Index

A	FLAML, 153-154
ACI (Azure Container Instances), 369	Google's AutoML and edge computer
AKS (Azure Kubernetes Service), 370	vision, 136-139
alerts, defined, 369	Kaizen versus KaizenML, 125-127
Amazon ECR, defined, 369	Ludwig, 151
Amazon EKS, defined, 369	MLOps industrial revolution, 123-125
Amazon Mechanical Turk, 351	model explainability, 154-158
antipatterns, 357-362	open source solutions, 151-154
API services, authentication, 240	autoscaling, defined, 369
App Engine (see Google App Engine)	AWS, 187-234
App Runner, 202, 221-222	AutoML, 146-150
app.py, 210	AWS Lambda recipes, 223-229
Apple	basics, 188-209
Core ML (see Core ML)	best practices for bootstrapping MLOps
Create ML, 132-136	capabilities, 233
mobile development ecosystem, 131-139	CaaS, 198-203
ASICS, 19	career advice with AWS ML evangelist
authentication	Julien Simon, 231-233
API services, 240	certification options, 375-390
authenticating microservices to cloud func-	Certified Machine Learning specialist certif-
tions, 338-340	ication, 2
Azure, 238-240	CLI tools for MLOps Cookbook project,
key-based, 240	211-218
service principal, 238-240	computer vision, 204-205
automated checks, 113	DataOps tools, 15
Automator's law, 30, 118	Flask microservice, 218-222
AutoML, 31, 117-159	getting started with, 189-205
Apple's ecosystem and, 131-139	Hugo static S3 websites, 192-194
AWS, 146-150	MLOps Cookbook on, 209-222
Azure AutoML, 144-146	MLOps on, 206-209
basics, 118-129	no-code/low-code AWS Comprehend solu-
Create ML, 132-136	tion, 190
data science versus, 123	real-world ML applications, 229-233
Feature Stores, 127-129	serverless cookbook, 194-198

Sports Social Network case study, 229-231	retrieving logs, 252
AWS App Runner, 202, 221-222	service principal, 238-240
AWS Certified Machine Learning - Specialty	troubleshooting deployment issues, 251-257
certification, 381-390	versioning datasets, 245
data engineering, 382-387	Azure AI Engineer Associate certification, 391
exploratory data analysis, 387-389	Azure Associate Data Scientist certification, 39
MLOps, 390	Azure AutoML, 144-146
AWS Cloud Practitioner, certification test ques-	Azure Container Instances (ACI), 369
tions for, 375-381	Azure Kubernetes Service (AKS), 370
AWS Cloud9, 25, 193, 369	Azure ML, monitoring drift with, 182-184
AWS Cloudshell, 24-25	Azure Percept, 84
AWS CloudWatch, 163	Azure Pipelines, 56-63
AWS Comprehend, 190	
AWS DeepLens, 204-205	В
AWS DeepRacer, 52	
AWS Lambda, 33	Baseball_Predictions_Export_Model.ipynb, 21
defined, 369	baseline dataset, target dataset versus, 179
deploying with SAM, 223-229	Bash shell, 26-29
recipes, 223-229	configuration, 27
SAM containerized deploy, 224-229	files and navigation, 27
SAM Local, 223	input/output, 27
serverless applications, 194-198	list files, 26
AWS S3	run commands, 26
Hugo static S3 websites, 192-194	writing a script, 28
SageMaker and, 176-181	BigQuery (see Google BigQuery)
AWS SageMaker (see SageMaker)	bind mount, 87
AWS Serverless Application Model (see SAM)	black tool (Python), 370
AWS Solutions Architect certification test ques-	Blake, William, 408
tions, 375-381	blue-green deployment, 111
Azure, 235-263	Bogen, Joseph, xiii, 1, 23, 67, 93, 117, 161, 187,
Application Insights, 253	235, 265, 293, 317, 347
authenticating API services, 240	build server, defined, 370
authenticating 74 7 3c7 vices, 240	
Azure CLI and Python SDK, 236-238	C
Azure Machine Learning designer, 260-262	CaaS (see container as a service)
compute instances, 240-242	canary deployment, 111
debugging locally, 254-257	career planning
deploying, 242-245	pear (PPEAR) revenue strategy, 399-402
deploying a model, 248-251	thinking like a venture capitalist, 399
deploying models to a compute cluster,	case studies, 347-367
246-251	critical challenges in MLOps, 357-362
deploying ONNX to, 307-310	ethical/unintended consequences, 358
Microsoft Certified: Azure Data Scientist	Francesca Lazzeri interview, 362
certification, 2	intermittent fasting, 409-414
ML lifecycle, 262	MLOps projects as Sqor sports social net-
ML pipelines, 257-262	work, 350-355
MLOps for, 235-263	perfect technique versus the real world,
publishing pipelines, 259	355-357
registering models, 243-244	Piero Molino interview, 360-362
10510tt111g 1110ttt10, 243-244	

