#### Medical Image Processing

# IX. Morphological Image Processing



The beginning of mathematical morphology - Georges Matheron and Jean Serra, 1964

#### IX. Morphological Image Processing

- 1. Preliminaries
- 2. Erosion and Dilation
- 3. Opening and Closing
- 4. The Hit-or-Miss Transformation
- 5. Some Basic Morphological Algorithms
- 6. Gray Scale Morphology

#### Preview

- Mathematical morphology
  - A tool for extracting image components that are useful in the presentation and description of region shape, such as boundaries, skeletons and the convex hull
- Morphological techniques for pre- or postprocessing
  - Filtering
  - Thinning
  - Pruning



Can you count the number of the coffee beans?

#### **Preliminaries**

- Set theory: Sets in mathematical morphology represent objects in an image
  - binary image (0 = white, 1 = black) : the element of the set is the coordinates (x,y) of a pixel belonging to the object  $\rightarrow$   $Z^2$
  - gray-scaled image : the element of the set is the coordinates (x,y) of a pixel belonging to the object and the intensity value  $\rightarrow Z^3$

#### **Definitions and Notations**

- Structuring elements (SE)
  - Small sets or subimages used to probe an image under study for properties of interest
- Reflection

$$\hat{B} = \{ w \mid w = -b, \text{ for } b \in B \}$$

Translation

$$(B)_z = \{c \mid c = b + z, \text{ for } b \in B\}$$
  $z = (z_1, z_2)$ 



#### **Erosion**

• Definition

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \cap A^c = \emptyset\}$$

- The erosion of A by B is the set of all points z such that B, translated by z, in contained in A.
- Shrink or thin objects in a binary image.
- Morphological filter: Image details smaller than the SE are filtered (removed) from the image.



a b c d e FIGURE 9.4 (a) Set A. (b) Square structuring element, B. (c) Erosion of A by B, shown shaded. (d) Elongated structuring element. (e) Erosion of A by B using this element. The dotted border in (e) and (e) is the boundary of set A, shown only for reference.





#### Example



c d

FIGURE 9.5 Using erosion to remove image components (a) A
486 × 486 binary image of a wire-bond mask.
(b)-(d) Image eroded using square structuring elements of sizes 11 × 11, 15 × 15, and 45 × 45, respectively. The elements of the SEs were all 1s.

#### Dilation

Definition

$$A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\}$$

$$A \oplus B = \{z | [(\hat{B})_z \cap A] \subseteq A\}$$

- The dilation of A by B is the set of all displacements, z, such that  $\hat{B}$  and A overlap by at least one element. Grow or thicken objects in a binary image.







#### Dilation: Bridging gaps



 Advantage over lowpass filtering: directly in a binary image (LPF starts with a binary image and produces a gray-scale image, which would require thresholding to convert it back to binary form.

#### How to Implement

- Analogous to spatial convolution
  - The SE B is viewed as a convolution mask (MxN).
  - Slide and compute
- Erosion

$$A \bigcirc B = A \underset{m=1}{\overset{M}{\bigvee}} D A \underset{n=1}{\overset{N}{\bigvee}} D \{ \text{if } (\hat{B}), (A) \}$$
  $\hat{B}$ : flipped  $B$  about its origin

Dilation

$$A \oplus B = \bigcap_{m=1}^{M} \bigcap_{n=1}^{N} \{ \text{if } (B), (A) \}$$

# Example - Erosion and Dilation



**FIGURE 9.7** (a) Image of squares of size 1, 3, 5, 7, 9, and 15 pixels on the side. (b) Erosion of (a) with a square structuring element of 1's, 13 pixels on the side. (c) Dilation of (b) with the same structuring element.

structuring element B = 13x13 pixels of gray level 1

#### Opening

- Erosion + dilation  $A \circ B = (A \ominus B) \oplus B = \bigcup \{(B_z) \mid (B_z) \subseteq A\}$
- Smooth the contour of an object
- Break narrow isthmuses
- · Eliminate thin protrusions



**FIGURE 9.8** (a) Structuring element B "rolling" along the inner boundary of A (the dot indicates the origin of B). (b) Structuring element. (c) The heavy line is the outer boundary of the opening, (d) Complete opening (shaded). We did not shade A in (a) for clarity.





# Closing • Dilation + erosion $A \bullet B = (A \oplus B) \oplus B$ • Smooth sections of contours as opposed to opening • Fuse narrow breaks and long thin gulfs • Eliminate small holes • Fill gaps in the contour • Figure 9.9 (a) Structuring element B "rolling" on the outer boundary of set A. (b) The heavy line is the outer boundary of the closing. (c) Complete closing (shaded). We did not shade A in (a) for clarity.

















