

PRODEGREE DATA SCIENCE MAJOR PROJECT

Created by: **ROHAN KOKKULA**

rohankokkula01@gmail.com

TABLE OF CONTENT

- 1. Objective & Problem Statement
- 2. Viewing & Understanding Data
- 3. Visualizing Missing Data
- 4. Datatypes, Duplicates & Describing Data
- 5. Correlation Heatmap
- 6. Univariate Analysis
- 7. Bivariate Analysis
- 8. Principal Component Analysis
- 9. Visualizing 2 Principal Components
- 10. K-Means Clustering
 - 1. Renaming Clusters based on Means
 - 2. Univariate Analysis on Clustered Countries
 - 3. Bivariate Analysis on Clustered Countries
 - 4. Developed Countries Analysis
 - 5. Under-Developed Countries Analysis
- 11. Hierarchical Clustering
 - 1. Single Linkage Method
 - 2. Complete Linkage Method
 - 3. Renaming Clusters
- 12. Results
- 13. Conclusion
- 14. Recommendations

Objective:

To categorise the countries using socio-economic and health factors that determine the overall development of the country by using K-means and Hierarchical Clustering.

Problem Statement:

The Dataset contains list of Countries with their socio-economic and health factors. With the help of Unsupervised Learning, you need to categorize these countries that are in the direst need of aid. Submit the produced list of countries(minimum 5) to the CEO by selecting either K-means or Hierarchical Clustering Method.

Viewing and Understanding Data

First 5 Rows of the dataset.

Description

Column Name

	country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
0	Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	5.82	553
1	Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	1.65	4090
2	Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	2.89	4460
3	Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	6.16	3530
4	Antigua and Barbuda	10.3	45.5	6.03	58.9	19100	1.44	76.8	2.13	12200

Description of the features.

Column Name	Description
country	Name of the country
child_mort	Death of children under 5 years of age per 1000 live births
exports	Exports of goods and services per capita. Given as %age of the GDP per capita
health	Total health spending per capita. Given as %age of GDP per capita
imports	Imports of goods and services per capita. Given as %age of the GDP per capita
Income	Net income per person
Inflation	The measurement of the annual growth rate of the Total GDP
life_expec	The average number of years a new born child would live if the current mortality patterns are to remain the same
total_fer	The number of children that would be born to each woman if the current age-fertility rates remain the same.
gdpp	The GDP per capita. Calculated as the Total GDP divided by the total population.

Visualizing Missing Data

Matrix Plot

Datatypes, Duplicates & Describing Data

<class 'pandas.core.frame.dataframe'=""></class>									
Range	RangeIndex: 167 entries, 0 to 166								
Data columns (total 10 columns):									
#	Column	Non-Null Count	Dtype						
0	country	167 non-null	object						
1	child_mort	167 non-null	float64						
2	exports	167 non-null	float64						
3	health	167 non-null	float64						
4	imports	167 non-null	float64						
5	income	167 non-null	int64						
6	inflation	167 non-null	float64						
7	life_expec	167 non-null	float64						
8	total_fer	167 non-null	float64						
9	gdpp	167 non-null	int64						
dtypes: float64(7), int64(2), object(1)									

All the Data types are in correct format

	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
count	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000
mean	38.270060	7420.618847	1056.733204	6588.352108	17144.688623	7.781832	70.555689	2.947964	12964.155689
std	40.328931	17973.885795	1801.408906	14710.810418	19278.067698	10.570704	8.893172	1.513848	18328.704809
min	2.600000	1.076920	12.821200	0.651092	609.000000	-4.210000	32.100000	1.150000	231.000000
25%	8.250000	447.140000	78.535500	640.215000	3355.000000	1.810000	65.300000	1.795000	1330.000000
50%	19.300000	1777.440000	321.886000	2045.580000	9960.000000	5.390000	73.100000	2.410000	4660.000000
75%	62.100000	7278.000000	976.940000	7719.600000	22800.000000	10.750000	76.800000	3.880000	14050.000000
90%	100.220000	17760.600000	3825.416000	15034.280000	41220.000000	16.640000	80.400000	5.322000	41840.000000
95%	116.000000	31385.100000	4966.701000	24241.560000	48290.000000	20.870000	81.400000	5.861000	48610.000000
99%	153.400000	64794.260000	8410.330400	55371.390000	84374.000000	41.478000	82.370000	6.563600	79088.000000
max	208.000000	183750.000000	8663.600000	149100.000000	125000.000000	104.000000	82.800000	7.490000	105000.000000