unlikely benefits of ignorance in building	MLOps Cookbook project, 211-218
ML models, 348-350	modularizing, 328-331
CD (see continuous delivery (CD))	Python packaging, 319
certifications, 375-392	requirements file, 320
AWS Certified Machine Learning - Spe-	command line, Linux, 23
cialty, 381-390	Common Vulnerabilities and Exposures
AWS Cloud Practitioner, 375-381	(CVEs), 75
AWS Solutions Architect, 375-381	competitive advantage, 190
Azure Data Scientist/AI Engineer, 391	compute cluster
SQL-related, 391	deploying models to, 246-251
challenges in MLOps	inference cluster versus, 247
ethical/unintended consequences, 358	Compute Engine, 267
focus on prediction accuracy versus the big	compute instances, Azure, 240-242
picture, 359	computer vision
lack of operational excellence, 358	AWS, 204-205
Charpentier, Emmanuelle, 121	Google's AutoML and edge computer
CI/CD (continuous integration/continuous	vision, 136-139
delivery)	configuration
implementation of, 7	Bash shell, 27
parallels to recovery from sports injuries, 94	cluster, 246-248
CI/CD pipeline, quality-control checks for, 32	configuring continuous integration with
CircleCI, defined, 370	GitHub Actions, 13-14
CLI tools (see command line interface tools)	runtime, 259
cli.py, 210	container as a service (CaaS)
cloud computing	AWS, 198-203
foundations/building blocks, 29-31	MLOps design pattern, 366
getting started, 31-32	containerized workflow, 224-229
machine learning and, 3	containers, 68-80
cloud MLOps, observability for, 163	best practices, 74-76
cloud native applications, defined, 370	build once, run many MLOps workflow, 91
cloud pipelines	creating, 69-71
continuous delivery, 107-115	defined, 370
controlled rollout of models, 110	managed ML systems and, 89-91
testing techniques for model deployment,	monetizing MLOps, 90
112-115	running, 72-73
Cloud Run, 268	runtime, 69
cloud shell development environments, 24-26	serving a trained model over HTTP, 76-80
Cloud9 (see AWS Cloud9)	continuous delivery (CD), 6, 93-115
Cloudshell, 24-25	(see also CI/CD)
cluster	cloud pipelines for, 107-115
configuring, 246-248	defined, 370
deploying models to a compute cluster,	DevOps best practice, 5
246-251	GCP and, 270-272
inference versus compute, 247	infrastructure as code for continuous deliv-
command line interface (CLI) tools, 317-344	ery of ML models, 99-106
basics, 321-331	packaging for ML models, 95-99
building a cloud-based CLI, 341	testing techniques for model deployment,
creating a dataset linter, 321-328	112-115
machine learning CLI workflows, 342-344	continuous improvement, 8, 114

