finding_donors

January 24, 2019

1 Machine Learning Engineer Nanodegree

1.1 Supervised Learning

1.2 Project: Finding Donors for CharityML

Welcome to the second project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

Note: Please specify WHICH VERSION OF PYTHON you are using when submitting this notebook. Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

1.3 Getting Started

In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than \$50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features.

The dataset for this project originates from the UCI Machine Learning Repository. The datset was donated by Ron Kohavi and Barry Becker, after being published in the article "Scaling Up the

Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid". You can find the article by Ron Kohavi online. The data we investigate here consists of small changes to the original dataset, such as removing the 'fnlwgt' feature and records with missing or ill-formatted entries.

1.4 Exploring the Data

Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, 'income', will be our target label (whether an individual makes more than, or at most, \$50,000 annually). All other columns are features about each individual in the census database.

```
In [105]: # Import libraries necessary for this project
          import numpy as np
          import pandas as pd
          from time import time
          from IPython.display import display # Allows the use of display() for DataFrames
          # Import supplementary visualization code visuals.py
          import visuals as vs
          # Pretty display for notebooks
          %matplotlib inline
          # Load the Census dataset
          data = pd.read_csv("census.csv")
          # Success - Display the first record
          display(data.head(n=1))
         workclass education_level education-num marital-status \
   age
   39
0
         State-gov
                         Bachelors
                                             13.0
                                                    Never-married
      occupation
                    relationship
                                            sex capital-gain capital-loss \
                                    race
0
    Adm-clerical
                   Not-in-family
                                   White
                                           Male
                                                       2174.0
                                                                        0.0
  hours-per-week native-country income
0
            40.0
                   United-States <=50K
```

1.4.1 Implementation: Data Exploration

A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \$50,000. In the code cell below, you will need to compute the following: - The total number of records, 'n_records' - The number of individuals making more than \$50,000 annually, 'n_greater_50k'. - The number of individuals making at most \$50,000 annually, 'n_at_most_50k'. - The percentage of individuals making more than \$50,000 annually, 'greater_percent'.

** HINT: ** You may need to look at the table above to understand how the 'income' entries are formatted.

Total number of records: 45222 Individuals making more than \$50,000: 11208

Individuals making at most \$50,000: 34014

Percentage of individuals making more than \$50,000: 24.78439697492371%

- ** Featureset Exploration **
- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transportmoving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: Black, White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other.
- sex: Female, Male.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras,

Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

1.5 Preparing the Data

Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as **preprocessing**. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms.

1.5.1 Transforming Skewed Continuous Features

A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: 'capital-gain' and 'capital-loss'.

Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed.

```
In [107]: # Split the data into features and target label
    income_raw = data['income']
    features_raw = data.drop('income', axis = 1)

# Visualize skewed continuous features of original data
    vs.distribution(data)
```


For highly-skewed feature distributions such as 'capital-gain' and 'capital-loss', it is common practice to apply a logarithmic transformation on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of 0 is undefined, so we must translate the values by a small amount above 0 to apply the the logarithm successfully.

Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed.

1.5.2 Normalizing Numerical Features

In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as 'capital-gain' or 'capital-loss' above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below.

