姓名: 学号:

日期:

10. 22

成绩:

地点: 东四 421-14

洲沙人学实验报告

指导老师: 马洪庆 李培弘 金向东 课程名称: 电子工程训练甲

实验名称: 阶段一 基础部分 同组学生姓名:

一、常用电子仪器的使用

一、实验目的和要求

学会实验室常用仪器的正确使用操作,如电源、万用表、信号源、示波器。

- 二、实验内容和原理
 - 1.万用表测量电阻值、电容值、二极管、三极管极性与压降。
 - 2.操作电源设定输出电压值与电流值,使用万用表测量并计算偏差。
 - 3.使用信号源输出不同信号并通过示波器测量。
- 三、主要仪器设备 万用表、电源、信号源、示波器

四、实验数据记录和处理

1. (1)

三极管

放大倍数 117

装

订

线

电阻	标称值/Ω	测量值/Ω	偏差/%	
1	680	676.7	0.46	
2	4700	4708.2	0.17	
3	2700	2691.1	0.33	
1. (2)				
电容	标称值/uF	测量值/uF	偏差/%	
1	47	51.65	9.9	
2	100	109.3	9.3	
3	470	519.1	10.4%	
1. (3)				
二极管	正向导通压降/V			
1	0.5992			
1. (4)				

2. (1) (2)

电源

测量编号	标称值	测量值	偏差/%
1	5	4.971	0.58
2	-5	-4.968	0.64
3	12	12.038	0.32
4	-12	-12.035	0.29

2.(3)

CH1 1V,电流 0.5A 换到 2/20A 测量值0.508A 偏差 +1.6%

3.(1)方波 频率1khz 幅度 1v

(2) 正弦波

次数	频率	电压量程	扫描时间	幅度	频率读取值
1	10kHz	200mv	25us	200mv	9.99958kHz
2	100kHz	200mv	2.5us	200mv	99.9957kHz
3	1mHz	200mv	250ns	200mv	999.960kHz
4	10mHz	200mv	25ns	200mv	9999.57kHz

方波

次数	频率	电压量程	扫描时间	幅度	频率读取值
1	10kHz	200mv	25us	200mv	9.99958kHz
2	100kHz	200mv	2.5us	200mv	99.9957kHz
3	1mHz	200mv	250ns	200mv	999.960kHz
4	10mHz	200mv	25us	200mv	9999.57kHz

三角波

次数	频率	电压量程	扫描时间	幅度	频率读取值
1	10kHz	200mv	25us	200mv	9.99958kHz
2	100kHz	200mv	2.5us	200mv	99.9957kHz
3	1mHz	200mv	250ns	200mv	999.960kHz
4	10mHz	200mv	25ns	200mv	9999.57kHz

3.(4)

正弦波

次数	电压幅度/Vp-p	幅度	偏差/%
1	0.5	248mv	0.8
2	1	496mv	0.8
3	1.5	770mv	2.6
4	2	990mv	1.0

二、实验电路的调试内容与步骤

- 一、实验内容与步骤
 - 1. 呼吸灯调试
 - 2. 幸运转盘调试
 - 3. 贴片流水灯调试
- 二、数据整理及结果分析
- 1、呼吸灯调试
- (1) 示波器测量集成电路 1 脚的波形, 光标法测量幅度、周期

幅度: 4.40V

周期: 2.26s

(2) 示波器测量集成电路 7 脚的波形, 光标法测量幅度、周期

幅度: 9.49V

周期: 2.26s

(3) 电路 1 脚、7 脚波形

三角波

方波

(4) 调节 R3,观察波形周期变化

调节R3,呼吸频率变慢,幅度增大,周期变小。

2、幸运转盘调试

(1) 示波器测量集成电路 U1 的 3 脚的波形, 光标法测量幅度、周期, 负脉冲宽度

幅度: 3.83V

周期: 0.01s

负脉冲宽度: 56us

(2) 示波器测量集成电路计数输出的波形,光标法测量幅度、周期,正脉冲宽度

幅度: 1.96V

周期: (频率 6.891HZ

正脉冲宽度: 15.1ms

计算占空比: 9.74%

(3) 测量 Q1 电压波形,记录灯恰好停止闪烁时,记录发射极电压。

2V

- 3、贴片流水灯调试
- (1) 测试NE555 输出信号(3) 脚的幅度和频率

幅度: 2.40V

频率: 13.61HZ

(2) 测量上述信号上升,下降时间

上升时间: 138ns

下降时间: 183ns

(3) 测量 4017 环形计数器输出波形周期和脉冲宽度

周期: 710ms

脉冲宽度: 71ms

(4) 计算占空比和理论值

计算占空比: 10.11%

理论值: 10%

(5) 测量Q1 集电极信号周期

周期: 714ms

三、总结报告

一、实验内容

1. 常用电子仪器的使用

万用表、电源、信号源、示波器的使用。

- 2. 焊接训练
 - (1) 双列直插器件焊接
 - (2) 贴片器件焊接
- 3. 实验电路的调试步骤
 - (1) 双列直插呼吸灯的调试
 - (2) 双列直插幸运转盘的调试
 - (3) 贴片流水灯的调试

二、实验收获

在这几周实验过程中,我觉得收获最大的地方有两点,一是实际操作焊接的操作,另一个是近距离的接触使用了最基本的电子器件,包括电阻阻值的判断等,让我受益匪浅。

三、教学方法评价

课程采取线上线下结合的方式能够给我们提前预习实验知识的机会,并且给了比较多的时间的实际操作,我认为是不错的。