Konsep VLSMVariable Length Subnet Mask

Created by :
Vian Ardiyansyah Saputro
Revised by :
Ning Ratwastuti
Kevin Trikusuma Dewo

Tim Pengajar Jarkom

Pengantar VLSM

- ❖ VLSM atau **Variable Length Subnet Masking**, adalah teknik subnetting yang memungkinkan kita untuk mengalokasikan blok alamat IP dengan subnet mask yang berbeda untuk setiap bagian.
- Dengan VLSM, kita dapat memaksimalkan penggunaan alamat IP dan mengalokasikan subnet dengan presisi sesuai dengan kebutuhan jaringan.

Contoh Penerapan VLSM

Anda adalah seorang administrator jaringan yang diminta untuk membangun sebuah jaringan lokal dengan kebutuhan sebagai berikut:

- LAB AKUNTANSI = 23 HOST
- **LAB TKJ** = 52 HOST
- RUANG GURU = 21 HOST

Setiap Jaringan Terhubung Dengan 3 Serial Link Dengan Alamat : **Link A**, **Link B** Dan **Link C**.

Contoh Penerapan VLSM

Dengan network yang tersedia yaitu 10.20.30.0/24,

kita diminta untuk melakukan perancangan jaringan untuk

menyelesaikan kebutuhan tersebut dengan menggunakan

metode VLSM.

Tahap Pertama VLSM

 Tahapan pertama kita harus menyusun kebutuhan network dari yang paling banyak ke yang paling sedikit.

```
1. Lab tkj = 52 Host
```

2. Lab akuntansi = 23 Host

3. Ruang guru = 21 Host

4. Link A, B & C = masing-masing 2 Host

Penyusunan ini bertujuan untuk menentukan subnet pertama yang akan kita gunakan untuk memecah jaringan.

Tahap Kedua VLSM

2. Langkah berikutnya, kita pilih network dengan kebutuhan host terbanyak.

Dalam kasus kita ini adalah network pada **LAB TKJ** yang memiliki kebutuhan terbanyak yaitu

dengan kebutuhan host sebanyak **52.**

Untuk menyelesaikan kebutuhan host tersebut, kita dapat

menggunakan tabel subnetting:

CIDR	Subnet	Net Mask	Host Max	Host per Network
/24	1	255.255.255.0	254	254
/25	2	255.255.255.128	252	126
/26	4	255.255.255.192	248	62
/27	8	255.255.255.224	240	30
/28	16	255.255.255.240	224	14
/29	32	255.255.255.248	192	6
/30	64	255.255.255.252	128	2

Untuk dapat
menampung 52
host pada lab tkj
tanpa
membuang
terlalu banyak
host adalah
dengan
menggunakan
subnet mask /26

Tahap Kedua VLSM

Kemudian kita dapat memecah network **10.20.30.0/24** menggunakan **/26**, sehingga kita menemukan hasil yang akan digambarkan pada tabel berikut:

Network Address	Host Address Awal	Host Address Akhir	Broadcast Address	NETWORK	Prefix
10.20.30.0	10.20.30.1	10.20.30.62	10.20.30.63	LAB TKJ	/26
10.20.30.64	10.20.30.65	10.20.30.126	10.20.30.127	Not Use	Not Use
10.20.30.128	10.20.30.129	10.20.30.190	10.20.30.191	Not Use	Not Use
10.20.30.192	10.20.30.193	10.20.30.254	10.20.30.255	Not Use	Not Use

Dari informasi yang kita buat diatas, kita temukan bahwa network **10.20.30.0/26** akan kita manfaatkan pada jaringan lab tkj (lihat informasi pada kolom network). Kemudian Network **10.20.30.64 s/d 10.20.30.192** akan digunakan untuk pembagian network berikutnya.

Tahap Ketiga VLSM

3. Tahapan ketiga kita akan menentukan network yang kebutuhannya lebih banyak kedua, maka dalam kasus ini adalah kebutuhan pada **LAB AKUNTANSI** dengan kebutuhan host sebanyak **23 HOST**.

