

Probabilistic Method

Name: Chong-kwon Kim

SCONE Lab.

Conditional Expectation

- Randomized algorithm to find a large cut
 - Random allocation of vertices to two subsets A and B
 - Repeatedly try random cuts until find one whose size $\geq m/2$

- Any (constructive) solutions that guarantee a large cut in one trial
 - Deterministic solution
- Assume that vertices are numbered 1, 2,..., n and we allocate vertices into A or B sequentially
- Place a vertex such that conditional cut size expectation is maximized
 - Deterministic and Constructive

Large Cut

- Suppose k vertices were already allocated into A or B sets and making a decision for the (k+1)-st vertex
 - Select A if the resulting conditional expectation after putting it to A is larger than that of allocating it to B

Allocation sequence: a-b-c-d-e

- 1. Allocate a into A
- 2. Given a is in A, where to put b? (assume B)
- 3. Given a in A and b in B, where to put c?

Generally, the expected cut size increase obtained by putting v_{k+1} into A, INCA, is $(\# \text{ edges to } \{B\} - \# \text{ edges to } \{A\})/2$

 $- E[C(A, B) | x_1, x_2, \dots, x_k]$ $= 1/2 \cdot E[C(A, B) | x_1, x_2, \dots, x_k, A] + 1/2 \cdot E[C(A, B) | x_1, x_2, \dots, x_k, B]$ $\leq \max\{E[C(A, B) | x_1, \dots, x_k, A], E[C(A, B) | x_1, \dots, x_k, B]\}$

Large Cut

• m/2 = E[C(A,B)]
$$\leq$$
 E[C(A,B) | x_1]
 \leq E[C(A,B) | x_1 , x_2]

• • •

$$\leq \mathsf{E}[\mathsf{C}(\mathsf{A},\;\mathsf{B})\;|x_1,x_2,\cdots,x_n]$$

a → A b → B c → ? d → ? e → ?

Sample & Modify

Conditional expectation

- Select wisely and deterministically

Sample & Modify

- Randomly select one
- Modify the selection to add (or remove) a certain property (characteristics) to/from the selection
- Application of Sample & Modify
 - Maximum Independent set Problem
 - Maximum Girth Problem

Independent Set Problem

• Definition: Independent set

- Set of vertices with no edges between them

{a,c} is an independent set while {a, d} is not

Finding an independent set is easy How?

Finding an Max. independent set is NP-Hard

Independent Set Problem

Theorem

- Let G=(V,E) is a graph with n vertices and m edges, then there is an independent set with $\geq n^2/4m$ vertices

Proof

edges incident on a node

- Let d=2m/n : Average node degree
- Two step algorithm
 - 1. Sample

Delete each vertex and its edges independently with probability 1-

- 1/c Modify
- 2.

For any remaining edges, delete one vertex randomly

Independent Set Problem

- How many vertices and edges remaining after the first step?
 - Let X, Y be # survived vertices and edges, respectively
 - → E[X] = n/d, because each node survival probability is 1/d
 - An edge remains if both of two end nodes survive

$$\rightarrow$$
 E[Y] = m/ $d^2 = \frac{n}{2d}$

- At the second step, at most Y vertices are removed
 - → Independent set size = X-Y

$$- E[X-Y] = \frac{n}{2d} = n^2/4m$$

Erdös-Renyi Random Graph

- Randomly generated networks
 - Fix number of nodes to n (parameter)
 - Random (usually undirected) edge generation

• Two models

 $\circ G_{n,p}$:

- Randomly generate an edge between (i, j) nodes w/ fixed probability of p

mathematician

Average degree = (n−1)p

- $\circ G_{n,m}$:
 - Randomly select m edges out of $\binom{n}{2}$ candidates
 - Average degree = 2m/n

Erdös was a Hungarian mathematician, one of the most famous in the 20th C. Famous as a travelling (a.k.a. homeless)

Random Networks

Random network is used in

- Graph theory
- Sociology, economics
- Biology, epidemiology
- Social network analysis
- _ ...

Many problems such as

- # isolated nodes
- Size of connected nodes (Component)
- Appearance of giant component
- Diameter (Six degrees of separation)

- ...

