Exam 2: "Cheat Sheet"

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1)$$

2. $\int \frac{1}{x} dx = \ln |x|$

3. $\int e^x dx = e^x$

4. $\int a^x dx = \frac{a^x}{\ln a}$

5. $\int \sin x dx = -\cos x$

6. $\int \cos x dx = \sin x$

7. $\int \sec^2 x dx = \tan x$

8. $\int \csc^2 x dx = -\cot x$

9. $\int \sec x \tan x dx = \sec x$

10. $\int \csc x \cot x dx = -\csc x$

11. $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$

- 13. A sequence $\{a_n\}$ has **limit** L if for every $\epsilon > 0$ there is an integer N such that $|a_n L| < \epsilon$ whenever
- 14. $\lim_{n\to\infty} a_n = \infty$ means for every positive number M there is an integer N such that $a_n > M$ whenever
- 15. Squeeze Theorem. If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = 1$
- 16. **Theorem.** If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

6. $\int \cos x \, dx = \sin x$

- 17. $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.
- 18. **Theorem.** Every bounded, monotonic sequence is convergent.
- 19. The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ is convergent if |r| < 1 and its sum is $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$. If $|r| \ge 1$, the geometric series is divergent.
- 20. Test for Divergence. If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- 21. The Integral Test. Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. The the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_1^{\infty} f(x) dx$ is
- 22. Remainder Estimate for the Integral Test. If a_n converges by the Integral Test and $R_n = s s_n$, then

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_{n}^{\infty} f(x) \, dx$$

- 23. The Comparison Test. Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.
 - (a) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is convergent.
 - (b) If $\sum b_n$ is divergent and $a_n \geq b_n$ for all n, then $\sum a_n$ is divergent.
- 24. Limit Comparison Test. Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.
 - (a) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then either both series converge or both diverge.
 - (b) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ also converges.
 - (c) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ also diverges.

- 25. The Alternating Series Test. If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1}b_n$ satisfies (a) $b_{n+1} \leq b_n$ for all n and (b) $\lim_{n\to\infty} b_n = 0$ then the series is convergent.
- 26. Alternating Series Estimation Theorem. If $s = \sum (-1)^{n-1}b_n$ is the sum of an alternating series that satisfies (a) and (b) above, then $|R_n| = |s s_n| \le b_{n+1}$
- 27. A series $\sum a_n$ is absolutely convergent if $\sum |a_n|$ is convergent and conditionally convergent if $\sum a_n$ is convergent but not absolutely convergent.
- 28. The Ratio Test
 - (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
 - (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or is infinity, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- 29. The Root Test
 - (a) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
 - (b) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or is infinity, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- 30. **Theorem.** For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only three possibilities: (i) The series converges only when x=a. (ii) The series converges for all x. (iii) There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R.
- 31. **Theorem.** If $\sum c_n(x-a)^n$ has radius of convergence R>0 then the function $f(x)=\sum_{n=0}^{\infty}c_n(x-a)^n$ is differentiable on (a-R,a+R) and
 - (a) $f'(x) = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$
 - (b) $\int f(x) dx = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$, each with radius of convergence R.
- 32. **Theorem.** If f has a power series representation at a, that is, if $f(x) = c_n(x-a)^n$ for |x-a| < R, then its coefficients are of the form $\frac{f^{(n)}(a)}{a!}$
- 33. **Taylor's Formula.** If f has n+1 derivatives in an interval I that contains the number a, then for x in I there is a number z strictly between x and a such that the remainder term in the Tayler series can be expressed as

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-a)^{n+1}$$

34.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
. IOC=(-1,1).

35.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
. IOC= $(-\infty, \infty)$.

36.
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
. IOC= $(-\infty, \infty)$.

37.
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
. IOC= $(-\infty, \infty)$.

38.
$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
. IOC=[-1,1].

39. The Binomial Series If k is any real number and |x| < 1, then $(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n$ where $\binom{k}{n} = \frac{k(k-1)\cdots(k-n+1)}{n!}$ for $n \ge 1$ and $\binom{k}{0} = 1$.