Summary of previous lecture

Properties of density matrix

$$\operatorname{tr}(\rho^2) = \begin{cases} 1 & \Rightarrow \text{Pure state} \\ < 1 & \Rightarrow \text{Mixed state} \end{cases}$$

- (1) (Trace condition) $tr(\rho) = 1$
- (2) (Positivity condition) ρ is a positive operator
- Decomposition of density matrix is not unique
 - Possible decompositions are connected by unitary relation: $|\widetilde{\psi_i}\rangle = \sum_j u_{ij} |\widetilde{\phi_j}\rangle$
- Reduced density matrix
 - Partial trace: for $\rho^{AB} \equiv \sum_i p_i^{AB} |\psi_i^{AB}\rangle \langle \psi_i^{AB}|$ representing entire system, take trace only for part of the system $\rho^A \equiv \operatorname{tr}_B(\rho^{AB})$
 - Pure entangled state becomes mixed state when only part of the system is considered
 - During quantum teleportation, without the measurement result in Bell basis, the information stored in the destination qubit is equivalent to completely random quantum state.

Quantification of Entanglement

- Are the following states entangled or separable?
 - $|\psi_1\rangle = |1_A\rangle|2_B\rangle$
 - $|\psi_2\rangle = (|1_4\rangle|2_B\rangle |2_4\rangle|1_B\rangle)/\sqrt{2}$
 - $|\psi_3\rangle = (|1_A\rangle|1_B\rangle |1_A\rangle|2_B\rangle + |2_A\rangle|1_B\rangle |2_A\rangle|2_B\rangle)/2$
 - $|\psi_4\rangle = (2|1_A\rangle|1_B\rangle |1_A\rangle|2_B\rangle |2_A\rangle|1_B\rangle + 2|2_A\rangle|2_B\rangle)/\sqrt{10}$
- Can we turn $|\psi_4\rangle$ into the form of $|\psi_2\rangle$?
 - $2|1_A\rangle|1_B\rangle |1_A\rangle|2_B\rangle |2_A\rangle|1_B\rangle + 2|2_A\rangle|2_B\rangle$

 $\Rightarrow |a_A\rangle |\alpha_B\rangle - |b_A\rangle |\beta_B\rangle$ where $|a_A\rangle \& |b_A\rangle$ are orthogonal and $|\alpha_B\rangle \& |\beta_B\rangle$ are also orthogonal, respectively

$$\begin{array}{l} \text{If we define } c_{ij} \text{ as } c_{11}|1_A\rangle|1_B\rangle + c_{12}|1_A\rangle|2_B\rangle + c_{21}|2_A\rangle|1_B\rangle + c_{22}|2_A\rangle|2_B\rangle, \\ c_{11} = \frac{2}{\sqrt{10}}, c_{12} = -\frac{1}{\sqrt{10}}, c_{21} = -\frac{1}{\sqrt{10}}, c_{22} = \frac{2}{\sqrt{10}} \Rightarrow C = \frac{1}{\sqrt{10}} {2 \brack -1} \\ \end{array}$$

Can we find unitary transform for A and B such that $C' = \begin{bmatrix} \bullet & 0 \\ 0 & \bullet \end{bmatrix}$?

Basis Transformation of a Matrix Representation

- Assume that \mathbb{O} is a matrix representation of an operator Ω in some orthonormal basis $|1\rangle, |2\rangle, ..., |n\rangle$, where each component of \mathbb{O} is obtained by $\mathbb{O}_{ij} = \langle i | \Omega | j \rangle$.
- If we switch the basis from $|1\rangle, |2\rangle, ..., |n\rangle$ to a new orthonormal basis $|I\rangle, |II\rangle, ..., |N\rangle$, the new matrix representation \mathbb{O}' of the same operator Ω in the new orthonormal basis can be obtained by $\mathbb{O}' = \mathbb{U}^{\dagger} \mathbb{O} \mathbb{U}$ or $\mathbb{O} = \mathbb{U} \mathbb{O}' \mathbb{U}^{\dagger}$.
- U is a matrix representation of $U = \sum_{m=1}^{n} |M\rangle\langle m|$ in the original basis $|1\rangle, |2\rangle, ..., |n\rangle$.

