Obrada informacija

Analiza multivarijatnih podataka - primjene u financijama

Zvonko Kostanjčar

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Ak. god. 2020./2021.

Creative Commons Imenovanje-Nekomercijalno-Bez prerada 3.0

Danas...

- Uvod
 - Osnove investiranja
 - Vjerojatnosne osnove
 - Osnovne investicijske klase
 - Međupovezanost vrijednosnica
 - Vremenska povezanost povrata
 - Financijski vremenski nizovi
 - Povezanost fundamenata i cijena
- 2 Analiza glavnih komponenti

Indeks tržišta kapitala - težinski prosjek vrijednosti kompanija kojima se trguje na tom tržištu

Tržišta kapitala su iznimno važna! Unatoč tome što se na njih u većini tranzicijskih zemalja gleda kao na kockanje ona su ključni dio svakog gospodarskog sustava!

Investiranje

Investicija: Odricanje (danas) od sredstava (novac) na neko vrijeme kako bi se ostvarili budući povrati koji će kompenzirati investitora za

- Vrijeme na koji su sredstva uložena
- Očekivanu stopu inflacije
- Rizik: nesigurnost budućih isplata

Povrat na investiciju često se naziva i kamata te se može razložiti na tri komponente:

- Vremenska vrijednost novca r_{vrijeme} (godišnje oko 2%)
- Stopa inflacije $r_{inflacija}$
- ullet Premija na rizik $r_{
 m rizik}$

Povrat =
$$(1 + r_{\text{vrijeme}})(1 + r_{\text{inflacija}})(1 + r_{\text{rizik}}) - 1$$

Povrat i rizik

- Početna vrijednost investicije: 100.000 EUR, horizont: 1 godina.
- Investicija A

Scenarij	povrat	vjerojatnost povrata	krajnja vrijed- nost
Optimistični	100%	0.2	200.000
Neutralni	0%	0.6	100.000
Pesimistični	-50%	0.2	50.000

• Investicija B

Scenarij	povrat	vjerojatnost povrata	krajnja vrijed- nost
Optimistični	20%	0.3	120.000
Neutralni	0%	0.6	100.000
Pesimistični	-10%	0.1	90.000

Povrat i rizik

U ovim primjerima povrat je diskretna slučajna varijabla

$$R \sim \left(\begin{array}{cccc} r_1 & r_2 & \dots & r_N \\ p_1 & p_2 & \dots & p_N \end{array}\right)$$

- \bullet Očekivani povrat investicije $E(R) = \sum_{i=1}^N r_i p_i$
- Rizik investicije $STD(R) = \sqrt{\sum_{i=1}^{N} p_i (r_i E(r_i))^2}$
- Koliki su očekivani povrati i rizici investicije A i B?
- Koju investiciju odabrati?
- Općenito se povrat modelira s neprekidnom slučajnom varijablom s odgovarajućom gustoćom
- Očekivani povrat i rizik se onda modeliraju kao očekivanje i standardna devijacija te slučajne varijable

Funkcija distribucije

Neprekidna slučajna varijabla

Neka je $(\Omega, \mathfrak{F}, P)$ vjerojatnosni prostor. Preslikavanje $X: \Omega \to \mathbb{R}$ nazivamo slučajna varijabla ako je za svaki $x \in \mathbb{R}$ skup $\{\omega \in \Omega: X(\omega) < x\}$ događaj, dakle element od \mathfrak{F} .

Funkcija distribucije slučajne varijable

Neka je (Ω,\mathfrak{F},P) vjerojatnosni prostor te neka je $X:\Omega\to\mathbb{R}$ slučajna varijabla. Funkcija $F=F_X:\mathbb{R}\in[0,1]$ definirana formulom

$$F(x) = F_X(x) = P(X < x), x \in \mathbb{R},$$

zove se funkcija distribucije slučajne varijable X.

Funkcija gustoće

Funkcija gustoće slučajne varijable

Slučajna varijabla $X:\Omega\to\mathbb{R}$ je neprekidna slučajna varijabla ako postoji funkcija $f=f_X:\mathbb{R}\to[0,\infty]$ takva da vrijedi

$$F_X(x) = \int_{-\infty}^x f_X(t)dt, \forall x \in \mathbb{R}$$

i f_X se zove vjerojatnosna funkcija gustoće.

