线性代数

特征值与特征向量

武汉大学数学与统计学院

- 1. 矩阵的特征值与特征向量 相似矩阵
 - 2. 相似矩阵
 - 3. 矩阵可对角化的条件
 - 4. 实对称矩阵的对角化

定义 1 (特征值与特征向量) 设 A 为复数域 $\mathbb C$ 上的 n 阶矩阵,如果存在数 $\lambda \in \mathbb C$ 和非零的 n 维向量 x 使得

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

则称 λ 为矩阵 **A** 的特征值, **x** 为 **A** 的对应于特征值 λ 的特征向量。

- (1) 特征向量 x ≠ 0;
- (2) 特征值问题是对方针而言的。

由定义,n 阶矩阵 A 的特征值,就是使齐次线性方程组

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

有非零解的 λ 值,即满足方程

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

的 λ 都是矩阵 **A** 的特征值。

由定义,n 阶矩阵 A 的特征值,就是使齐次线性方程组

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

有非零解的 λ 值,即满足方程

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

的 λ 都是矩阵 A 的特征值。

结论 1 特征值 λ 是关于 λ 的多项式 $\det(\mathbf{A} - \lambda \mathbf{I})$ 的根。

定义 2 (特征多项式、特征矩阵、特征方程) 设 n 阶矩阵 $A = (a_{ij})$, 则

$$f(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

称为矩阵 A 的特征多项式, $A - \lambda I$ 称为 A 的特征矩阵, $\det(A - \lambda I) = 0$ 称为 A 的特征方程。

8/65 线性代数 **4**

注

- (1) n 阶矩阵 **A** 的特征多项式是 λ 的 n 次多项式。
- (2) 特征多项式的 k 重根称为 k 重特征值。

例 1 求矩阵

$$\mathbf{A} = \left(\begin{array}{ccc} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{array} \right)$$

的特征值与特征向量。

解

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 5 - \lambda & -1 & -1 \\ 3 & 1 - \lambda & -1 \\ 4 & -2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ 3 - \lambda & 1 - \lambda & -1 \\ 3 - \lambda & -2 & 1 - \lambda \end{vmatrix}$$
$$= (3 - \lambda) \begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 - \lambda & -1 \\ 1 & -2 & 1 - \lambda \end{vmatrix} = (3 - \lambda) \begin{vmatrix} 1 & -1 & -1 \\ 0 & 2 - \lambda & 0 \\ 0 & -1 & 2 - \lambda \end{vmatrix}$$
$$= (3 - \lambda)(\lambda - 2)^2 = 0$$

故 **A** 的特征值为 $\lambda_1 = 3$, $\lambda_2 = 2$ (二重特征值)。

当 $\lambda_1 = 3$ 时,由 $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$,即

$$\begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ 4 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

得其基础解系为 $\mathbf{x}_1 = (1, 1, 1)^T$,因此 $k_1 \mathbf{x}_1$ (k_1 为非零任意常数) 是 **A** 对应 干 $\lambda_1 = 3$ 的全部特征向量。

特征值与特征向量 ||

当
$$\lambda_2 = 2$$
 时,由 $(\mathbf{A} - \lambda_2 \mathbf{I})\mathbf{x} = \mathbf{0}$,即

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

得其基础解系为 $\mathbf{x}_2 = (1, 1, 2)^T$,因此 $k_2 \mathbf{x}_2$ (k_2 为非零任意常数) 是 **A** 对应 干 $\lambda_2 = 2$ 的全部特征向量。

例 2

$$\left(\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array}\right), \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array}\right), \left(\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right)$$

的特征多项式为

$$(\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn})$$

故其 n 个特征值为 n 个对角元。

1.2 **特征值与特征值的性质**

定理 1 若 x_1 和 x_2 都是 A 的对应于特征值 λ_0 的特征向量,则 $k_1x_1 + k_2x_2$ 也是 A 的对应于特征值 λ_0 的特征向量(其中 k_1, k_2 为任意常数,但 $k_1x_1 + k_2x_2 \neq 0$)。

