Skript zur Vorlesung Maschinendynamik

Georg Jehle

Wintersemester 2020/21

Inhaltsverzeichnis

1	Einl	eitung	3						
	1.1	Begriffsdefinition							
	1.2	_							
	1.3								
		1.3.1 Harmonische Schwingungen	5						
		1.3.2 Überlagerte harmonische Schwingungen	5						
		1.3.3 Nicht-harmonische Schwingungen	7						
		1.3.4 Weitere Schwingungsverläufe	7						
	1.4	Schwingungsformen von Mehrfreiheitsgradsystemen	8						
	1.5	Entstehungmechanismen von Schwingungen	9						
		1.5.1 Freie Schwingungen	9						
		1.5.2 Erzwungene Schwingung	9						
		1.5.3 Selbsterregte Schwingung	9						
		1.5.4 Parametererregte Schwingung	9						
2	Frei	e Schwingungen	11						
_	2.1		11						
	2.2		18						
3	Erzy	vungene Schwingungen	2 3						
•	3.1	8 8 8	- 2						
	3.2								
	3.3								
	3.4								
	3.5		33						
	3.6								
	0.0		36 37						
			38						
4	A	-	40						
4		5 5 5	43						
	4. I	Anregung durch Impuls	43						

		4.1.1 Sprungfunktion und Dirac-Impuls	43
		4.1.2 Impulsantwort	44
	4.2	Periodische Anregung	45
		4.2.1 Darstellung von Singalen im Zeit- und im Frequenzbereich	45
	4.3	Darstellung periodischer Funktionen durch Fourierreihen	46
	4.4	Erzwungene Schwingungen mit periodischer Anregung	52
	4.5	Nichtperiodische Vorgänge	55
	4.6	Berechnung der Schwingungsantwort mithilfe des komplexen Frequenz-	
		gangs	58
5	Sch	wingungen mit 2 Freiheitsgraden	61
5	Sch 5.1	wingungen mit 2 Freiheitsgraden	61
5			
5	5.1	Beispiele	61
5	5.1 5.2	Beispiele	61 62
5	5.15.25.3	Beispiele	61 62 63
5	5.15.25.35.4	Beispiele	61 62 63 70

Vorwort

Dieses Skript wurde als Begleitmaterial zur Vorlesung "Maschinendynamik" an der Hochschule Mannheim zusammengestellt. Es behandelt das Schwingungsverhalten von linearen 1- und 2-Freiheitsgradsystemen sowie Grundlagen der Signalanalyse. Hierzu wurden Inhalte aus den Lehrbüchern von BRONSTEIN [1], DRESIG [2], DUBBEL [3], GASCH [4], HAUGER [5], HIBBELER [6] und WITTENBURG [7] übernommen. Besonderer Dank hinsichtlich Erstellung und Überarbeitung des Skripts gilt den Herren Prof. Dr.-Ing. Jens Deppler und Dr.-Ing. Dominik Kern.

1 Einleitung

1.1 Begriffsdefinition

Die Maschinendynamik untersucht das Schwingungsverhalten mechanischer Konstruktionen unter Einwirkung zeitabhängiger Beanspruchungen. Das Ziel der Untersuchungen besteht darin, dynamische Bewegungen von Bauteilen sowie wirkende Kräfte zu berechnen. Die technischen Hintergründe klassischer Problemstellungen sind:

- Torsionsschwingungen von Kolbenmaschinen
- Biegeschwingungen von Turbinenschaufeln
- Unwuchterregte Schwingungen von Rotoren, z.B. Autoreifen
- Bewegung von Vibrationsstampfern
- Dynamik von Rüttelplatten
- Fahrwerksdynamik eines Fahrzeugs bei transienter Anregung, z.B. Schlaglochdurchfahrt

In vielen Fällen sind Schwingungen mechanischer Komponenten die Ursache für deren Versagen. Dauerschwingungen führen bei großen Amplituden und langer Dauer zu Ermüdungsversagen von Werkstoffen. Gleichzeitig erscheinen Schwingungen für Anwender in einigen Fällen unangenehm, z.B. wegen übertragener Vibrationen oder Geräuschen. Man spricht dann von komfortrelevanten Problemstellungen (NVH: Noise-Vibration - Harshness).

1.2 Definition von Schwingungen

Kennzeichen einer Schwingung ist die regelmäßige Wiederkehr bestimmter Merkmale, welche an messbaren Größen festgemacht wird: Weg, Geschwindigkeit, Beschleuni-

gung, Winkel, Kraft, Moment. Schwingungen besitzen also eine Periodizität: Die gemessene Größe x(t) muss $\forall t \in \mathbb{R}$ die Eigenschaft haben, dass

$$x(t+T) = x(t);$$
 $T > 0.$ (1.1)

Dann gilt auch

$$x(t+nT) = x(t); T > 0; n \in \mathbb{N}. (1.2)$$

Die Größe T ist nicht eindeutig bestimmt. Die kleinste Konstante, für die (1.1) gilt, heißt Schwingungsdauer (Periode). Die Frequenz ist ihr Kehrwert

$$f = \frac{1}{T}$$
 [f] = $\frac{1}{s}$ Hz (1.3)

Sie gibt die Anzahl der Schwingungen pro Sekunde an.

Abbildung 1.1: Schwingung, Schwingungsdauer, Amplitude

Die Schwingungsamplitude eines Signals ist gegeben durch

$$\hat{x} = \frac{\max(x) - \min(x)}{2} \tag{1.4}$$

1.3 Typische Schwingungsverläufe

1.3.1 Harmonische Schwingungen

Eine harmonische Schwingung hat die allgemeine Form

$$x(t) = C\cos(\omega t) + S\sin(\omega t) \tag{1.5}$$

Hierbei sind S und C zwei Komponenten der Amplitude, und ω die Kreisfrequenz. Aus der Periodizität der trigonometrischen Funktionen $\omega T=2\pi$ folgt

$$\omega = \frac{2\pi}{T} = 2\pi f \qquad [\omega] = \frac{\text{rad}}{\text{s}} \tag{1.6}$$

die Kreisfrequenz der Schwingung. Dies ist äquivalent darstellbar mithilfe von Amplitude \hat{x} und Nullphasenwinkel φ :

$$x(t) = \hat{x}\cos(\omega t - \varphi) \tag{1.7}$$

Dabei gilt der Zusammenhang

$$x(\omega t = 0) = \hat{x}\cos(\varphi) = C,\tag{1.8}$$

$$x(\omega t = \frac{\pi}{2}) = \hat{x}\sin(\varphi) = S. \tag{1.9}$$

Somit folgt der Zusammenhang zwischen den verschiedenen Darstellung der Amplituden und Nullphasenwinkel:

$$C = \hat{x}\cos(\varphi) \qquad \qquad S = \hat{x}\sin(\varphi) \tag{1.10}$$

oder invers

$$\hat{x} = \sqrt{C^2 + S^2}, \qquad \tan(\varphi) = \frac{S}{C}. \tag{1.11}$$

1.3.2 Überlagerte harmonische Schwingungen

In verschiedenen Zusammenhängen überlagern sich harmonische Schwingungen. Im einfachsten Fall handelt es sich um gleichfrequente Schwingungen mit verschiedener Amplitude und Phase:

$$x_1(t) = \hat{x}_1 \cos(\omega t + \varphi_1) \tag{1.12}$$

$$x_2(t) = \hat{x}_2 \cos(\omega t + \varphi_2) \tag{1.13}$$

Für $\varphi_1 = \varphi_2$ heißen die Schwingungen in Phase, für $|\varphi_1 - \varphi_2| = \pi$ in Gegenphase. Die resultierende Schwingung ist die Summe der zwei Komponenten:

$$x(t) = x_1(t) + x_2(t) = (\hat{x}_1 \cos(\varphi_1) + \hat{x}_2 \cos(\varphi_2)) \cos(\omega t) - (\hat{x}_1 \sin(\varphi_1) + \hat{x}_2 \sin(\varphi_2)) \sin(\omega t)$$
 (1.14)

Abbildung 1.2: Schwebung, entstanden aus der Addition $\cos(2\pi t) + \cos(2.2\pi t)$.

Im Fall verschiedener Frequenzen folgt für die Gesamtschwingung durch kurze Rechnung

$$x(t) = x_1(t) + x_2(t) = \hat{x}_1 \cos(\omega_1 t) + \hat{x}_2 \cos(\omega_2 t)$$
(1.15)

$$= \frac{\hat{x}_1 + \hat{x}_2}{2} \left(\cos(\omega_1 t) + \cos(\omega_2 t) \right) + \frac{\hat{x}_1 - \hat{x}_2}{2} \left(\cos(\omega_1 t) - \cos(\omega_2 t) \right) \tag{1.16}$$

$$= (\hat{x}_1 + \hat{x}_2)\cos(\omega_D t)\cos(\omega_m t) - (\hat{x}_1 - \hat{x}_2)\sin(\omega_D t)\sin(\omega_m t)$$
(1.17)

Hierbei handelt es sich um zwei harmonische Schwingungen unterschiedlicher Frequenz mit $\omega_D = \frac{\omega_1 - \omega_2}{2}$ und $\omega_m = \frac{\omega_1 + \omega_2}{2}$. Für $\omega_1 \approx \omega_2$ ist also $\omega_m \approx \omega_1 \approx \omega_2$ (Schwingungsfrequenz wie bisher) und ω_D sehr klein (langsame überlagerte Schwingung). Die Überlagerung lässt sich auch umschreiben zu

$$x(t) = \hat{x}\cos(\omega_m t + \varphi) \tag{1.18}$$

wobei

$$\hat{x} = \sqrt{(\hat{x}_1 + \hat{x}_2)^2 \cos^2(\omega_D t) + (\hat{x}_1 - \hat{x}_2)^2 \sin^2(\omega_D t)},$$
(1.19)

$$\tan(\varphi) = \frac{\hat{x}_2 - \hat{x}_1}{\hat{x}_2 + \hat{x}_1} \tan(\omega_d t). \tag{1.20}$$

Die Amplitude und die Phase der Schwingung ändern sich also mit ω_D . Dieser Effekt wird als Schwebung (Abb. 1.2) bezeichnet.

