Obliczenia Naukowe

Lista I

Kacper Pieniążek, 236606

WTOREK TP 15:15

Spis treści

1	Zad	anie 1				
	1.1	Cel zadania				
	1.2	Rozwiązanie				
		1.2.1 Znalezienie epsilonu maszynowego				
		1.2.2 Znalezienie liczby η				
		1.2.3 Znalezienie największej wartości				
		1.2.4 Wyniki				
	1.3	Wnioski				
	1.0					
2	Zad	anie 2				
	2.1	Cel zadania				
	2.2	Rozwiązanie				
		2.2.1 Wyniki				
	2.3	Wnioski				
3	Zad	anie 3				
	3.1	Cel zadania				
	3.2	Rozwiązanie				
	3.3	Wnioski				
4		anie 4				
	4.1	Cel zadania				
	4.2	Rozwiązanie				
		4.2.1 Wyniki				
	4.3	Wnioski				
5	Zadanie 5					
Э						
	5.1	Cel zadania				
	5.2	Rozwiązanie				
	- 0	5.2.1 Wyniki				
	5.3	Wnioski				
6	Zad	anie 6				
U		Cel zadania				
	6.2	Rozwiązanie				
	0.2	6.2.1 Wyniki				
	6.3	Wnioski				
	0.5	WIIIOSKI				
7	Zad	anie 7				
	7.1	Cel zadania				
	7.2	Rozwiązanie				
	· · -	7.2.1 Wyniki				
	7.3	Wnioski				

1 Zadanie 1

1.1 Cel zadania

Celem zadania jest wyznaczenie pewnych wartości dla typów zmiennopozycyjnych zgodnych z IEE 754 (half, single, double). Poszukiwane wartości to epsilon maszynowy, eta oraz największa liczba w dannej arytmetyce.

1.2 Rozwiazanie

Do rozwiązania zadania wykorzystano język Julia. Wszystkie wartości zostały wyznaczone iteracyjnie.

1.2.1 Znalezienie epsilonu maszynowego

Epsilon maszynowy macheps to najmniejsza liczba macheps > 0 taka, że fl(1.0 + macheps) > 1.0.

Algorithm 1 Wyznaczenie epsilona maszynowego

```
macheps \leftarrow fl(1.0)
while fl(1.0 + fl(macheps/2.0)) > 1.0 do
macheps \leftarrow fl(macheps/2.0)
end while
return macheps
```

Algorytm 1. szuka w pętli epsilona maszynowego do momentu napotkania liczby $x \le 1.0$. Wtedy wiadomo, że poprzednia liczba jako ostatnia spełniała warunek pętli i jest zwracana.

1.2.2 Znalezienie liczby η

Eta η to najmniejsza liczba taka, że $\eta>0.0$ dla danego typu zmiennopozycyjnego.

Algorithm 2 Wyznaczenie η

```
eta \leftarrow fl(1.0)

while fl(eta/2.0)) > 0.0 do

eta \leftarrow fl(eta/2.0)

end while

return eta
```

Algorytm $2.\,$ działa analogicznie do poprzedniego algorytmu, zmienia się jedynie warunek pętli. Program kończy działanie, gdy current <= 0.0

1.2.3 Znalezienie największej wartości

Poszukiwana jest największa wartość \max przedstawialna w danym typie zmiennopozycyjnym taka, że $\max < Inf$

Algorithm 3 Wyznaczenie max. wartości

```
val \leftarrow prevFl(1.0)
while !isInf(fl(val*2.0)) do
val \leftarrow fl(val/2.0)
end while
return val
```

W porównaniu do poprzednich podproblemów, Algorytm 3. różni się jedynie warunkiem pętli. Program kończy działanie, gdy current == Inf

1.2.4 Wyniki

Тур	Macheps	Eta	Max
Float16	0.000977	6.0e-8	6.55e4
Float32	1.1920929e-7	1.0e-45	3.4028235e38
Float64	2.220446049250313e-16	5.0e-324	1.7976931348623157e308

1.3 Wnioski

Otrzymane wyniki pokrywają się z wartościami zwracanymi przez bibliotekę standardową języka Julia, oraz ze specyfikacją IEE 754.

2 Zadanie 2

2.1 Cel zadania

Celem zadania jest sprawdzenie, że wyrażenie 3(4/3-1)-1 wylicza macheps w danej arymetyce zmiennopozycyjnej, porównując otrzymane wyniki z prawdziwymi wartościami

2.2 Rozwiązanie

Rozwiązanie polega na obliczeniu wyrażenia dla każdego z typów half, single, double. Wyniki zostają porównane z oczekiwanymi wartościami, wyznaczonymi przez bibliotekę standardową języka Julia.

2.2.1 Wyniki

Type	Float16	Float32	Float64
Value	-0.000977	1.1920929e-7	-2.220446049250313e-16
Expected	0.000977	1.1920929e-7	2.220446049250313e-16

2.3 Wnioski

Ponieważ liczby maszynowe mają określoną długość mantysy, podczas obliczania 3(4/3-1)-1 zachodzą zaokrąglenia, np. ze względu nieskończonego rozwinięcia 4/3 w postaci binarnej, czy odejmowania bliskich sobie wartości.

3 Zadanie 3

3.1 Cel zadania

Celem zadania jest sprawdzenie, czy liczby zmiennoprzecinkowe podwójnej precyzji są równomiernie rozmieszczone na przedziałe [1,2] z krokiem $\delta=2^{-52}$. Należy również zbadać rozmieszczenie liczb na przedziałach [0.5,1] oraz [2,4].

3.2 Rozwiązanie

Rozwiązanie iteruje po kolejnych wartościach w określonym przedziale o ustalony krok. Zapis bitowy pokazuje, że liczby są swoimi następnikami w arytmetyce.

3.3 Wnioski

Liczby są rozmieszczone równomiernie na przedziałach kolejnych potęg dwójki. Wynika to z faktu, że wyższe potęgi liczby 2 zwiększają długość zapisu w bitach, zwiększając cechę liczby i zmniejszając dokładność zapisu. To znaczy, że na przedziałe [0.5,1] liczby są rozmieszczone równomiernie z $\delta=2^{-53}$, a na $[2,4] \rightarrow 2^{-51}$

 $\delta=2^{-52}$ to również epsilon maszynowy dla typu double, więc jest to najmniejsza odległość, jaka może występować pomiędzy kolejnymi liczbami na przedziale zerowej potęgi.

4 Zadanie 4

4.1 Cel zadania

Celem jest znalezienie dowolnej liczby 1 < x < 2 takiej, że $fl(x * fl(1/x)) \neq 1.0$ oraz najmniejszej liczby spełniającej drugi warunek.

4.2 Rozwiązanie

Rozwiązanie obu części zadania sprowadza się do iterowania po wartościach w ustalonym przedziale i sprawdzania, czy liczby spełniają warunek fl(x*fl(1/x)). Dla pierwszej części zadania jest przedział [1, 2, dla drugiej - [-Inf, Inf]

4.2.1 Wyniki

Najmniejsza liczba taka, że x*(1/x)! = 0 na przedziale [1, 2] jest równa 1.000000057228997. Najmniejsza liczba spełniająca ten warunek na przedziale [-Inf, Inf] to -1.7976931348623157e308.

4.3 Wnioski

Iterując po wszystkich wartościach od -Inf do Inf można zauważyć, że przy wielkościach rzędu e308 warunek zadania jest spełniony bardzo często. Wynika to z utraty precyzji przy zaokrąglaniu liczb. Ograniczenie zapisu liczby do skończonej ilości bitów mantysu prowadzi do utraty wielu cyfr znaczących, szczególnie przy bardzo małych częściach ułamkowych.

5 Zadanie 5

5.1 Cel zadania

Celem jest eksperymentalne obliczenie iloczynu skalarnego danych wektorów według różnych algorytmów, a następnie porównanie wyników z prawidłową wartością.

5.2 Rozwiązanie

Algorithm 4 Sposób I

```
\begin{split} S &\leftarrow 0 \\ \mathbf{for} \ i &= 1, n \ \mathbf{do} \\ S &\leftarrow S + x[i] * y[i] \\ \mathbf{end} \ \mathbf{for} \end{split}
```

Algorithm 5 Sposób II

```
\begin{aligned} S &\leftarrow 0 \\ \mathbf{for} \ i &= n, 1 \ \mathbf{do} \\ S &\leftarrow S + x[i] * y[i] \\ \mathbf{end} \ \mathbf{for} \end{aligned}
```

Algorithm 6 Sposoby III, IV

```
\begin{split} S \leftarrow Float[n] \\ \textbf{for } i = 1, n \ \textbf{do} \\ S[i] \leftarrow x[i] * y[i] \\ \textbf{end for} \\ S \leftarrow sort(S) \\ \textbf{return } sum(calcPartialSums(S)) \end{split}
```

5.2.1 Wyniki

Sposób	Float32	Float64
I	-0.4999443	1.0251881368296672e-10
II	-0.4543457	-1.5643308870494366e-10
III	-0.5	0.0
IV	-0.5	0.0

5.3 Wnioski

Porównując z prawidłowym wynikiem -1.00657107000000e-11 widać, że najdokładniejszy okazał się sposób II.

6 Zadanie 6

6.1 Cel zadania

Celem zadania jest porównanie wyników zwracanych przez zadane funkcje matematyczne dla argumentów $x = 8^{-1}, 8^{-2}, 8^{-3}, \cdots$ w arytmetyce Float64.

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

Istotną częścią zadania jest zrozumienie działania operacji matematycznych na liczbach maszynowych. Pomimo f=g, wyniki zwracanie przez funkcje różnią się od siebie.

6.2 Rozwiązanie

Rozwiązanie wykorzystuje dwie funkcje f, g do obliczania wartości dla kolejnych wartości w pętli dla potęg $[-1, -2, \cdots, -12]$. Do zaimplementowania algorytmu wykorzystaniu język programowania Julia.

6.2.1 Wyniki

X	f(x)	g(x)
8^{-1}	0.0077822185373186414	0.0077822185373187065
8^{-2}	0.00012206286282867573	0.00012206286282875901
8-9	0.0	2.7755575615628914e-17
8^{-10}	0.0	4.336808689942018e-19
8^{-11}	0.0	6.776263578034403e-21

6.3 Wnioski

Chociaż f=g, obie funkcje zwracają różne wartości dla tych samych argumentów. Wynika to z odejmowania coraz bliższych sobie liczb w funkcji f, co wpływa negatywnie na dokładność i utratę cyfr znaczących. Funkcja g jest bardziej wiarygodna.

7 Zadanie 7

7.1 Cel zadania

Celem zadania jest obliczenie pochodnej funkcji f(x) = sin(x) + cos(3x) przy wykorzystaniu wzoru na przybliżenie pochodnej funkcji w punkcie $x_0 = 1$ z krokiem $h = 2^{-1}, 2^{-2}, \dots, 2^{-54}$.

7.2 Rozwiązanie

Rozwiązanie iteruje po kolejnych wartościach h, wyliczając (f(x0+h)-f(x0))/h dla $f(x)=\sin(x)+\cos(3x)$.

7.2.1 Wyniki

X	f.(x)	f'(x) - f(x)
2^{0}	2.0179892252685967	1.9010469435885966
2^{-1}	1.8704413979316472	1.7534991162516471
2^{-2}	1.1077870952342974	0.9908448135542974
2^{-3}	0.6232412792975817	0.5062989976175817
8^{-26}	0.11694233864545822	5.6965458225533006e-8
8^{-27}	0.11694231629371643	3.461371643476152e-8
8^{-28}	0.11694228649139404	4.811394047066209e-9
8^{-29}	0.11694222688674927	5.4793250728324416e-8
8^{-30}	0.11694216728210449	1.1439789550371504e-7

7.3 Wnioski

Od potęgi -28 wartość błędu bezwzględnego rośnie. Wpływ na taki wynik może mieć kilka czynników. Funkcje sin, cos wpływają na utratę dokładności. Przykładowo, sin(x) jest przybliżane do x dla bardzo małych x.

Brak poprawy przybliżenia pochodnej spowodowany jest utratą cyfr znaczących oraz niedokładnością działań w arytmetyce zmiennoprzecinkowej. $f(x_0 + h) - f(x_0)$ może powodować coraz większą utratę dokładności dla coraz mniejszych h.