Frühjahr 20 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sollen die komplexen Integrale $I_n:=\int_{\gamma_n}\frac{e^{iz}}{z}\mathrm{d}z$ benutzt werden, um zu zeigen, dass das uneigentliche Riemann-Integral $J\coloneqq\int_0^\infty\frac{\sin(x)}{x}\mathrm{d}x$ existiert, und um dessen Wert zu bestimmen. Dabei setzt sich der geschlossene Weg γ_n für $n\in\mathbb{N}$ aus folgenden Teilwegen zusammen:

$$\begin{split} \gamma_{n}^{(1)} &: [-\pi, 0] \to \mathbb{C}, & \gamma_{n}^{(1)}(t) = e^{-it}/n, \\ \gamma_{n}^{(2)} &: [1/n, n] \to \mathbb{C}, & \gamma_{n}^{(2)}(t) = t, \\ \gamma_{n}^{(3)} &: [0, n] \to \mathbb{C}, & \gamma_{n}^{(3)}(t) = n + it, \\ \gamma_{n}^{(4)} &: [-n, n] \to \mathbb{C}, & \gamma_{n}^{(4)}(t) = ni - t, \\ \gamma_{n}^{(5)} &: [0, n] \to \mathbb{C}, & \gamma_{n}^{(5)}(t) = n(-1 + i) - it, \\ \gamma_{n}^{(6)} &: [-n, -1/n] \to \mathbb{C}, & \gamma_{n}^{(6)}(t) = t. \end{split}$$

 γ_n hat damit die Form eines Rechtecks mit einem Halbkreis um Null.

- a) Zeichnen Sie das Bild eines Weges γ_n und zeigen Sie, dass für alle $n \in \mathbb{N}$ gilt: $I_n = 0$.
- b) Berechnen Sie für $I_n^{(k)} := \int_{\gamma_n^{(k)}} \frac{e^{iz}}{z} dz$ jeweils den Limes

$$I^{(k)} := \lim_{n \to \infty} I_n^{(k)}$$
 (für $k = 1, 3, 4, 5$) und daraus $\lim_{n \to \infty} (I_n^{(2)} + I_n^{(6)})$.

c) Folgern Sie, dass das Integral J existiert und berechnen Sie seinen Wert.

Lösungsvorschlag:

a) Der Integrand ist eine auf $\mathbb{C}\setminus\{0\}$ holomorphe Funktion als Verknüpfung solcher. Weil für alle $n\in\mathbb{N}$ der geschlossene Weg γ_n vollständig in der offenen, sternförmigen Menge $\mathbb{C}\setminus\{it:t\in(-\infty,0]\}$ verläuft, auf welcher $\frac{e^{iz}}{z}$ holomorph ist, folgt $I_n=0$ nach Cauchys Integralsatz.

Die Skizze ist nicht maßstabsgetreu. Für n=1, fallen die Punkte $\pm n$ und $\pm 1/n$ außerdem zusammen.

b) Wir werden benutzen, dass bei gleichmäßiger Konvergenz auf kompakten Intervallen Integration und Grenzwertbildung vertauscht werden dürfen. Wir berechnen die Integrale mittels der Definition von Wegintegralen. Es gilt:

$$\int_{\gamma_n^{(1)}} \frac{e^{iz}}{z} dz = \int_{-\pi}^0 -\frac{\exp(ie^{-it}/n)}{e^{-it}/n} ie^{-it}/n dt = -i \int_{-\pi}^0 \exp(ie^{-it}/n) dt,$$

wir behaupten, dass der Integrand gleichmäßig gegen die Einsfunktion konvergiert. Um das zu zeigen, benutzen wir die Stetigkeit der Exponentialfunktion, es gibt nämlich zu jedem $\varepsilon>0$ ein $\delta>0$ mit der Eigenschaft $|z|<\delta \Longrightarrow |\exp(z)-1|<\varepsilon$. Sei also $\varepsilon>0$ beliebig und ein geeignetes δ gewählt, wir zeigen, dass für n groß genug $|ie^{-it}/n|<\delta$ für alle $t\in[-\pi,0]$ gilt. Für $n\geq N$ mit $N:=\left\lceil\frac{1}{\delta}\right\rceil+1$ gilt nämlich $|ie^{-it}/n|=1/n<\delta$, also ist für alle $t\in[-\pi,0]$ und $n\geq N$ auch $|\exp(ie^{-it}/n)-1|<\varepsilon$ und die behauptete gleichmäßige Konvergenz gezeigt. Damit konvergiert das Integral für $n\to\infty$ gegen $-i\int_{-\pi}^0 1\mathrm{d}t=i\pi=I^{(1)}$.

