Algebra 2 Uni Heidelberg

Mit Liebe gemacht von: Nikolaus Schäfer

Inhaltsverzeichnis

1. Moduin	3
1. Grundlagen über Moduln	5
2. Exakte Folgen	10
3. Noethersche und Artinsche Moduln	13
II. Homologische Algebra	16
4. Kategorien	18
5. Abelsche Kategorien	24
6. Projektive und injektive Moduln	30
7. Komplexe	33
8. Abgeleitete Funktoren	37
9. delta-Funktoren	39
10. Ext und Erweiterungen	41
III. Kommutative Algebra	42
11. Grundlagen	44
12. Lokalisierung	47
13. Tensorprodukt und flache Moduln	50
14. Tor	54
15. Ganze Ringerweiterung und Dimension	56
16. Direkte und projektive Limiten	59
17. Diskrete Bewertungsringe	66

Teil I.

Moduln

In dieser Vorlesung steht die Bezeichnung "Ring" stets für einen (nicht notwendig kommutativen) Ring mit 1. In diesem Kapitel sei R ein Ring

1. Grundlagen über Moduln

Definition 1.0.1. Ein *R*-**Linksmodul** ist eine abelsche Gruppe (M, +) zusammen mit einer Abbildung $R \times M \to M$, $(a, x) \mapsto ax$ (skalare Multiplikation), sodass für alle $a, b \in R$, $x, y \in M$ gilt:

- (a) a(x + y) = ax + ay
- (b) (a+b)x = ax + bx
- (c) a(bx) = (ab)x
- (d) 1x = x

Ein R-Rechtsmodul ist eine abelsche Gruppe (M, +) zusammen mit einer Abbildung $M \times R \to M$, $(x, a) \mapsto xa$, sodass für alle $a, b \in R$, $x, y \in M$ gilt:

- (a') (x + y)a = xa + ya
- (b') x(a+b) = xa + xb
- (c') x(ab) = (xa)b
- (d') x1 = x

Anmerkung: Es bezeichnet R^{op} den zu R entgegengesetzten Ring, d.h. Menge R mit derselben Addition, sowie Multiplikation $a_{\mathrm{op}} \cdot b := b \cdot a$. Ist M ein R-Rechtsmodul, so wird M durch ax := xa zu einem R^{op} -Linksmodul. Beachte: Es ist dann $a(bx) = (bx)a = (xb)a = x(ba) = (ba)x = (a_{\mathrm{op}} \cdot b)x$ für $a, b \in R$, $x, y \in M$. Analog andersherum.

Im Folgenden betrachten wir in der Regel nur R-Linksmoduln, und unter einem R-Modul verstehen wir einen R-Linksmodul

• Forderung (a) impliziert, dass für alle $a \in R$ die Abbildung:

$$\ell_a: M \to M, \ x \mapsto ax$$

zum Ring End(M) aller Gruppenhomomorphismen $M \to M$ gehört.

$$(\min(f+g)(x) = f(x) + g(x), (f \cdot g)(x) := (f \circ g)(x) = f(g(x)) \text{ für } f, g \in End(M), x \in M).$$

Nach (b)-(d) ist die Abbildung $\varphi: R \to End(M), a \mapsto \ell_a$ ein Ringhomomorphismus.

Umgekehrt macht jeder Ringhomomorphismus $\varphi: R \to End(M)$ eine abelsche Gruppe (M,+) zu einem R-Modul via $ax := \varphi(a)(x)$

• Für alle $x \in M$ ist 0x = 0, (-1)x = -x, und für alle $a \in R$ ist a0 = 0 (leicht zu sehen)

Beispiel 1.0.2.

- (a) K Körper. Dann K-Modul = K-Vektorraum
- (b) Jede abelsche Gruppe G ist ein \mathbb{Z} -Modul via

$$\mathbb{Z} \times G \to G, \quad (n, x) \mapsto nx := \begin{cases} \underbrace{x + \dots + x}_{\text{n-mal}} & n > 0 \\ 0 & n = 0 \\ -\underbrace{(x + \dots + x)}_{\text{(-n)-mal}} & n < 0 \end{cases}$$

Für jeden Ring R gibt es genau einen Ringhomomorphismus $\mathbb{Z} \to R$ (analog zu Algebra 1), insbesondere gibt es für jede abelsche Gruppe G genau einen Ringhomomorphismus $\mathbb{Z} \to End(G)$, d.h. genau eine Struktur als \mathbb{Z} -Modul, sodass die Moduladdition mit der gegebenen Addition auf G übereinstimmt (nämlich obige).

Definition 1.0.3. M, M' R-Moduln, $\varphi : M \to M'$

 φ heißt *R*-Modulhomomorphismus (*R*-linear), wenn für alle $x, y \in M$, $a \in R$ gilt:

- (a) $\varphi(x + y) = \varphi(x) + \varphi(y)$
- (b) $\varphi(ax) = a\varphi(x)$

 $Hom_R(M, M')$ bezeichnet die Menge der R-Modulhomomorphismen von M nach M'.

Anmerkung: $Hom_R(M, M')$ ist eine abelsche Gruppe bzgl. (f+g)(x) := f(x) + g(x) für $f, g \in Hom_R(M, M')$

Beispiel 1.0.4. M R-Modul, $\varphi \in Hom_R(M, M) =: End_R(M) \subseteq End_{\mathbb{Z}}(M) = End(M)$

Den Polynomring R[X] kann man wie über kommutativen Ringen definieren, die Einsetzungsabbildung

$$R[X] \to R$$
, $\sum_{i=0}^{n} a_i X^i \mapsto \sum_{i=0}^{n} a_i b^i$ für ein $b \in R$

ist aber im Allgemeinen kein Ringhomomorphismus ("X vertauscht mit Elementen aus R, b im Allgemeinen nicht") Die Abbildung $\psi: R[X] \to End(M)$, $\sum_{i=0}^{n} a_i X^i \mapsto \sum_{i=0}^{n} a_i \varphi^i$, da φ *R*-linear. Somit wird *M* zum R[X]-Modul.

Definition 1.0.5. M, M' R-Moduln, $\varphi : M \to M'$ R-linear

 φ heißt:

Monomorphismus $\Leftrightarrow \varphi$ injektiv (Notation: $M \hookrightarrow M'$)

Epimorphismus $\Leftrightarrow \varphi$ surjektiv (Notation: $M \twoheadrightarrow M'$)

Isomorphismus $\Leftrightarrow \varphi$ bijektiv (Notation: $M \xrightarrow{\sim} M'$)

Existiert ein Isomorphismus zwischen M, M' so heißen M, M' isomorph.

Notation: $M \cong M'$

Anmerkung: φ Isomorphismus $\Rightarrow \varphi^{-1}$ Isomorphismus

Bemerkung 1.0.6. *M*, *M' R*-Moduln. Dann gilt:

- (a) *R* kommutativ $\Rightarrow Hom_R(M, M')$ ist ein *R*-Modul via $(a\varphi)(x) := a\varphi(x)$ für $a \in R$, $\varphi \in Hom_R(M, M')$, $x \in M$
- (b) $End_R(M) = Hom_R(M, M)$ ist ein Unterring von $End(M) = End_{\mathbb{Z}}(M)$
- (c) Die Abbildung $\phi: Hom_R(R,M) \to M, \varphi \mapsto \varphi(1)$ ist ein Isomorphismus abelscher Gruppen (hierbei R in natürlicher Weise als R-Modul). Ist R kommutativ, so ist ϕ ein Isomorphismus von R-Moduln.
- (d) $End_R(R) \cong R^{op}$

Definition 1.0.7. M R-Modul, $N \subseteq M$

N heißt (R-)Untermodul von M, wenn gilt:

- (a) $0 \in N$
- (b) $x + y \in N$ für alle $x, y \in N$
- (c) $ax \in N$ für alle $a \in R$, $x \in N$

Beispiel 1.0.8.

- (a) Betrachte R als R-Linksmodul. Dann sind die Untermoduln von R genau die Linksideale in R. (analog die Rechtsideale für *R* als *R*-Rechtsmodul).
- (b) M R-Modul \Rightarrow {0} (meist kurz als 0 geschrieben), $M \subseteq M$ sind Untermoduln (triviale Untermoduln).

 $(M_i)_{i\in I}$ Familie von Untermodul
n von $M.\Rightarrow\bigcap_{i\in I}M_i\subseteq M$ ist ein Untermodul

 $\sum_{i \in I} M_i := \{ \sum_{i \in I} x_i | x_i \in M_i, x_i = 0 \text{ für fast alle } i \in I \} \subseteq M \text{ ist ein Untermodul}$ (c) M, M' R-Moduln, $\varphi \in Hom_R(M, M')$, $N \subseteq M$ Untermodul, $N' \subseteq M'$ Untermodul

 $\Rightarrow \varphi(N) \subseteq M'$ ist ein Untermodul, $\varphi^{-1}(N') \subseteq M$ ist ein Untermodul.

 $im(\varphi) := \varphi(M)$ heißt das Bild von φ

 $\ker(\varphi) := \varphi^{-1}(\{0\})$ heißt der Kern von φ .

Es gilt: φ injektiv \Leftrightarrow ker $(\varphi) = 0$, φ surjektiv \Leftrightarrow $im(\varphi) = M'$

Bemerkung 1.0.9. *M* R-Modul, $N \subseteq M$ Untermodul

Dann ist die Faktorgruppe M/N via a(x+N) := ax+N, $a \in R$, $x \in M$, ein R-Modul, der **Faktormodul** von M nach N.

Die kanonische Abbildung $\pi: M \to M/N, m \mapsto m+N$ ist ein Modulepimorphismus mit ker $\pi=N$.

Beispiel 1.0.10. $I \subseteq R$ Linksideal, M R-Modul

$$\Rightarrow IM := \{ \sum_{i=1}^{n} a_i x_i | n \in \mathbb{N}, a_i \in I, x_i \in M \} \subseteq M \text{ ist ein Untermodul von } M.$$

Ist I ein zweiseitiges Ideal, dann ist R/I ein Ring.

(beachte: Zweiseitigkeit von I geht ein bei der Wohldefiniertheit der Multiplikation:

$$R/I \times R/I \rightarrow R/I$$
, $(a+I,b+I) \mapsto ab+I$

M/IM ist ein R/I-Modul mittels (a+I)(x+M) := ax + IM $(a \in R, x \in M)$.

Satz 1.0.11. M, M' R-Moduln, $N \subseteq M$ Untermodul, $\pi: M \to M/N$ kanonische Projektion, $\varphi: M \to M'$ R-Modulhomomorphismus. Dann sind äquivalent:

- (i) $N \subseteq \ker \varphi$
- (ii) Es existiert genau ein Modulhomomorphismus $\bar{\varphi}: M/N \to M'$ mit $\bar{\varphi} \circ \pi = \varphi$:

Satz 1.0.12. (Homomorphiesatz)

M, M' R-Moduln, $\varphi : M \to M'$ Homomorphismus

Dann existiert ein *R*-Modulisomorphismus $\bar{\varphi}: M/\ker(\varphi) \xrightarrow{\sim} im\varphi$ mit $\bar{\varphi}(x + \ker\varphi) = \varphi(x)$ für alle $x \in M$

Satz 1.0.13. (Isomorphiesätze) M R-Modul, $N_1, N_2 \subseteq M$ Untermoduln. Dann gilt:

(a)
$$N_1/N_1 \cap N_2 \xrightarrow{\sim} (N_1 + N_2)/N_2$$
, $x + N_1 \cap N_2 \mapsto x + N_2$

ist ein Isomorphismus.

(b) Ist $N_2 \subseteq N_1$, so ist

$$(M/N_2)/(N_1/N_2) \xrightarrow{\sim} M/N_1, (x+N_2)N_1/N_2 \mapsto x+N_1$$

ist ein Isomorphismus.

Satz 1.0.14. M R-Modul, $N \subseteq M$ Untermodul, $\pi : M \to M/N$ kanonische Abbildung. Dann gibt es eine Bijektion:

$$\{ \text{Untermoduln } M' \text{ von } M \text{ mit } M' \supseteq N \} \longrightarrow \{ \text{Untermoduln von } M/N \}$$

$$M' \longmapsto \pi(M')$$

$$\pi^{-1}(L) \longleftrightarrow L$$

die inklusionserhaltend ist.

Bemerkung 1.0.15. $(M_i)_{i \in I}$ Familie von *R*-Moduln

Dann gilt: $\prod_{i \in I} M_i$ ist ein R-Modul mit komponentenweiser Addition und skalarer Multiplikation und heißt das **direkte Produkt** der M_i .

Die Projektionsabbildung $P_j:\prod_{i\in I}M_i\to M_j, (m_i)_{i\in I}\mapsto m_j$ sind R-Modulhomomorphismen.

Satz 1.0.16. (UE Produkt) $(M_i)_{i \in I}$ Familie von *R*-Moduln

Dann gilt: Für jeden R-Modul M ist die Abbildung:

$$Hom_R(M, \prod_{i \in I} M_i) \to \prod_{i \in I} Hom_R(M, M_i), \quad \varphi \mapsto (\varphi_i \circ \varphi)_{i \in I}$$

eine Bijektion, d.h. für jede Familie $(\varphi_i)_{i\in I}$ von R Modulhomomorphismen. $\varphi_i:M\to M_i$ existiert genau ein R-Modulhomomorphismus $\varphi:M\to\prod_{i\in I}M_i$ mit $\varphi_i\circ\varphi=\varphi_i$ für alle $i\in I$ (nämlich der durch $\varphi(x):=(\varphi_i(x))_{i\in I}$)

Definition 1.0.17. $(M_i)_{i \in I}$ Familie von *R*-Moduln

Der Untermodul

$$\bigoplus_{i \in I} M_i := \{ (m_i)_{i \in I} \in \prod_{i \in I} M_i | \text{ fast alle } m_i = 0 \} \subseteq \prod_{i \in I} M_i$$

heißt die **direkte Summe** der M_i .

Die Inklusionsabbildungen $q_j: M_j \to \bigoplus_{i \in I} M_i, x \mapsto (x_i)_{i \in I} \text{ mit } x_i = \begin{cases} x & i = j \\ 0 & \text{sonst} \end{cases}$

sind R-Modulhomomorphismen

Anmerkung: Ist *I* endlich, dann ist $\bigoplus_{i \in I} M_i = \prod_{i \in I} M_i$

Satz 1.0.18. (UE Summe) $(M_i)_{i \in I}$ Familie von *R*-Moduln

Dann gilt: Für jeden R-Modul M ist die Abbildung

$$Hom_R(\bigoplus_{i\in I} M_i, M) \to \prod_{i\in I} Hom_R(M_i, M), \quad \psi \mapsto (\psi \circ q_i)_{i\in I}$$

eine Bijektion, d.h. für jede Familie $(\psi_i)_{i\in I}$ von R-Modulhomomorphismen $\psi_i: M_i \to M$ existiert genau ein R-Modulhomomorphismus $\psi: \bigoplus_{i\in I} M_i \to M$ mit $\psi \circ q_i = \psi_i$ (nämlich der durch $\psi((m_i)_{i\in I}) = \sum_{i\in I} \psi_i(m_i)$ definierte.)

Notation: *I* Indexmenge, *M R*-Modul

$$M^I := \prod_{i \in I} M, M^{(I)} = \bigoplus_{i \in I} M_i, M^r := M^{\{1, \dots, r\}} = M^{(\{1, \dots, r\})}$$

Bemerkung 1.0.19. *M R*-Modul, $(M_i)_{i \in I}$ Familie von Untermoduln von M.

Dann erhalten wir (aus UE \bigoplus mit $\psi_i : M_i \hookrightarrow M$ Inklusionsabbildung) einen *R*-Modulhomomorphismus

$$\psi: \bigoplus_{i\in I} M_i \to M, \quad (m_i)_{i\in I} \mapsto \sum_{i\in I} m_i \quad \text{mit} \quad im(\psi) = \sum_{i\in I} M_i$$

Ist ψ injektiv, so heißt die Summe $\sum_{i \in I} M_i$ direkt, und wir schreiben auch $\bigoplus_{i \in I} M_i$ für $\sum_{i \in I} M_i$

Anmerkung: In dieser Situation von 1.0.19 gilt

- $\sum_{i \in I} M_i$ direkt $\Leftrightarrow \sum_{i \in J} M_i$ direkt für alle endlichen Teilmengen $J \subseteq I$
- $M_1 + M_2 = M_1 \oplus M_2 \Leftrightarrow M_1 \cap M_2 = 0$

Definition 1.0.20. M R-Modul, $x \in M$

Die Abbildung $f_x: R \to M$, $a \mapsto ax$ ist ein R-Modulhomomorphismus, das Linksideal

$$ann_R(x) := \ker(f_x) = \{a \in R | ax = 0\}$$

heißt der **Annulator** von x.

Das Bild $im(f_x) = Rx = \{ax | a \in R\}$ heißt der von x erzeugte Untermodul von M.

Allgemeiner heißt für eine Teilmenge $X \subseteq M$ und N Untermodul mit $X \subseteq N$:

$$RX := < X >_R := \sum_{x \in X} Rx = im(R^{(X)} \rightarrow M) = \bigcap_{X \subseteq N \subseteq M} N$$
$$(a_x)_x \in X \mapsto \sum_{x \in X} a_x X$$

der von X erzeugte Untermodul von M.

Definition 1.0.21. M R-Modul, $(x_i)_{i \in I}$ Familie von Elementen aus $M, \psi : R^{(I)} \to M, (a_i)_{i \in I} \mapsto \sum_{i \in I} a_i x_i (x_i)_{i \in I}$ heißt

Erzeugendensystem von M über $R \Leftrightarrow \psi$ surjektiv $\Leftrightarrow M$ stimmt mit den von $(x_i)_{i \in I}$ erzeugten Untermodul von M überein

linear unabhängig $\Leftrightarrow \psi$ injektiv

Basis von M über $R \Leftrightarrow \psi$ bijektiv

M heißt **endlich erzeugt** \Leftrightarrow M besitzt ein endliches Erzeugendensystem

M heißt **frei** \Leftrightarrow M besitzt eine Basis

Anmerkung:

- Ist R = K ein Körper, so sind alle K-Moduln frei (LA1)
- Im Allgemeinen ist dies jedoch falsch: $\mathbb{Z}/2\mathbb{Z}$ ist eine abelsche Gruppe (= \mathbb{Z} -Modul), die nicht frei als \mathbb{Z} -Modul ist.
- Jeder *R*-Modul *M* ist ein Faktormodul eines freien *R*-Moduls, denn:

$$R^{(M)} \to M$$
, $(a_x)_{x \in M} \mapsto \sum_{x \in M} a_x x$ ist surjektiv

• Basen eines freien R-Moduls können unterschiedliche Länge haben

Satz 1.0.22. A kommutativer Ring, $A \neq 0$, $n_1, n_2 \in N$

Dann gilt: $A^{n_1} \cong A^{n_2} \Rightarrow n_1 = n_2$

Definition 1.0.23. A kommutativer Ring, M freier A-Modul mit endlicher Basis

Die Kardinalität dieser Basis heißt der **Rang** von M. (unabhängig von der Wahl einer endlichen Basis nach 1.22)

2. Exakte Folgen

Definition 2.0.1. Eine **exakte Folge** (**exakte Sequenz**) von *R*-Moduln ist eine Familie $(f_i)_{i \in I}$ von *R*-Modulhomomorphismen. $f_i : M_i \to M_{i+1}$ für ein (endliches oder unendliches) Intervall $I \subseteq \mathbb{Z}$, sodass

$$im(f_i) = \ker f_{i+1}$$
 für alle $i \in I$ mit $i+1 \in I$ gilt

Schreibweise: $\ldots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \ldots$

Eine exakte Folge der Form

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0 \tag{2.1}$$

heißt eine **kurze exakte Folge** (hierbei sind die äußeren Abbildungen die Nullabbildungen.) Die Exaktheit von 2.1 bedeutet explizit:

- f injektiv
- g surjektiv
- im(f) = ker(g)

Anmerkung: M, N, R-Moduln, $f: M \longrightarrow N$ R-Modulhomomorphismus

Falls f injektiv, dann ist $0 \longrightarrow M \xrightarrow{f} N \longrightarrow N/im(f) \longrightarrow 0$ exakt.

Falls f surjective, so ist $0 \longrightarrow \ker(f) \longrightarrow M \xrightarrow{f} N \longrightarrow 0$ exakt.

Ist $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ eine exakte Folge von *R*-Moduln, und setzen wir $N := \ker(g)$, so induziert g einen Isomorphismus $\bar{g} : M/N \xrightarrow{\sim} M''$, und f beschränkt sich zu einen Isomorphismus $f : M' \xrightarrow{\sim} N$.

$$(d.h. \ 0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

$$0 \longrightarrow N \hookrightarrow M \longrightarrow M/N \longrightarrow 0$$

ist ein kommutierendes Diagramm mit exakten Zeilen)

Ist $M'_i \longrightarrow M_i \longrightarrow M''_i$, $i \in I$ eine Familie exakter Folgen von R-Moduln, dann sind auch die Folgen

$$\prod_{i \in I} M'_i \longrightarrow \prod_{i \in I} M_i \longrightarrow \prod_{i \in I} M''_i \text{ sowie } \bigoplus_{i \in I} M'_i \longrightarrow \bigoplus_{i \in I} M_i \longrightarrow \bigoplus_{i \in I} M''_i$$

(mit komp. Abb.) exakt.

Satz 2.0.2.

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

kurze exakte Folge von *R*-Moduln. Dann sind äquivalent:

- (i) Es existiert ein Untermodul $N' \subseteq M$ mit $M = \ker(g) \oplus N' = im(f) \oplus N'$
- (ii) Es existiert ein *R*-Modulhomomorphismus $s: M'' \to M$ mit $g \circ s = id_{M''}$
- (iii) Es existiert ein *R*-Modulhomomorphismus $t: M \to M'$ mit $t \circ f = id_{M'}$

Ist eines dieser äquivalenten Bedingungen erfüllt, sagt man, dass die kurze exakte Folge spaltet. In diesem Fall gilt: $M \cong M' \oplus M''$. Der Homomorphismus s heißt ein **Schnitt** von g.

Satz 2.0.3. $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ exakte Folge von *R*-Moduln, M'' freier *R*-Modul Dann spaltet die obige Folge.

Folgerung 2.0.4. $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ exakte Folge von R-Moduln, M', M'' freie R-Moduln Dann ist auch *M* ein freier *R*-Modul.

Anmerkung: Ist R kommutativ und haben M, M' endliche Basen, dann zeigt der Beweis:

$$rg(M) = rg(M') + rg(M'')$$

Bemerkung 2.0.5. $0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$ exakte Folge von *R*-Moduln.

