Synthesis of Dihydrothiophenes or Spirocyclic Compounds by Domino Reactions of 1,3-Thiazolidinedione

Jing Sun, Li-Li Zhang, Er-Yan Xia, Chao-Guo Yan*

College of Chemistry & Chemical Engineering Yangzhou University, Yangzhou 225002, China

Supporting Information

Scheme1-2		2
Table 1-3		3-5
Figures S1-S11		6-9
General Experimental Methods and		
Characterization of compounds		9-67
	~~~	

## X-Ray Crystallographic Data

CIF in separate file.

Crystallographic data (1e: CCDC 710889; 2a: CCDC 710890; 2b: CCDC 710891; 3b: CCDC 710893; 3g: CCDC 710892; 4d: CCDC 710894; 5f: CCDC 710895; 6b: CCDC 710896;7b: CCDC 711371; 7c CCDC 7111257; 7h CCDC 711258.) have been deposited vat the Cambridge Crystallographic Database Centre and is available on request from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www:http//www.ccdc.cam.ac.uk).

#### Scheme 1 Synthetic dihydrothiophene ureidoformamides 2a-2g, 3a-3j, 4a-4g and 5a-5h

 $\textbf{2a-2g} \colon R_1, \, R_2 = CH_3, \, R = H, \, 4\text{-}CH_3, \, 4\text{-}OCH_3, \, 4\text{-}F, \, 4\text{-}Cl, \, 4\text{-}Br, \, 3\text{-}NO_2$ 

3a-3j:  $R_1$ ,  $R_2 = (CH_2)_2$ , R = H;  $4-CH_3$ ;  $4-CH(CH_3)_2$ ;  $4-OCH_3$ ; 4-OH;  $4-OH-3-OCH_3$ ; 4-F; 4-CI; 4-Br;  $3-NO_2$ 

4a-4g:  $R_1$ ,  $R_2 = (CH_2CH_2)_2O$ , R = H;  $4-CH_3$ ;  $4-OCH_3$ ; 4-F; 4-Cl; 4-Br;  $3-NO_2$ 

**5a-5h**:  $R_1 = H$ ,  $R_2 = CH_2Ph$ ; R = H;  $4-CH_3$ ;  $4-CH(CH_3)_2$ ;  $4-OCH_3$ ; 4-F; 4-CI; 4-Br;  $3-NO_2$ 

SCHEME 2. Formation mechanism for dihydrothiophene and spirocyclohexano-1,3-thiazole

TABLE 1. The results of one-pot four-component reactions

Entry	Compd	Ar	Yield (%)
1	1a	Ph	41
2	1b	<i>p</i> -CH ₃ C ₆ H ₄	31
3	1c	<i>p-i-</i> PrC ₆ H ₄	45
4	1d	p-HOC ₆ H ₄	32
5	1e	p-CH₃OC ₆ H ₄	48
6	1f	4-HO-3-CH ₃ OC ₆ H ₄	56
7	1g	p-FC ₆ H ₄	43
8	1h	p-ClC ₆ H ₄	35
9	1i	p-BrC ₆ H ₄	49
10	1j	p-NO ₂ C ₆ H ₄	27
_11	1k	m-NO ₂ C ₆ H ₄	46

TABLE 2. The results of the four-component reactions with  $Et_2NH$ 

$$\begin{array}{c} \text{CHO} \\ & \begin{array}{c} \text{CHO} \\ & \begin{array}{c} \text{CH}_{2}\text{CN} \\ & \\ \end{array} \\ & \begin{array}{c} \text{CH}_{3}\text{CN} \\ & \\ \end{array} \\ & \begin{array}{c} \text{CN} \\ & \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \text{CN} \\ & \\ \end{array} \\ \end{array}$$

Entry	Ar	Compd	Yield (%)	Compd	Yield(%)
1	Ph	6a	34	7a	
2	p-CH ₃ C ₆ H ₄	6b	11	7b	30
3	<i>p-i-</i> PrC ₆ H ₄	6c	10	7c	25
4	p-HOC₀H₄	6d	35	7d	-
5	p-CH ₃ OC ₆ H ₄	6e	49	7e	-
6	4-HO-3-CH ₃ OC ₆ H ₄	6f	41	7 <b>f</b>	-
7	p-FC ₆ H ₄	6g	27	7g	-
8	m-NO ₂ C ₆ H ₄	6h	45	7h	-
9	p-ClC ₆ H ₄	6i	-	7i	14
10	p-BrC ₆ H₄	6 <b>j</b>	-	<b>7</b> j	31

TABLE 3. Amine-catalyzed formation of spirocyclohexano-1,3-thiazole

Entry	amine	Ar	compd	Yield (%)
1	(iPr) ₂ NH	Ph	7a	35
2	DABCO	Ph	7a	30
3	DABCO	<i>p</i> -CH ₃ C ₆ H ₄	7b	29
4	(iPr) ₂ NH	<i>p-i-</i> PrC ₆ H ₄	7c	26
5	DABCO	<i>p-i-</i> PrC ₆ H ₄	7c	30
6	(iPr) ₂ NH	p-CH₃OC ₆ H ₄	7e	39
7	DABCO	p-CH₃OC ₆ H ₄	7e	42
8	DABCO	p-FC ₆ H ₄	7g	28
9	(iPr) ₂ NH	p-ClC ₆ H ₄	7i	25
10	DABCO	p-ClC ₆ H ₄	7i	48
11	(iPr) ₂ NH	p-BrC ₆ H ₄	7 <b>j</b>	31
12	DABCO	p-BrC ₆ H₄	7 <b>j</b>	55



Figure S1 Crystal structure of the compound 1e



Figure S2 Crystal structure of the compound 2a



Figure S3 Crystal structure of the compound 2b

Figure S4 Crystal structure of the compound 3b

Figure S5 Crystal structure of the compound 3g



Figure S6 Crystal structure of the compound 4d

Figure S7 Crystal structure of the compound 5f



Figure S8 Crystal structure of the compound 6b



Figure S9 Crystal structure of the compound 7b



Figure S10 Crystal structure of the compound 7c



Figure S11 Crystal structure of the compound 7i

1. Typical preparation procedure of dihydrothiophenes by one-pot four-component reaction of 1,3-thiazolidinedione, benzaldehyde, malononitrile and piperidine: A mixture of benzaldehyde (4.0 mmol, 0.424g), malononitrile (4.0 mmol, 0.264 g) and piperidine (4.0 mmol, 0.350 g) in acetonitrile (5mL)was stirred at room temperature for two minutes. Then 1,3-thiazolidinedione (4.0mmol) was added and the reaction was stirred at room temperature for additional 48 hours. The resulting precipitate was collected by filtration and washed with acetonitrile. The crude product was recrystallized with amixture of acetonitrile and N,N-dimthylforamide to give th pure product 1a:

The same reaction procedure was carried out by using other aromatic aldehydes and other amine to substitute piperidine to give products 1b-1k, 2a-2g, 3a-3j, 4a-4g, 5a-5h.

**1a**: white solid, 41%, m.p. 220~222 □; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.93 (s, 1H, NH), 7.38 □ 7.36 (m, 2H, ArH), 7.30 □ 7.28 (m, 3H, ArH), 7.07 (s, 2H, NH₂), 4.60 (d, J = 3Hz, 1H, CH), 4.20 (s, 1H, CH), 3.33~3.29 (m, 4H, NCH₂), 1.57 □ 1.51 (m, 2H, CH₂), 1.45 □ 1.44 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 161.8, 152.0, 142.2, 128.7, 127.4, 127.0, 118.4, 70.6, 55.6, 51.0, 25.4, 23.7; IR(KBr) v: 3667, 3399, 3306, 3194, 2942, 2855, 2195, 1686, 1654, 1587, 1491, 1449, 1246, 1137, 1025, 998, 751 cm⁻¹; MS(m/z): 355.53 ([M-1]⁺) 100%; Anal Calcd for C₁₈H₂₀N₄O₂S: C 60.65, H 5.66, N 15.72; Found: C 60.83, H 5.38, N 15.54.



¹H NMR of **1a**(600 MHz, DMSO- $d_6$ )



 13 C NMR of **1a** (150 MHz, DMSO- $d_6$ )

**1b**: white solid, 31%, m.p.  $202\sim204\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.95 (s, 1H, NH), 7.17 (s, 4H, ArH), 7.04 (s, 2H, NH₂), 4.56 (d, J = 3.6 Hz, 1H, CH), 4.39 (s, 1H, CH), 3.31 $\Box$ 3.30(m,

4H, 2CH₂), 2.29 (s, 3H, CH₃), 1.54 $\square$ 1.52 (m, 2H, CH₂), 1.46 $\square$ 1.43 (m, 4H, 2CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.6, 152.0, 139.2, 136.6, 129.3, 126.9, 118.4, 70.7, 55.7, 50.8, 25.4, 23.7, 20.6; IR(KBr)  $\upsilon$ : 3409, 3287, 3220, 3022, 2924, 2859, 2175, 1681, 1625, 1580, 1474, 1346, 1245, 1201, 1120, 1021, 994, 955, 879, 851, 811, 773, 740; MS(m/z): 369.33 ([M-1]⁺) 100%; Anal Calcd for C₁₉H₂₂N₄O₂S: C 61.60, H 5.99, N 15.12; Found: C 61.49, H 5.71, N 14.83.



 1 H NMR of **1b**(600 MHz, DMSO- $d_6$ )



 13 C NMR of **1b** (150 MHz, DMSO- $d_6$ )

**1c**: white solid, 45%, m.p.  $214\sim216$   $\square$ ; H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 10.00 (s, 1H, NH), 7.24 (d, J = 7.8Hz, 2H, ArH), 7.20 (d, J = 7.8Hz, 2H, ArH), 7.11 (s, 2H, NH₂), 4.56 (s, 1H, CH),

4.38 (s, 1H, CH), 3.33~3.27 (m, 4H, CH₂), 2.90 $\Box$ 2.84 (m, 1H, CH), 1.53 (m, 2H, CH₂), 1.44 (m, 4H, CH₂); ¹³CNMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.6, 152.0, 147.5, 139.6, 126.9, 126.6, 118.5, 70.6, 55.7, 50.8, 33.1, 25.3, 23.8, 23.7; IR(KBr)  $\upsilon$ : 3401, 3308, 3194, 2953, 2195, 1688, 1654, 1588, 1496, 1380, 1248, 1137, 1059, 1023, 893, 822, 740; MS(m/z): 397.40 ([M-1]⁺) 100%. Anal Calcd for C₂₁H₂₆N₄O₂S: C 63.29, H 6.58, N 14.06; Found: C 63.64, H 6.76, N 13.82.



