Cours: ENSEMBLES ET APPLICATIONS

Avec Exercices avec solutions

PROF: ATMANI NAJIB 1BAC SM BIOF

ENSEMBLES ET APPLICATIONS

1)LES ENSEMBLES:

1-1) Activités :

Activité 1 : Soient les ensembles :

$$E = \left\{ x \in \left] -\pi; 2\pi \right[/ \tan x = \sqrt{3} : x \in \mathbb{R} \right\}$$

$$F = \left\{ x \in \left] -\pi; 2\pi \left[/ x = \frac{\pi}{6} + k\pi : k \in \mathbb{Z} \right] \right\}$$

$$G = \left\{ x \in \left] -\pi; 2\pi \left[/ x = \frac{\pi}{6} + \frac{k}{2}\pi : k \in \mathbb{Z} \right] \right\}$$

$$S = \left\{ \frac{-5\pi}{3}; \frac{-\pi}{3}; \frac{\pi}{6}; \frac{2\pi}{3}; \frac{7\pi}{6}; \frac{5\pi}{3} \right\}$$

Vérifier que : $S \subseteq E$ et $E \subseteq S$ et que E = S et E = G

Vérifier que: $\frac{\pi}{9}$ n'est pas un élément de E

et que $E \neq F$

Activité 2 :

Soient
$$A = \left\{ \frac{5n+8}{8n-1} / n \in \mathbb{N} \right\}$$
 et $B = \left\{ \frac{2n+4}{2n-1} / n \in \mathbb{N} \right\}$

1- Est ce que :
$$\frac{17}{3} \in A$$
 ? $\frac{43}{25} \in B$? $\frac{42}{37} \in B$?

2- montrer que $\frac{6}{5}$ est un élément commun entre A et B.

1-2) VOCABULAIRES:

- Un ensemble E est une collection d'objets mathématiques. Les objets que l'ensemble Contient sont appelés éléments de E.
- Si x est un élément de E on dit que x appartient a E et on écrit : $x \in E$
- Ø est l'ensemble qui ne contient aucun élément, on peut le définir comme suite : $\{x \in E \ et \ x \notin E\}$.
- Un ensemble peut être défini en extension, c'està-dire en donnant la liste de ses éléments entre accolades.

Par exemple: L'ensemble V des voyelles de l'alphabet français en extension est :

$$V = \{a, e, i, o, u, y\}$$

• En compréhension c'est-à-dire par une propriété caractérisant ses éléments.

Par exemple : $E = \{k \in \mathbb{Z}/ |3k + 1| \le 5\}$

Exemples:

1)L'ensemble des diviseurs de 3 en extension est : $D_3 = \{1; 3\}$

L'ensemble des diviseurs de 3 en compréhension

est : $D_3 = \{ n \in \mathbb{N} / n/3 \}$

2)L'ensemble A des entiers naturels dont les carrés sont inférieurs ou égaux à 40 :

$$A = \{n \in \mathbb{N} / n^2 \le 40\}$$
 (en compréhension

$$A = \{0;1;2;3;4;5;6\}$$
 (en extension)

Exercice1:1)Ecrire en extension les ensembles

suivants : $D_{180} = \{ n \in \mathbb{N} / n/180 \}$

$$A = \left\{ n \in \mathbb{Z} \: / \: \frac{-5}{2} \le n^2 \le \frac{3}{2} \right\} \ ;$$

$$B = \{ x \in \mathbb{R} / x^2 + x + 1 = 0 \}$$

2)Ecrire en compréhension l'ensemble Des nombres

Solution : 1) $180 = 2^2 \times 3^2 \times 5$

$$D_{180} = \{1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180\}$$

$$A = \{-1, 0, 1\}$$

$$x^2+x+1=0$$
 $\Delta=-3 < 0$ donc: $B=\emptyset$

2)
$$P = \{2k / k \in \mathbb{N}\}$$

Exercice2:1) Ecrire en extension les ensembles suivants:

$$E_1 = \left\{ k \in \mathbb{Z} / |k+1| \le 2 \right\}$$

$$E_2 = \{ x \in \mathbb{Z} / k^2 \le 7 \}$$

$$E_3 = \{k \in \mathbb{Z} / 7 \le k^2 \le 35\}$$

$$E_4 = \{(x; y) \in \mathbb{N}^2 / (x + y)(x - y) = 32\}$$

2) Ecrire en compréhension l'ensemble Des multiples de 5 dans ℕ

Solution : 1) $k \in E_1 \iff k \in \mathbb{Z}$ et $|k+1| \le 2 \iff$

$$k \in \mathbb{Z}$$
 et $-2 \le k+1 \le 2 \Leftrightarrow$

$$k \in \mathbb{Z}$$
 et $-3 \le k \le 1 \Leftrightarrow$

Donc:
$$E_1 = \{-3, -2, -1, 0, 1\}$$

$$k \in E_2 \Leftrightarrow k \in \mathbb{Z}$$
 et

$$k^2 \le 7 \Leftrightarrow |k| \le \sqrt{7} \Leftrightarrow -\sqrt{7} \le k \le \sqrt{7} \text{ et } k \in \mathbb{Z}$$

Donc:
$$E_2 = \{-2, -1, 0, 1, 2\}$$

$$k \in E_3 \iff k \in \mathbb{Z}$$
 et $7 \le k^2 \le 35$

$$\Leftrightarrow \sqrt{7} \le |k| \le \sqrt{35} \Leftrightarrow |k| \in \{3,4,5\} \Leftrightarrow k \in \{-5,-4,-3,3,4,5\}$$

Donc:
$$E_3 = \{-5, -4, -3, 3, 4, 5\}$$
"

$E_{\cdot \cdot} = \{$	$\int \mathbf{r} \cdot \mathbf{v}$	' x · v	$) \in \mathbb{N}^2 / ($	(x+y)	$\int (x-y)$) = 32	?		
$\mathbf{L}_4 = \{$	1	[x, y]	<i>)</i> ∈ 14-7 ((x + y)	Л	(x-y)	j = 32	} :	

Et (x-y)+(x+y)=2x est u nombre pair

Donc x-y et x+y ont la même parité et

$$x + y \ge x - y \qquad 32 = 2^5$$

On dresse un tableau:

x-y	2	4
x+y	16	8
х	9	6
У	7	2

$$E_4 = \{(6;2);(9;7)\}$$

$$E_5 = \{(x; y) \in \mathbb{N}^2 / x^2 - y^2 = 15\}$$
?

$$x^{2} - y^{2} = 15 \Leftrightarrow (x + y)(x - y) = 15$$

De même que : E_4 on a : les diviseurs de 15

sont 1;3;5;15 et $x+y \ge x-y$

On dresse un tableau:

x-y	1	3
x+y	15	5
х	8	4
у	7	1

2)
$$P = \{5k / k \in \mathbb{N}\}$$

Exercice3: Ecrire en extension les ensembles

suivants :
$$A = \left\{ \cos \left(\frac{\pi}{5} + \frac{n\pi}{6} \right) : n \in \mathbb{Z} \right\}$$

$$B = \left\{ \sin\left(\frac{\pi}{12} + \frac{n\pi}{6}\right) : n \in \mathbb{Z} \right\}$$

Solution : on sait que la fonction cos est périodique

de période 2π et $\frac{n\pi}{6} = 2\pi \Leftrightarrow n = 12$

 $n \in \{0;1;2;3;..;11\}$

$$A = \left\{ \cos\left(\frac{\pi}{5} + \frac{n\pi}{6}\right) / n \in [0;11] \right\}$$

En tenant compte des relations :

 $\cos(\pi + x) = \cos(\pi - x) = -\cos x$ on en deduit :

$$A = \left\{ \cos\left(\frac{6\pi}{30}\right); \cos\left(\frac{11\pi}{30}\right); \cos\left(\frac{16\pi}{30}\right); \cos\left(\frac{21\pi}{30}\right) \right\}$$

$$;\cos\left(\frac{26\pi}{30}\right);\cos\left(\frac{31\pi}{30}\right);\cos\left(\frac{36\pi}{30}\right);\cos\left(\frac{41\pi}{30}\right);\cos\left(\frac{46\pi}{30}\right)$$

$$;\cos\left(\frac{51\pi}{30}\right);\cos\left(\frac{56\pi}{30}\right);\cos\left(\frac{61\pi}{30}\right)$$

De même pour sin on a : $B = \left\{ \sin\left(\frac{\pi}{12} + \frac{n\pi}{6}\right) : n \in [0;11] \right\}$

En tenant compte des relations :

$$\sin(\pi - x) = \sin x = -\sin(\pi + x) = -\sin(-x)$$

on en deduit:

$$B = \left\{ \sin\left(\frac{\pi}{12}\right); \sin\left(\frac{3\pi}{12}\right); \sin\left(\frac{5\pi}{12}\right); -\sin\left(\frac{\pi}{12}\right); -\sin\left(\frac{3\pi}{12}\right); -\sin\left(\frac{5\pi}{12}\right) \right\}$$

2) Egalité ; inclusion ; ensemble des partie d'un ensemble

Définition : On dit que deux ensembles E et F sont égaux s'ils ont exactement les mêmes éléments ; on écrit E=F

$$(E = F) \iff (x \in E \iff x \in F)$$

Exemple :
$$A = \{k \in \mathbb{Z} / |2k+1| \le 3\}$$
 et $B = \{-2, -1, 0, 1\}$

Montrons que : A = B

Solution: $k \in A \Leftrightarrow k \in \mathbb{Z}$ et $|2k+1| \le 3 \Leftrightarrow$

 $k \in \mathbb{Z}$ et $-3 \le 2k+1 \le 3 \Leftrightarrow$

 $k \in \mathbb{Z}$ et $-4 \le 2k \le 2 \Leftrightarrow$

$$k \in \mathbb{Z}$$
 et $-2 \le k \le 1 \Leftrightarrow k \in \{-2, -1, 0, 1\} \Leftrightarrow k \in B$

Donc on a : $k \in A \Leftrightarrow k \in B$

Donc : A = B

Définition : Soient E et F deux ensembles quelconques. E est dit inclus dans F si tout élément de E est un élément de F.

