Separating Hyperplanes

Carlos Valle

Departamento de Informática Universidad Técnica Federico Santa María

cvalle@inf.utfsm.cl

November 25, 2015

Overview

- Introduction
- Perceptron Algorithm
- Optimal Hyperplane
- 4 Kernels
- Non-separable case
- Optimization methods

Separating Hyperplanes

- So far, we have seen learning algorithms which incidentally build a hyperplane to separate data.
- No we will see an algorithm that explicitly try to separate the data into different classes as well as possible.
- Finally, we will study an approach that try to construct an optimal margin classifier.
- Conveniently, we will define our targets $y_m \in \{-1, 1\}$
- Also, we will rearrange our notation for an hyperplane or affine set L
 as:

$$f(x) = w^T \mathbf{x} + b$$

• This means $b = \beta_0$, and $w = (\beta_1, \beta_2, \dots, \beta_I)^T$

Separating Hyperplanes (2)

Separating Hyperplanes (3)

- For any two points $\mathbf{x}_1, \mathbf{x}_2$ in L we have $w^T \mathbf{x}_1 = -b$, $w^T \mathbf{x}_2 = -b$
- Then, $w^T(\mathbf{x}_1 \mathbf{x}_2) = 0$
- \bullet Hence, $w^* = \frac{w}{||w||}$ is orthonormal to L
- ullet The hyperplane L defines a half-space of the form

$$x: w^T x \ge b$$

- where $w^T(\mathbf{x} \mathbf{x}_0) \ge 0$ means that the angle between $\mathbf{x} \mathbf{x}_0$ is acute $([-\pi/2; \pi/2])$.
- Thus, $w^{*T}(\mathbf{x}-\mathbf{x}_0)=\frac{w^T\mathbf{x}+b}{||w||}=\frac{f(\mathbf{x})}{||f'(\mathbf{x})||}$ is the signed distance from \mathbf{x} to L
- Therefore, $f(\mathbf{x})$ is proportional to the signed distance from \mathbf{x} to the hyperplane defined by $f(\mathbf{x})=0$.

Minimizing the functional margin

• As we have seen, the functional margin of a single point (\mathbf{x}_m,y_m) is given by

$$\gamma_m = y_m f(\mathbf{x}_m) = y_m (w^T \mathbf{x}_m + b)$$

- Then, it seems natural that the hypothesis maximizes the margin of the training examples.
- This is equivalent to minimizes

$$J(\mathbf{w}, b) = -y_m(\mathbf{w}^T \mathbf{x}_m + b)$$

Gradient descent rule

• For a single example (\mathbf{x}_m, y_m) , the derivatives of $J(\mathbf{w}, b)$ respect to w and b are

$$\frac{\partial J(\mathbf{w}, b)}{\partial w} = -y_m \mathbf{x}_m$$

$$\frac{\partial J(\mathbf{w}, b)}{\partial b} = -y_m$$

• Then, gradient descent rule is

$$\mathbf{w}^{p+1} = \mathbf{w}^p + \eta y_m \mathbf{x}_m$$
$$b^{p+1} = b^p + \eta y_m$$

Primal Perceptron algorithm

Algorithm 1 Primal perceptron algorithm

```
1: Given a training set S
 2: w_0 \leftarrow 0; b_0 \leftarrow 0; p \leftarrow 0
 3: R \leftarrow \max_{1 \le m \le M} ||x_m||
 4: repeat
 5:
          for m=1 to M do
               if y_m(\mathbf{w}^T\mathbf{x}_m + b_p) \leq 0 then
 6:
 7:
                    w_{n+1} \leftarrow w_n + \eta y_m x_m
                    b_{p+1} \leftarrow b_p + \eta y_m R^2
 8:
 9:
                    p \leftarrow p + 1
               end if
10:
11:
          end for
12: until No mistakes are made within the loop
13: Output: (\mathbf{w}_n, b_n)
```

What does the weight update is doing?

