The theory of nuclear operators

L. Schwartz

17th of February, 1954

Translator's note.

This text is one of a series* of translations of various papers into English. What follows is a translation (last updated July 14, 2020) of the French paper:

SCHWARTZ, L. La théorie des opérateurs nucléaires. *Séminaire Schwartz*, Volume 1 (1953-1954), Talk no. 12, 7 p. http://www.numdam.org/item/SLS_1953-1954_1_A13_0/

Contents

1	The trace	1
2	The map $E' \widehat{\otimes}_{\pi} F \to \mathcal{L}_b(E_{\tau}; F)$ for E and F locally convex	2
3	Definition of nuclear maps — the case of Banach spaces	3
4	Definition of nuclear operators — the general case	4
5	Transpose of a nuclear map	5
6	Lifting properties	6

1 The trace

p. 1

Let E be a Banach space, whose dual we will call E'. We know, by definition, that there exists a bijective and isometric correspondence between the space $\mathcal{B}(E,E')$ of continuous bilinear forms on $E\times E'$ and the dual $E\widehat{\otimes}_{\pi}E'$. To the canonical bilinear form $(x,x')\mapsto \langle x,x'\rangle$ thus corresponds a continuous linear form on $E\widehat{\otimes}_{\pi}E'$ that we call "the trace", and that we denote by Tr. If $u=\sum_{v}x_{v}\otimes y'_{v}$ then, by definition, $\mathrm{Tr}(u)=\sum_{v}\langle x_{v},y'_{v}\rangle$. The trace form is of norm 1. Furthermore, every $u\in E\widehat{\otimes}_{\pi}E'$ can be written in the form $u=\sum_{n\geqslant 0}x_{n}\otimes y'_{n}$

^{*}https://github.com/thosgood/translations

with $\sum_{n\geqslant 0} \|x_n\| \|y_n'\|$ finite, and so the series $\sum_{n\geqslant 0} \langle x_n, y_n' \rangle$ converges absolutely, and, since the trace is continuous, we have that

$$\operatorname{Tr}(u) = \sum_{n \geqslant 0} \langle x_n, y'_n \rangle.$$

To justify the name "trace", recall that we can identify $E \otimes E'$ with the space of endomorphisms of finite rank of E, and that, if E is of finite dimensions, then the trace form agrees with the usual trace of operators.

There exists a canonical continuous map $E' \widehat{\otimes}_{\pi} E \to \mathcal{L}(E; E)$. If we do not know whether or not it is bijective, we can only speak of the trace of an element of $E' \widehat{\otimes}_{\pi} E$, and not the trace of the image of the operator in $\mathcal{L}(E; E)$.

Recall as well that there exists an isomorphism S (for symmetry) between $E \otimes E'$ and $E' \otimes E$, defined by

$$S\colon \sum_v x_v \otimes y_v' \mapsto \sum_v y_v' \otimes x_v$$

for $x_v \in E$ and $y_v' \in E'$.

If we identify $E \otimes E'$ with the space of maps of finite rank from E to E, and $E' \otimes E \subset E' \otimes (E')'$ with a space of transformations of E', then the map S corresponds to the transposition of operators. Thanks to S, the trace is also defined on $E' \widehat{\otimes}_{\pi} E$. We can thus understand the duality between $E \widehat{\otimes}_{\pi} F$ and $\mathcal{B}(E,F)$ by means of the trace: let $A \in \mathcal{B}(E,F) \subset \mathcal{L}(E;F')$. If 1 is the identity in F, then $A \otimes 1$ sends $E \widehat{\otimes}_{\pi} F$ to $F' \widehat{\otimes}_{\pi} F$. So if $u \in E \widehat{\otimes}_{\pi} F$, then we can take the trace of $(A \otimes 1)(u) \in \mathcal{L}(F;F')$, and we have

$$\langle u, A \rangle = \text{Tr}((A \otimes 1)(u)).$$
 (1)

p. 2

Indeed, both sides of the equation (for fixed *A*) are continuous linear forms in u, and are equal for $u = x \otimes y$.

2 The map $E' \widehat{\otimes}_{\pi} F \to \mathcal{L}_b(E_{\tau}; F)$ for E and F locally convex

The subscript b denotes the uniform convergence topology on bounded subsets of a space of linear maps.

Let E and F be arbitrary locally convex separated spaces. Elements of $E' \otimes F$ correspond to continuous linear maps of finite rank from E to F. So $E' \otimes F \subset \mathcal{L}(E_\tau; F)$, since the latter is the space of weakly continuous maps (see Exposé 8, §1).

