Снимаю с себя всю ответственность за нули на коллоквиуме, полученные из-за прочтения фактов с этого конспекта. По всем неточностям и предложениям: @helloclock.

Содержание

1	Леі	кция 1 (введение)	3			
2	Лег	кция 2 (модели, ДНФ)	4			
	2.1	Модели	4			
	2.2	Виды формул	4			
	2.3	ДНФ	5			
	2.4	Алгоритмическая сложность	5			
		2.4.1 Задача о нахождении ДНФ по таблице истинности	5			
		2.4.2 Задача о проверке тавтологичности	5			
3	Лег	кция 3 (полнота и максимальность)	7			
4	Лег	кция 4 (теорема Поста)	10			
	4.1	Продолжение про классы функций	10			
	4.2	Замены	12			
5	Лei	кция 5 (выводы)	13			
	5.1	Правила вывода	13			
	5.2	Конкретные правила	14			
6	Лei	кция 6 (продолжение про выводы)	15			
	6.1	Примеры допустимых правил	15			
	6.2	Противоречивость и непротиворечивость	17			
7	Лег	кция 7	19			
	7.1	Основное множество правил	19			
8	Лекция 8					
	8.1	Доказательства аксиом	24			
9	Лег	кция 9 (логика предикатов)	27			

Обновлено: 18 апреля 2025 г.	Математическая логика	
10 Лекция 10		29
10.1 Выразимые предикаты		30
10.2 Изоморфизмы		31

1 Лекция 1 (введение)

Определение 1.1. *Алфавит* $\Sigma = \{ (,), \land, \lor, \neg, \rightarrow \} \cup \text{Prop} \cup \{ \text{True}, \text{False} \}, \text{ где Prop} - \text{множество}$ пропозициональных переменных. В курсе $\text{Prop} = \{ p, \ldots, z, p_1, \ldots, z_1, \ldots \}.$

Определение 1.2. *Формула* — последовательность символов из алфавита, определяемая по индукции:

- 1. Т и F формулы;
- 2. $p \in \text{Prop} \text{формула};$
- 3. A -формула $\Longrightarrow \neg A$ формула;
- 4. A, B формулы $\Longrightarrow (A \land B), (A \lor B), (A \to B)$ формулы.

Формулы удобно представлять в виде дерева, например для формулы

$$((p \land q) \to (\neg r \lor p))$$

дерево выглядит следующим образом:

Определение 1.3. Пусть A — последовательность символов в алфавите Σ :

$$A = a_1 \dots a_n \ (a_j \in \Sigma).$$

Тогда $B-npe func\ (B\sqsubseteq A)$, если $B=a_1\ldots a_k\ (k\leqslant n)$.

Лемма 1.1. Если A- корректная формула и A'- её префикс, то A'- не корректная формула.

Лемма 1.2 (Об однозначности разбора). *Если* A — *корректно построена, то верно ровно одно из следующего:*

- 1. $A \in \text{Prop}$
- 2. $A \in \{ \top, \bot \}$
- *3.* ∃! B: $A = \neg B$
- 4. $\exists !\, B,C \colon\! A=(B*C),\; \mathit{rde} *\in \{\, \land, \lor, \to\, \}$

2 Лекция 2 (модели, ДНФ)

2.1 Модели

Определение 2.1. Modenb — функция $\mathit{Var} \to \mathbb{B} = \{0,1\}$. Но т.к. Var бесконечно, в программах будем считать моделю любую функцию из конечного множества переменных. В таком случае некоторым переменным значение не приписывается.

Модель задаёт интерпретацию истинности всех формул.

Для формулы A ucmuhocmb формулы в модели M задаётся по индукции и обозначается M(A):

- $M(\top) = 1, M(\bot) = 0;$
- На переменных уже задано;
- $M(\neg B) = 1 M(B)$, если $A = \neg B$;
- $M(B_1 \odot B_2) = M(B_1) \odot M(B_2)$, если $A = (B_1 \odot B_2)$, $\odot \in \{ \lor, \land, \to \}$.

Определение 2.2. *Булевая функция* — отображение $\mathbb{B}^k \to \mathbb{B}$, задаёт булеву функцию данной формулу для фиксированного порядка переменных.

2.2 Виды формул

Определение 2.3. Тавтология — формула, истинная во всех моделях

Пример: $p \to p, p \lor \neg p$

Определение 2.4. *Тождественно ложная/противоречивая* формула — формула, ложная во всех моделях.

Пример: $p \land \neg p$

Определение 2.5. Выполнимая формула — формула, истинная хотя бы в одной модели.

Пример: $p \wedge q$

Пример:

Если в пробах с Европы (спутник Юпитера) обнаружены бактерии, то на Европе есть жизнь или бактерии были занесены с Земли. Если бактерии были занесены с Земли, то на Земле есть похожие бактерии. В пробах с Европы обнаружены бактерии, похожие на Земные, следовательно на Европе нет жизни.

- р "В пробах с Европы обнаружены бактерии"
- ullet q- "На Европе есть жизнь"
- r- "Бактерии с Земли"
- s- "Бактерии похожи не Земные"

Утверждение можно записать следующей формулой:

$$((p \to q \lor r) \land (r \to s) \land s) \to \neg q$$

Если она тавтологична, то утверждение верно, иначе — нет.

Чтобы проверить на тавтологичность, надо проверить, есть ли набор переменных, для которого формула ложна, тогда она будет не тавтологична. Для этого первая скобка должна быть истинной, а вторая — ложной. Отсюда $q = \top$, $(p \to q \lor r) = \top$, $(r \to s) = \top$, $s = \top$. Из имеющегося получаем $p = q = r = s = \top$. Для этого набора переменных утверждение ложно, т.е. оно не тавтологично, а значит — не истинно во всех моделях.

2.3 ДНФ

Определение 2.6. Литерал — переменная или её отрицание.

Определение 2.7. Элементарная контюнкция/контюнкт — конъюнкция литералов.

Определение 2.8. Дизтюнктивная нормальная форма $(ДН\Phi)$ — дизъюнкция конъюнктов.

Определение 2.9. Совершенная дизтюнктивная нормальная форма $(C \not \Box H \Phi)$:

- Определена для фиксированного множества переменных;
- \bullet ДН Φ , в которой в каждом конъюнкте участвуют все переменные из множества и только один раз.

Построение СДНФ:

- Можно построить по таблице истинности при условии, что в ней есть хотя бы одна 1;
- Каждая строка преобразуется в элементарную конъюнкцию, которая истинна только на данном наборе переменных и ложна на всех остальных;
- Итоговая формула дизъюнкция построенных конъюнктов.

Теорема 2.1 (Теорема о функциональной полноте). Для любой булевой функции существует булева формула, задающая эту функцию.

2.4 Алгоритмическая сложность

2.4.1 Задача о нахождении ДНФ по таблице истинности

- Прямой алгоритм перебирает строки таблицы истинности;
- Полиномиальная сложность по размеру таблицы истинности.

2.4.2 Задача о проверке тавтологичности

- Проверяет, истинна ли формула во всех моделях;
- Связана с проблемой SAT (проблема выполнимости);

- NP-полнота: нахождение эффективного алгоритма неизвестно;
- Есть очень хорошие SAT-решатели, которые применяют различные эвристики и быстро работают на формулах, которые появляются в реальных задачах.

Обновлено: 18 апреля 2025 г.

3 Лекция 3 (полнота и максимальность)

Определение 3.1. Арность операции (функции) — количество аргументов.

Арность может быть равной 0 — это константы.

Арность:

• 0 — операций всего 2 (\top, \bot)

- 0	onepartin beer o = (· , =)					
	$x \mid$		$\mid x \mid$	$\neg x$	T	
• 1 —	0	0	0	1	1	_
	1	0	1	0	1	_
	$x \mid$	$y \mid$	f_1	f_2	f_3	f_4
	0	0	0	0	0	
• 2 —	0	1	0	0	0	
	1	0	0	0	1	
	1	1	0	1	0	

Утверждение 3.1. Штрих Шеффера, имеющий следующую таблицу истинности:

\boldsymbol{x}	y	$x \uparrow y$
0	0	1
0	1	1
1	0	1
1	1	0

- полная операция, для системы $\{\uparrow\}$ верна теорема о функциональной полноте:
 - $x \uparrow x = \neg x$
 - $x \uparrow y = \neg(x \land y)$
 - $\neg(x \uparrow y) = \neg \neg(x \land y) = x \land y$
 - $x \lor y = \neg(\neg x \land \neg y)$

Утверждение 3.2. Стрелка Пирса, имеющая следующую таблицу истинности:

\boldsymbol{x}	y	$x \downarrow y$
0	0	1
0	1	0
1	0	0
1	1	0

[—] также полная операция и для неё выполнена теорема о функциональной полноте.

Определение 3.2. G — множество булевых функций, тогда [G] — *замыкание* множества G, т.е. все булевы функции, которые можно выразить формулами, использующими операции из G.

Эквивалентно, [G] — минимальное множество булевых функций, которое удовлетворяет следующим свойствам:

- 1. $G \subset [G]$;
- [G] замкнуто относительно композиции;

2.
$$\forall f_1, \dots, f_n \in [G] \land g(x_1, \dots, x_n) \in G \hookrightarrow g(f_1(x_1, \dots, x_{m_1}), \dots, f_n(x_1, \dots, x_{m_n})) \in [G]$$

3. [G] содержит все тождественные проекции, т.е. $\forall n \in \mathbb{N}, i < n : p_i^n(x_1, \dots, x_n) \equiv x_i$

Определение 3.3. Множество (класс) функций G называется *замкнутым*, если [G] = G.

