CS 584 - MACHINE LEARNING

TOPIC: REGRESSION

♦ http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- So far, we talked about classification, where the target variable *Y* is discrete
 - Find-S, candidate elimination, decision trees, naïve Bayes, logistic regression, neural networks
- If the target variable *Y* is continuous, the task is called regression
- Examples
 - Recommendations (ratings)
 - Economics and finance (credit score, house prices, stock prices, consumption, etc.)
 - Weather forecasting (temperature, humidity, wind speed, etc.)
 - and more ...

REPRESENTATION

- *x*: the input vector, the object
- r: the true value of the regression
- \circ f(x): the true underlying function
- \circ g(x): the estimated underlying function
- \circ ϵ : the noise
- \circ p(r|x): the conditional distribution of r and x
- \circ D: the dataset that consists of $\langle x, r \rangle$ pairs

REGRESSION FUNCTION

- $\circ r = f(x) + \epsilon$
- \circ ϵ is the noise (i.e., what the model cannot capture)
- Noise can exist due to several reasons
 - The input variables are insufficient to capture everything there is to capture
 - Noisy sensors
- \circ ϵ is typically assumed to be a zero mean Gaussian with constant variance σ^2
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$

4

How To Learn f(x)

- One typical approach that we have already seen:
 - Assume a parametric form
 - Formulate an objective function
 - Optimize (maximize or minimize) it
- Disclaimer: not all learning approaches are parametric

MAXIMIZE CONDITIONAL LOG LIKELIHOOD

- Assuming $\epsilon \sim \mathcal{N}(0, \sigma^2)$, then
 - $p(r \mid x) \sim \mathcal{N}(g(x \mid w), \sigma^2)$
- Given the dataset *D* that has *N* instances and the parameter vector *w*, the conditional log-likelihood
 - CLL = $\sum \ln(p(r[d] \mid x[d]))$
 - CLL = $\sum \ln \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(r[d]-g(x[d]|w))^2}{2\sigma^2}} \right)$
 - CLL = $-N \ln(\sqrt{2\pi}\sigma) \frac{1}{2\sigma^2} \sum (r[d] g(x[d] \mid w))^2$

MAXIMIZE CLL = MINIMIZE SQUARED LOSS

- \circ argmax CLL = w
- $\underset{w}{\circ} \operatorname{argmax} N \ln(\sqrt{2\pi}\sigma) \frac{1}{2\sigma^2} \sum (r[d] g(x[d] \mid w))^2$
- $\underset{w}{\circ} \operatorname{argmin} \sum (r[d] g(x[d] \mid w))^{2}$

g(x|w)

- So far, we did not specify what g(x|w) is
- One popular approach is to assume a linear function
- Assume in each instance *x* has *k* features

•
$$x = \langle x_1, x_2, \cdots, x_k \rangle$$

• Then, a polynomial of degree one linear regression is

•
$$g(x|w) = w_0 + \sum_{i=1}^k w_i x_i = \sum_{i=1}^k w_i X_i$$

X , = 1

GRADIENT OF THE SQUARED LOSS

• See OneNote

REGRESSION EXAMPLES

• See OneNote

REGULARIZATION

- L₂ regularization
 - Minimize squared-loss + L₂ penalty
 - Also called Ridge regression
- \circ L₁ regularization
 - Minimize squared-loss + L_1 penalty
 - Also called Lasso regression
- See OneNote for derivation

Polynomial Regression – Arbitrary Degree

- Simply change the input representation by adding new features that correspond to powers and products
- See https://scikit-learn.org/stable/modules/preprocessing.html#poly nomial-features

$$\circ RSE = \frac{\sum (r-g)^2}{\sum (r-\bar{r})^2}$$

$$\frac{(2-2)^{2}+(3-5)^{2}+(10-4)^{2}}{(2-5)^{2}+(3-5)^{2}+(10-5)^{2}}$$

- RSE = closer to 1, if our prediction is as good/bad as predicting the mean all the time
- RSE = closer to 0 means we have a better fit
- Coefficient of determination

•
$$R^2 = 1 - RSE$$

OTHER REGRESSION APPROACHES

- There are other approaches besides linear regression, such as
 - Decision tree regression
 - Support vector regression
 - Neural networks
 - •

liner Or

SCIKIT-LEARN

Least squares

- http://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegre ssion.html

• Ridge

- http://scikit-learn.org/stable/modules/linear_model.html#ridge-regression
- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html

Lasso

- http://scikit-learn.org/stable/modules/linear_model.html#lasso
- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

TENSORFLOW

https://www.tensorflow.org/tutorials/keras/regres sion