Universidad Autónoma de Nuevo León

Facultad de Ciencias Físico Matemático

Búsqueda y Estudio Fotométrico de Variables Cataclísmicas

Tesis de Maestría en Astrofísica Planetaria y Tecnologías Afines

Presentada por:

Asesor:

Ramón Caballero Villegas

Dr. Andrés Alberto Avilés Alvarado

Resumen

Las variables cataclísmicas son un tipo de sistemas binarios con un comportamiento particular. Estas están compuestas comúnmente de una estrella enana blanca y una de secuencia principal, donde material fluye de la secuencia principal hacia la enana blanca, por lo cual se les llama sistemas en contacto. De esto surge el fenómeno de las explosiones nova, en donde el material acrecido es lanzado de manera violenta al medio interestelar, causando un aumento en el brillo del sistema. Este abrillantamiento es una de las características más llamativas de las variables cataclísmicas, siendo un comportamiento volátil y periódico cuyo mecanismo no ha sido completamente explorado.

A pesar de ser objetos de interés son relativamente pocas los sistemas identificados como VCs en la literatura. Hasta recientemente solo se han podido encontrar poco más de 1,000 VCs; esto limita posibles observaciones a una parte pequeña de la población en la Galaxia, lo cual causa un desacuerdo en los mecanismos en juego en la evolución de estos mismos. Cada nuevo sistema observado provee datos útiles que ayudan a desarrollar un modelo general no solo para las VCs, si no que también para la estructura y evolución de estrellas solas como nuestro Sol.

Esta tesis tiene de objetivo encontrar candidatas a VCs dentro del catálogo de Gaia, implementando una búsqueda fotométrica basado en filtros de colores de las bandas del Sloan Digital Sky Survey, con énfasis en encontrar sistemas previamente no observados. De los sistemas candidatos se llevo a cabo un estudio fotométrico desde el Observatorio Astronómico Universitario de la Universidad Autónoma de Nuevo León, ubicado en el Municipio de Iturbide Nuevo León. Como resultado final de este trabajo se presenta las curvas de luz de cada objeto, obteniendo de estas varios parámetros efemérides de los sistemas.

Índice general

1.	\mathbf{Intr}	oducción	2		
	1.1.	Sistemas Binarios	2		
	1.2.	Variables Cataclísmicas	2		
		1.2.1. Clasificaciones	2		
		1.2.2. Evolución	2		
		1.2.3. Disco de Acreción	2		
	1.3.	Enana Blanca	2		
	1.4.	Enana Roja	4		
2.	Mue	estra	5		
	2.1.	Catálogos	5		
		2.1.1. Gaia	5		
		2.1.1.1. Fotometría	5		
		2.1.1.2. Data Release 2	5		
		2.1.2. Sloan Digital Sky Survey	6		
		2.1.2.1. Data Release 9	6		
	2.2.	Szkody, et al.: Cataclysmic Variables from the Sloan Digital Sky Survey	6		
		2.2.1. Encontrando Candidatas a VCs	7		
	2.3.	Criterios de Selección	7		
		2.3.1. Búsqueda Fotométrica	7		
Α.	Gai	a ADQL Encuestas	8		
Bi	Bibliografía				

Capítulo 1

Introducción

1.1 Sistemas Binarios

A diferencia de nuestro sistema solar, una gran mayoría de sistemas dentro de nuestra Galaxia están compuestas de multiples estrellas a tan solo unos cuantos radios solares de separación. Una parte de estos son los sistemas binarios: aquellos compuestos de dos distintas estrellas. En este tipo de sistemas la distancia entre las estrellas individuales cae dentro de ordenes de unas cuantas unidades astronómicas, ordenes de magnitudes más pequeñas que la distancia desde el Sol hacia la estrella más cercana a nuestro sistema solar, Proxima Centauri, a cuatro años luz.

1.2 Variables Cataclísmicas

- 1.2.1 Clasificaciones
- 1.2.2 Evolución
- 1.2.3 Disco de Acreción

1.3 Enana Blanca

Una estrella nace de una nube molecular interestelar, una región de material ubicada en el espacio entre estrellas. Dependiendo de la masa inicial de el conjunto inicial de material es lo que determina las fases que la estrella pasa al envejecer. El camino que tomaría una estrella de secuencia principal durante el fin de su vida se puede ver en la figura 1.1, donde está marcado los distintos caminos que una estrella toma en el diagrama Hertzsprung-Russell (HR). Este diagrama relaciona la temperatura efectiva de la estrella con su luminosidad, dada en términos de luminosidad solar.

