

Centro de Ciências Tecnológicas - CCT - Joinville Departamento de Matemática Lista 1 de Cálculo Diferencial e Integral II Integral Definida

- 1. Dadas as funções $f,g:[1,3]\to\mathbb{R}$ definidas por $f\left(x\right)=x+2$ e $g\left(x\right)=x^2+x$ encontre $\overline{S}\left(f,P\right)$ e $\overline{S}\left(g,P\right)$.
- 2. Dada a função $f: [-2,5] \to \mathbb{R}$ definida por $f(x) = x^2 + 2$ encontre $\underline{S}(f,P)$.
- 3. Determine as expressões para a soma superior e para a soma inferior de $f(x) = 5 x^2$, considerando $x \in [1, 2]$.
- 4. Utilize somas superiores para calcular a área da região situada entre as curvas $y=x^4+2$, x=0, x=1 e y=0.
- 5. Utilize a definição de integral definida, com retângulos inscritos, para calcular $\int_1^3 (x^2 2x) dx$.
- 6. Utilize soma de áreas de retângulos circunscritos para calcular $\int_0^4 (-x^2-1)dx$.
- 7. Utilize soma de áreas de retângulos circunscritos para determinar a área sob o gráfico de $f(x) = x^3 + 1$, para $x \in [0, b]$, onde b > 0 é arbitrário.
- 8. Calcule, usando somas superiores, a área da região situada entre o gráfico de $f(x) = e^x$ e o eixo x, entre as retas x = -1 e x = 2.
- 9. Utilize somas inferiores para calcular a área da região situada entre a curva $x = y^2$ e o eixo y, com $y \in [0, 2]$.
- 10. Considere a integral $I = \int_{-1}^{3} (4 x^2) dx$.
 - (a) Usando a definição de integral definida, com retângulos inscritos na região de integração, em quantas parcelas devemos separar a resolução de I? Justifique sua resposta.
 - (b) Escolha uma das parcelas obtidas no item (a) para resolver a integral correspondente usando retângulos inscritos na região de integração.
 - (c) A integral I calcula a área da região de integração? Justifique sua resposta.
- 11. Considere $f:[a,b]\to\mathbb{R}$ uma função contínua. Mostre que:
 - (a) Se fé uma função par, então $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx.$
 - (b) Se fé uma função ímpar, então $\int_{-a}^a f(x) dx = 0.$
 - (c) Interprete geometricamente os itens anteriores.

- 12. Um metereologista estabelece que a temperatura T (em ${}^{o}F$), num dia de inverno é dada por $T(t) = \frac{1}{20}t(t-12)(t-24)$, onde o tempo t é medido em horas e t=0 corresponde à meia-noite. Ache a temperatura média entre as 6 horas da manhã e o meio dia. Sugestão: utilize o teorema do valor médio para integrais.
- 13. Encontre uma função f contínua, positiva e tal que a área da região situada sob o seu gráfico e entre as retas x = 0 e x = t seja igual a $A(t) = t^3$, para todo t > 0.
- 14. Determine uma função f diferenciável, positiva e tal que $\int_0^x f(t)dt = [f(x)]^2$ para todo $x \in \mathbb{R}_+$.
- 15. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e defina uma nova função $g: \mathbb{R} \to \mathbb{R}$ por $g(x) = \int_{-\infty}^{x^2} f(t)dt$. Calcule o valor de g'(1), sabendo que f(1) = 2.
- 16. (ENADE) Considere $g: \mathbb{R} \to \mathbb{R}$ uma função com derivada $\frac{dg}{dt}$ contínua e f a função definida por $f(x) = \int_0^x \frac{dg}{dt}(t)dt$ para todo $x \in \mathbb{R}$.

Nessas condições avalie as afirmações que seguem.

- I A função f é integrável em todo intervalo $[a, b], a, b \in \mathbb{R}, a < b.$
- II A função f é derivável e sua derivada é a função g.
- III A função diferença f-g é uma função constante.

É correto o que se afirma em

- (a) I, apenas.
- (b) II, apenas.
- (c) I e III, apenas.
- (d) II e III, apenas.
- (e) I, II e III.

Justifique sua resposta.