Primal Perceptron algorithm (2)

- ullet Note that the contribution of ${f x}_m$ to the weight update is $lpha_m\eta y_mx_m$
- where α_m is the times that x_m is misclassified.
- Then, the number of errors is

$$k = \sum_{m=1}^{M} \alpha_m$$

•

$$w = \sum_{m=1}^{M} \alpha_m y_m x_m$$

- ullet The algorithm directly modifies w and b.
- If exists an hyperplane that correctly classifies the training data, this implies that data is linearly separable

Dual Perceptron algorithm

Observe that we can define the boundary decision as

$$f(\mathbf{x}) = \operatorname{sign}(y(w^T \mathbf{x} + b))$$

$$= \operatorname{sign}\left(y\left(\left(\sum_{m=1}^{M} \alpha_m y_m \mathbf{x}_m\right)^T \mathbf{x} + b\right)\right)$$
(2)

$$= \operatorname{sign}\left(y\left(\sum_{j=1}^{m} \alpha_m y_m(\mathbf{x}_m^T \mathbf{x}) + b\right)\right)$$
(3)

- ullet To compute the boundary decision we only need $\langle {f x}_m, {f x}
 angle$
- Note that the decision boundary does not change if we multiply $w^T\mathbf{x} + b$ for an scalar $c \neq 0$. Thus, we can choose the hyperplane $\left(\frac{\mathbf{w}}{||\mathbf{w}||}\right)^T\mathbf{x} + \frac{b}{||\mathbf{w}||}$

Dual Perceptron algorithm (2)

Algorithm 2 Dual perceptron algorithm

```
1: Given a training set S
 2: \alpha \leftarrow 0: b_0 \leftarrow 0
 3: R \leftarrow \max_{1 \le m \le M} ||\mathbf{x}_m||
 4: repeat
 5:
          for m=1 to M do
                if \left(y_m\left(\sum_{l=1}^L \alpha_l y_l \langle \mathbf{x}_l, \mathbf{x}_m \rangle + b\right)\right) \leq 0 then
 6:
                     \alpha_m \leftarrow \alpha_m + 1
                     b \leftarrow b + n u_m R^2
 8:
 9:
                end if
           end for
10:
11: until No mistakes are made within the loop
12: Output: (\alpha, b) to define f(\mathbf{x}) according to equation (1)
```

Perceptron problem

- Minsky,1969
- Not all problem are linearly separable

Geometric margin

- Let γ_m the Geometric margin of an example x_m be its distance from the hyperplane
- We have that $\mathbf{x}_m \hat{\gamma}_m \cdot \frac{\mathbf{w}}{||\mathbf{w}||}$ is the nearest point of the plane along the direction of \mathbf{w} .

Geometric margin (2)

Moreover, this point belongs to the hyperplane which implies

$$\mathbf{w}^{T} \left(\mathbf{x}_{m} - \hat{\gamma}_{m} \cdot \frac{\mathbf{w}}{||\mathbf{w}||} \right) + b = 0$$

$$\hat{\gamma}_{m} \cdot \frac{\mathbf{w}^{T} \mathbf{w}}{||\mathbf{w}||} = \mathbf{w}^{T} \mathbf{x}_{m} + b$$

$$\hat{\gamma}_{m} \cdot \frac{||\mathbf{w}||^{2}}{||\mathbf{w}||} = \mathbf{w}^{T} \mathbf{x}_{m} + b$$

$$\hat{\gamma}_{m} = \left(\frac{\mathbf{w}}{||\mathbf{w}||} \right)^{T} \mathbf{x}_{m} + \frac{b}{||\mathbf{w}||}$$

$$\hat{\gamma}_{m} = \frac{\gamma}{||\mathbf{w}||}$$

 \bullet This implies that the functional margin is equal to the geometric marginal when $||\mathbf{w}||=1$

Optimally Separating Hyperplanes

• We would like to find a function $f_{\mathbf{w},b}(\mathbf{x})$ to be the maximum of the geometric margins of the individual training examples

$$\max_{\gamma, \mathbf{w}, b} \qquad \gamma$$
s.t.
$$y_m(\mathbf{w}^T x_m + b) \ge \gamma, \ m = 1, \dots, M$$

$$||\mathbf{w}|| = 1$$

- However, the $||\mathbf{w}|| = 1$ constraint makes this problem not easy to solve (non convex)
- This is equivalent to

$$\begin{aligned} \max_{\gamma, \mathbf{w}, b} & \frac{\gamma}{||\mathbf{w}||} \\ \text{s.t.} & y_m(\mathbf{w}^T x_m + b) \geq ||\mathbf{w}|| \gamma, \ m = 1, \dots, M \end{aligned}$$

