

$$\int_a^b \frac{dx}{(b-x)^p}, \quad \int_a^b \frac{dx}{(x-a)^p}, \quad \int_a^b \frac{dx}{x^p}$$

Сходятся при p < 1, расходятся при $p \ge 1$.

$$\int_{a}^{b} \frac{dx}{x^{p}} = \begin{cases} \frac{x^{1-p}}{1-p} \Big|_{a}^{b}, & p \neq 1\\ \ln(x) \Big|_{a}^{b}, & p = 1 \end{cases}$$

$$\exists$$
 существует $\lim_{a \to +0} \int_a^b \frac{dx}{x^p}$ только при $p < 1$

Примеры интегралов

a)
$$\int_0^1 \frac{dx}{\sqrt{1-x^4}}$$
 сходится.

б)
$$\int_0^2 \frac{dx}{x^3\sqrt{x+x^4}}$$
 расходится.

Абсолютная и условная сходимость несобственных интегралов II рода.

Определение 2.2

Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

Если сходится $\int_a^b |f(x)| dx$, то интеграл $\int_a^b f(x) dx$ называют абсолютно **сходящимся**.

Теорема 2.4

Если несобственный интеграл сходится абсолютно, то он сходится. (без доказательства)

Замечание

Обратное неверно. Если интеграл $\int_a^b |f(x)| dx$ расходится, а интеграл $\int_a^b f(x) dx$ сходится, то говорят, что интеграл $\int_a^b f(x) dx$ сходится условно.

Несобственные интегралы I рода: определение, главное значение. 1.20Признаки сходимости. Сходимость интеграла

Определение 3.1

1) Пусть f(x) определена на $[a, +\infty)$, $f(x) \in R([a, A]) \ \forall A \in (a, +\infty)$. Символ $\int_a^{+\infty} f(x)dx$ называется несобственным интегралом I рода. Если существует конечный предел

$$I = \lim_{A \to +\infty} \int_{a}^{A} f(x) dx,$$

то символу $\int_a^{+\infty} f(x)dx$ приписывают значение I, то есть,

$$\int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

2) Пусть f(x) определена на $(-\infty, b], f(x) \in R([B, b]) \forall B \in (-\infty, b).$

Символ $\int_{-\infty}^{b} f(x)dx$ называется несобственным интегралом I рода.

Если существует конечный предел

$$I = \lim_{B \to -\infty} \int_{B}^{b} f(x) dx,$$

то символу $\int_{-\infty}^{b} f(x) dx$ присваивают значение I, то есть,

$$\int_{-\infty}^{b} f(x)dx = \lim_{B \to -\infty} \int_{B}^{b} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

3) Пусть f(x) определена на $(-\infty, +\infty)$, f(x) интегрируема на любом отрезке. В этом случае символ $\int_{-\infty}^{+\infty} f(x) dx$ также называется несобственным интегралом I рода.

Есть два равносильных способа приписать символу $\int_{-\infty}^{+\infty} f(x)dx$ числовое значение:

a)
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

где c — произвольная точка из $(-\infty, +\infty)$. Интеграл $\int_{-\infty}^{+\infty} f(x)dx$ еходится, если сходятся $\int_{-\infty}^{c} f(x)dx$ и $\int_{c}^{+\infty} f(x)dx$.

6)
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to -\infty, B \to +\infty} \int_{A}^{B} f(x)dx.$$

Замечание

Если не существует конечный

$$\lim_{A \to +\infty} \int_{A}^{B} f(x) dx,$$

но существует конечный

$$\lim_{B \to +\infty} \int_{-B}^{B} f(x) dx,$$

то этот предел называют **главным значением интеграла**

$$\int_{-\infty}^{+\infty} f(x)dx$$

и обозначают **v.p.**

$$\int_{-\infty}^{+\infty} f(x)dx.$$
 (то есть, $v.p.$
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{B\to +\infty} \int_{-B}^{B} f(x)dx).$$

Примеры

1)
$$\int_{-\infty}^{+\infty} x dx$$

сходится только в смысле главного значения, и его главное значение равно 0.

$$2) \int_{a}^{A} \frac{dx}{x^{p}}$$

сходится при p>1, расходится при $p\leq 1.$

$$\int_{a}^{A} \frac{dx}{x^{p}} = \begin{cases} \frac{x^{1-p}}{1-p} \Big|_{a}^{A}, & p \neq 1\\ (\ln x) \Big|_{a}^{A}, & p = 1 \end{cases}$$

$$\exists \lim_{A \to \infty} \int_a^A \frac{dx}{x^p}$$
 только при $p > 1$.

только при p > 1.

Признак Дирихле. Сходимость интеграла при р>0. 1.21

Определение 3.2

Рассмотрим интеграл из определения 3.1.

$$\int_{a}^{+\infty} |f(x)| dx$$

Если сходится $\int_a^{+\infty} f(x)dx$, то интеграл называют **абсолютно сходящимся**.

Теорема 3.1

- Признак Дирихле сходимости несобственного интеграла I рода. Рассмотрим интеграл $\int_a^{+\infty} f(x)g(x)dx$. Пусть: 1) $f(x) \in C([a,+\infty))$ и имеет ограниченную первообразную на $[a,+\infty)$; 2) $g(x) \in C^1([a,+\infty))$, g(x) монотонно убывает на $[a,+\infty)$ и $\lim_{x\to +\infty} g(x) = 0$. Тогда интеграл $\int_a^{+\infty} f(x)g(x)dx$ сходится.

Пример

Интеграл

$$\int_{a}^{+\infty} \frac{\sin x}{x^{p}} dx$$

(при a>0, p>0) **сходится абсолютно** при p>1, **сходится условно** при $0< p\leq 1.$

1.22 Площадь криволинейной трапеции. Вычисление площади эллипса с помощью параметризации кривой.

Пример

Найдем площадь эллипса, то есть, фигуры, ограниченной кривой

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Введем параметризацию эллипса:

$$\begin{cases} x(t) = a \cos t \\ y(t) = b \sin t, \quad t \in [0, 2\pi] \end{cases}$$

Функции $y_1(x)=b\sqrt{1-\frac{x^2}{a^2}},\quad y_2(x)=-b\sqrt{1-\frac{x^2}{a^2}}$ - верхняя и нижняя части кривой. Тогда площадь эллипса

$$S = \int_{-a}^{a} (y_1(x) - y_2(x)) dx = \int_{-a}^{a} y_1(x) dx - \int_{-a}^{a} y_2(x) dx = [x = x(t), y = y(t)] =$$

$$= \int_{\pi}^{0} y(t) dx(t) - \int_{\pi}^{2\pi} y(t) dx(t) = -\int_{0}^{2\pi} y(t) dx(t) = ab \int_{0}^{2\pi} \sin^2 t dt$$

$$= \frac{ab}{2} \int_{0}^{2\pi} (1 - \cos 2t) dt = \pi ab.$$

Замечание

Мы на примере показали справедливость утверждения:

Если
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in [\alpha, \beta]$$

- уравнение гладкой замкнутой кривой без самопересечений, пробегаемой против часовой стрелки и ограничивающей слева от себя фигуру площадью S, то

$$S = -\int_{\alpha}^{\beta} y(t)dx(t) = -\int_{\alpha}^{\beta} y(t)x'(t)dt.$$

1.23 Площадь криволинейного сектора.

Теорема 4.2

Площадь криволинейного сектора, то есть, фигуры, ограниченной лучами $\varphi=\alpha,\, \varphi=\beta$ и непрерывной кривой $r=r(\varphi)$ ((r,φ) - полярные координаты), равна

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi.$$

1.24 Объем прямого кругового цилиндра.

Определение 4.2

Функция V(T), определенная на некотором классе Ω множеств в пространстве, называется объемом, если она обладает следующими свойствами:

- 1) Монотонность: $\forall T_1, T_2 \in \Omega : T_1 \subseteq T_2 \Rightarrow V(T_1) \leq V(T_2)$.
- 2) **Аддитивность**: Если T_1 и T_2 не имеют общих внутренних точек, то $V(T_1 \cup T_2) = V(T_1) + V(T_2)$.
- 3) **Инвариантность**: Если T_1 можно совместить с T_2 при помощи параллельного переноса и поворота, то $V(T_1) = V(T_2)$.
- 4) Нормировка: объем прямоугольного параллелепипеда равен произведению длин его трех смежных сторон.

Замечание

Множества из Ω называются кубируемыми или измеримыми по Жордану. Все множества, которые мы рассматриваем, измеримы (без доказательства).

Лемма 4.1

Объём V прямого кругового цилиндра (тела T, ограниченного поверхностью $x^2+y^2=R^2$ и плоскостями z=0,z=h) равен

$$V = \pi R^2 h.$$

1.25 Объем тела вращения. Объем тела с известными площадями поперечных сечений. Объем эллипсоида.

Теорема: Объем тела вращения

Пусть
$$f \in C[a,b], \quad f \ge 0$$
 на $[a,b].$

Объём V тела T, полученного путём вращения подграфика y=f(x) вокруг оси OX, равен:

$$V = \pi \int_a^b f^2(x) \, dx.$$

Объем тела с известными площадями поперечных сечений

Рассмотрим тело T, заключенное между плоскостями x = a, x = b.

Пусть Q(x) - фигура, полученная при сечении тела плоскостью $x = const, (x \in [a, b])$

Пусть Q(x) - фигура, полученная при сечении тела плоскостью $\forall x \in [a,b]$ и функция S(x) = S(Q(x)) непрерывна на [a,b].

Тогда
$$V = \int_a^b S(x) dx$$

Объем элипсоида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

В сечении элипсоида пл-тью $x=x_0$ имеем эллимсоида пл-тью

$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 - \frac{x_0^2}{a^2} \iff \frac{y^2}{\left[b\sqrt{1 - \frac{x_0^2}{a^2}}\right]^2} + \frac{z^2}{\left[c\sqrt{1 - \frac{x_0^2}{a^2}}\right]^2} = 1$$

$$\Rightarrow$$
 площадь сечения $S(x_0) = \pi b_1 c_1 = \pi bc \left(1 - \frac{x_0^2}{a^2}\right)$

$$\Rightarrow V = \int_{-a}^a S(x) \, dx = \int_{-a}^a \pi bc \left(1 - \frac{x_0^2}{a^2}\right) dx$$

$$= \pi bc \left[\left(a - \frac{a^3}{3a^2}\right) - \left(-a + \frac{a^3}{3a^2}\right)\right] = \pi bc \left(2a - \frac{2}{3}\right) = \frac{4}{3}\pi abc$$

Следствие

Обьем шара радиуса $R\left(a=b=c=R\right),$ есть $\frac{4}{3}\pi R^3$

1.26 Длина кривой, заданной параметрически. Следствия. Вычисление длины окружности.

Определение:

Рассмотрим кривую, заданную параметрически

$$\gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \quad (1), \quad t \in [\alpha, \beta], \quad \varphi(t), \psi(t) \in C([\alpha, \beta])$$

(кривая - совокупность точек плоскости с координатами $(\varphi(t), \psi(t))$ где $t \in [\alpha, \beta]$)

Если точка $A(\varphi(\alpha), \psi(\alpha))$ ссовпадает с точкой $A(\varphi(\beta), \psi(\beta))$, то кривая называется **замкнутой** Кривая называется **гладкой**, если φ и ψ имеют непрерывные производные, которые не обращаются одновременно в **ноль**

Определение:

Рассмотрим кривую (1). Пусть $\tau = \{t\}_{k=0}^n$ - некоторое разбиение $[\alpha, \beta]$. Составим:

$$l(r) = \sum_{k=1}^{n} \sqrt{\left[\varphi(t_k) - \varphi(t_{k-1})\right]^2 + \left[\psi(t_k) - \psi(t_{k-1})\right]^2}$$

- длина ломаной с вершинами в точках $(\varphi(t_k), \psi(t_k)), (k=0,1,\ldots,n)$ Длина кривой назовем:

$$l = \sup_{\tau \in T} l(\tau)$$

(здесь T - набор всевозможных разбиений $[\alpha,\beta])$

Если l конечно, то кривая называется спрямляемой.

Замечания. (без доказательства)

- 1) Всякая гладкая кривая допускает параметризацию.
- 2) Длина криво обладжает свойствой аддитивности.

Т.е, если l_1 - длина кривой γ между точками A и $B,\, l_2$ - длина кривой между точками B и , то $l=l_1+l_2$ - длина кривой γ между точками A и

2 Алгебра

2.1 Группы, кольца, поля.

Определение:

Пусть A - множество математических объектов одной природы, на котором задано отображение

$$f: (A \times A) \to A,$$

то есть, правило, сопоставляющее каждой паре элементов $(a,b), a \in A, b \in A$, некоторый элемент $c \in A$.

Тогда говорят, что на множестве A введена бинарная операция.

Обозначение:

$$a \circ b = c$$
.

Определение:

Если на множестве A введена бинарная операция, обладающая свойствами 2, 3, 4, то множество A называется **группой**.

Если также выполнено свойство 1, группа называется абелевой.

Примеры

- 1) Z абелева группа относительно операции сложения.
- $2) Q^{+} = \{q \in Q \mid q > 0\}$ абелева группа относительно операции умножения (здесь $0 = 1, -q = \frac{1}{q}$).

Возможные свойства бинарных операций

1. Коммутативность:

$$a \circ b = b \circ a$$

2. Ассоциативность:

$$(a \circ b) \circ c = a \circ (b \circ c)$$

3. **Существование нейтрального элемента** операции, называемого нулем (обозначаемого 0), то есть, элемента, не меняющего второй элемент, участвующий в операции. То есть,

$$a \circ 0 = 0 \circ a = a \quad \forall a \in A$$

4. Существование противоположного элемента для каждого элемента a множества A, обозначаемого -a, такого, что

$$a \circ (-a) = (-a) \circ a = 0$$

Определение 4

Пусть A — абелева группа относительно операции \circ . Пусть на A задана ещё одна бинарная операция *.

Если для всех $a,b,c\in A$ выполняются распределительные свойства:

5.

$$(a \circ b) * c = (a * c) \circ (b * c)$$

$$a * (b \circ c) = (a * b) \circ (a * c)$$

то множество A называется **кольцом**, а \circ — сложением, * — умножением.

Определение 5

Пусть A — абелева группа относительно операции \circ . Пусть на A задана ещё одна бинарная операция *, обладающая следующими свойствами:

6. Коммутативность:

$$a * b = b * a$$

7. Ассоциативность:

$$(a*b)*c = a*(b*c)$$

8. Существование нейтрального элемента операции, называемого единицей (обозначаемого I), то есть, элемента, не меняющего второй элемент, участвующий в операции:

$$a * I = I * a = a, \quad \forall a \in A$$

9. Существование обратного элемента для каждого $a \neq 0$ множества A, обозначаемого 1/a, такого, что:

$$a * (1/a) = (1/a) * a = I$$

Тогда множество A называется **скалярным полем** или **полем**.

Примеры

R, C — поля действительных и комплексных чисел.

2.2 Определение линейного пространства. Теорема о линейно зависимых и независимых системах векторов.

Определение 1.1 (в билете)

Рассмотрим поле R (или C) и множество L некоторых математических объектов. Будем говорить, что L является **линейным (векторным) пространством** над полем R (или C), если введены две операции:

- 1. Бинарная операция + (сложение), относительно которой L образует абелеву группу.
- 2. Операция умножения элементов множества L на скаляры (числа) из поля R (или C), удовлетворяющая следующим свойствам:
 - a) $1 \cdot x = x \quad \forall x \in L;$
 - б) $\alpha(\beta x) = (\alpha \beta)x \quad \forall x \in L, \quad \forall \alpha, \beta \in R$ (или C);
 - в) $(\alpha + \beta)x = \alpha x + \beta x \quad \forall x \in L, \quad \forall \alpha, \beta \in R \text{ (или } C);$
 - Γ) $\alpha(x+y) = \alpha x + \alpha y \quad \forall x, y \in L, \quad \forall \alpha \in R$ (или C).

Элементы линейного пространства L называются **векторами**.

Лемма 1.1

Рассмотрим операцию умножения элементов множества L на скаляры (числа) из поля R (или C). Она обладает следующими свойствами:

- 1. $0 \cdot x = 0 \quad \forall x \in L;$
- $2. \ \alpha \cdot 0 = 0 \quad \forall \alpha \in R \ ($ или C);
- $3. -x = -1 \cdot x$, где -x противоположный вектор к x;
- 4. $\alpha \cdot x = 0 \iff \begin{cases} \alpha = 0 \\ x = 0 \end{cases}$, где 0 нейтральный элемент операции сложения в L.

Пример

Пусть M — множество многочленов степени, меньшей либо равной n.

Это линейное пространство относительно операций сложения многочленов и умножения многочленов на число (здесь 0-многочлен — это многочлен, равный нулю для любого x, то есть, многочлен, у которого все коэффициенты равны нулю).

Определение 1.2

Линейной комбинацией векторов x_1, x_2, \ldots, x_k линейного пространства L называется вектор

$$y = c_1 x_1 + c_2 x_2 + \dots + c_k x_k,$$

где $c_1, c_2, \ldots, c_k \in R$ (или C).

Числа c_1, c_2, \ldots, c_k называются коэффициентами линейной комбинации.

Лемма 1.2

Линейная комбинация линейных комбинаций векторов x_1, x_2, \dots, x_k также является линейной комбинацией векторов x_1, x_2, \dots, x_k .

