Practice for Slope Fields

Why?

Exercise 1 Sketch slope field for $y' = e^{x-y}$. How do the solutions behave as x grows? Can you guess a particular solution by looking at the slope field?

Exercise 2 Sketch the slope field of $y' = y^3$. Can you visually find the solution that satisfies y(0) = 0?

Exercise 3 Sketch slope field for $y' = x^2$.

Exercise 4 Sketch slope field for $y' = y^2$.

Exercise 5 For each of the following differential equations, sketch out a slope field on -3 < x < 3 and -3 < y < 3 and determine the overall behavior of the solutions to the equation as $t \to \infty$. If this fact depends on the value of the solution at t = 0, explain how it changes.

a)
$$\frac{dy}{dx} = 3 - 2y$$

b)
$$\frac{dy}{dx} = 1 + y$$

$$c) \frac{dy}{dx} = y - 1$$

$$d) \frac{dy}{dx} = -2 - y$$

Exercise 6 Which of the following slope fields corresponds to the differential equation $\frac{dy}{dt} = t(y-1)$. Explain your reasoning.

Exercise 7 Which of the following slope fields corresponds to the differential equation $\frac{dy}{dt} = (2-t)(y^2-9)$. Explain your reasoning.

Learning outcomes:

Exercise 8 Match equations y' = 1 - x, y' = x - 2y, y' = x(1 - y) to slope fields. Justify.

Exercise 9 Match equations $y' = \sin x$, $y' = \cos y$, $y' = y \cos(x)$ to slope fields. Justify.

Exercise 10 Match equations y' = y(y-2), y' = y-1, y' = y(2-y) to slope fields. Justify.

Exercise 11 Match equations $y' = t(y^2 + 1)$, $y' = t(y^2 - 1)$, $y' = t^2(y^2 - 1)$ to slope fields. Justify.

Exercise 12 The slope field for the differential equation y' = (3 - y)(y + 2) is below. If we find the solution to this differential equation with initial condition, y(0) = 1, what will happen to the solution as $t \to \infty$? Use the slope field and your knowledge of the equation to determine the long-time behavior of this solution.

Exercise 13 The slope field for the differential equation y' = (t-2)(y+4)(y-3) is below. If we find the solution to this differential equation with initial condition, y(0) = 1, what will happen to the solution as $t \to \infty$? Use the slope field and your knowledge of the equation to determine the long-time behavior of this solution.

Exercise 14 The slope field for the differential equation y' = (y+1)(y+4) is below. If we find the solution to this differential equation with initial condition, y(0) = 1, what will happen to the solution as $t \to \infty$? Use the slope field and your knowledge of the equation to determine the long-time behavior of this solution.

Figure 1: Exercise

Figure 2: Exercise

Figure 3: Exercise

Exercise 15 Take y' = f(x, y), y(0) = 0, where f(x, y) > 1 for all x and y. If the solution exists for all x, can you say what happens to y(x) as x goes to positive infinity? Explain.

Exercise 16 Suppose y' = f(x, y). What will the slope field look like, explain and sketch an example, if you know the following about f(x, y):

a) f does not depend on y.

b) f does not depend on x.

c) f(t,t) = 0 for any number t.

d) f(x,0) = 0 and f(x,1) = 1 for all x.

Exercise 17 Describe what each of the following facts about the function f(x,y) tells you about the slope field for the differential equation y' = f(x,y).

- a) f(2,y) = 0 for all y
- b) f(x,-x) = 0 for all x
- c) f(x,x) = 1 for all x
- d) f(x,-1) = 0 for all x