> with(DEtools): with(plots):

We bespreken hier het fasevlak voor homogene lineaire 2x2 stelsels x'=Ax, met A constante coefficienten.

Introduceren van een stelsel in Maple.

_Voorbeeld 1.

>
$$F:=(x, y) -> 2*x + y;$$

 $G:=(x, y) -> x + 2*y;$
 $dv1 := (D(x))(t) = F(x(t), y(t)); dv2 := (D(y))(t) = G(x(t), y(t));$
 $(x, y) \rightarrow 2x + y$
 $(x, y) \rightarrow x + 2y$

$$(x, y) \rightarrow 2x + y$$

$$(x, y) \rightarrow x + 2y$$

$$D(x)(t) = 2x(t) + y(t)$$

$$D(y)(t) = x(t) + 2y(t)$$

_Het tekenen van het richtingsveld in het fasevlak.

```
> DEplot(\{dv1, dv2\}, [x(t), y(t)], t = 0 .. 1, x = -5 .. 5, y = -5 .. 5, arrows = medium);
```


Het tekenen van de banen in het fasevlak.

```
> DEplot(\{dv1, dv2\}, [x(t), y(t)], t = -10 .. 10, x = -5 .. 5, y = -5 .. 5, [[x(0) = 2, y(0) = 0], [x(0) = 4, y(0) = 0], [x(0) = -1, y(0) = 1], [x(0) = 0, y(0) = -2], [x(0) = 0, y(0) = -4], [x(0) = -2, y(0) = 0], [x(0) = -4, y(0) = 0], [x(0) = 1, y(0) = -1], [x(0) = 0, y(0) = 2], [x(0) = 0, y(0) = 4], [x(0) = 1, y(0) = 2], [x(0) = -1, y(0) = -2], [x(0) = -1, y(0) = -1], [x(0) = -1, y(0) = 1], numpoints = 300, arrows = medium, linecolor = blue );
```


Merk op: 1. Het onderliggende richtingsveld geeft aan hoe over de banen gelopen wordt.

- 2. Onder de banen zijn 2 lijnen (eigenlijk 4 halflijnen) corresponderende met de oplossingen c.a<1,1>e^{3t} en c.<1,-1>.e^t (de richting van de eigenvectoren).
- 3. Het punt (0,0) op zich is zelf ook een baan. Namelijk van de constante oplossing $X(t)=[0,0]^T$. Een evenwichtspunt.
- 4. De andere banen worden in (0,0) aan elkaar geknoopt en de andere banen lijken uit (0,0) te stromen.
- 5. Het evenwichtspunt (0,0) heet een "knooppunt" (engels: node) van het type "afstoter of bron" (repellor or source).

Merk op dat er sprake is van een instabiele evenwicht.

6. Deze naamgeving wordt gebruikt bij twee strikt positieve eigenwaarde.

Voorbeeld 2.

We introduceren het stelsel en tekenen het richtingsveld.

>
$$F:=(x, y)\rightarrow -3*x+y;$$

 $G:=(x, y)\rightarrow x-3*y;$
 $dv1:=(D(x))(t)=F(x(t), y(t)); dv2:=(D(y))(t)=G(x(t), y(t));$

$$(x, y) \to -3 x + y (x, y) \to x - 3 y D(x) (t) = -3 x(t) + y(t) D(y) (t) = x(t) - 3 y(t)$$
(2)

> DEplot($\{dv1, dv2\}$, [x(t), y(t)], t = 0 .. 1, x = -5 .. 5, y = -5 .. 5, arrows = medium);

We schetsen de banen.

```
> DEplot(\{dv1, dv2\}, [x(t), y(t)], t = -10 ... 10, x = -5 ... 5, y = -5 ... 5, [[x(0) = 2, y(0) = 0], [x(0) = 4, y(0) = 0], [x(0) = -1, y(0) = 1], [x(0) = 0, y(0) = -2], [x(0) = 0, y(0) = -4], [x(0) = -2, y(0) = 0], [x(0) = -4, y(0) = 0],
```

```
[x(0) = 1, y(0) = -1], [x(0) = 0, y(0) = 2], [x(0) = 0, y(0) = 4], [x(0) = 1, y(0) = 1], [x(0) = -1, y(0) = -1], [x(0) = 2, y(0) = 3], [x(0) = -2, y(0) = -3]], numpoints = 300, arrows = medium, linecolor = blue);
```


Merk op: 1. Het onderliggende richtingsveld geeft aan hoe over de banen gelopen wordt.

