

				Sub	ject	Cod	le: ŀ	KOE	039
Roll No:									

Printed Page: 1 of 2

BTECH (SEM III) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ΓΙΟΝ-A Attempt All of the following Questions in brief Marks(10X2=20)						
Q1(a)	How are b	pinary digits used to express the integer and fractional	al parts of a number?	1			
Q1(b)	Explain how BCD addition is carried out.						
Q1(c)	Implemen	t a 4:1 multiplexer using 2:1 multiplexer.		2			
Q1(d)	d) Demultiplexer is decoder circuit with an additional enabling input. Do you agree						
	with the above statement?						
Q1(e)	Give the difference between positive and negative edge triggering.						
Q1(f)	A flip-flop has 5 ns delay from the time the clock edge occurs to the time the output						
	is complemented. What is the maximum delay in a 10-bit binary ripple counter that						
	uses these flip-flops? What is the maximum frequency the counter can operate						
	reliably?						
Q1(g)	Define critical race and non-critical race.						
Q1(h)							
Q1(i)	Why is E0	CL logic faster than TTL?		5			
Q1(j)	Compare	static RAM and dynamic RAM.		5			

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)					
Q2(a)	Realize a	3-input gate using 2-input gates for the following gate	tes:	1				
		(i) AND (ii) OR (iii) NAND (iv) NOR						
Q2(b)	(i)Implem	ent a full subtractor circuit using only NAND gates.		2				
	(ii)Using	4:1 multiplexers, implement the following function						
	$F(A, B, C) = \sum m(0,2,3,5,7)$							
Q2(c)	Define b	-directional shift register. Draw and explain 3 b	oit bi-directional shift	3				
	register us	sing D flip-flop.						
Q2(d)	Design a	primitive state diagram and state table for a circuit v	with two asynchronous	4				
	inputs (X	and Y) and one output Z. This circuit is to be d	esigned so that if any					
	change ta	kes place on X and Y, Z is to change states. Assum	e initially that the two					
	inputs nev	er change simultaneously.						
Q2(e)	(i) Write a	note on interfacing TTL with CMOS.		5				
	(ii) Expla	in the parameters used to characterize logic families.						

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)					
Q3(a)	Minimize the following using Tabular method							
	$F(A,B,C,D,E) = \sum m(0,1,2,3,6,7,14,15,16,19,31)$							
Q3(b)	(i) Reduc	e the expression $f = \sum_{i=1}^{n} m_{i}(0,1,2,3,5,7,8,9,10,12,1)$	3) using K-maps and	1				
		t the real minimal expression using NAND logic.						
	(ii) Design	n the logic circuit for a BCD to decimal decoder.						

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)			
Q4(a)	Q4(a) Construct BCD adder using two 4-bit binary parallel adder and logic gates.					
Q4(b)	(b) Explain 4-bit magnitude comparator.					

				Subject Code: KOE039					
Roll No:									

Printed Page: 2 of 2

BTECH (SEM III) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)						
Q7(a) Design a BCD to Excess-3 code converter and implement it using a suitable PLA.						
Q7(b) Draw a neat diagram of TTL NAND gate and explain its operation.						