Assignment – 2

Data Visualization and Pre-processing

Assignment Date	26 September 2022				
Student Name	Sharan D				
Student Roll Number	195002108				
Maximum Marks	2 Marks				

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

1. Load the dataset.

```
df=pd.read_csv('/content/Churn_Modelling.csv')
df
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

df.l	head()													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
df.	shape													

(10000, 14)

2. Perform Below Visualizations

a. Univariate Analysis

```
df_france=df.loc[df['Geography']=='France']
df_spain=df.loc[df['Geography']=='Spain']
df_germany=df.loc[df['Geography']=='Germany']
```

```
plt.plot(df_france['Balance'],np.zeros_like(df_france['Balance']),'o')
plt.plot(df_spain['Balance'],np.zeros_like(df_spain['Balance']),'o')
plt.plot(df_germany['Balance'],np.zeros_like(df_germany['Balance']),'o')
plt.xlabel('Age')
plt.show()
```


complete

b. Bivariate Analysis

```
plt.bar('Geography','Age',data=df,color='teal')
```

<BarContainer object of 10000 artists>

plt.scatter('EstimatedSalary','NumOfProducts',data=df)

<matplotlib.collections.PathCollection at 0x7fcc81cb4c50>

sns.stripplot(x='Gender',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fcc81b965d0>

3. Multivariate Analysis

sns.pairplot(df.corr())

plt.subplots(figsize=(20,17)) sns.heatmap(df.corr(),annot=True,cmap='pink')

sns.pairplot(df)

4. Perform descriptive statistics on the dataset

df.describe(include='all')

5. Handle the Missing values

df.isnull()

6. Find the outliers and replace the outliers

```
df.plot(subplots=True,layout=(4,6),kind='box',figsize=(22,18))
```

RowNumber
CustomerId
CreditScore
Age
Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
EstimatedSalary
Exited

dtype: object

AxesSubplot(0.125,0.71587;0.110714x0.16413)
AxesSubplot(0.257857,0.71587;0.110714x0.16413)
AxesSubplot(0.390714,0.71587;0.110714x0.16413)
AxesSubplot(0.523571,0.71587;0.110714x0.16413)
AxesSubplot(0.656429,0.71587;0.110714x0.16413)
AxesSubplot(0.789286,0.71587;0.110714x0.16413)
AxesSubplot(0.125,0.518913;0.110714x0.16413)
AxesSubplot(0.257857,0.518913;0.110714x0.16413)
AxesSubplot(0.390714,0.518913;0.110714x0.16413)
AxesSubplot(0.523571,0.518913;0.110714x0.16413)
AxesSubplot(0.656429,0.518913;0.110714x0.16413)


```
Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)
IQR = Q3 - Q1
n = 1.5
df = df[(df['Age'] < Q1 - n*IQR) | (df['Age'] > Q3 + n*IQR)]
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
58	59	15623944	T'ien	511	Spain	Female	66	4	0.00	1	1	0	1643.11	1
85	86	15805254	Ndukaku	652	Spain	Female	75	10	0.00	2	1	1	114675.75	0
104	105	15804919	Dunbabin	670	Spain	Female	65	1	0.00	1	1	1	177655.68	1
158	159	15589975	Maclean	646	France	Female	73	6	97259.25	1	0	1	104719.66	0
181	182	15789669	Hsia	510	France	Male	65	2	0.00	2	1	1	48071.61	0

df.plot(subplots=True,layout=(4,6),kind='box',figsize=(22,18))

