Homework 2

Yuqiao Meng

- 1. Use the definition of θ and Omega to prove the sequence: $\Omega(g(n)) = \{f(n): \text{there exsits a positive constants c, and n0 such that 0 <= <math>f(n) <= cg(n) \text{ for all } n >= n0\}$. So just find the three constants c, n0 to prove the sequence. And I think there are rules no need to prove: $1 < \ln n < \lg n < n^a(a>1) < b^n(b>1)$
 - a. 1
 - b. $n^{(1/lgn)} = 2$ because $2^{(lgn)} = n$. $n^{(1/lgn)} = \Theta(1)$
 - c. $\lg(\lg^*(n))$: when n = 65536, this function equals to 2, so it grows faster than $n^*(1/\lg n)$
 - i. n0 = 65536, lg(lg*(n0)) = 2, $n0^{(1/lgn0)} = 1$
 - ii. c = 1, cg(n0) = 2 > 1
 - d. $\lg^*(\lg(n))$: let $n = 2^m$, $\lg^*n = \lg^*2^m = \lg^*m + 1$, $\lg^*n = m$, thus $\lg(\lg^*n) = \lg(\lg^*m+1)$, $\lg^*(\lg(n)) = \lg m$, obviously the latter one grows exponentially faster.
 - i. n0 = 65536, lg*(lgn) = 3, lg(lg*n) = lg3 = 2
 - ii. c2 = 1, cg(n0) = 3 > 2
 - e. \lg^*n : According to the definition, $\lg^*(\lg(n)) = \lg^*n 1$, so $\lg^*n = \Theta(\lg^*(\lg n))$
 - i. n0 = 2, lg*n0 = 1, lg*lgn0 = 1
 - ii. c1 = 1/2, c1g(n0) = 1/2 < 1
 - iii. c2 = 3, c2g(n0) = 3 > 1
 - f. 2^(lg*n): power grows faster than polynomial
 - i. n0 = 4, $2^{(lg*n)} = 4$, lg*n = 2
 - ii. c = 1, cg(n0) = 4 > 2
 - g. In In n: obviously InInn can't grow slower than Ig*n for it's a recursive function
 - i. n0=65536, lnlnn = 2.4060758017, $2^{(lg*n)} = 16$.
 - ii. c = 8, cg(n0) = 19.248 > 16
 - h. $\lg n^{(1/2)}$: let $n = 2^{(m^2)}$, $\lg n^{(1/2)} = m$, ln ln n = 2*ln m = 2*(lgm/lge), thus the latter grows slower than former one
 - i. n0 = 65536, ln ln n = 2.406, $lgn^{(1/2)} = 4$
 - ii. c = 1, cg(n0) = 4 > 2.406
 - i. In n: $Ign^{(1/2)} = (Inn/In2)^{(1/2)} = 1.2*(In n)^{(1/2)}$, thus In n grows faster than $Ign^{(1/2)}$
 - i. n0 = 8, ln n0 = 2.07, $lgn^{(1/2)} = 2$
 - ii. c = 1, cg(n0) = 2.07 > 2
 - j. $\lg^2(n)$: In n = $\lg n/\lg e = 0.7\lg n$, thus $\lg^2(n)$ grows faster
 - i. n0 = 4, $lg^2(n0) = 4$, ln n0 = 1.386
 - ii. c = 1, cg(n0) = 4 > 1.386
 - k. $2^{(2lgn)^{(1/2)}}$: let $n = lg((2^m/2)^2)$, thus $2^{(2lgn)^{(1/2)}} = m$, $lg^2(n) = lg^2(lg((2^m/2)^2))$, thus this equation grows faster.
 - i. $n0 = 2, 2^{(2lgn)^{(1/2)}} = 4, lg^{(2lgn)} = 4$
 - ii. c = 2, cg(n0) = 8 > 4
 - I. $2^{(\frac{1}{2} + \lg n)}$: $\frac{1}{2 \lg n}$ grows faster than $\frac{2 \lg n}{(1/2)}$
 - i. n0 = 4, $2^{(1/2*lgn)} = 2$, $2^{((2lgn)^{(1/2)})} = 4$
 - ii. c = 4, cg(n0) = 8 > 4
 - m. 2^(lgn): lgn grows faster than ½*lgn

```
i. n0 = 2, 2^{(lgn)} = 2, 2^{(l/2*lgn)} = 1
```

ii.
$$c = 1$$
, $cg(n0) = 2 > 1$

- n. n: $2^{lgn} = n$, thus $2^{lgn} = \Theta(n)$
- o. lg(n!): $n = lg(2^n)$, 2^n grows slower than n! when n0 = 4, c = 1, thus lg(n!) grows faster.

