Lecture 02

수의체계

- 일상적으로 10진수(decimal)를 사용함
 - 0부터 9까지 10개의 기호를 포함함
 - 10는 기수(radix 또는 base)임
- 2진수(binary), 8진수(octal), 16진수(hexadecimal)
- 16진수(hexadecimal)
 - 기호: 0부터 15까지 {10, 11, 12, 13, 14, 15}를 {A, B, C, D, E, F}로 표현함
 - 기수: 16
- 예,

10진수	9421	12	2진수	1100	101	8진수	752	22	16진수	899	AB87
10位十	847.21	0.254	2 2 T	11.001	1.01	0건구	145.23	744.2	1027	7E.FD	1.2BB

■ 10진수의 자세한 해석

$$25,426.365 = 20,000 + 5,000 + 400 + 20 + 6 + 0.300 + 0.060 + 0.005$$
$$= 2 \times 10^{4} + 5 \times 10^{3} + 4 \times 10^{2} + 2 \times 10^{1} + 6 \times 10^{0} + 3 \times 10^{-1} + 6 \times 10^{-2} + 5 \times 10^{-3}$$

- 일반적인 b진법
 - 기호: 0부터 (b 1)까지
 - 기수: b
 - 임의적인 A의 수를 10진수 값으로 변환하는 공식

$$A = a_5 \times b^5 + a_4 \times b^4 + a_3 \times b^3 + a_2 \times b^2 + a_1 \times b^1 + a_0 \times b^0 + a_1 \times b^{-1} + a_2 \times b^{-2} + a_3 \times b^{-3} + a_4 \times b^{-4}$$

- 예,
 - 2진수 110101.100 → 10진수 값?
 - 8진수 7145.02 → 10진수 값?
 - 16진수 8FE2.B2 → 10진수 값?

$$110101.100 = 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3}$$

$$= 32 + 16 + 0 + 4 + 0 + 1 + 0.5 + 0 + 0$$

$$= 53.5$$

$$7145.02 = 7 \times 8^3 + 1 \times 8^2 + 4 \times 8^1 + 5 \times 8^0 + 0 \times 8^{-1} + 2 \times 8^{-2}$$

= 3,584 + 64 + 32 + 5 + 0 + 0.03125
= 3,685.03125

8FE2.B2 =
$$8 \times 16^3 + 15 \times 16^2 + 14 \times 16^1 + 2 \times 16^0 + 11 \times 16^{-1} + 2 \times 16^{-2}$$

= $32,768 + 3,840 + 224 + 2 + 0.6875 + 0.0078125$
= $36,834.6953125$

10진수	2진수	8진수	16진수
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

■ 10진수 – 2진수 변환

75.6875

2	75	나머지	2진수	2진수	정수	소수
2	37	1	1		0.	6875
2	18	1	11		×	2
2	9	0	011	0.1	1.	3750
2	4	1	<mark>1</mark> 011		×	2
2	2	0	<mark>0</mark> 1011	0.10	0.	7500
2	1	0	001011		×	2
	0	1	1 001011	0.10 <mark>1</mark>	1.	5000
			, ,,,		×	2
			1001011 1011	•····· 0.1011	1.	0

■ 10진수 – 2진수 변환

1	5	6

2	75	나머지	2진수	2진수	정수	소수
2	37	1	1		0.	6
2	18	1	11		×	2
2	9	0	<mark>0</mark> 11	0.1	1.	2
2	4	1	1 011		×	2
2	2	0	<mark>0</mark> 1011	0.10	0.	4
2	1	0	001011		×	2
	0	1	1001011	0.100	0.	8
			***********		×	2
		100101	1.10011001	4 ······ 0.1001	1.	6

2024. 03. 04.

