IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Tae-Seung KIM

Application No.:

Group Art Unit:

Filed: September 22, 2003

Examiner:

For: DUAL-TYPE ORGANIC ELECTROLUMINESCENCE DISPLAY AND MANUFACTURING

METHOD THEREOF

SUBMISSION OF CERTIFIED COPY OF PRIOR FOREIGN APPLICATION IN ACCORDANCE WITH THE REQUIREMENTS OF 37 C.F.R. § 1.55

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

In accordance with the provisions of 37 C.F.R. § 1.55, the applicant(s) submit(s) herewith a certified copy of the following foreign application:

Korean Patent Application No(s). 2002-57389

Filed: September 19, 2002

It is respectfully requested that the applicant(s) be given the benefit of the foreign filing date(s) as evidenced by the certified papers attached hereto, in accordance with the requirements of 35 U.S.C. § 119.

Respectfully submitted,

OTA A O & LIMITORY

Date: September 22, 2003

: _

Michael D. Stein Registration No. 37,240

1201 New York Ave, N.W., Suite 700 Washington, D.C. 20005

Telephone: (202) 434-1500 Facsimile: (202) 434-1501

OREAN INTELLECT PROPERTY OFF

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

Application Number

10-2002-0057389 PATENT-2002-0057389

Date of Application

2002년 09월 19일 SEP 19, 2002

Applicant(s)

삼성 엔이씨 모바일 디스플레이 주식회사

SAMSUNG NEC MOBILE DISPLAY

2002

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장 【참조번호】 0023

【제출일자】 2002.09.19

【국제특허분류】 H05B

【발명의 명칭】 듀얼형 유기전자발광소자와 그 제조방법

[발명의 영문명칭] Dual-type organic electro luminesence display and the

method for manufacturing the same

【출원인】

【명칭】 삼성엔이씨모바일디스플레이 주식회사

【출원인코드】 1-2001-018192-1

【대리인】

【성명】 이영필

[대리인코드] 9-1998-000334-6 [포괄위임등록번호] 2001-026126-8

[대리인]

【성명】 이해영

[대리인코드] 9-1999-000227-4 [포괄위임등록번호] 2001-026144-0

【방명자】

【성명의 국문표기】 김태승

 【성명의 영문표기】
 KIM, Tae Seung

 【주민등록번호】
 641228-1821026

【우편번호】 616-130

【주소】 부산광역시 북구 금곡동 한솔아파트 102동 804호

【국적】 KR

[취지] 특허법 제42조의 규정에 의하여 위안 같이 출원합니다. 대

리인 이영

필 (인) 대리인 이해영 (인)

【수수류】

【기본출원료】 20 면 29,000 원 【가산출원료】 23 면 23,000 원

1020020057389

【우선권주장료】	0 건 0 원	킬
【심사청구료】	0 항 0 5	킬
[합계]	52,000 원	
【첨부서류】	1. 요약서 명세서(도면)_1통	

[요약서]

[요약]

듀얼형 유기전자 발광소자와 그 제조방법을 개시한다. 본 발명은 메인기판상에 메 인기판 스캔라인과, 메인기판 절연막과, 메인기판 유기막과, 메인기판 스캔라인과 직교 하도록 메인기판 데이터라인을 형성하는 단계를 포함하는 메인유기전자 발광소자의 제조 단계;와, 서브기판상에 서브기판 스캔라인과, 서브기판 절연막과, 서브기판 유기막과, 서브기판 스캔라인과 직교하도록 서브기판 데이터라인을 형성하는 단계를 포함하는 서브 유기전자 발광소자의 제조단계;와, 메인 및 서브유기전자 발광소자를 각각 에이징하는 에이정단계;와, 메인 및 서브유기전자 발광소자를 유효화면 표시부의 가장자리를 따라 도전성 스페이서가 포함된 실런트를 도포하는 실링단계;와, 스페이서에 의하여 통전된 적어도 어느 하나의 메인 및 서브기판 스캔라인 또는 메인 및 서브기판 데이터라인에 구 동신호를 전달하는 전극라인용 플렉시블 프린티드 케이블을 접속하는 단계;를 포함하는 것으로서, 메인 및 서브유기전자 발광소자는 도전성 스페이서가 포함된 실런트에 의하여 유효화면 표시부가 밀폐되어 있으므로 두께를 얇게 할 수 있으며, 메인기판에 형성되는 메인기판 스캔 및 데이터라인과. 서브기판 스캔 및 데이터라인이 이방성의 도전성 스페 이서에 의하여 선택적으로 통전되므로, 이들에 전기적 신호를 전달하는 구동칩의 수를 대폭 줄일 수 있다. 이에 따라. 유기전자 발광소자의 두께를 혁신적으로 줄일 수 있으며 . 구동방법의 변경으로 원가를 줄일 수 있다.

【대표도】

도 5

【명세서】

【발명의 명칭】

듀얼형 유기전자 발광소자와 그 제조방법{Dual-type organic electro luminesence display and the method for manufacturing the same}

【도면의 간단한 설명】

도 1은 종래의 일 예에 따른 듀얼형 유기전자 발광소자의 단면도, •

도 2a는 도 1의 메인유기전자 발광소자의 전극라인이 형성된 것를 도시한 개략도,

도 2b는 도 1의 서브유기전자 발광소자의 전극라인이 형성된 것을 도시한 개략도,

도 3a는 도 1의 메인유기전자 발광소자의 개략도,

도 3b는 도 1의 서브유기전자 발광소자의 개략도,

도 4는 본 발명의 제1 실시예에 따른 듀얼형 유기전자 발광소자의 단면도,

도 5는 본 발명의 제2 실시예에 따른 듀얼형 유기전자 발광소자의 분리사시도,

도 6a는 도 5의 메인유기전자 발광소자의 전극라인이 형성된 것을 도시한 개략도,

도 6b는 도 5의 서브유기전자 발광소자의 전극라인이 형성된 것을 도시한 개략도,

도 7은 도 5의 도전성 스페이서가 개재된 부분을 도시한 단면도,

도 8은 본 발명의 제3 실시예에 따른 듀얼형 유기전자 발광소자의 개략도,

도 9는 본 발명의 제4 실시예에 따른 듀얼형 유기전자 발광소자의 개략도,

도 10a는 본 발명의 제5 실시예에 따른 메인유기전자 발광소자의 전극라인이 형성 된 것을 도시한 개략도,

도 10b는 본 발명의 제5 실시예에 따른 서브유기전자 발광소자의 전극라인이 형성 된 것을 도시한 개략도.

<도면의 주요 부분에 대한 부호의 간단한 설명>

50...메인유기전자 발광소자 51..메인기판

52...메인유기발광부 53..메인기판 스캔라인

54...메인기판 절연막 55...메인기판 유기막

56...메인기판 데이터라인 57...실런트

500...서브유기전자 발광소자 510...서브기판

520...서브유기 발광부 530...서브기판 스캔라인

540...서브기판 절연막 550...서브기판 유기막

560...서브기판 데이터라인

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 듀얼형 유기전자 발광소자에 관한 것으로서, 보다 상세하게는 메인 및 서브유기전자 발광소자에 마련된 단자에 전기적으로 연결되는 플렉시블 프린티드 케이블 의 결합구조와 구동방법이 개선된 듀얼형 유기전자 발광소자와 그 제조방법에 관한 것이 다.
- 동상적으로, 유기전자 발광소자(organic electro luminesence display)는 형광성 유기화합물을 전기적으로 여기시켜 발광시키는 자발광형 디스플레이로서, 낮은 전압에서

구동이 가능하고 박형등의 장점을 가진다. 또한, 유기전자 발광소자는 광시야각, 빠른 응답속도등 액정표시소자에서 문제로 지적되는 단점을 해결할 수 있는 차세대 디스플레 이로서 주목받고 있다.

