Número:_____

1.	[1,5 valores] - Considere o seguinte excerto de um programa escrito em assembly e a executar numa máquina com cache:									
	ciclo	ciclo: movl 0(%ebx), %edx movl \$10, 0(%ebx) addl \$4, %ebx cmpl \$0, %edx jnz ciclo Considere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) com os								
	seguintes valores: {-10, 30, 1024, -33, 0}. Note que o ciclo termina quando o valor lido do array for 0. A frequência do relógio é de 2 GHz, o CPI _{CPU} é 2, a <i>miss rate</i> de instruções é de 3% e a de dados de 5%. Sabendo que o tempo de execução deste programa é de 150 ns, qual é a <i>miss penalty</i> (expressa em tempo)?									
			$mp_T = 150 \text{ ns}$			$mp_T = 50 \text{ ns}$				
			$mp_T = 200 \text{ ns}$			$mp_T = 100 \text{ ns}$				
2.	[1,5 valores] - Complete a afirmação abaixo : "A técnica de <i>pipelining,</i> relativamente a uma arquitectura sequencial de ciclo único, acelera o desempenho de um processador pois resulta numa diminuição do CPI, uma vez que mais do que uma instrução se encontra em execução em cada ciclo." resulta numa diminuição do número de instruções executadas, uma vez que									
	algumas instruções são internamente transformadas em NOPS" resulta numa diminuição do período do relógio, uma vez que este deve ser apenas tão longo quanto o estágio mais demorado do pipeline." resulta num aumento da frequência devido a ciclos de stalling causados por dependências de dados e/ou controlo." [1,5 valores] - Complete a afirmação abaixo:									
3.										
٥.	"O programa for (i=0; i <n; *="" 2;<="" a[i]="b[100*i]" i++)="" th=""></n;>									
	permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a i."									
		permite explorar a hierarquia de memória pois exibe localidade espacial								
		permite explorar a hierarquia de memória pois exibe localidade temporal nos acessos a a []."								
		permite explorar a hierarquia de memória pois exibe localidade espacial								

Nome: _____

Número:_____

LEI/	MIEI			1º teste					
4.	[1,5 valores] - Quantos <i>bits</i> tem a <i>tag</i> de uma hierarquia de memória (S=1024, E=8, B=128, m=32)?								
		<i>t</i> = 15		t= 17					
		<i>t</i> = 10		t=12					
5.	. [2.0 valores] A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços (m=4) de acesso à memória gerados por um determinado programa. As 3 colunas seguintes referem-se a um modo de mapeamento numa cache que usa o algoritmo de substituição LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão ou de um hit. Considere a cache inicialmente fria.								
	Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão					
	1								
	13								
	0								
	6								
	8								
6. [2.0 valores] O excerto de código abaixo calcula a soma de todos os elementos de uma matriz de inteiros. A matriz tem ALTURA * LARGURA elementos. for (col=0 ; col <largura (lin="0" +="matriz[lin*LARGURA+col];" ;="" <="" a="" altura="" col++)="" da="" de="" eficaz="" explorar="" for="" forma="" hierarquia="" justificando="" lin="" lin++)="" mais="" memória,="" o="" para="" possível="" programa="" que="" reescreva="" resposta.<="" seja="" soma="" sua="" td="" {="" }=""></largura>									

Nome: _____