

APPLICATION
FOR
UNITED STATES LETTERS PATENT

50507307-2001-000000000000
TITLE: SEMICONDUCTOR DEVICE AND MANUFACTURING
METHOD THEREOF
APPLICANT: EIJI NISHIBE AND SHUICHI KIKUCHI

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No. EF045065412US

I hereby certify under 37 CFR §1.10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

October 22, 2001

Date of Deposit

Signature

Francisco Robles

Typed or Printed Name of Person Signing Certificate

SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF

Background of the Invention

The present invention is related to a semiconductor device
5 and a method for manufacturing the semiconductor device. More
specifically, the present invention is directed to an LD (Lateral
Double Diffused) MOS (Metal-Oxide Semiconductor) transistor
technique functioning as a high voltage element which is utilized
as, for instance, a liquid crystal driving IC.

10 In this case, an LDMOS transistor structure implies such
a transistor structure that impurities having different
conductive types are diffused with respect to a region formed
on the side of a surface of a semiconductor substrate so as
to form new regions, and a difference between diffusions of
15 these regions along a lateral direction is utilized as an
effective channel length. Since a short channel is formed,
the resulting transistor structure may constitute such an
element suitably having a lower ON-resistance value.

Fig. 9 is a sectional diagram for explaining a conventional
20 LDMOS transistor, as one example thereof, for representing
an N-channel type LDMOS transistor structure. It should be
noted that while a description as to a P-channel type LDMOS
transistor structure is omitted, as is well known in this
field, this P-channel type LDMOS transistor owns a similar
25 structure of the N-channel type LDMOS transistor except for

the conductive type thereof.

In Fig. 9, reference numeral 51 shows one conductive type semiconductor substrate, for example, a P type semiconductor substrate (P-Sub), and reference numeral 52 represents an 5 N type well region. In this N type well region (N well) 52, a P type body region (PB) 53 is formed, whereas an N type (N⁺) region 54 is formed in the above-explained N type well region 53, and another N type (N⁺) region 55 is formed in the N type well region 52. Also, a gate electrode 58 is formed on a surface of the semiconductor substrate in such a manner that this gate electrode 58 is bridged between a first gate insulating film 56 and a second gate insulating film 57, the film thickness of which is thinner than that of the first gate insulating film 56. A channel region 59 is formed in 15 a surface region of the P type body region 53 located just under this gate electrode 58.

Then, the above-explained N⁺ type region 54 is used as a source region, the N⁺ type region 55 is used as a drain region, and the N type well region 52 is used as a drift region. Also, 20 reference numeral 60 shows a device separation film, symbol "S" denotes a source electrode, symbol "G" indicates a gate electrode, and symbol "D" represents a drain electrode. Reference numeral 61 shows a P type (P⁺) region which is employed so as to secure a potential of the P type body region 53. 25 Also, reference numeral 62 shows an interlayer insulating

film.

In the above-explained LDMOS transistor, since the N type well region 52 is formed in the diffusion manner, concentration at the surface of the N type well region 52 is increased, 5 so that a current can easily flow on the surface of the N type well region 52, and also, this LDMOS transistor can be operated under high voltages, namely can have a high-voltage-withstanding characteristic.

In the above-described LDMOS transistor, the simulation 10 result could reveal such a fact that local current crowding (namely, region "A" shown in Fig. 9) may occur between an edge portion of the P type body region 53 and an edge portion of the first gate insulating film 56, and thus, a current can very hardly flow between the source of this LDMOS transistor 15 and the drain thereof.

As a consequence, in particular, when the drain voltage is low, there is a lack of drive capability of the LDMOS transistor, so that this LDMOS transistor can be hardly turned ON.

The occurrence cause of this local current crowding is 20 given by such a fact that equipotential lines are crowded in such a space which is surrounded by an edge portion (wall) of the above-explained first gate insulating film 56 and an edge portion (wall) of the P type body region 53. More precisely speaking, while the equipotential lines may be distributed 25 by widening the space which is surrounded by the edge portion

(wall) of the first gate insulating film 56 and the edge portion (wall) of the P type body region 53, this measure may disturb, or impede that the LDMOS transistor is manufactured in very fine manners.

5

Summary of the Invention

The present invention has an object to reduce local current crowding in such a manner that a concave/convex region at a boundary surface between a semiconductor substrate (Si) and a gate insulating film (SiO_2 film) is eliminated so as to distribute equipotential lines.

