Calcul à la main de dérivées

- Fiche méthode 4
- ➤ Pour chacun des exercices 54 à 62, les fonctions f et g sont dérivables sur ℝ. Calculer leur fonction dérivée.
- **54** $f(x) = 2x^2 8x 5$; $g(x) = -x^2 + 3x$.
 - **55 R** $f(x) = x^3 + x + 1$; $g(x) = x^4 3x^2 + 2$.
 - **56 C** $f(x) = (2x+1)^3$; $g(x) = (x+2)(e^x+1)$.
- 57 $f(x) = \frac{x-1}{x^2+4x+1}$; $g(x) = \frac{1}{x^2+1}$. 58 $f(x) = (2x^2+x)(x^2+1)$; $g(x) = \frac{2x}{(x^2+2)^2}$.
 - **59 C** $f(x) = e^{2x+3}$; $g(x) = x + e^x$.
 - **60** $f(x) = 3x 4 + e^{-2x}$; $g(x) = 2x^2 4e^{-x}$.
 - 61 $f(x) = \sin x + 2\cos x$: $\sigma(x) = x\cos x$
 - 61 $f(x) = \sin x + 2 \cos x$; $g(x) = x \cos x$. 62 C $f(x) = e^{-x} \sin x$; $g(x) = \cos 2x + 3 \sin 2x$.

▶ Pour chacun des exercices 63 à 67, la fonction f

Calculer f'(x).

63 $I = [0; +\infty[; f(x) = x^2 - 3 \ln x]$.

est dérivable sur l'intervalle I de R.

- **64** $I =]0; + \infty[; f(x) = 2(\ln x)^3 + x.$
- **65 C** $I = \left[-\infty; -\frac{1}{2} \right]; \quad f(x) = \frac{3}{1+2x}.$
- **66** $I =]1; + \infty[; f(x) = \frac{x+1}{x-1}.$
- 67 $I = \left[-\frac{1}{2}; +\infty \right[; \quad f(x) = \ln(3x+1).$