《概率论与数理统计》(工)模拟题

考试说明: 考试闭卷; 可使用文曲星除外的计算器。

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承	诺人:		_	学	号:		班号:	
000								
注:	本试卷共6	大题,	共 7	页,	满分 100 分。	考试时必	必须使用卷后降	付的草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	-	二(1)	二(2)	二(3)	二(4)	二(5)	总成绩
满分	30	14	14	14	14	14	
得分							

一、填空题(每空2分,共30分)

- 1. 设 A, B 为事件,且 $P(A) = 0.4, P(A \cup B) = 0.7$ 。当 A 与 B 相互独立时, $P(B) = _______$; 互斥时, $P(B) = ______$;
- 2. 在区间(0,1)中随机地抽取两个数X和Y,则 $P(|X-Y|<0.5)=_____;$

- 6. 设随机变量 $X \sim N(1,1)$, $Y \sim N(2,2^2)$, 且 X 与 Y相互独立,则 $2X Y \sim _______;$
- 7. 设 $X_1, X_2, \dots, X_n (n > 2)$ 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

- 8. 设 X_1, \cdots, X_n 是抽自参数为 2 的泊松分布的简单样本, \overline{X} 和 S^2 分别为样本均值与样本方差,求 $P\left\{X=E(2\overline{X}-S^2)\right\}=$ _____。
- 9. 设 X_1, \dots, X_{10} 是抽自总体 $X \sim N(\mu, \sigma^2)$ 的随机样本,经计算得x = 5, $s^2 = 0.09$ 。根据本

试卷第 6	页上的 t 分布表与 χ^2 分布表,	得未知参数 μ 的置信系数为	0.95	的置信区间为
[σ^2 的置信系数为	y 0.95 的置信区间为[,]。

二、解答题 (每小题 14分, 共70分)

注: 每题要有解题过程,无解题过程不能得分

- 1. 根据世界卫生组织数据,我国居民肺癌患病率为38.46人/10万人。另外根据我国《居民营养与健康状况调查》结果,居民吸烟率为31%,而根据医学研究发现,吸烟者患肺癌的概率是不吸烟者的10.8倍。
 - (1). 求不吸烟者患肺癌的概率与吸烟者患肺癌的概率各是多少;
 - (2). 随机抽取一位居民做检查后,发现其患有肺癌。求这个居民是吸烟者的概率。

- 2. 设随机变量 X 有概率密度函数 $f(x) = \begin{cases} 1-|x|, & x \in (-1, 1) \\ 0, & \text{其他.} \end{cases}$ 令 $Y = X^2$,求:
 - (1). Y 的概率密度函数 $f_Y(y)$; (2). $P\{0.25 < Y < 1.96\}$; (3). E(Y) 和 Var(Y)。

3. 设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} cy^2, & 0 \le y \le x \le 1 \\ 0, & 其他. \end{cases}$$

(1). 求常数 c; (2). 求 X 和 Y 的边缘概率密度 $f_X(x)$, $f_Y(y)$; (3). 计算 E(XY).

4. 若 $X_1, X_2, \cdots, X_n (n > 2)$ 为抽自总体X的随机样本,总体X有概率密度函数

$$f_X(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1; \\ 0 & 其他. \end{cases}$$

其中 $\theta > -1$ 为待估参数,求 θ 的矩估计 $\hat{\theta}$ 与极大似然估计 θ^* 。

- 5. 设一批 1000 克包装袋装食盐的重量服从正态分布 $N(\mu,\sigma^2)$,其中 μ 和 σ 为未知常数, $\sigma>0$ 。 为检查包装质量,从生产线上随机抽取食盐 10 袋,并称其重量,得样本均值 $\bar{x}=998.4g$,样本方差 $s^2=5.76~g^2$ 。对检验水平 $\alpha=0.05$,做检验:
 - (1). $H_0: \mu \ge 1000$, $H_1: \mu < 1000$; (2). $H_0: \sigma^2 = 4.0$, $H_1: \sigma^2 \ne 4.0$.

附 t 分布与 χ^2 分布表

$t_9(0.025) = 2.2622$	$t_9(0.05) = 1.8331$	$t_{10}(0.025) = 2.2281$	$t_{10}(0.05) = 1.8125$
$\chi_9^2(0.025) = 19.023$	$\chi_9^2(0.05) = 16.919$	$\chi_9^2(0.975) = 2.700$	$\chi_9^2(0.95) = 3.325$

#	1六	纸
	不二	ZH:
_	TIQ.	=10

姓名: ______ 学号: _____