

Fisica dello Stato Solido

Lezione n.4 Modelli di conduzione di Drude e Sommerfeld

Corso di Laurea Specialistica Ingegneria Elettronica a.a.07-08

http://www.de.unifi.it/FISICA/Bruzzi/bruzzi_dida_fss.html

SOMMARIO

Modello di Drude

Assunzioni – derivazione della legge di Ohm – valutazione del tempo di rilassamento, della velocità, del libero cammino medio e del coefficiente di Hall – problemi del modello di Drude

Modello di Sommerfeld

Assunzioni – condizioni di Born Von Karman – soluzione dell'eq. di Schroedinger per elettroni liberi – funzione degenerazione – Energia di Fermi – velocità di Fermi

Modello di Drude

Joseph John Thomson (J.J.Thomson) nel 1897 scopre l'elettrone, studiando la deflessione nei raggi catodici.

Nel 1900 Paul Drude (1863-1906) formula un primo modello sulla conducibilità elettrica nei metalli. Egli considera gli elettroni di conduzione come un gas di particelle libere a cui applica la distribuzione statistica classica di Maxwell Boltzmann.

L'elettrone di conduzione interagisce con gli ioni mediante collisioni: eventi istantanei che cambiano bruscamente la sua velocità.

Assunzioni nel modello di Drude

- 1. Gli ioni nel reticolo sono disposti casualmente e sono fissi.
- 2. Nel tempo che intercorre tra collisioni successive si trascurano le interazioni tra ione ed elettrone (approssimazione di elettrone libero) e tra elettrone ed elettrone (approssimazione di elettrone indipendente).
- 3. La probabilità che e non abbia avuto collisione nel tempo t è pari a: $P=e^{-\tau}$ con τ = tempo di rilassamento (approssimazione di tempo di rilassamento). Allora τ è tempo medio tra due collisioni successive.
- 4. La velocità di uscita dalla collisione ha direzione casuale e non correlata alla velocità prima della collisione e modulo correlato con la temperatura locale.

Derivazione della legge di Ohm nel modello di Drude

Applico campo elettrico esterno: sugli elettroni di conduzione agirà la forza:

$$\underline{F} = -e\underline{E} \qquad \text{Per la legge di Newton: } \frac{d\underline{v}}{dt} = \underline{a} = \frac{\underline{F}}{m} \quad \text{la velocità}$$
 varia, tra collisioni successive, con legge
$$\underline{v} - \underline{v}_0 = \int\limits_0^t -\frac{e\underline{E}}{m} dt = -\frac{e\underline{E}}{m} t$$
 Facendo la media otteniamo: $<\underline{v}> = <\underline{v}_0> -\frac{eE}{m} < t> = -\frac{eE}{m} \tau$.

$$= <\underline{v}_0 > -\frac{eE}{} < t > = -\frac{eE}{} \tau$$

avendo posto, per le assunzioni già viste, $\langle v_0 \rangle = 0$ e $\langle t \rangle = \tau$.

Definiamo mobilità $\mu = \left| \frac{e \tau}{m} \right|$ coefficiente di proporzionalità tra campo elettrico e velocità media.

Poiché la densità di corrente per conduzione elettronica è : $\underline{J} = -ne < \underline{v} >$

Otteniamo:
$$\underline{J} = \frac{ne^2\tau}{m}\underline{E} \Rightarrow \underline{J} = \sigma\underline{E}$$

Valutazione del tempo di rilassamento

$$\tau = \frac{m}{ne^2}\sigma$$

Nei metalli a T ambiente abbiamo, tipicamente: $\sigma = 10^8 \frac{1}{2}$

$$\sigma = 10^8 \frac{1}{\Omega m}$$

Concentrazione di elettroni di conduzione in rame:

$$n = \frac{N}{V} = \frac{m}{A} N_{AV} \frac{z}{V} = \frac{\rho N_{AV} z}{A} = \frac{6.022 \cdot 10^{23} \cdot 8.96}{63.55} = 8.49 \cdot 10^{22} cm^{-3}$$

Con z = numero di elettroni di conduzione per atomo

$$\tau = \frac{0.911 \cdot 10^{-30}}{8.49 \cdot 10^{22} \cdot 10^{6} \cdot (1.6 \cdot 10^{-19})^{2}} 10^{8} \approx 10^{-14} s$$

Esercizio

A temperatura ambiente la conducibilità dell'argento è σ = 6.14 x10⁻⁷ 1/(Ω m). Se il numero di elettroni di conduzione per unità di volume è $n = 6x10^{28}$ m⁻³ stimare il tempo di rilassamento. secondo il modello di Drude.

