LA's BeST @USC Single-Cell RNA Sequencing Project

Kelly Street

Assistant Professor Division of Biostatistics Keck School of Medicine June 17, 2024

The Central Dogma

Cell Types

44.5M Cells

ALL CELLS

Why Single Cell?

Bulk

Single Cell

	heart cell	lung cell	blood cell
gene A			
gene B			
gene C			
:	÷	÷	:

The Human Genome Project estimated that we have **20,000 - 25,000** genes

	heart cell	lung cell	blood cell
gene A			
gene B			
gene C			
:	÷	÷	:

Single-Cell RNA Sequencing

Figure 2. Efficient and streamlined workflow for multiomic profiling of biological systems. Start with a single cell suspension of unlabeled cells, oligo-conjugated antibody-labeled cells, or cells expressing compatible CRISPR guides. After GEM generation, separate libraries can be constructed from a single sample, including gene expression and cell surface protein or CRISPR guide libraries, generating multiple readouts that can be linked back to the same single cell. Process data with Cell Ranger, and visualize sample heterogeneity with Loupe Browser, our fully integrated and easy-to-use analysis and visualization software.

scRNAseq Data

scRNAseq Data

Renal Cell Carcinoma

Cancer Cell

Article

Progressive immune dysfunction with advancing disease stage in renal cell carcinoma

David A. Braun,^{1,2,3,17} Kelly Street,^{4,5,17} Kelly P. Burke,^{1,2,6} David L. Cookmeyer,^{2,6} Thomas Denize,^{2,7} Christina B. Pedersen,^{8,9} Satyen H. Gohil,^{1,2,3,10} Nicholas Schindler,¹ Lucas Pomerance,^{1,2} Laure Hirsch,^{1,2} Ziad Bakouny,¹ Yue Hou,^{1,11} Juliet Forman,^{1,3,11} Teddy Huang,^{1,11} Shuqiang Li,^{1,3,11} Ang Cui,^{3,12} Derin B. Keskin,^{1,3,11} John Steinharter,¹ Gabrielle Bouchard,¹ Maxine Sun,¹ Erica M. Pimenta,^{1,2} Wenxin Xu,^{1,2} Kathleen M. Mahoney,^{1,2,13} Bradley A. McGregor,^{1,2} Michelle S. Hirsch,^{2,7} Steven L. Chang,^{2,14} Kenneth J. Livak,^{1,11} David F. McDermott,^{2,13} Sachet A. Shukla,^{3,11} Lars R. Olsen,^{8,9} Sabina Signoretti,^{2,7,15} Arlene H. Sharpe,^{2,6,7,16} Rafael A. Irizarry,^{4,5} Toni K. Choueiri,^{1,2,18} and Catherine J. Wu^{1,2,3,18,19,*}

¹Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

²Harvard Medical School, Boston, MA 02215, USA

³Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

⁴Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA

⁵Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA

⁶Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA

⁷Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA

⁸Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark

Renal Cell Carcinoma

Question 1:

What cell types are present?

Clustering

Identify groups of cells with **similar** expression profiles

Question 2: Which cell types are associated with disease?

Differential Abundance

Differential Abundance