- 17. Seja $f:[0,1)\to\mathbb{R}$ definida por $f(x)=\frac{1}{\sqrt{1-x^2}}$. Verifique se $\int_0^1 f(x)\,dx$ existe.
- 18. Determine o valor das seguintes integrais, se possível.

$$(a) \int_1^{\sqrt{2}} x e^{-x^2} dx$$

$$(b) \int_{-1}^{1} \frac{x^2}{\sqrt{x^3 + 9}} dx$$

(b)
$$\int_{-1}^{1} \frac{x^2}{\sqrt{x^3 + 9}} dx$$
 (c) $\int_{0}^{\frac{\pi}{4}} \tan^2 x \sec^2 x dx$

$$(d) \int_0^1 x \sin x dx$$

(e)
$$\int_{\frac{3}{4}}^{\frac{4}{3}} \frac{1}{x\sqrt{1+x^2}} dx$$
 (f) $\int_0^3 \frac{x}{\sqrt{x+1}} dx$

$$(f) \int_0^3 \frac{x}{\sqrt{x+1}} dx$$

(g)
$$\int_{1}^{2} \left(\sqrt{x} + \frac{1}{\sqrt[3]{x}} + \sqrt[4]{x} \right) dx$$
 (h) $\int_{0}^{\frac{\pi}{3}} \tan x dx$ (i) $\int_{1}^{4} \frac{x}{\sqrt{2+4x}} dx$

$$(h) \int_0^{\frac{\pi}{3}} \tan x dx$$

(i)
$$\int_{1}^{4} \frac{x}{\sqrt{2+4x}} dx$$

19. Encontre, se existir, o valor de cada uma das seguintes integrais:

$$(a) \int_{0}^{1} \left(x + \sqrt{x} - \frac{1}{\sqrt[3]{x}} \right) dx \quad (e) \int_{-\infty}^{0} x e^{x} dx \qquad (i) \int_{0}^{4} \frac{x}{\sqrt{16 - x^{2}}} dx \qquad (m) \int_{-\infty}^{1} e^{x} dx$$

$$(b) \int_{0}^{2} x^{2} \ln(x) dx \qquad (f) \int_{-\infty}^{\infty} x e^{-|x-4|} dx \quad (j) \int_{0}^{+\infty} x e^{-x} dx \qquad (n) \int_{-1}^{1} \frac{1}{x^{4}} dx$$

$$(c) \int_{1}^{+\infty} \frac{1}{x^{2}} \cos\left(\frac{1}{x}\right) dx \qquad (g) \int_{1}^{5} \frac{1}{\sqrt{5 - x}} dx \qquad (k) \int_{1}^{+\infty} \frac{1}{x\sqrt{x^{2} - 1}} dx \quad (o) \int_{0}^{1} \frac{1}{x^{3}} dx$$

$$(d) \int_{0}^{\frac{\sqrt{2}}{2}} \frac{1}{\sqrt{1 - x^{2}}} dx \qquad (h) \int_{0}^{+\infty} e^{-x} dx \qquad (l) \int_{0}^{1} \frac{1}{\sqrt{1 - x}} dx \qquad (p) \int_{-2}^{+\infty} \frac{1}{(x + 1)^{2}} dx$$

- 20. Os engenheiros de produção de uma empresa estimam que um determinado poço produzirá gás natural a uma taxa dada por $f(t) = 700e^{-\frac{1}{5}t}$ milhares de metros cúbicos, onde t é o tempo desde o início da produção. Estime a quantidade total de gás natural que poderá ser extraída desse poço.
- 21. Determine todos os valores de p para os quais $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$ converge.
- 22. Determine para quais valores de $p \in \mathbb{R}$ a integral $\int_{e}^{+\infty} \frac{1}{x(\ln x)^p} dx$ converge.
- 23. Calcule, se possível, as seguintes integrais impróprias:

(a)
$$\int_{1}^{+\infty} xe^{-x^{2}} dx$$
 (b) $\int_{-\infty}^{+\infty} \frac{\arctan x}{x^{2} + 1} dx$ (c) $\int_{-\infty}^{\frac{\pi}{2}} \sin(2x) dx$ (d) $\int_{0}^{1} x \ln x dx$ (e) $\int_{0}^{9} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ (f) $\int_{0}^{\pi} \frac{\cos x}{\sqrt{1 - \sin x}} dx$ (g) $\int_{1}^{+\infty} \frac{\ln(x^{-1})}{x^{2}} dx$ (h) $\int_{3}^{6} \frac{1}{x^{3}\sqrt{x^{2} - 9}} dx$ (i) $\int_{1}^{3} \sqrt{x^{2} - 6x + 13} dx$

24. Em equações diferenciais, define-se a Transformada de Laplace de uma função f por

$$L(f(x)) = \int_0^{+\infty} e^{-sx} f(x) dx,$$

para todo $s \in \mathbb{R}$ para o qual a integral imprópria seja convergente. Encontre a Transformada de Laplace de:

(a)
$$f(x) = e^{ax}$$
 (b) $f(x) = \cos x$ (c) $f(x) = \sin x$

25. A função gama é definida para todo x > 0 por

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- (a) Calcule $\Gamma(1)$ e $\Gamma(2)$.
- (b) Mostre que, para n inteiro positivo, $\Gamma(n+1) = n\Gamma(n)$.
- 26. (ENADE) Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $y = f(x) = x^4 5x^2 + 4$, para cada $x \in \mathbb{R}$. A área da região limitada pelo gráfico da função y = f(x), o eixo Ox e as retas x = 0 e x = 2 é igual a:

- (a) $\frac{16}{15}$ unidades de área.
- (b) $\frac{38}{15}$ unidades de área.
- (c) $\frac{44}{15}$ unidades de área.
- (d) $\frac{60}{15}$ unidades de área.
- (e) $\frac{76}{15}$ unidades de área.
- 27. Encontre a área da região limitada pelas curvas:
 - (a) $y = \sin x$, $y = \cos x$, x = 0 e $x = \frac{\pi}{2}$.
 - (b) y x = 6, $y x^3 = 0$ e 2y + x = 0.
 - (c) $y = -x^2 + 9 e y = 3 x$.
 - (d) $y = \sin x$, $y = x \sin x$, x = 0 e $x = \frac{\pi}{2}$
 - (e) 28 y 5x = 0, x y 2 = 0, y = 2x e y = 0.
- 28. Represente geometricamente a região cuja área é calculada por

$$A = \int_0^2 \left[(y+6) - (\sqrt{4-y^2}) \right] dy.$$

- 29. Calcule a área de cada região delimitada pelas curvas dadas abaixo através de:
 - (i) integração em relação a x (ii) integração em relação a y.
 - (a) y = x + 3 e $x = -y^2 + 3$.
 - (b) 2x + y = -2, x y = -1 e 7x y = 17.
 - (c) $y = x^2 1$, $y = \frac{2}{x^2}$ e $y = 32x^2$.
 - (d) y + x = 6, $y = \sqrt{x}$ e y + 2 = 3x.
- 30. Represente geometricamente a região cuja área é calculada pela expressão

$$A = \int_{1}^{2} \left[(2x^{2}) - \left(\frac{2}{x}\right) \right] dx + \int_{2}^{4} \left[\left(\frac{62 - 15x}{4}\right) - \left(\frac{2}{x}\right) \right] dx.$$

A seguir, reescreva esta expressão utilizando y como variável independente.

- 31. Estabeleça a(s) integral(is) que permite(m) calcular a área da região hachurada na figura abaixo, delimitada simultaneamente pelas curvas $y=x,\ y=x^2$ e $y=\frac{4}{x-1}$, mediante:
 - (a) integração em relação a x.
- (b) integração em relação a y.

