

Ministry of Electronics and Information Technology Sponsored Workshop on

OpenROAD for Low-Cost ASIC Design and Rapid Innovation

Organized by

Novel Integrated Electronics (NINE) Labs

(Under MeitY, Govt. of India)

Indian Institute of Technology Guwahati

Guwahati Assam, Pin 781039

Static Timing Analysis

- Analyzing or verifying the timing of a design i.e., whether a design meet all of its timing requirements or not
- it is done by a design tool (Prime by Synopsys) that starts from the optimized gate level netlist and runs automatically
- STA looks for the worst of the following delays in a chip

Timing Checks:

- set-up, hold, removal, and recovery constraints
- Minimum Period and minimum Pulse width for clocks

Static Timing Analysis

- STA involves three main steps -
 - Design is broken into sets of timing paths
 - The delay of each path is calculated
 - All path delays are compared to see if timing constraints have been meet.

Note:

- It is more faster than simulator
- timing analysis is used to check for the timing correctness of the design but not used to check for the logical functional correctness for the design

STA Design Flow

Start Point				
clock port of the r	register			
☐ input port of the	design			
End Point				
data input of regis	ster			
output port				
There are four timing p	aths:			
Data Path				
Clock Path				
Clock gating Pat	th			
Asynchronous p	ath			
Note:				
-	hecks for the worst possible delions. (non-vectored approach)	lays through each of t	he logic elements in th	ne timing paths but ignores

Timing Paths

Clock Gating and Asynchronous paths

Inverter Cell

Look-UP table in .LIB

Timing Model of Flipflop

Setup, Hold, Recovery, Removal

Setup

- Setup Slack = Required time Arrival time (since we want data to arrive before it is required)
- C2Q+L1+Comb < T+L2-Tsu

Hold

- Hold Slack = Arrival Time Required time (since we want data to arrive after it is required)
- Comb+L1 > TH+L2+THU

Timing Report

```
Startpoint: UFFO (rising edge-triggered flip-flop clocked by CLKM)
 Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
 Path Group: CLKM
 Path Type: min
 Min Data Paths Derating Factor : 1.000
 Min Clock Paths Derating Factor: 1.000
 Max Clock Paths Derating Factor: 1.200
 Point
                                                    Path
 clock CLKM (rise edge)
                                         0.000
                                                   0.000
 clock source latency
                                        0.000
                                                   0.000
 CLKM (in)
                                        0.000
                                                   0.000 r
 UCKBUF0/C (CKB )
                                        0.056
                                                   0.056 r
 UCKBUF1/C (CKB )
                                        0.058
                                                   0.114 r
 UFF0/CK (DF )
                                        0.000
                                                   0.114 r
 UFF0/Q (DF ) <-
                                        0.144
                                                   0.258 r
                                        0.021
                                                   0.279 f
 UNOR0/ZN (NR2 )
 UBUF4/Z (BUFF )
                                        0.055
                                                   0.334 f
                                                   0.334 f
                                        0.000
 UFF1/D (DF )
 data arrival time
                                                   0.334
 clock CLKM (rise edge)
                                        0.000
                                                   0.000
 clock source latency
                                        0.000
                                                   0.000
                                                   0.000 r
 CLKM (in)
                                        0.000
 UCKBUF0/C (CKB )
                                        0.067
                                                   0.067 r
 UCKBUF2/C (CKB )
                                        0.080
                                                   0.148 r
 UFF1/CK (DF )
                                        0.000
                                                   0.148 r
 clock reconvergence pessimism
                                        -0.011
                                                   0.136
                                        0.050
                                                   0.186
 clock uncertainty
 library hold time
                                        0.015
                                                   0.201
 data required time
                                                   0.201
 data required time
                                                   0.201
 data arrival time
                                                  -0.334
 slack (MET)
                                                   0.133
```

Exceptions-Multi Cycle paths

Exceptions- False paths

set_false_path \ -from [get_clocks CLK2] -to [get_clocks CLK3]

Cross Talk - Glitch

Crosstalk - Delta Delay

Skew =
$$L_2 - L_1 = \blacktriangle$$

On-Chip Variations

LaunchClockPath + MaxDataPath <= ClockPeriod + CaptureClockPath - Tsetup_UFF1

This implies that the minimum clock period = LaunchClockPath + MaxDataPath - CaptureClockPath + Tsetup_UFF1

From the figure, LaunchClockPath = 1.2 + 0.8 = 2.0MaxDataPath = 5.2CaptureClockPath = 1.2 + 0.86 = 2.06Tsetup_UFF1 = 0.35This results in a minimum clock period of: 2.0 + 5.2 - 2.06 + 0.35 = 5.49ns

Derates

- set_timing_derate -early 0.8
- set_timing_derate -late 1.1
- Derating the minimum/shortest/early paths by -20% and derate the maximum/longest/latest paths by +10%
- set_timing_derate -cell_delay -early 0.9
- set_timing_derate -cell_delay -late 1.0
- set_timing_derate -net_delay -early 1.0
- set_timing_derate -net_delay -late 1.2

Example

```
set_timing_derate -early 0.9
set_timing_derate -late 1.2
set_timing_derate -late 1.1 -cell_check
With these derating values, we get the following for setup check:
LaunchClockPath = 2.0 * 1.2 = 2.4
MaxDataPath = 5.2 * 1.2 = 6.24
CaptureClockPath = 2.06 * 0.9 = 1.854
Tsetup_UFF1 = 0.35 * 1.1 = 0.385
This results in a minimum clock period of:
2.4 + 6.24 - 1.854 + 0.385 = 7.171ns
```

CRPR

```
Startpoint: UFFO (rising edge-triggered flip-flop clocked by CLKM)
 Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
 Path Group: CLKM
 Path Type: min
 Min Data Paths Derating Factor : 1.000
 Min Clock Paths Derating Factor: 1.000
 Max Clock Paths Derating Factor: 1.200
 Point
                                        Incr Path
 clock CLKM (rise edge)
                                        0.000
                                                 0.000
 clock source latency
                                        0.000
                                                 0.000
 CLKM (in)
                                        0.000
                                                 0.000 r
                                                0.056 r
 UCKBUF0/C (CKB )
                                        0.056
 UCKBUF1/C (CKB )
                                        0.058
                                                 0.114 r
                                                 0.114 r
 UFF0/CK (DF )
                                        0.000
 UFF0/Q (DF ) <-
                                        0.144
                                                0.258 r
 UNOR0/ZN (NR2 )
                                        0.021
                                                 0.279 f
                                                 0.334 f
 UBUF4/Z (BUFF )
                                        0.055
                                        0.000
                                                0.334 f
 UFF1/D (DF )
                                                  0.334
 data arrival time
                                                0.000
 clock CLKM (rise edge)
                                        0.000
 clock source latency
                                        0.000
                                                 0.000
 CLKM (in)
                                        0.000
                                                 0.000 r
 UCKBUFO/C (CKB )
                                        0.067
                                                 0.067 r
                                                 0.148 r
 UCKBUF2/C (CKB )
                                      0.080
 UFF1/CK (DF )
                                      0.000
                                                 0.148 r
 clock reconvergence pessimism -0.011
                                                 0.136
                                      0.050
                                                 0.186
 clock uncertainty
 library hold time
                                      0.015
                                                 0.201
 data required time
 data required time
                                                 0.201
  data arrival time
 slack (MET)
                                                  0.133
```

THANK YOU