ARTIFICIAL INTELLIGENCE TOOLS & PRINCIPLES

PIERRE-ALEXANDRE BALLAND

UTRECHT UNIVERSITY
AI TOULOUSE INSTITUTE

We don't have intelligent machines - we have fast and accurate prediction machines

Champions of the first AI wave

Class schedule

What Al is and what Al is not

AI, network science, ML and DL

The data matrix behind key Al applications

Talking to your computer: demystifying programming language

Working principles of recommendation systems

Write Essay

Computer Lab

Al solution deck

Lecture 1: Al & society

Lecture 2: Al tools

Tutorial: Pitching Al

Student presentations

Overview of class

Scope and limits of the AI revolution

Key applications of AI for business and society

Predicting in a complex world

Winners and losers of the AI revolution

Introduction to the VC/start-up world

How to design your AI solution

Key elements of a pitch deck

Tips on communication & delivery

First discussion of students' presentation topics

The goal for this lecture is to introduce how to solve real-world problems with Al

To solve real-world problem with AI you don't need the most advanced AI tools - you need creative problem-solving skills

No AI without data

- A lot of discussion around AI algorithms but data is what makes AI truly possible
- Al problem-solving requires to:
 - know the kind of data AI needs
 - mentally map the problem into a data problem
 - know how to access or collect data
 - perform data transformation (i.e matrix format, rescaling)
 - data cleansing (missing, extreme, wrong...)
 - inspection & validation
 - simple data science models

Two types of data

Individual characteristics

Variables	Model 1		
	b	SE	
Control variables			
Male	0.42***	0.04	
White	-0.06	0.05	
Age (≤19)	-0.05	0.04	
Major	0.16**	0.05	
Unemployed	-0.04	0.04	
Internet proficiency	0.17***	0.02	
Internet variety	0.10***	0.03	
Internet speed	0.33***	0.06	
Intercept	-2.75***	0.14	

Interconnection data

Physical world

Socio-economic world

Directed graph (digraph)

Edge list

Vertex	Vertex	
1	2	
1	3	
2	3	
2	4	

Adjacency matrix

Vertex	1	2	3	4
1	-	1	1	0
2	0	-	1	1
3	0	0	-	0
4	0	0	0	-

Al algorithms have considerably evolved since the 1950s

Simple algorithms

- Humans have solved algorithms before computers
- An algorithm is a sequence of operations (series of steps)
- Complex problems require huge amount of numeric computation (time) – non-human computers are perfect for this task
- Al algorithms deal with problems that usually require human intelligence

Al expert systems

- Improvement compared to hard-coded algorithms
- Introduce flexibility in the rule (more adapted to a complex environment)
- Knowledge base and inference engine are constructed from human experts
- Still exist today for some very codified problems (grammar checkers)
- Also relevant today problems that have ethical and legal considerations (require transparent rules)

Machine learning

- Solutions capable of learning directly from data
- ML is particularly adapted to problems that humans don't know how to codify in pre-defined steps
- ML creates a mathematical representation of the world that it guesses by seeing (a lot of) data
- ML can be applied after careful data analysis (to provide correct input)
- Learning = associating inputs and outputs not understanding (we talk about training)

What makes ML special

- Traditional algorithm: you know the inputs (10 and 2), you know the function (*) but you don't know the results (20)
- ML algorithm: you know the inputs (10 and 2), you know the results (20), but you don't know the function (*)
- Replace theory with data (deduction VS induction) & hypothesis testing in the scientific method
- You need a lot of data!

The limits of ML

- ML can only solve single and specific problems (representation issue)
- Overfitting = like students studying too much passed exams.
 Internal functions memorize and don't learn from the data
- Bias can be magnified

How do ML learn?

- Supervised learning: humans train the ML with good labeled data examples and the algorithm derives rules from these specific examples
 - → regression & classification problems
- Unsupervised learning: no labeled data the algorithm guesses that some objects or events cluster together (belong to the same class) without being explicitly told (find similar patterns)
- Reinforcement learning: lack labels too, but humans provide positive/negative feedback

Deep learning

- DL is the latest major advance in AI algorithms (2012) that sparked a renewed major interest in AI
- If you don't have much data: expert systems, a lot: ML, a gigantic amount: DL
- DL is neural networks on steroids
- Major breakthroughs: backpropagation + vanishing gradients (signal fades)

Deep learning

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Major limitations with DL

- It is a black box humans also don't understand what happens within the neural network
- Requires a huge number of examples/data (impractical in many ways)
- DL can not transfer knowledge to higher level (can't create hierarchies of knowledge)

Building your own recommender system with simple unsupervised ML

What AI can predict

Modern AI techniques are good at predicting the evolution of simple network structures

1. Seeing the data matrix

2. Multiply t(M) by M

3. Normalization

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 3 & 0 \\
1 & 3 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

```
if \quad \frac{observed \ co-occurences}{expected \ co-occurences} \ > 1 \ --> \ related
```

4. Network graph

5. Recommendation list

$$D_{i,c,t} = \frac{\sum_{i} X_{i} \varphi_{ij}}{\sum_{i} \varphi_{ij}} \times 100$$

Balland, P.A., Boschma, R., Crespo, J. and Rigby, D. (2019) Smart Specialization policy in the EU: Relatedness, Knowledge Complexity and Regional Diversification, *Regional Studies*

Merci Thanks 谢谢

