PUC-Minas - Ciência da Computação

Prova 01

Aluno: Gustavo Jota Resende

Matrícula: 427413

	Abcd	Saídas	S2	S1	S0
0	0000	2	0	1	0
1	0001	1	0	0	1
2	0010	1	0	0	1
3	0011	1	0	0	1
4	0100	4	1	0	0
5	0101	2	0	1	0
6	0110	1	0	0	1
7	0111	1	0	0	1
8	1000	4	1	0	0
9	1001	4	1	0	0
10	1010	2	0	1	0
11	1011	1	0	0	1
12	1100	4	1	0	0
13	1101	4	2	0	0
14	1110	4	1	0	0
15	1111	2	0	1	0

S2

ab/cd	00	01	11	10
00	0(0)	0(1)	0(3)	0(2)
01	1(4)	0(5)	0(7)	0(6)
11	1(12)	1(13)	0(15)	1(14)
10	0(8)	0(9)	0(11)	0(10)

S3

ab/cd	00	01	11	10
00	1(0)	0(1)	0(3)	0(2)
01	0(4)	1(5)	0(7)	0(6)

11	0(12)	1(13)	1(15)	0(14)
10	0(8)	0(9)	0(11)	1(10)

S0

ab/cd	00	01	11	10
00	0(0)	1(1)	1(3)	1(2)
01	0(4)	0(5)	1(7)	1(6)
11	0(12)	0(13)	0(15)	0(14)
10	0(8)	0(9)	1(11)	0(10)

1)

$$a)S2 = (a'*b*c'*d') + (a*b'*c'*d') + (a*b'*c'*d) + (a*b*c'*d') + (a*b*c'*d) + (a*b*c*d')$$

b)S1 =
$$\prod$$
 m(1,2,3,4,6,7,8,9,11,12,13,14)

c)S0 =
$$(a'+b'+c'+d) * (a'+b'+c+d') * (a+b'+c+d) * (a'+b+c+d') * (a'+b+c+d) * (a+b'+c+d)$$

d)
$$A = (8,9,12,13) = ac'$$
, $B = (4,12) = bc'd'$, $C = (12,14) = abd'$

$$S2 = (a*c') + (b*c'*d') + (a*b*d')$$

e)
$$A = (a'*b'*c'*d)$$
, $B = (a'*b*c'*d')$, $C = (a*b*c*d)$, $D = (a*b'*c*d')$

$$S1 = (a'*b'*c'*d) + (a'*b*c'*d') + (a*b*c*d) + (a*b'*c*d')$$

f)
$$A = (2,3,6,7) = (a'*c), B = (1,3) = (a'*b'*d), C = (3,11) = (b'*c*d)$$

$$SO = (a'*c) + (a'*b'*d) + (b'*c*d)$$

g)
$$S2 = (a*c') + (b*c'*d') + (a*b*d') = (b*d')(a+c') + (a*c')$$

h)
$$S1 = (a'*b'*c'*d) + (a'*b*c'*d') + (a*b*c*d) + (a*b'*c*d')$$

$$a'*c'(b'*d'+b*d) + a*c(b*d+b'*d')$$

$$(b'*d' + b*d)(a'*c' + a*c) = (bxord)(axorc)$$

i)S0 =
$$(a'*c) + (a'*b'*d) + (b'*c*d) = (b'*d)(a'*c) + (a*c')$$

As outras questões estão nos arquivos de verilog nesta pasta