Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)

AY 2023-24

Course Information							
Programme	B.Tech. (Computer Science and Engineering)						
Class, Semester	Third Year B. Tech., Sem V						
Course Code	6CS301						
Course Name	Compiler Design						
Desired Requisites:	Formal Language and Automata Theory, Discrete Mathematics						

Teaching	Scheme	Examination Scheme (Marks)							
Lecture	3	ISE	MSE	ESE	Total				
	Hrs/week								
Tutorial	-	20	30	50	100				
Practical	-								
Interaction	-	Credits: 3							

	Course Objectives								
1	To introduce fundamentals of compiler design and various tools used to design	a compiler							
2	To inculcate role of various phases involved during design of a compiler and imworking of each phase	part in depth							
3	To exercise design of various phases of a compiler using compiler design tools and techniques								
	Course Outcomes (CO) with Bloom's Taxonomy Level								
CO1	Discuss the need of a compiler, fundamental concepts and various tools used to design a compiler.	Understanding							
CO2	Demonstrate the role and working of each phase involved during compilation process.	Applying							
CO3	Analyze the working of various phases of compiler	Analyzing							
CO4	Compare and assess the impact of different code optimization and generation techniques and analyze the advantages and limitations of compiler construction tools and frameworks.	Evaluating							

Module	Module Contents	Hours
I	Module 1: Fundamentals of Compiler Overview- Structure of a compiler, applications of compiler, one pass and two pass compiler. Lexical analysis - The role of a lexical analyzer, specification of tokens, recognition of tokens, LEX.	6
П	Module 2 Syntax Analysis Context-free grammar, writing grammars for context free environments, parse trees and ambiguity, role of parser, specification and recognition of tokens, top-down parsing, recursive descent and predictive parsers (LL), bottom-up parsing, operator precedence parsing, LR, SLR and LALR parsers.	9
III	Module 3 Syntax Directed Translation & Run time environments Syntax-directed definitions, evaluation orders for attributes of an SDD, S- attributed and L-attributed SDDs, construction of syntax tree, source language issues, storage organization and allocation strategies, parameter passing, symbol table organizations and generations, dynamic storage allocations.	6

	Module 4 Intermediate Code Generation	
	Intermediate languages, declarations, different intermediate representations	
IV	-quadruples, triples, trees, flow graphs, SSA forms, and their uses;	6
	assignment statements and Boolean expressions, case statements, back	
	patching, procedure calls.	
	Module 5 Code Optimization	
* 7	Sources of optimization, basic blocks and flow graphs, optimization of	
V	basic blocks, loops in flow graphs, loop optimization, machine-independent optimization, machine-dependent optimization, dead-code Elimination,	6
	code improving transformations.	
	Module 6 Code Generation	
	Issues in the design of a code generator, run time storage management;	
	simple code generator- register and address descriptors, code generation	
VI	algorithm, design of the function getReg, DAG, peephole optimization,	6
	register allocation and assignment, selection of instruction, register	
	allocation, parallel compilation, Just-in-Time compiler, study of compiler	
	construction tools.	
	Text Books	
	A.V. Aho, R. Shethi and J.D. Ullman, "Compilers - Principles, Techniq	ues and Tools",
1	Pearson Education, Second Edition, 2007.	, , , , , , , , , , , , , , , , , , ,
2	D.M. Dhamdhere, "Systems Programming and Operating Systems", Tata	a McGraw- Hill
2	Publishing Company limited, New Delhi, Second revised Edition, 2005.	
1	References	1 E 1'' 2011
1	K Cooper, L Torczon, "Engineering a Compiler", Morgan Kaufmann, Secon	
2	John J Donavan, "System Programming", Tata McGraw- Hill Publishing C New Delhi	ompany limited,
3	Sumitabha Das, "Unix Concepts and Administration", TMGH, 3rd Edition	
4	A.V. Aho, R. Shethiand J.D. Ullman, "Compilers - Principles, Techniq	ues and Tools".
	Addison Wesley Publishing Company, 2007	,
	Useful Links	
1	https://onlinecourses.nptel.ac.in/noc21_cs07/preview	
2	https://nptel.ac.in/courses/106108052	

	CO-PO Mapping														
		Programme Outcomes (PO)											PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2												2		
CO2	3	2											2		
CO3		2	3										2		
CO4		2	3		1				1				2		

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

(Government Aided Autonomous Institute)

AY 2023-24

Course Information								
Programme	B.Tech. (Computer Science and Engineering)							
Class, Semester	Third Year B. Tech., Sem V							
Course Code	6CS302							
Course Name	Design and Analysis of Algorithms							
Desired Requisites:	Discrete Mathematics, Data Structure							

Teaching	Scheme	Examination Scheme (Marks)								
Lecture	3	ISE	MSE	ESE	Total					
	Hrs/week									
Tutorial	-	20	30	50	100					
Practical	-									
Interaction	-	Credits: 3								

	Course Objectives								
1	To illustrate and apply the algorithm analysis techniques.								
2	To discuss the efficient algorithm for various problem								
3	To explain and demonstrate different algorithm techniques for real world problem								
4	To compute and prove complexity class of various algorithm techniques.								
	Course Outcomes (CO) with Bloom's Taxonomy Level								

Bloom's Bloom's \mathbf{CO} **Course Outcome Statement/s Taxonomy Taxonomy** Level **Description** Discuss the fundamentals of algorithm design and II Understanding **CO1** analysis techniques. Apply knowledge of computing and mathematics to IIICO₂ Applying algorithm design Critically analyze the various algorithm design techniques IV Analyzing **CO3** for a given problem.

