Downloaded from https://www.science.org on July 12, 2022

HYBRID SPECIATION

Rapid hybrid speciation in Darwin's finches

Sangeet Lamichhaney, 1* Fan Han, 1 Matthew T. Webster, 1 Leif Andersson, 1,2,3 † B. Rosemary Grant, 4 Peter R. Grant 4

Homoploid hybrid speciation in animals has been inferred frequently from patterns of variation, but few examples have withstood critical scrutiny. Here we report a directly documented example, from its origin to reproductive isolation. An immigrant Darwin's finch to Daphne Major in the Galápagos archipelago initiated a new genetic lineage by breeding with a resident finch (*Geospiza fortis*). Genome sequencing of the immigrant identified it as a *G. conirostris* male that originated on Española >100 kilometers from Daphne Major. From the second generation onward, the lineage bred endogamously and, despite intense inbreeding, was ecologically successful and showed transgressive segregation of bill morphology. This example shows that reproductive isolation, which typically develops over hundreds of generations, can be established in only three.

nterbreeding of two species may result in the formation of a new species, reproductively isolated from the parental species (1). Hybrid speciation without chromosomal doubling, that is, homoploid hybrid speciation, is rare (1-4). Possible examples have been reported in plants (4), butterflies (5), flies (6), fish (7), mammals (8), and birds (9). However, only one of these, involving Heliconius butterflies (5), and three additional examples, involving Helianthus sunflowers (3, 10), meet stringent criteria that have been proposed for recognizing that hybridization was the cause of speciation (2). Here we report the results of a combined ecological and genomic study of Darwin's finches that documents hybrid speciation in the wild from its inception to the development of reproductive isolation.

An immature male finch immigrated to the small Galápagos Island of Daphne Major (0.34 km²) in 1981 (II-I3). It resembled the medium ground finch Geospiza fortis, but was 70% larger and sang a distinctive song. Assignment tests with microsatellite markers from finches on neighboring islands indicated that it was possibly a G. fortis × G. scandens hybrid originating on the adjacent large island of Santa Cruz, 8 km from Daphne (II). We followed the survival and breeding of this individual and its descendants for six generations over the next 31 years.

The immigrant (generation 0) bred with a G. fortis female and one of its F_1 offspring bred with another G. fortis female, but all other matings occurred within this lineage, endogamously; therefore, from generation 2 onward, the lineage be-

¹Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. ²Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. ³Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA. ⁴Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA. ^{*}Present address: Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.

†Corresponding author. Email: leif.andersson@imbim.uu.se

haved as an independent species relative to other birds on the island (Fig. 1). Generations 4 to 6 were derived from a single brother-sister mating in generation 3. Despite close inbreeding, members of the lineage experienced high fitness, as judged by their reproductive output and high survival (12). At maximum (in 2010), eight breeding pairs and 36 individuals were present on the island, and on our most recent visit (in 2012), there were eight breeding pairs and 23 individuals of generations 3 to 6. From observations and ex-

periments with ground finches (12, 13), bill morphology is likely to be a key factor in the success of these birds. The ability of finches to efficiently exploit the large woody fruits of Tribulus cistoides in dry seasons, and particularly during droughts and limited food supply, is a function of bill size, especially bill depth (12). Also, finch species imprint on features of their parents early in life, and later, when choosing a mate, they discriminate between members of their own and other species on the basis of bill size and shape, as well as body size and song (13).

We combined morphological measurements and whole genome sequencing of almost all individuals in the new lineage to establish the genetic basis of the founder population and characteristics associated with its success. We (i) assigned the founder male to species and source population, (ii) confirmed pedigree assignments from observations and sequence data (14), (iii) quantified patterns of gene transmission between generations, (iv) assessed genetic diversity, and (v) searched for genetic clues to the success of the lineage.

Because members of the new lineage are conspicuously large, we refer to it as the Big Bird lineage (12).

