

Linguagem de máquina e de montagem Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- O que é linguagem de máquina?
 - ▶ É a representação em formato binário das instruções que o processador é capaz de entender e executar

- O que é linguagem de montagem (assembly)?
 - É uma linguagem de programação de baixo nível que utiliza mnemônicos e dados em formatos decimal ou hexadecimal para descrição das instruções

- O que é linguagem de montagem (assembly)?
 - É uma linguagem de programação de baixo nível que utiliza mnemônicos e dados em formatos decimal ou hexadecimal para descrição das instruções

O montador (assembler) é responsável por traduzir o código de montagem para linguagem de máquina

- Representação binária, decimal e hexadecimal
 - Normalmente os seres humanos trabalham com números representados em base decimal (10 dígitos)
 - Os dados e as instruções nos computadores são representadas em formato binário (2 dígitos)

- Representação binária, decimal e hexadecimal
 - Normalmente os seres humanos trabalham com números representados em base decimal (10 dígitos)
 - Os dados e as instruções nos computadores são representadas em formato binário (2 dígitos)

$$123_{10} = 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 1 \times 2^{6} + 59$$

$$= 1 \times 2^{6} + 1 \times 2^{5} + 27$$

$$= 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 11$$

$$= 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 3$$

$$= 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= 01111011_{2}$$

- Representação binária, decimal e hexadecimal
 - Normalmente os seres humanos trabalham com números representados em base decimal (10 dígitos)
 - Os dados e as instruções nos computadores são representadas em formato binário (2 dígitos)

$$\begin{array}{lll} 123_{10} & = & 1\times 10^2 + 2\times 10^1 + 3\times 10^0 \\ & = & 1\times 2^6 + 59 \\ & = & 1\times 2^6 + 1\times 2^5 + 27 \\ & = & 1\times 2^6 + 1\times 2^5 + 1\times 2^4 + 11 \\ & = & 1\times 2^6 + 1\times 2^5 + 1\times 2^4 + 1\times 2^3 + 3 \\ & = & 1\times 2^6 + 1\times 2^5 + 1\times 2^4 + 1\times 2^3 + 1\times 2^1 + 1\times 2^0 \\ & = & 01111011_2 \end{array}$$

A notação posicional pode ser utilizada em qualquer base numérica

- Representação binária, decimal e hexadecimal
 - O formato hexadecimal permite codificar diretamente números binários agrupados em nibbles, reduzindo significativamente a quantidade de dígitos

01102	01002	11102	01102	10012	01002	10002	11012
\downarrow	+	+	+	+	+	+	\downarrow
6 ₁₆	4 ₁₆	E ₁₆	6 ₁₆	9 ₁₆	4 ₁₆	8 ₁₆	D ₁₆

 $01100100111001101001010010001101_2 = 64E6948D_{16}$

- Como entender, organizar e traduzir as instruções para linguagem de máquina?
 - Todas as informações são números em formato binário
 - É preciso fazer as conversões numéricas e atender ao formatos definidos na especificação (datasheet)

31	24	23	16	15	8	7	0
Operaç	ão	Camp	001	Cam	po 2	Car	mpo 3

- Como entender, organizar e traduzir as instruções para linguagem de máquina?
 - Todas as informações são números em formato binário
 - É preciso fazer as conversões numéricas e atender ao formatos definidos na especificação (datasheet)

- Paradigmas de computação
 - Complex Instruction Set Computing (CISC)
 - Focado na linguagem de programação, simplificando a tradução para linguagem de máquina e deixando a arquitetura do processador mais complexa

- Reduced Instruction Set Computing (RISC)
 - Centrado no funcionamento do processador, simplificando a arquitetura de hardware e tornando o software mais complexo (incluindo o compilador)

- Paradigmas de computação
 - Complex Instruction Set Computing (CISC)
 - Focado na linguagem de programação, simplificando a tradução para linguagem de máquina e deixando a arquitetura do processador mais complexa
 - Instruções com operandos em memória
 - Reduced Instruction Set Computing (RISC)
 - Centrado no funcionamento do processador, simplificando a arquitetura de hardware e tornando o software mais complexo (incluindo o compilador)
 - Arquitetura de carregamento-armazenamento