1.3.3 Nicht-harmonische Schwingungen

Die meisten Schwingungsarten sind nicht harmonisch. An dieser Stelle seien beispielhaft die Sägezahn- und die Rechteckfunktion genannt (Abb. 1.3). Solche Funktionen können in eine harmonische Ersatzdarstellung überführt werden (siehe Kapitel 4), was im Vergleich zu den Knick- und Sprung-behafteten ursprünglichen Funktionen viele Vorteile bietet.

Abbildung 1.3: Beispiele für periodische nicht-harmonische Funktionen: Sägezahnfunktion, Rechteckfunktion.

1.3.4 Weitere Schwingungsverläufe

Es gibt außer den genannten noch weitere Schwingungsverläufe, die die Anforderung der Periodizität im eigentlichen Sinne verletzen. Sie laufen unter $T \to \infty$ (unendlich große Periodendauer):

Impulsförmige Schwingung: einmaliges Event
 Bsp.: Hammerschlag, Impulshammer, Kollision, mechanischer Stoß, ...

• Zufallsschwingung: Grundschwingungen werden von Rauschen überlagert Bsp.: Seitenwind bewegt Fahrzeug, die Fahrbahnunebenheit regt ein Fahrzeug zu zufälligen horizontalen Schwingungen an, reale Messungen mit Messrauschen, ...

1.4 Schwingungsformen von Mehrfreiheitsgradsystemen

Ein schwingungsfähiger Körper kann je nach Anregung auch innere Deformationen ausführen, weshalb in einigen Fällen die Betrachtung der Problemstellung als Mehrfreiheitsgradsystem notwendig wird. Man unterscheidet

- 1-Freiheitsgrad-Systeme
- *n*-Freiheitsgrad-Systeme, mit *n* einer natürlichen Zahl
- System mit ∞ vielen Freiheitsgraden (elastisches Kontinuum)

Abbildung 1.4: Systeme mit einem, vier und ∞ vielen Freiheitsgraden

Die Schwingungsformen des betrachteten Körpers treten in Abhängigkeit von der Frequenz der Anregung auf. Am Beispiel eines 4-Freiheitsgradschwingers können vier verschiedene Schwingungsformen dargestellt werden (Abb. 1.5), bei denen sich die einzelnen Freiheitsgrade wechselweise in Gleich- oder Gegenphase bewegen.

Abbildung 1.5: Schwingungsformen eines 4-Freiheitsgrad-Systems

1.5 Entstehungmechanismen von Schwingungen

1.5.1 Freie Schwingungen

Gitarrensaiten, Stimmgabeln oder Beispiele aus der Technik werden durch Mechanismen einmalig angestoßen oder angezupft und dann sich selbst überlassen. Die Bewegung, die sich dann einstellt, nennt sich freie Schwingung, da die Ursache nur einmalig am Anfang der Beobachtung steht und dann instantan verschwindet. Die Schwingungsfrequenzen sind Eigenfrequenzen des Schwingungssystems.

1.5.2 Erzwungene Schwingung

Ein Fahrzeug, welches sich über eine unebene Fahrbahn bewegt, wird durch äußere Kräfte und/oder Momente permanent zu Schwingungen angeregt. Die Frequenz dieser Bewegung und vergleichbarer Beispiele ist im stationären Schwingungszustand die Frequenz Ω , die durch die äußere Anregung gegeben ist.

1.5.3 Selbsterregte Schwingung

Schwingungen wie beim Bremsenquietschen, Streichinstrumenten oder in einer mechanischen Uhr sind selbsterregt, da sich im Gesamtsystem eine Energiequelle und - Senke findet. Die Schwingungsfrequenz entspricht in vielen Fällen einer Eigenfrequenz, wobei sich hier aufgrund der komplexen Schwingungsursache und möglicherweise dominanter Nichtlinearitäten Abweichungen ergeben können.

1.5.4 Parametererregte Schwingung

Bei Schwingungen, die durch periodisch zeitveränderliche Parameter im System (Steifigkeiten, Abstände, ...) entstehen, spricht man von parametererregten Schwingungen. Ein Beispiel aus der Technik ist im Wälzkontakt von Getrieben zu finden, wo die wechselnde Anzahl von Verzahnungseingriffen zu einer zeitveränderlichen Steifigkeit führt; ein weiteres Beispiel ist die periodische Schwerpunktverlagerung eines Kindes auf einer Schaukel, was die gewünschte Bewegung erzeugt. Daher handelt es sich bei den Schwingungsfrequenzen auch um Teile oder Vielfache der Parameterfrequenz.

2 Freie Schwingungen

In diesem Abschnitt werden freie Schwingungen von mechanischen 1-Freiheitsgrad-Systemen untersucht, die nach einer Anfangsauslenkung sich selbst überlassen werden. Es sollen nur statische Kräfte auf die betrachteten Systeme wirken.

2.1 Freie ungedämpfte Schwingungen

Ausgangspunkt für die freien ungedämpften Schwingungen ist ein 1-Massen-Schwinger mit nichtlinearer Federkraft f(x).

Abbildung 2.1: Einmassenschwinger mit nichtlinearer Kennlinie sowie dessen Kräftefreischnitt nach d'Alembert, wobei $m\ddot{x}$ die d'Alembert'sche Trägheitskraft ist und f(x) die Federkraft.

Die Bilanz der Kräfte liefert:

$$m\ddot{x} + f(x) = 0 \tag{2.1}$$

Eine solche Differentialgleichung (DGL) ist aufgrund des nichtlinearen Zusammenhangs f(x) im Allgemeinen nicht analytisch lösbar. Zur Analyse von Vibrationen mit kleiner Bewegungsamplitude kann die Gleichung (2.1) linearisiert werden (Mechanik 2.1). Nach dieser Vereinfachung beschreibt die Gleichung nur noch die Dynamik kleiner Störungen Δx um eine Ruhelage x_0 . Die Linearisierung wird nach der Entwicklung von Taylorreihen (Mathematik 2.1) bis zur ersten Ordnung gefunden.

Abbildung 2.2: Nichtlineare Federkennlinie

Mathematik 2.1: Taylorreihen-Entwicklung

Sei f(x) eine n-mal stetig differenzierbare Funktion und x_0 ein Entwicklungspunkt. Dann ist die Taylorreihenentwicklung definiert als

$$f(x) = \sum_{k=0}^{n} \frac{d^{k} f(x_{0})}{dx^{k}} \frac{(x - x_{0})^{k}}{k!} = f(x_{0}) + f'(x_{0})(x - x_{0}) + f''(x_{0}) \frac{(x - x_{0})^{2}}{2} + \dots$$

Die Reihendarstellung konvergiert für $n \to \infty$ mit f(x), falls $f(x) \infty - \text{mal}$ stetig differenzierbar ist.

Mechanik 2.1: Linearisierung um eine Ruhelage

Zur Linearisierung einer DGL um eine Ruhelage werden folgende Schritte befolgt:

• Berechnung der Ruhelage: setze $x = x_0$ =konst., dann ist $\dot{x} = 0$, $\ddot{x} = 0$. Einsetzen in die DGL liefert eine algebraische Gleichung zur Bestimmung der Ruhelage(n):

$$f(x_0) = 0$$

• **Definition der Störung** Δx um die Ruhelage x_0 : $x = x_0 + \Delta x$. Einsetzen in die DGL ergibt

$$m\Delta \ddot{x} + f(x_0 + \Delta x) = 0$$

• **Linearisierung:** Taylorreihen-Entwicklung der nichtlinearen Funktion $f(x_0 + \Delta x)$ in der Störung Δx bis zur 1. Ordnung:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$

• Einsetzen und vereinfachen:

$$m\Delta \ddot{x} + f(x_0) + f'(x_0) \cdot \Delta x = 0$$

Der Term $f(x_0)$ verschwindet, da aus ihm die Ruhelage berechnet wurde. Es bleibt die homogene lineare DGL mit konstanten Koeffizienten für die Beschreibung der kleinen Störung um die Ruhelage

$$m\Delta \ddot{x} + f'(x_0) \cdot \Delta x = 0$$

Beispiel 2.1: Nichtlineare Federkennlinie

Eine Federkennlinie kann beschrieben werden durch den Kraft-Weg-Zusammenhang $f(x) = \sin(x) + a_1x + a_3x^3$. Die DGL des 1-Massen-Schwingers lautet somit:

$$m\ddot{x} + \sin(x) + a_1 x + a_3 x^3 = 0$$

Die Ruhelage berechnet sich aus der Gleichung

$$f(x_0) = \sin(x_0) + a_1 x_0 + a_3 x_0^3 = 0$$

zu $x_0 = 0$. Ferner ist

$$f'(x_0) = \cos(x_0) + a_1 + 3a_3x_0^2.$$

Die linearisierte DGL in der Störung um x_0 ist also mit der Vereinfachung $x_0 = 0$

$$0 = m\Delta \ddot{x} + \sin(x_0) + a_1 x_0 + a_3 (x_0)^3 + (\cos(x_0) + a_1 + 3a_3 x_0^2) \Delta x$$

= $m\Delta \ddot{x} + (1 + a_1) \Delta x$

Alternativ wird die DGL

$$\Delta \ddot{x} + \omega_0^2 \Delta x = 0,$$

wobei $\omega_0^2=rac{f'(x_0)}{m}=rac{1+a_1}{m}$ das Quadrat der ungedämpften Eigenkreisfrequenz ist.

