Exam Functional Programming – November 3rd 2014

Name	
Student number	
I study CS/AI/Other	

- Write **neatly** and carefully. Use a pen (no pencil!) with black or blue ink.
- Write your answers in the answer boxes. If you need more space, use the back side of the sheet and make a reference to it.
- You can score 90 points. You get 10 points for free, yielding a maximum of 100 points in total. Your exam grade is the obtained points divided by 10.
- If you need auxiliary lemmas in a proof, then prove the validity of these lemmas as well.

You may use throughout the entire exam the following functions + lemmas:

```
[] ++ ys
(x:xs) ++ ys
                    = ys
= x : (xs++ys)
foldr f z []
foldr f z (x:xs)
                    = z
                    = f x (foldr f z xs)
sum []
                     = 0
                    = x + sum xs
sum (x:xs)
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
head (x:xs)
                    = X
tail (x:xs)
                     = xs
length []
                    = 0
length (x:xs) = 1 + \text{length xs}
             = \x -> f (g x)
f.g
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys
                     = []
-- Lemma associativity of ++ (may be used without proof):
-- (xs ++ ys) ++ zs = xs ++ (ys ++ zs) = xs ++ ys ++ zs
-- Lemma concatenation with [] (may be used without proof):
-- xs ++ [] = xs
```

$(5 \times 2=10 \text{ points})$ (a) What is the type of the standard Haskell function zip?								
zip (x:xs) zip xs	(y:ys) ys	= (x,y) : zip xs ys = []	5					
(b) What is the	e type of the star	dard Haskell function concat?						
concat = f	Foldr (++)	[]						
(c) What is the	e type of the follo	owing Haskell function uncurry						
uncurry f	= (\(a,b)	-> f a b)						
(d) What is the plus1 = ma		owing Haskell function plus1?						
(e) What is the	e type of the follo	owing Haskell function f?						
f = sum.h. $g = (\x - \x)$ h (x,y) =	\rightarrow (head x,	(head.reverse) x))						

2.	(10 points) A Dutch Citizen Service Number (DCSN) has always 9 digits and the first digit can be a 0. Many websites use the following rudimentary check to validate the correctness of the (9 digit) number $ABCDEFGHI$. First compute $X = 9 \times A + 8 \times B + 7 \times C + 6 \times D + 5 \times E + 4 \times F + 3 \times G + 2 \times H - 1 \times I$. Note that the last digit has a negative weight. If X is a multiple of 11, then the number $ABCDEFGHI$ passes the test, otherwise it is invalid.
	$Write \ a \ Haskell \ functie \ \verb"isdCSN" (including its type) \ that \ determines \ whether its \ argument \ passes \ the \ test \ described \ above.$

3. (3+3+4=10	points')
J. (51511-10	pomis,	,

Since and the Health definitions of an	
Given are the Haskell definitions of su	
suits = ["Clubs", "Diamond	s", "Hearts", "Spades"]
cards = map show [210] nonours = ["J","Q","K","A"	1
Write a list comprehension for deck, v	
[("Clubs","2"),("Clubs","3"),("Cl	ubs","4"),("Clubs","5"),("Clubs","6"),("Clubs","7"),
	ubs","10"),("Clubs","J"),("Clubs","Q"),("Clubs","K"), Diamonds","3"),("Diamonds","4"),("Diamonds","5"),
("Diamonds", "6"), ("Diamonds", "7")	,("Diamonds","8"),("Diamonds","9"),("Diamonds","10"),
	,("Diamonds","K"),("Diamonds","A"),("Hearts","2"), learts","5"),("Hearts","6"),("Hearts","7"),("Hearts","8"),
	Hearts, J, (hearts, 0), (hearts, 7), (hearts, 0), Hearts", "J"), ("Hearts", "Q"), ("Hearts", "K"), ("Hearts", "A"),
	pades","4"),("Spades","5"),("Spades","6"),("Spades","7"), pades","10"),("Spades","J"),("Spades","Q"),("Spades","K"),
("Spades", "A")]	pades , 10), (Spades , 0), (Spades , Q), (Spades , K),
Use a list community and the functi	on the to write a Healrell function 1 and the result of the returns the list.
	on zip to write a Haskell function locations n xs that returns the list of xs is n (i.e. xs!!i == n). Note that the first elelement of a list has inde
O. You are not allowed to use the index	
	10 x <- [150]] should yield [9,19,29,39,49].
1	