- Paradigmas de computação
 - Complex Instruction Set Computing (CISC)
 - Focado na linguagem de programação, simplificando a tradução para linguagem de máquina e deixando a arquitetura do processador mais complexa
 - Instruções com operandos em memória
 - Maior densidade de código
 - Reduced Instruction Set Computing (RISC)
 - Centrado no funcionamento do processador, simplificando a arquitetura de hardware e tornando o software mais complexo (incluindo o compilador)
 - Arquitetura de carregamento-armazenamento
 - Menor densidade de código

- Paradigmas de computação
 - Complex Instruction Set Computing (CISC)
 - Focado na linguagem de programação, simplificando a tradução para linguagem de máquina e deixando a arquitetura do processador mais complexa
 - Instruções com operandos em memória
 - Maior densidade de código
 - Ex: IBM, Intel x86, Z80, ...
 - Reduced Instruction Set Computing (RISC)
 - Centrado no funcionamento do processador, simplificando a arquitetura de hardware e tornando o software mais complexo (incluindo o compilador)
 - Arquitetura de carregamento-armazenamento
 - Menor densidade de código
 - Ex: ARM, MIPS, RISC-V, ...

- Paradigmas de computação
 - Complex Instruction Set Computing (CISC)
 - Focado na linguagem de programação, simplificando a tradução para linguagem de máquina e deixando a arquitetura do processador mais complexa
 - Instruções com operandos em memória
 - Maior densidade de código
 - Ex: IBM, Intel x86, Z80, ...
 - Reduced Instruction Set Computing (RISC)
 - Centrado no funcionamento do processador, simplificando a arquitetura de hardware e tornando o software mais complexo (incluindo o compilador)
 - Arquitetura de carregamento-armazenamento
 - Menor densidade de código
 - Ex: ARM, MIPS, RISC-V, ...

- Por que escolher uma arquitetura RISC?
 - A formatação regular e simples das instruções permite a decodificação e execução mais eficiente das operações, reduzindo a área de silício necessária, assim como o custo unitário e o consumo de potência

- Por que escolher uma arquitetura RISC?
 - A formatação regular e simples das instruções permite a decodificação e execução mais eficiente das operações, reduzindo a área de silício necessária, assim como o custo unitário e o consumo de potência
 - Na arquitetura de carregamento-armazenamento é reduzido o número de acessos à memória e a latência das operações que são realizadas exclusivamente em registradores, explorando os princípios de localidade espacial e temporal

- Por que escolher uma arquitetura RISC?
 - A formatação regular e simples das instruções permite a decodificação e execução mais eficiente das operações, reduzindo a área de silício necessária, assim como o custo unitário e o consumo de potência
 - Na arquitetura de carregamento-armazenamento é reduzido o número de acessos à memória e a latência das operações que são realizadas exclusivamente em registradores, explorando os princípios de localidade espacial e temporal
 - Simplifica a implementação de técnicas para execução sobreposta (pipeline) ou paralela (superescalar) de instruções no processador

- Arquitetura Poxim
 - Complexity-Reduced Instruction Set Processor (CRISP)
 - Didática, hipotética e simples com 32 bits
 - Memória Von Neumann de 32 KiB
 - 3 formatos de instruções

- Formato U (OP, Z, X, Y, L)
 - ▶ 6 bits para operação (OP)
 - ► 5 bits para operandos (Z, X, Y)
 - ▶ 11 bits para uso livre (L)

31	26	25	21	20	16	15	11	10		0
OP		Z			Χ		Υ		L	

- Formato F (OP, Z, X, 116)
 - ▶ 6 bits para operação (OP)
 - 5 bits para operandos (Z, X)
 - ▶ 16 bits para imediato (116)

31	26	25	21	20	16	15		0
0	Р	Z	, -	X	(116	

- ► Formato S (OP, I26)
 - ▶ 6 bits para operação (OP)
 - ▶ 26 bits para imediato (126)

