Подготовить конспект теоретического материала согласно образцу отчета по лабораторным работам по методическим указаниям и ответить писменно на контрольные вопросы по всем лабораторным работам согласно Вашему варианту индивидуальной траектории.

В таблице «Данные экспериментов по лабораторному практикуму семестр 2» взять результаты измерений, обработать данные и записать в отчет вывод.

Прислать электронный скан конспекта лабораторной работы и ответов на вопросы на электронную почту <u>reamel@ya.ru</u> тема «Дистанционное обучение ВГЛТУ» до конца карантина.

Образец оформления лабораторной работы

Лабораторная работа № 5.3 (27)

ОПРЕДЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА С ПОМОЩЬЮ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТРУБКИ

Цель работы: изучение закономерностей движения заряженных частиц в электрическом и магнитном полях; определение скорости и удельного заряда электрона.

ТЕОРЕТИЧЕСКИЙ МИНИМУМ

Удельный заряд частицы

Удельный заряд частицы $\frac{q}{m}$ — это отношение заряда q частицы к ее массе m. Для электрона $\frac{q}{m} = \frac{e}{m_e} = 1{,}76\cdot 10^{11} \frac{K\pi}{\kappa z}$.

Сила Лоренца — сила, действующая на заряд q, движущийся со скоростью \overline{v} в электромагнитном поле:

$$\overline{F}_{\pi} = q\overline{E} + q[\overline{v}\overline{B}],$$

где \overline{E} — напряженность электрического поля; \overline{B} — индукция магнитного поля.

Силу Лоренца можно представить как сумму электрической и магнитной составляющих: $\overline{F}_{_{\mathcal{I}}}=\overline{F}_{_{\mathcal{I}}}+\overline{F}_{_{\mathcal{M}}}$.

Электрическая составляющая силы Лоренца: $\overline{F}_9=q\overline{E}$ не зависит от скорости движения заряда. Направление электрической составляющей определяется знаком заряда: при q>0 векторы \overline{E} и \overline{F}_9 направлены одинаково; при q<0 — противоположно.

Магнитная составляющая силы Лоренца: $\overline{F}_{\scriptscriptstyle{\mathcal{M}}} = q ig[\overline{v} \overline{B} ig].$

зависит от скорости движения заряда. Модуль магнитной составляющей определяется по формуле:

$$F_{_{\mathcal{M}}}=qvB\sin\alpha,$$

где α – угол между векторами \overline{v} и \overline{B} .

Направление магнитной составляющей силы Лоренца можно определить с помощью правила левой руки.

Правило левой руки: расположите ладонь левой руки так, чтобы в нее входил вектор \overline{B} , а четыре пальца направьте вдоль вектора $\overline{\upsilon}$, тогда отогнутый на 90° большой палец покажет направление силы $\overline{F}_{\scriptscriptstyle M}$, действующей на положительный заряд. В случае отрицательного заряда направление вектора $\overline{F}_{\scriptscriptstyle M}$ противоположно. В любом случае вектор $\overline{F}_{\scriptscriptstyle M}$ перпендикулярен плоскости, в которой лежат векторы $\overline{\upsilon}$ и \overline{B} .

Движение заряженных частиц в магнитном поле

Если частица движется вдоль линии магнитной индукции ($\alpha=0$ или $\alpha=\pi$), то $\sin\alpha=0$. Тогда $F_{_{\mathcal{M}}}=0$. В этом случае магнитное поле не влияет на движение заряженной частицы.

Если заряженная частица движется перпендикулярно линиям магнитной индукции $(\alpha=\pi/2)$, то $\sin\alpha=1$. Тогда $F_{\mathcal{M}}=qvB$. Так как вектор этой силы всегда перпендикулярен вектору скорости \overline{v} частицы, то сила $\overline{F}_{\mathcal{M}}$ создает только нормальное (центростремительное) ускорение $a_n=\frac{v^2}{r}$, при

Вектор B перпендикулярен плоскости чертежа и направлен за чертеж

этом скорость заряженной частицы изменяется

только по направлению, не изменяясь по модулю. Частица в этом случае равномерно движется по дуге окружности, плоскость которой перпендикулярна линиям индукции.

