

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

По домашнему заданию № 1

Название: Исследование характеристик и моделирование схем с

полупроводниковыми диодами

Дисциплина: Электроника

Студент ИУ6-426 (Группа) ИСС. Марчук (И.О. Фамилия)

Преподаватель В.А. Карпухин

Исследование характеристик и моделирование схем с полупроводниковыми диодами

Вариант:

Вариант №	Тип диода	Ri, кОм	Rн, кОм	С1, нФ
19	2Д250А	3,2	64	640

Таблица 1 – Условие задачи и вариант

- 1. Для заданного диода найти и обосновать параметры SPICE-модели. Результат оформить в виде таблицы с объяснением соответствия найденных параметров параметрам SPICE-модели.
- 2. Для заданного диода по найденным параметрам SPICE-модели построить в среде MathCAD и в среде Multisim вольтамперные характеристики для режимов прямого и обратного смещения. Сравнить полученные графики. Примечание: для измерения BAX в программе Multisim использовать следующую схему, измеряя ток и напряжение на диоде:

Рисунок 1 – Схема 1

- 3. Для схемы (см. рисунок п.2) найти и построить зависимости тока, напряжения на диоде и выходного напряжения от входного напряжения в диапазоне от 0 до 10 В:
 - а) графически методом наложения характеристик. Использовать лист миллиметровой бумаги размером A4. Шаг по напряжению 1 В.
 - б) в среде Multisim. Заданы: напряжение Е и сопротивление R эквивалентного источника Uвх, сопротивление Rн нагрузки. Использовать нелинейную модель диода.

Сравнить полученные результаты.

- 4. Для заданной схемы найти и построить зависимость выходного напряжения от времени при подаче на вход знакопеременного симметричного меандра с амплитудой 10 В и частотой 1 кГц на протяжении двух периодов меандра:
 - 1) Аналитически любым методом (классическим, операторным, преобразования Лапласа, интеграла Дюамеля) в среде MathCAD.
 - 2) В среде Multisim. Использовать кусочно-линейную модель ВАХ диода. Напряжение открывания диода считать равным 0,7 В. Сопротивлением открытого p-n перехода пренебречь.

Сравнить полученные результаты.

Найти и сравнить полученные средние значения выходного напряжения и размах пульсаций p-p.

Рисунок 2 – Схема 2

1. Расчет SPICE модели для диода 2Д250A:

Значения для расчетов взяты с сайта http://chiplist.ru/diodes/2D250A/

$$\phi_t pprox 0.025$$
 — температурный потенциал
$$\begin{split} & \text{Іпр} = \text{Is} * \left(e^{\frac{\text{Uпр}}{\phi_T}} - 1 \right) => \\ & 10 = \text{Is} * \left(e^{\frac{1.4}{0.025*2}} - 1 \right) => \textit{Is} = 0.69144\textit{E} - 13 \end{split}$$
 $\text{Rs} = \frac{\text{Uпр}}{\text{Іпр}} = \frac{1.4}{10} = 0.14$

Характеристика	Значения	Единицы изм.
прямой ток Іпр	10	A
прямое напряжение Uпр	1.4	В
Ток насыщения (диодное Уравнение) (Is)*	0,69144E- 13	A
Паразитное сопротивление (последовательное сопротивление) (Rs)*	0.14	Ом
Обратное напряжение пробоя (BV)	1.4	В
Коэффициент эмиссии (N)	2	
Время переноса заряда (ТТ)	0	С
Емкость перехода при нулевом (СЈО)	0	Φ
Контактная разность (VJ)	1	В
Коэффициент	0.5	
плавности перехода (М)		
Ширина запрещенной зоны для	1.11	эВ
Шоттки (EG)		
Температурный экспоненциальный	3	
коэффициент тока насыщения для Шоттки (XTI)		
Коэффициент фликер-шума (KF)	0	
Показатель степени в формуле	1	
фликер-шума (AF)		

Коэффициент емкости обедненной области при прямом смещении (FC)	0.5	
Обратный ток пробоя (IBV)	0.00005	A
Начальный ток пробоя низкого	1 A	
Уровня (IBVL)		
Предельный ток при высоком	1.00E+30	A
уровне инжекции (IKF)		
Параметр тока рекомбинации (ISR)	0	A
Коэффициент неидеальности на	1	
участке пробоя (NBV)		
Коэффициент неидеальности на	1	
участке пробоя низкого уровня (NBVL)		
Коэффициент эмиссии для тока ISR (NR)	1	

Таблица 2 – SPICE модель диода

Остальные значения взяты по умолчанию с сайта https://radioprog.ru/post/210

2. По заданным параметрам была создана схема и при помощи инструмента IV analyzer был построен график зависимости тока от напряжения.