Определение 3.4. Класс функций G называется *полным*, если $[G] = F_n$, где F_n — множество всех булевых функций n переменных.

Определение 3.5. Класс G называется *максимальным*, если это замкнутый собственный $(\neq F_n)$ класс, такой, что $\forall f \in F_m \setminus G \hookrightarrow G \cup \{f\}$ — полный класс. Эквивалентно, $[G \cup \{f\}] = F_n$.

Определение 3.6. Класс функций H неполный, если $\exists G$ — замкнутый, такой, что $G \neq F_n \land H \subset G$.

Лемма 3.1. Свойства замыкания:

- 1. $G \subset [G]$
- 2. $G \subset H \implies [G] \subset [H]$
- 3. [G] = [[G]]

Доказательство. 1. Очевидно

- 2. Пусть $f \in [G]$, тогда она получена по 1 и 2 свойствам замыкания из функций в G. Тогда очевидно, что $f \in [H]$.
- 3. \subset следует из первых двух пунктов \supset докажем по индукции. Пусть $f \in [[G]]$. Тогда пункты 1 и 3 из определения тривиальны. Проверим 2.

Факт: проекции позволяют увеличивать число переменных некоторыми мнимыми. Например, $g(p_1^3(x_1, x_2, x_3), p_2^3(x_1, x_2, x_3))$.

Пусть $f(x_1,\ldots,x_n)=g(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))$. По предположению индукции $f_i\in [G]\ \forall\,i.$ Таким образом, $f\in [G]$ как композиция.

Лемма 3.2. H не является полной $\iff \exists G$ — максимальная $u \ H \subseteq G$.

- \implies если H неполная, тогда [H] замкнута и неполна.
 - 1. Случай 1: [H] максимальна, тогда всё хорошо.
 - 2. Случай 2: [H] не максимальна $\implies \exists f \in F_m \setminus [H] : [[H] \cup \{f\}] \neq F_m$. Тогда пусть $H := [H] \cup \{f\}$ и вернёмся в начало. Теоретически, этот процесс может не сойтись. Сходимость доказывается леммой Цорна и трансфинитной индукцией или из теоремы Поста.

Теорема 3.1 (Поста). $T_0 = \{ f \mid f(0, \dots, 0) = 0 \}$

Лемма 3.3. T_0 — максимальный замкнутый класс.

Доказательство.

• Замкнутость:

$$\underbrace{g}_{\in T_0}(\underbrace{f_1(\vec{0})}_{\in T_0}, \dots, \underbrace{f_n(\vec{0})}_{\in T_0}) = 0$$

- Максимальность: Пусть $h \notin T_0$, тогда $h(0, \dots, 0) = 1$. Получаем два случая:
 - $-h(1,\ldots,1)=1 \implies h(x,\ldots,x)\equiv 1$

Возьмём полную систему $\{\oplus, \land, 1\}$. 1 уже имеем, а для каждой из остальных функций множества принадлежность к классу T_0 очевидна.

 $-h(1,\ldots,1)=0 \implies h(x,\ldots,x)\equiv \neg x$

Заметим, что также имеем в T_0 конъюнкцию (т.к. $0 \land 0 \equiv 0 \implies \land \in T_0$). Тогда с помощью неё и отрицания выразим все остальные операции.

ичны T_{2} за исклю-

Определение 3.7. $T_1 = \{ f \mid f(1, \dots, 1) = 1 \}$. Лемма и её доказательство аналогичны T_0 , за исключением того, что если $h(x, \dots, x) = 0$, то берём полную систему $\{ \rightarrow, \bot \}$.

4 Лекция 4 (теорема Поста)

4.1 Продолжение про классы функций

Определение 4.1. *М* — класс монотонных функций, содержащий функции, неубыващие по каждому аргументу. Т.е., если для наборов аргументов

$$f(x_1,\ldots,x_n), f(y_1,\ldots,y_n)$$

верно

$$x_1 \leqslant y_1, \dots, x_n \leqslant y_n,$$

то выполняется

$$f(\vec{x}) \leqslant f(\vec{y}).$$

Пример монотонной функции: $x_1 \wedge x_2$.

Пример немонотонной функции: $x_1 \to x_2$.

Лемма 4.1. M является максимальным замкнутым классом.

Доказательство. Докажем замкнутость. Возьмём набор функций

$$g(x_1, \ldots, x_n), f_1(y_1, \ldots, y_m), \ldots, f_n(y_1, \ldots, y_m) \in M.$$

Рассмотрим $g(f_1(\vec{y}), \dots, f_n(\vec{y}))$, и возьмём $\vec{y'}$ такой, что $\forall i : y_i \leqslant y'_i$. Тогда $\forall i : f_i(\vec{y}) \leqslant f_i(\vec{y'})$, откуда получаем $g(f_1(\vec{y}), \dots, f_n(\vec{y'})) \leqslant g(f_1(\vec{y'}), \dots, f_n(\vec{y'}))$.

Теперь докажем максимальность. Возьмём $h \notin M$. Заметим, что $0, 1 \in M$. Тогда $\exists x_1 \leqslant y_1, \ldots, x_m \leqslant y_m : h(\vec{x}) > h(\vec{y})$, т.е. $h(\vec{x}) = 1$ и $h(\vec{y}) = 0$. Пусть $\vec{x} \preccurlyeq \vec{y} \iff x_1 \leqslant y_1 \land \cdots \land x_n \leqslant y_n$.

Лемма 4.2 (Вспомогательная лемма). Пусть $\vec{x} \preccurlyeq \vec{y}$. Тогда $\exists \vec{x}^1, \dots, \vec{x}^k \colon \vec{x}^1 = \vec{x} \land \vec{x}^k = \vec{y} \ u \ \vec{x}^i$ отличается от \vec{x}^{i+1} в одной координате $u \ \vec{x} = \vec{x}^1 \preccurlyeq \vec{x}^2 \preccurlyeq \dots \preccurlyeq \vec{x}^k = \vec{y}$.

Доказательство. Доказательства не было, интуитивно — путь в n-мерном булевом кубе от вершины \vec{x} до вершины \vec{y} .

Посмотрим значение функции h на точках \vec{x}^i . Тогда $h(\vec{x}^1)=1,\ h(\vec{x}^k)=0$. Понятно, что тогда $\exists i: h(\vec{x}^i)=1 \land h(\vec{x}^{i+1})=0$. Пусть у \vec{x}^i на j-ой позиции стоит 0, а у $\vec{x}^{i+1}-1$. Получаем

$$h(\dots \underbrace{0}_{j}\dots) = 1, h(\dots \underbrace{1}_{j}\dots) = 0 \implies h(\dots \underbrace{p}_{j}\dots) = \neg p$$

Таким образом получили отрицание. С другой стороны, конъюнкция также монотонна, а с помощью этих двух функций уже выразим все остальные.

Определение 4.2. S — класс самодвойственных функций, т.е функций, удовлетворяющих условию

$$f(\overline{x_1},\ldots,\overline{x_n})=\overline{f}(x_1,\ldots,x_n)$$

Пример несамодвойственной функции: $x \wedge y$.

Пример самодвойственной функции: $\neg x, x \oplus y \oplus z$.

Лемма 4.3. S является максимальным замкнутым классом.

Доказательство. Докажем замкнутость. Пусть

$$f_1, \ldots, f_n : \mathbb{B}^m \to \mathbb{B}; q : \mathbb{B}^n \to \mathbb{B} \in S$$

Рассмотрим $g(f_1(\overline{y_1},\ldots,\overline{y_m}),\ldots,f_n(\overline{y_1},\ldots,\overline{y_m}))=g(\overline{f_1(\vec{y})},\ldots,\overline{f_n(\vec{y})})=\overline{g(f_1(\vec{y}),\ldots,f_n(\vec{y}))}.$

Докажем максимальность. Пусть $h \notin S$, тогда $\exists x_1, \ldots, x_n : h(\overline{x_1}, \ldots, \overline{x_n}) = h(x_1, \ldots, x_n)$.

Обозначим $p^0 = \neg p, p^1 = p$. Тогда $h(p^{x_1}, \dots, p^{x_n}) = h(\overline{p^{x_1}}, \dots, \overline{p^{x_n}})$. Заметим, что

$$h(0^{x_1}, \dots, 0^{x_n}) = h(\overline{x_1}, \dots, \overline{x_n}), \ h(1^{x_1}, \dots, 1^{x_n}) = h(x_1, \dots, x_n)$$

Пусть $g(p) := h(p^{x_1}, \dots, p^{x_n})$, тогда возможно два случая:

- 1. $g(p) \equiv 1$, тогда получаем $\neg 1 = 0$
- 2. $q(p) \equiv 0$, тогда получаем $\neg 0 = 1$

То есть имеем константы 0 и 1.

Рассмотрим $V(x_1, x_2, x_3) = x_1 \wedge x_2 \oplus x_2 \wedge x_3 \oplus x_1 \wedge x_3$. Тогда в поле \mathbb{F}_2 получаем:

$$(x_1+1)(x_2+1) + (x_2+1)(x_3+1) + (x_1+1)(x_3+1) = \dots =$$

$$= x_1x_2 + x_2x_3 + x_1x_3 + 1 =$$

$$= \overline{x_1x_2 + x_2x_3 + x_1x_3}$$

Т.е. $V \in S$. Заметим, что $V(x_1, x_2, 0) = x_1 \wedge x_2$, а также, что $\neg \in S$. В итоге получаем полную систему $\{\neg, V, 0\}$.

