CS855: Data Visualization (Assignment 1)

Salinity visualization of sea surface of Indian Ocean

Akshay Jindal IMT2012002 IIIT-B akshay.jindal@iiitb.org

Abstract—This report explains the algorithms used for visualization of sea surface salinity, details the data used and provides the insight of the visualization.

Keywords—contour;

I. Introduction

This assignment does a 2D scalar field visualization of sea surface of Indian Ocean, performs color mapping, meshing using height map, and contour mapping (drawing 5 contours).

II. DATASET

A. Data Procurement

The salinity data was acquired from INCOIS website. The file format used for reading data is *.csv. Each .csv contains multiple time steps.

B. Data Processing

A separate class DataHandler.cpp was written to parse the .csv input file and fill the grid values accordingly.

III. VISUALIZATION

There are three phases of visualization:

A. 2D Color map

Every vertex in the grid is given a color according to the salinity value at that point. Quadrilaterals were used as building blocks for the color map (fill color interpolated from vertex colors). Two color schemes are implemented: grayscale and rainbow map.

B. 2D Contour

The Color map is embedded with 5 contours of different colors (as shown in the legend). Marching Square algorithm was used to draw contours and Break Contours were used to avoid ambiguity.

C. 3D Elevation map

The color map was elevated to 3D by mapping the salinity values to the z-axis (Needs to be enabled explicitly). Gouraud Shading was used to produce continuous shading of surfaces. A wire-frame was added for better viewing.

D. User Interaction

- OpenGL Perspective mode was used for camera.
- Rotation on all three axis is provided.
- Color scheme can be toggled between grayscale and rainbow by pressing 'C' key. (Note: Capital Letter C)
- 3D elevation map can be enabled/disabled by pressing 'E' key.
- A wire-frame can be toggled on/off by pressing 'W' key.
- The consecutive time step can be switched to by pressing 'T' key.

IV. INSIGHT

- Grayscale provides better/easier visualization results as compared to rainbow maps.
- Salinity values vary considerable on either side of India. Further salinity distribution can also be studied.
- Follow the contour lines to find similar salinity areas in the ocean.

REFERENCES

- [1] Telea, A. (2008). Ch. 2: From Graphics to Visualization. In *Data visualization: Principles and practice*. Wellesley, Mass.: A K Peters.
- [2] INCOIS LAS. (n.d.). Retrieved September 2, 2015. URL: http://las.incois.gov.in/thredds/dodsC/las/catalog.html? dataset=testDatasetScan/argo_10dv.nc