- 유기전자발광소자의 작동원리는 전원이 공급되면 전자가 이동하면서 전류가 흐르게 되는데, 음국에서는 전자가 전자수송층의 도움으로 발광층으로 이동하고, 상대적으로 양국에서는 정공이 정공수송층의 도움으로 발광층으로 이동하게 된다. 유기물질인 발광층에서 만난 전자와 정공은 높은 에너지를 가지는 여기자를 생성하게 되는데, 이때, 여기자가 낮은 에너지로 떨어지면서 빛을 발생하게 되는 것이다. 발광층을 구성하고 있는 유기물질이 어떤 것이냐에 따라서 풀 칼라(full color)를 구현할 수 있다. 최근에는 폴더 타입(folder type)의 전자기기에서 동시에 두 화면을 디스플레이 가능한 듀얼형(dual type) 유기전자발광소자가 유저(user)들에 의하여 요구되고 있는 실정이다.
- 도 1을 참조하면, 듀얼형 유기전자 발광소자는 메인유기전자 발광소자(10)와, 서브 유기전자 발광소자(100)를 포함하다.
- 《28》 상기 메인유기전자 발광소자(10)는 기판(11)과, 상기 기판(11)상에 형성되는 유기 발광부(12)와, 상기 유기발광부(12)를 보호하는 캡(13)과, 상기 캡(13) 내에 설치되는 흡습제(14)와, 상기 기판(11)의 전면에 설치되는 편광판(15)을 포함한다.
- 상기 메인유기전자 발광소자(10)와 결합하는 서브유기전자 발광소자(100)도 상기 메인유기전자 발광소자(10)와 실질적으로 동일한 구조를 가리키는 것으로서, 기관(110)과, 유기발광부(120)와, 캡(130)과, 흡습제(140)와, 편광관(150)을 포함한다.

생기 듀얼형 유기전자 발광소자는 유저가 화살표로 표시한 다른 방향에서 두 개의 디스플레이를 선택적으로 볼 수 있도록 상기 메인유기전자 발광소자(10)의 배면에 서브 유기전자 발광소자(100)가 결합되어 있다.

- 예컨대, 폴더형의 전자기기제품은 듀얼형의 표시장치를 채용하여 별다른 조작없이 외부로부터 직접적으로 윈도우에 표시되는 패널의 정보를 이용할 수 있고, 이와 동시에 간단한 조작에 의하여 또 다른 윈도우에 표시되는 패널의 정보를 공히 이용하는 것이 가 능하다.
- ◇32 상기와 같은 구조를 가지는 듀얼형 유기전자 발광소자를 제조하는 과정을 간략하게 설명하면 다음과 같다.
- 주선, 메인유기전자 발광소자(10)용 기판(11)을 마련한 다음에, 상기 기판(11)상에 양극, 절연체층, 유기막층, 음극으로 된 유기발광부(12)를 패턴화시키고, 이를 보호하는 캡(13)을 장착하고, 기판(11)의 전면에 편광판(15)을 부착시킨다. 이때, 상기 캡(13)의 내부에는 밀폐된 공간으로부터 발생된 수분을 제거하기 위하여 흡습제(14)가 설치되어 있다.
- 한편, 상기 서브유기전자 발광소자(100)용 기판(110)에도 유기발광부(120)와, 흡습
 제(140)가 설치된 캡(130)과, 편광판(150)를 각각 장착하게 된다.
- 다음으로, 상기 메인 및 서브유기전자 발광소자(10)(100)는 화면을 표시하는 부분이 서로 반대되는 면을 향하도록 위치시킨 상태에서 상호 결합시키게 된다.
- <36 상기와 같이 완성된 메인 및 서브유기전자 발광소자(10)(100)의 각 기판(11)(110)</p>
 에는 소정 패턴의 전극라인이 형성되어 있다.

<37> 도 2a는 종래의 메인유기전자 발광소자(10)의 전국라인을 도시한 것이고, 도 2b는 종래의 서브유기전자 발광소자(100)의 전국라인을 도시한 것이다.

- 도 2a 및 도 2b를 참조하면, 상기 메인유기전자 발광소자(10)용 기관(11)에는 소정 간격 이격되게 스트립 형상의 메인기관 스캔라인(21)과, 상기 메인기관 스캔라인(21)과 직교하는 형태이며 스트립 형상의 메인기관 데이터라인(22)이 배치되어 있다. 이때, 상 기 메인기관 스캔 및 데이터라인(21)(22)은 상술한 바 있는 유기발광부(12)의 각 전국들 이다.
- 생기 서브유기전자 발광소자(100)용 기판(110)에는 소정간격 이격되게 스트립 형상의 서브기판 스캔라인(210)과, 상기 서브기판 스캔라인(220)과 나란한 방향으로 스트립 형상의 서브기판 데이터라인(220)이 배치되어 있다. 상기 서브기판 스캔 및 데이터라인(210)(220)은 상기 기판(110)의 일변에 집합되어 있다.
- 생기와 같은 전극라인을 가지는 메인 및 서브유기전자 발광소자(10)(100)에는 도
 3a 및 도 3b에 도시된 바와 같이 외부로부터 전원을 인가하는 플렉시블 프린티드
 케이블(flexible printed cable,이하 FPC)이 접속되어 있다.
- 즉, 도 3a에 도시된 바와 같이, 상기 메인유기전자 발광소자(10)용 기관(11)에는 양 변으로 메인기판 스캔라인(21)과, 메인기판 데이터라인(22)이 배치되어 있으며, 상기 메인기판 스캔 및 데이터라인(21)(22)에는 메인기판 스캔라인용 FPC(31)와, 메인기판 데이터라인용 FPC(34)가 각각 접속되어 있다. 상기 메인기판 스캔 및 데이터라인용 FPC(31)(34)에는 이와 접속하는 메인기판 스캔라인용 배선(32)과 메인기판 데이터라인용 배선(35)이 페턴화되어 있으며, 상기 메인기판 스캔 및 데이터라인(21)(22)을 구동시키는 적어도 하나 이상의 구동침(33)(36)이 각각 배치되어 있다.

또한, 도 3b에 도시된 바와 같이, 상기 서브유기전자 발광소자(100)용 기판(110)에는 일 변으로 서브기판 스캔라인(210)과, 서브기판 데이터라인(220)에 인출되어 있으며, 상기 서브기판 스캔 및 데이터라인(210)(220)에는 서브기판용 FPC(37)가 접속되어 있다. 상기 서브기판용 FPC(37)에는 이와 접속하는 서브기판용 배선(38)이 패턴화되어 있으며, 상기 서브기판 스캔 및 데이터라인(210)(220)을 공히 구동시키는 구동칩(39)이 배치되어 있다.

- <43> 그런데, 종래의 듀얼형 유기전자 발광소자는 다음과 같은 문제점을 가지고 있다.
- 석4 첫째, 상기 메인유기전자 발광소자(10)와, 서브유기전자 발광소자(100)가 접합되는 부분이 각각의 흡습제(14)(140)가 내장된 캡(13)(130)이 설치되어 있으므로, 상기 캡 (13)(130)의 높이로 인하여 듀얼형 유기전자 발광소자의 전체적인 두께가 증가하게 된다 . 이렇게, 두께를 얇게 하는데 한계가 있으므로, 유저들이 요구하는 전자기기의 경박단 소화를 충족시킬 수가 없다.
- 등째, 상기 메인유기전자, 발광소자(10)의 메인기판 스캔 및 데이터라인(21)(22)에 접속되는 메인기판 스캔 및 데이터라인용 FPC(31)(34)와, 이에 실장되는 복수개의 구동 칩(33)(36)과, 상기 서브유기전자 발광소자(100)의 서브기판 스캔 및 데이터라인 (210)(220)에 접속되는 서브기판용 FPC(37)와, 이에 실장되는 적어도 하나 이상의 구동 칩(39)이 필요함에 따라, 구동칩(33)(36)(39)의 설계가 복잡해지고, 원가상승의 요인이 된다.

