Operaciones lógicas + máscaras Punto Fijo

Organización de computadoras

Universidad Nacional de Quilmes

21 de octubre de 2013

Repaso

- Repeticiones
- Arreglos
- Modos de direccionamiento
 - Indirecto
 - O Indirecto por registro

Repaso: Repeticiones

Example (¿Cómo encender el piloto del calefón?)

- poner la perilla en posición piloto
- 2 acercar un fósforo mientras se presiona la perilla
- mantener presionando aproximadamente 20 segundos
- Si al liberar la perilla el piloto se apaga, volver al paso (1), sino seguir con el paso (5)
- **6** ...

Repaso: Repeticiones

Estructura general de la repetición

Inicialización

arriba: Controlar condición de ciclo

Si no se cumple: <salir>

Cuerpo del ciclo

Volver <arriba>

salir: Finalizar programa

Repaso: Arreglos

Arreglo de valores

Posiciones de memoria consecutivas que contienen una colección de elementos. Cada elemento puede ocupar mas de una celda.

MOV [R0],0x0001

MOV [[1234]],R0

Desafío: Conocer el valor de ciertos bits en una cadena

Pero antes... necesitamos algunas herramientas previas

Operaciones sobre cadenas: AND bit a bit

Operaciones sobre cadenas: AND bit a bit

Operaciones sobre cadenas: OR bit a bit

Operaciones sobre cadenas: OR bit a bit

Operaciones sobre cadenas: NOT bit a bit

1010

NOT

Operaciones sobre cadenas: NOT bit a bit

Ejercicios

Máscara

Cadena binaria que se aplica sobre otra mediante una operación lógica para descubrir características sobre esa cadena

Uso del AND

- Para preservar el bit original:
- Para anular un bit (dejarlo en 0):

¿Para que usamos AND?

- Si se quiere preservar el bit: usar 1
 - \times AND $1 = \times$
- Si se quiere anular un bit: usar 0
 - \times AND 0 = 0

¿Para que usamos AND?

• Si se quiere preservar el bit: usar 1

$$\times$$
 AND $1 = \times$

• Si se quiere anular un bit: usar 0

$$\times$$
 AND $0 = 0$

 $x_3 x_2 x_1 x_0$ AND 0 0 0 1

¿Para que usamos AND?

- Si se quiere preservar el bit: usar 1
 - \times AND $1 = \times$
- Si se quiere anular un bit: usar 0
 - \times AND 0 = 0

AND
$$\frac{x_3 x_2 x_1 x_0}{0 \ 0 \ 0 \ 1}$$

¿Para que usamos OR?

- Si se quiere preservar el bit: usar 0
 - \times OR $0 = \times$
- Si se quiere activar un bit: usar 1
 - \times OR 1 = 1

¿Para que usamos OR?

• Si se quiere preservar el bit: usar 0

$$\times$$
 OR $0 = \times$

• Si se quiere activar un bit: usar 1

$$\times$$
 OR 1 = 1

OR 0001

¿Para que usamos OR?

- Si se quiere preservar el bit: usar 0
 - \times OR $0 = \times$
- Si se quiere activar un bit: usar 1

$$\times$$
 OR 1 = 1

Example

Determinar si la cadena en R0 es impar

Example

Determinar si la cadena en R0 es impar

AND RO, 0x0001 JNE saltarAEsImpar

Example

Copiar el byte mas significativo de la celda 0348 en el registro R1

Example

Copiar el byte mas significativo de la celda 0348 en el registro R1

MOV R1, [0348]

AND R1, 0xFF00

Ejercicio (NO se entrega): Si la celda [CCCC] contiene un número par, sumar 30 al valor de R3. En caso contrario sumar 70 al valor de R4

sigue:

Ejercicio (NO se entrega): Si la celda [CCCC] contiene un número par, sumar 30 al valor de R3. En caso contrario sumar 70 al valor de R4

```
MOV R1, [CCCC]
AND R1, 0x0001
JNE noespar
ADD R3, 0x001E
JMP sigue
noespar:ADD R4, 0x0046
```

4 D > 4 A > 4 B > 4 B > B + 4 Q Q

Si las celdas CCCC y CCCD contienen números impares, restarles 0x0001 a ambas

```
Si las celdas CCCC y CCCD contienen números impares, restarles 0x0001 a ambas

Ayudita:

si ([CCCC] es impar)
    si ([CCCD] es impar)
        [CCCC] <-- [CCCC]-1
        [CCCD] <-- [CCCD]-1
    fin si
fin si
```

Permisos de acceso sobre archivos

- Con 3 bits se indica:
 - ¿puedo leer? (r)
 - ¿puedo escribir? (w)
 - ¿puedo ejecutar? (x)
- Con 3 cadenas se describen permisos de usuario, grupo y otros

Example

La cadena 111111111 le da todos los permisos a todos

Permisos de acceso sobre archivos

¿Cómo saber si otro usuario del grupo puede escribirlo?

Máscaras: ejemplos de uso

Permisos de acceso sobre archivos

¿Cómo saber si otro usuario del grupo puede escribirlo?

????????? AND 000010000 0000?0000

Arquitectura Q6

Arquitectura Q6

Arquitectura Q6

- Tiene 8 registros de uso general de 16 bits: R0..R7
- Tiene direcciones de 16 bits
- Los operandos pueden estar en registros, ser constantes o estar en direcciones de memoria
- permite 5 modos de direccionamiento:
 - modo registro: el valor buscado está en un registro
 - modo inmediato: el valor buscado está codificado dentro de la instrucción
 - modo directo: el valor buscado está contenido en una celda de memoria
 - modo indirecto: la dirección del valor buscado está contenido en una celda de memoria
 - modo registro indirecto: la dirección del valor buscado está contenido en un registro

Arquitectura Q6: formato de instrucciones

 Instrucciones de 2 operandos (MUL,MOV,ADD,SUB,CMP,DIV,AND,OR)

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Instrucciones con un operando Origen: CALL, JMP

Cod_Op	Relleno	Modo Origen	Operando Origen
(4b)	(000000)	(6b)	(16b)

• Instrucciones con un operando Destino: NOT

Cod_Op	Modo Destino	Relleno	Operando Origen
(4b)	(6b)	(000000)	(16b)

Instrucciones sin operandos: RET

Cod_Op	Relleno
(4b)	(000000000000)

Saltos condicionales y relativos

Prefijo	Cod_Op	Desplazamiento(8)
(1111)	(4)	(8b)

Arquitectura Q6: Instrucciones Aritméticas

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Operación	CodOp
MUL	0000
MOV	0001
ADD	0010
SUB	0011
AND	0100
OR	0101
CMP	0110
DIV	0111

Arquitectura Q4: Instrucciones con un operando Destino

Cod_Op	Modo Destino	Relleno	Operando Origen
(4b)	(6b)	(000000)	(16b)

Operación	CodOp	Efecto
NOT	1001	$Dest \leftarrow NOT \; Dest$

Ensamblar las siguientes instrucciones

AND RO, R1 OR [[OAOA]], OxFFOO NOT [F123]

Op.	CodOp	Formato de instrucción						
NOT	1001	Cod_Op (4b)	Modo Destino (6b)	Relleno (000000)	Operando Origen (16b)			
AND	0100	Cod_Op (4b)	Modo Destino (6b)	Modo Origer (6b)	n Operando Desti (16b)	no Operando Origen (16b)		
OR	0101	Cod_Op (4b)	Modo Destino (6b)	Modo Origer (6b)	n Operando Desti (16b)	no Operando Origen (16b)		

Completar la tabla de accesos

Instrucción	B.Inst.	B.Op.	Alm.Op.
AND R0, R1			
OR [[0A0A]], 0xFF00			
NOT [F123]			

En Linux, los permisos de acceso a los archivos se codifican:

- Con 3 bits los tipos de accesos: R (leer), W (escribir), X (ejecutar)
- Hay 3 categorías: permisos de usuario, grupo y otros
 Por ejemplo:
 - 111 000 000 da permisos al usuario para leer, escribir y ejecutar
 - 111 100 000 da todos los permisos al usuario y el permiso de lectura a los otros miembros del grupo

En Linux, los permisos de acceso a los archivos se codifican:

- Con 3 bits los tipos de accesos: R (leer), W (escribir), X (ejecutar)
- Hay 3 categorías: permisos de usuario, grupo y otros
 Por ejemplo:
 - 111 000 000 da permisos al usuario para leer, escribir y ejecutar
 - 111 100 000 da todos los permisos al usuario y el permiso de lectura a los otros miembros del grupo

Ejercicio: Escribir un programa que indique si otro usuario del grupo puede escribir un archivo cuyos permisos están en R0. Ponga un 1 si es posible, y 0 en caso contrario.

terpretación ango esolución epresentaciór

Punto Fijo

nterpretación lango lesolución lepresentaciói

Para hoy tenemos...

nterpretación Rango Resolución Representació

Desafío

Desafío

Representar partes no enteras de una unidad (números fraccionarios)

Desafío

Representar partes no enteras de una unidad (números fraccionarios)

¿Cómo lo hacemos?

En el sistema decimal...

Se usa un caracter "," para separar las unidades de las fracciones

En el sistema decimal...

Se usa un caracter "," para separar las unidades de las fracciones

Si la cadena 16 vale: $10+6 = 1*10^1 + 6*10^0$

En el sistema decimal...

Se usa un caracter "," para separar las unidades de las fracciones

Si la cadena 16 vale:
$$10+6=1*10^1+6*10^0$$

La cadena 1,6 vale:
$$1+0,6 = 1*10^0 + 6*10^{-1}$$

La coma establece una posición para los pesos de los dígitos

Interpretación Rango Resolución Representació

Motivación

La coma establece una posición para los pesos de los dígitos

Motivación

La coma establece una posición para los pesos de los dígitos

		Pes	sos		
10^1	10^0		10^{-1}	10^{-2}	Valor representado
1	6	,	0		16
	1	7	6		1,6
	0	,	1	6	0,16

		Pes			
10^{1}	10 ⁰		10^{-1}	10^{-2}	Valor representado
1	6	,	0		16
	1	,	6		1,6
	0	7	1	6	0,16

		Pes			
10^{1}	10 ⁰		10^{-1}	10^{-2}	Valor representado
1	6	,	0		16
	1	,	6		1,6
	0	7	1	6	0,16

		Pesos		
2 ¹	2 ⁰	2-	1 2^{-2}	Valor representado
1	1	, 0		$2^1 + 2^0 = 3$

		Pes			
10^{1}	10 ⁰		10^{-1}	10^{-2}	Valor representado
1	6	,	0		16
	1	,	6		1,6
	0	7	1	6	0,16

		Pes	os		
2 ¹	2 ⁰		2^{-1}	2^{-2}	Valor representado
1	1	7	0		$2^1 + 2^0 = 3$
	1	7	1		$2^{0} + 2^{-1} = 1 + 0, 5 = 1, 5$

		Pes			
10^{1}	10 ⁰		10^{-1}	10^{-2}	Valor representado
1	6	,	0		16
	1	,	6		1,6
	0	7	1	6	0,16

		Pes	os		
2 ¹	2 ⁰		2^{-1}	2^{-2}	Valor representado
1	1	,	0		$2^1 + 2^0 = 3$
	1	,	1		$2^{0} + 2^{-1} = 1 + 0, 5 = 1, 5$
	0	,	1	1	$2^{-1} + 2^{-2} = 0, 5 + 0, 25 = 0, 75$

Interpretación Rango Resolución Representación

Pero... no podemos escribir la coma!

Sistema de punto fijo

Sistema de numeración binario donde se establece una posición fija de la coma fraccionaria.

Sistema de punto fijo

Sistema de numeración binario donde se establece una posición fija de la coma fraccionaria.

La coma se asume en un lugar fijo, y no se escribe

Para eso se acuerda un sistema de escritura (y lectura)

Sistema de punto fijo

Sistema de numeración binario donde se establece una posición fija de la coma fraccionaria.

Suponer 2 bits enteros y 3 bits fraccionarios

Sistema de punto fijo

Sistema de numeración binario donde se establece una posición fija de la coma fraccionaria.

Suponer 2 bits enteros y 3 bits fraccionarios

Los pesos son: $2^1 2^0 2^{-1} 2^{-2} 2^{-3}$

Sistema de punto fijo

Sistema de numeración binario donde se establece una posición fija de la coma fraccionaria.

Suponer 2 bits enteros y 3 bits fraccionarios

Los pesos son: $2^{1}2^{0}2^{-1}2^{-2}2^{-3}$

$$\mathcal{I}(10100)=2^1+2^{-1}=2+0,5=2,5$$

Ejercicio: interpretar

Parte entera		Part			
2^1	2^{0}	2^{-1}	2^{-2}	2^{-3}	Valor
1	0	0	0	0	?
0	1	0	0	0	?
0	0	0	0	1	?
0	1	0	0	1	?
0	0	0	1	0	?

Notación

BSS(n,m) denota un sistema *Binario Sin Signo* con **n bits en total**, de los cuales m son fraccionarios

Parte entera		Part			
2^1	2^{0}	2^{-1}	2^{-2}	2^{-3}	Valor

Notación

BSS(n,m) denota un sistema *Binario Sin Signo* con **n bits en total**, de los cuales m son fraccionarios

Par	te entera	Part			
2^1	2^{0}	2^{-1}	2^{-2}	2^{-3}	Valor

BSS(5,3)

Comparación entre sistemas

Completar la siguiente tabla

Cadena	<i>BSS</i> (2)	BSS(2,1)
00		
01		
10		
11		

Comparación entre sistemas

Cadena	<i>BSS</i> (2)		BSS(2, 1)	
00	0	0	0	0
01	$1 * 2^0$	1	$1*2^{-1}$	0,5
10	$1 * 2^1$	2	$1 * 2^0$	1
11	$1*2^1+1*2^0$	3	$1*2^{0} + 1*2^{-1}$	1,5

Comparación entre sistemas

Completar la siguiente tabla

Cadena	<i>BSS</i> (3)	BSS(3,1)
000		
001		
010		
011		
100		
101		
110		
111		

Comparación entre sistemas

Cadena	<i>BSS</i> (3)		BSS(3,1)	
000	0	0	0	0
001	1 * 2 ⁰	1	$1*2^{-1}$	0,5
010	$1*2^{1}$	2	1 * 2 ⁰	1
011	$1*2^1+1*2^0$	3	$1*2^0 + 1*2^{-1}$	1,5
100	$1*2^{2}$	4	$1 * 2^1$	2
101	$1*2^2+1*2^0$	5	$1*2^1+1*2^{-1}$	2,5
110	$1*2^2+1*2^1$	6	$1*2^1+1*2^0$	3
111	$1*2^2 + 1*2^1 + 1*2^0$	7	$1*2^{1}+1*2^{0}+1*2^{-1}$	3,5

Interpretaciói Rango Resolución Representació

Interpretación en BSS(n, m): dos mecanismos

Interpretación en BSS(n, m): dos mecanismos

(A)

Sumar considerando los pesos fraccionarios

(B)

Interpretar el número como en BSS() y dividir por 2^m

Interpretación en BSS(n, m): dos mecanismos

(A)

Sumar considerando los pesos fraccionarios

(B)

Interpretar el número como en BSS() y dividir por 2^m

$$\mathcal{I}_{bss(5,2)}(00101) = 2^0 + 2^{-2}$$

= 1,25

Interpretación en BSS(n, m): dos mecanismos

(A)

Sumar considerando los pesos fraccionarios

$$\mathcal{I}_{bss(5,2)}(00101) = 2^0 + 2^{-2}$$

= 1, 25

(B)

Interpretar el número como en BSS() y dividir por 2^m

$$\mathcal{I}_{bss(5,2)}(00101) = rac{\mathcal{I}_{bss(5)}(00101)}{4}$$
 $= rac{5}{4} = 1,25$

nterpretación ango esolución epresentació

Rango

Rango

Intervalo de números representables

Rango

Intervalo de números representables

Calcular el rango del sistema BSS(2,1)

Rango

Intervalo de números representables

Calcular el rango del sistema BSS(2,1)

Mínimo Interpretar la cadena que representa al mínimo:

$$I_{bss(2,1)}(00) = 0$$

Rango

Intervalo de números representables

Calcular el rango del sistema BSS(2,1)

Mínimo Interpretar la cadena que representa al mínimo:

$$I_{bss(2,1)}(00) = 0$$

Máximo Interpretar la cadena que representa al máximo:

$$\mathcal{I}_{bss(2,1)}(11) = 2^0 + 2^{-1} = 1 + 0, 5 = 1, 5$$

nterpretación Rango Resolución Representació

Rango

Calcular el rango del sistema BSS(2,0)

Calcular el rango del sistema BSS(2,0)

Mínimo Interpretar la cadena que representa al mínimo:

$$\mathcal{I}_{bss(2,0)}(00) = 0$$

Calcular el rango del sistema BSS(2,0)

Mínimo Interpretar la cadena que representa al mínimo:

$$\mathcal{I}_{bss(2,0)}(00)=0$$

Máximo Interpretar la cadena que representa al máximo:

Calcular el rango del sistema BSS(2,0)

Mínimo Interpretar la cadena que representa al mínimo:

$$\mathcal{I}_{bss(2,0)}(00)=0$$

Máximo Interpretar la cadena que representa al máximo:

nterpretación l<mark>ango</mark> lesolución lepresentación

Rango

Calcular el rango del sistema BSS(4,2)

Calcular el rango del sistema BSS(4,2)

Mínimo Interpretar la cadena que representa al mínimo:

$$\mathcal{I}_{bss(4,2)}(0000) = 0$$

Calcular el rango del sistema BSS(4,2)

Mínimo Interpretar la cadena que representa al mínimo:

$$\mathcal{I}_{bss(4,2)}(0000) = 0$$

Máximo Interpretar la cadena que representa al máximo:

$$\mathcal{I}_{bss(4,2)}(1111) = 2^1 + 2^0 + 2^{-1} + 2^{-2} = 3 + 0,75 = 3,75$$

El rango del sistema BSS(4,2) es [0:3,75]

El rango del sistema BSS(4,2) es [0:3,75]

¿Esto implica que pueden representarse todos los números en ese intervalo?

El rango del sistema BSS(4,2) es [0:3,75]

¿Esto implica que pueden representarse todos los números en ese intervalo?

Por ejemplo: 0,6

Por ejemplo: 0,6

No es representable

- En los sistemas enteros, los números representados van de uno en uno.
- En el sistema del ejemplo BSS(2,1), ¿Que distancia tienen?

- En los sistemas enteros, los números representados van de uno en uno.
- En el sistema del ejemplo BSS(2,1), ¿Que distancia tienen? cadena número representado

caaciia	numero representado
00	0
01	0,5
10	1
11	1,5

- En los sistemas enteros, los números representados van de uno en uno.
- En el sistema del ejemplo BSS(2,1), ¿Que distancia tienen? cadena número representado

0
0,5
1
1,5

Los números van saltando de 0,5 en 0,5.

- En los sistemas enteros, los números representados van de uno en uno.
- En el sistema del ejemplo BSS(2,1), ¿Que distancia tienen? cadena número representado

0
0,5
1
1,5

Los números van saltando de 0,5 en 0,5.

Diremos entonces que la **resolución del sistema** es 0,5.

Resolución

distancia entre dos números representables consecutivos. Nos da una idea de precisión.

Ejemplo

En el sistema BSS(3,1), ¿Que distancia tienen?

Ejemplo

En el sistema BSS(3,1), ¿Que distancia tienen?

cadena	número representado
000	0
001	0,5
010	1
011	1,5
100	2
101	1,5
110	3
110	3,5

Ejemplo

En el sistema BSS(3,1), ¿Que distancia tienen?

cadena	número representado
000	0
001	0,5
010	1
011	1,5
100	2
101	1,5
110	3
110	3,5
	^ =

Resolución: 0,5

Ejemplo

En el sistema BSS(3,2), ¿Que distancia tienen?

Ejemplo

En el sistema BSS(3,2), ¿Que distancia tienen?

	() // C :
cadena	número representado
000	0
001	0,25
010	0,5
011	0,75
100	1
101	1,25
110	1,5
110	1,75

Ejemplo

En el sistema BSS(3,2), ¿Que distancia tienen?

cadena	número representado
000	0
001	0,25
010	0,5
011	0,75
100	1
101	1,25
110	1,5
110	1,75

Resolución: 0,25

Ejemplos de interpretación BSS en 5 bits:

Ejemplo

```
Sistema BSS(5, 2)
  00000 \to 0
  00001 \rightarrow 2^{-2} = 0.25
  00010 \rightarrow 2^{-1} = 0.5
  00011 \rightarrow 2^{-1} + 2^{-2} = 0.75
  00100 \rightarrow 2^0 = 1
  00101 \rightarrow 2^{0} + 2^{-2} = 1.25
  01111 \rightarrow 2^{1} + 2^{0} + 2^{-1} + 2^{-2} = 3.75
  10000 \rightarrow 2^2 = 4
  10001 \rightarrow 2^2 + 2^{-2} = 4,25
  10010 \rightarrow 2^2 + 2^{-1} = 4.5
  10011 \rightarrow 2^2 + 2^{-1} + 2^{-2} = 4.75
  11111 \rightarrow 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2} = 7.75
```

Resolución

Calcular la resolución de los sistemas

- BSS(8, 1)
- BSS(6,4)
- BSS(16,8)

iterpretación ango esolución epresentació

¿Cómo representar?

Representación en BSS(n, m): dos métodos

(Separando partes)

La parte Entera: m como en BSS(n-m).

La parte Fraccionaria: con el método de las multiplicaciones sucesivas

(Corriendo la coma)

Correr el punto fraccionario para poder utilizar la representación en BSS(n)

Representación en BSS(n, m): dos métodos

(Separando partes)

La parte Entera: m como en BSS(n-m).

La parte Fraccionaria: *** con el método de las multiplicaciones sucesivas

- (a) Parte Entera: BSS(n).
- (b) Parte Fraccionaria:
 - Multiplicar la parte fraccionaria por 2
 - Reservar la parte entera del resultado
 - Si ya hicimos m+1 multiplicaciones, redondear, sino volver al paso 1
 - Redondeo: sumar el bit obtenido en el último paso a la cadena completa.

- (a) Parte Entera: BSS(n).
- (b) Parte Fraccionaria:
 - Multiplicar la parte fraccionaria por 2
 - Reservar la parte entera del resultado
 - Si ya hicimos m+1 multiplicaciones, redondear, sino volver al paso 1
 - Redondeo: sumar el bit obtenido en el último paso a la cadena completa.

Ejemplo

- (a) Parte Entera: BSS(n).
- (b) Parte Fraccionaria:
 - Multiplicar la parte fraccionaria por 2
 - Reservar la parte entera del resultado
 - Si ya hicimos m+1 multiplicaciones, redondear, sino volver al paso 1
 - Redondeo: sumar el bit obtenido en el último paso a la cadena completa.

Ejemplo

Representar X = 3,14 en BSS(7,4)

• Parte entera: $\mathcal{R}_{bss(3)}(3) = 011$

- (a) Parte Entera: BSS(n).
- (b) Parte Fraccionaria:
 - Multiplicar la parte fraccionaria por 2
 - Reservar la parte entera del resultado
 - Si ya hicimos m+1 multiplicaciones, redondear, sino volver al paso 1
 - Redondeo: sumar el bit obtenido en el último paso a la cadena completa.

Ejemplo

- Parte entera: $\mathcal{R}_{bss(3)}(3) = 011$
- Parte Fraccionaria:

$$0.14*2 = 0.28$$

$$0.28*2 = 0.56$$

 $0.56*2 = 1.12$

$$0.12*2 = 0.24$$

$$0.12^{2} = 0.24$$

 $0.24^{2} = 0.48$

- (a) Parte Entera: BSS(n).
- (b) Parte Fraccionaria:
 - Multiplicar la parte fraccionaria por 2
 - Reservar la parte entera del resultado
 - Si ya hicimos m+1 multiplicaciones, redondear, sino volver al paso 1
 - Redondeo: sumar el bit obtenido en el último paso a la cadena completa.

Ejemplo

- Parte entera: $\mathcal{R}_{bss(3)}(3) = 011$
- Parte Fraccionaria:

$$0.14*2 = 0.28$$

 $0.28*2 = 0.56$

$$0.28^{+}2 = 0.56$$

 $0.56^{+}2 = 1.12$

$$0.12*2 = 0.24$$

$$0.24*2 = 0.48$$

Ejemplo

Representar 6,625 en BSS(8,4)

• Parte entera: $\mathcal{R}_{bss(4)}(6) = 0110$

Ejemplo

Representar 6,625 en BSS(8,4)

- Parte entera: $\mathcal{R}_{bss(4)}(6) = 0110$
- Parte Fraccionaria:
 - 0,625 * 2 = 1,250
 - 0.250 * 2 = 0.500
 - 0.500 * 2 = 1.000
 - 0.000 * 2 = 0.000
 - 0.000 * 2 = 0.0000.000 * 2 = 0.000
- Se componen las cadenas: 01101010

Representación en BSS(n, m): dos métodos

(Corriendo la coma)

Correr el punto fraccionario para poder utilizar la representación en BSS(n)

Representación en BSS(n, m): Corriendo la coma

Correr el punto fraccionario para poder utilizar la representación en BSS(n)

- Multiplicar al número X que se quiere representar por 2^m
- Redondear el número obtenido (X')al entero más cercano (X").
- **3** Representar X" en BSS(n).

- Multiplicar al número X que se quiere representar por 2^m
- Redondear el número obtenido (X')al entero más cercano (X").
- **3** Representar X' en BSS(n).

Ejemplo

- Multiplicar al número X que se quiere representar por 2^m
- Redondear el número obtenido (X')al entero más cercano (X").
- O Representar X' en BSS(n).

Ejemplo

$$X * 2^4 = 50, 24 = X'$$

- Multiplicar al número X que se quiere representar por 2^m
- Redondear el número obtenido (X')al entero más cercano (X").
- **③** Representar X' en BSS(n).

Ejemplo

- $X * 2^4 = 50, 24 = X'$
- Redondeo: $X' \approx 50 = X''$
- $\mathcal{R}_{bss(7)}(50) = 0110010$

- Multiplicar al número X que se quiere representar por 2^m
- Redondear el número obtenido (X')al entero más cercano (X").
- **3** Representar X" en BSS(n).

Ejemplo

Representar X = 6,625 en BSS(8,4)

- Multiplicar al número X que se quiere representar por 2^m
- Redondear el número obtenido (X')al entero más cercano (X").
- **3** Representar **X"** en BSS(n).

Ejemplo

Representar X = 6,625 en BSS(8,4)

$$X * 2^4 = 106 = X'$$

- Multiplicar al número X que se quiere representar por 2^m
- Redondear el número obtenido (X')al entero más cercano (X").
- **Output** Representar X'' en BSS(n).

Ejemplo

Representar X = 6,625 en BSS(8,4)

- $X * 2^4 = 106 = X'$
- Redondeo: $X' \approx 106 = X''$
- \circ $\mathcal{R}_{bss(8)}(106) = 01101010$

nterpretaciór Rango Resolución Representació

¿Como controlar el resultado obtenido?

nterpretación Rango Resolución Representació

¿Como controlar el resultado obtenido?

¡Interpretando!

Interpretaciói Rango Resolución Representació

Representación de 3,14 en BSS(7,4) es 0110010

$$\mathcal{I}_{bss(7,4)}(0110010) = 2^1 + 2^0 + 2^{-3} = 3,125$$

$$\mathcal{I}_{bss(7,4)}(0110010) = 2^1 + 2^0 + 2^{-3} = 3,125 \times$$

$$\mathcal{I}_{bss(7,4)}(0110010) = 2^1 + 2^0 + 2^{-3} = 3,125 \times$$

¿Porqué no obtuvimos 3,14?

$$\mathcal{I}_{bss(7,4)}(0110010) = 2^1 + 2^0 + 2^{-3} = 3,125 \times$$

¿Porqué no obtuvimos 3,14?

nterpretación Rango Resolución Representació

Aproximación

Si 3,14 no es representable, se obtiene una aproximación

Aproximación

Si 3,14 no es representable, se obtiene una aproximación

 $3,125 \approx 3,14$

Error por aproximación

Ejercicio: representar 0,4 en BSS(2,1)

Error por aproximación

Ejercicio: representar 0,4 en BSS(2,1)

- X = 0.4 m = 1
- $X' = 0,4x2^1 = 0,8$
- $\mathcal{R}_{bss(3)}(1) = 001$

Error por aproximación

Ejercicio: representar 0,4 en BSS(2,1)

- X = 0.4 m = 1
- $X' = 0,4x2^1 = 0,8$
- $\mathcal{R}_{bss(3)}(1) = 001$

Comprobar el resultado

$$\mathcal{I}_{bss(2,1)}(001) = 2^{-1} = 0,5$$

iterpretación ango esolución epresentació

¡Herrar es humano!

Error Absoluto

Error Absoluto

Valor absoluto de la diferencia entre el número que se quiere representar y el número representado.

$$EA(X) = |X - E|$$

donde E es el valor de la Representación más próxima a X.

• En este caso EA(0,4) = |0,4-0,5| = 0,1.

Error Absoluto

- El error absoluto de un número representable es 0 ya que no hay diferencia entre el número que se quiere representar y su Representación.
- Notar que el Error Absoluto tiene como cota máxima la mitad de la resolución:

$$(\forall X \in rango)0 \leq EA(X) \leq R/2$$

Error Relativo

Ejemplo

Representar el número 14,9 en BSS(8,4):

- \bigcirc X = 14,9 m = 4
- (2) $X' = 14,9x2^4 = 238,4$
- \bigcirc $\mathcal{R}_{bss(8)}(238) = 11101110$
- $\mathcal{I}_{bss(8,4)}(11101110) = 14,875$

$$EA(14,9) = |14,9-14,875| = 0,025$$

El error cometido al representar 14,9 es el mismo que al representar 3,9. Sin embargo el valor del error 0,025 es "más importante" al representar 3,9 que al representar 14,9.

Error Relativo

Error Relativo

$$ER(X) = \left| \frac{EA(X)}{X} \right| (\forall X \neq 0 \in rango)$$

$$ER(3,9) = \left| \frac{EA(3,9)}{3.9} \right| = \left| 0.025/3, 9 \right| \approx 0.0064 = 0.64 \%$$

$$ER(14,9) = \left| \frac{EA(14,9)}{14,9} \right| = \left| 0.025/14, 9 \right| \approx 0.0016 = 0.16\%$$

El error relativo al representar 14,9 es menor que el error relativo al representar 3,9

Error Absoluto y Relativo

Calcular error absoluto en BSS(8,4)

- 1,1
- 2,125
- 3,099
- 4,75
- 19,99

Error Absoluto y Relativo

Calcular error relativo en BSS(8,4)

- 0,1
- 15,1

Error Relativo

- El error relativo más grande se produce al representar números muy cercanos a cero, para los cuales el sistema los representa como 0. Para estos números, EA(X) = X, y ER(X) = 1 = 100 %.
- Los errores relativos más pequeños se producen en el extremo superior del rango.

- Operaciones lógicas y máscaras
 - Máscaras
- 2 Punto Fijo
 - Resolución
 - Representación