FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

TIN Teoretická informatika

1. domáca úloha

Obsah

1	1. príklad 1.1 (a) 1.2 (b) 1.3 (c)	2 2 2 2
2	2. príklad	3
3	3. príklad	4
4	4. príklad	4
5	5. príklad	4
6	Literatúra	5

1 1. príklad

1.1 (a)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa Vety~3.23~[1](str.~č.~50) platí, že trieda regulárnych jazykov \mathcal{L}_3 je uzavretá voči prieniku a doplnku (komplementu).

Využitím hore uvedenej Vety 3.23 a vzťahu možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_3$$

1.2 (b)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa Vety 4.27 [1](str. č. 96) platí, že trieda deterministických bezkontextových jazykov \mathcal{L}_2^D je uzavretá voči prieniku a doplnku (komplementu).

Využitím hore uvedenej Vety 4.27 a vzťahu možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2^D$$

1.3 (c)

Predpokladajme že $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2$ je pravdivý vzťah.

Ak berieme v úvahu, že $L_1 = \Sigma^*$, tak musí platiť $\Sigma^* \setminus L_2 \in \mathcal{L}_2 \Rightarrow \overline{L_2} \in \mathcal{L}_2 \Rightarrow \underline{\mathbf{SPOR}}$

Vznikol nám spor z toho dôvodu, že podľa *Vety 4.24* [1](str. č. 95) platí, že bezkontextové jazyky nie sú uzavreté voči doplnku.

2 2. príklad

$$\begin{split} M_L &= (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \\ Q &= \{q_0, q_1, q_2, q_3\} \\ \Sigma &= \{\#, 0, 1, 2\} \\ \Gamma &= \{Z_0, 1\} \\ F &= \{q_3\} \\ \delta \colon \quad \delta(q_0, 0, Z_0) &= \{(q_0, Z_0)\} \\ \delta(q_0, 1, Z_0) &= \{(q_0, 1Z_0)\} \\ \delta(q_0, 2, Z_0) &= \{(q_0, 11Z_0)\} \\ \delta(q_0, 0, 1) &= \{(q_0, 11)\} \\ \delta(q_0, 1, 1) &= \{(q_0, 11)\} \\ \delta(q_0, 2, 1) &= \{(q_0, 11)\} \\ \delta(q_0, \#, 1) &= \{(q_1, 1)\} \\ \delta(q_0, \#, Z_0) &= \{(q_1, Z_0)\} \\ \delta(q_1, 2, 1) &= \{(q_2, \epsilon)\} \\ \delta(q_2, \epsilon, 1) &= \{(q_1, \epsilon)\} \\ \delta(q_1, 1, 1) &= \{(q_1, \epsilon)\} \\ \delta(q_1, 0, 1) &= \{(q_1, Z_0)\} \\ \delta(q_1, \epsilon, Z_0) &= \{(q_3, \epsilon)\} \end{split}$$

3 3. príklad

$$L = \{ w_1 \# w_2 \mid w_1, w_2 \in \Sigma^*, \#_1(w_1) + (2 * \#_2(w_1)) = \#_1(w_2) + (2 * \#_2(w_2)) \}$$

4 4. príklad

ALGORITMUS

Vstup: Pravá lineárna gramatika $G_P = (N, \Sigma, P, S)$

Výstup: Ľavá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G_P) = L(G_L)$ **Metóda**:

- 1.) $G_P = (N \cup \{S_0\}, \Sigma, P \cup \{S_0 \to S\}, S_0)$
- 2.) $N' = N \cup \{S'\}$
- 3.) $\Sigma' = \Sigma$
- 4.) P': $\forall A, B \in N, \ p \in \Sigma^*$: $(B \to Ap) \in P' \iff (A \to pB) \in P \cup \{S_0 \to S\}$ $(A \to p) \in P' \iff (S_0 \to pA) \in P \cup \{S_0 \to S\}$ $(S' \to Ap) \in P' \iff (A \to p) \in P \cup \{S_0 \to S\}$

DEMONŠTRÁCIA

Vstup: Pravá lineárna gramatika $G = (\{S, A, B\}, \{a, b\}, P, S)$

P:
$$S \rightarrow abA \mid bS$$

 $A \rightarrow bB \mid S \mid ab$
 $B \rightarrow \epsilon \mid aA$

Výstup: Ľavá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G) = L(G_L)$

5 5. príklad

$$L = \{ w \in \{a, b\}^* \mid \#_a(w) \bmod 3 \neq 0 \land \#_b(w) > 0 \}$$

6 Literatúra

[1] M. Češka, T. Vojnar, A. Smrčka, A. Rogalewicz: Teoretická informatika - Studijní text.
 2018-08-23, [Online; Accessed: 2018-10-15].
 URL: http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf