Introduction to Statistic for Data Science Group Mini-Project Presentation: Happiness Ladder

ISDS Group 10

Christopher Barrow, Zehao Qian, Mengyuan Zhu, Hithein Augustine

Department of Natural Sciences Durham University, England, UK

December 3, 2023

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Data Set and its Context

"Happiness Ladder" — Data collected from 137 countries

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- 3 Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Multiple Linear Regression Model

- Model Target: Some socio-economic indexes are used to predict Ladder Score to assist government decision-making.
- Independent Variables: LGDP, Support, HLE, Freedom, Corruption, Continent
- Dependent Variables: Ladder Score
- Model Function:

```
input(LGDP, Support, ...) \Rightarrow output(Ladder Score)

LadderScore = \beta_0 + \beta_1 * LGDP + \beta_2 * Support + ... + \epsilon
```

 Optimization Target: Making the model with the best subset and higher Adjusted R-squared.

```
Select the independent variables Update \beta and \epsilon to minimize the residual sum of squared
```

Why we choose Multiple Linear Regression Model

Aspect	Simple Linear Regression	Multiple Linear Regression			
Model	$Y=\beta_0+\beta_1X+\varepsilon$	$Y=eta_0+eta_1X_1+eta_2X_2+\ldots+eta_kX_k+arepsilon$			
Advantages	Simple and easy interpretation	Captures complex relationships with multiple predictors			
	Suitable for examining two-variable relationships	Considers multiple factors, offering a comprehensive view			
	Less prone to overfitting with fewer predictors	Analyzes independent effects of each predictor			
Disadvantages	Limited to two-variable relationships	More complex, challenging interpretation			
	Assumes a linear relationship	Susceptible to multicollinearity with correlated predictors			
	May not capture real-world complexity	More assumptions (linearity, independence, normality)			
		Risk of overfitting, especially with many predictors			

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Constructing the Model – Data Processing

Constructing the Model – Dataset Inspectation

Dataset Name	Country_name	LGDP	Support	HLE	Freedom	Corruption	Continent	Numeric Continent	Ladder_score
Happy_origin	4	V	1	with NA	4	4	1		4
Happy_complete	4	V	1	4	1	4	1		4
Happy_general _continent		V	V	4	4	4	1	V	V
Happy_general		V	1	4	4	4	1		4
Africa		V	V	V	1	٧	Africa		V
Asia		V	1	4	4	4	Asia		4
Europe		V	1	4	1	4	Europe		4
North_America		V	1	4	1	4	North_America		V
Oceania		V	V	4	1	٧	Oceania		V
South_America		V	V	V	4	٧	South_America		V

Constructing the Model – Bring dataset to MLR model

Correlationship

Ladder_score			

Scatterplot

Finding the best subset

Regression Analytics

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Model Results and Analysis

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- 3 Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Conclusions and Insights

Next Steps