CÁLCULO

Funciones de varias variables (Parte I)

Definiciones básicas

Definición

Sean $I \subseteq \mathbb{R}^n$ y $J \subseteq \mathbb{R}^m$, donde $n, m \in \mathbb{N}$. Una función de varias variables es una correspondencia $f: I \to J$ que asigna a cada punto $x = (x_1, \dots, x_n) \in I$ un único punto $y = (y_1, \dots, y_m) \in J$.

- ▶ $x = (x_1, ..., x_n) \rightarrow \underline{\text{var. independiente}}; y = (y_1, ..., y_m) = f(x) \rightarrow \underline{\text{var. dependiente}}.$
- Al conjunto I se denomina: dominio de f, y se denota dom(f).
- ► Al conjunto *J* se denomina: codominio de *f*.
- ▶ Al subconjunto de J determinado por todos los puntos que son imagen de algún punto de I lo denominaremos imagen de f y se denota como Im(f), i.e.,

$$Im(f) = \{ y \in J : y = f(x) \text{ para algún } x \in I \}.$$

Ejemplos

Ej 1. El volumen de un cilindro define una función de dos variables: el radio x y la altura y. Si se considera $I = \{(x,y) : x \ge 0, y \ge 0\}$, entonces la función queda definida como

$$V: I \subseteq \mathbb{R}^2 \to \mathbb{R}$$
$$(x,y) \to \pi x^2 y$$

Ej 2. La siguiente función asocia a cada punto $t \in [0, 2\pi]$ un punto sobre la circunferencia de centro (0,0) y radio 1.

$$f: [0,2\pi] \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$$

 $t \rightarrow (\cos(t),\sin(t)).$

Función de varias variables

$$f: I \subseteq \mathbb{R}^n \to \mathbb{R}^m (x_1, \dots, x_n) \to (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n)),$$

donde cada $f_i:I\subseteq\mathbb{R}^n\to\mathbb{R}$ es una función, la cual llamaremos componente i-ésima de f.

Ejemplo: Sea $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida por $f(x,y) = (x^2, y^2, x^2 - y^2)$. Las tres componentes de f vienen dadas por

$$f_1(x,y) = x^2,$$
 $f_2(x,y) = y^2,$ $f_3(x,y) = x^2 - y^2.$

* Principalmente nos centraremos en el estudio de funciones del tipo $f:I\subset\mathbb{R}^2\to\mathbb{R}.$

Dominio de una función de varias variables

Si $f: \mathbb{R}^n \to \mathbb{R}$ es una función, entonces el dominio de f, denotado por Dom(f), es el subconjunto de \mathbb{R}^n formado por todos los puntos para los que la función está definida (tienen imagen).

Ejemplo 1: La función $f(x,y) = x\sqrt{y}$ está definida siempre que $y \ge 0$. Por tanto:

$$Dom(f) = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}.$$

El dominio es el semiplano de R^2 con ordenada no negativa.

Ejemplo 2: La función $g(x,y) = \sqrt{4 - x^2 - y^2}$ está definida siempre que $x^2 + y^2 \le 4$. Por tanto:

$$Dom(g) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$$

El dominio es el interior (incluyendo el borde) de la circunferencia de radio 2 y centro (0,0).

Dominio de una función de varias variables

Ejemplo 3: La función $h(x, y, z) = \frac{x}{\sqrt{1 - x^2 - y^2 - z^2}}$ está definida siempre que $x^2 + y^2 + z^2 < 1$. Por tanto:

$$Dom(h) = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1\}.$$

El dominio es el interior (sin el borde) de la esfera tridimensional de radio 1 y centro (0,0,0).

Gráfica de una función de dos variables

Si $f:I\subseteq\mathbb{R}^2\to\mathbb{R}$ es una función, entonces la *gráfica* de f, denotado por Gr(f), es el subconjunto de \mathbb{R}^3 definido como:

$$Gr(f) = \{(x, y, z) \in \mathbb{R}^3 : z = f(x, y), \text{ donde } (x, y) \in Dom(f)\}.$$

A la izquierda tenemos la gráfica de la función $f(x,y)=x\sqrt{y}$. A la derecha la gráfica de $g(x,y)=\sqrt{4-x^2-y^2}$.

CÁLCULO

Funciones de varias variables (Parte II)

Límites de funciones de dos variables

- ▶ Definición.
- Límites direccionales.
- ► Límites iterados.

