Pump it Up

MMAI 869 - Team Adelaide

Business Context

- 25 million people in Tanzania (43% of the country's population) do not have access to clean, portable water.
- Problem statement:

How can we optimize resources to provide clean, portable water to all communities?

• Solution:

Classify water pumps as:

- 1) Functional
- 2) Non-functional
- Functional but needs repair

This would help the government allocate resources effectively.

Non-Functional Waterpoints in Tanzania

Water pumps in Tanzania Profile

Key Observation

02

Lots of Categories

Pre-processing & Feature Engineering

Key Steps

01

Class-based outliers

You won't be able to tell who's outliers until you include the class labels

What we learned...

Reducing Outliers...

Class	Count of Class Outliers	% of Class Outliers
Functional	250	0.77%
Functional Needs Repair	443	10.26%
Non-Functional	1021	4.47%
TOTAL	1714	2.88%

<u>Accuracy</u>

Before: 80.02 After: 81.33

Key Steps

Class-based outliers

You won't be able to tell who's outliers until you include the class labels

Geocoding to fill missing values Reversed geocoder library will take you

Reversed geocoder library will take you longitude and latitude data and return the nearest town/city/sub-village

Cleaning Missing Values...

Key Steps

Class-based outliers

You won't be able to tell who's outliers until you include the class labels

Geocoding to fill missing values

Reversed geocoder library will take you longitude and latitude data and return the nearest town/city/sub-village

Time and Date feature

We created new features like Age / date recorded month from construction to recorded

Feature Creation...

Before After

Date_recorded	Construction_year	51	Age = date_recorded – construction_year
2013-12-01	1990		23
2002-08-08	1992		10
2001-01-08	1998		3
1999-05-04	1986		
2012-11-05	2001		13
			11

Count of id by Age and class

Modeling

Algorithm Comparison

Hyperparameter Tuning

Initially we tried to start with Grid Search

Took too much time & processing power

Accuracy

Ensemble

To improve results, we applied StackingClassifier

Proof of Concept:

Models Stacked	Results
Random forest + Gradient boost	0.7075
RF + GB + LightGBM	0.7125

Observations:

Additional models can increase accuracy

Takes very long with diminishing returns

 Construct stacked model using top performing models for accuracy gains

DrivenData Results... 0.8191

Confusion Matrix & Metrics

Feature Importance

Application

Model Use

OBJECTIVE

More people with access to clean water (>>43%)

More functional waterpoints

Lower labor cost

Financial Impact

Current scenario

- > Costs USD \$210 million
- Costs 23,900 lives of infants

Random action

- ➤ Save USD \$132 million
- ➤ Save 15,994 lives

Our model

- > Saves USD \$152 million
- ➤ Saves 17,929 lives

Lessons Learned & Next Steps

Lessons Learned

Approach

- How to effectively code as a group: balance between many approaches vs splitting sections
- Prioritize objectives in big projects

ML Knowledge

- Significance of Feature Engineering over other techniques
- Effectiveness of Boosting models

Next Steps

Pre-processing

- Seasonality, math transformations
- Over-sampling by SMOTE
- Cleaning of categorical features
- Class distributions for better coalescing
- Supervised techniques for missing value imputation
- Feature Selection using Recursive Feature Flimination

Modeling

- Explore models in the H2O package
- Use packages such as Optuna for tuning
- Experiment with a 2-Class model

Code Refactoring

 Create functions for all steps to help sharing and reusing of code among team members

Questions?

Appendix

Noise/Outliers

01

Outliers Removal

Such as:

- · IQR capping
- Outliers removal
- Z-score

Missing values 02

Missing Value Imputation

Also:

- Categorical:
 mode/mean/median
- Numeric: mean/median

05

Normalization

Not Required

All models are tree-based

06

New features

04

Date / geographic featuresAlso:

- KMeans clustering to classified data based on longitude and latitude data
- Calculate haversine distance

07

Rare category

Handle categorical features with so many unique values

- Funder
- installer
- Region
- Sub-village

One-hot

Increase dimensionality for good

- Payment
- Funder
- Installer

Other Transformation

03

Log Transformation, Lower case, etc

Logarithm (population + 1)

- The **installer** feature spelling mistakes, wrong abbreviations and inconsistent capitalization Converted data to lowercase. Reduced number of mistakes and applied grouping through simple rules
- Many outlier values of **latitude** and **longitude** Replaced with the median values of the corresponding region_code
- Data contains features with very similar categories

 Delete scheme_management, quantity_group, water_quality, payment_type, extraction_type, waterpoint_type_group, region_code
- Missing values in public_meeting and permit
 Replaced with median values. Adopted similar technique for subvillage and scheme_name
 - The features date_recorded and recorded_by were deleted because their values were meaningless.

Reverse Geocoding

```
import reverse_geocoder as rg
def geocoder(data):
    input: dataframe containing Latitude(x) and Longitude(y) coordinates
    output: JSON data containing info on available building or street names.
    coordinates = tuple(data[['latitude','longitude']].values[3])
    #data[['latitude','longitude']].values
    results = rg.search(coordinates) # default mode = 2
    return results
```

```
[] geocoder(data_x)

[{'lat': '-11.36667',
    'lon': '38.41667',
    'name': 'Masuguru',
    'admin1': 'Mtwara',
    'admin2': '',
    'cc': 'TZ'}]
```

Confusion Matrices (cross-val-predict)

Confusion Matrices (split-train-test)

Example Scores

Model	Test Accuracy
RandomForest (default)	80.96
XGBoost (default)	80.02
Stack (RF + Gradient Boost)	70.75
Stack (RF, Gradient boosting, LightGBM)	71.25
CatBoost (tuned)	81.12
Stack (RF, LightGBM, CatBoost – all tuned)	81.91
RandomForest - H2O module	81.95
RandomForest – H2O module, tuned	82.01

Feature Descriptions

- amount_tsh Total static head (amount water available to waterpoint)
- date_recorded The date the row was entered
- funder Who funded the well
- gps_height Altitude of the well
- installer Organization that installed the well
- longitude GPS coordinate
- latitude GPS coordinate
- wpt_name Name of the waterpoint if there is one
- public_meeting True/False
- recorded_by Group entering this row of data
- scheme_management Who operates the waterpoint

- num_private No information
- basin Geographic water basin
- subvillage Geographic location
- region Geographic location
- region_code Geographic location (coded)
- district_code Geographic location (coded)
- lga Geographic location
- ward Geographic location
- population Population around the well