Curvas e Superfícies 2021.1

Escola de Matemática Aplicada, Fundação Getulio Vargas Professora Asla Medeiros e Sá Monitor Lucas Machado Moschen

Entrega 07/06/2021

Lista 7

Exercício 1 (6.1.1) Calcule a primeira forma fundamental das seguintes superfícies:

- (i) $\sigma(u, v) = (\sinh(u)\sinh(v), \sinh(u)\cosh(v), \sinh(u)).$
- (ii) $\sigma(u, v) = (u v, u + v, u^2 + v^2).$
- (iii) $\sigma(u, v) = (\cosh(u), \sinh(u), v)$.
- (iv) $\sigma(u, v) = (u, v, u^2 + v^2).$

Que tipos de superfícies são estas?

Solução 1. Qualquer vetor tangente a uma superfície \mathcal{S} (definida por σ) no ponto p pode ser unicamente escrita como uma combinação linear de σ_u e σ_v (o espaço tangente de uma superfície \mathcal{S} no ponto p é o plano tangente gerado pelo produto vetorial das derivadas parciais $\sigma_u \times \sigma_v$). Então fazemos

$$E = ||\sigma_u||^2, F = \langle \sigma_u, \sigma_v \rangle, G = ||\sigma_v||^2$$

e

$$Edu^2 + 2Fdudv + Gdv^2$$

será a primeira forma fundamental tradicional. Assim:

(i)
$$\sigma_u = (\cosh(u)\sinh(v), \cosh(u)\cosh(v), \cosh(u))$$
 e
 $\sigma_v = (\sinh(u)\cosh(v), \sinh(u)\sinh(v), 0)$. Assim
 $E = ||\sigma_u||^2 = \cosh^2(u)\sinh^2(v) + \cosh^2(u)\cosh^2(v) + \cosh^2(u) = 2\cosh^2(u)\cosh^2(v)$,
 $F = \sigma_u \cdot \sigma_v = 2\cosh(u)\sinh(u)\cosh(v)\sinh(v) = \frac{1}{2}\sinh(2u)\sinh(2v)$,
 $G = ||\sigma_v||^2 = \sinh^2(u)\cosh^2(v) + \sinh^2(u)\sinh^2(v) = \sinh^2(u)\cosh(2v)$.

Para mais detalhes, veja relações úteis de funções hiperbólicas¹. Essa superfície é um **cone quádrico** dado pela equação cartesiana $x^2 - y^2 + z^2 = 0$.

(ii)
$$\sigma_u = (1, 1, 2u) \in \sigma_v = (-1, 1, 2v)$$
. Assim,

$$E = ||\sigma_u||^2 = 1 + 1 + 4u^2 = 4u^2 + 2,$$

$$F = \sigma_u \cdot \sigma_v = -1 + 1 + 4uv = 4uv,$$

$$G = ||\sigma_v||^2 = 1 + 1 + 4v^2 = 4v^2 + 2.$$

Essa superfície é uma paraboloide de revolução.

 $^{^{1} \}verb|https://en.wikipedia.org/wiki/Hyperbolic_functions \# Useful_relations|$

(iii)
$$\sigma_u = (\sinh(u), \cosh(u), 0)$$
 e $\sigma_v = (0, 0, 1)$. Assim,

$$E = ||\sigma_u||^2 = \sinh^2(u) + \cosh^2(u) = \cosh(2u),$$

$$F = \sigma_u \cdot \sigma_v = 0,$$

$$G = ||\sigma_v||^2 = 1.$$

Essa superfície é um cilindro hiperbólico.

(iv)
$$\sigma_u = (1, 0, 2u) \text{ e } \sigma_v = (0, 1, 2v)$$
. Assim,

$$E = ||\sigma_u||^2 = 4u^2 + 1,$$

$$F = \sigma_u \cdot \sigma_v = 4uv,$$

$$G = ||\sigma_v||^2 = 4v^2 + 1.$$

Essa superfície é um **parabolóide de revolução**. Para mais detalhes sobre os tipos de superfície, consulte [1, Seção 5.2].

