

JUNIOR CERTIFICATE EXAMINATION, 2011

MATHEMATICS – HIGHER LEVEL

PAPER 2 (300 marks)

MONDAY, 13 JUNE – MORNING, 9.30 to 12.00

Attempt ALL questions.

Each question carries 50 marks.

Graph paper may be obtained from the superintendent.

The symbol Zindicates that supporting work <u>must</u> be shown to obtain full marks.

1. (a) The diagram shows two pulley wheels of equal size, connected by a drive belt.

The radius of each wheel is 7 cm and the distance between the centres is 28 cm.

- Calculate the length of the belt.Give your answer correct to the nearest whole number.
- **(b)** The diagram shows a solid cylinder of diameter 54 cm and of height 70 cm.

A cone, of the same diameter and height as the cylinder, is cut from inside the cylinder.

- (i) \angle Calculate the volume of the cylinder. Give your answer in terms of π .
- (ii) \angle Calculate the volume of the cone. Give your answer in terms of π .

(c) The diagram, not to scale, represents a shot-put zone in an athletics stadium.

The area of *CDE* is a quarter of the area of a disc of centre *C* and of radius 100 m.

The shot-put zone consists of a throwing zone and a landing zone.

The throwing zone (shaded) is a disc of centre *C* and of radius 1 m.

(ii) Zealculate the area of the throwing zone, correct to two decimal places.

The landing zone is the unshaded area ABDE, which is part of CDE.

- **2.** (a) X(-3, 1) and Y(4, -2) are two points.
 - Find the length of the line segment [XY].

 Give your answer in surd form.
 - **(b)** The diagram shows the gable end of a house.

The total height is 7 m.

The height to roof level is 4 m, i.e. |AE| = 4 m.

A is the point (1, 0).

B is the point (9, 0).

- (ii) \angle Find the slope of the rafter [ED].
- (iii) Find the area of the gable.
- (c) The line k passes through the point P(3, 2). k is perpendicular to the line k: 2x + 3y = -1.
 - (i) \angle Find the equation of k.
 - (ii) \angle Find the coordinates of the image of P by an axial symmetry in l.

3. (a) In the diagram, $|\angle DBC| = 50^{\circ}$.

 \angle Find the value of x.

- (b) (i) Prove that if two sides of a triangle are equal in measure, then the angles opposite these sides are equal in measure.
 - (ii) The triangle ABC is isosceles with |AC| = |BC|. The triangle ADC is also isosceles with |AD| = |CD|. $|\angle ACB| = 40^{\circ}$.

 \angle Find $|\angle DAB|$ and $|\angle ADB|$.

- (c) AB is parallel to CD. BC and AD intersect at the point E.
 - (i) Prove that the triangles ABE and CDE are equiangular.

|AB| = 12 cm, |BE| = 8 cm and |CD| = 7 cm.

(ii) \angle Find |EC| correct to one decimal place.

4. (a) X, Y and Z are points on a circle with centre C. $|\angle YXZ| = 25^{\circ}$.

$$\angle$$
 Find $|\angle XZY|$.

- (b) Prove that the measure of the angle at the centre of the circle is twice the measure of the angle at the circumference, standing on the same arc.
- (c) The quadrilateral *ABDE* has diagonals [*AD*] and [*BE*] intersecting at *C*. *C* is the midpoint of both [*AD*] and [*BE*].

- (i) \angle Prove that $\triangle ECD$ is congruent to $\triangle ACB$.
- (ii) \angle Hence, prove that ABDE is a parallelogram.

5. (a) ABC is a right angled triangle.

$$|\angle ACB| = 60^{\circ}$$
 and $|AC| = 10$ cm.

Calculate the length of [AB], correct to two decimal places.

(b) In the diagram MNO is a triangle with [OP] perpendicular to [MN]. |MP| = 10 cm, |ON| = 30 cm and $|\angle PMO| = 65^{\circ}$.

Calculate

(i) $\angle OP$, correct to one decimal place

- (ii) $\angle MON$, correct to one decimal place.
- (c) A boat sails due east from the base A of a 30 m high lighthouse, [AD].
 At the point B the angle of depression of the boat from the top of the lighthouse is 68°.
 Ten seconds later the boat is at the point C and the angle of depression is now 33°.
 - (i) \angle Find |BC|, the distance the boat has travelled in this time.
 - (ii) Calculate the average speed at which the boat is sailing between B and C.
 Give your answer in metres per second, A correct to one decimal place.

6. (a) The mean of 7, 2, x, 15 and 5 is 9.

 \angle Find the value of x.

(b) The results obtained by 200 students in an examination are recorded in the following grouped frequency distribution.

Mark	0-20	20 – 40	40 – 50	50 – 60	60 – 70	70 – 80	80 – 100
Number of students	20	36	36	52	30	14	12

[Note: 20 – 40 means 20 or more but less than 40, etc.]

- (i) Z Draw a cumulative frequency table.
- (iii)

 If 50% of the students passed, use your ogive to estimate the pass mark.
- (c) 130 people were surveyed as they were leaving a shop to see how much they had just spent in the shop. The results are recorded in the following table.

Amount spent (€)	0 - 20	20 – 30	30 – 40	40 – 50	50 – 100
No. of people	60	10	5	25	30

[Note: 20 - 30 means 20 or more but less than 30, etc.]

- (i) Zero Draw a histogram to illustrate the data in the above table.
- (ii) A Taking mid-interval values, calculate the mean amount of money spent in the shop. Give your answer correct to the nearest euro.
- (iii) What is the maximum number of people who could have spent less than the mean?

Blank Page