Loops, Necklaces and Braiding for 3D Topological Phases

March 2018

2D Summary

Topological quantum computation (TQC) requires topological phases of matter (TPM)

Definition (Nayak, Simon, Stern, Freedman, Das Sarma) a [2D, bosonic] system is in a topological phase if its low-energy effective field theory is a [(2+1)D] topological quantum field theory (TQFT).

Theorem (Bartlett, Douglas, Schommer-Pries, Vicary and Reshetikhin, Turaev) (2+1)- $TQFTs \stackrel{1-1}{\leftrightarrow} modular categories$.

TQC: Braiding Anyons

2D Topological Quantum Gates

The braid group \mathcal{B}_n acts on **topological state spaces**:

- ► Fix anyons *x*, *y*
- Braid group representation:

$$\mathcal{B}_n \curvearrowright \mathcal{H}(D^2 \setminus \{z_i\}; y, x, \cdots, x) = \mathsf{Hom}(Y, X^{\otimes n})$$

by particle exchange

We know a lot in 2D:

- ▶ Many examples/sources of modular categories: quantum groups $U_a\mathfrak{g}$ at roots of 1, II_1 subfactors, finite groups...
- ▶ Rank-finiteness [Bruillard,Ng,R,Wang '16]: finitely many \mathcal{C} with $|\mathit{Irr}(\mathcal{C})| = r$
- ► Naturally approximate topological invariants: Jones polynomial evaluations etc.
- ► Theorem (R,Wang '16)
 - X is non-abelian if and only if dim(X) > 1.
- ► Conjecture (R '07) $|\rho_X(\mathcal{B}_n)| < \infty$ (X non-universal) if, and only if, $\dim(X)^2 \in \mathbb{Z}$

3D Generalization

- ▶ 3D TPMs?
- Mathematically: a [3D, bosonic] system is in a topological phase if its low-energy effective field theory is a [(3+1)D] topological quantum field theory (TQFT).
- ▶ Algebraic characterization? X. Cui: *G*-crossed braided spherical fusion categories...

3D Topological Quantum Gates

Point-like excitations in \mathbb{R}^3 are boring $MCG(\mathbb{R}^3 - \{p_i\}) = \mathfrak{S}_n, \ \pi_1(\mathbb{R}^3 - \{p_i\}) = 1$

loop-like excitations (linked/knotted vortices)?

Motion Groups! (Damani's talk)

We know precious little in 3D:

- Well-understood examples/sources of (3+1)TQFTs: Twisted Dijkgraaf-Witten and BF (Baez, Crane-Yetter).
 - ▶ 3D twisted DW-theories: input $(\text{Rep}(G), \omega)$, essentially computes $|\text{Hom}(\pi_1(M^3), G)|$
 - Computes | Hom(π₁(M³), G)|
 ▶ BF theories: input modular category, essentially computes signature σ(M⁴)
 - Major open question: is there a 3 + 1TQFT that detects smooth structure?
 - ► Generally: how sensitive are these invariants?

Categorical Approach

- ► *G*-crossed braided spherical fusion categories
- Walker-Wang: unitary pre-modular categories
- expectation: C unitary pre-modular, and all transparent objects are bosons: Dijkgraaf-Witten+BF.
- Recommended approach: super-modular categories. (Bullivant?)

Super-Modular Categories

Definition

A unitary pre-modular category $\mathcal C$ is super-modular if has one transparent fermion. I.e. Mueger center $\mathcal C'\cong sVec=\mathsf{Rep}(\mathbb Z_2,1)$.

Fact

- <u>Every</u> unitary pre-modular category is the equivariantization of a modular or super-modular category.
- ► A super-modular category ~> representations of spin mapping class groups.
- ► Condensing the fermion ¬¬¬¬ sVec-enriched "fermionic modular category."

Petulant Demands

But I want my 3D topological quantum gates now!

Temporary solution: Lobotomize

 $(3+1)TQFTs \longrightarrow Motion group reps.$

Key fact: \mathcal{B}_n survives all maps.

