Simulation analysis

leios-2025w26

Three experiments

 Unsharded ("simplest") variant of Leios, with various levels of conflicting transactions

https://github.com/input-output-hk/ouroboros-leios/blob/main/analysis/sims/2025w26/analysis-simple-conflicts.ipynb

- 2. Nine variants of base protocol vs sharing
 https://github.com/input-output-hk/ouroboros-leios/blob/main/analysis/sims/2025w26/analysis-variants-sharding.ipynb
- 3. Praos with large blocks

https://github.com/input-output-hk/ouroboros-leios/blob/main/analysis/sims/2025w26/analysis-praos.ipynb

Nine Leios variants

Nine realizations of Leios: 3 variants × 3 shard strategies

Variant	Sharding	IB per TX	TX per IB	IB per EB	EB per IB	Spatial Efficiency	Time to IB	Time to EB	Time to RB
full	unsharded	1.896	617.043	5.172	11.022	52.307%	8.510s	29.806s	64.404s
full	sharded	1.071	46.191	37.200	9.911	92.043%	80.094s	101.019s	137.362s
full	overcollateralized 1x	1.106	47.706	37.200	9.911	89.097%	37.031s	57.882s	94.155s
full-without-ibs	unsharded	-	-	-	-	79.050%	-	4.779s	43.057s
full-without-ibs	sharded	-	-	-	-	79.052%	-	4.784s	43.052s
full-without-ibs	overcollateralized 1x	-	-	-	-	79.053%	-	4.783s	43.053s
full-with-tx-references	unsharded	1.704	554.638	5.172	11.022	95.999%	7.409s	28.882s	63.763s
full-with-tx-references	sharded	1.071	46.191	37.200	9.911	96.466%	80.058s	100.983s	137.324s
full-with-tx-references	overcollateralized 1x	1.102	47.522	37.200	9.911	96.413%	36.972s	57.826s	94.112s

Spatial efficiency

Size of persisted data

Temporal efficiency

Time for transaction to reach the ledger Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Network

Mean nodal ingress

Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

EB IB

TX VT

CPU

1-Second Peak CPU

CPU details

Mean CPU load among all nodes

Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Mean CPU load among all nodes

Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Praos with large blocks

Praos with large blocks

- What happens when Praos is run at 50 or 100 TPS?
- Maximum block size should be approximately
 - 3,145,728 bytes at 50 TPS
 - o 6,291,456 bytes at 100 TPS
- How does Praos perform compared to Leios at these throughputs?

Transactions

Time for transaction to reach the ledger Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Transactions reach the ledger more quickly than for corresponding Leios scenarios.

Diffusion

Arrival delay for TX

Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Transactions diffuse rapidly.

Arrival delay for RB

Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Blocks somes are greatly delayed.

Network

Mean nodal ingress

Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Block diffusion creates strong bursts of network traffic.

Bandwidth usage is less than inter-datacenter limits.

Data size

Size of persisted data

Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Forks waste space at high throughput.

Spatial efficiency (size of txs on ledger / size of non-tx persisted data) Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Spatial efficiency is only competitive with Leios at lower throughput.

CPU

Peak CPU load among all nodes Rust simulator, mini-mainnet, 100 tx/s, 315 kB/s IB throughput, 8 slot/stage, 2.5 EB/stage

Block production and validation creates periodic bursts of CPU usage.

Mean CPU load among all nodes

Mean CPU usage is less than corresponding Leios scenarios.

Forks

50 TPS

- At 50 TPS, Praos operates normally, without congestion-induced forks.
- At 100 TPS, slow diffusion of blocks induces longer forks.

100 TPS

Findings

Praos vs Leios

Leios simulations

- Full-unsharded approach has an unacceptable spatial efficiency BUT its full-with-tx-references looks very promising.
- Any sharded approach has the best spatial efficiency but worst latency (time to ledger/ RB).
- Any over-collateralized approach is as good as sharded approach with an arguably unnoticeable spatial efficiency difference but a noticeable better/ shorter time to RB.
- The transaction reference variant as expected further improves spatial efficiency with largest improvement in the unsharded variant.
- Attack surface differs among variants, but not yet quantified.

Praos simulations

- Perform well at 50 TPS.
- Exhibit congestion-induced forking at 100 TPS.
- All transaction reach the ledger.
- Bursty usage of network and CPU does not tax infrastructure resources.
- Should we request cardano-node benchmark studies of large Praos blocks?