Egzistencija i zadavanje neprekidne slučajne varijable

Svaka funkcija gustoće neprekidne slučajne varijable ima svojstva

$$f(x) \geq 0, \forall x \in \mathbb{R}$$
 te $\int_{-\infty}^{\infty} f(x) dx = 1.$

Vrijedi i obrat.

Očekivanje

Neka je $X:\Omega\to\mathbb{R}$ neprekidna slučajna varijabla s funkcijom gustoće f_X . Ako integral $\int_{-\infty}^\infty |x|f_X(x)dx$ postoji, tada kažemo da slučajna varijabla ima matematičko očekivanje i definiramo

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Varijanca

Neka je $X:\Omega\to\mathbb{R}$ neprekidna slučajna varijabla s funkcijom gustoće f_X . Ako integral $\int_{-\infty}^\infty x^2 f_X(x) dx$ postoji, tada kažemo da slučajna varijabla ima varijancu i definiramo

$$Var(X) = E\left((X - E(X))^2\right).$$

Funkcija gustoće povrata

Osnovne investicijske klase

- Instrumenti fiksnog prinosa (obveznice)
 - suštinski slično kreditu
 - ugovorena dinamika isplata investitoru
- Dionice
 - vlasnički udjel u trgovačkom društvu
 - prihod od dividende i/ili kapitalne dobiti
- Nekretnine
 - vlasnički udjel u stambenom/poslovnom objektu ili zemlji
 - prihod od najma i/ili kapitalne dobiti
- Izvedenice
 - vrijednost im ovisi o nekom drugom financijskom instrumentu
 - opcije, unaprijedni ugovori, swapovi, itd
- Alternativna ulaganja
 - venture investicije, umjetnine, collectibles
 - niska likvidnost

Investicijske klase

Risk

Kovarijacija

Neka su $X,Y:\Omega\to\mathbb{R}$ slučajne varijable koje imaju varijancu, tada se njihova kovarijacija definirana s

$$Cov(X,Y) = E((X - EX)(Y - EY)).$$

Svojstva očekivanja i varijance

Neka su $X,Y:\Omega\to\mathbb{R}$ neprekidne slučajne varijable koje imaju očekivanje, odnosno varijancu. Tada vrijedi

$$E(aX + bY) = aE(X) + bE(Y).$$

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y).$$

Portfelj

Portfelj je linearna kombinacija investicija, čiji povrat je dan s

$$R_p = \sum_{i=1}^{N} w_i R_i, \sum_{i=1}^{N} w_i = 1,$$

gdje je R_i povrat i-te investicije, a w_i udjel i-te investicije.

Očekivani povrat portfelja

$$E(R_p) = \sum_{i=1}^{N} w_i E(R_i)$$

Rizik portfelja (standardna devijacija)

$$STD(R_p) = \sqrt{\sum_{i=1}^{N} w_i^2 Var(R_i) + \sum_{i,j=1, i \neq j}^{N} w_i w_j Cov(R_i, R_j)}$$

Pearsonov koeficijent korelacije

Neka su $X,Y:\Omega\to\mathbb{R}$ slučajne varijable koje imaju varijance σ_X^2,σ_Y^2 , tada je njihov Pearsonov koeficijent korelacije dan s

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Svojstva koeficijenta korelacije

Neka je ρ koeficijent korelacije slučajnih varijabli X i Y. Tada je $\rho \in [-1,1]$ te vrijedi:

- $\rho=0$ slučajne varijable X i Y nisu linearno povezane (kažemo da su nekorelirane)
- $\rho=1$ slučajne varijable su pozitivno korelirane i postoji linearna veza između njih
- $\rho=-1$ slučajne varijable su negativno korelirane i postoji linearna veza između njih

Svojstva varijance aritmetičke sredine slučajnih varijabli

Neka su X_i slučajne varijable koje imaju varijancu te neka je $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$. Tada vrijedi

lacktriangle ako su varijable X_i nekorelirane

$$Var(Y) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \left(\frac{1}{n}\right)^2 \sum_{i=1}^{n}X_i = \frac{Var(X)}{n}$$

 $oldsymbol{0}$ ako su varijable korelirane s prosječnom korelacijom ho

$$Var(Y) = \frac{Var(X)}{n} + \frac{n-1}{n}\rho Var(X)$$

Markowitzev model, Nobelova nagrada 1990.

