X(4230)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

OMITTED FROM SUMMARY TABLE

Enhancement reported by ABLIKIM 15C in $e^+e^- \rightarrow \omega \chi_{c0}$ at $\sqrt{s}=4.23$ –4.26 GeV at 9σ significance. Lineshape found to be inconsistent with origination from X(4260). NEEDS CONFIRMATION.

X(4230) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
4230±8±6	180	¹ ABLIKIM	15 C	BES3	$e^+e^- ightarrow \ \omega \chi_{c0}$

 $^{^1}$ From a 3-parameter fit of measured cross sections from $\sqrt{s}=4.21$ –4.42 GeV to a phase-space modified Breit-Wigner function, using the decays $\chi_{c0}\to\pi^+\pi^-$, $\chi_{c0}\to K^+K^-$, and $\omega\to\pi^+\pi^-\pi^0$.

X(4230) WIDTH

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
38±12±2	180	¹ ABLIKIM	15 C	BES3	$e^+e^- \rightarrow \omega \chi_{c0}$

¹ From a 3-parameter fit of measured cross sections from $\sqrt{s}=4.21$ –4.42 GeV to a phase-space modified Breit-Wigner function, using the decays $\chi_{c0}\to\pi^+\pi^-$, $\chi_{c0}\to K^+K^-$, and $\omega\to\pi^+\pi^-\pi^0$.

X(4230) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	e^+e^-	
Γ_2	$\omega \chi_{c0}$	seen

$X(4230) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$$\Gamma(\omega\chi_{c0})$$
 × $\Gamma(e^+e^-)/\Gamma_{total}$ $\Gamma_2\Gamma_1/\Gamma$
 $VALUE$ (eV) $EVTS$ $DOCUMENT ID$ $TECN$ $COMMENT$
2.7±0.5±0.4 180

X(4230) BRANCHING RATIOS

$\Gamma(\omega\chi_{c0})/\Gamma_{ ext{total}}$						₂ /Γ
<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
seen	180	$^{ m 1}$ ABLIKIM	15 C	BES3	$e^+e^- ightarrow \ \omega \chi_{c0}$	

Created: 5/30/2017 17:22

 $^{^1}$ From a 3-parameter fit of measured cross sections from $\sqrt{s}=4.21$ –4.42 GeV to a phase-space modified Breit-Wigner function, using the decays $\chi_{c0}\to \pi^+\pi^-$, $\chi_{c0}\to K^+K^-$, and $\omega\to \pi^+\pi^-\pi^0$.

 1 From a 3-parameter fit of measured cross sections from $\sqrt{s}=4.21$ –4.42 GeV to a phase-space modified Breit-Wigner function, using the decays $\chi_{c0}\to \pi^+\pi^-$, $\chi_{c0}\to K^+K^-$, and $\omega\to \pi^+\pi^-\pi^0$.

X(4230) REFERENCES

ABLIKIM 15C F

15C PRL 114 092003

M. Ablikim et al.

(BES III Collab.)

Created: 5/30/2017 17:22