$\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective,

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible,

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth?

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2.$

 $\phi:(\alpha,\beta)\to(\alpha',\beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}:(\alpha',\beta')\to(\alpha,\beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2.$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$

 $\phi:(\alpha,\beta)\to(\alpha',\beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}:(\alpha',\beta')\to(\alpha,\beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2.$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$ If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective

 $\phi:(\alpha,\beta)\to(\alpha',\beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}:(\alpha',\beta')\to(\alpha,\beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

$$\begin{split} &\gamma:(\alpha,\beta)\to\mathbb{R}^2.\\ &\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to\mathbb{R}^2.\\ &\text{If }\phi:(\tilde{\alpha},\tilde{\beta})\to(\alpha,\beta) \text{ is bijective, smooth,} \end{split}$$

 $\phi:(\alpha,\beta)\to(\alpha',\beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}:(\alpha',\beta')\to(\alpha,\beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2.$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective, smooth, and its inverse, ϕ^{-1} is smooth,

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2.$

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective, smooth, and its inverse, ϕ^{-1} is smooth, and $\tilde{\gamma}(t) = \gamma(\phi(t))$,

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2.$

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective, smooth, and its inverse, ϕ^{-1} is smooth, and $\tilde{\gamma}(t) = \gamma(\phi(t))$,

then ϕ is called a reparametrization of γ .

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

$$\gamma:(\alpha,\beta)\to\mathbb{R}^2.$$

$$\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$$

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective, smooth, and its inverse, ϕ^{-1} is smooth, and $\tilde{\gamma}(t) = \gamma(\phi(t))$,

then ϕ is called a reparametrization of γ .

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

$$\gamma:(\alpha,\beta)\to\mathbb{R}^2.$$

$$\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$$

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective, smooth, and its inverse, ϕ^{-1} is smooth, and $\tilde{\gamma}(t) = \gamma(\phi(t))$,

then ϕ is called a reparametrization of γ .

$$\gamma(t) = (f_1(t), f_2(t))$$

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

$$\gamma:(\alpha,\beta)\to\mathbb{R}^2.$$

$$\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$$

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective, smooth, and its inverse, ϕ^{-1} is smooth, and $\tilde{\gamma}(t) = \gamma(\phi(t))$,

then ϕ is called a reparametrization of γ .

$$\gamma(t) = (f_1(t), f_2(t))$$
 $\gamma(\phi(t)) = (f_1(\phi(t)), f_2(t))$

 $\phi: (\alpha, \beta) \to (\alpha', \beta')$ is bijective, then it is invertible, its inverse is, denoted: $\phi^{-1}: (\alpha', \beta') \to (\alpha, \beta)$.

If ϕ is smooth, is ϕ^{-1} smooth? Not necessarily!

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2.$

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2.$

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is bijective, smooth, and its inverse, ϕ^{-1} is smooth, and $\tilde{\gamma}(t) = \gamma(\phi(t))$,

then ϕ is called a reparametrization of γ .

$$\gamma(t) = (f_1(t), f_2(t))$$

$$\gamma(\phi(t)) = (f_1(\phi(t)), f_2(\phi(t)))$$

Example

 $\gamma: (-1,1) \to \mathbb{R}^2$

Example

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

 $\tilde{\gamma}(t) = (2t, 2t)$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

 $\tilde{\gamma}(t) = (2t, 2t)$

$$\phi: (-1/2, 1/2) \to (-1, 1)$$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

 $\tilde{\gamma}(t) = (2t, 2t)$

$$\phi: (-1/2, 1/2) \to (-1, 1)$$

 $\phi(t) = 2t$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

 $\tilde{\gamma}(t) = (2t, 2t)$

$$\phi: (-1/2, 1/2) \to (-1, 1)$$

$$\phi(t) = 2t$$
So that $\tilde{\gamma}(t)$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