Therefore, in order to solve the above-explained problem, a semiconductor device, according to an aspect of the present invention, is featured by comprising: for instance, a first gate insulating film which is pattern-formed on a second conductive type well region within a first conductive type semiconductor substrate in such a manner that a side wall portion of the first gate insulating film is made in a taper shape; a second gate insulating film which is formed on the semiconductor substrate except for the first gate insulating film; a gate electrode which is formed in such a manner that the gate electrode is bridged over the first gate insulating film and the second gate insulating film; a first conductive type body region which is formed in such a manner that the first conductive type body region is located adjacent to the

10
15
20
25

gate electrode; a second conductive type source region and a channel region, which are formed within the first conductive type body region; and a second conductive type drain region which is formed at a position separated from the first conductive 5 type body region.

Also, the first gate insulating film of the above-described semiconductor device is not formed at a position lower than at least a surface position of the semiconductor substrate.

As a result, local current crowding is not produced between 10 at least an edge portion of the first conductive type body region and an edge portion of the first gate insulating film.

Also, a manufacturing method of this semiconductor device is featured as follows: That is, a second conductive type impurity ion is implanted into a first conductive type semiconductor substrate and then is diffused in the 15 semiconductor substrate so as to form a second conductive type well region, and while a resist film formed on a predetermined region of the second conductive type well region is used as a mask, a first conductive type impurity ion is implanted and then is diffused so as to form a first conductive 20 type body region. Next, after a surface region of the semiconductor substrate is field-oxidized by way of the LOCOS method to thereby form an insulating film, while a resist film formed on a predetermined region of the insulating film 25 is employed as a mask, the insulating film is patterned so

as to form a first insulating film. Subsequently, a second gate insulating film is formed on the semiconductor substrate other than the first gate insulating film, and a gate electrode is formed in such a manner that the gate electrode is bridged
5 over the first gate insulating film and the second gate insulating film. Furthermore, while a resist film having an opening is employed as a mask, the second conductive type impurity ion is implanted into both a source forming region formed within the first conductive type body region and a drain forming region formed within the second conductive type well region so as to form a source region and a drain region.
10
15

Furthermore, in accordance with the above-described manufacturing method of the semiconductor device, the step for forming the first gate insulating film is the same step as a step for forming a device separation film.

Also, in accordance with the manufacturing method of the semiconductor device, in the step for forming the first gate insulating film, the first gate insulating film is not formed at a position lower than at least a surface position of the
20 semiconductor substrate.

Brief Description of the Drawings

Fig. 1 is a sectional view for indicating a manufacturing method of a semiconductor device according to an embodiment
25 of the present invention;

Fig. 2 is a sectional view for showing the manufacturing method of the semiconductor device according to one embodiment of the present invention;

5 Fig. 3 is a sectional view for representing the manufacturing method of the semiconductor device according to one embodiment of the present invention;

Fig. 4 is a sectional view for showing the manufacturing method of the semiconductor device according to one embodiment of the present invention;

10 Fig. 5 is a sectional view for representing the manufacturing method of the semiconductor device according to one embodiment of the present invention;

15 Fig. 6 is a sectional view for showing the manufacturing method of the semiconductor device according to one embodiment of the present invention;

Fig. 7 is a sectional view for representing the manufacturing method of the semiconductor device according to one embodiment of the present invention;

20 Fig. 8 is a sectional view for showing the manufacturing method of the semiconductor device according to one embodiment of the present invention; and

Fig. 9 is a sectional view for representing the conventional semiconductor device.

25 Detailed Description of the Preferred Embodiment

Referring now to drawings, a description will be made of an embodiment of the present invention with respect to a semiconductor device and a manufacturing method thereof.

Fig. 8 is a sectional view for showing a semiconductor device according to the present invention, more specifically, for explaining an LDMOS transistor, as one example thereof, for representing an N-channel type LDMOS transistor structure.

It should be noted that while a description as to a P-channel type LDMOS transistor structure is omitted, as is well known in this field, this P-channel type LDMOS transistor owns a similar structure of the N-channel type LDMOS transistor except for the conductive type thereof.

In Fig. 8, reference numeral 1 shows one conductive type semiconductor substrate, for example, a P type semiconductor substrate (P-Sub), and reference numeral 2 represents an N type well region (N well). In this N type well region 2, a P type body region (PB) 4 is formed, whereas an N type (N^+) region 11 is formed in the above-explained P type body region 4, and another N type (N^-) region 3 is formed in the N type well region 2. Also, another N type (N^+) region 12 is formed in this N type (N^-) region 3.