Die Koeffizienten der DGL (2.1) sind konstant, weshalb als Lösungsansatz für die homogene Lösung der Exponentialansatz verwendet werden kann:

Mathematik 2.2: Lineare homogene DGL mit konstanten Koeffizienten

Eine lineare homogene DGL mit konstanten Koeffizienten

$$\sum_{k=0}^{n} a_k \frac{d^k x(t)}{dt^k} = a_n \frac{d^n x(t)}{dt^n} + \dots + a_1 \frac{dx(t)}{dt} + a_0 x(t) = 0$$

wird mithilfe des Exponentialansatzes

$$x(t) = Ce^{\lambda t}$$

gelöst. Der Ansatz eingesetzt in die DGL liefert das Eigenwertproblem

$$\sum_{k=0}^{n} a_k C \lambda^k e^{\lambda t} = \left(\sum_{k=0}^{n} a_k \lambda^k\right) C e^{\lambda t} = 0.$$

Wegen $C \neq 0$ folgt das charakteristische Polynom

$$\sum_{k=0}^{n} a_k \lambda^k = a_n \lambda^n + \dots + a_1 \lambda + a_0 = 0$$

woraus die Eigenwerte $\lambda_{1,2,\dots,n}$ bestimmt werden. Die Lösungsanteile

$$x_k(t) = C_k e^{\lambda_k t}$$

werden Fundamentallösungen genannt; die Gesamtlösung setzt sich aus ihnen zusammen:

$$x(t) = \sum_{k=0}^{n} C_k x_k(t) = C_n e^{\lambda_n t} + \dots + C_2 e^{\lambda_2 t} + C_1 e^{\lambda_1 t}.$$

Die Integrationskonstanten C_k müssen durch geeignete Anfangsbedingungen bestimmt werden.

Nach dem beschriebenen Vorgehen in (Mathematik 2.2) und $f'(x_0) =: c$ lautet die DGL der Störung zur Gl. (2.1)

$$m\Delta\ddot{x} + c\Delta x = 0$$
 bzw. $\Delta\ddot{x} + \underbrace{\frac{c}{m}}_{:=\omega_0^2} \Delta x = 0$ (2.2)

Der Lösungsansatz und dessen Ableitungen sind

$$\Delta x = Ae^{\lambda t}, \qquad \Delta \dot{x} = \lambda Ae^{\lambda t}, \qquad \Delta \ddot{x} = \lambda^2 Ae^{\lambda t}$$
 (2.3)

Dies eingesetzt in Gl. (2.1) liefert

$$(\lambda^2 + \omega_0^2) A e^{\lambda t} = 0,$$
 woraus folgt $\lambda_{1,2} = \pm i\omega_0.$ (2.4)

Somit gibt es zwei komplexe Fundamentallösungen

$$x_1(t) = A_1 e^{i\omega_0 t},$$
 $x_2(t) = A_2 e^{-i\omega_0 t}$ (2.5)

Die Gesamtlösung ergibt sich unter Beschränkung auf rein reelle Lösungen zu

$$x(t) = Re\{x_1(t) + x_2(t)\}\$$

$$= Re\{A_1e^{i\omega_0t} + A_2e^{-i\omega_0t}\}\$$

$$= Re\{A_1 + A_2\}\cos(\omega_0t) + Re\{iA_1 - iA_2\}\sin(\omega_0t)\$$

$$= C_1\cos(\omega_0t) + C_2\sin(\omega_0t)$$
(2.6)

Hierbei wurde zur Transformation die Euler-Formel verwendet:

Mathematik 2.3: Euler-Formel

Es gilt der Zusammenhang

$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$$

Die Kreisfrequenz ω_0 wurde bereits durch Masse und Steifigkeit festgelegt und hängt somit nur von Systemparametern ab. Sie ist dem System *eigen* und heißt deshalb *Eigenkreisfrequenz*.

Als Parameter bleiben die Integrationskonstanten C und S, die durch die Anfangsbedingungen (Anfangslage und, Anfangsgeschwindigkeit) festgelegt werden:

$$x(t=0) = C_1 \cos(0) + C_2 \sin(0) = C_1 \stackrel{!}{=} x_0$$
(2.7)

$$\dot{x}(t=0) = -C_1 \omega_0 \sin(0) + C_2 \omega_0 \cos(0) = C_2 \omega_0 \stackrel{!}{=} v_0$$
(2.8)

Als Gesamtlösung ergibt sich so

$$x(t) = x_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$$
(2.9)

Die Schwingungsdauer der Bewegung ist $T = \frac{2\pi}{\omega_0}$.

Beispiel 2.2: Mathematisches Pendel

Ein mathematisches Pendel besteht aus einem masselosen Stab der Länge ℓ , der einseitig an einem Gelenk befestigt ist. An seinem freien Ende befindet sich ein Gewicht mit Punktmasse m. Das System ist der Schwerkraft unterworfen (Gravitationskonstante g). Die Auslenkung wird durch den Verdrehwinkel φ beschrieben.

Die Bewegungsgleichung folgt aus der Momentenbilanz um das Gelenk und lautet

$$m\ell^2\ddot{\varphi} + mg\ell\sin(\varphi) = 0$$
 bzw. $\ddot{\varphi} + \frac{g}{\ell}\sin(\varphi) = 0$

Diese DGL ist zunächst nichtlinear. Bei der Bestimmung der Ruhelagen finden sich zwei Lösungen:

$$\ddot{\varphi} = 0 \qquad \qquad \to \qquad \qquad \frac{g}{\ell}\sin(\varphi) = 0$$

also

$$arphi_{0,1}=0,$$
 $arphi_{0,2}=\pi.$ (Hängelage) (Überkopflage)

Linearisierung um die Hängelage: Die Linearisierung der Nichtlinearität um die Ruhelage $\varphi_{0,1}=0$ lautet

$$\frac{g}{\ell}\sin(\varphi) \approx \frac{g}{\ell}\sin(\varphi_{0,1}) + \frac{g}{\ell}\cos(\varphi_{0,1}) \cdot (\varphi - \varphi_{0,1}) = \frac{g}{\ell}(\varphi - \varphi_{0,1}) = \frac{g}{\ell}\Delta\varphi$$

wobei $\Delta \varphi$ die Störung um die Ruhelage ist. Außerdem ist

$$\Delta \ddot{\varphi} = \ddot{\varphi} - 0 = \ddot{\varphi}$$

Somit lautet die linearisierte DGL

$$\Delta \ddot{\varphi} + \frac{g}{\ell} \Delta \varphi = 0$$
 oder $\Delta \ddot{\varphi} + \omega_0^2 \Delta \varphi = 0$

mit $\omega_0^2 = \frac{g}{\ell}$. Die DGL hat nun exakt die Form der Gl. (2.2), weshalb die Lösung direkt angegeben werden kann:

$$\varphi(t) = \varphi_0 \cos(\omega_0 t) + \frac{\dot{\varphi}_0}{\omega_0} \sin(\omega_0 t)$$

Interpretation: Für kleine Anfangswinkel φ_0 und kleine Anfangsgeschwindigkeiten $\dot{\varphi}_0$ bleibt die Lösung $\varphi(t)$ für alle Zeiten klein. Die Linearisierung beschriebt das Systemverhalten gut.

Linearisierung um die Überkopflage: Die Linearisierung der Nichtlinearität um die Ruhelage $\varphi_{0,2}=\pi$ lautet

$$\frac{g}{\ell}\sin(\varphi) \approx \frac{g}{\ell}\sin(\varphi_{0,2}) + \frac{g}{\ell}\cos(\varphi_{0,2}) \cdot (\varphi - \varphi_{0,2}) = -\frac{g}{\ell}(\varphi - \varphi_{0,2}) = -\frac{g}{\ell}\Delta\varphi$$

Somit lautet die linearisierte DGL

$$\Delta \ddot{\varphi} - \frac{g}{\ell} \Delta \varphi = 0$$

Dies entspricht wegen des negativen Vorzeichens nicht der Form der Gl. (2.2), kann aber trotzdem mithilfe eines Exponentialansatzes $\Delta \varphi = Ce^{\lambda t}$ gelöst werden. Dieser ergibt nach Einsetzen die Eigenwerte

$$\lambda_{1,2} = \pm \sqrt{\frac{g}{\ell}} = \pm \delta$$

also zwei reelle Eigenwerte. Die zwei Fundamentallösungen

$$\Delta \varphi_1 = C_1 e^{\delta t} \qquad \qquad \Delta \varphi_2 = C_2 e^{-\delta t}$$

ergeben die Gesamtlösung

$$\Delta \varphi = C_1 e^{\delta t} + C_2 e^{-\delta t}$$

Anpassen an die Anfangslage $\varphi(t=0)$ und Anfangsgeschwindigkeit $\dot{\varphi}(t=0)$ liefert schließlich die Gesamtlösung

$$\Delta \varphi = \frac{\varphi_0 + \frac{\dot{\varphi}_0}{\delta}}{2} e^{\delta t} + \frac{\varphi_0 - \frac{\dot{\varphi}_0}{\delta}}{2} e^{-\delta t}$$

Interpretation: Nach einer Störung in der Auslenkung und/oder Geschwindigkeit zum Zeitpunkt t=0 klingt die Lösung in der Nähe der Überkopflage exponentiell auf. Sie ist im Gegensatz zur Hängelage nicht schwingungsfähig. Die linearisierte Lösung beschreibt das qualitative Verhalten korrekt, ist aber quantitativ höchstens für eine sehr kurze Zeitdauer richtig.

