

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2019

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 18 pages. *Hierdie nasienriglyne bestaan uit* 18 *bladsye*.

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

1.1.1	$x^2 + 5x - 6 = 0$	
	(x+6)(x-1)=0	✓factors
	x = -6 or $x = 1$	$\checkmark x = -6 \checkmark x = 1 \qquad (3)$
1.1.2	$4x^2 + 3x - 5 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{-3 \pm \sqrt{(3)^2 - 4(4)(-5)}}{2(4)}$	✓ substitution into the correct formula
	$x = \frac{-3 \pm \sqrt{89}}{8}$	
	x = -1.55 or $x = 0.8$	$\checkmark x = -1,55 \checkmark x = 0,8 (3)$
1.1.3	$4x^2 - 1 < 0$	
	(2x+1)(2x-1) < 0	✓factors
	$\frac{-1}{2} < x < \frac{1}{2}$ $+ \frac{1}{2} - \frac{1}{2} + \cdots$	✓ method ✓ answer (3)
1.1.4	$\left(\sqrt{\sqrt{32} + x}\right)\left(\sqrt{\sqrt{32} - x}\right) = x$	
	$\sqrt{32 - x^2} = x$	$\checkmark\sqrt{32-x^2}$
	$32 - x^2 = x^2$	\checkmark v ₃₂ -x \checkmark squaring both sides
	3z - x = x	squaring sour stats
	$-2x^2 = -32$	
	$x^2 = 16$	$\checkmark x^2 = 16$
	$x = \pm 4$	
	$\therefore x = 4$	$\checkmark x = 4 \text{ (selection)}$ (4)

1.2	y + x = 12	
1.2	y + x - 12 y = -x + 12(1)	\checkmark y subject of the formula
	, , ,	y subject of the formula
	xy = 14 - 3x(2)	
	Sub (1) into (2)	✓ substitution
	x(-x+12) = 14 - 3x	
	$-x^2 + 12x - 14 + 3x = 0$	
	$-x^2 + 15x - 14 = 0$	
	$x^2 - 15x + 14 = 0$	✓simplification
	(x-14)(x-1)=0	
	x = 14 or $x = 1$	✓ both values of x
	y = -2 or $y = 11$	✓ both values of y (5)
	OR/OF	OR/OF
	y + x = 12	
	x = -y + 12(1)	$\checkmark x$ subject of the formula
	xy = 14 - 3x(2)	* A subject of the formula
	Sub (1) into (2)	
	y(-y+12) = 14-3(-y+12)	✓substitution
	$12y - y^2 - 14 + 36 - 3y = 0$	✓simplification
	$-y^2 + 9y + 22 = 0$ $y^2 - 9y - 22 = 0$	
	(y+2)(y-11) = 0	
	y = -2 or $y = 11$	✓ both values of y
	x = 14 or $x = 1$	
1.3	3 6 9 12 15 18 21 24 27 30	✓ both values of x (5)
	$\begin{bmatrix} 3 & 3 & 3^2 & 3 & 3 & 3^2 & 3 & 3 & 3^3 & 3 \end{bmatrix}$	✓ identifying multiples of 3
		✓ten multiples of 3
	$\therefore k = 14$	✓ powers of 3
		✓ answer (4) [22]

2.1.1	209 ; 186	√ 209 √ 186	(2)
2.1.2	321 ; 290 ; 261 ; 234 1st diff -31 -29 -27		
	1st uy		
	2nd diff 2 2	\checkmark 2 nd diff = 2	
	2a = 2 3a + b = -31 a + b + c = 321 $a = 1 3(1) + b = -31 1 + (-34) + c = 321$ $b = -34 c = 354$	$\checkmark a = 1$ $\checkmark b = -34$ $\checkmark c = 354$	
	$T_n = n^2 - 34n + 354$		(4)
2.1.3	$n^2 - 34n + 354 = 74$	✓ equating T_n to 74	
	$n^2 - 34n + 280 = 0$	✓ standard form	
	(n-14)(n-20)=0		
	n = 14 or $n = 20$	√14 √ 20	(4)
2.1.4	$f^{\prime}(n)=0$		
	2n-34=0	$\checkmark 2n - 34 = 0$	
	2n = 34 $ n = 17$		
	Term 17 will have the smallest value	✓answer	(2)
	OR/OF	OR/OF	
	$n = \frac{-b}{2a}$		
	$n = \frac{34}{2}$		
	$n = \frac{n}{2}$ $n = 17$	✓substitution	
	Term 17 will have the smallest value	✓answer	(2)
	OR/OF	OR/OF	
	$n = \frac{14 + 20}{2} = 17$	✓substitution	
	Term 17 will have the smallest value	✓answer	(2)