On dit aussi que E est un sous-ensemble de F ou encore que E est une partie de. F On note $E \subset F$ $(E \subset F) \iff (x \in E \Rightarrow x \in F)$.

Exemple : Soit $E = \{0,1,2\}$ déterminer tous les ensembles inclus dans E. Qui s'appelle l'ensemble des parties de E et se note $\mathcal{P}(E)$.

$$P(E) = \{\emptyset; \{0\}; \{1\}; \{2\}; \{0;1\}; \{0;2\}; \{1;2\}; E\}$$

Définition: Soit E un ensemble, les partie de E, constituent un ensemble qui s'appelle ensemble des partie de E et se note P(E).

$$P(E)) = \{X/X \subset E\}$$

Remarques: 1)A est une partie de E ($A \subset E$) si et seulement si A est un élément de P(E)

 $A \subseteq E \Leftrightarrow A \in P(E)$

2)
$$\emptyset \in P(E)$$
 et $\emptyset \subset E$

3)
$$E \in P(E)$$
 et $E \subset E$

Exercice4: Ecrire en extension les ensembles suivants:

1)
$$P(P(\varnothing))$$
 2) $P(P(\{a;b\}))$

Solution :1) Il est aisé de voire que $P(\emptyset) = \{\emptyset\}$

donc: $P(P(\varnothing)) = \{\varnothing; \{\varnothing\}\}$

2)
$$P(P(\{a;b\}))$$
:

$$P(\{a;b\}) = \{\emptyset; \{a\}; \{b\}; \{a;b\}\}$$
 Donc:

$$\begin{split} P(P(\{a,b\})) = & \{\varnothing_i\{\varnothing_j; \{\{a\}\}; \{\{b\}\}; \{\{a,b\}\}; \{\varnothing_i\{a\}\}; \{\varnothing_i\{a\}\}; \{\varnothing_i\{a\}\}; \{\{a\}\}; \{\{a\}\}; \{\{a\}\}; \{\{a\}\}\}; \{\{a\}\}; \{\{a\}\}\}; \{\{a\}\}\}$$

3) Complémentaire d'un ensemble

complémentaire

Définition :

Soit A une partie de E, le complémentaire de A est l'ensemble constitué par tous les éléments de E qui n'appartiennent pas à A, on le note \overline{A} ou C_E^A .

$$\overline{A} = \left\{ x \in E \, / \, x \notin A \right\}$$

Exemples: Si E un ensemble quelconque:

$$\overline{E} = \emptyset$$
 et $\overline{\varnothing} = E$

 $C_{\mathbb{R}}^{\mathbb{Q}} = I$ (Ensembles des irrationnelles).

Exercice5: donner Complémentaire des ensembles suivants : [a;b[l'ensemble $\mathbb Q$

2) l'intervalle
$$[a;b[a \prec b]$$

Solution : 1) le complémentaire de $\mathbb Q$ est l'ensemble des irrationnels et se note $\mathbb R-\mathbb Q$

2)
$$\overline{[a;b[} = \{x \in \mathbb{R} \mid x \notin [a;b[]\} = \{x \in \mathbb{R} \mid x \ge boux \prec a\}$$

$$\overline{\left[a;b\right[}=\left]\!-\!\infty;a\right[\cup\left[b;+\infty\right[$$

4) Intersection ; réunion, différence de deux ensembles.

Définition: Soient *A* et *B* deux parties d'un ensemble *E*; l'intersection de *A* et *B* est l'ensemble constitué par les éléments qui appartiennent à la fois à *A* et à *B*. On le note

par $A \cap B$. $A \cap B = \{x \in E \mid x \in A \text{ } et \text{ } x \in B\}$

Définition : Soient A et B deux parties d'un ensemble E ; la réunion de A et B est l'ensemble constitué par les éléments qui appartiennent à A ou à B. On le note par $A \cup B$.

 $A \cup B = \{x \in E \mid x \in A \ ou \ x \in B\}$

Définition: Soient *A* et *B* deux parties d'un ensemble *E*; la différence de *A* et *B* est l'ensemble constitué par les éléments qui appartiennent à *A* et qui n'appartiennent pas à B.

On le note par $A \setminus B$ ou A - B $A \setminus B = \{x \in E \mid x \in A \text{ } et \text{ } x \notin B\}$

5) Propriétés

5.1 Propriétés d'inclusion.

Soient E, un ensemble, A, B et C des parties de E. $(A = B) \iff A \subset B$ et $B \subset A$

A-B

 $A \subset B$ et $B \subset C \Rightarrow (A \subset C)$ la transitivité

5.2 Intersection et réunion

 $A \cap A = A$ et $A \cup A = A$ Si $A \subset B$ alors $A \cap B = A$ et $A \cup B = B$ $A \cap B \subset A \subset A \cup B$

 $(A \cap B) \cap C = A \cap (B \cap C)$ L'associativité $(A \cup B) \cup C = A \cup (B \cup C)$ L'associativité $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ la distributivité $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ la distributivité

5.3 Le complémentaire

$$\overline{A} = E/A$$
 et $\overline{A} = A$
 $\overline{A \cap B} = \overline{A} \cup \overline{B}$ et $\overline{A \cup B} = \overline{A} \cap \overline{B}$ lois de Morgan $(A \subset B) \iff (B \subset \overline{A})$

5.4 La différence

$$A - B = A - (A \cap B) \qquad A - B = A \cap \overline{B}$$

6) Notations généralisées.

Soient A_1, A_2, \dots, A_n une famille de parties d'un ensemble E, (qu'on peut noter $(Ai)1 \le i \le n$)

L'ensemble : $A_1 \cup A_2 \cup ... \cup A_n$ se note : $\bigcup_{i=1}^n A_i$

L'ensemble $A_1 \cap A_2 \cap ... \cap A_n$ se note : $\bigcap_{i=1}^n A_i$

Définition : Une famille (Ai)1 $\leq i \leq n$ de parties d'un

ensemble E s'appelle une partition de l'ensemble E si elle vérifie :

$$\bigcup_{i=1}^{n} A_{i} = E \text{ et } i \neq j) \Rightarrow (Ai \cap Aj = \emptyset)$$

on dit que les ensembles sont disjoints deux à deux. **Exercice6**:Soient les ensembles :

$$A = \left\{ \frac{\pi}{4} + 2\frac{k\pi}{5} : k \in \mathbb{Z} \right\} B = \left\{ \frac{\pi}{2} + 2\frac{k\pi}{5} : k \in \mathbb{Z} \right\}$$

Monter que : $A \cap B = \emptyset$

Solution :On suppose que : $A \cap B \neq \emptyset$

Donc: $\exists x_0 \in \mathbb{R} \ x_0 \in A \text{ et } x_0 \in B$

$$\iff \exists (k_1; k_2) \in \mathbb{Z}^2: x_0 = \frac{\pi}{2} + 2\frac{k_1\pi}{5} \text{ et } x_0 = \frac{\pi}{4} + 2\frac{k_2\pi}{5}$$

Donc
$$\iff \exists (k_1; k_2) \in \mathbb{Z}^2 : \frac{\pi}{2} + 2 \frac{k_1 \pi}{5} = \frac{\pi}{4} + 2 \frac{k_2 \pi}{5}$$

Donc:
$$\frac{2}{5}(k_1-k_2) = -\frac{1}{4} \Leftrightarrow k_1-k_2 = -\frac{5}{8}$$
 contradiction

avec le faite que
$$k_1-k_2\in\mathbb{Z}$$
 et $-\frac{5}{8}\not\in\mathbb{Z}$ Donc : $A\cap B=\varnothing$

Exercice7 : Soient A ; B ; C et D des parties d'un ensemble E

Monter que :
$$\begin{cases} \left(\overline{B-C}\right) \cup A = E \\ \left(\overline{C-D}\right) \cup A = E \end{cases} \Rightarrow \left(B-D\right) \subset A$$

Solution: On suppose que:

$$(\overline{B-C}) \cup A = E$$
 et $(\overline{C-D}) \cup A = E$

Remarquer que : $A \cup B = E \Longrightarrow \overline{A} \subset B$

Donc : $B-C \subset A$ et $C-D \subset A$ cad

$$B \cap \overline{C} \subset A$$
 et $C \cap \overline{D} \subset A$

Montrons que : $B - D \subset A$ cad $B \cap \overline{D} \subset A$?