Определение 1.3 (в билете)

1) Система (то есть, совокупность) векторов x_1, x_2, \ldots, x_k линейного пространства L называется **линейно независимой**, если равенство

$$c_1 x_1 + c_2 x_2 + \dots + c_k x_k = 0$$

возможно только в случае, когда $c_1 = c_2 = \cdots = c_k = 0$. То есть, линейная комбинация векторов x_1, x_2, \ldots, x_k равна нулевому вектору **только при всех нулевых коэффициентах**.

2) Система векторов x_1, x_2, \dots, x_k называется **линейно зависимой**, если существуют числа c_1, c_2, \dots, c_k , не все из которых равны нулю, такие, что

$$c_1 x_1 + c_2 x_2 + \dots + c_k x_k = 0.$$

Иными словами, если хотя бы один коэффициент отличен от нуля и при этом выполняется равенство, то система является линейно зависимой.

Пример

Пусть M — линейное пространство многочленов степени, меньшей либо равной n. Система векторов

$$e = \{1, x, x^2, \dots, x^n\}$$

линейно независима, поскольку равенство

$$c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n = 0$$

верно **только** при $c_0=c_1=\cdots=c_n=0$. Здесь 0 — многочлен, равный нулю для любого x, то есть, многочлен, у которого все коэффициенты равны нулю.

2.3 Теорема о линейной зависимости системы из k векторов, каждый из которых является линейной комбинацией некоторой системы из m векторов (k>m).

Теорема 1.1

Пусть $e = \{x_1, x_2, \dots, x_k\}$ — система векторов линейного пространства L.

- 1. Если e содержит нулевой вектор, то e линейно зависима.
- 2. Пусть $e' \subseteq e$. Тогда:
- а) если e' линейно зависима, то e линейно зависима;
- b) если e линейно независима, то e' линейно независима.
- $3.\ e$ линейно зависима \iff один из векторов является линейной комбинацией остальных.
- 4. Пусть $\{x_1, x_2, \dots, x_{k-1}\}$ линейно независима, а $\{x_1, x_2, \dots, x_{k-1}, x_k\}$ линейно зависима. Тогда x_k является линейной комбинацией векторов x_1, x_2, \dots, x_{k-1} .

Теорема 1.2

Пусть $v=\{v_1,v_2,\ldots,v_k\}$ и $u=\{u_1,u_2,\ldots,u_m\}$ — две системы векторов линейного пространства L.

Если каждый вектор системы v является линейной комбинацией векторов системы u и k>m, то система векторов v **линейно зависима**.

2.4 Базис линейного пространства. Теорема об инвариантности числа элементов базиса. Теорема о количестве элементов линейно независимой системы (Т. 1.3, Т.1.4).

Определение 1.4

Система векторов $u = \{u_1, u_2, \dots, u_m\}$ называется **порождающей** для линейного пространства L, если любой вектор из L можно представить в виде линейной комбинации векторов системы u.

Определение 1.5

Упорядоченная система векторов $u = \{u_1, u_2, \dots, u_m\}$ называется **базисом** линейного пространства L, если она: 1) линейно независима; 2) порождающая для линейного пространства L.

Замечание

Базис линейного пространства определяется неоднозначно.

Пример

Пусть M — линейное пространство многочленов степени, меньшей либо равной n. Система векторов $e = \{1, x, x^2, \dots, x^n\}$ является базисом M.

Теорема 1.3

Количество элементов базиса является **инвариантом**, то есть неизменным, для линейного пространства L.

Определение 1.6

Пусть $u = \{u_1, u_2, \dots, u_m\}$ является базисом линейного пространства L. Количество m элементов базиса называется **размерностью** линейного пространства L (обозначение: dim L = m).

Говорят, что L — линейное пространство размерности m или m-мерное линейное пространство.

Если не существует базиса, состоящего из конечного числа элементов, пространство называется **бесконечномерным**.

Теорема 1.4

Пусть L — линейное пространство (в дальнейшем будем писать ЛП) и dim L = n.

Пусть система векторов $u=\{u_1,u_2,\dots,u_m\}$ линейно независима. Тогда выполняются следующие свойства:

- 1) $m \leq n$;
- 2) если m = n, то u является базисом L;
- 3) если m < n, то u можно дополнить до базиса векторами из L.

2.5 Координаты вектора. Теоремы о координатах вектора (Т.1.5 и Т. .1). ???????

Определение 1.7

Пусть L – линейное пространство, а $e = \{e_1, e_2, \dots, e_n\}$ – его базис.

Каждый вектор x из L можно представить в виде линейной комбинации векторов базиса:

$$x = c_1 e_1 + c_2 e_2 + \dots + c_n e_n$$

где c_1, c_2, \ldots, c_n – координаты вектора x в базисе e.

Запись координатного столбца:
$$X = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Этот столбец называется **координатным столбцом вектора** x в базисе e.

Теорема 1.5

Координаты вектора в базисе определяются однозначно.

Доказательство

Пусть
$$x=c_1e_1+c_2e_2+\cdots+c_ne_n$$
 и $x=a_1e_1+a_2e_2+\cdots+a_ne_n$. Тогда:

$$0 = (c_1 - a_1)e_1 + (c_2 - a_2)e_2 + \dots + (c_n - a_n)e_n.$$

Так как система векторов e **линейно независима**, то:

$$c_1 - a_1 = c_2 - a_2 = \dots = c_n - a_n = 0,$$

то есть:

$$c_1 = a_1, \quad c_2 = a_2, \quad \dots, \quad c_n = a_n.$$

2.6 Определение и свойства скалярного произведения. Угол между векторами.

Определение 1.8

- 1) Пусть L линейное пространство над полем R. Пусть задана функция, сопоставляющая паре векторов x, y вещественное число, обозначаемое (x, y), и удовлетворяющая следующим требованиям:
 - Положительная определенность:

$$(x,x) \ge 0, \quad (x,x) = 0 \Leftrightarrow x = 0.$$

- Симметрия:

$$(x,y) = (y,x).$$

- Линейность по первому аргументу:

$$(\lambda x, y) = \lambda(x, y).$$

- Аддитивность:

$$(x_1 + x_2, y) = (x_1, y) + (x_2, y).$$

Тогда говорят, что в L задано **скалярное произведение**.

2) **Нормой (или длиной) вектора** x называется число:

$$|x| = \sqrt{(x,x)}.$$

(Другое обозначение: ||x||.)

Замечания

1) Из свойств линейности по первому аргументу и симметрии скалярного произведения следует свойство линейности по второму аргументу:

$$(y, \alpha x + \beta z) = \alpha(y, x) + \beta(y, z).$$

(Требования 3) и 4) равносильны требованию

$$(\alpha x + \beta z, y) = \alpha(x, y) + \beta(z, y).$$

Следовательно,

$$(y, \alpha x + \beta z) = (\alpha x + \beta z, y) = \alpha(y, x) + \beta(y, z).$$

2) **Нулевой элемент**: $\langle 0, y \rangle = 0$ для всех $y \in L_1$. (Пусть $\langle 0, y \rangle = a$. Тогда:

$$\langle 0, y \rangle = \langle 0 + 0, y \rangle = \langle 0, y \rangle + \langle 0, y \rangle.$$

Следовательно, a = a + a, откуда a = 0.)

Лемма 1.4: Свойства длины (нормы)

- 1) |x| > 0, при этом $|x| = 0 \iff x = 0$.
- $2) |\alpha x| = |\alpha||x|.$
- $|x+y| \le |x| + |y|$ (неравенство треугольника).
- $4) |xy| \le |x||y|.$

Следствие

Пусть $x, y \neq 0$. Тогда выполняется неравенство:

$$-1 \le \frac{(x,y)}{|x| \cdot |y|} \le 1.$$

Определение 1.9

Пусть $x, y \neq 0$. Так как

$$-1 \le \frac{(x,y)}{|x| \cdot |y|} \le 1,$$

существует угол $\varphi \in [-\pi, \pi]$, такой, что

$$\cos \varphi = \frac{(x,y)}{|x| \cdot |y|}.$$

Этот угол называется **углом между векторами** x и y.

Два вектора называются ортогональными, если их скалярное произведение равно нулю. Следовательно, если $x,y\neq 0$, то угол φ между ними равен $\frac{\pi}{2}$. Базис $e=\{e_1,e_2,\ldots,e_n\}$ называется **ортогональным**, если:

$$(e_i, e_j) = 0$$
, при $i \neq j$.

Базис называется ортонормированным, если:

$$(e_i, e_j) = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

Пример 1

Пусть M — линейное пространство многочленов степени, меньшей либо равной n. Введем в Mскалярное произведение:

$$(f,g) = \int_0^1 fg \, dx.$$

Данное скалярное произведение удовлетворяет всем свойствам.

Рассмотрим многочлены:

$$f = x^2$$
, $g = x^4 - \frac{3}{7}$.

Проверка ортогональности

Вычислим скалярное произведение:

$$(f,g) = \int_0^1 x^2 \left(x^4 - \frac{3}{7}\right) dx.$$

Раскрывая скобки:

$$\int_0^1 \left(x^6 - \frac{3}{7} x^2 \right) \, dx.$$

Вычисляя интегралы:

$$\frac{x^7}{7}\Big|_0^1 - \frac{x^3}{7}\Big|_0^1 = 0.$$

Следовательно, векторы f и g **ортогональны**

Вычисление нормы (длины) вектора

Определим норму вектора f:

$$(f,f) = \int_0^1 x^4 dx = \frac{x^5}{5} \Big|_0^1 = \frac{1}{5}.$$

Следовательно, длина вектора f равна:

$$|f| = \frac{1}{\sqrt{5}}.$$

2.7 Пространства R^n и R_n

Пример. Линейные пространства R^n и R_n .

1) n-мерной строкой (столбцом) называется упорядоченный набор из n вещественных чисел, записанных в строку или столбец:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 \mathbb{R}^n — множество n-мерных столбцов:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in R^n, \quad x_i \in R, \quad i = 1, 2, \dots, n.$$

 R_{n} — множество n-мерных строк:

$$X = (x_1, x_2, \dots, x_n) \in R_n, \quad x_i \in R, \quad i = 1, 2, \dots, n.$$

На множествах R^n и R_n введены операции сложения и умножения на число:

- Пусть
$$X = (x_1, x_2, \dots, x_n)$$
 и $Y = (y_1, y_2, \dots, y_n)$.

1)
$$X = Y \Leftrightarrow x_i = y_i, \quad i = 1, 2, \dots, n.$$

2)
$$Z = X + Y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

Здесь:

$$0 = (0, 0, \dots, 0), \quad -X = (-x_1, -x_2, \dots, -x_n).$$

(Аналогично для столбцов.)

3) $\alpha X = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$

(Аналогично для столбцов.)

Выполнены все свойства операций, следовательно, R^n и R_n — линейные пространства.

2) Система векторов e, состоящая из векторов

$$e_1 = (1, 0, \dots, 0), \quad e_2 = (0, 1, \dots, 0), \quad \dots, \quad e_n = (0, 0, \dots, 1),$$

является **базисом** R^n , так как:

- **Порождающая система**: любой вектор $X = (x_1, x_2, \dots, x_n)$ можно представить как линейную комбинацию:

$$X = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$
.

- Линейная независимость: если $c_1e_1+c_2e_2+\cdots+c_ne_n=0$, то это возможно только при $c_1=c_2=\cdots=c_n=0$.

Этот базис называется **каноническим**, а размерность пространства \mathbb{R}^n равна n, то есть dim $\mathbb{R}^n = n$.

Аналогичные рассуждения справедливы для столбцов.

Замечание

Каждый столбец из R^n является **своим же координатным столбцом** в каноническом базисе.

3) Скалярное произведение в R^n

Определим скалярное произведение для векторов $X, Y \in \mathbb{R}^n$:

$$(X,Y) = x_1y_1 + x_2y_2 + \cdots + x_ny_n.$$

Оно удовлетворяет всем свойствам скалярного произведения.

Длина (норма) вектора

Норма (или длина) вектора X определяется как:

$$|X| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Ортонормированность канонического базиса

Канонический базис является **ортонормированным**, так как:

$$(e_i, e_j) = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

4) Геометрическая интерпретация пространств R_1, R_2, R_3

Пространство V_3 направленных отрезков (геометрических векторов) может служить геометрическим образом пространства R_3 .

Для этого векторам канонического базиса R_3 поставим в соответствие тройку попарно ортогональных единичных векторов:

$$i, j, k$$
.

Тогда строке A = (x, y, z) сопоставляется геометрический вектор:

$$a = xi + yj + zk$$
 из V_3 .

Скалярное произведение

Пусть $B = (x_1, y_1, z_1)$, тогда строке B сопоставляется геометрический вектор:

$$b = x_1 i + y_1 j + z_1 k$$
 из V_3 .

Скалярное произведение:

$$(a,b) = (A,B) = xx_1 + yy_1 + zz_1.$$

Косинус угла между векторами

$$\cos \varphi = \frac{(a,b)}{|a| \cdot |b|} = \frac{xx_1 + yy_1 + zz_1}{\sqrt{x^2 + y^2 + z^2} \cdot \sqrt{x_1^2 + y_1^2 + z_1^2}} = \frac{(A,B)}{|A| \cdot |B|}.$$

Длина (норма) вектора

$$|a| = \sqrt{(a,a)} = \sqrt{x^2 + y^2 + z^2} = |A|.$$

Вывод

Операции сложения, умножения на скаляр, а также скалярные произведения в R_3 и V_3 соответствуют друг другу.

2.8 Подпространство линейного пространства. Линейная оболочка системы векторов

Определение 1.10

Подмножество P векторов линейного пространства L называется **подпространством** L, если оно само является линейным пространством относительно операций, введенных в L.

Следствие

Подмножество P является подпространством L тогда и только тогда, когда оно **замкнуто** относительно операций сложения и умножения на число, введенных в L:

$$\forall x_1, x_2 \in P, \quad \forall a, b \in R \text{ (или } C) \quad ax_1 + bx_2 \in P.$$

Примеры

- 1) Множество столбцов из R^n , у которых совпадают первая и последняя компоненты, является подпространством R^n .
- 2) Множество столбцов из R^n , у которых первая компонента равна l, **не является** подпространством R^n .

Определение 1.11

Пусть L — линейное пространство, а $u = \{u_1, u_2, \dots, u_m\}$ — некоторая система векторов из L. Рассмотрим множество всех возможных линейных комбинаций этих векторов:

$$L(u_1, u_2, \dots, u_m) = \left\{ x \in L \mid x = \sum_{k=1}^m \alpha_k u_k \right\}.$$

(то есть, $L(u_1, u_2, \ldots, u_m)$ - множество всех возможных линейных комбинаций векторов u_1, u_2, \ldots, u_m). Это множество называется **линейной оболочкой** векторов u_1, u_2, \ldots, u_m .

Лемма 1.5

- 1) $L(u_1, u_2, ..., u_m)$ это подпространство L.
- 2) Максимальный по количеству векторов **линейно независимый** набор векторов из u_1, u_2, \dots, u_m является **базисом** $L(u_1, u_2, \dots, u_m)$.

Замечания

- 1) $L(u_1, u_2, \ldots, u_m)$ также называют пространством, натянутым на векторы u_1, u_2, \ldots, u_m .
- 2) Любое линейное пространство является линейной оболочкой своего базиса.

2.9 Ортогональные матрицы

Определение 2.1

Квадратная матрица $Q \in \mathbb{R}^{n \times n}$ называется **ортогональной**, если:

$$QQ^T = Q^T Q = E.$$

Замечание

Матрица Q ортогональна \iff существует обратная матрица Q^{-1} , равная транспонированной:

$$Q^{-1} = Q^T.$$

Лемма 2.1

- 1) Матрица Q является ортогональной \iff её **столбцы** образуют **ортонормированную систему** векторов в R^n .
- 2) Матрица Q является ортогональной \iff её **строки** образуют **ортонормированную систему** векторов в R^n .

Замечание

Пусть $X, Y \in \mathbb{R}^n$, тогда их скалярное произведение определяется как:

$$(X,Y) = x_1y_1 + x_2y_2 + \dots + x_ny_n = X^TY.$$

Здесь X и Y записаны в виде столбцов:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

Это определение скалярного произведения удовлетворяет всем его свойствам.

Лемма 2.2

- 1) Q ортогональная матрица $\iff Q^T$ ортогональная матрица.
- 2) Пусть Q_1 и Q_2 ортогональные матрицы одного размера. Тогда Q_1Q_2 ортогональная матрица.

Доказательство

1) а) Пусть Q — ортогональная матрица. Тогда:

$$Q^{T}(Q^{T})^{T} = Q^{T}Q = E, \quad Q(Q^{T})^{T} = QQ^{T} = E.$$

Следовательно, Q^{T} — ортогональная матрица.

б) Пусть Q^T — ортогональная матрица. Тогда:

$$QQ^T = (Q^T)^T Q^T = E, \quad Q^T Q = Q^T (Q^T)^T = E.$$

Следовательно, Q — ортогональная матрица.

2) Пусть Q_1 и Q_2 — ортогональные матрицы одного размера. Тогда:

$$(Q_1Q_2)(Q_1Q_2)^T = (Q_1Q_2)(Q_2^TQ_1^T) = Q_1Q_2Q_2^TQ_1^T = Q_1Q_1^T = E.$$

$$(Q_1Q_2)^T(Q_1Q_2) = (Q_2^TQ_1^T)(Q_1Q_2) = Q_2^TQ_1^TQ_1Q_2 = Q_2^TQ_2 = E.$$

Следовательно, Q_1Q_2 — ортогональная матрица.

Лемма 2.3

Пусть $X,Y\in R^n,\,Q^-n\times n$ — ортогональная матрица. Тогда: 1) $\langle QX,QY\rangle=\langle X,Y\rangle.$

- 2) |QX| = |X|

2.10	Метод Гаусса решения систем линейных уравнений в случае, когда системы несовместны или имеют единственное решение. ???????

