Simon Meister

Research Interests

To develop machines that learn to solve complex problems as effectively as biological brains. My interests include reinforcement learning, deep learning, neuromorphic computing and spiking neural networks. I am particularly interested in learning algorithms for recurrent spiking and non-spiking neural networks.

Education

2014–2018 B.Sc., Computer Science, Technische Universität Darmstadt, Germany, 1.4.

Experience

Professional

2018–2020 Founder & CEO, Vality GmbH, Germany.

Led design of virtual and augmented reality hardware, computer vision algorithms and platform software. Also responsible for fundraising, partnerships and hiring.

Miscellaneous

2020-Now Independent Researcher, Germany.

Research on scalable and biologically plausible deep learning and reinforcement learning.

Publications

Peer-Reviewed Conference Papers

[1] S. Meister, J. Hur, and S. Roth. UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss. In AAAI Conference on Artificial Intelligence (AAAI), New Orleans, Louisiana, Feb. 2018. **Oral presentation**. Code.

Theses

Bachelor

2018 Motion R-CNN: Instance-level 3D Motion Estimation with Region-based CNNs, Code.

Supervised by Professor Stefan Roth & M.Sc. Junhwa Hur

Projects

2018 Deep Reinforcement Learning for StarCraft II, Code.

Supervised by M.Sc. Filipe Veiga & Professor Jan Peters

2017 Monocular depth prediction with PyTorch, Code.

Supervised by M.Sc. Jochen Gast

Honors & Awards

2019 Best Paper Award, Fraunhofer IGD, €3000.

"Impact on Science" category, awarded for "UnFlow" paper.

2013 **Christian Ernst Neeff-Preis**, *Physikalischer Verein Frankfurt*, €1000.

Awarded for work on massively parallel physics simulation conducted during the "Jugend forscht" youth science competition (national level).

Technical Experience

Advanced Python, C, C++, TensorFlow, PyTorch, Linux, Git, JavaScript

Intermediate LATEX, NumPy, CUDA, OpenGL, Matlab, Java, Clojure

Biographic Information

Citizenship German

Languages English (fluent), German (native)

Formative Courses

Technische Universität Darmstadt

Grading scheme: 1.0 (best) - 4.0 (pass)

Statistical Machine Learning (1.0), Computer Vision 1 (1.0), Project Lab Deep Learning for Computer Vision (1.0), Deep Learning for Natural Language Processing (1.7), Integrated Project Robot Learning (1.0)

Online

Machine Learning, Andrew Ng, Coursera, Stanford University.