Declarative Modeling of Tree-based Arithmetic Computations

Paul Tarau

University of North Texas

Wed 11/14/2012

Motivation

- we answer positively two questions that one might be curious about:
 - can we do arithmetic directly with some "symbolic" mathematical objects e.g. binary trees, balanced parenthesis languages, hereditarily finite sets?
 - is this alternative arithmetic efficient enough to be practical?
- background: bijective Gödel numberings for fundamental data types => we can borrow computations
- here we will use isomorphisms of free algebras to actually build our computations from scratch
 - free algebras are widely used in programming languages: they correspond to recursive data types like lists or trees
 - bijections from free algebras provide compact representations for non-free data types like sets, multisets, graphs and Turing-equivalent computational mechanisms like combinators

Outline

- Free algebras and data types
- 2 The Peano algebra Algu
- Successor and predecessor in the two-successor algebra AlgB
- 4 Binary Arithmetic in AlgB
- 5 Successor and predecessor in the algebra of binary trees AlgT
- 6 Arithmetic computations in AlgT
- Omputing with the Calkin-Wilf bijection
- 8 Conclusion

Free algebras

Definition

Let σ be a signature consisting of an alphabet of constants (called generators) and an alphabet of function symbols (called constructors) with various arities. The free algebra A_{σ} of signature σ is defined inductively as the smallest set such that:

- **①** if c is a constant of σ then $c \in A_{\sigma}$
- ② if f is an n-argument function symbol of σ , then $\forall i, 0 \leq i < n, t_i \in A_{\sigma} \Rightarrow f(t_0, \dots, t_i, \dots, t_{n-1}) \in A_{\sigma}$.
 - alternatively, free algebras can be seen as initial objects in the category of algebraic structures
 - free algebras can be axiomatized in predicate logic by defining constructors, deconstructors and recognizers
 - conversely, the language of predicate logic itself is built from:
 - function constructors (generating the Herbrand Universe)
 - predicate constructors (generating the *Herbrand Base*)

Free algebras as data types

the Haskell declarations

```
data AlgU = U \mid S AlgU deriving (Eq,Read,Show) data AlgB = B \mid O AlgB \mid I AlgB deriving (Eq,Read,Show) data AlgT = T \mid C AlgT AlgT deriving (Eq,Read,Show)
```

correspond, respectively to

- the free algebra AlgU with a single generator U and unary constructor S
 (that can be seen as part of the language of Peano arithmetic, or the
 decidable (W)S1S system)
- the free algebra AlgB with single generator B and two unary constructors O and I (corresponding to the language of the decidable system (W)S2S as well as "bijective base-2" number notation)
- the free algebra AlgT with single generator T and one binary constructor C (essentially the same thing as the *free magma* generated by T).

Peano algebra

- it also occurs under a few alternate names:
 - the one successor free algebra
 - unary natural numbers
 - the language of the monoid {0}*
 - the language of the decidable systems WS1S and S1S
 - "cave-man's" numbering system: I, II, III, III, ... ~20000 years ago
- it is defined by the signature $\{U/0, S/1\}$, where U is a constant (seen as zero) and S is the unary successor function symbol
- we denote it AlgU and identify it with its corresponding Haskell data type

$$data AlgU = U \mid S AlgU$$

The data type AlgU as a free algebra

Proposition

Let X be an algebra defined by a constant u and a unary operation s. Then there's a unique morphism $f: AlgU \to X$ that verifies

$$f(U) = u \tag{1}$$

$$f(S(x)) = s(f(x)) \tag{2}$$

Moreover, if X is a free algebra then f is an isomorphism.

Note that following the usual identification of data types and initial algebras, AlgU corresponds to the initial algebra "1 +_" through the operation g = <U,S> seen as a bijection $g : 1 + \mathbb{N} \to \mathbb{N}$.

The two successor free algebra

- it also occurs under a few alternate names:
 - bijective base-2 natural numbers
 - the language of the monoid $\{0,1\}^*$
 - the language of the decidable systems WS2S and S2S
- it is defined by the signature {B/0, O/1, I/1} where
 - B is a constant (seen as denoting the empty sequence)
 - O, I are two unary successor function symbols
- we denote AlgB this algebra and identify it with its corresponding Haskell data type

The data type AlgB as a free algebra

Proposition

Let X be an algebra defined by a constant b and a two unary operations o, i. Then there's a unique morphism $f: AlgB \to X$ that verifies

$$f(B) = b \tag{3}$$

$$f(O(x)) = o(f(x)) \tag{4}$$

$$f(I(x)) = i(f(x)) \tag{5}$$

Moreover, if X is a free algebra then f is an isomorphism.