2.11 11. Метод Гаусса решения систем линейных уравнений в случае, когда системы имеют бесконечно много решений. Структура общего решения систем. ?????????

2.12 Однородные системы линейных уравнений. ???????

2.13 Горизонтальный и вертикальный ранги матрицы. Ранг по минорам. Их совпадение для трапециевидной матрицы(с доказательством)

Теорема 4.1

Столбцы (строки) квадратной матрицы A **линейно независимы** $\iff |A| \neq 0$.

Доказательство

1) Пусть $|A| \neq 0$. Докажем от противного:

Если строки матрицы A являются линейно зависимой системой в R_n , то одна из строк является линейной комбинацией остальных. Пусть

$$A_{k*} = \alpha_1 A_{1*} + \dots + \alpha_{k-1} A_{(k-1)*} + \alpha_{k+1} A_{(k+1)*} + \dots + \alpha_n A_{n*}.$$

Тогда:

$$|A| = (k) \begin{vmatrix} A_{1*} \\ \vdots \\ A_{k*} \\ \vdots \\ A_{n*} \end{vmatrix} = \alpha_1 \begin{vmatrix} A_{1*} \\ \vdots \\ A_{k*} \\ \vdots \\ A_{n*} \end{vmatrix} + \dots + \alpha_n \begin{vmatrix} A_{1*} \\ \vdots \\ A_{k*} \\ \vdots \\ A_{n*} \end{vmatrix} = 0$$

так как в каждом слагаемом определитель имеет две одинаковые строки. Противоречие. Для столбцов доказательство аналогично.

2) Пусть столбца матрицы A линейно независимы. То есть, $\sum_{j=1}^n c_j A_{*j} = 0$ только при

$$c_1 = \dots = c_n = 0$$
. То есть, система
$$\begin{cases} 1a_{11} + c_2 a_{12} + \dots + c_n a_{1n} = 0, \\ \dots & \dots \\ 1a_{n1} + c_2 a_{n2} + \dots + c_n a_{nn} = 0, \end{cases}$$

имеет единственное решение. Следовательно, по теореме Крамера, $|A| \neq 0$. Доказательство для строк аналогично.

Определение 4.1

Пусть A — матрица размера $m \times n$.

1) Пусть $L_{\rm r}(A)$ — линейная оболочка строк матрицы A. Горизонтальным рангом матрицы A называется размерность этого линейного пространства:

$$r_{\Gamma}(A) = \dim L_{\Gamma}(A).$$

2) Пусть $L_{\text{в}}(A)$ — линейная оболочка столбцов матрицы A. Вертикальным рангом матрицы A называется размерность этого линейного пространства:

$$r_{\scriptscriptstyle \mathrm{B}}(A) = \dim L_{\scriptscriptstyle \mathrm{B}}(A).$$

Следствие

Совокупность строк матрицы является **порождающей системой** пространства $L_2(A)$. Максимальный по количеству векторов **линейно независимый** набор строк является **базисом** $L_2(A)$ (см. Лемму 1.5). Следовательно, **горизонтальный ранг матрицы** равен количеству линейно независимых строк.

Аналогично, вертикальный ранг матрицы равен количеству линейно независимых столбцов.

Определение 4.2

- 1) **Минором** матрицы A называется **определитель** квадратной матрицы, полученной из A путем вычеркивания некоторого количества строк и столбцов. Размер минора это количество его строк (столбцов).
- 2) Ранг матрицы по минорам $r_m(A)$ это наибольший размер отличного от нуля минора этой матрицы.

Теорема 4.2

Пусть U — трапециевидная матрица размера $m \times n$. Тогда ее **вертикальный**, **горизонтальный** ранги и **ранг по минорам** совпадают и равны количеству **ненулевых строк** U.

Доказательство

Рассмотрим матрицу U:

$$U = \begin{bmatrix} u_{11} & * & * & \dots & * & * \\ 0 & u_{22} & * & \dots & * & * \\ 0 & 0 & u_{33} & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & * & * \\ 0 & 0 & 0 & \dots & u_{r,r+1} & u_{r,n} \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

где элементы $u_{11}, u_{22}, \dots, u_{rr}$ не равны нулю, элементы $u_{r,r+1}, \dots, u_{rn}$, а также элементы, стоящие на месте *, могут быть любыми.

Построим квадратную **невырожденную** матрицу $U^{(1)}$, выделяя ненулевые строки:

$$U^{(1)} = \begin{bmatrix} u_{11} & * & * & * & * \\ 0 & u_{22} & * & * & * \\ 0 & 0 & u_{33} & * & * \\ 0 & 0 & 0 & \ddots & * \\ 0 & 0 & 0 & 0 & u_{rr} \end{bmatrix}$$

Так как $|U^{(1)}| \neq 0$, это означает, что количество линейно независимых строк U равно количеству её **ненулевых строк**.

Следовательно, вертикальный ранг, горизонтальный ранг и ранг по минорам матрицы U совпадают и равны количеству ненулевых строк U.

Доказательство

- 1) Любой минор матрицы U размера, большего, чем r, равен 0, так как содержит нулевую строку. Следовательно, $r_M(U)=r$.
- 2) Столбцы матрицы $U^{(1)}$ линейно независимы (см. теорему 4.1). Их количество равно r, поэтому они образуют базис пространства R^r . Следовательно, каждый столбец матрицы $U^{(2)}$ является линейной комбинацией столбцов матрицы $U^{(1)}$.

$$U^{(2)} = \begin{bmatrix} * & \dots & * \\ u_{r,r+1} & \dots & u_{rm} \end{bmatrix}$$

Дополнение матрицы

Дополняем столбцы матриц $U^{(1)}$ и $U^{(2)}$ нулями до столбцов матрицы U. Первые r столбцов матрицы U остаются линейно независимыми, так как:

$$c_1U_{r+1} + c_2U_{r+2} + \dots + c_rU_{r*} = 0 \Rightarrow c_1U_{r+1}^{(1)} + c_2U_{r+2}^{(1)} + \dots + c_rU_{r*}^{(1)} = 0 \Rightarrow c_1 = \dots = c_r = 0.$$

Столбцы матрицы U с номерами $r+1,\ldots,n$ продолжают быть линейными комбинациями первых r столбцов (так как добавленные элементы равны нулю).

Следовательно, $r_6(U) = r$.

Доказательство

3) Рассмотрим матрицу \overline{U} :

$$\overline{U} = \begin{pmatrix} U^{(1)} \\ U^{(2)} \end{pmatrix}.$$

Соединим $U^{(1)}$ и $U^{(2)}$ (не перемножим, а приставим друг к другу, получим новую матрицу, состоящую из первых r строк матрицы U).

Строки матрицы \overline{U} линейно независимы, так как:

$$c_1 \overline{U}_{1*} + c_2 \overline{U}_{2*} + \dots + c_r \overline{U}_{r*} = 0$$

$$\Rightarrow c_1 U_{1*}^{(1)} + c_2 U_{2*}^{(1)} + \dots + c_r U_{r*}^{(1)} = 0$$

$$\Rightarrow c_1 = c_2 = \dots = c_r = 0.$$

Поскольку строки $U^{(1)}$ **линейно независимы** (так как $|U^{(1)}| \neq 0$), остальные строки матрицы U являются **нулевыми**.

Следовательно, матрица \overline{U} имеет r линейно независимых строк, то есть:

$$r_{\Gamma}(U) = r$$
.

2.14 Неизменность ранга матрицы при умножении ее на невырожденную. Теорема о равенстве рангов для произвольной матрицы.

Теорема 4.3

Вертикальный и горизонтальный ранги матрицы A не меняются при умножении A на **невырож- денную квадратную матрицу**.

Теорема 4.4

Вертикальный ранг, горизонтальный ранг и ранг по минорам **произвольной матрицы** A размера $m \times n$ **совпадают**. Их общая величина называется **рангом матрицы** A.

2.15 Теорема Кронекера - Капелли.

Для того, чтобы СЛАУ AX = B (A – матрица системы размера $m \times n$, $B \in R^m$, $X \in R^n$) была совместна (т.е. имела решения), необходимо и достаточно, чтобы **ранг матрицы** A системы был равен **рангу расширенной матрицы** системы.

(Расширенной матрицей системы называется матрица (A|B), полученная приставлением столбца B к матрице A.)

При этом: - если rank A совпадает с количеством неизвестных, то **решение единственно**; - если rank A меньше количества неизвестных, то **решений бесконечно много**.

Доказательство

1) Пусть система совместна, т.е. существует столбец X:

$$AX = B \Leftrightarrow x_1A_1 + \dots + x_nA_n = B.$$

Следовательно, столбец B является линейной комбинацией столбцов матрицы A. Добавление столбца B не увеличивает количество линейно независимых столбцов, следовательно, не меняет ранг матрицы.

2) Пусть rank A = rank(A|B) = r. Матрица A имеет r линейно независимых столбцов, пусть это A_1, A_2, \ldots, A_r . Остальные столбцы, включая B, являются их линейными комбинациями. Следовательно, существуют числа c_1, \ldots, c_r :

$$B = c_1 A_1 + \dots + c_r A_r.$$

Тогда вектор X имеет вид:

$$X = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Следовательно, столбец X является решением системы, и система совместна.

- 3) Пусть $\operatorname{rank} A = \operatorname{rank}(A|B) = r$, то есть система совместна. Сведем систему к эквивалентной системе UX = F с трапециевидной матрицей U (см. метод Гаусса).
- Если $\operatorname{rank} A = \operatorname{rank} U = n$, то количество ненулевых строк U совпадает с количеством неизвестных. Следовательно, система имеет единственное решение.
- Если $\operatorname{rank} A = \operatorname{rank} U < n$, то количество ненулевых строк U меньше количества неизвестных, следовательно, система имеет бесконечно много решений.

2.16 Собственные числа и векторы матрицы. Совпадение характеристических многочленов у подобных матриц. Линейная независимость собственных векторов, соответствующих различным собственным числам.

Определение собственных чисел и векторов

Пусть A — квадратная матрица размера $n \times n$. Число λ называется **собственным числом** матрицы A, если существует ненулевой вектор x, удовлетворяющий уравнению:

$$Ax = \lambda x$$
.

Такой вектор x называется **собственным вектором**, соответствующим собственному числу λ .

Характеристический многочлен и его свойства

Для нахождения собственных чисел рассматривают характеристическое уравнение:

$$\det(A - \lambda E) = 0.$$

Выражение $\chi_A(\lambda) = \det(A - \lambda E)$ называется **характеристическим многочленом** матрицы A. Корни этого многочлена — собственные числа матрицы.

Собственные числа подобных матриц

Две матрицы A и B называются **подобными**, если существует невырожденная матрица S, такая что:

$$B = S^{-1}AS.$$

Подобные матрицы имеют одинаковые характеристические многочлены:

$$\det(B - \lambda E) = \det(S^{-1}AS - \lambda E).$$

С учетом свойства определителя:

$$\det(S^{-1}(A - \lambda E)S) = \det(A - \lambda E),$$

откуда следует, что характеристический многочлен матрицы B совпадает с характеристическим многочленом матрицы A, а значит, подобные матрицы имеют одинаковые собственные числа.

Линейная независимость собственных векторов, соответствующих различным собственным числам

Если $\lambda_1, \lambda_2, \ldots, \lambda_m$ — различные собственные числа матрицы A, а x_1, x_2, \ldots, x_m — соответствующие собственные векторы, то система векторов $\{x_1, x_2, \ldots, x_m\}$ линейно независима.

Доказательство:

Рассмотрим произвольную линейную комбинацию:

$$c_1 x_1 + c_2 x_2 + \dots + c_m x_m = 0.$$

Применим матрицу A к этому равенству:

$$A(c_1x_1 + c_2x_2 + \dots + c_mx_m) = c_1Ax_1 + c_2Ax_2 + \dots + c_mAx_m.$$

По определению собственных векторов:

$$c_1\lambda_1x_1 + c_2\lambda_2x_2 + \dots + c_m\lambda_mx_m = 0.$$

Вычтем из него исходное уравнение:

$$c_1(\lambda_1 - \lambda)x_1 + c_2(\lambda_2 - \lambda)x_2 + \dots + c_m(\lambda_m - \lambda)x_m = 0.$$

Так как собственные числа различны, коэффициенты $\lambda_i - \lambda$ ненулевые. Следовательно, из линейной независимости векторов следует, что $c_1 = c_2 = \cdots = c_m = 0$.

Таким образом, собственные векторы, соответствующие различным собственным числам, линейно независимы.

2.17 Связь между линейной зависимостью системы векторов и соответствующей системы координатных столбцов. Связь координатных столбцов одного вектора в разных базисах.

Теорема 5.1. Действия с векторами в координатной форме

Пусть L — линейное пространство, $e = \{e_1, e_2, \dots, e_n\}$ — базис L.

Пусть векторам x, y, z сопоставлены координатные столбцы:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad Z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$$

в базисе e.

Тогда равенство z = ax + by, где $a, b \in R$, равносильно равенству:

$$Z = aX + bY$$

то есть:

$$\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ \vdots \\ ax_n + by_n \end{pmatrix}.$$

Теорема 5.2

Векторы x_1, x_2, \ldots, x_k и их координатные столбцы X_1, X_2, \ldots, X_k в некотором базисе линейно зависимы или независимы одновременно.

Определение 5.1

Пусть L — линейное пространство, $e = \{e_1, e_2, \dots, e_n\}, e' = \{e'_1, e'_2, \dots, e'_n\}$ — базисы L.

Матрицей перехода от базиса e к базису e' называется матрица C, столбцами которой являются координатные столбцы векторов базиса e' в базисе e.

Замечание 10.1

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

1) X — координатный столбец вектора x в базисе $e \Leftrightarrow$

$$x = x_1 e_1 + \dots + x_n e_n \Leftrightarrow x = (e_1, e_2, \dots, e_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \Leftrightarrow x = eX.$$

(матричное умножение базисной строки $e = (e_1, e_2, \dots, e_n)$ на координатный столбец X). 2)Аналогично,

$$e_j' = (e_1, e_2, \dots, e_n) \cdot (c_{1j}, c_{2j}, \dots, c_{nj})$$
 (столбец) $= e \cdot C_{*j}$, где $C_{*j} - j$ -й столбец матрицы C .

3)Следовательно,

$$e' = (e'_1, e'_2, \dots, e'_n) = (e \cdot C_{*1}, e \cdot C_{*2}, \dots, e \cdot C_{*n}) = e \cdot C.$$

(матричное умножение базисной строки $e = (e_1, e_2, \dots, e_n)$ на матрицу C).

Теорема 5.3

Связь координат одного вектора в разных базисах

Пусть L — линейное пространство, $e = \{e_1, e_2, \dots, e_n\}, e' = \{e'_1, e'_2, \dots, e'_n\}$ — базисы L. Пусть вектору x сопоставлены координатные столбцы:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad X' = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}$$

в базисах e и e'.

Пусть C — матрица перехода от базиса e к базису e'.

Тогда:

$$X = CX'$$
.

Замечание

Матрица C невырожденная, так как её столбцы линейно независимы по теореме 5.2. Следовательно,

$$X' = C^{-1}X.$$

2.18 Линейное отображение линейных пространств. Матрица отображения в некоторых базисах. Ее использование для вычисления образа вектора. Связь матриц отображения в разных базисах.

Определение 6.1

Отображение A линейного пространства V в линейное пространство W $(A:V\to W)$ называется линейным, если:

$$A(ax + by) = aAx + bAy, \quad \forall x, y \in V, \forall a, b \in R.$$

Если V = W, линейное отображение A называется **линейным оператором**.

Примеры

1) Отображение $A: \mathbb{R}^n \to \mathbb{R}^m$ состоит в том, что каждый столбец $X \in \mathbb{R}^n$ умножается слева на фиксированную матрицу B размера $m \times n$. Отображение A линейно, так как:

$$A(aX + bY) = B(aX + bY) = aBX + bBY = aAX + bAY$$

$$\forall X, Y \in \mathbb{R}^n, \quad \forall a, b \in \mathbb{R}.$$

2) Пусть M — линейное пространство многочленов степени $\leq n$.

$$Af = a_k f^{(k)} + a_{k-1} f^{(k-1)} + \dots + a_0 f$$

— линейный оператор, сопоставляющий каждому многочлену f многочлен $a_k f^{(k)} + a_{k-1} f^{(k-1)} + \cdots + a_0 f$. Проверьте линейность самостоятельно.

Определение 6.2

Пусть $A:V \to W$ — линейное отображение.

1) Пусть Ax = y. Вектор $y \in W$ называется **образом** вектора $x \in V$.

Вектор $x \in V$ называется **прообразом** вектора $y \in W$.

2) Множество

$$A(V) = \{y \in W \mid \exists x \in V : Ax = y\}$$

(то есть, «множество значений» отображения A) называется **образом** отображения A и обозначается $\operatorname{Im} A$.

3) Множество

$$A^{-1}(\{0\}) = \{x \in V \mid Ax = 0\}$$

(то есть, множество прообразов вектора 0) называется **ядром** отображения A и обозначается $\operatorname{Ker} A$.

2.19 Ядро и образ отображения.

Теорема 6.1

Образ $\operatorname{Im} A$ является подпространством линейного пространства W. Ядро $\operatorname{Ker} A$ является подпространством линейного пространства V.

