

Aula 1: Lógica

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos deste módulo

- Introdução
- Notação
- Regras de inferência
- Prova de teoremas
- Conclusão

Se todos que estudam e entendem IA são aprovados

Asdrúbal estudou e entendeu IA

Logo

Asdrúbal será aprovado

- Origem na filosofia grega
 - o Logos: razão
- Filósofos indagavam se o logos:
 - Obedecia ou não a regras
 - o Possuía ou não normas, princípios e critérios para o seu funcionamento
 - Lógica

- Criada por Aristóteles (388 AC 322 AC)
 - Foi aluno da academia de Platão
 - o Pretendia por ordem nos conceitos utilizados pelas pessoas
 - Estabeleceu uma série de normas rígidas para que conclusões ou provas pudessem ser consideradas logicamente válidas

- Importante área da matemática
 - Atraiu grande atenção no século XIX e começo do século XX
 - Procurava achar uma linguagem matemática para discutir o mundo
 - o Ainda existem vários especialistas na área, especialmente em computação
 - Utilizam lógica para resolver problemas de computação

Existem várias lógicas

- Lógica proposicional
 - o Afirmações são avaliadas como verdadeiras ou falsas
- Lógica de predicados
 - o Afirmações contêm variáveis que denotam objetos
- Lógica de segunda ordem
 - Permite quantificar relações entre variáveis (∃ e ∀)
- Lógica de ordem superior
 - o Aplica quantificadores a predicados e tem semântica mais forte

Existem várias lógicas

- Lógica temporal
 - o Leva em conta aspectos temporais
- Lógica monotônica
 - Verdade de uma afirmação pode mudar quando novas informações são obtidas
- Lógica paraconsistente
 - o Permite contradições
- Lógica nebulosa (fuzzy)
 - o Um conceito pode ser pouco ou muito certo
- E muitas outras

- Lógica é uma ferramenta importante em IA
 - Base de sistemas baseados em regras
 - Representam problemas utilizando regras do tipo se-então
 - o Permite representar formalmente conhecimento, facilitando sua manipulação
 - Aplicações:
 - Sistemas Baseados em Conhecimento (Especialistas), Prova de Teoremas,
 Sistemas de Diagnóstico

- Linguagem para representação de conhecimento
 - o Vantagem: concisa e universalmente conhecida
 - Desvantagem: pode desviar a atenção da aplicação para lógica matemática
- Toda expressão lógica é composta por:
 - Sintaxe = forma
 - Semântica = significado, interpretação

- Componentes léxicos:
 - Termos
 - Predicados
 - Fórmulas atômicas
 - Literais
 - Conectivos lógicos

Definições de sintaxe

- Termo (símbolo):
 - Pode ser:
 - Objeto do mundo real (constante)
 - Variável
 - Função (utiliza termos como argumentos e retorna termo como resultado)
 - Ex: casa, x, f-maior(joão, josé)

Definições de sintaxe

- Predicado: utiliza termos como argumentos e retorna valores V ou F
 - Ex: cidade ()
- Fórmula atômica ::= predicado ([termo])
 - o Um ou mais termos como argumento
 - Ex: cidade (Santos), irmao(Joao, Jose)
- Literal := fórmula atômica | ¬fórmula atômica
 - Ex: ¬estado(Santos)

Definições de sintaxe

- Conectivos lógicos
 - Operadores
 - Operador de conjunção: ∧
 - Operador de disjunção: ∨
 - Operador de implicação: ⇒
 - Operador de negação: ¬
 - \circ Precedência de avaliação: $\neg \Rightarrow (\lor \land)$

Tabelas verdade

A	В	^	V	\Rightarrow	¬ A
F	F	F	F	V	V
F	V	F	V	V	V
V	F	F	V	F	F
V	V	V	V	V	F

Tabela verdade

- Operador de implicação (⇒)
 - o Implicação a partir de um antecedente falso implica em qualquer coisa
 - Exemplo:
 - Se a lua é redonda, então a terra é redonda (V)
 - Se a lua é redonda, então a terra é quadrada (F)
 - Se a lua é quadrada, então a terra é redonda (V)
 - Se a lua é quadrada, então a terra é quadrada (V)

