1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
136	2.80000000000001	2.8
133	-0.199999999999989	0.2
130	-3.19999999999999	3.2
133	-0.199999999999989	0.2
134	0.80000000000011	0.8
======	======	=======
$\sum x = 666$		$\sum x - \bar{x} = 7.2$
$\bar{x} = 133.2$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{7.2}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
54	-2.5	6.25
58	1.5	2.25
54	-2.5	6.25
60	3.5	12.25
=======	=======	=======
$\sum_{\bar{X}} x = 226$ $\bar{x} = 56.5$		$\sum (x - \bar{x})^2 = 27$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$