Hash Tables

SWE2016-44

Problem

Suppose we are storing employee records, the primary key for which is employee's telephone number.

- 1) Insert Employee Record
- 2) Search for an Employee
- 3) Delete Employee Record

Telephone	Name	City	Dept	
9864567654	Sam	NYC	HR	
9854354543	Tom	DC	IT	

- 1. Use an array
 - Search takes linear time
 - If stores in sorted order, search can be done in O(log n) using binary search but then insertion and deletion becomes costly.
- 2. Use a Linked List
 - Search takes linear time

3. Use balanced BST to store records

- Insertion takes O(log n)
- Search takes O(log n)
- Deletion takes O(log n)

4. Create a Direct Access table

- Insertion takes O(1)
- Search takes O(1)
- Deletion takes O(1)

Direct Access Table

Telephone	Add	Name	City	De
9864567654	0x1	Sam	NYC	HR
9854354543	0x2	Name	City	De
•••		Tom	DC	IT

Direct Access Table

Telephone	Add
9864567654	0x1
9854354543	0x2

Limitations

1) Size of table $(m * 10^n)$

Direct Access Table

Telephone	Add
9864567654	0x1
9854354543	0x2
•••	

Limitations

- 1) Size of table $(m * 10^n)$
- Integer may not hold the size of n digits

Direct Access Table (Improvement)

Hashing – provides O(1) time on average for insert, search and delete

Direct Access Table (Improvement)

Hashing – provides O(1) time on average for insert, search and delete

Hash function – hash function maps a big number or string to a small integer that can be used as index in hash table

Direct Access Table (Improvement)

HASH function h(x):

 $h(x) = x \mod 7$

```
Direct Access Table (Improvement)
```

HASH function h(x):

 $h(x) = x \mod 7$

x = 9864567645H(x) = 9864567645 mod 7 = 4

```
Direct Access Table (Improvement)
```

```
HASH function h(x):
```

$$h(x) = x \mod 7$$

$$x = 9864567645$$

H(x) = 9864567645 mod 7 = 4

$$x = 9854354543$$

H(x) = 9854354543 mod 7 = 5

Direct Access Table (Improvement)

HASH function h(x):

 $h(x) = x \mod 7$

x = 9864567645H(x) = 9864567645 mod 7 = 4

x = 9854354543H(x) = 9854354543 mod 7 = 5 Good h(x) should

Be Efficiently Computable

Direct Access Table (Improvement)

HASH function h(x):

$$h(x) = x \mod 7$$

$$x = 9864567645$$

H(x) = 9864567645 mod 7 = 4

x = 9854354543H(x) = 9854354543 mod 7 = 5

Good h(x) should

- Be Efficiently Computable
- Uniformly distribute the keys

Collision – Two keys resulting in same value

Collision – Two keys resulting in same value

HASH function h(x):

 $h(x) = x \mod 7$

Collision – Two keys resulting in same value

```
HASH function h(x):

h(x) = x mod 7

x = 9864567645

H(x) = 9864567645 mod 7 = 4

x = 9854354542

H(x) = 9854354542 mod 7 = 4
```

Collision Handling

- > Separate Chaining
- Open Addressing

The idea is to make each cell of hash table point to a linked list of records that have same hash function value.

Hash Function: $h(x) = x \mod 7$

Hash Function: $h(x) = x \mod 7$

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Hash Function: $h(x) = x \mod 7$

Keys: 50, 700, 76, 85, 92, 73, 101

Advantages:

1) Simple to implement.

Advantages:

- 1) Simple to implement.
- 2) Hash table never fills up, we can always add more elements to chain.

Advantages:

- 1) Simple to implement.
- 2) Hash table never fills up, we can always add more elements to chain.
- 3) Less sensitive to the hash function or load factors.

Advantages:

- 1) Simple to implement.
- 2) Hash table never fills up, we can always add more elements to chain.
- 3) Less sensitive to the hash function or load factors.
- 4) It is mostly used when it is unknown how many and how frequently keys may be inserted or deleted.

Disadvantages:

1) Cache performance of chaining is not good as keys are stored using linked list.

Disadvantages:

- 1) Cache performance of chaining is not good as keys are stored using linked list.
- 2) Wastage of Space.

Disadvantages:

- 1) Cache performance of chaining is not good as keys are stored using linked list.
- 2) Wastage of Space.
- 3) If the chain becomes long, then search time can become O(n) in worst case.

Disadvantages:

- 1) Cache performance of chaining is not good as keys are stored using linked list.
- 2) Wastage of Space.
- 3) If the chain becomes long, then search time can become O(n) in worst case.
- 4) Uses extra space for links.

Complexity:

n = number of keys stored in table m = number of slots in table α = Average keys per slot or load factor = n/m

Complexity:

n = number of keys stored in table
 m = number of slots in table
 α = Average keys per slot or load factor = n/m

Expected time to insert/search/delete: $O(1+\alpha)$

Collision

Collision Handling

- Separate Chaining
- Open Addressing

A hash collision is resolved by probing

- 1) Linear Probing
- 2) Quadratic Probing
- 3) Double Hashing

Linear Probing

 $h_i(X) = (Hash(X) + i) \% HashTableSize$

If $h_0(X) = (Hash(X) + 0)$ % HashTableSize is full, we try for h_1 If $h_1(X) = (Hash(X) + 1)$ % HashTableSize is full, we try for h_2 And so on ...

