Fablab Nürnberg e.V. Elektroniklab

Transistoren in der Digitaltechnik: Überblick und Einsatz bei Microcontrollern

Vortragender: Robert Weidenhöfer, Dipl.-Ing. Hardware- und Software-Entwickler

Inhaltsverzeichnis

- Überblick Transistoren
 - Generelle Typen
 - NPN-Transistor
 - P-MOSFET-Transistor
 - Vergleich je eines NPN und MOSFFET-Transistors
- Benutzung am Microcontroller (z.B. Aduino Nano)
 - Einfache Ein- und Ausgangsbeschaltung
 - Eingangsbeschaltung für höhere Spannungen (5V bis 50V)
 - Ausgangsbeschaltung für mittlere Ströme und Spannungen (bis ca. 1 A und 20V)
 - Ausgangsbeschaltung für höhere Ströme und Spannungen (mehr als 1A resp. 20V)

Transistortypen

	Stromgesteuert Bipolar-Transistoreen	Spannungsgeste uert FET-Transistoren	n-Kanal p-Kanal
Positiver Eingang	NPN-Transistor, z.B. BC548 B E	N-Kanal MOSFET, z.B. BUZ10	or selection of the sel
Negativer Eingang	PNP-Transistor E	P-Kanal MOSFET	D G S S
Pins Steuern Summe Verbrauc her	Base Emitter Collector	Gate Source Drain	

NPN-Transistor 1 / 2 Strom und Spannung

- $I_c = I_B * h_f$ Für Kleinsignal-Transistoren: typ. $h_f >= 100$
- $U_{BE} = 0.7 \text{ V (typisch)}$ $U_{CE} = 0.2 \text{ V (typisch) bei Vollaussteuerung}$
- Beachte maximalen Strom I_c und maximale Spannung

NPN-Transistor 2 / 2 Digitale Beschaltung

• Berechnung R für 5V-Ausgang und 20 mA I_B : R = (5V – 0,7V) / 0,020 A = 215 Ohm Benutzter Widerstand: 220 Ohm

N-Kanal MOSFET-Transistor

- Eigenschaften im geschalteten Zustand:
 - R_{DS} sehr gering (oft < 1 Ohm)
 - $-I_G = 0$ mA (kein Strom bei statischen Signalen)
 - C_{GS} = einige pF (=> Strom nur beim Schalten)
 - Schaltspannung z.B. 2 V
- Einsatzgebiete: geschaltete Netzteile, Schalten von hohen Lasten
- Nachteile:
 - Schlechte Analogsteuerung
 - Sehr hochohmiges Gate => muss immer getrieben werden

Vergleich BC548 und IRFB3306

	BC548	BUZ10
Тур	NPN-Kleinsignal-Transistor	N-MOSFET für hohe Ströme
Gehäuse / max. Verlustleistung	TO92: max. 0,5 W	TO220: max. 230 W
Max. Strom	I _C <= 0,1 A	I _D <= 23 A
Max. Spannung	U _{CE} <= 30 V	U _{DS} <= 50 V
Schaltspannung	$U_{BE} = 0.7 \text{ V}$	U _{GS} = 3 V +/- 1 V
Verstärkung	h _f > 100	digital
Last->Masse	$U_{CE} = ca. 0,2V$	R _{DS} = 0,004 Ohm
Preis / Stück	Digikey: 0,03 Euro bei 2000 Stk Conrad: ab 0,11 Euro	Digikey: 1,50 Euro Conrad: 1,24 Euro

Inhaltsverzeichnis

- Überblick Transistoren
 - Generelle Typen
 - NPN-Transistor
 - P-MOSFET-Transistor
 - Vergleich je eines NPN und MOSFFET-Transistors
- Benutzung am Microcontroller (z.B. Aduino Nano)
 - Einfache Ein- und Ausgangsbeschaltung
 - Eingangsbeschaltung für höhere Spannungen (5V bis 50V)
 - Ausgangsbeschaltung für mittlere Ströme und Spannungen (bis ca. 1 A und 20V)
 - Ausgangsbeschaltung für höhere Ströme und Spannungen (mehr als 1A resp. 20V)

GPIO Einführung

- GPIO-Pins sind IC-Anschlüsse, welche per SW
 - 0 bzw. 1 einlesen (Input)
 - GND bzw. VCC ausgeben (Output)
- Elektrisch sind es
 - Eingangstreiber (die immer arbeiten)
 - per Software zuschaltbare Ausgangstreiber

GPIO-Pin-Charakteristik Ausgänge

Arduino nano benutzt ATmega328 mit folgenden Daten:

- VCC=5V: 20mA bei GND und VCC
- VCC=3V: 10mA bei GND und VCC

STM32L053:

VCC=2,7..3,6V: 8 mA bei GND, 6 mA bei VCC

GPIO-Pin-Charakteristik Eingänge

Bei CMOS (benutzen alle Prozessoren heutzutage) gilt für Eingangsspannungen:

- U > 0,7*VCC → Eingang = 1
- U < 0,3*VCC → Eingang = 0
- Eingangsstrom $< 1 \mu A$
- ACHTUNG: Spannungen kleiner -0,3V bzw. größer VCC+0,3V können das IC zerstören!

Einfache Eingangsbeschaltung

Eingang mit und ohne "Angstwiderstand"

Beispiel Taster/Schalter

Einfache Ausgangsbeschaltung

Ausgang

Beispiel LED

Annahme:

- LED 2,2V und 10 mA
- VCC des GPIO ist 5V

Berechnung Widerstand:

R = (5 V - 2.2 V) / 0.01 A = 380 OhmGewähltes R (E12-Reihe): 390 Ohm

Eingangsbeschaltung für höhere Spannungen (bis 50V)

Spannungsteiler:

Transistor als Entkoppler:

Beispielberechnung für 15V V_{in} bei 5 V GPIO: R1 = 10 kOhm (Standardwert) $I_{R1} = 5V / 10000$ Ohm = 0,5 mA R2 = (15 V – 5 V) / 0,5 mA R2 = 20 kOhm => (E12-Reihe) 22 kOhm

Beispielberechnung für 15V V_{in} bei 5 V GPIO: R1 = 10 kOhm (Standardwert) R3 = 10 kOhm (Standardwert) I_{R1} = 0,7V / 10000 Ohm = 0,07 mA R2 = ((15 V)/2 – 0,7 V) / 0,07 mA R2 = 97 kOhm => (E12-Reihe) 100 kOhm

Hinweis: Hier muss mit der Schaltspannung gerechnet werden, oben wurde mit Versorungsspannung gerechnet (einfacher)

Ausgangsbeschaltung für mittlere Ströme und Spannungen

Transistor als Treiberstufe:

Ausgangsbeschaltung für hohe Ströme oder Spannungen

Schalt-Relais mit Transistoransteuerung:

