SURVEYING

IP-35

INDEX

No.	PROBLEMS	
1	Bearing and distance from coords.	1
2	Coords, from bearing and distance	3
3	Traverse. Anticlockwise Internal angles	5
4	Traverse. Clockwise Internal angles	7
5	Traverse. By bearings	9
6	Bowditch adjustment	11
7	Solution of a triangle using angles	13
8	Solution of a triangle using bearings	15
9	Solution of a triangle using bearings	17
10	Stadia tacheometry	19
11	Cut and fill. All cut or all fill	21
12	Cut and fill. Part cut, part fill	23
13	Trig. heights	25
14	Area of a triangle	27
15	Area from coords.	29
16	Cosine formula (for angle)	31
17	Cosine formula (for side)	33
18	Scale factor	35
19	Refractive index. Radio	37
20	Refractive index. Light	39
21	Reduction of EDM to spheroid	41
22	Coeff. of refraction	43
23	Eccentric stn correction	45
24	(t-T) correction	47
25	Interpolation of ht. in a square	49
26	Standard error	51
27	Azimuth by altitude of sun or stars	53
28	Coords, round circular curve	55
29	Clothoid deflection angles	57
20	Vertical curve heights	50

INTRODUCTION

This booklet shows how programs written originally for the 9100A desk calculator can be turned into sequences of key operations for the model 35 hand calculator.

The versatility of this small machine is such that one can use a "programming" form of the following simple design to turn quite complicated expressions into continuous sequences with the minimum of paper and pencil recording.

For example, the beginning of the first sequence is:

ΛE	Δ	ΔΝ	ЕВ	Δ_{E}	STO
	Δ	ΔN	EB	ΔE	
	ΔΝ	E _B	E _B	EA	ä
	EB	EB	EA	ΔN	0
	EB	ΕA	N _B	Z	xzy
	EB	EA	z Z	Z	2
	ΕA	Z	Z B	EB	xty
				N _B	
	EA	N	E B	EB	3
				EB	
		EA	Z	Z	4
				N	
			ΕA	EA	3
				ΕA	
STORE	⊢	Z	>	×	KEY

It is not suggested that the examples are necessarily the shortest way to do each particular problem but they do illustrate how small an amount of recording is required with such a calculator, — a facility which reduces one of the major sources of error in survey calculations—that of copying numbers down incorrectly. One of the most used sequences for the surveyor will be the conversion of degrees, minutes and seconds to decimal degrees and this can be most conveniently achieved thus:

Deg, ENTER*, Min, ENTER*, Secs, ENTER*, 60, $\stackrel{\triangle}{+}$, $\stackrel{\bullet}{+}$, 60, $\stackrel{\bullet}{+}$, $\stackrel{\bullet}{+}$.

Bearing and distance from coords.

$$Tan \ Brg._{AB} = \frac{E_B - E_A}{N_B - N_A} = \frac{\Delta E}{\Delta N}$$

$$Length_{AB} = \frac{\Lambda E}{sin \ Brg.}$$

EXAMPLE

 E_A 4768.23 N_A 2194.53

Note: Will not accept 90°, 180°, 270° or 360°

i.e. when
$$E_A = E_\rho$$
; or $N_A = N_\rho$

Bearing and distance from coords.

Enter	Key	Record
E _A N _A E _B N _B	ENTER† ENTER† ENTER† xty R↓ xty	
	R	Sign of display $+$ or $- = (a)$
	STO R↓ R↓ RCL x;y ÷	Sign of display $+ \text{ or } - = (b)$
0,180,360*	tan + ENTER+ sin RCL xzy	Brg°
	÷ CL X	L
β° 60	CLX X	β'°
β΄ 60	×	* Enter 0, 180 or 360 according to (a) and (b) above (a) (b) Enter + + 0 - + 180 180 + - 360

Coords. from bearing and distance

 $E_B = E_A + L \cdot \sin Brg$.

