Count Model Regression Case Study

Najib Mozahem

May 1, 2019

The Dataset

- id: unique student identifier
- gpa: overall GPA of the student
- total_fail: the total number of courses in which the student has failed (this is the dependent variable)
- college: whether the student is in the engineering school or the business school (one means business, two means engineering)
- gender: whether the student is a male or a female (one means female, two means male)
- english: the average grade on all English courses taken by the student (data is taken from a non-English speaking country where the language of instruction in university is English)
- total_courses: the total number of courses taken by the student so far in the university

Univariable Tests

- ▶ The first thing that we should do when conducting regression analysis is to perform univariate analysis, where we try and uncover whether there is a relationship between the dependent variable and each independent variable separately.
- ▶ Once we have a good idea about the nature of these individual relationships, we can start building the model.
- ▶ In the case of count data, it is always a good idea to look at the histogram of the dependent variable in order to get an idea of the variable that we are dealing with.

Histogram of Dependent Variable

Figure: Histogram of the dependent variable.

Continuous Variables

In linear regression, when we have a continuous independent variable, we start our analysis by plotting a scatter plot. Graphs are also useful as a starting step in count models, but their shape is different from what we are used to due to the nature of the dependent variable.

Continuous Variables - GPA (Scatter plot

Figure: Scatterplot of total_fail and GPA.

Continuous Variables - GPA (Smoothed scatter plot)

Figure: Smoothed scatterplot.

Continuous Variables - GPA (Poisson Regression)

```
Iteration 0:
               log\ likelihood = -1495.7527
Iteration 1:
               log\ likelihood = -1495.6504
Iteration 2:
               log\ likelihood = -1495.6504
Poisson regression
                                                  Number of obs
                                                                              760
                                                  LR chi2(1)
                                                                           817.86
                                                  Prob > chi2
                                                                           0.0000
Log likelihood = -1495.6504
                                                  Pseudo R2
                                                                           0.2147
  total_fail
                    Coef.
                             Std. Err.
                                            z
                                                  P>|z|
                                                             [95% Conf. Interval]
                -.0952663
                             .0030879
                                        -30.85
                                                  0.000
                                                           -.1013185
                                                                        -.0892141
         gpa
                 7.528266
                             .2187085
                                         34.42
                                                  0.000
                                                            7.099605
                                                                         7.956927
       _cons
```

Continuous Variables - GPA (Poisson Regression - IRR)

```
Iteration 0:
             log likelihood = -1495.7527
Iteration 1: log likelihood = -1495.6504
              log likelihood = -1495.6504
Iteration 2:
```

Poisson regression Number of obs 760 LR chi2(1) 817.86 Prob > chi2 0.0000 Pseudo R2 0.2147

Log likelihood = -1495.6504

total_fail	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
gpa	.9091308	.0028073	-30.85	0.000	.9036452	.9146498
_cons	1859.877	406.7711	34.42		1211.488	2855.284

Exposure

We have however, disregarded one important factor so far, and it is the exposure time. As you recall from the theory part of the course, we need to account for the fact that different subjects were exposed to the probability of the event occurring for different period of time. In our dataset, the variable total_courses contains the total number of courses taken by the student. Statistical packages allow us to iclude an exposure variable. The output after dincluding total_courses as ab exposure variable is shown below.

Exposure

```
Iteration 0: log likelihood = -1146.808
Iteration 1: log likelihood = -1146.7986
Iteration 2:
            log likelihood = -1146.7986
```

Poisson regression

Number of obs 760 LR chi2(1) 1345.83 Prob > chi2 0.0000 Pseudo R2 0.3698

Log likelihood = -1146.7986

total_fail	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
<pre>gpa _cons ln(total_~s)</pre>	.868657 1694.273 1	.0029586 408.1211 (exposure)	-41.34 30.87	0.000	.8628775 1056.681	.8744752 2716.584

Exposure

- As we can see, the value of IRR for the variable gpa is now slightly different.
- ▶ We also see that there is a new row in the regression table that contains the elements In(total_courses).
- ► From this point forward, we will be including the variable total_courses as an exposure in all the output.

Continuous Variables - English (Smoothed scatter plot)

Figure: Smoothed scatterplot of total_fail and english.

Continuous Variables - English (Poisson Regression - IRR)

```
Iteration 0: log likelihood = -1406.8576
Iteration 1: log likelihood = -1406.8565
Iteration 2: log likelihood = -1406.8565
```

Poisson regression

Number of obs = 755 LR chi2(1) = 801.08 Prob > chi2 = 0.0000 Pseudo R2 = 0.2216

Log likelihood = -1406.8565

total_fail	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
english _cons ln(total_~s)	.8893731 131.3423 1	.0036963 35.34142 (exposure)	-28.21 18.13	0.000	.882158 77.51119	.8966472 222.5589

Binary Variables

Now that we have seen how to analyze the relationship between the binary dependent variable and a continuous independent variable, we move onto other types of variables. Looking at our dataset, we notice that the variables gender and college are binary. Both take on two values.

