Seminarul 11 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Polinoame ireductibile şi ideale maximale

Exercițiul 1.1: Fie $a_1,...,a_n \in \mathbb{Z}$ distincte. Demonstrați că

$$f(X) = (X - a_1)(X - a_2)...(X - a_n) - 1$$

este ireductibil în $\mathbb{Q}[X]$.

Exercițiul 1.2: Demonstrați că:

- a) $(X^2 2) \in \operatorname{Max}(\mathbb{Q}[X]);$
- b) $(X^n 2) \in \operatorname{Max}(\mathbb{Q}[X]);$
- c) $(4, X) \notin \operatorname{Max}(\mathbb{Z}[X]);$
- d) $(2+i) \in \text{Max}(\mathbb{Z}[i]);$
- e) $(2, X^4 + X^3 + 1) \in Max(\mathbb{Z}[X]);$

Exercițiul 1.3: Decideți dacă următoarele ideale sunt maximale în $\mathbb{Z}[X]$:

- a) $(5, X^3 + 2X^2 + 4X + 3)$;
- b) $(7, X^4 + X^2 + 2)$.

Exercițiul 1.4: Fie R un domeniu și $I \subseteq R, I \neq R$. Dacă $f \in R[X]$ monic este ireductibil în $\binom{R}{I}[X]$, atunci este ireductibil în R[X].

Exercitiul 1.5: Demonstrați că următoarele polinoame sunt ireductibile:

- a) $X^5 + 9X^2 + 4X + 7 \in \mathbb{Z}[X];$
- b) $X^4 3X^3 + 6X^2 2X + 1 \in \mathbb{Z}[X];$
- c) $X^2 + XY + 1 \in \mathbb{Z}[X, Y]$.

Teorema 1.6: (Criteriul lui Cohn) Fie $b \in \mathbb{N}, b \geq 2$ şi $p \in \mathbb{N}$ prim a cărui scriere în baza b este

$$p = a_0 + a_1b + a_2b^2 + \dots + a_nb^n, \ 0 \le a_i \le b.$$

Atunci polinomul $a_0 + a_1X + a_2X^2 + ... + a_nX^n \in \mathbb{Z}[X]$ este ireductibil (în $\mathbb{Z}[X]$ şi $\mathbb{Q}[X]$).

Exercițiul 1.7: Demonstrați că următoarele polinoame sunt ireductibile în $\mathbb{Q}[X]$:

a)
$$X^6 + X^4 + X^3 + 1$$
;

- b) $X^5 + X^4 + 2X + 1$;
- c) $2X^3 + 5X^2 + 5X + 7$.

Exercițiul 1.8: Fie K corp și $f \in K[X]$. Descrieți idealele inelului K[X]/(f).

Exercițiul 1.9: Determinați toate idealele inelului $\mathbb{Z}[X]/(2, X^3 + 1)$. Precizați care dintre ele sunt maximale.

Exercițiul 1.10: Determinații idealele maximale ale lui $\mathbb{R}[X]$.

Exercițiul 1.11*: Determinați idealele maximale ale lui $\mathbb{R}[X,Y]$.

Exercițiul 1.12: Fie $R = \{ f \in \mathbb{R}[X] \mid f(0) \in \mathbb{Q} \}$ și $I = \{ f \in R \mid f(0) = 0 \}$. Demonstrați că R este inel și că I este ideal al lui R care nu este finit generat.

Exercițiul 1.13: Demonstrați că un corp finit are p^n elemente, pentru un p prim și un $n \in \mathbb{N}^*$.

Exercițiul 1.14: Arătați că $\mathbb{Z}_2[X]/(X^3+X+\hat{1})$ și $\mathbb{Z}_2[X]/(X^3+X^2+\hat{1})$ sunt corpuri izomorfe.

Exercițiul 1.15: Construiți un corp cu:

- a) 8 elemente;
- b) 9 elemente;
- c) 125 de elemente.

Exercițiul 1.16: Fie p un număr prim și $f = X^p - X + \hat{1} \in \mathbb{Z}_p[X]$.

- a) Arătați că f nu are rădăcini în \mathbb{Z}_p .
- b) Arătați că, dacă f are o rădăcină într-un corp L, $\mathbb{Z}_p \subset L$, atunci f are toate rădăcinile în L.
- c) Arătați că f este ireductibil în $\mathbb{Z}_p[X]$.