【발명이 이루고자 하는 기술적 과제】

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 양면에서 각각 개별적인화상을 구현가능한 유기전자 발광소자의 스캔 및 데이터라인과 이에 접속되는 플렉시블프린티드 케이블의 접속방식이 개선된 듀얼형 유기전자 발광소자와 그 제조방법을 제공하는데 그 목적이 있다.

【발명의 구성 및 작용】

- 47> 상기한 목적을 달성하기 위하여 본 발명의 일 측면에 따른 듀얼형 유기전자 발광소 자는.
- 여원 메인기관과, 상기 메인기관상에 형성된 스트립상의 메인기관 스캔라인과, 메인기관 데이터라인을 구비하는 메인유기전자 발광소자;
- 성기 메인유기전자 발광소자와 대향되게 설치되며, 서브기판과, 상기 서브기판상에 형성된 스트립상의 서브기판 스캔라인과, 서브기판 데이터라인을 구비하는 서브유기전자 발광소자;
- 상기 메인 및 서브유기전자 발광소자가 상호 대향된 상태에서, 상기 메인 및 서브
 기관을 실렁하여 메인 및 서브기판 유기발광부를 밀폐가능한 도전성 스페이서가 포함된
 실런트; 및
- 생기 메인 또는 서브기판증 어느 하나의 기판에 형성되며, 상기 메인과 서브기판의 전극라인과 접속되는 적어도 하나 이상의 플렉시블 프린티드 케이블;를 포함하는 것을 특징으로 한다.
- <52> 본 발명의 다른 측면에 따른 듀얼형 유기전자 발광소자는,

<55> 메인기판과, 상기 메인기판상에 형성된 스트립상의 메인기판 스캔라인과, 데이터라 인을 구비하는 메인유기전자 발광소자;

- 상기 메인유기전자 발광소자와 대향되게 설치되며, 서브기판과, 상기 서브기판상에 형성된 스트립상의 서브기판 스캔라인과, 서브기판 데이터라인을 구비하는 서브유기전 자 발광소자;
- 상기 메인 및 서브유기전자 발광소자가 상호 대향된 상태에서, 상기 메인 및 서브기관을 실렁하여 메인 및 서브기판 유기발광부를 밀폐가능한 도전성 스페이서가 포함된실러트;
- 상기 메인 또는 서브기판중 어느 하나의 기판에 형성되며, 상기 서브기판 전극라인
 과 접속되는 플로팅 전극라인; 및
- 생기 실런트에 의하여 상호 통전가능한 메인과 서브기판 전국라인 또는 플로팅 전 국라인과 접속되는 적어도 하나 이상의 플렉시블 프린티드 케이블;을 포함하는 것을 특 장으로 한다.
- <58> 본 발명의 일 측면에 따른 듀얼형 유기전자 발광소자의 제조방법은,
- 투명한 메인기판상에 메인기판 스캔라인과, 메인기판 절연막과, 메인기판 유기막과, 상기 메인기판 스캔라인과 직교하도록 메인기판 데이터라인을 형성하는 단계
 를 포함하는 메인유기전자 발광소자의 제조단계;
- 투명한 서브기판상에 서브기판 스캔라인과, 서브기판 절연막과, 서브기판 유기막과, 상기 서브기판 스캔라인과 직교하도록 서브기판 데이터라인을 형성하는 단계를 포함하는 서브유기전자 발광소자의 제조단계;

·61> 상기 메인 및 서브유기전자 발광소자를 각각 에이징하는 에이징단계;

662 상기 메인 및 서브유기전자 발광소자를 상기 유기막이 외부와 밀봉될 수 있도록 유효화면 표시부의 가장자리를 따라 도전성 스페이서가 포함된 실런트를 도포하는 실링단계; 및

- 생기 스페이서에 의하여 통전된 적어도 어느 하나의 메인 및 서브기판 스캔라인 또는 메인 및 서브기판 데이터라인에 구동신호를 전달하는 전극라인용 플렉시블 프린티드 케이블을 접속하는 단계;를 포함하는 것을 특징으로 한다.
- 도 4는 본 발명의 제1 실시예에 따른 듀얼형 유기전자 발광소자(40)를 도시한 것이다.
- <65> 도면을 참조하면, 상기 듀얼형 유기전자 발광소자는 메인유기전자 발광소자(40)와, 상기 메인유기전자 발광소자(40)와 결합하여서 화살표로 표시한 바와 같이 양면에서 화 상을 디스플레이할 수 있는 서브유기전자 발광소자(400)를 포함한다.
- 상기 메인유기전자 발광소자(40)에는 투명한 소재로 된 메인기판(41)이 마련되어 있다. 상기 메인기판(41) 상에는 메인기판 유기발광부(42)가 형성되어 있다. 상기 메인 기판 유기발광부(42)는 제1 전극라인인 메인기판 스캔라인과, 상기 메인기판 스캔라인이 노출되도록 형성되는 메인기판 절연막과, 상기 메인기판 절연막과 직교하는 메인기판 유기막층과, 상기 메인기판 유기막층에 형성되는 제2 전극라인인 메인기판 데이터라인을 포함한다. 상기 메인기판 유기발광부(42)에는 의부로부터 수분의 침투등이 발생하는 것을 방지하기 위하여 투명에폭시와 같은 메인기판 패시베이션층(passivaton,43)이 매립하고 있다. 한편, 상기 메인기판(41)의 전면에는 메인편광판(45)이 부착되어 있다.

- 67> 상기 서브유기전자 발광소자(400)에도 서브기판(410)이 마련되어 있다. 상기 서브 기판(410) 상에는 서브기판 유기발광부(420)가 형성되어 있다. 상기 서브기판 유기발광 부(420)는 제3 전극라인인 서브기판 스캔라인과, 서브기판 절연막과, 서브기판 유기막층 과, 제4 전극라인인 서브기판 데이터라인을 포함한다. 상기 서브기판 유기발광부(420)는 서브기판 패시베이션층(430)에 의하여 매립되어 있다. 상기 서브기판(410)의 전면에는 서브편광판(450)이 부착되어 있다.
 - 이때, 상기 서브기판(410) 상에 형성된 서브기판 유기발광부(420)와, 서브기판 패시베이션층(430)은 상기 메인기판(41) 상에 형성된 메인기판 유기발광부(42)와, 메인기판 패시베이션층(43)과 대향되게 형성되어 있다. 또한, 상기 메인 및 서브기판 패시베이션층(43)(430) 사이에는 흡습제 쉬트가 추가적으로 설치될 수도 있을 것이다.
 - 한편, 상기 메인기판(41) 상에는 상기 메인기판 유기발광부(42)와, 상기 메인기판 유기발광부(42)와 선택적으로 통전되는 서브기판 유기발광부(420)와 전기적으로 접속되는 전극라인(49)가 인출되어 있다.
 - <70> 여기서, 상기 메인 및 서브유기전자 발광소자(40)(400)가 결합되는 부분에는 적어도 어느 한 쪽 기판상에 실런트(sealant,44)에 의하여 밀봉가능하다. 상기 실런트(44)는 유효화면 표시부의 바깥영역의 가장자리를 따라 기판상에 도포되어 있다.
 - 〈기〉 상기 실런트(44)는 상기 메인 및 서브기판(41)(410) 양 측에 공히 형성시키는 것보다, 상기 기판(41)(410)중 어느 하나의 기판에만 형성시키는 것이 제조공정을 단순화시킬 수가 있어서 바람직하다.

