Truth Table Conversion (Binary -> Digit)

Binary	Digit	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010	×	
1011	×	
1100	*	don't
1101	×	care
1110	×	
1111	×	

Seven Segment Display Numbering

Another Example of the Digit "5", Drive Segments 1,4 high "1" to display digit "5"

	Digit 5
segment[0]	
segment[1]	1
segment[2]	
segment[3]	
segment[4]	1
segment[5]	
segment[6]	

Map of What Segments to Drive for Each Digit

							-· ·· ·			
	Digit 0	Digit 1	Digit 2	Digit 3	Digit 4	Digit 5	Digit 6	Digit 7	Digit 8	Digit 9
segment[0]		1			1					
segment[1]						1	1			
segment[2]			1							
segment[3]		1			1			1		1
segment[4]		1		1	1	1		1		1
segment[5]		1	1	1				1		
segment[6]	1	1						1		

^{*}note, on Altera Seven Segment Displays, they are common cathode, thus driving a segment to "1" will turn it off, and driving it to "0" will turn it on

Example of Segment 1, and when it needs to be high "1" to display all of the digits (0-9)

	Digit 0	Digit 1	Digit 2	Digit 3	Digit 4	Digit 5	Digit 6	Digit 7	Digit 8	Digit 9
segment[1]						1	1			

	Digit 5	Digit 6
segment[1]	1	1

assign segment [1] = (^C[3]&C[2]&^C[1]&C[0])|(^C[3]&C[2]&C[1]&^C[0]); //0101 OR 0110

^{**}note, only added high "1" values for ease of reading, didn't add low "0" values, but you will have to do this in your verilog code.