Question 1.5

March 17, 2021

0.1 Fundamentals of Macro & Micro Thermodynamics

• Solution by E. Erik Larsen

Consider two equal $1000cm^3$ cubes of copper. Initially separated, one has a temperature of $20^{\circ}C$ and the other is at $100^{\circ}C$. They are then brought into contact along one wall, but otherwise isolated from their surroundings. 1. Estimate how long it will take for the two cubes to come into equilibrium.

0.2 Imports

```
[1]: import numpy as np from scipy.constants import k, N_A
```

0.3 Physical Constants

Atomic mass of copper: 63.55 g/mol | Thermal conductivity: 385.0 W/mK

Boltzmann's Constant: 1.380649e-23 | Avogadro's Number: 6.02214076e+23

1 Solution

- Find number of atoms in each cube
- Find thermal energy of each cube
- Sum to get total energy
- Find new temperature
- Use thermal conductivity to estimate time

1.1 Atoms & Energies

```
[3]: # Calculate mass of each cube

m = 8.96 * 1000

print(f'Mass of each cube: {int(m)} g\n')

# Calculate atoms in each cube

atoms = m * (1 / Cu) * (N_A)

print(f'Atoms in each cube: {atoms}\n')

E1 = 3/2 * k * (20 + 273.15) * atoms

E2 = 3/2 * k * (100 + 273.15) * atoms

E_tot = E1 + E2

print(f'E1: {round(E1, 3)} J E2: {round(E2, 3)} J\n\nTotal Energy:

→{round(E_tot, 3)} J')
```

Mass of each cube: 8960 g

Atoms in each cube: 8.49069727924469e+25

E1: 515475.226 J E2: 656147.298 J

Total Energy: 1171622.524 J

1.2 Equilibrium Energy & Temperature

Energy per cube at equilibrium: 585811.262 J

Equilibrium Temperature: 333.15 K ---> 60.15 C

Transferred: 70336.036 J

1.3 Estimate Time

```
[5]: time = round((E_diff ) / (conductivity * Eq_temp * .1), 2)
print(f'Time to equilibrium: {time} s')
```

Time to equilibrium: 5.48 s

2 Conclusion

• Equilibrium temperature: $60^{\circ}C$

 $\bullet\,$ It will take approximately 5.5 seconds to come to equilibrium.

3