Выполнил студент Пащенко Николай

Вариант 8

1. Оценка среднего и дисперсии

Имеем выборку $\mathbf{X} \sim \mathcal{N}(\theta_1, \theta_2^2)$. Для оценки параметров распределения θ_1 и θ_2^2 воспользуемся методом моментов

$$\begin{cases} \hat{\theta}_1 = m_n^{(1)}, \\ \hat{\theta}_2^2 = \mu_n^{(2)}, \end{cases}$$

где $m_n^{(1)}=\frac{1}{n}\sum_{i=1}^n X_i$ — начальный выборочный момент 1-ого порядка, а $\mu_n^{(2)}=\frac{1}{n}\sum_{i=1}^n (X_i-m_n^{(1)})^2$ — центральный выборочный момент 2-го порядка. Получим следующие оценки

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}, \quad \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m_n^{(1)})^2 = S^2.$$

Стоит отметить, что оценка для θ_1 является несмещенной, а оценка для θ_2 смещенная, т.е. $\mathbb{E}\hat{\theta}_1=\theta_1$, а $\mathbb{E}\hat{\theta}_2\neq\theta_2$. Поэтому будем брать несмещенную оценку дисперсии: $S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-m_n^{(1)})^2$.

Таблица 1: Результаты численного оценивания

Планета	$\hat{ heta}_1$	$\hat{ heta}_2^2$
Юпитер	69934.6508	2853.8107
Сатурн	58303.6317	19229.7520
Нептун	24628.9271	3275.7293
Уран	25420.2121	12161.7995

2. Построение доверительного интервала для среднего наблюдений

Имеем $\mathbf{X} \sim \mathcal{N}(\theta_1, \theta_2^2)$. По теореме Фишера

$$\bar{X} \sim \mathcal{N}(\theta_1, \frac{\theta_2^2}{n}),$$

$$\frac{n}{\theta_2^2} S^2 \sim \chi_{n-1}^2.$$

Тогда
$$\frac{\sqrt{n}(\bar{X} - \theta_1)}{\theta_2} \sim \mathcal{N}(0, 1)$$
 и $\frac{\frac{\sqrt{n}(\bar{X} - \theta_1)}{\theta_2}}{\sqrt{\frac{1}{\theta_2^2(n-1)}\sum\limits_{i=1}^n (X_i - \bar{X})^2}} \sim \mathcal{T}_{n-1}$, где \mathcal{T}_{n-1} —

распределение Стьюдента с n-1 степенями свободы. Тогда приняв обозначение $A=\sqrt{\frac{1}{(n-1)}\sum_{i=1}^n(X_i-\bar{X})^2},$ получаем центральный доверительный интервал для среднего

$$\bar{X} - \frac{At_{\frac{1+\gamma}{2}}^{(n-1)}}{\sqrt{n}} \leqslant \theta_1 \leqslant \bar{X} + \frac{At_{\frac{1+\gamma}{2}}^{(n-1)}}{\sqrt{n}},$$

где $t_{\frac{1+\gamma}{2}}^{(n-1)}$ — квантиль уровня $\frac{1+\gamma}{2}$ распределения Стьюдента.

Правосторонний доверительный интервал выглядит следующим образом

$$\bar{X} - \frac{At_{1+\gamma}^{(n-1)}}{\sqrt{n}} \leqslant \theta_1 < \infty.$$

Таблица 2: Центральный доверительный интервал для среднего

Планета	Уровень доверия 0.95	Уровень доверия 0.99
Юпитер	$69928.5819 \leqslant \theta_1 \leqslant 69940.7196$	$69926.3359 \leqslant \theta_1 \leqslant 69942.9657$
Сатурн	$58299.5175 \leqslant \theta_1 \leqslant 58307.7460$	$58298.0817 \leqslant \theta_1 \leqslant 58309.1818$
Нептун	$24612.2019 \leqslant \theta_1 \leqslant 24645.6522$	$24605.9519 \leqslant \theta_1 \leqslant 24651.9022$
Уран	$25408.9873 \leqslant \theta_1 \leqslant 25431.4370$	$25404.9010 \leqslant \theta_1 \leqslant 25435.5233$

Таблица 3: Правосторонний доверительный интервал для среднего

Планета	Уровень доверия 0.95	Уровень доверия 0.99
Юпитер	$69929.6416 \leqslant \theta_1 < \infty$	$69927.2777 \leqslant \theta_1 < \infty$
Сатурн	$58300.2150 \leqslant \theta_1 < \infty$	$58298.6764 \leqslant \theta_1 < \infty$
Нептун	$24615.1366 \leqslant \theta_1 < \infty$	$24608.5782 \leqslant \theta_1 < \infty$
Уран	$25410.9312 \leqslant \theta_1 < \infty$	$25406.6087 \leqslant \theta_1 < \infty$