또한, 상기 실런트(44)는 상기 메인 및 서브기판(41)(410)이 상호 정렬된 상태에서 그 내부에 형성된 메인 및 서브기판 유기발광부(42)(420)와, 메인 및 서브기판 패시베이션층(43)(430)의 전체적인 두께와 상응하도록 형성되어 있다.

- 한편, 상기 실런트(44)에는 도전성 스페이서가 혼합되어 있다. 이에 따라, 상기 전 극라인(49)을 통하여 상기 메인 및 서브기판 유기발광부(42)(420)가 선택적으로 통전가 능하다. 이에 대해서는 추후 상세하게 설명하기로 한다.
- 674> 상기와 같은 구조를 가지는 듀얼형 유기전자 발광소자는 대향되는 메인 및 서브기 판(41)(410) 사이에 전체적인 두께를 증가시키는 요인으로 작용하는 캡이 제외된 상태에서 상호 접합가능하므로, 그 두께를 대폭 줄일 수가 있다. 또한, 상기 메인 및 서브기판 유기발광부(42)(420)는 각각 메인 및 서브기판 패시베이션층(43)(430)에 의하여 메립되므로 외부로부터 수분의 침투를 방지할 수가 있다.
- 도 5는 본 발명의 제2 실시예에 따른 듀얼형 유기전자 발광소자를 도시한 것이고, 도 6a는 도 5의 메인유기전자 발광소자의 전극라인을 도시한 것이고, 도 6b는 도 5의 서 브유기전자 발광소자의 전극라인을 도시한 것이다.
- 도 5, 도 6a 및 도 6b를 참조하면, 듀얼형 유기전자 발광소자는 양면에서 화상을 디스플레이할 수 있도록 메인유기전자 발광소자(50)와, 상기 메인유기전자 발광소자(50)와 와 대향되게 설치되는 서브유기전자 발광소자(500)를 포함한다.
- <77> 상기 메인유기전자 발광소자(50)에는 광을 투과시키기 위하여 투명한 소재로 된 메인기판(51)이 마련되어 있다. 상기 메인기판(51) 상에는 메인기판 유기발광부(52)가 형성되어 있다.

상기 메인기판 유기발광부(52)에는 상기 메인기판(11)의 윗면에 소정간격 이격되게 배치된 스트립 형상의 제1 전극라인인 메인기판 스캔라인(53)과, 상기 메인기판 스캔라인(53)이 형성된 메인기판(51)의 윗면에 화소를 이를 수 있도록 형성된 메인기판 절연막(54)과, 상기 메인기판 스캔라인(53)과 직교하도록 형성된 메인기판 유기막(55)과, 상기 메인기판 유기막(55)의 윗면에 소정간격 이격되게 배치된 스트립 형상의 제2 전 극라인인 메인기판 데이터라인(56)을 포함한다. 상기 메인기판 스캔 및 데이터라인(53)(56)은 상호 직교하고 있다.

- 성기 서브유기전자 발광소자(500)에도 투명한 소재로 된 서브기판(510)이 마련되어 있다. 상기 서브기판(510) 상에는 서브기판 유기발광부(520)가 형성되어 있다. 상기 서브기판 유기발광부(520)는 상기 메인기판 유기발광부(52)와 실질적으로 동일한 구조를 가진다.
- 즉, 상기 서브기판 유기발광부(520)는 제3 전극라인인 서브기판 스캔라인(530)과, 서브기판 절연막(540)과, 서브기판 유기막(550)과, 제4 전극라인인 서브기판 데이터라인 (560)을 포함하며, 상기 서브기판 스캔 및 데이터라인(530)(560)은 상호 직교하고 있다.
- 생기 메인 및 서브유기전자 발광소자(50)(500)의 배면을 상호 부착하는 실런트(57)는 상기 메인 및 서브기관(51)(510)의 유효화면 표시부의 바깥영역의 가장자리를 따라 도포되어 상기 메인 및 서브기관 유기발광부(52)(520)가 외부에 노출되지 않도록 하는 것이 수분의 침투를 방지할 수가 있어서 바람직하다. 상기 실런트(57)에는 도전성 스페이서가 혼합되어 있다.
- 생2> 상기 실런트(57)에 의하여 구획된 밀폐영역에는 실런트(57)를 통하여 침투된 수분에 의하여 메인 및 서브기판 유기발광부(52)(520)의 메인 및 서브기판 유기막(55)(550)

이 손상되는 것을 방지하기 위하여 흡습제(570)가 설치되어 있다. 상기 흡습제(570)는 GDO나, 쉬트형의 건습제이며, 상기 서브기판 유기발광부(520)의 가장자리에 형성된 인입부내에 설치되며, 이의 유출을 방지하기 위하여 다공성 테이프가 부착되어 있다.

- 83> 이때, 상기 메인기판 스캔라인(53)은 상기 메인기판(51)의 일변(51a)을 따라 소정 간격 이격되게 집합되어 있으며, 상기 메인기판 데이터라인(56)은 상기 메인기판(51)의 타변(51b)를 따라 배치되어 있다. 상기 서브기판 스캔라인(530)은 상기 서브기판(510)의 일변(511)을 따라 집합되어 있으며, 상기 서브기판 데이터라인(560)은 상기 서브기판 (510)의 타변(512)을 따라 배치되어 있다.
- 842 여기서, 상기 메인기판(51)에는 한 쪽의 기판에서 상기 메인유기전자 발광소자(50)와 서브유기전자 발광소자(500)를 공히 구동가능하도록 외부로부터 전원을 인가하는 FPC가 접속되어 있다.
- (85) 즉, 상기 메인기판(51)에는 상기 메인기판 스캔라인(53) 및 테이터라인(56)과 각각 접속되는 스캔라인용 FPC(61)와, 데이터라인용 FPC(64)가 마련되어 있다. 상기 스캔라인용 FPC(61)에는 서브기판(510)의 서브기판 스캔라인(530)이 공히 접속되어 있으며, 데이터라인용 FPC(64)에도 서브기판(501)의 서브기판 테이터라인(560)이 같이 통전되어 있다. 상기 스캔 및 테이터라인용 FPC(61)(64)에는 스캔라인용 배선(62)과, 데이터라인용 배선(65)이 패턴화되어 있으며, 이와 연결되는 적어도 하나 이상의 구동칩(63)(66)이 각각 배치되어 있다.
- 이대, 상기 메인 및 서브유기전자 발광소자(50)(500)의 유효화면 표시부의 가장자리를 따라 도포되는 실런트(57)에는 도전성 스페이서가 개재되어 있다. 이러한 도전성스페이서를 함유한 실런트(57)는 도 7에 도시된 바와 같이 상기 메인기관(51)상에 형성

된 메인기판 스캔라인(53)과, 상기 서브기판(510)상에 형성된 서브기판 스캔라인(530) 사이에 도포되여서 상호 통전시키고 있다. 또한, 상기 메인기판 데이터라인(56)과, 서브 기판 데이터라인(560) 사이에도 도포되어 있다.