Optimally Separating Hyperplanes (2)

• We can arbitrary set $\gamma=1/||\mathbf{w}||$ Thus, the optimization problem above is equivalent to

$$\begin{aligned} & \min_{\mathbf{w},b} & & \frac{1}{2}||\mathbf{w}||^2 \\ & \text{s.t.} & & y_m(\mathbf{w}^Tx_m+b) \geq 1, \ m=1,\dots,M \end{aligned}$$

 This is a convex quadratic optimization problem (quadratic criterion with linear inequality constraints)

Lagrange duality

Consider the following optimization problem:

$$egin{array}{ll} \min_{\mathbf{w}} & f(\mathbf{w}) \\ ext{s.t.} & h_j(\mathbf{w}) = 0, \ j = 1, \dots, J \end{array}$$

We define the Lagrangian to be

$$\mathcal{L}(\mathbf{w}, \lambda) = f(\mathbf{w}) + \sum_{j=1}^{J} \lambda_j h_j(\mathbf{w}),$$

- ullet Where λ_j are the Lagrange Multipliers
- ullet Stationary points are those points where the partial derivatives of ${\cal L}$ are zero:

$$\frac{\delta \mathcal{L}}{\delta w_I} = 0, \frac{\delta \mathcal{L}}{\partial \lambda_j} = 0$$

Primal optimization problem

• Consider the following optimization problem:

$$\begin{aligned} \min_{\mathbf{w}} & f(\mathbf{w}) \\ \text{s.t.} & g_k(\mathbf{w}) \leq 0, \ k = 1, \dots, K \\ & h_j(\mathbf{w}) = 0, \ j = 1, \dots, J \end{aligned}$$

We define the generalized Lagrangian

$$\mathcal{L}(\mathbf{w}, \lambda, \alpha) = f(\mathbf{w}) + \sum_{j=1}^{J} \lambda_j h_j(\mathbf{w}) + \sum_{k=1}^{K} \alpha_k g_k(\mathbf{w}),$$
(4)

• $\lambda_j, j=1,\ldots,J$ and $\alpha_k, k=1,\ldots,K$ are the Lagrange multipliers.

Primal optimization problem (2)

Consider the quantity

$$\theta_{\mathcal{P}}(\mathbf{w}) = \max_{\lambda,\alpha:\alpha_k \ge 0} \mathcal{L}(\mathbf{w},\lambda,\alpha)$$

- Note that $\theta_{\mathcal{P}}(\mathbf{w}) = \infty$ if w violates any constraint. Otherwise, $\theta_{\mathcal{P}}(\mathbf{w}) = f(\mathbf{w})$.
- Hence, the original primal problem defined in equation (4) is equivalent to

$$p^* = \min_{\mathbf{w}} \theta_{\mathcal{P}}(\mathbf{w}) = \min_{\mathbf{w}} \max_{\lambda,\alpha:\alpha_k \ge 0} \mathcal{L}(\mathbf{w}, \lambda, \alpha)$$

Dual optimization problem

Now, consider the quantity

$$\theta_{\mathcal{D}}(\lambda, \alpha) = \min_{\mathbf{w}}(\mathbf{w}, \lambda, \alpha)$$

Now we define the dual problem

$$d^* = \max_{\lambda,\alpha:\alpha_k \ge 0} \theta_{\mathcal{D}}(\lambda,\alpha) = \max_{\lambda,\alpha:\alpha_k \ge 0} \min_{\mathbf{w}} \mathcal{L}(\mathbf{w},\lambda,\alpha)$$

- We obtain the Lagrange dual problem by solving for some primal variable values that minimize the Lagrangian.
- This solution gives the primal variables as functions of the Lagrange multipliers, which are called dual variables.

