(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 13 juin 2002 (13.06.2002)

PCT

(10) Numéro de publication internationale WO 02/47264 A 1

- (51) Classification internationale des brevets7: H03H 9/64
- (21) Numéro de la demande internationale :

PCT/FR01/03885

(22) Date de dépôt international :

7 décembre 2001 (07.12.2001)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 00/15989 8 décembre 2000 (08.12.2000) FF
- (71) Déposant (pour tous les États désignés sauf US): THALES [FR/FR]; 173, boulevard Haussmann, F-75008 Paris (FR).

- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): SOLAL, Marc [FR/FR]; Thales Intellectual Property, 13, avenue du Président Salvador Allende, F-94117 Arcueil Cedex (FR). PLESSKY, Victor [FR/FR]; Thales Intellectual Property, 13, avenue du Président Salvador Allende, F-94117 Arcueil Cedex (FR).
- (74) Mandataires: ESSELIN, Sophie etc.; Thales Intelletual Property, 13, avenue du Président Salvador Allende, F-94117 Arcueil Cedex (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI.

[Suite sur la page suivante]

- (54) Title: SURFACE ACOUSTIC WAVES FILTERS WITH OPTIMISED SYMMETRY
- (54) Titre: FILTRES A ONDES ACOUSTIQUES DE SURFACE A SYMETRIE OPTIMISEE

(57) Abstract: The invention concerns a surface acoustic wave filter comprising at least an i^{th} cascaded input acoustic path (VA_i) to an i+1 output acoustic path (VA_i+1) , each acoustic path comprising interdigital electrode transducers and in particular: at least a central transducer (TC_i) ; at least a pair of coupling transducers consisting of a first lateral transducer $(T1L_i)$ and a second lateral transducer $(T2L_i)$. The invention is characterised in that it comprises a first electrical connection with a first potential (V_1) connecting the first lateral transducer $(T1L_i)$ of the i^{th} acoustic path and a second electrical connection to a second potential (V_2) connecting the second lateral transducer of the $(i+1)^{th}$ acoustic path $(T2L_{i+1})$ and the potentials are out of phase. The central transducer of the i^{th} acoustic path being connected to at least an input voltage (V_{iN}) . The central transducer of the $i+1^{th}$ acoustic path being connected to at least an output voltage (V_{out}) . Said filter structure enables to reduce cross couplings and to obtain in differential structures very good symmetry, in the field of double mode filters.

[Suite sur la page suivante]

NO 02/47264 A1

SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Déclaration en vertu de la règle 4.17 :

— relative au droit du déposant de revendiquer la priorité de la demande antérieure (règle 4.17.iii)) pour les désignations suivantes AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM,

PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

⁽⁵⁷⁾ Abrégé: L'invention concerne un filtre à ondes acoustiques de surface comportant au moins une ième voie acoustique (VA_i) d'entrée cascadée à une i + 1ème voie acoustique (VA_i + 1) de sortie chaque voie acoustique comportant des transducteurs à électrodes interdigitées et notamment: au moins un transducteur central (TC_i); au moins une paire de transducteurs de couplage formée d'un premier transducteur latéral (T1L_i) et d'un second transducteur latéral (T2L_i) caractérisé en ce qu'il comporte une première liaison électrique à un premier potential (V₁) reliant le premier transducteur latéral (T1L_i) de la i¿ème voie acoustique au premier transducteur latéral (T1L_{i+1}) de la i+i_{ème} voie acoustique et une deuxième liaison électrique à un second potential (V₂) reliant le deuxième transducteur latéral de la ième voie acoustique (T2L_{i+1}) et en ce que les potentiels sont en opposition de phase. Le transducteur central de la ième voie acoustique étant relié à au moins une tension d'entrée (V_{iN}). Le transducteur central de la i+1ème voie acoustique étant relié à au moins une tension de sorte (V_{out}). Cette structure de filtre permet de réduire les couplages parasites et dans les structures différentielles d'obtenir une très bonne symétrie, dans le domaine des filtres "DMS" (double modes symétriques).

10

20

25

FILTRES A ONDES ACOUSTIQUES DE SURFACE A SYMETRIE OPTIMISEE

Le domaine de l'invention est celui des filtres à ondes de surface et plus précisément celui des filtres à double mode symétrique encore appelés « DMS », notamment décrits par T. MORITA et al ; « WIDEBAND LOW LOSS DOUBLE MODE FILTERS », 1992 IEEE ULTRASONICS PROC., pp 95-104, qui correspondent à une amélioration des filtres à résonateurs à couplage longitudinal.

De manière générale les filtres à résonateurs à couplage longitudinal comprennent deux cavités formées chacune d'un transducteur situé entre deux réseaux réflecteurs, lesdites cavités étant couplées longitudinalement, comme illustré Figure 1. Une première cavité est définie par le transducteur T_1 entre les réflecteurs R_1 et R_2 , la deuxième cavité est définie par le transducteur T_2 situé entre les réflecteurs R_2 et R_3 , le réflecteur R_2 étant commun aux deux cavités. On obtient ainsi deux modes de résonance acoustique, principaux (un mode symétrique et un mode antisymétrique) et l'écart entre les fréquences de ces deux modes donne au premier ordre, la bande passante du filtre.

L'inconvénient principal de ce filtre est sa limitation en bande passante (et/ou les impédances de charge source élevées qu'il nécessite).

Pour pallier cet inconvénient la solution généralement utilisée consiste à remplacer la structure à deux transducteurs telle qu'illustrée en Figure 1, par une structure à trois transducteurs permettant sans trop augmenter l'impédance du filtre d'en élargir la bande passante. Une telle structure est illustrée en Figure 2. Trois transducteurs T_{11} , T_{12} , T_{13} sont situés entre deux réflecteurs R_{11} et R_{12} . Les deux transducteurs latéraux T_{11} et T_{13} sont connectés électriquement en parallèle. Le transducteur central T_{12} ayant une fonction de transduction et de réflexion et permettant de définir deux cavités couplées longitudinalement grâce à la fonction de réflexion centrale. La structure est complètement symétrique par rapport à l'axe vertical AA' et les polarités de deux électrodes symétriques par rapport à cet axe sont identiques, (voir les électrodes E_j , E_{j-1} ou E_i et E_{i-1}). Grâce à cette symétrie, seuls les modes symétriques peuvent être excités, les modes antisymétriques n'étant pas couplés.

