BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://arxiv.org/pdf/1810.04805

O. Introduction

- 기존의 단어 임베딩(Word2Vec, GloVe)은 문맥 독립적이라는 한계가 있었음
- ELMo가 등장하며 문맥 의존적 표현이 가능해졌지만, 여전히 단방향성 제약 존재
- 이를 극복하기 위해 양방향 Transformer 기반 모델(BERT) 제안

1. Overview

- BERT = Bidirectional Encoder Representations from Transformers
- Transformer의 Encoder 구조만 활용
- Pre-training 방식:
 - Masked Language Model (MLM) → 문장에서 일부 단어를 [MASK]로 가리고 예측
 - 2. Next Sentence Prediction (NSP) → 두 문장이 연속되는 문장인지 판별
- Fine-tuning: Downstream task(질문 답변, 자연어 추론, 분류 등)에 맞춰 가벼운 구조 추가

2. Challenges

- 기존 언어 모델은 왼쪽→오른쪽, 오른쪽→왼쪽 단방향만 가능 → 문맥 정보 제한
- 사전학습이 특정 task에 특화되어 범용성이 떨어짐
- 대규모 데이터와 자원이 필요하다는 점에서 학습 효율 문제

3. Method

- 모델 구조 : 12-layer Transformer Encoder (BERT-Base), 24-layer (BERT-Large)
- 학습 데이터 : BooksCorpus (800M words) + Wikipedia (2,500M words)
- 학습 절차:
 - o MLM: 15% 토큰 마스크 → 문맥 기반 예측
 - ∘ NSP: 두 문장이 실제 연속인지 여부를 이진 분류
- Fine-tuning : 사전학습된 BERT 위에 task-specific layer만 얹음

4. Experiments

• Benchmarks : GLUE, SQuAD, SWAG 등 다양한 NLP 과제

- 비교 대상: ELMo, GPT, 기존 BiLSTM 기반 모델
- 학습 환경: TPU 기반 대규모 학습, 수일 소요

5. Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

System	D	ev	Test	
	EM	Fl	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#I Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	d			
BiDAF+ELMo (Single)	-	85.6	-	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERT _{LARGE} (Single)	84.1	90.9	-	4
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERTLARGE (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Table 2: SQuAD 1.1 results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

System	Dev		Test	
	EM	FI	EM	F1
Top Leaderboard Systems	(Dec	10th,	2018)	
Human	86.3	89.0	86.9	89.5
#1 Single - MIR-MRC (F-Net)	-		74.8	78.0
#2 Single - nlnet	-	-	74.2	77.1
Publishe	d			
unet (Ensemble)	-	-	71.4	74.9
SLQA+ (Single)	-		71.4	74.4
Ours				
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1

Table 3: SQuAD 2.0 results. We exclude entries that use BERT as one of their components.

- GLUE benchmark에서 SOTA 달성
- SQuAD (질문-답변)에서도 기존 모델 대비 큰 성능 향상
- 문맥 이해력과 문장 관계 이해 능력 모두 개선

6. Insight

- 혁신적 기여: "Pre-training + Fine-tuning"의 패러다임 확립
- 양방향성 덕분에 문맥을 더 잘 반영할 수 있었음

• 한계 : NSP task의 필요성 논란, 엄청난 연산 자원 소모