 $\tilde{\gamma}(t) = (2t, 2t)$

$$\phi: (-1/2, 1/2) \to (-1, 1)$$

$$\phi(t) = 2t$$
So that $\tilde{\gamma}(t) = \gamma(\phi(t))$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

 $\tilde{\gamma}(t) = (2t, 2t)$

$$\phi: (-1/2, 1/2) \to (-1, 1)$$

$$\phi(t) = 2t$$
So that $\tilde{\gamma}(t) = \gamma(\phi(t)) = \gamma(2t)$

$$\gamma: (-1,1) \to \mathbb{R}^2$$
$$\gamma(t) = (t,t)$$

$$\tilde{\gamma}: (-1/2, 1/2) \to \mathbb{R}^2.$$

 $\tilde{\gamma}(t) = (2t, 2t)$

$$\phi: (-1/2, 1/2) \to (-1, 1)$$

$$\phi(t) = 2t$$
So that $\tilde{\gamma}(t) = \gamma(\phi(t)) = \gamma(2t) = (2t, 2t)$

$$v = (2,3)$$

 $w = (1,-1)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition:

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition : v + w = (3, 2)

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition : v + w = (3, 2)

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition:

$$v + w = (3, 2)$$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition :

$$v + w = (3, 2)$$

$$(x_1, y_2) + (x_2, y_2)$$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition:

$$v + w = (3, 2)$$

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2)$$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition:

$$v + w = (3, 2)$$

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition:

$$v + w = (3, 2)$$

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition:

$$v + w = (3, 2)$$

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

$$(x_1, y_2) - (x_2, y_2) := (x_1 - x_2)$$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition:

$$v + w = (3, 2)$$

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v := (1, 2)$$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v := (1, 2)$$
$$2v$$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v := (1, 2)$$

 $2v = 2(1, 2)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v := (1, 2)$$

 $2v = 2(1, 2) = (2, 4)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v := (1, 2)$$

 $2v = 2(1, 2) = (2, 4)$
In general:

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v := (1, 2)$$

 $2v = 2(1, 2) = (2, 4)$
In general:
 $\lambda(x, y)$

$$v = (2,3)$$

 $w = (1,-1)$

Vector addition and subtraction:

$$v + w = (3, 2)$$

In general:

$$(x_1, y_2) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_2) - (x_2, y_2) := (x_1 - x_2, y_1 - y_2)$

$$v := (1, 2)$$

 $2v = 2(1, 2) = (2, 4)$
In general:
 $\lambda(x, y) := (\lambda x, \lambda y)$

p := (2,3),

p := (2,3), $\mathbf{w} := (1,1),$

```
p := (2,3),

\mathbf{w} := (1,1),

q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)
```

```
p := (2,3),

\mathbf{w} := (1,1),

q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)

(displacement of p by \mathbf{w}).
```

$$p := (2,3)$$
 and $q = (3,4)$,

$$p := (2,3) \text{ and } q = (3,4),$$

 $\mathbf{v} = q - p$

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth parametrization.

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth parametrization. $\gamma(t)$ is the *point* at t

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth parametrization. $\gamma(t)$ is the *point* at t $\gamma(t+h)$ is the *point* at t+h

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth parametrization.

 $\gamma(t)$ is the *point* at t

 $\gamma(t+h)$ is the *point* at t+h

 $\gamma(t+h) - \gamma(t)$ is the displacement vector at t+h

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth parametrization. $\gamma(t)$ is the *point* at t $\gamma(t+h)$ is the *point* at t+h $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at t+h

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth parametrization. $\gamma(t)$ is the *point* at t $\gamma(t+h)$ is the *point* at t+h $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at t+h

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth parametrization.

 $\dot{\gamma}(t)$

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth parametrization. $\gamma(t)$ is the *point* at t $\gamma(t+h)$ is the *point* at t+h $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at t+h

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth parametrization.

$$\dot{\gamma}(t) = \lim_{h \to 0}$$

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth parametrization. $\gamma(t)$ is the *point* at t $\gamma(t+h)$ is the *point* at t+h $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at t+h

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth parametrization.

