

North America 2024

Longhorn: Introduction and Deep Dive

Phan Le Senior Software Engineer, SUSE

One click to add persistent storage support to any Kubernetes cluster

Open Source
Distributed Storage Software for Kubernetes
https://longhorn.io/

Community Adoption

KubeCon CloudNativeCon
North America 2024

- 141,000+ worldwide live node count reached and counting!
- 44%+ growth year over year

Metrics available at https://metrics.longhorn.io/

Source code:

https://github.com/longhorn/upgrade-responder

- 3,700+ users in the Slack channels
- GitHub star: 6.1k

Overview

Use case

- Reliable, scalable storage solution for stateful workloads in Kubernetes clusters
- Hyper-converged solution. Run on the same cluster using the local disks and provide replicated storage for pods.

Reliability

- Crash consistent
- Multiple layers of protection against data loss, including built-in snapshot and backup support

Usability

- One click installation
- Polished user experience

Maintainability

- Easy to understand
- Easy to recover even in the worst-case scenario
- Upgrade without interrupting the workload

What Longhorn Supports

Kubernetes Persistent Volume Support

- Block, FS volumes
- RWO, RWX

CSI Protocol Support

Volume Provision, Attachment, Snapshot,
 Clone, Restore, Expansion

Volume Capabilities

- Thin provisioning
- Snapshot, CoW
- Trim, Expand
- Live upgrade, migration

IO Performance

- Data Locality, Strict local Volume
- o v1 & v2 Data Engines

Intuitive UI

Storage, Storage Topology

- o v1 & v2 Longhorn disk
- Disk/Node/Zone replica scheduling anti-affinity
- Storage tag

Data Protection

- Data replication
- Data encryption in transit & at rest
- Bit-rot protection

Data Services

- In-cluster snapshot & revert
- Out-of-cluster backup & restore
- Disaster recovery volume

Space Usage Management

- Space efficiency for Snapshot
- Backup compression

Architecture - Engine

Latest Feature Release v1.7

- Data Reliability and Integrity
 - Support Periodic and On-Demand Full Backups
 - High Availability of Backing Images
- Resilience
 - RWX Volumes Fast Failover
- Scheduling
 - Volume Locality for RWX
 Volumes
 - Auto-Balance Pressured
 Disks
- Networking
 - Storage Network Support for RWX Volumes
- Longhorn CLI

V2 Data Engine new features:

- Support disk drivers
 - o AIO, NVMe
- Online Replica Rebuilding
- Volume Operations
 - Filesystem trim

Roadmap - v1.8 (Q1 2025)

V2 Data Engine

- Performance
 - Configurable CPU Cores
 - Dynamic Scheduler
- Replica Rebuilding
 - Online Rebuild Improvement
 - Snapshot Checksum
 - o Delta Replica Rebuilding:
- Data Recovery
 - Auto Salvage
 - Disaster Recovery Volume
- Volume Live Upgrade
- Live Migration
- Backing Image
- Volume Expansion

Other Features:

- Multiple Backup Stores
- Longhorn CLI Commands for Operations

Longhorn Engine v1 vs v2

V2 Engine Performance - IOPs

IOPS (K)

V2 Engine Performance - IOPs - 3 replicas

IOPS (K)

- local host filesystem (baseline)
- v2 volume (3 replicas / 1 CPU core)
- v2 volume (3 replicas / 4 CPU cores)

V2 Engine Performance - Bandwidth

Bandwidth (MiB/s)

- local host filesystem (baseline)
- v2 volume (1 replicas / 1 CPU core)
- v2 volume (1 replicas / 4 CPU cores)
- v2 volume (strict local mode / 4 CPU cores)

V2 Engine Performance - Bandwidth - 3 replicas

Bandwidth (MiB/s)

- local host filesystem (baseline)
- v2 volume (3 replicas / 1 CPU core)
- v2 volume (3 replicas / 4 CPU cores)

V2 Engine Performance - Latency

Latency (microseconds)

- local host filesystem (baseline)
- v2 volume (1 replicas / 1 CPU core)
- v2 volume (1 replicas / 4 CPU cores)
- v2 volume (strict local mode / 4 CPU cores)

V2 Engine Performance - Latency - 3 replicas

Latency (microseconds)

- local host filesystem (baseline)
- v2 volume (3 replicas / 1 CPU core)
- v2 volume (3 replicas / 4 CPU cores)

Note:

- inter-node network latency is around 150 us
- Latency of 3 replicas
 volumes ~= latency of 1
 replica + network latency

North America 2024

V2 Engine Demo

- Adding NVMe disk
- Create a SC with v2 engine
- Create a PVC
- Deploy a workload pod
- Run fio benchmark inside workload pod
- Take a snapshot and a backup for Longhorn volume

North America 2024

Q&A

Please provide us feedbacks at

https://kccncna2024.sched.com/event/1hoxZ