PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-043582

(43)Date of publication of application: 16.02.1999

(71)Applicant: TECHNO POLYMER KK (21)Application number: 09-213951

(22)Date of filing:

25.07.1997 (72)Inventor: ISHIKAWA TOSHIE

HISHIKAWA HIDEMI TOYOSHIMA TETSUO

(54) RESIN MOLDING PRODUCT HAVING GRAIN PATTERN

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a resin molding product having a grain

SOLUTION: This resin molding product having a grain pattern is obtained by molding (III) a resin composition obtained by carrying out a dry blending of 100 pts.wt. composition obtained by melting and mixing (I) 100 pts.wt. resin composition comprising (A) 20-100 wt, % styrenic resin, (B) 0-80 wt, % cellulosic resin and (C) 0-80 wt.% inorganic filler [with the proviso that (A)+(B)+(C)=100 wt.%], with (II) 0.5-100 pts.wt. resin composition comprising 100 pts.wt. composition obtained by melting and mixing (A') 10-100 wt. % styrenic resin of the above component A. (D) 90-0 wt.% thermoplastic resin other than the above component A' [with the proviso that (A')+(D)=100 wt.%] with (E) 0.5-50 pts.wt. dye and/or pigment based on the total 100 pts.wt. of the component A' and D, and 0.5-5 pts.wt. lubricant externally added thereto

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開平11-43582

(43)公開日 平成11年(1999) 2月16日

(51) Int.Cl. ⁶	
C08L	55/02
	51/04

繼別記号

FΙ

COSL 55/02 51/04

// (C 0 8 L 55/02

1:00) (COSL 51/04

審査請求 未請求 請求項の数1 FD (全 12 頁) 最終頁に続く

(21)出魔番号 (22)出廣日

特願平9-213951

平成9年(1997)7月25日

(71) 出額人 396021575

テクノポリマー株式会社

東京都中央区京橋一丁目18番1号

(72)発明者 石川 利江

東京都中央区京橋一丁目18番1号 テクノ ポリマー株式会社内

(72)発明者 菱川 英海

東京都中央区京橋一丁目18番1号 テクノ

ポリマー株式会社内

(72)発明者 豊島 哲郎

東京都中央区京橋一丁目18番1号 テクノ

ポリマー株式会社内

(74)代理人 弁理士 白井 重隆

(54) 【発明の名称】 木目模様を有する樹脂成形品

(57)【要約】

樹脂成形品。

【課題】 木目模様を有する樹脂成形品を提供するこ

【解決手段】 (A)スチレン系樹脂20~100重量 %、(B) セルロース系物質0~80重量%、および (C)無機フィラー0~80重量% [ただし、(A)+ (B) + (C) = 100重量%] からなる樹脂組成物 (I)100重量部に対し、(A) / 上記(A) スチレ ン系樹脂10~100重量%、(D)上記(A) ['] 成分 以外の他の熱可塑性樹脂90~0重量%、 〔ただし、 (A) ′ + (D) = 100重量%)、ならびに(E) 染 料および/または顔料を上記(A)'+(D)成分の合 計量100重量部に対して0.5~50重量部を溶融混 合して得られる組成物100重量部に対して、(F)滑 剤0.1~5重量部を外部添着してなる樹脂組成物(I I) 0.5~100重量部、をドライブレンドして得ら

れる樹脂組成物(III) を成形してなる木目模様を有する

【特許請求の範囲】

【請求項1】 (A) ゴム質重合体(a) の存在下また は非存在下に、芳香族ビニル化合物および必要に応じて 芳香族ビニル化合物と共重合可能な他のビニル系単量体 からなる単量体成分 (b)を(共)重合して得られるス チレン系樹脂20~100重量%、

1

- (B) セルロース系物質0~80重量%。 および
- (C)無機フィラー0~80重量%
- 〔ただし、(A)+(B)+(C)=100重量%〕を 主成分とする樹脂組成物(I)100重量部に対し、 (A) ′上記(A) スチレン系樹脂10~100重量 %.
- (D)上記(A) / 成分以外の他の熱可塑性樹脂90~ 0重量% 〔ただし、(A) '+(D) = 100重量%〕、ならび
- (E)染料および/または顔料を上記(A)′+(D)
- 成分の合計量100重量部に対して0.5~50重量部 を溶験混合して得られる組成物100重量部に対して
- 成物 (II) 0.5~100重量部。をドライブレンドし て得られる樹脂組成物(III) を成形してなる木目模様を 有する樹脂成形品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、木目模様を有する 樹脂成形品に関する。

[0002]

[従来の技術] 従来より、スチレン系樹脂は、その着色 性の良好なことから、OA:家電分野、車両分野などに 30 幅広く用いられている。しかしながら、用いられる分野 によっては、木目模様を施す必要があり、一般に成形 後、木目模様を施したシートを貼るなどの方法が行われ ている。しかしながら、このような方法では、木目模様 のシートの値段が高いという問題や、シートを接着する ための工程が必要であり、コストアップになるという間 類、さらには木目模様が単調であるという問題がある。 [0003]

【発明が解決しようとする課題】本発明は、上記従来技 脂成形品を提供することを目的とする。

[0004]

【課題を解決するための手段】本発明は、(A)ゴム質 重合体(a)の存在下または非存在下に、芳香族ビニル 化合物および必要に応じて芳香族ビニル化合物と共重合 可能な他のビニル系単量体からなる単量体成分(b)を (共) 重合して得られるスチレン系樹脂20~100重 畳%. (B)セルロース系物質0~80重量%。および (C) 無機フィラー0~80重量% (ただし、(A) +

