LaPIS Diagnostic Test Workbook - Mathematics

Name : Rithik K V

Class: 7

Section : A

School : AKV Public School

Login ID : AKV112

Rithik K V's Performance Report

Score: 21/40 Percentage: 52.5%

Rithik K V's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved			
Types of angles	Identification of types of angles		

Hi, here in this video you will learn **Types of Angles**

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $_{---}^{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{\textit{Question: 3}}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Data handling

Topics to be Improved				
Chance of probability	Basis of probability, Sample space in probability			
Range	Finding the range			
Arithmetic mean, mode and median	Mean, Median and Mode			

.....

Hi,	here	${\rm in}$	this	video	you	will	learn	Basics	of	probab	oility
-----	------	------------	------	-------	-----	------	-------	--------	----	--------	--------

\sim		
เภา	uestion:	_ /.
ωu		4

Identify the sure events and impossible events

- (i) The sun rises in the west.
- (ii) Water is colourless.
- (iii) Clock rotates in clock wise direction.
- (iv) Ball is square in shape.

Answer:

Events that always occur are called Events that cannot occur are called Here, The sun rises in the west is	(sure/ impossible) events.	_
event. Clock rotates in clock wise direction is event.	event. Ball is square in shape is	
Question: 5		

Probability of sure events is _____ (greater / smaller) than probability of impossible events.

Answer:

Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).

Therefore, Probability of sure event _____ Probability of impossible event.

Question: 6

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.

Answer:
Things Raju have
Does Raju have pen in his box, (Yes/ No).
Then probability of getting pen from his box is $\underline{\hspace{1cm}}$ $(0/1)$
Hi, here in this video you will learn Basics of probability
Question: 7
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events
Answer:
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs). Therefore, contains list of possible outcomes.
Question: 8
Write the possible outcomes while spinning the given wheel.

Outcomes are _____ (possible/impossible) results of an experiment.

The possible outcomes while spinning wheel are ₹0, ₹10, _____

$\underline{Question: \ 9} \qquad \dots \dots$	• • • • • • • • • • • • • • • • • • • •		
A bag contains three balss of colour blue, gree are taken out.	n and red. Write th	ne possible outco	mes if two bal
$\underline{Answer:}$			
A bag contains,	ball can be ball can be all can be ible outcomes are b	or or or or	
Hi, here in this video you will learn R			
<i>Question:</i> 10			
Range of the data =	-		
Answer:			
The difference between highest value and lowe Example: Find the range of 10, 5, 30, 23, 54, 3 Highest value =, Lowest value = Range = = Question: 11	39 and 16		
Circle the correct range for the following data	31, -20, 35, -38, 29	, 0, 43, -25, 51, 1	4, 9
$-20 + 51$ $\frac{-38 - 5}{2}$,
$\underline{Answer:}$			
Range = Arranging the data in ascending order, In the given data, Highest value = , Lowest value = , R			
Question: 12			
Find the range of first 10 multiple of 5.			
Answer:			
First 10 multiple of $5 = $			=
Hi, here in this video you will learn ${f N}$	Iean, Median,	Mode	

Question: 13						
Find the mode of	f the following data: 5,	, 15, 23,	5, 32, 44,	72, 55, 6, 3	5, 5, 65, 45	6, 67, 24, 19 and 98.
$\underline{Answer:}$						
Arranging the da	ber that occurs ta in ascending order: occurs most number of					
Question: 14						
Which shape con	tains median of the given	ven data	3, 5, 6, 2,	7, 9, 6, 4 a	and 1	
ascending or desc Arrange the given	(first/cencending order. In data in ascending order, the given data is	der :	and it i	is the		 _ of a data.
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
$Mean = \underline{\hspace{1cm}},$	Median = an	nd Mode	=			
$\underline{Answer:}$						
Mean =	of all observation mber of observation .					
Therefore, mean Arrange the data	observation = = in ascending order : _ , mode				tion =	

Geometry

	Topics to be Improved				
Faces vertex and edges	Idenfication of faces, edges and vertices				
Transversal angle made by transversal	Basics of Transversal angle				
Right angle triangle and pythagoras property	Basics of Pythagoras property				
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle				

Hi, here in this video you will learn $\bf Basics~of~3D~model$

	ES-AGEC: d
<i>Question:</i> 16	
A point at which two or more lines segments meet is called(Vertext)	ex/ edges/ faces).
$\underline{Answer:}$	
has two end point (line/line segment/ray).	
Ais a point where two or more line segments meet(Vertex/ edges	/ faces).
Mark the vertices in the diagram,	

Question: 17

Mark and find the number of vertices, edges and faces in a cube.

Mark the vertex, edges and faces in a cube.

Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 18
II

How many vertices, edges and faces does dices have?

Answer: The shape of dice is ______. Dices have _____ vertices, _____ edges and _____ faces. Hi, here in this video you will learn Basics of Transversal angle

Question: 19

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are ____

Question: 20

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, ____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 21 Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$. Answer: When parallel lines cut by a transversal, (i) Alternate angles are _____ (equal / not equal). (ii) Corresponding angles are _____ (equal / not equal). Here, alternate angle of ∠a is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is ____. Hi, here in this video you will learn Pythagoras property Question: 22 In a right angled triangle, square of the _____ = sum of the squares of the legs. Answer: Pythagoras theorem is only applicable for ______ triangle. Longest side of the triangle is _____ (hypotenuse/legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that ____

 $\underline{\textit{Question: 23}}$

Find the hypotenuse of the triangle ABC if base is $12~\mathrm{m}$ and altitude is $5~\mathrm{m}$.