Dann gilt:

- (a) M endlich erzeugt $\Rightarrow M''$ endlich erzeugt
- (b) M', M'' endlich erzeugt $\Rightarrow M$ endlich erzeugt

Anmerkung: Aus *M* endlich erzeugt folgt im Allgemeinen nicht, dass *M'* endlich erzeugt ist.

Beispiel 2.0.6. *K* Körper, $R = K[X_1, X_2, ...]$

R ist als R-Modul offensichtlich endlich erzeugt (von 1)

Setze $I := \{ f \in R | \text{ konstanter Term von } f \text{ ist } = 0 \}$

Dann ist I ein Ideal in R, aber I ist nicht endlich erzeugt als R-Modul, denn:

Angenommen es existiert $f_1, ..., f_r \in I$ mit $I = \sum_{i=1}^r Rf_i$

$$\Rightarrow \exists n \in \mathbb{N}, \text{ sodass } f_1, \dots, f_r \in K[X_1, \dots, X_r] \subseteq R$$

Problem: $X_{n+1} \notin I$ (denn: andernfalls $X_{n+1} = a_1 f_1 + \ldots + a_r f_r$ mit $a_1, \ldots, a_r \in R$, denn: Setze $X_1 = \ldots = X_n = 0$, $X_{n+1} = 1$, also 1 = 0) $\frac{1}{2}$

11

Bemerkung 2.0.7. M_1, \ldots, M_r *R*-Moduln. Dann sind äquivalent:

- (i) $M = \bigoplus_{i=1}^{r} M_i$ ist endlich erzeugt (ii) M_1, \dots, M_r sind endlich erzeugt

Anmerkung: Ist $M = \bigoplus_{i \in I} M_i$ mit $|I| = \infty$, $M_i \neq 0$ für alle $i \in I$, dann ist M nicht endlich erzeugt, denn:

Für
$$x_1, ..., x_s \in M$$
 existiert ein $J \subsetneq I$ mit $x_1, ..., x_s \in \bigoplus_{j \in J} M_j$, also $\sum_{i=1}^s Rx_i \subseteq \bigoplus_{j \in J} M_j \subsetneq \bigoplus_{i \in I} M_i$

Bemerkung 2.0.8. (Fünferlemma)

kommutatives Diagramm aus R-Moduln mit exakten Zeilen:

 φ_1 surjektiv, φ_2, φ_4 Isomorphismen, φ_5 injektiv.

Dann ist φ_3 ein Isomorphismus.

Anmerkung: Wird meist in der Situation $M_1 = N_1 = M_5 = N_5 = 0$ angewendet

Bemerkung 2.0.9. (Schlangenlemma)

kommutatives Diagramm von R-Modulhomomorphismen mit exakten Zeilen

Dann existiert eine exakte Folge

$$\ker\varphi'\longrightarrow\ker\varphi\longrightarrow\ker\varphi''\xrightarrow{\delta}\operatorname{coker}\varphi'\longrightarrow\operatorname{coker}\varphi\longrightarrow\varphi''$$

wobei δ die sogenannte Übergangsabbildung ist (Konstruktion siehe Beweis) und die restliche Abbildungen durch f', f, g', g induziert sind.

Ist f' injektiv, dann auch $\ker \varphi' \longrightarrow \ker \varphi$ injektiv. Ist g surjektiv, dann auch $\operatorname{coker} \varphi \longrightarrow \varphi''$.

3. Noethersche und Artinsche Moduln

Definition 3.0.1. *M R*-Modul

M heißt noethersch \Leftrightarrow Jeder Untermodul von M ist endlich erzeugt.

Anmerkung: M noethersch $\Rightarrow M$ endlich erzeugt

Beispiel 3.0.2. K Körper, V K-Vektorraum. Dann gilt: V noethersch $\Leftrightarrow V$ endlichdimensional.

Satz 3.0.3. *M*, *R*-Modul. Dann sind äquivalent:

- (i) M noethersch
- (ii) Jede aufsteigende Kette $M_0 \subseteq M_1 \subseteq M_2 \dots$ von Untermoduln wird stationär, d.h. es existiert ein $n \in \mathbb{N}_0$, sodass $M_i = M_n$ für alle $i \ge n$
- (iii) Jede nichtleere Menge von Untermoduln von M enthält ein maximales Element.

Man sagt in diesem Fall auch: Die Untermoduln von M erfüllen die aufsteigende Kettenbedingung.

Bemerkung 3.0.4. $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ exakte Folge von *R*-Moduln

Dann sind äquivalent:

- (i) M noethersch
- (ii) M' und M'' sind noethersch

Bemerkung 3.0.5. M_1, \ldots, M_r *R*-Moduln. Dann sind äquivalent:

- (i) $\bigoplus^r M_i$ noethersch
- i=1(ii) M_1, \ldots, M_r noethersch

Definition 3.0.6. R heißt linksnoethersch (bzw. rechtsnoethersch), wenn R als Links-(bzw. Rechts-) modul über sich selbst noethersch ist. R heißt noethersch, wenn R links- und rechtsnoethersch ist.

Anmerkung: Es gibt Ringe, die rechtsnoethersch, aber nicht linksnoethersch sind (und umgekehrt)

Beispiel 3.0.7.

(a) R Schiefkörper (Divisionsring) (d.h. $R \setminus \{0\}$ ist eine Gruppe bzgl. " ·").

Dann ist R noethersch, denn: Wegen Ra = R = aR für alle $a \in R \setminus \{0\}$ sind die einzigen Linksideale (Rechtsideale) in R durch 0, R gegeben, diese sind endlich erzeugt.

(b) K Körper, $R = K[X_1, X_2, ...]$ ist nicht noethersch nach Bsp. 2.6

Bemerkung 3.0.8. *R* linknoetherscher Ring, *M* endlich erzeugter *R*-Modul

Dann ist M noethersch

Bemerkung 3.0.9. *R* linksnoetherscher Ring, $I \subseteq R$ zweiseitiges Ideal

Dann ist R/I linksnoethersch

Anmerkung: Unterringe noetherscher Ringe sind im Allgemeinen nicht noethersch

Bemerkung 3.0.10. M, N R-Moduln mit $M \cong M \oplus N, N \neq 0$

Dann ist M nicht noethersch.

Satz 3.0.11. *R* linksnoetherscher Ring, $R \neq 0$, $n_1, n_2 \in \mathbb{N}$.

Dann gilt: $R^{n_1} \cong R^{n_2} \Rightarrow n_1 = n_2$

Anmerkung:

- Obiger Satz zeigt, dass der Begriff des Ranges freier Moduln auch für endlich erzeugte freie Moduln über linksnoetherschen Ringen wohldefiniert ist
- Jeder Körper ist linksnoethersch ⇒ Erhalten neuen Beweis für Ergebnis aus LA1

Satz 3.0.12. (Hilbertscher Basissatz)

R linksnoethersch Ring. Dann ist R[X] linksnoethersch

Folgerung 3.0.13.

- (a) R linksnoetherscher Ring $\Rightarrow R[X_1, ..., X_n]$ linksnoethersch
- (b) A, B kommutative Ringe, $\varphi : A \to B$ Ringhomomorphismus, sodass B von $\varphi(A)$ un einer endlichen Menge $\{x_1, \ldots, x_r\}$ als Ring erzeugt wird. Dann gilt:

A noethersch \Rightarrow B noethersch

Definition 3.0.14. *M R*-Modul

M heißt artinsch \Leftrightarrow Für jede absteigende Kette $M_1 \supseteq M_2 \supseteq \ldots$ von Untermoduln von M gibt es ein $n \in \mathbb{N}$ mit $M_i = M_n$ für alle $i \ge n$ (absteigende Kettenbedingung)

Definition 3.0.15. *R* heißt linksartinsch (bzw. rechtsartinsch), wenn *R* als Links- bzw. Rechtsmodul über sich selbst artinsch ist. *R* heißt artinsch, wenn *R* links- und rechtsartinsch ist.

Beispiel 3.0.16.

- (a) Jeder endliche Ring ist artinsch (und noethersch)
- (b) \mathbb{Z} ist kein artinscher Ring, denn $\mathbb{Z} \supseteq 2\mathbb{Z} \supseteq 4\mathbb{Z} \supseteq 8\mathbb{Z} \supseteq \dots$
- (c) M endliches Monoid, K Körper, R = K[M] Monoidring (vgl. Algebra 1- Übungen) $\Rightarrow R$ linksartinsch, denn: K[M] ist ein endlichdimensionaler K-Vektorraum, jeder K[M]-Untermodul von K[M] ist ein K-Vektorraum von K[M]. Ebenso: K[M] rechtsartinsch, d.h. K ist artinsch.

Bemerkung 3.0.17. $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ exakte Folge von *R*-Moduln

Dann sind äquivalent:

- (i) M artinsch
- (ii) M', M'' artinsch

Folgerung 3.0.18. $M_1, ..., M_n$ *R*-Moduln. Dann sind äquivalent:

- (i) $\bigoplus^n M_i$ artinsch
- (ii) M_1, \ldots, M_n sind artinsch

Folgerung 3.0.19. R linksartinscher Ring, M endlich-erzeugter R-Modul. Dann ist M artinsch

Definition 3.0.20. *M R*-Modul

M heißt endlich koerzeugt \Leftrightarrow Für jede Familie $(M_i)_{i \in I}$ von Untermoduln von M mit $\bigcap_{i \in I} M_i = 0$ existiert eine endliche Teilmenge $J \subseteq I$ mit $\bigcap_{i \in J} M_j = 0$.

Anmerkung: $N \subseteq M$ Untermodul. Dann:

• M/N endlich koerzeugt \Leftrightarrow Für jede Familie $(M_i)_{i \in I}$ von Untermoduln von M mit $\bigcap_{i \in I} M_i = N$ existiert eine endliche Teilmenge $J \subseteq I$ mit $\bigcap_{j \in J} M_j = N$

• N endlich erzeugt \Leftrightarrow Für jede Familie $(M_i)_{i \in I}$ von Untermoduln von M mit $\sum_{i \in I} M_i = N$ existiert eine endliche Teilmege $J \subseteq I$ mit $\sum_{j \in J} M_j = N$

Satz 3.0.21. *M R*-Modul. Dann sind äquivalent:

- (i) M ist artinsch
- (ii) Jede nichtleere Menge von Untermoduln von M enthält ein minimales Element
- (iii) Jeder Faktormodul von ${\cal M}$ ist endlich koerzeugt

Teil II. Homologische Algebra

In diesem Kapitel sei R stets ein Ring

4. Kategorien

Definition 4.0.1. Eine Kategorie *C* besteht aus

• einer Klasse ObC von Objekten

einer Menge $Mor_C(A, B)$ von Morphismen für alle $A, B \in ObC$

· einer Verknüpfung

$$\circ: Mor_C(B,C) \times Mor_C(A,B) \longrightarrow Mor_C(A,C)$$

für alle $A, B, C \in ObC$,

wobei folgende Axiome gelten:

(K1) $Mor_C \cap Mor_C(A', B') = \emptyset$, falls $A \neq A'$ oder $B \neq B'$

(K2) Für alle $A, B, C, D \in ObC$, $f \in Mor_C(A, B)$, $g \in Mor_C(B, C)$, $h \in Mor_C(C, D)$ gilt:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 (Assoziativität)

(K3) Für jedes $A \in ObC$ existiert ein Morphismus $id_A \in Mor_C(A, A)$, sodass für alle $B \in ObC$, $f \in Mor_C(A, B)$, $g \in Mor_C(B, A)$ gilt: $f \circ id_A = f$, $id_A \circ g = g$

Anmerkung:

- Man sagt "Klasse" statt Menge, um Paradoxien wie die "Menge aller Mengen" zu vermeiden. Trotzdem schreiben wir *A* ∈ *ObC*, um zu sagen, dass *A* zu *ObC* gehört (und werden *ObC* im Folgenden wie eine Menge behandeln).
- In den folgeden Abschnitten werden wir mengentheoretisch Probleme ignorieren und häufig von Mengen sprechen, auch wenn es sich nur um Klassen handelt
- Für $f \in Mor_C$ schreiben wir auch $f: A \to B$. A heißt Quelle und B heißt Ziel von f; wegen (K1) sind diese eindeutig bestimmt.
- Für $A \in ObC$ ist id_A eindeutig bestimmt (analoges Argument wie bei Monoiden: $id_A = id_A' \circ id_A = id_A'$)

Beispiel 4.0.2. • Mengen: Kategorie der Mengen mit Abbildungen von Mengen als Morphismen

- Ringe: Kategorie der Ringe mit Ringhomomorphismen als Morphismen
- R-Modul: Kategorie der R-(Links)-Moduln mit R-Modulhomomorphismen als Morphismen
- Topologien: Kategorien der topologischen Räume mit stetigen Abbildungen als Morphismen
- $ObC = \{*\}$, $Mor_C(*,*) := M$, wobei M Monoid, $\circ = Verknüpfung$ in M.

Definition 4.0.3. C Kategorie. Die zu C duale Kategorie C^{op} ist die Kategorie mit

• $ObC^{op} = ObC$

- $Mor_{C^{op}}(A, B) := Mor_C(B, A)$ für $A, B \in ObC^{op} = ObC$
- $\circ_{op}Mor_{C^{op}}(A,B) \times Mor_{C^{op}}(B,C) \longrightarrow Mor_{C^{op}}(A,C), (f,g) \longmapsto f \circ g \text{ für } A,B,C \in ObC$

Anmerkung:

- Übergang von C zu $C^{op} =$ Pfeile umdrehen
- $(C^{op})^{op} = C$

Definition 4.0.4. C, \mathcal{D} Kategorien

Ein (kovarianter) Funktor $F: C \to \mathcal{D}$ besteht aus einer Abbildung

$$ObC \longrightarrow Ob\mathcal{D}, A \longmapsto FA$$

und Abbildungen

$$Mor_{\mathcal{C}}(A,B) \longrightarrow Mor_{\mathcal{D}}(FA,FB), f \longmapsto F(f)$$

für alle $A, B \in ObC$, sodass gilt:

- **F1**) $F(g \circ f) = F(g) \circ F(f)$ für alle $f \in Mor_C(A, B), g \in Mor_C(B, C), A, B, C \in ObC$
- **F2**) $F(id_A) = id_{FA}$ für alle $A \in ObC$

Beispiel 4.0.5.

- (a) Vergiß-Funktoren, z.B. R-Mod \rightarrow Mengen, R-Mod $\rightarrow \mathbb{Z}$ -Mod, ...
- (b) C Kategorie \Rightarrow Jedes Objekt $X \in ObC$ induziert einen Funktor

$$Mor_C(X, -): C \longrightarrow Mengen, A \longmapsto Mor_C(X, A)$$

Für $f \in Mor_C(A, B)$ ist hierbei $f_*^X := Mor_C(X, -)(f)$ gegeben durch

Therefore
$$f_*^X := Mor_C(X, -)(f)$$
 gegenerical archives $f_*^X : Mor_C(X, A) \longrightarrow Mor_C(X, B), \quad g \longmapsto f \circ g$
$$X \xrightarrow{g} A$$

$$\downarrow f$$

$$B$$

- (c) $M \in R$ -Mod
- $\Rightarrow Hom_R(M, -) : R\text{-Mod} \rightarrow \mathbb{Z}\text{-Mod}, N \mapsto Hom_R(M, N)$ ist ein Funktor

Definition 4.0.6. C, \mathcal{D} Kategorien Ein kontravarianter Funktor F von C nach \mathcal{D} ist ein Funktor $F: C^{op} \to \mathcal{D}$, d.h. besteht aus einer Abbildung

$$ObC \longrightarrow Ob\mathcal{D}, A \longmapsto FA$$

und Abbildungen

$$Mor_{\mathcal{C}}(A, B) \longrightarrow Mor_{\mathcal{D}}(FB, FA), f \longmapsto F(f)$$

für alle $A, B \in ObC$, sodass gilt:

- **(F1')** $F(g \circ f) = F(f) \circ F(g)$ für $f \in Mor_C(A, B), g \in Mor(B, C), A, B, C \in ObC$
- **(F2')** $F(id_A) = id_{FA}$ für alle $A \in ObC$

Beispiel 4.0.7.

(a) C Kategorie \Rightarrow Jedes Objekt $Y \in ObC$ induziert einen kontravarianten Funktor

$$Mor_C(-,Y): C \longrightarrow Mengen, A \longmapsto Mor_C(A,Y)$$

Für $f \in Mor_C(A, B)$ ist $f_Y^* := Mor_C(-, Y)(f)$ gegeben durch

$$f_Y^*: Mor_C(B,Y) \longrightarrow Mor_C(A,Y), \ g \longmapsto g \circ f$$

$$A \xrightarrow{f_Y^*(g)} Y$$

$$f \downarrow g$$

(b) $N \in R$ -Mod

 $\Rightarrow Hom_R(-,N): R\text{-Mod} \to \mathbb{Z}\text{-Mod}, M \mapsto Hom_R(M,N)$

ist ein kontravarianter Funktor.

Anmerkung:

- Sind $F: C \to \mathcal{D}, G: \mathcal{D} \to \mathcal{E}$ Funktoren, so ist auf naheliegende Weise der Funktor $G \circ F: C \longrightarrow \mathcal{E}$
- · Unter Funktoren werden kommutative Diagramme auf kommutativen Diagrammen abgebildet

Definition 4.0.8. C, \mathcal{D} Kategorien

Das Produkt $C \times D$ ist diejenige Kategorie mit

 $Ob(C \times D) = ObC \times Ob\mathcal{D}, Mor_{C \times \mathcal{D}}((A_1, B_1), (A_2, B_2)) = Mor_C(A_1, A_2) \times Mor_{\mathcal{D}}(B_1, B_2)$ und "komponentenweisem \circ "

Definition 4.0.9. C, D, \mathcal{E} Kategorien

Ein Bifunktor F "von C kreuz \mathcal{D} nach \mathcal{E} " ist ein Funktor $F: C \times \mathcal{D} \to \mathcal{E}$

Beispiel 4.0.10.

- (a) \bigoplus : R-Mod $\times R$ -Mod \to R-Mod, $(M, N) \mapsto M \oplus N$ ist ein Bifunktor.
- (b) C Kategorie \Rightarrow $C^{op} \times C \rightarrow \text{Mengen}$, $(M, N) \mapsto Mor_C(M, N)$ ist ein Bifunktor.

Definition 4.0.11. C Kategorie, $A, B \in ObC$, $f : A \rightarrow B$

f heißt Monomorphismus \Leftrightarrow Für alle $C \in ObC$, $g_1, g_2 : C \to A$ gilt: $f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2$ \Leftrightarrow Für alle $C \in ObC$ ist $f_*^C : Mor_C(C, A) \to Mor_C(C, B)$ injektiv f heißt Epimorphismus \Leftrightarrow Für alle $C \in ObC$, $g_1, g_2 : B \to C$ gilt: $g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2$ \Leftrightarrow Für alle $C \in ObC$ ist $f_C^* : Mor_C(B, C) \to Mor_C(A, C)$ injektiv

f heißt Isomorphismus \Leftrightarrow Es existiert ein $g: B \to A$ mit $f \circ g = id_B$ und $g \circ g = id_A$

Anmerkung: In der Situation von 4.0.11 gilt:

- f Monomorphismus in $C \Leftrightarrow f$ Epimorphismus in C^{op}
- f Isomorphismus in $C \Leftrightarrow f$ Isomorphismus in C^{op}
- Ist f ein Isomorphismus und $g: B \to A$ mit $f \circ g = id_B$ und $g \circ f = id_A$, dann ist g eindeutig bestimmt (und wird mit f^{-1} bezeichnet) denn:

$$g_1, g_2: B \to A$$
 mit dieser Eigenschaft $\Rightarrow g_1 = g_1 \circ id_B = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = id_A \circ g_2 = g_2$

Bemerkung 4.0.12. C Kategorie, $A, B \in ObC$, $f : A \rightarrow B$ Isomorphismus

Dann ist f ein Monomorphismus und ein Epimorphismus

Anmerkung: Die Umkehrung von 4.0.12 ist im Allgemeinen falsch, siehe nächstes Bsp.

Beispiel 4.0.13.

(a) Sei C = Top die Kategorie der topologischen Räume mit stetigen Abbildungen

Wir betrachten $id: (\mathbb{R}, \text{ diskrete Topologie}) \to (\mathbb{R}, \text{ Standardtopologie})$. Dies ist eine stetige Abbildung, Monomorphismus und Epimorphismus, aber kein Isomorphismus (kein stetiges Inverses)

(b) Sei $C = \text{Ringe}, f : \mathbb{Z} \hookrightarrow \mathbb{Q}$ Inklusion

f ist ein Monomorphismus und Epimorphismus

(denn: Für $g_1, g_2 : \mathbb{Q} \to R$ Ringhomomorphismus in einen Ring R mit $g_1 \circ f = g_2 \circ f$, d.h. $g_1|_{\mathbb{Z}} = g_2|_{\mathbb{Z}}$ folgt $g_1 = g_2$ wegen universeller Eigenschaft \mathbb{Q} als Quotientenkörper von \mathbb{Z})

aber kein Isomorphismus.

Insbesondere ist ein Epimorphismus in C im obigen Sinne ("kategorieller Epimorphismus") nicht dasselbe wie ein surjektiver Ringhomomorphismus.

Definition 4.0.14. C, \mathcal{D} Kategorien, F, G: $C \to \mathcal{D}$ Funktoren

Eine natürliche Transformation t von F nach G (Bez.: $t:F\Rightarrow G$) ist eine Familie $(t_A)_{A\in ObC}$ von Morphismen $t_A\in Mor_{\mathcal{D}}(FA,GA)$, sodass

$$FA \xrightarrow{t_A} GA$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$FB \xrightarrow{t_B} GB$$

für alle $A, B \in ObC$, $f : A \rightarrow B$ kommutiert.

Sprechweise auch: $t_A: FA \rightarrow GA$ ist natürlich in A.

Beispiel 4.0.15.

