УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Моделирование»

Учебно-исследовательская работа УИР 2 «ИССЛЕДОВАНИЕ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ НА МАРКОВСКИХ МОДЕЛЯХ» Вариант 4/8

Студенты Лавлинский Михаил Ханнанов Ленар Р34112

> Преподаватель Алиев Т.И.

1. Постановка задачи и исходные данные

Таблица 1

Вариант	СИСТ	EMA_1	СИСТ	Критерий	
	П	ЕН	П	ЕН	эффект.
4	2 (E ₂)	1/0	3	1/0/1	(r)

Таблица 2

Номер варианта	Интенс. потока	Ср. длит. обслуж.	Вероятности занятия прибора			
	λ, 1/c	<i>b</i> , c	П1	П2	П3	
8	0,8	5	0,3	0,5	0,2	

2. Описание исследуемой системы

Общие данные

Интенсивность потока для обеих систем λ: 0,8 1/с

Средняя длительность обслуживания для обеих систем b: 5 с

Интенсивность обслуживания для обеих систем $\mu = 1/b = 0.21/c$

Критерий эффективности: (г) минимальное время пребывания в системе заявок.

СИСТЕМА_1

Число приборов: 2.

Классификация по Кендаллу:

- 1. $M/E_2/1/1$
- 2. M/M/1/0

В первом приборе длительность обслуживания распределена по закону Эрланга 2-го порядка.

Перед первым прибором емкость накопителя 1, перед вторым - 0.

Вероятность занять первый прибор 0,3, второй - 0,7.

СИСТЕМА_2

Число приборов: 3

Классификация приборов по Кендаллу:

- 1. *M/M/1/1*
- 2. M/M/1/0
- 3. M/M/1/1

Перед первым прибором емкость накопителя 1, перед вторым - 0 (система с отказами), перед третьим - 1

Вероятность занять первый прибор 0,3, второй - 0,5, третий - 0,2

3. Перечень состояний марковского процесса для исследуемой системы СИСТЕМА_1

Таблица 3

Состояние	Описание	Состояние	Описание
0	Заявок нет, система простаивает	2 ₁	И первый, и второй прибор заняты. Заявка первого прибора на первой фазе
1	Второй прибор занят	2 ₂	И первый, и второй прибор заняты. Заявка первого прибора на второй фазе
1,	Первый прибор занят, заявка на первой фазе	3 ₁	Оба прибора заняты и одна заявка в очереди. Заявка первого прибора на первой фазе
12	Первый прибор занят, заявка на второй фазе	32	Оба прибора заняты и одна заявка в очереди. Заявка первого прибора на второй фазе

СИСТЕМА_2

Таблица 4

Состояние	Описание	Состояние	Описание
0	Заявок нет, система простаивает	3 ₁₁₃	Три заявки: две в первом (одна в очереди), одна в третьем (на обработке)
1,	Одна заявка на обработке в первом приборе	3 ₁₂₃	Три заявки: во всех трёх приборах на обработке
1,	Одна заявка на обработке во втором приборе	3 ₁₃₃	Три заявки: одна в первом (на обработке), две в третьем (одна в очереди, другая в обработке)
13	Одна заявка на обработке в третьем приборе	3 ₂₃₃	Три заявки: одна во втором (на обработке), две в третьем (одна в очереди, другая в обработке)
2 ₁₂	Две заявки на обработке: в первом и втором приборе	4 ₁₁₂₃	Четыре заявки: две в первом приборе (одна в очереди), одна во втором, одна в третьем приборе

2 ₁₃	Две заявки на обработке: в первом и третьем приборе	4 1133	Четыре заявки: две в первом приборе (одна в очереди), две в третьем приборе (одна в очереди)
2 ₂₃	Две заявки на обработке: во втором и третьем приборе	4 1233	Четыре заявки: одна в первом приборе, одна во втором, две в третьем приборе (одна в очереди)
3 ₁₁₂	Три заявки: две в первом (одна в очереди), одна во втором (на обработке)	5	Пять заявок: все приборы заняты обработкой, и все очереди к приборам заполнены

4. Результаты работы:

• Размеченный граф переходов марковского процесса

Рисунок 1. Граф переходов СИСТЕМЫ_1

Рисунок 2. Граф переходов СИСТЕМЫ_2

• Матрица интенсивностей переходов

Таблица 4. Матрица интенсивностей переходов СИСТЕМА_1

Ei/Ej	0	1	11	12	2 1	2 ₂	3 1	3 ₂
0	-λ	0.7λ	0.3λ	0	0	0	0	0
1	μ	-0.3λ-μ	0	0	0.3λ	0	0	0
1 1	0	0	-0.7λ-2μ	2μ	0.7λ	0	0	0
12	2μ	0	0	-0.7λ-2μ	0	0.7λ	0	0
2 1	0	0	μ	0	-0.7λ-3μ	2μ	0.7λ	0
2 ₂	0	2μ	0	μ	0	-0.7λ-3μ	0	0.7λ
3 1	0	0	0	0	μ	0	-3µ	2μ
3 ₂	0	0	0	0	2μ	μ	0	-3µ

Рисунок 3. Матрица интенсивностей СИСТЕМЫ_1 в MARK *Таблица 5. Матрица интенсивностей переходов СИСТЕМА 2*

Ei/E i	0	1 1	1 ₂	1 3	2 ₁₂	2 ₁₃	2 ₂₃	3112	3 113	3 ₁₂₃	3133	3233	41123	4 ₁₁₃₃	41233	5
0	-λ	0.3λ	0.5λ	0.2λ	0	0	0	0	0	0	0	0	0	0	0	0
11	μ	-0.7λ -μ	0	0	0.5λ	0.2λ	0	0	0	0	0	0	0	0	0	0
12	μ	0	-0.5λ -μ	0	0.3λ	0	0.2λ	0	0	0	0	0	0	0	0	0
1 ₃	μ	0	0	-0.8 λ-μ	0	0.3λ	0.5λ	0	0	0	0	0	0	0	0	0
212	0	μ	μ	0	-0.5λ -2μ	0	0	0.3λ	0	0.2λ	0	0	0	0	0	0
2 ₁₃	0	μ	0	μ	0	-λ-2 μ	0	0	0.3λ	0.5λ	0.2λ	0	0	0	0	0
2 ₂₃	0	0	μ	μ	0	0	-0.5 λ-2μ	0	0	0.3λ	0	0.2λ	0	0	0	0
3112	0	0	0	0	μ	0	0	-0.2λ- μ	0	0	0	0	0.2λ	0	0	0
3 113	0	0	0	0	0	μ	0	0	-0.7λ-μ	0	0	0	0.5λ	0.2λ	0	0
3 ₁₂₃	0	0	0	0	μ	μ	μ	0	0	-0.5λ-3 μ	0	0	0.3λ	0	0.2λ	0
3 133	0	0	0	0	0	μ	0	0	0	0	-0.8λ-μ	0	0	0.3λ	0.5λ	0
3233	0	0	0	0	0	0	д	0	0	0	0	-0.3λ- μ	0	0	0.3λ	0
41123	0	0	0	0	0	0	0	μ	μ	μ	0	0	-0.2λ- 3μ	0	0	0.2λ
4 1133	0	0	0	0	0	0	0	0	μ	0	μ	0	0	-0.5λ- 2μ	0	0.5λ
41233	0	0	0	0	0	0	0	0	0	μ	μ	μ	0	0	-0.3λ- 3μ	0.3λ
5	0	0	0	0	0	0	0	0	0	0	0	0	μ	μ	μ	-3μ

Рисунок 4. Матрица интенсивностей СИСТЕМЫ_2 в MARK

• Значения стационарных вероятностей, сведенные в таблицу (форма 1)

