Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2011

Concours Mathématiques et Physique Correction de l'Epreuve de Mathématiques I

Partie -I-

1. Remarquons que: $\forall x > 0, F_n(x) > 0$ et

$$\frac{F_{n+1}(x)}{F_n(x)} = \frac{(n+1)!}{x(x+1)\cdots(x+n)(x+n+1)} \frac{(x+1)(x+2)\cdots(x+n)(x+n+1)}{n!} = \frac{(n+1)!}{x}.$$

- 2. $\forall n \in \mathbb{N}et \forall x > 0, t \mapsto t^{x-1}(1-t)^n$ est continue sur]0,1] et au voisinage de $0, t^{x-1}(1-t)^n \sim \frac{1}{t^{1-x}}$ et $t \mapsto \frac{1}{t^{1-x}}$ est intégrable au voisinage de 0 ssi 1-x < 1 ssi x > 0 d'où le résultat.
- 3. (a) $\forall n \in \mathbb{N} \ \forall x > 0$, et $\forall a > 0$ apres intégration par partie

$$\int_{a}^{1} t^{x-1} (1-t)^{n+1} dt = \left[\frac{1}{x} t^{x} (1-t)^{n+1} \right]_{1}^{a} + \frac{n+1}{x} \int_{a}^{1} t^{x} (1-t)^{n} dt$$

et on faisont $a \longrightarrow 0$ on aurra le resultat.

- (b) Soit x > 0 et montrons par réccurence que $I_n(x) = F_n(x) \forall n \in \mathbb{N}$ pour $n = 0, I_0(x) = \int_0^1 t^{x-1} dt = \frac{1}{x} = F_0(x)$, supposons que le résultat est vrai jusqu'a l'ordre n et montrons qu'elle reste a l'ordre n + 1 $I_{n+1}(x) = \frac{n+1}{x}I_n(x+1) = \frac{n+1}{x}F_n(x+1) = F_{n+1}(x)$ d'ou le résultat.
- 4. L'application $t\mapsto t^{x-1}e^{-t}$ est continue sur $]0,+\infty[$, au voisinage de 0, $t^{x-1}e^{-t}\sim \frac{1}{t^{1-x}}$ et $t\mapsto \frac{1}{t^{1-x}}$ qui est intégrable au voisinage de 0 ssi 1-x<1 ssi x>0, au voisinage de $+\infty$, $\lim_{t\to+\infty}t^2t^{x-1}e^{-t}=0$ d'ou l'intégrabalité $t\mapsto t^{x-1}e^{-t}$ sur $]0,+\infty[$ et l'existance de $\Gamma(x)$ $\forall x>0$.
- 5. (a) Pour t > 0, $\exists n_0 \text{ tq } \forall n \geq n_0$, $t < n \Rightarrow \forall n \geq n_0$

$$\varphi_n(t) = t^{x-1} (1 - \frac{t}{n})^n = t^{x-1} \exp[n \log(1 - \frac{t}{n})]$$

et $n \log(1 - \frac{t}{n}) \sim -t$ comme exp est continue donc $(\varphi_n)^{n \in \mathbb{N}}$ converge simplement vers φ sur $]0, +\infty[$.

(b)
$$\int_0^n t^{x-1} (1 - \frac{t}{n})^n dt = \int_0^{+\infty} \varphi_n(t) dt$$

 $\forall t \in]0, n[\text{, on pose } g_n(t) = n \log(1 - \frac{t}{n}) + t \text{ on a: } g_n'(t) = \frac{-\frac{t}{n}}{1 - \frac{t}{n}} < 0 \text{ et } \lim_{t \to 0} g_n(t) = 0$ ce qui donne $g_n(t) < 0$ sur]0, n[donc $n \log(1 - \frac{t}{n}) \le -t \ \forall t \in]0, n[$, et $|\varphi_n(t)| = \varphi_n(t) \le t^{x-1}e^{-t} = \varphi(t) \ \forall t > 0 \text{ or } \varphi \text{ est intégrable sur }]0, +\infty[$, donc d'aprés theorem de convergence dominée

$$\lim_{n \to +\infty} \int_0^n t^{x-1} (1 - \frac{t}{n})^n dt = \lim_{n \to +\infty} \int_0^+ \varphi_n(t) = \int_0^{+\infty} \lim_{n \to +\infty} \varphi_n(t) dt = \Gamma(x).$$

