Fターム(参考) 3G016 AA06 AA19 BA28 BA36 BB05

BB18 BB22 CA04 CA06 CA13

CA14 CA47 CA48 CA52 CA56

CA57 DA01 DA22 DA23 GA00

3G065 CA00 DA04 EA03 EA07 GA46

JA04 JA09 JA11 KA02

3G092 AA01 AA11 BA01 DA01 DA04

DA09 DA14 DC03 DG05 DG09

EA01 EA02 EA12 EA22 EA25

FA24 FA25 FA50 GA04 GA05

GA06 GA11 HA01X HA06X

HF08Z

3G301 HA01 HA09 HA19 JA02 KA07

KA08 KA09 KA14 LA03 LA07

LB02 LC02 LC08 PA01Z

PA11Z PE10Z PF03Z

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Kenichi MACHIDA

Title: VARIABLE VALVE CONTROL APPARATUS AND

METHOD IN INTERNAL COMBUSTION ENGINE

Appl. No.: APPL_NO

Filing Date: 11/04/2003

Examiner: Unassigned

Art Unit: Unassigned

CLAIM FOR CONVENTION PRIORITY

Commissioner for Patents PO Box 1450 Alexandria, Virginia 22313-1450

Sir:

The benefit of the filing dates of the following prior foreign applications filed in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed.

In support of this claim, filed herewith are certified copies of said original foreign applications:

JAPAN Patent Application No. 2002-328593 filed 11/12/2002.

JAPAN Patent Application No. 2003-339720 filed 09/30/2003.

Respectfully submitted,

Pavan K. Agarwal

Attorney for Applicant Registration No. 40,888

Date November 4, 2003

FOLEY & LARDNER

Customer Number: 22428

Telephone: (202) 945-6162

Facsimile:

(202) 672-5399

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年11月12日

出 願 番 号 Application Number:

特願2002-328593

[ST. 10/C]:

[JP2002-328593]

出 願 人
Applicant(s):

株式会社日立ユニシアオートモティブ

特許庁長官 Commissioner, Japan Patent Office 2003年10月 1日

【書類名】

特許願

【整理番号】

102-0405

【提出日】

平成14年11月12日

【あて先】

特許庁長官殿

【国際特許分類】

F02D 45/00

【発明者】

【住所又は居所】

神奈川県厚木市恩名1370番地 株式会社日立ユニシ

アオートモティブ内

【氏名】

町田 憲一

【特許出願人】

【識別番号】

000167406

【氏名又は名称】

株式会社日立ユニシアオートモティブ

【代理人】

【識別番号】

100078330

【弁理士】

【氏名又は名称】

笹島 富二雄

【電話番号】

03-3508-9577

【手数料の表示】

【予納台帳番号】

009232

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9716042

【プルーフの要否】

要

【書類名】明細書

【発明の名称】内燃機関の可変動弁制御装置

【特許請求の範囲】

【請求項1】

吸気バルブのバルブ作動特性を目標バルブ特性となるように可変制御する内燃 機関の可変動弁制御装置であって、

機関運転状態に応じて前記吸気バルブの制御速度を変更することを特徴とする 内燃機関の可変動弁制御装置。

【請求項2】

吸気バルブのバルブ作動特性変化に対する機関出力トルクの応答が早い機関運転状態のときは、該機関出力トルクの応答が遅い機関運転状態のときより、前記吸気バルブの制御速度を遅くすることを特徴とする請求項1に記載の内燃機関の可変動弁制御装置。

【請求項3】

出力される制御値、または目標バルブ作動特性を補正して制御速度を変更する ことを特徴とする請求項1または請求項2に記載の内燃機関の可変動弁制御装置

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、内燃機関の吸気バルブのバルブ作動特性を可変制御する可変動弁制 御装置に関する。

[0002]

【従来の技術】

従来から、吸排気バルブのバルブリフト量を連続的に変える構成の可変動弁制 御装置を備え、運転状態に応じた最適な機関トルクを得るように吸気量を制御す るいわゆるノンスロットル制御を行う技術が知られている(特許文献 1 参照)。