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

p := (2,3) and q = (3,4), $\mathbf{v} = q - p$ is the displacement that takes p to q

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth parametrization. $\gamma(t)$ is the *point* at t $\gamma(t+h)$ is the *point* at t+h $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at t+h

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth parametrization.

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p,

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to ${\bf v}$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

$$\{q \in \mathbb{R}^2 \mid \}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

$$\{q \in \mathbb{R}^2 \mid q = p\}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}\}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

$$T_{\gamma}(t) := \{ q \in \mathbb{R}^2 \}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

$$T_{\gamma}(t) := \{ q \in \mathbb{R}^2 \mid q = \gamma(t) \}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

$$T_{\gamma}(t) := \{ q \in \mathbb{R}^2 \mid q = \gamma(t) + k\dot{\gamma}(t) \}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

$$T_{\gamma}(t) := \{ q \in \mathbb{R}^2 \mid q = \gamma(t) + k\dot{\gamma}(t) \}$$

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization. $\gamma(t)$ is the *point* at t $\gamma(t+h)$ is the *point* at $t+h$ $\gamma(t+h) - \gamma(t)$ is the displacement $vector$ at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

Definition. If $\dot{\gamma}(t) \neq 0$, the line tangent to γ at t is,

$$T_{\gamma}(t) := \{ q \in \mathbb{R}^2 \mid q = \gamma(t) + k\dot{\gamma}(t), k \in \mathbb{R} \}$$

Definition. A smooth parametrized curve, γ : $(\alpha, \beta) \to \mathbb{R}^2$,

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization. $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement $vector$ at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

Definition. If $\dot{\gamma}(t) \neq 0$, the line tangent to γ at t is,

$$T_{\gamma}(t) := \{ q \in \mathbb{R}^2 \mid q = \gamma(t) + k\dot{\gamma}(t), k \in \mathbb{R} \}$$

Definition. A smooth parametrized curve, γ : $(\alpha, \beta) \to \mathbb{R}^2$, is called a **regular parametrized** curve

$$p := (2,3),$$

 $\mathbf{w} := (1,1),$
 $q := p + \mathbf{w} = (2,3) + (1,1) = (3,4)$
(displacement of p by \mathbf{w}).

$$p := (2,3)$$
 and $q = (3,4)$,
 $\mathbf{v} = q - p$ is the displacement that takes p to q

$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$
 is a smooth parametrization.
 $\gamma(t)$ is the *point* at t
 $\gamma(t+h)$ is the *point* at $t+h$
 $\gamma(t+h) - \gamma(t)$ is the displacement *vector* at $t+h$

$$\dot{\gamma}(t) = \lim_{h \to 0} (1/h)(\gamma(t+h) - \gamma(t))$$

is called the velocity vector at t and $\dot{\gamma}:(\alpha,\beta)\to\mathbb{R}^2$ is called the velocity vector field of the parametrization γ .

Points on the straight line passing through p, parallel to $\mathbf{v} \neq 0$:

$$\{q \in \mathbb{R}^2 \mid q = p + k\mathbf{v}, k \in \mathbb{R}\}$$

Definition. If $\dot{\gamma}(t) \neq 0$, the line tangent to γ at t is,

$$T_{\gamma}(t) := \{ q \in \mathbb{R}^2 \mid q = \gamma(t) + k\dot{\gamma}(t), k \in \mathbb{R} \}$$

Definition. A smooth parametrized curve, γ : $(\alpha, \beta) \to \mathbb{R}^2$, is called a **regular parametrized** curve if $\dot{\gamma}(t) \neq 0$ for each $t \in (\alpha, \beta)$.

From now on, we will assume all parametrized curves to be regular

Lemma. If $\tilde{\gamma}(t) = \gamma(\phi(t))$ is a reparametrization,

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)$$

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)$$

$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))
\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$.

