Combinational Circuits

Combinational circuit

The output depends only on the input

Methods to describe a combinational circuit

- Truth table
- Boolean algebraic expression
- Logic diagram

Truth table

 Lists the output for every combination of the input

а	b	c	x	y
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

a	b	С	d	x	y
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	0	1	1	1
1	1	1	0	0	0
1	1	1	1	1	0

Boolean algebra

- Three basic operations
 - ▶ Binary OR +
 - Binary AND •
 - Unary Complement '

Ten properties of boolean algebra

- Commutative
- Associative
- Distributive
- Identity
- Complement

Commutative

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

Associative

$$(x+y) + z = x + (y+z)$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Distributive

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

Identity

$$x + 0 = x$$

$$x \cdot 1 = x$$

Complement

$$x + (x') = 1$$

$$x \cdot (x') = 0$$

Precedence	Operator
Highest	Complement AND
Lowest	OR

Distributive

$$x + y \cdot z = (x + y) \cdot (x + z)$$
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

Complement

$$x + x' = 1$$

$$x \cdot x' = 0$$

Associativity

$$(x+y)+z$$
$$x+y+z$$

Duality

- To obtain the dual expression
 - Exchange + and •
 - Exchange I and 0

Idempotent property

$$x + x = x$$

$$x \cdot x = x$$

Zero theorem

$$x + 1 = 1$$
$$x \cdot 0 = 0$$

Absorption property

$$x + x \cdot y = x$$

$$x \cdot (x + y) = x$$

Consensus theorem

$$x \cdot y + x' \cdot z + y \cdot z = x \cdot y + x' \cdot z$$
$$(x+y) \cdot (x'+z) \cdot (y+z) = (x+y) \cdot (x'+z)$$

De Morgan's law

$$(a \cdot b)' = a' + b'$$
$$(a + b)' = a' \cdot b'$$

Complement theorems

$$(x')' = x$$

$$1' = 0$$

$$0' = 1$$

Logic diagrams

- An interconnection of logic gates
- Closely resembles the hardware
 - Gate symbol represents a group of transistors and other electronic components
 - Lines connecting gate symbols represent wires

$$x = a \cdot b$$

а	b	x
0	0	0
0	1	0
1	0	0
1	1	1

(a) AND gate.

$$x = a + b$$

а	b	x	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
•	1	, 1	

(b) OR gate.

a	16
a —	X

$$x = a'$$

а	x
0 1	1 0

(c) Inverter.

Computer Systems

$$x = (a \cdot b)'$$

а	b	x
0	0	1
0	1	1
1	0	1
1	1	0

$$x = (a+b)'$$

а	b	x
0	0	1
0	1	0
1	0	0
1	1	0

$$x = a \oplus b$$

а	b	x
0	0	0
0	1	1
1	0	1
1	1	0

(c) XOR gate.

(a) AND inverter.

Precedence	Operator
Highest	Complement AND XOR
Lowest	OR

а	b	C	x
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Set theory representation

- OR gate is set union
- AND gate is set intersection
- Inverter is set complement

Boolean expressions and logic diagrams

- AND gate corresponds to AND operation
- OR gate corresponds to OR operation
- Inverter corresponds to complement operation

Abbreviated logic diagrams

- Any signal can be duplicated by a junction of two wires
- The complement of any variable can be produced by an inverter

$$(a'bc \oplus c + a + d)'$$

Truth tables and boolean expressions

- Given a truth table, write a boolean expression without parentheses as an OR of several AND terms
- Each AND term corresponds to a 1 in the truth table

a	b	C	x
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

a	b	c	d	x
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Two-level circuits

- The gate delay is the time is the time it takes for the output of a gate to respond to a change in its input
- Any combinational circuit can be transformed into an AND-OR circuit or an OR-AND circuit with at most two gate delays (not counting the gate delay of any inverters)

$$(a+b'+c')(a'+b'+c)$$

AND-OR versus OR-AND

- To transform any expression x to an equivalent OR-AND expression
 - ▶ Transform the complement of x to an AND-OR expression without parentheses using boolean algebra theorems
 - Use x = (x')' and De Morgan's law

$$(abc)' = a' + b' + c'$$

$$(a+b+c)' = a'b'c'$$

(a) A NAND gate as an inverted input OR gate.

