Objects can be larger than the bounding boxes

	Type	Filters	Size/Stride	Output		
	Conv	64	$7 \times 7/2$	224×224	·	
	Max Pool		$2 \times 2 / 2$	112×112	- 1	
	Conv	192	$3 \times 3 / 1$	112×112	/	
	Max Pool		$2 \times 2 / 2$	56×56		
$1 \times$	Conv	128	$1 \times 1 / 1$	56×56		7
ΙX	Conv	256	$3 \times 3 / 1$	56×56		
	Conv	256	$1 \times 1/1$	56×56	Ψ	
	Conv	512	$3 \times 3 / 1$	56×56		
	Max Pool		$2 \times 2 / 2$	28×28	s	-
1.	∠ Conv	256	$1 \times 1/1$	28×28		
$4\times$	Conv	512	$3 \times 3 / 1$	28×28		(
	Conv	512	$1 \times 1/1$	28×28	9	
	C onv	1024	$3 \times 3 / 1$	28×28		
	Max Pool		$2 \times 2 / 2$	14×14		
$2\times$	Conv	512	$1 \times 1 / 1$	14×14		
ΔX	Conv	1024	$3 \times 3 / 1$	14×14		
	Conv	1024	$3 \times 3 / 1$	14 × 14 <i>9</i>		
	Conv	1024	$3 \times 3 / 2$	7×7		
	Conv	1024	$3 \times 3 / 1$	7×7		
	C onv	1024	$3 \times 3 / 1$	7×7		
	FC		4096	4096		
	Dropout 0.5			4096		
	/ FC		$7 \times 7 \times 30$	$_{7} \times 7 \times 30$		
	-					

Training: YOLOv1

ImageNet

- First 20 layers pretrained using
- Last 4 layers initialized randomly and trained with the task-specific
- datasetVarious data augmentation
- wanous data augmentation
 methods
 Loss function for localization as
- Loss function for localization well as confidence and classification

• Minimizing the error for the box center positions:

$$L_{ ext{position}} = \sum_{i \in ext{grid}} \sum_{j \in ext{boxes}} \mathbb{I}_{\{ ext{if object in } i\}} \Big[ig(x_i - \hat{x}_i ig)^2 + ig(y_i - \hat{y}_i ig)^2 \Big]$$

We simply minimize the MSE for \mathbf{x} and \mathbf{y} for each box from the ground truth values when an object exists in the cell. Here $\mathbf{I}_{\{condition\}}$ is the indicator function $(\mathbf{I}_{\{condition\}} = 1)$ if condition and 0 otherwise).

Minimizing the error for the box shape:

$$L_{ ext{shape}} = \sum_{i \in ext{grid}} \sum_{j \in ext{boxes}} \mathbb{I}_{\{ ext{if object in } i\}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i}
ight)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i}
ight)^2
ight]$$

We minimize the square-root values of **w** and **h** for each box from the ground truth when an object exists in the cell. This is done to give more balance to smaller boxes during training.

Minimizing the error for the objectness:
$$L_{\text{objectness}} = \sum_{i \in \text{grid}} \sum_{j \in \text{boxes}} \mathbb{I}_{\{\text{if object in } i\}} a \Big(1 - \hat{C}_i\Big)^2 + \mathbb{I}_{\{\text{if object not in } i\}} b \hat{C}_i^2$$

The weights a and b are different (a = 5 and b = 0.5) depending if there is an object or not in the cell because there are way more cells without objects than there are. This avoids biasing the model into overly predicting small values.

Minimizing the error for the predicted classes:

$$L_{ ext{classes}} = \sum_{i \in ext{grid}} \mathbb{I}_{\{ ext{if object in }i\}} \sum_{c \in ext{classes}} ig(p_i(c) - \hat{p}_i(c)ig)^2$$

We minimize the MSE for p(c) for each class from the ground truth values when an object exists in the cell.

The overall loss function is simply the weighted sum of all the above losses:

$$L = a \left(L_{
m position} + L_{
m shape}
ight) + L_{
m objectness} + L_{
m classes}$$

Post-processing during prediction

: Non-Maximum Suppression (NMS). a) Shows the typical output of an object detection model containing overlapping boxes. b) Shows the output after NMS.

Algorithm 1 Non-Maximum Suppression Algorithm

Require: Set of predicted bounding boxes B, confidence scores S, IoU threshold τ , confidence threshold T

Ensure: Set of filtered bounding boxes F

- 1: $F \leftarrow \emptyset$
- 2: Filter the boxes $B + \{b \in B \mid S(b) \geq T\}$
- 3: Sort the boxes B by their confidence scores in descending order \checkmark
- 4: while $B \neq \emptyset$ do J
- 5: Select the box b with the highest confidence score
- 6: Add b to the set of final boxes $F: F \leftarrow F \cup \{b\}$
- 7: Remove b from the set of boxes $B: B \leftarrow B \{b\}$
- 8: **for all** remaining boxes r in B **do**
- 9: Calculate the IoU between b and r: $iou \leftarrow IoU(b, r)$
- 10: **if** $iou \ge \tau$ **then**
- 11: Remove r from the set of boxes $B: B \leftarrow B \{r\}$
- 12: end if
- 13: end for
- 14: end while