(a) C Kategorie, $A, B \in ObC$, $f : A \rightarrow B$

 $\Rightarrow f^* = (f_V^*)_{Y \in ObC} : Mor_C(B, -) \Rightarrow Mor_C(A, -)$

ist eine natürliche Transformation von Funktoren $C \to Mengen$, denn für $Y_1, Y_2 \in ObC$, $g: Y_1 \to Y_2$ kommutiert das Diagramm

$$\begin{array}{c|c} Mor_{C}(B, Y_{1}) & \xrightarrow{f_{Y_{1}}^{*}} Mor_{C}(A, Y_{1}) \\ g_{*}^{B} & & \downarrow g_{*}^{A} \\ Mor_{C}(B, Y_{2}) & \xrightarrow{f_{Y_{2}}^{*}} Mor_{C}(A, Y_{2}) \end{array}$$

denn: Für: $\varphi: B \to Y_1$ ist

$$(g_*^A\circ f_{Y_1}^*)(\varphi)=g_*^A(\varphi\circ f)=g\circ\varphi\circ f=f_{Y_2}^*(g\circ\varphi)=(f_{Y_2}^*\circ g_*^B)(\varphi)$$

(b) Sei K-VR die Kategorie der K-Vektorräume über einem festen Körper K (lineare Abbildungen als Morphismen). Für $V \in K$ -Vektorraum sei $V^* := Hom_K(V,K)$ der Dualraum.

Die kanonische Abbildungen $\varphi_{\nu}: V \to V^{**}, w \mapsto \varphi_{\nu}(w): V^{*} \to K$ ist natürlich in V,

$$\psi \mapsto \psi(w)$$

denn für $V, W \in K$ -VR, $f: V \to W$ lineare Abbildung kommutiert das Diagramm

$$V \xrightarrow{\varphi_{\mathcal{V}}} V^{**} \quad (\text{mit } f^{**} : V^{**} \to W^{**}, (\varphi : V^{*} \to K) \mapsto f^{**}(\varphi) : W^{*} \to K, \psi \mapsto \varphi(\underline{\psi \circ f})$$

$$\downarrow f^{**} \qquad \downarrow f^{**}$$

$$W \xrightarrow{\longrightarrow} W^{**}$$

d.h. $\varphi: id_{\mathcal{V}} \Rightarrow _^{**}$ ist eine natürliche Transformation von $id: K\text{-VR} \to K\text{-VR}$ nach $_^{**}: K\text{-VR} \to K\text{-VR}$

Definition 4.0.16. C, \mathcal{D} Kategorien, F, G: $C \to \mathcal{D}$ Funktoren, t: $F \Rightarrow G$ natürliche Transformation t heißt natürliche Äquivalenz \Leftrightarrow Für alle $A \in ObC$ ist $t_A : FA \to GA$ ein Isomorphismus in \mathcal{D} (Notation: $t : \stackrel{\sim}{\Rightarrow} G$)

Anmerkung: Ist $t: F \stackrel{\sim}{\Rightarrow} G$ eine natürliche Äquivalenz, denn es existiert eine natürliche Äquivalenz $t^{-1}: G \stackrel{\sim}{\Rightarrow} G$ via $t_A^{-1} = (t_A)^{-1}: GA \rightarrow FA$

Beispiel 4.0.17. Es bezeichne K-VR $_{<\infty}$ die Kategorie der endlichdimensionalen K-VR Dann ist die natürliche Transformation $\varphi: id \Rightarrow _^{**}$ aus Bsp. 2.0.15 eine natürliche Äquivalenz

Definition 4.0.18. C, \mathcal{D} Kategorien, $F: C \to \mathcal{D}$ Funktor

F heißt Kategorienäquivalenz \Leftrightarrow Es gibt einen Funktor $G: \mathcal{D} \to \mathcal{C}$ und natürliche Äquivalenzen $F \circ G \stackrel{\sim}{\Rightarrow} id_{\mathcal{D}}$, $G \circ F \stackrel{\sim}{\Rightarrow} id_{\mathcal{C}}$

Beispiel 4.0.19. Der Funktor $_^*: K\text{-VR}_{<\infty} \to (K\text{-VR}_{<\infty})^{op}, V \mapsto V^*$ ist eine Kategorieäquivalenz, denn mit $_^*: (K\text{-VR}_{<\infty})^{op} \to K\text{-VR}_{<\infty}, W \mapsto W^*$ gilt offenbar $_^*\circ _^*= _^{**}$, und $\varphi: id \stackrel{\sim}{\Rightarrow} _^{**}$ ist eine natürliche Äquivalenz, analog andersherum (d.h. die Kategorie $K\text{-VR}_{<\infty}$ ist selbstdual).

Satz 4.0.20. (Yoneda-Lemma)

C Kategorie, $A \in ObC$, $F : C \rightarrow$ Mengen Funktor

Dann gibt es eine Bijektion

$$\phi$$
: {natürliche Transformation $t: Mor_C(A, -) \Rightarrow F$ } $\longrightarrow F(A)$

Folgerung 4.0.21. *C* Kategorie, $A, B \in ObC$

Dann ist die Abbildung

$$\underline{\psi}: Mor_C(B, A) \longrightarrow \{\text{natürliche Transformation } Mor_C(A, -) \Rightarrow Mor_C(B, -)\}$$

$$\psi: B \to A \longmapsto \psi^*: Mor_C(A, -) \to Mor_C(B, -)$$

bijektiv

Anmerkung:

- Folgerung 4.0.21 liefert einen sogenannten Funtor $C^{op} \longrightarrow Funk(C, \text{Mengen}), A \mapsto Mor_C(A, -)$, wobei Funk(C, Mengen) die Funktorkategorie von C nach Mengen bezeichnet (Objekte: Funktoren: $C \to \text{Mengen}$, Morphismen: natürliche Tranformation) ("Yoneda- Einbettung")
- Folgerung 4.0.21 liefert insbesondere ein Verallgemeinerung des Satzes von Cayley aus der Gruppentheorie: Für eine Gruppe G ist $G \hookrightarrow S(G)$, $g \mapsto \tau_g$ (Linkstransformation mit $g \in G$) ein injektiver Gruppenhomomorphismus.

Wende 4.0.21 an auf:

- C = Kategorie mit $ObC = \{\cdot\}, Mor_C(\cdot, \cdot) = G$
- $A = B = \cdot$

⇒ Erhalten Bijektion:

$$\begin{array}{ccc} G = Mor_C(\cdot, \cdot) & \longrightarrow & \{ \text{natürliche Transformation } Mor_C(\cdot, -) \Rightarrow Mor_C(\cdot, -) \} \\ & g & \longmapsto & g^* : Mor_C(\cdot, -) \Rightarrow Mor_C(\cdot, -) & (\hat{=}\tau_g : G \rightarrow G) \end{array}$$

5. Abelsche Kategorien

Definition 5.0.1. *C* Kategorien, $A \in ObC$

A heißt Anfangsobjekt \Leftrightarrow Für alle $M \in ObC$ ist $Mor_C(A, M)$ einelementig Endobjekt \Leftrightarrow Für alle $M \in ObC$ ist $Mor_C(M, A)$ einelemetig

Anmerkung:

• Falls sie existieren sind Anfangs- bzw. Endobjekte eindeutig bestimmt bis auf eindeutigen Isomorphismus (denn: A_1 , A_2 Anfangsobjekte $\Rightarrow Mor_C(A_1, A_2) = \{\alpha\}$, $Mor_C(A_1, A_2) = \{\beta\}$, $Mor_C(A_1, A_1) = \{id_{A_1}\}$, $Mor_C(A_2, A_2) = \{id_{A_2}\}$, insbesondere $\beta \circ \alpha = id_{A_1}$, $\alpha \circ \beta = id_{A_2}$

Definition 5.0.2. *C* Kategorie

 $0 \in ObC$ heißt Nullobjekt $\Leftrightarrow 0$ ist sowohl Anfangs- als auch Endobjekt.

Existiert in C ein Nullobjekt 0, so enthält $Mor_C(A,B)$ für alle $A,B \in ObC$ ein ausgezeichnetes Element, der Nullmorphismus $A \to 0 \to B$

Anmerkung: Der Nullmorphismus in $Mor_C(A, B)$ ist unabhängig von der Wahl des Nullobjekts:

Beispiel 5.0.3.

- (a) In Mengen ist ∅ ein Anfangsobjekt, jede einelementige Menge ist ein Endobjekt. Insbesondere existiert in Mengen kein Nullobjekt.
- (b) In Ringe ist Z ein Anfangsobjekt und der Nullring ein Endobjekt. In Ringe existiert also kein Nullobjekt
- (c) In R-Mod ist der Nullmodul ein Nullobjekt

Definition 5.0.4. *C* Kategorie, $(A_i)_{i \in I}$ Familie von Objekten aus *C*

Ein Produkt $A, (p_i)_{i \in I}$ von $(A_i)_{i \in I}$ ist ein Objekt $A \in ObC$ zusammen mit Morphismen $p_i : A \to A_i$, sodass für alle $B \in ObC$ die Abbildung

$$Mor_C(B,A) \longrightarrow \prod_{i \in I} Mor_C(B,A_i), \quad f \longmapsto (p_i \circ f)_{i \in I}$$

bijektiv ist, d.h. für jede Familie $(f_i)_{i \in I}$ von Morphismen $f_i : B \to A_i$ existiert ein eindeutig bestimmtes $f : B \to A$ mit $f_i = p_i \circ f$ für alle $i \in I$.

Bemerkung 5.0.5. *C* Kategorie, $(A_i)_{i \in I}$ Familie von Objekten aus C, $(A, (p_i)_{i \in I})$, $(A', (P'_i)_{i \in I})$ Produkte von $(A_i)_{i \in I}$. Dann existert ein eindeutig bestimmter Isomorphismus $f: A \to A'$, sodass für alle $i \in I$ gilt: $p'_i \circ f = p_i$

Beispiel 5.0.6.

- (a) In Mengen ist das Produkt das kartesische Produkt
- (b) In R-Mod ist das Produkt das direkte Produkt
- (c) In der Kategorie der endlichen abelschen Gruppen existiert kein Produkt der Familie $(\mathbb{Z}/n\mathbb{Z})_{n\in\mathbb{N}}$

Bemerkung 5.0.7. C Kategorie, $(A_i)_{i \in I}$ Familie von Objekten aus C

Ein Koprodukt $(A,(q_i)_{i\in I})$ von $(A_i)_{i\in I}$ ist ein Objekt $A\in ObC$ zusammen mit Morphismen $q_i:A_i\to A$, sodass $(A,(q_i)_{i\in I})$ ein Produkt von $(A_i)_{i\in I}$ in C^{op} ist, d.h. für alle $B\in ObC$ ist die Abbildung

$$Mor_{\mathcal{C}}(A,B) \longrightarrow \prod_{i \in I} Mor_{\mathcal{C}}(A_i,B), \quad f \longmapsto (f \circ q_i)_{i \in I}$$

bijektiv ist.

Falls existent, ist ein Koprodukt von $(A_i)_{i \in I}$ eindeutig bestimmt bis auf eindeutige Isomorphie (analog 5.0.5). Wir sprechen dann von $\underline{\text{dem}}$ Koprodukt und schreiben $A = \bigoplus_{i \in I} A_i$ (= $\coprod_{i \in I} A_i$)

Beispiel 5.0.8.

- (a) In Mengen ist da Koprdukt die disjunkte Vereinigung
- (b) In R-Mod ist das Koprodukt die direkte Summe
- (c) In der Kategorie der Gruppen existiert ein Koprodukt, das sogenannte freie Produkt (...)

Definition 5.0.9. \mathcal{A} Kategorie

A heißt additiv, wenn gilt,

- (A1) \mathcal{A} hat ein Nullobjekt
- (A2) In \mathcal{A} existieren endliche Produkte
- (A3) Für alle $A, B \in Ob\mathcal{A}$ trägt $Mor_{\mathcal{A}}(A, B)$ die Struktir einer abelschen Gruppe mit dem Nullmorphismus als neutralem Element, sodass für alle $A, B, C \in Ob\mathcal{A}$ die Verknüpfung

$$Mor_{\mathcal{A}}(B,C) \times Mor_{\mathcal{A}}(A,B) \xrightarrow{\circ} Mor_{\mathcal{A}}(A,C)$$

bilinear ist

Anmerkung: In einer additiven Kategorie $\mathcal A$ schreiben wir auch $Hom_{\mathcal A}$ für $Mor_{\mathcal A}$

Beispiel 5.0.10.

- (a) R-Mod ist eine additive Kategorie
- (b) Ringe ist keine additive Kategorie (kein Nullobjekt, vgl. 5.3(b))

Satz 5.0.11. \mathcal{A} additive Kategorie, $A_1, A_2 \in Ob\mathcal{A}$, $(A_1 \times A_2, (p_1, p_2))$ Produkt von $A_1 \times A_2$.

$$i_1:A_1\to A_1\times A_2$$
 sei via UE gegeben durch $id_{A_1}:A_1\to A_1,0:A_1\to A_2$

Analog sei $i_2: A_2 \to A_1 \times A_2$ via UE gegeben durch $0: A_2 \to A_1, id: A_2 \to A_2$.

Dann ist $(A_1 \times A_2, (i_1, i_2))$ ein Koprodukt von A_1, A_2 in \mathcal{A} .

Folgerung 5.0.12. \mathcal{A} additive Kategorie

Dann existieren in $\mathcal A$ endliche Koprodukte

Definition 5.0.13. \mathcal{A}, \mathcal{B} additive Kategorien, $F : \mathcal{A} \to \mathcal{B}$ Funktor

F heißt additiv \Leftrightarrow Für alle $A, A' \in Ob\mathcal{A}$ is die Abbildung

$$Hom_{\mathcal{A}}(A, A') \longrightarrow Hom_{\mathcal{B}}(FA, FA'), \quad f \longmapsto F(f)$$

ein Homomorphismus abelscher Gruppen

Anmerkung: F additiv $\Rightarrow F(A \oplus A') = F(A) \oplus F(A')$

Bemerkung 5.0.14. \mathcal{A} additive Kategorie, $A, A' \in Ob\mathcal{A}$, $f: A \to A'$

Ein Kern (B,i) von f ist ein Objekt $B \in Ob\mathcal{A}$ zusammen mit einem Morphismus $i: B \to A$, sodass $f \circ i = 0$ ist und für alle $C \in Ob\mathcal{A}$ die Abbildung

$$Hom_{\mathcal{A}}(C,B) \longrightarrow \{g \in Hom_{\mathcal{A}}(C,A) | f \circ g = 0\}, \quad h \longmapsto i \circ h$$

bijektiv ist, d.h. für alle $g:C\to A$ mit $f\circ g=0$ exisitert ein eindeutig bestimmter Morphismus $h:C\to B$ mit $g=i\circ h$:

$$B \xrightarrow{i} A \xrightarrow{f} A'$$

$$h \downarrow g$$

Ist (B',i') ein weiterer Kern von f, dann existiert ein eindeutig bestimmter Isomorphismus $\alpha: B \to B'$ mit $i = i' \circ \alpha$:

Wir nennen (B,i) daher auch <u>den</u> Kern von f und schreiben ker f=(B,i) bzw. kürzer ker f=B oder auch ker f=i (kontextabhängig)

Anmerkung: Existenz von Kernen ist im Allgemeinen nicht gegeben

Beispiel 5.0.15. In *R*-Mod ist der kategorielle kern gegeben durch die Inklusion des gewöhnlichen Kerns:

 $f \circ g = 0 \Rightarrow im(g) \subseteq \ker f$, setze $h := g|^{\ker f} : C \to \ker f$, dann ist $i \circ h = g$ und h ist eindeutig mit dieser Bedingung.

Bemerkung 5.0.16. \mathcal{H} additive Kategorie, $A, A' \in Ob\mathcal{H}$, $f: A \to A'$, $(\ker f, i)$ Kern von f. Dann ist i eine Monomorphismus.

Bemerkung 5.0.17. Dual zum Kern definiert man den Kokern (Notation: coker(f)) Die Aussagen 5.0.14, 5.0.16 gelten dual.

Definition 5.0.18. \mathcal{A} additive Kategorie, $A, A' \in Ob\mathcal{A}$, $f: A \to A'$ $im(f) := \ker(coker(f))$ heißt das Bild von f $coim(f) := coker(\ker(f))$ heißt das Kobild von f

Anmerkung: im(f) kommt mit einem Monomorphismus $i': im(f) \to A', coim(f)$ mit einem Epimorphismus $g': A \to coim(f)$

Beispiel 5.0.19. Sei $\mathcal{A} = R\text{-Mod}$, $f: A \to A'$ R-ModulhomomorphismusDann ist $im(f) = \ker(A'/im(f), A' \to A'/im(f)) = (im(f), im(f) \hookrightarrow A')$, $coim(f) = coker(\ker(f), \ker(f) \hookrightarrow A) = (A/\ker(f), A \to A/\ker(f))$ **Bemerkung 5.0.20.** \mathcal{A} additive Kategorie, $A, B \in Ob\mathcal{A}$, $f: A \to B$, sodass $\ker(f)$, $\operatorname{coker}(f)$, $\operatorname{im}(f)$, $\operatorname{coim}(f)$ existieren, $\operatorname{lim}(f), i'$) Bild von f, $\operatorname{coim}(f), q'$) Kobild von f.

Dann existiert ein eindeutig bestimmter Morphismus $\bar{f}: coim(f) \to im(f)$ mit $f = i' \circ \bar{f} \circ q'$:

$$A \xrightarrow{f} B$$

$$\downarrow q' \qquad \qquad \uparrow i'$$

$$coim(f) \xrightarrow{f} im(f)$$

Definition 5.0.21. \mathcal{A} additive Kategorie

 \mathcal{A} heißt abelsche Kategorie, wenn gilt:

 $(\mathbf{Ab}\ \mathbf{1})$ Jeder Morphismus in \mathcal{A} hat Kern und Kokern

(**Ab 2**) (Homomorphiesatz) Für jeden Morphismus $f: A \to A'$ in $\mathcal A$ ist der induzierte Morphismus $\bar f: coim(f) \to im(f)$ ein Isomorphismus

Beispiel 5.0.22.

- (a) R-Mod ist eine abelsche Kategorie
- (b) Die Kategorie der freien Z-Moduln ist additiv, aber nicht abelsch: (Ab 1) nicht erfüllt
- (c) Die Kategorie der abelsche topologischen Gruppen ist eine additive Kategorie, die (Ab 1) erfüllt, aber nicht (Ab

2): $id: (\mathbb{R},+) \longrightarrow (\mathbb{R},+)$, $\bar{id}=id$ ist kein Isomorphismus Standardtopologie

Anmerkung: \mathcal{A} abelsche Kategorie $\Rightarrow \mathcal{A}^{op}$ abelsche Kategorie (einziger nichttrivialer Punkt: Existenz endlicher Produkte, dies folgt jedoch aus 5.0.11)

Satz 5.0.23. \mathcal{A} abelsche Kategorie, $A, A' \in Ob\mathcal{A}$, $f: A \to A'$ Monomorphismus und Epimorphismus. Dann ist f ein Isomorphismus

Bemerkung 5.0.24. \mathcal{A} abelsche Kategorie, $A, A' \in Ob\mathcal{A}$, $f: A \to A'$. Dann gilt:

- (a) f Monomorphismus $\Leftrightarrow \ker(f) = 0$
- (b) f Epimorphimus $\Leftrightarrow coker(f) = 0$

Definition 5.0.25. \mathcal{A} abelsche Kategorie, $A, A', A'' \in Ob\mathcal{A}$

 $A' \xrightarrow{f} A \xrightarrow{g} A''$ heißt exakte Folge $\Leftrightarrow im(f) \cong \ker(g)$ in dem Sinne, dass es einen Isomorphismus $im(f) \xrightarrow{\alpha} \ker(g)$ gibt, sodass das Diagramm

kommutiert (wobei (ker(g),i) Kern von g, (im(f),i') Bild von f).

Satz 5.0.26. \mathcal{A} abelsche Kategorie. Dann gilt:

- (a) In A gilt das Fünferlemma
- (b) In $\mathcal A$ gilt das Schlangenlemma
- (c) Eine Folge $M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ in \mathcal{A} ist genau dann exakt, wenn für jeden $\mathcal{N} \in Ob\mathcal{A}$ die Folge abelscher Gruppen

$$0 \to Hom_{\mathcal{A}}(M'',N) \to Hom_{\mathcal{A}}(M,N) \to Hom_{\mathcal{A}}(M',N)$$

exakt ist.

(d) Eine Folge $0 \to N' \to N \to N''$ in \mathcal{A} ist genau dann exakt, wenn für jedes $M \in Ob\mathcal{A}$ die Folge abelscher

Gruppen

$$0 \to Hom_{\mathcal{A}}(M, N') \to Hom_{\mathcal{A}}(M, N) \to Hom_{\mathcal{A}}(M, N'')$$

exakt ist.

Definition 5.0.27. \mathcal{A}, \mathcal{B} abelsche Kategorien, $F : \mathcal{A} \to \mathcal{B}$ additiver Funktor.

F heißt exakt \Leftrightarrow F überführt kurze exakte Folgen in $\mathcal A$ in kurze exakte Folgen in $\mathcal B$

linksexakt \Leftrightarrow Für jede exakte Folge $0 \to M' \to M \to M''$ in $\mathcal A$ ist die Folge $0 \to FM' \to FM \to FM''$ exakt. rechtsexakte \Leftrightarrow Für jede exakte Folge $M' \to M \to M'' \to 0$ in $\mathcal A$ ist die Folge $FM' \to FM \to FM'' \to 0$ exakt.

Anmerkung: F exakt \Leftrightarrow F links- und rechtsexakt \Leftrightarrow Für alle exakte Folgen $A' \to A \to A''$ in \mathcal{A} ist $FA' \to FA \to FA''$ exakt

Definition 5.0.28. \mathcal{A} abelsche Kategorie, $I, P \in Ob\mathcal{A}$

I heißt injektiv \Leftrightarrow Für jeden Monomorphismus $i:A\hookrightarrow B$ und jeden Morphismus $f:A\to I$ existiert ein Morphismus $g:B\to I$ mit $g\circ i=f$, d.h. $i_I^*:Hom_{\mathcal{A}}(B,I)\to Hom_{\mathcal{A}}(A,I)$ surjektiv $A\overset{i}{\longleftrightarrow}B$

 $f \downarrow g$

P heißt projektiv $\Leftrightarrow P$ ist injektiv in \mathcal{A}^{op} , d.h. für jeden Epimorphismus $p:B \twoheadrightarrow A$ und jeden Morphismus $f:P \to A$ existiert ein Morphismus $g:P \to B$ mit $p \circ g = f:$

Bemerkung 5.0.29. \mathcal{A} abelsche Kategorie, $I \in Ob\mathcal{A}$. Dann sind äquivalent:

- (i) I injektiv
- (ii) Der Funktor $Hom_{\mathcal{A}}(-,I): \mathcal{A}^{op} \to \mathbb{Z}$ -Mod ist exakt.