Checking for outliers by describing percentiles and min max values

There are 0 duplicates in dataset

Correlation Heatmap

d_mort	1	-0.3	-0.43	-0.32	-0.52	0.29	-0.89	0.85	-0.48
exports child_mort	-0.3	1	0.61	0.99	0.73	-0.14	0.38	-0.29	0.77
health (-0.43	0.61	1	0.64	0.69	-0.25	0.55	-0.41	0.92
imports	-0.32	0.99	0.64	1	0.67	-0.18	0.4	-0.32	0.76
income	-0.52	0.73	0.69	0.67	1	-0.15	0.61	-0.5	0.9
inflation	0.29	-0.14	-0.25	-0.18	-0.15	1	-0.24	0.32	-0.22
	-0.89	0.38	0.55	0.4	0.61	-0.24	1	-0.76	0.6
total_fer life_expec	0.85	-0.29	-0.41	-0.32	-0.5	0.32	-0.76	1	-0.45
oq ddp6	-0.48	0.77	0.92	0.76	0.9	-0.22	0.6	-0.45	1
	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp

Univariate Analysis

INSIGHTS FROM BOXPLOTS

- 1. There is **minimum one outlier** in each of the numerical features.
- 2. Most Outliers can be seen in GDPP.
- 3. As our data contains only **167 countries**, Removing these outliers could increase chances of **removing dire needy** countries.
- 4. Example, In case of **Child Mortality Rate**, Country with **208** value is being specified as outlier but that country itself could be in **dire need of aid.!**
- 5. Removing outliers is **NOT** a good option as per the above conditions. Hence, I choose to **KEEP** outliers.

Bivariate Analysis

INSIGHTS FROM PAIRPLOT

- 1. Univariate Analysis(KDE)
- 1. Only life expectancy is right-skewed whereas all the rest features are left-skewed.
- **2. Total Fertility** and **GDPP** are bimodal whereas all the rest features are unimodal.
- 2. Bivariate Analysis
- 1. Linear relationship is found between
 [gdpp income], [imports exports],
 [total_fer child_mort]
 - 2. If GDPP is HIGH:
 child mortality is LOW
 income is HIGH
 inflation is LOW
 life expectancy is HIGH
 total fertility is LOW
 health, imports and exports are AVG

Principal Component Analysis

From above plots, Around 96% of the information is being explained by 5 principal components.

Visualizing 2 Principal Components

- From the above plot, we can see the first component is in the direction where the imports, exports, gdpp, income, health, life_expec are heavy and second component is in the direction where child_mort, total_fer is more.
- 2. If we recall, correlation between **imports** and **exports** was **0.99**. Now we can surely confirm it by looking the above plot.

K Means Clustering Algorithm

As per **Elbow** method, we'll select no. of clusters as 3

Plotting PC1 & PC2 scatterplot w.r.t ClusterID

Renaming Clusters base on Means

Renaming ClusterIDs as per gdpp, income & child mortality rate mean values.

- 1. Countries with high GDPP, high Income and low Child Mortality Rate are Developed countries
- 2. Countries with average GDPP, average Income and average Child Mortality Rate are Developing countries
- 3. Countries with low GDPP, low Income and high Child Mortality Rate are Under-developing countries

0 = Developing countries , 1 = Developed countries , 2 = Under-developed countries

Univariate Analysis on Clustered Countries

- All the developed countries are having high GDPP, developing countries are having average GDPP and Under-developed countries are having the least GDPP values.
- 2. All the **developed** countries are having **high income** per person, **developing** countries are having **average income** per person and **Under-developed** countries are having the **least income** per person.
- 3. All the developed countries are having low Child mortality rate, developing countries are having average child mortality rate and Under-developed countries are having the least child mortality rate.

Bivariate Analysis on Clustered Countries

INSIGHTS FROM SCATTER PLOTS

- 1. In gdpp x child_mort, there is some clustering where gdpp is low, there child-mort is high, which is true for Under-developed countries in reality.
- 2. In **gdpp x income**, there is some clustering where **gdpp is average**, there **income is average**, which is true for **Developing** countries in reality.
- 3. In **income x child_mort**, there is some clustering where if **income is high**, then **child mortality is low**, which is true for **Developed** countries in reality.

Developed Countries - 36

TOP 10 Developed Countries based on:

HIGH GDPP	HIGH INCOME	LOW CHILD MORTALITY
Luxembourg	Qatar	Iceland
Norway	Luxembourg	Singapore
Switzerland	Brunei	Luxembourg
Qatar	Kuwait	Sweden
Denmark	Singapore	Finland
Sweden	Norway	Japan
Australia	United Arab Emirates	Slovenia
Netherlands	Switzerland	Norway
Ireland	United States	Czech Republic
United States	Ireland	Cyprus

Note: The subplots can be clearly seen in the code outputs.

