Brain Tumor Detection Classification

Load Module

Out[7]: (1222, 200, 200)

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
```

```
Prepare Data
In [2]: import os
        path = os.listdir ('C:/sohan/project/Brain Tumor Detection Classification/Training/')
        classes = {'no_tumor':0, 'pituitary_tumor':1}
In [3]: import cv2
        X = []
        Y = []
        for cls in classes:
            pth = 'C:/sohan/project/Brain Tumor Detection Classification/Training/'
                                                                                          +cls
            for j in os.listdir(pth):
                img = cv2.imread(pth+'/'+j,0)
                img = cv2.resize(img, (200, 200))
                X.append(img)
                Y.append(classes[cls])
In [4]: np.unique(Y)
Out[4]: array([0, 1])
In [5]: X = np.array(X)
        Y = np.array(Y)
In [6]: pd.Series(Y).value_counts()
Out[6]: 1
             827
             395
        dtype: int64
In [7]: X.shape
```

Visualize Data

```
In [8]: plt.imshow(X[0], cmap='gray')
```

Out[8]: <matplotlib.image.AxesImage at 0x22h3rirff50>

Prepare Data

```
In [9]: X_updated = X.reshape(len(X), -1)
X_updated.shape
```

Out[9]: (1222, 40000)

Split Data

```
In [10]: xtrain, xtest, ytrain, ytest = train_test_split(X_updated, Y, random_state=10, test_size=.2
In [11]: xtrain.shape, xtest.shape
Out[11]: ((977, 40000), (245, 40000))
```

Feature Scaling

```
In [12]: print(xtrain.max(), xtrain.min())
print(xtest.max(), xtest.min())
xtrain = xtrain/255
xtest = xtest/255
print(xtrain.max(), xtrain.min())
print(xtest.max(), xtest.min())
255 0
```

255 0 1.0 0.0 1.0 0.0

Feature Selection: PCA

Out[22]: 0

```
In [13]: from sklearn.decomposition import PCA
In [14]: print(xtrain.shape, xtest.shape)
         pca = PCA(.98)
         pca_train = xtrain
         pca_test = xtest
         (977, 40000) (245, 40000)
         Train Model
In [15]: from sklearn.linear model import LogisticRegression
         from sklearn.svm import SVC
In [16]: import warnings
         warnings.filterwarnings('ignore')
         lg = LogisticRegression(C=0.1)
         lg.fit(pca_train, ytrain)
Out[16]:
         ▼ LogisticRegression
         LogisticRegression(C=0.1)
In [17]: | sv = SVC()
         sv.fit(pca_train, ytrain)
Out[17]:
         ▼ SVC
         sv¢()
         Evaluation
In [18]: print("Training Score:", lg.score(pca_train, ytrain))
         print("Testing Score:", lg.score(pca_test, ytest))
         Training Score: 1.0
         Testing Score: 0.9591836734693877
In [19]: print("Training Score:", sv.score(pca_train, ytrain))
         print("Testing Score:", sv.score(pca_test, ytest))
         Training Score: 0.9938587512794268
         Testing Score: 0.963265306122449
         Prediction
In [20]: | pred = sv.predict(pca_test)
         np.where(ytest != pred)
Out[20]: (array([ 36, 51, 68, 120, 212, 214, 220, 227, 239], dtype=int64),)
In [22]: pred[36]
```

```
In [23]: ytest[36]
```

Out[23]: 1

Test Model

```
In [28]: dec = {0:'No Tumor', 1:'Positive Tumor'}

In [31]: plt.figure(figsize=(12,8))
    p = os.listdir('C:/sohan/project/Brain Tumor Detection Classification/Testing/')
    c=1
    for i in os.listdir(C:/sohan/project/Brain Tumor Detection Classification/Testing/no
        plt.subplot(3,3,c)

        img = cv2.imread('C:/sohan/project/Brain Tumor Detection Classification/Training/
        img1 = cv2.resize(img, (200,200))
        img1 = img1.reshape(1,-1)/255
        p = sv.predict(img1)
        plt.title(dec[p[0]])
        plt.imshow(img, cmap='gray')
        plt.axis('off')
        c+=1
```



```
In [32]: plt.figure(figsize=(12,8))
          p = os.listdir( 'C:sohan/project/Brain Tumor Detection Classification/Testing/')
              for i in os.listdir(C:/sohan/project/Brain Tumor Detection Classification/Testing/pi
              plt.subplot(4,4,c)
              img = cv2.imread('C:/sohan/project/Brain Tumor Detection Classification/Testing/pi
img1 = cv2.resize(img, (200,200))
              img1 = img1.reshape(1,-1)/255
              p = sv.predict(img1)
              plt.title(dec[p[0]])
              plt.imshow(img, cmap='gray')
              plt.axis('off')
              c+=1
```


Positive Tumor

Positive Tumor

No Tumor

Type your text Positive Tumor

Positive Tumor

Positive Tumor

No Tumor

No Tumor

Positive Tumor

