Algoritmi e Strutture Dati

Stefania Monica stefania.monica@unipr.it

Università degli Studi di Parma

A.A. 2019/2020

Osservazioni

- Il corollario precedente mostra che nel caso di alberi AVL gli algoritmi di ricerca, inserimento e rimozione visti per gli alberi binari di ricerca hanno costo $\mathcal{O}(\log(n))$ nel caso pessimo.
- Dobbiamo ancora vedere come mantenere il bilanciamento a seguito di inserimenti e rimozioni di nodi.

Rotazione

- Nella rotazione di base (semplice), un nodo perno viene fatto ruotare verso destra o verso sinistra
 - La rotazione richiede tempo $\mathcal{O}(1)$

Bilanciamento tramite Rotazioni

- Le rotazioni sono effettuate su nodi sbilanciati
- Sia n un nodo con fattore di bilanciamento maggiore di 1
- Esiste almeno un sottoalbero S di n che sbilancia l'albero
- A seconda della posizione di S si hanno 4 casi
 - Sinistra-Sinistra, Sinistra-Destra, Destra-Sinistra, Destra-Destra

Rotazione Semplice

 Nella rotazione di base (semplice), un nodo perno viene fatto ruotare verso destra o verso sinistra

Rotazione SS

- Nella rotazione SS si applica una rotazione semplice verso destra al nodo
- L'altezza dell'albero coinvolto nella rotazione passa da h + 2 a h + 1

Rotazione SD

- Nella rotazione SD si applicano due rotazioni semplici
- Effettuiamo una rotazione semplice di z verso sinistra
- Effettuiamo una rotazione semplice di v verso destra

