

two events for an observer standing on platform

B) 288 m

A) 72 m

1.

D) 16 m

DPP: MOTION IN A STRAIGHT LINE

From metro station 'A', a metro train starts at regular interval of 10 min and runs towards 'B' metro

	station with constant speed of 80 kmh ⁻¹ without any stoppage. At some point of time, all the trains simultaneously have to reduce their speed 50 kmh ⁻¹ due to defect in rails. What will become the time intervals between arrivals of the trains at the metro station 'B' during the defect in rails?									
	A) $\frac{8}{3}$ min	B) $\frac{4}{15}$ min	C) 16 min	D) 4 min						
2.	The relation between time and distance is $t = \alpha x^2 + \beta x$, where α and β are constants. The retardation is									
	A) $2\alpha v^3$	B) $2\beta v^3$	C) $2\alpha\beta v^3$	D) $2\beta^2 v^3$						
3.	The velocity-time graph of a body moving along a straight line is given below. The average velocity is whole motion is									
	v(m/s)									
	0	2 3 4 5 6 7 8	N 10 1/1 12	- t						
	-10	2 3 4 3 0 7 8 9	10 11 12							
	A) 60 ms ⁻¹	B) 20 ms ⁻¹	C) 6.67 ms ⁻¹	D) 3.33 ms ⁻¹						
4.	•	_		post with velocity u and the f the train passes the signal						
	A) $\sqrt{\frac{v^2 + u^2}{2}}$	B) $\frac{v-u}{2}$	C) $\frac{u+v}{2}$	$D) \sqrt{\frac{v^2 - u^2}{2}}$						
5.	A balloon is at a height of 4	0 m and is ascending	with a velocity of 10 ms ⁻¹	. A bag of 5 kg weight is						
	dropped from it. The body r									
_	A) 2 s	B) 4 s	C) 0.25 s	D) 1 s						
6.				400 m from the check post,						
	driver applied brakes which is caused of retardation of 0.3 ms ⁻² . The distance of the car from the check post for 2 min after applying the brakes									
	A) 375 m	B) 25 m	C) 400 m	D) 775 m						
7.		,								
	An automobile travelling with a speed of 60 kmh ⁻¹ , can brake to stop within a distance of 20 m. If the car is going twice as fast i.e., 120 kmh ⁻¹ . The stopping distance is									
	A) 20 m	B) 40 m	C) 60 m	D) 80 m						
8.	A 200 m long train starts f	from rest at $t = 0$ with	constant acceleration 4	cms ⁻² . The head light of its						

C) 266 m

9.

