SISTEMI ETEROGENEI

Metodi di separazione

Sistema eterogeneo → separazione delle fasi

Sistema omogeneo → creazione di una seconda fase e sua separazione

Se servono entrambe, si fa prima la separazione delle parti eterogenee

Sistema eterogeneo

- Gas-liquido (o vapore-liquido)
- Gas-solido (o vapore-solido)
- Liquido-liquido (immiscibili)
- Liquido-solido
- Solido-solido

Separazione da una fase gas

Separatori gravitazionali

Separatore gravitazionale <u>aeriforme-liquido</u>

Separatore gravitazionale <u>liquido-liquido</u>

Separatore gravitazionale <u>fluido-solido</u>

$$\eta = \frac{h}{H}$$

LA SEPARAZIONE è PARZIALE DIPENDE DAL DIAMETRO DELLE PARTICELLE E DAI TEMPI DI PERMANENZA

PER AUMENTARE L'EFFICIENZA SI POSSONO PREVEDERE PERCORSI TORTUOSI

Agente flocculante

100 micron dimensione media per sep. di gravità

Sotto 20 micron diventa indispensabile l'uso di flocculanti

Sedimentazione (ispessimento e chiarificazione)

Classificatore

Separazione inerziale e centrifuga

Per favorire la separazione

Figure 8.5 A collection efficiency curve shows the fraction of particles of a given particle size that will be collected.

Diametro max 650 mm velocità 10-25 m/s

Figure 8.6 A cyclone generates centrifugal force by the fluid motion.

Multiciclone (portate elevate)

centrifuga, nella quale una tazza a simmetria cilindrica viene messa in rotazione

Liquid-liquid feed

(b) Separtion of liquid—liquid mixture

Filtrazione

Filtro a piastre

Dal materiale del tessuto dipende la Tmax di utilizzo

Cotone 80°C Lana 93°C Nylon 130°C Teflon 290°C

Per T ancora più alte si devono sinterizzare metalli/ceramici porosi

Filtro a maniche

(c) Belt vacuum filter.

(d) Rotary vacuum filter.

Filtro a tamburo rotante

-CAKE FILTRATION (SUPERFICIE) -DEPTH FILTRATION (PROFONDITA')

Filtro a letto fisso

Filtro a solido poroso

MICROFILTRAZIONE

Membrane polimeriche per arrivare a 0,05 micron Necessarie grandi superfici e contenere il volume:

- -Spirale
- -Fibra cava : tubo molto piccolo, flusso dall'esterno all' interno, sistemate in fascio con alimentazione tangenziale per far si che si autopulisca

Precipitazione elettrostatica

Necessario basso costo energia

Utile per alte portate e pochi solidi perchè ci sono poche perdite di carico

Utile per alte T dove si degraderebbe il filtro

Separazione ad umido (scrubbing)

Impaccamento comporta perdite di carico

Spray e Venturi per abbassare perdite di carico

Flottazione

(a) A typical flotation cell for solid separation.

(b) Dissolved air flotation (DAF).

Essiccamento

Essiccatore a tunnel (flusso controcorrente)

Essiccatore a tunnel (flusso equicorrente)

Senza contatto diretto con l'aria

Essiccatore spray