Bemerkung 5.0.30. \mathcal{A} abelsche Kategorie, $P \in Ob\mathcal{A}$. Dann sind äquivalent:

- (i) P projektiv
- (ii) Der Funktor $Hom_{\mathcal{A}}(P, -) : \mathcal{A} \to \mathbb{Z}$ -Mod ist exakt.

Definition 5.0.31. C, \mathcal{D} (additive) Kategorien, $F: C \to \mathcal{D}, G: \mathcal{D} \to C$ (additive) Funktoren

F heißt linksadjungiert zu G (und G rechtsadjungiert zu F)

⇔ Es gib eine natürliche Äquivalenz

$$Mor_{\mathcal{C}}(-,G-) \stackrel{\sim}{\Rightarrow} Mor_{\mathcal{D}}(F-,-)$$

von Bifunktoren $C^{op} \times \mathcal{D} \to \text{Mengen (bzw. } C^{op} \times \mathcal{D} \to \mathbb{Z}\text{-Mod im additiven Fall)}.$

Notation: $F \dashv G$

Beispiel 5.0.32. $F: \text{Mengen} \to K\text{-VR}, M \mapsto K^{(M)}, G: K\text{-VR} \to \text{Mengen Vergiss-Funktor}$ Es ist $Mor_{\text{Mengen}}(M,V) \underset{bij.}{\cong} Mor_{K-VR}(K^{(M)},V)$ für alle Mengen M und K-VR, wobei die naheliegenden Diagramme kommutieren, d.h. wir haben eine natürliche Äquivalenz

$$Mor_{\text{Mengen}}(-,G-) \stackrel{\sim}{\Rightarrow} Mor_{K_VR}(F-,-)$$
, also $F \dashv G$

Satz 5.0.33. \mathcal{A}, \mathcal{B} abelsche Kategorien, $F : \mathcal{A} \to \mathcal{B}, G : \mathcal{B} \to \mathcal{A}$ additive Funktoren mit $F \dashv G$. Dann gilt:

- (a) F ist rechtsexakt
- (b) Ist F exakt, dann überführt G injektive Objekte aus $\mathcal B$ in injektive Objekte aus $\mathcal A$

- (c) G ist linksexakt
- (d) Ist G exakt, dann überführt F projektive Objekte aus $\mathcal A$ in projektive Objekte aus $\mathcal B$.

Definition 5.0.34. C, \mathcal{D} Kategorien, $F: C \to \mathcal{D}$ Funktor

F heißt volltreu \Leftrightarrow Für alle $A, B \in ObC$ ist die Abbildung $Mor_C(A, B) \longrightarrow Mor_D(FA, FB), f \mapsto F(f)$ bijektiv.

Satz 5.0.35. (Einbettungssatz von Freyd-Mitchell)

 \mathcal{A} kleine abelsche Kategorie (d.h. $Ob\mathcal{A}$ ist eine Menge)

Dann exisitiert ein Ring R und ein volltreuer exakter Funktor $F: \mathcal{A} \to R$ -Mod

Anmerkung:

- F induziert eine Äquivalenz zwischen $\mathcal A$ und einer vollen Unterkategorie von R-Mod (d.h. C ist eine Unterkategorei von R-Mod mit $Hom_C(A,B) = Hom_{R-Mod}(A,B)$ für alle $A,B \in ObC$).
- In \mathcal{A} berechnete Kerne und Kokerne entsprechen über diese Äquivalenz Kernen und Kokernen in R-Mod (Achtung: injektive/projektive Objekte korrespondieren im Allgemeinen nicht zu injektiven/projektiven R-Moduln).

6. Projektive und injektive Moduln

Satz 6.0.1. $0 \to N' \xrightarrow{f} N \xrightarrow{g} N''$ Folge von *R*-Moduln. Dann sind äquivalent:

- (i) $0 \to N' \xrightarrow{f} N \xrightarrow{g} N''$ exakt
- (ii) Für jeden R-Modul M ist die Folge abelscher Gruppen

$$0 \to Hom_R(M,N') \overset{f_*^M}{\overset{}{\rightarrow}} Hom_R(M,N) \overset{g_*^M}{\overset{}{\rightarrow}} Hom_R(M,N'')$$

exakt

Insbesondere ist der Funktor $Hom_R(M, -)$: R-Mod $\to \mathbb{Z}$ -Mod linksexakt.

Anmerkung: Der Funktor $Hom_R(M, -)$ ist im Allgemeinen nicht exakt.

Beispiel 6.0.2. Sei $R = \mathbb{Z}$, $M = \mathbb{Z}/2\mathbb{Z}$

Wir betrachten dei exakte Folge $0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \to 0$ von \mathbb{Z} -Moduln mit $f : \mathbb{Z} \to \mathbb{Z}$, $x \mapsto 2x$, π kanonische Projektion

Die Abbildung $\pi_*^M: Hom_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}) \to Hom_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$ ist nicht surjektiv, denn:

Für $\varphi \in Hom_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z})$ gilt: $0 = \varphi(\bar{0}) = \varphi(\bar{1} + \bar{1}) = \varphi(2 \cdot \bar{1}) = 2\varphi(\bar{1})$, also $\varphi(\bar{1}) = 0$, d.h. $\varphi = 0$.

Insbesondere ist $\pi_*^M(\varphi) = \pi_*^M(0) = 0 \neq id_{\mathbb{Z}/2\mathbb{Z}}$.

Mit anderen Worten: $\mathbb{Z}/2\mathbb{Z}$ ist kein projektiver \mathbb{Z} -Modul

Satz 6.0.3. *P R*-Modul. Dann sind äquivalent:

- (i) P ist ein projektiver R-Modul
- (ii) $Hom_R(P, -)$: R-Mod $\to \mathbb{Z}$ -Mod ist exakt
- (iii) Für jeden Epimorphismus $\pi: M \to N$ von R-Moduln und jedem Homomorphismus $\varphi: P \to N$ existiert ein Homomorphismus $\psi: P \to M$ mit $\pi \circ \psi \varphi$: $P \quad \text{(iv) Jede kurze exakte Folge } 0 \to L \to M \to P \to 0 \text{ von}$

 $W\pi \xrightarrow{\varphi} N$

R-Moduln spaltet.

(v) Es gibt einen R-Modul P', sodass $P \oplus P'$ ein freier R-Modul ist (d.h. P ist direkter Summand einer freien R-Moduls).

Folgerung 6.0.4.

- (a) Jeder freie R-Modul ist ein projektiver R-Modul
- (b) Jeder R-Modul ist Faktormodul eines projektiven R-Moduls

Satz 6.0.5. $M' \xrightarrow{f} M \xrightarrow{g} M'' \rightarrow 0$ Folge von *R*-Moduln. Dann sind äquivalent:

- (i) $M' \xrightarrow{f} M \xrightarrow{g} M''$ 0 ist exakt.
- (ii) Für jeden R-Modul N ist die Folge abelscher Gruppen

$$0 \to Hom_R(M'',N) \overset{g_N^*}{\to} Hom_R(M,N) \overset{f_N^*}{\to} Hom_R(M',N)$$

exakt.

Insbesondere ist der kontravariante Funktor: $Hom_R(-,N)$: R-Mod $\to \mathbb{Z}$ -Mod linksexakt.

Anmerkung: $Hom_R(-,N)$ ist im Allgemeinen nicht exakt.

Beispiel 6.0.6. Sei $R = \mathbb{Z}$, $N = \mathbb{Z}$

Wir betrachten die exakte Folge $0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \to 0$ von \mathbb{Z} -Moduln mit $f : \mathbb{Z} \to \mathbb{Z}$, $x \mapsto 2x$, π kanonische Projektion

Die Abbildung $f_{\mathbb{Z}}^*: Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) \to Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})$ ist nicht surjektiv, denn für alle $\varphi \in Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})$ ist $(f_{\mathbb{Z}}^*(\varphi))(x) = (\varphi \circ f)(x) = \varphi(2x) = 2\varphi(x) \in 2\mathbb{Z}$, insbesondere ist $f_{\mathbb{Z}}^*(\varphi) \neq id_{\mathbb{Z}}$.

Mit anderen Worten: \mathbb{Z} ist kein injektiver \mathbb{Z} -Modul.

Satz 6.0.7. *Q R*-Modul. Dann sind äquivalent:

- (i) Q ist ein injektiver R-Modul
- (ii) $Hom_R(-,Q)$: R-Mod $\to \mathbb{Z}$ -Mod ist exakt
- (iii) Für jeden Monomorphismus $\iota:L\to M$ von R-Moduln und jedem Homomorphismus $\varphi:L\to Q$ existiert ein Homomorphismus $\psi:M\to Q$ von R-Moduln mit $\psi\circ\iota=\varphi$

(iv) Jede kurze exakte Folge $0 \rightarrow Q \rightarrow M \rightarrow N \rightarrow 0$ von *R*-Moduln spaltet.

Beispiel 6.0.8. K Körper, V K-Vektorraum

Dann ist V ein injektiver K-Modul, denn für jede exakte Folge $0 \to V \to M \to N \to 0$ von K-Moduln ist N ein freier K-Modul, d.h. die Folge spaltet.

Satz 6.0.9. (Baer-Kriterium)

Q R-Modul. Dann sind äquivalent:

- (i) Q ist ein injektiver R-Modul
- (ii) Für jedes Linksideal $I \subseteq R$ und jede R-lineare Abbildung $\varphi: I \to Q$ existiert eine R-lineare Abbildung $\psi: R \to Q$ mit $\psi|_I = \varphi$

Definition 6.0.10. A Integritätsbereich (kommutativer nullteilerfreier Ring), M A-Modul

M heißt teilbar \Leftrightarrow Für alle $a \in A \setminus \{0\}$ ist aM = M

 \Leftrightarrow Für alle $x \in M$, $a \in A \setminus \{0\}$ existiert ein $y \in M$ mit x = ay

Bemerkung 6.0.11. A Integritätsbereich, M injektiver A-Modul.

Dann ist *M* teilbar.

Bemerkung 6.0.12. A Hauptidealring, M A-Modul

Dann sind äquivalent:

- (i) M injektiv
- (ii) M teilbar

Beispiel 6.0.13.

(a) K Körper, V K-Vektorraum $\Rightarrow V$ teilbarer K-Modul, also injektiver K-Modul.

Ist char(K) = 0, dann ist V teilbarer \mathbb{Z} -Modul, also injektiver \mathbb{Z} -Modul (b) Faktormoduln teilbarer \mathbb{Z} -Moduln sind

teilbar, somit sind Faktormoduln injektiver \mathbb{Z} -Moduln wieder injektive \mathbb{Z} -Moduln.

(c) Nach (a) sind \mathbb{Q} , \mathbb{R} injektive \mathbb{Z} -Moduln, nach (b) also auch \mathbb{Q}/\mathbb{Z} , \mathbb{R}/\mathbb{Z}

Ziel: injektive *R*-Moduln = direkte Faktoren von kofreien *R*-Moduln

Anmerkung: $M \mathbb{Z}$ -Modul

Dann ist $Hom_{\mathbb{Z}}(R, M)$ via $(a\varphi)(r) := \varphi(ra)$ ein R-Modul (beachte: $b(a\varphi)(r) = (a\varphi)(rb) = \varphi(rba) = ((ba)\varphi)(r)$)4

Bemerkung 6.0.14. Dann ist $Hom_{\mathbb{Z}}(R, M)$ ein injektiver R-Modul.

Insbesondere ist $R^V := Hom_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z})$ ein injektiver R-Modul

Definition 6.0.15. *M R*-Modul

M heißt kofrei \Leftrightarrow Es existiert eine Menge I mit $M \cong (R^V)^I = \prod_{i \in I} R^V$

Bemerkung 6.0.16. $(M_i)_{i \in I}$ Familie von *R*-Moduln. Dann gilt:

- (a) $\bigoplus M_i$ ist ein projektiver R-Modul $\Leftrightarrow M_i$ projektiver R-Moduln für alle $i \in I$
- (b) $\prod_{i \in I}^{\iota \in I} M_i$ ist injektiver R-Modul $\Leftrightarrow M_i$ injektiver R-Moduln für alle $i \in I$.

Satz 6.0.17. M kofreier R-Modul. Dann ist M ein injektiver R-Modul.

Bemerkung 6.0.18. *M R*-Modul, $m \in M$, $m \neq 0$

Dann existiert ein R-Modulhomomorphismus $\varphi:M\to R^V$ mit $\varphi(m)\neq 0$

Satz 6.0.19. Jeder *R*-Modul ist Untermodul eines kofreien, also insbesondere eines injektiven *R*-Moduls.

Folgerung 6.0.20. *Q R*-Modul. Dann sind äquivalent:

- (i) Q ist injektiv
- (ii) Es gibt einen R-Modul Q', sodass $Q \times Q'$ ein kofreier R-Modul ist (d.h. Q ist direkter Faktor eines kofreien R-Moduls)

7. Komplexe

In diesem Abschnitt sei $\mathcal A$ stets eine abelsche Kategorie

Definition 7.0.1. Ein Komplex A^{\bullet} in \mathcal{A} ist eine Familie $(A^i, d_i)_{i \in \mathbb{Z}}$ von Objekten $A^i \in Ob\mathcal{A}$ und Morphismen $d_i : A^i \to A^{i+1}$ (Differentiale)

$$\dots A^{-1} \stackrel{d_{-1}}{\rightarrow} A^0 \stackrel{d_0}{\rightarrow} A_1 \stackrel{d_1}{\rightarrow} A_2 \rightarrow \dots$$

sodass $d_i \circ d_{i-1} = 0$ für alle $i \in \mathbb{Z}$ gilt.

Ein Komplexhomomorphismus $f: A^{\bullet} \to B^{\bullet}$ von einem Komplex A^{\bullet} in \mathcal{A} in einem Komplex B^{\bullet} in \mathcal{A} ist eine Familie $f = (f_i)_{i \in \mathbb{Z}}$ von Homomorphismen $f_i: A^i \to B^i$, sodass für alle $i \in \mathbb{Z}$ gilt: $d_i \circ f_i = f_{i+1} \circ d_i$, d.h. das Diagramm

$$\cdots \longrightarrow A^{i-1} \xrightarrow{d_{i-1}} A^{i} \xrightarrow{d_{i}} A^{i+1} \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

kommutiert

Anmerkung: Komplexe in \mathcal{A} zusammen mit Komplexhomomorphismen bilden eine abelsche Kategorie (Kerne, Kokerne, endliche Produkte separat an jeder Stelle bilden)

Bemerkung 7.0.2. A Komplex in \mathcal{A}

Dann induzieren die Differentiale in natürlicher Weise Monomorphismen $im(d_{i-1}) \to \ker(d_i), i \in \mathbb{Z}$

Definition 7.0.3. A^{\bullet} Komplex in \mathcal{A}

 $Z^{i}(A^{\bullet}) := \ker(d_{i})$ heißen die *i*-Kozykel von A^{\bullet}

 $B^{i}(A^{\bullet}) := im(d_{i-1})$ heißen die *i*-Koränder von A^{\bullet}

 $H^i(A^{\bullet}) := \operatorname{coker}(im(d_{i-1}) \to \ker(d_i)) = \operatorname{coker}(B^i(A^{\bullet}) \to Z^i(A^{\bullet}))$ heißt die *i*-te Kohomologie von *A*.

Anmerkung: Ein Komplexhomomorphismus $f: A^{\bullet} \to B^{\bullet}$ induziert Homomorphismen $Z^i(f): Z^iA^{\bullet} \to Z^iB^{\bullet}$, $B^i(f): B^iA^{\bullet} \to B^iB^{\bullet}$, $H^i(f): H^iA^{\bullet} \to H^iB^{\bullet}$

Satz 7.0.4. (Lange exakte Kohomologiefolge)

 $0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$ kurze exakte Folge von Komplexen in \mathcal{A} (d.h. die Morphismen sind Komplexhomomorphismen und für jedes $i \in \mathbb{Z}$ ist $0 \to A^i \to B^i \to C^i \to 0$ existent)

Dann existiert eine natürliche lange exakte Folge

$$\ldots \to H^i(A^{\bullet}) \to H^i(B^{\bullet}) \to H^i(C^{\bullet}) \to H^{i+1}(A^{\bullet}) \to H^{i+1}(B^{\bullet}) \to H^{i+1}(C^{\bullet}) \to \ldots$$

Definition 7.0.5. $A \in Ob\mathcal{A}$

Eine injektive Auflösung von A ist ein Komplex

$$I^{\bullet}: I^0 \xrightarrow{d_0} I^1 \xrightarrow{d_1} I^2 \rightarrow \dots$$

bestehend aus injektiven Objekten I^i aus $\mathcal A$ mit $I^i=0$ für i<0 zusammen mit einem Morphismus $\epsilon:A\to I^0$, sodass der augmentierte Komplex

$$0 \to A \xrightarrow{\epsilon} I^0 \xrightarrow{d_0} I^1 I^2 \to \dots$$

exakt ist (Notation: $A \rightarrow I^{\bullet}$ injektive Auflösung von A)

Eine projektive Auflösung von A ist eine injektive Auflösung von A in \mathcal{A}^{op} , d.h. ein Komplex

$$P^{\bullet}: \ldots \to P^{-2} \to P^{-1} \to \P^{0}$$

aus projektiven Objekten P^i aus $\mathcal A$ mit $P^i=0$ für i>0 zusammen mit einem Morphismus $\epsilon:P^0\to A$ sodass der augmentierte Komplex

$$\dots \to P^{-2} \to P^{-1} \to P^0 \xrightarrow{\epsilon} A \to 0$$

exakt ist (Notation: $P^{\bullet} \rightarrow A$ projektive Auflösung A)

Anmerkung: Man schreibt in obiger Situation auch $P_i = P^{-i}$ und $H_i(-) = H^{-i}(-)$

Definition 7.0.6. \mathcal{A} hat genügend viele Injektive \Leftrightarrow Für jedes $A \in Ob(\mathcal{A})$ existiert ein injektives Objekt $I \in Ob\mathcal{A}$ und ein Monomorphismus $i:A \to I$

 \mathcal{A} hat genügend viele Projektive $\Leftrightarrow \mathcal{A}^{op}$ hat genügend viele Injektive.

Beispiel 7.0.7. R-Mod hat nach 6.0.19 genügend viele Injektive und nach 6.0.4 genügend viele Projektive.

Bemerkung 7.0.8. $A \in Ob\mathcal{A}$. Dann gilt:

- (a) Hat $\mathcal A$ genügend viele Injektive, dann hat A eine injektive Auflösung
- (b) Hat \mathcal{A} genügend viele Projektive, dann hat A eine projektive Auflösung

Satz 7.0.9. (Hufeisenlemma)

 \mathcal{A} habe genügend viele Injektive. Gegeben sei ein Diagramm (schwarz)

in \mathcal{A} , wobei die linke Spalte exakt sei, $A' \to I'^{\bullet}$ eine injektive Auflösung von A', $A'' \to I''^{\bullet}$ eine injektive Auflösung von A''. Dann lässt sich das Diagramm so zu einem kommutativen Diagramm ergänzen (grün), dass $A \to I^{\bullet}$ eine injektive Auflösung von A ist und die Spalten alle exakt sind.

Frage: In welchem Verhältnis stehen zwei injektive Auflösungen eines Objekts?

Definition 7.0.10. A^{\bullet}, B^{\bullet} Komplexe in $\mathcal{A}, f, g : A^{\bullet} \to B^{\bullet}$ Komplexhomomorphismus. f, g heißen homotop $(f \sim g) \Leftrightarrow \text{Es}$ existieren Homomorphismen $s^i : A^{i+1} \to B^i$ für alle $i \in \mathbb{Z}$ mit

$$f_i - g_i = d_{i-1} \circ s^{i-1} + s^i \circ d_i$$

Anmerkung:

- Homotopie von Komplexhomomorphismen ist eine Äquivalenzrelation
- Sind $f,g:A^{\bullet}\to B^{\bullet}$ Komplexhomomorphismen mit $f\sim g$ und $F:\mathcal{A}\to\mathcal{B}$ ein additiver Funktor von \mathcal{A} in eine abelsche Kategorie \mathcal{B} , dann erhalten wir einen Komplexhomomorphismen $Ff,Fg:FA^{\bullet}\to FB^{\bullet}$ mit $Ff\sim Fg$

Bemerkung 7.0.11. A^{\bullet} , B^{\bullet} Komplexe in \mathcal{A} , $f,g:A^{\bullet}\to B^{\bullet}$ Komplexhomomorphismen mit $f\sim g$ Dann gilt: $H^i(f)=H^i(g):H^i(A^{\bullet})\to H^i(B^{\bullet})$

Definition 7.0.12. A^{\bullet} , B^{\bullet} Komplexe in \mathcal{A} , $f: A^{\bullet} \to B^{\bullet}$ Komplexhomomorphismus

f heißt **Homotopieäquivalenz** \Leftrightarrow es existiert ein $g: B^{\bullet} \to A^{\bullet}$ Komplexhomomorphismus mit $g \circ f \sim id_{A^{\bullet}}$ und $f \circ g \sim id_{B^{\bullet}}$

Quasiisomorphismus \Leftrightarrow für alle $i \in \mathbb{Z}$ ist $H^i f : H^i A^{\bullet} \to H^i B^{\bullet}$ ein Isomorphismus

Bemerkung 7.0.13. A^{\bullet}, B^{\bullet} Komplexe in $\mathcal{A}, f: A^{\bullet} \to B^{\bullet}$ Homotopieäquivalenz Dann ist f ein Quasiisomorphismus

Anmerkung: Nicht jeder Quasiisomorphismus ist eine Homotopieäquivalenz

Satz 7.0.14. Gegeben sei folgendes Diagramm von Komplexen in $\mathcal A$

sodass gilt:

- Die obere Zeile ist exakt
- Alle I^i , $i \ge 0$ sind injektiv

Dann existiert ein Komplexhomomorphismus $f: E^{\bullet} \to I^{\bullet}$, der φ fortsetzt in dem Sinne, dass $f_0 \circ \epsilon = \eta \circ \varphi$. Ist $g: E^{\bullet} \to I^{\bullet}$ ein weiterer solcher Komplexhomomorphismen, dan ist $g \sim f$

Folgerung 7.0.15. $A \in Ob\mathcal{A}, A \xrightarrow{\epsilon} I^{\bullet}, A \xrightarrow{\eta} J^{\bullet}$ injektive Auflösungen von A. Dann existiert eine Homotopieäquivalenz $f: I^{\bullet} \to J^{\bullet}$ mit $f_0 \circ \epsilon = \eta$, diese ist eindeutig bestimmt bis auf Homotopie.

