This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International Patent Classification: C12N 15/12, A61K 38/18, C07K 14/52	A1	1 ()	ational Publication Number: ational Publication Date:	30 November 2000 (30.11.2000)
(21)	International Application Number:	PCT	/US00/13536	Published	
(22)	International Filing Date: 18 May	2000	(18.05.2000)		
(30)	Priority Data: 60/135,312 20 May 1999 (20.05.1999) US				
(60)	Parent Application or Grant SCIOS INC. [/]; (). POLLITT, N., Stephen (). ABRAHAM, Judith, A. [/]; (). POLLIT (). ABRAHAM, Judith, A. [/]; (). ALTMAN	T, N.,			

(54) Title: VASCULAR ENDOTHELIAL GROWTH FACTOR VARIANTS

(54) Titre: VARIANTS DU FACTEUR DE CROISSANCE ENDOTHELIALE

(57) Abstract

The invention is directed to a method of enhancing the biological activity of vascular endothelial growth factors (VEGF). The invention further concerns certain VEGF variants having enhanced biological activity, methods and means for preparing these variants, and pharmaceutical compositions comprising them. In a further aspect, the invention concerns methods of treatment using, and articles of manufacture containing such VEGF variants.

(57) Abrégé

L'invention se rapporte à une méthode visant à accroître l'activité biologique des facteurs de croissance endothéliale. Elle se rapporte notamment à certains variants des VEGF qui présentent une activité biologique accrue, à des méthodes et unités de préparation ces variants et à des compositions pharmaceutiques contenant ces variants. Dans une autre réalisation, l'invention se rapporte à des méthodes de traitement mettant en oeuvre ces variants et à des produits manufacturés les contenant.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 November 2000 (30.11.2000)

(10) International Publication Number WO 00/71713 A1

(51) International Patent Classification7: C07K 14/52, A61K 38/18

- (21) International Application Number: PCT/US00/13536
- (22) International Filing Date: 18 May 2000 (18.05.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/135,312

20 May 1999 (20.05.1999) US

- (71) Applicant (for all designated States except US): SCIOS INC. [US/US]; 820 West Maude Avenue, Sunnyvale, CA 94086 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): POLLITT, N., Stephen [US/US]; 1037 Campbell Avenue, Los Altos, CA 94024 (US). ABRAHAM, Judith, A. [US/US]; 4901 Country Lane, San Jose, CA 95129 (US).
- (74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson And Bear, LLP, 16th Floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).

- C12N 15/12, (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM. TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
 - (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPl patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidunce Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VASCULAR ENDOTHELIAL GROWTH FACTOR VARIANTS

(57) Abstract: The invention is directed to a method of enhancing the biological activity of vascular endothelial growth factors (VEGF). The invention further concerns certain VEGF variants having enhanced biological activity, methods and means for preparing these variants, and pharmaceutical compositions comprising them. In a further aspect, the invention concerns methods of treatment using, and articles of manufacture containing such VEGF variants.

Description

VASCULAR ENDOTHELIAL GROWTH FACTOR VARIANTS

BACKGROUND OF THE INVENTION

I. Field of the Invention

This invention is directed to a method of enhancing the biological activity of vascular endothelial growth factors (VEGF). The invention further concerns certain VEGF variants having enhanced biological activity. The invention also concerns methods and means for preparing these variants, and pharmaceutical compositions comprising them. The invention further concerns methods of treatment using, and articles of manufacture containing such VEGF variants.

II. Description of Background and Related Art

Vascular endothelial growth factor (VEGF), also referred to as vascular permeability factor (VPF), is a secreted protein generally occurring as a homodimer and having multiple biological functions. The native human VEGF monomer occurs as one of five known isoforms, consisting of 121, 145, 165, 189, and 206 amino acid residues in length after removal of the signal peptide. The corresponding homodimer isoforms are generally referred to as hVEGF₁₂₁, hVEGF₁₄₅, hVEGF₁₄₅, hVEGF₁₄₅, and hVEGF₂₀₆, respectively. The known isoforms are generated by alternative splicing of the RNA encoded by a single human VEGF gene that is organized in eight exons, separated by seven introns, and has been assigned to chromosome 6p21.3 (Vincenti *et al.*, <u>Circulation 93</u>:1493-1495 (1996)). A schematic representation of the various forms of VEGF generated by alternative splicing of VEGF mRNA is shown in Figure 1, where the protein sequences encoded by each of the eight exons of the VEGF gene are represented by numbered boxes. VEGF₁₆₅ lacks the residues encoded by exon 6, while VEGF₁₂₁ lacks the residues encoded by exons 6 and 7. With the exception of hVEGF₁₂₁, all VEGF isoforms bind heparin. The lack of a heparin-binding region in hVEGF₁₂₁ is believed to have a profound effect on its biochemical properties. In addition, proteolytic cleavage of hVEGF produces a 110-amino acid species (hVEGF₁₁₀).

hVEGF₁₂₁ and hVEGF₁₆₅ are the most abundant of the five known isoforms. They both bind to the receptors KDR/Flk-1 and Flt-1 but hVEGF₁₆₅ additionally binds to a more recently discovered receptor (VEGF₁₆₅R) (Soker *et al.*, <u>J. Biol. Chem. 271</u>:5761-5767 [1996]). VEGF₁₆₅R has been recently cloned by Soker *et al.*, and shown to be equivalent to a previously defined protein known as neuropilin-1 (Cell 92:735-745 [1998]). The binding of hVEGF₁₆₅ to the latter receptor is mediated by the exon-7 encoded domain, which is not present in hVEGF₁₂₁.

VEGF is a potent mitogen for micro- and macrovascular endothelial cells derived from arteries, veins, and lymphatics, but shows significant mitogenic activity for virtually no other normal cell types. The denomination of VEGF reflects this narrow target cell specificity. VEGF has been shown to promote angiogenesis in various in vivo models, including, for example, the chick chorioallantoic membrane (Leung et al., Science 246:1306-1309 [1989]; Plouet et al., EMBO J 8:3801-3806 [1989]); the rabbit comes (Phillips et al., In Vivo 8:981-965 [1995]); the primate tris (Tolentino et al., Arch Opthalmol 114:964-970 [1996]); and the rabbit bone (Connolly et al., J. Clin. Invest.

84:1470-1478 [1989]). As a result of its pivotal role in angiogenesis (spouting of new blood vessels) and vascular remodeling (enlargement of preexisting vessels), VEGF is a promising candidate for the treatment of coronary artery disease and peripheral vascular disease. High levels of VEGF are expressed in various types of tumors in response to tumor-induced hypoxia (Ovorak et al., J. Exp. Med. 174:1275-1278 [1991]; Plate et al., Nature 359:845-848 [1992]), and tumor growth has been inhibited by anti-VEGF antibodies and soluble VEGF receptors (Kim et al., Nature 362:841-844 [1993]; Kendall and Thomas, PNAS USA 90:10705-10709 [1993]).

The biologically active form of hVEGF₁₂₁ is a homodimer (in which the two chains are oriented anti-parallel) containing one N-linked glycosylation site per monomer chain at amino acid position 75 (Asn-75), which corresponds to a similar glycosylation site at position 75 of hVEGF₁₆₅. If the N-linked glycosylation structures are removed, the biologically active molecule has a molecular weight of about 28 kDa with a calculated pl of 6.1. Each monomer chain in the hVEGF₁₂₁ homodimer has a total of nine cysteines, of which six are involved in the formation of three intra-chain disulfides stabilizing the monomeric structure, two are involved in two inter-chain disulfide bonds stabilizing the dimeric structure, while until recently one cysteine (Cys-116) has been believed to remain unpaired. Recently, a Cys(116)-Cys(116) inter-chain disulfide bond has been reported in *E. coli* derived recombinant hVEGF₁₂₁ (Keck *et al.*, Arch. Biochem. Biophys. 344:103-113 [1997]), and there are data indicating that VEGF₁₂₁, as produced in nature, also occurs in the form of homodimers that have the cysteines at positions 116 disulfide-bonded with each other. EP 0 484 401 describes the substitution of one or more cysteine residues, including Cys-116, within the native VEGF molecule by another emino acid, to render the molecule more stable.

SUMMARY OF THE INVENTION

The present invention concerns methods and means for enhancing the biological activity of vascular endothelial growth factor (VEGF), new VEGF variants with enhanced biological activity, and various uses of such new variants.

In a specific aspect, the invention concerns a method of enhancing the biological activity of a VEGF originally having a cysteine (C) residue at a position corresponding to amino acid position 116 of the 121 amino acids long native mature human VEGF (hVEGF₁₂₁) by removing such cysteine (C) residue to produce a VEGF variant. The variant preferably comprises a glycosylation site at a position corresponding to amino acid positions 75-77 of hVEGF₁₂₁, which is altered or removed, preferably by amino acid substitution within the glycosylation site to which the glycosylation would normally attach, so that glycosylation can no longer occur.

In another aspect, the invention concerns a variant of a native VEGF that originally has a cysteine (C) residue at amino acid position 116 and a glycosylation site at amino acid positions 75-77, comprising the substitution of said cysteine (C) by another amino acid and having the glycosylation site altered or removed, wherein the amino acid numbering follows the numbering of the 121 amino acids long native human VEGF (hVEGF₁₂₁), and wherein the variant has enhanced biological activity compared to hVEGF₁₂₁. The invention also concerns nucleic acid encoding such VEGF

5

variants, a vector comprising the nucleic acid, cells transformed with such vector, and method for making the novel VEGE variants.

10

In yet another aspect, the invention concerns a composition comprising a VEGF variant having a cysteine (C) residue at amino acid position 116 substituted by another amino acid, and a glycosylation site at amino acid positions 75-77 altered or removed, wherein the amino acid numbering follows the numbering of the 121 amino acids long native human VEGF (hVEGF₁₂₁).

15

In a further aspect, the invention concerns a method of inducing angiogenesis and/or vascular remodeling by administering to a patient in need a VEGF variant having a cysteine (C) residue at amino acid position 116 substituted by another amino acid, and a glycosylation site at amino acid positions 75-77 altered or removed, wherein the amino acid numbering follows the numbering of the 121 amino acids long native human VEGF (hVEGF₁₂₁). In a particular embodiment, this method concerns the treatment of coronary artery disease or peripheral vascular disease.

20

In a still further aspect, the invention concerns a method for the pravention or repair of injury to blood vassels by administering an effective amount of a VEGF variant having a cysteine (C) residue at amino acid position 116 substituted by another amino acid, and a glycosylation site at amino acid positions 75-77 altered or removed, wherein the amino acid numbering follows the numbering of the 121 amino acids long native human VEGF (hVEGF₁₂₁). In a particular embodiment, the injury is associated with microvascular angiopathy, such as thrombotic microangiopathy (TMA). In a further embodiment, the invention concerns the treatment of microvascular angiopathy, e.g. TMA of the kidney, heart, or lungs. In a particularly preferred embodiment, the invention concerns the prevention or repair of injury to blood vessels in association with hemolytic uremic syndrome (HUS), including thrombotic

25

thrombocytopenic purpura (TTP).

30

In another aspect, the invention concerns a method for the treatment of essential hypertension by administering an effective amount of a VEGF variant having a cysteine (C) residue at amino acid position 116 substituted by another amino acid, and a glycosylation site at amino acid positions 75-77 removed, wherein the amino acid numbering follows the numbering of the 121 amino acids long native human VEGF (hVEGF₂₂₎).

35

25

35

In a different aspect, the invention concerns an article of manufacture comprising a VEGF variant as hereinbefore defined, a container, and a label or package insert with instructions for administration.

40

In all embodiments, the VEGF variant preferably is N750,C116S hVEGF₁₂₁.

40

BRIEF DESCRIPTION OF THE DRAWINGS

45

Figure 1 is a schematic representation of the various forms of VEGF that can be encoded by alternative splicing of VEGF mRNA. The protein sequences encoded by each of the eight exons of the VEGF gene are represented by numbered boxes. The sequences encoded by exons 6 and 7 are rich in basic amino acid residues and confer the ability to interact with heparin and heparin-like molecules. Asterisks indicate N-linked glycosylation sites. Exon 1 and the first part of exon 2 (depicted by a narrower bar) encode the secretion signal sequence for the protein.

50

Figure 2 shows a nucleotide sequence encoding native human VEGF₁₂₁ (SEQ ID NO: 1).

