Centro C.U.D.A.R.

+

Anexo Máquinas de Estado Finitas Diseño mediante Flip Flops

DISEÑO DE MAQUINAS DE ESTADO

FSM: Máquinas de estado finitas. Nombre dado a las máquinas de estado debido a que la lógica secuencial que las implementa puede estar solamente en un número fijo de estados posibles.

Los pasos a seguir en el diseño de este tipo de máquinas pueden ser:

- 1.- Entendimiento del problema: Interprete la descripción dada de una manera no ambigua; se puede intentar plantear diferentes secuencias de entrada con el fin de verificar si efectivamente las salidas generadas son las pedidas.
- 2.- **Representación de la FSM**: Coloque el problema en una forma tal que sea fácil de manipular por algunos de los diferentes procedimientos para diseñar FSM (diagramas de estado, ASM, HDL, etc.).
- 3.- **Minimización de estados**: Si el comportamiento de las señales de entrada y salida es duplicadas en algunos tramos del diagrama de estados puede eliminarse la trayectoria llevando a una reducción del número de estados planteado.
- 4.- **Asignación de estados**: Una buena asignación de estados (asignar a cada estado una combinación de bits) puede llevar a una minimización del diseño.
- 5.- **Elección del tipo de Flip-Flop**: Generalmente la elección de Flip-Flop J-K tiende a reducir el número de compuertas y el Flip-Flop D simplifica el procedimiento de diseño.
- 6.- **Implementación de FSM**: Usando mapas de Karnaugh para las funciones de la lógica del siguiente estado y lógica de salida se lleva a cabo la implementación de la FSM.

Máquina expendedora de golosinas

Planteo del problema:

Una máquina expendedora de golosinas suministra uno cuando ha recibido 15 centavos en monedas. La máquina posee una ranura que acepta monedas de 10c y 5 c, una a la vez. Un sensor mecánico identifica el valor de la moneda insertado. Un controlador de salida libera la golosina a través de una ventanilla. Esta máquina no suministra cambio.

Paso 1.- Diagrama de bloques de funcionamiento e interpretación:

D es válido por un período de reloj cuando es insertada una moneda de 10c, y N lo es cuando una moneda de 5c es insertada. La máquina coloca un 1 por un período de reloj cuando 15c o más han sido depositados.

Paso 2.- Representación de la FSM:

Una manera de realizar una buena especificación es enumerar las posibles secuencias únicas de entradas o configuraciones del sistema, ayudando a definir los probables estados de la FSM. Posibles secuencias:

3 monedas de 5c en secuencia: N, N, N 2 monedas de 5c y una de 10c: N, N, D Una de 5c seguida de una de 10c: N, D Una de 10c seguida de una de 5c: D, N

Dos monedas de 10c: D, D.

Paso 3.- Minimización de estados:

Como los estados 4, 5, 6, 7 y 8 tienen el mismo comportamiento se pueden combinar en uno solo. Se puede pensar que cada estado representa una cantidad de monedas recibidas.

Paso 4.- Codificación de estados:

Una buena asignación en la codificación de los estados permitirá tener una menor cantidad de hardware necesario para implementar la máquina

Presente Estado	Entrada D	Entrada N	Siguiente Estado	Salida
0с	0	0	0c	0
	0	1	5c	0
	1	0	10c	0
	1	1	X	X
5c	0	0	5c	0
	0	1	10c	0
	1	0	15c	0
	1	1	X	X
10c	0	0	10c	0
	0	1	15c	0
	1	0	15c	0
	1	1	X	X
15c	X	X	15c	1

Paso 5.- Elección del tipo de flip-flop: A modo de comparación se implementará este diseño con flip-flops D primero y luego con Flip-flop J-K.

Presente Estado Q ₁ ,Q ₀	Entrada D	Entrada N	Siguiente Estado Q _{1*} ,Q _{0*} (D _{1,} D ₀₎	Salida	
0 0	0	0	0 0	0	
0 0	0	1	0 1	0	
0 0	1	0	1 0	0	
0 0	1	1	X X	X	
0 1	0	0	0 1	0	
0 1	0	1	1 0	0	
0 1	1	0	1 1	0	
0 1	1	1	X X	X	
1 0	0	0	1 0	0	
1 0	0	1	1 1	0	
1 0	1	0	1 1	0	
1 0	1	1	X X	X	
1 1	0	0	1 1	1	
1 1	0	1	1 1	1	
1 1	1	0	1 1	1	
1 1	1	1	X X	X	

Paso 6.- Implementación de la FSM: Elabore los mapas de Karnaugh para las entradas D1, D0 y salida.

$$D1 = Q_1 + D + Q_0.N$$

$$D0 = N.\overline{Q_0} + Q_0.N + Q_1.N + Q_1.D$$

$$SALIDA = Q_1.Q_0$$

Paso 5.- Elección del tipo de Flip-Flop:

Presente Estado Q ₁ ,Q ₀	Entrada D	Entrada N	Siguiente Estado Q ₁₊ ,Q ₀₊	$\mathbf{J_1}$	К1	\mathbf{J}_0	\mathbf{K}_0	Sali da
0 0	0	0	0 0	0	X	0	X	0
0 0	0	1	0 1	0	X	1	X	0
0 0	1	0	1 0	1	X	0	X	0
0 0	1	1	X X	X	X	X	X	X
0 1	0	0	0 1	0	X	X	0	0
0 1	0	1	1 0	1	X	X	1	0
0 1	1	0	1 1	1	X	X	0	0
0 1	1	1	X X	X	X	X	X	X
1 0	0	0	1 0	X	0	0	X	0
1 0	0	1	1 1	X	0	1	X	0
1 0	1	0	1 1	X	0	1	X	0
1 0	1	1	X X	X	X	X	X	X
1 1	0	0	1 1	X	0	X	0	1
1 1	0	1	1 1	X	0	X	0	1
1 1	1	0	1 1	X	0	X	0	1
1 1	1	1	X X	X	X	X	X	X

Paso 6.- Implementación de la FSM:

$$J_1 = D + Q_0.N \qquad \qquad J_0 = N + Q_1.D$$

$$K_1 = 0 \qquad \qquad K_0 = Q_1.N$$

