

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 07

MARIE: Registradores e organização de memória.

Organização de memória.

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Memórias

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

- O arquivo representa o disco rígido. (H.D.)
- A pasta sobre a mesa representa a memória principal. (RAM)
- No quadro de avisos se encontram informações que podem ser acessadas de forma muito rápida. (cache)
- A Mesa e usuário são a CPU.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 07

Registradores

- Memória interna a CPU
 - Memória de alta velocidade que permite o armazenamento de valores intermediários ou informações de comando
 - Esta memória é composta de registradores (ou registros)
 - cada qual com uma função própria
 - Registradores são utilizados para assegurar o armazenamento temporário de informações importantes para o processamento de uma dada instrução

Motivação para hierarquia

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 07

Componentes do Marie

Unidade Lógica Aritmética (ALU): A ULA executa as principais operações lógicas e aritméticas Registrador de instruções (IR): Armazena a próxima instrução a ser executada no programa Contador de Programa (PC): Armazena o próximo endereço de instrução a ser executado Registrador de entrada (InREG): Armazena os dados inseridos pelos componentes de entrada Registrador de saída (OutREG): Armazena os dados que serão enviados para saída Registrador de endereço de memória (MAR): especifica um endereço de memória para a próxima leitura ou escrita

Registrador de Buffer de Memória (MBR): contêm dados a serem escritos na memória ou recebe dados lidos da memória

Acumulador (ACC): Responsável por guardar registros de dados **(registo de uso geral).** Mantém os dados que a CPU precisa processar

Memória ou memória principal (MEM): responsável pelo armazenamento temporário das instruções e dados

C: Controlador responsável por gerenciar o funcionamento do computador simplificado.

Linha Azul: Ciclo de busca de Dados

Linha Vermelha: Ciclo de busca de Instrução

Modelo do computador simplificado Marie do Marie

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 07

Endereçamento no Marie - Entrada

Cada instrução deve ser executada pela CPU. Ela é composta por 4 elementos:

Código de operação Referência de entrada Referência de saída Endereço da próxima instrução

As instruções possuem 16 bits.

4 bits	12 bits

O código de operação "ocupa" os 4 primeiros bits

A **referência ao operando de entrada** é o valor da operação ou o endereço que indica onde esse valor está. Corresponde aos próximos 12 bits

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 07

Endereçamento no Marie - Saída

A **referência de saída** (ou referência ao operando destino) é implícita, no caso do Marie é o Acumulador (ACC – Registrador temporário). Desta maneira a memória não é utilizada.

O **endereço da próxima instrução** também é implícito, normalmente é a próxima linha de código, próximo valor do contador. Ao menos que algumas instruções "desviem" pra outra parte do código (**skipcond** e **jump**).

Código da Operação	Mneumônico
0001	Load
0010	Store
0011	Add
0100	Subt
0101	Input
0110	Output
0111	Halt
1000	Skipcond
1001	Jump
1010	Jns
1011	Clear
1100	Addl
1101	Jumpl

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 07

Modos de Endereçamento

Existem 2 tipos de endereçamento no Marie:

Endereçamento Direto

O endereço eficaz do operando é dado no campo do endereço da instrução. A vantagem desse endereçamento é que é necessário apenas um único acesso à memória na busca do operando, e também não há necessidade de cálculos adicionais para encontrar o endereço efetivo. A desvantagem é que o tamanho do número é limitado ao tamanho do endereço.

Endereçamento Indireto

O campo de endereço desta vez aponta para uma posição da memória que aponta o endereço do operando. A vantagem desse endereçamento é que para o comprimento de uma palavra N, um espaço de endereço de 2ⁿ (dois elevado à n) pode ser dirigido. A desvantagem, é que a execução acaba sendo mais lenta.

O Marie **não possui endereçamento imediato**, pois seu programa sempre precisará acessar a memória.