Dual optimization problem (2)

- So that the new problem is to maximize the objective function with respect to the dual variables under the derived constraints on the dual variables (including at least the nonnegativity).
- However, we must recall the maxmin: for any function $f: Z \times W \mapsto \mathbb{R}$

$$\sup_{\mathbf{z} \in Z} \inf_{\mathbf{w} \in W} f(\mathbf{z}, \mathbf{w}) \leq \inf_{w \in W} \sup_{\mathbf{z} \in Z} f(\mathbf{z}, \mathbf{w}).$$

Thus, in general

$$d^* \le p^*$$

When $d^* = p^*$?

- If f and $g_k, k=1,\ldots,K$ are convex and $h_j, j=1,\ldots,J$ are affine $(h_j(w)=a_j^Tw+b_i)$
- Then, there must exist $\mathbf{w}^*, \lambda^*, \alpha^*$ so that \mathbf{w}^* is the solution to the primal problem and λ^*, α^* are solution to the dual problem. And moreover $d^* = p^* = \mathcal{L}(\mathbf{w}^*, \lambda^*, \alpha^*)$
- Moreover, \mathbf{w}^* , λ^* and α^* satisfy the Karush-Kuhn-Tucker (KKT) conditions:

$$\frac{\delta}{\delta w_i} \mathcal{L}(\mathbf{w}^*, \lambda^*, \alpha^*) = 0, i = 1, \dots, I$$
 (5)

$$\frac{\delta}{\delta \lambda_j} \mathcal{L}(\mathbf{w}^*, \lambda^*, \alpha^*) = 0, j = 1, \dots, J$$
 (6)

$$\alpha_k^* g_k(\mathbf{w}^*) = 0, k = 1, \dots, K \tag{7}$$

$$g_k(\mathbf{w}^*) \leq 0, k = 1, \dots, K \tag{8}$$

$$\alpha_k^* \ge 0, k = 1, \dots, K \tag{9}$$

• Equation (8) is called KKT dual complementary. It implies that if $\alpha_k^* > 0$ means that $g_k(\mathbf{w}^*) = 0$.

Optimal margin classifiers

 Recall our optimization problem for finding the optimal margin classifier:

$$\min_{\mathbf{w},b} \quad \frac{1}{2}||\mathbf{w}||^2$$
s.t.
$$y_m(\mathbf{w}^T x_m + b) \ge 1, m = 1, \dots, M$$

- We can write the constraints as $g_k(\mathbf{w}) = -y_m(\mathbf{w}^T x_m + b) + 1 \leq 0$
- Thus, the Lagrangian for the optimization problem above is given by

$$\mathcal{L}(\mathbf{w}, \lambda, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{m=1}^{M} \alpha_m \left[y_m(\mathbf{w}^T x_m + b) - 1 \right].$$
 (10)

- Note that $\alpha_m > 0$ implies that the margin of the m-th example is equal to one. (geometrical margin $\frac{1}{||\mathbf{w}||}$).
- These points are called support vectors.

Optimal margin classifiers (2)

Lagrangian primal derivatives

- In order to obtain the dual form of the problem
- Let's set the Lagrangian derivative to zero:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda, \alpha) = \mathbf{w} - \sum_{m=1}^{M} \alpha_m y_m \mathbf{x}_m = 0$$

This implies that

$$\mathbf{w} = \sum_{m=1}^{M} \alpha_m y_m \mathbf{x}_m$$

And,

$$\frac{\partial}{\partial b} \mathcal{L}(\mathbf{w}, \lambda, \alpha) = \sum_{m=1}^{M} \alpha_m y_m = 0$$

Wolfe dual

Substituting these in (10) we have the so-called Wolfe dual

•

$$\mathcal{L}(\mathbf{w}, \lambda, \alpha) = \sum_{m=1}^{M} \alpha_m - \frac{1}{2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \alpha_m \alpha_\ell y_m y_\ell x_m^T x_\ell$$

- To satisfy the KKT condition we add the constraints $\alpha_m^* \geq 0, \ m=1,\ldots,M$ and the constraint $\sum_{m=1}^M \alpha_m y_m = 0$.
- Thus, we get the dual optimization problem

$$\begin{aligned} \max_{\alpha} & & \sum_{m=1}^{M} \alpha_m - \frac{1}{2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \alpha_m \alpha_\ell y_m y_\ell \langle x_m, x_\ell \rangle \\ \text{s.t.} & & \alpha_m^* \geq 0, \ m = 1, \dots, M \\ & & & \sum_{m=1}^{M} \alpha_m y_m = 0 \end{aligned}$$

