22 R Une entreprise fabrique en grande quantité des tiges métalliques pour l'industrie. Leur longueur et leur diamètre sont exprimés en millimètres. Dans cet exercice, les résultats approchés sont à

arrondir à 10^{-2} . On prélève au hasard et avec remise un échan-

tillon de 50 tiges dans la production d'une journée. Soit \overline{D} la variable aléatoire qui, à tout échantillon de 50 tiges prélevées au hasard et avec remise dans

la production d'une journée, associe la moyenne

des diamètres des tiges de cet échantillon.

arrondie à 10^{-2} , est $\overline{x} = 9.99$.

On suppose que \overline{D} suit la loi normale de moyenne inconnue μ et d'écart type $\frac{\sigma}{\sqrt{50}}$ avec $\sigma = 0.19$. Pour l'échantillon prélevé, la moyenne obtenue,

1. À partir des informations portant sur cet échantillon, donner une estimation ponctuelle de la moyenne µ des diamètres des tiges produites dans cette journée. 2. Déterminer un intervalle de confiance, centré

sur \overline{x} , de la moyenne μ des diamètres des tiges produites pendant la journée considérée, avec le coefficient de confiance 95 %. 3. On considère l'affirmation suivante : « la

moyenne µ est obligatoirement dans l'intervalle de confiance obtenu à la question 2. » Est-elle vraie? (On ne demande pas de justification.)