Soit $x \in B \cap \overline{D}$

 $x \in B \cap \overline{D} \Leftrightarrow x \in B \text{ et } x \in \overline{D}$

- Si $x \in C$ alors $x \in C \cap \overline{D}$ donc $x \in A$ car $C \cap \overline{D} \subset A$
- Si $x \notin C$ alors $x \in B \cap \overline{C}$ donc $x \in A$ car $B \cap \overline{C} \subset A$ Dans tous les cas : $(B-D) \subset A$

Exercice8: Soient A; B; C des ensembles

Monter que : $A \subset B \subset C \Leftrightarrow A \cup B = B \cap C$

Solution: On suppose que : $A \subset B \subset C$

On a : $A \subset B \subset C \Rightarrow A \subset B$ et $B \subset C$

$$\Rightarrow A \cup B = B$$
 et $B \cap C = B \Rightarrow A \cup B = B \cap C$

On suppose que : $A \cup B = B \cap C$

On a : $A \cup B = B \cap C \Rightarrow A \cup B \subset B$ et $A \cup B \subset C$

 $\Rightarrow A \subset B \text{ et } B \subset C$

 $\Rightarrow A \subset B \subset C$

Donc: $A \subset B \subset C \Leftrightarrow A \cup B = B \cap C$

Exercice9: Soient A; B; C des parties d'un

ensemble E

Monter que:

1)
$$A = (A \cap B \cap C) \cup (A \cap \overline{B} \cap C) \cup (A \cap \overline{B} \cap \overline{C}) \cup (A \cap B \cap \overline{C})$$

$$2)(A \cup B) \cap (B \cup C) \cap (C \cup A) = (A \cap B) \cup (B \cap C) \cup (C \cap A)$$

3)
$$A \cap \overline{B} = A \cap \overline{C} \Leftrightarrow A \cap B = A \cap C$$

Solution:1)

$$(A \cap B \cap C) \cup (A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap \overline{C}) \cup (A \cap \overline{B} \cap C)$$

$$= \left[(A \cap B) \cap (C \cup \overline{C}) \right] \cup \left[(A \cap \overline{B}) \cap (C \cup \overline{C}) \right]^{\cdots}$$

$$= \left[(A \cap B) \cap E \right] \cup \left[(A \cap \overline{B}) \cap E \right] = (A \cap B) \cup (A \cap \overline{B})$$

$$2)(A \cup B) \cap (B \cup C) \cap (C \cup A) = [B \cup (A \cap C)] \cap (C \cup A)$$
$$= (B \cap (C \cup A)) \cup ((A \cap C) \cap (C \cup A))$$
$$= (B \cap C) \cup (B \cap A) \cup (A \cap C)$$

3) Montrons que:

$$\begin{cases} A \cap \overline{B} = A \cap \overline{C} \Rightarrow A \cap B = A \cap C \\ A \cap B = A \cap C \Rightarrow A \cap \overline{B} = A \cap \overline{C} \end{cases}$$

 $=A\cap (B\cup \overline{B})=A\cap E=A$

$$A \cap \overline{B} = A \cap \overline{C} \Rightarrow \overline{A \cap \overline{B}} = \overline{A \cap \overline{C}} \Rightarrow \overline{A} \cup \overline{\overline{B}} = \overline{A} \cup \overline{\overline{C}}$$
$$\Rightarrow \overline{A} \cup B = \overline{A} \cup C \Rightarrow A \cap (\overline{A} \cup B) = A \cap (\overline{A} \cup C)$$

$$\Rightarrow (A \cap \overline{A}) \cup (A \cap B) = (A \cap \overline{A}) \cup (A \cap C)$$

$$\Rightarrow A \cap B = A \cap C$$

Inversement:

$$A \cap B = A \cap C \Rightarrow A \cap \overline{B} = A \cap \overline{C} \Rightarrow A \cap \overline{B} = A \cap \overline{C}$$

D'après l'implication directe

Donc:
$$A \cap \overline{B} = A \cap \overline{C} \Leftrightarrow A \cap B = A \cap C$$

Exercice10 : Soient A ; B ; C des parties d'un ensemble E

Monter que :
$$\begin{cases} A \cup B \subset A \cup C \\ A \cap B \subset A \cap C \end{cases} \Rightarrow B \subset C$$

Solution: On suppose que:

$$\begin{cases} A \cup B \subset A \cup C \\ A \cap B \subset A \cap C \end{cases}$$
 Montrons que :

$$(\forall x \in E)(x \in B \Rightarrow x \in C)$$
?

 $x \in B \Rightarrow x \in A \cup B \Rightarrow x \in A \cup C \Rightarrow x \in A \text{ ou } x \in C$

- Si $x \in A$ alors $x \in A \cap B$ donc $x \in A \cap C$ car $A \cap B \subset A \cap C$ donc $B \subset C$
- Si $x \notin A$ et puisque $x \in C$ ou $x \in A$ est vraie alors $B \subset C$

Conclusion :
$$(\forall x \in E)(x \in B \Rightarrow x \in C)$$

Donc $B \subset C$

Exercice11: Soient A; B; C des parties d'un ensemble E

La différence symétrique de A et B c'est l'ensemble Qu'on note : $A\Delta B$ tel que : $A\Delta B = (A-B) \cup (B-A)$

1)Monter que : $A\Delta B = (A \cup B) - (A \cap B)$

2)Monter que : $\overline{A}\Delta \overline{B} = A\Delta B$

3)Monter que : $\forall C \in P(E)$: $A \triangle B = A \triangle C \Leftrightarrow B = C$

Solution: 1)

$$A\Delta B = (A - B) \cup (B - A) = (A \cap \overline{B}) \cup (B \cap \overline{A})$$

$$= \left\lceil \left(A \cap \overline{B}\right) \cup B \right\rceil \cap \left\lceil \left(A \cap \overline{B}\right) \cup \overline{A} \right\rceil$$

$$= \left(A \cup B\right) \cap \left(B \cup \overline{B}\right) \cap \left(A \cup \overline{A}\right) \cap \left(\overline{B} \cup \overline{A}\right)$$

$$=(A \cup B) \cap E \cap E \cap (\overline{A \cap B})$$

$$=(A \cup B) \cap (\overline{A \cap B}) = (A \cup B) - (A \cap B)$$

2)Monter que:

$$\overline{A}\Delta \overline{B} = \left(\overline{A} - \overline{B}\right) \cup \left(\overline{B} - \overline{A}\right) = \left(\overline{A} \cap B\right) \cup \left(\overline{B} \cap A\right)$$

$$=(A-B)\cup(B-A)=A\Delta B$$

3)soit $C \in P(E)$

- Si on a : B = C alors $A\Delta B = A\Delta C$
- Supposons que : $A\Delta B = A\Delta C$ et montrons que B = C ?

✓ Soit $x \in B$ montrons que $x \in C$?

Si $x \in A$:

$$(x \in A \text{ et } x \in B) \Rightarrow x \in A \cap B \Rightarrow x \notin A \Delta B \Rightarrow x \notin A \Delta C$$

(Car $A \Delta B = A \Delta C$)

$$\Rightarrow x \in A \cap C \Rightarrow x \in C$$

Donc $A \cap B \subset C$ (1)

Si $x \notin A$:

$$(x \notin A \text{ et } x \in B) \Rightarrow x \in B - A \Rightarrow x \in A \Delta B \Rightarrow x \in A \Delta C$$

(Car $A \Delta B = A \Delta C$)

$$\Rightarrow x \in C - A \Rightarrow x \in C$$

Donc $\overline{A} \cap B \subset C$ (2)

De (1) et (2) en deduit que :
$$(A \cap B) \cup (\overline{A} \cap B) \subset C$$

Et puisque : $(A \cap B) \cup (\overline{A} \cap B) = (A \cup \overline{A}) \cap B = E \cap B = B$

Alors $B \subset C$

De même on montre que : $\mathit{C} \subset \mathit{B}$

Donc: $A\Delta B = A\Delta C \Rightarrow B = C$

Finalement : $A\Delta B = A\Delta C \Leftrightarrow B = C$

7) Produit cartésien

Définition : Soient A et B deux ensembles ; le produit cartésien de A et B est l'ensemble des couples (x, y) tels que $x \in A$ et $y \in B$, On le note par $A \times B$.

 $A \times B = \{(x, y) | x \in A \text{ et } y \in B\}$ Le carrée cartésien

d'un ensemble A

Est l'ensemble $A \times A$ noté A^2

Exemples:

$$A = [1,2]; B = [1,3]$$

Exercice12: Soit l'ensemble:

$$E = \{(x; y) \in \mathbb{R}^2 / x^2 + xy - 2y^2 + 5 = 0\}$$

1) a)vérifier que :

$$\forall (x; y) \in \mathbb{R}^2 : x^2 + xy - 2y^2 = (x - y)(x + 2y)$$

- b) Ecrire en extension l'ensemble $E \cap \mathbb{Z}^2$
- c) montrer que : $E = \left\{ \left(\frac{2t^2 5}{3t}; \frac{-t^2 5}{3t} \right) / t \in \mathbb{R}^* \right\}$
- 4) Ecrire en compréhension les ensembles suivants :

$$A = \{0;1;4;9;16;...\}$$
 et $B = \{-1;\frac{1}{2};-\frac{1}{3};\frac{1}{4};...\}$

$$C = \{...; -5; -2; 1; 4; 7; ...\}$$

Solution: 1) a)

$$\forall (x; y) \in \mathbb{R}^2 : (x - y)(x + 2y) = x^2 + 2xy - xy - 2y^2$$

= $x^2 + xy - 2y^2$

b)
$$(x; y) \in E \cap \mathbb{Z}^2 \Leftrightarrow (x; y) \in E \text{ et } (x; y) \in \mathbb{Z}^2$$

$$\Leftrightarrow$$
 $(x-y)(x+2y) = -5$ et $(x; y) \in \mathbb{Z}^2$

$$\Leftrightarrow$$
 $(x;y) \in \mathbb{Z}^2 \begin{cases} x-y=-5 \\ x+2y=1 \end{cases}$ ou $\begin{cases} x-y=5 \\ x+2y=-1 \end{cases}$ ou $\begin{cases} x-y=-1 \\ x+2y=5 \end{cases}$ ou $\begin{cases} x-y=1 \\ x+2y=-5 \end{cases}$

Donc:
$$E \cap \mathbb{Z}^2 = \{(-3,2), (3,-2), (1,2), (-1,-2)\}$$

c)
$$(x; y) \in E \Leftrightarrow (x - y)(x + 2y) = -5 \Leftrightarrow \begin{cases} x - y = t \\ x + 2y = \frac{-5}{t} \end{cases} : t \in \mathbb{R}^*$$

$$\Leftrightarrow \left(x = \frac{2t^2 - 5}{3t}ety = \frac{-t^2 - 5}{3t}\right): t \in \mathbb{R}^*$$

$$\Leftrightarrow (x; y) \in \left\{ \left(\frac{2t^2 - 5}{3t}; \frac{-t^2 - 5}{3t} \right) / t \in \mathbb{R}^* \right\}$$

