Data Collection

The data has two columns of Ham and Spam messages. There are total 5572 rows. https://www.kaggle.com/astandrik/simple-spam-filter-using-naive-bayes/data

		text			
	class	count	unique	top	freq
	ham	4825	4516	Sorry, I'll call later	30
	spam	747	653	Please call our customer service representativ	4

From the above information it can be determined that about only 15.48% of messages are classified as spam. There are some also some duplicate messages since the number of unique value is lower than the count value.

Data Preparation

In cleaning process punctuation and stop words are removed by the help of CountVectorizer. The CountVectorizer provides a simple way to both tokenize a collection of text documents and build a vocabulary of known words, but also to encode new documents using that vocabulary. An encoded vector is returned with a length of the entire vocabulary and an integer count for the number of times each word appeared in the document.

Exploratory Data Analysis

According to the pie chart there is 86.6% of ham messages and 13.4% of spam messages.

Histogram for the text length of spam and ham messages.

Evaluation

Following confusion matrix is been plotted after the results.

