(29/04/22)

aluno: João dos Santos Neto matricula: 20219041749

Civaliação de Lógica

10) a) Definição H1:

1.	7 ((PV7R) V7 ((P	714					
2.	¬(P)	$\neg (P \lor \neg Q)$					
3.	77 ((PA	¬¬((PAR)↔¬(QV¬R))					
4.		$((P_AR) \leftrightarrow \neg(Q_V \neg R))$					
5.		¬P					
6.		778					
7.		Q					
8.	~		×	As6.			
9.	(PAR)A-(QV-R)	¬(PAR)	1177(QV7R)	R44.			
10.	(PAR)	-(R1 9, P1 9				
14.	7(QV7R)	77 (A19, A19				
12.	P	6	LVTR	Rt 10, Rs 11			
13.	R	V	7	P110			
14.	70	2	-R	R+11, R212			
15.	TIR	V >	¥ ¥	R711			
16.	R	7P 7R	TP TR	R515, R610, R610			
14.	fechado als	verto aberto	aberto aberto				
(Pa)							

to) a) Definição H1:

I[P] = F ; I[Q] = T ; I[R] = F

H1=(PV7Q)V7((PAR) +>7(QV7R))

H11=(PV 7Q) I[H11]= F

Haz= -((PAR) (QV-R)) I[(PAR)]=F

I[-(QV-R)] = F

I[H12] = F

Como I[H11]=Fe I[H12]=F,
pela viegra do V
I[H1]=F

Logo, H1 não é tautologia

1.		76(-	¬H2			
2.		7((R51			
3.			V	×		
4.		77((P->	$Q)v \neg (Q \rightarrow R))$	(P >-	7R)	R32
6.		((P→Q)	$V \neg (Q \rightarrow R))$	V	Y	Rs4.
7.		4	Y	¬P,	-R	R34.
8.	p.	→a	¬(Q→R)	aleurto	alerto	R26.
9.	K	Y	Q			R.8.
10.	aberte	aberte	aberto			R38, R88.
(P)		awara	alliva			
000						

196) Definição Ha:

I[a]=T; I[R]=F

 $Ha = \neg (\neg ((P \rightarrow Q) \lor \neg (Q \rightarrow R)) \rightarrow (P \rightarrow \neg R))$

Has = P → ¬R I[Has] = T

AAAAAAAAAAAAAAAAAAAA

 $H2a = \neg((P \rightarrow Q) \lor \neg(Q \rightarrow R)) \rightarrow (P \rightarrow \neg R)$

lomo I[Har]=T, pela regra do > I[Haa]=T.

Portanto, pela regra do -, I[H2]=F Logo Ha não é uma tautología.

```
(3° a)
H3=(∀x)(p(x,y) 1 n(y)) → (32)(p(y, f(x,y)) vg(a, b, g(x, y, z)))
comprimento: (9)
variáncis ligadas: (2)
simbolos livres: (9)
subpormulas: (9)
(((x,y,x)), r(y)); ((x),x),y),y(x,y)); ((x),x),y(x,y));
                p(y, f(X,y)) v g(a, b, g(x, y, z));
p(x,y) 1 or(y);
op(Xiy);
                      p(y, f(x, y));
                      g(a, b, g(x, x, z));
or(Y);
termos: (7)
x; z; g;
y; a;
b; b;
```

```
28)6)
  Hu=((\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fraccc}\frac{\f
     comprimento: (10)
                                                                                                                                                                                                                                              termos: (4)
  varioneis ligadas: (2)
  esimbolos livres: (6)
   subformulas: (10)
    H4;
  ((\fany)) v(\fany)) v(\fany));
   (by) or(y, b(a,y));
  (By)q(a,y);
   orlyiflary));
  q(aiy);
     q(x,f(y,a)) 1 (((x)) 2 (a,f(x,y)));
   q(x, f(y, a));
(Ix) on (a, f(x, y));
   or(a, f(x, y));
```

```
H_5=(\forall x)(\exists z)(v_1(x,y,z)\leftrightarrow((\forall z)p(x,z)v(\exists x)v_1(x,a,b)))
 (comprimento: (9) simbolos livres: (3)
variancis ligadas: (2) termos: (5)
subformulas: (9)
                        x; y; z; a; b;
 H5;
(\exists z)(vr(x,y,z) \leftrightarrow ((\forall z)p(x,z)v(\exists x)vr(x,a,b)));
vr(x, x, z) \leftrightarrow ((\forall z)_p(x, z) v(\exists x) x(x, a, b));
or(Xiyiz);
(Vz)p(x,z)v(XE)v(x,a,b);
(Vz)p(x,z);
(3x)vr(x,a,b);
p(X,Z)i
silxiail);
```

```
H6=(4z)(4y)(3x)(p(x,y,z), n(z, f(y,a))) -> ((3z)p(zxxy) -> n(g(b), f(a,x)))
comprimento: (11) simbolos livres: (8)
variaveis ligadas: (3) termos: (4)
subformulas: (11) xiy; zi p; a; g; b;
H6;
(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2}));
((x,y)(x)x) 1 r(z,x(x)q)(xE)(xH)
((x, y,z) 1 r(z, f(y,a));
p(x,y,z) 17(z,f(y,a));
or(z, p(y,a));
p(x, y, z);
(((3z)p(z,x,y) → n(g(b), f(a,x)));
( (X, X, S)q(SE)
or(g(b), f(a,x));
p(Z1X1Y);
```