Donc:
$$E = \left\{ \left(\frac{2t^2 - 5}{3t}; \frac{-t^2 - 5}{3t} \right) / t \in \mathbb{R}^* \right\}$$

4)
$$A = \{k^2; k \in \mathbb{N}\}\ \text{et } B = \left\{\frac{\left(-1\right)^k}{k}; k \in \mathbb{N}^*\right\}$$

$C = \{1 + 3n; n \in \mathbb{Z}\}$

Exercice13 :soient E et F deux ensembles et A et B deux parties respectives de E et F

1) déterminer le complémentaire de $A \times F$ dans $E \times F$

2) déterminer le complémentaire de $E \times F$ dans

 $E \times F$

3)déterminer le complémentaire de $A \times B$ dans $E \times F$

Solution : 1) le complémentaire de $A \times B$ dans

$$E \times F$$
 se note : $C_{E \times F}^{A \times B}$ ou $\overline{A \times B}$

$$(x; y) \in \overline{A \times F} \Leftrightarrow (x; y) \notin A \times F \Leftrightarrow x \notin Aouy \notin F$$

$$\Leftrightarrow x \in \overline{Aouy} \in \overline{F} \Leftrightarrow (x; y) \in \overline{A} \times F \text{ ou } y \notin F$$

$$\Leftrightarrow$$
 $(x; y) \in \overline{A} \times F$ Car : $y \notin F$ donne l'ensemble vide

Donc : $\overline{A \times F} = \overline{A} \times F$

$$(x, y) \in \overline{E \times B} \Leftrightarrow (x, y) \notin E \times B \Leftrightarrow x \notin Eouy \notin B$$

$$\Leftrightarrow x \in \overline{Eouy} \in \overline{B} \Leftrightarrow (x; y) \in E \times \overline{B} \text{ ou } x \notin E$$

$$\Leftrightarrow$$
 $(x; y) \in E \times \overline{B}$ Car : $x \notin E$ donne l'ensemble vide

Donc :
$$\overline{E \times B} = E \times \overline{B}$$

3)
$$(x; y) \in \overline{A \times B} \Leftrightarrow (x; y) \notin A \times B \Leftrightarrow x \notin Aouy \notin B$$

$$\Leftrightarrow x \in \overline{A}ouy \in \overline{B} \Leftrightarrow (x; y) \in \overline{A} \times F \text{ ou } (x; y) \in E \times \overline{B}$$

$$\Leftrightarrow$$
 $(x; y) \in (\overline{A} \times F) \cup (E \times \overline{B})$

Donc:
$$\overline{A \times B} = (\overline{A} \times F) \cup (E \times \overline{B})$$

Exercice14: soient l'ensemble:

$$L = \{(x; y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}$$

Monter qu'il n'existe pas deux parties A et B de $\mathbb R$

tels que : $L = A \times B$

Solution : On suppose: qu'il existe deux parties A et

B de \mathbb{R} tels que : $L = A \times B$

On a: $(1,0) \in L$ et $(0,1) \in L$

Donc: $1 \in A$ et $1 \in B$ car $L = A \times B$

Donc: $(1,1) \in A \times B$ cad $(1,1) \in L$

Donc contradiction car: $1^2+1^2 > 1$

Conclusion il n'existe pas deux parties A et B de $\mathbb R$

tels que : $L = A \times B$

Exercice15: Soient les ensembles:

$$H = \left\{ y \in \mathbb{R} / y = \frac{1}{\sqrt{x^2 + 1}} : x \in \mathbb{R} \right\}$$

$$G = \left\{ y \in \mathbb{R} / y = \frac{1}{1 + \sqrt{x^2 + 1}} : x \in \mathbb{R} \right\}$$

1- montrer que : H =]0,1].

a- Considérer un élément $y_0 \in H$

et montrer que $y_0 \in]0,1]$

b- Considérer un élément $y_0 \in]0,1]$

et montrer que $y_0 \in H$

2- Monter que $G \subset H$

3- Est-ce que G = H?

Solution:

1- a- soit un élément $y_0 \in H$ montrons que $y_0 \in]0,1]$?

$$y_0 \in H \Rightarrow \exists x_0 \in \mathbb{R} / y_0 = \frac{1}{\sqrt{{x_0}^2 + 1}}$$

On a
$$x_0^2 \ge 0 \Rightarrow x_0^2 + 1 \ge 1 \Rightarrow \sqrt{x_0^2 + 1} \ge 1 \Rightarrow \frac{1}{\sqrt{x_0^2 + 1}} \le 1 \Rightarrow$$

$$y_0 \in]0,1] \text{ Donc}: H \subset [0;1]$$
 (1)

b- Considérer un élément $y_0 \in]0,1]$

et montrons que $y_0 \in H$?

$$y_0 \in]0;1]$$
 $\exists ? x_0 \in \mathbb{R} / y_0 = \frac{1}{\sqrt{x_0^2 + 1}}$

$$y_0 = \frac{1}{\sqrt{x_0^2 + 1}} \Leftrightarrow y_0^2 = \frac{1}{x_0^2 + 1} \Leftrightarrow x_0^2 = \frac{1}{y_0^2} - 1$$

Or:
$$y_0 \in]0;1]$$
 donc $0 \prec y_0 \le 1$ donc $\frac{1}{{y_0}^2} - 1 \ge 0$

Donc : il suffit de prendre :
$$x_0 = \sqrt{\frac{1}{{y_0}^2} - 1} \; \text{Donc} : \; y_0 \in H$$

Donc :
$$]0;1] \subset H$$
 (2)

De : **(1) et (2)** en deduit que : H =]0;1]

2- montrons que $G \subset H$??

Montrons que : $G \subset [0;1]$?

soit un élément $y_0 \in G$ montrons que $y_0 \in]0,1]$?

$$y_0 \in G \Rightarrow \exists x_0 \in \mathbb{R} / y_0 = \frac{1}{1 + \sqrt{x_0^2 + 1}}$$

On a
$$x_0^2 \ge 0 \Longrightarrow x_0^2 + 1 \ge 1$$

$$\Rightarrow \sqrt{{x_0}^2 + 1} \ge 1 \Rightarrow \sqrt{{x_0}^2 + 1} + 1 \ge 2 \Rightarrow 0 < \frac{1}{1 + \sqrt{{x_0}^2 + 1}} \le \frac{1}{2} \le 1$$

Donc : $y_0 \in]0,1]$ Donc : $G \subseteq H$

3) supposons : G = H

On a $1 \in H \Rightarrow 1 \in G$

$$\Rightarrow \exists x_0 \in \mathbb{R} / 1 = \frac{1}{1 + \sqrt{x_0^2 + 1}}$$

$$\Rightarrow \exists x_0 \in \mathbb{R} / 1 + \sqrt{x_0^2 + 1} = 1 \Rightarrow \exists x_0 \in \mathbb{R} / \sqrt{x_0^2 + 1} = 0$$

$$\Rightarrow \exists x_0 \in \mathbb{R} / x_0^2 = -1$$
 absurde donc : $H \neq G$

Exercice16 : on considère dans \mathbb{Z} les deux parties suivantes :

$$A = \left\{ x \in \mathbb{Z} \, / \, \frac{4x^2 - 4x + 10}{2x - 1} \in \mathbb{Z} \right\} \text{ et } B = \left\{ x \in \mathbb{Z} \, / \, \frac{x + 10}{x - 5} \in \mathbb{Z} \right\}$$

1)a) montrer que
$$(\forall x \in \mathbb{Z} - \{5\}) \frac{x+10}{x-5} = 1 + \frac{15}{x-5}$$

1)b) montrer que
$$(\forall x \in \mathbb{Z}) \frac{4x^2 - 4x + 10}{2x - 1} = 2x - 1 + \frac{9}{2x - 1}$$

- 2) déterminer : A ; B ; A-B ; B-A et $A\Delta B$ en extension
- 3)on admet que l'opération est associative dans

l'ensembles des parties de $\mathbb{Z}:P(\mathbb{Z})$

Résoudre dans $P(\mathbb{Z})$ l'équation : $A\Delta X = B$

Solution: 1) a) il est aisé de voir que :

$$(\forall x \in \mathbb{Z} - \{5\}) \frac{x+10}{x-5} = 1 + \frac{15}{x-5}$$

1) b) il est aisé aussi de voir que

$$(\forall x \in \mathbb{Z})2x-1+\frac{9}{2x-1}=+\frac{(2x-1)^2+9}{2x-1}=\frac{4x^2-4x+10}{2x-1}$$

2) détermination de : A ?

