Hardware dos Sistemas de Informações

SIN222 - Fund. dos Sist. de Informação

Rodrigo Smarzaro smarzaro@ufv.br

Universidade Federal de Viçosa

2025-1

Curiosidades. . .

- O Large Hadron Collider (LHC) gera, aproximadamente, 300 GB/s
 - Possui 1.4M de núcleos, 1.5 exabyte de armazenamento.
- Os chips atuais tem tecnologia de 5-14 nanômetros
 - Fio de cabelo: 100.000nm. Vírus COVID: 50-200nm. Molécula de água: 0.5 nm.
 - AMD começou com chips de 7nm em 2019
 - Samsung anuncia fabricação de chips de 2nm em 2025
 - TSMC anuncia chips de 1,6nm em 2026

Componentes de um SI baseado em computador

- Hardware
- Software
- Bases de Dados
- Telecomunicações
- Pessoas
- Procedimentos (regras de negócio)

Componentes de um SI baseado em computador

- Hardware
 - Software
 - Bases de Dados
 - Telecomunicações
 - Pessoas
 - Procedimentos (regras de negócio)

O que é o hardware?

Hardware

Componentes físicos do computador que realizam entrada, processamento, saída e armazenamento das atividades em em computador

Importância do Hardware nos S.I.

- Por que é tão importante conhecer os aspectos do hardware?
 - Diferentes componentes vão impactar no desempenho, custos, durabilidade, confiabilidade, eficiência, eficácia,...
- Se você fosse projetar um carro de passeio, quais seriam suas escolhas para o *design*, pneus, motor, bancos, . . .
- E se fosse projetar um carro de F1?
- Houve diferença na escolha dos componentes? custo? durabilidade, desempenho, . . . ?

Componentes principais de um Computador

Principais componentes de um Computador

Unidade Central de Processamento

- Central Processing Unit CPU
- Unidade responsável por sequenciar e executar instruções
- As instruções em uma CPU tem basicamente duas fases
- Fase de Instrução
 - Fetch Próxima instrução é carregada da memória para a CPU
 - Decode Instrução é decodificada e passada para a próxima unidade da CPU
- Fase de Execução
 - Execute A instrução decodificada é executada. Pode ser uma comparação lógica, operação aritmética,...
 - Store Resultado da instrução é armazenado em registradores ou na memória

Válvulas x Transistores x Circuito Integrados

Circuito Integrado x Microprocessadores

Até onde vamos??

Se transistores fossem humanos...

Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore's Law.

Fonte:https://bavneetsingh.wordpress.com/2014/08/10/future-of-transistors-and-microprocessors/

Clock - Relógio

- Todo o funcionamento na CPU é por meio de pulsos eletrônicos em uma determinada frequência
- O clock marca o "ritmo" de funcionamento da CPU
- A medida (hoje) é feita em gigahertz (GHz)

Pipeline

- A CPU é composta de diversos componentes que trabalham em conjunto. Entretanto, nem todos estão ocupados o tempo inteiro durante as fases
- Para manter os componentes ocupados por mais tempo os fabricantes começaram a implementar a técnica de pipeline (ou segmentação de instruções)

Sem Pipeline

Com Pipeline

Pipeline - Problemas Encontrados

- Dependência de instruções anteriores
- Desvios no código sendo executado
- Diferença na complexidade de instruções (umas demorando muito mais que outras)
- A técnica de pipeline traz um grande benefício para processadores baseados em RISC

Famílias de Processadores

- Processadores são, geralmente, agrupados em famílias
- O que determina uma família de processadores é a arquitetura do conjunto de instruções (Instruction Set Architecture - ISA)
- Principais famílias de processadores:
 - x86 Intel, AMD, VIA fabricam processadores para esta família que equipam boa parte dos computadores atuais
 - Intel Atom CPU otimizada para consumo baixo de energia para equipar portáteis
 - ARM Baseados em RISC¹. Android, iOS e outros smartphones utilizam esta família

¹Reduced Instruction Set Computer

Conceitos de Processamento

Multiprocessamento

Execução simultânea de duas ou mais instruções no mesmo instante.

- Uma maneira de se implementar multiprocessamento é utilizando coprocessadores
- Um coprocessador é especializado em alguma tarefa específica (geralmente cálculos) e pode liberar a CPU para outras atividades
 - Pode ser externo ou interno em relação à CPU
 - Até os 486 era comum se comprar um coprocessador matemático² para melhorar o desempenho do computador

²É na verdade uma FPU (Float Point Unit)

Conceitos de Processamento

- Outra maneira de se implementar multiprocessamento é utilizando vários núcleos (cores)
 - Um processador *multicore* possui duas ou mais CPUs independentes capazes de sequenciar e executar instruções
 - Processadores top de linha podem chegar atualmente a 64 núcleos (ex. AMD Ryzen Threadripper 3990X³, 128 threads, 2.9 até 4.3GHz)
 - Considere um processador *singlecore* rodando à 3GHz ou um processador 4-*core* rodando à 1.5GHz? Qual você escolheria? Por que?