证明 由于 x_1 和 x_2 是齐次线性方程组

$$(\mathbf{A} - \lambda_0 \mathbf{I})\mathbf{x} = 0$$

的解,因此 $k_1 x_1 + k_2 x_2$ 也是上式的解,故当 $k_1 x_1 + k_2 x_2 \neq 0$ 时,是 **A** 的 属于 λ_0 的特征向量。

16/65 线性代数 △ ▽

在 $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$ 的解空间中,除零向量以外的全体解向量就是 \mathbf{A} 的属于特征 值 λ 的全体特征向量。因此, $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$ 的解空间也称为 \mathbf{A} 关于特征值 λ 的特征子空间,记作 V_{λ} 。n 阶矩阵 \mathbf{A} 的特征子空间就是 n 维向量空间的子空间,其维数为

$$dimV_{\lambda} = n - rank(\mathbf{A} - \lambda \mathbf{I}).$$

需要注意的是,n 维实矩阵的特征值可能是复数,所以特征子空间一般是 n 维复向量空间 \mathbb{C}^n 的子空间。

上例中,矩阵
$$\mathbf{A} = \begin{pmatrix} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{pmatrix}$$
的两个特征子空间为
$$V_{\lambda_1} = \{k\mathbf{x}|\mathbf{x} = (1,1,1)^T, k \in \mathbb{C}\},$$
$$V_{\lambda_2} = \{k\mathbf{x}|\mathbf{x} = (1,1,2)^T, k \in \mathbb{C}\}.$$

定理 2 设 n 阶矩阵 $\mathbf{A} = (\alpha_{ij})$ 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则

$$(1) \sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} \alpha_{ii};$$

$$(2) \prod_{i=1}^{n} \lambda_i = \det(\mathbf{A}),$$

其中 $\sum_{i=1}^{n} a_{ii}$ 是 **A** 的主对角元之和,称为 **A** 的迹 (trace),记为 $tr(\mathbf{A})$ 。

证明。设

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$
$$= \lambda^{n} + c_{1}\lambda^{n-1} + c_{2}\lambda^{n-2} + \cdots + c_{n-1}\lambda + c_{n},$$

展开后含 λ^{n-1} 项的行列式有下面 n 个

$$\begin{array}{c|ccccc}
 & -\lambda & & & a_{1n} \\
 & -\lambda & & a_{2n} \\
 & & -\lambda & & a_{3n} \\
 & & \ddots & \vdots \\
 & & & a_{nn}
\end{array}$$

它们之和等于

$$(a_{11} + a_{22} + \cdots + a_{nn})(-\lambda)^{n-1} = (-1)^{n-1} \sum_{i=1}^{n} a_{ii} \lambda^{n-1},$$

即
$$c_1 = (-1)^{n-1} \sum_{i=1}^n a_{ii}$$
。

展开后常数项为

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \det(\mathbf{A}),$$

即 $c_n = \det(\mathbf{A})$ 。

假设 **A** 的 n 个特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,根据 n 次多项式的根与系数的关系,得

$$(-1)^{n-1} \sum_{i=1}^{n} \lambda_i = c_1 = (-1)^{n-1} \sum_{i=1}^{n} a_{ii},$$
$$\prod_{i=1}^{n} \lambda_i = c_n = \det(\mathbf{A}),$$

21/65 线性代数 4性代数

特征值与特征值的性质 III

故

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_{i}.$$

注

- 当 det(A) ≠ 0, 即 A 为可逆矩阵时, 其特征值全为非零数;
- ▶ 奇异矩阵 A 至少有一个零特征值。

定理 3 一个特征向量不能属于不同的特征值。

定理 3 一个特征向量不能属于不同的特征值。

证明

若 \mathbf{x} 是 \mathbf{A} 的属于特征值 $\lambda_1, \lambda_2(\lambda_1 \neq \lambda_2)$ 的特征向量,即有

$$\mathbf{A}\mathbf{x} = \lambda_1 \mathbf{x}, \quad \mathbf{A}\mathbf{x} = \lambda_2 \mathbf{x} \Rightarrow (\lambda_1 - \lambda_2) \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$$

