Algorithms and their Applications CS2004 (2020-2021)

Dr Mahir Arzoky

17.1 Bin Packing and Data Clustering

CodeRunner Examination (Task #2) Assessment Brief was released!

Coursework and CodeRunner...

☐ Coursework (60%) ☐ Task #1 (CodeRunner Class Tests) **30%** ■ Already completed ☐ Task #2 (CodeRunner Examination) **1** 70% ☐ Will be held in Week 25 During your scheduled laboratory sessions

Exam

■ Exam (40% weight)
☐ Timed (3 hours), online and open-book
WiseFlow and held during the University's May examination period
University's May examination period
☐ Theory based
☐ There will be NO programming needed
in the exam
Past exam papers are already on Blackboard!
But, the format this year is different!
No multiple choice questions!

Previously On CS2004...

So far we have looked at:
Concepts of Computation and Algorithms
Comparing algorithms
Some mathematical foundation
The Big-Oh notation
Computational Complexity
Data structures
Sorting Algorithms
Various graph traversal algorithms
Heuristic Search
Hill Climbing and Simulated Annealing
Parameter Optimisation (Applications)
Evolutionary Computation
Swarm Intelligence
Travelling Salesperson Problem

This Lecture

- ☐ Within this lecture we are going to look further at a number of algorithms
- ☐ We will look at:
 - ☐ Bin packing (briefly)
 - ☐ Data Clustering (in a bit more detail)

Bin Packing

The **bin packing** problem is where a number of n items of size $x_1, ..., x_n$, need putting into the smallest number of bins (or boxes) of size/capacity c

Bin Packing Algorithms

- Combinatorial problem
- ☐ There are a large number of bin packing applications:
 - ☐ Filing recycle bins / loading trucks
 - ☐ CD/tape compilations
 - ☐ TV/radio advertisements
 - ☐ Cutting stock
- ☐ There are a large number of bin packing methods
- ☐ We will look at the **first-fit decreasing** bin packing algorithm

First-Fit Decreasing (FFD)

☐ Anyone who has tried packing a suit case knows that you pack the biggest items first and leave the smallest items to last! ☐ This algorithm takes advantage of this idea \square n empty bins are created and numbered 1.. n The items that need to be packed are sorted in decreasing order ☐ Each item is packed into the first bin it will fit into, starting at the largest first ☐ Empty bins (on completion) are discarded/ignored \Box The complexity is O(nlog(n)) plus the sorting algorithm used

☐ Data Clustering is a common technique for data analysis ☐ Used in many fields e.g. machine learning, pattern recognition, image analysis and bioinformatics, etc... ☐ Data Clustering is the process of arranging objects (as points) into a number of sets (k) according to "distance" ☐ Each set (ideally) shares some common trait - often similarity or proximity for some defined distance measure ☐ Each set will be referred to as a cluster/group ☐ For the purposes of this module, each set is mutually exclusive, i.e. an item cannot be in more than one cluster

- The data that we are clustering usually consists of a number of examples (rows) (n) where we have measured a number of features (variables) (m = 3 in the example below)
- ☐ We want to cluster the rows together based on how similar their features are
- \square We shall assume that the data we are clustering is a table or matrix X, where \underline{x}_i is the ith row of X and x_{ij} is the jth variable (feature) of row i
 - \Box For example x_{92} is 2.9 in the table below:

Sample	Sepal Length in cm	Sepal Width in cm	Petal Length in cm
1	5.1	3.5	1.4
2	4.9	3.0	1.4
3	4.7	3.2	1.3
4	4.6	3.1	1.5
5	5.0	3.6	1.4
6	5.4	3.9	1.7
7	4.6	3.4	1.4
8	5.0	3.4	1.5
9	4.4	2.9	1.4
10	4.9	3.1	1.5
Etc	5.4	3.7	1.5

- ☐ If we are only clustering on two features or variables (m=2) then we can often plot the data and the clusters can be visualised
- ☐ However if we have hundreds of features....

Representing a Cluster

- \Box A cluster will be represented as a vector C where $c_i=j$ means that object/item/row i is in cluster j
- \Box For example $C = \{1,2,3,1,2,3\}$ (k=3)

Why Cluster?