Definición: Llamamos **bola abierta** en \mathbb{R}^2 , de centro (x_0, y_0) y radio r al conjunto

$$B((x_0, y_0), r) = \{(x, y) \in \mathbb{R}^2 : \sqrt{(x - x_0)^2 + (y - y_0)^2} < r\}.$$

Definición

Sea f una función de dos variables definida en una bola abierta $B((x_0, y_0), r)$, excepto posiblemente en (x_0, y_0) , y sea L un número real. El *límite de* f(x, y) *cuando* (x, y) *tiende a* (x_0, y_0) *es* L, denotado por

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L,$$

si para cada $\epsilon > 0$, existe un $\delta > 0$ tal que $|f(x,y) - L| < \epsilon$ siempre que $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$.

Ejemplo: Calcular
$$\lim_{(x,y)\to(1,2)} \frac{5x^2y}{x^2+y^2}$$
.

Solución: Usando las propiedades de los límites de productos y sumas se obtiene que

$$\lim_{(x,y)\to(1,2)} 5x^2y = 10 \qquad \text{y} \qquad \lim_{(x,y)\to(1,2)} x^2 + y^2 = 5.$$

Como el límite de un cociente es igual al cociente de los límites (y el denominador es ditinto de cero), se tiene que:

$$\lim_{(x,y)\to(1,2)} \frac{5x^2y}{x^2+y^2} = \frac{10}{5} = 2.$$

Ejemplo: Calcular $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$.

Teorema

Sea $f:D\subset\mathbb{R}^2\to\mathbb{R}$ una función y sea $(x_0,y_0)\in\mathbb{R}^2$. Entonces

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L$$

existe si existen los límites de la función a través de <u>cualquier</u> trayectoria que se aproxime a (x_0, y_0) , y los valores son todos L.

¿De cuántas formas es posible aproximarse al punto (x_0, y_0) ?

- \blacktriangleright Existen infinitas trayectorias para acercarse al al punto (x_0, y_0) .
- Estudiar el límite de algunas trayectorias nos permite obtener un posible candidato a límite.
- ▶ Nos brinda un criterio para demostrar que un límite no existe.

Ejemplos de trayectorias específicas (límites direccionales)

- ► rectas: $y = m(x x_0) + y_0$.
- ▶ parábolas: $y = m(x x_0)^2 + y_0$ ó $x = m(y y_0)^2 + x_0$.

Ejemplo: Calcular
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$$
.

Solución: Nos aproximaremos al punto (0,0) por rectas de la forma y = mx. Entonces

$$\lim_{(x,mx)\to(0,0)}\frac{x^2}{x^2+(mx)^2}=\lim_{x\to 0}\frac{1}{1+m^2}=\frac{1}{1+m^2}.$$

Observa que este límite depende de m, es decir, depende de la pendiente de la recta desde donde nos acercamos al punto (0,0). Por tanto, <u>el límite no existe.</u>

Ejemplo: Calcular
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{\sqrt{x^2+y^2}}$$
.

Solución: Nos aproximaremos al punto (0,0) por rectas de la forma y=mx. Entonces

$$\lim_{(x,mx)\to(0,0)} \frac{x^2 - (mx)^2}{\sqrt{x^2 + (mx)^2}} = \lim_{x\to 0} \frac{x(1-m^2)}{\sqrt{1+m^2}} = 0.$$

Nos aproximaremos al punto (0,0) por una parábola de la forma $y=mx^2$. Entonces

$$\lim_{(x,mx^2)\to(0,0)} \frac{x^2 - (mx^2)^2}{\sqrt{x^2 + (mx^2)^2}} = \lim_{x\to 0} \frac{x(1 - (mx)^2)}{\sqrt{1 + (mx)^2}} = 0.$$

Observación: Aunque el valor de los límites coincidan, quedan por probar infinitas direcciones. Por lo tanto, NO puede afirmarse que el límite exista.

Límites iterados

Los límites iterados brindan nuevas trayectorias para aproximarse al punto (x_0, y_0) mediante las coordenadas horizontal y vertical. Es decir, mediante el cálculo de los límites:

$$\lim_{y \to y_0} \left(\lim_{x \to x_0} f(x, y) \right) \qquad \text{y} \qquad \lim_{x \to x_0} \left(\lim_{y \to y_0} f(x, y) \right)$$

- ► Si los límites iterados son distintos, entonces el límite no existe.
- Que los dos límites iterados existan y sean iguales, NO garantiza la existencia del límite de la función, aunque en caso de existir, debe de dar el mismo valor.