这与 $x \neq 0$ 矛盾。

1

性质 1 若 λ 是矩阵 A 的特征值, x 是 A 属于 λ 的特征向量, 则

- (i) kλ 是 k**A** 的特征值;
- (ii) λ^m 是 \mathbf{A}^m 的特征值;
- (iii) 当 \boldsymbol{A} 可逆时, λ^{-1} 是 \boldsymbol{A}^{-1} 的特征值;

且 **x** 仍是矩阵 $k\mathbf{A}, \mathbf{A}^m, \mathbf{A}^{-1}$ 分别对应于 $k\lambda, \lambda^m, \lambda^{-1}$ 的特征向量。

证明

- (i) 自行完成;
- (ii) 自行完成;
- (iii) 当 **A** 可逆时, $\lambda \neq 0$, 由 **Ax** = λ **x** 可得

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}(\lambda\mathbf{x}) = \lambda\mathbf{A}^{-1}\mathbf{x},$$

因此

$$\mathbf{A}^{-1}\mathbf{x} = \lambda^{-1}\mathbf{x},$$

故 λ^{-1} 是 \mathbf{A}^{-1} 的特征值,且 \mathbf{X} 也是 \mathbf{A}^{-1} 对应于 λ^{-1} 的特征向量。

26/65 线性代数 Δ·

注 若 λ 是**A**的特征值,则 $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值,其中

$$\varphi(\lambda) = a_0 + a_1 \lambda + \dots + a_m \lambda^m,$$

$$\varphi(\mathbf{A}) = a_0 \mathbf{I} + a_1 \mathbf{A} + \dots + a_m \mathbf{A}^m.$$

例 3 设 3 阶矩阵 **A** 的特征值为 1, -1, 2, 求 $|A^* + 3A - 2I|$.

例 3 设 3 阶矩阵 A 的特征值为 1,-1,2,求 $|A^* + 3A - 2I|$.

 \mathbf{M} 因 \mathbf{A} 的特征值全不为零,故 \mathbf{A} 可逆,从而 $\mathbf{A}^* = |\mathbf{A}|\mathbf{A}^{-1}$ 。又因 $|\mathbf{A}| = \lambda_1 \lambda_2 \lambda_3 = -2$,故

$$A^* + 3A - 2I = -2A^{-1} + 3A - 2I.$$

令 $\varphi(\lambda) = -\frac{2}{\lambda} + 3\lambda - 2$,则 $\varphi(\lambda)$ 为上述矩阵的特征值,分别为 $\varphi(1) = -1$, $\varphi(-1) = -3$, $\varphi(2) = 3$,于是

$$|A^* + 3A - 2I| = (-1) \cdot (-3) \cdot 3 = 9.$$

28/65 线性代数 △ ▽

性质 2 矩阵 A 与 A^T 的特征值相同。

性质 2 矩阵 $A 与 A^T$ 的特征值相同。

证明. 因
$$(\mathbf{A} - \lambda \mathbf{I})^T = \mathbf{A}^T - (\lambda \mathbf{I})^T = \mathbf{A}^T - \lambda \mathbf{I}$$
,故
$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det(\mathbf{A}^T - \lambda \mathbf{I}),$$

故
$$A \, 与 \, A^T \,$$
 有完全相同的特征值。

例 4 设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$

- (i) 求 A 的特征值与特征向量
- (ii) 求可逆矩阵 P,使得 $P^{-1}AP$ 为对角阵。

解由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & -1 & 1 \\ 2 & -2 - \lambda & 2 \\ -1 & 1 & -1 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & -\lambda & -1 - \lambda \end{vmatrix}$$
$$= \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 2 & -\lambda & 2 \\ -3 & 0 & -3 - \lambda \end{vmatrix} = -\lambda [(\lambda - 1)(\lambda + 3) + 3] = -\lambda^2 (\lambda + 2),$$

知 **A** 的特征值为 $\lambda_1 = \lambda_2 = 0$ 和 $\lambda_3 = -2$.