Aquellas estrellas cuyas masas iniciales recae bajo 8.5-10.6 M_{\odot} terminan su vida como una estrella enana blanca. Kepler et al. (2017) El ciclo de reacciones nucleares dentro del núcleo de una estrella solo ocurre en la presencia de cierta cantidad de hidrógeno durante su tiempo en la secuencia principal; al acabarse esta fuente de combustible la estrella empieza a colapsar en si misma, ya que la presión radiativa del núcleo hacia el exterior disminuye a tal grado que la presión hacia el interior de su propia gravedad causa el encogimiento de la estrella. Esta disminución de su radio causa que el núcleo se caliente hasta llegar a temperaturas $T \approx 10^8 K$ [Kutner (2017)], empezando de nuevo reacciones nucleares, esta vez involucrando el helio en vez del hidrógeno. Estas reacciones se conocen como el proceso triple alfa, donde

Figura 1.1: Evolución de estrellas de la secuencia principal basado en su masa inicial en el diagrama HR. La línea punteada representa la posición de la estrella en el primer momento que se integra a la secuencia principal. Al consumir el hidrógeno en su núcleo por las reacciones nucleares que ocurren en esta misma región se comienza a desatar el equilibrio delicado que mantiene la forma de la estrella. Esta deformación provoca una oscilación en su tamaño, causado por las fluctuaciones del balance entre la presión radiativa generada por las reacciones nucleares en el núcleo contra la presión gravitacional.

Diagrama obtenido de Kutner (2017)

tres partículas alfa 4He fusionan para crear un átomo de ${}^{12}C$ y un fotón gama. Mientras que en el núcleo ocurren reacciones con elementos cada vez más pesados, el resto de los elementos más livianos (ya sea hidrógeno en el caso de estrellas sometidas al proceso alfa u objetos más pesados como neon u oxígeno en el caso de núcleos más densos Kutner (2017)) siguen presentes en las capas que rodean al núcleo. La energía generada por las reacciones nucleares dentro del núcleo se transporta a estas capas externas por medio de la radiación generada, la cual calienta los elementos livianos, desatando de nuevo la fusión de elementos como hidrógeno. Estas explosiones en las capas exteriores de la estrella causa la expansión de la estrella, llegando a la fase gigante dentro del diagrama HR.

Dependiendo de su masa inicial, una estrella puede seguir produciendo elementos cada vez más pesados dentro de su núcleo. Sin embargo, este combustible solo le permite a la estrella llegar hasta cierta temperatura, a partir de cual no podrá seguir manteniendo su tasa de fusión nuclear. Una vez que llegue a este punto empieza a expulsar las capas exteriores hasta solo dejar el núcleo expuesto, ahora inerte debido a la ausencia de fusión nuclear. Este resto de la estrella progenitora es lo que se conoce como la enana blanca, a pesar de no ser una estrella formalmente. La composición del material dentro de este objeto es distinto al de una estrella de secuencia principal; a pesar de tener como mínimo una masa ~0.30-0.45 M_{\odot} su radio en promedio cae dentro del mismo orden de magnitud que el radio de la Tierra. Kepler et al. (2017) Esto implica una densidad inmensa, en donde solo un gas degenerado de Fermi puede existir en estas condiciones. Un gas degenerado surge como consecuencia del **principio de exclusión de Pauli**: dentro de una molécula no pueden existir más de un electrón por cada estado cuántico.

Es debido a éste fenómeno que las moléculas de una estrella enana blanca están acumuladas en un volumen varias ordenes menor comparado con una estrella de secuencia principal, en la cual los electrones degenerados les permiten a las moléculas almacenar más energía térmica de lo que predicen los modelos en un gas no degenerado. Por lo tanto la escala termodinámica de una estrella enana blanca puede llegar a ordenes de $^{10^{10}}$ años, en la cual su temperatura efectiva podría disminuir de 100,000K a $^{5},000K$. Kepler et al. (2017)