10

15

20

25

30

Dans ce type de filtre l'écart de fréquence entre les deux premiers modes symétriques donne au premier ordre la largeur de la bande passante, qui est plus large que la bande passante de la première structure illustrée en Figure 1.

Ce type de structure est couramment amélioré en terme de réjection, c'est-à-dire d'atténuation des fréquences hors bande en cascadant plusieurs voies acoustiques identiques ou du même type.

La Figure 3 illustre une telle structure comportant deux voies acoustiques VA1 et VA2. Un premier transducteur T21 de la voie acoustique VA₁ est couplé électriquement à un premier transducteur latéral T₃₁ de la voie acoustique VA2, la première voie acoustique comporte un transducteur d'entrée T22, la seconde voie acoustique comporte un transducteur de sortie T₃₂ et, un second transducteur T₂₃ de la voie acoustique VA₁ est également connecté électriquement à un second transducteur T₃₃ de la seconde voie acoustique VA2. Dans chacune des voies acoustiques les trois transducteurs sont situés entre deux réflecteurs R21 et R22 (R31 et R32). Ainsi on peut définir acoustiques, deux cavités voies des chacune dans longitudinalement. En effet, en raison des fonctions de transduction et de réflexion des transducteurs centraux, les transducteurs T21, T23, T31 et T33 sont également insérés dans des cavités. Ces cavités sont liées aux décalages spatiaux entre les transducteurs centraux et les transducteurs latéraux et aux réflexions sur les transducteurs et réflecteurs.

Selon la configuration de la Figure 4 le transducteur central T_{22} (ou T_{32}) possède un nombre impair N_i d'électrodes comme représenté en Figure 4 qui illustre le positionnement d'un transducteur central par rapport aux deux transducteurs latéraux T_{21}/T_{23} ou T_{31}/T_{33} positionnés à l'extérieur des deux frontières placées sur le dessin. Cette figure montre également les conventions adoptées généralement pour les limites des transducteurs. On considère habituellement qu'un transducteur de période p a ses deux limites placées à une demi-période (à gauche et à droite) de sa dernière électrode (de gauche et de droite). Dans le texte quand on donne des distances entre transducteurs, c'est à la distance entre limites de transducteurs qu'on se référera.

20

25

30

35

En considérant P la période du transducteur central et d le décalage entre transducteur central et transducteurs latéraux et les sources du transducteur central, positionnées sur les électrodes chaudes notées +, les autres électrodes étant à la masse M, il apparaît que les distances entre électrodes chaudes et les limites des transducteurs latéraux sont égales deux à deux en raison du nombre impair d'électrodes. De manière classique dans ce type de filtre, la période P étant proche d'une demi-longueur d'onde, il apparaît que les ondes émises par le transducteur central 22 sont en phase sur les frontières gauches et droites du transducteur central. Par conséquent les polarités des électrodes successives vues des deux transducteurs latéraux sont identiques et les tensions V₁ et V₂ référencées entre les deux voies acoustiques VA₁ et VA₂ représentées en Figure 3 sont égales.

Du fait des faibles dimensions en jeu, les couplages parasites électromagnétiques de l'entrée sur les points milieux 1 et 2 ne sont pas négligeables. Ceci est vrai de la même manière pour les couplages électromagnétiques des points milieux 1 et 2 sur la sortie. D'autre part, ces couplages peuvent avoir une influence sur la tension à la sortie du filtre et dégrader la fonction de transfert du filtre.

En effet, par symétrie, les couplages parasites de l'entrée sur les points milieux 1 et 2 donnent naissance à des tensions parasites égales toutes les deux à CV_{iN} (si C est le coefficient donnant le couplage entre l'entrée et les points milieux 1 et 2). Dans la configuration considérée, la tension de sortie est proportionnelle par symétrie à la somme des tensions V1 et V2, ce qui signifie que les influences sur la tension de sortie des couplages parasites de l'entrée sur les points milieux 1 et 2 s'additionnent en phase. De même, les couplages parasites des points milieux sur la tension de sortie s'additionnent en phase.

Pour diminuer les phénomènes de couplage, l'invention propose de configurer le filtre pour imposer des tensions opposées au point milieu 1 et 2.

Plus précisément et de manière générale l'invention a pour objet un filtre à ondes acoustiques de surface comportant au moins une ième voie acoustique (VA_i) d'entrée cascadée à une i + 1ème voie acoustique (VA_i + 1) de sortie, chaque voie acoustique comportant des transducteurs à électrodes interdigitées et notamment :

10

15

20

25

30

- au moins un transducteur central (TC_i);
- au moins une paire de transducteurs de couplage formée d'un premier transducteur latéral (T1L_i) et d'un second transducteur latéral (T2L_i) caractérisé en ce qu'il comporte une première liaison électrique à un premier potentiel (V₁) reliant le premier transducteur latéral (T1L_i) de la ième voie acoustique au premier transducteur latéral (T1L_i + 1) de la i + ième voie acoustique et une deuxième liaison électrique à un second potentiel (V₂) reliant le deuxième transducteur latéral de la ième voie acoustique (T2L_i) au deuxième transducteur latéral de la (i+1)ème voie acoustique (T2L_i + 1) et en ce que le premier potentiel et le second potentiel sont en opposition de phase.

Le transducteur central de la i^{ème} voie acoustique étant relié à au moins une tension d'entrée (V_{IN}).

Le transducteur central de la $i+1^{\grave{e}me}$ voie acoustique étant relié à au moins une tension de sortie (V_{out}).

Selon une variante de l'invention, pour obtenir l'inversion de potentiel le transducteur central de la i ème et/ou de la i + i ème voie acoustique a un nombre impair d'électrodes, les premier et second transducteurs latéraux ayant une série d'électrodes connectées à un potentiel dit point chaud interdigitée avec une série d'électrodes connectées à un potentiel de masse, la première électrode du premier transducteur latéral, depuis le transducteur central étant connectée au point chaud, la première électrode du second transducteur latéral depuis le transducteur central étant connectée à la masse, la distance entre le transducteur central et le premier transducteur latéral étant égale à un nombre pair de période près (P, si P est la période des électrodes dans les transducteurs) ou à un nombre entier de longueur d'onde λ près (avec λ la longueur d'onde correspondant à la fréquence centrale du filtre) à celle entre le transducteur central et le second transducteur latéral et les polarités des électrodes successives du premier transducteur latéral étant opposées aux polarités des électrodes successives du second transducteur latéral.