31 26	25	0
OP	126	

- Operação ociosa
 - ► Tipo U
 - Pseudo-instrução nop
 - Nenhuma ação é realizada

- Operações aritméticas e lógicas
 - Adição (add, addi)
 - Atribuição imediata (mov, movs)
 - Bit a bit (and, or, not, xor)
 - Comparação (cmp, cmpi)
 - Deslocamento (sla, sll, sra, srl)
 - Divisão (div, divs, divi)
 - Multiplicação (mul, muls, muli)
 - Subtração (sub, subi)

- Operação de atribuição imediata (mov)
 - ► Tipo U
 - Sem extensão de sinal
 - R[z] = 0 : x : y : I

31	26	25	21	20	16	15	11	10	0
0000	000	Z ₄ Z ₃ Z ₅	₂ <i>Z</i> ₁ <i>Z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>Y</i> 4 <i>Y</i> 3	<i>y</i> ₂ <i>y</i> ₁ <i>y</i> ₀	1101918	31716151413121110

- Operação de atribuição imediata (movs)
 - ► Tipo U
 - ▶ Com extensão de sinal
 - $R[z] = X_4 : x : y : I$

31	26	25	21	20	16	15	11	10	0
0000	01	Z ₄ Z ₃ Z ₅	₂ <i>Z</i> ₁ <i>Z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	2 <i>X</i> 1 <i>X</i> 0	<i>y</i> ₄ <i>y</i> ₃	<i>y</i> ₂ <i>y</i> ₁ <i>y</i> ₀	110191	81716151413121110

- Operação de adição com registradores (add)
 - ▶ Tipo U
 - ightharpoonup R[z] = R[x] + R[y]

31 26	25	21	20	16	15	11	10		0
000010	Z ₄ Z ₃ Z	$z_2 z_1 z_0$	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>Y</i> ₄ <i>Y</i> ₃)	√2 <i>Y</i> 1 <i>Y</i> 0		_	

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - ► $SN \leftarrow (R[z]_{31} = 1)$
 - $ightharpoonup OV \leftarrow (R[x]_{31} = R[y]_{31} \land R[z]_{31} \neq R[x]_{31})$
 - ► $CY \leftarrow (R[z]_{32} = 1)$

- Operação de subtração com registradores (sub)
 - ▶ Tipo U
 - ightharpoonup R[z] = R[x] R[y]

31 26	25	21	20	16	15	11	10		0
000011	Z ₄ Z ₃ Z ₂	₂ <i>Z</i> ₁ <i>Z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>Y</i> ₄ <i>Y</i> ₃)	<i>Y</i> ₂ <i>Y</i> ₁ <i>Y</i> ₀		_	

- Campos afetados
 - $ightharpoonup ZN \leftarrow (R[z] = 0)$
 - ► $SN \leftarrow (R[z]_{31} = 1)$
 - $ightharpoonup OV \leftarrow (R[x]_{31} \neq R[y]_{31} \land R[z]_{31} \neq R[x]_{31})$
 - ► $CY \leftarrow (R[z]_{32} = 1)$

- Operação de multiplicação com registradores (mul)
 - ▶ Tipo U
 - Sem sinal
 - $ightharpoonup R[I_{4:0}]: R[z] = R[x] \times R[y]$

31	26	25	21	20	16	15	11	10	0
0001	00	Z ₄ Z ₃ Z ₂	₂ <i>Z</i> ₁ <i>Z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>Y</i> 4 <i>Y</i> 3	√2 <i>Y</i> 1 <i>Y</i> 0	00	$0 l_4 l_3 l_2 l_1 l_0$

- Campos afetados
 - ► $ZN \leftarrow (R[I_{4:0}] : R[z] = 0)$
 - $\triangleright CY \leftarrow (R[I_{4:0}] \neq 0)$

- Operação de deslocamento para esquerda (sll)
 - ► Tipo U
 - Lógico (sem sinal)
 - $R[z]: R[x] = (R[z]: R[y]) \times 2^{l_{4:0}+1}$

