L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization

Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Zixuan Jiang,

David Z. Pan

Ray T. Chen,

Introduction: Optical Neurocomputing

Optical Neural Network Basics

- Singular value decomposition
- $-\sin\phi$ $\cos \phi$ Map unitary matrix to MZI arrays $\sin \phi$ Optical Inference Unit Non-linearity

ONN On-Chip Training

- Robust Deployment & On-Chip Learnability
- Ultra-fast & effective in-situ noise handling

Challenges and Prior Work

- Unscalable: 100 ~ 1000 MZIs

 Inefficient & unstable 					
	PSO [OE'19]	AVM [Optica'18]	FLOPS [DAC'20]	MixedTrain [AAAI'21]	Our L²ight
#Params	~100	~100	~1,000	~2,500	~10 M
Algorithm	Evolution (ZO)	Adjoint Method (FO)	ZO SGD	SZO-SCD	ZO + FO
Resolution Req.	High	Medium	High	Medium	Medium
Observabil ity Req.	Coh. I/O	Coh. I/O+ Per device monitor	Coh. I/O	Coh. I/O	Coh. I/O

L²ight: Our Synergistic On-Chip Learning Framework

- Scalability: First to handle *million-parameter* ONNs
- Efficiency: Multi-level sparsity for 30× higher efficiency

Three-stage Framework

Manufactured ONN (1) Identity Calibration Initialize $\mathbf{\Phi}^U$, $\mathbf{\Phi}^V$ Record Best Φ^U , Φ^V All converge? restart

Pretrained?

(2) Parallel Mapping

Map *U*: Zeroth-Order Opt.

Map V^* : Zeroth-Order Opt.

Map Σ: Optimal Singular-value

Projection

Target Acc?

(3) Subspace Learning

Forward

Data Sampling + Feature Sampling

In situ Backward

Feedback Sampling

Update Σ: Stochastic First-Order Opt.

Target Acc?

Done

if diverge

Identity Calibration (IC)

- Variation-Agnostic Circuit State Preparation
- Large-scale ZOO → Batched subtasks

Parallel Mapping (PM)

Decouple ZOO from stochasticity → Efficient mapping

Subspace Learning (SL): Only optimize singular values

- First-order subspace gradient via Reciprocity
- Trade full-space trainability → Efficient first-order gradients

Efficient Multi-level Sparse Subspace Learning

Experimental Results: Scalability & Efficiency

1000× more scalable: million-parameter ONNs

30× more energy-efficient + self-learnability and transferability

Future Work

RAD: [Oktay+, ICLR'21] SWAT: [Raihan+, NeurlPS'20]

ONN chip tape-out, measurement, and on-chip training deployment

References

Jiaqi Gu, Zheng Zhao, et al. (2020). "FLOPS: Efficient On-Chip Learning for Optical Neural Networks Through Stochastic Zeroth-Order Optimization." In: DAC.

Jiaqi Gu, Chenghao Feng, et al. (2021). "Efficient on-chip learning for optical neural networks through power-aware sparse zeroth-order optimization.". In: AAAI.

Yichen Shen, Nicholas C. Harris, et al. (2017). "Deep learning with coherent nanophotonic circuits.". In: Nature Photonics

Website: https://jeremiemelo.github.io

Open-source: https://github.com/JeremieMelo/L2ight

PyTorch-ONN Library: https://github.com/JeremieMelo/pytorch-onn