Borrowing Arithmetic from the Peano Algebra

- we know how to do (unary) arithmetic in Peano algebra AlgU
- defining isomorphisms between AlgU, AlgB and AlgT will enable such arithmetic operations on AlgB and AlgT
- we need to define bijections that commute with
 - the successor operation
 - the predecessor operation
 - the predicate recognizing the zero element U
- one can think about these functions as bijective Gödel numberings connecting objects of AlgB and AlgT to natural numbers, seen as objects of AlgU
- one can also think about emulating constructor operations in one algebra with equivalent (possibly more complex) computations in another algebra

Successor and predecessor in AlgB

The intuition for designing these operations is their conventional arithmetic interpretation, as 0 for B, $\lambda x.2x + 1$ for 0 and $\lambda x.2x + 2$ for I.

language notes:

- one can think about our Haskell code simply as equational rewriting rules
- pattern matching: the first match activates the "rewritng rule"
- or, inductive definitions / recursion equations working on a free algebra

Correctness of our successor and predecessor emulation

Proposition

Let $\mathbb B$ be the set of terms of the initial algebra AlgB and $\mathbb B^+=\mathbb B-\{B\}$. Then $sB\colon \mathbb B\to \mathbb B^+$ is a bijection and $sB'\colon \mathbb B^+\to \mathbb B$ is its inverse.

Proof.

(Sketch). We proceed by structural induction. Clearly the proposition holds for the base case as sB' (sB B) = sB' (O B) = B and sB (sB' (O B)) = sB B = O B. The result follows from the inductive hypothesis by observing that exactly one rule matches each expression and an application of rule "- 2 -" is undone by "- 2' -" and an application of rule "- 3 -" is undone by rule "- 3' -" and viceversa.

Binary arithmetic in AlgB

Other arithmetic operations, can be defined in terms of \mathtt{sB} , $\mathtt{sB'}$ and structural recursion. For instance, the addition \mathtt{addB} operation looks as follows:

```
addB B y = y

addB x B = x

addB(O x) (O y) = I (addB x y)

addB(O x) (I y) = O (sB (addB x y))

addB(I x) (O y) = O (sB (addB x y))

addB(I x) (I y) = I (sB (addB x y))
```

- performance moves from O(n) in the Peano algebra to O(log(n))
- effort is now proportional to the size of the binary representation!
- structural recursion ⇒ formally verified with the proof assistant Coq

Defining the Successor and Predecessor on AlgT

This time, the definitions of successor s and predecessor s', together with the helper functions d (double) and d' (half of an even) are mutually recursive:

Correctness of the successor and predecessor definitions

Proposition

Let $\mathbb T$ be the set of terms of the initial algebra AlgT and $\mathbb T^+=\mathbb T-\{T\}$. Then $s\colon \mathbb T\to\mathbb T^+$ is a bijection and $s'\colon \mathbb T^+\to\mathbb T$ is its inverse.

To prove this we will use the structural induction principle on AlgT:

Proposition

Let P(x) be a predicate about the terms of AlgT. If P holds for the generator $T \in AlgT$ and from P(x) and P(y) one can conclude $P(C \times y)$, then P holds for all terms of AlgT.

The Proof

Proof.

By induction on the structure of the terms of AlgT. Observe that f is the inverse of f' if and only if $\forall u \in \mathbb{T}, \ \forall v \in \mathbb{T}^+, \ f \ u = v \Longleftrightarrow f' \ v = u$. We will show this for the base case and the inductive steps for both s and s' as well as d and d'.

Observe that if s and s' are inverses, then d and d' are also inverses. This reduces to: $d\ y=z \Longleftrightarrow d'\ z=y$, or equivalently, that $d\ (C\ a\ b)=C\ c\ d \Longleftrightarrow d'\ (C\ c\ d)=C\ a\ b$, which further reduces to $C\ (s\ a)\ b=C\ c\ d \Longleftrightarrow C\ (s'\ c)\ d=C\ a\ b$ and $s\ a=c \Longleftrightarrow s'\ c=a$, which holds based on the inductive hypothesis for s and s'.

Our main induction proof, by case analysis: rules k and k' are such that rule "- k -" is the unique match for function f if and only if rule "- k' -" is the unique match for function f'.

The Proof - continued

We will show that $s \ u = v \Longleftrightarrow s' \ v = u$, assuming it holds inductively forall a,b such that $v = C \ a \ b$. Note that case k = 1, 2, 3, 4 corresponds to the application of rules "- k-" and "- k'-" in the definitions of s, s' and d, d'.

