Mètodes Bayesians: Sessions Pràctiques

Sessió 5: Regressió lineal

Objectius:

• Implementar un model de regressió lineal amb el Win BUGS

Exercici 5.1. Regressió lineal simple. Pes del cervell. Tenim dades de diferents animals, on tenim el pes del cervell i el pes del cos, i volem veure si a partir del pes del cos podem conèixer el pes del cervell.

- a) Formula des de la perspectiva freqüentista un model de regressió, i dóna un interval de predicció per a un animal amb un pes del cos de 100kg.
- b) Repeteix el mateix des de la perspectiva bayesiana
 - 1. Formula el model
 - 2. Defineix distribucions a priori per als paràmetres sota el supòsit de no informació
 - 3. Mostra les distribucions a posteriori per als paràmetres
 - 4. Dona un interval de predicció per a una animal de 100 kg.
 - 5. T'atreviries a posar distribucions dels paràmetres més informatives?

Les dades estan als fitxers *Cervell.xls* (el pes del cos està expressat en kg., i el pes del cervell en grams).

Exercise 5.2 Weight and height. In the file *WeightHeight.txt* there are data about the weight, height and sex of several students. Implement the next models:

- a) A model where the weight is explained as a function of the height.
- b) A model where the weight is explained as a function of the height and the sex.
- c) A model where the weight is explained as a function of the height, the sex and their interaction.

Exercici 5.3 Notes finals d'Inferència Bayesiana. Els professors de l'assignatura d'Inferència Bayesiana que s'imparteix al Màster d'estadística volen saber si hi ha diferències significatives en el rendiment dels estudiants a l'assignatura en funció del sexe de l'estudiant. Les notes finals a l'assignatura del curs 2007-2008, excloent els no presentats són:

Nois	Noies
9.6	6.1
7.0	9.1
5.0	8.8
8.0	5.7
8.4	8.9
6.4	6.1
	6.5

Per això formulen el model estadístic:

$$y | \beta_0$$
, $\beta_1, \sigma \sim Normal(\beta_0 + \beta_1 sexe, \sigma)$,

on la variable sexe val 1 per als nois i 0 per les noies.

Respon a les següents preguntes:

- a) Escriu el model bayesià que utilitzaries, raonant el perquè de les distribucions a priori escollides.
- b) Actualitza el model i dibuixa les distribucions a posteriori marginals de cada paràmetre i les distribucions bivariants de totes les parelles de paràmetres.
- c) Calcula per a cada paràmetre la mitjana, la desviació i els percentils 5%, 25%, 50%, 75% i 95%.
- d) A partir dels resultats del model creus que hi ha diferències significatives entre els nois i les noies?.
- e) Hi ha una alumna que no va poder fer l'examen per que es va quedar atrapada a un ascensor. Com calcularies un interval de credibilitat del 90% per la nota final d'aquesta alumna?
- f) Sabent que la nota final de l'assignatura es calcula com:

Nota Final=0.1* ExamenParcial + 0.2* Pràctiques + 0.2* Projecte +0.5* ExamenFinal

i que l'alumna que no ha fet l'examen té les següents notes:

Examen Parcial: 7.0 Pràctiques: 8.5 Projecte: 7.5

dona una predicció puntual per la nota de l'examen final i calcula un interval de credibilitat del 90% per aquesta nota.

Exercici 5.4. Yield of Potatoes. A researcher is investigating the relationship between yield of potatoes (y) and level of fertilizer (x). She divides a field into eight plots of equal size and applied fertilizer at a different level to each plot. The level of fertilizer and yield for each plot is recorded below:

Fertilizer level	Yield
X	y
1	25
1.5	31
2	27
2.5	28
3	36
3.5	35
4	Not available
4.5	34

Suppose that we know that yield given the fertilizer level is $Normal(\beta_0 + \beta_1 x, \sigma)$.

- a) Using non informative priors for the parameters find the posterior distribution of β_L
- b) Find a 95% credible interval for y given x=4.

Exercici 5.5. Regressió lineal amb variable categòrica. Using the data in BirthWeight.txt from Hosmer and Lemeshow (1989), build a model for the weight of a newborn baby, birhtweight, using as explanatory variables the age of the mother, age, and a variable indicating her smoking status during pregnancy, smoke, which is 1 if the mother smokes and 0 if the mother doesn't smoke. What does the model tell you about the birth weight of babies?

Exercici 5.6. Regressió lineal múltiple. Al fitxer de dades *graduates.txt* hi trobem dades d'una mostra de 22 universitats, en que per a cada una tenim el percentatge promig de graduats en 6 anys, el percentatge promig de SAT (similar a la nota de selectivitat, SAT pot prendre valors entre 600 i 2400), el cost promig per alumne i el tipus d'escola (1 de nois o noies, 0 mixta).

- a) Formula des de la perspectiva bayesiana un model de regressió lineal múltiple utilitzant les tres variables explicatives, escriu el model en codi WinBugs,
- b) Selecciona un model utilitzant els següents criteris:
 - les a posterioris dels paràmetres,
 - el criteri d'informació de la deviança, DIC.
- c) Interpreta el model.