Иркутский государсвенный технический университет

На правах рукописи УДК xxx.xxx

КАТАШЕВЦЕВ МИХАИЛ ДМИТРИЕВИЧ

АНАЛИЗ КОНТУРНЫХ ИЗОБРАЖЕНИЙ

Специальность 05.13.18 — «Математическое моделирование, численные методы и комплексы программ»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: д. ф-м. н., профессор Мартьянов В.И.

Содержание

ВЕ	еден	ие	3
1	Кон 1.1 1.2	турные изображения	6 6 7
2	Дли	инное название главы, в которой мы смотрим на примеры того, как будут	
	веро	таться изображения и списки	8
	$2.\overline{1}$	Одиночное изображение	8
	2.2	Длинное название параграфа, в котором мы узнаём как сделать две картин-	
		ки с общим номером и названием	8
	2.3	Пример вёрстки списоков	9
3	Bëp	стка таблиц	10
	3.1	Таблица обыкновенная	10
	3.2	Параграф - два	10
	3.3		10
			10
			10
За	КЛЮ ^ч	иение	11
Ci.	исок	рисунков	12
Сп	исок	таблиц	13
Ли	тера	тура	14
A	Наз	вание первого приложения	15
В	Оче	нь длинное название второго приложения, в котором продемонстрирована	
	рабо	ота с длинными таблицами	16
	B.1	Подраздел приложения	16
	B.2	Ещё один подраздел приложения	18
	В.3		18
	B.4		18

Введение

Сегодня существует огромное количество систем в той или иной степени успешно решающих задачу распознования изображений. Это может быть распознование лиц, отпечатков пальцов, топографических планов, рентгеновских снимков. Но в наиболее промышленных масштабах данная технология используется для распознования текста. Бланки ЕГЭ, ГИА, Банки — это лишь небольшая часть областей где используют распознование текста. Рассмотрим некоторые наиболее популярные системы распознования текста:

TEKCT TEKCT

TEKCT TEKCT

```
TEKCT TEKCT
```

Все данные системы

Обзор, введение в тему, обозначение места данной работы в мировых исследованиях и т.п.

Целью данной работы является ...

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Исследовать, разработать, вычислить и т.д. и т.п.
- 2. Исследовать, разработать, вычислить и т.д. и т.п.
- 3. Исследовать, разработать, вычислить и т.д. и т.п.
- 4. Исследовать, разработать, вычислить и т.д. и т.п.

Основные положения, выносимые на защиту:

- 1. Первое положение
- 2. Второе положение
- 3. Третье положение
- 4. Четвертое положение

Научная новизна:

- 1. Впервые . . .
- 2. Впервые . . .
- 3. Было выполнено оригинальное исследование ...

Научная и практическая значимость . . .

Степень достоверности полученных результатов обеспечивается ... Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на: перечисление основных конференций, симпозиумов и т.п.

Личный вклад. Автор принимал активное участие ...

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [1–5], X из которых изданы в журналах, рекомендованных ВАК [1–3], XX — в тезисах докладов [4,5].

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Полный объем диссертации составляет XXX страница с XX рисунками и XX таблицами. Список литературы содержит XXX наименований.

Глава 1

Контурные изображения

1.1 Базовые понятия

Определим понятие растрового контурного изображения и контурного изображения. Растровое изображение есть функция $I_r gb(x,y): N \times N \to ([0,255],[0,255],[0,255])$. Таким образом каждой точке (x,y) мы сопоставляем тройку (r,g,b). Первый элемент тройки соответствует красной компоненте цвета в растровом изображении, второй – зеленой и третий – синей. Далее будем использовать следующую запись:

$$I_r(x, y) = I_{rgb}(x, y)_r$$

 $I_g(x, y) = I_{rgb}(x, y)_g$
 $I_b(x, y) = I_{rgb}(x, y)_b$

Определи изображение заданного в оттенках серого $I_g rey(x,y): N \times N \to ([0,255])$ Введем оператор «обесцвечивания» D, который позволяет перейти от цветного изображения $I_r gb$ к изображению $I_g rey$ заданному в оттенках серого: $D(I_r gb) = I_g rey$ Существует несколько основных способов обесцвечивания изображения:

- 1. Красный канал $D_{red}(I_{rqb}) = I_r$
- 2. Зеленый канал $D_{greeb}(I_{rgb}) = I_g$
- 3. Синий канал $D_{blue}(I_{rgb}) = I_b$
- 4. Среднее значение (average): $D_{avg}(I_{rgb}) = \frac{I_r + I_g + I_b}{3}$
- 5. Лума (luma), учитывает особенности восприятия цвета человеком:

$$D_{luma}(I_r g b) = I_r \cdot 0.3 + I_g \cdot 0.59 + I_b \cdot 0.11$$

Значения коэффициентов, иногда, могут отличаться от приведенных выше, но их сумма всегда равна 1

- 6. Минимум $D_{min}(I_{rgb}) = min(I_r, I_g, I_b)$
- 7. Максимум $D_{min}(I_{rqb}) = max(I_r, I_q, I_b)$
- 8. Обесцвечивание (desaturtaion): $D_{desaturation}(I_{rgb}) = \frac{D_{min}(I_{rgb}) + D_{max}(I_{rgb})}{2}$

Наилучший результат для средне-статистического изображения (с нормальной гистограммой) получается при использование 5-го и последнего способов. Под наилучшим результатом понимается сохранение яркости (компоненты value в модели HSV) цветов исходного изображения.

Монохромное изображение есть функция $I(x,y): N \times N \to \{0,1\}$ Можно явно определить переход от изображения заданного в оттенках серого к монохромному изображению если задать некоторый порог $t \in [0,255]$ и ввести оператор отсечения (thresholding) T_t .

$$I = T_t(I_{grey}) = \left\{ egin{array}{ll} 0 &, I_{grey} < t \ 1 &, ext{иначе} \end{array}
ight\}$$

Растровым контурном изображением будем назвать монохромное (бинарное) растровое изображение с связными областями.

1.2 Формализация описания плоских контурных изображений

Составляющими элементами плоских контурных изображений будем считать дуги и связи дуг. Дуга агс основной количественной характеристикой имеет сектор окружности, измеряемый в градусах (точнее, в количестве минимальных шагов возрастания градусной меры дуги, что обеспечивает конечность количественных характеристик в некоторой шкале или масштабе).

Отметим, что любые две несовпадающие точки a и b на плоскости (задающие луч \overline{ab}) можно соединить дугой заданной градусной меры α ($0 \le \alpha \le 360$) ровно двумя способами, в первом случае все точки дуги будут лежать справа от луча \overline{ab} , будем говорить что дуга обходится по часовой стрелке, во втором случае все точки дуги будут лежать слева от луча и речь будет идти об обходе против часовой стрелки. Для дуг градусной меры $\alpha \in \{0,360\}$ направление обхода не определено.

Связь дуг rel основной количественной характеристикой имеет угол между дугами, измеряемый в градусах (точнее, в количестве минимальных шагов возрастания углов, что обеспечивает конечность количественных характеристик в некоторой шкале или масштабе).

Основными математическими моделями для данного подхода будут трехосновные алгебраические системы [?] [?] вида

$$M = \langle Arc, Rel, V; Sector, Angle, R \rangle$$
 (1.1)

где основное множество Arc – совокупность дуг; основное множество Rel – совокупность связей дуг; основное множество V – некоторый начальный отрезок натуральных чисел (представляет сектора дуг и углы связей дуг в некоторой шкале); одноместная функция $Sector: Arc \to V$, т.е определяет градусную меру дуги; одноместная функция $Angle: Rel \to V$, т.е определяет угол связи дуг; трехместное отношение R соединяет связь дуг rel с соответствующими дугами, т.е. R - подмножество декартова произведения $Rel \times Arc \times Arc$.

