

Chapter 1

INTRODUCTION TO OPERATING SYSTEMS

Đinh Công Đoan

1

Introduction

- What is an operating system?
- Operating Systems History
 - Simple Batch Systems
 - Multiprogrammed Batch Systems
 - ✓ Time-sharing Systems
 - Personal Computer Systems
- Parallel and Distributed Systems
- Real-time Systems

Đinh Công Đoan

What is an Operating System?

- An OS is a program that acts an intermediary between the user of a computer and computer hardware.
- Major cost of general purpose computing is software.
 - OS simplifies and manages the complexity of running application programs efficiently.

Đinh Công Đoan

Main functionalities of OS

- Process Management
- Memory Management
- Storage Management
- Mass-Storage Management
- To provide effective and user friendly services

Đinh Công Đoan

Computer System Components

- Hardware
 - Provides basic computing resources (CPU, memory, I/O devices).
- Operating System
 - Controls and coordinates the use of hardware among application programs.
- Application Programs
 - Solve computing problems of users (compilers, database systems, video games, business programs such as banking software).
- Users
 - People, machines, other computers

Đinh Công Đoan

Operating System Views

- OS is a Resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a Control program
 - Controls execution of user programs and operation of I/O devices.
- Kernel
 - The program that executes forever (everything else is an application with respect to the kernel)

Đinh Công Đoan

Goals of an Operating System

- Simplify the execution of user programs and make solving user problems easier.
- Use computer hardware efficiently.
 - ✓ Allow sharing of hardware and software resources.
- Make application software portable and versatile.
- Provide isolation, security and protection among user programs.
- Improve overall system reliability
 - ✓ Error confinement, fault tolerance, reconfiguration

 Dinh Công Doan

9

Why should I study Operating Systems?

- Need to understand interaction between the hardware and applications
 - ✓ New applications, new hardware..
 - ✓ Inherent aspect of society today
- Need to understand basic principles in the design of computer systems
 - ✓ efficient resource management, security, flexibility
- Increasing need for specialized operating systems
 - e.g. embedded operating systems for devices cell phones, sensors and controllers
 - real-time operating systems aircraft control, multimedia services

Đinh Công Đoan

OS needs to keep pace with hardware improvements								
	1981	1997	2014	Factor (2014/1981)				
Uniprocessor speed (MIPS)	1	200	2500	2.5K				
CPUs per computer	1	1	10+	10+				
\$/Processor MIPS	\$100K	\$25	\$0.20	500K				
DRAM Capacity (MiB)/\$	0.002	2	1K	500K				
Disk Capacity (GiB)/\$	0.003	7	25K	10M				
Home Internet	300 bps	256 Kbps	20 Mbps	100K				
Machine room network	10 Mbps (shared)	100 Mbps (switched)	10 Gbps (switched)	1000				
Ratio of users	100:1	1:1	1:several	100+				
to computers				22				

Operating System Spectrum

- Monitors and Small Kernels
 - special purpose and embedded systems, real-time systems
- Batch and multiprogramming
- Timesharing
 - workstations, servers, minicomputers, timeframes
- Transaction systems
- Personal Computing Systems
- Mobile Platforms, devices (of all sizes)

Đinh Công Đoan

Early Systems - Bare Machine (1950s)

- Hardware expensive; Human cheap
- Structure
 - Large machines run from console
 - ✓ Single user system
 - Programmer/User as operator
 - Paper tape or punched cards
- Early software
 - Assemblers, compilers, linkers, loaders, device drivers, libraries of common subroutines.
- Secure execution
- Inefficient use of expensive resources
 - ✓ Low CPU utilization, high setup time.

Đinh Công Đoan

19

Simple Batch Systems (1960's)

- Reduce setup time by batching jobs with similar requirements.
- Add a card reader, Hire an operator
 - User is NOT the operator
 - Automatic job sequencing
 - Forms a rudimentary OS.
 - Resident Monitor
 - Holds initial control, control transfers to job and then back to monitor.
 - Problem
 - Need to distinguish job from job and data from program

Đinh Công Đoan

Supervisor/Operator Control

- Secure monitor that controls job processing
 - Special cards indicate what to do.
 - ✓ User program prevented from performing I/O
- Separate user from computer
 - User submits card deck
 - cards put on tape
 - tape processed by operator
 - ✓ output written to tape
 - tape printed on printer
- Problems
 - ✓ Long turnaround time up to 2 DAYS!!!
 - ✓ Low CPU utilization
 - I/O and CPU could not overlap; slow mechanical devices
 Đinh Công Đoan

21

IBM 7094

Batch Systems - Issues

- Solutions to speed up I/O:
- Offline Processing
 - load jobs into memory from tapes, card reading and line printing are done offline.
- Spooling
 - Use disk (random access device) as large storage for reading as many input files as possible and storing output files until output devices are ready to accept them.
 - Allows overlap I/O of one job with computation of another.
 - ✓ Introduces notion of a job pool that allows OS choose next job to run so as to increase CPU utilization.