Доказательство

1) Пусть $y_1, y_2 \in \text{Im } A$, то есть существуют такие $x_1, x_2 \in V$, что $Ax_1 = y_1$, $Ax_2 = y_2$. Рассмотрим вектор $y = ay_1 + by_2$. Он является образом вектора $x = ax_1 + bx_2$, так как:

$$A(ax_1 + bx_2) = aAx_1 + bAx_2 = ay_1 + by_2 = y.$$

Следовательно, множество ${\rm Im}\, A$ замкнуто относительно операций сложения и умножения на скаляр, что означает, что ${\rm Im}\, A$ является подпространством W.

2) Пусть $x_1, x_2 \in \text{Ker } A$, то есть $Ax_1 = 0$, $Ax_2 = 0$.

Рассмотрим вектор $x = ax_1 + bx_2$, тогда:

$$A(ax_1 + bx_2) = aAx_1 + bAx_2 = 0.$$

Следовательно, множество $\ker A$ замкнуто относительно операций сложения и умножения на скаляр, что означает, что $\ker A$ является подпространством V.

Определение 6.3

Пусть $A:V\to W$ — линейное отображение, а $e=\{e_1,e_2,\ldots,e_n\}$ и $f=\{f_1,f_2,\ldots,f_m\}$ — базисы пространств V и W.

Матрицей линейного отображения A в базисах e, f называется матрица A размера $m \times n$, столбцами которой являются координатные столбцы векторов Ae_1, Ae_2, \ldots, Ae_n , то есть образов векторов e_1, e_2, \ldots, e_n в базисе f.

Замечание 11.1

Для каждого j выполняется:

$$Ae_i = fA_{*i}$$

(по замечанию 5.1).

Следовательно,

$$(Ae_1, Ae_2, \dots, Ae_n) = (fA_{*1}, fA_{*2}, \dots, fA_{*n}) \Rightarrow Ae = fA.$$

Здесь $Ae = A(e_1, e_2, \dots, e_n) = (Ae_1, Ae_2, \dots, Ae_n)$, а fA — матричное произведение базисной строки $f = (f_1, f_2, \dots, f_m)$ на матрицу A.

Замечание 11.2

Каждую матрицу A размера $n \times n$ можно рассматривать как матрицу некоторого линейного оператора в некотором базисе.

Теорема 11.2

Пусть $A:V \to W$ — линейное отображение, $e=\{e_1,e_2,\dots,e_n\}$ и $f=\{f_1,f_2,\dots,f_m\}$ — базисы V и W.

Матрица A размера $m \times n$ является матрицей линейного отображения A в базисах e, f.

Тогда $\forall x \in V, \forall y \in W$ справедливо:

$$Ax = y \iff AX = Y$$

(здесь X — координатный столбец вектора x в базисе e, Y — координатный столбец вектора y в базисе f).

Теорема 6.3

Пусть $A:V\to W$ — линейное отображение, e,e' — базисы пространства $V,\ f,f'$ — базисы пространства W.

Матрица A является матрицей линейного отображения A в базисах e, f.

Матрица A' является матрицей линейного отображения A в базисах e', f'.

Матрица C является матрицей перехода от базиса e к базису e'.

Матрица S является матрицей перехода от базиса f к базису f'.

Тогда матрицы A и A', представляющие одно линейное отображение в разных базисах, связаны соотношением:

$$A' = S^{-1}AC.$$

Лемма 6.1

- 1) Пусть $A_1X=A_2X$ для любого столбца X (где A_1,A_2 матрицы одного размера, а X столбец соответствующего размера). Тогда $A_1=A_2$.
- 2) Пусть $XA_1 = XA_2$ для любой строки X (где A_1, A_2 матрицы одного размера, а X строка соответствующего размера). Тогда $A_1 = A_2$.

Следствие

Если A — оператор, то

$$A' = C^{-1}AC.$$

2.20 20. Собственные числа и собственные векторы оператора. Матрица оператора в базисе из собственных векторов. (с доказательсвом)

Определение 6.4

 $A: L \to L$ — линейный оператор (L — линейное пространство).

Число $\lambda \in C$ и ненулевой вектор $x \in L$ называются **собственным числом** и соответствующим этому числу **собственным вектором** оператора A, если выполняется равенство:

$$Ax = \lambda x$$
.

Следствия

1) Пусть e — базис L, а A — матрица оператора A в базисе e. Тогда:

$$Ax = \lambda x \iff AX = \lambda X$$

по теореме 6.2, где x — вектор из L, X — его координатный столбец в базисе e, а λX — координатный столбец вектора λx .

Следовательно, число $\lambda \in C$ и ненулевой вектор $x \in L$ являются собственным числом и собственным вектором оператора A тогда и только тогда, когда λ и координатный столбец X вектора x в базисе e являются собственным числом и собственным вектором матрицы A.

2) Так как матрицы A, A' оператора A в базисах e, e' связаны соотношением:

$$A' = C^{-1}AC,$$

где C — матрица перехода от e к e', то их **собственные числа совпадают**. Это корни характеристического многочлена:

$$\det(A - \lambda E)$$
.

Многочлен $\phi(t) = \det(A - tE)$ называется **характеристическим многочленом** оператора A.

3) λ — собственное число оператора $A\iff\lambda$ — корень характеристического многочлена $\phi(t)$.

Лемма 6.2

Матрица A оператора A в базисе $e = \{e_1, e_2, \dots, e_n\}$ имеет диагональный вид тогда и только тогда, когда базис e состоит из собственных векторов оператора. При этом на диагонали матрицы A стоят соответствующие этим векторам собственные числа оператора A.

Доказательство

$$A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \iff$$

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ \lambda_j \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \lambda_j e_j \iff$$

(по замечанию 6.1)

$$Ae_i = eAe_i = (e_1, e_2, \dots, e_n) \iff$$

 λ_j - собственное число $A, \quad e_j$ - собственный вектор A.

2.21 Линейная независимость собственных векторов, соответствующих различным собственным числам оператора. Собственные подпространства, их размерность. Следствия.

Определение 6.4

 $A: L \to L$ — линейный оператор (L – линейное пространство).

Число $\lambda \in C$ и ненулевой вектор $x \in L$ называются **собственным числом** и соответствующим этому числу **собственным вектором** оператора A, если выполняется равенство:

$$Ax = \lambda x$$
.

Следствия

1) Пусть e — базис L, а A — матрица оператора A в базисе e. Тогда:

$$Ax = \lambda x \iff AX = \lambda X$$

по теореме 6.2, где x — вектор из L, X — его координатный столбец в базисе e, а λX — координатный столбец вектора λx .

Следовательно, число $\lambda \in C$ и ненулевой вектор $x \in L$ являются собственным числом и собственным вектором оператора A тогда и только тогда, когда λ и координатный столбец X вектора x в базисе e являются собственным числом и собственным вектором матрицы A.

2) Так как матрицы A, A' оператора A в базисах e, e' связаны соотношением:

$$A' = C^{-1}AC,$$

где C — матрица перехода от e к e', то их **собственные числа совпадают**. Это корни характеристического многочлена:

$$\det(A - \lambda E)$$
.

Многочлен $\phi(t) = \det(A - tE)$ называется **характеристическим многочленом** оператора A.

3) λ — собственное число оператора $A\iff\lambda$ — корень характеристического многочлена $\phi(t)$.

Лемма 6.3

Собственные векторы матрицы A, соответствующие различным собственным числам, линейно независимы.

Теорема 6.4

- 1) Собственные векторы оператора, отвечающие различным собственным числам, линейно независимы
- 2) Собственные векторы оператора, отвечающие одному собственному числу λ , объединенные с нулевым вектором, образуют линейное подпространство пространства L. Это подпространство называется **собственным подпространством**, отвечающим (соответствующим) собственному числу λ .
- 3) Размерность собственного подпространства, отвечающего собственному числу λ , не превосходит кратности собственного числа λ как корня характеристического многочлена.

Важные следствия

1) Матрица A оператора A в некотором базисе $e = \{e_1, e_2, \dots, e_n\}$ имеет диагональный вид тогда и только тогда, когда e состоит из собственных векторов оператора.

Это возможно, когда все собственные числа оператора вещественны, и размерность каждого собственного подпространства максимально возможная, то есть совпадает с кратностью собственного

числа как корня характеристического многочлена (так как мы должны набрать n линейно независимых собственных векторов, которые получим, объединив базисы собственных подпространств).

2) Пусть A — квадратная матрица размера $n \times n$.

Пусть существует невырожденная матрица C размера $n \times n$:

$$C^{-1}AC = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

Тогда столбцы C — это собственные векторы матрицы A, соответствующие собственным числам $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Действительно, рассмотрим матрицу A как матрицу некоторого линейного оператора в некотором базисе e (см. замечание 6.2). Тогда матрицу C можно рассматривать как матрицу перехода к новому базису. В новом базисе матрица оператора диагональная, следовательно, новый базис состоит из собственных векторов оператора. Следовательно, столбцы матрицы C, которые являются координатными столбцами векторов нового базиса в исходном базисе e, это собственные векторы матрицы A (см. следствие 1 и определение 6.4).

3) Квадратная матрица A диагонализируема (т. е. подобна диагональной, т. е. существует невырожденная матрица C, такая что:

$$C^{-1}AC = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

тогда и только тогда, когда все собственные числа матрицы вещественны, и размерность каждого собственного подпространства максимально возможная, то есть совпадает с кратностью собственного числа как корня характеристического многочлена.

(Собственные векторы матрицы, отвечающие одному собственному числу λ , объединённые с нулевым вектором, образуют линейное подпространство пространства R^n , доказательство аналогично теореме 6.4, пункт 2).

2.22 Евклидовы и унитарные пространства. Процесс ортогонализации Грама-Шмидта. Линейная независимость ортонормированной системы векторов

Определение 7.1

Линейное пространство над полем R с заданным на нем скалярным произведением называется евклидовым, над полем C — унитарным.

Замечание

В унитарном пространстве L свойство симметрии скалярного произведения изменяется на:

$$(x,y) = \overline{(y,x)}.$$

Остальные свойства остаются прежними:

- 1) $(x,x) \ge 0$, причём $(x,x) = 0 \iff x = 0$.
- 2) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z) \quad \forall x, y, z \in L, \forall \alpha, \beta \in C.$

Пример 7.1

Рассмотрим C^n – линейное пространство столбцов с n комплексными компонентами. Скалярное произведение вводится следующим образом:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Пусть X, Y - векторы из C^n .

$$(X,Y) = x_1\overline{y_1} + x_2\overline{y_2} + \ldots + x_n\overline{y_n} \quad (\Leftrightarrow \quad (X,Y) = X^T\overline{Y}, \qquad X^T = (x_1,\ldots,x_n),$$

$$\overline{Y} = \begin{pmatrix} \overline{y_1} \\ \overline{y_2} \\ \vdots \\ \overline{y_n} \end{pmatrix}).$$

Тогда $(X,X) = x_1\overline{x_1} + x_2\overline{x_2} + \ldots + x_n\overline{x_n} = |x_1|^2 + |x_2|^2 + \ldots + |x_n|^2 \ge 0..$

Теорема 7.1

Пусть E — евклидово пространство, $e = \{e_1, e_2, \dots, e_n\}$ — ортонормированный базис E,

(T.e.
$$(e_i, e_j) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$
).

Пусть векторы x,y имеют координатные столбцы X,Y в базисе e. Тогда:

- 1) $(x,y)_e = (X,Y)_{R^n}$, то есть **скалярное произведение векторов совпадает со скалярным произведением их координатных столбцов в ортонормированном базисе**.
- 2) Векторы x, y ортогональны \iff ортогональны их координатные столбцы в ортонормированном базисе,

T.e.
$$(x,y)_e = 0 \iff (X,Y)_{R^n} = 0.$$

Теорема 7.2. Процесс ортогонализации Грама – Шмидта

Пусть f_1, f_2, \ldots, f_k — линейно независимая система векторов из евклидова пространства E. Тогда можно построить ортонормированную систему векторов e_1, e_2, \ldots, e_k , принадлежащих линейной оболочке векторов f_1, f_2, \ldots, f_k ($L(f_1, f_2, \ldots, f_k)$).

Теорема 7.3

- 1) Любая ортонормированная система векторов линейно независима.
- 2) В евклидовом пространстве E всегда можно построить ортонормированный базис.

Доказательство

1) Пусть $e = \{e_1, e_2, \dots, e_k\}$ — ортонормированная система векторов. Рассмотрим равенство:

$$c_1e_1 + c_2e_2 + \dots + c_ke_k = 0.$$

Умножим обе части равенства скалярно на e_i :

$$(c_1e_1 + c_2e_2 + \cdots + c_ke_k, e_i) = (0, e_i).$$

Так как система ортонормирована, получим:

$$c_i = 0, \quad i = 1, 2, \dots, k.$$

Следовательно, равенство возможно только при $c_1=c_2=\cdots=c_k=0$, что означает линейную независимость системы.

2) Пусть dim $E = n, f = \{f_1, f_2, \dots, f_n\}$ — базис E.

Применяем процесс ортогонализации Грама–Шмидта к системе f. В результате получаем ортонормированную систему векторов $e = \{e_1, e_2, \dots, e_n\}$, принадлежащих E.

Так как система e линейно независима и содержит n векторов, она образует базис пространства E.

2.23 Теорема о собственных числах и собственных векторах вещественной симметричной матрицы.

Теорема 7.4

- 1) Все собственные числа вещественной симметричной матрицы вещественны.
- 2) Собственные векторы вещественной симметричной матрицы, соответствующие разным собственным числам, ортогональны.

Доказательство

- 1) Пусть λ собственное число матрицы A, столбец $X \in C^n$ собственный вектор матрицы, соответствующий собственному числу λ .
 - а) Рассмотрим число $\alpha = \overline{X}^T A X$.

$$\overline{\alpha} = \alpha^T = (\overline{X}^T A X)^T = \dot{X}^T \dot{A} \dot{X} = \overline{X}^T A X = \alpha.$$

Следовательно, α — вещественное число.

(В первом переходе используем: $(DBC)^T = \dot{C}^T \dot{B}^T \dot{D}^T$, а также то, что $A^T = A$. Во втором переходе используем то, что $\dot{X}^T \dot{A} \dot{X}$ — число, слагаемые которого являются произведениями элементов столбцов \dot{X}, X и матрицы A. Пользуемся свойствами комплексного сопряжения: $a+b=\overline{a}+\overline{b}, \, ab=\overline{a}\cdot \overline{b}$. В результате каждый элемент столбцов \dot{X}, X меняется на комплексно сопряженный, элементы матрицы A не меняются, так как они вещественны.)

b) $\alpha = \overline{X}^T A X = \overline{X}^T \lambda X = \lambda |X|^2$, где число $|X|^2 = \overline{X}^T X = (\overline{X}^T X)^T = X^T \overline{X}$ — квадрат длины столбца X. Следовательно,

$$\lambda = \frac{\alpha}{|X|^2}$$

- вещественное число.
- 2) Пусть λ_1, λ_2 собственные числа матрицы A ($\lambda_1 \neq \lambda_2$), столбцы $X_1, X_2 \in \mathbb{R}^n$ собственные векторы матрицы, соответствующие собственным числам λ_1, λ_2 .
 - а) Покажем, что $(AX_1, X_2) = (X_1, AX_2)$.

$$(AX_1, X_2) = (AX_1)^T X_2 = X_1^T A X_2 = X_1^T (AX_2) = (X_1, AX_2).$$

б) Следовательно,

$$0 = (AX_1, X_2) - (X_1, AX_2) = (\lambda_1 X_1, X_2) - (X_1, \lambda_2 X_2) = (\lambda_1 - \lambda_2)(X_1, X_2).$$

Так как $\lambda_1 \neq \lambda_2$, то $(X_1, X_2) = 0$, что доказывает ортогональность собственных векторов, соответствующих различным собственным числам.

Замечание

Так как λ — вещественное собственное число вещественной симметричной матрицы A, рассматриваем только вещественные собственные векторы X матрицы, соответствующие собственному числу λ , которые являются решениями СЛАУ:

$$(A - \lambda E)X = 0.$$

2.24Теорема об ортогональном подобии вещественной симметричной матрицы некоторой диагональной матрице. Следствия.

Теорема 7.5

Любая вещественная симметричная матрица A размера $n \times n$ ортогонально подобна диагональной, на диагонали которой стоят собственные числа матрицы A.

(То есть, существует ортогональная матрица $Q: Q^{-1}AQ = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, где $\lambda_1, \ldots, \lambda_n$ — собственные числа A).

Доказательство

1) Существует собственное число $\lambda \in R$ и соответствующий ему собственный вектор $X \in R^n$ матрицы A (т.е. $AX = \lambda X$).

Возьмем столбец $P_1 = X/|X|$ (P_1 также собственный вектор матрицы A). Дополним P_1 векторами P'_2, P'_3, \ldots, P'_n до базиса пространства R^n . Проведем процесс ортогонализации Грама–Шмидта. Получим ортонормированный базис P_1, P_2, \ldots, P_n пространства $R^n.$

Рассмотрим матрицу $P = (P_1, P_2, \dots, P_n)$. P – ортогональная матрица, так как ее столбцы – ортонормированная система векторов. Следовательно, $P^{-1} = P^{T}$.

