Do Now: Triangle congruence proofs

1. The transversal \overrightarrow{MPR} intersects two parallel lines, $\overrightarrow{PQ}||\overrightarrow{MN}$. Given $\angle PRQ \cong \angle MPN$ and P bisects \overline{MR} . Prove $\triangle MPN \cong \triangle PRQ$.

Statement

- 1) _____
- 2) _____
- 3) _____
- $4) \ \angle RPQ \cong \angle PMN$
- 5) _____
- 6) $\triangle MPN \cong \triangle PRQ$

Reason

- 1) Given
- 2) Given
- 3) Given
- 4) _____
- 5) Definition of a bisector
- 6) _____
- 2. Translate the point A(3,4) by $T_{1,-3}$.
- 3. Find the result after the point B(-2,5) is translated first by the vector $\begin{pmatrix} 5 \\ -1 \end{pmatrix}$ and then by a second translation, $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

Regents problems

As shown in the diagram below, $\overline{ABC} \parallel \overline{EFG}$ and $\overline{BF} \cong \overline{EF}$.

If $m \angle CBF = 42.5^{\circ}$, then $m \angle EBF$ is

(1) 42.5°

(3) 95°

(2) 68.75°

(4) 137.5°

In the graph below, $\triangle ABC$ has coordinates A(-9,2), B(-6,-6), and C(-3,-2), and $\triangle RST$ has coordinates R(-2,9), S(5,6), and T(2,3).

Is $\triangle ABC$ congruent to $\triangle RST$? Use the properties of rigid motions to explain your reasoning.