

Lecture 6: BGP

Next Design: "Classful" Addressing

• Three main classes 0 126 nets network host ~16M hosts • Class A 16 $\sim 16K$ nets network host • Class B ~2M nets network host • Class C

Problem: Networks only come in three sizes!

Today's Addressing: CIDR

- CIDR = Classless Interdomain Routing
- Idea: Flexible division between network and host addresses
- Motivation: offer a better tradeoff between size of the routing table and efficient use of the IP address space

CIDR (example)

- Suppose a network has fifty computers
 - allocate 6 bits for host addresses (since 25 < 50 < 26)
 - remaining 32 6 = 26 bits as network prefix
- Flexible boundary means the boundary must be explicitly specified with the network address!
 - informally, "slash 26" \rightarrow 128.23.9/26
 - formally, prefix represented with a 32-bit mask: 255.255.255.192 where all network prefix bits set to "1" and host suffix bits to "0"

Classful vs. Classless addresses

- Example: an organization needs 500 addresses.
 - A single class C address not enough (254 hosts).
 - Instead a class B address is allocated. (~65K hosts)
 - That's overkill, a huge waste!
- CIDR allows an arbitrary prefix-suffix boundary
 - Hence, organization allocated a single /23 address (equivalent of 2 class C's)

• Maximum waste: 50%

Hence, IP Addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

Allocation Done Hierarchically

- Internet Corporation for Assigned Names and Numbers (ICANN) gives large blocks to...
- Regional Internet Registries, such as the American Registry for Internet Names (ARIN), which give blocks to...
- Large institutions (ISPs), which give addresses to...
- Individuals and smaller institutions
- FAKE Example: UChicago actually triple homed

ICANN → ARIN → Qwest → UChicago → CS

CIDR: Addresses allocated in contiguous prefix chunks

Recursively break down chunks as get closer to host

FAKE Example in More Detail

- ICANN gives ARIN several /8s
- ARIN gives Qwest one /8, **128.0/8**
 - Network Prefix: 10000000
- Qwest gives UChicago a /16, 128.135/16
 - Network Prefix: 100000010000111
- UChicago gives CS a /24, 128.135.11/24
 - Network Prefix: 10000001000011100001011
- CS gives me a specific address 128.135.11.176
 - Address: 10000000100001110000101110110000

Hence, IP Addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

Hierarchical address allocation only helps routing scalability if allocation matches topological hierarchy

Can add new hosts/networks without updating the routing entries at France Telecom

ESNet must maintain routing entries for both a.*.*.* and a.c.*.*

- Hierarchical address allocation helps routing scalability if allocation matches topological hierarchy
- Problem: may not be able to aggregate addresses for "multihomed" networks
- Two competing forces in scalable routing
 - aggregation reduces number of routing entries
 - multi-homing increases number of entries

Growth in Routed Prefixes (1989-2005)

Summary of Addressing

- Hierarchical addressing
 - Critical for scalable system
 - Don't require everyone to know everyone else
 - Reduces amount of updating when something changes
- Non-uniform hierarchy
 - Useful for heterogeneous networks of different sizes
 - Class-based addressing was far too coarse
 - Classless InterDomain Routing (CIDR) more flexible
- A later lecture: impact of CIDR on router designs

In Class Quiz

- Question 1: Which of the following require global knowledge of the network topology to set up routing
 - A. Distance vector
 - B. Link state
 - C. Both distance vector and link state
 - D. Neither distance vector nor link state
- Question 2: what are the network and host components of the following IP addresses:
 - A. a.0.0.1/8
 - B. a.c.0.1/16

BGP (Today)

- The role of policy
 - what we mean by it
 - why we need it
- Overall approach
 - four non-trivial changes to DV
 - how policy is implemented (detail-free version)

Administrative structure shapes Interdomain routing

- ASes want freedom to pick routes based on policy
- ASes want autonomy
- ASes want privacy

Topology and policy is shaped by the business relationships between ASes

- Three basic kinds of relationships between ASes
 - AS A can be AS B's *customer*
 - AS A can be AS B's *provider*
 - AS A can be AS B's *peer*
- Business implications
 - Customer pays provider
 - Peers don't pay each other
 - Exchange roughly equal traffic

Business Relationships

Relations between ASes

provider customer peer peer

Business Implications

- Customers pay provider
- Peers don't pay each other

Why peer?

Relations between ASes

provider customer peer peer

Business Implications

- Customers pay provider
- Peers don't pay each other

Routing Follows the Money!

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Routing Follows the Money!

 An AS only carries traffic to/from its own customers over a peering link

Routing Follows the Money!

• Routes are "valley free" (will return to this later)

Interdomain Routing: Setup

- Destinations are IP prefixes (12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the *Interdomain* routing protocol
 - Implemented by AS border routers

BGP: Basic Idea

You've heard this story before!

BGP inspired by Distance Vector

- Per-destination route advertisements
- No global sharing of network topology information
- Iterative and distributed convergence on paths
- With four crucial differences!

