Tutorial 3 - Recap

08 September 2020 08:48 AM

Various forms of Cauchy

D "FUND AMENTAL THEOREM"

If $\Omega \subseteq K$ is open and $\gamma: [a, b] \to SL$ is a curve and $f: \Omega \to C$ admits a primitive, nice $C \to SF: \Omega \to C$ s.t. F' = f.

then $\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$

In particular, if y is closed then

 $\int_{\mathcal{A}} f = 0.$

Note that no condition on I and interior of T.

Theorem

Let C be a simple closed contour and let f be a holomorphic function defined on an open set containing C as well as its interior. Then $\int_C f(z)dz = 0$.

 γ is simple if γ is 1-1 on [a, b). γ is closed if $\gamma(a) = \gamma(b)$.

Theorem

(More general form of Cauchy's theorem) Let Ω be a simply connected domain in \mathbb{C} . Let f(z) be a holomorphic function defined on Ω . Let C be a simple closed contour in Ω . Then $\int_C f(z)dz = 0$

 \Rightarrow if γ is in Ω , then so is int(8). Not really more general in the Sense that $(2) \Rightarrow (3)$.

Theorem

5

(More General form of Cauchy's theorem) Let Ω be a domain in \mathbb{C} . If γ and γ' are two closed contours in Ω which can be "continuously deformed" into each other, then $\int_{\gamma} f(z)dz = \int_{\gamma'} f(z)dz.$

Theorem (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω . Let γ a simple closed curve in Ω (oriented positively). If z_0 is interior to γ , then,

> and int(r) C SZ

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z - z_0}.$$

 $f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z - z_0}.$ Unti- Clockwise

Sing this, we derived holo \Rightarrow analytic

For example, take $\Omega = C \setminus \{0\}$

and $f: S2 \rightarrow C$ defined as

$$f(z) = \frac{1}{z}$$

is holo on SL.

 \bigcirc f has no primitive on Ω .

That is, there is no $\overline{F}: \Omega \longrightarrow F$ st. $\overline{F}' = \overline{f}$

Proof.
$$\int \frac{1}{2} dz = 2\pi i \neq 0$$

$$\int_{|z-1|=0}^{2\pi} \frac{1}{(\cos t + i \sin t)} \left(-\sin t + i \cos t \right) dt$$

$$= i \int_{1}^{2\pi} 1 dt = 2\pi i.$$
If $J = 0$

$$\downarrow_{|z-1|=0}$$
But we know
$$\int_{|z-1|=0}^{2\pi} f = 2\pi i \neq 0.$$

$$\downarrow_{|z-1|=0}$$

$$= 2\pi i \neq 0.$$

$$\downarrow_{|z-1|=0}$$

Extra stuff

Won't make sense without context

$$\Omega = \frac{1}{50^{3}} \rightarrow \text{hole}$$

$$-\frac{1}{50} \rightarrow \text{hole}$$

$$\frac{1}{2^{2}} \rightarrow \frac{1}{2^{2}}$$

Laurent $F(z) = -\frac{1}{z} \text{ is a primitiver on } \Omega.$ $\sum_{n=-k}^{\infty} a_n (z-z_0)$ $\sum_{n=-k}^{\infty} -n , \dots -2, -1, 0$

1. Let γ be the boundary of the triangle

$$\{0 < y < 1 - x; 0 \le x \le 1\}$$

taken with the anticlockwise orientation.

Evaluate:

(a)
$$\int_{\gamma} \Re(z) dz$$

(b)
$$\int_{\gamma} z^2 dz = 0$$
 since z^2 admits a primitive on and γ is closed. At let: Thum (2)

Evaluate: (a)
$$\int_{\gamma} \Re(z)dz$$
 (b) $\int_{\gamma} z^2 dz = 0$ since z^2 admits a primitive on (1) and γ is closed. Alter: Thun (2) (a) Note $\Re(z)$ is not holo.

