RECAP: THE COURSE SO FAR...

First Lecture - Review

- Admin stuff
- Review Why to scale, how to count and what to count
 - How: O(...)

Why to scale: *c.* 2001 (Banko & Brill, ACL 2001)

Figure 1. Learning Curves for Confusion Set Disambiguation

Figure 2. Representation Size vs. Training Corpus Size

Task: distinguish pairs of easily-confused words ("affect" vs "effect") in context

What to count

Operation	~ Time	x/100ns	x/10M ns
random access, RAM	100 ns	1	
read 1 Mb sequentially - RAM	250,000 ns	2,500	
random access, disk (seek)	10,000,000 ns	100,000	1
read 1Mb sequentially - net	10,000,000 ns		1
read 1Mb sequentially - disk	30,000,000 ns		3

What to count

- Compilers don't warn Jeff Dean. Jeff Dean warns compilers.
- •
- Memory access/instructions are qualitatively different from disk access
- Seeks are *qualitatively different* from sequential reads on disk
- Cache, disk fetches, etc work best when you stream through data *sequentially*
- Best case for data processing: stream through the data *once* in *sequential order*, as it's found on disk.

First lecture: review

- Admin stuff
- Review Why to scale, how to count and what to count

- What sort of computations do we want to *do* in (large-scale) machine learning programs?
 - Probability

PROBABILITY AND SCALABILITY: LEARNING AND COUNTING

Big ML c. 2001 (Banko & Brill, "Scaling to Very Very Large...", ACL 2001)

Figure 1. Learning Curves for Confusion Set Disambiguation

Figure 2. Representation Size vs. Training Corpus Size

Task: distinguish pairs of easily-confused words ("affect" vs "effect") in context

Why More Data Helps: A Demo

• Data:

- All 5-grams that appear >= 40 times in a corpus of 1M English books
 - approx 80B words
 - 5-grams: 30Gb compressed, 250-300Gb uncompressed
 - Each 5-gram contains frequency distribution over *years*
- Wrote code to compute
 - Pr(A,B,C,D,E | C=affect or C=effect)
 - Pr(any subset of A,...,E | any other fixed values of A,...,E with C=affect V effect)

– Demo:

- /Users/wcohen/Documents/code/pyhack/bigml
- eg: python ngram-query.py data/aeffect-train.txt _ _B effect _ _

Why More Data Helps

- Data:
 - All 5-grams that appear >= 40 times in a corpus of 1M English books
 - approx 80B words
 - 5-grams: 30Gb compressed, 250-300Gb uncompressed
 - Each 5-gram contains frequency distribution over *years*
 - Wrote code to compute
 - Pr(A,B,C,D,E | C=affect or C=effect)
 - Pr(any subset of A,...,E | any other fixed values of A,...,E with C=affect V effect)
- Observations [from playing with data]:
 - Mostly effect not affect
 - Most common word before affect is not
 - After not effect most common word is a

– ...

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Some of the Joint Distribution

A	В	C	D	Е	p
is	the	effect	of	the	0.00036
is	the	effect	of	a	0.00034
•	The	effect	of	this	0.00034
to	this	effect	:	"	0.00034
be	the	effect	of	the	•••
	•••	•••	•••	•••	•••
not	the	effect	of	any	0.00024
	•••	•••	•••	•••	•••
does	not	affect	the	general	0.00020
does	not	affect	the	question	0.00020
any	manner	affect	the	principle	0.00018

An experiment: how useful is the brute-force joint classifier?

- Extracted all affect/effect 5-grams from an old Reuters corpus
 - about 20k documents
 - about 723 n-grams, 661 distinct
 - Financial news, not novels or textbooks
- Tried to predict center word with:
 - $-\Pr(C \mid A=a,B=b,D=d,E=e)$
 - then P(C | A,B,D)
 - then P(C | B,D)
 - then P(C | B)
 - then P(C)

EXAMPLES

- -"The cumulative $_$ of the" \rightarrow effect (1.0)
- -"Go into _ on January" → effect (1.0)
- -"From cumulative _ of accounting" not present in train data
 - Nor is ""From cumulative _ of _"
 - But " $_$ cumulative $_$ of $_$ " \rightarrow effect (1.0)
- -"Would not _ Finance Minister" not present
 - But " $_$ not $__$ " \rightarrow affect (0.9625)

Performance summary

Pattern	Used	Errors 3% error
P(C A,B,D,E)	101	1 7 7
P(C A,B,D)	157	6 – 5% error
P(C B,D)	163	13
$P(C \mid B)$	244	78
P(C)	58	31
		15% error

Figure 1. Learning Curves for Confusion Set Disambiguation

What Have We Learned?

- Counting's not enough -?
- Counting goes a long way with big data -?
- Big data can sometimes be made small
 - For a specific task, like this one
 - It's all in the data preparation -?
- Often *density estimation* is more important than *classification*
- Counts are a good? density estimator

Density Estimation

- Our Joint Distribution learner is our first example of something called <u>Density</u> <u>Estimation</u>
- A Density Estimator learns a mapping from a set of attributes values to a Probability

Density Estimation

 Compare it against the two other major kinds of models:

Density Estimation Our Classification

To classify **x**

- 1. Use your estimator to compute $P(\mathbf{x}, y1), \dots, P(\mathbf{x}, yk)$
- 2. Return the class y* with the highest predicted probability

Ideally is correct with
$$P(x,y^*) = P(x,y^*)/(P(x,y1) + + P(x,yk))$$

Binary case: predict POS if $P(\mathbf{x}) > 0.5$

Classification vs Density Estimation

Classification

Density Estimation

Classification vs density estimation

PROBABILITY AND SCALABILITY: NAÏVE BAYES

Second most scalable learning method in the world?

Performance ...

Pattern	Used	Errors
$P(C \mid A,B,D,E)$	101	1
$P(C \mid A,B,D)$	157	6
$P(C \mid B,D)$	163	13
$P(C \mid B)$	244	78
P(C)	58	31

- Is this good performance?
- If we care about recall, what should we do?

Naïve Density Estimation

What's an alternative to the joint distribution?

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any of the other attributes.

Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is $P(A \land \sim B \land C \land \sim D)$?

Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is $P(A ^ B ^ C ^ D)$?

$$P(A) P(\sim B) P(C) P(\sim D)$$

Naïve Distribution General Case

• Suppose $X_1, X_2, ..., X_d$ are independently distributed.

$$Pr(X_1 = x_1,...,X_d = x_d) = Pr(X_1 = x_1) \cdot ... \cdot Pr(X_d = x_d)$$

 So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.

How do we learn this?

Learning a Naïve Density Estimator

$$P(X_i = x_i) = \frac{\text{\#records with } X_i = x_i}{\text{\#records}}$$
 MLE

$$P(X_i = x_i) = \frac{\text{\#records with } X_i = x_i + mq}{\text{\#records} + m}$$
 Dirichlet (MAP)

Another trivial learning algorithm!

Is this an interesting learning algorithm?

- For n-grams, what is P(C=effect | A=will)?
- In joint: $\hat{P}(C=\text{effect} \mid A=\text{will}) = 0.38$
- In naïve: $\hat{P}(C=\text{effect} \mid A=\text{will}) = \hat{P}(C=\text{effect}) =$ #[C=effect]/#totalNgrams = 0.94 (!)
- What is P(C=effect | B=no)?
- In joint: P(C=effect | B=no) = 0.999
 In naïve: P(C=effect | B=no) = P(C=effect) = 0.94

Can we make this interesting? Yes!

- Key ideas:
 - Pick the class variable Y
 - Instead of estimating $P(X_1,...,X_n,Y) = P(X_1)^*...*P(X_n)^*Y$, estimate $P(X_1,...,X_n | Y) = P(X_1 | Y)^*...*P(X_n | Y)$
 - Or, assume $P(X_i | Y) = Pr(X_i | X_1, ..., X_{i-1}, X_{i+1}, ..., X_n, Y)$
 - Or, that X_i is conditionally independent of every X_j , j!=i, given Y.
 - How to estimate?

