Intervalles de confiance valides en présence de sélection de modèle

François Bachoc*, Hannes Leeb et Benedikt M. Pötscher

University of Vienna

(Full) linear model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{U}$$

- **X** of size $n \times p$
- p < n</p>
- $\mathbf{U} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$
- \blacksquare β of size $p \times 1$
- Y observation vector

Least square estimator :

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$$

Standard variance estimator:

$$\hat{\sigma}^2 = \frac{1}{n-p}||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2$$

Working distribution $P_{n,\beta,\sigma}$

Linear submodels

Linear submodels

Subsets $M \subset \{1,...,p\}$ of the columns of X. Give

$$\mathbf{Y} = \mathbf{X}[M]\mathbf{v} + \mathbf{U}$$

- M of cardinality m
- **X**[M] of size $n \times m$: only the columns of X that are in M
- \mathbf{v} of size $m \times 1$: needs to be defined/estimated to give the best representation of the full linear model

Non-standard regression coefficient vector

$$\beta_M^{(n)} = \underset{\mathbf{v}}{\operatorname{argmin}} ||\mathbf{X}\beta - \mathbf{X}[M]\mathbf{v}||$$
$$\beta_M^{(n)} = \beta[M] + (X'[M]X[M])^{-1} X'[M]X[M^c]\beta[M^c],$$

lacksquare eta[M] of size $m \times 1$: components of eta in M

Restricted least square estimator

The non-standard target of Berk et al.

Model selection procedure

Data-driven selection of the model with $\hat{M}(\mathbf{Y}) = \hat{M}$

Ex.: BIC:

$$\hat{M}_{BIC}(Y) \in \underset{M}{\operatorname{argmin}} \left| |Y - \boldsymbol{X}[M] \hat{\boldsymbol{\beta}}_{M}| \right|^{2} + \log(n)|M|$$

■ |M| : cardinality of M

Berk et al., 2013, Annals of Statistics consider the non-standard target

$$oldsymbol{eta}_{\hat{M}}^{(n)}$$

as their target for confidence intervals

Comments:

- Model selector \hat{M} is "imposed"
- Objective : best coefficients in this imposed model
- Random target

Design-dependent non-standard target

Let \mathbf{x}_0 be a fixed $p \times 1$ vector and consider

$$y_0 = \mathbf{x}_0' \boldsymbol{\beta} + u_0$$

$$\mathbf{u}_0 \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

We consider the design-dependent non-standard target

$$\boldsymbol{x}_0'[\hat{M}]\boldsymbol{\beta}_{\hat{M}}^{(n)}$$

Optimality property : when x_0 is random and follows the empirical distribution given by the lines of X:

$$\mathbb{E}_{n,\boldsymbol{\beta},\sigma}\left(\left[y_0-\boldsymbol{x}_0'[\hat{M}]\boldsymbol{\beta}_{\hat{M}}^{(n)}\right]^2\right)\leq \mathbb{E}_{n,\boldsymbol{\beta},\sigma}\left(\left[y_0-\boldsymbol{x}_0'[\hat{M}]\boldsymbol{\nu}(\boldsymbol{Y})\right]^2\right),$$

for any function $v(Y) \in \mathbb{R}^{|\hat{M}|}$.

Confidence intervals

Let a nominal level $1 - \alpha \in (0, 1)$ be fixed

We consider confidence intervals for $\mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(n)}$ of the form

$$CI = \mathbf{x}_0'[\hat{M}]\hat{\boldsymbol{\beta}}_{\hat{M}} \pm K||\mathbf{s}_{\hat{M}}||\hat{\boldsymbol{\sigma}},$$

with

$$\mathbf{s}_{M}' = \mathbf{x}_{0}'[M] \left(\mathbf{X}'[M] \mathbf{X}[M] \right)^{-1} \mathbf{X}'[M]$$

Interpretation

- "Constant" K does not depend on Y (but on X, \mathbf{x}_0, \hat{M})
- \blacksquare For fixed M,

$$\mathbf{x}_0'[M]\hat{\boldsymbol{\beta}}_M - \mathbf{x}_0'[M]\boldsymbol{\beta}_M^{(n)} \sim \mathcal{N}(0, ||\mathbf{s}_M||\sigma^2)$$

- Thus, $K_{naive} = q_{S,n-p,1-\alpha/2}$ (Student quantile) is valid when M is deterministic
- When \hat{M} is random, K needs to be larger (e.g. Leeb et al. 2015, Statistical Science)
- \Longrightarrow Main issue : choosing K?

The construction of Berk et al.

Observe that

$$\mathbf{x}_0'[\hat{M}]\hat{eta}_{\hat{M}} - \mathbf{x}_0'[\hat{M}]eta_{\hat{M}}^{(n)} = \mathbf{s}_{\hat{M}}'(\mathbf{Y} - \mathbf{X}eta)$$

Then, we have

$$\left| \frac{\mathbf{s}_{\hat{M}}^{'}}{||\mathbf{s}_{\hat{M}}^{'}||\hat{\sigma}} \left(Y - X\beta \right) \right| \leq \max_{M \subseteq \{1, \dots, \rho\}} \left| \frac{\mathbf{s}_{M}^{'}}{||\mathbf{s}_{M}^{'}||\hat{\sigma}} \left(Y - X\beta \right) \right|$$

Distribution of the upper-bound independent of β , $\sigma \Longrightarrow \text{let } K_1$ be its $(1 - \alpha)$ quantile

The CI given by K_1 satisfies

$$\inf_{\boldsymbol{\beta} \in \mathbb{R}^p, \sigma > 0} P_{n,\boldsymbol{\beta},\sigma} \left(\mathbf{x}_0'[\hat{M}] \boldsymbol{\beta}_{\hat{M}}^{(n)} \in CI \right) \ge 1 - \alpha$$