#### Some Basic Morphological Algorithms

- (1) Boundary extraction
- (2) Hole filling
- (3) Extraction of connected components
- (4) Convex hull
- (5) Thinning
- (6) Thickening
- (7) Skeletons
- (8) Pruning
- (9) Morphological reconstruction

(1) Boundary Extraction
$$\beta(A) = A - (A \ominus B)$$

$$A = B$$

$$F(BURS, 13 \text{ (a) Sct. } A. \text{ (b) Structuring element } B. \text{ (c) } A \text{ croded by } B. \text{ (d) Boundary.}$$

$$\beta(A)$$

$$\beta(A)$$



#### (3) Extraction of Connected Components

$$X_k = (X_{k-1} \oplus B) \bigcap A \quad k = 1, 2, 3, ...$$





a b c d

FIGURE 9.17 Extracting connected components (a) Structuring element. (b) Array containing a set with one connected component. (c) Initial array containing a 1 in the region of the connected component. (d)–(g) Various steps in the iteration of Eq. (9.5-3).

#### Example





#### (4) Convex Hull

• Convex : The straight line segment joining any two points in  ${\cal A}$  lies entirely within  ${\cal A}$ 





- Convex hull of S: the smallest convex set containing S
- Convex hull problem:





#### Obtaining the Convex Hull

$$X_k^i = (X_{k-1}^i \circledast B^i) \cup A \quad i = 1,2,3,4 \text{ and } k = 1,2,3,...$$







FIGURE 9.20
Result of limiting growth of the convex hull algorithm to the maximum dimensions of the original set of points along the vertical and horizontal directions.

#### (5) Thinning

- Used to shrink objects in binary images
- Differs from erosion in that objects are never completely removed
- Thinning is defined as:

$$A \otimes B = A - (A \otimes B)$$
$$= A \cap (A \otimes B)^{c}$$

• More useful expression :

$$\{B\} = \{B^1, B^2, B^3, ..., B^n\}$$
  $B^i$  is a rotated version of  $B^{i-1}$   
 $A \otimes \{B\} = ((...((A \otimes B^1) \otimes B^2)...) \otimes B^n)$ 



#### (6) Thickening

· Morphological dual of thinning

**FIGURE 9.22** (a) Set A. (b) Complement of A. (c) Result of thinning the complement of A. (d) Thickened set obtained by complementing (c). (e) Final result, with no disconnected points.

#### (7) Skeletons

- The skeleton of an object is often defined as the medial axis of that object.
  - Pixels are then defined to be skeleton pixels if they have more than one "closest neighbours".



### 







# Skeletonization raw skeleton pruned skeleton reconnected skeleton | Image: Control of the cont

#### (8) Pruning

• Essential component to thinning and skeletonizing algorithms that leave parasitic components that need to be cleaned up by postprocessing

$$X_1 = A \otimes \{B\}$$
 
$$X_2 = \bigcup_{k=1}^8 (X_1 \circledast B^k)$$
 
$$X_3 = (X_2 \oplus H) \cap A$$
 H is a 3x3 SE of 1s.

$$X_4 = X_1 \cup X_3$$



#### (9) Morphological Reconstruction

- F: marker image, G: mask image
- Geodestic dilation

  - Size  $1: D_G^{(1)}(F) = (F \oplus B) \cap G$  Size  $n: D_G^{(n)}(F) = D_G^{(1)}[D_G^{(n-1)}(F)]$  $(D_G^{(0)}(F)=F)$



- Geodestic Erosion

  - $\begin{array}{l} \text{ Size 1} : E_G^{(1)}(F) = (F \circleddash B) \cup G \\ \text{ Size } n : E_G^{(n)}(F) = E_G^{(1)}[E_G^{(n-1)}(F)] \qquad (E_G^{(0)}(F) = F) \end{array}$



## Morphological Reconstruction by Dilation and Erosion

• Morphological reconstruction by dilation

$$R_G^D(F) = D_G^{(k)}(F)$$

$$D_G^{(k)}(F) = D_G^{(k+1)}(F)$$

Morphological reconstruction by erosion

$$R_G^E(F) = E_G^{(k)}(F)$$

$$E_G^{(k)}(F) = E_G^{(k+1)}(F)$$







#### Example

- Remove small regions that are disjoint from larger objects without distorting the small features of the large objects.

