Lista 1

Luís Felipe Ramos Ferreira

lframos.lf@gmail.com

	Ditulo lido
•	(1.5.3)
ı	images/153a.jpg
	0 010

Figure 1: Questão 1.5.3 - a)

(a)

(b) Do lado esquerdo, temos $\binom{n}{m}\binom{m}{k}$. Sabemos que $\binom{n}{m}$ representa o número de subconjuntos de tamanho m de um conjunto com n elementos. Por sua vez, $\binom{m}{k}$ representa o número de subconjuntos de tamanho k de um conjunto com m elementos. Desse modo,

esse produto representa o número de maneiras de escolher k elementos de um conjunto de m elementos que foram previamente escolhidos de um conjunto de n elementos. Do lado direito da equação, temos $\binom{n}{k}\binom{n-k}{m-k}$. Sabemos que $\binom{n}{k}$ representa o número de subconjuntos de tamanho k de um conjunto de tamanho n. $\binom{n-k}{m-k}$, por sua vez, é o número de conjuntos de tamanho m-k de um conjunto de tamanho n-k. O produto final então é o número de subconjuntos de tamanho k de um subconjunto de tamanho k de um subconjunto de tamanho k de um subconjunto de tamanho k0 escolhido de um conjunto de tamanho k1, assim como no lado esquerdo. Como ambos os lados representam o mesmo valor combinatório, eles são iguais. Uma prova algébrica também pode ser obtida como visto abaixo.

Figure 2: Questão 1.5.3 - b)

(c) O lado direito da equação $\binom{n+1}{m+1}$ representa o número de maneiras de escolher m+1 elementos de um conjunto de n+1 elementos. O lado esquerdo da equação $\sum_{k=m}^{n} \binom{k}{m}$,

Figure 3: Questão 1.5.3 - c)

- (1.5.6) Seja G um grafo qualquer com n vértices. Suponha, por contradição, que não existam dois vértices em G com o mesmo grau. Logo, como existem n vértices no grafo, os n possíveis graus que um vértice pode ter são $\{0,1,\ldots,n-1\}$, logo podemos dizer que estes são os graus dos vértices de G. No entanto, isso é absurdo, pois existiram um vértice de grau 0 e um vértice de grau n-1 em um grafo com n vértices, o que não faz sentido. Logo, a premisa inicial estava errada, e podemos afirmar que todo grafo com n vértices, $n \geq 2$, possui dois vértices com o mesmo grau.
- (1.5.11) indução?
- 3. (2.8.3) Seja G um grafo com número cromático igual a $\mathcal{X}(G)$. Sabemos que, para qualquer par de cores c_1, c_2 da coloração mínima, deve existir ao menos uma aresta entre vértices v_1 , com cor c_1 , e v_2 , com cor c_2 . Caso contrário, todos os vértices com cor c_2 , poderiam ser coloridas com a cor c_1 (sem perda de generalidade), o que seria contraditório com o fato da coloração ser mínima. Logo, para cada par de cores na coloração, deve existir ao menos uma aresta, e como cada aresta conecta exatamente dois vértices, temos que $e(G) \geq {\mathcal{X}(G) \choose 2}$.
 - (2.8.9) Seja G um grafo bipartido.

- (2.8.15) A prova por ser feita por indução no número de arestas da árvore. A solução é trivial para o caso base em que e(T)=1. Para e(T)=1, T é uma aresta e trivialmente é subgrafo de qualquer grafo G com $\delta(G)\geq 1$. Suponha que o resultado vale para qualquer árvore com k arestas. Seja T uma árvore qualquer com k+1 arestas e $T'=T-\{v\}$ para alguma folha $v\in V(T)$.
- 4. (3.5.1)
 - (3.5.5)
 - (3.5.6)
 - (3.5.7)
 - (3.5.8)
 - (3.5.9)