Folgerung 7.0.16. I^{\bullet} exakter Komplex von injektiven Objekten in \mathcal{A} mit $I^{i} = 0$ für i << 0. Dann ist $0^{\bullet} \to I^{\bullet}$ eine Homotopieäquivalenz.

8. Abgeleitete Funktoren

In diesem Abschnitt sei $\mathcal A$ eine abelsche Kategorie mit genügend vielen Injektiven, $\mathcal B$ eine abelsche Kategorie und $F:\mathcal A\to\mathcal B$ ein linksexakter additiver Funktor

Bemerkung 8.0.1. $i \ge 0$. Für jedes Objekt $A \in Ob\mathcal{A}$ fixieren wir eine injektive Auflösung $A \to I^{\bullet}$ von A und setzen

$$R^i F(A) := H^i (FI^{\bullet})$$

Ist $\varphi: A \to A'$ ein Morphismus in $\mathcal A$ und sind $A \to I^{\bullet}$, $A' \to I'^{\bullet}$ injektive Auflösungen von A, A', dann existieren ein bis auf Homotopie eindeutig bestimmten $f: I^{\bullet} \to I'^{\bullet}$, das φ fortsetzt.

Wir setzen $R^i F(\varphi) := H^i(Ff)$.

Auf diese Weise wird $R^iF: \mathcal{A} \to \mathcal{B}$ zu einem additiven Funktor.

Wird auf dieselbe Art und Weise mit einer anderen Wahl von injektiven Auflösungen ein Funktor $R^{\hat{i}}F:\mathcal{A}\to\mathcal{B}$ konstruiert, dann sind $R^{i}F(A)$ und $R^{\hat{i}}F(A)$ kanonisch isomorph für alle $A\in Ob\mathcal{A}$, und es gibt eine natürliche Äquivalenz $R^{i}F\overset{\sim}{\to}R^{\hat{i}}F$

 R^iF heißt der **i-te rechtsabgeleitete Funktor** von F.

Bemerkung 8.0.2. Es gilt:

- (a) $R^{\circ}F = F$
- (b) Ist F exakt, dann ist $R^i F = 0$ für alle i > 0

Satz 8.0.3. $0 \to A' \to A \to A'' \to O$ exakte Folge in \mathcal{A} .

Dann existieren natürliche Morphismen

$$\delta^i: R^i F(A'') \longrightarrow R^{i+1} F(A')$$
 für jedes $i \ge 0$,

sodass die Folge

$$\begin{array}{cccc} 0 & \to & FA' \to FA \to FA'' \\ & \stackrel{\delta^0}{\to} & R^1FA' \to R^1FA \to R^1FA'' \\ & \to & \dots \\ & \vdots \\ & \to & R^iFA' \to R^iFA \to R^iFA'' \\ & \stackrel{\delta^i}{\to} & R^{i+1}FA' \to R^{i+1}FA \to R^{i+1}FA'' \\ & \to & \dots \end{array}$$

exakt ist. Ist

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$$

ein kommutatives Diagramm, wobei die untere Zeile exakt ist, so kommutiert für alle $i \ge 0$ das Diagramm

$$R^{i}F(A'') \xrightarrow{\delta^{i}} R^{i+1}F(A')$$

$$\downarrow \qquad \qquad \downarrow$$

$$R^{i}F(B'') \xrightarrow{\delta_{i}} R^{i+1}F(B')$$

Definition 8.0.4. $A \in Ob\mathcal{A}$

A heißt **F-azylisch** $\Leftrightarrow R^i F(A) = 0$ für alle $i \ge 1$

Bemerkung 8.0.5. $A \in Ob\mathcal{A}$ injektiv

Dann ist A F-azyklisch

Satz 8.0.6. $A \to J^{\bullet}$ Auflösung von A durch F-azyklische Objekte, d.h. J^{\bullet} ist ein Komplex mit $J^i = 0$ für i < 0 und J^i F-azyklisch für $i \ge 0$, sodass der augmentierte Komplex

$$0 \longrightarrow A \longleftrightarrow J^1 \longrightarrow J^2 \longrightarrow \dots$$

exakt ist.

Dann gibt es einen kanonischen Isomorphismus $R^iF(A) \cong H^i(FJ^{\bullet})$ für alle $i \geq 0$

Anmerkung: Die Theorie der linksabgeleiteten rechtsexakten Funktoren lässt sich analog entwickeln: \mathcal{A} abelsche Kategorie mit genügend vielen Projektiven, \mathcal{B} abelsche Kategorie, $F:\mathcal{A}\to\mathcal{B}$ rechtsexakter Funktor. Wir wählen für jedes Objekt $A\in Ob\mathcal{A}$ eine projektive Auflösung $P_{\bullet}\to A$ und setzen

$$L_iF(A) := H_i(FP_{\bullet})$$

Rest analog

9. delta-Funktoren

Im Folgenden seien \mathcal{A}, \mathcal{B} abelsche Kategorien

Definition 9.0.1. Ein δ -Funktor $H = (H^n)_{n \geq 0}$ ist eine Familie additiver Funktoren $H^n : \mathcal{A} \to \mathcal{B}$ zusammen mit Homomorphismen $\delta : H^n(C) \to H^{n+1}(A)$ für alle $n \geq 0$ und jede kurze exakte Folge $0 \to A \to B \to C \to 0$, sodass gilt: (D1) δ ist funktoriell, d.h. ist

ein kommutierendes Diagramm in $\mathcal A$ mit exakten Zeilen dann kommutiert

$$H^{n}(C) \xrightarrow{\delta} H^{n+1}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{n}(C') \xrightarrow{\delta} H^{n+1}(A')$$

in \mathcal{B} für alle $n \geq 0$.

(D2) Für jede kurze exakte Folge $0 \to A \to B \to C \to 0$ in \mathcal{A} ist eine lange Folge

$$\ldots \longrightarrow H^n(A) \longrightarrow H^n(B) \longrightarrow H^n(C) \stackrel{\delta}{\longrightarrow} H^{n+1}(A) \longrightarrow \ldots$$

exakt in ${\mathcal B}$

Beispiel 9.0.2. \mathcal{A} habe genügend viele Injektive, $F: \mathcal{A} \to \mathcal{B}$ linksexakt $\Rightarrow H := (R^n F)_{n \geq 0}$ ist ein δ -Funktor nach 8.0.3

Definition 9.0.3. $H = (H^n)_{n \ge 0} : \mathcal{A} \to \mathcal{B} \ \delta$ -Funktor

H heißt **universell** \Leftrightarrow Für jeden δ -Funktor $H' = (H''')_{n \geq 0} : \mathcal{A} \to \mathcal{B}$ setzt sich jede natürliche Transformation $f^0 : H^0 \Rightarrow H'^0$ eindeutig zu einem Homomorphismus von δ -Funktoren fort, d.h. zu einer Familie $f = (f^n)_{n \geq 0}$ von natürlichen Transformationen $f^n : H^n \Rightarrow H'^n$, die auf naheliegende Weise mit den δ 's verträglich sind.

Bemerkung 9.0.4. Sind F,G universelle δ-Funktoren mit $F^{\circ} = G^{\circ}$, dann gibt es eine kanonische natürliche Äquivalenz von δ-Funktoren $F \stackrel{\sim}{\Rightarrow}$.

Definition 9.0.5. $F: \mathcal{A} \to \mathcal{B}$ additiver Funktor.

F heißt auslöschbar \Leftrightarrow Für jedes $A \in Ob\mathcal{A}$ existiert ein $A' \in Ob\mathcal{A}$ und ein Monomorphismus $u : A \hookrightarrow A'$ mit F(u) = 0

Satz 9.0.6. $H = (H^n)_{n \ge 0} : \mathcal{A} \to \mathcal{B}$ δ -Funktor, sodass H^n auslöschbar für alle $n \ge 1$. Dann ist H universell.

Folgerung 9.0.7. $\mathcal A$ have genügend viele Injektive, $F:\mathcal A\to\mathcal B$ linksexakt. Dann ist $(R^nF)_{n\geq 0}$ ein universeller δ -Funktor.

10. Ext und Erweiterungen

Definition 10.0.1. *M*, *N R*-Moduln

Wir setzen $Ext_R^n(M, N) := R^n Hom_R(M, -)(N)$ für $n \ge 0$

Explizit: Wähle eine injektive Auflösung $N \to I^{\bullet}$ von N, dann ist

$$Ext_R^n(M,N) = H^n(Hom_R(M,I^{\bullet}))$$

Satz 10.0.2. *M*, *N R*-Moduln

Dann gibt es kanonische Isomorphismen

$$Ext_R^n(M,N) \cong R^n Hom_R(-,N)(M)$$

für alle $n \ge 0$, insbesondere kann $Ext_R^n(M,N)$ auch über eine projektive Auflösung $P_{\bullet} \to M$ von M berechnet werden via $Ext_R^n(M,N) = H^n(Hom_R(P_{\bullet},N))$

Satz 10.0.3. A Hauptidealring, M, N A-Moduln

Dann gilt: $Ext_A^n(M, N) = 0$ für alle $n \ge 2$

Bemerkung 10.0.4. M, N R-Moduln

 $\mathcal{E}(M,N) := \{ \text{exakte Folgen } 0 \to N \to E \to M \to 0 \text{ von } R\text{-Moduln} \} \text{ Wir definieren auf } \mathcal{E}(M,N) \text{ eine Relation "~" wie folgt"}$

$$0 \to N \to E \to M \to 0 \sim 0 \to N \to E' \to M \to 0$$

 \Leftrightarrow Es existiert ein Homomorphismus $\alpha: E \to E'$, sodass

kommutiert (nach dem Fünferlemma ist α ein Isomorphismus)

"~" ist eine Äquivalenzrelation auf $\mathcal{E}(M, N)$.

Wir setzen $E(M, N) := \mathcal{E}(M, N) / \sim$

E(M,N) enthält ein ausgezeichnetes Element, die Äquivalenzklasse der spaltenden exakten Folge $0 \to N \to N \oplus M \to M \to 0$

Satz 10.0.5. *M*, *N R*-Moduln

Dann gibt es eine Bijektion $\Psi : E(M, N) \longrightarrow Ext_R^1(M, N)$

Anmerkung: Das im Beweis konstruierte Ψ ist unabhängig von der Wahl $\epsilon: P \twoheadrightarrow M$ und bildet die Klasse der spaltenden Erweiterungen auf das Nullelement in $Ext^1_R(M,N)$ ab.

Teil III. Kommutative Algebra

In diesem Kapitel sei A stets ein kommutativer Ring (mit Eins)

11. Grundlagen

Definition 11.0.1. A heißt **lokal** \Leftrightarrow A besitzt genau ein maximales Ideal m.

In diesem Fall heißt k := A/m der **Restklassenkörper** von A.

Bemerkung 11.0.2. $\mathfrak{m} \subseteq A$ maximales Ideal. Dann sind äquivalent:

- (i) A ist lokal mit maximales Ideal m
- (ii) $A \backslash \mathfrak{m} \subseteq A^*$
- (iii) $A \backslash \mathfrak{m} = A^*$
- (iv) $1 + \mathfrak{m} \subseteq A^*$

Definition 11.0.3. $x \in A$. x heißt nilpotent \Leftrightarrow Es existiert ein $n \in \mathbb{N}$ mit $x^n = 0$.

Anmerkung: Ist $A \neq 0$, dann ist jedes nilpotente Element ein Nullteiler, Umkehrung ist im alllgemeinen falsch.

Bemerkung 11.0.4. $\mathcal{M}(A) := \{x \in A | x \text{ ist nilpotent}\}\$ ist ein Ideal in A, das Nilradikal von A. Der Ring $A/\mathcal{M}(A)$ hat keine nilpotenten Elemente $\neq 0$

Satz 11.0.5.
$$\mathcal{M}(A) = \bigcap_{\mathfrak{p} \subseteq A \text{ Primid}} \mathfrak{p}$$

Bemerkung 11.0.6. $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ Primideale in $A, \mathfrak{a} \subseteq A$ Ideal mit $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$.

Dann existiert ein $j \in \{1, ..., n\}$ mit $\mathfrak{a} \subseteq \mathfrak{p}_j$

Bemerkung 11.0.7. $\alpha_1, \ldots, \alpha_n \subseteq A$ Ideale, \mathfrak{p} Primideal in A mit $\mathfrak{p} \supseteq \bigcap_{i=1}^n \alpha_i$.

Dann existiert ein $j \in \{1, ..., n\}$ mit $\mathfrak{p} \supseteq \mathfrak{a}_j$.

Ist
$$\mathfrak{p} = \bigcap_{i=1}^{n} \mathfrak{a}_i$$
, dann existiert ein $j \in \{1, ..., n\}$ mit $\mathfrak{p} = \mathfrak{a}_j$

Bemerkung 11.0.8. $a, b \subseteq A$ Ideale, $a \in A$

 $a : b := \{x \in A | xb \subseteq a\}$ heißt der **Idealquotient** a durch b

b: b ist ein Ideal in A.

 $ann(\mathfrak{a}) := (0) : \mathfrak{a} = \{x \in A | x\mathfrak{a} = 0\}$ heißt der Annullator von \mathfrak{a}

$$ann(a) := ann((a)) = \{x \in A | xa = 0\}$$

Anmerkung:

- $\mathfrak{ab} \subseteq \mathfrak{c} \Leftrightarrow a \subseteq \mathfrak{c} : \mathfrak{b}$
- Die Menge der Nullteiler von A is gegeben durch $\bigcup_{x \in A \setminus \{0\}} ann(x)$

Beispiel 11.0.9.
$$A = \mathbb{Z}, m, n \in \mathbb{Z} \text{ mit } (m, n) \neq (0) \Longrightarrow (m) : (n) = (\frac{m}{ggT(m, n)})$$

Definition 11.0.10. $a \subseteq A$ Ideal

$$\sqrt{\mathfrak{a}} := \{x \in A | \text{Es ex. } n \in \mathbb{N} \text{ mit } x^n \in \mathfrak{a} \} \text{ heißt das } \mathbf{Radikal} \text{ von } \mathfrak{a}$$

Anmerkung:

•
$$\sqrt{(0)} = \mathcal{M}(A)$$

• Ist $\pi: A \to A/\mathfrak{a}$ die kanonische Projektion, dann ist $\sqrt{\mathfrak{a}} = \{x \in A | \text{Es ex.} n \in \mathbb{N} \text{ mit } x^n \in \mathfrak{a}\} = \{x \in A | \pi(x) \in \mathcal{M}(A/\mathfrak{a})\}$

$$=\pi^{-1}(\mathcal{M}(A/\mathfrak{a}))=\pi^{-1}(\bigcap_{\mathfrak{p}\subseteq A/\mathfrak{a}PI}\mathfrak{p})=\bigcap_{\mathfrak{p}\subseteq API\atop \text{mit }\mathfrak{p}\supseteq\mathfrak{a}}\mathfrak{p}\qquad\text{(insbesondere is }\sqrt{\mathfrak{a}}\text{ ein Ideal})$$

Definition 11.0.11. *B* kommutativer Ring, $f: A \to B$ Ringhomomorphismus, $\mathfrak{a} \subseteq A$ Ideal, $\mathfrak{b} \subseteq B$ Ideal.

 $\mathfrak{a}^e := Bf(a) = \{\sum_{a \neq d} b_i f(a_i) | b_i \in B, a_i \in \mathfrak{a} \}$ heißt die **Erweiterung** von \mathfrak{a} auf B.

 $\mathfrak{b}^c := f^{-1}(\mathfrak{b})$ heißt die **Kontraktion** von \mathfrak{b} auf A.

Anmerkung:

- $\mathfrak{a}^e, \mathfrak{b}^c$ sind Ideale in B bzw. A
- Wir können f faktorisieren in $A \xrightarrow{p} imf \xrightarrow{i} B$ Die Situation für p ist einfach, i ist kompliziert.
- $q \subseteq B$ Primideal $\Rightarrow q^c \subseteq A$ Primideal wegen $A/\underbrace{f^{-1}(q)}_{q^c} \hookrightarrow \underbrace{B/q}_{\text{nullteilerfrei}}$
- Ist $\mathfrak{p} \subseteq A$ Primideal, dann ist $\mathfrak{p}^e \subseteq B$ im Allgemeinen kein Primideal (Übung: p Primzahl mit $p = 1 \pmod 4$). Unter $f : \mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ ist $(p)^e$ ein Produkt zweier verschiedener Primideale).

Bemerkung 11.0.12. *B* kommutativer Ring, $f: A \to B$ Ringhomomorphismus, $\mathfrak{a} \subseteq A$ Ideal, $\mathfrak{b} \subseteq B$ Ideal.

Dann gilt:

- (a) $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$
- (b) $a^e = a^{ece}$
- (c) $\mathfrak{b} \supseteq \mathfrak{b}^{ce}$
- (d) $b^c = b^{cec}$

Satz 11.0.13. *B* kommutativer Ring, $f: A \rightarrow B$ Ringhomomorphismus

 $C := \{ \mathfrak{a} \subseteq A \text{ Ideal} | \mathfrak{a} \text{ ist Kontraktion eines Ideals aus } B \}$

 $E := \{ \mathfrak{b} \subseteq B \text{ Ideal} | \mathfrak{b} \text{ ist Erweiterung eines Ideals aus} A \}$

Dann gilt:

- (a) $C = \{ \mathfrak{a} \subseteq A \text{ Ideal} | \mathfrak{a}^{ec} = \mathfrak{a} \}$
- (b) $E = \{ \mathfrak{b} \subseteq B \text{ Ideal} | \mathfrak{b}^{ce} = \mathfrak{b} \}$
- (c) Die Abbildungen $\phi: C \to E$, $\mathfrak{a} \mapsto \mathfrak{a}^e$ und $\psi: E \to C$, $\mathfrak{b} \mapsto \mathfrak{b}^c$

sind zueinander inverse, inklusionserhaltende Bijektionen.

Erinnerung an LA: $T \in M(n \times n, A) \leadsto T^\# \in M(n \times n, A)$ ist die komplementäre Matrix zu T. Es ist $T^\# \cdot T = T \cdot T^\# = \det(T)E_n$. (LA Satz 17.20)

Satz 11.0.14. *M* endlich-erzeugter *A*-Modul, $\mathfrak{a} \subseteq A$ Ideal, $\varphi \in End_A(M)$ mit $\varphi(M) \subseteq \mathfrak{a}M$.

Dann existiert ein $n \in \mathbb{N}$, $a_0, \ldots, a_{n-1} \in \mathfrak{a}$ mit

$$\varphi^n + a_{n-1}\varphi^{n-1} + \ldots + a_1\varphi + a_0id_M = 0$$

Folgerung 11.0.15. M endlich-erzeugter A-Modul, $\mathfrak{a} \subseteq A$ Ideal, mit $\mathfrak{a} M = M$

Dann existiert ein $a \in A$ mit $A \equiv 1 \pmod{\mathfrak{a}}$ mit aM = 0

Satz 11.0.16. (Nakagama-Lemma)

A lokaler Ring mit maximalem Ideal \mathfrak{m} , M endlich-erz. A-Modul. $M/\mathfrak{m}M=0$ Dann ist M=0.

Folgerung 11.0.17. *A* lokaler Ring mit maximalem ideal \mathfrak{m} , M endlich-erz. A-Modul, $N \subseteq M$ Untermodul mit $M = \mathfrak{m}M + N$. Dann ist M = N.

Folgerung 11.0.18. *A* lokaler Ring mit maximalem Ideal \mathfrak{m} , M endlich erzeugter A-Modul, $x_1, \ldots, x_n \in M$. Dann sind äquivalent:

- (i) $x_1, ..., x_n$ ist ein Erzeugendensystem von M
- (ii) Die Bilder $\overline{x}_1, \dots, \overline{x}_n$ von x_1, \dots, x_n in $M/\mathfrak{m}M$ erzeugen den A/MN-Vektorraum $M/\mathfrak{m}M$

Anmerkung: Wichtig: M endlich-erzeugt ist eine Voraussetzung in 11.0.18

12. Lokalisierung

Erinnerung (an Algebra 1)

 $S \subseteq A$ Untermonoid bzgl. "." (d.h. $1 \in S$ und $a, b \in S \Rightarrow ab \in S$)

Definiere Relation " \sim " aus $A \times S$ wie folgt:

 $(a_1, s_1) \sim (a_2, s_2) \Leftrightarrow \text{Es existiert ein } t \in S \text{ mit } ta_2s_1 = ta_1s_2$

"~" ist Äquivalenzrelation, setze $S^{-1}A := A \times S/\sim$, $\frac{a}{s}$ bezeichnet die Äquivalenzklasse von $(a, s) \in A \times S$ $S^{-1}A$ ist ein kommutativer Ring via $\frac{a_1}{s_1} + \frac{a_2}{s_2} := \frac{a_1 s_2 + a_2 s_1}{s_1 s_2}$, $\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}$ Es gibt einen kanonischen Ringhomomorphismus $\tau : A \to S^{-1}A$, $a \mapsto \frac{a}{1}$ (im Allgemeinen nicht injektiv)

 τ injektiv \Leftrightarrow S besteht nur aus Nichtnullteilern

Im Folgenden sei $S \subseteq A$ stets Untermonoid bzgl. ".", Erweiterung und Kontraktion von Idealen sind bzgl. $\tau : A \rightarrow$ $S^{-1}A$ zu verstehen.

Bemerkung 12.0.1. $a \subseteq A$ Ideal

 $S^{-1}\mathfrak{a} := \mathfrak{a}^e = \{\frac{a}{s} | a \in \mathfrak{a}, s \in S\} \subseteq S^{-1}A \text{ ist ein Ideal.}$

Es gilt: $S^{-1}\mathfrak{a} = S^{-1}A \Leftrightarrow \mathfrak{a} \cap S \neq \emptyset$

Bemerkung 12.0.2. $\mathfrak{p} \subseteq A$ Primideal mit $\mathfrak{p} \cap S = \emptyset$

Dann ist $S^{-1}\mathfrak{p}$ ein Primideal in $S^{-1}A$

Bemerkung 12.0.3. Es gilt:

(a) Für die Abbildung

{Ideale in
$$A$$
} $\stackrel{\phi}{\longrightarrow}$ Ideale in $S^{-1}A$

$$\stackrel{\psi}{\longleftarrow}$$

$$\mathfrak{a} \longmapsto \mathfrak{a}^e = S^{-1}\mathfrak{a}$$

$$\mathfrak{b}^c = \tau^{-1}(\mathfrak{b}) \longleftrightarrow \mathfrak{b}$$

gilt: $\phi \circ \psi = id_{\{\text{Ideale in }S^{-1}A\}}$, insbesondere ist ϕ surjektiv und ψ injektiv.