Run the code cell below to normalize each numerical feature. We will use sklearn.preprocessing.MinMaxScaler for this.

```
In [109]: # Import sklearn.preprocessing.StandardScaler
          from sklearn.preprocessing import MinMaxScaler
          # Initialize a scaler, then apply it to the features
          scaler = MinMaxScaler() # default=(0, 1)
          numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week
          features_log_minmax_transform = pd.DataFrame(data = features_log_transformed)
          features_log_minmax_transform[numerical] = scaler.fit_transform(features_log_transform)
          # Show an example of a record with scaling applied
          display(features_log_minmax_transform.head(n = 5))
                                                 education-num
                     workclass education_level
        age
0 0.301370
                     State-gov
                                     Bachelors
                                                      0.800000
1 0.452055
              Self-emp-not-inc
                                     Bachelors
                                                      0.800000
2 0.287671
                       Private
                                        HS-grad
                                                      0.533333
3
 0.493151
                       Private
                                           11th
                                                      0.400000
  0.150685
                       Private
                                      Bachelors
                                                      0.800000
        marital-status
                                occupation
                                               relationship
                                                                         sex \
                                                               race
0
                              Adm-clerical
                                              Not-in-family
                                                                        Male
         Never-married
                                                              White
1
    Married-civ-spouse
                           Exec-managerial
                                                    Husband
                                                              White
                                                                        Male
2
              Divorced
                         Handlers-cleaners
                                              Not-in-family
                                                              White
                                                                        Male
3
   Married-civ-spouse
                         Handlers-cleaners
                                                    Husband
                                                              Black
                                                                        Male
                            Prof-specialty
4
    Married-civ-spouse
                                                       Wife
                                                              Black
                                                                      Female
   capital-gain
                 capital-loss
                               hours-per-week
                                                native-country
0
       0.667492
                          0.0
                                     0.397959
                                                 United-States
       0.000000
                          0.0
                                     0.122449
                                                 United-States
1
2
                          0.0
       0.000000
                                     0.397959
                                                 United-States
3
       0.000000
                          0.0
                                     0.397959
                                                 United-States
                          0.0
4
       0.000000
                                     0.397959
                                                          Cuba
```

1.5.3 Implementation: Data Preprocessing

From the table in **Exploring the Data** above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called *categorical variables*) be converted. One popular way to convert categorical variables is by using the **one-hot encoding** scheme. One-hot encoding creates a "dummy" variable for each possible category of each non-numeric feature. For example, assume someFeature has three possible entries: A, B, or C. We then encode this feature into someFeature_A, someFeature_B and someFeature_C.

```
 | someFeature \ | \ | someFeature\_A \ | someFeature\_B \ | someFeature\_C \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ | :-: \ |
```

2 | A | | 1 | 0 | 0 |

Additionally, as with the non-numeric features, we need to convert the non-numeric target label, 'income' to numerical values for the learning algorithm to work. Since there are only two possible categories for this label ("<=50K" and ">50K"), we can avoid using one-hot encoding and simply encode these two categories as 0 and 1, respectively. In code cell below, you will need to implement the following: - Use pandas.get_dummies() to perform one-hot encoding on the 'features_log_minmax_transform' data. - Convert the target label 'income_raw' to numerical entries. - Set records with "<=50K" to 0 and records with ">50K" to 1.

1.5.4 Shuffle and Split Data

Now all *categorical variables* have been converted into numerical features, and all numerical features have been normalized. As always, we will now split the data (both features and their labels) into training and test sets. 80% of the data will be used for training and 20% for testing.

Run the code cell below to perform this split.

1.6 Evaluating Model Performance

In this section, we will investigate four different algorithms, and determine which is best at modeling the data. Three of these algorithms will be supervised learners of your choice, and the fourth algorithm is known as a *naive predictor*.

1.6.1 Metrics and the Naive Predictor

CharityML, equipped with their research, knows individuals that make more than \$50,000 are most likely to donate to their charity. Because of this, CharityML is particularly interested in predicting who makes more than \$50,000 accurately. It would seem that using accuracy as a metric for evaluating a particular model's performace would be appropriate. Additionally, identifying someone that does not make more than \$50,000 as someone who does would be detrimental to CharityML, since they are looking to find individuals willing to donate. Therefore, a model's ability to precisely predict those that make more than \$50,000 is more important than the model's ability to recall those individuals. We can use **F-beta score** as a metric that considers both precision and recall:

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$$

In particular, when $\beta = 0.5$, more emphasis is placed on precision. This is called the **F**_{0.5} **score** (or F-score for simplicity).

Looking at the distribution of classes (those who make at most \$50,000, and those who make more), it's clear most individuals do not make more than \$50,000. This can greatly affect accuracy, since we could simply say "this person does not make more than \$50,000" and generally be right, without ever looking at the data! Making such a statement would be called **naive**, since we have not considered any information to substantiate the claim. It is always important to consider the naive prediction for your data, to help establish a benchmark for whether a model is performing well. That been said, using that prediction would be pointless: If we predicted all people made less than \$50,000, CharityML would identify no one as donors.