[0003]

【特許文献1】

特開2001-182563号公報

[0004]

【発明が解決しようとする課題】

上記のように、吸気バルブのリフト量を変更して吸気量制御を行う場合、スロットル弁による吸気量制御のようにコレクタ容積による吸気充填遅れの影響を受けないため、ドライバのアクセル操作に対して非常に早い機関トルク応答を得ることができる。

[0005]

しかし、アクセル操作に対する応答が早すぎると、僅かなアクセル操作に対しても機関が反応するため、急発進・加速時や運転に不慣れなドライバがアクセル操作したときなどは、アクセル操作に即座に反応して機関出力が変化するため、ドライバの要求に見合った良好な運転性が得られないという問題があった。

[0006]

本発明は、このような課題に着目してなされたものであって、吸気バルブによる吸気量制御において、良好な運転性が得られるようにすることを目的とする。

[0007]

【課題を解決するための手段】

このため、本発明は、吸気バルブのバルブ作動特性を目標バルブ特性となるように可変制御する内燃機関の可変動弁制御装置で、機関運転状態に応じて前記吸気バルブの制御速度を変更することにより、バルブ作動特性が目標バルブ作動特性へ収束する速度が運転状態に応じて適切に設定され、もって、ドライバの要求に見合った良好な運転性が得られる。

[0008]

また、吸気バルブのバルブ作動特性変化に対する機関出力トルクの応答が早い機関運転状態のときは、該機関出力トルクの応答が遅い機関運転状態のときより、前記吸気バルブの制御速度を遅くすることにより、ドライバのアクセル操作に対する機関出力トルクの応答が早すぎて運転性が悪化することを防止できる。

[0009]

また、前記吸気バルブの制御速度の変更は、実際に出力される制御値、または

目標バルブ作動特性を補正して制御速度を変更するができる。

[0010]

【発明の実施の形態】

以下、本発明の実施の形態を図に基づいて説明する。

図1は、実施形態における車両用内燃機関の構成図であり、内燃機関101の 吸気管102には、スロットルモータ103aでスロットルバルブ103bを開 閉駆動する電子制御スロットル104が介装され、該電子制御スロットル104 及び吸気バルブ105を介して、燃焼室106内に空気が吸入される。

[0011]

燃焼排気は燃焼室106から排気バルブ107を介して排出され、フロント触媒108及びリア触媒109で浄化された後、大気中に放出される。

前記排気バルブ107は、排気側カム軸110に軸支されたカム111によって一定のバルブリフト量及びバルブ作動角を保って開閉駆動されるが、吸気バルブ105は、可変バルブ機構VEL112によってバルブリフト量及びバルブ作動角が連続的に変えられるようになっている。なお、バルブリフト量とバルブ作動角とは、一方の特性が決まれば他方の特性も決まるように同時に変えられる。

[0012]

マイクロコンピュータを内蔵するコントロールユニット114は、スロットルバルブ103bの開度及び吸気バルブ105の開特性によってアクセル開度AC Cに対応する目標吸入空気量が得られるように、アクセルペダルセンサAPS116で検出されるアクセルペダルの開度等に応じて前記電子制御スロットル104及び可変バルブ機構VEL112を制御する。

[0013]

前記コントロールユニット114には、前記アクセルペダルセンサAPS116の他、機関101の吸入空気量Qを検出するエアフローメータ115、クランク軸から回転信号を取り出すクランク角センサ117、スロットルバルブ103bの開度TVOを検出するスロットルセンサ118,機関101の冷却水温度Twを検出する水温センサ119等からの検出信号が入力される。

$[0\ 0\ 1\ 4]$

また、各気筒の吸気バルブ105上流側の吸気ポート130には、電磁式の燃料噴射弁131が設けられ、該燃料噴射弁131は、前記コントロールユニット114からの噴射パルス信号によって開弁駆動されると、所定圧力に調整された燃料を吸気バルブ105に向けて噴射する。

[0015]