Exercício 2 (6.1.3) Seja $Edu^2 + 2Fdudv + Gdv^2$ a primeira forma fundamental do patch $\sigma(u, v)$ da superfície S. Mostre que, se p é um ponto da imagem de σ e v, $w \in T_p S$, então

$$\langle v, w \rangle = E du(v) du(w) + F(du(v) dv(w) + du(w) dv(v)) + G dv(v) dv(w).$$

Solução 2. Primeiro provamos a relação para uma base de $T_p\mathcal{S}$, em particular, $\{\sigma_u, \sigma_v\}$. Nesse caso $du(\sigma_u) = dv(\sigma_v) = 1$ e $du(\sigma_v) = dv(\sigma_u) = 0$ e, portanto,

$$\langle \sigma_u, \sigma_u \rangle = E, \langle \sigma_u, \sigma_v \rangle = F, \text{ e } \langle \sigma_v, \sigma_v \rangle = G,$$

que são relações verdadeiras. Agora seja $v, w \in T_p \mathcal{S}$. Escrevemos $v = \lambda_1 \sigma_u + \lambda_2 \sigma_v$ e $w = \mu_1 \sigma_u + \mu_2 \sigma_v$. Usamos a linearidade dos mapas du e dv, e da bilinearidade do produto interno para ver que a relação é válida.

Exercício 3 (6.1.5) Mostre que as seguintes condições são equivalentes em um patch $\sigma(u, v)$ com primeira forma fundamental $Edu^2 + 2Fdudv + Gdv^2$:

- (i) $E_v = G_u = 0$.
- (ii) σ_{uv} é paralelo ao vetor normal padrão N.
- (iii) Os lados opostos de qualquer quadrilátero formado por curvas parâmetros de σ tem o mesmo comprimento (veja as observações após a Proposição 4.4.2).

Quando essas condições são satisfeitas, as curvas parâmetros de σ são ditas *Chebyshev net.* Mostra que, nesse caso, σ tem uma parametrização $\tilde{\sigma}(\tilde{u}, \tilde{v})$ com a primeira forma fundamental

$$d\tilde{u}^2 + 2\cos(\theta)d\tilde{u}d\tilde{v} + d\tilde{v}^2,$$

onde θ é uma função suave de (\tilde{u}, \tilde{v}) . Mostra que θ é o ângulo entre as curvas parâmetros de $\tilde{\sigma}$. Mostre além que, se colocamos $\hat{u} = \tilde{u} + \tilde{v}, \hat{v} = \tilde{u} - \tilde{v}$, a reparametrização resultante $\hat{\sigma}(\hat{u}, \hat{v})$ de $\tilde{\sigma}(\tilde{u}, \tilde{v})$ tem primeira forma fundamental

$$\cos^2(\omega)d\hat{u}^2 + \sin^2(\omega)d\hat{v}^2,$$

onde $\omega = \theta/2$.

Solução 3. Primeiro vamos provar que (i) é equivalente a (ii). Primeiro, vejamos que

$$E_v = \frac{d}{dv} \langle \sigma_u, \sigma_u \rangle = \langle \sigma_u, \sigma_{uv} \rangle,$$

$$G_u = \frac{d}{du} \langle \sigma_v, \sigma_v \rangle = \langle \sigma_v, \sigma_{uv} \rangle, \text{ e}$$

$$N = ||\sigma_u \times \sigma_v||^{-1} (\sigma_u \times \sigma_v).$$

Logo $E_v = G_u = 0$ é equivalente a σ_{uv} ser ortogonal a σ_u e σ_v , e por conseguinte, paralelo a N. Vamos lembrar que as curvas $u \mapsto \sigma(u, v_0)$ e $v \mapsto \sigma(u_0, v)$ para u_0 e v_0 fixados são as curvas parâmetros. Considere o quadrilátero determinado pela intersecção das curvas parâmetros determinadas por u_0, u_1, v_0 e v_1 . Além disso, quando $u = u_0$, o comprimento é dado por

$$|\sigma_{v_0}^{v_1}| |\sigma_v(u_0, v)| |dv| = \int_{v_0}^{v_1} \sqrt{G(u_0, v)} dv.$$

Suponha (i). Quando $G_u = 0$, a função G não varia quando u varia. Portanto

$$\int_{v_0}^{v_1} ||\sigma_v(u_0,v)|| dv = \int_{v_0}^{v_1} \sqrt{G(u_0,v)} dv = \int_{v_0}^{v_1} \sqrt{G(u_1,v)} dv = \int_{v_0}^{v_1} ||\sigma_v(u_1,v)|| dv.$$