- 생기 실런트(57)에 포함된 도전성 스페이서는 상하방향에는 도전성이 생기지만 좌우방향에는 절연이 유지되는 성질의 이방성 도전재(anisotropic conductive material)로이루어지는 것이 바람직하다.
- 여에 따라, 도 5에 도시된 바와 같이, 상기 메인 및 서브기판 스캔라인(53)(530)은 서로 단락되어 있으며, 상기 메인기판 스캔라인(53)과 연결된 스캔라인용 FPC(61)을 통하여 전원인가시 동시에 전류가 흐르게 된다. 이것은 메인 및 서브기판 스캔라인 (53)(530)에 동일한 전기적 신호를 인가하는 경우이다. 또한, 상기 메인 및 서브기판 데이터라인(56)(560)도 상호 단락되어 있다.
 - 689 결과적으로, 상기 메인유기전자 발광소자(50)와 이와 배면에서 결합되는 상기 서브 유기전자 발광소자(500)는 단일의 스캔라인용 FPC(61)와, 데이터라인용 FPC(64)에 의하 여 구동가능하다. 이때, 상기 스캔 및 데이터라인용 FPC(61)(64)에 패턴화된 스캔 및 데 이터라인용 배선(62)(65)은 상기 메인 및 서브기판 스캔라인(53)(530)과, 상기 메인 및 서브기판 데이터라인(56)(560)과 대응되여 접속되도록 설계되어야 함은 물론이다.
 - <90> 이와 같은 구성을 가지는 듀얼형 유기전자 발광소자는 상기 메인 및 서브기판 스캔라인(53)(530)사이와, 상기 메인 및 서브기판 데이터라인(56)(560) 사이에 각각 도전성스페이서가 포함된 실런트(57)가 개재되므로 단락되어 있다.

(9)> 따라서, 매인기판(51)으로부터 인출되는 단일의 스캔 및 데이터라인용 FPC(61)(64)에 소정의 전원이 인가되면, 휴대기기의 커버가 닫혔을 때에는 상부측에 위치한 서브유기전자 발광소자(500)의 화상을 디스플레이하고, 커버가 열렸을 때에는 하부측에 위치한 메인유기전자 발광소자(50)의 화상을 디스플레이하여 유저가 시각적으로 관찰할 수가 있다. 이때, 상기 메인 및 서브유기전자 발광소자(50)(500)에는 공히 전류가 인가되고 있다.

- 생기와 같은 구조를 가지는 듀얼형 유기전자 발광소자의 제조방법을 설명하면 다음과 같다.
- 약3> 우선, 메인유기전자 발광소자(50)의 메인기판(51)을 마련하게 된다. 상기 메인기판(51)은 투명한 소재, 이를테면 글래스가 바람직하다. 상기 메인기판(51)의 윗면에는 소정페턴의 스트립형의 메인기판 스캔라인(53)을 형성하게 된다. 상기 메인기판 스캔라인(53)은 투명한 도전막, 에컨대 ITO막으로 되어 있으며, 상기 메인기판 스캔라인(53)과 상응한 패턴을 가진 포토마스크를 이용하여 노광, 현상, 에칭하여 형성시킬 수가 있다.
- 약 다음으로, 상기 메인기판 스캔라인(53)이 형성된 메인기판(51)상에 메인기판 절연막(54)을 형성시키게 된다. 상기 메인기판 절연막(54)은 포토리소그래피 공정을 통하여 상기 메인기판 스캔라인(53)과 직교하는 방향으로 다수개 스트립형으로 형성하거나, 화소형성부를 이루는 메인기판 스캔라인(53)이 소정의 패턴으로 노출되도록 메인기판(51)의 일변(51a)에 노출되는 부분을 제외하고는 상기 메인기판(51)의 전면에 형성될 수도 있을 것이다.

- 생기 메인기판 절연막(54)의 형성이 완료되면, 상기 메인기판(51)과 메인기판 스캔라인(53)과, 메인기판 절연막(54) 상에 메인기판 유기막(55)을 형성하게 된다. 상기 메인기판 유기막(55)을 형성시에는 정공수송층과, 발광층과, 전자수송층을 각각 형성시키게 된다.
 - 66 상기 메인기판 유기막(55)의 형성이 완료되면, 상기 메인기판 유기막(55)의 윗면에는 상기 메인기판 스캔라인(53)과 직교하는 방향으로 스트립형의 메인기판 데이터라인 (56)을 형성하게 된다. 상기 메인기판 데이터라인(56)은 도전성이 우수한 금속재, 예컨 대 알루미늄, 은, 은합금등의 금속을 중착하여 형성시킬 수가 있다.
 - 한편, 상기 메인유기전자 발광소자(50)가 제조되는 동안 이와 동일한 방법으로 서 브유기전자 발광소자(500)를 제조하게 된다.
 - 상기와 같이 메인유기전자 발광소자(50)와 서브유기전자 발광소자(500)의 제조가 완료되면, 이들을 각각 에이징하게 된다. 각각의 에이징이 완료되면, 상기 메인유기전자 발광소자(50)의 메인기판(51)과, 상기 서브유기전자 발광소자(500)의 서브기판(510)의 유효화면 표시부의 가장자리를 실런트(57)를 이용하여 접합하여 메인기판 유기발광부 (52)와 서브기판 유기발광부(520)를 외부로부터 차단하게 된다.
 - 이때, 상기 실런트(57) 내에는 도전성 스페이서가 포함되어 있으므로, 상기 메인 및 서브기판 스캔라인(53)(530)은 상기 실런트(57)에 의하여 상호 통전이 된다. 또한, 상기 메인 및 서브기판 데이터라인(56)(560)도 동일하게 전기적으로 단락되어 있다.

<100> 한편, 상기 실런트(57)의 실링이전에, 상기 서브기판(511)의 일측에 인입홈을 형성하고, 이 홈에 흡습제(570)를 충전하고 다공성 테이프를 이용하여 서브기판(511)에 부착시킬 수가 있다.

이와 같이 완성된 듀얼형 유기전자 발광소자는 상기 메인기관(51)의 일변(51a)으로 인출되어 실런트(57)에 의하여 통전되는 메인 및 서브기판 스캔라인(53)(530)에 스캔라인용 FPC(61)를 접속하게 된다. 또한, 상기 메인기관(51)의 타변(51b)으로 인출되어 통전되는 메인 및 서브기판 데이터라인(56)(560)에 데이터라인용 FPC(64)를 접속하게 된다. 이에 따라, 한 쪽의 기판(51)으로부터 단일의 스캔 및 데이터라인용 FPC(61)(64)으로부터 상기 메인 및 서브유기전자 발광소자(50)(500)의 동시 구동이 가능하다고 할 것이다.

도 8은 본 발명의 제3 실시예에 따른 듀얼형 유기전자 발광소자를 도시한 것이다.
 도면을 참조하면, 듀얼형 유기전자 발광소자는 메인유기전자 발광소자(80)와, 상기 메인유기전자 발광소자(80)와 대향되게 설치되는 서브유기전자 발광소자(500)를 포함한다

상기 메인유기전자 발광소자(80)의 메인기판(80a) 상에는 메인기판 스캔라인(88)과, 메인기판 데이터라인(89)이 상호 직교하도록 형성되어 있다. 메인기판 유기발광부가 형성된 메인기판(80a) 상부에는 서브유기전자 발광소자(800)가 결합되어 있다. 상기 서브유기전자 발광소자(800)에도 서브기판(810) 윗면에 서브기판 스캔라인과 , 서브기판 데이터라인(890)이 상호 직교하도록 형성되어 있다.

<105> 여기서, 상기 메인기판(80a)의 메인기판 스캔라인(88)과, 서브기판(810)의 내측면에 패턴화된 서브기판 스캔라인은 유효화면 표시화면의 가장자리를 따라 도포되는 실런트(87)에 의하여 상호 전기적으로 접촉되어 있다. 상기 실런트(87)에는 이방성의 도전재로 된 도전성 스페이서가 포함되어 있으며, 이러한 이방성의 스페이서는 상하방향으로만도전성을 가지며, 좌우방향으로는 절연성을 가지는 소재이다.

