EE 115 Lab 2

1

To detect the envelope of $u(t) = A(a_{mod}m_n(t) + 1)\cos(2\pi f_c t)$, we need a diode, a capacitor and a resistor. Assume that the diode has a resistance R_s when the voltage across it is positive (however small) and a resistance $R_0 \gg R_s$ when the voltage across it is negative. The resistor has the resistance R_l which satisfies $R_0 \gg R_l \gg R_s$. The capacitor has the capacitance C. Answer the following questions and/or perform the following tasks:

- 1) If $f_c = 10 \text{MHz}$, what is a proper range of $R_s C$?
- 2) If m(t) has a bandwidth B equal to 10kHz, what is a proper range of R_lC ?
- 3) If $R_s = 10^{-3}$ Ohm and $R_l = 5$ Ohm, how do you choose C to meet the above conditions?
- 4) Sketch the equivalent circuit (of the envelope detector) when the capacitor is in charging mode, and the equivalent circuit when the capacitor is in discharging mode.
- 5) Let the input voltage be $v_i(t) = \delta(t)$. Determine the corresponding output voltage (impulse response) $h_c(t)$ of the circuit in the charging mode. How does $h_c(t)$ relate to R_sC ? If $v_i(t) = u(t)$ (step function), what would be the output voltage (step response) of the circuit?
- 6) If the output voltage is initially at $h_d(0) = V$, determine the free response of the output voltage $h_d(t)$ in the discharging mode. How does $h_d(t)$ relate to R_lC ?
- 7) Assume A=1, $a_{mod}=0.5$ and $m_n(t)=sinc(20\times 10^3 t)=\frac{\sin(\pi 20\times 10^3 t)}{\pi 20\times 10^3 t}$. Plot the envelope of u(t) for $-0.5\times 10^{-3} < t < 0.5\times 10^{-3}$.
- 8) Now let $f_c = 80 \times 10^3$. Plot u(t) for $-0.5 \times 10^{-3} < t < 0.5 \times 10^{-3}$ and compare it with its envelope.

October 21, 2020 DRAFT