# 1 Sortowanie szybkie

#### 1.1 QUICK\_SORT

Algorytm QUICK\_SORT polega na wyborze elementu zwanego pivotem, który jest ostatnim elementem tablicy. Następnie za pomocą PARITION dzieli tablicę na dwie części: elementy mniejsze od pivota znajdują się po jego lewej stronie, a większe po prawej. Po podziale rekurencyjnie sortuje obie podtablice. Średnia złożoność czasowa tego algorytmu wynosi  $O(n\log n)$ . Jednak w najgorszym przypadku, gdy podział jest bardzo nierówny (np. dla tablicy posortowanej), czas działania wzrasta do  $O(n^2)$ .

# 1.2 QUICK\_SORT-z dwoma pivotami

QUICK\_SORT2 to modyfikacja, która wykorzystuje dwa pivoty zamiast jednego. Tablica dzielona jest na trzy części: elementy mniejsze od pierwszego pivota, elementy pomiędzy dwoma pivotami oraz elementy większe od drugiego pivota. Podczas PARTITION2 algorytm najpierw porównuje oba pivoty i w razie potrzeby zamienia je miejscami, aby pierwszy pivot był mniejszy od drugiego. Następnie elementy są przypisywane do odpowiednich części: na początek (mniejsze niż pierwszy pivot), na koniec (większe niż drugi pivot) lub pozostają między pivotami. Po partycjonowaniu algorytm rekurencyjnie sortuje każdą z trzech części tablicy.

Tabela 1: Liczba porównań i przypisań dla QUICK\_SORT i QUICK\_SORT2 dla liczb z zakresu [-100,100]

| Długość tablicy | QS:porównania | QS: przypisania | QS2: porównania | QS2: przypisania |
|-----------------|---------------|-----------------|-----------------|------------------|
| 10              | 38            | 36              | 39              | 58               |
| 100             | 802           | 744             | 530             | 682              |
| 200             | 1725          | 1794            | 1149            | 1558             |
| 400             | 4002          | 3762            | 2659            | 3264             |
| 600             | 6621          | 6866            | 4088            | 5424             |
| 800             | 9262          | 9674            | 6325            | 8524             |
| 1000            | 11873         | 11104           | 7942            | 11026            |

Wykorzystanie dwóch pivotów zmniejsza liczbę poziomów rekurencji. Dzięki temu algorytm staje się bardziej wydajny pod względem liczby porównań i przypisań, szczególnie w przypadku dużych, zróżnicowanych zbiorów danych. Wprowadzenie podwójnego pivota optymalizuje proces sortowania i zmniejsza ryzyko degeneracji algorytmu, co czyni go bardziej wszechstronnym w praktyce.

# 2 Sortowanie przez zliczanie i sortowanie pozycyjne

## 2.1 COUNTING\_SORT

Algorytm ten wykorzystuje tablicę pomocniczą do zliczania wystąpień poszczególnych elementów w zbiorze danych. Jest to algorytm stabilny i działa w czasie liniowym O(n). Dla każdego elementu w tablicy A obliczana jest cyfra na określonej pozycji. Cyfra ta jest obliczana przy użyciu wyrażenia:

$$\left(\frac{A[i]}{k}\right)\%d$$

gdzie:

- k to miejsce,
- d to liczba cyfr (w systemie dziesiętnym jest to 10),
- A[i] to element tablicy A.

Wartości cyfr są zliczane w tablicy pomocniczej C.

#### 2.2 RADIX\_SORT

RADIX\_SORT to algorytm sortowania oparty na metodzie sortowania pozycyjnego. Zamiast porównywać liczby bezpośrednio, sortuje dane w kolejnych krokach, zaczynając od najmniej znaczącej cyfry (cyfrach jedności), a kończąc na najbardziej znaczącej cyfrze. Używa COUNTING\_SORT do sortowania cyfr na kolejnych miejscach w liczbach

## 2.3 RADIX\_SORT-dla liczb ujemnych

Ta modyfikacja algorytmu Radix Sort umożliwia sortowanie liczb zarówno dodatnich, jak i ujemnych. Przed rozpoczęciem sortowania, dane są dzielone na liczby dodatnie i ujemne. Liczby ujemne są przechowywane w osobnej tablicy, a następnie przekształcone na liczby dodatnie. Następnie, takie dwie tablice są sortowane przy użyciu klasycznego RADIX\_SORT.

```
void RADIX_SORT_WITH_NEGATIVES(int A[], int n, int d) {
   int negative_count = 0, positive_count = 0;
   for (int i = 0; i <= n; i++){
       if (A[i] < 0) {
            negative_count++;
            liczbaPorownan++;
       }
   if (A[i] > 0) {
            positive_count++;
            liczbaPorownan++;
       }
}
```

```
}
14
        int negatives[negative_count], positives[positive_count];
        int neg_index = 0, pos_index = 0;
16
        for (int i = 0; i < n; i++) {</pre>
            if (A[i] < 0) {</pre>
18
                 negatives[neg_index++] = -A[i];
19
                 liczbaPrzypisan++;
20
21
                 positives[pos_index++] = A[i];
                 liczbaPrzypisan++;
23
24
            liczbaPorownan++;
25
        }
```

Podstawa d wpływa również na rozmiar bucketów, do których będą trafiały elementy w trakcie sortowania. Zwiększenie liczby grup (w przypadku większej podstawy d) może pomóc w szybszym rozdzieleniu elementów, ale z drugiej strony wiąże się z większymi wymaganiami pamięciowymi. Zmiana podstawy może wpłynąć na efektywność przestrzenną i czasową algorytmu. Większa podstawa może zmniejszyć liczbę iteracji. Idzie zauważyć, że wzrost ten jest liniowy.