1.4 Enana Roja

Capítulo 2

Muestra

Este trabajo tiene como objetivo principal producir datos fotométricos de estrellas marcadas como candidatas a variables cataclísmicas. Debido a la escasez de variables cataclísmicas en la literatura—solo 1093 variables cataclísmicas habían sido identificadas hasta 2015 en el catálogo de Ritter-Kolb Ritter and Kolb (2015)—existen pocos datos con los cuales corroborar los modelos actuales de una variable cataclísmica. Al identificar nuevas estrellas como variables cataclísmicas y generar una curva de luz de estas mismas estaremos aportando a la muestra disponible en la literatura. Con este fín utilizamos el catálogo de Gaia para obtener nuestras candidatas, usando el catálogo de SDSS para seleccionar solo las fuentes no observadas previamente.

2.1 Catálogos

2.1.1 Gaia

Originalmente denominado como GAIA, la misión de Gaia fue lanzada por la Agencia Espacial Europea (ESA) el 19 de Diciembre del 2013, con el objetivo de generar un mapa tridimensional de nuestra Galaxia, la Vía Láctea. Esto incluye calcular las propiedades astrométricas y astrofísicas de sus fuentes observadas con mayor precisión que cualquier otro catálogo publicado previamente. Para lograr esto se utiliza un satélite espacial, el cual está denominado como Gaia, ubicado en el punto Lagrangiano L2 con respecto al sistema Sol-Tierra. Desde este punto la nave tiene una vista sin obstrucciones que le permite observar una cantidad de estrellas enorme, con ~1,000 millones de fuentes visibles con los instrumentos del satélite Gaia. Gaia Collaboration et al. (2016)

2.1.1.1 Fotometría

2.1.1.2 Data Release 2

Para facilitar el acceso público a los datos recabados por la misión de *Gaia* la ESA ha escogido liberar los datos públicamente mediante los van recibiendo y procesando. Estos son conocidos como los **Data Releases**. Este trabajo se basa en el **Data Release 2**, el cuál de ahora en adelante será denominado simplemente **GDR2**. Este catálogo está compuesto de las observaciones hechas por *Gaia* entre las fechas de 25 de Julio del 2014 y el 23 de Mayo del 2016, un periodo de tiempo de 22 meses en total. Gaia Collaboration et al. (2018) GDR2 consiste de 1,692,919,135 de fuentes individuales. Existe una gran diversidad de objetos dentro de este catálogo, desde estrellas de secuencia principal, asteroides dentro del sistema solar, hasta estrellas variables en las regiones más lejanas en la Galaxia.

Los datos utilizados en este estudio fueron accedidos a través de el *Gaia Archive*¹, una herramienta libre publicada por la ESA. Este cuenta con una interfaz de ADQL², un lenguaje estructurado para hacer consultas a la base de datos de *Gaia*, incluyendo tablas conectando los datos de *Gaia* con otros catálogos, por ejemplo el catálogo de SDSS.

2.1.2 Sloan Digital Sky Survey

La colección de catálogos Sloan Digital Sky Survey³ (de ahora en adelante será referido como SDSS) compila varias fuentes de datos astronómicos y astrofísicos en un sitio centralizado, con el objetivo de crear un mapa tridimensional del Universo con una precisión no vista antes. Estos incluyen imágenes de objetos astronómicos en varios colores, acompañados de un espectro obtenido como parte de esta misión. Para los finales del siglo XX habían surgido avances tecnológicos que llegarían a revolucionar la astronomía observacional. De estos, los de mayor interés ocurrieron con los detectores de estado sólido y en la capacidad computacional de procesamiento. Partiendo de estos empezaron a desarrollar la infraestructura necesaria para recabar datos fotométricos y espectroscópicos.

El instrumento principal utilizado es el telescopio de 2.5m, ubicado en el observatorio *Apache Point Observatory*, descrito a detalle en Gunn et al. (2006). Este telescopio de diseño de Ritchey-Chrétien alimenta dos instrumentos separados; una CCD multi-banda de ancha área, y un par de espectrógrafos alimentados por fibra óptica. Su construcción empezó en 1998, pero no fue hasta el año 2000 que estuvo operacional.

