Data Mining Classification: Basic Concepts and Techniques

Lecture Notes for Chapter 3

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

2/14/18

Introduction to Data Mining, 2nd Edition

Classification: Definition

- Given a collection of records (training set)
 - Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label
 - x: attribute, predictor, independent variable, input
 - y: class, response, dependent variable, output
- Task:
 - Learn a model that maps each attribute set x into one of the predefined class labels y

2/14/18

Examples of Classification Task

Task	Attribute set, x	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

3

2/14/18 Introduction to Data Mining, 2nd Edition

General Approach for Building Classification Model Learning Large algorithm 100K Medium Small 70K Medium 120K Induction Large 95K 60K Medium Learn 220K Large Model Model **Training Set Apply** Model 80K Deduction Yes Large 110K Small **Test Set** 2/14/18 Introduction to Data Mining, 2nd Edition 4

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Deep Learning
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

2/14/18

Introduction to Data Mining, 2nd Edition

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

2/14/18

Introduction to Data Mining, 2nd Edition

15

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

2/14/18

Introduction to Data Mining, 2nd Edition

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

2/14/18

Introduction to Data Mining, 2nd Edition

21

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

2/14/18

Introduction to Data Mining, 2nd Edition

Test Condition for Continuous Attributes

(i) Binary split

(ii) Multi-way split

2/14/18

Introduction to Data Mining, 2nd Edition

25

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- ◆ Dynamic repeat at each node
- Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

2/14/18

Introduction to Data Mining, 2nd Edition

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5 C0: 9 C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

2/14/18

Introduction to Data Mining, 2nd Edition

29

Finding the Best Split

- Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node
 - M is the weighted impurity of children
- Choose the attribute test condition that produces the highest gain

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

2/14/18

Introduction to Data Mining, 2nd Edition

Measure of Impurity: GINI

• Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Measure of Impurity: GINI

• Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- For 2-class problem (p, 1 p):
 - GINI = $1 p^2 (1 p)^2 = 2p (1-p)$

C1	0
C2	6
Gini=	0.000

C	5
 C2	

2/14/18

Introduction to Data Mining, 2nd Edition

33

Computing Gini Index of a Single Node

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

2/14/18

Introduction to Data Mining, 2nd Edition

Computing Gini Index for a Collection of Nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at parent node p.

- Choose the attribute that minimizes weighted average
 Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

2/14/18

Introduction to Data Mining, 2nd Edition

35

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	7
C2	5
Gini	= 0.486

Gini(N1) = $1 - (5/6)^2 - (1/6)^2$ = 0.278

Gini(N2) = $1 - (2/6)^2 - (4/6)^2$ = 0.444

	N1	N2
C1	5	2
C2	1	4
Gin	i=0.3	61

Weighted Gini of N1 N2 = 6/12 * 0.278 + 6/12 * 0.444 = 0.361

Gain = 0.486 - 0.361 = 0.125

2/14/18

Introduction to Data Mining, 2nd Edition

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

		CarType	!
	Family	Sports	Luxury
C1	1	8	1
C2	3	0	7
Gini		0.163	

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury}	{Family}	
C1	9	1	
C2	7	3	
Gini	0.468		

	CarType		
	{Sports}	{Family, Luxury}	
C1	8	2	
C2	0	10	
Gini	0.167		

Which of these is the best?

2/14/18

Introduction to Data Mining, 2nd Edition

37

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 Repetition of work.

2/14/18

Introduction to Data Mining, 2nd Edition

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat	No	No	No	Yes	Yes	Yes	No	No	No	No
Annual Income											
Sorted Values	\rightarrow	60	70	75	85	90	95	100	120	125	220

2/14/18

Introduction to Data Mining, 2nd Edition

39

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

2/14/18

Introduction to Data Mining, 2^{nd} Edition

Continuous Attributes: Computing Gini Index... For efficient computation: for each attribute, - Sort the attribute on values - Linearly scan these values, each time updating the count matrix and computing gini index Choose the split position that has the least gini index Cheat Sorted Values 95 120 125 70 100 220 75 **Split Positions** 97 110 72 92 3 3 No 2/14/18 42 Introduction to Data Mining, 2nd Edition

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

2/14/18

Introduction to Data Mining, 2nd Edition

43

Measure of Impurity: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

2/14/18

Introduction to Data Mining, 2nd Edition

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

2/14/18

Introduction to Data Mining, 2nd Edition

41

Computing Information Gain After Splitting

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

Problem with large number of partitions

 Node impurity measures tend to prefer splits that result in large number of partitions, each being small but pure

 Customer ID has highest information gain because entropy for all the children is zero

2/14/18

Introduction to Data Mining, 2nd Edition

47

Gain Ratio

• Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

2/14/18

Introduction to Data Mining, 2nd Edition

Gain Ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

	CarType			
	Family	Sports	Luxury	
C1	1	8	1	
C2	3	0	7	
Gini		0.163		

	CarT	уре	
	{Sports, Luxury}	{Family}	
C1	9	1	
C2	7	3	
Gini	0.468		

SplitINFO = 1.52

SplitINFO = 0.72

SplitINFO = 0.97

2/14/18

Introduction to Data Mining, 2nd Edition

49

Measure of Impurity: Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information

2/14/18

Introduction to Data Mining, 2nd Edition

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0	P(C1) = 0/6 = 0	P(C2) = 6/6 = 1
C2	6	Error = 1 – max	(0, 1) = 1 - 1 = 0

2/14/18

Introduction to Data Mining, 2nd Edition

51

Comparison among Impurity Measures

For a 2-class problem:

2/14/18

Introduction to Data Mining, $2^{\rm nd}$ Edition

Misclassification Error vs Gini Index

	Parent
C1	7
C2	3
Gini = 0.42	

Gini(N1)

$$= 1 - (3/3)^2 - (0/3)^2$$

= 0

Gini(N2)

$$= 1 - (4/7)^2 - (3/7)^2$$

= 0.489

	N1	N2
C1	3	4
C2	0	3
Gini=0 342		

Gini(Children)

= 3/10*0

+ 7/10 * 0.489

= 0.342

Gini improves but error remains the same!!

2/14/18

Introduction to Data Mining, 2nd Edition

53

Misclassification Error vs Gini Index

	Parent
C1	7
C2	3
Gini = 0.42	

	N1	N2
C1	3	4
C2	0	3
Gin	42	

	N1	N2
C1	3	4
C2	1	2
Gini=0.416		

Misclassification error for all three cases = 0.3!

2/14/18

Introduction to Data Mining, 2nd Edition

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant or irrelevant attributes (unless the attributes are interacting)

Disadvantages:

- Space of possible decision trees is exponentially large.
 Greedy approaches are often unable to find the best tree.
- Does not take into account interactions between attributes
- Each decision boundary involves only a single attribute

2/14/18

Introduction to Data Mining, 2nd Edition

55

Handling interactions

+: 1000 instances

o: 1000 instances

Entropy (X): 0.99 Entropy (Y): 0.99

2/14/18

Introduction to Data Mining, 2nd Edition