RowNumber AxesSubplot(0.125,0.71587;0.110714x0.16413) CustomerId AxesSubplot(0.257857,0.71587;0.110714x0.16413) AxesSubplot(0.390714,0.71587;0.110714x0.16413) CreditScore AxesSubplot(0.523571,0.71587;0.110714x0.16413) Age Tenure AxesSubplot(0.656429,0.71587;0.110714x0.16413) Balance AxesSubplot(0.789286,0.71587;0.110714x0.16413) AxesSubplot(0.125,0.518913;0.110714x0.16413) NumOfProducts AxesSubplot(0.257857,0.518913;0.110714x0.16413) HasCrCard IsActiveMember AxesSubplot(0.390714,0.518913;0.110714x0.16413) EstimatedSalary AxesSubplot(0.523571,0.518913;0.110714x0.16413) Exited AxesSubplot(0.656429,0.518913;0.110714x0.16413)

dtype: object

7. Check for Categorical columns and perform encoding

df.dtypes	
RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

```
df['Geography'].unique()
array(['Spain', 'France', 'Germany'], dtype=object)
Geography=pd.get_dummies(df["Geography"])
df=pd.concat([df,Geography],axis=1)
df.drop(["Geography"],axis=1,inplace=True)
df['Gender'].unique()
array(['Female', 'Male'], dtype=object)
Gender=pd.get dummies(df["Gender"])
df=pd.concat([df,Gender],axis=1)
df.drop(["Gender"],axis=1,inplace=True)
df.columns
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Age', 'Tenure',
       'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember',
       'EstimatedSalary', 'Exited', 'France', 'Germany', 'Spain', 'Female',
       'Male'],
     dtype='object')
df['Surname'].unique()
```

'Allan', 'Hobbs', 'Coates', 'Ignatyev', 'McConnell', 'Tang',
'Bell', 'Nwora', 'McDonald', 'Davidson', 'Hs?', 'Onyemauchechukwu',
'Connolly', 'King', 'Greco', 'Fanucci', 'Su', 'Woolnough',
'Harrison', 'Isayeva', 'Martin', "Ch'en", 'Nnonso', 'Trentino',
'Kelly', 'Sullivan', 'Thomson', 'Rogers', 'Ponomarev', 'De Luca',
'Sheppard', 'Birk', 'Obioma', 'Iheatu', 'Dellucci', 'Hs?eh',
'Davies', 'Fields', 'Page', 'Wu', 'Chen', 'Young', 'Sabbatini',
'Harvey', 'Sal', 'Tan', 'Otitodilinna', 'Chinonyelum', 'Munro',
'Sargent', 'Bianchi', 'Chiu', 'Buccho', 'Dolgorukova', 'Green',
'Ibezimako', 'Dennis', 'Eve', 'Stradford', 'Liao', 'Abramovich',
'Cross', 'Ko', 'Fiorentini', 'Gray', 'Lu', 'Yevseyev', 'Horton',
'Wall', 'Cummins', 'Kodilinyechukwu', 'Scott', 'Harris', 'Ofodile',
'Highland', 'Botts', 'Baresi', 'Afamefuna', 'Rogova', 'Bufkin',
'Boniwell', 'Lombardi', 'Kuykendall', 'Browne', 'Niu', 'Mackie',
'Ifeatu', 'Fan', 'Davey', 'Kennedy', 'Gibson', 'Ferguson',
'Onyenachiya', 'Combes', 'Kent', 'Ngozichukwuka', 'Okonkwo',
'Lappin', 'Zhdanova', 'Ibekwe', 'Pettry', 'Wright', 'Felix',
'Nnaife', 'Schofield', 'Onwubiko', 'Rubin', 'Perry', 'Ma',
'Akudinobi', 'Flemming', 'Spencer', 'Okwuadigbo', 'Tu',
'Chiddebere', 'Yuan', 'Jamieson', 'Davis', 'Conway',
'Okwuddilolisa', 'Lavrentyev', 'Mir', 'Soares', 'Lucas', 'Hudson',
'Winter-Irving', 'North', 'Rahman', 'Samaniego', 'Mayrhofer',
'Esomchi', 'Findlay', 'Seleznyov', 'Mickey', 'Spaull', 'Brown',
'Esseyev', 'Worobyova', 'McClaran', 'Mueller', 'Hao', 'Peng',
'Sykes', 'Noronoff', 'Duncan', 'Mhitson', 'Loggia', 'Parkin',
'Tsai', 'Pugh', 'Chin', 'Chiemezie', 'Curtis', 'Russell', 'Rose',
'Fiorentino', 'Shaw', 'Zakharov', 'Tsu', 'Bolton', 'Golubev',
'Vanzetti', 'Tretiakova', 'Owens', 'Chifley', 'Murphy',

