

CYRB_HUMAN

CYTOKINE RECEPTOR COMMON BETA CHAIN PRECURSOR (CDW131 ANTIGEN)

Begin - 1, End - 897

Seq: CYRB_HUMAN Length: 897 Fri Nov 17 13:50:29 2000 Check: 148

1 MVLAQGLLSM ALLALCWERS LAGAEETIPL QTLRCYNDYT SHITCRWADT
51 QDAQRQLVNVT LIRRVNEDLL EPVSCDLSDD MPWSACPHPR CVPRRCVIPC
101 QSFVVTDVDY FSFQPDPRPLG TRLTVTLTQH VQPPEPRDLQ ISTDQDHFLL
151 TWSVALGSPO SHWLSPGDLE FEVYKRLQD SWEDAAILLS NTSQATLGPE
201 HLMPSSTYVA RVRTRLAPGS RLSGRPSKWS PEVCWDSQPG DEAQPNLEC
251 FFDGAAVLSC SWEVRKEVAS SVSFGLFYKP SPDAGEEECS PVLREGLGSL
301 HTRHHCQIPV PDPATHGQYI VSVQPRRAEK HIKSSVNIQM APPSLNVTKD
351 GDSYSLRWET MKMRYEHIDH TFEIQYRKDT ATWKDSKTET LQNAHSMALP
401 ALEPSTRYWA RVRVRTSRTG YNGIWSEWSE ARSWDTESVL PMWVLALIVI
451 FLTIAVLLAL RFCGIYGYRL RRKWEEKIPN PSKSHLFQNG SAELWPPGSM
501 SAFTSGSPPH QGPWGSRFPE LEGVFPVFGF DSEVSPLTIE DPKHVCDPPS
551 GDPDTTPAASD LPTEQPPSPQ PGPPAASHTP EKQASSFDFN GPYLGPPHSR
601 SLPDILGQPE PPQEGGSQKS PPPGSLEYLC LPAGGQVQLV PLAQAMGPGQ
651 AVEVERRPSQ GAAGSPSLES GGGPAPPALG PRVGGQDQKD SPVAIPMSSG
701 DTEDPGVASG YVSSADLVFT PNNSGASSVSL VPSLGLPSDQ TPSLCPGLAS
751 GPPGAPGPVK SGFEGYVELP PIEGRSPRSP RNNNPVPPEAK SPVLPNGERP
801 ADVSPTSPQP EGLLVLQQVG DYCFLPGLGP GPLSLRSKPS SPGPGPEIKN
851 LDQAFQVKKP PGQAVPQVPV IQLFKALKQQ DYLSLPPWEV NKPGEVC

FIG 1

KKIT HUMAN:
STEM CELL GROWTH FACTOR RECEPTOR
(PROTO-ONCOGENE TYROSINE-PROTEIN KINASE KIT) (C-KIT) (CD117 ANTIGEN).
SEQUENCE 976 AA; 109864 MW;