MLE or MAP

- Dataset: each example has
 - A unique id *id*
 - Why? For debugging the feature extractor
 - -d attributes $X_1, ..., X_d$
 - Each X_i takes a discrete value in $dom(X_i)$
 - One class label Y in dom(Y)
- You have a train dataset and a test dataset
- Assume:
 - the dataset doesn't fit in memory
 - the model does

stream through it

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 ,..., x_d in *train*:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X_i=x_i") ++$
- For each example *id*, y, x_1 , ..., x_d in *test*:

 - For each y' in dom(Y):

 Compute $Pr(y', x_1, ..., x_d) = \left(\prod_{j=1}^d Pr(X_j = x_j \mid Y = y')\right) Pr(Y = y')$

$$= \left(\prod_{j=1}^{d} \frac{\Pr(X_j = x_j, Y = y')}{\Pr(Y = y')} \right) \Pr(Y = y')$$

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 ,..., x_d in *train*:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X_i=x_i") ++$
- For each example *id*, y, x_1 , ..., x_d in *test*:

 - For each y' in dom(Y):
 Compute $Pr(y', x_1, ..., x_d) = \left(\prod_{j=1}^d Pr(X_j = x_j \mid Y = y')\right) Pr(Y = y')$

$$= \left(\prod_{j=1}^{d} \frac{C(X_j = x_j \land Y = y')}{C(Y = y')} \right) \frac{C(Y = y')}{C(Y = ANY)}$$

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 ,..., x_d in *train*:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X_i=x_i") ++$
- For each example *id*, y, x_1 , ..., x_d in *test*:

 - For each y' in dom(Y):

 Compute $Pr(y', x_1, ..., x_d) = \left(\prod_{j=1}^d Pr(X_j = x_j \mid Y = y')\right) Pr(Y = y')$

$$= \left(\prod_{j=1}^{d} \frac{C(X_j = x_j \land Y = y')}{C(Y = y')} \right) \frac{C(Y = y')}{C(Y = ANY)}$$
 This may overfit, so ...

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 ,..., x_d in *train*:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X_i=x_i") ++$
- For each example *id*, y, x_1 , ..., x_d in *test*:

 - For each y' in dom(Y):
 Compute $Pr(y', x_1, ..., x_d) = \left(\prod_{j=1}^d Pr(X_j = x_j \mid Y = y')\right) Pr(Y = y')$

$$= \left(\prod_{j=1}^{d} \frac{C(X_{j} = x_{j} \land Y = y') + mq_{x}}{C(Y = y') + m} \right) \frac{C(Y = y') + mq_{y}}{C(Y = ANY) + m}$$
 where:

$$q_{j} = 1/|dom(X_{j})|$$

$$q_{y} = 1/|dom(Y)|$$

$$mq_{x} = 1$$

– Return the best *y'*

This may underflow, so ...

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example id, y, x_1 ,..., x_d in train:

$$-C("Y=ANY") ++; C("Y=y") ++$$

− For *j* in 1..*d*:

•
$$C("Y=y \land X_j=x_j") ++$$

- For each example id, y, x_1 ,..., x_d in test:
 - For each y' in dom(Y):
 - Compute log $Pr(y', x_1, ..., x_d) =$

where:

$$q_j = 1/|dom(X_j)|$$

 $q_y = 1/|dom(Y)|$

$$q_y = 1/|dom(1)$$

$$mq_x = 1$$

$$= \left(\sum_{j} \log \frac{C(X_j = x_j \land Y = y') + mq_j}{C(Y = y') + m}\right) + \log \frac{C(Y = y') + mq_j}{C(Y = ANY) + m}$$

- For text documents, what features do you use?
- One common choice:
 - $-X_1$ = first word in the document
 - $-X_2$ = second word in the document
 - $-X_3 = third \dots$
 - $-X_4 = \dots$

— ...

