

Classe: 4^{ème}Math (Gr standard)

Serie I 4 chimie

(Estérification- loi d'action de masse)

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

On donne les masses molaires atomiques en g.mol⁻¹ : H = 1; C = 12; O = 16

- 1°) a Ecrire l'équation de la réaction qui se produit.
 - **b** Montrer que le mélange initial est équimolaire.
- 2°) On répartit ce mélange en différents échantillons de volume V chacun, qui sontplacés, à la date t =0 s, dans un bain marie à 100°C. A différentes dates, on dose l'acide restant dans chaque échantillon par une solution de soude NaOH de concentration molaire C_B=0,5mol. L⁻¹.
 - a Dresser le tableau d'évolution de la réaction d'estérification.
 - **b** Exprimer l'avancement **x** de la réaction en fonction de **C**_B, **V**_B et no (no étant le nombre de mole d'acide initial dans le volume **V** d'un échantillon).
 - c Montrer que le taux d'avancement de la réaction à une date ${f t}$ s'écrit :

$$\tau = 1 - \frac{0.5 \cdot V_B}{n_0}$$

d – La courbe ci-dessous représente la variation du taux d'avancement de la réaction en fonction du volume V_B de soude ajouté à l'échantillon.

*En déduire, de la courbe, la valeur de no .

*Sur quel caractère de la réaction nous renseigne la courbe ?

- 3°) a Enoncer la loi d'action de masse.
 - b Lorsque l'équilibre dynamique est atteint on a V_B = 13,2 mL. Déterminer alors la composition du mélange dans chaque échantillon.
 - c- En déduire la constante d'équilibre **K** de la réaction.

Exercice 2

Concours de Réorientation de Monastir session 2021

Le benzoate de méthyle est un ester utilisé en parfumerie. Il est possible de le synthétiser selon la réaction modélisée par l'équilibre suivant :

Acide benzoïque + méthanol ⇒ benzoate de méthyle + eau

A t=0s et dans un ballon surmonté d'un réfrigérant, montage dit « à reflux », on introduit **9.10⁻²mol** d'acide benzoïque et **9.10⁻²mol** de méthanol. On chauffe le mélange pendant une durée suffisante pour que l'équilibre chimique soit atteint.

- 1. a. Donner le nom de la réaction se déroulant dans le mélange.
 - **b**. Justifier que le chauffage du mélange n'influe pas sur sa composition à l'équilibre chimique.
 - c. Préciser le rôle du réfrigérant dans cette expérience.
- 2. La quantité d'acide benzoïque restant dans le mélange après l'atteinte de l'équilibre chimique est dosée par une solution de soude de concentration molaire C_B=0,5 mol.L⁻¹, en présence de deux gouttes de phénol-phtaleïne (un indicateur coloré). Ce dosage montre qu'il reste 3.10⁻²mol d'acide benzoïque.

Figure-1

- a. Annoter le schéma de l'expérience de dosage donné par la figure-2 de la <u>page annexe à rendre avec</u> la copie.
- **b.** Préciser le rôle de la phénol-phtaleïne pour ce dosage.
- c. Déterminer la composition du mélange à l'équilibre chimique.
- **d.** Calculer la constante d'équilibre et le taux d'avancement final τ_f de la réaction.
- 3. a. Calculer le volume de soude nécessaire pour atteindre le point d'équivalence lors du dosage précédent.
 - b. Combien de fois doit-on remplir une burette de 25 mL pour achever ce dosage?
 - c. Pour rendre plus simple l'opération du dosage, il est commode de remplir la burette une seule fois. Déterminer la valeur minimale C_{B,min} de la concentration molaire de la solution de soude pour qu'on puisse remplir la burette une seule fois.
- **4.** Il est possible d'augmenter le taux d'avancement final de la réaction précédente en mélangeant initialement \mathbf{n}_{A} moles d'acide benzoïque et \mathbf{n}_{B} moles de méthanol ; tel que $\mathbf{n}_{A} < \mathbf{n}_{B}$.
 - a. Soit τ_f le nouveau taux d'avancement final de la réaction. Montrer que la constante d'équilibre s'écrit :

$$K = \frac{(\tau'_f)^2}{(1-\tau'_f).(\frac{n_B}{n_\Delta}-\tau'_f)}.$$

b. Déterminer le rapport $\frac{n_B}{n_A}$ donnant un taux d'avancement final τ'_f = 0,88.