Figure 3 shows the amino acid sequence of native human VEGF₁₂₁ (SEQ ID NO: 2). 5 Figure 4 shows a nucleotide sequence encoding native human VEGF145 (SEQ ID NO: 3). Figure 5 shows the amino acid sequence of native human VEGF₁₄₅ (SEQ ID NO: 4). Figure 6 shows a nucleotide sequence encoding native human VEGF₁₆₆ (SEQ ID NO: 5). 10 Figure 7 shows the emino acid sequence of native human VEGF₁₆₅ (SEQ ID NO: 6). Figure 8 shows a nucleotide sequence encoding native human VEGF₁₆₅ (SEQ ID NO: 7). Figure 9 shows the amino acid sequence of native human VEGF₁₈₉ (SEQ ID NO: 8). Figure 10 shows a nucleotide sequence of native human VEGF₂₀₅ (SEQ ID NO: 9). 15 Figure 11 shows the amino acid sequence of native human VEGF₂₀₆ (SEO ID NO: 10). Figure 12 shows the amino acid sequence of native human VEGF₁₁₀ (SEO ID NO: 11). 10 Figures 13 and 14 show the results from two separate tests in the HUVEC proliferation assay. The graphs depict the amount of DNA synthesis that was stimulated in response to serial dilutions of Pichia-derived N75QVEGF₁₂₁ 20 vs. N75QC116SVEGF₁₂₁. The X axis of each graph represents the final concentration of added growth factor in the assay wells, expressed as ng/ml. The y axis represents the optical density recorded in each well after use of the BrdU kit (Boehringer Mannheim) to detect incorporated bromodeoxyuridine at the end of the assay. Figure 15 shows the structure of expression plasmid pAN93. 25 Figure 16 shows the structure of expression plasmid pAN102. Figure 17 shows the structure of expression plasmid pAN104. **DETAILED DESCRIPTION OF THE INVENTION** 30 20 1. **Definitions** The term "vascular endothelial growth factor" or "VEGF" as used herein refers to any naturally occurring (native) forms of a VEGF polypeptide (also known as "vascular permeability factor" or "VPF") from any animal species, 35 including humans and other mammalian species, such as murine, rat, bovine, equine, porcine, ovine, canine, or feline, and functional derivatives thereof. "Native human VEGF" consists of two polypeptide chains generally occurring as

The term "vascular endothelial growth factor" or "VEGF" as used herein refers to any naturally occurring (native) forms of a VEGF polypeptide (also known as "vascular permeability factor" or "VPF") from any animal species, including humans and other mammalian species, such as murine, rat, bovine, equine, porcine, ovine, canine, or feline, and functional derivatives thereof. "Native human VEGF" consists of two polypeptide chains generally occurring as homodimers. Each monomer occurs as one of five known isoforms, consisting of 121, 145, 165, 189, and 206 amino acid residues in length. The homodimers produced from these isoforms will be hereinafter referred to as hVEGF₁₂₁, hVEGF₁₆₅, hVEGF₁₆₅, hVEGF₁₆₅, and hVEGF₂₀₆, respectively. Similarly to the human VEGF, "native murine VEGF" and "native bovine VEGF" are also known to exist in several isoforms, usually occurring as homodimers, with the monomer subunits extending 120, 164, and 188 amino acids in length. With the exception of hVEGF₁₂₁, all native human VEGF polypeptides are basic, haparin-binding molecules. hVEGF₁₂₁ is a weakly acidic polypeptide that does not bind to heparin. The term "VEGF" specifically includes VEGF-B, VEGF-C (also known as VRP), and VEGF-D (also known as zveg12), all of which contain a cysteine corresponding to Cys116 of VEGF₁₂₁ (see, for example, Achen *et al.*, <u>Proc. Natl. Acad. Sci.</u>, 95:548-553 (1998), Figure 1; and PCT Publication No. WO 98/24811). These and similar native forms, whether known or hereinafter discovered are all included in the definition of "native VEGF" or "native sequence

4

55

45

5

10

15

20

25

30

20

35

40

45

50

VEGF", regardless of their mode of preparation, whether isolated from nature, synthesized, produced by methods of recombinant DNA technology, or any combination of these and other techniques. The term "vascular endothelial growth factor" or "VEGF" includes VEGF polypeptides in monomeric, homodimeric and heterodimeric forms. The definition of "VEGF" also includes a 110 amino acids long human VEGF species (hVEGF₁₁₀), and its homologues in other mammalian species, such as murine, rat, bovine, equine, porcine, ovine, canine, or feline, and functional derivatives thereof. In addition, the term "VEGF" covers chimeric, dimeric proteins, in which a portion of the primary amino acid structure corresponds to a portion of either the A-chain subunit or the B-chain subunit of platelet-derived growth factor, and a portion of the primary amino acid structure corresponds to a portion of vascular endothelial growth factor. In a particular embodiment, a chimeric molecule is provided consisting of one chain comprising at least a portion of the A- or B-chain subunit of a platelet-derived growth factor, disulfide linked to a second chain comprising at least a portion of a VEGF molecule. More details of such dimers are provided, for example, in U.S. Patent Nos. 5,194,596 and 5,219,739 and in European Patent EP-B O 484 401, the disclosures of which are hereby expressly incorporated by reference. The nucleotide and amino acid sequences of hVEGF₁₂₁ and bovine VEGF₁₂₀ are disclosed, for example, in U.S. Patent Nos. 5,194,596 and 5,219,739, and in EP 0 484 401. hVEGF₁₄₅ is described in PCT Publication No. WO 98/10071; hVEGF $_{166}$ is described in U.S. Patent No. 5,332,671; hVEGF $_{169}$ is described in U.S. Patent No. 5.240,848; and hVEGF₂₀₆ is described in Houck at al. Mol. Endocrinol. 5:1806-1814 (1991). For the disclosure of the nucleotide and amino acid sequences of various human VEGF isoforms see also Leung at al., Science 246:1306-1309 (1989); Keck et al., Science 246:1309-1312 (1989); Tisher et al., J. Biol. Chem. 266:11947-11954 (1991); EP 0 370 989; and PCT publication WO 98/10071. Forms of VEGF are shown schematically in Figure 1. Figures 2-12 (SEQ ID NOs: 1-11) show the nucleotide and amino acid sequences of various VEGF species.

A "functional derivative" of a native polypeptide is a compound having a qualitative biological activity in common with the native polypeptide. A functional derivative of a VEGF is a compound that has a qualitative biological activity in common with a native sequence (human or non-human) VEGF molecule as hereinabove defined. "Functional derivatives" include, but are not limited to, fragments of native polypeptides from any animal species (including humans), and derivatives of native (human and non-human) polypeptides and their fragments, provided that they have a biological activity in common with a corresponding native polypeptide. "Fragments" comprise regions within the sequence of a mature native VEGF polypeptide.

The term "derivative" is used to define amino acid sequence and glycosylation variants, and covalent modifications of a native polypeptide, whereas the term "variant" refers to amino acid sequence and glycosylation variants within this definition.

In general, the term "amino acid sequence variant" refers to molecules with some differences in their amino acid sequences as compared to a reference (e.g. native sequence) polypeptide. The amino acid alterations may be substitutions, insertions, deletions or any desired combinations of such changes in a native amino acid sequence.

Substitutional variants are those that have at least one amino acid residue in a native sequence removed and a different amino acid inserted in its place at the same position. The substitutions may be single, where only one

PCT/US00/13536

WO 00/71713

10

20

5

10

15

20

25

30

35

40

45

50

amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.

Insertional variants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in a native amino acid sequence. Immediately adjacent to an amino acid means connected to either the α -carboxy or α -amino functional group of the amino acid.

Deletional variants are those with one or more amino acids in the native amino acid sequence removed.

Ordinarily, deletional variants will have one or two amino acids deleted in a particular region of the molecule.

In addition to the alterations at amino acid positions 116 and/or 75, the VEGF variants of the present invention may contain further amino acid alterations, including substitutions and/or insertions and/or deletions in any other region of the VEGF molecule, including the N- and C-terminal regions. The amino acid sequence variants of the present invention show at least about 75%, more preferably at least about 85%, even more preferably at least about 90%, most preferably at least about 95% amino acid sequence identity with a native sequence VEGF polypeptide.

"Sequence identity", is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in a native polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. The % sequence identity values are generated by the NCBI BLAST2.0 software as defined by Altschul et al., (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", <u>Nucleic Acids Res.</u>, 25:3389-3402. The parameters are set to default values, with the exception of the Penalty for mismatch, which is set to -1.

The term "glycosylation variant" is used to refer to a polypeptide having a glycosylation profile different from that of a corresponding native polypeptide. Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side of an asparagine residue. The tripeptide sequences, asparagine-X-serine and asparagine-X-threonine, wherein X is any amino acid except proline, are recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be involved in O-linked glycosylation. Any difference in the location end/or nature of the carbohydrate moieties present in a variant or fragment as compared to its native counterpart is within the scope herein.

The glycosylation pattern of native polypeptides can be determined by well known techniques of analytical chemistry, including HPAE chromatography (Hardy, M. R. *et al.*, <u>Anal. Biochem.</u> 179:54-62 [1988]), methylation analysis to determine glycosyl-linkage composition (Lindberg, B., <u>Meth. Enzymol.</u> 28:178-195 [1972]; Weeghe, T. J. et al., <u>Carbohydr. Res.</u> 123:281-304 [1983]), NMR spectroscopy, mass spectrometry, etc.

"Covalent derivatives" include modifications of a native polypeptide or a fragment thereof with an organic proteinaceous or non-proteinaceous derivatizing agent, and post-translational modifications. Covalent modifications are traditionally introduced by reacting targeted amino acid residues with an organic derivatizing agent that is capable

of reacting with selected sides or terminal residues, or by harnessing mechanisms of post-translational modifications that function in selected recombinant host cells. Certain post-translational modifications are the result of the action of recombinant host cells on the expressed polypeptide. Glutaminyl and asparaginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues may be present in the trk receptor polypeptides of the present invention. Other post-translational modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, tyrosine or threonyl residues, methylation of the .alpha.-amino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, pp. 79-86 [1983]).

which contributes to or promotes transcription.

The term "glycosylation site" is used to refer to an N-linked glycosylation that requires a tripeptidyl sequence of the formula Asp-X-Ser or Asp-X-Thr, wherein X is any amino acid other than proline (Pro), which prevents glycosylation.

The terms "biological activity" and "activity" in connection with the VEGF variants of the present invention mean mitogenic activity as determined in any *in vitro* assay of endothelial cell proliferation. Activity is preferably determined in a human umbilical vein endothelial (HUVE) cell-based assay, as described, for example, in any of the following publications: Gospodarowicz *et al.*, <u>PNAS USA 86</u>, 7311-7315 (1989); Ferrara and Henzel, <u>Biochem. Biophys. Res. Comm. 161</u>:851-858 (1989); Conn *et al.*, <u>PNAS USA 87</u>:1323-1327 (1990); Soker *et al.*, <u>Cell 92</u>:735-745 (1998); Waltenberger *et al.*, <u>J. Biol. Chem. 269</u>:26988-26995 (1994); Siemeister *et al.*, <u>Biochem. Biophys. Res. Comm. 222</u>:249-255 (1996); Fiebich *et al.*, <u>Eur. J. Biochem. 211</u>:19-26 (1993); Cohen *et al.*, <u>Growth Factors 7</u>:131-138 (1993). A particular HUVE cell (HUVEC) assay is described in the examples below.

The terms "vector", "polynucleotide vector", "construct" and "polynucleotide construct" are used interchangeably herein. A polynucleotide vector of this invention may be in any of several forms, including, but not limited to, RNA, DNA, RNA encapsulated in a retroviral coat, DNA encapsulated in an adenovirus coat, DNA packaged in another viral or viral-like form (such as herpes simplex, and adeno-associated virus (AAV)), DNA encapsulated in liposomes, DNA complexed with polylysine, complexed with synthetic polycationic molecules, conjugated with transferrin, complexed with compounds such as polyethylene glycol (PEG) to immunologically "mask" the molecule and/or increase half-life, or conjugated to a non-viral protein. Preferably, the polynucleotide is DNA. As used herein, "DNA" includes not only bases A, T, C, and G, but also includes any of their analogs or modified forms of these bases, such as methylated nucleotides, internucleotide modifications such as uncharged linkages and thioates, use of sugar analogs, and modified and/or alternative backbone structures, such as polyamides.

"Under transcriptional control" is a term well-understood in the art and indicates that transcription of a polynucleotide sequence, usually a DNA sequence, depends on its being operably (operatively) linked to an elament

A "host cell" includes an individual cell or cell culture which can be or has been a recipient of any vector of this invention. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely

5

identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. A host cell includes cells transfected or infected in vivo with a vector comprising a polynucleotide encoding an angiogenic factor.

10

5

15

25

30

treatment.

An "individual" is a vertebrate, preferably a mammal, more preferably a human.

"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, etc. Preferably, the mammal is human.

15

An "effective amount" is an amount sufficient to effect beneficial or desired clinical results. An effective amount can be administered in one or more administrations. For purposes of this invention, an effective amount of a VEGF variant is an amount that is sufficient to palliate, ameliorate, stabilize, reverse, slow or delay the progression of the disease state. In a preferred embodiment of the invention, the "effective amount" is defined as an amount capable of stimulating the growth and/or remodeling of collateral blood vessels. In another preferred embodiment, the "effective amount" is defined as an amount capable of preventing, reducing or reversing endothelial cell injury or injury to the surrounding tissues.

20

"Repair" of injury includes complete and partial repair, such as reduction of the injury that has already

25

occurred, or partial reinstatement of the functionality of a tissue of organ.

of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms,

30

diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment "Treatment" refers to both therapeutic treatment and prophylactic or preventative measures.

As used herein, "treatment" is an approach for obtaining beneficial or desired clinical results. For purposes

35

Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented. "Palliating" a disease means that the extent and/or undesirable clinical manifestations of a disease state are lessened and/or the time course of the progression is slowed or lengthened, as compared to a situation without

Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

40

"Angiogenesis" is defined the promotion of the growth of new blood capillary vessels from existing endothelium, while "therapeutic angiogenesis" is defined as the promotion of the growth or new blood vessels and/or demodeling of old blood vessels, for example, to increase blood supply to an ischemic region.

45

50

5

10

15

20

25

30

35

40

45

30

50

The term "peripheral arterial disease" also known as "peripheral vascular disease", is defined as the narrowing or obstruction of the blood vessels supplying the extremities. It is a common manifestation of atherosclerosis, and most often affects the blood vessels of the leg. Two major types of peripheral arterial disease are intermittent claudication, in which the blood supply to one or more limbs has been reduced to the point where exercise cannot be sustained without the rapid development of cramping pain; and critical leg ischemia, in which the blood supply is no longer sufficient to completely support the metabolic needs of even the resting limb.

"Coronary artery disease" is defined as the narrowing or obstruction of one or more of the arteries that supply blood to the muscle tissue of the heart. This disease is also a common manifestation of atherosclerosis.

