

<u>Gameboard</u>

Maths

Algebra Manipulation

Partial Fractions 2

Partial Fractions 2

Pre-Uni Maths for Sciences A5.2

The function $\frac{w+2}{(w-1)(w+1)(2w+1)}$ can be written as $\frac{A}{(w-1)}+\frac{B}{(w+1)}+\frac{C}{(2w+1)}$. Using the substitution method find the constants A,B and C.

Part A Find A

Find the constant A.

The following symbols may be useful: A

Part B Find B

Find the constant B.

The following symbols may be useful: B

Part C Find C

Find the constant C.

The following symbols may be useful: c

Created for isaacphysics.org by Julia Riley

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Gameboard</u>

Maths

Algebra Manipulation

Improper Partial Fractions 2

Improper Partial Fractions 2

Pre-Uni Maths for Sciences A5.4

Express
$$\dfrac{16x^3+36x^2+2x-25}{4x^2+12x+9}$$
 as partial fractions.

Created for isaacphysics.org by Matthew Rihan

Gameboard:

<u>STEM SMART Double Maths 26 - Partial Fractions, Proof & Method of Differences</u>

Home Gameboard Maths Algebra Manipulation Quadratic Partial Fractions 1

Quadratic Partial Fractions 1

Express
$$\frac{5x^2-7x+8}{(x-2)(x^2+3)}$$
 as partial fractions.

The following symbols may be useful: x

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Double Maths 26 - Partial Fractions, Proof &

Method of Differences

<u>Gameboard</u>

Maths

Number Arithmetic

Proof and Odd Perfect Numbers

Proof and Odd Perfect Numbers

The **proper divisors** of a number are those factors which are not equal to the number itself. For the number 6,

- The divisors of 6 are 1, 2, 3 and 6.
- The proper divisors of 6 are 1, 2 and 3.

The number 6 is an example of a **perfect number**. A perfect number is a number for which the sum of its proper divisors is equal to the number itself. For the number 6,

$$1 + 2 + 3 = 6$$

In this question you will use proof by contradiction to show that an odd perfect number cannot be a square number.

Assumption:

We will assume that there is an odd perfect number, n, that is also a square number. Then $n=m^2$, where m is an integer.

Part A Reasoning: odd and even factors
An even number multiplied by an even number is always an number.
An even number multiplied by an odd number is always an number.
An odd number multiplied by an odd number is always an number.
Therefore, as n is an $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$
Items: Odd even

Part B Reasoning: sum of proper divisors

As $n=m^2$, m is a factor of n.

Consider another factor of n. Call this factor p. As p is a factor of n, q= is also a factor of n. As

$$n=m^2$$
, $q=rac{m^2}{p}$. Hence,

- If p < m, q m.
- ullet If $p>m,\,q$ lacksquare m

Therefore, with the exception of m, the factors of n occur in pairs. One factor in the pair is smaller than m, and the other factor is larger than m. Including m, the total number of factors of n is therefore an number.

For any value of n, one of the factor pairs is 1 and n. The number of proper divisors (factors other than n itself) is therefore an n number. As we have shown in part A that all of the factors of n are numbers, the sum of the proper divisors of n is therefore an n number.

Items:

$$\left[egin{array}{c} n \\ \overline{p} \end{array}
ight] \left[egin{array}{c} \operatorname{odd} \end{array}
ight] > \left[egin{array}{c} \operatorname{even} \end{array}
ight] < \left[egin{array}{c} \end{array}
ight]$$

Part C Conclusion
Our starting assumption was that n is an odd perfect number and also a square number.
The definition of a perfect number means that the sum of the proper divisors of n is equal to q . The
sum of the proper divisors must therefore be an number.
However, in part B we have shown that if n is an odd number which is also a square number, the sum of the
proper divisors has to be an number.
Therefore, we have arrived at a contradiction. We conclude that there are no odd perfect numbers that are also square numbers.
Items:
$oxed{2n} egin{pmatrix} n & oxed{ ext{even}} & oxed{ ext{odd}} & oxed{n^2} \end{pmatrix}$

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

<u>STEM SMART Double Maths 26 - Partial Fractions, Proof & Method of Differences</u>

Assumption:

integers with no common factor.

<u>Gameboard</u>

Maths

Number Arithmetic **Proof Applied to Surface Areas**

Proof Applied to Surface Areas

Consider a sphere with a radius r cm, where r is a rational number. Using proof by contradiction, show that the side length of a cube with the same surface area cannot also be a rational number of cm.

