Telecomunicazioni Segnali e informazione

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Telecomunicazioni

- Le telecomunicazioni (dal greco τῆλε: distante, dal latino communicare) riguardano la trasmissione a distanza di informazioni (voce, musica, video, testi) da sorgenti a destinatari
- È evidente che prima dell'avvento delle applicazioni dell'elettricità (XIX secolo), le telecomunicazioni potevano avvenire tramite altri tipi di segnali (luminosi, acustici, segnali di fumo etc...)
- Una sorgente emette i propri messaggi utilizzando una forma di energia, originando un segnale
- Un **segnale** è una <u>grandezza fisica</u> nelle cui variazioni sono codificate <u>informazioni</u>

Segnali

- La forma di energia che ha reso possibili le telecomunicazioni moderne è quella **elettrica/elettromagnetica**
- Segnali elettrici (variazioni di tensione/corrente): inviati su linee di trasmissione metalliche
- **Segnali radio** (onde elettromagnetiche): utilizzati per le comunicazioni senza fili (*wireless*)
- Frase ad effetto: wires don't understand bits, they understand only volts and amps (Andrew S. Tanenbaum)

TX, canale, RX

- **Sorgente**: entità da cui proviene l'informazione. Esempi: persona che parla al telefono, computer che invia bit sulla scheda di rete
- **TX**, <u>trasmettitore</u>: immette sul canale un segnale (elettrico/elettromagnetico) che rappresenta l'informazione emessa dalla sorgente
- Canale: comprende i mezzi trasmissivi (guidati o non guidati) che permettono al segnale di propagarsi e di arrivare a destinazione con una qualità accettabile
- RX, <u>ricevitore</u>: preleva dal canale il segnale e ne estrae il contenuto informativo in una forma adatta alla destinazione. Esempio: chi riceve una chiamata telefonica vuole sentire la voce dell'interlocutore, mentre non è interessato ad un grafico dell'onda sonora emessa
- Destinazione: entità interessata a ricevere le informazioni inviate dalla sorgente

Segnali

- Per studiare i segnali è necessario avere delle buone basi di trigonometria (Matematica) e onde (Fisica). Gli argomenti sono stati svolti approfonditamente l'anno scorso, per cui avete tutti i mezzi per procedere
- Recuperiamo insieme i concetti di:
 - frequenza
 - ampiezza
 - fase

 Ci faremo aiutare da GNU Radio, un tool di signal processing open source

Segnali – esperienza con GNU Radio

Value: 32k

QT GUI Range
ID: frequency
Default Value: 50
Start: 0
Stop: 1k
Step: 50

QT GUI Range
ID: amplitude
Default Value: 1
Start: 0
Stop: 10
Step: 1

Segnali – esperienza con GNU Radio

• **NB**: le formule che vedremo derivano dall'oscillatore armonico, argomento trattato in Fisica. Vi porrete sicuramente la domanda: <u>cosa c'entrano molle e onde meccaniche con l'energia elettrica utilizzata per trasmettere informazioni?</u> Lo capirete studiando bene la Fisica di quest'anno!

- **Periodo** (T): intervallo di tempo nel quale la sinusoide compie un ciclo completo (in \underline{s})
- Frequenza (f): numero di cicli completi al secondo (in \underline{Hz}). Un ciclo viene completato in T secondi, per cui vale la relazione:

$$f = \frac{1}{T} [Hz]$$

• **Pulsazione** (ω): si misura in <u>rad/s</u>. Nel moto circolare uniforme valgono le relazioni:

$$\omega = \frac{2\pi}{T} [\text{rad/s}]$$

$$\omega = 2\pi f [rad/s]$$

- Ampiezza (A): valore massimo assunto dalla sinusoide in un periodo
- Fase (θ_0): valore (in radianti) dell'angolo compreso tra l'asse di riferimento e il vettore che individua il punto in moto circolare uniforme all'istante t=0