**1d**: grey solid, 32%, m.p. 230~233  $\Box$ ; H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.94 (brs, 1H, NH), 9.39 (s, 1H, OH), 7.07 (d, J = 9.6 Hz, 4H, ArH), 6.74 (d, J = 7.8 Hz, 2H, NH₂), 4.50 (s, 1H, CH),

4.33 (s, 1H, CH),  $3.27\sim3.32$  (m, 4H, 2CH₂),  $1.50\sim1.58$  (m, 2H, CH₂),  $1.39\sim1.48$  (m, 4H, CH₂);  13 CNMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.3, 156.7, 151.9, 132.3, 128.0, 118.5, 115.4, 71.1, 55.9, 25.4, 23.7; IR(KBr)  $\upsilon$ : 3400, 3304, 3197, 3014, 2942, 2857, 2193, 1887, 1648, 1586, 1510, 1446, 1377, 1253, 1142, 1023, 1000, 955, 892, 725, 650, 604, 549, 512; MS(m/z): 371.40 ([M-1]⁺) 36.0%; Anal Calcd for C₁₈H₂₀N₄O₃S: C 58.05, H 5.41, N 15.04; Found: C 58.27, H 5.72, N 14.86.



 1 H NMR of **1d** (600 MHz, DMSO- $d_{6}$ )



 13 C NMR of **1d** (150 MHz, DMSO- $d_6$ )

**1e**: light yellow solid, 48%, m.p. 210~212 □;1H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.94 (s, 1H, NH), 7.20(d, J = 8.4Hz, 2H, ArH), 7.03 (s, 2H, NH₂), 6.92 (d, J = 8.4Hz, 2H, ArH), 4.56 (d, J = 3.6

Hz, 1H, CH), 4.37 (s, 1H, CH), 3.74 (s, 3H, OCH₃), 3.31 $\square$ 3.29 (m, 4H, CH₂), 1.56 $\square$ 1.52 (m, 2H, CH₂), 1.45 $\square$ 1.43 (m, 4H, 2CH₂); ¹³CNMR (150 MHz, DMSO- $d_6$ ) δ: 161.4, 158.6, 152.0, 134.0, 131.8, 128.1, 118.4, 114.8, 114.1, 70.9, 55.8, 55.4, 55.1, 50.5, 25.4, 23.7; IR(KBr)  $\upsilon$ : 3403, 3309, 3220, 3011, 2929, 2858, 2175, 1735, 1682, 1582, 1510, 1472, 1344, 1248, 1178, 1148, 1119, 1029, 954, 886, 775, 743; MS(m/z): 385.53 ([M-1]⁺) 100%; Anal Calcd for C₁₉H₂₂N₄O₃S: C 59.05, H 5.74, N 14.50; Found: C 58.74, H 6.11, N 14.22.



 1 H NMR of **1e** (600 MHz, DMSO- $d_6$ )



 13 C NMR of **1e** (150 MHz, DMSO- $d_6$ )

**1f**: light yellow solid, 56%, m.p. 209~211  $\Box$ ; H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.93 (s, 1H, NH), 8.89 (s, 1H, OH), 7.00 (s, 2H, NH₂), 6.82 (d, J = 1.8 Hz, 1H, ArH), 6.75 (d, J = 8.4 Hz, 1H,

ArH),  $6.68 \Box 6.66$  (m, 1H, ArH), 4.52 (d, J = 3 Hz, 1H, CH), 4.37 (s, 1H, CH), 3.75 (s, 3H, OCH₃),  $3.33 \Box 3.29$  (m, 4H, 2CH₂),  $1.54 \Box 1.53$  (m, 2H, CH₂),  $1.46 \Box 1.44$  (m, 4H, CH₂);  13 C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.4, 151.9, 147.6, 145.8, 132.8, 119.1, 118.5, 115.5, 110.2, 70.9, 55.9, 55.6, 51.0, 25.4, 23.7; IR(KBr)  $\upsilon$ : 3373, 3313, 3222, 2941, 2855, 2179, 1694, 1667, 1638, 1573, 1510, 1469, 1357, 1313, 1269, 1239, 1205, 1146, 1026, 950, 856, 824, 743; MS(m/z): 401.27 ([M-1]⁺) 100%; Anal Calcd for C₁₉H₂₂N₄O₄S: C 56.70, H 5.51, N 13.92; Found: C 56.89, H 5.73, N 13.54.



**1g**: yellow solid, 43%, m.p. 220~222 □; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.02 (s, 1H, NH), 7.35 □ 7.32 (m, 2H, ArH), 7.20 (t, J = 8.4 Hz, 2H, ArH), 7.16 (s, 2H, NH₂), 4.61(s, 1H, CH), 4.38 (s,

1H, CH),  $3.32\sim3.30$  (m, 4H, 2CH₂),  $1.54\Box1.53$  (m, 2H, CH₂),  $1.45\Box1.44$  (m, 4H, 2CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.2, 161.8, 160.6, 152.0, 138.4, 129.0, 128.9, 118.3, 115.5, 115.4, 70.6, 55.7, 50.2, 25.4, 23.7; IR(KBr)  $\upsilon$ : 3398, 3305, 3195, 3009, 2938, 2853, 2193, 1689, 1655, 1581, 1507, 1448, 1380, 1243, 1136, 1093, 1022, 997, 892, 825, 740; MS(m/z): 373.27 ([M-1]⁺) 100%; Anal Calcd for C₁₈H₁₉FN₄O₂S: C 57.74, H 5.11, N 14.96; Found: C 57.92, H 5.41, N 14.68.



**1h**: white solid, 35%, m.p. 299~301 $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.96 (s, 1H, NH), 7.43 (d, J = 8.4Hz, 2H, ArH), 7.32 (d, J = 8.4Hz, 2H, ArH), 7.12 (s, 2H, NH₂), 4.61 (s, 1H, CH), 4.41 (s, 1H, CH), 3.32 $\square$ 3.31 (m, 4H, CH₂), 1.54 $\square$ 1.53 (m, 2H, CH₂), 1.45 $\square$ 1.44 (m, 4H, CH₂); ¹³C

NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.0, 152.0, 141.2, 131.9, 131.3, 129.2, 128.9, 128.7, 118.3, 70.3, 55.5, 50.3, 25.4, 23.7; IR(KBr)  $\upsilon$ : 3404, 3308, 3221, 2929, 2858, 2175, 1677, 1625, 1578, 1478, 1406, 1344, 1243, 1092, 1018, 817, 741; MS(m/z): 389.33 ([M-1]⁺) 100%, 391.27([M-1]⁺) 44%; Anal Calcd for  $C_{18}H_{19}CIN_4O_2S$ : C 55.31, H 4.90, N 14.33; Found: C 55.09, H 5.38, N 14.16.



**1i**: light yellow, 49%, m.p. 220~222 □; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.97(s, 1H, NH), 7.57 (d, J = 8.4Hz, 2H, ArH), 7.27 (d, J = 8.4Hz, 2H, ArH), 7.13 (s, 2H, NH₂), 4.60 (s, 1H, CH), 4.10 (s, 1H, CH), 3.3~3.30 (m, 4H, CH₂), 1.54□1.52 (m, 2H, CH₂), 1.45□1.44 (m, 4H, 2CH₂); ¹³C

¹³C NMR of **1h** (150 MHz, DMSO-*d*₆)

NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.8, 151.7, 141.4, 131.8, 131.3, 131.1, 129.0, 120.2, 118.0, 70.0, 55.1, 50.1, 25.1, 23.4; IR(KBr)  $\upsilon$ : 3404, 3301, 3221, 2927, 2858, 2173, 1723, 1678, 1625, 1578, 1479, 1405, 1346, 1243, 1202, 1073, 1012, 955, 889, 815, 740, 695; MS(m/z): 433.33 ([M-1]⁺) 100%; Anal Calcd for C₁₈H₁₉BrN₄O₂S: C 49.66, H 4.40, N 12.87; Found: C 49.47, H 4.73, N 12.55.



**1j**: grey solid, 27%, m.p. 209~211  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.60 (s, 1H, NH), 8.25 (d, J = 8.4Hz, 2H, ArH), 7.60(d, J = 8.4Hz, 2H, ArH), 7.23 (s, 2H, NH₂), 4.76 (s, 1H, CH), 4.48 (s, 1H, CH), 3.33~3.31 (m, 4H, 2CH₂), 1.54 $\Box$ 1.53 (m, 2H, CH₂), 1.46 $\Box$ 1.45 (m, 4H, CH₂); ¹³CNMR (150 MHz, DMSO- $d_6$ ) δ: 162.5, 152.0, 150.0, 146.8, 128.4, 124.0, 118.1, 69.7, 55.1, 50.3, 25.4,

23.7; IR(KBr)  $\upsilon$ : 3420, 3331, 3232, 2950, 2859, 2177, 1668, 1573, 1521, 1475, 1347, 1240, 1137, 1109, 997, 896, 852, 741, 695; MS(m/z): 400.13 ([M-1]⁺) 100%; Anal Calcd for C₁₈H₁₉N₅O₄S: C 53.85, H 4.77, N 15.94; Found: C 53.37, H 4.90, N 15.67.