V

Evaluating

Classify computational problems into P, NP, NP-Hard

CO4

and NP Complete.

Module	Module Contents	Hours
	Module 1: Introduction to Algorithm Introduction, Evolution of Algorithms, Design of Algorithms, Need	
I	of correctness of Algorithms, Performance Analysis, Recurrence	7
	Equations: Solution of Recurrence Equations–Iteration Method and	
	Recursion Tree Methods. Master's theorem, Towers of Hanoi.	
	Module 2: Divide and Conquer Method	
**	Binary Search, Merge Sort, Quick sort, Multiplication of Large	
II	Integers, Closest-Pair and Convex Hull Problems, Strassen's Matrix	6
	Multiplication.	

	Module 3: Greedy Method	
III	Minimum Cost Spanning Trees, Job Sequencing with Deadlines,	6
	Knapsack Problem, Optimal Merge Pattern, Huffman Trees.	
	Module 4: Dynamic Programming Method	
IV	Principle of Optimality, Floyd's Algorithm, Multi Stage Graph,	6
	Optimal Binary Search Trees, 0/1 Knapsack problem.	
	Module 5: Backtracking & Branch and Bound Method	
***	Backtracking: Introduction, n*n - Queen Problem, Sum of Subsets	-
V	Problem, Graph Colouring, Hamiltonian Cycles.	7
	Branch and Bound Method: Breadth First Search & Traversal,	
	Depth First Search & Traversal, Traveling Salesperson Problem	
	Module 6: Class of Problem & Parallel Algorithms	
	Class of Problem: P, NP, NP Complete and NP Hard Problems,	
VI	Approximation Algorithms for NP-Hard Problems.	7
	Parallel Algorithms: Introduction, Parallel Evaluation of	
	Expression, Basic Techniques and Parallel Algorithms.	
	Text Books	
1	Ellis Horowitz, Sartaj Sahni and Rajasekaran "Fundamentals	of Computer
2	Algorithms", Galgotia Publications, 2 nd Edition. Aho, Hopfcraft and Ullman, Addison Wesley "Design and Analysis of	`Algorithma''
	Ano, Hopicrart and Offman, Addison Wesley Design and Analysis of	Aigoriums .
	References	
1	Thomas Cormen, Leiserson, Rivest, and Stein "Introduction to Alg	gorithms", PHI
1	Publication.3 rd Edition, 2009.	
2	Goodman, "Introduction to Design and Analysis of Algorithm", McGr	aw Hill.
3	R.C.T. Lee, S.S. Tseng, R.C. Chang, "Introduction to the Design a	nd Analysis of
	Algorithm".	
	Useful Links	
		and analysis of
1	https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_a	ind_unarysis_or
2	algorithms_tutorial.pdf https://www.ebooks.com/en-in/book/1679384/algorithms-design-techniques-	•

	CO-PO Mapping														
		Programme Outcomes (PO)											PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3									2			2		
CO2	2	3											3	2	
CO3		3											2		
CO4		2		2									2		

The strength of mapping is to be written as 1,2,3; Where, 1: Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

(Government Aided Autonomous Institute)

AY 2023-24

Course Information

	Course information					
Programme B.Tech. (Computer Science and Engineering)						
Class, Semester	Third Year B. Tech., Sem V					
Course Code	6CS303					
Course Name	Artificial Intelligence					
Desired Requisites:	Data structures, algorithm					

Teaching	Scheme		Examination S	cheme (Marks)				
Lecture	3 Hrs/week	MSE	ISE	ESE	Total			
Tutorial	Tutorial -		20	50	100			
		Credits: 3						

Course Objectives

- 1 To acquaint students with the meaning, purpose, scope, applications, and effects of AI.
- To solve problems by applying a suitable search method, and AI applications in Natural Language Processing, Computer vision and Robotics.
- 3 To understand and represent knowledge in AI systems.
- 4 To analyse real life problems and provide solutions by applying AI techniques.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	explain fundamental concepts and challenges in AI.	II	Understanding
CO2	practice the basic principles, models and algorithms of AI to recognize, model and solve problems.	III	Applying
CO3	examine knowledge representation techniques for representation power and problem solving strategies for complexity.	IV	Analysing
CO4	select suitable AI strategies to solve real life problems.	V	Evaluating