continuous integration (CI), 6	registration, 243-244
(see also CI/CD)	troubleshooting deployment issues, 251-257
configuring with GitHub Actions, 13-14	descriptive statistics, 37-41, 39
defined, 370	design patterns, 366
DevOps best practice, 5	development environments, 24-26
GCP and, 270-272	DevOps
convergence, 49	best practices, 5
Coral Project, 81-84	defined, 5
Core ML, 132, 136-139, 310-314	implementing, 8-13
Create ML, 132-136	MLOps and, 5-7
customer-focused education, 422	MLOps feedback loop, 18
CVEs (Common Vulnerabilities and Expo-	diet, intermittent fasting and, 409-414
sures), 75	disaster recovery, defined, 370
cybersecurity, 365	disruption (see education disruption)
	Docker
D	containers, 69
data drift (see drift)	defined, 371
data engineering	Dockerfile, 69, 211
AWS Certified Machine Learning - Specialty	format container, 370
certification, 382-387	Doudna, Jennifer, 121
defined, 370	drift
GCP, 282-286	monitoring with AWS SageMaker, 175-182
ML hierarchy of needs and, 15	monitoring with Azure ML, 182-184
data governance, 365, 385	
data lake, 15, 382	E
data science	EDA (exploratory data analysis), 39, 387-389
AutoML versus, 123	edge devices, 80-89
as foundational skill, 54-56	Apple's ecosystem, 131-139
data warehouses, Feature Stores versus, 129	ASICS and, 19
DataOps	Azure Percept, 84
GCP, 282-286	Coral, 81-84
ML hierarchy of needs and, 15	ORT model format and, 314-315
dataset linter, 321-328	porting over non-TPU models, 86-89
datasets	TFHub, 85
baseline versus target, 179	education disruption, 418-425
versioning, 245	current state of higher education that will be
Davis, Purnell, 352	disrupted, 420-421
debugging (see troubleshooting)	10X better education, 421-425
deep learning intuition, 49-49	educational resources, 415-426
DeepLens, 204-205	additional MLOps critical thinking ques-
dependencies	tions, 415-418
defining in requirements.txt file, 320	additional MLOps educational materials,
pinning, 74	418
Python packaging and, 319	education disruption, 418-425
deployment	Elastic Beanstalk Flask app, 207-209
Azure, 242-245	ELI5, 155, 157
blue-green versus canary, 111	engineering, science versus, 2
deploying a model, 248-251	explainability, 145, 154-158
MLOps, 19	exploratory data analysis (EDA), 39, 387-389

F	Professional Machine Learning Engineer
FaaS (see function as a service)	certification, 2
Faber, Issac, 359	Google App Engine, 268, 287
Fargate, 198-203	Google BigQuery, 268, 280-281
fasting, intermittent, 409-414	Google Cloud Build, 270
Feature Stores, 127-129	Google Cloud Functions, 282-286
feedback loop, 18	Google Cloud Platform (GCP), 265-290
FLAML, 153-154	advantages of using, 267
Flask microservice, 218-222	applied data engineering on, 282-286
automatically building container via GitHub	certifications, 391
Actions, 220	cloud native database choice/design,
AWS App Runner and, 221-222	280-281
build example, 199-202	continuous integration/continuous delivery,
containerized, 219	270-272
food, intermittent fasting and, 409-414	disadvantages of using, 265-266
foundational skills for MLOps, 23-63	Kubernetes and, 272-280
Bash shell and commands, 26-29	major components, 267
building an MLOps pipeline from zero,	operationalizing ML models, 287-289
56-63	overview, 265-281
cloud computing foundations/building	Google Cloud Run, 268
blocks, 29-31	Google Kubernetes Engine (GKE), 268, 371
cloud shell development environments,	greedy algorithms, 42-48
24-26	
doing data science, 54-56	Н
getting started with cloud computing, 31-32	Haber, Jonathan, 356
Linux command line, 23	Hardgrove, Jacob, 357
machine learning key concepts, 50-53	Hargadon, Andrew, 367
math for programmers crash course, 37-49	Harris, Tristan, 358
Python (crash course), 33-35	health issues, in home work area, 395
Python (tutorial), 36	hierarchy of needs, ML, 7-19
Fox, Justin, 119	configuring continuous integration with
function as a service (FaaS)	GitHub Actions, 13-14
AWS Lambda, 33	DataOps and data engineering, 15
defined, 371	implementing DevOps, 8-13
	MLOps at top of, 17-19
G	platform automation, 16
GCP (see Google Cloud Platform)	hiring process, disruption of, 425
Gilovich, Thomas, 118	hobbies, 408
GitHub Actions	Horizontal Pod Autoscaler (HPA), 275
automatically building container via, 220	housing affordability, 424
configuring continuous integration with,	HTTP, serving a trained model over, 76-80
13-14	htwtmlb.csv, 210
GCP versus, 271	Hugo websites, 192-194
GitHub Container Registry, pushing container	
to, 220	I
GitHub, file size limitations for, 100	IaC (see infrastructure as code)
GKE (Google Kubernetes Engine), 268, 371	ignorance, benefits of, 348-350
Google	implementation of MLOps
AutoML and edge computer vision, 136-139	data governance and cybersecurity, 365
U 1	6