Beide Abbildungen sind inklusionserhaltend.

(b) Die Abbildung

sind bijektiv und invers zueinander, beide sind inklusionserhaltend.

Bemerkung 12.0.4. $\mathfrak{p} \subseteq A$ Primideal, $S := A \setminus \mathfrak{p}$ (ist Untermonoid)

 $A_{\mathfrak{p}} := S^{-1}A$ heißt die Lokalisierung von A bei \mathfrak{p} .

 $A_{\mathfrak{p}}$ ist ein lokaler Ring mit maximalem Ideal $S^{-1}\mathfrak{p}$.

Erweiterung und Kontraktion liefern inklusionserhaltende Bijektionen zweischen der Menge der Primideale in A, die in \mathfrak{p} enthalten sind, und der Menge der Primideale in $A_{\mathfrak{p}}$

Beispiel 12.0.5. $A = \mathbb{Z}, \mathfrak{p} = (p)$ für eine Primzahl p

 $\Rightarrow \mathbb{Z}_{(p)} = \{ \frac{m}{n} \in \mathbb{Q} | m, n \in \mathbb{Z}, ggT(m,n) = 1, p \nmid n \} \text{ ist lokal mit maximalen Ideal } p\mathbb{Z}_{(p)} = \{ \frac{m}{n} \in \mathbb{Q} | m, n \in \mathbb{Z}, ggT(m,n) = 1, p \mid m, p \nmid n \}.$

Bemerkung 12.0.6. M A-Modul

Wir definieren eine Relation " \sim " auf $S \times M$ wie folgt:

$$(s_1, m_1) \sim (s_2, m_2) \Leftrightarrow \text{Es existiert ein } t \in S \text{ mit } ts_2m_1 = ts_1m_2$$

"~" ist eine Äquivalenzrelation.

Wir setzen $S^{-1}M := (S \times M)/\sim$, $\frac{m}{s}$ bezeichnet die Äquivalenzklasse von $(s,m) \in S \times M$. $S^{-1}M$ ist ein $S^{-1}A$ -Modul via:

$$\frac{m_1}{s_1} + \frac{m_2}{s_2} := \frac{s_2 m_1 + s_1 m_2}{s_1 s_2}, \quad \frac{a}{s} \cdot \frac{m}{t} := \frac{am}{st} \quad (\text{für } m_1, m_2, m \in M, s_1, s_2, s, t \in S)$$

 $S^{-1}M$ heißt Quotientenmodul von M nach S.

Es gibt eine natürliche Abbildung $\tau: M \to S^{-1}M, m \mapsto \frac{m}{1}$

Anmerkung: $S^{-1}M$ ist auch eine *A*-Modul via $a \cdot \frac{m}{s} := \frac{a}{1} \cdot \frac{m}{s} = \frac{am}{s}$ τ ist dann ein Homomorphismus von *A*-Moduln.

Satz 12.0.7. M, N A-Moduln, $\varphi: M \to N$ A-linear, $\tau_M: M \to S^{-1}M$, $\tau_N: N \to S^{-1}N$ Dann gibt es genau eine S^{-1} A-lineare Abbildung

$$S^{-1}\varphi:S^{-1}M\to S^{-1}N\qquad M\xrightarrow{\varphi}N$$

$$\downarrow^{\tau_M}\downarrow \qquad \downarrow^{\tau_N}$$

$$S^{-1}M\xrightarrow{-1}S^{-1}N$$

 $\operatorname{mit} S^{-1}\varphi \circ \tau_M = \tau_N \circ \varphi$

Auf diese Weise wird S^{-1} : $A - Mod \rightarrow S^{-1}A - Mod$ zu einem additiven Funktor.

Satz 12.0.8. $S^{-1}: A-Mod \rightarrow S^{-1}A-Mod$ ist ein exakter Funktor

Folgerung 12.0.9. *M A*-Modul, $N \subseteq M$ Untermodul

Dann ist $S^{-1}N$ ist in natürlicher Weise Untermodul von $S^{-1}M$, und es gilt: $S^{-1}(M/N) \cong S^{-1}M/S^{-1}N$ (Wir identifizieren diese Moduln im Folgenden)

Bemerkung 12.0.10. M, N A-Moduln, $\varphi : M \to N$ A-linear. Dann gilt:

(a)
$$\ker(S^{-1}\varphi) = S^{-1}(\ker\varphi)$$
 (b) $\operatorname{coker}(S^{-1}\varphi) = S^{-1}(\operatorname{coker}\varphi)$

(c)
$$im(S^{-1}\varphi) = S^{-1}(im\varphi)$$

Bemerkung 12.0.11. Für die Abbildung:

gilt $\phi \circ \psi = id_{\{S^{-1}A - \text{Untermoduln von } S^{-1}M\}}$, inbesondere ϕ surjektiv und ψ injektiv. Beide Abbildungen sind inklusionserhaltend

Folgerung 12.0.12. Es gilt:

- (a) M endlich-erz. A-Modul $\Rightarrow S^{-1}M$ endlich-erz. $S^{-1}A$ -Modul
- (b) M noetherscher A-Modul $\Rightarrow S^{-1}M$ noetherscher $S^{-1}A$ -Modul

Definition 12.0.13. *M A*-Modul, $\mathfrak{p} \subseteq A$ Primideal

Wir setzen $S := A \setminus \mathfrak{p}$

 $M_{\mathfrak{p}} := S^{-1}M$ heißt die Lokalisierung von M bei \mathfrak{p}

Für einen Homomorphismus $\varphi: M \to N$ von A-Moduln ist entsprechend $\varphi_p = S^{-1}\varphi: M_p \to N_p$ definiert.

Anmerkung: Eine Eigenschaft (E) eines *A*-Moduls *M* nennt man eine "lokale Eigenschaft", wenn gilt: M erfüllt (E) $\Leftrightarrow M_{\mathfrak{p}}$ erfüllt (E) für jedes Primideal $\mathfrak{p} \subseteq A$.

Satz 12.0.14. M A-Modul. Dann sind äquivalent:

- (i) M = 0
- (ii) $M_{\mathfrak{p}} = 0$ für alle Primideale $\mathfrak{p} \subseteq A$
- (iii) $M_{\mathfrak{m}}=0$ für alle maximalen Ideale $\mathfrak{m}\subseteq A$

Folgerung 12.0.15. $M' \xrightarrow{f} M \xrightarrow{g} M''$ Folge von *A*-Moduln.

Dann sind äquivalent:

- (i) $M' \xrightarrow{f} M \xrightarrow{g} M''$ exakt
- (ii) $M'_{\mathfrak{p}} \stackrel{f_{\mathfrak{p}}}{\to} M_{\mathfrak{p}} \stackrel{g_{\mathfrak{p}}}{\to} M''_{\mathfrak{p}}$ exakt für alle Primideale $\mathfrak{p} \subseteq A$
- (iii) $M'_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} M_{\mathfrak{m}} \xrightarrow{g_{\mathfrak{m}}} M''_{\mathfrak{m}}$ exakt für alle maximalen Ideale $\mathfrak{m} \subseteq A$

Folgerung 12.0.16. M, N A-Moduln, $f: M \rightarrow N$ A-Modulnhomomorphismus.

Dann gilt:

- (a) f injektiv $\Leftrightarrow f_{\mathfrak{m}}$ injektiv für alle maximalen Ideale $\mathfrak{m} \subseteq A \Leftrightarrow f_{\mathfrak{p}}$ injektiv für alle Primideale $\mathfrak{p} \subseteq A$
- (b) f surjektiv $\Leftrightarrow f_{\mathfrak{m}}$ surjektiv für alle maximalen Ideale $\mathfrak{m} \subseteq A \Leftrightarrow f_{\mathfrak{p}}$ surjektiv für alle Primideale $\mathfrak{p} \subseteq A$
- (c) $f=0 \Leftrightarrow f_{\mathfrak{m}}=0$ für alle maximalen Ideale $\mathfrak{m}\subseteq A \Leftrightarrow f_{\mathfrak{p}}=0$ für alle Primideale $\mathfrak{p}\subseteq A$

Bemerkung 12.0.17. A nullteilerfrei, K = Quot(A)

Die natürliche Abbildung $A \to K$ bzw. $A_{\mathfrak{p}} \to K$, \mathfrak{p} Primideale in A, sind alle injektiv, fasse also A bzw. $A_{\mathfrak{p}}$ als Unterringe von K auf.

Dann gilt:

$$A = \bigcap_{\mathfrak{p} \subseteq API} A_{\mathfrak{p}} = \bigcap_{\mathfrak{m} \subseteq A \text{ max. Id.}} A_{\mathfrak{m}}$$

13. Tensorprodukt und flache Moduln

Definition 13.0.1. L, M, N A-Moduln, $\varphi : M \times N \to L$

 φ heißt A-bilinear \Leftrightarrow Für jedes $n \in N$ ist die Abbildung $M \to L$, $m \mapsto \varphi(m,n)$ A-linear und für jedes $m \in M$ ist die Abbildung $N \to L$, $n \mapsto \varphi(m,n)$ A-linear.

Definition 13.0.2. *M*, *N A*-Moduln

Ein Tensorprodukt von M und N über A ist ein A-Modul T zusammen mit einer A-bilineare Abbildung $\tau: M \times N \to T$, sodass folgende universelle Eigenschaft erfüllt ist:

Für jeden A-Modul L und jede A-bilineare Abbildung $\varphi: M \times N \to L$ gibt es genau einen A-Modulhomomorphismus $\alpha: T \to L$, sodass $\alpha \circ \tau = \varphi$ ist:

Satz 13.0.3. *M*, *N A*-Moduln

Dann gilt:

- (a) Es gibt ein Tensorprodukt von M, N über A
- (b) Sind T,T' Tensorprodukte von M,N über A mit A-bilinearer Abilldung $\tau:M\times N\to T,\,\tau':M\times N\to T'$, dann existiert genau A-Modulhomomorphismus $\alpha:T\to T'$ mit $\alpha\circ\tau=\tau'$. α ist ein Isomorphismus.

Mit anderen Worten, das Tensorprodukt von M,N ist eindeutig bestimmt bis auf einen eindeutigen Isomorphismus (c) Ist T eine Tensorprodukt von M,N über A mit A-bilinearer Abbildung $\tau:M\times N\to T$ und setzen wir für $m\in M,n\in N$

$$m\otimes n:=\tau(m,n)$$

dann wird T erzeugt von den Elementen $m \otimes n$, $m \in M$, $n \in N$, d.h. jedes Element von τ ist von der Form $\sum_{i=1}^{r} (m_i \otimes n_i)$ mit $a_i \in A$, $m_i \in M$, $n_i \in N$.

Hierbei gilt:

$$(m+m')\otimes n = m\otimes n + m'\otimes n, \quad m\otimes (n+n') = m\otimes n + m\otimes n'$$

 $(am)\otimes n = a(m\otimes n) = m\otimes (an)$

für alle $m, m' \in M, n, n' \in N, a \in A$

Notation für Tensorprodukt von M und N über A: $M \otimes_A N$

Anmerkung: Für $m \in M$ ist stets $m \otimes 0 = 0$, denn $m \otimes 0 = m \otimes (0 + 0) = m \otimes 0 + m \otimes 0$ Analog: $0 \otimes n = 0$ für $n \in \mathbb{N}$.

Beispiel 13.0.4.

(a) $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$, denn:

Seien $a, b \in \mathbb{Q}/\mathbb{Z} \Rightarrow$ es existiert ein $n \in \mathbb{N}$ mit na = 0, es existiert ein $b' \in \mathbb{Q}/\mathbb{Z}$ mit $nb' = b \Rightarrow a \otimes b = a \otimes (nb') = (na) \otimes b' = 0 \otimes b' = 0$

(b) $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z} = 0$, denn:

Für $a \in \mathbb{Z}/2\mathbb{Z}$, $b \in \mathbb{Z}/3\mathbb{Z}$ ist $a \otimes b = (3a) \otimes b = a \otimes (3b) = a \otimes 0 = 0$

Bemerkung 13.0.5. M, M', N, N' A-Moduln, $f: M \to M', g: N \to N'$ A-Modulhomomorphismus Dann gibt es genau einen A-Modulhomomorphismus

$$f \otimes g : M \otimes N \to M' \otimes N'$$

mit $(f \otimes g)(m \otimes n) = f(m) \otimes g(n)$ für alle $m \in M$, $n \in N$.

Folgerung 13.0.6. *M*, *N A*-Moduln

dann sind $M \otimes_A -: A - Mod \to A - Mod$ und $-\otimes_A N: A - Mod \to A - Mod$ additive Funktoren. Hierbei setzen wir für $N_1, N_2 \in A - Mod, \varphi \in Hom_A(N_1, N_2)$

$$(M \otimes_A -)(\varphi) := id_m \otimes \varphi : M \otimes N_1 \to M \otimes N_2, \quad m \otimes n \mapsto m \otimes \varphi(n)$$

(analog für $-\otimes_A N$)

Bemerkung 13.0.7. L, M, N A-Moduln, $(N_i)_{i \in I}$ Familie von A-Moduln.

Dann gibt es natürliche Isomorphismen

- (a) $M \otimes_A A \cong M \cong A \otimes_A M$
- (b) $M \otimes_A N \cong N \otimes_A M$
- (c) $(L \otimes_A M) \otimes_A N \cong L \otimes_A (M \otimes N)$

(d)
$$M \otimes_A (\bigoplus_{i \in I} N_i) \cong \bigoplus_{i \in I} (M \otimes N_i)$$

Anmerkung: Das Tensorprodukt kommutiert im Allgemeinen nicht mit direkten Produkten (Übung)

Folgerung 13.0.8. *M*, *N* freie *A*-Moduln

Dann ist $M \otimes_A N$ ein freier A-Modul.

Bemerkung 13.0.9. B kommutativer Ring, $f: A \rightarrow B$ Ringhomomorphismus, M A-Modul.

Dann ist B ein A-Modul via $A \times B \rightarrow B$, $(a,b) \mapsto f(a)b$,

und
$$M \otimes_A B$$
 ist ein B -Modul via $B \times (M \otimes_A B) \to M \otimes_A B$, $(b, \sum_{i=1}^r m_i \otimes b_i) \mapsto \sum_{i=1}^r m_i \otimes bb_i$

Bemerkung 13.0.10. *B* kommutativer Ring, *M A*-Modul, *L B*-Modul, *N A*-Modul und *B*-Modul mit a(bx) = b(ax) für alle $a \in A, b \in Bx \in N$ ("*N* ist ein (*A*, *B*)-Bimodul")

Dann ist $M \otimes_A N$ in natürlicher Weise ein B-Modul, $N \otimes_B L$ ein A-Modul, und es ist

$$(M \otimes_A N) \otimes_B L \cong M \otimes_A (N \otimes_B L)$$
 (Isomorphismus von *A*- und von *B*-Moduln)

Bemerkung 13.0.11. *M A*-Modul, $S \subseteq A$ Untermonoid bzgl "."

Dann gibt es einen natürlichen Isomorphismus: (von A-Moduln und von $S^{-1}A$ -Moduln)

$$S^{-1}A \otimes_A M \cong S^{-1}M$$

Bemerkung 13.0.12. M, N A-Moduln, $S \subseteq A$ Untermonoid bzgl. "."

Dann gibt es einen natürlichen Isomorphismus von $S^{-1}A$ -Moduln

$$S^{-1}M \otimes_{S^{-1}A} S^{-1}N \cong S^{-1}(M \otimes_A N)$$

Bemerkung 13.0.13. *L*, *M*, *N A*-Moduln

Dann gilt: $Hom_A(M \otimes_A N, L) \cong Hom_A(M, Hom_A(N, L))$ (natürl.)

Insbesondere ist $-\otimes_A N$???? $Hom_A(N, -)$

Folgerung 13.0.14. *M*, *N A*-Moduln

Dann sind die Funktoren $M \otimes_A - \text{und} - \otimes_A N$ rechtsexakt.

Beispiel 13.0.15.

 $-\otimes_A N$ ist im Allgemeinen nicht exakt:

Sei $A = \mathbb{Z}$, $N = \mathbb{Z}/2\mathbb{Z}$

Wir betrachten die exakte Folge $0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \to 0$, wobei $f : \mathbb{Z} \to \mathbb{Z}$, $x \mapsto 2x$, π kanonische Projektion Es ist $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \neq 0$, und die Abbildung $f \otimes_A id_N : \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ ist die Nullabbildung, denn für $x \in \mathbb{Z}$, $y \in \mathbb{Z}/2\mathbb{Z}$ ist $(f \otimes_A id_N)(x \otimes y) = f(x) \otimes y = 2x \otimes y = x \otimes 2y = x \otimes 0 = 0$

Bemerkung 13.0.16. *M A*-Modul, $\mathfrak{a} \subseteq A$ Ideal.

Dann gilt: $A/\mathfrak{a} \otimes_A M \cong M/\mathfrak{a} M$

Definition 13.0.17. *M A-*Modul

M heißt flach $\Leftrightarrow - \otimes_A M$ ist exakt $\Leftrightarrow M \otimes_A -$ ist exakt

Bemerkung 13.0.18.

P projektiver A-modul. Dann ist P flach

Bemerkung 13.0.19.

M, N flache Moduln. Dann ist $M \otimes_A N$ flach.

Bemerkung 13.0.20. $(M_i)_{i \in I}$ Familie von A-Moduln. Dann sind äquivalent:

- (i) $\bigoplus_{i \in I} M_i$ flach
- (ii) M_i flach für alle $i \in I$

Bemerkung 13.0.21. *B* kommutativer Ring, $f: A \rightarrow B$ Ringhomomorphismus, *M* flacher *A*-Modul.

Dann ist $B \otimes_A M$ ein flacher B-Modul.

Bemerkung 13.0.22. $S \subseteq A$ Untermonoid bzgl "·".

Dann ist $S^{-1}A$ einflacher A-Modul.

Beispiel 13.0.23.

A nullteilerfrei $\Rightarrow Quot(A)$ flacher A-Modul.

Bemerkung 13.0.24. *M A*-Modul. Dann sind äquivalent:

- (i) M ist ein flacher A-Modul
- (ii) $M_{\mathfrak{p}}$ ist ein flacher $A_{\mathfrak{p}}$ -Modul für alle Primideale $\mathfrak{p} \subset A$
- (iii) $M_{\mathfrak{m}}$ ist ein flacher $A_{\mathfrak{m}}$ -Modul für alle maximalen Ideale $\mathfrak{m} \subseteq A$

Erinngerung (an LA2, 29.15) M A-Modul

 $T(M) := \{x \in M | \text{es ex. ein } a \in A, a \text{ kein Nullteiler, mit } ax = 0\}$ Torsionsuntermodul von M. M heißt torsionsfrei $\Leftrightarrow T(M) = \{0\}$

Bemerkung 13.0.25. A nullteilerfrei, M flacher A-Modul. Dann ist M torsionsfrei.

Bemerkung 13.0.26. *M A*-Modul. Dann sind äquivalent:

(i) Für jede Folge $N' \rightarrow N \rightarrow N''$ von A-Moduln gilt,

 $N' \to N \to N''$ exakt $\Leftrightarrow N' \otimes_A M \to N \otimes_A M \to N'' \otimes_A M$ exakt.

- (ii) M ist flach und für alle maximalen Ideale $\mathfrak{a} \subseteq A$ ist $M/\mathfrak{m} \neq 0$
- (iii) M ist flach und für alle A-Moduln N gilt: $N \otimes_A M = 0 \Rightarrow N = 0$
- (iv) M ist flach und für alle A-Modulhomomorphismen $\varphi: N_1 \to N_2$ gilt:

$$\varphi \otimes_A id_M : N_1 \otimes_A M \to N_2 \otimes_A M$$

ist die Nullabbildung $\Rightarrow \varphi = 0$.

Ist eine dieser äquivalenten Bedingungen erfüllt, so heißt M ein ${\bf treuflacher}$ $A{\bf -Modul}$.

Beispiel 13.0.27. (a) \mathbb{Q} ist flacher \mathbb{Z} -Modul nach 13.22, aber kein treuflacher \mathbb{Z} -Modul, denn: $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} = 0$ (b) $A^{(I)}$ ist ein treuflacher A-Modul für $I \neq \emptyset$, denn:

- $A^{(I)}$ ist flach, da freier A-Modul
- Sei N A-Modul mit $N \otimes_A A^{(I)} = 0 \Rightarrow \bigoplus_{i \in I} N = 0 \Rightarrow N = 0$

Insbesondere ist $A[X] \cong A^{(\mathbb{N}_0)}$ ein treuflacher A-Modul

14. Tor

Definition 14.0.1. *M*, *N A*-Moduln

Wir setzen $Tor_n^A(M,N) := L_n(M \otimes_A -)(N)$ für $n \ge 0$

Explizit: Wähle eine projektive Auflösung $Q_{\bullet} \to N$, dann ist $Tor_n^A(M,N) = H_n(M \otimes_A Q_{\bullet})$

Satz 14.0.2. *M A*-Modul

Dann ist $(Tor_n^A(M,-))_{n\geq 0}$ ein universeller homologischer δ -Funktor, d.h.

- $Tor_n^A(M, -): A Mod \rightarrow A Mod$ sind additive Funktoren für alle $n \ge 0$
- Für jede exakte Folge $0 \to N' \to N \to N'' \to 0$ gibt es Verbindungshomomorphismen $\delta: Tor_{n+1}^A(H,N'') \xrightarrow{\delta} Tor_{n-1}^A(M,N')$, sodass die lange Folge

$$\ldots \to Tor_{n+1}^A(M,N'') \xrightarrow{\delta} Tor_n^A(M,N') \to Tor_n^A(M,N) \to Tor_n^A(M,N'') \xrightarrow{\delta} Tor_{n-1}^A(M,N') \to \ldots$$

exakt ist, δ ist funktionell (vgl. 9.0.1)

• Für jeden homologischen δ -Funktor $H' = (H'_n)_{n \geq 0} : A - Mod \to A - Mod$ setzt sich jede natürliche Transformation $f_0 : M \otimes_A - \Rightarrow H'_0$ eindeutig zu einem homologischen δ -Funktor fort.

Satz 14.0.3. *M*, *N*, *A*-Moduln

Dann gibt es einen kanonischen Isomorphismus $Tor_n^A(M,N) \cong L_n(-\otimes_A N)(M)$ für alle $n \geq 0$, insbesondere kann $Tor_n^A(M,N)$ auch über eine projektive Auflösung $P_{\bullet} \to M$ von M berechnet werden via $Tor_n^A(M,N) = H_n(P_{\bullet} \otimes_A N)$

Folgerung 14.0.4. *M* flacher *A*-Modul, *N A*-Modul.