The average speed in time interval t=2s to t=10 s

20.	A train	travels f	rom city	A to city	B with co	onstant sp	eed of 10	ms ⁻¹ and	return bac	ck to city	A with a		
	A train travels from city A to city B with constant speed of 10ms ⁻¹ and return back to city A with a constant speed of 20 ms ⁻¹ . The average speed during its entire journey												
	A) $\frac{20}{3}$	m/s		B) $\frac{40}{3}$	-m/s	C) 20 m/s		D) 40	m/s			
21.	A car t A) 4.4		to move a		oundabou 3 m/s		s 14m.The) 2.2 m/s	_		_	ity is		
22.			cle initial	,			•				rate of 2		
	m/s^2 . T	Consider a particle initially moving with a velocity of 5 m/s starts retardation at a constant rate of 2 m/s ² . The distance travelled in the 2 nd second is A) 14 m B) 7 m C) 4.5 m D) 2 m											
23.	A) 14 1		cle initial	B) 7 n			,	arts retard			rate of 2		
23.	Consider a particle initially moving with a velocity of 5 m/s starts retardation at a constant rate of 2 m/s ² . Determine the time at which the particle becomes stationary												
	A) 2.5	S		B) 2.8	Ss	C) 4.35 s						
24.									second, a	a packet is	s dropped		
					ter 't' sec								
	A) $\frac{a}{g}$	$t_0 + \sqrt{1 + \frac{3}{6}}$	$\left[\frac{g}{a}\right]$	B) $\frac{at_0}{g}$	$\int_{0}^{\infty} \left[t_0 + \sqrt{1 - t_0^2} \right]$	$+\frac{g}{a}$ C	$\frac{t_0}{g} \left[a + \sqrt{\frac{t_0}{g}} \right]$	$\left 1+\frac{g}{a}\right $	D) <i>t</i> ₀				
25.											pectively.		
	The rat			-	balls to d	-	-			_			
	A) $\frac{t_1}{t_2}$	$=\sqrt{h_1h_2}$		B) $\frac{t_1}{t_2}$	$= h_1.h_2$	C	$\frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}}$	<u>l_</u> 2	D) $\frac{t_1}{t_2} =$	$=\sqrt{\frac{h_2}{h_1}}$			
26.											er having		
					ance 'd' d	ownstrea	m and reti	ırns back	to the ori	ginal posi	ition. The		
			nplete mo		1		2 <i>d</i>		2	d			
	A) $\frac{d}{v+}$	<u> </u>		B) $\frac{v}{v}$	$\frac{d}{-u}$	C	$(v^2 - u^2)$		D) $\frac{2}{v^2}$	$\frac{u}{+u^2}$			
27.			ual 5 m le	engths are	moving v	vith the sa	me veloci	ty in the s	same direc	ction on a	highway.		
	The first bus is 40 m ahead of the second bus. The driver of the second bus thinks to overtake the first bus and gives an acceleration of 1ms ⁻² to the bus. After what time the second bus just passes the first												
	bus and bus?	d gives ai	n accelera	tion of In	ns ⁻² to the	bus. Aft	er what tii	ne the sec	cond bus j	just passe	s the first		
	A) 4.7:	5 sec		B) 9.4	8 sec	C) 12.35 se	c	D) 10.5	sec			
28.	A summer moving upstream passes a float at point P. After two hours, he returns and at this instant he												
		meets the float again at a distance 15 km from the point P. If the swimmer velocity in water remains											
	constant, then the speed of river flow is A) 7.5 km/h B) 4.5 km/h C) 4.75 km/h D) 3.75 k						5 km/h						
29.										at $t = 5s$			
	is		J	1					J	1			
	A) 40	ms^{-1}		B) 25	ms^{-1}	C	$20 ms^{-1}$		D) 8 m	s^{-1}			
30.											of 500 m		
											alf of this		
	distance A) 200		in engine	would cro B) 250	ss the stat	ion with	speed \sqrt{x}) 400	ms 'The	value of x D) 450				
	A) 200	•		D) 230	O .	C) 1 00		D) 430				
	KEY												
PHYSICS													
1	l -10	1 C	2 A	3 D	4 A	5 B	6 B	7 D	8 D	9 A	10 A		
	1-20	D	C	A	B	D	C	C	В	C	В		
21-30		D	D	A	В	C	C	В	D	A	A		

HINTS

1.
$$v_1 = 80kmh^{-1}, t_1 = 10 \min = \frac{10}{60}hr$$

Distance between the successive trains on the track is $s = v_1 t = 80 \times \frac{10}{60} = \frac{40}{3} km$

$$v_2 = 50kmh^{-1}$$

When speed of all trains is reduced to $50kmh^{-1}$, then the distance covered in

$$t_2 = \frac{s}{v_2} = \frac{40/3}{50} = \frac{4}{15}hr = \frac{4}{15} \times 60 \text{ min} = 16 \text{ min}$$

2.
$$t = \alpha x^{2} + \beta x$$

$$\Rightarrow \frac{dt}{dx} = 2\alpha x + \beta$$

$$\Rightarrow \frac{1}{v} = 2\alpha x + \beta$$

$$\Rightarrow a = \frac{dv}{dx} \cdot \frac{dx}{dt} \left(\because \frac{dx}{dt} = v \right)$$

$$\Rightarrow a = \frac{1}{2\alpha x + \beta}$$

$$\Rightarrow a = v \cdot \left[\frac{-2\alpha}{(2\alpha x + \beta)^{2}} \right] \left(\because (1) \right)$$

$$\Rightarrow a = -\frac{2\alpha}{(2\alpha x + \beta)^{3}} \Rightarrow a = -2\alpha v^{3}$$

$$\therefore$$
 Retardation = $2\alpha v^3$

3. Area of graph above time axis is
$$A_1 = \frac{1}{2} \times (8-4) \times 10 = 60m$$

Area of graph below time axis is $A_2 = \frac{1}{2} \times 4 \times 10 = 20m$

Average velocity in whole time of motion is

$$v_{avg} = \frac{displacement}{total \ time} = \frac{A_1 - A_2}{t} = \frac{60 - 20}{12} = 3.33 ms^{-1}$$