Selon une autre variante de l'invention, le transducteur central de 35 la ième et/ou de la i + ième voie acoustique peut avoir un nombre impair

d'électrodes, les premier et second transducteurs latéraux ayant une série d'électrodes connectées à un potentiel dit point chaud interdigitée avec une série d'électrodes connectées à un potentiel de masse, la première électrode du premier transducteur latéral depuis le transducteur central étant connectée au même potentiel que la première électrode du second transducteur latéral depuis le transducteur central, la distance entre le transducteur central et le premier transducteur latéral étant égale à un nombre impair de période près ou à un nombre impair de demi-longueur d'onde - à celle entre le transducteur central et le second transducteur latéral.

10

20

30

Selon une autre variante de l'invention, pour obtenir l'inversion de potentiel, le transducteur central de la ième et/ou de la i + ième voie acoustique a un nombre pair d'électrodes, les premier et second transducteurs latéraux ayant une série d'électrodes connectées à un potentiel dit point chaud, interdigitée avec une série d'électrodes connectées à un potentiel de masse, la première électrode du premier transducteur latéral depuis le transducteur central étant connectée au même potentiel que la première électrode du second transducteur latéral depuis le transducteur central, la distance entre le transducteur central et le premier transducteur latéral étant égale à un nombre pair de période près (2kP, avec k entier, P période des électrodes dans les transducteurs) ou à un nombre entier de longueur d'ondes près, à celles entre le transducteur central et le second transducteur latéral.

De manière générale le filtre comprenant deux étages, pour fonctionner correctement doit comporter soit deux étages identiques soit deux étages du même type c'est à dire que les tensions V1 et V2 sur les transducteurs latéraux du deuxième étage doivent donner des réponses en opposition de phase sur le transducteur de sortie.

Tous les filtres décrits ci-dessus supposent que l'entrée et la sortie sont simples (une tension d'entrée V_{iN} et une tension de sortie V_{out}). Les impédances d'entrée ou de sortie de ces filtres peuvent typiquement être de 50 ohms rendant ces filtres particulièrement adaptés pour des applications dans le domaine des radiofréquences.

10

15

20

25

30

Pour rendre ces filtres compatibles avec les circuits d'amplification actuels, on peut adapter ces filtres, en les faisant fonctionner en différentiel. Pour cela l'un des transducteurs centraux peut être scindé en deux parties égales séparées, avec des polarités inversées V_{out} + et V_{out} .

Le brevet US 6081172 décrit par exemple des structures avec entrée simple et sorties différentielles, souffrant néanmoins de symétrie imparfaite.

La titulaire dans la demande de brevet : M. SOLAL, J. DESBOIS, P. DUFILIE, « Filtre à ondes acoustiques de surface à réseaux réfléchissants », demande de brevet français 92 07883 a décrit une structure de transducteur permettant l'attaque en différentiel. Cette structure, du type de celle de la Figure 5 consiste à séparer le transducteur en deux parties égales branchées l'une entre la masse et la tension positive et l'autre entre la masse et la tension négative.

Plus précisément ce transducteur est composé d'une série continue d'électrodes E_j et de deux séries d'électrodes E_{i1} et E_{i2} , ces deux séries d'électrodes étant connectées à des potentiels opposés.

Néanmoins si l'on intègre ce type de transducteur dans un filtre comprenant deux voies acoustiques cascadées tel qu'illustré en Figure 4, on perd la symétrie requise pour annuler le mode antisymétrique. Il convient donc d'adapter la structure à deux voies acoustiques pour rétablir la symétrie recherchée. En effet les deux demi-transducteurs illustrés en Figure 5, sont généralement séparés d'une distance égale à une demi-longueur d'onde ou une période, ainsi les ondes émises vers la droite par le transducteur de droite T_d et référencées 1 sont en phase avec les ondes émises vers la droite par le transducteur de gauche Tg et référencées 2', de même les ondes émises vers la gauche par le transducteur Tg et référencées 2 sont en phase avec les ondes émises par la gauche par le transducteur de droite et référencées 1'. Par contre les ondes référencées 1 et 2 sont en opposition de phase et donc globalement les émissions acoustiques étant en opposition de phase, la résultante de ces ondes pour l'ensemble du filtre est nulle. Pour rétablir un fonctionnement correct dans une structure telle qu'illustrée en Figure 4, on peut inverser les polarités des transducteurs latéraux. On obtient la structure de l'art antérieur illustrée en Figure 6. L'invention s'applique ainsi

25

également dans le cadre de filtre à entrée sortie différentielles, pour lesquels on cherche également à réduire les problèmes de couplages parasites.

C'est pourquoi l'invention a aussi pour objet un filtre à ondes de surface, caractérisé en ce qu'il comprend au moins une voie acoustique relié à une entrée et/ou une sortie différentielle (V_{IN} +, V_{IN}- et/ou V_{out} +, V_{out} -), ladite voie acoustique comportant un transducteur central scindé en deux parties et comportant une série continue d'électrodes interdigitées avec, deux séries continues et adjacentes d'électrodes reliées audites tensions d'entrées (V_{IN} +, V_{IN} -) et/ou audites tensions de sorties (V_{out} +, V_{out} -), les deux parties étant symétriques c'est à dire que les successions de polarités des électrodes en partant du centre sont opposées, c'est à dire qu'une électrode + pour la première partie correspond à une électrode – pour l'autre et une masse pour une partie correspond à une masse pour l'autre, la distance entre les électrode + et les électrodes – est égale à un nombre impair de période (ou de demi-longueurs d'ondes) et les deux transducteurs latéraux sont positionnés à la même distance (à 2kP près) du transducteur central.

Avantageusement le filtre selon l'invention peut comprendre un substrat de tantalate de lithium d'angle de coupe compris entre $Y + 41^{\circ}$ et $Y + 43^{\circ}$ avec Y axe cristallographique conventionnel.

Avantageusement l'épaisseur des électrodes peut être de l'ordre de 5 à 10 % de la longueur d'onde acoustique.