A phylogenetic tree analysis showed that the founder male (individual 5110) was not a G. fortis \times G. scandens hybrid as previously hypothesized (12), but rather a G. conirostris (Fig. 2A). This species (large cactus finch) occurs on Española and its satellite Gardner (Fig. 2B) and nowhere else in the Galápagos archipelago; a population on Genovesa, formerly classified as G. conirostris, was recently reclassified as G. propingua (15). Immigration from Española is noteworthy and unexpected because it is located more than 100 km from Daphne Major and a large island (Santa Cruz) lies between them (Fig. 2B). Rare long-distance movements of finches in the archipelago have been detected before, but, until recently, it was assumed these birds were vagrants that did not stay to breed (16-18).

The founder had an inbreeding coefficient (F) of 0.19 and appeared to be a typical member of the source population of G. conirostris from Española (F = -0.04 to 0.31), in terms of average genome-wide homozygosity, and admixture (19) analysis classified it as a normal G. conirostris (Fig. 2C). The inbreeding coefficient was negative in the F_1 generation (Fig. 2D) as a result of the interspecies hybridization (12, 13). A gradual increase in homozygosity was then observed over the next five generations (Fig. 2D), as expected from the small number of breeding pairs (one to eight), causing genetic drift. Genome-wide average nucleotide diversity π showed a similar

Fig. 1. The Big Bird lineage through the sixth generation.

Interbreeding with two *G. fortis* females resulted in a reduction of the genetic contribution of the immigrant male from 0.50 in the first generation to 0.375 in the second and subsequent generations. The numbers indicate identification number (*14*). *n* indicates number of individuals. [Photo credit: Peter and Rosemary Grant]

Fig. 2. Phylogeny, geography, and increase in homozygosity. (A) Maximum likelihood tree of Darwin's finches constructed from whole genomes [this study and (13, 21)]. The founder male of the Big Bird lineage is highlighted in blue. All nodes that have full local support on the basis of the Shimodaira-Hasegawa test are marked with asterisks. (B) Map of the Galápagos archipelago. The original colonist individual on Daphne Major originated on Española Island (or its satellite Gardner) in the southeast of the archipelago >100 km from Daphne. The hypothetical flight path, indicated by the red dashed arrow, is informed by observations (B.R.G. and P.R.G., 1973-1975) of postbreeding movement of finches on Santa Cruz Island, northward on the east coast and westward on the north coast. (C) Maximum likelihood estimation of individual admixture proportions using genome-wide singlenucleotide polymorphism (SNP) data for a range of preassumed populations (ancestral groups K = 2 to 6). The number of colors used corresponds to the number of K being used in each plot. (D) Increase in homozygosity (genome-wide inbreeding coefficient. F) in the Big Bird lineage over the generations. The estimate for the original colonist is shown by an asterisk.

pattern, with a decline from 0.17% in generation 1 to ~0.13% in generations 4 to 6; values for G. fortis and G. conirostris were 0.15 and 0.16%, respectively (fig. S1). Furthermore, the extensive linkage disequilibrium across the genome is consistent with a recent hybridization event (fig. S2). The Big Bird lineage also exhibited low quantitative variation. The population, all generations combined, varied less in bill length as mea-

sured by the coefficient of variation (3.82 \pm 0.42, mean \pm SEM, n=42) than G. fortis (7.55 \pm 0.69, n=60, P<0.005) and G. conirostris (6.35 \pm 0.56, n=64, P<0.01), and varied less in bill depth than G. conirostris (5.02 \pm 0.55 versus 7.71 \pm 0.68, P<0.05). The low values probably represent low additive genetic variation because the traits are highly heritable in Geospiza species (13, 20).

The ecological success and reproductive isolation of the Big Bird lineage were most likely due to large bill and body size and a distinctive song (12). We undertook a more detailed morphological analysis of the new lineage, together with both of the parental species *G. conirostris* and *G. fortis* [(14), table S1]. In body size, the members of the Big Bird lineage are intermediate, on average, between the means of the parental species