Math 4720: Statistical Methods

10^{th} and 11^{th} Week Summary (04/03/25)

• ANOVA.....

• Hypothesis Testing

$$H_0: \mu_1 = \mu_2 = \dots = \mu_t$$

 $H_a: \mu_i \neq \mu_j$ for some pair (i, j).

Test Statistic:
$$F = \frac{SSB/df_B}{SSE/df_E}$$

Decision Rule: Reject H_0 in favor of H_a if $F > F_{\alpha}(df_B, df_E)$.

Source of Variation	df	Sum of Squares	Mean Square	F	p-value
Group (Between)	t-1	$\sum n_i (\overline{y}_{i\bullet} - \overline{y}_{\bullet\bullet})^2 = SS_B$	$\frac{SS_B}{df_B} = MS_B$	$\frac{MS_B}{MS_E} = F_{\text{calc}}$	$\Pr(F > F_{\text{calc}})$
Error (Within)	N-t	$\sum (n_i - 1)s_i^2 = SS_E$	$\frac{SS_E}{df_E} = MS_E$		
Total		$\sum (y_{ij} - \overline{y}_{\bullet \bullet})^2 = SS_T$			

R: aov(Wt sport + gender, data=ais2)

• For the above ANOVA table:

$$N = \sum_{i} n_i$$

$$SS_T = SS_B + SS_E$$

 MS_E is the pooled sample variance, an estimator for σ^2

• Assumptions:

Homogeneity of variances: $\sigma_1 = \sigma_2 = \cdots = \sigma_t$.

Data are generated from normal distributions for each treatment.

• What if normality fails?

We use the non-parametric test: "Kruskal-Wallis Test"

• What if the equality of variances fails?

We "transform" the data

• What are the common transformations?

If
$$\sigma^2 \propto \mu$$
, the use $Y_T = \sqrt{Y}$ or $\sqrt{Y + 0.375}$

If
$$\sigma^2 \propto \mu^2$$
, the use $Y_T = \ln(Y)$ or $\ln(Y+1)$

If
$$\sigma^2 \propto \mu(1-\mu)$$
, the use $Y_T = \sin^{-1} \sqrt{Y}$

• Assumptions for Oneway ANOVA model $(y_{ij} = \mu + \tau_i + \epsilon_{ij})$, where $i = 1, \dots, t$ and $j = 1, \dots, n_i)$:

To test
$$H_0: \tau_i = 0$$
 vs $H_a: \tau_i \neq 0$ for some i :

- (1) The ϵ_{ij} 's are independent and normally distributed
- (2) $Var(\epsilon_{ij}) = \sigma^2$ (a constant value)
- Checking the Assumptions:

Obtain the residuals $(r_{ij} = y_{ij} - \hat{\mu} - \hat{\tau}_i)$ and fitted values $(\hat{y}_{ij} = \hat{\mu} + \hat{\tau}_i)$, then

- (1) The QQ-plot of r_{ij} 's should be linear
- (2) The scatterplot of r_{ij} 's versus \hat{y}_{ij} 's should follow a random pattern.