Self 2-distance graphs with a forbidden structure

M. Farrokhi D. G. (Joint work with A. Azimi)

Muroran Institute of Technology

32nd Symposium on Algebraic Combinatorics, Kanazawa University, June 23, 2015

Definition

Let Γ be a graph and n be a natural number. The n-distance graph of Γ , denoted by Γ_n , is the graphs with the same vertex set as Γ such that two distinct vertices are adjacent in Γ_n if they are at distance n in Γ .

Definition

Let Γ be a graph and n be a natural number. The n-distance graph of Γ , denoted by Γ_n , is the graphs with the same vertex set as Γ such that two distinct vertices are adjacent in Γ_n if they are at distance n in Γ .

Example

Proposition

Every graph is an induced subgraph of a self 2-distance graph.

Lemma

Let Γ be a graph. Then $\operatorname{diam}(\Gamma)=2$ if and only if $\Gamma_2=\Gamma^c$.

Lemma

Let Γ be a graph. Then $\operatorname{diam}(\Gamma) = 2$ if and only if $\Gamma_2 = \Gamma^c$.

Proposition

Let Γ be a self-complementary graph with diameter two. Then $\Gamma_2 \cong \Gamma$.

Lemma

Let Γ be a graph. Then $\operatorname{diam}(\Gamma) = 2$ if and only if $\Gamma_2 = \Gamma^c$.

Proposition

Let Γ be a self-complementary graph with diameter two. Then $\Gamma_2 \cong \Gamma$.

Lemma

If Γ is a self 2-distance graph which is not an odd cycle, then $\operatorname{gr}(\Gamma)=3$.

Let Γ be a connected self 2-distance graph with no square. Then either Γ is an odd cycle or it is the edged product $C_5|C_3$.

Let Γ be a connected self 2-distance graph with no square. Then either Γ is an odd cycle or it is the edged product $C_5|C_3$.

Step 1.

$$\Delta(\Gamma)=3.$$

Let Γ be a connected self 2-distance graph with no square. Then either Γ is an odd cycle or it is the edged product $C_5|C_3$.

Step 1.

$$\Delta(\Gamma) = 3$$
.

Step 2.

 Γ has no $C_5 \mid C_3$ subgraph.

Let Γ be a connected self 2-distance graph with no square. Then either Γ is an odd cycle or it is the edged product $C_5|C_3$.

Step 1.

$$\Delta(\Gamma) = 3$$
.

Step 2.

 Γ has no $C_5 \mid C_3$ subgraph.

Let Γ be a connected self 2-distance graph with no square. Then either Γ is an odd cycle or it is the edged product $C_5|C_3$.

Step 1.

$$\Delta(\Gamma) = 3$$
.

Step 2.

 Γ has no $C_5 \mid C_3$ subgraph.

Step 3.

Γ has no pentagon.

Step 4.

Γ has no hexagon.

Step 5.

Γ has no cycle of length exceeding three.

Step 6.

Triangles in Γ have disjoint vertices.

Step 6.

Triangles in Γ have disjoint vertices.

Step 7.

$$|E(L(\Gamma))| = |E(\Gamma_2)| + 3\nabla(\Gamma).$$

 Γ has exactly three pendants.

 Γ has exactly three pendants.

Proof.

Let $\Gamma' = \Gamma(\Delta \mapsto \bullet).$ Then Γ' is a tree.

 Γ has exactly three pendants.

Proof.

Let $\Gamma' = \Gamma(\Delta \mapsto \bullet).$ Then Γ' is a tree.

 Γ has exactly three pendants.

Proof.

Let
$$\Gamma' = \Gamma(\Delta \mapsto \bullet)$$
. Then Γ' is a tree.

