本节内容

最短路径

Floyd算法

Robert W. Floyd

罗伯特·弗洛伊德 (1936-2001) Robert W. Floyd

- Floyd算法(Floyd-Warshall算法)
- 堆排序算法

Floyd算法:求出每一对顶点之间的最短路径

使用动态规划思想,将问题的求解分为多个阶段

对于n个顶点的图G,求任意一对顶点 Vi -> Vj 之间的最短路径可分为如下几个阶段:

#初始: 不允许在其他顶点中转, 最短路径是?

#0: 若允许在 Vo 中转,最短路径是?

#1: 若允许在 Vo、V1 中转, 最短路径是?

#2: 若允许在 Vo、V1、V2 中转, 最短路径是?

#n-1: 若允许在 Vo、V1、V2..... Vn-1 中转, 最短路径是?

	VO	V1	V2
VO	-1	-1	-1
V1	-1	-1	-1
V2	-1	-1	-1

#初始: 不允许在其他顶点中转, 最短路径是?

两个顶点之 间的中转点	
path ⁽⁻¹⁾ :	=

	VO	V1	V2
VO	-1	-1	-1
V1	-1	-1	-1
V2	-1	-1	-1

#0: 若允许在 Vo 中转,最短路径是? ——求 A⁽⁰⁾和 path⁽⁰⁾

0

V2

13

6

0

 ∞

若
$$A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$
path $^{(k)}[i][j] = k$
否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

$$A^{(-1)}[2][1] > A^{(-1)}[2][0] + A^{(-1)}[0][1] = 11$$

 $A^{(0)}[2][1] = 11$
 $path^{(0)}[2][1] = 0;$

 $A^{(-1)} =$

	VO	V1	V2
VO	0	6	13
V1	10	0	4
V2	5	∞	0

两个顶点之间的中转点

path(-1) =

	VO	V1	V2
VO	-1	-1	-1
V1	-1	-1	-1
V2	-1	-1	-1

#0: 若允许在 Vo 中转,最短路径是? ——求 A⁽⁰⁾和 path⁽⁰⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path^(k)[i][j] = k

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

		VO	V1	V2
(A (O) —	VO	0	6	13
A (0) =	V1	10	0	4
	V2	5	11	0

path(0) =

	VO	V1	V2
VO	-1	-1	-1
V1	-1	-1	-1
V2	-1	0	-1

 V0
 V1
 V2

 V0
 0
 6
 13

 V1
 10
 0
 4

 V2
 5
 11
 0

两个顶点之间的中转点 path⁽⁰⁾ =

 V0
 V1
 V2

 V0
 -1
 -1
 -1

 V1
 -1
 -1
 -1

 V2
 -1
 0
 -1

#1: 若允许在 Vo、 V1中转,最短路径是? ——求 A⁽¹⁾和 path⁽¹⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

 $A^{(0)}[0][2] > A^{(0)}[0][1] + A^{(0)}[1][2] = 10$ $A^{(1)}[0][2] = 10$ $path^{(1)}[0][2] = 1;$

目前来看,各 顶点间的最短 路径长度

 $A^{(0)} =$

	VO	V1	V2
VO	0	6	13
V1	10	0	4
V2	5	11	0

两个顶点之间的中转点

path(0) =

	VO	V1	V2
VO	-1	-1	-1
V1	-1	-1	-1
V2	-1	0	-1

#1: 若允许在 Vo、 V1中转,最短路径是? ——求 A(1) 和 path(1)

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

A(1) =

		VO	V1	V2
	VO [®]	0	6	10
O	V1	10	0	4
	V2	5	11	0

path(1) =

	VO	V1	V2
VO	-1	-1	1
V1	-1	-1	-1
V2	-1	0	-1

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 A⁽²⁾和 path⁽²⁾

V2

10

若
$$A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$$
 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

$$A^{(1)}[1][0] > A^{(1)}[1][2] + A^{(1)}[2][0] = 9$$

 $A^{(2)}[1][0] = 9$
 $path^{(2)}[1][0] = 2;$

目前来看,各 顶点间的最短 路径长度

 $A^{(1)} =$

	VO	V1	V2
VO	0	6	10
V1	10	0	4
V2	5	11	0

V1

6

V2

10

两个顶点之间的中转点

path⁽¹⁾ =

	VO	V1	V2
VO	-1	-1	1
V1	-1	-1	-1
V2	-1	0	-1

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 A⁽²⁾和 path⁽²⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

$$A^{(2)} = V1$$
 9 $V2$ 5

		VO	V1	V2
noth(2) _	VO	-1	-1	1
path ⁽²⁾ =	V1	2	-1	-1
	V2	-1	0	-1

目前来看,各

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path^(k)[i][j] = k

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

点间的最短		ZII NO	Ž	
路径长度		VO	V1	V2
A (2) _	VO	0	6	10
$A^{(2)} =$	V1	9	0	4
	V2	5	11	0