i.
$$n0 = 4$$
, $lgn! = 4.58$, $n = 4$

ii.
$$c = 1$$
, $cg(n) = 4.58 > 1$

- p. nlg(n): $lg(n!) = \Theta(nlgn)$ according to the textbook
- q. n^2 : Ign = O(n)
- r. $4^{(lgn)}$: $4^{(lgn)} = 2^{(lgn)} = 2^{(lg(n^2))} = n^2$, $4^{(lgn)} = \Theta(n^2)$
- s n^3
- t. (lgn)!: let m = lgn, thus $n^3 = (2^m)^3 = 8^m$, (lgn)! = m!, and m! grows faster than 8^m
- u. lgn^(lgn): n^n grows faster than n!
- v. $n^{(lglgn)}$: $lgn^{(lgn)} = n^{(lggn)}$ because $a^{(log_b^c)} = c^{(logb_a)}$
- w. $(3/2)^n$: let m = Ign, Ign^Ign = m^m, $(3/2)^n$ = $(3/2)^(2^m)$, latter grows faster than former
- $x. 2^n: 2 > 3/2$
- y. $n(2^n): n^2^n > 2^n$
- z. $e^n = 2^n(e/2)^n = Omega(n^2^n)$ for $(e/2)^n = Omega(n)$
- aa. n!: (n-1)! = 1*2*3*...(n-1), $2^n = 2*2*...2$, for n > 3, 3*4*...(n-1) is larger than 2*2*...2, so n! grows faster than $n(2^n)$

i.
$$n0 = 6$$
, $n! = 720$, $n(2^n) = 384$

ii.
$$c = 1,720 > 384$$

- bb. (n+1)! = n! * (n+1)
- cc. 2^2^n : $(n+1) = omega(2^n) = omega(2^2^n)$
- dd. $2^2(n+1) = (2^2n)^2 = Omega(2^2n)$
- 2. Use master theorem to find upper bound and lower bound of each recurrence
 - a. $T(n) = 2T(n/2) + n^3$:

i.
$$a = 2$$
, $b = 2$, $log b^a = lg2 = 1$, $f(n) = n^3$

ii. let
$$\varepsilon = 1$$
, $f(n) = n^3 = \Omega(n^{(1+\varepsilon)}) = \Omega(n^2)$

- iii. let n0 = 2, c = 0.5, $2(n/2)^3 = \frac{1}{4}(n^3) <= \frac{1}{2}(n^3)$
- iv. $T(n) = \Theta(n^3)$
- b. T(n) = T(9n/10) + n:

i.
$$a = 1, b = 10/9, log_b^a = lg_(10/9)^1 = 0, f(n) = n$$

ii. let
$$\varepsilon = 0.5$$
, $f(n) = n = \Omega(n^{(0+\varepsilon)}) = \Omega(n^{0.5})$

- iii. let n0 = 10/11, c = 0.5, (9n/10) <= 10n/11
- iv. $T(n) = \Theta(n)$
- c. $T(n) = 16T(n/4) + n^2$:

i.
$$a = 16, b = 4, log_a^b = lg_4^16 = 2, f(n) = n^2$$

ii.
$$f(n) = n^2 = \Theta(n^{(1g_4^16)}) = \Theta(n^2)$$

- iii. $T(n) = \Theta((n^2) \lg n)$
- d. $T(n) = 7T(n/3) + n^2$:

i.
$$a = 7$$
, $b = 3$, $log_a^b = lg_3^7 < 2$, $f(n) = n^2$

ii. let
$$\varepsilon = 1.9$$
 - lg 3^7, $f(n) = n^2 = \Omega(n^{(\log 3^7 + \varepsilon)}) = \Omega(n^1.9)$