이에 따라, 상기 메인기판(80a)의 메인기판 스캔라인(88)과 서브기판(810)의 서브기판 스캔라인은 상기 실런트(87)에 의하여 서로 단략되어 있다. 이렇게 접속된 어느 한쪽의 기판(80a)에는 상기 메인유기전자 발광소자(80)와 서브유기전자 발광소자(800)를 공히 구동가능하도록 외부로부터 전원을 인가하는 스캔라인용 FPC(83)가 마련되어 있다. 상기 스캔라인용 FPC(81)에는 스캔라인용 배선(82)이 패턴화되어 있으며, 이와 연결되는 구동첩(83)이 배치되어 있다. 이처럼, 상기 메인기판 스캔라인(83)과 서브기판 스캔라인에 적용되는 구동첩(83)은 공용이며, 동일한 스캔신호가 인가된다.

지하고 그리고, 상기 메인기판(83)의 메인기판 데이터라인(89)에는 메인기판 데이터라인용 FPC(84)가 접속되어 있다. 상기 메인기판 데이터라인용 FPC(84)는 메인기판 데이터라인용 배선(85)이 패턴화되어 있으며, 이와 연결되는 구동첩(86)이 배치되어 있다. 상기 메인기판 데이터라인용 FPC(84)는 메인기판 데이터라인(89)에만 구동첩(86)으로부터 전기적 신호를 전달하게 된다.

<108> 또한, 상기 서브기판(810)의 서브기판 데이터라인(860)에는 서브기판 데이터라인용
FPC(840)가 접속되어 있다. 상기 서브기판 데이터라인용 FPC(840)는 상기 서브기판 데이터라인(890)과 대응되는 서브기판 데이터라인용 배선(850)이 설계되어 있으며, 상기서브기판 데이터라인용 배선(850)과 연결되는 구동칩(860)이 배치되어 있다. 이에 따라,

외부로부터 인가되는 전기적 신호는 상기 구동칩(860)을 거쳐서 상기 서브기판 데이터라 인(890)에만 정달된다.

- 지2 실시예의 듀얼형 유기전자 발광소자는 메인기판 스캔라인(53)과, 서브기판 스캔라인(530)이 실런트(57)에 의하여 통전된 상태에서 메인기판(51)으로부터 인출된 메인기판 스캔라인(53)에 스캔라인용 FPC(61)가 접속되어서 동일한 신호를 인가하고, 이와 동시에 메인기판 데이터라인(56)과 서브기판 데이터라인(560)도 실런트(57)에 의하여 전기적으로 접속된 상태에서 메인기판 데이터라인(56)에 데이터라인용 FPC(64)가 접속되어서 공히 신호를 인가한다. 이에 따라, 동일한 화상을 구현한다고 할 수 있다.
- 지원 그러나, 본 실시예의 듀얼형 유기전자 발광소자는 메인기판 스캔라인(88)과 서브기 판 스캔라인이 실런트(87)에 의하여 통전되어 있으며, 상기 메인기판(81)으로부터 인출된 메인기판 스캔라인(88)에 단일의 스캔라인용 FPC(81)가 접속되어서 공용 구동칩(83)을 사용할 수 있으며 동일한 신호를 인가하게 된다.
- **** 반면에, 메인기판 데이터라인(89)은 실런트(87)에 외하여 서브기판 데이터라인 (890)과 전기적으로 연결되어 있다. 즉, 상기 메인기판 데이터라인(89)에는 메인기판 데이터라인용 FPC(84)가 접속되어 있으며, 상기 서브기판 데이터라인(890)에도 서브기판 데이터라인용 FPC(840)가 접속되어 있다.
- 이에 따라, 듀얼형 유기전자 발광소자의 커버가 닫혔을 때에는 서브유기전자 발광소자(800)의 화상을 구동하고, 커버가 열렸을 때에는 메인유기전자 발광소자(80)의 화상을 구동하는 신호를 인가하는 것이 가능하게 된다. 이때, 상기 메인기판(80a)에 형성된 메인기판 데이터라인(89)과, 서브기판(810)에 형성된 서브기판 데이터라인(890)은 각각

- 의 메인 및 서브기판 데이터라인용 FPC(84)(840)에 접속되어 있으므로, 독립적 구동이 가능하다고 말할 수 있다.
- <113> 도 9는 본 발명의 제4 실시예에 따른 듀얼형 유기전자 발광소자를 도시한 것으로서 , 도 8에서처럼 서로 다른 화상을 독립적으로 구동하는 경우이다.
- <114> 도면을 참조하면, 듀얼형 유기전자 발광소자는 메인유기전자 발광소자(90)와, 상기메인유기전자 발광소자(90)와 결합되는 서브유기전자 발광소자(900)를 포함한다.
- <115 상기 메인유기전자 발광소자(90)는 메인기관(90a)상에 메인기관 유기발광부가 형성되며, 이 메인기관 유기발광부로부터 메인기관 스캔라인(98)과, 상기 메인기관 스캔라인(98)과 직교하는 밝혔으로 메인기관 데이터라인(99)이 배치되어 있다.</p>
- 상기 메인기판 스캔라인(98)에는 메인기판 스캔라인용 FPC(91)가 전기적으로 접속되어 있다. 상기 메인기판 스캔라인용 FPC(91)에는 상기 메인기판 스캔라인(98)과 연결되는 메인기판 스캔라인용 배선(92)이 설계되어 있으며, 상기 메인기판 스캔라인용 배선(92)은 전기적 신호를 처리하는 구동칩(93)이 연결되어 있다. 상기 메인기판 데이터라인(99)에는 메인기판 데이터라인용 FPC(94)가 연결되어 있다. 상기 메인기판 데이터라인용 FPC(94)에는 메인기판 데이터라인용 배선(95)과, 이와 연결되는 구동칩(96)이 설계되어 있다.
- 기관 그리고, 상기 서브유기전자 발광소자(900)는 서브기판(910)상에 서브기판 유기발광부가 형성되어 있으며, 이 서브기판 유기발광부로부터 서브기판 스캔라인(980)과, 서브기판 데이터라인(990)이 배치되어 있다. 상기 서브기판 스캔

및 데이터라인(980)(990)은 서브기판(910)의 일방향으로 집합되어 있다. 이러한 서브기판 스캔 및 데이터라인(980)(990)은 그 반대되는 변에도 위치할 수 있으며, 동일한 변에서 소정간격 이격되도록 설계되어 있다.

- 시18 상기 서브기판 스캔 및 데이터라인(980)(990)은 서브라인용 FPC(940)가 전기적으로 접속되어 있다. 상기 서브라인용 FPC(940)는 상기 서브기판 스캔 및 데이터라인 (980)(990)과 연결된 서브라인용 배선(950)과, 상기 서브라인용 배선(950)과 연결되는 구동첩(960)을 포함하고 있다. 이때, 상기 서브기판 스캔 및 데이터라인(980)(990)은 하나의 구동첩(960)에서 구동이 가능하도록 설계되어 있다.
- *** 한편, 상기 메인 및 서브유기전자 발광소자(90)(900)는 유효화면 표시부의 가장자리를 따라서 상기 메인 및 서브기판(90a)(910)을 상호 접합하는 실런트(97)가 도포되어 있다. 상기 실런트(97)는 도전성 스페이서가 혼합될 수도 있으나, 실질적으로 상기 메인 및 서브의 전극라인이 상호 통전되는 경우가 없으므로 적용될 필요는 없을 것이다.
- 이처럼, 본 실시예는 도 8에 도시된 제3 실시예에서처럼 듀얼형 유기전자 발광소자의 커버가 닫혔을 경우에는 서브유기전자 발광소자(900)의 화상을 구동하고, 커버가 열렸을 경우에는 메인유기전자 발광소자(90)의 화상을 구동하는 신호를 인가하는 방식으로서, 독립적으로 전기적 신호를 각각 인가하게 된다.
- (121) 반면에, 제3 실시에에서와는 달리, 상기 메인 및 서브기판 데이터라인(99)(990)이 독립적으로 구동될 뿐만 아니라, 상기 메인 및 서브기판 스캔라인(98)(980)도 각각 구동가능하다.