Soluzione: L'espressione della conducibilità elettrica secondo il modello di Drude è: $\sigma = \frac{ne^2\tau}{\sigma}$.

Perciò: $\tau = 3.64 \times 10^{-14} \text{s}$.

Valutazione della velocità termica

Teorema di equipartizione dell'energia: ad ogni grado di libertà della particella si associa un'energia pari a :

$$U = \frac{1}{2}K_BT$$
 con K_B = Costante di Boltzmann = 1.38 10⁻²³ J/K

La particella monoatomica ha tre gradi di libertà corrispondenti al moto traslazionale

$$\frac{1}{2}mv_{th}^2 = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2) = \frac{3}{2}K_BT \qquad \Longrightarrow \qquad v_{th} = \sqrt{\frac{3K_BT}{m}}$$

$$v_{th} = \sqrt{\frac{3 \cdot 1.38 \cdot 10^{-23} \cdot 300}{0.911 \cdot 10^{-30}}} \approx 10^5 \frac{m}{s}$$

Valutazione del libero cammino medio

$$l=v_{th}\cdot au$$
 ~ 10 Å

Il valore ragionevole del libero cammino medio, così come la spiegazione della legge di Ohm hanno molto contribuito ad avvalorare il modello di Drude della conducibilità elettrica nei metalli.

Esercizio

18. In un filo di rame di sezione $S = 10^{-5} m^2$ mantenuto a temperatura di 300K scorre la corrente I = 1.5A. Sapendo che la densità del materiale è 9.86×10^3 kg/m³ e A = 63.55 numero di massa determinare la velocità di deriva degli elettroni di conduzione e confrontarla con quella termica.

Soluzione: La densità di corrente ha espressione: $J = \frac{I}{S} = -nev$ con n = concentrazione di elettroni di conduzione nel metallo: $n = \frac{\rho N_{AV} z}{A} = \frac{9.86x6.022x10^{23}x1}{63.55} = 8.49x10^{22} \, \text{cm}^{-3}$. Otteniamo una velocità di deriva: $v = 1.10x10^{-5}$ m/s. La velocità termica è ottenuta dal teorema di equipartizione dell'energia: $U_{\text{int}} = \frac{1}{2}mv_{th}^2 = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2) = \frac{3}{2}k_BT$ da cui otteniamo: $v_{th} = \sqrt{\frac{3k_BT}{m}} = 1.17x10^5$ m/s.

Valutazione del coefficiente di Hall

Applico campo magnetico esterno costante B lungo la direzione y e mantengo una densità di corrente costante <u>J</u> lungo la direzione x. Sia q la carica responsabile della conduzione. Su di essa agisce la forza di Lorentz:

$$\underline{F}_{L} = q\underline{v} \times \underline{B}$$

La forza per unità di carica può essere espressa come campo elettromotore:

$$\underline{E}_H = \frac{\underline{F}_L}{q} = \underline{v} \times \underline{B}$$

Tale campo è noto come campo di Hall. Se q > 0 \underline{E}_H risulta concorde all'asse z, mentre ha verso opposto se q < 0. All'equilibrio compare un campo elettrostatico \underline{E}_{el} uguale ed opposto ad \underline{E}_H . Esso si può spiegare considerando che \underline{E}_H provochi una deflessione nel moto delle cariche, tendendo ad accumulare cariche di segno opposto sulle due facce ortogonali a \underline{E}_H stesso.

