Conservability

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{v}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

- Observability tells us if we can determine the states of a system using our knowledge of the system's inputs and output.
- ▶ **Definition**: The system or the pair (\mathbf{A}, \mathbf{B}) is **controllable** if for any initial state $\mathbf{x}_i f$ and any final state \mathbf{x}_f there exists an input $\mathbf{u}(t)$ that transfer the initial state to the final state in finite time. Otherwise, the system is uncontrollable.
- ▶ It should be noted that.
 - ▶ The trajectory from x_i to x_f does not matter.
 - $\mathbf{u}(t)$ can be anything, including impulses and derivatives of impulses.
 - ightharpoonup We only need to get to \mathbf{x}_f . It is not required that the final state be maintained once we reach there

$$\dot{\mathbf{x}}\left(t\right) = \mathbf{A}\mathbf{x}\left(t\right) + \mathbf{B}\mathbf{u}\left(t\right)$$

Assuming that the system starts at $t = t_i$ with initial condition $\mathbf{x}(t_i) = \mathbf{x}_i$, the output at $t = t_f$ is given by,

$$\mathbf{x}(t_f) = e^{(t_f - t_i)\mathbf{A}}\mathbf{x}(t_i) + \int_{t_i}^{t_f} e^{(t_f - \tau)\mathbf{A}}\mathbf{B}\mathbf{u}(\tau) d\tau$$
$$e^{-t_f \mathbf{A}}\mathbf{x}(t_f) - e^{-t_i \mathbf{A}}\mathbf{x}(t_i) = \int_{t_i}^{t_f} e^{-\tau \mathbf{A}}\mathbf{B}\mathbf{u}(\tau) d\tau$$

From the Cayley-Hamilton theorem we have,

$$e^{-\tau \mathbf{A}} = \sum_{k=0}^{n-1} \alpha_k (\tau) \mathbf{A}^k \implies e^{-t_f \mathbf{A}} \mathbf{x} (t_f) - e^{-t_i \mathbf{A}} \mathbf{x} (t_i) = \sum_{k=0}^{n-1} \mathbf{A}^k \mathbf{B} \int_{t_i}^{t_f} \alpha_k (\tau) \mathbf{u} (\tau) d\tau$$

$$\implies e^{-t_f \mathbf{A}} \mathbf{x} (t_f) - e^{-t_i \mathbf{A}} \mathbf{x} (t_i) = \begin{bmatrix} \mathbf{B} & \mathbf{A} \mathbf{B} & \mathbf{A}^2 \mathbf{B} & \dots & \mathbf{A}^{n-1} \mathbf{B} \end{bmatrix} \begin{bmatrix} \int_{t_i}^{t_f} \alpha_0 (\tau) \mathbf{u} (\tau) d\tau \\ \vdots \\ \int_{t_i}^{t_f} \alpha_{n-1} (\tau) \mathbf{u} (\tau) d\tau \end{bmatrix}$$

A necessary condition for achieving any arbitrary LHS is that the *controllability matrix*

 $C = [\mathbf{B} \quad \mathbf{A}\mathbf{B} \quad \dots \quad \mathbf{A}^{n-1}\mathbf{B}]$ is full rank. This is also a sufficient condition, which we do not show

here.

- A system or the pair (\mathbf{A}, \mathbf{B}) is controllable, if and only if the controllability matrix $\mathcal{C} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$ has full rank, i.e. $rank(\mathcal{C}) = n$.
- ightharpoonup Controllability is a system property and is not affected by the choice of coordinate system used for representing the state. Changing the basis of the state to the columns of the matrix ${f T}$ does not affect the rank of ${\cal C}$.
- Let $\tilde{\mathbf{x}} = \mathbf{T}^{-1}\mathbf{x}$, then we have $\tilde{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ and $\tilde{\mathbf{B}} = \mathbf{T}^{-1}\mathbf{B}$. This implies that $\tilde{\mathcal{C}} = \mathbf{T}^{-1}\mathcal{C}$, and $rank\left(\tilde{\mathcal{C}}\right) = rank\left(\mathcal{C}\right)$.

- A system or the pair (\mathbf{A}, \mathbf{B}) is controllable, if and only if the controllability matrix $\mathcal{C} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$ has full rank, i.e. $rank(\mathcal{C}) = n$.
- ightharpoonup Controllability is a system property and is not affected by the choice of coordinate system used for representing the state. Changing the basis of the state to the columns of the matrix T does not affect the rank of C.
- Let $\tilde{\mathbf{x}} = \mathbf{T}^{-1}\mathbf{x}$, then we have $\tilde{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ and $\tilde{\mathbf{B}} = \mathbf{T}^{-1}\mathbf{B}$. This implies that $\tilde{\mathcal{C}} = \mathbf{T}^{-1}\mathcal{C}$, and $rank\left(\tilde{\mathcal{C}}\right) = rank\left(\mathcal{C}\right)$.
- Are the following systems (\mathbf{A}, \mathbf{B}) controllable. (a) $\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; (b) $\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$); and (c) $\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$).
- **Output Controllability**: The system is **output controllable** if for any initial output y_i and any final output y_f there exists an input u(t) that transfer the initial output to the final output in finite time. This can be done if and only if.

