Points to remember

min ratio

- · For min ratio test if a negative number or sero in the Livisor, then we will not evaluate the value.
 - · n'z salways consider the b value should be non-negative.
 - · Avariable can enter the basis and number of times. Even if it leaves the basis then can again enter the basis.

varsious aspects of simplex algorithm

There are three stages of simplex algorithm.

I) Initialization &

The algorithm starts with a basic feasible solution.

The b value is always non-negative.

II) I teration:

The algorithm proceed through some intermediate iterations.

111> Termination:

The algorithm terminates when there is no entering variable in the table or all 3j-(j70

Do all LPPs have obtimal solution??

2) Does the simplex algorithm always terminate by providing an optimal solution??

IniHalisation	
we shall look at a minimisation problem with ">" type constraint	3 .
Min $Z = 2\pi_1 + \pi_2$ 8.t. $2\pi_1 + \pi_2 \times 4 - 0$ $x_1 + 2\pi_2 \times 3 - 0$ $x_1 + 3\pi_2 \times 6 - 3$	
We introduce surflus rariables 23,74, and 25 to D, 2 × 3) rest Then Pi becomes.	eetive/
$min Z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$	= =4 -9
	=3 ^E

 $\frac{1}{P_{2}} = 36$ $\frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 66$ $\frac{1}{2} \times \frac{1}{2} \times$

This is a minimisation problem.
we convert Pz inte a maximisation
troblem by multiplying a (-1) with
the objective function.
max W = -Z = -2x1-x2+0x3+0x4+0x5
8.t. 2x,+n2-x3 =4-
$x_{1}+2x_{2}$ $-x_{4}$ = 3 -8
11,, 75 次0
we start with a bassic feasible
we start with a bassic feasible solution to start an LPP.
City of 1 considering 71.872
We start by considering 7.472 on non-basic variouble is, tarking
as flor- basic vairous , is.
/ 1,=0 and 72=0.
This means , 73, 74, and 75
(as bassic variable.

As a result $x_3 = -4$, $x_4 = -3$ and so they are no more feasible solution For constraint type ">" sarplus variables do not produce any basic feasible solution. How to proceed??

We add 3 (artificial variables) x, x, and x, in \$, 8, and 9 restation Then P3 becomes. max W = -2x, -x2+0x3+0x4+0x5 = mx5-mx5-mx5-mx5 71,72,···,18 >0 where m is avery big bositive · 26,77,78 become initial basic variables. · we ensure that 76, 77, and 78 can not contribute to the objective function. some associates a very large negative value with the artificial variables.

[CBBXBba1a2 a3 a4 a5 a6 a7 a8 min	o operation
-m 98 76 4 2 1 -1 0 0 1 0 3/2=15 -m 98 77 3 1 2 0 -1 0 0 1 0 3/2=15	>
-m ag ag 6 1 3 0 -1 0 0 0 6/3=2	
-M 06 76 5/2 3/2 0 -1 1/2 0 0 1/4/2 -1 02 72 3/2 1/2 1 0 - 1/2 0 0 1/4/2	- REPAL
$\frac{1}{2}$ $\frac{1}$	1 R/= Rr 283
$\frac{1}{-m} \frac{1}{\alpha_{6}} \frac{1}{\alpha_{6}} \frac{1}{\alpha_{1}} \frac{1}{\alpha_{2}} \frac{1}{\alpha_{1}} \frac{1}{\alpha_{2}} \frac{1}{\alpha_{1}} \frac{1}{\alpha_{2}} \frac{1}{\alpha_{1}} \frac{1}{\alpha_{2}} \frac{1}{\alpha_{1}} \frac{1}{\alpha_{2}} \frac{1}{\alpha_$	
0 ay xy -1/3 0 0 -2/3 0 1 -1/3 0 1 -1/3 0 1 -1/3 0 1 -1/3 0 1 1 1 1 1 1 1 1 1	R'= P3/32 R!=P1/52
-1 02 x2 8/5 0 1 V5 0 -3/5 0 -	Ry = 8, 10;
2 24 m 7/5 0 0 -1/5 1 3/5 1 4/5 1 2 -5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Kachid

11 = 4/5, 2= 8/5, W= -1.35 = -4. Z = (W) = 4