 $N_B = N_A + L \cdot cos Brg.$

EXAMPLE

E_A 4768.23 N_A 2194.53

1.	31° 47′ 23″ 1235.47		5419.08 3244.66
β L	148° 12′ 37″ 1235.47	_	5419.08 1144.40
β L	211° 47′ 23′′ 1235.47	_	4117.38 1144.40
	328° 12′ 37″ 1235 47		4117.38 3244.66

Coords. from bearing and distance

Enter	Key	Record
β° β΄ β΄΄ 60	ENTER† ENTER†	
60	÷ + ÷ ENTER1 sin x2y cos	
L	ENTER T	
E _A N _A	CL X ENTER↑ R↓ XZY	
	₽	E _B
	8	N_B

Traverse - anticlockwise, internal angles

$$E_{n} = E_{(n-1)} + L_{(n-1)} \sin Brg_{(n-1)} + n$$

$$N_{n} = N_{(n-1)} + L_{(n-1)} \cos Brg_{(n-1)} + n$$

$$Brg_{(n-1)} + n = Brg_{(n-2)} + n + 180 + u_{n-1} (-360)$$

EXAMPLE

Œ.	70° 46′ 48′′	L,	943.35
a_2	107° 12′ 01′′	L_2	791.50
u_3	213° 24′ 50″	L ₃	847.88
u_4	44° 18′ 49′′	L_4	1345.94
a_5	104° 17′ 32′′	L ₅	1492.61

	E	N
1	10797.20	9495.64
2	11399.24	10009.46
3	12240.68	10113.76
4	11169.28	10928.41
0′	10000.50	10000.05

Traverse – anticlockwise, internal angles

* If display is > 360 enter 360

Traverse - clockwise, internal angles

$$E_n = E_{n-1} + L_{n-1} \sin Brg_{(n-1 \rightarrow n)}$$
 $N_n = N_{n-1} + L_{n-1} \cos Brg_{(n-1 \rightarrow n)}$
 $Brg_{(n-1 \rightarrow n)} = Brg_{(n-2 \rightarrow n-1)} + 180 - \alpha_{n-1} (\pm 360)$

EXAMPLE

Traverse - clockwise, internal angles

Traverse using bearings

$$E_n = E_{n-1} + L_{n-1} \sin Brg_{(n-1)} \rightarrow n$$

 $N_n = N_{n-1} + L_{n-1} \cos Brg_{(n-1)} \rightarrow n$

EXAMPLE

Traverse using bearings

Bowditch adjustment

Corrn. to N(E) = closing error $N(E) \times \frac{\text{Length of traverse leg}}{\text{Length of traverse}}$

EXAMPLE

 $\frac{\partial E}{\partial N} = -0.506$ $\frac{\partial C}{\partial N} = -0.055$ $\frac{\partial C}{\partial N} = -0.055$

		dE	dN
L,	943.35	-0.088	-0.009
L,	791.50	-0.162	-0.018
L,	847.88	-0.241	-0.026
Lį.	1345.94	-0.367	-0.040
L_	1492.61	-0.506	-0.055

Bowditch adjustment (running totals)

Solution of a triangle - using angles

$$E\rho = \frac{N_B - N_A + E_B \cot A + E_A \cot B}{\cot A + \cot B}$$

$$N_{P} = \frac{E_{A} - E_{B} + N_{B}}{\cot A} \frac{\cot A + N_{A} \cot B}{\cot B}$$

EXAMPLE

- A 76° 39′ 43.9″
- B 38° 21′ 19.7″
- E_A 6134.82
- $\hat{N_A}$ 5233.57
- E_B 4239.11
- N_B 3198.47
- Ερ 4479.32
- $N\rho = 6175.22$

Solution of a triangle – using angles

Nρ

$$E\rho = E_A + \Delta E_{A\rho}$$

$$N\rho = N_A + \Delta N_{A\rho}$$

$$\Delta N_{A\beta} = \frac{\Delta E_{AB} - \Delta N_{AB} \tan \beta}{\tan \alpha - \tan \beta}$$

$$\Delta E_{AO} = \Delta N_{AB} \tan \alpha$$

EXAMPLE

α 39° 13′ 43″

β 107° 03′ 55″

E_A 380 907.86

N_A 433 483.44

E_B 381 018.09 N_B 436 590.08

Eρ 382 957.98

No 435 994.58

$$\mathsf{E}\rho = \frac{\mathsf{N}_\mathsf{B} - \mathsf{N}_\mathsf{A} - \mathsf{E}_\mathsf{A}\cot\alpha - \mathsf{E}_\mathsf{B}\cot\beta}{\cot\alpha - \cot\beta}$$

$$N\rho = \frac{E_B - E_A + N_A \tan \alpha - N_B \tan \beta}{\tan \alpha - \tan \beta}$$

