C •			4 A
Suites	•	1)~	1 – A
Duites	• .		

Nom		
Préno	n	

1. Compléter (3 points)

1	Toute suit	te décroissante	et minorée e	est
1.	Toute sun	ic uccioissamic	Ct minorec (JOL .

- 2. Toute suite ______ et majorée est convergente.
- 3. $(-2)^n$ est une suite _____vergente.

corrigé:

- 1. Toute suite décroissante et minorée est convergente.
- 2. Toute suite croissante et majorée est convergente.
- 3. $(-2)^n$ est une suite divergente.

2. Suite récurrente et rugby (10 points)

Fin 2020, un club de rugby comptait 7 000 abonnés.

À la fin de chaque année, le club constate que 15% des abonnés ne se réabonnent pas et que 3 000 nouveaux abonnés arrivent. On note u_n le nombre d'abonnés à la fin de l'année 2020+n.

- 1. Préciser u_0 et expliquer rapidement pourquoi, pour tout entier naturel n, on a $u_{n+1}=0.85u_n+3\,000$
- 2. Démontrer que pour tout entier n, la propriété $H_n:u_n\leqslant u_{n+1}\leqslant 30\,000$ est vraie.
- 3. En déduire que (u_n) est convergente.
- 4. Construire les quatre premiers termes de la suite (u_n) , et repérer la limite éventuelle de la suite sur la figure cicontre.

corrigé:

- 1. $u_0 = 7000$; le nombre d'abonnés u_n est réduit de 15%, ce qui revient à le multiplier par 0,85; on ajoute ensuite 3000 nouveaux abonnés, d'où la formule de définition de la suite $u_{n+1} = 0,85u_n + 3\,000$.
- 2. \circ Initialisation : $u_1=0.85 \times 7000 + 3000 = 8950$ Donc on a bien $H_0: u_0=7000 \leqslant u_1=8950 \leqslant 30000$
 - \circ Hérédité: On suppose H_n vraie pour un $n\in\mathbb{N}$. Démontrons $H_{n+1}:u_{n+1}\leqslant u_{n+2}\leqslant 30000$. D'après la définition de (u_n) , la fonction affine f(x)=0.85x+3000 vérifie $u_{n+1}=f(u_n)$ pour tout $n\in\mathbb{N}$. Comme f est strictement croissante, en l'appliquant à l'inégalité suivante, l'ordre est conservé: $H_n:u_n\leqslant u_{n+1}\leqslant 30000$ devient $f(u_n)\leqslant f(u_{n+1})\leqslant f(30000)$ donc $u_{n+1}\leqslant u_{n+2}\leqslant 28500$ et comme 28500<30000, H_{n+1} est vraie
 - \circ Conclusion : H_n est vrai pour tout $n \in \mathbb{N}$
- 3. (u_n) est croissante et majorée d'après H_n donc elle est convergente.
- 4. Sur la figure ci-contre.

3. Limites (7 points)

Calculer les limites suivantes (rédiger) :

$$1. \lim_{n \to +\infty} \frac{-1}{n} + n^2 + 4$$

$$2. \lim_{n \to +\infty} \frac{4}{\sqrt{n}} \left(3 + \frac{3}{n^2} - \frac{2}{n} \right)$$

3.
$$\lim_{n \to +\infty} \frac{0.46^n - 8}{n^2 + 10}$$

4.
$$\lim_{n \to +\infty} \frac{5 - 0.5^n}{0.1^n - 7}$$

$$1. \lim_{n \to +\infty} \frac{-1}{n} = 0^- \text{ et } \lim_{n \to +\infty} n^2 + 4 = +\infty \text{ (parabole } \textcircled{\textbf{e}} \text{), donc par somme } \lim_{n \to +\infty} \frac{-1}{n} + n^2 + 4 = +\infty$$

$$2. \lim_{n \to +\infty} \frac{4}{\sqrt{n}} = 0^+ \text{ et } \lim_{n \to +\infty} \left(3 + \frac{3}{n^2} - \frac{2}{n} \right) = 3 \text{ car (somme) on a} : \lim_{n \to +\infty} \frac{3}{n^2} = 0^+ \text{ et } \lim_{n \to +\infty} -\frac{2}{n} = 0^- \text{ donc par produit : } \lim_{n \to +\infty} \frac{4}{\sqrt{n}} \left(3 + \frac{3}{n^2} - \frac{2}{n} \right) = 0^+$$