31 26	25	21	20	16	15	11	10	0
000100	Z ₄ Z ₃ Z	2Z1Z0	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	2 <i>X</i> 1 <i>X</i> 0	<i>Y</i> 4 <i>Y</i> 3	<i>Y</i> 2 <i>Y</i> 1 <i>Y</i> 0	00	$1 l_4 l_3 l_2 l_1 l_0$

- Campos afetados
 - $ightharpoonup ZN \leftarrow (R[z]:R[x]=0)$
 - \triangleright $CY \leftarrow (R[z] \neq 0)$

- Operação de multiplicação com registradores (muls)
 - ► Tipo U
 - Com sinal
 - $ightharpoonup R[I_{4:0}]: R[z] = R[x] \times R[y]$

31 26	25	21	20	16	15	11	10	0
000100	Z ₄ Z ₃ Z	₂ Z ₁ Z ₀	<i>X</i> ₄ <i>X</i> ₃ <i>x</i>	$x_2 x_1 x_0$	<i>Y</i> 4 <i>Y</i> 3	<i>Y</i> 2 <i>Y</i> 1 <i>Y</i> 0	01	$0 I_4 I_3 I_2 I_1 I_0$

- Campos afetados
 - ► $ZN \leftarrow (R[I_{4:0}] : R[z] = 0)$
 - \triangleright $OV \leftarrow (R[I_{4:0}] \neq 0)$

- Operação de deslocamento para esquerda (sla)
 - ▶ Tipo U
 - Aritmético (com sinal)
 - $Arr R[z]: R[x] = (R[z]: R[y]) \times 2^{l_{4:0}+1}$

31 26	25	21	20	16	15	11	10	0
000100	Z ₄ Z ₃ Z	′2 <i>Z</i> 1 <i>Z</i> 0	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	√2 <i>X</i> 1 <i>X</i> 0	<i>Y</i> 4 <i>Y</i> 3	<i>Y</i> 2 <i>Y</i> 1 <i>Y</i> 0	01	$1 l_4 l_3 l_2 l_1 l_0$

- Campos afetados
 - $ightharpoonup ZN \leftarrow (R[z]:R[x]=0)$
 - \triangleright $OV \leftarrow (R[z] \neq 0)$

- Operação de divisão com registradores (div)
 - ▶ Tipo U
 - Sem sinal
 - $Arr R[I_{4:0}] = R[x] \mod R[y], R[z] = R[x] \div R[y]$

31	26	25	21	20	16	15	11	10	0
0001	100	$Z_4Z_3Z_5$	$_{2}Z_{1}Z_{0}$	<i>x</i> ₄ <i>x</i> ₃ <i>x</i>	$x_{1}x_{0}$	<i>Y</i> ₄ <i>Y</i> ₃ !	√2 <i>Y</i> 1 <i>Y</i> 0	100	$l_4l_3l_2l_1l_0$

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - \triangleright $ZD \leftarrow (R[y] = 0)$
 - $\triangleright CY \leftarrow (R[I_{4:0}] \neq 0)$

- Operação de deslocamento para direita (srl)
 - ► Tipo U
 - Lógico (sem sinal)
 - $Arr R[z]: R[x] = (R[z]: R[y]) \div 2^{l_{4:0}+1}$

31	26	25	21	20	16	15	11	10	0
0001	00	Z ₄ Z ₃ Z ₅	₂ Z ₁ Z ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>Y</i> 4 <i>Y</i> 3)	√2 <i>Y</i> 1 <i>Y</i> 0	10	$1 l_4 l_3 l_2 l_1 l_0$

- Campos afetados
 - $ightharpoonup ZN \leftarrow (R[z]:R[x]=0)$
 - \triangleright CY \leftarrow (R[z] \neq 0)

- Operação de divisão com registradores (divs)
 - ► Tipo U
 - Com sinal
 - $Arr R[I_{4:0}] = R[x] \mod R[y], R[z] = R[x] \div R[y]$

