7 Konstrukční úlohy (rýsování)

V této kapitole si představíme, jaké **konstrukční úlohy** se mohou ukázat na přijímačkách. Bude to jen **výčet** úloh a jejich popis, ne postup jejich konstrukce, ten doporučuji pro jakoukoli úlohu hledat na YouTube ve formě videí, kde to názorně uvidíte, jelikož během naší společné přípravy nestihneme projít vše.

7.1 Osa úsečky, osa úhlu a Thaletova kružnice

- 1. **Osa úsečky** AB je množina bodů se **stejnou** vzdáleností od obou bodů A a B. Typicky ji značíme jako o. Můžeme taky říct, že dělí úsečku na **dvě stejně dlouhé části.**
- 2. Osa úhlu ABC je množina bodů stejně vzdálených od obou ramen AB a BC úhlu ABC. Typicky ji značíme jako o. Můžeme také říct, že dělí úhel na dva stejně velké úhly.
- 3. **Thaletova kružnice** pro úsečku AB, typicky značíme t, je kružnice se středem ve středu úsečky AB a s poloměrem $\frac{|AB|}{2}$. Pokud vezmeme libovolný bod, označme ho C, na této kružnici a sestrojíme pomocí něj trojúhelník ABC, pak tento trojúhelník bude **pravoúhlý** (s pravým úhlem u vrcholu C).

7.2 Kružnice opsaná a vepsaná trojúhelníku

- 1. Kružnice **opsaná** pro trojúhelník ABC je kružnice, na které leží všechny body tohoto trojúhelníku, jednoduše tedy "trojúhelník je v této kružnici". Střed kružnice opsané leží v průsečíku os stran tohoto trojúhelníku.
- 2. Kružnice **vepsaná** pro trojúhelník *ABC* je kružnice, která se dotýká všech stran tohoto trojúhelníku, jednoduše tedy "kružnice leží v tomto trojúhelníku". Střed kružnice vepsané leží v průsečíku os úhlů tohoto trojúhelníku.

7.3 Vzájemná poloha kružnice a přímky

- 1. Kružnice a přímka nemají **žádný společný bod**, přímka tedy neprochází kružnicí a je tedy vnější přímkou kružnice.
- 2. Kružnice a přímka mají **jeden společný bod**, typicky ho značíme T, T je bodem dotyku. Přímka s jedním společným bodem s kružnicí je tečna této kružnice. Tečna kružnice je kolmá na úsečku TS, kde T je bod dotyku a S je střed dané kružnice.
- 3. Kružnice a přímka mají **dva společné body**, označme je A a B, tato přímka tedy protíná kružnici a je tedy její sečnou a body A a B jsou tětivou této kružnice.

7.4 Vlastnosti trojúhelníku

Součet vnitřních úhlů je 180°. Trojúhelníky dělíme podle délek jejich stran:

- 1. **Obecný** trojúhelník je trojúhelník, jehož každé dvě strany mají **rozdílné** délky.
- 2. **Rovnostranný** trojúhelník je trojúhelník, jehož **všechny** strany mají **stejnou** délku stran. Díky tomu jsou všechny jeho vnitřní úhly stejně velké (a to 60°).
- 3. Rovnoramenný trojúhelník je trojúhelník, jehož dvě strany mají stejnou délku (říkejme jim ramena) a třetí rozdílnou délku (říkejme jí základna).

A dále trojúhelníky dělíme podle jejich vnitřních úhlů:

1. **Ostroúhlý** trojúhelník je trojúhelník, jehož všechny všechny vnitřní úhly jsou **ostré** (tedy jsou menší než 90°).

- 2. Pravoúhlý trojúhelník je trojúhelník s jedním pravým úhlem, zbylé dva vnitřní úhly jsou ostré.
- 3. **Tupoúhlý** trojúhelník je trojúhelník s **jedním tupým úhlem** (tedy s úhlem větším než 90°), zbylé dva vnitřní úhly jsou ostré.

7.5 Shodnost a podobnost útvarů

Dva útvary jsou shodné, pokud po přemístění jednoho na druhý se překrývají (značíme ≡).

Útvary jsou podobné (značíme \sim), pokud mají stejný poměr vzdáleností odpovídajících si bodů, jednodušeji řečeno jsou jen zvětšené či zmenšené vůči sobě, pomocí k označujeme poměr podobnosti, tedy právě zvětšení či zmenší útvaru A vůči útvaru B. Všimněme si, že pokud k=1, pak jsou dva útvary shodné.

Věty o podobnosti trojúhelníků máme následující:

- 1. **Věta SSS** říká, že trojúhelníky jsou si podobné, pokud mají stejné poměry velikostí odpovídajících si stran
- 2. **Věta SUS** říká, že trojúhelníky jsou si podobné, pokud mají stejné poměry velikostí odpovídajících si stran a stejný úhel jimi sevřený.
- 3. Věta UU říká, že trojúhelníky jsou si podobné, pokud mají dva stejně velké úhly.

7.6 Vlastnosti čtyřúhelníků

Součet vnitřních úhlů libovolného čtyřúhelníku je 360°.

- 1. **Ctverec** má všechny strany stejné dlouhé, protější strany jsou si rovnoběžné, všechny vnitřní úhly jsou velké 90° a úhlopříčky jsou stejně dlouhé, navzájem kolmé a navzájem s půlí.
- 2. **Obdélník** má každé dvě protější stejně dlouhé a na sebe kolmé. Všechny vnitřní úhly jsou velké 90°, úhlopříčky jsou na stejně dlouhé a navzájem se půlí.
- 3. **Kosočtverec** má všechny strany stejně dlouhé a protější strany jsou rovnoběžné. Protější úhly jsou stejně velké a úhlopříčky jsou na sebe kolmé a půlí se navzájem.
- 4. **Kosodélník** má každé dvě protější strany stejně dlouhé a vůči sobě rovnoběžné, protější vnitřní úhly jsou stejně velké a úhlopříčky se navzájem půlí.
- 5. **Lichoběžník** může mít všechny strany jinak dlouhé. Základny jsou na sebe kolmé, ramena jsou různoběžná. Jsou-li ramena stejně dlouhá pak je lichoběžník rovnoramenný a obě ramena pak svírají se základnami stejný úhel. Je-li jedno rameno kolmé na základy pak je tento lichoběžník pravoúhlý.

7.7 Příklady k procvičení

1. Narýsujte úsečku AB dlouhou 5 cm, sestrojte rovnoramenný trojúhelník ABC jehož základna je úsečka AB a úhly $\angle ABC$ a $\angle BAC$ jsou velké 40° .

2.	. Narýsujte úsečku AB dlouhou 5 cm, s	sestrojte pomocí	Thaletovi	kružnice dva	libovolné
	pravoúhlé trojúhelníky ABC_1 a ABC	$\widetilde{Z}_{2}.$			

3. Narýsujte kružnici o poloměru 25 mm. Sestrojte rovnostranný trojúhelník této kružnici vepsaný.

4. Narýsujte trojúhelník ABC s délkami stran |AB|=6 cm, |AC|=6.5 cm a |BC|=5 cm. Sestrojte kružnici k_1 vepsanou tomuto trojúhelníku a kružnici k_2 opsanou tomuto trojúhelníku.

5. Narýsujte rovnoramenný lichoběžník ABCD, který má základnu AB dlouhou 10 cm a základnu DC dlouhou 5 cm. Výška tohoto lichoběžníku je 4 cm.