

YOU TUBE PROOF

LET ZON S NEW EIR BE A SEQUENCE OF REAL MYBERS IF { Qu}} NEIN IS CONVERGENT, IT CAN NOT CONVERGE TO TWO DIFFERENT LINITS

· SUPPOSE THAT & OWNERGES TO OVER AND SON NEIN CONVERGES ALSO TO BER, THAT IS

0, + 0 0, + b

BY CONTRADICTION

(ASSUME THAT QUE & TO PROVE A CONTRA

SFC SUPPOSE FOR CONTRADICTION

· w + 6 (So THAT THE CIMIT IS

ALSO 6>0

LET ETO SUCH THAT E = 6-0

- THE TERMS OF OUR SEQUENCE WILL ALL EVENTURILY BE LESS THAN 6- W AWAY FROM THE THEN JN4 EN SUCH THAT
- CHIT OF AND 6-0 AWAY ₩2N1, [an-ale => |an-ale 6-a
- · THEN BY ENE WHIT . 4n= N2 , | ON-6 | < E => | ON-6 | < 6- a

WE HAVE TO BE OVER THE MAXIMIN BETWEEN NA AND NZ

LET N= MAX {NA, N2}. THEN YN>N

$$|a_{N}-a| < \frac{6-a}{2}$$

$$|a_{N}-b| < \frac{6-a}{2}$$

SINCE $au_{N} = \frac{b+au}{2}$ AND $\frac{au+b}{2} = au_{N}$ WE HAVE A CONTRADICTION SO au must be equal to b and the limit of a conversent sequence is unique

IF A SEQUENCE IS CONVERGENT IT CONVERGES TO EXACTLY ONE LIMIT

			٠		٠		٠																															
									٠		•		٠					٠	٠	٠			٠										٠		٠	٠		
	٠		٠		٠		٠	٠			٠	٠		٠		٠	٠	٠			٠	٠				٠		٠		٠		٠	٠	٠	٠	٠		
	٠	•	٠	٠	٠	٠	٠	٠	•			٠	•	٠	•	٠	٠	٠	•	٠	٠	٠	•	•	٠	•	•	٠	٠	٠		٠	٠	٠		٠	•	•
•	٠		٠	٠	٠	٠	٠	•	•			٠	•	٠	•	٠		٠	•		٠	٠	•	•	٠	٠		•	٠	٠			٠	٠		٠	•	
			٠		٠		٠	٠			•	٠		٠		٠	٠	٠			٠	٠						٠				٠	٠	٠		٠		
												٠		٠				٠		٠	٠	٠											٠		٠	٠		
									٠		•		٠					٠	٠	٠			٠										٠		٠	٠		
•		•	٠		٠		٠			•	•									٠						•	•				•							
	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	•	
			•	•	•	•	•	•								•	•							•	•	•		•	•			•		•				
			٠	٠	٠	٠	٠																		٠				٠									
			٠	٠	٠	٠	٠													٠					٠				٠									
		•	٠	٠	٠	٠	٠		•	•	•		•						•				•		٠	•	•		٠		•							
•	٠		٠	•	٠	•	٠	•	•		•	•	•	•		•	•	•	•	•	•	•	•		•			•	•	٠		•	•	•	•	•		
	•		•	•	•	•	•	•		•	•					•				٠					•	•		•	•	•	•			•	٠			•
												٠		٠				٠		٠	٠	٠											٠		٠	٠		
										٠								٠								٠				٠	٠		٠			٠	٠	٠
			٠	٠	٠	٠	٠	٠								٠		٠		٠					٠			٠	٠				٠	٠				
	•	•	٠	•							•																		•									
•	•	•	•																					•														
	•		•	•																				•														
			٠																																		•	

UNIQUENESS OF THE LIMIT

LET ZONZNEIN SIR BE A SEQUENCE OF REAL NUMBERS.

IF E WEIN IS CONVERGENT, IT CAN NOT CONVERGES TO

THEN W=6

LET
$$0 \neq 6$$
 THEN $d = d(a_1 b) = |b-a_1| > 0$
TAKE $0 \leq \epsilon \leq d/2$, THEN $(a_1 - \epsilon, a_1 + \epsilon) \cap (b - \epsilon, b + \epsilon) = p$

be (a)

IF FACT, BY CONTRADICTION, ASSUME $B_{\epsilon}(\omega) \cap B_{\epsilon}(b) \neq \emptyset$ 50 $\exists x \in B_{\epsilon}(\omega) \cap B_{\epsilon}(b)$, that is $d(x, \omega) \in And$ $d(x, 0) \in E$

⇒
$$\forall N \ge K_0 = mn \times (n_0, m_0)$$
 WE HAVE $\omega_N \in B_{\varepsilon}(\omega)$

AND $\omega_N \in B_{\varepsilon}(b)$, THAT LI $\omega_N \in B_{\varepsilon}(\omega) \cap B_{\varepsilon}(b)$