Ejemplo: Calcular los límites iterados de: $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{\sqrt{x^2+y^2}}$.

Solución:

$$\lim_{x \to 0} \left(\lim_{y \to 0} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} \right) = \lim_{x \to 0} \frac{x^2}{\sqrt{x^2}} = 0.$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} \right) = \lim_{y \to 0} \frac{-y^2}{\sqrt{y^2}} = 0.$$

Observación: Aunque el valor de los límites iterados coincidan, NO puede afirmarse que el límite exista.

Ejercicio: Comprueba mediante el cálculo de los límites iterados que no existe el siguiente límite.

$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+2y^2}.$$

Solución:

$$\lim_{x \to 0} \left(\lim_{y \to 0} \frac{x^2 - y^2}{x^2 + 2y^2} \right) = \lim_{x \to 0} 1 = 1.$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} \frac{x^2 - y^2}{x^2 + 2y^2} \right) = \lim_{y \to 0} \frac{-y^2}{2y^2} = -\frac{1}{2}.$$

Como los límites iterados son distintos, se concluye que $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+2y^2}$ no existe.

¿Existe alguna forma de asegurar cuándo existe $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$?

- ► Condiciones suficientes para asegurar la existencia del límite mediante el cambio a coordenadas polares.
- ► Método de las acotaciones (criterio del sandwich).

CÁLCULO

Funciones de varias variables (Parte III)

Límites de funciones de dos variables

- ► Condiciones suficientes para asegurar la existencia del límite mediante el cambio a coordenadas polares.
- ► Continuidad.

¿Existe alguna forma de asegurar cuándo existe $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$?

Cambio a coordenadas polares

Consiste en expresar la función f(x,y) (cuyo límite $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ se quiere calcular) en coordenadas polares centradas en el punto (x_0,y_0) .

$$x = x_0 + \rho \cos(\theta),$$
 $y = y_0 + \rho \sin(\theta).$

donde
$$\rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}$$
 y $\theta \in [0, 2\pi]$.

En tal sentido, y debido a que ρ es la distancia del punto (x, y) al punto (x_0, y_0) , entonces $(x, y) \rightarrow (x_0, y_0)$ es equivalente a $\rho \rightarrow 0$. Es decir:

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{\rho\to 0} f(x_0 + \rho\cos(\theta), y_0 + \rho\sin(\theta)).$$

Observación: Para cada valor fijo del ángulo θ , calcular el límite de $f(x_0 + \rho \cos(\theta), y_0 + \rho \sin(\theta))$ cuando $\rho \to 0$, es equivalente a hacer el límite direccional de f(x, y) sobre la recta $y = y_0 + \tan(\theta)(x - x_0)$. En consecuencia, el estudio del límite

$$\lim_{\rho \to 0} f(x_0 + \rho \cos(\theta), y_0 + \rho \sin(\theta))$$

no es otra cosa que el estudio de los límites direccionales.

Ejemplo: Calcular
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
.

Solución:

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}=\lim_{\rho\to 0}\frac{\rho^2\cos(\theta)\sin(\theta)}{\rho^2}=\cos(\theta)\sin(\theta).$$

Como el límite depende del valor de θ , podemos asegurar que el límite no existe.

Ejemplo: Calcular
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$$
.

Solución: Observa que si nos aproximamos al punto (0,0) usando rectas y = mx o parábolas $y = mx^2$ se obtiene que:

$$\lim_{(x,mx)\to(0,0)} \frac{x^3(mx)}{x^6+(mx)^2} = 0 = \lim_{(x,mx^2)\to(0,0)} \frac{x^3(mx^2)}{x^6+(mx^2)^2}.$$

Usando límites iterados, se obtiene que:

$$\lim_{y \to 0} \left(\lim_{x \to 0} \frac{x^3 y}{x^6 + y^2} \right) = 0 = \lim_{x \to 0} \left(\lim_{y \to 0} \frac{x^3 y}{x^6 + y^2} \right)$$

Usando coordenadas polares, se obtiene que:

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2} = \lim_{\rho\to 0} \frac{\rho^2\cos^3(\theta)\sin(\theta)}{\rho^4\cos^6(\theta)+\sin^2(\theta)} = 0.$$

Sin embargo, si nos aproximamos mediante curvas $y = mx^3$:

$$\lim_{(x,mx^3)\to(0,0)} \frac{x^3(mx^3)}{x^6+(mx^3)^2} = \lim_{x\to 0} \frac{mx^6}{x^6(1+m^2)} = \lim_{x\to 0} \frac{m}{1+m^2} = \frac{m}{1+m^2}.$$

Por tanto, el límite no existe.

