数学問題B

実施日時

2023年(令和5年)8月23日(水)

13:30~16:30

- 監督者の合図があるまで問題冊子を開いてはならない.
- 問題冊子は表紙も入れて7枚、問題は全部で6間である.
- 6問の中から<u>ちょうど3問</u>を選択して解答すること.下の欄に、受験番号、氏名を記入し、選択した問題の番号を○で囲め.

受験番号		氏名					
選択問題番号	1	2	3	4	5	6	

- 解答は、問題ごとに別々の答案用紙1枚に記入すること。答案用紙の裏面に記入してもよい。
- それぞれの答案用紙に受験番号、氏名、問題番号を記入すること.
- 問題冊子の表紙, 答案用紙, 下書き用紙は終了後すべて提出し, 持ち帰ってはならない.

- [1] 自然数 n に対し,n を法とする剰余環 $\mathbb{Z}/n\mathbb{Z}$ を R_n とする. \mathbb{Z} から R_n への自然な射影を $p_n \colon \mathbb{Z} \to R_n$ とあらわす.また,環 R_n の可逆元全体のなす乗法群を R_n^\times とあらわす.以下の問いに答えよ.
 - (1) 次の性質 (i), (ii) をみたすような写像 $\rho\colon R_8\to R_{13}^{\times}$ がただ一つ存在することを示せ.
 - (i) 任意の $x, y \in R_8$ に対して $\rho(x+y) = \rho(x)\rho(y)$.
 - (ii) $\rho(p_8(1)) = p_{13}(5)$.

以下では、 ρ を (1) で定まる写像とし、直積集合 $G=R_{13}\times R_8$ 上の二項演算 * を

$$(a,b)*(c,d) = (a + \rho(b)c, b + d)$$

で定義する.

- (2) (G,*) は群の公理をみたすことを示せ.
- (3) (G,*) の単位元を e とあらわす. G の部分集合 K を

$$K = \{g \in G \mid g * g = e\}$$

と定める. K の要素の個数を求めよ. また K は G の部分群であるかどうか判定し、その理由を述べよ.

(4) G の部分集合 S を

$$S = \{g * g \mid g \in G\}$$

と定める. S の要素の個数を求めよ. また S の部分集合となるような G の共役類の個数を求めよ.

[2] $\mathbb C$ の部分環 R を $R=\left\{a+b\sqrt{-5}\in\mathbb C\mid a,b\in\mathbb Z\right\}$ で定める. 各 $\alpha=a+b\sqrt{-5}\in R$ に対して

$$N(\alpha) = a^2 + 5b^2$$

と定義する. 以下の問いに答えよ.

(1) すべての $\alpha, \beta \in R$ に対して

$$N(\alpha\beta) = N(\alpha)N(\beta)$$

が成り立つことを示せ.

- (2) R の可逆元は ± 1 だけであることを示せ.
- (3) 3 は R の既約元であることを示せ.
- (4) 9 の既約分解を考えることにより, R は UFD (一意分解整域) でないことを示せ.

 $\begin{bmatrix} 3 \end{bmatrix} (m,n) \in \mathbb{Z}^2$ に対して,

$$g_{m,n} \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \mapsto (x+m, (-1)^m y + n)$$

とおき、 \mathbb{R}^2 の同値関係 ~ を次で定める.

$$(x,y) \sim (x',y') \iff$$
 ある $(m,n) \in \mathbb{Z}^2$ が存在して, $(x',y') = g_{m,n}(x,y)$.

この同値関係による商空間 \mathbb{R}^2/\sim を M とし、射影を $\pi\colon\mathbb{R}^2\to M$ とする. M には、射影 π が C^∞ 写像で、その微分 $(d\pi)_{(x,y)}$ がすべての $(x,y)\in\mathbb{R}^2$ で階数 2 となるような C^∞ 多様体の構造を入れる. ω を M 上の C^∞ 級の 2 次微分形式とする. 以下の問いに答えよ.