- Harry Markowitz utjecajan ekonomist na Rady school of Managment i na University of California, San Diego.
- Ključni doprinosi
 - pokazao je da vrijedi diverzificirati
 - 2 pokazao je kako optimizirati portfelj

Moderna teorija portfelja

Optimizacijski problem

- minimiziraj $\sum_{i,j=1}^N w_i w_j Cov(R_i,R_j)$, s obzirom na $\sum_{i=1}^N w_i E(R_i) = E(R_p)$, $\sum_{i=1}^N w_i = 1$

Primjer

	Dionica A		Dionica B		Kovarijanca
Vrijeme	R ₁	(R _{1i} - E(R ₁)) ²	R ₂	(R _{2i} -E(R ₂)) ²	$[R_{1i}-E(R_1)][R_{2i}-E(R_2)]$
sij. 2014.	-2,0%	0,1%	-3,0%	0,3%	0,16%
vlj. 2014.	6,4%	1,3%	8,5%	0,4%	0,34%
ožu. 2014.	13,8%	1,6%	5,8%	0,1%	0,47%
tra. 2014.	-1,9%	0,1%	8,1%	0,4%	-0,18%
svi. 2014.	3,4%	0,1%	-2,6%	0,2%	-0,11%
lip. 2014.	9,9%	0,8%	1,9%	0,0%	-0,01%
srp. 2014.	-5,2%	0,4%	-1,2%	0,1%	0,21%
kol. 2014.	-18,0%	3,6%	-5,0%	0,5%	1,37%
ruj. 2014.	-10,3%	1,3%	7,7%	0,3%	-0,64%
lis. 2014.	17,0%	2,5%	1,0%	0,0%	-0,17%
stu. 2014.	4,8%	0,1%	5,8%	0,1%	0,14%
pro. 2014.	-4,1%	0,3%	-2,1%	0,2%	0,22%
Očekivani prinos	1,16%		2,08%		
St. dev.		10,11%		4,91%	
Kovarijanca					0,16%
Koeficijent korelacije					32,96%

Primjer - mogući portfelji

Normalizirana autokorelacijska funkcija

Neka je $\{X_i, i=1,\ldots,T\}$ niz jednako distribuiranih slučajnih varijabli koje imaju očekivanje μ i varijancu σ^2 . Normalizirana autokorelacijska funkcija definirana je izrazom

$$f_X(\tau) = \frac{Cov(X_t, X_{t+\tau})}{\sigma^2}$$

Normalizirana autokorelacijska funkcija povrata

Normalizirana autokorelacijska funkcija apsolutnih povrata

Financijski signali ili financijski vremenski nizovi

- Cijene financijskih instrumenata
 - cijene dionica
 - cijene obveznica
 - cijene opcija
 - ▶ itd
- Makroekonomske varijable
 - kamatne stope
 - tečajne liste (valute)
 - bruto domaći proizvod (BDP)
 - ▶ itd
- Podatci o kompanijama
 - zarada
 - promet
 - ▶ dug
 - ▶ itd

Odnos cijene i zarade

(a) Logaritam S&P 500 indeksa i logaritam odgovarajućih zarada

(b) P/E za S&P 500

Odnos cijene i zarade

Danas...

- Uvod
 - Osnove investiranja
 - Vjerojatnosne osnove
 - Osnovne investicijske klase
 - Međupovezanost vrijednosnica
 - Vremenska povezanost povrata
 - Financijski vremenski nizovi
 - Povezanost fundamenata i cijena
- 2 Analiza glavnih komponenti

Analiza glavnih komponenti bavi se objašnjavanjem kovarijancijske strukture skupa varijabli s nekoliko linearnih kombinacija tih varijabli

Glavni ciljevi analize glavnih komponenti su:

- redukcija dimenzionalnosti
- interpretacija

Algebarski, glavne komponente su određene linearne kombinacije slučajnih varijabli X_1,\ldots,X_p

Geometrijski, te linearne kombinacije predstavljaju nove koordinatne osi dobivene rotacijom originalnog sustava s X_1,\ldots,X_p kao originalnim osima.

