which the statement describes. Bubble in ALL squares that apply.	
 1.1. Which of the following data structures are sequences? ■ list □ set □ dict 	 1.11. For associating student PIDs to their respective email addresses, which data structure provides the most efficient lookup? □ list □ set ■ dict
1.2. Select all data structures that are mutable. ■ list ■ set ■ dict	1.12. Which data structure's <i>literal syntax</i> is
1.3. Select all data structures that can contain duplicate values.■ list □ set ■ dict	enclosed within curly braces? □ list ■ set ■ dict
1.4. Which of these data structures use key-value pairs for storing data?□ list □ set ■ dict	1.13. Which data structure's literal syntax is enclosed within square brackets? ■ list □ set □ dict
1.5. Which of the following data structures does not guarantee the order of elements? (The dict data structure is intentionally omitted; in Python, order is maintained.	1.14. Which data structures can you iterate over using a forin loop?■ list ■ set ■ dict
However, generally, dict-like data structures do not guarantee ordering.) □ list ■ set	 1.15. Which data structures allow the use of the len function to determine the number of elements it contains? ■ list ■ set ■ dict
1.6. Which data structures allow indexing via subscription notation to access individual elements directly?■ list □ set ■ dict	1.16. Which of the following data structures is best when you want to find the <i>intersection</i> , union, or difference between two col-
1.7. If you need to store a collection of items and frequently check whether an item is in the collection, which data structure is	lections of values? \Box list \blacksquare set \Box dict
most efficient? □ list ■ set □ dict	1.17. If you were creating a messaging app, where you want to maintain a list of messages in the order they were received,
1.8. To ensure the order of elements is maintained and allow for duplicates, which data structure would you choose?	which data structure would you use? ■ list □ set □ dict
■ list □ set □ dict	1.18. When trying to count the frequency of words in a document, which data structure
1.9. Which of the following data structures require the .add() method to add a value?□ list ■ set □ dict	would allow you to efficiently store and update counts? □ list □ set ■ dict
1.10. To store a sequence of elements that you intend to iterate over and modify, which data structure offers the best performance?■ list □ set □ dict	 1.19. If you want to specify the data type with which a collection of values is indexed, which data structure should you use? □ list □ set ■ dict

Question 1: Multiple Choice For each of the next questions, select all of set, list, and/or dict for

Question 2: Looping Short Answer Consider the following dictionary and set. For each code sample below, write the corresponding output. Separate lines of output can be separated by a comma. If the code would raise an error, please write "error."

```
vend: dict[str,str] = {"A1":"Oreos", "A2":"Lays", "B1":"Coke", "B2":"7up"}
flavors: set[str] = {"Orange", "Cherry", "Lime"}
```

2.1. What will be printed?

```
for prod in vend:
print(prod)
```

```
Solution: A1, A2, B1, B2
```

2.2. What will be printed?

```
1 for prod in vend:
2 print(vend[prod])
```

```
Solution: Oreos, Lays, Coke, 7up
```

2.3. What will be printed?

```
for flav in flavors:
print(flav)
```

```
Solution: Cherry, Lime, Orange
```

2.4. What will be printed?

```
1 if "Berry" in flavors:
2  print("Available!")
3  else:
4  print("Out...")
```

```
Solution: Out...
```

2.5. What will be printed?

```
1 def buy(vm: dict[str,str])->str:
2   for thing in vm:
3   return thing
4   return "Other"
5   print(buy(vm=vend))
```

```
Solution: A1
```

Question 3: Respond to the following questions. Consider the following dictionary:

```
1 vend: dict[str,str] = {"A1":"Oreos", "A2":"Lays", "B1":"Coke", "B2":"7up"}
```

3.1. Write a line of code to find the length of the vend dictionary.

```
Solution: len(vend)
```

3.2. Write a line of code to add the key-value pair, "B3" and "Fanta", to the dictionary.

```
Solution: vend["B3"] = "Fanta"
```

