We claim:

 A process for preparing 3-phenyl(thio)uracils or 3-phenyldithiouracils of the formula I

5

30

where the variables are each defined as follows:

- 10 R¹ is hydrogen, cyano, amino, C_1 - C_6 -alkyl, C_1 - C_3 -cyanoalkyl, C_1 - C_6 -haloalkoxy, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl or phenyl- C_1 - C_4 -alkyl;
- R² and R³ are each independently hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl or C₃-C₆-haloalkynyl;
 - X^1 , X^2 and X^3 are each independently oxygen or sulfur;
- 20 Ar is phenyl, which may be mono- or polysubstituted by the following groups: hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl; and
 - A is a radical derived from a primary or secondary amine or NH₂;
- comprising the reaction of a phenyl iso(thio)cyanate of the formula II

$$X^1 = C = N Ar$$
 $N SO_2 A$
 $N SO_2 A$
 $N SO_2 A$

where the variables X^1 , X^3 , Ar and A are each as defined above, with an enamine of the general formula III

where

5

10

15

R^{1a} is as defined above for R¹ with the exception of amino;

R², R³ and X² are each as defined above; and

R⁴ is C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₇-cycloalkyl, C₁-C₆-cyanoalkyl or benzyl which is itself unsubstituted or substituted on the phenyl ring by methyl, methoxy, methylthio, halogen, nitro or cyano;

and, if appropriate, in a further step, the reaction of the resulting 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where R¹=R^{1a}, where R¹ is hydrogen, with an aminating agent of the formula IV

20 where L¹ is a nucleophilic leaving group

to give 3-phenyl(thio)uracils or 3-phenyldithiouracils of the formula I where R^1 = amino.

- 25 2. The process according to claim 1, wherein the reaction is effected in the presence of a base which is selected from alkali metal and alkaline earth metal carbonates, alkali metal and alkaline earth metal alkoxides, alkali metal and alkaline earth metal hydrides and tertiary amines.
- 30 3. The process according to either of the preceding claims, wherein the reaction is effected in at least one aprotic polar solvent, and the aprotic polar solvent has a water content of from 0 to 0.5% by weight, based on the total amount of compound II, compound III and solvent.
- The process according to claim 3, wherein the solvent comprises at least 50% by volume of an aprotic polar solvent selected from carboxamides, carboxylic esters,

carbonates, nitriles and sulfoxides.

- 5. The process according to claim 4, wherein the solvent comprises at least 80% by weight of an aprotic polar solvent.
- 6. The process according to any of the preceding claims, wherein from 0.9 to 1.3 mol of the enamine of the formula III are used per mole of the compound II.
- 7. The process according to any of the proceding claims, wherein from 0.9 to 3 base equivalents are used per mole of the compound II.
 - 8. The process according to any of the preceding claims, wherein a 3-phenyl(thio)-uracil or a 3-phenyldithiouracil, where R¹ is hydrogen, is prepared and this compound I is subsequently
 - (A) reacted with an aminating agent of the formula IV

 H_2N-L^1 IV

20

15

5

where L¹ is a nucleophilically displaceable leaving group to obtain a compound of the formula I where

R¹ is amino; and

the variables R², R³, X¹, X², X³, Ar and A are each as defined above; or

25

(B) reacted with an alkylating agent of the formula V

 R^{1b} - L^2 V

30 where

 R^{1b} is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl or C_3 - C_6 -haloalkynyl; and

L² is a nucleophilically displaceable leaving group;

to obtain a compound of the general formula I where

R¹ is as defined for R^{1b}; and

the variables R², R³, X¹, X², X³, Ar and A are each as defined above.

9. The process according to any of the preceding claims, wherein the phenyl iso(thio)cyanate of the formula II is described by the formula IIA

40

35

$$X^1 = C = N$$

$$R^b$$

$$R^a$$

$$R^b$$

$$R^a$$

$$N$$

$$SO_2$$

$$A$$

$$H$$

where

5

10

20

25

30

X1, X3 and A are each as defined above and

R^a, R^b, R^c and R^d are each independently hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl.