$$\begin{aligned}
1.J &= A \circ B & (B \text{ is a SE}) \\
2.T &= J \\
3.J &= J \oplus B \\
4.J &= A \text{ AND } J \\
5.\text{ If } J \neq T \text{, then go to 2} \\
\text{else stop}
\end{aligned}$$







opened



reconstructed

#### Summary

|             |                                                                              |                                                                                                        | Operation<br>Closing      | Equation $A \cdot B = (A \oplus B) \ominus B$                                                                                |
|-------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Operation   | Equation                                                                     | Comments (The Roman numerals refer to the structuring elements in Fig. 9.33.)                          | Hit-or-miss<br>transform  | $A \otimes B = (A \ominus B_{\downarrow}) \cap (A^{c} \ominus A \ominus B_{\downarrow}) - (A \ominus A \ominus A \ominus A)$ |
| Translation | $(B)_z = \{w w = b + z,$<br>for $b \in B\}$                                  | Translates the origin of B to point z.                                                                 | Boundary<br>extraction    | $\beta(A) = A - (A \ominus B)$                                                                                               |
| Reflection  | $\hat{R} = \{w   w = -h, \text{ for } h \in R\}$                             | Reflects all elements of<br>B about the origin of this set.                                            | Hole filling<br>Connected | $X_k = (X_{k-1} \oplus B) \cap A^c;$<br>k = 1, 2, 3,<br>$X_k = (X_{k-1} \oplus B) \cap A;$                                   |
| Complement  | $A^c - \{w w \notin A\}$                                                     | Set of points not in A.                                                                                | components                | k = 1, 2, 3,                                                                                                                 |
| Difference  | $\begin{array}{ll} A-B=\{w w\in A,w\not\in B\}\\ &=A\cap B^c \end{array}$    | Set of points that belong to $A$ but not to $B$ .                                                      | Convex hull               | $X_k^i = (X_{k-1}^i \otimes B^i) \cup A;$<br>i = 1, 2, 3, 4;                                                                 |
| Dilation    | $A\oplus B = \left\{z (\hat{B}_{\overline{z}})\cap A\neq\varnothing\right\}$ | "Expands" the boundary<br>of A. (I)                                                                    |                           | k = 1, 2, 3,;<br>$X_0^i = A$ ; and<br>$D^i = X_{i-1}^i$                                                                      |
|             | $A \ominus B = \{z (B)z \subseteq A\}$                                       | "Contracts" the boundary of<br>A. (1)                                                                  | Thinning                  | $A \otimes B = A - (A \otimes B)$<br>= $A \cap (A \otimes B)^c$                                                              |
| Opening     | $A \circ B = (A \ominus B) \oplus B$                                         | Smoothes contours, breaks<br>narrow isthmuses, and<br>eliminates small islands and<br>sharp peaks. (I) |                           | $A \otimes \{B\} =$<br>$((((A \otimes B^1) \otimes B^2)) \otimes$<br>$\{B\} = \{B^1, B^2, B^3,, B^n\}$                       |
|             |                                                                              | (Continued)                                                                                            | Thickening                | $A \odot B = A \cup (A \odot B)$<br>$A \odot \{B\} =$<br>$((\dots(A \odot B^1) \odot B^2 \dots) \odot B^2$                   |
|             |                                                                              |                                                                                                        | Skeletons                 | $S(A) = \bigcup_{k=0}^{K} S_k(A)$                                                                                            |
|             |                                                                              |                                                                                                        |                           | $S_k(A) = \bigcup_{k=0}^{K} \{(A \ominus kB)$                                                                                |
|             |                                                                              |                                                                                                        |                           | <ul><li>- [(A ⊕ kB) * B]}</li><li>Reconstruction of A:</li></ul>                                                             |
|             |                                                                              |                                                                                                        |                           | $A = \bigcup_{k=0}^K (S_k(A) \oplus kB)$                                                                                     |
|             |                                                                              |                                                                                                        |                           |                                                                                                                              |