31	26	25	21	20	16	15	11	10	0
0001	00	$Z_4Z_3Z_2$	₂ <i>Z</i> ₁ <i>Z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>y</i> ₄ <i>y</i> ₃	<i>Y</i> ₂ <i>Y</i> ₁ <i>Y</i> ₀	110	$0 l_4 l_3 l_2 l_1 l_0$

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - \triangleright ZD $\leftarrow (R[y] = 0)$
 - \triangleright $OV \leftarrow (R[I_{4:0}] \neq 0)$

- Operação de deslocamento para direita (sra)
 - ► Tipo U
 - Aritmético (com sinal)
 - Arr $R[z]: R[x] = (R[z]: R[y]) \div 2^{l_{4:0}+1}$

31 26	25	21	20	16	15	11	10	0
000100	Z ₄ Z ₃ Z	′2 <i>Z</i> 1 <i>Z</i> 0	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	⟨2 <i>X</i> 1 <i>X</i> 0	<i>Y</i> 4 <i>Y</i> 3	<i>Y</i> 2 <i>Y</i> 1 <i>Y</i> 0	11	$1 l_4 l_3 l_2 l_1 l_0$

- Campos afetados
 - $ightharpoonup ZN \leftarrow (R[z]:R[x]=0)$
 - \triangleright $OV \leftarrow (R[z] \neq 0)$

- Operação de comparação com registradores (cmp)
 - ► Tipo U
 - ightharpoonup CMP = R[x] R[y]

31 26	25	21	20	16	15	11	10		0
000101	_	-	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$		<i>Y</i> ₂ <i>Y</i> ₁ <i>Y</i> ₀		_	

- Campos afetados
 - \triangleright $ZN \leftarrow (CMP = 0)$
 - \triangleright $SN \leftarrow (CMP_{31} = 1)$
 - $V \leftarrow (R[x]_{31} \neq R[y]_{31}) \land (CMP_{31} \neq R[x]_{31})$
 - \triangleright CY \leftarrow (CMP₃₂ = 1)

- Operação bit a bit (and)
 - ► Tipo U
 - ightharpoonup R[z] = R[x] and R[y]

31	26	25	21	20	16	15	11	10		0
0001	10	Z ₄ Z ₃ Z ₂	₂ Z ₁ Z ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	₂ x ₁ x ₀	<i>Y</i> 4 <i>Y</i> 3	√2 <i>Y</i> 1 <i>Y</i> 0		_	

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - ► $SN \leftarrow (R[z]_{31} = 1)$

- Operação bit a bit (or)
 - ► Tipo U
 - ightharpoonup R[z] = R[x] or R[y]

31	26	25	21	20	16	15	11	10		0
00011	1	Z ₄ Z ₃ Z ₅	₂ <i>Z</i> ₁ <i>Z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>x</i>	$x_2 x_1 x_0$	<i>Y</i> 4 <i>Y</i> 3	<i>Y</i> 2 <i>Y</i> 1 <i>Y</i> 0		_	

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - ► $SN \leftarrow (R[z]_{31} = 1)$

- Operação bit a bit (not)
 - ► Tipo U
 - $P[z] = \mathbf{not} \ R[x]$

31	26	25	21	20	16	15	11	10		0
0010	000	Z ₄ Z ₃ Z ₅	₂ Z ₁ Z ₀	<i>X</i> ₄ <i>X</i> ₃ <i>x</i>	$x_2 x_1 x_0$	-	_		_	

- Campos afetados
 - $ightharpoonup ZN \leftarrow (R[z] = 0)$
 - ► $SN \leftarrow (R[z]_{31} = 1)$

- Operação bit a bit (xor)
 - ▶ Tipo U
 - $ightharpoonup R[z] = R[x] \mathbf{xor} R[y]$

31	26	25	21	20	16	15	11	10		0
0010	001	Z ₄ Z ₃ Z ₅	₂ <i>Z</i> ₁ <i>Z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>x</i>	₂ x ₁ x ₀	<i>Y</i> 4 <i>Y</i> 3)	√2 <i>Y</i> 1 <i>Y</i> 0		_	