Рисунок 3 – Схема 1 воссозданная в Multisim

Рисунок 4 – График зависимости тока от напряжения в Multisim

Рассчитаем функцию зависимости тока от напряжения (вах):

$$I(U) = I_{fwd} - I_{rev} = \left(I_{n}K_{inj} + I_{r}K_{gen}\right) - \left(I_{rev,hight} + I_{rev,low}\right) = \left(IS\left\{e^{\left[\frac{U}{NR*\phi_{t}}\right]} - 1\right\}\right) \left(\sqrt{\frac{IKF}{IKF} + \left(IS\left\{e^{\left[\frac{U}{NR*\phi_{t}}\right]} - 1\right\}\right)}\right) + \left(ISR\left\{e^{\left[\frac{U}{NR*\phi_{t}}\right]} - 1\right\}\right) \left(\left[\left(\frac{1-V}{VJ}\right)^{2} + 0.005\right]^{\frac{M}{2}}\right)\right) - \left(\left(IBV*e^{\left[\frac{U+BV}{NBV*\phi_{t}}\right]}\right) + \left(IBVL*e^{\left[\frac{U+BV}{NBVL*\phi_{t}}\right]}\right)\right) = \left(\left((0.69144E - 13)\left\{e^{\left[\frac{U}{1*0.025}\right]} - 1\right\}\right) * \left(\sqrt{\frac{(1.00E+30)}{(1.00E+30)} + \left((0.69144E-13)\left\{e^{\left[\frac{U}{1*0.025}\right]} - 1\right\}\right)}\right) + \left(1*e^{\left[\frac{U}{1*0.025}\right]}\right) - \left(\left(0.00005*e^{\left[\frac{U+1.4}{1*0.025}\right]}\right) + \left(1*e^{\left[\frac{U+1.4}{1*0.025}\right]}\right)\right) = \left(\left((0.69144E - 13)\left\{e^{\left[\frac{U}{1*0.025}\right]} - 1\right\}\right) * \left(\sqrt{\frac{(1.00E+30)}{(1.00E+30)} + \left((0.69144E-13)\left\{e^{\left[\frac{U}{1*0.025}\right]} - 1\right\}\right)}\right) - \left(-1.00005*e^{\left[\frac{U+1.4}{1*0.025}\right]}\right)\right) - \left(-1.00005*e^{\left[\frac{U+1.4}{1*0.025}\right]}\right)\right)$$

По полученной формуле был построен график зависимости тока от напряжения отдельно от multisim:

Рисунок 5 – График зависимости тока от напряжения

3. С учетом внутреннего сопротивления R_i перестроим предыдущую схему

Рисунок 6 – Схема 2 воссозданная в Multisim

С помощью анализа dc sweep был построен график зависимости тока на диоде от напряжения источника

Рисунок 7 – График зависимости тока на диоде от напряжения источника

Зависимость напряжения на диоде от входного напряжения

Рисунок 8 – График зависимости напряжения на диоде от входного напряжения

Зависимость выходного напряжения от входного напряжения

Рисунок 9 — График зависимости выходного напряжения от входного напряжения

Для построения зависимости тока, напряжения на диоде и выходного напряжения от входного напряжения я воспользовался функцией ВАХ $I(U) = I_{fwd} - I_{rev}$ рассчитанной выше.

Затем необходимо было найти пересечение вах с линиями нагрузки, которые рассчитываются по формуле

$$\frac{E - U_g}{R_i + R_h} = I_g ,$$

где E необходимо изменять от 0 до $10~\mathrm{B},$ а U_g - неизвестная.

Рисунок 10 – Место пересечения графиков ВАХ и линий нагрузки

Находим точки пересечения

E	(x,y)	$U_{\mathrm{A}} = y * R_{\mathrm{H}}$
0	0, 0	0
1	0.3536397, 0.0000096	0.6144
2	0.3766618, 0.0000242	1.5488
3	0.3885473, 0.0000389	2.4896
4	0.3965966, 0.0000536	3.4304
5	0.4026865, 0.0000684	4.3776
6	0.4075849, 0.0000832	5.3248
7	0.4116821, 0.0000980	6.272
8	0.4152033, 0.0001129	7.2256
9	0.4182905, 0.0001277	8.1728
10	0.4210389, 0.0001425	9.12

Таблица 3 — Точки пересечения ВАХ и линий нагрузки и напряжение на диоде

Затем также нужно соединить координаты точек при этом за координату X надо брать E, которое мы изменяем от 0 до 10, а за координату У берём координаты (X, Y) точек пересечения, и отдельно координату У точки пересечения умноженной на сопротивление нагрузки. Эти линии и есть зависимости тока, напряжения на диоде и выходного напряжения от входного напряжения в диапазоне от 0 до 10 В.

