Secondo parziale di Geometria e Algebra (Informatica) 19-12-2014-A

1) Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare così definita

$$f((x, y, z)) = (-3x + y + kz, -x + y, 2x - z) \quad \forall (x, y, z) \in \mathbf{R}^3, k \in \mathbf{R}$$

- a) Per ogni $k \in \mathbf{R}$ trovare una base e la dimensione di N_f (nucleo di f) ed I_f (immagine di f).
- b) Discutere, al variare di k, iniettività e suriettività di f.
- c) Stabilire se $\mathbf{w} = (-2, 1, \alpha)$ appartiene ad I_f ($\alpha \in \mathbf{R}$).
- **2)** Sia $A = \begin{pmatrix} 6 & -4 & 0 \\ -4 & 0 & 0 \\ 0 & 0 & 8 \end{pmatrix}$ (A è simmetrica).
 - a) Diagonalizzare A con una matrice ortogonale U.
 - b) (Vedi forme quadratiche) Verificare l'uguaglianza $Q((x, y, z)) = Q_1((x_1, y_1, z_1))$ con (x, y, z) = (1, 1, 1).
 - c) Stabilire se A è definita positiva, negativa o indefinita.
- 3) Sia $A = \begin{pmatrix} 9 & 0 & 0 \\ 1 & \alpha & 0 \\ -2 & 10 & 9 \end{pmatrix}$.
 - a) Determinare gli eventuali valori di $\alpha \in \mathbf{R}$ per i quali A è diagonalizzabile.
 - b) Detti f_A l'operatore in \mathbf{R}^3 associato ad A e $\mathbf{v} = (1, 1, 1)$, trovare gli eventuali $\alpha \in \mathbf{R}$ per i quali $\langle f_A(\mathbf{v}), \mathbf{v} \rangle$ è minore dell'opposto della traccia di A.
- 4) a) Con il metodo del completamento dei quadrati studiare la parabola $\mathcal{P} \equiv 2x^2 + 4x + y = 0$ e tracciarne il grafico.
 - b) Trovare l'equazione del cono che proietta la curva $\mathcal{C} \equiv \left\{ \begin{array}{l} 2x^2 + 4x + y = 0 \\ z = 2 \end{array} \right.$ dal vertice V(0, -1, 0).

N.B. Tutti i passaggi devono essere opportunamente giustificati.