(c) $n \in \mathbb{N}^*$ et $\forall x > 0$

$$\int_0^n t^{x-1} (1 - \frac{t}{n})^n dt = \underline{u} = \frac{t}{n} \int_0^1 (nu)^{x-1} (1 - u)^n n du = n^x \int_0^1 u^x (1 - u)^n du = n^x I_n(x) = n^x F_n(x)$$
or $\lim_{n \to +\infty} \int_0^n t^{x-1} (1 - \frac{t}{n})^n dt = \Gamma(x)$ donc $F_n(x) \sim \frac{\Gamma(x)}{n^x}$

Partie -II-

- 1. Ona: $|a_n F_n(x)| \sim \frac{|a_n|\Gamma(x)}{n^x} \Rightarrow \sum_{n\geq 0} a_n F_n(x)$ converge absolument ssi $\sum_{n\geq 1} a_n \frac{\Gamma(x)}{n^x}$ converge absolument.
- 2. Soit $x \geq \sigma$, alors $\frac{|a_n|}{n^{\sigma}} \geq \frac{|a_n|}{n^x} \Rightarrow \sum_{n \geq 1} \frac{|a_n|}{n^x}$ converge absolument donc $x \in D_a$ par suite $[\sigma, +\infty[\subset D_a]$.

Si $D_a \neq \emptyset$, soient $x, y \in D_a$ tq $x \leq y$ tq $\forall t \in [x, y]$ on a: $\frac{|a_n|}{n^y} \leq \frac{|a_n|}{n^t} \leq \frac{|a_n|}{n^x} \Rightarrow \sum_{n \geq 1} \frac{a_n}{n^t}$ converge absolument donc $t \in D_a$ et par suite $[x, y] \subset D_a$.

Si $\sigma \in D_a$ d'aprés ce qui précède $[\sigma, +\infty[\subset D_a \text{ et donc } D_a \text{ n'est pas majorée.}]$

3. (a) $\sum_{n\geq 1} \frac{1}{n^{x+\alpha}}$ converge absolument ssi $x+\alpha>1$ \Rightarrow

$$D_a =]1 - \alpha, +\infty[\cap]0, +\infty[=] \sup(1 - \alpha, 0), +\infty[.$$

- (b) Posons $u_n = \frac{n!}{n^x}$ pour x > 0, $\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{(n+1)^x} \frac{n^x}{n!} = (n+1)(\frac{1}{1+\frac{1}{n}})^x \to +\infty$, d'aprés Alembert $\sum_n u_n = \sum_n |u_n|$ diverge $\Rightarrow D_a = \emptyset$.
- 4. (a) Comme $R_a > 1 \Rightarrow \forall r \in]1, R_a[, \sum_n a_n r^n$ converge absolument d'ou l'existance de r > 1 tq $\sum_n a_n r^n$ converge absolument .
 - (b) on a : $a_n F_n(x) \sim \frac{a_n}{n^x}$ et $\frac{a_n}{n^x} = \frac{1}{n^x r^n} \to \frac{1}{+\infty} = 0 \Rightarrow \frac{a_n}{n^x} = \circ(a_n r^n)$ par la suite $a_n F_n(x) = \circ(a_n r^n)$. Or $\sum_n a_n r^n$ converge absolument et donc $\sum_n a_n F_n(x)$ converge absolument.
 - (c) On sait que $D_a \subset]0, +\infty[$ et $\forall x > 0, \sum_n a_n F_n(x)$ converge absolument $\Rightarrow D_a =]0, +\infty[$.
- 5. (a) Comme $R_a < 1 \Rightarrow \exists r \in]R_a, 1[$ et d'aprés critere sur les séries entière $(a_n r^n)$ ne converge pas vers 0.
 - (b) on a: $\frac{a_n r^n}{a_n F_n(x)} \sim \frac{a_n r^n}{a_n \frac{\Gamma(x)}{n^x}} = \frac{n^x r^n}{\Gamma(x)} = \frac{\exp[x \log n + n \log r]}{\Gamma(x)} = \frac{\exp[n(x \frac{\log n}{n} + \log r)]}{\Gamma(x)}$ or $\log r < 0$ $\Rightarrow \frac{a_n r^n}{a_n F_n(x)} \to 0 \Rightarrow a_n r^n = \circ(a_n F_n(x).$

