Appln. No.: 10/529,503

Amendment Dated September 2, 2009 Reply to Office Action of June 3, 2009

Amendments to the Claims: This listing of claims will replace all prior versions, and listings, of claims in the application

Listing of Claims:

 (Currently Amended) A method for driving a cholesteric liquid crystal display device in which a cholesteric liquid crystal is driven in a matrix manner by means of a plurality of common electrodes and segment electrodes, the common electrodes and segment electrodes being crossed oppositely, the method comprising the steps of:

writing display content to the cholesteric crystal by sequentially applying common electrode drive voltage waveforms from the common electrodes to the cholesteric liquid crystal display device, the common electrode drive voltage waveforms including a reset voltage waveform to cause the cholesteric liquid crystal to enter a homeotropic state, a select voltage waveform to select a final alignment state of the cholesteric liquid crystal, a hold voltage waveform to hold an alignment state selected by the select voltage waveform, and a non-select voltage waveform caused by a matrix drive; and

applying segment electrode drive voltage waveforms from the segment electrodes to the cholesteric liquid crystal display device during the step of writing the display content, the segment electrode drive voltage waveforms including at least an ON voltage waveform for determining the final alignment state of the cholesteric liquid crystal as a planar alignment state, and an OFF voltage waveform for determining the final alignment state as a focal conic state;

wherein, when the display content represented by the select voltage waveforms applied to the select electrodes, includes both turned on and turned off pixels, the common electrode drive voltage waveforms are formed so that there is no period of time during which the same voltage is applied to all common electrodes at the same time in a period of time from the application of the hold voltage waveform to the first common electrode to the application of the reset voltage waveform to the last common electrodes, during the step of writing a display content, have two levels of voltages for all of the common electrodes and all periods of time and the segment electrode drive voltage waveforms are formed so that there is a period of time during which the same voltage is applied to all segment electrodes at the same time during the step of writing the display content.

SUGI-101US

Appln. No.: 10/529,503

Amendment Dated September 2, 2009 Reply to Office Action of June 3, 2009

- 2. (Original) The method for driving a liquid crystal display device according to claim 1, wherein each of the reset, select, hold, non-select, ON and OFF voltage waveforms has the same number of unit intervals, each of the reset, select, hold, non-select voltage waveforms has two levels of voltages in the same unit interval, and each of the ON and OFF voltage waveforms has two or less levels of voltages in the same unit interval.
- 3. (Original) The method for driving a liquid crystal display device according to claim 2, wherein each of the reset, select, hold, and non-select voltage waveforms has two levels of voltages.
- 4. (Original) The method for driving a liquid crystal display device according to claim 2, wherein each of the reset, select, hold, and non-select voltage waveforms has three levels of voltages.
- (Original) The method for driving a liquid crystal display device according to claim 2, wherein each of the reset, select, hold, and nonselect voltage waveforms has four levels of voltages.
- (Previously Presented) The method for driving a liquid crystal display device according to claim 3, wherein the maximum voltage value of the reset voltage waveform and the maximum voltage value of the hold voltage waveform are the same.
- (Previously Presented) The method for driving a liquid crystal display device according to claim 3, wherein each of the ON and OFF voltage waveforms has three or four levels of voltages.
- (Previously Presented) The method for driving a liquid crystal display device according to claim 4, wherein each of the ON and OFF voltage waveforms has two levels of voltages.
- (Original) The method for driving a liquid crystal display device according to claim 7, wherein the ON and OFF voltage waveforms and the non-select voltage waveform are the same.

Appln. No.: 10/529,503

Amendment Dated September 2, 2009 Reply to Office Action of June 3, 2009

 (Original) The method for driving a liquid crystal display device according to claim 7, wherein the select and non-select voltage waveforms are the same.

11. (Currently Amended) A cholesteric liquid crystal display apparatus comprising: a liquid crystal display device in which a plurality of picture elements are formed at portions crossed by a plurality of common electrodes and a plurality of segment electrodes.

a common driver for writing display content to the picture elements by sequentially applying drive voltage waveforms from the common electrodes to the cholesteric liquid crystal display device, the drive voltage waveforms including a reset voltage waveform to cause the cholesteric liquid crystal to enter a homeotropic state, a select voltage waveform to select a final alignment state of the cholesteric liquid crystal, a hold voltage waveform to hold an alignment state selected by the select voltage waveform, and a non-select voltage waveform caused by a matrix drive, wherein the common driver concurrently applies each of the reset, select, hold and non-select waveforms to respectively different portions of the common electrodes:

a segment driver for applying drive voltage waveforms from the segment electrodes to the cholesteric liquid crystal display device during the step of writing the display content, the drive voltage waveforms including at least an ON voltage waveform for determining the final alignment state of the cholesteric liquid crystal as a planar alignment state, and an OFF voltage waveform for determining the final alignment state as a focal conic state; and

a controller for controlling the common driver and segment driver;

wherein the controller controls the common and segment driver in such a way that each of the reset, select, hold, non-select, ON and OFF voltage waveforms has the same number of unit intervals the reset, select, hold, non-select voltage waveforms have no-more than-two levels of voltages concurrently in the same unit interval- for all of the common electrodes and all periods of time, and the ON and OFF voltage waveforms have not more than two levels of voltages for all of the segment electrodes in the same unit interval.

