Year in Academic Blockchain Research 2018/2019

Methodology

Selected papers from academic conferences in years 2018/2019 with their open access link

- IEEE S&P 2019
- ACM CCS 2018
- Usenix 2019
- NDSS 2018
- PODC 2019
- Crypto 2018
- Financial Cryptography 2019
- EuroCrypt 2019
- AsiaCrypt 2018

Disclaimer

While I tried to keep the selection of papers diverse and mainly picked papers from the top-tier conferences, this summary is not a complete review of all papers in the space. Rather, it is my personal selection of papers. If a paper is not included here, it does not mean that it is not interesting or relevant. If you wish your paper to be included, feel free to reach out to me via DM on Twitter (@nud3l_) or email via d.harz at ic.ac.uk

Agenda - Part 1

- Improving clients (pp. 6-9)
- Discovering and improving P2P networks (pp. 10-12)
- Crypto means Cryptography (pp. 13-17)
- Understanding existing ledgers (pp. 18-20)
- Improving and extending ledgers (pp. 21-24)
- Reaching consensus (pp. 25-28)
- Connecting chains (pp. 29-32)

Agenda - Part 2

- Making blockchains scale (pp. 33-38)
- Playing games with money (pp. 39-42)
- Tokens and scams (pp. 43-47)
- So many crypto projects? (pp. 48-49)
- Improving smart contracts (pp. 50-55)
- <u>Governance (pp. 56-57)</u>
- Applications anyone? (pp. 58-59)

Improving clients

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks

Integrate re-entrancy
attack detection into EVM

Higher detection rates than other tools

implementation (geth)

(Securify, Oyente etc.) and backwards compatible

BITE: Bitcoin Lightweight Client Privacy using Trusted Execution

Prevent privacy leakage in Bitcoin light clients

https://www.usenix.org/system/files/sec19fall_matetic_prepub.pdf

Biased Nonce Sense: Lattice Attacks against Weak ECDSA Signatures in Cryptocurrencies

Computed 300 Bitcoin private keys, dozens of Ethereum private keys and one Ripple key

Weak randomness generation for key generation as root cause

Discovering and improving P2P networks

TxProbe: Discovering Bitcoin's Network Topology Using Orphan Transactions

(a) Degree distribution of nodes in the testnet snapshot.

(b) Communities detected in the testnet snapshot.

SABRE: Protecting Bitcoin against Routing Attacks

BGP level attacks leads to eclipse and fork attacks

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_02A-1_Apostolaki_paper.pdf

Crypto means Cryptography

Verifiable Delay Functions

Compute a function that requires wall-clock time to compute with a random output

Use random output for random beacons, leader election, or proof of replication

https://eprint.iacr.org/2018/601.pdf https://www.youtube.com/watch?v=qUoagL7OZ1k&feature=youtu.be

Compact Multi-Signatures for Smaller Blockchains

Decrease the size of blockchains by signature aggregation

	Combined	Combined signature	Total size	Threshold
	public key size	size	(KB)	support
Bitcoin	$tx \cdot inp \cdot n \cdot \mathbb{G} $	$ tx \cdot inp \cdot n \cdot 2 \cdot \mathbb{Z}_q $	1296	linear
MuSig ([35])	$ tx \cdot inp \cdot \mathbb{G} $	$ tx\cdot(\mathbb{G} + \mathbb{Z}_q)$	240	small
\mathcal{MSDL} (Sec. 5)	$tx \cdot inp \cdot \mathbb{G} $	$ tx\cdot(\mathbb{G} + \mathbb{Z}_q)$	240	small
\mathcal{MSP} (Sec. 3.1)	$tx \cdot inp \cdot \mathbb{G}_2 $	$ tx\cdot \mathbb{G}_1 $	360	small
\mathcal{AMSP} (Sec. 3.3)	$tx \cdot inp \cdot \mathbb{G}_2 $	$ \mathbb{G}_1 $	216	small
ASM (Sec. 4)	$tx \cdot inp \cdot \mathbb{G}_2 $	$tx \cdot inp \cdot (\mathbb{G}_1 + \mathbb{G}_2)$	864	any

https://eprint.iacr.org/2018/483.pdf

Tight Proofs of Space and Replication

Efficient proofs for providing and storing files

Depth robust graph (DRG) as basis structure for proofs

Reversible Proofs of Sequential Work

Skip list as underlying structure

Application to proof of replication

https://link.springer.com/content/pdf/10.1007%2F978-3-030-17656-3_10.pdf

Understanding existing ledgers

Lay Down the Common Metrics: Evaluating Proof-of-Work Consensus Protocols' Security

Compared Nakamoto consensus with other (academic) PoW protocols

No protocol better in all areas than Nakamoto

Group	Protocol	Designers' analysis	Our results	
Better-chain-quality	SHTB [12]	None	New protocol-specific attack strategy	
Better-chain-quality	UDTB [18], [21]	Analysis against one attack strategy	New protocol-specific attack strategy	
Attack-resistant: reward-all	Fruitchains [20]	Formal analysis against selfish mining assuming some parameters are large enough	Vulnerable to selfish mining and double- spending attacks with reasonable parameters	
Attack-resistant: punishment	RS [12], [21]	Analysis against one attack strategy	Vulnerable to censorship attack	
Attack-resistant: reward-lucky	Subchains [11]	None	Vulnerable to all three attacks	