Nel caso la conduzione sia dovuta ad elettroni, ricordando che:

$$\underline{J} = -ne\underline{v} \qquad \text{otteniamo} \quad \underline{E}_H = -\frac{1}{ne}\underline{J} \times \underline{B}.$$

Si definisce coefficiente di Hall :
$$R_H = \frac{E_H}{J_x B_y}$$
 da cui: $R_H = -\frac{1}{ne}$.

Esercizio

Determinare il coefficiente di Hall dell'oro, sapendo che ciascun atomo contribuisce alla conduzione con un elettrone e che la densità del materiale è 19.3x10³ kg/m³ e A = 197 numero di massa.

Soluzione: Il coefficiente di Hall ha espressione: $R_H = -\frac{1}{ne}$ con n = concentrazione di elettroni di conduzione nel metallo: $n = \frac{\rho N_{AV} z}{A} = \frac{19.3 x 6.022 x 10^{23} x 1}{197} = 5.9 x 10^{22} \text{ cm}^{-3}$. Otteniamo: $R_H = -1.059 x 10^{-10} \text{ m}^3/\text{C}$.

Problemi nel modello di Drude

- 1. Non spiega la grande variabilità della conducibilità elettrica osservata sperimentalmente tra i diversi materiali o osservata per uno stesso materiale a T differenti
- 2. Non spiega come certi materiali possano avere valori positivi di R_H
- 3. Non spiega il diverso comportamento elettrico tra metalli ed isolanti.

Una prima correzione al modello di Drude si effettua considerando che gli elettroni seguono la statistica quantistica di Fermi Dirac.

Probabilità di una distribuzione

Siano:

N = numero totale di particelle

 ε_i = energia del livello i-esimo i = 1, ..., s

 n_i = numero di particelle nel livello ad energia ε_i

 g_i = degenerazione del livello ε_i

$$N=\sum n_i$$
 = numero totale particelle = costante
$$U_{\rm int}=\sum n_i \mathcal{E}_i$$
 = energia interna totale del sistema = costante

Per determinare la probabilità di una distribuzione di N particelle negli stati ε_i devo calcolare il numero di configurazioni possibili con cui tale distribuzione si può ottenere.

Distribuzione di Fermi Dirac

Assunzioni:

- 1. Le particelle obbediscono al principio di esclusione di Pauli (spin semi-intero, non possono avere stessi numeri quantici)
- 2. Particelle **INDISTINGUIBILI**. Discende dal principio di indeterminazione di Heisenberg, poichè non possono essere determinate precisamente le loro traiettorie

Distribuzione di Bose Einstein

Assunzioni:

- 1. Non ci sono limiti alla popolazione di ciascun livello
- 2. Particelle **INDISTINGUIBILI**.

Distribuzione più probabile all'equilibrio

Per una discussione dettagliata vedere appendice 2

$$n_i = \frac{g_i}{e^{\alpha + \beta \varepsilon_i} + 1}$$

Legge di distribuzione di Fermi Dirac

$$n_i = \frac{g_i}{e^{\alpha + \beta \varepsilon_i} - 1}$$

Legge di distribuzione di Bose Einstein

si pone:
$$\beta = \frac{1}{k_B T}$$

Mentre per il parametro α , determinato dalla condizione : $N=\sum n_i$ nella distribuzione di Fermi-Dirac viene espresso tramite l'energia di Fermi : $\mathcal{E}_F=-\alpha\ k_BT$ e nella distribuzione di Bose Einstein rimane indicata come α .

Bose-Einstein

Fermi-Dirac

$$n_i = \frac{g_i}{e^{(\alpha + \varepsilon_i)/k_B T} - 1}$$

$$n_i = \frac{g_i}{e^{(\varepsilon_i - \varepsilon_F)/k_B T} + 1}$$

Le tre statistiche possono essere riscritte insieme con espressione: $\frac{g_i}{n_i} + d = e^{\alpha + \epsilon_i/k_BT}$ con d = 0 per la M-B, -1 per la F-D, +1 per la B-E.

Per $n_i/g_i <<1$, cioè per sistemi molto rarefatti, ad esempio per alte temperature, le due statistiche quantistiche sono equivalenti a quella classica di Maxwell Boltzmann.