Note: Recap of accuracy, precision, recall ** Accuracy ** measures how often the classifier makes the correct prediction. It's the ratio of the number of correct predictions to the total number of predictions (the number of test data points).

** Precision ** tells us what proportion of messages we classified as spam, actually were spam. It is a ratio of true positives(words classified as spam, and which are actually spam) to all positives(all words classified as spam, irrespective of whether that was the correct classificatio), in other words it is the ratio of

[True Positives/(True Positives + False Positives)]

** Recall(sensitivity)** tells us what proportion of messages that actually were spam were classified by us as spam. It is a ratio of true positives(words classified as spam, and which are actually spam) to all the words that were actually spam, in other words it is the ratio of

[True Positives/(True Positives + False Negatives)]

For classification problems that are skewed in their classification distributions like in our case, for example if we had a 100 text messages and only 2 were spam and the rest 98 weren't, accuracy by itself is not a very good metric. We could classify 90 messages as not spam(including the 2 that were spam but we classify them as not spam, hence they would be false negatives) and 10 as spam(all 10 false positives) and still get a reasonably good accuracy score. For such cases, precision and recall come in very handy. These two metrics can be combined to get the F1 score, which is

weighted average(harmonic mean) of the precision and recall scores. This score can range from 0 to 1, with 1 being the best possible F1 score(we take the harmonic mean as we are dealing with ratios).

1.6.2 Question 1 - Naive Predictor Performace

• If we chose a model that always predicted an individual made more than \$50,000, what would that model's accuracy and F-score be on this dataset? You must use the code cell below and assign your results to 'accuracy' and 'fscore' to be used later.

** Please note ** that the purpose of generating a naive predictor is simply to show what a base model without any intelligence would look like. In the real world, ideally your base model would be either the results of a previous model or could be based on a research paper upon which you are looking to improve. When there is no benchmark model set, getting a result better than random choice is a place you could start from.

** HINT: **

- When we have a model that always predicts '1' (i.e. the individual makes more than 50k) then our model will have no True Negatives(TN) or False Negatives(FN) as we are not making any negative('0' value) predictions. Therefore our Accuracy in this case becomes the same as our Precision(True Positives/(True Positives + False Positives)) as every prediction that we have made with value '1' that should have '0' becomes a False Positive; therefore our denominator in this case is the total number of records we have in total.
- Our Recall score(True Positives/(True Positives + False Negatives)) in this setting becomes 1 as we have no False Negatives.

1.6.3 Supervised Learning Models

The following are some of the supervised learning models that are currently available in scikit-learn that you may choose from: - Gaussian Naive Bayes (GaussianNB) - Decision Trees - Ensemble Methods (Bagging, AdaBoost, Random Forest, Gradient Boosting) - K-Nearest Neighbors (KNeighbors) - Stochastic Gradient Descent Classifier (SGDC) - Support Vector Machines (SVM) - Logistic Regression

1.6.4 Question 2 - Model Application

List three of the supervised learning models above that are appropriate for this problem that you will test on the census data. For each model chosen

- Describe one real-world application in industry where the model can be applied.
- What are the strengths of the model; when does it perform well?
- What are the weaknesses of the model; when does it perform poorly?
- What makes this model a good candidate for the problem, given what you know about the data?

** HINT: **

Structure your answer in the same format as above, with 4 parts for each of the three models you pick. Please include references with your answer.