Keys: 7, 36, 18, 62

Keys: 7, 36, 18, 62

$$h_0(7) = (7 \mod 11) = 7$$

Empty

Keys: 7, 36, 18, 62

Insert(7):

$$h_0(7) = (7 \mod 11) = 7$$

Empty

Keys: 7, 36, 18, 62

Insert(36):

$$h_0(36) = (36 \text{ mod } 11) = 3$$

Empty

Keys: 7, 36, 18, 62

Insert(36):

$$h_0(36) = (36 \text{ mod } 11) = 3$$

Keys: 7, 36, 18, 62

Insert(18):

$$h_0(18) = (18 \text{ mod } 11) = 7$$

Keys: 7, 36, 18, 62

$$h_0(18) = (18 \text{ mod } 11) = 7$$

$$h_1(18) = ((18+1) \mod 11) = 8$$

Empty

$$h_0(18) = (18 \text{ mod } 11) = 7$$

$$h_1(18) = ((18+1) \mod 11) = 8$$

36

Keys: 7, 36, 18, 62

Insert(62):

$$h_0(62) = (62 \mod 11) = 7$$

Empty

Keys: 7, 36, 18, 62

$$h_0(62) = (62 \mod 11) = 7$$

$$h_1(62) = ((62+1) \mod 11) = 8$$

Empty

$$h_0(62) = (62 \mod 11) = 7$$

$$h_1(62) = ((62+1) \mod 11) = 8$$

$$h_2(62) = ((62+2) \mod 11) = 9$$

36

$$h_0(62) = (62 \mod 11) = 7$$

$$h_1(62) = ((62+1) \mod 11) = 8$$

$$h_2(62) = ((62+2) \mod 11) = 9$$

36

Empty

$$h_0(18) = (18 \text{ mod } 11) = 7$$

$$h_1(18) = ((18+1) \mod 11) = 8$$

36

Keys: 7, 36, 18, 62

Delete(18):

Empty

Keys: 7, 36, 18, 62

Delete(18):

A hash collision is resolved by probing

- 1) Linear Probing
- 2) Quadratic Probing
- 3) Double Hashing

Quadratic Probing

$$h_i(X) = (Hash(X) + i^2) \% HashTableSize$$

If $h_0(X)$ = (Hash(X) + 0) % HashTableSize is full, we try for h_1 If $h_1(X)$ = (Hash(X) + 1) % HashTableSize is full, we try for h_2 If $h_1(X)$ = (Hash(X) + 4) % HashTableSize is full, we try for h_3 And so on ..

Keys: 7, 36, 18, 62

Insert(7)

Keys: 7, 36, 18, 62

Insert(36)

Keys: 7, 36, 18, 62

Insert(18)

Keys: 7, 36, 18, 62

Insert(62):

$$h_2(62) = ((62+4) \mod 11) = 0$$

Empty

$$h_0(62) = (62 \mod 11) = 7$$

$$h_1(62) = ((62+1) \mod 11) = 8$$

$$h_2(62) = ((62+4) \mod 11) = 0$$

36

10

A hash collision is resolved by probing

- 1) Linear Probing
- 2) Quadratic Probing
- 3) Double Hashing

Double Hashing

Double Hashing: use another hash function hash2(x) and look for i*hash2(x) slot in i'th iteration.

$$h_i(X) = (Hash(X) + i * Hash2(X)) % HashTableSize$$

If $h_0(X)$ = (Hash(X) + 0) % HashTableSize is full, we try for h_1 If $h_1(X)$ = (Hash(X) + 1* Hash2(X)) % HashTableSize is full, we try for h_2 If $h_1(X)$ = (Hash(X) + 4* Hash2(X)) % HashTableSize is full, we try for h_3 And so on ..

Linear Probing

- Easy to implement
- Best Cache Performance
- Suffers from clustering

Linear Probing

- Easy to implement
- Best Cache Performance
- Suffers from clustering

Quadratic Probing

- Average Cache Performance
- Suffers a lesser clustering than linear probing

Linear Probing

- Easy to implement
- Best Cache Performance
- Suffers from clustering

Quadratic Probing

- Average Cache Performance
- Suffers a lesser clustering than linear probing

Double Hashing

- Poor Cache Performance
- No clustering
- Requires more computation time

Complexity:

n = number of keys to be inserted in hash table m = number of slots in hash table Load factor α = n/m (<1)

Complexity:

n = number of keys to be inserted in hash table m = number of slots in hash table Load factor α = n/m (<1)

Theorem. Given an open-addressed hash table with load factor $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$.

Proof.

- At least one probe is always necessary. With probability n/m, the first probe hits an occupied slot, and a second probe is necessary.
- With probability (n-1)/(m-1), the second probe hits an occupied slot, and a third probe is necessary.
- With probability (n-2)/(m-2), the third probe hits an occupied slot, etc.
- Observe that $\frac{n-i}{m-i} < \frac{n}{m} = \alpha$ for i = 1, 2, ..., n.

Proof (continued)

Therefore, the expected number of probes is

$$\begin{aligned} &1 + \frac{n}{m} \left(1 + \left(\frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots \left(1 + \frac{1}{m-n+1} \right) \cdots \right) \right) \right) \right) \\ &< 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\cdots \left(1 + \alpha \right) \cdots \right) \right) \right) \\ &\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots \\ &= \sum_{i=0}^{\infty} \alpha^i \\ &= \frac{1}{1 - \alpha^i} \end{aligned}$$

Complexity:

n = number of keys to be inserted in hash table m = number of slots in hash table Load factor $\alpha = n/m$ (<1)

Expected time to insert/search/delete $< 1/(1-\alpha)$

So Search, Insert and Delete take $O(1/(1-\alpha))$ time

Reference

• Charles Leiserson and Piotr Indyk, "Introduction to Algorithms", September 29, 2004

https://www.geeksforgeeks.org