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - ► $SN \leftarrow (R[z]_{31} = 1)$

- Operação de adição imediata (addi)
 - ▶ Tipo F
 - $P[z] = R[x] + i_{15}^{16} : i$

31 26	25	21	20	16	15	0
010010	Z ₄ Z ₃ Z ₂	z ₁ z ₀	<i>X</i> ₄ <i>X</i> ₃ <i>x</i>	$\langle_2 x_1 x_0 \rangle$	l ₁₅ l ₁₄ l ₁₃ l ₁₂ l ₁₁	11019181716151413121110

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - ► $SN \leftarrow (R[z]_{31} = 1)$
 - \triangleright $OV \leftarrow (R[x]_{31} = i_{15}) \land (R[z]_{31} \neq R[x]_{31})$
 - $\triangleright CY \leftarrow (R[z]_{32} = 1)$

- Operação de subtração imediata (subi)
 - ► Tipo F
 - $Arr R[z] = R[x] i_{15}^{16} : i$

31	26	25	21	20	16	15	0
01001	1	Z ₄ Z ₃ Z ₂	2Z1Z0	<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$\langle_2 x_1 x_0 \rangle$	i ₁₅ i ₁₄ i ₁₃ i ₁₂ i ₁₁ i ₁₀ i ₉ i ₈ i ₇ i ₆ i ₅ i ₄ i ₃ i ₂ i ₁	ı <i>İ</i> 0

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - \triangleright $SN \leftarrow (R[z]_{31} = 1)$
 - \triangleright $OV \leftarrow (R[x]_{31} \neq i_{15}) \land (R[z]_{31} \neq R[x]_{31})$
 - $\triangleright CY \leftarrow (R[z]_{32} = 1)$

- Operação de multiplicação imediata (muli)
 - ► Tipo F
 - Com sinal
 - $P[z] = R[x] \times i_{15}^{15} : i$

31 26	25 21	20 16	15 0
010100	$z_4 z_3 z_2 z_1 z_0$	$x_4 x_3 x_2 x_1 x_0$	11511411311211111019181716151413121110

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - ► $OV \leftarrow (R[z]_{63:32} \neq 0)$

- Operação de divisão imediata (divi)
 - ▶ Tipo F

 - ► Com sinal ► $R[z] = R[x] \div i_{15} : i$

31	26	25	21	20	16	15	0
01010)]	Z ₄ Z ₃ Z ₂	$_{2}Z_{1}Z_{0}$	<i>X</i> ₄ <i>X</i> ₃ <i>x</i>	$x_2x_1x_0$	11511411311211	1/10/9/8/7/6/5/4/3/2/1/0

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - \triangleright ZD \leftarrow (i = 0)
 - \triangleright OV \leftarrow 0

- Operação de resto imediato (remi)
 - ► Tipo F
 - Com sinal
 - $Arr R[z] = R[x] \mod i_{15}^{10} : i$

31 26	25 21	20 16	15 0
010110	$z_4 z_3 z_2 z_1 z_0$	$x_4 x_3 x_2 x_1 x_0$	115/14/13/12/11/10/9/8/7/6/5/4/3/2/1/0

- Campos afetados
 - \triangleright $ZN \leftarrow (R[z] = 0)$
 - \triangleright ZD \leftarrow (i = 0)
 - OV ← 0

- Operação de comparação imediata (cmpi)
 - ▶ Tipo F
 - $ightharpoonup CMPI = R[x] i_{15}^{16} : i$

31 26	25	21	20	16	15	0
010111	_		<i>X</i> ₄ <i>X</i> ₃ <i>x</i>	$x_2 x_1 x_0$	i ₁₅ i ₁₄ i ₁₃ i ₁₂ i ₁₁ i ₁₀ i	9181716151413121110