EXAMPLE

α 39° 13′ 43″β 107° 03′ 55″

E_A 380 907.86 N_A 433 483.44

E_B 381 018.09 N_B 436 590.08

Tan α 0.816 411 95 Tan β -3.257 573 87

Eρ 382 957.98 Nρ 435 994.58

Enter	Key	Record	Enter	Key	Record
α° α' α'' 60	ENTER 1 ENTER 1 ENTER 1 H			RCL x±y R↓ x±y R↓ x±y	
β° β' β'' 60	tan 1/x STO ENTER† ENTER†	Tan α	Tan α Tan β E_A N_A	STO ENTER1 ENTER1 ENTER1 ENTER1	Ερ
60	tan	Tan β	E _B	X XZY + XZY ENTERT	
E_A	RCL X		N _B	xzy	
N_A	xzy			R↓	
E _B	xzy R+ X xzy R+ + CHS			R↓ R↓ RCL x±y	
N _B 1	CHS			R↓	Νρ
	X			earing Ap earing Bp	

Stadia tacheometry

$$H_B = H_A + h_i \pm dh - M$$

where

$$dh = 50 \times (U - L) \sin 2V$$

D = 100 (U - L) cos² V

EXAMPLE

H_A 47.210 H_i 1.320

,			
V	+ 4° 17′	-6° 38′	-7° 21′
U	3.144	3.055	2.817
L	1.761	2.278	0.731
M	2.452	2.667	1.774
D	137.53	76.66	205.19
H。	56.378	36.948	20.289

Stadia tacheometry

Enter	Key	Record	
H _A h _i	ENTER1 + STO		
→ V° V′ 60	ENTER†		
2	* CHS ENTER* ENTER* ENTER* X SIN X2Y COS		
U L 100	ENTER* ENTER* ENTER* ENTER*		
2 M	RI X GLX T RCL	D	H _A = Reduced level of A h _i = Ht of instrument V = Vertical angle * If – ive, use
_	0	H _B	cHS where shown U, L, M = Upper, Lower and Middle hair readings D = Horizontal distance H _B = Reduced level of B

Cut and fill (all cut or all fill)

Area =
$$\frac{s^2(b - nh)^2}{n(s^2 - n^2)} - \frac{b^2}{n}$$

where h = depth of cut (fill) on the centre line

EXAMPLE

s 8 n 2 h 5

b 20

Area 280

Cut and fill (all cut or all fill)

Cut and fill (part cut, part fill)

$$A_1 = \frac{(b+sh)^2}{2(s-n)}$$

$$A_2 = \frac{(b-sh)^2}{2(s-n)}$$

EXAMPLE

s 8 n 3 h 2 b 20

Area₁ 1.6 Area₂ 129.6

Cut and fill (part cut, part fill)

Which of A_1 and A_2 is cut and which fill depends on whether $\,\rho$ is to the right or left of centre line F

Enter	Key	Record	Enter	Key	Record
s	ENTER1			R↓ CL X	
n 2	X STO X#Y			RCL ÷	A ₂
h	X ENTER†				
b	ENTER↑ ENTER↑ R↓				
	ENTER↑ X R↓				
	ENTER1		ŧ.		
		A_1			

Trigonometrical heights

$$dh = D \cdot tan \frac{(\beta \pm \alpha)}{2} \cdot \left[I + \frac{(h_1 + h_2)}{2R} + \frac{D^2}{12R^2} \dots \right]$$

EXAMPLE

- $\begin{array}{lll} \alpha & -0^{\circ} \ 16' \ 54.3'' \\ \beta & 0^{\circ} \ 02' \ 48.5'' \\ D & 100 \ 120 \ ft. \\ h_{+} & 876.4 \ ft. \\ \Delta h_{-} ive \\ R & 20 \ 900 \ 000 \ ft. \\ \end{array}$
- $\Delta h = 287.07 \text{ ft.}$

Trigonometric heights

Enter	Key	Record	Enter	Key	Record
α° α' α'' 60	ENTERA ENTERA ENTERA ÷		12 R	ENTER † X RCL XZY STO XZY	
β° β΄ β΄΄ 60	STO ENTERT ENTERT ENTERT +			R↓ ÷ RCL ÷ xzy RCL	
2 D	RCL 1+ or - tan STO X RCL		1		± dh
*: h, 2	ENTERT ENTERT ENTERT + EXZY		* = 2	370 000 20 900 000 Fif angles	0 ft. s of
			* = in	ppposite s if same s dhais n enter CHS	sign

