```
In [ ]: Nurshanov Dias IT3-2208
         lab 6 Spline of the first order
         Computational Math
In [44]: # Input values
         import numpy as np
         f = np.log
         a, b = 1, 10
         N = 10
In [46]: # a)Code implementation
         x_i = np.linspace(a, b, N)
         y^{-}i = f(x i)
         x hat = []
         for i in range(len(x_i) - 1):
             x_{\text{hat.extend(np.linspace(}}x_{\text{i[i]}}, x_{\text{i[i+1]}}, k+2)[1:-1]) # Add intermediary points between nodes
         x_{hat} = np.array(x_{hat})
         def calc_spline(x_hat, x_i, y_i):
             spline values = []
             for x in x_hat:
                  for i in range(len(x_i) - 1):
                     if x i[i] <= x <= x i[i+1]:
                          # Linear interpolation
                          s_x = (y_i[i+1] - y_i[i]) / (x_i[i+1] - x_i[i]) * (x - x_i[i]) + y_i[i]
                          spline values.append(s x)
                          break
             return np.array(spline values)
         spline\ values = calc\ spline(x\ hat, x i, y i)
         f values hat = f(x hat)
         delta = np.abs(f_values_hat - spline_values)
In [ ]:
In [47]: # b)Output should be a table with results
         import pandas as pd
         df = pd.DataFrame({
              'x': x_hat,
             'f(x)': f_values_hat,
             's(x)': spline_values,
             'delta |f(x) - s(x)|': delta
         df
```

Out[47]:		x	f(x)	s(x)	delta f(x) - s(x)
	0	1.125	0.117783	0.106151	0.011632
	1	1.250	0.223144	0.212302	0.010841
	2	1.500	0.405465	0.398841	0.006624
	3	1.625	0.485508	0.479228	0.006279
	4	1.875	0.628609	0.624334	0.004274
	5	2.000	0.693147	0.689053	0.004094
	6	2.250	0.810930	0.807945	0.002985
	7	2.375	0.864997	0.862118	0.002880
	8	2.625	0.965081	0.962878	0.002203
	9	2.750	1.011601	1.009465	0.002136
	10	3.000	1.098612	1.096920	0.001692
	11	3.125	1.139434	1.137788	0.001647
	12	3.375	1.216395	1.215055	0.001341
	13	3.500	1.252763	1.251455	0.001308
	14	3.750	1.321756	1.320668	0.001088
	15	3.875	1.354546	1.353481	0.001065
	16	4.125	1.417066	1.416165	0.000901
	17	4.250	1.446919	1.446036	0.000883
	18	4.500	1.504077	1.503319	0.000758
	19	4.625	1.531476	1.530732	0.000744
	20	4.875	1.584120	1.583473	0.000647
	21	5.000	1.609438	1.608802	0.000636
	22	5.250	1.658228	1.657670	0.000558
	23	5.375	1.681759	1.681209	0.000550
	24	5.625	1.727221	1.726734	0.000487
	25	5.750	1.749200	1.748720	0.000480
	26	6.000	1.791759	1.791331	0.000428
	27	6.125	1.812379	1.811956	0.000422
	28	6.375	1.852384	1.852004	0.000380
	29	6.500	1.871802	1.871427	0.000375
	30	6.750	1.909543	1.909204	0.000339
	31	6.875	1.927892	1.927557	0.000335
	32	7.125	1.963610	1.963305	0.000304
	33	7.250	1.981001	1.980701	0.000301
	34	7.500	2.014903	2.014628	0.000275
	35	7.625	2.031432	2.031161	0.000272
	36	7.875	2.063693	2.063444	0.000249
	37	8.000	2.079442	2.079195	0.000247
	38	8.250	2.110213	2.109986	0.000227
	39	8.375	2.125251	2.125026	0.000225
	40	8.625	2.154665	2.154457	0.000208
	41	8.750	2.169054	2.168848	0.000206
	42	9.000	2.197225	2.197033	0.000191
	43	9.125	2.211018	2.210828	0.000189
	44	9.375	2.238047	2.237870	0.000176
	45	9.500	2.251292	2.251117	0.000175
	46	9.750		2.277104	0.000163
	47	9.875	2.290006	2.289845	0.000162

```
import matplotlib.pyplot as plt
#first graph
x_graph = np.linspace(1, 10, 100)
y_{graph} = f(x_{graph})
plt.figure()
plt.plot(x_hat, spline_values, 'rx-', label='s(x) - Spline')
plt.title('Function and Spline Interpolation (N=10)')
plt.xlabel('x')
plt.ylabel('Function values')
plt.legend()
plt.show()
#second graph
N \text{ values} = [5, 10, 15, 20, 25]
total errors = []
total_points = []
for N in N_values:
    x i = np.linspace(a, b, N)
    y_i = f(x_i)
    x_hat = []
    for i in range(len(x i) - 1):
        x_{\text{hat.extend}}(np.\overline{linspace}(x_{\text{i[i]}}, x_{\text{i[i+1]}}, k+2)[1:-1]) # Add intermediary points between nodes
    x hat = np.array(x hat)
    spline\ values = calc\ spline(x\ hat, x i, y i)
    f values hat = f(x hat)
    delta = np.abs(f values hat - spline values)
    total_error = np.sum(delta)
    total_errors.append(total_error)
    total_points.append(len(x_i) + len(x_hat))
plt.figure()
plt.plot(total points, total errors, 'g--o', label='Total Error vs N (Number of Points)')
plt.title('Total Error vs Number of Points (Varying N)')
plt.xlabel('Number of Points (N)')
plt.ylabel('Total Error')
plt.legend()
plt.show()
```

Function and Spline Interpolation (N=10)

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js