3.3. Write a line of code to change the value associated with the key, "A1", to "Twix".

```
Solution: vend["A1"] = "Twix"
```

3.4. Write a line of code to remove the key-value pair, "A2" and "Lays", from the dictionary.

```
Solution: vend.pop("A2")
```

Question 4: Memory Diagram Trace a memory diagram of the following code listing.

```
def count(xs: list[int]) -> dict[int, int]:
2
     counts: dict[int, int] = {}
3
     for x in xs:
4
       if x in counts:
         counts[x] += 1
5
6
       else:
7
         counts[x] = 1
8
     return counts
9
10
11 | numbers: list[int] = [1, 1, 0]
12 | print(count(numbers))
```

Output

Question 5: Memory Diagram Trace a memory diagram of the following code listing.

```
def artist_counts(playlist: dict[str, str]) -> dict[str, int]:
2
     artists: dict[str, int] = dict()
3
   • for track in playlist:
       art: str = playlist[track]
4
       if playlist[track] not in artists:
5
6
         artists[art] = 1
7
       else:
8
         artists[art] += 1
9
     return artists
10
   songs: dict[str, str] = {
11
     "B2b": "Charli",
12
13
     "Hello": "Erykah",
     "Fiat": "Butcher",
14
     "Woo": "Erykah"
15
16
   }
17
18
   print(artist_counts(songs))
```

Output

Question 6: Function Writing Write a function definition for count_lens with the following expectations:

- The count_lens function should accept a list of string values and return a dictionary where the key type is int and the value type is int.
- The function should *count the frequencies* of strings in the parameter list of the same length(s). For example, ["a", "b", "cc", "d"] should return {1: 3, 2: 1} because there were three strings of length 1 and one string of length 2.
- You should explicitly type all variables, parameters, and return types.
- 6.1. Write your function definition for count_lens here.

```
Solution: One possible solution, of many possible valid solutions:

def count_lens(strs: list[str]) -> dict[int, int]:
    counts: dict[int, int] = {}
    for s in strs:
        if len(s) in counts:
            counts[len(s)] += 1
        else:
            counts[len(s)] = 1
        return counts
```

6.2. Write a test function for a use case that demonstrates expected usage with at least three values in the list. Your input should be different from the prompt's sample input.

```
Solution: One possible test function, of many possible valid test functions:

def test_count_lens() -> None:
    """Test flip flop with 5 elements"""
    letters: list[str] = [["a", "b", "cc", "dd"]
    assert count_lens(letters) == {1: 2, 2: 2}
```

Question 7: EXTRA: Want more practice with loops? Consider the following list. For each code sample below, write the corresponding output. Separate lines of output can be separated by a comma. If the code would raise an error, please write "error."

```
1 word: list[str] = ["C", "a", "t"]
```

```
7.1. What will be printed?
```

```
1  i: int = 0
2  while i < len(word):
3    print(word[i])
4    i += 1</pre>
```

```
Solution: C, a, t
```

7.2. What will be printed?

```
1 def grab(val: list[str]) -> str:
2    i: int = 1
3    while i < len(val):
4      return val[i]
5    i += 1
6
7 print(grab(word))</pre>
```

Solution: a

7.3. What will be printed?

```
for x in range(0 ten(word)):
print(x)
```

Solution: 0, 1, 2

7.4. What will be printed?

```
1 for x in word:
2 print(word[x])
```

Solution: TypeError (or just error)

(ne havent learned vange yet!)

7.5. What will be printed?

```
1  i: int = 0
2  while i < len(word):
3    print(word[i])
4    i += 1</pre>
```

```
Solution: C, a, t
```

7.6 What will be printed?

```
for x in range(1, lon(word)):
print(word(x))
```

```
Solution: a, t
```

7.7. What will be printed?

```
for x in word:
print(x)
```

```
Solution: C, a, t
```

7.8. What will be printed?

```
1  i: int = 0
2  while i < (len(word) - 1):
3   print(i)
4  i += 1</pre>
```

```
Solution: 0, 1
```