**1k**: light yellow solid, 46%, m.p. 231~233  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 10.06 $\Box$ 9.91 (brs, 1H, NH), 8.18 $\Box$ 8.17 (m, 2H, ArH), 7.80 $\Box$ 7.79 (d, J=7.8 Hz, 1H, ArH), 7.71 $\Box$ 7.68 (m, 1H, ArH), 7.24 (s, 2H, NH₂), 4.78 (s, 1H, CH), 4.48 (s, 1H, CH), 3.33 $\Box$ 3.32 (m, 4H, 2CH₂), 1.55 $\Box$ 1.53 (m, 2H, CH₂), 1.47 $\Box$ 1.44 (m, 4H, 2CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ :162.4, 151.8, 147.8,

144.2, 133.8, 130.1, 122.2, 121.3, 117.9, 69.6, 55.2, 49.9, 25.1, 23.4; IR(KBr)  $\upsilon$ : 3406, 3317, 3233, 3204, 3087, 2940, 2856, 2180, 1694, 1667, 1574, 1529, 1481, 1356, 1254, 1207, 1170, 1139, 1093, 995, 933, 872, 814, 739, 691; MS(m/z): 400.33 ([M-1]⁺) 100%; Anal Calcd for C₁₈H₁₉N₅O₄S: C 53.85, H 4.77, N 15.94; Found: C 53.69, H 5.12, N 15.50.





¹³C NMR of **1k** (150 MHz, DMSO- $d_6$ )

**2a**: white solid, 32.7%, m.p. 198~200  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.92 (s, 1H, NH), 7.39~7.36(t, J = 7.2Hz, 2H, ArH), 7.30 (d, J = 6.6Hz, 3H, ArH), 7.13 (s, 2H, NH₂), 4.61 (s, 1H, CH), 4.42 (s, 1H, CH), 2.84 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 161.8, 153.3, 142.3, 128.7, 127.4, 127.0, 118.4, 70.7, 55.7, 51.0; IR(KBr)  $\upsilon$ : 3390, 3317, 3277, 3218, 3061, 3030, 2989,

2928, 2175, 2126, 1684, 1627, 1579, 1494, 1453, 1408, 1327, 1255, 1210, 1197, 1166, 1120, 1066, 1039, 1006, 924, 883, 827, 750; MS(m/z): 315.53 ([M-1] $^+$ , 100%); Anal Calcd for C₁₅H₁₆N₄O₂S: C 56.94, H 5.10, N 17.71; Found: C 56.76, H 5.42, N 17.46.



¹H NMR of **2a** (600 MHz, DMSO- $d_6$ )



 13 C NMR of **2a** (150 MHz, DMSO- $d_6$ )

**2b**: light yellow solid, 41.5%, m.p. 205~208  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.91 (s, 1H, NH), 7.17(s, 4H, ArH), 7.09 (s, 2H, NH₂), 4.57 (s, 1H, CH), 4.38 (s, 1H, CH), 2.84 (s, 6H, CH₃), 2.29 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.6, 153.3, 139.2, 136.5, 129.3, 126.9, 118.4, 70.8, 55.7, 50.7, 20.6; IR(KBr)  $\upsilon$ : 3387, 3318, 3260, 3210, 3006, 2925, 2178, 1688, 1632,

1581, 1493, 1401, 1347, 1324, 1297, 1257, 1201, 1167, 1066, 1040, 1019, 917, 886, 813, 786, 753; MS(m/z): 329.60 ([M-1]⁺) 100%; Anal Calcd for  $C_{16}H_{18}N_4O_2S$ : C 58.16, H 5.49, N 16.96; Found: C 57.85, H 5.79, N 16.70.



¹H NMR of **2b** (600 MHz, DMSO-*d*₆)



 13 C NMR of **2b** (150 MHz, DMSO- $d_6$ )

**2c**: white solid, 36.2%, m.p. 198~201  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.90 (s, 1H, NH), 7.20(d, J = 7.2Hz, 2H, ArH), 7.09 (s, 2H, NH₂), 6.93 (d, J = 7.2Hz, 2H, ArH), 4.56 (s, 1H, CH), 4.37 (s, 1H, CH), 3.74 (s, 3H, OCH₃), 2.84 (S, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.5, 158.6, 153.3, 134.1, 131.9, 128.1, 118.5, 114.8, 114.1, 71.0, 55.8, 55.4, 55.0, 50.4; IR(KBr)  $\upsilon$ : 3382,

3316, 3277, 3208,2931, 2836, 2180, 1687, 1633, 1584, 1510, 1348, 1325, 1303, 1249, 1203, 1177, 1111, 1064, 1035, 891, 829, 771, 753; MS (m/z): 345.40 ([M-1] $^+$ , 100%); Anal Calcd for  $C_{16}H_{18}N_4O_3S$ : C 55.48, H 5.24, N 16.17; Found: C 55.56, H 5.60, N 15.87.



2000c

-2000c

-1000c

**2d**: white solid, 16.4%, m.p. 195~197  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.71 $\Box$ 9.35 (brs, 1H, NH), 7.39 $\Box$ 7.29 (m, 2H, ArH), 7.25 $\Box$ 7.17 (m, 2H, ArH), 7.15 (s, 2H, NH₂), 4.61 (s, 1H, CH), 4.39 (s, 1H, CH), 2.84 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.2, 161.9, 160.6, 153.3,

138.4, 129.0, 128.9, 118.3, 115.5, 115.4, 70.6, 55.7, 50.1; IR(KBr) υ: 3383, 3315, 3278, 3202, 2932, 2182, 1687, 1630, 1581, 1505, 1344, 1314, 1254, 1211, 1159, 1095, 1064, 1039, 1012, 918, 884, 849, 826, 790, 753; MS (m/z): 333.53 ([M-1]⁺, 100%); Anal Calcd for C₁₅H₁₅FN₄O₂S: C 53.88, H 4.52, N 16.76; Found: C 53.65, H 4.77, N 16.38.



**2e**: light yellow solid, 47.5%, m.p. 207~209  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.13  $\Box$ 9.77 (brs, 1H, NH), 7.44 (d, J = 7.2Hz, 2H, ArH), 7.33 (d, J = 7.2Hz, 2H, ArH), 7.18 (s, 2H, NH₂), 4.61 (s, 1H, CH), 4.41 (s, 1H, CH), 2.85 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.1, 153.3, 141.2, 131.9, 131.0, 129.0, 128.9, 128.7, 118.3, 70.3, 55.5, 50.2; IR(KBr)  $\upsilon$ : 3374, 3315, 3267,

3206, 2930, 2179, 1687, 1631, 1579, 1491, 1407, 1346, 1317, 1289, 1253, 1204, 1168, 1091, 1066, 1041, 1014, 918, 890, 820, 782; MS(m/z): 349.40 ([M-1] $^+$ , 100%); Anal Calcd for C₁₅H₁₅ClN₄O₂S: C 51.35, H 4.31, N 15.97; Found: C 51.09, H 4.58, N 15.61.



 1 H NMR of **2e** (600 MHz, DMSO- $d_{6}$ )



 13 C NMR of **2e** (150 MHz, DMSO- $d_6$ )

**2f**: light yellow solid, 36.2%, m.p. 218~220  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 10.21 $\Box$ 9.47 (brs, 1H, NH), 7.58(d, J = 7.2Hz, 2H, ArH), 7.27(d, J = 6.0Hz, 2H, ArH), 7.18 (s, 2H, NH₂), 4.60 (s, 1H, CH), 4.41 (s, 1H, CH), 2.85 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.1, 153.3, 141.6, 131.8, 131.6, 131.1, 129.3, 120.4, 118.3, 70.3, 55.4, 50.3; IR(KBr)  $\upsilon$ : 3375, 3315, 3265,

 $3209, 2928, 2176, 1686, 1631, 1578, 1489, 1405, 1346, 1317, 1289, 1254, 1203, 1168, 1070, 1041, \\ 1011, 918, 889, 840, 817, 781, 752; MS(m/z): 393.33([M-1]^+, 100\%); 395.33([M-1]^+, 100\%); Anal Calcd for C₁₅H₁₅BrN₄O₂S: C 45.58, H 3.82, N 14.17; Found: C 45.51, H 4.03, N 13.89.$ 



**2g**: yellow solid, 26.5%, m.p. 188~190  $\Box$ ; 1H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 10.30~9.58 (brs, 1H, NH), 8.19(s, 2H, ArH), 7.81 (d, J = 7.2Hz, 1H, ArH), 7.70 (t, J = 7.8Hz, 1H, ArH), 7.30 (s, 2H, NH), 4.78 (s, 1H, CH), 4.48 (s, 1H, CH); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 170.7, 170.6, 170.6, 162.7, 153.4, 148.1, 148.0, 144.5, 137.0, 135.2, 134.1, 130.3, 123.0, 122.5, 122.4, 121.7, 121.6, 118.2, 69.8, 55.4, 50.1; IR(KBr)  $\upsilon$ : 3392, 3324, 3280, 3210, 3072, 2996, 2912, 2178, 1672, 1573,

1530, 1489, 1451, 1405, 1341, 1303, 1256, 1200, 1162, 1091, 1065, 1038, 1015, 948, 905, 881, 808, 775, 753; MS (m/z): 360.53 ([M-1]⁺, 100%); Anal Calcd for  $C_{15}H_{15}N_5O_4S$ : C 49.85, H 4.18, N 19.38; Found: C 49.93, H 4.58, N 18.87.



**3a**: white solid, 34.7%, m.p. 197~198  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.87~9.53 (brs, 1H, NH), 7.39 $\square$ 7.36 (m, 2H, ArH), 7.31 $\square$ 7.28 (m, 3H, ArH), 7.11 (s, 2H, NH₂), 4.60 (d, J = 1.8Hz, 1H, CH), 4.51 (s, 1H, CH), 3.32~3.22 (m, 4H, CH₂), 1.81 $\square$ 1.25 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.9, 151.4, 142.4, 128.7, 127.3, 127.0, 118.5, 70.7, 55.9, 50.6, 46.0, 25.5, 24.0; IR(KBr)  $\upsilon$ : 3406, 3312, 3067, 3030, 2954, 2868, 2177, 1698, 1672, 1638, 1570, 1494, 1469, 1359,

1336, 1301, 1261, 1228, 1189, 1162, 1077, 1026, 1002, 909, 889, 845, 813, 784, 767; MS(m/z): 341.27 ([M-1]⁺) 100%; Anal Calcd for  $C_{17}H_{18}N_4O_2S$ : C 59.63, H 5.30, N 16.36; Found: C 59.54, H 5.56, N 16.02.





