武汉大学计算机学院 《数字逻辑》期末考试试题(A卷)参考答案 2007—2008 学年第二学期 (闭卷考试)

- 解答(每空1分,共16分)
 - 1. (11011.1)₂, (1B.8)₁₆

2. $[x]_{*}=1.0101$

- 3. 奇数

- 4.1 5.0011 0100 0111 6. 高电平, 低电平, 高阻
- 7. \forall 8. $\bar{F} = (\bar{A} + B)(C + \bar{D}), F' = (A + \bar{B})(\bar{C} + D)$
- 9. 临界竞争, 非临界竞争
- 10. 充电时间常数 RC 11. 不是

- 、解答(每小题2分,共14分)
 - 1. C
- 2.A
- 3.B
- 4.D
- 5. C
- 6.B
- 7.B

- 三、解答(每小题5分,共10分)

$$F = AB + \overline{A}\overline{B} + (A\overline{B} + \overline{A}B)CD$$
$$= AB + \overline{A}\overline{B} + \overline{AB} + \overline{A}\overline{B}CD$$
$$= AB + \overline{A}\overline{B} + CD$$

2. 画出函数 F 的卡诺图

解法 1 圈为 0 的项,直接写出或一

与式
$$F = (B + \overline{D})(\overline{B} + D)$$

解法 2 先求 \bar{F} 的最简与一或式。再

对 \bar{F} 求反即得F 的最简或一与式

$$\overline{F} = \overline{B}D + B\overline{D}$$

$$= F = F = (B + \overline{D})(\overline{B} + D)$$

1. ①写出输出函数表达式

$$F_1 = \overline{\overline{A}}\overline{\overline{B}}$$
 $F_2 = \overline{\overline{A}}\overline{B}$ $F_3 = \overline{A}\overline{\overline{B}}$ $F_4 = \overline{A}\overline{B}$

② 列其值表

Α	В	F_1	F_2	F ₃	F ₄
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

③功能:由其值表可见,每输入一组二进制码时,与这个二进制码值相对应的输出线上将出现一个低电平为0的有效信号。故其功能是将二进制码按它原来的值译成相应的输出信号,是一个二一四译码器,输出低电平有效。

2. ① 写出激励函数表达式

$$T_2 = 1$$
 $c_2 = y_1$
 $D_1 = \overline{y}_1$ $c_1 = cp$

② 作状态转换其值表

cp	y ₂	y ₁	T_2	c_2	D_1	c_1	y_2^{n+1}	y_1^{n+1}
1	0	0	1	↑	1	1 ↓	0	1
1	0	1	1	\downarrow	0	1 ↓	1	0
1	1	0	1	↑	1	1 ↓	1	1
1	1	1	1	1	0	1 ↓	0	0

状态表

现 <i>y</i> 23	态 V1	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹			
		cp=1			
0	0	0 1			
0	1	1 0			
1	0	1 1			
1	1	0 0			
0	1				

- ③ 电路功能: 该电路是一个异步模四
- (二位二进制数)加1计数器。时间图如下:

状态图

五、解答(每小题10分,共20分)

1. 设初态为 A

	原始状态表								
	现状	状	输出						
	5亿1八	X=0	X=1	1111 山					
	A	A	В	0					
	В	A	C	0					
	C	A	D	0					
	D	Α	E	0					
	E	A	Е	1					

2. ①形成原始状态图和原始状态表

现态 <i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$y_2^{n+1}y_1^{n+1}y_0^{n+1}/Z$		
	<i>x</i> =0	<i>x</i> =1	
000	001/0	111/1	
001	010/0	000/0	
010	011/0	001/0	
011	100/0	010/0	
100	101/0	011/0	
101	110/0	100/0	
110	111/0	101/0	
1 1 1	000/1	110/0	

② 确定激励函数和输出函数

输入			次态			输出				
X	y ₂	y_1	\mathbf{y}_0	y_2^{n+1}	y_1^{n+1}	y_0^{n+1}	z	J_2k_2	J_1k_1	$J_0 k_0$
0	0	0	0	0	0	1	0	0d	0d	1d
0	0	0	1	0	1	0	0	0d	1d	d1
0	0	1	0	0	1	1	0	0d	d0	1d
0	0	1	1	1	0	0	0	1d	d1	d1
0	1	0	0	1	0	1	0	d0	0d	1d
0	1	0	1	1	1	0	0	d0	1d	d1
0	1	1	0	1	1	1	0	d0	d0	1d
0	1	1	1	0	0	0	1	d1	d1	d1
1	0	0	0	1	1	1	1	1d	1d	1d
1	0	0	1	0	0	0	0	0d	0d	d1
1	0	1	0	0	0	1	0	0d	d1	1d
1	0	1	1	0	1	0	0	0d	d0	d1
1	1	0	0	0	1	1	0	d1	1d	1d
1	1	0	1	1	0	0	0	d0	0d	d1
1	1	1	0	1	0	1	0	d0	d1	1d
1	1	1	1	1	1	0	0	d0	d0	d1

画卡诺图化简

$$\begin{cases} \boldsymbol{J}_2 = x\overline{y}_1\overline{y}_0 + \overline{x}y_1y_0 \\ \boldsymbol{K}_2 = x\overline{y}_1\overline{y}_0 + \overline{x}y_1y_0 \end{cases} \begin{cases} \boldsymbol{J}_1 = x\overline{y}_0 + \overline{x}y_0 \\ \boldsymbol{K}_1 = x\overline{y}_0 + \overline{x}y_0 \end{cases} \begin{cases} \boldsymbol{J}_1 = 1 \\ \boldsymbol{K}_1 = 1 \end{cases} \quad \boldsymbol{z} = \overline{x}y_2y_1y_0 + x\overline{y}_2\overline{y}_1\overline{y}_0$$

③画电路图(略)

六、解答(每小题10分,共20分)

1.① 列真值表求出 F_1 (大于), F_2 (小于), F_3 (等于)的最简与或表达式。

②画 PLA 的阵列图

- **2.**① 先把 74193 设计成十进制计数器,并用启动脉冲 p_S 将初态 $Q_DQ_CQ_BQ_A$ 清零, $CLR=Q_DQ_B,CPu$ 接"秒"脉冲 CP,CP_D 接"1"。
- ② 把计数器的输出状态 $Q_DQ_CQ_BQ_A$ 接 7448 的 $A_3A_2A_1A_0$,并正确处理 7448 的 辅助控制信号, $\overline{LT}=1$ \overline{BI} / $\overline{RBO}=1$
 - ③ 把 7448 的七段输出端 a~g 接七段显示器的输入 a~g。

"秒"时钟逻辑电路图