Tahap Ketiga VLSM

Untuk menyelesaikan kebutuhan host tersebut, kita dapat

menggunakan tabel subnetting:

CIDR	Subnet	Net Mask	Host Max	Host per Network
/24	1	255.255.255.0	254	254
/25	2	255.255.255.128	252	126
/26	4	255.255.255.192	248	62
/27	8	255.255.255.224	240	30
/28	16	255.255.255.240	224	14
/29	32	255.255.255.248	192	6
/30	64	255.255.255.252	128	2

Untuk dapat
menampung 23
host pada lab
akuntansi tanpa
membuang
terlalu banyak
host adalah
dengan
menggunakan
subnet mask /27

Tahap Ketiga VLSM

Setelah kita menemukan subnet mask /27 yang akan digunakan maka kita dapat melakukan perhitungannya kedalam tabel sebagai berikut:

Network Address	Host Address Awal	Host Address Akhir	Broadcast Address	NETWORK	Prefix
10.20.30.0	10.20.30.1	10.20.30.62	10.20.30.63	LAB TKJ	/26
10.20.30.64	10.20.30.65	10.20.30.94	10.20.30.95	LAB AKUNTANSI	/27
10.20.30.96	10.20.30.97	10.20.30.126	10.20.30.127	Not Use	/27
10.20.30.128	10.20.30.129	10.20.30.190	10.20.30.191	Not Use	/26
10.20.30.192	10.20.30.193	10.20.30.254	10.20.30.255	Not Use	/26

Dari tabel diatas kita sudah menemukan bahwa network untuk **LAB AKUNTANSI** dengan kebutuhan **23 HOST** adalah 10.20.30.64/27.

Tahap Keempat VLSM

4. Tahapan ke-empat, kita akan menentukan subnet untuk network dengan kebutuhan terbanyak ketiga, dalam kasus ini adalah pada RUANG GURU dengan kebutuhan host sebanyak 21 HOST.

Tahap Keempat VLSM

Untuk menyelesaikan kebutuhan host tersebut, kita dapat

menggunakan tabel subnetting:

CIDR	Subnet	Net Mask	Host Max	Host per Network
/24	1	255.255.255.0	254	254
/25	2	255.255.255.128	252	126
/26	4	255.255.255.192	248	62
/27	8	255.255.255.224	240	30
/28	16	255.255.255.240	224	14
/29	32	255.255.255.248	192	6
/30	64	255.255.255.252	128	2

Untuk dapat
menampung 21
host pada
RUANG GURU
tanpa
membuang
terlalu banyak
host adalah
dengan
menggunakan
subnet mask /27

Tahap Keempat VLSM

Setelah kita menemukan subnet mask /27 yang akan digunakan maka kita dapat melakukan perhitungannya kedalam tabel sebagai berikut :

Network Address	Host Address Awal	Host Address Akhir	Broadcast Address	NETWORK	Prefix
10.20.30.0	10.20.30.1	10.20.30.62	10.20.30.63	LAB TKJ	/26
10.20.30.64	10.20.30.65	10.20.30.94	10.20.30.95	LAB AKUNTANSI	/27
10.20.30.96	10.20.30.97	10.20.30.126	10.20.30.127	RUANG GURU	/27
10.20.30.128	10.20.30.129	10.20.30.190	10.20.30.191	Not Use	/26
10.20.30.192	10.20.30.193	10.20.30.254	10.20.30.255	Not Use	/26

Dari tabel diatas kita sudah menemukan bahwa network untuk **RUANG GURU** dengan kebutuhan **21 HOST** adalah 10.20.30.96/27.

Tahap Kelima VLSM

4. Tahapan ke lima ini akan menjadi tahapan terakhir pada pembahasan ini, dimana kita akan menentukan kebutuhan host pada LINK A, B DAN C, dimana pada setiap link dibutuhkan 2 buah host (KONEKSI DARI ROUTER KE ROUTER).

Untuk menyelesaikan kebutuhan host tersebut, kita dapat

menggunakan tabel subnetting:

CIDR	Subnet	Net Mask	Host Max	Host per Network
/24	1	255.255.255.0	254	254
/25	2	255.255.255.128	252	126
/26	4	255.255.255.192	248	62
/27	8	255.255.255.224	240	30
/28	16	255.255.255.240	224	14
/29	32	255.255.255.248	192	6
/30	64	255.255.255.252	128	2

Berdasarkan
tabel subnetting
kita temukan
bahwa untuk
memenuhi
kebutuhan 2
HOSTS CLIENT
maka kita dapat
menggunakan

subnet mask

/30.