**3b**: light yellow solid, 32.4%, m.p. 204~207  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.79~9.66 (brs, 1H, NH), 7.17 (s, 4H, ArH), 7.07 (s, 2H, NH₂), 4.58 (s, 1H, CH), 4.48 (s, 1H, CH), 3.37~3.22 (m, 4H, CH₂), 2.29 (s, 3H, CH₃), 1.81 $\square$ 1.75 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.3, 161.7, 151.4, 139.4, 136.5, 129.2, 126.9, 118.5, 70.8, 55.9, 50.4, 46.0, 35.7, 30.7, 25.5, 24.0, 20.6; IR(KBr)  $\upsilon$ : 3387, 3319, 3214, 2953, 2878, 2176, 1686, 1627, 1580, 1482, 1386, 1353, 1296,

1254, 1231, 1205, 1186, 1115, 1022, 914, 880, 845, 808, 784, 752; MS(m/z): 355.67 ([M-1]⁺) 100%; Anal Calcd for  $C_{18}H_{20}N_4O_2S$ : C 60.65, H 5.66, N 15.72; Found: C 60.32, H 5.90, N 15.49.



 1 H NMR of **3b** (600 MHz, DMSO- $d_{6}$ )



 13 C NMR of **3b** (150 MHz, DMSO- $d_6$ )

**3c**: light yellow solid, 41.3%, m.p. 210~213  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.54 (brs, 1H, NH), 7.24 (d, J = 7.8Hz , 2H, ArH), 7.20 (d, J = 7.8Hz , 2H, ArH), 7.08 (s, 2H, NH₂), 4.58 (s, 1H, CH), 4.47 (s, 1H, CH), 3.38~3.22 (m, 4H, CH₂), 2.88~2.85 (m, 1H, CH), 1.81 $\Box$ 1.75 (m, 4H, CH₂), 1.20 (d, J = 6.6Hz , 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.7, 151.4, 147.5, 139.8, 126.9, 126.6, 118.6, 70.8, 55.9, 50.3, 46.0, 33.1, 25.5, 24.0, 23.9; IR(KBr)  $\upsilon$ : 3396, 3265, 3192,

2958, 2881, 2196, 1690, 1656, 1590, 1464, 1365, 1288, 1265, 1215, 1178, 1112, 1054, 1016, 917, 889, 824, 772; MS(m/z): 383.67 ([M-1]⁺) 100%; Anal Calcd for  $C_{20}H_{24}N_4O_2S$ : C 62.48, H 6.29, N 14.57; Found: C 62.27, H 6.48, N 14.22.





**3d**: light yellow solid, 46.0%, m.p. 218~220  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.76 (s, 1H, NH), 7.20 (d, J = 7.8Hz, 2H, ArH), 7.06 (s, 2H, NH₂), 6.93 (d, J = 7.2Hz, 2H, ArH), 4.56 (s, 1H, CH), 4.46 (s, 1H, CH), 3.74(s, 3H, OCH₃), 3.37~3.22 (m, 4H, CH₂), 1.81 $\Box$ 1.75 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.5, 158.5, 151.4, 134.2, 128.1, 118.5, 114.1, 71.0, 56.1, 55.1, 50.0, 46.0, 35.8, 25.5, 24.0; IR(KBr)  $\upsilon$ : 3394, 3315, 3255, 3218, 3074, 2951, 2928, 2875, 2836,

2177, 1684, 1625, 1582, 1511, 1461, 1390, 1344, 1304, 1249, 1213, 1178, 1114, 1034, 1012, 911, 880, 826, 802, 780, 753; MS(m/z): 371.40 ([M-1]⁺) 100%; Anal Calcd for  $C_{17}H_{18}N_4O_2S$ : C 58.05, H 5.41, N 15.04; Found: C 58.30, H 5.82, N 14.79.



**3e**: grey solid, 33.0%, m.p. 216~219  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.91~9.14 (m, 2H, NH, OH), 7.08 (d, J = 7.2Hz, 2H, ArH), 7.03 (s, 2H, NH₂), 6.74 (d, J = 7.2Hz, 2H, ArH), 4.51 (s, 1H, CH), 4.43 (s, 1H, CH), 3.36~3.22 (m, 4H, CH₂), 1.78 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 161.4, 156.6, 151.4, 132.5, 128.0, 118.6, 115.4, 71.2, 56.1, 50.1, 46.0, 25.5, 24.0; IR(KBr)  $\upsilon$ : 3394, 3297, 3191, 2979, 2885, 2195, 1657, 1587, 1511, 1479, 1373, 1266, 1224, 1808,

1100, 1014, 915, 877, 818; MS(*m/z*): 357.40 ([M-1]⁺) 100%; Anal Calcd for C₁₇H₁₈N₄O₃S: C 56.97, H 5.06, N 15.63; Found: C 56.77, H 5.34, N 15.26.



¹H NMR of **3e** (600 MHz, DMSO- $d_6$ )



 13 C NMR of **3e** (150 MHz, DMSO- $d_6$ )

**3f**: white solid, 30.5%, m.p. 204~206  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.71 (s, 1H, NH), 8.90(s, 1H, OH), 6.99 (s, 2H, NH₂), 6.83(d, J = 1.2Hz, 1H, ArH), 6.75 (d, J = 7.8Hz, 1H, ArH), 6.67~6.68(m, 1H, ArH), 4.52 (d, J = 3.0Hz, 1H, CH), 4.46 (s, 1H, CH), 3.75(s, 3H, OCH₃), 3.36~3.24 (m, 4H, CH₂), 1.79~1.78 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ :161.5, 151.4, 147.6, 145.9, 133.0, 119.1, 118.5, 115.5, 111.3, 71.2, 55.6, 46.1; IR(KBr)  $\upsilon$ : 3506, 3425, 3333,

3232, 2976, 2880, 2179, 1670, 1635, 1576, 1513, 1351, 1310, 1257, 1225, 1198, 1030, 875, 812, 780, 749; MS(m/z): 387.53([M-1]⁺) 100%; Anal Calcd for  $C_{18}H_{20}N_4O_4S$ : C 55.66, H 5.19, N 14.42; Found: C 55.37, H 5.49, N 14.27.



**3g**: yellow solid, 33.9%, m.p. 205~207  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.74 (s, 1H, NH), 7.36~ 7.33(m, 2H, ArH), 7.20 (t, J = 8.4Hz, 2H, ArH), 7.10 (s, 2H, NH₂), 4.64 (d, J = 2.4Hz, 1H, CH), 4.50 (s, 1H, CH), 3.45~3.24 (m, 4H, CH₂), 1.95~1.65 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ:161.9, 160.6, 151.4, 138.5, 128.9, 128.8, 118.3, 115.5, 70.8, 55.9, 49.9, 46.1; IR(KBr)  $\upsilon$ : 3403, 3194, 3066, 2975, 2880, 2187, 1689, 1663, 1581, 1508, 1361, 1257, 1226, 885, 819;

MS(m/z): 359.60([M-1]⁺) 100%; Anal Calcd for  $C_{17}H_{17}FN_4O_2S$ : C 56.65, H 4.75, N 15.55; Found: C 56.48, H 5.03, N 15.22.



**3h**: light yellow solid, 40.7%, m.p. 216~218 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.72 (s, 1H, NH), 7.44 (d, J = 7.2Hz, 2H, ArH), 7.34 (d, J = 6.6Hz, 2H, ArH), 7.16 (s, 2H, NH₂), 4.62 (s, 1H, CH), 4.50 (s, 1H, CH), 3.39~3.23 (m, 4H, CH₂), 1.81~1.76 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.3, 162.1, 151.4, 141.3, 131.9, 128.9, 128.7, 118.3, 70.4, 55.7, 49.9, 46.0, 35.8, 30.7, 25.6, 25.5, 24.0; IR(KBr)  $\upsilon$ : 3390, 3314, 3257, 3215, 2952, 2879, 2176, 1685, 1626, 1577,

 13 C NMR of **3g** (150 MHz, DMSO- $d_6$ )

1488, 1390, 1342, 1288, 1251, 1232, 1211, 1189, 1161, 1089, 1013, 914, 881, 846, 817, 781, 752; MS(m/z): 375.47 ([M-1]⁺) 100%; 377.27 ([M-1]⁺) 52%; Anal Calcd for  $C_{17}H_{17}CIN_4O_2S$ : C 54.18, H 4.55, N 14.87; Found: C 53.77, H 4.74, N 14.90.



**3i**: light yellow solid, 36.2%, m.p. 220~222  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.78 (s, 1H, NH), 7.57 (d, J = 7.8Hz, 2H, ArH), 7.27 (d, J = 7.8Hz, 2H, ArH), 7.16 (s, 2H, NH₂), 4.60 (s, 1H, CH), 4.49 (s, 1H, CH), 3.39~3.22 (m, 4H, CH₂), 1.81~1.76 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.3, 162.1, 151.4, 141.7, 131.6, 129.3, 120.4, 118.3, 70.3, 55.6, 50.0, 25.5, 24.0; IR(KBr)  $\upsilon$ : 3380, 3315, 3254, 3211, 2952, 2877, 2175, 1684, 1627, 1577, 1485, 1384, 1314, 1288,

¹³C NMR of **3h** (150 MHz, DMSO- $d_6$ )

1251, 1232, 1208, 1189, 1070, 1009, 912, 879, 844, 813, 781, 751; MS(m/z): 419.27 ([M-1]⁺) 100%; 421.20 ([M-1]⁺) 100%; Anal Calcd for  $C_{17}H_{17}BrN_4O_2S$ : C 48.46, H 4.07, N 13.30; Found: C 48.29, H 4.23, N 13.05.