3.
$$\lim_{n \to +\infty} 0.46^n = 0^+ \operatorname{car} 0.46 \in]-1; 1[\operatorname{et} \lim_{n \to +\infty} n^2 + 10 = +\infty \text{ (parabole } \bigcirc).$$
 Par quotient, $\lim_{n \to +\infty} \frac{0.46^n - 8}{n^2 + 10} = \frac{0^+ - 8}{+\infty} = 0^-$

4. Comme
$$0.5; 0.1 \in]-1; 1[$$
, $\lim_{n \to +\infty} \frac{5-0.5^n}{0.1^n-7} = \frac{5-0^+}{0^+-7} = \frac{5^-}{-7^+} = \left(\frac{-5}{7}\right)^+.$

4. Bonus

On définit pour tout entier n la suite (v_n) par $v_{n+1} = \frac{v_n-1}{v_n+1}$.En expliquant la démarche suivie, calculer v_{2023} . $v_0=2$

corrigé : On calcule les premiers termes : $v_1=\frac{1}{3}$; $v_2=\frac{-1}{2}$; $v_3=-3$; $v_4=2=v_0$. De fait, (v_n) est périodique de période 4. Comme $2023=505\times 4+3$ (le reste dans la division par 4 de 2023 est 3), $v_{2023}=v_3=-3$.

C • 4			01	
Suites	•	-11		I_K
Juites	•	\mathbf{L}	נטי	עב

	Nom					
I	Prénom					

1. Compléter (3 points)

- 1. Toute suite croissante et majorée est ______.
- 2. Toute suite décroissante et ______ est convergente.
- 3. $(-1)^n$ est une suite _____vergente.

corrigé:

- 1. Toute suite croissante et majorée est convergente.
- 2. Toute suite décroissante et minorée est convergente.
- 3. $(-1)^n$ est une suite divergente.

2. Suite récurrente et rugby (10 points)

Fin 2020, un club de rugby comptait 7 000 abonnés.

À la fin de chaque année, le club constate que 25% des abonnés ne se réabonnent pas et que 4 000 nouveaux abonnés arrivent. On note u_n le nombre d'abonnés à la fin de l'année 2020+n

- 1. Préciser u_0 et expliquer rapidement pourquoi, pour tout entier naturel n, on a $u_{n+1} = 0.75u_n + 4\,000$
- 2. Démontrer que pour tout entier n, la propriété $H_n:u_n\leqslant u_{n+1}\leqslant 30\,000$ est vraie.
- 3. En déduire que (u_n) est convergente.
- 4. Construire les quatre premiers termes de la suite (u_n) , et repérer la limite éventuelle de la suite sur la figure cicontre.

corrigé:

- 1. $u_0 = 7000$; le nombre d'abonnés u_n est réduit de 25%, ce qui revient à le multiplier par 0,75; on ajoute ensuite 4000 nouveaux abonnés, d'où la formule de définition de la suite $u_{n+1} = 0,75u_n + 4\,000$.
- 2. \circ Initialisation : $u_1=0.75 imes 7000+4000=9250$ Donc on a bien $H_0:u_0=7000\leqslant u_1=9250\leqslant 30000$
 - \circ Hérédité: On suppose H_n vraie pour un $n\in\mathbb{N}$. Démontrons $H_{n+1}:u_{n+1}\leqslant u_{n+2}\leqslant 30000$. D'après la définition de (u_n) , la fonction affine f(x)=0,75x+4000 vérifie $u_{n+1}=f(u_n)$ pour tout $n\in\mathbb{N}$. Comme f est strictement croissante, en l'appliquant à l'inégalité suivante, l'ordre est conservé: $H_n:u_n\leqslant u_{n+1}\leqslant 30000$ devient $f(u_n)\leqslant f(u_{n+1})\leqslant f(30000)$ donc $u_{n+1}\leqslant u_{n+2}\leqslant 26500$ et comme 26500<30000, H_{n+1} est vraie
 - \circ Conclusion : H_n est vrai pour tout $n \in \mathbb{N}$
- 3. (u_n) est croissante et majorée d'après H_n donc elle est convergente.
- 4. Sur la figure ci-contre.

