Docente: Dra. Marcela Riccillo

Alumno

Marcelo Berra

Parameters Grupo 3

Trabajo Práctico Final – Data Mining y Machine Learning

1. Abra la base Vehicle de la librería mlbench y renómbrela como "base".

- > library(mlbench)
- > data(Vehicle)
- > base=Vehicle
- > summary(base)
- > str(base)
- 2. Indique de qué trata el problema, comente las variables, cantidad de registros.

A partir de una silueta de un vehiculo clasificarla en 4 modelos posibles:

Autobus de 2 pisos bus Camioneta Chevrolet van Saab 9000 saab Opel Manta 400 opel

Info del Data Frame

	Cantidad
Registros	846
Registros Variables	19

	CantVariables
Categoricas	18
Decision	1
	_

bus opel saab van 218 212 217 199

Definicion de las Variables

Variable	Definicion	Tipo	
Categoricas			
Comp	Compacidad	Cuantitativa/Discreta	
Circ	Circularidad		Cuantitativa/Discreta
D.Circ	Circularidad a Distand	cia	Cuantitativa/Discreta
Rad.Ra	Ratio Radio		Cuantitativa/Discreta
Pr.Axis.Ra	Ratio Pr.Axix aspecto		Cuantitativa/Discreta
Max.L.Ra	Ratio Maxima Longin	tud Aspecto	Cuantitativa/Discreta
Scat.Ra	Ratio de Dispersion		Cuantitativa/Discreta
Elong	Alargamiento		Cuantitativa/Discreta
Pr.Axis.Rect	Rectangularidad Pr.A	Cuantitativa/Discreta	
Max.L.Rect	Rectangularidad Max	Cuantitativa/Discreta	
Sc.Var.Maxis	Longitud del Eje May	Cuantitativa/Discreta	
Sc.Var.maxis	Longitud del Eje Men	Cuantitativa/Discreta	
Ra.Gyr	Radio de Giro	Cuantitativa/Discreta	
Skew.Maxis	Sesgo sobre el eje m	Cuantitativa/Discreta	
Skew.maxis	Sesgo sobre el eje m	enor	Cuantitativa/Discreta
Kurt.maxis	kurtosis sobre el eje r	nenor	Cuantitativa/Discreta
Kurt.Maxis	kurtosis sobre el eje r	Cuantitativa/Discreta	
Holl.Ra	Ratio de huecos	Cuantitativa/Discreta	
		Valores Posibles	
Decision			
Class	Tipo de Auto	Bus / Opel / Saab / Van	Cualitativa/Nominal

- 3. Muestre un head de la base.
- > head(base)

	Comp	Circ	D.Circ	Rad.Ra	Pr.Axis.Ra	Max.L.Ra	Scat.Ra	Elong	Pr.Axis.Rect	Max.L.Rect	Sc.Var.Maxis	Sc.Var.maxis
1	95	48	83	178	72	10	162	42	20	159	176	379
2	91	41	84	141	57	9	149	45	19	143	170	330
3	104	50	106	209	66	10	207	32	23	158	223	635
4	93	41	82	159	63	9	144	46	19	143	160	309
5	85	44	70	205	103	52	149	45	19	144	241	325
6	107	57	106	172	50	6	255	26	28	169	280	957

	Ra.Gyr	Skew.Maxis	Skew.maxis	Kurt.maxis	Kurt.Maxis	Holl.Ra	Class
1	184	70	6	16	187	197	van
2	158	72	9	14	189	199	van
3	220	73	14	9	188	196	saab
4	127	63	6	10	199	207	van
5	188	127	9	11	180	183	bus
6	264	85	5	9	181	183	bus

- 4. Borre la variable Class y muestre nuevamente un head de la base.
- > base\$Class=NULL
- > head(base)

