全国计算机技术与软件专业技术资格(水平)考试

2006 年下半年 网络工程师 上午试卷

(考试时间 9:00~11:30 共150分钟)

请按下述要求正确填写答题卡

- 1. 在答题卡的指定位置上正确写入你的姓名和准考证号,并用正规 2B 铅 **笔在你写入的准考证号下填涂准考证号。**
- 2. 本试卷的试题中共有75个空格,需要全部解答,每个空格1分,满分75 分。
- 3. 每个空格对应一个序号,有 A、B、C、D 四个选项,请选择一个最恰当 的选项作为解答, 在答题卡相应序号下填涂该选项。
- 4. 解答前务必阅读例题和答题卡上的例题填涂样式及填涂注意事项。解答时 用正规 2B 铅笔正确填涂选项,如需修改,请用橡皮擦干净,否则会导 致不能正确评分。

例题

● 2006 年下半年全国计算机技术与软件专业技术资格(水平)考试日期是 (88) 月 (89) 日。

(88) A. 9 B. 10 C. 11 D. 12

(89) A. 4 B. 5 C. 6 D. 7

因为考试日期是"11月4日",故(88)选C,(89)选A,应在答题卡序 号 88 下对 C 填涂, 在序号 89 下对 A 填涂 (参看答题卡)。

- 若内存按字节编址,用存储容量为 32K×8 比特的存储器芯片构成地址编号 A0000H 至 DFFFFH 的内存空间,则至少需要 (1) 片。
 - (1) A.4
- B. 6
- C. 8
- D. 10
- 某计算机系统由下图所示的部件构成,假定每个部件的千小时可靠度 R 均为 0.9, 则该系统的千小时可靠度约为_(2)_。
 - (2) A. 0.882 B. 0.951

- 设指令由取指、分析、执行 3 个子部件完成,每个子部件的工作周期均为△t, 采 用常规标量单流水线处理机。若连续执行 10 条指令,则共需时间 (3) △t。
 - (3) A. 8
- B. 10
- C. 12
- D. 14
- 某计算机的时钟频率为 400MHz, 测试该计算机的程序使用 4 种类型的指令。每种 指令的数量及所需指令时钟数(CPI)如下表所示,则该计算机的指令平均时钟数约为 (4) 。

指令类型	指令数目(条)	每条指令需时钟数
1	160000	1
2	30000	2
3	24000	4
4	16000	8

- (4) A. 1.85
- B. 1.93
- C. 2.36
- D. 3.75
- 常见的软件开发模型有瀑布模型、演化模型、螺旋模型、喷泉模型等。其中 (5) 模型适用于需求明确或很少变更的项目, (6) 模型主要用来描述面向对象的软件开发 过程。
 - (5) A. 瀑布模型 B. 演化模型
- C. 螺旋模型
- D. 喷泉模型
- (6) A. 瀑布模型 B. 演化模型 C. 螺旋模型
- D. 喷泉模型
- (7) 确定了标准体制和标准化管理体制,规定了制定标准的对象与原则以及实 施标准的要求,明确了违法行为的法律责任和处罚办法。
 - (7) A. 标准化
- B. 标准
- C. 标准化法
- D. 标准与标准化
- 某开发人员不顾企业有关保守商业秘密的要求,将其参与该企业开发设计的应用 软件的核心程序设计技巧和算法通过论文向社会发表,那么该开发人员的行为 (8)。
 - (8) A. 属于开发人员权利不涉及企业权利 B. 侵犯了企业商业秘密权

 - C. 违反了企业的规章制度但不侵权
- D. 未侵犯权利人软件著作权

● 在一个单 CPU 的计算机系统中,采用可剥夺式(也称抢占式)优先级的进程调度 方案,且所有任务可以并行使用 I/O 设备。下表列出了三个任务 T1、T2、T3 的优先级、 独立运行时占用 CPU 和 I/O 设备的时间。如果操作系统的开销忽略不计,这三个任务从同 时启动到全部结束的总时间为 (9) ms, CPU 的空闲时间共有 (10) ms。