Modello di Sommerfeld

Drude applica la teoria cinetica dei gas agli elettroni di conduzione, non tenendo conto che:

- a. Le densità elettroniche sono in realtà molto più elevate di quelle di un gas rarefatto in condizioni atmosferiche di pressione e temperatura;
- b. Gli elettroni obbediscono al principio di esclusione di Pauli, perciò devono essere descritti mediante la statistica quantistica di Fermi-Dirac.
- c. Gli elettroni devono essere descritti con funzioni d'onda $\phi(\underline{r})$ soluzioni dell'equazione di Schrödinger:

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\varphi(\underline{r}) = \varepsilon\varphi(\underline{r})$$

Il modello elaborato da Sommerfeld considera queste proprietà del gas di elettroni liberi confinati nel metallo.

Esercizio su autovalori e autofunzioni

22. Indicare quale delle seguenti funzioni sono autofunzioni per l'operatore $\frac{d}{dx}$: $\phi_a = e^{ikx}$; $\phi_b = e^{\alpha x}$; $\phi_c = \sin(kx)$ ed eventualmente indicarne l'autovalore. Ripetere l'esercizio per l'operatore $\frac{d^2}{dx^2}$.

Soluzione: Le funzioni indicate sono autofunzioni per l'operatore $\frac{d}{dx}$ se si può scrivere $\frac{d\phi}{dx} = a\phi$ con a = autovalore. Otteniamo: (a) $\frac{d(e^{ikx})}{dx} = ike^{ikx}$; (b) $\frac{d(e^{\alpha x})}{dx} = \alpha e^{\alpha x}$; (c) $\frac{d(sen(kx))}{dx} = k\cos(kx)$. Quindi le funzioni ϕ_a e ϕ_b sono autofunzioni con autovalori rispettivamente: ik e α , mentre ϕ_c non è autofunzione per l'operatore $\frac{d}{dx}$. Nel caso dell'operatore $\frac{d^2}{dx^2}$ invece si verifica che tutte e tre sono autofunzioni, con autovalori rispettivamente: $-k^2$, $-\alpha^2$, $-k^2$.

Soluzione generale dell'equazione:
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \varphi(\underline{r})}{\partial x^2} = \mathcal{E}\varphi(\underline{r})$$

È la funzione:
$$\varphi(x) = Ae^{ikx} + Be^{-ikx}$$
 con $k = \sqrt{\frac{2m\varepsilon}{\hbar^2}}$.

Nel caso tridimensionale: $\varphi(\underline{r}) = Ae^{i\underline{k}\cdot\underline{r}} + Be^{-i\underline{k}\cdot\underline{r}}$

è somma di due onde piane, progressiva e regressiva, di vettor d'onda k.

Il gas di elettroni liberi è confinato in un metallo, che posso descrivere come cubo di lato L. Quindi ϕ è onda stazionaria con nodi sulle superfici del cubo

$$\begin{cases} \varphi(x+L,y,z) = \varphi(x,y,z) \\ \varphi(x,y+L,z) = \varphi(x,y,z) \\ \varphi(x,y,z+L) = \varphi(x,y,z) \end{cases}$$
 Condizioni di Born Von Karman

Applico le condizioni di B-V-K e ottengo la quantizzazione del vettor d'onda:

$$e^{ik_{x}x} = e^{ik_{x}(x+L)}$$

$$e^{ik_{y}y} = e^{ik_{y}(y+L)} \implies e^{ik_{x}L} = e^{ik_{y}L} = e^{ik_{z}L} = 1$$

$$e^{ik_{z}z} = e^{ik_{z}(z+L)}$$

$$k_{x} = \frac{2 \pi n_{x}}{L}; \quad k_{y} = \frac{2 \pi n_{y}}{L}; \quad k_{z} = \frac{2 \pi n_{z}}{L}.$$

con n_x, n_y, n_z numeri interi.

I valori permessi di k sono perciò multipli di $\frac{2 \pi}{L}$.

