Das einphasige Ersatzschaltbild des Drehstromtransformators, Teil 2

R.G., 2020

1 Vereinfachung des Ersatzschaltbildes des Drehstromtransformators

Für den **belasteten** Transformator gilt folgende Überlegung: Die hochohmige Quergröße X_n' (M') führt gegenüber den Lastströmen einen vernachlässigbar geringen Strom. Daraus ergibt sich folgende Vereinfachung:

$$X_n \to \infty$$

Es ergibt sich nun die Reihenschaltung, welche als ${\it Z}_{\it T}$ definiert wird:

$$Z_T = R_1 + jX_1 + R2' + jX_2'$$

Nicht eingezeichnet ist der ideale Übertrager mit ü sowie \underline{I} und $\underline{U_2}$ am Ausgang.

Auf dem Typenschild des Transformators steht die relative, d.h. auf die Nennspannung bezogene, Kurzschlussspannung u_k . Wie man daraus die Transformatorimpedanz berechnet ist unten gezeigt.

2 Typenschild eines Dreiphasentransformators

2.1 Leiter-Leiter-Spannung U_n

Die Nennspannung wird angegeben für Ober- und Unterspannungsseite als Leiter-Leiter-Spannung. Wir bezeichnen sie als U_n .

2.2 Nennleistung S_n

Die Nennleistung S_n definiert u.a. den Nennbetrieb des Transformators.

2.3 Schaltgruppe

Die Schaltgruppe gibt an, wie jeweils Ober- und Unterspannungsseite des Transformators mit dem Dreiphasennetz verschaltet werden.

2.3.1 Kennzeichnung

Die Kennzeichnung setzt sich wie folgt zusammen:

- 1. Schaltungsweise der Oberspannungsseite (Großbuchstabe)
- 2. Schaltungsweise der Unterspannungsseite (Kleinbuchstabe)
- 3. Stundenzahl (Uhr) als Angabe der Phasenverschiebung zwischen den Leiter-Leiter-Spannungen, Phase 1 steht auf 12 Uhr

2.3.2 Mögliche Schaltungsarten

Schaltgruppe	Zeigerbild	Schaltungsbild
Dd0	1U 1W 2u 2w	1U 1V 1W 2U 2V 2W
YyO	1U 2v 2w	1U 1V 1W 2U 2V 2w
Dz0	1U 2v 2v 2w	
Dy5	1U 1W 2w - 2u	10 1V 1W 2u 2v 2w
Yd5	1U 1W 2w 2v	1U 1V 1W 1 2v 2w
Yz5	1U 1W 2w 2v	
Dd6	1V 2w 2u 2u	
Yy6	1V 2w 2u 2u 2v	1U 1V 1W 1U 2U 2V 2W
Dz6	1V 2w 2u 2v	W M
Dy11	1U 2v 2w	لَلْنُ لُلْنًا
Yd11	1V 2v 2w	10 1V 1W 2u 2v 2w
Yz11	1V 2V 2w 2w	10 10 10 20 20 20
Ya0	1V 2v 1U 2w 1W	1U

2.4 Leerlaufverluste P_0

 P_0 sind die Verluste bei Leerlauf des Transformators, d.h. wenn er auf der Sekundärseite nicht belastet wird (offen).

2.5 Kurzschlussverluste P_k

 P_k sind die Verluste bei Kurzschluss des Transformators, d.h. wenn er maximal belastet wird.

2.6 Kurzschlussspannung(sfaktor) u_k

Auf dem Typenschild wird u_k angegeben als Bruchteil der Nennspannung U_n im Kurzschlussfall (z.B. 6%).

2.7 Wirkungsgrad η

 η ist der Wirkungsgrad des Transformators, also das Verhältnis von abgegebener zu aufgenommener Wirkleistung.

2.8 Geräuschpegel

Der Geräuschpegel wird in dB SPL angegeben. Er entsteht z.B. durch *Magnetostriktion*.

3 Kenngrößen des vereinfachten Ersatzschaltbildes

 U_K ...Kurzschlussspannung

1. Einfacher Strom-Spannungs-Zusammenhang:

$$Z_T = \frac{U_K}{I_n}$$

2. Zusammenhang des Kurzschlussfaktors u_k (U_K - Strangspannung!):

$$u_k = \frac{U_K}{U_n/\sqrt{3}}$$

z.B~6%

3. Zusammenhang der Nennscheinleistung:

$$S_n = \underbrace{\sqrt{3}}_{\text{in allen 3 Phasen}} \cdot \underbrace{U_n}_{\text{Leiter-Leiter-Spannung}} \cdot \underbrace{I_n}_{\text{Strangstrom}}$$