Resultado

Supongamos que se quiere calcular el límite

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{\rho\to 0} f(x_0 + \rho\cos(\theta), y_0 + \rho\sin(\theta)).$$

Si

(i)
$$\lim_{\rho \to 0} f(x_0 + \rho \cos(\theta), y_0 + \rho \sin(\theta)) = L$$
,

(ii) Existe una función $g(\rho)$ tal que

$$|f(x_0 + \rho\cos(\theta), y_0 + \rho\sin(\theta)) - L| \le g(\rho), \quad \forall \theta \in [0, 2\pi],$$

(iii)
$$\lim_{\rho \to 0} g(\rho) = 0$$
,

entonces se cumple que

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L.$$

Ejemplo: Calcular $\lim_{(x,y)\to(0,0)} \frac{x^3+2y^3}{\sqrt{x^2+y^2}}$.

Solución: Haciendo uso de coordenadas polares:

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + 2y^3}{\sqrt{x^2 + y^2}} = \lim_{\rho \to 0} \rho^2(\cos^3(\theta) + 2\sin^3(\theta))$$

Observa que:

(i)
$$L = \lim_{\rho \to 0} \rho^2(\cos^2(\theta) + 2\sin^2(\theta)) = 0$$
,

(ii)
$$|f(\rho\cos(\theta), \rho\sin(\theta)) - L| = |\rho^2(\cos^3(\theta) + 2\sin^3(\theta)) - 0|$$

 $\leq 3\rho^2 = g(\rho),$

(iii)
$$\lim_{\rho \to 0} g(\rho) = \lim_{\rho \to 0} 3\rho^2 = 0.$$

Entonces, se cumple que $\lim_{(x,y)\to(0,0)} \frac{x^3+2y^3}{\sqrt{x^2+y^2}} = 0.$

Ejemplo: Calcular $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$.

Solución: Haciendo uso de coordenadas polares:

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2} = \lim_{\rho \to 0} \rho \cos(\theta) \sin^2(\theta)$$

Observa que:

(i)
$$L = \lim_{\rho \to 0} \rho \cos(\theta) \sin^2(\theta) = 0$$
,

(ii)
$$|f(\rho\cos(\theta), \rho\sin(\theta)) - L| = |\rho\cos(\theta)\sin^2(\theta) - 0|$$

 $\leq \rho = g(\rho),$

(iii)
$$\lim_{\rho \to 0} g(\rho) = \lim_{\rho \to 0} \rho = 0.$$

Entonces, se cumple que $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0$.

Continuidad

Definición

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función y $(x_0, y_0) \in D$. Se dice que f es continua en (x_0, y_0) si existe el límite de f cuando (x, y) tiende a (x_0, y_0) , y este coincide con el valor de la función en dicho punto. Es decir:

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

En caso contrario diremos que f es discontinua en (x_0, y_0) .

Ejemplo: La función $f(x,y) = \frac{xy^2}{x^2+y^2}$ no es continua en (0,0).

Sin embargo, observa que
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$
 si es continua en $(0,0)$.

Teorema

Sean f y g funciones continuas en (x_0, y_0) y $k \in \mathbb{R}$. Entonces las siguientes funciones también son continuas en (x_0, y_0) .

► Múltiplo escalar: kf

▶ Suma y diferencia: $f \pm g$

► Producto: fg

► Cociente: f/g (siempre que $g(x_0, y_0) \neq 0$)

Teorema

Si h es continua en (x_0, y_0) y g es continua en $h(x_0, y_0)$, entonces la función compuesta $(g \circ h)(x, y) = g(h(x, y))$ es continua en (x_0, y_0) . Es decir:

$$\lim_{(x,y)\to(x_0,y_0)} g(h(x,y)) = g(h(x_0,y_0)).$$

CÁLCULO

Funciones de varias variables (Parte IV)

Cálculo diferencial de funciones de varias variables

- Derivadas parciales y vector gradiente.
- ► Derivadas direccionales.
- Derivadas parciales de orden superior.
- Funciones diferenciables.