成物(I)100重量部に対し、(A) / 上記(A)ス チレン系樹脂10~100重量%、(D)上記(A) 成分以外の他の執可塑性樹脂90~0重量%(ただし、 (A) '+(D)=100重量%]. ならびに(E) 染 料および/または顔料を上記(A)'+(D)成分の合 計量100重量部に対して0.5~50重量部を溶融混 合して得られる組成物100重量部に対して、(F)潜 剤O. 1~5重量部を外部添着してなる樹脂組成物(I I) 0.5~100重量部、をドライブレンドして得ら 10 れる樹脂組成物(III) を成形してなる木目模様を有する 樹脂成形品を提供するものである。 [0005]

2

【発明の実施の形態】

樹脂組成物([)

本発明に用いられる樹脂組成物(1)は、本発明の樹脂

成形品の基材樹脂となるものである。ととで、樹脂組成 物(I) に用いられる(A) スチレン系樹脂は、ゴム質 重合体(a)の存在下または非存在下に、芳香族ビニル 化合物および必要に応じて芳香族ビニル化合物と共重合 (F)滑削0.1~5 重量部を外部添着してなる樹脂組 20 可能な他のビニル系単量体からなる単量体成分(h)を (共)重合して得られる。 との (A) スチレン系樹脂と しては、例えば

> ①ゴム質重合体(a)の存在下に、芳香族ビニル化合 物、または芳香族ビニル化合物および芳香族ビニル化合 物と共重合可能な他のビニル系単量体からなる単量体成 分(b)を(共)重合して得られるゴム強化スチレン系 重合体、

②芳香族ビニル化合物、または芳香族ビニル化合物およ び芳香族ビニル化合物と共重合可能な他のビニル系単量 体からなる単量体成分(b)を(共)重合して得られる スチレン系重合体、あるいは

③上記のゴム強化スチレン系重合体とのスチレン系重合 体との混合物。 などが挙げられ、 これらは他の勢可塑性 樹脂と併用することもできる。

【0006】ととで使用されるゴム質重合体(a)とし ては、例えばポリブタジェン、ポリイソプレン、ブチル ゴム、スチレンーブタジェン共重合体(スチレン含有量 5~60重量%が好ましい)、スチレン-イソプレン共 重合体、アクリロニトリルーブタジエン共重合体、エチ 術の課題を背景になされたもので、木目模様を有する樹 40 レン-α-オレフィン系共重合体、エチレン-α-オレ フィンーポリエン共重合体、シリコーンゴム、アクリル ゴム、ブタジエンー (メタ) アクリル酸エステル共重合 体、スチレンーブタジェンブロック共重合体、スチレン - イソプレンブロック共重合体、水素化スチレン-ブタ ジェンブロック共重合体 水素化プタジェン系重合体 エチレン系アイオノマーなどが挙げられる。

【0007】なお、スチレンーブタジエンブロック共重 合体、スチレンーイソプレンプロック共重合体には、A B型、ABA型、テーパー型、ラジアルテレブロック型 (B) + (C) = 100 重量%]を主成分とする樹脂組 50 の機造を有するものなどが含まれる。また、水素化プタ 3

ジェン系重合体には、上記ブロック共重合体の水素化物 のほかに、スチレンブロックとスチレン- ブタジエンラ ンダム共重合体のブロック体の水素化物、ポリブタジェ ン中の1.2-ビニル結合含量が20重量%以下のプロ ックと1.2-ビニル結合含量が20準量%を超えるポ リブタジエンブロックからなる重合体の水素化物などが 挙げられる。

【0008】また、エチレンーαーオレフィン系共重合 体におけるエチレンとα-オレフィンの重量比は、95 /5~5/95、好ましくは95/5~20/80、さ 10 スチレン、ジクロロスチレン、モノブロモスチレン、ジ ちに好ましくは92/8~60/40である。エチレン α-オレフィン系共重合体のムーニー粘度(M L... 100℃)は、耐衝撃性の面から5~200、 好ましくは5~100、さらに好ましくは5~50であ る。ここで使用されるα-オレフィンは、炭素数3~2 0個を有する不飽和炭化水素化合物であり、具体的に は、プロビレン、プテン-1、ペンテン-1、ヘキセン 1、ヘプテン-1、4-メチルプテン-1、4-メチ ルペンテン-1などが挙げられる。

【0009】さらに、エチレン-α-オレフィン-ポリ 20 エン共重合体中の不飽和基は、ヨウ素価に換算して4~ 40の範囲が好ましい。用いられるジエンの種類は、ア ルケニルノルボルネン類、環状ジエン類、脂肪族ジエン 類などであり、好ましくは5-エチリデン-2-ノルボ ルネン、ジシクロペンタジエンなどが挙げられる。以上 のゴム質重合体(a)は、1種単独で使用することも、 あるいは2種以上を混合して用いることもできる。 【0010】なお、(A) スチレン系樹脂としては、耐

衝撃性の面から、上記ゴム質重合体の存在下に得られる 下に得られるゴム強化スチレン系重合体とゴム質重合体 の非存在下に芳香族ビニル化合物(および共重合可能な 他のピニル系単量体)を(共)重合して得られるスチレ ン系重合体との混合物を使用することが好ましい。 【0011】 ここで、(A) スチレン系樹脂中のゴム質

重合体(a)の割合は、ゴム質重合体(a) および単量 体成分(b)の合計量に対し、好ましくは3~80重量 % さらに好ましくは5~60重量%であり、3重量% 未満では、衝撃強度が低下し好ましくなく、一方80重 量%を超えると、成形加工性、弾性率、熱変形温度が低 40 イミド、N-(p-メチルフェニル)マレイミド、N-下し好ましくない。また、本発明の樹脂組成物(1)中 のゴム質重合体(a)の含有量は、好ましくは1~20 重量%、さらに好ましくは3~15重量%である。