Module	Module Contents	Hours
I	AI - Inception and Scope Introduction to AI: What is AI, History of AI, Foundations of AI, Turing test, AI problems, AI application areas, AI case studies; Intelligent Agents: Introduction, Structure of agents, Types of agents, Environments	5
II	Problem Solving by Search Solving problems by searching: Problem solving agents, Formulating problems, Solution search; Search strategies: BFS, DFS, Uniform cost, Depth limited; Informed search methods: Best first, A*, Hill climbing, Simulated annealing	7
Ш	Knowledge Representation & Reasoning-I Knowledge based agents: Introduction Propositional logic: Syntax, Semantics, Inference, Rules First order predicate logic: Syntax and semantics, Extensions and notational variations, Simple reflex agent; Knowledge base creation: Example; Logical reasoning systems: Introduction, Indexing, Retrieval, Unification, Logic programming systems - Prolog	7
IV	Knowledge Representation & Reasoning-II Symbolic reasoning: Introduction and logic nonmonotonic reasoning Statistical reasoning: Probability and Bayes' theorem, Rule based system, Dempster-Shafer theory, Bayesian networks, Fuzzy logic	8

V	Game playing and Introduction to Planning Game playing: Introduction, Minimax search procedure, Alpha beta pruning; Planning: Introduction, Components of planning, Goal stack planning, Partial order planning	8				
VI	Learning and case study Learning: Introduction, Rote learning, Inductive learning, Learning from examples, Explanation based learning; Case study: State of the art AI systems	5				
	Textbooks					
1	Elaine Rich and Kerin Knight, Artificial Intelligence, 3rd Edition, McGrav 9780070087705	w Hill. ISBN13:				
2	Eugene, Charniak, Drew Mcdermott, Introduction to artificial intelligence, AddisonWesley ISBN 0-07-052263-4.					
3	Deepak Khemani,"A First Course in Artificial Intelligence", McGraw Hill Education (India), 2013.					
4	Stuart Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", P Edition, 2009	rentice Hall, 3rd				
	References					
1	Khemani D., "Artificial Intelligence: Knowledge Representation and Reasonia Lecture Notes.	ng", IIT Madras,				
2	Herbert A. Simon, The Sciences of the Artificial, MIT Press, 3rd Edition 9780262190510. George F Luger, Artificial Intelligence: Structures and Strates Problem Solving, Pearson Edu., 4th Edition. ISBN-13: 978-0-321-54589-3					
	Useful Links					
1	Artificial Intelligence: Knowledge Representation and Reasoning Course on N	PTEL: <u>Link</u>				
2	Artificial Intelligence Search Methods for Problem Solving Course on NPTEL	: <u>Link</u>				

	CO-PO Mapping													
		Programme Outcomes (PO)									PS	SO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	1							1			1	
CO2	3	2	2						2	1			2	2
CO3	2	3	2						2	1			2	
CO4	1	2	2						2	1			1	1

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

	Walchand College of Engineering, Sangli									
	(Government Aided Autonomous Institute)									
	AY 2023-24									
	Course Information									
Progra	amme		B.Tech. (Comput	er Science Enginee	ering)					
Class,	Semester		Third Year B. Te	ch., Sem V						
Cours	e Code		6CS351							
Cours	e Name		Design and Analy	ysis of Algorithms	Laboratory	y				
Desire	ed Requisi	tes:	Knowledge of Ma	athematics, Data S	tructure &	& Programmin	g Concepts			
,	Teaching	Scheme		Examination	Scheme (1	Marks)				
Practi	cal	2 Hrs/ Week	LA1	LA2	Lab I	ESE	Total			
Intera	ction	-	30	30	40)	100			
				Cre	edits: 1					
			Cours	se Objectives						
1	To build	solid foundation	n in algorithms and	their applications.						
2	To emplo	oy various desig	n strategies for pro	blem solving.						
3			posure of all algor							
4	To Synth		algorithms in comn							
			e Outcomes (CO)		onomy Le	evel				
At the	end of the	course, the stud	lents will be able to),						
						Bloom's	Bloom's			
CO		Cou	rse Outcome State	ement/s		Taxonomy	Taxonomy			
		11.00				Level	Description			
CO1			rithm techniques			III	Applying			
	Identify	appropriate	data structure	to implement	selected		I			

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description				
CO1	Practice different algorithm techniques for given problem	III	Applying				
CO2	Identify appropriate data structure to implement selected algorithmic approach.	IV	Analyzing				
CO3	Design and Implement an algorithm for complex problem.	VI	Creating				
CO4	Exhibit technical and professional skill to demonstrate and convince accomplished algorithmic solution	III	Applying				
	List of Experiments / Lab Activities/Topics						

List of Topics (Applicable for Interaction mode): List of Experiments:

- 1. To implement the Towers of Hanoi problem.
- 2. To implement (Quick Sort/Merge Sort) Sorting algorithm using array as a data structure.
- 3. To implement different Search techniques (Linear/Binary) using array and/or trees.
- 4. To implement the Convex Hull problem using divide and conquer method.
- 5. To implement Strassen's Matrix Multiplication algorithm.
- 6. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's & Prim's algorithm and compare.
- 7. To implement the Huffman Coding algorithm.
- 8. To implement 0/1 Knapsack problem using dynamic programming.
- 9. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
- 10. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
- 11. To implement n*n Queen problem using Backtracking.
- 12. To implement the Hamiltonian cycle using Backtracking.
- 13. Implement any scheme to find the optimal solution for the Traveling Salesperson problem.