Answer: * Decision Trees: * can be applied in many problems from business and industry, such as energy consumption or healthcare management (e.g. http://what-when-how.com/artificialintelligence/decision-tree-applications-for-data-modelling-artificial-intelligence/) * are very fast, result in simple and understandable rules (https://de.wikipedia.org/wiki/Entscheidungsbaum) * are quite simple, therefore they cannot be used for complex problems, and also tend to overfit * I chose decision trees because they will result in simple rules that CharityML will easily understand, e.g. "Someone earns probably more than \$50,000 if he is older than 50 years and has a doctoral degree". * AdaBoost: * can be applied for image classification in autonomous driving (e.g. https://ieeexplore.ieee.org/abstract/document/6728254)* performs well when computational resources are limited * but can be sensitive to noisy data and outliers (see http://www.nickgillian.com/wiki/pmwiki.php/GRT/AdaBoost#Disadvantages) * I chose AdaBoost because it combines the advantages of decision trees with fast computation time and only little danger of overfitting. Also, the data is cleaned and doesn't contain many outliers and noise, so AdaBoost should work well. * Support Vector Machines (SVMs): * can be applied for pedestrian detection in autonomous driving (e.g. https://link.springer.com/chapter/10.1007/978-3-540-76386-4_86) * Its strength lies in the kernel trick, with a good kernel extremely challenging problems can be solved, and SVMs will not find local minima like neural networks (see https://statinfer.com/204-6-8-svm-advantages-disadvantages-applications/). Also, the margin will be maximized (https://de.wikipedia.org/wiki/Support_Vector_Machine). * can only be directly applied with fully-labeled data and two-class problems (see https://en.wikipedia.org/wiki/Support_vector_machine#Issues) * I chose SVM because the data is linearly separable and SVM will not only find a hyperplane that separates the data, but will maximize the margin as well.

1.6.5 Implementation - Creating a Training and Predicting Pipeline

To properly evaluate the performance of each model you've chosen, it's important that you create a training and predicting pipeline that allows you to quickly and effectively train models using

various sizes of training data and perform predictions on the testing data. Your implementation here will be used in the following section. In the code block below, you will need to implement the following: - Import fbeta_score and accuracy_score from sklearn.metrics. - Fit the learner to the sampled training data and record the training time. - Perform predictions on the test data X_test, and also on the first 300 training points X_train[:300]. - Record the total prediction time. - Calculate the accuracy score for both the training subset and testing set. - Calculate the F-score for both the training subset and testing set. - Make sure that you set the beta parameter!

```
In [128]: # TODO: Import two metrics from sklearn - fbeta_score and accuracy_score
          from sklearn.metrics import fbeta_score, accuracy_score
          def train_predict(learner, sample_size, X_train, y_train, X_test, y_test):
              inputs:
                 - learner: the learning algorithm to be trained and predicted on
                 - sample size: the size of samples (number) to be drawn from training set
                 - X_train: features training set,
                 - y_train: income training set
                 - X_test: features testing set
                 - y_test: income testing set
              results = {}
              # TODO: Fit the learner to the training data using slicing with 'sample_size' us
              start = time() # Get start time
              learner = learner.fit(X_train[:sample_size], y_train[:sample_size])
              end = time() # Get end time
              # TODO: Calculate the training time
              results['train_time'] = end - start
              # TODO: Get the predictions on the test set(X_test),
                      then get predictions on the first 300 training samples (X train) using .p
              start = time() # Get start time
              predictions_test = learner.predict(X_test)
              predictions_train = learner.predict(X_train[:300])
              end = time() # Get end time
              # TODO: Calculate the total prediction time
              results['pred_time'] = end - start
              # TODO: Compute accuracy on the first 300 training samples which is y_train[:300]
              results['acc_train'] = accuracy_score(y_train[:300], predictions_train)
              # TODO: Compute accuracy on test set using accuracy_score()
```

results['acc_test'] = accuracy_score(y_test, predictions_test)

```
# TODO: Compute F-score on the the first 300 training samples using fbeta_score(
results['f_train'] = fbeta_score(y_train[:300], predictions_train, beta=0.5)

# TODO: Compute F-score on the test set which is y_test
results['f_test'] = fbeta_score(y_test, predictions_test, beta=0.5)

# Success
print("{} trained on {} samples.".format(learner.__class__.__name__, sample_size)
# Return the results
return results
```

1.6.6 Implementation: Initial Model Evaluation

In the code cell, you will need to implement the following: - Import the three supervised learning models you've discussed in the previous section. - Initialize the three models and store them in 'clf_A', 'clf_B', and 'clf_C'. - Use a 'random_state' for each model you use, if provided. - **Note:** Use the default settings for each model — you will tune one specific model in a later section. - Calculate the number of records equal to 1%, 10%, and 100% of the training data. - Store those values in 'samples_1', 'samples_10', and 'samples_100' respectively.

