Homework1

Yuki Joyama

1. Exponential Density and Survival-related Functions

(a) Let $\hat{\lambda}$ be the maximum likelihood estimator of the parameter λ .

For relapse time:

 $\hat{\lambda} = \frac{6}{5+8+12+24+32+17+16+17+19+30} \approx 0.033$ This indicates that the rate of relapse is about 3.33% per month.

For relapse time:

 $\hat{\lambda} = \frac{3}{10+12+15+33+45+28+16+17+19+30} \approx 0.013$ This indicates that the rate of death is about 1.33% per month.

(b)

i. Mean is $\int_0^\infty t\lambda e^{-\lambda t}dt=\frac{1}{\lambda}$ and I will use $\hat{\lambda}$ to derive the following values. Mean time to relapse:

 $\frac{1}{0.033} \approx 30.303$ months Mean survival time: $\frac{1}{0.013} \approx 76.923$ months

ii. Median is $0.5=e^{-\lambda\tau}\Rightarrow \tau=\frac{-\log(0.5)}{\lambda}.$ By $\hat{\lambda},$ Median time to relapse:

From the to Tenapse. $\frac{-log(0.5)}{0.033} \approx 21.004 \text{ months Median survival time:}$ $\frac{-log(0.5)}{0.013} \approx 53.319 \text{ months}$