## CPSC 3630 Assignment 3

Cody Barnson ID: 001172313

Nov 10 2018

1 Prove that for any language  $L_2$ , if  $L_1$  is regular, then the quotient  $L_1/L_2$  is also regular by using a construction similar to the proof of Theorem 1.47.

Let  $L_1$  and  $L_2$  be 2 languages over the alphabet  $\Sigma$ . The quotient of  $L_1$  and  $L_2$  is the language  $L_1/L_2 = \{x \mid \exists y \in L_2, xy \in L_1\}$ . We wish to prove that for any language  $L_2$ , if  $L_1$  is regular, then the quotient  $L_1/L_2$  is also regular.

Suppose the  $L_1$  is regular, then there exists a DFA  $M = (Q, \Sigma, \delta, q_0, F)$  that recognizes  $L_1$ . We construct the DFA  $M' = (Q, \Sigma, \delta, q_0, F')$  to recognize the quotient  $L_1/L_2$ , where the set of states, Q, is the same as in M; the alphabet  $\Sigma$  is the same; the transition function is the same; the start state  $q_0$  is the start state of M, and the set of accept states is given by  $F' = \{q \mid \delta(q, a) \in F\}$ , for each  $a \in \Sigma$ .

Since for any input, say  $x \in \Sigma^*$ , that results in accept state  $q_{accept} \in F'$ , we have  $xy \in L_1$ , since reading x transitions to accept state in F', and the following y transitions to accept state in the original machine's set of accept states of F. Thus  $L_1/L_2$  is regular, whenever  $L_1$  is regular.

2 Use the pumping lemma to show that the following language is not regular.

$$A = \{w \in \{0,1\}^* \mid \text{the length of } w \text{ is a perfect square}\}$$

Suppose language A is regular. Then there exists pumping length n. If we consider the string  $0^{n^2}$ , where |w| > n and  $w \in A$  (by definition). Note, we choose the string of 0 symbols for simplicity, but without loss of generality for this proof (since there is no restriction on w other than its length is a perfect square). For any decomposition w = xyz, we have  $|y| \ge 1$  and  $|xy| \le n$ , so  $1 \le |y| \le n$ .

We can pump w to get  $w_1 = xy^2z$ , with  $n^2 \le |xy^2z| \le n^2 + n$ . We notice that the next perfect square has length  $(n+1)^2 = n^2 + 2n + 1$ , however since we have the following inequality:

$$n^2 + n < n^2 + 2n + 1$$
$$n < 2n + 1$$

And we only added at most n, but need 2n+1 added, then  $w_1$  must not be a perfect square, and thus  $w_1 \notin A$ .

Now, since all possible pumping of w must be in language A if A is regular (by definition), and we have just shown that  $w_1 \notin A$ , we have a contradiction, so A must not be regular.

## 3 Identify and explain clearly the error in the purported proof below that the language described by the regular expression (r.e.) 0\*1\* is not a regular language.

The proof error is in the following statement: "However s cannot be pumped since the language  $\{0^n1^n \mid n \geq 0\}$  is not regular."

Let L be the language in question. The string s, (i.e.  $s=0^p1^p$ ) has the same number of 0's as 1's, and  $0^p1^p \in L$ . If  $0^p1^p$  is pumped, it no longer has equal number of 0's and 1's, however the resulting string is still in L because all the 0's come before all 1's. So s can be pumped, which the proof claims otherwise. A correct proof would need to choose string s such that s can not be pumped, in order to show that  $0^*1^*$  is not regular.

## 4 Let $B_n = \{a^k \mid k \text{is a multiple of } n\}$ where $\Sigma = \{a\}$ . Prove that for each $n \geq 1$ , the language $B_n$ is regular.

For any  $n \ge 1$ ,  $B_n$  is the language consisting of strings  $a^{nt}$ , where  $t < \mathbb{Z}_{\ge 0}$ , and for t = 0, we have  $\epsilon \in B_n, \forall n \ge 1$ . If  $B_n$  can be described by some DFA for some fixed  $n \ge 1$  then  $B_n$  is regular. We will give such DFA, M, that recognizes  $B_n$ , as depicted below for fixed n:



Figure 1: State diagram of DFA M that recognizes  $B_n$  for some fixed  $n \ge 1$ .

Thus,  $B_n$  is regular.

5 Give context-free grammars for each of the following languages where  $\Sigma = \{0, 1\}$ .

Note: for each of the following CFG's, assume the start non-terminal is S.

5.a  $\{w \mid w \text{ contains an odd number of symbols}\}$ 

For this language, we have CFG:

$$\begin{split} S &\longrightarrow S_0 \mid S_1 \\ S_0 &\longrightarrow 0S_1 \mid 1S_1 \\ S_1 &\longrightarrow 00S_1 \mid 01S_1 \mid 10S_1 \mid 11S_1 \mid \epsilon \end{split}$$

5.b  $\{w \mid w \text{ contains more 1's than 0's}\}$ 

For this language, we have CFG:

$$\begin{split} S &\longrightarrow TS \mid 1S \mid 1T \\ T &\longrightarrow TT \mid 0T1 \mid 1T0 \mid \epsilon \end{split}$$

5.c The empty set.

