Sorting Lower Bound

Andreas Klappenecker [based on slides by Prof. Welch]

Warm Up Review of a Few Sorting Algorithms

a alamy stock photo

- incrementally build up longer and longer prefix of the array of keys that is in sorted order
- take the current key, find correct place in sorted prefix, and shift to make room to insert it
- Finding the correct place relies on comparing current key to keys in sorted prefix

Worst-case running time: $\Theta(n^2)$

Insertion Sort Demo

Insertion Sort Animation

```
// Sort A[1..N]
|i ← 2
while i < length(A)</pre>
    while j > 1 and A[j-1] > A[j]
        swap A[j] and A[j-1]
        j ← j - 1
    end while
    i ← i + 1
end while
```


Image courtesy of geeksforgeeks.org

Heapsort

Heapsort Review

How it works:

- put the keys in a max-heap data structure
- repeatedly remove the maximum from the heap and restore the heap

Manipulating the heap involves comparing keys to each other

Worst-case running time is $\Theta(n \log n)$

Image courtesy of hackerearth.com

Heapsort Demo

Heapsort Animation Video

Note that aces are high. This is a version that sorts using a min-heap, creating a decreasing order.

Mergesort

Mergesort Review

How it works:

- split the array of keys in half
- recursively sort the two halves
- merge the two sorted halves

Merging the two sorted halves involves comparing keys to each other

Worst-case running time is $\Theta(n \log n)$

Mergesort Demo

Mergesort Animation

Quicksort

Quicksort Review

How it works:

- choose one key to be the pivot
- partition the array of keys into
 - those keys < the pivot and those > the pivot
- recursively sort the two partitions

Partitioning the array involves comparing keys to the pivot. Worst-case running time is $\Theta(n^2)$

Quicksort Demo

Quicksort Video

[You can mute the video]

Comparison Based Sorting

Comparison-Based Sorting

All these algorithms are comparison-based

- the behavior depends on relative values of keys, not exact values
- behavior on [1,3,2,4] is same as on [9,25,23,99]

Fastest of these algorithms was O(n log n).

We will show that's the best you can get with comparison-based sorting.

Lower Bounds

Decision Tree

Consider any comparison based sorting algorithm

Represent its behavior on all inputs of a fixed size with a decision tree

Each tree node corresponds to the execution of a comparison

Each tree node has two children, depending on whether the parent comparison was true or false

Each leaf represents correct sorted order for that path

Decision Tree Diagram

first comparison: check if $a_i \leq a_j$

YES

NO

second comparison if $a_i \le a_j$: check if $a_k \le a_l$

YES

NO

second comparison if $a_i > a_j$: check if $a_m \le a_p$

YES

NO

third comparison if $a_i \le a_j$ and $a_k \le a_l$: check if $a_x \le a_y$

```
// Sort A[1..N]
|i ← 2
while i < length(A)</pre>
    while j > 1 and A[j-1] > A[j]
        swap A[j] and A[j-1]
        j ← j - 1
    end while
    i ← i + 1
end while
```

Insertion Sort for n = 3

Insertion Sort for n = 3

How Many Leaves?

- Must be at least one leaf for each permutation of the input
 - otherwise there would be a situation that was not correctly sorted
- Number of permutations of n keys is n!.
- Idea: since there must be a lot of leaves, but each decision tree node only has two children, tree cannot be too shallow
 - depth of tree is a lower bound on running time

Key Lemma

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h .

$$h = 1$$
, 2^{1} leaves $h = 2$, 2^{2} leaves $h = 3$, 2^{3} leaves

Proof of Lemma

- Let h be the height of decision tree, so it has at most 2h leaves.
- The actual number of leaves is n!, hence

```
2^{h} \ge n!

h \ge \log(n!)

= \log(n(n-1)(n-2) \dots (2)(1))

\ge (n/2)\log(n/2) \quad [Why?]

= \Omega(n \log n)
```

- Any binary tree with n! leaves has height $\Omega(n \log n)$.
- Decision tree for any c-b sorting algon on n keys has height $\Omega(n \log n)$.
- Any c-b sorting alg has at least one execution with $\Omega(n \log n)$ comparisons
- Any c-b sorting alg has $\Omega(n \log n)$ worst-case running time.