- ② $s u = s (C T y) = d (s y) = v \iff s y = d' v$ s' v = C T y where $y = s' (d' v) \iff s y = d' v$, given that d and d' are inverses under the inductive hypothesis covering their calls to s and s'.
- $v = s \ u \Longleftrightarrow v = C \ T \ y$ where $y = d' \ u$ $u = s' \ v \Longleftrightarrow v = C \ T \ y$ where $u = d \ y$, which holds, given that
- \bullet and d' are inverses under the inductive hypothesis covering their calls to s and s'.

Conversion between ordinary and binary tree naturals

```
data AlgT = T \mid C AlgT AlgT
type N = Integer
n2t :: N \rightarrow AlgT
n2t. 0 = T
n2t \times | x>0 = C (n2t (nC' \times)) (n2t (nC' \times)) where
  nC' \times x \times 0 = if odd \times then 0 else 1+(nC' (x 'div' 2))
  nC'' x | x>0 =
    if odd x then (x-1) 'div' 2 else nC'' (x 'div' 2)
t2n :: AlqT \rightarrow N
t2n T = 0
t2n (C \times y) = nC (t2n \times) (t2n y) where
  nC \times y = 2^*x*(2*y+1)
```

Can we do arithmetic computations in AlgT?

- as we have emulated the successor operations we can do easily (slow) unary arithmetic
- defining a AlgB "view" over the free algebra AlgT enables fast arithmetic computations with binary trees
- complexity will be comparable to operations acting on conventional bitstring representations

projection functions (c', c") and a recognizer of non-empty trees c_:

$$c',c''$$
 :: AlgT \rightarrow AlgT

$$C' (C x _) = x$$

 $C'' (C _ y) = y$

$$c_{-}:: AlgT \rightarrow Bool$$
 $c_{-}(C_{-}) = True$
 $c_{-}T = False$

Emulating AlgB in AlgT

```
data AlgB = B | O AlgB | I AlgB
data AlgT = T \mid C AlgT AlgT
constructors (0, i), destructors (0', i') and recognizers (0_{-}, i_{-}):
o, o', i, i' :: AlgT \rightarrow AlgT
o, i :: AlgT \rightarrow Bool
0 = C T
o' (C T y) = y
\circ (C x ) = x == T
i = s \cdot o
i' = o' \cdot s'
i_{C} (C \times _{D}) = \times /= T
```

The isomorphism between AlgB and AlgT

```
b2t :: AlgB \rightarrow AlgT

b2t B = T

b2t (O x) = o (b2t x)

b2t (I x) = i (b2t x)

t2b :: AlgT \rightarrow AlgB

t2b T = B

t2b x | o_ x = O (t2b (o' x))

t2b x | i_ x = I (t2b (i' x))
```

- note that interplay between actual constructors and their emulation
- a constructor symbol F/n is emulated by a recognizer predicate f_/n, a constructor function f/n and a destructor function f'/n

Efficient arithmetic in AlgT: addition

We are now ready for the magic: arithmetic operations working directly on binary trees.

```
add T y = y

add x T = x

add x y | o_ x && o_ y = i (add (o' x) (o' y))

add x y | o_ x && i_ y = o (s (add (o' x) (i' y)))

add x y | i_ x && o_ y = o (s (add (i' x) (o' y)))

add x y | i_ x && i_ y = i (s (add (i' x) (i' y)))
```

- everything happens naturally through the emulation of AlgB
- once we have defined i, i', o, o', o_, i_, the operations on AlgT look syntactically identical to those on AlgB
- using type classes one can actually share the implementation

Efficient arithmetic in AlgT: subtraction

```
sinh x T = x
sub y x | o_y \& \& o_x = s' (o (sub (o' y) (o' x)))
sub y x | o_y \& i_x = s' (s' (o (sub (o' y) (i' x))))
sub y x | i_y & 0 = 0  (sub (i'y) (o'x))
sub y \times i y \&\& i \times s = s' (o (sub (i' y) (i' x)))
a generic tester:
testop f n m = t2n (f (n2t n) (n2t m))
> testop sub 20 15
5
> testop add 20 15
35
> add (n2t 20) (n2t 15)
CT(CT(CT(CTT))T))
```

Efficient arithmetic in AlgT: comparison

```
cmp T T = EQ cmp T _ = LT cmp _ T = GT cmp x y | o_ x && o_ y = cmp (o' x) (o' y) cmp x y | i_ x && i_ y = cmp (i' x) (i' y) cmp x y | o_ x && i_ y = strengthen (cmp (o' x) (i' y)) LT cmp x y | i_ x && o_ y = strengthen (cmp (i' x) (o' y)) GT strengthen EQ stronger = stronger strengthen rel _ = rel
```

