1 Aufgabe: Konfidenzintervall für μ

Betrachtet wird eine unabhängig und identisch normalverteilte Zufallsvariable $X \sim N(\mu, \sigma^2)$.

- 1. Zunächst soll die Varianz σ^2 als bekannt vorausgesetzt sein. Mittels der Zufallsstichprobe $X_1,...,X_n$ soll ein Konfidenzintervall für den Erwartungswert μ mit einer Irrtumswahrscheinlichkeit α konstruiert werden.
- 2. In der Praxis ist die Varianz jedoch unbekannt und muss geschätzt werden. Bestimmen Sie auch für diesen Fall mittels der Zufallsstichprobe $X_1,...,X_n$ ein Konfidenzintervall für den Erwartungswert μ mit einer Irrtumswahrscheinlichkeit α .
- 3. Verspätungen der Deutschen Bahn: Die Stiftung Warentest hat an einigen deutschen Bahnhöfen den Prozentsatz der verspäteten Züge (Verspätungen größer 4 Minuten) beobachtet. In der folgenden Tabelle finden Sie die Ergebnisse einer Stichprobe von $n=94\,136$ Zügen im Herbst 2007:

Stadt	Prozentsatz
Berlin	25
Hannover	28
Hamburg	35
München	33
Leipzig	16
Dresden	35
Mannheim	29
Stuttgart	23
Frankfurt	34
Köln	36

Berechnen Sie aus dieser Stichprobe den mittleren Prozentsatz der verspäteten Züge für Deutschland und geben Sie das zugehörige Konfidenzintervall mit einer Irrtumswahrscheinlichkeit von 0.05 an. Interpretieren Sie die Ergebnisse!

2 Aufgabe: Schätzer für den Erwartungswert

Eine Grundgesamtheit besitze Erwartungswert μ und Varianz σ^2 . Die Stichprobenvariablen $X_1,...,X_5$ sind unabhängige Ziehungen aus der Grundgesamtheit. Man betrachte folgende fünf Schätzer für den Erwartungswert μ :

 $T1 = \frac{1}{5}(X_1 + X_2 + \dots + X_5)$

 $T2 = \frac{1}{3}(X_1 + X_2 + X_3)$

 $T3 = \frac{1}{8}(X_1 + X_2 + X_3 + X_4) + \frac{1}{2}X_5$

 $T4 = X_1 + X_2$

 $T5 = X_1$

- 1. Welcher Schätzer ist erwartungstreu?
- 2. Welchen Schätzer würden Sie verwenden? Begründen Sie Ihre Entscheidung.

3 Aufgabe: Schätzer in der Bernoulliverteilung

 $X_1, ..., X_n$ sind unabhängige, identische Wiederholungen einer Zufallsvariable X, die einer Bernoulliverteilung folgt, mit

 $P(X=1)=\pi$

 $P(X=0) = 1 - \pi$

Es gilt: $E(X) = \pi$ und $Var(X) = n\pi(1 - \pi)$

- 1. Zeigen Sie, dass $\hat{\pi} = \sum_{i=1}^n X_i/n = \bar{X}$ erwartungstreu ist.
- 2. Man bestimme die mittlere, quadratische Abweichung (MSE) des Schätzers \bar{X} für $\pi \in \{0, 0.25, 5, 0.75, 1\}.$
- 3. Eine alternative Schätzfunktion ist

$$T = \frac{n}{\sqrt{n} + n} \bar{X} + \frac{n}{\sqrt{n} + n} 0.5.$$

Berechnen Sie den Erwartug
nswert des Schätzer und überprüfen Sie, ob ${\cal T}$ erwartungstre
u ist.

4. Berechnen Sie den MSE von T. Vergleichen Sie den MSE von T mit dem MSE von \bar{X} . Welchen Schätzer $(T \text{ oder } \bar{X})$ würden Sie in welcher Situation verwenden?

Übungsleiter:

Bernd Klaus (Dipl. Wi-Math) Mail: bernd.klaus@uni-leipzig.de Verena Zuber (M.Sc.) Mail: vzuber@uni-leipzig.de