- iii. let n0 = 2, c = 8/9, $7(n/3)^2 = (7/9)(n^2) <= (8/9)(n^2)$
- iv. $T(n) = \Theta(n^2)$
- e. $T(n) = 7T(n/2) + n^2$:

```
i. a = 7, b = 2, log_a^b = lg_2^7 > 2, f(n) = n^2
```

ii. let
$$\varepsilon = 2.1 + \lg_2^7$$
, $f(n) = n^2 = O(n^{(\log_2^7 - \varepsilon)}) = O(n^2.1)$

iii.
$$T(n) = (n^{(\log 2^{7})})$$

- f. $T(n) = 2T(n/4) + n^{(1/2)}$:
 - i. a = 2, b = 4, $\log_a^b = \lg_4^2 = 1/2$, $f(n) = n^{(\frac{1}{2})}$
 - ii. $f(n) = \Theta(n^{(1/2)})$
 - iii. $T(n) = \Theta(n^{(1/2)} \lg n)$
- g. T(n) = T(n-1) + n:
 - i. use recurrence tree to solve this problem
 - ii. $T(n) = n + (n-1) + ... + 1 = n(1+n)/2 = (\frac{1}{2})n^2 + (\frac{1}{2})n = \Theta(n^2)$
- h. $T(n) = T(n^{(1/2)}) + 1$:
 - i. the power of 0 and 1 is not a increasing function, so assume a is the final termination constant = 2, thus $n^{(1/2)}$ = 2, $n = 2^2$, a = 1glgn
 - ii. $T(n) = \Theta(IgIgn)$
- 3. Analyze: the first statement is the cost of the row, the second statement is the number of times it executes.
 - a. for i = 1 to n: c1 (n+1) k[i] = 0 c2 (n+1)for i = 1 to n: c3 (n+1)for j = i to n: c4 $sum_1^n(i) = (n+1)n/2$ k[i] = k[i] + j; c5 $sum_1^n(i) = (n+1)n/2$ runtime: $T(n) = (n+1)c1 + (n+1)c2 + (n+1)c3 + (n+1)n/2*c4 + (n+1)n/2*c5 = \Theta(n^2)$
 - b. i = 1 c1 (1) while i < n c2 (lgn) i = 2*i c3 (lgn) runtime: T(n) = c1 + c2lgn + c3lgn = Θ (lgn)
- 4. Explanation:
 - a. True: according to the definition of Θ , let c1 = 1, c2 = 1000000, for n0 > 100, 0 < c1g(n) < f(n) < c2g(n) is always true
 - b. True: according to the definition of Ω , let c = 1, for n0 > 1, 0 < cg(n) < f(n)
 - c. True: $log(n^100) = 100logn = O(logn)$
 - d. True: $2^{(n+1)} = 2^2^n$, according to the definition of Θ , let c1 = 1, c2 = 4, for c1 = 1, c2 = 1, c2 = 4, for c1 = 1, c2 =
 - e. False: according to the definition of O, let c = 1, for n0 > 1, $0 < n^2 < n^3$ is always true, so $n^2 = o(n^3)$, n^3 doesn't equals to $O(n^2)$
- 5. Initial array: [1,3,9,2,8,0,1,5,7,6]
 - a. j = 2, key = A[2] = 3, i = j 1 = 1
 - i. compare key(3) with A[i], A[i] < key, break: [1,3,9,2,8,0,1,5,7,6]
 - b. j = 3, key = A[3] = 9, i = j 1 = 2
 - i. compare key(9) with A[i], A[i] < key, break: [1,3,9,2,8,0,1,5,7,6]
 - c. j = 4, key = A[4] = 2, i = j 1 = 3
 - i. i = 3, compare key(3) with A[i], A[i] > key, A[i+1] = A[i] = 9, i = i 1 = 2: [1,3,9,9,8,0,1,5,7,6]
 - ii. i = 2, compare key(3) with A[i], A[i] > key, A[i+1] = A[i] = 3, i = i 1 = 1: [1,3,3,9,8,0,1,5,7,6]
 - iii. i = 1, compare key(3) with A[i], A[i] < key, break, A[i+1] = key = 2: [1,2,3,9,8,0,1,5,7,6]

