Accelerating Deep Neural Networks with Input Sparsity

Xiao Dong, Lei Liu, Peng Zhao, Guangli Li, et al 28th International Conference on Parallel Architectures and Compilation Techniques (PACT), 2019

Presenter: Won-Hyuk Lee

http://esoc.hanyang.ac.kr/people/wonhyuk_lee/index.html

May 12, 2020

Background

Operator

- Conv, ReLU, Pooling, Batch Norm, Scale

Input tensor's layout

- Original tensor layout (3D tensor)
- Sparse tensor layout (*Proposed layout*)

Application with Sparse Input

LiDAR-based Detection

- 75~95% Sparsity

(a) RGB image

(b) bird-eye-view LiDAR image

Face Detection

- Only specific region is valid

Channel consistency

(a) sparse tensor

Conventional Sparse formats

(a) sparse tensor

(c) unrolled sparse tensor

(d) sparse matrix in different sparse formats

Proposed Sparse Data Layout

(a) sparse tensor

values		locations
2.3	1.2	(0,0)
0.5	3.3	(0, 2)
3.7	0.4	(1, 2)
1.9	2.4	(2, 1)

(b) sparse tensor in our format

Deep Learning Framework with Sparse Input

Workflow of Acorns

Inter-Operator Optimization

Operator fusion

Consecutive operator can be merged and replacing

Sparse tensor layout conversion

Proposed sparse tensor layout is preferred by most of operators

Kernel Code Optimization

Kernel Template

- Straightforward computation code annotated with optimizing directions

Optimizing Direction

- Loop tiling
- Vectorization
- Auto-tuning
- Weight Packing
- Multithreading

Methodology

Networks

- ResNet-50
- DenseNet-121

Dataset

- KITTI dataset (average sparsity 79%)

CPU

- 32-core Intel Xeon E7-4809 v3
- Supports AVX2

Sparsity-aware methods

- SparseConvNet (SCN)
- Intel MKL-Sparse
- TACO

Sparsity-unaware methods

- Intel MKL-DNN
- NNPACK
- Eigen
- Intel MKL
- OpenBLAS
- ATLAS
- Caffe
- TensorFlow

Evaluation: Single-Thread

- Sparsity-unaware methods
 - 2.7 to $22.7 \times$ speedups

- Sparsity-aware methods
 - 5.4 to $8.6 \times$ speedups

Evaluation: Multithreading

Multithreading performance

- 1.8 to $18.6 \times$ speedups

Speedups over single-thread

 Best multithreading speedup among the sparsity-aware methods

Speedup	ResNet	DenseNet
Intel MKL-DNN	5.4	3.3
TensorFlow	12.3	7.1
NNPACK	2.6	2.1
Intel MKL	1.6	1.4
SCN	2.6	2.2
Intel MKL-Sparse	1.7	1.3
Acorns	3.6	3.0

Thank you