Криві другого порядку

До кривих другого порядку належать еліпс, гіпербола та парабола. Рівняння цих кривих у прямокутній декартовій системі координат ϵ рівняннями другого степеня щодо x і y, тобто

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0;$$
 $A^{2} + B^{2} + C^{2} \neq 0.$

Коло

Означення. *Колом* називають множину точок площини, які знаходяться на однаковій відстані від фіксованої точки (центра кола).

Рівняння кола з центром у початку координат і радіусом R має вигляд:

$$x^2 + y^2 = R^2.$$

Рівняння кола з центом у точці O(a;b) і радіусом R має вигляд:

$$(x-a)^2 + (y-b)^2 = R^2$$
.

Еліпс

Означення. *Еліпсом* називають множину точок площини, сума відстаней від яких до двох фіксованих точок (ϕ окусів еліпса) є сталою.

Нехай F_1 і F_2 фокуси еліпса. Декартову систему координат виберемо так, щоб вісь Ox проходила через фокуси, а вісь Oy ділила відрізок F_2F_1 навпіл. Позначимо відстань між фокусами 2c. Тоді $F_1(-c;0)$ і $F_2(c;0)$. Нехай M(x;y) — довільна точка еліпса. Довжини відрізків F_1M і F_2M позначимо r_1 та r_2 , відповідно. Сума цих відстаней є деякою сталою величиною, яка характеризує еліпс. Цю сталу величину позначимо 2a. Тоді

$$r_1 = \sqrt{(x+c)^2 + y^2}$$
, $r_2 = \sqrt{(x-c)^2 + y^2}$

- фокальні радіуси точки M(x; y).

3 означення еліпса $r_1 + r_2 = 2a$, тому

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$
.

Звілси

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$
.

Піднесемо обидві частини рівняння до квадрата, отримаємо

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$
.

Звівши подібні доданки, одержимо

$$4xc = 4a^2 - 4a\sqrt{(x-c)^2 + y^2}.$$

Звідси

$$a\sqrt{(x-c)^2 + y^2} = a^2 - cx$$
.

Знову обидві частини рівняння підносимо до квадрата, маємо

$$a^{2}((x-c)^{2} + y^{2}) = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
.

Перегрупувавши доданки, отримаємо

$$(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$$
.

Нехай $b^2=a^2-c^2$ (це можливо, оскільки a>c). Тоді рівняння запишемо у вигляді $b^2x^2+a^2y^2=a^2b^2$. Поділимо рівняння на a^2b^2 . Матимемо *канонічне рівняння еліпса*

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

Точки $A_1(-a;0)$, $A_2(a;0)$, $B_1(0;-b)$, $B_2(0;b)$ називають вершинами еліпса ; відрізки $\left|A_1A_2\right|=2a$ і $\left|B_1B_2\right|=2b$ довжинами великої і малої осей еліпса; точки $F_1(-c;0)$, $F_2(c;0)$ — фокусами, а відрізки F_1M та F_2M — фокальними радіусами точки M(x;y), яка належить еліпсу.

Означення. *Ексцентриситет* еліпса — це відношеня відстані між фокусами еліпса до довжини його великої осі, тобто число $e = \frac{c}{a}$.

Оскільки в еліпса c < a, то e < 1. Через ексцентриситет еліпса можна виразити співвідношення його півосей

$$\frac{b}{a} = \sqrt{\frac{a^2 - c^2}{a^2}} = \sqrt{1 - \left(\frac{c}{a}\right)^2} = \sqrt{1 - e^2}$$

і фокальні радіуси

$$r_{1} = \sqrt{(x+c)^{2} + y^{2}} = \sqrt{(x+c)^{2} + b^{2} \left(1 - \frac{x^{2}}{a^{2}}\right)} =$$

$$= \sqrt{x^{2} + 2cx + c^{2} + b^{2} - \frac{b^{2}x^{2}}{a^{2}}} = \sqrt{\frac{a^{2} - b^{2}}{a^{2}}x^{2} + 2cx + c^{2} + a^{2} - c^{2}} =$$

$$= \sqrt{\frac{c^{2}x^{2}}{a^{2}} + 2xc + a^{2}} = \sqrt{\left(a + \frac{c}{a}x\right)^{2}} = \left|a + \frac{c}{a}x\right| = a + ex.$$

Отже, $r_1 = a + ex$, аналогічно $r_2 = a - ex$.

Означення. Директрисами еліпса називають дві прямі, перпендикулярні до великої осі еліпса, які розташовані симетрично щодо центра еліпса на відстані $\frac{a}{e}$ від нього. Рівняння директрис $x = \pm \frac{a}{e}$.