【0012】なお、本発明の上記(A)スチレン系樹脂 は、ゴム強化スチレン系重合体の場合、上記ゴム質重合 体(a)のラテックス中で単量体成分(b)を乳化重合 することによって製造することが好ましい。この場合、 ゴム質重合体(a)のラテックスは、ゴム粒子の平均粒 子径が好ましくは0.05~30 um. さらに好ましく は $0.1\sim10\mu m$ の範囲のものが用いられる。この範 50 4-ヒドロキシ $-2\sim$ プテン、トランス-4-ヒドロキ

囲の平均粒子径を有するラテックスを使用した場合、高

い物性バランスを実現することが可能となる。 【0013】一方. (A) スチレン系樹脂に用いられる 単量体成分(b)を構成する芳香族ビニル化合物として は、スチレン、t-ブチルスチレン、α-メチルスチレ ン、ローメチルスチレン、ジビニルベンゼン、1,1~ ジフェニルスチレン、N, N-ジエチル-p-アミノエ チルスチレン、N, N-ジエチル-p-アミノエチルス チレン、ビニルビリジン、ビニルキシレン、モノクロル プロモスチレン、フルオロスチレン、エチルスチレン、 ビニルナフタレンなどが挙げられ、特にスチレン、α-メチルスチレンが好ましい。これらの芳香族ビニル化合 物は、1種単独で使用することも、あるいは2種以上を 混合して用いることもできる。芳香族ビニル化合物の使 用量は、単量体成分中に、好ましくは20~100重量 %. さらに好ましくは30~90重量%、特に好ましく は40~80重量%である。20重量%未満では、充分 な成形加工性が得られない。

【0014】また、他のビニル系単量体としては、アク リロニトリル、メタクリロニトリルなどのシアン化ビニ ル化合物:メチルアクリレート、エチルアクリレート、 プロピルアクリレート、ブチルアクリレート、アミノア クリレート、ヘキシルアクリレート、オクチルアクリレ ート、2-エチルヘキシルアクリレート、シクロヘキシ ルアクリレート、ドデシルアクリレート、オクタデシル アクリレート、フェニルアクリレート、ベンジルアクリ レートなどのアクリル酸エステル; メチルメタクリレー ト、エチルメタクリレート、プロビルメタクリレート、 ゴム強化スチレン系重合体、またはゴム質重合体の存在 30 ブチルメタクリレート、アミノメタクリレート、ヘキシ ルメタクリレート、オクチルメタクリレート、2-エチ ルヘキシルメタクリレート、シクロヘキシルメタクリレ ート、ドデシルメタクリレート、オクタデシルメタクリ レート、フェニルメタクリレート、ベンジルメタクリレ ートなどのメタクリル酸エステル:無水マレイン酸、無 水イタコン酸。無水シトラコン酸などの不飽和酸無水 物;アクリル酸、メタクリル酸、マレイン酸などの不飽 和酸;マレイミド、N-メチルマレイミド、N-エチル マレイミド、Nープロビルマレイミド、Nープチルマレ フェニルマレイミド、N-シクロヘキシルマレイミドな どのα, β-不飽和ジカルボン酸のイミド化合物:グリ シジルメタクリレート、アリルグリシジルエーテルなど のエポキシ基含有不飽和化合物;アクリルアミド、メタ クリルアミドなどの不飽和カルボン酸アミド;アクリル アミン、メタクリル酸アミノメチル、メタクリル酸アミ ノエーテル、メタクリル酸アミノブロビル、アミノスチ レンなどのアミノ基含有不飽和化合物;3-ヒドロキシ ~1-プロペン、4-ヒドロキシ-1-ブテン、シス-

シ-2-ブテン、3-ヒドロキシ-2-メチル-1-ブ ロペン、2-ヒドロキシエチルアクリレート、2-ヒド ロキシエチルメタクリレート. ヒドロキシスチレンなど の水酸基含有不飽和化合物;ビニルオキサゾリンなどの オキサゾリン基含有不飽和化合物などが挙げられる。 【0015】上記他のビニル系単量体のなかで、特に好 ましくは、シアン化ビニル化合物、(メタ)アクリル酸 アルキルエステル、不飽和酸無水物、不飽和酸、α,β - 不飽和ジカルボン酸のイミド化物、エポキシ基含有不 飽和化合物、および水酸基含有不飽和化合物の群から選 10 ばれた少なくとも1種のビニル系単量体である。好まし い他のビニル系単量体の具体例としては、アクリロニト リル、メタクリル酸、メチルメタクリレート、プチルア クリレート、無水マレイン酸、N-フェニルマレイミ ド、グリシジルメタクリレート、2-ヒドロキシエチル メタクリレートなどである。

【0016】(A) スチレン系樹脂を構成する単量体成 分(b)の好ましい組み合わせは、次のO~Bである。 のスチレン/アクリロニトリル

②スチレン/メチルメタクリレート

③スチレン/N-フェニルマレイミド

④スチレン/N-フェニルマレイミド/無水マレイン酸 ⑤スチレン/アクリロニトリル/水酸基含有不飽和化合

6スチレン/アクリロニトリル/不飽和酸 ⑦スチレン/アクリロニトリル/エポキシ基含有不飽和 化合物

®スチレン/アクリロニトリル/オキサゾリン基含有不 的和化合物

[0017] なお、上記α、β-不飽和ジカルボン酸の 30 イミド化合物において、上記芳香族ビニル化合物と上記 不飽和酸無水物との共重合体を、後イミド化(完全また は部分) したものも、本発明の(A)成分を構成する単 量体成分に含まれる。また、上記他のビニル系単量体の 量は、単量体成分中に、60軍量%以下が好ましく、さ らに好ましくは50重量%以下である。以上の他のビニ ル系単量体は、1種単独で使用することも、あるいは2 種以上を混合して用いることもできる。

