Nombres Réels

www.eleves.ens.fr/home/yhuang

Draft!

Quelques inégalités classiques 10.1

10.1.1 Inégalité de Schur

Soient a, b, c, k réels positifs. Montrer que $a^k(a-b)(a-c) + b^k(b-c)(b-a) + c^k(c-a)(c-b) \ge 0$.

10.1.2 Inégalité de Tchebychev

1) Soient
$$a_1 \ge a_2 \ge \dots \ge a_n \ge 0$$
, $b_1 \ge b_2 \ge \dots \ge b_n \ge 0$. Alors $\frac{1}{n} \sum_{k=1}^{n} (a_k b_k) \ge \frac{\sum_{k=1}^{n} a_k}{n} \frac{\sum_{k=1}^{n} b_k}{n}$.

2) Soient
$$a_1 \ge a_2 \ge \dots \ge a_n \ge 0$$
, $0 \le b_1 \le b_2 \le \dots \le b_n$. Alors $\frac{1}{n} \sum_{k=1}^n (a_k b_k) \le \frac{\sum_{k=1}^n a_k}{n} \frac{\sum_{k=1}^n b_k}{n}$.

10.1.3 Exemples

- 1) Montrer que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \le \frac{a^8 + b^8 + c^8}{a^3 b^3 c^3}$. 2) Montrer que si a,b,c sont les longueurs des côtés d'un triangle, alors

Quelques exercices sur la fonction partie entière 10.2

10.2.1 Une égalité

$$\forall n \in \mathbb{N}^*, E(\sqrt{n}) + E(\sqrt{n+1}) = E(\sqrt{4n+2}).$$

10.2.2 Une autre égalité

$$\forall n \in \mathbb{N}^*, \, \sum_{k=0}^{n-1} E(x + \frac{k}{n}) = E(nx).$$

10.3
$$(1+\sqrt{2})^n$$

Montrer qu'il existe un couple unique de suites à valeurs entières (a_n) et b_n telles que:

- 1) $(1 + \sqrt{2})^n = a_n + b_n \sqrt{2}$. 2) Montrer que $|a_n^2 2b_n^2| = 1$.

10.4 Construction de \mathbb{R} à partir de \mathbb{Q}

10.5 Parties entières et divisibilité

Montrer que $\frac{(2m)!(2n)!}{(m+n)!m!n!}$ est un entier.

10.6 Exemple de partie dense dans \mathbb{R}

Montrer que l'ensemble des nombres 2-adiques est dense dans \mathbb{R} .

10.7 Approximation d'un irrationnel par un rationnel

On note, pour un nombre réel α , $||\alpha||$ la distance entre α et l'ensemble des entiers. Concrètement, $||\alpha|| = \min\{\alpha - E(\alpha), E(\alpha) + 1 - \alpha\}.$

1) Montrer que $\forall z \in \mathbb{Z}, ||\alpha + z|| = ||\alpha||$.

Soient $\alpha \in \mathbb{R}$, $Q \in \mathbb{R}$.

2) Montrer que $\exists q \in \mathbb{Z}, 0 < q < Q, ||q\alpha|| < Q^{-1}$.

10.8 Compléments

10.8.1 Valuations p-adiques et ultramétrique

On dit qu'une fonction de $\mathbb{Q} \to \mathbb{R}^+$ est une fonction valeur absolue si:

i)

ii)

iii)

iv) , et si on plus ..., on dit que cette fonction valeur absolue est ultramétrique.

Soit p un nombre premier. On définit, pour tout $z \in \mathbb{Z}$, la valuation p-adique $\sup\{i \in \mathbb{N}, p^i | z\}$. Cet entier est alors unique et on le note $val_p(z)$.

On étend ensuite cette définition aux nombres rationnels en définissante, pour un nombre rationnel $\frac{u}{v}$, $val_p(\frac{u}{v}) = val_p(u) - val_p(v)$.

Montrer que val_p est une fonction valeur absolue ultramétrique.

10.8.2 Théorème d'Ostrowski

On définit sur l'ensemble des fonctions valeur absolue sur \mathbb{Q} la relation d'équivalence suivante: $|.| \sim ||.||$ ssi $\exists c \in \mathbb{R}^*, \frac{1}{c}|.| \leq ||.|| \leq c|.|$ (et on admet que c'est une relation d'équivalence).

Monter que toute fonction valeur absolue sur \mathbb{R} non triviale est soit équivalente à la valeur absolue usuelle, soit à une valeur absolue p-adique ci-dessus.