EDA & DEV.

PIPELINE

In Notebook 05

In Ardigen/data/results

Early-Stage Design Choices

TO CREATE A PIPELINE

For running & selection of thousands of models with different datasets & parameters

- Divide the work into smaller pieces
- Use parameters for controlling design choices
- Consistent naming conventions,
- Ability to add new steps and conditions, ,
- QC data collected at each step
- the same functions used in EDA, pipeline dev. and data analysis

Early-Stage Design Choices

MAKE IT USER FRIENDLY

- Similar layout in all notebooks
- Informative names
- Help for all functions,
- Evaluation with plots and summary tables

Model Training

Notebook 04

I created large number of model (>3000) with 4 different techniques

I USED FOUD DIFFERENT ALGORITHMS -

- Logistic regression classic solution for binary classification problems
- Random Forest with different tree nr, and depth
- SVM to apply kernel trick, for samples mixed in feature space

and SIX DIFFERENT DATASETS with

- different number of expressed differentially genes (~100, or ~2000)
- data from potential outliers or not
- I could use only patient data or only tpm data, (I had no time to do that but there is a simple parameter in the pipeline that allows that)
- Different scaling methods
- And many more choices that may be introduced and tested in Notebooks 2 and 3.

Model Performance

Notebook 05

Because of Large number of models (~3000 in total)

I provided three types of reports (plots and tables), to select and fine tune ML models in notebook 5

High Level Performance report:

For tuning feature selection and data preprocessing pipeline comparing methods, such as knn, svm, nn implemented

Intermediate Level Performance report:

 to select best model comparing methods, such as knn, svm, nn

Low High Level Performance report:

- Detailed examination of the best possible candidates, with large number of available statistics
- hyperparameters, compare with similar models,
- P threshold for classification
- Plots, with ROC, PR curves,
- Confusion matrices and more

High Level

Compare any number of models on few plots

Intermediate Level

	model_name	dataset_name	ID	ROC_AUC	Presision	Recall	F1	tr	counts_y	counts_y_hat	model_params
566	svc	P17_G100	1790	0.740	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'C': 0.1, 'gamma': 0.001, 'kernel': 'rbf'}
578	svc	P17_G100	1802	0.736	0.111	0.030	0.048	0.5	{0: 39, 1: 11}	{0: 50}	{'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
518	random_forest	P17_G2000_LOG	1628	0.733	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'class_weight': 'balanced', 'max_depth': 5, '
545	random_forest	P17_G2000_LOG_PCA	1691	0.727	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'class_weight': 'balanced', 'max_depth': 6, '
526	random_forest	P17_G2000_LOG	1636	0.724	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'class_weight': 'balanced', 'max_depth': 6, '
495	random_forest	P17_G2000	1461	0.718	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'class_weight': 'balanced', 'max_depth': 4, '
564	svc	P17_G100	1788	0.717	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'C': 0.1, 'gamma': 'auto', 'kernel': 'rbf'}
536	random_forest	P17_G2000_LOG_PCA	1682	0.714	0.167	0.026	0.044	0.5	{0: 39, 1: 11}	{0: 50}	{'class_weight': 'balanced', 'max_depth': 5, '
576	svc	P17_G100	1800	0.701	0.644	0.147	0.220	0.5	{0: 39, 1: 11}	{0: 45, 1: 5}	{'C': 1, 'gamma': 'auto', 'kernel': 'rbf'}
568	svc	P17_G100	1792	0.689	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'C': 0.1, 'gamma': 0.01, 'kernel': 'rbf'}
341	logreg	P17_G100	1053	0.666	0.778	0.086	0.151	0.5	{0: 39, 1: 11}	{0: 49, 1: 1}	{'C': 0.005994842503189409, 'class_weight': No
339	logreg	P17_G100	1051	0.666	0.167	0.030	0.051	0.5	{0: 39, 1: 11}	{0: 50}	{'C': 0.000774263682681127, 'class_weight': No
337	logreg	P17_G100	1049	0.664	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'C': 0.0001, 'class_weight': None, 'penalty':
336	logreg	P17_G100	1048	0.662	0.338	0.427	0.373	0.5	{0: 39, 1: 11}	{0: 34, 1: 16}	{'C': 0.0001, 'class_weight': 'balanced', 'pen
338	logreg	P17_G100	1050	0.660	0.339	0.401	0.363	0.5	{0: 39, 1: 11}	{0: 34, 1: 16}	{'C': 0.000774263682681127, 'class_weight': 'b
197	knn	P17_G2000_LOG	813	0.655	0.333	0.030	0.056	0.5	{0: 39, 1: 11}	{0: 49, 1: 1}	{'n_neighbors': 16, 'p': 1, 'weights': 'distan
313	knn	P17_G2000_PCA	481	0.655	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'n_neighbors': 18, 'p': 1, 'weights': 'distan
145	knn	P17_G2000	313	0.655	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'n_neighbors': 18, 'p': 1, 'weights': 'distan
253	knn	P17_G2000_LOG_PCA	981	0.655	0.333	0.030	0.056	0.5	{0: 39, 1: 11}	{0: 49, 1: 1}	{'n_neighbors': 16, 'p': 1, 'weights': 'distan
149	knn	P17_G2000	317	0.654	0.000	0.000	0.000	0.5	{0: 39, 1: 11}	{0: 50}	{'n_neighbors': 20, 'p': 1, 'weights': 'distan

Select best candidate and compare with each other

- Consistent nomenclature
- And unique ID for each model

Low Level

Test Data: tr=0.5: {0: 98} Test Data: tr=0.2 {0: 60, 1: 38}

0.228, 0.209, 0.2 , 0.034])

array([0.912, 0.734, 0.526, 0.383, 0.359, 0.318, 0.263, 0.262, 0.237,

Fine tuning of model hyperparameters,

