Inteligentna doniczka

January 15, 2025

1 Założenia projektu

Inteligentna doniczka oparta na module ESP32 to urządzenie zaprojektowane z myślą o ułatwieniu codziennej pielęgnacji roślin. Wykorzystując nowoczesne technologie, automatyzuje kluczowe procesy, które wpływają na prawidłowy rozwój roślin, eliminując konieczność ciągłego monitorowania przez użytkownika.

Urządzenie monitoruje takie parametry jak:

- wilgotność gleby pozwala na ocenę, czy roślina wymaga podlewania, dzięki czemu można uniknąć zarówno przesuszenia, jak i przelania rośliny,
- wilgotność powietrza umożliwia śledzenie poziomu nawilżenia otoczenia,
- temperatura powietrza pozwala na kontrolę warunków termicznych otoczenia, co jest kluczowe dla roślin wrażliwych na zmiany temperatury,
- nasłonecznienie mierzy intensywność światła docierającego do rośliny, pomagając w ocenie, czy roślina ma odpowiednie warunki świetlne do procesu fotosyntezy.

Dodatkowo, doniczka wykorzystuje technologie komunikacyjne, które umożliwiają łatwą konfigurację, monitorowanie i zarządzanie urządzeniem:

 Bluetooth low energy (BLE) - umożliwia szybkie i wygodne połączenie urządzenia z aplikacją mobilną lub komputerem w celu inicjalnej konfiguracji oraz edytowania ustawień urządzenia, takich jak graniczne wartości parametrów czy częstotliwość wysyłania danych, • MQTT - wykorzystywane do przesyłania danych z doniczki na serwer, a także do odbierania z aplikacji zleceń takich jak: prośba o podlanie rośliny, ustawienie granicznych wartości parametrów (np. minimalnej wilgotności gleby) lub zmiana częstotliwości wysyłania danych.
Dzięki MQTT możliwe jest również monitorowanie stanu rośliny w czasie rzeczywistym.

2 Czujniki i elementy wykonawcze

W projekcie wykorzystano następujące czujniki oraz elementy wykonawcze, które umożliwiają monitorowanie oraz zarządzanie warunkami panującymi w doniczee:

• Czujnik wilgotności gleby (Capacitive Soil Moisture Sensor V1.2):

- Używany do pomiaru poziomu wilgotności gleby.
- Wynik pomiaru przetwarzany jest na wartość procentową, która określa, czy gleba wymaga podlewania.
- Czujnik jest podłączony do mikrokontrolera za pomocą wejścia analogowego.

• Czujnik temperatury i wilgotności powietrza (BME280):

- Umożliwia pomiar temperatury powietrza oraz względnej wilgotności.
- Czujnik komunikuje się z mikrokontrolerem za pomocą interfejsu I2C.
- Dane są przesyłane do serwera MQTT i mogą być wykorzystywane do monitorowania otoczenia rośliny.

• Czujnik światła (LM393 LDR Sensor):

- Umożliwia pomiar poziomu światła docierającego do rośliny.
- Czujnik wykorzystuje zarówno wejście analogowe, jak i cyfrowe:
 - * Wejście analogowe: odczytuje dokładny poziom światła jako wartość surową, która jest następnie skalowana do procentowego poziomu oświetlenia (0% - pełne światło dzienne, 100% - całkowita ciemność).
 - * Wejście cyfrowe: umożliwia szybkie wykrycie podstawowych warunków oświetlenia (np. jasno/ciemno), co pozwala na uproszczoną detekcję bez przetwarzania analogowego sygnału.

 Kombinacja obu typów wejść pozwala na dokładny pomiar oraz szybkie decyzje w oparciu o proste dane.

• Czujnik poziomu wody (Iduino SE045):

- Służy do monitorowania poziomu wody w zbiorniku.
- Zapewnia informację o konieczności uzupełnienia wody w celu dalszego podlewania rośliny.
- Czujnik jest podłączony do mikrokontrolera za pomocą wejścia analogowego.

• Pompa wodna 120l/h:

- Element wykonawczy odpowiedzialny za podlewanie rośliny.
- Sterowanie odbywa się za pomocą przekaźnika podłączonego do wyjścia cyfrowego mikrokontrolera.
- Włączenie przekaźnika powoduje uruchomienie pompy i podlanie rośliny.

• Przekaźnik (SRD-05VDC-SL-C):

- Wykorzystywany do włączania i wyłączania pompy wody.
- Przekaźnik sterowany jest cyfrowo i izoluje mikrokontroler od obwodu pompy, zapewniając bezpieczeństwo działania.

