证号	22	3	2	19	工位号	a	29
密		注意: 封	只均	写准考证	号和工位等 线	引, 否	則试卷作度

				bracketter natural
题 号	_	=	=	总分
配分	10分	30分	60分	100 分
得 分				

"多功能事件记录器"设计任务书

功能简述

多功能事件记录器用于测量物体接近设备时环境中的温度、湿度数据,在满足条件时记录在设备的存储器中。系统硬件部分主要由键盘电路、电源供电电路、数据存储电路、传感器检测电路和显示电路等组成,系统框图如图 1 所示:

单总线驱动程序、I2C总线驱动程序、CT107D单片机考试平台电路原理图以及本题所涉及到的芯片数据手册,可参考计算机上的电子文档。程序流程图及相关工程文件请以气生号命名。并保存在计算机上的考生文件夹中(文件夹名为考生准考证号,文件夹位于Windows桌面上)。

计任务及要求

1. 温度、湿度检测

使用 DS18B20 温度传感器完成温度检测功能; 通过电位器 Rb2 输出的电压信号模拟湿度传感器输出信号, 假定湿度与 Rb2 输出电压之间为线性关系 (H = K*Vo, 其中 H 为湿度, Vo为 Rb2 输出电压, K 为常数), 电压为 5V 时, 对应湿度为 99%; 温度、湿度数据经过单片机处理后,通过数码管显示,显示格式如图 2 所示;

2	1	E	8	8	5	0	Н
温度	1 21 摄[已度	不使用	1-熄灭		湿度, 20%	

图 2. 温度、湿度显示界面

2. 实时时钟

使用 DS1302 完成时钟功能,时间初始化为 23 时 59 分 55 秒,通过数码管显示时间,显示格式如图 3 所示:

3 3	-	5	9	-	5	5
ut	分隔符1	3.		分隔符2	+	9

图 3. 时钟显示界面

要求:图3中分隔符"-"以1秒为间隔闪烁

3. 接近事件检测

通过设备上的光敏电阻完成接近检测功能,当光敏电阻被挡光时,认为有物体接近设备。

4. 设备工作模式

设备有两种工作模式:自动传输模式和自动记录模式,上电默认处于自动传输模式。 4.1 当设备处于自动传输模式下,收到正确指令后,通过串口及送环境信息、物体 接近时间等数据到 PC 机。自动传输模式下,数据不会被保存到 EEPROM,该模式 下的工作流程与通讯数据格式如下:

PC 机向设备发送字符串: "AAASSS"

如果接收到的数据正确,设备以<u>1秒为间隔</u>向 PC 机返回信息,信息格式为{温度-湿度}{时间}{是否有物体接近},举例如下:

"{20-20%}{23-50-00}{0}"

"{20-20%}{23-50-01}{0}"

"{20-20%}{23-50-02}{1}"

"{20-20%}{23-50-03}{1}"

"{20-20%}{23-50-04}{0}"

danslexadao.com

如果 PC 机向设备发送的指令不正确或未发送,设备不会返回信息。 4.2 当设备处于自<u>动记录模式</u>时,物体从接近到离开的过程触发记录功能。自动将 温度、湿度和停留时间保存到 EEPROM 中,存储格式不限,要求能够保存5 组数 据,触发次数超过 5 次时,自动丢弃最早保存的记录。

在自动记录模式下, PC 机向设备发送字符串, "AAASSS", 单片机通过电口 输出 EEPROM 中存储的数据,输出的格式为(接近时的温度和湿度)(接近时间)(停 留时间),举例如下; 触发记录功能 触发记录功能

"{20-20%}{23-55-02}{2}"

"{20-20%}{23-56-02}{4}"

"{20-20%}{23-57-02}{1}"

"{20-20%}{23-58-02}{1}"

"{20-20%}{23-59-02}{12}"

停留时间以秒为单位,如果 PC 机向设备发送的数据不正确或未发送,设备不会返回信息。

5. 串口调试功能

与设备通讯的命令字符串 "AAASSS", 串口通讯波特率设定为1200。

6. 按键功能描述

6.1 按键 S4:

设备工作模式切换;

6.2 按键 S5:

数码管显示状态切换,默认状态下数码管显示温湿度信息,如上图 2 所示;按下按键 S5 数码管显示时间信息,如上图 3 所示;再次按下 S5 按键,数码管显示最近一次物体在设备上停留的时间,如此往复。停留时间显示格式如图 4 所示:

8	8	8	-	0	0	0	5	
不使用熄灭 提示符		物体停留时间:5秒						

图 4. 停留时间显示界面

'. LED 指示灯

- 7.1 自动传输模式下, L1 点亮, 自动记录模式下, L2 点亮;
- 7.2 当物体接近设备时, L3 点亮, 物体离开设备时 L3 熄灭。

电路原理图设计

使用简单逻辑电路、运算放大器等元器件设计硬件电路,完成如下功能:设备内部存在一个传感器电路输出脉宽调制信号 SI,当光敏电阻与 R31 分压输 <2V 并且信号 SI 占空比不为 0 时,继电器吸合,其它情况下继电器断开。简述路的工作原理与设计思路,并绘制出电路原理图。

[101114	1 MK	11/45	评卷人
山湖州	111		

一. 电路原理围设计

根据设计任务要求,使用 Protel 99se 或 Altium Designer Summer09 软件设计电路原理图标则元器件参数,说明电路工作原理。原理图文件保存在考生文件夹中(文件夹以考生的)考证与命名)。

项目名称	得分	评卷人
程序设计		

二. 程序编写及流程图绘制

- 1. 画出程序流程图,保存在考生文件夹中;
- 2. 按照设计要求完成程序设计任务,并将工程文件保存在考生文件夹中。

项目名称	得分	评卷人
硬件调试		

三. 软、硬件统调

将编译通过的程序下载到单片机芯片中,进行软、硬件统调。

- 1. 系统初始化状态:
- 2. LED 指示功能;
- 3. 数码管显示数据及显示界面切换功能;
- 4. 按键设定功能;
- 5. 温度、湿度测量功能;
- 6. EEPROM参数存储功能:
- 7. 串口调试功能。