- Campos afetados
 - \triangleright $ZN \leftarrow (CMPI = 0)$
 - \triangleright $SN \leftarrow (CMPl_{31} = 1)$
 - $ightharpoonup OV \leftarrow (R[x]_{31} \neq i_{15}) \land (CMPl_{31} \neq R[x]_{31})$
 - $ightharpoonup CY \leftarrow (CMPl_{32} = 1)$

- Operações de leitura/escrita da memória
 - ▶ 8 bits (18, s8)
 - ▶ 16 bits (116, s16)
 - 32 bits (I32, s32)

- Operação de leitura de 8 bits da memória (18)
 - ▶ Tipo F

•
$$R[z] = MEM \left[R[x] + i_{15}^{16} : i \right]$$

31 26	25	21	20	16	15	0
011000	Z ₄ Z ₃ Z ₂ Z ₁	<i>z</i> ₀	<i>X</i> ₄ <i>X</i> ₃ <i>X</i> ₅	₂ <i>x</i> ₁ <i>x</i> ₀	<i>i</i> ₁₅ <i>i</i> ₁₄ <i>i</i> ₁₃ <i>i</i> ₁₂ <i>i</i> ₁₁ <i>i</i> ₁₀	19181716151413121710

- Operação de leitura de 16 bits da memória (116)
 - ► Tipo F

$$P[z] = MEM \left[\left(R[x] + i_{15}^{16} : i \right) \ll 1 \right]$$

31 26	25	21	20	16	15	0
011001	$Z_4Z_3Z_2Z_1Z_0$		$x_4x_3x_2x_1x_0$		l ₁₅ l ₁₄ l ₁₃ l ₁₂ l ₁₁ l ₁₀ l ₉ l ₈ l ₇ l ₆ l ₅ l ₄ l ₃ l ₂ l ₁ l ₀	

- Operação de leitura de 32 bits da memória (132)
 - ► Tipo F

►
$$R[z] = MEM\left[\left(R[x] + i_{15}^{16} : i\right) \ll 2\right]$$

31	26	25	21	20	16	15	0
0110	10	$Z_4Z_3Z_2Z_1Z_0$		$x_4x_3x_2x_1x_0$		i ₁₅ i ₁₄ i ₁₃ i ₁₂ i ₁	1 110 19 18 17 16 15 14 13 12 11 10

- Operação de escrita de 8 bits na memória (s8)
 - ► Tipo F

• MEM
$$\left[R[x] + i_{15}^{16} : i \right] = R[z]$$

31 26	25	21	20	16	15	0
011011	Z ₄ Z ₃ Z ₂ Z ₁ Z ₀		$x_4x_3x_2x_1x_0$		<i>i</i> ₁₅ <i>i</i> ₁₄ <i>i</i> ₁₃ <i>i</i> ₁₂	11111019181716151413121110

- Operação de escrita de 16 bits na memória (s16)
 - ► Tipo F

$$\qquad \qquad \mathsf{MEM}\left[\left(R[x] + \overset{16}{i_{15}} : i\right) \ll 1\right] = R[z]$$

31 26	25	21	20	16	15	0
011100	$Z_4Z_3Z_2Z_1Z_0$		<i>X</i> ₄ <i>X</i> ₃ <i>X</i>	$x_2 x_1 x_0$	<i>i</i> ₁₅ <i>i</i> ₁₄ <i>i</i> ₁₃ <i>i</i> ₁₂ <i>i</i> ₁₁ <i>i</i> ₁₀	19181716151413121110

- Operação de escrita de 32 bits na memória (s32)
 - ► Tipo F

• MEM
$$\left[\left(R[x] + i_{15}^{16} : i \right) \ll 2 \right] = R[z]$$

31 26	25	21	20	16	15	0
011101	Z ₄ Z ₃ Z	$Z_4Z_3Z_2Z_1Z_0$		√ ₂ <i>x</i> ₁ <i>x</i> ₀	<i>i</i> ₁₅ <i>i</i> ₁₄ <i>i</i> ₁₃ <i>i</i> ₁₂ <i>i</i> ₁₁ <i>i</i> ₁₀	19181716151413121710