図2~図4は、前記可変バルブ機構VEL112の構造を詳細に示すものである。

図2~図4に示す可変バルブ機構VELは、一対の吸気バルブ105,105と、シリンダヘッド11のカム軸受14に回転自在に支持された中空状のカム軸13(駆動軸)と、該カム軸13に軸支された回転カムである2つの偏心カム15,15(駆動カム)と、前記カム軸13の上方位置に同じカム軸受14に回転自在に支持された制御軸16と、該制御軸16に制御カム17を介して揺動自在に支持された一対のロッカアーム18,18と、各吸気バルブ105,105の上端部にバルブリフター19,19を介して配置された一対のそれぞれ独立した揺動カム20,20とを備えている。

[0016]

前記偏心カム15,15とロッカアーム18,18とは、リンクアーム25,25によって連係され、ロッカアーム18,18と揺動カム20,20とは、リンク部材26,26によって連係されている。

$[0\ 0\ 1\ 7]$

上記ロッカアーム18,18,リンクアーム25,25,リンク部材26,2 6が伝達機構を構成する。

前記偏心カム15は、図5に示すように、略リング状を呈し、小径なカム本体15aと、該カム本体15aの外端面に一体に設けられたフランジ部15bとからなり、内部軸方向にカム軸挿通孔15cが貫通形成されていると共に、カム本体15aの軸心Xがカム軸13の軸心Yから所定量だけ偏心している。

[0018]

また、前記偏心カム15は、カム軸13に対し前記バルブリフター19に干渉 しない両外側にカム軸挿通孔15cを介して圧入固定されていると共に、カム本

[0019]

前記ロッカアーム18は、図4に示すように、略クランク状に屈曲形成され、中央の基部18aが制御カム17に回転自存に支持されている。

また、基部18aの外端部に突設された一端部18bには、リンクアーム25の先端部と連結するピン21が圧入されるピン孔18dが貫通形成されている一方、基部18aの内端部に突設された他端部18cには、各リンク部材26の後述する一端部26aと連結するピン28が圧入されるピン孔18eが形成されている。

[0020]

前記制御カム 17 は、円筒状を呈し、制御軸 16 外周に固定されていると共に、図 2 に示すように軸心 P 1 位置が制御軸 16 の軸心 P 2 から α だけ偏心している。

[0021]

前記揺動カム20は、図2及び図6,図7に示すように略横U字形状を呈し、略円環状の基端部22にカム軸13が嵌挿されて回転自在に支持される支持孔22aが貫通形成されていると共に、ロッカアーム18の他端部18c側に位置する端部23にピン孔23aが貫通形成されている。

[0022]

また、揺動カム20の下面には、基端部22側の基円面24aと該基円面24 aから端部23端縁側に円弧状に延びるカム面24bとが形成されており、該基 円面24aとカム面24bとが、揺動カム20の揺動位置に応じて各バルブリフ ター19の上面所定位置に当接するようになっている。

[0023]

即ち、図8に示すバルブリフト特性からみると、図2に示すように基円面24 a の所定角度範囲 θ 1 がベースサークル区間になり、カム面24 b の前記ベースサークル区間 θ 1 から所定角度範囲 θ 2 が所謂ランプ区間となり、更に、カム面24 b のランプ区間 θ 2 から所定角度範囲 θ 3 がリフト区間になるように設定されている。

[0024]

また、前記リンクアーム25は、円環状の基部25aと、該基部25aの外周 面所定位置に突設された突出端25bとを備え、基部25aの中央位置には、前 記偏心カム15のカム本体15aの外周面に回転自在に嵌合する嵌合穴25cが 形成されている一方、突出端25bには、前記ピン21が回転自在に挿通するピ ン孔25dが貫通形成されている。

[0025]

更に、前記リンク部材26は、所定長さの直線状に形成され、円形状の両端部26a,26bには前記ロッカアーム18の他端部18cと揺動カム20の端部23の各ピン孔18d,23aに圧入した各ピン28,29の端部が回転自在に挿通するピン挿通孔26c,26dが貫通形成されている。

[0026]