The term "microvascular angiopathy" is used to describe acute injuries to smaller blood vessels and subsequent dysfunction of the tissue in which the injured blood vessels are located. Microvascular angiopathies are a common feature of the pathology of a variety of diseases of various organs, such as kidney, heart, and lungs. The injury is often associated with endothelial cell injury or death and the presence of products of coaquiation or thrombosis. The agent of injury may, for example, be a toxin, an immune factor, an infectious agent, a metabolic or physiological stress, or a component of the humoral or cellular immune system, or may be as of yet unidentified. A subgroup of such diseases is unified by the presence of thrombotic microangiapathies (TMA), and is characterized clinically by non-immune hemolytic anemia, thrombocytopenia, and/or renal failure. The most common cause of TMA is the hemolytic uremic syndrome (HUS), a disease that is particularly frequent in childhood, where it is the most common cause of acute renal failure. The majority of these cases are associated with enteric infection with the verotoxin producing strain, E. coli 0157. Some HUS patients, especially adults, may have a relative lack of renal involvement and are sometimes classified as having thrombotic thrombocytopenic purpura (TTP). However, thrombotic microangiopathies may also occur as a complication of pregnancy (eclampsia), with malignant hypertension following radiation to the kidney, after transplantation (often secondary to cyclosporine or FK506 treatment), with cancer chemotherapies (especially mitomycin C), with certain infections (e.g., Shigella or HIV), in association with systemic lupus or the antiphospholipid syndrome, or may be idiopathic or familial. Experimental data suggest that endothelial cell injury is a common feature in the pathogenesis of HUS/TTP. See, e.g. Kaplan et al., Pediatr. Nephrol. 4:276 (1990). Endothelial cell injury triggers a cascade of subsequent events, including local intravascular coagulation, fibrin deposition, and platelet activation and aggregation. The mechanisms that mediate these events are not well understood. In the case of verotoxin-mediated HUS, injury to the endothelium leads to detachment and death, with local platelet activation and consumption, fibrin deposition and microangiopathic hemolysis.

The phrase "hemolytic-uremic syndrome" or "HUS" is used in the broadest sense, and includes all diseases and conditions characterized by thrombotic microangiopathic hemolytic anemia and variable organ impairment, irrespective of whether renal failure is the predominant feature. Although, as mentioned before, the disease is particularly frequent in childhood, the term "HUS" specifically covers a syndroma, typically observed in adults, that is also referred to as thrombotic thrombocytopenic purpura (TTP) and is generally characterized by the predominance of thrombocytopenia and neurologic impairment, but has thrombotic microangiopathy as the underlying pathologic lesion.

5 The terms "amino a

10

15

20

25

30

35

40

45

50

55

The terms "amino acid" and "amino acids" refer to all naturally occurring \mathbf{t} - \mathbf{c} -amino acids. This definition is meant to include norleucine, ornithine, and homocysteina. The amino acids are identified by either the single-letter or three-letter designations, as follows:

Asp (D) aspartic acid

5 Thr (T) threonine

Ser (S) serine

Glu (E) glutamic acid

Pro (P) proline

Gly (G) glycine

10 Ala (A) alanine

Cys (C) cysteine

Val (V) valine

Met (M) methionine

lle (I) isoteucine

15 Leu (L) leucine

Tyr (Y) tyrosine

Phe (F) phenylalanine

t tie (i , phonylaidhine

His (H) histidine

Lys (K) lysine

Arg (R) erginine

Trp (W) tryptophan

GIn (O) glutamine

Asn (N) asparagine

Asn (M) aspa

20

The notations throughout this application describe VEGF amino acid sequence variants, where the location of a particular amino acid residue in the polypeptide chain of VEGF is identified by a number, following the amino acid numbering of hVEGF₁₂₁. In the present application, similarly positioned residues in the VEGF variants are designated by these numbers, even though the actual residue is not so numbered due to deletions or insertions in the molecule. This will occur, for example, in the case of variants which, in addition to the specified amino acid substitutions, contain further deletion(s) and/or insertion(s). Substituted VEGF variants are designated by identifying the native (wild-type) amino acid on the left side of the number denoting the position where the substitution takes place, and identifying the substituted amino acid on the right side of the number. For example, replacement of the amino acid asparagine (N) with a glutamine (Q) at position 75 of hVEGF₁₂₁, is designated N75Q hVEGF₁₂₁. The double mutant, additionally having

"Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the

cysteine (C) at position 116 replaced by serine (S) is designated N750, C116S hVEGF₁₂₁.

pharmaceutically acceptable carrier is an aqueous pH buffered solution. Examples of pharmaceutically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®.

"Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time.

"Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.

II. General Methods

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as. "Molecular Cloning: A Laboratory Manual", second edition (Sambrook et al., 1989); "Oligonucleotide Synthesis" (M.J. Gait, ed., 1984); "Animal Cell Culture" (R.I. Freshney, ed., 1987); "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology" (D.M. Weir & C.C. Blackwell, eds.); "Gene Transfer Vectors for Mammalian Cells" (J.M. Miller & M.P. Calos, eds., 1987); "Current Protocols in Molecular Biology" (F.M. Ausubel et al., eds., 1987); "PCR: The Polymerase Chain Reaction", (Mullis et al., eds., 1994); and "Current Protocols in Immunology" (J.E. Coligan et al., eds., 1991).

The methods of the present invention concern variants of a native sequence VEGF molecule ordinarily having a free cysteine (C) residue at a position corresponding to amino acid position 116 of the 121 amino acids long native mature human VEGF (hVEGF₁₂₁). It has been found that the elimination of this cysteine (C) residue produces VEGF variants that have an enhanced biological activity compared to native mature hVEGF₁₂₁. The cysteine residue is preferably replaced by another amino acid. Preferred amino acids used for substitution are serine, glycine, alanine, valine, leucine, isoleucine, threonine or methionine, more preferably serine, glycine or alanine, most preferably serine. Substitution is preferably performed by site-directed mutagenesis of the nucleic acid sequence encoding the unmodified variant, having a cysteine (C) at position 116. Particularly preferred is site-directed mutagenesis using polymerase chain reaction (PCR) amplification (see, for example, U.S. Pat. No. 4,683,195 issued 28 July 1987; and Current Protocols in Molecular Biology, Chapter 15 (Ausubel et al., ed., 1991). Other site-directed mutagenesis techniques are also well known in the art and are described, for example, in the following publications: Current Protocols in Molecular Biology, supra, Chapter 8; Molecular Cloning: A Laboratory Manual., 2nd edition (Sambrook et al., 1989); Zoller et al., Methods Enzymol. 100:468-500 (1983); Zoller & Smith, DNA 3:479-488 (1984); Zoller et al.,

Nucl. Acids Res., 10:6487 (1987); Brake et al., Proc. Natl. Acad. Sci. USA 81:4642-4646 (1984); Botstein et al., Science 229:1193 (1985); Kunkel et al., Methods Enzymal, 154:367-82 (1987), Adelman et al., DNA 2:183 (1983); and Carter et al., Nucl. Acids Res., 13:4331 (1986). Cassette mutagenesis (Wells et al., Gene, 34:315 [1985]), and restriction selection mutagenesis (Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 [1986]) may also be used.

VEGF variants with more than one amino acid substitution may be generated in one of several ways. If the amino acids are located close together in the polypeptide chain, they may be mutated simultaneously, using one oligonucleotide that codes for all of the desired amino acid substitutions. If, however, the amino acids are located some distance from one another (e.g. separated by more than ten amino acids), it is more difficult to generate a single oligonucleotide that encodes all of the desired changes. Instead, one of two alternative methods may be employed. In the first method, a separate oligonucleotide is generated for each amino acid to be substituted. The oligonucleotides are then annealed to the single-stranded template DNA simultaneously, and the second strand of DNA that is synthesized from the template will encode all of the desired amino acid substitutions. The alternative method involves two or more rounds of mutagenesis to produce the desired mutant.

In a preferred embodiment, the present invention involves the generation of VEGF variants that, in addition to the elimination of a free (unpaired) cysteine at position 116, have an N-linked glycosylation site removed at amino acid position 75. An N-linked glycosylation site may be a tripeptidyl sequence of the formula Asn-X-Ser or Asn-X-Thr, wherein Asn is the acceptor and X is any of the twenty genetically encoded amino acids except Pro, which is known to prevent glycosylation. In native hVEGF₁₂₁, an Asn-lle-Thr (NIT) glycosylation site is present at amino acid positions 75-77. The removal of this glycosylation site is preferably achieved by amino acid substitution for at least one residue of the glycosylation signal. In a particularly preferred variant, Asn (N) at position 75 is replaced by Glu (Q). The substitution may be performed by any of the mutagenesis techniques discussed above.

DNA encoding the VEGF variants of the present invention may also be prepared by chemical synthesis. Methods of chemically synthesizing DNA having a specific sequence are well known in the art. Such techniques include the phosphoramidite method (Beaucage and Ceruthers, <u>Tetrahedron Letters 22</u>:1859 [1981]; Matteucci and Caruthers, <u>Tetrahedron Letters 21</u>:719 [1980]; and Matteucci and Caruthers, <u>J. Amer. Chem. Soc.</u> 103: 3185 [1981]), and the phosphotriester approach (Ito *et al.*, <u>Nucleic Acids Res.</u> 10:1755-1769 [1982]).

In addition to removing the underlying glycosylation site, the N-linked glycosylation at amino acid position 75 can be substantially removed by using an endoglycosidase, such as Endoglycosidase H (Endo-H), which is capable of (partial) removal of high mannose and hybrid oligosaccharides. Endo-H treatment is accomplished via techniques known per se, as described, for example, in Tarentino et al., <u>J. Biol. Chem.</u> 249: 811 (1974); Trimble et al., <u>Anal.</u> Biochem. 141:515 (1984); and Little et al., <u>Biochem.</u> 23:6191 (1984).

The cDNA encoding the desired VEGF variant of the present invention is inserted into a replicable vector for cloning and expression. Suitable vectors are prepared using standard techniques of recombinant DNA technology, and are, for example, described in the textbooks cited above. Isolated plasmids and DNA fragments are cleaved, tailored,

PCT/US00/13536 WO 00/71713

5

and ligated together in a specific order to generate the desired vectors. After ligation, the vector containing the gene to be expressed is transformed into a suitable host cell.

10

Host cells can be any eukaryotic or prokaryotic hosts known for expression of heterologous proteins. The VEGF variants of the present invention can be expressed in eukaryotic hosts, such as eukaryotic microbes (yeast), cells isolated from multicellular organisms (mammalian cell cultures), plants and insect cells.

15

fashion, proteins usually lack many of the immunogenic properties, three-dimensional conformation, glycosylation, and other features exhibited by authentic eukaryotic proteins. Eukaryotic expression systems overcome these limitations. Yeasts are particularly attractive as expression hosts for a number of reasons. They can be rapidly growth

While prokaryotic host provide a convenient means to synthesize eukaryotic proteins, when made this

20

on inexpensive (minimal) media, the recombinant can be easily selected by complementation, expressed proteins can be specifically engineered for cytoplasmic localization or for extracellular export, and are well suited for large-scale fermentation.

Saccharomyces cerevisiae (common baker's yeast) is the most commonly used among lower eukaryotic

25

hosts. However, a number of other genera, species, and strains are also available and useful herein, such as Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol. 28:165-278 [1988]). The expression of hVEGF₁₂₁ in Saccharomyces cerevisiae is disclosed, for example, by Kondo et al., Biochim. Biophys. Acta 1243:195-202 (1995), the entire disclosure of which is hereby expressly incorporated by reference. The variants of the present invention may be expressed in an analogous fashion. Expression of hVEGF₁₂₁ in Pichia pastoris has been described by Mohanraj et al., Biochem. Biophys. Res. Commun. 215:750-756 (1995), while similar expression of the hVEGF₁₆₅ molecule was described by Mohanraj et al., Growth Factors 12:17-27 (1995). The yeast expression system was purchased from Invitragen (San Diego, CA). The disclosures of these references are hereby expressly incorporated by reference. Other yeasts suitable for VEGF expression include, without limitation, Kluyveromyces hosts (U.S. Pat. No. 4,943,529), e.g. Kluyveromyces lactis; Schizosaccharomyces pombe (Beach and Nurse, Nature 290:140 (1981); Aspergillus hosts,

30

20

e.g. A. niger (Kelly and Hynes, EMBO J. 4:475-479 (1985)) and A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun. 112:284-289 (1983)), and Hansenula hosts, e.g. Hansenula polymorpha.

35

40

45

group consisting of the genera Pichia and Hansenula. A list of specific species which are exemplary of this class of yeasts may be found, for example, in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982). Presently preferred are methylotrophic yeasts of the genus Pichia such as the auxotrophic Pichia pastoris GS115 (NRRL Y-15851); Pichia pastoris GS190 (NRRL Y-18014) disclosed in U.S. Pat. No. 4,818,700; and Pichia pastoris PPF1 (NRRL Y-18017) disclosed in U.S. Pat. No. 4,812,405. Auxotrophic Pichia pastoris strains are also advantageous to the practice of this invention for their ease of selection. It is recognized that wild type Pichia pastoris strains (such as NRRL Y-11430 and NRRL Y-11431) may be employed with equal success if a suitable transforming marker gene is

Preferably a methylotrophic yeast is used as a host in performing the methods of the present invention. Suitable methylotrophic yeasts include, but are not limited to, yeast capable of growth on methanol selected from the

50

selected, such as the use of SUC2 to transform Pichia pastoris to a strain capable of growth on sucrose, or if an

5

antibiotic resistance marker is employed, such as resistance to G418. *Pichia pastoris* linear plasmids are disclosed, for example, in U.S. Pat. No. 5,665,600.

10

20

15

25

30

20

30

35

40

45

50

Suitable promoters used in yeast vectors include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073 [1980]); and other glycolytic enzymes (Hess et al., J. Adv. Enzyme Res. 7:149 [1968]; Holland et al., Biochemistry 17:4900 (1978)), e.g., enclase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyvurate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate somerase, phosphoglucose isomerase, and glucokinase. In the constructions of suitable expression plasmids, the termination sequences associated with these genes are also ligated into the expression vector 3' of the sequence desired to be expressed to provide polyadenylation of the mRNA and termination. Other promoters that have the additional advantage of transcription controlled by growth conditions are the promoter regions for atcohol exidase 1 (AOX1, particularly preferred for expression in Pichia), alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Any plasmid vector containing a yeast-compatible promoter and termination sequences, with or without an origin of replication, is suitable. Yeast expression systems are commercially available, for example, from Clontech Laboratories, Inc. (Palo Alto, California, e.g. pYEX 4T family of vectors for S. cerevisiae), Invitrogen (Carlsbad, California, e.g. pPICZ series Easy Select Pichia Expression Kit) and Stratagene (La Jolla, California, e.g. ESP™ Yeast Protein Expression and Purification System for S. pombe and pESC vectors for S. cerevisiae). The production of N750, C116S hVEGF 121 in P. pastoris is described in detail in the Examples below. Other VEGF variants can be expressed in an analogous fashion.

