Logic

Trần Vĩnh Đức

HUST

Ngày 7 tháng 9 năm 2017

Tài liệu tham khảo

- ► Eric Lehman, F Thomson Leighton & Albert R Meyer, Mathematics for Computer Science, 2013 (Miễn phí)
- K. Rosen, Toán học rời rạc ứng dụng trong tin học (Bản dịch Tiếng Việt)
- ▶ Phan .Đ. Diệu, Logic toán & cơ sở toán học. (2003)

Định nghĩa

Mệnh đề là một khẳng định hoặc đúng hoặc sai.

Mệnh đề "Hà Nội là thủ đô của nước Việt Nam"

Mệnh đề "Lợn biết bay"

Nội dung

Logic mệnh đề

Hệ hình thức của logic mệnh đề

Công thức vị tù

Ký hiệu

Giải thích	Ký hiệu
NOT	$\neg P$
AND	$P \wedge Q$
OR	$P \lor Q$
Kéo theo	$P \rightarrow Q$
Nếu thì	$P \rightarrow Q$
Nếu và chỉ nếu	$P \leftrightarrow Q$
XOR	$P\oplus Q$

Bảng chân lý

P	$\neg P$
Т	F
F	Т

P	Q	$P \wedge Q$	$P \lor Q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

- ▶ ¬ "Lợn biết bay" ✓
- "Lợn biết bay và Hà Nội là thủ đô của nước Việt Nam" X
- "Lợn biết bay hoặc Hà Nội là thủ đô của nước Việt Nam"

Tương đương logic

P	Q	$P \oplus Q$ (tuyển loại)	$(P \lor Q) \land \neg (P \land Q)$
		(tuyển loại)	
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

- lackbox Mệnh đề $P\oplus Q$ tương đương với $(P\lor Q)\land \lnot(P\land Q)$
- Giá trị chân lý của công thức bên trái giống giá trị chân lý của vế phải với mọi giá trị của các biến

Phép kéo theo

P	Q	$P \rightarrow Q$	$\neg P \lor Q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

- "Nếu lợn biết bay thì Hà Nội là thủ đô của nước Việt Nam"
- Một mệnh đề sai kéo theo mọi mệnh đề

Ví dụ

Nếu giả thuyết Goldbach đúng thì $x^2 \geq 0$ với mọi x.

Ví dụ

Nếu lợn biết bay thì giả thuyết Goldbach đúng.

Chứng minh bằng phản chứng

▶ Ta muốn chứng minh P bằng cách giả sử $\neg P$ đúng và tìm cách $l\hat{a}p$ $lu\hat{a}n$ đưa ra một khẳng định sai Q.

$\neg P$	Q	$\neg P \rightarrow Q$
Т	Т	Τ
T	F	F
F	Т	Т
F	F	Т

- ▶ Vậy ¬P 🗶
- ► Có nghĩa rằng P ✓

Nếu và chỉ nếu

P	Q	$P \leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- $ightharpoonup P \leftrightarrow Q$ có nghĩa rằng P và Q có cùng giá trị logic
- $\blacktriangleright \ P \leftrightarrow Q \ {\rm tương} \ {\rm dương} \ {\rm với}$

$$(P \to Q) \land (Q \to P)$$

Ví dụ

Mệnh đề sau đúng với mọi số thực \boldsymbol{x}

 $x^2 - 4 \ge 0$ nếu và chỉ nếu $|x| \ge 2$.

Công thức hằng đúng và thoả được

Định nghĩa

Một công thức là hằng đúng nếu nó luôn nhận giá trị True với mọi giá trị của biến.

$$P \lor \neg Q \quad \checkmark$$
$$[(A \to B) \land (B \to C)] \to (A \to C) \quad \checkmark$$

Một công thức là thoả được nếu tồn tại một cách gán giá trị logic để công thức nhận giá trị True.

