This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Choose the interval below that f composed with g at x = -1 is in.

$$f(x) = x^3 + 3x^2 + x - 4$$
 and $g(x) = -4x^3 - 4x^2 - 4x - 3$

The solution is 1.0, which is option B.

A. $(f \circ g)(-1) \in [7, 14]$

Distractor 2: Corresponds to being slightly off from the solution.

B. $(f \circ g)(-1) \in [0,3]$

* This is the correct solution

C. $(f \circ g)(-1) \in [69, 79]$

Distractor 3: Corresponds to being slightly off from the solution.

D. $(f \circ g)(-1) \in [76, 88]$

Distractor 1: Corresponds to reversing the composition.

E. It is not possible to compose the two functions.

General Comment: f composed with g at x means f(g(x)). The order matters!

2. Find the inverse of the function below (if it exists). Then, evaluate the inverse at x = 10 and choose the interval that $f^{-1}(10)$ belongs to.

$$f(x) = 4x^2 + 2$$

The solution is The function is not invertible for all Real numbers. , which is option E.

A. $f^{-1}(10) \in [4.75, 5.55]$

Distractor 4: This corresponds to both distractors 2 and 3.

B. $f^{-1}(10) \in [-0.04, 1.42]$

Distractor 1: This corresponds to trying to find the inverse even though the function is not 1-1.

C. $f^{-1}(10) \in [2.38, 4.3]$

Distractor 3: This corresponds to finding the (nonexistent) inverse and dividing by a negative.

D. $f^{-1}(10) \in [1.59, 2.01]$

Distractor 2: This corresponds to finding the (nonexistent) inverse and not subtracting by the vertical shift.

Spring 2021

E. The function is not invertible for all Real numbers.

* This is the correct option.

9187-5854

General Comment: Be sure you check that the function is 1-1 before trying to find the inverse!

3. Find the inverse of the function below (if it exists). Then, evaluate the inverse at x = -10 and choose the interval the $f^{-1}(-10)$ belongs to.

$$f(x) = \sqrt[3]{4x - 3}$$

The solution is -249.25, which is option C.

A. $f^{-1}(-10) \in [248.25, 250.25]$

This solution corresponds to distractor 2.

B. $f^{-1}(-10) \in [250.75, 252.75]$

This solution corresponds to distractor 3.

C. $f^{-1}(-10) \in [-249.25, -247.25]$

* This is the correct solution.

D. $f^{-1}(-10) \in [-252.75, -249.75]$

Distractor 1: This corresponds to

E. The function is not invertible for all Real numbers.

This solution corresponds to distractor 4.

General Comment: Be sure you check that the function is 1-1 before trying to find the inverse!

4. Choose the interval below that f composed with q at x = 1 is in.

$$f(x) = 3x^3 + 2x^2 - 2x$$
 and $g(x) = -3x^3 + 2x^2 + 3x$

The solution is 28.0, which is option B.

A. $(f \circ g)(1) \in [23, 26]$

Distractor 2: Corresponds to being slightly off from the solution.

B. $(f \circ g)(1) \in [28, 32]$

* This is the correct solution

C. $(f \circ g)(1) \in [-54, -50]$

Distractor 1: Corresponds to reversing the composition.

D. $(f \circ g)(1) \in [-65, -56]$

Distractor 3: Corresponds to being slightly off from the solution.

E. It is not possible to compose the two functions.

General Comment: f composed with g at x means f(g(x)). The order matters!

5. Determine whether the function below is 1-1.

$$f(x) = \sqrt{6x - 20}$$

The solution is yes, which is option D.

9187-5854 Spring 2021

A. No, because the domain of the function is not $(-\infty, \infty)$.

Corresponds to believing 1-1 means the domain is all Real numbers.

B. No, because there is an x-value that goes to 2 different y-values.

Corresponds to the Vertical Line test, which checks if an expression is a function.

C. No, because there is a y-value that goes to 2 different x-values.

Corresponds to the Horizontal Line test, which this function passes.

- D. Yes, the function is 1-1.
 - * This is the solution.
- E. No, because the range of the function is not $(-\infty, \infty)$.

Corresponds to believing 1-1 means the range is all Real numbers.

General Comment: There are only two valid options: The function is 1-1 OR No because there is a y-value that goes to 2 different x-values.

