National University of Singapore MA2001 Linear Algebra

MATLAB Worksheet 4

Coordinate vectors, Row Space, Column Space, Nullspace

Type **format** rat. Throughout the entire worksheet, we will use the rational format to read the entries of matrices.

A. Coordinate Vectors

Let $S = \{v_1, v_2, \dots, v_k\}$ be a basis for a vector space V. Then every vector in V can be uniquely represented as a linear combination of v_1, \dots, v_k . Precisely, for any $v \in V$, there exist unique numbers $c_1, c_2, \dots, c_k \in \mathbb{R}$ such that

$$\boldsymbol{v} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k.$$

Then the column vector $(c_1, c_2, ..., c_k)$ is called the **coordinate vector** of \boldsymbol{v} relative to S, denoted by $(\boldsymbol{v})_S$.

We shall use the example of V, S, T in Worksheet 3 Section D to find the coordinate vector of $\mathbf{h} = (-1, -3, 0, 1, -2)$ in V relative to the basis T.

Recall that $V = \operatorname{span}(S)$, $S = \{\boldsymbol{g}_1, \boldsymbol{g}_2, \boldsymbol{g}_3, \boldsymbol{g}_4\}$, and $T = \{\boldsymbol{h}_1, \boldsymbol{h}_2, \boldsymbol{h}_3\}$ where

$$\boldsymbol{g}_1 = (1,1,1,1,1), \quad \boldsymbol{g}_2 = (1,-1,2,3,0), \quad \boldsymbol{g}_3 = (-1,-3,0,1,-2), \quad \boldsymbol{g}_4 = (0,1,1,-1,-1)$$

and

$$h_1 = (2, 0, 3, 4, 1), \quad h_2 = (1, 0, 3, 2, -1), \quad h_3 = (1, 2, 2, 0, 0).$$

(i) Input h as a column vector in MATLAB.

(ii) Solve the linear system Tx = h (recall that $T = (h_1 \ h_2 \ h_3)$).

Observing the entries in the column corresponding to \boldsymbol{h} , we obtain $\boldsymbol{h} = -\frac{1}{2}\boldsymbol{h}_1 + \frac{3}{2}\boldsymbol{h}_2 - \frac{3}{2}\boldsymbol{h}_3$. Hence, $(\boldsymbol{h})_T = \left(-\frac{1}{2}, \frac{3}{2}, -\frac{3}{2}\right)$.

B. Row Space

Let $\mathbf{A} = (a_{ij})$ be an $m \times n$ matrix. Let $\mathbf{r}_i = (a_{i1} \cdots a_{in})$ be the i^{th} row of \mathbf{A} . Then $\mathbf{r}_i \in \mathbb{R}^n$ and

$$\operatorname{span}\{\boldsymbol{r}_1,\ldots,\boldsymbol{r}_m\}$$

is a subspace of \mathbb{R}^n , called the **row space** of A.

Recall that, if \mathbf{R} is a row-echelon form of \mathbf{A} , then the nonzero rows of \mathbf{R} form a basis for the row space of \mathbf{A} .

For example, let
$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 1 & 2 & 8 \\ 2 & 8 & 2 & 3 & 12 \\ 3 & 12 & 3 & -1 & -4 \\ 4 & 16 & -1 & -4 & -16 \end{pmatrix}$$
.

(i) Input \boldsymbol{A} in MATLAB.

$$\Rightarrow$$
 A = [1 4 1 2 8; 2 8 2 3 12; 3 12 3 -1 -4; 4 16 -1 -4 -16];

(ii) Find the reduced row-echelon form of A.

We conclude that the row space of \boldsymbol{A} has a basis

$$\{(1,4,0,0,0),(0,0,1,0,0),(0,0,0,1,4)\}.$$

So the dimension of the row space of A is 3. This dimension is known as the **rank** of A. In MATLAB, we can use a simple command $\boxed{\mathtt{rank}}$ to find the rank of a matrix directly:

Repeat the same procedure for
$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 3 & 4 & 8 & 16 & 32 \\ 4 & 1 & 7 & 7 & 19 & 31 \end{pmatrix}$$
.

(i) Input \boldsymbol{B} in MATLAB.

(ii) Find the reduced row-echelon form of \boldsymbol{B} .

So the row space of \boldsymbol{B} has a basis

$$\{(1,0,0,0,-4,-8),(0,1,0,0,0,0),(0,0,1,0,5,8),(0,0,0,1,0,1)\}$$

and the rank of \boldsymbol{B} is

In this case, there is no zero row in the RREF. So \boldsymbol{B} is **full rank** and the (original) four rows of \boldsymbol{B} also form a basis for the row space of \boldsymbol{B} .

C. Column Space

Let
$$\mathbf{A}=(a_{ij})$$
 be an $m\times n$ matrix. Let $\mathbf{c}_j=\begin{pmatrix} a_{1j}\\ \vdots\\ a_{mj} \end{pmatrix}$ be the j^{th} column of \mathbf{A} .

Then $c_j \in \mathbb{R}^m$, and

$$\operatorname{span}\{\boldsymbol{c}_1,\ldots,\boldsymbol{c}_n\}$$

is a subspace of \mathbb{R}^m , called the **column space** of A. Recall that, if R is a row-echelon form of A, then the columns of A which correspond to the pivot columns of R form a basis for the column space of A.

We use the same matrices \boldsymbol{A} and \boldsymbol{B} and their RREF's above for illustration.