Neka je $X'=[X_1,\ldots,X_p]$ slučajni vektor s kovarijacijskom matricom Σ sa svojstvenim vrijednostima $\lambda_1\geq \lambda_2\geq \ldots \lambda_p\geq 0$. Razmatramo linearne kombinacije:

$$Y_1 = a_1'X = a_{11}X_1 + a_{12}X_2 + \dots a_{1p}X_p$$
$$Y_2 = a_2'X = a_{21}X_1 + a_{22}X_2 + \dots a_{2p}X_p$$

$$Y_p = a'_p X = a_{p1} X_1 + a_{p2} X_2 + \dots a_{pp} X_p$$

Očigledno vrijedi:

$$Var(Y_i) = a'_i \Sigma a_i, i = 1, 2, \dots, p$$
$$Cov(Y_i, Y_k) = a'_i \Sigma a_k, i, k = 1, 2, \dots, p$$

Glavne komponente su one nekorelirane linearne kombinacije Y_1, \ldots, Y_p čije varijance su najveće moguće.

Analiza glavnih komponenti - zadatak

Prva glavna komponenta = linearna kombinacija $a_1^\prime X$ koja

maksimizira
$$Var(a'_1X)$$
, uz uvjet $a'_1a_1=1$

Druga glavna komponenta = linearna kombinacija $a_2^\prime X$ koja

maksimizira
$$Var(a_2'X),$$
 uz uvjete $a_2'a_2=1, Cov(a_1'X,a_2'X)=0$

Glavne komponente

Neka je Σ kovarijacijska matrica pridružena slučajnom vektoru $X'=[X_1,\ldots X_p]$. Neka Σ ima parove vlastitih vrijednosti i vlastitih vektora $(\lambda_1,e_1),\ldots,(\lambda_p,e_p)$, pri čemu vrijedi $\lambda_1\geq \lambda_2\geq \ldots \lambda_p\geq 0$. Tada je i-ta glavna komponenta dana s

$$Y_i = e_i' X = e_{i1} X_1 + \dots e_{ip} X_p, i = 1, \dots, p,$$

te vrijedi

$$Var(Y_i) = e'_i \Sigma e_i = \lambda_i$$
$$Cov(Y_i, Y_k) = e'_i \Sigma e_k = 0, i \neq k$$

Ako su neki λ_i jednaki, rastav nije jedinstven.

Glavne komponente - dekompozicija varijance

Neka je Σ kovarijacijska matrica pridružena slučajnom vektoru $X'=[X_1,\ldots X_p]$. Neka Σ ima parove vlastitih vrijednosti i vlastitih vektora $(\lambda_1,e_1),\ldots,(\lambda_p,e_p)$, pri čemu vrijedi $\lambda_1\geq \lambda_2\geq \ldots \lambda_p\geq 0$. Neka su $Y_1=e_1'X,Y_2=e_2'X,\ldots,Y_p=e_p'X$ glavne komponente. Tada za ukupnu varijancu vrijedi

$$\sigma_{11}^2 + \sigma_{22}^2 + \dots + \sigma_{pp}^2 = \sum_{i=1}^p Var(X_i) = \lambda_1 + \dots + \lambda_p = \sum_{i=1}^p Var(Y_i)$$

Glavne komponente - korelacije

Neka je Σ kovarijacijska matrica pridružena slučajnom vektoru $X'=[X_1,\ldots X_p]$. Neka Σ ima parove vlastitih vrijednosti i vlastitih vektora $(\lambda_1,e_1),\ldots,(\lambda_p,e_p)$, pri čemu vrijedi $\lambda_1\geq \lambda_2\geq \ldots \lambda_p\geq 0$. Neka su $Y_1=e_1'X,Y_2=e_2'X,\ldots,Y_p=e_p'X$ glavne komponente. Tada je koeficijent korelacije između glavne komponente Y_i i slučajne varijable X_k dan s

$$\rho_{Y_i,X_k} = \frac{e_{ik}\sqrt{\lambda_i}}{\sigma_{kk}}, i, k = 1, 2, \dots, p$$

Analiza glavnih komponenti - primjer

Glavne komponente - primjer 1

Pretpostavimo da slučajne varijable X_1, X_2 i X_3 imaju kovarijacijsku matricu

$$\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- Odredite svojstvene vrijednosti i svojstvene vektore matrice
- Odredite glavne komponente
- Provjerite svojstvo dekompozicije varijance