任务	优先级	每个任务独立运行时所需的时间
T1	高	对每个任务:
T2	中	占用 CPU 10ms,I/O 13ms,再占用 CPU 5ms
Т3	低	

(9) A. 28

B. 58

C. 61

D. 64

(10) A. 3

B. 5

C. 8

D. 13

● 以太网交换机是按照 (11) 进行转发的。

(11) A. MAC 地址

B. IP 地址 C. 协议类型 D. 端口号

● 快速以太网标准 100BASE-TX 采用的传输介质是 (12) 。

(12) A. 同轴电缆

B. 无屏蔽双绞线

C. CATV 电缆

D. 光纤

● 路由器的 SO 端口连接___(13)__。

(13) A. 广域网

B. 以太网 C. 集线器 D. 交换机

● 下图中 12 位曼彻斯特编码的信号波形表示的数据是 (14) 。

C. 011101110011

D. 011101110000

● 设信道带宽为 4kHz,采用 4 相调制技术,则信道支持的最大数据速率是 (15)。

(15) A. 4 kb/s

B. 8kb/s

C. 16kb/s

D. 32kb/s

● 在贝尔系统的 T1 载波中,每个信道的数据速率是 (16) kb/s。

(16) A.8

B. 16

C. 32

D. 56

● 海明码 (Hamming Code) 是一种<u>(17)</u>。

(17) A. 纠错码 B. 检错码

C. 语音编码 D. 压缩编码

传送。		CP/IP 体系组	吉构中,BGP协议	、是一种 <u>(18)</u> , Bo	GP 报文封装在 <u>(19)</u> 中
1470		网络应用	B 抽址转换协议	C. 路由协议	D 名字服务
				C. UDP 报文	
	(1), 11.		2.11 30,4010	C. CD1 1KX	2. Tel 1KX
	ARP	协议的作用	是 <u>(20)</u> , A	ARP 报文封装在	(21) 中传送。
	(20) A.	由 IP 地址查	技对应的 MAC 地	址	
	B.	由 MAC 地址	止查找对应的 IP 地	址	
			找对应的端口号		
			止查找对应的端口		
	(21) A.	以太帧	B. IP 数据报	C. UDP 报文	D. TCP 报文
		、因特网的方	式有多种,下面	关于各种接入方式	式的描述中,不正确的是
(22)	<u>) </u>	山级迪士士) 网 不需用 D 4	ւհյ 4-լ .	
			入网,不需要 IP 均 号方式接入,需要		
				机可以共享1个 IF) +4h +1L
					以用动态分配的 IP 地址
	D.	是这一种"风门"	及/5,可多有固定		
	● 8 个	128kb/s 的信	F道通过统计时分复	夏用到一条主干线路	8上,如果该线路的利用率
为 90	%,则其	带宽应该是_	(23) kb/s _o		
	(23) A.	922	B. 1024	C. 1138	D. 2276
1	• IGRI	P 是 Cisco 设记	才的路由协议,它	发布路由更新信息	的周期是(24)。
	(24) A.	25 秒	B. 30 秒	C. 50 秒	D. 90 秒
	■ DID _v	1 与 DID v2 的	J区别是 (25)		
·		1 → J KH VZ µ;	1区加足(23)	_	
		H	- 1 . E e 1. 1 11 XX	- H. J. at. 15	T UZ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			写矢量路由协议,同 5 元 东		
	B.	RIPv1 不支持	F可变长子网掩码,	而 RIPv2 支持可容	变长子网掩码
	В. С.	RIPv1 不支持 RIPv1 每隔 3	可变长子网掩码, 0 秒广播一次路由	而 RIPv2 支持可多 信息,而 RIPv2 每	变长子网掩码 隔 90 秒广播一次路由信息
	В. С.	RIPv1 不支持 RIPv1 每隔 3	可变长子网掩码, 0 秒广播一次路由	而 RIPv2 支持可容	变长子网掩码 隔 90 秒广播一次路由信息
ı	B. C. D.	RIPv1 不支持 RIPv1 每隔 3 RIPv1 的最为	可变长子网掩码, 0 秒广播一次路由 、跳数为 15,而 RI	而 RIPv2 支持可多 信息,而 RIPv2 每	变长子网掩码 隔 90 秒广播一次路由信息 30
	B. C. D.	RIPv1 不支持 RIPv1 每隔 3 RIPv1 的最为 OSPF 协议,	可变长子网掩码, 0秒广播一次路由 大跳数为 15,而 RI 下面的描述中不显	而 RIPv2 支持可多 信息,而 RIPv2 每 IPv2 的最大跳数为	变长子网掩码 隔 90 秒广播一次路由信息 30
	B. C. D. ● 关于 (26) A.	RIPv1 不支持 RIPv1 每隔 3 RIPv1 的最为 OSPF 协议, OSPF 是一种	可变长子网掩码, 0秒广播一次路由 以跳数为 15,而 RI 下面的描述中不显 链路状态协议	而 RIPv2 支持可多信息,而 RIPv2 每 PV2 的最大跳数为 E确的是 (26)	变长子网掩码 隔 90 秒广播一次路由信息 30
	B. C. D. ● 关于 (26) A. B.	RIPv1 不支持 RIPv1 每隔 3 RIPv1 的最为 OSPF 协议, OSPF 是一种 OSPF 使用链	可变长子网掩码, 0秒广播一次路由 大跳数为 15,而 RI 下面的描述中不显	而 RIPv2 支持可至信息,而 RIPv2 每 IPv2 的最大跳数为 E确的是 (26)	变长子网掩码 隔 90 秒广播一次路由信息 30