尚、各ピン21,28,29の一端部には、リンクアーム25やリンク部材26の軸方向の移動を規制するスナップリング30,31,32が設けられている。

[0027]

上記構成において、制御軸16の軸心P2と制御カム17の軸心P1との位置 関係によって、図6,7に示すように、バルブリフト量が変化することになり、 前記制御軸16を回転駆動させることで、制御カム17の軸心P1に対する制御 軸16の軸心P2の位置を変化させる。

[0028]

前記制御軸16は、図10に示すような構成により、DCサーボモータ(アクチュエータ)121によって所定回転角度範囲内で回転駆動されるようになっており、前記制御軸16の作動角を前記アクチュエータ121で変化させることで、吸気バルブ105のバルブリフト量及びバルブ作動角が連続的に変化する(図9参照)。

[0029]

図10において、DCサーボモータ121は、その回転軸が制御軸16と平行になるように配置され、回転軸の先端には、かさ歯車122が軸支されている。

一方、前記制御軸16の先端に一対のステー123a, 123bが固定され、一対のステー123a, 123bの先端部を連結する制御軸16と平行な軸周りに、ナット124が揺動可能に支持される。

[0030]

前記ナット124に噛み合わされるネジ棒125の先端には、前記かさ歯車122に噛み合わされるかさ歯車126が軸支されており、DCサーボモータ121の回転によってネジ棒125が回転し、該ネジ棒125に噛み合うナット124の位置が、ネジ棒125の軸方向に変位することで、制御軸16が回転されるようになっている。

[0031]

ここで、ナット124の位置をかさ歯車126に近づける方向が、バルブリフト量が小さくなる方向で、逆に、ナット124の位置をかさ歯車126から遠ざける方向が、バルブリフト量が大きくなる方向となっている。

[0032]

前記制御軸16の先端には、図10に示すように、制御軸16の作動角を検出するポテンショメータ式の作動角センサ127が設けられており、該作動角センサ127で検出される実際の作動角が目標作動角に一致するように、前記コントロールユニット114が前記DCサーボモータ121をフィードバック制御する。ここで、既述したようにバルブリフト量とバルブ作動角とは同時に変えられるので、作動角センサ127はバルブ作動角を検出すると同時にバルブリフト量を検出するものである。

[0033]

かかる可変バルブ機構により吸気バルブ105のバルブ作動特性を変更して吸 気量を制御するが、本発明では機関運転状態に応じて所望の機関出力トルク応答 が得られるように、前記吸気バルブ105の制御速度を変更する。

[0034]

以下に、コントロールユニット114により、機関運転状態に応じて前記吸気 バルブ105の制御速度を変更しつつ行う吸気量制御の第1実施形態を、図11 のブロック図に従って説明する。

[0035]

ブロック1 (図ではB1と記す。以下同様)では、アクセルペダルセンサ11 6により検出されるアクセル開度ACCとクランク角センサ117によって検出された機関回転速度Neとに基づいて、目標トルクに対応した吸気バルブ105 の目標作動角TGVEL0を設定する。

[0036]

ブロック2では、機関回転速度Neに基づいて制御速度を決める後述する加重平均演算の前記最新の(現在の運転状態に対応する)目標作動角TGVEL0に対する重み係数KAJUを設定する。ここで、該重み係数KAJUは、図示のように高速域では1に設定されるが、低速になるほど小さくなるように設定されている。

[0037]

ブロック3では、前記目標作動角TGVEL0に重み係数KAJUを乗じる。 一方、ブロック4から出力された定数1からブロック5で前記重み係数KAJUが減算され、目標作動角の前回値TGVELzに対する重み係数(=1-KAJU)が算出される。

[0038]

ブロック6では、目標作動角の前回値TGVELzを算出し、ブロック7では、前記前回値TGVELzに前記重み係数(=1-KAJU)を乗じる。

ブロック8では、ブロック3で算出された値とブロック7で算出された値とを加算する。すなわち、最新の目標作動角TGVEL0に重み係数KAJUを乗じた値と、前回値TGVELzに前記重み係数(=1-KAJU)を乗じた値とを加算して加重平均値を算出し、最終的に目標作動角TGVELとして算出する(次式参照)。