Форма 1

Стационарные вероятности состояний

Стационарные вероятности состоянии										
Номер	СИСТ	EMA_1	СИСТ	СИСТЕМА_2						
состояния	Обозн.	Вер-ть	Обозн.	Вер-ть						
1	0	0.0712	0	0.0407						
2	1	0.1943	1,	0.0489						
3	1,	0.0518	12	0.0814						
4	12	0.0453	1 ₃	0.0326						
5	2 ₁	0.1632	2 ₁₂	0.0977						
6	22	0.1140	2 ₁₃	0.0391						
7	3 ₁	0.1523	2 ₂₃	0.0651						
8	32	0.2079	3 ₁₁₂	0.1172						
9	-	-	3 ₁₁₃	0.0469						
10	-	-	3 ₁₂₃	0.0782						
11	-	-	3 ₁₃₃	0.0313						
12	-	-	3 ₂₃₃	0.0521						
13	-	-	4 ₁₁₂₃	0.0938						
14	-	-	4 1133	0.0375						

15	-	-	4	0.0625
16	-		5	0.0750

• Формулы, используемые для расчета характеристик системы и значения характеристик системы, сведенные в таблицы (форма 2)

Форма 2.1

Хар-ка	Прибор	Расчетная формула	СИСТ.1
Нагрузка	П1	$y = \rho/(1-\pi)$	0.1518
	П2	$y = \rho/(1-\pi)$	1.1540
	Сумм.	$y = 2\rho/(1-\pi)$	2.9032
Загрузка	П1	$\rho = p_3 + p_4$	0.0971
	П2	$\rho = p_2$	0.1943
	Сумм.	$\rho = 1 - p_0$	0.9288
Вероятность потери	П1	$\pi = p_7 + p_8$	0.3602
потерп	П2	$\pi = p_2 + p_5 + p_6 + p_7 + p_8$	0.8316
	Сумм.	$\pi = p_7 + p_8$	0.3602
Длина очереди	П1	$l = p_7 + p_8$	0.3602
	П2	-	0.0000
	Сумм.	$l = p_7 + p_8$	0.3602
Число заявок находящихся в	П1	$m = p_3 + p_4 + 2 \cdot (p_7 + p_8)$	0.8175
системе	П2	$m = p_2 + p_5 + p_6 + p_7 + p_8$	0.8316
	Сумм.	$m = (p_2 + p_3 + p_4) + 2 \cdot (p_5 + p_6) + 3 \cdot (p_7 + p_8)$	1.9263
Производител	П1	$\lambda' = (1 - \pi)\lambda \cdot 0.3$	0.1536
ьность	П2	$\lambda' = (1 - \pi)\lambda \cdot 0.7$	0.0943
	Сумм.	$\lambda' = (1 - \pi)\lambda$	0.5119

Хар-ка	Прибор	Расчетная формула	СИСТ.2
Нагрузка	П1	$y = \rho/(1-\pi)$	1.1565
	П2	$y = \rho/(1-\pi)$	2.6116
	П3	$y = \rho/(1-\pi)$	0.7269
	Сумм.	$y = 3\rho/(1-\pi)$	3.1113
Загрузка	П1	$\begin{split} \rho &= p_{_{2}} + p_{_{5}} + p_{_{6}} + p_{_{8}} + p_{_{9}} + p_{_{10}} \\ &+ p_{_{11}} + p_{_{13}} + p_{_{14}} + p_{_{15}} + p_{_{16}} \end{split}$	0.7281
	П2	$\rho = p_3 + p_5 + p_7 + p_8 + p_{10} + p_{12}$ $p_{13} + p_{15} + p_{16}$	0.7231
	П3	$\rho = p_4 + p_6 + p_7 + p_9 + p_{10} + p_{11} + p_{12} + p_{13} + p_{14} + p_{15}$	0.5390
	Сумм.	$\rho = 1 - p_0$	0.9593
Вероятность потери	П1	$\pi = p_8 + p_9 + p_{13} + p_{14} + p_{16}$	0.3705
потеря	П2	$\pi = p_3 + p_5 + p_7 + p_8 + p_{10} + p_{12} + p_{13} + p_{15} + p_{16}$	0.7231
	П3	$\pi = p_{11} + p_{12} + p_{14} + p_{15} + p_{16}$	0.2585
	Сумм.	$\pi = p_{16}$	0.0750
Длина очереди	П1	$l = p_8 + p_9 + p_{13} + p_{14} + 2 \cdot p_{16}$	0.4455
	П2	-	0.0000
	П3	$l = p_{11} + p_{12} + p_{14} + p_{15} + 2 \cdot p_{16}$	0.3335
	Сумм.	$l = p_{8} + p_{9} + p_{11} + p_{12} + p_{13} + 2 \cdot p_{14} + p_{15} + 2 \cdot p_{16}$	0.6289
Число заявок находящихся в системе	П1	$m = p_{2} + p_{5} + p_{6} + 2 \cdot (p_{8} + p_{9} + p_{13} + p_{14} + p_{16})$	0.9266
	П2	$m = p_{3} + p_{5} + p_{7} + p_{8} + p_{10} + p_{12} + p_{13} + p_{15} + p_{16}$	0.7231
	П3	$m = p_4 + p_6 + p_7 + p_9 + p_{10} + p_{13} + 2 \cdot (p_{11} + p_{12} + p_{14} + p_{15})$	0.8725

