Thermodynamique 1S – TD1

1 Rappels

1.1 Fonction à une variable

Soit f une fonction d'une variable : $f: x \mapsto y = f(x)$. Sa dérivée f' est définie par :

$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x} \colon x \mapsto \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}.$$

1.2 Fonction à plusieurs variables

Soit f une fonction de deux variables : $f:(x,y)\mapsto z=f(x,y)$.

• sa dérivée partielle par rapport à x (y étant constant) :

$$\left(\frac{\partial f}{\partial x}\right)_{y}:\,\left(x,y\right)\mapsto\lim_{\epsilon\to0}\frac{f\left(x+\epsilon,y\right)-f\left(x,y\right)}{\epsilon},$$

• sa dérivée partielle par rapport à y (x étant constant):

$$\left(\frac{\partial f}{\partial y}\right)_{x}: (x,y) \mapsto \lim_{\epsilon \to 0} \frac{f(x,y+\epsilon) - f(x,y)}{\epsilon}.$$

1.3 Différentielle d'une fonction

La différentielle d'une fonction f de deux variables (x, y) s'écrit :

$$\mathrm{d}f(x,y) = \left(\frac{\partial f}{\partial x}\right)_y \mathrm{d}x + \left(\frac{\partial f}{\partial y}\right)_x \mathrm{d}y.$$

1.4 Différentielle totale

La différentielle ω : $(x,y) \mapsto P(x,y) dx + Q(x,y) dy$ est totale si et seulement si :

$$\left(\frac{\partial P}{\partial y}\right)_x = \left(\frac{\partial Q}{\partial x}\right)_y.$$

1.5 Fonction d'état

Souvent, on peut réaliser des transformations entre l'état 1 et l'état 2 de plusieurs façons différentes, c.à.d. en empruntant des chemins différents. En général, la variation d'une grandeur X dépend du chemin suivi pour aller de l'état 1 à l'état 2.

Mais, il existe en thermodynamique des fonctions F liées aux variables d'état dont les variations au cours d'une transformation sont indépendantes du chemin suivi. Ces grandeurs ou fonctions sont dites fonctions d'état. Elles sont caratérisées par :

- leur indépendance en fonction du chemin suivi par la transformation,
- le fait que la différentielle $\mathrm{d}F$ est une différentielle totale, ce qui implique :

$$\Delta_{1\mapsto 2}F = F_2 - F_1,$$

ceci quelque soit le chemin suivi.

1.6 Coefficients thermoélastiques

On désigne le coefficient de dilatation thermique isobare, le coefficient d'augmentation de pression isochore et le coefficient de compressibilité isotherme par :

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P, \qquad \qquad \beta = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_V, \qquad \qquad \chi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T.$$

2 Exercices

2.1 Différentielle d'une fonction

Calculer la différentielle de la fonction :

$$f \colon (x,y) \mapsto \frac{\ln x}{1+y^2}.$$

2.2 Différentielle totale

On considère la forme différentielle suivante : ω : $(x,y) \mapsto (8xy+2) dx + (4x^2+3) dy$.

- 1. ω est-elle une différentielle exacte ?
- 2. Calculer z(x,y) en intégrant par rapport à x.
- 3. Calculer z(x,y) en intégrant par rapport à y.

2.3 Fonctions implicites

Si x, y et z sont trois variables qui vérifient f(x, y, z) = 0 où f est une fonction d'état, montrez les deux relations suivantes :

$$\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial x} \right)_z = 1, \qquad \qquad \left(\frac{\partial x}{\partial z} \right)_y \left(\frac{\partial y}{\partial x} \right)_z \left(\frac{\partial z}{\partial y} \right)_x = -1.$$

Indications : écrire les différentielles de x et de y, puis injecter la première relation dans la seconde et enfin identifier les différents termes.

2.4 Coefficients thermoélastiques

Montrez que pour un corps quelconque la validité de la relation :

$$\left(\frac{\partial \alpha}{\partial P}\right)_T = -\left(\frac{\partial \chi_T}{\partial T}\right)_P.$$

2.5 Coefficients thermoélastiques d'un gaz parfait

Calculez les coefficients thermoélastiques pour les fluides vérifiant la loi des gaz parfaits.

2.6 Coefficients thermoélastiques d'un gaz de Van der Walls

Calculez les coefficients thermoélastiques pour les fluides vérifiant la loi de Van der Waals :

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT.$$

Remarque: a et b sont deux constantes.

2.7 Compressibilité isotherme d'un liquide

Du benzène liquide subit une compression à température constante $\theta = 10^{\circ}$ C, sous la pression atmosphérique p_0 . Quelle pression p_1 faut-il exercer pour diminuer le volume du benzène de 2% de sa valeur initiale V_0 ?

Données : $p_0 = 1$ bar, $\chi_T = 9.3 \cdot 10^{-10} \text{ Pa}^{-1}$.

2.8 Différentielle totale et équation d'état

Suite à une série d'expérience, on conjecture la forme suivante :

$$\mathrm{d}P\left(V,T\right) = -\frac{RT}{V^2}\left(1+\frac{2a}{V}\right)\mathrm{d}V + \frac{R}{V}\left(1+\frac{a}{V}\right)\mathrm{d}T.$$

Que fait-il vérifier pour que cette relation soit valide ? La différentielle de la pression est-elle totale ? Si oui, quelle est l'équation d'état ?

2.9 Coefficients thermoélastiques et équation d'état

L'étude expérimentale d'un gaz réel a permis de déterminer les coefficients thermoélastiques :

$$\alpha = \frac{3aT^3}{V} \text{ et } \chi_T = \frac{b}{V}.$$

Établir l'équation d'état du gaz.