3. Limites (7 points)

corrigé :

$$1. \lim_{n \to +\infty} 4n + \frac{-1}{n^2}$$

2.
$$\lim_{n \to +\infty} \frac{-3}{\sqrt{n}} \left(3 + \frac{3}{n} - \frac{2}{n+10} \right)$$

3.
$$\lim_{n\to+\infty}\frac{0.46^n-1}{n^2}$$

4.
$$\lim_{n \to +\infty} \frac{5 - 0.9^n}{7 - 0.1^n}$$

$$1. \ \lim_{n \to +\infty} \frac{-1}{n^2} = 0^- \text{ et } \lim_{n \to +\infty} 4n = +\infty \text{, donc par somme } \lim_{n \to +\infty} 4n + \frac{-1}{n^2} = +\infty$$

$$2. \ \, \lim_{n \to +\infty} \frac{-3}{\sqrt{n}} = 0^- \, \text{et} \, \lim_{n \to +\infty} \left(3 + \frac{3}{n} - \frac{2}{n+10} \right) = 3 \, \text{car (somme) on a} : \lim_{n \to +\infty} \frac{3}{n} = 0^+ \, \text{et} \\ \lim_{n \to +\infty} -\frac{2}{n+10} = 0^- \, \text{donc par produit} : \lim_{n \to +\infty} \frac{4}{\sqrt{n}} \left(3 + \frac{3}{n^2} - \frac{2}{n} \right) = 0^-$$

3.
$$\lim_{n \to +\infty} 0.46^n = 0^+ \text{ car } 0.46 \in]-1;1[\text{ et }\lim_{n \to +\infty} n^2 + 10 = +\infty \text{ (parabole } \bigcirc).$$
 Par quotient, $\lim_{n \to +\infty} \frac{0.46^n - 8}{n^2 + 10} = \frac{0^+ - 8}{+\infty} = 0^-$

4. Comme
$$0,9;0,1\in]-1;1[$$
, $\lim_{n\to +\infty} \frac{5-0,5^n}{0,1^n-7}=\frac{5-0^+}{7-0^+}=\frac{5^-}{7^-}=\frac{5}{7}.$

4. Bonus

On définit pour tout entier n la suite (v_n) par $v_{n+1} = \frac{v_n-1}{v_n+1}$. En expliquant la démarche suivie, calculer v_{2023} . $v_0=2$

corrigé : On calcule les premiers termes : $v_1=\frac{1}{3}$; $v_2=\frac{-1}{2}$; $v_3=-3$; $v_4=2=v_0$. De fait, (v_n) est périodique de période 4. Comme $2023=505\times 4+3$ (le reste dans la division par 4

Nom	
Prénom	

1. Suite récurrente (10 points)

Soit u_n la suite définie par $egin{cases} u_{n+1}=rac{2}{3}u_n+3\ u_0=2 \end{cases}$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Démontrer que pour tout $n\in\mathbb{N}$, on a $u_n\leqslant u_{n+1}\leqslant 9$
- 3. Justifier que la suite (u_n) converge.
- 4. En utilisant la figure suivante, déterminer la valeur de la limite de (u_n) en $+\infty$.

2. Limites (10 points)

Calculer les limites suivantes :

$$1. \lim_{n \to +\infty} \frac{4}{4 - n^2}$$

$$2. \lim_{n \to +\infty} \frac{9 + \frac{3}{n}}{3 - \frac{6}{n^2}}$$

3.
$$\lim_{n \to +\infty} \frac{11}{10 + n - n^2}$$

4.
$$\lim_{n \to +\infty} \frac{1}{4 - 1,8^n}$$

5.
$$\lim_{n \to +\infty} \frac{4 + 0.4^n}{4 - 0.2^n}$$