[0018] 本発明の(A) スチレン系樹脂は、ゴム質 重合体の存在下または非存在下に、上記単量体成分を、 通常の乳化重合、溶液重合、バルク重合、あるいは懸濁 重合などにより製造することができる。好ましくは、乳 化重合である。ととで、乳化重合には、常法に従い、重 合開始剤、連鎖移動剤(分子量調節剤)、乳化剤、水な どが用いられる。なお、以上の単量体成分は、反応系に 一括または連続的に添加することができる。なお、 (A) スチレン系樹脂は、(ゴム質重合体) および単量 体成分100重量部に対し、重合水80~150重量 部、好ましくは80~130重量部を用い、重合温度1

化重合することが望ましい。

【0019】(A) スチレン系樹脂は、ゴム質重合体 (a) の存在下で単量体成分(b)を(共)重合して得 られる場合、そのグラフト率は、好ましくは5~300 重量% さらに好ましくは10~200重量%である。 グラフト率が5重量%未満では、ゴム成分の添加効果が 充分発揮されず、充分な衝撃強さが得られない。一方、 300重量%を超えると、成形加工性が低下する。こと で、グラフト率 (重量%) は、スチレン系樹脂1g中の ゴム成分重量をx、メチルエチルケトン不溶分重量をy とすると、次式により求められた値である。 グラフト率 (重量%) = [(y-x) /x]×100 【0020】また、(A) スチレン系樹脂の極限粘度 [n] (メチルエチルケトン可溶分、メチルエチルケト ンを溶媒とし、30℃で測定)は、好ましくは0.2~ 0.8 d 1/g、さちに好ましくは0.3~0.7 d 1 /gである。この極限粘度 [η] が0.2 d l /g未満 であると、剛性と耐衝撃性との高い物性のバランスが得 られず、一方0、8 d l / gを超えると、成形加工性が

6

20 低下する。 【0021】本発明の樹脂組成物(I)中の(A)スチ レン系樹脂の使用量は、(A)~(C)成分中に、20 ~100重量%、好ましくは40~100量%、さらに 好ましくは50~100量%である。10重量%未満で は、成形品の材料強度が劣る。なお、本発明の(A)ス チレン系樹脂には、上記したように、他の熱可塑性樹 脂、例えば後記(D)成分と同様の樹脂を、(A)成分 の好ましくは80重量%以下、さらに好ましくは70重 量%以下、特に好ましくは50重量%以下の割合で配合 したものも、本発明の(A)成分に含まれる。

[0022]次に、上記樹脂組成物(I)には、(B) セルロース系物質を配合することができる。(B)セル ロース系物質としては、木粉、紙、パルプ、モミガラ、 バガスなどの植物性物質。 またはこれらの粉砕品が挙げ ちれる。(B) セルロース系物質の形状としては、粉末 や繊維状など、すべての形状が含まれる。このうち、木 粉としては、種々の種類が限定せずに使用でき、例えば エゾマツ、トドマツ、カラマツなどのマツ類、ツガ、サ クラ、スギ、ナラ、ヒノキ、シナノキ、ブナ、ラワン、 40 モミなどが挙げられる。これらの原木を裁断し、製材す る際に発生するノコくずやオガクズおよび木材の細片な どを破砕したものが使用される。また、例えば竹草など の粉砕物 粉末および紙 バルブ モミガラなどのバガ ス、セルロース繊維も含まれる。さらに、これらセルロ ース系物質の脱リグニン品も使用することができる。 (R) セルロース系物質は、粉砕品で使用することが好 ましく、より好ましくは100メッシュパス以下の粉末 にしたものである。 これらの (B) セルロース系物質 は、1種単独で使用することも、あるいは2種以上を混 0~12.0℃ 好ましくは3.0~11.0℃の条件下で乳 50 合して用いることもできる。本発明の樹脂組成物(I)

中の(B)セルロース系物質の使用量は、(A)~ (C)成分中に、0~80重量%、好ましくは0~60 重量%、さらに好ましくは0~40重量%である。その 使用量が80重量%を超えると、材料強度が劣り好まし くない。

【0023】次に、本発明の樹脂組成物(I)には、 (C) 無機フィラーを配合することができる。(C) 無 機フィラーとしては、ガラス繊維、炭素繊維、金属繊 継、ガラスピーズ、ワラストナイト、ガラスのミルドフ ァイバー、ロックフィラー、炭酸カルシウム、タルク、 10 マイカ、カオリン、硫酸バリウム、黒鉛、二硫化モルブ デン、酸化マグネシウム、酸化亜鉛ウイスカー、チタン 酸カリウムウイスカー、ガラスバルーン、セラミックバ ルーンなどが挙げられ、好ましくは炭酸カルシウム、タ ルク、カオリン、チタン酸カリウムウイスカーであ る。。これらの無機フィラーのうち、ガラス繊維、炭素 繊維の形状としては、6~60μπの繊維径と30μπ 以上の繊維長を有するものが好ましい。 これらの(C) 無機フィラーは、1種単独で、あるいは2種以上を併用 することができる。本発明の樹脂組成物(1)中の (C) 無機フィラーの使用量は、(A)~(C)成分中 に、0~80重量%、好ましくは0~60重量%、さら に好ましくは0~40重量%である。80重量%を超え

ると、成形品の材料強度が劣る。 【0024】樹脂組成物(II)

樹脂組成物 (II) は、(A) ′ 上記 (A) スチレン系樹 福、(D) 上記 (A) ′ 水分以外の熱可塑性樹脂、なら 次化 (E) 火料もよび/または顔料を溶破組合して得られる組成物に、(F) 清剤を外部添着した組成物である。このうち、樹脂組成物 (II) を構成する (A) ′ スチレン系樹脂は、樹脂組成物 (I) 次用いられる上記 (A) スチレン系樹脂と関係である。 樹脂組成物 (I) 次用いられる上記 (A) スチレン系樹脂と関係である。 樹脂組成物 (II) を構成する (A) ′ スチレン系樹脂と関係である。 樹脂組成物 (II) を構成する (A) ′ スチレン系樹脂の使用量は、 (0 0 2 7 1 次に、本発明の樹脂組成物 (II) には、

