Math 55a, Assignment #1, Sept. 19, 2003

Peano's Axioms. The five axioms of Giuseppe Peano are as follows.

- (1) The set \mathbb{N} of natural numbers contains an element 1.
- (2) There is an *immediate successor* $x' \in \mathbb{N}$ defined for every element $x \in \mathbb{N}$.
- (3) 1 is not an immediate successor of any element of \mathbb{N} .
- (4) Two distinct elements of \mathbb{N} have distinct immediate successors.
- (5) If a subset E of \mathbb{N} contains 1 and contains the immediate successor of every one of its elements, then E must be all of \mathbb{N} .

Problem 1. Use the five axioms of Guiseppe Peano to show that an element x of \mathbb{N} is the immediate successor of some element of \mathbb{N} if and only if it is not equal to 1. (Intuitively, this simply says that x-1 is a natural number if and only if x is a natural number different from 1.)

Problem 2. Addition in \mathbb{N} is defined by x+1=x' and x+y'=(x+y)'. Use the five axioms of Giuseppe Peano to show that addition is commutative in the sense that x+y=y+x for any $x,y\in\mathbb{N}$ according to the definition of addition defined above. (Of course, this is just the commutative law for addition of natural numbers.)

Problem 4. Let k be a positive integer. Let p_1, \dots, p_k be distinct prime numbers and n_1, \dots, n_k be positive integers. Let r be a prime number. Let $m = p_1^{n_1} \cdots p_k^{n_k}$. Assume that one of n_1, \dots, n_k is not divisible by r. Show that the r-th root of m is irrational.

Problem 5. Let E be a countable set of distinct real numbers $\{a_n\}_{n=1}^{\infty}$ with both an upper bound and a lower bound. For $k \in \mathbb{N}$ let $E_k = \{a_n\}_{n=k}^{\infty}$ and $b_k = \sup E_k$. Let $F = \{b_k\}_{k=1}^{\infty}$ and $c = \inf F$. Show that for every $\varepsilon > 0$ there exist at most a finite number of elements x of E with $x > c + \varepsilon$ and there exist an infinite number of elements y of E with $y > c - \varepsilon$.

Problem 6. Let E, F, G be subsets of the set $\mathbb{R}_{>0}$ of all positive real numbers such that both E and F admit an upper bound and G admits a positive number as a lower bound. Let E+F be the set of all positive numbers x+y with $x \in E$ and $y \in F$. Let $E \ominus F$ be the set of all real numbers x-y with

 $x \in E$ and $y \in F$. Let $E \cdot F$ be the set of all positive numbers $x \cdot y$ with $x \in E$ and $y \in F$. Let $\frac{E}{G}$ be the set of all positive numbers $\frac{x}{z}$ with $x \in E$ and $z \in G$. Verify the following relations.

$$\sup (E + F) = \sup E + \sup F.$$

$$\sup (E \ominus F) = \sup E - \inf F.$$

$$\sup (E \cdot F) = (\sup E) (\sup F).$$

$$\sup \left(\frac{E}{G}\right) = \frac{\sup E}{\inf G}.$$

Problem 7. A (Dedekind) cut (of the set $\mathbb{Q}_{>0}$ of all positive rational numbers) is defined as a nonempty proper subset E of $\mathbb{Q}_{>0}$ not containing its least upper bound such that $x < y, y \in E \Rightarrow x \in E$. The product $E \cdot F$ of two cuts E and F is defined as the cut consisting of all elements $x \cdot y$ with $x \in E$ and $y \in F$. Let 1 be the cut consisting of all rational number x with 0 < x < 1. Let E^F the cut consisting of all positive rational numbers z with $z < x^y$ for some $x \in E$ and some $y \in F$.

- (a) Verify that for every cut E there exists a cut F such that $E \cdot F = 1$.
- (b) Verify that for any three cuts E, F, G the two cuts $(E^F)^G$ and $E^{(F\cdot G)}$ are equal.

Definition of Metrics of Fields. Let F be a field. A function $\varphi: F \to \mathbb{R}$ is called a metric of the field F if the following properties hold.

- (1) (positivity) $\varphi(x) > 0$ for $0 \neq x \in F$ and $\varphi(0) = 0$.
- (2) (triangle inequality) $\varphi(x+y) \leq \varphi(x) + \varphi(y)$.
- (2) (multiplicativity) $\varphi(xy) = \varphi(x) \varphi(y)$.