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 24

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are ______

The possible way to reach point C from point A are _____ and AB then to

Side AC = ____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 26

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 27

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____

2. The difference of the two sides of a triangle is _	than the third side of the	
triangle. Therefore, the third side should be		
Here, difference of the two sides = = Therefore, the length of the third side is greater than		
Therefore, length of the third side is greater than	but less than	

Number system

Topics to be Improved	
Introduction to rational numbers	Basics of rational numbers
Positive and negative rational numbers	Identification of positive rational numbers
Integers	Basics of integers
Fractions	Division of fraction, Multiplication of fractions

Hi, here in this video you will learn Basics of rational numbers

Question: 28

The numbers in the diagram represents...

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49},\,\frac{1}{2},\,\frac{8}{27},\,\frac{11}{5},\,\frac{13}{75}$ are _____. Combination of all three circles are called as _____ numbers.

Question: 29

Shade the correct form of rational numbers.

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 30

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 31

Segregate positive and negative rational number.

......

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are a	and negative rational numbers are
Question: 32	
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor a	negative) rational number.
Answer:	
-3 is a number, -4 is a number.	
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.	ber.
(Positive / Negative / Neither positive nor negative rate	tional number)
Question: 33	
The product of a positive rational number and a negative rational rational number. (Positive/ Negative/ neither positive nor negative)	
Answer:	
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = rational number	\times and this is
Hi, here in this video you will learn Basics of intege Question: 34	
Highlight the ring that contains whole numbers.	
0 1, 2, 3,	
Answer:	
The numbers inside the inner ring (1, 2, 3,) are numbers. The numbers inside the middle ring are numbers. The numbers inside the outer ring are negative numbers, positive called as	
<i>Question:</i> 35	

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

......

Naturals numbers

Answer:

Whole number consists of 0,1,2,3,4,.... Negative number consists of ______. Natural numbers consists of ______. Integers consists of ______. Now, 1, 4, -10 are in _____.

Question: 36

State whether the statement is true or false. Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of ______. Therefore, positive numbers are ______ (in/not in) integers.

Hi, here in this video you will learn **Division on fractions**

Question: 37

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 38

Solve: $\frac{1}{3} \div \frac{14}{3}$

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

.....

Question: 39

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \overline{\hspace{1cm}} = \overline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn Multiplication on fractions

Question: 40

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $____$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \frac{2}{\square} = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 41

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Total number of students $=$ $\underline{\hspace{1cm}}$
Fraction of students who are girls =
Number of girls $=$ \times $=$ $=$ $=$
Question: 42
Solve: $2\frac{7}{4} \times \frac{2}{3}$
$\underline{Answer:}$
$2\frac{7}{4}$ is a (proper / mixed) fraction.
Here, 2 is, 7 is and 4 is
To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}})+\text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$
$2 \frac{7}{4} \times \frac{2}{3} = \boxed{\square} \times \frac{2}{3} = \boxed{\square}$

Comparing Quantities

	Topics to be Improved	
Percentage	Basic of percentage	
Hi, here in this video yo	u will learn Basics of percentage	
Question: 43		
2% can be written as		
Answer:		
Percentages are numerators of	Figure 1. Fractions with denominator $2\% = \frac{\Box}{\Box}$	
Question: 44		
Arun attended the LaPIS test Arun?	for 100 marks and got 75% marks. What is the ma	rk scored by
$\underline{Answer:}$		
Arun attended LaPIS test for	marks. He got marks	·ks.
75 % can be written in fractio	on form ———	
Then the mark scored by Aru	$n = \text{Total mark} \times 75\% = \underline{\qquad} \times \underline{\qquad}$	=
Question: 45		
There are 25 apples in a baske apples.	et in which 10 of them are rotten. Find the percenta	age of rotten
Answer:		
There are apples in a Number of rotten apples are _		

Fraction form of rotten apples in a basket =	
Convert it into a percent= x% =	

Algebra

Topics to be Improved	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression
Addition and subtraction of algebraic expressions	Like terms and Unlike terms
subtraction of algebraic expressions	subtraction of algebraic expressions
Basics of simple equation	Solving of simple equation

Hi, here in this video you will learn T_{i}	ypes of expression
---	--------------------

Question:	46

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

......

......

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 47

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 48	
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)	
Answer:	
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression	ression.
Hi, here in this video you will learn Addition on expression	
Question: 49	
Shade the like terms.	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Answer:	
Given terms are Two or more term have (same/ different) variables is called like term Here, like terms are	ns.
Question: 50	
Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$	
Answer:	
(Like / Unlike) terms can be added or subtracted.	
$7r^2 + r \Box - 2 \Box = (7 + \ 2)_{r^2} = _$	
Question: 51 Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.	
(i) Total chocolates Ram and Sam have :	
(ii) How many icecreams Sam have more than Ram :	

	Chocolates	Icecream
Sam		
Ram		

_____ icecream - _____ icecream = ____ - ___ = ____

(i)	otal chocolates Ram and Sam have:	
	$Ram's chocolate + Sam's chocolates = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	
(ii)	low many icecreams Sam have more than Ram:	

Hi, here in this video you will learn Subtraction on expression

Question:	50
CHESILOTI.	112

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

Question: 53

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

(i) Number of boys in school $A = \underline{\hspace{1cm}}$

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is $___$ + $___$ = $___$

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___+$ $___=$ $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$

Question: 54

Solve the following:

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
3a - 5b \\
(-) & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

 $\operatorname{Hi},$ here in this video you will learn $\operatorname{\bf Solving}$ an $\operatorname{\bf equation}$

Question: 55

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley ② is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 56

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \Box + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times$$
 ____+ $3 =$ ____

 $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$

7× ____+3 = ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 57

Arrange the terms in the descending order when the value of x is 2.

 $2x \qquad 5x \times 1 \qquad x+3 \qquad 2x-\widecheck{4} \qquad \tfrac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are $__$, $__$, $__$, $__$, $__$.