• Powerbank 10000mAh:

- Służy do izolowania zasilania dla mikrokontrolera (ESP) oraz pompki wodnej, co minimalizuje zakłócenia i zapewnia stabilną pracę urządzeń.
- Zasila pompkę wodną przez przekaźnik, co pozwala na oddzielenie obwodów o różnych wymaganiach energetycznych, zwiększając bezpieczeństwo oraz niezawodność systemu.

Wszystkie komponenty są zarządzane przez oprogramowanie mikrokontrolera, które cyklicznie odczytuje dane z czujników, analizuje je oraz podejmuje odpowiednie działania, takie jak uruchomienie pompy wody lub wysłanie danych na serwer MQTT.

3 Blutooth low energy

W projekcie, Bluetooth Low Energy (BLE) jest wykorzystywane do wygodnej i intuicyjnej konfiguracji urządzenia. Dzięki BLE użytkownicy mogą łatwo ustawić dane, takie jak sieć Wi-Fi, hasło do Wi-Fi, dane brokera MQTT oraz użytkownika i hasło do niego, za pomocą aplikacji mobilnej lub komputerowej. Proces konfiguracji jest prosty i przebiega w kilku krokach:

- 1. Przejście w tryb konfiguracji (BLE Advertising):
 - aby rozpocząć proces konfiguracji, użytkownik musi wcisnąć przycisk "boot" na urządzeniu,
 - po naciśnięciu przycisku urządzenie przechodzi w tryb konfiguracji
 i zaczyna reklamować połączenie BLE. Urządzenie staje się widoczne
 dla aplikacji mobilnej lub komputerowej, umożliwiając użytkownikowi połączenie z urządzeniem.

2. Połączenie z urządzeniem:

- użytkownik otwiera aplikację, która jest w stanie wykryć urządzenie w trybie konfiguracji,
- w aplikacji wyświetlana jest lista dostępnych urządzeń BLE, w tym nasza doniczka. Użytkownik wybiera odpowiednie urządzenie z listy i nawiązuje połączenie.

3. Konfiguracja parametrów urządzenia:

- po nawiązaniu połączenia użytkownik uzyskuje dostęp do interfejsu konfiguracji, w którym może ustawić kluczowe parametry urządzenia,
- użytkownik wprowadza dane dotyczące sieci Wi-Fi, takie jak nazwa sieci (SSID) oraz hasło, które umożliwiają połączenie urządzenia z siecią bezprzewodową,
- użytkownik wprowadza dane dotyczące brokera MQTT, takie jak adres brokera, nazwa użytkownika oraz hasło, które pozwolą urządzeniu na przesyłanie danych do odpowiedniego serwera,
- użytkownik może edytować te ustawienia w dowolnym momencie, co pozwala na łatwą aktualizację parametrów zgodnie z bieżącymi potrzebami.

4. Zatwierdzenie ustawień:

- po dokonaniu zmian w ustawieniach użytkownik zatwierdza je, klikając ponownie przycisk "boot" na urządzeniu,
- przycisk ten działa jako mechanizm zapisu, dzięki czemu nowe dane (SSID, hasło do Wi-Fi, dane brokera MQTT) zostają zapisane w pamięci urządzenia w pamięci NVS (Non-Volatile Storage),
- pamięć NVS zapewnia, że ustawienia są przechowywane nawet po wyłączeniu urządzenia, co gwarantuje ich trwałość,
- po zapisaniu zmian urządzenie przechodzi z powrotem do trybu normalnego i jest gotowe do pracy z nowymi ustawieniami.

5. Zakończenie konfiguracji:

- po zapisaniu nowych ustawień urządzenie przestaje reklamować połączenie BLE i następuje rozłączenie z urządzeniem,
- urządzenie automatycznie łączy się z wybraną siecią Wi-Fi oraz brokerem MQTT, gotowe do rozpoczęcia przesyłania danych oraz odbierania zleceń,
- proces konfiguracji jest zakończony, a urządzenie działa z nowymi ustawieniami w pełnej gotowości.

4 Łączność MQTT

W projekcie zastosowano protokół MQTT (Message Queuing Telemetry Transport) jako kluczowy mechanizm komunikacji pomiędzy urządzeniem a serwerem. MQTT umożliwia zarówno przesyłanie danych z urządzenia, jak i odbieranie poleceń sterujących.

Główne zastosowanie w projekcie:

1. Wysyłanie danych z sensorów na serwer:

- Urządzenie cyklicznie zbiera dane z czujników, takich jak wilgotność gleby, wilgotność powietrza, temperatura otoczenia i nasłonecznienie.
- Dane te są przesyłane na serwer z ustaloną częstotliwością.
- Użytkownik może dynamicznie zmieniać częstotliwość przesyłania danych poprzez wysłanie wiadomości MQTT z odpowiednimi ustawieniami.

