

école———	
normale ———	
supérieure ———	
paris—saclav——	

Étude numérique des équations du groupe de renormalisation non perturbatif

Master 2 Analyse Modélisation Simulation

Gaétan Facchinetti Encadré par : Nicolas Dupuis et Bertrand Delamotte

Laboratoire de Physique Théorique de la Matière Condensée Université Paris-Saclay – École Normale Supérieure Paris-Saclay École Nationale Supérieure des Techniques Avancées - UVSQ

28 septembre 2017

Physique statistique et modèle d'Ising Transition de phase

2. Groupe de renormalisation et objectif

Le groupe de renormalisation (RG) Les équations BMW Objectifs

3. Le problème du modèle d'Ising 2D

Mise en équations Méthodes numériques

1. Physique statistique et modèle d'Ising

- Modèle d'Ising 2D carré :
 - ightharpoonup Réseau carré de pas a.
 - $ightharpoonup N_s$ spins à une composante.

Figure – Modèle d'Ising.

• Spin et configuration :

$$S_{\mathbf{r}} \in \{-1(\downarrow), 1(\uparrow)\}, \quad \mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}$$

- Energie d'une config. $\mathcal{M}: \mathcal{H}(\mathcal{M}, b)$
- \bullet Probabilité d'une config. \mathcal{M} :

$$p(\mathcal{M},b) = \sum_{\mathcal{M}} \frac{1}{\mathcal{Z}} \exp(-\mathcal{H}(\mathcal{M},b)/(k_B T))$$

• Fonction de partition :

$$\mathcal{Z} = \sum_{\mathcal{M}} \exp(-\mathcal{H}(\mathcal{M}, b)/(k_B T))$$

- 1. Introduction du problème
 - 1. Physique statistique et modèle d'Ising
- Définition de l'aimantation :

$$m = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} = \frac{1}{N_s \beta} \partial_{\beta} \ln \left(\mathcal{Z} \right)$$

1. Physique statistique et modèle d'Ising

• Définition de l'aimantation :

$$m = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} = \frac{1}{N_s \beta} \partial_{\beta} \ln \left(\mathcal{Z} \right)$$

 \bullet Evolution de l'aimantation m avec la température T:

Figure - Aimantation m vs T

Invariance par échange de
$$\hat{\mathbf{e}}_z$$
 en $-\hat{\mathbf{e}}_z$: $\mathcal{H}(\mathcal{M}, b=0) = \mathcal{H}(-\mathcal{M}, b=0)$ \diamond symétrie \mathbb{Z}_2 \diamond à $(b=0, T=0)$: $m=0$.

1. Physique statistique et modèle d'Ising

• Définition de l'aimantation :

$$m = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} = \frac{1}{N_s \beta} \partial_{\beta} \ln \left(\mathcal{Z} \right)$$

 \bullet Evolution de l'aimantation m avec la température T:

Figure – Aimantation m vs T

Invariance par échange de
$$\hat{\mathbf{e}}_z$$
 en $-\hat{\mathbf{e}}_z$: $\mathcal{H}(\mathcal{M}, b=0) = \mathcal{H}(-\mathcal{M}, b=0)$ \diamond symétrie \mathbb{Z}_2 \diamond à $(b=0, T=0)$: $m=0$.

Mais problème :

$$\lim_{N_s \to \infty} \left(\lim_{b \to 0} m \right) = 0 \neq \lim_{b \to 0} \left(\lim_{N_s \to \infty} m \right)$$

1. Physique statistique et modèle d'Ising

• Définition de l'aimantation :

$$m = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} = \frac{1}{N_s \beta} \partial_{\beta} \ln \left(\mathcal{Z} \right)$$

 \bullet Evolution de l'aimantation m avec la température T:

Figure – Aimantation m vs T

Invariance par échange de
$$\hat{\mathbf{e}}_z$$
 en $-\hat{\mathbf{e}}_z$: $\mathcal{H}(\mathcal{M}, b=0) = \mathcal{H}(-\mathcal{M}, b=0)$ \diamond symétrie \mathbb{Z}_2 \diamond à $(b=0, T=0)$: $m=0$.

