Lab 1: Exploratory Analysis of CEO Salary Data

Carmen Easterwood & Andrew Kabatznick

January 29, 2016

Introduction

Aaa

```
setwd("~/Desktop/MIDS/Statistics/stats_lab1")
ceosal <- load("ceo_w203.RData", ceo.env <- new.env())
ceo.df <- ceo.env[["CEO"]]</pre>
```

Univariate Analysis of Key Variables

In the following section we will perform a univariate analysis of each of the variables in this dataset. Salary is our outcome variable, and profits and mktval are the key measures of market performance.

Salary

CEO salary distribution is strongly skewed right.

Histogram of CEO Salary in 1990

Median salary is \$697 thousand, and there is one extreme outlier at \$5.3 million.

summary(ceo.df\$salary)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 100.0 467.0 697.0 852.9 1101.0 5299.0
```

Age

CEO age peaks between 50 and 65 years old, but ranges all the way from 21 to 86.

```
hist(ceo.df$age, breaks = 14, main = "Histogram of CEO Age", xlab = "Age")
```

Histogram of CEO Age

summary(ceo.df\$age)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 21.00 51.00 57.00 55.78 61.00 86.00
```

The variance of Age is large:

```
var(ceo.df$age)
```

[1] 85.37996

College Degree

College is a dummy variable that takes a value of 1 if the CEO is a college graduate and 0 otherwise.

```
pct.college <- (sum(ceo.df$college) / length(ceo.df$college))</pre>
```

96.2% of the CEOs in this dataset are college graduates.

Graduate Degree

Grad is a dummy variable that takes a value of 1 if the CEO holds an advanced degree and 0 otherwise.

```
pct.grad <- (sum(ceo.df$grad) / length(ceo.df$grad))</pre>
```

55.1% of the CEOs in this dataset are college graduates.

Note: Should we mention there are 2 CEOs with an advanced degree but no college degree? (Can that be correct?)

Years With Company

Summary Statistics for Years with Company

```
summary(ceo.df$comten)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.00 9.00 21.00 21.66 33.00 58.00
```

Variance of Years with Company

```
var(ceo.df$comten)
```

```
## [1] 160.2132
```

Standard Deviation of Years with Company

```
sd(ceo.df$comten)
```

```
## [1] 12.65753
```

Histogram of Years with Company

```
hist(ceo.df$comten, main="Years with Company", xlab = "Years")
```

Years with Company

Years as CEO

Summary Statistics for Years as CEO

```
summary(ceo.df$ceoten)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 3.000 5.000 7.681 11.000 37.000
```

Variance of Years as CEO

var(ceo.df\$ceoten)

[1] 50.65317

Standard Deviation of Years as CEO

sd(ceo.df\$ceoten)

[1] 7.117104

Histogram of Years as CEO

hist(ceo.df\$ceoten, main="Years as CEO", xlab = "Years")

Years as CEO

Profits

Summary Statistics for Profits

```
summary(ceo.df$profits)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -463.0 33.0 57.0 199.2 195.0 2700.0
```

Variance of Profits

```
var(ceo.df$profits)
```

[1] 158154.2

Standard Deviation of Profits

sd(ceo.df\$profits)

[1] 397.686

Histogram of Profits

1990 Profits

Market Value

Summary Statistics for Market Value

```
summary(ceo.df$mktval)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1 567 1200 3450 3200 45400
```

Variance of Market Value

var(ceo.df\$mktval)

[1] 40202491

Standard Deviation of Market Value

sd(ceo.df\$mktval)

[1] 6340.543

Histogram of Market Value

Market Value at the End of 1990

Key Bivariate Relationships

We will now analyze some key bivariate relationships. Below is a scatterplot matrix of the variables in this dataset.

library(car)
scatterplotMatrix(ceo.df)

Profits & Market Value

These are our two measures of company performance, so we confirm they are positively correlated.

```
cor(ceo.df$profits, ceo.df$mktval)
```

[1] 0.9190233

For the most part, as profits increase, so does market value.

```
plot(ceo.df$profits, ceo.df$mktval,
    main = "Profits vs. Market Value in 1990",
    xlab = "Market Value ($ millions)",
    ylab = "Profits ($ millions)")
abline(lm(ceo.df$mktval ~ ceo.df$profits), col = "red")
```

Profits vs. Market Value in 1990

Possible Secondary Variables

Aaa

Potential Confounding Effects

Aaa

Variable Coding Issues and Missing Values

 ${\rm Aaa}$

Conclusion

Aaa