

**AFC** 

Exemple 1:

 Soit la matrice des probabilités suivante de type (3,2)

$$P = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} \\ \frac{1}{12} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{12} \end{pmatrix}$$



• Que l'on peut écrire sous forme d'un tableau

|       |      |      | Total |
|-------|------|------|-------|
|       | 1/6  | 1/6  | 1/3   |
|       | 1/12 | 1/4  | 1/3   |
| 0     | 1/4  | 1/12 | 1/3   |
| Total | 1/2  | 1/2  | 1     |

3

# Nuage $\mathcal{A}(I)$ :

$$L_{1} = \left(\frac{p_{11}}{p_{1\bullet}}; \frac{p_{12}}{p_{1\bullet}}\right) = \left(\frac{1/6}{1/3}; \frac{1/6}{1/3}\right) = \left(\frac{1}{2}; \frac{1}{2}\right)$$

$$L_{2} = \left(\frac{p_{21}}{p_{2\bullet}}; \frac{p_{22}}{p_{2\bullet}}\right) = \left(\frac{1/12}{1/3}; \frac{1/4}{1/3}\right) = \left(\frac{1}{4}; \frac{3}{4}\right)$$

$$L_{3} = \left(\frac{p_{31}}{p_{3\bullet}}; \frac{p_{32}}{p_{3\bullet}}\right) = \left(\frac{1/4}{1/3}; \frac{1/12}{1/3}\right) = \left(\frac{3}{4}; \frac{1}{4}\right)$$

# Nuage $\mathcal{J}(I)$ :



$$M_{1} = (\beta_{11}; \beta_{12}); \quad M_{2} = (\beta_{21}; \beta_{22}); \quad M_{3} = (\beta_{31}; \beta_{32})$$

$$\beta_{ij} = \frac{p_{ij}}{p_{i \bullet} \sqrt{p_{\bullet j}}}$$

$$M_{1} = \left(\frac{p_{11}}{p_{1 \bullet} \sqrt{p_{\bullet 1}}}; \frac{p_{12}}{p_{1 \bullet} \sqrt{p_{\bullet 2}}}\right) = \left(\frac{1/2}{\sqrt{1/2}}; \frac{1/2}{\sqrt{1/2}}\right)$$

$$M_{1} = \left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$$

$$M_{2} = \left(\frac{p_{21}}{p_{2\bullet}\sqrt{p_{\bullet 1}}}; \frac{p_{22}}{p_{2\bullet}\sqrt{p_{\bullet 2}}}\right) = \left(\frac{1/4}{\sqrt{1/2}}; \frac{3/4}{\sqrt{1/2}}\right)$$

$$M_{2} = \left(\frac{\sqrt{2}}{4}; \frac{3\sqrt{2}}{4}\right)$$

$$M_{3} = \left(\frac{p_{31}}{p_{3\bullet}\sqrt{p_{\bullet 1}}}; \frac{p_{32}}{p_{3\bullet}\sqrt{p_{\bullet 2}}}\right) = \left(\frac{3/4}{\sqrt{1/2}}; \frac{1/4}{\sqrt{1/2}}\right)$$

$$M_{3} = \left(\frac{3\sqrt{2}}{4}; \frac{\sqrt{2}}{4}\right)$$

#### Matrice des variances-covariances:



Carrée d'ordre 2

$$W = \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix}$$

$$v_{11} = \sum_{i} p_{i \bullet} (\beta_{i1} - \sqrt{p_{\bullet 1}})^{2} = p_{1 \bullet} (\beta_{11} - \sqrt{p_{\bullet 1}})^{2} + p_{2 \bullet} (\beta_{21} - \sqrt{p_{\bullet 1}})^{2} + p_{3 \bullet} (\beta_{31} - \sqrt{p_{\bullet 1}})^{2}$$

$$v_{11} = \frac{1}{3} \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right)^{2} + \frac{1}{3} \left( \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right)^{2} + \frac{1}{3} \left( \frac{3\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right)^{2}$$

$$v_{11} = \frac{1}{3} \left( \frac{2}{16} \right) + \frac{1}{3} \left( \frac{2}{16} \right) = \frac{1}{12}$$

$$v_{22} = p_{1\bullet} (\beta_{12} - \sqrt{p_{\bullet 2}})^{2} + p_{2\bullet} (\beta_{22} - \sqrt{p_{\bullet 2}})^{2} + p_{3\bullet} (\beta_{32} - \sqrt{p_{\bullet 2}})^{2}$$

$$v_{22} = \frac{1}{3} \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right)^{2} + \frac{1}{3} \left( \frac{3\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right)^{2} + \frac{1}{3} \left( \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right)^{2}$$

$$v_{22} = \frac{1}{3} (0)^{2} + \frac{1}{3} \left( \frac{2}{16} \right) + \frac{1}{3} \left( \frac{2}{16} \right) = \frac{1}{12}$$