Fazit. Eine Linearisierung um unterschiedliche Ruhelagen liefert im Allgemeinen verschiedene Bewegungsgleichungen, die verschiedene Eigenschaften haben können.

2.2 Freie gedämpfte Schwingungen

Im gedämpften Einmassenschwinger wird zusätzlich parallel zur Federkraft ein Dämpfer geschaltet, sodass sich das System um die Dämpferkraft erweitert:

Abbildung 2.3: Linearer gedämpfter Einmassenschwinger sowie dessen Kräftefreischnitt nach d'Alembert, wobei $m\ddot{x}$ die d'Alembert'sche Trägheitskraft ist, cx die Federkraft und $d\dot{x}$ die Dämpferkraft.

Der ungedämpfte Einmassenschwinger (Kapitel 2.1) stellt somit den Sonderfall d=0 dar. Die Kräftebilanz liefert

$$m\ddot{x} + d\dot{x} + cx = 0$$
 bzw. (2.10)
$$\ddot{x} + \frac{d}{m}\dot{x} + \frac{c}{m}x = 0$$

Mechanik 2.2: Parameter des gedämpften Einmassenschwingers

Zur einheitlichen Beschreibung werden die folgenden Parameter eingeführt:

- Ungedämpfte Eigenkreisfrequenz: $\omega_0 = \sqrt{\frac{c}{m}}$
- Lehr'sches Dämpfungsmaß: $D=\frac{d}{2m\omega_0}$
- Schwingungsdauer $T = 2\pi/\omega_d$

Die vereinfachte Gleichung des homogenen gedämpften Einmassenschwingers lautet nach (Mechanik 2.2):

$$\ddot{x} + 2D\omega_0 \dot{x} + \omega_0^2 x = 0 \tag{2.11}$$

Beispiel 2.3: Nichlinearer Einmassenschwinger mit Dämpfung

Die DGL lautet in diesem Beispiel

$$(J + mR^2)\ddot{x} + d\dot{x}\cos(x) + c_0x + c_3x^3 = 0$$

wobei alle Koeffizienten positive Werte haben sollen. Das Ziel ist, auf die Form (2.11) zu kommen. Dazu werden zunächst die Ruhelagen bestimmt. Mit $x=x_0$, $\dot{x}=0$, $\ddot{x}=0$ folgt

$$c_0 x_0 + c_3 x_0^3 = 0$$
, we shalb $x_{0,1} = 0$, $x_{0,2/3} = \pm \sqrt{-c_0/c_3}$

Mit $c_0 > 0$, $c_3 > 0$ ist nur die Ruhelagen $x_{0,1}$ physikalisch sinnvoll. Also wird um diese Ruhelage linearisiert. Es ist

$$f(x, \dot{x}) = d\dot{x}\cos(x) + c_0x + c_3x^3$$

$$f(x_{0,1} + \Delta x, \Delta \dot{x}) = d\Delta \dot{x}\cos(x_{0,1} + \Delta x) + c_0(x_{0,1} + \Delta x) + c_3(x_{0,1} + \Delta x)^3$$

$$= d\Delta \dot{x}\cos(\Delta x) + c_0\Delta x + c_3\Delta x^3$$

$$\approx d\Delta \dot{x} \cdot (\cos(0) - \sin(0) \cdot \Delta x) + c_0\Delta x + c_3\Delta x^3$$

$$= d\Delta \dot{x} + c_0\Delta x$$

Also folgt die linearisierte DGL

$$(J + mR^2)\Delta \ddot{x} + d\Delta \dot{x} + c_0 \Delta x = 0$$

Sie lässt sich auf die Form der Gl. (2.11) bringen, wenn die Koeffizienten

$$\omega_0^2 = \frac{c_0}{J + mR^2} \qquad \qquad D = \frac{d}{2} \sqrt{\frac{1}{c_0(J + mR^2)}}$$

gewählt werden.

Die Fundamentallösung der Gl. (2.11) ist mit $\lambda_{1,2}=-D\omega_0\pm\omega_0\sqrt{D^2-1}$

$$x = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} (2.12)$$

Welchen qualitativen Verlauf die Lösung annimmt, hängt maßgeblich mit der Größe des Lehr'schen Dämpfungsmaßes D zusammen:

Fall 1: starke Dämpfung. Bei D > 1 gilt

$$\lambda_1 = -D\omega_0 + \omega_0\sqrt{D^2 - 1} < 0$$
 $\lambda_2 = -D\omega_0 - \omega_0\sqrt{D^2 - 1} < 0$ (2.13)

Die Lösung $x = C_1x_1 + C_2x_2$ setzt sich also aus zwei Anteilen zusammen, deren Verlauf wegen der $\lambda_i < 0$ immer expontiell abklingt. Da hiermit Schwingungen ausgeschlossen sind, wird die Bewegung auch *Kriechbewegung* genannt.

Fall 2: aperiodischer Grenzfall. Bei D = 1 fallen die zwei Eigenwerte zusammen:

$$\lambda_1 = \lambda_2 = -D\omega_0 = -\delta \tag{2.14}$$

Aufgrund des doppelten Eigenwerts ist die Lösung $x = C_1 e^{\lambda t} + C_2 t e^{\lambda t}$.

Fall 3: schwache Dämpfung. Bei 0 < D < 1 ist

$$D^2 - 1 < 0$$
, also $\omega_0 \sqrt{D^2 - 1} = i\omega_0 \sqrt{1 - D^2} = i\omega_d$ (2.15)

mit i der komplexen Zahl. Die (komplexe) Fundamentallösung kann hier transformiert werden in reellwertige Funktionen:

$$x = \tilde{C}_1 e^{-\delta t + i\omega_d t} + \tilde{C}_2 e^{-\delta t - i\omega_d t}$$

$$= e^{-\delta t} \left(\tilde{C}_1 e^{i\omega_d t} + \tilde{C}_2 e^{-i\omega_d t} \right)$$

$$= e^{-\delta t} \left(C_1 \cos(\omega_d t) + C_2 \sin(\omega_d t) \right)$$
(2.16)

Es handelt sich bei der Bewegung um eine gedämpfte Schwingung mit Kreisfrequenz $\omega_d < \omega_0$, deren Amplitude mit zunehmender Zeit exponentiell abklingt.

Abbildung 2.4: Verlauf einer gedämpften Schwingung.

Es lässt sich zeigen, dass das Maß der Amplitudenreduktion gegeben ist durch

$$\frac{x(t)}{x(t+T_d)} = e^{\delta T_d} \tag{2.17}$$

Daraus folgt direkt das logarithmische Dekrement:

$$\Lambda := \ln \left(\frac{x(t)}{x(t + T_d)} \right) = \delta T_d = D\omega_0 T_d \tag{2.18}$$

Mit bekanntem ω_0 , gemessenen T_d und Λ lässt sich so aus einer Messung das Lehr'sche Dämpfungsmaß bestimmen.

Aufgaben zu Kapitel 2

- **2.1** Welche Unterschiede gibt es zwischen ungedämpften und gedämpften Schwingungen?
- **2.2** Mit welchen standardisierten Parametern (Konstanten) lässt sich ein lineares mechanisches Schwingungssystem mit einem Freiheigsgrad beschreiben? Welche Bedeutung haben sie?
- **2.3** Welche Eigenschaften muss eine DGL haben, damit sie mit einem Exponentialansatz gelöst werden kann?
- **2.4** Linearisieren Sie die folgenden Ausdrücke in der Variable x um den Entwicklungspunkt x=0:

$$y = x^2 + \sin(x) + \frac{e^x}{1+x}$$
 $y = \frac{ax+b}{cx+d}$ (2.19)

2.5 Bestimmen Sie die Ruhelage(n) der folgenden DGLn:

$$\ddot{x} + c_1 x - c_3 x^3 = 0 \qquad \qquad \ddot{x} + d\dot{x} + c_1 \sin(kx) = 0 \tag{2.20}$$

$$\ddot{x} + (d_1 + d_2)\dot{x} + c_1 x + c_2 x^2 = 0 (2.21)$$

Linearisieren Sie die DGL anschließend für kleine Störungen $\Delta x = x - x_0$ um jede berechnete Ruhelage x_0 !

2.6 Bestimmen Sie für die DGL

$$(m + R^2 J)\ddot{x} + me\Omega^2 \dot{x} + c_0 x = 0$$
 (2.22)

die Ersatzparameter ω_0 , ω_d , D, δ , und geben Sie die Lösung der DGL in allgemeiner Form an! Passen Sie die Integrationskonstanten an die Anfangsbedingungen x(t=0)=0 und $\dot{x}(t=0)=v_0$ an.

3 Erzwungene Schwingungen

In diesem Kapitel wird die Situation betrachtet, dass der Einmassenschwinger harmonisch wirkenden Kräften oder vorgegebenen Bewegungen ausgesetzt ist:

Abbildung 3.1: Einmassenschwinger mit Anregung durch äußere Kraft, durch Fußpunkt- und durch und durch Unwuchterregung.

Dies ändert die Sachlage insofern, als dass die Bewegung x(t) aus zwei Anteilen besteht: einer homogenen und einer partikulären Bewegung bzw. Lösung der DGL.

$$x(t) = x_h(t) + x_p(t) \tag{3.1}$$

Abbildung 3.2: Erzwungene Schwingung, die sich als Summe von $x_h(t)$ und $x_p(t)$ zusammensetzt.

