CHAPTER 3

Underlying Technologies

Exercises

1. We know that $D = T \times V$, where D is the distance, T is the time, and V is the velocity or speed. In other words, T = D / V. We insert the corresponding values to find the time needed for a bit to travel the cable.

```
T = D / V = (2500 \ meters) / (200,000,000 \ meters/second) = 0.0000125 \ s = 12.5 \ \mu s
```

3. Assume that the minimum frame size is 65 bytes or 520 bits. We have $L = T \times R$, where L is the length of the frame, T is the time, and the R is the data rate. We can say T = L / R. The time can be calculated as

$$T = L/R = (520 \text{ bits}) / (10,000,000) \text{ bits/second} = 0.000052 \text{ s} = 52 \mu\text{s}$$

5. The padding needs to make the size of the data section 46 bytes. If the data received from the upper layer is 42 bytes, we need 46 - 42 = 4 bytes of padding.

7.

a. Similarities:

Each station has an equal right to the medium.

Each station senses the medium.

b. Differences:

CSMA/CD: A station can send if it senses no signal on the line.

CSMA/CA: A station needs to inform other stations that it needs the medium for a specific amount of time.

CSMA/CD: A collision can occur. *CSMA/CA*: Collisions are avoided.

8. See Table 3.E8.

Table 3.E8Exercise 8

Fields	IEEE 802.3	IEEE 802.11
Destination address	6	
Source address	6	
Address 1		6
Address 2		6
Address 3		6
Address 4		6
FC		2
D/ID		2
SC		2
PDU length	2	
Data and padding	1500	
Frame body		2312
FCS (CRC)	4	4