Turning output into data, PROC TRANSPOSE, PROC EXPORT

Shannon Pileggi

STAT 330

OUTLINE

Turning output into data

PROC TRANSPOSE

•00000000

Turning output into data

Overview

- ► For many procedures you can use an OUTPUT statement or an OUT = option to store printed output to a SAS data set
- ► If that option isn't available, you can all use the ODS system to obtain the output
- ► This can be helpful for assembling statistics from many pieces of output, either for a succinct table or for a figure

Data

```
PROC IMPORT OUT = WORK.ACS DATAFILE = "&path.acs.csv"

DBMS = CSV REPLACE;

GETNAMES = YES;

DATAROW = 2;

GUESSINGROWS = 1000 ;

RUN;

SAS Code
```

Obs	Sex	Age	MarStat	Income	HoursWk	Race	USCitizen	HealthInsurance	Language
1	female	31	not married	60	40	white	citizen	yes	other
2	male	31	not married	0.36	12	black	citizen	yes	native English
3	male	75	not married	0		white	citizen	yes	native English
4	female	80	not married	0		white	citizen	yes	native English
5	male	64	married	0		white	citizen	yes	native English
6	male	14	not married			white	citizen	yes	native English
7	male	78	married	0		white	citizen	yes	native English
8	male	35	not married	87	40	white	citizen	yes	other
9	female	70	married	0	1	white	citizen	yes	native English
10	female	18	not married	0		white	citizen	yes	native English

Storing output from PROC MEANS

```
PROC MEANS DATA = WORK.ACS ;
   OUTPUT OUT = meansresults ;
RUN ;
```

_____ SAS Code _____

_____ SAS Code _____ SAS Code ____

```
PROC PRINT DATA = meansresults ;
RUN ;
```

_____ SAS Code _____

Variable	N	Mean	Std Dev	Minimum	Maximum
Age	1000	40.1340000	23.1552199	0	130.0000000
Income	825	22.3962303	42.9056463	0	563.0000000
HoursWk	505	37.1128713	14.3210472	1.0000000	99.0000000

Obs	_TYPE_	_FREQ_	_STAT_	Age	Income	HoursWk
- 1	0	1000	N	1000	825	505
2	0	1000	MIN	0	0	1
3	0	1000	MAX	130	563	99
4	0	1000	MEAN	40.134	22.396230303	37.112871287
5	0	1000	STD	23.155219891	42.905646314	14.321047222

Storing output from PROC FREQ

```
PROC FREQ DATA = WORK.acs;
TABLES sex*marstat /
OUT = freqresults;
RUN;
```

```
PROC PRINT DATA = freqresults ;
RUN ;
SAS Code
```

_____ SAS Code ____

Table of Sex by MarStat Frequency Percent MarStat Row Pct not Col Pct Sex married married Total female 221 316 537 22 10 31.60 53.70 41.15 58.85 50.57 56 13 male 216 247 463 21.60 24.70 46.30 46.65 53.35 49 43 43.87 Total 437 563 1000 43.70 56.30 100.00

Obs	Sex	MarStat	COUNT	PERCENT
1	female	married	221	22.1
2	female	not married	316	31.6
3	male	married	216	21.6
4	male	not married	247	24.7

Storing output from PROC TTEST

PROC TTEST does not have an OUTPUT statement or an OUT = option! To store results, we need to use ODS.

- 1. *Trace* your results from a SAS procedure.
- 2. Identify the output that you want from your log window.
- Modify your SAS procedure code to use ODS to store your results.

Step 1 - trace your results

```
ODS TRACE ON;
PROC TTEST DATA = WORK.acs HO = 40;
VAR HoursWk;
RUN;
ODS TRACE OFF;

SAS Code
```


Step 2 - examine log

000000000

There are five pieces of output that I can grab! (4 shown)

_____ From SAS log ______ From SAS log _____ Output Added: Name: Statistics Label: Statistics Template: Stat.TTest.Statistics Path: Ttest.HoursWk.Statistics Output Added: Name: Conflimits Label: Confidence Limits Template: Stat.TTest.ConfLimits Path: Ttest.HoursWk.ConfLimits

Output Added: TTests Name:

Label: T-Tests Template: Stat.TTest.TTests

Output Added:

Path:

Name: SummaryPanel Label: Summary Panel

Path: Ttest.HoursWk.TTest

Template: Stat.TTest.Graphics

Ttest HoursWk Summa

Step 3 - use ODS to store results

SAS Code _____

```
PROC TTEST DATA = WORK.acs H0 = 40;
VAR HoursWk;
ODS OUTPUT ConfLimits = CIresults;
RUN;
```


