DPGMM Gibbs Sampler

Dirichlet Process Gaussian Mixture Models Li Sun, Yimeng Xu, Jiahao Xu

MATH 640: Bayesian Statistics

Background -- kmeans

https://en.wikipedia.org/wiki/K-means_clustering#/media/File:K-means_convergence.gif

Background -- Hierarchical Clustering

https://dashee87.github.io/data%20science/general/

DPGMM

$$egin{aligned} X_i | \mu_i &\sim \mathcal{N}(\mu_i, \sigma^2) \ \mu_i | G \sim G \ G &= DP(lpha, \mathcal{N}(\mu_0, \sigma_0^2)) \end{aligned}$$

Same
$$\mu$$

$$\mu \sim F$$
 If F is continuous

$$Pr(\mu_i = \mu_j) = 0$$

We need a discrete approximation!

Dirichlet Process (DP)

DPGMM

Notation:

Cluster assignment $X_i | \mu \sim \mathcal{N}(\mu_i, \sigma^2)$ $Z_i = k \Leftrightarrow \mu_i \ in \ kth \ partition$ $p_k = P(Z = k)$ $p = \{p_1, \ldots, p_K\}$ $p = \{p_1, \ldots, p_K\}$ $p = \{ount \ of \ \mu_j \ (j \neq i) \ in \ kth \ partition$ $p \sim Dir(\alpha/K, \ldots, \alpha/K)$ $p \sim Dir(\alpha/K, \ldots, \alpha/K)$ $m_{k,-i} = count \ of \ \mu_j \ (j \neq i) \ in \ kth \ partition$ $p \sim Dir(\alpha/K, \ldots, \alpha/K)$

Predictive Distribution

$$egin{aligned} P(Z_i = k) &= p_k \ L(Z) &= \prod_{i=1}^N P(Z_i) &= \prod_{k=1}^K p_k^{n_k} \end{aligned} \qquad p_1, \ldots, p_K \sim DIR(rac{lpha}{K}, \ldots, rac{lpha}{K})$$

$$egin{aligned} Pig(Z_i = m | Z_{-i}ig) &= rac{P(Z_i = m, Z_{-i})}{P(Z_{-i})} \ &= rac{\int_{p_1, \ldots, p_K} P(Z_i = m, Z_{-i} | p_1, \ldots, p_K) P(p_1, \ldots, p_K) dp_1 \ldots dp_K}{\int_{p_1, \ldots, p_K} P(Z_{-i} | p_1, \ldots, p_K) P(p_1, \ldots, p_K) dp_1 \ldots dp_K} \end{aligned}$$

Predictive Distribution

$$\begin{split} denominator &= \int_{p_{1},\dots,p_{K}} P(Z_{-i}|p_{1},\dots,p_{K})P(p_{1},\dots,p_{K})dp_{1}\dots dp_{K} \\ &= \int_{p_{1},\dots,p_{K}} [\prod_{k=1}^{K} p_{k}^{n_{k,-i}}] \frac{\Gamma(\sum_{k=1}^{K} \frac{\alpha}{K})}{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K})} \prod_{k=1}^{K} p_{k}^{\frac{\alpha}{K}-1} dp_{1}\dots dp_{K} \\ &= \frac{\Gamma(\sum_{k=1}^{K} \frac{\alpha}{K})}{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K})} \int_{p_{1},\dots,p_{K}} \prod_{k=1}^{K} p_{k}^{\frac{\alpha}{K}+n_{k,-i}-1} dp_{1}\dots dp_{K} \\ &= \frac{\Gamma(\sum_{k=1}^{K} \frac{\alpha}{K})}{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K})} \frac{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K}+n_{k,-i})}{\Gamma(\sum_{k=1}^{K} (\frac{\alpha}{K}+n_{k,-i}))} \int_{p_{1},\dots,p_{K}} \frac{\Gamma(\sum_{k=1}^{K} (\frac{\alpha}{K}+n_{k,-i}))}{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K}+n_{k,-i})} \prod_{k=1}^{K} \Gamma(\frac{\alpha}{K}+n_{k,-i}) \\ numerator &= \frac{\Gamma(\sum_{k=1}^{K} \frac{\alpha}{K})}{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K})} \frac{\Gamma(\frac{\alpha}{K}+n_{m,-i}+1) \cdot \prod_{k=1}^{K} \Gamma(\frac{\alpha}{K}+n_{k,-i})}{\Gamma(\frac{\alpha}{K}+n_{k,-i})} \\ denominator &= \frac{\Gamma(\sum_{k=1}^{K} \frac{\alpha}{K})}{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K})} \frac{\prod_{k=1}^{K} \Gamma(\frac{\alpha}{K}+n_{k,-i})}{\Gamma(\sum_{k=1}^{K} (\frac{\alpha}{K}+n_{k,-i}))} P(Z_{i} = m|Z_{-i}) = \frac{\frac{\alpha}{K}+n_{m,-i}}{\alpha+N-1} \\ \frac{\alpha}{K}+N-1 \\ \frac{\alpha}{K}+N$$