Derivadas parciales de una función de dos variables

Sea $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ una función y sea $(x_0, y_0) \in D$.

- ▶ Es conocido que para estudiar el límite de f cuando $(x, y) \rightarrow (x_0, y_0)$, es posible "acercarse" al punto (x_0, y_0) a través de infinitos "caminos".
- ► En particular, podemos considerar aproximarnos a (x_0, y_0) a través de las siguientes rectas:
 - (i) $y = y_0$ (aproximarnos a través de puntos de la forma (x, y_0) con $x \to x_0$).
 - (ii) $x = x_0$ (aproximarnos a través de puntos de la forma (x_0, y) con $y \to y_0$).

En el caso (i), se puede estudiar la variación de la función $f(x, y_0)$ cuando $x \to x_0$. Es decir, la *derivada parcial de f respecto a la variable* x *en el punto* (x_0, y_0) , denotada por $\frac{\partial f}{\partial x}(x_0, y_0)$, es el siguiente límite (si existe):

$$\frac{\partial f}{\partial x}(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h}.$$

En el caso (ii), se puede estudiar la variación de la función $f(x_0, y)$ cuando $y \to y_0$. Es decir, la *derivada parcial de f respecto a la variable y en el punto* (x_0, y_0) , denotada por $\frac{\partial f}{\partial y}(x_0, y_0)$, es el siguiente límite (si existe):

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Observación: En la práctica, la derivada parcial de una función f(x, y) respecto a una variable $z \in \{x, y\}$, se calcula derivando respecto a dicha variable (asumiendo que f es una función en una variable).

Definición

Sea $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ una función y sea $(x_0,y_0)\in D$ tal que las derivadas parciales $\frac{\partial f}{\partial x}(x_0,y_0)$ y $\frac{\partial f}{\partial y}(x_0,y_0)$ existen. Definimos el vector gradiente de f en (x_0,y_0) , denotado como $\nabla f(x_0,y_0)$, como el vector de \mathbb{R}^2 que tiene como componentes las derivadas parciales. Es decir:

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

Ejemplo 1: Calcula, en caso de ser posible, el gradiente de la función $f(x,y) = x^2y^3 - 4xy$.

Solución:

$$\frac{\partial f}{\partial x}(x,y) = 2xy^3 - 4y,$$
 $\frac{\partial f}{\partial y}(x,y) = 3x^2y^2 - 4x.$

Por tanto, $\nabla f(x,y) = (2xy^3 - 4y, 3x^2y^2 - 4x)$.

Ejemplo 2: Calcula, en caso de ser posible, el vector $\nabla f(1,0)$ donde $f(x,y) = x^2y + y^3$.

Solución:

$$\frac{\partial f}{\partial x}(x,y) = 2xy,$$
 $\frac{\partial f}{\partial y}(x,y) = x^2 + 3y^2.$

Entonces, $\nabla f(x, y) = (2xy, x^2 + 3y^2)$. Por tanto, $\nabla f(1, 0) = (0, 1)$.

Definición (derivada parcial)

Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ una función. Se define la derivada parcial de f respecto a la variable i-ésima $(i\in\{1,\ldots,n\})$ en el punto $(a_1,\ldots,a_n)\in D$ al siguiente límite (en caso de que exista):

$$\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h\to 0} \frac{f(a_1,\ldots,a_i+h,\ldots,a_n)-f(a_1,\ldots,a_n)}{h}.$$

Definición (vector gradiente)

Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ una función. Si (x_1,\ldots,x_n) un punto tal que las derivadas parciales $\frac{\partial f}{\partial x_i}(x_1,\ldots,x_n)$ existen $(i\in\{1,\ldots n\})$. Definimos el *vector gradiente de f en* (x_1,\ldots,x_n) , denotado como $\nabla f(x_1,\ldots,x_n)$, como el vector de \mathbb{R}^n que tiene como componentes las derivadas parciales. Es decir:

$$\nabla f(x_1,\ldots,x_n) = \left(\frac{\partial f}{\partial x_1}(x_1,\ldots,x_n),\ldots,\frac{\partial f}{\partial x_n}(x_1,\ldots,x_n)\right).$$

Derivadas direccionales de una función de dos variables

Sea $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ una función y sea $(x_0,y_0)\in D$.

