6. Flowcharts 1

What did we do last time?

Using SCRATCH to build a maze game

Step 1: Build our player

Step 2: Draw the stage

Step 3: Create some prizes

Step 4: Add sound to the player

Step 5: Program the player

Step 6: Program the prizes

Step 7: Game completed!

Flowcharts

Why flowcharting?

- Often the best way to understand a problem is to draw pictures.
- Pictures often provide us with a more complete idea of the situation than a series of short word or phrases can.
- However, pictures combined with text provide an extremely powerful tool for communication and problem solving.
- Algorithms can be developed more quickly when a flow chart is built to represent such an algorithm.

What is a flowchart?

- Logic diagram to describe each step that the program must perform to arrive at the solution.
- A popular logic tool used for showing an algorithm in graphics form.
- It may be used by both systems analysts and system designers in order to
 - understand the system,
 - and build a system.

Principle of good programming

- The program requirements must be specified in full and in writing. These specifications will be prepared by a systems analyst.
- A programmer has the task of converting these specifications into a written program.

Principle of good programming – cont.

- In developing a program, programmers should keep "working papers". The "working papers" might include a decision table or flowchart (or both). They can refer back to these papers later to check what they have done in case:
 - there is an error in the program for correction;
 - the user of the program asks for a change in the program, e.g. for an extra bit of processing on input data, perhaps to produce an additional report.

Flowchart with programming

 A flowchart can be a really useful tool for a programmer. They can use the flowchart to guide them in terms of what they need to program (code).

Flowcharts to a programmer is like the blue

print to a architect!

Uses (Advantages) of flowcharts

- To clarify the logic of a problem
- To analyse the actions resulting from a set of conditions.
- To sort out the procedural steps in the program.
- As aids to program construction and coding.
- As communicating documents, e.g. to explain the program to other programmers and the system analyst.

Disadvantages of flowcharts

- Complicated processing might require flowcharts that stretch on to several pages.
- They are not easy to amend. Alterations might involve a complete re-drawing of the flowchart, which could be a time consuming task.

An example of a flowchart

These are the flowcharting symbols

Symbol	Name	Function
	Start/end	An oval represents a start or end point.
	Arrows	A line is a connector that shows relationships between the representative shapes.
	Input/Output	A parallelogram represents input or ouptut.
	Process	A rectangle represents a process.
	Decision	A diamond indicates a decision.

Other flowcharts symbols

Flowcharts (Problem 1)

 So let's say we want to express the following algorithm:

Read in a number and print it out.

Symbol	Name	Function
	Start/end	An oval represents a start or end point.
	Arrows	A line is a connector that shows relationships between the representative shapes.
	Input/Output	A parallelogram represents input or ouptut.
	Process	A rectangle represents a process.
	Decision	A diamond indicates a decision.

Input

Output

End

Flowcharts (Problem 2)

 So let's say we want to express the following algorithm:

Read in a number and print out double the number.

Symbol	Name	Function
	Start/end	An oval represents a start or end point.
	Arrows	A line is a connector that shows relationships between the representative shapes.
	Input/Output	A parallelogram represents input or ouptut.
	Process	A rectangle represents a process.
	Decision	A diamond indicates a decision.

Or alternatively...

Flowcharts (Problem 3)

 So let's say we want to express the following algorithm:

Read in a number, check if it is odd or even.

Symbol	Name	Function	
	Start/end	An oval represents a start or end point.	
	Arrows	A line is a connector that shows relationships between the representative shapes.	
	Input/Output	A parallelogram represents input or ouptut.	
	Process	cess A rectangle represents a process.	
	Decision	A diamond indicates a decision.	

Flowcharts (Problem 4)

 So let's say we want to express the following algorithm to print out the bigger of two numbers:

Read in two numbers, call them A and B. If A is bigger than B, print out A, otherwise print out B.

Symbol	Name	Function	
	Start/end	An oval represents a start or end point.	
	Arrows	A line is a connector that shows relationships between the representative shapes.	
	Input/Output	A parallelogram represents input or ouptut.	
	Process	A rectangle represents a process.	
	Decision	Decision A diamond indicates a decision.	

Flowcharts (Problem 5)

 So let's say we want to express the following algorithm to print out the sum of two numbers:

Read in two numbers, call them A and B. Sum A and B, print out the result.

Symbol	Name	Function	
	Start/end	An oval represents a start or end point.	
	Arrows	A line is a connector that shows relationships between the representative shapes.	
	Input/Output	A parallelogram represents input or ouptut.	
	Process	A rectangle represents a process.	
	Decision	A diamond indicates a decision.	

Input

Process

Output

End

Flowcharts (Problem 6)

- Not just for algorithms!
- You can express a work process in a flowchart!

Define The Program Design Process Flowchart

1. Problem Definition

- What is the objective
- What is the program to do

2. Design

- Draw a picture or the execution steps
- Write down in words the execution steps
- 3. Test Cases (how will you test it)
 - Write what you will use for testing that it runs and creates the right answer

• Test Case 1: 1+1=2

Simple Case

• Test Case 2: 5 + 9 = 14

Normal Case

Test Case 3: 0 + 9 = 9

Edge condition

• Test Case 4: 5 + 0 = 5

Edge condition

If this was division we could have division by zero issues and very small answers

• Test Case 5: 16666666666 + 7887777777777 = 78894444444443 test the very big

4. Write Code

- Step by step, one piece of functionality at a time, get it working, save a copy.
- 5. Test Code with test cases
 - Debug the code, change ONLY ONE thing at a time, KEEP SAVING VERSIONS

Or alternatively...

As you should be doing it and thinking about it

Flowcharts (Problem 7)

 So let's say we want to express the following algorithm to print out the biggest of three numbers:

Read in three numbers, call them A, B and C.

If A is bigger than B, then if A is bigger than
C, print out A, otherwise print out C. If B is
bigger than A, then if B is bigger than C,
print out B, otherwise print out C.

Symbol	Name	Function	
	Start/end	An oval represents a start or end point.	
	Arrows	A line is a connector that shows relationships between the representative shapes.	
	Input/Output	A parallelogram represents input or ouptut.	
	Process	A rectangle represents a process.	
	Decision	A diamond indicates a decision.	

What if A=B=C?

- What happens if you put in A=B=C=1?
- Use the "Crossing" problem solution format (a chart) to see what is happening as you go through the loop
- For each iteration state the Initial state,
 Instruction/processing, Final state.

Elapsed Time Starting Side		Action	Ending Side
0 minutes	ABCD		
2 minutes	minutes C D A and B cross forward, taking 2 minutes		AB
3 minutes	A CD	A returns, taking 1 minute	В
8 minutes	D	A and C cross forward, taking 5 minutes	ABC
9 minutes	A D	A returns, taking 1 minute	ВС
17 minutes		A and D cross forward, taking 8 minutes	ABCD

References

- 2009, Barry, Paul and Griffiths, David; Head First Programming, O'Reilly Media Inc.
- 2009, Pine, Chris; Learn to Program, 2nd Edition, The Pragmatic Programmers