

IIC1253 — Matemáticas Discretas — 1'2019

INTERROGACION 2

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Sea A un conjunto no vacío y $R \subseteq A \times A$.

- 1. Demuestre que si R es antisimétrica, entonces $R \cap R^{-1} \subseteq I_A$.
- 2. Demuestre que si $R \circ R \subseteq R$, entonces R es transitiva.

Pregunta 2

Sea A un conjunto no vacío y $\leq \subseteq A \times A$ un orden parcial. En esta pregunta refiérase siempre a este orden parcial y responda verdadero o falso según corresponda. En caso de ser verdadero, demuestrelo, y en caso de ser falso, de un contra ejemplo y explíquelo.

- 1. Si S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$, entonces \leq es un orden total.
- 2. Si \leq es un orden total, entonces S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$.
- 3. Para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces |S| = 1.

Pregunta 3

Para un conjunto A no vacío, sea $R\subseteq A\times A$ y $T\subseteq A\times A$ dos relaciones de equivalencia.

- 1. Demuestre que $(R \cup T)^t$ es una relación de equivalencia, donde $(\cdot)^t$ es la clausura transitiva $R \cup T$.
- 2. Demuestre que $(R \cup T)^t$ es la menor relación de equivalencia que contiene a R y T, esto es, para toda relación de equivalencia S tal que $R \subseteq S$ y $T \subseteq S$ se tiene que $(R \cup T)^t \subseteq S$.

Pregunta 4

Sean $f: \mathbb{N} \to \mathbb{N}$ y $g: \mathbb{N} \to \mathbb{N}$ dos funciones definidas sobre los números naturales.

- 1. Para $c \in \mathbb{N}$ se define la función constante h_c tal que $h_c(n) = c$ para todo $n \in \mathbb{N}$. Decimos que f es ortogonal a g si $f \circ g = h_0$. Demuestre que f es una función sobreyectiva si, y sólo si, f es ortogonal solo a la función h_0 .
- 2. Suponga que para todo $a, b \in \mathbb{N}$, se cumple que f(a+b) = f(a) + f(b). Demuestre f es una función inyectiva si, y sólo si, $f(1) \neq 0$.