Se si considera l'angolo individuato dal raggio vettore sull'asse delle ascisse, si ottiene:

$$y(t) = Asin(\omega t + \theta_0)$$

sinusoide

$$y(t) = Asin(\omega t + \theta_0)$$
pulsazione
ampiezza

Non fatevi confondere dalla presenza della variabile tempo: $\omega t + \theta_0$ è un angolo misurato in radianti

sinusoide (scrittura equivalente alla precedente)

$$y(t) = Asin(2\pi ft + \theta_0)$$
frequenza
fase

Non fatevi confondere dalla presenza della variabile tempo: $\omega t + \theta_0$ è un angolo misurato in radianti

cosinusoide

Analisi nel dominio del tempo

Analizzare un segnale s nel dominio del tempo significa determinarne l'andamento al variare del tempo. Quest'analisi permette di ricavare parametri quali l'ampiezza e la frequenza

• In generale, i segnali utilizzati nelle telecomunicazioni non sono rappresentabili matematicamente come semplici sinusoidi/cosinusoidi. Ad ogni modo, come vedremo, queste funzioni costituiscono i «mattoncini fondamentali» su cui fondare l'analisi dei segnali

 Avete sentito parlare di «passaggio al digitale» dei segnali televisivi?

- Cosa significano esattamente gli aggettivi analogico e digitale?
- Per comprendere la differenza tra analogico e digitale dobbiamo recuperare i concetti matematici di continuo e discreto:
 - **continuo**: pensate alla retta reale. Dati 2 punti x_0 e x_1 , in mezzo ce ne sono infiniti altri
 - **discreto**: pensate alla retta dei numeri interi. Dati 2 punti x_0 e x_1 , in mezzo non c'è niente

• Un **segnale analogico** è un segnale a <u>variazione continua</u> sia nel tempo sia nelle ampiezze

• Un **segnale digitale** è un segnale a <u>variazione discreta</u> sia nel tempo sia nelle ampiezze. Il seguente grafico rappresenta un segnale digitale a 2 livelli di ampiezza (detti anche *simboli*):

t

I rettangoli grigi rappresentano il tempo di simbolo, ossia lo slot di tempo all'inizio del quale il segnale assume un livello.

NB: il segnale non può cambiare valore all'interno del tempo di simbolo

t

Se i livelli sono 2, allora possiamo far corrispondere un livello al bit 0 e l'altro al bit 1. In questo caso il tempo di simbolo viene anche detto tempo di bit. Ecco come verrebbe trasmessa la sequenza 10001100

I livelli (simboli) possono essere più di 2. Se sono 4, ciascun simbolo codifica 2 bit. Ecco come verrebbe trasmessa la sequenza 100000110111101

Se M è il numero di simboli (aka livelli) di un segnale digitale, il numero di bit B codificati per simbolo è:

$$B = log_2 M$$

- Avete sicuramente notato che aumentando il numero di livelli aumenta la velocità di trasmissione dei bit (bit rate):
 - 2 livelli -> 8 bit in 8 time slot
 - 4 livelli -> 16 bit in 8 time slot
- Quindi basta aumentare il numero di livelli per raggiungere bit rate elevatissimi?
 - vero fino ad un certo punto... poi secondo voi cosa succede?

Segnale audio prodotto da una persona che parla (che cos'è il suono? riprendere la lezione di Fisica)

Segnale elettrico prodotto da un microfono e trasmesso sul doppino telefonico

Al giorno d'oggi è quasi tutto digitale...

- L'industria delle telecomunicazioni negli ultimi anni ha operato un passaggio generalizzato al digitale. Ecco i motivi principali:
 - i circuiti integrati costano sempre meno
 - maggiore integrità dei dati anche su lunghe distanze
 - le tecniche crittografiche sono facilmente applicabili su dati digitali
 - trattare sia i dati digitali (e.g. una email) sia quelli analogici (e.g. una conversazione telefonica) digitalmente permette di integrare voce, video e dati nelle stesse reti
 - i computer lavorano in digitale: trattare tutto come bit permette di applicare logiche software a tutte le tipologie di informazione trasmessa