Large Girth: Example of Sample & Modify

• Definitions:

- Cycle: A path, consists of different edges, that returns to the origin
- Girth: Length of smallest cycle in a graph

Dense Network

As more edges are added, girth decreases

Theorem

- For any $k \ge 3$, there is a Graph with n nodes with the following properties
 - # edges m $\geq \frac{1}{4}n^{1+1/k}$
 - Girth $\geq k$

Large Girth

Proof

- Sketch of proof
 - Sample: Generate a random graph w/ m+ δ edges
 - Modify: If there are cycles of < k length, remove an edge from the cycles (Ignore efficiency)
 - \rightarrow If Y such cycles, then # remaining edges is m+ δ -Y

Sample

Select a random graph $G_{n,p}$ with $p = n^{\frac{1}{k}-1}$

Let X: # edges

$$E[X] = {n \choose 2} \cdot p$$
$$= \frac{1}{2} (1 - \frac{1}{n}) n^{\frac{1}{k} + 1}$$

Large Girth

Modify

Consider a set of *l* ordered nodes that may create a cycle

 \rightarrow Probability that the l nodes form a cycle is p^l

How many cyclic irreversible unique sequences can be generated with *l* nodes?

 \rightarrow (l-1)!/2 Why?

Let Y_l : # length l cycles

$$\mathsf{E}[Y_l] = p^l \cdot \binom{n}{l} \cdot (l-1)!/2$$

$$Y = \sum_{l=3}^{k-1} Y_l$$

$$E[Y] = \sum_{l=3}^{k-1} p^l \binom{n}{l} \cdot (l-1)!/2$$

$$\leq \sum_{l=3}^{k-1} n^l p^l < k n^{(k-1)/k}$$

Large Girth

remaining edges = X-Y

$$E[X-Y] \ge \frac{1}{2} (1 - \frac{1}{n}) n^{\frac{1}{k}+1} - k n^{(k-1)/k}$$
$$\ge \frac{1}{4} n^{1+1/k}$$

Second Moment Method

Theorem

Let X be a non-negative integer-valued random variable.

Then,
$$Pr(X=0) \leq \frac{Var[X]}{(E[X])^2}$$

Proof

$$\Pr(X=0) \le \Pr(|X-E[X]| \ge E[X])$$

 $\le \frac{Var[X]}{(E[X])^2}$ Chebyshev's Inequality

If
$$\frac{Var[X]}{(E[X])^2} < 1 - \varepsilon \rightarrow Pr(X > 0) > \varepsilon$$
If $\frac{Var[X]}{(E[X])^2} < \varepsilon \rightarrow Pr(X=0) < \varepsilon$

16

Cliques in Random Graphs

Many properties of random networks occur at threshold

points (edge probability, p)

- Giant component
- Cliques

• Claim

In $G_{n,p}$, let p=f(n).

- 1. If $f(n) = o(n^{-2/3})$, then for large n, $\Pr(G \in G_{n,p} \text{ has } k \ge 4 \text{ cliques}) \le \varepsilon$
- 2. If $f(n) = \omega(n^{-2/3})$, then for large n, $\Pr(G \in G_{n,p} \text{ has } \mathbf{no} \text{ clique of } k \geq 4) \leq \varepsilon$

Approximate Bounds

Asymptotically Tight Bound $\Theta(g(n))$

Asymptotic Upper Bound
O(a(n))

Upper Bound (g(n))

Asymptotic Lower Bound O(g(n))

Lower Bound ω(g(n))

Big Theta

Big Oh Small Oh Big Omega Small Omega

In
$$G_{n,p}$$
, let p=f(n).

- 1. If $f(n) = o(n^{-2/3})$, then for large n, $Pr(G \in G_{n,p} \text{ has } k \ge 4 \text{ cliques}) < \varepsilon$
- Proof
 - 1. There are $\binom{n}{4}$ combinations of 4 node set Xi = 1, if i-th combination form a 4-clique 0, ow

$$X = \sum_{i=1}^{\binom{n}{4}} X_i$$

- \rightarrow E[X] = $\binom{n}{4} p^6 = o(1)$
- \rightarrow E[X] < ϵ , for large n

Probability that k random nodes form a k-clique

- \rightarrow Probability that all of $\binom{k}{2}$ edges exist
- $\rightarrow p^{\binom{k}{2}}$

$$\rightarrow \Pr(X \ge 1) = \sum_{x=1} P_x \le \sum_{x=0} x \cdot P_x = E[X] < \varepsilon$$

What techniques are used?

