AntKV: 蚂蚁实时计算 KV 分离5x性能提升实践

蚂蚁集团 高级开发工程师 刘达

关于我

刘达

- 毕业于华中科技大学
- IBM CSL Storage, SVC/Storwize
- · 蚂蚁计算智能部,目前主要负责 AntKV 相关研发

大纲

- AntKV 概述
- 针对 KV 分离的 Scan 优化探索
- 借助 Learned Index 优化查询
- 总结

AntKV 概述

什么是 AntKV?

一款基于 RocksDB 的高性能 KV 存储引擎,实现了 WiscKey 提出的 KV 分离设计

- •解决了大 Value 场景下 Compaction 带来的毛刺问题
- 具有优秀的点读和写入性能

目前 AntKV 在蚂蚁支撑了流计算/在线学习平台等业务

AntKV 整体染物

AntKV 核心功能

KV分离

- 元数据管理

空间回收

- GC
- TTL

数据版本

- Checkpoint
- Ingest Value Log Files

特性支持

- 异步恢复Checkpoint
- Table API

性能优化

- Scan 优化
- 流控优化
- Learned Index

AntKV 最佳实践

业务	痛点	接入后性能	最终结果
AntFlink	大状态双流 Join 作业, 无法实时处理	提高2-5倍	解决了大状态双流 Join 不可用的问题
Ray	大 Job 写入性能不满足, 后台 Compaction 占用过 高	提高2-4倍	改善了写入瓶颈, 支撑了无法支撑的业务
SofaMQ	小型化站点形态, RocksDB 性能不满足	满足了性能要求	小型化输出目标实现, 节约50%+成本

针对 KV 分离的 Scan 优化探索

Scan 优化:背景分析

KV分离的现状

- Value 物理上不连续
- 访问 Value 多一跳

带来的问题

• Scan 性能下降

Scan 优化:多线程预取加速

- 根据用户访问 Pattern 或者 Range Hint 发起异步 预取
- 发挥 NVMe SSD 能力并 行预取
- 利用 Block Cache 实现数据同步

Scan 优化:预取加速效果

在 Key Size=16B, Value Size=1KB 的条件下,Scan 性能 (IOPS) 如图所

在两种数据分布下, Scan 性能分别有20%/10倍左右的提升

Scan 优化: 分离数据的连续性问题

新的问题

中等大小(如256B)Value情况下,Scan 仍然比 RocksDB 差很多

原因

Block中数据不连续,磁盘带宽即便打满,大多内容都是无效数据

和 优化: 基于DiffKV的数据分布优

ATC 21: Differentiated Key–Value Storage Management for Balanced I/O Performance

核心思路

对于中等大小的 KV pairs,对 Value Log Files也进行分层处理,增强局部连续性

和 优化: 基于DiffKV的数据分布优

基于 Compaction 的重写:

- Level N-2 及以下的层级 不做重写
- Level N-1 及以上的层级 在 Compaction 时重写 Value Log Files

Scan 优化: 基于DiffKV的数据分布优化

针对 Scan 优化的重写:

- Compaction 过程中,对本轮参与的 Value Log Files 进行重叠记数
- 当发现某文件重叠记数 超过阈值,则标记相关 文件后续进行重写

Scan 优化: DiffKV 效果

在 Key Size=16B, Value Size=256B 的条件下,写入和 Scan 性能 (IOPS) 如

相较于纯KV分离的版本,DiffKV以 35%左右写性能的代价,大幅度提 高了 Scan 的性能。

为用户提供了一种可以配置的性能模型,在写入和 Scan 性能之间进行 Tradeoff。

借助 Learned Index 优化查询

Learned Index: 背景

传统的索引结构

未利用数据分布的特点

Learned Index

通过学习数据分布,训练基于 key 的 index 模型

- O(logn)->O(1)
- 索引大小减少

Learned Index: 背景

NeurlPS 2020: Learned Indexes for a Google-scale Disk-based

Database .sst file **Properties** Index Filter Data Data Data Range footer Tombstone Block Block **Block Block** Block Block Block

F(key) -> entry_pos block_pos

Learned Index: 模型

 $total_data_size = F(key) = a * key + b$

注意: 这个线性模型求出的是近似的 current data size

Learned Index: 模型

size = 200

 $total_data_size = a * key + b$

当我们通过拟合方程算出key对应的 total_data_size时,基于下面的公式, 就能计算出对应的该key位于哪个 block中

$$block_no(key) = \frac{total_data_size(key)}{predefined_block_size}$$

Learned Index: 字符串转换

因为实际 SST 保存的 key 为 string 类型,非 integer,因此需要进行转换

要求

唯一性:不同的 key, 转换出来的 key_digest 不能相同

保序性: 如果 key1 < key2, 那么转换后的 key_digest_1 < key_digest_2

问题

字符串长度是随机的、并且可能很长

Learned Index: 字符串转换

思路

按位计算进制,减少转换后的数值大小。举例:

"ABX", "BCZ", "BDY"

第0位: 'A'~'B', 5种编码

第1位: 'B'~'D', 6种编码

第2位: 'X'~'Z', 6种编码

编码 值 位数	0	1	2	3	4	5
d[0]	空值	小于min	'A'	'B'	大于max	N/A
d[1]	空值	小于min	'B'	'C'	'D'	大于max
d[2]	空值	小于min	'X'	'Υ'	'Z'	大于max

```
"BCZ" -> d[0]['B'] * 6 * 6 + d[1]['C'] * 6 + d[2]['Z'] = 130
```

"XBA" -> d[0][大于max] * 6 * 6 + d[1]['B'] * 6 + d[2][小于min] =

Learned Index: 生成过程

在构建新的SST过程中,会缓存待写入的所有KV数据,在Finish时进行建模并持久化相关参数。

- 不会在LO构建Learned Index
- 不会对大小在阈值以下的SST进行构建
- · 当不满足构建条件时,退化为默认的Binary Index

Learned Index: 效果对比

假设一个64MB SST,按压缩前128MB计算,Key=100B, Value=100B, 按照4K Block Size计算:

Binary Index Block: 3.7MB

Learned Index Block: 512KB \$\\$86\%

	P50 latency(us)	P95 latency(us)	Index Block Hit ratio
Binary Index	130	10230	85%
Learned Index	109	230	99%

台生

送 生

AntKV 作为一款基于 KV 分离的本地存储引擎, 在性能方面:

- •解决了大 Value 场景下的随机读写性能问题
- •一定程度弥补了分离引入的 Scan 性能下降问题
- 通过机器学习提高了SST索引的访存效率

欢迎交流:)

HANKS 软件正在重新定义世界 Software Is Redefining The World