(A) ' および(D) 成分中に、10~100重量%、 好ましくは20~90重量%、きちに好ましくは30~ 80重量%である。その使用量が10重量%未満では、 基材樹脂である上記樹脂組成物(1)との相溶性が不足 し剥離を生じる。

[0025] 次に、樹脂組成物(II)には、(D)上記((A)、スチレン系樹脂以外の他の熱可塑性樹脂を配合。40 えってきる。(D)他の熱可塑性樹脂をしては、 例えばポリエチレン、ポリプロピレン、ポリプテンー1 はそのボリオレフィン系樹脂、ナイロン6。6、ナイロ 26、ナイロン1、ナイロン1・2、ナイロン4、6などのポリアミド、ポリプチレンテレフタレート、ポリエステル、ボリカーボネート樹脂、ポリフェンスルフィート、ポリアミドエラストマーなどが挙げられ、これらは、1種種地で、あるいはて種以上を併用することがで 50 る。

きる。特に好ましい樹脂としては、ポリアミド、ポリエ ステル、ポリカーボネート樹脂である。樹脂組成物(I D を構成する(D)他の熱可塑性樹脂の使用量は、 (A) ' および(D) 成分中に、0~90重量%、好ま しくは10~80重量%、さらに好ましくは20~70 重量%である。90重量%を超えると、基材樹脂である 樹脂組成物(1)との相溶性が不足し、剥離を生じる。 [0026]次に、樹脂組成物 (II) には、(E) 染料 および/または顔料が配合される。(E)染料および/ または顔料としては、樹脂の着色に用いられる公知の染 料、有機顔料、無機顔料が挙げられ、これらは、1種単 独で、あるいは2種以上を併用することができる。この うち、染料としては、複素環系、アンスラキノン系、ア ゾ系、ペリノン系、ローダミンレーキなどの塩素性染料 系レーキなどが挙げられる。有機顔料としては、ペリノ ン系、蛍光増白剤、フタロシアニン系、キナクリドン 系、パーマネントレッド、レーキレッド、ファーストイ エローなどのアソ系、ニトロソ系、ニトロ系などが挙げ られる。これらの中では、アゾ系やフタロシアニン系な 20 どが好ましく使用できる。無機顔料としては、亜鉛華、 チタンイエローなどの酸化亜鉛、チタン白などの酸化チ タン系、焼成系、群青系、コバルトブルー系、ベンガラ などの酸化鉄系、カーボンブラック系、硫化鉄、硫化カ ドミウムなどの硫化物系、クロム酸鉛、クロム酸亜鉛な どのクロム酸塩系、炭酸塩系、金属粉系などが挙げられ る。これらの中では、酸化鉄系、カーボンブラック系、 群青系などが好ましく使用できる。樹脂組成物 (II) に おける (E) 成分の使用量は、上記 (A) '+(D) 成 分の合計量100重量部に対して0.5~50重量部、 重量部である。(E)成分の使用量が、本発明の範囲外 では、鮮明な木目模様が得られない。

【0027】次に、本発明の樹脂組成物 (II) には、 (F) 滑剤が配合される。樹脂組成物 (II) を構成する (F)滑削は、上記(A)′、(D)および(E)成分 を溶融混合して得られる組成物に外部添着することによ り、樹脂組成物(III) を用いて得られる本発明の樹脂成 形品に、鮮明な木目模様を付与することができる。上記 (F)滑剤としては、公知の滑剤を使用することができ る。具体的には、長鏡のアルキル基と官能基とを有する 化合物、エチレン、プロピレンなどのα-オレフィン (共) 重合体、ジメチルポリシロキサンなどのシリコン 含有重合体、α-オレフィンと官能基含有不飽和化合物 との共重合体、エチレン系共重合体、プロビレン系共重 合体、エチレンープロピレン共重合体、シリコン含有重 合体などの重合体に官能基含有不飽和化合物を付加した 重合体、ポリエチレン、ポリプロピレン、エチレンープ ロビレン共重合体などを酸化し、カルボキシル基などを 付加する方法によって得られる重合体などが挙げられ

【0028】ここで、上記官能基としては、カルボキシ ル基またはその金属塩、水酸基、オキサゾリン基、酸無 水物基、エステル基、アミノ基、アミド基、エポキシ 基、イソシアネート基、ウレタン基、ユリア基などが挙 げられる。好ましい官能基としては、カルボキシル基ま たはその2価の金属塩、エステル基、アミド基である。 カルボキシル基の塩としては、ナトリウム、カリウム、 リチウム、カルシウム、マグネシウム、アルミニウム、 亜鉛、バリウム、カドミウム、マンガン、コバルト、 鉛、スズなどの金属塩が挙げられる。上記官能基含有不 10 の有機系が使用できる。また、化学発泡剤としては、重 飽和化合物としては、上記したものがすべて使用され

【0029】本発明の(F)滑剤を、上記(A) 'スチ レン系樹脂、(D)他の熱可塑性樹脂、ならびに(E) 染料および/または顔料を溶融混練りして得られる組成 物に外部添着することで、鮮明な木目模様を得ることが できる。外部添着の方法としては、ペレットにブレンド する方法。(F)滑剤を溶融し、ペレットに添着させる 方法などが挙げられる。樹脂組成物 (II) における (F) 滑剤の使用量は、上記(A) '+(D)+(E) の合計量100重量部に対し、0,1~5重量部、好ま しくは0.1~3重量部、さらに好ましくは0.2~ 1. 5重量部である。0. 1重量部未満では、鮮明な木 目模様が得られず、一方、5重量部を超えると、成形時 にサージングを生じる。なお、樹脂組成物 (II) は、1 種単独で、あるいは2種以上を併用することができる。 2種以上を併用することにより、複雑な木目模様が得ら

