Mathematical Logic (M345P65) Problem Sheet 7

- [1] Find subsets of \mathbb{Q} which (with their induced orderings from \mathbb{Q}) are similar to:
- (i) $\mathbb{N} + \mathbb{N} + \mathbb{N}$;
- (ii) $\mathbb{N} \times \mathbb{Z}$;
- (iii) $\mathbb{N} + \mathbb{N}^*$ (where \mathbb{N}^* is the reverse ordering on \mathbb{N}).

You do not need to write down the similarities involved here.

- [2] A set is finite if and only if it is equinumerous with some natural number $n \in \omega$. Otherwise it is infinite.
- (i) Prove that if $m, n \in \omega$ are equinumerous then m = n.
- (ii) Suppose X is a non-empty finite set of ordinals. Prove that X has a largest element.
- (iii) Suppose α is a finite ordinal. Prove that $\alpha \in \omega$.
- (iv) Suppose β is an infinite ordinal. Prove that $\omega \leq \beta$ and $|\beta^{\dagger}| = |\beta|$

[Hint: You can use results on ordinals in Section 3.4. For (i), it suffices to prove by induction on n that if $x \subseteq n$ and x is equinumerous with n, then x = n.]

- [3] Suppose X is a non-empty set of ordinals. From the notes, you know that $\bigcup X$ and $\bigcap X$ are ordinals and $\bigcap X \leq \alpha \leq \bigcup X$ for all $\alpha \in X$.
- (i) Show that if β is an ordinal with $\alpha \leq \beta$ for all $\alpha \in X$, then $\bigcup X \leq \beta$.
- (ii) Formulate and prove a similar statement about $\bigcap X$.
- [4] Suppose α and β are ordinals with α similar to $\omega + \omega$ and β similar to $\omega \times \omega$ (with the orderings as defined in 3.3.3). Which of $\alpha < \beta$, $\alpha = \beta$ or $\beta < \alpha$ holds?
- [5] Let β be the set of all countable ordinals.
- (i) Show that β is an ordinal.
- (ii) Show that β is uncountable.
- (iii) Show that if γ is an uncountable ordinal then $\beta \leq \gamma$.
- [6] A cardinal is an ordinal α with the property that for all ordinals $\beta < \alpha$ we have that α and β are not equinumerous.
- (i) Prove that every natural number is a cardinal and ω is a cardinal.
- (ii) Prove that the ordinal β in question 5 is a cardinal.
- (iii) Show that if γ is any ordinal, there is a unique cardinal α which is equinumerous with γ .