Tabela de equivalência

Propriedades	Expressão 1	\Leftrightarrow	Expressão 2
	$A \Rightarrow B$		$\neg A \lor B$
Comutatividade	$A \vee B$		$B \vee A$
	$A \wedge B$		$B \wedge A$
Associatividade	$A \lor (B \lor C)$		$(A \lor B) \lor C$
	$A \wedge (B \wedge C)$		$(A \wedge B) \wedge C$
Distributividade	$A \lor (B \land C)$		$(A \lor B) \land (A \lor C)$
	$A \wedge (B \vee C)$		$(A \wedge B) \vee (A \wedge C)$
De Morgan	$\neg(A \lor B)$		$\neg A \land \neg B$
	$\neg(A \land B)$		$\neg A \lor \neg B$
Anulação	$\neg\neg A$		A

- Quantificadores
 - Quantificador universal ($\forall x(exp)$):
 - Expressão exp é verdadeira para todo valor de x
 - Ex: $\forall x [pena (x) \Rightarrow passaro (x)]$
 - o Quantificador existencial (∃x(exp)):
 - Expressão exp é verdadeira para pelo menos um valor de x
 - Ex: ∃ x [poe_ovo (x) ∧ ¬(passaro (x))]

- Componente estrutural
 - o Fórmula Bem Formada (FBF): expressão formada de acordo com a gramática:
 - FBF ::= Literal | FBF \land FBF | FBF \lor FBF | ¬FBF | FBF \Rightarrow FBF | \forall x (FBF) | \exists x (FBF)
 - Ex: (voa (pardal) ∧ pena (pardal)) ⇒ passaro (pardal)
 - FBF é geralmente abreviado para **expressão**

- Sentença: FBF em que todas as variáveis estão no escopo de quantificadores
 - ∘ Ex: \forall x[(voa (x) ∧ tem_pena (x) \Rightarrow passaro(x)]
- Cláusula: FBF formada por disjunção de literais
 - o Ex: passaro (pardal) ∨ irmao (joao, maria)

Semântica

- Relaciona termos e predicados de expressões lógicas a algo conhecido
 - Associa termos a objetos de um domínio ou mundo (real ou imaginário)
 - Associa predicados a relações de um mundo

Lógica X Mundo real

Semântica

- Modelo: interpretação para um mundo de termos e predicados de uma expressão
 - o Expressão é verdadeira para objetos e relações de um mundo
- Axiomas: expressões previamente definidas como verdadeiras
 - Ex: passaro (pardal)

Teste rápido

- Qual a lógica que permite contradições?
 - a) Lógica de predicados
 - b) Lógica fuzzy
 - c) Lógica temporal
 - d) Lógica paraconsistente

Teste rápido

- Qual a lógica que permite contradições?
 - a) Lógica de predicados
 - b) Lógica fuzzy
 - c) Lógica temporal
 - d) Lógica paraconsistente

Prova de teoremas

- Teorema:
 - Expressão que pode ser provada verdadeira a partir de um conjunto de axiomas
 - Segue logicamente dos axiomas
 - Por meio de um procedimento de prova
- Procedimento de prova:
 - o Aplica regras válidas de inferência aos axiomas e às expressões resultantes
- Regras válidas de inferência:
 - Produzem novas expressões a partir das expressões existentes
 - o Modelo das expressões anteriores é também válido para as novas expressões

Prova de teoremas

- Inferência é um problema de busca
 - Nó inicial:
 - Informação fornecida ao procedimento de prova
 - Nó alvo ou objetivo:
 - Conclusão desejada
 - Operadores que geram sucessores de nós:
 - Aqueles que geram uma nova expressão aplicando alguma regra de inferência à sequência atual

Regras de inferência

- Utilizadas para provar teoremas
- Provar teorema é diferente de:
 - o Provar que uma expressão é válida
 - Verdadeira (V) para todas as interpretações dos símbolos
 - o Provar que uma expressão é satisfatória
 - Verdadeira (V) para alguma possível interpretação dos símbolos

Regras de inferência

- Regras de inferência mais utilizadas
 - Modus ponens
 - Resolução
 - Modus tolens

Modus ponens

 $A \Rightarrow B$ B

Ex: pena (pardal) ⇒ passaro (pardal)

passaro (pardal)

Regra mais direta

Exercício

- Dadas as regras:
 - Quem joga lixo na rua é mal educado
 - Quem é mal educado não pode viver em sociedade
 - Quem n\u00e3o pode viver em sociedade deveria viver em uma caverna
 - Quem vive em uma caverna fica louco
- Provar por Modus Ponens que quem joga lixo na rua fica louco

Ex:

¬ estuda (Zuzu) ∨ dorme (Zuzu)

bebe (Zuzu) ∨ dorme (Zuzu)

Ex: bebe $(Zuzu) \vee estuda (Zuzu)$

¬ estuda (Zuzu) ∨ dorme (Zuzu)

bebe (Zuzu) \vee dorme (Zuzu)