Per ogni valore permesso di <u>k</u> si ha livello energetico: $\varepsilon = \frac{\hbar^2 k^2}{2m}$.

Superfici a energia costante nello spazio k

Determino la degenerazione del livello di energia ε considerando che, poiché per l'elettrone libero:

$$\varepsilon = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 \left(k_x^2 + k_y^2 + k_z^2\right)}{2m}$$

Nello spazio \underline{k} , tutti i punti sulla superficie della sfera di raggio: $k = \sqrt{k_x^2 + k_y^2 + k_z^2}$ sono caratterizzati da uno stesso valore di energia ε . La degenerazione del livello di energia ε è pari al numero delle terne di valori permessi di k_x, k_y, k_z che danno stesso valore k^2 .

Determinazione dell'espressione della funzione $g(\varepsilon)$

Considero il numero di stati permessi nella sfera di raggio k

$$N(\varepsilon) = \frac{4}{3}\pi \ k^3 \frac{1}{\left(\frac{2\pi}{L}\right)^3} = \frac{4}{3}\pi \ k^3 \frac{L^3}{8\pi^3} = \frac{1}{6} \left(\frac{2m\varepsilon}{\hbar^2}\right)^{3/2} \frac{L^3}{\pi^2} = \frac{8\pi^3 (2m\varepsilon)^{3/2}}{h^3} \frac{V}{6\pi^2}$$
Volume sfera di raggio k
Volume relativo ad ogni k permesso
$$k = \left(\sqrt{\frac{2m\varepsilon}{\hbar^2}}\right)$$

Ricaviamo il numero di stati:
$$N(\varepsilon) = 8\frac{\pi}{3} \frac{V}{h^3} (2m\varepsilon)^{3/2}$$

Differenziando:
$$dN(\varepsilon) = 8\frac{\pi}{3}\frac{V}{h^3}(2m)^{3/2}\frac{3}{2}\sqrt{\varepsilon} \ d\varepsilon = 4\pi\frac{V}{h^3}(2m)^{3/2}\sqrt{\varepsilon} \ d\varepsilon$$

Inserendo la molteplicità 2 di spin:
$$dN(\varepsilon) = \frac{8\pi V}{h^3} (2m)^{3/2} \sqrt{\varepsilon} d\varepsilon$$

$$g(\varepsilon) = \frac{8\pi V}{h^3} (2m)^{3/2} \sqrt{\varepsilon}$$

Combinando la g(ϵ) con la funzione di Fermi f_F otteniamo:

$$\frac{dn(\varepsilon)}{d\varepsilon} = \frac{g(\varepsilon)}{e^{\frac{\varepsilon - \varepsilon_F}{K_B T}} + 1}$$

$$\frac{dn}{d\varepsilon} = \frac{8\pi V}{h^3} (2m)^{3/2} \frac{\sqrt{\varepsilon}}{e^{\frac{\varepsilon - \varepsilon_F}{K_B T}} + 1}$$

Energia di Fermi

l'integrale sull'energia di dN/dE è pari al numero totale N di elettroni:

$$N = \int_{0}^{\infty} \frac{g(E)dE}{e^{(E-E_F)/k_BT} + 1} = \frac{8\pi V \sqrt{2m^3}}{h^3} \int_{0}^{\infty} \frac{\sqrt{E}dE}{e^{(E-E_F)/k_BT} + 1}$$

$$a T = 0 K$$
: $n = \frac{N}{V} = \frac{8\pi\sqrt{2m^3}}{h^3} \int_{0}^{E_F} \sqrt{E} dE = \frac{16\pi\sqrt{2m^3}}{3h^3} E_F^{3/2}$

$$\varepsilon_F = \frac{h^2}{8m} \left(\frac{3n}{\pi}\right)^{2/3}$$

Energie di Fermi

$$T_F = E_F/k_B$$

metallo	E_F (eV)	$T_F(\mathbf{K})$
Li	4.7	$5.5 \cdot 10^4$
Na	3.1	$3.7 \cdot 10^4$
K	2.1	$2.4 \cdot 10^4$
Cu	7.0	$8.2 \cdot 10^4$
Ag	5.5	6.4·10 ⁴
Au	5.5	$6.4 \cdot 10^4$