Proposition 1. The topology induced on $E' \otimes F$ by $\mathcal{L}_b(E_\tau; F)$ is identical to the topology of $E'_b \otimes_{\varepsilon} F$.

Proof. The topology of $E'_b \otimes_{\varepsilon} F$ is, by definition, the topology induced on $E' \otimes F$ by $\mathcal{L}_{\varepsilon}((E'')_{\tau}; F)$. But an equicontinuous subset of E'' is the polar of a neighbourhood of 0 in E', which is itself the polar of a bounded subset of E, and

thus (by the bipolar theorem) is the weakly closed convex balanced hull of a bounded subset of E. But, in a \mathfrak{G} -topology, we can replace the sets of \mathfrak{G} by their closed convex balanced hull. Thus $\mathcal{L}_{\varepsilon}((E'')_{\tau};F)$ and $\mathcal{L}_{b}(E_{\tau};F)$ induce the same topology on $E'\otimes F$.

Corollary 1. *If* E *and* F *are complete, then there exists a continuous map* φ *from* $E' \otimes_{\pi} F$ *to* $\mathcal{L}_h(E_{\tau}; F)$ *that extends the identity on* $E' \otimes F$.

Proof. Indeed, the π -topology being finer than the ε-topology, there exists a canonical map $E' \widehat{\otimes}_{\pi} F \to E' \widehat{\otimes}_{\varepsilon} F$ which we can compose with the map $E' \widehat{\otimes}_{\varepsilon} F \to \mathcal{L}_h(E_{\tau}; F)$.

3 Definition of nuclear maps — the case of Banach spaces

From now on, the only tensor product that we will consider is the π -product; thus $E \widehat{\otimes} F$ means $E \widehat{\otimes}_{\pi} F$.

p. 3

Definition 1. If E and F are Banach spaces, then we write $L^1(E;F)$ to denote the subspace $\varphi(E'\widehat{\otimes}F)$ of $\mathcal{L}(E;F)$. The elements of $L^1(E;F)$ are called *nuclear* (or *Fredholm*) operators. Note that $L^1(E;F)$ is a *quotient space* of $E\widehat{\otimes}F$. The quotient norm of the π -norm will be called the *trace norm*, or the *nuclear norm*, denoted by $\|\cdot\|_1$ or $\|\cdot\|_{Tr}$.

We do not know a case where φ is not bijective, but we do not know how to prove this in general.

Since $E' \otimes F$ is dense in $E' \widehat{\otimes} F$, and φ is continuous, every nuclear operator is the "uniform" limit (in \mathcal{L}_b) of operators of finite rank, and is thus, in particular, compact (since the image in F of a ball in E is relatively compact).

Remark. If E = F is a Hilbert space, then the *hermitian* nuclear operators are exactly the completely continuous operators u such that the sequence (λ_n) of eigenvalues is summable and such that

$$||u||_1 = \sum_n |\lambda_n|.$$

In the general Banach case, every nuclear operator u admits a decomposition

$$u = \sum \lambda_i x_i' \otimes y_i$$

where $x_i' \in E'$ are such that $||x_i'||_1 \le 1$ and $y_i \in F$ are such that $||y_i|| \le 1$, and such that $\sum |\lambda_i| < \infty$; the lower bound of $\sum |\lambda_i|$ for any such decomposition is exactly $||u||_1$.

Proposition 2. Let $u: E \to F$ be a nuclear operator, and let $A: H \to E$ and $B: F \to G$ be continuous maps. Then $B \circ u \circ A$ is a nuclear operator, and $\|B \circ u \circ A\|_1 \leqslant \|A\| \|u\|_1 \|B\|$.

Proof. We have the commutative diagram

$$E'\widehat{\otimes}F \xrightarrow{t_{A\otimes B}} H'\widehat{\otimes}G$$

$$\downarrow \varphi \qquad \qquad \downarrow \varphi$$

$$\mathcal{L}(E;F) \xrightarrow{u\mapsto B\circ u\circ A} \mathcal{L}(H;G)$$

(since the two maps from $E'\widehat{\otimes}F$ to $\mathcal{L}(H;G)$ that define this diagram are continuous, and agree for $u_0 \in E'\widehat{\otimes}F$ of the form $x'\otimes y$). So, if u is nuclear, with u_0 an element of $E\widehat{\otimes}F$ such that $\varphi(u_0)=u$, then $({}^t\!A\otimes B)u_0\in H'\widehat{\otimes}G$, and $B\circ u\circ A=\varphi(({}^t\!A\otimes B)(u_0))$, and so $B\circ u\circ A$ is nuclear. Taking into account the fact that $\|{}^t\!A\otimes B\|=\|A\|\|B\|$, we have that

$$||B \circ u \circ A||_1 \leqslant \inf_{\varphi(u_0)=u} ({}^t A \otimes B)(u_0) \leqslant \inf_{\varphi(u_0)=u} ||A|| ||B|| ||u_0|| = ||A|| ||B|| ||u||_1.$$

