Errata and Addenda (May-11-2018)

1. Page 29: the truth table in Example 2.5.2 should look like

p	q	$p \Rightarrow q$	\overline{q}	\overline{p}	$\overline{q} \Rightarrow \overline{p}$	$(p \Rightarrow q) \Leftrightarrow (\overline{q} \Rightarrow \overline{p})$
Τ	Τ	T	F	F	${ m T}$	T
Τ	F	F	\mathbf{T}	F	F	m T
F	\mathbf{T}	Т	F	Γ	Τ	m T
F	F	T	Τ	Т	${ m T}$	T

- 2. Page 30: on the bottom row of the second truth table in Example 2.5.5, the truth value under the $q \lor r$ column should be F (instead of T).
- 3. Page 46: in Hands-On Exercise 3.1.6, the range of x-values should be between $-\pi$ and 0.
- 4. Page 55: in the solution of Example 3.3.9, change all the occurrences of "2 divides ...;" or "... is divisible by 2" to "... is a multiple of 2."
- 5. Page 81: change the title of Section 4.1 to "An Introduction to Sets."
- 6. Page 109: on the second line before Example 4.5.1, the intersection $\bigcap_{i=1}^{n} A_n$ should be $\bigcap_{i=1}^{n} A_i$.
- 7. Page 113: in Hands-On Exercise 4.5.7, on the last line, the intersection $\bigcap_{i \in I}$ should be $\bigcap_{i \in I} A_i$.
- 8. Page 117: in Theorem 5.1.1, insert S after the word "subset."
- 9. Page 118: at the end of Example 5.1.2, add the following remark.

Remark. In the last example, we can also use contradiction to prove that the open interval (0,1) does not have a smallest element. Suppose, on the contrary, the interval (0,1) has a smallest element x. Then 0 < x < 1. But we also have

$$0 < \frac{x}{2} < x < 1.$$

The number $\frac{x}{2}$ is also inside the interval (0,1), but is smaller than x. This contradicts the assumption that x is the smallest element in the interval (0,1). This contradiction proves that the interval (0,1) does not have a smallest element. \diamondsuit

- 10. Page 122: change parts (b)-(d) of Example 5.2.2 to the following:
 - (b) (-14) div 4 = -4, and (-14) mod 4 = 2.
 - (c) (-17) div (-3) = 6, and (-17) mod (-3) = 1.
 - (d) 17 div (-3) = -5, and 17 mod (-3) = 2.
- 11. Page 134: The value of r_3 in the table should be 66 (instead of 60).
- 12. Page 150: at the end of line -6 of Example 5.7.6: change "9 = -2" to " $9 \equiv -2$."
- 13. Page 153: in the last line of Example 5.7.9, change 26 to 27.
- 14. Page 162: in Example 6.2.6, before the phrase "For brevity, we shall write", add the sentence

"Consequently, we can write

$$f(x) = (3x) \mod 5.$$

Note that mod is a binary operation, hence we do not need to (and should not) enclose "mod 5" within a pair of parentheses. Alternatively, it may be easier to use congruence to define f."

- 15. Page 178: at the end of the remark after Theorem 6.5.1, $z \in s$ should be $z \in S$.
- 16. Page 192: on line 4 of Case 1, change xs to x-values.
- 17. Page 192: in Hands-On Exercise 6.7.4, the composite function it asks you to find should be $g \circ f$.
- 18. Page 193: delete the extra) on line 5 of Example 6.7.5.
- 19. Page 194: After the end of Example 6.7.5, add the following remark.

Remark. Some may regard the definition of $g \circ f$ in the last example a bit confusing, but it is an acceptable and commonly used practice. Recall that we can define the functions f and g in the last example with the mod operation:

$$f(x) = (3x+5) \mod 23,$$

 $g(x) = (2x+1) \mod 32.$

However, care must be taken to describe the composite function:

$$(g \circ f)(x) = g(f(x))$$

= $(2f(x) + 1) \mod 32$
= $(2[(3x + 5) \mod 23] + 1) \mod 32$.

This definition is more complex, but it reflects more accurately how the images should be obtained. This example illustrates a dilemma in choosing the right notation: sometimes an exact notation could be cumbersome to use, so we often opt for a more convenient (although somewhat imprecise) notation.

- 20. Page 198, Hands-On Exercise 7.1.4: the set B should be $\{1, 2, 3, ..., 12\} \{7\}$.
- 21. Page 199, line 2: Likewise, 1, 5, and 11 are never used as
- 22. Page 213: On the second line of Example 7.3.10: replace the second occurrence of (4,4) with (4,5).
- 23. Page 216: on the first line of Example 7.4.1, the set R should be \mathbb{R} .
- 24. Page 224: in Theorem 8.2.4, the left-hand side of the equation should be $|A \cup B \cup C|$.
- 25. Page 245: in the last three equations in Example 8.5.2, the left-hand sides should be $(x-y)^4$.
- 26. Page 270: replace the last sentence in the answer to Problem 4 (Section 6.6) with

"Therefore, $h^{-1}: \mathbb{Z}_{57} \to \mathbb{Z}_{57}$ is defined by

$$h^{-1}(x) \equiv 7(x+3) \pmod{57}$$
.

Alternatively, we can also write $h^{-1}(x) = 7(x+3) \mod 57$."

27. Page 271, at the end of the last line: ... = $B - \{1, 5, 11\}$.