Première partie : Conduction

Un fusible est constitué d'un fil cylindrique de diamètre $D=0.5\,$ mm et de longueur $L=20\,$ mm, les propriétés du matériau étant les suivantes :

Conductivité thermique $\lambda = 64 \text{ W/m/K}$ Masse volumique $\rho = 7200 \text{ kg/m}^3$ Chaleur massique c = 250 J/kg KRésistivité électrique $\rho_e = 12 \cdot 10^{-8} \text{ Ohm m}$. Température de fusion $T_f = 232^{\circ}\text{C}$

Il est soumis à un échange convectif avec l'air ambiant $T_a=20^{\circ}C$, le coefficient d'échange valant $h=10~W/m^2~K$

Il est traversé par un courant électrique qui, à t=0 passe de I =0 à I = 10 A

- 1) Calculer le nombre de Biot (on prendra ici D comme grandeur géométrique caractéristique).
- 2) Rappeler la conclusion que l'on peut tirer quand le nombre de Biot est petit devant l'unité
- 3) Justifier la représentation du fusible par le réseau ci dessous dont on précisera les composants : G, C et Q
- 4) Ecrire l'équation différentielle de bilan thermique sur le fusible
- 5) Calculer la température l'équilibre à laquelle conduit cette équation
- 6) Quelle est l'expression de la constante de temps t du fusible et donner sa valeur numérique
- 7) Intégrer l'équation différentielle avec pour valeur initiale T₀= 20°C
- 8) Au bout de quelle durée t_f le fusible atteint –il sa température de fusion ? Conclure.
- 9) Quel serait le rôle du rayonnement sur les transferts?
- 10) Si l'on tenait compte du rayonnement, comment serait modifiée l'allure de la courbe de montée en température du fusible ?

Partie 2: Rayonnement

Premier exercice

1) L'émissivité monochromatique d'une surface sélective S est donnée par la figure cidessous :

On la suppose indépendante de la direction.

Calculer son absorptivité solaire normale α_S et son facteur hémisphérique d'émission ϵ_{IR} pour l'infra rouge. Le soleil est assimilé à un corps noir à $T_S = 5800$ K.

On supposera la température d'équilibre de la plaque à 500 K puis à 600 K

2) Quelle est l'expression de la température d'équilibre de cette surface lorsqu'elle est exposée normalement au flux solaire, de densité $\phi_S=1400~W/m2$, et émet sur ses deux faces? Quelle est sa valeur, si l'on choisit $\epsilon_{IR}=0.11$? Est –elle compatible avec la question 1 ?

Deuxième exercice

On considère la boite cylindrique schématisée par la figure suivante :

La surface 1 est isolée de l'extérieur et, pour l'intérieur de la boite, son émissivité hémisphérique ϵ_1 est grise et obéit à la loi de Kirchhoff

La surface 2 a une émissivité hémisphérique grise pour chaque face, obéissant à la loi de Kirchhoff, mais valant ϵ_2 sur la face interne et ϵ_{2e} sur la face extérieure où la température de l'extérieur, assimilé à un corps noir vaut T_e .

La surface 3 reçoit le flux solaire (source Q3) de densité $\phi_S=1400~W/m2$. A l'extérieur, les valeurs α_S et ϵ_{IR} sont celles utilisées à la question 2 du premier exercice. La température de l'extérieur, assimilé à un corps noir vaut également T_e .

Par contre, pour l'intérieur de la boite, son émissivité hémisphérique est grise, obéit à la loi de Kirchhoff et vaut ε_3 .

Le diamètre D = 7.5 cm et la hauteur L = 15 cm.

- 1) On donne le facteur de forme $F_{23} = 0.059$ Ecrire la matrice des facteurs de forme
- 2) On va traiter les transferts radiatifs internes par la méthode de Gebhart. Ecrire les expressions de 9 coefficients de Gebhart
- 3) Quelles équations choisir pour obtenir les coefficients B11, B21 et B31 comme solution d'un système d'équations algébriques 3*3 ? (Ecrire le système, mais ne pas résoudre !)

- 4) On donne B11=0.803, B21=0.818 B31=0.818 et B22=0.092. En déduire les valeurs numériques des 5 autres facteurs, en justifiant vos méthodes de calcul.
- 5) Justifiez le réseau ci-dessous et indiquez les expressions des conductances g12, g13, g23, g3e et g2e, ainsi que celle de Q3

- 6) Calculer les surfaces S1, S2, et S3, les 5 conductances précédentes, ainsi que la source Q3.
- 7) Ecrire les 3 équations de bilan radiatif.
- 8) Après résolution du système précédent, on donne les 3 valeurs de température suivantes : 353 K, 620 K et 534 K. Pouvez vous indiquer à quels nœuds elles correspondent ?

