Measurement and visualization, 2

Frank Edwards 10/19/21

Today: Measurement in the social sciences

- · Survey methods with randomization
- · Administrative data and agency surveys
- · Unit, item non-response
- Desirability bias
- · Latent variables, latent groups
- · More visualization

Surveys and censuses

- A census records information about a population, with measurement for each individual or unit in the population
- A survey samples from a population to make an inference about population characteristics

The basic motivation for survey sampling

```
n<-1e6
marbles<-data.frame(</pre>
  color = c(rep("blue", n),
            rep("green", n),
            rep("red", n)))
table(marbles$color)
##
##
      blue
              green
                        red
  1000000 1000000 1000000
```

How could we know how many of each color are in the enormous bag of marbles?

- Count them all (tedious!)
- · Sample

The Truth

ggplot(marbles, aes(x = color)) + geom_bar()

How many random draws is enough to accurately measure the characteristics of 3 million marbles?

Random sampling

 With a sufficiently large sample and equal probability of sampling for all units in the population, a simple random sample allows for unbiased measurement of population characteristics.

Random sampling

- With a sufficiently large sample and equal probability of sampling for all units in the population, a simple random sample allows for unbiased measurement of population characteristics.
- · Identical motivation for randomization in experiments

Random sampling

- With a sufficiently large sample and equal probability of sampling for all units in the population, a simple random sample allows for unbiased measurement of population characteristics.
- · Identical motivation for randomization in experiments
- Such a sample is representative of the population across both measured and unmeasured characteristics

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

 Randomly sample larger units (geographic) or select larger units of interest purposively

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

- Randomly sample larger units (geographic) or select larger units of interest purposively
- 2. Randomly sample individuals within these larger units

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

- Randomly sample larger units (geographic) or select larger units of interest purposively
- 2. Randomly sample individuals within these larger units

EXAMPLE: The American Community Survey (simplified)

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

- Randomly sample larger units (geographic) or select larger units of interest purposively
- 2. Randomly sample individuals within these larger units

EXAMPLE: The American Community Survey (simplified)

1. Take a list of all US Census tracts

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

- Randomly sample larger units (geographic) or select larger units of interest purposively
- 2. Randomly sample individuals within these larger units

EXAMPLE: The American Community Survey (simplified)

- 1. Take a list of all US Census tracts
- Randomly sample households within tract based on complete list of addresses (sampling frame)

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

- Randomly sample larger units (geographic) or select larger units of interest purposively
- 2. Randomly sample individuals within these larger units

EXAMPLE: The American Community Survey (simplified)

- 1. Take a list of all US Census tracts
- Randomly sample households within tract based on complete list of addresses (sampling frame)
- 3. Randomly sample adults within household, conduct survey

When surveys go wrong

1. Unit non-response

When surveys go wrong

- 1. Unit non-response
- 2. Item non-response

When surveys go wrong

- 1. Unit non-response
- 2. Item non-response
- 3. Lying (of various sorts)

Unit non-response

Individual (or organization) doesn't respond to the survey

Unit non-response

Individual (or organization) doesn't respond to the survey

- · How are surveys actually administered?
- · Response rates are generally low (and decreasing!)

Completely random non-response does not bias inference

Unit non-response

Individual (or organization) doesn't respond to the survey

- · How are surveys actually administered?
- · Response rates are generally low (and decreasing!)

Completely random non-response does not bias inference

When would non-response be an issue?

Question non-response

Individual takes the survey, but refuses to answer (skips) a particular question

· Why might this occur?

Question non-response

Individual takes the survey, but refuses to answer (skips) a particular question

- · Why might this occur?
- · When would this be a problem?

Lying (ok... misrepresentation)

- Social desirability bias
 - · Did you vote? Remember HW 1?
 - · Are you a racist?
 - · What kinds of crimes do you like to do?

Examining non-response in a survey of exposure to violence in Afghanistan

Load the data

```
### survey of
afghan<-read_csv("https://raw.githubusercontent.com/kosukeimai/qss,
afghan.village<-read_csv("https://raw.githubusercontent.com/kosukeimai/qss,</pre>
```

table(afghan\$province)

```
##
```

```
## Helmand Khost Kunar Logar Uruzgan
## 855 630 396 486 387
```

table(afghan\$district)