2. Onder de banen zijn 2 lijnen (eigenlijk 4 halflijnen) corresponderende met de oplossingen $c.<1,1>.e^{-2t}$ en $c<1,-1>.e^{-4t}$ (de richting

van de eigenvectoren).

- 3. Het punt (0,0) is zelf ook een baan, namelijk van de constante oplossing X(t)=[0,0].
- 4. De banen worden in (0,0) aan elkaar geknoopt en de banen lijken (0,0) in te stromen.
- 5. Het evenwichtspunt (!) (0,0) heet een "knooppunt" (Engels: node) van het type "aantrekker of put" (attractor or sink).

Het evenwichtspunt is een stabiel evenwicht.

5. Deze naamgeving wordt gebruikt bij twee strikt negatieve eigenwaarde.

_Voorbeeld 3. (Opgave 3 van paragraaf 7.5)

```
> F:=(x, y)->x+y;

G:=(x, y)->4*x-2*y;

dv1:=(D(x))(t)=F(x(t), y(t)); dv2:=(D(y))(t)=G(x(t), y(t));
```

```
(x, y) \to x + y 
 (x, y) \to 4x - 2y 
 D(x)(t) = x(t) + y(t) 
 D(y)(t) = 4x(t) - 2y(t)
(3)
```

> DEplot($\{dv1, dv2\}$, [x(t), y(t)], t = 0 ... 1, x = -5 ... 5, y = -5 ... 5, arrows = medium);


```
> DEplot(\{dv1, dv2\}, [x(t), y(t)], t = -10 .. 10, x = -5 .. 5, y = -5 .. 5, [[x(0) = 2, y(0) = 0], [x(0) = 4, y(0) = 0], [x(0) = -1, y(0) = 1], [x(0) = 0, y(0) = -2], [x(0) = 0, y(0) = -4], [x(0) = -2, y(0) = 0], [x(0) = -4, y(0) = 0], [x(0) = 1, y(0) = -1], [x(0) = 0, y(0) = 2], [x(0) = 0, y(0) = 4], [x(0) = 1, y(0) = 1], [x(0) = -1, y(0) = -1], [x(0) = -1, y(0) = 4], [x(0) = 1, y(0) = -4]], numpoints = 300, arrows = medium, linecolor = blue );
```


Merk op: 1. Het onderliggende richtingsveld geeft aan hoe over de banen gelopen wordt.

2. Onder de banen zijn 2 lijnen (eigenlijk 4 halflijnen) corresponderende met de oplossingen c.<1,1>.e^{2t} (hierop loopt de oplossing naar oneindig)

en $c<-1,4>.e^{-4t}$ (hierop loopt de baan naar (0,0).)

- 3. Weer geldt: het punt (0,0) is zelf ook een baan van de constante oplossing X(t)=[0,0]. Dit is een instabiel evenwichtspunt.
- 3. De banen worden in (0,0) niet aan elkaar geknoopt, ze lijken langs (0,0) te stromen (op de twee .
 - 4. Het evenwichtspunt (!) (0,0) heet een "zadelpuntt" (engels: saddle point).
 - 5. Deze naamgeving wordt gebruikt bij twee eigenwaarde van verschillend teken.

_Voorbeeld 4. (opgave 7 paragraaf 7.5.) (Geval eigenwaarde lambda=0)

```
> F:=(x, y)->4*x-3*y;

G:=(x, y)->8*x-6*y;

dv1 := (D(x))(t) = F(x(t), y(t)); dv2 := (D(y))(t) = G(x(t), y

(t));

(x,y)\rightarrow 4x-3y
(x,y)\rightarrow 8x-6y
D(x)(t)=4x(t)-3y(t)
D(y)(t)=8x(t)-6y(t)
> DEplot({dv1, dv2}, [x(t), y(t)], t = -10 ... 10, x = -5 ... 5, y =
```

```
-5 .. 5, [[x(0) = 4, y(0) = 6], [x(0) = 3, y(0) = 5], [x(0) = 2, y (0) = 4], [x(0) = 1, y(0) = 3], [x(0) = 0, y(0) = 2], [x(0) = -1, y (0) = 1], [x(0) = -2, y(0) = -5], [x(0) = -1, y(0) = -4], [x(0) = 0, y (0) = -3]], numpoints = 300, arrows = medium, linecolor = blue );
```

Merk op: 1. De algemene oplossing is: $c_1<3,4>e^{0t}+c_2<1,-2>e^{-2t}=c_1<3,4>+c_2<1,-2>e^{-2t}$.

