3011979 Intro to Deep Learning for Medical Imaging

L14: Recurrent neural network (and more encoder-decoder applications)

May 7th, 2021

Sira Sriswasdi, Ph.D.

Research Affairs, Faculty of Medicine Chulalongkorn University

Recurrent neural network

Formulation of RNN

$$h = f(\mathbf{u} \cdot x + c)$$
$$\hat{y} = \mathbf{w} \cdot h + b$$

Fixed-length input

Shared weights!

$$h_1 = f(\mathbf{u} \cdot x_1 + \mathbf{v} \cdot h_0 + c)$$

$$h_2 = f(\mathbf{u} \cdot x_2 + \mathbf{v} \cdot h_1 + c)$$

. . .

$$h_t = f(\mathbf{u} \cdot x_t + \mathbf{v} \cdot h_{t-1} + c)$$
$$\widehat{y}_t = \mathbf{w} \cdot h_t + b$$

Variable-length input

Gradient routes in RNN

Loss function is evaluated at the end of the input sequence

Backpropagation through time

$$h_{1} = f(\boldsymbol{u} \cdot x_{1} + \boldsymbol{v} \cdot h_{0} + c)$$

$$h_{2} = f(\boldsymbol{u} \cdot x_{2} + \boldsymbol{v} \cdot h_{1} + c)$$

$$\dots$$

$$h_{t} = f(\boldsymbol{u} \cdot x_{t} + \boldsymbol{v} \cdot h_{t-1} + c)$$

$$\hat{y_{1}} = \boldsymbol{w} \cdot h_{t} + b$$

$$cost_{1} \quad cost_{2} \quad cost_{3} \quad cost_{4}$$

$$\hat{y_{2}} \quad \hat{y_{3}} \quad \hat{y_{4}} \quad \hat{y_{4}} \quad \hat{y_{4}} \quad \hat{y_{5}} \quad \hat{y$$

Because weights u and v are shared, we backpropagate gradients through all h_i

•
$$\frac{\delta L}{\delta u} = \frac{\delta L}{\delta h_1} \frac{\delta h_1}{\delta u} + \frac{\delta L}{\delta h_2} \frac{\delta h_2}{\delta u} + \frac{\delta L}{\delta h_3} \frac{\delta h_3}{\delta u} + \frac{\delta L}{\delta h_4} \frac{\delta h_4}{\delta u}$$
•
$$\frac{\delta L}{\delta v} = \frac{\delta L}{\delta h_1} \frac{\delta h_1}{\delta v} + \frac{\delta L}{\delta h_2} \frac{\delta h_2}{\delta v} + \frac{\delta L}{\delta h_3} \frac{\delta h_3}{\delta v} + \frac{\delta L}{\delta h_4} \frac{\delta h_4}{\delta v}$$

Conditional probability view of RNN

- $P(y_1, y_2, y_3, y_4) = P(y_4|y_1, y_2, y_3)P(y_3|y_1, y_2)P(y_2|y_1) P(y_1)$
- $y_t = \mathbf{w} \cdot h_t + b$
- $h_t = f(\boldsymbol{u} \cdot \boldsymbol{x}_t + \boldsymbol{v} \cdot \boldsymbol{h}_{t-1} + c)$
- h_t encodes the history of prior information
- w represents the conditional probability function

Applications of RNN

- Generate medical report = variable output length
- Extract keywords from written report = variable input length
- Translate sentence = variable input and output lengths

One-to-many: Auto-regressive approach

Teacher forcing technique

- During training of auto-regressive model, we feed the ground truth label instead of previous output
 - But during real usage, the previous output might be incorrect!

Many-to-one: Classification

- Simplest approach is to use the output of the last node
 - h_t encodes all prior information
 - But the impact from earlier input decrease over the steps
- Pool all the outputs
- Bidirectional model!

Bidirectional model

Source: d2l.ai/chapter_recurrent-modern/bi-rnn.html

- Just as RNN can learn h_t from h_{t-1} and x_t , it can also learn h_{t-1} from h_t and x_{t-1}
- Combine information from the forward and backward passes

Vanishing gradient problem in RNN

- Gradient is unraveled all the way to the first input
 - $\frac{\delta L}{\delta u} = \frac{\delta L}{\delta h_3} \frac{\delta h_3}{\delta h_2} \frac{\delta h_2}{\delta h_1} \frac{\delta h_1}{\delta h_0} \frac{\delta h_0}{\delta u}$
 - Number of terms = length of the input

RNN units

tanh

Source: www.linkedin.com/pulse/recurrent-neural-networks-rnn-gated-units-gru-long-short-robin-kalia

- Add a direct path from previous unit to the next
 - Allow the network to "forget" the past or "remember" it
 - h_t can be updated with x_t or stay the same as h_{t-1}

Gated Recurrent Unit (GRU)

- New input, together with previous state, is used to determine whether to remember or forget the previous state
- Gradient can flow through the h_{t-1} → h_t shortcut

Long Short-Term Memory (LSTM)

Input Gate: Propose new "cell" state

- Cell state C_t can carry memory over long term
- The contribution of current input on the output at step t can be assigned through the Output Gate

