COMP4680/COMP8650: Advanced Topics in Machine Learning

Assignment #1: Background

Due: 11:59pm on Friday 5 August, 2022.

Submit solutions (with working) as a single PDF file or Jupyter notebook via Wattle. Don't forget to include your name and student ID at the top of the submitted solutions.

- 1. **Sets (10 marks).** Let A = [-1, 1), let B = [0, 3] and let C = [-1, 0]. Find
 - (a) $A \cap B$
 - (b) $A \cup B$
 - (c) $A \cap C$
 - (d) $A \cup C$
 - (e) $B \cap C$
 - (f) $B \cup C$
 - (g) $A \times B$
 - (h) $\sup (A \setminus B)$
 - (i) $\inf (A \cap \mathbb{R})$
 - (j) $\sup (\mathbb{R} \setminus B)$
- 2. Diagonal matrices (10 marks). Let $D \in \mathbb{R}^{n \times n}$ be an n-by-n diagonal matrix.
 - (a) Show that the cost of computing y = Dx for any vector $x \in \mathbb{R}^n$ is O(n).
 - (b) Let A be an arbitrary n-by-n matrix. Does DA = AD? Prove or give a counterexample.
 - (c) Using the formula $\det A = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} A_{i,\sigma(i)}$ where the summation is over all permutations σ of $(1, 2, \ldots, n)$, show that the determinant of D equals the product of the diagonal entries.
 - (d) Under what conditions will D be positive definite?
- 3. **Triangular matrices (10 marks).** Show that for upper or lower triangular matrices the eigenvalues are equal to the diagonal elements. Use this fact to give a condition for when a triangular matrix is invertible.
- 4. Determinant of a transpose (10 marks). Prove that $\det A^T = \det A$.
- 5. Cauchy-Schwarz inequality (10 marks). Given any $x \in \mathbb{R}^n$ satisfying $\sum_{i=1}^n x_i = 1$, use the Cauchy-Schwarz inequality to prove that $||x|| \ge \frac{1}{\sqrt{n}}$. Does this lower bound change if we further restrict x to be non-negative, i.e., $x_i \ge 0$ for $i = 1, \ldots, n$ and $\sum_{i=1}^n x_i = 1$?
- 6. Least-squares (10 marks). Write (Python) code to solve the following least-squares problem over $x \in \mathbb{R}^2$.

minimize
$$||Ax - b||_2^2$$

with
$$A=\begin{bmatrix}8&4\\6&6\\5&8\\0&0\end{bmatrix}$$
 and $b=\begin{bmatrix}2\\0\\2\\2\end{bmatrix}$. Include the code listing and solution you get from running your code.

- 7. Gradients (10 marks). Compute the gradients $\nabla_x f(x)$ of the following functions:
 - (a) $f(x) = a^T x + b$ for $a \in \mathbb{R}^n, b \in \mathbb{R}$

(b)
$$f(x) = \frac{1}{2}x^T P x + q^T x + r$$
 for $P \in \mathbb{R}^{n \times n}, q \in \mathbb{R}^n, r \in \mathbb{R}$

- (c) $f(x) = \frac{1}{2}x^T P x$ for $P = P^T \in \mathbb{R}^{n \times n}$
- (d) $f(x) = (a^T x b)(c^T x d)$ for $a, c \in \mathbb{R}^n$ and $b, d \in \mathbb{R}$
- (e) $f(x) = \frac{1}{1 + \exp(-g(x))}$ in terms of f(x) and $\nabla_x g(x)$
- 8. **Trace.** (10 marks). Show that the trace operator is a valid inner product for the vector space of real $m \times n$ matrices. That is, for $X, Y \in \mathbb{R}^{m \times n}$, show that $\langle X, Y \rangle = \mathbf{tr}(X^T Y)$ satisfies the properties of an inner product.
- 9. **Anti-symmetric matrix (10 marks).** Consider an arbitrary anti-symmetric matrix $A \in \mathbb{R}^{n \times n}$, i.e., $A^T = -A$. Prove that $x^T A x = 0$ for all $x \in \mathbb{R}^n$. Hence, show that for any matrix $B \in \mathbb{R}^{n \times n}$ we have $\frac{1}{2}x^T(B+B^T)x = x^TBx$.
- 10. Maximum entropy (10 marks). Consider the optimisation problem

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$
 subject to
$$\mathbf{1}^T x = 1$$

for $x \in \mathbb{R}^n_{++}$.

- (a) Examine the constraint function and write and expression for x_n in terms of the other x_i .
- (b) Use your expression to replace x_n in the objective function to construct an unconstrained optimisation problem.
- (c) Solve the new (unconstrained) optimisation problem by differentiating the objective and setting it to zero to find the maximum entropy distribution. Hint: Use symmetry and constraints on x from the original problem.