计算机网络实验报告

课程名称计算机网络					络			成绩评定_	
实验项目名称					作原	理		_指导教师_	张伟
实验项目组	扁号	实验 3	3		_实	验项目	类型	_实验地点_	学院楼 111
学生姓名_	!	密语				_学号	20220046	0104	
学院	网络	空间多	군全			_专业_	网络空间	安全	
实验时间	2024	年	4	月	9	H			

一、 实验目的

- 1. 理解交换机通过逆向自学习算法建立地址转发表的过程
- 2. 理解交换机转发数据帧的规则
- 3. 理解交换机的工作原理

二、 实验步骤与结果

1.首先清空三个交换机的地址转发表

分别对 switch1, switch2, switch3 执行 clear mac-address-table 指令。

2.记录三台主机的 MAC 地址

3.记录三台交换机的初始地址转发表

我们可以发现, Switch0 的初始地址转发表中存放的是 Switch1 的 F0/1 端口的 MAC 地址, 和进入 Switch0 的端口 F0/3, Switch1 的初始地址转发表中存放的是 Switch0 的 F0/3 端口的 MAC 地址和 Switch2 的 F0/1 端口地址, Switch2 的初始地址转发表中存放的是 Switch1 的 F0/2 端口的 MAC 地址。

4.由 PC0 向 PC2 发送数据

观察到,当交换机的地址转发表中没有发送数据包的主机的 MAC 地址时,交换机会记录下发送数据包的主机 MAC 地址和交换机的接收端口,当找不到目的 MAC 地址时,数据包会被洪泛转发到该节点相邻的所有的主机和交换机。

当 PC2 应答时,交换机中已经记录了 PC0 的 MAC 地址,因此数据包不会被转发到 PC1。 发送后的三个交换机的地址转发表:

MAC Table for Switch0			MAC Table for Switch1			MAC Table for Switch2			
VLAN 1 1 1 1	Mac Address 0007.ECD4.2A01 00D0.BCE9.C0B8 00E0.F966.5625	Port FastEthernet0/3 FastEthernet0/3 FastEthernet0/1	VLAN 1 1 1 1	0001.C78D.4701	Port FastEthernet0/1 FastEthernet0/2 FastEthernet0/2 FastEthernet0/1	VLAN 1 1 1	Mac Address 0007.ECD4.2A02 00D0.BCE9.C0B8 00E0.F966.5625	Port FastEthernet0/1 FastEthernet0/3 FastEthernet0/1	

数据包的转发情况:

5.由 PC1 向 PC0 发送数据

由于 PC0 向 PC2 发送数据包时,Switch1 中已经存储了 PC0 的 MAC 地址,因此,PC1 向 PC0 发送数据包的时候不需要洪泛转发,而是直接通过 Switch1 发送到 Switch0。

数据包的转发情况:

Eve	nt List			ш	
Vis.	Time(sec)	Last Device	At Device	Type	Info
	0.008		PC1	ICMP	
	0.009	PC1	Switch1	ICMP	
	0.010	Switch1	Switch0	ICMP	
	0.011	Switch0	PC0	ICMP	
	0.012	PC0	Switch0	ICMP	
	0.013	Switch0	Switch1	ICMP	
(9)	0.014	Switch1	PC1	ICMP	

发送后的地址转发表:

6.删除 Switch1 的地址转发表后,由 PC1 向 PC0 发送数据

由于删除了 Switch1 的地址转发表,因此当 PC1 的数据包发送到 Switch1 时,会洪泛转发到 Switch0 和 Switch1。

数据包的转发情况:

Vis.	Time(sec)	Last Device	At Device	Type	Info
	150.208	PC1	Switch1	ICMP	
	150.209	Switch1	Switch0	ICMP	
	150.209	Switch1	Switch2	ICMP	
	150.210	Switch0	PC0	ICMP	
	150.211	PC0	Switch0	ICMP	
	150.212	Switch0	Switch1	ICMP	
(9)	150.213	Switch1	PC1	ICMP	

发送后的地址转发表:

MAC Tab	MAC Table for Switch0			le for Switch1		MAC Table for Switch2			
VLAN 1 1 1	Mac Address 0007.ECD4.2A01 00D0.BA0E.6EC7 00E0.F966.5625	Port FastEthernet0/3 FastEthernet0/3 FastEthernet0/1	VLAN 1 1 1 1	Mac Address 0001.6480.8203 0001.C78D.4701 00D0.BA0E.6EC7 00E0.F966.5625	Port FastEthernet0/1 FastEthernet0/2 FastEthernet0/3 FastEthernet0/1	VLAN 1 1	Mac Address 0007.ECD4.2A02 00D0.BA0E.6EC7	Port FastEthernet0/1 FastEthernet0/1	

思考题:

(1) 在实验过程中,将观察结果填入下表:

发送的帧	Switch0 的转发表		Switch1 自	Switch1 的转发表 Switch		勺转发表	Switch0	Switch1	Switch2
	地址	接口	地址	接口	地址	接口	的处理	的处理	的处理
PC0→PC2	MAC(PC0)	0/1	MAC(PC0)	0/1	MAC(PC0)	0/1	洪泛转发	洪泛转发	洪泛转发
PC1→PC0	MAC(PC1)	0/3	MAC(PC1)	0/3			转发	转发	
PC1→PC0	MAC(PC1)	0/3	MAC(PC1)	0/3	MAC(PC1)	0/1	转发	转发	丢弃

(2) Switch0 收到 PC0 向 PC2 发送的数据帧后,其地址转发表是否有变化?如有,给出增加的条目并解释原因。

有变化,增加了 PC0 的 MAC 地址和 Switch0 的接收端口 0/1,原因是 Switch0 中没有 PC0 的 MAC 地址,因此要将 PC0 的 MAC 地址和接收端口添加进地址转发表。

- (3) Switch1 收到 PC0 向 PC2 发送的数据帧后,是如何处理的?说明其如此处理的原因。 Switch1 将数据帧洪泛转发到 PC1 和 Switch2,原因是 Switch1 中没有目的主机的 MAC 地址,也就是没有 PC2 的 MAC 地址,所以要洪泛转发到相邻的所有设备。
- (4) 在删除 Switch1 上的地址转发表前后, PC1 向 PC0 发送数据时 Switch2 是如何处理的? 说明如此处理的原因。

删除 Switch1 的地址转发表前,数据包将不会被转发到 Switch2; 删除 Switch1 的地址转发表之后, Switch2 会接收数据包并丢弃。

原因: 删除 Switch1 的地址转发表之前, Switch1 中存有目的主机 PC0 的 MAC 地址, 因此不会被洪泛转发到 Switch2; 删除 Switch1 的地址转发表之后, Switch1 中没有目的主机的 MAC 地址, 因此数据帧会被洪泛转发到 Switch1 和 Switch2, 并被 Switch2 丢弃。