Further, a gate electrode 9 is formed on a surface of the semiconductor substrate in such a manner that this gate electrode 9 is bridged between a first gate insulating film 7A and a second gate insulating film 8, the film thickness

of which is thinner than that of the first gate insulating film 7A. A channel region 13 is formed in a surface region of the P type body region 4 located just under this gate electrode 9.

5 Then, the above-explained N⁺ type region 11 is used as a source region, both the N⁻ type region 3 and the N⁺ type region 12 are used as a drain region, and the N type well region 2 is used as a drift region. Also, reference numeral 7B shows a device separation film, symbol "S" denotes a source electrode, symbol "G" indicates a gate electrode, and symbol "D" represents a drain electrode. Reference numeral 14 shows a P type (P⁺) region which is employed so as to secure a potential of the P type body region 4. Also, reference numeral 15 shows an interlayer insulating film.

10 In this case, the semiconductor device of the present invention has a feature where, as indicated in Fig. 8, the first gate insulating film 7A is not formed at such a position lower than, at least, the surface position of the semiconductor substrate 1.

15 As a consequence, the semiconductor device of the present invention owns such a structure that the local current crowding does not occur between the edge portion of the P type body region and the edge portion of the first gate insulating film, as compared with the structure of the conventional semiconductor device (Fig. 9) in which the first gate insulating film 56

is formed under the surface of the substrate.

Next, a method of manufacturing the above-described semiconductor device will now be described with reference to drawings.

5 First, in Fig. 1, while a resist film (not shown) is used as a mask and this resist film is formed on, for example, the P type semiconductor substrate 1, an N type impurity is implanted in an ion-implantation manner into a desirable region of the substrate 1. Since this N type impurity is diffused in a desirable region, the N type well region 2 may be formed.

In this case, the above-explained N type well region 2 may constitute the drift region. It should also be noted that in this manufacturing step, as the N type impurity, for example, a phosphorus ion is implanted at an acceleration energy of approximately 160 keV and a dose of approximately $5.0 \times 10^{12}/\text{cm}^2$, and this phosphorus iron is thermally diffused at a temperature of about 1,200°C and for 13 hours.

Also, while the first resist film (not shown) formed on the substrate 1 is employed as a mask, an N type impurity 20 (for example, phosphorus ion) is implanted. After this first resist film has been removed, while a second resist film (not shown) formed on the substrate 1 is used as a mask, a P type impurity (for example, boron ion) is implanted and diffused.

As a result, both the N⁻ type region 3 and the P type body 25 region 4 are formed within the above-described N type well

region 2 (see Fig. 2). It should also be understood that in this manufacturing step, for instance, the phosphorus ion is implanted at the acceleration energy of approximately 100 KeV and the dose of approximately $4.0 \times 10^{12}/\text{cm}^2$. Also, for 5 example, the boron ion is implanted at the acceleration energy of approximately 80 KeV, and the dose of approximately $1.5 \times 10^{13}/\text{cm}^2$. Thereafter, these phosphorus and boron ions are thermally diffused at the temperature of approximately 1,050°C and for 2 hours.

10 Subsequently, in Fig. 3, an oxidation resistance film (for instance, silicon nitride film, not shown) having an opening is formed on both a pad oxide film (not shown) and a predetermined region (not shown), which are formed on the substrate 1. Then, while both the anti-oxidation film and 15 the pad oxide film are employed as a mask, the resulting semiconductor substrate is field-oxidized by way of the LOCOS (local oxidation of silicon) method, so that an insulating film 5 having a film thickness of approximately 1100 nm is formed.

20 Next, in Fig. 4, while a third resist film 6 is employed as a mask and this third resist film 6 has been formed on a predetermined region over the above-described insulating film 5, this insulating film 5 is patterned to form both the first gate insulating film 7A and the device separation film 25 7B. It should also be noted that in this manufacturing step,

since the above-described insulating film 5 is etched away by the isotropic etching method by using hydrofluoric acid, this insulating film 5 is patterned in such a manner that a side wall portion of this insulating film 5 is made in a 5 taper shape. Alternatively, such an isotropic etching treatment that a wet etching process is combined with a dry etching process may be used, and a dry etching treatment using isotropic gas may be employed.

