B.Tech. (IV Sem.)

2AM51 –INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LAB

L	T	P	Cr.
0	0	3	1.5

Pre-requisite : Python Programming

Course Educational Objective: The main objective of this course is that a student will be familiar with principles behind the Object-Oriented Design and able to apply those principles in a project setting. Students will analyze applications and know how to take a pragmatic approach to software design and development.

Course Outcomes (CO): At the end of this course, the student will be able to:

- CO1: Apply the basic principles of AI in problem solving using LISP/PROLOG. (Apply L3)
- CO2: Implement different algorithms using LISP/PROLOG.(Apply L3)
- CO3: Develop an Expert System using JESS/PROLOG(Apply L3)
- **CO 4:** Improve individual / teamwork skills, communication & report writing skills with ethical values.

List of Experiments (Artificial Intelligence)

- 1. Implementation of DFS for water jug problem using LISP/PROLOG.
- 2. Implementation of BFS for tic-tac-toe problem using LISP/PROLOG/Java.
- 3. Implementation of TSP using heuristic approach using Java/LISP/Prolog
- 4. Implementation of Simulated Annealing Algorithm using LISP/PROLOG
- 5. Implementation of Hill-climbing to solve 8- Puzzle Problem
- 6. Implementation of Monkey Banana Problem using LISP/PROLOG

List of Experiments (Machine Learning)

Python Libraries required: Sklearn

Note: Standard datasets can be downloaded from UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets.php)

- 1. Implement and demonstrate FIND-S algorithm for finding the most specific hypothesis based on agiven set of training data samples. Read the training data from a .csv file.
- 2. For a given set of training data examples stored in a .csv file, implement and demonstrate the candidate elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 3. Write a program to demonstrate the working of the decision tree classifier. Use appropriate dataset for building the decision tree and apply this knowledge to classify a new sample.
- 4. Write a program to demonstrate the working of Decision tree regressor. Use appropriate dataset for decision tree regressor.
- 5. Write a program to demonstrate the working of Random Forest classifier. Use appropriate dataset for Random Forest Classifier.
- 6. Write a program to demonstrate the working of Logistic Regression classifier. Use appropriate dataset for Logistic Regression.

Experiments (Machine Learning)

AIM : Develop a program to make Linear Regression Model?

<u>Description</u>:-

<u>Linear Regression :-</u>

Linear regression is a statistical method that models the relationship between a dependent variable and one independent variable by fitting a straight line to the data.

 $y=a_0+a_1x+\epsilon$

Y= Dependent Variable (Target Variable)

X= Independent Variable (predictor Variable)

a0= intercept of the line (Gives an additional degree of freedom)

a1 = Linear regression coefficient (scale factor to each input value).

 ε = random error

Data Set: Attendence.csv

S.NO	Attendenc	Marks
1	60	63
2	66	64
3	67	65
4	68	66
5	69	67
6	70	68
7	71	69
8	72	70
9	73	71
10	74	72
11	75	73
12	76	74
13	77	75
14	78	76
15	79	77
16	80	78
17	81	79
18	82	80
19	83	81
20	84	82

Program:

```
# read the data
import pandas as pd
df= pd.read_csv("Attendence.csv")
print(df)
#making independent and dependent variables
#linear
X = df[['Attendence']]
y = df['Marks']
print(X)
print(X.shape)
print(y)
print(y.shape)
# dividing the data into testing and training data set
# training = 80 % testing = 20%
#import the module
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2) # 0.2 = 20%
print(X_train)
print(X_train.shape)
print(X_test)
print(X_test.shape)
print(y_train)
print(y_test)
#making the linear regression model
#fit is used to train the machine
# First import the linear regression
```

```
from sklearn.linear model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
# predicting value by the machine by our train data
result = model.predict([[89]]) # input
print(result)
# predictint the values of all test data
prediction = model.predict(X_test) # input # pridicting the output by model with training data
print(prediction)
# checking the machine how accurately the machine giving the output
# by r2 score
# by comparing the predicted values and y_test # output
#first import
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
predit_r2_score = r2_score(y_test,prediction)
print(predit_r2_score) # 1.0 = 100%
# predicting the actual and predicted value is same.. 0.0 = same
print("Mean Squared Error: ", mean_squared_error(y_test,prediction))
data = pd.DataFrame({'Actual ML_marks :': y_test , 'predicted_Values by AI :': prediction})
print(data)
Output:
S.NO Attendence Marks
        1
                      60
                               63
1
        2
                      66
                               64
2
        3
                      67
                               65
3
        4
                      68
                               66
4
        5
                      69
                               67
5
        6
                      70
                               68
        7
                      71
                               69
```

```
7
       8
                    72
                           70
       9
                    73
                           71
9
      10
                    74
                           72
                    75
                           73
10
      11
11
      12
                    76
                           74
                    77
                           75
12
      13
                           76
13
      14
                    78
                           77
      15
                    79
14
15
      16
                    80
                           78
      17
                           79
16
                    81
17
      18
                    82
                           80
18
      19
                    83
                           81
19
      20
                    84
                           82
    Attendence
0
             60
1
             66
2
             67
3
             68
4
             69
5
             70
             71
6
7
             72
8
             73
             74
9
             75
10
11
             76
12
             77
13
             78
14
             79
15
             80
16
             81
             82
17
18
             83
19
             84
(20, 1)
0
      63
1
      64
2
      65
3
      66
      67
4
5
      68
6
      69
7
      70
8
      71
```

```
9
     72
     73
10
11
     74
     75
12
13
     76
     77
14
15
    78
   79
16
17
    80
    81
18
19
   82
Name: Marks, dtype: int64
(20,)
   Attendence
           60
0
1
           66
15
           80
           78
13
2
           67
17
           82
7
           72
3
           68
10
           75
6
           71
9
           74
4
           69
19
           84
14
           79
8
           73
12
           77
(16, 1)
  Attendence
11
           76
18
           83
16
           81
5
           70
(4, 1)
  63
0
1
    64
15 78
   76
13
2
    65
17
     80
7
     70
```

```
66
3
     73
10
6
     69
9
     72
    67
4
     82
19
14
    77
8
     71
12
     75
Name: Marks, dtype: int64
11
    74
18
     81
16
     79
     68
Name: Marks, dtype: int64
[85.65264411]
[74.0391904 80.29258855 78.50590336 68.67913483]
0.9880463123148753
Mean Squared Error : 0.30183061404939876
   Actual ML_marks : predicted_Values by AI :
11
                  74
                                    74.039190
18
                                    80.292589
                  81
                  79
16
                                   78.505903
                  68
                                    68.679135
```

AIM : Develop a program to make Multi Linear Regression Model?