RNN in TensorFlow

- 1. **keras.layers.SimpleRNN**, a fully-connected RNN where the output from previous timestep is to be fed to next timestep.
- keras.layers.GRU, first proposed in Cho et al., 2014.
- 3. keras.layers.LSTM, first proposed in Hochreiter & Schmidhuber, 1997.

```
model = keras.Sequential()
# Add an Embedding layer expecting input vocab of size 1000, and
# output embedding dimension of size 64.
model.add(layers.Embedding(input_dim=1000, output_dim=64))
# Add a LSTM layer with 128 internal units.
model.add(layers.LSTM(128))
                                                      Input = (batch, time, data)
# Add a Dense layer with 10 units.
model.add(layers.Dense(10))
                               Model: "sequential"
model.summary()
                               Layer (type)
                                               Output Shape
                                                                              Param #
                               embedding (Embedding) (None, None, 64) 64000
                               lstm (LSTM) (None, 128) 98816
                               dense (Dense) (None, 10)
                                                                              1290
                               Total params: 164,106
```

GRU in TensorFlow

```
tf.keras.layers.GRU(
    units, activation='tanh' recurrent_activation='sigmoid',
    use_bias=True, kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=None,
    recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    kernel_constraint=None, recurrent_constraint=None, bias_constraint=None,
    dropout=0.0, recurrent_dropout=0.0, return_sequences=False, return_state=False,
    go_backwards=False, stateful=False, unroll=False, time_major=False,
    reset_after=True, **kwargs
)
```

- Units = number of hidden neurons for the fully-connected layer that takes in h_{t-1} and x_t
- Set return_sequence = True if the model should output value at every step

LSTM in TensorFlow

```
tf.keras.layers.LSTM(
    units, activation='tanh' recurrent_activation='sigmoid',
    use_bias=True, kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal',
    bias_initializer='zeros', unit_forget_bias=True,
    kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None,
    activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.0, recurrent_dropout=0.0,
    return_sequences=False, return_state=False, go_backwards=False, stateful=False,
    time_major=False, unroll=False, **kwargs
)
```

 All gates share the same output layer and activation function (recurrent_activation)

Applications of RNN

RNN for variable multi-slices input

Image captioning

- Embedding of input image is sent into an RNN to generate variable-length output sentence(s)
- Each output is a probability distribution over all words

RNN for report generation

Liu et al. Clinically Accurate Chest X-Ray Report Generation (2019)

- Same principle as image captioning
- Sentence decoder generate "topic" + "stop token"
 - Word decoder then generate words that fill each sentence according to the predict "topic"
- 2D embedding of the input image is fed to the word decoder to relate each predicted word with location in input image

Metrics for sentence prediction

Reference: the cat sat on the mat

Prediction: on the mat sat the cat

- BLEU (bilingual evaluation understudy)
 - Number of n-gram (groups of n words) that are common between the prediction and the reference
- METEOR (metric for evaluation of translation with explicit ordering)
 - $M = \frac{10 \text{ Precision} \cdot \text{Recall}}{\text{Recall} + 9 \text{ Precision}} \left(\frac{\text{Number of aligned word chunk}}{\text{Number of matched word}} \right)^3$
- ROUGE (recall-oriented understudy for gisting evaluation)
 - ROUGE-L = length of longest common subsequence between the prediction and the reference

RNN for EHR-based prediction

Embed medical terms and feed time-series EHR to an RNN

Learn embedding without label

Embedding words

	1	2	3	4	5	6	7	8	9
man	1	0	0	0	0	0	0	0	0
woman	0	1	0	0	0	0	0	0	0
boy	0	0	1	0	0	0	0	0	0
girl	0	0	0	1	0	0	0	0	0
prince	0	0	0	0	1	0	0	0	0
princess	0	0	0	0	0	1	0	0	0
queen	0	0	0	0	0	0	1	0	0
king	0	0	0	0	0	0	0	1	0
monarch	0	0	0	0	0	0	0	0	1

Image from medium.com

- Word encoder = a fully connected neural network
 - Input = one-hot encoding of words
 - Output = a continuous-value embedding
 - Used as encoder for a larger network (transfer learning)

Word embedding based on context

2. Sliding	Window									derek	chia.com
#1	natural	language	processing	and	machine	learning	is	fun	and	exciting	#1
"'	Xκ	Y(c=1)	Y(c=2)								#1
#2	natural	language	processing	and	machine	learning	is	fun	and	exciting	#2
	Y(c=1)	Xκ	Y(c=2)	Y(c=3)							"-
#3	natural	language	processing	and	machine	learning	is	fun	and	exciting	#3
""	Y(c=1)	Y(c=2)	Хк	Y(c=3)	Y(c=4)		_				,,,
na #4	natural	language	processing	and	machine	learning	is	fun and	exciting	#4	
"-		Y(c=1)	Y(c=2)	Xκ	Y(c=3)	Y(c=4)					"-4
#5	natural	language	processing	and	machine	learning	is	fun	and	exciting	#5
#5			Y(c=1)	Y(c=2)	Хк	Y(c=3)	Y(c=4)				#5
#6	natural	language	processing	and	machine	learning	is	fun	and	exciting	#6
#0				Y(c=1)	Y(c=2)	Хκ	Y(c=3)	Y(c=4)			#0
#7	natural	language	processing	and	machine	learning	is	fun	and	exciting	#7
#1					Y(c=1)	Y(c=2)	Хκ	Y(c=3)	Y(c=4)		#1
#8 natural	natural	atural language processing	processing	and	machine	learning	is	fun	and	exciting	#8
					Y(c=1)	Y(c=2)	Хк	Y(c=3)	Y(c=4)	#0	
#9	natural	ural language	processing	and	machine	learning	is	fun	and	exciting Y(c=3)	#9
							Y(c=1)	Y(c=2)	Хк		#3
#10	natural	language	processing	and	machine	learning	is	fun	and	exciting	#10
#10								Y(c=1)	Y(c=2)	Χк	#10

