Discipline : Computer Science and Engineering

Paper Code: Paper Name: DATA MINING & KNOWLEDGE DISCOVERY

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

					Group -	- B			
2	a) Define the mathematical model for Naïve Bayes Classifier.								4 + 8 =
	b) The following table provides the data of a set of officers. Use Naïve Bayes								12
	classifier to classify an officer's gender who is blue-eyed, over 170cm tall and								
	has long hair.								
	SI Over Eye Hair Gender No 170CM length								
		1	No		Blue	Short	Male		
		2	Yes		Brown	Long	Female		
		3 No Blue Long Female							
		4 No Blue Long Female							
		5 Yes Brown Short Male							
		6	No		Blue	Long	Female		
		7	Yes		Brown	Short	Female		
		8	Yes		Blue	Long	Male		
3	a) Write the	k-NN (k neares	st neigh	nbour) ale	gorithm to c	lassify a set	of data	4 + 8 =
		a) Write the k-NN (k nearest neighbour) algorithm to classify a set of data points having <i>n</i> features belonging to <i>m</i> classes.							12
	•	b) Consider the following training set in the 2-dimensional Euclidean space:							
	,	Χ	у	Clas				•	
		-1	1	1					
		0	1	2					
		0	2	1					
		1	-1	1					
		1	0	2					
		1	2	2					
		2	2	1					
		2	3	2					
	(i) What is the prediction of the 3-nearest-neighbor classifier at the point (1,1)?								
	(ii) What is the prediction of the 5-nearest-neighbor classifier at the point (1,1)?								
	(iii) What is the prediction of the 7-nearest-neighbor classifier at the point (1,1)?								
	Note: Show the computations.								

	Please do not write questions below this line
Paper setter:	
Moderator :	

Discipline : Computer Science and Engineering

Paper Code: Paper Name: DATA MINING & KNOWLEDGE DISCOVERY

	Group - C								
4									
	Consider the following set of training examples:								
	Instance Classification A1 A2								
		1	+	Τ	Τ				
		2	+	Т	Т				
	;	3	-	Τ	F				
			+	F	F				
	<u> </u>	5	-	F	Т				
		6	-	F	Т				
5	What are the information gains of a1 and a2 relative to these training examples? Provide the equation for calculating the information gain as well as the intermediate results. a) Write short notes on any two of the followings:								
	l a) write		e and feature s		ilowings.		4 X 2 + 4 = 12		
	II.	Support ve		Juoo			- 12		
	III.		Support Vector	Mach	ine				
	b) Suppose a support vector machine for separating pluses from minuses								
	finds a plus support vector at the point x_1 = (1, 0), a minus support vector at								
	x_2 = (0, 1). You are to determine values for the classification vector w and								
	the threshold value b.								
ī	Group – D								
6	` '				•	ent pattern mining.	3+ 4 + 5 = 12		
	A market basket dataset is given in the following table								
		Customer	Transaction	Ito	ms				
		ID	ID		ught				
		1	0001		, d, e}				
		1	0024		, b, c, e}				
		2	0012		, b, d, e}				
		2	0031		, c, d, e}				
		3	0015		, c, e}				
		3	0022		, d, e}				
		4	0029		, d}				
		4	0040		, b, c}				
		5	0033		, d, e}				
	5 0038 {a, b, e}								
						<u> </u>			
					, {b, d} a	nd {b, d, e} by treating each			
	transaction ID as a market basket.								

Please do not write questions below this line

Paper setter:			
---------------	--	--	--

Moderator: Page 2

Discipline : Computer Science and Engineering

Paper Code: Paper Name: DATA MINING & KNOWLEDGE DISCOVERY

	(c) Use the results in part (b) to compute the confidence for the association							
	rules $\{b, d\} \rightarrow \{e\}$ and $\{e\} \rightarrow \{b, d\}$. Is confidence a symmetric measure?							
7	Construct the FP-tree for the transaction database provided in question 1 and							
	find all frequ	ient item	-sets using FP-g	rowth approach.	•	12		
			Gr	oup – E				
8	a) Perform	K-means	s clustering on a	II the points in the f	ollowing table, where	8 + 4=		
	K=2. Ra	ndomly s	elect the initial s	eeds and perform	the algorithm for two	12		
	iterations	3.		-	_			
		Points	X co-ordinate	Y co-ordinate				
		p1	1	9				
		p2	2	10				
		р3	7	4				
		p4	10	3				
		p5	5	9				
	p6 7 2							
	p7 3 8							
	p8 4 10							
		p9	8	1				
		p10	9	3				
	b) Describe the major drawbacks of K-means algorithm for clustering.							
9	a) Define Core point, Border Point and Noise point in the perspective of							
	DBSCAN clustering algorithm.							
	b) Describe the DBSCAN Algorithm							
		why DBS	SCAN does not w	ork well for the dat	ta having varying			
	density.							

Please do not write questions below this line

Paper setter:				
---------------	--	--	--	--

Moderator:....

Discipline : Computer Science and Engineering Paper Code: Paper Name: DATA MINING & KNOWLEDGE DISCOVERY Please do not write questions below this line

Page 4

Paper setter:

Moderator:....