Data Set: ml_data.csv

S.NO	Attendanc	Certification	ML_Marks
1	20	2	20
2	30	2	30
3	35	2	35
4	35	3	35
5	40	2	40
6	45	3	45
7	45	2	45
8	50	3	50
9	50	2	50
10	55	3	55
11	55	2	55
12	60	3	60
13	60	2	60
14	65	3	65
15	65	2	65
16	70	3	70
17	70	2	70
18	75	3	75
19	80	3	80
20	80	2	80
21	85	3	85
22	85	2	85
23	90	3	90
24	90	2	90
25	95	3	95
26	95	2	95
27	100	3	100
28	100	2	100

< Program >

import pandas as pd

df = pd.read_csv('ml_data.csv')
print(df)

dividing the dependent and indepedent variables

#here, the multi linear have two inputs

X = df[['Attendance of MI students', 'Certifications based on ML']] # input
y = df['ML_Marks'] #output
print(X)

```
print(X.shape)
print(y)
print(y.shape)
#spliting the data into training and testing = training = 80\%, testing = 20\%
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2)
print(X_train)
print(X_train.shape)
print(X_test)
print(X_test.shape)
print(y_train)
print(y_train.shape)
print(y_test)
print(y_test.shape)
#make the multilinear model
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
#predict the output [marks] from inputs of attendence and certifications
result = model.predict([[45,4]])
print(result)
predicted_result = model.predict(X_test)
print(predicted_result)
from sklearn.metrics import r2_score,mean_squared_error
predicted_r2_score = r2_score(y_test,predictes_result)
print(predicted_r2_score)
print("Mean Squared Error : " , mean_squared_error(y_test,predicted_result))
```

data = pd.DataFrame({'Actual ML_marks :': y_test , 'predicted_Values by AI :': predicted_result})
print(data)

< output >

S.NO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Attendance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	of Ml students	Certifications 20 30 35 35 40 45 45 50 50 55 60 60 65 65 70 70 75 80	based on ML	ML_Marks 2 20 2 30 2 35 3 35 2 40 3 45 2 45 2 50 3 55 2 50 3 55 2 66 2 60 3 65 2 65 3 70 2 70 3 75 3 80 2 80	
20 21 22 23 24 25 26 27	21 22 23 24 25 26 27 28 Attendance of	f Ml students 20 30 35 35 40 45 45 50 50 55 60 60 60 65 65 70 70 75 80 80 80 85 85 90 90 90 95 95 100 100	85 85 90 90 95 95 100	pased on ML 2 2 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 2 3 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 2	3 85 2 85 3 90 2 90 3 95 2 95 3 100 2 100	

```
40
5
       45
6
       45
7
       50
8
       50
9
       55
10
       55
11
       60
12
       60
13
       65
14
       65
15
       70
16
       70
17
       75
18
       80
19
       80
20
       85
21
      85
22
      90
23
       90
      95
24
      95
25
26
      100
27
      100
Name: ML_Marks, dtype: int64
(28,)
    Attendance of Ml students
                                  Certifications based on ML
13
                              65
9
                              55
3
27
                                                             3
                              35
                             100
18
                                                             3
                              80
22
                              90
15
                              70
                                                             3
8
                              50
                                                             2
3
2
2
2
2
2
25
                              95
24
                              95
21
                              85
14
                              65
2
                              35
19
                              80
10
                              55
                                                             3
11
                              60
                                                             3
26
                             100
5
                              45
                                                             2
1
                              30
16
                              70
                                                             2
12
                              60
                                                             2
4
                              40
(22, 2)
                                  Certifications based on ML
    Attendance of Ml students
23
                                                             2
                              90
17
                              75
                                                             3
0
                                                             2
                              20
6
7
                                                             2
                              45
                              50
                                                             3
20
                              85
(6, 2)
13
9
       55
3
      35
27
      100
18
      80
22
       90
15
       70
8
       50
25
       95
24
      95
21
       85
       65
14
       35
```

```
19
       80
       55
10
11
        60
26
       100
5
        45
1
        30
16
        70
12
        60
4
        40
Name: ML_Marks, dtype: int64
(22,)
       90
23
       75
17
0
       20
6
       45
       50
20
       85
Name: ML_Marks, dtype: int64
(6,)
[45.]
[90. 75. 20. 45. 50. 85.]
1.0
Mean Squared Error : 1.682903264471492e-28
    Actual ML_marks : predicted_Values by AI : 23 90 90.0
                                                   90.0
                       75
17
0
                       20
                                                   20.0
6
                                                   45.0
                      45
                       50
                                                   50.0
20
                       85
                                                   85.0
```

AIM: Develop a program to make Polynomial Regression Model?

Description:-

Polynomial regression is a type of linear regression in which the relationship between the dependent variable and one or more independent variables is modeled as an nth-degree polynomial. The technique allows for a more flexible model that can capture nonlinear relationships between the variables. The degree of the polynomial can be chosen based on the complexity of the relationship between the variables, but higher degrees can lead to overfitting. The parameters of the polynomial regression model can be estimated using methods such as the least squares method or maximum likelihood estimation. Once the parameters are estimated, they can be used to make predictions about the dependent variable based on the independent variables.

$$f(x) = c_0 + c_1 x + c_2 x^2 \cdots c_n x^n$$

Data Set: Marks.csv

S.NO	Attendanc	ML_Marks	
1	. 20	20	
2	30	30	
3	35	35	
4	35	35	
5	40	40	
6	45	45	
7	45	45	
8	50	50	
9	50	50	
10	55	55	
11	. 55	55	
12	60	60	
13	60	60	
14	65	65	
15	65	65	
16	70	70	
17	70	70	
18	75	75	
19	80	80	
20	80	80	
21	. 85	85	
22	85	85	
23	90	90	
24	90	90	
25	95	95	
26	95	95	
27	100	100	
28	100	100	

```
< program >
import pandas as pd

df = pd.read_csv('Marks.csv')
```

print(df)

#making the independent and dependent variables = input and output varibles

the polynomial regression is same as linear regression

```
X = df[['Attendance of MI students ']]
y = df['ML_Marks']
print(X)
print(X.shape)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
```

create polynomial features

poly = PolynomialFeatures(degree=2)

#trasform is used to transform the train data into all polynomial combinations upto specified degree = 2 and fit

X_train_poly = poly.fit_transform(X_train)

#trasform is used to transform the test data into all polynomial combinations upto specified degree = 2

X_test_poly = poly.transform(X_test)

fit polynomial regression model

```
model = LinearRegression()
model.fit(X_train_poly, y_train)
# make predictions on testing data
y_pred = model.predict(X_test_poly)
print(y_pred)
print(poly) # polynomialfeatures
print(X_train_poly) # trained polynomials
print(X_test_poly)
print("m=", model.coef_)
print("c=",model.intercept )
from sklearn.metrics import r2_score, mean_squared_error
# make predictions on testing data
y pred = model.predict(X test poly)
print(y_pred)
#r2_score value of y_test and predit
print("R-squared score on testing data: ", r2_score(y_test, y_pred))
#mean squared error
print("Mean squared error on testing data: ", mean_squared_error(y_test,y_pred))
# make prediction for new instance
new_instance = [[32]] # assuming there is only one feature
new_instance_poly = poly.transform(new_instance)
prediction = model.predict(new_instance_poly) # we only predict the 3 inputs bacause the degree=2
```

print("Prediction for new instance: ", prediction)

#y_test(output)and x_test(input) predicted values of polynomial is same or not (always prediction = x_test == x_test_poly(degree=2))

data = pd.DataFrame({'Actual ML_marks :': y_test , 'predicted_Values by AI :': y_pred})
print(data)

