SC402- Introduction to Cryptography Assignment 3

1. Define a toy hash function $h:(\mathbb{Z}_2)^7\to(\mathbb{Z}_2)^4$ by the rule h(x)=xA where all operations are modulo 2 and

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Find all preimages of (0, 1, 0, 1).

- 2. If we define a hash function (or compression function) h that will hash an n-bit binary string to an m-bit binary string, we can view h as a function from \mathbb{Z}_{2^n} to \mathbb{Z}_{2^m} . It is tempting to define h using integer operations modulo 2^m . We show in this exercise that some simple constructions of this type are insecure and should therefore be avoided.
 - (a) Suppose that n = m > 1 and $h : \mathbb{Z}_{2^m} \to \mathbb{Z}_{2^m}$ is defined as

$$h(x) = x^2 + ax + b \mod 2^m.$$

Prove that it is (usually) easy to solve **Second Preimage** for any $x \in \mathbb{Z}_{2^m}$ without having to solve a quadratic equation.

HINT Show that it is possible to find a linear function g(x) such that h(g(x)) = h(x) for all x. This solves Second Preimage for any x such that $g(x) \neq x$.

(b) Suppose that n > m and $h: \mathbb{Z}_{2^n} \to \mathbb{Z}_{2^m}$ is defined to be a polynomial of degree d:

$$h(x) = \sum_{i=0}^{d} a_i x^i \mod 2^m,$$

where $a_i \in \mathbb{Z}$ for $0 \le i \le d$. Prove that it is easy to solve **Second Preimage** for any $x \in \mathbb{Z}_{2n}$ without having to solve a polynomial equation.

HINT Make use of the fact that h(x) is defined using reduction modulo 2^m , but the domain of h is \mathbb{Z}_{2^n} , where n > m.

3. Suppose that $f: \{0,1\}^m \to \{0,1\}^m$ is a preimage resistant bijection. Define $h: \{0,1\}^{2m} \to \{0,1\}^m$ as follows. Given $x \in \{0,1\}^{2m}$, write

$$x = x' \mid\mid x''$$

where $x', x'' \in \{0, 1\}^m$. Then define

$$h(x) = f(x' \oplus x'').$$

Prove that h is not second preimage resistant.

- 4. Suppose $h_1: \{0,1\}^{2m} \to \{0,1\}^m$ is a collision resistant hash function.
 - (a) Define $h_1:\{0,1\}^{4m}\to\{0,1\}^m$ as follows:
 - 1. Write $x \in \{0, 1\}^{4m}$ as $x = x_1 \mid\mid x_2$, where $x_1, x_2 \in \{0, 1\}^{2m}$.
 - 2. Define $h_2(x) = h_1(h_1(x_1) || h_1(x_2))$.

Prove that h_2 is collision resistant (i.e., given a collision for h_2 , show how to find a collision for h_1).

- (b) For an integer $i \geq 2$, define a hash function $h_i : \{0,1\}^{2^i m} \to \{0,1\}^m$ recursively from h_{i-1} , as follows:
 - 1. Write $x \in \{0, 1\}^{2^{i_m}}$ as $x = x_1 \mid\mid x_2$, where $x_1, x_2 \in \{0, 1\}^{2^{i-1_m}}$.
 - 2. Define $h_i(x) = h_1(h_{i-1}(x_1) || h_{i-1}(x_2))$.

Prove that h_i is collision resistant.