Devoir surveillé n° 5

- Version 2 -

Durée : 3 heures, calculatrices et documents interdits

I. Suites de Cauchy.

Lorsqu'une partie X de $\mathbb R$ admet une borne supérieure dans $\mathbb R$, on notera cette dernière sup X.

Partie 1 : Suites de Cauchy

Étant donné $u = (u_n)_{n \in \mathbb{N}}$ une suite à termes réels, on dit que u est une suite de Cauchy lorsque

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \forall m \geqslant n_0, \ |u_n - u_m| \leqslant \varepsilon.$$

- 1) Lesquelles des suites ci-dessous sont de Cauchy? Justifier.
 - a) $\left(\frac{1}{n+1}\right)_{n\in\mathbb{N}}$
- b) $\left(\frac{(-1)^n}{n+1}\right)_{n\in\mathbb{N}}$
- c) $((-1)^n)_{n\in\mathbb{N}}$
- 2) Soit u une suite de Cauchy. Montrer que

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |u_n| \leqslant |u_{n_0}| + \varepsilon.$$

En déduire que toute suite de Cauchy est bornée.

La réciproque est-elle vraie?

3) Montrer que toute suite convergente est de Cauchy.

Partie 2 : Convergence des suites de Cauchy

On cherche maintenant à démontrer la réciproque de $\boxed{3}$ de la partie précédente. Dans cette partie $(u_n)_{n\in\mathbb{N}}$ désigne une suite bornée à termes réels. Pour tout $n\in\mathbb{N}$, on pose

$$a_n = \inf \{ u_m \mid m \geqslant n \}$$

et

$$b_n = \sup \{ u_m \mid m \geqslant n \}.$$

- 4) a) Justifier que les définitions respectives de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ ont bien un sens
 - **b)** Expliciter les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ lorsque $u=((-1)^n)_{n\in\mathbb{N}}$.
- **a)** Montrer l'encadrement

$$\forall n \in \mathbb{N}, \ a_n \leqslant u_n \leqslant b_n.$$

- b) Montrer que $(a_n)_{n\in\mathbb{N}}$ est croissante et que $(b_n)_{n\in\mathbb{N}}$ est décroissante.
- c) On suppose qu'on a un réel h > 0 et un entier naturel n tels que

$$\forall m \geqslant n, |u_m - u_n| \leqslant h.$$

Montrer l'encadrement $b_n - h \leq u_n \leq a_n + h$.

- **6)** On suppose maintenant que u est une suite de Cauchy. Montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.
- 7) En déduire que toute suite de Cauchy est convergente.

Partie 3: Une application

On se donne une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ d'éléments de $\{-1,1\}$, et on définit, pour tout $n\in\mathbb{N}$,

$$S_n = \sum_{k=0}^n \frac{\varepsilon_k}{2^k}.$$

8) Montrer que pour tout $(m, n) \in \mathbb{N}^2$,

$$|S_m - S_n| \leqslant \frac{1}{2^{\min(m,n)}}$$

- 9) En déduire que $(S_n)_{n\in\mathbb{N}}$ est une suite de Cauchy.
- **10)** Montrer que $(S_n)_{n\in\mathbb{N}}$ converge vers un élément de [-2,2].

II. Équation de Pell-Fermat.

On appelle équation de Pell-Fermat toute équation de la forme $x^2-dy^2=1$ où les inconnues x et y sont des entiers, et où $d \in \mathbb{N}$ n'est pas un carré parfait. Nous allons résoudre cette équation pour d=7. Cette méthode pourrait se généraliser à n'importe quelle valeur de d.

On appelle endomorphisme d'anneaux toute application φ entre deux anneaux A_1 et A_2 , qui est un morphisme de groupes pour la loi +, un morphisme entre magmas pour la loi \times , c'est-à-dire : $\forall x, y \in A_1$, $\varphi(x \times y) = \varphi(x) \times \varphi(y)$, et tel que $\varphi(1_{A_1}) = 1_{A_2}$.

On note $\mathbb{Z}[\sqrt{7}]$ l'ensemble $\{a + b\sqrt{7} \mid a, b \in \mathbb{Z} \}$.

- 1) Montrer que $(\mathbb{Z}[\sqrt{7}], +, \times)$ est un anneau.
- 2) a) Montrer que $\sqrt{7}$ est irrationnel.
 - b) Montrer

$$\forall x \in \mathbb{Z}[\sqrt{7}] \quad \exists ! (a,b) \in \mathbb{Z}^2 \quad x = a + b\sqrt{7}$$

L'élément $a - b\sqrt{7}$ de $\mathbb{Z}[\sqrt{7}]$ est appelé conjugué de x et noté \overline{x} (ne pas le confondre avec le conjugué complexe!).

- c) On considère l'application $\varphi: \mathbb{Z}[\sqrt{7}] \to \mathbb{Z}[\sqrt{7}]$. Montrer que φ est $x \mapsto \overline{x}$ un endomorphisme d'anneaux.
- 3) Pour tout $x \in \mathbb{Z}[\sqrt{7}]$, on pose $N(x) = x\overline{x}$. Ce réel est appelé norme de x.
 - a) Montrer que pour tout $x \in \mathbb{Z}[\sqrt{7}], N(x) \in \mathbb{Z}$.
 - **b)** Montrer que pour tout $x, x' \in \mathbb{Z}[\sqrt{7}], N(xx') = N(x)N(x').$
 - c) Soit $x \in \mathbb{Z}[\sqrt{7}]$. Montrer que x est inversible si et seulement si $N(x) = \pm 1$.
 - d) On pose $G = \{x \in \mathbb{Z}[\sqrt{7}] \mid N(x) = 1\}$. Montrer que (G, \times) est un groupe.
 - e) Expliquer en quoi la détermination des éléments de G est équivalente à la détermination des solutions entières de l'équation $x^2 7y^2 = 1$.
- 4) Soit $x \in G \cap]1, +\infty[$. On note $x = a + b\sqrt{7}$, avec $a, b \in \mathbb{Z}$.
 - a) Calculer $x + \overline{x}$ et en déduire que a > 0.
 - **b)** Montrer que $x^2 = 1 + 2bx\sqrt{7}$ et en déduire que b > 0.
 - c) Montrer que $b \ge 3$ et $a \ge 8$.
 - d) En déduire que $G \cap]1, +\infty[$ contient un plus petit élément $x_0 = a_0 + b_0 \sqrt{7}$ pour l'ordre naturel sur \mathbb{R} .
 - e) Montrer qu'il existe un entier naturel n tel que $x_0^n \leqslant x < x_0^{n+1}$.
 - f) En déduire que $x = x_0^n$.
 - **g)** Montrer finalement que $G = \{ \pm x_0^n \mid n \in \mathbb{Z} \}.$
- 5) En déduire toutes les solutions de l'équation $x^2 7y^2 = 1$.

— FIN —