Рассмотрим матрицу $P^{-1}AP$:

$$P^{-1}AP = P^{T}AP = \begin{pmatrix} P_1^T \\ P_2^T \\ \vdots \\ P_n^T \end{pmatrix} \begin{pmatrix} \lambda P_1 & AP_2 & \dots & AP_n \end{pmatrix} = \begin{pmatrix} \lambda P_1^T P_1 & * & \dots & * \\ \lambda P_2^T P_1 & & & \\ \vdots & & B & \\ \lambda P_n^T P_1 & & & \end{pmatrix}.$$

Так как:

а) $\lambda P_j^T P_1 = \lambda(P_j,P_1) = 0$ для $j=2,3,\dots,n,$ b) матрица $P^{-1}AP$ симметричная $((P^TAP)^T = P^TA(P^T)^T = P^TAP),$

то $P^{-1}AP$ имеет вид:

$$P^{-1}AP = \begin{pmatrix} \lambda & 0 & 0 & \dots & 0 \\ 0 & & & & \\ 0 & & B & & \\ 0 & & & & \end{pmatrix},$$

где B – симметричная матрица.

- 2) Проведем доказательство теоремы методом математической индукции по размерности матрицы A.
 - а) **База индукции.** Пусть n=1, тогда A диагональная матрица $A=a_{11}$.
- b) Индукционный переход. Пусть утверждение теоремы справедливо для n-1, то есть если симметричная матрица B имеет размер $(n-1) \times (n-1)$, то существует ортогональная матрица Qразмера $(n-1) \times (n-1)$, такая что:

$$\tilde{Q}^T B \tilde{Q} = \operatorname{diag}(\lambda_2, \dots, \lambda_n).$$

Рассмотрим симметричную матрицу A размера $n \times n$. Применим преобразование, описанное в пункте 1, и получим матрицу:

$$A' = P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ 0 & & B & & \\ 0 & & & & \end{pmatrix}.$$

Так как B имеет размер $(n-1) \times (n-1)$, по предположению индукции существует ортогональная матрица Q размера $(n-1) \times (n-1)$, такая что:

$$\tilde{Q}^T B \tilde{Q} = \operatorname{diag}(\lambda_2, \dots, \lambda_n).$$

Рассмотрим матрицу

$$T = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & \tilde{Q} & & \\ 0 & & & & \end{pmatrix}.$$

Покажем, что T — ортогональная.

$$TT^{T} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & \tilde{Q} & & & \\ 0 & & & & \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & \tilde{Q}^{T} & & & \\ 0 & & & & \end{pmatrix} = E.$$

$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & \tilde{Q}\tilde{Q}^{T} & & & \\ 0 & & & & \end{pmatrix} = E.$$

Аналогично, $T^TT = E$. (См. перемножение блочных матриц, лемма 2.2). Рассмотрим

$$T^{-1}A'T = T^{T}A'T =$$

$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & \tilde{Q}^{T} & & \\ 0 & & & & \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & B & & \\ 0 & & & & \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & \tilde{Q} & & \\ 0 & & & & \\ \end{pmatrix}.$$

$$= \begin{pmatrix} \lambda_{1} & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & \tilde{Q}^{T}B & & \\ 0 & & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & \tilde{Q} & & \\ 0 & & & & \\ \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{1} & 0 & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & \tilde{Q}^{T}B\tilde{Q} & & \\ 0 & & & & \\ \end{pmatrix} = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n}).$$

Следовательно,

$$T^{-1}A'T = T^{-1}(P^{-1}AP)T = (PT)^{-1}A(PT) = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Возьмем в качестве матрицы Q произведение PT. Матрица Q=PT ортогональна, так как является произведением ортогональных матриц.

Получаем:

$$Q^{-1}AQ = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Так как собственные числа диагональной матрицы — это её элементы, стоящие на главной диагонали (выпишите характеристический многочлен диагональной матрицы и найдите его корни), и собственные числа подобных матриц совпадают (так как совпадают их характеристические многочлены), то

$$\lambda_1, \ldots, \lambda_n$$

Важные следствия

- 1) Столбцы матрицы Q являются собственными векторами матрицы A (см. следствие 2 к теореме 6.4).
- 2) Для любой симметричной матрицы A размера $n \times n$ существуют n линейно независимых собственных векторов. Следовательно, размерность каждого собственного подпространства максимально возможная, то есть совпадает с кратностью собственного числа как корня характеристического многочлена.

3) Построение матрицы Q:

* Находим собственные числа (корни характеристического многочлена). * Находим собственные векторы матрицы A (это линейное пространство решений однородной системы линейных алгебраических уравнений $(A - \lambda E)X = 0$). * Выполняем ортогонализацию Грама – Шмидта базиса каждого собственного подпространства. * Собираем базисные векторы всех собственных подпространств и составляем из них матрицу Q.

На диагонали матрицы $Q^{-1}AQ$ будут стоять собственные числа в том порядке, в котором мы расставили соответствующие собственные векторы в матрице Q.

4) Если матрица A оператора A в некотором базисе e симметричная, то существует базис f, в котором матрица оператора имеет диагональный вид (возьмём f = eQ, то есть, возьмём матрицу Q как матрицу перехода к базису f). Базис f состоит из собственных векторов оператора (см. лемму 6.2).

При этом, если e — ортонормированный базис, то f также будет ортонормированным базисом, так как по теореме 7.1:

$$(f_i, f_j) = (Q_{*i}, Q_{*j}) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

(Напоминаю, Q_{*i} — координатный столбец вектора f_i в базисе e).

2.25 Определение билинейной и квадратичной форм. Матрица билинейной формы в некотором базисе, ее использование для вычисления билинейной формы. Связь матриц одной билинейной формы в разных базисах.

Определение 8.1

Пусть L — линейное пространство.

1) Функция $B: L \times L \to R$, сопоставляющая каждой паре элементов x, y из L некоторое число, называется **билинейной формой**, если $\forall x, y, z \in L, \forall \alpha, \beta \in R$ выполняются соотношения:

$$B(\alpha x + \beta y, z) = \alpha B(x, z) + \beta B(y, z),$$

$$B(x, \alpha y + \beta z) = \alpha B(x, y) + \beta B(x, z).$$

(Линейность по первому и второму аргументам.)

2) Билинейная форма называется **симметричной**, если $\forall x, y \in L$ выполняется:

$$B(x, y) = B(y, x).$$

3) **Квадратичная форма** — это числовая функция B(x,x), которая получается из симметричной билинейной формы B(x,y) при y=x.

Определение 8.2

Пусть L — линейное пространство, B(x,y) — билинейная форма, $e = \{e_1, e_2, \dots, e_n\}$ — базис L. **Матрицей билинейной формы** в базисе e называется матрица B, элементы которой:

$$b_{ij} = B(e_i, e_j), \quad i, j = 1, 2, \dots, n.$$

Матрицей квадратичной формы B(x,x) в базисе e называется матрица соответствующей билинейной формы B(x,y).

Теорема 13.1

Пусть L — линейное пространство, B(x,y) — билинейная форма, $e = \{e_1, e_2, \dots, e_n\}$ — базис L, B — матрица билинейной формы в базисе e.

Пусть векторы x, y имеют координатные столбцы X, Y в базисе e. Тогда:

$$B(x,y) = X^T B Y.$$

Следствия

1) Если билинейная форма B(x,y) симметрична, то симметрична ее матрица в любом базисе (т.к. $b_{ij}=B(e_i,e_j)=B(e_j,e_i)=b_{ji}\;(i,j=1,2,...,n)$).

Если матрица B билинейной формы B(x,y) в некотором базисе e симметрична, то B(x,y) – симметричная билинейная форма.

$$(B(x,y)$$
 – число, следовательно, $B(x,y) = (B(x,y))^T = (X^T B Y)^T = Y^T B X = B(y,x)).$

2) Для квадратичной формы справедливо

$$B(x,x) = X^T B X$$
, где $B = B^T$.

Пример

Пусть L — линейное пространство размерности 2, $B=\begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix}$ - матрица квадратичной формы в некотором базисе e,

 $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ - координатный столбец вектора x в базисе e. Тогда

$$B(x,x) = X^T B X = (x_1,x_2) \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (x_1 + 3x_2, 3x_1 + 4x_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 + 3x_1x_2 + 3x_1x_2 + 4x_2^2 = x_1^2 + 6x_1x_2 + 4x_2 + 6x_1x_2 + 4x_2 + 6x_1x_2 +$$

Теорема 13.2

Пусть L – линейное пространство, B(x,y) — билинейная форма, e,e' — базисы L. Тогда матрицы B и B' билинейной формы в базисах e и e' связаны соотношением:

$$B' = C^T B C,$$

где C — матрица перехода от базиса e к базису e'.

2.26 Теорема о существовании ортогонального преобразования базиса, приводящего квадратичную форму к каноническому виду. Практический метод приведения квадратичной формы к каноническому виду с помощью ортогонального преобразования базиса (метод собственных векторов).

Определение 8.3

Квадратичная форма B(x,x) в базисе e имеет **канонический вид**, если её матрица B в базисе e диагональная, то есть

$$B = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

Тогда квадратичная форма принимает вид:

$$B(x, x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \ldots + \lambda_n x_n^2$$
.

где X — координатный столбец вектора x в базисе e:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Числа $\lambda_1, \lambda_2, \dots, \lambda_n$ называются **коэффициентами канонической формы**.

Теорема 8.3

Любую вещественную квадратичную форму можно привести к каноническому виду.

Более того, существует ортогональное преобразование базиса e в базис e', в котором квадратичная форма принимает канонический вид. В этом случае коэффициенты $\lambda_1, \lambda_2, \ldots, \lambda_n$ определяются однозначно (с точностью до порядка расположения).

Доказательство

Пусть B — матрица квадратичной формы B(x,x) в базисе e. B симметричная, следовательно, существует ортогональная матрица Q, такая что:

$$Q^T B Q = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

где $\lambda_1, \dots, \lambda_n$ – собственные числа B (по теореме 7.5).

Возьмем новый базис e' = eQ (то есть матрица Q – матрица перехода к новому базису e'). Матрица B' квадратичной формы B(x,x) в базисе e' будет диагональной:

$$B' = Q^T B Q = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Таким образом, квадратичная форма B(x,x) принимает канонический вид в базисе e'.

Следствие

Практический метод приведения квадратичной формы к каноническому виду через ортогональное преобразование базиса (метод собственных векторов):

1) Найти матрицу B квадратичной формы. 2) Определить её собственные числа $\lambda_1, \ldots, \lambda_n$. 3) Найти собственные векторы матрицы B, которые составляют ортогональную матрицу Q. 4) Выполнить ортогональное преобразование базиса: перейти к новому базису e' = eQ, в котором квадратичная форма принимает канонический вид.

2.27 Теорема о необходимом и достаточном условии положительной (отрицательной) определенности квадратичной формы.

Определение 8.4

Пусть L – линейное пространство, B(x,x) – квадратичная форма, определенная в L.

1) Квадратичная форма B(x,x) называется положительно (отрицательно) определенной, если B(x,x) > 0 (B(x,x) < 0) для любого ненулевого вектора x из линейного пространства L.

Такие квадратичные формы называются знакоопределенными.

- 2) Квадратичная форма B(x,x) называется **знакопеременной**, если $\exists x,y \in L$ такие, что B(x,x) > 0 и B(y,y) < 0.
- 3) Квадратичная форма B(x,x) называется положительно (отрицательно) полуопределенной, если $B(x,x) \ge 0$ ($B(x,x) \le 0$) $\forall x \in L$,

и существует ненулевой вектор $x^* \in L$: $B(x^*, x^*) = 0$.

Такие квадратичные формы называются полуопределенными (квазиопределенными).

Следствие

Скалярное произведение – это симметричная билинейная форма, причем соответствующая ей квадратичная форма **положительно определена**.

Теорема 8.4

Пусть L — линейное пространство, B(x,x) — квадратичная форма, определенная в L.

- 1) Квадратичная форма B(x,x) является **положительно (отрицательно) определенной** тогда и только тогда, когда все коэффициенты её канонического вида положительны (отрицательны).
- 2) Квадратичная форма B(x, x) является **положительно (отрицательно) полуопределенной** тогда и только тогда, когда все коэффициенты её канонического вида неотрицательны (неположительны), и существует хотя бы один коэффициент, равный нулю.
- 3) Квадратичная форма B(x,x) является **знакопеременной** тогда и только тогда, когда среди коэффициентов её канонического вида есть хотя бы один положительный и хотя бы один отрицательный.

Замечание

Справедливо утверждение (закон инерции квадратичных форм):

Каким бы способом мы ни привели квадратичную форму к каноническому виду, количество положительных, отрицательных и нулевых коэффициентов останется неизменным.

2.28 Теорема о существовании треугольного преобразования базиса, приводящего квадратичную форму к каноническому виду. Критерий Сильвестра.

Определения

Определение 8.5: Пусть дана матрица A:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Числа

$$\Delta_1 = a_{11}, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \dots, \quad \Delta_k = \begin{vmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix}, \quad \dots, \quad \Delta_n = |A|$$

называются **главными** (угловыми) минорами матрицы A.

Определение 8.6

Преобразование базиса e (то есть переход от базиса e к базису f) называется **треугольным**, если матрица этого преобразования (то есть матрица перехода от e к f) **верхняя унитреугольная**.

Теорема 8.5

Пусть L – линейное пространство, B(x,x) – квадратичная форма, определенная в $L,e=\{e_1,e_2,\ldots,e_n\}$ – базис L,B - матрица квадратичной формы в базисе e.

Пусть все главные миноры матрицы B, кроме, возможно, последнего ($\Delta_n = |B|$), отличны от нуля.

Тогда существует единственное треугольное преобразование базиса e, приводящее квадратичную форму к каноническому виду.

При этом коэффициенты этого канонического вида связаны с главными минорами матрицы B следующим образом:

$$\lambda_1 = \Delta_1, \quad \lambda_2 = \frac{\Delta_2}{\Delta_1}, \quad \dots, \quad \lambda_n = \frac{\Delta_n}{\Delta_{n-1}}.$$

(Без доказательства.)

Теорема 8.6. Критерий Сильвестра

Пусть L – линейное пространство, B(x,x) – квадратичная форма, определенная в $L,e=\{e_1,e_2,\ldots,e_n\}$ – базис L,B - матрица квадратичной формы в базисе e.

Пусть все главные миноры матрицы B, кроме, возможно, последнего ($\Delta_n = |B|$), отличны от нуля. Тогда:

- 1) Для того, чтобы B(x,x) была положительно определенной квадратичной формой, необходимо и достаточно, чтобы главные миноры матрицы B были положительными.
- 2) Для того, чтобы B(x,x) была отрицательно определенной квадратичной формой, необходимо и достаточно, чтобы знаки главных миноров матрицы B чередовались, и первый минор Δ_1 был отрицательным.

- 3 Дифференциальное исчисление функций нескольких переменных.
- 3.1 Последовательность точек в R_p . Теорема о покоординатной сходимости.

Определение 1.1. Скалярное произведение и метрика в пространстве ${\cal R}_p$

Пусть $X, Y \in R_p$. Будем называть их точками (по аналогии с точками из R, R_2, R_3). В R_p введено скалярное произведение:

$$(X,Y) = \sum_{i=1}^{p} x_i y_i$$

если $X=(x_1,x_2,...,x_p),\,Y=(y_1,y_2,...,y_p),$ то $(X,Y)=\sum_{i=1}^p x_iy_i.$

С помощью скалярного произведения введено расстояние между точками (метрика):

$$r(X,Y) = |Y - X| = \sqrt{(y_1 - x_1)^2 + \dots + (y_p - x_p)^2}$$

Оно удовлетворяет аксиомам расстояния (метрики):

- 1) $r(X,Y) \ge 0$; $r(X,Y) = 0 \Leftrightarrow X = Y$.
- 2) r(X, Y) = r(Y, X).
- 3) $r(X, Z) \le r(X, Y) + r(Y, Z)$

(следует из неравенства треугольника для скалярного произведения:

$$r(X,Z) = |X - Z| = |(X - Y) + (Y - Z)| \le |X - Y| + |Y - Z| = r(X,Y) + r(Y,Z)$$
).

Определение 1.2. Открытый шар в пространстве R_p

Пусть точка $A \in R_p$ и $\delta > 0$.

Множество

$$D^{\delta}(A) = \{ X \in R_p | r(A, X) < \delta \}$$

называется **открытым шаром** с центром в точке A и радиусом δ .

Определение 1.3. Окрестность точки

- 1) Множество $D^{\delta}(A)$ называется **окрестностью точки** A радиуса δ и обозначается $U^{\delta}(A)$.
- 2) Множество $D^{\delta}(A)\setminus\{A\}$ называется **проколотой окрестностью точки** A радиуса δ и обозначается $\dot{U}^{\delta}(A)$.

Определение 1.4. Ограниченное множество

Множество $\Omega \subset \mathbb{R}^p$ называется **ограниченным**, если существует число M>0:

$$\Omega \subset D_M(0) \Leftrightarrow |\chi| < M, \quad \forall \chi \in \Omega.$$

Определение 1.5. Предел последовательности

Пусть $\{X^{(n)}\}_{n=1}^{\infty}$ – последовательность точек из R^p .

Точка A называется **пределом последовательности**, если

$$\forall \varepsilon > 0 \quad \exists N \in N : \quad \forall n > N \quad |X^{(n)} - A| < \varepsilon.$$

Обозначения:

$$\lim_{n \to \infty} X^{(n)} = A \quad \text{или} \quad X^{(n)} \xrightarrow{n \to \infty} A.$$

Следствие

$$X^{(n)} \xrightarrow{n \to \infty} A \iff r(X^{(n)}, A) \xrightarrow{n \to \infty} 0 \text{ (to ects, } |X^{(n)} - A| \xrightarrow{n \to \infty} 0).$$

В частности,

$$X^{(n)} \xrightarrow{n \to \infty} 0 \iff |X^{(n)}| \xrightarrow{n \to \infty} 0.$$

Теорема 1.1 о покоординатной сходимости

Пусть $\{X^{(n)}\}_{n=1}^{\infty}$ – последовательность точек из $R_p, X^{(n)}=(x_1^{(n)},\dots,x_p^{(n)}),$

$$A = (a_1, \dots, a_p).$$

$$X^{(n)} \xrightarrow{n \to \infty} A \iff x_i^{(n)} \xrightarrow{n \to \infty} a_i \quad (i = 1, 2, \dots, p).$$

Доказательство теоремы 1.1

1) Пусть $X^{(n)} \to A$ при $n \to \infty$.