None of the theorems will help us in

Brute Calculation / >

$$\gamma_3$$
 γ_2
Along γ_3 : $\int_{\gamma_3} = 0$
 $\langle why ? \rangle$

$$\int_{\mathcal{X}} = \int_{\mathcal{T}_1} + \int_{\mathcal{T}_2} + \int_{\mathcal{T}_3}$$

$$\gamma(t) = t + 0i$$
 for $t \in [0,1]$.

(1) Parameterise.
$$\gamma_{1}(t) = t + 0i \quad \text{for } t \in [0, 1].$$

(O rientation next has)

Here,
$$\Upsilon'_{i}(t) = 1 + 0i$$

Thus, $\int \mathbb{R}(z)dz = \int \mathbb{R}(\Upsilon_{i}(t))\Upsilon'_{i}(t)dt$
 $T_{i}(t) = \int \mathbb{R}(t + 6i)(1 + 0i)dt$
 $T_{i}(t) = \int \mathbb{R}(t + 6i)(1 + 0i)dt$

(2) Solve
$$\int R(x)dx = \int (1-t)(-1+x)dt$$

$$= (-1+x)\left\{1-\frac{1}{2}\right\} = \frac{1}{2}(i-1)$$

Tutorial 3 Page 6

Thus,
$$\int_{\gamma} = \int_{\gamma_{1}} + \int_{\gamma_{2}} + \int_{\gamma_{3}} + \int_{\gamma_{3}} = \int_{\gamma_{2}} + \int_{\gamma_{2}} (\gamma_{1} - 1) + 0$$

$$= \sqrt{2} + \sqrt{2} (\gamma_{1} - 1) + 0$$

08 September 2020

08:51 AM

$$\text{2. Compute } \int_{|z-1|=1} \frac{2z-1}{z^2-1} \mathrm{d}z.$$

Remark (my own): If nothing is specified, we assume that the integral is in the counterclockwise sense.

CAUCHY INTEGRAL FORMULA!

I take f(z) = 2z-1, an I z^2-1 apply Theorem (2)? defined on $C \setminus \{-1, 1\}$.

Int(x) contains 1.

Thus, Thm (2) is NOT

how

what?

What

Now, we

we can use Thm (5) which is with $z_0 = 1$.

 $f(1) = \frac{1}{2\pi i} \int \frac{f(z)}{z-1} dz = \frac{1}{2\pi i} \int \frac{2z+1}{z^2-1} dz$

$$\Rightarrow \int \left(\right) dz = 2\pi i \int \left(\frac{2-1}{1+1} \right) = \pi i$$

Theorem (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω . Let γ a simple closed curve in Ω (oriented positively). If z_0 is interior to γ , then,

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z - z_0}.$$

08 September 2020

08:51 AM

3. Show that if γ is a simple closed curve traced counterclockwise, the integral $\int_{\gamma} \bar{z} dz$ equals $2\iota \operatorname{Area}(\gamma)$.

 \bigcirc Evaluate $\int_{\gamma} ar{z}^m \mathrm{d}z$ over a circle γ centered at the origin.

$$\int_{\gamma} (M dx + \underline{N} dy) = \iint_{\operatorname{Int}(\gamma)} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) d(x, y)$$

if γ is a (nice-enough) closed curve oriented counterclockwise. (Here is where we have used orientation.)

$$= \iint (6-0) d(x,y) + 2 \iint [1-(-1)] d(x,y)$$

$$= \inf(x)$$

$$= \inf(x)$$

$$= 2i \iint \int d(x_1 + y_1)$$

$$= 2i \operatorname{Area}(y_1)$$

$$\begin{bmatrix}
Sin(m+1)t - i \cos(m+1)t \\
(m-1)
\end{bmatrix} = 0$$

$$\begin{bmatrix}
Thu, & \int_{0}^{2^{m}} dz = 0 & \text{if } m \neq l.
\end{bmatrix}$$

$$\begin{bmatrix}
1f & m=1 \\
 & z & dz
\end{bmatrix} = r^{2}i & \int_{0}^{2^{m}} (los ot) + i sin(ot) dt$$

$$= 2\pi r^{2}i$$

$$= 2i & (\pi r^{2}) = 2i & Area(r).$$

08 September 2020 08:51 AM

4. Let $\mathbb{H} = \{z \in \mathbb{C} \mid \Re(z) > 0\}$ be the (strict) open right half plane. Construct a non-constant function f which is holomorphic on \mathbb{H} such that $f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$.