→ Uniformly valid confidence interval

Construction of new confidence intervals

The constant K_1 depends on all the components of \mathbf{x}_0

It can happen that only $\mathbf{x}_0[\hat{M}]$ is observed

model selection for cost reason

We construct other constants (see the paper for details)

$$K_1 \leq K_2 \leq K_3 \leq K_4$$

(The CIs given by K_2 , K_3 , K_4 are hence universally valid)

Remark : The case where only $\mathbf{x}_0[\hat{M}]$ is observed motivates all the more the study of $\mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(n)}$ as opposed to $\mathbf{x}_0'\mathcal{B}$

Design-independent non-standard target

Issue : The target $\mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(n)}$ depends on \mathbf{X}

Issue is solved when lines of X and \mathbf{x}_0' are realizations from the same distribution $\mathcal L$

Let, for $\mathbf{x}'\sim\mathcal{L},\,\mathbf{\Sigma}=\mathbb{E}(\mathbf{x}\mathbf{x}').$ Then, define the design-independent non-standard target by

$$\mathbf{x}_0[\hat{M}]'\beta_{\hat{M}}^{(\star)} = \mathbf{x}_0[\hat{M}]'\beta[\hat{M}] + \mathbf{x}_0[\hat{M}]'\left(\mathbf{\Sigma}[\hat{M},\hat{M}]\right)^{-1}\mathbf{\Sigma}[\hat{M},\hat{M}^c]\beta[\hat{M}^c],$$

Then, we have for $\mathbf{x}_0 \sim \mathcal{L}$,

$$\mathbb{E}\left(\left[y_0 - \mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(\star)}\right]^2\right) \leq \mathbb{E}\left(\left[y_0 - \mathbf{x}_0'[\hat{M}]\mathbf{v}(\mathbf{Y})\right]^2\right),$$

for any function $\mathbf{v}(\mathbf{Y}) \in \mathbb{R}^{|\hat{M}|}$

Asymptotic coverage when p is fixed and $n \to \infty$

Observe that

$$\begin{split} \left(\mathbf{x}_0[\hat{M}]'\boldsymbol{\beta}_{\hat{M}}^{(\star)} - \mathbf{x}_0[\hat{M}]'\boldsymbol{\beta}_{\hat{M}}^{(n)}\right) = \\ \mathbf{x}_0'[\hat{M}] \left(\left(\mathbf{X}'[\hat{M}]\mathbf{X}[\hat{M}]\right)^{-1}\mathbf{X}'[\hat{M}]\mathbf{X}[\hat{M}^c] - \left(\mathbf{\Sigma}[\hat{M},\hat{M}]\right)^{-1}\mathbf{\Sigma}[\hat{M},\hat{M}^c]\right)\boldsymbol{\beta}[\hat{M}^c] \end{split}$$

Theorem

Assume that

$$\sqrt{n}\left[\left(\mathbf{X}'\mathbf{X}/n\right)-\mathbf{\Sigma}\right]=O_p(1)$$

and that for any M with |M| < p and for any $\delta > 0$,

$$\sup\left\{P_{n,\beta,\sigma}(\hat{M}=M|X):\beta\in\mathbb{R}^{p},\sigma>0,\left\|\boldsymbol{\beta}[M^{c}]\right\|/\sigma\geq\delta\right\}=o_{p}(1)$$

Then, for CI obtained by K_1, K_2, K_3, K_4 ,

$$\inf_{\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma > 0} P_{n, \boldsymbol{\beta}, \sigma} \left(\left. \mathbf{x}_{0}^{\prime} [\hat{M}] \beta_{\hat{M}}^{(\star)} \in CI \right| X \right) \geq (1 - \alpha) + o_{p}(1)$$

Simulation study

For $\alpha = 0.05$ and p = 10 we evaluate

$$\inf_{\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma > 0} P_{n, \boldsymbol{\beta}, \sigma} \left(\left. \boldsymbol{x}_{0}^{\prime}[\hat{\boldsymbol{M}}] \boldsymbol{\beta}_{\hat{\boldsymbol{M}}}^{(n, \star)} \in \textit{CI} \right| \boldsymbol{X} \right),$$

for one realization of X

Results:

n	model	target							
	selector	design-dependent				design-independent			
		$\mathbf{x}_0[\hat{M}]'oldsymbol{eta}_{\hat{M}}^{(n)}$				$\mathbf{x}_0[\hat{M}]'oldsymbol{eta}_{\hat{M}}^{(\star)}$			
		K _{naive}	K_1	ÏK₃	K_4	K _{naive}	K_1	Ӝ ₃	K_4
20	AIC	0.84	0.99	1.00	1.00	0.79	0.97	0.99	0.99
20	BIC	0.84	0.99	1.00	1.00	0.74	0.96	0.98	0.98
20	LASSO	0.90	1.00	1.00	1.00	0.18	0.48	0.61	0.61
100	AIC	0.87	0.99	1.00	1.00	0.88	0.99	1.00	1.00
100	BIC	0.88	0.99	1.00	1.00	0.87	0.99	1.00	1.00
100	LASSO	0.88	0.99	1.00	1.00	0.87	0.99	1.00	1.00

Conclusion

Conclusion:

- It is known that in the classical case (estimation of β), it is difficult to construct valid post-model-selection confidence intervals
- Recently, alternative targets have been studied
- This removes some obstacles
- But naive procedures still fail

Prospects:

- Asymptotics where d is large
- Generalized linear models

The paper:

F. Bachoc, H. Leeb, B.M. Pötscher (2014+). Valid confidence intervals for post-model-selection predictors, http://arxiv.org/abs/1412.4605, submitted

Thank you for your attention!