Bài tập

Mệnh đề sau có thỏa được không?

$$(A \lor B \lor C) \land (\neg A \lor \neg B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C)$$

Bài toán SAT

- Xác định một mệnh đề có thỏa được hay không là bài toán khó!
- Thuật toán hiệu quả cho bài toán SAT cho ta thuật toán hiệu quả của nhiều bài toán quan trọng: lập lịch, cấp phát tài nguyên,...
- Bài toán xác đinh

"Liệu có hay không một thuật toán hiệu quả để giải bài toán SAT."

là bài toán

$$P \stackrel{?}{=} NP$$

▶ Việc kiểm tra một công thức là hằng đúng có khó không?

Dạng chuẩn

Mọi mệnh đề đều có thể viết dưới dạng "tổng của các tích" hay "chuẩn tắc tuyển"

$$(A \lor B) \land (A \lor \neg C)$$

Ví dụ: Công thức $A \wedge (B \vee C)$

A	В	C	$A \wedge (B \vee C)$
Т	Т	Т	Т
Т	Т	F	T
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	F
F	F	Т	F
F	F	F	F

Có thể viết dưới dạng

$$(A \land B \land C) \lor (A \land B \land \neg C) \lor (A \land \neg B \land C)$$

hoặc dạng tổng tích

$$(A \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C)$$

Dạng chuẩn tắc hội

A	В	C	$A \wedge (B \vee C)$
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	F
F	F	Т	F
F	F	F	F

Có thể viết dưới dạng "tích tổng"

$$(\overline{A} + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C}) \cdot (A + B + C)$$

Định lý

Mọi công thức mệnh đề đều tương đương với một công thức ở dạng chuẩn tắc tuyển & một công thức ở dạng chuẩn tắc hội.

Chứng minh tương đương

- Kiểm tra tính tương đương hoặc hằng đúng dùng bảng chân lý cần xây dựng 2ⁿ dòng với n là số biến.
- ► Mênh đề 30 biến cần

$$2^{30} > 10^9$$
 dòng!

Cần một phương pháp khác.

Môt số luật

► Luật kết hợp của ∧ và ∨:

$$(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$$

 $(A \vee B) \vee C \equiv A \vee (B \vee C)$

▶ Luật giao hoán của ∧ và ∨:

$$A \wedge B \equiv B \wedge A$$
$$A \vee B \equiv B \vee A$$

Luật phân phối:

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$
$$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

Luật de Morgan:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

▶ Luật lũy đẳng của ∧ và ∨:

$$A \wedge A \equiv A$$
$$A \vee A \equiv A$$

Luật hấp thu:

$$A \lor (A \land B) \equiv A$$

 $A \land (A \lor B) \equiv A$

- Luật phủ định kép: $\neg \neg A \equiv A$
- ▶ Luật bài trung: $A \lor \neg A \equiv \mathsf{T}$
- Luật mâu thuẫn: $A \wedge \neg A \equiv \mathbf{F}$

Bài tập

Chứng minh rằng hai mệnh đề

$$\neg (P \lor (\neg P \land Q))$$
 và $\neg P \land \neg Q$

là tương đương logic.

Bài tập

Đưa mệnh đề sau

$$\neg \left((A \wedge B) \vee (A \wedge C \) \right)$$

về dạng chuẩn tắc tuyển.

Nội dung

Logic mệnh đề

Hệ hình thức của logic mệnh đề

Công thức vị tù

Định nghĩa (Công thức mệnh đề)

- 1. Mỗi ký hiệu mệnh đề P,Q,A,B,C,\ldots là công thức mệnh đề.
- 2. Nếu A và B là các công thức mệnh đề, thì

$$\neg A \quad \text{ và } \quad A \to B$$

cũng là công thức mệnh đề.

Nhân xét

Các liên kết khác có thể đưa vào bằng định nghĩa như sau:

 $ightharpoonup A \wedge B$ là ký hiệu cho

$$\neg (A \rightarrow \neg B).$$

• $A \lor B$ là ký hiệu cho

$$\neg A \rightarrow B$$
.

Hệ tiên đề

- **A1.** $A \rightarrow (B \rightarrow A)$,
- **A2.** $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)),$
- **A3.** $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B).$

Định nghĩa (Chứng minh)

Giả sử Γ là một tập hợp công thức và F là một công thức. Ta định nghĩa một *chứng minh* của F từ Γ là một dãy công thức

$$A_1, A_2, \cdots, A_n$$

sao cho với mỗi $i=1,\ldots,n$, ta có :

- 1. A_i là một tiên đề hay một công thức trong Γ ; hoặc
- 2. Có j, k < i và các công thức $A, \ B$ sao cho:

$$A_j = A,$$

$$A_k = (A \to B)$$

$$A_i = B$$

ngoài ra $A_n = F$.

Định nghĩa

▶ Nếu có một chứng minh F từ tập giả thiết Γ , thì ta nói F suy diễn được từ Γ trong toán mệnh đề và ta viết

$$\Gamma \vdash F$$

▶ Nếu $\Gamma = \emptyset$, tức

$$\vdash F$$

thì ta nói rằng F là một định lý của toán mệnh đề.

Bài tập

Hãy đưa ra chứng minh hình thức cho định lý sau.

Định lý

Với mọi công thức mệnh đề A, B, C bất kỳ, ta có:

- 1. $\vdash A \rightarrow A$,
- 2. $\vdash (\neg A \rightarrow A) \rightarrow A$,
- 3. $A \rightarrow B$, $B \rightarrow C \vdash A \rightarrow C$.

Bài tập

Hãy đưa ra chứng minh hình thức cho định lý sau.

Định lý

Với mọi công thức mệnh đề A,B,C bất kỳ, ta có:

- 1. $A \rightarrow (B \rightarrow C) \vdash B \rightarrow (A \rightarrow C)$,
- 2. $\vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$,
- 3. $\vdash \neg \neg A \rightarrow A$,
- **4**. $\vdash A \rightarrow \neg \neg A$.

Định lý (suy diễn)

Nếu Γ là một tập công thức, A và B là hai công thức mệnh đề, và

$$\Gamma, A \vdash B$$

thì

$$\Gamma \vdash (A \rightarrow B).$$

Trường hợp riêng,

nếu
$$A \vdash B$$
, thì $\vdash (A \to B)$.

Bài tập

Dùng định lý suy diễn, hãy chứng minh định lý sau đây.

Định lý

Với mọi công thức mệnh đề A,B bất kỳ, ta có:

- 1. $\vdash \neg A \rightarrow (A \rightarrow B)$,
- 2. $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$,
- 3. $\vdash A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$,
- **4**. $\vdash (A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B)$

Nội dung

Logic mệnh để

Hệ hình thức của logic mệnh để

Công thức vị từ

Lượng từ

- "Với mọi x" $\forall x$.
- ▶ "Tồn tại x" $\exists x$.

Ví dụ

$$\forall x \in \mathbb{R}. \ x^2 \ge 0$$

$$\forall x \in \mathbb{R}. \ 5x^2 - 7 \ge 0$$

$$\exists x \in \mathbb{R}. \ x^2 > 0$$

Miền giá trị

Xét mệnh đề với biến x, y

$$\forall x \; \exists y. \; x < y$$

 \blacktriangleright Giá trị chân lý của mệnh đề phụ thuộc vào miền giá trị của $x,\,y.$

Miền giá trị	giá trị mệnh đề
Tập số nguyên $\mathbb Z$	Т
Tập số nguyên dương \mathbb{Z}^+	Т
Tập số nguyên âm \mathbb{Z}^-	F
Tập số thực âm \mathbb{R}^-	Т

Giả thuyết (Goldbach)

Mọi số nguyên chẵn lớn hơn hai đều là tổng của hai số nguyên tố.

Ta viết lại một cách chi tiết:

Với mọi số nguyên chẵn n>2, có tồn tại các số nguyên tố p và q sao cho n=p+q.

