Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 16

(Aug 30, 2019)

Span of a Set

Span of a Set of Vectors

- **Definition 1**: A **linear combination** of finitely many given vectors is any sum of scalar multiples of the vectors.
- **Definition 2**: Let $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}\}$ be a finite set of vectors in a vector space V. Then the Span of S is the set of all vectors that can be written as linear combinations of the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}$.
- Symbolically, Span $S = \{c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_p\mathbf{v_p} : c_i \in \mathbb{F}\}$, where \mathbb{F} is the underlying field.

Subspace Spanned by a Set

Proposition 10: If $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}\}$ is a set of vectors in a vector space V, then Span $S = \text{Span } \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}\}$ is a subspace of V.

Span of a Set(Conti . . .)

Proof of Proposition 10: Let us use the first test for subspaces (Prop 8): The zero vector $\mathbf{0} = 0\mathbf{v_1} + 0\mathbf{v_2} + \cdots + 0\mathbf{v_p}$ is a linear combination of the v's. If $\mathbf{w_1} = c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_p\mathbf{v_p}$ and $w_2 = d_1\mathbf{v_1} + d_2\mathbf{v_2} + \cdots + d_p\mathbf{v_p}$ are two linear combinations, then so is

$$\mathbf{w_1} + \mathbf{w_2} = (c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_p \mathbf{v_p}) + (d_1 \mathbf{v_1} + d_2 \mathbf{v_2} + \dots + d_p \mathbf{v_p})$$

= $(c_1 + d_1)\mathbf{v_1} + (c_2 + d_2)\mathbf{v_2} + \dots + (c_p + d_p)\mathbf{v_p}$

(Note: we have here used some of the axioms without specifically mentioning them)

If c is any scalar, and w_1 is a linear combination as above, then $c\mathbf{w_1} = c(c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_p\mathbf{v_p}) = cc_1\mathbf{v_1} + cc_2\mathbf{v_2} + \cdots + cc_p\mathbf{v_p}$ is again a linear combination.

Span of a Set(Conti . . .)

Corollary10.1: Let V be a vector space.

- ① If U and W are two subspaces of V, then $U \cap W$ (i.e. the intersection of U and W) is also a subspace of V.
- If $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}\}$ is a set of vectors in a vector space V, then Span $S = \text{Span } \{v_1, v_2, \dots, v_p\}$ is the smallest subspace which contains S, i.e. if W is a subspace such that $S \subseteq W$, then Span $S \subseteq W$.

Remark 1: Proof is left as an exercise (must do!)

Remark 2: In terms of this, Span S is sometimes described as the intersection of all subspaces of V containing S. (Also left as an exercise.)

Remark 3: Show by means of an example that union of two subspaces of a vector space need not be a subspace (Hint: Take two line passing through the origin in \mathbb{R}^2).

In fact, if If U and W are two subspaces of V, then $U \cup W$ is subspace of $V \iff$ either $U \subseteq W$ or $W \subseteq U$. (Left as an exercise!)