<output >

S.Nº 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	of Ml	students	ML_Marks 20 30 35 35 40 45 45 50 50 55 60 60 65 65 70 70 75 80 80 85 85 90 90 95 95	200 300 355 355 400 4550 555 555 600 605 657 707 7580 808 858 858 909 959
26 27 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	27 28 Attendance of	f Ml s	tudents 20 30 35 35 40 45 45 50 50 55 60 60 65 65 70 70 75 80	100	100

```
19
                             80
20
                             85
21
                             85
22
23
                             90
24
                             95
25
                             95
26
                            100
2.7
                           100
(28, 1)
[35. 50. 60. 70. 80. 65.]
PolynomialFeatures()
[[1.000e+00 5.500e+01 3.025e+03]
 [1.000e+00 1.000e+02 1.000e+04]
 [1.000e+00 4.000e+01 1.600e+03]
 [1.000e+00 7.500e+01 5.625e+03]
 [1.000e+00 5.000e+01 2.500e+03]
 [1.000e+00 8.000e+01 6.400e+03]
 [1.000e+00 9.000e+01 8.100e+03]
 [1.000e+00 6.000e+01 3.600e+03]
 [1.000e+00 9.500e+01 9.025e+03]
 [1.000e+00 3.500e+01 1.225e+03]
 [1.000e+00 4.500e+01 2.025e+03]
 [1.000e+00 4.500e+01 2.025e+03]
 [1.000e+00 9.000e+01 8.100e+03]
 [1.000e+00 3.000e+01 9.000e+02]
 [1.000e+00 8.500e+01 7.225e+03]
 [1.000e+00 7.000e+01 4.900e+03]
 [1.000e+00 2.000e+01 4.000e+02]
 [1.000e+00 8.500e+01 7.225e+03]
 [1.000e+00 1.000e+02 1.000e+04]
 [1.000e+00 6.500e+01 4.225e+03]
 [1.000e+00 5.500e+01 3.025e+03]
 [1.000e+00 9.500e+01 9.025e+03]]
[[1.000e+00 3.500e+01 1.225e+03]
 [1.000e+00 5.000e+01 2.500e+03]
 [1.000e+00 6.000e+01 3.600e+03]
 [1.000e+00 7.000e+01 4.900e+03]
 [1.000e+00 8.000e+01 6.400e+03]
 [1.000e+00 6.500e+01 4.225e+03]]
m= [ 0.00000000e+00 1.00000000e+00 -6.11661943e-17]
c= -5.684341886080802e-14
[35. 50. 60. 70. 80. 65.]
R-squared score on testing data: 1.0
Mean squared error on testing data: 2.2298468254247266e-27
Prediction for new instance: [32.]
    Actual ML marks : predicted Values by AI :
                   35
                                            35.0
8
                   50
                                            50.0
12
                                            60.0
                   70
                                            70.0
15
19
                   80
                                            80.0
14
                   65
                                            65.0
```

AIM: Develop a program to make logistic Regression Model?

Description:-

Logistic regression is a statistical technique used to model the relationship between a binary dependent variable and one or more independent variables. The technique estimates the probability of the dependent variable taking a particular value (e.g., 0 or 1) based on the values of the independent variables. The model uses a logistic function to transform the linear regression equation into a probability score between 0 and 1

Data Set: diabetes.csv

Pregnancie Glo	ucose	BloodPressure	SkinThickn	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	(
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	(
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	(
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	(
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	(
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	(
1	189	60	23	846	30.1	0.398	59	
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	(
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	(
8	99	84	0	0	35.4	0.388	50	(
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	
7	147	76	0	0	39.4	0.257	43	
1	97	66	15	140	23.2	0.487	22	(
13	145	82	19	110	22.2	0.245	57	(
5	117	92	0	0	34.1	0.337	38	(

This code performs the following steps:

- 1. Loads the diabetes dataset and checks for missing values
- 2. Separates the independent and dependent variables
- 3. Splits the dataset into training and test sets
- 4. Fits a logistic regression model on the training set
- 5. Predicts on the test set and creates a confusion matrix heatmap
- 6. Calculates evaluation metrics (accuracy, precision, recall, and F1 score)
- 7. Prompts the user to input new data to make a prediction on
- 8. Makes a prediction on the new data using the trained model and prints the result

< program >

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score

import seaborn as sns

import matplotlib.pyplot as plt

Load the dataset

df = pd.read_csv('diabetes.csv')

Check for missing values

print(df.isnull().sum())

Separate the independent and dependent variables

X = df[['Pregnancies','Glucose','BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']]
y = df['Outcome']

Split the dataset into training and test sets

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.25, random_state=0)

Fit a logistic regression model

model = LogisticRegression()
model.fit(X_train, y_train)

Predict on the test set

y_pred = model.predict(X_test)

Create the confusion matrix

cm = confusion_matrix(y_test, y_pred)

Create the heatmap using seaborn

sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")

Set the axis labels and title

plt.xlabel("Predicted Label")
plt.ylabel("True Label")

plt.title("Confusion Matrix")

Show the plot

```
plt.show()
```

Calculate the evaluation metrics

```
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
```

Print the evaluation metrics

```
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)
```

Take input from the user to predict on new data

```
pregnancies = int(input("Enter the number of pregnancies: "))
glucose = int(input("Enter the glucose level: "))
blood_pressure = int(input("Enter the blood pressure: "))
skin_thickness = int(input("Enter the skin thickness: "))
insulin = int(input("Enter the insulin level: "))
bmi = float(input("Enter the BMI: "))
dpf = float(input("Enter the diabetes pedigree function: "))
age = int(input("Enter the age: "))
```

Create a new row with the user's input

```
new_data = pd.DataFrame({
    'Pregnancies': [pregnancies],
    'Glucose': [glucose],
    'BloodPressure': [blood_pressure],
    'SkinThickness': [skin_thickness],
    'Insulin': [insulin],
    'BMI': [bmi],
    'DiabetesPedigreeFunction': [dpf],
    'Age': [age]
})
```

Make a prediction on the new data using the trained model

```
prediction = model.predict(new_data)
```

Print the prediction

```
if prediction[0] == 0:
    print("Prediction: Not Diabetic")
else:
    print("Prediction: Diabetic")
```

< Output >

```
Glucose
                            0
BloodPressure
SkinThickness
                            0
Insulin
BMI
                            0
DiabetesPedigreeFunction
                            0
                            0
Age
Outcome
dtype: int64
C:\Users\saichand.digumarthi\anaconda3\lib\site-packages\sklearn\linear model\ logist
 ic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  n iter i = check optimize result(
Accuracy: 0.791666666666666
Precision: 0.7115384615384616
Recall: 0.5967741935483871
F1 Score: 0.6491228070175439
Enter the number of pregnancies: 2
Enter the glucose level: 34
Enter the blood pressure: 120
Enter the skin thickness: 67
Enter the insulin level: 55
Enter the BMI: 78
Enter the diabetes pedigree function: 45
Enter the age: 34
Prediction: Diabetic
```

Write a program to demonstrate the working of the decision tree classifier. Use appropriate datasetfor building the decision tree and apply this knowledge to classify a new sample.

AIM: Develop a program to make Decision tree classifier Model?

Data Set: diabetes2.csv

regnancie	Glucose	BloodPressure	SkinThickn	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	(
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	(
1	189	60	23	846	30.1	0.398	59	
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	(
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	(
8	99	84	0	0	35.4	0.388	50	(
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	1
7	147	76	0	0	39.4	0.257	43	1
1	97	66	15	140	23.2	0.487	22	(
13	145	82	19	110	22.2	0.245	57	(
5	117	92	0	0	34.1	0.337	38	(

< program >

import pandas as pd import numpy as np import matplotlib.pyplot as plt

load the dataset

df=pd.read_csv("diabetes2.csv")

display the dataset

df

generate descriptive statistics of the dataset

df.describe()

check for missing values in the dataset

print(df.isnull().sum())

compute the correlation matrix of the dataset

df.corr()

separate the input features (X) and the target variable (y)