|                          |                                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                          |                                                                                                                                                                                                                                                                      | (The Roman numerals refer to the                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                 |
| Operation                | Equation                                                                                                                                                                                                                                                             | structuring elements in Fig. 9.33.)                                                                                                                                                                                                                                                                                                               | Operation                                                                                                                     | Equation                                                                        |
| losing                   | $A \bullet B = (A \oplus B) \ominus B$                                                                                                                                                                                                                               | Smoothes contours, fuses<br>narrow breaks and long thin<br>gulfs, and eliminates small<br>holes, (1)                                                                                                                                                                                                                                              | Pruning                                                                                                                       | $X_1 = A \oplus \{B\}$<br>$X_2 = \bigcup_{k=1}^{8} (X_1 \oplus A_2)$            |
| lit-or-miss<br>transform | $\begin{split} A \otimes B &= (A \ominus B_1) \cap (A^e \ominus B_2) \\ &= (A \ominus B_1) - (A \oplus \hat{B_2}) \end{split}$                                                                                                                                       | The set of points (coordinates)<br>at which, simultaneously, $B_1$<br>found a match ("hit") in $A$<br>and $B_2$ found a match in $A$ ?                                                                                                                                                                                                            |                                                                                                                               | $X_3 = (X_2 \oplus H)$<br>$X_4 = X_1 \cup X_3$<br>$D_G^{(1)}(F) = (F \oplus$    |
| oundary<br>extraction    | $\beta(A) = A - (A \ominus B)$                                                                                                                                                                                                                                       | Set of points on the boundary<br>of set A. (I)                                                                                                                                                                                                                                                                                                    | Geodesic<br>dilation of<br>size 1                                                                                             |                                                                                 |
| lole filling             | $X_k = (X_{k-1} \oplus B) \cap A^c;$<br>k = 1, 2, 3,                                                                                                                                                                                                                 | Fills holes in $A$ ; $X_0$ = array of<br>0s with a 1 in each hole. (II)                                                                                                                                                                                                                                                                           | Geodesic<br>dilation of<br>size n                                                                                             | $D_G^{(8)}(F) = D_G^{(1)}[D_G^{(8)}(F) - F]$                                    |
| Connected components     | $X_k = (X_{k-1} \oplus B) \cap A;$<br>k = 1, 2, 3,                                                                                                                                                                                                                   | Finds connected components<br>in A; X <sub>0</sub> = array of 0s with a<br>1 in each connected<br>component. (I)                                                                                                                                                                                                                                  | Geodesic<br>crossion of<br>size 1                                                                                             | $E_G^{(l)}(F) = (F \ominus$                                                     |
| onvex hull               | $X_k^i = (X_{k-1}^i \otimes B^i) \cup A;$<br>i = 1, 2, 3, 4;<br>k = 1, 2, 3,;<br>$X_0^i = A;$ and                                                                                                                                                                    | Finds the convex hull $C(A)$ of<br>set $A$ , where "conv" indicates<br>convergence in the sense that<br>$X_k^i = X_{k-1}^i$ . (III)                                                                                                                                                                                                               | Geodesic<br>erosion of<br>size n<br>Morphological                                                                             | $E_G^{(n)}(F) = E_G^{(1)}[i$<br>$E_G^{(0)}(F) = F$<br>$R_G^D(F) = D_G^{(k)}(F)$ |
| hinning                  | $\begin{split} D^{f} &= X_{\text{corr}}^{f} \\ A \otimes B &= A - (A \otimes B) \\ &= A \cap (A \otimes B)^{c} \\ A \otimes \{B\} &= \{(\dots ((A \otimes B^{1}) \otimes B^{2}) \dots) \otimes B^{n}) \\ \{B\} &= \{B^{1}, B^{2}, B^{3}, \dots, B^{n}\} \end{split}$ | Thins set A. The first two<br>equations give the basic defi-<br>nition of thinning. The last<br>equations denote thinning<br>by a sequence of structuring<br>elements. This method is<br>normally used in practice. (IV)                                                                                                                          | reconstruction<br>by dilation<br>Morphological<br>reconstruction<br>by crossion<br>Opening by<br>reconstruction<br>Closing by | $R_G^E(F) = E_G^{(k)}(F)$<br>$O_R^{(n)}(F) = R_F^R[(G)]$                        |
| hickening                | $A \odot B = A \cup (A \odot B)$<br>$A \odot \{B\} =$<br>$(((A \odot B^1) \odot B^2) \odot B^n)$                                                                                                                                                                     | Thickens set A. (See preceding<br>comments on sequences of<br>structuring elements.) Uses IV<br>with 0s and 1s reversed.                                                                                                                                                                                                                          | reconstruction  Hole filling                                                                                                  | $C_R^{(n)}(F) = R_F^R[(A + B)^2]$ $H = [R_F^D(F)]^c$                            |
| keletons                 | $\begin{split} S(A) &= \sum_{k=0}^{L} S_k(A) \\ S_k(A) &= \sum_{k=0}^{K} \{(A \ominus kB) \\ &= \{(A \ominus kB) + B\}\} \\ \text{Reconstruction of } A: \\ A &= \sum_{k=0}^{K} (S_k(A) \oplus kB) \end{split}$                                                      | Finds the skeleton $S(A)$ of set<br>A. The last equation indicates<br>that $A$ can be recomstructed<br>from its skeleton subsets<br>$S_k(A)$ . In all three equations,<br>K is the value of the iterative<br>step after which the set $A$ credes to the empty set. The<br>order of the construction of successive<br>erosions of $A$ by $B$ . (I) | Border clearing                                                                                                               | $X = I - R_i^p(F)$                                                              |
|                          |                                                                                                                                                                                                                                                                      | (Continued)                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |                                                                                 |

