MEASURES OF DISPERSION

WHY STUDY DISPERSION ???

- An average, such as the mean or the median and others measures of central tendency only locates the center of the data.
- ☐ An average does not tell us anything about the spread of the data

Examples

Consider the series

(i) : 7, 8, 9, 10, 11

(ii): 3, 6, 9, 12, 15

(iii): 1, 5, 9, 13, 17

In all cases the number of observation, is n=5 and mean is 9.

Literal meaning of dispersion is "scatteredness". We study dispersion to have an idea about the homogeneity of heterogeneity of the distribution.

In the above cases:

we say that series (i) is more homogeneous (less dispersed) than the series (ii) or (iii) or we say that series (iii) is more heterogeneous (more scattered) than the series (i) or (ii).

DISPERSION

- ODispersion refers to the variations of the items among themselves / around an average.
- Greater the variation amongst different items of a series, the more will be the dispersion.
- As per Bowley, "Dispersion is a measure of the variation of the items".

OBJECTIVES OF MEASURING DISPERSION

- To determine the reliability of an average
- To compare the variability of two or more series
- For facilitating the use of other statistical measures
- Basis of Statistical Quality Control

PROPERTIES OF A GOOD MEASURE OF DISPERSION

- Easy to understand
- •Simple to calculate
- Uniquely defined
- Based on all observations
- Not affected by extreme observations
- Capable of further algebraic treatment

MEASURES OF DISPERSION

Absolute

Expressed in the same units in which data is expressed

Ex: Rupees, Kgs, Ltr, Km etc.

Relative

In the form of ratio or percentage, so is independent of units

It is also called Coefficient of Dispersion

METHODS OF MEASURING DISPERSION

RANGE (R)

- It is the simplest measures of dispersion
- It is defined as the difference between the largest and smallest values in the series

$$\mathbf{R} = \mathbf{L} - \mathbf{S}$$

R = Range, L = Largest Value, S = Smallest Value

• Coefficient of Range =
$$\frac{L-S}{L+S}$$

PRACTICE PROBLEMS - RANGE

Q1: Find the range & Coefficient of Range for the following data: 20, 35, 25, 30, 15

Solution: R=L-S=35-15=20

Coefficient of Range = L - S / L + S = 20/50 = 0.4

Q2: Find the range & Coefficient of Range:

X	10	20	30	40	50	60	70
F	15	18	25	30	16	10	9

Ans: 60, 0.75

Q3: Find the range & Coefficient of Range:

Size	5-10	10-15	15-20	20-25	25-30
F	4	9	15	30	40

Ans: 25, 5/7

RANGE

MERITS

- Simple to understand
- Easy to calculate
- Widely used in statistical quality control

DEMERITS

- Can't be calculated in open ended distributions
- Not based on all the observations
- Affected by sampling fluctuations
- Affected by extreme values

INTERQUARTILE RANGE & QUARTILE DEVIATION

- Interquartile Range (IQR) is the difference between the upper quartile (Q_3) and the lower quartile (Q_1)
- It covers dispersion of middle 50% of the items of the series
- Symbolically, Interquartile Range = $Q_3 Q_1$
- *Quartile Deviation (QR)* is half of the interquartile range. It is also called Semi Interquartile Range
- Symbolically, Quartile Deviation = $\frac{Q_3 Q_1}{2}$
- <u>Coefficient of Quartile Deviation</u>: It is the relative measure of quartile deviation.
- Coefficient of Q.D. = $\frac{Q_3 Q_1}{Q_3 + Q_1}$

PRACTICE PROBLEMS – IQR & QD

Q1: Find interquartile range, quartile deviation and coefficient of quartile deviation:

28, 18, 20, 24, 27, 30, 15

Ans: 10, 5, 0.217

Q2:

X	10	20	30	40	50	60
F	2	8	20	35	42	20

Ans: 10, 5, 0.11

Q3:	Age	0-20	20-40	40-60	60-80	80-100
	Persons	4	10	15	20	11

Ans: 14.33, 0.19

MEAN DEVIATION (M.D.)

- It is also called Average Deviation
- It is defined as the arithmetic average of the deviation of the various items of a series computed from measures of central tendency like mean or median or mode.

M.D.from Mean = MDM=
$$\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

Coefficient of M.D. From mean
$$=\frac{MDM}{Mean}$$

If frequency is given:

M.D.from Mean = MDM=
$$\frac{\sum_{i=1}^{n} f_i |x_i - \overline{x}|}{\sum_{i=1}^{n} f_i}$$

Example:

Find the mean deviation about the mean for the following data: 6, 7, 10, 12, 13, 4, 8, 12

