Dichotomous Predictors, Non-Linearity, and Data **Transformations**

Dr. Michael Fix mfix@gsu.edu

Georgia State University

25 February 2025

Note: The slides are distributed for use by students in POLS 8810. Please do not reproduce or redistribute these slides to others without express permission from Dr. Fix.

Variable Types Revisited

- Four types of variables:
 - 1. Nominal ("Factors")
 - 2. Ordinal
 - Interval
 - 4. Ratio
- In the context of OLS: Which work as DVs? Which work as IVs?

Dummy Variables

- A term that gets used a lot to mean many things. . .
- Naturally dichotomous things
- Simplified categorizations
- "Factor" variables
- Ordinal variables (treated as "factors")

Dummy Variable Coding

- The term "dummy" variable is associate with a $\{0,1\}$ coding scale
- e.g.

$$\mathtt{woman} = egin{cases} 0 \text{ if man} \\ 1 \text{ if woman} \end{cases}$$

• Why {0,1}?

Dummy Variable Coding

- Two reasons:
 - 1. Math (will talk about this in a minute)
 - 2. Software
- Theoretically, as this variables have no meaningful ordering among their values, the assigned numbers do not matter
- **However**, you should always *name* the variable to correspond outcome of interest and set that outcome equal to 1.

Bivariate Regression with Dichotomous Xs The Math

For

$$Y_i = \beta_0 + \beta_1 D_i + u_i$$

we have

$$E(Y|D = 0) = \beta_0$$

and

$$E(Y|D=1) = \beta_0 + \beta_1.$$

Bivariate Regression with Dichotomous Xs The Intuition

- Intuitively, we think of OLS as "fitting a line"
- This breaks down with a dummy IV:

Bivariate Regression with Dichotomous Xs The Intuition

Regression with Dichotomous and Continuous X

• For,

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + u_i$$

we have

$$E(Y|X, D = 0) = \beta_0 + \beta_2 X_i$$

and

$$E(Y|X, D = 1) = (\beta_0 + \beta_1) + \beta_2 X_i$$

Regression with Dichotomous and Continuous XThe Intuition

Regression with Dichotomous and Continuous XThe Intuition

- As the prior slide shows, effectively the dummy variable represents an intercept shift.
- The estimated effect of X_i on Y_i (β₂) determines the slope of the regression line and is unchanged based on the value of D_i.
- BUT, the intercept of the regression line shifts based on the value of D_i
 - When $D_i = 0$, the intercept is β_0
 - When $D_i = 1$, the intercept is $(\beta_0 + \beta_1)$

Multiple Dummies The Math

For

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \dots + \beta_\ell D_{\ell i} + u_i$$

We have

$$\mathsf{E}(Y|D_k=0)\,\forall\,k\in\ell=\beta_0$$

Otherwise,

$$\mathsf{E}(Y) = \beta_0 + \sum_{k=1}^{\ell} \beta_k \,\forall \, k \, s.t. \, D_k = 1$$

An Important Note

- Where the D_{ℓ} are mutually exclusive and exhaustive:
 - This is usually the case for so called "factor" variables
 - The expected values are the same as the within-group means.
 - Identification requires that we either
 - omit a "reference category," or
 - omit β_0 .

Ordinal Variables: A Special Case

Suppose we have:

$$\mathtt{party} = \begin{cases} -2 = \mathsf{Strong} \ \mathsf{Democrat} \\ -1 = \mathsf{Weak} \ \mathsf{Democrat} \\ 0 = \mathsf{Independent} \\ 1 = \mathsf{Weak} \ \mathsf{Republican} \\ 2 = \mathsf{Strong} \ \mathsf{Republican} \end{cases}$$

Ordinal Variables: A Special Case

We could estimate:

$$Y_i = \beta_0 + \beta_1(\text{party}_i) + u_i$$

• Effectively treating an ordinal variable as if it was continuous

Ordinal Variables: A Special Case

Alternatively, we could convert it to a series of dummies

$$Y_i = \beta_0 + \beta_1(\operatorname{strongdem}_i) + \beta_2(\operatorname{weakdem}_i) + \beta_3(\operatorname{weakgop}_i) + \beta_4(\operatorname{stronggop}_i) + u_i$$

 Note the excluded "reference category" as the outcomes are mutually exclusive and exhaustive

Ordinal Variables: A Comparison

Why Transform Variables?

- Normality (of *u_i*s)
- Linearity
- Additivity
- Interpretation / Model Specification

Note: John Fox has some really helpful slides online that you might find useful for more depth on various transformations.

Monotonic Transformations

"Family of Powers and Roots"

Transformation	р	f(X)	Fox's $f(X)$
Cube	3	X^3	$\frac{X^3-1}{3}$
Square	2	X^2	$\frac{X^2-1}{2}$
(None/Identity)	(1)	(X)	<u>(X)</u>
Square Root	$\frac{1}{2}$ $\frac{1}{3}$	\sqrt{X}	$2(\sqrt{X}-1)$
Cube Root	$\frac{1}{3}$	$\sqrt[3]{X}$	$3(\sqrt[3]{X}-1)$
Log	0 (sort of)	ln(X)	ln(X)
Inverse Cube Root	$-\frac{1}{3}$	$\frac{1}{\sqrt[3]{X}}$	$\frac{\left(\frac{1}{\sqrt[3]{X}}-1\right)}{-\frac{1}{3}}$
Inverse Square Root	$-\frac{1}{2}$	$\frac{1}{\sqrt{X}}$	$\frac{\left(\frac{1}{\sqrt{X}}-1\right)}{-\frac{1}{2}}$
Inverse	-1	$\frac{1}{X}$	$\frac{\left(\frac{1}{X}-1\right)}{-1}$
Inverse Square	-2	$\frac{1}{X^2}$	$\frac{\left(\frac{1}{X^2}-1\right)}{-2}$
Inverse Cube	-3	$\frac{1}{X^3}$	$\frac{\left(\frac{1}{X^3}-1\right)}{-3}$

A General Rule

Using higher-order power transformations (e.g. squares, cubes, etc.) "inflates" large values and "compresses" small ones; conversely, using lower-order power transformations (logs, etc.) "compresses" large values and "inflates" (or "expands") smaller ones.

Nonmonotonicity

Simple solution: Polynomials

• Second-order / quadratic:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

• Third-order / cubic:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \beta_{3}X_{i}^{3} + u_{i}$$

• *p*th-order:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_p X_i^p + u_i$$

How Do You Know?

Plots are your best friend!

How Do You Know? Toy Model Example

```
my_data <- readRDS("data/vdem12.rds")</pre>
us data <- my data |>
  filter(country_name == "United States of America") |>
  rename(democracy = v2x polyarchy.
         gdp_per_capita = e_gdppc,
         urbanization = e miurbani.
         regime = v2x_regime,
         polarization = v2cacamps,
         polarization ordinal = v2cacamps ord) |>
  mutate(regime_binary = ifelse(regime %in% c(2,3), 1, 0),
         high polarization = ifelse(polarization \geq -1, 1, 0))
chart.Correlation(us data |> select(democracy, gdp per capita, urbanization))
multiple <- lm(democracy ~ qdp_per_capita + urbanization, data = us_data)</pre>
plot(multiple)
```

First, check your variables

Model diagnostics using *plot()*

Residual distribution and density

```
# Residual plot with histogram
hist(multiplesresiduals, freq = F, xaxt = "n", xlab = "", ylab = "", main = "")
par(new = T) # sets graphical parameters so that I can plot histogram and density plots
plot(density(resid(multiple)))
```

density.default(x = resid(multiple))