▶ 802.11 标准定义了 3 种物理层通信技术, 这 3 种技术不包括 (27)。 (27) A. 直接序列扩频 B. 跳频扩频 C. 窄带微波 D. 漫反射红外线 ● 802.11 标准定义的分布式协调功能采用了 (28) 协议。 (28) A. CSMA/CD B. CSMA/CA C. CDMA/CD D. CDMA/CA ● 在 Linux 操作系统中,命令 "chmod -777 /home/abc"的作用是 (29) 。 (29) A. 把所有的文件拷贝到公共目录 abc 中 B. 修改 abc 目录的访问权限为可读、可写、可执行 C. 设置用户的初始目录为/home/abc D. 修改 abc 目录的访问权限为对所有用户只读 ● 在 Linux 操作系统中,可以通过 iptables 命令来配置内核中集成的防火墙。若在 配置脚本中添加 iptables 命令: \$IPT -t nat -A PREROUTING -p top -s 0/0 -d 61.129.3.88 --dport 80 -j DNAT --to -dest 192.168.0.18 其作用是(30)。 (30) A. 将对192.168.0.18的80端口的访问转发到内网的61.129.3.88主机上 B. 将对 61.129.3.88 的 80 端口的访问转发到内网的 192.168.0.18 主机上 C. 将 192.168.0.18 的 80 端口映射到内网的 61.129.3.88 的 80 端口 D. 禁止对 61.129.3.88 的 80 端口的访问 ● 在Windows操作系统中,与访问Web无关的组件是(31)。 (31) A. DNS B. TCP/IP C. IIS D. WINS ● 关于网络安全,以下说法中正确的是(32)。 (32) A. 使用无线传输可以防御网络监听 B. 木马是一种蠕虫病毒 C. 使用防火墙可以有效地防御病毒 D. 冲击波病毒利用 Windows 的 RPC 漏洞进行传播 ● 许多黑客利用软件实现中的缓冲区溢出漏洞进行攻击,对于这一威胁,最可靠的 解决方案是 (33) 。 (33) A. 安装防火墙 B. 安装用户认证系统 C. 安装相关的系统补丁软件 D. 安装防病毒软件

- (34) 无法有效防御 DDoS 攻击。
- (34) A. 根据 IP 地址对数据包进行过滤
 - B. 为系统访问提供更高级别的身份认证
 - C. 安装防病毒软件
 - D. 使用工具软件检测不正常的高流量
- IPSec VPN安全技术没有用到(35)。
- (35) A. 隊道技术

B. 加密技术

C. 入侵检测技术

- D. 身份认证技术
- 某公司用三台 Web 服务器维护相同的 Web 信息,并共享同一域名。在 Windows 的 DNS 服务器中通过(36) 操作,可以确保域名解析并实现负载均衡。
 - (36) A. 启用循环(Round Robin),添加每个 Web 服务器的主机记录
 - B. 禁止循环(Round Robin), 启动转发器指向每个 Web 服务器
 - C. 启用循环(Round Robin), 启动转发器指向每个 Web 服务器
 - D. 禁止循环(Round Robin),添加每个Web 服务器的主机记录
 - 在 VoIP 系统中,通过(37)对声音信号进行压缩编码。
- (37) A. ISP B. VoIP 网关 C. 核心路由器 D. 呼叫终端
- 关于 Windows 操作系统中 DHCP 服务器的租约,下列说法中错误的是(38) 。
- (38) A. 默认和约期是 8 天
 - B. 客户机一直使用 DHCP 服务器分配给它的 IP 地址, 直至整个租约期结束才 开始联系更新租约。
 - C. 当租约期过了一半时,客户机将与提供 IP 地址的 DHCP 服务器联系更新租 约。
 - D. 在当前租约期过去 87.5%时,如果客户机与提供 IP 地址的 DHCP 服务器联 系不成功,则重新开始 IP 租用过程。
- 某网络结构如下图所示。除了 PC1 外其它 PC 机都能访问服务器 Server1,造成 PC1 不能正常访问 Server1 的原因可能是(39) 。