Basis Transformation of a Vector Representation

- Assume that v is a column vector representation of a vector $|v\rangle$ in some orthonormal basis $|1\rangle, |2\rangle, ..., |n\rangle$, where each component of v is obtained by $v_k = \langle k|v\rangle$.
- Consider a new orthonormal basis vectors $|I\rangle$, $|II\rangle$, ..., $|N\rangle$ that have column vector representation of

$$\begin{bmatrix} I_1 \\ \vdots \\ I_n \end{bmatrix}, \begin{bmatrix} II_1 \\ \vdots \\ II_n \end{bmatrix}, \dots, \begin{bmatrix} N_1 \\ \vdots \\ N_n \end{bmatrix} \text{ with each component } J_i = \langle i|J\rangle \text{ in the original basis.}$$

If we switch the basis from $|1\rangle, |2\rangle, ..., |n\rangle$ to a new orthonormal basis $|I\rangle, |II\rangle, ..., |N\rangle$, the new column vector representation \mathbf{v}' of the same vector $|v\rangle$ in the new orthonormal basis can be obtained by

$$\mathbb{V}_{k}' = \langle K | v \rangle = \langle K | \left\{ \sum_{i=1}^{n} |i\rangle \langle i| \right\} | v \rangle = \sum_{i=1}^{n} \langle K | i \rangle \langle i| v \rangle = \sum_{i=1}^{n} \langle K | i \rangle \mathbb{V}_{i} = \sum_{i=1}^{n} \mathbb{W}_{ki} \mathbb{V}_{i}$$

If we define $W=\sum_{m=1}^n |m\rangle\langle M|$ and $\mathbb W$ as a matrix representation of W in the original basis $|1\rangle,|2\rangle,...,|n\rangle$, then it automatically satisfies $\mathbb W_{ki}=\langle K|i\rangle$ because

$$\mathbb{W}_{ki} = \langle k|W|i\rangle = \langle k|\left\{\sum_{m=1}^{n}|m\rangle\langle M|\right\}|i\rangle = \sum_{m=1}^{n}\delta_{km}\langle M|i\rangle = \langle K|i\rangle$$

- Conventionally, it is more common to define $U \equiv W^{\dagger} = \sum_{m=1}^{n} |M\rangle\langle m|$
 - Then $\mathbb U$ is a matrix representation of $U=\sum_{m=1}^n |M\rangle\langle m|$ in the original basis $|1\rangle,|2\rangle,...,|n\rangle$, and

$$\mathbb{U}_{ij} = \langle i|U|j\rangle = \langle i|\left\{\sum_{m=1}^{n}|M\rangle\langle m|\right\}|j\rangle = \langle i|J\rangle = J_{i} \text{ or } \mathbb{U} = \begin{bmatrix} \langle 1|I\rangle & \cdots & \langle 1|N\rangle \\ \vdots & \ddots & \vdots \\ \langle n|I\rangle & \cdots & \langle n|N\rangle \end{bmatrix} = \begin{bmatrix} I_{1} & \cdots & N_{1} \\ \vdots & \ddots & \vdots \\ I_{n} & \cdots & N_{n} \end{bmatrix}$$

 $\mathbb{W} \equiv \mathbb{U}^{\dagger} \text{ and } \mathbb{v}'_k = \sum_{i=1}^n \mathbb{U}^{\dagger}_{ki} \mathbb{v}_i \Rightarrow \mathbb{v}' = \mathbb{U}^{\dagger} \mathbb{v} \text{ or } \mathbb{v} = \mathbb{U} \mathbb{v}'$