On a :
$$A = \left\{ x \in \mathbb{Z} / \frac{4x^2 - 4x + 10}{2x - 1} \in \mathbb{Z} \right\}$$
 et

$$(\forall x \in \mathbb{Z})2x-1 \in \mathbb{Z}$$
 et $\frac{4x^2-4x+10}{2x-1} = 2x-1 + \frac{9}{2x-1}$

En deduit que :
$$(\forall x \in \mathbb{Z})$$
 ; $x \in A \Leftrightarrow \frac{4x^2 - 4x + 10}{2x - 1} \in \mathbb{Z}$

$$\Leftrightarrow 2x-1+\frac{9}{2x-1} \in \mathbb{Z} \Leftrightarrow \frac{9}{2x-1} \in \mathbb{Z} \Leftrightarrow 2x-1 \text{ divise} 9$$

$$\Leftrightarrow 2x-1 \in \{-9; -3; -1; 1; 3; 9\} \Leftrightarrow 2x \in \{-8; -2; 0; 2; 4; 10\}$$

$$\Leftrightarrow x \in \{-4; -1; 0; 1; 2; 5\} \text{ donc}: A = \{-4; -1; 0; 1; 2; 5\}$$

détermination de : B ?

soit $x \in \mathbb{Z}$ de façon analogue nous pouvons écrire :

$$x \in B \Leftrightarrow x \neq 5etx - 5divise15$$

$$\Leftrightarrow x-5 \in \{-15, -5, -3, -1, 1, 3, 5, 15\}$$

$$\Leftrightarrow x \in \{-10; 0; 2; 4; 6; 8; 10; 20\}$$
 donc:

$$B = \{-10, 0, 2, 4, 6, 8, 10, 20\}$$

détermination de : A-B; B-A et $A\Delta B$?

$$A - B = \{-4, -1, 0, 1, 2, 5\} - \{-10, 0, 2, 4, 6, 8, 10, 20\} = \{-4, -1, 1, 5\}$$

$$A - B = \{-10, 0, 2, 4, 6, 8, 10, 20\} - \{-4, -1, 0, 1, 2, 5\} = \{-10, 4, 6, 8, 10, 20\}$$

$$A\Delta B = (A-B) \cup (A-B) = \{-10,4,6,8,10,20,-4,-1,1,5\}$$

3)Résolution dans $P(\mathbb{Z})$ de l'équation : $A\Delta X = B$

On trouve : $X = \{-10, 4, 6, 8, 10, 20, -4, -1, 1, 5\}$

Exercice17: Soient les ensembles:

$$E = \{(x; y) \in \mathbb{R}^2 / x^2 - xy - 2y^2 = 0\}$$

$$F = \left\{ \left(x; y \right) \in \mathbb{R}^2 / x + y = 0 \right\}$$

- 1) montrer que : $F \subset E$
- 2)déterminer y de \mathbb{R} tel que : $(1; y) \in E$; est ce que on a $E \subset F$?
- 3) montrer que : $E = F \cup G$ ou G est un ensemble à déterminer
- 4) Soient les ensembles :

$$A = \left\{ (x; y) \in \mathbb{R}^2 / y = x + 1 + \sqrt{x^2 + 1} = 0 \right\}$$

$$B = \left\{ (x; y) \in \mathbb{R}^2 / y = x + 1 - \sqrt{x^2 + 1} = 0 \right\}$$

- a) montrer que : $H = A \cup B$
- b) déterminer : $H \cap F$

Solution : 1) montrons que : $F \subset E$?

On a:
$$(x; y) \in F \Leftrightarrow x + y = 0 \Leftrightarrow y = -x$$

$$\Rightarrow x^2 - xy - 2y^2 = y^2 + y^2 - 2y^2 = 0 \Rightarrow (x, y) \in E$$

Donc : $F \subset E$

2)
$$(1; y) \in E \Leftrightarrow 1 - y - 2y^2 = 0 \Leftrightarrow (1 + y)(1 - 2y) = 0$$

$$\Leftrightarrow y = 1 \text{ ou } y = \frac{1}{2}$$

Donc:
$$\left(1; \frac{1}{2}\right) \in E$$
 ou $\left(1; \frac{1}{2}\right) \notin F$

Donc:
$$\exists (x, y) \in \mathbb{R}^2 / (x, y) \notin F$$
 et $(x, y) \in E$

Donc: $E \subset F$

3)
$$(x, y) \in E \iff x^2 - xy - 2y^2 = 0 \iff x^2 - 2xy + xy - 2y^2 = 0$$

$$\Leftrightarrow x^2 + xy - 2xy - 2y^2 = 0 \Leftrightarrow x(x+y) - 2y(x+y) = 0$$

$$\Leftrightarrow$$
 $(x+y)(x-2y)=0 \Leftrightarrow x+y=0$ ou $x-2y=0$

$$\Leftrightarrow$$
 $(x; y) \in F$ ou $(x; y) \in G$

Avec:
$$G = \{(x, y) \in \mathbb{R}^2 / x - 2y = 0\}$$

Donc:
$$\forall (x, y) \in \mathbb{R}^2 (x, y) \in E \Leftrightarrow (x, y) \in F \text{ ou } (x, y) \in G$$

Donc: $E = F \cup G$

4) a)
$$(x, y) \in H \Leftrightarrow y^2 - 2y(x+1) + 2x = 0$$

$$\Leftrightarrow y^2 - 2y(x+1) + (x+1)^2 - (x+1)^2 + 2x = 0$$

$$\Leftrightarrow \left[y - (x+1) \right]^2 = (x+1)^2 - 2x \Leftrightarrow \left[y - (x+1) \right]^2 = x^2 + 1$$

$$\Leftrightarrow y = x + 1 + \sqrt{x^2 + 1}$$
 ou $\Leftrightarrow y = x + 1 - \sqrt{x^2 + 1}$

$$\Leftrightarrow$$
 $(x; y) \in A$ ou $(x; y) \in B$ Donc: $H = A \cup B$

4) b)
$$(x, y) \in H \cap F \Leftrightarrow (x, y) \in H \text{ ou } (x, y) \in F$$

$$\Leftrightarrow x^2 - 2xy + 2x - 2y = 0$$
 et $x = -y$

$$\Leftrightarrow \begin{cases} x^2 + 2x^2 + 2x + 2x = 0 \\ x = -y \end{cases} \Leftrightarrow \begin{cases} 3x^2 + 4x = 0 \\ x = -y \end{cases} \Leftrightarrow \begin{cases} x(3x + 4) = 0 \\ x = -y \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 0oux = -\frac{4}{3} \Leftrightarrow x = 0ety = 0 \text{ ou } x = -\frac{4}{3}ety = \frac{4}{3} \\ x = -y \end{cases}$$

Donc:
$$(x; y) \in H \cap F \Leftrightarrow (x; y) \in \left\{ (0; 0); \left(-\frac{4}{3}; \frac{4}{3} \right) \right\}$$

$$H \cap F = \left\{ (0;0); \left(-\frac{4}{3}; \frac{4}{3} \right) \right\}$$

Exercice18: Soient A; B; C des parties d'un ensemble E

- 1)a)déterminer une condition suffisante de l'existence de X dans P(E) tel que : $A \cup X = B$
- b)résoudre dans P(E) l'équation : $A \cup X = B$
- 2) on suppose que $C \subset A \subset B$

résoudre dans P(E) le système : $\begin{cases} A \cup X = B \\ A \cap X = C \end{cases}$

Solution : 1)si on a : $A \cup X = B$ alors : $X \subset B$ et $A \subset B$ Donc une condition suffisante de l'existence de X dans P(E) tel que : $A \cup X = B$ est $A \subset B$

b)résolution dans
$$P(E)$$
 l'équation : $A \cup X = B$
$$A \cup X = B \Rightarrow (A - B) \cap (A \cup X) = (B - A) \cap B$$

$$\Leftrightarrow \lceil (B-A) \cap A \rceil \cup \lceil (B-A) \cap X \rceil = B-A$$

$$\Leftrightarrow \varnothing \cup \lceil (B-A) \cap X \rceil = B-A$$

$$\Leftrightarrow (B-A) \cap X = B-A \Leftrightarrow B-A \subset X \Rightarrow B-A \subset X \subset B$$

Inversement:

 $\forall X \in P(E)$ tel que : $B - C \subset X \subset B$ est solution de

l'équation : $A \cup X = B$

Et on a :
$$(B-A) \cup A = B$$
 $(B-A) \cap A = \emptyset$

Donc:
$$A \cup X = B \Leftrightarrow X = (B - A) \cup Y \quad Y \in P(E)$$

L'ensemble des solutions de l'équation est :

$$S = \{ (B - A) \cup Y; Y \in P(E) \}$$

2) $C \subset A \subset B$

$$\begin{cases} A \cup X = B \\ A \cap X = C \end{cases} \Leftrightarrow \begin{cases} X = (B - A) \cup Y / Y \in P(E) \\ A \cap [(B - A) \cup Y] = C \end{cases}$$

$$\Leftrightarrow \begin{cases} X = (B - A) \cup Y / Y \in P(E) \\ [A \cap (B - A)] \cup [A \cap Y] = C \end{cases}$$

et puisque $A \cap (B-A) = \emptyset$ et $A \cap Y = Y$ car $Y \subset A$

alors: $X = (B-A) \cup C$

L'ensemble des solutions de l'équation est :

$$S = \{ (B - A) \cup C \}$$

II) LES APPLICATIONS

1) Activités : Activité 1 :

Considérons les ensembles :

 $E = \{a, b, c, d\}$ et $F = \{1,2,3,4,5\}, f, g$ sont des relations de E dans F.

Que pouvez-vous dire des relations ci-dessus ?

Activité 2 : Soit la fonction *f* définie par :

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{x}{1 + x^2}$$

$$\overline{A} = \left\{ x \in E \, / \, x \notin A \right\}$$

- 1-Montrer que chaque élément de \mathbb{R} à une image.
- 2- l'implication suivante est-elle vraie :
- (P) $(a \neq b) \Rightarrow (f(a) \neq f(b))$.
- 3-Montrer que $(\forall x \in \mathbb{R})$ $f(x) \in \left[\frac{-1}{2}; \frac{1}{2}\right]$
- 4- Montrer que $(\forall y \in \left[\frac{-1}{2}; \frac{1}{2}\right] (\exists x \in \mathbb{R}) (f(x) = y)$

2) Définitions et vocabulaires

2.1 Application Définition :

Soient E et F deux ensembles non vides, on appelle application toute relation f de E dans F tel que : tout élément x de E est relié à un unique élément y de F. Vocabulaire:

$$f: E \to F$$

$$x \mapsto y = f(x)$$

- 1)L'ensemble E s'appelle ensemble de départ de l'application f.
- 2)L'ensemble F s'appelle ensemble d'arrivée de l'application f.
- 3)y = f(x) s'appelle l'image de x par l'application f.
- 4) x s'appelle l'antécédent de y par l'application f.

