

# Sephora Predict product Price

Presented By: Wafa Albattah Taghreed Albaiz Leena Alshwaihi



#### Outline:

- Introduction
- Problem Statement
- Data set
- EDA
- Feature Engineering
- Regression Algorithms
- conclusion



#### Introduction:

Sephora represents one of the largest marketplaces on the world. People use its products on a daily basis to order skin care, makeup, perfumes, and even web hosting services.



#### Problem Statement

 analyze product based on several variables, determine what variables affect product price the most, then build a model that can predict the price of a Product.

 The goal Predict the price of product based on the features available



#### Dataset

- https://www.kaggle.com/raghadalharbi/allproducts-available-on-sephora-website
- kaggle.com
- Sephora Website
- More than 9,000 Products with their Ratings and Ingredient Lists
- Has a total of 9268 rows and 21 columns



Expolarity
Data
Analysis

## The highest Category based on Price



#### Visualization

Value price higher coloration with price and online only

|                    |         | _                 |         |         |             |             |           |                 |                    |
|--------------------|---------|-------------------|---------|---------|-------------|-------------|-----------|-----------------|--------------------|
| rating             |         | 0.081             | 0.095   | 0.02    | 0.0019      | -0.12       | -0.0019   | -0.13           | 0.0062             |
| number_of_reviews  | 0.081   | 1                 | 0.75    | -0.084  | -0.089      | -0.14       | 0.0038    | -0.067          | 0.00074            |
| love               | 0.095   | 0.75              |         | -0.089  | -0.091      | -0.14       | 0.051     | -0.047          | -0.0029            |
| price              | 0.02    | -0.084            | -0.089  | 1       | 0.98        | 0.12        | -0.18     | 0.015           | -0.0097            |
| value_price        | 0.0019  | -0.089            | -0.091  | 0.98    | 1           | 0.13        | -0.16     | 0.08            | -0.0099            |
| online_only        | -0.12   | -0.14             | -0.14   | 0.12    | 0.13        | 1           | -0.078    | 0.097           | -0.01              |
| exclusive          | -0.0019 | 0.0038            | 0.051   | -0.18   | -0.16       | -0.078      |           | 0.17            | 0.0028             |
| limited_edition    | -0.13   | -0.067            | -0.047  | 0.015   | 0.08        | 0.097       | 0.17      | 1               | 0.015              |
| limited_time_offer | 0.0062  | 0.00074           | -0.0029 | -0.0097 | -0.0099     | -0.01       | 0.0028    | 0.015           | 1                  |
|                    | rating  | number_of_reviews | love    | price   | value_price | online_only | exclusive | limited_edition | limited_time_offer |

## The highest price highest value price





### Feature Engineering

- Create dummy variables for the categorical features
- Handle outliers in the target variable



Regression Algorithms

## XGBoost Algorithm

```
R2 on Traing set : 0.8195442843885937
```

R2 on Validation set : 0.7081371579318474

\_\_\_\_\_

#### Error Table

Mean Absolute Error : 0.059941945145433245

Mean Squared Error : 0.007068365883478215

Root Mean Squared Error : 0.08407357422804275

#### Random Forest

R2 on Traing set : 0.9589680768507084

R2 on Validation set : 0.7219987992161072

\_\_\_\_\_

#### Error Table

Mean Absolute Error : 0.055895392402975703

Mean Squared Error : 0.006732663155277563

Root Mean Squared Error : 0.08205280711394074

## Ridge Algorithm



R2 on Traing set : 0.804965637330968

R2 on Validation set : 0.7476897832258586

\_\_\_\_\_

#### Error Table

Mean Absolute Error : 0.055101920084600915

Mean Squared Error : 0.0061104761252303895

Root Mean Squared Error : 0.078169534508211



#### Conclusion:

Results of the R2 (validation) for the three models:



Ridge Regression Algorithm has the best results!



## Thank you!

Any Questions?