Automi e Linguaggi Formali

a.a. 2016/2017

LT in Informatica 27 Febbraio 2017

Docenti del Corso

Prima parte (4 settimane):

Docente: Davide Bresolin

e-mail: davide.bresolin@unipd.it

ufficio: Stanza 501, V Piano, Scala A della Torre Archimede,

Dipartimento di Matematica, via Trieste

ricevimento: lunedì 15:30-17:30

A seguire:

Docenti: Gilberto Filè e Lamberto Ballan

Calendario delle prime quattro settimane

I Settimana Lun 27/2, 13:30–15:30, Aula LuM250 Mar 28/2, 13:30–15:30, Aula LuM250 Ven 3/3, 13:30–15:30, Aula LuM250

Il Settimana Docente assente, le lezioni sono sospese!

III Settimana Lun 13/3, 13:30–15:30, Aula LuM250 Mar 14/3, 13:30–15:30, Aula LuM250 Ven 17/3, 13:30–15:30, Aula LuM250

IV Settimana Lun 20/3, 13:30–15:30, Aula LuM250 Mar 21/3, 13:30–15:30, Aula LuM250 Ven 24/3, 13:30–15:30, Aula LuM250

Programma del Corso

- Parte 1: linguaggi regolari
 - automi a stati finiti
 - espressioni e linguaggi regolari
- Parte 2: linguaggi liberi da contesto
 - grammatiche e linguaggi liberi dal contesto
 - automi a pila
- Parte 3: struttura dei compilatori e parsing
 - analisi lessicale
 - analisi sintattica: parsers top-down (LL) e bottom-up (LR)
- Parte 4: indecidibilità e intrattabilità
 - macchine di Turing
 - concetto di indecidibilità
 - problemi intrattabili
 - classi P e NP

Libro di testo

J. E. Hopcroft, R. Motwani, J. D. Ullman Automi, linguaggi e calcolabilità

J. E. Hopcroft, R. Motwani, J. D. Ullman Introduction to Automata Theory, Languages, and Computation

Va bene qualsiasi edizione (1a, 2a, 3a)

Moodle del corso

- Accesso tramite le proprie credenziali UniPD
- Pubblicazione di slide e altro materiale del corso
- Esercizi e soluzioni
- Comunicazioni e aggiornamenti
- Forum di discussione

Esami, compitini ed esercizi

- Esame: Scritto e, se richiesto dai docenti, colloquio orale. Cinque appelli, tra Luglio, Settembre 2017 e Febbraio 2018.
- Compitini (forse): Due compitini, uno a meta' del corso e uno alla fine. Modalità da definire
- Esercizi (prima parte del corso): pubblicati il venerdì, corretti a lezione il venerdì successivo.

Pensare da Informatici

Un Informatico:

- come un matematico, usa un linguaggio formale per descrivere le cose
- come un ingegnere, progetta sistemi complessi
- come uno scienziato, osserva il comportamento dei sistemi, formula ipotesi, e ne verifica i risultati

In questo corso faremo i matematici e gli scienziati:

- vedremo degli strumenti per descrivere un sistema,
- ne studieremo le proprietà,
- confronteremo i diversi strumenti,
- per stabilire cosa possono fare e cosa no

Gli Automi a Stati Finiti

Gli automi a stati finiti sono usati come modello per:

- Software per la progettazione di circuiti digitali
- Analizzatori lessicali di un compilatore
- Ricerca di parole chiave in un file o sul web
- Software per verificare sistemi a stati finiti, come protocolli di comunicazione

Un sistema di commercio elettronico

Costruiamo un esempio di commercio elettronico:

- Il cliente paga il negozio con moneta elettronica
- Il cliente può cancellare la moneta elettronica
- Il negozio riceve il pagamento e spedisce il prodotto al cliente
- Per completare il pagamento, il negozio riscatta la moneta elettronica
- La banca controlla la validità della moneta e trasferisce la somma al negozio

Completiamo gli automi

- Ogni automa reagisce solo ad alcuni messaggi:
 - Il cliente può ignorare riscatta e trasferisci
 - La banca può ignorare paga e spedisci
- Dobbiamo gestire anche comportamenti inattesi:
 - Cosa facciamo se cliente paga due volte?
- La definizione formale di automa prescrive che si debba reagire ad ogni messaggio
 - altrimenti il sistema "muore" e la computazione non prosegue
- Dobbiamo quindi aggiungere transizioni per avere una descrizione completa

Il sistema completo

Alfabeti, linguaggi e automi a stati finiti

Per rappresentare in maniera precisa l'esempio, dobbiamo definire alcuni concetti di base:

- Che cos'è un alfabeto (di simboli/messaggi/azioni)
- Che cos'è un linguaggio formale
- Che cos'è un Automa a stati finiti deterministico
- Cosa vuol dire che un automa accetta un linguaggio

Alfabeti e stringhe

Alfabeto: Insieme finito e non vuoto di simboli

- **Esempio:** $\Sigma = \{0, 1\}$ alfabeto binario
- **Esempio:** $\Sigma = \{a, b, c, \dots, z\}$ insieme di tutte le lettere minuscole
- Esempio: Insieme di tutti i caratteri ASCII

Stringa: (o parola) Sequenza finita di simboli da un alfabeto Σ , e.g. 0011001

Stringa vuota: La stringa con zero occorrenze di simboli da Σ

lacktriangle La stringa vuota è denotata con arepsilon

Lunghezza di una stringa: Numero di simboli nella stringa.

- |w| denota la lunghezza della stringa w
- |0110| = 4, $|\varepsilon| = 0$

Potenze di un alfabeto

- Potenze di un alfabeto: Σ^k = insieme delle stringhe di lunghezza k con simboli da Σ
 - Esempio: $\Sigma = \{0, 1\}$

$$\begin{split} \Sigma^0 &= \{\varepsilon\} \\ \Sigma^1 &= \{0,1\} \\ \Sigma^2 &= \{00,01,10,11\} \end{split}$$

- Domanda: Quante stringhe ci sono in Σ^3 ?
- L'insieme di tutte le stringhe su Σ è denotato da Σ^*
 - $\quad \blacksquare \ \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$

Linguaggi

- Linguaggio: dato un alfabeto Σ , chiamiamo linguaggio ogni sottoinsieme $L \subseteq \Sigma^*$
- Esempi di linguaggi:
 - L'insieme delle parole italiane
 - L'insieme dei programmi C sintatticamente corretti
 - L'insieme delle stringe costituite da *n* zeri seguiti da *n* uni:

```
\{\varepsilon, 01, 0011, 000111, \dots\}
```

..

Automi a Stati Finiti Deterministici

Un Automa a Stati Finiti Deterministico (DFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- δ è una funzione di transizione $(q, a) \mapsto q'$
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Possiamo rappresentare gli automi sia come diagramma di transizione che come tabella di transizione.

Diagrammi e tabelle di transizione

Esempio: costruiamo un automa *A* che accetta il linguaggio delle stringhe con 01 come sottostringa

■ L'automa come diagramma di transizione:

■ L'automa come tabella di transizione:

	0	1
$ ightarrow q_0$	q_1	90
q_1	q_1	q 2
* q 2	q_2	q_2

Esempi

DFA per i seguenti linguaggi sull'alfabeto {0, 1}:

- Insieme di tutte e sole le stringhe con un numero pari di zeri e un numero pari di uni
- Insieme di tutte le stringhe che finiscono con 00
- Insieme di tutte le stringhe che contengono esattamente tre zeri (anche non consecutivi)
- Insieme delle stringhe che cominciano o finiscono (o entrambe le cose) con 01