Extensive Form Games II

By Marzie Nilipour Spring 2023

Introduction

- The extensive form is an alternative representation that makes the Sequential structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games (Hidden Information)

Example: Pocker

- Sequential play
- See some cards but not all
- See bets and react to them

Example: Pocker

- Many possible hands!
- Many betting strategies!
- Impossible to draw the tree... However, there is much we can learn about such games.

Introduction

- So far, we've allowed players to choose an action at every choice node.
 - This implies that players know the node they are in and all the prior choices, including those of other agents.
 - We may want to model agents needing to act with partial or no knowledge of the actions taken by others, or even themselves.

Introduction

- So far, we've allowed players to choose an action at every choice node.
 - This implies that players know the node they are in and all the prior choices, including those of other agents.
 - We may want to model agents needing to act with partial or no knowledge of the actions taken by others, or even themselves.
- Imperfect information extensive-form games:
 - each player's choice nodes partitioned into information sets
 - agents <u>cannot distinguish</u> between choice nodes in the same information set.

Formal Definition

Definition

An imperfect-information game (in extensive form) is a tuple $(N,A,H,Z,\chi,\rho,\sigma,u,I)$, where

- $(N,A,H,Z,\chi,\rho,\sigma,u)$ is a perfect-information extensive-form game, and
- $I=(I_1,\ldots,I_n)$, where $I_i=(I_{i,1},\ldots,I_{i,k_i})$ is an information set (that is, a partition of) $\{h\in H: \rho(h)=i\}$ with the property that $\chi(h)=\chi(h')$ and $\rho(h)=\rho(h')$ whenever there exists a j for which $h\in I_{i,j}$ and $h'\in I_{i,j}$.

Example

• Pure strategies?

• Information sets?

Example

- Pure strategies?
- $S_2 = \{A,B\}$
- $S_1 = \{(L,I), (L,r), (R,I), (R,r)\}$
- Information sets?
- Player2 has 1 information set.
- Player1 has 2 information set.

Formal Definition

In Perfect Info Game:

Definition (pure strategies) $\text{Let } G = (N,A,H,Z,\chi,\rho,\sigma,u) \text{ be a perfect-information extensive-form game. Then the pure strategies of player } i \text{ consist of the cross product } \prod_{h \in H,\rho(h)=i} \chi(h)$

• In Imperfect Info Game:

Formally, the pure strategies of player i consist of the cross product $\prod_{I_{i,j} \in I_i} \chi(I_{i,j})$.

Edited Definition of Subgame

• In Imperfect Info Game:

- A **sub-game** is a part of the game that looks like a game within the tree. It satisfies the three following properties:
 - 1. It starts from a single node
 - 2. It comprises all successors to that node
 - 3. It does not break up any information set

Example: 3 player game

Example: 3 player game

• What is SPNE?

Example: 3 player game

• What is SPNE?

SPNE is (B,D,r),

Another Example

• What is SPNE?

Another Example

• What is SPNE?

SPNE is (Dd,r)

• Prisoner's Dilemma Game:

	C	D	
С	-1,-1	-4,0	
D	0,-4	-3,-3	

Conversion of PD game into IIG.

Conversion of PD game into IIG.

It would be the same if we put player 2 at the root node.

• Battle of sexes game in extensive form?

Battle of sexes game

Some Points

 We can convert any normal form game into Imperfect Info Game (IIG).

_

 \circ We've now defined two conversion NF \to IIEF and IIEF \to NF.

Randomized Strategies

 There are two meaningfully different kinds of randomized strategies in imperfect information extensive form games

- Mixed strategy: randomize over pure strategies
- Behavioral strategy: independent coin toss when an information set is encountered

Example

- Example of a behavioral strategy:
 - ullet A with probability .5 and G with probability .3

- Example of a mixed strategy
 - (.6(A,G),.4(B,H))

	CE	CF	DE	DF
0.6 AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8, 3	8, 3
BG	5, 5	2,10	5, 5	2,10
0.4 <i>BH</i>	5, 5	1,0	5, 5	1,0

Another Example

• What is the Nash Equilibria?

Another Example

- What is the Nash Equilibria?
- SPNE = (LAy, BI)