Определение 4.3. *Многочлен Жегалкина* — многочлен над полем \mathbb{F}_2 . Эквивалентно можно считать, что это формула с операциями \wedge , \oplus , 1, представляющая из себя сумму \oplus элементарных конъюнкций (*одночленов Жегалкина*) и, возможно, 1.

Лемма 4.4. Все булевы функции однозначно (с точностью до перестановки слагаемых и сомножителей) представляются в виде многочлена Жегалкина.

Доказательство. Всего одночленов Жегалкина от n переменных 2^n . Всего многочленов Жегалкина, соответственно, 2^{2^n} . Булевых функций $\mathbb{B}^n \to \mathbb{B}$ тоже 2^{2^n} . А т.к. каждая булева функция представима в виде многочлена Жегалкина (т.е. есть сюръекция) и их число одинаково, то имеем и биекцию между ними.

Определение 4.4. *Степень* многочлена Жегалкина равна количеству переменных в нём. *Линейными* называются многочлены, в которых все одночлены степени не больше 1.

Определение 4.5. L — класс функций, эквивалентных некоторому линейному многочлену Жегалкина.

Лемма 4.5. L является максимальным замкнутым классом.

Доказательство. Пусть $g \notin L$; $0,1 \in L$ и определим $g(x_1,\ldots,x_n) = x_1x_2\ldots x_m + \ldots$. Рассмотрим $g(x_1,x_2,1,\ldots,1)$:

$$g(x_1, x_2, 1, \dots, 1) = \begin{cases} x_1 x_2 \\ x_1 x_2 + 1 \\ x_1 x_2 + x_1 \\ x_1 x_2 + x_2 \\ x_1 x_2 + x_1 + 1 \\ x_1 x_2 + x_2 + 1 \\ x_1 x_2 + x_1 + x_2 \\ x_1 x_2 + x_1 + x_2 + 1 \end{cases}$$

 $x_1, x_2 \in L$, тогда в каждом случае можем добавить нужное число раз $x_1, x_2, 1$ к выражению, чтобы получить $x_1x_2 \equiv x_1 \wedge x_2$. Получаем полную систему $\{\wedge, \neg\}$.

Теорема 4.1 (Поста). Множество булевых функций H не является полным тогда и только тогда, когда оно содержится в одном из классов T_0, T_1, M, S, L .

Доказательство. План доказательства:

- \Leftarrow : Если H содержится в каком-то собственном замкнутом классе, то он не полон;
- ullet \Longrightarrow : Покажем обратное. Пусть H не лежит целиком ни в одном из перечисленных классов:
 - Возьмём функцию $f_0 \in H$: $f_0 \notin T_0$. Тогда $f_0(x, \dots, x)$ либо равна 1, либо $\neg x$.
 - Возьмём функцию $f_1 \in H$: $f_1 \notin T_1$. Тогда $f_1(x, \dots, x)$ либо равна 0, либо $\neg x$.
 - Если есть $\neg x$: используем несамодвойственную функцию f_S и получим одну из констант.
 - Если есть 0 и 1, тогда используем немонотонную функцию f_M и получим отрицание $\neg x$.
 - У нас есть 0, 1 и ¬. Используя нелинейную функцию f_L можем получить \wedge

4.2 Замены

Определение 4.6. Замену переменной p на формулу ψ в формуле φ обозначается $\varphi[p/\psi].$

Теорема 4.2. Пусть формулы ψ_1 и ψ_2 имеют одинаковые таблицы истинности ($\psi_1 \equiv \psi_2$), тогда для любой формулы φ

$$\varphi[p/\psi_1] \equiv \varphi[p/\psi_2]$$

Доказательство. По индукции:

База: для $\varphi = \bot / \top$ очевидно, как и для $\varphi = q \neq p$. Для $\varphi = p$ получаем $\varphi[p/\psi_1] = \psi_1$ и $\varphi[p/\psi_2] = \psi_2$, а они равны.

Шаг: $\varphi = \varphi_1 \wedge \varphi_2$

 $\varphi[p/\psi_1] = \varphi_1[p/\psi_1] \wedge \varphi_2[p/\psi_1]$, аналогично для ψ_2 . Тогда, по предположению индукции, $\varphi_1[p/\psi_1] \equiv \varphi_1[p/\psi_2]$ и $\varphi_2[p/\psi_1] \equiv \varphi_2[p/\psi_2]$, а объединение этих формул не влияет на эквивалентность.

5 Лекция 5 (выводы)

5.1 Правила вывода

Определение 5.1. Правилом вывода будем называть пару, состоящую из множества формул Γ и одной формулы φ . При этом Γ может быть пустым. Γ будем называть множеством *посылок*, а формулу φ заключением. Правила вывода обычно записывают так:

$$\frac{\Gamma}{\varphi}$$
 или $\frac{\psi_1,\ldots,\psi_n}{\varphi}$

Теоретически можно рассматривать правила, в которых Γ бесконечно, такие правила называются $un\phi unumaphumu$, но мы так делать не будем, у нас всё конечно.

Пусть Γ — множество формул (необязательно конечное), и φ — формула. Будем говорить, что из Γ логически следует φ , если в любой модели M, в которой истинны все формулы из Γ истинна и формула φ (обозначение: $\Gamma \models \varphi$). Правило $\frac{\Gamma}{\varphi}$ называется корректным, если $\Gamma \models \varphi$.

Пример корректных правил: $\frac{p}{p}, \frac{p \to q, q \to r}{p \to r}$ (силлогизм); пример некорректных правил: $\frac{p}{p}, \frac{p}{p \wedge q}$.

Определение 5.2. Правило вывода $\frac{\Delta}{\psi}$ является частным случаем правила $\frac{\Gamma}{\phi}$, если существуют формулы $\theta_1, \ldots, \theta_n$ и переменные p_1, \ldots, p_n , такие что первое правило получается из второго путём одновременной подстановки формул θ_i вместо каждого вхождения переменной p_i во всех посылках правила ψ (с сохранением их порядка), а также в его заключении.

Например,
$$\frac{(x \to x) \wedge (\neg y)}{x \to x}$$
 — частный случай правила $\frac{p \wedge q}{p}$.

Мы будем рассматривать наши правила выводов как схемы, т.е. одно правило — по сути бесконечно много правил, включающее все частные случаи данного правила.

Определение 5.3. Пусть у нас есть множество правил вывода \mathcal{R} , выводом в \mathcal{R} из множества *гипо- тез* Γ будем называть последовательность формул, каждая из которых либо принадлежит Γ , либо получена с помощью частного сдучая некоторого правила из \mathcal{R} , при этом множество посылок должно состоять только из формул, которые появлялись в выводе раньше.

Формула φ выводится из Γ в \mathcal{R} ($\Gamma \vdash_{\mathcal{R}} \varphi$), если существует вывод из Γ в \mathcal{R} , заканчивающийся формулой φ .

Если формула φ выводится из пустого множества гипотез в \mathcal{R} , то мы говорим, что φ выводима в \mathcal{R} и записывается как $\vdash_{\mathcal{R}} \varphi$.

Пример:

$$\mathcal{R} = \left\{ \frac{p \to q, q \to r}{p \to r}, \frac{p}{\neg \neg p} \right\}, \ \Gamma = \left\{ p \to \neg p \right\}$$

Тогда примером вывода будет:

$$p \to \neg p$$
$$\neg \neg (p \to \neg p)$$

Первое правило из \mathcal{R} мы использовать для вывода не можем. Добавим в Γ гипотезу $\neg p \to q$. Тогда, можем дополнить вывод до

$$\neg p \to q$$
$$p \to q.$$

Таким образом, $\Gamma \vdash_{\mathcal{R}} p \to q$

Теорема 5.1 (Теорема о корректности). Если все правила в \mathcal{R} корректны и $\Gamma \vdash_{\mathcal{R}} \varphi$, то $\Gamma \models \varphi$.

Доказательство. По индукции. Знаем, что для $\varphi_1, \ldots, \varphi_n$: $\forall i : \Gamma \models \varphi_i$.

База: $i = 1 \implies$

- 1. $\varphi_1 \in \Gamma \implies \varphi_1$ истинная в модели;
- 2. частный случай правила из \mathcal{R} . Отсюда φ_1 тавтология $\Longrightarrow \mathcal{M} \models \varphi_1$.

Шаг: пусть $\forall j < i$: $\Gamma \models \varphi_i$. Докажем для φ_i .

- 1. $\varphi_i \in \Gamma \implies \mathcal{M} \models \varphi_i$ 2. $\exists j_1, \dots, j_k < i : \frac{\varphi_{j_1}, \dots, \varphi_{j_k}}{\varphi_i}$ частный случай правила из \mathcal{R} . Тогда по предположению индукции

Лемма 5.1. Если $\frac{\varphi_1,\ldots,\varphi_n}{\wp}$ корректно и $\frac{\eta_1,\ldots,\eta_n}{n}$ — частный случай (P), то оно тоже корректно.

Доказательство. Имеем $\eta_1 = \varphi_1[p_1/\theta_1, p_2/\theta_2, \dots, p_n/\theta_n], \dots, \eta = \varphi[p_1/\theta_1, p_2/\theta_2, \dots, p_n/\theta_n]$ P — корректна $\Longrightarrow \forall M \colon \varphi_1, \dots, \varphi_n$ истинны $\Longrightarrow \varphi$ — истинна.

Пусть η_1, \ldots, η_n истинны в модели M. Возьмём M' такую, что $\forall i : M' \models p_i \iff \mathcal{M} \models \theta_i$. Утверждение: $\forall \varphi : \mathcal{M} \models \varphi \iff \mathcal{M} \models \varphi[p/\theta_1]$. Доказывается индукцией по длине φ .