(b) A NOR gate as an inverted input AND gate.

$$abc + def = [(abc)'(def)']'$$

(a) An AND-OR circuit.

(b) The equivalent NAND-NAND circuit.

(c) The same NAND-NAND circuit as in part (b).

$$(a \cdot a)' = a'$$

$$(a+a)' = a'$$

FOURTH EDITION

$$(a+b+c)(d+e+f) = [(a+b+c)' + (d+e+f)']'$$

(a) An OR-AND circuit.

(b) The equivalent NOR-NOR circuit.

(c) The same NOR-NOR circuit as in part (b).

Canonical expressions

- A minterm is a term in an AND-OR expression in which all input variables occur exactly once
- A canonical expression is an OR of minterms in which no two identical minterms appear
- A canonical expression is directly related to a truth table because each minterm in the expression represents a 1 in the truth table

Row (dec)	а	b	c	x
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Row		7		,
(dec)	a	b	<i>c</i>	x
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Karnaugh maps

- The distance between two minterms is the number of places in which they differ
- Two minterms are adjacent if the distance between them is one
- A Karnaugh map is a truth table arranged so that adjacent cells represent adjacent minterms

(a) The Karnaugh map.

(b) The b = 1 region.

bc					
00	01	11	10		

(c) The c = 0 region.

$$x(a,b,c) = a'bc + a'bc'$$

$$x(a,b,c) = a'b$$

(a) The Karnaugh map.

(b) The minimization.

$$x(a, b, c) = ab'c' + abc'$$
$$= ac'$$

(a) The Karnaugh map.

C

(b) Region a.

(c) Region c'.

(a) a'bc + abc = bc

(b)
$$abc + abc' = ab$$

	1	
	1	1

$$x(a,b,c) = a'bc + abc + abc'$$
$$= bc + ab$$

		bc				
		00	01	11	10	
	0	0	1	3	2	
a	1	4	5	7	6	

(a) A bad strategy.

(b) The result of the bad strategy.

1	1		
	1	1	

$$x(a,b,c) = \Sigma(0,1,5,7)$$
$$= a'b' + ac$$

b

(c) The correct minimization

$$x(a, b, c) = \Sigma(0, 2, 4, 6, 7)$$

= $b'c' + bc' + ab$

$$x(a, b, c) = \Sigma(0, 2, 4, 6, 7)$$

= $c' + ab$

(a) An incorrect minimization.

(b) The correct minimization.

\		cd				
		00	01	11	10	
	00	0	1	3	2	
a la	01	4	5	7	6	
ab	11	12	13	15	14	
	10	8	9	11	10	

(b) The regions where the variables are 1.

$$x(a, b, c, d) = c'd + b'd'$$

$$x(a, b, c, d) = a'c'd + b'c' + b'd'$$

$$x(a, b, c, d) = c'd' + bcd + abc'$$

(a) One possible minimization.

$$x(a, b, c, d) = c'd' + bcd + abd$$

(b) A different minimization.

$$ac' + a'c + c'd + a'b' + bcd'$$

$$ac' + a'd + a'b' + bcd'$$

(a) A plausible but incorrect minimization.

(b) A correct minimization.

$$a'c + b'c' + c'd + abd'$$

Dual Karnaugh maps

- To minimize a function in an OR-AND expression minimize the complement of the function in the AND-OR expression
- Use x = (x')' and De Morgan's law

$$x = bc + ab$$

$$x' = b' + a'c'$$

$$x = (x')'$$

$$= (b' + a'c')'$$

$$= b(a + c)$$

Don't-care conditions

- If an input combination is never expected to be present, you can choose to make it 0 or I, whichever will better minimize the circuit
- A don't care condition is shown as an X in a Karnaugh map

$$x(a, b, c) = \Sigma(2, 4, 6)$$
$$= bc' + ac'$$

$$x(a, b, c) = \Sigma(2, 4, 6) + d(0, 7)$$

= c'

(a) Minimizing a function without don't-care conditions.