Exemple1 :
$$f: \mathbb{R} - \{0\} \to \mathbb{R}$$
 f est une l'application de $x \mapsto \frac{x+1}{x}$

 $\mathbb{R} - \{0\}$ dans \mathbb{R}

$$\varrho:\mathbb{R}\to\mathbb{R}$$

 $x \mapsto \frac{x+1}{x}$ g n'est pas une l'application de

 $\mathbb R$ dans $\mathbb R$ car 0 n'admet pas d'images

2.2 Egalité de deux applications

Activité:

Soient les deux applications suivantes :

$$f: \mathbb{N} \to \mathbb{Z}$$
 et $g: \mathbb{N} \to \mathbb{Z}$ $n \mapsto (-1)^n \times n$ et $n \mapsto \begin{cases} n. \text{si.} n. pair \\ -n. \text{si.} n. impair \end{cases}$

Vérifier que $(∀n ∈ \mathbb{N})(f(n) = g(n))$

Définition : On dit que deux applications f et g sont égales si :

- 1) Elles ont le même ensemble de départ E
- 2) Elles ont le même ensemble d'arrivée F
- 3) $(\forall x \in E)(f(x) = g(x)).$

Exemple1: Les 3 applications:

$$f: \mathbb{R}^+ \to \mathbb{R}$$
 et $g: \mathbb{R} \to \mathbb{R}^+$ et $h: \mathbb{R}^+ \to \mathbb{R}^+$ $x \mapsto x^2$ et $x \mapsto x^2$

Sont différentes.

Exemple2: soit les 2 applications:

$$f: \mathbb{Z} \to \mathbb{R}$$
 $g: \mathbb{Z} \to \mathbb{R}$ $n \mapsto (-1)^n$ et $n \mapsto \sin\left(\frac{\pi}{2} + n\pi\right)$

que deux applications f et g ont le même ensemble de départ $\mathbb Z$ et le même ensemble d'arrivée $\mathbb R$ Et on a :

$$g(n) = \sin\left(\frac{\pi}{2} + n\pi\right) = \cos(n\pi) = (-1)^n = f(n)$$

Donc: f = g

Définition:(injection)

Soit f une application de E dans F, on dit que f est injective de E dans F si :

$$\forall (x_1; x_2) \in E^2 \quad x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

Par contraposition on peut dire que :

(f est injective) $\Leftrightarrow \forall (x_1; x_2) \in E^2$

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

Exemples:

Exemple1: soit l'application : $f: \mathbb{R}^+ \to \mathbb{R}^+$

f est-elle injective?

Solution: soient $x_1 \in \mathbb{R}^+$ et $x_2 \in \mathbb{R}^+$

$$f(x_1) = f(x_2) \Rightarrow x_1 + \sqrt{x_1} = x_2 + \sqrt{x_2}$$
$$\Rightarrow (\sqrt{x_1} - \sqrt{x_2})(\sqrt{x_1} + \sqrt{x_2} + 1) = 0$$
$$\Rightarrow \sqrt{x_1} - \sqrt{x_2} = 0 \text{ ou } \sqrt{x_1} + \sqrt{x_2} + 1 = 0$$

Or
$$\sqrt{x_1} + \sqrt{x_2} + 1 \neq 0 \Rightarrow \sqrt{x_1} - \sqrt{x_2} = 0$$

$$\Rightarrow \sqrt{x_1} = \sqrt{x_2} \Rightarrow x_1 = x_2$$
 donc f est injective

Exemple2: soit l'application : $g: \mathbb{R} \to \mathbb{R}$ $r \mapsto r^2 - 1$

g est-elle injective?

Solution: on a: g(1) = g(-1) = 0 mais $1 \neq -1$

Donc g n'est pas injective

$$f: \mathbb{R} - \{2\} \to \mathbb{R}$$
 Exercice19 :1) $x \mapsto \frac{3x+1}{x-2}$

Montrer que f est injective

2)
$$g: \mathbb{R} \to \mathbb{R}$$
 $g \text{ est-elle injective ?}$ $h: \mathbb{N}^* \to \mathbb{Q}$

2)
$$n \mapsto 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

- 1- déterminer les images des entiers 1, 2, 3
- 2- Montrer que $n > m \Rightarrow h(n) > h(m)$
- 3- En déduire que h est injective.

Définition:(surjection)

Soit f une application de E dans F, on dit que f est surjective de E dans F si tout élément g de g admet un antécédent dans g.

$$(\forall y \in F)(\exists x \in E)(f(x) = y)$$

Autrement dit : Pour tout y dans F l'équation f(x) = y admet au moins une solution dans E.

Exemples:

Exemple1: soit l'application : $f: \mathbb{R}^+ \to]-\infty;3]$

f est-elle surjective de \mathbb{R}^+ vers $]-\infty;3]$.

Solution: soient $y \in]-\infty;3]$

Resolvons l'équation: f(x) = y

$$f(x) = y \Leftrightarrow 3 - x^2 = y \Leftrightarrow x^2 = 3 - y$$

Or $y \in]-\infty;3]$ donc $y \le 3$ donc $0 \le 3-y$

$$\Leftrightarrow x = \sqrt{3 - y} \text{ car } x \in \mathbb{R}^+$$

Donc: $(\forall y \in]-\infty;3]$ $(\exists x \in \mathbb{R}^+)(f(x) = y)$

Donc : f est surjective

Exemple2: soit l'application : $f: \mathbb{R}^+ \to \mathbb{R}$ $x \mapsto 3-x^2$

f est-elle surjective de \mathbb{R}^+ vers \mathbb{R} . ?

Solution: on remarque que:

$$\forall x \in \mathbb{R}^+ \text{ on a}: f(x) \leq 3$$

Donc par exemple l'équation: f(x) = 4 n'admet pas

de solution dans \mathbb{R}^+ donc : f est non surjective

Exercice 20: 1)
$$f: \mathbb{R} - \{2\} \to \mathbb{R}$$

$$x \mapsto \frac{3x+1}{x-2}$$

a- f est-elle surjective de $\mathbb{R}/\{2\}$ vers \mathbb{R} .

b- Modifier l'ensemble d'arrivé pour définir une application surjective.

2)
$$f: \mathbb{R} \to [2; +\infty[$$

 $x \mapsto x^2 - 2x + 3$

a- Montrer que la fonction g est surjective.

b- g est-elle injective?

$$h: \mathbb{N}^* \to \mathbb{Q} \cap [1; +\infty[$$

3)
$$n \mapsto 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

h est-elle surjective?

Définition :(bijection) Soit f une application de Edans F, on dit que f est une bijection de E dans F si elle injective et surjective

Propriété: Une application est une bijection de E dans F si et seulement si :

$$(\forall y \in F) \ (\exists ! x \in E) \ (f(x) = y)$$

Autrement dit : Pour tout y dans F l'équation f(x) = yadmet une unique solution dans E.

Exemple1 : soit l'application :
$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto 2-5x$

f est-elle une bijection de \mathbb{R} vers \mathbb{R} . ?

Solution: soient $y \in \mathbb{R}$

Resolvons l'équation : f(x) = y

$$f(x) = y \Leftrightarrow 2 - 5x = y \Leftrightarrow x = \frac{2 - y}{5}$$

Puisque l'équation f(x) = y admet une unique solution dans \mathbb{R} ($\forall y \in \mathbb{R}$)

Donc : f est une bijection de \mathbb{R} vers \mathbb{R} .

Exercice21:

$$f: [1; +\infty[\rightarrow [2; +\infty[$$

$$x \mapsto x^2 - 2x + 3$$

1- Montrer que f est une bijection de $[1,+\infty]$ vers [2,+∞[.

2- Soit y un élément de [2,+∞[, déterminer (en fonction de y) l'élément x dans $[1,+\infty]$ tel que f(x)=yL'application qui lie l'élément y de [2,+∞[, à l'élément unique x de [1,+ ∞ [et solution de l'équation f(x) = ys'appelle : la bijection réciproque de la bijection f et se note : f-1

Définition: Si f est une bijection de E dans F; L'application de F dans E qui lie chaque élément ypar l'élément x de E qui est solution de l'équation f(x)= y s'appelle la bijection réciproque de la bijection f

et se note f^{-1} . f bijection de E dans F; f^{-1} sa bijection réciproque on a :

$$\begin{cases} f^{-1}(y) = x \\ y \in F \end{cases} \Leftrightarrow \begin{cases} f(x) = y \\ x \in E \end{cases}$$

$$f:]1; +\infty[\rightarrow]0; +\infty[$$

Exemple : soit l'application : $x \mapsto \frac{2}{x-1}$

$$x \mapsto \frac{2}{x-1}$$

Montrer que f est une bijection et déterminer sa bijection réciproque.

Solution soient $y \in [0; +\infty[$

Resolvons l'équation : f(x) = y

$$\begin{cases} f(x) = y \\ x \in]1; +\infty[\end{cases} \Leftrightarrow \begin{cases} \frac{2}{x-1} = y \\ x \in]1; +\infty[\end{cases} \Leftrightarrow \begin{cases} x-1 = \frac{2}{y} \\ x \in]1; +\infty[\end{cases} \Leftrightarrow x = \frac{2}{y} + 1$$

$$(\forall y \in \left]0; +\infty\right[) (\exists ! x \in \left]1; +\infty\right[) (f(x) = y)$$

Donc : f est une bijection de $]1;+\infty[$ vers $]0;+\infty[$

$$\begin{cases} f(x) = y \\ x \in]1; +\infty[\end{cases} \Leftrightarrow \begin{cases} f^{-1}(y) = x \\ y \in]0; +\infty[\end{cases}$$

$$\forall y \in]0; +\infty[f^{-1}(y) = \frac{2}{y} + 1 \text{ Donc}: x \mapsto \frac{2}{x} + 1$$

Exercice 22: Déterminer la fonction réciproque de la

fonction
$$f:[1;+\infty[\rightarrow[2;+\infty[$$
 $x\mapsto x^2-2x+3$

Exercice 23 : Soit la fonction g définie par :

 $g: \mathbb{R} \to \mathbb{R}$

$$x \mapsto \frac{x}{1+x^2}$$

Montrer que g est une bijection et déterminer sa bijection réciproque.