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = \lim_{h \to 0} \frac{f((x_0, y_0) + h(1, 0)) - f(x_0, y_0)}{h}.$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h} = \lim_{h \to 0} \frac{f((x_0, y_0) + h(0, 1)) - f(x_0, y_0)}{h}.$$

- ▶ La derivada parcial respecto a x nos determina la variación de la función en la dirección (1,0).
- ► La derivada parcial respecto a *y* nos determina la variación de la función en la dirección (0,1).
- ▶ ¿Es posible analizar la variación de la función en el resto de direcciones?

Definición

Sea $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ una función y $\mathbf{u}=(u_1,u_2)$ un vector unitario $(||\mathbf{u}||=\sqrt{u_1^2+u_2^2}=1)$. Se define la *derivada direccional de f en* (x_0,y_0) *en la dirección de* \mathbf{u} como el límite (si existe)

$$D_{\mathbf{u}}f(x_0,y_0) = \lim_{t\to 0} \frac{f((x_0,y_0)+t\mathbf{u})-f(x_0,y_0)}{t}.$$

Observaciones:

► Todo vector unitario $\mathbf{u} \in \mathbb{R}^2$ se puede expresar de la forma $\mathbf{u} = (\cos \theta, \sin \theta)$ para un cierto ángulo $\theta \in [0, 2\pi)$. Entonces

$$D_{\mathbf{u}}f(x_0,y_0) = \lim_{t \to 0} \frac{f(x_0 + t\cos\theta, y_0 + t\sin\theta) - f(x_0,y_0)}{t}.$$

► Si el vector u no es unitario, se define la derivada direccional de f en la dirección de u como la derivada direccional según el vector unitario u | u | i.e.,

$$D_{\mathbf{u}}f(x_0,y_0) = \frac{1}{||\mathbf{u}||} \lim_{t \to 0} \frac{f((x_0,y_0) + t\mathbf{u}) - f(x_0,y_0)}{t}.$$

Ejemplo: Calcula la derivada direccional de la función $f(x, y) = x^2y$ en el punto (1, 1) en la dirección del vector $\mathbf{u} = (1, 2)$.

Solución: Observa que $||\mathbf{u}|| = \sqrt{5}$. Entonces:

$$\begin{split} D_{\mathbf{u}}f(1,1) &= \frac{1}{\sqrt{5}} \lim_{t \to 0} \frac{f((1,1)+t(1,2))-f(1,1)}{t} \\ &= \frac{1}{\sqrt{5}} \lim_{t \to 0} \frac{f(1+t,1+2t)-f(1,1)}{t} \\ &= \frac{1}{\sqrt{5}} \lim_{t \to 0} \frac{(1+t)^2(1+2t)-1}{t} \xrightarrow{\text{$\frac{1}{\sqrt{5}}$ lim}} \frac{(1+t^2+2t)(1+2t)-1}{t} \\ &= \frac{1}{\sqrt{5}} \lim_{t \to 0} \frac{2t^3+5t^2+4t}{t} \xrightarrow{\text{$\frac{1}{\sqrt{5}}$ lim}} \frac{t}{t} \xrightarrow{\text{$\frac{1}{\sqrt{5}}$ lim}} \xrightarrow{\text$$

Teorema

Sea $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ una función y $(x_0,y_0)\in D$. Si las derivadas parciales de f son continuas en un entorno de (x_0,y_0) , entonces para cualquier vector unitario $\mathbf{u}=(u_1,u_2)\in\mathbb{R}^2$ se tiene que la derivada direccional $D_{\mathbf{u}}f(x_0,y_0)$ existe, y además

$$D_{\mathbf{u}}f(x_0,y_0) = \frac{\partial f}{\partial x}f(x_0,y_0)u_1 + \frac{\partial f}{\partial y}f(x_0,y_0)u_2 = \nabla f(x_0,y_0) \cdot \mathbf{u}.$$

Ejemplo: Calcula la derivada direccional de la función $f(x,y) = 2x^2 + 3y^3 - 3$ en el punto (2,1) en la dirección dada por el ángulo $\theta = \pi/4$.

