感電案 4 分析參考

勞工進行電源線配線作業發生感電致死災害調查分析報告

重要提醒:本分析報告是基於所提供案例的有限資訊,並結合事故調查的專業方法論進行。部分內容為根據邏輯與經驗所做的合理假設,並會明確標示為 **(假設)**。一場實際、完整的事故調查,需要更詳盡的現場勘查、人員訪談與物證檢驗來支持所有結論。

事故基本資料

行業分類: 機電、電信及電路設備安裝業 (4331)

• 災害類型: 感電 (13)

• 媒介物: 輸配電線路 (351)

• **罹災情形**: 死亡1人

• **事故時間**: 民國 111 年 8 月 19 日 · 約 11 時 28 分許

• 事故地點: oooo企業有限公司廠房內, 高約 2.4 公尺之移動梯上

• 事故摘要: oo工程有限公司所僱勞工黃oo與同事楊oo從事廠房電燈裝設配線工程。當時電源未切斷,黃員於移動梯上進行線槽內電源線配置作業時,因左手 食指碰觸到電壓 220 伏特之電源火線,而其右前臂碰觸到線槽金屬支架,電流 經由身體形成迴路,造成感電災害,經送醫後因傷重不治死亡。

一. 事件成因分析圖 (ECFC)

此圖將事故發生的事件及相關條件按時間順序呈現,以視覺化方式釐清因果關係。圖中黃色方框為「事件」,粉紅色橢圓為「條件」,藍色虛線橢圓為「推測條件或假設」。

二. 時間序列表

此表以表格形式記錄事故發生的先後順序和相關條件,作為 ECFC 的輔助。

日期時間	事件描述	事實	主(P)/次	相關條件 1 (直接	相關條件 2 (條件 1 的
		/假	(S)事件	條件)	背景或前提)
		設	軸		

			I		
111/8/19	罹災者黃員與同事楊員	事實	S	電源處於未切斷	未建立停電作業
10:00 許	從事廠房電燈裝設配線			狀態下進行施	(LOTO)程序。(假設)
	工程。			工。	
111/8/19	黃員使用移動梯,於離	事實	Р	1. 未使用絕緣防	1. 危害認知不足。
11:28 前	地約 2.4 公尺處進行線槽			護具。	(假設)
	內電源線配置。			2. 於不穩固的移	2. 未提供更安全之工
				動梯上作業。	作台。(假設)
111/8/19	同事楊員完成接線後至	事實	S	罹災者形成獨自	現場缺乏有效監督。
11:28 許	戶外抽菸。			作業狀態。	
111/8/19	黃員左手食指碰觸電源	推斷	Р	1. 電線帶電	1. 未執行停電作業。
11:28 許	線火線,右前臂碰觸線			(220V) °	2. 作業空間狹小,身
	槽金屬支架。			2. 人體構成感電	體易碰觸周邊金屬物
				迴路。	件。(假設)
111/8/19	人員發現黃員感電,趴	事實	S	啟動緊急應變。	
11:28 後	在線槽上,立即通報				
	119 •				
111/8/19	黃員經送醫急救後·宣	事實	Р	感電傷害過於嚴	
12:50	告不治死亡。			重。	

匯出到試算表

三. 為何樹分析 (Why Tree)

本分析從最終的傷害事件開始,透過不斷追問「為什麼」來探究事件的根本原因。

四. 屏障分析 (Barrier Analysis)

本分析旨在識別應有但失效、缺失或不足的屏障,導致危害接觸到目標。

• 危害: 帶電的輸配電線路 (電壓 220 伏特)

• 目標: 罹災者黃員

屏障類	屏障	屏障表	屏障失效原因	屏障如何影響事故 (失效的後
型		現 (事		果)
		故時狀		
		態)		

行政管	1. 停電、上鎖、	完全不	未建立任何「電氣作業前	最致命的屏障失效。它允許了
理 / 程	掛牌(LOTO)程序	存在	應停電」的強制規定,也	作業人員在完全無防護的狀態
序性	(最關鍵屏障)		未執行。	下,直接接近並處理帶電導
				體,是事故發生的根本前提。
個人防	2. 絕緣防護具	完全失	罹災者未穿戴任何絕緣防	移除了保護人員的最後一道防
護具	(如絕緣手套)	效	護具。	線。若有穿戴合格的絕緣手
(PPE)				套,即使碰觸帶電體,也不會
				構成感電迴路。
行政管	3. 現場作業監督	完全失	同事離開後,無人監督罹	監督的失效,讓不安全行為(活
理		效	災者之高風險作業,形成	線作業)得以持續,且事故發生
			獨自作業狀態。	後可能延誤發現與搶救的時
				機。
行政管	4. 安全作業程序	不存在	未針對「廠房內電氣線路	缺乏明確的作業指南·導致勞
理 / 程		(假設)	佈設」此類作業・制定標	工只能依賴個人判斷・而其判
序性			準化的安全作業程序。	斷可能因危害認知不足而產生
				致命錯誤。
工程控	5. 穩定的絕緣工	不存在	使用導電的金屬移動梯,	移動梯本身不穩,且其金屬材
制 / 設	作台		而非使用更穩定且具絕緣	質可能成為接地路徑之一,增
備			性質的工作台(如高空作業	加了作業的整體風險。
			車、絕緣合梯)。	
行政管	6. 危害辨識與風	嚴重不	管理階層與作業人員未能	因為沒有辨識出風險・所以完
理	險評估	足 (推	辨識出「在未斷電情況下	全沒有規劃任何對應的控制措
		斷)	配置電源線」是致命性危	施(屏障),導致作業處於失控狀
			害。	能。

五. 變更分析 (Change Analysis)

