Aula 4: Funções hiperbólicas

Fórmula de Euler:

$$e^{ix} = \cos(x) + i\sin(x)$$

 $(i^2 = -1)$

Daqui deduzimos:

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} \quad , \quad \sin(x) = \frac{e^{ix} - e^{-ix}}{2i} \tag{1}$$

Eliminando o i nas formulas anteriores obtemos o coseno e o seno hiperbólicos:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad , \quad \text{senh}(x) = \frac{e^x - e^{-x}}{2} \tag{2}$$

Aula 4: Fórmulas hiperbólicas e trigonométricas

$\cosh(x) = \cos(ix)$	$\cos(x) = \cosh(ix)$
senh(x) = -i sen(ix)	$\mathrm{sen}\left(x\right) = -i\mathrm{senh}\left(ix\right)$
$e^{ix} = \cos(x) + i \sin(x)$	$e^{x} = e^{i(-ix)} = \cosh(x) + i \operatorname{senh}(x)$
$\cosh^2(x) - \sinh^2(x) = 1$	$\cos^2(x) + \sin^2(x) = 1$
$tgh(x) := \frac{senh(x)}{cosh(x)} = \frac{e^{2x} - 1}{e^{2x} + 1}$	$\operatorname{tg} x = \frac{\operatorname{sen}(x)}{\cos(x)}$
$\operatorname{cotgh}(x) := \frac{\cosh(x)}{\sinh(x)} = \frac{e^{2x} + 1}{e^{2x} - 1}$	$\cot x = \frac{\cos(x)}{\sin(x)}$
$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sin(y)$	$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$
$\cosh(x - y) = \cosh(x)\cosh(y) - \sinh(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
senh (x + y) = senh (x) cosh(y) + cosh(x) senh (y)	sen (x + y) = sen (x) cos(y) + cos(x) sen (y)
senh (x - y) = senh (x) cosh(y) - cosh(x) senh (y)	sen (x - y) = sen (x) cos(y) - cos(x) sen (y)
$\cosh(2x) = \cosh^2(x) + \sinh^2(x)$	$\cos(2x) = \cos^2(x) - \sin^2(x)$
senh(2x) = 2 senh(x) cosh(x)	sen (2x) = 2 sen (x) cos(x)
$(\cosh(x))' = \sinh(x)$	$(\cos(x))' = -\sin(x)$
$(\operatorname{senh}(x))' = \cosh(x)$	$(\operatorname{sen}(x))' = \cos(x)$

Aula 4: Semelhanças

Aula 4: Funções hiperbólicas inversas

pf: parte de f ao subdominio (f restrita ao subdominio)

Nota: (1) À semelhança das funções trigonométricas "inversas", também aqui é habitual designar-se por arcf à inversa de f (f=senh, tgh, cotgh) ou pf (f=cosh). Neste último caso, arccosh = pcosh(x).

(2)
$$\cosh(\operatorname{pcosh}^{-1}(x)) = x \quad \text{mas} \quad \operatorname{pcosh}(\cosh(x)) = x \quad (= |x|).$$