X=df.drop("Outcome",axis=1)
y=df[['Outcome']]

split the dataset into training and testing sets

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=0)

print the shapes of the datasets

print(X.shape)
print(y.shape)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)

perform feature scaling on the training and testing sets

from sklearn.preprocessing import StandardScaler
st=StandardScaler()
X_train=st.fit_transform(X_train)
X_test=st.fit_transform(X_test)

train a decision tree classifier on the training set

from sklearn.tree import DecisionTreeClassifier classifier=DecisionTreeClassifier(criterion='entropy',random_state=0) classifier.fit(X_train,y_train)

make predictions on the testing set

y_pred=classifier.predict(X_test)

compute the confusion matrix

from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,y_pred)
cm

compute the classification report and accuracy score

```
from sklearn.metrics import classification_report,accuracy_score res=classification_report(y_test,y_pred) print("Classification Report:") print(res) result=accuracy_score(y_test,y_pred) print("Accuracy:",result)
```

compute the accuracy, specificity, sensitivity, and F1 score

```
from sklearn.metrics import accuracy_score,recall_score,f1_score
Accuracy=accuracy_score(y_test,y_pred)
Specificity = cm[0,0]/(cm[0,0]+cm[0,1])
Sensitivity_recall = recall_score(y_test, y_pred)
F1_score = f1_score(y_test,y_pred)

print("Accuracy:",Accuracy)
print("Specificity:",Specificity)
print("Sensitivity/Recall:",Sensitivity_recall)
print("F1 Score:",F1_score)
```

compute the mean squared error

from sklearn.metrics import mean_squared_error
res1=mean_squared_error(y_test,y_pred)
res1

compute the confusion matrix, classification report, and accuracy score

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))

print("\nClassification Report:")
print(classification_report(y_test, y_pred))

print("\nAccuracy Score:")
print(accuracy_score(y_test, y_pred))
```

compute the R2 score

```
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score predit_r2_score = r2_score(y_test,y_pred) print(predit r2 score) # 1.0 = 100%
```

< Output >

Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtype: int64	
(768, 8)	
(768, 1)	
(576 , 8)	
(192, 8)	
(576, 1)	
(192, 1)	

Classification Report:

	precision	recall	f1-score	support
0 1	0.84 0.61	0.79	0.82 0.65	130 62
accuracy macro avg weighted avg	0.73 0.77	0.74 0.76	0.76 0.73 0.76	192 192 192

Sensitivity/Recall: 0.6935483870967742

F1 Score: 0.6515151515151515

Confusion Matrix:

[[103 27] [19 43]]

Classification Report:

	precision	recall	f1-score	support
0 1	0.84 0.61	0.79 0.69	0.82	130 62
accuracy macro avg weighted avg	0.73 0.77	0.74 0.76	0.76 0.73 0.76	192 192 192

 AIM: Develop a program to make Decision tree regressor Model?

Data Set: Attendence.csv

S.NO	Attendenc	Marks
1	60	63
2	66	64
3	67	65
4	68	66
5	69	67
6	70	68
7	71	69
8	72	70
9	73	71
10	74	72
11	75	73
12	76	74
13	77	75
14	78	76
15	79	77
16	80	78
17	81	79
18	82	80
19	83	81
20	84	82

< program >

Import necessary libraries

import pandas as pd

import numpy as np

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

from sklearn.model_selection import train_test_split

Load the dataset

```
df = pd.read_csv('Attendence.csv')
print(df)
# Define input and output variables
X = df[['Attendence']] # Use 'Attendance' as input
y = df['Marks']
# Print shapes of input and output data
print(X.shape)
print(y.shape)
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
# Print shapes of training and testing data
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
# Create a decision tree regressor with max_depth=3
tree = DecisionTreeRegressor(max_depth=3)
```

Fit the model using the training data

tree.fit(X_train, y_train)

Predict on the test data

```
y_pred = tree.predict(X_test)
print(y_pred)
```

Evaluate the model using mean absolute error

```
mae = mean_absolute_error(y_test, y_pred)
print('Mean Absolute Error:', mae)
```

Evaluate the performance of the model using root mean squared error

```
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print('Root Mean Squared Error:', rmse)
```

< Output >

S.NO	Attendence	Marks	
0	1	60	63
1	2	66	64
2	3	67	65
3	4	68	66
4	5	69	67
5	6	70	68
6	7	71	69
7	8	72	70
8	9	73	71
9	10	74	72
10	11	75	73
11	12	76	74
12	13	77	75
13	14	78	76
14	15	79	77
15	16	80	78

```
81
                    79
16
    17
              82
17 18
                    80
18
    19
              83
                    81
              84
19 20
                    82
(20, 1)
(20,)
(15, 1)
(5, 1)
(15,)
(5,)
[79.5 65.5 79.5 69.5 72.]
Mean Absolute Error: 1.6
Root Mean Squared Error: 1.6733200530681511
```

AIM : Write a program to demonstrate the working of Random Forest classifier. Use appropriate dataset for Random Forest Classifier.

Data Set: diabetes2.csv

Pregnancie Gl	ucose	BloodPressure	SkinThickn	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	0
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0
8	99	84	0	0	35.4	0.388	50	0
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	1
7	147	76	0	0	39.4	0.257	43	1
1	97	66	15	140	23.2	0.487	22	0
13	145	82	19	110	22.2	0.245	57	0
5	117	92	0	0	34.1	0.337	38	0

< program >

import pandas as pd

 $from \ sklearn. ensemble \ import \ Random Forest Classifier$

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

Load the dataset

```
df = pd.read_csv("diabetes2.csv")
```

Split the dataset into features and target

```
X = df.drop("Outcome", axis=1)
y = df["Outcome"]

# Split the dataset into training and testing data
```

Create the random forest classifier and fit the model using the training data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)

```
classifier = RandomForestClassifier(n_estimators=100, random_state=0)
classifier.fit(X train, y train)
```

Make predictions on the test data

```
y pred = classifier.predict(X test)
```

Print the confusion matrix

```
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print("{:<10}{:<10}{}".format("", "Actual", ""))
print("{:<10}{:<10}".format("", "Negative", "Positive"))
print("{:<10}{:<10}{:<10}".format("Predicted", "------", "------"))
print("{:<10}{:<10}{:<10}".format("Negative", cm[0][0], cm[0][1]))</pre>
```

```
print("{:<10}{:<10}".format("Positive", cm[1][0], cm[1][1]))
```

Print the classification report

from sklearn.metrics import classification_report
res = classification_report(y_test, y_pred)
print("\nClassification Report:\n", res)

import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix

Generate the confusion matrix

cm = confusion_matrix(y_test, y_pred)

Create the heatmap using seaborn

sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")

#In this code snippet, we set the fmt parameter of seaborn's heatmap function to "d",

#which specifies that the numbers should be displayed as integers (i.e., no decimal places).

#This will display the confusion matrix heatmap with full numbers instead of in scientific notation.

Set the axis labels and title

plt.xlabel("Predicted Label")
plt.ylabel("True Label")

plt.title("Confusion Matrix")

Show the plot

plt.show()

< Output >

Confusion	Matrix:	
	Actual	
	Negative	Positive
Predicted		
Negative	116	14
Positive	30	32

Classification Report:

	precision	recall	f1-score	support
0 1	0.79 0.70	0.89 0.52	0.84	130 62
accuracy macro avg weighted avg	0.75 0.76	0.70 0.77	0.77 0.72 0.76	192 192 192

AIM: Implement and demonstrate FIND-S algorithm for finding the most specific hypothesis based on agiven set of training data samples. Read the training data from a .csv file.

Data Set: my.csv

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoyReport
sunny	Warm	Normal	Strong	Warm	Same	Yes
sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	change	No
Sunny	Warm	High	Strong	Cool	change	Yes

< program >

import pandas as pd

import numpy as np

Load the data

data = pd.read_csv("my.csv")

Convert the data to a numpy array

d = np.asarray(data)

print(d)

Initialize the hypothesis with 'NULL' values

h = ['NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL']

Create a list to store the matching instances

```
m = []
```

Find the instances that match the positive target concept 'EnjoyReport = Yes'

```
for i in range(len(d)):
    if d[i][-1] == 'Yes':
        m.append(d[i])
```

Iterate through the matching instances to find the most specific hypothesis

for i in range(len(m)):

- # For each attribute, check if the hypothesis matches the instance attribute
- # If they match, continue to the next attribute
- # If the hypothesis has 'NULL' for that attribute, update it to match the instance
- # If the hypothesis already has a value for that attribute and it doesn't match the instance, set it to

for j in range(6):
 if h[j] == m[i][j]:
 pass
 elif h[j] == 'NULL':
 h[j] = m[i][j]
 else:

h[j] = '?'

Print the updated hypothesis for each instance

print(h)

< Output >