Тогда по лемме φ_i истинна в \mathcal{M} .

5.2Конкретные правила

Определение 5.4. Modus Ponens:

$$\frac{p,p\to q}{q}$$

Определение 5.5. Аксиомы Гильберта:

1. (*I*1):

$$q \to (p \to q)$$

2. (D):

$$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

3. (N):

$$(\neg q \to \neg p) \to (p \to q)$$

Страница 14 из 32

6 Лекция 6 (продолжение про выводы)

Определение 6.1. Правило $\frac{\Gamma}{\varphi}$ называется *допустимым* в множестве правил вывода \mathcal{R} , если

$$\Gamma \vdash_{\mathcal{R}} \varphi$$

Лемма 6.1. Если $\frac{\Gamma}{\varphi}$ — допустимое в $\mathcal R$ правило, а $\frac{\Delta}{\psi}$ — частный случай правила $\frac{\Gamma}{\varphi}$, то $\Delta \vdash_{\mathcal R} \psi$

Доказательство. Пусть есть вывод $\Gamma \vdash_{\mathcal{R}} \varphi$:

- 1. ξ_1
- 2. ...
- 3. $\xi_n = \varphi$

Существует подстановка, переводящая Γ в Δ и φ в ψ . Сделаем такую подстановку во все формулы вывода.

Теорема 6.1 (The Lemma Theorem). Если правило ρ допустимо (доказуемо) в множестве правил вывода $\mathcal{R} \cup \lambda$ и при этом λ допустимо в \mathcal{R} , то и ρ допустимо в \mathcal{R} .

Доказательство. Пусть $\lambda = \frac{\Delta}{\psi}, \, \rho = \frac{\Gamma}{\varphi}, \,$ а также два вывода:

- $\Gamma \vdash_{\mathcal{R} \cup \{\lambda\}} \varphi$:
 - 1. ξ_1
 - 2. ...
 - 3. $\xi_n = \varphi$
- $\Delta \vdash_{\mathcal{R}} \psi$:
 - 1. η_1
 - 2. ...
 - 3. $\eta_m = \psi$

Если в выводе ξ_i получено по правилу из \mathcal{R} , то всё хорошо. Если же ξ_i получено с помощью λ , то имеем правило вывода $\frac{\xi_{j_1},\dots,\xi_{j_l}}{\xi_i}$ для $\xi_{j_1},\dots,\xi_{j_l}\in\{\xi_1,\dots,\xi_{i-1}\}$, частный случай λ . Тогда по предыдущей лемме можем этот вывод заменить на вывод $\xi_{j_1},\dots,\xi_{j_l}\vdash_{\mathcal{R}}\xi_i$:

- 1. η_1'
- 2. ...
- 3. $\eta'_{k} = \xi_{i}$

и вставить его в доказательство вместо ξ_i . Делаем такую подстановку во все такие строки вывода и получаем новый вывод $\Gamma \vdash_{\mathcal{R}} \varphi$.

6.1 Примеры допустимых правил

Пусть $\mathcal{R} = \{I1, D, N, MP\}$, тогда в \mathcal{R} допустимы правила

$$(I0) \frac{}{p \to p}, \ \frac{p \to q, q \to r}{p \to r}, \ \frac{p \to q, p \to \neg q}{\neg p}$$

Теорема 6.2 (Теорема о дедукции). Если \mathcal{R} — множество правил вывода, содержащее MP, I1 и D, и все остальные правила являются аксиомами (пустое множество посылок), то для любых формул φ , ψ и множества формул Γ верно

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi \iff \Gamma \vdash_{\mathcal{R}} (\varphi \to \psi)$$

Доказательство. В одну сторону можно усилить утверждение

Лемма 6.2. Если \mathcal{R} — множество правил вывода, содержащее MP, то для любых формул φ , ψ и множества формул Γ верно

$$\Gamma \vdash_{\mathcal{R}} (\varphi \to \psi) \implies \Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi$$

Доказательство. Имеем изначальный вывод $\Gamma \vdash_{\mathcal{R}} (\varphi \to \psi)$

- 1. ...
- 2. $\varphi \to \psi$

Тогда получаем следующий вывод $\Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi$:

- 1. . . .
- 2. $\varphi \to \psi$
- 3. ψ (MP)

Осталось доказать, что $\Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi \implies \Gamma \vdash_{\mathcal{R}} (\varphi \to \psi).$

Будем доказывать индукцией по длине вывода. Пусть имеем вывод $\Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi$:

- 1. ξ_1
- 2. ...
- 3. $\xi_n = \psi$

Будем доказывать, что для любого $i \leqslant n$ верно

$$\Gamma \vdash_{\mathcal{R}} (\varphi \to \xi_i)$$

Разберём случаи:

- Возьмём $\xi_i = \varphi$. Докажем, что $\Gamma \vdash_{\mathcal{R}} (\varphi \to \varphi)$. Но уже доказывали (в ДЗ), что из пустого множества посылок доказуемо выражение $p \to p$, а $\varphi \to \varphi$ его частный случай.
- Пусть теперь $\xi_i \in \Gamma$. Тогда нужно построить вывод $\Gamma \vdash_{\mathcal{R}} (\varphi \to \xi_i)$. Тогда
 - 1. ξ_i
 - 2. $\xi_i \to (\varphi \to \xi_i)$ (I1)
 - 3. $\varphi \to \xi_i \text{ (MP)}$
- ξ_i получена по правилу I1 или D (с пустым множеством посылок). Вывод будет тот же самый, но первой строкой вывода ξ_i записан не потому что $\xi_i \in \Gamma$, а потому что ξ_i выводится из аксиом I1 и D.
- ξ_i получена по правилу MP из ξ_j и ξ_k . Тогда ξ_k имеет вид $\xi_j \to \xi_i$. По предположению индукции $\Gamma \vdash_{\mathcal{R}} (\varphi \to \xi_j)$ и $\Gamma \vdash_{\mathcal{R}} (\varphi \to (\xi_j \to \xi_i))$. Тогда получаем следующий вывод:

```
1. ...

2. \varphi \to \xi_{j}

3. ...

4. \varphi \to (\xi_{j} \to \xi_{i})

5. (\varphi \to (\xi_{j} \to \xi_{i})) \to ((\varphi \to \xi_{j}) \to (\varphi \to \xi_{i})) (D)

6. ((\varphi \to \xi_{j}) \to (\varphi \to \xi_{i})) (MP)

7. (\varphi \to \xi_{i}) (MP)
```

6.2 Противоречивость и непротиворечивость

Рассмотрим аксиому

$$(I2) (\neg p \rightarrow (p \rightarrow q))$$

Пусть \mathcal{R} — множество правил вывода, которое включает MP, I0 и I2, а также может дополнительно включать только правила вывода без посылок. Множество формул Γ называется (синтаксически) *противоречивым (inconsistent)* (относительно \mathcal{R}), если выполняется одно из следующих пяти эквивалентных условий:

- Формула $\neg(p \to p)$ выводится из Γ в \mathcal{R} $(\Gamma \vdash_{\mathcal{R}} \neg(p \to p))$
- ullet Отрицание некоторой аксиомы выводимо из Γ
- $\Gamma \vdash_{\mathcal{R}} \varphi$ и $\Gamma \vdash_{\mathcal{R}} \neg \varphi$ для некоторой формулы φ
- Из Г можно вывести в \mathcal{R} любую формулу (вообще любую)
- ullet Отрицание всех аксиом доказуемы в ${\mathcal R}$ из Γ

Множество формул, которое не является противоречивым, называется $nentom{ueopevueum}$ (consistent).

Доказательство. 1 \implies 2: $\neg(p \to p)$ само по себе есть отрицание аксиомы I0.

 $2\implies 3$: Пусть есть α — аксиомы из $\mathcal R$ и $\varphi=\alpha$, тогда $\Gamma \vdash_{\mathcal R} \alpha$. С другой стороны, $\Gamma \vdash_{\mathcal R} \neg \alpha$ из предположения.

 $3 \implies 4$: Имеем вывод $\Gamma \vdash_{\mathcal{R}} \varphi$ и $\Gamma \vdash_{\mathcal{R}} \neg \varphi$. Объединим их в один вывод:

- 1. ...
- $2. \varphi$
- 3. ...
- $4. \neg \varphi$

Тогда дополним его:

- 5. $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$ (I2)
- 6. $\varphi \to \psi$ (MP)
- 7. ψ (MP)

4 \implies 5: можно вывести любую формулу, значит можно вывести и отрицания аксиом.

 $5 \implies 1$: отрицания всех аксиом доказуемы, значит доказуемо и отрицание I0.