Analiza glavnih komponenti - standardizirane varijable

Glavne komponente možemo dobiti iz standardiziranih varijabli

$$Z_1 = \frac{X_1 - \mu_1}{\sigma_{11}}$$

$$Z_2 = \frac{X_2 - \mu_2}{\sigma_{22}}$$

$$\vdots$$

$$Z_p = \frac{X_p - \mu_p}{\sigma_{rm}}$$

U matričnoj formi to se može zapisati

$$Z = (V^{\frac{1}{2}})^{-1}(X - \mu),$$

gdje je $V^{\frac{1}{2}}$ dijagonalna matrica standardnih devijacija. Očigledno vrijedi E(Z)=0 i

$$Cov(Z) = (V^{\frac{1}{2}})^{-1} \Sigma (V^{\frac{1}{2}})^{-1} = C,$$

gdje je C korelacijska matrica slučajnog vektora X.

Glavne komponente - korelacije

Neka je i-ta glavna komponenta standardiziranih varijabli $Z'=[Z_1,\ldots,Z_p]$ s kovarijacijskom matricom Cov(Z)=C, dana s

$$Y_i = e_i' Z = e_i' (V^{\frac{1}{2}})^{-1} (X - \mu), i = 1, 2, \dots, p$$

Tada vrijedi,

$$\sum_{i=1}^{p} = Var(Y_i) = \sum_{i=1}^{p} = Var(Z_i) = p,$$

i

$$\rho_{Y_i,Z_k} = e_{ik}\sqrt{\lambda_i}, i, k = 1, \dots, p.$$

U tom slučaju $(\lambda_1,e_1),(\lambda_2,e_2),\ldots,(\lambda_p,e_p)$ su parovi svojstvenih vrijednosti i svojstvenih vektora matrice ρ , uz $\lambda_1\geq \lambda_2\geq \ldots \lambda_p\geq 0$

Analiza glavnih komponenti - posebne strukture

Primjer 1 - dijagonalna struktura

Neka je kovarijacijska matrica dijagonalna

$$\Sigma = \begin{bmatrix} \sigma_{11} & 0 & \dots & 0 \\ 0 & \sigma_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_{pp} \end{bmatrix}$$

- i-ta svojstvena vrijednost i svojstveni vektor dani su s (σ_{ii}, e_i) , gdje je $e_i' = [0, \dots, 0, 1, 0 \dots, 0]$
- Skup glavnih komponenti je originalni (polazni) skup nekoreliranih slučajnih varijabli
- Standardizacija vodi do suštinski istog rezultata

Analiza glavnih komponenti - posebne strukture

Primjer 2 - jednake korelacije

Neka je kovarijacijska matrica $(\rho > 0)$

$$\Sigma = \begin{bmatrix} \sigma^2 & \rho \sigma^2 & \dots & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 & \dots & \rho \sigma^2 \\ \vdots & \vdots & \vdots & \vdots \\ \rho \sigma^2 & \rho \sigma^2 & \dots & \sigma^2 \end{bmatrix}$$

Tada je korelacijska matrica

$$C = \begin{bmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & \vdots & \vdots \\ \rho & \rho & \dots & 1 \end{bmatrix}$$

Analiza glavnih komponenti - posebne strukture

- Tada je najveća svojstvena vrijednost $\lambda_1=1+(p-1)\rho$, s pridruženim svojstvenim vektorom $e_1'=[\frac{1}{\sqrt{p}},\frac{1}{\sqrt{p}},\dots,\frac{1}{\sqrt{p}}]$
- Ostale svojstvene vrijednosti su $\lambda_2=\lambda_3=\ldots=\lambda_p=1-\rho$ s pripadnim svojstvenim vektorima

$$e'_{i} = \left[\frac{1}{\sqrt{(i-1)i}}, \dots, \frac{1}{\sqrt{(i-1)i}}, \frac{-(i-1)}{\sqrt{(i-1)i}}, 0, \dots, 0\right]$$

- Prva glavna komponenta je $Y_1=e_1'Z_1=\frac{1}{\sqrt{p}}\sum_{i=1}^p Z_i$ proporcionalna zbroju p standardiziranih varijabli (često se naziva indeks jednakih težina)
- Prva glavna komponenta objašnjava $\frac{\lambda_1}{p}=\rho+\frac{1-\rho}{p}$ proporciju ukupne varijance.