- Die homogene Lösung wurde bereits in Kapitel 2 betrachtet. Dieser Anteil, der die Bewegung und bzw. den Eigenschwingvorgang infolge von Anfangsauslenkungen wiedergibt, wird ab jetzt $x_h(t)$ genannt.
- Die partikuläre Lösung, die durch die äußere Anregung vorgegeben wird, nennt sich $x_p(t)$. Er wird auch Zwangsschwingung genannt, da er die Reaktion des Schwingungssystems auf die äußere Anregung darstellt.

Ferner wird von nun an vorausgesetzt, dass schwache Dämpfung (Fall 3) vorliegt. Damit klingen die harmonischen Schwingungen $x_h(t)$ mit zunehmender Zeit ab; nach kurzer Zeit bleibt die Zwangsschwingung übrig. Die hier betrachteten Erregungsarten umfassen gemäß Abb. 3.1

- Kraftanregung: der Einmassenschwinger wird durch eine periodische Kraft der Art $F(t) = \hat{F}\cos(\Omega t + \alpha)$ zur Schwingung angeregt. Hierbei handelt es sich bei Ω um die Kreisfrequenz der äußeren Anregung.
- Fußpunktanregung: der Fußpunkt des Einmassenschwingers wird durch eine periodische Bewegung der Art $u(t) = \hat{u}\cos(\Omega t + \alpha)$ verschoben. Hierbei handelt es sich bei Ω um die Kreisfrequenz der Verschiebung.
- Unwuchtanregung: Als eine spezielle Art der Kraftanregung wird davon ausgegangen, dass die Masse des Einmassenschwingers aus einer Kreisscheibe besteht, worauf sich eine exzentrische sitzende Masse befindet. Durch Drehung der Scheibe mit Drehzahl Ω entsteht so die Fliehkraft, deren x-Komponente lautet: $F_u(t) = m_u \varepsilon \Omega^2 \cos(\Omega t + \alpha)$.

Der Einfachheit halber wird hier $\alpha=0$ gewählt, d.h. die Erregung F(t) bzw. u(t) beginnt bei t=0 mit maximaler Intensität. Dies stellt keine Einschränkung der Allgemeinheit dar: mit Transformation auf einen anderen Beobachtungsbeginn durch $t=\tilde{t}+\alpha/\Omega$ wird stets $\cos(\Omega t)=\cos(\Omega \tilde{t}+\alpha)$.

3.1 Ungedämpfte krafterregte Schwingungen

Die Bewegungsgleichung des ungedämpften Einmassenschwingers mit harmonischer Kraftanregung ergibt sich mit $F(t) = \hat{F}\cos(\Omega t)$ aus dem Prinzip von d'Alembert

$$m\ddot{x} + cx = F(t) = \hat{F}\cos(\Omega t) \tag{3.2}$$

Abbildung 3.3: Einmassenschwinger ohne Dämpfung sowie die zugehörige Kräftebilanz nach dem Prinzip von d'Alembert

Mechanik 3.1: Berechnung der Lösung mit äußerer Anregung

Das Vorgehen zur Berechnung der Gesamtlösung x(t) eines durch y(t) zwangserregten Systems

$$\ddot{x}(t) + 2D\omega_0\dot{x}(t) + \omega_0^2x(t) = y(t)$$

ist wie folgt:

1. Berechnung der homogenen Lösung gemäß Kapitel 2. Setze hierzu zunächst die Anregung y(t) zu Null, um das homogene System

$$\ddot{x}(t) + 2D\omega_0\dot{x}(t) + \omega_0^2x(t) = 0$$

zu lösen. Die Lösung lautet $x_h(t) = e^{-\delta t} \left(C_1 \cos(\omega_d t) + C_2 \sin(\omega_d t) \right)$. Die Integrationskonstanten der einzelnen Fundamentallösungen werden noch nicht an die Anfangsbedingungen angepasst.

2. Berechnung der partikulären Lösung. Hierzu wird ein Ansatz vom Typ der rechten Seite benötigt. Bei einer Anregung der Art $y(t) = y_0 + y_c \cos(\Omega t) + y_s \sin(\Omega t)$ und $i\Omega \neq \lambda$ lautet dieser Ansatz

$$x_p(t) = X_0 + A\cos(\Omega t) + B\sin(\Omega t)$$

- 3. Aus dem Ansatz $x_p(t)$ werden die Ableitungen $\dot{x}_p(t)$ und $\ddot{x}_p(t)$ gebildet und in die DGL eingesetzt. Nach Koeffizientenvergleich resultieren X_0 , A und B.
- 4. Die Gesamtlösung $x(t) = x_h(t) + x_p(t)$ beinhaltet nun noch die Integrationskonstanten C_1 und C_2 , die jetzt an die Anfangsbedingungen

$$x(t=0) = x_0$$
 $\dot{x}(t=0) = v_0$

angepasst werden.

Mit Einführung der ungedämpften Eigenfrequenz entsteht aus Gl. (3.2)

$$\ddot{x} + \omega_0^2 x = \frac{\hat{F}}{m} \cos(\Omega t) \tag{3.3}$$

Die homogene Lösung lautet

$$x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \tag{3.4}$$

Die rechte Seite ist rein harmonisch, ohne Konstantanteil – daher ist schon jetzt absehbar, dass $X_0 = 0$. Der Vollständigkeit halber wird hier dennoch der gegebene Ansatz verwendet:

$$x_p(t) = X_0 + A\cos(\Omega t) + B\sin(\Omega t) \tag{3.5}$$

$$\dot{x}_p(t) = -A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t) \tag{3.6}$$

$$\ddot{x}_p(t) = -A\Omega^2 \cos(\Omega t) - B\Omega^2 \sin(\Omega t)$$
(3.7)

Einsetzen in Gl. (3.3) ergibt

$$-A\Omega^{2}\cos(\Omega t) - B\Omega^{2}\sin(\Omega t) + \omega_{0}^{2}(X_{0} + A\cos(\Omega t) + B\sin(\Omega t)) = \frac{\hat{F}}{m}\cos(\Omega t) \quad (3.8)$$

Die Parameter A und B werden durch Koeffizientenvergleich bestimmt:

Konstantanteile:
$$\omega_0^2 X_0 = 0$$
 (3.9)

$$\cos(\Omega t): \qquad -A\Omega^2 + \omega_0^2 A = \frac{\hat{F}}{m}$$
(3.10)

$$\sin(\Omega t): \qquad -B\Omega^2 + \omega_0^2 B = 0 \tag{3.11}$$

Die Auflösung des Gleichungssystems liefert

$$X_0 = 0$$
 (3.12)

$$A = \frac{\hat{F}}{m} \frac{1}{\omega_0^2 - \Omega^2} \tag{3.13}$$

$$B = 0 ag{3.14}$$

und mit dem dimensionslosen Frequenzverhältnis $\eta = \Omega/\omega_0$ ist dann

$$x_p(t) = \frac{\hat{F}}{m} \frac{1}{\omega_0^2 - \Omega^2} \cos(\Omega t) = \frac{\hat{F}}{m} \frac{1}{\omega_0^2} \frac{1}{1 - \left(\frac{\Omega}{\omega_0}\right)^2} \cos(\Omega t)$$
(3.15)

$$=\frac{\hat{F}}{c}\frac{1}{1-\eta^2}\cos(\Omega t)\tag{3.16}$$

$$= \hat{x}\cos(\Omega t + \varphi(\eta)) \tag{3.17}$$

mit der (positiven) Amplitude $\hat{x} = \frac{\hat{F}}{c} \left| \frac{1}{1-\eta^2} \right| = \frac{\hat{F}}{c} V(\eta)$. Das Verhältnis

$$V(\eta) = \frac{1}{|1 - \eta^2|} \tag{3.18}$$

wird Vergrößerungsfunktion genannt; sie ist der veränderliche Teil der Amplitude \hat{x} in Abhängigkeit von der Drehzahl. Ferner ist

$$\varphi(\eta) = \begin{cases} 0, & \eta < 1 \\ -\pi & \eta > 1 \end{cases}$$
 (3.19)

die Phasenverschiebung zwischen $x_p(t)$ und der Anregung F(t).

Abbildung 3.4: Betrag der Vergrößerungsfunktion $V(\eta)$ und Phasenverschiebung $\varphi(\eta)$.

Mechanik 3.2: Resonanz

Bei $\eta=1$, also $\Omega=\omega_0$, strebt die Amplitude \hat{x} gegen ∞ . In diesem Zustand regt die äußere Anregung das System genau mit *Resonanz*frequenz zum Schwingen an. Es kann gezeigt werden, dass die Lösung im Fall $\Omega=\omega_0$ den zeitlichen Verlauf

$$x_p(t) = \frac{\hat{F}}{2c}\sin(\omega_0 t) \cdot t \tag{3.20}$$

hat, also eine Schwingung mit linear in der Zeit anwachsender Amplitude.

Die Gesamtlösung ergibt sich schließlich zu

$$x(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) + \hat{x} \cos(\Omega t + \varphi(\eta))$$
(3.21)

Die Anpassung an die Anfangsbedingungen liefert die zwei Gleichungen

$$x(0) = C_1 + \hat{x}\cos(\varphi(\eta)) = x_0$$
(3.22)

$$\dot{x}(0) = \omega_0 C_2 - \Omega \hat{x} \sin(\varphi(\eta)) = v_0 \tag{3.23}$$

woraus C_1 und C_2 bestimmt werden.

