Entrega Ejercicios Microcredencial. Parte 3

Arturo Olivares Martos

29 de mayo de 2025

Resumen

En el presente documento, resolveremos ejercicios de la tercera parte de la Microcredencial de Lógica y Teoría Descriptiva de Conjuntos.

Ejercicio 1. Definimos los siguientes conjuntos:

$$Q_2 = \{ \alpha \in \mathcal{C} \mid \exists A \subset \mathbb{N} \text{ finito tal que } \alpha(n) = 0 \ \forall n \in \mathbb{N} \setminus \{A\} \}$$
$$\ell^1 = \left\{ x \in [0, 1]^{\mathbb{N}} \mid \sum_{n=1}^{\infty} x_n < \infty \right\}$$

Demostrar que $\ell^1 \in \Sigma_2^0$ y $Q_2 \leqslant_W \ell^1$.

Ejercicio 2. Sea Γ una clase de la Jerarquía Boreliana, y X un conjunto. Si $A \subset X$ es Γ -completo, y $B \subset X$ es otro conjunto de la clase Γ tal que $A \leq_W B$, entonces B es Γ -completo.

Demostración. Hemos de comprobar que:

- $B \in \Gamma$: Se tiene por hipótesis.
- Para todo espacio polaco X', si $C \in \Gamma(X')$ entonces $C \leq_W B$: Sea $C \in \Gamma(X')$, y buscamos $f: X' \to X$ tal que f es una función continua y $C = f^{-1}(B)$.

Como A es Γ -completo, existe $g: X' \to X$ tal que g es continua y $C = g^{-1}(A)$. Por otro lado, como $A \leq_W B$, existe una función continua $h: X \to X$ tal que $A = h^{-1}(B)$. Entonces, la composición $f = h \circ g$ es continua y cumple que:

$$f^{-1}(B) = g^{-1}(h^{-1}(B)) = g^{-1}(A) = C$$

Por tanto, $C \leq_W B$.

Ejercicio 3. Demostrar que $f:[0,1]\to\mathbb{R}$ es continuamente derivable si y solo si

$$\forall \varepsilon \in \mathbb{R}^+ \ \exists \delta \in \mathbb{R}^+ \ f \in A_{\varepsilon,\delta}$$

donde:

$$A_{\varepsilon,\delta} = \left\{ f \in C([0,1]) \mid \forall x, y, a, b \in [0,1] : a, b, x, y \text{ a distancia } \leqslant \delta \Longrightarrow \right.$$

$$\Longrightarrow \left| \frac{f(a) - f(b)}{a - b} - \frac{f(x) - f(y)}{x - y} \right| < \varepsilon \right\}$$

Demostración. Sea $f:[0,1]\to\mathbb{R}$. Demostraremos por doble implicación.

 \Longrightarrow) Sea $f \in C^1([0,1])$, y sea $\varepsilon \in \mathbb{R}^+$. Como f es derivable en [0,1], por el Teorema del Valor Medio existe $a' \in [a,b[,x' \in]x,y[$ tal que:

$$\frac{f(a) - f(b)}{a - b} = f'(a')$$
 y $\frac{f(x) - f(y)}{x - y} = f'(x')$

Por el Teorema de Heine, como [0,1] es compacto y f' es continua, existe $\delta' \in \mathbb{R}^+$ tal que:

$$|a' - x'| < \delta' \Longrightarrow |f'(a') - f'(x')| < \varepsilon$$

Sea ahora $\delta=\delta'/3$. Usando que a,b,x,y están a distancia $\leqslant \delta$, veamos que $|x'-a'|<\delta'$:

$$|x' - a'| \le |x' - x| + |x - a| + |a - a'| < |x - y| + |x - a| + |a - b| \le 3\delta = \delta'$$

Por tanto, se verifica que:

$$\left| \frac{f(a) - f(b)}{a - b} - \frac{f(x) - f(y)}{x - y} \right| = |f'(a') - f'(x')| < \varepsilon$$

Por tanto, $f \in A_{\varepsilon,\delta}$.

