COMP 335, A Solution to Assignment 2

Definition. In questions below $n_a(w)$ and $n_b(w)$ indicate the number of a's and the number of b's in string w.

Problem 1. Find a regular expression for the following languages over $\Sigma = \{a, b\}^*$.

- (a) $\{w : w \text{ does not contain substring } bbb\}$
- (b) $\{w : w \text{ contains exactly three } a \text{ 's and it ends with } abb\}$
- (c) $\{w : n_a(w) \mod 3 = 0 \text{ and } w \text{ begins with } ab\}$
- (d) $\{w: (n_a(w) + n_b(w)) \mod 3 \ge 2\}$
- (e) $\{w : |w| \mod 2 = 0\}$
- (f) $\{a^m b^n : mn > 4\}$

Answer:

- (a) $(a+ba+bba)^*(\lambda+b+bb)$
- (b) $b^*ab^*ab^*abb$
- (c) $abb^*ab^*ab^*(b^*ab^*ab^*ab^*)^*$
- (d) $(a+b)(a+b)((a+b)(a+b)(a+b))^*$
- (e) $((a+b)(a+b))^*$
- (f) $aa^*bbbbb^* + aaa^*bbb^* + aaaa^*bbb^* + aaaaa^*bbb^* + aaaaaa^*bb^*$

Problem 2. Find an NFA that accepts the language defined by the following regular expression

$$ab(a+ab)^*(a+aa^*) + (abab)^* + (aaa^*+b)^*$$

Answer:

The answer is depicted in Figure 1.

Problem 3. Find a regular expression for the following regular languages

- (a) $\{w: 2n_a(w) + 3n_b(w) \text{ is even } \}$
- (b) $\{w : (n_a(w) n_b(w)) \mod 3 = 1\}$

Figure 1: Answer to question 2.

Answer:

- (a) $a^*(ba^*ba^*)^*$
- (b) $(ba)^*(a+bb)(ab+(b+aa)(ba)^*(a+bb))^*$

Solution 1:

A DFA for this language is depicted in Figure 2, and then reduced to an initial state and a final state by eliminating state 2 by adding transitions that would have otherwise use state 2 as the middle state. The answer then is concluded from this machine.

Figure 2: Question 3, part b: To the left, the original DFA. To the right, the reduced version.

Solution 2:

Scan a valid string w from left to right and consider $(n_a(w) - n_b(w)) \mod 3$ after each character, starting with $(n_a(w) - n_b(w)) \mod 3 = 0$. Let us refer to $(n_a(w) - n_b(w)) \mod 3$ as f.

When f=1 is first seen (guaranteed to see it at least once by validity of w), we have scanned a string of the form $(ba)^*(a+bb)$. Upon existence, consider the next character: If it is b, f=0 is reached, just like the beginning of our scan. Else if it is a, look at the next character (should

exist, (why?)) ab will take us back to f=1, just like after the first occurrence of f=1, and aa will take us to f=0, just like the beginning. Therefore, upon existence of next character after first occurrence of f=1 until next time that f=1 happens we have scanned a string of the form $(ab+(b+aa)(ba)^*(a+bb))$. This concludes the answer.

Problem 4. Find a regular grammar for the following languages

- (a) $L(aa^*(ab+a)^*)$
- (b) $L((aab^*ab)^*)$
- (c) $L = \{w : (n_a(w) n_b(w)) \mod 3 = 1\}$

Answer:

(a)
$$S \to aA$$

 $A \to aA \mid aB \mid \lambda$
 $B \to bA$

(b)
$$S \to aA \mid \lambda$$

 $A \to aB$
 $B \to bB \mid aC$
 $C \to bS$

(c)
$$S \rightarrow bA \mid aB$$

 $A \rightarrow aS \mid bB$
 $B \rightarrow bS \mid aA \mid \lambda$

Problem 5. Prove that the following languages are not regular

(a)
$$L = \{ww : w \in \{a, b\}^*\}$$

(b)
$$L = \{a^n b^k : n \ge k\}$$

(c)
$$L = \{a^n b^m c^k : n + m > k > 0\}$$

(d)
$$L = \{w \in \{a, b\}^* : 2n_a(w) = 3n_b(w)\}$$

Answer:

(a) Note that the language is infinite. Let us assume that L is a regular language. Let m be the integer from the pumping lemma. Consider the string $w=a^mb^ma^mb^m$. Clearly, $|w|\geq m$ and w belongs to L. According to the pumping lemma w can be represented as w=uyv where $|uy|\leq m$, and $|y|\geq 1$. From the form of string w and the $|uy|\leq m$ condition follows that y consists of only a's; therefore, $y=a^k$ for some $k\geq 1$. By the pumping lemma, the string $uy^2v=a^{m+k}b^ma^mb^m$ is in L, which is in contradiction to the definition of L. Therefore, L is not a regular language.

