MATH1564 K – Linear Algebra with Abstract Vector Spaces Homework 6

Due 10/24, submit to both Canvas-Assignment and Gradescope

1. (a.) Let \mathscr{P}_3 be polynomials over \mathbb{R} of degree less or equal to 3. Let $\mathscr{E} =$ $\langle 1, x, x^2, x^3 \rangle$ and $\mathscr{B} = \langle 1, 1+x, (1+x)^2, (1+x)^3 \rangle$ be two ordered bases for \mathscr{P}_3 .

Consider the following linear transformations $T, S : \mathcal{P}_3 \to \mathcal{P}_3$ given by

$$Tp(x) = p'(x)$$
 and $Sp(x) = p(x+1)$

- (i.) Find $[T]_{\mathscr{E} \to \mathscr{E}}$, $[T]_{\mathscr{B} \to \mathscr{E}}$, $[T]_{\mathscr{E} \to \mathscr{B}}$, $[T]_{\mathscr{B} \to \mathscr{B}}$.
- (ii.) Find $[S]_{\mathscr{E} \to \mathscr{E}}$, $[S]_{\mathscr{B} \to \mathscr{E}}$, $[S]_{\mathscr{E} \to \mathscr{B}}$, $[S]_{\mathscr{B} \to \mathscr{B}}$. (iii.) Find $[T \circ S]_{\mathscr{E} \to \mathscr{E}}$, $[T \circ S]_{\mathscr{B} \to \mathscr{E}}$, $[T \circ S]_{\mathscr{E} \to \mathscr{B}}$, $[T \circ S]_{\mathscr{E} \to \mathscr{B}}$.
- (b.) Consider $L: \mathscr{P}_3 \to \mathbb{R}^2$ given by $Lp = \begin{pmatrix} p(2) p(1) \\ p'(0) \end{pmatrix}$. Let $\mathscr{B} = \begin{pmatrix} p(2) p(1) \\ p'(0) \end{pmatrix}$ $\langle 1, x, x^2, x^3 \rangle$ and $E = \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle$ be two ordered bases for \mathscr{P}_3 and \mathbb{R}^2 respectively.
 - (i.) Find $[L]_{\mathscr{B}\to\mathscr{E}}$.
 - (ii) Find a basis for $null([L]_{\mathscr{B}\to\mathscr{E}})$, and using this information to find a basis for ker(L).
 - (iii) Find a basis for $ran([L]_{\mathscr{B} \to \mathscr{E}})$, and using this information to find a basis for ran(L).
- 2. Consider the vector space,

$$\mathcal{W} = \Big\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a + d = 0 \Big\}.$$

Let $H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and consider the linear transformation $L: \mathcal{W} \to \mathcal{W}$ defined by L(A) = AH - HA.

- (i.) Show that L(A) is in \mathcal{W} if $A \in \mathcal{W}$.
- (ii) Find an ordered basis \mathscr{B} for \mathscr{W} . (You will use this basis for the rest of the problem.)
- (iii) Find $[L]_{\mathscr{B}\to\mathscr{B}}$.
- (iv) Find a basis for $null([L]_{\mathscr{B}\to\mathscr{B}})$, and using this information to find a basis for ker(L).
- (v) Find a basis for $ran([L]_{\mathscr{B}\to\mathscr{B}})$, and using this information to find a basis for ran(L).

3. Let
$$\mathscr{B} = \langle 1, x, x^2 \rangle$$
 be an order basis for \mathscr{P}_2 and $\mathscr{E} = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle$.

be an ordered basis for \mathbb{R}^3 . Consider the linear transformation $S: \mathscr{P}_2 \to \mathbb{R}^3$ defined by

$$Sp = \left(\begin{array}{c} p(0) \\ p(1) \\ p(2) \end{array}\right)$$

- (i) Find $[S]_{\mathscr{B} \to \mathscr{E}}$. (ii) Find $([S]_{\mathscr{B} \to \mathscr{E}})^{-1}$
- (iii) Use (ii) to find $S^{-1} \begin{pmatrix} a \\ b \end{pmatrix}$.
- 4. Consider the following ordered bases of \mathbb{R}^3 :

$$\mathcal{B} = \langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rangle, \quad \mathcal{C} = \langle \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \rangle$$

$$\mathcal{E} = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle$$

Find the following matrices of transition from basis to basis:

- (i) $[id]_{\mathscr{B}\to\mathscr{E}}$ and $[id]_{\mathscr{E}\to\mathscr{E}}$.
- (ii) $[id]_{\mathscr{E}\to\mathscr{B}}$ and $[id]_{\mathscr{E}\to\mathscr{C}}$.
- (iii) $[id]_{\mathscr{B}\to\mathscr{C}}$ and $[id]_{\mathscr{C}\to\mathscr{B}}$
- 5. Let W be the subspace in Problem 2 with order basis

$$\mathcal{B} = \langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \rangle$$

$$\mathcal{C} = \langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \rangle.$$

Find $[id]_{\mathscr{B}\to\mathscr{C}}$ and $[id]_{\mathscr{C}\to\mathscr{B}}$.

6. Let V be a vector space such that dim V=3. Assume that $\mathscr{B}=\langle v_1,v_2,v_3\rangle$ and $\mathscr{C} = \langle w_1, w_2, w_3 \rangle$ are ordered bases of V such that

$$[id]_{\mathscr{B}_{\to}\mathscr{C}} = \left(\begin{array}{ccc} 2 & 0 & -2\\ 1 & 0 & 0\\ 3 & 5 & 2 \end{array}\right)$$

- (a) Express each of v_1, v_2, v_3 as linear combinations of w_1, w_2, w_3 .
- (b) Is it true that $w_2 = v_1 + v_3 v_2$?
- (c) Find $[w_1]_{\mathscr{B}}$.