- Proof of 2
- 2. If $f(n) = \omega(n^{-2/3})$, then for large n, $\Pr(G \in G_{n,p} \text{ has } \mathbf{no} \text{ clique of } k \ge 4) < \epsilon$
- Like the proof of 1, we can prove that $E[X] = \omega(1)$
 - \rightarrow E[X] $\rightarrow \infty$ as n $\rightarrow \infty$
- → Does it guarantee the existence of 4-clique with high probability?
 No! Refer to double betting

Strategy: Use Second Moment Method $Pr(X=0) \leq \frac{Var[X]}{(E[X])^2}$ And show that $\frac{Var[X]}{(E[X])^2} \to 0$ as $n \to \infty$

Now, derive the expectation & variance of # 4-cliques

• First prove that

- Let Yi, i=1,2,...,m be 0-1 random variables and let $Y=\sum_{i=1}^{N} Y_i$ Then, $Var[Y] \leq E[Y] + \sum_{i\neq j} Cov(Y_i, Y_j)$

Proof

```
 - \text{Var}[Y] = \sum_{i=1} Var[Y_i] + \sum_{i \neq j} Cov(Y_i, Y_j)   Var[Y_i] = \mathbb{E}[Y_i^2] - (E[Y_i])^2 \le \mathbb{E}[Y_i^2] = \mathbb{E}[Y_i]   \le \sum_{i=1} E[Y_i] + \sum_{i \neq j} Cov(Y_i, Y_j)   = \mathbb{E}[Y] + \sum_{i \neq j} Cov(Y_i, Y_j)
```

- We have derived E[X] and need to derive Var[X]
 - Problem: Computation of Cov(Xi, Xj)

• Proof of 2

- $Cov(Xi, Xj) = E[Xi Xj] E[Xi] E[Xj] \le E[Xi Xj]$
- E[Xi Xj] depends on how many edges in i-th and j-th 4 node combinations, Ci and Ci
- Cases
 - Share No edges
 - → Xi and Xj are independent
 - \rightarrow Cov(Xi, Xj) = 0

- Share One edge:
 - → 11 edges should present
 - → $E[Xi Xj=1] = p^{11}$

$$\binom{n}{6}\binom{6}{2;2;2}$$
 cases

- Share Three edges
 - → 9 edges
 - → $E[Xi Xj=1] = p^9$

 $\binom{n}{5}\binom{5}{3;1;1}$ cases

21

• Cont.

-
$$Var[X] \le E[X] + \sum_{i \ne j} Cov(X_i, X_j)$$

$$\le {n \choose 4} p^6 + {n \choose 6} {6 \choose 2; 2; 2} p^{11} + {n \choose 5} {5 \choose 3; 1; 1} p^9$$

$$= o(n^8 p^{12})$$
 Why?

$$-(E[X])^{2} = (\binom{n}{4} \cdot p^{6})^{2} = \Theta(n^{8}p^{12})$$

$$\rightarrow \Pr[X=0] \le \frac{Var[X]}{(E[X])^2} = o(1)$$

Conditional Expectation Inequality

 Special application of the Second Moment Method to the cases of Bernoulli trials

• Theorem

Let $X = \sum_{i=1} X_i$ where Xi is 0-1 random variable.

Then,
$$\Pr(X > 0) \ge \sum_{i=1}^n \frac{\Pr(X_i=1)}{E[X \mid X_i=1]}$$

Second Moment Method $Pr(X=0) \leq \frac{Var[X]}{(E[X])^2}$

Conditional Expectation Inequality

Proof

Let
$$Y = 1/X$$
, if $X > 0$
0, ow

$$\begin{split} \Pr(\mathsf{X} > 0) &= \mathsf{E}[\mathsf{X} \mathsf{Y}] \\ &= \mathsf{E}[(\sum_{i=1} X_i) \; \mathsf{Y}] \\ &= \sum_{i=1} E[X_i \; \mathsf{Y}] \\ &= \sum_{i=1} E[X_i \; \mathsf{Y} \; | \; X_i = 1] \Pr(X_i = 1) + \mathsf{E}[X_i \; \mathsf{Y} \; | \; X_i = 0] \Pr(X_i = 0) \\ &= \sum_{i=1} E[\; \mathsf{Y} \; | \; X_i = 1] \Pr(X_i = 1) \\ &= \sum_{i=1} E[\; 1/X \; | \; X_i = 1] \Pr(X_i = 1) \; \text{(Jensen's Inequality, f= 1/x)} \\ &\geq \sum_{i=1}^n \frac{\Pr(X_i = 1)}{E[X \; | \; X_i = 1]} \end{split}$$