Note: Depending on which algorithms you chose, the following implementation may take some time to run!

```
In [114]: # TODO: Import the three supervised learning models from sklearn
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import AdaBoostClassifier
          from sklearn.svm import SVC
          # TODO: Initialize the three models
          clf_A = DecisionTreeClassifier(random_state=411)
          clf_B = AdaBoostClassifier(random_state=411)
          clf_C = SVC(random_state=411)
          # TODO: Calculate the number of samples for 1%, 10%, and 100% of the training data
          # HINT: samples_100 is the entire training set i.e. len(y_train)
          # HINT: samples_10 is 10% of samples_100 (ensure to set the count of the values to b
          # HINT: samples_1 is 1% of samples_100 (ensure to set the count of the values to be
          samples_100 = len(y_train)
          samples_10 = int(samples_100/10)
          samples_1 = int(samples_100/100)
          # Collect results on the learners
          results = {}
          for clf in [clf_A, clf_B, clf_C]:
              clf_name = clf.__class__.__name__
              results[clf_name] = {}
```

for i, samples in enumerate([samples_1, samples_10, samples_100]):

results[clf_name][i] = \ train_predict(clf, samples, X_train, y_train, X_test, y_test)

Run metrics visualization for the three supervised learning models chosen vs.evaluate(results, accuracy, fscore)

DecisionTreeClassifier trained on 361 samples.
DecisionTreeClassifier trained on 3617 samples.
DecisionTreeClassifier trained on 36177 samples.
AdaBoostClassifier trained on 361 samples.
AdaBoostClassifier trained on 3617 samples.
AdaBoostClassifier trained on 36177 samples.

C:\Users\Antje\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMe
'precision', 'predicted', average, warn_for)

SVC trained on 361 samples. SVC trained on 3617 samples. SVC trained on 36177 samples.

Performance Metrics for Three Supervised Learning Models

1.7 Improving Results

In this final section, you will choose from the three supervised learning models the *best* model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (X_train and y_train) by tuning at least one parameter to improve upon the untuned model's F-score.

1.7.1 Question 3 - Choosing the Best Model

• Based on the evaluation you performed earlier, in one to two paragraphs, explain to *CharityML* which of the three models you believe to be most appropriate for the task of identifying individuals that make more than \$50,000.

** HINT: ** Look at the graph at the bottom left from the cell above(the visualization created by vs.evaluate(results, accuracy, fscore)) and check the F score for the testing set when 100% of the training set is used. Which model has the highest score? Your answer should include discussion of the: * metrics - F score on the testing when 100% of the training data is used, * prediction/training time * the algorithm's suitability for the data.

Answer: I would choose AdaBoost classifier. F-score and accuracy score on testing set are highest for AdaBoost, no matter which training set size. Also, the decision tree classifier tends to overfit: F-score and accuracy are nearly 1 on the training subset, but much lower on the testing set. This is not the case for AdaBoost. Calculation time is also reasonable and much smaller than for SVM. AdaBoost is suitable for the data because it is a supervised learning algorithm that combines several weak learners to one strong learner, therefore saving calculation time on large data sets.

1.7.2 Question 4 - Describing the Model in Layman's Terms

• In one to two paragraphs, explain to *CharityML*, in layman's terms, how the final model chosen is supposed to work. Be sure that you are describing the major qualities of the model, such as how the model is trained and how the model makes a prediction. Avoid using advanced mathematical jargon, such as describing equations.

** HINT: **

When explaining your model, if using external resources please include all citations.

Answer: The method chosen consists of different weak learners. A weak learner is a simple classification algorithm that can classify some data well, but will perform poorly on other data. Therefore, it is only slightly better than chance or simply guessing. For example, one could use very simple decision trees with depth 1 as weak learners. A decision tree of depth 1 would for example only separate between people of age>50 and age<=50 and ignore all other features. Another tree would separate between people who have a university degree and people who don't.

