1 Cheat Sheet

1.1 Lipschitz Continuous

Definition 1. $f \in C_L^{k,p}(Q)$ is k times continuously differentiable on Q if for all $x, y \in Q$,

$$\|\nabla^p f(y) - \nabla^p f(x)\| \le L \|y - x\| \tag{1}$$

 $f \in C^{1,1}_L(\mathbb{R}^n)$ is continously differentiable on \mathbb{R}^n if for all $x,y \in \mathbb{R}^n$

$$\|\nabla f(y) - \nabla f(x)\| \le L \|y - x\| \tag{2}$$

Definition 2. $f \in C_L^{2,1}(\mathbb{R}^n) \subset C_L^{1,1}(\mathbb{R}^n)$ if for all $x \in \mathbb{R}^n$, either condition is satisfied

$$\|\nabla^2 f(x)\| \le L \tag{3}$$

$$-L\mathbf{I} \preceq \nabla^2 f(x) \preceq L\mathbf{I} \tag{4}$$

Property for $f \in C_L^{1,1}(\mathbb{R}^n)$,

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \frac{L}{2} \|y - x\|^2$$

$$(5)$$

$$f(x - \alpha \nabla f(x)) \le f(x) - \alpha \left(1 - \frac{\alpha}{2}L\right) \|\nabla f(x)\|^2$$
 (6)

$$f\left(x - \frac{1}{L}\nabla f(x)\right) \le f(x) - \frac{1}{2L} \left\|\nabla f(x)\right\|^2 \tag{7}$$

Note (5) implies that quadratic functions $\phi_{-}(\cdot), \phi_{+}(\cdot)$ are global lower/upper bound of $f(\cdot)$ respectively, i.e. $\phi_{-}(y) \leq f(y) \leq \phi_{+}(y)$ for any $x \in \mathbb{R}^{n}$, where

$$\phi_{-}(y) = f(x) + \langle \nabla f(x), y - x \rangle - \frac{L}{2} \|y - x\|^{2}$$
$$\phi_{+}(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^{2}$$

Note (7) is important in proving convergence of descent methods, where we see progress made in reducing function value of iterates by steping in $-\frac{1}{L}\nabla f(x)$ is at least some constant times the gradient norm.

Property for $f \in C_M^{2,2}(\mathbb{R}^n)$,

$$\|\nabla f(y) - \nabla f(x) - \nabla^2 f(x)(y - x)\| \le \frac{M}{2} \|y - x\|^2$$

$$\nabla^2 f(x) - C \le \nabla^2 f(y) \le \nabla^2 f(x) + C \quad \text{where} \quad c = M \|y - x\| \mathbf{I}$$
(8)

1.2 Convex

Definition 3. The following are equivalent

- 1. A continuously differentiable function f is convex on convex set Q $(f \in \mathcal{F}^1(Q))$
- 2. For all $x, y \in Q$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle \tag{10}$$

3. For all $x, y \in Q$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \tag{11}$$

4. For all $x, y \in Q$,

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle > 0 \tag{12}$$

Definition 4. A twice differentiable function f belongs to $\mathscr{F}^2(Q)$ if for any $x \in Q$,

$$\nabla^2 f(x) \succeq 0 \tag{13}$$

1.3 Smooth & Convex

Definition 5. $f \in \mathscr{F}_L^{1,1}(Q, \|\cdot\|)$ if f is convex with Lipschitz continous gradient, i.e. for all $x, y \in Q$,

$$\|\nabla f(x) - \nabla f(y)\|_* \le L \|x - y\| \tag{14}$$

Property of $f \in \mathcal{F}^{1,1}(\mathbb{R}^n, \|\cdot\|)$. Let $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$

$$0 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2} \|x - y\|^2$$
 (15)

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_{*}^{2} \le f(y)$$

$$\tag{16}$$

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_{*}^{2} \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \tag{17}$$

$$0 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le L \|x - y\|^2 \tag{18}$$

Note (15) implies a tighter (linear) lower bound to $f(\cdot)$ if we assume convexity. In fact, the lower bound can be improved further to a upward quadratic by (16).

1.4 Strongly Convex

Definition 6. A continuously differentiable function f is strongly convex on \mathbb{R}^n $(f \in \mathscr{S}^1_{\mu}(Q, \|\cdot\|))$ if there exists a convexity parameter $\mu > 0$ such that for all $x, y \in Q$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2$$
 (19)

Property for $f \in \mathscr{S}^1_{\mu}(\mathbb{R}^n)$. Let $x, y \in Q$ and $\lambda \in [0, 1]$,

$$f(x) \ge f(x^*) + \frac{\mu}{2} \|x - x^*\|^2 \quad \text{where} \quad \nabla f(x^*) = 0$$
 (20)

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2 \tag{21}$$

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y) + \lambda(1 - \lambda)\frac{\mu}{2} \|x - y\|^2$$
 (22)

1.5 Smooth & Strongly Convex

Definition 7. A continuously differentiable function f that is strongly convex with L-lipschitz continuous gradients $(f \in \mathscr{S}^{1,1}_{L,\mu}(\mathbb{R}^n))$. Note $\kappa = L/\mu \geq 1$ is the condition number of f.

Property for $f \in \mathscr{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$. For any $x,y \in \mathbb{R}^n$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|^2$$
 (23)