		+ p ₁₆)	
	Сумм.	$\begin{split} m &= p_{_{2}} + p_{_{3}} + p_{_{4}} + 2 \cdot (p_{_{5}} + p_{_{6}} \\ &+ p_{_{7}}) + 3 \cdot (p_{_{8}} + p_{_{9}} + p_{_{10}} + p_{_{11}} \\ &+ p_{_{12}}) + 4 \cdot (p_{_{13}} + p_{_{14}} + p_{_{15}}) + \\ & 5 \cdot p_{_{16}} \end{split}$	2.6942
Производител	П1	$\lambda' = (1 - \pi)\lambda \cdot 0.3$	0.1511
ьность	П2	$\lambda' = (1 - \pi)\lambda \cdot 0.5$	0.1108
	П3	$\lambda' = (1 - \pi)\lambda \cdot 0.2$	0.1186
	Сумм.	$\lambda' = (1 - \pi)\lambda$	0.7400

Форма 2.3

Хар-ка	Прибор	Расчетная формула	СИСТ.1	СИСТ.2
Коэффициент простоя	П1	$\eta = 1 - \rho$	0.9029	0.2719
	П2	$\eta = 1 - \rho$	0.8057	0.2769
	П3	$\eta = 1 - \rho$	-	0.4610
	Сумм.	$\eta = 1 - \rho$	0.0712	0.0407
Время ожидания	П1	$w = l/\lambda'$	2.3456	2.9488
	П2	$w = l/\lambda'$	0.0000	0.0000
	ПЗ	$w = l/\lambda'$	-	2.8107
	Сумм.	$w = l/\lambda'$	0.7037	0.8499
Время пребывания	П1	$u = m/\lambda'$	5.3238	6.1330
	П2	$u = m/\lambda'$	8.8201	6.5291
	П3	$u = m/\lambda'$	-	7.3540
	Сумм.	$u = m/\lambda'$	3.7634	3.6409

• Результаты (графики и выводы) сравнительного анализа характеристик функционирования исследуемых систем

Рисунок 5. График зависимости времени ожидания от интенсивности поступления заявок СИСТ. 1

Рисунок 6. График зависимости времени пребывания от интенсивности поступления заявок СИСТ. 1

Рисунок 7. График зависимости производительности от интенсивности поступления заявок СИСТ. 1

Рисунок 8. График зависимости времени ожидания от интенсивности поступления заявок СИСТ. 2

Рисунок 9. График зависимости времени пребывания от интенсивности поступления заявок СИСТ. 2

Сравнив рисунки 9 и 6 можем заметить, что они имеют кардинально разный характер. В то время как распределение времени пребывания на рисунке 9 имеет эрланговский характер, рисунок 6 больше похож на график логарифма. Также видно, что в системе два в среднем время пребывания меньше, чем в первой системе.

Рисунок 10. График зависимости производительности от интенсивности поступления заявок СИСТ. 2

Сравнив рисунки 7 и 10 можем заметить, что несмотря на то, что производительности обеих систем в итоге слабо меняются с увеличением интенсивности, однако производительность второй системы выше чем первой.

• Обоснование выбора наилучшего варианта организации системы в соответствии с заданным критерием эффективности

Если судить только лишь по времени пребывания заявок в системе, то СИСТЕМА_2 лучше, причем даже с повышением интенсивности поступления заявок в СИСТЕМЕ_2 время пребывания оказывается меньше.