【0030】本発明では、上記(A)~(C)成分を主 成分とする樹脂組成物(I)と、上記(A)'、 (D). (E) および (F) 成分を主成分とする樹脂組 成物(II)とを、ドライブレンドして得られる樹脂組成 物(III) を成形することにより、鮮明な木目模様を有す る成形品を得ることができる。樹脂組成物(III) におけ る樹脂組成物 (I) と樹脂組成物 (II) の配合割合は、 樹脂組成物(1)100重量部に対し、樹脂組成物(1 D が0.5~100重量部、好ましくは1~50重量 部. さらに好ましくは2~20重量部である。この範囲 外では、鮮明な木目模様が得られない。

【0031】なお、上記樹脂組成物(I) ((A)~ (C) 成分] には、公知のカップリング剤、抗菌剤、防 カビ剤、難燃剤、難燃助剤、酸化防止剤、耐候(耐光) 剤、可塑剤、シリコーンオイル、ミネラルオイル、およ び他の各種伸展油、界面活性剤、着色剤(顔料、染 料) 滑剤 金属粉 帯電防止剤 加工助剤などの添加 剤をを配合することができる。これら添加剤は、上記樹 脂組成物(I)の混練り時に配合してもよく、また外部 添加することもできる。また、これらの各種添加剤を高 濃度に配合したマスターバッチを添加することもでき る。また、樹脂組成物 (II) [(A)'、(D)、

10 (E) 成分] には、公知の滑剤、カップリング剤、界面 活性剤や、上記のタルク、ガラス繊維などの無機フィラ 一、帯電防止剤などの添加剤を配合することができる。 【0032】さらに、本発明の樹脂組成物(III) は、発 泡成形にも優れる。ここで、使用される発泡剤および発 泡方法については、公知の方法で行うことができる。発 泡剤としては、物理発泡剤または化学発泡剤が使用でき る。物理発泡剤としては、空気、炭酸ガス、窒素ガスな どの無機系、ブタン、ペンタン、ヘキサン、フロンなど 炭酸ナトリウム+酸、重炭酸塩、炭酸塩などの無機系が あり、有機系としては、イソシアネート化合物、アゾ化 合物。ヒドラジン誘導体、セミカルバジド化合物、アジ F化合物、ニトロソ化合物、トリアゾール化合物などが ある。これらの発泡剤は、樹脂組成物(I)、(II) お よび/または(III) に添加することができる。また、ド ライブレンドにより、添加することもできる。 【0033】本発明における樹脂組成物(I) ((A) + (B) + (C) 〕や、樹脂組成物 (ID) のうちの成分 20 「(A)'+(D)+(E)]は、各種押し出し機、バ ンバリーミキサー、ニーダー、ロールなどを用い、各成 分を混練りすることによって得られる。好ましい製造方 法は、押し出し機を用いる方法である。また、各成分を 湿練りするに際しては、各成分を一括混練りしてもよ く、多段階添加方式で混練りしてもよい。また、本発明 の樹脂組成物(III) は、上記樹脂組成物 (II) と(III) とをドライブレンドすることにより得られる。ドライブ レンドすることにより、樹脂組成物 (III)を成形したと きに 鮮明な木目模様が得られる。本発明の樹脂成形品 30 は、樹脂組成物(III) を、射出成形、シート押し出し成 形、真空成形、異形押し出し成形、発泡成形、インジェ クションプレス、ガスアシスト成形、プレス成形、プロ 一成形などの成形法によって成形される。なお、色相の 組み合わせによっては、木目模様のみならず、大理石模 様などの成形品を得ることできる。上記成形法によって 得られる本発明の樹脂成形品は、その優れた性質を利用 して、OA・家電分野、車両・船舶分野、家具・建材分

40 ことができる。 [0034]

> 【実施例】以下、実施例を挙げて本発明をさらに説明す るが、本発明はその要旨を越えない限り、以下の実施例 に限定されるものではない。なお、実施例中、部および %は特に断らない限り重量基準である。また、実施例中 の各種評価は、次のようにして測定した値である。 【0035】成形品表面外観

> 野などの住宅関連分野、サニタリー分野、玩具・スポー

ツ用品分野、そのほか雑貨などの幅広い分野に使用する

射出成形で平板を成形し、試験片とした。 得られた試験片の表面外観を目視判定した。

50 〇: 鮮やかな木目模様

11

×:不良 材料強度

押し出し成形により、2×0、5×10cmの平板を成 形し、試験片として、曲げ試験を行い、破断までの破壊 エネルギーを測定した。

試験速度; 15 mm/min

【0036】実施例および比較例に用いた各成分は、下*

* 記のとおりである。

(A)_[(A)'] スチレン系樹脂の調製

ゴム質重合体 (a) -1~ (a) -4; 本発明の (A) スチレン系樹脂に用いられるゴム質重合体(a)とし

12

て、表1のものを用いた。 [0037]

【表1】

ゴム質重合体	内容	備考
(a) -1	ポリプタジエン	ラテックス、平均粒径= 3.500 オングストローム
(a) -2	ポリオルガノシロキサン	ラテックス、平均粒径= 2,000 オングストローム
(a) -3	エチレンープロピレン-エチリデ ンノルポルネン共重合ゴム	_
(a) -4	水素化スチレン-プタジエン-ス チレンプロック共重合ゴム	_

【0038】スチレン系樹脂A-1~4、(b)-1~ 20※A-1は乳化重合で、A-2~4、(b)-1、(b) 4:上記ゴム質重合体(a)-1~(a)-4の存在 -3~4 は溶液重合で、(b)-2 は懸濁重合で得た。