Vantaggi del digitale

- Un segnale analogico è molto sensibile al rumore
 - infatti, il ricevitore di un segnale analogico ne estrae il contenuto informativo in base alla sua forma esatta
- Invece, chi riceve un segnale digitale deve ricondurre i valori ricevuti soltanto ai livelli prestabiliti. Se viene ricevuto un valore compreso tra i 2 livelli, lo si riconduce al livello più vicino
- <u>Questo non significa che le trasmissioni digitali siano immuni da errori</u>: il segnale può essere talmente distorto da compromettere l'interpretazione di un valore come *simbolo x* o *simbolo y*
- **Bit error**: il ricevitore rileva un 1 quando il trasmettitore aveva inviato uno 0, o viceversa. Esistono tecniche matematiche per rilevare e correggere gli errori (niente miracoli comunque)

Vantaggi del digitale

in questo caso, il ricevitore riesce a ricavare i bit dal segnale ricevuto

Vantaggi del digitale

in questo caso, il segnale è così distorto da compromettere l'interpretazione di alcuni bit

- La **teoria dell'informazione** è lo studio matematico dell'informazione e dei sistemi che la trasmettono. Questa teoria permette di determinare parametri quali la *velocità di trasmissione* di una sorgente, l'efficienza di un codice e la capacità di canale. Il padre della teoria dell'informazione è <u>Claude Shannon</u>
- **Informazione**: tutto ciò che permette di eliminare l'incertezza. L'informazione si misura in *bit* (*binary digit*): 1 bit permette di operare una scelta tra 2 eventi equiprobabili
- Minore è la probabilità che un simbolo s venga emesso da una sorgente, maggiore è l'informazione contenuta in s

Consideriamo un alfabeto A di N simboli equiprobabili.

Se i simboli sono equiprobabili, allora ciascun simbolo viene emesso con probabilità $p=\frac{1}{N}$

La quantità di informazione associata a ciascun simbolo $s \in A$ è:

$$I(s) = log_2 \frac{1}{p}$$

ossia

$$I(s) = log_2 N$$

Esempio

$$A = \{a, b, c, d\}$$

Ipotesi di equiprobabilità dei simboli, quindi $p = \frac{1}{N}$

$$\forall s \in A \text{ vale } I(s) = log_2 \frac{1}{p} = log_2 4 = 2 \text{ [bit]}$$

Possiamo quindi codificare ciascun simbolo con 2 bit, ad esempio nei modi seguenti (non sono gli unici):

a	00	a	00
b	01	b	01
С	10	С	11
d	11	d	10

• Entropia: quantità di informazione media di una sorgente. È interpretabile anche come numero medio di bit per simbolo

$$H = \sum_{i=1}^{N} p(s_i)I(si)$$

dove:

N: numero di simboli dell'alfabeto

 $p(s_i)$: probabilità del simbolo s_i

 $I(s_i)$: quantità di informazione di s_i

Teoria dell'informazione – Entropia

Esempio (simboli non equiprobabili)

A = {a, b, c, d}

$$p_a = \frac{1}{2}, pb = \frac{1}{4}, pc = \frac{1}{8}, pd = \frac{1}{8}$$

L'entropia di una sorgente che emette simboli di A con le probabilità indicate è:

$$H = paIa + pbI_b + pcI_c + pdI_d$$

completate voi il calcolo!

Un po' di storia: il telegrafo e il codice <u>Morse</u>

- Il **telegrafo elettrico** è stato uno dei primi sistemi per la trasmissione di testi (1840 circa)
- I punti vengono detti dit, le linee dah
- I dit possono essere codificati con un certo valore di tensione V₁, i dah con un valore V₂
- Le codifiche dei caratteri vengono trasmesse tramite l'invio di corrente elettrica su un cavo: l'assenza di corrente per un determinato intervallo di tempo funge da separatore tra i caratteri
- Il colpo di genio sta nella codifica: notate qualcosa di particolare?

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Da vedere a casa

Il fisico Jim Al-Khalili spiega i fondamenti della teoria dell'informazione

Harnessing the Power of Information - BBC

Argomenti trattati:

- la codifica digitale dell'informazione
- il telegrafo e il codice Morse
- l'informazione secondo Shannon
- il diavoletto di Maxwell