2.1.2.1 Data Release 9

SDSS libera datos en colecciones iterativas; es decir cada Data Release (DR) liberado contiene todas las observaciones que forman parte del DR previo, agregando los datos recabados durante el periodo de observación para el DR actual. Cada DR cae bajo una fase de operaciones de SDSS, delimitado tanto por las fechas de observaciones como por los instrumentos y tipos de datos disponibles. Para el periodo operacional de GDR2 el catálogo más actual de SDSS era el DR9 publicado como parte de SDSS-III ⁴. Esta tercera fase fue marcada por una gran mejora del equipo espectroscópico, instalando nuevos instrumentos con los cuales pudieron analizar la dinámica de nuestra Galaxia, al igual que otras galaxias y planetas gaseosos extra-solares.

2.2 Szkody, et al.: Cataclysmic Variables from the Sloan Digital Sky Survey

Con el lanzamiento del SDSS, Szkody y su equipo reconocieron una nueva área de oportunidad para expandir la población de variables cataclísmicas conocidas en la Galaxia. De interés particular son aquellos sistemas que más se aproximan al periodo mínimo según los modelos evolutivos de las VCs; estos objetos llegan a magnitudes fuera del alcance de la mayoría de los telescopios usados hasta este entonces, por lo cual no han sido el objetivo de estudio en la literatura. Partiendo de SDSS Szkody y colaboradores iniciaron una búsqueda de VCs tenues, con la expectativa de capturar VCs de todas varias sub-categorías.

https://gea.esac.esa.int/archive/

²https://www.ivoa.net/documents/ADQL/20180112/PR-ADQL-2.1-20180112.html

³https://www.sdss.org

⁴https://www.sdss3.org/index.php

2.2.1 Encontrando Candidatas a VCs

2.3 Criterios de Selección

Para identificar estas candidatas a variables cataclísmicas utilizamos el catálogo de *Gaia* para obtener una amplia muestra fotométrica de estrellas dentro de la Galaxia. Gracias a la alta precisión y sensibilidad de los instrumentos de *Gaia* es posible observar estrellas que no han sido bien documentadas en la literatura. Para esto utilizamos la base de datos dinámica de SIMBAD⁵ para identificar estrellas cuya clasificación sea de interés para nuestra investigación. Estas las priorizamos en base a la cantidad de datos disponibles en la literatura; aquellos sistemas con la menor cantidad de referencias en la literatura (obtenidas de SIMBAD) tienen una prioridad más alta que los previamente estudiados a profundidad.

2.3.1 Búsqueda Fotométrica

⁵http://simbad.cds.unistra.fr/simbad/

Apéndice A

Gaia ADQL Encuestas

```
SELECT *,
        array_element(a0, 1) AS J2000_ra_prop,
        array_element(a0, 2) AS J2000_dec_prop,
        array_element(a0, 3) AS J2000_parallax_prop,
        array_element(a0, 4) AS J2000_pmra_prop,
        array_element(a0, 5) AS J2000_pmdec_prop,
        array_element(a0, 6) AS J2000_rv_prop, sdss_transform.g_sdss -
   sdss_transform.r_sdss AS g_r_sdss_color, sdss_transform.r_sdss -
   sdss_transform.i_sdss AS r_i_sdss_color
FROM (
        SELECT *,
                -0.13518 + 0.46245 * bp_rp + 0.2517 * Power(bp_rp , 2) -
   0.021349 * Power(bp_rp , 3) + phot_g_mean_mag AS g_sdss,
                0.29676 - 0.64728 * bp_rp + 0.10174 * Power(bp_rp , 2) +
   phot_g_mean_mag AS i_sdss,
                0.12879 - 0.24662 * bp_rp + 0.027464 * Power(bp_rp , 2) +
          0.049465 * Power (bp_rp , 3) + phot_g_mean_mag AS r_sdss
                SELECT source_id, phot_variable_flag, bp_rp,
   phot_g_mean_mag,
                        ra,
                        dec,
                        parallax,
                        pmra,
                        pmdec,
                        radial_velocity AS rv,
                        EPOCH_PROP(ra, dec, parallax, pmra, pmdec,
   radial_velocity, ref_epoch, 2000) AS a0
                FROM gaiadr2.gaia_source
        ) as gdr2
        WHERE
                gdr2.phot_variable_flag = 'VARIABLE'
                AND gdr2.source_id IN (
                        SELECT source_id
                        FROM external.gaiadr2_geometric_distance
                AND gdr2.source_id NOT IN (
                        SELECT source_id
                        FROM gaiadr2.sdssdr9_best_neighbour
                )
) AS sdss_transform
WHERE sdss_transform.g_sdss - sdss_transform.r_sdss < 0.7 AND
   sdss_transform.r_sdss - sdss_transform.i_sdss > 0.30
```

Agradecimientos

This work has made use of data from the European Space Agency (ESA) mission *Gaia* (https://www.cosmos.esa.int/gaia), processed by the *Gaia* Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the *Gaia* Multilateral Agreement.