The process according to claim 9, wherein, in formula IIA,
 R^a is halogen, cyano or trifluoromethyl;
 R^c is hydrogen or halogen; and
 R^b and R^d are each hydrogen.

11. The process according to any of the preceding claims, wherein the A radical is -NR⁵R⁶ where the variables R⁵ and R⁶ are each defined as follows:

15 R⁵ and R6 are each independently

hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkynyl, each of which may be unsubstituted or substituted by one of the following radicals:

 C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, CN, NO₂, formyl, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_3 - C_{10} -cycloalkyl, 3- to 8-membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR⁷ group where R⁷ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkeyl, C_3 - C_6 -alkynyl,

phenyl which may itself have 1, 2, 3 or 4 substituents selected from

halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-fluoroalkyl,

C₁-C₄-alkyloxycarbonyl, trifluoromethylsulfonyl, C₁-C₃-alkylamino,

C₁-C₃-dialkylamino, formyl, nitro or cyano;

 C_1 - C_{10} -haloalkyl, C_2 - C_{10} -haloalkenyl, C_2 - C_{10} -haloalkynyl, C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR⁷ group where R⁷ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, phenyl or naphthyl,

where C₃-C₈-cycloalkyl, C₃-C₁₀-cycloalkenyl, 3- to 8-membered heterocyclyl, phenyl or naphthyl, each of which may themselves have 1, 2, 3 or 4

substituents selected from halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -fluoroalkyl,

 C_1 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C_1 - C_3 -alkylamino, C_1 - C_3 -dialkylamino, phenoxy, nitro or cyano; or

5

10

R⁵ and R⁶ together form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which may have, as ring members, one or two carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from O, S, N and an NR⁷ group

where R^7 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, and which may be substituted

by C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and/or C_1 - C_4 -haloalkyl

12. The process according to claim 11, wherein R⁵ and R⁶ are each defined as follows:

R⁵ and R⁶ are each independently hydrogen, C₁-C₆-alkyl which may if appropriate carry a substituent selected from the group consisting of halogen, cyano, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkylthio, C₃-C₈-cycloalkyl, furyl, thienyl, 1,3-dioxolanyl and phenyl which may itself optionally be substituted by halogen or C₁-C₄-alkoxy;

20

C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl or phenyl which may if appropriate carry 1 or 2 substituents selected from the group consisting of halogen, C₁-C₄-alkyl, C₁-C₄-fluoroalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, nitro and C₁-C₃-dialkylamino;

naphthyl or pyridyl; or

25

R⁵ and R⁶ together form a five-, six- or seven-membered saturated or unsaturated nitrogen heterocycle which may contain, as a ring member, one further heteroatom selected from N, O and an NR⁷ group

where R^7 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, and/or may be substituted by one, two or three substituents selected from C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl.

30

- 13. The process according to any of the preceding claims, wherein X^1 , X^2 and X^3 are each oxygen.
- 35 14. The process according to any of the preceding claims, wherein R¹ is hydrogen, amino or C₁-C₄-alkyl.
 - 15. The process according to any of the preceding claims, wherein R^2 is hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl.

40

16. The process according to any of the preceding claims, wherein R³ is hydrogen.

17. A process for preparing 3-phenyl(thio)uracils or 3-phenyldithiouracils of the formula I

where

5

10

15

20

R¹ is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl;

R² and R³ are each independently

hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl or C_3 - C_6 -haloalkynyl;

X¹, X² and X³ are each independently oxygen or sulfur;

Ar is phenyl, which may be mono- or polysubstituted by the following groups: hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl; and

A is a radical derived from a primary or secondary amine or NH_2 , wherein 3-phenyl(thio)uracils or 3-phenyldithiouracils of the formula I, where R^1 is hydrogen, are reacted with an alkylating agent of the formula V

$$R^{1b}L^2$$
 V

where \boldsymbol{L}^{2} is a nucleophilically displaceable leaving group, and

25
$$R^{1b}$$
 is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl or C_3 - C_6 -haloalkynyl.