Equipment Set Up Situation

- When purchasing a new piece of equipment for manufacturing, it is important to learn how it works before moving it to the production floor.
- Often, this process is one of a) trying out a few parts b) questioning why it does what it does c) being forced to move the machine to production because they "just have to have it." d) suffering the consequences
- These transitions are painful before and after the equipment moves.

Equipment Set Up with DOE

- We have found it helpful to apply DOE to accelerate learning and provide more equipment knowledge.
- This Case Study summary provides a look at a range of applications which are common industrial applications.

Three Equipment Set Up DOE Case Studies

- A drilling process was able to find an operating window that increased through put by 4x, without increasing scrap or broken bits
- A new packaging machine was ordered to seal product for sterilization. A bug was found in the software during the demonstration period forcing it to be fixed at no cost by the vendor.
- New technology was being investigated for volume processing of product. A process window was not possible, meaning that tooling and fundamental changes to the equipment would be needed to achieve process capability.

1) Drilling Equipment

- Goal: Expand operating window for drilling operation, if possible.
- Responses: Improve throughput time, but consider quality of product and expenses such as broken drill bits.
- Approach: Consider key variables such as feed rate and drill speed, plus the range of product produced, in a DOE set up.
- Result: A process was found that increased through put by 4x, without increasing scrap or broken bits
 - This clearly avoided the need to purchase duplicate equipment for a longer period of time than originally expected.

2) Packaging Equipment

- Goal: A new packaging machine was ordered to seal product for sterilization. Prior to acceptance, the company wanted to confirm it would work as promised.
- Response: Peel strength, cost and variability
- Approach: Evaluate the standard time, temperature and pressure variables within the recommended ranges in a DOE framework.
- Result: A bug was found in the software during the demonstration period forcing it to be fixed at no cost by the vendor.
 - This was also done in a timely manner, since the vendor would not get paid until it was resolved.
 - Production did not need to scream for the equipment! It was ready, and working properly, in plenty of time for the capacity increase and floor layout changes.

3) New Process Technology

- Goal: New technology was being investigated for volume processing of product. Raw material was provided by customer.
- Responses: Specific operational capabilities, specified by the customer.
- Approach: Investigate the recommended (and not recommended) ranges for processing parameters. Determine if a sweet spot for the process exists.
- Result: A process window was not possible, meaning that tooling and fundamental changes to the equipment would be needed to achieve process capability.
 - It was also possible that the customer supplied raw material would need to be changed.

Overall DOE Set Up Results

- In each case, either an opportunity or an issue was uncovered.
- The ability to show the results with a high level of confidence accelerated customer or vendor communications.
- Decisions could be made quickly.
- In the first two cases, the resolutions were identified and satisfied customer needs.
- In the last case, the situation was considerably more complex. Decisions could be made early: do we pursue this complex assignment and if so, at what price.

Perry's Solutions, Inc.

- Consulting and Training services from DOE and SPC to project planning and management
 - Solving NPD design, execution and re-plan situations
- Phone: 651-230-3861
- **Email:** Perry@PerrysSolutions.com
- Website: www.PerrysSolutions.com

