2E200 : Electronique Numérique, Combinatoire et Séquentielle

Bertrand Granado

LIP6 / Sorbonne Université / Faculté des Sciences Contact : Bertrand.Granado@sorbonne-universite.fr

March 29, 2019

Les composants séquentiels

- Les composants séquentiels
 - Le contrôle, le traitement Pipeliné
 - What else?

- Les composants séquentiels
 - Le contrôle, le traitement Pipeliné
 - What else ?

Contrôle du flux des données

- Contrôle du flux des données
- Un registre entre 2 opérateurs

- Contrôle du flux des données
- Un registre entre 2 opérateurs
- Réalisation d'un pipeline

- Contrôle du flux des données
- Un registre entre 2 opérateurs
- Réalisation d'un pipeline

- Contrôle du flux des données
- Un registre entre 2 opérateurs
- Réalisation d'un pipeline

• $S_n = (A_{n-1} + B_{n-1}) * B_n$

Les Aléas

Principe:

Découper l'opérateur en plusieurs étages isolés les uns des autres. C'est le signal d'horloge qui autorise les transfert des données d'un étage à l'autre. Cette technique permet d'accélérer la cadence de production des résultats.

Latence

La latence (durée d'exécution totale) de l'opérateur est supérieure d'au moins ε à celle d'un opérateur non pipelinée. Si la durée maximale d'un étage de l'opérateur pipeliné est de t_{max} et qu'il y a n étages, alors la latence de l'opérateur est $T=n*t_{clk}$ avec $t_{clk}>t_{max}+t_h+t_s$ avec t_s et t_h les temps de prépositionnement et de maintien des bascules.

- Les composants séquentiels
 - Le contrôle, le traitement Pipeliné
 - What else?

• Boole = 2 états : 0 et 1

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU
- Seconde Solution :

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU
- Seconde Solution : multiplexeur

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU
- Seconde Solution : multiplexeur encombrant

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU
- Seconde Solution : multiplexeur encombrant
- Troisième Solution : Composant d'interface

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU
- Seconde Solution : multiplexeur encombrant
- Troisième Solution : Composant d'interface La porte 3 états

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU
- Seconde Solution : multiplexeur encombrant
- Troisième Solution : Composant d'interface La porte 3 états GAGNE

Introduction d'un Etat Z

- Introduction d'un Etat Z
- Etat Haute Impédance

- Introduction d'un Etat Z
- Etat Haute Impédance
- Tout ce passe comme si le fil n'était pas connecté

- Introduction d'un Etat Z
- Etat Haute Impédance
- Tout ce passe comme si le fil n'était pas connecté

Table de vérité

е	С	S
0	0	Z
0	1	0
1	0	Ζ
1	1	1

Vhdl: registre

```
library ieee;
use ieee.std logic 1164.all;
entity reg8generic is
generic (N : natural := 8);
port ( d :in std_logic_vector(N-1 downto 0);
      en, clk : in std_logic;
      g: out std logic vector(N-1 downto 0) );
end entity reg8generic;
architecture comport of reg8generic is
begin
stockage : process(d,en,clk) is
begin
 if (clk='1' and clk'event) then
    if en = '1' then
       \alpha \ll d;
    e1se
       q<= (others=>'\Z');
    end if:
 end if:
 end process stockage;
end architecture comport;
```

Association de plusieurs Registres

- Association de plusieurs Registres
- Utilisation de Bascules D souvent

- Association de plusieurs Registres
- Utilisation de Bascules D souvent
- Mémoires Asychrones ⇒ Bascules Asynchrones

- Association de plusieurs Registres
- Utilisation de Bascules D souvent
- Mémoires Asychrones ⇒ Bascules Asynchrones
- Mémoires Synchrones ⇒ Bascules Synchrones

- Association de plusieurs Registres
- Utilisation de Bascules D souvent
- Mémoires Asychrones ⇒ Bascules Asynchrones
- Mémoires Synchrones ⇒ Bascules Synchrones
- Ajout d'une entrée de sélection

Sélection ⇒ sortie 3 états

Sélection ⇒ sortie 3 états

Sélection ⇒ sortie 3 états

Mémoire 2 mots de 2 bits

Mémoire 2 mots de 2 bits

Les monostables

• Circuit ne possédant qu'un état stable

- Circuit ne possédant qu'un état stable
- Souvent:

Circuit ne possédant qu'un état stable

		Q	Q	Etat
•	Souvent:	0	1	Stable
		1	0	Quasi Stable

Circuit ne possédant qu'un état stable

	Q	Q	Etat
Souvent :	0	1	Stable
	1	0	Quasi Stable

• Etat Quasi Stable est momentané

Circuit ne possédant qu'un état stable

	Q	Q	Etat
Souvent :	0	1	Stable
	1	0	Quasi Stable

- Etat Quasi Stable est momentané
- Durée Quasi Stable fixée par circuit RC, durée proportionnelle au temps de charge de la capacité C à travers une résistance R.

Monostable à base de portes non-ou et d'éléments passifs

Monostable à base de portes non-ou et d'éléments passifs

• Montage avec C = 0.01 nF et $R1 = R2 = 10 k\Omega$

Monostable à base de bascules D

Monostable à base de bascules D

• Simulation en utilisant des bascules D actives sur front montant et une horloge Clk de période $T_{Clk} = 20 ns$