2.2.1 $a = \frac{5}{8}$; $r = \frac{1}{2}$; $n = 21$ r	
$S_n = \frac{1-r}{1-r}$	
1 '	
$5\binom{1}{1}\binom{1}{2}$	
$\frac{1}{8} \left(\frac{1}{2} \right)$ substitution into the	
$S_{21} = \frac{\frac{5}{8} \left(1 - \left(\frac{1}{2} \right)^{21} \right)}{1 - \frac{1}{2}}$ substitution into the correct formula	
4	
= 1,2499	(2)
= 1,25 ✓ answer	(3)
2.2.2 $T > 5$	
$ T_n > \frac{5}{8192} $ substitution into the c	orrect
$ar^{n-1} > \frac{5}{8192}$ formula	offect
$\left \frac{5}{8} \left(\frac{1}{2} \right)^{n-1} > \frac{5}{8192} \right $	
$\left(\frac{1}{2}\right)^{n-1} > \frac{1}{1024}$	log
$\left(\frac{1}{2}\right)^{n-1} > \left(\frac{1}{2}\right)^{10} or 2^{-n+1} > 2^{-10}$	
$\therefore n-1 < 10 \qquad -n+1 > -10$	
$n < 11$ $n < 11$ \checkmark calculating n	
$\therefore n = 10 \qquad \qquad \therefore n = 10$	
▼ aliswei	
	(4)
OR/OF OR/OF	
8; 16; 32;; 8192	
$8.2^{n-1} < 8192$ substitution into the c	orrect
$2^{n-1} < 1024$ formula \checkmark method	
$2^{n-1} < 2^{10}$	
n-1 < 10	
$n < 11$ \checkmark calculating n	
$\therefore n = 10$ \checkmark answer	(4)
	\ · /
	[10]
	[19]

3.1	$\sum_{y=3}^{10} \frac{1}{y-2} - \sum_{y=3}^{10} \frac{1}{y-1}$	
	$= \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8}\right) - \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8} + \frac{1}{9}\right)$	$\checkmark \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8}\right)$
	$=1-\frac{1}{9}$	$\sqrt{\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8} + \frac{1}{9}\right)}$
	$=\frac{8}{9}$	✓answer (3)
3.2	$\left(\frac{1}{3} \times \frac{2}{3}\right) + \left(\frac{2}{3} \times \frac{2}{3}\right) + \left(1 \times \frac{2}{3}\right) + \dots + \left(4 \times \frac{2}{3}\right)$	
	$= \frac{2}{9} + \frac{4}{9} + \frac{2}{3} + \dots + \frac{8}{3}$	$\checkmark \checkmark a$
	$a = \frac{2}{9}$ and $d = \frac{2}{3} - \frac{4}{9} = \frac{2}{9}$	$\checkmark d$
	$S_n = \frac{n}{2} [2a + (n-1)d] \qquad \text{OR} S_n = \frac{n}{2} (a+l)$	
	$S_{12} = \frac{12}{2} \left[2 \left(\frac{2}{9} \right) + (12 - 1) \frac{2}{9} \right] \qquad S_{12} = \frac{12}{2} \left(\frac{2}{9} + \frac{8}{3} \right)$	✓ substitution into the correct formula
	$= \frac{52}{3} \mathrm{m}^2 \qquad \qquad = \frac{52}{3} \mathrm{m}^2$	✓ answer
	:. for both sides = $2 \times \frac{52}{3} = \frac{104}{3} = 34,67 \text{ m}^2$	✓ answer for both sides (6)
	OR/OF	OR/OF ✓✓ a
	$\frac{2}{9} \times (1+2+3+4+5+6+7+8+9+10+11+12) \times 2$	✓ ✓ (1 + + 12) ✓ ×2
	$= 34,67 \text{ m}^2$	✓ answer (6) OR/OF
	OR/OF	
	$I_1 = \frac{2}{9} \times 12 = \frac{8}{3}$ $l = \frac{2}{9} \times 1 = \frac{2}{9}$	$\checkmark \checkmark a$ $\checkmark T_1 = \frac{8}{3} \checkmark l = \frac{2}{9}$
	$2S_{12} = 2\left(\frac{12}{2}\right)\left(\frac{8}{3} + \frac{2}{9}\right)$	✓ substitution into correct formula
	$= 34,67 \text{ m}^2$	✓ answer (6)
		[9]