Wir bestimmen das nächste Integral und substituieren t = sn um

$$\int_{\gamma_n^{(3)}} \frac{e^{iz}}{z} dz = \int_0^n \frac{e^{in-t}}{n+it} i dt = \int_0^1 \frac{e^{(i-s)n}}{n(1+is)} i n ds = i \int_0^1 \frac{e^{in}e^{-sn}}{1+is} ds$$

zu erhalten. Wir werden zeigen, dass der Integrand für alle a>0 auf [a,1] gleichmäßig gegen 0 konvergiert, womit dann auch das Integral über [a,1] gegen 0 konvergiert und wir schließlich $I^{(3)}=0$ erhalten (s. u.). Es gilt nämlich für alle $s\in [a,1]$ die Ungleichung $|1+is|=\sqrt{1+s^2}\geq 1$ und daher $|\frac{e^{in}e^{-sn}}{1+is}|\leq e^{-sn}\leq e^{-an}\to 0$ für $n\to\infty$. Damit konvergiert der Integrand gleichmäßig und die Behauptung ist gezeigt. Wir gehen wieder genauso vor und erhalten

$$\int_{\gamma_n^{(4)}} \frac{e^{iz}}{z} dz = \int_{-n}^n -\frac{e^{-n-it}}{ni-t} dt = -\int_{-1}^1 \frac{e^{-n(1+is)}}{n(i-s)} n ds = \int_{-1}^1 \frac{e^{-n(1+is)}}{s-i} ds$$

und schätzen wieder $|s-i|=\sqrt{s^2+(-1)^2}\geq 1$ und $|e^{-n(1+is)}|=e^{-n}\to 0$ für alle $s\in [-1,1]$ ab. Also konvergiert auch dieser Integrand gleichmäßig gegen 0 und damit ist wieder $I^{(4)}=0$.

Zuletzt berechnen wir wieder auf die gleiche Weise

$$\int_{\gamma_n^{(5)}} \frac{e^{iz}}{z} dz = \int_0^n -\frac{e^{t-n(1+i)}}{n(-1+i)-it} i dt = i \int_0^1 \frac{e^{n(s-1)-ni}}{n(1-i+is)} n ds$$

und werden zeigen, dass für b < 1 der Integrand gleichmäßig auf [0,b] gegen 0 konvergiert, damit geht dann auch das Integral über [0,b] gegen 0 und daher ist $I^{(5)} = 0$ ebenso gezeigt (s. u.). Wir erhalten wieder $|1+(s-1)i| = \sqrt{1+(s-1)^2} \ge 1$ und $|e^{n(s-1)-ni}| \le e^{n(b-1)} \to 0$ für $n \to \infty$ und haben gleichmäßige Konvergenz gezeigt.

Wir wissen also $0 = I_n = \sum_{k=1}^6 I_n^{(k)}$ für alle $n \in \mathbb{N}$ und können dies zu $I_n^{(2)} + I_n^{(6)} = I_n - I_n^{(1)} - \sum_{k=3}^5 I_n^{(k)}$ umformen. Grenzwertbildung zeigt nun $\lim_{n \to \infty} (I_n^{(2)} + I_n^{(6)}) = i\pi$. Wir zeigen nun abschließend, dass für die obigen Funktionenfolgen $f_n : [0,1] \to \mathbb{R}$, die für alle a > 0 auf [a,1] beziehungsweise auf [0,a] gleichmäßig gegen die Nullfunktion konvergieren auch das Integral $\int_0^1 f_n(x) \mathrm{d}x \to 0$ konvergiert. Zunächst sehen wir, dass wir $||f_n||_{\infty} \le 1$ für alle $n \in \mathbb{N}$ abschätzen können, für $\varepsilon > 0$ erhalten wir nun