Alumno

```
Comp Circ D.Circ Rad.Ra Pr.Axis.Ra Max.L.Ra Scat.Ra Elong Pr.Axis.Rect Max.L.Rect Sc.Var.Maxis Sc.Var.maxis
  95
       48
              83
                     178
                                  72
                                           10
                                                   162
                                                          42
                                                                        20
                                                                                                 176
                                                                                                              379
                                                                                   159
  91
                     141
                                  57
                                                                        19
       41
              84
                                                   149
                                                          45
                                                                                   143
                                                                                                170
                                                                                                              330
 104
       50
             106
                     209
                                  66
                                           10
                                                   207
                                                          32
                                                                        23
                                                                                   158
                                                                                                223
                                                                                                              635
  93
                     159
                                                                        19
                                                                                                              309
       41
              82
                                  63
                                                   144
                                                          46
                                                                                   143
                                                                                                160
  85
       44
              70
                     205
                                 103
                                           52
                                                   149
                                                          45
                                                                        19
                                                                                   144
                                                                                                241
                                                                                                              325
107
             106
                     172
                                  50
                                                   255
                                                                        28
                                                                                                 280
                                                                                                              957
       57
                                                          26
                                                                                   169
```

```
Ra.Gyr Skew.Maxis Skew.maxis Kurt.maxis Kurt.Maxis Holl.Ra
     184
                  70
                                         16
                                                    187
                                                            197
1
                  72
     158
                               9
                                         14
                                                    189
                                                            199
2
     220
                  73
                             14
                                                    188
                                                            196
     127
                  63
                               6
                                                    199
                                                            207
                                         10
     188
                127
                               9
                                         11
                                                    180
                                                            183
                               5
     264
                  85
                                          9
                                                    181
                                                            183
```

- 5. Setee la semilla=8 y realice un Agrupamiento K-means con cantidad de grupos = 3 Indique el código R utilizado.
 - > set.seed(8)
 - > km=kmeans(base,3) # separo en 3 grupos

- 6. Muestre una imagen de los centroides.
- > km\$centers

```
Comp
                         Rad.Ra Pr.Axis.Ra Max.L.Ra Scat.Ra
        Circ
                 D.Circ
```

Elong Pr.Axis.Rect Max.L.Rect Sc.Var.Maxis 1 104.13333 53.11429 102.78095 201.6238 62.00000 9.747619 217.6905 30.64286 24.44762 166.5524 230.6952

2 96.29333 45.06667 88.25333 195.5533 65.40667 8.933333 179.4267 36.65333

21.22000 202.5467 146.9933 18.71605 140.2922 166.1502

3 88.35391 41.23251 71.24486 146.6049 60.41564 7.944444 144.4630 46.70165

```
Ra.Gyr Skew.Maxis Skew.maxis Kurt.maxis Kurt.Maxis Holl.Ra
 Sc.Var.maxis
1
     703.9905 214.5571
                       72.69048
                                   7.314286
                                             15.74286
                                                        187.9000 196.1810
2
     487.6000 174.9933 69.10667 6.053333 13.64000
                                                       193.7800 200.3133
     311.0844 157.3930 73.39918 6.072016
                                           10.91975
                                                       187.8827 193.9506
```

7. ¿Cuántos elementos quedaron en cada grupo?

> km\$size Grupo 1: 210 [1] 210 150 486 Grupo 2: 150

Grupo 3: 486

8. ¿A qué grupo pertenece el cuarto elemento de la base?

> km\$cluster

```
9 10 ...
3
```

El cuarto elemento pertenece al grupo 3. Otra forma de verlo es:

> km\$cluster[4]

9. Realice un gráfico con dos variables coloreado por los grupos formados.

```
plot(Vehicle$Comp, Vehicle$Circ, col=km$cluster)
points(km$centers[,c("Comp", "Circ")], col=c("black", "red", "green"), pch=8, cex=3)
```


10. ¿Puede determinar alguna característica de alguno de los grupos?

- # en general, los vehiculos del grupo 1(negro) tienen mayor Compacidad y Circularidad
 que los del grupo 3 (verde)
- # las siguientes variables categoricas son mayores en los vehiculos del grupo 1, disminuyen en el grupo 2 y vuelven a disminuir en el grupo 3

Comp	Rad.Ra	Pr.Axis.Rect	Sc.Var.maxis
Circ	Max.L.Ra	Max.L.Rect	Ra.Gyr
D.Circ	Scat.Ra	Sc.Var.Maxis	Kurt.maxis

analizando la variable categorica Compacidad, vemos que las medianas de los 3 grupos estan bien diferenciadas entre si.

Anexo Codigo R

```
library(mlbench)
data(Vehicle)
base=Vehicle
summary(base$Class)
str(base)
#------
head(base)
base$Class=NULL
head(base)
#-----
set.seed(8)
km=kmeans(base,3)
km$centers
km$size
km$cluster[4]
#-----
plot(Vehicle$Comp, Vehicle$Circ, col=km$cluster)
points(km$centers[,c("Comp", "Circ")], col=c("black", "red", "green"), pch=8, cex=3)
boxplot(Vehicle$Comp~km$cluster)
#------
```