- (1) 任意の $(m,n) \in \mathbb{Z}^2$ に対して、 $\pi^*\omega = (g_{m,n})^*\pi^*\omega$ を示せ.
- (2) 関数 $f: \mathbb{R}^2 \to \mathbb{R}$ を $\pi^*\omega = f \, dx \wedge dy$ で定める. このとき, 任意の $(x,y) \in \mathbb{R}^2$ に対して f(x+1,-y) = -f(x,y) を示せ.
- (3) $\omega_p = 0$ となる $p \in M$ が存在することを示せ.

$\begin{bmatrix} 4 \end{bmatrix} \mathbb{R}^3$ の部分集合 A,B,C を

$$\begin{split} A &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \right\}, \\ B &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid (x-2)^2 + y^2 = 1, \ z = 0 \right\}, \\ C &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid (x-1)^2 + y^2 = 1, \ z = 0 \right\} \end{split}$$

により定義する. $X=A\cup B,\ Y=A\cup C$ とおき、これらを \mathbb{R}^3 の通常の位相に関する相対位相によって位相空間と考える. 以下の問いに答えよ. ただし、n 次元球面 S^n $(n\geq 1)$ の整係数ホモロジー群 $H_k(S^n)$ が

$$H_k(S^n) \cong \begin{cases} \mathbb{Z} & (k=0,n), \\ 0 & (k \neq 0,n) \end{cases}$$

となることは証明なしに用いてよい.

- (1) 位相空間 X の整係数ホモロジー群 $H_k(X)$ (k=0,1,2) を求めよ.
- (2) 位相空間 Y の整係数ホモロジー群 $H_k(Y)$ (k = 0, 1, 2) を求めよ.

[5] f は \mathbb{R} 上で有界かつ連続な実数値関数で,f(x) および xf(x) は \mathbb{R} 上でルベーグ可積分とし,

$$A = \int_{-\infty}^{\infty} f(x) dx, \quad B = \int_{-\infty}^{\infty} x f(x) dx$$

とする. $t \in \mathbb{R}$, $x \in \mathbb{R}$ に対して

$$u(t,x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2} f(x - ty + t^2) \, dy$$

と定義する. 以下の問いに答えよ. ただし

$$\int_{-\infty}^{\infty} e^{-y^2} \, dy = \sqrt{\pi}$$

となることは証明なしに用いてよい.

(1) 任意の $x \in \mathbb{R}$ に対して

$$\lim_{t \to 0} u(t, x) = f(x)$$

であることを示せ.

(2) 任意の $t \in \mathbb{R}$ に対して

$$\int_{-\infty}^{\infty} u(t, x) \, dx = A$$

となることを示せ.

(3) 任意の $t \in \mathbb{R}$ に対して

$$v(t) = \int_{-\infty}^{\infty} x u(t, x) \, dx$$

とするとき, v(t) を A, B, t を用いて表せ.

 $\left[\begin{array}{c}6\end{array}\right]c$ を実数とする. f は f(0)=0 となる \mathbb{R} 上の C^1 級の実数値関数で、すべての $y\in\mathbb{R}$ に対して

$$yf(y) \leq 0$$

をみたすとする. また $[0,\infty)$ 上で定義された C^1 級の実数値関数 u(t) は

$$\frac{du}{dt}(t) = f(u(t)), \quad t > 0,$$

$$u(0) = c$$

をみたしている. 以下の問いに答えよ.

(1) 任意の $t \ge 0$ に対して

$$u(t)^2 \le c^2$$

であることを示せ.

- (2) 極限 $\lim_{t\to\infty} u(t)$ が存在することを示せ.
- (3) R 上の実数値連続関数 v(t) が $\lim_{t \to \infty} v(t) = \alpha$ を満たすならば

$$\lim_{t \to \infty} \int_{t}^{t+1} f(v(s)) ds = f(\alpha)$$

となることを示せ.

(4) $\lim_{t\to\infty}u(t)=\alpha$ ならば $f(\alpha)=0$ であることを示せ.