SI Units of Kinematic and Electromagnetic Quantities

Quantity	Symbol	Common Units	Units Symbol	SI Base Units
Length	l	Meters, m	m	m
Mass	m	Kilograms, kg	kg	kg
Time	t	Seconds, sec or s	S	S
Velocity	v	m/s	m/s	m/s
Acceleration	a	m/s ²	m/s^2	m/s^2
Force	$\mathbf{F} = \mathbf{m}\mathbf{a} = \mathbf{d}\mathbf{p}/\mathbf{dt}$	Newtons = $kg-m/s^2$	N	kg-m/s ²
Momentum	$\mathbf{p} = \mathbf{m}\mathbf{v}$	kg-m/s	kg-m/s	kg-m/s
Angular Momentum	$L = \mathbf{r} \times \mathbf{p}$	$kg-m^2/s = Joule-sec = N-m-s$	J-s = N-m-s	kg-m ² /s
Pressure	P = F/A	Pascals, $Pa = N/m^2$	$Pa = N/m^2$	kg/m-s ²
Energy, Work	E, W	Joules = N-m	J = N-m	$kg-m^2/s^2$
(Volume) Energy Density	U = E/V	Joules/m ³	J/m ³	kg/m-s ²
Power	P = dW/dt	Watts = Joules/sec	J/s	$kg-m^2/s^3$
Electric Charge	Q	Coulombs, C	C = A-s	Ampere-sec
Linear Elect. Charge Density	$\lambda = Q/L$	Coulombs/m	C/m	A-s/m
Surface Elect. Charge Density	$\sigma = Q/A$	Coulombs/m ²	C/m ²	$A-s/m^2$
Volume Elect. Charge Density	$\rho = Q/V$	Coulombs/m ³	C/m ³	$A-s/m^3$
Electric Potential	V	Volts = N-m/C	V = N-m/C	$kg-m^2/A-s^3$
Electric Field	$\mathbf{E} = \mathbf{F}/\mathbf{Q} = -\nabla V$	Volts/m = N/C	V/m = N/C	kg-m/A-s ³
Electric Displacement	$\mathbf{D} = \varepsilon \mathbf{E}$	Coulombs/m ²	C/m ²	$A-s/m^2$
Electric Polarization	$P = \varepsilon_o \chi_e E$	Coulombs/m ²	C/m ²	$A-s/m^2$
Electric Flux	$\Phi_{\rm E} = \mathbf{E} \bullet \mathbf{A} = \mathbf{Q}/\varepsilon_{\rm o}$	$Volt-m = N-m^2/C$	$V-m = N-m^2/C$	kg-m ³ /A-s ³
Electric Displacement Flux	$\Phi_{\rm D} = \mathbf{D} \bullet A = \mathbf{Q}$	Coulombs	C = A-s	A-s
Capacitance	C = Q/V	Farad = Coulomb/Volt	F = C/V	A^2 -s ⁴ /kg-m ²
Electric Permittivity	$\varepsilon = \varepsilon_{\rm o}(1+\chi_{\rm e})$	$Farads/m = C^2/N-m^2$	F/m = C/V-m	$A^2-s^4/kg-m^3$
Electric Susceptibility	$\chi_e = K_e - 1 = \varepsilon/\varepsilon_o - 1$	Dimensionless	*	*
Electric Line Current	$I = \mathbf{J} \bullet \mathbf{A}_{\perp} = \mathbf{K} \bullet \boldsymbol{\ell}_{\perp}$	Amperes, Amps	A = C/s	A
Elect. Surface Current Density	K	Amps/m	A/m	A/m
Elect. Volume Current Density	$\mathbf{J} = nq\mathbf{v}$	Amps/m ²	A/m^2	A/m^2
Magnetic Charge	$g_m = "qv"$	Amp-m = C-m/s	A-m	A-m
Magnetic Vector Potential	$\mathbf{A} = \mathbf{p}/\mathbf{Q}$	Tesla- $m = Wb/m = N/A$	T-m = N/A	kg-m/A-s ²
Magnetic Field	$\mathbf{B} = \nabla \times \mathbf{A}$	Teslas = $Wb/m^2 = N/A-m$	$T = Wb/m^2$	kg/A-s ²
Magnetic Displacement	$\mathbf{H} = 1/\mu_{o} \mathbf{B}$	Amps/m	A/m	A/m
Magnetization	$\mathbf{M} = \chi_{\mathrm{m}} \mathbf{H}$	Amps/m	A/m	A/m
Magnetic Flux	$\Phi_{\rm m} = \mathbf{B} \bullet \mathbf{A} = h/e$	Webers = $Tesla-m^2 = N-m/A$	$Wb = T-m^2$	$kg-m^2/A-s^2$
Inductance	$L = \Phi_{m}/I$	Henrys=Wb/A=T-m ² /A=N-m/A ²	$H = N-m/A^2$	$kg-m^2/A^2-s^2$
Magnetic Permeability	$\mu = \mu_{\rm o}(1+\chi_{\rm m})$	Henrys/m = T -m/A = N/A ²	$H/m = N/A^2$	$kg-m/A^2-s^2$
Magnetic Susceptibility	$\chi_{\rm m} = K_{\rm m} - 1 = \mu/\mu_{\rm o} - 1$	Dimensionless	*	*
Resistance	$R = \rho_c \ell / A = V / I$	Ohms, Ω	$\Omega = V/A$	$kg-m^2/A^2-s^3$
Resistivity	$\rho_c = 1/\sigma_c$	Ohm-m, Ω-m	Ω -m =V-m/A	$kg-m^3/A^2-s^3$
Conductance	$G = 1/R = \sigma_c A/\ell$	Siemens = Ω^{-1} = "Mhos"	S = A/V	A^2 -s ³ /kg-m ²
Conductivity	$\sigma_{\rm c} = 1/\rho_{\rm c}$	Siemens/m = Ω^{-1} /m = "Mhos"/m	S/m = A/V-m	A^2 -s ³ /kg-m ³
Electric Charge	e	1.602×10 ⁻¹⁹ Coulombs	С	С
Magnetic Charge	g	3.291×10 ⁻⁹ Ampere-meters	A-m = C-m/s	A-m
Speed of Light (in vacuum)	$c = 1/sqrt(\varepsilon_0 \mu_0)$	2.998×10 ⁸ meters/sec	m/s	m/s
Elect. Permittivity Free Space	$\varepsilon_{\rm o}$	8.85×10 ⁻¹² Farads/meter	$F/m = C^2/N - m^2$	A^2 -s ⁴ /kg-m ³
Magn. Permeability Free Space	$\mu_{\rm o}$	$4\pi \times 10^{-7}$ Henrys/meter	$H/m = N/A^2$	$kg-m/A^2-s^2$
Planck's Constant	h	6.626×10 ⁻³⁴ Joule-sec	J-s = N-m-s	kg-m ² /s
Boltzmann's Constant	k_{B}	1.381×10 ⁻²³ Joule/Kelvin	J/K = N-m/K	kg-m ² /s ² -K