EG2103 芯片数据手册

MOS 管驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2018年11月11日	EG2103 数据手册初稿

目 录

特性.	
	领域
引脚	
	引脚定义
	引脚描述
	框图
	应用电路
	特性
	极限参数
	典型参数
	开关时间特性
	设计
	Vcc 端电源电压
	输入逻辑信号要求和输出驱动器特性
	自举电路
	日午·55
	SOD8 科萊尼士
	描应引 4.1 4.2 4.4 4.2 4 4.2 7.1 7.2 7.3 8.1 8.2 8.3 8.3

EG2103 芯片数据手册 V1.0

1. 特性

- 高端悬浮自举电源设计,耐压可达 600V
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- VCC 和 VB 端电源带欠压保护
- 低端 VCC 电压范围 10V-20V
- 输出电流能力 IO+/- 0.3 A/0.6A
- 内建死区控制电路
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN 输入通道低电平有效,控制低端 LO 输出
- 外围器件少
- 封装形式: SOP8
- 无铅无卤符合 ROHS 标准

2. 描述

EG2103 是一款高性价比的 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、欠压保护电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器、电源 DC-DC 中的驱动电路。

EG2103 高端的工作电压可达 600V,低端 Vcc 的电源电压范围宽 10V~20V。该芯片输入通道 HIN 内建了一个 200K 下拉电阻, LIN 内建了一个 200K 上拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 IO+/- 0.3/0.6A,采用 SOP8 封装。

3. 应用领域

- 移动电源高压快充开关电源
- 无线充电驱动器变频水泵控制器
- DC-DC 电源
- 无刷电机驱动器

4. 引脚

4.1 引脚定义

图 4-1. EG2103 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述			
1	VCC	Power	芯片工作电源输入端,电压范围 10V-20V,外接一个高频 1uF 旁路			
ı	V	rowei	电容能降低芯片输入端的高频噪声			
			逻辑输入信号高电平有效,控制高端功率 MOS 管的导通与截止			
2	HIN	I	"0"是关闭功率 MOS 管			
			"1"是开启功率 MOS 管			
			逻辑输入信号高电平有效,控制低端功率 MOS 管的导通与截止			
3	LIN	I	"0"是开启功率 MOS 管			
			"1"是关闭功率 MOS 管			
4	GND	GND	芯片的地端。			
5	LO	0	输出控制低端 MOS 功率管的导通与截止			
6	VS	0	高端悬浮地端			
7	НО	0	输出控制高端 MOS 功率管的导通与截止			
8	VB	Power	高端悬浮电源			

5. 结构框图

图 5-1. EG2103 内部电路图

6. 典型应用电路

图 6-1. EG2103 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在 TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
高端悬浮电源	VB	-	-0.3	600	V
高端悬浮地端	VS	-	VB-20	VB+0.3	٧
高端输出	НО	-	VS-0.3	VB+0.3	V
低端输出	LIN	-	-0.3	VCC+0.3	V
电源	VCC	-	-0.3	20	V
高通道逻辑信号 输入电平	HIN	-	-0.3	VCC+0.3	V
低通道逻辑信号 输入电平	LIN	-	-0.3	VCC+0.3	٧
TA	环境温度	-	-40	125	${\mathbb C}$
Tstr	储存温度	-	-55	150	$^{\circ}$
TL	焊接温度	T=10S	-	300	$^{\circ}\!$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, VCC=15V, 负载电容 CL=1nF 条件下

参数名称	符号	测试条件	最小	典型	最大	单位	
电源	Vcc	-	10	15	20	V	
静态电流	lcc	输入悬空, Vcc=15V	-	200	300	uA	
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	2.8	-	-	V	
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.5	V	
输入逻辑信号高 电平的电流	lin(H)	Vin=5V	-	-	30	uA	
输入逻辑信号低 电平的电流	lin(L)	Vin=0V	-10	-	-	uA	
VCC 电源欠压关路	折特性						
Vcc 开启电压	Vcc(on)		7.7	8.7	9.7	٧	
Vcc 关断电压	Vcc (off)	-	7.0	8.0	9.0	V	
VB 电源欠压关断物	寺性						
VB 开启电压	VB(on)	-	7.6	8.6	9.6	V	
VB 关断电压	VB (off)	-	7.0	8.0	9.0	V	
低端输出 LO 开关	时间特性						
开延时	Ton	见图 7-1	-	780	880	nS	
关延时	Toff	见图 7-1	-	220	320	nS	
上升时间	Tr	见图 7-1	-	70	150	nS	
下降时间	Tf	见图 7-1	-	35	70	nS	
高端输出 HO 开关	时间特性						
开延时	Ton	见图 7-2	-	780	880	nS	
关延时	Toff	见图 7-2	-	220	320	nS	
上升时间	Tr	见图 7-2	-	70	150	nS	
下降时间	Tf	见图 7-2	-	35	70	nS	
死区时间特性							
死区时间	DT	见图 7-3 , 无负载电容 CL=0	460	560	660	nS	
IO 输出最大驱动能力							
IO 输出拉电流	IO+	Vo=0V,VIN=VIH	-	0.3	-	А	

		PW≤10uS				
IO 输出灌电流	10-	Vo=12V,VIN=VIL PW≤10uS	-	0.6	-	Α

7.3 开关时间特性

图 7-1. 低端输出 LO 开关时间波形图图

7-2. 高端输出 HO 开关时间波形图

图 7-3. 死区时间波形图

8. 应用设计

8.1 VCC 端电源电压

针对不同的 MOS 管,选择不同的驱动电压,芯片电源电压范围 10V-20V。

8.2 输入逻辑信号要求和输出驱动器特性

EG2103 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥

图腾柱式输出。逻辑信号输入端高电平阀值为 2.8V 以上,低电平阀值为 1.5V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG2103 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 0.6A 和最大输出电流可达 0.3A,高端上桥臂通道可以承受 600V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 780nS、关断传导延时为 220nS。低端输出开通传导延时为 780nS、关断传导延时为 220nS。低端输出开通的上升时间为 70nS、关断的下降时间为 35nS。高端输出开通的上升时间为 70nS、关断的下降时间为 35nS。输入信号和输出信号逻辑功能图如图 8-2:

图8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输入		输出			
输入、输出逻辑					
HIN	IIN	НО	LO		
0	0	0	1		
0	1	0	0		
1	0	0	0		
1	1	1	0		

从真值表可知,在输入逻辑信号 HIN 和LIN不同时为"0"和不同时为"1"情况下,驱动器控制输出 HO、LO 同时为"0"上、下功率管同时关断;当输入逻辑信号 HIN、LIN同时为"0"时,驱动器控制输出 HO 为"0"上管关断,LO 为"1"下管导通;当输入逻辑信号 HIN、LIN同时为"1"时,驱动器控制输出 HO 为"1"上管导通,LO 为"0"下管关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。

8.3 自举电路

EG2103 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N 沟道 MOS 管和低端 N 沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG2103可以使用外接一个自举二极管如图 8-3 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 VC 自举电容已充到足够的电压(VC=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N 沟道 MOS 管的驱动。

图 8-3. EG2103 自举电路结构

9. 封装尺寸

9.1 SOP8 封装尺寸