Once you have worked out a proof yourself, consider the model proof below. Drag and drop answers into the blank spaces to complete the proof. You may use the same answer more than once.

Consider a sphere of radius $r\mathrm{cm}$, where r is a rational number. Let the side length of a cube with the same
surface area as the sphere be $a \mathrm{cm}$. Assume that a is a rational number, in which case $a = \frac{b}{c}$, where b and c are

Reasoning:	
The surface area of the sphere is	\bigcap . Because r is a rational number, $r=rac{p}{q}$, where p and q are integer
with no common factor. Hence, the surface a	area of the sphere may be written as
The surface area of the cube is	Using $a = \frac{b}{c}$, the surface area may be written as

The surface area of the spher	e and the cube are equ	al. Hence, 4	$4\pi \left(\frac{p}{q}\right)$	$^{2}=6\left(rac{b}{c} ight)$	$\left(\frac{1}{2}\right)^2$. Re-arranging this equation
to give an expression for	produces				

As b , c , p and q are all integers,	must be	number. However, π is	not number.

Conclusion:

The assumption that a is rational has resulted in a contradiction. Hence, the assumption cannot be true.

Therefore, the side length of a cube with the same surface area as a sphere of radius r cm, where r is a rational number, cannot be a rational number of cm.

Items:

 $6a^2$

 $\boxed{\frac{3b^2q^2}{2c^2p^2}}$

an irrational

a rational

 $\pi=rac{3b^2p^2}{2c^2q^2}$

 $\left[4\pi\left(rac{p}{q}
ight)^2
ight]$

 π π

a real

 $6\left(\frac{b}{c}\right)^2$

Created for isaacphysics.org by J.Waugh

Gameboard:

<u>STEM SMART Double Maths 26 - Partial Fractions, Proof & Method of Differences</u>

<u>Gameboard</u>

Maths

Algebra Manipulation

Partial Fractions Applied to Other Functions

Partial Fractions Applied to Other Functions

Pre-Uni Maths for Sciences A5.5, A5.6 & A5.7

Express the following functions in partial fraction form.

Part A A trigonometric function

Express the function
$$\frac{\cos y}{(\cos y+1)(2\cos y+1)}$$
 in the form $\frac{A}{\cos y+1}+\frac{B}{2\cos y+1}$, where A and B are constants.

The following symbols may be useful: cos(), sin(), tan(), y

Part B An exponential function

Express the function
$$\frac{\mathrm{e}^{2x}+5}{(\mathrm{e}^x-1)(\mathrm{e}^x-2)(\mathrm{e}^x-3)}$$
 in the form $\frac{A}{\mathrm{e}^x-1}+\frac{B}{\mathrm{e}^x-2}+\frac{C}{\mathrm{e}^x-3}$, where A , B and C are constants.

The following symbols may be useful: e, x

Part C A logarithmic function

Express the function $\frac{5 \ln z + 20}{(\ln z)^2 + \ln(z^2) + 1}$ in the form $\frac{A}{(\ln z + 1)^2} + \frac{B}{\ln z + 1}$, where A and B are constants.

The following symbols may be useful: ln(), log(), z

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

<u>STEM SMART Double Maths 26 - Partial Fractions, Proof & Method of Differences</u>

<u>Home</u> <u>Gameboard</u> Physics Fields Electric Fields Force From Electric Dipole

Force From Electric Dipole

An electric dipole consists of two charges that are equal in size but opposite in sign, with a separation between them. The diagram below shows an electric dipole PQ. P has charge -q and Q has charge +q, and the separation between P and Q is 2a. Another charge, S, is near to the dipole. S is in line with the axis of the dipole and a distance r from the dipole's centre.

Figure 1: An electric dipole PQ and a charge S.

The resultant force on charge S is the sum of the force on S from P and the force on S from Q. For a particular value of q_S , the resultant force is given by the expression

$$F_{\mathsf{res}} = rac{-3q^2}{4\piarepsilon_0} rac{ar}{(r^2-a^2)^2}$$

where ε_0 is a constant. In this question you will use partial fractions to split F_{res} into two terms, and hence find an expression for q_S in terms of q.

Part A Splitting into terms - A

In general, a rational function with a denominator of $4\pi\varepsilon_0(r^2-a^2)^2$ would produce four terms when written in terms of partial fractions:

$$rac{A}{4\piarepsilon_0(r+a)^2}+rac{B}{4\piarepsilon_0(r-a)^2}+rac{C}{4\piarepsilon_0(r+a)}+rac{D}{4\piarepsilon_0(r-a)}$$

However, if the expression for F_{res} is written in terms of partial fractions, it turns out that two of the coefficients (C and D) are both 0.