Binary Variables - College (Poisson Regression)

Iteration 0: log likelihood = -1813.5521
Iteration 1: log likelihood = -1813.5521

Poisson regression Number of obs = 760 LR chi2(1) = 12.33 Prob > chi2 = 0.0004 Log likelihood = -1813.5521 Pseudo R2 = 0.0034

total_fail IRR Std. Err. P>|z| [95% Conf. Interval] z college Engineering .8180037 .0465096 -3.53 0.000 .7317423 .9144341 .0571091 .0024783 -65.97 0.000 .0524525 .062179 cons ln(total ~s) (exposure)

Binary Variables - Gender (Poisson Regression)

```
Iteration 0:
             log likelihood = -1712.8214
Iteration 1:
             log likelihood = -1712.8145
Iteration 2:
               log\ likelihood = -1712.8145
Poisson regression
                                                 Number of obs
                                                                            760
                                                LR chi2(1)
                                                                         213.80
                                                Prob > chi2
                                                                         0.0000
Log likelihood = -1712.8145
                                                Pseudo R2
                                                                         0.0587
 total fail
                      IRR
                            Std. Err.
                                           z
                                                P>|z|
                                                           [95% Conf. Interval]
      gender
       male
                 2.845421
                            . 2288983
                                                0.000
                                                           2.430369
                                                                       3.331356
                                        13.00
                 .0224076
                            .0016702
       cons
                                       -50.96
                                                0.000
                                                            .019362
                                                                       .0259322
ln(total ~s)
                           (exposure)
```

Multivariate Analysis

Iteration 0: log likelihood = -1099.3037
Iteration 1: log likelihood = -1099.2339
Iteration 2: log likelihood = -1099.2339

Poisson regression Number of obs = 755 LR chi2(4) = 1416.32 Prob > chi2 = 0.0000 Log likelihood = -1099.2339 Pseudo R2 = 0.3918

total_fail IRR Std. Err. P>|z| [95% Conf. Interval] z .8876014 .0041204 -25.680.000 .8795622 .895714 gpa english .9663382 .0051 -6.490.000 .956394 .9763859 college Engineering 1.113613 .0669225 1.79 0.073 .9898769 1.252815 gender male 1.413999 .1209597 4.05 0.000 1.195731 1.672109 2418.674 780.7668 24.14 0.000 1284.703 4553.568 cons ln(total_~s) (exposure)

Negative Binomial Regression

Now it is time to see whether the data displays overdispersion. As you recall, when there is evidence that overdispersion exists, we will need to fit a negative binomial model that will estimate the new parameter alpha.

Negative Binomial Regression

Negative binor Dispersion Log likelihood	= mean			Number LR chi2 Prob > Pseudo	e(4) = chi2 =	755 540.91 0.0000 0.2150
total_fail	IRR	Std. Err.	z	P> z	[95% Conf	. Interval]
gpa english	.8562923 .9626258	.0082241	-16.15 -4.64	0.000	.8403241 .9472738	.8725639 .9782266
college Engineering	1.221273	.1176047	2.08	0.038	1.011218	1.474961
gender male _cons ln(total_~s)	1.327607 39032.16 1	.1531766 26223.31 (exposure)	2.46 15.74	0.014 0.000	1.058912 10460.5	1.664484 145644
/lnalpha	6676535	.1361952			9345912	4007157
alpha	.5129107	.069856			.3927464	.6698404

Note: Estimates are transformed only in the first equation.

Note: _cons estimates baseline incidence rate.

Zero-Inflated Models

- ▶ When we plotted the histogram of the dependent variables, we noted that the number of zeros seems to be too high.
- ▶ This means that perhaps a zero-inflated model would be of better use.
- ➤ Since we have found that there is overdispersion in the data, it would make sense for us to fit the zero-inflated negative binomial regression model.

Zero-Inflated Model

Zero-inflated	negative bin	omial regres	ssion	Number Nonzero Zero ob	obs	=	755 351 404
Inflation mode		5		LR chi2 Prob >		=	253.69 0.0000
total_fail	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
total_fail							
gpa	1057381	.0090785	-11.65	0.000	123	5317	0879445
english	0304713	.0076049	-4.01	0.000	045	3766	015566
college							
Engineering	.1139091	.0943508	1.21	0.227	07	1015	. 2988332
gender	0545400	1000754			0.40	0045	4000400
male	.2515483	.1220756	2.06	0.039	.012		.4908122
_cons	6.801989	.66255	10.27	0.000	5.50	3415	8.100564
ln(total_~s)	1	(exposure)					
inflate							
gpa	.3518453	.0541493	6.50	0.000	. 245	7145	.4579761
english	.0159122	.0350812	0.45	0.650	052	8457	.0846701
college							
Engineering	3981901	.4403973	-0.90	0.366	-1.26	1353	.4649727
gender							
male	0967932	.4380667	-0.22	0.825	955	3881	.7618018
_cons	-28.72857	3.672004	-7.82	0.000	-35.9	2556	-21.53157
/lnalpha	-1.320756	. 1988137	-6.64	0.000	-1.71	0424	9310886
alpha	. 2669333	.05307			.180	7891	.3941244

Zero-Inflated Model

In some statistical packages, it is possible to request that the exponentiated coefficients be diplayed.

