Ring Theory 7

17 February 2024 17:42

Q> \times is a non-empty subset of a comm. rung R. Annihilator of $X = \{r \in R \mid r \neq z = 0 \mid f \neq x \notin X\}$ Show that X is a subset of $Ann_{R}(Ann_{R}(X))$.

Aus:- Aum_R (Am_R(X)) = $\begin{cases} r' \in R \mid r'r = 0 \ \forall \ r \in Am_{R}(X) \end{cases}$ $\exists r', r' r = 0 \Rightarrow r' \in X$ because $\forall r \in Am_{R}(X)$ $\forall r \in Am_{R}(X)$ $\forall r \in Am_{R}(X)$ $\forall r \in Am_{R}(X)$

S> Annp(X) = Annp(Annp(Annp(X)))

Annp(Annp(Annp(X))) \subset Annp(X) $V \in Annp(X)$ $V \times V = 0 \quad \forall x \in \{Annp(Amp(X))\}$

Anne (A) = XLIY (let)
Anne (A) = Anne (B)

 \Rightarrow

Def:-Let Abe ony subset of ring R.

-) Then (A) devotes the smallest ideal of R contang A.
 It is called the ideal generated by A.
- > RA doubte the set of all finite some of elements of the form ra with $v \in R$ and $a \in A$. $RA = \{v_1 a_1 + \cdots + v_n a_n \mid v_i \in R, a_i \in A, n \in \mathbb{Z}^t\}$ $RAR = \{v_1 a_1 v_i + \cdots + v_n a_n v_n \mid v_i, v_i \in R, a_i \in A, n \in \mathbb{Z}^t\}$
- ·> An ideal generated by a single element is called the principal ideal.
- An ideal generated by a finite set is called a finitely generated ideal.

If R is comm. then RA=AR=RAR=(A)

Propostion - Let I be on iteal of R.

1) T=R Iff I contains a vuit

2) If R is com. Hen R is a field iff its only ideal are of and R

Proof: $P = R \Rightarrow 1 \in \mathbb{I}$ $u \in U$ and $u \in \mathbb{I} \Rightarrow uu^{-1} = 1 \in \mathbb{I}$ Then, for $r \in R$ we get, $r = r \cdot 1 = r (uu^{-1}) = r (u^{-1}u) = r^{-1}u \in \mathbb{I}$ $\Rightarrow R \subset \mathbb{I} \Rightarrow R = \mathbb{I}$.

2) Let R is a field. Let I be a ideal of R , which is non-zero. $a \in I$, at $0 \Rightarrow aal = 1 \Rightarrow 1 \in I$ $\Rightarrow r = r + r \in R \Rightarrow r \in I + r \in R$

$$\Rightarrow \pm = R \Rightarrow \pm = 0 \text{ an } R$$

Let
$$r \in R$$
 be only non-zero element.
(r) = $T = R$
 $r \in T$ alread $r \in R$ $\Rightarrow rr^{-1} = 1 \in (r)$

•> If R is a field then only non-zero ring is on honomorphism from R to onother ring is on injection.

Proof-
$$\phi: R \to R'$$

 $\Rightarrow R = I$ or $I = 0$
 $\Rightarrow I = 0$ os non-zero homomphism.
 $\Rightarrow Ker(\phi) = 0$
 $\Rightarrow Injection$

Defrution! - An ideal M in on ring S is called or marrial ideal if M \$ S and the only ideals containing M are Mond S.

B> Let A be a commutative ring with I and x + A

Prove that the ideal (x) = x A = A iff x is a

unit of A.

Aus: - / deal (n) = nA = A, then, $n \in xA$ $\Rightarrow x = ny$ for some $y \in A$ $As, nA = A \Rightarrow 1 = ny$ for some $y \in A$ $\Rightarrow x \Rightarrow a$ a milt

Let a be a mut of A, Thu, ideal(n) = A = nA

Q> Let $A = \mathbb{Z}[x]$ and let $I = (x, x^2+1)$. Prove that $I = A = \mathbb{Z}[x]$

Awi- $\chi^2 + 1 - \chi \chi = 1 \in \mathcal{I} \Rightarrow \mathcal{I} = A = \mathcal{H}[\chi]$