Зафиксируем произвольное $\varepsilon > 0$. $\exists N \in N$, такое что $\forall n \geq N$ выполняется:

$$|X^{(n)} - A| < \varepsilon.$$

Тогда:

$$|x_i^{(n)} - a_i| \le \sqrt{(x_1^{(n)} - a_1)^2 + \dots + (x_i^{(n)} - a_i)^2 + \dots + (x_p^{(n)} - a_p)^2} = |X^{(n)} - A| < \varepsilon.$$

Следовательно, $\forall \varepsilon > 0 \; \exists N \in N$, такое что $\forall n \geq N$:

$$|x_i^{(n)} - a_i| < \varepsilon.$$

То есть, $x_i^{(n)} \to a_i$ при $n \to \infty$, i = 1, 2, ..., p. 2) Пусть $x_i^{(n)} \to a_i$ при $n \to \infty$, i = 1, 2, ..., p.

Зафиксируем произвольное $\varepsilon > 0$. $\exists N_i \in N$, такое что $\forall n \geq N_i$:

$$|x_i^{(n)} - a_i| < \frac{\varepsilon}{\sqrt{p}}, \quad i = 1, 2, \dots, p.$$

Пусть $N = \max\{N_1, \ldots, N_p\}$. Тогда $\forall n \geq N$:

$$|X^{(n)} - A| = \sqrt{(x_1^{(n)} - a_1)^2 + \ldots + (x_i^{(n)} - a_i)^2 + \ldots + (x_p^{(n)} - a_p)^2} < \sqrt{\frac{\varepsilon^2}{p} + \ldots + \frac{\varepsilon^2}{p}} = \varepsilon.$$

Следствие

Справедливы теоремы о пределе суммы (разности) последовательностей.

3.2 Предел функции p переменных. Непрерывность функции p переменных. Теорема Вейерштрасса.

Определение 2.1. Функция

Пусть $\Omega \subset R_p$. Отображение $f:\Omega \to R$ называется **функцией** p вещественных переменных.

Определение 2.2. Предельная точка (точка сгущения)

Пусть $\Omega \subset R_p$. Точка A называется **предельной точкой** (точкой сгущения) множества Ω , если в любой проколотой окрестности точки A содержится хотя бы одна точка из Ω .

Замечания

Точка A является предельной точкой множества Ω тогда и только тогда, когда существует последовательность $\{X^{(n)}\}_{n=1}^{\infty} \subset \Omega \setminus \{A\}$, такая что:

$$X^{(n)} \to A$$
 при $n \to \infty$.

(Доказательство аналогично случаю R.)

Определение 2.3. Предел функции

Пусть $\Omega \subset R_p$, $f:\Omega \to R$. Пусть точка A является предельной точкой множества Ω .

Число b называется **пределом функции** f в точке A (при $X \to A$), если выполнено одно из двух определений:

1) По Коши:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : \quad (0 < |X - A| < \delta, \quad X \in \Omega) \Rightarrow |f(X) - b| < \varepsilon.$$

Определение предела по Гейне

2) По Гейне:

$$\forall \{X^{(n)}\}_{n=1}^{\infty} \subset \Omega \setminus \{A\} : \quad (X^{(n)} \to A \text{ при } n \to \infty) \Rightarrow (f(X^{(n)}) \to b \text{ при } n \to \infty).$$

Равносильность определений доказывается аналогично случаю R.

Обозначения:

$$\lim_{X \to A} f(X) = b \quad \text{или} \quad f(X) \to_{X \to A} b.$$

Замечание:

Справедливы все теоремы о связи пределов с арифметическими операциями, доказанные для p=1.

Определение 2.4. Непрерывность функции в точке

Пусть $\Omega \subset \mathbb{R}^p$, $f: \Omega \to \mathbb{R}$. Пусть точка $A \in \Omega$.

Функция f называется непрерывной в точке A, если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : \quad (X \in U_{\delta}(A) \cap \Omega \Rightarrow |f(X) - f(A)| < \varepsilon).$$

Равносильные требования:

- а) если точка A предельная точка множества Ω , то $\lim_{X\to A} f(X) = f(A)$,
- b) если точка A изолированная точка множества Ω , то f(X) непрерывна в точке A.

Замечание к определению.

Если точка A – предельная точка множества Ω , то

$$\lim_{X\to A} f(X) = f(A) \iff \lim_{|\Delta X|\to 0} \Delta f = 0 \quad \text{(где} \quad |\Delta X| = |X-A|, \quad \Delta f = f(X) - f(A)).$$

Замечания

Справедливы теоремы об арифметических операциях над непрерывными функциями:

(Сумма, разность, произведение функций, непрерывных в точке A, непрерывны в точке A. Отношение функций, непрерывных в точке A, непрерывно в точке A, если знаменатель не обращается в 0 в точке A).

Примеры

- 1) Функции $x \pm y$, xy непрерывны в каждой точке R^2 ; x/y непрерывна в каждой точке R^2 , кроме точек вида (a,0).
 - 2) Многочлен $P(x_1, x_2, ..., x_p)$ от p неизвестных непрерывен в каждой точке R^p .
 - 3) Функция

$$R(x_1, x_2, \dots, x_p) = \frac{P_1(x_1, x_2, \dots, x_p)}{P_2(x_1, x_2, \dots, x_p)}$$

непрерывна в каждой точке R^p , в которой $P_2(x_1, x_2, \dots, x_p) \neq 0$.

Определение 2.5

Функция непрерывна на множестве, если она непрерывна в каждой точке множества.

Теорема 2.1. Вейерштрасса

Функция, непрерывная на замкнутом ограниченном множестве, ограничена на этом множестве, а также достигает на нем своих наибольшего и наименьшего значений.

(без доказательства)

Замечание

Замкнутое ограниченное множество компакт.

Лемма 2.1

Пусть $\Omega \subset R^p; \ f: \Omega \to R$. Пусть точка

$$A = (a_1, a_2, ..., a_p) \in \Omega.$$

Рассмотрим функцию одной переменной

$$f_i(x_i) = f(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_p), \quad i = 1, ..., p.$$

(Будем называть её *i*-ой координатной функцией.)

Если f непрерывна в точке A, то f_i непрерывна в точке a_i .

3.3 Дифференцируемость функции p переменных. Дифференцируемость суммы и произведения дифференцируемых функций. (с доказательством)

Определение 3.1

Пусть $\Omega \subset \mathbb{R}^p$, $f: \Omega \to \mathbb{R}$. Пусть A — внутренняя точка Ω .

Функция f называется **дифференцируемой** в точке A, если её приращение в этой точке можно представить в виде:

$$f(A + \Delta X) - f(A) = (M, \Delta X) + o(\Delta X),$$

где: - $\Delta X \in \mathbb{R}^p$ — приращение точки A, такое что $A + \Delta X \in \Omega$; - строка $M \in \mathbb{R}^p$ не зависит от ΔX ; - $(M, \Delta X)$ — скалярное произведение строк; - $o(\Delta X) \to 0$ при $|\Delta X| \to 0$.

Строку M называют **производной функции** f в точке A и обозначают f'(A) (** $f'(A) \in R^{p**}$). Скалярное произведение $(M, \Delta X)$ называют **дифференциалом** f в точке A и обозначают df(A) (** $df(A) \in R^{**}$).

Следствие

Из дифференцируемости f в точке A следует её непрерывность в точке A, так как $\Delta f \to 0$ при $\Delta X \to 0$.

Действительно,

$$|(M, \Delta X)| \le |M||\Delta X| \to 0$$
, при $\Delta X \to 0$.

Также,

$$o(\Delta X) = |o(\Delta X)||\Delta X|,$$
 и $|o(\Delta X)| \to 0,$ при $\Delta X \to 0.$

Теорема 3.1

Пусть f, g — дифференцируемые функции в точке $A \in \mathbb{R}^p$. Тогда в точке A справедливы следующие свойства:

- 1) Cymectbyet (f+q)'=f'+q'.
- 2) Существует $(\lambda f)' = \lambda f'$, где λ константа.
- 3) Существует (fg)' = g'f + fg', где $f = f(A), g = g(A) \in R, f' = f'(A), g' = g'(A) \in R^p$.

Доказательство теоремы 3.1

Рассмотрим $(fg)(A + \Delta X) - (fg)(A)$:

$$(fg)(A+\Delta X)-(fg)(A)=f(A+\Delta X)g(A+\Delta X)-f(A)g(A).$$

Разложим $f(A + \Delta X)$ и $g(A + \Delta X)$:

$$= [f(A) + f'(A, \Delta X) + r_1(\Delta X)][g(A) + g'(A, \Delta X) + r_2(\Delta X)] - f(A)g(A),$$

где $r_1(\Delta X) = o(\Delta X), r_2(\Delta X) = o(\Delta X).$

Раскрываем скобки:

$$= f(A)g'(A, \Delta X) + g(A)f'(A, \Delta X) + r(\Delta X),$$

где $r(\Delta X)$ содержит все остальные слагаемые.

Если докажем, что $r(\Delta X) = o(\Delta X)$, то

$$(fg)'(A) = f'(A)g(A) + g'(A)f(A).$$

Доказательство свойства $r(\Delta X) = o(\Delta X)$

Рассмотрим выражение:

$$r(\Delta X) = f(A)r_2(\Delta X) + g(A)r_1(\Delta X) + f'(A, \Delta X)g'(A, \Delta X) +$$

$$+f'(A, \Delta X)r_2(\Delta X) + g'(A, \Delta X)r_1(\Delta X) + r_1(\Delta X)r_2(\Delta X).$$

Слагаемое (1):

$$f(A) \frac{r_2(\Delta X)}{|\Delta X|} \to 0$$
, так как $r_2(\Delta X) = o(\Delta X)$

Слагаемое (2) аналогично.

Слагаемое (3):

$$\frac{|f'(A, \Delta X)g'(A, \Delta X)|}{|\Delta X|} \le |f'(A)||g'(A)||\Delta X| \to 0$$

Слагаемое (4):

$$\frac{|f'(A, \Delta X)r_2(\Delta X)|}{|\Delta X|} \le |f'(A)||\Delta X| \frac{r_2(\Delta X)}{|\Delta X|} \to 0$$

Слагаемое (5) аналогично.

Слагаемое (6):

$$\frac{r_1(\Delta X)r_2(\Delta X)}{|\Delta X|} = \frac{r_1(\Delta X)}{|\Delta X|} \cdot \frac{r_2(\Delta X)}{|\Delta X|} \cdot |\Delta X| \to 0$$

Следствие

Аналогичные формулы справедливы для дифференциалов, для доказательства умножим обе части равенств 1), 2), 3) скалярно на ΔX .

В пункте 3) получим:

$$((fq)', \Delta X) = q(f', \Delta X) + f(q', \Delta X) \iff d(fq) = q df + f dq.$$

3.4 Частные производные функции p переменных. Связь между дифференцируемостью функции и существованием частных производных. Пример функции, которая имеет частные производные в точке A, но не дифференцируема в этой точке.

Определение 3.2

Пусть $\Omega \subset R^p$; $f: \Omega \to R$. Пусть точка $A = (a_1, a_2, ..., a_p)$ - внутренняя точка Ω . Рассмотрим функцию одной переменной

$$f_i(x_i) = f(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_p), \quad i = 1, ..., p.$$

(то есть, i-ю координатную функцию).

Если эта функция имеет производную в точке a_i , то эта производная называется **частной производной функции** f по переменной x_i в точке A и обозначается $\frac{\partial f}{\partial x_i}(A)$ или $f'_{x_i}(A)$.

То есть,

$$\frac{\partial f}{\partial x_i}(A) = \lim_{\Delta x_i \to 0} \frac{f(a_1, ..., a_{i-1}, a_i + \Delta x_i, a_{i+1}, ..., a_p) - f(a_1, ..., a_{i-1}, a_i, a_{i+1}, ..., a_p)}{\Delta x_i}.$$

Теорема 3.2

Если f дифференцируема в точке A, то существуют все частные производные функции f в точке A, и

$$f'(A) = (f'_{x_1}(A), f'_{x_2}(A), ..., f'_{x_p}(A)).$$

Доказательство

Имеем:

$$f(A + \Delta X) - f(A) = f'(A, \Delta X) + o(\Delta X).$$

Введем обозначения элементов строки f'(A): пусть $f'(A) = (c_1, ..., c_p)$.

Рассмотрим приращение $\Delta X = (0, ..., 0, \Delta x_i, 0, ..., 0)$ (для i = 1, ..., p).

Тогда:

$$f(a_1, ..., a_i, ..., a_i + \Delta x_i, a_{i+1}, ..., a_p) - f(a_1, ..., a_i, a_{i-1}, a_i, a_{i+1}, ..., a_p) = c_i \Delta x_i + o(\Delta x_i).$$

Следовательно,

$$\frac{f(a_1, ..., a_i, ..., a_i + \Delta x_i, a_{i+1}, ..., a_p) - f(a_1, ..., a_i, a_{i-1}, a_i, a_{i+1}, ..., a_p)}{\Delta x_i} = c_i + \frac{o(\Delta x_i)}{\Delta x_i}.$$

При $\Delta x_i \to 0$ имеем $f'_{x_i}(A) = c_i$.

Следствие. Выражение дифференциала через частные производные

Так как приращение $\Delta X = (dx_1, ..., dx_p)$, то

$$df(A) = (f'(A), \Delta X) = f'_{x_1}(A)dx_1 + f'_{x_2}(A)dx_2 + \dots + f'_{x_p}(A)dx_p.$$

Замечание

Обратное неверно: из существования всех частных производных функции f в точке A **не следует** её дифференцируемость в точке A.

Пример

Рассмотрим функцию $f(x,y) = \sqrt[3]{xy}$ в точке A(0,0).

1) Найдем частные производные функции f в точке A:

$$f'_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = \frac{0-0}{\Delta x} = 0.$$

$$f_u'(0,0) = 0.$$

2) Проверим условие дифференцируемости функции в точке А:

$$f(0+\Delta x,0+\Delta y)-f(0,0)=0\cdot\Delta x+0\cdot\Delta y+o(\sqrt{\Delta x^2+\Delta y^2})\text{ при }(\Delta x,\Delta y)\to(0,0).$$

То есть:

$$\sqrt[3]{\Delta x \Delta y} = o(\sqrt{\Delta x^2 + \Delta y^2})$$
при $(\Delta x, \Delta y) \to (0,0),$

$$\frac{\sqrt[3]{\Delta x \Delta y}}{\sqrt{\Delta x^2 + \Delta y^2}} \to_{(\Delta x, \Delta y) \to (0,0)} 0.$$

Пусть $\Delta x = \Delta y, \, \Delta x \to 0$. Тогда:

$$\frac{\Delta x^{2/3}}{\sqrt{2}|\Delta x|} = \frac{1}{\sqrt{2}|\Delta x|^{1/3}}$$
 не стремится к 0.

Следовательно, f не дифференцируема в точке A.

3.5 Дифференцируемость функции в случае существования и непрерывности частных производных. (с доказательством)

Теорема 3.3

Пусть $\Omega \subset \mathbb{R}^p$; $f: \Omega \to \mathbb{R}$, A – внутренняя точка Ω .

Пусть в некоторой окрестности U(A) точки A существуют все частные производные функции f, и они непрерывны в точке A. Тогда f дифференцируема в точке A.

Доказательство для p=2

Пусть $A(x_0, y_0)$; приращение $\Delta X = (\Delta x, \Delta y)$ таково, что точка

$$(x_0 + \Delta x, y_0 + \Delta y) \in U(A).$$

Рассмотрим $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$. Используем теорему Лагранжа; $\Theta_1, \Theta_2 \in (0, 1)$.

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) =$$

$$= [f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)] + [f(x_0, y_0 + \Delta y) - f(x_0, y_0)] =$$

$$= f_1'(x_0 + \Theta_1 \Delta x, y_0 + \Delta y) \Delta x + f_2'(x_0, y_0 + \Theta_2 \Delta y) \Delta y =$$

$$= f_1'(x_0, y_0)\Delta x + f_2'(x_0, y_0)\Delta y + [f_1'(x_0 + \Theta_1 \Delta x, y_0 + \Delta y) - f_1'(x_0, y_0)]\Delta x +$$

$$+[f_2'(x_0, y_0 + \Theta_2 \Delta y) - f_2'(x_0, y_0)]\Delta y.$$

Осталось доказать, что

$$[f_1'(x_o + \Theta_1 \Delta x, y_o + \Delta y) - f_1'(x_o, y_o)]\Delta x +$$

$$+[f_2'(x_o, y_o + \Theta_2 \Delta y) - f_2'(x_o, y_o)]\Delta y = o(|\Delta X|)$$
 при $\Delta X \to 0$.

Действительно,

$$\left| \frac{\Delta x}{|\Delta X|} \right| = \frac{|\Delta x|}{\sqrt{\Delta x^2 + \Delta y^2}} \le 1.$$

Следовательно,

$$\frac{\Delta x}{|\Delta X|}$$
 ограничено.