SUGI-101US

Appln. No.: 10/529,503

Amendment Dated September 2, 2009 Reply to Office Action of June 3, 2009

12. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 11, wherein the controller controls the common driver in such a way that there is no period of time during which the same voltage is applied to all common electrods in a period of time from the application of the hold voltage waveform to the first common electrode to the application of the reset voltage waveform to the last common electrodes during a step of writing the display content, and that there is a period of time during which the same voltage is applied to all segment electrodes during the step of writing the display content.

- (Original) The cholesteric liquid crystal display apparatus according to claim
 wherein the controller controls the common driver in such a way that the voltages applied to the common electrodes have two levels of voltages.
- 14. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the common driver in such a way that the voltages applied to the common electrodes have three levels of voltages Vh, Vm, V1 (Vh > Vm > V1), and include, for writing a display content, a unit interval during which the voltages applied to the common electrodes include Vh and Vm and a unit interval during which the voltages applied to the common electrodes include Vm and V1.
- 15. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the common driver in such a way that the voltages applied to the common electrodes have three levels of voltages Vh, Vm, V1 (Vh > Vm > V1), and include, for writing a display content, a unit interval during which the voltages applied to the common electrodes include Vh and V1 and a unit interval during which the voltages applied to the common electrodes include Vm and V1.
- 16. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the common driver in such a way that the voltages applied to the common electrodes have four levels of voltages Vh, Vmh, Vml, V1 (Vh > Vmh > Vml > V1), and include, for writing a display content, a unit interval during which the voltages applied to the common electrodes include Vh and V1, a unit interval during which the voltages applied to the common electrodes include Vml and V1, and a unit interval during which the voltages applied to the common electrodes include Vml and Vml.

SUGI-101US

Appln. No.: 10/529,503 Amendment Dated September 2, 2009

Reply to Office Action of June 3, 2009

17. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the segment driver in such a way that the voltages applied to the segment electrodes have four levels of voltages V1, V2, V3 V4 (V1 > V3 > V4), and include, for writing a display content, a unit interval during which the voltages applied to the segment electrodes include V1, a unit interval during which the voltages applied to the segment electrodes include V1 and V2, and a unit interval during which the voltages applied to the segment electrodes include V3 and V4.

- 18. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the segment driver in such a way that the voltages applied to the segment electrodes have three levels of voltages V1, V2, V4 (V1 > V2 > V4), and include, for writing a display content, a unit interval during which the voltages applied to the segment electrodes include V1, a unit interval during which the voltages applied to the segment electrodes include V2 and 4.
- 19. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the segment driver in such a way that the voltages applied to the segment electrodes have three levels of voltages V1, V2, V4 (V1 \times V2 \times V4), and include, for writing a display content, a unit interval during which the voltages applied to the segment electrodes include V4, a unit interval during which the voltages applied to the segment electrodes include V1 and V2.
- 20. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the segment driver in such a way that the voltages applied to the segment electrodes have three levels of voltages V1, V2, V4 (V1 > V2 > V4), and include, for writing a display content, a unit interval during which the voltages applied to the segment electrodes include V2, a unit interval during which the voltages applied to the segment electrodes include V4, and a unit interval during which the voltages applied to the segment electrodes include V1 and V2.
- 21. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the segment driver in such a way that the voltages applied to the segment electrodes have three levels of voltages V1, V2, V4 (V1 > V2 > V4), and include, for writing a display content, a unit interval during which the voltages

Appln. No.: 10/529,503

Amendment Dated September 2, 2009 Reply to Office Action of June 3, 2009

applied to the segment electrodes include V1, a unit interval during which the voltages applied to the segment electrodes include V2, a unit interval during which the voltages applied to the segment electrodes include V4, and a unit interval during which the voltages applied to the segment electrodes include V2 and V4.

- 22. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the segment driver in such a way that the voltages applied to the segment electrodes have three levels of voltages V1, V2, V4 (V1 \times V2 \times V4), and include, for writing a display content, a unit interval during which the voltages applied to the segment electrodes include V1, a unit interval during which the voltages applied to the segment electrodes include V4, and a unit Interval during which the voltages applied to the segment electrodes include V2 and V4.
- 23. (Original) The cholesteric liquid crystal display apparatus according to claim 12, wherein the controller controls the segment driver in such a way that the voltages applied to the segment electrodes have two levels of voltages.
- 24. (Previously Presented) The cholesteric liquid crystal display apparatus according to claim 11, wherein the controller controls the common and segment drivers in such a way that the voltages applied to the common and segment electrodes are 42 volts or less.