Для наших целей важно всегда работать только с конечными множествами, что достигается рассмотрением конечных множеств Arc, Rel, а также предположением о наличии минимального шага возрастания количественных характеристик дуг и связей дуг, т.е. конечное множество V имеет минимальное ненулевое значение, соответствующее минимальному шагу, и максимальное, соответствующее 360 градусам.

Глава 2

Длинное название главы, в которой мы смотрим на примеры того, как будут верстаться изображения и списки

2.1 Одиночное изображение

Рисунок 2.1: ТеХ.

2.2 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

Рисунок 2.2: Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

2.3 Пример вёрстки списоков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Глава 3

Вёрстка таблиц

3.1 Таблица обыкновенная

Так размещается таблица:

Таблица 3.1: Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min}), K$
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

3.2 Параграф - два

Некоторый текст.

3.3 Параграф с подпараграфами

3.3.1 Подпараграф - один

Некоторый текст.

3.3.2 Подпараграф - два

Некоторый текст.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Список рисунков

2.1	TeX	8
2.2	Очень длинная подпись к изображению, на котором представлены две фо-	
	тографии Дональда Кнута	8

Список таблиц

3.1	Название таблицы																																			1	0
-----	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Литература

- 1. Название статьи / Автор
1, Автор 2, Автор 3 [и др.] // Журнал. 2012. Т. 1. С. 100.
- 2. Автор. Название книги / под ред. Редактор. Издательство, 2012.
- 3. Автор. название тезисов конференции // Название сборника. 2012.
- 4. Название буклета.
- 5. "This is english article" / Author
1, Author
2, Author
3 et al. // Journal. 2012. Vol. 2. P. 200.

Приложение А

Название первого приложения

Некоторый текст.

Приложение В

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

В.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
${ m kick}$	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0		экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			2. генерация оелого шума симметрично относительно экватора
mars	0	int	экватора 1: инициализация модели для планеты Марс
mars kick	1	int	0 : инициализация модели для планеты марс 0 : инициализация без шума $(p_s=const)$
KICK	1	1116	1 : генерация белого шума ($p_s = const$)
			1. генерация оелого шума 2: генерация белого шума симметрично относительно
			экватора
	l	l	продолжение следует
			продолжение следует

			(продолжение)
Параметр	Умолч.	Тип	Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mars	0	\inf	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
l mon	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mars	0	int	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
111911	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	. ,	экватора
mars &SURFPAI	0 	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	:4	экватора
mars kick	$\begin{bmatrix} 0\\1 \end{bmatrix}$	int int	1: инициализация модели для планеты Марс 0: инициализация без шума $(p_s = const)$
KICK	1	1110	1: генерация белого шума $(p_s = const)$
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	\mid int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			2. генерация облого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mars	0	\inf	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
_	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	int	1: инициализация модели для планеты Марс 0: инициализация без шума $(p_s = const)$
kick	1	int	0 : инициализация оез шума ($p_s = const$) 1 : генерация белого шума
	I	1	продолжение следует
			± 11

(продолжение)									
Параметр	Умолч.	Тип	Описание						
mars kick	0 1	int int	 2: генерация белого шума симметрично относительно экватора 1: инициализация модели для планеты Марс 0: инициализация без шума (p_s = const) 1: генерация белого шума 2: генерация белого шума симметрично относительно 						
mars kick	0 1	int int	экватора 1: инициализация модели для планеты Марс 0: инициализация без шума ($p_s = const$) 1: генерация белого шума 2: генерация белого шума симметрично относительно экватора						
mars	0	int	1: инициализация модели для планеты Марс						

В.2 Ещё один подраздел приложения

Нужно больше подразделов приложения!

В.3 Очередной подраздел приложения

Нужно больше подразделов приложения!

В.4 И ещё один подраздел приложения

Нужно больше подразделов приложения!