

Description

The VSM4N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 150V, I_D = 4A$ $R_{DS(ON)} < 180mΩ @ V_{GS} = 10V$ (Typ:140mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM4N15-S23	VSM4N15	SOT-223	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	150	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	4	Α
Drain Current-Pulsed (Note 1)	I _{DM}	16	Α
Maximum Power Dissipation	P _D	4	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	31	°C/W

Electrical Characteristics (T_A=25℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μΑ

Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)								
Gate Threshold Voltage	te Threshold Voltage V _{GS(th)} V _{DS} =V _G		1.5	2.0	2.5	V		
Drain-Source On-State Resistance	$R_{DS(ON)}$ V_{GS} =10V, I_D =4A		-	140	180	mΩ		
Forward Transconductance	g FS	V _{DS} =5V,I _D =4A	-	5	-	S		
Dynamic Characteristics (Note4)								
Input Capacitance	C _{lss}	\/ -25\/\/ -0\/	-	900	-	PF		
Output Capacitance	C _{oss}	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	115	-	PF		
Reverse Transfer Capacitance	C _{rss}	F-1.0IVITZ	-	70	-	PF		
Switching Characteristics (Note 4)								
Turn-on Delay Time	t _{d(on)}		-	8	-	nS		
Turn-on Rise Time	t _r	V_{DD} =75V, R_L =19 Ω	-	10	-	nS		
Turn-Off Delay Time	Delay Time $t_{d(off)}$ V_{GS} =10V, R_{G} =6 Ω		-	20	-	nS		
Turn-Off Fall Time	t _f		-	15	-	nS		
Total Gate Charge	Qg	\/ -75\/ -40	-	19		nC		
Gate-Source Charge	Q _{gs}	V_{DS} =75V, I_{D} =4A, V_{GS} =10V	-	5.5	-	nC		
Gate-Drain Charge	Q _{gd}	VGS-10V	-	7	-	nC		
Drain-Source Diode Characteristics								
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =4A	-	-	1.2	V		
Diode Forward Current (Note 2)	Is		-	-	4	Α		

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to product

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson- Junction Temperature

Qg Gate Charge (nC)
Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

T_J-Junction Temperature(°C)

Figure 8 Safe Operation Area

Figure 11 Normalized Maximum Transient Thermal Impedance

SOT-223-3L Package Information