4.1	p = -1	$\checkmark p = -1 \tag{1}$
4.2	а	
	$y = \frac{a}{x - 1}$	
	a	✓ coordinates $D(0; -3)$
	$-3 = \frac{a}{0-1}$	✓ substitute $(0; -3)$
	a=3	
	$y = x^2 + bx - 3$	
	$0 = (1)^2 + (1)b - 3$	✓ substitute (1;0)
	b=2	(3)
4.3	$y = x^2 + 2x - 3$	(-)
	axis of sym: $x = \frac{-b}{2a}$	
		✓substitution
	$x = \frac{-2}{2(1)}$	$\checkmark x = -1$
	x=-1	\(\$\lambda\$ - 1
	$y = (-1)^2 + 2(-1) - 3 = -4$	✓substitution
	C(-1;-4)	$\checkmark y = -4 \tag{4}$
	(-1,-4)	
	OR/OF	OR/OF
		ONOF
	$\frac{dy}{dx} = 0$	
	2x + 2 = 0	✓ derivative
	x = -1	$\checkmark x = -1$
	$y = (-1)^2 + 2(-1) - 3 = -4$	✓substitution
	C(-1;-4)	
4.4		$\checkmark y = -4 \tag{4}$
4.4	$y \in [-4, \infty)$ or $y \ge -4$	
4.5	$m = \tan 45^\circ = 1$	` '
4.3	$m = \tan 45^{\circ} = 1$ $y = mx + c$	✓gradient
	-4 = (1)(-1) + c	\checkmark subs m and $(-1; -4)$
	c = -3	
	y = x - 3	✓ equation (3)
4.6	No, the line passes through C and D	✓ No
		✓ reason (2)
	OR/OF	OR/OF
		1 /
	No, a tangent through turning point C will have a	✓ No
	No, a tangent through turning point C will have a gradient of 0	✓ No ✓ reason (2)

4.7	f(m-x) = f[-(x-m)]		
	f is reflected in the y-axis and translated 1 unit to		
	the left and 4 units upwards.		
	Therefore: $m = -1$	\checkmark value of m	
	q = 4	✓ \checkmark value of q	(4)
	OR/OF	OR/OF	
	Substitute $x = 0$ and $q = 4$ for one x- intercept		
	$h(x) = (m-x)^2 + 2(m-x) - 3 + q$		
	$h(0) = (m-0)^2 + 2(m-0) - 3 + 4$		
	$0 = m^2 + 2m + 1$		
	$0 = (m+1)^2$		
	m = -1	\checkmark value of m	
	q=4	\checkmark value of m	(4)
		value of q	
			[19]

5.1	$f(x) = k^x$	
5.2	$16 = k^{4}$ $k = 2$ $f: $	✓ substitution $(4; 16)$ ✓ answer (2) ✓ $x = 2^{y}$ ✓ $y = \log_2 x$
5.3	y (16; 4) x	✓asymptote ✓shape ✓√for any two valid points eg.(16; 4) or (2; 1) or (4; 2) or (1; 0) (4)
5.4.1	$x \in (1; \infty)$ or $x > 1$	✓1 ✓ answer (2)
5.4.2	$0 < x \le \frac{1}{2} \text{or} x \in \left(0; \frac{1}{2}\right]$	$\checkmark \frac{1}{2}$ \checkmark answer (2)