7

■ 10진수 – 8진수 변환

75.6875

■ 10진수 – 8진수 변환

8 <mark>75</mark> 나머지 8진수 8 <u>9</u> 3 3 8 <u>1</u> 1 13 0 1 113 **75.6**

8진수

0.4

0.46

0.463

정수 소수

0. 6

× 8

4. 8

× 8

6. 4

× 8

3. 2

× 8

1. 6

■ 10진수 – 16진수 변환

75.6875

■ 10진수 – 16진수 변환

16	75	나머지
16	4	11
	0	4

75.6

■ 2진수 – 8진수 – 16진수 – 10진수 상호 변환

■ 2진수 – 8진수 – 16진수 – 10진수 상호 변환

$$110101.100_{(2)} = 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3}$$

$$= 32 + 16 + 0 + 4 + 0 + 1 + 0.5 + 0 + 0$$

$$= 53.5_{(10)}$$

$$110101.100_{(2)} = 110 \ 101. \ 100$$

= 6 5. 4
= 64.4₍₈₎

$$110101.100_{(2)} = 0011\ 0101.\ 1000$$

= 3 5. 8
= $35.8_{(16)}$

■ 2진수 양의 정수 덧셈

10진수 2진수 8진수 16진수 개리
$$\rightarrow$$
 11 0110000 10 0 (carry) 49 = 00110001 = 61 = 31 $+ 58 = + 00111010 = + 72 = + 3A$ 107 = 01101011 = 153 = 6B

- 2진수 음의 정수 표현과 보수
 - 부호와 절대치

■ 1의 보수

- 2진수 음의 정수 표현과 보수
 - 2의 보수

7	0	0	1	1	1	–7	1	1	0	0	1
1의 보수	1	1	0	0	0	1의 보수	0	0	1	1	0
	+				1		+				1
2의 보수	1	1	0	0	1	2의 보수	0	0	1	1	1
			– 7						7		

- 2진수 음의 정수 표현과 보수
 - 비교

2진수	부호와 절대치	1의 보수	2의 보수
0000 0000	<mark>+0</mark>	<mark>+0</mark>	+0
0000 0001	+1	+1	+1
•••	•••	•••	•••
0111 1111	+127	+127	+127
1000 0000	<u>–0</u>	-127	–128
	•••		
1111 1110	–126	-1	-2
1111 1111	–127	<u>–0</u>	-1

- 2진수 음의 정수 표현과 보수
 - 비교

		정수의 표현 범위
	부호와 절대치	(2N-1 1) (2N-1 1)
비트 크기 N비트	1의 보수	$-(2^{N-1}-1)\sim +(2^{N-1}-1)$
14-1-	2의 보수	$-2^{N-1} \sim +(2^{N-1}-1)$

■ 부호 확장

2진수 표현 방식	부호 확장 방법	구분	8비트	16비트 확장
부호와 절대치	부호만 MSB에 복사하고,	양수	00101010	00000000 00101010
구오지 크네시 	나머지는 0으로 채움	음수	10010111	10000000 10010111
1의 보수		양수	00101010	00000000 00101010
기의 포구 	늘어난 길이만큼 부호와	음수	10010111	11111111 10010111
20l H.A	같은 값으로 모두 채움	양수	00101010	00000000 00101010
2의 보수		음수	10010111	11111111 10010111

- 2의 보수 연산
 - 2진수의 연산과 같음
 - 오버플로(overflow) 발생할 수 있음
 예, 8비트 연산

	10진수		2진수	10진수		2진수
		캐리	0 1000010		캐리	1 0111110
	98	=	01100010	- 98	=	01100010
_	+ 74	=	+ 01001010	74	=	_ 01001010
	- 84	=	10101100			10011110
						+ 10110110
				+ 84	=	01010100

2진 부동소수점 수의 표현

- 단정도 및 배정도 부동소수점 수
 - S 부호
 - Exponent 지수
 - Mantissa 가수

구분	IEEE 754 표준 부동소	수점 수의 비트 할당	ны
단정도 부동소수점 수	8 bit 23 b 31 30 29 24 23 22 21 S Exponent Manti	1 0	12
배정도 부동소수점 수	11 bit 63 62 61 53 52 51 50 S Exponent	52 bit Mantissa	1,02

2진 부동소수점 수의 표현

■ 정규화

$$50 = \frac{50.0 \times 10^0}{10^0} = 5.0 \times 10^1 = \frac{0.5 \times 10^2}{10^0}$$

■ 예,

$$75.6878 = 1001011.1011_{(2)} = 1.0010111011_{(2)} \times 2^{6} = 1.0010111011_{(2)} \times 2^{110}_{(2)}$$

부호	지수(바이어스 127)	가수
양수	01111111(127) + 110(6)	1.을 생략한 가수
0	10000101	00101110110000000000000

2진 부동소수점 수의 표현

예,

$$-0.2 = -0.001100110011..._{(2)} = 1.100110011..._{(2)} \times 2^{-3} = 1.100110011..._{(2)} \times 2^{-11}_{(2)}$$

부호	지수(바이어스 127)	가수
음수	01111111(127) – 11(3)	1.을 생략한 가수
1	01111100	1001100110011001100