Turning output into data

PROC TRANSPOSE

Storing output from PROC MEANS

PROC MEANS DATA = WORK.ACS;

OUTPUT OUT = meansresults;

RUN;

SAS Code

PROC PRINT DATA = meansresults ; RUN ;

____ SAS Code _____

_____ SAS Code _____

 Variable
 N
 Mean
 Std Dev
 Minimum
 Maximum

 Age
 1000
 40.154000
 23.1552199
 0
 100.000000

 Income
 825
 22.3962303
 42.9956483
 0
 563.000000

 HoursWk
 505
 37.1128713
 14.3210472
 1.0000000
 99.000000

Obs	_TYPE_	_FREQ_	_STAT_	Age	Income	HoursWk
- 1	0	1000	N	1000	825	505
2	0	1000	MIN	0	0	1
3	0	1000	MAX	130	563	99
4	0	1000	MEAN	40.134	22.396230303	37.112871287
5	0	1000	STD	23.155219891	42.905646314	14.321047222

On your own: How can we get our meansresults to look like the original output?

SAS Code _____

PROC TRANSPOSE

```
PROC TRANSPOSE

DATA = DataSetName OUT = TransposedData NAME = NewVariableName;

ID IdentifyingVariable;

BY GroupingVariable;

VAR var1 var2 var3;

RUN;

SAS Code
```

DATA= specifies the SAS data set name you want to transpose

OUT= name of new transposed data set

NAME= names a variable in TransposedData that ID a variable in DataSetName that names multiple variables in TransposedData

BY transposes by groups (data must be pre-sorted)

VAR lists variables to transpose

Transpose summary statistics

The SAS System

Obs	_TYPE_	_FREQ_	_STAT_	Age	Income	HoursWk
1	0	1000	N	1000	825	505
2	0	1000	MIN	0	0	1
3	0	1000	MAX	130	563	99
4	0	1000	MEAN	40.134	22.396230303	37.112871287
5	0	1000	STD	23.155219891	42.905646314	14.321047222

SAS Code ___

PROC TRANSPOSE

DATA = meansresults

OUT = statstransposed

NAME = variable;

ID _stat_;

VAR age income hourswk;

RUN;

SAS Code

Obs	variable	N	MIN	MAX	MEAN	STD
1	Age	1000	0	130	40.134	23.155219891
2	Income	825	0	563	22.396230303	42.905646314
3	HoursWk	505	1	99	37.112871287	14.321047222

STAT 330: Lecture 12 15 / 21

Discussion

Data we have _______

Student ID Test1 Test2

Andrew 6545 94 91

Beth 1252 51 65

Charlie 1167 95 97

Data we have _____

PROC TRANSPOSE

DATA = datawehave
OUT = datawewant

NAME = 1;
ID 2;
VAR 3;
run;

Fill in the SAS statements.

1.

2.

3.

Reshaping data

- ▶ Re-shaping data is commonly needed for longitudinal studies
- Long format is required for longitudinal data analysis

```
Reshape data wide to long:
https://stats.idre.ucla.edu/sas/modules/
reshaping-data-wide-to-long-using-a-data-step/
```

Wide format might be more useful for creating graphics or for paired analysis

```
Reshape data long to wide:
https://stats.idre.ucla.edu/sas/modules/
how-to-reshape-data-long-to-wide-using-proc-transpose/
```

17 / 21

OSE PROC EXPORT ●00

Turning output into data

PROC TRANSPOSI

PROC EXPORT

```
PROC EXPORT

DATA = DataSetName

OUTFILE = "Computer Location/mydata.ext"

DBMS = identifier

REPLACE;

RUN;

SAS Code
```

DATA= specifies the SAS data set name you want to export

OUTFILE= takes computer location, data file name, and extension of the data file

DBMS= specifies type of data (e.g., CSV, TAB, DLM)

REPLACE option overwrites an existing file called *mydata.ext*

4□ > 4□ > 4 = > 4 = > = 90

Example Code

```
SAS Code ___
DATA statstransposed2;
   SET statstransposed;
   FORMAT mean 4.1 std 4.1 :
RUN ;
PROC EXPORT
   DATA = statstransposed2
   OUTFILE = "&path.summarystats.csv"
   DBMS = CSV
   REPLACE :
RUN;
              SAS Code ____
```

- any format assigned to variables in the DATA step will be applied in the exported file for .csv or .txt files
- exporting to .xls or .xlsx does not apply formats