LIMEAR REGRESSION

Linear regression is a common statistical tool for modeling the relationship between some "explanatory" variables and some real-valued outcome.

Definition (Linear Regression)

Criven domain cet $X \in \mathbb{R}^d$ and label set $Y \in \mathbb{R}$. We would like to learn a linear function $h: \mathbb{R}^d \to \mathbb{R}$ that best approximates the relationship between our variables.

The hypothesis class of linear regression predictors is the set of linear functions. $H = Ld = \{x \mapsto \langle w, x \rangle + b : w \in \mathbb{R}^d, b \in \mathbb{R}^d \}$

We need to define a loss function for regression. A common choice is squared-loss function

Squared - loss function $l(h, (x,y)) = (h(x) - y)^{2}$ $prediction \qquad |abel|$

, ally use squared-loss function?

Unlike classification problem, where the loss function is $l(h, (x,y) = \frac{1}{h(x)} \neq y$ Regression problem won't always give the "perfect" number, i.e. 1,-1

Empirical Risk Function (Mean Squared Error)____

For that loss function, the imprical rick is defined as:

$$\sum_{g}(h) = \frac{1}{m} \sum_{i=1}^{m} \left(h(x_i) - y_i \right)^2$$

This is called Mean Squared Error

Least Squares Algorithm

Least Squares is the algorithm that solves ERM problem for the hypothesis class of linear regression predictors with respect to equared loss. Criven training set 8: $\arg\min_{w} L_{S}(h_{W}) = \arg\min_{w} \frac{1}{m} \sum_{i=1}^{m} \left(\langle w, x_{i} \rangle - y_{i} \right)^{2}$

Let) X be the matrix where columns are made of examples from S.

y be the vector of labels.

w be the vector of coefficients.

Such that
$$X.w = y$$

Visually: $X = \begin{pmatrix} x_1 | \dots | x_m \end{pmatrix}$ $w = \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}$

Recall from ALAFF, to solve Least Squares problem, we try to find in that is: $\|y - X.\hat{w}\| = \min \|y - X.w\|$

Also mentioned in LAFF are some ways to solve this, some are:

- . If X is invertable: $\widehat{x} = X^{-1}y$
- = Mormal equations: $X^{H}X \cdot \hat{W} = X^{H}y$
- : Decompose X = U \geq VH o SVD Solve $\hat{w} = V Z^{-1} U^{H}$. y
- Eigenvalue decomposition (since X is symmetric):
 - . Decompose $C = QDQ^T$ where JQ is orthonormal matrix D is diagonal matrix $C = X^TX$; $b = X^Ty$

Linear Regression for Polynomial Regression Tasks

for instance, a one dimensional polynomial function of degree n:

$$\rho(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_n x^n$$

$$= \begin{pmatrix} 1 \\ x \\ \vdots \\ x^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}$$

rector of welficients

· For simplicity, me tocus on one dimensional, n-degree, polynomial regression predictors, namely: $\mathcal{H}_{poly}^{r} = \left\{ x \mapsto \rho(x) \right\}$

Mote that: domain set X & IR and label set Y & IR

. One way to learn this class is to reduce it to linear regression in the form of vectors (as shown above). Given mapping $\Psi(x) = (1 | x | ... | x^n)$, we can remite p(x) as:

$$p(x) = \langle \psi(x), \alpha \rangle$$

We solve this by finding vector a using Least Squares algorithm.

Maximum Likelihood Function

Given a dataset S, if we assume the dataset follows some distribution, for example, normal distribution $S \sim M(u, \sigma^2)$, how can we determine the values of u and σ^2 ?

Me can answer this question using Principle of Maximum Likelihood, which states that the best estimate to these parameters is the one that maximize likelihood function.

_ Likelihood function: _

Probability of observing data x given the parameters $L(\mu, \sigma^2 \mid S = \{x_1, \dots, x_m\}) = \prod_{i=1}^m f(x_i \mid \mu, \sigma^2)$ where $f(x_i \mid \mu, \sigma^2)$ is the PDF of the jth data point given μ, σ^2 ; here we assume all $x_i \in S$ are i.i.d.

In practice, it is more convinient to maximise the log-likelihood, which is

Log-likelihood function

Log-likelihood function

Log-likelihood function

$$\left| \left(x_{1}, \sigma^{2} \right) \right| S = \left(x_{1}, \dots, x_{m} \right) = \sum_{i=1}^{m} \log f(x_{i} | \mu, \sigma^{2})$$

To find the parameters, set the derivative of log-likelihood w.r.t. to the parameter to zero.