6. Find the inverse of the function below. Then, evaluate the inverse at x=8 and choose the interval that $f^{-1}(8)$ belongs to.

$$f(x) = \ln(x-3) + 2$$

The solution is $f^{-1}(8) = 406.429$, which is option E.

A. $f^{-1}(8) \in [397.43, 401.43]$

This solution corresponds to distractor 3.

B. $f^{-1}(8) \in [22027.47, 22031.47]$

This solution corresponds to distractor 1.

C. $f^{-1}(8) \in [144.41, 151.41]$

This solution corresponds to distractor 4.

D. $f^{-1}(8) \in [59876.14, 59877.14]$

This solution corresponds to distractor 2.

E. $f^{-1}(8) \in [403.43, 408.43]$

This is the solution.

General Comment: Natural log and exponential functions always have an inverse. Once you switch the x and y, use the conversion $e^y = x \leftrightarrow y = \ln(x)$.

7. Find the inverse of the function below. Then, evaluate the inverse at x = 6 and choose the interval that $f^{-1}(6)$ belongs to.

$$f(x) = e^{x+4} - 2$$

The solution is $f^{-1}(6) = -1.921$, which is option A.

A. $f^{-1}(6) \in [-2.99, -1.9]$

This is the solution.

B. $f^{-1}(6) \in [5.92, 6.27]$

This solution corresponds to distractor 1.

C. $f^{-1}(6) \in [0.1, 1.54]$

This solution corresponds to distractor 4.

D. $f^{-1}(6) \in [-1.36, -0.9]$

This solution corresponds to distractor 3.

E. $f^{-1}(6) \in [-0.78, -0.48]$

This solution corresponds to distractor 2.

General Comment: Natural log and exponential functions always have an inverse. Once you switch the x and y, use the conversion $e^y = x \leftrightarrow y = \ln(x)$.

8. Add the following functions, then choose the domain of the resulting function from the list below.

$$f(x) = \sqrt{4x - 17}$$
 and $g(x) = 9x + 7$

The solution is The domain is all Real numbers greater than or equal to x = 4.25., which is option C.

- A. The domain is all Real numbers except x = a, where $a \in [1.8, 6.8]$
- B. The domain is all Real numbers less than or equal to x = a, where $a \in [-1.5, 5.5]$
- C. The domain is all Real numbers greater than or equal to x = a, where $a \in [-4.75, 6.25]$
- D. The domain is all Real numbers except x=a and x=b, where $a\in[-9.83,-1.83]$ and $b\in[1.2,9.2]$
- E. The domain is all Real numbers.

General Comment: The new domain is the intersection of the previous domains.

9. Determine whether the function below is 1-1.

$$f(x) = \sqrt{-6x + 29}$$

The solution is yes, which is option A.

- A. Yes, the function is 1-1.
 - * This is the solution.
- B. No, because there is an x-value that goes to 2 different y-values.

Corresponds to the Vertical Line test, which checks if an expression is a function.

C. No, because the domain of the function is not $(-\infty, \infty)$.

Corresponds to believing 1-1 means the domain is all Real numbers.

D. No, because there is a y-value that goes to 2 different x-values.

Corresponds to the Horizontal Line test, which this function passes.

E. No, because the range of the function is not $(-\infty, \infty)$.

Corresponds to believing 1-1 means the range is all Real numbers.

General Comment: There are only two valid options: The function is 1-1 OR No because there is a y-value that goes to 2 different x-values.

9187-5854 Spring 2021

10. Add the following functions, then choose the domain of the resulting function from the list below.

$$f(x) = 7x^3 + 9x^2 + 5x + 7$$
 and $g(x) = 7x^4 + 9x^3 + 4x + 2$

The solution is $(-\infty, \infty)$, which is option E.

- A. The domain is all Real numbers except x=a, where $a\in[3.75,8.75]$
- B. The domain is all Real numbers less than or equal to x=a, where $a\in [-4,0]$
- C. The domain is all Real numbers greater than or equal to x = a, where $a \in [-6.67, -1.67]$
- D. The domain is all Real numbers except x = a and x = b, where $a \in [2.33, 7.33]$ and $b \in [-0.4, 8.6]$
- E. The domain is all Real numbers.

General Comment: The new domain is the intersection of the previous domains.

9187-5854 Spring 2021