CPU Architecture

LAB2 preparation report

VHDL part2

Sequential code and Behavioral modeling

Hanan Ribo

16/04/2020

Table of contents

1.	Aim of the Laboratory	. 3
	System Design definition	
	Test and Timing:	
	Requirements	
	Grading Policy	

1. Aim of the Laboratory

- Obtaining skills in VHDL part2 code, which contains Sequential code and Behavioral modeling.
- Obtaining basic skills in ModelSim (multi-language HDL simulation environment).
- knowledge in digital systems design.
- Proper analysis and understanding of architecture design.

2. System Design definition

In this laboratory you will design a synchronous digital system which detects valid sub series for a given condition value (see table 1). The system block diagram is depicted in figure 1, you are required to design the whole system and make a test bench for testing.

Figure 1 : System structure

cond	Condition type	Explanation
0	din[i] - din[i-1] = 1	ascending sub series by 1
1	din[i] - din[i-1] = 2	ascending sub series by 2
2	din[i] - din[i-1] = 3	ascending sub series by 3
3	din[i] - din[i-1] = 4	ascending sub series by 4

Table 1: cond value

- The Top Level design modeling can be Behavioral except the **Adder** based condition check module (single instantiation only of **Adder.vhd**). The main reason of this constraint is to minimize HW.
- you are given the next three files that you must use in your project: top.vhd, aux_package.vhd,

 Adder.vhd (you can only add your code to top.vhd file, you are not allowed to erase nothing).
- Examples:

Figure 2: examples using waveforms

3. Test and Timing:

- Design a test bench which tests all the system.
- Analyze the results by zooming on the important transactions in the waveforms. explain these (input/output/internal signals of the system).
- You are welcome to use the Internet also as reference.
- The timing of the system will be ideal (means a functional simulation).

4. Requirements

- a. The design must be well commented.
- b. **Important:** For each of two submodules:
 - Graphical description (a square with ports going in and out) and short descriptions.
- c. Elaborated analysis and wave forms:
 - Remove irrelevant signals.
 - Zoom on regions of interest.
 - Draw clouds on the waveform with explanations of what is happening (Figure 4).
 - Change the waveform colors in ModelSim for clear documentation

(Tools->Edit Preferences->Wave Windows).

d. A ZIP file in the form of **id1_id2.zip** (where id1 and id2 are the identification number of the submitters, and id1 < id2) must be upload to Moodle only by id1 student. The ZIP file will contain:

Directory	Contains	Comments
VHDL	Project VHDL files	Only VHDL files, excluding test bench
		Note: your project files must be well compiled
		without errors as a basic condition before submission
ТВ	VHDL files that are used for test bench	
SIM	DO files of wave and list forms	Only for tb.vhd
DOC	Project documentation	Readme.txt and pre2.pdf report file

Table 2: Directory Structure

Figure 3: Clouds over the waveform example

5. Grading Policy

Weight	Task	Description
10%	Documentation	The "clear" way in which you presented the requirements and the analysis and conclusions on the work you've done
90%	Analysis and Test	The correct analysis of the system (under the requirements)

Table 1: Grading

Under the above policies you'll be also evaluated using common sense:

- Your files will be compiled and checked, the system must work.
- Your design and architecture must be intelligent, minimal, effective and well organized.

For a late submission the penalty is 2^{day}