Efficient arithmetic in AlgT: multiplication

we optimize a bit, using the arithmetic interpretation of our binary trees

```
multiply T = T
multiply T = T
multiply x y = C (add (c' x) (c' y)) (add a m) where
  (x', y') = (c'' x, c'' y)
  a = add x' v'
  m = s' (o (multiply x' y'))
> multiply (n2t 42) (n2t 10)
C (C (C T T) T) (C (C (C T T) T) (C (C T T) (C T T))
> testop multiply 42 10
420
> testop multiply 1234567890 9876543210
12193263111263526900
```

Constant time exponent of 2

 \Rightarrow a O(1) complexity power of 2 operation exp2 is simply:

$$exp2 x = C x T$$

this leads to a compact representation of towers of exponents of 2 (tetration):

$$2^{2^{2^{\dots^2}}} \Rightarrow C(C(C(\dots(C T T))),T)$$

An emergent property: operations with towers of exponents

- our tree representation supports operations with gigantic, tower of exponent numbers
- with conventional bitstring representations, such numbers would overflow even if each atom in the known universe were used as bit ...

```
iterating exp2 7 times):
```

note: "it" represents in Haskell the result of the previous query

Limitations

- the worse case is $2^{2^{2^{...2^n}}} 1$
- it means that we can (sometime) fall back to the same thing as with the usual binary string computations
- good news from a result proven by Legendre on the number of occurrences of a prime p in n!:
 - the average number of iterations for successor and predecessor in AlgB for k between 0 and $2^n 1$ is $1 + \frac{2^n 1}{2^n} < 2$
 - the analysis for AlgT is more convoluted but (empirically) the complexity of s and s' is close to a constant factor

Enumerating Positive Rationals with the Calkin-Wilf tree

Figure: The Calkin-Wilf Tree

The Calkin-Wilf bijection: encoding paths as AlgB elements

Positive rationals in \mathbb{Q}^+ are represented as pairs of positive co-prime natural numbers. We first show the bijection using ordinary integers.

 $\mathbb{N} \to \mathbb{Q}^+$ using the path in the Calkin-Wilf tree starting with the root

```
n2q 0 = (1,1)

n2q x | odd x = (f0,f0+f1) where

(f0,f1) = n2q (div (x-1) 2)

n2q x | even x = (f0+f1,f1) where

(f0,f1) = n2q ((div x 2)-1)
```

 $\mathbb{Q}^+ o \mathbb{N}$ using the path in the Calkin-Wilf tree ending with the root

```
q2n (1,1) = 0
q2n (a,b) = f ordrel where
ordrel = compare a b
f GT = 2*(q2n (a-b,b))+2
f LT = 2*(q2n (a,b-a))+1
```

Rationals with binary trees in AlgT

both natural numbers and rationals are represented as binary trees in ${\tt AlgT}$

 $\mathbb{N} \to \mathbb{Q}^+$ using the path in the Calkin-Wilf tree starting with the root

```
t2q T = (o T, o T)
t2q n | o_ n = (f0, add f0 f1) where (f0, f1) \pm2q (o' n)
t2q n | i_ n = (add f0 f1, f1) where (f0, f1) \pm2q (i' n)
```

 $\mathbb{Q}^+ o \mathbb{N}$ using the path in the Calkin-Wilf tree ending with the root

```
q2t q | q == (o T, o T) = T
q2t (a,b) = f ordrel where
  ordrel = cmp a b
  f GT = i (q2t (sub a b,b))
  f LT = o (q2t (a, sub b a))
> (t2n . q2t . t2q . n2t) 1234567890
```

1234567890

Computing with Rationals

a few more steps are needed:

- extending the bijection to signed rationals
- implementing various operations
- the code, as a Scala package is at:

```
http://logic.cse.unt.edu/tarau/research/2012/
AlgT.scala
```

Conclusion

The (self-contained) Haskell code shown in these slides is at:

http://logic.cse.unt.edu/tarau/research/2012/slides_SYNASC_freealg.hs

- it is possible to implement efficient arithmetic computations on top of free algebras corresponding to data types like binary trees
- isomorphisms between free algebras provide bridges connecting "numeric" and "symbolic" objects
- interesting properties emerge: ability to work with huge numbers represented as towers of exponents of 2
- computations can be extended to rationals resulting in a practical arithmetic package

Research support from NSF grant 1018172 is gratefully acknowledged.