Area of a triangle - using 3 sides

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

EXAMPLE

a 143.28 b 207.69 c 138.71

Area 9901.501

Area of a triangle - using 3 sides

Enter	Key	Record	Enter	Key	Record
a b c	ENTERA ENTERA STO XZY			xzy × × ×	
	ENTER† RI + xzy ENTER† RI +			\sqrt{x}	Area
2	RCL XXXY STO XXXY RCL XXXY RCL				

Area from coordinates

$$A = \frac{1}{2} \left[E_1 \left(N_2 - N_n \right) + E_2 \left(N_3 - N_1 \right) + . + E_n \left(N_1 - N_{n-1} \right) \right]$$

EXAMPLE

	Е	N
1	100.29	491.72
2	447.68	823.14
3	774.43	648.49
4	753.48	318.75
5	610.91	72.23
6	229.34	223.35

Area 328 277.19

Area from coordinates

* Repeat entry of coords, for 1st, point at end then continue for area

Cosine formula – for angle

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

EXAMPLE

- a 143.2
- b 184.7 c 122.4
- A 50° 46′ 45″ 3

Cosine formula – for angle

Enter	Key	Record
a	ENTER1	
b	ENTER1 STO	
	×	
	xzy	
С	ENTER*	
	R↓	
	+ RCL	
	x‡y R↓	
2	×	
	xzy R↓	
	÷ arc	
Α°	cos	A°·
60	×	A'·
A′ 60	×	A''·

Cosine formula - for side

 $a^2 - b^2 + c^2 - 2bc \cdot cos A$

EXAMPLE

A 50° 46′ 45′′ 3 b 184.7

c 122.4

a 143.2

Cosine formula – for side

Enter	Key	Record
A° A' A'' 60	ENTER† ENTER†	
60	÷ cos	
b	ENTER1	
С	STO R+ ENTER+ ENTER+ X RCL	
2	STO RI RI RCL RCL X2y	a

Scale factor

$$F = F_0 [1 + Q^2 . P + Q^4 . R]$$
where $F_0 = 0.999601272$
 $P = 0.012289 - 24 . N 10^{-12}$
 $Q = (E - 400000) 10^{-6}$

 $R = 253 \times 10^{-7}$

EXAMPLE

E_A 626 238 N_A 302 646 E_{CM} 400 000 F 1.000 229 71

Scale factor

Enter	Key	Record
E _A E _{CM}	ENTER OF SERVICE OF SE	
N _A 24	STO ENTERA E EX CH S	
0.012289	X	
1 253	EEX CHS	
0.999601272	RCL ENTER1 X X +	F

Refractive index - radio waves

$$(n_r - 1) \, 10^6 = N = \frac{103 \cdot 49}{T} \left(\rho - e \right) + \frac{86 \cdot 26}{T} \left(1 + \frac{5728}{T} \right) e$$
 where
$$e = e' - 0.00066 \, \rho \ \, (t - t')$$

$$\log_{10} e' = 0.660887 + 3.154882 \left(\frac{t'}{100}\right) -$$
$$-1.274528 \left(\frac{t'}{100}\right)^{2} + 0.375114 \left(\frac{t'}{100}\right)^{3}$$

EXAMPLE

t' 2.6°C

t 4.0°C

ρ 646.5 mm Hg

N 273.0

Refractive index - radio waves

Enter	Key	Record	Enter	Key	Record
t′ 100	ENTER® STO ENTER®			ENTER† R↓ — x≠y	
	ENTER1 ENTER1 X ENTER1		273	CL X RCL + STO	
0.375114	R↓ X 4 X		103.49	+×××××××××××××××××××××××××××××××××××××	
3.154882	x2y + x2y		86.26 5748	RCL FCL	
1.274528			1		
0.66088 0.434294	4 ÷ ex ENTER↑	i	, ,	X H	N
100 t	RCL X STO XZY				
ρ	ENTER↑				
0.00066			ļ		
	_		t = ρ =	Wet bull Dry bull mm Hg (n-1)10	o ° C

Refractive index - light waves

$$(n_l\!-\!1) \; \doteq \frac{(n_g\!-\!1)}{(1+\alpha t)} \cdot \frac{\rho}{760} - \frac{55 \, e}{(1+\alpha t) \; 10^9}$$

a = 0.00367

n_q = 1.000 3045

e" - as for No. 19

EXAMPLE

- $t' = 2.6 \,^{\circ} \, C$
- t 4.0° C ρ 646.5 mm Hg n 1.000 2550

Refractive index – light waves

Enter	Key	Record	Enter	Key	Record
t' 100	ENTER† STO ENTER† ENTER†		55	E EX CH S	
	ENTER† ENTER† R↓		0.0036 1	RCL	
0.375114	4 X XZY		760		
3.154882	2 X #			RCL ÷	
1.274528	xzy 3 X		3045	EEX	
0.66088 ⁻ 0.43429	7 6 4 8			7 X XZY	
	ex ENTER†		1		n
100 t	X STO				
	x≠y □				
ρ	ENTER↑ R↓				
0.0006	8 X				
			t' =	,	