³Mais ou menos U\$ 4 000

Conceitos de Processamento

Computação Paralela

Execução simultânea de uma mesma tarefa distribuída em vários processadores para obter resultados mais rápidos

Computação Paralela Massiva

Computação paralela utilizando centenas ou milhares de processadores, em que cada processador possui seu próprio barramento, memória, discos, S.O e aplicações

- Um caso especial de computação paralela é a Computação em Grid (Grid Computing)
 - Caracterizada pelo uso de muitos computadores que pertencem à diversos indivíduos ou instituições trabalhando de forma coordenada na solução de uma tarefa.
 - Exemplo: Worldwide LHC Computing GRID

Memória Principal

- Fornece para CPU um espaço de armazenamento de instruções e dados para o processamento
- Volátil
- Custo alto
- Acesso rápido

Memória Secundária

- Memória de grande capacidade para armazenamento não-volátil de dados
- Acesso lento
- Custo baixo

Data inflation

Unit	Size	What it means			
Bit (b)	1 or 0	Short for "binary digit", after the binary code (1 or 0) computers use to store and process data			
Byte (B)	8 bits	Enough information to create an English letter or number in computer code. It is the basic unit of computing			
Kilobyte (KB)	1,000, or 2 ¹⁰ , bytes	From "thousand" in Greek. One page of typed text is 2KB			
Megabyte (MB)	1,000KB; 2 ²⁰ bytes	From "large" in Greek. The complete works of Shakespeare total 5MB. A typical pop song is about 4MB			
Gigabyte (GB)	1,000MB; 2 ³⁰ bytes	From "giant" in Greek. A two-hour film can be compressed into 1-2GB			
Terabyte (TB)	1,000GB; 2 ⁴⁰ bytes	From "monster" in Greek. All the catalogued books in America's Library of Congress total 15TB			
Petabyte (PB)	1,000TB; 2 ⁵⁰ bytes	All letters delivered by America's postal service this year will amount to around 5PB. Google processes around 1PB every hour			
Exabyte (EB)	1,000PB; 2 ⁶⁰ bytes	Equivalent to 10 billion copies of The Economist			
Zettabyte (ZB)	1,000EB; 2 ⁷⁰ bytes	The total amount of information in existence this year is forecast to be around 1.2ZB			
Yottabyte (YB)	1,000ZB; 2 ⁸⁰ bytes	Currently too big to imagine			

Source: The Economist

Yotta and Zetta were added in 1991; terms for larger amounts have yet to be established.

MEGABYTE

Lembra daquele disquete (ou disco flexível) que costumávamos usar para guardar dados? O de maior capacidade podia armazenar até 5,76 MB: daria para salvar só 5 fotos digitais (.jpg), em resolução baixa ou ouvir um arquivo de música em mp3 com aproximadamente 5 minutos de duração.

*dados de Igor Bessera, da Seagate

GIGABYTE

Usar **pendrives** para guardar arquivos e levá-los onde você quiser já é algo bem comum.

Num dispositivo de 1 GB, daria para gravar 320 fotos digitais (.jpg), mas com resolução bem mais alta que no exemplo anterior. Se fosse guardar só músicas digitais, você gastaria 16 horas para ouvir toda a lista (dá para ir de avião de São Paulo a Moscou durante esse tempo).

*dados de Igor Bessera, da Seagate

TERABYTE

Para aqueles que precisam de mais espaço, já existem HDs (discos rígidos) externos, que bem como pendrives tem a facilidade de serem portáteis. Um HD externo de 1 TB pode armazenar cerca de 40 filmes em alta definição ou 500 jogos. Já em fotos digitais em alta resolução, seriam 320 mil e em música digital, 16,6 mil horas (666 dias ou quase 1 ano e 9 meses).

*dados de Igor Bessera, da Seagate

PETABYTE

Para armazenar 1 PB em dados, seria necessário um <u>datacenter</u> (local projetado especialmente para guardar dados de empresas) que ocuparia uma área total de 1.000 m², com 4.000 máquinas (entre servidores e estações de trabalho)

* dados de Márcio Silva, pesquisador do Laboratório de Arquitetura e Redes do Departamento de Ciência da Computação da Poli-USP

EXABYTE

Para armazenar 1 EB em dados, seriam necessários 71 datacenters que, juntos, ocupariam 9 campos de futebol.