	1
$2^x - 2^{-x} = \frac{15}{4}$	$\checkmark 2^x - 2^{-x} = \frac{15}{4}$
$2^{x} - \frac{1}{2^{x}} = \frac{15}{4}$	
$2^{2x} - 1 = \frac{15}{4} \times 2^{x}$	
$4 \\ 4.2^{2x} - 4 = 15 \times 2^{x}$	
$4.2^{2x} - 4 = 15 \times 2^{x}$ $4.2^{2x} - 15.2^{x} - 4 = 0$	✓ standard form
$(4.2^{x} + 1)(2^{x} - 4) = 0$ $4.2^{x} + 1 = 0 \text{ or } 2^{x} - 4 = 0$	√factors
	lactors
$2^x = \frac{-1}{4}$ or $2^x = 2^2$	✓answer
N/A $x=2$	(4)
OR/OF	OD/OF
	OR/OF
$2^{x} - 2^{-x} = \frac{15}{4}$	15
$2^{x} - \frac{1}{2^{x}} = \frac{15}{4}$	$2^x - 2^{-x} = \frac{15}{4}$
$2 - \frac{2^x}{2^x} - \frac{4}{4}$	
Let $k = 2^x$	
$k^2 - 1 = \frac{15}{4} \times k$	
$4.k^2 - 4 = 15 \times k$	
$4.k^2 - 15.k - 4 = 0$	✓ standard form
(4.k+1)(k-4) = 0	√factors
$k = \frac{-1}{4} \text{ or } k = 4$	
$k = \frac{-1}{4} \text{ or } k = 4$ $2^{x} = \frac{-1}{4} \text{ or } 2^{x} = 2^{2}$ $N/A \qquad x = 2$	
	✓answer
	(4)
	[16]

6.1	Kuda: $A = P(1+in)$	
0.1		✓ substitution into the
	$= 5\ 000(1+0.083\times4)$	correct formula
	= R6 660,00	correct formala
	Final Answer: R6 660,00 + R266,40	✓ final answer
	= R6 926,40	
	on to F	
	OR/OF	OR/OF
	Kuda: $A = P(1+in) \times 1,04$	✓ substitution into the
	$= 5000(1+0.083\times4)\times1.04$	correct formula
	= R6 926,40	✓ final answer
	Thabo: $A = P(1+i)^n$	
	= 0.081) ^{12×4}	(1 - 4 i 4 - 4 i i 4 - 4 l
	$=5\ 000\left(1+\frac{0.081}{12}\right)^{12\times4}$	✓ substitution into the correct formula
	= R6905,71	✓answer
		answer
	Kuda will have a better investment	✓ conclusion (5)
6.2.1	$P = \frac{x[1 - (1 + i)^{-n}]}{i}$	
		0,1
	$525000 = \frac{6000 \left[1 - \left(1 + \frac{0,1}{12}\right)^{-n}\right]}{\frac{0,1}{12}}$	$\checkmark \frac{0,1}{12}$
	$525000 = \phantom{00000000000000000000000000000000000$	
	$\frac{0,1}{12}$	✓ substitution into the
	$\frac{12}{35}$ (01) ⁻ⁿ	correct formula
	$\frac{35}{48} = 1 - \left(1 + \frac{0.1}{12}\right)^{-n}$	✓simplification
	$-n\log\left(1+\frac{0,1}{12}\right) = \log\frac{13}{48}$	✓use of logs
	$\log \frac{13}{48}$	
	$-n = \frac{\log \frac{13}{48}}{\log \left(1 + \frac{0,1}{12}\right)}$	
	n = 157,40	
	n = 158 payments	✓answer (5)
	OD/OF	OR/OF
	OR/OF	

	$P = \frac{x[1 - (1+i)^{-n}]}{i}$	
	$525\ 000 = \frac{i}{0.1}$ $\frac{6\ 000 \left[1 - \left(1 + \frac{0.1}{12}\right)^{-12n}\right]}{0.1}$	$\checkmark \frac{0,1}{12}$
	12	✓ substitution into the correct formula
	$\frac{35}{48} = 1 - \left(1 + \frac{0.1}{12}\right)^{-12n}$ $-12n\log\left(1 + \frac{0.1}{12}\right) = \log\frac{13}{48}$	✓ simplification ✓ use of logs
	$-12n = \frac{\log \frac{13}{48}}{\log \left(1 + \frac{0.1}{12}\right)}$	
	$n = \frac{\log \frac{13}{48}}{\log \left(1 + \frac{0.1}{12}\right)} \times \frac{1}{12}$	
	n = 13,11686841	
	Number of payments = $13,11686841 \times 12=157,40$	d'answan
	n = 158 payments	✓answer (5)
6.2.2	Difference: R6 000 – R5 066,36 = R933,64	✓ R933,64
	$F = \frac{x[(1+i)^n - 1]}{i}$	
	$F = \frac{933,64 \left[\left(1 + \frac{0,1}{12} \right)^{108} - 1 \right]}{\frac{0,1}{12}}$	✓ n = 108 ✓ substitution into the correct formula
	= R162503,51	✓ answer (4)
	OR/OF	OR/OF

