2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

wall

Language: en-NLD

Wall

Jian-Jia bouwt een muur door bakstenen van hetzelfde formaat op elkaar te stapelen. Een muur bestaat uit n kolommen bakstenen, die van links naar rechts genummerd zijn van 0 tot en met n-1. De hoogte van elke kolom kan anders zijn. De hoogte van een kolom wordt uitgedrukt als het aantal bakstenen in de kolom.

Jian-Jia bouwt de muur als volgt. Aan het begin zijn er geen stenen in de kolommen. Hierna doorloopt Jian-Jia k een bouwproces van fasen van telkens *toevoegen* of *verwijderen* van bakstenen. Het bouwproces is af zodra alle k fasen zijn doorlopen. In elke fase werkt Jian-Jia met een subrij van aaneengesloten kolommen en een hoogte k. Hij voert dan de volgende procedure uit:

- In een *toevoeg* fase voegt Jian-Jia bakstenen toe aan de kolommen met minder dan **h** bakstenen, totdat ze precies **h** bakstenen bevatten. Met de kolommen die **h** of meer bakstenen bevatten doet hij niets.
- In een *verwijder* fase, verwijdert Jian-Jia bakstenen van de kolommen met meer dan **h** bakstenen, totdat ze precies **h** bakstenen bevatten. Met de kolommen die **h** of minder bakstenen bevatten doet hij niets.

Bepaal het eindresultaat van de muur.

Voorbeeld

We gaan uit een muur die uit 10 kolommen bestaat. Er zijn 6 fases. Een diagram met hoe de muur eruit ziet na elke fase zie je ook.

fase	type	range	
0	toevoegen	kolommen 1 tot en met 8	4
1	verwijderen	kolommen 4 tot en met 9	1
2	verwijderen	kolommen 3 tot en met 6	5
3	toevoegen	kolommen 0 tot en met 5	3
4	toevoegen	kolom 2	5
5	verwijderen	kolommen 6 tot en met 7	0

In het begin zijn alle kolommen leeg. Na fase 0 liggen er in elke kolom 1 tot met 8 precies 4 bakstenen. Kolommen 0 en 9 blijven leeg. In fase 1 worden de bakstenen van kolommen 4 tot en met 8 verwijderd totdat er op deze kolommen precies 1 baksteen over is. De kolommen 0 tot en met 3 veranderen niet. In fase 2 gebeurt er niets omdat geen van de kolommen 3 tot en met 6 meer dan 5 bakstenen heeft. Na fase 3 wordt het aantal bakstenen in kolommen 0, 4 en 5 verhoogd tot 3. Na fase 4 zijn er 5 bakstenen in kolom 2. Tenslotte verwijdert fase 5 alle bakstenen uit kolommen 6 en 7.

Opdracht

Je krijgt de beschrijving van de k fases. Bereken het aantal bakstenen dat in elke kolom is overgebleven nadat alle fases zijn uitgevoerd.

Je moet de functie buildWall implementeren.

- buildWall(n, k, op, left, right, height, finalHeight)
 - n: het aantal kolommen in de muur.
 - k: het aantal fasen.
 - op: array van lengte k; op [i] is het type fase i: 1 staat voor toevoegen; en 2 voor verwijderen, met $0 \le i \le k-1$.
 - left en right: arrays van lengte k; de rij van kolommen in fase i loopt vanaf left[i] tot en met right[i] (dus de eerste en laatste kolommen left[i] en right[i] zijn inbegrepen), met $0 \le i \le k-1$. Er geldt altijd left[i] \le right[i].
 - height: array van lengte k; height[i] is de hoogte parameter van fase i, met $0 \le i \le k-1$.
 - finalHeight: array van lengte n; je moet je antwoord aanleveren door het uiteindelijke aantal bakstenen in kolom i op te slaan in finalHeight[i], met $0 \le i \le n-1$.

Subtasks

Voor alle subtaken geldt dat de hoogte parameter in alle fases een niet-negatieve integer is kleiner dan of gelijk aan 100000.

subtask	punten	n	\boldsymbol{k}	opmerkingen
1	8	$1 \leq n \leq 10000$	$1 \le k \le 5000$	geen aanvullende limieten
2	24	$1 \le n \le 100000$	$1 \le k \le 500000$	alle toevoeg fasen zijn voor de verwijder fasen
3	29	$1 \le n \le 100000$	$1 \le k \le 500000$	geen aanvullende limieten
4	39	$1 \leq n \leq 2000000$	$1 \le k \le 500000$	geen aanvullende limieten

Implementatie details

Stuur één bestand wall.c, wall.cpp of wall.pas in.

Dit bestand implementeert een subprogramma zoals hierboven beschreven op basis van de hieronder beschreven interface. Voor een C/C++ programma moet je ook een header-bestand wall.h insturen.

C/C++ programma

```
void buildWall(int n, int k, int op[], int left[], int right[],
int height[], int finalHeight[]);
```

Pascal programma

```
procedure buildWall(n, k : longint; op, left, right, height :
array of longint; var finalHeight : array of longint);
```

Voorbeeld grader

De voorbeeld grader leest de invoer in het volgende formaat:

- regel 1: n, k.
- regel 2 + i ($0 \le i \le k 1$): op[i], left[i], right[i], height[i].