Subsequently, in Fig. 5, the surface of the substrate 1 except for both the first gate insulating film 7A and the device separation film 7B are thermally oxidized so as to form such a second gate insulating film 8 having a thickness of approximately 45 nm, and a gate electrode 9 is formed in such a manner that this gate electrode 9 is bridged from this 10 second gate insulating film 8 and over the first gate insulating film 7A. It should be understood that the gate electrode 9 of the LDMOS transistor according to this embodiment is made of a polysilicon film which is manufactured in such a manner that while POCl_3 is employed as a thermal diffusion source, 15 a phosphorus ion is doped and the ion-doped polysilicon film is made conductive. More specifically, this gate electrode 9 may be constituted by a polycide electrode manufactured in such a manner that a tungsten silicide (WSix) is stacked 20 on this polysilicon film.

25 Also, in Fig. 6, while a fourth resist film 10 having

an opening portion is used as a mask, an N type impurity is implanted into a source forming region which is formed within the P type body region 4, and also into a drain forming region which is formed within the N⁻ type region 3, so that both N

5 type (N⁺) regions 11 and 12 which will constitute a source region and a drain region are formed. It should also be understood that in this manufacturing step, for instance,

when source/drain regions having a so-called "LDD structure"

are formed, first of all, while the resist film 10 shown in

10 Fig. 6 is employed, for example, a phosphorus ion is implanted

at the acceleration energy of approximately 70 keV and the

dose of approximately $1.0 \times 10^{14}/\text{cm}^2$. Thereafter, although

not shown in this drawing but also no explanation is made,

a side wall spacer film is formed on a side wall portion of

15 the gate electrode 9. Under such a condition that the fourth

resist film has been again formed, for instance, arsenic ion

is implanted at the acceleration energy of approximately 70

keV and the dose of approximately $6.0 \times 10^{16}/\text{cm}^2$. Apparently,

in this embodiment, the structures of the source/drain regions

20 are not limited to the above-explained LDD structure.

Also, in Fig. 7, in order to secure a potential of the

P type body region 4, while the fifth resist film 13 is employed

as a mask, a P type impurity (for example, boron difluoride

ion) is implanted at a position adjacent to the above-explained

25 N⁺ type region 11 so as to form a P type (P⁺) region 14. It

should also be noted that in this manufacturing step, for example, a boron difluoride ion is implanted at the acceleration energy of 60 keV and the dose of $4 \times 10^{16}/\text{cm}^2$.

Then, in Fig. 8, the interlayer insulating film 15 is formed so that this interlayer insulating film 15 covers an entire surface of the resulting semiconductor device, and contact holes (not shown) are formed in the interlayer insulating film 15. Then, the source electrode S, the drain electrode D and the gate electrode G are respectively formed via the contact hole. Next, although the description with reference to the drawings is not made, a passivation film is formed on the entire surface of the semiconductor device, so that the semiconductor device may be accomplished.

As previously described, the semiconductor device manufacturing method according to the present invention is different from the conventional manufacturing method for manufacturing the first gate insulating film and the device separation film, and has a feature that the insulating film 5 is formed on the semiconductor substrate 1 by way of the LOCOS method, and then, this formed insulating film 5 is patterned in the desirable shape so as to form both the first gate insulating film 7A and the device separation film 7B. As a result, the first gate insulating film 7A is not formed at such a position lower than, at least, the surface position of the substrate. As a consequence, in accordance with the

present invention, there is no such a concave/convex region formed at the boundary surface between the semiconductor substrate (Si) and the gate insulating film (SiO_2 film). Therefore, no local current crowding is produced between the 5 edge portion of the P type body region 53 and the edge portion of the first gate insulating film 56, which is different from the background art (see Fig. 9). As a result, the current may easily flow between the source and the drain of the semiconductor device, so that the ON-resistance value of this 10 semiconductor device can be lowered.

Also, since the above-explained structure is employed, the equipotential lines are no longer distributed by widening the space which is surrounded by both the edge portion (wall) of the first gate insulating film 7A and the edge portion (wall) of the P type body region 4. This structure does not 15 disturb, or impede that this semiconductor device is manufactured in very fine manners.

Further, in accordance with this embodiment, the surface of the substrate 1 is field-oxidated by way of the LOCOS method 20 so as to form the insulating film 5, and the resultant insulating film 5 is patterned, so that the first gate insulating film 7A and the device separation film 7B are formed. However, the present invention is not limited to this manufacturing method. Alternatively, for example, while an oxide film is 25 formed on the substrate by way of the CVD method, this formed

oxide film is patterned in a desirable shape, so that the first gate insulating film 7A and the device separation film 7B may be formed.