- 3) L'image directe et l'image réciproque d'un ensemble par une application
- 3.1 Activité /Activité 1 :

Soit *f* dont le diagramme sagittal est représenté ci-contre

- 1- Déterminer les images directes des ensemble $\{a, b, c\}$ Et $\{b,c\}$ et E
- 2- Déterminer les antécédents des éléments qui appartiennent aux ensembles : {1} ; {1,3} ; {2,3} et {1,4}

Activité 2 : Soit
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto 2x^2 - x$

1- Montrer que
$$\forall x \in [-1;1]$$
 $f(x) \in \left[\frac{-3}{16};3\right]$

2- Montrer que :
$$\forall y \in \left[\frac{-3}{16}; 3\right] \exists x \in \left[-1; 1\right] / (f(x) = y)$$

on dit que l'image de l'intervalle [-1;1] par

l'application f est l'intervalle $\left[\frac{-3}{16};3\right]$ et on écrit :

$$f\left(\left[-1;1\right]\right) = \left[\frac{-3}{16};3\right]$$

$$n: \mathbb{R}^2 \to \mathbb{R}$$

Activité 3 : Soit
$$(x; y) \mapsto \frac{1}{x^2 + y^2}$$

- 1- Déterminer les couples (x,y) qui vérifient h((x,y)) = 1
- 2- Représenter dans le plan muni d'un repère orthonormé les points M(x, y) qui vérifient h((x, y)) = 1.

Définition: Soit f une application de E dans F, A une partie de E et B une partie de F.

L'image directe de l'ensemble A est l'ensemble $f(A) = \{f(x) \in F/x \in A\}$

L'image réciproque de l'ensemble B est l'ensemble $f^{-1}(B) = \{x \in E \mid f(x) \in B\}$

Remarques : 1) Soit f une application de E dans F, A une partie de E et B une partie de F.

$$f(A) = B \Leftrightarrow \begin{cases} f(A) \subset B \\ B \subset f(A) \end{cases}$$

$$\Leftrightarrow \begin{cases} (\forall x \in A) (f(x) \in B) \\ (\forall y \in B) (\exists x \in A) (f(x) = y) \end{cases}$$

2) $f(A) = \emptyset \Leftrightarrow A = \emptyset$ mais si $f^{-1}(B) = \emptyset$ on ne peut pas dire que $B = \emptyset$ exemple :

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto 2x^2 + 1 \quad \text{on a:} \quad f^{-1}(\mathbb{R}^-) = \emptyset$$

3) Pour parler de l'image réciproque d'un élément par une fonction, il faut que *f* soit bijective

Mais on peut considérer l'image réciproque d'un ensemble quel que soit la nature de l'application f **Propriété**: Soit f une application de E dans F. f est surjective de E dans F ,si et seulement si f(E) = F.

Preuve : On a : f une application de E dans F donc : $f(E) \subset F$;si de plus f est surjective alors : $(\forall y \in F)(\exists x \in E)(f(x) = y)$ et donc $F \subset f(E)$. D'où f(E) = F

Réciproquement si f(E) = F alors $F \subset f(E)$ et par suite : $(\forall y \in F)(\exists x \in E)(f(x) = y)$ donc f est surjective.

Exemple1: soit l'application : $f: \mathbb{R} - \{-1\} \to \mathbb{R}$ $x \mapsto \frac{3x-1}{x+1}$

1) Montrer que : $\forall x \in \mathbb{R} - \{-1\}$ $f(x) = 3 - \frac{4}{x+1}$

2)Déterminer : f(K) avec $K =]-\infty;-1[$

Solution : 1) $\forall x \in \mathbb{R} - \{-1\}$:

$$3 - \frac{4}{x+1} = \frac{3x+3-4}{x+1} = \frac{3x-1}{x+1} = f(x)$$

2)
$$x \in K \Leftrightarrow x < -1 \Leftrightarrow x+1 < 0 \Leftrightarrow -\frac{4}{x+1} > 0$$

$$\Leftrightarrow 3 - \frac{4}{x+1} \succ 3 \Leftrightarrow g(x) \in]3; +\infty[$$
 donc $f(K) =]3; +\infty[$

Exemple2: soit l'application : $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$

Déterminer : $f^{-1}(B)$ avec B = [-1;4]

Solution:

$$f^{-1}(B) = \{x \in \mathbb{R} / f(x) \in B\} = \{x \in \mathbb{R} / -1 \le f(x) \le 4\}$$

$$= \{x \in \mathbb{R} / -1 \le x^2 \le 4\} = \{x \in \mathbb{R} / 0 \le x^2 \le 4\}$$

$$= \{x \in \mathbb{R} / -2 \le x \le 2\} = [-2; 2] \text{ donc } f^{-1}(B) = [-2; 2]$$

Exemple3: soit l'application : $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \cos x$

Déterminer : $f^{-1}(D)$ avec D = [1;2]

Solution:

$$f^{-1}(D) = \{x \in \mathbb{R} / f(x) \in D\} = \{x \in \mathbb{R} / 1 \prec f(x) \le 2\}$$
$$= \{x \in \mathbb{R} / 1 \prec \cos x \le 2\} = \emptyset \text{ car}$$
$$\forall x \in \mathbb{R} / -1 \le \cos x \le 1 \text{ donc } f^{-1}(D) = \emptyset$$

Exercice 24:

Soit $g: \mathbb{R} \to \mathbb{R}$

$$x \mapsto \frac{3}{1+x^2}$$
 déterminer f -1([1,2]) $f^{-1}([1;2])$

4) Restriction; Prolongement d'une application Activité 1: Soit l'application :

 $f: \mathbb{R} \to \mathbb{R}$

 $x \mapsto 3|1-x^2|+x$ Ecrire l'expression de f sur [-1,1]

Activité 2 : Soit l'application

$$g: \mathbb{R} - \{1\} \rightarrow \mathbb{R}$$

$$x \mapsto \frac{3x+1}{x-1}$$

1- g est-elle bijective?

2- A partir de g, définir une bijection de \mathbb{R} dans \mathbb{R} **Définition** : Soit f une application de E dans F

Soit *A* une partie de *E*, l'application définie de *A* vers F, qui associe à tout élément x de A l'élément f(x). s'appelle la restriction de f sur l'ensemble A.

Soit Γ un ensemble tel que $E \subset \Gamma$, l'application définie de Γ vers F, qui associe à tout élément x de El'élément f(x), s'appelle un prolongement de f sur l'ensemble Γ .

Exemple1: soit l'application :
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sqrt{x^2 - 2x + 1}$$

Déterminer la restriction de f sur l'intervalle $]-\infty;1]$

Solution:
$$f(x) = \sqrt{x^2 - 2x + 1} = \sqrt{(x-1)^2} = |x-1|$$

Si
$$x \in]-\infty;1]$$
 alors: $f(x) = -(x-1) = -x+1$

Donc : la restriction de f sur l'intervalle $]-\infty;1]$ est

l'application
$$g:]-\infty;1] \to \mathbb{R}$$
 $x \mapsto -x+1$

$$x \mapsto -x+1$$
 Exemple2: soit l'application:
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto 2x-|x|+3$$

Déterminer la restriction de f sur l'intervalle $]-\infty;0]$

Solution:
$$f(x) = 2x - |x| + 3$$

Si
$$x \in]-\infty;0]$$
 alors: $f(x) = 2x + x + 3 = 3x + 3$

Donc : la restriction de f sur l'intervalle $]-\infty;0]$ est

l'application
$$g:]-\infty;0] \to \mathbb{R}$$

 $x \mapsto 3x+3$

Exemple3: soit les applications:

$$f: \mathbb{R}^+ \to \mathbb{R} \text{ et } g: \mathbb{R} \to \mathbb{R} \\ x \mapsto x \text{ et } x \mapsto 2|x| - x$$

Est-ce que g est un prolongement de f?

Solution:
$$g(x) = 2|x| - x = x$$
 Si $x \in \mathbb{R}^+$ et $\mathbb{R}^+ \subset \mathbb{R}$

Donc : g est un prolongement de f sur $\mathbb R$

7) La partie entière d'un réel.

Théorème: On admet la proposition suivante:

$$(\forall x \in \mathbb{R})(\exists! k \in \mathbb{Z})(k \leq x < k+1).$$

Définition: L'entier relatif k qui vérifie le théorème précédent

S'appelle la partie entière du réel x on le note [x] ou E(x).

L'application qui lie chaque élément x de \mathbb{R} par E(x)dans Z s'appelle l'application partie entière.

Exemple :
$$E(\sqrt{2}) = 1$$
 $E(\sqrt{2}) = 1$; $E(\pi) = 3$

$$E(-\pi) = -4 \quad (\forall n \in \mathbb{N} *) \left(E\left(\frac{1}{n}\right) = 0 \right)$$

et $(\forall k \in \mathbb{Z})(E(k) = k)$

Exercices25: 1) Montrer que:

 $(\forall x \in \mathbb{R})(\forall m \in \mathbb{Z})(E(m+x) = m + E(x)).$

2) Vérifier par un contre-exemple que :

$$E(x+y)\neq E(x)+E(y)$$

3) Soit l'application
$$h: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto E(3x+1) + x$$

- 1- Vérifier que h n'est pas injective.
- 2- Donner la restriction de h sur l'intervalle $\left| 0; \frac{1}{2} \right|$.
- 3- Déterminer : $h^{-1}\{4\}$ et $h^{-1}\{2\}$; h est-elle surjective?.

