Рекомендательные сервисы в продакшене

Николай Анохин

24 сентября 2021 г.

•00

000

Обо мне

000

Программа

Дата	Тема	Семинар	Домашка
2021-09-30	Рекомендательные сервисы в продакшене	✓	
2021-10-07	Метрики и базовые подходы	✓	
2021-09-14	Классические алгоритмы	✓	✓
2021-09-21	Нейросетевые рекомендеры	✓	
2021-09-28	Нерешенные проблемы и новые направления	✓	

Зачем нужны рекомендательные сервисы

Recommender Systems (RS) are software tools and techniques providing suggestions for items to be of use to a user [RRSK10].

Зачем RS бизнесу

• Увеличить продажи

- Продвигать более разнообразные товары
- Улучшить пользовательский опыт
- Добиться большей лояльности
- Лучше понимать пользователей

Зачем RS пользователям

- Найти лучший товар
- Найти все подходящие товары
- Найти последовательность или набор товаров
- Залипнуть

- Найти рекомендер, которому можно доверять
- Реализовать творческие потребности
- Помочь другим сделать выбор

Зачем RS инженерам

- Делать высоконагруженный отказоустойчивый сервис
- Анализировать большие данные
- Окунуться в волшебный мир матана машинного обучения
- Объективно измерять результат своей работы
- Все это за зарплату

Архитектуры рекомендательных сервисов

Обзор типичных компонентов RS / Mendeley (2016) [JIH16]

Машинное обучение — небольшая часть рекомендательного сервиса

Подходы к обработке данных / Netflix (2013) [NN13]

Чем ближе вычисления к real-time, тем больше ограничений и компромиссов

Холодные айтемы и пользователи будут всегда: думаем, что с ними делать

Айтемов так много, что учесть полный контекст для не может даже Google

Работа с контентом / TikTok (2020) [Wan20]

Потребности людей нельзя упаковать в удобную метрику: вокруг МЛ нужен пре- и пост-процессинг

Метрики и эксперименты

Хотим принимать решения на основе данных \to Начинаем собирать метрики \to Разрабатываем инструменты для анализа метрик

Какой эффект на распределение целевой метрики окажет выбранное воздействие T?

Фундаментальная Проблема Causal Inference

Для конкретного объекта невозможно вычислить causal effect напрямую, потому что нельзя пронаблюдать значение целевой переменной при более чем одном значении \mathcal{T}^a

^аБез дополнительных предположений эту проблему не решить [GH07]

Фреймворк Potential Outcomes

Воздействие на i пользователя:

$$\mathcal{T}_i = egin{cases} 0, & ext{если показываем control} \ 1, & ext{если показываем treatment} \end{cases}$$

Соответствующие потенциальные исходы:

$$y_i^0$$
 и y_i^1

Требуется оценить:

Average Treatment Effect

$$ATE = E \left[y_i^1 - y_i^0 \right]$$

Randomized Controlled Experiment

Схема эксперимента

Обзор модуля

Все доступные пользователи независимо друг от друга случайным образом распределяются в control либо treatment с одинаковой вероятностью

Предположение 1:

Обзор модуля

Можно оценить значение некоторой характеристики для всей популяции, имея выборку из этой популяции.

Предположение 2: Stable Unit Treatment Value Assumption

Потенциальные исходы для каждого пользователя зависят только от свойств этого пользователя, но не свойств и исходов других пользователей.

Оцениваем ATE в RCE

$$ATE = E[y_i^1 - y_i^0] = E[y_i^1] - E[y_i^0] \sim \mathsf{avg}_{i \in T}(y_i^1) - \mathsf{avg}_{i \in C}(y_i^0) = \bar{y}_1 - \bar{y}_0$$

- нужно оценить две характеристики $E[y_i^0]$ и $E[y_i^1]$, поэтому используем выборки C и T
- проще всего сделать оценку, если выборка несмещенная
- чем больше данных, тем точнее оценка

Доверительный интервал на АТЕ

Доверительный интервал (L, U) с уровнем доверия α :

$$P(L < \theta < U) = 1 - \alpha$$

Формула Уэлча:

$$ar{y}_1 - ar{y}_0 \pm t_{lpha/2,r} \sqrt{rac{s_1^2}{n_1} + rac{s_0^2}{n_0}}, \quad r = rac{\left(rac{s_1^2}{n_1} + rac{s_0^2}{n_0}
ight)^2}{rac{s_1^4}{n_1^2(n_1 - 1)} + rac{s_0^4}{n_0^2(n_0 - 1)}}$$

Где:

- n_1 и n_0 количество пользователей в treatment и control
- s_1^2 и s_0^2 оценки дисперсии метрики в treatment и control
- $t_{lpha/2,r}$ табличное значение для r степеней свободы

На практике

- Метрики распределены по-разному: нужно подбирать подходящие тесты
- Используются методы снижения дисперсии оценок (cuped, diff-in-diff)
- Собираются тысячи метрик: часто для интерпретации нужны специалисты

Если вы попали в компанию, в которой есть культура принятия решений на основе данных – сохраняйте ее всеми силами. Если нет – пропагандируйте.

Итоги

В основе рекомендательных сервисов лежит машинное обучение. При проектировании нужно учитывать множество дополнительных факторов, например требования к скорости обработки данных, эффект длинного хвоста и возможность холодного старта.

А/В эксперимент – надежный способ оценки эффекта от изменений в сервисе.

Литература I

- Paul Covington, Jay Adams, and Emre Sargin, *Deep neural networks for youtube recommendations*, Proceedings of the 10th ACM Conference on Recommender Systems (New York, NY, USA), RecSys '16, Association for Computing Machinery, 2016, p. 191–198.
- Andrew Gelman and Jennifer Hill, *Data analysis using regression and multilevel/hierarchical models*, vol. Analytical methods for social research, Cambridge University Press, New York, 2007.
- Kris Jack, Ed Ingold, and Maya Hristakeva, *Mendeley suggest architecture*, Oct 2016.
- Xavier Amatriain Netflix and Justin Basilico Netflix, System architectures for personalization and recommendation, Mar 2013.

Литература II

- Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, *Recommender systems handbook*, 1st ed., Springer-Verlag, Berlin, Heidelberg, 2010.
- GALVANIZE Spotify, Ever wonder how spotify discover weekly works? data science, Aug 2016.
- Catherine Wang, Why tiktok made its user so obsessive? the ai algorithm that got you hooked., Jun 2020.