4. Einsetzen in Gleichung der Transformatorimpedanz (Betrag):

$$Z_T = \frac{u_k \cdot U_n^2}{S_n}$$

5. Wicklungsverluste:

$$P_{Kn} = 3 \cdot I_n^2 \cdot R_T$$

$$\frac{P_K}{P_{Kn}} = \frac{3 \cdot I^2 \cdot R_T}{3 \cdot I_n^2 \cdot R_T} = (\frac{I}{I_n})^2$$

4 Übung: Belasteter Drehstromtransformator

Nennspannung: 10 kV OS / 0,4 kV US		
$S_n = 630 \text{ kVA}$	Dy(n) 5	
Anzapfungen:	± 2 x 2,5 %	
$P_0 = 800 \text{ W}$	$P_{K} = 6,75 \text{ kW}$	
u _K = 6 %	η = 0,98	
60 dB	1930 kg / 280 kg	

- 1. Ermitteln Sie folgende Größen des Transformators: Nennstrom, Impedanz (R und X) jeweils für die Ober- und Unterspannungsseite.
- 2. Der Transformator wird unterspannungsseitig
 - a) mit I_n und $\cos \phi = 0.7$ ind. belastet
 - b) mit $0.5I_n$ und $\cos \phi = 1$ belastet
- c) mit $0.8I_n$ reinen Wirkstrom eingespeist (PV) Geben Sie für die 3 Fälle die Spannung \underline{U}_1 nach Betrag

und Winkel (mit Zeigerbild) an unter der Annahme, dass am sekundären Anschlusspunkt des Trafos die Nennspannung anliegt.

3. Ermitteln Sie den Laststrom (I und $\cos \phi$), bei dem Ein- und Ausgangsspannung (\underline{U}_1 , \underline{U}_2 ') <u>betragsmäßig</u> gleich groß werden (\underline{U}_n).

4.1

4.1.1 Oberspannungsseite

1. Nennstrom:

$$S_n = \sqrt{3} \cdot U_{nOS} \cdot I_n$$

$$I_n = \frac{S_n}{\sqrt{3}U_{nOS}} = 36.37 \, \mathrm{A}$$

2. Impedanz (idealer Übertrager auf Sekundärseite)

$$Z_{T_{OS}} = \frac{U_{nOS}^2 \cdot u_k}{S_n} = 9.52\,\Omega$$

3. Resistanz aus den Wirkleistungsverlusten bei KURZSCHLUSS

$$R_{T_{OS}} = \frac{1}{3} \cdot \frac{P_K}{I_{nOS}^2} = 1.7 \,\Omega$$

4. Reaktanz aus dem Betrag der Impedanz

$$X_{T_{OS}} = \sqrt{Z_T^2 - R_T^2} = 9.37 \,\Omega$$

4.1.2 Unterspannungsseite

1. Nennstrom:

$$S_n = \sqrt{3} \cdot U_{nUS} \cdot I_n$$

$$I_n = \frac{S_n}{\sqrt{3}U_{nUS}} = 909.33 \, \mathrm{A}$$

2. Impedanz (idealer Übertrager auf Primärseite)

$$Z_T = \frac{U_{nUS}^2 \cdot u_k}{S_n} = 0.015 \,\Omega$$

3. Resistanz

$$R_{T_{US}} = \frac{1}{3} \cdot \frac{P_K}{I_{nUS}^2} = 0.02 \,\Omega$$

4. Reaktanz

$$X_{T_{OS}} = \sqrt{Z_T^2 - R_T^2} = 0.015 \,\Omega$$

4.2

Es liegt die Nennspannung am sekundären Anschlusspunkt des Trafos an. Es soll nun die Eingangsspannung U_1 berechnet werden

4.2.1 a) Unterspannungsseitige Belastung mit I_n , $\cos \phi = 0.7$

Leistung ist gleich auf beiden Seiten $\to \cos \phi$ ist gleich auf beiden Seiten (reelles ü)! Dadurch ist der Winkel $(\arccos\cos\phi)$ des oberspannungsseitigen Stromes bekannt. Dessen Betrag wurde bereits in der vorherigen Aufgabe berechnet.

$$\underline{I_{T_{OS}}} = 36.37\,\mathrm{A}\cdot e^{45.6^\circ}$$

Die Eingangsspannung ergibt sich einfach aus der Summe der über die Transformatorimpedanz abfallenden Spannung und der primärseitigen Spannung über dem idealen Übertrager. Die primärseitige Transformatorimpedanz ist bekannt.

$$\underline{U_1} = U_{\ddot{u}} + I_{T_{OS}} \cdot (R_{T_{OS}} + jX_{T_{OS}})$$

- **4.2.2** b) Unterspannungsseitige Belastung mit $0.5I_n$, $\cos \phi = 1$
- 4.2.3 c) Unterspannungsseitige Einspeisung von $0.8I_n$, $\cos\phi=0.7$