DD2448 Foundations of Cryptography Lecture 6

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

March 27, 2020

Last Lecture: Merkle-Damgård (1/3)

Suppose that we are given a collision resistant hash function

$$f: \{0,1\}^{n+t} \to \{0,1\}^n$$
.

How can we construct a collision resistant hash function

$$h: \{0,1\}^* \to \{0,1\}^n$$

mapping any length inputs?

Last Lecture: Merkle-Damgård (2/3)

Construction.

- 1. Let $x = (x_1, ..., x_k)$ with $|x_i| = t$ and $0 < |x_k| \le t$.
- 2. Let x_{k+1} be the total number of bits in x.
- 3. Pad x_k with zeros until it has length t.
- 4. $y_0 = 0^n$, $y_i = f(y_{i-1}, x_i)$ for i = 1, ..., k + 1.
- 5. Output y_{k+1}

Here the total number of bits is bounded by $2^t - 1$, but this can be relaxed.

Merkle-Damgård (3/3)

Suppose A finds collisions in Merkle-Damgård.

- ▶ If the number of bits differ in a collision, then we can derive a collision from the last invocation of *f*.
- ▶ If not, then we move backwards until we get a collision. Since both inputs have the same length, we are guaranteed to find a collision.

Standardized Hash Functions

Standardized Hash Functions

Despite that theory says it is impossible, in practice people simply live with **fixed** hash functions and use them as if they are randomly chosen functions.

SHA

- ➤ Secure Hash Algorithm (SHA-0,1, and the SHA-2 family) are hash functions standardized by NIST to be used in, e.g., signature schemes and random number generation.
- ➤ SHA-0 was weak and withdrawn by NIST. SHA-1 was withdrawn 2010. SHA-2 family is based on similar ideas but seems safe so far...
- ► All are **iterated** hash functions, starting from a basic **compression function**.

SHA-3

- NIST ran an open competition for the next hash function, named SHA-3. Several groups of famous researchers submitted proposals.
- ► Call for SHA-3 explicitly asked for "different" hash functions.
- ▶ It might be a good idea to read about SHA-1 for comparison.
- ► The competition ended October 2, 2012, and the hash function **Keccak was selected as the winner**.
- ► This was constructed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche,

MACs

Message Authentication Code

Message Authentication Codes (MACs) are used to ensure integrity and authenticity of messages.

Message Authentication Code

- Message Authentication Codes (MACs) are used to ensure integrity and authenticity of messages.
- Scenario:
 - 1. Alice and Bob share a common key k.
 - 2. Alice computes an authentication tag $\alpha = \mathsf{MAC_k}(m)$ and sends (m, α) to Bob.
 - 3. Bob receives (m', α') from Alice, but before accepting m' as coming from Alice, Bob checks that $MAC_k(m') = \alpha'$.

Security of a MAC

Definition. A message authentication code MAC is secure if for a random key k and every polynomial time algorithm A,

$$\Pr[A^{\mathsf{MAC_k}(\cdot)} = (m, \alpha) \land \mathsf{MAC_k}(m) = \alpha \land \forall i : m \neq m_i]$$

is negligible, where m_i is the *i*th query to the oracle MAC_k(·).

Random Oracle As MAC

- ▶ Suppose that $H: \{0,1\}^* \to \{0,1\}^n$ is a random oracle.
- ▶ Then we can construct a MAC as $MAC_k(m) = H(k, m)$.

Could we plug in an iterated hash function in place of the random oracle?

HMAC

- ▶ Let $H: \{0,1\}^* \to \{0,1\}^n$ be a "cryptographic hashfunction", e.g., SHA-256.
- ightharpoonup HMAC_{k1,k2}(x) = $H(k_2||H(k_1||x))$
- This is provably secure under the assumption that
 - ▶ $H(k_1||\cdot)$ is unknown-key collision resistant, and
 - ▶ $H(k_2||\cdot)$ is a secure MAC for fixed-size messages.

CBC-MAC

Let E be a secure block-cipher, and $x = (x_1, \dots, x_t)$ an input. The MAC-key is simply the block-cipher key.

- 1. $y_0 = 000 \dots 0$
- 2. For i = 1, ..., t, $y_i = E_k(y_{i-1} \oplus x_i)$
- 3. Return y_t .

Is this secure?

Universal Hashfunction As MAC

Theorem. A t-universal hashfunction f_{α} for a randomly chosen secret α is an **unconditionally secure** MAC, provided that the number queries is smaller than t.