Seoul National University 24

Conditional Expectation Inequality

- Recall the Claim that
 - In $G_{n,p}$, let p=f(n).
 - 1. If $f(n) = o(n^{-2/3})$, then for large n, $Pr(G \in G_{n,p})$ has $k \ge 4$ cliques ≤ 6
 - 2. If $f(n) = \omega(n^{-2/3})$, then for large n, $\Pr(G \in G_{n,p})$ has **no** clique of $k \ge 4$) $\le \epsilon$
- Proof of 2 using $\Pr(X > 0) \ge \sum_{i=1}^{n} \frac{\Pr(X_i = 1)}{\Pr(X_i = 1)}$
 - Now, we compute $E[X | X_i = 1]$

$$E[X | X_i = 1] = \sum_{j=1}^{\binom{n}{4}} E[X_j | X_i = 1]$$

- Again, we consider how many vertices that Ci and Cj share

25

Lab.

Conditional Expectation Inequality

• Cont.

$$\binom{n-4}{4}$$
 instances $4\binom{n-4}{3}$ instances

- Cases
 - No common vertex, one common vertex $E[X_i|X_i=1] = \Pr(X_i=1|X_i=1) = p^6$
 - Two common vertices $Pr(X_i = 1 \mid X_i = 1) = p^5$

$$\binom{n-4}{2}\binom{4}{2}$$
 instances

• Three common vertices $Pr(X_i = 1 \mid X_i = 1) = p^3$

$$\binom{n-4}{1}\binom{4}{3}$$
 instances

$$- \ E[X \ | X_i = 1] = 1 + \binom{n-4}{4} p^6 + 4 \binom{n-4}{3} p^6 + 6 \binom{n-4}{2} p^5 + 4 \binom{n-4}{1} p^3$$

$$- \Pr(X > 0) \ge \sum_{i=1}^{n} \frac{\Pr(X_i=1)}{E[X \mid X_i=1]}$$

Approaches to 1 as n increases when p= $f(n) = \omega(n^{-2/3})$

Lovasz is another Hungarian mathematician Winner of IMO, Wolf Prize, and Kyoto Prize

- One of the most powerful tools
- Used to prove that there is an element not included in any of bad events $\bigcup_{i=1}^{n} E_i$
- \bullet Case when E_i are mutually independent
 - $\rightarrow \bar{E}_i$ are mutually independent also
 - $ightharpoonup \Pr(\bigcap_{i=1}^n \bar{E}_i) = \prod_{i=1}^n \Pr(\bar{E}_i) > 0$, if $\Pr(E_i) < 1$ for all i

Lovasz Local Lemma expands the argument to the cases where events are not mutually independent but the dependency is limited

- Definition: Dependency Graph
 - Representation of dependency (or mutual independency)
 between events with a graph
 - Vertex i: Event i
 - E_i is mutually independent of events $\{E_i \mid (i, j) \notin E\}$

Lovasz Local Lemma

Let E1, E2, ..., En are events that has the following properties

- 1. for all i $Pr(E_i) < p$
- 2. The degree of the dependency graph is bounded by d
- 3. $4dp \le 1$ Note: $d \ge 1$, $p \le 1/4$

Then $Pr(\bigcap_{i=1}^n \bar{E}_i) > 0$

• Proof of $Pr(\bigcap_{i=1}^n \overline{E}_i) > 0$

- Introduce several notations
 - S= $\{s_1, s_2, ..., s_s\}$ is a random permutation of a subset with s elements randomly selected from $\{1, 2, ..., n\}$
 - \rightarrow For simplicity, we use 1, 2, ..., instead of $s_1, s_2, ..., s_n$
 - $F_S = \bigcap_{j=1}^S \bar{E}_j$ for $S = \{1, 2, \dots, s\}$

For
$$|S| = 1, 2, \dots, n$$

For
$$|S| = 1, 2, \dots, n$$

②
$$Pr(F_s) > 0$$

Use Mathematical Induction

Prove for |S|=1

Assume TRUE for $|S| = 1, 2, \dots$, h

- → Prove ① for h+1
- → Prove ② for h+1

- |S| = 1① $Pr(E_1 | \emptyset) = Pr(E_1) \le p \le 2p$ ② $Pr(F_1) = 1 - Pr(E_1) = 1 - p > 0$
- Assume ① and ② are true up to h For a particular E_k for $k \notin S$ $S_1 = \{j \in S \mid (k,j) \text{ is an edge in the dependency graph } G\}$ $S_2 = S S_1$