Par ailleurs le nombre d'électrodes des transducteurs latéraux peut avantageusement être compris entre environ 50 % et 100 % du nombre d'électrodes des transducteurs centraux.

L'invention a encore pour objet un filtre à ondes de surface, caractérisé en ce que la $i^{ème}$ voie acoustique d'entrée (VA_i) et/ou la $i+1^{ème}$ voie acoustique de sortie (VA_{i+1}) comporte une série de transducteurs centraux (TC_{i,j} et/ou TC_{i+i,j}) intercalés avec d'une part une série de premiers transducteurs latéraux (T1L_{i,j} et/ou T1L_{i+1,j}) et d'autre part une série de seconds transducteurs latéraux (T2L_{i,j} et/ou T2L_{i+1,j}).

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :

- la Figure 1 illustre un premier exemple de filtre à résonateurs à couplage longitudinal selon l'art connu;
- la Figure 2 illustre un second exemple de filtre à résonateurs à couplage longitudinal selon l'art connu comprenant un transducteur central et deux transducteurs latéraux;
- la Figure 3 illustre un troisième exemple de filtre à résonateurs à couplage longitudinal selon l'art connu comportant deux voies acoustiques cascadées;
- la Figure 4 illustre le positionnement des électrodes d'un transducteur central par rapport aux transducteurs latéraux dans le troisième exemple de filtre illustré en Figure 3;
- la Figure 5 illustre un transducteur en entrée / sorties différentielles de l'art connu;
- la Figure 6 illustre un quatrième exemple de filtre à résonateurs à couplage longitudinal selon l'art connu comportant deux voies acoustiques cascadées et un transducteur à entrée / sorties différentielles;
- la Figure 7 illustre un premier exemple de filtre à résonateurs à couplage longitudinal selon l'invention à entrée / sortie simples;
- la Figure 8 illustre un second exemple de filtre à résonateurs à couplage longitudinal selon l'invention, à entrée / sortie simples;
- la Figure 9 illustre un troisième exemple de filtre à résonateurs à couplage longitudinal selon l'invention à entrée / sortie simples;
- les Figures 10a et 10b illustrent des exemples de filtre selon
 l'invention à entrées / sorties différentielles ;
- la Figure 11 illustre un exemple de filtre selon l'invention comportant un nombre de voies acoustiques supérieur à 2;
- la Figure 12 illustre un exemple de filtre selon l'invention dans lequel chaque voie acoustique comporte plusieurs transducteurs d'entrée ou de sortie et plusieurs paires de transducteurs latéraux;

10

15

20

25

30

10

25

30

- les Figures 13a et 13b illustrent plusieurs types de séparations entre transducteurs, dans un filtre selon l'invention;
- la Figure 14 illustre la fonction de transfert d'un exemple de filtre selon l'invention;
- la Figure 15 illustre la fonction de transfert d'un exemple de filtre selon l'invention;
- la Figure 16 illustre la symétrie d'amplitude et de phase du même exemple.

De manière générale le filtre selon l'invention comporte au moins deux voies acoustiques, chaque voie acoustique comportant au moins un transducteur central et deux transducteurs latéraux connectés électriquement pour cascader les deux voies acoustiques. Dans tous les cas de figures le nombre d'électrodes du transducteur central, les polarités des transducteurs, les distances entre transducteurs sont choisies de manière à ce que les tensions en des points symétriques par rapport à l'axe de symétrie du filtre soient en opposition de phase deux à deux. Autrement dit, les fonctions de transfert donnant les tensions aux points milieux par rapport à la tension d'entrée sont opposées ainsi que les fonctions de transfert donnant la tension de sortie en fonction des tensions aux points milieux. Par réciprocité, le raisonnement est équivalent si l'on considère l'un ou l'autre type de fonction de transfert.

Nous allons décrire ci-après un ensemble d'exemples de filtre, illustrant l'invention.

Exemple 1

Selon une première variante, le filtre selon l'invention peut comprendre un transducteur central avec un nombre impair d'électrodes et deux transducteurs latéraux dont les polarités sont inversées. La Figure 7 illustre une telle configuration.

La voie acoustique VA₁ comprend entre deux réflecteurs R1₁ et R2₁, un transducteur central TC₁ relié à une tension d'entrée V_{IN}, inséré entre un premier transducteur latéral T1L₁ et un second transducteur latéral T2L₁. De même la voie acoustique VA₂ comprend entre deux réflecteurs R1₂ et R2₂, un transducteur central TC₂ relié à une tension de sortie V_{out}, inséré

25

30

35

entre un premier transducteur latéral T1L2 et un second transducteur latéral T2L2.

La distance entre le transducteur central et le premier transducteur latéral est choisie égale à la distance entre le transducteur central et le second transducteur latéral et désignée par la lettre d. Les électrodes Etti symétriques des électrodes E2Li par rapport à l'axe de symétrie du filtre S, en distance sont portées à des polarités inversées de manière à amener les points 1 et 2 à des tensions opposées. Par symétrie, les couplages électromagnétiques parasites de l'entrée sur les points milieux donnent naissance aux points milieux 1 et 2 à des tensions parasites égales à C V_{IN} (si C est le coefficient donnant le couplage parasite de l'entrée sur les points milieux). Par les inversions de polarités des transducteurs, la tension de sortie est proportionnelle à la différence V1-V2, et donc les influences sur le signal de sortie du filtre des couplages électromagnétiques de l'entrée sur les points milieux 1 et 2 sont en opposition de phase et se compensent donc. Par symétrie, les couplages des points milieux sur la tension de sortie du filtre sont CV1 et CV2, c'est-à-dire puisque V1 et V2 sont en opposition de phase, CV1 et -CV1. Les tensions parasites liées à ces deux couplages se compensent donc aussi. L'invention permet ainsi d'améliorer très nettement le fonctionnement du filtre en compensant l'influence de tous les couplages électromagnétiques parasites de l'entrée sur les points milieux (et des points milieux sur la sortie). Les seuls couplages électromagnétiques parasites restant sont ceux existant de l'entrée sur la sortie, mais ces couplages parasites sont négligeables par rapport aux couplages précédents du fait de la plus grande distance. On obtient donc plus facilement une bonne atténuation hors bande.