Якщо фокуси еліпса на осі Oy , то b>a і $c=\sqrt{b^2-a^2}$, то ексцентриситет $e=\frac{c}{b}$, рівняння директрис $y=\pm\frac{b}{a}$.

3.5.2. Гіпербола

Означення. *Гіперболою* називають множину точок площини, різниця відстаней яких від двох фіксованих точок (ϕ окусів) є сталою.

Цю сталу величину позначаємо 2a, відстань між фокусами — 2c, вважаємо, що 2c > 2a. Декартову систему координат вибираємо так, як і для виведення канонічного рівняння еліпса, тобто вісь абсцис проведемо через фокуси F_1 і F_2 гіперболи, а початком координат буде середина відрізка F_1F_2 .

Нехай M(x;y) — довільна точка гіперболи. Довжини відрізків F_1M і F_2M позначимо r_1 та r_2 , відповідно. Тоді

$$r_1 = \sqrt{(x+c)^2 + y^2}$$
, $r_2 = \sqrt{(x-c)^2 + y^2}$.

3 означення гіперболи | $r_1 - r_2 \models 2a$. Тоді

$$|\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2}| = 2a$$
.

Або

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a.$$

Звідси

$$\sqrt{(x+c)^2 + y^2} = \pm 2a + \sqrt{(x-c)^2 + y^2}$$
.

Піднесемо обидві частини рівняння до квадрата, отримаємо

$$(x+c)^2 + y^2 = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2.$$

Звівши подібні доданки, одержимо

$$4xc = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2}$$
.

Звідси

$$\mp a\sqrt{(x-c)^2+y^2}=a^2-cx.$$

Знову обидві частини рівняння підносимо до квадрата, отримаємо

$$a^{2}((x-c)^{2} + y^{2}) = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
.

Перегрупувавши доданки, матимемо

$$(c^2-a^2)x^2-a^2y^2=a^2(c^2-a^2).$$

Нехай $b^2 = c^2 - a^2$ (це можливо, оскільки c > a). Тоді рівняння запишемо у вигляді $b^2 x^2 - a^2 y^2 = a^2 b^2$. Поділимо рівняння на $a^2 b^2$. Одержимо *канонічне рівняння гіперболи*

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Точки $A_1(-a;0)$, $A_2(a;0)$ називають дійсними вершинами гіперболи; а відрізок $|A_1A_2|=2a$ довжиною дійсної осі гіперболи; точки $B_1(0;-b)$, $B_2(0;b)$ — уявними вершинами гіперболи; відрізок довжиною 2b — уявною віссю гіперболи; точки $F_1(-c;0)$, $F_2(c;0)$ — фокусами, а відрізки F_1M та F_2M — фокальними радіусами точки M(x;y) гіперболи.

Рівняння $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ — рівняння гіперболи, для якої вісь Oy — дійсна, Ox — уявна. Для такої гіперболи $F_1(0;-c)$, $F_2(0;c)$.

Означення. Прямі $y = \pm \frac{b}{a} x$ називаються *асимптотами гіперболи*.

Означення. *Ексцентриситетом* гіперболи називають відношеня відстані між фокусами гіперболи до довжини її дійсної осі, тобто число $e = \frac{c}{a} > 1$.

Через ексцентриситет гіперболи можна виразити співвідношення її півосей

$$\frac{b}{a} = \sqrt{e^2 - 1}$$

і фокальні радіуси

$$r_1 = \pm (ex + a), r_2 = \pm (ex - a),$$

де плюс (мінус) беремо для правої (лівої) гілки гіперболи.

Означення. Директрисами гіперболи називають прямі, перпендикулярні до дійсної осі гіперболи , які є на відстані $\frac{a}{e}$ від початку координат. Рівняння директрис $x = \pm \frac{a}{e}$.

Для гіперболи $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ рівняння директрис $y = \pm \frac{b}{e}$.

Парабола

Означення. *Параболою* називають множину всіх точок площини, рівновіддалених від фіксованої прямої (*директриси*) і фіксованої точки (*фокуса*), яка не належить цій прямій.