Note that the coloured part is my addition.

$$f(z) = \prod_{n \in \mathbb{N}} (z - 1) \implies \text{convergence?}$$

$$f(z) = \prod_{n \in \mathbb{N}} (z - 1) \implies \text{convergence?}$$

$$f(z) = (10 - 1) \left(10 - \frac{1}{2}\right) \left(10 - \frac{1}{3}\right) \dots$$

$$f(z) = (10 - 1) \left(10 - \frac{1}{2}\right) \left(10 - \frac{1}{3}\right) \dots$$

$$\text{in finite product diverges!}$$

Define
$$f: HI \longrightarrow C$$
 as
$$f(z) = Sin(\frac{\pi}{2}).$$

Thun,
$$f$$
 is a holo f^{n} .

Is f non-constant?

Yes, $f(2) = \sin(\frac{\pi}{2}) = 1$

$$f(1) = \sin(\pi) = 0$$

Finally, is $f(\frac{\pi}{2}) = 0$

Finally, $\sin(\frac{\pi}{2}) = 0$

08 September 2020 08:51 AM

5. Let f be a holomorphic function on \mathbb{C} such that $f\left(\frac{1}{n}\right)=0$ for all $n\in\mathbb{N}$. Show that f is constant.

Difference here is in the domain.

Earlier 0 & HI but here, 0 & C.

I domains

A way to show that f is constant is to show that the zeroes of f are not discrete.

Here, we already know that f is zero on

La This IS discrete.

However, using the above zeroes, I can construct as new zero of f!

Note that $0 = \lim_{n \to \infty} \frac{1}{n}$ is continuous

This made sense

This made sente because $0 \in don(f)$. = $\lim_{k \to \infty} 0$

Thus, we have a found or new zero.

Note that S is not discrete!

Then, we can conclude that $f \equiv 0$.

Pro.

Definition 3.1 (Discrete Set). A set $S \subset \Omega$ is said to be *discrete* if for every $s \in S$, there exists some $\delta > 0$ such that

$$B_{\delta}(s) \cap S = \{s\}.$$

In other words, for every $s \in S$, there exists some $\delta > 0$ such that the δ neighbourhood of s contains no other point of S.

Consider $0 \in S$. Then, given any $\delta > 0$ $B_{\delta}(0) \cap S \neq \{0\},$

it contains another point of S.

For example: $/(1/8)+1) \in S \cap B_8(0)$.

Thun, S is not discrete.

6. Expand $\frac{1+z}{1+2z^2}$ into a power series around 0. Find the radius of convergence.

Power series expansion around a point is unique! to do you expand 1 as a pow. series? Geometric series $\frac{1}{1+(2z^2)} = 1-(2z^2)+(2z^2)^2-(2z^2)^3+\cdots$ This has radius of convergence (ROL) =? This conv. if $|22^2| < 1$ or $|z| < \frac{1}{\sqrt{2}}$.

(5) Is this enough to conclude that $RoC = \sqrt{5} ?$ No.
we do know that (*) diverges it Thus, we may conclude $RoC = \frac{1}{\sqrt{2}}$ the PS expansion of 1 around 0

R. C = 1/2

 $\frac{1+2}{1+2} = (1+2)(1-(2z^2)+(2z^2)^2+\cdots)$ This, $= 1 + 2 - 22^{2} - 22^{3} + 42^{4} + 42^{5} + \cdots$

Rood. Use root test.

Look at the partial sums 1,0,2,0,4,0,-6,0,...+20

Ihm. If $\underset{n=0}{\overset{\text{p}}{\leq}} a_n z^n$ converges for some $z_1 \neq 0$,
then it converges $\underset{n=0}{\text{ABSOLUTELY}} \text{ for}$ all $z \leq t \leq |z| \leq |z|$.

bit.ly /ce- 205

link to notes

do MA 412

The Analysis