PROJET 10 - DÉTECTEZ DES FAUX BILLETS AVEC R OU PYTHON

ONCFM

CAUDAL ADRIEN

CONTEXTE

- Méthodes d'identifications des contrefaçons
 - Créer un algorithme pour différencier les vrais des faux billets.
- Les différences de dimensions permettent de distinguer les faux billets

CARACTÉRISTIQUES

VISUALISATIONS DES DONNÉES D'ENTRAÎNEMENT

ANALYSE PAR COMPOSANTES

- Faire des liens entre les variables :
 - FI résume bien is_genuine, margin_up, margin_low et length
 - Les autres variables synthétiques ne sont associées qu'à une variable
- Aide à réponde à la problématique qui suit

COMPLÉTION DU JEU DE DONNÉES

- 37 valeurs manquantes (margin_low)
 - Régression linéaire
- Normalité des résidus :
 - Aderson-Darling > OK
- Indépendance des résidus :
 - Durbin-Watson > OK
- Homocédasticité :
 - White > OK

OLS Regression Results

Dep. Variable:		margin_low	R-square	ed:		0.477		
Model:		OLS	Adj. R-	squared:		0.476		
Method:		east Squares				266.1		
Date:	Wed,	27 Dec 2023	Prob (F	-statistic):		2.60e-202		
Time:		17:30:35	Log-Like	elihood:		-1001.3		
No. Observation	s:	1463	AIC:			2015.		
Df Residuals:		1457	BIC:			2046.		
Df Model:		5						
Covariance Type	:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
const	22.9948	9.656	2.382	0.017	4.055	41.935		
diagonal	-0.1111	0.041	-2.680	0.007	-0.192	-0.030		
height_left	0.1841	0.045	4.113	0.000	0.096	0.272		
height_right	0.2571	0.043	5.978	0.000	0.173	0.342		
margin_up	0.2562	0.064	3.980	0.000	0.130	0.382		
length		0.018		0.000	-0.445	-0.374		
Omnibus:	=======	73.627	Durbin-Watson:			1.893		
Prob(Omnibus):		0.000			95.862			
Skew:		0.482	Prob(JB): 1.53e-21		1.53e-21			
Kurtosis:		3.801	Cond. No	0.		1.94e+05		

ALGORITHMES DE MACHINE LEARNING UTILISÉS

- K-means (non supervisé)
- Random Forest (supervisé)
- Régression logistique (supervisé)
- k-Neighbors Classifier (supervisé)

K-MEANS

- Principe : regrouper de proche en proche
- Résultats :
 - 19 faux positifs et 2 faux négatifs sur les
 1463 billets

RANDOM FOREST

- Principe : Combinaison de prédicteurs faibles pour former le modèle d'ensemble.
- Résultats :
 - 2 faux positifs et | faux négatif sur 293 données test

RÉGRESSION LOGISTIQUE

- Principe : chercher une relation (calcul) entre les variables.
- Résultats :
 - 2 faux positifs et 0 faux négatifs pour 293 données test

K-NEIGHBORS CLASSIFIER

- Principe : classifier en fonction des voisins
- Résultats :
 - 2 faux positifs et 0 faux négatifs sur 293 données test

COMPARAISON ET CHOIX FINAL

	K-means	Random forest	Régression logistique	k-Neighbors Classifier
Faux positifs	1,3%	0,7%	0,7%	0,7%
Faux négatifs	0,1%	0,3%	0%	0%