4 Definition of nuclear operators — the general case

Definition 2. We say that a linear map $u: E \to F$, where E and F are locally convex separated spaces, is *nuclear* if there exist Banach spaces E_1 and F_1 , a nuclear operator $\beta: E_1 \to F_1$, and continuous operators $\alpha: E \to E_1$ and $\gamma: F_1 \to F$ such that $u = \gamma \circ \beta \circ \alpha$, i.e. such that

$$E \xrightarrow{\alpha} E_1 \xrightarrow{\beta} F_1 \xrightarrow{\gamma} F$$

commutes.

Remark. It suffices for F_1 to be Banach and E_1 to be normed, since we can extend β to $\widehat{E_1}$.

To simplify, we call any convex balanced set a *disc*. By replacing E_1 with $\alpha(E)$, and F_1 with $F_1/\gamma^{-1}(0)$, we can assume that α is an epijection and γ is an injection; but we know (exposé 7) that E_1 will be isomorphic to E_{U_1} , and F_1 to F_{B_1} , for U_1 some open disc of E, and E_1 some **complétante** subset of E. Since the dual of E_{U_1} is $\widehat{E'_{A'_1}}$, where $E'_1 = U^0_1$, we know that $E'_2 = U^0_1$ comes from an element $E'_2 = U^0_1$ of $E'_2 = U^0_1$, and that $E'_2 = U^0_1$ is exactly the canonical map from $E'_2 = U^0_1$ in $E' = U^0_1$ in $E' = U^0_1$ of $E' = U^0_1$ in $E' = U^$

²[Translator]. I was unable to find a translation for this term, but I **think** it refers to the following property: an absolutely convex subset S of a topological vector space is said to be **complétante** if S_A is a Banach space, where S_A is the subset absorbed by S.

Proposition 3. An operator $u: E \to F$ is nuclear if and only if it is defined by an element of some $E'_{A'} \otimes F_B$, where A' and B are compact convex balanced (and thus **complétante**) subsets. We can thus suppose, in Definition 2, that α and β are compact maps.

Note also that, since $E'_{A'}$ is the dual of $E_{A'_0}$, we have two "canonical" continuous maps:

$$E'_{A'}\widehat{\otimes}F_B \to \mathcal{L}_b(E_{A'_{\alpha}};F_B) \to \mathcal{L}_b(E;F).$$

Since any element of $E'_{A'} \widehat{\otimes} F_B$ can be written in the form

$$u = \sum \lambda_i x_i' \otimes y_i$$

we have such an equality in $\mathcal{L}_b(E; F)$.

Conversely, if $\sum |\lambda_i| < +\infty$, if (x_i') is an equicontinuous sequence, and if (y_i) is contained inside a **complétante** subset of F, then $\sum \lambda_i x_i' \otimes y_i$ converges in $\mathcal{L}_h(E;F)$, and defines a nuclear operator.

p. 5

Proposition 4. For an operator u to be nuclear, it is necessary and sufficient for it to be of the form $u = \sum \lambda_i x_i' \otimes y_i$, where $\sum |\lambda_i| < +\infty$, (x_i') is an equicontinuous sequence, and (y_i) a sequence contained inside some **complétante** subset.

Proposition 5. *If* u *is nuclear, then* $B \circ u \circ A$ *is nuclear (Proposition 2).*

Corollary 1. *If* $u: E \to F$ *is nuclear, then it remains nuclear when we strengthen the topology of* E *and weaken the topology of* F; *if* E_1 *is a subspace of* E, *and* E *a subspace of* E, *then the restriction* E0: E1 *is nuclear.*

However, if u is a nuclear map from E to F, and if u(E) is contained in a subspace F_2 of F, then $u: E \to F_2$ is not necessarily nuclear. Similarly, if u is zero on a subspace E_2 of E, then $u: E/E_2 \to F$ is not necessarily nuclear.