'Yermakova', 'Chikelu', 'Otitodilichukwu', 'Norriss', 'Mott', 'Henry', 'Pope', 'Romano', 'Watson', 'Ward', 'Fitzgerald', 'Arnold', 'Wells', 'Iweobiegbunam', 'Chiedozie', 'Thomas', 'Chukwujekwu', 'Vagin', 'Parks'], dtype=object)

df.dtypes RowNumber int64 CustomerId int64 Surname object CreditScore int64 Age int64 int64 Tenure Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 Exited int64 France uint8 Germany uint8 Spain uint8 Female uint8 Male uint8 dtype: object

df.drop(["Surname"],axis=1,inplace=True)

8. Split the data into dependent and independent variables

```
dependent_data=df['Exited']
independent_data=df.drop('Exited',axis=1)
```

9. Scale the independent variables

			•												
	max_scalar orm = (inde	pendent_data	a-independent	_data.min())/(inde	pendent_d	ata.max()-indep	endent_data	.min())						
46 -															
a+_n	orm.head()														
	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	${\tt IsActive Member}$	EstimatedSalary	France	Germany	Spain	Female	Mal
58	0.000000	0.229998	0.233032	0.103448	0.4	0.000000	0.000000	1.0	0.0	0.005731	0.0	0.0	1.0	1.0	0.0
85	0.002733	0.958335	0.552036	0.413793	1.0	0.000000	0.333333	1.0	1.0	0.573761	0.0	0.0	1.0	1.0	0.0
104	0.004657	0.956989	0.592760	0.068966	0.1	0.000000	0.000000	1.0	1.0	0.890258	0.0	0.0	1.0	1.0	0.0
158	0.010124	0.093542	0.538462	0.344828	0.6	0.520066	0.000000	0.0	1.0	0.523728	1.0	0.0	0.0	1.0	0.0
181	0.012452	0.895729	0.230769	0.068966	0.2	0.000000	0.333333	1.0	1.0	0.239051	1.0	0.0	0.0	0.0	1.0

10. Split the data into training and testing

 $\textbf{X_train, X_test, y_train, y_test = train_test_split(independent_data, dependent_data, test_size=0.30, random_state=42) }$

```
sc=StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
print(X train)
[[-0.11823064 0.61271238 1.23747734 ... -0.61572793 1.07879243
  -1.07879243]
 0.92696238]
 [-0.22875737 -0.7671311 -0.57601735 ... 1.62409395 1.07879243
  -1.07879243]
 [ 0.88831374 -1.36057018  0.70769237 ... -0.61572793  1.07879243
  -1.07879243]
 [ 1.62408552  0.21836558  1.42086444  ... -0.61572793  -0.92696238
   0.92696238]
 [-0.65405277 -1.57586185 1.27823003 ... -0.61572793 -0.92696238
   0.92696238]]
print(X_test)
[ 0.43654915 -0.19958681 0.30016548 ... -0.61572793 -0.92696238
  0.92696238]
[-1.39268608 -0.45567995 0.4020472 ... -0.61572793 -0.92696238
  0.92696238]
[ 0.9845328 -0.86183628 -0.1888668 ... -0.61572793 1.07879243
 -1.07879243]
[ 0.43905299 -0.72549476 -0.57601735 ... -0.61572793 -0.92696238
  0.92696238]
[ 1.64805086  0.17543652  0.02508482  ... -0.61572793  -0.92696238
  0.92696238]
[ 0.71411789 -0.50209666 -0.42319476 ... 1.62409395 1.07879243
 -1.07879243]]
```