Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
	Beschleunigung – Weg		Beschleunigung – Kraft			Haftreibung			Gleitreibung		
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
1 Hyork	π ο	Nochanik	1 Hyolk	πσ	Woodiamic	<u> </u>	π '	Wednesday	1 Hyork	π ο	Weename
H	Haftreibung – Schief	e Ebene	Leistung			Wirkungsgrad			Radialbeschleunigung		
											50
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	Arbeit			potentielle Ener	gie		kinteische Ener	gie			
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
- 11, om	11 10			// **			11 20		- 11, om	,, 10	

ľ	$F_{Gl} = \mu_{Gl} \cdot F_N$ $F_{Gl}:$ Gleitreibung $F_{Gl}:$ Gleitreibungskonstante $F_{N}:$ Normalkraft	$\mathrm{F}_{H}: \ \mu_{H}:$	$F_H = \mu_H \cdot F_N$ Haftreibung Haftreibungskonstante Normalkraft		$x = \frac{1}{2} \cdot a \cdot t^2$ $[m = \frac{m}{s^2} \cdot s^2]$		$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
# 8	Antwort	# 7	Antwort	# 6	Antwort	<u># 5</u>	Antwort
	$a = \frac{v^2}{r}$ $\left[\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}\right]$		$\eta = \frac{P_{out}}{P_{in}}$		$P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$ $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$		$\mu_H = tanlpha$
# 12	Antwort	# 11	Antwort	# 10	Antwort	# 9	Antwort
	=	H	$C_{kin} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = kg \cdot \frac{m^2}{s^2} \right]$		$E_{pot} = m \cdot g \cdot h$ $\left[J = kg \cdot \frac{m}{s^2} \cdot m \right]$ $= kg \frac{m^2}{s^2}$		$W = F \cdot s$ $\left[J = N \cdot m \right]$ $= kg \frac{m}{s^2} \cdot m$ $= kg \frac{m^2}{s^2}$
# 16	Antwort	# 15	Antwort	# 14	Antwort	# 13	Antwort
	=		=		=		=

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik

19 Antwort # 18 Antwort # 17 Antwort