• But: $\Pr(X_{13} = hockey \mid Y = sports)$ is probably not that different from $\Pr(X_{11} = hockey \mid Y = sports)$...so instead of treating them as different variables, treat them as different copies of the same variable

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 , ..., x_d in *train*:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X_i=x_i") ++$
- For each example *id*, y, x_1 , ..., x_d in *test*:

 - For each y' in dom(Y):

 Compute $Pr(y', x_1, ..., x_d) = \left(\prod_{j=1}^d Pr(X_j = x_j \mid Y = y')\right) Pr(Y = y')$

$$= \left(\prod_{j=1}^{d} \frac{\Pr(X_j = x_j, Y = y')}{\Pr(Y = y')} \right) \Pr(Y = y')$$

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 , ..., x_d in *train*:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X_j=x_j") ++$
- For each example id, y, x_1 ,..., x_d in test:
- For each y' in dom(Y):

 Compute $Pr(y', x_1, ..., x_d) = \left(\prod_{j=1}^d Pr(X_j = x_j \mid Y = y')\right) Pr(Y = y')$

$$= \left(\prod_{j=1}^{d} \frac{\Pr(X_j = x_j, Y = y')}{\Pr(Y = y')} \right) \Pr(Y = y')$$

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 , ..., x_d in *train*:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X=x_i") ++$
- For each example id, y, x_1 ,..., x_d in test:

 - For each y' in dom(Y):
 Compute $Pr(y',x_1,...,x_d) = \left(\prod_{j=1}^d Pr(X=x_j \mid Y=y')\right) Pr(Y=y')$

$$= \left(\prod_{j=1}^{d} \frac{\Pr(X = x_j, Y = y')}{\Pr(Y = y')} \right) \Pr(Y = y')$$

- You have a train dataset and a test dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, y, x_1 ,..., x_d in *train*:

$$-C("Y=ANY") ++; C("Y=y") ++$$

− For *j* in 1..*d*:

•
$$C("Y=y \land X=x_i") ++$$

- For each example *id*, y, x_1 ,..., x_d in *test*:
 - For each y' in dom(Y):
 - Compute log $Pr(y', x_1, ..., x_d) =$

where:

$$q_j = 1/|V|$$

 $q_y = 1/|dom(Y)|$
 $mq_x = 1$

$$= \left(\sum_{j} \log \frac{C(X = x_{j} \land Y = y') + mq_{x}}{C(X = ANY \land Y = y') + m}\right) + \log \frac{C(Y = y') + mq_{y}}{C(Y = ANY) + m}$$

- You have a *train* dataset and a *test* dataset
- To classify documents, these might be:
 - http://wcohen.com academic,FacultyHome William W. Cohen Research Professor Machine Learning Department Carnegie Mellon University Member of the Language Technology Institute the joint CMU-Pitt Program in Computational Biology the Lane Center for Computational Biology and the Center for Bioimage Informatics Director of the Undergraduate Minor in Machine Learning Bio Teaching Projects Publications recent all Software Datasets Talks Students Colleagues Blog Contact Info Other Stuff ...
 - http://google.com commercial Search Images Videos
 - ...
- How about for n-grams?

- You have a *train* dataset and a *test* dataset
- To do C-S spelling correction these might be
 - ng1223 effect a_the b_main d_of e_the
 - ng1224 affect a_shows b_not d_mice e_in
 - **—**
- I.e., encode event $X_i=w$ with another event $X=i_w$
- Question: are there any differences in behavior from using A,B,C,D?

Complexity of Naïve Bayes

• You have a *train* dataset and a *test* dataset

Sequential reads

- Initialize an "event counter" (hashtable) C
- For each example id, y, x_1 ,..., x_d in train:
 - -C("Y=ANY") ++; C("Y=y") ++
 - − For *j* in 1..*d*:
 - $C("Y=y \land X=x_i") ++$
- For each example *id*, y, x_1 , ..., x_d in *test*:
 - For each y' in dom(Y):
 - Compute log $Pr(y', x_1, ..., x_d) =$

Complexity: O(n), n=size of train

where:

$$q_j = 1/|V|$$

 $q_y = 1/|dom(Y)|$
 $mq_x=1$

Sequential reads

$$= \left(\sum_{j} \log \frac{C(X = x_j \land Y = y') + mq_x}{C(X = ANY \land Y = y') + m}\right) + \log \frac{C(Y = y') + mq_y}{C(Y = ANY) + m}$$