 $X_t = X_t \cup X_t'$  for the first two equations. In the third constant II denotes the dilation of size I. The second of the

### Gray-Scale Morphology - Dilation

- If all the values of the SE are positive, the output image tends to be **brighter** than the input.
- Dark details either are reduced or eliminated, depending on how their values and shapes relate to the SE used for dilation.
- Like a convolution

$$[f \oplus b](x,y) = \max_{(s,t) \in b} \{f(x-s,y-t)\}$$







#### Erosion

- If all the elements of the SE are positive, the output image tends to be **darker** than the input
- The effect of bright details in the input image that are smaller in area than the structuring element is reduced, with the degree of reduction being determined by the gray-level values surrounding the bright detail and by the shape and amplitude values of the structuring element itself
- $[f \ominus b](x, y) = \min_{(s,t) \in b} \{f(x+s, y+t)\}$







#### Example



 $\label{eq:FIGURE 9.35} \textbf{(a)} A \textit{ gray-scale X-ray image of size 448} \times 425 \textit{ pixels. (b)} \textit{ Erosion using a flat disk SE with a radius of two pixels. (c)} \textit{ Dilation using the same SE. (Original image courtesy of Lixi, Inc.)}$ 

#### Example: Dilation and Erosion







#### Opening and Closing

#### Opening

- The structuring element is rolled underside the surface of f.
- All the peaks that are narrow with respect to the diameter of the structuring element will be reduced in amplitude and sharpness
- So, opening is used to remove small light details, while leaving the overall gray levels and larger bright features relatively undisturbed.
- The initial erosion removes the details, but it also darkens the image.
- The subsequent dilation again increases the overall intensity of the image without reintroducing the details totally removed by erosion.

#### Closing

- The structuring element is rolled on top of the surface of f.
- Peaks essentially are left in their original form (assume that their separation at the narrowest points exceeds the diameter of the structuring element)
- So, closing is used to remove small dark details, while leaving bright features relatively undisturbed.
- The initial dilation removes the dark details and brightens the image.
- The subsequent erosion darkens the image without reintroducing the details totally removed by dilation.

# 

#### Example



FIGURE 9.37 (a) A gray-scale X-ray image of size 448 × 425 pixels. (b) Opening using a disk SE with a radius of 3 pixels. (c) Closing using an SE of radius 5.

#### Example: Opening and Closing









# Some Basic Gray-Scale Morphological Algorithms - Smoothing

- Perform an opening following by a closing
- Effect: remove or attenuate both bright and dark artifacts or noise



#### Morphological Gradient

- $g = (f \oplus b) (f \ominus b)$
- The homogeneous areas are suppressed and the edges are enhanced



#### Top-hat and Bottom-hat Transformation

- · Remove objects
- Top-hat

$$T_{hat}(f) = f - (f \circ b)$$

- Light objects on a dark background
- Enhance detail in the presence of shading
- Correct the effects of nonuniform illumination



$$T_{bottom}(f) = (f \bullet b) - f$$

 Dark objects on a light background (black top-hat)



**FIGURE 9.40** Using the top-hat transformation for *shading correction*. (a) Original image of size  $600 \times 600$  pixels. (b) Thresholded image. (c) Image opened using a disk SE of radius 40. (d) Top-hat transformation (the image minus its opening). (e) Thresholded top-hat image.





Т 32





#### **Textural Segmentation**

- Subdivide two regions

  - A region composed on large blobsA region composed on smaller blobs



#### Gray-Scale Morphological Reconstruction



FIGURE 9.44 (a) Original image of size 1134 × 1360 pixels. (b) Opening by reconstruction of (a) using a horizontal line 71 pixels long in the erosion. (c) Opening of (a) using the same line. (d) Top-hat by reconstruction (e) Top-hat. (f) Opening by reconstruction of (d) using a horizontal line 11 pixels long. (g) Dilation of (f) using a horizontal line 21 pixels long. (h) Minimum of (d) and (g). (i) Final reconstruction result. (Images courtesy of Dr. Steve Eddins, The MathWorks, Inc.)

#### Homework #6

• Count the number of the cells



- -Remove white and dark noise
- -Separate the connected cells by erosion -Extract connected components and label each cell
- -Count the number of the cells
- -How can we deal with the cells that touch the border?