MRGARGAWDF LCVLLLRLR QTGSSQPSVS PGEPPSPSIH PGKSDLLIVRV GDEIRLLCTD
PGFVKWTFEI LDETNEKQN EWITEKAET NTGKYTCTNK HGLNSIYVF VRDPAKLFLV
DRSLYGKEDN DTLVRCPPLTD PEVTNYSLKG CQGKPPLPKDL RFIPDPKAGI MIKSVKRAYH
RLCLHCSVDO EGKSVLSEKF ILKVRPAFKA VPVUVSKAS YLIREGEETF VTCТИKVSS
SVYSTWKREN SQTKLQEKEYN SWHHGDFNYE RQATLTSSA RVNDSGVEMC YANNTFGSAN
VTTTLEVVDK GFNIFPMIN TTVFVNDGEN VDLIVEYEAF PKPEHQWQIY MNRTFTDKWE
DYPKSENESN IRYVSELHLT RLKGTEGGTY TELVNSDVN AAIAFNVYVN TKPEILTYDR
LVNGMLQCVA AGFPEPTIDW YFCPGTEQRC SASVLPVDVQ TLNSSGPFPF KLVVQSSIDS
SAFKHNGTVE CKAYNDVGKT SAYFNEAFKG NNKEQIHHPHT LFTPPLIGFV IVAGMMCIV
MILTYKYLOK PMYEVOWKVV EEINGNNVY IDPTQLPYDH KWEFPRNRLS FGKTLGAGAF
GKVVEATAYG LIKSDAAMTV AVKMLKPSAH LTEREALMSE LKVLSYLGNH MNIVNLGAC
TIGGPTLVIT EYCCYGDLLN FLRRKRDSFI CSKQEDHAEA ALYKNLHSK ESSCSSTDNE
YMDMKPGVSY VVPTKADKRR SVRIGSYIER DVTPAIMEDD ELADDLEDLL SFSYQVAKGM
AFLASKNCIH RDLAARNILL THGRITKICD EGLARDIKND SNYVVKGNA R LPVKWMAPES
IFNCVYTFFES DVWSYGIFLW ELFSIGSSPY PGMPVDSKFY KMIKEGFRML SPEHAPAEMY
DIMKTCWDAD PIKRPTFKQI VQLEKQISE STNHIYSNLA NCSPNQRQKPV VDHESVRINSV
GSTASSSSQPL LVHDDV

FIG 2

TPOR_HUMAN:
 (MYELOPROLIFERATIVE LEUKEMIA PROTEIN) (C-MPL).
 TPOR OR MPL.
 635 AA; 71244 MW

MPSWALFMVT SCLLIAPQNL AQVSSSQDVSL LASDSEPLKC FSRTFEDLTC FWDEEEAAPS
 GTYQLLYAYP REKPRACPLS SQSMMPHFGTR YVCQFPDQEE VRLFFPLHLW VKNVFLNQTR
 TQRVLFVDSV GLPAPPSTIK AMGGSQPGEL QISWEEPAPE ISDFILRYELR YGPRDPKNST
 GPTVIQLIAT ETCCPALQRP HSASALDQSP CAQOPTMPWQD GBKQTSPRE ASALTAEGGS
 CLISGLQPGN SYWLQLRSEP DGISLGGSWG SWSLPVTVDL PGDAVALGLQ CFTLDLKNTT
 COWQQQDHAS SQGFFYHSRA RCCPDRYPI WENCEEEEKT NPGLQTPQFS RCHFKSRNDS
 IIHILVEVTT APGTVHSYLG SPFWIHQAVR LPTPNLHWRE ISSGHLELW QHPSSWAAGE
 TCYQLRTYGE GHQDWKVLEP PLGARGTLE LRPRRSRYRLQ LRARLINGPTY QGPWSSWSDP
 TRVETATEA WISLVLTALHL VLGLSAVLGL LLLRWQFPAH YRRLRHAWP SLPDLHRLVG
 QYLRDTAALS PPKATVSDTC EEEVEPSLLEI LPKSSERTPL PLCSQQAQMD YRRLQPSCLG
 TMPLISVCPPM AESGSCCTTH IANHSYPLS YWQQP

FIG 3

TPOR_MOUSE:
 THROMBOPOIETIN RECEPTOR PRECURSOR (TPO-R)
 (MYELOPROLIFERATIVE LEUKEMIA PROTEIN) (C-MPL).
 TPOR OR MPL.
 625 AA; 69817 MW;