Differences between BGP and DV (1) not picking shortest path routes

• BGP selects the best route based on policy, not shortest distance (least cost)

Node 2 may prefer "2, 3, 1" over "2, 1"

• How do we avoid loops?

Differences between BGP and DV (2) path-vector routing

- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the *entire path* for each destination

Differences between BGP and DV (2) path-vector routing

- Key idea: advertise the entire path
 - Distance vector: send *distance metric* per destination
 - Path vector: send the *entire path* for each destination
- Benefits
 - loop avoidance is easy

Differences between BGP and DV (3) Selective route advertisement

- For policy reasons, an AS may choose not to advertise a route to a destination
- Hence, reachability is not guaranteed even if graph is connected

Example: AS#2 does not want to carry traffic between AS#1 and AS#3

Differences between BGP and DV

(4) BGP may aggregate routes

For scalability, BGP may aggregate routes for different prefixes

BGP: Outline

- BGP policy
 - typical policies, how they're implemented
- BGP protocol details
- Issues with BGP

Policy imposed in how routes are selected and exported

- **Selection**: Which path to use?
 - controls whether/how traffic leaves the network
- **Export**: Which path to advertise?
 - controls whether/how traffic enters the network

Typical Selection Policy

- In decreasing order of priority
 - make/save money (send to customer > peer > provider)
 - maximize performance (smallest AS path length)
 - minimize use of my network bandwidth ("hot potato")
 - ...
 - ...

Typical Export Policy

Destination prefix advertised by	Export route to
Customer	Everyone (providers, peers, other customers)
Peer	Customers
Provider	Customers

We'll refer to these as the "Gao-Rexford" rules (capture common -- but not required! -- practice!)

Import Routes

Export Routes

BGP: Today

- BGP policy
 - typical policies, how they're implemented
- BGP protocol details
 - Just a little bit...
- BGP issues

Who speaks BGP?

Border routers at an Autonomous System

What does "speak BGP" mean?

- Implement the BGP protocol standard
 - read more here: http://tools.ietf.org/html/rfc4271
- Specifies what messages to exchange with other BGP "speakers"
 - message types (e.g., route advertisements, updates)
 - message syntax
- And how to process these messages
 - e.g., "when you receive a BGP update, do...."
 - follows BGP state machine in the protocol spec + policy decisions, etc.

A border router speaks BGP with border routers in other ASes

BGP "sessions"

A border router speaks BGP with other (interior and border) routers in its own AS

eBGP, iBGP, IGP

- eBGP: BGP sessions between border routers in <u>different ASes</u>
 - Learn routes to external destinations
- iBGP: BGP sessions between border routers and other routers within the <u>same AS</u>
 - distribute externally learned routes internally
- IGP: "Interior Gateway Protocol" = Intradomain routing protocol
 - provide internal reachability
 - e.g., OSPF, RIP

Putting the pieces together

BGP: Today

- BGP policy
 - typical policies, how they're implemented
- BGP protocol details
- BGP issues

Issues with BGP

- Reachability
- Security
- Convergence
- Performance
- Anomalies

Reachability

- In normal routing, if graph is connected then reachability is assured
- With policy routing, this does not always hold

Security

- An AS can claim to serve a prefix that they actually don't have a route to (blackholing traffic)
 - Problem not specific to policy or path vector
 - Important because of AS autonomy
 - Fixable: make ASes "prove" they have a path
- Note: AS may forward packets along a route different from what is advertised
 - Tell customers about fictitious short path...
 - Much harder to fix!

Gao-Rexford

providers peers customers

With Gao-Rexford, the AS policy graph is a DAG (directed acyclic graph) and routes are "valley free"

Convergence

- Result: If all AS policies follow "Gao-Rexford" rules, BGP is guaranteed to converge (safety)
- For arbitrary policies, BGP may fail to converge!

Example of Policy Oscillation

That was one round of oscillation!

BAD Configuration: No Solution

In BGP-like protocol

- Each node makes local decisions
- At least one node can always improve its path

Result:

• persistent oscillation

Convergence

- Result: If all AS policies follow "Gao-Rexford" rules, BGP is guaranteed to converge (safety)
- For arbitrary policies, BGP may fail to converge!
- Why should this trouble us?

Performance (example)

• AS path length can be misleading

• An AS may have many router-level hops

Real Performance Issue: Slow convergence

- BGP outages are biggest source of Internet problems
- Labovitz et al. SIGCOMM'97
 - 10% of routes available less than 95% of time
 - Less than 35% of routes available 99.99% of the time
- Labovitz et al. SIGCOMM 2000
 - 40% of path outages take 30+ minutes to repair
- But most popular paths are very stable

BGP Misconfigurations

- BGP protocol is both bloated and underspecified
 - lots of attributes
 - lots of leeway in how to set and interpret attributes
 - necessary to allow autonomy, diverse policies
 - but also gives operators plenty of rope
- Much of this configuration is manual and ad hoc
- And the core abstraction is fundamentally flawed
 - disjoint per-router configuration to effect AS-wide policy
 - now strong industry interest in changing this!