- 32. Encontre uma reta horizontal y = k que divida a área da região compreendida entre as curvas $y = x^2$ e y = 9 em duas partes iguais.
- 33. A área de uma determinada região R pode ser calculada pela expressão

$$A = \int_{\frac{-\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \left(\sqrt{1 - x^2} - \sqrt{2}x^2\right) dx.$$

Reescreva esta expressão, utilizando:

- (a) integração em relação a y;
- (b) coordenadas paramétricas.
- 34. Represente geometricamente a região cuja área, em coordenadas paramétricas, é dada por

$$A = 2 \int_{\pi}^{0} 3\sin t(-3\sin t)dt - 2 \int_{\pi}^{0} 3\sin t(-2\sin t)dt.$$

- 35. Uma ciclóide é uma curva que pode ser descrita pelo movimento do ponto P(0,0) de um círculo de raio a, centrado em (0,a), quando este círculo gira sobre o eixo x. Pode-se representar esta ciclóide através das equações $x = a(t \sin t)$ e $y = a(1 \cos t)$, com $t \in [0, 2\pi]$. Determine a área da região delimitada pela ciclóide.
- 36. Uma curva de equação $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ é chamada astróide. Calcule a área da região delimitada pela astróide obtida quando a=5.
- 37. Calcule a área da região situada simultaneamente no interior dos seguintes pares de curvas:
 - (a) $r = 3\cos\theta \ e \ r = 1 + \cos\theta$;
 - (b) $r = 1 + \cos \theta e r = 1;$
 - (c) $r = \sin \theta e r = 1 \cos \theta$;
 - (d) $r^2 = \cos(2\theta) e^2 = \sin(2\theta);$
 - (e) $r = 2(1 + \sin \theta) e r = 2(1 + \cos \theta)$.
- 38. Encontrar a área simultaneamente interior ao círculo $r = 6\cos\theta$ e exterior a $r = 2(1 + \cos\theta)$.
- 39. Calcule a área da região simultaneamente interior à curva $r = 4 + 4\cos\theta$ e exterior à r = 6.
- 40. Calcule a área da região simultaneamente interior à curva $r = 1 + \cos \theta$ e exterior à $r = 2\cos \theta$.
- 41. Calcule a área da região simultaneamente interior às curvas $r = \sin(2\theta)$ e $r = \sin\theta$.

- 42. Determine a área da região simultaneamente interior às rosáceas $r = \sin(2\theta)$ e $r = \cos(2\theta)$.
- 43. Escreva a integral que permite calcular a área sombreada entre as curvas $r = \sin(2\theta)$ e $r = \sqrt{3}\cos(2\theta)$, dada na figura abaixo.

- 44. Seja R a porção da região simultaneamente interior às curvas $r=2\cos\theta$ e $r=4\sin\theta$ que está situada no exterior da curva r=1. Escreva as integrais que permitem calcular:
 - (a) a área da região R;
 - (b) o comprimento de arco da fronteira da região R.
- 45. Calcule a área das regiões sombreadas nas figuras abaixo:

(a)
$$r = 1$$
 e $r = 2\cos(2\theta)$ (b) $r = 2e^{\frac{1}{4}\theta}$ (c) $r = \sin(3\theta)$ e $r = \cos(3\theta)$

46. Represente geometricamente a região cuja área, em coordenadas polares, é dada por

$$I = 2 \left[\frac{1}{2} \int_0^{\frac{\pi}{6}} \sin^2 \theta d\theta + \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta \right].$$

47. Monte a(s) integral(is) que permite(m) calcular a área hachurada na figura abaixo, delimitada pelas curvas $r=2+2\cos\theta,\ r=4\cos(3\theta)$ e r=2.