converge absolument et donc Si $\sum_n a_n F_n(x)$ converge $\Rightarrow \sum_n a_n r^n$ converge ce qui absurde car $(a_n r^n)_{n \in \mathbb{N}}$ ne converge pas vers 0.

- (c) D'aprés ce qui précede pour tout x > 0, $\sum_n a_n F_n(x)$ diverge $\Rightarrow D_a = \emptyset$.
- 6. Pour $\alpha \geq 0$, il suffit de prendre $a_n = \frac{1}{n^{\alpha+1}}$ on a le rayon de convergence de $\sum_n a_n z^n$ est $R_a = 1$ (d'aprés Alembert) et d'aprés Partie -II-3-a) $D_a =]\alpha, +\infty[$.

Partie -III-

1. Soit $[a,b] \subset D_a$, $\forall x \in [a,b]$, $|F_n(x)| = F_n(x) \leq F_n(a) \Rightarrow \sup_{x \in [a,b]} |a_n F_n(x)| = |a_n| F_n(a)$ et $a \in D_a \Rightarrow \sum_n \sup_{x \in [a,b]} |a_n F_n(x)|$ converge $\Rightarrow \sum_n a_n F_n$ converge normalement sur [a,b].

- 2. $\forall n \in \mathbb{N}, x \mapsto a_n F_n(x)$ est continue sur $]0, +\infty[\subset D_a]$ fraction rationnelle et $\sum_n a_n F_n$ converge normalement sur tout segment de $D_a \Rightarrow x \mapsto \sum_{n=0}^{+\infty} a_n F_n(x)$ est continue sur D_a .
- 3. $\forall x > 0$, $\log F_n(x) = \log n! \sum_{k=0}^n \log(x+k)$ et $x \mapsto -\sum_{k=0}^n \log(x+k)$ est dérivable sur $]0, +\infty[$. D'autre part $\forall x > 0$, $\frac{F_n'(x)}{F_n(x)} = -\sum_{k=0}^n \frac{1}{x+k} \Rightarrow$

$$\left|\frac{F_n'(x)}{F_n(x)}\right| \le \left|F_n(x)\left(-\frac{1}{x} - \sum_{k=1}^n \frac{1}{x+k}\right)\right| \le F_n(x)\left(\frac{1}{x} + \sum_{k=1}^n \frac{1}{x+k}\right).$$

Montrons que $\sum_{k=1}^{n} \frac{1}{x+k} \le \log(1+\frac{n}{x}) \ \forall x > 0$ Soit x > 0, $\forall k \ge 1$ et $\forall t \in [k-1,k]$ on a: $\frac{1}{x+k} \le \frac{1}{x+t} \le \frac{1}{x+k-1} \Rightarrow$ $\int_{k-1}^{k} \frac{1}{x+k} dt \le \int_{k-1}^{k} \frac{1}{x+t} dt \le \int_{k-1}^{k} \frac{1}{x+k-1} dt \Rightarrow \sum_{k=1}^{n} \frac{1}{x+k} \le \sum_{k=1}^{n} \log(x+k) - \log(x+k-1) \le \sum_{k=1}^{n} \frac{1}{x+k-1} \Rightarrow \sum_{k=1}^{n} \frac{1}{x+k} \le \log(1+\frac{n}{x})$ d'où le resultat.