Results

Convolution #2

- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

			15		
	name	kernel size	stride	pad	output size
	input	-	-	-	$224 \times 224 \times 3$
7	conv1-1	3×3	1	1	$224 \times 224 \times 64$
1	conv1-2	3×3	1	1	$224 \times 224 \times 64$
	pool1	2×2	2	0	$112 \times 112 \times 64$
	conv2-1	3×3	1	1	$112 \times 112 \times 128$
	conv2-2	3×3	1	1	$112 \times 112 \times 128$
	pool2	2×2	2	0	$56 \times 56 \times 128$
	conv3-1	3×3	1	1	$56 \times 56 \times 256$
-	conv3-2	3×3	1	1	$56 \times 56 \times 256$
/	conv3-3	3×3	1	1	$56 \times 56 \times 256$
	pool3	2×2	2	0	$28 \times 28 \times 256$
	conv4-1	3×3	1	1	$28 \times 28 \times 512$
	conv4-2	3×3	1	1	$28 \times 28 \times 512$
	conv4-3	3×3	1	1	$28 \times 28 \times 512$
	pool4	2×2	2	0	$14 \times 14 \times 512$
	conv5-1	3×3	1	1	$14 \times 14 \times 512$
	conv5-2	3×3	1	1	$14 \times 14 \times 512$
	conv5-3	3×3	1	1	$14 \times 14 \times 512$
\setminus	pool5	2×2	2	0	$7 \times 7 \times 512$
1	fc6	7×7	1	0	$1 \times 1 \times 4096$
\	fc7	1×1	, 1	0	$1 \times 1 \times 4096$

decoder

	i			I
deconv-fc6	7×7	1	0	$7 \times 7 \times 512$
unpool5	2×2	2	0	$14 \times 14 \times 512$
deconv5-1	3×3	1	1	$14 \times 14 \times 512$
deconv5-2	3×3	1	1	$14 \times 14 \times 512$
deconv5-3	3×3	1	1	$14 \times 14 \times 512$
unpool4	2×2	2	0	$28 \times 28 \times 512$
deconv4-1	3×3	1	1	$28 \times 28 \times 512$
deconv4-2	3×3	1	1	$28 \times 28 \times 512$
deconv4-3	3×3	1	1	$28 \times 28 \times 256$
unpool3	2×2	2	0	$56 \times 56 \times 256$
deconv3-1	3×3	1	1	$56 \times 56 \times 256$
deconv3-2	3×3	1	1	$56 \times 56 \times 256$
deconv3-3	3×3	1	1	$56 \times 56 \times 128$
unpool2	2×2	2	0	$112 \times 112 \times 128$
deconv2-1	3×3	1	1	$112 \times 112 \times 128$
deconv2-2	3×3	1	1	$112 \times 112 \times 64$
unpool1	2×2	2	0	$224 \times 224 \times 64$
deconv1-1	3×3	1	1	$224 \times 224 \times 64$
deconv1-2	3×3	1	1	$224 \times 224 \times 64$
output	1×1	1	1	$224 \times 224 \times 21$

7

Semantic segmentation results

Convolution #2

- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

CIFAR Image classification for deeper networks

Regular network:

$$egin{aligned} \mathbf{h}_1 &= \mathbf{f}_1[\mathbf{x}, m{\phi}_1] \ \mathbf{h}_2 &= \mathbf{f}_2[\mathbf{h}_1, m{\phi}_2] \ \mathbf{h}_3 &= \mathbf{f}_3[\mathbf{h}_2, m{\phi}_3] \ \mathbf{y} &= \mathbf{f}_4[\mathbf{h}_3, m{\phi}_4] \end{aligned}$$

Regular network:

$$\mathbf{h}_1 = \mathbf{f}_1[\mathbf{x}, \boldsymbol{\phi}_1]$$
 $\mathbf{h}_2 = \mathbf{f}_2[\mathbf{h}_1, \boldsymbol{\phi}_2]$
 $\mathbf{h}_3 = \mathbf{f}_3[\mathbf{h}_2, \boldsymbol{\phi}_3]$
 $\mathbf{y} = \mathbf{f}_4[\mathbf{h}_3, \boldsymbol{\phi}_4]$

Residual network (2016):

$$\mathbf{h}_{1} = \mathbf{x} + \mathbf{f}_{1}[\mathbf{x}, \boldsymbol{\phi}_{1}]$$

$$\mathbf{h}_{2} = \mathbf{h}_{1} + \mathbf{f}_{2}[\mathbf{h}_{1}, \boldsymbol{\phi}_{2}]$$

$$\mathbf{h}_{3} = \mathbf{h}_{2} + \mathbf{f}_{3}[\mathbf{h}_{2}, \boldsymbol{\phi}_{3}]$$

$$\mathbf{y} = \mathbf{h}_{3} + \mathbf{f}_{4}[\mathbf{h}_{3}, \boldsymbol{\phi}_{4}]$$

$$\mathbf{x} = \mathbf{f}_{1} + \mathbf{f}_{2}[\mathbf{h}_{1}, \boldsymbol{\phi}_{2}]$$

$$\mathbf{f}_{2} = \mathbf{f}_{3} + \mathbf{f}_{4}[\mathbf{h}_{3}, \boldsymbol{\phi}_{4}]$$

Batch Normalization

Consider a single layer y = Wx

The following could lead to tough optimization:

- Inputs x are not centered around zero (need large bias)
- Inputs x have different scaling per-element (entries in W will need to vary a lot)

Idea: force inputs to be "nicely scaled" at each layer!

Batch Normalization

"you want zero-mean unit-variance activations? just make them so."

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

this is a vanilla differentiable function...

[loffe and Szegedy, 2015]

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var, shape is D}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x, Shape is N x D}$$

$$\sigma_j^z = rac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^z$$
 $x_{i,j} - \mu_j$. No modelic

Batch 25 1-> My 6,2 -> Me, 6,2 de 0 0 hidden anib

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

Normalize
$$\mathbf{x}: \mathbf{N} \times \mathbf{D}$$
 $\mu, \sigma: \mathbf{1} \times \mathbf{D}$
 $\gamma, \beta: \mathbf{1} \times \mathbf{D}$
 $\gamma = \gamma(\mathbf{x} - \mu) / \sigma + \beta$