两个顶点之间的中转点		VO	V1	V2
nath(2) -	VO	-1	-1	1
path ⁽²⁾ =	V1	2	-1	-1
	V2	-1	0	-1

从A⁽⁻¹⁾和 path⁽⁻¹⁾开始,经过 n 轮递推,得到 A⁽ⁿ⁻¹⁾和 path⁽ⁿ⁻¹⁾

根据 A⁽²⁾ 可知, V1到V2 最短路径长度为 4, 根据 path⁽²⁾ 可知, 完整路径信息为 V1_V2

根据 A⁽²⁾ 可知, VO到V2 最短路径长度为 10, 根据 path⁽²⁾ 可知, 完整路径信息为 VO_V1_V2

根据 A⁽²⁾ 可知, V1到V0 最短路径长度为 9, 根据 path⁽²⁾ 可知, 完整路径信息为 V1_V2_V0

Floyd算法核心代码

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 列 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#初始:不允许在其他顶点中转,最短路径是?

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#0: 若允许在 Vo 中转,最短路径是? ——求 A⁽⁰⁾和 path⁽⁰⁾

```
for(int i=0; i<n; i++) { //遍历整个矩阵, i为行号, j为列号
for (int j=0; j<n; j++) {
    if (A[i][j]>A[i][k]+A[k][j]) { //以 Vk 为中转点的路径更短
        A[i][j]=A[i][k]+A[k][j]; //更新最短路径长度
        path[i][j]=k; //中转点
    }
}
```


		VO	V 1	V2	V 3	V 4
	VO	0	∞	1	∞	10
Λ (-1) <u> </u>	V1			∞	1	5
> A (') = '	V2	∞	1	0	∞	7
	V 3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#0: 若允许在 Vo 中转,最短路径是? ——求 A⁽⁰⁾和 path⁽⁰⁾

若
$$A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$
path $^{(k)}[i][j] = k$
否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#1: 若允许在 Vo、 V1中转,最短路径是? ——求 A(1) 和 path(1)

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#1: 若允许在 Vo、 V1中转,最短路径是? ——求 A(1) 和 path(1)

$$A^{(0)}[2][3] > A^{(0)}[2][1] + A^{(0)}[1][3] = 2$$

 $A^{(1)}[2][3] = 2$
 $path^{(1)}[2][3] = 1;$

$$A^{(0)}[2][4] > A^{(0)}[2][1] + A^{(0)}[1][4] = 6$$

 $A^{(1)}[2][4] = 6$
 $path^{(1)}[2][4] = 1;$

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path^(k)[i][j] = k

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

		VO	V1	V2	V 3	V4
	VO	0	∞	1	∞	10
A (0) =	V1	∞	0	∞	1	5
A(o)	V2	∞	1	0	∞	7
	V 3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#1: 若允许在 Vo、 V1中转,最短路径是? ——求 A(1) 和 path(1)

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 **A**⁽²⁾和 path⁽²⁾

```
for(int i=0; i<n; i++) { //遍历整个矩阵, i为行号, j为列号
for (int j=0; j<n; j++) {
    if (A[i][j]>A[i][k]+A[k][j]) { //以 Vk 为中转点的路径更短
        A[i][j]=A[i][k]+A[k][j]; //更新最短路径长度
        path[i][j]=k; //中转点
    }
}
```


若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 A⁽²⁾和 path⁽²⁾

$$A^{(1)}[0][1] > A^{(1)}[0][2] + A^{(1)}[2][1] = 2$$

$$A^{(2)}[0][1] = 2$$
; path $^{(2)}[0][1] = 2$;

$$A^{(1)}[0][3] > A^{(1)}[0][2] + A^{(1)}[2][3] = 3$$

$$A^{(2)}[0][3] = 3$$
; path $^{(2)}[0][3] = 2$;

$$A^{(1)}[0][4] > A^{(1)}[0][2] + A^{(1)}[2][4] = 7$$

$$A^{(2)}[0][4] = 7$$
; path $^{(2)}[0][4] = 2$;

