- Varianz σ^2 unbekannt
- Test von

$$\mathcal{H}_0$$
: $\mu \leq \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$

• Unter H_0 ist

$$\mathsf{E}(\bar{X}) \leq \mu_0.$$

wesentlich größerer Wert deutet auf Verletzung der Nullhypothese hin
Da wir die echte Standardabweichung nicht kennen, verwenden wir
den Schätzer S und betrachten die Statistik

$$T = \sqrt{n} \, \frac{\bar{X} - \mu_0}{S}.$$

• Es gilt

In diesem Fall folgt T einer t-Verteilung mit n-1 Freiheitsgraden.

• t-Test mit kritischem Bereich

Sei $t_{n-1,1-\alpha}$ das $(1-\alpha)$ -Quantil dieser Verteilung.

$$K = \left\{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : t(x) > t_{n-1,1-\alpha}\right\}$$

Verwerfungsbereiche

Sei $X_1,\ldots,X_n\stackrel{\mathrm{iid}}{\sim} \mathrm{N}(\mu,\sigma^2)$ mit **unbekanntem** σ^2 und α ein gegebenes Signifikanzniveau. Definiere $t=\sqrt{n}\,\frac{\bar{x}-\mu_0}{s}$.

Hypothese	Verwerfe \mathcal{H}_0
\mathcal{H}_0 : $\mu = \mu_0$	t \ t
$\mathcal{H}_1: \mu \neq \mu_0$	$ t > t_{n-1,1-\alpha/2}$
$\mathcal{H}_0: \mu \leq \mu_0$	$t > t_{n-1,1-\alpha}$
$\mathcal{H}_1: \mu > \mu_0$	
$\mathcal{H}_0: \mu \geq \mu_0$	$t < t_{n-1,\alpha}$
$\mathcal{H}_1: \mu < \mu_0$	

Anwendung

Sei $X_1, \ldots, X_8 \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ mit unbekanntem σ^2 . Wir beobachten

und möchten die Hypothese

$$\mathcal{H}_0: \quad \mu \geq 3 \qquad \text{vs} \qquad \mathcal{H}_1: \quad \mu < 3.$$

• zum Niveau $\alpha = 0.05$ testen.

Aus der Stichprobe berechnen wir $\bar{x} = 1.61, s = 1.85$ (gerundet).

Die Statistik für den *t*-Test ergibt

$$t = \sqrt{8} \, \frac{1.61 - 3}{1.85} = -2.13.$$

Aus der Tabelle lesen wir ab $t_{n-1,1-\alpha}=t_{7,0,95}=1.89$. Da

$$t = -2.13 < -1.89$$
.

ist $x \in K$ und wir verwerfen \mathcal{H}_0 zum Niveau $\mathfrak{A} = 0.05$.

• R

```
> x < -c(0.63, 1.56, 1.26, -0.31, 3.87, 0.03, 4.92, 0.90)
> alpha <- 0.05
> n <- length(x)
> t <- sqrt(n) * (mean(x) - 3)/sd(x)
> t < qt(alpha, df = n - 1)
[1] TRUE
> pt(t, df = n - 1)
[1] 0.03510698
> t.test(x, alternative = "less", mu = 3)
        One Sample t-test
                                            ⊕*
data: x
t = -2.1344, df = 7, p-value = 0.03511
```

alternative hypothesis: true mean is less than 3

95 percent confidence interval:

-Inf 2.843547

sample estimates:

mean of x

1.6075