Figure-2

Exercice 3

On se propose d'étudier une réaction de formation de l'ion thiocyanatofer (III) de formule $\mathbf{Fe}(\mathbf{SCN})^{2+}$ et de couleur rouge. En solution aqueuse, des ions ferrique \mathbf{Fe}^{3+} réagissent avec des ions thiocyanate \mathbf{SCN}^- selon l'équation :

$$Fe^{3+}_{(aq)} + SCN_{(aq)} \subseteq Fe(SCN)^{2+}_{(aq)}$$

À un volume V = 10 mL d'une solution aqueuse solution de chlorure de fer (III) ($Fe^{3^+} + 3 \text{ Cl}^-$) de concentration $C = 10^{-2} \text{ mol.L}^{-1}$, on ajoute un même volume V d'une solution aqueuse de thiocyanate de potassium ($K^+ + SCN^-$) à la même concentration C.

- 1- Dresser un tableau d'avancement de la réaction en fonction de l'avancement x.
- 2- La concentration des ions du complexe $Fe(SCN)^{2+}_{aq}$ obtenu en fin de réaction est $[Fe(SCN)^{2+}_{(aq)}]_f = 3,21 \cdot 10^{-3} \text{ mol.L}^{-1}$.
- a- Calculer τ_f le taux d'avancement final de la réaction.
- **b-** Déterminer la composition molaire finale du mélange.
- c- Montrer que la constante d'équilibre K s'écrit de la forme $K = 2.10^2 \frac{\tau}{(1-\tau)^2}$
- d- Calculer K
- 3- Le mélange précédent étant à équilibre, on ajoute de l'eau distillée jusqu'a obtenir un volume V'=40mL de solution.
- a- Préciser en le justifiant le sens de déplacement de l'équilibre précédent.
- **b-** Déterminer la nouvelle concentration de Fe(SCN)²⁺, quand l'équilibre s'établit de nouveau.

Exercice 4

En solution aqueuse les ions $Co(NH3)_2^{2+}$ réagissant avec l'ammoniac NH_3 pour donner les ions $Co(NH_3)_3^{2+}$ selon l'équation : $Co(NH_3)_2^{2+} + NH_3$ \longleftarrow $Co(NH_3)_3^{2+}$.

- 1°/ A t=0 et à une température T, on mélange un volume V_1 =80mL d'une solution aqueuse d'ions $C_0(NH_3)_2^{2+}$ de concentration C_1 =0.5 mol. L^{-1} avec un volume V_2 =120 mL d'une solution aqueuse d'ammoniac NH_3 de concentration C_2 pour obtenir un mélange équimolaire des deux ions de volume V.
- a- Dresser le tableau d'avancement de cette réaction. On notera no le nombre de moles commun aux deux ions à l'état initial
 - **b** Calculer la valeur de la concentration C₂.
- c- Montre que la constante d'équilibre K relative à l'équation de la réaction peut se mettre sous la forme : $K = \frac{\tau_{f*V}}{n_0(1-\tau_f)^2}$; τ_f est le taux d'avancement final de la réaction.
- d- Calculer K sachant que la concentration de l'ion $Co(NH_3)_3^{2+}$ à l'équilibre chimique est 0,1 mol.L⁻¹.
- 2° / On prélève deux volumes $V_{01}=V_{02}=50$ mL du mélange obtenu à l'équilibre et on les verse respectivement dans deux fioles jaugées (F_1) et (F_2) de contenance 100 mL.
- a- Pour la fiole (F_1) , on complète avec de l'eau distillée jusqu'au trait de jauge avec une solution aqueuse contenant \mathbf{n}_1 =0,01 \mathbf{m} 0 d'ions $Co(NH_3)_2^{2+}$
 - a-1- Préciser en le justifiant dans quel sens doit évoluer le système.
 - a-2- Déterminer la composition du mélange réactionnel lorsque le nouveau équilibre est établit.
- **b** Dans la fiole (**F**₂) on ajoute de l'eau distillée sans atteindre le trait de jauge. Préciser en le justifiant dans quel sens doit évoluer le système.