Burning Questions/Problems

- ▶ Which \mathcal{B}_n reps lift to $L\mathcal{B}_n$ and/or $N\mathcal{B}_n$?
- Classify lifts.
- Genuinely new ("3D") quantum gates?
- ▶ Invariants of surfaces in \mathbb{R}^4 ?
- Classify irreps. (say, of low dimension).
- ► Local representations/Yang-Baxter extensions?

For $L\mathcal{B}_n$

Theorem (Chang, Plavnik, Hong, Sun, Bruillard, R)

 (ρ, V) a rep of \mathcal{B}_3 , and $\dim(V) \leq 5$, ρ extends to $L\mathcal{B}_3$ (usually many ways). $\dim(V) = 6$, not all extend.

Definition

If $R \in \text{End}(V \otimes V)$ satisfies the Yang-Baxter equation we say (V, R) is a **Braided Vector Space**.

$$\rho^R(\sigma_i) = I^{\otimes i-1} \otimes R \otimes I^{\otimes n-i-1} \text{ gives } \rho^R : \mathcal{B}_n \to \mathit{GL}(V^{\otimes n})$$

Question

For which (V,R) is there an $S \in \operatorname{End}(V \otimes V)$ such that $\rho^R(s_i) = I^{\otimes i-1} \otimes S \otimes I^{\otimes n-i-1}$ is an extension to $\rho^R : \mathcal{LB}_n \to GL(V^{\otimes n})$?

Answer: not always!

Definition

A BVS (V, R) is of (right) **group-type** if there is an ordered basis $X := [x_1, \ldots, x_n]$ of V and $g_i \in GL(V)$ such that $R(z \otimes x_i) = x_i \otimes g_i(z)$ for all i and $z \in V$.

Proposition (Kadar, Martin, R, Wang)

If (V,R) is a BVS of right group-type then $\rho^R(s_i) = I_V^{\otimes i-1} \otimes S \otimes I_V^{\otimes n-i-1}$ with $S(x_i \otimes x_j) := x_j \otimes x_i$ defines an extension of ρ^R to \mathcal{LB}_n .

Conjecture (Slingerland, modified)

BVS (V, R) extends only if it is of group-type. "Local representations of \mathcal{LB}_n come from finite groups."

Necklace Braid Group


```
\sigma_i: leapfrogging and \tau: cyclic shift. \sigma_1, \ldots, \sigma_n, \tau satisfying (indices taken modulo n, with \sigma_{n+1} := \sigma_1 and \sigma_0 := \sigma_n):
```

(B1)
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

(B2)
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 for $|i - j| \neq 1 \pmod{n}$,

(N1)
$$\tau \sigma_i \tau^{-1} = \sigma_{i+1}$$
 for $1 \le i \le n$

(N2)
$$\tau^{2n} = 1$$

A Smörgåsbord of Results on NB_n Representations

Theorem (Bullivant, Kimball, R, Martin)

- ▶ \mathcal{B}_n completely reducible rep. ρ extends to $N\mathcal{B}_n$, at least in a standard way: $\tau \to D\rho(\sigma_1\sigma_2\cdots\sigma_{n-1})$
- ▶ Any local representation (R, V) of \mathcal{B}_n extends to $N\mathcal{B}_n$
- ▶ For n > 4, there are no irreducible $N\mathcal{B}_n$ reps V with $1 < \dim(V) < n 2$.

Quaternionic NB_n reps

Let Q_n be the algebra on $t, u_1, \ldots, u_n, v_1, \ldots, v_n$ satisfying:

- 1. $u_i^2 = v_i^2 = -1$ for all i,
- 2. $[u_i, v_j] = -1$ if $|i j| \pmod{n} \in \{0, 1\}$,
- 3. $[u_i, v_j] = 1$ if $|i j| \pmod{n} \notin \{0, 1\}$,
- 4. $[u_i, u_i] = [v_i, v_i] = 1 = t^n$,
- 5. $tu_i t^{-1} = u_{i+1}$, and $tv_i t^{-1} = v_{i+1}$ for all i.

Then $\tau \mapsto t$ and $\sigma_i \mapsto (1 + u_i + v_i + u_i v_i)$ is a rep of $N\mathcal{B}_n$. $\langle u_i, v_i \rangle \cong Q_8$.

Outlook

Question

Are there universal 3D "anyons"? Do (3+1)TQFT give hard invariants?

Thank you!