##					
##	Asadabad	Bak	Baraki Barak	Chapa Dara	Dangan
##	54	54	180	108	63
##	Dihrawud	Garmser	Ghaziabad	Khas Uruzgan	Khoshi
##	117	225	63	117	54
##	Khost	Lashkar Gah	Musa Qala	Naw Zad	Puli Alam
##	243	108	225	216	252
##	Qalandar	Shahidi Hassas	Spira	Tani	Washer
##	63	153	99	171	81
##	Wata Pur				
##	108				

table(afghan\$employed)

```
table(afghan$income)
##
##
    10,001-20,000 2,001-10,000 20,001-30,000 less than 2,000 over 30,000
##
              616
                            1420
                                              93
                                                            457
                                                                            14
## for ordered categorical
afghan<-afghan %>%
 mutate(income =
          factor(income,
                 levels = c(
                   "less than 2,000", "2,001-10,000",
                   "10,001-20,000", "20,001-30,000",
                   "over 30,000")))
table(afghan$income)
##
## less than 2,000 2,001-10,000 10,001-20,000 20,001-30,000
                                                                    over 30,000
##
              457
                            1420
                                             616
                                                             93
                                                                            14
```

```
afghan %>%
  select(employed, violent.exp.ISAF, violent.exp.taliban) %>%
  summary()
```

```
##
     employed violent.exp.ISAF violent.exp.taliban
   Min. :0.0000
                Min.
                     :0.0000 Min. :0.0000
##
##
   ##
   Median :1.0000
                Median :0.0000 Median :0.0000
##
   Mean :0.5828
                Mean :0.3749
                             Mean :0.3289
   3rd Qu.:1.0000
                3rd Qu.:1.0000
                             3rd Qu.:1.0000
##
##
   Max. :1.0000
                Max. :1.0000
                             Max. :1.0000
##
                NA's :25
                             NA's :54
```

Explore the variables in afghan.village

head(afghan.village)

```
## # A tibble: 6 x 3
##
     altitude population village.surveyed
        <dbl>
                                       <dbl>
##
                    <dbl>
## 1
        1959.
                       197
                                            1
## 2
        2426.
                       744
## 3
        2237.
                       179
## 4
        1692.
                       225
                                            0
## 5
        1928.
                       379
                                            0
## 6
        1195.
                       617
                                            0
```

Explore the variables in afghan.village

```
ggplot(afghan.village, aes(x=altitude)) +
  geom_histogram()
```


Explore the variables in afghan.village

```
ggplot(afghan.village, aes(x=population)) +
  geom_histogram()
```


Explore the variables in afghan.village: logs help!

```
ggplot(afghan.village, aes(x=log(population))) +
  geom_histogram()
```


Explore the variables in afghan.village

mean(afghan.village\$village.surveyed)

[1] 0.1094421

Is the sampling representative of villages?

```
ggplot(afghan.village,
         aes(x=village.surveyed==1,
              v = altitude)) +
  geom_boxplot()
 3000
  2500
altitude
2000
  1500
  1000
```

Is the sampling representative of villages?

```
ggplot(afghan.village,
    aes(x=village.surveyed==1,
    y = log(population))) +
  geom_boxplot()
```


Is the sampling representative of villages? Alternative plot

```
ggplot(afghan.village,
    aes(x=log(population))) +
geom_histogram() +
facet_wrap(~ village.surveyed, scales = "free")
```


Does item non-response bias estimates of violence by region?

 \cdot Unit non-responses can bias survey estimates

- Unit non-responses can bias survey estimates
- Item non-response can bias survey estimates

- Unit non-responses can bias survey estimates
- Item non-response can bias survey estimates
- Social desirability can bias survey estimates

- Unit non-responses can bias survey estimates
- Item non-response can bias survey estimates
- Social desirability can bias survey estimates
- Errors induced by these biases can lead to incorrect conclusions (see polling consensus on 2016 election)

Returning to the IPV example

Load the data

```
ipv<-read_csv("./data/dhs_ipv.csv")
## on your machine, path is /slides/data/
head(ipv)</pre>
```

```
## # A tibble: 6 x 7
##
    beat_burnfood beat_goesout sec_school no_media country
                                                             year region
##
            <fdb>>
                         <fdb>>
                                   <fdb>>
                                            <dbl> <chr>
                                                             <dbl> <chr>
## 1
              4.4
                         18.6
                                    25.2
                                              1.5 Albania
                                                              2008 Middle East a~
                                                              2000 Middle East a~
## 2
              4.9
                         19.9
                                    67.7 8.7 Armenia
## 3
              2.1
                         10.3
                                    67.6 2.2 Armenia
                                                              2005 Middle East a~
              0.3
                          3.1
                                    46
                                            6.4 Armenia
                                                              2010 Middle Fast a~
## 4
             12.1
## 5
                          42.5
                                    74.6
                                              7.4 Azerbaijan
                                                              2006 Middle East a~
             NA
                                             41.9 Bangladesh
                                                              2004 Asia
## 6
                          NA
                                    24
```

Look at bivariate relationships

```
ggplot(ipv, aes(x = sec_school, y =no_media, color = region)) + geom_point()
```


Is there a change in sec_school by region over time across this sample? Does time matter here?

```
ipv_ts<-ipv %>%
  group_by(region, year) %>%
  summarise(sec_school=mean(sec_school))

ggplot(ipv_ts, aes(x=year, y = sec_school, color = region)) +
  geom_line()
```


Correlation

Correlation

Correlation (math time): Z-scores

First, we need the variables to be comparable, so we transform them to be on a standard deviation scale.

