Q1

Incomplete prooftree

Q2

Prove by contradiction the following statement:

Let $a, b, c \in \mathbb{Z}^+$. If $a \mid b$ and $b \mid c$ then $a \mid c$.

Assume $a \nmid c$, that is, assume there is no $k \in \mathbb{Z}$ such that a * k = c.

From the fact that $a \mid b \ and \ b \mid c$ we have $a * k_1 = b \ and \ b * k_2 = c$ for some $k_1, k_2 \in \mathbb{Z}$.

We also have that
$$b=\frac{c}{k_2}$$
 and $a=\frac{b}{k_1}$ and thus $a=\left(\frac{\frac{c}{k_2}}{k_1}\right)=\frac{c}{k_1k_2}$.

From this we can derive $c = ak_1k_2$ and since $k_1, k_2 \in \mathbb{Z}$, then $k_1k_2 = k \in \mathbb{Z}$.

Thus we have: a*k=c which is a contradiction to our assumption and thus the statement $a \nmid c$ does not hold. Instead we can conclude that $a \mid c$. QED.

Q3

Let $n \in \mathbb{N}$. Prove by induction that $\sum_{i=0}^{n} 6i^2 = n(n+1)(2n+1)$. Inductive hypothesis:

$$P(k) := \sum_{i=0}^{k} 6i^2 = k(k+1)(2k+1), for \ all \ k \in \mathbb{N}$$

Base case:

$$P(0) = \sum_{i=0}^{0} 6i^2 = 6 * 0^2 = 0(0+1)(20+1) = 0$$

Thus the base case holds.

Inductive case:

Assume P(k-1) holds to prove P(k) holds.

$$P(k-1) = \sum_{i=0}^{k-1} 6i^2 = (k-1)((k-1)+1)(2(k-1)+1)$$

From the definition of summation we know that $P(k) = P(k-1) + 6k^2$

$$P(k) = P(k-1) + 6k^2 = (k-1)(k)(2*(k-1)+1) + 6k^2$$

We multiply the two leftmost parentheses and the inner parenthesis in the furthest right side of the equality sign.

$$P(k) = (k^2 - k)(2k - 2 + 1) + 6k^2$$

We reduce multiply the parentheses.

$$P(k) = 2k^3 - k^2 - 2k^2 + k + 6k^2$$

We reduce.

$$P(k) = 2k^3 + 3k^2 + k$$

We factorize k.

$$P(k) = k(2k^2 + 3k + 1)$$

Note that $(2k^2 + 3k + 1) = (k + 1)(2k + 1)$.

$$P(k) = k(k+1)(2k+1)$$

QED.

Q4

Consider the following finite state automaton:

Present a grammar that recognizes exactly the same language.

Let G=(V,T,S,P) with $V=\{0,1,A,B,C,S\}, T=\{0,1\}$ and the set of productions: $P=\{S\to 0S,S\to 1A,A\to 0S,A\to 0B,B\to 0B,B\to \lambda,A\to 1C,C\to 1C,C\to \lambda\}$ This way, S can produce any number of 0s or go to s_1 by writing 1 and then having the nonterminal A. A can either go back to S with a 0 or it can go to 1C or 0B. When it is in B or C it can terminate (by going to the empty string lambda), or it can repeat B->0B (an infinite number of 0s) or repeat C->1C (an infinite number of 1s).