当 $\lambda_{1,2} = 0$ 时,由 (A - 0I)x = 0,即 Ax = 0 得基础解系

$$\mathbf{x}_1 = (1, 1, 0)^T, \quad \mathbf{x}_2 = (-1, 0, 1)^T,$$

故 \mathbf{A} 对应于 $\lambda_{1,2} = 0$ 的全体特征向量为

$$k_1 \mathbf{x}_1 + k_2 \mathbf{x}_2 = k_1 (1, 1, 0)^T + k_2 (-1, 0, 1)^T,$$

其中 k_1, k_2 为不全为零的任意常数。

当 $\lambda_3 = -2$ 时,由 $(\mathbf{A} - \lambda_3 \mathbf{I})\mathbf{x} = 0$,即

$$\left(\begin{array}{ccc} 3 & -1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

得基础解系

$$\mathbf{x}_3 = (-1, -2, 1)^T,$$

故 \mathbf{A} 对应于 $\lambda_3 = -2$ 的全体特征向量为

$$k_3 \mathbf{x}_3 = k_3 (-1, -2, 1)^T,$$

其中 k3 为非零的任意常数。

将 $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i (i = 1, 2, 3)$ 表示成

$$\mathbf{A}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) = (\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$$

特征值与特征值的性质 III

取

$$P = (x_1, x_2, x_3) = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 0 & & \\ & 0 & \\ & & -2 \end{pmatrix},$$

则 $AP = P\Lambda$, 且 $|P| = 2 \neq 0$, 故得

$$P^{-1}AP = \Lambda$$

为对角阵。

特征值与特征值的性质

定理 4 设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 是方阵 **A** 的 m 个特征值, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$ 依次是 与之对应的特征向量,若 $\lambda_1, \lambda_2, \dots, \lambda_m$ 互不相等,则 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$ 线性无 关。

特征值与特征值的性质!

证明. 设有常数 k1, k2, · · · , km 使得

$$k_1\mathbf{x}_1+k_2\mathbf{x}_2+\cdots+k_m\mathbf{x}_m=0,$$

则
$$\mathbf{A}(k_1\mathbf{x}_1 + k_2\mathbf{x}_2 + \cdots + k_m\mathbf{x}_m) = 0$$
,即

$$\lambda_1 k_1 \mathbf{x}_1 + \lambda_2 k_2 \mathbf{x}_2 + \dots + \lambda_m k_m \mathbf{x}_m = 0,$$

以此类推,有

$$\lambda_1^l k_1 \boldsymbol{x}_1 + \lambda_2^l k_2 \boldsymbol{x}_2 + \cdots + \lambda_m^l k_m \boldsymbol{x}_m = 0, \quad l = 1, 2, \cdots, m-1.$$

写成矩阵形式即为

$$(k_1 \mathbf{x}_1, k_2 \mathbf{x}_2, \cdots, k_m \mathbf{x}_m) \begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{m-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_m & \cdots & \lambda_m^{m-1} \end{pmatrix} = (0, 0, \cdots, 0).$$

上式左边的第二个矩阵的行列式为范德蒙德行列式,当 λ_i 互不相等时该行列式不为零,从而该矩阵可逆。于是有

$$(k_1\mathbf{x}_1, k_2\mathbf{x}_2, \cdots, k_m\mathbf{x}_m) = (0, 0, \cdots, 0),$$

35/65 线性代数 2

特征值与特征值的性质Ⅱ

即
$$k_j \mathbf{x}_j = 0$$
, $j = 1, 2, \dots, m$ 。但 $\mathbf{x}_j \neq 0$,故 $k_j = 0$, $j = 1, 2, \dots, m$,从而 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$ 线性无关。

36/65 线性代数

特征值与特征值的性质

例 5 设 λ_1 和 λ_2 是矩阵 **A** 的两个不同特征值,对应的特征向量依次为 $\mathbf{x}_1, \mathbf{x}_2$,证明 $\mathbf{x}_1 + \mathbf{x}_2$ 不是 **A** 的特征向量。

