Reusing the Assignment Trail in CDCL Solvers

Peter van der Tak, Marijn Heule, and Antonio Ramos

Overview

- CDCL Solver & VSIDS
- Motivation
- ReusedTrail
- Results & Observations
- Conclusion

trail						
level						
score						
RSL						

VSIDS order:

x5, x2, x13, x9, x3, x14, x1, x7, x12, x4, x10, x6, x8, x11

trail	<u>x5</u>					
level	1					
score	93.5					
RSL						

VSIDS order:

x5, x2, x13, x9, x3, x14, x1, x7, x12, x4, x10, x6, x8, x11

trail	<u>x5</u>	<u>x2</u>	x11				
level	1	2					
score	93.5	88.2	15.9				
RSL							

VSIDS order:

<u>x5</u>, <u>x2</u>, *x13*, *x9*, *x3*, *x14*, *x1*, *x7*, *x12*, *x4*, *x10*, *x6*, *x8*, x11

trail	<u>x5</u>	<u>x2</u>	x11	<u>x13</u>	<u>x9</u>	x4	<u>x3</u>	x14	x8	<u>x1</u>	x12	<u>t</u>
level	1	2		3	4		5			6		nfli
score	93.5	88.2	15.9	81.2	75.4	44.0	63.9	62.8	27.7	38.1	44.1	5
RSL									BJL			

VSIDS order:

<u>x5</u>, <u>x2</u>, <u>x13</u>, <u>x9</u>, <u>x3</u>, x14, <u>x1</u>, *x7*, x12, x4, *x10*, *x6*, x8, x11

VSIDS

When a conflict occurs:

- The solver analyses the conflicting clause and reason clauses
- Learns a conflict clause
- Increments scores of all variables in the conflict clause
- Multiplies (decays) variables by δ (VSIDS decay factor)
- Jumps to the highest level at which the conflict clause is unit backjump level (BJL)

trail	<u>x5</u>	<u>x2</u>	x11	<u>x13</u>	<u>x9</u>	x4	<u>x3</u>	x14	x8	<u>x1</u>	x12
level	1	2		3	4		5			6	
score	93.5	88.2	15.9	81.2	75.4	44.0	63.9	62.8	27.7	38.1	44.1
RSL											

VSIDS order:

<u>x5</u>, <u>x2</u>, <u>x13</u>, <u>x9</u>, <u>x3</u>, x14, <u>x1</u>, *x7*, x12, x4, *x10*, *x6*, x8, x11

trail						
level						
score						
RSL						

VSIDS order:

x5, x2, x13, x9, x3, x14, x1, x7, x12, x4, x10, x8, x6, x11

Motivation

- Frequent restarts lead to fewer conflicts
- But restarts are costly, solving time may increase
- VSIDS remains similar between frequent restarts
- Phase saving ensures that assignments will have equal values

Example

trail	<u>x5</u>	<u>x2</u>	x11	<u>x9</u>	<u>x13</u>	x4	<u>x14</u>	x8	<u>x1</u>	<u>x6</u>	x 3
level	1	2		3	4		5		6	7	
score	93.5	88.2	15.9	75.4	81.2	44.0	62.8	27.7	53.6	38.1	63.9
RSL											BJL

VSIDS order:

<u>x5</u>, <u>x2</u>, <u>x13</u>, <u>x9</u>, x3, <u>x14</u>, <u>x1</u>, *x7*, *x12*, x4, *x10*, <u>x6</u>, x8, x11

Example (MatchingTrail)

trail	<u>x5</u>	<u>x2</u>	x11	<u>x9</u>	<u>x13</u>	x4	<u>x14</u>	x8	<u>x1</u>	<u>x6</u>	x 3
level	1	2		3	4		5		6	7	
score	93.5	88.2	15.9	75.4	81.2	44.0	62.8	27.7	53.6	38.1	63.9
RSL			MTL								BJL

VSIDS order:

<u>x5</u>, <u>x2</u>, <u>x13</u>, <u>x9</u>, x3, <u>x14</u>, <u>x1</u>, *x7*, *x12*, x4, *x10*, <u>x6</u>, x8, x11

Example (PermutedTrail)

trail	<u>x5</u>	<u>x2</u>	x11	<u>x9</u>	<u>x13</u>	x4	<u>x14</u>	x8	<u>x1</u>	<u>x6</u>	x 3
level	1	2		3	4		5		6	7	
score	93.5	88.2	15.9	75.4	81.2	44.0	62.8	27.7	53.6	38.1	63.9
RSL			MTL	//		PTL					BJL

VSIDS order:

<u>x5</u>, <u>x2</u>, <u>x13</u>, <u>x9</u>, x3, <u>x14</u>, <u>x1</u>, *x7*, *x12*, x4, *x10*, <u>x6</u>, x8, x11

Example (ReusedTrail)

trail	<u>x5</u>	<u>x2</u>	x11	<u>x9</u>	<u>x13</u>	x4	<u>x14</u>	x8	<u>x1</u>	<u>x6</u>	x 3
level	1	2		3	4		5		6	7	
score	93.5	88.2	15.9	75.4	81.2	44.0	62.8	27.7	53.6	38.1	63.9
RSL			MTL			PTI			RTL		BJL

VSIDS order:

<u>x5, x2, x13, x9, x3, x14, x1, x7, x12, x4, x10, x6, x8, x11</u>

Algorithm

forever do

```
if OrderHeap.empty() then return BackjumpLevel x_{next} := OrderHeap.remove() if AssignmentType[x_{next}] = Unassigned then break OrderHeap.insert(x_{next})
```

```
for i := 1 to BackjumpLevel do
  if Activity[DecisionVar[i]] < Activity[x<sub>next</sub>] then return i − 1
return BackjumpLevel
```


Approach

- Exploiting similarity before and after a restart
- Backtrack to RTL instead of RSL
- This retains the effect of a restart

Results

- Implemented in MiniSAT 2.2
- Consider Const-1, Luby-1, and Luby-100
- Determine the amount of work saved by ReusedTrail
- Count the number of extra instances solved

Results (Frequencies)

Results (Savings)

Results (Solved instances)

Number of instances solved within 1200 seconds (out of all 292 application instances of the SAT 2009 competition)

	No RT	RT	RT
	$\delta = 0.95$	$\delta = 0.95$	$\delta = 0.75$
Const-1	147	163	169
Luby-1	168	174	185
Luby-100	170	172	176

 δ = VSIDS decay factor

Observations

- More radical restarts become more efficient
- The optimal VSIDS decay value becomes smaller
- Reason clauses may become different

Conclusion

- ReusedTrail significantly reduces restart costs
- This allows more radical restart strategies to perform better
- Easy to implement in most CDCL solvers

Thank you!

Reusing the Assignment Trail in CDCL Solvers

Peter van der Tak, Marijn Heule, and Antonio Ramos

Code available from: http://www.st.ewi.tudelft.nl/sat/download.php