- 2. Alle oplossingen van het type: $c_1<3,4>$ zijn constante oplossingen (evenwichtspunten), Iedere oplossing $c_1<3,4>+c_2<1,-2>e^{-2}$ loopt naar zijn eigen evenwichtspunt
- $c_1<3,4>$ toe (als t naar oneindig) toe, of van boven af of van onder af (tenminste als lambda_2<0), afhankelijk c_2>0 of c_2<0..
- 3. In de situatie dat (0,0) geen geisoleerd evenwichtspunt is, is er geen speciale naamgeving voor dat evenwichts punt.

Complexe eigenwaarden.

```
_Voorbeeld 5. (paragraaf 7,6, opgave 1)
```

```
> F:=(x, y) - 3*x - 2*y;

G:=(x, y) - 2*x - y;

dv1 := (D(x))(t) = F(x(t), y(t)); dv2 := (D(y))(t) = G(x(t), y(t));

(x, y) \rightarrow 3x - 2y (5)
```

$$(x, y) \rightarrow 4x - y$$

 $D(x)(t) = 3x(t) - 2y(t)$
 $D(y)(t) = 4x(t) - y(t)$

We schetsen de banen.

> DEplot($\{dv1, dv2\}$, [x(t), y(t)], t = -5 .. 5, x = -5 .. 5, y = -5 .. 5, [[x(0) = 2, y(0) = 0], [x(0) = 4, y(0) = 0], [x(0) = -1, y(0) = 1], [x(0) = 0, y(0) = -2], [x(0) = 0, y(0) = -4], [x(0) = -2, y(0) = 0], [x(0) = -4, y(0) = 0], [x(0) = 1, y(0) = -1], [x(0) = 0, y(0) = 2], [x(0) = 0, y(0) = 4], [x(0) = 1, y(0) = 1], [x(0) = -1, y(0) = -1], [x(0) = 2, y(0) = 3], [x(0) = -2, y(0) = -3]], numpoints = 300, arrows = medium, linecolor = blue);

Merk op: 1. Hoe klein je ook inzoemd, de banen blijven om (0,0) te draaien..

- 2. De banen lijken wel uit (0,0) te stromen.
- 4. Het evenwichtspunt (!) (0,0) heet een "spiraalpunt" van het type "afstoter of bron" (repellor or source).
- 5. Dit zal altijd het geval zijn met complexe eigenwaarden lambda=a+bi met reele deel a>0... Voorbeeld 6. (paragraaf 7,6, opgave 3)

```
> F:=(x, y)->-x-4*y;
```

```
G:=(x, y)->x-y;
             dv1 := (D(x))(t) = F(x(t), y(t)); dv2 := (D(y))(t) = G(x(t), y(t)); dv3 := (D(y))(t) = (D(y))(t) = (D(y))(t); dv3 := (D(y))(t); dv3 := (D(y))(t) = (D(y))(t); dv3 := (D(y))(t)
         (t));
                                                                                                                        (x, y) \rightarrow -x - 4y
                                                                                                                                                                                                                                                                                                                (6)
                                                                                                                             (x, y) \rightarrow x - y
                                                                                                           D(x)(t) = -x(t) - 4y(t)
                                                                                                               D(y)(t) = x(t) - y(t)
> DEplot(\{dv1, dv2\}, [x(t), y(t)], t = -5 ... 5, x = -5 ... 5, y = -5
         .. 5, [[x(0) = 2, y(0) = 0], [x(0) = 4, y(0) = 0],
         [x(0) = -1, y(0) = 1], [x(0) = 0, y(0) = -2], [x(0) = 0, y(0) =
         -4], [x(0) = -2, y(0) = 0], [x(0) = -4, y(0) = 0],
         [x(0) = 1, y(0) = -1], [x(0) = 0, y(0) = 2], [x(0) = 0, y(0) =
         4],[x(0) = 1, y(0) = 1],[x(0) = -1, y(0) = -1],
         [x(0) = 2, y(0) = 3], [x(0) = -2, y(0) = -3]], numpoints = 300,
         arrows = medium, linecolor = blue );
```

Merk op: 1. Hoe klein je ook inzoemd om (0,0), de banen blijven om (0,0) te draaien..

- 2. De banen lijken wel (0,0) in te stromen.
- 4. Het evenwichtspunt (!) (0,0) heet een "spiraalpunt" van het type "aantrekker of put" (attractor or sink).

