5. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse A Abgabe: 18.06.2019 23:59

SoSe 2019 Prof. W. Rhode

Zeit	Raum	Abgabe im Moodle; Mails mit Betreff: [SMD19]
Do.14-16	CP-03-150	kevin3.schmidt@udo.edu und maximilian.sackel@udo.edu
Fr. 10–12	CP-03-150	tobias.hoinka@udo.edu und noah.biederbeck@udo.edu
Fr. 16–18	CP-03-150	felix.geyer@udo.edu und rune.dominik@udo.edu

Aufgabe 11: Fisher-Diskriminante: Per Hand

5 P.

Führen Sie eine lineare Diskriminazanalyse nach Fisher per Hand durch.

Population 0: (1;1) (2;1) (1,5;2) (2;2) (2;3) (3;3)

Population 1: (1,5;1) (2,5;1) (3,5;1) (2,5;2) (3,5;2) (4,5;2)

- (a) Berechnen Sie die Mittelwerte $\vec{\mu}$ und Streumatrizen S_i , sowie die kombinierte Streumatrix S_{ij} .
- (b) Wie lautet $\vec{\lambda}$?
- (c) Zeichnen Sie die Punkte der beiden Populationen in einen Graphen ein, zusammen mit der Projektionsgeraden $\vec{\lambda} = \lambda \cdot \vec{e}_{\vec{\lambda}}$.
- (d) Projezieren Sie die einzelnen Punkte auf diese Gerade.
- (e) Wählen Sie einen geeigneten Parameter $\lambda_{\rm cut}$ und berechnen Sie die dazugehörige Effizienz und Reinheit. Warum haben Sie diesen Parameter gewählt?

Aufgabe 12: Fisher-Diskriminante: Implementierung

10 P.

Gegeben seien die Populationen P_0_10000 und P_1 aus der Aufgabe "Zwei Populationen". Nutzen Sie das dort erstellt HDF5-File für diese Aufgabe. (Sie finden die Datei ebenfalls im Moodle.)

Hinweis: Es sei Ihnen erlaubt Pakete z.B. für lineare Algebra zu benutzen, jedoch nicht Pakete, die die Diskriminanzanalyse durchführen.

- (a) Berechnen Sie die Mittelwerte μ_{P0} und μ_{P1} der beiden Populationen.
- (b) Berechnen Sie die Kovarianzmatrizen V_{P0} und V_{P1} der beiden Populationen, sowie die kombinierte Kovarianzmatrix $V_{P0,P1}$.
- (c) Konstruieren Sie eine lineare Fisher-Diskriminante $\vec{\lambda} = \lambda \cdot \vec{e}_{\vec{\lambda}}$. Geben Sie diese Geradengleichung an.
- (d) Stellen Sie die Populationen als Projektion auf die Gerade aus (c) in einem eindimensionalen Histogramm dar.

- (e) Betrachten Sie P0 als Signal und P1 als Untergrund. Berechnen Sie die Effizienz und die Reinheit des Signals als Funktion eines Schnittes $\lambda_{\rm cut}$ in λ und stellen Sie die Ergebnisse in einem Plot dar.
- (f) Bei welchem Wert von $\lambda_{\rm cut}$ wird nach der Trennung das Signal-zu-Untergrundverhältnis S/B maximal? Erstellen Sie auch hierzu einen Plot.
- (g) Bei welchem Wert von λ_{cut} wird nach der Trennung die Signifikanz $S/\sqrt{S+B}$ maximal? Erstellen Sie auch hierzu einen Plot.
- (h) Wiederholen Sie die Schritte (a) bis (g) für den Fall, dass P0 nun die Population P_0_1000 bezeichnet. Was fällt Ihnen auf? Interpretieren Sie die Ergebnisse.

Aufgabe 13: Hauptkomponentenanalyse (PCA)

5 P.

- (a) Erzeugen Sie mit der Funktion sklearn.datasets.make_blobs einen Datensatz. Nutzen sie dabei folgende Einstellungen: n_samples=1000, centers=2, n_features=4, random_state=0. Stellen Sie nun zwei beliebige Dimensonen des Datensatzes in einem Scatterplot dar.
- (b) Beschreiben Sie kurz die Funktionsweise der Hauptkomponentenanalyse. Geben Sie in Worten und in der richtigen Reihenfolge die notwendigen Berechnungen zur Durchführung der Hauptkomponentenanalyse an.
- (c) Wenden Sie nun die Hauptkomponentenanalyse auf den in a) erzeugten Datensatz an. Nutzen Sie dazu das Paket sklearn.decomposition.PCA. Wie lauten die Eigenwerte der Kovarianzmatrix? Wie interpretieren Sie die Eigenwerte?
- (d) Histrogrammieren Sie nun x' in jeder Dimension und stellen sie x'_1 und x'_2 in einem Scatterplot dar.