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 1 & 2 & 8 \\ 2 & 8 & 2 & 3 & 12 \\ 3 & 12 & 3 & -1 & -4 \\ 4 & 16 & -1 & -4 & -16 \end{pmatrix} \text{ has the RREF } \begin{pmatrix} 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

In the reduced row-echelon form, the 1^{st} , 3^{rd} and 4^{th} columns are pivot columns. So the column space of \boldsymbol{A} has a basis formed by the 1^{st} , 3^{rd} and 4^{th} columns of \boldsymbol{A} :

$$\left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\-1 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1\\4 \end{pmatrix} \right\}.$$

Note that the dimension of the column space of A is also given by the rank of A, which is 3.

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 3 & 4 & 8 & 16 & 32 \\ 4 & 1 & 7 & 7 & 19 & 31 \end{pmatrix} \text{ has the RREF } \begin{pmatrix} 1 & 0 & 0 & 0 & -4 & -8 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5 & 8 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

In the reduced row-echelon form, the 1st, 2nd, 3rd and 4th columns are pivot. Then the column space of \boldsymbol{B} has a basis formed by the 1st, 2nd, 3rd and 4th columns of \boldsymbol{B} :

$$\left\{ \begin{pmatrix} 1\\1\\1\\4 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\4\\7 \end{pmatrix}, \begin{pmatrix} 1\\-1\\8\\7 \end{pmatrix} \right\}.$$

D. Finding Basis for Vector Space

Let $S = \{v_1, \dots, v_k\}$ be a subset of \mathbb{R}^n . There are two methods to find a basis for V = span(S).

Row space Method

View each v_1, \ldots, v_k as a row vector. Then the nonzero rows of any row-echelon form

of the matrix
$$\begin{pmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_k \end{pmatrix}$$
 form a basis for V .

For example, let $S = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4, \boldsymbol{v}_5\}$, where

$$\mathbf{v}_1 = (1, 1, 1, 1, 1), \ \mathbf{v}_2 = (1, -1, 1, -1, 1), \ \mathbf{v}_3 = (2, 0, 2, 0, 2),$$

$$\mathbf{v}_4 = (1, -2, 4, -8, 16), \ \mathbf{v}_5 = (0, 4, -6, 16, -30).$$

(i) Input v_1, \ldots, v_5 into MATLAB as row vectors:

(ii) Find the reduced row-echelon form of the matrix $\begin{pmatrix} v_1 \\ \vdots \\ v_5 \end{pmatrix}$.

Its nonzero rows $\{(1,0,0,2,-4),(0,1,0,1,0),(0,0,1,-2,5)\}$ form a basis for V = span(S). Note that the vectors in the basis are not necessarily in S.

Column Space Method

View each v_1, \ldots, v_k as column vectors. Find the pivot columns of any row-echelon form of the matrix $(v_1 \cdots v_k)$. Then the corresponding vectors in S form a basis S' for V. Note that $S' \subseteq S$.

- (i) Input v_1, \ldots, v_5 into MATLAB as column vectors. In the previous section, v_1, \ldots, v_5 are defined as row vectors. Their transposes v_1^T, \ldots, v_5^T (v_1^T, \ldots, v_5^T) are the required column vectors.
- (ii) Find the reduced row-echelon form of the matrix $(v_1 \cdots v_5)$.

Its 1st, 2nd and 4th columns are pivot. Then

$$\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_4\} = \{(1,1,1,1,1), (1,-1,1,-1,1), (1,-2,4,-8,16)\}$$

form a basis for V. Note that every vector in this basis is taken from S.

E. Nullspace

Let \mathbf{A} be an $m \times n$ matrix. Then the solution set of the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ is always a subspace of \mathbb{R}^n , called the **nullspace** of \mathbf{A} .

We use the same matrices \boldsymbol{A} and \boldsymbol{B} and their RREF's as above.

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 1 & 2 & 8 \\ 2 & 8 & 2 & 3 & 12 \\ 3 & 12 & 3 & -1 & -4 \\ 4 & 16 & -1 & -4 & -16 \end{pmatrix} \text{ has the RREF } \begin{pmatrix} 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Assume that the variables are x_1, x_2, x_3, x_4, x_5 . Since the 2nd and the 5th columns of the reduced row-echelon form are non-pivot, set $x_2 = s$ and $x_5 = t$ as arbitrary parameters. By separating parameters, we get

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -4s \\ s \\ 0 \\ -4t \\ t \end{pmatrix} = s \begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 0 \\ -4 \\ 1 \end{pmatrix}.$$

Then the nullspace of A has a basis

$$\left\{ \begin{pmatrix} -4\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-4\\1 \end{pmatrix} \right\}.$$

MATLAB can provide a basis for the nullspace of A directly using the command [null(A, r)].

The two columns of the answer above form a basis for the nullspace of A.

$$\boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 3 & 4 & 8 & 16 & 32 \\ 4 & 1 & 7 & 7 & 19 & 31 \end{pmatrix} \text{ has the RREF } \begin{pmatrix} 1 & 0 & 0 & 0 & -4 & -8 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5 & 8 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

We use the command null(B,'r') directly:

Then the nullspace of \boldsymbol{B} has a basis

$$\left\{ \begin{pmatrix} 4 \\ 0 \\ -5 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 8 \\ 0 \\ -8 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

F. Practices

Use MATLAB to solve Questions 4.1, 4.2, 4.3, 4.5, 4.7, 4.11, 4.16 in the textbook Exercise 4.