本分析比較「事故狀況」與「理想的無事故狀況」,以識別導致事故的關鍵差異。

因素	事故狀況	先前、理想或未發生	差異 (變更)	效果評估 (差異對事故的影
		事故狀況 (假設)		響)
什麼	在「通電中」的	在「已斷電並上鎖」	作業的「前提條	這是造成事故最關鍵的差
(狀	線路上作業。	的線路上作業。	件」由安全變為	異,使作業人員直接暴露於
態)			致命。	感電危害之下。
如何	「未使用」任何	「有使用」絕緣手套	作業的「保護措	省略了所有保護措施,使得
(方	絕緣防護具,且	等防護具,並在穩定	施」與「使用設	任何微小失誤都將導致感
法)	在移動梯上作	的絕緣平台上作業。	備」皆不安全。	電;不穩定的作業平台增加
	業。			失誤機率。
何人	「獨自一人」進	在「有合格人員監	作業的「監督狀	缺乏監督導致不安全行為未
(監	行高風險作業。	督」下進行作業。	態」由有監督變	能被及時發現與制止。
督)			為無人監督。	

六. 人為失誤分析 (Human Failure Analysis)

本分析探討影響人員行為的深層次原因,而非僅歸咎於個人。

失誤類型	主要不安全行為/失誤	根本原因 (組織與系統層面)
知識性錯	罹災者: 在未斷電且未穿戴絕緣防護	* 危害辨識與作業程序闕如: 公司未建立電氣
誤或常	具的情況下 · 於狹窄的線槽內配置電源	作業的風險評估機制與安全作業程序・勞工無
規性違規	線。	標準可循,只能憑藉個人不完整的經驗判斷。
	此行為若出於不了解其致命性,為「知	(假設)
	識性錯誤」。若出於習慣或為求方便	* 教育訓練的徹底失敗: 安全訓練未能有效傳
	(認為只是拉線不會有事)‧則為「常規	達低壓電的致命性,以及活線作業的絕對禁止
	性違規」。	原則,導致勞工嚴重低估作業風險。(假設)
知識性錯	雇主/公司: 未能建立一套安全的電氣	* 管理系統的根本缺陷: 公司完全沒有建立最
誤	作業系統。	基本的電氣安全管理制度,特別是「停電、上
	包含未規劃停電作業流程、未提供或要	鎖、掛牌」此一核心安全程序。這是安全管理
	求使用防護具、未安排有效監督。顯示	系統的完全真空。 ·
	管理者對其應負的安全管理責任認知不	
	足。	
技術性失	罹災者: 在拉線過程中,手指不慎碰	* 作業條件不良: 於不穩定的移動梯上作業,
誤 (疏忽)	觸到電線裸露的導體。 (推斷)	且作業空間可能受限,增加了操作失誤的可能
		性。但此「疏忽」是在前述多項系統性失效的
		基礎上才變得致命。

七. 根本原因分析與矯正改善措施

(一) 立即原因

- 不安全的狀況:
 - 1. 電源線路在作業期間處於通電狀態。
- 不安全的行為:
 - 1. 勞工於接近帶電導體時,未穿戴絕緣用防護具。

(二) 根本原因

1. **致命性的管理系統缺陷—完全沒有電氣作業安全程序**: 最核心的根本原因是,該公司完全沒有建立「作業前應停電、上鎖、掛牌(LOTO)」的管理程序。允許勞工在未斷電的情況下從事佈線作業,是直接導致此次事故的管理系統性崩潰。

- 2. **危害辨識與風險評估的完全失效**: 雇主未能辨識出在廠房內進行「永久配線」是一項高風險的電氣作業,也未評估感電的致命風險,因此未能規劃與執行任何有效的控制措施。(推斷)
- 3. **現場監督機制的完全失效**: 未指派專人進行作業監督,甚至讓勞工在高風險的 活線作業環境中獨自工作,顯示監督系統名存實亡。
- 4. **安全認知與教育訓練的徹底失敗**:從雇主到勞工,均嚴重缺乏對低壓(220V)感電危害的認知,也未接受正確、有效的電氣安全作業訓練。(推斷)

(三) 矯正改善措施建議

- 制度層面 (最優先):
 - 1. **立即建立並嚴格執行「停電、上鎖、掛牌 (LOTO)」作業管制程序**: 這是防止再發的最高原則。必須明文規定:**所有**電氣線路的安裝、維修作業,**一律必須**先斷電、上鎖、掛牌,並由作業人員親自驗電確認無電後,方可施工。
 - 2. **建立「電氣作業風險評估與許可」制度**: 對於所有電氣相關作業,應由 合格人員進行風險評估。如因特殊狀況無法停電,必須填寫「活線作業 許可單」,詳列必要之控制措施並經負責人批准後,才可在嚴格監督下 進行。
 - 3. 強化作業監督與人員管制: 嚴禁勞工獨自從事高風險之電氣作業,必須 指派現場作業監督人員,確保所有安全程序被確實遵守。

人員層面:

- 1. **實施專項電氣安全教育訓練:** 立即將本次事故作為案例‧對全體員工進行專項安全訓練‧強力宣導「低壓電的致命性」、「LOTO 的重要性」及「感電急救措施」。
- 2. **落實資格查核**: 從事電氣作業人員應具備法定資格,並應定期進行能力 評估與再訓練。

工程控制/設備層面:

- 1. **提供安全的工作平台**: 對於高處作業,應優先提供絕緣性良好且穩定的工作平台(如高空作業車、符合規定的合梯),取代金屬移動梯。
- 2. **採購並強制使用合格的防護具與工具**: 應提供並強制要求人員使用經檢驗合格的絕緣手套、絕緣鞋、以及絕緣手工具。