Données:

```
\begin{split} &\rho_1 = 0.1 \\ &\rho_2 = 0.9 \\ &\rho_3 = 0.9 \\ &\epsilon_{2e} = 0.9 \\ &T_e = 300K \\ &\phi_S = 1400 \text{ W/m2} \\ &D = 7.5 \text{ cm} \\ &L = 15 \text{ cm}. \\ &F_{23} = 0.059 \\ &B11 = 0.803, B21 = 0.818 \text{ B31} = 0.818 \text{ et B22} = 0.092 \end{split}
```

$$B_{ij} = \alpha_{j} F_{ij} + \sum_{k} \rho_{k} F_{ik} B_{kj}$$

$$\varepsilon_{i} S_{i} B_{ij} = \varepsilon_{j} S_{j} B_{ji}$$

$$\sum_{j} B_{ij} = 1$$

$$Q_{ij}^{+} = \varepsilon_{i} S_{i} B_{ij} \sigma \left(T_{j}^{4} - T_{i}^{4}\right)$$

$$Q_{i}^{+} = \sum_{j} Q_{ij}^{+}$$

λ T μm × K	0	20	40	60	80	λT μm × K	0	ou 2000(+)	40 ou 400(*) ou)4000 ⁽⁺⁾	ou 500 ^(*)	ou 8000 ^(*)
500	0,0000	0,0000	0,0000	0,0000	0,0000	6200	0,7541	0,7556	0,7572	0,7587	0,7603
600	0,0000	0,0000	0,0000	0,0000	0,0000	6300	0,7618	0,7633	0,7648	0,7662	0,7677
700	0,0000	0,0000	0,0000	0,0000	0,0000	6400	0,7692	0,7706	0,7721	0,7735	0,7749
800	0,0000	0,0000	0,0000	0,0000	0,0000	6500	0,7763	0,7777	0,7791	0,7804	0,7818
900	0,0001	0,0001	0,0001	0,0001	0,0002	6600	0,7831	0,7845	0,7858	0,7871	0,7884
1000	0,0003	0,0004	0,00045	0,0005	0,0007	6700	0,7897	0,7910	0,7923	0,7936	0,7948
1100	0,0009	0,0010	0,0013	0,0015	0,0018	6800	0,7961	0,7973	0,7985	0,7998	0,8010
1200	0,0021	0,0024	0,0028	0,0033	0,0037	6900	0,8022	0,8034	0,8045	0.8057	0,8089
1300	0,0043	0,0049	0,0055	0,0062	0,0069	7000	0,8080	0,8092	0,8103	0,8115	0,8126
1400	0,0078	0,0086	0,0096	0,0106	0,0117	7100	0,8137	0,8148	0,8159	0,8170	0,8181
1500	0,0128	0,0140	0,0153	0,0167	0,0182	7200	0,8191	0,8202	0,8213	0,8223	0,8234
1600	0,0197	0,0213	0,0230	0,0247	0,0266	7300	0,8244	0,8254	0,8264	0,8275	0,8285
1700	0,0285	0,0305	0,0326	0,0347	0,0370	7400	0,8295	0,8304	1000		0,8334
1800	0,0393	0,0417	0,0442	0,0467	0,0494	7500			0,8314	0,8324	0,8381
1900	0,0521	0,0549	0,0577	0,0606	0,0636	7600	0,8343	0,8353	0,8362	0,8372	0,8427
2000	0,0667	0,0698	0,0730	0,0763	0,0796	7700		0,8399	0,8409	0,8418	0,8471
2100	0,0830	0,0865	0,0900	0,0936	0,0972	7800	0,8436	0,8444	0,8453	0,8462	0,8513
2200	0,1009	0,1045	0,1084	0,1122	0,1161	7900	0,8521	0,8488	0,8496	0,8505	0,8554
2300	0,1200	0,1240	0,1280	0,1320	0,1361	8000	0,8562	0,8530	0,8538	0,8546	0,8594
2400	0,1402	0,1444	0,1486	0,1528	0,1571	8100	0,8501	0,8570	0,8578	0,8586	0,8632
2500	0,1613	0,1656	0,1700	0,1743	0,1787	8200			0,8617	0,8624	0,8669
2600	0,1831	0,1875	0,1920	0,1964	0,2009	8300	0,8639	0,8647	0,8654	0,8661	0,8704
2700	0,2053	0,2098	0,2143	0,2188	0,2234	8400	0,8711	0,8683	0,8690	0,8697	0,8738
2800	0,2279	0,2324	0,2369	0,2415	0,2460	8500	0,8711		0,8725	0,8732	0,8772
2900	0,2506	0,2551	0,2596	0,2642	0,2687	8600	0,8778	0,8752	0,8759	0,8765	0,8804