	Textbooks
1	Ellis Horowitz, Sartaj Sahni and Rajasekaran "Fundamentals of Computer Algorithms",
1	Galgotia
	Publications, 2 nd Edition.
2	Aho, Hopfcraft and Ullman, Addison Wesley "Design and Analysis of Algorithms".
	References
1	Thomas Cormen, Leiserson, Rivest, and Stein "Introduction to Algorithms", PHI
1	Publication.3 rd
	Edition, 2009.
2	Goodman, "Introduction to Design and Analysis of Algorithm", McGraw Hill.
3	R.C.T. Lee, S.S. Tseng, R.C. Chang, "Introduction to the Design and Analysis of
	Algorithm".
	Useful Links
1	https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm
2	https://www.codechef.com/certification/data-structures-and-algorithms/prepare

	CO-PO Mapping													
	Programme Outcomes (PO)									PS	SO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1				1									2	
CO2				2									2	
CO3				3	2								2	1
CO4				3	3								2	1

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

		_	e of Engineering, S led Autonomous Institute)	angli		
			Z 2023-24			
		Cours	e Information			
Programme	e	B.Tech.	(Computer Science & En	gineering)		
Class, Seme			ar B. Tech., Sem V	<u> </u>		
Course Cod	le	6CS352				
Course Nar	ne	Program	ming Laboratory -III			
Desired Rec	quisites:	Basics of	Object-Oriented Program	mming		
T	eaching Scheme		Examination S	cheme (M	arks)	
Lecture	-		LA1	LA2	ESE	Total
Tutorial	-		30	30	40	100
Practical	2 Hrs/week					
Interaction	1 Hrs/week		C	Credits: 2		
			se Objectives			
1	To inculcate understanding of development and web prograthe-art front-end and back-end	amming l	anguages as well to incu opment frameworks of we	lcate under eb program	rstandin nming	g of state-of-
2	To introduce selection of app HTML, CSS, JavaScript, and	d other se	erver-side scripting langu	ages.		g such as
3	To introduce selection of approximately frameworks/libraries and too	ols for de	veloping a web application	on.		
4	To infuse skills of combining a web and mobile app to solution			of-the-art	techno	logies to design
A1 1			with Bloom's Taxonom	ıy Level		
CO1	summarize the different cond technologies and web secur web app development technologies	cepts and	components of WWW, vell as state-of-the-art from			Understanding
CO2	illustrate the concepts of va mobile app development t development tools.					Applying
CO3	test the concepts and compor web and mobile app deve development tools.					Analyzing
	select appropriate front-end, back-end web app development technologies, frameworks, tools and their components to solve real-world problems.					
CO4	frameworks, tools and their components to solve real-world problems. build a web app, individually or in a team by combining various state-of-the-art front-end, back-end app development technologies & frameworks for real-world problems. Creating					

Module	Module Contents	Hours
	Module 1: Introduction to World Wide Web, Markup Languages, Style she Client, Server, Communication, Protocols, Ports, Client-Server Architectures, In	
I	 Wide Web, HTTP, HTTP Status Codes, Web Clients/Browsers, and Web Server Experiments: Describe client, server, communication, ports, protocols, HTTP, browsers at Distinguish between client and server, Internet, WWW, and client-server are Get header information of a web page using browser's developer mode. Inst server. Design and develop web pages using fundamental HTML elements, such as body, header, comment, etc. Also using HTML Formatting elements, such as tetc Design and develop web pages that embed images and client-side maps, aud and links, lists and tables, embed YouTube videos, graphics using canvas are Design and develop web pages with styles, semantics and layouts, such as h section, data, div, etc. also using HTML APIs, web components. Design and develop web pages by applying CSS text formatting properties, Alignment, Text Decoration, Text Transformation, Text Spacing, Text Shad Family, Font Style, Font Size, etc. Also apply CSS colors and backgrounds as colour, RGB, HEX, HSL values, background image, background color, e Design and develop web pages by applying CSS borders and margin proper Border Width, Border Color, Margins, etc. Also apply CSS floating, overflopositioning properties, such as float, overflow, position, etc. Design and develop web pages by applying CSS page layout properties, suc padding, height, width, max-width, align, etc. Design and develop web pages by using CSS properties to links, lists and 10. Design and develop web pages by using CSS navigation bars and dropdown 11. Design and develop web pages by using CSS selectors. Design and develop web pages by using CSS selectors. Design and develop web pages by using CSS selectors. Design and develop web pages by using CSS selectors. 	nd web servers. chitectures. tallation of web head, title, as abbr, address, dio and video ad SVG. header, footer, such as Text low, Font properties, such tc. ties, such as ow and h as display, d tables. has.