8) Composition de deux applications.

Activité : Soient les deux applications :

$$f: \mathbb{R} - \{0\} \to \mathbb{R}$$
 $g: \mathbb{R} - \{1\} \to \mathbb{R}$ $x \mapsto \frac{1}{x^2}$ et $x \mapsto \frac{x}{x-1}$

- 1- Déterminer f(g(3)); f(g(-1)) g(f(3))
- 2- Donner la condition sur x pour que le réel g(f(x))existe.
- 3- Donner la condition sur x pour que le réel f(g(x))
- 4- Déterminer les application fog et gof.

Définition : Soient f une application de E dans F et g une application de G dans H tel que : $f(E) \subset G$, l'application h définie de E vers H par pour tout xdans E, h(x) = g(f(x)) s'appelle la composition des deux applications f et g et se note $g \circ f$.

$$(\forall x \in E) (gof(x) = g(f(x)))$$

On peut représenter la composition par :

Propriété:

- 1) La composition de deux applications injectives est une application injective
- 2) La composition de deux applications surjectives est une application surjective
- 3)La composition de deux bijections f et g est une bijection et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Propriété: 1)La composition des applications est associative : $(f \circ g) \circ h = f \circ (g \circ h)$

2) La composition des applications n'est pas commutative : $f \circ g \neq g \circ f$

Propriété:

Si f est une bijection de E dans F et f-1 sa bijection réciproque :

1)
$$(\forall x \in E) (f^{-1} \circ f)(x) = x \quad f^{-1} \circ f \text{ s'appelle}$$

l'identité de \boldsymbol{E} et s note $Id_{\scriptscriptstyle E}$

2°
$$(\forall x \in F) (f \circ f^{-1})(x) = x$$
, $f \circ f^{-1}$ s'appelle

l'identité de ${\it F}$ et s note ${\it Id}_{\it F}$

Si E = F alors : $f^{-1} \circ f = f \circ f^{-1} = Id_E$

 $h: \mathbb{R}^+ \to \left\lceil \frac{1}{4}; +\infty \right\rceil$

Exemple: soit l'application:

$$x \mapsto x + \sqrt{x} + \frac{1}{4}$$

- 1)Ecrire l'application h comme La composée de deux applications f et g : $h = g \circ f$
- 2)a) Montrer que f est une bijection et déterminer sa bijection réciproque
- b) Montrer que g est une bijection et déterminer sa bijection réciproque

c) en déduire que h est une bijection de \mathbb{R}^+ dans $\left\lceil \frac{1}{4}; +\infty \right\rceil$ et déterminer sa bijection réciproque

Solution: 1)
$$h(x) = x + \sqrt{x} + \frac{1}{4} = x - \left(\sqrt{x} + \frac{1}{2}\right)^2$$

Donc: $h = g \circ f$ avec:

$$f: \mathbb{R}^+ \to \left[\frac{1}{2}; +\infty\right[\\ x \mapsto \sqrt{x} + \frac{1}{2} \right] \quad \text{et} \quad g: \left[\frac{1}{2}; +\infty\right[\to \left[\frac{1}{4}; +\infty\right[\\ x \mapsto x^2 \right] \right]$$

2)a) f est une bijection en effet :

soient
$$y \in \left[\frac{1}{2}; +\infty\right[$$

Resolvons l'équation : f(x) = y

$$f(x) = y \Leftrightarrow \sqrt{x} + \frac{1}{2} = y \Leftrightarrow \sqrt{x} = \frac{2y-1}{2}$$

Or
$$y \in \left[\frac{1}{2}; +\infty\right[$$
 donc $2y-1 \ge 0$ donc $x = \left(\frac{2y-1}{2}\right)^2$

donc
$$x = \left(y - \frac{1}{2}\right)^2$$
 Puisque l'équation $f(x) = y$ admet

une unique solution

donc : f est une bijection de \mathbb{R}^+ vers $\left[\frac{1}{2}; +\infty\right[$.et

$$f^{-1}: \left[\frac{1}{2}; +\infty\right] \to \mathbb{R}^+$$
$$x \mapsto \left(x - \frac{1}{2}\right)^2$$

2)b) g est une bijection de $\left[\frac{1}{4}; +\infty\right[\text{vers } \left[\frac{1}{2}; +\infty\right[\text{en et } \right] \right]$

$$: g^{-1}: \left[\frac{1}{4}; +\infty\right[\to \left[\frac{1}{4}; +\infty\right[$$
$$x \mapsto \sqrt{x}$$

c) h est la composée de deux bijections f et g donc h est une bijection de \mathbb{R}^+ dans $\left\lceil \frac{1}{4}; +\infty \right\rceil$

Et $\forall x \in \mathbb{R}^+$:

$$h^{-1}(x) = (g \circ f)^{-1}(x) = f^{-1} \circ g^{-1}(x) = f^{-1}(g^{-1}(x)) = \left(\sqrt{x} - \frac{1}{2}\right)^2$$

Donc : la bijection réciproque h^{-1} de h est

$$h^{-1}: \left[\frac{1}{4}; +\infty\right[\to \mathbb{R}^+\right]$$

$$x \mapsto \left(\sqrt{x} - \frac{1}{2}\right)^2$$

Exercice26: soient les applications:

$$f:]1; +\infty[\rightarrow]1; +\infty[\qquad g:]1; +\infty[\rightarrow]1; +\infty[$$

$$x \mapsto 1 + \frac{2}{\sqrt{x} - 1} \qquad \text{et} \qquad x \mapsto \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right)^2$$

1)Déterminer : $f\left(\left[2;4\right]\right)$ et $g^{-1}\left(\left\{9\right\}\right)$

2)Montrer que f est une bijection de $]1;+\infty[$ dans $]1;+\infty[$ et déterminer sa bijection réciproque

3)a)vérifier que :
$$\forall x \in]1; +\infty[: g(x) = (f(x))^2$$

3)b)en déduire que : g est une bijection de $]1;+\infty[$ dans $]1;+\infty[$ et déterminer sa bijection réciproque **Solution :** 1)

$$f([2;4]) = \{f(x)/x \in [2;4]\} = \{f(x)/2 \le x < 4\}$$

$$= \{f(x)/\sqrt{2} - 1 \le \sqrt{x} - 1 < 1\} = \{f(x)/1 < \frac{1}{\sqrt{x} - 1} \le \frac{1}{\sqrt{2} - 1}\}$$

$$= \{f(x)/3 < f(x) \le 3 + 2\sqrt{2}\}$$

Donc:
$$f([2;4]) = [3;3+2\sqrt{2}]$$

$$g^{-1}(\{9\}) = \{x \in]1; +\infty[/g(x) \in \{9\}\} = \{x \in]1; +\infty[/g(x) = 9\}$$
$$g^{-1}(\{9\}) = \{x \succ 1/\sqrt{x} = 2\} = \{4\}$$

2)montrons que f est injective ? soient $x_1 \in]1; +\infty[$ et $x_2 \in]1; +\infty[$

$$f(x_1) = f(x_2) \Rightarrow 1 + \frac{2}{\sqrt{x_1} - 1} = 1 + \frac{2}{\sqrt{x_2} - 1}$$
$$\Rightarrow \sqrt{x_1} - 1 = \sqrt{x_2} - 1 \Rightarrow \sqrt{x_1} = \sqrt{x_2} \Rightarrow x_1 = x_2$$

donc f est injective

Montrons que f est surjective ?

$$\forall y \in]1; +\infty[y = f(x) \Leftrightarrow x = \left(\frac{y+1}{y-1}\right)^2$$

Et on a:

$$\left(\frac{y+1}{y-1}\right)^{2} - 1 = \left(\frac{y+1}{y-1} - 1\right)\left(\frac{y+1}{y-1} + 1\right) = \frac{4y}{\left(y-1\right)^{2}}$$

Donc:
$$\forall y \in]1; +\infty \left[\left(\frac{y+1}{y-1} \right)^2 > 1 \text{ donc} : \right]$$

$$(\forall y \in]1; +\infty[)(\exists x \in]1; +\infty[)/x = \left(\frac{y+1}{y-1}\right)^2 \text{ et } y = f(x)$$

Donc : que f est surjective de $]1;+\infty[$ dans $]1;+\infty[$ Détermination de sa bijection réciproque ?

$$\begin{cases} f(y) = x \\ y \in]1; +\infty[\Leftrightarrow \begin{cases} f^{-1}(x) = y \\ y \in]1; +\infty[\end{cases} \Leftrightarrow y = \left(\frac{x+1}{x-1}\right)^2 \\ f^{-1}:]1; +\infty[\to]1; +\infty[\end{cases}$$
Donc:
$$x \mapsto \left(\frac{x+1}{x-1}\right)^2$$

3)a)vérifier que : $\forall x \in [1; +\infty[$:

$$\left(f\left(x\right)\right)^{2} = \left(1 + \frac{2}{\sqrt{x} - 1}\right)^{2} = g\left(x\right)$$

3)b)on a : $g = h \circ f$ avec $h(x) = x^2 \ \forall x \in]1; +\infty[$: Et puisque les applications f et h sont des bijections

de]1; $+\infty$ [dans]1; $+\infty$ [alors $g=h\circ f$ est une bijection

de]1; $+\infty$ [dans]1; $+\infty$ [

et on a:

$$g^{-1}(x) = (h \circ f)^{-1}(x) = f^{-1} \circ h^{-1}(x)$$
$$= f^{-1}(h^{-1}(x)) = \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right)^{2} = g(x)$$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