Remarks

- After getting the α_m 's which maximizes the objective function of the dual, we can obtain \mathbf{w}^* .
- ullet Then we can compute b as

$$b^* = -\frac{\max_{m:y_m = -1} \mathbf{w}^{*T} x_m + \min_{m:y_m = 1} \mathbf{w}^{*T} x_m}{2}$$

ullet After obtaining ${f w}^*$ and b^* , our classifier is given by

$$\begin{split} \hat{y} &= f_{\mathbf{w}^*,b^*}(\mathbf{x}) &= \operatorname{sign}\left(\mathbf{w}^{*T}\mathbf{x} + b^*\right) \\ &= \operatorname{sign}\left(\left(\sum_{m=1}^{M} \alpha_m y_m \mathbf{x}_m\right)^T \mathbf{x} + b^*\right) \\ &= \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m y_m \langle \mathbf{x}_m, \mathbf{x} \rangle + b^*\right) \end{split}$$

• Again, we only need the inner products

Implicit map with kernels

- ullet We can map our input features to feature space ${\mathcal F}$ where the problem is linearly separable.
- We use the feature mapping ϕ :

$$\phi : \mathbf{x} \in \mathcal{X} \mapsto \phi(\mathbf{x}) \in \mathcal{F}$$

- Then, we can replace x for $\phi(\mathbf{x})$ in our optimization problem.
- ullet However, we saw that for computing $f_{\mathbf{w}^*,b^*}(\mathbf{x})$ we only need

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$

Kernel function

 Fortunately, we can replace our inner products with a Kernel function to be

$$K(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle, \forall \mathbf{x}, \mathbf{z} \in \mathcal{X}$$

- Note that the kernel function does not depend on the dimension of the feature space \mathcal{F} .
- Consider two points $\mathbf{x}=(x_1,x_2)$ y $\mathbf{z}=(z_1,z_2)$ in a two-dimensional space and the function $K(\mathbf{x},\mathbf{z})=\langle \mathbf{x},\mathbf{z}\rangle^2$

$$\langle \mathbf{x}, \mathbf{z} \rangle^2 = \langle (x_1, x_2), (z_1, z_2) \rangle^2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

$$= \langle (x_1^2, x_2^2, \sqrt{2} x_1 x_2), (z_1^2, z_2^2, \sqrt{2} z_1 z_2) \rangle$$

Kernel function (2)

• The inner product above corresponds to the feature mapping

$$(x_1, x_2) \mapsto \phi(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

- Hence, $K(\mathbf{x}, \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle^2 = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$
- It is easy to compute $K(\mathbf{x}, \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle^d$. Since it induces a future space of $\binom{n+d-1}{d}$ dimensions, to compute $\phi(\mathbf{x})$ becomes computational unfeasible.

Kernel trick

• Fortunately we can use kernels without learning the mapping ϕ (kernel trick):

- Then, we need a square $M \times M$ matrix K, where $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$.
- This matrix is called the Kernel matrix.
- K measures how similar are $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$.

Does any matrix K works?

- If K is a valid kernel, then $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_i) \rangle = K(\mathbf{x}_j, \mathbf{x}_i) = K_{ji}$
- Therefore K must be symmetric.
- Moreover, let $\phi_k(\mathbf{x})$ be the k-th coordinate of the vector $\phi(\mathbf{x})$.
- For any vector z we have

$$\mathbf{z}^{T}Kz = \sum_{i} \sum_{j} z_{i} K_{ij} z_{j}$$

$$= \sum_{i} \sum_{j} z_{i} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle z_{j}$$

$$= \sum_{i} \sum_{j} z_{i} \sum_{k} \phi_{k}(\mathbf{x}_{i}) \phi_{k}(\mathbf{x}_{j}) z_{j}$$

$$= \sum_{k} \sum_{i} \sum_{j} z_{i} \phi_{k}(\mathbf{x}_{i}) \phi_{k}(\mathbf{x}_{j}) z_{j}$$

$$= \sum_{k} \left(\sum_{i} z_{i} \phi_{k}(\mathbf{x}_{i}) \right)^{2}$$

$$> 0$$

Mercer's theorem (simple version)

• Let $K: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ be a Kernel function. Then, for K to be a valid (Mercer) kernel it is necessary and sufficient that for any $\{\mathbf{x}_1, \dots, \mathbf{x}_M\} (m < \infty)$ the corresponding kernel matrix is symmetric and positive semi-definite.