Write the expression for $F_{\rm res}$ in the form $\frac{A}{4\pi\varepsilon_0(r+a)^2}+\frac{B}{4\pi\varepsilon_0(r-a)^2}$, where A and B are constants which depend on q.

Enter your expression for A.

The following symbols may be useful: A, a, pi, q, varepsilon_0

Part B Splitting into terms - B

Write the expression for $F_{\rm res}$ in the form $\frac{A}{4\pi\varepsilon_0(r+a)^2}+\frac{B}{4\pi\varepsilon_0(r-a)^2}$, where A and B are constants which depend on q.

Enter your expression for B.

The following symbols may be useful: B, a, pi, q, varepsilon_0

Part C Finding $q_{\rm S}$

The force between two particles with electric charges q_1 and q_2 separated by a distance d is given by

$$F=rac{q_1\,q_2}{4\piarepsilon_0\,d^2}$$

where ε_0 is a constant.

Using your answers to parts A and B, or otherwise, find an expression for the charge on S, q_S , in terms of q.

The following symbols may be useful: a, pi, q, q_S, varepsilon_0

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Double Maths 26 - Partial Fractions, Proof & Method of Differences

<u>Gameboard</u>

Maths

Series: Method of Differences 2i

Series: Method of Differences 2i

Part A
$$(r+2)! - (r+1)!$$

Show that (r+2)!-(r+1)!=f(r) imes r! where f(r) is a function to be found.

What is f(r)?

The following symbols may be useful: r

Part B Expression for a series

Hence find an expression, in terms of n, for

$$2^2 imes 1! + 3^2 imes 2! + 4^2 imes 3! + \ldots + (n+1)^2 imes n!$$

Your answer can be written as g(n)! - 2.

What is g(n)?

The following symbols may be useful: n

Part C Convergence

State, giving a brief reason, whether the series

$$2^2 \times 1! + 3^2 \times 2! + 4^2 \times 3! + \dots$$

converges. Fill in the gaps in the argument (you can use an item more than once).

We can express this series as a summation as $oxed{n}$. This is the limit of the partial sum $oxed{n}$ as

From Part A we can write the partial sum as _____, and from Part B we know that the partial sum evaluates to _____.

As $n \to \infty$, the partial sum tends to $n \to \infty$, the series $n \to \infty$, the partial sum tends to $n \to \infty$, the partial sum tends to $n \to \infty$, the partial sum tends to $n \to \infty$, the partial sum tends to $n \to \infty$, the partial sum tends to $n \to \infty$, the partial sum tends to $n \to \infty$, the partial sum tends to $n \to \infty$, the partial sum tends to $n \to \infty$.

Items:

$$\sum_{r=1}^{\infty} (r+1)^2 \, r! \ \left[\sum_{r=1}^{\infty} r^2 (r+1)! \ \left[\sum_{r=1}^{n} (r+1)^2 r! \ \left[\sum_{r=1}^{n} r^2 (r+1)! \ \left[\sum_{r=1}^{n} r^2 (r+1)! \ \left[\sum_{r=1}^{n} [(r+2)! - (r+1)!] \ \left[\sum_{r=1}^{n}$$

$$\sum_{r=1}^n \left[(r+1)!-r!
ight] oxedownderbrack \left[(n+2)!-2
ight] \left[(n+1)!-1
ight]$$
 does not

Adapted with permission from UCLES, A Level, January 2007, Paper 4725, Question 8.

Gameboard:

STEM SMART Double Maths 26 - Partial Fractions, Proof & Method of Differences

<u>Gameboard</u>

Maths Series: Method of Differences 1i

Series: Method of Differences 1i

Rewriting a fraction Part A

Express $\frac{2}{r} - \frac{1}{r+1} - \frac{1}{r+2}$ as a single fraction.

The following symbols may be useful: r

Sum of a series Part B

Hence find an expression, in terms of n, for

$$\sum_{r=1}^n rac{3r+4}{r(r+1)(r+2)}$$
 .

The following symbols may be useful: n

Limit as $n o \infty$ Part C

Hence write down the value of

$$\sum_{r=1}^\infty rac{3r+4}{r(r+1)(r+2)}\,.$$

 ${\bf Part \ D} \qquad {\bf Solve \ for \ } N$

Given that

$$\sum_{r=N+1}^{\infty} rac{3r+4}{r(r+1)(r+2)} = rac{7}{10}$$

find the value of N.

Adapted with permission from UCLES, A Level, January 2008, Paper 4725, Question 10