特征值与特征值的性质

证明. 按题设,有 $Ax_1 = k_1x_1$, $Ax_2 = k_2x_2$, 故

$$A(\mathbf{x}_1 + \mathbf{x}_2) = \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2.$$

(反证法) 假设 $x_1 + x_2$ 是 A 的特征向量,则应存在 λ 使得 $A(x_1 + x_2) = \lambda(x_1 + x_2)$,于是

$$\lambda(\boldsymbol{x}_1 + \boldsymbol{x}_2) = \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2,$$

即

$$(\lambda_1 - \lambda)\mathbf{x}_1 + (\lambda_2 - \lambda)\mathbf{x}_2 = 0.$$

因 $\lambda_1 \neq \lambda_2$,由上述定理知 $\mathbf{x}_1, \mathbf{x}_2$ 线性无关,从而有

$$\lambda_1 - \lambda = \lambda_2 - \lambda$$
,

П

即 $\lambda_1 = \lambda_2$,与题设矛盾,从而 $\mathbf{x}_1 + \mathbf{x}_2$ 不是 **A** 的特征向量。

38/65 线性代数 △ ▽

相似矩阵

定义 3 设 A, B 为 n 阶矩阵,若存在可逆矩阵 P,使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{B},$$

则称 $B \in A$ 的相似矩阵,或 $A \subseteq B$ 相似,记为 $A \sim B$ 。对 A 进行运算 $P^{-1}AP$ 称为对 A 进行相似变化,可逆矩阵 P 称为把 A 变成 B 的相似变换矩阵。

定理 5 若 $A \sim B$,则 $A \subseteq B$ 的 u 特征多项式相同,从而 $A \subseteq B$ 的特征值相 同。

相似矩阵

$$|B-\lambda \boldsymbol{I}| = |\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} - \boldsymbol{P}^{-1}(\lambda \boldsymbol{I})\boldsymbol{P}| = |\boldsymbol{P}^{-1}(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{P}| = |\boldsymbol{P}^{-1}||\boldsymbol{A} - \lambda \boldsymbol{I}||\boldsymbol{P}| = |\boldsymbol{A} - \lambda \boldsymbol{I}|.$$

相似矩阵

推论 1 若 A 与对角阵

$$m{\Lambda} = \left(egin{array}{ccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & & \ddots & \\ & & & \lambda_n \end{array}
ight)$$

相似,则 $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 **A** 的 n 个特征值。

矩阵可对角化,即矩阵与对角阵相似。

定理 6 矩阵可对角化 \iff n 阶矩阵有 n 个线性无关的特征向量

证明

(⇒) 设

$$P^{-1}AP = \Lambda \implies AP = P\Lambda$$

将 P 按列分块,即 $P = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$,则

$$\mathbf{A}(\mathbf{x}_1, \ \mathbf{x}_2, \ \cdots, \ \mathbf{x}_n) = (\mathbf{x}_1, \ \mathbf{x}_2, \ \cdots, \ \mathbf{x}_n) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

于是

$$\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i \quad (i = 1, 2, \dots, n).$$

故 \mathbf{x}_1 , \mathbf{x}_2 , ····, \mathbf{x}_n 是 \mathbf{A} 分别对应于 λ_1 , λ_2 , ····, λ_n 的特征向量。由于 \mathbf{P} 可逆,所以它们是线性无关的。

(←) 上述步骤显然可逆, 故充分性也成立。

٦

47/65 线性代数 Δ τ

若 A 与 Λ 相似,则 Λ 的主对角元都是 A 的特征值。若不计 λ_k 的排列次序,则 Λ 是唯一的,称 Λ 为 A 的相似标准型。

定理 7 A 的属于不同特征值的特征向量是线性无关的。

矩阵可对角化的条件 |

证明. 设 \mathbf{A} 的 m 个互不相同的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_m$,其相应的特征向量为 $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m$. 对 m 做数学归纳法。

- 1° 当 m=1 时,结论显然成立。
- 2° 设 k 个不同特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 的特征向量 $\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_k$ 。下面考虑 k+1 个不同特征值的特征向量。

$$a_{1}\mathbf{x}_{1} + a_{2}\mathbf{x}_{2} + \cdots + a_{k}\mathbf{x}_{k} + a_{k+1}\mathbf{x}_{k+1} = \mathbf{0} \qquad (1)$$

$$\Rightarrow \mathbf{A}(a_{1}\mathbf{x}_{1} + a_{2}\mathbf{x}_{2} + \cdots + a_{k}\mathbf{x}_{k} + a_{k+1}\mathbf{x}_{k+1}) = \mathbf{0}$$

$$\Rightarrow a_{1}\lambda_{1}\mathbf{x}_{1} + a_{2}\lambda_{2}\mathbf{x}_{2} + \cdots + a_{k}\lambda_{k}\mathbf{x}_{k} + a_{k+1}\lambda_{k+1}\mathbf{x}_{k+1} = \mathbf{0} \qquad (2)$$

$$\Rightarrow a_{1}(\lambda_{k+1} - \lambda_{1})\mathbf{x}_{1} + a_{2}(\lambda_{k+1} - \lambda_{2})\mathbf{x}_{2} + \cdots + a_{k}(\lambda_{k+1} - \lambda_{k})\mathbf{x}_{k} = \mathbf{0}$$

$$\Rightarrow a_{i}(\lambda_{k+1} - \lambda_{i}) = 0, \quad i = 1, 2, \cdots, k$$

$$\Rightarrow a_{i} = 0, \quad i = 1, 2, \cdots, k$$

$$\Rightarrow a_{k+1}\mathbf{x}_{k+1} = 0$$

$$\Rightarrow a_{k+1}\mathbf{x}_{k+1} = 0$$

$$\Rightarrow \mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{k}, \mathbf{x}_{k+1} \text{ \cdots \text{\text{d}}} \text{\text{d}} \t$$

П

50/65 线性代数 △ ▽

推论 2 若 A 有 n 个互不相同的特征值,则 A 与对角阵相似。

例 6 设实对称矩阵

问 A 是否可对角化?若可对角化,求对角阵 Λ 及可逆矩阵 P 使得 $P^{-1}AP = \Lambda$,再求 A^k 。

线性代数

解 由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & -1 & -1 & -1 \\ -1 & 1 - \lambda & -1 & -1 \\ -1 & -1 & 1 - \lambda & -1 \\ -1 & -1 & 1 - \lambda & -1 \end{vmatrix}$$

$$= -(\lambda + 2) \begin{vmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 - \lambda & -1 & -1 \\ 1 & -1 & 1 - \lambda & -1 \\ 1 & -1 & -1 & 1 - \lambda \end{vmatrix}$$

$$= -(\lambda + 2) \begin{vmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & -1 & 1 - \lambda \\ 0 & 2 - \lambda & 0 & 0 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 2 - \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 2)^{3},$$

故 \mathbf{A} 的特征值为 $\lambda_1 = -2$ (单根), $\lambda_2 = 2$ (三重根)。

 由 $(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{x} = 0$,即

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

得 λ_1 对应的特征向量为 $\{k_1 \mathbf{x}_1 | \mathbf{x}_1 = (1, 1, 1, 1)^T, k_1 \neq 0\}$.

由 $(\mathbf{A} - \lambda_2 \mathbf{I})\mathbf{x} = 0$,即

得基础解系:

$$\mathbf{x}_{21} = (1, -1, 0, 0)^T$$
, $\mathbf{x}_{22} = (1, 0, -1, 0)^T$, $\mathbf{x}_{23} = (1, 0, 0, -1)^T$.