 $\begin{array}{c}
A \vee B \\
\neg B \vee C \\
\hline
A \vee C \\
\\
\end{array}$ resolvente

Podem existir N disjunções em qualquer uma das cláusulas (inclusive nenhuma)

A regra modus ponens é um caso especial da regra da resolução

```
pena (pardal)
¬pena (pardal) ∨ passaro (pardal)

⇔

pena (pardal)

pena (pardal) ⇒ passaro (pardal)
```


Modus tolens

Ex: pena (cachorro) ⇒ passaro (cachorro) ¬passaro (cachorro)

¬pena (cachorro)

Regra modus tolens é um caso especial da regra da Resolução

Regra modus tolens é um caso especial da regra da Resolução

```
pena (pardal) ⇒ passaro (pardal)
```

¬ passaro (pardal)

- ¬ pena (pardal) ∨ passaro (pardal)
- ¬ passaro (pardal)

Prova de teoremas

- Estratégias para provar teoremas
 - Prova por exaustão:
 - A partir dos axiomas, aplicar regras de inferência sobre as expressões existentes
 - Esperando eventualmente deduzir o teorema
 - Prova por refutação:
 - Provar que a negação do teorema não é verdadeira

Passos para prova por refutação

- 1 Assumir que a negação do teorema é verdadeira
- 2 Mostrar que os axiomas juntos com a negação do teorema levam a uma contradição
- 3 Concluir que a negação do teorema não pode ser verdadeira, pois leva a uma contradição
- 4 Concluir que o teorema é verdadeiro porque sua negação não pode ser verdadeira

- Dados os axiomas abaixo, prove que pardal é um pássaro utilizando prova por refutação
 - Axiomas:
 - a) ¬ pena (pardal) ∨ passaro (pardal)
 - b) pena (pardal)
 - o Teorema:

passaro (pardal)

- 1) Assumir que a negação do teorema é verdadeira
 - c) passaro (pardal)
- 2) Mostrar contradição
 - 2.1 ¬ pena (pardal) ∨ passaro (pardal)

 pena (pardal)

 passaro (pardal)
 - 2.2 ¬ passaro (pardal)

 passaro (pardal)
 - 2.3 nil (cláusula vazia)

- Forma de reconhecer que um teorema foi provado:
 - Esperar até resolução ser aplicada a uma literal e sua negação
 - Resultado é uma cláusula vazia (nil)
 - Garante que o teorema foi provado
- Refazer o exercício 1 utilizando prova por exaustão

- Dados os axiomas abaixo, provar por refutação que Asdrubal vai passar
 - Axiomas:
 - a) Estuda (Asdrubal)
 - b) ¬ lê (Asdrubal) ∨ sabido (Asdrubal)
 - c) ¬ lê (Asdrubal) ∨ limpo (Asdrubal)
 - d) ¬ sabido (Asdrubal) ∨ passa (Asdrubal)
 - e) ¬ estuda (Asdrubal) ∨ lê (Asdrubal)
 - o Teorema:

passa (Asdrubal)

- Dados os axiomas abaixo, prove que p é verdade usando prova por refutação
 - Axiomas:

a)
$$q \land \neg r \Rightarrow p$$

b)
$$s \Rightarrow p$$

c)
$$\neg$$
 s \Rightarrow q

d)
$$\neg t \Rightarrow r$$

Observações

- O que fazer para o caso abaixo?
 - ¬ ∃x[estudalA(x) ⇒ reprovalA(x)]
- Para usar resolução, os axiomas têm que estar na forma de cláusulas
 - Necessário transformar axiomas originais em axiomas equivalentes na forma de cláusulas

- Transformar para a forma de cláusulas os axiomas:
 - o Um tijolo está sobre alguma coisa que não é uma pirâmide
 - Não existe nada que um tijolo esteja sobre, que esteja sobre o tijolo
 - o Não existe nada que seja um tijolo e não seja um tijolo

Algoritmo para transformação

- 1) Eliminar implicações
- 2) Mover negações para fórmulas atômicas
- 3) Eliminar quantificadores existenciais
- 4) Renomear variáveis quantificadas para evitar repetição de um quantificador universal
- 5) Mover quantificadores universais para a esquerda
- 6) Mover disjunções para os literais
- 7) Eliminar conjunções
- 8) Renomear variáveis quantificadas para evitar repetição de um quantificador universal
- 9) Eliminar quantificadores universais

Conclusão

- Lógica
- Terminologia
- Regras de inferência
- Prova de Teoremas
 - Manipulação simbólica

Fim do módulo