A z-score scales a variable measures the number of standard deviations an observation is away from it's mean.

$$z$$
 score of $x_i = \frac{x_i - \bar{x}}{S_x}$

Where \bar{x} is the mean, and S_x is the standard deviation of variable x. Z scores have a mean zero, and a range defined by the range of the data on a standard deviation scale.

For a normally (Gaussian) distributed variable, this will typically range between [-3,3]

In R, we can transform a numeric into a z-score using scale()

Z-scores in R

```
ipv_scale<-ipv %>%
  mutate(sec_scale = scale(sec_school)) %>%
  select(sec_school, sec_scale)
summary(ipv_scale)
```

```
##
     sec school sec scale.V1
   Min. : 3.10
                Min. :-1.345006
##
##
   1st Qu.:10.18 1st Qu.:-0.898292
##
   Median :22.40 Median :-0.126408
   Mean :24.40
##
                Mean : 0.000000
   3rd Qu.:34.90 3rd Qu.: 0.662840
##
##
   Max. :74.60
                 Max. : 3.169492
   NA's :3
##
                 NA's :3
```

Z-scores in R

ggplot(ipv_scale, aes(x=sec_school, y=sec_scale)) + geom_point()

Correlation

Correlation measures the degree to which two variables are associated with each other. We often use the letter *r* to denote a correlation.

$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \overline{x}}{S_x} \times \frac{y_i - \overline{y}}{S_y}$$

Note that this is equal to the average of the product of the z-scores of x and y

In R, you can use cor()

Returning to our example: Are sec_school and no_media correlated?

Obtaining the correlation coefficient

```
cor(ipv$sec_school, ipv$no_media, use="complete")

## [1] -0.6077951

## z score method
mean(scale(ipv$sec_school) * scale(ipv$no_media), na.rm=TRUE)

## [1] -0.6084724
```

Clustering

Latent structure

Data often *cluster* based on unobserved or unobservable characteristics. We can use *classification methods* to try to uncover these latent structures in data.

k-means is a straightforward method we can use to identify *k* latent groupings in our data, based on proximity of observations for specified variables.

The k-means algorithm

An algorithm is a sequential set of steps used to solve a problem.

A centroid is the mean value of a cluster within a group.

- 1. Choose the initial centroids for each of the k clusters
- 2. Assign each observation to the cluster with the nearest centroid
- Assign a new centroid based on the within-cluster mean for assigned observations
- 4. Repeat steps 2 and 3 until the cluster assignments no longer change

We arbitrarily choose the number of clusters k, and R randomly selects starting centroid values for step 1.

The k-means algorithm

Implementing k-means for the IPV data

Working with the k-means object

```
ipv_kmeans
```

```
## K-means clustering with 3 clusters of sizes 72, 17, 46
##
## Cluster means:
  sec school no media
##
## 1 -0.6135490 0.7910351
## 2 1.8803248 -1.1669709
## 3 0.2071354 -0.7678187
##
## Clustering vector:
##
  ##
## Within cluster sum of squares by cluster:
## [1] 52.858371 8.657364 24.241269
 (between_SS / total_SS = 68.3 %)
##
## Available components:
##
## [1] "cluster" "centers"
                      "totss"
                               "withinss"
                                        "tot.withinss"
## [6] "betweenss" "size"
                      "iter"
                               "ifault"
```

Pull out what we need from the list

```
ipv_clusters<-ipv %>%
  filter(!(is.na(sec school)), !(is.na(no media))) %>%
 mutate(cluster = factor(ipv kmeans$cluster))
centers<-data.frame(ipv kmeans$centers)</pre>
centers
     sec school no media
##
## 1 -0.6135490 0.7910351
## 2 1.8803248 -1.1669709
## 3 0.2071354 -0.7678187
```

Plot it!

What if we thought there were 4 clusters?

What if we thought there were 10 clusters?