$$v_{12} = v_{21} = p_{1\bullet} (\beta_{1} - \sqrt{p_{\bullet 1}}) (\beta_{12} - \sqrt{p_{\bullet 2}}) + p_{2\bullet} (\beta_{21} - \sqrt{p_{\bullet 1}}) (\beta_{22} - \sqrt{p_{\bullet 2}}) + p_{3\bullet} (\beta_{31} - \sqrt{p_{\bullet 1}}) (\beta_{32} - \sqrt{p_{\bullet 2}})$$

$$v_{12} = \frac{1}{3} \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right) + \frac{1}{3} \left( \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right) \left( \frac{3\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right) + \frac{1}{3} \left( \frac{3\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{2} \right)$$

$$v_{12} = \frac{-1}{12} = v_{21}$$



D'où

$$W = \begin{pmatrix} 1/12 & -1/12 \\ -1/12 & 1/12 \end{pmatrix}$$

• Variabilité de B(I):

$$V_B = tr(W) = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

Valeurs propres de W:

$$\det(W - \lambda I) = \begin{vmatrix} \frac{1}{12} - \lambda & \frac{-1}{12} \\ \frac{-1}{12} & \frac{1}{12} - \lambda \end{vmatrix} = 0$$

 $\Rightarrow \left(\frac{1}{12} - \lambda\right)^2 - \left(\frac{1}{12}\right)^2 = 0$   $\Rightarrow \left(\frac{1}{12}\right)^2 - \frac{\lambda}{6} + \lambda^2 - \left(\frac{1}{12}\right)^2 = 0$   $\Rightarrow \lambda \left(\lambda - \frac{1}{6}\right) = 0 \Rightarrow \lambda = 0; \ \lambda = \frac{1}{6}$   $\Rightarrow \lambda_{\max} = \frac{1}{6}$   $\Rightarrow V_C = \lambda_{\max} = \frac{1}{6}$ Variabilité expliquée est  $\delta = \frac{V_C}{V_R} = \frac{\lambda_{\max}}{tr(W)} = 1$ 

# Distance $\chi^2$ dans $\mathcal{A}(I)$ :



$$d^{2}(i,i') = \sum_{j} \frac{1}{p_{\bullet j}} \left( \frac{p_{ij}}{p_{i\bullet}} - \frac{p_{i'j}}{p_{i'\bullet}} \right)^{2}$$

$$i = 1; \ i' = 2$$

$$d^{2}(1,2) = \frac{1}{2} \left( \frac{p_{11}}{p_{1\bullet}} - \frac{p_{21}}{p_{2\bullet}} \right)^{2} + \frac{1}{2} \left( \frac{p_{12}}{p_{1\bullet}} - \frac{p_{22}}{p_{2\bullet}} \right)^{2}$$

$$d^{2}(1,2) = \frac{1}{2} \left( \frac{1}{2} - \frac{1}{4} \right)^{2} + \frac{1}{2} \left( \frac{1}{2} - \frac{3}{4} \right)^{2} = \frac{1}{2} \left( \frac{1}{4} \right)^{2} + \frac{1}{2} \left( \frac{-1}{4} \right)^{2} = \frac{1}{16}$$

i = 1; i' = 3  $d^{2}(1,3) = \frac{1}{2} \left( \frac{p_{11}}{p_{1\bullet}} - \frac{p_{31}}{p_{3\bullet}} \right)^{2} + \frac{1}{2} \left( \frac{p_{12}}{p_{1\bullet}} - \frac{p_{32}}{p_{3\bullet}} \right)^{2}$   $= \frac{1}{2} \left( \frac{1}{2} - \frac{3}{4} \right)^{2} + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{4} \right)^{2} = \frac{1}{2} \left( \frac{-1}{4} \right)^{2} + \frac{1}{2} \left( \frac{1}{4} \right)^{2} = \frac{1}{16}$  i = 2; i' = 3

$$d^{2}(2,3) = \frac{1}{p_{\bullet 1}} \left( \frac{p_{21}}{p_{2\bullet}} - \frac{p_{31}}{p_{3\bullet}} \right)^{2} + \frac{1}{p_{\bullet 2}} \left( \frac{p_{22}}{p_{2\bullet}} - \frac{p_{32}}{p_{3\bullet}} \right)^{2}$$
$$= \frac{1}{2} \left( \frac{1}{4} - \frac{3}{4} \right)^{2} + \frac{1}{2} \left( \frac{3}{4} - \frac{1}{4} \right)^{2} = \frac{1}{2} \left( \frac{-1}{2} \right)^{2} + \frac{1}{2} \left( \frac{1}{2} \right)^{2} = \frac{1}{4}$$

