Projekt zaliczeniowy

Patryk Blacha, Karolina Nitsch

2025 - 01 - 29

Wstęp

Wyniki

Alpine01 2D

PRS:

GA:

• średnia: 0.004257

Alpine01 10D

PRS:

• średnia: 9.7843879

GA:

Alpine01 20D

PRS:

• średnia: 28.9029524

GA:

• średnia: 10.5712228

Alpine02 2D

PRS:

• średnia: -6.0698837

GA:

• średnia: -6.1217208

Alpine02 10D

PRS:

• średnia: -903.4830969

GA:

• średnia: -1158.8920016

Alpine02 20D

PRS:

• średnia: -3.514881e+04

GA:

• średnia: -1.25902e+05

Histogramy

Alpine01 2D, PRS

Alpine01 2D, GA

Znalenione minimum

Alpine01 10D, PRS

Alpine01 10D, GA

Alpine01 20D, PRS

Alpine01 20D, GA

Alpine02 2D, PRS

Alpine02 2D, GA

Alpine02 10D, PRS

Alpine02 10D, GA

Alpine02 20D, PRS

Alpine02 20D, GA

Wykresy pudełkowe

Funkcja Alpine01, 2D

Funkcja Alpine01, 10D

Funkcja Alpine01, 20D

Funkcja Alpine02, 2D

Funkcja Alpine02, 10D

Funkcja Alpine02, 20D

T testy

Dla hipotezy zerowej twierdzącej że średnie są sobie równe

Funkcja Alpine01, 2D

```
##
## Paired t-test
##
## data: alpine01prs2D and alpine01ga2D
## t = 6.8048, df = 49, p-value = 0.00000001331
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.04562829 0.08387201
## sample estimates:
## mean difference
## 0.06475015
```

Funkcja Alpine01, 10D

```
##
## Paired t-test
##
```

```
## data: alpine01prs10D and alpine01ga10D
## t = 22.47, df = 49, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 5.919608 7.082423
## sample estimates:
## mean difference
## 6.501016</pre>
```

Funkcja Alpine01, 20D

```
##
## Paired t-test
##
## data: alpine01prs20D and alpine01ga20D
## t = 33.604, df = 49, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 17.23546 19.42800
## sample estimates:
## mean difference
## 18.33173</pre>
```

Funkcja Alpine02, 2D

```
##
## Paired t-test
##
## data: alpine02prs2D and alpine02ga2D
## t = 6.4609, df = 49, p-value = 0.0000000454
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.03571393 0.06796025
## sample estimates:
## mean difference
## 0.05183709
```

Funkcja Alpine02, 10D

```
##
## Paired t-test
##
## data: alpine02prs10D and alpine02ga10D
## t = 1.6992, df = 49, p-value = 0.09563
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -46.65886 557.47667
## sample estimates:
## mean difference
## 255.4089
```

Funkcja Alpine02, 20D

```
##
## Paired t-test
##
## data: alpine02prs20D and alpine02ga20D
## t = 1.2644, df = 49, p-value = 0.2121
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -53483.91 234990.32
## sample estimates:
## mean difference
## 90753.21
```

Wniosek:

GA okazało się istotnie lepsze dla funkcji Alpine01 we wszystkich badanych wymiarach. Dla funkcji Alpine02 istotną różnicę odnotowaliśmy jedynie dla 2 wymiarów. Podsumowując na podstawie przeprowadzonych testów można stwierdzić że algorytm genetyczny(GA) w większośći przypadków osiąga lepsze wyniki niż metoda czysto losowa(PRS).