```
[['sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same' 'Yes']
['sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same' 'Yes']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'change' 'No']
['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'change' 'Yes']]
['sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same']
['sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
['?', 'Warm', '?', 'Strong', '?', '?']
```

In []:

Experiments (Machine Learning)

AIM : Develop a program to make Linear Regression Model?

Data Set: Attendence.csv

S.NO	Attendenc	Marks
1	60	63
2	66	64
3	67	65
4	68	66
5	69	67
6	70	68
7	71	69
8	72	70
9	73	71
10	74	72
11	75	73
12	76	74
13	77	75
14	78	76
15	79	77
16	80	78
17	81	79
18	82	80
19	83	81
20	84	82

Program:

read the data

import pandas as pd

df= pd.read_csv("Attendence.csv")

print(df)

#making independent and dependent variables

#linear

X = df[['Attendence']]

```
y = df['Marks']
print(X)
print(X.shape)
print(y)
print(y.shape)
# dividing the data into testing and training data set
# training = 80 % testing = 20%
#import the module
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2) # 0.2 = 20%
print(X_train)
print(X_train.shape)
print(X_test)
print(X_test.shape)
print(y_train)
print(y_test)
#making the linear regression model
#fit is used to train the machine
# First import the linear regression
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
# predicting value by the machine by our train data
result = model.predict([[89]]) # input
print(result)
```

predictint the values of all test data

prediction = model.predict(X_test) # input # pridicting the output by model with training data
print(prediction)

checking the machine how accurately the machine giving the output

by r2_score

by comparing the predicted values and y_test # output

#first import

from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score

predit_r2_score = r2_score(y_test,prediction)

print(predit_r2_score) # 1.0 = 100%

predicting the actual and predicted value is same.. 0.0 = same

print("Mean Squared Error : " , mean_squared_error(y_test,prediction))
data = pd.DataFrame({'Actual ML_marks :': y_test , 'predicted_Values by AI :': prediction})
print(data)

Output:

S.NO	Attendence	Marks	
0	1	60	63
1	2	66	64
2	3	67	65
3	4	68	66
4	5	69	67
5	6	70	68
6	7	71	69
7	8	72	70
8	9	73	71
9	10	74	72
10	11	75	73
11	12	76	74
12	13	77	75
13	14	78	76
14	15	79	77
15	16	80	78
16	17	81	79

```
18
                   82
                          80
17
      19
                   83
                          81
18
19
      20
                   84
                          82
    Attendence
0
             60
1
             66
2
             67
3
             68
4
             69
5
             70
6
             71
7
             72
8
             73
             74
9
             75
10
11
             76
12
             77
13
             78
14
             79
15
             80
16
             81
             82
17
             83
18
19
             84
(20, 1)
0
      63
1
      64
2
      65
3
      66
4
      67
5
      68
6
      69
7
      70
8
      71
9
      72
10
      73
11
      74
      75
12
13
      76
14
      77
15
      78
16
      79
17
      80
18
      81
```

```
19 82
Name: Marks, dtype: int64
(20,)
   Attendence
           60
1
           66
15
           80
13
           78
2
           67
           82
17
7
           72
3
          68
10
           75
6
           71
9
           74
4
           69
19
          84
           79
14
8
          73
12
          77
(16, 1)
   Attendence
11
          76
18
           83
16
          81
5
          70
(4, 1)
0 63
1
    64
    78
15
13
   76
    65
2
17
    80
7
    70
3
    66
10
     73
6
    69
9
     72
4
    67
19
    82
     77
14
8
     71
12
     75
Name: Marks, dtype: int64
```

```
74
11
18
    81
16
     79
    68
Name: Marks, dtype: int64
[85.65264411]
[74.0391904 80.29258855 78.50590336 68.67913483]
0.9880463123148753
Mean Squared Error: 0.30183061404939876
   Actual ML_marks : predicted_Values by AI :
11
                74
                                  74.039190
18
                 81
                                  80.292589
16
                79
                                  78.505903
                68
                                  68.679135
```

$\operatorname{AIM}:$ Develop a program to make Multi Linear Regression Model ?

Data Set: ml_data.csv

S.NO	Attendanc	Certification	ML_Marks
1	20	2	20
2	30	2	30
3	35	2	35
4	35	3	35
5	40	2	40
6	45	3	45
7	45	2	45
8	50	3	50
9	50	2	50
10	55	3	55
11	55	2	55
12	60	3	60
13	60	2	60
14	65	3	65
15	65	2	65
16	70	3	70
17	70	2	70
18	75	3	75
19	80	3	80
20	80	2	80
21	85	3	85
22	85	2	85
23	90	3	90
24	90	2	90
25	95	3	95
26	95	2	95
27	100	3	100
28	100	2	100

```
< Program >
import pandas as pd
df = pd.read_csv('ml_data.csv')
print(df)
# dividing the dependent and indepedent variables
#here, the multi linear have two inputs
X = df[['Attendance of MI students', 'Certifications based on ML']] # input
y = df['ML_Marks'] #output
print(X)
print(X.shape)
print(y)
print(y.shape)
#spliting the data into training and testing = training = 80\%, testing = 20\%
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2)
print(X_train)
print(X_train.shape)
print(X_test)
print(X_test.shape)
print(y_train)
print(y_train.shape)
print(y_test)
print(y_test.shape)
#make the multilinear model
from sklearn.linear_model import LinearRegression
model = LinearRegression()
```

```
model.fit(X_train,y_train)
```

#predict the output [marks] from inputs of attendence and certifications

```
result = model.predict([[45,4]])
print(result)
predicted_result = model.predict(X_test)
print(predicted_result)
from sklearn.metrics import r2_score,mean_squared_error
predicted_r2_score = r2_score(y_test,predictes_result)
print(predicted_r2_score)
print("Mean Squared Error : " , mean_squared_error(y_test,predicted_result))
data = pd.DataFrame({'Actual ML_marks :': y_test , 'predicted_Values by Al :': predicted_result})
print(data)
```

< output >

S.NO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	e of:	Ml students	20 30 35 40 45 45 50 50 55 55 60 60 65 70 70 75 80 80 85 85 90 90	ions based	l on ML	ML_Marks 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	20 30 35 35 40 45 50 55 55 60 60 65 65 70 70 75 80 80 85 85 90 90
24	25			95			3	95
25 26 27	26 27 28			95 100 100			2 3 2	95 100 100
0 1 2 3 4 5	Attendance	of Ml	students 20 30 35 35 40 45	Certificatio	ons based c	on ML 2 2 2 3 2 3		

```
45
                                                                     2
3
2
3
2
3
6
7
8
                                  50
                                  50
9
                                  55
10
                                  55
11
                                  60
12
                                  60
                                                                     2 3 2 3 2 3 2 3 2 3 2 3 2
13
                                  65
                                  65
14
15
                                  70
                                  70
16
                                  75
17
18
                                  80
19
                                  80
20
                                  85
21
22
                                  85
                                  90
23
24
                                  90
                                  95
25
                                 95
26
                                100
27
(28, 2)
0
      20
1
        30
2
        35
3
        35
4
        40
        45
5
6
7
        45
        50
8
        50
        55
10
        55
11
        60
12
        60
13
        65
14
        65
15
        70
16
        70
17
        75
18
        80
19
        80
20
        85
21
        85
22
       90
      90
23
       95
95
24
25
26
       100
27
       100
Name: ML_Marks, dtype: int64
(28,)
    Attendance of Ml students
                                       Certifications based on {\tt ML}
13
9
3
                                  65
                                                                     3
                                                                     3
                                  55
                                  35
                                                                     3
27
                                100
                                                                     18
                                  80
                                  90
70
22
15
8
                                  50
25
                                  95
24
                                  95
21
                                  85
14
2
                                  65
                                  35
19
                                  55
10
11
                                  60
26
                                100
```

