Année académique :2021/2022 Classe : TS2

SUITES NUMÉRIQUES

• Exercice 01:

On considère la suite (U_n) définie par $U_0 = 1$ et $U_{n+1} = 2U_n + an + b$.

- 1) Soit $V_n = \frac{1}{3}U_n + n$. Déterminer a et b pour que (V_n) soit une suite géométrique dont on précisera la raison et le premier terme.
- 2) a) Ecrire U_n et V_n en fonction de n.
 - b) Calculer la limite de V_n .

3) Calculer
$$S_n = \sum_{i=0}^n V_i = V_0 + V_1 + \dots + V_n$$
 puis $S_n' = \sum_{i=0}^n U_i = U_0 + U_1 + \dots + U_n$.

• Exercice 02 :

Soit
$$(U_n)$$
 et (V_n) les suites définies par :
$$\begin{cases} U_0 = 6 \\ U_{n+1} = \frac{1}{5}U_n + \frac{4}{5}, \end{cases} et V_n = U_n - 1$$

- 1) Calculer U₁, U₂, U₃, V₁, V₂, V₃.
- 2) Montrer que la suite (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
- 3) Calculer $\lim_{n \to +\infty} V_n$ et $\lim_{n \to +\infty} U_n$.
- 4) Exprimer $S_n = V_0 + V_1 + V_2 + V_3 + \dots + V_n$ et $S'_n = U_0 + U_1 + U_2 + U_3 + \dots + U_n$ en fonction de n.

• Exercice 03:

1) Soit
$$(w_n)$$
 la suite définie par :
$$\begin{cases} w_0 = 1 \\ w_{n+1} = \frac{w_n + 1}{w_n + 3}, \end{cases}$$

- a) Montrer par récurrence que : pour tout $n \in \mathbb{N}$, $0 \le w_n \le 1$.
- b) Démontrer que (w_n) est décroissante.
- c) En déduire que la suite (w_n) converge puis déterminer sa limite.
- 2) Soient (u_n) et (v_n) les suites définies par $u_0 = \frac{5}{2}$ et pour tout entier naturel :

$$\begin{cases} u_{n+1} = \frac{1}{3}u_n - n - \frac{4}{3} \\ v_n = u_n + \frac{3}{2}n - \frac{1}{4} \end{cases}$$

- a) Calculer u_1, u_2, v_0, v_1, v_2 .
- b) Montrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme.
- c) Exprimer v_n en fonction de n.
- d) Exprimer $S_n = v_0 + v_1 + v_2 + \dots + v_{n-1}$ en fonction de n.
- e) Calculer $\lim_{n \to +\infty} S_n$.

• Exercice 04:

- A. Soit (u_n) la suite réelle définie par U_0 fixé et pour tout $n \in \mathbb{N}$ $U_n = 1$, $05U_{n-1} + 1000$ et (V_n) la suite définie par $V_n = U_n + 20000$.
- 1) Démontrer que (V_n) est une suite géométrique.

Classe: TS2

Année académique :2021/2022

SUITES NUMÉRIQUES

- 2) Calculer V_n en fonction de V_0 et n. En déduire U_n en fonction de U_0 et n.
 - B. En Juillet 2012 la population électorale d'une commune était de 20.000 électeurs. Chaque année cette population électorale augmente de 5% et de plus, 1000 électeurs supplémentaires viennent s'y établir définitivement.
- 1) Préciser la population électorale en Juillet 2019 dans cette commune.
- 2) Etant donné que le taux d'abstention est de 20%, déterminer le nombre de votants dans cette commune en 2019.
 - Exercice 05: Soit (u_n) la suite définie par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{3}{5}u_n + 1 \end{cases}$ pour tout $n \in \mathbb{N}$
- 1) A l'aide d'un graphique, représenter les premiers termes de la suite (u_n) sur l'axe des abscisses et émettre une conjecture sur la limite éventuelle de la suite (u_n) .
- 2) a) Déterminer un réel a tel que la suite de terme général $v_n = u_n a$ soit une suite géométrique.
 - b) Exprimer v_n , puis u_n en fonction de n.
 - c) Démontrer que la suite (u_n) est convergente et préciser sa limite.
- 3) Soit (S_n) la suite définie par : $S_n = u_0 + u_1 + \cdots + u_n$
 - a) Exprimer S_n en fonction de n.
 - b) Etudier la convergence de la suite (S_n) .

Exercice 06 :

- 1) x, y et z sont, dans cet ordre, trois termes consécutifs d'une suite arithmétique. Calculer ces trois nombres, sachant que leur somme est 9 et la somme de leur carrée et 59.
- 2) a, b et c sont, dans cet ordre, trois termes consécutifs d'une suite géométrique croissante. Calculer ces trois nombres sachant que leur somme est 63 et la somme de leurs inverses est $\frac{7}{16}$.

• Exercice 07:

- 1) Soit (u_n) une suite arithmétique de raison r=3 et de premier terme u_1 , telle que $u_{15}=137$. Calculer u_1 et $S_{15}=\sum_{i=1}^{15}u_i$.
- 2) Soit (v_n) une suite arithmétique de raison r' et de premier terme v_0 , telle que $v_{19} = 39$ et $S_{19} = \sum_{i=0}^{19} v_i = 400$. Calculer v_0 et r'.
- 3) Résoudre dans \mathbb{R}^3 le système suivant où a, b et c sont en progression géométrique dans cet ordre.

$$\begin{cases} a+b+c = 14 \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{7}{8} \end{cases}$$

Année académique :2021/2022 Classe : TS2

SUITES NUMÉRIQUES

• Exercice 08:

1) Soit f la fonction définie sur
$$[0; +\infty[$$
 par $f(x) = \frac{1}{\sqrt{x^2 + 2}}$

a) Montrer que l'équation f(x) = x admet une unique solution α sur $[0; +\infty[$ et que $0,6 < \alpha < 0,7.$

b) Montrer que
$$\forall x \in [0, 1], |f'(x)| \le \frac{\sqrt{2}}{4}$$
.