Basis Transformation of a Vector Representation

From the previous page,

$$U = \sum_{m=1}^{n} |M\rangle\langle m| \text{ and } \mathbb{U}_{ij} = \langle i|J\rangle \text{ or } \mathbb{U} = \begin{bmatrix} \langle 1|I\rangle & \cdots & \langle 1|N\rangle \\ \vdots & \ddots & \vdots \\ \langle n|I\rangle & \cdots & \langle n|N\rangle \end{bmatrix} = \begin{bmatrix} I_1 & \cdots & N_1 \\ \vdots & \ddots & \vdots \\ I_n & \cdots & N_n \end{bmatrix}$$

Mapping to a new orthonormal basis

$$\sum_{i=1}^{n} \mathbb{U}_{ik} |i\rangle = \sum_{i=1}^{n} |i\rangle \langle i|K\rangle = |K\rangle \Leftrightarrow |i\rangle = \left\{ \sum_{J=1}^{n} |J\rangle \langle J| \right\} |i\rangle = \sum_{J=1}^{n} |J\rangle \left(\sum_{k=1}^{n} \mathbb{U}_{kj}^{*} \langle k|i\rangle \right) = \sum_{J=1}^{n} (\mathbb{U}^{\dagger})_{ji} |J\rangle$$

- Mapping to another new orthonormal basis
 - Define another new matrix $V = U^*$
 - Because $\mathbb{V}^{\dagger} = \mathbb{U}^T$ and $\mathbb{U}\mathbb{U}^{\dagger} = \mathbb{I}$, $(\mathbb{U}\mathbb{U}^{\dagger})^* = \mathbb{U}^*\mathbb{U}^T = \mathbb{V}\mathbb{V}^{\dagger} = \mathbb{I} \rightarrow \mathbb{V}$ is a unitary matrix
 - New basis defined as

$$|L'\rangle \equiv \sum_{i=1}^{n} \mathbb{U}_{lj}^{\dagger} |j\rangle = \sum_{i=1}^{n} \mathbb{V}_{jl} |j\rangle$$

are orthonormal because V is a unitary matrix.

 $|i\rangle$ can be expanded in $|L'\rangle$ basis in the following way

$$|i\rangle = \left\{\sum_{L=1}^{n} |L'\rangle\langle L'|\right\}|i\rangle = \sum_{L=1}^{n} |L'\rangle\left(\sum_{j=1}^{n} \mathbb{V}_{jl}^{*}\left\langle j\right|\right)|i\rangle = \sum_{L=1}^{n} |L'\rangle\left(\sum_{j=1}^{n} \mathbb{U}_{jl}\left\langle j\right|i\rangle\right) = \sum_{L=1}^{n} \mathbb{U}_{il}|L'\rangle$$

Quantification of Entanglement

- For $|\psi_4\rangle = (2|1_A\rangle|1_B\rangle |1_A\rangle|2_B\rangle |2_A\rangle|1_B\rangle + 2|2_A\rangle|2_B\rangle)/\sqrt{10}$
 - $C = \frac{1}{\sqrt{10}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \ \mathbb{U} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

$$\begin{cases} |I_A\rangle = (|1_A\rangle - |2_A\rangle)/\sqrt{2} \Leftrightarrow \begin{cases} |1_A\rangle = (|I_A\rangle + |II_A\rangle)/\sqrt{2} \\ |II_A\rangle = (|1_A\rangle + |2_A\rangle)/\sqrt{2} \end{cases} \Leftrightarrow \begin{cases} |1_A\rangle = (|I_A\rangle + |II_A\rangle)/\sqrt{2} \end{cases}$$

$$\begin{cases} |I_B'\rangle = (|1_B\rangle - |2_B\rangle)/\sqrt{2} \\ |II_B'\rangle = (|1_B\rangle + |2_B\rangle)/\sqrt{2} \end{cases} \Leftrightarrow \begin{cases} |1_B\rangle = (|I_B'\rangle + |II_B'\rangle)/\sqrt{2} \\ |2_B\rangle = (-|I_B'\rangle + |II_B'\rangle)/\sqrt{2} \end{cases}$$