Если вектор скорости \overline{v} заряженной частицы составляет с вектором \overline{B} угол α , то частица участвует одновременно в двух движениях: поступательном с постоянной скоростью $\overline{v}_{\|}$ и равномерном вращении по окружности со скоростью v_{\perp} . В результате траектория заряженной частицы имеет форму

винтовой линии.

МЕТОДИКА ЭКСПЕРИМЕНТА

В работе изучается движение электронов в скрещенных однородных электрическом И магнитном полях. Источником электронов является электронная пушка 1 электроннолучевой трубки осциллографа. Электрическое поле создается между парой вертикально отклоняющих пластин 2 электронно-

лучевой трубки при подаче на них напряжения U. (Горизонтально отклоняющие пластины **3** в работе не используются.) Напряженность \overline{E}

электрического поля направлена вертикально.

В отсутствии электрического и магнитного полей электроны движутся вдоль оси трубки с начальной скоростью \overline{v}_{o} , при этом

светящееся пятно находится в центре экрана. При подаче напряжения U на

пластины $\mathbf{2}$ между ними создается электрическое поле, напряженность которого \overline{E} перпендикулярно вектору начальной скорости электронов. В результате пятно смещается. Величину y этого смещения можно измерить, воспользовавшись шкалой на экране осциллографа.

Магнитное поле создается двумя катушками **4**, симметрично расположенными вне электроннолучевой трубки, при пропускании по ним электрического тока. Вектор магнитной индукции \overline{B} направлен горизонтально и перпендикулярно оси трубки.

В электрическом поле на электрон действует электрическая составляющая силы Лоренца:

$$\overline{F}_{\mathfrak{I}} = e\overline{E}$$
,

где e — заряд электрона. Заряд электрона отрицательный (e < 0), поэтому сила \overline{F}_{\Im} направлена противоположно полю. Эта сила сообщает электрону ускорение a_y в направлении оси Y, не влияя на величину скорости электрона вдоль оси X: $v_x = v_0$. Подставляя выражение для \overline{F}_{\Im} в основной закон динамики поступательного движения $F_{\Im} = ma_y$ и получаем, что ускорение $a_y = \frac{eE}{m}$, где m — масса электрона. В результате, пролетая область электрического поля за время $t = \frac{l_1}{v_o}$, где l_1 — длина пластин, электрон смещается по оси Y на расстояние:

$$y_1 = \frac{a_y t^2}{2} = \frac{eEl_1^2}{2mv_o^2}.$$

После вылета из поля электрон летит прямолинейно под некоторым углом α к оси X, причем согласно рисунку $tg\alpha = \frac{v_y}{v_x} = \frac{a_y t}{v_o} = \frac{eEl_1}{mv_o^2}$.

Окончательно смещение пятна от центра экрана в электрическом поле равно $y = y_1 + y_2$, где

$$y = y_1 + l_2 t g \alpha = \frac{eEl_1}{mv_o^2} \left(\frac{l_1}{2} + l_2 \right).$$

Если по катушкам **4** пропустить электрический ток, то на пути электронов возникнет магнитное поле. Изменяя силу тока I в катушках, можно подобрать такую

величину и направление магнитной индукции \overline{B} , что магнитная

составляющая силы Лоренца \overline{F}_M скомпенсирует электрическую составляющую \overline{F}_3 . В этом случае пятно снова окажется в центре экрана. Это будет при условии равенства нулю силы Лоренца:

$$e\overline{E}+eig[\overline{v}_o\overline{B}ig]=0$$
 или $\overline{E}+ig[\overline{v}_o\overline{B}ig]=0$.

Как видно из рисунка, это условие выполняется, если вектор магнитной индукции \overline{B} перпендикулярен векторам \overline{E} и \overline{v}_o , что реализовано в установке. Из этого условия можно определить скорость электронов:

$$v_o = \frac{E}{B}$$
.

Поскольку практически измеряется напряжение U, приложенное к пластинам, и расстояние d между ними, то пренебрегая краевыми эффектами можно считать, что $E = \frac{U}{d}$, тогда

$$v_o = \frac{U}{Bd}$$
.