Energia media a 0 K:

$$< E_{T=0K} > = \frac{C \int_{0}^{E_{F}} E^{3/2} dE}{C \int_{0}^{E_{F}} E^{1/2} dE} = \frac{\frac{2}{5} E_{F}^{5/2}}{\frac{2}{3} E_{F}^{3/2}} = \frac{3}{5} E_{F}$$

Prof. Mara Bruzzi – Lezione n. 4 -Laurea specialistica in Ingegneria ⊑iettronica a.a.u/-∪o

Correzione di Sommerfeld al modello di Drude

Alla velocità termica si sostituisce la velocità di Fermi, dove: $v_F = \sqrt{\frac{2\mathcal{E}_F}{m}}$

maggiore di ${\bf v}_{\rm th}$ di un fattore: $\frac{2{\it \varepsilon}_{\scriptscriptstyle F}}{3K_{\scriptscriptstyle B}T}$. Si ottiene:

$$l = v_F \cdot au$$
 ~ 100 Å

Maggiore delocalizzazione elettronica.

Il modello di Drude con le correzioni di Sommerfeld descrive abbastanza bene le proprietà elettriche dei metalli. Le correzioni di Sommerfeld non risolvono invece i problemi incontrati applicando il modello di Drude al caso di materiali isolanti/semiconduttori.

Per descrivere meglio le proprietà elettriche dei materiali devo tenere conto del potenziale periodico dovuto agli ioni presenti nei siti reticolari.

Esercizi

. Determinare l'energia di Fermi e la velocità di Fermi nel rame. Confrontare il valore di velocità trovato con la velocità termica valutata nell'esercizio 18.

Soluzione: l'energia di Fermi in un metallo è data da: $\varepsilon_F = \frac{h^2}{8m} \left(\frac{3n}{\pi}\right)^{2/3} = 7.05 \text{eV}$. Essa è legata alla velocità di fermi dalla relazione: $v_F = \left(\frac{2\varepsilon_F}{m}\right)^{1/2}$. Si ottiene: $v_F = 1.57 \times 10^6 \text{m/s}$, circa un ordine di grandezza superiore alla velocità termica a temperatura ambiente.

24. Determinare l'energia media a zero gradi Kelvin degli elettroni di conduzione di un metallo se essi sono caratterizzati da una concentrazione pari a 10²²cm⁻³.

Soluzione: L'energia media del gas di elettroni liberi a 0K è pari a $<\varepsilon>=\frac{3}{5}\varepsilon_F$. Da $\varepsilon_F=\frac{h^2}{8m}\left(\frac{3n}{\pi}\right)^{2/3}$ otteniamo $\varepsilon_F=1.695 \mathrm{eV}$ e quindi l'energia media è $<\varepsilon>=1.017 \mathrm{eV}$.

Misure effettuate a T ambiente forniscono un valore del libero cammino medio per elettroni in rame pari a 420 Å. Valutare il corrispondente valore del tempo medio tra collisioni successive.

Soluzione: $\lambda = v_F \tau$. La velocità di fermi è determinata con : $v_F = \sqrt{\frac{2\varepsilon_F}{m}}$. L'espressione del

livello di Fermi è : $\varepsilon_F = \frac{h^2}{8m} \left(\frac{3n}{\pi}\right)^{2/3}$ con n = concentrazione degli elettroni di conduzione:

$$n = \frac{N}{V} = \frac{m}{A} N_{AV} \frac{z}{V} = \frac{\rho N_{AV} z}{A} = \frac{6.022 \ 10^{23} \ 8.96}{63.55} = 8.49 \ 10^{22} cm^{-3}$$
. Si ottiene $\varepsilon_F = 7.1 \text{ eV}$, quindi

$$v_F = 1.58 \times 10^6 \text{m/s} \text{ e } \tau = \frac{\lambda}{v_F} = \frac{420 \times 10^{-10}}{1.58 \times 10^6} = 2.66 \times 10^{-14} \text{ s}.$$