WHAT IS CLAIMED IS:

1	1. A circuit for providing generalized write pre-compensation, comprising:
2	a coarse phase generator for generating N coarse phase signals;
3	a fine phase generator, coupled to the coarse phase generator, for using the N
4	coarse phase signals to generate M fine phase signals; and
5	a write pre-compensation circuit, coupled to the fine phase generator, for
6	choosing a fine phase signal from the M fine phase signals to provide a shift to received
7	write data to achieve a first desired pre-compensation.
1	2. The circuit of claim 1, wherein the fine phase signal chosen provides a
2	shift to received write data to achieve a first desired positive pre-compensation.
1	3. The circuit of claim 1, wherein the fine phase signal chosen provides a
2	shift to received write data to achieve a first desired negative pre-compensation.
1	4. The circuit of claim 1, wherein the fine phase signal is chosen to further
2	provide a shift to received write data to achieve positive or negative timing asymmetry
3	correction.
I	5. The circuit of claim 1, wherein the coarse phase generator comprises a X
2	stage differential ring VCO running at a first frequency and providing 2X phase signals
3	of 0° to 360° in 360°/(2X) increments.

- 1 6. The circuit of claim 1, wherein the coarse phase generator comprises a X
- 2 stage differential ring VCO running at a second frequency, the coarse phase generator
- 3 further comprises differential dividers and provides 4X phase signals of 0° to 360° in
- 4 360°/(8X) increments.
- The circuit of claim 1, wherein the fine phase generator comprises an
- 2 interpolator for providing voltage averaging to generate the M fine phase signals.
- 1 8. The circuit of claim 7, wherein the fine phase generator further comprises
- 2 drivers receiving one of the N coarse phase signals and serially coupled resistors disposed
- 3 between the drivers for generating the M fine phase signals.

1	9. The circuit of claim 1, wherein the write pre-compensation circuit further
2	comprises:
3	a pre-compensation decoder, coupled to the fine phase generator, the pre-
4	compensation decoder receiving a reference clock from the fine phase generator, the pre-
5	compensation decoder receiving the write data;
6	a latch circuit, coupled to the fine phase generator and the pre-compensation
7	decoder, the latch circuit being supplied the write data from the pre-compensation
8	decoder and the M fine phase clock signals, the latch circuit supplying M latched write
9	data signals shifted according to the M fine phase clock signals; and
10	a data selector, coupled to the latch circuit and the pre-compensation decoder, the
11	data selector receiving a data selection signal from the pre-compensation decoder for
12	indicating to the data selector which of the shifted M latched write data signals to provide
13	as pre-compensated write data.
1	10. The circuit of claim 9 further comprises a write driver, the write driver
2	receiving the pre-compensated write data and outputting NRZI write data.
1	
1	11. The circuit of claim 10, wherein a shifted M latched write data signal is
2	chosen to further provide a shift to received write data to achieve timing asymmetry
3	correction.

1	12. The circuit of claim 9 further comprising a divider for dividing the
2	reference clock to increase a slew rate of the M fine phase clock signals and to provide a
3	wider frequency range for the M fine phase clock signals, the coarse phase clock signals
4	used is changed to provide the first desired pre-compensation.
1	13. A magnetic storage device, comprising:
2	a magnetic storage medium for recording data thereon;
3	a motor for moving the magnetic storage medium;
4	a head for reading and writing data on the magnetic storage medium;
5	an actuator for positioning the head relative to the magnetic storage medium; and
6	a data channel for processing encoded signals on the magnetic storage medium,
7	the data channel comprising a coarse phase generator for generating N coarse phase
8	signals, a fine phase generator, coupled to the coarse phase generator, for using the N
9	coarse phase signals to generate M fine phase signals and a write pre-compensation
10	circuit, coupled to the fine phase generator, for choosing a fine phase signal from the M
11	fine phase signals to provide a shift to received write data to achieve a first desired pre-
12	compensation.
1	14. The magnetic storage device of claim 13, wherein the fine phase signal
2	chosen provides a shift to received write data to achieve a first desired positive pre-
3	compensation positive pre-compensation.

