Quiz 6

Chemistry 3BB3; Winter 2006

1. The non-crossing rule implies that

- (a) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>same</u> symmetry do not intersect.
- (b) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>different</u> symmetry do not intersect.
- (c) In a <u>triatomic</u> molecule, potential energy surfaces corresponding to wave functions with the <u>same</u> symmetry do not intersect.
- (d) In a <u>triatomic</u> molecule, potential energy surfaces corresponding to wave functions with the <u>different</u> symmetry do not intersect.

2-7. Complete the following table by filling in the appropriate properties for the molecular ground states.

Molecule	Bond Order	Multiplicity
LiBe		
LiB		
CN		
CN-		
CO		
HF		

8-10. Label the following approximate (unnormalized) molecular orbitals using the σ,π,δ , u,g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as $\psi_{1s}^{(l)}(\boldsymbol{r})$, with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
	$\psi_{2p_x}^{(l)}\left(oldsymbol{r} ight)+\psi_{2p_x}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{2p_x}^{(l)}\left(oldsymbol{r} ight)-\psi_{2p_x}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{2p_y}^{(l)}\left(oldsymbol{r} ight)+\psi_{2p_y}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{2p_y}^{(l)}\left(oldsymbol{r} ight)-\psi_{2p_y}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{2p_z}^{(l)}\left(oldsymbol{r} ight)+\psi_{2p_z}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{2p_z}^{(l)}\left(oldsymbol{r} ight)-\psi_{2p_z}^{(r)}\left(oldsymbol{r} ight)$

Quiz 6

Chemistry 3BB3; Winter 2006

- 1. The non-crossing rule implies that
 - (a) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>same</u> symmetry do not intersect.
 - (b) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>different</u> symmetry do not intersect.
 - (c) In a triatomic molecule, potential energy surfaces corresponding to wave functions with the same symmetry do not intersect.
 - (d) In a triatomic molecule, potential energy surfaces corresponding to wave functions with the different symmetry do not intersect.

2-7. Complete the following table by filling in the appropriate properties for the molecular ground states.

Molecule	Bond Order	Multiplicity
LiBe	1/2	2
LiB	0	1
CN	2 1/2	2
CN ⁻	3	1
CO	3	1
HF	1	1

8-10. Label the following approximate (unnormalized) molecular orbitals using the σ,π,δ , u,g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as $\psi_{1s}^{(l)}(\boldsymbol{r})$, with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
π_u^+	$\psi_{2p_x}^{(l)}(oldsymbol{r})+\psi_{2p_x}^{(r)}(oldsymbol{r})$
π_g^+	$\psi_{2p_x}^{(l)}(oldsymbol{r})-\psi_{2p_x}^{(r)}(oldsymbol{r})$
π_u^-	$\psi_{2p_y}^{(l)}\left(oldsymbol{r} ight)+\psi_{2p_y}^{(r)}\left(oldsymbol{r} ight)$
$\overline{\pi_g}$	$\psi_{2p_y}^{(l)}\left(oldsymbol{r} ight)-\psi_{2p_y}^{(r)}\left(oldsymbol{r} ight)$
σ_u^+	$\psi_{2p_z}^{(l)}\left(oldsymbol{r} ight)+\psi_{2p_z}^{(r)}\left(oldsymbol{r} ight)$
σ_g^+	$\psi_{2p_z}^{(l)}\left(oldsymbol{r} ight)-\psi_{2p_z}^{(r)}\left(oldsymbol{r} ight)$