

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Programação de Computadores I Prova I – 1°/2017 – Condicionais, Laços, Vetores, Funções e Strings Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	
Data: 26 de setembro de 20	
1	
	Duração da prova: 100 minutos

Tabela de notas (uso exclusivo do professor)

Questão	Pontos	Nota
1	2.5	
2	2.5	
3	2.5	
4	2.5	
Total	10	

Observações

- Esta prova tem o total de 2 páginas (incluindo a capa) e 4 questões.
- O número total de pontos é 10.
- Certifique-se de assinar todas as folhas de resposta bem como a capa da prova.
- Leia atentamente todas as questões da prova. A interpretação do problema é crucial para o desenvolvimento correto da resposta.
- Resoluções sem justificativa não serão consideradas.
- É vedado o uso de equipamentos eletrônicos, como celulares, notebooks entre outros.
- A prova será anulada e medidas disciplinares serão tomadas para os alunos que "colarem" durante a avaliação.
- \star Certifique-se de assinar todas as folhas de resposta.

Questão 1 (2.5 pontos)

Implemente uma função que recebe como parâmetro duas strings, str_1 e str_2 , e retorne verdadeiro, caso existam caracteres de str_1 presentes em str_2 e falso, caso contrário. Sua função deverá possuir a seguinte assinatura:

int has_char(char str1[], char str2[]]);

OBS: Com exceção da função strlen(), nenhuma outra função da biblioteca string.h deve ser utilizada.

Questão 2 (2.5 pontos)

Uma string str possui período p se str[i] = str[i+p] para todo $0 \le i < n-p$, onde n é o comprimento de str. Note que de acordo com esta definição, qualquer string tem período de pelo menos 0. Dada uma string str, implemente uma função que retorne o maior período que uma string possui. Sua função deverá ter a seguinte assinatura:

int period(char str[]);

OBS: Com exceção da função strlen(), nenhuma outra função da biblioteca string.h deve ser utilizada.

Questão 3 (2.5 pontos)

Crie um programa que leia um inteiro $n \ (2 \le n \le 20)$ e um real $x \ (0 < x < 1)$ e compute o valor aproximado de

 $\frac{1}{(1-x)^3}$

através do somatório:

$$\sum_{k=2}^{n} \frac{(k-1) \cdot k}{2} \cdot x^{k-2}$$

OBS: assuma que o usuário irá digitar valores válidos de $n \in x$.

OBS 2: você não deverá utilizar a função pow nesta questão.

Questão 4 (2.5 pontos)

Faça um programa que, leia um inteiro n ($1 \le n \le 1000$) correspondendo a uma quantidade de dias e leia n valores reais $temp_0, \ldots, temp_{n-1}$ representando as temperaturas começando do dia 0 e insira-os em um vetor temp[]. Seu programa deve imprimir na tela os dias em que a temperatura foi maior ou igual à temperatura média.

OBS: Assuma que o usuário irá digitar valores válidos de temperatura.

Era exatamente o que eu ia dizer!

Chapolin