NTUEE DCLAB

LAB 3: 數位錄音機

Graduate Institute of Electronics Engineering National Taiwan University

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

Introduction

- 數位錄音機
 - 運用麥克風與電腦喇叭連接FPGA 板的Audio CODEC 模組(內含ADC與DAC)
 - 對音訊資料進行訊號處理
 - 對記憶體模組進行存取

Lab Requirements

- 需具備下列功能
 - 可錄音、播放、暫停、停止
 - 取樣值為16-bit signed,可錄製時間達32秒
 - 需支援快速播放(2, 3, 4, 5, 6, 7, 8 倍速)以及慢速播放(1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8 倍速)
 - 慢速播放時要包含零次內插與一次內插兩種模式
- Bonus (demo時與report中皆應清楚詳細說明)
 - 使用其它模組顯示錄音機運作狀態
 - 使用SDRAM增加可錄製時間
 - 以訊號產生器和示波器展示不同內插模式下的波形
 - 其他訊號處理功能等

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

Audio Signal & Connectors

- An audio signal is representation of sound
 - Usually as an electrical voltage
- Connection on devices
 - Line in, line out and mic in

- Phone connectors
 - Cylindrical in shape
 - With 2~4 contacts

Audio CODEC

WM8731

- IP for audio transmission
- 32kHz sampling rate
- 16-bit audio data input

Usage

- Initialize by setting registers via I²C interface
- After successful initialization, receive or transmit audio data via I²S interface

Initialization with I²C

- I²C (Inter-Integrated Circuit) protocol
 - Referred to as "I-squared-C"
- Serial Data Line (SDA)
 - Data being send
 - 1 bit at a time
- Serial Clock (SCL)
 - Control whether data is valid
 - 0 for data changing, 1 for data ready

I²C Protocol

- **S:** initiate data transfer
 - SDA pulls to 0 while SCL stays at 1
- Blue: SDA sets transfer bit when SCL is 0
- Green: data is sent when SCL is 1
- P: end of transfer
 - SDA pulls to 1 while SCL stays at 1

Acknowledge

- For every 8 bits data sent
 - Set SDA to high impedance (1 cycle should be enough)
 - Allow receiver to return acknowledgement bit (0)

```
module inout_port(oe, clk, SDA);
input oe; // output enable
input clk;
inout SDA;
logic a; // output data
logic b; // input data
assign SDA = oe? a: 1'bz;
always @(posedge clk) begin
    b <= SDA;
end
endmodule
```

Initialization Setting

Reset	0011_0100_000_1111_0_0000_0000
Analogue Audio Path Control	0011_0100_000_0100_0_0001_0101
Digital Audio Path Control	0011_0100_000_0101_0_0000_0000
Power Down Control	0011_0100_000_0110_0_0000
Digital Audio Interface Format	0011_0100_000_0111_0_0100_0010
Sampling Control	0011_0100_000_1000_0_0001_1001
Active Control	0011_0100_000_1001_0_0000_0001

WM8731 Audio Operations

Programmed to have 16-bit data (n = 16)

Digital Audio Interface – Record

Digital Audio Interface – Play

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

NTU / DCS Lab

15

Memory Devices

- 本實驗主要會使用到的為SRAM
 - 2MB organized as 1024K words by 16 bits
 - 以WM8731取樣頻率32kHz計算,單聲道可存32秒音訊
- 需要操作的訊號
 - SRAM_ADDR[19:0]決定要讀或要寫的位址
 - SRAM_DQ[15:0]為輸入輸出雙向皆可操作,寫值時直接 用,讀值時要設成1'bz

```
assign io_SRAM_DQ = (state_r == S_RECD) ? data_record : 16'dz; // sram_dq as output
assign data_play = (state_r != S_RECD) ? io_SRAM_DQ : 16'd0; // sram_dq as input
```

- SRAM WE N設定目前操作模式,O為寫,1為讀

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

System Architecture

Work with WM8731

- I²C Module
 - 初始化WM8731
 - 使用100kHz clock運作
- I²S Modules
 - 接收與傳輸音訊,皆只需要處理其中一個聲道即可
 - 注意
 - 資料傳送前要先等一個cycle
 - 資料傳完後(16 cycles)後面還會有若干cycle才會切換LRC

Digital Signal Processing (DSP)

• 以signed訊號進行運算

```
logic signed [7:0] a, b, c;
c = $signed(a) + $signed(b);
```

- 快速播放
 - Down sampling
 - 以不同取樣間格達到不同倍數加速
- 慢速播放
 - Up sampling
 - 零次內插(piecewise-constant interpolation)
 - 內插資料與前一資料點相同
 - 一次內插(linear interpolation)
 - 內插點為前後點線性組合

Clock

- 用Qsys合成PLL(請參考lab2做法)
 - 輸入是原本的50MHz
 - 輸出一個是給I²C用的100kHz,另一個是給WM8731用的12MHz
 - 請不要自己用counter寫除頻電路
- 當I²C初始化完成後,將12MHz的clock訊號送給AUD_XCLK, WM8731就會生成BCLK以及兩個LRCLK
- I²S在收或傳資料時會需要用到BCLK控制,其他DSP跟控制用FSM從BCLK、12MHz或原本的50MHz則一使用即可

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

Code Template

- Top.sv
 - 包含一些模組分割範例
 - I2cInitializer: 以I2C初始化WM8731
 - AudDSP: 負責快速與慢速播放資料點處理
 - AudPlayer: 以I²S接收音訊資料儲存到SRAM
 - AudRecorder:以I²S將DSP處理後的音訊資料傳出
 - 可以自行改變設計
- 建議事項
 - 設計testbench來單獨測試各個module運作情況
 - 確認無誤後才合併起來

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

Report Regulations

- 內容應包含
 - 使用所需器材與架設方式
 - 使用方式與詳細步驟
 - 系統架構與模組分割設計
 - 實作設計技術細節與巧思
 - 碰過的問題或挑戰與解決方式
- · 一組交一份,以pdf檔繳交
- 命名方式:teamXX_lab3_report.pdf
 - Ex: team01_lab3_report.pdf
- 繳交期限:demo當天午夜
 - 遲交每三天*0.7

Questions?

NTUEE DCLAB 26