Теорема 6.3. Пусть $\{MP, I1, D, N\} \subseteq \mathcal{R}$ и, кроме MP, все правила в \mathcal{R} без посылок. Для любого

множества формул Γ и формулы φ верно, что $\Gamma \cup \{ \neg \varphi \}$ противоречиво в \mathcal{R} , тогда $\Gamma \vdash_{\mathcal{R}} \varphi$. Т.е.,

$$\Gamma \cup \{ \neg \varphi \} \vdash_{\mathcal{R}} \neg (p \to p) \implies \Gamma \vdash_{\mathcal{R}} \varphi$$

Доказательство. По теореме о дедукции, левая часть последнего утверждения равносильна $\Gamma \vdash_{\mathcal{R}}$ $(\neg \varphi \rightarrow \neg (p \rightarrow p)).$

Тогда имеем вывод

- 1. ...
- 2. $\neg \varphi \rightarrow \neg (p \rightarrow p)$
- 3. $(\neg \varphi \to \neg (p \to p)) \to ((p \to p) \to \varphi)$ (N)
- 4. $(p \to p) \to \varphi$ (MP)
- 5. . . . (вывод I0 с помощью { MP, I1, D, N })
- 6. $p \rightarrow p$ (I0)
- 7. φ

Лемма 6.3. Пусть $\mathcal{R} = \{MP, I1, D, N\}$, тогда правило I2 допустимо в \mathcal{R} , т.е.

$$\vdash_{\mathcal{R}} (\neg p \to (p \to q))$$

Доказательство. По теореме о дедукции вместо изначального утверждения можем доказать $\neg p \vdash_{\mathcal{R}}$ $(p \to q)$. Построим вывод. Гипотеза — $\neg p$, тогда

- 1. $\neg p$
- 2. $\neg p \rightarrow (\neg q \rightarrow \neg p)$ (I1)
- 3. $\neg q \rightarrow \neg p \text{ (MP)}$
- 4. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$ (N)
- 5. $p \rightarrow q \text{ (MP)}$

Страница 18 из 32

7 Лекция 7

7.1 Основное множество правил

$$(MP) \frac{p, p \to q}{q}$$

$$(I0) (p \to p)$$

$$(I1) (q \to (p \to q))$$

$$(D) ((p \to (q \to r)) \to ((p \to q) \to (p \to r)))$$

$$(I2) (\neg p \to (p \to q))$$

$$(N) ((\neg q \to \neg p) \to (p \to q))$$

$$(NI) (p \to (\neg q \to \neg (p \to q)))$$

$$(NN) (p \to \neg \neg p)$$

$$(R) ((q \to p) \to ((\neg q \to p) \to p))$$

Будем писать Н (без индекса) для выводимости в этом множестве правил.

На самом деле, обязательными являются лишь правила I1, D, N.

Обозначим систему аксиом Гильберта как \mathcal{H} .

Определение 7.1. Пусть φ — формула, и $b \in \{\text{True}, \text{False}\}$, тогда

$$\varphi^b = \begin{cases} \varphi, \ b = \text{True} \\ \neg \varphi, \ b = \text{False} \end{cases}$$

Определение 7.2. Пусть M — некоторая конечная модель , т.е. отображение из конечного множества переменных в множество { True, False }.

Определим множество формул

$$\Gamma_M = \bigcup_{M[p]=b} \{ p^b \}$$

Например, если $M=\{\,p \colon {\rm True}, q \colon {\rm False}\,, x \colon {\rm False}\,\}$, то $\Gamma_M=\{\,p, \neg q, \neg x\,\}.$

Лемма 7.1. Пусть φ — формула, u M оценивает все формулы из φ u $M[\varphi]$ — истинностное значение формулы φ при оценке M, тогда

$$\Gamma_M \vdash \varphi^{M[\varphi]}$$

Доказательство. Доказательство индукцией по длине формулы:

База: $\varphi = p$. Утверждение следует из того, что $p \vdash p$ и $\neg p \vdash \neg p$.

Шаг:

• $\varphi = \neg \psi$

Если $M[\psi] = \text{True}$, то $M[\varphi]$ — False. Тогда по предположению индукции $\Gamma_M \vdash \psi^{\text{True}} = \psi$. Надо доказать, что $\Gamma_M \vdash \varphi^{\text{False}} = \neg \neg \psi$. Достаточно доказать, что $\vdash (\psi \to \neg \neg \psi)$ (правило NN). Вывод для $\neg \neg \psi$ выглядит так:

- 1. ...
- $2. \psi$
- 3. $\psi \rightarrow \neg \neg \psi$ (NN)
- $4. \neg \neg \psi$

Если $M[\psi]$ = False, то $M[\varphi]$ = True. По ПИ имеем $\Gamma_M \vdash \neg \psi$, нужно доказать $\Gamma_M \vdash \varphi = \neg \psi$. Вывод будет тривиальным;

- 1. $\neg \psi$
- $2. \varphi$
- $\varphi = (\psi_1 \to \psi_2)$. По предположению индукции $\Gamma_M \vdash \psi_1^{M[\psi_1]}$ и $\Gamma_M \vdash \psi_2^{M[\psi_2]}$. Надо разобрать 4 случая:
 - 1. $M[\psi_1] = \text{False}, M[\psi_2] = \text{False}.$ Докажем $\neg \psi_1, \neg \psi_2 \vdash (\psi_1 \to \psi_2)$ с помощью I2 $(\neg p \to (p \to q))$. Имеем вывод
 - 1. ...
 - $2. \neg \psi_1$
 - 3. $\neg \psi_1 \to (\psi_1 \to \psi_2)$ (I2)
 - 4. $\psi_1 \rightarrow \psi_2 \text{ (MP)}$
 - 2. False, True. Докажем $\neg \psi_1, \psi_2 \vdash (\psi_1 \to \psi_2)$ (I2) или (I1). То же самое, т.к. ψ_2 в прошлом выводе не участвовал.
 - 3. True, False. Докажем $\psi_1, \neg \psi_2 \vdash \neg(\psi_1 \to \psi_2)$ (NI). Получим вывод
 - 1. ...
 - 2. ψ_1
 - 3. ...
 - $4. \neg \psi_2$
 - 5. $\psi_1 \rightarrow (\neg \psi_2 \rightarrow \neg (\psi_1 \rightarrow \psi_2))$ (NI)
 - 6. $\neg \psi_2 \rightarrow \neg (\psi_1 \rightarrow \psi_2)$ (MP)
 - 7. $\neg(\psi_1 \rightarrow \psi_2)$ (MP)
 - 4. True, True. Докажем $\psi_1, \psi_2 \vdash (\psi_1 \to \psi_2)$. Соответствующий вывод:
 - 1. ...
 - 2. ψ_2
 - 3. $\psi_2 \to (\psi_1 \to \psi_2)$ (I1)
 - 4. $\psi_1 \rightarrow \psi_2 \text{ (MP)}$

Лемма 7.2. $Ecnu \Gamma \cup \{p\} \vdash \varphi \ u \Gamma \cup \{\neg p\} \vdash \varphi, \ mo \Gamma \vdash \varphi.$

Доказательство. Следует из аксиомы (R).

По теореме о дедукции из первого утверждения $\Gamma \vdash p \to \varphi$, а из второго $\Gamma \vdash \neg p \to \varphi$. Получим вывод:

- 1. ...
- 2. $p \to \varphi$
- 3. ...

- 4. $\neg p \rightarrow \varphi$
- 5. $(p \to \varphi) \to ((\neg p \to \varphi) \to \varphi)$ (R)
- 6. $(\neg p \to \varphi) \to \varphi$ (MP)
- 7. φ

Теорема 7.1 (О полноте в слабой форме). Если φ — тавтология, то $\vdash \varphi$, а значит и $\vdash_{\mathcal{H}} \varphi$.

Доказательство. \forall модели M, содержащей все переменные из φ имеем $M[\varphi]=$ True, Тогда по лемме

$$\Gamma_M \vdash \varphi$$
 для любой модели M .

Пусть p — некоторая переменная из φ , тогда все модели разобьются на пары, т.что в паре оценка отличается только в переменной p. Пусть M_1 и M_2 — две такие модели. Пусть

$$\Gamma_{M_1} = \Gamma' \cup \{p\}$$
 и $\Gamma_{M_2} = \Gamma' \cup \{\neg p\}$

По предыдущей лемме получим $\Gamma' \vdash \varphi$. Проделав так с каждой парой моделей мы уменьшим на 1 количество посылок. Действуя так мы сможем избавиться от всех посылок.

Теорема 7.2 (О полноте в сильной форме). Пусть Γ — конечное множество формул и φ — формула, тогда

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

Доказательство. \Leftarrow было в теореме о корректности.

 \implies Пусть $\Gamma = \{\psi_1, \dots, \psi_n\}$. По теореме о дедукции (применив n раз)

$$\Gamma \vdash \varphi \iff \vdash (\psi_1 \to (\dots (\psi_n \to \varphi) \dots))$$

Осталось показать, что

$$\Gamma \models \varphi \iff (\psi_1 \to (\dots (\psi_n \to \varphi) \dots))$$
 — тавтология

В правую сторону импликация известна, осталось доказать в левую. Пусть это не тавтология, тогда \exists модель, её опровергащая. Тогда надо чтобы ψ_i были истинными, а φ — ложной. Но тогда $\Gamma \not\models \varphi$. \square

Переформулируем это утверждение в симметричной форме.

 $\Gamma \models \varphi$ эквивалентно тому, что $\Gamma \cup \{ \neg \varphi \}$ не имеет модели.

 $\Gamma \vdash \varphi$ эквивалентно тому, что $\Gamma \cup \{ \neg \varphi \}$ противоречиво:

$$\Gamma \cup \{\neg \varphi\} \vdash \neg \varphi, \Gamma \cup \{\neg \varphi\} \vdash \varphi \implies \Gamma \cup \{\neg \varphi\} -$$
противоречиво

В другую сторону знаем, что $\Gamma \cup \{ \neg \varphi \} \vdash \neg (p \to p)$. Тогда:

- 1. $\Gamma \vdash \neg \varphi \rightarrow \neg (p \rightarrow p)$
- 2. $(\neg \varphi \to \neg (p \to p)) \to ((p \to p) \to \varphi)$ (N)
- 3. $(p \to p) \to \varphi$

4.
$$p \rightarrow p$$
 (I0)

5.
$$\varphi$$

Тогда изначальное утверждение эквивалентно следующему:

 Γ не имеет модели \iff Γ противоречиво

или

$$\Gamma$$
 выполнимо \iff Γ непротиворечиво

Теорема 7.3 (О компактности (синтаксическая)). Бесконечное множество формул непротиворечиво тогда и только тогда, когда любое его конечное подмножество непротиворечиво.