3.2 Gedämpfte krafterregte Schwingungen

Die Kräftebilanz zum krafterregten Einmassenschwinger mit harmonischer Anregung lautet gemäß Abb. 3.1a

$$\ddot{x} + 2D\omega_0\dot{x} + \omega_0^2 x = F(t) = \frac{\hat{F}}{m}\cos(\Omega t)$$
(3.24)

Die homogene Lösung wird angegeben als

$$x_h(t) = e^{-\delta t} \left(C_1 \cos(\omega_d t) + C_2 \sin(\omega_d t) \right) \tag{3.25}$$

Der Ansatz zur partikulären Lösung lautet gemeinsam mit den Zeitableitungen

$$x_p(t) = A\cos(\Omega t) + B\sin(\Omega t) \tag{3.26}$$

$$\dot{x}_p(t) = -A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t) \tag{3.27}$$

$$\ddot{x}_p(t) = -A\Omega^2 \cos(\Omega t) - B\Omega^2 \sin(\Omega t)$$
(3.28)

Einsetzen in die DGL liefert zunächst

$$-A\Omega^{2}\cos(\Omega t) - B\Omega^{2}\sin(\Omega t)$$

$$+2D(-A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t))$$

$$+\omega_{0}^{2}(A\cos(\Omega t) + B\sin(\Omega t)) = \frac{\hat{F}}{m}\cos(\Omega t)$$
(3.29)

Aus dem Koeffizientenvergleich folgen die Gleichungen

$$\cos(\Omega t): \qquad (\omega_0^2 - \Omega^2)A + 2D\omega_0 B = \frac{\hat{F}}{m}$$
(3.30)

$$\sin(\Omega t): \qquad -2D\omega_0 A + (\omega_0^2 - \Omega^2)B = 0$$
 (3.31)

Das Gleichungssystem für die Unbekannten A und B lautet in Matrix-Vektor-Schreibweise

$$\begin{bmatrix} \omega_0^2 - \Omega^2 & 2D\omega_0 \\ -2D\omega_0 & \omega_0^2 - \Omega^2 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} \frac{\hat{F}}{m} \\ 0 \end{bmatrix}$$
 (3.32)

dessen Lösung lautet

$$\begin{bmatrix} A \\ B \end{bmatrix} = \frac{1}{(\omega_0^2 - \Omega^2)^2 + (2D\Omega\omega_0)^2} \frac{\hat{F}}{m} \begin{bmatrix} \omega_0^2 - \Omega^2 \\ 2D\omega_0\Omega \end{bmatrix}$$
(3.33)

$$= \frac{1}{(1-\eta^2)^2 + (2D\eta)^2} \frac{\hat{F}}{c} \begin{bmatrix} 1-\eta^2 \\ 2D\eta \end{bmatrix}$$
 (3.34)

Mathematik 3.1: Lösung eines linearen Gleichungssystems im \mathbb{R}^2

Ein lineares Gleichungssystem (LGS) im \mathbb{R}^2

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

hat die Lösung

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Die Inverse der Matrix ist gegeben durch

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Also folgt die Lösung

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22}y_1 - a_{12}y_2 \\ -a_{21}y_1 + a_{11}y_2 \end{bmatrix}$$

Folglich ist die Zwangsschwingung

$$x_p(t) = A\cos(\Omega t) + B\sin(\Omega t) \tag{3.35}$$

oder auch

$$x_p(t) = \hat{x}\cos(\Omega t + \varphi) \tag{3.36}$$

mit

$$\hat{x} = \sqrt{A^2 + B^2} = \frac{\hat{F}}{c} \frac{1}{\sqrt{(1 - \eta^2)^2 + (2D\eta)^2}}$$
(3.37)

$$\tan \varphi = -\frac{B}{A} = -\frac{2D\eta}{1-\eta^2} \tag{3.38}$$

Hier lautet die Vergrößerungsfunktion, die das Verhältnis zwischen dynamischer Amplitude und stationärer Auslenkung angibt,

$$V(\eta) = \frac{1}{\sqrt{(1-\eta^2)^2 + (2D\eta)^2}}$$
(3.39)

Sowohl die Vergrößerungsfunktion als auch der Phasenwinkel konvergieren für $D\to 0$ mit dem Verhalten des ungedämpften Einmassenschwingers.

Abbildung 3.5: Vergrößerungsfunktion $V(\eta)$ und Phasenverschiebung $\varphi(\eta)$ für den Fall eines gedämpften krafterregten Einmassenschwingers.

Als letzter Schritt fehlt noch die Anpassung an die Anfangsbedingungen, um die Integrationskonstanten C_1 und C_2 zu bestimmen. Dieser Schritt unterscheidet sich nicht bei den verschiedenen Schwingungssystemen und wird daher an dieser Stelle und im folgenden nicht ausgeschrieben. Der Leser ist dazu angehalten, die Rechnung selbständig durchzuführen.

3.3 Gedämpfte fußpunkterrekte Schwingungen – Maxwell-Modell

Die Kräftebilanz zum fußpunkterregten Einmassenschwinger mit harmonischer Wegvorgabe lautet gemäß Abb. 3.1b

$$\ddot{x} + 2D\omega_0\dot{x} + \omega_0^2 x = \omega_0^2 u = \omega_0^2 \hat{u}\cos(\Omega t) \tag{3.40}$$

Die Bewegungsgleichung ist von der Struktur her identisch wie die der Krafterregung (Gl. (3.24)). Der Unterschied besteht in der Amplitude der rechten Seite, die hier $\omega_0^2 \hat{u}$ anstelle von $\frac{\hat{F}}{m}$ beträgt. Insofern kann die Lösung direkt angegeben werden:

homogene Lösung:
$$x_h(t) = e^{-\delta t} \left(C_1 \cos(\omega_d t) + C_2 \sin(\omega_d t) \right)$$
 (3.41)

partikuläre Lösung:
$$x_p(t) = \hat{x}\cos(\Omega t + \varphi)$$
 (3.42)

wobei
$$\hat{x} = \hat{u} \frac{1}{\sqrt{(1 - \eta^2)^2 + (2D\eta)^2}}$$
 (3.43)

$$\tan \varphi = -\frac{2D\eta}{1 - \eta^2} \tag{3.44}$$

Die normierten Verläufe von \hat{x} und φ sind damit identisch wie in Abb. 3.5.

3.4 Gedämpfte fußpunkterrekte Schwingungen – Voigt-Modell

Die Kräftebilanz zum fußpunkterregten Einmassenschwinger mit harmonischer Wegvorgabe lautet gemäß Abb. 3.1c

$$\ddot{x} + 2D\omega_0 \dot{x} + \omega_0^2 x = \omega_0^2 u + 2D\omega_0 \dot{u} \tag{3.45}$$

Die homogene Lösung lautet

$$x_h(t) = e^{-\delta t} \left(C_1 \cos(\omega_d t) + C_2 \sin(\omega_d t) \right)$$
(3.46)

Die rechte Seite ist ausgeschrieben

$$u(t) = \hat{u}\cos(\Omega t) \qquad \qquad u(t) = -\Omega \hat{u}\sin(\Omega t) \tag{3.47}$$

Der Ansatz zur partikulären Lösung lautet gemeinsam mit den Zeitableitungen

$$x_p(t) = A\cos(\Omega t) + B\sin(\Omega t) \tag{3.48}$$

$$\dot{x}_n(t) = -A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t) \tag{3.49}$$

$$\ddot{x}_p(t) = -A\Omega^2 \cos(\Omega t) - B\Omega^2 \sin(\Omega t) \tag{3.50}$$

Einsetzen in die DGL liefert zunächst

$$-A\Omega^{2}\cos(\Omega t) - B\Omega^{2}\sin(\Omega t)$$

$$+2D(-A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t))$$

$$+\omega_{0}^{2}(A\cos(\Omega t) + B\sin(\Omega t)) = \omega_{0}^{2}\hat{u}\cos(\Omega t) - 2D\Omega\omega_{0}\hat{u}\sin(\Omega t)$$
(3.51)

Aus dem Koeffizientenvergleich folgen die Gleichungen

$$\cos(\Omega t): \qquad (\omega_0^2 - \Omega^2)A + 2D\omega_0 B = \omega_0^2 \hat{u}$$
(3.52)

$$\sin(\Omega t): \qquad -2D\omega_0 A + (\omega_0^2 - \Omega^2)B = -2D\omega_0 \Omega \hat{u}$$
(3.53)

Das Gleichungssystem für die Unbekannten A und B lautet in Matrix-Vektor-Schreibweise

$$\begin{bmatrix} \omega_0^2 - \Omega^2 & 2D\omega_0 \\ -2D\omega_0 & \omega_0^2 - \Omega^2 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} \omega_0^2 \hat{u} \\ -2D\omega_0 \Omega \hat{u} \end{bmatrix}$$
(3.54)

dessen Lösung lautet

$$\begin{bmatrix} A \\ B \end{bmatrix} = \frac{1}{(\omega_0^2 - \Omega^2)^2 + (2D\Omega\omega_0)^2} \hat{u} \begin{bmatrix} \omega_0^2 (\omega_0^2 - \Omega^2) + (2D\omega_0\Omega)^2 \\ 2D\omega_0\Omega^3 \end{bmatrix}$$
(3.55)

$$= \frac{1}{(1-\eta^2)^2 + (2D\eta)^2} \hat{u} \begin{bmatrix} 1-\eta^2 + (2D\eta)^2 \\ 2D\eta^3 \end{bmatrix}$$
 (3.56)

Folglich ist die Zwangsschwingung

$$x_n(t) = A\cos(\Omega t) + B\sin(\Omega t) \tag{3.57}$$

oder auch

$$x_p(t) = \hat{x}\cos(\Omega t + \varphi) \tag{3.58}$$

mit

$$\hat{x} = \sqrt{A^2 + B^2} = \hat{u}\sqrt{\frac{1 + (2D\eta)^2}{(1 - \eta^2)^2 + (2D\eta)^2}}$$
(3.59)

$$\tan \varphi = -\frac{B}{A} = -\frac{2D\eta^3}{1 - \eta^2 + (2D\eta)^2} \tag{3.60}$$

In diesem Fall lautet die Vergrößerungsfunktion also

$$V(\eta) = \sqrt{\frac{1 + (2D\eta)^2}{(1 - \eta^2)^2 + (2D\eta)^2}}$$
(3.61)

Abbildung 3.6: Vergrößerungsfunktion $V(\eta)$ und Phasenverschiebung $\varphi(\eta)$ für den Fall eines gedämpften fußpunkterregten Einmassenschwingers (Voigt-Modell).