- ☐ Knowing which objects are highly related to other objects is very useful within data analysis
 - ☐ Less complex to model
 - ☐ A useful pre-processing tool
 - ☐ May give insight into the unknown properties of some of the objects

Application – Email Logfiles

Application – Modularisation

- ☐ Arrange "Software Components" into related modules
- ☐ Based on a binary relationship matrix

Data Similarity – Part 1

- ☐ Many methods are designed to work on Distance Metrics or Similarity between rows
 - ☐ E.g. K-Means
- ☐ Rows are compared to each other and a measure of how similar they are is used by the clustering methods
- ☐ Similar rows are placed into the same cluster

Data Similarity – Part 2

- ☐ There are many was to measure similarity between the objects that we are clustering
 - ☐ Euclidean
 - □ Correlation
 - Pearson
 - □ Spearman
 - Kendal
 - Manhattan
 - ☐ Etc...

Euclidean Distance

- ☐ The shortest distance between two points
- ☐ In the two dimensional case, this is the length of the hypotenuse of the right angled triangle constructed between two points (**Pythagoras's Theorem**)
- \Box The **Euclidean** distance between two n-dimensional points or two data objects stored as a row vector is defined as follows:

Cluster Worth

☐ The choice of correct metric for judging the worth of a clustering arrangement is vital for success ☐ E.g., Dense close clusters? Sparse far clusters? ☐ There are as many metrics as methods! ☐ Sum of squares by cluster ☐ Homogeneity (H) i.e. Density of clusters ☐ Separation (S) i.e. Distance between clusters ☐ H/S Maximum likelihood **⅃** Etc...

Cluster Worth – Sum of Squares

- ☐ K-Means clustering (which we will look at later) judges the worth of a clustering arrangement based on the square of how far each item in the cluster is from the centre
- ☐ This is the sum of squared Euclidean distances
- \square C is a cluster of size k, \underline{x}_i an element in the cluster and \underline{c} is the centre of the cluster

$$SS(C) = \sum_{i=1}^{k} \left(Euclid\left(\underline{x}_{i},\underline{c}\right) \right)^{2}$$

The Number of Clusters

- ☐ Many applications specify the number of clusters a solution requires, e.g. the email server application
- ☐ Many do not, e.g. gene expression data
- ☐ Determining the number of clusters is very difficult
- ☐ A choice of method that locates the number of clusters and their contents is often desirable

Methods

- Many different clustering approaches and algorithms
- ☐ Centroid-based clustering
 - □ K-Means
- ☐ Hierarchical clustering
- ☐ Density-based clustering
- ☐ Distribution-based clustering

K-Means Clustering

- \Box This method requires the number of clusters (k) to be known
- \Box The algorithm works by maintaining k cluster means called **centres**
- ☐ Objects (rows) are assigned to the closest centre and then the means are updated
- ☐ The algorithm terminates when the centres do not change or a fixed number of iterations has been conducted

The K-Means Algorithm

```
Algorithm 1. KMeans(X,k)
Input: Dataset X
       Required number of clusters k
1) Assign the objects (rows) randomly to k
   clusters ensuring no cluster is empty (c_1, ..., c_k)
2) Calculate the centres of each cluster
3) Allocate each object to the new
   centres by minimising the sum of
   squares error, SS(c_i)
4) Repeat steps 2 and 3 until the
   terminating condition is met
Output: Set of clusters
```

How Good is a Clustering Arrangement?

Once data is clustered, a data analyst would want to
know if the results are any good!
Did they select the correct method?
Did they select the correct way of comparing objects/rows (distance metric)?
Do the results agree with what is known about the dataset?
Are the results consistent?
Due to difficulty of problem, no direct way of addressing these questions
Few ways to obtain insight into how the cluster
method performed
☐ Cluster worth
☐ Expert knowledge
Comparing clusters

Comparing Clusters and Kappa Metric

- ☐ Metrics exist to measure how similar two clustering arrangements are
- ☐ Thus if a method produces a set of similar clustering arrangements (according to the metric) then the method is consistent
- ☐ We will consider the **Kappa** metric which has been adapted from Medical Statistics
- ☐ Kappa is an agreement metric defined for the comparison of two clustering arrangements

Kappa

Карра	Agreement Strength	
$-1.0 \le \kappa \le 0.0$	VERY POOR	
$0.0 < \kappa \le 0.2$	POOR	
$0.2 < \kappa \le 0.4$	FAIR	
$0.4 < \kappa \le 0.6$	MODERATE	
$0.6 < \kappa \le 0.8$	GOOD	
$0.8 < \kappa \le 1.0$	VERY GOOD	
The Kappa Guideline		

Next Lecture

- ☐ There is no lecture next week!
 - ☐ Only one lecture remaining (revision lecture in Week 30)...
 - ☐ Details will be posted on Blackboard...

Next Laboratory

- □ The laboratory will involve running and comparing K-Means clustering
- ☐ The laboratory sessions will continue next week!