4. Let the velocity of middle point of train is v_1

$$(i)v_1^2 - u^2 = 2as$$

$$v_1^2 = u^2 + 2as \rightarrow (1)$$

$$(ii)v^2 - v_1^2 = 2as$$

$$v_1^2 = v^2 - 2as \rightarrow (2)$$

From eq (1) & (2)

$$u^2 + 2as = v^2 - 2as$$

$$4as = v^2 - u^2$$

$$as = \frac{v^2 - u^2}{\Delta} \rightarrow (3)$$

Sub eq (3) in eqn (1)

$$v_1^2 = u^2 + 2 \cdot \left(\frac{v^2 - u^2}{4}\right)$$

$$v_1^2 = u^2 + \frac{v^2}{2} - \frac{u^2}{2}$$

$$v_1^2 = \frac{u^2 + v^2}{2}$$

$$v_1 = \sqrt{\frac{u^2 + v^2}{2}}$$

5. h =40 m, u=10ms⁻¹, a=g=10ms⁻²

From
$$s = ut + \frac{1}{2}at^2$$

$$\Rightarrow -h = ut - \frac{1}{2}gt^2$$

$$-40 = 10t - \frac{1}{2}.10t^2$$

$$-4=t-\frac{1}{2}.t^2$$

$$t^{2} - 2t - 8 = 0$$
$$t = \frac{2 \pm \sqrt{4 + (4 \times 1 \times 8)}}{2}$$

$$t = \frac{2 \pm \sqrt{36}}{2}$$

$$t = \frac{2 \pm 6}{2}$$

$$t = \frac{2+6}{2} (or) t = \frac{2-6}{2}$$

$$t = 4 \sec or t = -2 \sec$$

$$t = 4 \sec$$

6.
$$v = 0; u = 54kmh^{-1} = 15ms^{-1}; d = 400m$$

$$a = -0.3ms^{-2}$$
; $t = 2 \min$; $d^{1} = ?$

From
$$v^2 - u^2 = 2as \Rightarrow s = 375m$$

$$d^{1} = d - s \Rightarrow d^{1} = 400 - 375 \Rightarrow d^{1} = 25m$$

7.
$$u_1 = 60kmh^{-1}, u_2 = 120kmh^{-1}; s_1 = 20m, s_2 = ?$$

$$v = 0$$
; from $v^2 - u^2 = 2as \Rightarrow s \propto u^2 \Rightarrow \frac{s_1}{s_2} = \left(\frac{u_1}{u_2}\right)^2 \Rightarrow s_2 = 80m$

8.
$$u = 0; a = 0.04 ms^{-2}; t_1 = 60 \sec_0 t_2 = 120 \sec_0 t_3$$

$$l = 200m$$

$$s_1 = ut_1 + \frac{1}{2}at_1^2 = 72m$$

$$s_2 = ut_2 + \frac{1}{2}at_2^2 = 288m$$

Thus, the distance b/w these tow events is $d = s_2 - (l + s_1) = 16m$

9.
$$x_1 = 8m, x_2 = 10m, t_1 = 2 \sec t_2 = 10 \sec t_2$$

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{2}{8} = 0.25 ms^{-1}$$

10. slope =
$$\frac{v}{s} = -\sqrt{3}$$
; $v = \frac{s}{t} = \sqrt{3}ms^{-1}$

$$\Rightarrow \frac{v/t}{s/t} = -\sqrt{3} \Rightarrow \frac{a}{\sqrt{3}} \Rightarrow a = -3ms^{-2}$$

11.
$$t_1 = t_2 = t$$
; $v_1 = 80km / h$, $v_2 = 40km / h$, d=60km

Since
$$t_1 = t_2 \Rightarrow \frac{d_1}{v_1} = \frac{d_2}{v_2} \Rightarrow d_1 = 2d_2$$

$$d_1 + d_2 = 60 \Rightarrow d_1 = 40km, d_2 = 20km$$

$$\therefore v_{avg} = \frac{d}{t_1 + t_2} = \frac{d}{\frac{d_1}{v_1} + \frac{d_2}{v_2}} = 60 \, km \, / \, h$$

