Smart Kitchen Extractor Fan Controller

ESP8266 + Arduino IoT Cloud-Based Smart Extractor Control System

1. Project Objective

This project aims to automatically control a kitchen extractor fan at three different speed levels by monitoring gas, temperature, and humidity conditions in the kitchen. The system utilizes the Arduino IoT Cloud infrastructure for remote user access.

2. Hardware Used

- ESP8266 (NodeMCU v3)
- MQ135 Gas Sensor (for VOC detection)
- DHT11 Temperature and Humidity Sensor
- 3 Output Channels (for fan control)
- Lamp Output

3. Software and Algorithms

- Fuzzy Logic:
- - Inputs: Average temperature, humidity, and VOC ppm value
- Output: Fan speed level (0-1-2-3)
- Watchdog Timer: Safety measure against system freezes
- MQTT Protocol: For data communication with Arduino IoT Cloud

4. IoT Features

- MQTT-based connection with Arduino IoT Cloud
- Manual mode: Fan speed and lamp control
- Automatic mode: Smart fan control updated every minute
- Mobile and web access supported

•

5. System Working Principle

- 1. Sensors collect data every 3 seconds.
- 2. Data arrays of 20 measurements are created.
- 3. Average values are calculated.
- 4. Fan level is determined via fuzzy logic engine.
- 5. Watchdog is reset to ensure system liveliness.

6. Skills Learned / Developed

- Using the MQTT protocol and Arduino IoT Cloud
- Developing and implementing Fuzzy Logic algorithms in real-time
- Task scheduling and watchdog integration using C
- IoT system design, security, and user interfaces

7. Example Serial Output

```
T: 28.90 C | H: 33.00 % | PPM: 50.56
T: 28.90 C | H: 34.00 % | PPM: 50.56
T: 28.90 C | H: 34.00 % | PPM: 50.56
T: 28.90 C | H: 34.00 % | PPM: 50.56
T: 28.90 C | H: 34.00 % | PPM: 124.18
Otomatik mod: Aktif
Avg T: 28.90 | Avg H: 34.00 | Avg P: 94.73 → Fan Speed: 0
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 50.56
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 29.00 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 50.56
T: 28.90 C | H: 33.00 % | PPM: 50.56
T: 28.90 C | H: 33.00 % | PPM: 50.56
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
Avg T: 28.90 | Avg H: 33.00 | Avg P: 109.46 → Fan Speed: 0
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
T: 28.90 C | H: 33.00 % | PPM: 124.18
```

8. Source Code Sharing

https://drive.google.com/drive/folders/1wCmbf9hQZ8wpyRUn-GYRqEHd80sfGlf6?usp=sharing