Đinh Công Đoan

Batch Systems - I/O completion

- How do we know that I/O is complete?
 - ✓ Polling:
 - Device sets a flag when it is busy.
 - Program tests the flag in a loop waiting for completion of I/O.
 - ✓ Interrupts:
 - On completion of I/O, device forces CPU to jump to a specific instruction address that contains the interrupt service routine.
 - After the interrupt has been processed, CPU returns to code it was executing prior to servicing the interrupt

Đinh Công Đoan

	ı	ı	
	ı		
	П		١
-	H		H
	-		

How are programs run?

- Multiprogrammed systems
 - Many programs (Jobs) are loaded into main memory.
 - CPU exercution is share between programs (jobs)
 - ✓ To get the best of CPU utilization
- The roles of OS:
 - Jobs scheduling: to choose the proper one fromm jobs pool (on the mass storage disk) to bee loaded into memory for exercution.
 - Memory management
 - CPU scheduling
 - Resources allocation
 - Protection

Đinh Công Đoan

operating system				
job 1				
job 2				
job 3				
job 4				

Multiprogramming

- Use interrupts to run multiple programs simultaneously
 - ✓ When a program performs I/O, instead of polling, execute another program till interrupt is received.
- Requires secure memory, I/O for each program.
- Requires intervention if program loops indefinitely.
- Requires CPU scheduling to choose the next job to run

Đinh Công Đoan

- Time-sharing systems
 - Multiprogrammed systems does not work well with users in term of interaction
 - CPU used interchangable between jobs
 - o time slice, quantum time for each job when gain the CPU
 - Interactive interface user with higher response time (about 1 sesond)
 - Job can obtains CPU only when located in main memory.
 - Whenever required a job can be swapped out, moving from main memory to the storage device, providing memory space for another jobs

Đinh Công Đoan

Timesharing

- Hardware getting cheaper; Human getting expensive
- Programs queued for execution in FIFO order.
- Like multiprogramming, but timer device interrupts after a quantum (timeslice).
 - Interrupted program is returned to end of FIFO
 - Next program is taken from head of FIFO
- Control card interpreter replaced by command language interpreter.

Đinh Công Đoan

29

Timesharing (cont.)

- Interactive (action/response)
 - when OS finishes execution of one command, it seeks the next control statement from user.
- File systems
 - online filesystem is required for users to access data and code.
- Virtual memory
 - ✓ Job is swapped in and out of memory to disk

Đinh Công Đoan

Personal Computing Systems

- Hardware *cheap*; Human *expensive*
- Single user systems, portable.
- I/O devices keyboards, mice, display screens, small printers.
- Laptops and palmtops, Smart cards, Wireless devices.
- Single user systems may not need advanced CPU utilization or protection features.
- Advantages:
 - ✓ user convenience, responsiveness, ubiquitous

Đinh Công Đoan

31

Paralell computers

- Parallel systems (parallel, multiprocessor, or tightly-coupled system)
 - More than one CPU (Multi-Cores)
 - ✓ Share the common computer bus, clock
 - Advantages:
 - System throughput: more CPU → Faster proceesing
 - Effective use of system resources by sharing such as disks,
 I/O devices
 - 。Reliability: high

Đinh Công Đoan

Parallel Systems

- Multiprocessor systems with more than one CPU in close communication.
- Improved Throughput, economical, increased reliability.
- Kinds:
 - Vector and pipelined
 - Symmetric and asymmetric multiprocessing
 - Distributed memory vs. shared memory
- Programming models:
 - Tightly coupled vs. loosely coupled ,message-based vs. shared variable

Đinh Công Đoan

Distributed Systems

- Hardware very cheap; Human very expensive
- Distribute computation among many processors.
- Loosely coupled
 - no shared memory, various communication lines
- client/server architectures
- Advantages:
 - ✓ resource sharing
 - computation speed-up
 - Reliability
 - ✓ communication e.g. email
- Applications digital libraries, digital multimedia

Đinh Công Đoan

Real-time systems

- Correct system function depends on timeliness
- Feedback/control loops
- Sensors and actuators
- Hard real-time systems
 - Failure if response time too long.
 - Secondary storage is limited
- Soft real-time systems
 - ✓ Less accurate if response time is too long.
 - ✓ Useful in applications such as multimedia, virtual reality Đinh Công Đoan

A personal computer today

37

- Super AMOLED display
- Capacitive touchscreen (multitouch)
- Audio (speaker, microphone)
- Vibration
- S pen
- 4G LTE
- **NFC**
- WiFi
- Bluetooth
- Infrared
- 64 GB internal storage (extended by microSD)
- Adreno 330 GPU
- Hexagon DSP
- Multimedia processor

- 13 MP front camera
- 2 MP back camera
- Accelerometer
- Gyroscope
- Proximity sensor
- Compass
- Barometer
- Temperature sensor
- **Humidity sensor**
- **Gesture Sensor**
- **GPS**

Summary of lecture

- What is an operating system?
- Early Operating Systems
- Simple Batch Systems
- Multiprogrammed Batch Systems
- Time-sharing Systems
- Personal Computer Systems
- Parallel and Distributed Systems
- Real-time Systems

Đinh Công Đoan