- 4. Soit $[\alpha, \beta] \subset]\sigma_a, +\infty[$, on a: $\forall x \in [\alpha, \beta], |F_n(x)| = F_n(x) \leq F_n(\alpha)$ et $\frac{1}{x} + \log(1 + \frac{n}{x}) \leq \frac{1}{\alpha} + \log(1 + \frac{n}{\alpha})$ d'où $\forall x \in [\alpha, \beta], |F'_n(x)| \leq F_n(\alpha)(\frac{1}{\alpha} + \log(1 + \frac{n}{\alpha}), \frac{|a_n F_n(\alpha)|(\frac{1}{\alpha} + \log(1 + \frac{n}{\alpha})}{|a_n F_n(\alpha)|\log n} \to 1 \Rightarrow |a_n F_n(\alpha)|(\frac{1}{\alpha} + \log(1 + \frac{n}{\alpha}) \sim \frac{|a_n F_n(\alpha)|}{(\log n)^{-1}}, \text{ soit } \sigma_a < \alpha' < \alpha, \text{ on a: } \frac{n^{\alpha} F_n(\alpha)}{(\log n)^{-1}} \sim \frac{n^{\alpha'} \Gamma(\alpha)}{n^{\alpha'}(\log n)^{-1}} \to 0 \Rightarrow \frac{|a_n |F_n(\alpha)|}{(\log n)^{-1}} = \circ(\frac{|a_n|}{n^{\alpha'}}) \text{ et } \sum_{n \geq 1} \frac{a_n}{n^{\alpha'}} \text{ converge absolument } \text{car } \sum_{n \geq 1} a_n F_n(\alpha') \text{ converge absolument} \Rightarrow \sum_n |a_n F_n(\alpha)|(\frac{1}{\alpha} + \log(1 + \frac{n}{\alpha})) \text{ converge } \Rightarrow \sum_n a_n F'_n \text{ converge normalement } \text{sur } [\alpha, \beta] \text{ et donc converge normalement sur tout segment de }]\sigma_a, +\infty[.$
- 5. On a: $x \mapsto a_n F_n(x)$ est de classe C^1 sur $]\sigma_a, +\infty[$ (fraction rationnelle), $\sum_n a_n F'_n$ converge normalement sur tout segment de $]\sigma_a, +\infty[$ et $\sum_n a_n F_n$ converge simplement sur $]\sigma_a, +\infty[$ donc $F = \sum_{n=0}^{+\infty} a_n F_n$ est de classe C^1 sur $]\sigma_a, +\infty[$.

Partie -IV-

- 1. (a) On a: $\forall t \in]0,1[$, $\frac{t^n}{\frac{1}{n^x}} = \exp[n(\frac{x\log(n)}{n} + \log t)] \to 0$, $\Rightarrow t^n = o(\frac{1}{n^x}) \Rightarrow a_n t^n = o(\frac{a_n}{n^x})$ or $x \in D_a$, $\sum_n \frac{a_n}{n^x}$ converge absolument $\Rightarrow \sum_n a_n t^n$ converge absolument.
 - (b) $\forall n \in \mathbb{N}$, on a: $f_n : t \mapsto (1-t)^{x-1}a_nt^n$ est continue sur [0,1[, au voisinage de $1 |f_n(t)| \sim \frac{|a_n|}{(1-t)^{1-x}}$ qui est intégrable au voisinage de 1 ssi x > 0 et

$$\int_0^1 |f_n(t)| dt = |a_n| \int_0^1 (1-t)^{x-1} t^n dt = |a_n| F_n(x)$$

or $\sum_n a_n F_n(x)$ converge absolument $\Rightarrow \sum_n \int_0^1 |f_n(t)| dt$ converge , d'aprês théoreme intégration terme à terme

$$\int_0^1 (1-t)^{x-1} S(t) dt = \int_0^1 (1-t)^{x-1} (\sum_{n=0}^{+\infty} a_n t^n) dt = \sum_{n=0}^{+\infty} a_n \int_0^1 (1-t)^{x-1} t^n dt = \sum_{n=0}^{+\infty} a_n F_n(x) = \sum_$$

2. (a) On a: $\sum_n \frac{a_n}{n^x} = \sum_{n \geq N} \frac{1}{n^x}$ converge absolument ssi x > 1 d'où $D_a =]1, +\infty[$ et pour tout $x \in D_a =]1, +\infty[$ on a:

$$\sum_{n=N}^{+\infty} F_n(x) = \sum_{n=0}^{+\infty} a_n F_n(x) = \int_0^1 (1-t)^{x-1} S(t) dt = \int_0^1 (1-t)^{x-1} (\sum_{n=N}^{+\infty} t^n) dt = \int_0^1 (1-t)^{x-1} S(t) dt = \int_0^1 (1-t)^{x-1} (\sum_{n=N}^{+\infty} t^n) dt = \int_0^1 (\sum_{n=N}^{+\infty} t^n) d$$