$$rank([\mathbf{D} \ \mathbf{CB} \ \mathbf{CAB} \ \mathbf{CA}^{2}\mathbf{B} \ \dots \ \mathbf{CA}^{n-1}\mathbf{B}])=m$$

$$\mathbf{x}\left[k+1\right] = \mathbf{A}\mathbf{x}\left[k\right] + \mathbf{B}\mathbf{u}\left[k\right]$$

Assuming the system starts at k=0, the output at k is given by,

$$\mathbf{x}[k] = \mathbf{A}^{k}\mathbf{x}[0] + \sum_{l=0}^{k-1} \mathbf{A}^{k-l-1}\mathbf{B}\mathbf{u}[l]$$

$$\mathbf{x}[k] - \mathbf{A}^{k}\mathbf{x}[0] = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^{2}\mathbf{B} & \dots & \mathbf{A}^{k-1}\mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{u}[k-1] \\ \mathbf{u}[k-2] \\ \vdots \\ \mathbf{u}[0] \end{bmatrix} = C_{k}\tilde{\mathbf{u}}_{0:k-1}$$

Assuming $\mathbf{x}[0] = \mathbf{0}$, what all values can $\mathbf{x}[k]$ take?

Controllability - Discrete-time system

$$\mathbf{x}\left[k+1\right] = \mathbf{A}\mathbf{x}\left[k\right] + \mathbf{B}\mathbf{u}\left[k\right]$$

Assuming the system starts at k = 0, the output at k is given by,

$$\mathbf{x}[k] = \mathbf{A}^{k}\mathbf{x}[0] + \sum_{l=0}^{k-1} \mathbf{A}^{k-l-1}\mathbf{B}\mathbf{u}[l]$$

$$\mathbf{x}[k] - \mathbf{A}^{k}\mathbf{x}[0] = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^{2}\mathbf{B} & \dots & \mathbf{A}^{k-1}\mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{u}[k-1] \\ \mathbf{u}[k-2] \\ \dots \\ \mathbf{u}[0] \end{bmatrix} = C_{k}\tilde{\mathbf{u}}_{0:k-1}$$

Assuming $\mathbf{x}[0] = \mathbf{0}$, what all values can $\mathbf{x}[k]$ take? $\longrightarrow \mathbf{x}[k] \in C(\mathcal{C}_k)$. $\mathbf{x}[k]$ can only be in the subspace $C(\mathcal{C}_k)$.

Starting from k=0, the possible values $\mathbf{x}\left[k\right]$ can take grows until, $C\left(\mathcal{C}_{k-1}\right)=C\left(\mathcal{C}_{k}\right)$, i.e.

$$C_0 \subseteq C_1 \subseteq C_2 \cdots \subseteq C_{n-1} \subseteq C_n \subseteq \mathbb{R}^n$$

Controllability – Discrete-time system

- \triangleright The subspace of reachable states can at most grow for n time steps, as we add more columns from $\mathbf{A}^k\mathbf{B}$
- $\triangleright C_n$ is the subspace that can be reached by the system and nothing more. Because, the columns of A^nB are a linear combination of the columns of $\mathbf{B}, \mathbf{AB}, \mathbf{A}^2 \mathbf{B}, \dots \mathbf{A}^{n-1} \mathbf{B}$.
- ▶ Thus, the system is controllable if and only if $C_n = \mathbb{R}^n$, or the $rank(C_n) = n$.
- ▶ In the discrete case, the controllability matrix C_n can also be used to determine the input sequence $\tilde{\mathbf{u}}_{0:n-1}$ that takes you from state $\mathbf{x}[0]$ to $\mathbf{x}[n]$.

$$\mathbf{x}[k] - \mathbf{A}^k \mathbf{x}[0] = C_n \tilde{\mathbf{u}}_{0:n-1} \implies \tilde{\mathbf{u}}_{0:n-1} = C_n^{\dagger} \left(\mathbf{x}[k] - \mathbf{A}^k \mathbf{x}[0] \right)$$

Where, $C_n^{\dagger} = C_n^{-1}$ for a single input system, and it is a right inverse when there are more than one inputs to the system.

Controllability - Discrete-time system

Which of the following systems are controllable? (a) $\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; (b)

$$\left(\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}1\\ 1\end{bmatrix}\right); \text{ and } (c) \left(\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}, \begin{bmatrix}1\\ 0\end{bmatrix}\right).$$

- ▶ What is the problem with system (b)? The system has repeated eigenvalues, and we have only one input.
- ► Output Controllability:

$$rank([\mathbf{D} \ \mathbf{CB} \ \mathbf{CAB} \ \mathbf{CA}^{2}\mathbf{B} \ \dots \ \mathbf{CA}^{n-1}\mathbf{B}]) = m$$