下、または非存在下に、単量体成分を重合し、スチレン

系樹脂をそれぞれ得た。これらの樹脂の構成を表2に示

す。なお、表2中、*印は、固形分換算である。また、※

[0039]

【表2】

スチレ	ゴム質重合体		単量体成分(部)						
ハア 水樹脂	種類	部	スチレン	α-メチ ルスチレ ン	アクリロ ニトリル	ヒドロキ シエチル メタクリ レート			
A-1	(a)-1	40*	45	-	15	-			
A - 2	(a)-2	30*	53	- 1	17	-			
A - 3	(a)-3	30	53	-	17	-			
A-4	(a)-4	30	53	-	17	-			
(b)-1	-	-	73	-	27	-			
(b)-2	~	-	62	-	38	-			
(p)-3	-	-	-	75	25	-			
(b)-4	-	-	68	-	22	10			

【0040】(B) セルロース系物質の調製

B-1(木粉);マツ/ツガ=50/50(重量比)の 割合で混合した粉砕品で、100メッシュパスしたもの を用いた。

- B-2 (セルロースファイバー); PPC用紙を粉砕 し、繊維状にしたものを使用した。

(C) 無機フィラーの調製

- C-1; タルク (日本タルク (株) 製、ミクロエースK
- 1〕を用いた。

- C-2:軽質炭酸カルシウム (丸尾カルシウム (株) 製〕を用いた。
- 【0041】(D)他の熱可塑性樹脂の調製
- D-1;ポリカーボネート樹脂 (帝人化成 (株) 製、バ ンライトL-1225]を用いた。
- D-2:ボリアミック6 (鐘紡(株)製、カネボウナイ ロンMC-120]を用いた。
- (E)染・顔料の調製
- 50 E-1;カーボンブラックを用いた。

E-2;ベンガラを用いた。 E-3; チタンイエローを用いた。

【0042】(F) 滑剤の調製

F-1;ステアリン酸マグネシウム (堺 (株) 製、SM #1000]を用いた。

F-2; エチレンビスステアリルアマイド(花王(株) 製、カオーワックスEB-F)を用いた。

F-3;シリコーンオイル (東レダウコーニングシリコ ーン(株)製、SH200-1000]を用いた。

F-4;多価アルコール脂肪酸エステル〔理研ビタミン 10 【0044】

(株) 製、リケスターSL-02〕を用いた。

*【0043】実施例1~34、比較例1~9 上記各成分を、水分率0.1%以下までそれぞれ乾燥 し、(F)成分の滑剤以外の成分を、表3~7の配合処 方で混合し、押し出し機を使用して180~20℃で溶 融混練りしペレット化し、樹脂組成物 (II) について は、(F)成分の滑剤を外潤しペレットを得た。得られ たペレットを、表8~10の比率で混合し、押し出し成 形により平板を成形し、材料強度の測定および表面の木 目模様を目視で判定した。結果を表8~10に示す。

14

* 【表3】

	樹脂組成物(I)										
	1	2	3	4	5	6	7	8	9		
配合処方(部)											
A-1	25	-	-	-	25	25	5	25	25		
A-2	-	25	۱ -	-	-	-	-	-	-		
A-3	-	-	25	-	-	-	-	-	-		
A-4	-	-	-	25	-	-	-	-	-		
(b) -1	75	75	75	75	70	20	-	35	35		
(b) -4	-	-	- 1	-	-	-	20	20	20		
B-1	-	-	-	-	5	55	75	15	15		
B-2	-	-	-	-	-	-	-	5	-		
C-1	-	-	-	-	-	-	-	-	5		
C-2	-	- 1	-	-	-	-	-	-	-		

[0045] 【表4】

30 【表5】

	組成物(I)						
	10	11	12	13			
配合処方(部)							
A-1	25	15	15	15			
A-2	-	-	- 1	-			
A-3	-	-	-	~			
A-4	-	-	-	-			
(b) -1	55	10	-	-			
(b) -4	-	-	-	-			
B-1	-	-	85	-			
B-2	- 1	-	- 1	-			
C-1		75	-	85			
C-2	20	-	-	-			

[0046]

16

		樹脂組成物 (II)									
	1	2	3	4	5	6	7	8	9		
配合処方(部)											
A-1	25	-	-	15	-	15	-	-	-		
(b) -1	-	-	-	20	50	20	15	-	-		
(b) -2	75	100	-	-	-	-	-	-	-		
(b) -3	-	-	100	-	-	-	-	100	100		
D-1	-	-	-	65	50	-	85	-	-		
D-2	-	-	-	-	-	65	-	-	-		
E-1	1	1	1	1	1	1	1	0.1	5		
E-2	10	10	10	10	10	10	10	0.5	30		
E-3	2	2	2	2	2	2	2	0.1	10		
F-1	-	-	-	-	-	-	-	-	-		
F-2	1	1	1	1	1	1	1	1	1		
F-3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		
F-4	-	-	-	-	-	-	-	-	-		

[0047]

* *【表6】

		樹脂組成物(II)									
	10	11	12	13	14	15	16	17	18		
配合処方(部)											
A-1	-	-	-	-	-	-	-	-	5		
(b) -1	-	-	-	-	ļ -	-	-	-	-		
(b) -2	-	-	-	-	-	-	-	-	-		
(b) -3	100	100	100	100	100	100	100	100	-		
D-1	-	-	-	-	-	-	-	-	-		
D-2	-	-	-	-	-	-	-	-	95		
E-1	1	1	1	1	1	1	1	1	1		
E-2	10	10	10	10	10	10	10	10	10		
E-3	2	2	2	2	2	2	2	2	2		
F-1	1	-		1.2	-	-	-	-	-		
F-2	-	-	l -	-	1.2	-	-	4.5	1		
F-3	0.2	0.2	0.8	-	l –	-	0.15	0.2	0.2		
F-4	-	1	-	-	-	1.2	-	-	-		

【0048】 【表7】 (10)

特開平11-43582

17

	樹脂組成物(II)						
	19	20	21	22			
配合処方(部)							
A-1	-	-	-	-			
(b) - 1	-	-		-			
(b) -2	-	-	-	-			
(b) -3	100	100	100	100			
D-1	-	-	-	-			
D-2	-	- [-	-			
E-1	0.1	5	1	1			
E-2	0.1	40	10	10			
E-3	0.1	10	2	2			
F-1	-	-	-	-			
F-2	1	1	-	-			
F-3	0.2	0.2	0.05	7			
F-4	l _	i -	-	۱ ـ			

*【表8】

10

[0049]

ale ...