2. Построение доверительного интервала для дисперсии наблюдений

Имеем $\mathbf{X} \sim \mathcal{N}(\theta_1, \theta_2^2)$. По теореме Фишера

$$\frac{n}{\theta_2^2}S^2 \sim \chi_{n-1}^2.$$

 $\sum_{i=1}^n (\bar{X}-X_i)^2$ Тогда $\frac{\sum_{i=1}^n (\bar{X}-X_i)^2}{\theta_2^2} \sim \chi_{n-1}^2$, и центральный интервал для дисперсии будет выглядеть следующим образом

$$\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{h_{1-\varepsilon_2}^{(n-1)}} \leqslant \theta_2^2 \leqslant \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{h_{\varepsilon_1}^{(n-1)}}.$$

Здесь $h_{\varepsilon_1}^{(n-1)}$ и $h_{1-\varepsilon_2}^{(n-1)}$ квантили распределения хи-квадрат уровней ε_1 и $1-\varepsilon_2$, причем $\varepsilon_1+\varepsilon_2=1-\gamma$. Выберем $\varepsilon_1=\frac{1-\gamma}{2}$ и $\varepsilon_2=\frac{1-\gamma}{2}$.

Левосторонний интервал имеет вид

$$0 \leqslant \theta_2^2 \leqslant \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{h_{1-\gamma}^{(n-1)}}.$$

Таблица 4: Центральный доверительный интервал для дисперсии

Планета	Уровень доверия 0.95	Уровень доверия 0.99
Юпитер	$1563.6211 \leqslant \theta_2^2 \leqslant 5767.5290$	$1331.4045 \leqslant \theta_2^2 \leqslant 7505.6701$
Сатурн	$2006.0331 \leqslant \theta_2^2 \leqslant 5715.7107$	$1752.5430 \leqslant \theta_2^2 \leqslant 6990.2735$
Нептун	$10369.2780 \leqslant \theta_2^2 \leqslant 39717.6362$	$8798.0894 \leqslant \theta_2^2 \leqslant 52181.3208$
Уран	$6855.7975 \leqslant \theta_2^2 \leqslant 23654.4206$	$5875.1143 \leqslant \theta_2^2 \leqslant 30277.1326$

Таблица 5: Левосторонний доверительный интервал для дисперсии

Планета	Уровень доверия 0.95	Уровень доверия 0.99
Юпитер	$0 \leqslant \theta_2^2 \leqslant 5077.4464$	$0 \leqslant \theta_2^2 \leqslant 6730.0421$
Сатурн	$0 \leqslant \theta_2^2 \leqslant 5179.4964$	$0 \leqslant \theta_2^2 \leqslant 6433.6065$
Нептун	$0 \leqslant \theta_2^2 \leqslant 34812.5602$	$0 \leqslant \theta_2^2 \leqslant 46601.5589$
Уран	$0 \leqslant \theta_2^2 \leqslant 20984.3486$	$0 \leqslant \theta_2^2 \leqslant 27338.4937$

3. Построение доверительного интервала для следующего

измерения

Рассмотрим
$$\frac{X_{n+1} - \bar{X}}{S}$$
, $X_{n+1} \sim \mathcal{N}(\theta_1, \theta_2^2)$ и $\bar{X} \sim \mathcal{N}(\theta_1, \frac{\theta_2^2}{n})$. Тогда $X_{n+1} - \bar{X}$ $\sim \mathcal{N}(0, \frac{\theta_2^2(n+1)}{n})$, а $(n-1)S^2 \sim \theta_2^2\chi_{n-1}^2$. Получаем, что $\frac{X_{n+1} - \bar{X}}{\sqrt{(n-1)S^2}} \sim \frac{\mathcal{N}(0, \frac{n+1}{n})}{\sqrt{\chi_{n-1}^2}}$. И наконец $\sqrt{\frac{n(n-1)}{n+1}} \frac{X_{n+1} - \bar{X}}{S} \sim \frac{\mathcal{N}(0, 1)}{\sqrt{\frac{\chi_{n-1}^2}{n-1}}} \sim \mathcal{T}_{n-1}$. Обозначим $c = \sqrt{\frac{n(n-1)}{n+1}}$, тогда доверительный интервал уровня $\gamma = 0.95$ для следующего измерения X_{n+1} будет выглядеть следующим образом

$$\bar{X} - \frac{St_{\frac{1+0.95}{2}}^{(n-1)}}{c} \leqslant X_{n+1} \leqslant \bar{X} + \frac{St_{\frac{1+0.95}{2}}^{(n-1)}}{c}.$$

Таблица 6: Центральный доверительный интервал для следующего измерения

Планета	Уровень доверия 0.95
Юпитер	$69928.2536 \leqslant X_{n+1} \leqslant 69941.0479$
Сатурн	$58299.3731 \leqslant X_{n+1} \leqslant 58307.8904$
Нептун	$24611.2454 \leqslant X_{n+1} \leqslant 24646.6087$
Уран	$25408.4394 \leqslant X_{n+1} \leqslant 25431.9849$