- 48. Calcule o comprimento de arco das curvas dadas por:
 - (a) $x = \frac{1}{3}y^3 + \frac{1}{4y}$, com $2 \le y \le 5$;
 - (b) $x = 3 + t^2$ e $y = 6 + 2t^2$, com $1 \le t \le 5$;
 - (c) $x = 5t^2$ e $y = 2t^3$, com $0 \le t \le 1$;
 - (d) $x = e^t \cos t$ e $y = e^t \sin t$, com $0 \le t \le \frac{\pi}{2}$;
 - (e) $r = e^{-\theta}$, com $0 \le \theta \le 2\pi$;
 - (f) $r = \cos^2 \frac{1}{2}\theta$, com $0 \le \theta \le \pi$;
- 49. Determine a distância percorrida por uma partícula que se desloca entre os pontos A(2,3) e B(0,3) cuja posição, no instante t, é dada por $x(t) = 1 + \cos(3\sqrt{t})$ e $y(t) = 3 \sin(3\sqrt{t})$.
- 50. A posição de uma partícula, num instante t, é dada por $x(t) = 2\cos t + 2t\sin t$ e $y(t) = 2\sin t 2t\cos t$. Calcule a distância percorrida por esta partícula entre os instantes t = 0 e $t = \frac{\pi}{2}$.
- 51. Suponha que as equações $x(t) = 4t^3 + 1$ e $y(t) = 2t^{\frac{9}{2}}$ descrevam a trajetória de uma partícula em movimento. Calcule a distância que esta partícula percorre ao se deslocar entre os pontos A(5,2) e $B(33,32\sqrt{2})$.
- 52. Calcule a distância percorrida por uma partícula que se desloca, entre os instantes t=0 e t=4, de acordo com as equações $x(t)=1+2\cos(3t^{\frac{5}{2}})$ e $y(t)=5-2\sin(3t^{\frac{5}{2}})$.
- 53. A curva descrita por $x(t) = 3e^{-t}\cos 6t$ e $y(t) = 3e^{-t}\sin 6t$, chamada de espiral logarítmica e está representada geometricamente na Figura 1. Mostre que o arco descrito por esta espiral, quando $t \in [0, +\infty)$, possui comprimento finito.

Figura 1: Espiral logarítmica

- 54. Encontre o comprimento das curvas que limitam a região formada pela interseção das curva $r = \sqrt{3}\sin\theta$ e $r = 3\cos\theta$, situada no primeiro quadrante.
- 55. Represente graficamente o arco cujo comprimento é calculado pela integral

$$l = \int_0^{\frac{\pi}{6}} \sqrt{48\cos^2\theta + 48\sin^2\theta} d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sqrt{16\sin^2\theta + 16\cos^2\theta} d\theta.$$

- 56. Monte as integrais que permitem calcular o comprimento do arco da fronteira da região que é simultaneamente interior à $r = 1 + \sin \theta$ e $r = 3 \sin \theta$.
- 57. Calcule o volume do sólido obtido pela revolução da curva $yx^2=1$, com $x\geq 1$, em torno do eixo x.

- 58. Determinar o volume do sólido de revolução gerado pela rotação da curva $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ em torno do eixo x.
- 59. Determinar o volume do toro gerado pela rotação do círculo de equação $x^2 + (y b)^2 = a^2$ em torno do eixo x, supondo 0 < a < b.
- 60. Obtenha o volume do sólido obtido pela revolução da região delimitada por:
 - (a) $y = \sqrt{4-x}$, 3y = x e y = 0, em torno do eixo x;
 - (b) y = |x| + 2, $y = x^2$, x = -2 e x = 1 em torno do eixo x;
 - (c) $y = x^2$ e y = 2, em torno da reta y = 2;
 - (d) $y = 1 x^2$ e x y = 1, em torno da reta y = 3;
 - (e) x + y = 3 e $y + x^2 = 3$, em torno da reta x = 2.
- 61. Determine o volume do sólido obtido quando a região situada sob a curva $y = e^x$ e acima do eixo x, com $x \le 0$, é rotacionada em torno da reta y = 2.
- 62. Um hiperbolóide de uma folha de revolução pode ser obtido pela rotação de uma hipérbole em torno do seu eixo imaginário. Calcule o volume do sólido delimitado pelos planos x = -3, x = 3 e pelo hiperbolóide obtido pela rotação de $9y^2 4x^2 = 36$ em torno do eixo x.
- 63. Quando uma determinada região R é rotacionada em torno do eixo y, o volume do sólido resultante pode ser calculado pela expressão

$$V = \pi \int_{\frac{1}{3}}^{2} \left[\left(\frac{7 - 3y}{2} \right)^{2} - \left(\frac{1}{y} \right)^{2} \right] dy.$$

Represente geometricamente a região R e, a seguir, calcule o volume do sólido obtido quando R é rotacionada em torno da reta y=3.

