TEN2 2021-03-25

MAA140 Vektoralgebra grundkurs

Skrivtid: 3 timmar

Mälardalens högskola Avdelningen för tillämpad matematik Lars Hellström

Hjälpmedel: Inga behövs,

men förutom penna, sudd och linjal är gradskiva och passare godkända.

Godkäntgräns: 15 p

Lösningarna ska presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Avsluta varje lösning med ett tydligt angivet svar!

 $\mathbf{1} \quad \text{Låt } A = \begin{pmatrix} -3 & 11 & 10 \\ -2 & 10 & 10 \\ 2 & -11 & -11 \end{pmatrix} \text{.} \quad \text{Avg\"{o}r vilka av f\"{o}ljande vektorer som \"{a}r egenvektorer till } A,$ och vad de egenvektorerna har f\"{o}r egenv\"{a}rden.

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \qquad \mathbf{u}_3 = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} \qquad \mathbf{u}_4 = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} \qquad \mathbf{u}_5 = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} \qquad \mathbf{u}_6 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \qquad (6 \text{ p})$$

 $\mathbf{2}$ Beräkna avståndet mellan linjen ℓ : (x,y,z)=(0,7,14)+t(-3,8,5) för $t\in\mathbb{R}$ och punkten A = (1, 2, 3).(5p)

Beräkna determinanten $\begin{bmatrix} 0 & 0 & 0 & 1 \\ -5 & 0 & 0 & 1 & 0 \\ 3 & 0 & 1 & 0 & 1 \\ -1 & 1 & -1 & -1 & 0 \\ 0 & 0 & 5 & 0 & 4 \end{bmatrix}.$ 3 $(6\,p)$

- Punkterna A = (2,0,2), B = (1,0,3) och $C = (2,5,\frac{9}{2})$ är hörnen i triangeln ABC. 4
 - Ange på parameterform en ekvation för planet som innehåller punkterna A, B och C. (1 p) \mathbf{a}
- Ange på parameterfri form en ekvation för planet som innehåller punkterna A, B och C. (2p)
- Beräkna arean av triangeln ABC. (2p) \mathbf{c}
- $\text{Låt } \mathbf{v}_1 = 5\mathbf{e}_1 + 7\mathbf{e}_2 + 6\mathbf{e}_3, \ \mathbf{v}_2 = 4\mathbf{e}_1 + 8\mathbf{e}_2 + 9\mathbf{e}_3 \text{ och } \mathbf{v}_3 = 3\mathbf{e}_1 + 1\mathbf{e}_2 + 2\mathbf{e}_3, \ \text{där } \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ 5 betecknar vektorerna i standardbasen.

Uttryck $\mathbf{u} = 38\mathbf{e}_1 + 42\mathbf{e}_2 + 46\mathbf{e}_3$ som en linjärkombination av \mathbf{v}_1 , \mathbf{v}_2 och \mathbf{v}_3 , eller påvisa att detta inte är möjligt. (5p)

Låt $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ vara vektorer med tre element, B vara en 3×3 -matris och r vara en godtycklig 6 skalär. Vilka av de nedanstående likheterna är allmänt giltiga identiteter (räknelagar)?

- $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (\mathbf{a})
- $+\mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (e) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$ $\det(rB) = r \det(B)$ (f) $\det(rB) = r^3 \det(B)$ (\mathbf{b})
- (\mathbf{g}) $||r\mathbf{u}|| = |r|^3 \cdot ||\mathbf{u}||$ $||r\mathbf{u}|| = |r| \cdot ||\mathbf{u}||$ (\mathbf{c})
- $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ (\mathbf{d})

Svara "sant", "falskt", eller "vet inte" för var och en av dem. (Vid poängsättning förtar ett felaktigt svar sant/falskt ett annat korrekt svar sant/falskt, så den som inte har minst två rätt mer än hen har fel får noll poäng på denna fråga.) (3p)

Fråga 6 är den sista. På nästa sida följer några tabeller.

Värden som kan vara bra att ha:

n	2^n	3^n	$(10+n)^2$	$\sqrt{n} \approx$			
0	1	1	100	0,00	θ	$\cos \theta$	$\sin \theta$
1	2	3	121	1,00		_	
2	4	9	144	1,41	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\sqrt{3}}{2}$	1
3	8	27	169	1,73	6^{-30}	2	$\frac{1}{2}$
4	16	81	196	2,00	<i>∞</i>	1	1
5	32	243	225	$2,\!24$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
6	64	729	256	$2,\!45$	4	$\sqrt{2}$	$\sqrt{2}$
7	128	2187	289	2,65	_	1	. /9
8	256	6561	324	2,83	$\frac{\pi}{3} = 60^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
9	512	19683	361	3,00	3	2	2

Lycka till!