Module 2: Client-side Programming and Server-side Programming

JavaScript: Introduction to JavaScript, Basic Syntax, Variables, Data Types, Statements, Operators, Conditions, Loops, Functions, Arrays, Objects, Form Validation, DOM, JavaScript Objects, JavaScript Functions, Asynchronous JavaScript and any one of the state-of-the-art JavaScript libraries. Introduction to Server-side Programming, Installation of Web and database Server, Process user input, Efficient storage and delivery of information to and from databases, File handling and controlled access to the content, store session/state information, cookies, notifications and communication.

Note:

- 1. One of the following server-side scripting languages can be used for the implementation: PHP, Node.js, or other state-of-art scripting languages.
- 2. One of the following databases can be used for data storage and retrieval: MySQL, MongoDB, Firebase or other state-of-art databases.

Experiments:

- 1. Implement a script using JavaScript that changes HTML content, HTML attributes hides and show HTML elements, HTML output and window alert box for web pages.
- 2. Implement a script using JavaScript that shows use of JavaScript variables, data types and statements for web pages.
- 3. Implement a script using JavaScript that shows use of JavaScript Arithmetic, Assignment and String Concatenation operations for web pages.
- 4. Implement a script using JavaScript that shows use of JavaScript conditionals and loops for web pages.
- 5. Implement a script using JavaScript that shows use of JavaScript Functions, Arrays, and Objects for web pages.
- 6. Implement a script using JavaScript that shows use of Asynchronous JavaScript.
- 7. Design and develop web pages and insert JavaScript in head tag, body tag, external file, external URL and external folder.
- 8. Implement a script using JavaScript library.
- 9. Implement basic functionalities of server-side scripting language, such as data types, operators, conditionals, and loops.
- 10. Implement basic functionalities of server-side scripting language, such as objects, arrays, and functions.
- 11. Implement web page form validations using server-side scripting language.
- 12. Implement file handling using server-side scripting language.
- 13. Implement cookies using server-side scripting language.
- 14. Implement sessions using server-side scripting language.
- 15. Implement CRUD operations on database using server-side scripting language.

Module 3: Web Application Framework/Library

State-of-the-art Front-End Framework library: One of the following technologies will be considered: Angular, React.js or other state-of-the-art front-end development framework/library.

Experiments:

Ш

II

- 1. Installing framework and configuring Integrated Development Environment (IDE), and its dependencies.
- 2. Creating workspace, project and setting up the necessary environment.
- 3. Implementing the fundamental syntaxes and components of the framework.
- 4. Building and testing the application.
- 5. Deploying the application.
- 6. Implementing the fundamental syntaxes and components of the framework.

2	Official framework websites for Documentation/Help
1	Www.w3schools.com
	Usoful Links
1	References Felipe Coury, Ari Lerner, Carlos Taborda, "ng-book: The Complete Guide to Angular", Create Space Independent Publishing Platform, 5th Edition, 2018, ISBN-13: 978-1985170285
2	Azat Mardan, "Full Stack JavaScript: Learn Backbone.js, Node.js, and MongoDB", Apress, 2nd Edition, 2018, ISBN-13: 978-1484237175
1	Vasan Subramanian, "Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node", Apress, 2nd Edition, 2019, ISBN-13: 978-1484243909
	Text Books
	3. Uploading, configuring and running the website over the internet.
VI	Experiments: 1. Choosing a hosting server and selecting a plan for web hosting. 2. Choosing and configuring DNS address.
• •-	Building web application and Hosting web application. Web Security: Introduction, types of web threats, and prevention measures.
	Module 6: Hosting Web Applications, Web Security
	 4. Implementing server-side validations and authentication for web application. 5. Implementing CRUD operations for web application. 6. Building and testing the application. 7. Deploying the application
V	dependencies. 2. Creating workspace, project and setting up the necessary environment. 3. Implementing the fundamental syntaxes and components of the framework.
	Module 5: Server-side Development Framework/Library Part II Django or another state-of-the-art framework/library. Experiments: 1. Installing framework and configuring Integrated Development Environment (IDE), and its
	 5. Implementing CRUD operations for web application. 6. Building and testing the application. 7. Deploying the application.
I 4	 Creating workspace, project and setting up the necessary environment. Implementing the fundamental syntaxes and components of the framework. Implementing server-side validations and authentication for web application.
IV	development framework/library. Experiments: 1. Installing framework and configuring Integrated Development Environment (IDE), and its dependencies.
	Module 4: Server-side Development Framework/Library Part I State-of-the-art server-side Technology: Ruby on Rails, Flask or other state-of-the-art back-end

	CO-PO Mapping													
		Programme Outcomes (PO)								PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1													1
CO2	3	2	2		1				1	1		1		2
CO3		3												1
CO4		2	1	3								1		1
CO5			3	2	1				3					2

The strength of mapping is to be written as 1,2,3; Where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

	i	1 0		
Assessment	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Marks
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	30
1.42	Lab activities,	Lab Course	During Week 7 to Week 12	30
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30
Lob ECE	Lab activities,	Lab Course	During Week 15 to Week 18	40
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40

Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

(Government Aided Autonomous Institute)

AY 2023-24

Course	Information

Course information						
Programme	B.Tech. (Computer Science Engineering)					
Class, Semester Third Year B. Tech., Sem V						
Course Code	6CS341					
Course Name	Mini Project-I					
Desired Requisites:	Nil					

