

Winning Space Race with Data Science

Patrick Neumann 7/20/2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch.
- This project used data directly available from Space X to build models to predict the outcome of a mission.
- An adequate performing model was found

Introduction

- Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch.
- This project used data directly available from Space X to build models to predict the outcome of a mission.
- An adequate performing model was found

Methodology

- Data collection methodology:
 - Raw data was collected from the SpaceX homepage via web scraping and APIs
- Perform data wrangling
 - The outcome field was transformed in a landing_class field and null values were removed
- Performed exploratory data analysis (EDA) using visualization and SQL
- Performed interactive visual analytics using Folium and Plotly Dash
- Performed predictive analysis using classification models
 - Multiple different models (e.g. k nearest neighbours, decision trees, support vector machines, logistic regression) were evaluated for the predictive analysis and the best performing model was selected

Data Collection – SpaceX API

```
static_json_url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/API_call_spacex_api.json'

We should see that the request was successfull with the 200 status response code

response.status_code

200

Now we decode the response content as a Json using .json() and turn it into a Pandas dataframe using .json_normalize()

data = pd.json_normalize(response.json())

Using the dataframe data print the first 5 rows

data.head()
```

• https://github.com/Patrick912/DataScienceCapstone/blob/master/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection - Scraping

• BeautifulSoup was used to scrape SpaceX launch data from the Falcon 9 and Falcon Heavy Wiki page

 https://github.com/Patrick912/DataScienceCapstone/blob/master/jupyter-labswebscraping.ipynb

Data Wrangling

- As part of the data wrangling process
 - The outcome field was transformed in a landing_class field
- https://github.com/Patrick912/DataScienceCapstone/blob/master/labsjupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

- As part of exploratory data analysis various scatter plots, bar and line charts were plotted
- https://github.com/Patrick912/DataScienceCapstone/blob/master/edadataviz.ipy
 nb

EDA with SQL

- SQL queries were used to calculated averages and maximums for various key metrics
- https://github.com/Patrick912/DataScienceCapstone/blob/master/jupyter-labseda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- A folium map was created to display all the launch sites including the related launch outcomes
- For better understanding lines and distances to landmarks were added
- https://github.com/Patrick912/DataScienceCapstone/blob/master/lab_jupyter_launch_s ite_location.ipynb

Build a Dashboard with Plotly Dash

- An interactive dashboard was created to visualize
 - launch outcomes by site
 - Launch outcomes by site related to payload
- https://github.com/Patrick912/DataScienceCapstone/blob/master/project.tar

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- You need present your model development process using key phrases and flowchart
- https://github.com/Patrick912/DataScienceCapstone/blob/master/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• The higher flight numbers have a higher success rate

Payload vs. Launch Site

- VAFB has no launches with a payload above 10k
- Launches with higher payloads are more successful

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

- The LEO success rate appears to be related to the number of flights
- There seems to be no relationship between success rate and flight number forth
 GTO orbit

Payload vs. Orbit Type

• Heavier payloads mean a higher success rates for Polar, LEO and ISS.

Launch Success Yearly Trend

• Success rate trends up over time

All Launch Site Names

• There are 4 different launch sites

Launch Site Names Begin with 'CCA'

*sql SELECT * FROM SPACEXTBL where Launch_Site like 'CCA%' limit 5 * sqlite://my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

• The 5 first records for launch sites beginning with CCA

Total Payload Mass

The total payload carried by SpaceX for NASA is 99980kg

Average Payload Mass by F9 v1.1

Average payload carried by booster version F9 v1.1 is 2534.66kg

First Successful Ground Landing Date

• The first successful ground landing date was December 22nd, 2015.

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

• Total number of successful mission outcomes is 100 compared to 1 failed mission outcome.

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass

Booster_Version
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1051.4
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

2015 Launch Records

```
%sql SELECT substr(Date, 6,2) as month, Landing_Outcome, Booster_Version, Launch_site from SPACEXTBL where Landing_Outcome like 'Fail%' and substr(Date,0,5)='2015'

* sqlite://my_datal.db
Done.

month Landing_Outcome Booster_Version Launch_Site

01 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Map – Launch Sites

Map – Launch Outcomes

Map – Distances of landmarks to launch site

- Distances from launch site to
 - Coast line
 - Highway
 - o railroad

Launch Success Rate – All Sites

• The site with the highest success rate for launches is KSC LC-39A

Launch Success Rate – KSC LC39A

• Site KSC LC39A sports the highest launch success rate of 76.9% (10 out of 13 launches)

Launch Success Rate - Correlation between payload and booster

- The left chart shows the correlation between payload and booster version for launches with a payload under 4000kg
- The right chart shows the correlation between payload nad booster version for launchses with a payload above 4000kg

Classification Accuracy

 All model types have the same classification accuracy

Confusion Matrix

• Show the confusion matrix of the best performing model with an explanation

Conclusions

• Based on the available data we were able to build a model that predicts successful landing accurately, but falls short at classifying unsuccessful landings.

Appendix

• https://github.com/Patrick912/DataScienceCapstone/tree/master