Zero-Inflated Model - Exponentiated Coefficients

zinb (N=755): Factor change in expected count

Observed SD: 2.8663

Count equation: Factor change in expected count for those not always $\boldsymbol{0}$

	b	z	P> z	e^b	e^bStdX	SDofX
gpa english	-0.1057 -0.0305	-11.647 -4.007	0.000	0.900 0.970	0.450 0.800	7.555 7.338
college Engineering	0.1139	1.207	0.227	1.121	1.058	0.494
gender male constant	0.2515 6.8020	2.061 10.266	0.039 0.000	1.286	1.125	0.467
alpha lnalpha alpha	-1.3208 0.2669	:				:

Binary equation: factor change in odds of always 0

	b	z	P> z	e^b	e^bStdX	SDofX
gpa english	0.3518 0.0159	6.498 0.454	0.000 0.650	1.422 1.016	14.269 1.124	7.555 7.338
college Engineering	-0.3982	-0.904	0.366	0.672	0.821	0.494
gender male constant	-0.0968 -28.7286	-0.221 -7.824	0.825 0.000	0.908	0.956	0.467

Zero-Inflated Model

We are interested in the p-values of the inflate part since we originally included all the independent variables in order to see which ones might be inflating the number of zeros. We had previously seen that that in the "inflate" part, only the variable gpa is significant. This would indicate that we might be better off fitting a model that only included gpa in the "inflate" part:

${\sf Zero\text{-}Inflated}\ {\sf Model}\ {\sf -}\ {\sf Updated}\ {\sf Model}$

Zero-inflated negative binomial regression Number of Nonzero $\ensuremath{\text{Nonzero c}}$ Zero obs					obs =	= 351
Inflation mode	el = logit			LR chi2	(4) =	= 259.07
Log likelihood		7		Prob >		0.0000
total_fail	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
total_fail						
gpa	1059945	.0090624	-11.70	0.000	1237565	0882324
english	0316688	.0073566	-4.30	0.000	0460876	0172501
college						
Engineering	.1447259	.0880362	1.64	0.100	0278219	.3172737
gender						
male	. 2656364	.1119332	2.37	0.018	.0462513	.4850214
_cons	6.86581	.6550236	10.48	0.000	5.581988	8.149633
ln(total_~s)	1	(exposure)				
inflate						
gpa	.360155	.0459039	7.85	0.000	.270185	.4501251
_cons	-28.61654	3.626404	-7.89	0.000	-35.72416	-21.50892
/lnalpha	-1.312343	.1968799	-6.67	0.000	-1.69822	9264651
alpha	. 2691887	.0529978			. 183009	.3959509

Comparing Count Models

So which is it? Is it the negative binomial model or the zero-inflated binomial model? This is where we need to compare the four models: Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial.

Comparing Count Models - Graphing the Erros of each Model

Figure: Difference between observed and predicted values in each of the four models.

Comparing Count Models - AIC and BIC Statistics

Variable	PRM	NBRM	ZIP	ZINB
total_fail				
Student overall GPA	0.928	0.859	0.966	0.941
	-17.66	-11.68	-6.74	-4.75
Student average grade on Eng~h	0.967	0.971	0.985	0.975
	-6.92	-2.84	-2.95	-2.65
College				
Engineering	1.218	1.450	1.177	1.291
	3.28	3.04	2.53	2.25
Gender				
male	1.553	1.426	1.519	1.459
	5.11	2.56	4.54	2.77
Constant	2409.199	5.01e+05	66.849	689.760
	25.64	14.77	11.20	7.17
lnalpha				
Constant		1.222		0.731
		2.05		-2.26
inflate				
Student overall GPA			1.318	1.485
			11.59	7.91
Constant			0.000	0.000
			-11.61	-7.83
Statistics				
alpha		1.222		
N	755	755	755	755
11	-1427.307	-1098.999	-1195.208	-1064.134
bic	2887.747	2237.759	2436.802	2181.282
	2864.614	2209.999	2404.415	2144.268

legend: b/t

Comparing Count Models - Best-fit Model

Therefore, it is safe to deduce that the zero-inflated negative binomial model is the best suited model to be used with this dataset.

Visualizing the Results

There are two ways to look at the results:

- Predict the number of outcomes
- ▶ Predict the probability that the event will happen a certain number of times

Visualizing the Results - Predicting the Number of Outcomes

Figure: Using marginsplot to visualize the relationship between the expected number of events and GPA.

Visualizing the Results - Predicting the Number of Outcomes

Figure: Visualizing the effect that two variables have on the expected number of outcomes.

Visualizing the Results - Predicting the Probability

Figure: Plotting the probability that the event will occur exactly four times.