Reduction of EDM to spheroid

$$s = D - \frac{D^3}{24R^2} \cdot K - \frac{dh^2}{2D} - \frac{dh^4x}{8D^3}$$
$$- \frac{D \cdot dh}{2R} + \frac{s'}{24R^2}$$

where K = -44 for radio waves = -23 for light waves

EXAMPLE

 $\begin{array}{lll} D & 2582.063 \\ h_1 & 1554.8 \\ h_2 & 931.7 \\ Radio \end{array}$

s 2505.266

D = observed distance corrected for refractive index

Reduction of EDM to spheroid

Enter	Key	Record	Enter	Key	Record
D	ENTER†			ENTER↑	
	RCL			RCL	
ojpe 386	7 or 1 (5 X	ght		RCL	
1000	4 or 1 5	,		RCL ÷	
637000	O ENTER↑		8	RCL	
	R↓ X ÷			RCL RCL RCL RCL RCL RCL RCL RCL RCL RCL	
	RCL XZY		2	xzy	
	STO ENTER1	1		+ xey	
h ₁ h ₂	ENTER1			CL X	
	R↓ † RCL			xty STO	
2	RCL X ÷ x≠y			ENTER*	
	ENTER•	3		X	
	RCL xzy		24	x2y ENTER↑	
	STO				
h ₁	- ENTER	t)		RCL +	S
	X X	ש		•	S

Coefficient of refraction

$$K = \frac{1}{2} \left(1 - \frac{R \cdot \sin 1'' \left(\beta \pm \underline{a} \right)}{D} \right)$$

EXAMPLE

- $a = -0^{\circ} 11' 17.8''$
- $\beta = -0^{\circ} 08' 51.3''$
- D 43 900.34

$$K = 0.0745$$

Coefficient of refraction

Enter	Key	Record	Enter	Key	Record
637	CLR E EX		D	÷ RCL X	
48.5	ENTER 1		1	RCL X X2y	
	CH S 7 X		2	:	K
(I,°	STO ENTER				
α' α''	ENTER↑ ENTER↑				
60					
60	8 8 8				
β° β΄	ENTER†				
60					
β'' 3600	ENTER1				
3600	* 				

* If angles are of opposite signs, enter CHS Vertical angles corrected for instrument and signal

Eccentric stn. correction

$$c'' = \frac{L_{op}}{L_{on}} \cdot \frac{\sin \beta}{\sin 1''}$$

EXAMPLE

$$\delta_2'' = 617'' \\ \delta_2'' = 389''$$

Eccentric stn. correction

 $\begin{array}{c} L_{op} = \text{Satellite distance} \\ \beta = \text{Bearings of rays} \\ \text{reduced to OP as} \\ \text{R.O.} \end{array}$

(t-T) correction – approx.

$$\delta''_{AB} = (2E_A - E_B) (N_1 - N_2) / 6R^2 \sin 1''$$

 $\delta''_{BA} = (2E_B + E_A) (N_2 - N_1) / 6R^2 \sin 1''$

EXAMPLE

 $E_A = 626\,238\,\,(226\,238)$ E_B 651 410 (251 410) N_A 302 646

N_B 313177

δ''_{AB} -6'' 3 3"_{BA} + 6". 5

(t-T) correction - approx.

	(, ,			• •		
Enter	Key	Record	Enter	Key	Record	
E _A	*ENTER1 ENTER1 + STO x2y		48.5	E EX CH S 7 X ENTER1		
E _B *	ENTERA ENTERA + x2y			R↓ ⊕ R↓ ¤₽y		
	RV +			₽	$\delta_{AB}^{\prime\prime}$	
	R↓ CL X			R↓	$\delta_{BA}^{\prime\prime}$	
N _A N _B	RCL + x2y CL X ENTER1 - ENTER1 CHS RI X					
R	CL X ENTER†					
6	X		*E	= 6,370,00 = 20,900,0 = Easting central i E _N = 400 in UK	000 ft. from meridian 0,000 m	

