Problem set 7

Exercise 7.1 (10 points; Rudin 3.2, modified). Calculate $\lim_{n\to\infty} \sqrt{n^2+n} - n$, and prove that your answer is correct. (Hint: first show that $\sqrt{n^2+n} - n = \frac{n}{\sqrt{n^2+n}+n}$.)

Exercise 7.2 (10 points). For any two bounded real sequences (a_n) , (b_n) in \mathbb{R} prove that

$$\lim_{n\to\infty}\sup(a_n+b_n)\leq \lim_{n\to\infty}\sup a_n+\lim_{n\to\infty}\sup b_n.$$

Give an example where this \leq is <, and an example where it is =.

Exercise 7.3 (10 points; Rudin 3.24). Suppose (p_n) and (q_n) are Cauchy sequences in a metric space X. Prove that the sequence $(d(p_n, q_n))$ in \mathbb{R} has a limit.

Exercise 7.4 (10 points). Suppose (x_n) is a sequence in \mathbb{R} . We say $a \in \mathbb{R}$ is an *essential upper bound* for (x_n) if there exists some N such that, for all $n \geq N$, $x_n \leq a$.

Prove that

 $\lim_{n\to\infty} \sup x_n = \inf \left\{ a \in \mathbb{R} \mid a \text{ is an essential upper bound for } (x_n) \right\}.$

Exercise 7.5 (not for credit; Rudin 3.25, in part). Let X be a metric space. X might or might not be complete. If X is not complete, it would be nice to know how to "fill in the holes" to make it complete. This exercise explains a way of doing so: it constructs a new complete metric space X^* which has X as a subset.

We call two Cauchy sequences (p_n) , (q_n) in X equivalent if $d(p_n, q_n) \to 0$. We write this relation as $(p_n) \sim (q_n)$.

- (1) Prove that this is an equivalence relation, i.e.
 - (a) Any Cauchy sequence (p_n) has $(p_n) \sim (p_n)$,
 - (b) If $(p_n) \sim (q_n)$ then $(q_n) \sim (p_n)$,
 - (c) If $(p_n) \sim (q_n)$ and $(q_n) \sim (r_n)$, then $(p_n) \sim (r_n)$.
- (2) If $(p_n) \sim (p'_n)$ and $(q_n) \sim (q'_n)$, prove that

$$\lim_{n\to\infty}d(p_n,q_n)=\lim_{n\to\infty}d(p'_n,q'_n).$$

(Note that the limit does exist, by the result of the previous exercise.)

Now we divide the set of Cauchy sequences in X into equivalence classes: any two elements of a given class P are equivalent, and elements of different classes P, Q are not equivalent. Let X^* be the set of all equivalence classes of Cauchy sequences in X.

Then, define a distance function Δ on X^* as follows: if (p_n) is in the class P, and (q_n) is in the class Q, then

$$\Delta(P,Q) = \lim_{n \to \infty} d(p_n, q_n).$$

The previous parts show that this distance function is well defined.

- (3) Prove that the distance function Δ makes X^* into a metric space.
- (4) Prove that X^* with this distance function is complete.

(5) Consider the map $\phi: X \to X^*$ which maps any $x \in X$ to the class of the Cauchy sequence (x, x, x, ...). Prove that ϕ is injective and $\Delta(\phi(x), \phi(y)) = d(x, y)$.

Exercise 7.6 (not for credit). Suppose X is any metric space, with a distance function d. Then define a new distance function d' on X by

$$d'(x,y) = \min\{d(x,y),1\}.$$

- (1) Prove that d' indeed makes X into a metric space.
- (2) Prove that a sequence is Cauchy for d if and only if it is Cauchy for d'.
- (3) Prove that a sequence is convergent for d if and only if it is convergent for d'.

Exercise 7.7 (not for credit). Suppose X is any metric space. We say X is *totally bounded* if, for every $\epsilon > 0$, X can be covered by finitely many neighborhoods $N_{\epsilon}(x)$. Prove that a subset $E \subset X$ is compact if and only if E is closed and totally bounded.