Se cada homem, mulher e criança do planeta guardasse consigo 1 pacote de arquivos de 2,5 GB (entre fotos, músicas, documentos, vídeos e outros), conseguiriam alcançar 1 EB – considerando que a população geral é de 6,9 bilhões de pessoas.

* dados de Márcio Silva, pesquisador do Laboratório de Arquitetura e Redes do Departamento de Ciência da Computação da Poli-USP

ZETTABYTE

Para guardar 1 ZB em volume de dados, seriam necessários 73 mil datacenters que, juntos, cupariam toda a área da cidade de São Paulo ou 9 mil campos de futebol. Essa é a demanda aproximada de armazenamento no mundo, até o final deste ano.

* dados de Márcio Silva, pesquisador do Laboratório de Arquitetura e Redes do Departamento de Ciência da Computação da Poli-USP

- Se 1 byte = 1mm (milímetro)
- ullet 1 YB \cong 127 anos-luz
- A Via Láctea tem uns 105 anos-luz

Cadê o resto do meu 1TB???

Diferentes unidades → Confusão!!

Decimal		Binary						
Value		Metric	Value	IEC		I	Memory	
1000	kB	kilobyte	1024	KiB	kibibyte	KB	kilobyte	
1000 ²	MB	megabyte	1024 ²	MiB	mebibyte	MB	megabyte	
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte	
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte	ТВ	terabyte	
1000 ⁵	РΒ	petabyte	1024 ⁵	PiB	pebibyte		_	
1000 ⁶	EB	exabyte	1024 ⁶	EiB	exbibyte		_	
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		_	
1000 ⁸	ΥB	yottabyte	1024 ⁸	YiB	yobibyte		_	
1000 ⁹	RB	ronnabyte			_			
1000 ¹⁰	QB	quettabyte			_			

Tipos de Memória

- SRAM Static Random Access Memory
 - "Seguram" os dados enquanto houver alimentação de energia
 - Usadas em Registradores e Cache
- DRAM Dynamic Random Access Memory
 - SDRAM Synchronous DRAM
 - DDR SDRAM Double Data Rate SDRAM
 - DDR2, DDR3, DDR4, DDR5, ...
- ROM Ready-Only Memory
 - PROM Programmable Ready-Only Memory
 - EPROM Erasable Programmable Ready-Only Memory
 - EEPROM Eletrically Erasable Programmable Ready-Only Memory

Memórias Cache no Processador

Gerações de Memórias DDR

Geração	Lançamento	(MB/s)	Voltagem (V)
SDR ⁴	1993	800 - 1600	3.3
DDR ⁵	2000	1600 - 3200	2.5
DDR2	2003	3200 - 8533	1.8
DDR3	2007	6400 - 17066	1.5^{6}
DDR4	2014	12800 - 25600	1.2
DDR5	2020	38400 - 67200	1.1
DDR6	(Previsto) 2025+	+00008	į 1.1

⁴Simple Data Rate

⁵ Double Data Rate

⁶1.35 para versões de baixo consumo

Memórias DDR

Tipos de Memória

Memória Secundária

A memória secundária utiliza várias tecnologias que permitem o armazenamento de longo prazo de um volume muito grande de dados, mesmo sem alimentação de energia

Fita Magnética

- Armazena grande volume de dados com baixo custo
- Custo por GB entre \$0.008 e \$0,02 contra \$0,033⁷
- Acesso sequencial aos dados
- Muito usada para backup (durabilidade de 15-30 anos)

Disco Magnético

- Acesso aleatório aos dados
- Meio mais utilizado atualmente
- Podem ser flexíveis (disquetes, praticamente extintos) ou rígidos (HDs)
- HDs duram em média de 5-10 anos

https://www.forbes.com/sites/tomcoughlin/2016/07/24/the-costs-of-storage/

Cartucho de Fita Magnética

⁷By Austinmurphy at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3767922

Exemplo: Tape Library⁸

Tape Library IBM TS4500 Até 13 Petabytes de armazenamento

⁸https://youtu.be/Bde8wJtzRx8

Memória Secundária

Discos Ópticos

- Um laser é utilizado para ler/gravar a superfície de um disco
- Tornaram-se uma alternativa muito mais interessante que os discos flexíveis
- Várias versões e capacidades: CD-ROM, CD-RW, DVD-R. DVD-RW, BlueRay, . . .
- Seguem o mesmo caminho de extinção dos discos flexíveis

Armazenamento em Nuvem

- Tornaram-se populares com o aumento da velocidade da internet e barateamento dos dispositivos de armazenamento
- Dropbox, Onedrive, Amazon S3, Google Drive, ...