Chinese Restaurant Process (CRP)

$$egin{aligned} P(Z_i = m | Z_{-i}) &= rac{n_{m,-i}}{lpha + N - 1} \quad orall i \in [1,K] \ P(Z_i = K + 1 | Z_{-i}) &= rac{lpha}{lpha + N - 1} \end{aligned}$$

Predictive Probability

in cluster m

Likelihood if in cluster m

$$P(Z_i=m|Z_{-i},X)\propto P(Z_i=m|Z_{-i},lpha)\cdot P(X_i|Z_i=m,\mu_i)$$

$$\propto egin{cases} n_{m,-i} \cdot \mathcal{N}(x_i; \mu_{[m]}, \sigma^2) & existing cluster \ m \ lpha \int_{\mu} Pr(X_i | \mu) \cdot Pr(\mu | \mu_0) = \mathcal{N}(x_i; \mu_0, \sigma^2 + \sigma_0^2) & new \ cluster \end{cases}$$

Gibbs Sampler

Data	Initial Z0	1 st run Z1 p.m.f	2 nd run Z2 <u>p.m.f</u>	3 rd run Z3 p.m.f
x1	Cluster 1	Cluster 1 $\propto N(x_1; \mu_1, \sigma^2)$ New cluster $\propto \alpha N(x_1; \mu_0, \sigma^2 + \sigma_0^2)$	Cluster 1 $\propto N(x_1; \mu_1, \sigma^2)$ Cluster 2 $\propto N(x_2; \mu_2, \sigma^2)$ New cluster	Cluster 1 $\propto N(x_1; \mu_1, \sigma^2)$ Cluster 3 $\propto N(x_3; \mu_3, \sigma^2)$ New cluster
x2	Cluster 1			
х3	Cluster 1			
Realization	Z01=1 Z02=1 Z03=1	Z11=1 u1 Z12=2 u2 Z13=2 u2	Z21=1 u1 Z22=1 u1 Z23=3 u3	Z31=1 u1 Z32=2 u2 Z33=1 u1
Likelihood	L(x1,x2,3 u1)	L(x1 u1) L(x2,x3 u2)	L(x1,x2 u1) L(x3 u3)	L(x1,x3 u1) L(x2 u2)
Prior	$u \sim N(\mu_0, \sigma_0^2)$			
Sample from posterior	u1	u1,u2	u1, u3	u1, u2

Gibbs Sampler -- Run 0

Initialized as one cluster and the first cluster center is sampled from posterior distribution.

Gibbs Sampler -- Run 1

Point 3 and point 4 are assigned to a new cluster with center mu_2,

Resample mu_1 from the posterior distribution based only on point 1 and point 2. Sample mu_2 from the posterior distribution based on the point 3 and point 4

Gibbs Sampler -- Run 2

Same process

Point 4 is assigned to a new cluster with center mu_3

Sample mu_1 from the posterior based on point 1 and point 2. Sample mu_2 from the posterior based on point 3. Sample mu_3 from the posterior based on point 4

Data Overview

Summary after normalization:

Min. :-1.5101

1st Qu.:-1.0983

Median: 0.2021

Mean : 0.0000

3rd Qu.: 0.8632

Max. : 2.2612

Result

Result

Discussion

Pros:

- Do not need to pre specify the number of clusters
- Can generate a distribution of a centroid in each cluster
- Ease to explain

Future Work:

Expand on 2-D data and multivariate normal prior.

Also sample variance in the Gibbs sampler.

Try different prior for different data.

Cons:

- Need more computing power than other methods
- Need to turn many parameters

Thank you!