

Fundamental Concepts in Data Insight:

Demo: Automating Insight

Fundamentals for a General Audience

QA Ltd. owns the copyright and other intellectual property rights of this material and asserts its moral rights as the author. All rights reserved.

import pandas as pd

The Simulation

Suppose we're trying to predict the risk of victimization.

One method here is to keep a table of risk factors that can be applied to any individual person. The *weights* of these factors can be determined from historical datasets and even expert judgment.

```
risk_factors
```

name 0.0 arrests 0.5 age 0.2 dtype: float64

We multiply each of these factors by what we observe a person to have,

```
name    Alice
arrests    10
age     18
dtype: object

(    risk_factors["arrests"] * alice["arrests"] +
    risk_factors["age"] * alice["age"]
)/2
```

4.3

QA

We can generalise this to table of people,

pd.DataFrame?

people

	arrests	age
name		
Alice	10	18
Bob	10	21
Eve	10	35
Lucie	10	35
Alex	10	35

```
results = (people * factors).mean(1)
```

results

name

Alice 4.3
Bob 4.6
Eve 6.0
Lucie 6.0
Alex 6.0
dtype: float64

Descriptive Analytics

These are the type of metrics we would include in a report.

Highest risk person,

```
results.idxmax(), results.max()
('Eve', 6.0)
```

QA

Lowest risk person,

```
results.idxmin(), results.min()
('Alice', 4.3)
```

Median risk,

```
results.median()
6.0
```

People with the median,

```
results[ results == results.median() ]

name
Eve    6.0
Lucie    6.0
Alex    6.0
dtype: float64
```

A sample of people,

How do you automate insight?

When building an automation system we will often want to make a **decision** based on these type of measures,

```
risk_threshold = 5

for name, risk in results.items():
   if risk > risk_threshold:
        print(f"ALERT: {name} above threshold!")
```

ALERT: Eve above threshold!
ALERT: Lucie above threshold!
ALERT: Alex above threshold!

Exercise

- Revise the table of people, add in additional observables
- Update the factors to include a risk weight for each factor
- Revise these weights until the risk totals make sense