1D Chain of Majorana Fermions

Anthony REY

École Polytechnique Fédérale de Lausanne

June 7, 2022

Introduction

 \longrightarrow **O'Brien and Fendley** (2018) introduced a model with Tricritical Ising (TCI) point with supersymmetry exhibited on the lattice

Introduction

 \longrightarrow **O'Brien and Fendley** (2018) introduced a model with Tricritical Ising (TCI) point with supersymmetry exhibited on the lattice

Goal

Recover their phase diagram

Introduction

 \longrightarrow **O'Brien and Fendley** (2018) introduced a model with Tricritical Ising (TCI) point with supersymmetry exhibited on the lattice

Goal

Recover their phase diagram

Method

Using DRMG, with open and periodic boundary conditions

Model

Use O'Brien and Fendley (OF) model

$$\mathcal{H} = 2\lambda_I \mathcal{H}_I + \lambda_3 \mathcal{H}_3 + \lambda_c \mathcal{H}_c$$

with

$$\mathcal{H}_{I} = i \sum_{a} \gamma_{a} \gamma_{a+1} \xrightarrow{JW} - \sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{z}$$

$$\mathcal{H}_{3} = -\sum_{a} \gamma_{a-2} \gamma_{a-1} \gamma_{a+1} \gamma_{a+2} \xrightarrow{JW} \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{x} \sigma_{i+2}^{x} + \sigma_{i}^{x} \sigma_{i+1}^{x} \sigma_{i+2}^{z}$$

$$\mathcal{H}_{c} = -i \sum_{a} \gamma_{a} \gamma_{a+2} \xrightarrow{JW} \sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{y} - \sigma_{i}^{y} \sigma_{i+1}^{x}$$

where

- JW is Jordan-Wigner transformation
- γ_a is a Majorana fermion operator satisfying $\gamma_a=\gamma_a^\dagger$ and Clifford algebra $\{\gamma_a,\gamma_b\}=2\delta_{ab}$
- from now on, $\lambda_c = 0$

Method

Transverse-Field Ising

TFI model

$$\mathcal{H} = -J\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - h\sum_{i} \sigma_{i}^{z}$$

Method

Transverse-Field Ising

TFI model

$$\mathcal{H} = -J\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - h\sum_{i} \sigma_{i}^{z}$$

• Described by CFT with central charge $c=\frac{1}{2}$ at criticality |J|=|h|

Method

Transverse-Field Ising

• TFI model

$$\mathcal{H} = -J\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - h\sum_{i} \sigma_{i}^{z}$$

• Described by CFT with central charge $c=\frac{1}{2}$ at criticality |J|=|h|

Central charge

For OBCs, entanglement entropy given by Cardy-Calabrese formula

$$S(\ell) = \frac{c}{6} \ln \left[\frac{2L}{\pi} \sin \frac{\pi \ell}{L} \right] + \text{const}$$

on bond ℓ for system of length L

Figure: TFI with J=h, $\chi=100$

Figure: TFI with J = h, $\chi = 100$

Figure: OF with $\lambda_3/\lambda_I = 0.856$, $\chi = 100$

OF model

• is in Ising CFT for $\lambda_3/\lambda_I \in [0, 0.856[$ $\implies c = 1/2$

OF model

- is in Ising CFT for $\lambda_3/\lambda_I \in [0, 0.856[$ $\implies c = 1/2$
- is in TCI CFT for $\lambda_3/\lambda_I \simeq 0.856$ $\implies c = 7/10$

OF model

- is in Ising CFT for $\lambda_3/\lambda_I \in [0, 0.856[$ $\implies c = 1/2$
- is in TCI CFT for $\lambda_3/\lambda_I \simeq 0.856$ $\implies c = 7/10$
- is gapped for $\lambda_3/\lambda_I > 0.856$ $\implies c = 0$

OF model

- is in Ising CFT for $\lambda_3/\lambda_I \in [0, 0.856[$ $\implies c = 1/2$
- is in TCI CFT for $\lambda_3/\lambda_I \simeq 0.856$ $\implies c = 7/10$
- is gapped for $\lambda_3/\lambda_I > 0.856$ $\implies c = 0$

Figure: OF with λ_3/λ_I varied, $\chi = 100$

Problem

• Extrapolates to 0.772 instead of 0.7!

Problem

- Extrapolates to 0.772 instead of 0.7!
- Strange behavior for as we approach $\lambda_3/\lambda_I \simeq 0.856$

Problem

- Extrapolates to 0.772 instead of 0.7!
- Strange behavior for as we approach $\lambda_3/\lambda_I \simeq 0.856$

Solution?

 Try to pin edge spins in x-direction to reduce entropy in bulk

Problem

- Extrapolates to 0.772 instead of 0.7!
- Strange behavior for as we approach $\lambda_3/\lambda_I \simeq 0.856$

Solution?

