Notes on NEWUOA

Zaikun Zhang *

June 8, 2021 4:41pm

Algorithm 0.1 (Algorithm 0.1) $\frac{\text{Algorithm 0.1}}{\text{Input } \Delta_{s,c}}$

Input $\Delta_0 \in (0, +\infty)$, $m \in \{n+2, n+3, \dots, (n+1)(n+2)/2\}$, and $\mathcal{X}_0 \subset \mathbb{R}^n$ with $x_0 \in \mathcal{X}_0$ and $|\mathcal{X}_0| = m$. Set $Q_{-1} = 0$ and k = 0.

- 1. Pick $Q_k \in \{Q \in \mathcal{Q} : Q(x) = f(x) \text{ for all } x \in \mathcal{X}_k\}.$
- 2. Define $x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}$, and calculate

$$x_k^+ \approx \operatorname{argmin}\{Q_k(x) : \|x - x_k\| \le \Delta_k\},\tag{0.1) ?eq:?}$$

3. If $||x_k^+ - x_k|| \ge \alpha \Delta_k$, then

$$x_k^- \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k, x_k^+, x) : x \in \mathcal{X}_k\}.$$
 (0.2) ?eq:?

If $\kappa(\mathcal{X}_k, x_k^+, x_k^-) \le \kappa_0$ or $f(x_k^+) < f(x_k)$, then $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{x_k^+\} \setminus \{x_k^-\}$.

4. If $||x_k^+ - x_k|| < \eta \Delta_k$ or $\rho_k \le 0$ and $\kappa_k \ge \kappa_0$, then set $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{x_k^+\} \setminus \{x_k^-\}$. Otherwise, set $y_k^- = \operatorname{argmax}\{||y - x_k|| : y \in \mathcal{X}_k\}, y_k^+ = \operatorname{argmin}\{\kappa(\mathcal{X}_k, y, y_k^-) : ||y - x_k|| \le \Delta_k\}$, and $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{y_k^+\} \setminus \{y_k^-\}$. Increment k. Go to Step 1.

How to terminate? Is $\|\nabla Q_k(x_k)\| \leq \eta \Delta_k$ attainable? What about $\|\nabla Q_k(x_k)\| \leq \epsilon$? What about $\|x_k^+ - x_k\| \leq \eta \Delta_k$?

^{*}Hong Kong Polytechnic University, zaikun.zhang@polyu.edu.hk