

- ★ Super_Junction technology
- ★ Much lower Ron*A performance for On-state efficiency
- ★ Better efficiency due to very low FOM
- ★ Qualified for industrial grade applications according to JEDEC

Product Summary

BVDSS	RDSON	ID
650V	0.11 Ω	24A

Description

The XR65R110T use super junction technology and design to provide excellent RDS(ON) with low gate charge. This super junction MOSFET fits the industry's AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.

The XR65R110T meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO220AB Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	650	V	
V _G S	Gate-Source Voltage	±30	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	24	Α	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	12	Α	
I _{DM}	Pulsed Drain Current ²	96	Α	
EAS	Single Pulse Avalanche Energy ³	300	mJ	
I _{AS}	Avalanche Current		Α	
P _D @T _C =25°C	Total Power Dissipation⁴	89	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
Reja	Thermal Resistance Junction-Ambient ¹		67	°C/W	
Rejc	Thermal Resistance Junction-Case ¹		1.4	°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	îí€			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =16A		€À1	€À4	Т
V _{GS(th)}	Gate Threshold Voltage	VV I250uA	3.2	Œ	1.6	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$				mV/°C
I _{DSS}	Drain-Source Leakage Current	V _{DS} =Î Í €V , V _{GS} =0V , T _J =25°C			5	uA
IDSS	Diam-Source Leakage Current	V _{DS} =Î Í €V, V _{GS} =0V , T _J =150°C		220		uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm H_0 V$, $V_{DS} = 0 V$			±100	nA
gfs	Forward Transconductance	V _{DS} =ŒV , I _D =16A		16.5		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		10		Ω
Q_g	Total Gate Charge			46		
Q_{gs}	Gate-Source Charge	V _{DS} =I Ì €V , V _{GS} =10V , I _D =16A		14		nC
Q_{gd}	Gate-Drain Charge			24		
T _{d(on)}	Turn-On Delay Time			60		
Tr	Rise Time	VGS=10V, VDD=I €€V, RG=G7Ω, ID=16A		61		, no
T _{d(off)}	Turn-Off Delay Time			140		ns
T _f	Fall Time			31		
C _{iss}	Input Capacitance			1595		
Coss	Output Capacitance	V _{DS} =1€€V , V _{GS} =0V , f=1MHz		90		pF
C _{rss}	Reverse Transfer Capacitance			1.5		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			24	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =16A , T _J =250	0.7	0.86	1.1	V
t _{rr}	Reverse Recovery Time	IF=16 , di/dt=100A/μs ,		120		nS
Q _{rr}	Reverse Recovery Charge	T _J =250		0.63		nC

FÈThe Ádata Ádested Án y Ásurface Ámounted Án nÁs Á Ánch² ÁFR-4 Ánoard Ávith ÁZOZ Ácopper.

CÉTheÁtata Áested ÁbyÁpulsedÁ ÁpulseÁvidthÁs 300usÁÁtutyÁsycleÁs 2%
HÉTheÁEASÁtata ÁshowsÁMax. ÁtatingÁ ÁTheÁtestÁsondítion ÁsÁVRÁMÓS »Ô, VDD=200V, VGS=10V, L=60mH
I ÉTheÁpowerÁtissipation ÁsÁimitedÁbyÁt50°C junction Átemperature
Í ÉTheÁtata ÁsÁheoreticallyÁheÁsameÁssÁ_{DA}andÁ_{DMÁ}ÁnÁtealÁspplicationsÁÁshouldÁbeÁimitedÁbyÁtotalÁpowerÁ dissipation.

Typical Performance Characteristics

Fig 1. Output Characteristics (T_j=25℃)

Fig 2. Output Characteristics (T_j=150℃)

Fig 3: Transfer Characteristics

Fig 4: V_{TH} vs. T_i Temperature Characteristics

Fig 5: R_{DS(on)} vs. I_{DS} Characteristics(T_j=25℃)

Fig 6: $R_{DS(on)}$ vs. Temperature

Fig 7: BV_{DSS} vs. Temperature

Fig 8: R_{DS(on)} vs. Gate Voltage

Fig 9: Body-diode Forward Characteristics

Fig 10: Gate Charge Characteristics

Fig 11: Capacitance Characteristics

Fig 12: Safe Operating Area

1 0.1 0.02 0.01 Single pulse 0.001 Duty factor D=t₁/t₂ $T_{JM}-T_{C}=P_{DM}*Z_{thJC}(t)$ 0.0001 1.0E-05 1.0E-04 1.0E-03 1.0E-01 1.0E+00 1.0E-02 t_p (sec)

Fig 13: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Mechanical Dimensions for TO-220

OMMON DIMENSIONS

SYMBOL	MM			
SYMBOL	MIN	MAX		
Α	9.70	10.30		
В	3.40	3.80		
С	8.80	9.40		
D	1.17	1.47		
E	2.60	3.50		
F	15.10	16.70		
G	19.55MAX			
Н	2.54REF			
I	0.70	0.95		
J	9.35	11.00		
K	4.30	4.77		
L	1.20	1.45		
М	0.40	0.65		
N	2.20	2.60		