回路講習2

- Altairu
- @Flying___eagle

Hブリッジ回路を作る

Hブリッジ回路はDCモータの制御を行う回路 DCモーターを正転逆転させることができます

今回はAltairMD_V7と違いPN混合のHブリッジを作成していきます.

部品一覧

- PチャネルMOS 2SJ334
- NチャネルMOS 2Sk3140
- シリコンNチャネル 2SK369
- 抵抗:普通のR、6個
- 端子: Conn_01x01、4個
- 3ピンヘッダ: Conn_01x03、1個
- VCC, GND, PWR__FLAG, GNDPWR

PchパワーMOSFET 60V30A 2SJ334

ポイント

- PチャネルMOS型
- GDSの順1.ゲート2.ソース3.ドレイン
- JEITA:SC-67 -> TO-220SIS

2SJ334

- リレー駆動、DC-DC コンバータ用
- モータドライブ用
- 4V 駆動です。

オン抵抗が低い。 : RDS (ON) = 29m Ω (標準)
 順方向伝達アドミタンスが高い。: |Yfs| = 23S (標準)

漏れ電流が低い。 : IDSS = -100 µ A (最大) (VDS = -60V)

取り扱いが簡単な、エンハンスメントタイプです。

: $V_{th} = -0.8 \sim -2.0 V$ ($V_{DS} = -10 V$, $I_{D} = -1 mA$)

絶対最大定格 (Ta = 25℃)

項目	記号	定格	単位
ドレイン・ソース間電圧	V_{DSS}	-60	V
ドレイン・ゲート間電圧(R _{GS} = 20kΩ)	V _{DGR}	-60	٧
ゲート・ソース間電圧	V _{GSS}	±20	٧
ドレイン電流 DC (注1)	ID	-30	Α
パルス(注 1)	I _{DP}	-120	Α
許 容 損 失 (Tc=25℃)	P _D	45	W
アバランシェエネルギー(単発) (注 2)	EAS	936	mJ
アバランシェ電流	I _{AR}	-30	Α
アバランシェエネルギー(連続) (注 3)	E _{AR}	4.5	mJ
チャネル温度	T _{ch}	150	°C
保 存 温 度	T _{stg}	-55~150	င

質量: 1.9 g (標準)

シンボル選択

2SJ334は、FET Pチャンネルピン配置がGDS

のものを選択する

[FET GDS]と検索

© 2024 Altair

6

NchパワーMOSFET 60V60A 2SK3140

ポイント

- NチャネルMOS型
- GDSの順1.ゲート2.ソース3.ドレイン
- TO-220CFM

RENESAS

2SK3140 シリコン N チャネル MOS FET 高速度電力スイッチング

RJJ03G1041-0300

(Previous: ADJ-208-1012A) Rev.3.00

2006.03.01

特長

- 低オン抵抗
 R_{DS (on)} = 6 mΩ typ.
- 低電圧駆動 (4 V 駆動)
- スイッチング速度が速い

外観図

シンボル選択

2 S K 3 1 4 0 は、F E T N チャンネル ピン配置が G D S のものを選択する

[FET GDS]と検索

シリコンNチャネル 2SK369

ポイント

- シリコンNチャネル
- DGSの順 1.ドレイン2.ゲート3.ソース
- TO-220CFM

TOSHIBA

2SK369

東芝電界効果トランジスタ シリコンNチャネル接合形

2SK369

○ 低周波低雑音増幅用

- イコライザアンプ, MC ヘッドアンプの初段に適します。
- 高|Yfs|のため高利得が得られます。
 - : |Yfs| = 40 mS (標準) (VDS = 10 V, VGS = 0, IDSS = 5 mA)
- 高耐圧です。 $V_{GDS} = -40 \text{ V}$
- 超低雑音です。

: NF = 1.0 dB (標準) ($V_{DS} = 10 \text{ V}$, $I_{D} = 5 \text{ mA}$, f = 1 kHz, $R_{G} = 100 \Omega$)

● 高入力インピーダンスです。: IGSS = -1 nA (最大) (VGS = -30 V)

絶対最大定格 (Ta = 25°C)

	項	目		記号	定格	単位
ゲー	ト・ドレ	イン間	電圧	V_{GDS}	-40	V
ゲ	- 1	ト 電	流	lg	10	mA
許	容	損	失	P_{D}	400	mW
接	接合温		度	Tj	125	°C
保 存 温		度	T _{stg}	-55~125	°C	

注: 本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格以内で の使用においても、高負荷(高温および大電流/高電圧印加、多大な 温度変化等)で連続して使用される場合は、信頼性が著しく低下す るおそれがあります。

単位: mm

質量: 0.21 g (標準)

シンボル選択

2SK369は、FET、Nチャンネル、ピン配置がGDS のものを選択する

[FET DGS]と検索

その他の部品

- 素子関連
 - 抵抗:普通のR、6個
 - 端子: Conn__01x01、4個
 - 3ピンヘッダ: Conn_01x03、1個
- 電源関連
 - o V C C
 - o GND
 - PWR__FLAG
 - o GNDPWR

ラベルの使い方

グローバルラベルを追加を選択.

そして名前を付けて OK

1	J1 -	SIGNAL : Connector_PinHeader_2.54mm:PinHeader_1x03_P2.54mm_Vertical
2	J2 -	OUT-A: TestPoint:TestPoint_THTPad_D3.Omm_Drill1.5mm
3	J3 -	OUT-B : TestPoint:TestPoint_THTPad_D3.0mm_Drill1.5mm
4	J4 -	VCC : TestPoint:TestPoint_THTPad_D3.0mm_Drill1.5mm
5	J5 -	GND : TestPoint:TestPoint_THTPad_D3.0mm_Drill1.5mm
6	Q1 -	2SK369 : Package_T0_S0T_THT:T0-92
7	Q2 -	2SJ334 : Package_TO_SOT_THT:TO-220-3_Vertical
8	Q3 -	2SK3140 : Package_TO_SOT_THT:TO-220-3_Vertical
9	Q4 -	2SK3140 : Package_TO_SOT_THT:TO-220-3_Vertical
10	Q5 -	2SJ334 : Package_TO_SOT_THT:TO-22O-3_Vertical
11	Q6 -	2SK369 : Package_T0_S0T_THT:T0-92
12	R1 -	470 : Resistor_THT:R_Axial_DINO207_L6.3mm_D2.5mm_P10.16mm_Horizontal
13	R2 -	2K : Resistor_THT:R_Axial_DINO207_L6.3mm_D2.5mm_P10.16mm_Horizontal
14	R3 -	470 : Resistor_THT:R_Axial_DINO207_L6.3mm_D2.5mm_P10.16mm_Horizontal
15	R4 -	470 : Resistor_THT:R_Axial_DINO207_L6.3mm_D2.5mm_P10.16mm_Horizontal
16	R5 -	2K : Resistor_THT:R_Axial_DINO207_L6.3mm_D2.5mm_P10.16mm_Horizontal
17	R6 -	470 : Resistor_THT:R_Axial_DINO207_L6.3mm_D2.5mm_P10.16mm_Horizontal

PCBをやろう!