График зависимости напряжения на выходе и на входе, график зависимости тока на диоде и напряжения на входе соответственно:

Рисунок 11 — График зависимости напряжения на выходе и на входе, график зависимости тока на диоде и напряжения на входе на миллиметровой бумаге

График зависимости напряжения на диоде и напряжения на входе:

Рисунок 12 — График зависимости напряжения на диоде и напряжения на входе на миллиметровой бумаге

4. Для построения графика выходного напряжения по времени при источнике напряжения в виде знакопеременного меандра я использовал классический метод.

По частоте находим период:
$$T = \frac{1}{v} = \frac{1}{1000} = 0.001$$
,

Полупериод найдем по следующей формуле

$$T_{\text{пол}} = \frac{T*2}{4} = 0.0005,$$

Рисунок 13 – График выходного напряжения по времени

Рисунок 14 — График выходного напряжения по времени, приближение в несколько периодов

Найдем среднее значение и дельту минимума и максимума для второго полупериода:

$$U_{ ext{cp2}} = rac{6.6795 + 3.4296}{2} = 5.05455 B$$
 $U_{ ext{дельта2}} = 6.6795 - 3.4296 = 3.2499 B$

Так как напряжение открытия диода считается равным 0.7B, мы будем рассматривать что напряжение на входе равно 10B-0.7B=9.3B.

Для классического метода:

1)
$$0 < t < t_1$$
, $t_0 = 0$
Thosomory nonsupressur: $V_c(0-) = V_c(0+) = 0B$
 $V_{cnp} = \frac{U_{en}}{R_0 + R_H} \cdot R_H = \frac{9.3}{67.2 \cdot 10^3} \cdot 64 \cdot 10^3 = 8.857B$
 $A = -V_{enp} \Rightarrow V_c(t_1) = 8.857 - 8.857 \cdot e^{-512.7 \cdot 0.0005} = 2.002B$

2)
$$t_1 \leq t \leq t_2$$

III. K. Mu omp. Meanagre mon repez 2-ti novemyp ne nomeriem:

$$C \cdot R_{H} = \frac{dV_{c}}{dt_{p}} + V_{c} = 0 \Rightarrow P = -\frac{1}{C \cdot R_{h}} = -\frac{10^{9} \cdot 10^{-3}}{640 \cdot 64} = -24414$$

$$U_{\text{cyp.}=0}$$

 $2,002 = 0 + A = > A = 2,002B$
 $U_{\text{c}}(t_2) = 0 + 2,002 \cdot e^{-24,414 \cdot 0,001} = 1,9537B$

3)
$$t_2 \le t \le t_3$$

 $V_c(t_2+0) = V_c(t_2-0) = 1,95378$
 $V_{cnp.} = 8,857B$
 $1,9537 = 8,857+A = A = -6,9033$
 $V_c(t_3) = 8,857-6,9033 \cdot e^{-512,7 \cdot 0,0015} = 5,657658$

4)
$$t_3 \le t \le t_3$$

 $Vc(t_3+0) = Vc(t_3-0) = 5,65765B, Vcmp. = 0B$
 $A = 5,65765$
 $Vc(t_4) = 5,65765 - 24,414 \cdot 0,002 = 5,388B$

- $y(x) = 8.857 8.857 e^{-512.7x}$ Показать таблицу точек
- $y(x)=2.002e^{-24.414(x-rac{1}{2000})}$ Показать таблицу точек
- $y(x) = 8.857 6.903 e^{-512.7(x-rac{1}{1000})}$ Показать таблицу точек
- $y(x) = 5.658e^{-24.414(x+rac{1}{50})}$ Показать таблицу точек

Рисунок 14 — График выходного напряжения по первым двум периодам, построенный в программе

Таким образом, можно заметить, что графики ведут себя одинаково, различие лишь в точках, которое возникает по причине того, что в MathCAD мы используем линейную модель, а в Multisim нелинейную.

Вывод:

В ходе решения домашнего задания был рассмотрен диод 2Д250А, исследованы переходные процессы в полупроводниковом диодном фильтре и поведение диода под воздействием меандра. Были проведены теоретический и практический расчеты.

Использованная литература:

Полупроводниковые приборы: Диоды, тиристоры, оптоэлектронные приборы. Справочник А.В. Баюков, А.Б. Гитцевич, А.А. Зайцев и др.