- 64. Considere a região R delimitada simultaneamente pelas curvas $y=x^3$ e $x=y^3$.
 - (a) Obtenha a(s) integral(is) que permite(m) calcular o perímetro da região R.
 - (b) Calcule o volume do sólido obtido quando a região R é rotacionada em torno do eixo y.
 - (c) Escreva as integrais que permitem calcular o volume do sólido obtido quando a região R é rotacionada em torno da reta y=1.
- 65. Escreva as integrais que permitem calcular o volume do sólido obtido quando a região delimitada pelas curvas $y = x^2 4$ e y = x 2 é rotacionada em torno:
 - (a) do eixo x (b) da reta y = 2 (c) da reta x = -3.
- 66. Considere a região R delimitada pelas curvas $y=x^3$ e y=2x, que está situada no primeiro quadrante e **abaixo** da reta y=2-x.
 - (a) Determine o volume do sólido obtido quando a região R é revolucionada em torno do eixo x.
 - (b) Escreva as integrais que permitem calcular o volume do sólido obtido quando a região R é revolucionada em torno da reta x = -1.

- 67. Mostre, via volume de sólidos de revolução, que o volume de um cone de raio r e altura h é $V=\frac{\pi r^2h}{3}.$
- 68. Mostre, via volume de sólidos de revolução, que o volume de uma esfera de raio a é $V=\frac{4}{3}\pi a^3$.

0.1 Respostas

1.
$$\overline{S}(f,P) = 8 + \frac{2}{n}$$
 e $\overline{S}(g,P) = \frac{38}{3} + \frac{10}{n} + \frac{4}{3n^2}$

2.
$$\underline{S}(f,P) = \frac{175}{3} - \frac{133}{2n} + \frac{133}{6n^2}$$

3.
$$\overline{S}(f,P) = \frac{8}{3} + \frac{3}{2n} - \frac{1}{6n^2}$$
 e $\underline{S}(f,P) = \frac{8}{3} - \frac{3}{2n} - \frac{1}{6n^2}$

4.
$$\overline{S}(f,P) = \frac{11}{5} + \frac{1}{2n} + \frac{1}{3n^2} - \frac{1}{30n^4}$$

- 5. $\frac{2}{3}$
- 6. $-\frac{76}{3}$
- 7. $\frac{1}{4}b^4 + b$
- 8. $e^2 e^{-1}$
- 9. $\frac{8}{3}$
- 10. .
- (a) Para resolver essa integral usando retângulos inscritos devemos separar em três regiões: $x \in [-1,0], x \in [0,2]$ e $x \in [2,3].$

Espera-se que o aluno justifique isso argumentando sobre o comportamento da função: crescente, decrescente e negativa, desenhando os retângulos inscritos em cada região e indicando onde as alturas são assumidas.

- (b) Resolução da parcela $x \in [0,2]$. Assim, $\underline{S}(f,P) = \frac{16}{3} \frac{4}{n} \frac{4}{3n^2}$ e $\int_0^2 (4-x^2) dx = \lim_{n \to +\infty} \left(\frac{16}{3} \frac{4}{n} \frac{4}{3n^2} \right) = \frac{16}{3}$.
- (c) Não, pois integral I tem a parcela para $x \in [2,3]$ que é negativa. A área da região de integração é dada por

$$A = \int_{-1}^{2} (4 - x^2) dx - \int_{2}^{3} (4 - x^2) dx.$$

- 11. Dica para os itens (a) e (b): use propriedades para quebrar o lado esquerdo em duas integrais, use a definição de função par (ou ímpar) e use a substituição de variáveis u = -x para reescrever uma das integrais.
- 12. $18,9^{o}F$
- 13. $f(t) = 3t^2$
- 14. $f(x) = \frac{x}{2}$
- 15. g'(1) = 4

16. Item (c)

17.
$$\int_{0}^{1} f(x) \, dx = \frac{1}{2} \pi$$

- 18. . $(a) \frac{1}{2}e^{-1} \frac{1}{2}e^{-2} \qquad (b) \frac{2}{3}\sqrt{10} \frac{4}{3}\sqrt{2} \qquad (c) \frac{1}{3}$ $(d) \sin 1 \cos 1 \qquad (e) 0,405 \qquad (f) \frac{8}{3}$ $(a) \frac{2}{3}\sqrt{2} \qquad (b) \ln 2 \qquad (i) \frac{3}{2}\sqrt{2}$

19. .

- 20. $3500 \ m^3$
- 21. Converge para p > 1.
- 22. Converge para p > 1.