**3j**: yellow solid, 34.1%, m.p. 216~219  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.75~9.50 (s, 1H, NH), 8.19(s, 1H, ArH), 7.81 (d, J = 7.2Hz, 2H, ArH), 7.71~7.69 (m, 1H, ArH), 7.28 (s, 2H, NH₂), 4.79 (s, 1H, CH), 4.57 (s, 1H, CH), 3.42~3.23 (m, 4H, CH₂), 1.83~1.76 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.8, 151.5, 148.0, 144.6, 134.0, 130.3, 122.4, 121.6, 118.2, 69.9, 55.7, 49.8, 46.0, 25.5, 24.0, 23.9; IR(KBr)  $\upsilon$ : 3394, 3312, 3232, 3202, 3089, 3066, 2975, 2951, 2871,

2512, 2183, 2134, 1698, 1576, 1526, 1465, 1356, 1266, 1207, 1189, 1106, 1088, 1024, 934, 911, 876, 845, 814, 754; MS(m/z): 386.73([M-1]⁺) 100%; Anal Calcd for  $C_{17}H_{17}N_5O_4S$ : C 52.70, H 4.42, N 18.08; Found: C 52.87, H 4.75, N 17.73.



 1 H NMR of **3j** (600 MHz, DMSO- $d_{6}$ )



 13 C NMR of **3j** (150 MHz, DMSO- $d_6$ )

**4a**: grey solid, 35.8%, m.p. 197~198 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.10 (s, 1H, NH), 7.37 (t, J = 7.2Hz, 2H, ArH), 7.31 $\Box$ 7.29 (m, 3H, ArH), 7.14 (s, 2H, NH₂), 4.59 (s, 1H, CH), 4.40 (s, 1H, CH), 3.55~3.54 (m, 4H, CH₂), 3.36~3.35 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ:161.7, 152.3, 142.2, 128.7, 127.4, 127.0, 118.4, 70.7, 65.8, 55.6, 50.9; IR(KBr)  $\upsilon$ :3325, 3207, 2978, 2903, 2862, 2178, 1698, 1669, 1573, 1495, 1459, 1359, 1304, 1237, 1202, 1114, 1071, 1005,

933, 891, 869, 842, 745; MS(*m/z*): 357.40 ([M-1]⁺) 100%; Anal Calcd for C₁₇H₁₈N₄O₃S: C 56.97, H 5.06, N 15.63; Found: C 56.78, H 5.45, N 15.34.



¹H NMR of **4a** (600 MHz, DMSO-*d*₆)



**4b**: grey solid, 41.0%, m.p. 203~205 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.04 (s, 1H, NH), 7.17 (s, 4H, ArH), 7.04 (s, 2H, NH₂), 4.55 (d, J = 2.4Hz, 1H, CH), 4.38 (s, 1H, CH), 3.55~3.53 (m, 4H, CH₂), 3.35~3.34 (m, 4H, CH₂), 2.29 (s, 3H, CH₃), ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ:161.5, 152.3, 139.2, 136.6, 129.3, 126.9, 118.4, 70.8, 65.8, 55.7, 50.7, 20.6; IR(KBr)  $\upsilon$ :3418, 3307, 3230, 3198, 2984, 2924, 2864, 2183, 1711, 1663, 1637, 1593, 1519, 1456, 1434, 1345, 1307, 1275, 1245,

1180,1106, 1067, 1020, 983, 875, 832, 806, 758; MS(m/z): 371.47 ([M-1]⁺) 100%; Anal Calcd for  $C_{18}H_{20}N_4O_3S$ : C 58.05, H 5.41, N 15.04; Found: C 58.35, H 5.27, N 14.67.





**4c**: white solid, 21.4%, m.p. 198~201 $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.04 (s, 1H, NH), 7.20 (d, J = 9Hz, 2H, ArH), 7.04 (s, 2H, NH₂), 6.92 (d, J = 8.4Hz, 2H, ArH), 4.55 (d, J = 2.4Hz, 1H, CH), 4.37 (s, 1H, CH), 3.74 (s, 3H, OCH₃), 3.55~3.54 (m, 4H, CH₂), 3.35~3.34 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 161.4, 158.6, 152.3, 134.1, 128.1, 118.4, 114.1, 71.1, 65.8, 55.9, 55.0, 50.4; IR(KBr)  $\upsilon$ :3427, 3336, 3279, 2859, 2171, 1689, 1670, 1626, 1578, 1512, 1346, 1243,

1209, 1180, 1120, 1034, 1012, 877, 834, 750; MS(m/z): 387.67 ([M-1]⁺) 100%; Anal Calcd for  $C_{18}H_{20}N_4O_4S$ : C 55.66, H 5.19, N 14.42; Found: C 55.38, H 5.52, N 14.05.



 1 H NMR of **4c** (600 MHz, DMSO- $d_{6}$ )



¹³C NMR of **4c** (150 MHz, DMSO- $d_6$ )

**4d**: light yellow solid, 61.8%, m.p. 204~207 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.07 (s, 1H, NH), 7.36~7.33 (m, 2H, ArH), 7.21~7.18 (m, 2H, ArH), 7.13(s, 2H, NH₂), 4.62 (s, J = 1.8Hz, 1H, CH), 4.40 (s, 1H, CH), 3.55~3.54 (m, 4H, CH₂), 3.37~3.35 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ:162.3, 162.2, 161.8, 160.6, 152.4, 138.3, 129.0, 128.9, 118.3, 115.5, 115.4, 70.8, 65.8, 55.7, 50.3, 35.8, 30.7; IR(KBr)  $\upsilon$ :3380, 3326, 3211, 2974, 2922, 2864, 2176, 1698, 1667, 1569,

1507, 1461, 1360, 1240, 1208, 1159, 1010, 935, 872, 833, 790, 750; MS(*m/z*): 375.67 ([M-1]⁺) 100%; Anal Calcd for C₁₇H₁₇FN₄O₃S: C 54.25, H 4.55, N 14.88; Found: C 54.42, H 4.37, N 14.53.





**4e**: light yellow solid, 32.1%, m.p. 200~203 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.06 (s, 1H, NH), 7.43 (d, J = 8.4Hz, 2H, ArH), 7.33 (d, J = 8.4Hz, 2H, ArH), 7.14 (s, 2H, NH₂), 4.61 (s, 1H, CH), 4.40 (s, 1H, CH), 3.56~3.54 (m, 4H, CH₂), 3.36~3.35 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.4, 162.0, 152.3, 141.1, 132.0, 128.9, 128.7, 118.2, 70.5, 65.8, 55.5, 50.4, 35.8, 30.8; IR(KBr)  $\upsilon$ : 3428,3228, 3226, 2984, 2925, 2862, 2177, 1707, 1666, 1633, 1575, 1223, 1492, 1458, 1351, 1244, 1185, 1118, 1014, 984, 875, 843, 743; MS(m/z): 391.60 ([M-1]⁺) 100%,

 $393.47([M-1]^+)$  70%; Anal Calcd for  $C_{17}H_{17}ClN_4O_3S$ : C 51.97, H 4.36, N 14.26; Found: C 51.65 H 4.66, N 14.01.



 1 H NMR of **4e** (600 MHz, DMSO- $d_6$ )



 13 C NMR of **4e** (150 MHz, DMSO- $d_6$ )

**4f**: light yellow solid, 47.6%, m.p. 194~198 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.06 (s, 1H, NH), 7.57 (d, J = 8.4Hz, 2H, ArH), 7.27 (d, J = 8.4Hz, 2H, ArH), 7.13(s, 2H, NH₂), 4.58 (d, J = 2.4Hz, 1H, CH), 4.40 (s, 1H, CH), 3.55~3.54 (m, 4H, CH₂), 3.36~3.34 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.5, 162.0, 152.3, 141.5, 131.6, 129.3, 120.5, 118.2, 70.4, 65.8, 55.4, 50.4, 35.8, 30.8; IR(KBr)  $\upsilon$ : 3419, 3335, 3284, 3226, 2921, 2860, 2170, 1687, 16668, 1630, 1573, 1490, 1408, 1351, 1244, 1205, 1120, 1071, 1012, 876, 816, 743; MS(m/z): 435.20 ([M-1]⁺) 100%;

437.20 ([M-1]⁺) 100%; Anal Calcd for  $C_{17}H_{17}BrN_4O_3S$ : C 46.69, H 3.92, N 12.81; Found: C 46.27, H 3.66, N 12.40.



**4g**: light yellow solid, 32.0%, m.p. 210~213 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.08 (s, 1H, NH), 7.57(m, 2H, ArH), 7.80 (d, J = 7.8Hz, 1H, ArH), 7.69 (m, 1H, ArH), 7.25(s, 2H, NH₂), 4.77 (s, 1H, CH), 4.47 (s, 1H, CH), 3.56~3.54 (m, 4H, CH₂), 3.37~3.35 (m, 4H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.6, 152.4, 148.0, 144.4, 134.1, 130.3, 122.5, 121.6, 118.2, 69.8, 65.8, 55.4, 50.0, 35.8, 30.7; IR(KBr)  $\upsilon$ : 3374, 3326, 3205, 2988, 2901, 2866, 2176, 1703, 1664, 1569, 1528, 1499, 1462, 1356, 1263, 1238, 1211, 1115, 1007, 938, 870, 842, 820, 801; MS(m/z): 402.67 ([M-1][†])

 13 C NMR of **4f** (150 MHz, DMSO- $d_6$ )

100%; Anal Calcd for C₁₇H₁₇N₅O₅S: C 50.61, H 4.25, N 17.88; Found: C 50.39, H 4.72, N 17.34.