Exemple 2

Une configuration proche de celle illustrée en Figure 7, consiste en ayant toujours un transducteur central présentant un nombre impair d'électrodes, à positionner les transducteurs latéraux de manière à ce que la distance entre le transducteur central et le premier transducteur latéral et la distance entre le transducteur central et le deuxième transducteur latéral soient distinctes d'une valeur kP (ou k lambda/2) avec k entier non nul impair, comme cela est illustré en Figure 8. Les électrodes successives des

10

20

25

deux transducteurs latéraux étant portées aux mêmes polarités (point chaud ou masse). Les ondes arrivant sur les transducteurs T1L1 et T2L1 sont en donc en opposition de phase.

Exemple 3

Selon une troisième variante, le filtre de l'invention peut comprendre un transducteur central avec un nombre pair d'électrodes et deux transducteurs latéraux dont les polarités sont identiques. La Figure 9 illustre une telle configuration. Les électrodes E_{1Li} symétriques des électrodes E2Li par rapport à l'axe de symétrie S, du filtre sont portées à des polarités identiques. Dans cet exemple la distance entre le transducteur central et le premier transducteur latéral est encore choisie égale à la distance entre le transducteur central et le second transducteur latéral (à un nombre entier de longueur d'onde près ou un nombre pair de périodes près). Il apparaît dans cette configuration que les ondes émises par le transducteur central TC₁ (TC₂) sont en opposition de phase au niveau du transducteur latéral T_{1L1} (T_{1L2}) avec les ondes émises par le transducteur central TC₁ (TC₂) au niveau du transducteur latéral T_{2L1} (T_{2L2}). Les polarités successives des électrodes des transducteurs latéraux étant identiques, Il s'ensuit que les points de contact 1 et 2 sont ainsi portés à des potentiels en opposition de phase $+ V_1$ et $- V_1$ de manière à compenser les influences des couplages électromagnétiques parasites.

Il va de soit que les exemples précédents peuvent être combinés entre eux, c'est à dire que les deux voies cascadées ne sont pas forcément identiques ou de même type mais elles sont toutes les deux d'un des types décrits plus haut.

Nous venons de décrire des exemples de filtres à entrée et sortie simple. L'invention peut néanmoins et avantageusement être appliquée dans le cadre de filtres à entrées et / ou sorties différentielles, comme cela va être décrit ci-après.

Filtres à entrées et/ou sorties différentielles

Le premier moyen pour travailler en différentiel consiste à connecter le transducteur central d'une (ou des deux) voies entre une tension positive et une tension négative, c'est à dire que les électrodes précédemment reliées à la masse sur le transducteur central sont reliées maintenant à un potentiel opposé au potentiel auquel sont reliées les autres électrodes du transducteur central, les positions et polarités des transducteurs latéraux étant inchangées. On obtient alors un filtre à entrées et /ou sorties différentielles travaillant sur les mêmes impédances que le filtre à entrées sorties simple précédent.

10

Exemple 4

Pour réaliser une sortie en différentiel, un autre moyen consiste à scinder le transducteur central de la voie acoustique de sortie VA2 en deux parties comportant un premier jeu d'électrodes continues connectées dans l'exemple à la masse et interdigitées avec deux jeux d'électrodes respectivement connectées à une sortie Vout + et une sortie Vout -. On peut noter que la connexion de masse est représentée sur la figure, mais que par symétrie l'électrode continue est naturellement à la masse et que cette connexion n'est donc pas nécessaire en pratique (art connu).

20

Selon cet exemple la voie d'entrée VA_1 est identique à celle décrite en exemple 1, soit un transducteur central avec un nombre impair d'électrodes, des transducteurs latéraux T_{1L1} et T_{2L1} équidistants d'une distance d du transducteur central TC_1 et des électrodes symétriques E_{1Li} et E_{2Li} portées à des potentiels opposés.

25

La voie de sortie VA₂ comprend un transducteur central complexe alimenté en différentiel avec un nombre total d'électrodes pair, et donc une configuration identique à celle de l'exemple 3, dans lequel les transducteurs latéraux sont équidistants du transducteur central, les électrodes symétriques par rapport à l'axe de symétrie S étant à des polarités identiques, comme illustré en Figure 10a.

30

On peut également obtenir un filtre à entrées et sorties différentielles suivant l'invention en cascadant deux voies du type de la voie VA2 de la figure 10a, comme illustré en Figure 10b.

Dans l'ensemble des exemples décrits ci-dessus, les voies acoustiques d'un même filtre sont donc identiques ou différentes mais sont toujours structurées de manière à créer des points de liaisons 1 et 2 à des tensions en opposition de phase.

L'invention peut également être appliquée dans le cas d'un nombre i de voies, supérieur à 2. Selon un mode préférentiel, il peut être envisagé de cascader plusieurs couples de voies telles que les voies VA₁ et VA₂, comme illustré en Figure 11.

10

15

5

De même le filtre selon l'invention peut comprendre plus d'un transducteur central et plus d'un couple de transducteurs latéraux par voie acoustique. Dans le cas de plusieurs paires de transducteurs latéraux par voie acoustique, les polarités de ces transducteurs sont choisies de manière à ce que les tensions en des points symétriques par rapport à l'axe de symétrie du filtre soient opposées deux à deux.

L'intérêt d'un filtre dans lesquels sont intercalés les transducteurs dits centraux avec des transducteurs dits latéraux est de réduire les pertes ou de rendre le filtre plus raide.

La Figure 12 illustre ce type de configuration. Le filtre présente un axe de symétrie S, chaque voie acoustique VA_1 et VA_2 comprennent respectivement trois transducteurs $TC_{1,1}$, $TC_{1,2}$, $TC_{1,3}$ ($TC_{2,1}$, $TC_{2,2}$, $TC_{2,3}$) connectés à la tension d'entrée V_{IN} (à la tension de sortie V_{out}) et des paires de transducteurs latéraux symétriques par rapport à l'axe S :

25

20

$$T1L_{1,2} / T2L_{1,2}$$
; $T1L_{1,1} / T2L_{1,1}$
($T1L_{2,1} / T2L_{2,1}$; $T1L_{2,2} / T2L_{2,2}$)

avec V_1 : la tension entre le transducteur $T1L_{1,1}$ et le transducteur $T1L_{2,1}$;

- V_1 : la tension entre le transducteur $T2L_{1,1}$ et le transducteur $T2L_{2,1}$;

 V_2 : la tension entre le transducteur $T1L_{1,2}$ et le transducteur $T1L_{2,2}$;

- V₂: la tension entre le transducteur T2L_{1,2} et le transducteur T2L_{2,2}.