24. (a) $\frac{1}{s-a}$ para s > a (b) $\frac{s}{s^2+1}$ para s > 0 (c) $\frac{1}{s^2+1}$ para s > 0

- 25. (a) $\Gamma(1) = 1$, $\Gamma(2) = 1$
- 26. Item d.
- 27. (a) $2\sqrt{2} 2$ (b) 22 (c) $\frac{125}{6}$ (d) $2 2\sin 1$ (e) 17

28. .

- 29. (a) $\frac{125}{6}$ (b) 16
- $(c) \frac{32-4\sqrt{2}}{3}$
- $(d) \frac{23}{6}$

30.
$$A = \int_{\frac{1}{2}}^{2} \left(\frac{62 - 4y}{15} \right) - \left(\frac{2}{y} \right) dy + \int_{2}^{8} \left(\frac{62 - 4y}{15} \right) - \left(\frac{\sqrt{2}y}{2} \right) dy$$

31. .

(a)
$$A = \int_{1}^{2} (x^2 - x) dx + \int_{2}^{\frac{1+\sqrt{17}}{2}} \left(\frac{4}{x-1} - x\right) dx$$

(b)
$$A = \int_{1}^{\frac{1+\sqrt{17}}{2}} (y - \sqrt{y}) \, dy + \int_{\frac{1+\sqrt{17}}{2}}^{4} \left(\frac{y+4}{y} - \sqrt{y} \right) dy$$

32.
$$k = \frac{9}{\sqrt[3]{4}}$$

33. .

(a)
$$A = 2 \int_0^{\frac{\sqrt{2}}{2}} \frac{\sqrt{y}}{\sqrt[4]{2}} dy + 2 \int_{\frac{\sqrt{2}}{2}}^1 \sqrt{1 - y^2} dy$$

(b)
$$A = \int_{\frac{3\pi}{4}}^{\frac{\pi}{4}} -\sin^2 t dt - \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \sqrt{2}t^2 dt$$

34. .

35.
$$3a^2\pi$$

36.
$$\frac{3\pi a^2}{8}$$

37. (a)
$$\frac{57}{4}$$

$$(b) \frac{5}{4}\pi - 5$$

$$(c) \frac{1}{2}(\pi - 2)$$

$$(d) 1 - \frac{\sqrt{2}}{2}$$

37. (a)
$$\frac{5\pi}{4}$$
 (b) $\frac{5\pi}{4}\pi - 2$ (c) $\frac{1}{2}(\pi - 2)$ (d) $1 - \frac{\sqrt{2}}{2}$ (e) $6\pi - 8\sqrt{2}$

38.
$$4\pi$$

39.
$$18\sqrt{3} - 4\pi$$

40.
$$\frac{\pi}{2}$$

41.
$$\frac{1}{4}\pi - \frac{3}{16}\sqrt{3}$$

42.
$$\frac{\pi}{2} - 1$$

43. Uma das várias respostas possíveis é:

$$A = \int_0^{\frac{\pi}{4}} \frac{1}{2} (\sqrt{3}\cos 2\theta)^2 d\theta + \int_0^{\frac{\pi}{6}} \frac{1}{2} (\sin 2\theta)^2 d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{2} (\sqrt{3}\cos 2\theta)^2 d\theta$$

44. (a)
$$A = \frac{1}{2} \int_{\arcsin\frac{1}{4}}^{\arctan\frac{1}{2}} (16\sin^2\theta - 1) d\theta + \frac{1}{2} \int_{\arctan\frac{1}{2}}^{\frac{\pi}{3}} (4\cos^2\theta - 1) d\theta$$

(b)
$$l = \int_{\arcsin\frac{1}{4}}^{\arctan\frac{1}{2}} 4d\theta + \int_{\arctan\frac{1}{2}}^{\frac{\pi}{3}} 2d\theta + \int_{\arcsin\frac{1}{4}}^{\frac{\pi}{3}} d\theta$$

45. (a)
$$\frac{9\sqrt{3}}{8} - \frac{\pi}{4}$$

45. (a)
$$\frac{9\sqrt{3}}{8} - \frac{\pi}{4}$$
 (b) $4e^{\frac{9\pi}{4}} - 8e^{\frac{5\pi}{4}} + 4e^{\frac{\pi}{4}}$

$$(c) \frac{\pi}{8} - \frac{1}{4}$$

46. .

