Упутство за лабораторијске вежбе из Архитектуре рачунара

За израду лабораторијских вежби користе се:

- Асемблер *PSams*
- Симулатор *SPECS*

Асемблер *PSams*

Корисник у програму може да пише код, да од њега ствара излазну датотеку и да емулира написан код ради тражења грешака. У корисничком интерфејсу се налазе следеће компоненте: мени, едитор, испис излаза и приказ стања архитектуре. Програм има два режима, режим писања кода и режим тражења грешака. Компоненте на интерфејсу и њихова функционалност се мењају у зависности од тренутног режима. Изглед прозора програма (у режиму писања кода) приказан је на слици 1.

Слика 1. Изглед асемблера *PSasm*

Притиском на дугме *Open file* треба отворити фајл под називом *VEZBA.ASM* који се налази у директоријуму симулатора *SPECS* у директоријуму *p3lab1*. Након отварања овог фајла могуће је мењати његов садржај додавањем програмског кода. Након измене фајла, треба сачувати фајл притиском на дугме *Save*. Након чувања фајла, могуће је откуцани програмски код асемблирати притиском дугмета *Assemble*.

Уколико се асемблирање заврши успешно, могуће је покренути дебагер (режим рада тражења грешака). У овом режиму се могу посматрати вредности регистара процесора и садржај оперативне меморије процесора након сваке извршене инструкције. У режим тражења грешака се прелази притиском на дугме *Debug* након чега треба унети редни број линије од које се започиње дебаговање програма. На слици 2. приказан је изглед прозора режима тражења грешке.

Слика 2. Режим тражења грешака

Процесор који је имплементиран у симулатору *SPECS* и асемблер *PSasm* подржавају различите типове инструкција и различите типове адресирања. У табелама 1.-6. дат је формат и опис подржаних инструкција.

Коментари у асемблеру *PSasm* пишу се након знака!.

Операнд регистра се обележава rN, где је N индекс регистра у хексадекадном запису. Индекс може имати вредности од 0 до F (15). У табелама које следе је означен са reg.

Операнд броја се обележава x.N, где је N број у хексадекадном запису. Може имати вредности од θ до FFFF (65535). У табелама које следе је означен са num.

Директивом **org** \mathbf{x} .**N** се назначава да све инструкције које следе након ове директиве смештају у меморији почев од адресе \mathbf{x} . \mathbf{N} .

У табели 1 су регистри **imr** и **ivtp** означени са **ireg**.

Табела 1. Инструкције преноса података

Формат инструкције	Опис
ldimm num, reg	У регистар reg уписује вредност num .
ldmem num, reg	У регистар reg уписује вредност из меморије са адресе num .
ldrid [reg1]num, reg2	У регистар reg2 уписује вредност из меморије са адресе reg1+num .
stri [reg1], reg2	Уписује вредност регистра reg2 у меморијску локацију на адреси која се налази у регистру reg1 .
stmem num, reg	Уписује вредност регистра reg у меморијску локацију на адреси num .

mvril reg, ireg	Уписује вредност регистра ireg у регистар reg .
mvrir reg, ireg	Уписује вредност регистра reg у регистар ireg .
mvrrl reg1, reg2	Уписује вредност регистра reg2 у регистар reg1 .
push reg	Уписује вредност регистра reg на меморијску локацију на врху стека.
pop reg	Уписује вредност меморијске локације врха стека у регистар reg .
clr reg	Уписује вредност 0 у регистар reg .

Табела 2. Аритметичке инструкције

Формат инструкције	Опис
add reg1, reg2, reg3	Уписује збир вредности регистара reg2 и reg3 у регистар reg1 . У регистар psw се уписују одговарајући NZCV битови.
sub reg1, reg2, reg3	Уписује разлику вредности регистара reg2 и reg3 у регистар reg1 . У регистар psw се уписују одговарајући NZCV битови.
cmp reg1, reg2	Израчунава разлику вредности регистара reg1 и reg2 , и у регистар psw уписује одговарајуће NZCV битове.
inc reg	Инкрементира (повећава за 1) вредност регистра reg , и у регистар psw уписује одговарајуће NZCV битове.
dec reg	Декрементира (умањује за 1) вредност регистра reg , и у регистар psw уписује одговарајуће NZCV битове.

Табела 3. Логичке инструкције

Формат инструкције	Опис
and reg1, reg2, reg3	Уписује резултат операције битског "И" над регистрима reg2 и reg3 у регистар reg1 . У регистар psw се уписују одговарајући NZ битови, а V бит се брише.
or reg1, reg2, reg3	Уписује резултат операције битског "ИЛИ" над регистрима reg2 и reg3 у регистар reg1 . У регистар psw се уписују одговарајући NZ битови, а V бит се брише.
xor reg1, reg2, reg3	Уписује резултат операције битског "ексклузивног ИЛИ" над регистрима reg2 и reg3 у регистар reg1 . У регистар psw се уписују одговарајући NZ битови, а V бит се брише.
tst reg1, reg2	Израчунава вредност операције битског "И" над регистрима reg1 и reg2 , и у регистар psw уписује одговарајуће NZ битове, а V бит се брише.
not reg	Уписује комплементирану вредност регистра reg у тај регистар. У регистар psw се уписују одговарајући NZ битови, а V бит се брише.

