# Projekt zespołowy

# Algorytm wykrywania anomalii w danych gromadzonych przez systemy IoT

| Data: 21.04.2022 | Dzień: czwartek     |            |
|------------------|---------------------|------------|
| Godzina: 15:15   | Kod grupy: Y00-51a  |            |
| L.p.             | Imię i nazwisko     | Nr indeksu |
| 1.               | Wojciech Bachta     | 000000     |
| 2.               | Szymon Chorała      | 000000     |
| 3.               | Jakub Czerniak      | 254013     |
| 4.               | Krzysztof Jodłowiec | 000000     |
| 5.               | Filip Zaraziński    | 000000     |

## 1 Wstęp

Celem projektu jest stworzenie aplikacji wykrywającej anomalie w danych gromadzonych przez IoT. Danymi będą przykładowo pomiary przepływu lub zużycia pewnych substancji, przy czym usługa nie powinna kocentrować się na rodzaju monitorowanej wartości, a na odchyłach od schematu.

Przykładowymi anomaliami moga być:

- Czujnik offline czujnik przestaje wysyłać raporty na okres znacznie dłuższy niż miało to miejsce w danych historycznych
- Wyciek substancji znaczne zwiększenie się zużycia monitorowanej substancji w porównaniu do danych historycznych z podobnych okresów
- Zatrzymanie użycia substancji zużycie substancji zostało całkowicie lub w dużej mierze wstrzymane mimo, że historycznie występowało

Nauka algorytmy będzie odbywać się w technice bez nadzoru, dane nie będą oznakowane jako anomalie, ani jako poprwane, algorytm ma odrazu rozpocząć działanie na zgromadzonych danych i na bieżąco poprawiać swoją ocene.

# 2 Etapy projektu

#### 2.1 Przygotowanie danych

Pierwszym etapem projektu jest odpowiednie przygotowanie danych, aby można na nich wykonywać dalsze operacje. Dane trzeba podzielić na osobne liczniki używając identyfikatorów, sprawdzić pod względem poprawności typu i zmodyfikować format daty i godziny, aby był odpowiedni do wykonywania na nim obliczeń.

### 2.2 Dobór algorytmu

Najważniejszy etap projektu, w którym trzeba dobrać algorytm odpowiedni do potrzeb aplikacji.

Algorytm ten powinien:

- obsługiwać sezonowość danych, zmiany zużycia monitorowanych substancji w rożnych porach dnia lub roku.
- wyliczać wartość oczekiwaną w czasie bliskim następnego pomiaru
- wyliczać granice, w których odchył od wartości oczekiwanej nie jest anomalią
- oznaczać punkty uznane za anomalie oraz też znakować je ze względu na rodzaj, przykładowo punkotwe lub trwające w czasie, lub wage - jak bardzo przekroczyły dopuszczalne granice
- sprawdzać czy czujnik jest online, czy raporty spływają w regularnych odstępach czasu

#### 2.3 Aplikacja końcowa

UI aplikacji końcowej powinno zawierać:

- rysowany w czasie rzeczywistym wykres zawierający: wartość rzeczywistą, oczekiwaną, dopszczalne granice, zaznaczone puntky anomalii
- pole tekstowe, w którym wypisywane będą informacje o anomaliach, które wystąpiły
- wybór szybkości symulacji względem czasu rzeczywistego



Rysunek 1: Przykładowa wizualizacja wyglądu wykresu waplikacji.