Задачи теория за първо контролно за курса 'Операционни системи', 23-31.03.2019 г.

Задача 4. СИ Всеки от процесите Р и Q изпълнява поредица от три инструкции:

process P	process Q
p_1	q_1
p_2	q_2
p_3	q_3

Осигурете чрез два семафора синхронизация на P и Q така, че да са изпълнени едновременно следните времеви зависимости:

- (1) инструкция р_1 да се изпълни преди q_2
- (2) инструкция q_2 да се изпълни преди p_3
- (3) инструкция q_1 да се изпълни преди p_2
- (4) инструкция р_2 да се изпълни преди q_3

Забележка: За решение с повече семафори ще получите 20 точки.

Задача 4. КН1 Всеки от процесите Р, Q и R изпълнява поредица от три инструкции:

process P	process Q	process R
p_1	$q_{-}1$	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на P, Q и R така, че да са изпълнение едновременно условията:

- (1) инструкция р_1 да се изпълни преди q_2 и r_2.
- (2) инструкция р_3 да се изпълни след q_2 и r_2.

Задача 4. КН2 Всеки от процесите Р, Q и R изпълнява поредица от две инструкции:

process P	process Q	process R
p_1	q_1	r_1
p_2	q_2	r_2

Осигурете чрез три семафора синхронизация на P, Q и R така, че отделните инструкции да се изпълнят в следния времеви ред:

Примерни решения

Задача 4. СИ Условията (1) и (3) определят времева среща (randevouz) на процесите след първата им инструкция.

Аналогично, (2) и (4) определят randevouz на процесите след втората им инструкция.

За двате срещи използваме два семафора – t1 и t2, инициализираме ги с блокиращо начално състяние:

```
semaphore t1,t2
t1.init(0)
t2.init(0)
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

```
process P
                           process Q
 p_1
                             q_1
                             t2.signal()
  t1.signal()
  t2.wait()
                             t1.wait()
 p_2
                             q_2
  t1.signal()
                             t2.signal()
  t2.wait()
                             t1.wait()
 p_3
                             q_3
```

Инструкцията q_2 ще се изпълни след като броячът на семафора t1 стане положителен. Това се случва след изпълнението на ред t1.signal(), който следва инструкция p_1.

Аналогично, инструкцията p_2 ще се изпълни след като броячът на семафора t2 стане положителен. Това се случва след изпълнението на peд t2.signal(), който следва инструкция q_1.

По подобен начин ще се развият събитията и след вторите инструкции.

Лесно се вижда, че след първото randevouz стойностите на броячите в семафорите ще са 0 и процесите коректно ще реализират втората среща със същите семафори.

Задача 4. КН1 За синхронизация използваме семафори s, t и u, инициализираме ги така:

```
semaphore s, t, u
s.init(0)
t.init(0)
u.init(0)
```

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process Q	process R
p_1	q_1	r_1
s.signal()	s.wait()	s.wait()
p_2	s.signal()	s.signal()
<pre>t.wait()</pre>	q_2	r_2
$\mathtt{u.wait}()$	t.signal()	u.signal()
p_3	q_3	r_3

Всяка от инструкциите q_2 и r_2 може да се изпълни след като съответният процес премине бариерата s.wait().

Това се случва за пръв път след изпълнението на ред s.signal() в процеса P, който следва инструкция p_1 . Така изпълнението на p_1 преди q_2 и r_2 е гарантирано.

Да допуснем, че процесът Q преминава през инструкцията си s.wait() преди процеса R. Веднага след това той изпълнява s.signal(), което ще позвали и на R да премине през своята инструкция s.wait(). Така ще се осигури изпълнението и на двете инструкции q_2 и r_2 .

Аналогична е ситуацията, когато R преминава през s.wait() преди процеса Q.

Работата със семафорите t и u осигурява изпълнението на условие (2).

Задача 4. KH2 Използваме семафорите t1, t2 и t3, инициализираме ги така:

```
semaphore t1, t2, t3
t1.init(1)
t2.init(0)
t3.init(0)
```

Добавяме в кода на процесите синхронизиращи инструкции:

process P	process Q	process R
<pre>t1.wait()</pre>	t2.wait()	t3.wait()
p_1	q_1	r_1
t2.signal()	t3.signal()	t1.signal()
<pre>t1.wait()</pre>	t2.wait()	t3.wait()
p_2	q_2	r_2
t2.signal()	t3.signal()	<pre>t1.signal()</pre>