AdaBoost is an ensemble method combining several weak learners to one strong learner. After the first weak learner is applied on the training data, the misclassified points are given a higher weight, therefore ensuring that the next weak classifier will correct the mistakes of the first. A weight is simply a multiplying factor. This is repeated several times. Therefore, each weak learner solves a subproblem, leaving the remaining problem for the next weak learner. Finally, the average over all weak learners is calculated at each data point as result.

1.7.3 Implementation: Model Tuning

Fine tune the chosen model. Use grid search (GridSearchCV) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following: - Import sklearn.grid_search.GridSearchCV and sklearn.metrics.make_scorer. - Initialize the classifier you've chosen and store it in clf. - Set a random_state if one is available to the same state you set before. - Create a dictionary of parameters you wish to tune for the chosen model. - Example: parameters = {'parameter' : [list of values]}. - Note: Avoid tuning the max_features parameter of your learner if that parameter is available! - Use make_scorer to create an fbeta_score scoring object (with $\beta=0.5$). - Perform grid search on the classifier clf using the 'scorer', and store it in grid_obj. - Fit the grid search object to the training data (X_train, y_train), and store it in grid_fit.

Note: Depending on the algorithm chosen and the parameter list, the following implementation may take some time to run!

```
In [124]: # TODO: Import 'GridSearchCV', 'make_scorer', and any other necessary libraries
                           from sklearn.model_selection import GridSearchCV
                           from sklearn.metrics import make_scorer
                           # TODO: Initialize the classifier
                           clf = AdaBoostClassifier(random_state=411)
                           # TODO: Create the parameters list you wish to tune, using a dictionary if needed.
                            # HINT: parameters = {'parameter_1': [value1, value2], 'parameter_2': [value1, value.
                           parameters = { 'base_estimator': [DecisionTreeClassifier(max_depth=1), DecisionTreeClassifier(max_depth=1), DecisionTreeCl
                           # TODO: Make an fbeta_score scoring object using make_scorer()
                           scorer = make_scorer(fbeta_score, beta=0.5)
                           # TODO: Perform grid search on the classifier using 'scorer' as the scoring method u
                           grid_obj = GridSearchCV(clf, parameters, scoring=scorer)
                           # TODO: Fit the grid search object to the training data and find the optimal paramet
                           grid_fit = grid_obj.fit(X_train, y_train)
                            # Get the estimator
                           best_clf = grid_fit.best_estimator_
                           # Make predictions using the unoptimized and model
                           predictions = (clf.fit(X_train, y_train)).predict(X_test)
                           best_predictions = best_clf.predict(X_test)
                           # Report the before-and-afterscores
```

print("Accuracy score on testing data: {:.4f}".format(accuracy_score(y_test, predict print("F-score on testing data: {:.4f}".format(fbeta_score(y_test, predictions, beta

print("Unoptimized model\n----")

print("\nOptimized Model\n----")

```
print("Final accuracy score on the testing data: {:.4f}".format(accuracy_score(y_test)) print("Final F-score on the testing data: {:.4f}".format(fbeta_score(y_test, best_pressure)) print
```

Unoptimized model

Accuracy score on testing data: 0.8576

F-score on testing data: 0.7246

Optimized Model

Final accuracy score on the testing data: 0.8684

Final F-score on the testing data: 0.7423

1.7.4 Question 5 - Final Model Evaluation

- What is your optimized model's accuracy and F-score on the testing data?
- Are these scores better or worse than the unoptimized model?
- How do the results from your optimized model compare to the naive predictor benchmarks you found earlier in Question 1?_

Note: Fill in the table below with your results, and then provide discussion in the Answer box.

Metric	Unoptimized Model	Optimized Model
Accuracy Score	0.8576	0.8684
F-score	0.7246	0.7423

Results: Answer: My predicted accuracy and F-score are slightly better than the unoptimized model. These results are much better than the naive predictor, which had an accuracy score of 0.2478 and F-score of 0.2917. The naive predictor was about 25% correct (as about 25% of people earn more than \$50,000), the optimized model is about 87% correct.