Popular kernel functions

• Gaussian kernel (radial basis)

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{||\mathbf{x} - \mathbf{z}||^2}{2\sigma^2}\right)$$

ullet Polinomial kernel of grade d

$$K(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle + 1)^d$$

Neural Network

$$K(\mathbf{x}, \mathbf{z}) = \tanh(k_1 \langle \mathbf{x}, \mathbf{z} \rangle + k_2)$$

Non-separable case

- So far we assumed that the data is linearly separable.
- Even in these cases the hyperplane constructed by the learning algorithm is susceptible to outliers.

Reformulating the optimization problem (Soft Margin)

 We introduce slack variables in the optimization problem to relax the linearly separable assumption:

$$\min_{\mathbf{w},b} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{m=1}^{M} \xi_m
\text{s.t.} \quad y_m(\mathbf{w}^T x_m + b) \ge 1 - \xi_m, m = 1, \dots, M
\xi_m > 0, m = 1, \dots, M$$
(11)

- The parameter C controls the trade-off between the classification errors and the margin size.
- Now, the Lagrangian is given by

$$\mathcal{L}(\mathbf{w}, b, \xi, \alpha, r) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{m=1}^{M} \xi_m - \sum_{m=1}^{M} \alpha_m \left[y_m(\mathbf{w}^T x_m + b) - 1 + \xi_m \right] - \sum_{m=1}^{M} r_m \xi_r$$

Dual form (norm-1)

- where $\alpha_m \geq 0$ y $r_m \geq 0$
- As before, to find the dual form we have to calculate the derivatives w.r.t. $\mathbf{w}, \boldsymbol{\xi}$ y b

$$\frac{\partial \mathcal{L}(\mathbf{w}, b, \xi, \alpha, r)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{m=1}^{M} y_m \alpha_m \mathbf{x}_m = 0$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, b, \xi, \alpha, r)}{\partial \xi} = C - \alpha_m - r_m = 0$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, b, \xi, \alpha, r)}{\partial b} = \sum_{i=1}^{m} y_m \alpha_m = 0$$

Replacing these constraints into the primal we obtain

$$L(w, b, \xi, \alpha, r) = \sum_{m=1}^{M} \alpha_i - \frac{1}{2} \sum_{m, \ell} y_m y_\ell \alpha_i \alpha_j \langle \mathbf{x}_m, \mathbf{x}_\ell \rangle$$

Dual form (norm-1) (2)

- Observe that the optimization function is the same as the one without adding the slack variables.
- We only add the restrictions $C-\alpha_m-r_m=0$ and $r_m\geq 0$. Thus, we have $\alpha_m\leq C$
- And, we obtain the dual optimization problem:

$$\max_{\alpha} \sum_{m=1}^{M} \alpha_m - \frac{1}{2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \alpha_m \alpha_\ell y_m y_\ell \langle x_m, x_\ell \rangle$$
 (12)

s.t.
$$0 \le \alpha_m^* \le C, m = 1, \dots, M$$
 (13)

$$\sum_{m=1}^{M} \alpha_m y_m = 0 \tag{14}$$

KKT conditions

• The KKT conditions for this problem are

$$\alpha_m[y_m(\langle x_m, \mathbf{w} \rangle + b) - 1 + \xi_m] = 0, m = 1, \dots, M$$

$$\xi_m(\alpha_m - C) = 0, m = 1, \dots, M$$

- Observe that $\xi_m \neq 0 \Rightarrow \alpha_m = C$
- The points with $\xi_m \neq 0$ have a margin lower than $1/||\mathbf{w}||$.