因 A 有 4 个线性无关的特征向量, 故 $A \sim \Lambda$ 。

54/65 线性代数 Δ

取

$$\mathbf{P} = (\mathbf{x}_1, \mathbf{x}_{21}, \mathbf{x}_{22}, \mathbf{x}_{23}) = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix},$$

则

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -2 & & \\ & 2 & \\ & & 2 \end{pmatrix} = \mathbf{\Lambda}.$$

再由 $A = P \Lambda P^{-1}$ 得

$$\mathbf{A}^{k} = (\mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1})^{k} = \mathbf{P} \mathbf{\Lambda}^{k} \mathbf{P}^{-1}$$

$$= \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} (-2)^{k} & & & \\ & 2^{k} & & \\ & & 2^{k} & \\ & & & 2^{k} \end{pmatrix} \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix}$$

55/65 线性代数 4 ▼ Δ ▼

例 7 设

$$\mathbf{A} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 1 & x \\ 1 & 0 & 0 \end{array} \right)$$

问 x 为何值时,矩阵 A 能对角化?

解 由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & 0 & 1 \\ 1 & 1 - \lambda & \chi \\ 1 & 0 & -\lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = -(\lambda - 1)^2 (\lambda + 1),$$

即 $\lambda_1 = -1$, $\lambda_2 = \lambda_3 = 1$.

对应于单根 $\lambda_1=-1$,可求得线性无关的特征向量恰有 1 个,故 A 可对角化的充分必要条件是对应重根 $\lambda_2=\lambda_3=1$,有 2 个线性无关的特征向量,即 (A-I)x=0 有两个线性无关的解,亦即 A-I 的秩 R(A-I)=1。由

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & x \\ 1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & x+1 \\ 0 & 0 & 0 \end{pmatrix}$$

欲使 R(A-I)=1, 须有 x+1=0, 即 x=-1。因此当 x=-1 时,矩阵 A能对角化。

例 8 设 $\mathbf{A} = (a_{ij})_{n \times n}$ 是主对角元全为 2 的上三角矩阵,且存在 $a_{ij} \neq 0 (i < j)$, 问 A 是否可对角化?

线性代数

解设

$$A = \left(\begin{array}{cccc} 2 & * & \cdots & * \\ & 2 & \cdots & * \\ & & \ddots & \vdots \\ & & & 2 \end{array}\right)$$

其中 * 为不全为零的任意常数,则

$$|\mathbf{A} - \lambda \mathbf{I}| = (2 - \lambda)^n,$$

即 $\lambda = 2$ 为 A 的 n 重特征根,而 $R(A - 2I) \ge 1$,故 (A - 2I)x = 0 的基础解系所含向量个数 $\le n - 1$ 个,即 A 的线性无关的特征向量的个数 $\le n - 1$ 个,因此 A 不与对角阵相似。

4. 实对称矩阵的对角化

例 9 实对称矩阵 **A** 的任一特征值都是实数。

证明.

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \qquad \Longrightarrow \quad \overline{(\mathbf{A}\mathbf{x})}^T = \overline{\lambda}\overline{\mathbf{x}}^T$$

$$\Longrightarrow \quad \overline{\mathbf{x}}^T \, \overline{\mathbf{A}}^T \, \mathbf{x} = \overline{\lambda} \, \overline{\mathbf{x}}^T \, \mathbf{x}$$

$$\Longrightarrow \quad \overline{\mathbf{x}}^T \, \mathbf{A}^T \, \mathbf{x} = \overline{\lambda} \, \overline{\mathbf{x}}^T \, \mathbf{x}$$

$$\Longrightarrow \quad \lambda \overline{\mathbf{x}}^T \, \mathbf{x} = \overline{\lambda} \, \overline{\mathbf{x}}^T \, \mathbf{x}$$

$$\Longrightarrow \quad \lambda = \overline{\lambda}$$

61/65 线性代数 △ ▽

例 10 实对称矩阵 **A** 对应于不同特征值的特征向量是正交的。

证明. 设
$$\mathbf{A}\mathbf{x}_1 = \lambda_1\mathbf{x}_1$$
, $\mathbf{A}\mathbf{x}_1 = \lambda_1\mathbf{x}_1$ ($\lambda_1 \neq \lambda_2$), $\mathbf{A}^T = \mathbf{A}$, 则

$$\lambda_1 \mathbf{x}_2^T \mathbf{x}_1 = \mathbf{x}_2^T \mathbf{A} \mathbf{x}_1 = \mathbf{x}_2^T \mathbf{A}^T \mathbf{x}_1 = (\mathbf{A} \mathbf{x}_2)^T \mathbf{x}_1 = (\lambda_2 \mathbf{x}_2)^T \mathbf{x}_1 = \lambda_2 \mathbf{x}_2^T \mathbf{x}_1$$

