

Supervisor: Student: Student ID: Dr. Paul Kyberd Michael Watzko 1841795

Conception and realization of a distributed and automated computer vision pipeline

Project Context

- Detecting vehicles in video footage using Computer Vision and Artificial Intelligence
- Tracking vehicles throughout the video to determine speed, size, acceleration, class, position and lane changes
- Export data for further traffic flow analysis (in other projects or for the customer)

Main Goal

 Automate manual workflow that distributes the workload onto servers and collects the data

Challenges and Experimental Work

- Finding a fitting network filesystem
- Communication and coordination
- Finding the most fitting execution node for a job

Results

- Time savings because of higher hardware utilization due to automatic stage execution
- Creation of a distributed and synchronous EventSystem with timeout based mutex on top

Further Requirements and Objectives

- Handle large files (4k video footage) and multiple projects
- Representation as multi-stage pipeline that can be paused at any stage and investigated, to re-do stages with optimized parameters
- Consider specific hardware requirements for CV and AI for each pipeline stage

Architecture, Design and Technologies

- Decentralized decision making
- Resilient against node failures
- Shared network filesystem
- Docker

Project Progress

Task	Progress	2019				2020		
		Sept	Oct	Nov	Dec	Jan	Feb	Mar
Research	DONE							
Experimental work	DONE							
synchronization, coordination and communication								
managing docker container								
Implementation FINALIZING (99%)								
Job distribution (algorithm)								
Error resilience on job failures, node failures and timeouts								
reacting to User-Feedback								
Metrics, Analysis and Evaluation	etrics, Analysis and Evaluation 60%							
finding valuable metrics								
collect and analyse								
Thesis 70%								
writing everything down								

Challenges and Experimental Work

- Finding a fitting network filesystem
 - Some require big installation overhead
 - Truly decentralised filesystems are rare
 - Tons of different centralized network filesystems
 - Some provide site awareness or replication services
- How to manage separate execution history from project and pipeline template
- Can you use a shared filesystem for communication and coordination to strip down external (system) dependencies

Results

- Synchronous EventSystem with Boradcast functionality based on files on a shared filesystem
- Implementations of a timeout Mutex on-top of the EventSystem to lock projects throughout the whole system

Further Requirements and Objectives

- Automatically distribute jobs onto computing nodes
- Handle large files (4k video footage) and multiple projects
- Representation as multi-stage pipeline that can be paused at any stage and investigated, to re-do stages with optimized parameters
- Consider specific hardware requirements for CV and AI

Architecture, Design and Technologies

- Decentralized decision making
- Resilient against node failures
- Shared network filesystem for data, configuration and coordination
- Docker for easy installation of additional compute nodes

Challenges and Experimental Work

- Finding a fitting network filesystem
- Solely depend on a shared filesystem for communication and coordination to strip down external (system) dependencies

Results

- Synchronous EventSystem with Boradcast functionality based on files on a shared filesystem
- Implementation of a timeout based mutex ontop of the EventSystem to lock projects throughout the whole system
- Much more time efficient because of higher hardware utilization due to automatic stage execution