12.
$$d = \pi r = 5m \Rightarrow r = \frac{5}{\pi}m$$

$$s = 2r = \frac{10}{\pi}m$$

$$d: s = 5: \frac{10}{\pi} = 11:7$$

13.
$$x = 2t^2 + t + 5; t = 2 \sec t$$

$$v = \frac{dx}{dt} = 4t + 1; a = \frac{dv}{dt} = 4m / s^2$$

14.
$$u = 6m / s; a = -2m / s^2; t = 4 \text{ sec}$$

$$v = u + at \Rightarrow v = -2m / s$$

Now distance travelled in
$$t = 4 \sec is$$

$$s = ut + \frac{1}{2}at^2 \Longrightarrow s = 8m$$

Now after returning, body moves with constant velocity $v = \frac{S}{t^1}$

$$\Rightarrow t^1 = \frac{s}{v} = \frac{8}{2} = 4 \sec t$$

Total time
$$T = t + t^{1} = 4 + 4 = 8 \sec$$

15. A body is falling freely from height h and let that body strikes the ground after t seconds
$$u = 0$$
; $s = h$; $t = t$, $a = g$

From
$$s = ut + \frac{1}{2}at^2 \Rightarrow h = \frac{1}{2}gt^2 \rightarrow (1)$$

So, we get $t_1 = (t-1)$ second for descending through 64 % of h

:. 64% of
$$h = \frac{1}{2}g(t-1)^2$$

$$\Rightarrow \frac{64}{100} \times h = \frac{1}{2} g(t-1)^2 \rightarrow (2)$$

$$\frac{(1)}{(2)} \Rightarrow \frac{100}{64} = \frac{t^2}{(t-1)^2} \Rightarrow \frac{10}{8} = \frac{t}{t-1}$$

$$\Rightarrow t = 5 \sec$$

$$(1) \Rightarrow h = \frac{1}{2} \times 10 \times 25 \Rightarrow h = 125m$$

16. given
$$u = v$$

$$-h = ut - \frac{1}{2}gt^{2}$$

$$\Rightarrow -h = vt - \frac{1}{2}gt^{2}$$

$$h = -vt + \frac{1}{2}gt^{2}$$

$$gt^{2} - 2vt - 2h = 0$$

$$t = \frac{2v \pm \sqrt{4v^{2} + 8gh}}{2g}$$

$$t = \frac{2v \pm \sqrt{1 + \frac{8gh}{4v^{2}}}}{2g}$$

$$t = \frac{v}{g}\left(1 + \sqrt{1 + \frac{2gh}{v^{2}}}\right)$$

At maximum, velocity of the ball becomes zero. $\therefore v = 0$ At highest point of the ball acceleration due to gravity "g" acts vertically downwards.

$$a = g = 9.8m/s^2$$

18.
$$v = \sqrt{5000 + 24x}$$

$$\frac{dv}{dx} = \frac{1}{2\sqrt{5000 + 24x}} \times 24 = \frac{12}{\sqrt{5000 + 24x}}$$

And
$$\frac{dv}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} \Rightarrow \frac{dv}{dx} = \frac{a}{v} \Rightarrow a = v \cdot \frac{dv}{dx}$$

$$\Rightarrow a = 12m / s^2$$

19.
$$\frac{a}{2} + \frac{t}{4} = 1$$

$$2a + t = 4$$

$$2a = 4 - t \Longrightarrow a = 2 - \frac{t}{2}$$

But
$$a = \frac{dv}{dt} \Rightarrow \frac{dv}{dt} = 2 - \frac{t}{2}$$

$$\Rightarrow dv = \left(2 - \frac{t}{2}\right)dt \Rightarrow \int_{0}^{v} dv = \int_{0}^{2} \left(2 - \frac{t}{2}\right)dt$$

$$\Rightarrow (v)_0^v = \left(2t - \frac{t^2}{4}\right)_0^2 \Rightarrow v = 4 - \frac{4}{4}$$

$$\Rightarrow v = 4 - 1 \Rightarrow v = 3m / s$$

$$\Rightarrow v = 4 - 1 \Rightarrow v = 3m / s$$
20.
$$v_A = 10ms^{-1}, v_B = 20ms^{-1}$$

