Mo Tu We Th Fr Sa Su	Memo No/
C plane F vets	
Flux of Faceross Cis	
	normal vector to C, legree closewise
If break C into s Flux = lim (SF	
Work: Sc F'dr' = Sc F'T	ads formponent of F
Flux: ScPinds - summing what's Interpertent on?	
for F a velocity t	fluid pass through C
per unit time (通量) ***********************************	elogram
FYM/A	= as. (F. A)

\(\bar{\pi}\)	X		R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	1	

What flows	across C left to right is	counted
	rlyh-ts-left negatively	

Examples Cis a dide radius u one orly'n

counter dock mise

$$\vec{F} = X \hat{i} + y \hat{j}$$
also C , $\vec{F}/i\vec{n}$, $\vec{F} \cdot \hat{n} = |\vec{F}|$

$$\int_{C} \vec{F} \cdot \hat{n} dS = \int_{C} \alpha dS = \alpha \cdot leng + hC = 2\pi \alpha^{2}$$

$$2n \text{ same } C \quad (\vec{F} = (-y, x) =) \vec{F} \text{ tugent } t. C, so$$

$$\vec{F} \cdot \hat{n} \Rightarrow 0, \quad Flux = 0$$

* Calculation using components.

before: $d\vec{r}' = \vec{T} ds = \langle dx, dy \rangle$ flux: \hat{n} is \hat{r}' rotated 9s' clockwise

So $\hat{n} ds = \langle dy, -dx \rangle$

 $\hat{A} \cdot \Delta S = \langle \Delta y, -\Delta x \rangle$

So, if $\vec{F} = \langle P, Q \rangle$ then $\int_{C} \vec{F} \cdot \hat{n} ds = \int_{C} \langle P, Q \rangle \cdot \langle dy, -dx \rangle$

= Jc - adx + Pdy

Ø	Z		R				
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	1	1	

Green's Theorem for flux: if C endowed a region R counterclock wise: and F defined <pre></pre>
(curl, in temential form)
Proof: $\int_{C} -Q dx + P dy = \iint_{R} CR + CQ dA$ Set in $N \Rightarrow M = -Q$, $N = P$ $\int_{C} M dx + N dy = \iint_{R} (Nx - My) dA$
if F=cm, N>: Fc mdy - Ndx = S/R (Mx + Ny) dxdy
Example: $\vec{F} = X \hat{1} + y \hat{j}$, C : circle of radius a $div \vec{F} = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} = 1$ $flux = \int_{C} X \cdot dy - y \cdot dx = \oint_{C} \vec{F} \cdot \hat{n} ds = \iint_{R} 2 d\theta = 2 \cdot 7C\alpha^{2}$

\times	X		R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.	
Date	/

what	div(F) m	easure? div	rerage	
	tation of a			
				"expending"
				of there
/	-			it time & area