Project Design

I prepare to design a verification module which can be inserted into the designer's module. In order to facilitate a quick analysis, it is therefore necessary to do it in a host. The data is downloaded to the FPGA to start testing according to the instructions of the host.

Design Diagram

The design diagram is as shown below.

It will describe the four modules in details in the followings.

1. Frequency measurement module

Equal precision frequency measurement principle is as shown below.

According to the principle of equal precision frequency measurement, the coding diagram is as follows.

The pre-gate coding is shown below.

```
always @(posedge I_sys_clk or negedge I_rst_n) begin
        if(!I_rst_n) begin
             gate_cnt <= 32'd0;</pre>
             R_done_pre <= 0;</pre>
             gate_time_pre <= 0;</pre>
             R_start <= 0;
        end
        else begin
             if(W_start_pos) begin
                  R_start <= 1;</pre>
             end
             if(R_start) begin
                  if(gate_cnt == SET_1S_PERD) begin
                      gate_time_pre <= 0;</pre>
                      R_done_pre <= 1;</pre>
                      R_start <= 0;</pre>
```

```
    else begin
    gate_cnt <= gate_cnt + 32'd1;</li>
    gate_time_pre <= 1;</li>
    R_done_pre <= 0;</li>
    end
    else begin
    gate_time_pre <= 0;</li>
    gate_cnt <= 32'd0;</li>
    R_done_pre <= R_done_pre;</li>
    end
    end
```

The code for pre-gate synchronized to the clock domain to be measured is shown below.

```
1. reg gate_time;
2.
3. always @(posedge I_clk_fx or negedge I_rst_n) begin
4.         if(!I_rst_n) begin
5.         gate_time <= 0;
6.         end
7.         else begin
8.         gate_time <= gate_time_pre;
9.         end
10.
11.         end</pre>
```

The code for the reference signal and the signal to be measured is shown below.

```
1. assign O_done = ({R_done_pre,gate_time} == 2'b10) ? 1 : 0;
2.
always @(posedge I_clk_fx or negedge I_rst_n) begin
4. if((!I_rst_n)) begin
6. end
7. else begin
8. if(gate_time) begin
9. 0_fx_cnt <= 0_fx_cnt + 32'd1;
10.
     end
11.
     else begin
12.
     0_fx_cnt <= 0_fx_cnt;</pre>
13.
     end
14.
     end
15.
     end
16.
17.
     always @(posedge I_sys_clk or negedge I_rst_n) begin
18.
     if((!I_rst_n)) begin
19.
     0_f0_cnt <= 32'd0;
20.
     end
21.
     else begin
22.
     if(gate_time) begin
23.
     0_f0_cnt <= 0_f0_cnt + 32'd1;</pre>
24.
     end
25.
     else begin
26.
     0_f0_cnt <= 0_f0_cnt;</pre>
27.
     end
28.
     end
29.
     end
```

2. Digital tube sampling module

The diagram is as shown below.

