Title: Deep Learning for COVID-19 Pneumonia Diagnosis

BACKGROUND

The spread of the coronavirus has led to a vast increase of viral pneumonia cases around the globe. Around 75% of hospitalized COVID-19 patients develop some form of pneumonia. Chest radiographs are often taken to initially diagnose COVID-19 by identifying the presence of pneumonia in the lung. Using deep learning for rapid and early detection of pneumonia and its cause in COVID-19 patients can allow for faster isolation and treatment, and augment physician diagnosis and/or reduce physician error.

METHODS

- 1. Baseline Model
- Modification of VGG16, a successful image classification model
- · Multiple data transformations
- · Small learning rate
- 2. Model 1
- Reduced data transformations
- Maintain baseline layering
- 3. Model 2
- · Baseline data transforms
- Additional convolution, skip connection, and dropout
- 4. Model 3
 - Baseline data transforms
 - Additional convolution, skip connection, leaky RELU activation

Models trained on set of 200 x-ray images using 10-fold cross-validation and tested on set of 27 images.

RESULTS

	Avg Final Val Acc	Avg Test Acc
Baseline	92.0%	77.8%
Model 1	92.0%	79.3%
Model 2	89.5%	78.5%
Model 3	86.5%	80.4%

Pneumonia Classification Accuracy: Models 1-3 ≈ Baseline

Model	Description	Test Accuracy
Baseline	From literature: VGG16, multiple data transformations	77.8%
Model 1	Baseline w/ data augmentation variation	79.3%
Model 2	Baseline w/ added convolution and dropout layers, single skip connection	78.5%
Model 3	Model 2 w/ two additional convolution layers, uses leaky RELU activation	80.4%

Limitations

- Lack of generalization, possibly due to overfitting
- Lack of training data

Conclusion: Testing of more complex models with more data is required

Figure 1: Baseline Training

Fold training and validation loss and accuracy during Baseline training

Figure 2: Model 1 Training

Fold training and validation loss and accuracy during Model 1 training

Figure 3: Model 2 Training

Fold training and validation loss and accuracy during Model 2 training

Figure 4: Model 3 Training

Fold training and validation loss and accuracy during Model 3 training

-

Narayani Wagle