(b) Minimizing the same function with don't-care conditions.

Enable lines

- An enable line to a combinational device turns the device on or off
 - If enable = 0 the output is 0 regardless of any other inputs
 - If enable = I the device performs its function with the output depending on the other inputs

Enable

(a) Logic diagram of enable gate.

Enal	ole = 1
a	x
0 1	0 1

(b) Truth table with the device turned on.

Enable = 0				
a	x			
0 1	0 0			

(c) Truth table with the device turned off.

Computer Systems

Invert

(a) Logic diagram of the selective inverter.

Invert = 1			
а	x		
0 1	1 0		

(b) Truth table with the inverter turned on.

In	vert = 0
а	\boldsymbol{x}
0 1	0

(c) Truth table with the inverter turned off.

Multiplexer

- A multiplexer selects one of several data inputs to be routed to a single data output
- Control lines determine the particular data input to be passed through

S2	S1	S0	F
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Binary decoder

- A decoder takes a binary number as input and sets one of the data output lines to I and the rest to 0
- The data line that is set to I depends on the value of the binary number that is input

S1	S0	D 0	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Demultiplexer

- A demultiplexer routes a single input value to one of several output lines
- Control lines determine the data output line to which the input gets routed

S1	S0	D0	D1	D2	D3
0 0	0 1	D 0	0 D	0	0 0
1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	D 0	0 D

Half adder

- The half adder adds the right-most two bits of a binary number
- Inputs: The two bits
- Outputs: The sum bit and the carry bit

Computer Systems

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(a) Block diagram.

Full adder

- The full adder adds one column of a binary number
- Inputs: The two bits for that column and the carry bit from the previous column
- Outputs: The sum bit and the carry bit for the next column

A	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ripple-carry adder

- The ripple-carry adder adds two n-bit binary numbers
- Inputs: The two n-bit binary numbers to be added
- Outputs: The n-bit sum, the C bit for the carry out, and the V bit for signed integer overflow

(b) Implementation. © 2010 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Computing the V bit

- You can only get an overflow in one of two cases
 - A and B are both positive, and the result is negative
 - A and B are both negative, and the result is positive

Adder/subtracter

Based on the relation

$$NEG x = I + NOT x$$

- XOR gates act as selective inverters
- A B = A + (-B)

Computer Systems

(a) Block diagram.

© 2010 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Arithmetic Logic Unit (ALU)

- Performs 16 different functions
- Inputs: Two n-bit binary numbers, four control lines that determine which function will be executed, and one carry input line
- Outputs: The n-bit result, the NZVC bits

ALU c	ontrol		Status bits				
(bin)	(dec)	Result	N	Zout	V	Cout	
0000	0	A	N	Z	0	0	
0001	1	A plus B	N	Z	V	C	
0010	2	A plus B plus Cin	N	Z	V	C	
0011	3	A plus B plus 1	N	Z	V	C	
0100	4	A plus B plus Cin	N	Z	V	C	
0101	5	$A \cdot B$	N	Z	0	0	
0110	6	$\overline{A \cdot B}$	N	Z	0	0	
0111	7	A + B	N	Z	0	0	
1000	8	$\overline{A + B}$	N	Z	0	0	
1001	9	$A \oplus B$	N	Z	0	0	
1010	10	Ā	N	Z	0	0	
1011	11	ASL A	N	Z	V	C	
1100	12	ROL A	N	Z	0	C	
1101	13	ASR A	N	Z	0	C	
1110	14	ROR A	N	Z	0	C	
1111	15	0	A<4>	A<5>	A<6>	A<7>	

The multiplexer of Figure 10.56

- If line 15 is 1, Result and NZVC from the left are routed to the output
- If line 15 is 0, Result and NZVC from the right are routed to the output

(a) 16-bit addition.

(b) 16-bit subtraction.

Function	d	e	f	g	Sub	C
A plus B	1	0	0	0	0	0
A plus B plus Cin	0	1	0	0	0	Cin
A plus \overline{B} plus 1	0	0	1	0	1	1
A plus \overline{B} plus Cin	0	0	0	1	1	Cin

Computer Systems