A metric φ of the field F is called *nontrivial* if $\varphi(x) \neq 1$ for some $0 \neq x \in F$. A metric φ of the field F is called *non-Archimedean* if the following stronger form of the triangle inequality $\varphi(x+y) \leq \max(\varphi(x), \varphi(y))$ holds for $x,y \in F$. Otherwise, it is called *Archimedean*. A metric φ of a field F is non-Archimedean if and only if $\varphi(n \cdot 1) \leq 1$ for every element of $n \in \mathbb{N}$, where the factor 1 in $n \cdot 1$ is the unit element of the field F (and $n \cdot 1$ can be alternatively described as the sum of n copies of the unit element 1 of F.)

Problem 8. Show that a metric φ of a field F is non-Archimedean if and only if $\varphi(n \cdot 1) \leq 1$ for every element of $n \in \mathbb{N}$, where the factor 1 in $n \cdot 1$ is the unit element of the field F (and $n \cdot 1$ can be alternatively described as the sum of n copies of the unit element 1 of F.)

Problem 9. Show that every nontrivial Archimedean metric φ of the field \mathbb{Q} of all rational numbers must of the form $\varphi(x) = |x|^{\gamma}$ for some $0 < \gamma \le 1$.

Hint: Choose $a \in \mathbb{N}$ such that $\varphi(a) > 1$ and choose $0 < \gamma \le 1$ with $\varphi(a) = a^{\gamma}$. For any $n \in \mathbb{N}$, by expressing $a = \sum_{j=1}^k c_j a^j$ with $0 \le c_j < a$ and applying φ to both sides, show that $\varphi(n) \le C n^{\gamma}$ for some constant C independent of n. Replacing n by n^m for m sufficiently large m shows that C can be taken to be 1. Applying φ to the special case $n = a^k - b$ with $0 < b \le a^k - a^{k-1}$ to conclude that $\varphi(n) \ge C' n^{\gamma}$ for some constant C' independent of n. Replacing n by n^m for a sufficiently large m shows that C' can be taken to be 1.

Problem 10. For every prime number p and any $0 < \theta < 1$, let $\varphi_{p,\theta}$ be the metric of the field \mathbb{Q} of all rational numbers defined by $\varphi_{p,\theta}\left(p^{\ell}\frac{m}{n}\right) = \theta^{\ell}$ for all integers m, n, ℓ with $n \neq 0$ and m, n both indivisible by p. Show that every nontrivial non-Archimedean metric φ of the field \mathbb{Q} of all rational numbers must of the form $\varphi = \varphi_{p,\theta}$ for some prime number p and some $0 < \theta < 1$.

Hint: Choose a prime number p with $\varphi(p) < 1$. Using the existence of $a, b \in \mathbb{Z}$ with $1 = ap^k + bq^\ell$ for any $k, \ell \in \mathbb{N}$ and any prime number $q \neq p$ to show $\varphi(q) = 1$. Apply φ to $p^{\ell} \frac{m}{n}$.

Problem 11. A norm $\psi(\cdot)$ which makes \mathbb{Q} is a normed vector space over \mathbb{Q} must be of the form $\psi(x) = C|x|$ for some positive constant C. More precisely, if $\psi: \mathbb{Q} \to \mathbb{R}_{\geq 0}$ such that, for $x, y \in \mathbb{Q}$,

- (i) $\psi(x) \ge 0$,
- (ii) $\psi(x) = 0$ if and only if x = 0,
- (iii) $\psi(\alpha x) = |\alpha| \psi(x)$ for $\alpha \in \mathbb{Q}$,
- (iv) $\psi(x+y) \le \psi(x) + \psi(y)$,

then there exists a positive number C such that $\psi(x) = C|x|$ for $x \in \mathbb{Q}$.