되22> 도 10a는 본 발명의 제5 실시예에 따른 듀얼형 유기전자 발광소자중 메인유기전자 발광소자(1)를 도시한 것이고, 도 10b는 서브유기전자 발광소자(1000)를 도시한 것이다.

- <123> 여기서는, 상기 메인 및 서브유기전자 발광소자(1)(1000)의 기판상에 형성되는 전 극라이만 언급하기로 한다.
- 도 10a 및 도 10b를 참조하면, 상기 메인유기전자 발광소자(1)용 메인기판(1a)에는 소정간격 이격되게 스트립형의 메인기판 스캔라인(3)이 형성되어 있다. 상기 메인기판 스캔라인(3)과 직교하는 방향으로는 메인기판 테이터라인(6)이 배치되어 있다.
- 이때, 상기 메인기판(1a)에는 소정간격 이격되게 플로팅 전극라인(9)이 설계되어 있다. 상기 플로팅 전극라인(9)은 상기 메인기판 데이터라인(6)과 인접한 위치에서 상기 메인기판(1a)상에 배치되어 있다. 상기 플로팅 전극라인(9)은 상기 메인기판(1a)의 전극 라인과 직접적으로 연결되어 있지 않고, 별도로 패턴화된 전극라인이다.
- 이를 위하여, 상기 메인기판(1a)에는 상기 메인기판 데이터라인(6)이 그 피치를 좁게하여 일측으로 집합되어 있다. 이처럼, 상기 메인기판 데이터라인(6)이 피치를 줄여서 상기 메인기판(1a)상에 존재하는 여유공간에는 플로팅 전극라인(9)이 형성되어 있다.
- <127> 상기 서브유기전자 발광소자(1000)용 서브기판(1100)에는 소정간격 이격되게 스트립형의 서브기판 스캔라인(1300)이 형성되어 있다. 상기 서브기판 스캔라인(1300)과 직교하는 방향으로는 서브기판 데이터라인(1600)이 배치되어 있다. 상기 서브스캔 및 데이터라인(1300)(1600)은 상기 메인기판 스캔 및 데이터라인(3)(6)과 대응되는 방향으로 설계되어 있다.

이때, 상기 서브기판(1100)에는 상기 서브기판 데이터라인(1600)이 상기 플로팅 전 극라인(1600)과 전기적으로 접속되기 위하여 일측으로 집합되어 있다. 즉, 상기 서브기 판 데이터라인(1600)은 전극패턴을 설계시 상기 플로팅 전극라인(1600)과 대응되는 위치 에 형성되어 있다. 이처럼, 상기 플로팅 전극라인(1600)이 메인기판(1a)상에 형성되는 것은 외부로부터 인가되는 구동신호를 메인기판(1a)으로부터 공히 공급하기 위해서이다.

시29> 상기한 구조의 듀얼형 유기전자 발광소자는 유효화면 표시부의 가장자리를 따라 전술한 바 있는 도전성 스페이서가 포함된 실런트가 도포되어서 선택적으로 메인기관 스캔라인(3)과, 서브기관 스캔라인(1300)을 통전시키고, 이에 스캔용 FPC를 연결시킬 수도 있다. 또한, 상기 플로팅전극(9)과 서브기관 데이터라인(1600) 사이에 도전성 스페이서가 포함된 실런트를 도포하여서 전기적으로 연결시킬 수도 있을 것이다.

전국라인을 배치시키고, 이 전국라인에 구동칩이 실장된 FPC를 접속시켜서 독립 또는 동시에 화상을 구동하는 신호를 인가할 수가 있다.

【발명의 효과】

- <131> 이상과 같이 본 발명의 듀얼형 유기전자 발광소자와 그 제조방법은 다음과 같은 효과를 얻을 수 있다.
- 이외 및 서브유기전자 발광소자는 도전성 스페이서가 포함된 실런트에 의하여 유효화면 표시부가 밀폐되어 있으므로 두께를 얇게 할 수 있으며, 메인기판에 형성되는 메인기판 스캔 및 데이터라인과, 서브스캔 및 데이터라인이 이방성의 도전성 스페이서에 의하여 선택적으로 통전되므로, 이들에 전기적 신호를 전달하는 구동칩의 수를 대폭 줄일

수 있다. 이에 따라, 유기전자 발광소자의 두께를 혁신적으로 줄일 수 있으며, 구동방법의 변경으로 원가를 줄일 수 있다.

- <133> 또한, 도전성 스페이서를 포함한 실런트를 이용하여 메인 및 서브유기전자 발광소 자를 구동하는 플렉시블 프린티드 케이블을 어느 한 쪽의 기판상에 부착하게 됨으로써 작업성이 향상된다.
- 신화 본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.

【특허청구범위】

【청구항 1】

메인기판과, 상기 메인기판상에 형성된 스트립상의 메인기판 스캔라인과, 메인기판 데이터라인을 구비하는 메인유기전자 발광소자;

상기 메인유기전자 발광소자와 대향되게 설치되며, 서브기판과, 상기 서브기판상 에 형성된 스트립상의 서브기판 스캔라인과, 서브기판 데이터라인을 구비하는 서브유기 저자 발광소자:

상기 메인 및 서브유기전자 발광소자가 상호 대향된 상태에서, 상기 메인 및 서브 기관을 실랑하여 메인 및 서브기관 유기발광부를 밀폐가능한 도전성 스페이서가 포함된 실런트; 및

상기 메인 또는 서브기관증 어느 하나의 기관에 형성되며, 상기 메인과 서브기관의 전극라인과 접속되는 적어도 하나 이상의 플렉시블 프린티드 케이블;를 포함하는 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 2】

제1항에 있어서,

상기 메인기판에는 메인기판 스캔라인과, 메인기판 데이터라인이 각각 배치되고, 상기 서브기판에는 서브기판 스캔라인과, 서브기판 데이터라인 각각 배치되며, 상기 메 인 및 서브기판 스캔라인사이와, 상기 메인 및 서브기판 데이터라인 사이에는 실런트가 개재된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 3】

제2항에 있어서.

상기 메인기판 스캔라인은 도전성 스페이서에 의하여 상기 서브기판 스캔라인과 통전된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 4】

제3항에 있어서,

통전된 스캔라인중 어느 하나의 전극라인에는 스캔라인용 구동신호를 전달하는 단일의 스캔라인용 플렉시블 프린티드 케이블이 전기적으로 접속된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 5】

제2항에 있어서.

상기 메인기판 테이터라인은 도전성 스페이서에 의하여 상기 서브기판 테이터라인과 통전된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 6】

제5항에 있어서,

통전된 데이터라인중 어느 하나의 전극라인에는 데이터라인용 구동신호를 전달하는 단일의 데이터라인용 플렉시블 프린티드 케이블이 전기적으로 접속된 것을 특징으로 하 는 듀얼형 유기전자 발광소자.

