DIALOGUE DATASETS

		No. of Concession, Name of Street, or other	
Dataset	Size	Source	Quality
DailyDialog (Li et al., 2017b)	90k	ESL websites	auto-extracted
Wizard-of-Wikipedia (Dinan et al., 2019)	100k	crowdsourcing	human-written
Document-grounded (Zhou et al., 2018)	100k	crowdsourcing	human-written
Persona-Chat (Zhang et al., 2018)	150k	crowdsourcing	human-written
Self-dialogue (Fainberg et al., 2018)	150k	crowdsourcing	human-written
Cornell Movie Corpus (Danescu-Niculescu-	300k	movie scripts	auto-extracted
Mizil and Lee, 2011)			
Self-feeding chatbot (Hancock et al., 2019)	500k	human-bot dialogues	partly human-writter
Twitter corpus ⁷	5M	Twitter posts/replies	auto-extracted
Gutenberg Dialogue Dataset	15M	Books	auto-extracted
Opensubtitles (Henderson et al., 2019)	320M	movie subtitles	auto-extracted
Reddit (Henderson et al., 2019)	730M	Reddit threads	auto-extracted

EXTRACTION PIPELINE

Project Gutenberg: 60.000 online books in the public domain

Identifying dialogues and changes between speakers

0-50 lines of python to extend to new languages

DATASET STATISTICS

	#U	U	#D	D
English	14 773 741	22.17	2 526 877	5.85
German	226 015	24.44	43 440	5.20
Dutch	129 471	24.26	23 541	5.50
Spanish	58 174	18.62	6 912	8.42
Italian	41 388	19.47	6 664	6.21
Hungarian	18 816	14.68	2 826	6.66
Portuguese	16 228	21.40	2 233	7.27

ERROR STATISTICS

in a voice of deep anguish he said,—

"She can sleep—she can sleep—no ghostly vision scares slumber from her eyes—while—"
He shuddered, and passed a step or two on, then pausing

n, then pausing Son "Pl

And he was singing, too, as he went on with his task; sometimes—
"Play on, minstrèl, play on, minstrèl, My lady is mine only

THE GUTENBERG DIALOGUE DATASET

Richard Csaky^{1,2}, Gábor Recski³

New dialogue dataset extracted from online books

English (14.8M utterances)

German, Dutch, Spanish, Italian, Hungarian, Portuguese

Easily extendable to new languages

github.com/ricsinaruto/gutenberg-dialog
Download datasets/trainings/code

ricsinaruto.github.io/chatbot.html
Online chatbot demo

¹Budapest University of Technology
²University of Oxford
³TII Wien

TRAINING SETUP

METRICS

- Response length
- Word / utterance entropy
- KL-divergence
- Embedding metrics
- Coherence
- Distinct-1, 2
- BLEU-1, 2, 3, 4

PRETRAINING RESULTS

Scenarios: Zeroshot (ZS) and Finetuned (FT)
Pre-trained on Gutenberg (G) vs Opensubtitles (O) vs only
Personachat (B)
Tested on Personachat test set

			U	H_w^u	H_w^b	H_u^u	H_u^b	D^u_{kl}	D_{kl}^b	AVG	EXT	GRE	СОН	d1	d2	b1	b2	b3	b4
er	SZ	G	8.3	6.99	11.9	57.7	80	1.00	2.24	.493	.540	.545	.574	.0154	.077	.091	.092	.091	.084
ransformer	N	О	6.6	6.70	11.5	45.2	67	2.00	2.85	.471	.556	.542	.476	.0004	.001	.094	.098	.095	.088
nsf		G	11.0	6.48	10.4	68.2	92	1.28	2.15	.513	.575	.571	.593	.0104	.048	.165	.163	.164	.155
Ţa]	F	O	10.6	6.37	10.1	68.3	98	2.58	2.66	.431	.575	.532	.444	.0011	.002	.148	.151	.154	.146
		В	11.1	6.88	11.0	76.5	110	1.28	2.21	.508	.570	.562	.559	.0047	.018	.164	.163	.165	.156
	Š	G	9.5	7.62	13.1	72.7	101	.56	1.15	.510	.501	.531	.551	.0206	.160	.092	.104	.107	.101
GPT2	N	О	6.0	7.35	12.6	44.9	60	.44	1.11	.478	.491	.519	.537	.0294	.186	.072	.074	.072	.066
GP		G	11.0	7.45	11.8	82.6	116	.27	.64	.536	.559	.558	.590	.0182	.129	.157	.159	.162	.153
	F	O	10.5	7.41	11.6	78.1	108	.32	.71	.531	.558	.555	.583	.0205	.129	.153	.154	.155	.146
		В	10.3	7.50	11.8	77.9	108	.25	.61	.533	.554	.553	.587	.0219	.136	.151	.154	.155	.146

GUTENBERG VS OPENSUBTITLES

Tested on concatenated test set from both datasets

		U	H_w^u	H_w^b	H_u^u	H_u^b	D_{kl}^u	D_{kl}^b	AVG	EXT	GRE	СОН	d1	d2	b1	b2	b3	b4
Ξ	G O	8.8 6.1	7.77 7.68	13.4 13.4	69 47	105 68	.331 .292	.707 .689			.518 .522		.0034 .0048		.0806 .0867		.0883 .0810	
	G O	7.4 6.4	7.98 8.12	13.9 14.3	60 52	84 72	.194 .269	.500 .635				.576 .566	.0387 .0329		.0803 .0825		.079 1 .083	.0734 .0769
N	G O	6.8 5.8	7.81 7.79	13.8 14.0	53 45	76 64	.214 .388	.624 .922			.581 .580		.0453 .0382		.0858 .0850		.083	.077 .077
r+1	G O	8.0 5.8	7.16 7.76	12.1 13.4	58 46	83 61	.373 .198	.744 .621			.524 .516		.056 .093	.242 .397	.0883 .0840		.0 788 .0716	
	G O	6.9 4.9	7.59 7.89	12.7 13.6	51 39	69 49	.183 .266	.331 .987			.544 .538	.490 .473	.131 .155	.451 .558	.0732 .0676		.0708 .0604	
HU	G O	4.59 5.56		13.2 13.0		38 44	.176 .278	.530 .538	.410 .401		.520 .529		.120 .111	.463 .419	.086 .106	.075 .100	.0677 .0937	.0609 .0848
> :	G O	8.4 6.3	7.44 7.62	12.6 13.0	63 49	88 61	.189 .226	.495 .671	.455 .443			.474 .488	.184 .210	.575 . 627	.0886 .0816		3 .093 2 .078	.087 .072