- $|\psi_4\rangle = \frac{1}{\sqrt{10}}(3|I_A\rangle|I_B'\rangle + |II_A\rangle|II_B'\rangle)$
- Meaning of Hermitian matrix

Quantification of Entanglement

- What about $|\psi\rangle = (|1_A\rangle|1_B\rangle + |1_A\rangle|2_B\rangle + |2_A\rangle|2_B\rangle)/\sqrt{3}$?
 - $c_{ij} \rightarrow \mathbb{C} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 - c_{ij} is not Hermitian. What can we do?
- In general, we can have two parties that have different dimensions
 - Grouping of multiple qubits to test the separability of the qubits

$$|\psi\rangle = (|1_A\rangle|1_B\rangle + |1_A\rangle|2_B\rangle + |1_A\rangle|3_B\rangle + |2_A\rangle|1_B\rangle - |2_A\rangle|2_B\rangle)/\sqrt{5}$$

$$\mathbb{C} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

Can we transform it into the following shape?

$$\blacksquare |I_A\rangle |I_B\rangle + \blacksquare |II_A\rangle |II_B\rangle + \blacksquare |III_A\rangle |III_B\rangle$$

- Singular Value Decomposition (SVD)
 - When a matrix A corresponding to a linear transformation is given, SVD allows us to find an orthogonal basis in the input vector space that will be transformed into another orthogonal basis in the output vector space
- Example
 - Assume that the input vector space is \mathbf{R}^3 and the output vector space is \mathbf{R}^2 , and linear transformation is given in terms of matrix $\mathbb{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$.
 - Do two orthogonal vectors (1,0,0), (0,0,1) in the input vector space get transformed into orthogonal vectors in the output space?

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- **→** No!
- What will be the benefit if the orthogonal basis in the input space is transformed into another orthogonal basis in the output space?
 - For a linear transformation, we only need to multiply the corresponding eigenvalues to the coefficients of the basis.
 - Should we give up?

■ How can we always decompose a given matrix \mathbb{A} into $\mathbb{A} = \mathbb{U}\mathbb{D}\mathbb{V}^{\dagger}$ form, where \mathbb{U}, \mathbb{V} are unitary matrices, \mathbb{D} is a diagonal matrix?

$$\mathbb{D} \quad \mathbb{A}^\dagger \mathbb{A} = \mathbb{V} \mathbb{D}^\dagger \mathbb{U}^\dagger \mathbb{U} \mathbb{D} \mathbb{V}^\dagger = \mathbb{V} \mathbb{D}^\dagger \mathbb{D} \mathbb{V}^\dagger = \mathbb{V} \begin{bmatrix} d_1^2 & & \\ & \ddots & \\ & & d_r^2 \end{bmatrix} \mathbb{V}^\dagger$$

- Example
 - Input space \mathbb{R}^3 , output space \mathbb{R}^2 ,

→ positive matrix! Therefore, we can diagonalize and find unitary matrix V. Is this coincidence?

• Eigenvalue & eigenvector: $\lambda = 3, 2, 0, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$

• (Cont'd) Example $A = UDV^{\dagger}$

$$\mathbb{A}^{\dagger} \mathbb{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \mathbb{V} (\mathbb{D}^{\dagger} \mathbb{D}) \mathbb{V}^{\dagger}$$

• Eigenvalue & eigenvector: $\lambda = 3, 2, 0, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$

$$\mathbb{V} = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{bmatrix}, \mathbb{D}^{\dagger}\mathbb{D} = \begin{bmatrix} d_1^2 & & \\ & d_2^2 & \\ & & d_3^2 \end{bmatrix} = \begin{bmatrix} 3 & & \\ & 2 & \\ & & 0 \end{bmatrix}$$

What should we do if the eigenvalue is negative?

