23 Feb 2022

Canny Edge Defection

By: Mohammed Audil - IIT2018179

Perform each step	of	Car	iny	Edge	De	fection	ON	the	image.
Original Image =	50	50	5	5	50				
0	50	50	50	100	100				
	50	100	100	100	100				
	100	100	100	100	100				
	100	100	100	100	100				

Ans (i) Noise Reduction: (Gaussian Blus)

$$G_{12D}(x,y) = \frac{1}{2\pi6^2} \times e^{\frac{-(x^2+y^2)}{26^2}}$$
 (Gaussian Filter)

-> Taking filter size = 3, 5=1 and using [-1,0,1] induxing.

$$G_{12D}(x,y) = \frac{1}{2\pi} \times e^{2} = \frac{1}{2\pi} \times e^{-\frac{1}{2\pi}} \times e^{-\frac{1}{2\pi}}$$

$$= \frac{1}{271} \begin{bmatrix} e^{1} & e^{1/2} & e^{1} \\ e^{1/2} & e^{0} & e^{1/2} \\ e^{-1} & e^{-1/2} & e^{-1} \end{bmatrix}$$

Convolving GIZD(x,y) with the image we get the following

Conv (Grzb(x,y), Oxiginal Image) = Blused Image

$$\frac{1}{271} \begin{bmatrix} e^{-1} & e^{-1/2} & e^{-1} \\ e^{-1/2} & e^{0} & e^{-1/2} \end{bmatrix} \xrightarrow{\text{Roteute 180}^{\circ}} \underbrace{\frac{1}{271}} \begin{bmatrix} e^{-1} & e^{-1/2} & e^{-1} \\ e^{-1/2} & e^{0} & e^{-1/2} \end{bmatrix} \\ e^{-1} & e^{-1/2} & e^{-1} \end{bmatrix}$$

Using Reflectiv	re Padding =>	50	50	50	50	50	50	50
O	9	50	50	50	50	50	50	50
		50	50	50	50	100	100	0 <i>0)</i>
	,	50	50	100	100	100	100	(00)
	ı	00	100	100	100	100	100	100
	Į.	0 O	100	100	100	100	100	100
	ι	ල ₀ .	100	(00)	100	(00)	(00	100

Bluxed Image
$$(0,0) = \frac{1}{271} \begin{bmatrix} e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \end{bmatrix} \times \begin{bmatrix} 50 & 50 & 50 \\ 50 & 50 & 50 \end{bmatrix} = 50$$

$$= \frac{1}{271} \begin{bmatrix} e^{\frac{1}{2}} & 50 + e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \end{bmatrix} \times \begin{bmatrix} 50 & 50 & 50 \\ 50 & 50 & 50 \end{bmatrix} = 50$$

$$= \frac{1}{271} \begin{bmatrix} e^{\frac{1}{2}} & 50 + e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ e^{\frac{1}{2}} & 60 & 60 \end{bmatrix} = \frac{1}{271} \begin{bmatrix} e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ e^{\frac{1}{2}} & 60 & 60 \end{bmatrix} = \frac{1}{271} \begin{bmatrix} e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ e^{\frac{1}{2$$

$$=\frac{50}{271} + \left(\frac{4}{6} + \frac{4}{6} + \frac{25}{11}\right) = \frac{25}{17} \left(\frac{1.47 + 2.426 + 1}{11}\right)$$

$$=\frac{25x7}{22}(4.896)=[38.94]=38$$

-> Similarly for all the indices,

		_				
	38	38	41	46	49	we don't need to
Blused	41	46	54	62	67	blux the image because
Image =	54	62	70	75	17	it is very small and
O	70	75	77	77	77	we need it to be exact
	77	77	77	77	77	for further calculations
	-					to mark broberty.

(iii) Non Max Suppression

Converting $\Theta(x,y)$ from Radians to Degrees:

	\circ	0	13.65	25.89	90
	13.65	25-89	36·1	36-1	90
deg	36.1	36.1	25-89	13.65	0
	25.89	13.65	0	0	0
	0	0	0	6	O

We find q and x pixels for every pixel in the image. q and r are the pixel value that are in the direction of 0 and 180-0.

then we check $ G _{P} > G _{q} \times G _{x}$	6	6	6	6	6
if this holds the the pixel value			6		
remains some else it becomes 0'.	6	6	6	6	6
→ denotes the pixels following the	6	6	6	6	6
Inequality mentioned above.					

N	ට	O	О	0	255	
Non Max	0	0	255	255	0	
Suppressed =	255	255	C	0	0	
Image	೦	O	O	0	0	
	0	C	0	0	0	
						7

(iv)	Double Threshold	0											
	This step is not are already eith	nici) 08 2	for 255.	oux	exorm	ple	ous	Here	imord	e pixe	l val	lus
(V)	Edon Tracking b	. 4.	zalex	2 209	•								
	Edge Tracking b	3	Jorca	.0012	<u> </u>								
	As all the pix	els	ase	ی ما	ready	25	5,	tak	ing	any ro	inge:	х ,У	
	img[x,y] < X												
	$\int O \text{img}[x,y] \leq X$ $\text{weak} X \leq \text{img}[C,y] \leq Y$												
	strong $(x,y) > y$												
	will always result in the same image												
		0	O	O	0	255							
	Final Image =	0	0	255	255	0							
	0	255	255	0	O	0							
		0	O	O	0	0							
		<u></u>	O	O	0	O							