(39) A. PC1 设有多个 IP 地址B. PC1 的 IP 地址设置错误C. PC1 的子网掩码设置错误D. PC1 的默认网关设置错误 ● 为保障 Web 服务器的安全运行,对用户要进行身份验证。关于 Windows Server 2003 中的"集成 Windows 身份验证",下列说法中错误的是(40)。 (40) A. 在这种身份验证方式中,用户名和密码在发送前要经过加密处理,所以是一 种安全的身份验证方案。 B. 这种身份验证方案结合了 Windows NT 质询/响应身份验证和 Kerberos v5 身 份验证两种方式。 C. 如果用户系统在域控制器中安装了活动目录服务,而且浏览器支持 Kerberos v5 身份认证协议,则使用 Kerberos v5 身份验证。 D. 客户机通过代理服务器建立连接时,可采用集成 Windows 身份验证方案进行 验证。 ● SNMPv1 使用 (41) 进行报文认证,这个协议是不安全的。SNMPv3 定义了 (42) 的安全模型,可以使用共享密钥进行报文认证。 (41) A. 版本号 (Version) B. 协议标识(Protocol ID) D. 制造商标识(Manufacturer ID) C. 团体名(Community) (42) A. 基于用户 B. 基于共享密钥 C. 基于团体 D. 基于报文认证 ● 若在 Windows "运行"窗口中键入 (43) 命令,则可运行 Microsoft 管理控 制台。 (43) A. CMD B. MMC C. AUTOEXE D. TTY ● 在 Windows 操作系统中,如果要查找从本地出发,经过3个跳步,到达名字 (44) A. tracert Enric-h 3 B. tracert -j 3 Enric

为 Enric 的目标主机的路径,则键入的命令是 (44)。

C. tracert -h 3 Enric

D. tracert Enric - j 3

● 能显示 TCP 和 UDP 连接信息的命令是 (45) 。

(45) A. netstat -s

B. netstat -e

C. netstat -r

D. netstat -a

● 设有两个子网 202.118.133.0/24 和 202.118.130.0/24,如果进行路由汇聚,得到的 网络地址是 (46) 。

(46) A. 202.118.128.0/21

B. 202.118.128.0/22

C. 202.118.130.0/22

D. 202.118.132.0/20

- 路由器收到一个数据包,其目标地址为 195.26.17.4,该地址属于<u>(47)</u>子网。 (47) A. 195.26.0.0/21 B. 195.26.16.0/20 C. 195.26.8.0/22 D. 195.26.20.0/22
- 主机地址 172.16.2.160 属于下面哪一个子网? ___(48)
- (48) A. 172.16.2.64/26 B. 172.16.2.96/26 C. 172.16.2.128/26 D. 172.16.2.192/26
- 如果用户网络需要划分成 5 个子网,每个子网最多 20 台主机,则适用的子网掩码是 (49) 。
 - (49) A. 255.255.255.192 B. 255.255.255.240 C. 255.255.255.224 D. 255.255.255.248
 - CIDR 技术的作用是<u>(50)</u>。
 - (50) A. 把小的网络汇聚成大的超网 B. 把大的网络划分成小的子网
 - C. 解决地址资源不足的问题 D. 由多个主机共享同一个网络地址
 - 路由器命令 Router>sh int 的作用是 (51) 。
 - (51) A. 检查端口配置参数和统计数据 B. 进入特权模式
 - C. 检查是否建立连接 D. 检查配置的协议
 - 下面列出了路由器的各种命令状态,可以配置路由器全局参数的是 (52)
 - (52) A. router> B. router#
 - C. router(config)# D. router(config-if)#
 - 网络配置如下图所示,为路由器 Router1 配置访问以太网 2 的命令是 (53) 。

