Discrete Dynamic Programming*

Peifan Wu

October 8, 2020

1 Notations and Definitions

A discrete dynamic programming is basically a maximization problem with an objective function of the form

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t r\left(s_t, a_t\right) \tag{1}$$

where

- s_t is the **state variable**
- a_t is the **action**, and $s_{t+1} = g(s_t, a_t)$.
- β is a discount factor, β < 1
- $r(s_t, a_t)$ is the current reward function when we have state s_t and action a_t .

Each pair (s_t, a_t) pins down the **transition probabilities** $Q(s_t, a_t, s_{t+1})$ for the next period state s_{t+1} .

Therefore, a_t influences not only the current rewards, but also the future states.

The essence of dynamic programming: a trade-off between current rewards and favorable future states. Macroeconomics is, overall, a trade-off in time.

2 Formal Definition

Formally, a discrete dynamic program consists of the following components:

- 1. A finite set of states $S = \{0, \dots, n-1\}$
- 2. A finite set of feasible actions A(s) for each state $s \in S$, and a corresponding set of feasible state-action pairs

$$SA \equiv \{(s,a) | s \in S, a \in A(s)\}$$

- 3. A reward function $r: SA \to \mathbb{R}$
- 4. A transition probability function $Q: SA \to \Delta(S)$ where $\Delta(S)$ is the set of probability distributions over S

^{*}Prepared for UBC ECON 407 Fall 2020

5. A discount factor $0 \le \beta < 1$

We use the notation $A \equiv \bigcup_{s \in S} A(s) = \{0, ..., m-1\}$ and call this set the action space.

A policy is a function $\sigma: S \to A$.

A policy is called feasible if it satisfies $\sigma(s) \in A(s)$ for all $s \in S$. Denote the set of all feasible policies by Σ . Therefore for policy $\sigma \in \Sigma$,

- the current reward at time t is $r(s_t, \sigma(s_t))$
- the probability that $s_{t+1} = s'$ is $Q(s_t, \sigma(s_t), s')$

For each $\sigma \in \Sigma$, define

- $r_{\sigma}(s) \equiv r(s, \sigma(s))$
- $Q_{\sigma}(s,s') \equiv Q(s,\sigma(s),s')$

3 Value, Policy, and Optimality

Let $v_{\sigma}(s)$ denote the discounted sum of expected reward flows from policy σ when the initial state is s. Therefore,

$$v_{\sigma}\left(s\right) = \sum_{t=0}^{\infty} \beta^{t} \left(Q_{\sigma}^{t} r_{\sigma}\right)\left(s\right)$$

The **value function** is the function $V^*: S \to \mathbb{R}$,

$$V^{*}\left(s\right) = \max_{\sigma \in \Sigma} v_{\sigma}\left(s\right)$$

i.e. it's the expected maximum of all different action choices.

This value function V^* is the unique solution to the **Bellman equation**,

$$V^{*}\left(s\right) = \max_{a \in A\left(s\right)} \left\{ r\left(s, a\right) + \beta \sum_{s' \in S} V^{*}\left(s'\right) Q\left(s, a, s'\right) \right\}$$

$$(2)$$

Intuitively, we rewrite Equation (1),

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} r\left(s_{t}, a_{t}\right) = r\left(s_{0}, a_{0}\right) + \mathbb{E}_{0} \sum_{t=1}^{\infty} \beta^{t} r\left(s_{t}, a_{t}\right)$$

$$= r\left(s_{0}, a_{0}\right) + \mathbb{E}_{0} \beta\left(\mathbb{E}_{1} \sum_{t=0}^{\infty} \beta^{t} r\left(s_{t}, a_{t}\right)\right)$$

and you can see the similarity of the structures. We replace the structure by V^* .

This means the policy function will be

$$\sigma^{*}\left(s\right) \in \arg\max_{a \in A\left(s\right)} \left\{ r\left(s,a\right) + \beta \sum_{s' \in S} V^{*}\left(s'\right) Q\left(s,\sigma\left(s\right),s'\right) \right\}$$

In a word: value function characterized the maximum (discounted) sum, and the policy function records the action to achieve the corresponding value.