As previously explained, the semiconductor device of the 5 present invention may be accomplished by employing not only the LOCOS method, but also the CVD method. Precisely speaking, when the CVD method is compared with the LOCOS method, this LOCOS method owns the below-mentioned merits.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
252510
252511
252512
252513
252514
252515
252516
252517
252518
252519
252520
252521
252522
252523
252524
252525
252526
252527
252528
252529
252530
252531
252532
252533
252534
252535
252536
252537
252538
252539
252540
252541
252542
252543
252544
252545
252546
252547
252548
252549
252550
252551
252552
252553
252554
252555
252556
252557
252558
252559
252560
252561
252562
252563
252564
252565
252566
252567
252568
252569
252570
252571
252572
252573
252574
252575
252576
252577
252578
252579
252580
252581
252582
252583
252584
252585
252586
252587
252588
252589
252590
252591
252592
252593
252594
252595
252596
252597
252598
252599
2525100
2525101
2525102
2525103
2525104
2525105
2525106
2525107
2525108
2525109
2525110
2525111
2525112
2525113
2525114
2525115
2525116
2525117
2525118
2525119
2525120
2525121
2525122
2525123
2525124
2525125
2525126
2525127
2525128
2525129
2525130
2525131
2525132
2525133
2525134
2525135
2525136
2525137
2525138
2525139
2525140
2525141
2525142
2525143
2525144
2525145
2525146
2525147
2525148
2525149
2525150
2525151
2525152
2525153
2525154
2525155
2525156
2525157
2525158
2525159
2525160
2525161
2525162
2525163
2525164
2525165
2525166
2525167
2525168
2525169
2525170
2525171
2525172
2525173
2525174
2525175
2525176
2525177
2525178
2525179
2525180
2525181
2525182
2525183
2525184
2525185
2525186
2525187
2525188
2525189
2525190
2525191
2525192
2525193
2525194
2525195
2525196
2525197
2525198
2525199
2525200
2525201
2525202
2525203
2525204
2525205
2525206
2525207
2525208
2525209
2525210
2525211
2525212
2525213
2525214
2525215
2525216
2525217
2525218
2525219
2525220
2525221
2525222
2525223
2525224
2525225
2525226
2525227
2525228
2525229
2525230
2525231
2525232
2525233
2525234
2525235
2525236
2525237
2525238
2525239
2525240
2525241
2525242
2525243
2525244
2525245
2525246
2525247
2525248
2525249
2525250
2525251
2525252
2525253
2525254
2525255
2525256
2525257
2525258
2525259
25252510
25252511
25252512
25252513
25252514
25252515
25252516
25252517
25252518
25252519
25252520
25252521
25252522
25252523
25252524
25252525
25252526
25252527
25252528
25252529
252525210
252525211
252525212
252525213
252525214
252525215
252525216
252525217
252525218
252525219
252525220
252525221
252525222
252525223
252525224
252525225
252525226
252525227
252525228
252525229
252525230
252525231
252525232
252525233
252525234
252525235
252525236
252525237
252525238
252525239
252525240
252525241
252525242
252525243
252525244
252525245
252525246
252525247
252525248
252525249
252525250
252525251
252525252
252525253
252525254
252525255
252525256
252525257
252525258
252525259
2525252510
2525252511
2525252512
2525252513
2525252514
2525252515
2525252516
2525252517
2525252518
2525252519
2525252520
2525252521
2525252522
2525252523
2525252524
2525252525
2525252526
2525252527
2525252528
2525252529
2525252530
2525252531
2525252532
2525252533
2525252534
2525252535
2525252536
2525252537
2525252538
2525252539
2525252540
2525252541
2525252542
2525252543
2525252544
2525252545
2525252546
2525252547
2525252548
2525252549
2525252550
2525252551
2525252552
2525252553
2525252554
2525252555
2525252556
2525252557
2525252558
2525252559
2525252560
2525252561
2525252562
2525252563
2525252564
2525252565
2525252566
2525252567
2525252568
2525252569
2525252570
2525252571
2525252572
2525252573
2525252574
2525252575
2525252576
2525252577
2525252578
2525252579
2525252580
2525252581
2525252582
2525252583
2525252584
2525252585
2525252586
2525252587
2525252588
2525252589
2525252590
2525252591
2525252592
2525252593
2525252594
2525252595
2525252596
2525252597
2525252598
2525252599
25252525100
25252525101
25252525102
25252525103
25252525104
25252525105
25252525106
25252525107
25252525108
25252525109
25252525110
25252525111
25252525112
25252525113
25252525114
25252525115
25252525116
25252525117
25252525118
25252525119
25252525120
25252525121
25252525122
25252525123
25252525124
25252525125
25252525126
25252525127
25252525128
25252525129
25252525130