- 可以采用静态或动态方式来划分 VLAN, 下面属于静态划分的方法是 (54) 。
- (54) A. 按端口划分
- B. 按 MAC 地址划分
- C. 按协议类型划分
- D. 按逻辑地址划分
- 如果两个交换机之间设置多条 Trunk,则需要用不同的端口权值或路径费用来进行负载均衡。默认情况下,端口的权值是___(55)__。在如图的配置下,___(56)__。

- (55) A.64
- B. 128
- C. 256
- D. 1024
- (56) A. VLAN1 的数据通过 Trunk1, VLAN2 的数据通过 Trunk2
 - B. VLAN1 的数据通过 Trunk1, VLAN3 的数据通过 Trunk2
 - C. VLAN2 的数据通过 Trunk2, VLAN4 的数据通过 Trunk1
 - D. VLAN2 的数据通过 Trunk2, VLAN3 的数据通过 Trunk1
- 在以太网中,最大传输单元(MTU)是 (57) 字节。
- (57) A. 46
- B. 64
- C. 1500
- D. 1518
- 在下面关于以太网与令牌环网性能的比较中, 正确的是 (58)。
- (58) A. 在重负载时,以太网比令牌环网的响应速度快
 - B. 在轻负载时, 令牌环网比以太网的利用率高
 - C. 在重负载时, 令牌环网比以太网的利用率高
 - D. 在轻负载时,以太网比令牌环网的响应速度慢
- 确定网络的层次结构及各层采用的协议是网络设计中 (59)阶段的主要任务。
- (59) A. 网络需求分析
- B. 网络体系结构设计
- C. 网络设备选型
- D. 网络安全性设计
- 在层次化园区网络设计中, (60) 是接入层的功能。
- (60) A. 高速数据传输

B. VLAN 路由

C. 广播域的定义

D. MAC 地址过滤

■ 园区网络设计中,如果网络需求对((61) A. ATMC. FDDI	QoS 要求很高,应考虑采用 <u>(61)</u> 网络。 B. 千兆以太 D. ISDN
●在 IPv4 中,组播地址是 <u>(62)</u> 地址。 (62)A. A 类 C. C 类	B. B 类 D. D 类
● 以下关于 Samba 的描述中,不正确的 (63) A. Samba 采用 SMB 协议 B. Samba 支持 WINS 名字解析 C. Samba 向 Linux 客户端提供文 D. Samba 不支持 Windows 的域戶	件和打印机共享服务
● ADSL 采用的两种接入方式是 <u>(64</u>	<u>)</u> 。
(64) A. 虚拟拨号接入和专线接入	B. 虚拟拨号接入和虚电路接入
C. 虚电路接入和专线接入	D. 拨号虚电路接入和专线接入
● 在 Web Services 中,客户与服务之间(65) A. 简单对象访问协议	
C. 统一注册与发现协议	
● NAC's (Network Access Control) rendpoints and <u>(66)</u> users. However, NAC is reproactive and <u>(68)</u> security measures must comprehensive LAN security solution that comprehensive LAN security solution that comprehensive LAN security plus integrates NAC as the first line of LAN security	ole is to restrict network access to only compliant not a complete LAN <u>(67)</u> solution; additional st be implemented. Nevis is the first and only bines deep security processing of every packet at application availability and performance. Nevis <u>(69)</u> . In addition to NAC, enterprises need of as well as critical proactive security measures
	pools and shares <u>(71)</u> so that utilization is nand. Traditional IT environments are often silos,

where both technology and human $\underline{(72)}$ are aligned around an application or business function. With a virtualized $\underline{(73)}$, people, processes, and technology are focused on meeting service levels, $\underline{(74)}$ is allocated dynamically, resources are optimized, and the entire infrastructure is simplified and flexible. We offer a broad spectrum of virtualization $\underline{(75)}$ that allows customers to choose the most appropriate path and optimization focus for their IT infrastructure resources.

(71) A. advantages	B. resources	C. benefits	D. precedents
(72) A. profits	B. costs	C. resources	D. powers
(73) A. system	B. infrastructure	C. hardware	D. link
(74) A. content	B. position	C. power	D. capacity
(75) A. solutions	B. networks	C. interfaces	D. connections