Доказательство. Пусть Γ противоречиво, тогда можно вывести $\Gamma \vdash \neg (p \to p)$, т.е. имеем вывод

- 1. ...
- $2. \neg (p \rightarrow p),$

он использует конечное число формул из Γ . Пусть Γ_0 — все формулы, используемые в доказательстве. Тогда $\Gamma_0 \vdash \neg (p \to p)$.

В другую сторону, если существует $|\Gamma_0| < \infty, \Gamma_0 \subseteq \Gamma$ и Γ_0 противоречива, то Γ также противоречива.

Теорема 7.4 (О компактности (семантическая)). Бесконечное подмножество формул Γ выполнимо (имеет модель) тогда и только тогда, когда любое его конечное подмножество выполнимо.

8 Лекция 8

Теорема 8.1 (О полноте в сильной форме). Произвольное множество формул Γ выполнимо тогда и только тогда, когда Γ непротиворечиво.

Доказательство.

Определение 8.1. Множество формул Γ называется *полным*, если оно непротиворечиво и «максимально», т.е. для любой формулы $\varphi \notin \Gamma$ верно, что $\Gamma \cup \{\varphi\}$ — противоречиво.

Лемма 8.1 (Линденбаум). Любое непротиворечивое множество можно дополнить до полного.

Доказательство. Перечислим все формулы $\varphi_0, \varphi_1, \dots$

Будем строить Γ_n по индукции. $\Gamma_0 = \Gamma$,

$$\Gamma_{n+1} = egin{cases} \Gamma_n \cup \{\, arphi_n \,\}\,, \ \text{если} \ \Gamma_n \cup \{\, arphi_n \,\}\, - \ \text{непротиворечиво} \ \Gamma_n, \ \text{иначе} \end{cases}$$

$$\Delta = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Проверим, что Δ непротиворечиво и максимально.

- Непротиворечивость
 - Если Δ противоречиво, то $\Delta \vdash \neg (p \to p)$. Такой вывод использует конечное число формул, а значит $\exists n : \Gamma_n \vdash \neg (p \to p) \implies \Gamma_n$ противоречиво, что противоречит построению Γ_n
- Максимальность
 - Пусть оно не максимально, т.е. $\exists \varphi \notin \Delta : \Delta \cup \{\varphi\}$ непротиворечиво. Тогда $\exists n : \varphi = \varphi_n$, но тогда $\Gamma_{n+1} = \Gamma_n \cup \{\varphi_n\}$
 - 1. $\Gamma_n \cup \{\varphi_n\}$ противоречиво, тогда $\Gamma_n \cup \{\varphi_n\} \vdash \neg(p \to p)$, откуда следует $\Delta \vdash \neg(p \to p)$, а значит Δ противоречива, противоречие
 - 2. $\Gamma_n \cup \{\varphi_n\}$ непротиворечиво, тогда $\varphi_n = \varphi \in \Delta$, противоречие

Лемма 8.2 (Свойства полных множеств). Пусть Δ — полное множество формул, тогда:

- $\neg \psi \in \Delta \iff \psi \notin \Delta$
- $(\psi_1 \to \psi_2) \in \Delta$ \longleftrightarrow $(\psi_1 \notin \Delta \lor \psi_2 \in \Delta)$

Доказательство. • Пусть оба $\in \Delta$, тогда получаем $\Delta \vdash \psi$ и $\Delta \vdash \neg \psi$ и Δ противоречиво Пусть оба $\notin \Delta$. Тогда по максимальности добавление ψ и $\neg \psi$ приводит к противоречивости:

$$\begin{cases} \Delta \cup \{\,\psi\,\} \, - \, \text{противоречиво} \implies \Delta \vdash \neg \psi \\ \Delta \cup \{\,\neg\psi\,\} \, - \, \text{противоречиво} \implies \Delta \vdash \neg \neg \psi \end{cases}$$

- Имея первый пункт, достаточно исключить следующие 3 случая:
 - $-(\psi_1 \to \psi_2) \in \Delta$ и $\psi_1 \in \Delta$ и $\neg \psi_2 \in \Delta$, тогда $\Delta \vdash (\psi_1 \to \psi_2)$ и $\Delta \vdash \psi_1$. По MP получаем $\Delta \vdash \psi_2$, но $\Delta \vdash \neg \psi_2$, откуда Δ противоречиво.

- $-\neg(\psi_1 \to \psi_2) \in \Delta$ и $\neg\psi_1 \in \Delta$ (равносильно $\psi_1 \notin \Delta$ по первому пункту). Имеем $\neg\psi_1 \to (\psi_1 \to \psi_2)$ по I2; по MP получим $\Delta \vdash \psi_1 \to \psi_2$, и имея $\Delta \vdash \neg(\psi_1 \to \psi_2)$ получаем противоречие.
- $-\neg(\psi_1 \to \psi_2) \in \Delta$ и $\psi_2 \in \Delta$. Вывод аналогичен предыдущему пункту:
 - 1. $\psi_2 \to (\psi_1 \to \psi_2)$ (I1)
 - 2. $\psi_1 \rightarrow \psi_2 \text{ (MP)}$
 - 3. $\neg(\psi_1 \to \psi_2)$ по условию, противоречие.

Определение 8.2. Пусть Δ — полное множество формул. Определим модель M_{Δ} следующим образом:

$$M_{\Delta}[p] = \begin{cases} \text{True, } p \in \Delta \\ \text{False, } p \notin \Delta \end{cases}$$

Лемма 8.3. Для произвольной формулы φ верно, что

$$M_{\Delta}[\varphi] = \text{True} \iff \varphi \in \Delta$$

Доказательство. Докажем индукцией по φ .

База: верна по определению $M_{\Delta}[\varphi]$

Шаг:

- $\varphi = \neg \psi$ $M_{\Delta}[\varphi] = \begin{cases} \text{True, } M_{\Delta}[\psi] = \text{False} \iff \psi \notin \Delta \iff \varphi = \neg \psi \in \Delta \\ \text{False, } M_{\Delta}[\psi] = \text{True} \iff \psi \in \Delta \iff \varphi = \neg \psi \notin \Delta \end{cases}$ из предыдущей леммы.
- $\varphi = (\psi_1 \to \psi_2)$. $(\psi_1 \to \psi_2) \in \Delta \iff (\psi_1 \notin \Delta \lor \psi_2 \in \Delta) \iff M_{\Delta}[\psi_1] = \text{False} \lor M_{\Delta}[\psi_2] = \text{True} \iff M_{\Delta}[\psi_1 \to \psi_2] = \text{True}$

Докажем наконец изначальную теорему (да, это было доказательство теоремы на полторы страницы):

 \Longrightarrow Если Γ выполнимо, то $\exists M$, оценивающая все переменные, в которой все формулы из Γ истинны.

Пусть Γ противоречиво, тогда $\Gamma \vdash \neg (p \to p)$, но в силу того, что все правила корректны, т.е. сохраняют истинность, то в модели M должна быть истинная формула $\neg (p \to p)$, что невозможно.

 \longleftarrow Теперь, пусть Γ непротиворечиво, тогда его можно расширить по лемме Линденбаума до полного множества Δ . Тогда в модели M_{Δ} будут истинны все формулы из Γ благодаря предыдущей лемме. \square

8.1 Доказательства аксиом

Напоминание про силлогизм:

$$\frac{p \to q, q \to r}{p \to r}$$

• (I0):

$$p \to p$$

Доказательство. 1. $p \to ((p \to p) \to p)$ (I1)

2.
$$(p \to ((p \to p) \to p)) \to ((p \to (p \to p)) \to (p \to p))$$
 (D)

3.
$$(p \to (p \to p)) \to (p \to p)$$
 (MP)

4.
$$p \rightarrow (p \rightarrow p)$$
 (I1)

5.
$$p \rightarrow p \text{ (MP)}$$

• (I2):

$$\neg p \to (p \to q)$$

П

П

Доказательство. 1. $\neg p \rightarrow (\neg q \rightarrow \neg p)$ (I1)

2.
$$(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$$
 (N)

3.
$$\neg p \rightarrow (p \rightarrow q)$$
 (силлогизм)

• Вспомогательная аксиома

$$\vdash \neg \neg p \rightarrow p$$

Доказательство. По лемме о дедукции доказательство аксиомы эквивалентно доказательству $\neg\neg p \vdash p$. Хотим вывести $\vdash \neg\neg p \to (\neg\neg p \to p)$

1.
$$\neg \neg p \rightarrow (\neg \neg \neg p \rightarrow \neg \neg p)$$
 (I1)

2.
$$\neg \neg p \vdash \neg \neg \neg \neg p \rightarrow \neg \neg p$$

3.
$$(\neg\neg\neg\neg p \rightarrow \neg\neg p) \rightarrow (\neg p \rightarrow \neg\neg\neg p)$$
 (N)

4.
$$\neg\neg p \vdash \neg p \rightarrow \neg\neg\neg p$$
 (т.к. умеем выводить $\neg\neg\neg\neg p \rightarrow \neg\neg p$ из $\neg\neg p$)

5.
$$(\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)$$
 (N)

6.
$$\neg \neg p \vdash \neg \neg p \rightarrow p$$
 (т.к. умеем выводить $\neg p \rightarrow \neg \neg \neg p$ из $\neg \neg p$)