Teaching	Scheme	Examination Scheme (Marks)						
Practical	4 Hrs/Week	LA1	LA2	Lab ESE	Total			
Interaction	-	30	30	40	100			
		Credits: 2						

Course Objectives

- 1 To provide hands-on experience in developing a small-scale software project.
 - 2 To undergo project management techniques and project design principles.
- To implement the project with appropriate programming languages and testing tools. 3
- 4 To develop analytical vision and skills to analyse, compare the outcome with other techniques.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

(CO	Course Outcome Statement/s	Bloom's Taxonom y Level	Bloom's Taxonomy Description
(CO1	understand existing solutions and define the scope of a project accordingly.	II	Understanding
	CO2	illustrate project design and its methodology of implementation for identified problem.	III	Applying
(CO3	identify use of modern engineering tools, software, and techniques utilized during project implementation.	IV	Analyzing
	CO4	verify developed solution for different test cases and measure the performance of the system for various parameters.	V	Evaluating
	CO5	build a solution for identified problem and prepare comprehensive project documentation including reports, technical papers, and design documents	VI	Creating
		List of Experiments / Lab Activities/Topics		

List of Mini Project Activities:

- 1. Identify a real-world problem or challenge that requires a software solution.
- 2. Conduct a comprehensive analysis of existing technologies, research findings, and industry practices relevant to the problem.
- 3. Design an innovative software solution considering the identified problem and available resources.
- 4. Apply advanced project management techniques to create a project plan, including tasks, timelines, and resource allocation.
- 5. Collaborate within a team to execute the project plan, ensuring effective communication, task assignment, and progress monitoring.
- 6. Implement the software solution using appropriate programming languages, tools, and technologies.
- 7. Test and validate the developed software solution, ensuring its functionality, usability, and performance.
- 8. Evaluate the impact and effectiveness of the software solution, comparing it with existing alternatives and identifying areas for enhancement.
- 9. Prepare a comprehensive project report, including documentation, code, and other artifacts.
- 10. Present the mini project findings and outcomes through a technical presentation and demonstration.

	Textbooks							
1	Nil							
	References							
1	Nil							
	Useful Links							
1	Nil							

	CO-PO Mapping													
]	Progra	mme C	Outcom	es (PO)				PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2			2	2								2	2
CO2			3					2	2	2			2	2
CO3					3								2	2
CO4				2									2	2
CO5								2	2	2	2		2	2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing (min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	

	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)

AY 2023-24

		_
Course	Information	

Programme	3.Tech. (Computer Science and Engineering)				
Class, Semester	Third Year B. Tech SEM V				
Course Code	6CS311				
G N					

Course Name Elective 1: Image Processing

Basic knowledge of Graphics **Desired Requisites:**

Teaching	Scheme	Examination Scheme (Marks)						
Lecture	3 Hrs/week	ISE	MSE	ESE	Total			
Tutorial	-	20	30	50	100			
Practical	-							
Interaction	-		Credits: 3					

	Course Objectives							
1	1 To learn fundamental of digital image processing.							
To learn the concepts of image enhancement, image segmentation, compression etc and apply the algorithms to build applications.								
3	3 To compare various algorithms and select the appropriate for a particular application.							
4	To create initial background of the area of Image Processing to excel in this stream for further Research.							
5	5 To develop engineering skills and intuitive understanding of the tools used in Image Processing.							
	Course Outcomes (CO) with Bloom's Taxonomy Level							
At the end	of the course, the students will be able to,							
CO1	Perceive general terminology of digital image processing.	Understanding-II						
CO2	Apply various image processing algorithms that can be used in practical applications.	Applying-III						
CO3	Analyze working of various algorithms specific to image processing techniques.	Analyzing-IV						
CO4	Evaluate working of various image processing algorithm.	Evaluate-V						

Module	Module Contents	Hours					
I	Digital Image Fundamentals Introduction and applications, Fundamental Steps and Components of Image Processing System Digital Image Fundamentals: Image Acquisition, A simple imagemodel, Sampling and Operational Imaging, Different types of	6					
	Sampling and Quantization, Imaging, Different types of digital images						
	Image Transforms						
П	2D systems and Necessary Mathematical preliminaries, 2D Orthogonal and Unitary Transforms, Discrete Fourier Transform,	6					
	KL-Transforms, Hadamard Transforms	-					
	Image Enhancement						
III	Point Processing, Basic Gray Level Transformations,	6					
	Convolution and Correlation, HistogramProcessing, Spatial						
	domain Filtering						
	Image Segmentation and Analysis						
	Edge Detection – using first and second order derivatives, LoG,						
137	Canny edge detector, Boundary Extraction – Connectivity,	0					
IV	Heuristic Graph Search, Region-based Segmentation – region growing, region	8					

