multimodal interfaces lecture 01: definitions & introduction

++ professional background

research focus on experimental human computer interaction design and its implementation within tools for artistic production

→ mediator between Art, Science & Technology

+ MTG: Music Technology Group, Barcelona

Research assistant and lecturer at the Pompeu Fabra University
Human Computer Interaction Designer – Reactable project
DEA - Diploma of Advanced Studies in Digital Communication
Ph.D. research on the abstraction of Tangible Interactive Surfaces

+ UFG: Interface Culture Lab, Linz

Lecturer for Tangible User Interfaces since its foundation in 2004 Head of Interface Cultures appointed to act for Prof. Sommerer in 2010

++ professional background

+ MIT Medialab Europe, Dublin

Visiting Researcher, Palpable Machines Group - Dr. Sile O'Modhrain Research on tangible interaction with a focus on tactile object design

+ Faculty of Fine Arts, UCP Porto

Lecturer on Tangible User Interfaces at the Digital Arts Dept.

+ Aalborg University, Copenhagen

Visiting Lecturer at the Medialogy Department Tangible and Auditory User Interfaces

+ CEA: Centre for Electronic Arts, London

Research Intern, working on Auditory User Interfaces

++ reactable - tangible modular synthesizer

Kaltenbrunner, M. & Jordà, S. & Geiger, G. & Alonso, A. "The reacTable: A Collaborative Musical Instrument", Proceedings of the IEEE Workshop on "Tangible Interaction in Collaborative Environments (TICE2006). Manchester, U.K

++ TUIO framework & reacTIVision

Kaltenbrunner, M. "reacTIVision and TUIO: A Tangible Tabletop Toolkit", Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ITS2009). Banff, Canada.

++ community projects

Ribosound - Concept by Victor

Stadtplanung by Fabian Gronbach

Interfaces for Encoura by JAG

Demo Reactable Ketar by Dario Freddi

Tuio Kontrol+++multit by Vision Nocturne

Learn about the RGB : by YUFANGISED

Learn about the RGB : by Harsha Vardhan

Block Environment by Amee

Ĭ

reacTIVision

182 videos / 138 subscribers

This channel is a showcase for tangible interface projects made with the reacTIVision toolkit.

reactivision.sourceforge.net/

Another list of tangible musical interfaces made with reacTIVision: modin.yuri.at/tangibles/?list=7

Facebook page: facebook.com/reacTIVision

Moderator

Martin Kaltenbrunner - Creator Created October 2009

4 videos / 292 likes / 197 contacts

Shout Box

Thanx for adding the vid to your channel... X

And thx for your great reacTIVision
framework of course!!!

Posted by Fabian Gronbach 2 days ago

Martín, gracias por incluir nuestro video! Posted by **derooted creative agency** 6 months ago

++ open tools made by artists

Processing

Open Frameworks

Pure Data

++ open hardware projects for art

Arduino/LilyPad

RepRap – 3D printer

++ open artworks

Eyewriter (Zach Lieberman et.al.) Golden Nica 2010

Newstweek
(Julian Oliver & Danja Vasiliev)
Golden Nica 2011

Based on open source toolkits such as OpenFrameworks, OpenWRT. Source code and hardware specifications of the whole work published

++ human machine interfaces

++ artistic user interfaces

++ HCI & Digital Arts

state-of-the art HCI concepts are often an unexplored territory

The artistic approach may define different goals and methods compared to the scientific methodology demanding results

niche modalities such as smell-interfaces have technical limitations ... but so did speech, tangible and graphical user interfaces

artistic practice can allow a ludic approach towards new interaction modalities

exploring phenomenons such as synaesthesia or sensory cross-talk from an artistic point of view other than cognitive psychology

"any sufficiently advanced technology is indistinguishable from magic" (Arthur C. Clark)

++ planned topics for this class

auditory user interfaces

auditory display, audification, sonification speech synthesis, speech recognition, voice control

physical user interfaces

tangible and haptic interaction

natural user interfaces

gestural control (multitouch, hand, full-body)

edible user interfaces

interactive food, eat art, edible interaction olfactory interfaces: smell'o'rama, smell to sell, RGB of smell?