Cell cultures derived from multicellular organisms may also be used as hosts to practice the present invention. While both invertebrate and vertebrate cell cultures are acceptable, vertebrate cell cultures, particularly mammalian cells, are preferable. Examples of suitable cell lines include monkey kidney CV1 cell line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney cell line 293S (Graham et al., J. Gen. Virol., 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary (CH0) cells (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216 (1980); monkey kidney cells (CVI-76, ATCC CCL 70); African green monkey cells (VER0-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); human lung cells (W13B, ATCC CCL 75); and human liver cells (Hep G2. HB 8065).

Suitable promoters used in mammalian expression vectors are often of viral origin. These viral promoters are commonly derived from cytomeagolavirus (CMV), polyoma virus, Adenovirus2, and Simian Virus 40 (SV40). The SV40 virus contains two promoters that are termed the early and late promoters. They are both easily obtained from the virus as one DNA fragment that also contains the viral origin of replication (Fiers et el., Nature 273:113 [1978]). Smaller or larger SV40 DNA fragments may also be used, provided they contain the approximately 250-bp sequence extending from the HindIII site toward the BgA site located in the viral origin of replication. An origin of replication may be obtained from an exogenous source, such as SV40 or other virus, and inserted into the cloning vector.

5

Alternatively, the host cell chromosomal mechanism may provide the origin of replication. If the vector containing the foreign gene is integrated into the host cell chromosome, the latter is often sufficient.

Eukaryotic expression systems employing insact cell hosts may rely on either plasmid or baculoviral

10

expression systems. The typical insect host cells are derived from the fall army worm (Spadoptera frugiperda). For expression of a foreign protein these cells are infected with a recombinant form of the baculovirus Autographa californica nuclear polyhedrosis virus which has the gene of interest expressed under the control of the viral polyhedrin promoter. Other insects infected by this virus include a cell line known commercially as "High 5" (Invitrogen) which is derived from the cabbage looper (Trichoplusia ni). Another baculovirus sometimes used is the Bombyx mori nuclear polyhedorsis virus which infect the silk worm (Bombyx mori). Numerous baculovirus expression systems are commercially available, for example, from Invitrogen (Bac-N-Blue^{ne}), Clontech (BacPAK^{ne} Baculovirus Expression System), Life Technologies (BAC-TO-BAC^{ne}), Novagen (Bac Vector System^{ne}), Pharmingen and Quantum Biotechnologies). Another insect cell host is common fruit fly, Drosophila malanogaster, for which a transient or

20

15

stable plasmid based transfection kit is offered commercially by Invitrogen (The DES™ System).

Prokaryotes are the preferred hosts for the initial cloning steps, and are particularly useful for rapid production of large amounts of DNA, for production of single-stranded DNA templates used for site-directed

25

mutagenesis, for screening many mutants simultaneously, and for DNA sequencing of the mutants generated. Biologically active isoforms of hVEGF have been successfully expressed in *Escherichia coli (E. coli*), see, for example Siemeister *et al.*, <u>Biochem. and Biophys. Res. Comm. 222:249-255 (1996)</u>, where *E. coli* strain BL21 carrying an inducible T7 RNA polymerase gene (Studier *et al.*, <u>Methods Enzymol. 185</u>:60-98 [1990]) was transformed with the appropriate constructs. Other *E. coli* strains suitable for the production of the VEGF variants of the present invention include, for example, AD494 (DE3); EB105; and CB (*E. coli* B) and their derivatives; K12 strain 214 (ATCC 31,446);

30

appropriate constructs. Uther E. Coll strains suitable for the production of the VEGF variants of the present invention include, for example, AD494 (DE3); EB105; and CB (E. coll B) and their derivatives; K12 strain 214 (ATCC 31,446); W3110 (ATCC 27,325); X1776 (ATCC 31,537); HB101 (ATCC 33,694); JM101 (ATCC 33,876); NM522 (ATCC 47,000); NM538 (ATCC 35,638); NM539 (ATCC 35,639), etc. Many other species and genera of prokaryotes may

35

be used as well. Prokaryotes, e.g. *E. coli*, produce the VEGF varients in an unglycosylated form, therefore, there is no need for the removal of the glycosylation signal at amino acid position 75.

40

25

Vectors used for transformation of prokaryotic host cells usually have a replication site, marker gene providing for phenotypic selection in transformed cells, one or more promoters compatible with the host cells, and a polylinker region containing several restriction sites for insertion of foreign DNA. Plasmids typically used for transformation of *E. coli* include pBR322, pUC18, pUC19, pUC118, pUC119, and Bluescript M13, all of which are commercially available and described in Sections 1.12-1.20 of Sambrook *et al.*, *supra*. The promoters commonly used in vectors for the transformation of prokaryotes are the T7 promoter (Studier *et al.*, *supra*); the tryptophan (*trp*)

promoter (Goeddel at al., Nature 281:544 [1979]); the alkaline phosphatase promoter (phoA); and the β-lactamase and

45

lactose (Jac) promoter systems.

50

15

5

In *E. coli*, the VEGF variants typically accumulate in the form of inclusion bodies, and need to be solubilized, purified, refolded and dimerized. Methods for the recovery and refolding of VEGF isoforms from *E. coli* are described, for example, in Siemeister *et al.*, *supra*.

10

15

20

25

15

25

30

35

40

45

50

Many eukaryotic proteins, including VEGF, contain an endogenous signal sequence as part of the primary translation product. This sequence targets the protein for export from the cell via the endoplasmic reticulum and Golgi apparatus. The signal sequence is typically located at the amino terminus of the protein, and ranges in length from about 13 to about 36 amino acids. Although the actual sequence varies among proteins, all known eukaryotic signal sequences contain at least one positively charged residue and a highly hydrophobic stretch of 10-15 amino acids (usually rich in the amino acids leucine, isoleucine, valine and phenylalanine) near the center of the signal sequence. The signal sequence is normally absent from the secreted form of the protein, as it is cleaved by a signal peptidase located on the endoplasmic reticulum during translocation of the protein into the endoplasmic reticulum. The protein with its signal sequence still attached is often referred to as the pre-protein, or the immature form of the protein, in contrast to the protein from which the signal sequence has been cleaved off, which is usually referred to as the mature protein. Proteins may also be targeted for secretion by linking a heterologous signal sequence to the protein. This is readily accomplished by ligating DNA encoding a signal sequence to the 5' end of the DNA encoding the protein, and expressing the fusion protein in an appropriate host cell. Prokaryotic and eukaryotic (yeast and mammalian) signal sequences may be used, depending on the type of the host cell. The DNA encoding the signal sequence is usually excised from a gene encoding a protein with a signal sequence, and then ligated to the DNA encoding the protein to be secreted, e.g. VEGF. Alternatively, the signal sequence can be chemically synthesized. The signal must be functional, i.e. recognized by the host cell signal peptidase such that the signal sequence is cleaved and the protein is secreted. A large variety of eukeryotic and prokeryotic signal sequences is known in the art, and can be used in performing the process of the present invention. Yeast signal sequences include, for example, acid phosphatase, alpha factor, alkaline phosphatase and invertase signal sequences. Prokaryotic signal sequences include, for example LamB, OmpA, OmpB and OmpF, MalE, PhoA, and β lactamase.

Mammalian cells are usually transformed with the appropriate expression vector using a version of the calcium phosphate method (Graham *et al.*, <u>Virology 52</u>:546 [1978]; Sambrook *et al.*, *supra*, sections 16.32-16.37), or, more recently, lipofection. However, other methods, e.g. protoplast fusion, electroporation, direct microinjection, etc. are also suitable.

Yeast hosts are generally transformed by the polyethylene glycol method (Hinnen, <u>Proc. Natl. Acad, Sci. USA</u> 75:1929 [1878]). Yeast, e.g. *Pichia pastoris*, can also be transformed by other methodologies, e.g. electroporation, as described in the Examples.

Prokaryotic host cells can, for example, be transformed using the calcium chloride method (Sambrook et al., supre. section 1.82), or electroporation.

If the host is *Pichia pastoris*, transformed cells can be selected for by using appropriate techniques including, but not limited to, culturing previously auxotrophic cells after transformation in the absence of the biochemical

product required (due to the cell's auxotrophy), selection for and detection of a new phenotype, or culturing in the presence of an antibiotic which is toxic to the yeast in the absence of a resistance gene contained in the transformant. Isolated transformed *Pichia pastoris* cells are cultured by appropriate fermentation techniques such as shake flask fermentation, high density fermentation or the technique disclosed by Cregg et al. in, High-Level <a href="https://documentation.org/https://documentation.or

Transformed strains, that are of the desired phenotype and genotype, are grown in fermentors. For the large-scale production of recombinant DNA-based products in methylotrophic yeast, a three stage, high cell-density fed-batch fermentation system is normally the preferred fermentation protocol employed. In the first, or growth stage, expression hosts are cultured in defined minimal medium with an excess of a non-inducing carbon source (e.g. glycerol). When grown on such carbon sources, heterologous gene <a href="https://doi.org/10.11.5.0/bit.11

More recently, techniques have been developed for the expression of heterologous proteins in the milk of non-human transgenic animals. For example, Krimpenfort et al., Biotechnology 9:844-847 (1991) describes microinjection of fertilized bovine oocytes with genes encoding human proteins and development of the resulting embryos in surrogate mothers. The human genes were fused to the bovine .alpha.S.sub.1 casein regulatory elements. This general technology is also described in PCT Application W091/08216 published June 13, 1991. PCT application W088/00239, published January 14, 1988, describes procedures for obtaining suitable regulatory DNA sequences for the products of the mammary glands of sheep, including beta lactoglobulin, and the construction of transgenic sheep modified so as to secrete foreign proteins in milk. PCT publication W088/01648, published March 10, 1988, generally describes construction of transgenic animals which secrete foreign proteins into milk under control of the regulatory sequences of bovine alpha lactalbumin gene. PCT application W088/10118, published December 29, 1988, describes construction of transgenic mice and larger mammals for the production of various recombinant human proteins in milk. Thus, techniques for construction of appropriate host vectors containing regulatory sequences

5

10

15

20

25

30

35

40

45

50

effective to produce foreign proteins in mammary glands and cause the secretion of said protein into milk are known in the art.

Among the milk-specific protein promoters are the casein promoters and the beta lactoglobulin promoter. The casein promoters may, for example, be selected from an alpha casein promoter, a beta casein promoter or a kappa casein promoter. Preferably, the casein promoter is of bovine origin and is an alpha S-1 casein promoter. Among the promoters that are specifically activated in mammary is the long terminal repeat (LTR) promoter of the mouse mammary tumor virus (MMTV). The milk-specific protein promoter or the promoters that are specifically activated in mammary tissue may be derived from either cDNA or genomic sequences. Preferably, they are genomic in origin.

Signal peptides that are useful in expressing heterologous proteins in the milk of transgenic mammals include milk-specific signal peptides or other signal peptides useful in the secretion and maturation of eukaryotic and prokaryotic proteins. Preferably, the signal peptide is selected from milk-specific signal peptides or the signal peptide of the desired recombinant protein product, if any. Most preferably, the milk-specific signal peptide is related to the milk-specific promoter used in the expression system of this invention.

III. Pharmaceutical Compositions

15

Pharmaceutical compositions of the present invention can comprise a polynucleotide encoding a VEGF variant herein, or, alternatively, pharmaceutical compositions can comprise the VEGF variant itself.

Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, inhalation, or by injection. Such forms should allow the agent or composition to reach a target cell whether the target cell is present in a multicellular host or in culture. For example, pharmacological agents or compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms that prevent the agent or composition from exerting its effect.

Compositions comprising a VEGF variant or a polynucleotide encoding a VEGF variant can also be formulated as pharmaceutically acceptable salts (e.g., acid addition salts) and/or complexes thereof. Pharmaceutically acceptable salts are non-toxic at the concentration at which they are administered. Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, hydrochloride, phosphate, sulfonate, sulfamate, sulfate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclolexylsulfonate, cyclohexylsulfamate and quinate. Pharmaceutically acceptable salts can be obtained from acids such as hydrochloric acid, sulfuric acid, phosphoric acid, sulfonic acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfonic acid, cyclohexylsulfamic acid, and quinic acid. Such salts may be prepared by, for example, reacting the free acid or base forms of the product with one or more equivalents of the appropriate base or acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water which is then removed in vacuo or by freeze-drying or by exchanging the ions of an existing salt for another ion on a suitable ion exchange resin.

Carriers or excipients can also be used to facilitate administration of the compound. Examples of carriers and excipients include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. The compositions or pharmaceutical composition can be administered by different routes including, but not limited to, intravenous, intra-arterial, intraperitoneal, intrapericardial, intracoronary, subcutaneous, and intramuscular, oral, topical, or transmucosal.

The desired isotonicity of the compositions can be accomplished using sodium chloride or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol, polyols (such as mannitol and sorbitol), or other inorganic or organic solutes.

Pharmaceutical compositions comprising a VEGF variant or a polynucleotide encoding a VEGF variant can be formulated for a variety of modes of administration, including systemic and topical or localized administration.

Techniques and formulations generally may be found in *Remington's Pharmaceutical Sciences*, 18th Edition, Mack Publishing Co., Easton, PA 1990. See, also, Wang and Hanson *Parenteral Formulations of Proteins and Peptides:

Stability and Stabilizers*, Journal of Parenteral Science and Technology, Tachnical Report No. 10, Supp. 42-2S (1988). A suitable administration format can best be determined by a medical practitioner for each patient individually.