 $\int_0^1 (1-t)^{x-1} (\frac{t^N}{1-t}) dt = \int_0^1 (1-t)^{x-2} t^N dt$ un changement de variable u=1-t et on utilisant Partie I-3-b) on aurra $\sum_{n=N}^{+\infty} F_n(x) = \int_0^1 (1-u)^N u^{x-2} du = F_N(x-1)$.

(b) Soit
$$z \in \mathbb{C}^*$$
 et $a_n = \frac{z^n}{n!} \cdot \frac{\left|\frac{a_{n+1}}{(n+1)^x}\right|}{\left|\frac{a_n}{n^x}\right|} = \frac{|z|}{n+1} (1+\frac{1}{n})^{-x} \to 0 \Rightarrow \sum_n \frac{a_n}{n^x}$ converge absolument $\Rightarrow D_a =]0, +\infty[$.

$$F(x) = \int_0^1 (1-t)^{x-1} (\sum_{n=0}^{+\infty} \frac{z^n t^n}{n!}) dt = \int_0^1 (u)^{x-1} \exp(z(1-u)) du = \exp z \int_0^1 (u)^{x-1} \exp(-zu) du$$

 $\exp z \int_0^1 (u)^{x-1} \sum_{n=0}^{+\infty} \frac{(-z)^n u^n}{n!}) du$ comme la serie de fonction $\sum_n (-z)^n \frac{u^{n+x-1}}{n!}$ converge normalement sur [0,1], on peut intégrer terme à terme :

$$F(x) = \sum_{n=0}^{+\infty} \frac{z^n}{x(x+1)\cdots(x+n)} = \exp z \sum_{n=0}^{+\infty} \frac{(-z)^n}{n!} \int_0^1 u^{n+x-1} du = \sum_{n=0}^{+\infty} \frac{(-z)^n}{n!(x+n)}$$

- 3. Soit $g:(x,t) \to (1-t)^{x-1}S(t)$ est continue sur $]\sigma_a, +\infty[\times]0, 1[$ et admet une dérivée partielle par rapport à x et $\frac{\partial g}{\partial x}(x,t)=(1-t)^{x-1}S(t)\log(1-t)$. Soit $[\alpha,\beta]\subset]\sigma_a, +\infty[,\forall x\in [\alpha,\beta]$ on a: $|(1-t)^{x-1}S(t)|\leq |(1-t)^{\beta-1}S(t)|, |(1-t)^{x-1}S(t)\log(1-t)|\leq |(1-t)^{\beta-1}S(t)\log(1-t)|$ qui sont continues sur [0,1[et au voisinage de $1\leq |(1-t)^{\beta-1}S(t)\log(1-t)=\circ((1-t)^{\alpha-1}S(t)),$ d'aprés Partie -IV-1-b) les fonctions $t\to (1-t)^{\alpha-1}S(t)$ et $t\to (1-t)^{\beta-1}S(t)$ sont intégrables sur [0,1[d'ou le resultat.
- 4. On a d'aprés Partie -IV-1-a) $\sum_n a_n t^n$ converge absolument sur [0,1[et d'aprés Alembert $\sum_{n\geq 1} -\frac{t^n}{n}$ converge absolument sur [0,1[donc leur produit de Gauchy $\sum_n b_n t^n$ converge absolument avec $b_0=0$ et $\forall n\geq 1$ $b_n=-\sum_{p=0}^{n-1}\frac{a_p}{n-p}$ et on a:

$$\sum_{n=0}^{+\infty} b_n t^n = (\sum_{n=0}^{+\infty} a_n t^n) (-\sum_{n=1}^{+\infty} \frac{t^n}{n}) = S(t) \log(1-t).$$