Mais problème:

$$\lim_{N_s \to \infty} \left(\lim_{b \to 0} m \right) = 0 \neq \lim_{b \to 0} \left(\lim_{N_s \to \infty} m \right)$$

⇒ Brisure de symétrie & Transition de phase

Introduction du problème
 Transition de phase

 \bullet Température critique : T_c

1. Introduction du problème 2. Transition de phase

- Température critique : T_c
- Transitions de phase du second ordre :
 Fonction de corrélation à deux points :

$$G^{(2)}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) \equiv \langle S_{\mathbf{r}_{1}} S_{\mathbf{r}_{2}} \rangle \equiv \sum_{\mathcal{M}} p\left(\mathcal{M}\right) S_{\mathbf{r}_{1}} S_{\mathbf{r}_{2}}$$

Pour
$$T = T_c$$
, $G^{(2)}(r) \sim_{r \to \infty} |r|^{2-d-\eta}$,

♦ Longueur de corrélation :

$$\xi \underset{T \to T_c}{\sim} |T - T_c|^{-\nu}$$

Introduction du problème Transition de phase

- Température critique : T_c
- Transitions de phase du second ordre :
 Fonction de corrélation à deux points :

$$G^{(2)}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) \equiv \langle S_{\mathbf{r}_{1}} S_{\mathbf{r}_{2}} \rangle \equiv \sum_{\mathcal{M}} p\left(\mathcal{M}\right) S_{\mathbf{r}_{1}} S_{\mathbf{r}_{2}}$$

Pour
$$T = T_c$$
, $G^{(2)}(r) \sim_{r \to \infty} |r|^{2-d-\eta}$,

♦ Longueur de corrélation :

$$\xi \sim_{T \to T_c} |T - T_c|^{-\nu}$$

 \Rightarrow Exposants critiques : η et ν

1. Introduction du problème 2. Transition de phase

- Température critique : T_c
- Transitions de phase du second ordre :
 Fonction de corrélation à deux points :

$$G^{(2)}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) \equiv \langle S_{\mathbf{r}_{1}} S_{\mathbf{r}_{2}} \rangle \equiv \sum_{\mathcal{M}} p\left(\mathcal{M}\right) S_{\mathbf{r}_{1}} S_{\mathbf{r}_{2}}$$

Pour
$$T = T_c$$
, $G^{(2)}(r) \sim_{r \to \infty} |r|^{2-d-\eta}$,

♦ Longueur de corrélation :

$$\xi \sim_{T \to T_c} |T - T_c|^{-\nu}$$

 \Rightarrow Exposants critiques : η et ν

• Universalité des exposants critiques

2. Groupe de renormalisation et objectif

1. Le groupe de renormalisation (RG)

• Fonction de partition exprimée avec des champs :

$$\mathcal{Z} = \int \mathcal{D}\boldsymbol{\varphi} \exp\left(-\mathcal{H}[\boldsymbol{\varphi}]/(k_B T)\right)$$

• Transformée de Fourier :

$$\begin{split} \hat{\boldsymbol{\varphi}}_{\mathbf{p}} &= \frac{1}{\sqrt{|\Omega|}} \int_{\Omega} \boldsymbol{\varphi}(\mathbf{r}) \, e^{-i\mathbf{p} \cdot \mathbf{r}} \mathrm{d} \, \mathbf{r}, \\ \boldsymbol{\varphi}(\mathbf{r}) &= \frac{1}{\sqrt{|\Omega|}} \sum_{\mathbf{p}} \hat{\boldsymbol{\varphi}}_{\mathbf{p}} \, e^{i\mathbf{p} \cdot \mathbf{r}} \end{split}$$

• $\|\mathbf{p}\|_2 \in [0, \Lambda]$

Figure – Principe du RG

Thèse de Frédéric Léonard

• En pratique : $\mathcal{Z}_k \xrightarrow{\text{NPRG}} \Gamma_k \xrightarrow{\text{BMW}} \Gamma_k^{(2)}$

2. Groupe de renormalisation et objectif 2. Les équations BMW

• L'équation de flot BMW à résoudre pour la symétrie \mathbb{Z}_2 :

Trouver $\Gamma_k^{(2)}$ tel que pour tout $\mathbf{p} \in \mathbb{R}^2$ vérifiant $\|\mathbf{p}\|_2 < \Lambda$, pour tout $\phi \in \mathbb{R}$ et pour tout $k \in]0, \Lambda]$,

$$\partial_t \Gamma_k^{(2)}(\mathbf{p}, \phi) = J_3(\mathbf{p}, \phi) \left(\partial_\phi \Gamma_k^{(2)}(\mathbf{p}, \phi) \right)^2 - \frac{1}{2} I_2(\phi) \, \partial_\phi^2 \Gamma_k^{(2)}(\mathbf{p}, \phi)$$