Измеряя смещение y электронного пучка, вызванное электрическим полем E, а затем подбирая такое магнитное поле B, чтобы смещение стало равным нулю, можно определить удельный заряд электрона:

$$\frac{e}{m} = \frac{yU}{B^2 dl_1 \left(\frac{l_1}{2} + l_2\right)}.$$

Схема установки

Электроннолучевая трубка расположена в корпусе осциллографа 1, на передней панели которого находится экран трубки 2 и две пары клемм. Клеммы ПЛАСТИНЫ соединены с вертикально отклоняющими пластинами трубки. Клеммы КАТУШКИ соединены с катушками 4 электромагнита, (Расположение создающего магнитное поле. катушек видно прозрачную боковую стенку осциллографа.) Выпрямитель 5 и блок 6 служат для создания, регулировки и измерения постоянного напряжения на управляющих пластинах трубки и постоянного тока через катушки электромагнита. Переключатель K_1 позволяет изменить полярность напряжения на пластинах, а переключатель K_2 – направление тока через катушки электромагнита.

Параметры установки: d = 7.0 мм; $l_1 = 25.0$ мм; $l_2 = 250$ мм.

Приборы и принадлежности: осциллограф с электроннолучевой трубкой; выпрямитель; блок коммутации с электроизмерительными приборами.

Таблица характеристик используемых в работе электроизмерительных приборов (если нужно)

Наименование и назначение прибора	Система	Предел измерения	Цена деления	Класс точности	Приборная погрешность
Миллиамперметр (мА)	Магнито- электрическая	100 мА	2 мА/дел.	2.5	2.5 мА
Вольтметр (V)	Электро- магнитная	100 B	2 В/дел.	2.5	2.5 B

Расчетные формулы (если нужны)

$$\frac{e}{m} = \frac{yU}{B^2 dl_1 \left(\frac{l_1}{2} + l_2\right)} ,$$

где y — смещение луча на экране осциллографа при напряжении U;

B — индукция магнитного поля;

d — расстояние между пластинами, d = 7.0 мм , Δd = 0.05 мм;

 l_I — длина пластины, l_I = 25 мм , Δl_I = 0.5 мм;

 l_2 — расстояние от пластины до экрана, l_2 = 250 мм , Δl_2 = 0.5 мм .

2) Относительные частные ошибки величины $\frac{e}{m}$:

$$\varepsilon_{y} = \frac{\Delta y}{y} \;\; ; \;\; \varepsilon_{U} = \frac{\Delta U}{U} \;\; ; \;\; \varepsilon_{B} = \frac{2\Delta B}{B} \;\; ; \;\; \varepsilon_{d} = \frac{\Delta d}{d} \;\; ; \;\; \varepsilon_{l_{1}} = \frac{\Delta l_{1}(l_{1} + l_{2})}{l_{1}\left(\frac{l_{1}}{2} + l_{2}\right)} \;\; ; \;\; \varepsilon_{l_{2}} = \frac{\Delta l_{2}}{\frac{l_{1}}{2} + l_{2}} \;\; .$$

Таблица результатов измерения из таблицы

«Данные экспериментов по лабораторному практикуму семестр 2» или свои, если работа проделана

Индивидуальные траектории лабораторного практикума по физике для студентов 1-го курса по направлению подготовки бакалавров 09.03.02 «Информационные системы и технологии» (2 семестр)

№	Номера лабораторных работ									
Траектории	Электро	Электр.	Магнитное поле		Электромагнетизм		Оптика	Квантовая		
	измерения	поле						оптика		
1	3.2	3.3	4.1	4.4	4.9	5.6	5.9	6.3		
	(23)	(21)	(25)	(27)		(32)	(35M)	(43)		
2	3.2	3.3	4.3	4.5	4.9	5.6	5.13	6.3		
	(23)	(21)	(26)	(28)		(32)	(38)	(43)		
3	3.2	3.3	4.6	4.4	4.9	5.6	5.11	6.3		
	(23)	(21)	(29)	(27)		(32)	(36)	(43)		
4	3.2	3.5	4.1	4.5	4.9	5.6	5.14	6.3		
	(23)	(24)	(25)	(28)		(32)	(39)	(43)		
5	3.2	3.3	4.3	4.4	4.9	5.6	5.11	6.3		
	(23)	(21)	(26)	(27)		(32)	(36)	(43)		
6	3.2	3.3	4.6	4.5	4.8	5.6	5.13	6.1		
	(23)	(21)	(29)	(28)		(32)	(38)	(41)		
7	3.2	3.4	4.1	4.4	4.8	5.5	5.9	6.2		
	(23)	(20)	(25)	(27)		(30)	(35)	(42)		