【청구항 7】

제4항 또는 제6항에 있어서,

통전되는 스캔라인과 데이터라인은 상기 메인 또는 서브기판중 어느 하나의 기판상으로부터 상기 스캔과 데이터라인용 플렉시블 프린티드 케이블과 각각 연결된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 8】

제2항에 있어서.

상기 메인기판 스캔라인은 도전성 스페이서에 의하여 상기 서브기판 스캔라인과 통 전되어 있으며, 상기 메인 및 서브기판 데이터라인은 상기 도전성 스페이서에 의하여 통 저되지 않은 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 9】

제8항에 있어서,

통전된 스캔라인중 어느 하나의 전극라인에는 스캔라인용 구동신호를 전달하는 단일의 스캔라인용 플랙시블 프린티드 케이블이 전기적으로 접속된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 10】

제8항에 있어서,

상기 메인기판 데이터라인은 메인기판 데이터라인용 구동신호를 전달하는 메인기판 데이터라인용 플렉시블 케이블이 전기적으로 접속된 것을 특징으로 하는 듀얼형 유기전 자 발광소자.

【청구항 11】

제8항에 있어서,

상기 서브기판 데이터라인은 서브기판 데이터라인용 구동신호를 전달하는 서브기판 데이터라인용 플렉시블 케이블이 전기적으로 접속된 것을 특징으로 하는 듀얼형 유기전 자 발광소자.

【청구항 12】

제2항에 있어서.

상기 메인기판에는 메인기판 스캔라인과, 메인기판 데이터라인이 각각 배치되며, 상기 서브기판에는 서브기판 스캔라인과, 서브기판 데이터라인이 각각 배치되며, 상기 메인기판 스캔 및 메인기판 데이터라인에는 메인기판 스캔 및 데이터라인용 플렉시블 프린티드 케이블이 각각 접속되고, 상기 서브기판 스캔 및 데이터라인에는 서브기판 스캔 및 데이터라인용 플렉시블 프린티드 케이블이 각각 접속된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 13】.

제1항에 있어서.

상기 메인기판에는 일변으로 메인기판 스캔라인이 배치되며, 타변으로 메인기판 데 이터라인이 배치된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 14】

제13항에 있어서.

상기 서브기판에는 상기 메인기판 스캔라인과 대향되는 방향으로 서브기판 스캔라인이 배치되며, 상기 메인기판 데이터라인과 대향되는 방향으로 서브기판 데이터라인이 배치된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 15】

제1항에 있어서,

도전성 스페이서는 상하방향으로 통전되고, 좌우방향으로 절연되는 이방성 도전재 인 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 16】

제1항에 있어서.

메인기판 스캔라인과 서브기판 스캔라인은 도전성 스페이서에 의하여 통전되며, 하나의 스캔라인용 플렉시블 프린티드 케이블에 접속되어 동일한 스캔라인용 구동신호를 인가하는 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 17】

제1항에 있어서,

상기 메인기판 데이터라인과 서브기판 데이터라인은 도전성 스페이서에 의하여 통 전되며, 하나의 데이터라인용 플렉시블 프린티드 케이블에 접속되어 동일한 데이터라인 용 구동신호를 인가하는 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 18】

메인기판과, 상기 메인기판상에 형성된 스트립상의 메인기판 스캔라인과, 데이터라 이을 구비하는 메인유기전자 발광소자;

상기 메인유기전자 발광소자와 대향되게 설치되며, 서브기판과, 상기 서브기판상 에 형성된 스트립상의 서브기판 스캔라인과, 서브기판 데이터라인을 구비하는 서브유기 전자 발광소자;

상기 메인 및 서브유기전자 발광소자가 상호 대향된 상태에서, 상기 메인 및 서브기판을 실링하여 메인 및 서브기판 유기발광부를 밀폐가능한 도전성 스페이서가 포함된 실런트;

상기 메인 또는 서브기판중 어느 하나의 기판에 형성되며, 상기 서브기판 전극라 인과 접속되는 플로팅 전극라인; 및

상기 실런트에 의하여 상호 통전가능한 메인과 서브기관 전극라인 또는 플로팅 전 극라인과 접속되는 적어도 하나 이상의 플렉시블 프린티드 케이블;을 포함하는 것을 특 장으로 하는 듀얼형 유기전자 발광소자.

【청구항 19】

제18항에 있어서,

상기 플로팅 전극라인은 상기 메인 또는 서브기판 전극라인의 일측에 독립적으로 배치된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 20】

제19항에 있어서,

상기 플로팅 전극라인이 배치된 기판에는 상기 플로팅 전극라인이 설치되는 공간을 형성하기 위하여 메인 또는 서브기판 전극라인의 피치가 상기 플로팅 전극라인이 설치되 지 않은 기판의 전극라인보다 좁게 형성한 것을 특징으로 하는 듀얼형 유기전자 발광소 자.

【청구항 21】

제18항에 있어서,

상기 도전성 스페이서는 상하방향으로 통전되고, 좌우방향으로 절연되는 이방성 도 전재인 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 22】

제18항에 있어서,

상호 통전가능한 메인과 서브기판 전극라인 또는 플로팅 전극라인은 상기 메인 또는 서브기판중 어느 하나의 기판상으로부터 배치되어 전극라인용 플렉시블 프린티드 케이블과 연결된 것을 특징으로 하는 듀얼형 유기전자 발광소자.

【청구항 23】

투명한 메인기판상에 메인기판 스캔라인과, 메인기판 절연막과, 메인기판 유기막과, 상기 메인기판 스캔라인과 직교하도록 메인기판 데이터라인을 형성하는 단계 를 포함하는 메인유기전자 발광소자의 제조단계;

투명한 서브기관상에 서브기관 스캔라인과, 서브기관 절연막과, 서브기관 유기막과, 상기 서브기관 스캔라인과 직교하도록 서브기관 데이터라인을 형성하는 단계를 포함하는 서브유기전자 발광소자의 제조단계:

상기 메인 및 서브유기전자 발광소자를 각각 에이징하는 에이징단계;

상기 메인 및 서브유기전자 발광소자를 상기 유기막이 외부와 밀봉될 수 있도록 유효화면 표시부의 가장자리를 따라 도전성 스페이서가 포함된 실런트를 도포하는 실링 단계; 및

상기 스페이서에 의하여 통전된 적어도 어느 하나의 메인 및 서브기판 스캔라인 또는 메인 및 서브기판 데이터라인에 구동신호를 전달하는 전국라인용 플렉시블 프린티드

케이블을 접속하는 단계;를 포함하는 것을 특징으로 하는 듀얼형 유기전자 발광소자의 제조방법.

【청구항 24】

제23항에 있어서,

상기 실런트를 도포하는 실링단계에서는,

상기 메인 및 서브기판 스캔라인 또는 상기 메인 및 서브기판 데이터라인사이에 상기 도천성 스페이서를 개재하여 상호 통전시키는 것을 특징으로 하는 듀얼형 유기전자 방광소자의 제조방법.

【청구항 25】

제23항에 있어서,

상기 플렉시블 프린티드 케이블을 접속하는 단계에서는,

통전되는 상기 메인 및 서브기판 스캔라인 또는 상기 메인 및 서브기판 데이터라인은 상기 메인 또는 서브기판중 어느 하나의 기판상으로부터 상기 스캔과 데이터라인용 플렉시블 프린티드 케이블과 각각 연결된 것을 특징으로 하는 듀얼형 유기전자 발광소자

[도면]

[\(\frac{510}{57} \)

| \text{510} \)
| \text{530} \]
| \text{62} \]
| \text{61} \]
| \text{53} \]
| \text{53} \]
| \text{53} \]
| \text{53} \]

[도 9]

[도 10a]

【도 10b】