Beim Frequenzverhältnis $\eta=\sqrt{2}$ kreuzen sich die Verläufe der Vergrößerungsfunktion für alle Werte von D. Das bedeutet, dass im Bereich ab $\eta>\sqrt{2}$ eine Erhöhung der Dämpfung zu einer Amplitudensteigerung führt. Dieser Effekt muss bei der Auswahl und Auslegung der Dämpfung in einer technischen Anwendung bekannt sein, sofern das Ziel darin besteht, Schwingungsamplituden zu minimieren.

3.5 Gedämpfte unwuchterregte Schwingungen

Die Kräftebilanz zum fußpunkterregten Einmassenschwinger mit harmonischer Wegvorgabe lautet gemäß Abb. 3.1d

$$(m_1 + m_u)\ddot{x} + d\dot{x} + cx = m_u e\Omega^2 \cos(\Omega t)$$
(3.62)

Mit $\omega_0^2 = c/(m_1 + m_u)$, $2D\omega_0 = d/(m_1 + m_u)$ und $\mu = m_u/(m_1 + m_u)$ wird die DGL vereinfacht zu

$$\ddot{x} + 2D\omega_0\dot{x} + \omega_0^2 x = \mu e\Omega^2 \cos(\Omega t) \tag{3.63}$$

Man erkenne die gleiche Struktur der linken Seite im Vergleich zur Krafterregung, sowie den Unterschied auf der rechten Seite: die Amplitude der Anregung ist jetzt porportional zu Ω^2 . Sie wird also mit zunehmender Drehzahl der Maschine größer. Dieser Effekt ist bedingt durch die Fliehkraft der Unwuchtmasse.

Die homogene Lösung lautet

$$x_h(t) = e^{-\delta t} \left(C_1 \cos(\omega_d t) + C_2 \sin(\omega_d t) \right) \tag{3.64}$$

Der Ansatz zur partikulären Lösung lautet gemeinsam mit den Zeitableitungen

$$x_p(t) = A\cos(\Omega t) + B\sin(\Omega t) \tag{3.65}$$

$$\dot{x}_p(t) = -A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t) \tag{3.66}$$

$$\ddot{x}_p(t) = -A\Omega^2 \cos(\Omega t) - B\Omega^2 \sin(\Omega t) \tag{3.67}$$

Einsetzen in die DGL liefert zunächst

$$-A\Omega^{2}\cos(\Omega t) - B\Omega^{2}\sin(\Omega t)$$

$$+2D(-A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t))$$

$$+\omega_{0}^{2}(A\cos(\Omega t) + B\sin(\Omega t)) = \mu e\Omega^{2}\cos(\Omega t)$$
(3.68)

Aus dem Koeffizientenvergleich folgen die Gleichungen

$$\cos(\Omega t): \qquad (\omega_0^2 - \Omega^2)A + 2D\omega_0 B = \mu e \Omega^2$$
(3.69)

$$\sin(\Omega t):$$
 $-2D\omega_0 A + (\omega_0^2 - \Omega^2)B = 0$ $d..!$ (3.70)

Das Gleichungssystem für die Unbekannten A und B lautet in Matrix-Vektor-Schreibweise

$$\begin{bmatrix} \omega_0^2 - \Omega^2 & 2D\omega_0 \\ -2D\omega_0 & \omega_0^2 - \Omega^2 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} \mu e \Omega^2 \\ 0 \end{bmatrix}$$
(3.71)

dessen Lösung lautet

$$\begin{bmatrix} A \\ B \end{bmatrix} = \frac{1}{(\omega_0^2 - \Omega^2)^2 + (2D\Omega\omega_0)^2} \mu e \Omega^2 \begin{bmatrix} \omega_0^2 - \Omega^2 \\ 2D\omega_0 \Omega \end{bmatrix}$$
(3.72)

$$= \frac{\mu e}{(1 - \eta^2)^2 + (2D\eta)^2} \begin{bmatrix} (1 - \eta^2)\eta^2 \\ 2D\eta^3 \end{bmatrix}$$
 (3.73)

Folglich ist die Zwangsschwingung

$$x_p(t) = A\cos(\Omega t) + B\sin(\Omega t) \tag{3.74}$$

oder auch

$$x_p(t) = \hat{x}\cos(\Omega t + \varphi) \tag{3.75}$$

mit

$$\hat{x} = \sqrt{A^2 + B^2} = \mu e \frac{\eta^2}{\sqrt{(1 - \eta^2)^2 + (2D\eta)^2}}$$
(3.76)

$$\tan \varphi = -\frac{B}{A} = -\frac{2D\eta}{1-\eta^2} \tag{3.77}$$

In diesem Fall lautet die Vergrößerungsfunktion also

$$V(\eta) = \frac{\eta^2}{\sqrt{(1-\eta^2)^2 + (2D\eta)^2}},\tag{3.78}$$

der Phasengang exakt gleich wie beim krafterregten Einmassenschwinger.

Abbildung 3.7: Vergrößerungsfunktion $V(\eta)$ und Phasenverschiebung $\varphi(\eta)$ für den Fall eines gedämpften unwuchterregten Einmassenschwingers.

Aus $V(\eta)$ ist abzulesen, dass bei $\eta=0$, also Stillstand der Maschine, keine statische

Verschiebung auftritt. Außerdem gilt $V(\eta \to \infty) = 1$. Zur Interpretation des Verhaltens wird der Schwerpunktsatz betrachtet: Für einen aus m_1 und m_u zusammengesetzten Körper gilt für den Gesamtschwerpunkt in x-Richtung

$$m_{ges}x_{ges} = m_1x_1 + m_ux_u \qquad , \text{ also} \qquad (3.79)$$

$$x_{ges} = \frac{m_1}{m_{ges}} x_1 + \frac{m_u}{m_{ges}} x_u = \frac{m_1}{m_1 + m_u} x_1 + \frac{m_u}{m_1 + m_u} x_u$$

$$= (1 - \mu)x_1 + \mu x_u$$
(3.80)

Weiterhin ist

$$x_u = x_1 + h + e\cos(\Omega t) \tag{3.81}$$

weshalb

$$x_{ges} = x_1 + \mu(h + e\cos(\Omega t)) \tag{3.82}$$

Für große Frequenzverhältnisse ist

$$x_1 = V(\eta)\mu e\cos(\Omega t + \varphi) \approx 1 \cdot \mu e\cos(\Omega t - \pi) = -\mu e\cos(\Omega t)$$
 (3.83)

woraus für den Gesamtschwerpunkt folgt

$$x_{aes} = \mu h. ag{3.84}$$

Bei sehr großen Frequenzverhältnissen $\eta\gg 1$ (überkritischer Frequenzbereich) bleibt also der Gesamtschwerpunkt x_{ges} des zusammengesetzten Systems in Ruhe. Dieser Effekt nennt sich Selbstzentrierung.

3.6 Alternative Lösungsansätze für Zwangsschwingungen

Bis jetzt wurde als Lösungsansatz die Form $x_p(t) = A\cos(\Omega t) + B\sin(\Omega t)$ gewählt, womit durch Einsetzen in die DGL ein algebraisches Gleichungssystem zur Lösung von A und B entstand, wodurch letztlich $x_p(t)$ bestimmt war. Es gibt manche DGLn, für die alternative gleichwertige Lösungsansätze zu geschickteren, ggf. kürzeren Rechenwegen führen. Davon werden in diesem Abschnitt zwei Stück präsentiert und anhand der Fußpunktanregung (Maxwell-Modell) demonstriert. Es sei vorweggeschickt, dass

der bisherige Ansatz bereits vollständig ist und durch einen alternativen vollständigen Ansatz dieselbe Lösung resultiert.