47. Uma das várias respostas possíveis é:

$$A = \frac{1}{2} \int_0^{\frac{\pi}{9}} \left[(2 + 2\cos\theta)^2 - (4\cos3\theta)^2 \right] d\theta + \frac{1}{2} \int_{\frac{\pi}{9}}^{\frac{\pi}{2}} \left[(2 + 2\cos\theta)^2 - 4 \right] d\theta + \frac{1}{2} \int_0^{\frac{\pi}{9}} 4d\theta + \frac{1}{2} \int_{\frac{\pi}{9}}^{\frac{\pi}{6}} (4\cos3\theta)^2 d\theta$$

48. $(a) \frac{1563}{40}$

(b) $24\sqrt{5}$ (c) $\frac{68}{27}\sqrt{34} - \frac{250}{27}$

(d) $\sqrt{2}e^{\frac{\pi}{2}} - \sqrt{2}$ (e) $\sqrt{2}(1 - e^{-2\pi})$ (f) 2

49. π u.c. (observe que a resolução da integral envolve uma integral com descontinuidade)

50. $\frac{\pi^2}{4}$

 $51. \ \frac{352}{27}\sqrt{22} - \frac{250}{27}$

52. 192

53. O comprimento desejado é finito e igual a $\sqrt{333}$.

54. $\frac{1}{3}\sqrt{3}\pi + \frac{\pi}{2}$

55. Arco composto de dois subarcos de circunferências, conforme figura abaixo:

56. $l = 2 \int_0^{\frac{\pi}{6}} \sqrt{9\cos^2\theta + 9\sin^2\theta} d\theta + 2 \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos^2\theta + (1+\sin\theta)^2} d\theta$

57. $\frac{\pi}{3}$

58. $\frac{4\pi ab^2}{3}$

59. $2\pi^2 a^2 b$

60. (a)
$$\frac{3}{2}\pi$$
 (b) $\frac{92\pi}{5}$ (c) $\frac{64}{15}\sqrt{2}\pi$ (d) $\frac{162}{5}\pi$ (e) $\frac{1}{2}\pi$

61.
$$\frac{7}{2}\pi$$

62.
$$32\pi$$

63.
$$\frac{410}{27}\pi - 6\pi \ln 6$$

64. (a)
$$l = \int_{-1}^{1} \left(\sqrt{1 + 9x^4} + \sqrt{1 + \frac{1}{9}x^{\frac{-4}{3}}} \right) dx$$
 (b) $V = \frac{32}{35}\pi$
(c) $V = \pi \int_{-1}^{0} (1 - \sqrt[3]{x})^2 - (1 - x^3)^2 dx + \pi \int_{0}^{1} (1 - x^3)^2 - (1 - \sqrt[3]{x})^2 dx$

65.
$$(a) V = \pi \int_{-1}^{2} (x^4 - 9x^2 + 4x + 12) dx$$

$$(b) V = \pi \int_{-1}^{2} (x^4 - 13x^2 + 8x + 20) dx$$

$$(c) V = \pi \int_{-4}^{0} (y + 13 + 6\sqrt{y + 4}) dy - \pi \int_{-4}^{-3} (y + 13 - 6\sqrt{y + 4}) dy - \pi \int_{-3}^{0} (y^2 + 10y + 25) dy$$

66. (a)
$$\frac{134}{189}\pi$$
 (b) $V = \pi \int_0^1 (1+\sqrt[3]{y})^2 - \left(1+\frac{y}{2}\right)^2 dy + \pi \int_1^{\frac{4}{3}} (3-y)^2 - \left(1+\frac{y}{2}\right)^2 dy$

- 67. Dica: Note que um cone tal como desejado pode ser obtido pela rotaç ão em torno do eixo y da reta $y = \frac{h}{r}x$, com $x \in [-r, r]$ e $y \in [0, h]$.
- 68. Dica: Note que a esfera pode ser obtida pela rotação da circunferência $x^2 + y^2 = a^2$ em torno de qualquer eixo coordenado.