Nonnegative Matrix Factorization (NMF) and Its Extensions

Nonnegative Matrix Factorization and Its Extensions

- 1. D. D. Lee, and H. S. Seung, "Algorithms for non-negative matrix factorization," *Proc. NIPS*, 2000, pp. 556–562.
- 2. P. Hoyer, "Non-negative matrix factorization with sparseness constraints," *J. Mach. Learn.*, vol. 5, pp. 1457-1469, 2004.
- 3. Z. Yuan and E. Oja, "Projective nonnegative matrix factorization for image compression and feature extraction," *Proc. 14th Scandinavian Conf. Image Anal.*, 2005, pp. 333–342.
- 4. Chris Ding, Tao Li, and Michael I. Jordan, "Convex and Semi-Nonnegative Matrix Factorizations," *IEEE trans.* pattern analysis and machine intelligence, VOL. 32, 2010.
- 5. X. Liu, H. Lu, and H. Gu, "Group Sparse Non-negative Matrix Factorization for Multi-Manifold Learning," Proc. the British Machine Vision Conference (BMVC), 2011, pp. 56.1-56.11.
- 6. Y. Liu, C. Jia, B. Li, S. Pang, and Z. Yu, "Graph Regularized Projective Non-negative Matrix Factorization for Face Recognition," *J. Comput. Inf. Sys.*, vol 9, no 5, pp. 2047-2055, 2013.
- 7. J. Wang, J. Z. Huang, Y. Sun, and X. Gao, "Feature selection and multi-kernel learning for adaptive graph regularized nonnegative matrix factorization," *J. Expert Systems with Applications 42* (3), 1278-1286, 2015.
- 8. C. Lin, and M. Pang, "Graph Regularized Nonnegative Matrix Factorization with Sparse Coding," J. Mathematical Problems in Engineering, 2015.

Basics NMF

The Nonnegative Matrix Factorisation model

NMF provides an unsupervised linear representation of the data:

-
$$\mathbf{W} = [w_{fk}]$$
 s.t. $w_{fk} \ge 0$ and

-
$$\mathbf{H} = [h_{kn}]$$
 s.t. $h_{kn} \ge 0$.

 $V_{(F \times N)}$

$$\approx W_{(F \times K)} \times H_{(K \times N)}$$

(encoding)

• V : the $F \times N$ data matrix:

- F features (rows),
- N observations/examples/feature vectors (columns);
- $\mathbf{v}_n = (v_{1n}, \dots, v_{Fn})^T$: the *n*-th **feature vector** observation among a collection of N observations $\mathbf{v}_1, \dots, \mathbf{v}_N$;
- \mathbf{v}_n is a column vector in \mathbb{R}_+^F ; \mathbf{v}_n is a row vector;
- W : the F × K dictionary matrix:
 - w_{fk} is one of its coefficients,
 - w_k a dictionary/basis vector among K elements;
- H: the K × N activation/expansion matrix:
 - \mathbf{h}_n : the **column vector** of activation coefficients for observation \mathbf{v}_n :

$$\mathbf{v}_n \approx \sum_{k=1}^K h_{kn} \mathbf{w}_k$$
;

h_k: the row vector of activation coefficients relating to basis vector w_k.

Learning feature

- learn NMF on training dataset
 V_{train} → dictionary W
- exploit **W** to decompose new test examples \mathbf{v}_n :

$$\mathbf{v}_n \approx \sum_{k=1}^K h_{kn} \mathbf{w}_k \; ; \; h_{kn} \geq 0$$

 use h_n as feature vector for example n.

Learning feature

- learn NMF on training dataset
 V_{train} → dictionary W
- exploit **W** to decompose new test examples \mathbf{v}_n : $\mathbf{v}_n \approx \sum_{k=1}^K h_{kn} \mathbf{w}_k$; $h_{kn} \geq 0$
- use h_n as feature vector for example n.

