Section 4.3 Linear Independence.

October 1, 2025

Linear independence is when two elements do not change in relation to the other. We can analyze this geometrically. Let's imagine we have:

$$\{u_1, u_2\} \in \mathbb{R}^2$$

Definition 0.1.

$$S = \{u_1, u_2, \dots, u_m\}$$

If $V_f = hV_f$, thwn these vectors are L.D. (Linearly dependent) to each other, otherwise they are L.I. (Linearly Independent)

Theorem 0.2. To decide vectors are LI, or LD.

$$S = \vec{V_1}, \vec{V_2}, \dots, \vec{V_m}$$
 in \mathbb{R}^n , C-scalar.

1. For $C_1V_1 + C_2V_2 + \cdots + C_mV_m = 0$.

If
$$C_i \neq 0$$
 $\rightarrow L.D.$
If $C_1 = C_2 = \cdots = C_m = 0$ $\rightarrow L.I.$

2. $V_i = CV_i$ LD (definition)

3.

$$\vec{0} \in S$$
 $L.D.$ $C\vec{0} = 0$ $C \in \mathbf{R}$

4. $S = \{\vec{V}\}$ and \vec{V} is non zero. L.I.

$$\begin{split} C\vec{V} &= 0 \\ C &= 0 \ in \ \vec{V} \neq 0 \ L.I. \end{split}$$

5.

If
$$m > n$$
, L.D. e.g. $\{\vec{V_1}, \vec{V_2}, \vec{V_3}\}$ \boldsymbol{R}^2
If $m < n$, $\{\vec{V_1}, \vec{V_2}\}$ \boldsymbol{R}^2 No conclusion, use other methods.
If $m = n$, use determinent.

6. Wronskia's method.

$$\begin{aligned}
f, g \\
w &= \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} & = 0 & L.D \\
\neq 0 & L.I
\end{aligned}$$

Note: To span vectors in the same set, use LD vectors in the set. To span vectors in a space, use LI vectors in the set.

Examples

1 a)

$$u_1 = (-1, 2, 4)$$

 $u_2 = (5, -10, -20)$
 $u_2 = 5u$, LD

2 b)

4 vectors for \mathbf{R}^3 LD

4 a)

Determine whether LD or LI in P_2

$$2-x+4x^2$$
, $3+6x+2x^2$, $2+10x-4x^2$ Use determinent
$$\begin{vmatrix} c & x & x^2 \\ 2 & 3 & 2 \\ -1 & 6 & 10 \\ 4 & 2 & -4 \end{vmatrix} = 39 \neq 0$$
, LI

5 b)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad M_{23}$$

$$aV_1 + bV_2 + c = 0$$

$$a = 0$$

$$b = 0$$

$$c = 0 \text{ LI}$$

20.

Use Wronskian to show that the functions $f_1(x) = e^x$, $f_2(x) = xe^x$, and $f_3(x) = x^2e^x$ are linearly dependent.

$$w = \begin{vmatrix} e^x & xe^x & x^2e^x \\ e^x & e^x + xe^x & 2xe^x + x^2e^x \\ e^x & 2e^x + xe^x & 2e^x + 4xe^x + x^2e^x \end{vmatrix}$$

26

$$S = \{v_1, v_2, v_3\} \in V \qquad LD$$

$$v_4 \in V, \text{ not in } S$$