Avec les notations,

$$J_n(\mathbf{p}, \phi) = \int_{\mathbf{q}} \partial_t \mathcal{R}_k(\mathbf{q}) G_k(\mathbf{p} + \mathbf{q}, \phi) G_k^{n-1}(\mathbf{q}, \phi),$$

$$I_n(\mathbf{p}, \phi) = \int_{\mathbf{q}} \partial_t \mathcal{R}_k(\mathbf{q}) G_k^n(\mathbf{q}, \phi).$$

Définition du propagateur et du régulateur

$$G_k(\mathbf{q}, \phi) = \frac{1}{\Gamma_k^{(2)}(\mathbf{q}, \phi) + \mathcal{R}_k(\mathbf{q})}$$

Condition initiale en $k = \Lambda$ connue

 \Rightarrow Calcul des exposants critiques : η et ν

- \Rightarrow Calcul des exposants critiques : η et ν
- \Rightarrow Calcul de la température critique : T_c

- \Rightarrow Calcul des exposants critiques : η et ν
- \Rightarrow Calcul de la température critique : T_c
- Première étude :
 - \blacktriangleright Réecriture en C++ d'un code permettant de calculer η et ν
 - ▶ Recherche des problèmes et tentatives de résolution

- \Rightarrow Calcul des exposants critiques : η et ν
- \Rightarrow Calcul de la température critique : T_c
- Première étude :
 - \triangleright Réecriture en C++ d'un code permettant de calculer η et ν
 - ▶ Recherche des problèmes et tentatives de résolution
- Deuxième étude :
 - \triangleright Ecriture d'un nouveau code pour calculer T_c : faisable mais difficile
 - ▶ Comparaison à la valeur théorique : benchmarking de la méthode

Physique statistique et modèle d'Ising Transition de phase

2. Groupe de renormalisation et objectif

Le groupe de renormalisation (RG) Les équations BMW Objectifs

Le problème du modèle d'Ising 2D Mise en équations Méthodes numériques

Le problème du modèle d'Ising 2D Mise en équations

• Réecriture de la fonction de partition :

$$\mathcal{Z} = \sum_{\mathscr{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \exp\left(-\mathcal{H}(\mathscr{M}, b = 0)/(k_B T)\right)$$

avec l'hamiltonien \mathcal{H}_{μ} définit par

$$\mathcal{H}(\mathcal{M}, b = 0) = -J \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} S_{\mathbf{r}} S_{\mathbf{r}'} \quad (J > 0)$$

Le problème du modèle d'Ising 2D Mise en équations

• Réecriture de la fonction de partition :

$$\mathcal{Z} \propto \int_{\mathbb{R}} \prod_{\mathbf{r}} d\varphi_{\mathbf{r}} \exp\left(-\mathcal{H}_{\mu}[\varphi]\right) ,$$

avec l'hamiltonien \mathcal{H}_{μ} définit par

$$\mathcal{H}_{\mu}[\varphi] = \frac{1}{2} \int_{\mathbf{q}} \varphi(\mathbf{q}) \frac{1}{\lambda_{\mu}(\mathbf{q})} \varphi(-\mathbf{q}) - \sum_{\mathbf{r}} \ln \left(\cosh(\varphi_{\mathbf{r}}) \right) ,$$

3. Le problème du modèle d'Ising 2D 1. Mise en équations

• Réecriture de la fonction de partition :

$$\mathcal{Z} \propto \int_{\mathbb{R}} \prod_{\mathbf{r}} d\varphi_{\mathbf{r}} \exp\left(-\mathcal{H}_{\mu}[\varphi]\right) ,$$

avec l'hamiltonien \mathcal{H}_{μ} définit par

$$\mathcal{H}_{\mu}[\varphi] = \frac{1}{2} \int_{\mathbf{q}} \varphi(\mathbf{q}) \frac{1}{\lambda_{\mu}(\mathbf{q})} \varphi(-\mathbf{q}) - \sum_{\mathbf{r}} \ln \left(\cosh(\varphi_{\mathbf{r}}) \right) \,,$$

Avec la notation des intégrales : $\int_{\mathbf{q}} \dots \equiv \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \dots dq_x dq_y$

Nous avons aussi introduit les fonctions

$$\gamma(\mathbf{q}) = \frac{1}{2} \left(\cos(q_x) + \cos(q_y) \right)$$
$$\lambda_{\mu}(\mathbf{q}) = 2\beta \left(2J\gamma(\mathbf{q}) + \mu \right).$$