**5a**: white solid, 40.3%, m.p. 201~203 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.50~10.35 (brs, 1H, NH), 8.71~ 8.49 (brs, 1H, NH), 7.38~7.25 (m, 10H, ArH), 7.17 (s, 2H, NH₂), 4.56 (s, 1H, CH), 4.41~4.33 (m, 2H, CH₂), 4.19~4.07 (brs, 1H, CH); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 171.6, 168.5, 161.7, 153.0, 141.5, 139.0, 133.2, 131.0, 130.2, 129.9, 129.2, 128.7, 128.4, 127.5, 127.3, 127.1, 127.0, 118.2, 70.3, 55.2, 51.6, 51.6, 42.7; IR(KBr)  $\upsilon$ : 3441, 3320, 3221, 3153, 3062, 3031, 2969, 2177, 1702, 1684, 1619, 1576, 1494, 1451, 1349, 1257, 1186, 1079, 1026, 979, 879; MS (m/z): 377.40 ([M-1]⁺, 100%); Anal Calcd for C₂₀H₁₈N₄O₂S: C 63.47, H 4.79, N 14.80; Found: C 63.20, H

¹³C NMR of **4g** (150 MHz, DMSO- $d_6$ )

4.83, N 14.27.



 1 H NMR of **5a** (600 MHz, DMSO- $d_{6}$ )



**5b**: grey solid, 52.2%, m.p. 204~207 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 8.82~8.43 (brs, 1H, NH), 7.35~7.25 (m, 5H, ArH), 7.17 (s, 4H, ArH), 7.13 (s, 2H, NH₂), 4.51(s, 1H, CH), 4.38~4.35 (m, 2H, CH₂), 4.16~4.03 (brs, 1H, CH), 2.29 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 171.6, 161.5, 153.0, 139.0, 138.4, 136.7, 129.3, 128.4, 127.3, 127.0, 127.0, 118.2, 70.4, 55.3, 51.4, 42.7, 20.6,; IR(KBr)  $\upsilon$ :3401, 3340, 3180, 2971, 2208, 1962, 1642, 1582, 1541, 1452, 1455, 1354, 1254, 1201, 1108, 1029, 979, 871, 793; MS (m/z): 391.60 ([M-1]⁺, 100%), Anal Calcd for C₂₁H₂₀N₄O₂S: C 64.27, H 5.14, N 14.28; Found: C 63.85, H 5.46, N 14.03.





 13 C NMR of **5b** (150 MHz, DMSO- $d_6$ )

**5c**: white solid, 43.2%, m.p.  $211\sim212\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 10.58 $\sim$ 9.86 (brs, 1H, NH),  $8.80 \sim 8.46$  (brs, 1H, NH),  $7.35 \sim 7.33$  (m, 2H, ArH), 7.30 (d, J = 7.2Hz, 2H, ArH), 7.26~7.21(brs, 5H, ArH), 7.14(s, 2H, NH₂), 4.52 (s, 1H, CH), 4.40~4.33 (m, 2H, CH₂), 4.18~4.04 (brs, 1H, CH), 2.90~2.85 (m, 1H, CH), 1.20 (d, J = 7.2Hz, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 171.7, 161.6, 153.0, 147.6, 139.0, 138.8, 128.4, 127.3, 127.0, 127.0, 126.6, 118.3, 70.4, 55.2, 51.3, 42.7, 33.1, 23.8; IR(KBr) v: 3443, 3350, 3296, 3177, 2963, 2373, 2205, 1699, 1636, 1588, 1544, 1518, 1458, 1427, 1351, 1272, 1200, 1050, 977, 829, 791, 755; MS (m/z):

419.60 ([M-1] $^+$ , 100%) Anal Calcd for C₂₃H₂₄N₄O₂S: C 65.69, H 5.75, N 13.32; Found: C 65.45, H 5.90, N 12.87.





**5d**: light yellow solid, 59.0%, m.p. 198~200 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 11.01~9.86 (brs, 1H, NH), 9.17~8.59 (brs, 1H, NH), 7.57~7.51 (m, 4H, ArH), 7.49~7.46 (m, 1H, ArH), 7.44~7.42 (d, J = 8.4Hz, 2H, ArH), 7.36 (s, 2H, NH₂), 4.73 (s, 1H, CH), 4.62~4.55 (m, 2H, CH₂), 4.38~4.24 (brs, 1H, CH), 3.96 (s, 3H, OCH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ:171.6, 161.4, 158.7, 153.0, 139.0,128.4, 128.2, 127.3, 127.0, 118.2, 114.1, 70.7, 55.0, 42.7; IR(KBr)  $\upsilon$ : 3448, 3322, 3227, 3162, 2967, 2840, 2174, 1693, 1623, 1582, 1554, 1510, 1355, 1313, 1254, 1183, 1114, 1030, 981, 883, 828, 799, 763; MS (m/z): 407.47 ([M-1]⁺, 100%); Anal Calcd for C₂₁H₂₀N₄O₃S: C



 13 C NMR of **5d** (150 MHz, DMSO- $d_6$ )

**5e**: white solid, 42.9%, m.p. 210~212 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.60~10.30 (brs, 1H, NH), 8.78~8.44 (brs, 1H, NH), 7.35~7.33 (m, 4H, ArH), 4.57(s, 1H, CH), 4.41~4.33 (m, 2H, CH₂), 4.15~ 4.03 (brs, 1H, CH); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 171.6, 162.3, 161.8, 160.7, 153.0, 139.0, 137.6, 131.9, 131.8, 129.1, 129.0, 128.4, 127.3, 127.0, 118.2, 116.2, 116.1, 115.5, 115.4, 70.3, 55.3, 50.8, 42.7; IR(KBr)  $\upsilon$ : 3422, 3324, 3222, 3155, 2969, 2373, 2177, 1703, 1684, 1618, 1578, 1504, 11353, 1310, 1232, 1188, 1101, 980, 835, 809, 765; MS (m/z): 395.67 ([M-1]⁺, 100%); Anal Calcd for C₂₀H₁₇FN₄O₂S: C 60.59, H 4.32, N 14.13; Found: C 60.53, H 4.76, N 13.88.



**5f**: white solid, 66.9%, m.p. 211~213 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 10.63~10.28 (brs, 1H, NH), 8.77~8.43 (brs, 1H, NH), 7.45~7.43 (m, 2H, ArH), 7.36~7.33 (m, 4H, ArH), 7.30 (d, J = 7.2Hz, ArH), 7.27~7.23 (m, ArH, NH₂), 4.56 (s, 1H, CH), 4.41~4.33 (m, 2H, CH₂), 4.20~4.03 (brs, 1H, CH); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ:171.5, 162.0, 153.0, 140.4, 139.0, 132.1, 128.4, 127.2, 118.0, 70.2, 55.1, 42.7; IR(KBr)  $\upsilon$ : 3449, 3316, 3193, 2969, 2373, 2340, 2194, 1690, 1638, 1582, 1554, 1489, 1361, 1307, 1247, 1190, 1089, 1012, 978, 820, 783; MS (m/z): 411.20 ([M-1]⁺, 100%); 413.20 ([M-1]⁺, 47%); Anal Calcd for C₂₀H₁₇ClN₄O₂S: C 58.18, H 4.15, N 13.57; Found: C 57.92, H 4.46, N 13.25.

 13 C NMR of **5e** (150 MHz, DMSO- $d_6$ )



**5g**: light yellow solid, 57.4%, m.p. 218~220 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 11.02~10.32 (brs, 1H, NH), 9.12~8.82 (brs, 1H, NH), 7.92 (d, J = 8.4Hz, 2H, ArH), 7.70~7.68 (m, 2H, ArH), 7.66~7.59 (m, 7H, ArH, NH₂), 4.91 (s, 1H, CH), 4.77~4.70 (m, 2H, CH₂), 4.52~ 4.37 (brs, 1H, CH); ¹³C NMR (150 MHz, DMSO-d6) δ:171.5, 162.0, 153.0, 140.8, 139.0, 131.6, 129.4, 128.4, 127.3, 127.0, 120.6, 118.0, 70.0, 55.0, 42.8; IR(KBr)  $\upsilon$ : 3448, 3316, 3192, 2971, 2373, 2193, 1691, 1638, 1582, 1556, 1488, 1405, 1360, 1246, 1190, 1074, 1009, 979, 818, 782; MS (m/z): 455.00 ([M-1]⁺, 100%); 457.07 ([M-1]⁺, 100%); Anal Calcd for C₂₀H₁₇BrN₄O₂S: C 52.52, H 3.75, N 12.25; Found: C 52.45, H 3.93, N 11.79.



**5h**: white solid, 41.3%, m.p. 222~224 $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 10.77~10.01 (brs, 1H, NH), 8.85~8.46 (brs, 1H, NH), 8.21~8.17 (m, 2H, ArH), 7.80 (d, J =7.8Hz, 1H, ArH), 7.72~7.70 (m, 1H, ArH), 7.46~7.43 (m, 1H, ArH), 7.36~7.27 (m, 6H, ArH, NH₂), 4.74(s, 1H, CH), 4.40~4.36 (m, 2H, CH₂), 4.23~ 4.09 (brs, 1H, CH); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 171.4, 162.8, 153.1, 148.1, 148.0, 143.7, 139.0, 137.4, 135.2, 134.1, 134.0, 130.3, 130.2, 128.8, 128.6, 128.5, 128.3, 127.3, 127.0, 122.8, 122.5, 122.3, 121.8, 120.9, 118.0, 69.4, 55.0, 42.7, 42.3; IR(KBr)  $\upsilon$ : 3432, 3354, 3259, 3174, 2976, 2373, 2340, 2175, 1701, 1628, 1577, 1533, 1497, 1422, 1352,

1254, 1185, 1093, 982, 873, 767; MS (m/z): 422.60 ([M-1] $^+$ , 100%); Anal Calcd for  $C_{20}H_{17}N_5O_4S$ : C 56.73, H 4.05, N 16.54; Found: C 56.48, H 4.51, N 16.32.



2. Typical preparation procedure of dihydrothiophene and spirocyclohexano-1,3-thiazole by one-pot four-component reaction of 1,3-thiazolidinedione, *p*-methylbenzaldehyde, malononitrile and diethylamine: A mixture of *p*-methylbenzaldehyde (8.0 mmol, 0.960g), malononitrile (8.0 mmol, 0.528 g) and diethylamine (4.0 mmol, 0.292g) in acetonitrile (5mL) was stirred at room temperature for two minutes. Then 1,3-thiazolidinedione (4.0 mmol) was added and the reaction was stirred at room temperature for additional 48 hours. The resulting precipitate was collected by filtration and washed with acetonitrile. The crude product was refluxed in 50mL of

acetontrile for two hours. After filtration the clean solution was cooled to give dihydrothiophene **6b**. The undisolved solid was filtrated out to give the product **7b**. The same reaction procedure was carried out by using other aromatic aldehydes and other amine to substitute diethylamine to give products **6a-6h** or **7a~7j**.