For systemic administration, injection is preferred, e.g., intramuscular, intravenous, intra-arterial, intracoronary, intrapericardial, intraperitoneal, subcutaneous, intrathecal, or intracerebrovascular. For injection, the compounds of the invention are formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. Alternatively, the compounds of the invention are formulated in one or more excipients (e.g., propylene glycol) that are generally accepted as safe as defined by USP standards. They can, for example, be suspended in an inert oil, suitably a vegetable oil such as sesame, peanut, olive oil, or other acceptable carrier. Preferably, they are suspended in an aqueous carrier, for example, in an isotonic buffer solution at pH of about 5.6 to 7.4. These compositions can be sterilized by conventional sterilization techniques, or can be sterile filtered. The compositions can contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH buffering agents. Useful buffers include for example, sodium acetate/acetic acid buffers. A form of repository or "depot" slow release preparation can be used so that therapeutically effective amounts of the preparation are delivered into the bloodstream over many hours or days following transdermal injection or delivery. In addition, the compounds can be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.

The VEGF variants of the present invention can also be introduced directly into the heart, by using a catheter inserted directly into a coronary artery, as described, for example, in U.S. Pat. No. 5,244,460.

Alternatively, the compounds can be administered orally. For oral administration, the compounds are formulated into conventional oral dosage forms such as capsules, tablets and tonics.

Systemic administration can also be by transmucosal or transdermal. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents can be used to facilitate permeation. Transmucosal administration can be, for example, through nasal sprays or using suppositories.

For administration by inhalation, usually inhalable dry power compositions or aerosol compositions are used, where the size of the particles or droplets is selected to ensure deposition of the active ingredient in the desired part of the respiratory tract, e.g. throat, upper respiratory tract or lungs. Inhalable compositions and devices for their administration are well known in the art. For example, devices for the delivery of aerosol medications for inspiration are known. One such device is a metered dose inhaler that delivers the same dosage of medication to the patient upon each actuation of the device. Metered dose inhalers typically include a canister containing a reservoir of medication and propellant under pressure and a fixed volume metered dose chamber. The canister is inserted into a receptacle in a body or base having a mouthpiece or nosepiece for delivering medication to the patient. The patient uses the device by manually pressing the canister into the body to close a filling valve and capture a metered dose of medication inside the chamber and to open a release valve which releases the captured, fixed volume of medication in the dose chamber to the atmosphere as an aerosol mist. Simultaneously, the patient inhales through the mouthpiece to entrain the mist into the airway. The patient then releases the canister so that the release valve closes and the filling valve opens to refill the dose chamber for the next administration of medication. See, for example, U.S. Pat. No. 4,896,832 and a product available from 3M Healthcare known as Aerosol Sheathed Actuator and Cap.

Another device is the breath actuated metered dose inhaler that operates to provide automatically a metered dose in response to the patient's inspiratory effort. One style of breath actuated device releases a dose when the inspiratory effort moves a mechanical lever to trigger the release valva. Another style releases the dose when the detected flow rises above a preset threshold, as detected by a hot wire anemometer. See, for example, U.S. Pat. Nos. 3,187,748; 3,565,070; 3,814,297; 3,826,413; 4,592,348; 4,648,393; 4,803,978.

Devices also exist to deliver dry powdered drugs to the patient's airways (see, e.g. U.S. Pat. No. 4,527,769) and to deliver an aerosol by heating a solid aerosol precursor material (see, e.g. U.S. Pat. No. 4,922,901). These devices typically operate to deliver the drug during the early stages of the patient's inspiration by relying on the patient's inspiratory flow to draw the drug out of the reservoir into the airway or to actuate a heating element to vaporize the solid aerosol precursor.

Devices for controlling particle size of an aerosol are also known, see, for example, U.S. Pat. Nos. 4,790,305; 4,926,852; 4,677,975; and 3,658,059.

For topical administration, the compounds of the invention are formulated into ointments, salves, gels, or creams, as is generally known in the art.

If desired, solutions of the above compositions can be thickened with a thickening agent such as methyl cellulose. They can be prepared in emulsified form, either water in oil or oil in water. Any of a wide variety of

5

pharmaceutically acceptable emulsifying agents can be employed including, for example, acacia powder, a non-ionic surfactant (such as alkali polyether alcohol sulfates or sulfonates, e.g., a Triton).

10

Compositions useful in the invention are prepared by mixing the ingredients following generally accepted procedures. For example, the selected components can be mixed simply in a blender or other standard device to produce a concentrated mixture which can then be adjusted to the final concentration and viscosity by the addition of water or thickening agent and possibly a buffer to control pH or an additional solute to control tonicity.

15

The amounts of various compounds for use in the methods of the invention to be administered can be determined by standard procedures. Generally, a therapeutically effective amount is between about 100 mg/kg and 10¹² mg/kg depending on the age and size of the patient, and the disease or disorder associated with the patient. Generally, it is an amount between about 0.05 and 50 mg/kg, preferably 0.05 and 20 mg/kg, most preferably 0.05 and 2 mg/kg of the individual to be treated.

20

25

30

35

40

45

For use by the physician, the compositions are provided in dosage unit form containing an amount of a VEGF variant berein.

15

IV. Therapeutic Targets

The VEGF variants of the present invention are promising candidates for the same indications as native sequence VEGF molecules. Accordingly, the VEGF variants herein can be used to induce angiogenesis and/or vascular remodeling, and therefore may find utility in the treatment of coronary artery disease and/or peripheral vascular disease. The VEGF variants of the present invention can be used, for example, to foster myocardial blood vessel growth and to improve blood flow to the heart (see, e.g. U.S. Pat. No. 5,244,460).

One of the main therapeutic targets of the present invention is the treatment of peripheral arterial disease and/or coronary artery disease. Both peripheral arterial disease and coronary artery disease can often be treated successfully with either angioplasty/endarterectomy approaches (to open up the blockage caused by atherosclerotic plaque growth) or surgical bypass (to create a conduit around the blockage). In a significant number of cases, however, patients are deemed to be poor risks to be helped by either of these types of approaches. It is this group of so-called "no option" patients that are expected to be the primary beneficiaries of the treatments provided by the present invention. It is foreseen that the new blood vessels, or nawly-enlarged vessels, created in response to the treatment by the VEGF variants of the present invention, will create a natural bypass around the blocked vessels, without significant side-effects. As a result, the long-term hope is that this therapy will be used to replace angioplasty/endarterectomy/surgical bypass in the coronary artery disease patient population in general, or at least in some cases.

The present invention is further directed to the treatment (including prevention) of injury to blood vessels and to the treatment (including prevention) of injury to tissues containing such blood vessels, in conditions where the endothelial cell injury is mediated by known or unknown toxins, such as occurs in hemolytic uremic syndrome (HUS),

5

taxic shock syndrome, exposure to venoms, or exposure to chemical or medicinal taxins, and in conditions where the endothelial cell injury is mediated by hypertension.

10

5

10

20

25

30

The invention further concerns the treatment (including prevention) of kidney diseases associated with injury to, or atrophy of, the vasculature of the glomerulus and interstitium.

15

The invention also concerns the treatment (including prevention) of injury to the endothelium of blood vessels, and for the treatment (including prevention) of injury to tissues containing such injured blood vessels in diseases associated with hypercoagulable states, platelet activation or aggregation, thrombosis, or activation of proteins of the clotting cascade, or in activation of coagulation or platelet aggregation such as preeclampsia, thrombotic thombocytopenic purpura (TTP), disseminated intravascular coagulation, sepsis, pancreatis.

20

The invention also provides methods for the treatment (including prevention) of injury to blood vessels or injury to the surrounding tissue adjacent to injured blood vessels arising as a result of diminished blood flow due to decreased blood pressure, or full or partial occlusion of the blood vessel, due to atherosclerosis, thrombosis, mechanical trauma, vascular wall dissection, surgical dissection, or any other impediment to normal blood flow or pressure. Specifically, the invention provides methods for the treatment (including prevention) of acute renal failure, myocardial infarction with or without accompanying thrombolytic therapy, ischemic bowel disease, transient ischemic attacks, and stroke.

25

The invention also provides methods for the treatment (including prevention) of hypoxia or hypercapnia or fibrosis arising from injury to the endothelium of the lungs occasioned by injurious immune stimuli, toxin, exposure, infection, or ischemia, including but not limited to acute respiratory distress syndrome, toxic alveolar injury, as occurs in smoke inhalation, pneumonia, including viral and bacterial infections, and pulmonary emboli.

30

The invention further provides methods and means for the treatment (including prevention) of pulmonary dysfunction arising from injury to the pulmonary endothelium, including disorders arising from birth prematurity, and primary and secondary causes of pulmonary hypertension.

35

The methods disclosed herein can also be used for the treatment of wounds arising from any injurious breach of the dermis with associated vascular injury.

40

The invention also provides methods for the treatment (including prevention) or injury to the endothelium and blood vessels, and for the treatment (including prevention) of injury to tissues containing injured blood vessels, due to injurious immune stimuli, such as immune cytokines, immune complexes, proteins of the complement cascade, including but not restricted to diseases such as vasculitis of all types, allergic reactions, diseases of immediate and delayed hypersensitivity, autoimmune diseases.

45

The methods of the present invention further useful in the preservation or enhancement of function of organ allografts, including but not restricted to transplants of kidney, heart, liver, lung, pancreas, skin, bone, intestine, and xenografts.

50

Specific kidney diseases that may be treatable by using the methods of the present invention include HUS, focal glomerulosclerosis, amyloidosis, glomerulonephritis, diabetes, SLE, and chronic hypoxia/atrophy.

5

10

15

20

25

30

35

40

45

30

50

The VEGF variants of the present invention can also be used for treating hypertension. Effectiveness of the treatment is determined by decreased blood pressure particularly in response to salt loading.

The VEGF variants of the present invention can also be useful in treating disorders relating to abnormal transport of solutes across endothelial cells. Such disorders include (1) the treatment or prevention of kidney disease associated with impaired filtration or excretion of solutes; (2) the treatment or prevention of diseases of the central nervous system associated with alterations in cerebrospinal fluid synthesis, composition, or circulation, including stroke, meningitis, tumor, infections, and disorders of bone growth; (3) the treatment or prevention of hypoxia or hypercapnia or fibrosis arising from accumulation of fluid secretions in the lungs or impediments to their removal, including but not restricted to acute respiratory distress syndrome, toxic alveolar injury, as occurs in smoke inhalation, pneumonia, including viral and bacterial infections, surgical intervention, cystic fibrosis, and other inherited or acquired disease of the lung associated with fluid accumulation in the pulmonary air space; (4) the treatment or prevention of pulmonary dysfunction arising from injury to the pulmonary endothelium, including disorders arising from birth prematurity, and primary and secondary causes of pulmonary hypertension; (5) the treatment or prevention of disease arising from disordered transport of fluid and solutes across the intestinal epithelium, including but not restricted to inflammatory bowel disease, infectious diarrhea, and surgical intervention; (6) the treatment or prevention of ascites accumulation in the peritoneum as occurs in failure of the heart, liver, or kidney, or in infectious or tumor states; (7) the enhancement of efficacy of solute flux as it can be needed for peritoneal dialysis in the treatment of kidney failure or installation of therapeutics or nutrition into the peritoneum; (8) the preservation or enhancement of function of organ allografts, including but not restricted to transplants of kidney, heart, liver, lung, pancreas, skin, bone, intestine, and xenografts; and (9) the treatment of cardiac valve disease.

V. Gene Therapy

The present invention also provides delivery vehicles suitable for delivery of a polynucleotide encoding a VEGF variant into cells (whether *in vivo*, *ex vivo*, or *in vitro*). Generally, a polynucleotide encoding a VEGF variant will be operably linked to a promoter and a heterologous polynucleotide. A polynucleotide encoding a VEGF variant can be contained within a cloning or expression vector, using methods well known in the art, or within a viral vector. These vectors (especially expression vectors) can in turn be manipulated to assume any of a number of forms, which may, for example, facilitate delivery to and/or entry into a target cell. Delivery of the polynucleotide constructs of the invention to eukaryotic cells, particularly to mammalian cells, more particularly to distal tubule cells of the kidney, can be accomplished by any suitable art-known method. Delivery can be accomplished in vivo, ex vivo, or in vitro.

The invention provides methods and compositions for transferring such expression constructs into calls, especially in vivo for performing the methods of the present invention. It is also an object of the invention to provide compositions for the treatment (including prevention) of the conditions listed above by providing for the prevention or repair of the underlying vascular injury and/or the associated damage to non-vascular tissues.

5

Delivery vehicles suitable for incorporation of a polynucleotide encoding a VEGF variant of the present invention for introduction into a host cell include non-viral vehicles and viral vectors. Verma and Somia (1997) *Nature* 389:239-242.

A wide variety of non-viral vehicles for delivery of a polynucleotide encoding a VEGF variant are known in the

10

art and are encompassed in the present invention. A polynucleotide encoding a VEGF variant can be delivered to a cell as naked DNA (U.S. Patent No. 5,692,622; WO 97/40163). Alternatively, a polynucleotide encoding a VEGF variant can be delivered to a cell associated in a variety of ways with a variety of substances (forms of delivery) including, but not limited to cationic lipids; biocompatible polymers, including natural polymers and synthetic polymers; lipoproteins; polypeptides; polysaccharides; lipopolysaccharides; artificial viral envelopes; metal particles; and bacteria. A delivery vehicle can be a microparticle. Mixtures or conjugates of these various substances can also be used as delivery vehicles. A polynucleotide encoding a VEGF variant can be associated non-covalently or covalently with these various

15

forms of delivery. Liposomes can be targeted to a particular cell type, e.g., to a glomerular epithelial cell.

20

Viral vectors include, but are not limited to, DNA viral vectors such as those based on adenoviruses, herpes simplex virus, poxviruses such as vaccinia virus, and parvoviruses, including adeno-associated virus; and RNA viral vectors, including, but not limited to, the retroviral vectors. Retroviral vectors include murine leukemia virus, and lantiviruses such as human immunodeficiency virus. Naldini et al. (1996) Science 272:263-267.