25252525131
25252525132
25252525133
25252525134
25252525135
25252525136
25252525137
25252525138
25252525139
25252525140
25252525141
25252525142
25252525143
25252525144
25252525145
25252525146
25252525147
25252525148
25252525149
25252525150
25252525151
25252525152
25252525153
25252525154
25252525155
25252525156
25252525157
25252525158
25252525159
25252525160
25252525161
25252525162
25252525163
25252525164
25252525165
25252525166
25252525167
25252525168
25252525169
25252525170
25252525171
25252525172
25252525173
25252525174
25252525175
25252525176
25252525177
25252525178
25252525179
25252525180
25252525181
25252525182
25252525183
25252525184
25252525185
25252525186
25252525187
25252525188
25252525189
25252525190
25252525191
25252525192
25252525193
25252525194
25252525195
25252525196
25252525197
25252525198
25252525199
25252525200
25252525201
25252525202
25252525203
25252525204
25252525205
25252525206
25252525207
25252525208
25252525209
25252525210
25252525211
25252525212
25252525213
25252525214
25252525215
25252525216
25252525217
25252525218
25252525219
25252525220
25252525221
25252525222
25252525223
25252525224
25252525225
25252525226
25252525227
25252525228
25252525229
25252525230
25252525231
25252525232
25252525233
25252525234
25252525235
25252525236
25252525237
25252525238
25252525239
25252525240
25252525241
25252525242
25252525243
25252525244
25252525245
25252525246
25252525247
25252525248
25252525249
25252525250
25252525251
25252525252
25252525253
25252525254
25252525255
25252525256
25252525257
25252525258
25252525259
252525252510
252525252511
252525252512
252525252513
252525252514
252525252515
252525252516
252525252517
252525252518
252525252519
252525252520
252525252521
252525252522
252525252523
252525252524
252525252525
252525252526
252525252527
252525252528
252525252529
2525252525210
2525252525211
2525252525212
2525252525213
2525252525214
2525252525215
2525252525216
2525252525217
2525252525218
2525252525219
2525252525220
2525252525221
2525252525222
2525252525223
2525252525224
2525252525225
2525252525226
2525252525227
2525252525228
2525252525229
2525252525230
2525252525231
2525252525232
2525252525233
2525252525234
2525252525235
2525252525236
2525252525237
2525252525238
2525252525239
2525252525240
2525252525241
2525252525242
2525252525243
2525252525244
2525252525245
2525252525246
2525252525247
2525252525248
2525252525249
2525252525250
2525252525251
2525252525252
2525252525253
2525252525254
2525252525255
2525252525256
2525252525257
2525252525258
2525252525259
25252525252510
25252525252511
25252525252512
25252525252513
25252525252514
25252525252515
25252525252516
25252525252517
25252525252518
25252525252519
25252525252520
25252525252521
25252525252522
25252525252523
25252525252524
25252525252525
25252525252526
25252525252527
25252525252528
25252525252529
25252525252510
25252525252511
25252525252512
25252525252513
25252525252514
25252525252515
25252525252516
25252525252517
25252525252518
25252525252519
25252525252520
25252525252521
25252525252522
25252525252523
25252525252524
25252525252525
25252525252526
25252525252527
25252525252528
25252525252529
25252525252510
25252525252511
25252525252512
25252525252513
25252525252514
25252525252515
25252525252516
25252525252517
25252525252518
25252525252519
25252525252520
25252525252521
25252525252522
25252525252523
25252525252524
25252525252525
25252525252526
25252525252527
25252525252528
25252525252529
25252525252510
25252525252511
25252525252512
25252525252513
25252525252514
25252525252515
25252525252516
25252525252517
25252525252518
25252525252519
25252525252520
25252525252521
25252525252522
25252525252523
25252525252524
25252525252525
25252525252526
25252525252527
25252525252528
25252525252529
25252525252510
252525

one conductive type body region and the edge portion of the first gate insulating film. This local current crowding occurs in the background art.

Also, since the insulating film having such a high quality
5 is employed which is formed by the LOCOS method, the reliability
can be improved.

In addition, in accordance with the manufacturing method of the present invention, since the insulating film is manufactured by way of the LOCOS method, the better matching characteristic of this insulating film with respect to other regions and also other devices can be realized.