Diffusion

Temporal Vectorization

Coding Evample: The Mandelbrot

cducative

Coding Example: Reaction-Diffusion

This lesson covers another case study called "Reaction-Diffusion" based on the Gary Scott model.

Problem Description

Reaction and diffusion of chemical species can produce a variety of patterns, reminiscent of those often seen in nature. The Gray-Scott equations model such a reaction. For more information on this chemical system see the article Complex Patterns in a Simple System (John E. Pearson, Science, Volume 261, 1993).

Let's consider two chemical species U and V with respective concentrations u and v and diffusion rates Du and Dv.

V is converted into P with a rate of conversion k. F represents the rate of the process that feeds V and V and V and V and V and V and V are V and V and V and V are V are V and V are V are V and V are V

Chemical reaction	Equations
U+2V o 3V	$\dot{u}=Du abla^2u-uv^2+f(1-u)$
V o P	$\dot{v} = Dv abla^2v + uv^2 - (f+k)v$

Based on the Game of Life example, we will try to implement such reaction-diffusion system. Here is a set of interesting parameters to test:

Name	Du	Dv	f	k
Bacteria 1	0.16	0.08	0.035	0.065
Bacteria 2	0.14	0.06	0.035	0.065
Coral	0.16	0.08	0.060	0.062
Fingerprint	0.19	0.05	0.060	0.062
Spirals	0.10	0.10	0.018	0.050
Spirals Dense	0.12	0.08	0.020	0.050
Spirals Fast	0.10	0.16	0.020	0.050
Unstable	0.16	0.08	0.020	0.055
Worms 1	0.16	0.08	0.050	0.065
Worms 2	0.16	0.08	0.054	0.063
Zebrafish	0.16	0.08	0.035	0.060

Complete Solution

Given below, I have implemented a reaction-diffusion system, have a look! It's initially running on "Bacteria 1", you can comment-uncomment a different specie and then run the code!

Output:

The figure below shows some animations of the model for a specific set of parameters. The output of above code would look exactly like this if you run it and download the file that it generates.

Further Readings

- John Conway new solitaire game "life" Martin Gardner, Scientific American 223, 1970.
- Gray Scott Model of Reaction Diffusion, Abelson, Adams, Coore, Hanson, Nagpal, Sussman, 1997.

• Reaction-Diffusion by the Gray-Scott Model, Robert P. Munafo, 1996.

Let's look at temporal vectorization in the next lesson.

