MAY 24 UPDATE

JUSTINE FILION, NEETHU GOPALAKRISHNA, SAISREE GR, SARA HALL

RECAP: ANOMALY DETECTION IN BIOSENSOR WAVEFORMS

RECAP: ANOMALY DETECTION IN BIOSENSOR WAVEFORMS

RECAP: ANOMALY DETECTION IN BIOSENSOR WAVEFORMS

Research Questions:

5)

Can we develop machine learning pipelines to cluster readings and isolate pin contact errors?

Determine which methods are effective and which are not for identifying anomalies in biosensor readings?

Deliverables:

- Well commented Python code for everything we have tried
- A final report detailing our attempts

PROGRESS DURING THIS WEEK'S CYCLE OVERALL PROGRESS

- Preprocessing
 - Time series standardization.
 - Time series windowing
- Modelling
 - Visualization/clustering attempts on whole windows.
 - Clustering attempts on predictors from the tsfresh package^[1]
 - Feature generation with an autoencoder
 - Clustering attempts with a self-organizing map

PREPROCESSING - WINDOWING

Wet-up removed Standardized Windowed

- Got rid of unsuccessful readings with sample detect time 0 (all had return code = cannot calculate)
- Windowed w.r.t sample detect time:
 - Calibration: -15 to -3 seconds
 - Post: 12 -16 seconds
 - Sample: 32 35 seconds

Excluded readings with empty windows (all unsuccessful)

MODELLING – WHOLE WINDOWS

PCA to get a 2D Representation of the readings:

Calibration Window

Post Window

Sample Window

MODELLING – WHOLE WINDOWS

■ PCA to get 'representative' readings – calibration window

MODELLING – WHOLE WINDOWS

Frequency Representation – calibration

MODELLING - AUTOENCODER

- Dimensionality reduction
- Extract features

MODELLING - AUTOENCODER

Features	obtained	hv	ιιςinσ	autoencoder.	(~ 100)
i catules	Obtained	UY	usilig	autoencodei.	

- Dropped features with zero value.
- PCA on the features obtained, variation explained = 0.95.
 - 8 Principal components selected.

	feature_0	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6	feature_7	feature_8	feature_9	 feature_41
0	0.003310	0.002080	0.000000	0.0	0.0	0.001414	0.002166	0.0	0.000000	0.002046	 0.001118
1	0.003045	0.003104	0.000000	0.0	0.0	0.002014	0.004062	0.0	0.000000	0.001974	 0.000548
2	0.003314	0.002644	0.000556	0.0	0.0	0.001359	0.003060	0.0	0.000000	0.001825	 0.001109

MODELLING - AUTOENCODER

MODELLING – SELF ORGANIZING MAP

TRAINING:

- I. Weight initialisation
- 2. Choosing vector input randomly
- 3. Choosing Best Matching Unit
- 4. Repeat 2 and 3 for all data points

CLUSTERS IN SOM

RESULTS OF STANDARDISING WINDOWS - SOM

MODELLING – TSFRESH PREDICTORS

- Phase I: Feature Extraction (~ 450 features)
 - skewness(x)
 - sample_entropy(x)
 - autocorrelation(x, lag)

	valueabs_ellergy	valueroot_mean_square	value_absolute_sulli_ol_changes				
Testld							
8071094	0.177528	0.551571	3.345260				
8078100	-0.181169	-0.009647	1.827179				

- Phase 2: Feature Significance Testing (~250 features)
 - Only the features that are significant with respect to classifying the readings are kept.

MODELLING – DIMENSION REDUCTION

- Phase 3: PCA for dimension reduction (~ 30 components)
 - 95 % accumulated amount of variance explained

MODELLING – CLUSTERING

- Phase 4: Clustering the components
- Apply to all windows separately
 - Create clusters using various algorithms (Gaussian Mixture Model/Agglomerative Clustering)
 - Try to get a cluster with most of the pins and a small amount of total readings
 - Cluster the subcluster that contains most of the pins

MODELLING – CLUSTERING

PRELIMINARY/INCREMENTAL RESULTS

- Completed the first round of preprocessing (time series standardization and windowing)
- Tried a few clustering methods on both the whole signal in the windows and derived predictors.
 - Deliverables: notebooks that we are cleaning up/documenting as we go to give the client.