30

35

Dans l'ensemble des configurations présentées, il peut être particulièrement avantageux de séparer les différents transducteurs par une électrode métallique plus large. En effet, en ce qui concerne les espaces entre les transducteurs, l'homme de l'art sait que ces espaces constituent

15

20

25

30

une rupture de la périodicité qui se traduit par l'apparition de pertes attribuées souvent à une diffraction en ondes acoustiques de volume. Pour diminuer ces pertes, il est connu qu'il est plus favorable de remplacer l'espace libre entre les transducteurs par une zone métallisée, ce qui revient en général à placer entre les transducteurs une électrode métallique de largeur supérieure à celles des autres électrodes. Un autre moyen, plus efficace, de réduire ces pertes à la séparation entre les transducteurs consiste à réaliser le déphasage de manière progressive en changeant graduellement les périodes des dernières électrodes des transducteurs, par exemple en la réduisant. Ce procédé est utilisé classiquement pour la réalisation des résonateurs et est utilisé dans des filtres à doubles modes de la société EPCOS (ex : filtre réf. B4121).

Les Figures 13a et 13b illustrent ainsi respectivement deux transducteurs séparés par une large électrode ou des transducteurs séparés grâce à la présence de variation de périodes, périodes choisies pour suivre une loi linéaire.

Nous allons décrire un exemple de réalisation de filtre selon l'invention pour application Extended GSM.

Le filtre est constitué de deux voies cascadées comportant en outre des réflecteurs. L'impédance d'entrée est 50 ohms et l'impédance de sortie est de 200 ohms. Le filtre est constitué suivant la configuration schématisée en Figure 10. Le matériau choisi est du tantalate de lithium de coupe Y + 42°. La société Fujitsu, dans le Brevet Europeen No EP 0845 858 A2, Fujitsu a montré qu'il était particulièrement intéressant pour ces filtres d'utiliser comme substrat du Tantalate de Lithium de coupe Y+42°. D'autre part, dans ce brevet on décrit des configurations en terme de nombre d'électrodes des transducteurs, de périodes de transducteurs et de réseaux, d'épaisseur de métallisation et également en terme de décalage entre les transducteurs permettant d'obtenir des bonnes performances. Les ouvertures acoustiques, c'est à dire les longueurs des électrodes sont les mêmes pour les deux voies soit 170 microns. Les voies sont décrites ci-après plus en détails.

 transducteur central: 3 électrodes non périodiques + 27 électrodes périodiques (p = 2.21 μm) + 3 électrodes non périodiques, soit au total 33 électrodes avec des électrodes chaudes aux extrémités;

5

transducteurs latéraux : 25 électrodes périodiques (p = 2.21 µm) + 3 électrodes non périodiques pour chacun des deux transducteurs latéraux, soit au total 28 électrodes pour chaque transducteur latéral. Les polarités des transducteurs latéraux sont inversées ;

10

- réseaux : 50 électrodes à la masse pour chaque réseau (p = 2.245 μm).

Le tableau ci-dessous donne les périodes successives entre électrodes pour les séparations entre transducteurs :

15

20

25

р.	2.21 µm
p1	2.16 µm
p2	2.065 µm
р3	1.98 µm
p4	1.94 µm
P3	1.98 µm
p4	2.065 µm
P1	2.16 µm
р	2.21 µm

Les transducteurs latéraux et le transducteur central ont la même période de 2.21 µm et la séparation est faite par 3 électrodes pour chaque transducteur avec une variation linéaire de 2.21 jusqu'à 1.94 µm. Les séquences sont identiques à gauche et à droite. Il n'y a pas de décalage entre réseaux et transducteurs latéraux, c'est-à-dire que la distance entre les centres des électrodes successives du réseau et du transducteur latéral sont (2.21 + 2.245)/2.

Les écarts périodes donnés dans le tableau ci dessus correspondent à une distance totale entre le centre de la dernière électrode

20

25

du transducteur latéral avant la séparation (cad le changement de période) et le centre de la première électrode du transducteur central après la séparation égale à : 2.16+2.065+1.98+1.94+1.98+2.065+2.16= 14.35 μm. Dans le cas où l'on ne place pas cette séparation, la distance serait de 7*2.21=15.47μm. la séparation progressive est donc à peu près équivalente, du point de vue du déphasage à un rapprochement des transducteurs de 15.47 –14.35= 1.12 μm soit 1.12/2.21=50.6% de la période des transducteurs.

En ce qui concerne la voie différentielle, les périodes et séquences pour les séparations sont identiques. La différence vient du transducteur central qui est séparé maintenant en deux parties contenant chacune 14 électrodes périodiques de période 2.21 μ m et 3 électrodes non périodiques de séquence identique à celle donnée ci-dessous. Pour chacun des deux demi-transducteurs, l'électrode la plus proche du centre est au + (ou au -). Les deux transducteurs latéraux sont réalisés de telle manière que les électrodes les plus proches du transducteur central soient reliées aux points de couplage (V1 et – V1).

Les Figures 14 et 15 montrent la fonction de transfert du filtre (la Figure 15 correspondant à un agrandissement de la Figure 14). On obtient des pertes d'insertion inférieures à 3 dB dans toute la bande de 35 MHz et une réjection large bande meilleure que 55 dB. D'autre part, la réjection à 925 MHz est supérieure à 20 dB. La figure 16 montre la symétrie du filtre c'est à dire le rapport entre les tensions de sortie V+ et -V- (amplitude et phase). Cette symétrie est très bonne par rapport aux résultats obtenus habituellement avec les filtres suivant l'art antérieur. En effet, la symétrie d'amplitude est comprise entre -1.5 dB et + 0.8 dB dans la bande et est meilleure que +/- 0.5 dB dans la plus grande partie de la bande passante. La symétrie de phase est comprise entre -5° et +8° et est meilleure que +/-2° dans la plus grande partie de la bande. Ces bons résultats sont dus à la symétrie parfaite de la voie différentielle qui fait que tensions V+ et V- voient des configurations d'électrodes identiques. L'erreur de symétrie provient d'une part du câblage du filtre et d'autre part des inversions de polarités des transducteurs latéraux de la voie d'entrée, qui se traduisent par des fonctionnements légèrement différents. Pour un filtre à entrées sorties différentielles et avec un câblage soigné par exemple avec un montage de type flip chip, la symétrie serait parfaite.