SVM as a penalization method

 Note that the optimization problem in (11) has the same solutions than

$$\min_{\mathbf{w},b} \frac{\lambda}{2} ||\mathbf{w}||^2 + \sum_{m=1}^{M} (1 - y_m f(\mathbf{x}_m))_+$$

- where $\lambda = \frac{1}{C}$
- Then the soft-margin SVM is a convex program for which the objective function is the hinge loss.

ν -SVM

- ullet A problem is to determine the value of C
- This problem is equivalent to find $0 \le \nu \le 1$ in the following optimization problem:

$$\max \ W(\alpha) = -\frac{1}{2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \alpha_m \alpha_\ell y_m y_\ell$$

$$\text{s.t.}: \qquad \sum_{m=1}^{M} y_m \alpha_m = 0$$

$$\sum_{m=1}^{M} \alpha_m \ge \nu$$

$$1/M \ge \alpha_m \ge 0, m = 1, \dots, M$$

- It can be obtained that ν is an upper bound on the fraction of margin errors (and hence also on the fraction of training errors).
- Also, ν is a lower bound on the fraction of SVs.

How to solve the optimization problem?

- How to efficiently solve the above optimization problem?
- We have already seen gradient ascent and Newton's method.
- We will study the SMO algorithm (sequential minimal optimization)
- Before of that, we will visit the coordinate ascent algorithm which is also used later in this course.

Coordinate ascent

Consider the unconstrained optimization problem

$$\max_{\alpha} W(\alpha_1, \alpha_2, \dots, \alpha_p)$$

Coordinate ascent algorithm solve this problem as

Algorithm 3 Coordinate ascent algorithm

- 1: repeat
- 2: **for** m = 1 to M **do**
- 3: $\alpha_m = \operatorname{argmax}_{\hat{\alpha}_m} W(\alpha_1, \alpha_2, \dots, \alpha_{m-1}, \hat{\alpha}_m, \alpha_{m+1} \dots, \alpha_p)$
- 4: end for
- 5: until convergence
 - The order of the variables α_m s can be changed. (choose the one with the largest increase)

Coordinate ascent (2)

• Note that on each step, the algorithm take a step that is parallel to one of the axes (only one variable is being optimized at the time)

SMO

• If we use gradient ascent to optimize the dual problem, according to equation (14) we would have this:

$$\alpha_1 = -y_1 \sum_{m=2}^{M} \alpha_m y_m$$

- We considered the fact that $y_1 \in \{-1, 1\}$.
- Thus, we can't make any change without violating the constraint (14)

Algorithm 4 SMO algorithm

- 1: repeat
- 2: Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two multipliers that will make the biggest progress towards the maximum)
- 3: Reoptimize $W(\alpha)$ with respect to α_i and α_j while the rest multipliers are fixed.
- 4: until convergence

SMO (2)

- Let's reoptimize $W(\alpha)$ respect to α_1 and α_2 .
- From (14) we need that

$$\alpha_1 y_1 + \alpha_2 y_2 = -\sum_{m=3}^{M} \alpha_m y_m = \zeta$$

- Thus, $\alpha_1 = (\zeta \alpha_2 y_2) y_1$
- There is a lower bound L and a upper bound H for α_2 that ensures that $\alpha_1,\alpha_2\in[0,C]$
- Now we can optimize $W(\alpha_1, \alpha_2, \dots, \alpha_m) = W((\zeta \alpha_2 y_2) y_1, \alpha_2, \dots, \alpha_m)$
- Treating $\alpha_3, \dots, \alpha_m$ as a constants we obtain a quadratic function in α_2

SMO (3)

• Solving it we obtain α_2^{raw} . To ensure that $L \leq \alpha_2 \leq H$:

$$\alpha_2^{new} = \begin{cases} H & \text{if } \alpha_2^{raw} > H \\ \alpha_2^{raw} & \text{if } \le \alpha_2^{raw} \le H \\ L & \text{if } \alpha_2^{raw} < L \end{cases}$$

- $\bullet \ \ {\rm Now \ we \ can \ compute} \ \alpha_1^{new}$
- How to pick α_i, α_j ?
- How to compute b*?

Any questions?