Табела 4. Инструкције померања и ротирања

Формат инструкције	Опис
asr reg	Врши аритметичко померање удесно битова регистра reg . У регистар psw се уписују одговарајући NZ битови, C бит добија вредност претходног најнижег бита reg регистра, а V бит се брише.
lsr reg	Врши логичко померање удесно битова регистра reg . У регистар psw се уписују одговарајући NZ битови, C бит добија вредност претходног најнижег бита reg регистра, а V бит се брише.
ror reg	Врши ротирање удесно битова регистра reg . У регистар psw се уписују одговарајући NZ битови, C бит добија вредност претходног најнижег бита reg регистра, а V бит се брише.
rorc reg	Врши ротирање удесно битова регистра reg , с тиме да се бит C регистра psw посматра као бит на 16. позицији. У регистар psw се уписују одговарајући NZ битови, а V бит се брише.
sl reg	Врши померање улево битова регистра reg . У регистар psw се уписују одговарајући NZ битови, C бит добија вредност претходног највишег бита reg регистра, а V бит се брише.
rol reg	Врши ротирање улево битова регистра reg . У регистар psw се уписују одговарајући NZ битови, C бит добија вредност претходног највишег бита reg регистра, а V бит се брише.
rolc reg	Врши ротирање улево битова регистра reg , с тиме да се бит C регистра psw посматра као бит на 16. позицији. У регистар psw се уписују одговарајући NZ битови, а V бит се брише.

Табела 5. Инструкције скокова

	Формат инструкције	Опис
beql	labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "једнако" ($\mathbf{Z} = 1$).
bneq	labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "неједнако" ($\mathbf{Z} = 0$).
bgrt	labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "веће" ((N xor V) or Z = 0).
bgre	labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "веће или једнако" (N xor V = 0).
blss	labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "мање" ((N xor V) = 1).
bleq	labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "мање или једнако" ((N xor V) or Z = 1).

bgrtu labela	Врши скок на задату лабела у случају да битови NZCV регистра psw указују на релацију "веће" у случају посматрања регистара као неозначених вредности (C or Z = 0).
bgreu labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "веће или једнако" у случају посматрања регистара као неозначених вредности ($C = 0$).
blssu labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "мање" у случају посматрања регистара као неозначених вредности ($C=1$).
blequ labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на релацију "мање или једнако" у случају посматрања регистара као неозначених вредности (C or Z = 1).
bneq labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на негативну вредност ($N = 1$).
bnng labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на ненегативну вредност (N = 0).
bovf labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на то да је дошло до прекорачења ($V = 1$).
bnvf labela	Врши скок на задату лабелу у случају да битови NZCV регистра psw указују на то да није дошло до прекорачења ($V = 0$).
jmp labela	Врши безусловни скок на задату лабелу.
jmprind reg	Врши безусловни скок на задату адресу записану у вредности регистра reg .
jsr labela	Врши скок у потпрограм на задатој лабели.
rts	Врши повратак из потпрограма.
int num	Num је у интервалу [0x00, 0xFF] хексадекадних вредности, врши скок у прекидну рутину чији је број улаза једнак num .
rti	Врши повратак из прекидне рутине.

Табела 6. А.2.7. Инструкције постављања индикатора у PSW регистар

Формат инструкције	Опис
intd	Поставља вредност 0 на биту I регистра psw .
inte	Поставља вредност 1 на биту I регистра psw .
trpd	Поставља вредност 0 на биту T регистра psw .
trpe	Поставља вредност 1 на биту T регистра psw .

Симулатор SPECS

Након успешног асемблирања фајла *VEZBA.ASM*, који се налази у директоријуму *p3lab1* унутар директоријума *SPECS* симулатора, могуће је покренути симулатор *SPECS* и извршавати код написан у оквиру асемблера *PSasm*. Симулатор се покреће тако што се покрене датотека *SPECSeo.exe* која се налази

у директоријуму p3cfg. Након покретања притиском на дугме Simulation започиње се симулација извршавања написаног програма.

Укратко како покренути симулацију почевши од писања кода:

- 1. Покренути *PSasm* асемблер
- 2. Отворити датотеку VEZBA.ASM која се налази у p3lab1 директоријуму симулатора SPECS
- 3. Написати и асемблирати код
- 4. Покренути симулатор SPECS и започети симулацију притиском дугмета Simulation