5. Dit zal altijd het geval zijn met complexe eigenwaarden lambda=a+bi met reele deel a<0. Voorbeeld 7. (paragraaf 7,6, opgave 2) > F:=(x, y)->2*x-5*y;G:=(x, y)->x-2*y;dv1 := (D(x))(t) = F(x(t), y(t)); dv2 := (D(y))(t) = G(x(t), y(t)); dv3 := (D(y))(t) = (D(y))(t) = (D(y))(t) = (D(y))(t); dv3 := (D(y))(t) = (D(y))(t); dv3 := (D(y))(t); dv3 := (D(y))(t); dv3 := (D(y))(t); dv(t)); $(x, y) \rightarrow 2x - 5y$ **(7)** $(x, y) \rightarrow x - 2y$ D(x)(t) = 2x(t) - 5y(t)D(y)(t) = x(t) - 2y(t)> DEplot($\{dv1, dv2\}$, [x(t), y(t)], t = -5 ... 5, x = -10 ... 10, y =-10 .. 10, [[x(0) = 2, y(0) = 0], [x(0) = 4, y(0) = 0],[x(0) = -1, y(0) = 1], [x(0) = 0, y(0) = -2], [x(0) = 0, y(0) =-4], [x(0) = -2, y(0) = 0], [x(0) = -4, y(0) = 0], [x(0) = 1, y(0) = -1], [x(0) = 0, y(0) = 2], [x(0) = 0, y(0) =4],[x(0) = 1, y(0) = 1],[x(0) = -1, y(0) = -1],[x(0) = 2, y(0) = 3], [x(0) = -2, y(0) = -3]], numpoints = 300,arrows = medium, linecolor = blue);

Merk op: 1. De banen blijven op gepaste afstand om (0,0) te draaien (als ellipsen?).

- 2. Het evenwichtspunt (!) (0,0) heet een "centrum" (engels: center).
- 5. Dit zal altijd het geval zijn met complexe eigenwaarden lambda=a+bi met reele deel a=0 (dus zuiver imaginaire eigenwaarden).

_Tenslotte de situatie: de 2x2 matrix A is defect in de dubbele eigenwaarde lambda.

_Voorbeeld 8 (paragraaf 7.8, opgave 3).

> F:=(x, y)->-3*x/2+y;
G:=(x, y)->-x/4-y/2;
dv1 := (D(x))(t) = F(x(t), y(t)); dv2 := (D(y))(t) = G(x(t), y
(t));

$$(x,y) \rightarrow -\frac{3}{2} x + y$$

$$(x,y) \rightarrow -\frac{1}{4} x - \frac{1}{2} y$$

$$D(x)(t) = -\frac{3}{2} x(t) + y(t)$$

$$D(y)(t) = -\frac{1}{4} x(t) - \frac{1}{2} y(t)$$

> DEplot($\{dv1, dv2\}$, [x(t), y(t)], t = -5 .. 5, x = -10 .. 10, y = -10 .. 10, [[x(0) = 2, y(0) = 1], [x(0) = -2, y(0) = -1], [x(0) = -1, y(0) = 1], [x(0) = 0, y(0) = -2], [x(0) = 0, y(0) = -4], [x(0) = -2, y(0) = 0], [x(0) = -4, y(0) = 0], [x(0) = 1, y(0) = -1], [x(0) = 0, y(0) = 2], [x(0) = 0, y(0) = 4], [x(0) = 1, y(0) = 1], [x(0) = -1, y(0) = -1], [x(0) = 2, y(0) = 3], [x(0) = -2, y(0) = -3]], numpoints = 300, arrows = medium, linecolor = blue);

Merk op: 1. De dubbele eigenwaarde is r=-1 (a.m.(r=1)=2 met enkele eigenvector <2,1> (m.m.(r=1)= 1)

- 2. Onder de banen is 1 lijn (eigenlijk 2 halflijnen) corresponderende met de oplossing c.<2, 1>.e^{-t}.
- 3. De banen worden in (0,0) aan elkaar geknoopt en de banen lijken (0,0) in te stromen (omdat r<0).
- 4. Het evenwichtspunt (!) (0,0) heet een "onzuivere knooppunt" (improper node), of ook: een gedegenereerde knoop, een ontaarde knoop

of een eentakkige knoop van het type "aantrekker of put" (attractor or sink) als r<0 dan wel "afstoter of bron" als r>0.

5. Deze naamgeving wordt dus gebruikt bij defecte matrices.