Có nghĩa rằng

$$\underbrace{\forall n \in \mathsf{Ch} \tilde{\mathsf{a}} \mathsf{n}}_{n>2 \text{ ch} \tilde{\mathsf{a}} \mathsf{n}} \underbrace{\exists p \in \mathsf{Nguy} \hat{\mathsf{e}} \mathsf{n}}_{\mathsf{c} \acute{\mathsf{o}} \text{ các số nguy} \hat{\mathsf{e}} \mathsf{n}} \underbrace{\exists q \in \mathsf{Nguy} \hat{\mathsf{e}} \mathsf{n}}_{\mathsf{c} \acute{\mathsf{o}} \text{ các số nguy} \hat{\mathsf{e}} \mathsf{n}} \underbrace{\exists q \in \mathsf{Nguy} \hat{\mathsf{e}} \mathsf{n}}_{\mathsf{c} \acute{\mathsf{o}} \text{ các số nguy} \hat{\mathsf{e}} \mathsf{n}} \underbrace{\vdots}_{p,q} . \ n = p + q$$

Bài tập

Mệnh đề sau là đúng hay sai?

$$\underbrace{\exists p \in \mathsf{Nguy\^{e}n} \ \mathsf{t\'o} \ \exists q \in \mathsf{Nguy\^{e}n} \ \mathsf{t\'o}}_{\mathsf{c\'o} \ \mathsf{c\'ac} \ \mathsf{s\'o} \ \mathsf{nguy\^{e}n} \ \mathsf{t\'o} \ p,q} \underbrace{\forall n \in \mathsf{Ch\~an}}_{n>2 \ \mathsf{ch\~an}}. \ n=p+q$$

Thứ tự lượng từ

Ví dụ

Xét mệnh đề

"Mọi người Mỹ đều có một ước mơ."

Ta định nghĩa

$$A ::= \{ \text{ người Mỹ } \}$$

$$D ::= \{ \text{ ước mơ } \}$$

$$H ::= \text{" Người } a \text{ có ước mơ } d \text{"}$$

Mệnh đề nào dưới đây mô tả câu trên?

$$\exists d \in D. \ \forall a \in A. \ H(a, d)$$

$$\forall a \in A. \ \exists d \in D. \ H(a, d)$$

Phủ định

- "Không phải mọi người đều thích kem"
- "Tồn tại một người không thích kem"
- Tương đương cho công thức vị từ

$$\neg (\forall x. \ P(x)) \equiv \exists x. \ \neg P(x).$$

$$\neg (\exists x. \ P(x)) \equiv \forall x. \ \neg P(x).$$

Định nghĩa

Vị từ hằng đúng là vị từ luôn True với mọi giá trị của biến.

$$\exists x \ \forall y. \ P(x,y) \rightarrow \forall y \ \exists x. \ P(x,y).$$

$$\forall x \ \exists y. \ P(x,y) \rightarrow \exists y \ \forall x. \ P(x,y).$$

Ví dụ

Mệnh đề sau đây không phải hằng đúng

$$\forall z. \ (\mathit{Q}(\mathit{z}) \lor \mathit{P}(\mathit{z})) \ \rightarrow \ (\forall \mathit{x}. \ \mathit{Q}(\mathit{x}) \lor \forall \mathit{y}. \ \mathit{P}(\mathit{y}))$$

vì ta có phản ví dụ sau:

$$D ::= \{e, \pi\}$$

 $Q(z) ::= [z = e]$
 $P(z) ::= [z = \pi]$

Bài tập

Mệnh đề nào dưới đây là hằng đúng

- 1. $\exists x \exists y. \ P(x,y) \rightarrow \exists y \exists x. \ P(x,y)$
- 2. $\forall x \; \exists y. \; Q(x,y) \; \rightarrow \; \exists y \; \forall x. \; Q(x,y)$
- 3. $\exists x \, \forall y. \, R(x,y) \rightarrow \forall y \, \exists x. \, R(x,y).$
- **4**. $\neg (\exists x. \ S(x)) \leftrightarrow \forall x \neg S(x)$