**6a**: white solid, 34.5%, m.p. 174~177  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.82 (s, 1H, NH), 7.39  $\Box$ 7.36 (m, 2H, ArH), 7.30  $\Box$ 7.29 (m, 2H, ArH), 7.31 (s, 2H, NH₂), 4.62 (d, J = 2.4Hz, 1H, CH), 4.48 (s, 1H, CH), 3.30  $\Box$ 3.20 (m, 4H, CH₂), 1.02 (t, J = 7.2Hz, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 161.7, 152.2, 142.2, 128.7, 127.3, 126.9, 118.4, 70.5, 55.9, 50.7, 41.0, 13.5, 13.4, 13.4, 13.3, 13.3; IR(KBr)  $\upsilon$ : 3416, 3328, 3231, 1976, 2933, 2175, 1670, 1635, 1574, 1482, 1359, 1337, 1304, 1261, 1204, 1152, 1081, 891, 852, 780, 747; MS (m/z): 343.40 ([M-1]+, 100%); Anal Calcd for C₁₇H₂₀N₄O₂S: C 59.28, H 5.85, N 16.27; Found: C 59.24, H 6.23, N 16.02.



 1 H NMR of **6a** (600 MHz, DMSO- $d_{6}$ )



## 13 C NMR of **6a** (150 MHz, DMSO- $d_6$ )

**6b**: light yellow solid, 11.3%, m.p. 176~178  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.77 (s, 1H, NH), 7.17 (s, 4H, ArH), 7.05 (s, 2H, NH₂), 4.58 (d, J = 3.0Hz, 1H, CH), 4.45 (s, 1H, CH), 3.27  $\square$  3.23 (m, 4H, CH₂), 2.29 (s, 3H, CH₃), 1.02(t, J = 7.2Hz, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.1, 152.6, 139.5, 137.1, 129.7, 127.3, 118.8, 71.2, 56.4, 51.2, 41.6, 21.0, 13.8; IR(KBr)  $\nu$ : 3408, 3325, 3228, 2977, 2932, 2180, 1672, 1579, 1481, 1353, 1259, 1201, 1152, 1093, 896, 815; MS (m/z): 358.62 ([M-1]⁺, 100%); Anal Calcd for C₁₈H₂₂N₄O₂S: C 60.31, H 6.19, N 15.63; Found: C 60.48, H 6.57, N 15.84.



**6c**: white solid, 10.4%, m.p. 180~182  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.85 $\square$ 9.67 (brs, 1H, NH), 7.24(d, J = 8.4Hz, 2H, ArH), 7.20(d, J = 8.4Hz, 2H, ArH), 7.06 (s, 2H, NH₂), 4.59 (d, J = 2.4Hz, 1H, CH), 4.46 (s, 1H, CH), 3.28 $\square$ 3.23 (m, 4H, CH2), 2.91 $\square$ 2.85 (m, 1H, CH), 1.20(d, 6H, CH3), 1.02(t, J = 6.6Hz 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 162.1, 152.7, 148.0, 140.0, 127.3, 127.1, 118.9, 71.1, 56.4, 51.2, 41.6, 33.5, 24.3, 13.9; IR(KBr)  $\upsilon$ : 3407, 3330, 3230, 2969, 2178, 1676, 1636, 1577, 1481, 1352, 1308, 1257, 1200, 1152, 1093, 1019, 897, 824, 747; MS (m/z): 385.55 ([M-1]⁺, 100%); Anal Calcd for C₂₀H₂₆N₄O₂S: C 62.15, H 6.78, N 14.50; Found: C 61.88, H 6.9, N 14.27.



**6d**: white solid, 35.4%, m.p. 184~186  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.75 (s, 1H, NH), 7.35 (s, 1H, OH), 7.07((d, J = 8.4Hz, 2H, ArH),7.01(s, 1H, ArH), 6.74(d, J = 8.4Hz, 2H, NH₂),4.52(d, J = 3.0Hz, 1H, OH), 4.41 (s, 1H, CH), 3.28 $\square$ 3.20 (m, 4H, CH₂), 1.02 (t, J = 7.2Hz, 6H, CH₃); 13C NMR (150 MHz, DMSO- $d_6$ ) δ: 161.1, 157.1, 152.6, 132.8, 128.4, 118.9, 115.9, 71.6, 56.6, 51.0, 41.0, 13.9; IR(KBr)  $\upsilon$ : 3405, 3320, 3202, 3001, 2192, 1679, 1652, 1587, 1512, 1486, 1358, 1300, 1263, 1211, 1177, 1087, 1016, 889, 827, 802, 751; MS (m/z): 359.45 ([M-1]⁺, 100%); Anal Calcd for C₁₇H₂₀N₄O₃S: C 56.65, H 5.59, N 15.54; Found: C 56.37, H 5.84, N 15.35.



¹H NMR of **6d** (600 MHz, DMSO-*d*₆)



¹³C NMR of **6d** (150 MHz, DMSO-*d*₆)

**6e**: grey solid, 49.3%, m.p. 159~160  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 9.76 (s, 1H, NH), 9.20 (d, J = 8.4Hz, 2H, ArH), 7.04 (s, 2H, NH₂), 6.92 (d, J = 8.4Hz, 2H, ArH), 4.57 (d, J = 2.4Hz, 1H, CH), 4.44 (s, 1H, CH), 3.74 (s, 3H, OCH₃), 3.27 $\Box$ 3.23 (m, 4H, CH₂), 1.02 (t, J = 6.6Hz, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 161.9, 159.0, 152.7, 134.6, 128.5, 118.8, 114.6, 71.5, 56.5, 55.5, 50.9, 41.6, 13.9; IR(KBr)  $\upsilon$ : 3402, 3306, 3221, 2992, 2935, 2837, 2176, 1681, 1626, 1582, 1510, 1481, 1344, 1299, 1250, 1203, 1177, 1151, 1090, 1033, 901, 828, 803, 749; MS (m/z):

374.54 ([M-1]⁺, 100%); Anal Calcd for  $C_{18}H_{22}N_4O_3S$ : C 57.73, H 5.92, N 14.96; Found: C 57.62, H 6.36, N 14.65.



 1 H NMR of **6e** (600 MHz, DMSO- $d_{6}$ )



 13 C NMR of **6e** (150 MHz, DMSO- $d_6$ )

**6f**: white solid, 41.3%, m.p. 180~182  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.75 (s, 1H, NH), 7.95 (s, 1H, OH), 7.12 $\square$ 6.93 (brs, 2H, NH₂), 6.83(s, 1H, ArH), 6.75(d, J = 8.4Hz, 1H, ArH), 6.67(d, J = 8.4Hz, 1H, ArH), 4.54 (d, J = 3.0Hz, 1H, CH), 4.44 (s, 1H, CH), 3.76 (s, 3H, OCH₃), 2.89 (s, 2H, CH₂), 2.73 (s, 2H, CH₂), 1.02 (t, J = 7.2Hz, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.7, 161.8, 152.6, 148.1, 146.4, 133.4, 119.6, 118.9, 116.0, 111.8, 71.5, 56.6, 56.1, 51.4, 41.6, 36.2, 31.2, 13.9; IR(KBr)  $\upsilon$ : 3357, 3201, 2986, 2936, 2183, 1663, 1580, 1513, 1387, 1340, 1263,

1197, 1152, 1124, 1099, 1032, 902, 874, 850, 814, 749; MS (m/z): 391.34 ([M-1]⁺, 100%); Anal Calcd for  $C_{18}H_{22}N_4O_4S$ : C 55.37, H 5.68, N 14.35; Found: C 55.42, H 5.83, N 14.37.



¹H NMR of **6f** (600 MHz, DMSO-*d*₆)



**6g**: white solid, 26.9%, m.p. 176~178  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.81 (s, 1H, NH), 7.33 $\Box$ 7.35 (m, 2H, ArH), 7.21(t, J = 9.0Hz, 2H, ArH), 7.16 (s, 2H, NH₂), 4.63 (s, 1H, CH), 4.46 (s, 1H, CH), 7.21 (d, J = 4.8Hz, 4H, CH₂), 1.02 (t, J = 6.6Hz, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 162.2, 161.8, 160.6, 152.2, 138.4, 128.9, 128.9, 118.3, 115.5, 115.3, 70.5, 55.9, 50.0, 41.0, 13.5, 13.4, 13.3, 13.3; IR(KBr)  $\upsilon$ : 3445, 3317, 3227, 2971, 2932, 2183, 1691, 1581, 1483,

1380, 1356, 1259, 1212, 1151, 1095, 1020, 907, 836, 789, 748; MS (m/z): 361.40 ([M-1]⁺, 100%); Anal Calcd for C₁₇H₁₉FN₄O₂S: C 56.34, H 5.28, N 15.46; Found: C 56.75, H 5.60, N 15.29.



 1 H NMR of **6g** (600 MHz, DMSO- $d_{6}$ )



 13 C NMR of **6g** (150 MHz, DMSO- $d_6$ )

**6h**: yellow solid,45.4%, m.p. 206~208  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 9.79 (s, 1H, NH), 8.18 $\square$ 8.14 (m, 2H, ArH), 7.83 $\square$ 7.77 (m, 1H, ArH), 7.73 $\square$ 7.66 (m, 1H, ArH), 7.26 (s, 2H, NH₂), 4.81 $\square$ 4.77 (m, 1H, CH), 4.56(s, 1H, CH), 3.30 $\square$ 3.21 (m, 4H, CH₂), 1.05 $\square$ 1.00 (m, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 163.1, 152.7, 148.5, 144.8, 134.5, 130.8, 122.9, 121.9, 118.5, 70.3, 56.1, 50.6, 41.6, 13.8; IR(KBr)  $\upsilon$ : 3421(m), 3318, 3233, 3201, 3088, 2983, 2934, 2178, 1691, 1669,

1574, 1528, 1481, 1351, 1262, 1200, 1152, 1087, 933, 869, 814; MS (m/z): 388.42 ([M-1] $^+$ , 100%); Anal Calcd for  $C_{17}H_{19}N_5O_4S$ : C 52.43, H 4.92, N 17.98; Found: C 52.27, H 5.31, N 17.66.