Так как

$$f_1'(x_o + \Theta_1 \Delta x, y_o + \Delta y) - f_1'(x_o, y_o) \to 0$$
 при $(\Delta x, \Delta y) \to (0, 0),$

ТО

$$[f_1'(x_o + \Theta_1 \Delta x, y_o + \Delta y) - f_1'(x_o, y_o)] \Delta x = o(|\Delta X|).$$

Аналогично,

$$[f_2'(x_o, y_o + \Theta_2 \Delta y) - f_2'(x_o, y_o)] \Delta y = o(|\Delta X|).$$

Замечание

Непрерывность частных производных не является необходимым условием дифференцируемости функции.

3.6 Производная сложной функции. Частные производные сложной функции. Инвариантность формы первого дифференциала.

Определение 3.3

Пусть функции $f_1(X), f_2(X), \ldots, f_m(X)$ определены на множестве $\Omega \subseteq R^p$. Пусть функция g(Y) определена на множестве $D \subseteq R^m$, и точка

$$Y = (f_1(X), f_2(X), \dots, f_m(X)) \in D, \quad \forall X \in \Omega.$$

Тогда имеет смысл сложная функция

$$F(X) = g(f_1(X), f_2(X), \dots, f_m(X)),$$

определенная на Ω .

Теорема 3.4

Пусть имеет смысл сложная функция $F(X) = g(f_1(X), f_2(X), \dots, f_m(X))$, определенная на Ω . Пусть функции $f_1(X), f_2(X), \dots, f_m(X)$ дифференцируемы в точке X_0 , а функция g(Y) дифференцируема в точке

$$Y_0 = (f_1(X_0), f_2(X_0), \dots, f_m(X_0)).$$

Тогда функция F(X) дифференцируема в точке X_0 , и

$$F'(X_0) = g'(Y_0) \begin{pmatrix} f'_1(X_0) \\ \vdots \\ f'_m(X_0) \end{pmatrix}.$$

Где:

$$F'(X_0) \in R_p, \quad g'(Y_0) \in R_m, \quad f'_i(X_0) \in R_p \quad (i = 1, \dots, m).$$

$$\begin{pmatrix} f_1'(X_0) \\ \vdots \\ f_m'(X_0) \end{pmatrix}$$

— матрица размера $m \times p$, обозначим её $f'(X_0)$.

Следствия

1) Частные производные сложной функции:

$$F'(X_0) = g'(Y_0) \begin{pmatrix} f'_1(X_0) \\ \vdots \\ f'_m(X_0) \end{pmatrix}.$$

Следовательно,

$$\frac{\partial F}{\partial x_i}(X_0) = \left(\frac{\partial g}{\partial y_1}(Y_0), \dots, \frac{\partial g}{\partial y_m}(Y_0)\right) \begin{pmatrix} \frac{\partial f_1}{\partial x_i}(X_0) \\ \vdots \\ \frac{\partial f_m}{\partial x_i}(X_0) \end{pmatrix} =$$

$$= \frac{\partial g}{\partial y_1}(Y_0) \frac{\partial f_1}{\partial x_i}(X_0) + \dots + \frac{\partial g}{\partial y_m}(Y_0) \frac{\partial f_m}{\partial x_i}(X_0) \quad (i = 1, \dots, p).$$

Теорема 3.4

Пусть имеет смысл сложная функция $F(X) = g(f_1(X), f_2(X), \dots, f_m(X))$, определенная на Ω . Пусть функции $f_1(X), f_2(X), \dots, f_m(X)$ дифференцируемы в точке X_0 , а функция g(Y) дифференцируема в точке

$$Y_0 = (f_1(X_0), f_2(X_0), \dots, f_m(X_0)).$$

Тогда функция F(X) дифференцируема в точке X_0 , и

$$F'(X_0) = g'(Y_0) \begin{pmatrix} f'_1(X_0) \\ \vdots \\ f'_m(X_0) \end{pmatrix}.$$

Где:

$$F'(X_0) \in R_p, \quad g'(Y_0) \in R_m, \quad f_i'(X_0) \in R_p \quad (i = 1, \dots, m).$$

$$\begin{pmatrix} f_1'(X_0) \\ \vdots \\ f_m'(X_0) \end{pmatrix}$$

— матрица размера $m \times p$, обозначим её $f'(X_0)$.

Замечание 3.1

Пусть M, P - строки из R_p . Тогда их скалярное произведение (M, P) совпадает с произведением строки M на столбце P^T , то есть,

$$(M, P) = MP^T.$$

Частные производные сложной функции

$$F'(X_0) = g'(Y_0) \begin{pmatrix} f'_1(X_0) \\ \vdots \\ f'_m(X_0) \end{pmatrix}.$$

Следовательно,

$$\frac{\partial F}{\partial x_i}(X_0) = \left(\frac{\partial g}{\partial y_1}(Y_0), \dots, \frac{\partial g}{\partial y_m}(Y_0)\right) \begin{pmatrix} \frac{\partial f_1}{\partial x_i}(X_0) \\ \vdots \\ \frac{\partial f_m}{\partial x_i}(X_0) \end{pmatrix} =$$

$$= \frac{\partial g}{\partial y_1}(Y_0) \frac{\partial f_1}{\partial x_i}(X_0) + \dots + \frac{\partial g}{\partial y_m}(Y_0) \frac{\partial f_m}{\partial x_i}(X_0) \quad (i = 1, \dots, p).$$

Инвариантность (неизменность) формы 1-го дифференциала

Формула

$$dg(Y_0) = \frac{\partial g}{\partial y_1}(Y_0)dy_1(X_0) + \ldots + \frac{\partial g}{\partial y_m}(Y_0)dy_m(X_0)$$

верна и в случае, когда переменные y_1, \dots, y_m являются функциями:

$$y_i = f_i(X) \quad (i = 1, ..., m).$$

$$Y_0 = (f_1(X_0), f_2(X_0), \dots, f_m(X_0)).$$

3.7 Частные производные высших порядков. Теорема о равенстве смешанных производных.

Определение 4.1

1) Пусть f определена на множестве $\Omega \subseteq R^p$, точка A - внутренняя точка $\Omega.$

Пусть $\exists \frac{\partial f}{\partial x_i}(X)$ в некоторой окрестности точки A (то есть, в окрестности точки A определена функция $\frac{\partial f}{\partial x_i}(X)$). Если $\exists \frac{\partial}{\partial x_k} \left(\frac{\partial f}{\partial x_i}(A) \right)$, она называется частной производной второго порядка по переменным x_i, x_k функции f в точке A и обозначается $\frac{\partial^2 f}{\partial x_k \partial x_i}(A)$ или $f''_{x_i x_k}(A)$ (возможно i = k, если $i \neq k$, производная называется смешанной).

2) Аналогично определяются частные производные m-го порядка:

$$\frac{\partial^m f}{\partial x_i^{m_1} \partial x_{i_2}^{m_2} \dots \partial x_{i_k}^{m_k}} (A), \quad (m_1 + m_2 + \dots + m_k = m).$$

Теорема 4.1

Пусть f(x,y) имеет в окрестности $U(x_0,y_0)$ f''_{xy} и f''_{yx} , и они непрерывны в точке (x_0,y_0) . Тогда они равны в точке (x_0,y_0) .

Следствие

Пусть $f(x_1,...,x_p)$ имеет в окрестности $U(A)\subseteq R_p$ все частные производные до k-го порядка включительно, и они непрерывны в точке A.

Пусть $\{i_1, i_2, ..., i_k\}$ и $\{j_1, j_2, ..., j_k\}$ — два набора натуральных чисел из множества $\{1, 2, ..., p\}$, отличающиеся только порядком членов. Тогда

$$\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}(A) = \frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}}(A).$$

Доказательство

От набора її набору ў ожно перейти последовательными перестановками двух соседних производных. При каждом переходе используем доказанную теорему.

3.8 Дифференциалы высших порядков. Отсутствие инвариантности формы у дифференциалов порядка выше первого.

Определение 4.2

Пусть f определена и дифференцируема в окрестности $U(A) \subset R^p$. Рассмотрим df(X), определенный в U(A), как функцию от X (приращение $dX = (dx_1, ..., dx_p)$ считаем фиксированным). Если существует дифференциал этой функции df(X) в точке A, он называется вторым дифференциалом функции f в точке A и обозначается $d^2f(A)$.

Аналогично $d^3f(A) = d(d^2f)(A), \dots, d^kf(A) = d(d^{k-1}f)(A).$

Все дифференциалы считаются при одном и том же приращении $dX = (dx_1, ..., dx_p)$.

Теорема 4.2

Пусть f(X) имеет в окрестности $U(A) \subset \mathbb{R}^p$ все частные производные до k-го порядка включительно, и они непрерывны в точке A. Тогда

$$\exists d^k f(A) = d^k f(A, dX) = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_p} dx_p\right)^k f(A)$$

(здесь $dX = (dx_1, ..., dx_p)$).

Доказательство для p = 3, $\kappa = 2$

B точке A имеем:

$$d^2f = d(df) = d\left(f'_{x_1}dx_1 + f'_{x_2}dx_2 + f'_{x_3}dx_3\right).$$

Дифференцируем каждое слагаемое:

$$d^{2}f = d(f'_{x_{1}}) dx_{1} + d(f'_{x_{2}}) dx_{2} + d(f'_{x_{3}}) dx_{3}.$$

Теперь раскрываем дифференциалы:

$$d^{2}f = (f''_{x_{1}x_{1}}dx_{1} + f''_{x_{1}x_{2}}dx_{2} + f''_{x_{1}x_{3}}dx_{3}) dx_{1} +$$

$$+ (f''_{x_{2}x_{1}}dx_{1} + f''_{x_{2}x_{2}}dx_{2} + f''_{x_{2}x_{3}}dx_{3}) dx_{2} +$$

$$+ (f''_{x_{3}x_{1}}dx_{1} + f''_{x_{3}x_{2}}dx_{2} + f''_{x_{3}x_{3}}dx_{3}) dx_{3}.$$

Группируем слагаемые:

$$d^2f = f_{x_1x_1}''dx_1^2 + f_{x_2x_2}''dx_2^2 + f_{x_3x_3}''dx_3^2 +$$

$$+2f''_{x_1x_2}dx_1dx_2 + 2f''_{x_1x_3}dx_1dx_3 + 2f''_{x_2x_3}dx_2dx_3.$$

Таким образом:

$$d^{2}f = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \frac{\partial}{\partial x_{2}}dx_{2} + \frac{\partial}{\partial x_{3}}dx_{3}\right)^{2}f.$$

Следствие: инвариантность

Дифференциалы порядка выше первого не обладают свойством инвариантности формы. Например, если x_1, x_2 не являются независимыми переменными, то:

$$d^{2}f(x_{1}, x_{2}) = d(df) = d\left(f'_{x_{1}}dx_{1} + f'_{x_{2}}dx_{2}\right) =$$

$$= d\left(f'_{x_{1}}dx_{1}\right) + f'_{x_{1}}d(dx_{1}) + d\left(f'_{x_{2}}dx_{2}\right) + f'_{x_{2}}d(dx_{2}) =$$

$$= \left(f''_{x_{1}x_{1}}dx_{1} + f''_{x_{1}x_{2}}dx_{2}\right)dx_{1} +$$

$$+ \left(f''_{x_{2}x_{1}}dx_{1} + f''_{x_{2}x_{2}}dx_{2}\right)dx_{2} + f'_{x_{1}}d^{2}x_{1} + f'_{x_{2}}d^{2}x_{2} =$$

$$= f''_{x_{1}x_{1}}dx_{1}^{2} + f''_{x_{2}x_{2}}dx_{2}^{2} + 2f''_{x_{1}x_{2}}dx_{1}dx_{2} + f'_{x_{1}}d^{2}x_{1} + f'_{x_{2}}d^{2}x_{2} =$$

$$= \left(\frac{\partial}{\partial x_{1}}dx_{1} + \frac{\partial}{\partial x_{2}}dx_{2}\right)^{2} f + f'_{x_{1}}d^{2}x_{1} + f'_{x_{2}}d^{2}x_{2}.$$

3.9 Формула Тейлора функции р переменных.

Теорема 4.3. Формула Тейлора

(Напоминание (p=1): пусть h(t) определена в окрестности $U(t) \subset R$ и имеет там (n+1) производную. Тогда $\forall t \in U(t)$ справедливо

$$h(t) = h(t) + \sum_{k=1}^{n} \frac{h^{(k)}(t)}{k!} (t-t)^{k} + \frac{h^{(n+1)}(t+\Theta\Delta t)}{(n+1)!} (t-t)^{n+1} =$$

$$= h(t) + \sum_{k=1}^{n} \frac{d^{k}h(t,\Delta t)}{k!} + \frac{d^{(n+1)}h(t+\Theta\Delta t,\Delta t)}{(n+1)!},$$

где приращение $\Delta t = t - t$, $\Theta \in (0, 1)$.

Пусть f(X) определена в окрестности $U(X) \subset R_p$ и имеет там все непрерывные частные производные до (n+1)-го порядка включительно. Тогда $\forall X \in U(X)$ справедливо

$$f(X) = f(X) + \sum_{k=1}^{n} \frac{d^{k} f(X, \Delta X)}{k!} + \frac{d^{(n+1)} f(X + \Theta \Delta X, \Delta X)}{(n+1)!},$$

где приращение $\Delta X = X - X$, $\Theta \in (0,1)$ (без доказательства).

Замечания и следствия

$$d^{n+1}f(X_0 + \Theta\Delta X, \Delta X)$$

- 1) $r(X) = \frac{d^{n+1}f(X_0 + \Theta \Delta X, \Delta X)}{(n+1)!}$ остаточный член в форме Лагранжа.
- 2) Для остаточного члена справедлива формула Пеано: $r(X) = o(|\Delta X|^r)$ при $\Delta X \to 0$.
- 3) p = 2:

$$f(x,y) = f(x_0, y_0) + \frac{1}{1!} \left(\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) \right) +$$

$$+ \frac{1}{2!} \left(\frac{\partial^2 f}{\partial x^2}(x_0, y_0)(x - x_0)^2 + 2 \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)(x - x_0)(y - y_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0)(y - y_0)^2 \right) + \dots$$

$$+ \frac{1}{n!} \left(\frac{\partial}{\partial x}(x - x_0) + \frac{\partial}{\partial y}(y - y_0) \right)^n f(x_0, y_0) + o\left(\left(\sqrt{(x - x_0)^2 + (y - y_0)^2} \right)^n \right),$$

3.10 Теорема о существовании и дифференцируемости неявно заданной функции одной переменной.

Определение 5.1

Пусть $\Omega_1, \Omega_2 \subseteq R$; F(x,y) определена на множестве $\Omega_1 \times \Omega_2$, и для любого $x \in \Omega_1$ существует единственный $y \in \Omega_2$ такой, что F(x,y) = 0.

Тогда уравнение F(x,y)=0 определяет на множестве Ω_1 функцию y=f(x) с множеством значений из Ω_2 следующим образом:

каждому $x \in \Omega_1$ сопоставляем y = f(x), где F(x, f(x)) = 0.

Такая функция называется **неявно заданной ** или **неявной **.

Пример

Уравнение $x^2+y^2-1=0$ на множестве $[-1,1]\times[0,1]$ определяет функцию $y=\sqrt{1-x^2},$ на множестве $[-1,1]\times[-1,0]$ определяет функцию $y=-\sqrt{1-x^2},$

на множестве $[-1,1] \times [-1,1]$ не определяет неявную функцию, так как для любого $x \in [-1,1]$ существуют два разных $y \in [-1,1]$ таких, что $x^2 + y^2 - 1 = 0$.

Теорема 5.1 существования и дифференцируемости неявно заданной функции

- 1) Пусть F(x,y) определена на множестве $[x_o \Delta, x_o + \Delta] \times [y_o \tilde{\Delta}, y_o + \tilde{\Delta}].$
- 2) $F(x_0, y_0) = 0$.
- 3) Существуют и непрерывны F_x', F_y' на $[x_o \Delta, x_o + \Delta] \times [y_o \tilde{\Delta}, y_o + \tilde{\Delta}].$
- 4) $F'_{u}(x_{o}, y_{o}) \neq 0$.

Тогда в некоторой окрестности точки x_o уравнение F(x,y)=0 определяет неявно непрерывно дифференцируемую функцию y=f(x): $y_o=f(x_o)$.

(без доказательства).

Замечания

- 1) Требования теоремы не являются необходимыми.
- 2) Если выполняются условия теоремы, то вычислить y'(x) можно следующим образом:

Функция y = y(x) такая, что F(x, y(x)) = 0 для любого x из области определения. Следовательно,

$$\frac{dF}{dx} = 0 \iff \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}y' = 0$$

для любого x из области определения.

Следовательно,

$$y'(x_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)}$$

3) Если F(x,y) имеет непрерывные частные производные 2-го порядка, то

$$\exists y''(x) = \frac{-(F_{x^2}'' + F_{xy}''y')F_y' - F_x'(F_{xy}'' + F_{y^2}'y')}{(F_y')^2}$$

Подставив $y'(x) = -F_x'/F_y'$, получим выражение y''(x) через частные производные 1-го и 2-го порядков функции F(x,y).

Если F(x,y) имеет непрерывные частные производные 3-го порядка, то

$$\exists y'''(x)$$

и выражается через частные производные функции F(x,y), и т.д.

4) Для вычисления производных функции y(x) можно использовать дифференциалы.

3.11 Теорема о существовании и дифференцируемости неявно заданных функций р переменных, заданных системой функциональных уравнений. Приемы вычисления производных . Вычисление первых производных функций y(x), z(x), u(x), заданных неявно системой

Определение 5.2

1) Пусть $\Omega_1 \subset R_p$, $\Omega_2 \subset R$; $F(X,y) = F(x_1,...,x_p,y)$ определена на множестве $\Omega_1 \times \Omega_2$, и для любого $X \in \Omega_1$ существует единственный $y \in \Omega_2$ такой, что F(X,y) = 0.

