CSE475: Al-Driven Robotics University of Tech Dynamics

Course Duration: Fall 2022 - Winter 2023 (Full Year)

Course Description:

This course involves designing and programming a robotic system that utilizes artificial intelligence to perform complex tasks. Students will focus on machine learning, computer vision, and sensor integration, culminating in a final project demonstration.

Learning Outcomes:

- 1. **Robotic System Design:** Develop a robotic system with integrated AI capabilities for performing specific tasks.
- 2. **Machine Learning Implementation:** Apply machine learning algorithms to enable the robot to learn and adapt to its environment.
- 3. **Computer Vision:** Implement computer vision techniques for object detection, recognition, and navigation.
- 4. **System Integration:** Integrate various sensors and components to create a functional robotic system.
- 5. **Presentation Skills:** Effectively present the design, implementation, and outcomes of the robotic system.

Course Structure & Timeline:

Week Topic		Deliverable	Due Date	Weight
1-2	Introduction & Team Formation	Team Formation Report	September 15, 2022	5%
3-5	Al Basics & Machine Learning	Literature Review & Research Proposal	October 15, 2022	10%
6-8	Computer Vision Fundamentals	Al & Computer Vision Design Proposal	November 15, 2022	15%
9-12	Mid-Term Progress & Feedback	Mid-Term Presentation	December 15, 2022	15%
13-16	Robotic System Design & Development	Initial System Design Report	January 31, 2023	10%
17-20	Sensor Integration & Testing	Sensor Integration Report	February 28, 2023	10%
21-24	Final System Testing & Optimization	Final Testing Report	March 31, 2023	15%
25-27	, Final Presentation & Project Submission	Final Presentation & Final Report	April 15, 2023	20%

Grading Breakdown:

• Team Formation Report: 5%

• Literature Review & Research Proposal: 10%

• AI & Computer Vision Design Proposal: 15%

• Mid-Term Presentation: 15%

Initial System Design Report: 10%
 Sensor Integration Report: 10%

Final Testing Report: 15%Final Presentation: 10%

• Final Report: 10%

Total: 100%

Detailed Deliverables:

1. Team Formation Report (5%)

- Description: Document outlining team members, roles, and initial project ideas.
- o **Due Date:** September 15, 2022

2. Literature Review & Research Proposal (10%)

- Description: Summarize relevant research on AI and robotics, propose a plan for the design and implementation of the robotic system.
- o **Due Date:** October 15, 2022

3. Al & Computer Vision Design Proposal (15%)

- Description: Detailed proposal for the design and implementation of AI and computer vision components in the robotic system.
- o **Due Date:** November 15, 2022

4. Mid-Term Presentation (15%)

- Description: Presentation showcasing preliminary designs, progress, and challenges.
- o **Due Date:** December 15, 2022

5. Initial System Design Report (10%)

- Description: Report detailing the initial robotic system design, including components and algorithms.
- Due Date: January 31, 2023

6. Sensor Integration Report (10%)

- Description: Report on the integration of sensors with the robotic system, including testing and calibration.
- o **Due Date:** February 28, 2023

7. Final Testing Report (15%)

- Description: Comprehensive report on final system testing, performance, and optimization.
- Due Date: March 31, 2023

8. Final Presentation (10%)

- Description: Presentation of the complete robotic system, including design, implementation, and results.
- Due Date: April 15, 2023

9. Final Report (10%)

- Description: Detailed final report covering all aspects of the project, from design to implementation and testing.
- o **Due Date:** April 15, 2023

This syllabus outlines the course structure for CSE475, emphasizing practical application and integration of AI and robotics technologies through a comprehensive project.