Kamanner Howett Score: 19/20, well done! Midterm #2 chapper 4 1) A 5x16 kg rocket is accelerating straight up. The Thrusters produce an upwards force of 1.25 × 10 N, and air resistance is 4.5x106 N downwards, a) olvaw a FBD inquoling weight of the rocket, the Mrust, and air resistance, b) what is the rockets acceleration? F=M·a -> F=a F=1.25×107 N a = 1.25×107 - (4.5×106 + 4.9×106) W= (6×106) .9.8 = 4900000 W=4.9×106N FAR= 4.5 × 10 N a = 6.2 m/s2 a) A foorbau player with mass 70 kg pushes on a player with mass 90 kg a) According to Newtons 3rd law, if the first player exerts a force of 700N on the second player, what is the force the second planer exerts on the first planer? a) - 700 N & Chia at 16 3) A rocket sted is decelerated at a rate of 200 m/s2, and it has a mass of 2000 kg. There is a constant air resistance force of 1000 N. What additional force is required to give RARRARA. the rocket the deceleration Fr= 399000 N ceron as an resistance F= M. a F, + F2 = M.a 1000N+ Fa = 2000. 200 Fa = 400 000 - 1000 Fa = 399000 N

10000	INCINO	line me han.	tension v	a burning building
	C.C.V.			0.075
b) write	down an e	expussion for	Fretz	
C) WITH	aswn an e	xoussion for	FALLIA	
ol) assu	ming Fret = c	, carevau n	e knsion	in the two rope
T1 150				
100	T ₂	COS(10	$ \cdot = \frac{1}{\sqrt{2}}$	SIN(10) = T2
		10 12 Y	= Cos(10').T2	$SIN(109) = \frac{T_2 y}{T_2}$ $T_{2y} = SIN(10^{\circ}) \cdot T_2$
	1000			
W=76×9.8	- 744 g	1261		= T, sin(75')+Tz +81n(10').
0 - 70 - 7.7	COSCAL-A	$Sin(0) = \frac{0}{N}$ $Sin(75^{\circ}) = \frac{T_1 t_2}{T_1}$ $T_{1/2} = T_1 \cdot 8in(75^{\circ})$	Tour	
T \150	(05/75') = Tx	5W(B)= W	1, 81M(75	(°) + Tz Sin(10°) - 744.8 =
75.	T = 500 501	J T 8000-	Tzcosce	(sin(75"))+T, sin(10")-
- T, X	1,x = 1, cos(75)	1 y= 1, 000(753)	cos(75	.)
) Fretx = -	-T, · COS(75") + T.	· cos(10°) =0	T3.675+	28in(10°) = 744.8
/		-		075+8in(10·))=744.8
T2 . COS (10	·) = T, cos(75.)	-	2 . 3. 8486 =	744.8
7 (5			d) T2 =	93.5N
T2 COS(10°)	=T			
		- NO A -10	256 KI 1650, 16	Les Lighter Sil
	05(10°) = T	10 m 20 m 2017	03 2 2 2 2	Lange in seed
05 (78)	then Langhill	the east	Lindoor to constitution
) T, = 73	6 3		WAY A LITTLE OF	de control benefit
	0. 0 N			
	coy, Tyle			7 - 10 - 4
	MAY THE ME	97		A 20 1 2 1 2
		-9		
				80. 35. ⁴ 56. 3
-				L. Graphs

3) suppose the skier reaches a top speed of 40 mg, It his area 18 0.75m², density of air 13 1.225kg/m², and c=0.75, What is the magnitude of the drag force in Newtons? Fo= = CPAV& $F_D = \frac{1}{2}(0.75)(1.825 \frac{kg}{m^3})(0.75 m^2)(40 \frac{m}{5})^2 + kg m/5^2 = N$ Fp= 551.25 N 4) A mass of 2300 kg is place on tup of a 10m long Wooden beam w/radius 4cm. If the length of the beam dechases by 3mm, what is me young's modules of the wood? Stress = Yx Strain or A = y (Ax) F=2300.9.8=22540 N A= T1 2 = T1(0.04)2 = 0.0016 TT m2 Ax = 0.003 m 1 = 10 m y = FL = 22540(10) AAX = 0.00167.0.003 y=14947301738.7 N/m2

1)	a pitting of the contract of
/	and the ball votake a street a ball at 144 km/hr
	VALUE OF THE COMPANY
	as he throws it in radians per second?
	The state of the s
	$W = \sqrt{100000000000000000000000000000000000$
	0.5m
	The second secon
4)	Policy of the second se
2)	of 0,9 km radius on a righway w/a 120 km/hr
	of 0,9 km radius on a weaking an inter 120 km/his
	Speed limit?
	120 km/1hr \ (1000 m)
	MAS 8M(0) - MV2
	$mg \frac{sm(0)}{cos(0)} = \frac{mv^2}{v}$ $v = \frac{120 \text{ km}}{\text{hr}} \frac{1\text{hr}}{3600s} \left(\frac{1000 \text{ m}}{11000}\right)$
	V= 35 33 m/s
-	$tan(\theta) = \frac{v^2}{rq}$ $tan(\theta) = \frac{v^2}{rq}$ $V = 0.9 \text{ km} = 900 \text{ m}$
	$tan(0) = \frac{v}{ra}$ $v = 0.9 \text{km} = 900 \text{m}$
	(ag 27)2 W2/27
	$\theta = \tan^{-1}\left(\frac{\sqrt{2}}{rq}\right)$ $\theta = \tan^{-1}\left(\frac{(33.33)^2 m^2/s^2}{9.8 m/s^2 \cdot 900 m}\right)$
	0=tan-1 (0.125976)
	0 = 7.18
	0 - 11.10
1	
)	
-	
2	
•	

3) a) which path may be taken at a higher speed, it both Paths correspond to the same force of friction and cent force? b) Suppose parm I has a radius of comann of 400m and pam 2 has a radius of comatre of 800m. M=1 if Ff = Fc what are the tangental velocities of each a) part 2 can be taken at a vace car? higher speed b) the tangential velocity of part 2 will be more that of pan 1? (-1)"v" in centripetal force is the tangential velocity, so all you have to do is solve for v.