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t)\}$$

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)$$

$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$.

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R}\} = \{\gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t)\}$$

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)$$

$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$.

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R}\} = \{\gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R}\}$$

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))
\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$.

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R}\} = \{\gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R}\}$$

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)$$

$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$, if $\phi'(t) \neq 0$

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R}\} = \{\gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R}\}$$
$$= \{\gamma(t) + k\dot{\gamma}(\phi(t))\}$$

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))
\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$, if $\phi'(t) \neq 0$

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R}\} = \{\gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R}\}$$
$$= \{\gamma(t) + k\dot{\gamma}(\phi(t)) \mid k \in \mathbb{R}\}$$

Lemma. If $\tilde{\gamma}(t) = \gamma(\phi(t))$ is a reparametrization, Note: $\tilde{\gamma}(t)$ is the same point, p, as $\gamma(\phi(t))$ then $\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)$$

$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$, if $\phi'(t) \neq 0$

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R}\} = \{\gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R}\}$$
$$= \{\gamma(t) + k\dot{\gamma}(\phi(t)) \mid k \in \mathbb{R}\}$$

Lemma. If $\tilde{\gamma}(t) = \gamma(\phi(t))$ is a reparametrization, Note: $\tilde{\gamma}(t)$ is the same point, p, as $\gamma(\phi(t))$ then $\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$ When using $\tilde{\gamma}$, the point p "appears at time t"

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))$$

$$\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))$$

$$\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)$$

$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$, if $\phi'(t) \neq 0$

$$\{\gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R}\} = \{\gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R}\}$$
$$= \{\gamma(t) + k\dot{\gamma}(\phi(t)) \mid k \in \mathbb{R}\}$$

Lemma. If $\tilde{\gamma}(t) = \gamma(\phi(t))$ is a reparametrization, Note: $\tilde{\gamma}(t)$ is the same point, p, as $\gamma(\phi(t))$ then $\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$

When using $\tilde{\gamma}$, the point p "appears at time t" When using γ , the point p "appears at time $\phi(t)$ "

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))
\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$, if $\phi'(t) \neq 0$

$$\{ \gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R} \} = \{ \gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R} \}$$

$$= \{ \gamma(t) + k\dot{\gamma}(\phi(t)) \mid k \in \mathbb{R} \}$$

Lemma. If $\tilde{\gamma}(t) = \gamma(\phi(t))$ is a reparametrization, Note: $\tilde{\gamma}(t)$ is the same point, p, as $\gamma(\phi(t))$ then $\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$ When using $\tilde{\gamma}$, the point p "appears at times".

Proof.

$$\tilde{\gamma}(t) = \gamma(\phi(t))
\tilde{\gamma}(t) = (f_1(\phi(t)), f_2(\phi(t)))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t))\phi'(t), f'_2(\phi(t))\phi'(t))
\dot{\tilde{\gamma}}(t) = (f'_1(\phi(t)), f'_2(\phi(t)))\phi'(t)
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

Note: $\tilde{\gamma}(t)$ is the same point, p, as $\gamma(\phi(t))$ When using $\tilde{\gamma}$, the point p "appears at time t" When using γ , the point p "appears at time $\phi(t)$ " So, $\dot{\tilde{\gamma}}(t)$ and $\dot{\gamma}(\phi(t))$ are velocity vectors at the same point p

Corollary. The tangent line is invariant under a reparametrization, $\phi(t)$, if $\phi'(t) \neq 0$

$$\{ \gamma(t) + k\dot{\tilde{\gamma}}(t) \mid k \in \mathbb{R} \} = \{ \gamma(t) + k\dot{\gamma}(\phi(t))\phi'(t) \mid k \in \mathbb{R} \}$$

$$= \{ \gamma(t) + k\dot{\gamma}(\phi(t)) \mid k \in \mathbb{R} \}$$