	splitting and merging							
V	Morphological Image Processing Mathematical Morphology, Erosion and Dilation, Opening and Closing, Hit-or-Miss transformation, Basic morphological algorithm: Boundary extraction, Hole filling, Extracting of connected components. Thinning, Thickening	7						
VI	Image Compression Fundamentals, Compression model, Lossless Vs Lossy Compression, Fundamentals of Information Theory, Run-length coding, Huffman coding, Dictionary-based compression, Image CompressionStandards	6						
	Text Books							
1	R. C. Gonzalez, R. E. Woods, Digital Image Processing, 4th Edition. 20	018, PHI						
2	A. K. Jain, Fundamentals of Digital Image Processing, PHI							
	References							
1	Milan Sonka, Vaclav Hlavac, Boyle, Digital Image Processing and Cor Learning	nputer Vision, Cengage						
2	S. Jayaraman, S. Esakkirajan, T. Veerkumar, Digital Image Processing,	Tata McGrawHill						
3	Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, Digital Image Processing Using MATLAB, 2nd ed.							
	Useful Links							
1	NPTEL course: <u>Link</u>							
2	NPTEL course: Link							

	CO-PO Mapping														
		Programme Outcomes (PO)									PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2														
CO2	3	2											2		
CO3		3		2									2		
CO4			2	2											
1:Low, 2:	1:Low, 2:Medium, 3:High														

Assessment (for Theory Course)

The assessment is based on MSE, ISE and ESE. MSE shall be typically on modules 1 to 3. ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments, quiz etc. and is expected to map at least one higher order PO. ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AV 2023-24 **Course Information** B.Tech. (Computer Science and Engineering) **Programme** Class, Semester Third Year B. Tech., Sem V Course Code 6CS312 **Course Name** Elective 1: Internet of Things Basic programming knowledge, Networking Basics **Desired Requisites: Teaching Scheme Examination Scheme (Marks)** Lecture 3 Hrs/week MSE **ISE ESE** Total Tutorial 30 20 50 100 Credits: 3 **Course Objectives** To illustrate the basic concepts of Internet of Things. 1 To demonstrate working of Arduino, Node-MCU & Raspberry pi. 2 To develop the skill of providing solution for real life problems using IoT. Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to. Bloom's Bloom's CO **Course Outcome Statement/s Taxonomy Taxonomy** Level **Description** Explain concepts of designing and development of applications in Understa CO₁ nding Illustrate the working of various protocols for communication among CO₂ Ш Apply IoT devices. CO₃ Analyze and compare different IoT tools and techniques. IV Analyze CO₄ Evaluate a solution to address real-world problems. $\overline{\mathbf{v}}$ Evaluate Module **Module Contents** Hours **Introduction to Internet of Things** Introduction, Physical design of IoT, Logical Design of IoT, IoT Enabling 07 I Technology, Introduction to Arduino, Raspberry-Pi **Communication Protocols & Interoperability** Basics of Networking, Communication Protocols, Sensor Networks, Machine-II 06 to Machine Communications, Interoperability. **Data Analytics for IoT** Apache Hadoop, Apache Oozie, Apache Spark, Using Apache Storm for real 06 Ш time Data analysis. **Industrial IoT** Introduction to IIoT, AWS-IoT, Introduction to Lora-wan, Security challenges IV 07 in IIoT, Cyber-Physical Systems, Industrial Control System **Edge Computing** 07 V Introduction to Edge Computing, Benefits and challenges in edge computing, Edge device architecture, Security challenges in Edge Computing, Edge analytics and processing techniques. **Domain Specific IOT Case Studies** VI Home Automation, Smart Cities, Retail, Logistic, Agriculture, Industry, 06 Healthcare.

Textbooks

1

2

Industry 4.0. CRC Press.

S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge University Press.

S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and

	References													
1 Arashdeep Bahga ,Vijay Madisetti Internet of Things an Hands on Approach,University Press.														
Useful Links														
1	1 https://onlinecourses.nptel.ac.in/noc21_cs17													
	CO-PO Mapping													
				I	Progra	mme C	Outcom	es (PO)				PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1		2										2	
CO2	1		2	1					1					
CO3		2			2				1	1			1	
CO4				1	2		2		1	1			2	

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

(Government Aided Autonomous Institute)

AY 2023-24

Course Information

	Course information							
Programme B.Tech. (Computer Science and Engineering)								
Class, Semester	Class, Semester Third Year B. Tech., Sem V							
Course Code	6OE371							
Course Name	Open Elective 1: Data Science							
Desired Requisites:	Probability and Statistics							

Teaching	Scheme	Examination Scheme (Marks)					
Lecture	3 Hrs/week	MSE	ISE	ESE	Total		
Tutorial	-	30	20	50	100		
		Credits: 3					

Course Objectives

- 1 To provide the knowledge and expertise to become a proficient data scientist.
- 2 To critically evaluate data visualizations based on their design and use for communicating.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonom y Level	Bloom's Taxonomy Description
CO1	acquaint core concepts and technologies in Data Science.	П	Understanding
CO2	illustrate various data collection and preprocessing techniques.	III	Applying
CO3	use visualization techniques to show relationship within datasets.	III	Applying
CO4	analyse possible relationship within large datasets and identify	IV	Analyzing
	suitable prediction technique to solve real-world problems.		