[0039]

 $TGVEL = TGVELO \times KAJU + TGVELz \times (1 - KAJU)$

ブロック9では、前記目標作動角TGVELと前記作動角センサ127で検出された実際の作動角VELCOMとに基づいてPID制御により制御量VELDUTYを設定し、前記DCサーボモータ121に出力する。

[0040]

上記構成によれば、高速域では最新の目標作動角TGVEL0に対する重み係数 KAJU=1、前回値TGVELzに対する重み係数 (1-KAJU)=0となって、実質的には加重平均演算は行われず、最新の目標作動角TGVEL0がそのまま最終の目標作動角TGVEL0として出力される。一方、低速になるほど重み係数KAJUが減少し、重み係数 (1-KAJU) が増大するので、最新の目標作動角TGVEL0に対して、出力される目標作動角TGVEL0遅れが大きくなる。

[0041]

図12は、スロットル制御と吸気バルブ制御との体積効率の応答特性で、低速時(図示A)と高速時(図示B)の場合を示し、図から明らかなように、高速時はコレクタ容積分の吸気のシリンダへの吸入が速やかに終了するので、目標体積効率へ収束する応答性はスロットル制御と吸気バルブ制御とで同等であるが、低速時はコレクタ容積分の吸気のシリンダへの吸入に時間を要するのでスロットル制御では吸気バルブ制御に対して遅れが大きくなる。換言すれば、吸気バルブ制御での応答が早すぎることとなり、運転性を悪化させてしまう。

[0042]

そこで、本実施形態のように低速時には目標作動角TGVELの遅れを大きくすることにより、実際に制御される作動角VELCOMの遅れが大きくなり、スロットル制御に近い応答特性が得られ、ドライバの要求に見合った運転性(発進・加減速性)が得られる。また、アクセル操作にゆとりを持たせることができ、この面からも走行中の運転性を向上させることができる。

$[0\ 0\ 4\ 3]$

次に、第2実施形態を、図13のブロック図に従って説明する。

前記第1実施形態では、目標作動角に遅れを持たせることにより制御速度を変更する構成としたが、第2実施形態では制御値に直接遅れを持たせて制御速度を変更する構成とする。

[0044]

ブロック11では、前記図11のブロック1と同じくアクセル開度と機関回転

速度に基づいて目標作動角TGVELを設定し、この目標作動角TGVELが、 PID制御により制御量VELDUTYを設定するブロック12にそのまま入力 される。

[0045]

一方、ブロック13では前記PID制御における比例ゲインPを機関回転速度 Neに基づいて設定する。ここで、該比例ゲインPは、図示のように低速になる ほど小さくなるように設定されている。

[0046]

上記のように機関回転速度Neに基づいて可変に設定された比例ゲインPe、ブロック 14 , 15 で設定された一定の積分ゲインI 、微分ゲインDが前記ブロック 12 に入力される。

[0047]

そして、ブロック12では、前記目標作動角TGVELと前記作動角センサ127で検出された実際の作動角VELCOMとに基づいて、前記比例ゲインP、積分ゲインI、微分ゲインDを用いてPID制御により制御量VELDUTYを設定し、前記DCサーボモータ121に出力する。

[0048]

このようにすれば、低速時には小さめに設定された比例ゲインPにより目標作動角への収束を遅らせるように、制御量VELDUTYが遅れを大きくして設定される。したがって、第1実施形態と同様、実際に制御される作動角VELCO Mの遅れが大きくなり、スロットル制御に近い応答特性が得られ、ドライバの要求に見合った運転性(発進・加減速性)が得られると共に、アクセル操作にゆとりを持たせることで走行中の運転性を向上させることができる。

[0049]

また、以上示した実施形態では機関回転速度によって機関出力トルクの応答に 応じた制御速度に変更する構成としたが、機関出力トルクの検出値を直接用いて 制御速度を変更する構成としてもよい。

[0050]

