EM 404 – DINÂMICA

PROVA 1 20/09/2006

Prof. Robson Pederiva

Nome	R.A	Assinatura	

1- Por pura diversão, dois estudantes de engenharia de 70 kg, A e B, usando uma corda elástica, pulam de uma ponte, com velocidade inicial nula. A corda tem rigidez $k = 1200 \ N/m$. Determine o comprimento que a corda não deformada deve ter para que eles apenas toquem a superfície do rio. Quando eles atingem a superfície do rio, A, preso na corda, solta B. Calcule a altura máxima (a partir do nível da água) alcançada por A na volta e sua aceleração máxima. A partir dos seus resultados, faça um comentário sobre a exeqüibilidade dessa diversão.

a) Comprimento da corda não deformada

Resposta: L = ______

b) Altura máxima alcançada por A.

Resposta: H = m

c) Aceleração máxima de A.

Resposta: $A_{max} = \underline{\qquad} m/s^2$.

2 – Para verificar a qualidade de uma semente, ela deve passar pelo teste de colisão indicado na figura. Para a semente (com e > 0.8) ser aceita ela deve passar pela barreira em C, após ser solta a partir do repouso em A e quicar em B. Determinar as dimensões d e h.

a) Dimensão d.

Resposta: d = m

b) Dimensão h.

Resposta: h = m

3 – Num dado instante, a roda esta girando com a velocidade e aceleração mostradas na figura.

Determine:

a) A velocidade do colar A.

Resposta: V =b) A velocidade angular do braço AB. Resposta: $\omega =$

c) A aceleração do colar A.

d) A aceleração angular do braço AB.

 m/s^2 Resposta: A =

m/s

rad/s

rad/s²

Resposta: $\alpha =$