design patterns, 366	containers and, 74
global recommendations, 364	creating a dataset linter, 321-328
recommendations for, 364-366	modularizing, 328-331
inference clusters, 247	linting, 32, 114
infrastructure as code (IaC)	Linux command line, 23
continuous delivery of ML models and,	load testing, defined, 371
99-106	Locust, defined, 371
DevOps best practice, 6	logging, 164
input/output	(see also monitoring)
Bash shell, 27	basics, 164
instructions (container keywords), 70	defined, 371
instrumentation (DevOps best practice), 6	modifying log levels, 169
intermittent fasting, 409-414	Python, 165-172
interoperability, 293-315	retrieving logs, 252
Apple Core ML, 310-314	Loranger, Rob, 229-231
edge integration, 314-315	Loukides, Mike, 367
importance of, 294-296	ls command, 26
ONNX, 296-310	Ludwig AutoML, 151
IPython interpreter, defined, 371	
Isaacson, Walter, 121	M
	machine learning (generally)
J	cloud computing and, 3
James, Lebron, 352	interoperability (see interoperability)
job markets, regional, 424	key concepts, 50-53
JSON, defined, 371	machine learning engineering, tools and pro-
joors, defined, 5/1	cesses used in, 3
K	magical thinking, 119
	Makefile, 9, 210
Kaggle, 206	defined, 372
Kaizen, 4, 125-127	reasons to use, 10
KaizenML, 125-127, 127-129	managed ML systems, containers for, 89-91
kernel density plot, 39	Maslow's hierarchy of needs, 7
key terms, 369-373	math for programmers
key-based authentication, 240	crash course, 37-49
Koonin, Steven, 41, 360	descriptive statistics/normal distributions,
Kubernetes, 272-280	37-41
blue-green deployment, 111	optimization, 41-49
defined, 371	Mechanical Turk, 351
Horizontal Pod Autoscaler, 275	metrics
Kubernetes clusters, 371	defined, 372
Kubernetes containers, 371	for model monitoring, 174
Kubernetes pods, 371	microservices, 331-342
Kubernetes-centric design, 366	authenticating to cloud functions, 338-340
	building a cloud-based CLI, 341
L	creating a serverless function, 333-338
Lazzeri, Francesca, 362	defined, 69, 372
life-long learning, 423	as DevOps best practice, 5
lifecycle, Azure and, 262	Microsoft (see Azure entries)
linter	migrate (term), 372
	J

mistake mindset, 407	physical home network, 394
ML engineering (see hierarchy of needs, ML)	power management for home networking,
mlib.py, 210	395
MLOps (generally) basics, 1-21	for working remotely, 394
defined, 4	NLP (natural language processing), 190
deployment possibilities, 19	normal distributions, 37-41
DevOps and, 5-7	^
feedback loop, 18	0
foundational skills for (see foundational	O'Reilly, Tim, 367
skills)	observability
global recommendations, 364	Application Insights, 253
hierarchy of needs, 7-19	monitoring and, 172-184
Kaizen versus KaizenML, 125-127	ONNX (Open Neural Network Exchange),
recommendations for implementing,	296-310
364-366	converting Core ML models into, 310-314
rise of machine learning engineers and	converting PyTorch into, 299-301
MLOps, 2	converting TensorFlow into, 303-307
technical portfolio for, 403-408	creating a generic ONNX checker, 301-303
at top of ML hierarchy of needs, 17-19	deploying to Azure, 307-310
MLOps Cookbook	edge integration with ORT, 314-315 Model Zoo, 297-299
AWS and, 209-222	,
CLI tools, 211-218	packaging for ML models, 95-99
Flask microservice, 218-222	open source AutoML solutions, 151-154 FLAML, 153-154
MLOps industrial revolution, 123-125	Ludwig, 151
MLOps platform, 366	operationalization, defined, 372
mobile phones (see edge devices)	optimization, 41-49
model deployment, 248-251	optimization, 11 15
model explainability, 145, 154-158	Р
model lifecycle, 262	-
Model Zoo, 297-299	packaging, 95-99
model.joblib, 210	Pandas, 39
Molino, Piero, 360-362	pear (PPEAR) revenue strategy, 399-402
monitoring, 6, 161-185	autonomy, 401
(see also logging)	exponential potential of projects, 401 passive income, 400
basics, 161	rule of 25%, 401
basics of model monitoring, 174-175	work as positive experience, 400
as DevOps best practice, 6	pip, defined, 372
metrics for, 174	pipelines, 259
monitoring drift with AWS SageMaker,	(see also cloud pipelines)
175-182	Azure ML pipelines, 257-262
monitoring drift with Azure ML, 182-184 observability and, 172-184	building an MLOps pipeline from zero,
observability and, 172-164 observability for cloud MLOps, 163	56-63
Moore's Law, defined, 372	publishing, 259
moore a Law, defined, 3/2	platform automation, 16
M	ports, defined, 372
N (AM P) 100	PPEAR (see pear revenue strategy)
natural language processing (NLP), 190	Professional Cloud Architect (GCP certifica-
network	tion), 391

