### Delay

- Gate delay Tg = f(input slew, output load)
  - The higher input slew, load, the higher gate delay
  - Load is Cequ = equivalent capacitance of the parasitics and cell loads
  - Improve gate delay:
    - Optimize Cin of next stages by using small load cells while preserving timing
    - Matching Cequ and driver's strength -> save power
    - Using low Vt type cells ->
      - High leakage but possible lower short circuit power (internal cell power)
      - Only for critical paths
- Wire Delay:
  - Simple formula: Elmore delay = Tpd =  $\sum R(n-i)Ci$
  - Improve wire delay:
    - Reducing R and/or C:
      - For long wires, resistance dominates -> reduce R first by increasing wire width
      - Too long wires -> buffer insertion -> cut total delay to half or even ½, ¼.

# Optimize long wire delay by buffer insertion



Number of stages

#### **CLOCK SKEW**



$$Td2 = Tclk1 + Tck2q + Tp1$$

Tclk2 = Tclk + skew2

Tclk3 = Tclk + skew2 - dskew, dskew>0 -> CLK3 is earlier than CLK2

Td3 = Tclk + skew2 + Tck2q + Tp2

The clock skew between CLK2 and CLK3 makes the path P2 more critical



### **CLOCK SKEW**



- What causes clock skew?
  - o CTS
- Consequences of clock skew
  - Reduced performance
  - Failed functional
- How to reduce clock skew?
  - Clock spines
  - Clock mesh
  - Htree
  - 0 ...

#### Power

Total Power = Pswitch + Pshort\_circuit + Pleakage

- P<sub>switch</sub> = aCV<sup>2</sup>f (C=Cequ of load), a = switching activity
- P<sub>short\_circuit</sub> ~ slew, frequency
  - Use strong cells (large width or low Vt)
- P<sub>leakage</sub>:
  - Use weak cells (min width or high Vt)

Depending upon which application that which type of power will dominate -> corresponding optimization

## Signal Integrity

#### How to fix:

- Driver optimization: driver strength needs to match load, not too strong neither too weak.
- Buffer insertion: For long wire, even very big driver is not enough
- Crosstalk:
  - a. Increase space to reduce coupling cap
  - b. Add shielding for critical nets
  - c. Increase strength of the drivers of the victim nets
  - d. Decrease strength of the drivers of the aggressor nets
- Using NDR (Non Default Rule)

### Questions

- Clock skew:
  - a. What is clock skew? Is it important? Why?
  - b. What causes clock skew? How to reduce the clock skew?
  - c. Is global clock skew or local clock skew important? Why?
- 2. Why is transition time measured from 10 to 90%?
- 3. Does improving gate delay also reduce wire delay?
- 4. What is the plus/minus of increasing the transistor width?
- 5. What are the components of power dissipation in a design? Which one is the most important?
- 6. What is crosstalk? When does crosstalk become significant? How to avoid/reduce crosstalk?