- (b) Note that the language is infinite. Let us assume that L is a regular language. Let m be the integer from the pumping lemma. For getting a contradiction let us consider the string $w=a^mb^m$. Clearly, $|w| \ge m$ and w belongs to L. By the pumping lemma, w can be represented as w=uyv, where $|uy| \le m$, and $|y| \ge 1$. From the form of string w and the $|uy| \le m$ condition follows that y consists only of a's; therefore, $y=a^k$ for some $k \ge 1$. Now let us look at the string $w_0=uy^0v=uv=a^{m-k}b^m$. By the pumping lemma w_0 belongs to L, but this is impossible because m-k < m. This contradiction proves that our initial assumption about regularity of L was incorrect and L is not a regular language.
- (c) Again we prove by contradiction. Assume that L is a regular language. Then from the properties of regular languages we know that if L is regular, then its reversal $L^R = \{c^k b^m a^n : 0 < k < m+n\}$ is also regular. We will prove that L^R is not regular, and so contradiction. Thus, our assumption, that L is regular, was not true, and so L is not regular.
 - Now we will prove that L^R is not regular. Since L^R is infinite then pumping lemma applies. Let m be the integer from the pumping lemma for language L^R . For getting a contradiction let us pick $w=c^ma^mb^m$, which satisfies both $|w|\geq m$ and $w\in L^R$. By the pumping lemma, w can be represented as w=uyv where $|uy|\leq m$, and $|y|\geq 1$. From the form of string w and the $|uy|\leq m$ condition follows that y consists only of c's; therefore, $y=c^k$ for some $k\geq 1$. Now consider the string $w_{2m+1}=uy^{2m+1}v$. By the pumping lemma, w_{2m+1} belongs to L^R ; however, w_{2m+1} does not satisfy the definition of L^R since the number of leading c's is greater than the number of b's and a's that follows. This contradiction proves that our initial assumption about regularity of L^R was incorrect; consequently, L is not a regular language.
- (d) Note that the language is infinite. Let us assume that L is a regular language. Let m be the integer from the pumping lemma. Consider the string $w=a^{3m}b^{2m}$, which satisfies both conditions $|w|\geq m$ and $w\in L$. By the pumping lemma, w can be represented as w=uyv where $|uy|\leq m$, and $|y|\geq 1$. From the form of string w and the $|uy|\leq m$ condition follows that y consists only of a's; therefore, $y=a^k$ for some $k\geq 1$. Now let us consider the string $w_0=uy^0v=uv=a^{3m-k}b^{2m}$. By the pumping lemma, w_0 belongs to L, but this is not possible because $3\times 2m>2(3m-k)$. Therefore, L is not a regular language.

Problem 6. Find context free grammars for the following languages

(a)
$$L = \{a^n b^m : n, m \ge 0 \text{ and } n \ne m\}$$

(b)
$$L = \{a^n b^m c^k : n \ge m \ge 0 \text{ or } m \ge k \ge 0\}$$

(c)
$$L = \{a^n b^m c^k : n + m > k > 0\}$$

(d)
$$L = \{w \in \{a, b, c\}^* : n_b(w) = n_a(w) + n_c(w)\}$$

Answer:

(a)
$$S \to AC \mid CB$$

 $C \to aCb \mid \lambda$
 $A \to aA \mid a$

$$B \to Bb \mid b$$

(b)
$$S \to X \mid Y$$

$$X \to AC$$

$$A \rightarrow aAb \mid aA \mid \lambda$$

$$C \to Cc \mid \lambda$$

$$Y \to BD$$

$$B \to aB \mid \lambda$$

$$D \to bDc \mid bD \mid \lambda$$

(c)
$$S \rightarrow aAc \mid bBc$$

$$A \to aAc \mid B \mid C$$

$$B \to bBc \mid D$$

$$C \to aC \mid D \mid a$$

$$D \rightarrow Db \mid b$$

The set of strings each variable represents:

A:
$$\{a^n b^m c^k : n + m > k \ge 0\}$$

B:
$$\{b^m c^k : m > k \ge 0\}$$

$$C: \{a^n b^m : n + m \ge 1\}$$

$$D: \{b^m : m \ge 1\}$$

(d)
$$S \rightarrow \lambda \mid B \mid A \mid C$$

$$B \rightarrow bSaS \mid bScS$$

$$A \rightarrow aSbS$$

$$C \to cSbS$$