This research made use of Astropy,¹ a community-developed core Python package for Astronomy The Astropy Collaboration et al. (2018).

¹http://www.astropy.org

Bibliografía

Gaia Collaboration, Brown, A. G. A., Vallenari, A., Prusti, T., de Bruijne, J. H. J., Babusiaux, C., and Bailer-Jones, C. A. L. (2018). Gaia data release 2. summary of the contents and survey properties. *Astronomy & Astrophysics*, 616.

Gaia Collaboration, Prusti, T., de Bruijne, J., Brown, A., Vallenari, A., Babusiaux, C., Bailer-Jones, C., Bastian, U., Biermann, M., Evans, D., Ever, L., F., J., Jordi, C., Klioner, S., Lammers, U., Lindegren, L., Luri, X., Mignard, F., Milligan, D., Panem, C., Poinsignon, V., Pourbaix, D., Randich, S., Sarri, G., Sartoretti, P., Siddiqui, H., Soubiran, C., Valette, V., F., Walton, N., Aerts, C., Arenou, F., Cropper, M., Drimmel, R., Høg, E., Katz, D., M.G., L., O'Mullane, W., Grebel, E., Holland, A., Huc, C., Passot, X., Bramante, L., Cacciari, C., Castañeda, J., Chaoul, L., Cheek, N., Angeli, F. D., Fabricius, R., Hernández, J., Jean-Antoine-Piccolo, A., Masana, E., Messineo, R., Mowlavi, N., Nienartowicz, K., Ordóñez-Blanco, D., Panuzzo, P., Portell, J., Richards, P., Riello, M., Seabroke, G., Tanga, P., Thévenin, F., Torra, J., Els, S., Gracia-Abril, G., Comoretto, Garcia-Reinaldos, M., Lock, T., Mercier, E., Altmann, Andrae, R., Astraatmadja, T., Bellas-Velidis, I., Benson, K., Berthier, J., Blomme, R., Busso, G., Carry, B., Cellino, A., Clementini, G., Cowell, S., Creevey, O., Cuypers, J., Davidson, M., Ridder, J. D., de Torres, A., Delchambre, L., Dell'Oro, A., Ducourant, C., Frémat, García-Torres, M., Gosset, E., Halbwachs, J.-L., Hambly, N., Harrison, D., Hauser, M., Hestroffer, D., Hodgkin, S., Huckle, H., Hutton, A., Jasniewicz, G., Jordan, S., Kontizas, M., Korn, A., Lanzafame, A., Manteiga, M., Moitinho, A., Muinonen, K., Osinde, J., Pancino, E., Pauwels, T., Petit, J.-M., Recio-Blanco, A., Robin, A., Sarro, L., Siopis, C., Smith, M., Smith, K., Sozzetti, A., Thuillot, W., van Reeven, W., Viala, Y., Abbas, U., Aramburu, A. A., Accart, S., Aguado, J., Allan, P., Allasia, W., Altavilla, G., Alvarez, M., Alves, J., Anderson, R., Andrei, A., Varela, E. A., Antiche, E., Antoja, T., Antón, S., Arcay, B., Atzei, A., Ayache, L., Bach, N., Baker, S., Balaguer-Núñez, L., Barache, C., Barata, C., Barbier, Barblan, F., Baroni, M., y Navascués, D. B., Barros, M., Barstow, M., Becciani, U., Bellazzini, M., Bellei, G., García, A. B., Belokurov, V., Bendjoya, P., Berihuete, A., Bianchi, L., Bienaymé, O., Billebaud, Blagorodnova, N., Blanco-Cuaresma, S., Boch, T., Bombrun, A., Borrachero, R., Bouquillon, S., Bourda, G., Bouy, H., Bragaglia, A., Breddels, M., Brouillet, N., Brüsemeister, T., Bucciarelli, B., Budnik, F., Burgess, P., Burgon, R., Burlacu, A., Busonero, D., Buzzi, R., Caffau, E., Cambras, J., Campbell, H., Cancelliere, R., Cantat-Gaudin, T., Carlucci, T., Carrasco, J., Castellani, M., Charlot, P., Charnas, J., Charvet, P., Chassat, F., A., Clotet, M., Cocozza, G., Collins, R., Collins, P., Costigan, G., Crifo, F., Cross, N., Crosta, M., Crowley, C., Dafonte, C., Damerdji, Y., Dapergolas, A., David, P., David, M., Cat, P. D., de Felice, F., de Laverny, P., Luise, F. D., March, R. D., deMartino, D., de Souza, R., Debosscher, J., del Pozo, E., Delbo, M., Delgado, A., Delgado, H., di Marco, F., Matteo, P. D., Diakite, S., Distefano, E., Dolding, C., Anjos, S. D., Drazinos, P., Durán, J., Dzigan, Y., Ecale, E., Edvardsson, B., Enke, H., Erdmann, M., Escolar, D., Espina, M., Evans, N., Bontemps, G. E., Fabre, C., Fabrizio, M., Faigler, S., Falcão, A., Casas, M. F., Faye, F., Federici, L., Fedorets, G., Fernández-Hernández, J., Fernique, P., Fienga, A., Figueras, F., Filippi, F., Findeisen, K., Fonti, A., Fouesneau, E., Fraser, M., Fuchs, J., Furnell, R., Gai,

M., Galleti, S., Galluccio, L., Garabato, D., García-Sedano, F., Garé, P., Garofalo, A., Garralda, N., Gavras, P., Gerssen, J., Geyer, R., Gilmore, G., Girona, Giuffrida, G., Gomes, M., González-Marcos, A., González-Núñez, J., González-Vidal, J., Granvik, M., Guerrier, A., Guillout, P., Guiraud, J., Gúrpide, A., Gutiérrez-Sánchez, R., Guy, L., Haigron, R., Hatzidimitriou, D., Haywood, M., Heiter, U., Helmi, A., Hobbs, D., Hofmann, W., Holl, B., Holland, G., Hunt, J., Hypki, A., Icardi, V., Irwin, M., de Fombelle, G. J., Jofré, P., Jonker, P., Jorissen, A., Julbe, F., Karampelas, A., Kochoska, A., Kohley, R., Kolenberg, K., Kontizas, E., Koposov, S., Kordopatis, G., Koubsky, P., Kowalczyk, A., Krone-Martins, A., Kudryashova, M., Kull, Bachchan, R., Lacoste-Seris, F., Lanza, A., Lavigne, J.-B., Poncin-Lafitte, C. L., Lebreton, Y., Lebzelter, T., Leccia, S., Leclerc, N., Lecoeur-Taibi, I., Lemaitre, V., Lenhardt, H., Leroux, F., Liao, S., Licata, E., Lindstrøm, H., Lister, T., Livanou, E., Lobel, W., López, M., Lopez-Lozano, A., Lorenz, D., Loureiro, T., MacDonald, I., Fernandes, T. M., S., Mann, R., Martelet, G., Marchal, O., Marchant, J., Marconi, M., Marie, J., Marinoni, S., Marrese, P., Marschalkó, G., Marshall, D., Martín-Fleitas, J., Martino, M., Mary, N., Matijevič, G., Mazeh, T., McMillan, P., Messina, S., Mestre, A., Michalik, D., Millar, N., Miranda, B., Molina, D., Molinaro, R., Molinaro, M., Molnár, L., Moniez, M., Montegriffo, P., Monteiro, D., Mor, R., Mora, A., Morbidelli, R., Morel, T., Morgenthaler, S., Morley, T., Morris, D., Mulone, A., Muraveva, T., Musella, I., Narbonne, J., Nelemans, G., Nicastro, L., Noval, L., Ordénovic, C., Ordieres-Meré, J., Osborne, P., Pagani, C., Pagano, I., Pailler, F., Palacin, H., Palaversa, L., Parsons, P., Paulsen, T., Pecoraro, M., Pedrosa, R., Pentikäinen, H., Pereira, J., Pichon, B., Piersimoni, A., Pineau, F.-X., Plachy, E., Plum, G., Poujoulet, E., Prša, A., Pulone, L., Ragaini, S., Rago, S., N., R., Ramos-Lerate, M., Ranalli, P., Rauw, G., Read, S., Renk, F., Reylé, C., Ribeiro, R., Rimoldini, L., Ripepi, V., Riva, A., Rixon, G., Roelens, Romero-Gómez, M., Rowell, N., Royer, F., Rudolph, Ruiz-Dern, L., Sadowski, G., Sellés, T. S., Sahlmann, J., Salgado, J., Salguero, E., Sarasso, M., H., Schnorhk, A., Schultheis, M., Sciacca, E., Segol, M., Segovia, J., Segransan, D., Serpell, E., Shih, I.-C., Smareglia, R., Smart, R., Smith, C., Solano, E., Solitro, F., Sordo, R., Nieto, S. S., Souchay, A., Spoto, F., Stampa, U., Steele, I., Steidelmüller, H., Stephenson, C., Stoev, H., Suess, F., Süveges, M., Surdej, J., Szabados, L., Szegedi-Elek, E., Tapiador, D., Taris, F., Tauran, G., Taylor, M., Teixeira, R., Terrett, D., Tingley, B., Trager, S., C., Ulla, A., Utrilla, E., Valentini, G., van Elteren, A., Hemelryck, E. V., van Leeuwen, M., Varadi, M., Vecchiato, A., Veljanoski, J., Via, T., Vicente, D., Vogt, S., Voss, H., Votruba, V., Voutsinas, S., G., W., Weiler, M., Weingrill, K., Werner, D., Wevers, G., Wyrzykowski, L., Yoldas, A., Zerjal, M., Zucker, S., Zurbach, C., Zwitter, T., Alecu, A., Allen, M., Prieto, C. A., Amorim, A., G., A., Arsenijevic, V., Azaz, S., Balm, P., Beck, M., Bernstein, H.-H., Bigot, L., Bijaoui, A., Blasco, C., Bonfigli, M., Bono, G., Boudreault, S., Bressan, A., Brown, S., Brunet, P.-M., Bunclark, P., Buonanno, R., Butkevich, A., Carret, C., Carrion, C., Chemin, L., F., C., Corcione, L., Darmigny, E., de Boer, K., de Teodoro, P., de Zeeuw, P., Luche, C. D., Domingues, C., Dubath, P., Fodor, F., Frézouls, B., Fries, A., Fustes, D., Fyfe, D., Gallardo, E., Gallegos, J., Gardiol, D., Gebran, M., Gomboc, A., Gómez, A., Grux, E., Gueguen, A., Heyrovsky, A., Hoar, J., Iannicola, G., IsasiParache, Y., Janotto, A.-M., Joliet, E., Jonckheere, A., Keil, R., Kim, D.-W., Klagyivik, P., Klar, J., Knude, J., Kochukhov, O., Kolka, I., Kos, J., Kutka, A., Lainey, V., LeBouquin, D., Liu, C., Loreggia, D., Makarov, V., Marseille, M., Martayan, C., Martinez-Rubi, O., Massart, B., Meynadier, F., Mignot, S., Munari, U., Nguyen, A.-T., Nordlander, T., Ocvirk, P., O'Flaherty, K., Sanz, A. O., Ortiz, P., Osorio, J., Oszkiewicz, D., Ouzounis, A., Palmer, M., Park, P., Pasquato, E., Peltzer, C., Peralta, J., Péturaud, F., Pieniluoma, T., Pigozzi, J., Prat, G., Prod'homme, T., Raison, F., Rebordao, J., Risquez, D., Rocca-Volmerange, B., Rosen, S., Ruiz-Fuertes, M., Russo, F., Sembay, S., Vizcaino, I. S., Short, A., Siebert, A., Silva, H., Sinachopoulos, D., Slezak, E., Soffel, M., Sosnowska, D., Straižys, V., ter Linden, M., Terrell, D., Theil, S., Tiede, C., Troisi, L., Tsalmantza, P., Tur,

- D., Vaccari, Vachier, F., Valles, P., Hamme, W. V., Veltz, L., J., Wallut, J.-M., Wichmann, R., Wilkinson, M., Ziaeepour, H., and Zschocke, S. (2016). The gaia mission. *Astronomy & Astrophysics*, 595.
- Gunn, J. E., Siegmund, W. A., Mannery, E. J., Owen, R. E., Hull, C. L., Leger, R. F., Carey, L. N., Knapp, G. R., York, D. G., Boroski, W. N., Kent, S. M., Lupton, R. H., Rockosi, C. M., Evans, M. L., Waddell, P., Anderson, J. E., Annis, J., Barentine, J. C., Bartoszek, L. M., Bastian, S., Bracker, S. B., Brewington, H. J., Briegel, C. I., Brinkmann, J., Brown, Y. J., Carr, M. A., Czarapata, P. C., Drennan, C. C., Dombeck, T., Federwitz, G. R., Gillespie, B. A., Gonzales, C., Hansen, S. U., Harvanek, M., Hayes, J., Jordan, W., Kinney, E., Klaene, M., Kleinman, S. J., Kron, R. G., Kresinski, J., Lee, G., Limmongkol, S., Lindenmeyer, C. W., Long, D. C., Loomis, C. L., McGehee, P. M., Mantsch, P. M., Jr., E. H. N., Neswold, R. M., Newman, P. R., Nitta, A., Jr., J. P., Pier, J. R., Prieto, P. S., Prosapio, A., Rivetta, C., Schneider, D. P., Snedden, S., and i Wang, S. (2006). The 2.5 m telescope of the sloan digital sky survey. The Astronomical Journal, 131.
- Kepler, S., Romero, A. D., Pelisoli, I., and Ourique, G. (2017). White dwarf stars. *International Journal of Modern Physics: Conference Series*.
- Kutner, M. L. (2017). Astronomy, chapter Stellar old age. Cambridge University Press, 2 edition.
- Ritter, H. and Kolb, U. (2015). The ritter-kolb catalogue and its impact on research into cvs, lmxbs and related objects. *Acta Polytechnica*.
- The Astropy Collaboration, Price-Whelan, A. M., Sip
- Hocz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M., Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A., VanderPlas, J. T., Bradley, L. D., Pérez-Suárez, D., de Val-Borro, M., Paper Contributors, ., Aldcroft, T. L., Cruz, K. L., Robitaille, T. P., Tollerud, E. J., Coordination Committee, ., Ardelean, C., Babej, T., Bach, Y. P., Bachetti, M., Bakanov, A. V., Bamford, S. P., Barentsen, G., Barmby, P., Baumbach, A., Berry, K. L., Biscani, F., Boquien, M., Bostroem, K. A., Bouma, L. G., Brammer, G. B., Bray, E. M., Breytenbach, H., Buddelmeijer, H., Burke, D. J., Calderone, G., Cano Rodríguez, J. L., Cara, M., Cardoso, J. V. M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D rsquoAvella, D., Deil, C., Depagne,
- É., Dietrich, J. P., Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L. A., Finethy, T., Fox, R. T., Garrison, L. H., Gibbons, S. L. J., Goldstein, D. A., Gommers, R., Greco, J. P., Greenfield, P., Groener, A. M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A. J., Hosseinzadeh, G., Hu, L., Hunkeler, J. S., Ivezi ć,
- v Z., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N. S., Kerzendorf, W. E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A. M., Kumar, A., Lee, A., Lenz, D., Littlefair, S. P., Ma, Z., Macleod, D. M., Mastropietro, M., McCully, C., Montagnac, S., Morris, B. M., Mueller, M., Mumford, S. J., Muna, D., Murphy, N. A., Nelson, S., Nguyen, G. H., Ninan, J. P., Nöthe, M., Ogaz, S., Oh, S., Parejko, J. K., Parley, N., Pascual, S., Patil, R., Patil, A. A., Plunkett, A. L., Prochaska, J. X., Rastogi, T., Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L. E., Sherwood-Taylor, H., Shih, A. Y., Sick, J., Silbiger, M. T., Singanamalla, S., Singer, L. P., Sladen, P. H., Sooley, K. A., Sornarajah, S., Streicher, O., Teuben, P., Thomas, S. W., Tremblay, G. R., Turner, J. E. H., Terr
- ón, V., van Kerkwijk, M. H., de la Vega, A., Watkins, L. L., Weaver, B. A., Whitmore, J. B., Woillez, J., Zabalza, V., and Contributors, . (2018). The astropy project: Building an

open-science project and status of the v2.0 core package. $aj,\ 156{:}123.$