MPSWALEMVT SCILLALAPNQ AQVTSQDVFL LALGTEPLNC FSQTFEDLTC FWDEEEAAPS
 GTYQLLYAYR GEKPRACPLY SQSVPTFGTR YVCQFPAQDE VRLEFFPLHLW VKNVSLNQTL
 IQRVLFVDSV GLPAPPVRVK ARGGSQPGEL QIHWEAAPAE ISDFLRHELR YGPTDSSNAT
 APSVIQILST ETCCPTLWMP NPVPVLDQPP CVHPTASOPH GPAPFLTVKG GSCLVSGLQA
 SKSYWLQLRS QPDGVSLRGS WGPWISFPVTW DLPGDAVTIG LQCFTLDLKM VTCQWQQQDR
 TSSQGFERHS RTRCCPTDRD PTWEKCEEVE PRPGSQPALV SRCHFEKSRRND SVIHILVEVT
 TAQGAVHHSYL GSPFWIHQAV LLPTPSLHWR EVSSGRLELE WQHQSSWAAQ ETCYQLRTG
 EGREDWKVLE PSLGARGGTI ELRPRARYSL QLRARLNGPT YQGPWSAWSP PARVSTGSET
 AWITLVTLALL LVLSLSALLG LLLIKWQFPA HYRRLRHALW PSLPDLHRLV GOYLRDTAAL
 SPSKATVTDSC EEEVEPSLLE ILPKSSESTEP LPLCPSQPQM DYRGLQPCLR TMPLSVCPHM
 AETGSCCCTTH IANHSYLPPLS YWQQP

FIG 4

FIG 5A

73 -

Substitute Sheet

FIG 5B

73 -

43 -
32.5 -

17 -

IP: anti 14-3-3 ζ
 WB: 1C1 (anti β_c)

FIG 5C

73 -

55 -
45 -
32.5 -
26 -
17 -
4 -
2 -

GST-14-3-3-sepharose
 1C1 (anti β_c)

GST-sepharose
 1C1 (anti β_c)

FIG 6A**FIG 6B**

β_c peptides {	CLGPPHSRSLPDTLG	-	+	-	-	-	+	-
	CLGPPHSR <u>S</u> LPDTLG	-	-	+	-	-	-	-
Raf 1 peptides {	CLSQRQRSTSTPNVHM	-	-	-	+	-	+	-
	CLSQRQRST <u>S</u> TPNVHM	-	-	-	-	+	-	+

Substitute Sheet
(Rule 26) RO/AU

$\beta_c \rightarrow$

P: GST-14-3-3-sepharose

WB: 1C1 (anti β_c)

FIG 7

FIG 8A**FIG 8C**

[peptide CLGPPHRSRSLPDILG] μM

[peptide CPLSLRSKPSPGPGP] μM

FIG 8B**FIG 8D**

FIG 9 125I-14-3-3 added ($\mu\text{g/ml}$)

FIG 10CWB: anti-phospho-Ser⁵⁸⁵β_c**FIG 10A****FIG 10B****FIG 10C**

FIG 11A**FIG 11B**

FIG 12A**FIG 12B****FIG 12C**

FIG 13A

FIG 13B

name	sequence
scrambled	CLPLSGPDSHIRGPL
Ser585Ala	CLGPPHRSRALPDILG
non-phospho-Ser585	CLGPPHRSRSLPDILG
phospho-Ser585	CLGPPHRS <u>R</u> SLPDILG

FIG 13C

FIG 13D

FIG 14A**FIG 14B**

FIG 15A**FIG 15B**

	$\text{wt}\beta_c$		$\beta_c\text{HSRSLPmEFAAAA}$	
	G_0/G_1	$S + G_2/M$	G_0/G_1	$S + G_2/M$
asynchronous	37.3	62.7	36.0	64.0
starved	88.3	11.7	87.4	12.6
+ IL-3	64.7	35.3	64.3	35.7

FIG 16A

FIG 16B

FIG 17A**FIG 17B**

FIG 18

FIG 20A**FIG 20B**

FIG 20C

FIG 20D

FIG 21A

phospho-Ser585- →
His β_c 445-881

FIG 21B**FIG 21C****FIG 21D**

FIG 22A

FIG 22B

FIG 22C

FIG 23A**FIG 23B**

FIG 24A**FIG 24B**

FIG 24C**FIG 24D**

Substitute Sheet
(Rule 26) RO/AU

	wt β_c		β_c HSRSLP m EFAAAA	
	G ₀ /G ₁	S + G ₂ /M	G ₀ /G ₁	S + G ₂ /M
asynchronous	37.3	62.7	36.0	64.0
starved	88.3	11.7	87.4	12.6
+ IL-3	64.7	35.3	64.3	35.7

FIG 25A

FIG 25B

FIG 26

FIG 27A**FIG 27B**