• Teclado (membrana, mecânico)

Cartões perfurados

Mouse

• Cartão com fita magnética

Sensores de movimentos

Reconhecimento de voz

• Scanners - OCR (Optical Character Recognition)

Código de barras

QR-Code

• RFID⁹- Radio Frequency Identification

⁹Vídeo: https://youtu.be/SiPkO3VJBfM

ullet Telas (CRT ightarrow LCD ightarrow LED ightarrow OLED ightarrow QLED)

- Placas Gráficas (GPU Graphical Processing Unit)
 - GPU + VRAM (Video RAM)
 - Libera a CPU para outras tarefas
 - Placas gráficas hoje são praticamente um outro computador dentro do computador.

• Impressoras (matriciais, jato de tinta, laser)

- Plotters
- Impressoras 3D

Tipos de Computadores

- Computadores vestíveis (wearable)
 - Ex. smartwatches, fitness trackers
- Smartphones
- Computadores portáteis
 - Ex. Tablet, notebooks
- Thin Clients
 - Computadores compactos e baratos que servem de terminal de acesso para um servidor.
- Desktops e workstations

- Um servidor é um computador utilizado por vários usuários para uma determinada tarefa
 - Servidor de Banco de Dados
 - Servidor WEB
 - Servidor de Aplicação, Backup, mídia, arquivos, email, ...
- Servidores devem ser escaláveis (scalability)
- Escalabilidade pode ser vertical ou horizontal
 - Vertical melhorar a capacidade de um único servidor
 - Horizontal adicionar mais servidores e distribuir a carga

Escalabilidade Vertical × Horizontal

VS.

Horizontal

Escalabilidade Vertical × Horizontal

Mainframes

- Computadores de grande porte que atendem um grande número de usuários e dão suporte aos negócios da empresa
- Geralmente utilizados por grandes corporações (bancos, cartões de crédito)
- Aplicações executadas em mainframes no Brasil: Imposto de Renda,
 Folha de pagamento do governo, Jogos Online, IPVA, licenciamento,
 contas de telefone e energia, Vendas de bilhetes de transportes, . . .

Supercomputadores

- Computadores de grande poder de processamento otimizado para computação científica
- Muito comum se utilizar GPUs hoje para se construir "supercomputadores"
- O mais poderoso em atividade é o Frontier (8.699.904 núcleos, 1.194 PFlops)¹⁰

¹⁰https://top500.org/lists/top500/2023/11/

Data Centers

- Prédio que hospeda o hardware que armazena e processa os serviços e dados de uma (ou várias) organizações
- Data Centers muitas vezes demandam o equivalente à pequenas ou médias cidades em eletricidade
- São classificados em tiers que vão de 1-4 de acordo com o nível de proteção oferecida:

Critério	Tier1	Tier2	Tier3	Tier4
Uptime (%)	99,671	99,746	99,982	99,995
Tolerância à	_	Parcial	N+1	2(N+1)
falhas	-	FaiCiai	INTI	2(14+1)
Proteção		Algumas	726	och
para falhas	-	horas	72h	96h

OBS: "N" representa o número de equipamentos necessários para o datacenter funcionar.

Amazon Web Services (AWS)

- Responsável por cerca de 67% do lucro da Amazon
- Controla cerca de 33% 12 do mercado de datacenters
- Possui 47,8% do setor de laaS Infrastructure as a Service
- De todas as empresas que utilizam computação em nuvem de alguma forma, 64% utilizam algum serviço da AWS
- Alguns dos sites/serviços na AWS: Netflix, Twitch, Linkedin, Facebook, BBC, Baidu, ESPN, Twitter, Airbnb, Disney, McDonalds, NASA, Reddit, Ubisoft, . . .

¹¹https://tinyurl.com/5bf2wkf2

¹² Microsoft tem 18% e Google tem 9%

Green Computing

 Consiste na preocupação em projetar, fabricar, operar e descartar produtos relacionados à tecnologia de maneira eficiente e ambientalmente responsável

- Possui três objetivos:
 - reduzir o uso de material perigoso
 - permitir que as empresas reduzam seu consumo de energia
 - habilitar o descarte seguro ou reciclagem dos equipamentos

e-Waste

Referência para esta aula

STAIR, Ralph M.; REYNOLDS, George W. **Princípios de Sistemas de Informação**. Tradução da 9 edição americana. Cengage, 2013. cáp. 3

Referências I

STAIR, Ralph; REYNOLDS, George. **Principles of Information Systems**. 13. ed.: Cengage Learning, 1 jan. 2017. 752 p.

STAIR, Ralph M.; REYNOLDS, George W. **Princípios de Sistemas de Informação**. Tradução da 9 edição americana. Cengage, 2013.