UECS2103/2403/2423 Operating Systems

Tutorial 7

- 1. Translate the following 16-bit virtual addresses (the first 8 bits yield to page number, the last 8 bits yield to offset) to their corresponding real addresses (in decimal) based on the information given in figure below.
 - i. 1001110001110101
 - ii. 0010001100011011
 - iii. 0010010011010001

Page #	Frame #
24	259
102	125
156	992

	Frame #
34	356
35	357
36	-

TLB

Page table

2. A process is divided into six pages on disk and is assigned a fixed allocation of three page frames in the main memory. The following page trace occurs:

12513245243562416

Assume that the frames are initially empty. Show the successive pages residing in the three frames using:

- a. LRU replacement policy.
- b. FIFO replacement policy.
- c. Clock replacement policy.
- 3. Consider the page table for a process as shown below. All numbers are decimal, all addresses are memory byte addresses and the page size is 1024 bytes.

Virtual page number (VPN)	Page frame number (PFN)
0	4
1	7
2	-
3	2
4	-
5	0

Determine the physical address, if any, for the following virtual addresses.

- a) 1052
- b) 2221
- c) 5499
- 4. Briefly describe the translation of virtual address of a segment to its corresponding real address.
- 5. Briefly explain the combination of segmentation and paging schemes in memory management.