21-128 and 15-151 problem sheet 3

Solutions to the following seven exercises and optional bonus problem are to be submitted through gradescope by 11PM on

Wednesday 21st September 2022.

Problem 1

Consider a function $f: A \to A$. Prove that if $f \circ f$ is injective, then f is injective.

Problem 2

Consider functions $f: A \to B$ and $g: B \to A$. Prove that

- (a) If $f \circ g$ is the identity function on B, then f is surjective.
- (b) If $g \circ f$ is the identity function on A, then f is injective.

To remind you: given a set X, the identity function on X is the function $id_X : X \to X$ defined by $id_X(x) = x$ for all $x \in X$.

Problem 3

Let $a, b, c, d \in \mathbb{R}$ be constants with $a \neq 0$ and $c \neq 0$. Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ with f(x) = ax + b and g(x) = cx + d for all $x \in \mathbb{R}$. Prove that f and g are injective and surjective, but that the function $h : \mathbb{R} \to \mathbb{R}$ defined by $h = g \circ f - f \circ g$ is neither injective nor surjective.

Problem 4

Verify that the function $f:(0,1)\to\mathbb{R}$ defined by

$$f(x) = \frac{2x-1}{2x(1-x)}$$
 for all $x \in (0,1)$

is a bijection.

Problem 5

- (a) Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ where f and g are surjective and let $h: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ s.t. $\forall (x,y) \in \mathbb{R} \times \mathbb{R}$, h(x,y) = f(x,y) + g(x,y). Determine, with proof, whether or not h is necessarily surjective.
- (b) For all positive integers n, define S_n to be the set of bijections on [n]. Let

$$A = \{ f \in S_n \mid \forall x \in [n] (f(x) \neq x) \}$$

$$B = \{ f \in S_n \mid \exists g \in S_n \, \forall x \in [n] (f(g(x)) \neq g(x)) \}$$

Show that A = B.

Problem 6

- (a) Find a function $f: \mathbb{N} \to \mathbb{N}$ that is surjective and not injective, and show that it has at least two right-inverses.
- (b) Suppose that $f:A\to B$ is surjective but not injective. Prove that f has at least two right-inverses.

Problem 7

Let $g: \mathbb{R} \to \mathbb{R}$ and define $f: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ via $f(S) = \{g(x) \mid x \in S\}$.

a) Determine necessary and sufficient conditions on g to have

$$\forall A, B \subseteq \mathbb{R} \ f(A \cap B) = f(A) \cap f(B)$$

b) Show that if g is surjective, then f is surjective.

Bonus Problem - 2 points

Let $f: A \to B$ be a function.

- (a) Prove that there exists a set X and functions $p:A\to X$ and $i:X\to B$, with p surjective and i injective, such that $f=i\circ p$.
- (b) Prove that there exists a set Y and functions $j: A \to Y$ and $q: Y \to B$, with j injective and q surjective, such that $f = q \circ j$.