5 Transpose of a nuclear map

Proposition 6. Let E and F be Banach spaces, and $u \in L^1(E;F)$. Then ${}^tu \in L^1(F';E')$, and $\|{}^tu\|_1 \leq \|u\|_1$. Conversely, if F is reflexive, and tu is nuclear, then u is nuclear, and $\|{}^tu\|_1 = \|u\| 1$.

Proof. Let $u \in L^1(E; F)$ with $u = \varphi(u_0)$, where $u_0 \in E' \widehat{\otimes} F$. Let i be the injection from $F \widehat{\otimes} E'$ to $F'' \widehat{\otimes} E'$. Then ${}^t u \colon F' \to E'$ is given by ${}^t u = \varphi(i(S(u_0)))$, and so ${}^t u$ is nuclear. Since S is an isometry, and $\|i\| \leqslant 1$ (in fact, we can even show that i is an isometry), we have that

$$||^{t}u||_{1} \leqslant \inf_{\varphi(u_{0})=u} ||i(S(u_{0}))|| \leqslant \inf_{\varphi(u_{0})=u} ||u_{0}|| = ||u||_{1}.$$

Finally, if F is *reflexive*, and tu is nuclear, then tu : $E'' \to F'' = F$ is nuclear, and so u: $E \to F$ is nuclear. In all known cases, this property still holds true even without the reflexivity hypothesis on F.

Corollary 1. Let E and F be locally convex separated spaces; if $u: E \to F$ is nuclear, then ${}^t\!u\colon F'_c\to E'_b$ is nuclear, and, a fortiori, ${}^t\!u\colon F'_b\to E'_b$ or ${}^t\!u\colon F'_c\to E'_c$.

Proof. Indeed, ${}^tu = {}^t\alpha{}^t\beta{}^t\gamma$ (see Definition 2), with ${}^t\beta$ nuclear, ${}^t\alpha$ continuous, and ${}^t\gamma$ continuous from F'_c to F'_1 if γ is compact, which we have the right to assume.

Lifting properties

p. 6 **Proposition 7.** *Let* E, F, and G be locally convex separated spaces, with $E \subset F$; let $u: E \to G$ be a nuclear map. Then there exists a nuclear map $v: F \to G$ extending u. Furthermore, in the Banach case, we can assume that $||v||_1 \le ||u||_1 + \varepsilon$.

Proof. We restrict ourselves to proving the Banach case.

Consider the diagram that we have already seen (Proposition 2):

where *i* is the injection of *E* into *F*. Then the path \neg is a metric epimorphism, and thus so too is the path 4.

Proposition 8. Let E, F, and G be locally convex separated spaces, with $F \subset E$, and *F* closed; suppose that every compact disc of *E* / *F* is the image of a **complétante** subset of E. Then every nuclear map $u: G \to E/F$ comes from the image (under taking the quotient) of a nuclear map $v: G \to E$. Furthermore, in the Banach case, we can assume that $||v||_1 \leq ||u||_1 + \varepsilon$.

Proof. Let H = E/F. Suppose that u comes from some element u_0 of $G'_{A'} \widehat{\otimes} H_B$, where B is a compact complétante subset of H (Proposition 3). Let B_1 be a **complétante** subset of *E* that projects onto *B*. We have an epimorphism $E_{B_1} \rightarrow$ H_B , and it suffices to show that u_0 can be obtained from an element of $G'_{A'} \otimes E_{B_1}$ by projection, i.e. that we can reduce to the Banach case. But in this case, we have the following diagram:

$$G'\widehat{\otimes}E \xrightarrow{1\otimes P} G'\widehat{\otimes}H$$

$$\varphi \downarrow \qquad \qquad \downarrow \varphi$$

$$L^{1}(G;E) \xrightarrow{u\mapsto P\circ u} L^{1}(G;H)$$

and, again, ¬ is a epimorphism, and thus so too is \.

1. The conditions of Proposition 8 are satisfied if E is a Fréchet Remark. space (or if *E* is a dual of a Fréchet space) and *F* is weakly closed.

p. 7

2. Returning to Proposition 7: if we use Proposition 4, then we can write u in the form $u = \sum \lambda_i y_i' \otimes z_i$, and, if we simultaneously extend (by Hahn-Banach) the y_i' to equicontinuous forms $\overline{y_i'}$ on F, then we can set $v = \sum \lambda_i \overline{y_i'} \otimes z_i$, and v extends u, which gives another proof of the proposition (and similarly for Proposition 8)