If
$$S_2 = S$$

- \rightarrow E_k is mutually independent of events $\overline{E_i}$ for $j \in S$
- \rightarrow $\Pr(E_k | F_s) = \Pr(E_k) \le p \le 2p$

```
If S_2 \neq S
F_S = F_{S_1} \cap F_{S_2}
\Pr(E_k | F_S) = \Pr(E_k | F_{S_1} \cap F_{S_2})
= \Pr(E_k \cap F_{S_1} \cap F_{S_2}) / \Pr(F_{S_1} \cap F_{S_2})
= \Pr(E_k \cap F_{S_1} | F_{S_2}) \Pr(F_{S_2}) / \Pr(F_{S_1} | F_{S_2}) \Pr(F_{S_2})
```

•
$$\Pr(E_k | F_S) = \Pr(E_k \cap F_{S_1} | F_{S_2}) / \Pr(F_{S_1} | F_{S_2})$$

 $\leq \Pr(E_k | F_{S_2}) / \Pr(F_{S_1} | F_{S_2})$
 $= \Pr(E_k) / \Pr(F_{S_1} | F_{S_2})$
 $\leq p/\Pr(F_{S_1} | F_{S_2})$

• Now consider $Pr(F_{S_1} | F_{S_2})$

$$\Pr(F_{S_{1}} | F_{S_{2}}) = \Pr(\bigcap_{j \in S_{1}} \bar{E}_{j} | F_{S_{2}})$$

$$= 1 - \Pr(\bigcup_{j \in S_{1}} E_{j} | F_{S_{2}})$$

$$\geq 1 - \sum_{j \in S_{1}} \Pr(E_{j} | F_{S_{2}})$$

$$\geq 1 - \sum_{j \in S_{1}} 2p$$

$$\geq 1 - 2pd \text{ (Why?)}$$

$$> \frac{1}{2}$$

Mathematical induction

 \rightarrow $\Pr(E_k | F_s) \le 2p$

- We just proved ① for |S|= h+1
- Now prove ② for |S|= h+1

$$\begin{aligned} \Pr(F_s) &= \Pr(\bigcap_{j=1}^{h+1} \bar{E}_j) \\ &= \Pr(\bar{E}_{h+1} \mid \bigcap_{i=1}^{h} \bar{E}_i) \cdot \Pr(\bar{E}_h \mid \bigcap_{i=1}^{h-2} \bar{E}_i) \cdot \cdots \Pr(\bar{E}_1) \\ &= \prod_{i=1}^{h+1} (1 - \Pr(E_i \mid \bigcap_{j=1}^{h-1} \bar{E}_j)) \\ &\geq \prod_{i=1}^{h+1} (1 - 2p) > 0 \end{aligned}$$

Application-Satisfiability

• Problem:

- K-SAT problems where each literal appears at most $T=2^k/4k$ can be satisfiable

• Proof:

- Suppose a random assignment of T/F to each literal Ei: Event that i- clause is not satisfied $\Pr(\mathsf{Ei}) = 1/2^k$

→
$$4dp = 4 \cdot k \cdot (2^k/4k) \cdot 1/2^k = 1$$

- Pr(K-SAT is satisfiable) = Pr($\bigcap_{i=1}^{n} \bar{E}_{i}$) > 0 because 4dp ≤ 1

34

Application – LLL

- Application of LLL is easy
 - Just show that $4pd \le 1$

Critical Point:

Model proper dependency graphs

- Example: Edge-Disjoint Paths
 - Paths that do not share same edges
- Problem: To prove that
 - Let F_i
 - Set of available paths that j-th node pair can select, m = |F_j |

If each path in Fi clashes with no more than k paths in F

→ There exists a way to choose n edge-disjoint paths connecting n pairs when 8nk/m ≤ 1

What are the vertices (events)? d? p?

Edge-Disjoint Paths

• Proof

 $E_{i,j}$: Event that paths selected by pair i and pair j clash

 \rightarrow $\Pr(E_{i,j}) \leq k/m$

G: Dependency graph based on these events Note that $E_{i,j}$ is independent of $E_{k,l}$ for $i \neq k, j \neq l$ # degrees of $E_{i,j} \leq 2n$ d