25

Non-viral delivery vehicles comprising a polynucleotide encoding a VEGF variant can be introduced into host cells and/or target cells by any method known in the art, such as transfection by the calcium phosphate coprecipitation technique; electroporation; electropermeabilization; liposome-mediated transfection; ballistic transfection; biolistic processes including microparticle bombardment, jet injection, and needle and syringe injection; or by microinjection. Numerous methods of transfection are known to the skilled worker in the field.

30

Viral delivery vehicles can be introduced into cells by infection. Alternatively, viral vehicles can be incorporated into any of the non-viral delivery vehicles described above for delivery into cells. For example, viral vectors can be mixed with cationic lipids (Hodgson and Solaiman (1996) Nature Biotechnol. 14:339-342); or lamellar liposomes (Wilson et al. (1977) Proc. Natl. Acad. Sci. USA 74:3471; and Faller et al. (1984) J. Virol. 49:269). For in vivo delivery, the delivery vehicle(s) can be introduced into an individual by any of a number of methods, each of which

35

is familiar in the art.

40

Further details of the present invention will be apparent from the following non-limiting Examples. All references cited throughout the specification, including the Examples, are hereby expressly incorporated by reference.

45

EXAMPLES

Example 1

35

50

Construction of Pichia pastoris Expression Plasmids for the C116S variant

24

: • •

5

Since the codon for Cys116 is near the 3' end of the VEGF₁₂₁ gene, the C116S mutation can be introduced by incorporating the mutation (TGT-Cys to TCT-Ser) in a reverse PCR primer that contains the Avril cloning site.

Oligonucleotide primers were constructed with the following sequences:

where the position of the mutation in the reverse primer is underlined. PCR amplification of the VEGF₁₂₁ coding sequences fused at the amino terminus to the alpha factor leader was conducted using as template DNA plasmids

pAN93 (wild type VEGF,₂₁) and pAN102 (N75Q VEGF₁₂₁) (Figures 15 and 16). Reaction mixtures consisted of the following in a 50µl final volume: 1 µl (0.1 µg) of template DNA, 5µl of a 10µM solution of each of the primers, 5µl of a 2.5mM dideoxynucleotide solution, 1µl VENT polymerase (New England Biolabs, Beverly, MA), and 5µl reaction

buffer supplied by the enzyme manufacturer. The temperature program (94C, 1 min.; 70°C, 1 min.) was repeated for 30 cycles. Five μ I of the resulting mixture was examined by electrophoresis and ethidium bromide staining on a 1% agarose gel and a band corresponding to the expected size of 647 bp was observed. The PCR product in each vector was recovered by use of a Spin Gene Clean Kit (Bio101, Vista CA) and eluted in a 18 μ I final volume. Both PCR

fragments as well as the recipient plasmid vector, pAN104 (Figure 17) were digested with EcoRI and AvrII at 37°C for 2 hours. DNA was recovered from the reaction using Spin Gene Clean, and purified on a 1% agarose gel and the single visible band was excised from each lane. DNA was purified from the gel slices using Spin Gene Clean. The PCR fragments were each ligated to the pAN104 EcoRI/AvrII vector fragment at 16 °C overnight and 5µI of each reaction

mixture was transformed into *E. coli* TOP10F' cells and plated on selective media containing 50 µg/ml zeocin (Invitrogen, Carlsbad, CA). Eight colonies from either the wild type or N750 mutant transformations were grown up for plasmid DNA preparation. These DNA preparations were digested with EcoRI and AvrII restriction enzymes and the resulting fragment sizes estimated using agarose gel electrophoresis. The expected 647bp band was present in all

but two of these digests and two of the correct DNA preparations were chosen for further work. The correct DNA sequence was confirmed using dideoxy chain termination sequencing. These plasmids were named pAN105 (C116S

10

Forward primer Oligo 1612:

GGGGGGGAATTCGATGAGATTTCCTTCAATTTTTACTGCA

(SEQ (D NO: 12)

15

Reverse primer Oligo 2524:

GGGGGGTCCTAGGTCACCGCCTCGGCTTGTCAGATTTTTCTTGTCTTG

(SEQ ID NO: 13)

20

10

15

30

25

30

35

40

45

50

Example 2

mutant) and pAN106 (N750, C116S mutant).

Expression of C116S VEGF121 and N750, C116S VEGF121 in Pichia pastoris

Plasmids pAN105 and pAN106 were digested with Sall to give linear DNA and transformed by

electroporation into *Pichia pastoris* strain GS115. Calls were selected for acquisition of histidine prototrophy by

25

PCT/US00/13536 WO 00/71713

plating on RDB plates and incubating at 30 °C. The resulting colonies were also checked for zeocin resistance by streaking on YEPD plates containing 100 µg/ml zeocin. Zeocin resistant transformants were screened for secretion of VEGF₁₂₁ into the media by first inoculating into 2ml BMGY medium and shaking at 30 °C overnight. Cells were then spun down and resuspended in BMMY medium and incubated in a 30 °C shaker for 48 hours to allow for induction of

VEGF₁₂₁ expression. For analysis of VEGF₁₂₁ expression, either 10 or 100 μ l of cell supernate was applied to a nitrocellulose membrane by filtration through a 96-well dot blot apparatus. Anti-human VEGF antibody (R&D Systems, Minneapolis, MN) was used to detect expression as per manufacturer's specifications. Each of two colonies tested for both pAN105 and pAN106 gave strong positive signals. These new strains were designated ABL191 & ABL192

(pAN105 transformants) and ABL193 and ABL194 (pAN106 transformants). For ABL191 and ABL193, the dot blots were repeated with serial 2-fold dilutions of the conditioned media. Anti-VEGF reactivity was detectable down to an

5

10

15

20

Example 3

equivalent of .025µl supernatant.

Fed-batch fermentation process

Materials

15

25

25

The compositions of the media and other materials used in the fed-batch fermentation process are shown in Tables 1-7.

Method

30

35

40

45

50

As described in Example 2, N750, C116S VEGF₁₂₁ was expressed in Pichia pastoris strain GS115 transformed with the expression construct pAN106 (strains ABL193 and ABL194). The host strain is methanol utilization proficient (mut*), capable of growth on methanol as a sole carbon and energy source. The expression construct directs the cell to secrete the VEGF variant into the culture medium in response to the inducer methanol.

Colonies of *P. pastoris* strain GS115 transformed with pAN106 were maintained at 4 °C on YPDS + zeocin plates. A streak plate from a colony was used to generate the inoculum for the fermentation. The inoculum was grown in a baffled, 500-ml shake flask containing 50 ml of YYG medium. The flask was inoculated with a single colony and grown overnight at 30 °C with shaking. The optical density (OD 500mm) of the resulting culture was 27. This culture was used to inoculate a 10-L fermentor containing 6.0 L of Pichia Fermentation Tank Medium. The temperature of the fermentation was controlled at 30 °C. The culture was agitated using an impeller rotation rate of 1000 rpm. The culture was aerated at 16.7 L/min. The pH of the culture was maintained with 2M phosphoric acid and 14.8 M ammonium hydroxide. During the initial batch phase of the fermentation the culture pH was maintained at 4.5. After approximately 17 hours of batch growth, the initial charge of glycerol had been exhausted as evidenced by a rapid rise in the dissolved oxygen (DO) level. The optical density at this time was approximately 60.

The rise in dissolved oxygen level triggered the initiation of the pre-induction phase of the culture, in which the glycerol feed was added at a controlled rate to maintain the DO level at 25% of saturation. The glycerol feed was continued for 4 hours. The induction phase was then initiated.

Initiation of the induction phase entailed terminating the glycerol feed, starting the methanol feed, and adjusting the culture pH. The maximum methanol feed rate was initially 20 ml/min. It was increased to 60 ml/min after 3 hours and increased to 120 ml/min after an additional 1 hour. The maximum methanol feed rate remained at 120 ml/min until harvest. The feed control was programmed to feed at less than the maximal rate if the DO level dropped below 25%. The pH was adjusted (over 1 hour) from 4.5 to 6.0 by addition of 14.8 M ammonium hydroxide. The optical density of the culture, when the methanol feed was initiated, was approximately 120.

Samples were taken from the fermentor every 2 to 4 hours during the day and early evening. Samples were plated to evaluate culture uniformity and viability. The culture pH of samples was measured to gauge whether the inline pH probe had drifted. The optical density of the samples was measured. As part of sampling during the induction phase, the methanol feed was turned off briefly and the time was measured for the DD to increase by 10%. This DO response time was used to gauge whether methanol was accumulating in the fermentor. Times greater than 2 minutes indicate overfeeding of methanol to a degree which may be toxic to the cells. All response times were 90 seconds or less.

Ninety hours after inoculation the fermentor was harvested. At harvest, the culture temperature was reduced to 25 °C and the culture pH adjusted to 4.0 by addition of 2M phosphoric acid. The final optical density of the culture was 410.

C116S VEGF₁₂₁ was fermented in an analogous fashion.

The fermentation broth was then clarified by centrifugation and the supernatant was filtered. Product in the filtered supernatant was then continuously processed by cation exchange chromatography (SP-Streamline,

Pharmacia). The material captured was further purified by reverse-phase HPLC (C4, YMC). The fraction were collected, and concentration of the VEGF variant was determined. For further details of purification see, e.g. Muller et al., Proc. Natl. Acad. Sci. USA 94:7192-7197 (1997).

Table 1

YYG Medium					
Ingredient	Amount				
Yeast Extract	10.0 g				
Yeast Nitrogen Base	13.4 g				
Biotin	0.4 mg				
Glycerol	20 mL				
1 M Potassium Phosphate Buffer (see below)	250 mL				
H ₂ O	Up to 1 L				
pH is approximately 6.0 without adjustment					
Sterilize with autoclave					

5

10

Table 2

1 M Potassium Phosphate Buffer					
KH ₂ PO ₄	118 g				
K₂HPO₄	23.0 g	<u> </u>			
H ₂ 0	Up to 1 L				
Adjust pH to 6.0 with NaOH					
Sterilize by filtration					

15

20

25

30

Table 3

YPDS + Zeocin Plates				
Ingredient	Amount			
Yeast Extract	10.0 g			
Sorbital	182.2 g			
Peptone	20.0 g			
Agar	20.0 g			
H ₂ O	900 mL			
Glucose*	40 g			
100 mg/ml Zeocin**	1.0 mL			

^{*}Sterilized separately with autoclave

5 **Sterilized separately by filtration

		Table 4			
35	PTM1 Trace Minerals with Biotin				
	Ingredient	Amount			
	CuSO ₄ 5H ₂ O	6.00 g			
	Nal	0.08 g			
40	MnSO ₄ H ₂ O	3.00 g			
	Na ₂ MoO ₄ 2H ₂ O	0.20 g			
	H ₃ BO ₃	0.02 g			
45	CoCl ₂ 6H ₂ O	0.91 g			
40	ZnCl ₂	20.00 g			
	FeCl ₃ 6H ₂ 0	20.78 g			
	H ₂ SO ₄	5.00 mL			
50	Biotin	0.2 g			
		39			

28

5 H₂O Up to 1.00 L Table 5 Pichia Fermentation Tank Medium 10 Ingredient Amount 85% H₃PO, 8.4 mL CaCl,2H,0 1.08 g 8.60 g K₂SO₄ 15 MgSO₄ 7.02 g KOH 1.95 g Peptone 10.0 g 20 Adjust pH to 4.5 (with NaOH) then add Glycerol 22.5 g Sterilize in fermentor then add PTM1 Trace Minerals with Biotin (see below) 4.0 mL 25 8.0 mL 0.20 g/L Biotin Table 6 Glycerol Feed 30 Ingredient Amount 500 mL Glycerol Up to 1000 mL Water Sterilize in autoclave and then add 35 PTM1 Trace Minerals with Biotin 12.0 mL 5 Table 7 40 Methanol Feed Ingredient Amount 11 Methanol Filter sterilize and then add 45 PTM1 Trace Minerals with Biotin 12.0 mL Example 4 HUVE cell proliferation assay - BrdU ELISA 50

PCT/US00/13536 WO 00/71713

5

10

15

20

25

30

35

40

45

Assav

96-well plates were coated with human fibronectin (Sigma; 1µg/100µl/well) in phosphate-buffered saline (PBS). The plates were incubated at room temperature for 45 minutes, the fibronectin solution was aspirated, and the plates were dried for 20-30 minutes open to air. Cells (HUYEC, Clonetics) were than plated at 10000 cells/100µl/well in serum free medium) human endothelial cell serum free medium; (Gibco) + 2% fetal bovine serum (FBS), leaving the first column cell-free to act as a blank. The cells were incubated at 37 °C, 5% CD_2 overnight (18-24 hours). The medium was changed to 100 μl/well serum free medium + 1% FBS, and the plates were incubated at 37 °C, 5% CO₂ for 24 hours to allow the cells to quiesce.

VEGF₁₂₁ standards and the samples to be tested were diluted serially 1:3 in serum-free medium + 0.1%

human serum albumin (HSA, Sigma). 10 µl of the dilutions were added to the wells, which were incubated at 37°C, 5% CO₂ for 24 hours. BrdU solution from the Cell Proliferation USA kit (Boehringer Mannheim) was diluted 1:100 with Gibco serum-free medium, and 12 μ l of this solution was added to each well. The plates were then incubated at 37°C, 5% CO₂ for 4.5 hours. BrdU was omitted for the wells used as background control.

After the 4-5 hours incubation, the medium was aspirated, 200 μ l FixDeNat solution was added to each well, and the plates were incubated at room temperature for 30 minutes. FixDeNat was thoroughly aspirated, 100 μl anti-BrdU-POD (anti-BrdU-peroxidase) antibody solution were added to each well (1:100 dilution of anti-BrdU-POD into PBS + 0.05% Tween20 + 0.5% HSA), and the plates were incubated at room temperature for 90 minutes. Wells were washed three times with 300 μ l/well of PBS + 0.05% Tween20, and 100 μ l TMB substrate was added. This was followed by incubation for 20-30 minutes until the color was sufficient for colorimetric reading, whereupon 50 μl sulfuric acid (5N) was added, and colorimetric reading was performed at an absorbance of 450 nm.

