Problem 62

Part a

Show that the gamma distribution is a conjugate prior for the exponential distribution.

If $X \sim Exp(\lambda)$, then $f_X(x) = \lambda e^{-\lambda x}, x \geq 0$. If $\Lambda \sim Gamma(\alpha, \theta)$, then $f_{\Lambda}(\lambda) = \frac{\theta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\theta \lambda}, \lambda \geq 0$. Thus

$$f_{\Lambda|X}(\lambda|x) \propto \lambda^{\alpha-1} e^{-\theta\lambda} (\lambda e^{-\lambda x}) = \lambda^{\alpha} e^{-(\theta+x)\lambda}, \lambda \ge 0$$

Which shows that $\Lambda | X \sim Gamma(\alpha + 1, \theta + x)$. Repeated application shows that when n iid samples of X are drawn, $\Lambda | \mathbf{X} \sim Gamma(\alpha + n, \theta + \sum X_i)$.

Part b

Suppose that the waiting time of customers in a queue is exponential with unknown parameter λ , and that the average time to serve a random sample of 20 customers is 5.1 minutes. A gamma distribution is used as the prior.

Plot the posterior distributions and find the means when 1. the prior has a mean of .5 and a standard deviation of 1 and 2. the prior has a mean of 10 and a standard deviation of 20.

Using the properties of the Gamma distribution, the first prior has $\alpha = .25$ and $\beta = .5$. Thus the posterior is distributed Gamma(20.25, 102.5) with a mean of $E(\Lambda | \sum_{i=1}^{20} X_i = 102) = 0.1650$.

The second prior has $\alpha=.25$ and $\beta=.025$. Thus the posterior is distributed Gamma(20.25,102.025) with a mean of $E(\Lambda|\sum_{i=1}^{20}X_i=102)=0.1656$.

Gamma(.25, .025) Prior

Although the second prior is flatter, the differences are insignificant compared to the data.