Under-Developed Countries - 47

TOP 10 Under-Developed Countries based on:

	LOW GDPP	LOW INCOME	HIGH CHILD MORTALITY	OVERALL CONDITIONS*
٦.	Equatorial Guinea	Equatorial Guinea	Iraq	Burundi
2.	Gabon	Gabon	Botswana	Congo, Dem. Rep.
3.	South Africa	Botswana	South Africa	Niger
4.	Botswana	Iraq	Eritrea	Sierra Leone
5.	Namibia	South Africa	Namibia	Mozambique
6.	Iraq	Namibia	Yemen	Central African Republic
7.	Timor-Leste	Angola	Kenya	Guinea-Bissau
8.	Angola	Congo, Rep.	Madagascar	Burkina Faso
9.	Congo, Rep.	Nigeria	Timor-Leste	Guinea
1C). Nigeria	Yemen	Kiribati	Haiti

OVERALL CONDITIONS* = Low GDPP + Low Income + High Child Mortality Rate
These are the top 10 countries which are in DIRE need of aid among all the under-developed Countries

Note: The subplots can be clearly seen in the code outputs.

Hierarchical Clustering

Renaming Clusters

K Means Clustering					Complete Linkage Method				
	gdpp	child_mort	income		gdpp	child_mort	income		
ClusterID				H_ClusterID					
Developing	7979.912088	20.357143	13968.021978	0	12470.812121	37.929091	16765.533333		
Developed	48114.285714	5.046429	50178.571429	1	105000.000000	2.800000	91700.000000		
Under-developed	1909.208333	91.610417	3897.354167	2	2330.000000	130.000000	5150.000000		

Hierarchical Clustering with

By comparing averages of K-means and Hierarchical Clustering, we can conclude that Cluster 2 belongs to Under-Developed Countries, Cluster 1 belongs to Developed Countries Cluster 0 belongs to Developing Countries.

RESULTS:

Since Main Focus was to find out countries which are in dire need of aid as per socio-economic factors, I've calculated only the Under-developed countries' based on Mean values of Child Mortality, Income and GDPP.

After data binning, Hierarchical clustering gave only 5 countries which satisfied overall conditions.

KMEANS CLUSTERING

- 1. Burundi
- 2. Congo, Dem. Rep.
- 3. Niger
- 4. Sierra Leone
- 5. Mozambique

HIERARCHICAL CLUSTERING

- 1. Sierra Leone
- 2. Central African Republic
- 3. Haiti
- 4. Mali
- 5. Chad

ClusterID value counts of H-Clustering,

- 0: 165 countries,
- 1: 1 country,
- 2:1 country

Therefore due to imbalance counts, making visualization plots would be inappropriate.

- 6. Central African Republic
- 7. Guinea-Bissau
- 8. Burkina Faso
- 9. Guinea
- 10. Haiti
- 11. Mali
- 12. Benin
- 13. Chad
- 14. Lesotho
- 15. Mauritania
- 16. Cote d'Ivoire
- 17. Cameroon

I Choose K-Means Clustering Algorithm over

Hierarchical Clustering Algorithm because:

- 1. The clusterID value counts were properly divided and visualizing each cluster was possible.
- 2. The countries in dire need of aid by K-Means (17) were more than by Hierarchical Clustering(5)

Conclusion

After comparing both **K-means** and **Hierarchical clustering** method, I am going with the **K-means** outcomes as the plots are clearly visible. As in both the methods, the produced mean for underdeveloped countries was almost same. i.e. deciding no. of clusters as 3 was profitable.

After grouping all the countries into **3 groups** by using some socio-economic and health factors, we can determine the **overall** development of the countries.

Here, the countries are categorised into list of **developed** countries, **developing** countries and **under-developed** countries.

In **Developed** countries, we can see the **GDP** per capita and income is **high** where as Death of children under 5 years of age per 1000 live births i.e. **child-mort** is very **low**, which is expected.

In **Developing** countries and **Under-developed** countries, the **GDP per capita** and **income** are **low** and **child-mort** is **high.** Specially, for **under-developed** countries, the **death rate** of children is very **high.**

Recommendations

- From bar chats, we can clearly see the socio-economic and heath situation of the under developed countries.
- In countries like Haiti, Sierra Leone, Chad, etc., the death rate of children under 5 years of age per 1000 (child-mort) is high.
- Countries like Burundi, Congo, Niger, etc., GDP per capita is very low & the income per person is also low. So, these countries are considered as Poor countries.
- If Child Mortality Rate is decreased and GDPP, Income is increased in Under-developed countries, the need will be resolved.