

ENPEP-BALANCE:Simple Case

ENPEP-BALANCE Training CourseSingapore December 5-9, 2011

Guenter CONZELMANN

Center for Energy, Environmental, and Economic Systems Analysis Decision and Information Sciences Division (DIS)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

guenter@anl.gov; ++1-630-252-7173

Purpose of Simple Case is to Illustrate some of the Basic Calculations in BALANCE

Lecture will cover the following:

- Simple Case definition & node input description
- Example of network development
- Testing the sensitivity of model results to various model parameters

The Basic Starting Point in BALANCE is the Energy Network that Simulates Energy Markets

The Following Node Types are Available to Construct Cases

Demand

Conversion Processes

Resource Processes

Depletable Renewable

Economic Processes

Decision/Allocation

Stockpile

 Electricity Dispatch and Thermal and Hydro Units

Thermal Unit

Hydro Unit

Steps in Network Development

- Prepare the network structure
 - Draw the network
 - Label the network (each link and node has a name and abbreviation
- Prepare the input data
- Prepare (run/check) the node visitation sequence (Up/Down-Pass)
- Run BALANCE
- Check/printout the results (tables, graphs, text files)

Structure of Simple Network

• Two resource nodes: OIL and COAL

Two conversion processes or boilers: OBOIL

One decision node: AL

One demand node: STDEM (steam demand)

Study period: 2007-2026

Resource Node Input Data (Case 1)

Conversion Process Node Input Data (Case 1)

Allocation Node Input Data (Case 1)

Demand Node Input Data (Case 1)

Before Running BALANCE, the Node Visitation Sequence Has to be Determined

- Before running BALANCE for the first time it is necessary to execute the Up/Down Pass program to determine the node visitation sequence
 - Up-down tells the model in which sequence to do the node calculations during the simulations
- Later, the Up/Down Pass has to be executed only if there has been a change in the structure of the energy network
 - add/delete node
 - add/delete link
- If the up-down icon is red, you should click it to run the sequencer

BALANCE Asks for User Confirmation to Run the Routine

BALANCE Produces a Simulation Status Report for the Up/Down Pass Sequencer

Case 1: Definition of Node Visitation Sequences

You Can View and Edit the Up and Down Pass Sequence

You usually need to edit the sequence only if you have COGENERATION in the network. Also it may be necessary in some situations with the oil refinery.

You May also Want to View/Modify some of the Run Parameters

Run Parameters Allow the User to Specify Convergence Parameters and Discount Rate

Run Parameters Polluta	ants Output Codes Non-electric Unit	s Electric Unit	ts	
The model will stop running after the specified number of iterations in a year	Con∨ergence Parameters:		Input tolera evel in both pe and absolute	ercent
Relaxation parameters for	Relative Tolerance:	0.100	(Fraction)	
adjusting values between iterations (discussed in	Absolute Tolerance:	10.000	(kboe)	
up-down pass lecture)	Maximum Iterations:	10	(1-100)	
Discount rate and cost of	Lower Bound Relaxation Range:	0.100		
energy not served used in	Upper Bound Relaxation Range:	0.900		
the economic system cost calculations (NPV)	Discount Rate for NPV Calculation:	10.0	(%)	
Automatic backup interval	Cost of Energy Not Served:	0.0	(\$/MWh)	
(days). The model will remind	>>> Database Backup Inter∨al:	14	(1-100)	
you to backup after each interval passes (in this case 14 days)	Perform En∨iromental Calculations:	\\ \	Turn o	-

The User Can Change the Units for Energy, Costs, Prices, and Environment

Units Can be Changed for both Electric and Non-Electric Processes

Run Parameters Pollutar	nts Output C	odes Non-electric U	nits Electric Units	
<u>Unit</u> <u>Type</u>	<u>Default</u> <u>Unit</u>	<u>Unit</u> <u>Name</u>	Unit Conversion Factor	<u>Unit</u> <u>Description</u>
Base Year Production	kboe	kboe	1.000	Thousands of Barrels of Oil Equivale
Thermal Capacity	MW	GJ	1.000	Megawatt
Hydro Capacity	MW-year	kboe tce	1.000	Megawatt-year
Electricity Generation	MWh	TJ TJ	1.000	Megawatt-hour
Capital Cost	\$/kW	toe User Unit 1	1.000	US Dollars per Kilowatt
Fixed O&M Cost	\$/kW-year	User Unit 2	1.000	US Dollars per Kilowatt-year
Variable O&M Cost	\$/MVVh	\$/MVVh	1.000	US Dollars per Megawatt-hour
Opt. Loading Order	\$/MVVh	\$/MVVh ▼	1.000	US Dollars per Megawatt-hour
Heat Rate	Btu/kWh	Btu/kWh ▼	1.000	British Thermal Units per Kilowatt-ho
Emission Factors	kg/GJ	kg/GJ	1.000	Kilogram per Gigajoule

Under "Output Codes" Options for Standard Reports Can be Modified; These Reports are mostly useful for Debugging