$$\left| \int_{0}^{1} f_{n}(x) dx \right| \leq \int_{0}^{\frac{\varepsilon}{3}} |f_{n}(x)| dx + \int_{\frac{\varepsilon}{3}}^{1 - \frac{\varepsilon}{3}} |f_{n}(x)| dx + \int_{1 - \frac{\varepsilon}{3}}^{1} |f_{n}(x)| dx$$

und finden wegen der gleichmäßigen Konvergenz auf [a,1-a] ein $N\in\mathbb{N}$, sodass für $n\geq N$ der mittlere Summand kleiner als $\frac{\varepsilon}{3}$ ist. Damit lassen sich alle drei Summanden gegen $\frac{\varepsilon}{3}$ für $n\geq N$ abschätzen und die Aussage ist gezeigt.

c) Wir berechnen zunächst $I_n^{(2)} + I_n^{(6)}$ mittels der Definition. Wir erhalten

$$\int_{\gamma_n^{(2)}} \frac{e^{iz}}{z} dz + \int_{\gamma_n^{(6)}} \frac{e^{iz}}{z} dz = \int_{\frac{1}{n}}^n \frac{e^{it}}{t} dt + \int_{-n}^{-\frac{1}{n}} \frac{e^{it}}{t} dt = \int_{\frac{1}{n}}^n \frac{e^{it} - e^{-it}}{t} dt = 2i \int_{\frac{1}{n}}^n \frac{\sin(t)}{t} dt,$$

wobei wir im Integral über $[-n,-\frac{1}{n}]$ erst s=-t substituiert haben und danach wieder t statt s notiert haben. Wir wissen, dass der linke Term gegen $i\pi$ konvergiert, nach Division durch 2i erhalten wir also $\int_{\frac{1}{n}}^{n} \frac{\sin(t)}{t} \mathrm{d}t \to \frac{\pi}{2}$ für $n \to \infty$. Solange das Integral J aber existiert, konvergiert der erste Term auch gegen J, womit wir $J=\frac{\pi}{2}$ erhalten. Wir müssen also nur noch zeigen, dass das betrachtete uneigentliche Riemann-Integral wirklich existiert. Weil $\frac{\sin(t)}{t}$ bei t=0 stetig durch 1 fortgesetzt werden kann, ist das Integral nur an der oberen Grenze uneigentlich, wir müssen also nur noch beweisen, dass zu jedem $\varepsilon>0$ ein $N\in\mathbb{N}$ existiert, so dass für alle $n\geq N$ die Ungleichung $|\int_{b_n}^{\infty} \frac{\sin(t)}{t} \mathrm{d}t| < \varepsilon$ gilt, denn dann existiert auch das Integral. Wir finden zunächst ein $K\in\mathbb{N}$ mit $|\int_k^{\infty} \frac{\sin(t)}{t} \mathrm{d}t| < \frac{\varepsilon}{2}$ für alle $k\in\mathbb{N}$ mit $k\geq K$. Weil $b_n\to\infty$ gilt, finden wir ein $N\in\mathbb{N}$ mit $n\geq N$ $\Longrightarrow b_n\geq K$. Außerdem finden wir ein $K'\in\mathbb{N}$ mit $n\geq N'$ $\Longrightarrow \frac{1}{b_n}<\frac{\varepsilon}{2}$. Für alle $n\geq \max\{N,N'\}$ gilt nun

$$\left| \int_{b_n}^{\infty} \frac{\sin(t)}{t} dt \right| \leq \int_{b_n}^{\lceil b_n \rceil} \frac{|\sin(t)|}{t} dt + \left| \int_{\lceil b_n \rceil}^{\infty} \frac{\sin(t)}{t} dt \right| < \frac{1}{b_n} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

wobei die Standardungleichung für Integrale und die Ungleichungen $|\sin(t)| \leq 1$ für alle $t \in \mathbb{R}$ und $0 \leq \lceil b_n \rceil - b_n < 1$, sowie die Monotonie der Funktion $t \mapsto \frac{1}{t}$ benutzt wurden. Damit haben wir die Existenz des uneigentlichen Integrals gezeigt und wissen, dass wir den Wert berechnen können, indem wir irgendeine spezielle Folge b_n wählen. Mit $b_n = n$ folgt nun $J = \frac{\pi}{2}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$