Dann ist M $(-\otimes_A N)$ -azyklisch.

Folgerung 14.0.5. *M*, *N A*-Moduln

Dann gilt: $Tor_n^A(M, N) \cong Tor_n^A(N, M)$ für alle $n \ge 0$

Bemerkung 14.0.6. $0 \to M' \to M \to M'' \to 0$ exakte Folge von A-Moduln, M'' flach, N A-Modul Dann ist die Folge

$$0 \to M' \otimes_A N \to M \otimes_A N \to M'' \otimes_A N \to 0$$

exakt.

Satz 14.0.7. *A* lokaler Ring mit maximalem Ideal \mathfrak{m} und Restklassenkörper $k = A/\mathfrak{m}$, M endlich-erz. A-Modul. Dann sind äquivalent:

- (i) M ist frei
- (ii) M ist projektiv
- (iii) M ist flach
- (iv) $Tor_1^A(A/\mathfrak{a}, M) = 0$ für jedes Ideal $\mathfrak{a} \subseteq A$.

Ist A noethersch, dann sind (i) - (iv) äquivalent zu (v) $Tor_1^A(k, M) = 0$

Folgerung 14.0.8. *M* endlich-erz. *A*-Modul. Dann sind äquivalent:

(i) M flacher A-Modul

(ii) $M_{\mathfrak{p}}$ ist ein freier $A_{\mathfrak{p}}$ -Modul für alle Primideale $\mathfrak{p}\subseteq A$

(iii) $M_{\mathfrak{m}}$ ist ein freier $A_{\mathfrak{m}}$ -Modul für alle maximalen Ideale $\mathfrak{m}\subseteq A$

Satz 14.0.9. *A* HIR, *M*, *N A*-Moduln

Dann ist $Tor_n^A(M, N) = 0$ für alle $n \ge 2$

Bemerkung 14.0.10. *M A*-Modul, $a \in A$ kein Nullteiler.

Dann gilt: $Tor_1^A(A/(a), M) \cong \{x \in M | ax = 0\}$

15. Ganze Ringerweiterung und Dimension

In diesem Abschnitt bedeute "Ringerweiterungßtets Erweiterung kommutativer Ringe

Definition 15.0.1. B|A Ringerweiterung

B|A heißt endlich $\Leftrightarrow B$ ist endlich-erz. als A-Modul

 $b \in B$ heißt ganz über $A \Leftrightarrow A[b]|A$ ist endlich.

B|A heißt ganz \Leftrightarrow Alle $b \in B$ sind ganz über A.

Anmkerung: B|A, C|B endlicher Ringerweiterung $\Rightarrow C|A$ endliche Ringerweiterung, denn: $(b_i)_{i=1,...,n}$ Erzeugendensystem von B als A-Modul, $(c_j)_{j=1,...,m}$ Erzeugendensystem von C als B-Modul $\Rightarrow (b_i c_j)_{\substack{i=1,...,n \\ j=1,...,m}}$ Erzeugendensystem von C als A-Modul.

Satz 15.0.2. B|A Ringerweiterung, $b \in B$. Dann sind äquivalent:

- (i) b ist ganz über A
- (ii) Es gibt $n \in \mathbb{N}$, $a_{n-1}, \ldots, a_0 \in A$ mit

$$b^{n} + a_{n-1}b^{n-1} + \ldots + a_{1}b + a_{0} = 0$$
 (*)

- (iii) Es gibt einen Zwischenring $A \subseteq Z \subseteq B$, sodass $b \in Z$ ist und Z|A endlich ist.
- (iv) Es gibt einen A[b]-Modul M mit $ann_{A[b]}M = 0$, der als A-Modul endlich-erz. ist.

Anmerkung: Ist B|A eine Körpererweiterung, dann:

 $b \in B$ ganz über $A \Leftrightarrow b$ algebraisch über A

 $B|A \text{ ganz} \Leftrightarrow B|A \text{ algebraisch}.$

Folgerung 15.0.3. Es gilt:

- (a) B|A endlich $\Rightarrow B|A$ ganz
- (b) C|B|A Ringerweiterung, $c \in C$ ganz über $A \Rightarrow c$ ganz über B.

Beispiel 15.0.4. $\mathbb{Z}[i]|\mathbb{Z}$ ist ganz, denn: $\mathbb{Z}[i]|\mathbb{Z}$ ist endlich, da 1,i Erzeugendensystem von $\mathbb{Z}[i]$ als \mathbb{Z} -Modul

Satz 15.0.5. C|B|A Ringerweiterung. Dann sind äquivalent:

- (i) B|A ganz und C|B ganz
- (ii) C|A ganz

Bemerkung 15.0.6. B|A ganze Ringerweiterung, $\mathfrak{b} \subseteq B$ Ideal

Dann ist $B/\mathfrak{b}|A/\mathfrak{b} \cap A$ eine ganze Ringerweiterung.

Bemerkung 15.0.7. B|A ganze Ringerweiterung, $S \subseteq A$ Untermonoid "."

Dann ist $S^{-1}B|S^{-1}A$ eine ganze Ringerweiterung.

Bemerkung 15.0.8. *B*|*A* Ringerweiterung. Dann gilt:

 $\overline{A}^B := \{b \in B | b \text{ ganz "uber } A\} \text{ ist ein Unterring von } B \text{ mit } A \subseteq \overline{A}^B,$

der ganze Abschluss von A in B.

A heißt ganzabgeschlossen in $B \Leftrightarrow \bar{A}^B = A$

 $\bar{A}^B|A$ ist eine ganze Ringerweiterung und \bar{A}^B ist ganzabgeschlossen in B.

Bemerkung 15.0.9. B|A Ringerweiterung, $S \subseteq A$ Untermonoid bzgl. "·"

Dann gilt:
$$\overline{S^{-1}A}^{S^{-1}B} = S^{-1}(\bar{A}^B)$$

Insbesondere gilt: A ganzabgeschlossen in $B \Rightarrow S^{-1}A$ ganzabgeschlossen in $S^{-1}B$.

Definition 15.0.10. *A* nullteilerfrei

Der ganze Abschluss von A ist der ganze Abschluss von A in Quot(A).

A heißt **normal(ganzabgeschlossen)** \Leftrightarrow A stimmt mit seinem ganzen Abschluss überein.

Bemerkung 15.0.11. *A* faktoriell. Dann ist *A* normal.

Beispiel 15.0.12. $\bar{\mathbb{Z}}^{\mathbb{Q}(i)} = \mathbb{Z}[i]$, denn: $\mathbb{Z}[i]|\mathbb{Z}$ ganz, $\mathbb{Z}[i]$ ist normal, da faktoriell

Bemerkung 15.0.13. *A* normal, $S \subseteq A$ Untermonoid bzgl. "."

Dann ist $S^{-1}A$ normal.

Bemerkung 15.0.14. A nullteilerfrei. Dann sind äquvialent:

- (i) A normal
- (ii) $A_{\mathfrak{p}}$ normal für alle Primideale $\mathfrak{p} \subseteq A$
- (iii) $A_{\mathfrak{m}}$ normal für alle maximalen Ideale $\mathfrak{m} \subseteq A$

Bemerkung 15.0.15. B|A ganze Ringerweiterung, B nullteilerfrei.

Dann sind äquivalent:

- (i) A ist eine Körper
- (ii) B ist ein Körper

Definition 15.0.16. B|A Ringerweiterung, $\mathfrak{p} \subseteq B$, $\mathfrak{p}' \subseteq A$ Primideale \mathfrak{p} **liegt über** $\mathfrak{p}' \Leftrightarrow \mathfrak{p}' = \mathfrak{p} \cap A$.

Satz 15.0.17. B|A ganze Ringerweiterung. Dann gilt:

- (a) ("Lying over") Zu jedem Primideal $\mathfrak{p}'\subseteq A$ existiert ein Primideal $\mathfrak{p}\subseteq B$, sodass \mathfrak{p} über \mathfrak{p}' liegt.
- (b) Sind $\mathfrak{p} \subseteq \mathfrak{q}$ Primideale in B, die über demselben Primideal $\mathfrak{p}' \subseteq A$ liegen, dann ist $\mathfrak{p} = \mathfrak{q}$
- (c) Liegt das Primideal $\mathfrak p$ von B über dem Primideal $\mathfrak p'$ von A, dann gilt:

 \mathfrak{p} maximales Ideal $\Leftrightarrow \mathfrak{p}'$ maximales Ideal

Folgerung 15.0.18. B|A ganze Ringerweiterung, $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_r$ Primidealkette in B Dann ist $\mathfrak{p}_0 \cap A \subsetneq \mathfrak{p}_1 \cap A \subsetneq \ldots, \subsetneq \mathfrak{p}_r$ in B mit $\mathfrak{p}_r \cap A$ eine Primideal-Kette in A

Folgerung 15.0.19. ("Going up") B|A ganze Ringerweiterung, $\mathfrak{p}'_0 \subsetneq \mathfrak{p}'_1 \subsetneq \ldots \subsetneq \mathfrak{p}'_r$ Primidealkette in A, \mathfrak{p}_0 Primideal in B mit $\mathfrak{p}_0 \cap A = \mathfrak{p}'_0$

Dann existiert eine Primidealkette $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_r$ in B mit $\mathfrak{p}_i \cap A = \mathfrak{p}_i'$ für $i = 0, \ldots, r$

Definition 15.0.20. $A \neq 0$

Eine endliche Kette von n+1 Primidealen $\mathfrak{p}_0 \supsetneq \mathfrak{p}_1 \supsetneq \ldots \supsetneq \mathfrak{p}_n$ heißt eine **Primidealkette der Länge** n in A Für ein Primideal $\mathfrak{p} \subseteq A$ heißt

$$ht(\mathfrak{p}) := \sup\{n \in \mathbb{N}_0 | p = \mathfrak{p}_0 \supseteq \mathfrak{p}_1 \supseteq \dots \supseteq \mathfrak{p}_n \text{ ist eine Primideal-Kette der Länge } n \text{ in } A\}$$

die **Höhe** von p.

 $\dim(A) := \sup\{ht(\mathfrak{p})|\mathfrak{p} \text{ Primideal in } A\}$ heißt die (**Krull-)Dimension** von A.

Beispiel 15.0.21. (a) K Körper $\Rightarrow \dim(K) = 0$, denn (0) ist das einzige Primideal in K (b) A HIR, der kein Körper ist $\Rightarrow \dim(A) = 1$

denn: Es existiert ein Primideal \neq (0) in A, denn es existiert ein maximales Ideal \neq (0) in A.

Sei $\mathfrak p$ Primideal in $A, \mathfrak p \neq 0 \Rightarrow$ Es existiert ein Primelement $\pi \in A$ mit $\mathfrak p = (\pi)$.

Es ist $ht(\mathfrak{p})=1$, denn ist $(0)\neq\mathfrak{q}\subseteq\mathfrak{p}$ Primideal, dann existiert ein $\tilde{\pi}\in A$ mit $\mathfrak{q}=(\tilde{\pi})\Rightarrow\pi|\tilde{\pi}\Rightarrow\pi$ assoziiert zu $\tilde{\pi}\Rightarrow\mathfrak{q}=\mathfrak{p}$, also $ht(\mathfrak{p})=1$

Satz 15.0.22. B|A ganze Ringerweiterung, $\mathfrak{p}' \subseteq A$ Primideal. Dann gilt:

- (a) $\dim(B) = \dim(A)$
- (b) Für jedes Primideal \mathfrak{p} von B über \mathfrak{p}' ist $\dim(A/\mathfrak{p}') = \dim(B/\mathfrak{p})$ und $ht(\mathfrak{p}) \leq ht(\mathfrak{p}')$
- (c) Falls $ht(\mathfrak{p}') < \infty$, dann existiert Primideal \mathfrak{p} von B über \mathfrak{p}' mit $ht(\mathfrak{p}) = ht(\mathfrak{p}')$

Anmerkung: Im Allgemeinen ist $ht(\mathfrak{p}) \neq ht(\mathfrak{p}')$

Satz 15.0.23. ("Going down") B|A ganze Erweiterung nullteilerfreier Ringe, A normal, $\mathfrak{p}_0' \supsetneq \mathfrak{p}_1' \supsetneq \ldots \supsetneq \mathfrak{p}_r'$ Primideal-Kette in A, \mathfrak{p}_0 Primideal in B über \mathfrak{p}_0'

Dann existiert eine Primideal-Kette $\mathfrak{p}_0 \supsetneq \mathfrak{p}_1 \supsetneq \ldots \supsetneq \mathfrak{p}_n$ in B mit $\mathfrak{p}_i \cap A = \mathfrak{p}_i'$ für $i = 0, \ldots, r$

Insbesondere gilt: ist \mathfrak{p}' ein Primideal in A und \mathfrak{p} ein Primideal in B über A, dann ist $ht(\mathfrak{p}) = ht(\mathfrak{p}')$

16. Direkte und projektive Limiten

Definition 16.0.1. *I* Menge, \leq Halbordnung auf *I*

 (I, \leq) heißt **gerichtet** \Leftrightarrow Für alle $a, b \in I$ existiert ein $c \in I$ mit $a \leq c$ und $b \leq c$.

Für den Rest des Abschnitts sei (I, \leq) stets eine gerichtete halbgeordnete Menge.

Definition 16.0.2. Ein über *I* indiziertes **direktes System** (induktives System) von *A*-Moduln besteht aus

- einer Familie $(M_i)_{i \in I}$ von A-Moduln
- einer Familie $(\varphi_{ij})_{i,j \in I, i \le j}$ von A-Modulhomomorphismen $\varphi_{ij} : M_i \to M_j$ Übergangsabbildugnen sodass gilt:
 - $-\varphi_{ij}=id_{M_i}$ für alle $i\in I$
 - $φ_{ik} = φ_{jk} ∘ φ_{ij}$ für alle i, j, k ∈ I mit i ≤ j ≤ k

Im Folgenden schreiben wir dafür kurz $(M_i, \varphi_{ii})_I$

Beispiel 16.0.3.

- (a) $I = \mathbb{N}$ mit " \leq ", M A-Modul, $M_1 \subseteq M_2 \subseteq \ldots$ Folge von Untermoduln von M, $\varphi_{ij} : M_i \hookrightarrow M_j$ Inklusion für $i \leq j$. Dies liefert ein direktes System von A-Moduln
- (b) M A-Modul, I eine Menge von Untermoduln von M, die gerichtet bzgl. " \subseteq " sei. Setze $M_i := i$ für $i \in I$. Dann ist $(M_i)_{i \in I}$ ist ein direktes System von A-Moduln mit den Inklusionen als Übergangsabbildung.
- (c) M A-Modul, I Menge der endlich-erz. Untermoduln von M ist gerichtet bzgl. " \subseteq " (mit $M_1, M_2 \subseteq M$ endlich-erz. ist auch $M_1 + M_2$ endlich-erz.), dies liefert ein Bsp. für (b)
- (d) $I = \mathbb{N}$ mit |-Halbordnung, $M_i = \mathbb{Z}/i\mathbb{Z}$

$$\varphi_{ij}: \mathbb{Z}/i\mathbb{Z} \to \mathbb{Z}/j\mathbb{Z}, a+i\mathbb{Z} \mapsto \frac{j}{i}a+j\mathbb{Z}$$
 für $i|j$

liefert ein direktes System von Z-Moduln

Bemerkung 16.0.4. Ein Homomorphismus von direkten Systemen $(M_i, \varphi_{ij}^M)_I$ ins direkte System $(N_i, \varphi_{ij}^N)_I$ ist eine Familie $(f_i)_{i \in I}$ von A-Modulhomomorphismen $f_i : M_i \to N_i$, sodass $\varphi_{ij}^N \circ f_i = f_j \circ \varphi_{ij}^M$ für alle $i, j \in I$ mit $i \leq j$ gilt:

$$\begin{array}{c|c} M_i & \xrightarrow{f_i} & N_i \\ \varphi^M_{ij} & & \varphi^N_{ij} \\ M_j & \xrightarrow{f_j} & N_j \end{array}$$

Die über *I* indizierten direkten Systeme von *A*-Moduln bilden zusammen mit obigen Homomorphismen eine abelsche Kategorie (alles komponentenweise definiert)

Bezeichnung: I-Dir-A-Mod

Definition 16.0.5. Ein **direkter Limes** des direkten Systems $(M_i, \varphi_{ij})_I$ von A-Moduln (induktiver Limes, Kolimes) ist eine A-Modul M zusammen mit einer Familie $(\varphi_i)_{i \in I}$ von A-Modulhomomorphismen $\varphi_i : M_i \to M$, sodass

 $\varphi_i = \varphi_j \circ \varphi_{ij}$ für alle $i, j \in I$ mit $i \leq j$ ist, sodass folgende universelle Eigenschaft erfüllt ist: Für jeden A-Modul N und jede Familie $(\psi_i)_{i \in I}$ von A-Modulhomomorphismen $\psi_i : M_i \to N$ $\min \psi_i = \psi_j \circ \varphi_{ij}$ für alle $i \leq j$ existiert ein eindeutig bestimmter A-Modulhomomorphismus $\psi: M \to N$ mit $\psi_i = \psi \circ \varphi_i$ für alle $i \in I$.

Diagramm:

Satz 16.0.6. $(M_i, \varphi_{ij})_I$ direktes System von A-Moduln.

Dann gilt:

(a) Setzt man
$$L := \bigcup_{i \in I} M_i$$
 und für $x, y \in L$, $x = m_i \in M_i$

$$x \sim y \Leftrightarrow \text{ Es ex. } k \in I \text{ mit } i \leq k, j \leq k \text{ mit } \varphi_{ik}(x) = \varphi_{jk}(y)$$

dann ist " \sim " eine Äquivalenzrelation auf L.

Hierbei ist $\bigcup_{i \in I} M_i := \bigcup_{i \in I} (M_i \times \{i\})$, man identifiziert $M_i \times \{i\}$ mit M_i . (b) Setzt man $M := L/\sim$, dann wird M auf natürliche Weise zu einem A-Modul und die Abbildung $\varphi_i : M_i \to M$, $x \mapsto \bar{x} \text{ sind } A\text{-Modulhomomorphismen.}$

Für jedes $m \in M$ existiert ein $i \in I$, $m_i \in M_i$ mit $m = \varphi_i(m_i)$

- (c) $(M, (\varphi_i)_{i \in I})$ ist ein direkter Limes von $(M_i, \varphi_{ij})_I$
- (d) Ist $(M', (\varphi'_i)_{i \in I})$ ein weiterer direkter Limes des obigen direkten Systems, dann existiert ein eindeutig bestimmter Isomorphismus $\gamma: M \to M'$ mit $\gamma \circ \varphi = \varphi_i'$ für alle $i \in I$.

Notation: $M = \lim_{i \in I} M_i$

Beispiel 16.0.7. (vgl. 16.0.3)

(a) $M_1 \subseteq M_2 \subseteq ... \subseteq M$ mit den Inklusionen als Übergangsabbildung.

$$\lim_{i\in\mathbb{N}}M_i=\bigcup_{i\in\mathbb{N}}M_i\subseteq M, \text{ wobei } \varphi:M_i\hookrightarrow\bigcup_{i\in\mathbb{N}}M_i \text{ Inklusion}.$$

 $\psi_j \circ \varphi_{ij} = \psi_i \text{ für } i \leq j, \text{ d.h. } \psi_j|_{M_i} = \psi_i$

(b) $(M_i)_{i \in I}$ bzgl., " \subseteq " gerichtete Familie von Untermoduln von M, indiziert über sich selbst $\Rightarrow \lim_{i \in I} M_i = \bigcup_{i \in I} M_i$

(c) $(M_i)_{i \in I}$ Familie der endlich-erz. Untermoduln von $M \Rightarrow \lim_{i \in I} M_i = \bigcup_{i \in I} M_i = M$, denn: jedes Element aus M liegt in einem endlich-erz. Untermodul von M.

Bemerkung 16.0.8. $(f_i)_{i \in I} : (M_i, \varphi_{ij}^M)_I \longrightarrow (N_i, \varphi_{ij}^N)_I$ Homomorphismus direkter Systeme von A-Moduln. Dann existiert ein eindeutig bestimmter Homomorphismus

$$\lim_{i \to i \in I} f_i : \lim_{i \to i \in I} M_i \to \lim_{i \to i \in IN_i}$$

mit $(\lim_{\longrightarrow} f_i) \circ \varphi_i^M = \varphi_i^N \circ f_i$ für alle $i \in I$:

$$M_{i} \xrightarrow{f_{i}} N_{i}$$

$$\varphi_{i}^{M} \downarrow \qquad \qquad \varphi_{i}^{N} \downarrow$$

$$\lim_{\rightarrow i \in I} M_{i} \xrightarrow{\lim_{\rightarrow i \in I} N_{i}} \lim_{\rightarrow i \in I} N_{i}$$

Folgerung 16.0.9.

 $\lim_{i \to i \in I} -: I - Dir - A - Mod \longrightarrow A - Mod \text{ ist ein additiver Funktor.}$

Beispiel 16.0.10. (vgl. Bsp. 16.3(d)) $I = \mathbb{N}$ mit "|"-Halbordnung, $M_i = \mathbb{Z}/i\mathbb{Z}$,

$$\varphi_{ij}: \mathbb{Z}/i\mathbb{Z} \to \mathbb{Z}/j\mathbb{Z}, a+i\mathbb{Z} \mapsto \frac{j}{i}a+j\mathbb{Z} \text{ für } i|j$$

Setze
$$f_i: \mathbb{Z}/i\mathbb{Z} \xrightarrow{\sim} (\frac{1}{i}\mathbb{Z})/\mathbb{Z} \subseteq \mathbb{Q}/\mathbb{Z}, a+i\mathbb{Z} \mapsto \frac{a}{i}+\mathbb{Z}$$

$$\psi_{ij}: (\frac{1}{i}\mathbb{Z})/\mathbb{Z} \hookrightarrow (\frac{1}{i})/\mathbb{Z}, \frac{a}{i}+\mathbb{Z} \mapsto \frac{a}{i}+\mathbb{Z} \text{ für } i|j$$

 $\Rightarrow ((\frac{1}{i}\mathbb{Z})/\mathbb{Z},\psi_{ij})_{\mathbb{N}}$ ist ein direktes System von \mathbb{Z} -Moduln, und

$$(f_i)_{i\in\mathbb{N}}: (\mathbb{Z}/i\mathbb{Z}, \varphi_{ij})_{\mathbb{N}} \to ((\frac{1}{i}\mathbb{Z})/\mathbb{Z}, \psi_{ij})_{\mathbb{N}}$$

ist ein Isomorphismus direkter Systeme (beachte: $\psi_{ij} \circ f_i = f_j \circ \varphi_{ij}$ für i|j, denn:

$$(\psi_{ij} \circ f_i)(a+i\mathbb{Z}) = \psi_{ij}(\frac{a}{i}+\mathbb{Z}) = \frac{a}{i}+\mathbb{Z},$$

$$(f_j \circ p_{ij})(a+i\mathbb{Z}) = f_j(\frac{j}{i}a+j\mathbb{Z}) = \frac{ja}{ii}+\mathbb{Z} = \frac{a}{i}+\mathbb{Z}$$

$$(f_{j} \circ p_{ij})(a+i\mathbb{Z}) = f_{j}(\frac{i}{j}a+j\mathbb{Z}) = \frac{ja}{ij} + \mathbb{Z} = \frac{a}{i} + \mathbb{Z}$$

$$\Rightarrow \lim_{j \in \mathbb{N}} \mathbb{Z}/i\mathbb{Z} \cong \lim_{j \in \mathbb{N}} (\frac{1}{i}\mathbb{Z})/\mathbb{Z} = \bigcup_{i \in \mathbb{N}} (\frac{1}{i}\mathbb{Z})/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}$$

$$16.7.(b) \ i \in \mathbb{N}$$

Bemerkung 16.0.11. $(M_i, \varphi_{ij})_I$ direktes System von A-Moduln, N A-Modul.