ROADBLOCKS

- Need to find a standard way to describe the readings contained in clusters that we are getting.
- So far not getting a cluster with pure pin contacts
 - There are different ways things go wrong need to look at more clusters.
- Standardizing might be leading to a loss of information
 - Pin contacts usually go to 0 apparently

PLANNING AND ACTIONS FOR THE NEXT CYCLE

Sara

- Look into different ways of windowing and standardizing.
- Attempt whole time-series clustering/visualization with new windows.
- Dig into Fourier and other transforms more.
- Record meeting minutes for Siemens check-in on Tuesday.

Saisree

- Try other clustering algorithms on shape-based TS(DTW-SOM applied to different windows)
- Attempt feature extraction using I-D CNN if the shape-based approach is not promising
- Record meeting minutes for Siemens check-in on Friday.

Neethu

- Using auto-encoder to extract features.
- Use the extracted features for clustering.
- Use LSTM for anomaly detection
- Record meeting minutes for Advisory committee on Tuesday.

Justine

- Do more research on anomaly detection in timeseries
- Record meeting minutes for check-in meeting with Capstone advisors.

Team

- Create slides for and present work in meetings (split equally).
- More discussion on tasks today, points here are flexible after morning's meeting with our client.

DEVIATION FROM THE ORIGINAL PLAN/SCHEDULE ACCOMPLISHED ALL LAST WEEK'S TASKS?

Last week's tasks:

Sara

- Finish wrangling the time series data and separate windows.
- Try different clustering methods on the windowed data.
- Read into longest common subsequence as a distance measure

Saisree

- Find DTW distance matrix (applied to specific windows)
- Build SOM clustering model.

Neethu

- Apply discrete wavelet transforms for feature extraction
- Use features for clustering algorithms (applied to specific windows)

Justine

- Create feature matrix based on the raw waveforms
- Use various clustering algorithms (applied to specific windows)

DEVIATION FROM THE ORIGINAL PLAN/SCHEDULE

AHEAD/BEHIND/ONTRACK?

May 16 - June
5 Modelling what we types of building building

- Try to build various machine learning pipelines to figure out what works and what doesn't in terms of clustering different types of unsuccessful readings
- If the unsupervised pipelines are unsuccessful, we will try building some supervised pipelines to classify successful, unsuccessful, and pin contact.
- Midterm presentation May 31.

SUMMARY OF INTERACTIONS WITH THE CLIENT

- Exchanged a few emails throughout the week
 - Our data was updated again.
- Meeting on Monday, May 16th
 - Discussed our plan for the week.
- Meeting on Friday, May 20th
 - Presented them with the progress we made over the week and got feedback
 - Learned more about what is looked for when diagnosing a pin contact

SUMMARY OF INDIVIDUAL AND TEAM EFFORTS MAY 16 - 22

Sara:

- Data wrangling: 10 hours
- Clustering Attempts: 22 hours
- Administrative work: 5 hours
- Total : ind. + team = 41.5
- Neethu:
 - Feature extraction and modelling: 24 hrs
 - Researching: 7.5 hrs
 - Others: (slides, windowing, standardize): 4.5
 - Total : ind. + team = 40.5

Saisree:

- Researching: 10 hrs
- Clustering: 17 hrs
- Outlier detection/wrangling: 5 hrs
- Administrative work: 5 hrs
- Total:ind. + team:37 hrs
- Justine:
 - Feature extraction and clustering: 27 hours
 - Data processing (scaling/windowing): 3.5 hours
 - Others (writing minutes, slides for presentations, meetings etc.): 8 hours
 - Total: ind. + team = 38.5
- Team:
 - Time spent in meetings: 4.5 hours

FEEDBACK?