Cyclistic Case Study Apr21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for April 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
            1.2.1
                       ✓ stringr 1.4.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                    masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
  The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Apr21 <- read_csv("C:/Users/theby/Documents/202104-divvy-tripdata.csv")
```

```
## Rows: 337230 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
View(Apr21)
 colnames(Apr21)
     [1] "ride id"
                                "rideable_type"
                                                       "started at"
     [4] "ended at"
                                "start station name" "start station id"
    [7] "end_station_name"
                                "end_station_id"
                                                      "start_lat"
 ## [10] "start_lng"
                                "end_lat"
                                                       "end_lng"
 ## [13] "member_casual"
 nrow(Apr21)
 ## [1] 337230
 dim(Apr21)
 ## [1] 337230
                    13
 head(Apr21)
 ## # A tibble: 6 × 13
 ##
      ride id
                      ridea…¹ started at
                                                    ended at
                                                                         start...2 start...3
 ##
                      <chr>
                               <dttm>
                                                    <dttm>
                                                                          <chr>
 ## 1 6C992BD37A98A... classi... 2021-04-12 18:25:36 2021-04-12 18:56:55 State ... TA1307...
 ## 2 1E0145613A209... docked... 2021-04-27 17:27:11 2021-04-27 18:31:29 Dorche... KA1503...
 ## 3 E498E15508A80... docked.. 2021-04-03 12:42:45 2021-04-07 11:40:24 Loomis... 20121
 ## 4 1887262AD101C... classi... 2021-04-17 09:17:42 2021-04-17 09:42:48 Honore... TA1305...
 ## 5 C123548CAB2A3... docked... 2021-04-03 12:42:25 2021-04-03 14:13:42 Loomis... 20121
 ## 6 097E76F3651B1... classi... 2021-04-25 18:43:18 2021-04-25 18:43:59 Clinto... 15542
 ## # ... with 7 more variables: end station name <chr>, end station id <chr>,
        start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
```

```
tail(Apr21)
```

#

```
## # A tibble: 6 × 13
##
     ride_id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
##
                     <chr>
                             <dttm>
                                                   <dttm>
## 1 6B0D434599FAC... classi... 2021-04-23 05:42:14 2021-04-23 05:48:27 Mies v... 15529
## 2 461A6B0728E06... classi... 2021-04-09 17:09:03 2021-04-09 17:16:16 Mies v... 15529
## 3 CF1D3A35E3654... docked... 2021-04-04 13:27:08 2021-04-04 14:41:11 Mies v... 15529
## 4 4308ADB9171AC... classi... 2021-04-30 18:15:40 2021-04-30 19:12:44 Mies v... 15529
## 5 04DFB53077A17... electr... 2021-04-18 11:40:37 2021-04-18 11:46:03 Mies v... 15529
## 6 DB6F78ABBECA3... classi... 2021-04-23 19:22:16 2021-04-23 19:41:07 Kedzie... 13292
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
## #
       2start_station_name, 3start_station_id
```

member casual <chr>, and abbreviated variable names ¹rideable type,

2start_station_name, 3start_station_id

```
summary(Apr21)
```

```
##
      ride id
                      rideable_type
                                           started at
                      Length:337230
                                         Min. :2021-04-01 00:03:18.00
##
   Length: 337230
                      Class :character
                                         1st Qu.:2021-04-07 12:07:56.75
##
   Class :character
##
   Mode :character
                      Mode :character
                                         Median :2021-04-15 22:37:04.50
##
                                         Mean :2021-04-15 22:47:10.36
##
                                         3rd Qu.:2021-04-24 08:31:49.50
##
                                         Max. :2021-04-30 23:59:53.00
##
##
      ended at
                                    start station name start station id
##
         :2021-04-01 00:14:29.00
                                    Length:337230
                                                       Length:337230
   1st Qu.:2021-04-07 12:31:51.75
                                                       Class :character
##
                                    Class :character
##
   Median :2021-04-15 23:00:10.00
                                    Mode :character
                                                     Mode :character
         :2021-04-15 23:11:18.80
##
   3rd Qu.:2021-04-24 08:52:47.75
##
   Max. :2021-05-05 22:14:39.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.64
##
   Length: 337230
                      Length:337230
                                                        Min. :-87.78
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                         Mean :-87.64
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.07 Max. :-87.52
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.59
                   Min. :-87.85
                                    Length: 337230
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.90
                                    Mode :character
##
                   Median :-87.64
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.15
                   Max. :-87.52
##
   NA's
          :267
                   NA's
                         :267
```

str(Apr21)