→ $4pd = 4 (k/m) 2n = 8kn/m \le 1$

Application: k-SAT

- LLL can be used for constructive solution also
- Usually it is quite difficult to apply
 - Section 6.8 is an example of constructive application of LLL
- Structure of constructive application of LLL
 - In the first phase, a subset of random variables are assigned with randomly selected values
 - Such that it is possible to prove the existence of solutions to the remaining problem with LLL
 - Such that remaining problem is partitioned into several independent components that are small enough to be solved by an exhaustive search
- Note that
 - 2-SAT is polynomial
 - k-SAT for $k \ge 3$ is NP-Hard
- We will prove that Some k-SAT is polynomial

Seoul National University 37

- We already proved that
 - k-SAT is satisfiable if each literal appears at most $T=2^k/4k$ times
- Now, we construct a solution in polynomial time if $T=2^{\alpha k}$ for some small constant $\alpha > 0$
 - Phase 1: Random allocation of T/F to several literals
 - Phase 2: Exhaustive search with remaining literals
- Definitions and Notations
 - l literals $(x_1, x_2, ..., x_l)$ and m clauses $(C_1, C_2, ..., C_m)$
 - Dangerous clause: Clause that is
 - k/2 literals are fixed AND
 - Not satisfied yet
 - Surviving clause: clause unsatisfied in Phase 1
 - \rightarrow Surviving clause has $\geq k/2$ unassigned literals
 - Deferred literal is a literal not used in Phase 1

• Phase 1

- Sequentially assign T/F values to literals
- If x_i is not in a dangerous clause, assign it with T/F randomly

• Claim:

- The problem remained to Phase 2 is satisfiable

Proof

- Prove that $4dp \le 1$

Let E_i be the event that i-th Phase 2 clause is not unsatisfied

$$p = \Pr(E_i) \le 2^{-k/2}$$

$$d \le k \cdot 2^{\alpha k}$$

 $4dp = 4 \cdot k2^{\alpha k} \cdot 2^{-k/2} \le 1$ for small α

- Consider clauses remained in phase 2
- Consider two dependency graphs H and H'
 - H: Graph generated from the original k-SAT formula
 - H': Graph generated with survived clauses in Phase 2
- H (H'also) have several (connected) components
- If the size of the largest component in H' is O(log m), then we can find a solution in polynomial of n

- Claim
 - All components in H' are of size O(log m) with probability 1-o(1)

Proof

- First, define a tree S called 4-Tree for a component R in H as follows
 - ① Any two nodes in S are at least 4 hops away each other in H
- ② Every edge in S connects two nodes that are exactly 4 hops away each other in H
- ③ Any node of R is wither in S or is within three hops from a node in S
- Suppose R has r nodes
- → How many nodes in 4-Tree generated from R? (Maximal size of the 4-Tree)

For each vertex, there are $\leq d^3$ nodes within 3 hops

 \rightarrow Maximal 4-Tree from R has $\geq r/d^3$ nodes

Lab.

k-SAT Problem

- Proof Cont.
 - We need to prove that "There is no component of size $r \ge c \log_2 m$ in H' with probability 1-o(1)"

"There is 4-Tree of size $\geq r/d^3$ with probability 1-o(1)

Let us count the number of 4-Trees of size $s = r/d^3$

- → Ways to generate 4-Trees of size s in H $\leq m(d^4)^{2s} = md^{8r/d^3}$ (Why?)
- Nodes in a 4-Tree is independent and the probability that s nodes survive in H' is $\leq ((d+1)2^{-k/2})^s$
 - → Probability that has component of size r is

$$\leq m d^{8r/d^3} \cdot ((d+1)2^{-k/2})^{r/d^3} \leq m d^{rk/d^3(8\alpha+2\alpha-\frac{1}{2})} = o(1)$$
 for $r \geq c \log_2 m$

General Lovasz Local Lemma

- We proved the symmetric case of Lovasz Local Lemma
- Now, consider general case

• Theorem

Let G be a dependency graph of BAD events {E1, E2, ..., En} If there are $x_1, x_2, ..., x_n \in [0,1)$ such that $\Pr(Ei) \leq x_i \cdot \prod_{(i,i) \in G} (1-x_i)$

- \rightarrow Pr(No BAD Events) $\geq \prod (1 x_i)$
- Proof is similar to the symmetric case

43

General Lovasz Local Lemma

To prove that

If there exist $x_1, x_2, ..., x_n \in [0,1)$ such that $\Pr(\text{Ei}) \leq x_i \prod_{(i,j) \in E} (1-x_j)$, then

For
$$|S| = 1, 2, \dots, n$$

For
$$|S| = 1, 2, \dots, n$$

②
$$Pr(F_s) = \prod_{j \in S} (1 - x_j) > 0$$