- Operações de controle de fluxo
 - Desvio condicional (bae, bat, bbe, bbt, beq, bge, bgt, biv, ble, blt, bne, bni, bnz, bzd)
 - Desvio incondicional (bun)
 - Interrupção (int)

- Operação de desvio condicional (bae)
 - ► Tipo S
 - Condição AE (sem sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A > B \rightarrow A - B > 0 \equiv AE \leftarrow CY = 0$$

- Operação de desvio condicional (bat)
 - ► Tipo S
 - Condição AT (sem sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A > B \rightarrow A - B > 0 \equiv AT \leftarrow (ZN = 0 \land CY = 0)$$

- Operação de desvio condicional (bbe)
 - ► Tipo S
 - Condição BE (sem sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A \le B \rightarrow A - B \le 0 \equiv BE \leftarrow (ZN = 1 \lor CY = 1)$$

- Operação de desvio condicional (bbt)
 - ► Tipo S
 - Condição BT (sem sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A < B \rightarrow A - B < 0 \equiv BT \leftarrow CY = 1$$

- Operação de desvio condicional (beq)
 - ► Tipo S
 - ▶ Condição EQ

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A = B \rightarrow A - B = 0 \equiv EQ \leftarrow ZN = 1$$

- Operação de desvio condicional (bge)
 - ► Tipo S
 - ▶ Condição GE (com sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A > B \rightarrow A - B > 0 \equiv GE \leftarrow SN = OV$$

- Operação de desvio condicional (bgt)
 - ► Tipo S
 - Condição GT (com sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A > B \rightarrow A - B > 0 \equiv GT \leftarrow (ZN = 0 \land SN = OV)$$

- Operação de desvio condicional (biv)
 - ► Tipo S
 - ► Condição IV

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

- Operação de desvio condicional (ble)
 - ► Tipo S
 - Condição LE (com sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A \le B \rightarrow A - B \le 0 \equiv LE \leftarrow (ZN = 1 \lor SN \ne OV)$$

- Operação de desvio condicional (blt)
 - ► Tipo S
 - Condição LT (com sinal)

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A < B \rightarrow A - B < 0 \equiv LT \leftarrow SN \neq OV$$

- Operação de desvio condicional (bne)
 - ► Tipo S
 - ► Condição NE

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$A \neq B \rightarrow A - B \neq 0 \equiv NE \leftarrow ZN = 0$$

- Operação de desvio condicional (bni)
 - ► Tipo S
 - ▶ Condição NI

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$NI \leftarrow IV = 0$$

- Operação de desvio condicional (bnz)
 - ► Tipo S
 - ▶ Condição NZ

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

$$NZ \leftarrow ZD = 0$$

- Operação de desvio incondicional (bun)
 - ▶ Tipo S

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

- Operação de desvio condicional (bzd)
 - ► Tipo S
 - ► Condição ZD

$$PC = PC + 4 + \left[\begin{pmatrix} 6 \\ i_{25} : i \end{pmatrix} \ll 2 \right]$$

- Operação de interrupção (int)
 - ▶ Tipo S
 - ▶ Se i = 0, a execução é finalizada

Exemplo

- Considerando o código fonte abaixo, faça sua tradução para código de montagem e depois o converta para linguagem de máquina
 - Execute passo a passo o programa
 - Verifique os resultados obtidos

```
Inteiros com tamanho fixo
   #include <stdint.h>
   // Função principal
   int main() {
       // Variáveis em memória
       uint32_t i, n = 5, r = 1;
       // Controle iterativo
       for(i = 2; i <= n; i++) {
8
           // Multiplicação
           r = r * i:
10
11
12
       // Retorno sem erros
       return 0:
1.3
14
```

Exercício

Considerando a arquitetura Poxim, construa um simulador que realize o carregamento da programação (código binário representado em formato hexadecimal) e execute passo a passo o seu comportamento (fluxo de execução em arquivo)

 Implemente o simulador utilizando as linguagens de programação suportadas, obtendo os argumentos de entrada e de saída por linha de comando