Lecture 4: Transfer Learning in NLP

Let's say we need to train a text classification model

Let's say we need to train a text classification model

To train from scratch, we need

- Labeled samples
- Pre-extracted features

Let's say we need to train a text classification model

To train from scratch, we need

- Labeled samples
- Pre-extracted features

Expensive to obtain

Let's say we need to train a text classification model

To train from scratch, we need

- Labeled samples
- Pre-extracted features

Expensive to obtain

Image source: NLP Course - For you

Which features are useful???

Transfer Learning is a technique of exploiting the properties and data distribution of a given (task, dataset) pair on different tasks and datasets of interest

Transfer Learning Taxonomy

Sequential Transfer Learning

 Let's look at embedding layer in classification pipeline

Which data distribution was embedding layer attuned to?

Embedding layer from scratch (trained jointly for cls)

- Not huge, or not diverse, or both
- Domain: task-specific

Embedding layer == word2vec

Training data for word embeddings (unlabeled)

- Huge diverse corpus (e.g., Wikipedia)
- Domain: general

Train from scratch

What they will know:

May be not enough to learn relationships between words

 Take pretrained (Word2Vec, GloVe)

What they will know:

Know relationships between words, but are **not** specific to the task

Initialize with pretrained, then fine-tune

What they will know:

Know relationships between words and adapted for the task

"Transfer" knowledge from a huge unlabeled corpus to your task-specific model

Transfer Learning via Contextualized Representations

Word vectors do not model any intra-token relationships

Transfer Learning via Contextualized Representations

- Word vectors do not model any intra-token relationships
- The same way as words, we can learn to encode words along with the context they are used in

Transfer Learning via Contextualized Representations

Representation Learning (CoVe, ELMO)

CoVe

CoVe (Contextualized Word Vectors Learned in Translation)

Key Idea: translation of sentence requires modeling complex token dependencies and NMT model learns to "understand" sentence

CoVe

- Train NMT encoder-decoder system
- Take pre-trained encoder as feature extractor
- CoVe = encoder ouputs for a given sequence

CoVe

- Train NMT encoder-decoder system
- Take pre-trained encoder as feature extractor
- CoVe = encoder ouputs for a given sequence
- For downstream tasks: CoVe + GloVe embeddings

ELMO

ELMO (Embeddings From Language Models)

Key Idea: similar to CoVe, but instead of NMT use LM pretraining objective

ELMO

ELMO (Embeddings From Language Models)

Key Idea: similar to CoVe, but instead of NMT use LM pretraining objective

ELMO

ELMO (Embeddings From Language Models)

Key Idea: similar to CoVe, but instead of NMT use LM pretraining objective

ELMO: Feature Extraction

ELMO: Feature Extraction

Transfer Learning via Pretrained Models

Contextualized Representations

- Replace word embedding layer
- Rest of the pipeline should be trained independently for each task

Pretrained Models

- Replace full task-specific model
- Minimal adaptation or usage "as is"

Pretrained Models From Language Modeling

Language Modeling is a fertile task for representation learning

- Semi-supervised (labels are implicitly given in data)
- Ubiquitous datasets (web crawl, literature, etc.)
- Complicated and very generic

GPT

GPT (Generative Pre-Training for Language Understanding)

Key Idea: autoregressive LM with transformer decoder

$$L_{xent} = -\sum_{t=1}^n \log(p(y_t|y_{< t})).$$

GPT

- Decoder-only (triangle attention mask)
- Autoregressively predict next token conditioned on left context
- Train on unsupervised corpora with supervised xent loss (<u>self-supervised</u> <u>learning</u>)

GPT Finetuning (GPT-1)

Finetune LM parameters using a combination of two losses

$$L = L_{xent} + \lambda \cdot L_{task}.$$

GPT Finetuning (GPT-1)

Finetune LM parameters using a combination of two losses

$$L = L_{xent} + \lambda \cdot L_{task}.$$

BERT (Bidirectional Encoder Pre-training for Transformers)

Key Idea: language modeling task + transformer encoder

- Encoder-only
- Bidirectional Encoder
 Representations from
 Transformers (MLM task)
- Based on Transformer architecture
- Bidirectional context encoding
- Pretrained on Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) tasks

BERT. Pretrain Tasks.

- Masked Language Model (MLM)
 - 15% of tokens are randomly masked
 - 80% replaced with [MASK]
 - 10% replaced with a random word
 - 10% remain unchanged
- Next Sentence Prediction (NSP)
 - Model learns to predict if sentence B logically follows sentence A

Q.: how to do LM using transformer encoder (no triangle mask)?

BERT

Q.: how to do LM using transformer encoder (no triangle mask)?

- Standard I2r objective can not be used due to "lookahead"
- Let's hide some tokens and train the model to predict masked positions

BERT

Q.: how to do LM using transformer encoder (no triangle mask)?

- Standard I2r objective can not be used due to "lookahead"
- Let's hide some tokens and train the model to predict masked positions

- Replace with special [MASK token]
- Classification head over final layer embeddings

BERT pretraining objective

<u>First part:</u> Masked Language Modeling (MLM)

Second part: model pairwise sentence dependencies

- NSP (Next Sentence Prediction)
- Whether or not two sentences directly follow each other
- [CLS] token to encode "full sentence meaning"

BERT pretraining objective

First part: Masked Language Modeling (MLM)

Second part: model pairwise sentence dependencies

- NSP (Next Sentence Prediction)
- Whether or not two sentences directly follow each other
- [CLS] token to encode "full sentence meaning"

BERT Pretraining (NSP)

BERT Pretraining (MLM)

- Target: current token (the true one)
- Prediction: P(* |I [MASK] a cat)

sees the whole text, but something is corrupted

Sentence Classification

Sentence Classification

- Input: [CLS] + Sent
- [CLS] embedding as a feature

Sentence Pair Classification

Sentence Pair Classification

- Input: [CLS] + Sent1 + [SEP] + Sent2
- [CLS] embedding as feature

Sentence Tagging (token classification)

Sentence Tagging (token classification)

- Input: [CLS] + sent
- Each token's feature is its embedding

Thanks for attention!