7.
$$\neg \neg p \vdash p$$

• (NN):

$$p \to \neg \neg p$$

Доказательство. 1. $(\neg \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg \neg p)$ (N)

2. $\vdash \neg \neg \neg p \to \neg p$ (предыдущий пункт, частный случай для $\neg p$)

3.
$$\vdash p \rightarrow \neg \neg p \text{ (MP)}$$

 $\vdash (p \to q) \to (\neg q \to \neg p)$

Доказательство. По теореме о дедукции она выводима тогда и только тогда, когда выводима $(p \to q) \vdash \neg q \to \neg p$. Докажем вспомогательную лемму

Лемма 8.4.

$$\vdash (p \to q) \to (\neg \neg p \to \neg \neg q)$$

Страница 25 из 32

 \mathcal{A} оказательство. Вывод эквивалентен $p \to q \vdash \neg \neg p \to \neg \neg q \iff p \to q, \neg \neg p \vdash \neg \neg q.$ По одному из прошлых пунктов знаем $\vdash \neg \neg p \to p,$ по силлогизму получаем $\vdash \neg \neg p \to q,$ $\vdash q \to \neg \neg q, \vdash \neg \neg p \to \neg \neg q.$

Тогда получаем следующий вывод:

1.
$$p \rightarrow q \vdash \neg \neg p \rightarrow \neg \neg q$$

2.
$$p \to q \vdash \neg q \to \neg p$$
 (N)

• (NI):

$$\vdash (p \to (\neg q \to \neg (p \to q)))$$

Доказательство. Достаточно вывести $p \vdash \neg q \to \neg (p \to q)$. Если сможем доказать $p \vdash (p \to q) \to q$, то получим требуемое (по предыдущему пункту $\neg q \to \neg (p \to q) \equiv (p \to q) \to p$). По теореме о дедукции это эквивалентно $p, p \to q \vdash q$, по MP это верно.

9 Лекция 9 (логика предикатов)

«Все люди смертны, люди существуют, следовательно смертные существуют.»:

$$\forall x[\operatorname{Man}(x) \to \operatorname{Mortal}(x)] \land \exists x[\operatorname{Man}(x)] \to \exists x[\operatorname{Mortal}(x)]$$

Великая теорема Ферма:

$$\forall x [\forall y [\forall z [\forall n [n \geqslant 3 \rightarrow \neg (x^n + y^n = z^n)]]]]$$

Определение 9.1. Следующие строки являются (*корректными* (valid)) термами в логике предикатов:

- Имя переменной: последовательность буквенно-цифровых символов, начинающаяся с буквы из диапазона u-z. Например, x, y12, zLast.
- Имя константы: последовательность буквенно-цифровых символов, начинающаяся с цифры или буквы из диапазона a-e, либо одиночный символ подчёркивания (без других символов до или после). Например, $0, e1, 7x, _$.
- n-арный вызов функции вида $f(t_1, \ldots, t_n)$, где f имя функции, обозначаемое последовательностью буквенно-цифровых символов, начинающейся с буквы из диапазона f-t, где $n \ge 1$, и каждый t_i сам является (корректным) термом.

Примеры корректных термов: plus(x,y), s(s(0)), f(g(x),h(7,y),c).

Определение 9.2. Предикат P на множестве $\Omega \neq \emptyset$ — подмножество $P \subseteq \Omega^n$. Например, (A,\leqslant) , где $\leqslant \subseteq A \times A$.

Определение 9.3 (Индуктивное определение формулы). Следующие строки являются *(коррект-ными) формулами* в логике предикатов:

- Равенство вида $t_1 = t_2$, где t_1 , t_2 (корректные) термы. Например, 0 = 0, s(0) = 1, plus(x, y) = plus(y, x).
- n-арный предикат вида $R(t_1, \ldots, t_n)$, где R имя предиката, обозначаемое строкой буквенноцифровых символов, начинающийся с буквы из диапазона F - T, где $n \ge 0$ (допускаются нульарные предикаты), и каждый t_i — терм. Например, R(x,y), Plus(s(0),x,s(x)), Q().
- **Отрицание** вида $\neg \phi$, где ϕ формула (в Python: $\tilde{}$).
- **Бинарная операция** вида $(\phi * \phi)$, где * один из бинарных операторов $\vee, \wedge, \rightarrow$, а ϕ, ψ формулы (в Python |, &, ->).
- Кванторная конструкция вида $Qx[\phi]$, где Q либо квантор всеобщности \forall (в Python A), либо квантор существования \exists (в Python E), x имя переменной, а ϕ формула. Подформула ϕ , находящаяся внутри квадратных скобок в конструкции $Qx[\phi]$, называется областью действия квантора.

Примеры формул:

- $\bullet \ \forall x[x=x]$
- $\exists x[R(7,y)]$
- $\forall x [\exists y [R(x,y)]]$

• $\forall x[(R(x) \vee \exists x[Q(x)])]$

Есть два подхода к записи формул:

- 1. Как у нас, есть «полный» набор возможных символов и формально все можно использовать.
- 2. Мы сначала фиксируем набор символов, которые можно использовать (называется *сигнатура*), и определяем формулу в данной сигнатуре.

Теорема 9.1 (Об однозначности разбора терма). Существует единственное дерево разбора для каждого корректного терма.

Теорема 9.2 (Об однозначности разбора формулы). TODO

Определение 9.4 (Семантика). *Моделью* (в логике предикатов) будем называть пару $M=(\Omega,I)$, где Ω — непустое множество элементов, которое будем называть *универсумом* (*носителем*) нашей модели, а I — *интерпретацией*, которая интерпретирует константные, функциональные и предикатные символы. При этом

- для константого символа c: $I(c) \in \Omega$
- для n-арного функционального символа $f \colon I(f) : \Omega^n \to \Omega$
- для n-арного предикатного символа $P: I(P) \subseteq \Omega^n$

Определение 9.5 (Истинность формул). *Оценка* (assignment) A — отображение некоторого множества переменных в носитель модели Ω .

Значение терма t в данной модели M при данной оценке A определяется по индукции (это значение будем обозначать $[[t]]_{M,A}$)

Примеры:

- $[[c]]_{M,A} = I(c)$ константа
- $[[x]]_{M,A} = A(x)$ переменная
- ullet [[$f(t_1,\ldots,t_n)$]] = $I(f)([[t_1]]_{M,A},\ldots,[[t_n]]_{M,A})$ функция

Как подсчитывать значение выражения:

- $[[t_1 = t_2]]_{M,A} = \text{True} \iff [[t_1]]_{M,A} = [[t_2]]_{M,A}$
- $[[P(t_1, ..., t_n)]] = \text{True} \iff ([[t_1]]_{M,A}, ..., [[t_n]]_{M,A}) \subseteq I(P)$
- $-[[\forall x[\phi]]]_{M,A}=$ True $\iff [[\phi]]_{M,A'}=$ True для всех $w\subseteq \Omega$: $A'(x)=w\wedge A'(y)=A(y)$ для всех переменных $y\neq x$.
 - [[$\exists x[\phi]$]]_{M,A} = True то же самое, только вместо $\forall w$ имеем $\exists w$.

Лекция 10 10

Определение 10.1 (Истинность формул (формулы)). Истинность формул φ в данной модели M= (Ω, I) при данной оценке A определяется по индукции:

•
$$[[t_1 = t_2]]_{M,A} = \begin{cases} \text{True, если } [[t_1]]_{M,A} = [[t_2]]_{M,A} \\ \text{False, иначе} \end{cases}$$

•
$$[[t_1 = t_2]]_{M,A} = \begin{cases} \text{True, если } [[t_1]]_{M,A} = [[t_2]]_{M,A} \\ \text{False, иначе} \end{cases}$$
• $[[R(t_1, \dots, t_n)]]_{M,A} = \begin{cases} \text{True, если } ([[t_1]]_{M,A}, \dots, [[t_n]]_{M,A}) \in [I(R)] \\ \text{False, иначе} \end{cases}$

• $[[\neg \varphi]]_{M,A} = \neg [[\varphi]]_{M,A}$ • $[[\varphi * \psi]]_{M,A} = [[\varphi]]_{M,A} * [[\psi]]_{M,A}$, где $* \in \{ \land, \lor, \to \}$ • $[[\forall x \varphi]]_{M,A} = \begin{cases} \text{True, если для всех } u \in \Omega : [[\varphi]]_{M,A[x \mapsto u]} = \text{True} \\ \text{False, иначе} \end{cases}$ • $[[\exists x \varphi]]_{M,A} = \begin{cases} \text{True, если найдётся } u \in \Omega : [[\varphi]]_{M,A[x \mapsto u]} = \text{True} \\ \text{False, иначе} \end{cases}$

Определение 10.2 (Связность/свободность переменных). При «навешивании» квантора на формулу $Qx[\varphi]$ переменная x в формуле φ становится cession z. Переменные, которые не являются cession zназываются свободными. Одна и та же переменная может быть в одном месте свободной, а в другом месте – связной.

Пример:

$$(\forall x [P(x,y) \to x = f(x,y)] \land \exists y [x = y])$$

Связные переменные — x в первом кванторе, y во втором кванторе.

Определение 10.3. Формула φ называется *истичной в модели М*, если для любой оценки A

$$[[\varphi]]_{M,A} = \text{True}$$

Обозначение: $M \models \varphi$

Определение 10.4. Формула φ называется *общезначимой*, если она истинна в любой модели. Обозначение: $\models \varphi$.