1.8 Feature Importance

An important task when performing supervised learning on a dataset like the census data we study here is determining which features provide the most predictive power. By focusing on the relationship between only a few crucial features and the target label we simplify our understanding of the phenomenon, which is most always a useful thing to do. In the case of this project, that means we wish to identify a small number of features that most strongly predict whether an individual makes at most or more than \$50,000.

Choose a scikit-learn classifier (e.g., adaboost, random forests) that has a feature_importance_ attribute, which is a function that ranks the importance of features according to the chosen classifier. In the next python cell fit this classifier to training set and use this attribute to determine the top 5 most important features for the census dataset.

1.8.1 Question 6 - Feature Relevance Observation

When **Exploring the Data**, it was shown there are thirteen available features for each individual on record in the census data. Of these thirteen records, which five features do you believe to be most important for prediction, and in what order would you rank them and why?

Answer: I suppose capital-gain is the most important as it shows the current income. I would choose occupation second and workclass third, because the income highly depends on the current occupation. I would suggest education-num and education_level forth and fifth, because education has a high impact on income as well.

1.8.2 Implementation - Extracting Feature Importance

Choose a scikit-learn supervised learning algorithm that has a feature_importance_ attribute availble for it. This attribute is a function that ranks the importance of each feature when making predictions based on the chosen algorithm.

In the code cell below, you will need to implement the following: - Import a supervised learning model from sklearn if it is different from the three used earlier. - Train the supervised model on the entire training set. - Extract the feature importances using '.feature_importances_'.

```
In [126]: # TODO: Import a supervised learning model that has 'feature_importances_'
from sklearn.ensemble import ExtraTreesClassifier

# TODO: Train the supervised model on the training set using .fit(X_train, y_train)
model = ExtraTreesClassifier(n_estimators=250, random_state=411)
model.fit(X_train, y_train)

# TODO: Extract the feature importances using .feature_importances_
importances = model.feature_importances_
# Plot
vs.feature_plot(importances, X_train, y_train)
```


1.8.3 Question 7 - Extracting Feature Importance

Observe the visualization created above which displays the five most relevant features for predicting if an individual makes at most or above \$50,000.

* How do these five features compare to the five features you discussed in **Question 6**? * If you were close to the same answer, how does this visualization confirm your thoughts? * If you were not close, why do you think these features are more relevant?

Answer: The result shows that the most important features are age, hours-per-week, capital gain, being married and being a husband. My suggestions in Question 6 were wrong, obviously profession and education are not as important as I thought. Age is very important, which makes sense, because usually people reach top positions only after gaining lots of experience. Hours-perweek are important because the higher the position, the more time-consuming the job is. Capitalgain is important, just as I suggested above. Marital status and being a husband is probably important because successful people often have a spouse taking care of household, children etc.

1.8.4 Feature Selection

How does a model perform if we only use a subset of all the available features in the data? With less features required to train, the expectation is that training and prediction time is much lower — at the cost of performance metrics. From the visualization above, we see that the top five most important features contribute more than half of the importance of **all** features present in the data. This hints that we can attempt to *reduce the feature space* and simplify the information required for the model to learn. The code cell below will use the same optimized model you found earlier, and train it on the same training set *with only the top five important features*.

print("Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, reduced_prediprint("F-score on testing data: {:.4f}".format(fbeta_score(y_test, reduced_prediction))

Final Model trained on full data

Accuracy on testing data: 0.8684 F-score on testing data: 0.7423

Final Model trained on reduced data

Accuracy on testing data: 0.8197 F-score on testing data: 0.6321

1.8.5 Question 8 - Effects of Feature Selection

- How does the final model's F-score and accuracy score on the reduced data using only five features compare to those same scores when all features are used?
- If training time was a factor, would you consider using the reduced data as your training set?

Answer: The accuracy of the reduced model is slightly lower, 82% instead of 87%. Also, the F-score is 63% instead of 74%. But if training time was a factor, I would definitely consider using this reduced training set because it finished immediately, whereas the full model took much longer to finish.

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to

File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.