Como $E_v = 0$, verificamos que os outros dois lados também têm mesmo comprimento. Portanto, vale (iii). Agora suponha (iii). Assim

$$\int_{v_0}^{v_1} \sqrt{G(u_0, v)} dv = \int_{v_0}^{v_1} \sqrt{G(u_1, v)} dv =$$

para quaisquer u_0 e u_1 . Em particular essa integral não depende de u e

$$0 = \frac{d}{du} \int_{v_0}^{v_1} \sqrt{G(s,t)} dt = \int_{v_0}^{v_1} \frac{G_u(s,t)}{\sqrt{G(s,t)}} dt,$$

para valores v_0 e v_1 quaisquer. Pela continuidade de G_u , se ela for não nula em um ponto, ela será não nula em um intervalo (v_0, v_1) e, portanto, a integral será também não nula. Logo $G_u = 0$. Equivalentemente vemos que $E_v = 0$.

Agora, suponhamos as condições acima. Defina E(u) = E(u, v) (pela condição (i), E é constante em v) e G(v) = G(u, v). Com isso, defina

$$\tilde{u} = \int \sqrt{E(u)} du, \tilde{v} = \int \sqrt{G(v)} dv.$$

Então o mapa $(u, v) \stackrel{F}{\mapsto} (\tilde{u}, \tilde{v})$ é uma reparametrização com Jacobiano \sqrt{EG} não nulo, portanto invertível [1, Proposição 4.2.7]. A primeira forma fundamental de $\tilde{\sigma}(\tilde{u}, \tilde{v}) = \sigma(F^{-1}(\tilde{u}, \tilde{v}))$ pode ser escrita como

$$\tilde{E}d\tilde{u}^2 + 2\tilde{F}d\tilde{u}d\tilde{v} + \tilde{G}d\tilde{v}^2,$$

em que, pela regra da cadeia,

$$\tilde{E} = ||\tilde{\sigma}_{\tilde{u}}||^2 = \left| \left| \sigma_u \frac{\partial u}{\partial \tilde{u}} + \sigma_v \frac{\partial v}{\partial \tilde{u}} \right| \right|^2 = E/(\sqrt{E})^2 = 1,$$

$$\tilde{G} = ||\tilde{\sigma}_{\tilde{v}}||^2 = \left| \left| \sigma_u \frac{\partial u}{\partial \tilde{v}} + \sigma_v \frac{\partial v}{\partial \tilde{v}} \right| \right|^2 = G/(\sqrt{G})^2 = 1, \text{ e}$$

$$\tilde{F} = \langle \tilde{\sigma}_{\tilde{u}}, \tilde{\sigma}_{\tilde{v}} \rangle = \frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}} \langle \sigma_u, \sigma_v \rangle = \frac{F}{\sqrt{EG}}.$$

Observe que $F < \sqrt{EG}$ por Cauchy-Schwartz. Como esses mapas são suaves, podemos definir $\theta(\tilde{u}, \tilde{v})$ suave entre 0 e π de forma que $\cos(\theta) = F/\sqrt{EG}$.

Por fim, considere a transformação sugerida

$$\tilde{u} = \frac{\hat{u} + \hat{v}}{2} \in \tilde{v} = \frac{\hat{u} - \hat{v}}{2}.$$

Assim a primeira forma fundamental é

$$\frac{1}{4}(d\hat{u}+d\hat{v})^2 + \frac{1}{2}\cos(\theta)(d\hat{u}^2 - d\hat{v}^2) + \frac{1}{4}(d\hat{u} - d\hat{v})^2 = \frac{1}{2}(1+\cos(\theta))d\hat{u}^2 + \frac{1}{2}(1-\cos(\theta))d\hat{v}^2.$$

Com as propriedades trigonométrica, teremos que a primeira forma fundamental é

$$\cos^2(\theta/2)d\hat{u}^2 + \sin^2(\theta/2)d\hat{v}^2.$$

Exercício 4 (6.2.1) Pensando sobre como um cone circular pode ser "desembrulhado" em um plano, escreva uma isometria de

$$\sigma(u, v) = (u\cos(v), u\sin(v), u), u > 0, 0 < v < 2\pi,$$

(um meio cone circular com uma reta removida) a um aberto no plano XY.

Solução 4.

Exercício 5 Calcule a área do toro de revolução

Solução 5.

Referências

[1] Pressley, Andrew N. Elementary differential geometry. Springer Science & Business Media, 2010.