$F = \frac{x[(1+i)^n - 1]}{i}$	
$F = \frac{6000 \left[\left(1 + \frac{0.1}{12} \right)^{108} - 1 \right]}{\frac{0.1}{12}}$ = R1 044 322,28	✓ n = 108 ✓ substitution into correct formula
$F = \frac{5\ 066,36\left[\left(1 + \frac{0,1}{12}\right)^{108} - 1\right]}{\frac{0,1}{12}}$ $F = R\ 881\ 818,77$	✓ substitution into correct formula
Amount available for withdrawal = R1 044 322,28 – R 881 818,77 = R162 503,51	✓ final answer (4)
OR/OF	OR/OF
Outstanding balance with monthly repayment of R5 066,35 $= 525000 \left(1 + \frac{0.1}{12}\right)^{108} - \frac{5 066,36 \left[\left(1 + \frac{0.1}{12}\right)^{108} - 1\right]}{\frac{0.1}{12}}$ $= R404 666, 23$	✓ n = 108 ✓ substitution into the correct formula
Outstanding balance with monthly repayment of R6 000 $= 525000 \left(1 + \frac{0.1}{12}\right)^{108} - \frac{6000 \left[\left(1 + \frac{0.1}{12}\right)^{108} - 1\right]}{\frac{0.1}{12}}$	✓ substitution into the correct formula
= R242 162,72 Amount available for withdrawal R404 666,23 – R242 162,72 = R162 512,18	✓ final answer (4)
	[14]

7.1	f(x) = 4 - 7x		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{4 - 7(x+h) - (4 - 7x)}{h}$ $= \lim_{h \to 0} \frac{h(-7)}{h}$	\checkmark 4-7(x+h) \checkmark substitution \checkmark simplification	
	= -7	✓answer	(4)
7.2	$y = 4x^8 + \sqrt{x^3}$		
	$=4x^8+x^{\frac{3}{2}}$	$\checkmark x^{\frac{3}{2}}$	
	$\frac{dy}{dx} = 32x^7 + \frac{3}{2}x^{\frac{1}{2}}$	$\checkmark 32x^{7}$ $\checkmark \frac{3}{2}x^{\frac{1}{2}}$	(3)
7.3.1	$y = ax^2 + a$		
	$\frac{dy}{dx} = 2ax + 0$		
	$\frac{dy}{dx} = 2ax$	✓ 2ax	(1)
7.3.2	$y = ax^2 + a$		
	$\frac{dy}{da} = x^2 + 1$	✓ ✓ answer	(2)

7.4	12	
7.4	Substitute (2; b) in $y = x + \frac{12}{x}$	
	"	
	$b = 2 + \frac{12}{2}$	
	b=8	✓ value of b
		value of b
	$m_{\text{tangent}} = \frac{dy}{dx}$	
	$\frac{dy}{dx} = 1 - \frac{12}{x^2}$	$\checkmark \frac{dy}{dx} = 1 - \frac{12}{x^2}$
		$\int \frac{dx}{dx} = 1 - \frac{1}{x^2}$
	$m_{\text{tangent}} = 1 - \frac{12}{2^2} = -2$	
	$m_{ m perp}=rac{1}{2}$	✓ gradient of perpendicular line
	Equation of perpendicular line:	
	$y-8=\frac{1}{2}(x-2)$ $8=\frac{1}{2}(2)+c$	
	$y-y_1 = m(x-x_1)$ OR $y = mx+c$ $y-8 = \frac{1}{2}(x-2)$ $8 = \frac{1}{2}(2)+c$ $y = \frac{1}{2}x+7$ $c = 7$	
	$y = \frac{1}{2}x + 7$	✓ equation (4)
	_	[14]
1		