Mean of the given data = $\frac{Sum \ of \ all \ terms}{Total \ number \ of \ terms}$

$$\bar{x} = \frac{6+7+10+12+13+4+8+12}{8}$$

$$=\frac{72}{8}$$

Mean deviation about mean

$$= \frac{\sum |x_i - \bar{x}|}{8}$$

$$=\frac{22}{8}$$

$$= 2.75$$

×i	$\mathbf{x}_{i} - \overline{\mathbf{x}}$	$ \mathbf{x}_{i} - \overline{\mathbf{x}} $
6	6 - 9 = -3	-3 = 3
7	7 - 9 = -2	-2 = 2
10	10 - 9 = 1	1 = 1
12	12 - 9 = 3	3 = 3
13	13 - 9 = 4	4 = 4
4	4 - 9 = -5	-5 = 5
8	8 - 9 = -1	-1 = 1
12	12 - 9 = 3	3 = 3
		$\sum_{1}^{8} x_{i} - \bar{x} = 22$

Example:

Find mean deviation about the mean for the following data:

x i	2	5	6	8	10	12
fi	2	8	10	7	8	5

First we will calculate mean

x	f	$\mathbf{f}_{i}\mathbf{x}_{i}$	$ \mathbf{x}_{i} - \overline{\mathbf{x}} $	$\mathbf{f_i} \mathbf{x_i}-ar{x} $
2	2	$2 \times 2 = 4$	2 - 7.5 = -5.5 = 5.5	2 × 5.5 = 11
5	8	5 × 8 = 40	5 - 7.5 = -2.5 = 2.5	8 × 2.5 = 20
6	10	6 × 10 = 60	6 - 7.5 = -1.5 = 1.5	10 × 1.5 = 15
8	7	8 × 7 = 56	8 - 7.5 = 0.5 = 0.5	$7 \times 0.5 = 3.5$
10	8	10 × 8 = 80	10 - 7.5 = 2.5 = 2.5	8 × 2.5 = 20
12	5	12 × 5 = 60	12 - 7.5 = 4.5 = 4.5	5 × 4.5 = 22.5
	$\sum f_i = 40$	$\sum f_i x_i = 300$		$\sum f_i x_i - \bar{x} = 92$

Mean
$$(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

 $\bar{x} = \frac{300}{40}$
 $\bar{x} = 7.5$

Mean
$$(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$
 Mean deviation about mean $= \frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}$

Putting
$$\sum f_i |x_i - \bar{x}| = 92$$
, $\sum f_i = 40$
M.D. $(\bar{x}) = \frac{1}{40} \times 92$
= 2.3

MEAN DEVIATION

Merits

- Simple to understand
- Easy to compute
- Less effected by extreme items
- Useful in fields like Economics, Commerce etc.
- Comparisons about formation of different series can be easily made as deviations are taken from a central value

Demerits

- Ignoring '±' signs are not appropriate
- Not accurate for Mode
- Difficult to calculate if value of Mean or Median comes in fractions
- Not capable of further algebraic treatment
- Not used in statistical conclusions.

STANDARD DEVIATION

- Most important & widely used measure of dispersion
- First used by Karl Pearson in 1893
- Also called root mean square deviations
- It is defined as the square root of the arithmetic mean of the squares of the deviation of the values taken from the mean
- o Denoted by σ (sigma)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

• Coefficient of S.D. = $\frac{\sigma}{x}$

$$oVariance = (S.D.)^2 = \sigma^2$$

CALCULATION OF STANDARD DEVIATION

Individual Series

• Actual Mean Method

Discrete Series

• Actual Mean Method

Continuous Series

• Actual Mean Method

STANDARD DEVIATION – INDIVIDUAL SERIES ACTUAL MEAN METHOD

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

Find the Standard deviation and Variance of the following data; 6, 8, 10, 12, 14, 16, 18, 20, 22, 24.

\mathbf{X}_{i}	$(x_i - \bar{x})$	$(x_i - \bar{x})^2$
6	-9	81
8	-7	49
10	-5	25
12	-3	9
14	-1	1
16	1	1
18	3	9
20	5	25
22	7	49
24	9	81
150		330

S.D.=
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}} = \sqrt{\frac{330}{10}} = 5.74$$

Variance=
$$(S.D.)^2=33$$

STANDARD DEVIATION – DISCRETE SERIES ACTUAL MEAN METHOD

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} f_i (x_i - \overline{x})^2}{N}}$$

STANDARD DEVIATION - CONTINUOUS SERIES

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} f_i (x_i - \overline{x})^2}{N}}$$

Example: Discrete Series

Find the variance and standard deviation for the following data:

First we will calculate mean

×i	fi	$x_i - \overline{x}$	$(x_i - \bar{x})^2$	$f_i(x_i - \overline{x})^2$
4	3	4 - 14 = -10	$(-10)^2 = 100$	3 × 100 = 300
8	5	8 - 14 = -6	$(-6)^2 = 36$	5 × 36 = 180
11	9	11 - 14 = -3	$(-3)^2 = 9$	9 × 9 = 81
17	5	17 - 14 = 3	$(3)^2 = 9$	5 × 9 = 45
20	4	20 - 14 = 6	$(6)^2 = 36$	4 × 36 = 144
24	4	24 - 14 = 10	$(10)^2 = 100$	4 × 100 = 400
32	1	32 - 14 = 18	$(18)^2 = 324$	1 × 324 = 324
	$\sum f_i = 30$			$\sum f_i(x_i - \bar{x})^2 = 1374$

