

CS145: Introduction to Data Mining (Spring 2024)

Discussion 0: Overview & Logistics

Instructor: Dr. Ziniu Hu

Teaching Assistant: Yanqiao Zhu

The Scalable Analytics Institute (ScAI)
Department of Computer Science
University of California, Los Angeles (UCLA)

Logistics

- Course homepage:
 - https://bruinlearn.ucla.edu/courses/183561
 - https://piazza.com/ucla/spring2024/cs145/home

- Lectures:
 - Monday & Wednesday 12:00PM 1:50PM
 - Boelter Hall 3400

The team

- Instructor: Dr. Ziniu Hu (acgbull@gmail.com)
 - Postdoc researcher at Caltech; CS PhD at UCLA (Class 2023)
 - Research interests: Neural-Symbolic AI, Large Language Models
 - Homepage: https://acbull.github.io
- Teaching assistant: Yanqiao Zhu (yzhu@cs.ucla.edu)
 - Second-year CS PhD student at UCLA
 - Research interests: Graph and Geometric Deep Learning, Al for Science
 - Homepage: https://web.cs.ucla.edu/~yzhu

Evaluation

• Evaluation scheme:

• Assignments: 40%

• Participation: +5% bonus

• Project: 30%

• Performance: +5% bonus

• Exam: 30%

• Letter grade scheme:

Grade	Point Range		
A+	[97, +∞)		
А	[93, 97)		
A-	[90, 93)		
B+	[87, 90)		
В	[83, 87)		
B-	[80, 83)		
C+	[77, 80)		
С	[73, 77)		
C-	[70, 73)		
D+	[67, 70)		
D	[60, 67)		
F	[0, 60)		

Assignments (40%)

- There will be a total of five weekly assignments; each will be given
 10 days to finish
- Grading scheme: Lowest score dropped; each of the remaining four worth 10%
- Structure: Each assignment is structured as a Jupyter notebook
 - Most are practical, coding-based problems, involving completing code segments provided in the notebooks or developing models from scratch
- Submission: Through GradeScope in BruinLearn
 - No late submissions permitted; each student may request a one-day extension for one of the five assignments with no penalty, provided they inform the TA before the deadline

Participation bonus (5%)

NO pop-up quizzes during lectures

 Active participation in answering other students' questions on Piazza earns bonus points

- Team work: at most 6 students per group
- Scope: KDD Cup 2024 Open Academic Graph Challenge
 - WhoIsWho-IND: Given the paper assignments of each author and paper metadata, the goal is to detect paper assignment errors for each author
 - AQA: Given professional questions and a pool of candidate papers, the objective is to retrieve the most relevant papers to answer these questions
 - PST: Given the full texts of each paper, the goal is to automatically trace the most significant references that have inspired a given paper
 - Choose one of the above three tracks

- Large language model policy:
 - For all tracks, pre-trained models that have been open-sourced before the end of the competition are allowed to be used
 - WhoIsWho and IND allow the use of APIs
 - After a valid submission to the validation set, participating teams can obtain a free quota of 1 million tokens for the GLM-4 API

Important deadlines:

Week 2	April 12	Team formation
Week 10	June 10 & 12	In-class project presentation
Week 10	June 12	Report & code submission

- Evaluation criteria:
 - Project presentation (5%)
 - Final report (10%)
 - Code repository (10%)
 - Peer review (5%)
 - Leaderboard performance (bonus, up to 5%)

• Detailed requirements can be found in the project guidelines

- Leaderboard performance (bonus, up to 5%)
 - A baseline performance will be set
 - Teams surpassing the baseline threshold in the leaderboard will be awarded bonus points
 - The leaderboard range between the baseline and the top 1 team will be divided into 5 equally spaced sections
 - Bonus points will be awarded based on the section the team falls into:
 - Section 1 (top 20%): 5% bonus
 - Section 2 (top 40%): 4% bonus
 - Section 3 (top 60%): 3% bonus
 - Section 4 (top 80%): 2% bonus
 - Section 5 (above baseline): 1% bonus

- Tutorials and project hackathon
 - Friday's discussions will be dedicated to providing support for the course projects
 - Students can utilize this opportunity to collaborate with their teammates, seek guidance from the instructor and TA, and make progress on their projects
 - Each team is encouraged to work on their course projects together during the allocated discussion time
 - The instructor and TA will be available to answer questions, provide feedback, and assist with any challenges during the Friday sessions

- Team formation:
 - Team sign-up form: https://1drv.ms/x/s!AsVRzCssZoYOiZ8UBRIpK8g-i-A5sA?e=JqRjHb
 - Deadline: April 12, 11:59PM
- Looking for teammates?
 - Use Piazza to collaborate with other classmates and form your teams
 - Check the sign-up form and email the team leader to see if you are a good fit
 - Do NOT email TA regarding your team assignment

- Project deliverables:
 - Presentation: In-class presentation in Week 10
 - Final report: Up to 8 pages using the NeurIPS LaTeX template
 - References and appendices do not count towards page limitation
- Submissions of report and code will be made through GradeScope
 - One submission per team
 - Late submission is NOT allowed

Exams (30%)

- In-class exam on May 15 (Wednesday, Week 7)
- Exams are in-person only; no online or make-up exams offered
- Format:
 - Close-book but two letter-sized cheat sheets allowed
 - Simple calculators allowed
 - Internet access strictly prohibited
- Scope: all topics prior to Week 7

Lecture schedule

Week 1	4/1	Administrivia & Introduction	
	4/3	Linear Regression & Backpropagation	HW 1 out
Week 2	4/8	Logistic Regression, MLP, & Evaluation	
	4/10	Regularization & Lasso	HW 2 out
Week 3	4/15	Decision Trees, Bagging, & Random Forests	Team formation due
	4/17	Boosting, Ensemble Selection, & MoE	HW 3 out
Week 4	4/22	Clustering (K-Means, GMM) & Dimensionality Reduction	
	4/24	Latent Factor Models & Matrix Factorization	HW 4 out
Week 5	4/29	Discrete Representation Learning (VAE & VQ-VAE)	
	5/1	Graphs and Networks: Random Walks	HW 5 out

Lecture schedule

Week 6	5/6	Graphs and Networks: Label Propagation & Spectral Clustering	
	5/8	Language Models: Word Vectors & Seq2Seq Language Models	
Week 7	5/13	Language Models: Transformers	
	5/15	In-class Exam	
Week 8	5/20	Language Models: Pre-Training	
	5/22	Language Models: Post-Training (SFT, RLHF)	
Week 9	5/27	Memorial Day (No Class)	
	5/29	Language Models: Planning & Reasoning	
Week 10	6/3	Project Presentation	
	6/5	Project Presentation	