```
## spc tbl [337,230 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:337230] "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C6
## $ ride_id
04"
                        : chr [1:337230] "classic bike" "docked bike" "docked bike" "classic bike" ...
##
   $ rideable_type
                       : POSIXct[1:337230], format: "2021-04-12 18:25:36" "2021-04-27 17:27:11" ...
   $ started at
                        : POSIXct[1:337230], format: "2021-04-12 18:56:55" "2021-04-27 18:31:29" ...
## $ ended at
   $ start_station_name: chr [1:337230] "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th S
##
  "Honore St & Division St" ...
    $ start_station_id : chr [1:337230] "TA1307000061" "KA1503000069" "20121" "TA1305000034"
   $ end station name : chr [1:337230] "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd &
##
84th St" "Southport Ave & Waveland Ave" ...
   $ end station_id : chr [1:337230] "13235" "KA1503000069" "20121" "13235" ...
##
   $ start_lat
                       : num [1:337230] 41.9 41.8 41.7 41.9 41.7 ..
                       : num [1:337230] -87.6 -87.6 -87.7 -87.7 -87.7 ...
##
    $ start lng
                        : num [1:337230] 41.9 41.8 41.7 41.9 41.7 ...
##
    $ end lat
                        : num [1:337230] -87.7 -87.6 -87.7 -87.7 -87.7 ...
##
    $ end lna
                       : chr [1:337230] "member" "casual" "casual" "member" ...
##
    $ member casual
    - attr(*, "spec")=
##
     .. cols(
##
     .. ride_id = col_character(),
##
          rideable type = col character(),
     . .
          started_at = col_datetime(format = ""),
##
     . .
          ended_at = col_datetime(format = ""),
##
##
          start station name = col character().
     . .
          start_station_id = col_character(),
##
     . .
##
          end_station_name = col_character(),
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

```
Apr21$date <- as.Date(Apr21$started_at)
Apr21$month <- format(as.Date(Apr21$date), "%m")
Apr21$day <- format(as.Date(Apr21$date), "%d")
Apr21$year <- format(as.Date(Apr21$date), "%Y")
Apr21$day_of_week <- format(as.Date(Apr21$date), "%A")
Apr21$ride_length <- difftime(Apr21$ended_at,Apr21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Apr21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Apr21$ride_length <- as.numeric(as.character(Apr21$ride_length))
is.numeric(Apr21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Apr21 <- na.omit(Apr21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Apr21 <- subset(Apr21, nchar(as.character(ride_id)) == 16)
```

Remove rows with the ride_length less than 1 minute.

```
Apr21 <- subset (Apr21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Apr21$ride_length)
```

```
## [1] 1441.756
```

median(Apr21\$ride_length)

```
## [1] 774
```

max(Apr21\$ride_length)

```
## [1] 2866602
```

min(Apr21\$ride_length)

[1] 2

Run a statistical summary of the ride length.

```
summary(Apr21$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 434 774 1442 1442 2866602
```

Compare the members and casual users

```
aggregate(Apr21$ride_length ~ Apr21$member_casual, FUN = mean)
```

```
## Apr21$member_casual Apr21$ride_length
## 1 casual 2306.5989
## 2 member 855.9065
```

```
aggregate(Apr21$ride_length ~ Apr21$member_casual, FUN = median)
```

```
## Apr21$member_casual Apr21$ride_length
## 1 casual 1126
## 2 member 627
```

```
aggregate(Apr21$ride_length ~ Apr21$member_casual, FUN = max)
```

```
## Apr21$member_casual Apr21$ride_length
## 1 casual 2866602
## 2 member 87175
```

```
aggregate(Apr21$ride_length ~ Apr21$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Apr21$ride_length ~ Apr21$member_casual + Apr21$day_of_week, FUN = mean)
```

```
##
      Apr21$member_casual Apr21$day_of_week Apr21$ride_length
## 1
                                      Friday
                                                      2506.2222
                   casual
## 2
                   member
                                      Friday
                                                       820.2647
## 3
                   casual
                                      Monday
                                                      2223.4094
                                      Monday
## 4
                   member
                                                       840.4177
## 5
                                    Saturday
                                                      2200.5430
                   casual
## 6
                                    Saturday
                                                       959.9997
                   member
## 7
                   casual
                                      Sunday
                                                      2574.8487
## 8
                   member
                                      Sunday
                                                       979.7233
## 9
                                                      1440.8633
                   casual
                                    Thursday
## 10
                   member
                                    Thursday
                                                       772.0394
                                                      2421.5596
## 11
                                     Tuesday
                   casual
## 12
                   member
                                     Tuesday
                                                       857.2783
## 13
                    casual
                                   Wednesday
                                                      2372.6881
## 14
                                                       780.3790
                   member
                                   Wednesday
```

Sort the days of the week in order.

```
Apr21$day_of_week <- ordered(Apr21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Apr21$ride_length ~ Apr21$member_casual + Apr21$day_of_week, FUN = mean)
head(x)</pre>
```

```
Apr21$member_casual Apr21$day_of_week Apr21$ride length
## 1
                  casual
                                     Sunday
                                                     2574.8487
## 2
                                     Sunday
                  member
                                                      979.7233
## 3
                  casual
                                     Monday
                                                     2223.4094
## 4
                  member
                                     Monday
                                                      840.4177
## 5
                                                     2421.5596
                  casual
                                    Tuesday
## 6
                                                      857.2783
                  member
                                    Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member_casual weekday number_of_rides average_duration
##
                     <int>
## 1 casual
                                                        2575.
                         1
                                      22866
## 2 casual
                          2
                                      14058
                                                        2223.
## 3 casual
                          3
                                      17928
                                                        2422.
## 4 casual
                          4
                                      10347
                                                        2373.
## 5 casual
                          5
                                      10406
                                                        1441.
## 6 casual
                                      19798
                                                        2506.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Apr21$member_casual)
```

```
##
## casual member
## 120413 177756
```

```
table(Apr21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 214098 24713 59358
```

```
table(Apr21$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 45331 38766 46249 32878 35001 51376 48568
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Apr21$day_of_week,Apr21$member_casual))
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
                        casual 22866
## 1
          Sunday
## 2
          Monday
                        casual 14058
## 3
         Tuesday
                        casual 17928
## 4
       Wednesday
                        casual 10347
## 5
        Thursday
                        casual 10406
                        casual 19798
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Apr21$rideable_type,Apr21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
   rideable_type member_casual
                              Freq
## 1 classic_bike casual
                             70498
    docked bike
                      casual
## 2
                             24713
                     casual 25202
## 3 electric bike
## 4 classic bike
                    member 143600
## 5 docked_bike
                    member
                                 0
## 6 electric_bike
                      member 34156
```

Plot for bike user vs bike type.

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file.

fwrite(Apr21, "Apr21.csv")