– Return the best *y'*

Complexity: O(|dom(Y)|*n'), n'=size of test

Complexity of Naïve Bayes

- You have a train dataset and a test dataset
- Process:
 - Count events in the *train* dataset
 - O(n), where n is total size of *train*
 - Write the counts to disk
 - $O(\min(|dom(X)| * |dom(Y)|, n)$
 - O(|V|), if V is vocabulary and dom(Y) is small
 - Classify the *test* dataset
 - O(|V| + n')
 - Worst-case memory usage:
 - $O(\min(|dom(X)| * |dom(Y)|, n)$

Naïve Bayes v2

- This is one example of a *streaming classifier*
 - Each example is only read only once
 - You can create a classifier and perform classifications at any point
 - Memory is minimal (<< O(n))
 - Ideally it would be constant
 - Traditionally less than O(sqrt(N))
 - Order doesn't matter
 - Nice because we may not control the order of examples in real life
 - This is a hard one to get a learning system to have!
- There are few competitive learning methods that as stream-y as naïve Bayes...

Rocchio's Algorithm

Motivation

- Naïve Bayes is unusual as a learner:
 - -Only one pass through data
 - -Order doesn't matter

Rocchio's algorithm

• Relevance Feedback in Information Retrieval, SMART Retrieval System Experiments in Automatic Document Processing, 1971, Prentice Hall Inc.

Rocchio's algorithm

DF(w) = # different docs w occurs in

TF(w,d) = # different times w occurs in doc d

$$IDF(w) = \frac{|D|}{DF(w)}$$

 $u(w,d) = \log(TF(w,d) + 1) \cdot \log(IDF(w))$

$$\mathbf{u}(d) = \left\langle u(w_1, d), \dots, u(w_{|V|}, d) \right\rangle$$

 $\mathbf{u}(y) = \alpha \frac{1}{|C_y|} \sum_{d \in C_y} \frac{\mathbf{u}(d)}{\|\mathbf{u}(d)\|_2} - \beta \frac{1}{|D - C_y|} \sum_{d' \in D - C_y} \frac{\mathbf{u}(d')}{\|\mathbf{u}(d')\|_2}$

$$f(d) = \operatorname{arg\,max}_{y} \frac{\mathbf{u}(d)}{\| \mathbf{u}(d) \|_{2}} \cdot \frac{\mathbf{u}(y)}{\| \mathbf{u}(y) \|_{2}}$$

Many variants of these formulae

...as long as u(w,d)=0 for words not in d!

Store only non-zeros in $\mathbf{u}(d)$, so size is O(|d|)

But size of $\mathbf{u}(y)$ is $O(|n_V|)$

$$\|\mathbf{u}\|_2 = \sqrt{\sum_i u_i^2}$$

term weighting none term frequency raw document frequency inverse document frequency TF-IDF stopwords grayed out

charles bailey was indicted for feloniously stealing on the 29th of december two dressed deer skins value 20 s the property of samuel savage and richard savage richard savage i am a leather seller 63 chiswell street my partner s name is samuel savage a few days previous to the 29th of december i looked out seventy skins for an order these skins being of a bad colour i directed them to be brimstoned to make them of equal colour pale on the 29th in the afternoon i saw them all smooth on a horse a few hours afterwards they appeared very much tumbled and one was thrown into the yard and dirtied i caused them to be brought in the warehouse and counted there was two gone our foreman went to worship street and brought armstrong and vickrey they searched and found this skin in the prisoner s breeches and the other skin was found in the workshop carter i am foreman to samuel and richard savage the seventy skins i was with mr savage looking them out i took them out of the stove and counted them on the horse and on friday i counted them three times over there were no more than sixty eight instead of seventy i went to worship street brought mr armstrong and vickery with me they waited till the men left work and when they came down they were searched and on the prisoner one skin was found

How do you determine what are the "important" words in a document?

term weighting none term frequency raw document frequency inverse document frequency TF-IDF stopwords grayed out

the property of samuel savage and richard savage richard savage i am a leather seller 63 chiswell street my partner s name is samuel savage a few days previous to the 29th of december i looked out seventy skins for an order these skins being of a bad colour i directed them to be brimstoned to make them of equal colour pale on the 29th in the afternoon i saw them all smooth on a horse a few hours afterwards they appeared very much tumbled and one was thrown into the yard and dirtied i caused them to be brought in the warehouse and counted there was two gone our foreman went to worship street and brought armstrong and vickrey they searched and found this skin in the price and the searched and searche