	樹	指組成物(評価額	吉果		
	樹脂組成物(I)		樹脂組成	物 (II)	材料強度	木目模様
	種類	部	種類	部	/mn²)	
実施例1	9	100	1	6	1.1	0
実施例 2	9	100	2	6	1.0	0
実施例3	9	100	3	6	1.0	0
実施例4	9	100	4	6	0.9	0
実施例 5	9	100	5	6	0.9	0
実施例 6	9	100	6	6	0.9	0
実施例7	9	100	7	6	1.0	0
実施例8	9	100	8	6	1.0	0
実施例 9	9	100	9	6	1.0	0
実施例10	9	100	10	6	1.0	0
実施例11	9	100	11	6	1.0	0
実施例12	9	100	12	6	1.0	0
実施例13	9	100	13	6	1.0	0
実施例14	9	100	14	6	1.0	0
実施例15	9	100	15	6	1.0	0
実施例16	9	100	16	6	1.0	0
実施例17	9	100	17	6	1.0	0
実施例18	9	100	3/4	3/3	1.0	0
実施例19	1	100	3	6	破断せず	0

[0050] [表9]

	樹	脂組成物(評価結果			
	樹脂組成	物 (1)	樹脂組成	樹脂組成物 (II)		木目模様
	種類	部	種類	部	(kg · mm / mm²)	
実施例20	2	100	3	6	破断せず	0
実施例21	3	100	3	6	破断せず	0
実施例22	4	100	3	6	破断せず	0
実施例23	5	100	3	6	2.3	0
実施例24	6	100	3	6	0.7	0
実施例25	7	100	3	6	0.5	0
実施例26	8	100	3	6	1.4	0
実施例27	10	100	3	6	破断せず	0
実施例28	11	100	3	6	0.7	0
実施例29	9	100	3	0.6	1.1	0
実施例30	9	100	16	0.6	1.1	0
実施例31	9	100	3	45	0.8	0
実施例32	9	100	17	45	0.8	0
実施例33	9	100	3	95	0.7	Ō
実施例34	9	100	17	95	0.7	0

[0051]

* * 【表10】

	樹	脂組成物	評価	吉果			
	樹脂組成物(I)		樹脂組成	物 (II)	材料強度	木目模様	
	種類	部	種類	部	(kg - mn /mm²)		
比較例1	9	100	18	6	0.7	剥離	
比較例2	9	100	19	6	1.0	×	
比較例3	9	100	20	6	1.0	×	
比較例4	9	100	21	6	1.0	×	
比較例5	9	100	22	6	成形不可	成形不可	
比較例6	12	100	3	6	0.2	0	
比較例7	13	100	3	6	0.3	0	
比較例8	9	100	3	0.1	1.0	×	
比較例9	9	100	3	110	0.6	×	

[0052] 表8~9から明らかなように、本朶明の制 脂成形品である実施例1~34は、すべて鮮明な木目模 様が得られ、材料強度も優れている。これに対し、表1 0から明らかなように、比較例1は、本朶明の樹脂組成 物(II)の(A)が成分の使用量が本朶明の範囲外で少 なく、(D)成分の使用量が本朶明の範囲外で少ない の(E)成分の使用量が本朶明の範囲外で少ない の(E)成分の使用量が本朶明の範囲外で少ない のであり、熱質な木目模様が得られない。比較例3は、

本発明の樹脂組成物 (II) の (E) 成分の使用量が本発 明の範囲外で多い例であり、鮮明な木目模様が得られな い。比較例4は、本発明の樹脂組成物 (II) の (F) 成 分の使用量が本発明の範囲外で少ない例であり、鮮明な 木目模様が得られない。比較例5は、本発明の樹脂組成 物 (II) の (E) 成分の使用量が本発明の範囲外で多い 例であり、サージングが生じ、成形品が得られなかっ た。比較例6は、本発明の樹脂組成物 (I) の (A) 成 50 分の使用量が本発明の範囲外で少なく、(B) 成分の使

特開平11-43582

22

21 用量が本発明の範囲外で多い例であり、材料強度化劣 る。比較例では、本発明の樹脂組成物(1)の(A)成 分の使用量が本発明の範囲外で少なく、(C)成分の使 用量が本発明の範囲外で少なく、(C)成分の使 用量が本発明の範囲外でかない例であり、材料強度化劣 本発明の範囲外で少ない例であり、射明な木目模様が得 られない、比較例8は、本発明の樹脂組成物(II)の使 用量が本発明の範囲外で少ない例であり、針明な木目模様が得 られない。比較例8は、本発明の樹脂組成物(II)の使 用量が本発明の範囲外で多い例であり、針明な木目模様が

*が得られない。

【0053】 【発明の効果】本発明の木目模様を有する樹脂成形品 は、鮮やかた木目模様を有するため、広範囲の用途、例 えば〇A・家電分野、車両・船舶分野、家具・建材分野 などの住宅附進分野、サニタリー分野、玩具、スポーツ 用品分野、そのほか雑貨などの幅広い分野に使用するこ とができる。

フロントページの続き

(51)Int.Cl.* 識別記号 C 0 8 L 1:00) FΙ