Виберемо систему координат так, щоб вісь Ox проходила через фокус перпендикулярно до директриси, а вісь Oy через середину перпендикуляра, опущеного з фокуса на директрису. Позначимо відстань від фокуса до директриси через p. Тоді координати фокуса $F(\frac{p}{2};0)$, а рівняння директриси $x=-\frac{p}{2}$. Нехай M(x;y) — довільна точка параболи. Тоді відстань від точки M до директриси дорівнює $x+\frac{p}{2}$, а довжина відрізка MF дорівнює $\sqrt{(x-\frac{p}{2})^2+y^2}$. З означення параболи

$$\sqrt{(x - \frac{p}{2})^2 + y^2} = x + \frac{p}{2}.$$

Піднесемо цю рівність до квадрата, одержимо

$$(x-\frac{p}{2})^2 + y^2 = x^2 + px + \frac{p^2}{4}$$
,

тоді

$$x^{2} - px + \frac{p^{2}}{4} + y^{2} = x^{2} + px + \frac{p^{2}}{4}$$
.

Матимемо канонічне рівняння параболи

$$y^2 = 2px.$$

Рівняння $x^2 = 2py$ теж є канонічними рівняннями параболи, симетричної стосовно осі Oy. Фокальний радіус точки, яка належить параболі,

$$r = x + \frac{p}{2}.$$

Директоріальна властивість кривих другого порядку

Теорема. Відношення довжини фокального радіуса кожної точки кривої другого порядку до відстані від цієї точки до відповідної директриси ϵ величиною сталою і дорівню ϵ ексцентриситету кривої, тобто

$$\frac{r}{d} = e$$
.

Доведення. Нехай M(x; y) — довільна точка на кривій другого порядку.

Для еліпса $r_1=a+ex$, $r_2=a-ex$ — фокальні радіуси, $d_1=x+\frac{a}{e}$, $d_2=\frac{a}{e}-x$ — відстані від точки до відповідних директрис. Тому

$$\frac{r_1}{d_1} = \frac{a+ex}{x+\frac{a}{e}} = \frac{(a+ex)e}{xe+a} = e,$$

$$\frac{r_2}{d_2} = \frac{a-ex}{a-x} = \frac{(a-ex)e}{a-ex} = e.$$

Для правої гілки гіперболи $r_1 = ex + a$, $r_2 = ex - a$, $d_1 = x + \frac{a}{e}$, $d_2 = x - \frac{a}{e}$, тому

$$\frac{r_1}{d_1} = \frac{a + ex}{x + \frac{a}{e}} = \frac{(a + ex)e}{xe + a} = e,$$

$$\frac{r_2}{d_2} = \frac{ex - a}{x - \frac{a}{e}} = \frac{(ex - a)e}{ex - a} = e.$$

Для лівої гілки гіперболи $r_1 = -ex - a$, $r_2 = a - ex$, $d_1 = -\frac{a}{e} - x$, $d_2 = \frac{a}{e} - x$. Тоді

$$\frac{r_1}{d_1} = \frac{-ex - a}{-\frac{a}{e} - x} = \frac{(-ex - a)e}{-a - ex} = e,$$

$$\frac{r_2}{d_2} = \frac{a - ex}{\frac{a}{e} - x} = \frac{(a - ex)e}{a - ex} = e.$$

Для параболи $r=d=x+\frac{p}{2}$, тому $\frac{r}{d}=1$, отже, ексцентриситет параболи дорівнює одиниці. Теорему доведено.

Полярні рівняння кривих другого порядку

Полярні рівняння кривих другого порядку одержуємо, використовуючи попередню теорему, тобто, що $\frac{r}{d} = e$.

Візьмемо за полярну вісь вісь абсцис, а за полюс — лівий фокус еліпса, або правий фокус гіперболи, або фокус параболи. Нехай у цій полярній системі координат точка на кривій другого порядку має координати $M(r; \varphi)$. Проведемо через фокус хорду, перпендикулярну до полярної осі, позначимо її довжину 2p. Верхній кінець хорди має координати $P(p; \frac{\pi}{2})$.

Число p називається полярним параметром кривої. Для всіх точок кривої правильною є рівність $\frac{r}{d}=e\ .$ Для точки P ця рівність набуде вигляду $\frac{p}{d_1}=e\ .$

Позначимо через A точку перетину полярної осі та директриси, через B — основу перпендикуляра, опущеного з точки M на полярну вісь. Тоді

$$d = AB = AF + FB = d_1 + r\cos\varphi.$$

Оскільки $d_1 = \frac{p}{e}$, то $d = \frac{p}{e} + r \cos \varphi$. Позаяк $\frac{r}{d} = e$, то

$$\frac{r}{\frac{p}{e} + r\cos\varphi} = e.$$

Звідси одержуємо полярне рівняння кривих другого порядку

$$r = \frac{p}{1 - e \cos \varphi},$$

яке у випадку e < 1 ϵ рівнянням еліпса, у випадку e > 1 – гіперболи, у випадку e = 1 – параболи.

Для еліпса та гіперболи $p = \frac{b^2}{a}$.