Tahap Kelima VLSM

Setelah kita menemukan subnet mask /30 yang akan digunakan maka kita dapat melakukan perhitungannya kedalam tabel sebagai berikut:

Network Address	Host Address Awal	Host Address Akhir	Broadcast Address	NETWORK	Prefix
10.20.30.0	10.20.30.1	10.20.30.62	10.20.30.63	LAB TKJ	/26
10.20.30.64	10.20.30.65	10.20.30.94	10.20.30.95	LAB AKUNTANSI	/27
10.20.30.96	10.20.30.97	10.20.30.126	10.20.30.127	RUANG GURU	/27
10.20.30.128	10.20.30.129	10.20.30.130	10.20.30.131	LINK A	/30
10.20.30.132	10.20.30.133	10.20.30.134	10.20.30.135	LINK B	/30
10.20.30.136	10.20.30.137	10.20.30.138	10.20.30.139	LINK C	/30

Tahap Kelima VLSM

Dari tabel sebelumnya kita sudah menemukan bahwa network untuk

LINK A, B & C dengan kebutuhan 2 HOST adalah sebagai berikut:

Network Address	Host Address Awal	Host Address Akhir	Broadcast Address	NETWORK	Prefix
10.20.30.128	10.20.30.129	10.20.30.130	10.20.30.131	LINK A	/30
10.20.30.132	10.20.30.133	10.20.30.134	10.20.30.135	LINK B	/30
10.20.30.136	10.20.30.137	10.20.30.138	10.20.30.139	LINK C	/30

Hasil Akhir

10.20.30.97 -10.20.30.126 /27

10.20.30.1 -10.20.30.62 /26

LAB Akuntansi 23 Host

10.20.30.65 -10.20.30.94 /27

Kesimpulan

Proses penyelesaian yang kita lakukan adalah dengan beberapa tahapan yang diatur dalam beberapa langkah, diantaranya:

- 1. Menyusun network dari kebutuhan host terbesar ke terkecil,
- 2. Pilih network untuk kebutuhan host terbanyak,
- 3. Pilih network untuk kebutuhan terbanyak selanjutnya,
- 4. Ulangi langkah ketiga sesuai dengan kebutuhan network yang dibutuhkan,
- 5. Pilih network dengan kebutuhan network paling terkecil.

Latihan

Kerjakan dan kumpulkan dengan format penamaan file **VLSM_XXX.pdf** (XXX adalah 3 digit terakhir NIM), deadline **Selasa, 17 September 2024** pkl 23.00

- Misalnya akan membangun sebuah jaringan internet dalam sebuah perusahaan besar. Dengan ketentuan host yang dibutuhkan antara lain:
 - a. Ruang utama 900 host
 - b. Ruang kedua 400 host
 - c. Ruang ketiga 100 host
 - d. Ruang server 2 host

Dengan alamat jaringan 172.16.0.0/16. Tentukan Network Address, Broadcast Address, Subnet Mask dan Range IP tiap subnet beserta sisa alokasinya!

Latihan

- 2
- Akan dibuat suatu jaringan komputer pada suatu gedung yang memilki 6 ruang, dengan detail sebagai berikut :
- a. Ruang 1 31 host
- b. Ruang 2 8 host
- c. Ruang 3 14 host
- d. Ruang 4 2 host
- e. Ruang 5 4 host
- f. Ruang 6 6 host

Alamat jaringan 192.168.2.0/23. Tentukan Network Address, Broadcast Address, Subnet Mask dan Range IP tiap subnet beserta sisa alokasinya!

- 3
- Akan dibuat suatu jaringan komputer pada sebuah gedung yang memilki 5 ruang, dengan alamat jaringan 128.25.0.0/21 dan detail sebagai berikut :
- a. Ruang A terdiri dari 31 PC
- b. Ruang B terdiri dari 255 PC
- c. Ruang C terdiri dari 100 PC
- d. Ruang D terdiri dari 525 PC
- e. Ruang E terdiri dai 10 PC

Tentukan Network Address, Broadcast Address, Subnet Mask dan Range IP tiap subnet beserta sisa alokasinya!

Latihan

4

Pada gambar berikut terdapat 3 network, yaitu Server-LAN, Point-to-Point WAN, dan Workstation LAN. Tentukan Network Address, Broadcast Address, Subnet Mask dan Range

IP tiap subnet beserta sisa alokasinya!

Terima Kasih