3000	0,2732	0,2778	0,2823	0,2868	0,2913	8700	0,8810	0,8785	0,8791	0,8797	0,8835
3100	0,2958	0,3003	0,3047	0,3092	0,3137	8800	0,8841	0,8816	0,8822	0,8829	0,8865
3200	0,3181	0,3225	0,3269	0,3313	0,3357	8900		0,8847	0,8853	0,8859	0,8894
3300	0,3401	0,3445	0,3488	0,3531	0,3574	9000	0,8871	0,8877	0,8882	0,8888	0,8922
3400	0,3617	0,3660	0,3703	0,3745	0,3787	9100	0,8927	0,8905	0,8911	0,8916	0,8949
3500	0,3829	0,3871	0,3912	0,3954	0,3995	9200		0,8933	0,8938	0,8943	0,8975
3600	0,4036	0,4077	0,4117	0,4158	0,4198	9300	0,8954	0,8959	0,8965	0,8970	0,9000
3700	0,4238	0,4277	0,4317	0,4356	0,4395	9400	0,9005	0,8985	0,8990	0,8995	0,9025
3800	0,4434	0,4472	0,4511	0,4549	0,4585	9500	0,9030		0,9015	0,9020	0,9049
3900	0,4624	0,4661	0,4699	0,4736	0,4772	9600	0,9054	0,9035	0,9039	0,9044	0,9072
4000	0,4809	0,4845	0,4881	0,4917	0,4952	9700	0,9076	0,9081	0,9063	0,9067	0,9094
4100	0,4987	0,5022	0,5057	0,5092	0,5126	9800	0,9099	0,9103	0,9085	0,9090	0,9116
4200	0,5160	0,5194	0,5227	0,5261	0,5294	9900	0,9120	0,9103	0,9107	0,9112	0,9137
4300	0,5327	0,5359	0,5392	0,5424	0,5456	10000	0,9141		0,9129	0,9133	0,9287
4400	0,5488	0,5519	0,5551	0,5582	0,5612	11000	0,9318	0,9181	0,9218	0,9253	0,9426
4500	0,5643	0,5673	0,5703	0,5733	0,5763	12000	0,9310	0,9347	0,9375	0,9401	0,9532
4600	0,5793	0,5822	0,5851	0,5880	0,5908	13000	0,9550	0,9472		0,9513	0,9614
4700	0,5937	0,5965	0,5993	0,6020	0,6048	14000	0,9530	0,9567	0,9584	0,9599	0,9678
4800	0,6075	0,6102	0,6129	0,6156	0,6182	15000	0,9689	0,9699	0,9654	0,9666	0,9728
4900	0,6209	0,6235	0,6261	0,6286	0,6312	16000	0,9889	0,9745	0,9753	0,9719	0,9769
5000	0,6337	0,6362	0,6387	0,6412	0,6436	17000	0,9776	0,9783			0,9802
5100	0,6461	0,6485	0,6509	0,6532	0,6556	18000	0,9807	0,9813	0,9789	0,9796	0,9829
5200	0,6579	0,6603	0,6625	0,6648	0,6671	19000	0,9807	0,9838	0,9818	0,9824	0,9851
5300	0,6693	0,6716	0,6738	0,6760	0,6782	20000	0,9855	0,9888	0,9842	0,9847	0,9942
5400	0,6803	0,6825	0,6845	0,6867	0,6888	30000	0,9853		0,9912	0,9929	0,9975
5500	0,6909	0,6929	0,6950	0,6970	0,6990	40000	0,9932	0,9960	0,9966	0,9971	0,9987
5600	0,7010	0,7030	0,7049	0,7069	0,7088	50000		0,9981	0,9983	0,9985	
5700	0,7107	0,7126	0,7145	0,7164	0,7183	60000	0,9988	0,9989	0,9990	0,9991	0,9992
5800	0,7201	0,7219	0,7238	0,7256	0,7273		0,9993	0,9993	0,9994	0,9994	0,9995
5900	0,7291	0,7309	0,7326	0,7343	0,7361	70000	0,9995	0,9995	0,9996	0,9996	0,9996
6000	0,7378	0,7395	0,7411	0,7428	0,7444	80000	0,9996	0,9997	0,9997	0,9997	0,9997
6100	0,7461	0.7477	0,7493	0,7509	0,7525	90000	0,9997	0,9997	0,9997	0,9998	0,9998
	-,	-,	-,	-,	-11343	100000	0,9998	0,9998	0,9998	0,9998	0,9998

Table des fractions spectrales