For this language, we have CFG:

$$S \longrightarrow S$$

Notice that S never resolves, so we get the  $\emptyset$ .

6 Convert the following CFG where  $\Sigma = \{0\}$  and A is the start non-terminal, into an equivalent Chomsky normal form using the procedure given in Theorem 2.9.

We begin with the following CFG:

$$\begin{array}{l} A \longrightarrow BAB \mid B \mid \epsilon \\ B \longrightarrow 00 \mid \epsilon \end{array}$$

**Step 1** Create new start variable  $A_0$  and a corresponding new rule.

$$\begin{array}{c} A_0 \longrightarrow A \\ A \longrightarrow BAB \mid B \mid \epsilon \\ B \longrightarrow 00 \mid \epsilon \end{array}$$

**Step 2** Remove the  $\epsilon$ -rules.

Remove  $B \longrightarrow \epsilon$ 

$$\begin{array}{l} A_0 \longrightarrow A \\ A \longrightarrow BAB \mid BA \mid AB \mid A \mid B \mid \epsilon \\ B \longrightarrow 00 \end{array}$$

Remove  $A \longrightarrow \epsilon$ 

$$\begin{array}{l} A_0 \longrightarrow A \mid \epsilon \\ A \longrightarrow BAB \mid BA \mid AB \mid A \mid B \mid BB \\ B \longrightarrow 00 \end{array}$$

Step 3 Remove unit rules.

Remove  $A \longrightarrow A$ 

$$\begin{array}{l} A_0 \longrightarrow A \mid \epsilon \\ A \longrightarrow BAB \mid BA \mid AB \mid B \mid BB \\ B \longrightarrow 00 \end{array}$$

Remove  $A \longrightarrow B$ 

$$\begin{array}{l} A_0 \longrightarrow A \mid \epsilon \\ A \longrightarrow BAB \mid BA \mid AB \mid 00 \mid BB \\ B \longrightarrow 00 \end{array}$$

Remove 
$$A_0 \longrightarrow A$$

$$A_0 \longrightarrow BAB \mid BA \mid AB \mid 00 \mid BB \mid \epsilon$$

$$A \longrightarrow BAB \mid BA \mid AB \mid 00 \mid BB$$

$$B \longrightarrow 00$$

**Step 4** Replace terminals, 00, by new variable, say U and corresponding new rule.

$$\begin{array}{l} A_0 \longrightarrow BAB \mid BA \mid AB \mid UU \mid BB \mid \epsilon \\ A \longrightarrow BAB \mid BA \mid AB \mid UU \mid BB \\ B \longrightarrow UU \\ U \longrightarrow 0 \end{array}$$

**Step 5** Shorten long rules with RHS length  $\geq 3$ .

$$\begin{array}{l} A_0 \longrightarrow BA_1 \mid BA \mid AB \mid UU \mid BB \mid \epsilon \\ A \longrightarrow BA_2 \mid BA \mid AB \mid UU \mid BB \\ B \longrightarrow UU \\ U \longrightarrow 0 \\ A_1 \longrightarrow AB \\ A_2 \longrightarrow AB \end{array}$$

The final result from step 5 (above) shows our R of our Chomsky normal form, described by  $G = (V, \Sigma, R, A_0)$ , where  $V = \{A_0, A, B, U, A_1, A_2\}$ ,  $\Sigma = \{0\}$ , and start variable  $A_0$ .

7 Show that the class of context-free languages is closed under the regular operations: union and star.

Let CFL be the set of all context-free languages.

7.a For all 
$$L_1, L_2 \in CFL$$
, show  $L_1 \cup L_2 \in CFL$ 

Let  $S_1, S_2$  be the start variable for languages  $L_1, L_2$ , respectively. Then we can describe the grammar:

$$S \longrightarrow S_1 \mid S_2$$

Which is the grammar for the union  $L_1 \cup L_2$ , since it will generate all strings generated by start variables  $S_1, S_2$ , or both. Since  $L_1, L_2$  are arbitrary, we have shown that the class of context-free languages is closed under the union regular operation.

## 7.b For all $L_1 \in CFL$ , show $L_1^* \in CFL$

Let  $S_1$  be the start variable for language  $L_1$ . Then, the following grammar:

$$S \longrightarrow S_1 S \mid \epsilon$$

Since this grammar will generate zero or more strings from  $L_1$ , and this is exactly the definition of the star regular operation, we have shown that the class of context-free languages is closed under the star regular operation.

8 Construct a PDA that recognizes the language  $\{ww^R \mid w \in \{a,b\}^*\}$ , where  $w^R$  is the string w written backwards.



Figure 2: PDA that recognizes the language  $\{ww^R \mid w \in \{a,b\}^*\}$ , where  $w^R$  is the string w written backwards.

The diagram in Figure 2 shows the PDA that recognizes the language in question, since we can stop reading w at any point (and exactly one of these) and begin reading  $w^R$  to recognize  $ww^R$ , as desired.