Convolutional Neural Networks (CNN)

Julien Velcin M2 MALIA - Université Lumière Lyon 2

Why convolutions?

- Parameter sharing
- Sparsity of connections
- Less sensitive to transformations (e.g., translation)

CNN first designed to deal with images

(source: Li et al., 2016)

Filter (aka convolution) can detect patterns

• Example of vertical lines

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	10	10	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ì	10	10	10	0	0	0
10 10 10 0 0 0 1 1 0 -1 0 30 3	İ	10	10	10	0	0	0
	İ	10	10	10	0	0	0
	ŀ	10	10	10	0	0	0

• Different kinds of patterns

(source: https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/)

Automatically learn filters

• Example with AlexNet:

CNN can be applied to other kind of data

• Textual data as 1D CNN

Figure 1: Model architecture with two channels for an example sentence.

(source: https://cezannec.github.io/CNN_Text_Classification/)

Some technical details

- One layer = *multiple* filters
- Add padding to better handle the borders
- Strided convolutions
- Convolution over volumes