Mean
$$(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

 $\bar{x} = \frac{420}{30}$
 $\bar{x} = 14$

Now, finding variance

$$\sum f_i (x_i - \bar{x})^2 = 1374$$
$$\sum f_i = 30$$

Variance
$$(\sigma^2) = \frac{\sum f_i(x_i - \bar{x})^2}{\sum f_i}$$

= $\frac{1374}{30}$
= 45.8

Standard deviation (
$$\sigma$$
) = $\sqrt{45.8}$
= 6.76

Example :continuous series

Calculate the mean, variance and standard deviation for the following distribution :

Class	Frequency (f _i)	$Mid-point\\(x_i)$	f _i x _i
30 – 40	3	35	35 × 3 = 105
40 – 50	7	45	45 × 7 = 315
50 – 60	12	55	55 × 12 = 660
60 – 70	15	65	$65 \times 15 = 975$
70 – 80	8	75	75 × 8 = 600
80 – 90	3	85	85 × 3 = 255
90 – 100	2	95	95 × 2 = 190
	$\sum f_i = 50$		$\sum f_i x_i = 3100$

$$\sum f_i x_i = 3100$$

$$\sum f_i = 50$$

Mean
$$(\overline{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

= $\frac{3100}{50}$
= **62**

Continue Example:

Finding Variance and Standard Deviation

Class	Frequency (f _i)	$Mid - point \\ (x_i)$	$(x_i - \overline{x})^2$	$\mathbf{f_i}(x_i - \overline{x})^2$
30 – 40	3	35	$(35 - 62)^2 = 729$	3 × 729 =2187
40 – 50	7	45	$(45 - 62)^2 = 289$	7 × 289 = 2023
50 – 60	12	55	$(55 - 62)^2 = 49$	12 × 49 = 588
60 – 70	15	65	$(65 - 62)^2 = 9$	15 × 9 = 135
70 – 80	8	75	$(75 - 62)^2 = 169$	8 × 169 = 1352
80 – 90	3	85	$(85 - 62)^2 = 529$	3 × 529 = 1589
90 – 100	2	95	$(95 - 62)^2 = 1089$	2 × 1089 = 2187
	$\sum f_i = 50$			Sum = 10050

$$\sum f_i(x_i - \bar{x})^2 = 10050$$
$$\sum f_i = 50$$

Variance
$$(\sigma^2) = \frac{1}{N} \sum f_i (x_i - \bar{x})^2$$

= $\frac{1}{50} \times 10050$
= **201**

Standard deviation (
$$\sigma$$
) = $\sqrt{201}$
(σ) = 14.17

COMBINED STANDARD DEVIATION

- It is the combined standard deviation of two or more groups as in case of combined arithmetic mean
- It is denoted by σ_{12}

$$\sigma_{12} = \sqrt{\frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2}}$$

where
$$\sigma_{12} = \overline{\text{Combined SD}}$$

$$\sigma_{1} = \overline{\text{SD of first group}}$$

$$\sigma_{2} = \overline{\text{SD of second group}}$$

$$d_{1} = \overline{X_{1}} - \overline{X_{12}}$$

$$d_{2} = \overline{X_{2}} - \overline{X_{12}}$$

$$\overline{X_{12}} = \overline{\text{Combined Mean}}$$

Example: Two samples of sizes 100 & 150 respectively have means 50 & 60 and SD 5 & 6. Find the Combined Mean & Combined Standard Deviation.

Solution: Given that:
$$\frac{n_1=100 \text{ and } n_2=150}{x_1=50} = \frac{n_1 x_1 + n_2 x_2}{x_1=50} = 56$$

$$\frac{x_1}{x_2} = 60 \qquad d_1 = \frac{x_1}{x_1} - \frac{x_{12}}{x_{12}} = -6$$

$$\sigma_1 = 5 \qquad d_2 = \frac{x_2}{x_2} - \frac{x_{12}}{x_{12}} = 4$$

$$\sigma_2 = 6$$

$$\sigma_{12} = \sqrt{\frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2}}$$

$$\sigma_{12} = 7.46$$

COEFFICIENT OF VARIATION (C.V.)

- oIt was developed by Karl Pearson.
- It is an important relative measure of dispersion.
- It is used in comparing the variability, homogeneity, stability, uniformity & consistency of two or more series.
- Higher the CV, lesser the consistency.

$$C.V. = \frac{\sigma}{\overline{X}} * 100$$

PRACTICE PROBLEMS

Q1: The scores of two batsmen A & B in ten innings during a certain match are:

A	32	28	47	63	71	39	10	?	96	14
В										

Which batsmen have minimum coefficient of variation?

Ans: B

Q2: Sum of squares of items is 2430 with mean 7 & N = 12. Find coefficient of variation.

Ans: 176.85%