A Better Method to Analyze Blockchain Consistency

Markov-chain to analyse consistency of blockchains

Analyse various protocols including Nakamoto and GHOST

Improving and extending ledgers

Redactable Blockchain in the Permissionless Setting

Replace blocks by voting

 $\mathcal{R} = \mathbb{R}_z^*$ $\mathcal{P}(\mathcal{C}, B_j^*) = \mathsf{accept}$ $\mathbb{R}_j^* \times \mathbb{R}_j^* = \mathbb{R}_j^*$

(b) After a successful voting phase, B_j^{\star} replaces B_j in the chain

Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based

Policy-based chameleon hashes to change existing transactions in blockchains

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019 02A-3 Derler paper.pdf

StrongChain: Transparent and Collaborative Proof-of-Work Consensus

Include weak
results in blocks

Provide an incentive to collaborate instead of compete

Reaching consensus

Ouroboros Genesis: Composable Proof-of-Stake Blockchains with Dynamic Availability

Secure bootstrap a blockchain from the Genesis block Proven in Global Universally Composable (GUC) model

Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake

Privacy-preserving ledger with strong security proofs SNARK extension to allow privacy-preserving staking Builds on Ouroboros Genesis and Zerocash

https://eprint.iacr.org/2018/1132.pdf

Communication Complexity of Byzantine Agreement, Revisited

Reduce communication complexity below n² nodes (i.e. subquadratic)

- After-the-fact removal of messages should not be allowed
- Near-optimal subquadratic communication with multicasts
- Requirement of setup phase for Public-Key Infrastructure (PKI)

Formal proofs on upper and lower bounds of communication

Connecting chains

XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets

Interoperability through issuing and redeeming cross-chain assets

https://eprint.iacr.org/2018/643.pdf

Proof-of-Stake Sidechains

Cross-chain special transactions to transfer assets

Different chains can have different properties

https://eprint.iacr.org/2018/1239.pdf

Tracing Transactions Across Cryptocurrency Ledgers

Identify matching
transactions across Bitcoin,
Ethereum, Litecoin, Bitcoin
Cash, Dogecoin, Dash,
Ethereum Classic, and Zcash
Data source from Changelly

Currency	Parameters		Basic %	Augmented %
	δ_b	δ_a		
BTC	0	1	65.76	76.86
BCH	9	4	76.96	80.23
DASH	5	5	84.77	88.65
DOGE	1	4	76.94	81.69
ETH	5	0	72.15	81.63
ETC	5	0	76.61	78.67
LTC	1	2	71.61	76.97
ZEC	1	3	86.94	90.54

and ShapeShift

Making blockchains scale

Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability

AMHL construction on ECDSA signatures (compatible with Bitcoin and Ethereum)

Perun: Virtual Payment Hubs over Cryptocurrencies

Perun is an alternative construction to routing schemes

Ingrid does not need to be active

Sprites and State Channels: Payment Networks that Go Faster than Lightning

Constant lock time to reduce cost of collateral in channels

https://fc19.ifca.ai/preproceedings/185-preproceedings.pdf

RapidChain: A Fast Blockchain Protocol via Full Sharding

Cross-shard transaction verification technique

Reduces communication overhead in sharding

Increases resilience against faults

Protocol	# Nodes	Resiliency	Complexity ¹	Throughput	Latency	$Storage^2$	Shard Size	Time to Fail
Elastico [45]	n = 1,600	t < n/4	$\Omega(m^2/b+n)$	40 tx/sec	800 sec	1x	m = 100	1 hour
OmniLedger [40]	n = 1,800	t < n/4	$\Omega(m^2/b+n)$	500 tx/sec	14 sec	1/3x	m = 600	230 years
OmniLedger [40]	n = 1,800	t < n/4	$\Omega(m^2/b+n)$	3,500 tx/sec	63 sec	1/3x	m = 600	230 years
RapidChain	n = 1,800	t < n/3	$O(m^2/b + m \log n)$	4,220 tx/sec	8.5 sec	1/9x	m = 200	1,950 years
RapidChain	n = 4,000	t < n/3	$O(m^2/b + m \log n)$	7,380 tx/sec	8.7 sec	1/16x	m = 250	4,580 years

Vault: Fast Bootstrapping for the Algorand Cryptocurrency

Reduce bootstrapping time of new clients by 99.7% compared to Bitcoin and 90.5% compared to Ethereum