The function iterate creates an infinite list where the first item is calculated by applying the function its first argument on its second argument, the second item by applying the function on the previous result and so on. For example, iterate $(2*)$ 1 yields the infinite list $[2,4,8,16,32,64,128,256,512,\ldots]$. Give a Haskell implementation (including its type) of the function iterate.

• Define the infinite list ints, which is the list of all integers. It should be ordered in such a way that you can find any given integer after searching a finite number of elements in ints. In other words, this is not going to work:

ints = [0..] ++ [-1, -2..]

• Given is the definition of the infinite list of primes:

4.

```
primes = sieve [2..] where sieve (p:xs) = p:sieve [x | x <-xs, x \mod p /= 0]
```

Use primes to define the infinite list composites of non-primes. So, take 10 composites should yield [4,6,8,9,10,12,14,15,16,18]. Note that we skip the value 1.

5.	downsi way of RPN is Evalua So, wh two top we enc [14, 10 stack is	ide of this writing design also called ting such a ten we encounter an old. Finally, is now -4, we the follow	notation is a lown expressed postfix no an expression counter the a from the stoperator ago, there is a which is the wing data ty	that we ssions, otation. on goes +, the stack by gain, we we final representations.	e have to use p and does not . The above e s as follows. V stack contains their sum. T re pop 2 and to pop 10 and 14 result.	parenthes t need par expression We keep particles [3, 4, 10] The stack 7 off the 4 from the	es to denote purentheses. In a in RPN is: 1 pushing number of the pushing number of the pushing now [7, 10] stack, apply the stack, subtractivals:	RPN, ever 0 4 3 + ers onto a ead of the . Next, we he operato et 14 from	Reverse Porty operator 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	follow we end p of the the sta	or $(4 + 3) * 2$. The variation (RPN) is another its operands, therefore counter the first operation of the stack). We replace that (so, [2, 7, 10]). Not sult to the stack yieldistack. The number on the stack is a substant of the stack i	ore or. the ow,
				_			s Times		avanasian t	o om T		
	Two	examples:	_			Intege	r that evaluate	es a RPN (expression t	o an 1	-	
	_		10,Valu 10,Valu			Plus,	Value 2,	Times,	Minus]	\mapsto	5 -4	

tp, f queu	from which elements are retrieved in the same order as in which they are inserted: FIFO stands for <i>First In First e</i> .
_	ement a module Fifo such that the concrete implementation of the type Fifo is hidden from the user.
Γhe f	following operations on the data type Fifo must be implemented:
•	empty returns an empty queue.
•	isEmpty returns True for an empty queue, otherwise False.
	insert: returns the queue that is the result of inserting an element.
	top: returns the 'oldest' element of the queue.
•	remove: returns the queue that is obtained by removing the 'oldest' element.

6. (15 points) The abstract data type (ADT) Fifo tp implements a simple data type for the storage of elements of the type

7.	(10 points) Given is the data type Tree:					
	data Tree a = Leaf a Node a (Tree a) (Tree a)					
	Given are the functions leaves and nodes:					
	<pre>leaves (Leaf _) = 1 leaves (Node a l r) = leaves l + leaves r nodes (Leaf _) = 0 nodes (Node a l r) = 1 + nodes l + nodes r</pre>					
	Prove for all finite trees t : leaves $t = nodes t + 1$					

8. (15 points) Given are the definitions of the functions rev1, shunt, and rev2: rev1 :: [a] -> [a] rev1 [] = [] rev1 (x:xs) = (rev1 xs) ++ [x]shunt :: [a] -> [a] -> [a] shunt [] ys = ys shunt (x:xs) ys = shunt xs (x:ys)rev2 :: [a] -> [a] rev2 xs = shunt xs []Prove that rev1 xs = rev2 xs for all finite lists xs.