Определение 10.5. Формулы φ_1, φ_2 называются *эквивалентными*, если для любой модели M и любой оценки A верно:

$$[[\varphi_1]]_{M,A} = [[\varphi_2]]_{M,A}$$

Обозначение: $\varphi_1 \equiv \varphi_2$.

Лемма 10.1 (Сведение эквивалентности к общезначимости).

$$\varphi_1 \equiv \varphi_2 \iff \models \varphi_1 \leftrightarrow \varphi_2$$

Полезные эквивалентности:

$$\exists x[\varphi(x)] \equiv \exists y[\varphi(y)]$$

$$\forall x[\varphi(x)] \equiv \forall y[\varphi(y)]$$

$$\neg \exists x[\varphi] \equiv \forall x[\neg \varphi]$$

$$\neg \forall x[\varphi] \equiv \exists x[\neg \varphi]$$

$$\exists x[\varphi] \land \psi \equiv \exists x[\varphi \land \psi] \text{ если } \psi \text{ не содержит } x$$

$$\forall x[\varphi] \land \psi \equiv \forall x[\varphi \land \psi] \text{ если } \psi \text{ не содержит } x$$
аналогично для \lor

Определение 10.6. Формула имеет предваренную нормальную форму, если все предикаты вынесены «наружу».

Теорема 10.1. У любой формулы есть эквивалентная ей формула в предваренной нормальной форме.

10.1 Выразимые предикаты

Пусть $M=(\Omega,I)$ — некоторая модель. Рассмотрим k переменных x_1,\ldots,x_n и формулу φ такую, что её множество свободных переменных содержится в множестве $\{x_1,\ldots,x_n\}$. Тогда можно считать, что значение формулы φ зависит от k параметров. При этом формуле φ будет соответствовать функция $\Omega^k \to \{\text{False}, \text{True}\}$. Эквивалентным образом можно считать, что это не функция, а предикат P_φ арности k;

$$(u_1, \dots, u_k) \in P_{\varphi} \iff [[\varphi]]_{M, A[x_i \mapsto u_i]} = \text{True}$$

Пример 1: $(\mathbb{N}, 0, s, +, \cdot, =)$ — модель. Рассмотрим формулу

$$\varphi = \exists z [x_1 + z = x_2]$$

Свободные переменные — x_1, x_2 . Тогда задаётся предикат арности 2

$$P_{\varphi} = \{ (u_1, u_2) \mid u_1 \leqslant u_2 \}$$

Пример 2: модель та же, формула

$$\psi = \exists z \exists y [\neg z = 0 \land \neg z = s(0) \land \neg y = 0 \land \neg y = s(0) \land x = yz]$$

Тогда задаётся следующий предикат:

$$P_{\psi} = \{ \, n \mid n - \text{составное} \land n \geqslant 2 \, \}$$

Определение 10.7 (Выразимые предикаты). Предикат R на множестве Ω называется выразимым в модели M, если существует формула φ такая, что $R = P_{\varphi}$.

Подмножество Ω по сути является предикатом арности 1. Поэтому мы будем также говорить и о выразимых множествах.

10.2 Изоморфизмы

Определение 10.8 (Изоморфизм). Пусть $M_1=(\Omega_1,I_1)$ и $M_2=(\Omega_2,I_2)$ — две модели такие, что интерпретации интерпретируют одни и те же имена и арности этих имён совпадают. Функция $\alpha:\Omega_1\to\Omega_2$ называется изоморфизмом, если она биекция и выполнены следующие условия:

- 1. $\alpha(I_1[c]) = I_2[c]$ для каждого константного имени из I_1 ;
- 2. $\alpha(I_1[f](u_1,\ldots,u_k))=I_2[f](\alpha(u_1),\ldots,\alpha(u_k))$ для каждого функционального имени f из I_1 и $(u_1,\ldots,u_k)\in\Omega_1^k;$
- 3. $(u_1, \ldots, u_k) \in I_1[R] \iff (\alpha(u_1), \ldots, \alpha(u_k)) \in I_2[R]$ для каждого предикатного имени R из I_1 и $(u_1, \ldots, u_k) \in \Omega_1^k$.

Теорема 10.2. Пусть $M_1=(\Omega_1,I_1)$ и $M_2=(\Omega_2,I_2)$ и α — изоморфизм, тогда для лююбого терма t и любой формулы φ верно, что (свободные) переменные, которые содержатся во множестве $\{x_1,\ldots,x_k\}$ верно следующее:

- 1. $\alpha([[t]]_{M_1,A[x_i\mapsto u_i]}) = [[t]]_{M_2,A[x_i\mapsto \alpha(u_i)]}$
- 2. $[[\varphi]]_{M_1,A[x_i\mapsto u_i]} = [[\varphi]]_{M_2,A[x_i\mapsto \alpha(u_i)]}$

Доказательство. 1. Докажем по индукции.

База:

•

$$\alpha([[c]]_{M_2,A[...]}) = \alpha(I_1[c]) = I_2[c] = [[c]]_{M_2,A[...]}$$

•

$$\alpha([[x_i]]_{M_1,A[x_i\mapsto u_i]}) = \alpha(u_i) = [[x_i]]_{M_2,A[x_i\mapsto u_i]}$$

Шаг:

$$\alpha([[f(t_1, \dots, t_n)]]_{M_1, A[\dots]}) = \alpha(I_1[f]([[t_1]]_{M_1, A}, \dots, [[t_n]]_{M_1, A})) =$$

$$= I_2[f](\alpha([[t_1]]_{M_1, A}), \dots, \alpha([[t_n]]_{M_1, A})) =$$

$$= I_2[f]([[t_1]]_{M_2, A[\dots]}, \dots, [[t_n]]_{M_2, A[\dots]}) = [[f(t_1, \dots, t_n)]]$$

2. • Знаем, что

$$[[t_1 = t_2]]_{M_1, A_1} \iff [[t_1]]_{M_1, A_1} = [[t_2]]_{M_1, A_1}$$

Тогда, используя инъективность функции α получим, что это эквивалентно

$$\underbrace{\alpha([[t_1]]_{M_1,A_1})}_{[[t_1]]_{M_2,A_2}} = \underbrace{\alpha([[t_2]]_{M_1,A_1})}_{[[t_2]]_{M_2,A_2}} \iff [[t_1 = t_2]]_{M_2,A_2} = \text{True}$$

•

$$[[R(t_1, \dots, t_n)]]_{M_1, A_1} = \text{True} \iff ([[t_1]]_{M_1, A_1}, \dots, [[t_n]]_{M_1, A_1}) \in I_1(R) \iff \\ \iff (\alpha([[t_1]]_{M_1, A_1}), \dots, \alpha([[t_n]]_{M_1, A_1})) \in I_2(R) \iff \\ \iff ([[t_1]]_{M_2, A_2}, \dots, [[t_n]]_{M_2, A_2}) \in I_2(R) \iff [[R(t_1, \dots, t_n)]]_{M_2, A_2}$$

• Для бинарных функций доказательства аналогичны, докажем для конъюнкции:

$$\begin{split} [[\varphi_1 \wedge \varphi_2]]_{M_1,A_1} &= [[\varphi_1]]_{M_1,A_1} \wedge [[\varphi_2]]_{M_1,A_1} = \\ &= [[\varphi_1]]_{M_2,A_2} \wedge [[\varphi_2]]_{M_2,A_2} = \\ &= [[\varphi_1 \wedge \varphi_2]]_{M_2,A_2} \end{split}$$

$$\begin{split} [[\forall y[\varphi]]]_{M_1,A_1} &= \text{True} \iff \forall u \in \Omega_1([[\varphi]]_{M_1,A_1[y \mapsto u]} = \text{True}) \\ [[\forall y[\varphi]]]_{M_2,A_2} &= \text{True} \iff \forall u' \in \Omega_2([[\varphi]]_{M_2,A_2[y \mapsto u']} = \text{True}) \\ &\iff : \text{Пусть} \ [[\varphi]]_{M_1,A[x_i \mapsto u_i,y \mapsto u]} = \text{False} \iff [[\varphi]]_{M_2A[x_i \mapsto \alpha(u_i),y \mapsto \alpha(u) = u']} = \text{False} \\ &\implies : \end{split}$$

TODO: дописать

 \Longrightarrow :

Определение 10.9. *Автоморфизмом* называется изоморфизм в себя, т.е. функция $\alpha: \Omega \to \Omega$, являющаяся изоморфизмом для модели $M = (\Omega, I)$.

Очевидно, что тождественное отображение является автоморфизмом. Такой автоморфизм будем называть тривиальным. Но существуют и нетривиальные автоморфизмы.

Определение 10.10. Предикат $R \subseteq \Omega^k$ сохраняется при отображении $\alpha: \Omega \to \Omega$, если $(u_1, \ldots, u_k) \in$ $R \iff (\alpha(u_1), \dots, \alpha(u_k)) \in R.$

Теорема 10.3 (Критерий невыразимости). Если предикат R не сохраняется при автоморфизме, то он невыразим никакой формулой.

Доказательство. Рассмотрим предикат $R\subseteq \Omega^k$, тогда $\exists \varphi \colon P_\varphi=R$. Возьмём (u_1,\ldots,u_k) . Тогда

$$(u_1, \dots, u_k) \in R \iff [[\varphi]]_{M, A[x_i \mapsto u_i]} = \text{True} \iff$$

$$\iff [[\varphi_1]]_{M, A[x_i \mapsto \alpha(u_i)]} = \text{True} \iff$$

$$\iff (\alpha(u_1), \dots, \alpha(u_k)) \in R$$