Solución: Observa que $\mathbf{u}=(\cos\frac{\pi}{4},\sin\frac{\pi}{4})$ es un vector unitario, y $\nabla f(x,y)=(4x,9y^2)$ (las derivadas parciales son continuas). Entonces

$$D_{\mathbf{u}}f(2,1) = \nabla f(2,1) \cdot \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = (8,9) \cdot \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{17\sqrt{2}}{2}.$$

Definición (Derivada direccional)

Sea $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ una función y $\mathbf{u} \in \mathbb{R}^n$ un vector. Se define la derivada direccional de f en el punto $X = (x_0, \dots, x_n) \in D$ en la dirección de \mathbf{u} como el siguiente límite (si existe)

$$D_{\mathbf{u}}f(X) = \frac{1}{||\mathbf{u}||} \lim_{t \to 0} \frac{f(X+t\mathbf{u})-f(X)}{t}.$$

Teorema

Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ una función y $X=(x_1,\ldots,x_n)\in D$. Si las derivadas parciales de f son continuas en un entorno de X, entonces para cualquier vector unitario $\mathbf{u}=(u_1,\ldots,u_n)\in\mathbb{R}^n$ se tiene que la derivada direccional $D_{\mathbf{u}}f(X)$ existe, y además

$$D_{\mathbf{u}}f(X) = \frac{\partial f}{\partial x_1}f(X)u_1 + \ldots + \frac{\partial f}{\partial x_n}f(X)u_n = \nabla f(X) \cdot \mathbf{u}.$$

Derivadas parciales de orden superior

Definición (Funciones de clase C^1)

Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ una función. Se dice que f es de clase C^1 si las derivadas parciales $\frac{\partial f}{\partial x_i}$ $(i\in\{1,\ldots,n\})$ existen y son continuas en cualquier punto de D.

▶ La derivada parcial de la función $\frac{\partial f}{\partial x_i}$, respecto a la variable x_j $(j \in \{1, \dots, n\})$, en caso de que exista, se denomina derivada parcial de segundo orden de f respecto a x_i , x_j , y se denota por $\frac{\partial^2 f}{\partial x_i \partial x_i}$, i.e.,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right).$$

▶ Si i = j, se llaman derivadas parciales *iteradas* y si $i \neq j$ derivadas parciales *mixtas*.

Definición (Funciones de clase C^2)

Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ una función. Se dice que f es de clase C^2 si todas las derivadas parciales de segundo orden de la función f respecto a x_i, x_j $(i,j\in\{1,\ldots,n\})$ existen y son continuas en D.

Ejemplo: Si $f(x, y) = x \sin y$, entonces

$$\frac{\partial f}{\partial x}(x,y) = \sin y, \quad \frac{\partial f}{\partial y}(x,y) = x \cos y, \quad \frac{\partial^2 f}{\partial x^2}(x,y) = 0,$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = -x \sin y, \quad \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = \cos y.$$

Teorema de Schwarz

Si $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ es una función de clase C^2 , entonces las derivadas parciales de f conmutan, i.e.,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j}, \qquad i, j \in \{1, \dots, n\}.$$

Funciones diferenciables

Funciones diferenciables

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Diremos que f es diferenciable en (x_0, y_0) si existen las derivadas parciales de f en (x_0, y_0) y además:

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-\nabla f(x_0,y_0)\cdot (x-x_0,y-y_0)}{||(x,y)-(x_0,y_0)||}=0$$

Condición suficiente de diferenciabilidad

Sea $f:D\subset\mathbb{R}^2\to\mathbb{R}$ una función. Si existen las derivadas parciales de f y son continuas en todo punto de D, entonces f es diferenciable en todos los puntos de D.

Ejemplo: Observa que la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = \frac{x \sin y}{x^2 + 1}$ tiene derivadas parciales

$$\frac{\partial f}{\partial x} = \frac{(x^2+1)\sin y - 2x^2\sin y}{(x^2+1)^2}, \qquad \qquad \frac{\partial f}{\partial y} = \frac{x\cos y}{x^2+1},$$

las cuales son continuas en todo \mathbb{R}^2 . Por tanto, f es diferenciable.

Teorema

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función y $(x_0, y_0) \in D$. Si f es diferenciable en (x_0, y_0) , entonces es continua en (x_0, y_0) .

Ejemplo: Demuestra que la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

admite derivadas parciales, pero no es diferenciable en (0,0).

Solución: Observa que:

$$\tfrac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \tfrac{f(0+h,0)-f(0,0)}{h} = 0.$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = 0.$$

Sin embargo, f no es continua en (0,0) debido a que $\lim_{(x,y)\to(0,0)} f(x,y)$

no existe. Por tanto, f no es diferenciable en (0,0).