 \Leftarrow Hemos de demostrar que f es continuamente derivable. Para ello, definimos el cociente incremental de f en $t \in [0,1]$ como:

$$f_t(x) = \frac{f(x) - f(t)}{x - t} \qquad \forall x \in [0, 1] \setminus \{t\}$$

En primer lugar, hemos de ver que f es derivable, para lo cual hemos de comprobar que, para cada $t \in [0, 1]$, el siguiente límite existe:

$$\lim_{x \to t} f_t(x)$$

Para comprobar que este límite existe, usaremos que \mathbb{R} es completo, por lo que toda sucesión de Cauchy converge. Sea $t \in [0,1]$, y sea $\{x_n\}_{n \in \mathbb{N}}$ una sucesión de puntos de $[0,1] \setminus \{t\}$ tal que $\{x_n\} \to t$. Veamos que $\{f_t(x_n)\}_{n \in \mathbb{N}}$ es una sucesión de Cauchy. Para ello, fijamos $\varepsilon \in \mathbb{R}^+$, por lo que $\exists \delta \in \mathbb{R}^+$ tal que

 $f \in A_{\varepsilon,\delta}$. Por ser $\{x_n\}$ de Cauchy, existe $N \in \mathbb{N}$ tal que, para todo $m, n \geqslant N$, se verifica que:

$$|x_m - x_n| < \delta$$

Por tanto, t, x_m, x_n están a distancia $\leq \delta$, y por tanto, como $f \in A_{\varepsilon,\delta}$, se verifica que:

$$|f_t(x_m) - f_t(x_n)| = \left| \frac{f(x_m) - f(t)}{x_m - t} - \frac{f(x_n) - f(t)}{x_n - t} \right| < \varepsilon$$

Por tanto, $\{f_t(x_n)\}_{n\in\mathbb{N}}$ es una sucesión de Cauchy, y por tanto, converge a un límite $f'(t) \in \mathbb{R}$. Definimos por tanto:

$$f'(t) = \lim_{x \to t} f_t(x)$$

Ahora, queremos demostrar que f' es continua en todo [0,1]. Para ello, fijamos un punto $x \in [0,1]$, y tomamos una sucesión $\{t_n\}_{n\in\mathbb{N}} \subset [0,1] \setminus \{x\}$ tal que $\{t_n\} \to x$. Queremos ver que:

$$\lim_{n \to \infty} f'(t_n) = f'(x)$$

Recordemos que, por definición,

$$f'(t_n) = \lim_{y \to t_n} \frac{f(y) - f(t_n)}{y - t_n}$$
 y $f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$

Fijado ahora $\varepsilon \in \mathbb{R}^+$, consideramos $\delta \in \mathbb{R}^+$ tal que $f \in A_{\varepsilon,\delta}$. Como $\{t_n\} \to x$, existe $N \in \mathbb{N}$ tal que para todo $n \geqslant N$, se tiene $|t_n - x| < \delta/2$. Fijamos tal $n \geqslant N$, y tomamos $y \in [0,1]$ con $|y - t_n| < \delta/2$. Entonces, por designaldad triangular:

$$|y - x| \le |y - t_n| + |t_n - x| < \delta/2 + \delta/2 = \delta$$

Por tanto, x, y, t_n están a distancia menor que δ , y podemos aplicar la hipótesis:

$$\left| \frac{f(y) - f(t_n)}{y - t_n} - \frac{f(z) - f(x)}{z - x} \right| < \varepsilon \quad \forall z \in [0, 1] \text{ tal que } |x - z| < \delta$$

Tomando el límite cuando $y \to t_n$, se obtiene:

$$\left| f'(t_n) - \frac{f(z) - f(x)}{z - x} \right| < \varepsilon \quad \forall z \in [0, 1] \text{ tal que } |x - z| < \delta$$

Y tomando después el límite cuando $z \to x$, se concluye que $|f'(t_n) - f'(x)| < \varepsilon$. Como $n \ge N$ era arbitrario, tenemos que:

$$\lim_{n \to \infty} f'(t_n) = f'(x)$$

Es decir, f' es continua en x. Como $x \in [0,1]$ era arbitrario, concluimos que f' es continua en todo el intervalo, y por tanto, $f \in C^1([0,1])$.