Dann gibt es einen natürlichen Isomorphismus

$$\lim_{i \in I} (M_i \otimes_A N) \cong (\lim_{i \in I} M_i) \otimes_A N$$

Satz 16.0.12. Der Funktor $\lim_{x \to i \in I} -: I - Dir - A - Mod \to A$ -Mod ist exakt.

Anmerkung: $\lim_{i \in I}$ — ist linksadjungiert zum "konstanten System-Funktor":

$$I-const: A-Mod \longrightarrow I-Dir-A-Mod$$

 $M \longmapsto (M,id_M)_I$

 $\mathrm{denn:}\ Hom_{A-Mod}(\lim_{\longrightarrow i\in I}M_i,N)\cong Hom_{I-Dir-A-Mod}((M_i,\varphi_{ij})_I,I-const(N))$

Folgerung 16.0.13. $(M_i, \varphi_{ij})_I$ direkte System flacher A-Moduln

Dann ist $\lim_{i \in I} M_i$ flach

Folgerung 16.0.14. *M* A-Modul, sodass jeder endlich-erz. Untermodul von *M* flach ist. Dann ist *M* flach.

Definition 16.0.15. $J \subseteq I$ heißt **kofinal** \Leftrightarrow Für jedes $i \in I$ existiert ein $j \in J$ mit $i \le j$.

Anmerkung:

- Ist $J \subseteq I$ kofinal, dann ist J gerichtet, denn: $i, j \in J$ $\stackrel{J}{\Longrightarrow}$ Es existiert ein $k \in I$ mit $i, j \leq k$ und es existiert ein $l \in J$ mit $k \leq l \Rightarrow i, j \leq l$.
- Ist $(M_i, \varphi_{ij})_I$ ein direktes System, dann ist auch $(M, \varphi_{ij})_J$ ein direktes System und es gibt einen eindeutig bestimmten Homomorphismus

$$\iota: \lim_{i \in J} M_i \longrightarrow \lim_{i \in I} M_i$$

mit $iota \circ \varphi_i^J = \varphi_i^I$ für alle $i \in J$:

Bemerkung 16.0.16. $J \subseteq I$ kofinal, $(M_i, \varphi_{ij})_I$ direktes System von A-Moduln Dann ist der natürliche Homomorphismus

$$\iota: \lim_{i \to i \in I} M_i \longrightarrow \lim_{i \to i \in I} M_i$$

ein Isomorphismus.

Definition 16.0.17. Ein über *I* indiziertes **projektives System** von *A*-Moduln besteht aus

- eine Familie $(M_i)_{i \in I}$ von A-Moduln
- einer Familie $(\varphi_{ij})_{i,j \in I, i \leq j}$ von A-Modulhomomorphismen $\varphi_{ij} : M_j \to M_i$ (Übergangsabbildungen), sodass gilt:
 - $\varphi_{ij} = id_{M_i}$ für alle $i \in I$
 - $\varphi_{ik} = \varphi_{ij} \circ \varphi_{jk}$ für alle $i, j, k \in I$ mit $i \leq j \leq k$

Im Folgenden schreiben wir dafür kurz $(M_i, \varphi_{ij})_I$

Beispiel 16.0.18.

- (a) $I = \mathbb{N}$ mit \leq , M A-Modul, $M_1 \supseteq M_2 \supseteq \ldots$ Folge von Untermoduln von M, $\varphi_{ij} : M_j \hookrightarrow M_i$ Inklusion für $i \leq j$. Dies liefert ein projektives System von A-Moduln.
- (b) M A-Modul, I Menge von Untermoduln von M, die gewichtet bzgl. " \supseteq " sei.

Setze $M_i = i$. Dann ist $(M_i)_{i \in I}$ ein projektives System mit den Inklusionen als Übergangsabbildung.

(c) $I = \mathbb{N}$ mit "|"-Halbordnung, $M_i = \mathbb{Z}/i\mathbb{Z}$, $\varphi_{ij} : \mathbb{Z}/j\mathbb{Z} \to \mathbb{Z}/i\mathbb{Z}$, $a + j\mathbb{Z} \mapsto a + i\mathbb{Z}$ für i|j liefert ein projektives System von \mathbb{Z} -Moduln

(d) $I = \mathbb{N}$ mit " \leq ", p Primzahl, $M_i = \mathbb{Z}/p^i\mathbb{Z}$, $\varphi_{ij} : \mathbb{Z}/p^j\mathbb{Z} \twoheadrightarrow \mathbb{Z}/p^i\mathbb{Z}$, $a + p^j\mathbb{Z} \mapsto a + p^i\mathbb{Z}$ für $i \leq j$ liefert ein projektives System von \mathbb{Z} -Moduln

Bemerkung 16.0.19. Ein Homomorphismus vom projektiven System $(M_i, \varphi_{ij}^M)_I$ ins projektive System $(N_i, \varphi_{ij}^N)_I$ ist eine Familie $(f_i)_{i \in I}$ von A-Modulhomomorphismen $f_i : M_i \to N_i$, sodass $\varphi_{ij}^N \circ f_j = f_i \circ \varphi_{ij}^M$ für alle $i, j \in I$ mit $i \le j$:

$$M_{i} \xrightarrow{f_{i}} N_{i}$$

$$\downarrow^{\varphi_{ij}^{M}} N \downarrow^{\varphi_{i}}$$

$$M_{j} \xrightarrow{f_{i}} N_{j}$$

Die über *I* indizierten projektiven System von *A*-Moduln bilden zusammen mit obgigen Homomorphismus eine abelsche Kategorie (alles komponentenweise definiert).

Bezeichnugn: I - Pro - A - Mod

Beispiel 16.0.20. Ein **projektiver Limes** des projektiven Systems $(M_i, \varphi_{ij})_I$ von A-Moduln ist ein A-Modul M zusammen mit einer Familie $(\varphi_i)_{i \in I}$ von A-Modulhomomorphismen $\varphi_i : M \to M_i$, sodass $\varphi_i = \varphi_{ij} \circ \varphi_j$ für alle $i, j \in I$ mit $i \leq j$ ist, sodass folgende universelle Eigenschaft erfüllt ist:

Für jeden *A*-Modul *N* und jede Familie $(\psi_i)_{i \in I}$ von *A*-Modulhomomorphismen $\psi_i : N \to M_i$ mit $\psi_i = \varphi_{ij} \circ \psi_j$ für alle $i \le j$ existiert ein eindeutig bestimmter *A*-Modulhomomorphismus $\psi : N \to M$ mit $\psi_i = \varphi_i \circ \psi$ für alle $i \in I$.

Satz 16.0.21. $(M_i, \varphi_{ij})_I$ projektives System von *A*-Moduln. Dann gilt: Setzt man

$$M := \{ (m_i)_{i \in I} \in \prod_{i \in I} M_i | \varphi_{ij}(m_j) = m_i \text{ für alle } i \le j \},$$
$$\varphi_i : M \to M_i, (m_i)_{i \in I} \mapsto m_i$$

dann ist $(M, (\varphi_i)_{i \in I})$ ein projektiver Limes von $(M_i, \varphi_{ij})_I$.

Ist $(M', (\varphi_i')_{i \in I})$ ein weiterer projektiver Limes des obigen Systems, dann existiert ein eindeutig besimmter Isomorphismus $\gamma: M' \to M$ mit $\varphi \circ \gamma = \varphi_i'$ für alle $i \in I$.

Notation: $M = \lim_{\leftarrow i \in I} M_i$

Beispiel 16.0.22. (vgl. Bsp 16.18)

(a) $M \supseteq M_1 \supseteq M_2 \supseteq \dots$ mit Inklusionen als Übergangsabbildung

$$\Rightarrow \lim_{i \in \mathbb{N}} M_i = \bigcap_{i \in \mathbb{N}} M_i \subseteq M \text{ (mit } \varphi_i : \bigcap_{i \in I} M_i \hookrightarrow M_i \text{ Inklusionen)}$$

alternativ:
$$\bigcap_{i\in\mathbb{N}}M_i\longrightarrow\{(m_i)_{i\in\mathbb{N}}\in\prod_{i\in\mathbb{N}}M_i|m_j=m_i\text{ für alle }i\leq j\}$$

$$m\longmapsto(m)_{i\in\mathbb{N}}$$

- (b) $(M_i)_{i \in I}$ bzgl. " \supseteq " gerichtete Familie von Untermoduln von M, indiziert über sich selbst
- $\Rightarrow \lim_{\leftarrow i \in I} M_i = \bigcap_{i \in I} M_i$
- (c) $\lim_{\leftarrow i \in \mathbb{N}} \mathbb{Z}/i\mathbb{Z}$ bezeichnet man mit $\hat{\mathbb{Z}}$
- (d) $\lim_{\leftarrow i \in \mathbb{N}} \mathbb{Z}/p^i \mathbb{Z}$ bezeichnet man mit \mathbb{Z}_p

Bemerkung 16.0.23. $(f_i)_{i \in I} : (M_i, \varphi_{ij}^M)_I \longrightarrow (N_i, \varphi_{ij}^N)_I$ Homomorphismus projektiver Systeme von *A*-Moduln. Dann existiert ein eindeutig bestimmter Homomorphismus.

$$\lim_{\leftarrow i \in I} f_i : \lim_{\leftarrow i \in I} M_i \longrightarrow \lim_{\leftarrow i \in I} N_i$$

 $\min \varphi_i^N \circ \lim_{\substack{\longleftarrow i \in I}} f_i = f_i \circ \varphi_i^M \text{ für alle } i \in I \text{ (wobei } \varphi_i^N \text{ bzw. } \varphi_i^M \text{ die Strukturmorphismen zwischen } \lim_{\substack{\longleftarrow \\\longleftarrow}} N_i \text{ bzw. } \lim_{\substack{\longleftarrow \\\longleftarrow}} M_i \text{ sind):}$

$$\lim \lim_{\epsilon \to i \in I} M_i \xrightarrow{\lim_{\epsilon \to i} f_i} \lim_{\epsilon \to i \in I} N_i$$

$$\varphi_i^M \bigvee_{\downarrow} \qquad \qquad \varphi_i^N \bigvee_{\downarrow}$$

$$M_i \xrightarrow{f_i} N_i$$

Explizit: $(\lim)((m_i)_{i \in I}) = (f_i(m_i))_{i \in I}$

Folgerung 16.0.24.

 $\lim_{i \to i \in I} \lim_{i \to i} -: I - Pro - A - Mod \longrightarrow A - Mod \text{ ist ein additiver Funktor}$

Satz 16.0.25. Der Funktor $\lim_{\leftarrow i \in I} -: I - Pro - A - Mod \longrightarrow A$ -Mod ist linksexakt.

Anmerkung: $\lim_{\leftarrow i \in I}$ – ist im Allgemeinen nicht rechtsexakt.

Beispiel 16.0.26. Wir betraachten die exakte Folge projektiver Systeme von \mathbb{Z} -Moduln über $I = \mathbb{N}$:

$$0 \longrightarrow (\mathbb{Z}, \cdot p)_{\mathbb{N}} \stackrel{(\cdot p^n)_{n \in \mathbb{N}}}{\longrightarrow} (\mathbb{Z}, id_{\mathbb{Z}})_{\mathbb{N}} \longrightarrow (\mathbb{Z}/p^n\mathbb{Z}, Projektionsabbildung) \longrightarrow 0$$

64

$$n+1: \quad 0 \longrightarrow \mathbb{Z} \xrightarrow{p^{n+1}} \mathbb{Z} \xrightarrow{\text{proj.}} \mathbb{Z}/p^{n+1}\mathbb{Z} \longrightarrow 0$$

$$\downarrow \cdot p \qquad \qquad \downarrow id_{\mathbb{Z}} \qquad \qquad \downarrow \text{proj}$$

$$n: \quad 0 \longrightarrow \mathbb{Z} \xrightarrow{p^{n}} \mathbb{Z} \xrightarrow{\text{proj.}} \mathbb{Z}/p^{n}\mathbb{Z} \longrightarrow 0$$

Das projektive System $(\mathbb{Z}, \cdot p)_{\mathbb{N}}$ ist via

$$n+1 \qquad \mathbb{Z} \xrightarrow{p^{n+1}} p^{n+1} \mathbb{Z}$$

$$p \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$n \qquad \mathbb{Z} \xrightarrow{p^n} p^n \mathbb{Z}$$

isomorph zum System $p\mathbb{Z} \supseteq p^2\mathbb{Z} \supseteq \ldots$ von \mathbb{Z} -Untermoduln von \mathbb{Z} , d.h. projektiver Limes ist isomorph zu $\lim_{\leftarrow n \in \mathbb{N}} p^n\mathbb{Z} = \cdots$

Erhalte im projektiven Limes exakte Folge

$$0 \to 0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z}_p \quad \text{mit } f : \mathbb{Z} \to \mathbb{Z}_p, \ x \mapsto (x + p^n \mathbb{Z})_{n \in \mathbb{N}}$$

f ist nicht surjektiv: Es existiert kein $x \in \mathbb{Z}$ mit $x \equiv 1 + p \dots + p^{n-1} (mod p^n)$ für alle $n \in \mathbb{N}$. $(p \neq 2)$ (alternativ: \mathbb{Z}_p überabzählbar).

Definition 16.0.27. $(M_i, \varphi_{ij})_{\mathbb{N}}$ (bzgl. "\leq") projektives System von A-Moduln Das System erfüllt die **Mittag-Leffler-Bedingung** (ML) \Leftrightarrow Für jedes $i \in \mathbb{N}$ wird die Folge

$$M_i = \varphi_{i,i}(M_i) \supseteq \varphi_{i,i+1}(M_{i+1}) \supseteq \varphi_{i,i+2}(M_{i+2}) \supseteq \dots$$

stationär

Anmerkung: Sind die Homomorphismen φ_{ij} alle surjektiv oder sind alle M_i endlich, so ist (ML) erfüllt. Das System (\mathbb{Z}, p) von der linken Seite der Folge in Bsp. 16.0.26 erfüllt (ML) nicht:

$$\mathbb{Z} \supseteq p\mathbb{Z} \supseteq p^2\mathbb{Z} \supseteq \dots$$

 $0 \longrightarrow (K_i, \varphi_{ij}^K)_{\mathbb{N}} \stackrel{(f_i)_{i \in \mathbb{N}}}{\longrightarrow} (M_i, \varphi_{ij}^M)_{\mathbb{N}} \stackrel{(g_i)_{i \in \mathbb{N}}}{\longrightarrow} (N_i, \varphi_{ii}^N)_{\mathbb{N}} \longrightarrow 0 \text{ exakte Folge in } \mathbb{N} - Pro - A - Mod$ $(K_i, \varphi_{ij}^K)_{\mathbb{N}} \text{ arfilla (MI)} \text{ Denn int } J \in \mathbb{N}$ $(K_i, \varphi_{ii}^K)_{\mathbb{N}}$ erfülle (ML). Dann ist die Folge

$$0 \longrightarrow \lim_{i \in \mathbb{N}} K_i \longrightarrow \lim_{i \in \mathbb{N}} M_i \longrightarrow \lim_{i \in \mathbb{N}} N_i \longrightarrow 0$$

exakt.

Bemerkung 16.0.29. $J \subseteq I$ kofinal, $(M_i, \varphi_{ij})_I$ projektives System von A-Moduln. Dann ist der natürlich Homomorphismus

$$\epsilon: \lim_{\leftarrow i \in I} M_i \longrightarrow \lim_{\leftarrow i \in J} \quad , \quad (m_i)_{i \in I} \longmapsto (m_j)_{j \in J}$$

ein Isomorphismus.

17. Diskrete Bewertungsringe

Definition 17.0.1. *K* Körper, $v: K \to \mathbb{Z} \cup \{\infty\}$

v heißt **diskrete Bewertung** auf K, wenn gilt:

(DB1)
$$v(x) = \infty \Leftrightarrow x = 0$$

(DB2)
$$v(xy) = v(x) + v(y)$$

(DB3)
$$v(x + y) \ge \min\{v(x), v(y)\}$$

für alle $x, y \in K$.

In diesem Fall heißt v triviale Bewertung $\Leftrightarrow v(K) = \{0, \infty\}$

normierte Bewertung $\Leftrightarrow v$ surjektiv

$$\Leftrightarrow_{v(x^n)=nv(x)} \text{Es existiert ein } x \in K \text{ mit } v(x) = 1$$

Anmerkung: $v(K^*)$ ist eine Untergruppe von \mathbb{Z} , denn $v|_{K^*}: K^* \longrightarrow \mathbb{Z}$ ist Gruppenhomomorphismus Somit $v(K^*) = m\mathbb{Z}$ für ein $m \in \mathbb{N}_0$. Es gilt dann:

- $v \text{ trivial} \Leftrightarrow m = 0$
- Ist v nichttrivial, so ist durch $v': K \to \mathbb{Z} \cup \{\infty\}$, $x \mapsto \begin{cases} \frac{1}{m}v(x), \text{ falls } x \neq 0 \\ \infty, \text{ falls } x = 0 \end{cases}$ eine normierte diskrete Bewertung gegeben.

Beispiel 17.0.2. *A* faktoriell, *p* Primelement in *A*.

Jedes $x \in Quot(A)$, $x \ne 0$, lässt sich eindeutig schreiben als

$$x = p^r \frac{a}{b}$$
 mit $p \nmid a, p \nmid b, r \in \mathbb{Z}$

Setze $v_p(x) := r$, $v_p(0) := \infty$, dann ist v_p eine normierte diskrete Bewertung auf Quot(A), denn:

- (DB1), (DB2) klar
- (DB3): Seien $x, y \in K$. Falls x = 0 oder y = 0, dann (DB3) klar Falls $x, y \neq 0$, dann $x = p^r \frac{a}{b}$, $y = p^s \frac{c}{d}$ mit $r, s \in \mathbb{Z}$, $p \nmid a, p \nmid b, p \nmid c, p \nmid d$, OE $r \geq s$ $\Rightarrow x + y = p^r \frac{a}{b} + p^s \frac{c}{d} = p^s (p^{r-s} \frac{a}{b} + \frac{c}{d}) = p^s (\frac{p^{r-s} ad + bc}{bd})$ $\Rightarrow v_p(x + y) = \underbrace{v_p(p^s)}_{=s} + \underbrace{v_p(\frac{p^{r-s} ad + bc}{bd})}_{\geq 0} \geq s$
- v_p normiert wegen $v_p(p) = 1$.

Satz 17.0.3. *K* Körpe, *v* diskrete Bewertung auf *K*. Dann gilt:

- (a) $0_v := \{x \in K | v(x) \ge 0\}$ ist ein nullteilerfreier Ring mit $Quot(0_V) = K$
- (b) $O_v^* := \{x \in K | v(x) = 0\}$
- (c) 0_{ν} ist ein lokaler Ring mit maximalem Ideal

$$\mathfrak{m}_{v} := \{ x \in K | v(x) > 0 \}$$

- (d) 0_v ist ein Hauptidealring
- (e) 0_v ist ein Körper $\Leftrightarrow v$ ist trivial
- (f) Ist *v* normiert, dann gilt:

$$p \in O_v$$
 ist Primelement in $O_v \Leftrightarrow v(p) = 1$

Die Primelemente von 0_v sind alle zueinander assoziiert, jedes Primelement erzeugt \mathfrak{m}_v .

Definition 17.0.4. A heißt **diskreter Bewertungsring** (DBR) \Leftrightarrow A ist ein lokaler HIR, der kein Körper ist.

Satz 17.0.5. *A* DBR, *p* Primelement von *A*. Dann gilt:

(a) Jedes Element $x \in Quot(A)$, $x \ne 0$, lässt sich eindeutig darstellen als

$$x = up^n$$

mit $u \in A^*$, $n \in \mathbb{Z}$. Hierbei ist n unabhängig von der Wahl von p

(b) Die Abbildung

$$v = v_A : Quot(A) \to \mathbb{Z} \cup \{\infty\}, x \mapsto \begin{cases} u, \text{ falls } x = up^n, u \in A^* \\ \infty, \text{ falls } x = 0 \end{cases}$$

ist eine normierte diskrete Bewertung auf Quot(A) mit $0_v = A$.

Folgerung 17.0.6. K Körper. Dann sind die Abbildungen

{normierte diskrete Bewertungen
$$v$$
 auf K } \longrightarrow {Unterringe A von $K|A$ ist DBR mit Quot(a) = K } \longleftarrow $v \longmapsto 0_v$ $v_A \longleftarrow A$

bijektiv und invers zueinander

Bemerkung 17.0.7. A lokal, noethersch, nullteilerfrei, $\dim(A) = 1$, \mathfrak{m} maximales Ideal von A, $\mathfrak{a} \subseteq A$ Ideal $\mathfrak{a} \neq 0$. Dann existiert ein $n \in \mathbb{N}$ mit $\mathfrak{m}^n \subseteq \mathfrak{a}$.

Satz 17.0.8. A noethersch, lokal, nullteilerfrei mit maximalem Ideal m.

Dann sind äquivalent:

- (i) A ist ein DBR
- (ii) dim(A) = 1 und A ist normal
- (iii) \mathfrak{m} ist ein Hauptideal \neq (0)
- (iv) A ist faktoriell und besitzt bis auf Assoziiertheit genau ein Primelement.