```
5
                             45
                                                          3
1
                             30
                                                          2
                                                          2
                             70
16
12
                             60
                            40
4
(22, 2)
    Attendance of Ml students
                                Certifications based on {\tt ML}
17
0
                             75
                                                          3
                                                          2
                             20
6
                             45
                                                          2
7
                                                          3
                             50
20
                             85
                                                          3
(6, 2)
13
9
       55
3
       35
27
      100
18
      80
22
       90
       70
15
8
25
       95
24
       95
21
      85
14
      65
2
       35
19
       80
10
      55
11
      60
26
      100
5
      45
1
       30
16
       70
12
       60
4
       40
Name: ML_Marks, dtype: int64
(22,)
23
17
      75
0
      20
6
      45
7
      50
20
      85
Name: ML Marks, dtype: int64
(6,)
[45.]
[90. 75. 20. 45. 50. 85.]
1.0
Mean Squared Error: 1.682903264471492e-28
    Actual ML_marks : predicted_Values by AI :
23
               90
                                            90.0
17
                   75
                                            75.0
0
                   20
                                            20.0
6
                   45
                                            45.0
7
                   50
                                            50.0
20
                   85
                                            85.0
```

AIM : Develop a program to make Polynomial Regression Model?

Data Set: Marks.csv

S.NO		Attendanc	ML_Marks
	1	20	20
	2	30	30
	3	35	35
	4	35	35
	5	40	40
	6	45	45
	7	45	45
	8	50	50
	9	50	50
1	0	55	55
1	1	55	55
1	2	60	60
1	3	60	60
1	4	65	65
1	5	65	65
1	6	70	70
1	7	70	70
1	8	75	75
1	9	80	80
2	20	80	80
2	21	85	85
2	22	85	85
2	23	90	90
2	24	90	90
2	25	95	95
2	26	95	95
2	27	100	100
2	28	100	100

< program >

print(df)

import pandas as pd

df = pd.read_csv('Marks.csv')

#making the independent and dependent variables = input and output varibles

the polynomial regression is same as linear regression

```
X = df[['Attendance of MI students ']]
y = df['ML_Marks']
print(X)
print(X.shape)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
```

create polynomial features

poly = PolynomialFeatures(degree=2)

#trasform is used to transform the the train data into all polynomial combinations upto specified degree = 2 and fit

X_train_poly = poly.fit_transform(X_train)

#trasform is used to transform the test data into all polynomial combinations upto specified degree = 2

X_test_poly = poly.transform(X_test)

fit polynomial regression model

```
model = LinearRegression()
model.fit(X_train_poly, y_train)
```

make predictions on testing data

```
y_pred = model.predict(X_test_poly)
print(y_pred)
print(poly) # polynomialfeatures
```

```
print(X_train_poly) # trained polynomials
print(X_test_poly)
print("m=", model.coef_)
print("c=",model.intercept )
from sklearn.metrics import r2_score, mean_squared_error
# make predictions on testing data
y_pred = model.predict(X_test_poly)
print(y_pred)
#r2_score value of y_test and predit
print("R-squared score on testing data: ", r2_score(y_test, y_pred))
#mean squared error
print("Mean squared error on testing data: ", mean_squared_error(y_test,y_pred))
# make prediction for new instance
new_instance = [[32]] # assuming there is only one feature
new_instance_poly = poly.transform(new_instance)
prediction = model.predict(new_instance_poly) # we only predict the 3 inputs bacause the degree=2
print("Prediction for new instance: ", prediction)
#y_test(output)and x_test(input) predicted values of polynomial is same or not
 ( always prediction = x_test == x_test_poly(degree=2))
data = pd.DataFrame({'Actual ML_marks :': y_test , 'predicted_Values by AI :': y_pred})
print(data)
<output >
```

```
S.NO Attendance of Ml students
                                     ML Marks
0
                                                 20
                                      20
       1
       2
1
                                      30
                                                 30
2
       3
                                      35
                                                 35
3
        4
                                      35
                                                 35
4
                                      40
                                                 40
5
                                                 45
       6
                                      45
6
                                      45
                                                 45
7
       8
                                      50
                                                 50
8
       9
                                      50
                                                 50
9
      10
                                      55
                                                 55
10
                                                 55
      11
                                      55
11
                                      60
                                                 60
      12
12
      13
                                      60
                                                 60
13
      14
                                      65
                                                 65
14
      15
                                      65
                                                 65
15
      16
                                      70
                                                 70
                                      70
16
      17
                                                 70
                                      75
17
      18
                                                 75
18
                                      80
                                                 80
      19
19
      20
                                      80
                                                 80
20
      21
                                      85
                                                 85
21
                                      85
                                                 85
      22
22
      23
                                      90
                                                 90
                                                 90
23
                                      90
      24
                                                 95
24
      25
                                      95
25
      26
                                     95
                                                 95
26
      27
                                     100
                                                100
27
      28
                                     100
                                                100
    Attendance of Ml students
                               20
1
2
3
                               30
                               35
                               35
4
                               40
5
                               45
6
                               45
7
8
                               50
9
                               55
10
                               55
11
                               60
12
                               60
13
                               65
14
                               65
                               70
15
16
                               70
                               75
17
18
                               80
19
                               80
20
                               85
21
22
                               90
23
                               90
24
                               95
25
                               95
26
                              100
27
                              100
(28, 1)
[35. 50. 60. 70. 80. 65.]
PolynomialFeatures()
[[1.000e+00 5.500e+01 3.025e+03]
 [1.000e+00 1.000e+02 1.000e+04]
 [1.000e+00 4.000e+01 1.600e+03]
 [1.000e+00 7.500e+01 5.625e+03]
 [1.000e+00 5.000e+01 2.500e+03]
 [1.000e+00 8.000e+01 6.400e+03]
 [1.000e+00 9.000e+01 8.100e+03]
```