The code is as follows.

```
1. always @(posedge I_sys_clk or negedge I_rst_n) begin
                  2. if(~I_rst_n) begin
                3.
                            R_test_num <= 0;</pre>
                          0_data1 <= 0;
                         O_data0 <= 0;
                6.
                           R_01_flag <= 1'b0;
                7.
                           R_02_flag <= 1'b0;
                           R_03_flag <= 1'b0;
                           R_04_flag <= 1'b0;
                       10.
                            end
                    11.
                           else begin
      12.
                      if(R_start_en & I_test_en) begin
            13.
                               case (I_test_sel)
           14.
                                4'b0001 : begin
15.
                           0_data1[15:0] <= I_test_disp_data;</pre>
   16.
                              0_data0[7:0] <= I_test_seg;</pre>
        17.
                                 R_01_flag <= 1'b1;
       18.
                                  if(R_01_flag) begin
  19.
                                  R_test_num <= R_test_num;</pre>
               20.
                                        end
            21.
                                       else begin
22.
                                R_test_num <= R_test_num + 1;</pre>
               23.
                                          end
                24.
```

```
25.
                       end
          26.
                             4'b0010 : begin
  27.
                           0_data0[15:8] <= I_test_seg;</pre>
       28.
                              R_02_flag <= 1'b1;
      29.
                               if(R_02_flag) begin
 30.
                               R_test_num <= R_test_num;</pre>
              31.
                               end
          32.
                                else begin
33.
                             R_test_num <= R_test_num + 1;</pre>
              34.
                                end
               35.
                                end
          36.
                                4'b0100 : begin
 37.
                           0 data0[23:16] <= I test seg;</pre>
       38.
                               R_03_flag <= 1'b1;
      39.
                                if(R_03_flag) begin
 40.
                               R_test_num <= R_test_num;</pre>
             41.
                                  end
          42.
                                else begin
43.
                             R_test_num <= R_test_num + 1;</pre>
             44.
                                     end
               45.
                                  end
          46.
                                4'b1000 : begin
 47.
                           0_data0[31:24] <= I_test_seg;</pre>
       48.
                              R_04_flag <= 1'b1;
      49.
                                if(R_04_flag) begin
 50.
                               R_test_num <= R_test_num;</pre>
              51.
                                   end
          52.
                                  else begin
53.
                             R_test_num <= R_test_num + 1;</pre>
             54.
                                    end
               55.
                                    end
      56.
             default: 0_data0 <= 0_data0;</pre>
               57.
                                 endcase
                   58.
                             end
               59.
                    else begin
          60.
                 if(I_test_en) begin
```

61.		<pre>R_test_num <= R_test_num;</pre>					
62.		<pre>0_data1 <= 0_data1;</pre>					
63.		O_data0 <= O_data0;					
	64.	end					
6	5.	else begin					
66.		R_test_num <= 0;					
67.		0_data1 <= 0;					
68.		O_data0 <= 0;					
69.		R_01_flag <= 1'b0;					
70.		R_02_flag <= 1'b0;					
71.		R_03_flag <= 1'b0;					
72.		R_04_flag <= 1'b0;					
	73.	end					
	74.	end					
	75.	end					
	end						
77.							

3. Serial transceiver module

The diagram is as shown below.

For the code, you can refer to the source.

4. Control module

The diagram is as shown below.

Host Design

The source code is as follows.

```
1. HeadByte[0] = 0 \times EC;
        2. HeadByte[1] = 0 \times 01;
        3. HeadByte[2] = 0 \times 00;
        4. HeadByte[3] = 0x00;
        5. HeadByte[4] = 0 \times 00;
            HeadByte[5] = 0x00;
        7. HeadByte[6] = 0 \times 00;
        8. HeadByte[7] = 0xa5;
                   9.
10.
       void Widget::on_pushButtonP1_clicked()
                 11.
                        {
                  12.
       13.
              HeadByte[1] = 0x01;
                  14.
 15.
         //serialport->write(HeadByte);
                  16.
        17.
                QByteArray tmp;
         18.
                tmp.resize(1);
 19.
        for(int idx = 0;idx < 8;idx++){
 20.
                tmp[0] = HeadByte.at(idx);
   21.
               serialport->write(tmp);
         22.
                Sleep(10);
```

```
23. }
                      24.
     25.
           ui->pushButtonP1->setEnabLED(false);
     26.
           ui->pushButtonP2->setEnabled(false);
              27.
                    flag_state = 1;
28.
    ui->textCommd->append("Frequence measure cmd has
                      sended!\n");
                      29.
                      30.
                            }
                      31.
                      32.
```

Testing

Frequency testing

FPGA PLL 50MHz Clock Source

```
lalways @(posedge clkout_50m or negedge grst_n) begin
    if(!grst_n) begin
    cnt <= 0;
    clk_div <= 0;
end
else begin
    if(cnt == DIV_NUMBER) begin
    cnt <= 0;
    clk_div <= ~clk_div;
end
else begin
    cnt <= cnt + 1;
end
end
end</pre>
```