D'autre part, on a montré que les configurations les plus intéressantes pour les applications de filtres RF pour radiotéléphones étaient celles qui utilisaient un substrat piézoélectrique de tantalate d'angle de coupe compris entre Y + 41° et Y + 43°, pour une une épaisseur de métallisation ramenée à la longueur d'onde acoustique comprise entre 7% et 9% et telle que les relations suivantes soient vérifiées.

- nombre d'électrodes des transducteurs latéraux compris entre 60% et 100% du nombre d'électrodes du transducteur central;
- la séparation du transducteur central et des transducteurs latéraux est faite de manière progressive ;
- cette séparation est équivalente à une différence de marche comprise entre -45% et -70% de la période moyenne des transducteurs, c'est à dire que la distance entre le centre de la dernière électrode du transducteur latéral avant la séparation et le centre de la première électrode du transducteur central après la séparation est plus petite de 45% à 70% de la période moyenne des deux transducteurs que la distance que l'on obtiendrait si les deux transducteurs étaient périodiques et si l'on imposait pas de séparation.

15

10

5

20

10

15

20

REVENDICATIONS

- 1. Filtres à ondes acoustiques de surface comportant au moins une $i^{\text{ème}}$ voie acoustique (VA_i) d'entrée cascadée à une $i+1^{\text{ème}}$ voie acoustique (VA_i + 1) de sortie chaque voie acoustique comportant des transducteurs à électrodes interdigitées et notamment :
 - au moins un transducteur central (TC_i);
 - au moins une paire de transducteurs de couplage formée d'un premier transducteur latéral (T1L_i) et d'un second transducteur latéral (T2L_i) caractérisé en ce qu'il comporte une première liaison électrique à un premier potentiel (V₁) reliant le premier transducteur latéral (T1L_i) de la i^{ème} voie acoustique au premier transducteur latéral (T1L_i + 1) de la i + i^{ème} voie acoustique et une deuxième liaison électrique à un second potentiel (V₂) reliant le deuxième transducteur latéral de la i^{ème} voie acoustique (T2L_i) au deuxième transducteur latéral de la (i+1)^{ème} voie acoustique (T2L_i + 1) et en ce que les potentiels sont en opposition de phase.

Le transducteur central de la $i^{\text{ème}}$ voie acoustique étant relié à au moins une tension d'entrée (V_{iN}) .

Le transducteur central de la $i + 1^{eme}$ voie acoustique étant relié à au moins une tension de sortie (V_{out}).

25

30

35

2. Filtre à ondes de surface selon la revendication 1, caractérisé en ce que le transducteur central de la ième et/ou de la i + ième voie acoustique a un nombre impair d'électrodes, les premier et second transducteurs latéraux ayant une série d'électrodes connectées à un potentiel dit point chaud (V1/V2) interdigitée avec une série d'électrodes connectées à un potentiel de masse, la première électrode du premier transducteur latéral, depuis le transducteur central étant connecté au point chaud, la première électrode du second transducteur latéral depuis le transducteur central étant connectée à la masse, la distance entre le transducteur central et le premier transducteur latéral étant égale à un nombre pair de périodes près (2 kP avec k entier et P est la période des électrodes dans les transducteurs) ou à

10

15

un nombre entier de longueur d'onde λ près correspondant à la fréquence centrale du filtre, à celle entre le transducteur central et le second transducteur latéral.

- 3. Filtre à ondes de surface selon la revendication 1, caractérisé en ce que le transducteur central de la ième et/ou de la i + ième voie acoustique a un nombre impair d'électrodes, les premier et second transducteurs latéraux ayant une série d'électrodes connectées à un potentiel dit point chaud interdigitée avec une série d'électrodes connectées à un potentiel de masse, la première électrode du premier transducteur latéral depuis le transducteur central étant connectée à un potentiel de même type (point chaud ou masse) que la première électrode du second transducteur latéral depuis le transducteur central, la distance entre le transducteur central et le premier transducteur latéral étant égale à un nombre impair de période près ((2 k + 1)P avec k entier, P période des électrodes des transducteurs) ou à un nombre entier de demi-longueur d'onde près, à la distance entre le transducteur central et le second transducteur latéral.
- 4. Filtre à ondes de surface selon la revendication 1, caractérisé en ce que le transducteur central de la ième et/ou de la i + ième voie acoustique 20 a un nombre pair d'électrodes, les premier et second transducteurs latéraux ayant une série d'électrodes connectées à un potentiel dit point chaud, interdigitée avec une série d'électrodes connectées à un potentiel de masse, la première électrode du premier transducteur latéral depuis le transducteur central étant connectée à un potentiel de même type (point chaud ou masse) 25 que la première électrode du second transducteur latéral depuis le transducteur central, la distance entre le transducteur central et le premier transducteur latéral étant égale à un nombre pair de période près (2kP, avec k entier, P période des électrodes dans les transducteurs) ou à un nombre entier de longueurs d'onde près, à celle entre le transducteur central et le 30 second transducteur latéral.
 - 5. Filtre à ondes de surface selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend au moins une voie acoustique ayant un

20

transducteur central relié à une entrée et/ou une sortie différentielle (V_{IN} +, V_{IN} - et/ou V_{out} +, V_{out} -).