Problem 12. (This problem on metrics is taken from one method developed for the comparison of DNA segments.) Let \mathcal{A} be a finite set of objects which we call an alphabet (in practice, the 20-letter amino acid alphabet of proteins). Let d(a,b) be a distance function on \mathcal{A} for $a,b \in \mathcal{A}$ (in practice, the cost of a mutation from a to b). Let g(a) be a positive-valued function on \mathcal{A} for $a \in \mathcal{A}$ (in practice, the positive cost of inserting or deleting the letter a). For two finite sequences $\mathbf{a} = (a_1, a_2, \dots, a_m)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$, not necessarily of the same length, define $D(\mathbf{a}, \mathbf{b})$ by induction on m and n, as follows.

$$D(\mathbf{a}, \mathbf{b}) = 0 \quad \text{if } m = n = 0,$$

$$D(\mathbf{a}, \mathbf{b}) = \sum_{k=1}^{n} g(b_k) \quad \text{if } m = 0 \text{ and } n > 0,$$

$$D(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^{m} g(a_j) \quad \text{if } m > 0 \text{ and } n = 0,$$

$$D(\mathbf{a}, \mathbf{b}) = \min(D(\mathbf{a}', \mathbf{b}) + g(a_m), D(\mathbf{a}', \mathbf{b}') + d(a_m, b_n), D(\mathbf{a}, \mathbf{b}') + g(b_n))$$

$$\text{if } m > 0 \text{ and } n > 0,$$

where $\mathbf{a}' = (a_1, a_2, \dots, a_{m-1})$ and $\mathbf{b}' = (b_1, b_2, \dots, b_{m-1})$. Verify that $D(\cdot, \cdot)$ is a metric on the space of all finite sequences of letters of the alphabet \mathcal{A} .

Problem 13. (#7 on p.22 of Rudin's book) Fix b > 1, y > 0, and prove that there is a unique real x such that $b^x = y$, by completing the following outline. (This x is called the *logarithm of* y *to the base* b.)

- (a) For any positive integer $n, b^n 1 \ge n(b-1)$.
- (b) Hence $b 1 \ge n \left(b^{\frac{1}{n}} 1 \right)$.
- (c) If t > 1 and $n > \frac{b-1}{t-1}$, then $b^{\frac{1}{n}} < t$.
- (d) If w is such that $b^w < y$, then $b^{w+\frac{1}{n}} < y$ for sufficiently large n; to see this, apply part (c) with $t = y \cdot b^{-w}$.
- (e) If $b^w > y$, then $b^{w-\frac{1}{n}} > y$ for sufficiently large n.
- (f) Let A be the set of all w such that $b^w < y$, and show that $x = \sup A$ satisfies $b^x = y$.
- (g) Prove that this x is unique.

Problem 14. Let a_1, \dots, a_n and b_1, \dots, b_n be complex numbers. Verify the following identity.

$$\left| \sum_{k=1}^{n} a_k \overline{b_k} \right|^2 + \sum_{1 \le j < k \le n} |a_j b_k - a_k b_j|^2 = \left(\sum_{j=1}^{n} |a_j|^2 \right) \left(\sum_{k=1}^{n} |b_j|^2 \right).$$

Use it to prove Schwarz's inequality

$$\left| \sum_{k=1}^n a_k \overline{b_k} \right|^2 \le \left(\sum_{j=1}^n |a_j|^2 \right) \left(\sum_{k=1}^n |b_j|^2 \right)$$

and show that Schwarz's inequality becomes an identity precisely when there exist two complex numbers λ and μ not both zero such that $\lambda a_j + \mu b_j = 0$ for $1 \leq j \leq n$.

For the special case where n = 2 or 3 and all a_j, b_j $(1 \le j \le n)$ are real, interpret the identity (*) above in terms of the trigonometric identity

$$\cos^2\theta + \sin^2\theta \equiv 1.$$

Problem 15. Suppose z_1, z_2, z_3 are complex numbers such that

$$|z_1| = |z_2| = |z_3|$$

and

$$z_1 + z_2 + z_3 = 0.$$

Prove that

$$|z_1 - z_2| = |z_2 - z_3| = |z_3 - z_1|$$
.

Problem 16. The set \mathbb{R} of real numbers is given the usual Euclidean distance as its metric. Show that a nonempty subset G of \mathbb{R} is open if and only if it is a disjoint (at most countable) union of open intervals. In other words, G is open if and only if there exist $n \in \mathbb{N} \cup \{\infty\}$ and $-\infty \leq a_k < b_k \leq \infty$ for $0 \leq k < n$ such that $G = \bigcup_{0 \leq k < n} (a_k, b_k)$ with (a_k, b_k) and (a_ℓ, b_ℓ) disjoint for $k \neq \ell$.