$$\mathbb{A} \ \mathbb{V} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{bmatrix} = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & -\sqrt{2} & 0 \end{bmatrix}$$

- (Cont'd) Example $A = UDV^{\dagger}$
 - To find out \mathbb{U} , $\mathbb{A}\mathbb{A}^\dagger = \mathbb{U}\mathbb{D}\mathbb{V}^\dagger\mathbb{V}\mathbb{D}^\dagger\mathbb{U}^\dagger = \mathbb{U}\mathbb{D}\mathbb{D}^\dagger\mathbb{U}^\dagger = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$
 - Eigenvalue & eigenvector: $\lambda = 3, 2, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 - $\mathbb{U} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \mathbb{D}\mathbb{D}^\dagger = \begin{bmatrix} d_1^2 & \\ & d_2^2 \end{bmatrix} = \begin{bmatrix} 3 & \\ & 2 \end{bmatrix}.$
 - Comparison with $\mathbb{D}^{\dagger}\mathbb{D} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$ → \mathbb{D} : 2x3 matrix
 - $\mathbb{U} \mathbb{D} \mathbb{V}^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{6} & /\sqrt{6} & -2/\sqrt{6} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- SVD works for any types of matrix including the rectangular matrix
 - The number of the non-zero diagonal components is equal to the rank of A
 → can be used for the determination of entanglement

Polar decomposition

- Section 2.1.10
- Theorem 2.3 (Polar decomposition): Let *A* be a linear operator on a vector space *V*. Then there exists unitary *U* and positive operator *J* and *K* such that

$$A = UJ = KU$$

where the unique positive operator J and K satisfying these equations are defined by $J \equiv \sqrt{A^{\dagger}A}$ and $J \equiv \sqrt{AA^{\dagger}}$. Moreover, if A is invertible then U is unique.

- A = UJ is called left polar decomposition of A and A = KU is called the right polar decomposition of A.
- Proof of left polar decomposition
 - □ $A^{\dagger}A$ is a positive operator \rightarrow $A^{\dagger}A$ can be diagonalized \rightarrow $J \equiv \sqrt{A^{\dagger}A}$ is a positive operator. \rightarrow $J = \sum_{i} \lambda_{i} |i\rangle\langle i|$ ($\lambda_{i} \geq 0$).
 - Define $|\psi_i\rangle \equiv A|i\rangle$. $\Rightarrow \langle \psi_i|\psi_i\rangle = \lambda_i^2$
 - Consider for now only those i for which $\lambda_i \neq 0$. \Rightarrow define normalized vector $|e_i\rangle \equiv |\psi_i\rangle/\lambda_i$. \Rightarrow If $i \neq j$, $\langle e_i|e_j\rangle = \langle i|A^\dagger A|j\rangle/\lambda_i\lambda_j = \langle i|J^2|j\rangle/\lambda_i\lambda_j = 0$.

Polar decomposition

- Proof of left polar decomposition (continued)
 - From the previous page, $J = \sum_i \lambda_i |i\rangle\langle i| \ (\lambda_i \ge 0)$. $|\psi_i\rangle \equiv A|i\rangle$. $|e_i\rangle \equiv |\psi_i\rangle/\lambda_i$ for $\lambda_i \ne 0$.
 - Using Gram-Schmidt procedure, extend $|i\rangle$ basis (for i with $\lambda_i \neq 0$) to $|j\rangle$ basis (for all j), and find the orthonormal basis set from $|e_i\rangle$ for arbitrary j.
 - Define a unitary operator $U \equiv \sum_i |e_i\rangle\langle i|$.
 - When $\lambda_i \neq 0$, $UJ|i\rangle = \lambda_i |e_i\rangle = A|i\rangle$.
 - When $\lambda_j = 0$, $\langle \psi_j | \psi_j \rangle = \langle j | A^{\dagger} A | j \rangle = 0$ and $UJ | j \rangle = \lambda_j | e_j \rangle = 0 = |\psi_j \rangle = A | i \rangle$.
 - From the above, the action of UJ and A on $|i\rangle$ are identical. $\rightarrow A = UJ$.
 - $A = UJ \rightarrow A^{\dagger} = J^{\dagger}U^{\dagger} \rightarrow A^{\dagger}A = J^2 \rightarrow J = \sqrt{A^{\dagger}A}$
 - If A is invertible, J is invertible, so $U = AJ^{-1}$ is uniquely determined.

