Questionably Bayesian Psychology

Corson N. Areshenkoff

University of Victoria

October 2, 2015

Overview

The Need for Bayesian Methods

Questionably Bayesian Factors

The Problem of (Weak) Priors

Section 1

The Need for Bayesian Methods

Haller & Krauss, 2002

An independent means t-test results in (t = 2.7, p = 0.01). Which of the following are true?

- ► You have absolutely disproved the null hypothesis.
- ► You have found the probability of the null hypothesis being true.
- ► You have absolutely proved your experimental hypothesis.
- You can deduce the probability of the experimental hypothesis being true.
- ► You know, if you decide to reject the null hypothesis, the probability that you are making the wrong decision.
- ▶ You have a reliable experimental finding in the sense that if, hypothetically, the experiment were repeated a great number of times, you would obtain a significant result on 99% of occasions.

Similar:

Oakes (1986) 97% Error rate

Falk and Greenbaum (1995) 87% Error rate

▶ Let X be a random sample of size n from a distribution with finite mean μ and variance σ^2 . Then (by central limit theorem)

$$\bar{X} \xrightarrow{d} N\left(\mu, \frac{\sigma^2}{n}\right)$$

▶ Let X be a random sample of size n from a distribution with finite mean μ and variance σ^2 . Then (by central limit theorem)

$$\bar{X} \xrightarrow{d} N\left(\mu, \frac{\sigma^2}{n}\right)$$

▶ So, if the true mean μ is zero, then \bar{X} is (approximately) normally distributed with mean 0 and standard deviation $\frac{\sigma}{\sqrt{n}}$.

▶ Let X be a random sample of size n from a distribution with finite mean μ and variance σ^2 . Then (by central limit theorem)

$$\bar{X} \xrightarrow{d} N\left(\mu, \frac{\sigma^2}{n}\right)$$

- ▶ So, if the true mean μ is zero, then \bar{X} is (approximately) normally distributed with mean 0 and standard deviation $\frac{\sigma}{\sqrt{n}}$.
- ▶ If this is unlikely, then "reject the null".

Setup:

- ▶ Police force in a city of 1,000,000 people with 100 criminals
- ► Lie detector with 99% accuracy
- $ightharpoonup H_0$: Person is innocent

- ► Test one person and find guilty.
- ▶ p-value?

Setup:

- ▶ Police force in a city of 1,000,000 people with 100 criminals
- ► Lie detector with 99% accuracy
- \triangleright H_0 : Person is innocent

- ► Test one person and find guilty.
- ▶ p-value?
 - ▶ 1% false positive rate, so p = 0.01.

Setup:

- ▶ Police force in a city of 1,000,000 people with 100 criminals
- ► Lie detector with 99% accuracy
- $ightharpoonup H_0$: Person is innocent

- ► Test one person and find guilty.
- ▶ p-value?
 - ▶ 1% false positive rate, so p = 0.01.
- ▶ Probability that person is actually guilty?

Setup:

- ▶ Police force in a city of 1,000,000 people with 100 criminals
- ► Lie detector with 99% accuracy
- \blacktriangleright H_0 : Person is innocent

- ► Test one person and find guilty.
- ▶ p-value?
 - ▶ 1% false positive rate, so p = 0.01.
- ▶ Probability that person is actually guilty?

$$P(H_1|D) = \frac{P(D|H_1)P(H_1)}{P(D)}$$

$$= \frac{0.99 \cdot 0.0001}{0.99 \cdot 0.0001 + 0.01 \cdot 0.9999}$$

$$\approx 0.001$$

The Case for Bayes

- ▶ Gives us what we want: The probability that a hypothesis is true.
- ► Allows us to specify more complex/realistic models.
- ► Allows us to incorporate prior information/research.

Section 2

Questionably Bayesian Factors

Popularity

- ► Google scholar reports 64,500 articles in psychology journals using or discussing Bayes Factors.
 - ▶ 10,900 since 2014
- ► Two of the most downloaded articles in the Journal of Mathematical Psychology are on Bayes Factors.

The Essence of Bayes

Want to estimate a parameter θ (say, the parameters of a regression model)

- 1. Start with prior information
- 2. Update with the data (the likelihood function)
- **3.** Posterior summarizes our new belief

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Questionably Bayesian Factors

Want to compare two models: M_0 and M_1 .

- ► Using Bayes theorem, we can compute the posterior odds of M₀ over M₁.
- ► Written as the product of prior odds and the Bayes factor, which updates the prior according to evidence contained in the data.

$$\frac{P(M_0|D)}{P(M_1|D)} = \frac{P(D|M_0)}{P(D|M_1)} \cdot \frac{P(M_0)}{P(M_1)}$$

BF Guidelines

Jeffreys (1961)

Bayes Factor	Evidence for M_0
< 1	Negative
$(1,10^{1/2})$	Barely worth mentioning
$(10^{1/2}, 10)$	Substantial
$(10, 10^{3/2})$	Strong
$(10^{3/2}, 10^2)$	Very strong
$> 10^2$	Decisive

Conceptual problems

- ► Bayes factor is not the posterior odds
 - ▶ Is not what we want to know: "Which model is more probable?"
- ▶ Reflects the evidence contained in the data alone
- ► Posterior odds are meaningless without an informative prior

Section 3

The Problem of (Weak) Priors