8.1	36cm	✓answer (1)
8.2	$\therefore t = 6 \qquad (-2t^2 + 3t - 6) \text{ have no real roots}$ Insect reaches the floor only once.	✓✓✓ only once (3)
8.3	$h(t) = -2t^3 + 15t^2 - 24t + 36$	✓ expansion
	$h'(t) = -6t^2 + 30t - 24$	
	$-6t^2 + 30t - 24 = 0$	$\checkmark -6t^2 + 30t - 24 = 0$
	$t^2 - 5t + 4 = 0$	
	(t-4)(t-1) = 0	Z1 .1 1
	t=4 or $t=1$	✓both values
	Only $t = 4$ because maximum value required	
	$h = -2(4)^3 + 15(4)^2 - 24(4) + 36 = 52 cm$	✓answer (4)
		[8]

9.1	$f'(x) = 9x^2$	$\checkmark f'(x) = 9x^2$	
	$3x^3 = 9x^2$		
	$3x^3 - 9x^2 = 0$		
	$3x^2(x-3) = 0$	$\checkmark x = 0$	
	x = 0 or $x = 3$	$\checkmark x = 3 \tag{2}$	(3)
9.2.1	For f and f'	✓ answer	(1)
9.2.2	The point $(0;0)$ is: A point of inflection of f A turning point of f'	✓ f: inflection point ✓ f': turning point	(2)
9.3	f''(x) = 18x	$\checkmark f''(x) = 18x$	
	Distance = $f''(1) - f'(1)$		
	$=18(1)-9(1)^2$	✓substitution	
	= 9	✓answer	(3)
9.4	$3x^3 - 9x^2 < 0$	$\checkmark 3x^3 - 9x^2 < 0$	
	$3x^2(x-3) < 0$	✓ factors	
	but $3x^2 > 0$		
	0 3/		
	$\therefore x-3<0$	✓ x < 3	
	$\therefore x < 3 , x \neq 0$	$\checkmark x \neq 0$	(4)
			[13]

10.1	P(same day) = $\frac{4}{16}$ or $\frac{1}{4}$ or 0,25 or 25%	✓4 numerator ✓16 denominator	(2)
10.2	P(2 consecutive days) = $\frac{3 \times 2}{16} = \frac{3}{8}$	✓ 3 ✓ × 2 ✓ answer	(3)
			[5]

	OR/OF	OR/OF	
	Not possible because not enough space	v conclusion	(6)
	$110 \times 5 = 550 > 500$	✓ 110 ✓ conclusion	(6)
	$(5 \times 2 \times 5) + (5 \times 2 \times 6) = 110$	$\checkmark \checkmark 5 \times 2 \times 5$ $\checkmark \checkmark 5 \times 2 \times 6$	
	OR/OF	OR/OF	
	Not possible, because not enough space	✓ conclusion	(6)
	$110 \times 5 = 550 > 500$	√ 110	
		√5 × 1 × 5	
		$ \begin{array}{c} \checkmark 5 \times 1 \times 6 \\ \checkmark 5 \times 1 \times 6 \end{array} $	
11.2	$0.3 + 0.1 + 0.45 = 0.85$ $(5 \times 1 \times 5) + (5 \times 1 \times 6) + (5 \times 1 \times 6) + (5 \times 1 \times 5) = 110$	✓ answer $\checkmark 5 \times 1 \times 5$	(2)
	OR/OF From Venn diagram:	OR/OF ✓ substitution	
	= 0,85		(2)
	= 1 - 0.15	✓ 1 – 0,15 ✓ answer	
	P(A or not B) = 1 - P(only B)	√1_015	
	OR/OF	OR/OF	(-)
	= 0,85	✓answer	(2)
	=0,4+0,75-0,3	✓ substitution	
11.1.2	P(A or not B) = P(A) + P(not B) - P(A and not B)		
	0,45	√ 0,45	(3)
		\checkmark 0,15 and 0,3	
	0,3 (0,1) _{0,15}		
	B	0,1	
	$P(A) \times P(B)$ independent events = 0,40×0,25 = 0,1	✓ 0,1	

18 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

Not possible because not enough space	✓ conclusion (6)
$110 \times 5 = 550 > 500$	√ 110
$\therefore 120 - 10 = 110$	✓120-10
$5 \times 4 \times 6 = 120$ $5 \times 2 = 10$	$\checkmark 5 \times 2 = 10$
	✓ ✓ 5×4×6=120

TOTAL/TOTAAL: 150