Professional Machine Learning Engineer (GCP	run commands, 26
certification), 391	runtime configuration, 259
project management (see technical project	
management)	S
project plan (in technical project management),	S3 (see AWS S3)
427	SageMaker, 16
Prometheus, defined, 372	model monitoring, 163
pylint, defined, 372	monetizing MLOps, 90
PyPI, defined, 372	monitoring drift with, 175-182
pytest, defined, 372	pipeline creation, 108-110
Python	SageMaker AutoPilot, 146-150
Azure CLI and Python SDK, 236-238	SAM (AWS Serverless Application Model)
command line tools, 321-331	AWS Lambda recipes, 223-229
crash course, 33-35	AWS Lambda-SAM containerized deploy,
energy inefficiency of, 34	224-229
logging different applications, 170-172	SAM Local, 223
logging in, 165-172	science, engineering versus, 2
machine learning project structure, 8-13	script, writing a, 28
minimalistic tutorial, 36	self-handicapping, 118
MLOps Cookbook, 209-222	serverless (term), 373
modifying log levels, 169	Serverless Application Model (see SAM)
project scaffold, 8	serverless methodology
requirements file, 320	AWS, 194-198
slowness of, 33	creating a serverless function, 333-338
testing/linting code, 32	as recommended MLOps design pattern,
Python functions, 36, 194	366
Python SDK, 236-238	
Python virtual environment, defined, 373	service principal, 238-240
PyTorch, converting into ONNX, 299-301	SHAP, 155, 156 shell
,	
R	Bash shell and commands, 26-29
_	cloud shell development environments,
Red Hat, 69	24-26
regional job markets, 424	defined, 26
registration, Azure, 243-244	shell script, writing a, 28
registries, 68	Silver, Nate, 359
reinforcement learning, 52	Simon, Julien, 231-233
"remote first" education, 423	Sinclair, Upton, 118
remote work, 393-397	Spark-centric design, 366
equipment for, 394-396	SQL-related certifications, 391
health issues, 395	Sqor sports social network case study, 350-355
home work area, 395	Athlete Intelligence (AI product), 353-355
home workspace virtual studio setup, 396	influencer rank, 352
location, 396	Mechanical Turk data labeling, 351
network, 394	SQS queue, defined, 373
requirements.txt, 210, 320	SSH access, 72
requirements.txt file, 10, 320	statistics, descriptive, 37-41
Ridley, Matt, 125, 367	supervised machine learning, 50
rule of 25% (income), 401	swagger, defined, 373
rule of 25% (MLOps), 20	

Ī	Python code, 32
Taleb, Nassim, 359	TFHub (TensorFlow Hub), 85
target dataset, baseline dataset versus, 179	theory of competitive advantage, 190
task tracking (in technical project manage-	Thiel, Peter, 421
ment), 429	token-based authentication, 240
technical communication (DevOps best prac-	TPU (TensorFlow Processing Unit)
tice), 6	Coral Project and, 81-84
technical portfolio, building a, 403-408	porting over non-TPU models, 86-89
project example: cloud native ML applica-	troubleshooting
tion or API, 406	Application Insights, 253
project example: Docker and Kubernetes	debugging locally, 254-257
container project, 404	deployment issues, 251-257
project example: edge ML solution, 405	retrieving logs, 252
project example: serverless AI data engi-	
neering pipeline, 405	U
strategies for getting a job, 407	unsupervised machine learning, 50-52
technical project management, 427-429	USB Accelerator, 81
as DevOps best practice, 6	utilscli.py, 210
project plan, 427	
task tracking, 429	V
weekly demo, 428	versioning, of datasets, 245
technology certifications (see certifications) TensorFlow	Vertex AI, 268
converting into ONNX, 303-307	virtual environment, Python, 11
TFHub, 85	virtual machines
TensorFlow Developer Certificate, 391	containers versus, 68
TensorFlow Playground, 49	defined, 373
TensorFlow Processing Unit (see TPU)	vision (see computer vision)
"10X better" education system, 421-425	
Terrell, Dave, 360	Υ
testing	YAML, defined, 373
automated checks, 113	
continuous improvement and, 114	Z
linting, 114	Zhang, Feng, 121
model deployment, 112-115	ZSH, 26, 27
	• •