Title: jhbj

namwookeim

December 10, 2019

[TITLE]

hjh { # intro }

 \sim Equation { #euler } e = a+b \sim

mkm

hobbit-hole

Here's a simple footnote, [^1] and here's a longer one. [^bignote]

My Great Heading

My Great Heading

[^bignote] : asfasffasfsafa

Heading IDs

Heading IDs

First Term This is the definition of the first term.

Second Term This is one definition of the second term.

This is another definition of the second term.

The world is flat. We now know that the world is round.

- [x] Write the press release
- [x] Update the website
- [] Contact the media

asfj
kasfjasklfjasklfjasklfjasklfjasklfjasklfjaslfjasf asjfkasjfa
askfjasklfjasklfjasklfjasklfjasklfjasklfujqkfjkujaskfhasfj
haspofhaoifjasfasfjasfjasjfjas
 @mymynamwoo

- This line got removed + This line got added $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

The probability of getting (k) heads when flipping (n) coins

$$P(E) = \binom{n}{k} p^k (1-p)^{n-k}$$

The Lorenz Equations

$$\begin{split} \dot{x} &= \sigma(y-x) \\ \dot{y} &= \rho x - y - xz \\ \dot{z} &= -\beta z + xy \ \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \end{split}$$

The Cauchy-Schwarz Inequality

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \le \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right)$$

Math examples are from here