Interpolation of ht. in a square

$$H_{\mathcal{P}} = \frac{y(SE-SW)}{L} + \frac{X}{L} \left[\underbrace{\left(NE-NW\right)y}_{L} - \underbrace{\left(SE-SW\right)y}_{L} \right]$$

EXAMPLE

L 50

y 23.62 X 7.14

Χ

SW 538.50 SE 540.00

NW 537.00

NE 538.50

Hp 538.99

Interpolation of HT in a square

Standard error

s. e of single observation = $\pm \sqrt{\frac{\leq r^2}{n-1}}$

s. e of mean value = $\pm \sqrt{\frac{\leqslant r^2}{n(n-1)}}$

EXAMPLE

$$\overline{x}$$
 11.00
s. e_m ± 0.77
s. e_s ± 2.45

s.
$$e_m \pm 0.77$$

Standard error

Azimuth by altitude of sun or stars

Tan
$$\frac{z}{2} = \left[\sec s \cdot \sin(s - H)\sin(s - \emptyset) \sec(s - \rho) \right]^{\frac{1}{2}}$$

where
$$s = \frac{1}{2} \left(H + \varnothing + \rho \right)$$

EXAMPLE

H 22° 32′ 34″

z 53° 29′ 19′′

o −3° 21′ 56″

H 22.542 777 78

 z^3 53.488 611 11 δ^3 -3.365 555 56

p 93:365 555 56

Az. 131:878 8928 ÷ 131° 52′ 44 01″

Azimuth by altitude of sun or stars

Enter	Key	Record	Enter	Key	Record
H°	ENTER*			RCL	p°.
H′ H″	ENTER†			#10-5	
60			2		
	8080		_	STO	
60				cos	
		H°-		1/x	
ø°	STO ENTER1		ч °.	RO.	
ø'	ENTER 1			sin	
ø"	ENITERA			×	
60				RCL	
			ø°.		
60	F			sin X	
		ø°.		RCL	
			ρ°.		
	STO		•	cos	
δ°	ENTER 1			1/x	
δ'	ENTER*			X	
δ"	ENTER1			√x arc	
60	8 8 8 8			tan	
60	ă		2	×	z°.
		δ °.			
	ENTER1				
	* CHS				
*1 90	xzy				
30					
			* = i	fδis —iv	e, enter
				hese two	
				otherwise	
				corrected	daltı-
			1	ude	

Coords, round a circular curve

$$Y = R(1 - \cos \psi)$$

 $X = R \cdot \sin \psi$

where ψ = angle subtended by

the arc =
$$\frac{\leq s}{R}$$

EXAMPLE

R 286.4789

		Y	Х
S.	10	0.174	9.998
\mathbf{s}_2	25	1.090	24.968
s_3	40	2.788	39.870
		1	1
		1	1
			4
	1		

Coords, round a circular curve

Y = "Easting" X = "Northing" s = chord lengths

Clothoid deflection angles

$$\tan \theta = \frac{I^2}{6RL} + \frac{I^6}{840(RL)^3} + \dots$$

EXAMPLE

Clothoid deflection angles

Enter	Key	Record	Enter	Key	Record
R L	ENTER 1 ENTER 1 ENTER 1 X 2y ENTER 1 R 1			R↓ R↓ CL x RCL ÷ arc	$ heta^{\circ}$
840 6	X STO R4 R4		3600	X GL X	θ',
ΣIn	ENTERT ENTERT ENTERT ENTERT ENTERT ENTERT ENTERT ENTERT ENTERT ENTERT ENTERT ENTERT			Radius at tion with d arc Running to chord leng	circular otal of

Vertical curve heights

$$h_x = b - g_1 x - \frac{(g_2 - g_1)x^2}{2L}$$

EXAMPLE

Vertical curve heights

g₁, g₂ = Percentage grades
 L = Total length of curve
 x = Distance along curve
 b = Level at start of curve

a reputation for craftsmanship and service

Hewlett-Packard Ltd., 224 Bath Road, Slough, St.1 4 DS, Bucks
Hewlett-Packard Benelux S.A./N.V.
Avenue du Col-Vert, 1, Groenkraaglaan, 1170 Brussels
Hewlett-Packard (Schweiz) AG, 9, chemin Louis-Pictet
1214 Vorige: Gen

Hewlett-Packard Ges.m.b.H., Handelskai 52/3, A-1205 Vienna Hewlett-Packard

Co-Ordination Office for Mediterranean and Middle East Operations
Piazza Marconi, 25, I-00144 Rome-Eur, Italy