2) Soit
$$(u_n)$$
 la suite définie par
$$\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases}$$

a) Montrer que $\forall n \in \mathbb{N}, 0 \le u_n \le 1$.

b) Montrer que pour tout
$$n \in \mathbb{N}$$
, $\left| u_{n+1} - \alpha \right| \leq \frac{\sqrt{2}}{4} \left| u_n - \alpha \right|$

c) En déduire que pour tout
$$n \in \mathbb{N}$$
, $\left| u_n - \alpha \right| \leq \left(\frac{\sqrt{2}}{4} \right)^n \left| u_0 - \alpha \right|$

d) En déduire que la suite (u_n) converge puis déterminer sa limite.

e) Montrer que
$$\alpha = \sqrt{\sqrt{2} - 1}$$
.

• Exercice 09:

Soit f la fonction définie sur $[-1; +\infty[$ par $f(x) = \sqrt{\frac{1+x}{2}}$.

1) Etudier les variations de f.

2) Soit
$$(u_n)$$
 la suite définie par
$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = f(u_n) \end{cases}$$

a) Montrer que $\forall n \in \mathbb{N}, 0 < u_n < u_{n+1} < 1$.

b) En déduire que la suite (u_n) est convergente puis déterminer sa limite.

c) Montrer que pour tout
$$x \in \left[-\frac{1}{2}; +\infty \right[, |f'(x)| \le \frac{1}{2}.$$

d) Démontrer que pour tout $n \in \mathbb{N}$, on a : $\left| u_{n+1} - 1 \right| \le \frac{1}{2} \left| u_n - 1 \right|$.

e) En déduire que pour tout
$$n \in \mathbb{N}$$
, on a : $\left| u_n - 1 \right| \le \left(\frac{1}{2} \right)^n \left| u_0 - 1 \right|$.

f) Retrouver la limite de la suite (u_n)

• Exercice 10:

On considère la suite $\left(U_n\right)$ définie par : $\begin{cases} U_0=0\\ U_{n+1}=\frac{2U_n+3}{U_n+4} \end{cases}.$

1. Montrer par récurrence que :

a.
$$\forall n \ge 1, 0 < U_n < 1.$$

Année académique :2021/2022 Classe : TS2

SUITES NUMÉRIQUES

- **b.** (U_n) est croissante.
- **2.** Soit (V_n) la suite définie par : $V_n = \frac{U_n 1}{U_n + 3}$.
 - a. Montrer que (V_n) est une suite géométrique ; préciser la raison et le premier terme.
 - **b.** En déduire l'expression de V_n puis celle de U_n en fonction de n.
 - **c.** Calculer $S_n = V_0 + V_1 + V_2 + \cdots + V_n$.
 - **d.** Déterminer $\lim_{n\to+\infty} V_n$ et $\lim_{n\to+\infty} S_n$.
 - Exercice 11:

Soit $\left(U_n\right)_{n\geq 1}$ la suite définie par : $\begin{cases} U_1\in\mathbb{R}\\ U_{n+1}=\frac{6+U_n}{2+U_n} \end{cases}.$

- 1. Montrer qu'il existe deux valeurs a et b de U_1 (a < b), pour lesquelles la suite est constante.
- **2.** Montrer que si $U_1 \neq a$ et $U_1 \neq b$, il en est de même pour U_n ; exprimer alors $\frac{U_{n+1} a}{U_{n+1} b}$ en fonction de $\frac{U_n a}{U_n b}$.
- 3. En déduire que la suite (V_n) définie par : $V_n = \frac{U_n a}{U_n b}$ est une suite géométrique dont on précisera la raison et le premier terme. Calculer $\lim_{n \to +\infty} V_n$

• Exercice 12:

Soient θ un réel tel que $:0 \le \theta \le \frac{\pi}{2}$ et $\left(U_n\right)$ la suite définie par $: \begin{cases} U_0 = 2cos\theta \\ U_{n+1} = \sqrt{2 + U_n} \end{cases}, \forall n \in \mathbb{N}$

- **1.** Calculer les trois premiers termes de la suite en fonction de θ . (On rappelle que $\forall x \in \mathbb{R}$, $\cos 2x = 2\cos^2 x 1$).
- **2.** Montrer par récurrence, $\forall n \in \mathbb{N}, \ U_n = 2\cos\left(\frac{\theta}{2^n}\right)$.
- **3.** Soit (V_n) la suite définie par : $\forall n \in \mathbb{N}, \ V_n = \frac{\theta}{2^n}$. Déterminer la limite de la suite (V_n) .
- **4.** En déduire que la suite (U_n) est convergente ; quelle est sa limite?

• Exercice 13:

Soit $a\in\mathbb{R}$ et $\left(U_n\right)$, la suite définie par : $\begin{cases} U_0=0,\,U_1=1\\ U_{n+1}=aU_n+(1-a)U_{n-1} \end{cases}$

Soit (V_n) la suite définie par : $V_n = U_{n+1} - U_n$.

- 1. Montrer que (V_n) est une suite géométrique.
- **2.** Exprimer V_n en fonction de n et a.
- **3.** En déduire l'expression de U_n en fonction de n et a.
- **4.** Comment choisir a pour que (U_n) soit convergente? Quelle est alors sa limite?