- · Measurement and design matter!
- Always check your data, and think about how unit and item non-response may inform your conclusions
- Think about desirability and other forms of response bias as you interpret your results
- Design visuals and exploratory analyses to check hypotheses about what's going on in the data
- Think about the structure of your data, use descriptive statistics like correlations to describe relationships
- · Think about latent structures in your data to capture clustering

Lab: more data visualization with ggplot

The mpg data

head(mpg)

```
## # A tibble: 6 x 11
    manufacturer model displ year
                                     cyl trans
                                                drv
                                                             cty
                                                                   hwy fl
                                                                             class
##
                 <chr> <dbl> <int> <int> <chr>
##
    <chr>
                                                     <chr> <int> <int> <chr> <chr>
## 1 audi
                         1.8
                              1999
                                        4 auto(15)
                                                              18
                                                                    29 p
                 a4
                                                                             compa~
                         1.8 1999
                                        4 manual(m5) f
## 2 audi
                 a4
                                                              21
                                                                    29 p
                                                                             compa~
                                        4 manual(m6) f
## 3 audi
                  a4
                          2
                              2008
                                                              20
                                                                    31 p
                                                                             compa~
## 4 audi
                 a4
                          2
                              2008
                                       4 auto(av)
                                                              21
                                                                    30 p
                                                                             compa~
## 5 audi
                 a4
                          2.8 1999
                                        6 auto(15)
                                                                    26 p
                                                              16
                                                                             compa~
                          2.8 1999
                                        6 manual(m5) f
                                                                    26 p
## 6 audi
                 a4
                                                              18
                                                                             compa~
```

How are these plots similar?

```
ggplot(mpg,
    aes(x = displ, y = hwy)) +
  geom_point()
```


How are these plots similar?

```
ggplot(mpg,
    aes(x = displ, y = hwy)) +
  geom_smooth()
```


Geometric objects (geoms) map data to visual objects

```
ggplot(mpg,
    aes(x = displ, y = hwy)) +
  geom_point()
```


We can layer geoms

```
ggplot(mpg,
    aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()
```


Add aesthetics to map variables to visual objects

```
ggplot(mpg,
    aes(x = displ, y = hwy, lty = drv)) +
geom_point() +
geom_smooth()
```


Add aesthetics to map variables to visual objects

```
ggplot(mpg,
    aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth()
```


Global and local aesthetics

```
## What's the difference from the prior plot?
## could i make this more compact?
ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
geom_smooth(aes(x = displ, y = hwy, color = drv))
```


Modifying visual objects without variable mapping

```
ggplot(mpg,
    aes(x = displ, y = hwy)) +
geom_point(color = "pink") +
geom_smooth(color = "magenta")
```


Modifying data prior to plotting

```
ggplot(mpg %>%
    filter(drv !="4"),
    aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth()
```


Exercises

 Using the afghan data, visualize the relationship between age and educ.years. What is the best geom for examining this relationship?

```
ggplot(afghan,
    aes(y = age, x = educ.years)) +
    geom_point()
```


Prettying up your plots

This is not pretty

```
ggplot(mpg,
    aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth()
```


Axis labels

This is better!

```
ggplot(mpg,
    aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth() +
labs(x = "Engine Displacement",
    y = "Highway MPG",
    color = "Drive type")
```


Titles

```
ggplot(mpg,
    aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth() +
labs(x = "Engine Displacement",
    y = "Highway MPG",
    color = "Drive type",
    title = "Miles per gallon and engine displacement by drive type")
```


Subtitles

```
ggplot(mpg,
    aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth() +
labs(x = "Engine Displacement",
    y = "Highway MPG",
    color = "Drive type",
    title = "Miles per gallon and engine displacement by drive type",
    subtitle = "Fuel economy data from 1999 to 2008 for 38 popular models of cars")
```


Moving things around with theme

```
ggplot(mpg,
       aes(x = displ, y = hwy, color = dry)) +
  geom_point() +
  geom_smooth() +
  labs(x = "Engine Displacement",
       y = "Highway MPG",
       color = "Drive type",
       title = "Miles per gallon and engine displacement by drive type",
       subtitle = "Fuel economy data from 1999 to 2008 for 38 popular models of cars") +
  theme(legend.position = "bottom")
```

Miles per gallon and engine displacement by drive type

Fuel economy data from 1999 to 2008 for 38 popular models of cars

Improving scatterplots

If two vehicles have identical MPG and displ, they will overlap, and we can't actually see them. A jitter adds a small amount of noise to help us see all the data.

Improving scatterplots

```
ggplot(mpg,
    aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth()
```


Improving scatterplots

```
ggplot(mpg,
    aes(x = displ, y = hwy, color = drv)) +
geom_jitter() +
geom_smooth()
```