例 10 实对称矩阵 **A** 对应于不同特征值的特征向量是正交的。

证明. 设
$$\mathbf{A}\mathbf{x}_1 = \lambda_1\mathbf{x}_1$$
, $\mathbf{A}\mathbf{x}_1 = \lambda_1\mathbf{x}_1$ ($\lambda_1 \neq \lambda_2$), $\mathbf{A}^T = \mathbf{A}$, 则

$$\lambda_1 \mathbf{x}_2^T \mathbf{x}_1 = \mathbf{x}_2^T \mathbf{A} \mathbf{x}_1 = \mathbf{x}_2^T \mathbf{A}^T \mathbf{x}_1 = (\mathbf{A} \mathbf{x}_2)^T \mathbf{x}_1 = (\lambda_2 \mathbf{x}_2)^T \mathbf{x}_1 = \lambda_2 \mathbf{x}_2^T \mathbf{x}_1$$

由于 $\lambda_1 \neq \lambda_2$, 所以

$$\boldsymbol{x}_2^T\boldsymbol{x}_1=0.$$

62/65 线性代数 △ ▽

定理 8 设 \mathbf{A} 为 n 阶对称阵,则必有正交阵 \mathbf{Q} ,使得 $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{Q}^{T}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda}$,其中 $\mathbf{\Lambda}$ 是以 \mathbf{A} 的 n 个特征值为对角元的对角阵。

推论 3 设 \mathbf{A} 为 n 阶对称阵, λ 为 \mathbf{A} 的特征方程的 k 重根, 则矩阵 $\mathbf{A} - \lambda \mathbf{I}$ 的 秩 $\mathbf{R}(\mathbf{A} - \lambda \mathbf{I}) = n - k$, 从而对应特征值 λ 恰有 k 个 u 线性无关的特征向量。

推论 3 设 A 为 n 阶对称阵, λ 为 A 的特征方程的 k 重根,则矩阵 $A - \lambda I$ 的 秩 $R(A - \lambda I) = n - k$,从而对应特征值 λ 恰有 k 个 u 线性无关的特征向量。

证明

由上述定理知,对称阵 A 与对角阵 $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ 相似,从而 $A - \lambda I$ 与 $\Lambda - \lambda I = \operatorname{diag}(\lambda_1 - \lambda_1, \dots, \lambda_n - \lambda)$ 相似。当 $\lambda \in A$ 的 k 重特征根时,对角阵 $\Lambda - \lambda I$ 的对角元恰有 k 个等于 0,于是 $R(\Lambda - \lambda I) = n - k$ 。而 $R(A - \lambda I) = R(\Lambda - \lambda I)$,故 $R(A - \lambda I) = n - k$ 。

将对称阵 A 对角化的步骤:

- 1. 求出 **A** 的全部互不相等的特征值 $\lambda_1, \dots, \lambda_s$,它们的重数依次为 $k_1, \dots, k_s(k_1 + \dots + k_s = n)$;
- 2. 对每个 k_i 重特征值 λ_i , 求 $(\mathbf{A} \lambda_i \mathbf{I})\mathbf{x} = 0$ 的基础解系,得 k_i 个线性无关的特征向量;
- 3. 再把它们正交化、单位化、得 k_i 个两两正交的单位特征向量。因 $k_1 + \cdots + k_s = n$,故总共可得 n 个两两正交的单位特征向量;
- 4. 将这 n 个两两正交的单位特征向量构成正交阵 Q,便有 $Q^{-1}AQ = \Lambda$ 。