Université de Lorraine

DIPLOME: Telecom Nancy 2A - Apprentissage

Épreuve: ASPD épreuve pratique

Durée du sujet : 1 h 30

Date: Vendredi 4 juin 2021 entre 16 h 00 et 17 h 30

Nom du rédacteur : Dominique Méry Documents personnels autorisés

Epreuve TP ASPD

Vous enverrez votre archive nom-prenom-aspd2021.zip; vous attendrez aant de partir un accusé de réception de la part de Dominique Méry avant de quitter la salle d'épreuve.

Exercice 1

La figure 1 est un réseau de Petri modélisant un système.

Question 1.1 Traduire le réseau de Petri sous la forme d'un module TLA en utilisant le fichier apppetri2021.tla. En particulier, il faut compléter l'initialisation.

Question 1.2 Est-ce que le réseau peut atteindre un point de deadlock? Expliquez votre réponse.

Question 1.3 Donner deux propriétés de sûreté vérifiées par ce réseau.

Figure 1: Réseau de Petri

Exercice 2 Compléter le module pluscalappaspd11.tla en proposant une assertion P1 correcte.

```
EXTENDS Integers, Sequences, TLC, FiniteSets
(*
--wf
--algorithm ex1{
variables x = 1;

process (one = 1)
{
    A:
        x := x - 1;
};
```

```
process (two = 2)
 C:
   x := x + 1;
 D:
   assert E1;
};
end algorithm;
*)
Exercice 3 Compléter le module pluscalappaspd22.tla en proposant une assertion Q1 correcte.
----- MODULE pluscalappaspd22 -----
EXTENDS Integers, Sequences, TLC, FiniteSets
(*
--wf
--algorithm ex1{
variables x = 0;
process (one = 1)
variables u;
 A:
   u := x+1;
 AB:
   x := u;
   x := x +1;
} ;
process (two = 2)
 C:
  x := x - 1;
   assert E2;
};
end algorithm;
*)
Exercice 4 Compléter le module pluscalappaspd33.tla en proposant deux assertions R1 et R2 correctes.
----- MODULE pluscalappaspd33 -----
EXTENDS Integers, Sequences, TLC, FiniteSets
(*
--wf
--algorithm ex3{
variables x = 0, y = 2;
process (one = 1)
variable u;
```

```
{
A:
 u := x+1;
 AB:
 x := u;
 В:
 y := y −1;
C:
 assert E31;
process (two = 2)
 x := x - 1;
 E:
 y := y + 2;
 F:
x:= x+2;
 G:
assert E32;
} ;
end algorithm;
*)
====
```