Формальные языки и автоматы

Лекции

Автор конспектов: Чубий Савва Андреевич

Преподаватель: Игнатьев Валерий Николаевич

2024-2025

2025-01-17	
Введение	2
Основные определения	2
Как задать язык?	2
Громмонителя	2

2025-01-17

Введение ——

Оценка:

- 2 контрольных на лекциях (40 баллов)
- Письменный экзамен (60 баллов)
- Задачи в ejudge (ДЗ) (10, 10, 5, 10 баллов)
 - Бывают частичные баллы
- Контест на Regexp (5 баллов)
 - Бывают частичные баллы

Сайт курса: https://earth.ispras.ru

——— Основные определения —

Опр. Алфавит (V) — конечное непустое множество символов.

Символы — некоторые произвольные объекты.

Опр. Слово (строка, предложение) — любая цепочка конечной длины, из символов алфавита.

Опр. ε — пустое слово

Опр. V^* — множество всех слов из символов V.

Onp. $V^+ = V * \setminus \{\varepsilon\}$

Опр. |x| — длина строки

Опр. xy — конкатенация

Опр. Язык L — подмножество слов: $L \subset V^*$

 V^*

Onp. $\overline{L} = L$

——— Как задать язык? —

Языков континуум, а нотаций — конечно. Поэтому не все языки можно задать.

Способы задания:

- Распознавание Процедура, которая для конкретного слова говорит, принадлежит ли оно языку. Если процедура не завершилась, то слово языку не принадлежит
- Порождение Процедура, которая последовательно выдает слова

Процедура vs Алгоритм (в контексте курса):

- Процедура просто последовательность инструкция
- Алгоритм процедура, которая завершается за конечное время

Типы языков:

- Рекурсивно перечислимые существует **процедура** распознавания
- Рекурсивный существует алгоритм распознавания
- Не перечислимые

Теорема

intersect Если L и \overline{L} рекурсивно перечислимы, то L рекурсивен.

- Грамматики -

Способ порождения языков

Опр. Грамматика: $G = (V_N, V_T, P, S)$, где

- V_N алфавит нетерминальных символов,
- V_T алфавит терминальных символов, причем $V_N \in V_T = \emptyset, V_N \cup V_T = V$
- P конечное множество правил вида $\alpha \to \beta, \alpha \in V^*V_NV^*, \beta \in V^*$,
- S- стартовый символ (начальный нетерминал, аксиома грамматики).

Опр. Язык порождаемый грамматикой G — множество всех терминальных строк, выводимых из начального символа.

$$L(G) = \left\{\omega \mid \omega \in V_T^*, S \overset{*}{\underset{G}{\Rightarrow}} \omega \right\}$$

Опр. Сентенциальная форма — любая «промежуточная» строка:

$$\alpha \in V^* \wedge S \overset{*}{\underset{G}{\Rightarrow}} \alpha$$

Опр. Грамматики эквивалентны, если $L(G_1) = L(G_2)$

Пример грамматики

```
G = \{S\}, \\ \{0, 1\}, \\ \{S \rightarrow 0S1, S \rightarrow 01\}, \\ S \\ \}
S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow \dots \Rightarrow 0 \dots 0S1 \dots 1
L(G) = \{0_{1^n}^n \mid n > 0\}
```