Ricerca Operativa - II Appello Ses. Estiva - Prova Scritta Conteggio parole: 778

Prova Scritta di Ricerca Operativa del 9 Luglio 2020					
Nome	غي 🖈				
Cognome	·				
Matricola					

Esercizio 1

Si consideri il problema di Programmazione Lineare (P)

$$\begin{cases} \max & 5x_1 + 12x_2 + 4x_3 \\ & x_1 + 2x_2 + x_3 \le 10 \\ & 2x_1 - x_2 + 3x_3 = 8 \\ & x_1, x_2, x_3 \ge 0 \end{cases}$$

1) Costruire il Duale D di P utilizzando la forma P-D simmetrica, riportando funzione obiettivo e vincoli nella tabella sottostante

funzione obiettivo			
vincolo 1			
	-		

Sapendo che x_1 e x_2 sono positive in una soluzione ottima di P ed usando la Teoria della Dualità,

calcolare una coppia di soluzioni ottime per i problemi P e D.

$$(x^*)^\top$$
 = $(y^*)^\top$ =

3) Stabilire se le soluzioni determinate ai punti precedenti sono di base per i rispettivi problemi (motivare le risposte)

x^st è di base?	
y^st è di base?	

4) Stabilire se possa esistere una soluzione ottima per ${\it P}$ con $x_1^*=0$

Si perché				
•		/CIIC II		
No perché	5			

5) Indicare come la correttezza della risposta al quesito precedente possa essere verificata per via geometrica mediante la rappresentazione grafica del problema *D*.

Esercizio 2

Si consideri il problema del massimo flusso definito sul grafo G mostrato in figura, in cui le etichette sugli archi rappresentano, rispettivamente, la capacità dell'arco ed il flusso corrente che lo attraversa.

1) Date le seguenti catene *S-T*

$$P_1 = S
ightarrow 2 \leftarrow 1
ightarrow 4 \leftarrow 5
ightarrow 6
ightarrow T$$

$$P_2 = S \rightarrow 2 \leftarrow 3 \rightarrow 7 \leftarrow 5 \rightarrow T$$

stabilire se esse sono cammini aumentanti su G rispetto al flusso f assegnato. In caso di risposta positiva, calcolare i rispettivi incrementi di flusso Δ_1 e Δ_2

P_1	$\Delta_1 =$
$oldsymbol{P_2}$.	$\Delta_2 =$

2) Dopo aver eventualmente aggiornato il flusso coerentemente alle risposte date al punto 1), si indichi con v_0 il flusso totale trasferito da S a T. Effettuare **una** iterazione dell'Algoritmo di Ford-Fulkerson nella rete aggiornata, riportando le etichette nella tabella sottostante (**aggiungere**, se necessario, ulteriori righe)

	S	1	2	3	4	5	6	7	Т	L
	- ,+∞									
S			,							
2					L					
4						L				
Т										

3) Indicare il cammino aumentante P determinato al punto 2), il relativo incremento di flusso Δ (utilizzare la notazione i --> j se l'arco (<math>i,j) è un arco di P+; i <-- j se l'arco (j,i) è un arco di P), ed il flusso totale trasferito da S a T.

4). Dopo aver effettuato l'aumentazione di flusso lungo il cammino *P*, il flusso trasferito da S a T è massimo? In caso di risposta positiva indicare il taglio di capacità minima.

Il flusso è massimo?No

(Riempire i campi sottostanti solo in caso di risposta positiva. Nell'espressione della capacità del taglio indicare esplicitamente le capacità degli archi u_{ij} che concorrono al valore della capacità del taglio)

v*=

Esercizio 3

Si consideri il problema di PLI

$$\max \ -2x_1 + 3x_2$$
$$x \in P \cap \mathbb{Z}^2$$

dove
$$P=\{x\in \mathbb{R}^2_+ \ | \ 3x_1+2x_2\geq 8, \ -4x_1+6x_2\geq 11, \ x_1\leq 3, \ 1\leq x_2\leq rac{7}{2}\}.$$

Per il problema assegnato sono noti la soluzione ottima del rilassato lineare di S_0 ($x^*_{PL_0}=(1,rac{5}{2})^ op$) e l'albero **completo** di ricerca, ottenuto applicando l'algoritmo Branch-and-

Bound con la seguente regola di visita: il sottoproblema S_i è stato risolto prima del sottoproblema S_j se i < j. L'albero è mostrato nella figura seguente, insieme al poliedro P. Per ogni nodo i dell'albero si chiede di riportare, nella tabella sottostante secondo l'ordine di visita: la soluzione ottima del rilassato lineare corrispondente a quel nodo ($x_{PL_i}^*$), il valore di Upper Bound (

 U_i), il valore di Lower Bound **globale** L che si ha dopo la risoluzione del rilassato lineare corrispondente a quel nodo. Infine, per i nodi foglia, riportare il criterio che ha condotto alla chiusura del nodo.

Nodo	$x^*_{PL_i}$	U_i	L	Criterio di chiusura (se foglia)
S_0				
S1				
S2 S3				2257444 00-
S4				
S5 S6	:			
S7				

Determinare, infine, la soluzione ottima di PLI

x^*_{PLI}			
z^*_{PLI}			