Run Parameters Pollutants Output	Codes	lon-electric	Units Elect	ric Units				
					Start	<u>End</u>		
		Start Year	End Year	<u>Step</u>	<u>lteration</u>	<u>lteration</u>		
Converged Price/Quantity	Results:	2007	2026	1				
Converged Electric Sector	Results:	2007	2026	1				
Diagnostic Price/Quantity cald	culations:	2007	2026	1	1	10		
Diagnostic Electric Sector Cald	culations:	2007	2026	1	1	10		
Diagnostic Output to be Ge	enerated:							
Non-electric:	Node Se	equence 🗹	Node Ca	Iculations	Market	Share 🗹		
Electric:	c: Detailed Electric Sector Iteration Calculations							
Input Data:						~		

To Run the Model Select "Run BALANCE" Under the File Menu When You Are in the Sector Window

Case 1: Check of Base Year Energy Flows

Base Year (2007) Energy Flows in kBOEs

AL:
$$Qout_t = \sum Qin_{(t,l)} = 400+400 = 800$$

PR:
$$Qout_t = Qin_t \times f = 500 \times 0.8 = 400$$

RS: $Qout_0 = user-specified = 500$

Case 1: Check of Base Year Prices

Base Year (2007) Energy Prices in \$/BOE

AL: Pout_t =
$$\Sigma [P_l \times S_l]$$

= 25 x 0.5 + 12.5 x 0.5 = 18.75

PR-OBOIL: Pout_t = Pin_t/eff +OM+
+ [TCI/(CAPxCF)] x CRF(i,n)
=
$$20/0.8 + 0 + 0 = 25$$

Case 1 Results: Check of the QUANTITIES at the Allocation Node

- No demand growth specified over the study period
- The quantities are equally distributed on input links (equal market shares) because of inputs for price sensitivity (0) and lag parameter (0)

Case 1 Results: Check of the PRICES at the Allocation Node

- The prices of steam generated using coal (12.5 \$/BOE) and oil (25 \$/BOE) are different
- But because of price sensitivity and lag of 0, the model does not respond to this price signal and leaves the quantities/market shares the same (see previous slide)

Changes in Input Variables: Cases 1 to 8

Case	1	2	3	4	5	6	7	8
Demand Growth (each year)	blank	0.05	blank	blank	blank	blank	blank	blank
Resource Price (Coal) Growth (each year)	blank	blank	0.03	blank	blank	blank	blank	blank
Price Sensitivity	blank	blank	blank	5	2	2	5	2
Lag Parameter	blank	blank	blank	0.5	0.1	0.9	0.5	0.9
Priority Link	blank	O: 2 C: 1						
Premium Multiplier	blank	blank	blank	blank	blank	blank	O: 0.6 C: 1.0	blank

Cases 9-17: For Exercise

- Prepare the network structure
 - Draw the network
 - Label the network (each link and node has a name and abbreviation
- Prepare the input data
- Prepare (run/check) the node visitation sequence
- Run BALANCE
- Check/printout the results (tables, graphs, text files)

Changes in Input Variables: Case 9 to 17

Case	9	10	11	12	13	14	15	16	17
Priority Link	blank	blank	Blank						
Premium Multiplier	blank	blank	Blank						
Price Sensitivity	5	5	5	5	5	5	5	5	5
Lag factor	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Resource Price Growth (every year)	blank	blank	O: 0.02 C: 0.04						
Conversion Process Capacity Factor	O: 0.8 C: 0.8	O: 0.8 C: 0.8	O: 0.8 C: 0.4	O: 0.8 C: 0.8	O: 0.8 C: 0.8				
Conversion Process O-I Ratio (efficiency)	O: 0.8 C: 0.8	O: 0.8 C: 0.8	O: 0.8 C: 0.8	O: 0.8 C: 0.6	O: 0.8 C: 0.6	O: 0.8 C: 0.6	O: 0.8 C: 0.6	O: 0.8 C: 0.8	O: 0.8 C: 0.8
Conversion Process O&M Cost	O: 0 C: 2	O: 0 C: 0	O: 0 C: 0						
Conversion Process Investment Cost (\$1000)	O: 0 C: 0	O: 0 C: 5000	O: 0 C: 5000 (2007) 10000 (2012)	O: 0 C: 0	O: 0 C: 0				
Conversion Process Lifetime	O: 30 C: 30	O: 30 C: 40	O: 30 C: 40	O: 30 C: 30	O: 30 C: 30				
Conversion Process Interest Rate	O: 0.1 C: 0.1	O: 0.1 C: 0.1	O: 0.1 C: 0.1	O: 0.1 C: 0.1	O: 0.1 C: 0.05	O: 0.1 C: 0.05	O: 0.1 C: 0.05	O: 0.1 C: 0.1	O: 0.1 C: 0.1
Capacitated Link (Steam Links)	O: blank C: blank	O: blank C: blank C 200 (2012) C 300 (2017)	O: blank C: blank						

There Are Several Ways to Look at Simulation Results

- Output variables include
 - Prices
 - Quantities
 - Price X Quantity
- Results are displayed in BALANCE in the form of
 - Tables
 - Graphs
- Values are displayed
 - On the network for a specific sector & year
 - For all years for a single node or link
 - For all years for all links in a sector
- Results can be exported and viewed in another software package (e.g., Excel)

Invalid Input Data May Crash the Model: If this Happens, you can Use the Detailed Output Reports for Debugging

- The <u>DATA</u> file will indicate invalid network data
- The **ELEC** file will indicate invalid dispatch data
- The SUM file will show detailed calculation results