 1 H NMR of **6h** (600 MHz, DMSO- $d_{6}$ )



**7a**: (From the reaction of DBU as base) white solid, 30%, m.p. 233~235  $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 7.64 $\square$ 7.17 (m, 10H, ArH), 7.09 (s, 2H, NH₂), 4.51 (s, 1H, CH), 4.30 (s, 1H, CH), 2.97(s, 12H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 184.2, 175.5, 145.0, 136.3, 133.8, 127.6, 127.1, 126.4, 117.2, 113.7, 111.0, 77.7, 66.9, 50.9, 49.0, 43.2, 41.1, 38.6; IR(KBr)  $\upsilon$ : 3445, 3307, 3159, 2967, 2793, 2194, 1692, 1646, 1584, 1493, 1458, 1354, 1266, 1234, 1052, 998, 936, 832; MS

(m/z): 424.33 ([M-1]⁺, 100%); Anal Calcd for  $C_{23}H_{15}N_5O_2S.C_6H_{12}N_2$ : C 64.93, H 3.55, N 16.46; Found: C 64.79, H 3.84, N 16.22.





 1 H NMR of **7a** (600 MHz, DMSO- $d_{6}$ )

**7b**: (From the reaction of diethylamine as base), white solid, 29.6%, m.p. 180~182 □; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 8.41~7.93 (brs, 1H, NH), 7.49 (d, J = 7.2Hz, 2H, ArH), 7.35 (s, 2H,  $NH_2$ ), 7.13 (d, J = 7.8Hz, 2H, ArH), 7.10 (d, J = 7.8Hz, 2H, ArH), 3.91 (s, 1H, CH), 3.89 (s, 1H, CH), 2.89 (brs, 4H, 2CH₂), 2.50 (s, 6H, CH₃), 1.13 (t, J = 7.2Hz, 6H, 2CH₃);  13 C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 146.1, 138.7, 137.1, 135.1, 131.6, 130.6, 129.8, 129.0, 128.9, 118.6, 118.4, 114.2, 112.3, 80.4, 70.5, 57.2, 46.9, 42.8, 41.8, 21.1, 21.0, 11.4, 1.5; IR(KBr)  $\upsilon$ : 3413, 3342, 3228, 2987, 2791, 2496, 2255, 2208, 1706, 1625, 1515, 1454, 1366, 1317, 1206, 1120, 1047, 881, 825, 783; MS (m/z): 452.56 ([M-1]⁺, 100%); Anal Calcd for  $C_{25}H_{19}N_5O_2S.C_4H_{11}N$ : C 66.14, H 5.74, N 15.96; Found: C 65.83, H 6.02, N 15.47.



**7c**: (From the reaction of diethyl amine as base), light yellow solid, 25.3%, m.p.  $178\sim180~\Box$ ;  $^{1}H$  NMR (600 MHz, DMSO- $d_{6}$ )  $\delta$ : 8.35 $\sim$ 8.06 (brs, 1H, NH), 7.53 (d, J=7.8Hz,, 2H, ArH), 7.49 (s, 2H, NH2),7.23 (d, J=7.8Hz,, 4H, ArH), 7.01 (d, J=7.8Hz, 2H, ArH), 4.25 $\sim$ 4.09 (brs, 1H, CH), 4.02 (s, 1H, CH), 2.93 $\Box$ 2.89 (m, 6H, CH, CH₂) 1.18 $\sim$ 1.13 (m, 18H, CH₃);  $^{13}C$  NMR (150 MHz, DMSO- $d_{6}$ )  $\delta$ : 149.4, 147.8, 146.1, 135.4, 131.8, 130.7, 130.0, 129.9, 126.5, 126.4, 118.7, 118.5,

114.2, 112.3, 80.3, 57.3, 57.2, 46.8, 42.8, 41.8, 33.4, 24.2, 24.0, 11.4, 1.5; IR(KBr)  $\upsilon$ : 3404, 3337, 3218, 2963, 2870, 2501, 2262, 2201, 1700, 1656, 1622, 1584, 1512, 1461, 1424, 1364, 1321, 1191, 1094, 1058, 1020, 948, 887, 833, 795; MS (m/z): 509.72 ([M-1]⁺, 100%); Anal Calcd for  $C_{29}H_{27}N_5O_2S.C_4H_{11}N$ : C 68.35, H 5.34, N 13.74; Found: C 68.97, H 5.64, N 13.96.





**7e**: (From the reaction of DBU as base), white solid, 42.0%, m.p.  $247\sim248 \,\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 7.52 $\Box$ 6.68 (m, 10H, ArH, NH2), 4.42 (s, 1H, CH), 4.22 (s, 1H, CH), 3.77 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 2.93 (s, 12H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ :184.0, 175.5, 158.3, 157.3, 144.8, 128.2, 125.7, 117.2, 113.8, 111.2, 78.0, 67.4, 53.9, 53.7, 50.2, 48.2, 43.2, 41.3 IR(KBr)  $\upsilon$ :3446, 3304, 3150, 2962, 2837, 2193, 1701, 1596, 1513, 1463, 1353, 1257,

1181, 1029, 840, 809; MS (m/z): 484.33 ([M-1] $^+$ , 100%); Anal Calcd for  $C_{25}H_{19}N_5O_4S.C_6H_{12}N_2$ : C 62.30, H 5.23, N 16.40; Found: C 62.45, H 5.61, N 16.11.



**7g**: (From the reaction of DBU as base) white solid, 28.4%, m.p.  $\Box 250 \ \Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ )  $\delta$ : 7.72 $\Box$ 6.77 (m, 11H, ArH, NH₂, NH), 4.56 (s, 1H, CH), 4.28 (s, 1H, CH), 2.93 (s, 12H, CH₂); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 184.8, 175.8, 161.9, 161.2, 160.3, 159.6, 145.0, 132.6, 130.1, 117.2, 116.9, 113.6, 111.0, 77.4, 67.2, 49.9, 48.2, 43.1, 41.0; IR(KBr)  $\upsilon$ :3419, 3326, 3206, 2962, 2894, 2192, 1698, 1598, 1510, 1467, 1362, 1302, 1268, 1229, 1168, 1108, 1053, 989, 841,

 1 H NMR of **7e** (600 MHz, DMSO- $d_{6}$ )

816; MS(*m/z*): 460.35([M-1]⁺) 100%; Anal Calcd for C₂₃H₁₃F₂N₅O₂S.C₆H₁₂N₂: C 60.72, H 4.39, N 17.09; Found: C 60.44, H 4.07, N 16.73.



 1 H NMR of **7g** (600 MHz, DMSO- $d_{6}$ )



 1 H NMR of **7g** (600 MHz, DMSO- $d_{6}$ )

**7i**: (From the reaction of diethyl amine as base), grey solid, 14.5%, m.p.  $194\sim196$   $\square$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) $\delta$ : 8.36 $\sim$ 8.06 (brs, 1H, NH), 7.65 (d, J = 8.4Hz,, 2H, ArH), 7.49 (s, 2H, NH₂), 7.42 $\sim$ 7.39 (m, 4H, ArH), 7.07 (d, J = 8.4Hz, 2H, ArH), 4.02 (s, 1H, CH), 3.91 (s, 1H, CH), 2.90 (brs, 4H, 2CH₂), 1.13 (brs, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ )  $\delta$ : 176.7, 146.1, 137.2, 134.3, 133.4, 132.7, 132.6, 131.7, 128.6, 128.3, 118.4, 113.8, 112.2, 79.4, 70.2, 56.3, 46.6, 42.3, 41.8, 11.3; IR(KBr)  $\upsilon$ : 3411, 3336, 3217, 2988, 2821, 2496, 2255, 2212, 1913, 1705, 1625, 1492,

1414, 1369, 1314, 1203, 1093, 1015, 880, 831, 788; MS (m/z): 492.53 ([M-1] $^+$ , 100%); 494.27 ([M-1] $^+$ , 72%); Anal Calcd for  $C_{23}H_{13}Cl_2N_5O_2S.C_4H_{11}N$ : C 57.14, H 4.26, N 14.81; Found: C 56.78, H 3.85, N 14.36.



**7j**: (From the reaction of diethylamine as base), grey solid, 31.2%, m.p. 197~199  $\Box$ ; ¹H NMR (600 MHz, DMSO- $d_6$ ) δ: 8.34~8.09 (brs, 1H, NH), 7.57~7.54 (m, 8H, NH₂, ArH), 7.04 (d, J = 7.8Hz, 4H, ArH), 4.11 (s, 1H, CH), 3.94 (s, 1H, CH), 2.90 (q, J = 7.2Hz, 4H, 2CH₂), 1.14 (t, J = 7.2Hz, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- $d_6$ ) δ: 146.1, 137.4, 133.6, 132.8, 132.1, 131.6, 131.3, 123.1, 121.4, 118.4, 118.4, 118.3, 113.7, 112.1, 79.3, 79.1, 69.7, 56.1, 46.7, 46.6, 42.2, 41.8, 11.4, 11.3, 1.5, 1.5; IR(KBr) v: 3423, 3341, 3230, 3023, 2859, 2496, 2255, 2209, 1707, 1624, 1582,

1489, 1455, 1410, 1367, 1323, 1197, 1112, 1075, 1011, 880, 828, 788; MS (m/z): 582.43 ([M-1]⁺, 100%); Anal Calcd for  $C_{23}H_{13}Br_2N_5O_2S.C_4H_{11}N$ : C 49.40, H 3.69, N 12.80; Found: C 48.85, H 3.34, N 12.55.



 1 H NMR of **7j** (600 MHz, DMSO- $d_{6}$ )



¹³C NMR of **7j** (150 MHz, DMSO- $d_6$ )