3. Le problème du modèle d'Ising 2D 1. Mise en équations

- Résolution des équations BMW en trois étapes :
 - ♦ Intérêt des trois étapes : precision du calcul
 - \diamond Mise en pratique : 3 systèmes à résoudre à la suite
- Première étape :

Trouver (Δ_k, X_k) , solution de (\mathcal{E}_1) , i.e tels que pour tout $p_x \in [-\pi, \pi]$, $p_y \in [-\pi, \pi]$, $\phi \in \mathbb{R}$, $k \in [k_a, \Lambda]$

$$\begin{split} \partial_t \Delta_k(p_x, p_y, \phi) &= J_3(p_x, p_y, \phi) \partial_\phi \left\{ \Delta_k(p_x, p_y, \phi) + X_k(\phi) \right\} \\ &- \frac{1}{2} I_2(\phi) \partial_\phi^2 \Delta_k(p_x, p_y, \phi) - I_3(\phi) (\partial_\phi X_k(\phi))^2 \\ \partial_t X_k(\phi) &= \frac{1}{2} \partial_\phi^2 I_1(\phi) \,, \end{split}$$

avec la condition intiale

$$\Delta_{\Lambda}(p_x, p_y, \phi) = 0 \quad \text{et} \quad X_{\Lambda}(\phi) = \delta^2 \frac{1}{1 + \tilde{\mu}} - \frac{2\delta^2 \tilde{\beta}}{\cosh^2 \left(\delta \sqrt{2\tilde{\beta}\phi}\right)}$$

3. Le problème du modèle d'Ising 2D 2. Méthodes numériques

- Discrétisation en temps : schéma d'Euler explicite.
- Discrétisation en champ : grille fixe. Dérivée avec schéma à 5 points.
- Discrétisation en moment : méthode pseudo-spectrale
 - ♦ Interpolation de Tchebytechev en deux dimensions :

Soit f une fonction de deux variables de $[a,b]^2$ dans \mathbb{R} . On. note $\{x_n\}_n$ ou $\{x_n\}_n$ l'ensemble des n_c racines du polynôme de Tchebytchev d'ordre n_c .

On, introduit:

$$\mathcal{F} = \left(\left(f\left(\frac{a+b}{2} + x_m \frac{b-a}{2}, \frac{a+b}{2} + y_n \frac{b-a}{2} \right) \right) \right)_{m,n}$$

 \Rightarrow Approximation de rang faible de cette matrice

3. Le problème du modèle d'Ising 2D 2. Méthodes numériques

- Discrétisation en temps : schéma d'Euler explicite.
- Discrétisation en champ : grille fixe. Dérivée avec schéma à 5 points.
- Discrétisation en moment : méthode pseudo-spectrale
 - \diamond Interpolation de Tchebytechev en deux dimensions :

Algorithme d'approximation par élimination Gaussienne

1: Initialisation :
$$\mathcal{E}^{0} = \mathcal{F}$$
; $\mathcal{F}_{0} = 0$; $k = 1$;
2: $\mathbf{while} \quad \|\mathcal{E}^{k}\|_{\infty} < \varepsilon \|\mathcal{E}^{0}\|_{\infty} \mathbf{do}$
3: $(i_{k}, j_{k}) = \operatorname{argmax}_{(i,j)} \left\{ \left| \mathcal{E}_{i,j}^{k-1} \right| \right\}$
4: $\mathcal{C}_{j}^{k} = \mathcal{E}_{i_{k},j}^{k}$; $\mathcal{R}_{i}^{k} = \mathcal{E}_{i,j_{k}}^{k}$; $d_{k} = \mathcal{E}_{i_{k},j_{k}}^{k}$
5: $\mathcal{E}_{i,j}^{k} = \mathcal{E}_{i,j}^{k-1} - d_{k}^{-1} \mathcal{C}_{j}^{k} \mathcal{R}_{i}^{k}$
6: $\mathcal{F}_{i,j}^{k} = \mathcal{F}_{i,j}^{k-1} + d_{k}^{-1} \mathcal{C}_{j}^{k} \mathcal{R}_{i}^{k}$
7: \mathbf{end} while

$$\mathcal{F} \simeq \sum_{j=1}^{Q} d_j \mathcal{C}^j \mathcal{R}^j \Rightarrow f(x,y) \simeq \sum_{j=1}^{Q} d_j c^j(y) r^j(x)$$

Le problème du modèle d'Ising 2D
 Méthodes numériques

 \diamond Calcul des intégrales : quadrature de Gauss-Legendre $\quad \diamond$ Utilisation des symétries