- 6. Filtre à ondes de surface selon la revendication 5, caractérisé en ce qu'il comprend au moins une voie acoustique relié à une entrée et/ou une sortie différentielle (V_{IN} +, V_{IN}- et/ou V_{out} +, V_{out} -), ladite voie acoustique comportant un transducteur central scindé en deux parties et comportant une série continue d'électrodes interdigitées avec, deux séries continues et adjacentes d'électrodes reliées audites tensions d'entrées (V_{IN} +, V_{IN} -) et/ou audites tensions de sorties (V_{out} +, V_{out} -).
 - 7. Filtre à ondes de surface selon l'une des revendications 1 à 6, caractérisé en ce que la ième voie acoustique d'entrée (VA_i) et/ou la i + 1ème voie acoustique de sortie (VA_{i+1}) comporte une série de transducteurs centraux (TC_{i,j} et/ou TC_{i+i,j}) intercalés avec d'une part une série de premiers transducteurs latéraux (T1L_{i,j} et/ou T1L_{i11,j}) et d'autre part une série de seconds transducteurs latéraux (T2L_{i,j} et/ou T2L_{i+1,j}).
 - 8. Filtres à ondes de surface selon l'une des revendications 1 à 7, caractérisé en ce qu'il comprend une série de paire de voies acoustiques comportant une voie acoustique d'entrée (VA_i) et une voie acoustique de sortie (VA_{i+1}).
- 9. Filtres à ondes de surface selon l'une des revendications 1 à 8, caractérisé en ce que les transducteurs sont séparés entre eux dans une même voie acoustique par une électrode de largeur supérieure à la largeur des autres électrodes.
- 30 10. Filtres à ondes de surface, selon l'une des revendications 1 à 8, caractérisé en ce que les transducteurs sont séparés entre eux par plusieurs électrodes ayant entre leurs axes des distances inférieures à la période dans le transducteur.

- 11. Filtre à ondes de surface selon l'une des revendications 1 à 8, caractérisé en ce qu'il comprend un substrat de tantalate de lithium d'angle de coupe compris entre Y + 41° et Y + 43°, avec Y axe cristallographique.
- 12. Filtre à ondes de surface selon la revendication 11, caractérisé en ce que l'épaisseur des électrodes est comprise entre environ 5 et 10 % de la longueur d'onde acoustique du filtre.
- 13. Filtre à ondes de surface selon l'une des revendications 11 ou 12, caractérisé en ce que le nombre d'électrodes des transducteurs latéraux est compris entre environ 50 % et 100 % du nombre d'électrodes du transducteur central, dans chacune des voies acoustiques.

FIG.2

FIG.3

FIG.10a

FIG.10b

FIG.15

1 -1 -2 -3 -3 -4 -5 -5 -6 -7 -8 -9 -900 FRÉQUENCE (MHz) 950

FIG.16

INTERNATIONAL SEARCH REPORT

Intermonal Application No PCT/FR 01/03885

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H03H9/64 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 H03H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 772 293 A (MICRONAS SEMICONDUCTOR SA) 1,5,6 χ 7 May 1997 (1997-05-07) sentence 35 -page 7, line 15; figures 7A,7B EP 0 845 858 A (FUJITSU LTD) 1,11 A 3 June 1998 (1998-06-03) column 12, line 38 -column 14, line 50 column 4, line 56 -column 5, line 22 figures 9,14 1 EP 0 810 727 A (FUJITSU LTD) A 3 December 1997 (1997-12-03) column 10, line 11 - line 38; figures 8,19 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but A* document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25 March 2002 09/04/2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 D/L PINTA BALLE... L

INTERNATIONAL SEARCH REPORT

Intermonal Application No
PCT/FR 01/03885

	atent document d in search report		Publication date		Patent family member(s)	Publication date
EP	0772293	A	07-05-1997	GB EP US	2306821 A 0772293 A1 6268782 B1	07-05-1997 07-05-1997 31-07-2001
EP	0845858	Α	03-06-1998	JP JP CN EP US	3224202 B2 10163803 A 1184378 A 0845858 A2 5874869 A	29-10-2001 19-06-1998 10-06-1998 03-06-1998 23-02-1999
EP	0810727	A	03-12-1997	JP JP CN DE EP KR US US US	3239064 B2 9321574 A 1158026 A 29624257 U1 0810727 A2 230655 B1 6114926 A 6271739 B1 6111481 A 5963114 A	17-12-2001 12-12-1997 27-08-1997 28-06-2001 03-12-1997 15-11-1999 05-09-2000 07-08-2001 29-08-2000 05-10-1999

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 01/03885

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 H03H9/64 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 HO3H Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, PAJ C. DOCUMENTS CONSIDERES COMME PERTINENTS Catégorie ⁴ Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents no. des revendications visées Χ EP 0 772 293 A (MICRONAS SEMICONDUCTOR SA) 1,5,6 7 mai 1997 (1997-05-07) phrase 35 -page 7, ligne 15; figures 7A,7B Α EP 0 845 858 A (FUJITSU LTD) 1,11 3 juin 1998 (1998-06-03) colonne 12, ligne 38 -colonne 14, ligne 50 colonne 4, ligne 56 -colonne 5, ligne 22 figures 9,14 EP 0 810 727 A (FUJITSU LTD) Α 1 3 décembre 1997 (1997-12-03) colonne 10, ligne 11 - ligne 38; figures 8,19 Voir la suite du cadre C pour la fin de la liste des documents Les documents de familles de brevets sont indiqués en annexe ° Catégories spéciales de documents cités: *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent ou la théorie constituant la base de l'invention "E" document antérieur, mais publié à la date de dépôt international ³X° document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité ou après cette date L° document pouvant jeter un doute sur une revendication de inventive par rapport au document considéré isolément priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres document se referant à une divulgation orale, à un usage, à documents de même nature, cette combinaison étant évidente pour une personne du métier une exposition ou tous autres moyens document publié avant la date de dépôt international, mais *& document qui fait partie de la même famille de brevets postérieurement à la date de priorité revendiquée Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée 09/04/2002 25 mars 2002 Nom et adresse postale de l'administration chargée de la recherche internationale Fonctionnaire autorisé Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016 D/L PINTA BALLE... L

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relation aux internutes de partitiones de prevers

Dende Internationale No PCT/FR 01/03885

Doc au ra	ument brevet cité pport de recherche		Date de publication	÷	Membre(s) de la famille de brevet(s)	·	Date de publication
EP	0772293	A,	07-05-1997	GB EP US	2306821 F 0772293 F 6268782 E	41	07-05-1997 07-05-1997 31-07-2001
EP	0845858	Α	03-06-1998	JP JP CN EP US	3224202 F 10163803 A 1184378 A 0845858 A 5874869 A	A A A2	29-10-2001 19-06-1998 10-06-1998 03-06-1998 23-02-1999
EP	0810727	A	03-12-1997	JP JP CN DE EP KR US US US	230655 I	A U1 A2 B1 A A	17-12-2001 12-12-1997 27-08-1997 28-06-2001 03-12-1997 15-11-1999 05-09-2000 07-08-2001 29-08-2000 05-10-1999