- 5. (a) $\sum_{n=1}^{N} \frac{|b_n|}{n^x} = \sum_{n=1}^{N} \frac{1}{n^x} |\sum_{p=0}^{n-1} \frac{a_p}{n-p}| \le \sum_{n=1}^{N} \frac{1}{n^x} \sum_{p=0}^{n-1} \frac{|a_p|}{n-p}$ un changement d'indice k = n p on aurra: $\sum_{n=1}^{N} \frac{|b_n|}{n^x} \le \sum_{p=0}^{N-1} |a_p| (\sum_{k=1}^{N-p} \frac{1}{k(k+p)^x}).$
 - (b) Soit $p \in \{0, 1, \dots N-1\}$, $\forall k \geq 2$ et $t \in [k-1, k]$ on a $: \frac{1}{k} \leq \frac{1}{t} \leq \frac{1}{k-1}$, $(k+p-1)^x \leq (t+p)^x \leq (k+p)^x \Rightarrow \int_{k-1}^k \frac{1}{k(k+p)^x} dt \leq \int_{k-1}^k \frac{1}{t(t+p)^x} dt \Rightarrow \frac{1}{k(k+p)^x} \leq \int_{k-1}^k \frac{1}{t(t+p)^x} dt \Rightarrow \sum_{k=2}^{N-p} \frac{1}{k(k+p)^x} \leq \int_{1}^{N-p} \frac{1}{t(t+p)^x} dt$, or $\frac{1}{t(t+p)^x} \sim \frac{1}{t^{x+1}}$ et $\forall x > 0, t \to \frac{1}{t^{x+1}}$ est intégrable au voisinage $+\infty$ est intégrable au voisinag
 - (c) $\int_{1}^{+\infty} \frac{1}{t(t+p)^{x}} dt = \int_{1}^{p+1} \frac{1}{t(t+p)^{x}} dt + \int_{p+1}^{+\infty} \frac{1}{t(t+p)^{x}} dt, \int_{1}^{p+1} \frac{1}{t(t+p)^{x}} dt \le \frac{1}{(p+1)^{x}} \int_{1}^{p+1} \frac{1}{t} dt = \frac{\log(p+1)}{(p+1)^{x}} \text{ et } \int_{p+1}^{+\infty} \frac{1}{t(t+p)^{x}} dt \le \int_{p+1}^{+\infty} \frac{1}{t^{x+1}} dt = \frac{1}{x} \frac{1}{(p+1)^{x}}. \text{ D'ou}$

$$\sum_{k=1}^{N-p} \frac{1}{k(k+p)^x} = \frac{1}{(p+1)^x} + \sum_{k=2}^{N-p} \frac{1}{k(k+p)^x} \le \frac{1}{(p+1)^x} + \frac{\log(p+1)}{(p+1)^x} + \frac{1}{x} \frac{1}{(p+1)^x} = \frac{1}{(p+1)^x} + \frac{1}{(p+1)^x} = \frac$$

$$(1+\frac{1}{x})\frac{1}{(p+1)^x} + \frac{\log(p+1)}{(p+1)^x}$$

(d) On a: $\frac{|a_p|}{(p+1)^x} \sim \frac{|a_p|}{p^x} \Rightarrow \sum_p \frac{a_p}{(p+1)^x}$ converge absolument . D'autre part soit $\sigma_a < x' < x$, $a_p \frac{\log(p+1)}{(p+1)^x} = \circ(\frac{a_p}{p^{x'}}) \Rightarrow \sum_p a_p \frac{\log(p+1)}{(p+1)^x}$ converge absolument par la suite $\sum_{n\geq 1} \frac{b_n}{n^x}$ converge absolument

6. On a: $\sum_{n\geq 1} \frac{b_n}{n^x}$ converge absolument donc $\sum_{n\geq 0} b_n F_n(x)$ converge absolument $\forall x\in D_a$, d'aprés Partie -IV-1-b)

$$\sum_{n=0}^{+\infty} b_n F_n(x) = \int_0^1 (1-t)^{x-1} (\sum_{n=0}^{+\infty} b_n t^n) dt = \int_0^1 (1-t)^{x-1} S(t) \log(1-t) dt$$

et d'aprés Partie -IV-3 on aurra $F'(x) = \sum_{n=0}^{+\infty} b_n F_n(x)$