Distance between A & B = x (say)

Time taken by the train to travel from A to B is $t_1 = \frac{x}{v}$

$$\Rightarrow t_1 = \frac{x}{10}$$

Time taken to come back from B to A is $t_2 = \frac{x}{v_B}$

$$\Rightarrow t_2 = \frac{x}{20}, v_{avg} = \frac{x+x}{t_1 + t_2} = \frac{2x}{\frac{x}{10} + \frac{x}{20}} \Rightarrow v_{avg} = \frac{40}{3} \, m \, / \, s$$

21. In one complete revolution, displacement of car is zero i.e, s = 0

$$\left|\vec{v}_{avg}\right| = \frac{displacement}{time} = \frac{s}{t} = 0$$

22.
$$u = 5m/s, a = -2m/s^2, n = 2$$

$$s_n = u + a \left(n - \frac{1}{2} \right)$$

$$\Rightarrow s_2 = 5 - 2\left(2 - \frac{1}{2}\right) = 5 - 3 = 2m$$

23.
$$u = 5m/s, a = -2m/s^2, v = 0, t = ?$$

From
$$v = u + at$$
, $t = 2.5 \text{ sec}$

24. At
$$t = t_0, h = \frac{1}{2}at_0^2$$

$$u = at_0$$

$$from - h = ut - \frac{1}{2}gt^2$$

$$\Rightarrow -\frac{1}{2}at_0^2 = (at_0)t - \frac{1}{2}gt^2$$

$$\Rightarrow t^2 - \frac{2at_0}{g}.t - \frac{a}{g}.t_0^2 = 0$$

$$\Rightarrow t = \frac{at_0}{g} \left(1 + \sqrt{1 + \frac{g}{a}} \right)$$

25. for ball-1 :
$$u=0; a=g, t=t_1; s=h_1$$

From
$$s = ut + \frac{1}{2}at^2 \Rightarrow h_1 = \frac{1}{2}gt_1^2$$

$$\Rightarrow t_1 = \sqrt{\frac{2h_1}{g}} \to (1)$$

For ball-2 ; u=0,a=g; t=
$$t_2$$
;s= h_2

$$\Rightarrow h_2 = \frac{1}{2}gt_2^2 \Rightarrow t_2 = \sqrt{\frac{2h_2}{g}} \rightarrow (2)$$

$$\frac{\binom{1}{2}}{\binom{2}} \Rightarrow \frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}}$$

26.
$$v_{downstream} = v + u$$

$$v_{upstream} = v - u$$

Total time
$$t = t_{downstream} + t_{upstream}$$

$$t = \frac{d}{v+u} + \frac{d}{v-u}$$

$$t = \frac{2dv}{v^2 - u^2}$$

27.
$$d = 40m, a = 1m/s^2, l = 5m, s = d+l$$

 $s = 45m, u = 0$
From $s = ut + \frac{1}{2}at^2 \Rightarrow 45 = 0 + \frac{1}{2} \times 1 \times t^2$
 $\Rightarrow t = \sqrt{90} \Rightarrow t = 9.48 \sec$

28. In the frame of river, the float remains stationary, the speed of swimmer w.r.to river is v_{re} Time taken by the swimmer to return the float position is t = 2 + 2 = 4hr In this time, the float moves 15 km in the frame of ground (d=15km)

: the river flow velocity of float in the frame of ground $v_r = \frac{d}{t} = \frac{15}{4} = 3.75 \, km / h$

29.
$$x = 4t^{2}$$

$$v = \frac{dx}{dt} = 8t$$
At $t = 5 \sec x$

$$v = 8 \times 5 = 40m / s$$

$$v = 8 \times 5 = 40m / s$$
30. $(i)u_1 = 20m / a, s_1 = 500m, v_1 = 0$

$$v_1^2 - u_1^2 = 2as_1 \Rightarrow a = \frac{4}{10}m / s^2$$
 $(ii)u_2 = 20m / s, s_2 = 250m, v_2 = ?$

$$a = \frac{4}{10}m / s^2$$

$$v_2^2 - u_2^2 = 2as_2 \Rightarrow v_2 \sqrt{200}m / s$$

$$x = 200$$