15

20

The results are shown in Figures 13 and 14. The graphs depict the amount of DNA synthesis that was stimulated in response to serial dilutions of Pichia-derived N750 VEGF₁₂₁ vs. N750,C116S VEGF₁₂₁. The X axis of each graph represents the final concentration of added growth factor in the assay wells, expressed as ng/ml. The y axis represents the optical density recorded in each well after use of the BrdU kit (Boehringer Mannheim) to detect incorporated bromodeoxyuridine at the end of the assay.

In the case of the experiment shown in Figure 13, the ED₅₀ (effective dose of growth factor needed to achieve a half-maximal proliferation response) for N170, C116S VEGF₁₂₁ was 1.72 ng/ml, while N750 VEGF₁₂₁ showed an ED $_{50}$ of 3.09 ng/ml. In the experiment shown in Figure 14, the ED $_{50}$'s for N750, C116S VEGF $_{121}$ and N750 VEGF $_{121}$ were 2.86 and 8.02 ng/ml, respectively. Thus, in each case, the N750, C116S VEGF₁₂₁ variant was significantly more potent than N75Q VEGF₁₂₁ in promoting DNA synthesis (by 1.7 to 2.8-fold).

50

55

Claims

5 Claims: A method of enhancing the biological activity of a vascular endothelial growth factor (VEGF) 1. originally having a cysteine (C) residue at a position corresponding to amino acid position 116 of the 121 amino acids 10 long native mature human VEGF (hVEGF₁₂₁), comprising eliminating said cysteine (C) residue to produce a VEGF variant. 2. The method of claim 1 wherein said cysteine (C) residue is eliminated by site-directed mutagenesis of the encoding nucleic acid sequence. The method of claim 1 wherein said cysteine (C) residue is substituted by the residue of another 15 amino acid. The method of claim 3 wherein said other amino acid is serine (S). 10 4. The method of claim 3 wherein, apart from the substitution at position 116, said VEGF variant 5. retains the amino acid sequence of hVEGF121 (Figure 3, SEQ ID NO: 2). 20 6. The method of claim 5 wherein said VEGF variant is C116S hVEGF121. The method of claim 1 wherein said VEGF additionally comprises a glycosylation site at a position 7. corresponding to amino acid positions 75-77 of hVEGF₁₂₁. The method of claim 7 comprising removing N-linked plycosylation at said plycosylation site. 25 The method of claim 7 wherein said glycosylation site is removed by site-directed mutagenesis of the nucleic acid encoding the underlying glycosylation signal.

10. The method of claim 9 wherein said glycosylation site is removed by amino acid substitution for at least one residue in the asparagine-isoleucine-threonine (N-I-T) glycosylation site at positions 75-77.

- 11. The method of claim 10 wherein asparagine (N) at position 75 is substituted by another amino acid.
 - 12. The method of claim 11 wherein said other amino acid is glutamine (0).
 - 13. The method of claim 12 wherein said VEGF variant is N750, C116S hVEGF121.
- 25 14. The method of claim 1 wherein said VEGF additionally comprises an N-terminal deletion compared to a native human VEGF (hVEGF).
 - 15. The method of claim 8 wherein said VEGF additionally comprises an N-terminal deletion compared to a native human VEGF (hVEGF).
 - The method of claim 1 wherein said VEGF additionally comprises an N-terminal substitution compared to a native human VEGF (hVEGF).
 - 17. The method of claim 8 wherein said VEGF additionally comprises an N-terminal substitution compared to a native human VEGF (hVEGF).
 - 18. The method of claim 16 wherein said substitution is within the first 10 amino acids of a hVEGF.
 - 19. The method of claim 18 wherein said substitution is at amino acid position 5 of a hVEGF.

50

55

45

30

35

20

5		20. The method of claim 19 comprising the substitution of glutamic acid by aspartic acid at amino acid	o acid
		position 5 of a hVEGF.	
		21. A variant of a native vascular endothelial growth factor (VEGF) having a cysteine (C) residue at	at
		amino acid position 116 and a glycosylation site at amino acid positions 75-77, comprising the substitution of said	aid
10	5	cysteine (C) by another amino acid and having said glycosylation site removed, wherein the amino acid numbering	9
		follows the numbering of the 121 amino acids long native human VEGF (hVEGF121), and wherein said variant has	s
		enhanced biological activity compared to hVEGF121.	
45		22. The variant of claim 21 wherein said cysteine (C) is substituted by serine (S).	
15		23. The variant of claim 22 wherein the removal of said glycosylation site is accomplished by site	9
	10	directed mutagenesis of the nucleic acid sequence encoding the glycosylation signal.	
		24. The variant of claim 23 wherein said glycosylation site is removed by amino acid substitution for at	for at
20		least one residue in the asparagine-isoleucine-threonine (N-I-T) glycosylation site at positions 75-77.	
		25. The variant of claim 24 wherein asparagine (N) at amino acid position 75 is substituted by	
		glutamine (Q).	
	15	26. A composition comprising a VEGF variant of claim 21 in admixture with a pharmaceutically	
25		acceptable excipient.	
		27. The composition of claim 26 comprising a VEGF variant of claim 25.	
		28. A method of inducing angiogenesis or vascular remodeling comprising administering to a patient in	nt in
		need a VEGF variant having a cysteine (C) residue at amino acid position 116 substituted by another amino acid, and a	and a
30	20	glycosylation site at amino acid positions 75-77 removed, wherein the amino acid numbering follows the numbering of	ing of
		the 121 amino acids long native human VEGF (hVEGF121).	
		29. A method for the prevention or repair of injury to blood vessels comprising administering to a	
35		patient in need an effective amount of a VEGF variant having a cysteine (C) residue at amino acid position	ion
33		116 substituted by another amino acid, and a glycosylation site at amino acid positions 75-77 removed, wherein the	the
	25	amino acid numbering following the numbering of the 121 amino acids long native human VEGF (hVEGF121).	
		30. The method of claim 29 wherein said injury is associated with microvascular angiopathy.	
40		31. The method of claim 30 wherein said microvascular angiopathy is thrombotic microangiopathy	y
		(TMA).	
		32. The method of claim 29 wherein said injury is associated with hemolytic uremic syndrome (HUS).	US).
	30	33. A method for the treatment of essential hypertension comprising administering to a patient in need	
45		an effective amount of a VEGF variant having a cysteine (C) residue at amino acid position 116 substituted	uted
		by another amino acid, and a glycosylation site at amino acid positions 75-77 removed, wherein the amino acid	
		numbering follows the numbering of the 121 amino acids long native human VEGF (hVEGF121).	
		34. An article of manufacture comprising a VEGF variant having a cysteine (C) residue at amino acid	
50	35	position 116 substituted by another amino acid, and a glycosylation site at amino acid positions 75-77	
		32	

55

5	removed, wherein the amino acid numbering follows the numbering of the 121 amino acids long native human				
		(hVEGF121);			
		a cont	ainer; and		
		a label	or package insert comprising instructions for administration of said VEGF variant.		
10	5	3 5.	The article of manufacture of claim 34 wherein said instructions concern the treatment of		
		coronary artery	disease.		
		36.	The article of manufacture of claim 35 wherein said instructions concern the treatment of		
		peripheral arteria	al disease.		
15			,		
	10				
20					
25					
30					
35					
J					
40					
45					
50					
•			33		

55

FIGURE 1

WO 00/71713

2 / 17

hVEGF121

WO 00/71713

hVEGF121

3 / 17

MNFLLSWVHWSLALLLYLHHAKWSQA PPMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVDIFQEY PDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCEC RPKKDRARQEKCDKPRR

hVEGF145

4 / 17

FIGURE 4

.

WO 00/71713

hVEGF145

5 / 17

APMAEGGGGNHHEVVKFMDVYGRSYCHPIETLVDIFGEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECV PTEESNITMGIMRIKPHGGGHIGEMSFLGHNKCECRPKXDRARGEKKSVRGKGKGGKRKKXXGSRYKSW SVCDKPRR

FIGURE 5

. .

PCT/US00/13536

WO 00/71713

hVEGF 165

6 / 17

ATGAACTTTCTGCTGTCTTGGGTGCATTGGAGCCTCGCCTTGCTGCTCTACCTCCACCATGCCAA GTGGTCCCAGGCTGCACCATGCCAAGAAGGAGGAGGAGGAGGAATCATCACGAAGTGGTGAAGTTCA TGGATGTCTATCAGCGAGCTACTGCCATCCAATCGAGACCCTGGTGGACATCTTCCAGGAGTAC CCTGATGAGATCGAGTACATCTTCAAGCCATCCTGTGTGCCCCTGATGCGATGCGGGGCTGCTG CAATGACGAGGGCCTGGAGTGTGCCCACTGAGGAGTCCAACATCACCATGCAGATTATGCGGA TCAAACCTCACCAAGGCCAGCAACAAAATGTGAATGC AGACCAAAAGAAAGATAGAGCAAGAAAATCCCTGTGGGCCTTGCTCAGAGCGAGAAAAGCA AGACCAAGAATGTGAATGC AGACCAAAAAAAAACACAGACTCGCGTTGCAAAGC CGAGGCAGCTTGATGAAGGC CGAGGCAGCTTGAAAAACCAGACTCGCGTTGCAAAGC CGAGGCAGCTTGATTAAACGAACGTACTTGCAGATGTGACAAGCCGAGGCGGTGA

WO 00/71713

hVEGF165

7 / 17

MNFLLSWVHWSLALLLYLHHAKWSQAAPMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVDIFQEY PDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCEC RPKKDRARQENPCGPCSERRKHLFVQDPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR

hVEGF189

8 / 17

hVEGF189

9 / 17

MNFLLSWVHWSLALLLYLHHAKWSQAAPMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVDIFQEY PDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCEC RPKKDRARQEKKSVRGKGKGKKKKKKSRYKSWSVPCGPCSERRKHLFVQDPQTCKCSCKNTDSR CKARQLELNERTCRCDKPRR

WO 00/71713

hVEGF 206

10 / 17

FIGURE 10

.

11 / 17

hVEGF206

 ${\tt MNFLLSWVHWSLALLLYLHHAKWSQAAPMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVDIFQEY} \\ {\tt PDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCEC} \\$ RPKKDRARQEKKSVRGKGKGQKRKRKKSRYKSWSVYVGARCCLMPWSLPGPHPCGPCSERRKHLF VQDPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR.

hVEGF110

12 / 17

APMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPSCVPLMRCGGCCNDEG LECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCECRPKKDR

13 / 17

FIGURE 13

14 / 17

FIGURE 14

15 / 17

FIGURE 15

16 / 17

FIGURE 16

FIGURE 17

SEQUENCE LISTING

```
<110> N. Stephen Pollitt
       Judith A. Abraham
<120> Vascular endothelial growth factor
       variants
<130> SCIOSOO4VPC
<150> US 60/135,312
<151> 1999-05-20
<160> 11
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 444
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)...(441)
<400> 1
atg aac ttt ctg ctg tct tgg gtg cat tgg agc ctt gcc ttg ctg ctc
                                                                        48
tac ctc cac cat gcc aag tgg tcc cag gct gca ccc atg gca gaa gga
                                                                        96
gga ggg cag aat cat cac gaa gtg gtg aag ttc atg gat gtc tat cag
                                                                       144
cgc agc tac tgc cat cca atc gag acc ctg gtg gac atc ttc cag gag
                                                                       192
tac cct gat gag atc gag tac atc ttc aag cca tcc tgt gtg ccc ctg
                                                                       240
atg cga tgc ggg ggc tgc tgc aat gac gag ggc ctg gag tgt gtg ccc act gag gag tcc aac atc acc atg cag att atg cgg atc aaa cct cac
                                                                       336
caa ggc cag cac ata gga gag atg agc ttc cta cag cac aac aaa tgt
                                                                       384
gaa tgc aga cca aag aaa gat aga gca aga caa gaa aaa tgt gac aag
                                                                       432
ccg agg cgg tga
```

<210> 2 <211> 147 <212> PRT

1

<213> Homo sapiens <400> 2 Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu 10 Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly 25 20 Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln 4.5 35 40 Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu 50 55 60 Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu 75 Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro 90 85 Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His 105 110 100 Gin Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys 120 125 115 Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Cys Asp Lys 130 135 140 Pro Arg Arg 145

```
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1) ... (513)
<400> 3
                                                                    48
atg aac ttt ctg ctg tct tgg gtg gat tgg agc ctt gcc ttg ctg ctc
tac ctc cac cat gcc aag tgg tcc cag gct gca ccc atg gca gaa gga
                                                                    96
gga ggg cag aat cat cac gaa gtg gtg aag ttc atg gat gtc tat cag
                                                                   144
                                                                   192
ege age tae tge cat cea ate gag ace etg gtg gae ate tte eag gag
tac cct gat gag atc gag tac atc ttc aag cca tcc tgt gtg ccc ctg
                                                                   240
atg cga tgc ggg ggc tgc tgc aat gac gag ggc ctg gag tgt gtg ccc
                                                                   288
act gag gag too aac atc acc atg cag att atg cgg atc aaa cct cac
                                                                    336
caa ggc cag cac ata gga gag atg agc ttc cta cag cac aac aaa tgt
                                                                   384
gaa tgc aga cca aag aaa gat aga gca aga caa gaa aaa aaa tca gtt
                                                                    432
cga gga aag gga aag ggg caa aaa cga aag cgc aag aaa tcc cgg tat
                                                                    480
                                                                   516
aag too tgg age gta tgt gac aag ccg agg cgg tga
```