1 15. The magnetic storage device of claim 13, wherein the fine phase signal 2 chosen provides a shift to received write data to achieve a first desired negative pre-3 compensation positive pre-compensation. 1 16. The magnetic storage device of claim 13, wherein the fine phase signal is 2 chosen to further provide a shift to received write data to achieve timing asymmetry 3 correction. 17. 1 The magnetic storage device of claim 13, wherein the coarse phase 2 generator comprises a X stage differential ring VCO running at a first frequency and 3 providing 2X phase signals of 0° to 360° in 360°/(2X) increments. 18. 1 The magnetic storage device of claim 13, wherein the coarse phase 2 generator comprises a X stage differential ring VCO running at a second frequency, the 3 coarse phase generator further comprises differential dividers and provides 4X phase 4 signals of 0° to 360° in 360°/(8X) increments. 19. 1 The magnetic storage device of claim 13, wherein the fine phase generator 2 comprises an interpolator for providing voltage averaging to generate the M fine phase 3 signals. 1 20. The magnetic storage device of claim 19, wherein the fine phase generator

resistors disposed between the drivers for generating the M fine phase signals.

further comprises drivers receiving one of the N coarse phase signals and serially coupled

2

3

1	21. The magnetic storage device of claim 13, wherein the write pre-
2	compensation circuit further comprises:
3	a pre-compensation decoder, coupled to the fine phase generator, the pre-
4	compensation decoder receiving a reference clock from the fine phase generator, the pre-
5	compensation decoder receiving the write data;
6	a latch circuit, coupled to the fine phase generator and the pre-compensation
7	decoder, the latch circuit being supplied the write data from the pre-compensation
8	decoder and the M fine phase clock signals, the latch circuit supplying M latched write
9	data signals shifted according to the M fine phase clock signals; and
10	a data selector, coupled to the latch circuit and the pre-compensation decoder, the
11	data selector receiving a data selection signal from the pre-compensation decoder for
12	indicating to the data selector which of the shifted M latched write data signals to provide
13	as pre-compensated write data.
1	22. The magnetic storage device of claim 21 further comprises a write driver,
2	the write driver receiving the pre-compensated write data and outputting NRZI write
3	data.
1	23. The magnetic storage device of claim 22, wherein a shifted M latched
2	write data signal is chosen to further provide a shift to received write data to achieve
3	timing asymmetry correction.

1	24. The magnetic storage device of claim 21 further comprising a divider for
2	dividing the reference clock to increase a slew rate of the M fine phase clock signals and
3	to provide a wider frequency range for the M fine phase clock signals, the coarse phase
4	clock signals used is changed to provide the first desired pre-compensation.
1	25. A method for providing generalized write pre-compensation, comprising:
2	generating N coarse phase signals;
3	using the N coarse phase signals to generate M fine phase signals; and
4	choosing a fine phase signal from the M fine phase signals to provide a shift to
5	received write data to achieve a first desired pre-compensation.
1	26. The method of claim 25, wherein the choosing a fine phase signal further
2	comprises choosing a fine phase signal to achieve a first desired positive pre-
3	compensation.
1	27. The method of claim 25, wherein the choosing a fine phase signal further
2	comprises choosing a fine phase signal to achieve a first desired negative pre-
3	compensation.
1	28. The method of claim 25, wherein the choosing a fine phase signal further
2	comprises choosing a fine phase signal to further provide a shift to received write data to
3	achieve positive or negative timing asymmetry correction.
1	29. The method of claim 25, wherein the generating N coarse phase signals

further comprises providing X phase signals of 0° to 360° in 360°/X increments.

2

1	30. The method of claim 25, wherein the generating N coarse phase signals
2	further comprises providing 2X phase signals of 0° to 360° in 360°/(2X) increments.
1	31. The method of claim 25, wherein the using the N coarse phase signals to
2	generate M fine phase signals further comprises providing voltage averaging to the N
3	coarse phase signals to generate the M fine phase signals.
1	32. The method of claim 25, wherein the choosing a fine phase signal from the
2	M fine phase signals to provide a shift to received write data to achieve a first desired
3	pre-compensation further comprises:
4	shifting write data according to the M fine phase clock signals to produce M
5	shifted write data signals; and
6	in response to receiving a reference clock and write data, supplying a data
7	selection signal to choose one of the M shifted write data signals to provide as pre-
8	compensated write data.
1	33. The method of claim 32, wherein the supplying a data selection signal to
2	choose one of the M shifted write data signals to further achieve timing asymmetry
3	correction for the write data.

1	34. The method of claim 32 further comprising:
2	dividing the reference clock to increase a slew rate of the M fine phase clock
3	signals and to provide a wider frequency range for the M fine phase clock signals; and
4	changing the coarse phase clock signals used to provide the first desired pre-
5	compensation.