Compound Poisson Processes

Noah Gblonyah, Seth Okyere, and Michael Throolin

10 December 2021

1 Concept

Definition 1.1 (Counting Processes). A random process $\{N(t), t \in [0, \infty)\}$ is a counting process if,

- 1. N(0) = 0.
- 2. $N(t) \in \{0, 1, 2, 3, 4, ...\}$ and is non-decreasing.

Definition 1.2 (Poisson Processes). A random process N(t) is a poisson process with rate λ if,

- 1. N(t) has independent increments. That is the set $N(t_j + s_j) N(t_j)$, $j \in \{0, 1, 2, ..., n\}$ is independent for each non-overlapping increment $(t_j, t_j + s_j]$.
- 2. For all $t \geq 0$ and h > 0, $N(t+h) N(t) \sim POIS(\Lambda)$ where $\Lambda = \int_{t}^{t+h} \lambda(z)dz$.

Definition 1.3 (Compound Poisson Process). A compound poisson process S(t) is defined as follows:

- 1. For t > 0, $S(t) = \sum_{i=1}^{N(t)} X_i$, where N(t) is a poisson process with rate function λ ,
- 2. All random variables X_i and $\{N(t), t > 0\}$ are independent and identically distributed,
- 3. $N(t) = 0 \implies S(0) = 0$.

2 Examples and Exploration

References

Daniel, James W. 2008. "Poisson Processes (and Mixture Distributions)." http://www.casact.org/library/studynotes/3/_Poisson/_2008.pdf.

Pishro-Nik, Hossein. 2004. Introduction to Probability. Kappa Research LLC. https://www.probabilitycourse.com.