

Institutt for matematiske fag

Eksamensoppgave i TMA4110/TMA4115 Ma	atematikl	k 3
Faglig kontakt under eksamen: Gereon Quick Tlf: 48 50 14 12		
Eksamensdato: august 2016		
Eksamenstid (fra-til): Hjelpemiddelkode/Tillatte hjelpemidler: C: Enkel kalkulator (Citizen SR-270X College, eller Hewlett Packard HP30S), Rottma		
Annen informasjon: Alle svar skal begrunnes og det skal gå klart frem hvordan svarer har samme vekt.	ne er oppnådd	I. Hver av de 8 oppgavene
Målform/språk: bokmål Antall sider: 3 Antall sider vedlegg: 0		
		Kontrollert av:
	Dato	Sign

Oppgave 1

- a) Beregn $\left(\frac{1}{-1+i\sqrt{3}}\right)^6$.
- **b)** Bruk polarformen $z = r \cdot e^{i\theta}$ for å finne alle komplekse tall z som tilfredsstiller $2z^2 \bar{z}^3 = 0$.

Skisser løsningene i det komplekse planet.

Oppgave 2

Finn den unike funksjonen y(t) som tilfredsstiller initialverdiproblemet

$$\frac{1}{4}y'' - y' + y = 5e^{2t} + 1, \ y(0) = 1, \ y'(0) = 1.$$

Oppgave 3

Vi har det følgende differensialligningssystemet

$$\mathbf{x}' = A\mathbf{x} \mod A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}. \tag{1}$$

- a) Diagonaliser matrisen A: finn en inverterbar matrise P slik at $P^{-1}AP$ er en diagonalmatrise.
- b) Vi definerer en ny variabel $\mathbf{y} := P^{-1}\mathbf{x}$. Hvilken differensialligning tilfredsstiller \mathbf{y} ?
- c) Finn den unike løsningen til systemet (1) som tilfredsstiller $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Oppgave 4 La $T: \mathbb{R}^4 \to \mathbb{R}$ være lineærtransformasjonen definert ved

$$T\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = x - y + 2z - 2w.$$

Finn en ortogonal basis for nullrommet til T.

Oppgave 5

$$\text{La } A = \begin{bmatrix} a & a-1 & a \\ a-1 & 1 & 0 \\ a & 0 & a \end{bmatrix}$$

- a) Bestem rangen til A for alle reelle tall a.
- b) Bestem tallene a og b slik at ligningssystemet

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 1 \end{bmatrix}$$

har uendelig mange løsninger.

Oppgave 6

Sjakkspiller Magnus kan enten vinne, spille uavgjort eller tape en kamp. Treneren hans har observert at Magnus' kamper viser det følgende mønsteret:

- Hvis han vant den forrige kampen, er det en 70% sannsynlighet for at han vinner den neste kampen og en 10% sannsynlighet for at han taper den neste kampen.
- Hvis han spilte uavgjort i den forrige kampen, er det en 80% sannsynlighet for at han spiller uavgjort i den neste kampen og en 10% sannsynlighet for at han vinner den neste kampen.
- Hvis han tapte den forrige kampen, er det en 30% sannsynlighet for at han vinner den neste kampen og en 30% sannsynlighet for at han spiller uavgjort i den neste kampen.

Anta at treneren har observert mange kamper med dette mønsteret. Hva er det mest sannsynlige resultatet i Magnus' neste kamp? (Oppgi sannsynligheten for hvert av de tre mulige utfallene.)

Oppgave 7

Finn ligningen $y = ax^2 + bx + c$ som passer best til datapunktene (-2,6), (-1,6), (0,-2), (1,2) og (2,3).

Oppgave 8

La A være en $n \times n$ -matrise slik at A^2 er nullmatrisen, dvs. $n \times n$ -matrisen der hvert element er null.

- a) Vis at A ikke er inverterbar.
- b) Vis at den eneste egenverdien til A er 0.
- c) Gi et eksempel på en slik A som ikke er nullmatrisen. (Tips: se på 2×2 -matriser.)