- d. j = 5, key = A[5] = 8, i = j 1 = 4
 - i. i = 4, compare key(8) with A[i], A[i] > key, A[i+1] = key = 9, i = i 1 = 3: [1,2,3,9,9,0,1,5,7,6]
 - ii. i = 3, compare key(8) with A[i], A[i] < key, break, A[i+1] = key = 8: [1,2,3,8,9,0,1,5,7,6]
- e. j = 6, key = A[6] = 0, i = j 1 = 5
 - i. i = 5, compare key(8) with A[i], A[i] > key, A[i+1] = key = 9, i = i 1 = 4: [1,2,3,8,9,9,1,5,7,6]
 - ii. i = 4, compare key(8) with A[i], A[i] > key, A[i+1] = key = 8, i = i 1 = 3: [1,2,3,8,8,9,1,5,7,6]
 - iii. i = 3, compare key(8) with A[i], A[i] > key, A[i+1] = key = 3, i = i 1 = 2: [1,2,3,3,8,9,1,5,7,6]
 - iv. i = 2, compare key(8) with A[i], A[i] > key, A[i+1] = key = 2, i = i 1 = 1: [1,2,2,3,8,9,1,5,7,6]
 - v. i = 1, compare key(8) with A[i], A[i] > key, A[i+1] = key = 1, i = i 1 = 0: [1,1,2,3,8,9,1,5,7,6]
 - vi. i = 0, break, A[i+1] = key = 0: [0,1,2,3,8,9,1,5,7,6]
- f. j = 7, key = A[2] = 1, i = j 1 = 6
 - i. i = 6, compare key(1) with A[i], A[i] > key, A[i+1] = key = 9, i = i 1 = 5: [0,1,2,3,8,9,9,5,7,6]
 - ii. i = 5, compare key(1) with A[i], A[i] > key, A[i+1] = key = 8, i = i 1 = 4: [0,1,2,3,8,8,9,5,7,6]
 - iii. i = 4, compare key(1) with A[i], A[i] > key, A[i+1] = key = 3, i = i 1 = 3: [0,1,2,3,3,8,9,5,7,6]
 - iv. i = 3, compare key(1) with A[i], A[i] > key, A[i+1] = key = 2, i = i 1 = 2: [0,1,2,2,3,8,9,5,7,6]
 - v. i = 2, compare key(1) with A[i], A[i] = key, break, A[i+1] = key = 1: [0,1,1,2,3,8,9,5,7,6]
- g. j = 8, key = A[2] = 5, i = j 1 = 7
 - i. i = 7, compare key(8) with A[i], A[i] > key, A[i+1] = key = 9, i = i 1 = 6: [0,1,1,2,3,8,9,9,7,6]
 - ii. i = 6, compare key(8) with A[i], A[i] > key, A[i+1] = key = 8, i = i 1 = 5: [0,1,1,2,3,8,8,9,7,6]
 - iii. i = 5, compare key(8) with A[i], A[i] < key, break, A[i+1] = key = 5: [0,1,1,2,3,5,8,9,7,6]
- h. j = 9, key = A[2] = 7, i = j 1 = 8
 - i. i = 8, compare key(8) with A[i], A[i] > key, A[i+1] = key = 9, i = i 1 = 7: [0,1,1,2,3,5,8,9,9,6]
 - ii. i = 7, compare key(8) with A[i], A[i] > key, A[i+1] = key = 8, i = i 1 = 6: [0,1,1,2,3,5,8,8,9,6]
 - iii. i = 6, compare key(8) with A[i], A[i] < key, break, A[i+1] = key = 7: [0,1,1,2,3,5,7,8,9,6]
- i. j = 10, key = A[2] = 6, i = j 1 = 9
 - i. i = 9, compare key(6) with A[i], A[i] > key, A[i+1] = key = 9, i = i 1 = 8: [0,1,1,2,3,5,7,8,9,9]
 - ii. i = 8, compare key(6) with A[i], A[i] > key, A[i+1] = key = 8, i = i 1 = 7: [0,1,1,2,3,5,7,8,8,9]

- iii. i = 7, compare key(6) with A[i], A[i] > key, A[i+1] = key = 7, i = i 1 = 6: [0,1,1,2,3,5,7,7,8,9]
- iv. i = 6, compare key(6) with A[i], A[i] < key, break, A[i+1] = key = 6: [0,1,1,2,3,5,6,7,8,9]

6. Answer:

a. for i = 1 to n: if A[i] equals v return i

return NIL

b. Prove

- i. Initialization: Before the first loop iteration, i = 1, subarray A[1...i-1] contains no element, so if there is an element equals to v, it must be in the subarray A[i...n]
- ii. Maintenance: subarray A[1...i-1] contains those elements that have been checked not equaled to v. If A[i] doesn't equal to v, i = i+1, and the checked element will be moved into subarray A[1...i-1], and the subarray still contains no-v elements.
- iii. Termination: If A[i] equals to v, then return i.