Image from towardsdatascience.com/an-implementation-guide-to-word2vec-using-numpy-and-google-sheets-13445eebd281

- Embedding of adjacent words should be similar
- Embedding should be able to predict context relationship

Skip-gram model

Image from towardsdatascience.com/an-implementation-guide-to-word2vec-using-numpy-and-google-sheets-13445eebd281

- Predict context words from an input word
 - Training data = pair of context words

Continuous bag-of-words model

Input Output 1 softmax Hidden X N0 \mathbf{y}_1 h_1 V0 h_2 h_3 N =Matrix W Matrix W' 1 X X 1 \mathbf{y}_{j} avg 0 h_N 0 \mathbf{y}_V 0 X N-dimension vector (Average of vectors of all input words)

Predict center word from average embeddings of context words

Autoencoder

Predict auxiliary tasks 28x28x1 28x28x1 14x14x32 14x14x32 1152 1152 7x7x64 7x7x64 3x3x128 3x3x128 Conv3 Reshape stride=2 DeConv3 Conv2 stride=2 stride=2 Flatten Conv1 DeConv2 stride=2 stride=2 DeConv1 stride=2

Guo et al. International Conference on Neural Information Processing (2017)

- Train the model to predict input data themselves
- But squeeze the embedding dimension (output of the flatten layer above) to prevent the model from just "remembering"
 - This is called "bottleneck"
- This also reproduced all noises and errors

Denoising autoencoder

Image from towardsdatascience.com/denoising-autoencoders-explained-dbb82467fc2

- Introduce noises into the input before feeding into the model
- But calculate loss based on original input
 - Prevent model from overfitting to noises and errors in input
 - Similar to Dropout

Good embedding

Maaten, L. and Hinton, G. J of Machine Learning Research 9:2579-2605 (2008)

- Embedding of data from the same class should be nearby
- Embedding of data from "similar" classes should be nearby

Variational autoencoder (VAE)

Image from www.jeremyjordan.me/variational-autoencoders/

- Embed the mean and variance
- Sample from Normal distribution for the decoder
 - $z_i \sim \text{Normal}(\mu_i, \sigma_i) = \mu_i + \sigma_i \times \text{Normal}(0, 1)$
 - Backpropagate through z_i → (μ_i, σ_i)

Loss function for VAE

Penalizing reconstruction loss encourages the distribution to describe the input

Without regularization, our network can "cheat" by learning narrow distributions

Image from www.jeremyjordan.me/variational-autoencoders/

Penalizing KL divergence acts as a regularizing force

Attract distribution to have zero mean

yield a smooth latent space

- "Neural network always tries to cheat"
- Reconstruction loss = $L(x, \hat{x})$
 - The model should be able to reconstruct the input data
- KL divergence loss = $KL(p(z | \mu, \sigma) || Normal(0, 1))$
 - Force the model to sample from normal distribution

Object detection network

R-CNN

R-CNN: Regions with CNN features

Image from towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

- A fixed region proposal algorithm
- Feature extraction for each region using CNN
- Classification with SVM
- Also predict offset for adjusting the bounding box location
 - Proposed region might not contain the whole object

Fast R-CNN

Image from towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

- Input the whole image through CNN
- Replace global pooling with local pooling
 - Correspond to each proposed region

Faster R-CNN

- Region proposal network is a CNN which predicts *k* bounding boxes as well as their "objectness" scores
- 25x faster than Fast R-CNN

Faster R-CNN on CT images

Zhang et al. "3D Aggregated Faster R-CNN for General Lesion Detection" arxiv.org/pdf/2001.11071

- U-Net + Region Proposal Network
- Propose regions at multiple scales
- Combine data from all scales for classification

Faster R-CNN on CT images

Zhang et al. "3D Aggregated Faster R-CNN for General Lesion Detection" arxiv.org/pdf/2001.11071

- Deep Lesion dataset (<u>NIH releases 32,000 CT images</u>)
- LUNA16 challenge (<u>Annotated nodules in 888 CT images</u>)

YOLO – You only look once

Class probability map

- Predict several SxS matrices
 - Bounding box locations
 - Bounding box confidence scores
 - Class confidence scores
- Single evaluation in CNN
- 45-155 FPS

Any question?