

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3112 К работе допущен

Студент Сенина Мария Михайловна Работа выполнена

Преподаватель Сорокина Е.К. Отчёт принят

Рабочий протокол и отчёт по лабораторной работе № 3-10 <u>Изучение свободных затухающих колебаний</u>

1. Цель работы

Изучение основных характеристик свободных затухающих колебаний.

2. Задачи, решаемые при выполнении работы.

- 1. Найти общее сопротивление и индуктивность катушки в RLC-контуре.
- 2. Найти добротность и логарифмический декремент колебаний для каждого эксперимента.
- 3. Оценить критическое сопротивление контура.

3. Объект исследования.

RLC - контур

4. Метод экспериментального исследования.

Соберём схему (см. рисунок 1), где сопротивление $R_{\rm M}$ — банк сопротивлений, в котором мы можем выставить произвольное сопротивление, в то время как значения C и L постоянны.

Если включить в такой установке переменный ток на генераторе тока в контуре появятся затухающие колебания, развёртку которых можно будет посмотреть на осциллографе (см на схеме канал l ОЦЛ2).

Глядя на развёртку, можно будет вычислить все интересующие нас параметры колебаний в контуре — период колебаний, добротность системы, логарифмический декремент затухания.

5. Рабочие формулы и исходные данные.

Используемые формулы:

1. Логарифмический декремент колебаний $\lambda = \frac{1}{n} \ln \left(\frac{U_i}{U_{i+n}} \right)$

Рисунок 1: Принципиальная схема установки (RLC-контур)

Рисунок 2: Параметры колебаний

2. Погрешность измерения логарифмического декремента колебаний $\Delta\lambda =$

$$\lambda \sqrt{\left(\frac{\partial \lambda}{\partial U_i} \Delta U_i\right)^2 + \left(\frac{\partial \lambda}{\partial U_{i+n}} \Delta U_{i+n}\right)^2} \ = \ \lambda \sqrt{\left(\frac{\Delta U_i}{U_i}\right)^2 + \left(\frac{\Delta U_{i+n}}{U_{i+n}}\right)^2} \ = \ \lambda \sqrt{(\delta U_i)^2 + (\delta U_{i+n})^2}$$

3. Коэффициенты линейной зависимости $AR_m + B = \lambda$:

$$A = \frac{\left(\sum_{i=1}^{N} R_{i} \lambda_{i} - \frac{1}{N} \sum_{i=1}^{N} R_{i} \sum_{i=1}^{N} \lambda_{i}\right)}{\sum_{i=1}^{N} R_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} R_{i}\right)^{2}}$$
$$B = \frac{1}{N} \left(\sum_{i=1}^{N} \lambda_{i} - A \sum_{i=1}^{N} x_{i}\right)$$

4. Выборочное среднеквадратичное отклонение: $\sigma_A = \sqrt{\frac{1}{D(N-2)}\sum_{i=1}^N {d_i}^2}$, $\sigma_B =$

$$\sqrt{\frac{\sum_{i=1}^{N} d_i^2}{D(N-2)} \left(\frac{1}{n} + \frac{\langle R \rangle^2}{D}\right)}, \text{ $2 \partial e$ } d_i = \lambda_i - (B + A R_i), \text{ } aD = \sum_{i=1}^{N} \lambda_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \lambda_i\right)^2$$

- 5. Собственное сопротивление контура $R_0 = \frac{B}{A}$
- 6. Погрешность собственного сопротивления контура $\Delta R_0 = R_0 \sqrt{\delta A^2 + \delta B^2}$
- 7. Полное сопротивление контура $R = R_m + R_0$
- 8. Погрешность полного сопротивления в контуре $\Delta R = \Delta R_m + \Delta R_0$
- 9. Индуктивность катушки в RLC-контуре $L = \frac{\pi^2 R^2 C}{\lambda^2}$
- 10. Погрешность индуктивности в RLC-контуре $\Delta L = L\sqrt{4\delta R^2 + \delta C^2 + 4\delta \lambda^2}$
- 11. Период колебаний в RLC контуре $T = \frac{2\pi}{\sqrt{\frac{1}{LC} \frac{R^2}{4L^2}}}$
- 12. Добротность колебаний через логарифмический декремент $Q = \frac{2\pi}{1 e^{-2\lambda}}$
- 13. Добротность колебаний через параметры RLC-контура $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
- 14. Критическое сопротивление контура $R_{ ext{крит}}=R_{m_{ ext{крит}}}+R_0$
- 15. Погрешность критического сопротивление контура $\Delta R_{\text{крит}} = \Delta R_{m_{\text{крит}}} + \Delta R_0$
- 16. Критическое сопротивление контура, через его параметры $R_{\text{крит}} = \sqrt{\frac{L}{c}}$
- 17. Критическое сопротивление контура, через его параметры $\Delta R_{\text{крит}} = R_{\text{крит}} \sqrt{\frac{\Delta L^2}{LC} + \left(\frac{\sqrt{L}}{C^{\frac{3}{2}}}\Delta C\right)^2}$
- 18. Среднее арифметическое всех результатов измерений: $\langle x \rangle_N = \frac{1}{N}(x_1 + x_2 + \dots + x_N) = \frac{1}{N} \sum_{i=1}^N x_i$
- 19. Среднеквадратичное отклонение от среднего значения: $\sigma_{\langle x \rangle} = \sqrt{\frac{1}{(N-1)N} \sum_{i=1}^{N} (x_i \langle x \rangle_N)^2}$
- 20. Абсолютная погрешность через коэффициент Стьюдента, где N число измерений, α доверительная вероятность: $\Delta x = x_{\alpha,N} \cdot \sigma_{\langle x \rangle}$

6. Схема установки

Принципиальная электрическая схема установки представлена на рисунке 1. Приборы:

- 1. Блок генератора напряжений ГН1.
- 2. Осциллограф ОЦЛ2.
- 3. Стенд с объектом исследования С3-ЭМ01.
- 4. Проводники Ш4/Ш2 (4 шт.), Ш2/Ш2 (3 шт.),2Ш4/BNC (2 шт.).

7. Результаты прямых измерений и их обработки.

Результаты измерений см в приложении.

8. Расчёт результатов косвенных измерений.

Часть 1

По формуле (1) $\lambda = \frac{1}{n} \ln \left(\frac{U_i}{U_{i+n}} \right)$ рассчитаем значение логарифмического декремента для каждого значения сопротивления банка сопротивлений, а по формуле (2) $\Delta \lambda = \lambda \sqrt{(\delta U_i)^2 + (\delta U_{i+n})^2}$ оценим его погрешность. (см таблицу I)

Далее построим график зависимости логарифмического декремента от сопротивления R_m . И вычислим значение собственного сопротивления колебательного контура, как абсциссу пересечение графика с осью абсцисс, т.к. зависимость $\lambda(R)$ – линейная. Т.к. в этой точке логарифмический декремент был бы равен нулю, т.е. колебания не были бы затухающими.

По методу наименьших квадратов (формулы 2, 3, 18) можно посчитать коэффициенты зависимости $\lambda = AR + B$ и их погрешности.

 $A = 0.0038~{\rm Om^{-1}}~B = 0.33$, при этом погрешности получаются меньше 0.1% поэтому указывать их здесь я не буду.

Зная коэффициенты наклона прямой A и B, можно рассчитать собственное сопротивление контура по формулам 5-6 $R_0 = \frac{B}{A}$, $\Delta R_0 = R_0 \sqrt{\delta A^2 + \delta B^2}$, а значит $R_0 = 86$ Ом, причём погрешность снова меньше 0.1% поэтому указывать их здесь я не буду.

Соответственно полное сопротивление в контуре для каждого случая считается по формуле 7-8 $R=R_m+R_0$, $a \Delta R=\Delta R_m+\Delta R_0$. (см таблицу 1).

А зная полное сопротивление мы можем вычислить индуктивность катушки в контуре (формулы 9-10) $L=\frac{\pi^2R^2C}{\lambda^2}$, $\Delta L=L\sqrt{4\delta R^2+\delta C^2+4\delta\lambda^2}$ (см результаты в таблице 1) A $L_{\rm cp}$, можно вычислить, как среднее арифметическое всех экспериментов:

$$L_{\rm cp} = (504 \pm 3) * 10^{-3} \Gamma \text{H}$$

Добротность нужно было вычислить по формуле $Q = \frac{2\pi}{1-e^{-2\lambda}}$ (см результаты в таблице l) При этом для серии экспериментов с $R_m < 100$, добротность также нужно было вычислить по формуле $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$. Результаты представлены на графике 3.

По формуле $T=rac{2\pi}{\sqrt{rac{1}{IC}-rac{R^2}{4I^2}}}$ нужно я вычисляла период колебаний для экспериментов с $R_m>100$

Периоды получились следующие:

R_m , ом	$T_{ m эксп}$, с	T_{reop} , c
0	0,37	0,11
200	0,19	0,12
400	0,10	0,12

Критическое сопротивление можно было найти, увеличивая R_m в контуре до тех пор, пока колебания не прекратятся. Экспериментальное значения R_m , при котором у меня на установке

это получилось равно 1100 Ом, т.е. полное сопротивление в контуре было равно $R=R_m+R_0=1186~\pm~400$ Ом, а теоретически это значение должно было быть ровно $R_{\rm крит}=2\sqrt{\frac{L}{c}}=1653~\pm~1367$ Ом. (Погрешности посчитаны по формулам 15,17)

Часть 2

По формуле $T=\frac{2\pi}{\sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}}}$ нужно было вычислить периоды колебаний при разных C и построить графики зависимости $T_{\text{теор}}(C)$ и $T_{\text{эксп}}(C)$ (См графики в приложении, а значения периодов в таблице 2).

9. Графики

10. Окончательные результаты.

Индуктивность катушки в RLC контуре $L_{\rm cp} = (504 \pm 3) \, 10^{-3} \, {\rm Гн}.$

Собственное сопротивление в RLC контуре $R_0 = 86 \, \text{Ом}$. (погрешность меньше 1 %)

Логарифмический декремент и добротность для каждого эксперимента смотри в таблице 1.

 $\mathit{Критическое\ conротивлениe\ контурa\ R_{\kappa put_{прак}}} = 1186 \pm 400\ \mathrm{Om.}\ R_{\kappa put_{Teop}} = 1653\ \pm 1367\ \mathrm{Om.}$

11. Выводы и анализ результатов работы.

В этом лабораторной работе изучала свойства колебательного RLC контура.

Графики 1-2 подтверждают то, что зависимость логарифмического декремента от сопротивления R_m в контуре линейна.

А график 3 показывает, что добротность контура от R при вычислении её по формуле $Q=\frac{1}{R}=\sqrt{\frac{L}{c}}$. получается не точной, потому что эту формулу мы получали, раскладывая в ряд $Q=\frac{2\pi}{1-e^{-2\beta T}}$ и брали только первый член разложение. В результате погрешность разложения получилась очень большая.

Что касается периодов колебаний при одинаковых и разных ёмкостях конденсаторов: При одинаковых ёмкости период практически не меняется (см таблица 3). При разных ёмкостях — с увеличением ёмкости конденсатора период колебаний возрастает (см график).