```
[1.000e+00 6.000e+01 3.600e+03]
 [1.000e+00 9.500e+01 9.025e+03]
 [1.000e+00 3.500e+01 1.225e+03]
 [1.000e+00 4.500e+01 2.025e+03]
 [1.000e+00 4.500e+01 2.025e+03]
 [1.000e+00 9.000e+01 8.100e+03]
 [1.000e+00 3.000e+01 9.000e+02]
 [1.000e+00 8.500e+01 7.225e+03]
 [1.000e+00 7.000e+01 4.900e+03]
 [1.000e+00 2.000e+01 4.000e+02]
 [1.000e+00 8.500e+01 7.225e+03]
 [1.000e+00 1.000e+02 1.000e+04]
 [1.000e+00 6.500e+01 4.225e+03]
 [1.000e+00 5.500e+01 3.025e+03]
 [1.000e+00 9.500e+01 9.025e+03]]
[[1.000e+00 3.500e+01 1.225e+03]
 [1.000e+00 5.000e+01 2.500e+03]
 [1.000e+00 6.000e+01 3.600e+03]
 [1.000e+00 7.000e+01 4.900e+03]
 [1.000e+00 8.000e+01 6.400e+03]
 [1.000e+00 6.500e+01 4.225e+03]]
m= [ 0.00000000e+00 1.00000000e+00 -6.11661943e-17]
c= -5.684341886080802e-14
[35. 50. 60. 70. 80. 65.]
R-squared score on testing data: 1.0
Mean squared error on testing data: 2.2298468254247266e-27
Prediction for new instance: [32.]
   Actual ML_marks : predicted_Values by AI :
                   35
                                            50.0
8
                   50
12
                   60
                                            60.0
15
                   70
                                            70.0
                                            80.0
19
                   80
                   65
                                            65.0
```

AIM : Develop a program to make logistic Regression Model?

Data Set: diabetes.csv

regnancie Gl	ucose	BloodPressure	SkinThickn	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	(
8	183	64	0	0	23.3	0.672	32	
1	89	66	23	94	28.1	0.167	21	(
0	137	40	35	168	43.1	2.288	33	
5	116	74	0	0	25.6	0.201	30	(
3	78	50	32	88	31	0.248	26	
10	115	0	0	0	35.3	0.134	29	(
2	197	70	45	543	30.5	0.158	53	
8	125	96	0	0	0	0.232	54	
4	110	92	0	0	37.6	0.191	30	(
10	168	74	0	0	38	0.537	34	
10	139	80	0	0	27.1	1.441	57	-
1	189	60	23	846	30.1	0.398	59	
5	166	72	19	175	25.8	0.587	51	
7	100	0	0	0	30	0.484	32	
0	118	84	47	230	45.8	0.551	31	
7	107	74	0	0	29.6	0.254	31	
1	103	30	38	83	43.3	0.183	33	
1	115	70	30	96	34.6	0.529	32	
3	126	88	41	235	39.3	0.704	27	
8	99	84	0	0	35.4	0.388	50	()
7	196	90	0	0	39.8	0.451	41	
9	119	80	35	0	29	0.263	29	
11	143	94	33	146	36.6	0.254	51	
10	125	70	26	115	31.1	0.205	41	
7	147	76	0	0	39.4	0.257	43	
1	97	66	15	140	23.2	0.487	22	- 0
13	145	82	19	110	22.2	0.245	57	
5	117	92	0	0	34.1	0.337	38	1 3

This code performs the following steps:

- 1. Loads the diabetes dataset and checks for missing values
- 2. Separates the independent and dependent variables
- 3. Splits the dataset into training and test sets
- 4. Fits a logistic regression model on the training set
- 5. Predicts on the test set and creates a confusion matrix heatmap
- 6. Calculates evaluation metrics (accuracy, precision, recall, and F1 score)
- 7. Prompts the user to input new data to make a prediction on
- 8. Makes a prediction on the new data using the trained model and prints the result

< program >

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score

import seaborn as sns

import matplotlib.pyplot as plt

Load the dataset

df = pd.read_csv('diabetes.csv')

Check for missing values

print(df.isnull().sum())

Separate the independent and dependent variables

X = df[['Pregnancies','Glucose','BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']]
y = df['Outcome']

Split the dataset into training and test sets

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.25, random_state=0)

Fit a logistic regression model

model = LogisticRegression()
model.fit(X_train, y_train)

Predict on the test set

y_pred = model.predict(X_test)

Create the confusion matrix

cm = confusion_matrix(y_test, y_pred)

Create the heatmap using seaborn

sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")

Set the axis labels and title

plt.xlabel("Predicted Label")
plt.ylabel("True Label")

plt.title("Confusion Matrix")

Show the plot

```
plt.show()
```

Calculate the evaluation metrics

```
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
```

Print the evaluation metrics

```
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)
```

Take input from the user to predict on new data

```
pregnancies = int(input("Enter the number of pregnancies: "))
glucose = int(input("Enter the glucose level: "))
blood_pressure = int(input("Enter the blood pressure: "))
skin_thickness = int(input("Enter the skin thickness: "))
insulin = int(input("Enter the insulin level: "))
bmi = float(input("Enter the BMI: "))
dpf = float(input("Enter the diabetes pedigree function: "))
age = int(input("Enter the age: "))
```

Create a new row with the user's input

```
new_data = pd.DataFrame({
    'Pregnancies': [pregnancies],
    'Glucose': [glucose],
    'BloodPressure': [blood_pressure],
    'SkinThickness': [skin_thickness],
    'Insulin': [insulin],
    'BMI': [bmi],
    'DiabetesPedigreeFunction': [dpf],
    'Age': [age]
})
```

Make a prediction on the new data using the trained model

```
prediction = model.predict(new_data)
```

Print the prediction

```
if prediction[0] == 0:
    print("Prediction: Not Diabetic")
else:
    print("Prediction: Diabetic")
```

< Output >

```
Glucose
                            0
BloodPressure
SkinThickness
                            0
Insulin
BMI
                            0
DiabetesPedigreeFunction
                            0
Age
                            0
Outcome
dtype: int64
C:\Users\saichand.digumarthi\anaconda3\lib\site-packages\sklearn\linear model\ logist
 ic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  n iter i = check optimize result(
Accuracy: 0.7916666666666666
Precision: 0.7115384615384616
Recall: 0.5967741935483871
F1 Score: 0.6491228070175439
Enter the number of pregnancies: 2
Enter the glucose level: 34
Enter the blood pressure: 120
Enter the skin thickness: 67
Enter the insulin level: 55
Enter the BMI: 78
Enter the diabetes pedigree function: 45
Enter the age: 34
Prediction: Diabetic
```

Write a program to demonstrate the working of the decision tree classifier. Use appropriate datasetfor building the decision tree and apply this knowledge to classify a new sample.

AIM: Develop a program to make Decision tree classifier Model?

Data Set: diabetes2.csv

Pregnancie (Glucose	BloodPressure	SkinThickn	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	0
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0
8	99	84	0	0	35.4	0.388	50	0
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	1
7	147	76	0	0	39.4	0.257	43	1
1	97	66	15	140	23.2	0.487	22	0
13	145	82	19	110	22.2	0.245	57	0
5	117	92	0	0	34.1	0.337	38	0

< program >

import pandas as pd import numpy as np import matplotlib.pyplot as plt

load the dataset

df=pd.read_csv("diabetes2.csv")

display the dataset

df

generate descriptive statistics of the dataset

df.describe()

check for missing values in the dataset

print(df.isnull().sum())

compute the correlation matrix of the dataset

df.corr()

separate the input features (X) and the target variable (y)

X=df.drop("Outcome",axis=1)
y=df[['Outcome']]

split the dataset into training and testing sets

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=0)

print the shapes of the datasets

print(X.shape)
print(y.shape)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)

perform feature scaling on the training and testing sets

from sklearn.preprocessing import StandardScaler
st=StandardScaler()
X_train=st.fit_transform(X_train)
X test=st.fit transform(X test)

train a decision tree classifier on the training set

from sklearn.tree import DecisionTreeClassifier
classifier=DecisionTreeClassifier(criterion='entropy',random_state=0)
classifier.fit(X train,y train)

make predictions on the testing set

y_pred=classifier.predict(X_test)

compute the confusion matrix

from sklearn.metrics import confusion_matrix cm=confusion_matrix(y_test,y_pred)

compute the classification report and accuracy score

from sklearn.metrics import classification_report,accuracy_score

```
res=classification_report(y_test,y_pred)
print("Classification Report:")
print(res)
result=accuracy_score(y_test,y_pred)
print("Accuracy:",result)
```

compute the accuracy, specificity, sensitivity, and F1 score

```
from sklearn.metrics import accuracy_score,recall_score,f1_score
Accuracy=accuracy_score(y_test,y_pred)
Specificity = cm[0,0]/(cm[0,0]+cm[0,1])
Sensitivity_recall = recall_score(y_test, y_pred)
F1_score = f1_score(y_test,y_pred)

print("Accuracy:",Accuracy)
print("Specificity:",Specificity)
print("Sensitivity/Recall:",Sensitivity_recall)
print("F1 Score:",F1_score)
```

compute the mean squared error

from sklearn.metrics import mean_squared_error
res1=mean_squared_error(y_test,y_pred)
res1

compute the confusion matrix, classification report, and accuracy score

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))

print("\nClassification Report:")
print(classification_report(y_test, y_pred))

print("\nAccuracy Score:")
print(accuracy_score(y_test, y_pred))
```

compute the R2 score

```
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score predit_r2_score = r2_score(y_test,y_pred) print(predit_r2_score) # 1.0 = 100%
```