X

Original Image

topics recovery:

assume $V = [v_{fn}]$ is a (scaled) **term-document** co-occurrence matrix: v_{fn} is the frequency of occurrences of word m_f in document d_n ;

• clustering: like K-means (Ding et al., 2005, 2010; Xu et al., 2003):

NMF can handle overlapping clusters and provides soft cluster membership indications.

• filtering and source separation: as with Independent Component Analysis (ICA):

NMF optimization criteria

NMF approximation $V \approx WH$ is usually obtained through:

$$\min_{\mathbf{W},\mathbf{H}\geq 0} D(\mathbf{V}|\mathbf{WH}),$$

where $D(\mathbf{V}|\widehat{\mathbf{V}})$ is a separable matrix divergence:

$$D(\mathbf{V}|\widehat{\mathbf{V}}) = \sum_{f=1}^{F} \sum_{n=1}^{N} d(v_{fn}|\widehat{v}_{fn}),$$

and d(x|y) defined for all $x, y \ge 0$ is a scalar divergence such that:

- d(x|y) is continuous over x and y;
- $d(x|y) \ge 0$ for all $x, y \ge 0$;
- d(x|y) = 0 if and only if x = y.

Popular (scalar) divergences

$$E(\mathbf{W}, \mathbf{H}) = \|\mathbf{V} - \mathbf{W}\mathbf{H}\|^2 = \sum_{i,j} (V_{ij} - (\mathbf{W}\mathbf{H})_{ij})^2.$$

Euclidean (EUC) distance (Lee and Seung, 1999)

$$d_{EUC}(x,y) = (x-y)^2$$

Kullback-Leibler (KL) divergence (Lee and Seung, 1999)

$$d_{KL}(x,y) = x \log \frac{x}{y} - x + y$$

Itakura-Saito (IS) divergence (Févotte et al., 2009)

$$d_{IS}(x,y) = \frac{x}{y} - \log \frac{x}{y} - 1$$

$$D(V,W H) = \sum_{i=1}^{n} \sum_{j=1}^{m} [V_{ij} \log \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij}]$$

Optimization difficulties

An efficient solution of the NMF optimization problem

$$\min_{\mathbf{W},\mathbf{H}\geq 0} D(\mathbf{V}|\mathbf{W}\mathbf{H}) \Leftrightarrow \min_{\boldsymbol{\theta}} C(\boldsymbol{\theta}); \ C(\boldsymbol{\theta}) \stackrel{\mathsf{def}}{=} D(\mathbf{V}|\mathbf{W}\mathbf{H})$$

(where $\theta \stackrel{\text{def}}{=} \{W, H\}$ denotes the NMF parameters) must cope with the following difficulties:

- the nonnegativity constraints must be taken into account;
- no uniqueness of the solution is guaranteed in general;
- the optimization problem has usually a multitude of local and global minima.

$$WH = WDD^{-1}W$$

Alternating optimization strategy

The problem is usually easier to optimize over one matrix (say **H**) given the other matrix (say **W**) is known and fixed.

Alternating optimization a.k.a block-coordinate descent (one iteration):

- update W, given H fixed,
- update H, given W fixed.

Gradient descent

$$h_{kn} \leftarrow h_{kn} - \mu_{kn} \nabla_{h_{kn}} C(\boldsymbol{\theta})$$
,

Multiplicative update rules

A heuristic approach introduced by (Lee and Seung, 2001) to solve $\min_{ heta} \mathcal{C}(heta)$

Multiplicative update (MU) rule for **H** (similarly for **W**) is defined as:

$$h_{kn} \leftarrow h_{kn} \left[\nabla_{h_{kn}} C(\theta) \right]_{-} / \left[\nabla_{h_{kn}} C(\theta) \right]_{+},$$

where

$$\nabla_{h_{kn}} C(\theta) = \left[\nabla_{h_{kn}} C(\theta) \right]_{+} - \left[\nabla_{h_{kn}} C(\theta) \right]_{-},$$

and the summands are both nonnegative.