Collaborative Filtering End-Semester Exam Mohammed Kashif MT15035

Approach Used:

We had to apply matrix factorization on 10M movielens dataset . The Divide and Conquer approach used in the paper can be divided into 3 parts :

- **1. Divide:** First the 10M dataset had to be divided into smaller parts since it could not be loaded into the memory.
- 2. Factorize: Then matrix factorization is performed on these individual parts.
- **3. Conquer :** Finally these individual results are combined to give an approximate result for the complete dataset .

Divide Step:

Total number of users in 10M dataset: 71567 Total number of items in 10M dataset: 10681

Strategy Used : Random Sampling of Rows

As mentioned in the paper , one way of dividing the dataset is to partition it into T L-column sub matrices , given that $mod(no_of_columns , T) = 0$. Now the factors of 10681 are 1 , 11 , 971 and 10681 . So I chose T as 11 , hence L is 971 .

The steps for Divide strategy are as follows:

- 1. Create an array containing integers 1 to 10681.
- 2. Randomly shuffle the array using numpy shuffle method .
- 3. Partition the shuffled array into 11 parts of equal size.
- 4. Create a hashmap named cluster as follows, suppose if the number 5 falls into the 2nd bin, the cluster[5] = 2.
- 5. Create an instance of dataframe to read the dataset . **NOTE : THIS DOES NOT LOAD THE WHOLE DATASET BUT CREATES AN INSTANCE**
- 6. Read the data LINE BY LINE only and store the line in variable 'line'
 - a. Now line has the data of the form "UserID::ItemID::Rating::Timestamp"
 - b. Find the cluster for the itemID using the hashmap created in step4.
 - c. Cluster ID = cluster [ItemID in the line]
 - d. Store the line in file named train_part_cluster_ID.csv .
 - e. Read the next line
- 7. Once the file is read line by line, 11 parts will be created having the name train_part_1.csv, train_part_2.csv, etc. and so on, each containing matrices of size no of users X L, i.e. 71567 X 971

Factor Step:

I use the factorization as discussed in Assignment 2 for each of the individual chunks .

Combine Step:

Input at this step : The Factorized user and Item latent vectors are stored in the individual files named as $C_{hat_1.txt}$, $C_{hat_2.txt}$ and so on . Each file contains the corresponding U and V matrix obtained after matrix factorization . These will be denoted by U_1 and V_2 and so on .

Approach Used :I used the equation given in the paper

$$\mathbf{L}^{proj} = \mathbf{C}\mathbf{C}^{+}\mathbf{M}$$

As mentioned in the paper , I project [C_hat_1 C_hat_2 ... C_hat_11] into the column space of C_hat_1 by using the following equations :

$$X.U = C$$
 hat $1.U$

$$X \cdot V = [C_hat_1.V * pseudoInverse(C_hat_1)*C_hat_2.U)*C_hat_2.V \\ (C_hat_1.V * pseudoInverse(C_hat_1)*C_hat_2.U)*C_hat_3.V \\ \\ (C_hat_1.V * pseudoInverse(C_hat_1)*C_hat_2.U)*C_hat_1.V]$$

Step for combine step are as follows:

- Read the first cluster ,i.e. C_hat_1
- 2. STore the final result in X
- 3. Now X.U = C_hat_1.U
- 4. Calculate X.V using the equation shown above for the rest of the clusters.
- 5. Now X.U and X.V contain the user and Item latent vectors respectively.
- 6. Once the latent factors for users and items are obtained I predict the ratings and compare the ratings with the test ratings and calculate the NMAE.

Number of Factors	NMAE
40	0.29987