- Section 2.1.10
- Corollary 2.4 (Singular value decomposition): Let $\mathbb A$ be a square matrix. Then there exist unitary matrices $\mathbb U$ and $\mathbb V$, and a diagonal matrix $\mathbb D$ with non-negative entries such that

$$\mathbb{A} = \mathbb{U}\mathbb{D}\mathbb{V}$$

The diagonal elements of \mathbb{D} are called the singular values of \mathbb{A} .

- Proof
 - By polar decomposition, $\mathbb{A} = \mathbb{SJ}$, for unitary \mathbb{S} , and positive \mathbb{J} . Because \mathbb{J} is a positive matrix and therefore \mathbb{J} is a Hermitian matrix, $\mathbb{J} = \mathbb{T}\mathbb{D}\mathbb{T}^{\dagger}$, for unitary matrix \mathbb{T} and diagonal matrix \mathbb{D} with non-negative entries. $\mathbb{U} = \mathbb{S}\mathbb{T}$ and $\mathbb{V} = \mathbb{T}^{\dagger}$.

Schmidt decomposition

- Section 2.5
- Theorem 2.7 (Schmidt decomposition): Suppose $|\psi\rangle$ is a pure state of a composite system, AB. Then there exist orthonormal state $|i_A\rangle$ for system A, and orthonormal state $|i_B\rangle$ for system B such that $|\psi\rangle = \sum_i \lambda_i |i_A\rangle |i_B\rangle$, where λ_i are non-negative real numbers satisfying $\sum_i \lambda_i^2 = 1$ known as Schmidt co-efficient.
- Sketch of proof (for complete proof, refer to page 109)
 - Assume A and B have the same dimension.
 - Let $|j\rangle$ and $|k\rangle$ be any fixed orthonormal bases for system A and B, respectively. Then $|\psi\rangle$ can be written as $|\psi\rangle = \sum_j \sum_k a_{jk} |j\rangle |k\rangle$.
 - By the singular value decomposition, $a_{jk} = \mathbb{A} = \mathbb{UDV} = \sum_i u_{ji} d_{ii} v_{ik}$, $|\psi\rangle = \sum_j \sum_k (\sum_i u_{ji} d_{ii} v_{ik}) |j\rangle |k\rangle$.
 - By defining $|i_A\rangle \equiv \sum_j u_{ji}|j\rangle$, $|i_B\rangle \equiv \sum_k v_{ik}|k\rangle$, and $\lambda_i \equiv d_{ii}$,

Schmidt decomposition

- $|i_A\rangle$, $|i_B\rangle$ are called the Schmidt bases
- The number of non-zero values λ_i is called the Schmidt number for the state $|\psi\rangle$.
- Quantification of entanglement (or degree of entanglement)
 - Schmidt number is preserved under unitary transformation
 - The Schmidt number of a product state is 1.

Purification

- When a mixed state ρ^A of system A is given, introduce a fictitious system R such that the composite system AR is in a pure state $|AR\rangle$ such that $\rho^A = \operatorname{tr}_R(|AR\rangle\langle AR|)$.
- If ρ^A can be decomposed into $\rho^A = \sum_i p_i |i^A\rangle\langle i^A|$, then assume that system R has the same dimension as A, with orthonormal basis $|i^R\rangle$, then we can define a pure state $|AR\rangle \equiv \sum_i \sqrt{p_i} |i^A\rangle|i^R\rangle$.