Module	Module Contents	Hours
I	Introduction to core concepts and technologies Introduction, Terminology, data science process, data science toolkit, Types of data, Example applications	4
II	Data Collection and Management Introduction, Sources of data, Data collection, Exploring and fixing data, Data storage and management, Using multiple data sources.	7
III	Data Preprocessing Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization.	8
IV	Data Visualization Introduction, Types of data visualization, Data for visualization: Datatypes, Data encodings, Retinal variables, Mapping variables to encodings, visual encodings.	6
V	Data Analysis Introduction, Terminology and concepts, Introduction to statistics, Central tendencies and distributions, Variance, Distribution properties and arithmetic, Samples/CLT, Correlation, Linear Regression, Least Squares, Residuals, Regression Inference, classification, classifiers.	8
VI	Recent trends Recent trends in various data collection and analysis techniques, various visualization techniques, Case Study, application development methods used in data science.	6

	Textbooks
1	Adhikari Ani and DeNero John. Computational and Inferential Thinking, The Foundations of Data Science, UC Berkeley.
2	Jiawei Han, Micheline Kamber and Jian Pei. Data Mining Concepts and Techniques. Morgan Kaufmann, Third Edition.

References														
1	O'Neil Cathy and Schutt Rachel. Doing Data Science, Straight Talk From The Frontline. O'Reilly.													
2	Leskovek Jure, Rajaraman Anand and Ullman Jeffrey. Mining of Massive Datasets. v2.1, Cambridge University Press.													
Useful Links														
1	https:	//onlin	ecourse	s.nptel	.ac.in/r									
						CO-PC) Марр	oing						
				I	Prograi	mme C	Outcom	es (PO))				PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	2	-
CO2	3	2	-	-	-	-	-	-	1	1	-	-	2	-
CO3	3	2	-	-	-	-	-	-	1	1	-	-	2	-
CO4	2	2	- 1	-	-	-	-	-	1	1	-	-	2	-

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

(Government Aided Autonomous Institute)

AY 2023-24

	T C	4 •
Course	Inform	ation

Course information						
Programme	B.Tech. (Computer Science Engineering)					
Class, Semester	Third Year B. Tech., Sem V					
Course Code	6CS353					
Course Name	Humanities I-Project Management and Ethics					
Desired Requisites:	Software Engineering					

Teaching	g Scheme		Examination Scheme (Marks)							
Practical	Practical Hrs/ Week		LA2	Lab ESE	Total					
Interaction	2 Hrs/ Week	30	30	40	100					
		Credits:								

	Course Objectives						
1	To provide an overview of project management principles.						
2	2 To inculcate ethical awareness during project development.						
3	To introduce the various project management tools used in the IT industry.						
4	To practice and provide hands-on exploration of various project management tools used for Software						
	Development.						

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Explain project management principles, concepts and tools used for software development in industry.	II	Understanding
CO2	Apply ethical principles and demonstrate responsible decisions taking ability during all phases of a project development.	III	Applying
CO3	Compare and Analyze the different project management tools used for development of various software applications.	IV	Analyzing
CO4	Select appropriate project management tool to achieve industry standards during project development process.	V	Evaluating

List of Experiments / Lab Activities/Topics

List of Lab Activities:

2

- 1. Overview of different project management tools (e.g Jira).
- 2. Perform version control and code management using GitHub and SVN.
- 3. Understanding Version management using Jira.
- 4. Understanding Workflow and task management.
- 5. Understanding user and role management.
- 6. Understanding Project Monitoring and Reporting.
- 7. Understanding Issue management.
- 8. Understanding Bug tracking and reporting.
- 9. Performing software testing using tools (e.g Testlink)
- 10. Ethical Conduct for Engineers

International, Ltd (August 1, 2004)

	Textbooks									
1	Jira Project Management A Complete Guide - 2019 by Gerardus Blokdyk. The Art of Service									
2	2 Jira Quick Start Guide: Manage your projects efficiently using the all-new Jira by Ravi Sagar									
3	Dr.K.V.K.K.Prasad, "Software Testing Tools"									
	References									
1	JIRA Essentials, Third Edition, Patrick Li,Packt enterprise									

Nina Godbole, "Software Quality Assurance: Principles And Practice", Alpha Science

Useful Links										
1	https://www.atlassian.com/									
2	https://www.javatpoint.com/jira-tutorial									
3 https://www.javatpoint.com/software-engineering-case-tools-for-software-metrics										
4	https://www.javatpoint.com/github									
5 https://www.javatpoint.com/software-testing-tutorial										

CO-PO Mapping														
		Programme Outcomes (PO)										PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2											2	
CO2	2	2												
CO3					3									
CO4				2	2									2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing (min 40 %),LA1+LA2 should be min 40%

Assessment Based on		Conducted by	Typical Schedule	Marks	
	Lab activities,		During Week 1 to Week 8		
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 8		
	Lab activities,		During Week 9 to Week 16		
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 16		
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19		
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40	
	performance	applicable	Week 19		

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.