Put
$$v=|V(\Gamma)|,\ v'=|V(\Gamma')|,\ e=|E(\Gamma)|$$
 and $e'=|E(\Gamma')|.$ Then
$$\begin{cases} v'=v-2\nabla(\Gamma),\\ e'=e-3\nabla(\Gamma),\\ e'=v'-1 \end{cases} \Longrightarrow \nabla(\Gamma)=e-v+1$$

Γ has exactly three pendants.

Proof.

Let $\Gamma' = \Gamma(\Delta \mapsto \bullet)$. Then Γ' is a tree.

Put
$$v=|V(\Gamma)|,\ v'=|V(\Gamma')|,\ e=|E(\Gamma)|$$
 and $e'=|E(\Gamma')|.$ Then
$$\begin{cases} v'=v-2\nabla(\Gamma),\\ e'=e-3\nabla(\Gamma),\\ e'=v'-1 \end{cases} \Longrightarrow \nabla(\Gamma)=e-v+1$$

$$e'=v'-1$$

If n_i (i = 1, 2, 3) is the number of vertices of degree i in Γ , then

$$\begin{cases} |V(\Gamma)| = n_1 + n_2 + n_3, \\ |E(\Gamma)| = \frac{1}{2}(n_1 + 2n_2 + 3n_3), & \Longrightarrow n_1 = 3 \\ |E(L(\Gamma))| = n_2 + 3n_3, \end{cases}$$

Step 9.

Every triangle of Γ has a vertex of degree 2.

Step 10.

Γ has a triangle with two vertices of degree 2.

Suppose on the contrary. Then Γ must be

for some $a,b,d\geq 1$ and $1\neq c\geq 0$. Then $d_{\Gamma}(\text{triangle},\text{claw})=c$ and

$$d_{\Gamma_2}(ext{triangle}, ext{claw}) = egin{cases} rac{c+4}{2}, & c ext{ is even}, \ & & \ rac{c-3}{2}, & c ext{ is odd}. \end{cases}$$

Hence, c = 4. On the other hand,

$$|E(\Gamma)| = a + b + c + d + 4$$

and

$$|E(\Gamma_2)| = a + b + c + d + 5 - \left[\frac{1}{d}\right]$$

when $c \ge 2$. Then d=1 and $a\pm 1, b\mp 1=2,3$, from which it follows that $\Gamma_2 \not\cong \Gamma$, a contradiction.

Step 10.

Γ has no triangle with two vertices of degree 2.

For some $a, b \ge 0$ and $c \ge 1$, Γ is isomorphic to

Since

$$|E(\Gamma)| = a + b + c + 9$$

and

$$|E(\Gamma_2)| = a + b + c + 8 + \left[\frac{1}{a+1}\right] + \left[\frac{1}{b+1}\right],$$

we have ab = 0. Also, c = 1.

• $|A| \ge 3$ otherwise A has a vertex of degree ≥ 4 in Γ_2 .

- $|A| \ge 3$ otherwise A has a vertex of degree ≥ 4 in Γ_2 .
- $|B| \ge 4$ since triangles in Γ_2 are at distance at least five.

- $|A| \ge 3$ otherwise A has a vertex of degree ≥ 4 in Γ_2 .
- $|B| \ge 4$ since triangles in Γ_2 are at distance at least five.
- Γ has three claws, a contradiction.

Finally assume that b = 0.

Finally assume that b = 0.

• $|A| \neq 1$ otherwise two induced claws are connected with two triangles with distance zero while it is not true in Γ_2 .

Finally assume that b = 0.

- $|A| \neq 1$ otherwise two induced claws are connected with two triangles with distance zero while it is not true in Γ_2 .
- $|A| \ge 3$ otherwise |A| = 2 and A has a vertex of degree four in Γ_2 .

Finally assume that b = 0.

- $|A| \neq 1$ otherwise two induced claws are connected with two triangles with distance zero while it is not true in Γ_2 .
- $|A| \ge 3$ otherwise |A| = 2 and A has a vertex of degree four in Γ_2 .
- $|B| \ge 3$ for otherwise it has a vertex of degree four in Γ_2 .