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_09-2_Leung_paper.pdf

Playing games with money

FairSwap: How to fairly exchange digital goods

Trade digital goods with fair payments

Digital good split up in bits that need to evaluate to true to trigger payment

https://eprint.iacr.org/2018/740.pdf

The Gap Game

Fees for transactions play an important role to incentivize miners

Miners switch-off their racks even before fees become the only incentive

Gaps form and are in favour of large mining pools

https://arxiv.org/pdf/1805.05288.pdf

Compounding of Wealth in Proof-of-Stake Cryptocurrencies

Constant reward functions in PoS make rich richer and poor poorer

Geometric reward function to achieve similar reward distribution as in PoW

https://fc19.ifca.ai/preproceedings/161-preproceedings.pdf

Tokens and scams

Measuring Ethereum-based ERC20 Token Networks

https://fc19.ifca.ai/preproceedings/130-preproceedings.pdf

The Anatomy of a Cryptocurrency Pump-and-Dump Scheme

220 observed pump-and-dump events on Telegram

Up to 80% profits from pump-and-dump trading

The Art of The Scam: Demystifying Honeypots in Ethereum Smart Contracts

Identified 690 honeypot contracts on Ethereum (87% accuracy)
Verified 240 victims with 90,000 USD being stolen

Cybercriminal Minds: An investigative study of cryptocurrency abuses in the Dark Web

Around 4,500 cryptocurrency addresses are used for illicit activities (83,75%)

So many crypto projects?

Short Paper: An Exploration of Code Diversity in the **Cryptocurrency Landscape**

Code for new cryptocurrencies is usually copied from Bitcoin and Ethereum

https://fc19.ifca.ai/preproceedings/134-preproceedings.pdf

Improving smart contracts

BitML: A Calculus for Bitcoin Smart Contracts

Write Bitcoin smart contracts in a higher-order logic
Allows construction of contracts over multiple transactions

```
Escrow = PayOrRefund + A : Resolve<sub>0.1,0.9</sub> + B : Resolve<sub>0.1,0.9</sub>
Resolve_{v,v'} = split(v \not B \rightarrow withdraw M)
| v' \not B \rightarrow M : withdraw A + M : withdraw B)
```

FASTKITTEN: Practical Smart Contracts on Bitcoin

Execute smart contracts in a Trusted Execution Environment

TEE can be hosted by an untrusted operator

Approach	Minimal # TX	Collateral	Generic Contracts	Privacy
Ethereum contracts	$\mathcal{O}(m)$	$\mathcal{O}(n)$	1	×
MPC [38-40]	$\mathcal{O}(1)$	$\mathcal{O}\left(n^2m\right)$	1	1
Ekiden [19]	$\mathcal{O}(m)$	no support for money		1
FASTKITTEN	$\mathcal{O}(1)$	$\mathcal{O}(n)$	1	/

VeriSolid: Correct-by-Design Smart Contracts for Ethereum

Model Ethereum smart contracts as state machines

Securify: Practical Security Analysis of Smart Contracts

Use Datalog to reason about smart contract compliance

https://arxiv.org/pdf/1806.01143.pdf

Giving State to the Stateless: Augmenting Trustworthy Computation with Ledgers

Use existing TEE (mobile devices, SGX, TrustZone, virtual)

Private smart contracts, mandatory logging, encrypted backups, and fairness in multi-party computation

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_02A-5_Kaptchuk_paper.pdf

Governance

A Treasury System for Cryptocurrencies: Enabling Better Collaborative Intelligence

Formally proven security proofs for voting on projects

Zero-knowledge votes with efficient proof scheme

Applications anyone?

ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement

	Computational Complexity			Communication Complexity			
	Shuffle Cards	Open Private Card (drawer ;others)	Open Public Card	Shuffle Cards	Open Private Card (drawer ;others)	Open Public Card	
[3]	240m(n-1) + 161m	4n - 3;3	4n	$164nm \ \mathbb{G},$ $122nm \ \mathbb{Z}_p$	$45nm \mathbb{G}, (2n^2 + 80n + 2nm) \mathbb{Z}_p$		
([33])	(44n + 1)m	4n - 3;3	4n	$3(n-1) \mathbb{G},$ $2(n-1) \mathbb{Z}_p$	$(n-1) \mathbb{G},$ $2(n-1) \mathbb{Z}_p$	$(n-1) \mathbb{G},$ $2(n-1) \mathbb{Z}_p$	
([32])	81m + 2n + 25	4n - 3; 3	4n	$3n \mathbb{G}, 2n \mathbb{Z}_p$	$n \mathbb{G}, 2n \mathbb{Z}_p$	$n \mathbb{G}, 2n \mathbb{Z}_p$	
Royale	$(2\log(\lceil\sqrt{m}\rceil) + 4n - 2)m$	4n - 3; 3	4n	$n(2m + \lceil \sqrt{m} \rceil) \mathbb{G},$ $5n \lceil \sqrt{m} \rceil \mathbb{Z}_p$	$(n-1) \mathbb{G},$ $2(n-1) \mathbb{Z}_p$	$n \mathbb{G}, 2n \mathbb{Z}_p$	

https://fc19.ifca.ai/preproceedings/111-preproceedings.pdf

Thanks!