Repeated Measures and Mixed Designs in ANOVAs

Gemma Wallace & Neil Yetz PSY 653 Module 5 Lab Feb 26, 2020

Key terms

Repeated Measures

 When subjects participate in all conditions of an experiment or provide data at multiple timepoints

Sphericity

Equality of variances of the differences between treatment levels

Partitioning the variance

Class example

A researcher is interested in the length of time it takes to say 2 syllable, 3 syllable, and 4 syllable words. She first times how long it takes each participant to say the 2 syllable word, then the 3 syllable word, then the 4 syllable word. However, half the participants are put in a condition in which there is a distracting noise in the background. She is interested if there is a difference between the control condition and the noise condition.

Our variables and research design

- Noise Condition = between-subjects factor
 - Every participant is only exposed to one condition, either control or noisy
- # of syllables = within-subjects factor
 - Every participant reads words of all three syllable lengths
- Length of time to say each word = outcome variable

Start the ANOVA table and list df for each

Df numerator = (k-1)

N = 48

	Df numerator
Noise Condition (between-subjects)	(2-1) = 1
# Syllables (within-subjects)	(3-1) = 2
Noise condition * # syllables	(2 * 1) = 2

Load libraries

Read in the data

```
# Read in data

14 - \{r\}

15 \ syl <- read_csv("syllables.csv")

Parsed with column specification:

cols(
    ID = col_double(),
    length = col_double(),
    cond = col_double(),
    time = col_double()

)
```

- ID = subject id
- length = # of syllables in word (2, 3, or 4)
- cond = condition (0 = control, 1 = noise condition)
- time = milliseconds it took to say the word (outcome variable)

Factor the variables

*Note: ezANOVA will do this automatically, but it's nice to remove the error message

The ezANOVA() Function

```
ModelName <- ezANOVA(data = dataframe, dv = .(outcome_variable), wid = .(variable_that_identifies_participants), within = .(repeated_measures_predictors), between = .(between_group_predictors), detailed = TRUE, type = 3)
```

If there are multiple predictor variables for each category, separate them with a comma e.g., (x,y)

The period before each variable category specifies that you will list variables

The ezANOVA() Function

```
ModelName <- ezANOVA(data = dataframe, dv = .(outcome_variable), wid = .(variable_that_identifies_participants), within = .(repeated_measures_predictors), between = .(between_group_predictors), detailed = TRUE, type = 3)
```

- We are using Type II sum of squares in these examples
 - The default for this function is Type II; Type III is often preferred when there is an interaction
 - Need to specify orthogonal contrasts
- Some resources to help refresh your memory:
 - https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/
 - o "Jane Superbrain" Box 11.1 in Field, Miles, & Field (2012), pp. 475-476

Analysis 1: Run a repeated measures ANOVA (ignoring condition for now)

```
28 - # Repeated measures ANOVA
29 - (1) \{r\}
30 ezANOVA(
31
             data=syl,
32
             dv=time.
33
             wid=ID,
             within= length,
34
             detailed=TRUE,
35
36
             type = 3
37
38
```

Our question: Does length of time to read each word significantly differ by word syllable length?

```
28 - # Repeated measures ANOVA
29 - (r)
30
    ezANOVA(
31
             data=syl,
32
             dv=time,
33
             wid=ID,
             within= length,
34
             detailed=TRUE,
35
36
             type = 3
37
38
data = dataset
dv = dependent variable
```

- wid = ID grouping variable
- within = within subject variable
- "detailed = TRUE" indicates we want detailed output
- "type = 3" indicates we would like it to perform a type 3 ANOVA

4 windows will be outputted!

First, check if sphericity is violated

Sphericity = the variances of the differences between all possible pairs of withinsubject conditions (i.e., levels of the categorical predictor) are equal

A <u>non-significant</u> p value (i.e., >0.05) means that the condition of sphericity has been met

Check if sphericity is violated

Was it violated?

Check if sphericity is violated

(therefore we don't need to deal with window 4)

Next, view the ANOVA table (since sphericity wasn't violated)


```
42 * ### Visualize the effect
43 * ```{r}
44
45
46    syl_sum <- group_by(syl, length)
47    syl_sum <- summarise(syl_sum, time = mean(time))
48    syl_sum <- ungroup(syl_sum)

50    ggplot(syl_sum, aes(x = length, y = time, group = length, fill = length)) +
51    geom_col(width = .5) +|
52    theme_bw()
53
54</pre>
```


Visualize the effect of syllable length on time to read each word

Analysis 2: Run a mixed effects ANOVA to evaluate effects of both # of syllables and noise condition on time

```
58 - ## Mixed design
59 + ```{r}
60
    ezANOVA(
61
             data=syl,
62
             dv=time.
63
             wid=ID.
64
             within= length,
             between = cond.
65
66
             detailed=TRUE,
67
             type = 3
68
69
```

Our question: Does length of time to read each word significantly differ by word syllable length AND by noise condition?

First, check if sphericity was violated

First, check if sphericity was violated

Was the assumption violated?

Next, view the ANOVA table (since sphericity wasn't violated)

	is now the approximately every connection.		1							
R Console		data.frame 4 x 9		data.frame 2 × 4	data.f					
	Effect <chr></chr>	OFn <dbl></dbl>	DFd <dbl></dbl>		SSn <dbl></dbl>	SSd <dbl></dbl>	F <dbl></dbl>	p <dbl></dbl>	p<.05 <chr></chr>	ges <dbl></dbl>
1	(Intercept)	1	14	1.2962	57e+07	132976	1.364727e+03	2.342147e-15	sk .	0.989620054
2	cond	1	14	1.6133	33e+02	132976	1.698552e-02	8.981607e-01		0.001185200
3	length	2	28	2.6881	67e+03	2986	1.260359e+01	1.249189e-04	ske	0.019388124
4	cond:length	2	28	9.1516	67e+02	2986	4.290802e+00	2.368832e-02	ste	0.006686043

SSd = an error term: the amount of unexplained variance across the conditions of the within-subjects variable

4 rows

```
### Visualize the effect
73 * '``{r}
74
75
76    syl_sum <- group_by(syl, cond, length)
77    syl_sum <- summarise(syl_sum, time = mean(time))
88    syl_sum <- ungroup(syl_sum)
80    ggplot(syl_sum, aes(x = length, y = time, group = length, fill = length)) +
81    geom_col(width = .5) +
82    facet_wrap(~cond) +
83    theme_bw() |
84
85    '``</pre>
```


Visualize the effects of syllable length and noise condition on time to read each word

What should you do if the sphericity assumption is violated?

We didn't violate the assumption in this demo activity, but if we had:

Use the output from Window 4 and apply a correction to the model F Ratio, and then use that value in your model interpretations.

(p. 554 in Field, Miles, & Field, 2012)

Extra Practice and Readings

- Chapters 13-14 in the Field, Miles, & Field 2012 textbook describe these steps in detail
 - Includes instructions for planned contrasts and post-hoc analyses