Most frequent words in the document are expanded – is this weighting useful?

term weighting none term frequency raw document frequency inverse document frequency TF-IDF stopwords graved out

charles bailey was indicted for feloniously stealing on the 29th of december two dressed deer skins value 20 s the property of samuel Savage and richard Savage richard savage i am a leather seller 63 chiswell street my partner s name is samuel savage a few days previous to the 29th of december i looked out seventy skins for an order these skins being of a bad colour i directed them to be brimstoned to make them of equal colour pale on the 29th in the afternoon i saw them all Smooth on a horse a few hours afterwards they appeared very much tumbled and one was thrown into the yard and dirtied i caused them to be brought in the warehouse and counted there was two gone our foreman went

High-IDF (rare) words in the document are expanded

term weighting none term frequency raw document frequency inverse document frequency TF-IDF stopwords grayed out

charles bailey was indicted for feloniously stealing on the 29th of december two dressed deer skins value 20 s the property of samuel SaVage and richard SaVage richard SaVage i am a leather seller 63 chiswell street my partner s name is samuel SaVage a few days previous to the 29th of december i looked out seventy skins for an order these skins being of a bad colour i directed them to be brimstoned to make them of equal colour pale on the 29th in the afternoon i saw them all smooth on a horse a few hours afterwards they appeared very much tumbled and one was thrown into the yard and dirtied i caused them to be brought in the warehouse and counted there was two gone our foreman went to worship street and brought armstrong and vickrey they searched and found this skin in the prisoner s breeches and the other skin was found in the workshop carter i am foreman to samuel and richard Savage the seventy skins i was with mr Savage looking them out i took them out of the stove and counted them on the horse and on friday i counted them

TF-IDF weighting: frequentlyappearing rare terms, which are often names and places and other things important to the document

Rocchio results...

Joacchim '98, "A Probabilistic Analysis of the Rocchio Algorithm..."

	PrTFIDF	BAYES	TFIDF
Newsgroups	91.8	89.6	86.3
"acq"	88.9	88.5	84.5
"wheat"	93.9	94.8	90.9
"crude"	90.2	95.5	85.4
"earn"	90.5	90.9	90.6
"cbond"	91.9	90.9	87.7

Table 2: Maximum accuracy in percentages.

Variant TF and IDF formulas

Rocchio's method (w/ linear TF)

