

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu Engineering Design Project-II (UTA 024)

THAPAR INSTITUTE
OF ENGINEERING & TECHNOLOGY
(Deemed to be University)

Engineering Design Project-II (UTA 024) Buggy Lab

Dr. Amit Mishra

- Objective
- Receiver Circuit schematic diagram
- Component list
- Design Specification and selection of components
- Receiver Circuit on PCB
- Receiver Circuit testing
- Reference

Objective

Design and testing of receiver circuit which can sense the signal of IR pulse from a specific gantry and able to recognize it based on respective pulse width.

- ❖ To solder IR receiver circuit on a general purpose PCB.
- ❖To test the combined module of IR transmitter and receiver circuits on Buggy Track with Gantry provision through supervisory control mode for Bronze and silver level.

Receiver circuit

Component List

Sr. no	Component	Count	specification
1	Differential Comparator	01	LM311D
2	Photo diode	01	MBD 701 / BPW41N
3	Resistors	04	1k, 20k, 100k, 120k
4	Capacitor	01	100 nf
5	DC power supply	01	5V
6	PCB (small piece)	01	General purpose

Components

BPW41N

Capacitor

September 21, **Resistors**

PCB (small piece)
Image source: Google

LM311-Differential Comparator IC

Working principle

Output voltage stays high when pin 2 has higher voltage than pin 3 and vice versa.

Source: https://components101.com/ics/lm311-differential-comparator-ic

Continued...

Output voltage stays low when pin 2 has lower voltage than pin 3 and vice versa.

Source: https://components101.com/ics/lm311-differential-comparator-ic

Continued...

The **basic function** of a comparator circuit is to **compare** two voltage levels at its input pins and **produce an output** to show **which input voltage** has **higher potential** than the **other.**

Design Specification and Selection of components

- **Selection criterion for differential comparator.**
- Selection of a photodiode

Selection criterion of Differential Comparator

September 21, 2020

Options available

- **\$** LM 311
- **\$** LP 311

* LM 339

* LM 311

LM 311

LM 339

LM 324

LM311: Mono comparator, 5V, power hungry IC, 5mA.

LP311: Mono comparator, 5V, power efficient 300µA—much better for battery and experimental applications.

LM339: Quad comparator, 2 ~ 36V, 800μA

LM324: Quad comparator, ± 1.5 V to ± 16 V, 700μ A

Selection criterion of Photo Diode

Selection criterion of Photo Diode

A photodiode is a semiconductor device that converts light into an electrical current,

Requirements:

- ❖ The photodiode **should be designed** primarily for high—efficiency UHF and VHF detector applications such as **900 nm to 950 nm** IR emitters.
- ❖ The photodiode can be readily **adaptable to** many other **fast switching RF** and digital applications.
- ❖ The photodiode must be supplied in an inexpensive plastic package for low-cost, high-volume consumer and industrial/commercial requirements.

Options available

- **❖ MBD701** schottkey diode
- **❖ BPW41N silicon PIN diode**

FEATURES: BPW41N

Package type: leaded

Dimensions (in mm): 5x4x6.8

Radiant sensitive area (in mm square): 7.5

Matched with 940 nm emitter

Fast response time:

FEATURES: MBD701

Package type: leaded

Dimensions (in mm): 5.21x5.33x4.19

Matched with 940 nm emitter

High Reverse Voltage: up to 70 V

Low Reverse Leakage: 200 nA (Max)

4

Receiver circuit on PCB

Image Source: Google 18

Receiver circuit Testing

Testing: Receiver Circuit

Continued...

References

- https://www.onsemi.com/pub/Collateral/MBD701-D.PDF
- https://www.mouser.in/datasheet/2/427/bpw41n-279864.pdf
- https://www.mouser.in/datasheet/2/427/bpw41n-1766793.pdf
- https://www.homemade-circuits.com/comparators-using-ic-741-ic-311-ic-339/
- https://components101.com/ics/lm311-differential-comparator-ic

Thanks !

Difference between a Comparator and Op Amp

The IC 741 is an ideal example of a single op amp, and the IC LM311 can be considered a good example of a single comparator.

Although an **op amp** and a **comparator** both can be configured to compare d**ifferential signals** at their input pins, the **main differences** between the two counterparts are:

- ❖ In powered condition, the output of an op amp will be either **positive** or **negative**, depending on the **input pin voltage** levels, but can **never** be open. In contrast, a comparator output can be either **open** or grounded (negative), or **floating**.
- An op amp output can work without any pull up or pull down resistors, but a comparator will always require an external pull-up or pull down resistor to enable the output stage to work normally.
- An op amp can be used to build **high gain** amplifier circuits, a comparator **cannot** be used for such applications.
- The output switching response of an op amp is usually slower compared to 1250 mparator IC.