Тогда уравнение F(X,y)=0 определяет на множестве Ω_1 функцию y=f(X) с множеством значений из Ω_2 следующим образом:

каждому $X \in \Omega_1$ сопоставляем y = f(X), где F(X, f(X)) = 0.

Такая функция называется **неявно заданной функцией p переменных**.

Более общий случай

Пусть $\Omega_1 \subseteq R^p$, $\Omega_2 \subseteq R^m$. Пусть на $\Omega_1 \times \Omega_2$ определены m функций

$$F_i(X,Y) = F_i(x_1, \dots, x_p, y_1, \dots, y_m), \quad i = 1, 2, \dots, m.$$

Пусть система

$$\begin{cases} F_1(X,Y) = 0 \\ \vdots \\ F_m(X,Y) = 0 \end{cases}$$
 (5.1)

для каждого $X \in \Omega_1$ имеет единственное решение $Y \in \Omega_2$.

Тогда говорят, что система (5.1) задает неявно m функций

$$y_1 = f_1(X), \quad y_2 = f_2(X), \quad \dots, \quad y_m = f_m(X),$$

определенных на множестве Ω_1 .

(то есть, каждому $X\in\Omega_1$ сопоставляются $y_1=f_1(X),y_2=f_2(X),\ldots,y_m=f_m(X)$ такие, что

$$\begin{cases} F_1(X, f_1(X), \dots, f_m(X)) = 0 \\ \vdots \\ F_m(X, f_1(X), \dots, f_m(X)) = 0 \end{cases}$$

Теорема 5.2

).

- 1) Пусть функции F_1, F_2, \dots, F_m определены и непрерывны в некоторой окрестности точки $(X^o, Y^o) \in \mathbb{R}^{p+m}$.
 - 2) Точка (X^{o}, Y^{o}) удовлетворяет системе (5.1).
- 3) Существуют и непрерывны все частные производные функций F_1, F_2, \ldots, F_m в окрестности точки (X^o, Y^o) .

$$\frac{D(F_1, F_2, \dots, F_m)}{D(y_1, y_2, \dots, y_m)} = \begin{vmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} & \dots & \frac{\partial F_1}{\partial y_m} \\ \dots & \dots & \dots \\ \frac{\partial F_m}{\partial y_1} & \frac{\partial F_m}{\partial y_2} & \dots & \frac{\partial F_m}{\partial y_m} \end{vmatrix}$$

отличен от нуля в точке (X^o, Y^o) .

4) Якобиан

Тогда

1) В некоторой окрестности точки (X^o, Y^o) система (5.1) определяет y_1, y_2, \ldots, y_m как функции от x_1, \ldots, x_p : $y_1 = f_1(X), y_2 = f_2(X), \ldots, y_m = f_m(X)$.

- 2) $f_1(X^o) = y_1^o, f_2(X^o) = y_2^o, \dots, f_m(X^o) = y_m^o$ (где $Y^o = (y_1^o, y_2^o, \dots, y_m^o)$).
- 3) Функции $f_1(X), f_2(X), \ldots, f_m(X)$ непрерывны в некоторой окрестности точки (X^o, Y^o) и имеют непрерывные частные производные по всем переменным в точке (X^o, Y^o) . (без доказательства).

Следствие. Приемы вычисления производных

1) Возьмем частные производные по x_i от обеих частей каждого равенства системы (5.1)

$$\frac{\partial F_1}{\partial x_i} + \frac{\partial F_1}{\partial y_1} \frac{\partial y_1}{\partial x_i} + \ldots + \frac{\partial F_1}{\partial y_m} \frac{\partial y_m}{\partial x_i} = 0$$

:

$$\frac{\partial F_m}{\partial x_i} + \frac{\partial F_m}{\partial y_1} \frac{\partial y_1}{\partial x_i} + \ldots + \frac{\partial F_m}{\partial y_m} \frac{\partial y_m}{\partial x_i} = 0$$

 \Leftrightarrow

$$\begin{cases} \frac{\partial F_1}{\partial y_1} \frac{\partial y_1}{\partial x_i} + \dots + \frac{\partial F_1}{\partial y_m} \frac{\partial y_m}{\partial x_i} = -\frac{\partial F_1}{\partial x_i} \\ \vdots \\ \frac{\partial F_m}{\partial y_1} \frac{\partial y_1}{\partial x_i} + \dots + \frac{\partial F_m}{\partial y_m} \frac{\partial y_m}{\partial x_i} = -\frac{\partial F_m}{\partial x_i} \end{cases}$$

Относительно неизвестных $\frac{\partial y_1}{\partial x_i}, \frac{\partial y_2}{\partial x_i}, \dots, \frac{\partial y_m}{\partial x_i}$ имеем СЛАУ, определитель которой

$$\Delta = D(F_1, F_2, \dots, F_m) = D(y_1, y_2, \dots, y_m)$$

отличен от нуля в некоторой окрестности точки (x^0, y^0)

(так как якобиан – непрерывная функция, и в точке (x^0, y^0) отличен от нуля).

Следовательно, система имеет единственное решение $\frac{\partial y_j}{\partial x_i} = \frac{\Delta_j}{\Delta}$ (j = 1, 2, ..., m), и частные производные $\frac{\partial y_j}{\partial x_i}$ непрерывны как отношения непрерывных функций Δ_j и Δ , где знаменатель отличен от нуля.

2) Если существуют и непрерывны все частные производные 2-го порядка функций $F_1, F_2, \dots, F_m,$ то, взяв частную производную по x_k от $\frac{\partial y_j}{\partial x_i}$, получим $\frac{\partial^2 y_j}{\partial x_k \partial x_i}$, непрерывную.

Пример вычисления якобиана

Рассмотрим систему:

$$\begin{cases} x + y + z + u = a \\ x^2 + y^2 + z^2 + u^2 = b^2 \\ x^3 + y^3 + z^3 + u^3 = c^3 \end{cases}$$

Эта система определяет функции y = y(x), z = z(x), u = u(x). Вычислим якобиан:

$$\frac{D(F_1, F_2, F_3)}{D(y, z, u)} = \begin{vmatrix} \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial z} & \frac{\partial F_1}{\partial u} \\ \frac{\partial F_2}{\partial y} & \frac{\partial F_2}{\partial z} & \frac{\partial F_2}{\partial u} \\ \frac{\partial F_3}{\partial u} & \frac{\partial F_3}{\partial z} & \frac{\partial F_3}{\partial u} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 2y & 2z & 2u \\ 3y^2 & 3z^2 & 3u^2 \end{vmatrix}$$

Вычисляя определитель:

$$= 6 \begin{vmatrix} 1 & 1 & 1 \\ y & z & u \\ y^2 & z^2 & u^2 \end{vmatrix}$$

Преобразуем:

$$= 6 \begin{vmatrix} 1 & 1 & 1 \\ 0 & z - y & u - y \\ 0 & z^2 - yz & u^2 - yu \end{vmatrix} =$$
$$\begin{vmatrix} z - y & u - y \\ z(z - y) & u(u - y) \end{vmatrix} = 6(z - y)(u - y) \begin{vmatrix} 1 & 1 \\ z & u \end{vmatrix} = 6(z - y)(u - y)(u - z)$$

Следовательно, по теореме 5.2, в окрестности каждой точки (x,y,z,u), где $z \neq y, u \neq z$, система определяет y,z,u как функции от x.

Пример решения системы методом Крамера

Рассмотрим систему:

$$\begin{cases} x + y + z + u = a \\ x^2 + y^2 + z^2 + u^2 = b^2 \\ x^3 + y^3 + z^3 + u^3 = c^3 \end{cases}$$

Эта система определяет функции y = y(x), z = z(x), u = u(x). Возьмем производные по x от обеих частей каждого равенства:

$$\begin{cases} 1 + y' + z' + u' = 0 \\ 2x + 2yy' + 2zz' + 2uu' = 0 \\ 3x^2 + 3y^2y' + 3z^2z' + 3u^2u' = 0 \end{cases}$$

что эквивалентно:

$$\begin{cases} y' + z' + u' = -1\\ 2yy' + 2zz' + 2uu' = -2x\\ 3y^2y' + 3z^2z' + 3u^2u' = -3x^2 \end{cases}$$

Решим методом Крамера.

Якобиан системы:

$$\Delta = \frac{D(F_1, F_2, F_3)}{D(y, z, u)} = \begin{vmatrix} 1 & 1 & 1 \\ 2y & 2z & 2u \\ 3y^2 & 3z^2 & 3u^2 \end{vmatrix} = 6(z - y)(u - y)(u - z)$$

Вычислим Δ_1 :

$$\Delta_1 = \begin{vmatrix} -1 & 1 & 1 \\ -2x & 2z & 2u \\ -3x^2 & 3z^2 & 3u^2 \end{vmatrix} = -6(z-x)(u-x)(u-z)$$

Следовательно,

$$y' = \frac{\Delta_1}{\Delta} = \frac{-(z-x)(u-x)}{(z-y)(u-y)}$$

Выражения для z' и u' вычислите самостоятельно. z

3.12 Определение точек экстремума функции нескольких переменных. Необходимые и достаточные условия существования точек экстремума.

Определение 6.1

Пусть $\Omega \subseteq \mathbb{R}^p$, $f: \Omega \to \mathbb{R}$. Пусть A – внутренняя точка Ω .

Точка A называется **точкой максимума** (или **минимума**) функции f, если существует окрестность $U(A)\subseteq \Omega$, такая что

$$f(X) \le f(A)$$
 (или $f(X) \ge f(A)$), $\forall X \in U(A)$.

Точки максимума и минимума функции f называются **точками экстремума** функции f. Если неравенства строгие, такие точки называются **точками строгого экстремума** функции f.

Теорема 6.1. Необходимые условия существования экстремума

Пусть A - точка экстремума функции f, и $\exists \frac{\partial f}{\partial x_i}(A)$. Тогда:

$$\frac{\partial f}{\partial x_i}(A) = 0, \quad i = 1, 2, \dots, p.$$

Следствие

Пусть f дифференцируема в точке экстремума A. Тогда df(A) = 0.

Теорема 6.2. Достаточные условия существования экстремума

Пусть f определена и имеет непрерывные частные производные до 2-го порядка включительно в некоторой окрестности точки A. Пусть df(A) = 0 (такие точки называются стационарными).

Рассмотрим второй дифференциал $d^2f(A,\Delta x)$:

$$d^{2}f(A, \Delta x) = \frac{\partial^{2}f}{\partial x_{1}^{2}}(A)dx_{1}^{2} + \frac{\partial^{2}f}{\partial x_{p}^{2}}(A)dx_{p}^{2} +$$

$$+2\frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(A)dx_{1}dx_{2} + \ldots + 2\frac{\partial^{2}f}{\partial x_{p-1}\partial x_{p}}(A)dx_{p-1}dx_{p}.$$

Рассматриваем эту величину как квадратичную форму относительно приращений dx_1, dx_2, \dots, dx_p (здесь $\Delta x = (dx_1, \dots, dx_p)$).

- 1) Если эта форма положительно (отрицательно) определена, то точка A является точкой строгого минимума (максимума) функции f.
 - 2) Если эта форма знакопеременная, то точка A не является точкой экстремума функции f.
 - 3) Если эта форма полуопределенная, то ничего сказать нельзя.

Замечание

$$d^2 f(A; t\Delta x) = \frac{\partial^2 f}{\partial x_1^2}(A)t^2 dx_1^2 + \frac{\partial^2 f}{\partial x_p^2}(A)t^2 dx_p^2 +$$

$$+2\frac{\partial^2 f}{\partial x_1 \partial x_2}(A)t^2 dx_1 dx_2 + \dots + 2\frac{\partial^2 f}{\partial x_{p-1} \partial x_p}(A)t^2 dx_{p-1} dx_p = t^2 d^2 f(A; \Delta x).$$

Значения $d^2f(A;\Delta x)$ и $d^2f(A;t\Delta x)$ совпадают по знаку для любого числа t.

3.13 Определение точек условного экстремума функции нескольких переменных. Необходимые и достаточные условия существования точек условного экстремума. Пример: найти точки условного экстремума функции $f(x,y) = x^3 + y^3 - 9xy$ при условии x + y = 0, используя метод нахождения точек условного экстремума.

Пример

1) Найдем экстремумы функции $f(x,y)=x^3+y^3-9xy+5$ при условии, что переменные x и y связаны соотношением x+y=0.

Отсюда y = -x, и $f = 9x^2 + 5$.

f имеет минимум в точке A(0,0) при условии x + y = 0.

2) f имеет максимум в точке A(0,0) при условии x-y=0 (проверьте самостоятельно).

Такие экстремумы называются условными.

Определение 7.1

Пусть $\Omega \subseteq \mathbb{R}^p$, $f: \Omega \to \mathbb{R}$. Рассматриваем только точки, удовлетворяющие условиям связи:

$$\begin{cases} \varphi_1(X) = 0 \\ \varphi_2(X) = 0 \\ \vdots \\ \varphi_m(X) = 0 \end{cases} (m < p).$$

Пусть A - внутренняя точка множества Ω , удовлетворяющая условиям связи.

Точка A называется **точкой условного максимума (минимума)** функции f, если существует окрестность $\tilde{U}(A) \subseteq \Omega$, такая что:

$$f(X) \le f(A)$$
 (или $f(X) \ge f(A)$)

для всех точек X, которые принадлежат $\tilde{U}(A)$ и удовлетворяют условиям связи.

Если неравенства строгие, такие точки называются **точками строгого условного экстремума** функции f.

Теорема 7.1. Необходимый признак условного экстремума

Пусть f(X) и $\Phi_i(X)$ (i=1,2,...,m) непрерывно дифференцируемы в точке A, и матрица Якоби

$$\begin{pmatrix}
\frac{\partial \Phi_1}{\partial x_1} & \frac{\partial \Phi_1}{\partial x_2} & \cdots & \frac{\partial \Phi_1}{\partial x_p} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \Phi_m}{\partial x_1} & \frac{\partial \Phi_m}{\partial x_2} & \cdots & \frac{\partial \Phi_m}{\partial x_p}
\end{pmatrix}$$

имеет ранг m в точке A.

Тогда, если A - точка условного экстремума функции f при условиях связи $\Phi_i(X)=0$ (i=1,2,...,m), то существуют числа $\lambda_1,\lambda_2,...,\lambda_m$ такие, что

$$\lambda_1 \frac{\partial \Phi_1}{\partial x_j}(A) + \ldots + \lambda_m \frac{\partial \Phi_m}{\partial x_j}(A) + \frac{\partial f}{\partial x_j}(A) = 0 \quad (j = 1, 2, ..., p).$$

Пример 1

Найдем экстремумы функции $f(x,y)=x^3+y^3-9xy+5$ при условии, что переменные x и y связаны соотношением x+y=0.

Рассмотрим функцию Лагранжа $F(x, y, \lambda) = x^3 + y^3 - 9xy + 5 + \lambda(x + y)$.

$$\begin{cases} F'_x = 0 \\ F'_y = 0 \end{cases} \Leftrightarrow \begin{cases} 3x^2 - 9y + \lambda = 0 \\ 3y^2 - 9x + \lambda = 0 \\ x + y = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \\ \lambda = 0 \end{cases}$$

6).
$$F''_{xx} = 6x$$
, $F''_{xy} = -9$, $F''_{yy} = 6y$.

б). $F''_{xx} = 6x$, $F''_{xy} = -9$, $F''_{yy} = 6y$. В точке A(0,0) $d^2F(A) = -18dxdy$, где приращения dx и dy связаны соотношением $d\varphi(A,\Delta X) = -18dxdy$. $0 \Leftrightarrow dx + dy = 0 \Leftrightarrow dy = -dx$.

Следовательно, $d^2F(A) = 18dx^2 > 0 \,\forall \, dx$, 0.

Следовательно, точка A(0,0) - точка условного минимума функции f при условии x+y=0.

Теорема 7.2. Достаточный признак условного экстремума

Пусть f(X) и $\Phi_i(X)$ (i = 1, 2, ..., m) дважды непрерывно дифференцируемы в точке A, и матрица Якоби

$$\begin{pmatrix} \frac{\partial \Phi_1}{\partial x_1} & \frac{\partial \Phi_1}{\partial x_2} & \cdots & \frac{\partial \Phi_1}{\partial x_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \Phi_m}{\partial x_1} & \frac{\partial \Phi_m}{\partial x_2} & \cdots & \frac{\partial \Phi_m}{\partial x_p} \end{pmatrix}$$

имеет ранг m в точке A.

Пусть точка A удовлетворяет необходимому признаку условного экстремума, то есть существуют числа $\lambda_1, \lambda_2, ..., \lambda_m$, такие что

$$\lambda_1 \frac{\partial \Phi_1}{\partial x_j}(A) + \dots + \lambda_m \frac{\partial \Phi_m}{\partial x_j}(A) + \frac{\partial f}{\partial x_j}(A) = 0 \quad (j = 1, 2, ..., p).$$

Рассмотрим второй дифференциал функции Лагранжа:

$$d^2F(A,\Delta X) = d^2f(A,\Delta X) + \lambda_1 d^2\Phi_1(A,\Delta X) + \dots + \lambda_m d^2\Phi_m(A,\Delta X).$$

Если эта квадратичная форма положительно (отрицательно) определена, то точка A является точкой строгого условного минимума (максимума) функции f.