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

		VO	V1	V2	V 3	V 4
	VO	0	∞	1	∞	10
A (1)	V1	∞	0	∞	1	5
Α(1) =	V2	∞	1	0	2	6
	V 3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 A⁽²⁾和 path⁽²⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#3: 若允许在 V₀、V₁、V₂、V₃中转,最短路径是? ——求 **A**⁽³⁾ 和 path⁽³⁾

```
for(int i=0; i<n; i++) { //遍历整个矩阵, i为行号, j为列号
for (int j=0; j<n; j++) {
    if (A[i][j]>A[i][k]+A[k][j]) { //以 Vk 为中转点的路径更短
        A[i][j]=A[i][k]+A[k][j]; //更新最短路径长度
        path[i][j]=k; //中转点
    }
}
```


若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#3: 若允许在 V₀、V₁、V₂、V₃中转,最短路径是? ——求 A⁽³⁾ 和 path⁽³⁾

 $A^{(2)}[0][4] > A^{(2)}[0][3] + A^{(2)}[3][4] = 4$

 $A^{(3)}[0][4] = 4$; path $^{(3)}[0][4] = 3$;

 $A^{(2)}[1][4] > A^{(2)}[1][3] + A^{(2)}[3][4] = 2$

 $A^{(3)}[1][4] = 2$; path $^{(3)}[1][4] = 3$;

 $A^{(2)}[2][4] > A^{(2)}[2][3] + A^{(2)}[3][4] = 3$

 $A^{(3)}[2][4] = 3$; path $^{(3)}[2][4] = 3$;

		VO	V1	V2	V 3	V4
	VO	0	2	1	3	7
$A^{(2)} =$	V1	∞	0	∞	1	5
5 .6	V2	∞	1	0	2	6
	V 3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#3: 若允许在 V₀、V₁、V₂、V₃中转,最短路径是? ——求 A⁽³⁾和 path⁽³⁾

若
$$A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$
path $^{(k)}[i][j] = k$
否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$; path $^{(k)}[i][j] = k$ 否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

#4: 若允许在 V₀、V₁、V₂、V₃、V₄中转,最短路径是? ——求 A⁽⁴⁾和 path⁽⁴⁾

 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

A(k) 和 path(k) 保持原值

若

则

否则

	2	VO	V 1	 V2	V 3	 V4
	V0	0	2	1	3	4
$A^{(3)} =$	V1	∞	0	∞	1	2
$\mathbf{A}(\mathbf{S}) =$	V2	∞	1	0	2	3
	V 3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#4: 若允许在 V₀、V₁、V₂、V₃、V₄中转,最短路径是? ——求 A⁽⁴⁾和 path⁽⁴⁾

		VO	V1	V2	V 3	V 4
	VO	0	2	1	3	4
$A^{(4)} =$	V1 :	∞	0	∞	1	2
A(') =	V2	∞	1	0	2	3
	V 3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

vo -1 2 -1 2 3 vo -1 2 -1 2 3 vi -1 -1 -1 3 vi -1 -1 -1 3 vi -1 -1 -1 -1 -1 1 vi -1 -1 -1 -1 -1 -1 -1

VO到V4 最短路径长度为 A[0][4]=4

通过path矩阵递归地找到完整路径:

VO			V 3	V 4
V0	V2		V 3	V 4
V 0	V2	V 1	V3	V 4

练习:Floyd算法用于负权图

不能解决的问题

Floyd 算法不能解决带有"负权回路"的图(有负权值的边组成回路),这种图有可能没有最短路径

知识点回顾与重要考点

	BFS 算法	Dijkstra 算法	Floyd 算法
无权图			
带权图			
带负权值的图	X		
带负权回路的图			
时间复杂度	O(V ²)或O(V + E)	O(V ²)	O(V ³)
通常用于	求无权图的单源最 短路径	求带权图的单源最 短路径	求带权图中各顶点 间的最短路径

注: 也可用 Dijkstra 算法求所有顶点间的最短路径,重复 |V| 次即可,总的时间复杂度也是O(|V|³)

欢迎大家对本节视频进行评价~

学员评分: 6.4.2_3 最...

公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研