Exercice. Déterminer les $\alpha\in\mathbb{R}$ tels que $textstyle\int_{\mathbb{R}_+}\sin(t)/t^\alpha\,\mathrm{d}t$ converge.

Éléments de réponse. Comme $f_{\alpha}: t\mapsto \sin(t)/t^{\alpha}$ est continue sur $]0,+\infty[$, les problèmes de convergence sont a priori en 0 et en $+\infty$.

En comparant avec une intégrale de Riemann, on montre que l'intégrale $textstyle\int_{1}^{+\infty}f_{\alpha} \text{ converge absolument pour }\alpha>1, \text{ puis en faisant une IPP, on montre la convergence pour }\alpha\in]0,1[.$ Cependant, l'intégrale $textstyle\int_{1}^{+\infty}f_{\alpha} \text{ diverge lorsque }\alpha\leq 0. \text{ En effet, on peut poser }u_{n}=textstyle\int_{n\pi}^{(n+1)\pi}\sin(t)/t^{\alpha}\,\mathrm{d}t.$