			#1	#2	#3	#4	#5
		# of documents	21,450	14,347	13,272	12,902	12,902
		# of training documents	14,704	10,667	9,610		9,603
		# of test documents	6,746	3,680	3,662	3,299	3,299
		# of categories	135	93	92	90	10
System	Type	Results reported by					
Word	(non-learning)	Yang [1999]	.150	.310	.290		
	probabilistic	[Dumais et al. 1998]				.752	.815
	probabilistic	[Joachims 1998]				.720	
	probabilistic	[Lam et al. 1997]	$.443~(MF_1)$				
PROPBAYES	probabilistic	[Lewis 1992a]	.650				
Вім	probabilistic	[Li and Yamanishi 1999]				.747	
	probabilistic	[Li and Yamanishi 1999]				.773	
Nв	probabilistic	[Yang and Liu 1999]				.795	
	decision trees	[Dumais et al. 1998]					.884
C4.5	decision trees	[Joachims 1998]				.794	
Ind	decision trees	[Lewis and Ringuette 1994]	.670				
SWAP-1	decision rules	[Apté et al. 1994]		.805			
Ripper	decision rules	[Cohen and Singer 1999]	.683	.811		.820	
SLEEPINGEXPERTS	decision rules	[Cohen and Singer 1999]	.753	.759		.827	
DL-Esc	decision rules	[Li and Yamanishi 1999]				.820	
Charade	decision rules	[Moulinier and Ganascia 1996]		.738			
Charade	decision rules	[Moulinier et al. 1996]		$.783 (F_1)$			
Llsf	regression	[Yang 1999]		.855	.810		
Llsf	regression	[Yang and Liu 1999]				.849	
BALANCEDWINNOW	on-line linear	[Dagan et al. 1997]	.747 (M)	.833 (M)			
Widrow-Hoff	on-line linear	[Lam and Ho 1998]				.822	
Rоссніо	batch linear	[Cohen and Singer 1999]	.660	.748		.776	
FINDSIM	batch linear	[Dumais et al. 1998]				.617	.646
Rоссню	batch linear	[Joachims 1998]				.799	
Rоссню	batch linear	[Lam and Ho 1998]				.781	
Rоссню	batch linear	[Li and Yamanishi 1999]				.625	
	neural network			.802			
NNET	neural network	Yang and Liu 1999]				.838	
	neural network	[Wiener et al. 1995]			.820		
Gis-W	example-based	[Lam and Ho 1998]				.860	
k-NN	example-based	[Joachims 1998]				.823	
k-NN	example-based	[Lam and Ho 1998]				.820	
k-NN	example-based	[Yang 1999]	.690	.852	.820		
k-NN	example-based	[Yang and Liu 1999]				.856	
	SVM	[Dumais et al. 1998]				.870	.920
SvmLight	SVM	[Joachims 1998]				.864	
SvmLight	SVM	[Li Yamanishi 1999]				.841	
SvmLight	SVM	[Yang and Liu 1999]				.859	
AdaBoost.MH	committee	[Schapire and Singer 2000]		.860			
	committee	[Weiss et al. 1999]				.878	
	Bayesian net	[Dumais et al. 1998]				.800	.850
	Bayesian net	[Lam et al. 1997]	$.542 (MF_1)$				

Rocchio results...

Schapire, Singer, Singhal, "Boosting and Rocchio Applied to Text Filtering", SIGIR 98

Reuters 21578 – all classes (not just the frequent ones)

A hidden agenda

- Part of machine learning is good grasp of theory
- Part of ML is a good grasp of what hacks tend to work
- These are not always the same
 - Especially in big-data situations
- Catalog of useful tricks so far
 - Brute-force estimation of a joint distribution
 - Naive Bayes
 - Stream-and-sort, request-and-answer patterns
 - BLRT and KL-divergence (and when to use them)
 - TF-IDF weighting especially IDF
 - it's often useful even when we don't understand why

One more Rocchio observation

Rennie et al, ICML 2003, "Tackling the Poor Assumptions of Naïve Bayes Text Classifiers"

	MNB	TWCNB	SVM
Industry Sector	0.582	0.923	0.934
20 Newsgroups	0.848	0.861	0.862
Reuters (micro)	0.739	0.844	0.887
Reuters (macro)	0.270	0.647	0.694

NB + cascade of hacks

One more Rocchio observation

Rennie et al, ICML 2003, "Tackling the Poor Assumptions of Naïve Bayes Text Classifiers"

• TWCNB (\vec{d}, \vec{y})

1.
$$d_{ij} = \log(d_{ij} + 1)$$
 (TF transform § 4.1)

2.
$$d_{ij} = d_{ij} \log \frac{\sum_{k} 1}{\sum_{k} \delta_{ik}}$$
 (IDF transform § 4.2)

3.
$$d_{ij} = \frac{d_{ij}}{\sqrt{\sum_{k} (d_{kj})^2}}$$
 (length norm. § 4.3)

4.
$$\hat{\theta}_{ci} = \frac{\sum_{j:y_j \neq c} d_{ij} + \alpha_i}{\sum_{j:y_j \neq c} \sum_k d_{kj} + \alpha}$$
 (complement § 3.1)

5.
$$w_{ci} = \log \hat{\theta}_{ci}$$

6.
$$w_{ci} = \frac{w_{ci}}{\sum_{i} w_{ci}}$$
 (weight normalization § 3.2)

- 7. Let $t = (t_1, \ldots, t_n)$ be a test document; let t_i be the count of word i.
- 8. Label the document according to

"In tests, we found the length normalization to be most useful, followed by the log transform...these transforms were also applied to the input of SVM".

$$l(t) = \arg\min_{c} \sum_{i} t_i w_{ci}$$