Division code

```
parameter DIV_NUMBER = 249;
```

100KHz division coefficient

```
IO_LOC "clk_div" 27;
IO_PORT "clk_div" IO_TYPE=LVCMOS33
```

Pinout

Connection

100K frequency Testing

User design clock 100KHz

Testing by host

Testing by ADALM2000

149K frequency Testing

```
File Edit Project Tools Window Help
Process

Design Summary

User Constraints

The officers

Design Summary

Desig
               FloorPlanner
Timing Constraints Editor

41
42
43
              III FloorPlanner
                                                                                                                         wire grst_n;
wire lock_o;
wire clkout_50m;
      Synthesize
               Synthesis Report
                                                                                                                                owin_PLLVR pll_inst0(
    .clkout(clkout_50m), //output clkout
    .lock(lock_0), //output lock
    .reset(-I_st_n), //input reset
    .clkin(I_sys_clk) //input clkin
);
                 Netlist File
   Place & Route
                Place & Route Report
                Timing Analysis Report
              Ports & Pins Report
                 Power Analysis Report
       👪 Program Device
                                                                                                        56789601623465667017234567789018234656670172374567789018234656670172345678823465678888586788
                                                                                                                         .I_clk_fx(clk_div),
.I_digtube_en(),
.I_digtube_sel(),
.I_digtube_seg(),
.I_digtube_disp_data(),
                                                                                                                                                                                       .uart_tx(uart_tx),
.uart_rx(uart_rx),
.O_led(O_led)
                                                                                                                                        ays 8(posedge clkout_50m or negedge grst_m) begin
if(!grst_m) begin
cnt <- 0:
clk_div <- 0:
                                                                                                                                          else begin
if(cnt == DIV_NUMBER) begin
                                                                                                                                                                 cnt <= 0;
clk_div <= ~clk_div;

Start Page □ Design Summary □ □ TORv □ □ Control TORv □ □ GOWIN_FREQMEASURE.cst □

TORv □ □ GOWIN_FREQMEASURE.cst □
    Design Process Hierarchy
Console Message
                                                                                                                                                                                                                                                                                                                                                                                                                                                               In: 71 Col: 15
```

User design 149KHz

Testing by host

Testing by ADALM2000

Digital tube testing

```
IO LOC "O sel[0]" 27;
IO PORT "O sel[0]" IO TYPE=LVCMOS33
IO LOC "O sel[1]" 28;
IO PORT "O sel[1]" IO TYPE=LVCMOS33
IO LOC "O sel[2]" 29;
IO PORT "O sel[2]" IO TYPE=LVCMOS33
IO LOC "O sel[3]" 30;
IO PORT "O sel[3]" IO TYPE=LVCMOS33
IO LOC "O seg[0]" 31;
IO PORT "O seg[0]" IO TYPE=LVCMOS33
IO LOC "O seg[1]" 32;
IO PORT "O seg[1]" IO TYPE=LVCMOS33
IO LOC "O seg[2]" 8;
IO PORT "O seg[2]" IO TYPE=LVCMOS33
IO LOC "O seg[3]" 34;
IO PORT "O seg[3]" IO TYPE=LVCMOS33
IO LOC "O seg[4]" 35;
IO PORT "O seg[4]" IO TYPE=LVCMOS33
IO LOC "O seg[5]" 41;
IO PORT "O seg[5]" IO TYPE=LVCMOS33
IO LOC "O seg[6]" 42;
IO PORT "O seg[6]" IO TYPE=LVCMOS33
IO LOC "O seg[7]" 43;
IO PORT "O seg[7]" IO TYPE=LVCMOS33
```


Connection

Gowin editor

Testing by host

Testing by ADALM2000

Source code

You can click this link

https://github.com/kevinliuyunfeng/GOWIN_FPGA.git to get the source code.