Digitale Bildverarbeitung

DHBW Stuttgart, Vorlesung "Computergraphik und Bildverarbeitung"

Praktische Übung

Projekte in dieser Vorlesung

Automotive

Spurerkennung

Farbräume

Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)

Histogramme

Segmentierung

Verkehrszeichenerkennung

Farbräume

Kontrastverstärkung

Histogramme

Klassifizierung, Objekterkennung

Objekterkennung

Operationen im Ortsbereich (lokale Operatoren, Faltungsfilter)

Segmentierung

Optischer Fluss

Klassifizierung, Objekterkennung

Spurerkennung

Farbräume

Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)

Histogramme

Segmentierung

- Auteilung der Note
 - 70 % Programm inkl. Quellcodes und Kommentare
 - Kommentare müssen sinnvoll eingesetzt werden
 - bedeutungsvolle Namensgebung f
 ür Variablen
 - gern Python-Bibliothek Sphinx verwenden (https://www.sphinx-doc.org/)
 - 30 % Dokumentation (mögliche Formate Word, Powerpoint, Markdown)
 - Gewählte Vorgehensweise
 - Dokumentation und Diskussion der Ergebnisse
 - Lessons Learned
 - Ausblick

- → Warum haben Sie sich für die gewählte Vorgehensweise entschieden?
- → Welche Alternativen gab es?
- → Welche Probleme traten auf? Welche Lösungswege haben Sie verfolgt?
- → Was nehmen Sie aus dem Projekt für sich mit?
- → Welche Probleme konnten Sie im Rahmen des Projektes nicht behandeln?

Spurerkennung

Farbräume

Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)

Histogramme

Segmentierung

Mindestanforderungen (entspricht der Note 2,0)

- Segmentierung des Bildes: schränken Sie das Bild auf den Bereich ein, in dem sich die Spurmarkierungen befinden
- Vorverarbeitung: Führen Sie eine Kamerakalibrierung (für Udacity-Bildquellen) und die Perspektivtransformation durch
- Farbräume, Histogramme: erkennen Sie die Spurmarkierungen in den Farben der angegebenen Quellen Falls weitere Spurmarkierungen auf dem Bild gefunden werden, müssen die der eigenen Fahrspur priorisiert werden
- Allgemeines: Die Verarbeitung von Bildern muss in Echtzeit stattfinden --> Ziel: > 20 FPS
- **Allgemeines:** Beschleunigen Sie die Verarbeitung durch weitere Maßnahmen (bspw. Erkennung der Spurmarkierung in den ersten Frames, Tracking der Spurmarkierung in weiteren Frames solange, bis sich Spurmarkierungspositionen zu stark ändern) → mind. eine Maßnahme im Projekt verwenden
- Curve / Polynom Fitting: Erkennen Sie die Krümmung der Fahrspur und geben Sie diese im Ausgabebild aus
- Allgemeines: relevante Spurmarkierungen werden in den Udacity-Bildern und im Video "project_video" durchgehend erkannt

Spurerkennung

Farbräume

Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)

Histogramme

Segmentierung

Zusatzaufgaben (Mindestanforderungen + 2x Zusatzaufgaben = 1,3)

- relevante Spurmarkierungen werden im Video "challenge_video" und "harder_challenge_video" (nahezu) durchgehend erkannt
- relevante Spurmarkierungen werden auf den Datensatz KITTI angewendet. Welche Anpassungen müssen vorgenommen werden, damit Ihr Algorithmus übertragen werden kann?
- erkennen Sie Objekte im Bild und visualisieren Sie diese (z.B. weitere Fahrzeuge, Motorräder, etc.)
 Die Objekterkennung bitte so implementieren, dass sie deaktivierbar ist und nicht in FPS-Berechnung einzahlt.
- nutzen Sie alternative Möglichkeiten der Spurerkennung (z.B. mit Neuronalen Netzen)
- ergänzen Sie Ihren Algorithmus um eine Kennzeichenerkennung
- Gerne können Sie eigene Zusatzaufgaben zur Verbesserung Ihres Algorithmus einführen. (Aufwand sollte vergleichbar sein zu o.g. Punkten).
- Alle durchgeführten Aufgaben müssen dokumentiert, kommentiert und abgegeben werden.

Spurerkennung

Farbräume

Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)

Histogramme

Segmentierung

Zusatzaufgabe Android (Mindestanforderungen + 2x Zusatzaufgaben + Android-Portierung = 1,0)

- entwickelter Algorithmus wurde auf Android übertragen
- Dokumentation der erkannten Fahrspuren
- Diskussion über die Herausforderungen bei der Portierung der Python-Umsetzung mit der Java-Umsetzung
- Alle durchgeführten Aufgaben müssen dokumentiert, kommentiert und abgegeben werden.

- Erwartete Abgabe
 - Quellcodes inkl. Kommentare
 - Jupyter Notebook o.ä. zur prototypischen Implementierung
 - Python Quellcode zur performanten Implementierung
 - Android Studio Quellcode
 - Bilder und Videos inkl. erkannter Linien und Objekte
 - Dokumentation
 - Word, Powerpoint, Markdown

- 12x Gruppen, Vorstellung am 12.12. pro Gruppe:
 - 7 Minuten Projektvorstellung (Live-Vorstellung, Methoden, Vorgehen, Probleme)
 - 3 Minuten offene Fragen aus der Gruppe
- Visualisierung in Zeitmessung einfließen lassen

Exkurs 1: Kamerakalibrierung

siehe eigene PDF

Exkurs 2: Perspektivtransformation

- Krümmung der Linien im ursprünglichen Kamerabild entspricht nicht der realen Fahrspurkrümmung
 - → Perspektivtransformation in Vogelperspektive

$$\begin{pmatrix} t_i u_i' \\ t_i v_i' \\ t_i \end{pmatrix} = A \begin{pmatrix} u_i \\ v_i \\ 1 \end{pmatrix}$$

Perspektivtransformation

- 1. Ermitteln Sie 4x Punkte auf dem Bild, die nach der Transformation in einer rechteckigen Beziehung zueinander stehen
- Definieren Sie die 4x Zielpunkte, an denen die zu transformierenden Punkte nach der Projektion sein sollen

ID	Original		Transformiert	
1	598	448	300	0
2	684	448	980	0
3	1026	668	980	720
4	278	668	300	720