Finally assume that b = 0.

- $|A| \neq 1$ otherwise two induced claws are connected with two triangles with distance zero while it is not true in Γ_2 .
- $|A| \ge 3$ otherwise |A| = 2 and A has a vertex of degree four in Γ_2 .
- $|B| \ge 3$ for otherwise it has a vertex of degree four in Γ_2 .
- \bullet Γ_2 has three induced claws, a contradiction.

Let Γ be a self 2-distance graph with disjoint triangles. Then either Γ is an odd cycle or it is the edged product $C_5 \mid C_3$.

Let Γ be a self 2-distance graph with disjoint triangles. Then either Γ is an odd cycle or it is the edged product $C_5 \mid C_3$.

Step 1.

$$\Delta(\Gamma) = 3$$
.

Let Γ be a self 2-distance graph with disjoint triangles. Then either Γ is an odd cycle or it is the edged product $C_5 \mid C_3$.

Step 1.

$$\Delta(\Gamma)=3.$$

Step 2.

If Γ has no $C_5 \mid C_3$ subgraph.

Let Γ be a self 2-distance graph with disjoint triangles. Then either Γ is an odd cycle or it is the edged product $C_5 \mid C_3$.

Step 1.

$$\Delta(\Gamma)=3.$$

Step 2.

If Γ has no $C_5 \mid C_3$ subgraph.

Let Γ be a self 2-distance graph with disjoint triangles. Then either Γ is an odd cycle or it is the edged product $C_5 \mid C_3$.

Step 1.

$$\Delta(\Gamma) = 3$$
.

Step 2.

If Γ has no $C_5 \mid C_3$ subgraph.

Step 3.

The graph Γ has no hexagon.

u is adjacent to a, b, d, e in $(\Gamma_2)_2$

Step 4.

The graph Γ has no pentagon.

Step 5.

The graph Γ has no heptagon.

 $(\Gamma_2)_2$ has triangles $\{a, e, u\}$ and $\{a, d, u\}$

Step 6.

The graph Γ has no octagon.

u is adjacent to a, d, e, h in $(\Gamma_2)_2$

Step 7.

The graph Γ has no square.

Corollary

There is no cubic self 2-distance graph.

Let Γ be a self 2-distance graph with no diamond as subgraph. Then either Γ is an odd cycle, it is the edged product $C_5 \mid C_3$, or it is isomorphic to one the following graphs:

Definition

A graph Γ with v vertices is strongly regular of degree k if there are integers λ and μ such that every two adjacent vertices have λ common neighbours and every two non-adjacent vertices have μ common neighbours. The numbers (v,k,λ,μ) are the parameters of the corresponding graph.

¹J. J. Seidel, A survey of two-graphs in *Proc. Int. Coil. Teorie Combinatorie*, I (1973), Acad. Naz. Lincei (1976), 481–511.

Definition

A graph Γ with v vertices is strongly regular of degree k if there are integers λ and μ such that every two adjacent vertices have λ common neighbours and every two non-adjacent vertices have μ common neighbours. The numbers (v,k,λ,μ) are the parameters of the corresponding graph.

Theorem (Seidel¹)

Every strongly regular self 2-distance graphs is a self-complimentary graph and has parameters (4t+1,2t,t-1,t) where the number of vertices is a sum of two squares.

¹J. J. Seidel, A survey of two-graphs in *Proc. Int. Coil. Teorie Combinatorie*, I (1973), Acad. Naz. Lincei (1976), 481–511.

Introduction Preliminary results Main results Open problems

Conjecture

There are no regular self 2-distance graphs of odd degree.

Introduction Preliminary results Main results Open problems

Conjecture

There are no regular self 2-distance graphs of odd degree.

Conjecture

Every self 2-distance graph is 2-connected.

Introduction Preliminary results Main results Open problems

Thank You for Your Attention!