| Długość tablicy | Podstawa 2         | Podstawa 8         | Podstawa 10        | Podstawa 16       |
|-----------------|--------------------|--------------------|--------------------|-------------------|
| 5               | Porównania: 12     | Porównania: 13     | Porównania: 13     | Porównania: 13    |
|                 | Przypisania: 220   | Przypisania: 144   | Przypisania: 137   | Przypisania: 173  |
| 10              | Porównania: 23     | Porównania: 23     | Porównania: 23     | Porównania: 18    |
|                 | Przypisania: 1061  | Przypisania: 276   | Przypisania: 207   | Przypisania: 151  |
| 100             | Porównania: 203    | Porównania: 203    | Porównania: 202    | Porównania: 202   |
|                 | Przypisania: 4261  | Przypisania: 1873  | Przypisania: 1454  | Przypisania: 1221 |
| 200             | Porównania: 403    | Porównania: 403    | Porównania: 403    | Porównania: 402   |
|                 | Przypisania: 8461  | Przypisania: 3673  | Przypisania: 2867  | Przypisania: 2331 |
| 400             | Porównania: 802    | Porównania: 803    | Porównania: 803    | Porównania: 803   |
|                 | Przypisania: 16820 | Przypisania: 7273  | Przypisania: 5667  | Przypisania: 4654 |
| 600             | Porównania: 1203   | Porównania: 1203   | Porównania: 1202   | Porównania: 1202  |
|                 | Przypisania: 22261 | Przypisania: 10873 | Przypisania: 8454  | Przypisania: 6987 |
| 800             | Porównania: 1603   | Porównania: 1602   | Porównania: 1603   | Porównania: 1602  |
|                 | Przypisania: 33661 | Przypisania: 23851 | Przypisania: 12848 | Przypisania: 9662 |

Tabela 2: Porównanie wyników dla różnych podstaw w Radix Sort z danymi dodatnimi i ujemnymi

# 3 Sortowanie kubełkowe

## 3.1 BUCKET\_SORT

Algorytm BUCKET\_SORT jest sortowaniem rozdzielającym, które polega na podzieleniu danych wejściowych na "kubełki", a następnie sortowaniu ich indywidualnie za pomocą innego algorytmu sortowania (zwykle INSERTION\_SORT). Po posortowaniu elementów w kubełkach, wyniki są scalane z powrotem w jedną posortowana tablice.

Pierwsza wersja algorytmu zakłada, że dane wejściowe są liczbami zmiennoprzecinkowymi mniejszymi od 1 i większymi, bądź równymi zero.

#### 3.1.1 BUCKET\_SORT dla dowolnych liczb

Druga wersja algorytmu została zmodyfikowana, aby działała dla liczb **dowolnego przedziału**. Zakłada się, że dane mogą pochodzić z dowolnego przedziału liczbowego.

- Znalezienie min i max: Pierwszym krokiem jest znalezienie minimalnej (minValue) i maksymalnej (maxValue) wartości w tablicy. Dzięki temu możemy obliczyć zakres danych.
- Przypisanie do kubełków: Następnie dane są rozdzielane na kubełki w sposób, który uwzględnia minimalną i maksymalną wartość.
  - gdzie range to różnica między największą a najmniejszą wartością w tablicy. Dzięki temu każdemu elementowi przypisywana jest odpowiednia pozycja w jednym z kubełków.

```
void BUCKET_SORT2(double A[], int n) {
3
            double minValue = A[0];
            double maxValue = A[0];
            for (int i = 1; i < n; i++) {
                if (A[i] < minValue) {</pre>
                    minValue = A[i];
11
                if (A[i] > maxValue) {
12
                    maxValue = A[i];
                }
            }
16
            double range = maxValue - minValue;
            List B[n];
18
            for (int j = 0; j < n; j++) {
                B[j] = List();
20
            for (int i = 0; i < n; ++i) {</pre>
                int bucketIndex = static_cast<int>(((A[i] -
25
                    minValue) / range) * n);
                if (bucketIndex == n) bucketIndex --;
26
                LIST_INSERT(B[bucketIndex], new Node(A[i]));
27
```

• Dalej kod działa tak jak dla "normalnego" BUCKET\_SORT, czyli sortujemy liczby w kubełkach używając INSERTION\_SORT, a następnie scalając.

# 3.2 Złożoność algorytmu

Złożoność czasowa algorytmu zależy od kilku czynników, takich jak liczba kubełków, liczba elementów w tablicy oraz wybrany algorytm do sortowania danych w kubełkach. Złożoność dla BUCKET\_SORT w najlepszym przypadku wynosi O(n), ale w najgorszym przypadku może osiągnąć  $O(n^2)$ , szczególnie gdy dane są nierównomiernie rozłożone w kubełkach.

# 4 INSERTION\_SORT na listach

Warto zwrócić uwagę, że algorytm wykorzystany przez BUCKET\_SORT, który używany jest do posortowania elementów wewnątrz poszczególnych bucketów. W kontekście implementacji na listach dwukierunkowych, INSERTION\_SORT operuje bezpośrednio na węzłach, co pozwala na sprawne zarządzanie strukturą listy. Jest on skuteczny dla małych zbiorów danych, w szczególności w kubełkach.

# 4.1 Porównanie wydajności algorytmów

QUCIK\_SORT jest bardziej wszechstronny, natomiast BUCKET\_SORT działa najlepiej, gdy dane są równomiernie rozłożone w małym zakresie.



Tutaj porównujemy działanie algorytmów dla liczb z przedziału [0,1):



Jak widać różnica w działaniu tych algorytmów jest niewielka, najbardziej efektywnym algorytmem pozostaje BUCKET\_SORT.