3.6.1 Ansatz mit Phasenverschiebung

Der Ansatz mit Phasenverschiebung lautet gemeinsam mit seinen Ableitungen

$$x_p(t) = \hat{x}\cos(\Omega t + \varphi)$$

$$\dot{x}_p(t) = -\Omega \hat{x}\sin(\Omega t + \varphi)$$

$$\ddot{x}_p(t) = -\Omega^2 \hat{x}\cos(\Omega t + \varphi)$$
(3.85)

In die DGL (Gl. (3.40)) eingesetzt resultiert zunächt

$$-\Omega^2 \hat{x} \cos(\Omega t + \varphi) - 2D\omega_0 \Omega \hat{x} \sin(\Omega t + \varphi) + \omega_0^2 \hat{x} \cos(\Omega t + \varphi) = \omega_0^2 \hat{u} \cos(\Omega t)$$
 (3.86)

Der Koeffizientenvergleich wie bisher kann auf diese Art nicht durchgeführt werden, da die rechte Seite noch nicht in der Form mit Phasenverschiebung vorliegt. Dazu bedarf es der Additionstheoreme:

Mathematik 3.2: Additionstheoreme der Trigonometrie

Die Additionstheoreme der Trigonometrie lauten

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$
$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

Dies wird verwendet für die folgende Umformung:

$$\cos(\Omega t) = \cos(\Omega t + \varphi - \varphi) = \cos(\Omega t + \varphi)\cos(\varphi) + \sin(\Omega t + \varphi)\sin(\varphi)$$
(3.87)

Es folgt also aus der DGL mit Ansatz

$$(\omega_0^2 - \Omega^2)\hat{x}\cos(\Omega t + \varphi) - 2D\omega_0\Omega\hat{x}\sin(\Omega t + \varphi)$$

$$= \omega_0^2\hat{u}\left(\cos(\Omega t + \varphi)\cos(\varphi) + \sin(\Omega t + \varphi)\sin(\varphi)\right)$$
(3.88)

Der Koeffizientenvergleich kann nun durchgeführt werden:

$$\cos(\Omega t + \varphi) : \qquad (\omega_0^2 - \Omega^2)\hat{x} = \omega_0^2 \hat{u}\cos(\varphi) \tag{3.89}$$

$$\sin(\Omega t + \varphi): \qquad -2D\omega_0 \Omega \hat{x} = \omega_0^2 \hat{u}\sin(\varphi)$$
 (3.90)

Dann folgt aus Quadrieren und Addieren von (3.89) und (3.89)

$$((\omega_0^2 - \Omega^2)^2 + (2D\omega_0\Omega)^2) \hat{x}^2 = \omega_0^4 \hat{u}^2$$
, also (3.91)

$$\hat{x} = \frac{\omega_0^2 \hat{u}}{\sqrt{(\omega_0^2 - \Omega^2)^2 + (2D\omega_0\Omega)^2}}.$$
(3.92)

Der Quotient von (3.89) und (3.89) liefert

$$-\frac{2D\omega_0\Omega}{\omega_0^2 - \Omega^2} = \tan(\varphi) \tag{3.93}$$

Dasselbe Ergebnis wurde bereits zu Beginn dieses Kapitels hergeleitet, wofür aber ein längerer Rechenweg notwendig war. Dadurch, dass hier bereits im Ansatz die betragsmäßige Amplitude \hat{x} und der Nullphasenwinkel φ verwendet wurden, kam das Ergebnis direkt in dieser Form vor. Insgesamt ist dieser Weg also kürzer.

Gleichwohl wird erkannt, dass es sich bei den Gleichungen (3.89) und (3.90) um nichtlineare Zusammenhänge zwischen \hat{x} und φ handelt, welche nur in speziellen Sonderfällen – so auch hier – gelöst werden können. Der Ansatz mit Phasenverschiebung birgt also das Risiko eines Gleichungssystems, das keine analytische Lösung mehr besitzt.

3.6.2 Komplexe Erweiterung

Eine weitere Möglichkeit ist durch die komplexe Erweiterung gegeben. Dazu wird zunächst sowohl die rechte Seite mithilfe der Euler-Formel umgeschrieben:

$$u = \hat{u}\cos(\Omega t) = \hat{u}Re\left(\cos(\Omega t) + i\sin(\Omega t)\right) = \hat{u}Re(e^{i\Omega t}) = Re(\hat{u}e^{i\Omega t})$$
(3.94)

wobei $Re(\cdot)$ der Realteil-Operator ist. Aus dem Ansatz für die partikuläre Lösung wird

$$x_p = \hat{x}\cos(\Omega t + \varphi) = \hat{x}Re\left(\cos(\Omega t + \varphi) + i\sin(\Omega t + \varphi)\right) = \hat{x}Re(e^{i(\Omega t + \varphi)})$$
(3.95)

$$=Re(\hat{x}e^{i\varphi}e^{i\Omega t}) = Re(Xe^{i\Omega t})$$
(3.96)

mit X dem komplexen Frequenzgang, in dem sowohl die Amplitude als auch eine Phasenlage gegenüber der Anregung u enthalten sind:

$$abs(X) = \sqrt{Re(X)^2 + Im(X)^2} = \sqrt{\hat{x}^2 \cos^2(\varphi) + \hat{x}^2 \cos^2(\varphi)} = \hat{x}$$
 (3.97)

$$\tan(\arg(X)) = \frac{Im(X)}{Re(X)} = \frac{\hat{x}\sin(\varphi)}{\hat{x}\cos(\varphi)} = \tan(\varphi)$$
(3.98)

Mathematik 3.3: Betrag und Phase einer komplexen Zahl

Eine komplexe Zahl X = a + ib hat einen Real- und Imaginärteil

$$a = Re(X),$$
 $b = Im(X),$

einen Betrag

$$abs(X) = \sqrt{a^2 + b^2} = \sqrt{Re(X)^2 + Im(X)^2}$$

und ein ein Phasenwinkel $\varphi = \arg(X)$, der über die Beziehung

$$\tan(\arg(X)) = \frac{b}{a} = \frac{Im(X)}{Re(X)}$$

definiert ist.

Die komplexe Erweiterung besteht nun darin, den Realteil-Operator wegzulassen. Dann ist

$$u = \hat{u}e^{i\Omega t} \qquad \qquad x_p = Xe^{i\Omega t} \tag{3.99}$$

$$\dot{x}_p = i\Omega X e^{i\Omega t} \qquad \qquad \ddot{x}_p = -\Omega^2 X e^{i\Omega t} \qquad (3.100)$$

In der DGL des fußpunkterregten Einmassenschwingers nach dem Maxwell-Modell wird dies zu

$$-\Omega^2 X e^{i\Omega t} + 2D\omega_0 i\Omega X e^{i\Omega t} + \omega_0^2 X e^{i\Omega t} = \omega_0^2 \hat{u} e^{i\Omega t}$$
(3.101)

Diese Gleichung wird direkt nach X aufgelöst, um den komplexen Frequenzgang zu erhalten:

$$X = \frac{\omega_0^2 \hat{u}}{\omega_0^2 - \Omega^2 + 2Di\omega_0 \Omega} \tag{3.102}$$

Zur weiteren Analyse ist es hier sinnvoll, die komplexe Zahl *i* aus dem Nenner zu entfernen, was mithilfe einer Erweiterung gelingt:

$$X = \frac{\omega_0^2 \hat{u}}{\omega_0^2 - \Omega^2 + 2Di\omega_0 \Omega} \cdot \frac{\omega_0^2 - \Omega^2 - 2Di\omega_0 \Omega}{\omega_0^2 - \Omega^2 - 2Di\omega_0 \Omega} = \frac{\omega_0^2 \hat{u} (\omega_0^2 - \Omega^2 - 2Di\omega_0 \Omega)}{(\omega_0^2 - \Omega^2)^2 + (2D\omega_0 \Omega)^2}$$
(3.103)

Es folgt wieder das bekannte Ergebnis

$$\hat{x} = \omega_0^2 \hat{u} \frac{\sqrt{(\omega_0^2 - \Omega^2)^2 + (2D\omega_0\Omega)^2}}{(\omega_0^2 - \Omega^2)^2 + (2D\omega_0\Omega)^2} = \frac{\omega_0^2 \hat{u}}{\sqrt{(\omega_0^2 - \Omega^2)^2 + (2Di\omega_0\Omega)^2}}$$
(3.104)

$$\tan(\varphi) = -\frac{2D\omega_0\Omega}{\omega_0^2 - \Omega^2} \tag{3.105}$$

Diese Herangehensweise zur Berechnung zwangserregter Schwingungen hat den Vorteil der kompakten Schreibweise sowie der Linearität der entstehenden Gleichungssysteme; sie ist allerdings wegen der komplexen Ergebnisse schwerer zu interpretieren und daher insbesondere für die numerische Analyse vorteilhaft.

Aufgaben zu Kapitel 3

- **3.1** Aus welchen Lösungsanteilen setzt sich die Schwingungsantwort zwangserregter Systeme zusammen?
- 3.2 Bestimmen Sie für das System $\ddot{x}+\frac{1}{2}\dot{x}+4x=4\cos(5t)$ die Parameter ω_0 und D. Geben Sie die homogene Lösung $x_h(t)$ an. Berechnen Sie anschließend die partikuläre Lösung $x_p(t)$. Passen Sie schließlich noch die Gesamtlösung $x(t)=x_h(t)+x_p(t)$ an die Anfangsbedingungen x(0)=1 und $\dot{x}(0)=0$ an.
- **3.3** Das ungedämpfte System $\ddot{x} + 4x = 4\Omega^2 \cos(\Omega t)$ hat die homogene Lösung $x_h(t) = C_1 \cos(2t) + C_2 \sin(2t)$. Berechnen Sie die partikuläre Lösung! Passen Sie außerdem die Gesamtlösung an die Anfangsbedingungen x(0) = 0 und $\dot{x}(0) = 0$ an.
- **3.4** Berechnen Sie die partikuläre Lösung $x_p(t)$ des gedämpften unwuchterregten Einmassenschwingers mithilfe der komplexen Erweiterung. Vergleichen Sie das Ergebnis mit der in Abschnitt 3.5 gezeigten Variante.
- 3.5 Wie lautet der Ansatz für die partikuläre Lösung im Fall eines
 - 1. gedämpften Einmassenschwingers mit harmonischer Anregung?
 - 2. ungedämpften Einmassenschwingers mit harmonischer Anregung außerhalb der Resonanzfrequenz?
 - 3. ungedämpften Einmassenschwingers mit harmonischer Anregung bei Resonanzfrequenz?
- **3.6** Kann ein gedämpfter Einmassenschwinger mit 0 < D < 1 durch harmonische Krafterregung derart angeregt werden, dass die Amplitude unendlich groß wird? Wieso nicht?