++ modalities

the human senses are grouped into five principal **modalities** which are generally defined by the various sensory organs

see: visual modality

hear: auditory modality

touch: tactile modality

kinaesthetic modality

smell: olfactory modality

taste: gustation modality

++ sub-modalities

defining the properties for each individual modality usually defined by analog/continuous dimensions or binary qualities

visual: light/darkness (intensity), colour/monochrome (chroma) contrast, sharpness, three/two dimensional auditory: loudness/intensity, pitch/frequency, timbre harmony, rhythm, melody, location/source/speed

tactile: texture, temperature,

smooth/rough, hot/cold

kinaesthetic: force, resistance, weight

soft/hard, heavy/light, strong/weak

proprioception: equilibrium, orientation, movement

olfactory: smelly/pleasant, toxic/attractive, aromatic/dull

gustation: sweet, sour, bitter, salty, umami, fatty

sweet/sour, tasty/dull

++ display modalities / multimedia output

```
creating devices that stimulate the various sensory channels,
defining technical models that generate stimuli that match the sensory
dimensions and "specifications" of the human organs
visual display: monitors, projections (2D dot matrix), illumination
      HMD (3D – immersive display), holographic displays
      still images, resolution > 100dpi
      moving images (> 25fps)
      color (visible spectrum) - RGB (additive colour model)
      print (CMYK – subtractive colour model)
auditory display: speakers (mono, stereo, multi-channel)
     headphones (stereo), personal display
     frequency (20Hz-20.000Hz), amplitude (loudness, dB)
     music, speech, recordings, synthesis (FM, physical models)
     spatial audio processing (HRTF,room models)
haptic display: force feedback (game controllers), vibro-tactile
```

olfactory display: "RGB" of smell? complex synthesis, persistence

display (mobile phone), temperature

++ display types

++ input modalities

creating input devices that perceive the various sensory channels, generate control data or semantic input

haptic: mechanical input devices: keyboard mechanical pointer devices: mouse, stylus, joystick touch interfaces: trackpad, surfaces (touchscreen, tablet) tangible user interfaces: physical objects

acoustic: speech recognition, speech commands
voice control (e.g. pitch-to-midi, loudness, vowels, unvoiced)

visual: computer vision (image analysis), OCR (text) hand/body tracking, gestural input symbol recognition, face recognition

olfactory: digital nose, alcohol test

++ textual input using different modalities

++ application areas

Mobile devices: limited screen size, tiny keyboards

Solution: introducing alternative modes using interfaces such as touch screens, accelerometers or displays such as auditory or vibro-tactile feedback

Ubiquitous computing: disappearing computer

Solution: using voice/speech interfaces and gestural control ambient displays providing visual and auditory feedback

Virtual Reality: addresses many modalities (visual, auditory, haptic) in order to increase the effect of *immersion*

++ multimodal interface examples

Mobile phone – Interactive Voice Response System alternative usage of speech recognition and DTMF keys

e.g. a car driver prefers hands-free interaction in a noisy environment with limited intelligibility DTMF is more robust

Cave – Virtual Environment ambient display & sound, full body interaction & speech interface

++ accessibility

- allowing multiple modalities to compensate a sensory impairment or limited articulation of the user
- e.g. *blind users* may prefer speech synthesis or speech recognition speech impaired users rely on textual input or gestural control paralysed users may require alternative input modalities (BMI)

This implies a dialog system design that allows for example textual input in addition to GUI direct manipulation elements or gestural control

++ bandwidth

multi-modal interaction can increase the communication bandwidth bundling the properties of various input or display modalities

may result in improved usability and performance

bandwidth & performance:

textual input: morse key, BMI, keyboard, speech recognition

hierarchical menus: direct manipulation, voice dialogs

manipulation: mouse, touch-screen, multi-touch, physical interface

++ cross-modal effects

Crossmodal perception involves interactions between two or more sensory modalities

Synaesthesia stimulation of one sensory channel causes involuntary experiences of another sensory perception e.g. seeing sounds, hearing colours grapheme to colour: letters or numbers appear coloured can also be induced by psychedelic drugs

Sensory cross-talk / Sensory substitution

e.g. simulation of haptic feedback using visual cues

replacing a sensory impairment through another modality: e.g. seeing with sound – sonification of visual cues

.