Architektury systemów komputerowych

Lista zadań nr 14

Na zajęcia 17 czerwca 2021

UWAGA! W trakcie prezentacji należy być gotowym do zdefiniowania pojęć oznaczonych wytłuszczoną czcionką.

Zadanie 1. Niech system posługuje się 32-bitowymi **adresami wirtualnymi**, rozmiar **strony** ma 4KiB, a rozmiar **wpisu tablicy stron** zajmuje 4 bajty. Dla procesu, który łącznie używa 1GiB swojej **przestrzeni adresowej** podaj rozmiar tablicy stron: (a) jednopoziomowej, (b) **dwupoziomowej**, gdzie katalog tablicy stron ma 1024 wpisy. Dla drugiego przypadku – jaki jest maksymalny i minimalny rozmiar tablicy stron?

Zadanie 2. Zakładamy taki sam model podsystemu pamięci jak na slajdach do wykładu "Virtual Memory: Systems" (strony 9–16). Powtórz proces translacji adresów i adresowania pamięci podręcznej dla adresów: 0x027c, 0x03a9 i 0x0040 zakładając poniższy stan **TLB**, pamięci podręcznej i tablicy stron.

Zbiór	Tag	PPN	V									
0	-	-	0	09	OD	1	-	-	0	07	02	1
1	03	2D	1	-	-	0	02	17	1	-	-	0
2	-	-	0	-	_	0	- 1	-	0	_	_	0
3	-	-	1	03	OD	1	OA	34	1	_	_	0

Zawartość TLB

Idx	Tag	V	В0	B1	B2	В3
0	19	1	99	11	23	11
1	-	0	-	-	-	-
2	1B	1	00	02	04	08
3	-	0	-	-	-	-
4	32	1	43	6D	8F	09
5	OD	1	36	72	FO	1D
6	-	0	_	-	-	-
7	16	1	11	C2	DF	03
8	24	1	ЗА	00	51	89
9	-	0	-	-	-	-
Α	2D	1	93	15	DA	3B
В	-	0	-	-	-	-
С	-	0	-	-	-	-
D	16	1	04	96	34	15
E	13	1	83	77	1B	D3
F	09	1	DE	01	C4	32

01	-	0
02	33	1
03	02	1
04	-	0
05	16	1
06	-	0
07	-	0
80	13	1
09	17	1
ΟA	09	1
OB	-	0
OC	-	0
OD	2D	1
0E	11	1
OF	OD	1

PPN

V

1

VPN

00

Zawartość pamięci podręcznej

Zawartość tablicy stron

Zadanie 3. W tym zadaniu będziemy analizowali w jaki sposób system operacyjny musi aktualizować tablicę stron wraz z kolejnymi dostępami do pamięci głównej. Załóż, że strony są rozmiarze 4KiB, TLB jest w pełni asocjacyjne z zastępowaniem LRU. Najwyższa wartość pola LRU koduje najlepszego kandydata na ofiarę (ang. victim). Jeśli potrzebujesz wtoczyć (ang. swap-in) stronę z dysku użyj następnego numeru ramki (ang. page frame) większego od największego istniejącego w tablicy stron.

Dla poniższych danych podaj ostateczny stan TLB i tablicy stron po wykonaniu wszystkich dostępów do pamięci. Dla każdej operacji dostępu do pamięci wskaż czy było to trafienie w TLB, trafienie w tablicę stron, czy też **błąd strony**.

VPN	Valid	PPN
00	1	05
01	0	dysk
02	0	dysk
03	1	06
04	1	09
05	1	OB
06	0	dysk
07	1	04
80	0	dysk
09	0	dysk
OA	1	03
OB	1	OC
OC	0	brak

Valid	Tag	LRU	PPN
1	OB	0	OC
1	07	1	04
1	03	2	06
0	04	3	09

Początkowa	zamartość	TLB
1 0024110000	zawariosc	I L L L L

Adres
123d
08ъ3
365c
871b
bee6
3140
c049

Ciąg dostępów do pamięci

 $Początkowa\ zawartość\ tablicy\ stron$

Zadanie 4. Na podstawie [1, §9.7.1] opisz dokładnie pola **deskryptorów stron** (ang. *page table entry*) i **deskryptorów katalogów stron** (ang. *page directory entry*) dla architektury x86–64. Czemu jądro systemu operacyjnego zmienia niektórym stronom domyślną politykę zarządzania pamięcią podręczną dla zawartości strony przy pomocy bitów CD i WT [3, §4.9]? W jakim celu algorytmy **zastępowania stron** pamięci wirtualnej korzystają z bitów A i D [3, §4.8]? Jak jądro konfiguruje odpowiednie części wirtualnej przestrzeni adresowej przy pomocy bitów R/W, XD i U/S [3, §4.6]?

Zadanie 5. Wyznacz maksymalny rozmiar **zbioru roboczego** procesu, dla którego nie będzie on generował nowych chybień w TLB (ang. *TLB reach*)? Rozważ wariant pesymistyczny i optymistyczny dla czterodrożnego TLB o 64 wpisach. Jak zmieni się oszacowanie, jeśli zezwolimy na używanie **dużych stron** (ang. *huge pages*) o rozmiarze 4MiB? Jakie programy mogą skorzystać na używaniu dużych stron? W jaki sposób zakodować dużą stronę w hierarchicznej tablicy stron?

Zadanie 6. Na wykładzie przyjęliśmy, że translacja adresów jest wykonywana przed dostępem do pamięci podręcznej, co wprowadza opóźnienie w przetwarzaniu instrukcji. Taki schemat określa się mianem pamięci podręcznej **indeksowanej** i **znakowanej adresami fizycznymi** (ang. *physically-indexed, physically-tagged*). Wyjaśnij jak wykonywać równolegle dostęp do TLB i pamięci podręcznej, stosując schemat pamięci indeksowanej wirtualnie i znakowanej fizycznie [2, §2.4.1]. Jakie korzyści to przynosi?

Wskazówka: Posłuż się ostatnim slajdem do wykładu "Virtual Memory: Systems", ale wytłumacz to szczegółowo!

Zadanie 7. Wiemy, że pamięć podręczna TLB jest niezbędna do przeprowadzania szybkiej translacji adresów. Kiedy w systemie zachodzi potrzeba **przełączenia przestrzeni adresowej**? Czemu należałoby wtedy wyczyścić zawartość TLB? Czemu chcielibyśmy tego unikać? Jak ten problem rozwiązuje wprowadzenie **identyfikatorów przestrzeni adresowych** [2, §2.4.2] [3, §4.10.1]?

Zadanie 8 (bonus). Celem zwiększenia wydajności dostępów do pamięci architekt procesora decyduje się na użycie schematu pamięci indeksowanej i znakowanej adresami wirtualnymi (ang. *virtually-indexed, virtually-tagged*). Na podstawie [2, §4.2.1] wyjaśnij jak w takim przypadku może zamanifestować się problem homonimów i synonimów¹?

https://en.wikipedia.org/wiki/CPU_cache#Homonym_and_synonym_problems

Literatura

- [1] "Computer Systems: A Programmer's Perspective" Randal E. Bryant, David R. O'Hallaron; Pearson; 3rd edition, 2016
- [2] "Memory Systems: Cache, DRAM, Disk"
 Bruce Jacob, Spencer W. Ng, David T. Wang; *Morgan Kaufmann*, 2008
- [3] "Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3A: System Programming Guide, Part 1"

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html