39a) H==(Vx)(p(x,x-3)) V n(x)) 1 ((3x)(p(y,x) 19(g(y,b),a)) H71= (Yx)(p(x,x-3) v,r(x)) $H_{711} = p(X_1 X - 3)$ $I[H_{711}] = p(3+3, 3-3)$ $I[H_{711}] = p(6,0)$ $I[H_{711}] = T$ Como I[H711] = Tipela regrado V, I[H71] = T H72 = ((3)/p(y,x), a(g(y,lo),a)) H721 = p(Y, X) I[H721] = p(13+3, 15) I[H721] = p(16, 15) I[H721] = TH722 = q(q(y,b),a) I[H722] = q(q(x,b),a) I[H722] = q(30,5) I[H722] = q(50,5)Como I[H721] = Te I[H722] = T, pela regra do 1 Portante, como I[H71]=Te I[H72]=T, pela regra do 1, I[H7]=T.

H8=((Ix)(p(g(x,y), f(x)) > x(b))v((vx)g(g(x,x),g(a,y) > p(g(a+x,2x),2x)) $H81 = ((3x)(p(g(x_iy),f(x)) \rightarrow \pi(b))$ H811 = r(b) I[H811] = r(23) I[H811] = T Como I[H811]=T, pela vregna do >, I[H81]=T. Portanto, como I[H81]=T, pela regra do v I[H8]=T.

(39)c) $H9 = ((3x)p(a_1x))((3x))n(g(x_1x))) \wedge ((3x)vn(x) \rightarrow n(x))$ H91=(((3y)p(a,y)) (3x)or(g(x,y))) H911 = (Jx)r(g(x,y)) I[H911] = FComo I[H911] = F, pela viegna do 1 [H91] = F.

Portanto, como I[H91]=F, pela regra do 1 I[H9]=F.

$$\begin{array}{l} (3) \text{ d}) \\ \text{H+o=}(\forall x)(\exists y)p(x,g(x,y)) \rightarrow ((\exists y)p(a,g(b,y))) \land (p(f(y),y)) \\ \text{H+o+} = (\forall x)(\exists y)p(x,g(x,y)) \\ \text{I[H+o+]} = p(x,g(x,y)) \\ \text{I[H+o+]} = p(0+3,2*(0+0)) \\ \text{I[H+o+]} = p(3,0) \\ \text{I[H+o+]} = T \\ \text{H+o2} = (\exists y)p(a,g(b,y)) \\ \text{I[H+o2]} = p(5,2*(23+0)) \\ \text{I[H+o2]} = p(5,2*(23+0)) \\ \text{I[H+o2]} = F \\ \text{loomo} \text{ I[H+o+]} = T \text{ e I[H+o2]} = F, \text{ pela cregraded} \\ \text{de} \rightarrow \text{, I[H+o]} = F. \end{array}$$

ANNANANTER PREPER