For example, finding parameter u:

o Likelihood Function:
$$L(\mu, \sigma^2 \mid S) = \prod_{i=1}^m \frac{1}{\sqrt{2\pi} \sigma} e^{\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

PDF of Mormal Dictribution

o Convert to
$$\log - 1$$
; kelihood Function:
$$\log 1(\mu, \sigma^2 \mid S) = \sum_{i=1}^{m} \log \left[\frac{1}{12\pi \sigma} e^{\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)} \right]$$

$$= \sum_{i=1}^{m} \left[\log \left(\frac{1}{\sqrt{2\pi \sigma}}\right) - \left(\frac{x_i - \mu}{2\sigma^2}\right)^2 \right]$$

. Derivative w.r.t u:

$$\nabla_{\mu} \log L(\mu, \sigma^{2} | S) = \nabla_{\mu} \sum_{i=1}^{m} \left[-(x_{i} - \mu)^{2} \right]$$

$$= 2 \left[\sum_{i=1}^{m} (x_{i} - \mu) \right] \qquad \text{derivative with.} \quad \mu$$

. Find best estimate
$$\hat{\mu}_{ML}$$
 by setting derivative equals 0:
$$\hat{\mu}_{ML} = \arg\max \log L(\mu_1 \sigma^2 | S)$$

Solve by:
$$\nabla_{M} \log L(\mu, \sigma^{2} | S) = 0$$

$$\Rightarrow 2 \left[\sum_{i=1}^{n} (x_{i} - \hat{\mu}_{ML}) \right] = 0$$

$$\Rightarrow \tilde{M}_{ML} = \frac{1}{m} \sum_{i=1}^{m} x_{i}$$

$$\Rightarrow mean value of S$$

This heavily depends on what distribution you assume the data is distributed on. If you assume S~ N(u, o2), then you estimate in and o2 If you assume S~ Expo(x), then you estimate x

Linear Regression - Maximum Liklihood

Consider a simple linear regression:

$$y = \beta_0 + \beta_1 x + \varepsilon
= \left(\frac{1}{x}\right) T \left(\frac{\beta_0}{\beta_1}\right) + \varepsilon \qquad \text{error term } \varepsilon \sim M(0, \sigma^2)$$

vector instance a weight vector

What is the probability observing dataset $S = \{(x_n, y_n), \dots, (x_m, y_m)\}$ given Bo, By

We can answer this question by finding the log-likelihood function.

. First, find the likelihood function:

$$L\left(b_{o},b_{1}\mid S=\left\{\left(x_{1},y_{1}\right),\ldots,\left(x_{m},y_{m}\right)\right\}\right)$$

Since
$$y = \beta_0 + \beta_1 x + \xi$$
, we can rewrite this as:

$$L(\beta_0, \beta_1, x_i | y_i) = \prod_{i=1}^m f(y_i | \beta_0, \beta_1, x_i)$$

Since $\mathcal{E} \sim \mathcal{N}(0, \sigma^2) \Rightarrow (y - \beta_0 - \beta_1 x) \sim \mathcal{N}(0, \sigma^2)$

$$\Rightarrow y \sim N \left(\beta_0 + \beta_1 \times \beta_2 \right) :$$

$$- \left[y_i - \left(\beta_0 + \beta_1 \times \beta_2 \right) \right]^2$$

$$\lambda \left(\beta_0, \beta_1, x_i \mid y_i \right) = \mathcal{T}_{i=1}^m \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\left[\frac{y_i - \left(\beta_0 + \beta_1 x_i \right)}{2\sigma^2} \right]^2}$$

. Scood, convert to log-likelihood $\log L(\beta_{0}, \beta_{1}, x_{i} | y_{i}) = -\frac{m}{2} \log 2\pi - m \log \sigma - \frac{1}{2\pi^{2}} \sum_{i=1}^{m} (y_{i} - (\beta_{0} + \beta_{1} x_{i}))^{2}$ = Lastly, we maximize the likelihood / find best estimate for Bo and By by setting derivative w.r.t. Bo, By to O:

arg max
$$\geq_{i=1}^{m} (y_i - (b_0 + b_1 x_i))^2$$

Linear Least Squares

Coefficients/meights in Linear regression:

. Grametric: coefficients of the line that minimizes equared distances from line to

agmin | y - XTb |

Statistic: coefficients give the maximum likelihood estimator for a training set

generated by
$$y \sim N(\beta_0 + \beta_1 x, \epsilon)$$

 $arg mox \geq_{i=1}^{m} \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2$