Pre-Pràctica 5: Números aleatoris 1

Objectius: generació de nombres aleatoris, histogramas, Box-Müller

— Nom del programa principal P5-2016.f.

Precisió de reals: double precision.

Tots les sortides de dades a P5-2016-res.dat.

La pràctica consistirà a estudiar problemes físics fent servir números aleatoris.

1) Estimació de la densitat de probabilitat: histograma

Escriu una subrutina histograma(ndat,xdata,ncaixes,xhisto,histo,errhisto) que generi un histograma normalitzat de ncaixes fent servir les ndat dades de xdata(ndat). La sortida és: xhisto(ncaixes) (el valor central de la caixa), histo(ncaixes) (la barra corresponent) i l'error de cada barra a errhisto(ncaixes).

1) Distribució Gaussiana

Escriu una subrutina subgauss(ndat,xgaus) que generi ndat números gaussians de valor mitjà zero i variància igual a 1.

Dins de la subrutina:

a) Genera a partir de la funció intrínseca ${\bf rand}$ i el metòde de Box-Müller, una seqüència de ${\bf ndat}$ valors de la variable aleatòria x distribuïda segons la distribució Gaussiana, $p(x) = e^{-x^2/2}/\sqrt{2\pi}$, i escriu-els al fitxer de sortida. Fes servir com a llavor el teu número NIUB,

ISEED=NUMERO NIUB
CALL SRAND(ISEED)

. .

XX=RAND()

- b) Calcula estimacions del valor mitjà, la variància i la desviació estàndard de la variable x i compara'ls amb els valors exactes per a la distribució normal per ndat=10000. Escriu els resultats al fitxer de sortida.
- c) Calcula les següents estimacions dels moments centrals d'ordre superior,

$$\overline{(x-\overline{x})^m} = \text{ amb } m = 2, \dots, 10$$
 (0.17)

i compara'ls amb els valors exactes per ndat=10000. Escriu els resultats al fitxer de sortida.

c) Genera un histograma amb els valors d'x de ncaixes=100 i fes una gràfica de l'histograma normalitzat P5-2016-fig1.png amb els errors corresponents.

2) Mètode d'acceptació i rebuig

Escriu una subrutina $\operatorname{subair}(\operatorname{ndat}, \operatorname{xnums}, \operatorname{fun}, \operatorname{a}, \operatorname{b}, \operatorname{M})$ que generi nombres aleatoris, $\operatorname{xnums}(\operatorname{ndat})$ distribuïts segons la distribució $\operatorname{fun}(\operatorname{x})$, definida entre a i b i amb una cota superior M . (fun com a external). Prova la teva subroutina $\operatorname{ndat}=10000$ amb la distribució.

$$p(x) = 4/3 \begin{cases} x & \text{si } 0 < x < 1\\ -2x + 3 & \text{si } 1 < x < 3/2 \end{cases}$$
 (0.18)

Fes servir l'algoritme següent:

- A1) Treu dos nombres a l'atzar: $x \in U(a,b)$ i $p \in U(0,M)$. Aquests números es poden generar de $x_1, x_2 \in U(0,1)$ amb el canvi de variable, $x = (b-a)x_1 + a$ i $p = Mx_2$.
- A2) Si $\operatorname{fun}(x) \ge p$ acceptem el valor d'x, en cas contrari tornem a A1).
- A3) Quan tinguis ndat números acceptats surt.
- b) Fes que la subrutina calculi el valor mitjà, la variància i la desviació estàndard dels nombres \mathbf{x} i els escrigui dins del fitxer de sortida.
- c) Genera un histograma amb els valors d' \mathbf{x} de $\mathbf{ncaixes} = \mathbf{50}$, i compara l'histograma normalitzat amb els errors corresponents amb el valor exacte $\mathbf{fun}(x)$, $\mathbf{P5-2016}$ -fig $\mathbf{2.png}$.

Entregable: P5-2016.f, P5-2016-res.dat, P5-2016-fig1.png, P5-2016-fig2.png