Marbl

June 23, 2023

1 Governing equations

We introduce the flow variables $\rho = \rho(\mathbf{x}, t)$, $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$, $e = e(\mathbf{x}, t)$, and $p = p(\mathbf{x}, t)$. The governing equations that dictate their evolution are

$$\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = -\rho \nabla \cdot \mathbf{u},\tag{1}$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p, \tag{2}$$

$$\rho \left(\frac{\partial e}{\partial t} + \mathbf{u} \cdot \nabla e \right) = -p \nabla \cdot \mathbf{u}. \tag{3}$$

2 Finite element expansion

We introduce the coefficients $R_i = R_i(t)$, $\mathbf{U}_i = \mathbf{U}_i(t)$, $E_i = E_i(t)$, $P_i = P_i(t)$, as well as the basis functions $\phi_i = \phi_i(\mathbf{x}, t)$, and $w_i = w_i(\mathbf{x}, t)$. We note that \mathbf{U}_i is a vector whose components are $U_{i,\alpha} = U_{i,\alpha}(t)$ for $\alpha = x, y, z$. These coefficients are used in the following expansions

$$\rho = \sum_{j}^{N_{\rho}} R_{j} \phi_{j},\tag{4}$$

$$\mathbf{u} = \sum_{j}^{N_u} \mathbf{U}_j w_j,\tag{5}$$

$$e = \sum_{j}^{N_e} E_j \phi_j, \tag{6}$$

$$p = \sum_{j}^{N_p} P_j \phi_j. \tag{7}$$

The basis functions are defined so that they satisfy

$$\frac{\partial \phi_j}{\partial t} + \mathbf{u} \cdot \nabla \phi_j = 0, \tag{8}$$

$$\frac{\partial w_j}{\partial t} + \mathbf{u} \cdot \nabla w_j = 0. \tag{9}$$

3 Semi-discrete momentum conservation

We begin by showing that

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = \sum_{j}^{N_{u}} \left(\frac{d\mathbf{U}_{j}}{dt} w_{j} + \mathbf{U}_{j} \frac{\partial w_{j}}{\partial t} \right) + \mathbf{u} \cdot \left(\sum_{j}^{N_{u}} \mathbf{U}_{j} \nabla w_{j} \right)$$

$$= \sum_{j}^{N_{u}} \left[\frac{d\mathbf{U}_{j}}{dt} w_{j} + \mathbf{U}_{j} \left(\frac{\partial w_{j}}{\partial t} + \mathbf{u} \cdot \nabla w_{j} \right) \right]$$

$$= \sum_{j}^{N_{u}} \frac{d\mathbf{U}_{j}}{dt} w_{j}.$$
(10)

Define the domain of the problem under consideration as $\Omega = \Omega(t)$. The finite element formulation of the momentum equation is thus

$$\int_{\Omega} \rho \sum_{j}^{N_u} \frac{d\mathbf{U}_j}{dt} w_j w_i dV = \int_{\Omega} \sum_{j}^{N_p} P_j \phi_j \nabla w_i dV \qquad \text{for } i = 1, ..., N_u.$$
(11)

The above is re-written as

$$\sum_{j}^{N_u} \frac{d\mathbf{U}_j}{dt} m_{ij} = \sum_{j}^{N_p} P_j \mathbf{d}_{ji} \qquad \text{for } i = 1, ..., N_u.$$

$$(12)$$

where the mass bilinear form m_{ij} is given by

$$m_{ij} = \int_{\Omega} \rho w_i w_j \, dV, \tag{13}$$

and the derivative bilinear form \mathbf{d}_{ij} by

$$\mathbf{d}_{ij} = \int_{\Omega} \phi_i \nabla w_j \, dV. \tag{14}$$

Note that \mathbf{d}_{ij} is a vector whose components are $d_{ij,\alpha}$, for $\alpha = x, y, z$, where α determines which component of the ∇ operator is being used. Equation (12) can thus be expanded as

$$\sum_{j}^{N_{u}} \frac{dU_{j,x}}{dt} m_{ij} = \sum_{i}^{N_{p}} P_{j} d_{ji,x} \quad \text{for } i = 1, ..., N_{u},$$

$$\sum_{j}^{N_{u}} \frac{dU_{j,y}}{dt} m_{ij} = \sum_{i}^{N_{p}} P_{j} d_{ji,y} \quad \text{for } i = 1, ..., N_{u},$$

$$\sum_{j}^{N_{u}} \frac{dU_{j,z}}{dt} m_{ij} = \sum_{i}^{N_{p}} P_{j} d_{ji,z} \quad \text{for } i = 1, ..., N_{u}.$$
(15)

We'll now write the above in matrix notation. Introduce the vector $\mathbf{U}_x = \mathbf{U}_x(t)$ whose components are $U_{i,x}$ for $i = 1, ..., N_v$. The analogous holds for \mathbf{U}_y and \mathbf{U}_z . Similarly, we introduce the matrix

 $\mathbf{D}_x = \mathbf{D}_x(t)$ whose components are $d_{ij,x}$. The analogous holds for D_y and D_z . Finally, the matrix $\mathbf{M} = \mathbf{M}(t)$ is that with components m_{ij} and the vector $\mathbf{P} = \mathbf{P}(t)$ is that with components P_j . Equation (15) can now be written as

$$M \frac{d\mathbf{U}_x}{dt} = \mathbf{D}_x^T \mathbf{P},$$

$$M \frac{d\mathbf{U}_y}{dt} = \mathbf{D}_y^T \mathbf{P},$$

$$M \frac{d\mathbf{U}_z}{dt} = \mathbf{D}_z^T \mathbf{P}.$$
(16)