<210> 3 <211> 516

```
<210> 4
<211> 171
<212> PRT
<213> Homo sapiens
<400> 4
Ala Pro Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys
                               10
1 5
Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu
                                                30
                             25
           20
Val Asp Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys
                                            45
       35
                          40
Pro Ser Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn Asp Glu
                     55
                                        60
Gly Leu Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr Met Gln Ile
                                      75
65
                70
Met Arg Ile Lys Pro His Gln Gly Gln His Ile Gly Glu Met Ser Phe
             85
                                90
Leu Gln His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg
                             105
                                                 110
          100
Gln Glu Lys Lys Ser Val Arg Gly Lys Gly Lys Gly Gln Lys Arg Lys
      115
                         120
                                             125
Arg Lys Lys Ser Arg Tyr Lys Ser Trp Ser Val Cys Asp Lys Pro Arg
                     135
                                         140
Arg
145
<210> 5
<211> 576
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)...(573)
<400> 5
atg aac ttt ctg ctg tct tgg gtg cat tgg agc ctc gcc ttg ctc
                                                            48
tac ctc cac cat gcc aag tgg tcc cag gct gca ccc atg gca gaa gga
                                                            96
gga ggg cag aat cat cac gaa gtg gtg aag ttc atg gat gtc tat cag
                                                           144
cgc agc tac tgc cat cca atc gag acc ctg gtg gac atc ttc cag gag
                                                           192
```

240

288

336

tac cct gat gag atc gag tac atc ttc aag cca tcc tgt gtg ccc ctg

atg cga tgc ggg ggc tgc tgc aat gac gag ggc ctg gag tgt gtg ccc

act gag gag tcc aac atc acc atg cag att atg cgg atc aaa cct cac

```
Caa ggc cag cac ata gga gag atg agc ttc cta cag cac aac aaa tgt 384 gaa tgc aga cca aag aaa gat aga gca aga caa gaa aat ccc tgt ggg 432 cct tgc tca gag cgg aga aag cat ttg ttt gta caa gat ccg cag acg 480 tgt aaa tgt tcc tgc aaa aac aca gac tcg cgt tgc aag gcg agg cag 528 ctt gag tta aac gaa cgt act tgc aga tgt gac aag ccg agg cgg tga.
```

```
<210> 6
<211> 191
<212> PRT
<213> Homo sapiens
<400> 6
Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu
1
                                10
                                                   15
Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly
          20
                             25
Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln
 35
                         40
Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu
 50
                     55
Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu
65
                  70
                                   75
Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro
                                 90
                                                  95
Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His
          100
                            105
                                               110
Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys
     115
                       120
                                           125
Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Asn Pro Cys Gly
 130
                135
                                       140
Pro Cys Ser Glu Arg Arg Lys His Leu Phe Val Gln Asp Pro Gln Thr
145
                  150
                                    155
Cys Lys Cys Ser Cys Lys Asn Thr Asp Ser Arg Cys Lys Ala Arg Gln
             165
                              170
                                        175
```

<210> 7 <211> 642 <212> DNA <213> Homo sapiens

Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys Asp Lys Pro Arg Arg

185

<220> <221> CDS

<222> (1)...(639)

130

```
<400> 7
                                                                 48
atg aac tit ctg ctg tct tgg gtg cat tgg agc ctc gcc ttg ctg ctc
tac ctc cac cat gcc aag tgg tcc cag gct gca ccc atg gca gaa gga
                                                                 96
gga ggg cag aat cat cac gaa gtg gtg aag ttc atg gat gtc tat cag
                                                                144
ege age tae tge cat cea ate gag ace etg gtg gae ate tte eag gag
                                                                192
tac cct gat gag atc gag tac atc ttc aag cca tcc tgt gtg ccc ctg
                                                                240
atg cga tgc ggg ggc tgc tgc aat gac gag ggc ctg gag tgt gtg ccc
                                                                288
act gag gag tcc aac atc acc atg cag att atg cgg atc aaa cct cac
                                                                336
caa ggc cag cac ata gga gag atg agc ttc cta cag cac aac aaa tgt
                                                                384
gao tgc aga cca aag aaa gat aga gca aga caa gaa aaa aaa tca gtt
                                                                432
cga gga aag ggg caa aaa cga aag cgc aag aaa tcc cgg tat
                                                                480
aag too tgg ago gtg ggg cot tgc toa gag cgg aga aag cat ttg ttt
                                                                528
                                                                576
gta caa gat ccg cag acg tgt aaa tgt tcc tgc aaa aac aca gac tcg
cgt tgc aag gcg agg cag ctt gag tta aac gaa cgt act tgc aga tgt
                                                                624
gac aag ccg agg cgg tga
<210> 8
<211> 213
<212> PRT
<213> Homo sapiens
<400> 8
Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu
                                   10
Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly
                                 25
Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln
       35
                           40
                                               4.5
Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu
   50
                        55
                                            60
Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu
                    70
                                       75
Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro
               85
                                   90
Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His
                                105
            100
                                                     110
Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys
                          120
                                                125
       115
Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Lys Ser Val
```

135

Arg Gly Lys Gly Lys Gly Gln Lys Arg Lys Arg Lys Ser Arg Tyr

Lys Ser Trp Ser Val Gly Pro Cys Ser Glu Arg Arg Lys His Leu Phe

Val Gln Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn Thr Asp Ser

Arg Cys Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys

200

185

155

175

672

699

190

170

150

165

180

195

```
Asp Lys Pro Arg Arg
    210
<210> 9
<211> 699
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)...(696)
<400> 9
atg aac ttt ctg ctg tct tgg gtg cat tgg agc ctc gcc ttg ctg ctc
                                                                    48
tac ctc cac cat gcc aag tgg tcc cag gct gca ccc atg gca gaa gga
gga ggg cag aat cat cac gaa gtg gtg aag ttc atg gat gtc tat cag
                                                                   144
cgc agc tac tgc cat cca atc gag acc ctg gtg gac atc ttc cag gag
                                                                   192
tac cct gat gag atc gag tac atc ttc aag cca tcc tgt gtg ccc ctg
                                                                   240
atg cga tgc ggg ggc tgc tgc aat gac gag ggc ctg gag tgt gtg ccc
                                                                   288
act gag gag tcc aac atc acc atg cag att atg cgg atc aaa cct cac
                                                                   336
caa ggc cag cac ata gga gag atg agc ttc cta cag cac aac aaa tgt
                                                                   384
gaa tgc aga cca aag aaa gat aga gca aga caa gaa aaa aaa tca gtt
                                                                   432
cga gga aag gga aag ggg caa aaa cga aag cgc aag aaa tcc cgg tat
                                                                   480
aag too tgg age gtg tae gtt ggt gee ege tge tgt eta atg eee tgg
                                                                   528
age etc ect gge ecc cat ecc tgt ggg ect tge tea gag egg aga aag
                                                                   576
catilitig tit gta caa gat ccg cag acg tgt aaa tgt tcc tgc aaa aac
                                                                   624
```

<210> 10 <211> 232 <212> PRT <213> Homo sapiens

tgc aga tgt gac aag ccg agg cgg tga

aca gac tcg cgt tgc aag gcg agg cag ctt gag tta aac gaa cgt act

```
<400> 10
Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu
1 5 10
Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly
         20
                      25
Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln
          40 45
Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu
           55
Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu
65 70
                      75
Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro
           85
                     90
Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His
                      105
         100
                                        110
Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys
                     120
                             125
    115
Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Lys Ser Val 130 $135\ 
Arg Gly Lys Gly Lys Gly Gln Lys Arg Lys Arg Lys Ser Arg Tyr
                            155
145 150
Lys Ser Trp Ser Val Tyr Val Gly Ala Arg Cys Cys Leu Met Pro Trp
        165 170 175
Ser Leu Pro Gly Pro His Pro Cys Gly Pro Cys Ser Glu Arg Arg Lys
180 185 190
His Leu Phe Val Gln Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn
             200
                                     205
Thr Asp Ser Arg Cys Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr
210 215
Cys Arg Cys Asp Lys Pro Arg Arg
              230
```

<210> 11

<211> 110

<212> PRT

<213> Homo sapiens

<400> 11

Ala Pro Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys 1 5 10 15

Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu 20 25 30

Val Asp Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys 35 40 45

 Pro
 Ser
 Cys
 Val
 Pro
 Leu
 Met
 Arg
 Cys
 Gly
 Gly
 Cys
 Asn
 Asp
 Glu

 Gly
 Leu
 Glu
 Cys
 Val
 Pro
 Thr
 Glu
 Glu
 Ser
 Asn
 Ile
 Thr
 Met
 Gln
 Ile
 B0

 Met
 Arg
 Ile
 Lys
 Pro
 His
 Gln
 Gln
 His
 Ile
 Gly
 Glu
 Met
 Ser
 Phe

 B
 B
 Lys
 Cys
 Glu
 Cys
 Arg
 Pro
 Lys
 Asp
 Arg

 Leu
 Gln
 His
 Asn
 Lys
 Cys
 Glu
 Cys
 Arg
 Pro
 Lys
 Lys
 Asp
 Arg

INTERNATIONAL SEARCH REPORT

In atlanel Application No PCT/US 00/13536

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C12N15/12 C07K14/52 A61K38/	18	
	10 Charles (IDC) as to hath and and already	retion and IDC	
	o International Patent Classification (IPC) or to both national classific	auth and it o	
	SEARCHED boumentation searched (classification system followed by classificat C12N C07K A61K	ion symbols)	
Documental	tion searched other than minimum documentation to the extent that	such documents are included in the fields or	surched
Electronic d	late base consulted during the international search (name of data be	see and, where practical, search terms used)
EPO-In	ternal, WPI Data		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with Indication, where appropriate, of the re	levant passages	Relevant to claim No.
X	WO 91 02058 A (CALIFORNIA BIOTEC INC) 21 February 1991 (1991-02-2 cited in the application page 8, line 15 - line 34		1-7
	page 9, line 10 - line 23		
A	examples 1-13		7-36
A	WO 97 08313 A (GENENTECH INC ;KE (US); NGUYEN FRANCIS HUNG (US); 6 March 1997 (1997-03-06) tables 4-6	YT BRUCE Ferrara)	7-36
		-/	
	·		
X Furt	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special co	stegories of cited documents :	"T" later document published after the inte	emetional fling date
'A' docum	ent defining the general state of the art which is not dened to be of perticular relevance	"T" later document published after the inte or priority data and not in conflict with cited to understand the principle or th invention	eory underlying the
'E' earlier	document but published on or after the international date	"X" document of perticular relevance; the cannot be considered novel or canno	claimed invention t be considered to
"L" docum	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special resean (as specified)	involve an inventive step when the do "Y" document of particular relevance; the	ocument is taken alone claimed invention
O docum	on or other special reason (as specified) tent referring to an oral disclosure, use, exhibition or means	cannot be considered to involve an in document is combined with one or m ments, such combination being obvio	eventive step when the one other such docu-
P docum	ent published prior to the international filing date but then the priority date claimed	in the art. "&" document member of the same potent	tamily
Date of the	actual completion of the international search	Date of mailing of the international se	erch report
1	ll October 2000	18/10/2000	
Name and	mailing address of the ISA European Patent Office, P.B. 5816 Patentiasn 2 NL – 2200 HV Riber(K Tel. (+31–70) 340–2040, T.r. 31 851 epo nl, Fax: (+31–70) 340–3016	Authorized officer Galli, I	

Form PCT/ISA/210 (second sheet) (July 1992

INTERNATIONAL SEARCH REPORT

int tional Application No PCT/US 00/13536

ontinuation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
gory * Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.
CLAFFEY K P ET AL: "STRUCTURAL REQUIREMENTS FOR DIMERIZATION, GLYCOSYLATION, SECRETION, AND BIOLOGICAL FUNCTION OF VPF/VEGF" BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES, AMSTERDAM, NL, vol. 1246, 1995, pages 1-9, XP000939331 ISSN: 0005-2736 the whole document	1-36
KECK R G ET AL: "DISULFIDE STRUCTURE OF THE HEPARIN BINDING DOMAIN IN VASCULAR ENDOTHELIAL GROWTH FACTOR: CHARACTERIZATION OF POSTTRANSLATIONAL MODIFICATIONS IN VEGF" ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, NEW YORK, US, US, vol. 344, no. 1, 1 August 1997 (1997-08-01), pages 103-113 XP000939334 ISSN: 0003-9861 the whole document	1-36
POETGENS A J G ET AL: "COVALENT DIMERIZATION OF VASCULAR PERMEABILITY FACTOR/VASCULAR ENDOTHELIAL GROWTH FACTOR IS ESSENTIAL FOR ITS BIOLOGICAL ACTIVITY. EVIDENCE FROM CYS TO SER MUTATIONS" JOURNAL OF BIOLOGICAL CHEMISTRY, US, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTRY, US, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, vol. 269, no. 52, 30 December 1994 (1994-12-30), pages 32879-32885, XP000578214 ISSN: 0021-9258 the whole document	
WO 98 16551 A (FERRARA NAPOLEONE ;NGUYEN FRANCIS HUNG (US); GENENTECH INC (US); K) 23 April 1998 (1998-04-23) abstract	1-36

1 Form PCT//SA/210 (continuetion of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int ...tional Application No PCT/US 00/13536

Patent document cited in search repor	t	Publication date	Patent family member(s)	Publication date
WO 9102058	A	21-02-1991	US 5194596 A	16-03-1993
			AT 142693 T	15-09-1996
			AU 6079890 A	11-03-1991
			CA 2063810 A	28-01-1991
			DE 69028535 D	17-10-1996
			DE 69028535 T	10-04-1997
			DK 484401 T	30-09-1996
			EP 0484401 A	13-05-1992
			ES 2094159 T	16-01-1997
			JP 10309191 A	24-11-1998
			JP 5501350 T	18-03-1993
			US 5219739 A	15-06-1993
WO 9708313	Α	06-03-1997	US 6020473 A	01-02-2000
WO 3700313	•	00 00 1771	AU 6857296 A	19-03-1997
			EP 0851920 A	08-07-1998
			JP 10511557 T	10-11-1998
			US 6057428 A	02-05-2000
WO 9816551	Α	23-04-1998	AU 718327 B	13-04-2000
WO 1010331	••		AU 5152398 A	11-05-1998
			EP 0931092 A	28-07-1999
			JP 2000507456 T	20-06-2000

Form PCT/ISA/210 (patent family annex) (July 1992)