San Diego Audio Hackers

Spectrograms Explained

July 10, 2016 Nick Hilton

Outline

- Time domain signals
- Frequency domain
- How to make spectrograms
- Heisenberg uncertainty principle
- Spectrograms

Outline

- Time domain signals
- Frequency domain
- How to make spectrograms
- Heisenberg uncertainty principle
- Spectrograms

- List of values
 - {time, amplitude}, {time, amplitude}, ...

- List of values
 - {time, amplitude}, {time, amplitude}, ...

- List of values
 - {time, amplitude}, {time, amplitude}, ...

- List of values
 - {time, amplitude}, {time, amplitude}, ...

Outline

- Time domain signals
- Frequency domain
- How to make spectrograms
- Heisenberg uncertainty principle
- Spectrograms

Frequency domain signals

- List of values
 - {frequency, amplitude}, {frequency, amplitude} ...

Frequency domain signals

- List of values
 - {frequency, amplitude}, {frequency, amplitude} ...

Frequency domain signals

- List of values
 - {frequency, amplitude}, {frequency, amplitude} ...

Outline

- Time domain signals
- Frequency domain
- How to make spectrograms
- Heisenberg uncertainty principle
- Spectrograms

How to make spectrograms

Recipe

- 1. Break up input signal into frames
- 2. Apply a window to remove step function at edge
- 3. Transform frame into frequency domain via FFT
- 4. Place frequency domain frame into spectrogram matrix

Outline

- Time domain signals
- Frequency domain
- How to make spectrograms
- Heisenberg uncertainty principle
- Spectrograms

Formula

$$\Delta x \Delta p \ge \frac{h}{4\pi}$$

- Meaning for signal processing
 - -You can't know frequency & time precisely simultaneously

• When is the signal 3 Hz?

- We must process a finite duration of the signal
 - So we reduce the amount memory used
 - But more importantly, so we can know approximately when the signal contains which frequencies

- Choosing a finite "window"
 - 1. Limits the minimal observable frequency

- Choosing a finite "window"
 - 1. Limits the minimal observable frequency

- Choosing a finite "window"
 - 1. Limits the minimal observable frequency

- Choosing a finite "window"
 - 2. Limits if two tones can be resolved

- Choosing a finite "window"
 - 2. Limits if two tones can be resolved

- Choosing a finite "window"
 - 2. Limits if two tones can be resolved

- Choosing a finite "window"
 - 2. Limits if two tones can be resolved

- A trade off must be made
 - Time resolution
 - Frequency resolution
 - You can't have both!

Outline

- Time domain signals
- Frequency domain
- How to make spectrograms
- Heisenberg uncertainty principle
- Spectrograms