また、図14に示すように、アクセル開度ACCと機関回転速度Neに基づい

て目標トルク相当の目標吸入空気量を設定し、該目標吸入空気量に遅れ補正を施 し、補正した目標吸入空気量によって目標作動角を算出する構成としてもよく、 吸気バルブのリフト量制御をきめ細かく行うことができる。

[0051]

更に、上記実施形態から把握し得る請求項以外の技術的思想について、以下に その効果と共に記載する。

(イ)請求項3に記載の内燃機関の可変動弁制御装置において、目標トルク相当の目標吸入空気量に基づいて目標バルブ作動特性を設定する構成であり、目標吸入空気量に遅れ補正を行い、補正した目標吸入空気量によって目標バルブ作動特性を算出することを特徴とする。

[0052]

このようにすれば、補正した目標吸入空気量によって目標作動角を算出することにより、吸気バルブのバルブ作動特性をきめ細かく可変制御することができる

[0053]

(ロ)請求項2、請求項3及び上記(イ)に記載の可変動弁制御装置において、機関出力トルク応答が早い機関運転状態は、機関回転速度が所定値以下の状態であることを特徴とする。

$[0\ 0\ 5\ 4]$

このようにすれば、機関回転速度に基づいて制御速度を容易に変更することができる。

【図面の簡単な説明】

- 【図1】本発明に係る可変動弁制御装置を備えた内燃機関のシステム構成図
- 【図2】可変バルブ機構を示す断面図(図3のA-A断面図)。
- 【図3】上記可変バルブ機構の側面図。
- 【図4】上記可変バルブ機構の平面図。
- 【図5】上記可変バルブ機構に使用される偏心カムを示す斜視図。
- 【図6】上記可変バルブ機構の低リフト時の作用を示す断面図(図3のB-

B断面図)。

- 【図7】上記可変バルブ機構の高リフト時の作用を示す断面図(図3のB-B断面図)。
- 【図8】上記可変バルブ機構における揺動カムの基端面とカム面に対応した バルブリフト特性図。
 - 【図9】上記可変バルブ機構のバルブタイミングとバルブリフトの特性図。
- 【図10】上記可変バルブ機構における制御軸の回転駆動機構を示す斜視図
 - 【図11】第1実施形態における吸気バルブ制御のブロック図。
- 【図12】スロットル制御と吸気バルブ制御との体積効率の応答特性で、低 速時(図示A)と高速時(図示B)の場合を示す。
 - 【図13】第2実施形態における吸気バルブ制御のブロック図。
 - 【図14】第3実施形態における吸気バルブ制御のブロック図。

【符号の説明】

- 13…カム軸 15…偏心カム 16…制御軸 17…制御カム
- 18…ロッカアーム 20…揺動カム 25…リンクアーム 101
- …内燃機関 104…電子制御スロットル 105…吸気バルブ 112
- …可変バルブ機構 114…コントロールユニット 115…エアフローメ
- ータ 116…アクセルペダルセンサ 117…クランク角センサ
- 118…スロットルセンサ 121…DCサーボモータ(アクチュエータ
- 127…作動角センサ 130…吸気ポート

【書類名】 図面

【図1】

[図2]

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【書類名】 要約書

【要約】

【課題】吸気バルブの作動特性を変化させて吸気量を制御する方式で、低速域での出力応答性を緩やかにして良好な運転性を確保する。

【解決手段】アクセル開度と機関回転速度に基づいて吸気バルブの目標作動角(バルブリフト量)を設定しつつ(B1)、加重平均演算を行ない(B3~B8)、機関回転速度が低い領域では、前記加重平均演算における目標作動角の最新設定値の重みKAJUを小さくする(B2)。

【選択図】 図11

特願2002-328593

出願人履歴情報

識別番号

[000167406]

1. 変更年月日 [変更理由]

1993年 3月11日

住所

名称変更

氏 名

神奈川県厚木市恩名1370番地

株式会社ユニシアジェックス

2. 変更年月日

2002年10月15日

[変更理由]

名称変更

住 所 名

神奈川県厚木市恩名1370番地

株式会社日立ユニシアオートモティブ