- Try to pin edge spins in x-direction to reduce entropy in bulk
- Results very good for critical TFI, allow to build conformal towers

Problem

- Extrapolates to 0.772 instead of 0.7!
- Strange behavior for as we approach $\lambda_3/\lambda_I \simeq 0.856$

Solution?

- Try to pin edge spins in x-direction to reduce entropy in bulk
- Results very good for critical TFI, allow to build conformal towers
- But results even worse for TCI point

Problem

- Extrapolates to 0.772 instead of 0.7!
- Strange behavior for as we approach $\lambda_3/\lambda_I \simeq 0.856$

Solution?

- Try to pin edge spins in x-direction to reduce entropy in bulk
- Results very good for critical TFI, allow to build conformal towers
- But results even worse for TCI point

Figure: OF with $\lambda_3/\lambda_I=0.856$, $\chi=100$ and $h_{\rm pin}=-100$ ([++] BCs)

Results – PBCs

• Expect to resolve the problem of central charge

Results - PBCs

- Expect to resolve the problem of central charge
- Use another representation of the MPS

Results – PBCs

- Expect to resolve the problem of central charge
- Use another representation of the MPS

For PBCs, central charge recovered by

$$S(\ell) = \frac{c}{3} \ln \left[\frac{L}{\pi} \sin \frac{\pi \ell}{L} \right] + \text{const}$$

Results - PBCs

Figure: OF with $\lambda_3/\lambda_I=0.856$ and variance $\sim 10^{-4}$

Results - PBCs

Figure: OF with $\lambda_3/\lambda_I=0.856$ and variance $\sim 10^{-4}$

Figure: OF with λ_3/λ_I varied, L=30 and $\chi=100$

Excitation energies

• Get excited energies directly through diagonalization of the effective Hamiltionian in 2-site update

Excitation energies

- Get excited energies directly through diagonalization of the effective Hamiltionian in 2-site update
- Works perfectly at least for TFI where gap is correct and can build conformal towers with more than 10 energies

Excitation energies

- Get excited energies directly through diagonalization of the effective Hamiltionian in 2-site update
- Works perfectly at least for TFI where gap is correct and can build conformal towers with more than 10 energies

Parity

• \mathbb{Z}_2 -symmetry of Hamiltionian w.r.t. $\mathcal{F} = \prod_j \sigma_j^z$

Excitation energies

- Get excited energies directly through diagonalization of the effective Hamiltionian in 2-site update
- Works perfectly at least for TFI where gap is correct and can build conformal towers with more than 10 energies

Parity

- \mathbb{Z}_2 -symmetry of Hamiltionian w.r.t. $\mathcal{F} = \prod_j \sigma_j^z$
- Split \mathcal{H} in sector with \pm of \mathcal{F} , use projectors $\mathcal{F}^{\pm}=\frac{1}{2}[\mathbb{1}\pm\mathcal{F}]$ and run DMRG with $\tilde{\mathcal{H}}=\mathcal{F}^{\pm}\mathcal{H}\mathcal{F}^{\pm}$

Excitation energies

- Get excited energies directly through diagonalization of the effective Hamiltionian in 2-site update
- Works perfectly at least for TFI where gap is correct and can build conformal towers with more than 10 energies

Parity

- \mathbb{Z}_2 -symmetry of Hamiltionian w.r.t. $\mathcal{F} = \prod_j \sigma_j^z$
- Split \mathcal{H} in sector with \pm of \mathcal{F} , use projectors $\mathcal{F}^{\pm}=\frac{1}{2}[\mathbb{1}\pm\mathcal{F}]$ and run DMRG with $\tilde{\mathcal{H}}=\mathcal{F}^{\pm}\mathcal{H}\mathcal{F}^{\pm}$

Table: Universal ratios of energy computed from corresponding CFT.

Figure: Extrapolation of ratios with λ_3/λ_I varied and variance $\sim 10^{-4}$

Results - Degeneracy in gapped phase

Figure: Extrapolation of the differences in energies with $\lambda_3/\lambda_I>0.856$ varied and variance $\sim 10^{-4}$

Conclusion

Main achievements

• Benchmark with TFI and description with Ising CFT

Conclusion

Main achievements

- Benchmark with TFI and description with Ising CFT
- Phase diagram for OF model for $\lambda_3 \in [0, \lambda_I]$ and location of TCI CFT point at $\lambda_3/\lambda_I = 0.856$

Conclusion

Main achievements

- Benchmark with TFI and description with Ising CFT
- Phase diagram for OF model for $\lambda_3 \in [0, \lambda_I]$ and location of TCI CFT point at $\lambda_3/\lambda_I = 0.856$

Further work

Introduce $\lambda_c \neq 0$ and complete phase diagram, but not done due to lack of because of struggles with TCI central charge