MAT271E Probability and Statistics HW #3

Instructions: Please hand in your answers to Tuğba Pamay by April 18, 2016 16:00. (Use the mailbox reserved for the course in the administrative office of the Computer and Informatics faculty). Late homeworks will not be accepted. 4-5 problems will be checked in detail which will contribute 80% to the final mark. The rest will be checked for completeness which will contribute 20% to the final mark.

1. The probability density function of random variable X is given below

- i) Find E[X]'i bulun. (5 puan)
- ii) Determine and sketch $f_X(x \mid X > 0.5)$.
- iii) Determine $E[X \mid X > 0.5]$
- iv) Determine $\sigma_X^2 = E[(X \overline{X})^2]$
- 2. Find the characteristic function for random variable X with density function

 $f_X(x) = \sum_{n=0}^{4} {4 \choose n} 0.5^4 \delta(x-n)$ and calculate first two moments by using it. (Hint: Is this a discrete r.v.?)

- **3.** Determine $E[X \mid X > 1]$ if X is standard Normal distributed ($X \sim N(0,1)$)
- **4.** What is $E[e^{X^2} | X = 1]$?
- **5.** The probability of realization of discrete random variable X is $\Pr\{X=i\}=2(3^{-i})$ i=1,2,...
- a) Find E[X]
- b) If $Y = X^2$,

i) Find E[Y]

ii)Find $\sigma_{\scriptscriptstyle Y}^2$

6. Density function of random variable X is given by

$$f_X(x) = \begin{cases} \frac{2(x+2)}{5}, & 0 < x < 1\\ 0, & \text{elsewhere} \end{cases}$$

Find variance of g(X) = 3X

7. If the joint probability mass function of X and Y is given by

$$f_{X,Y}(x,y) = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{i^2 j}{30} \delta(x-i) \delta(y-j)$$

Find:

a) the marginal distribution of X and Y random variables. Are X and Y statistically independent?

b)
$$f_{x}(x | y = 1)$$

- c) $Pr\{X \le 4, Y = 1\}$
- d) $Pr\{X \le 1, Y > 2\}$
- e) $Pr\{X < Y + 1\}$
- f) $Pr\{|X Y| = 1\}$

8. Let sample space is $S = \{\zeta_1, ..., \zeta_4\} = \{-2, -1.5, -0.5, 0\}$ and define two random variables as $X(\zeta) = 1/(\zeta+1)^2$ and $Y(\zeta) = 2^{-(\zeta+1)}$.

- g) a) Are X and Y statistically dependent? Prove.
- h) b) Are X and Y linearly dependent? Prove.

9. Let the joint density function of random variables X and Y be given by

$$f_{X,Y}(x,y) = \begin{cases} A(x-y) & 0 < x < 1, -1 < y < 0 \\ 0 & \text{elsewhere} \end{cases}$$

- a) Find A.
- b) Find conditional density function of Y i.e. $f_Y(y \mid X \le 0)$.
- c) Are X and Y statistically dependent? Show.
- d) Find $Pr\{0 \le X \le 0.5, 0.25 \le Y \le 0.5\}$
- e) Find Pr $\{X Y < 1\}$

10. The joint probability function of two discrete random variables is given by

$$f_{xy}(x, y) = 0.4\delta(x)\delta(y) + 0.2\delta(x)\delta(y-1) + 0.4\delta(x-1)\delta(y-1)$$

- a) Find the two marginal distributions and draw them.
- b) Find point conditional density function $f_X(x|Y=y)$ for all y.
- c) Find $Pr\{X Y < 1\}$
- d) Are X and Y statistically independent?
- e) Determine the correlation coefficient between X and Y. Are X and Y linearly independent?

11. X is a uniform random variable with realizations uniformly distributed between -1 and 1 and Y = g(X). See the graph below. Sketch the density and distribution function of Y as best as you can

12. Let the joint density of X and Y random variables be given by

$$f(x,y) = \begin{cases} 24xy, & 0 \le x, 0 \le y, x + y \le 1\\ 0, & elsewhere \end{cases}$$

i) Show that f(x, y) is a valid joint density (check the properties)

ii) Find
$$f_X(y \mid X=0.5)$$
 and evaluate $P(\frac{1}{4} < Y < \frac{1}{2} \mid X=1)$.

iii)Find
$$E[Y \mid X = 1] = \int_{-\infty}^{\infty} y f_X(y \mid X = 1) dy$$