< Output >

```
Pregnancies
                          0
                          0
Glucose
BloodPressure
                          0
SkinThickness
                          0
Insulin
                          0
BMI
                          0
DiabetesPedigreeFunction 0
Age
                          0
Outcome
                          0
dtype: int64
(768, 8)
(768, 1)
(576, 8)
(192, 8)
(576, 1)
(192, 1)
Classification Report:
             precision recall fl-score support
          0
                0.84 0.79
                                    0.82
                0.61
                          0.69
                                    0.65
```

130

0.76

0.73

0.76

62

192

192

192

Accuracy: 0.760416666666666 Specificity: 0.7923076923076923

Sensitivity/Recall: 0.6935483870967742

0.73

0.77

0.74

0.76

F1 Score: 0.6515151515151515

Confusion Matrix:

accuracy macro avg

weighted avg

[[103 27] [19 43]]

Classification Report:

	precision	recall	f1-score	support
0 1	0.84 0.61	0.79 0.69	0.82	130 62
accuracy macro avg weighted avg	0.73 0.77	0.74 0.76	0.76 0.73 0.76	192 192 192

Accuracy Score: 0.760416666666666 -0.09578163771712145

AIM: Develop a program to make Decision tree regressor Model?

Data Set: Attendence.csv

S.NO	Attendenc	Marks
1	60	63
2	66	64
3	67	65
4	68	66
5	69	67
6	70	68
7	71	69
8	72	70
9	73	71
10	74	72
11	75	73
12	76	74
13	77	75
14	78	76
15	79	77
16	80	78
17	81	79
18	82	80
19	83	81
20	84	82

< program >

Import necessary libraries

import pandas as pd

import numpy as np

 $from \ sklearn. In ear_model \ import \ Linear Regression$

from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

 $from \ sklearn.model_selection \ import \ train_test_split$

Load the dataset

df = pd.read_csv('Attendence.csv')

```
print(df)
# Define input and output variables
X = df[['Attendence']] # Use 'Attendance' as input
y = df['Marks']
# Print shapes of input and output data
print(X.shape)
print(y.shape)
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
# Print shapes of training and testing data
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
# Create a decision tree regressor with max_depth=3
tree = DecisionTreeRegressor(max_depth=3)
```

Fit the model using the training data

tree.fit(X_train, y_train)

Predict on the test data

```
y_pred = tree.predict(X_test)
print(y_pred)
```

Evaluate the model using mean absolute error

```
mae = mean_absolute_error(y_test, y_pred)
print('Mean Absolute Error:', mae)
```

Evaluate the performance of the model using root mean squared error

```
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print('Root Mean Squared Error:', rmse)
```

< Output >

S.NO	Attendence	Marks	
0	1	60	63
1	2	66	64
2	3	67	65
3	4	68	66
4	5	69	67
5	6	70	68
6	7	71	69
7	8	72	70
8	9	73	71
9	10	74	72
10	11	75	73
11	12	76	74
12	13	77	75
13	14	78	76
14	15	79	77
15	16	80	78
16	17	81	79

```
17 18 82 80
18 19 83 81
19 20 84 82
(20, 1)
(20,)
(15, 1)
(5, 1)
(15,)
(5,)
[79.5 65.5 79.5 69.5 72.]
Mean Absolute Error: 1.6
Root Mean Squared Error: 1.6733200530681511
```

AIM : Write a program to demonstrate the working of Random Forest classifier. Use

appropriate dataset for Random Forest Classifier.

Data Set: diabetes2.csv

Pregnancie Gl	ucose	BloodPressure	SkinThickn	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	0
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0
8	99	84	0	0	35.4	0.388	50	0
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	1
7	147	76	0	0	39.4	0.257	43	1
1	97	66	15	140	23.2	0.487	22	0
13	145	82	19	110	22.2	0.245	57	0
5	117	92	0	0	34.1	0.337	38	0

< program >

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

Load the dataset

df = pd.read_csv("diabetes2.csv")

Split the dataset into features and target

```
X = df.drop("Outcome", axis=1)
y = df["Outcome"]

# Split the dataset into training and testing data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
```

Create the random forest classifier and fit the model using the training data

```
classifier = RandomForestClassifier(n_estimators=100, random_state=0)
classifier.fit(X_train, y_train)
```

Make predictions on the test data

y_pred = classifier.predict(X_test)

Print the confusion matrix

```
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print("{:<10}{:<10}{}".format("", "Actual", ""))
print("{:<10}{:<10}".format("", "Negative", "Positive"))
print("{:<10}{:<10}{:<10}".format("Predicted", "------", "------"))
print("{:<10}{:<10}{:<10}".format("Negative", cm[0][0], cm[0][1]))
print("{:<10}{:<10}{:<10}".format("Positive", cm[1][0], cm[1][1]))</pre>
```

Print the classification report

from sklearn.metrics import classification_report
res = classification_report(y_test, y_pred)
print("\nClassification Report:\n", res)

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix

Generate the confusion matrix

cm = confusion_matrix(y_test, y_pred)

Create the heatmap using seaborn

sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")

#In this code snippet, we set the fmt parameter of seaborn's heatmap function to "d",

#which specifies that the numbers should be displayed as integers (i.e., no decimal places).

#This will display the confusion matrix heatmap with full numbers instead of in scientific notation.

Set the axis labels and title

plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix")

Show the plot

plt.show()

< Output >

Confusion	Matrix: Actual	
	Negative	Positive
Predicted		
Negative	116	14
Positive	30	32

Classification	Report: precision	recall	f1-score	support
0 1	0.79 0.70	0.89 0.52	0.84	130 62
accuracy macro avg weighted avg	0.75 0.76	0.70 0.77	0.77 0.72 0.76	192 192 192

AIM: Implement and demonstrate FIND-S algorithm for finding the most specific hypothesis

based on agiven set of training data samples. Read the training data from a .csv file.

Data Set: my.csv

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoyReport
sunny	Warm	Normal	Strong	Warm	Same	Yes
sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	change	No
Sunny	Warm	High	Strong	Cool	change	Yes

< program >

import pandas as pd

import numpy as np

Load the data

data = pd.read_csv("my.csv")

Convert the data to a numpy array

d = np.asarray(data)

print(d)

Initialize the hypothesis with 'NULL' values

h = ['NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL']

Create a list to store the matching instances

m = []

Find the instances that match the positive target concept 'EnjoyReport = Yes'
for i in range(len(d)):
if d[i][-1] == 'Yes':
m.append(d[i])
Iterate through the matching instances to find the most specific hypothesis
for i in range(len(m)):
For each attribute, check if the hypothesis matches the instance attribute
If they match, continue to the next attribute
If the hypothesis has 'NULL' for that attribute, update it to match the instance
If the hypothesis already has a value for that attribute and it doesn't match the instance, set it to
for j in range(6):
if $h[j] == m[i][j]$:
pass
elif h[j] == 'NULL':
h[j] = m[i][j]
else:
h[j] = '?'
Print the updated hypothesis for each instance
print(h)
< Output >

```
[['sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same' 'Yes']
['sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same' 'Yes']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'change' 'No']
['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'change' 'Yes']]
['sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same']
['sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
['?', 'Warm', '?', 'Strong', '?', '?']
```

In []: