Applied stochastic programming models and computation

H.I. Gassmann

Dalhousie University

Outline

- Introduction to stochastic programming
- Scope of study
- Results

Milestones in stochastic programming

- 1955 First models and algorithms (Dantzig; Beale)
- 1956 Airline scheduling problem (Ferguson and Dantzig)
- 1959 Chance-constrained programming (Charnes and Cooper)
- 1969 L-shaped method (van Slyke and Wets)
- 1984 Nested Benders decomposition (Birge)
- 1989 Russell Yasuda Kasai model (Cariño et al.)
- 1995 OSL/SE (IBM)
- 2003 van der Vlerk's on-line bibliography on SP contains 3840 entries
- 2006 EURO application prize (Zenios et al.)

Two-stage recourse model

min
$$c^{T}x + E_{\omega}q(\omega)^{T}y(\omega)$$

s.t. $Ax \leq b$
 $T(\omega)x + W(\omega)y(\omega) \leq h(\omega)$
 $x \geq 0, y(\omega) \geq 0$

Multistage recourse model

$$\min_{x_0} c_0^{\mathrm{T}} x_0 + \mathbf{E}_{\omega_1} \{ \min_{x_1} c_1^{\mathrm{T}}(\omega_1) x_1 + \mathbf{E}_{\omega_2 | \omega_1} [\min_{x_2} c_2^{\mathrm{T}}(\omega_2) x_2 + \ldots + \mathbf{E}_{\omega_T | \omega_{T-1...}\omega_1} (\min_{x_T} c_T^{\mathrm{T}}(\omega_T) x_2) \ldots] \}$$

s.t.
$$A_{00}x_0$$
 $\leq b_0$ $A_{10}x_0 + A_{11}x_1 \leq b_1(\omega_1)$ \vdots \ddots \vdots $A_{T0}x_0 + A_{T1}x_1 + A_{TT}x_T \leq b_T(\omega_T)$ $l_0 \leq x_0 \leq u_0, l_t(\omega_t) \leq x_0 \leq u_t(\omega_t)$

Chance-constraint model

min
$$c^{T}x$$

s.t. $Ax \leq b$

$$Pr\{R_{i}(\omega)x \leq r_{i}(\omega)\} \geq \alpha_{i}, i = 1,..., I$$

$$x \geq 0,$$

Integrated chance-constraints

min
$$c^{T}x$$

s.t. $Ax \leq b$

$$E\{R_{i}(\omega)x \mid R_{i}(\omega)x > r_{i}(\omega)\} \leq d_{i}, i = 1,..., I$$

$$x \geq 0,$$

Scope of the study

- Included
 - Applications and novel models
 - Computational papers
 - All types of stochastic programs
 - Illustrative and "industrial-strength" models
- Not included
 - Theoretical papers
 - New algorithms for old models
 - Randomly generated problems

The sources

- Research bibliographies
 - Stancu-Minasian and Wets (1976)
 - P. Birge (1984)
 - Van der Vlerk (2003)
- Citation indexes
- Online searches

Result: 144 models

Papers by year

Decade	Number
1956-1965	2
1966-1975	13
1976-1985	26
1986-1995	31
1996-2005	72
Total	144

Papers by application area

Application	Number of Problems
Finance	30
Energy planning	16
Scheduling	14
Water management	12
Capacity expansion	9
Agriculture/Fishery/Forestry	8
Transportation	8
Operations Management	8
Supply chain management	7
Blending problems	4
Telecommunications	3
Other	27

How published?

Source	Number of Problems
Operations Research	12
Management Science	11
Annals of Operations Research	6
European Journal of Operational Research	6
Mathematical Programming	4
Other journal	56
Book / collection	26
SPEPS	8
Other web source	4
Technical report	4

Features

Feature	Number of problems
realure	Number of problems
Random RHS	94
Random Cost	52
Random Bounds	1
Random Subdiagonal Blocks	41
Random Blocks on Diagonal	39
Linking Constraints	2
Integer Variables	26
Chance Constraints	34
Integrated Chance Constraints	3

Features by decade

Feature	'56- '65	'66- '75	'76- '85	'86- '95	'96- '05
Random RHS	2	9	22	17	44
Random Cost	1	2	3	11	35
Random Bounds	0	1	0	0	0
Random Subdiagonal Blocks	0	2	3	14	22
Random Blocks on Diagonal	0	4	3	12	20
Linking Constraints	1	5	16	23	46
Integer Variables	0	0	0	0	2
Chance Constraints	1	4	12	5	12
Integrated Chance Constraints	0	0	0	0	3

Number of stages

Number of stages	Number of problems
Single stage	29
Two-stage	41
Multistage	75
Staircase	51
Non-staircase	24

Number of stages per decade

Number of stages	'56- '65	'66- '75	'76- '85	'86- '95	'96- '05
Single stage	0	5	7	4	13
Two stages	1	5	4	10	21
Multiple stages	1	3	18	16	37
Staircase	0	1	12	12	26
Non-staircase	1	2	6	4	11

Scope of the application

Scope	Number of problems
Serious application	21
Academic model	55
Illustrative example	53
Toy problem	6

Conclusions

- SP applications are getting more numerous
- Finance applications dominate
- Considerable breadth of other applications