# Distances $\chi^2$ dans $\mathcal{J}(I)$ :



• Entre  $M_i$  et  $M_{i'}$   $\Rightarrow d^2(M_i; M_{i'}) = \sum_j (\beta_{ij} - \beta_{i'j})^2$   $d^2(M_1, M_2) = (\beta_{11} - \beta_{21})^2 + (\beta_{12} - \beta_{22})^2$   $= \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{4}\right)^2 + \left(\frac{\sqrt{2}}{2} - \frac{3\sqrt{2}}{4}\right)^2 = \left(\frac{\sqrt{2}}{4}\right)^2 + \left(\frac{-\sqrt{2}}{4}\right)^2 = \frac{1}{4}$   $d^2(M_1, M_3) = (\beta_{11} - \beta_{31})^2 + (\beta_{12} - \beta_{32})^2$   $= \left(\frac{\sqrt{2}}{2} - \frac{3\sqrt{2}}{4}\right)^2 + \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{4}\right)^2 = \left(\frac{-\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$ 

# Distances $\chi^2$ dans $\mathcal{J}(I)$ :

$$d^{2}(M_{2}, M_{3}) = (\beta_{21} - \beta_{31})^{2} + (\beta_{22} - \beta_{32})^{2}$$

$$= \left(\frac{\sqrt{2}}{4} - \frac{3\sqrt{2}}{4}\right)^2 + \left(\frac{3\sqrt{2}}{4} - \frac{\sqrt{2}}{4}\right)^2 = \left(\frac{-\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$$

#### Matrice R:



• Elle est de type (3,2)

$$R = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \\ r_{31} & r_{32} \end{pmatrix}$$

$$r_{ij} = \frac{p_{ij} - p_{i \bullet} p_{\bullet j}}{\sqrt{p_{i \bullet} p_{\bullet j}}}$$

$$r_{11} = \frac{p_{11} - p_{1 \cdot p \cdot 1}}{\sqrt{p_{1 \cdot p \cdot 1}}} = \frac{1/6 - (1/3) \cdot (1/2)}{\sqrt{(1/3) \cdot (1/2)}} = 0$$

$$r_{12} = \frac{p_{12} - p_{1 \cdot p \cdot 2}}{\sqrt{p_{1 \cdot p \cdot 2}}} = \frac{1/6 - (1/3) \cdot (1/2)}{\sqrt{(1/3) \cdot (1/2)}} = 0$$

$$r_{21} = \frac{p_{21} - p_{2 \cdot p \cdot 1}}{\sqrt{p_{2 \cdot p \cdot 1}}} = \frac{1/12 - (1/3) \cdot (1/2)}{\sqrt{(1/3) \cdot (1/2)}} = \frac{-\sqrt{6}}{12}$$

$$r_{22} = \frac{p_{22} - p_{2 \cdot p \cdot 2}}{\sqrt{p_{2 \cdot p \cdot 2}}} = \frac{1/4 - (1/3) \cdot (1/2)}{\sqrt{(1/3) \cdot (1/2)}} = \frac{\sqrt{6}}{12}$$

$$r_{31} = \frac{p_{31} - p_{3 \cdot p \cdot 1}}{\sqrt{p_{3 \cdot p \cdot 1}}} = \frac{1/4 - (1/3) \cdot (1/2)}{\sqrt{(1/3) \cdot (1/2)}} = \frac{\sqrt{6}}{12}$$



$$R_{32} = \frac{p_{32} - p_{3\bullet} p_{\bullet 2}}{\sqrt{p_{3\bullet} p_{\bullet 2}}} = \frac{1/12 - (1/3) \cdot (1/2)}{1/\sqrt{6}} = \frac{-\sqrt{6}}{12}$$

$$R = \begin{pmatrix} 0 & 0 \\ -\frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} \\ \frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} \end{pmatrix} \Rightarrow R' = \begin{pmatrix} 0 & \frac{-\sqrt{6}}{12} & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} \end{pmatrix}$$

$$R = \begin{pmatrix} 0 & -\frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 0 \\ -\frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{12} & -\frac{\sqrt{12}}{12} \end{pmatrix} = \begin{pmatrix} 1/12 & -1/12 \\ -1/12 & 1/12 \end{pmatrix} = W$$

#### Exemple 2:

 Le tableau suivant représente le type d'études poursuivies après le Bac. (université, classes préparatoires, autres) en fonction du parcours suivi au lycée (Littéraire, Sc. Eco., Sc. Ex et Technologique) indiquées par 100 étudiants au cours d'une enquête:

| Etudes<br>post-Bac |    | Classes<br>Prépa. | IUT-BTS |       |
|--------------------|----|-------------------|---------|-------|
| Type de<br>Bac     |    |                   |         | Total |
| Lettre             | 13 | 2                 | 5       | 20    |
| Sc. éco.           | 20 | 2                 | 8       | 30    |
| Sc. Ex             | 10 | 5                 | 5       | 20    |
| Tech.              | 7  | 1                 | 22      | 30    |
| Total              | 50 | 10                | 40      | 100   |

# **Questions:**

- 1) Donner le tableau des probabilités.
- 2) Calculer la distance χ² entre les modalités.
- 3) Déterminer la matrice des variancescovariances W ou la matrice R.
- 4) Calculer la variabilité de nuage  $\mathcal{B}(I)$  et du nuage projeté  $\mathcal{G}(I)$ . En déduire la variabilité expliquée.