2. Obsługa poleceń sterujących (np. podlewanie):

- Użytkownik może wysłać żądanie podlewania za pomocą aplikacji, które zostanie przesłane do urządzenia jako wiadomość MQTT.
- Doniczka realizuje proces podlewania po otrzymaniu żądania.
- W trybie automatycznym urządzenie samodzielnie uruchamia podlewanie, jeśli wilgotność gleby spadnie poniżej ustalonego progu.

3. Zdalna konfiguracja parametrów działania:

Za pomocą protokołu MQTT użytkownik może dynamicznie zarządzać ustawieniami urządzenia jak częstotliwość wysyłania danych z czujników.

Protokół MQTT wykorzystuje strukturę topics do organizacji przesyłanych wiadomości, co pozwala na efektywną i łatwą w zarządzaniu komunikację pomiędzy urządzeniem a serwerem. W projekcie inteligentnej doniczki opracowano system topics, który umożliwia publikowanie danych z czujników, przesyłanie poleceń oraz konfigurację urządzenia.

4.1 Tematy do publikowania danych z sensorów

Dane z czujników są publikowane w regularnych odstępach czasu na poniższe tematy:

- macUżytkownika/macUrzadzenia/air_humidity wilgotność powietrza,
- macUżytkownika/macUrzadzenia/soil_humidity wilgotność gleby,
- macUżytkownika/macUrzadzenia/temperature temperatura otoczenia,
- macUżytkownika/macUrzadzenia/insolation nasłonecznienie.
- macUżytkownika/macUrzadzenia/insolation_digital pora dnia (0 dzień, 1 noc).

Każdy z tematów jest zorganizowany w sposób, który uwzględnia identyfikatory użytkownika (macUżytkownika) oraz konkretnego urządzenia (macUrzadzenia), co umożliwia zarządzanie wieloma urządzeniami podłączonymi do jednego systemu.

Dane są przesyłane w formacie JSON, zawierającym następujące informacje:

• Wartość pomiaru - zmierzona wartość danego parametru,

- Data i godzina pomiaru timestamp, pozwala na precyzyjne określenie momentu wykonania pomiaru,
- **Jednostka** jednostka miary odpowiednia dla danego parametru, np. procenty dla wilgotności (%), stopnie Celsjusza (°C) dla temperatury.

Przykładowa wiadomość publikowana na temat macUżytkownika/macUrzadzenia/air_humidity może wyglądać następująco:

```
{
    "value": 45.2,
    "timestamp": "1736679460",
    "unit": "%"
}
```

4.2 Tematy do obsługi poleceń

Urządzenie obsługuje również tematy służące do wysyłania poleceń i żądań:

- macUżytkownika/macUrzadzenia/soil_humidity/request żądanie podlewania, które może zostać wysłane:
 - przez użytkownika za pomocą aplikacji,
 - automatycznie przez urządzenie, jeśli wilgotność gleby spadnie poniżej ustalonego progu.
- Wartość przesyłana w wiadomości MQTT specyfikuje czas trwania podlewania w sekundach.

4.3 Tematy do konfiguracji parametrów

Konfiguracja parametrów urządzenia, takich jak częstotliwość wysyłania danych z sensorów, odbywa się za pomocą tematów dedykowanych każdemu typowi danych. Poniżej przedstawiono strukturę tematów używanych do ustawiania częstotliwości:

- mac Użytkownika/mac Urzadzenia/air_humidity/frequency częstotliwość wysyłania danych o wilgotności powietrza,
- macUżytkownika/macUrzadzenia/soil_humidity/frequency częstotliwość wysyłania danych o wilgotności gleby,

- mac Użytkownika/mac Urzadzenia/temperature/frequency częstotliwość wysyłania danych o temperaturze otoczenia,
- mac Użytkownika/mac Urzadzenia/insolation/frequency częstotliwość wysyłania danych o nasłonecznieniu.
- $macUżytkownika/macUrzadzenia/insolation_digital/frequency$ częstotliwość wysyłania danych o porze dnia.

Wartości częstotliwości są definiowane przez użytkownika i przesyłane w treści wiadomości MQTT.

5 Aplikacja serwerowa

5.1 Panel rejestracji

Po podłączeniu urządzenia do BLE, użytkownik otrzymuje dostęp do charakterystyki zawierającej URL prowadzący do strony rejestracji. Na tej stronie można założyć konto, wypełniając pola takie jak **imię**, **nazwisko**, **adres e-mail**, **hasło** oraz **numer telefonu**, na który mają być przesyłane powiadomienia SMS w przypadku przekroczenia wartości ustalonych progów.

Figure 1: Panel rejestracji.

5.2 Panel logowania

Panel logowania umożliwia użytkownikowi wprowadzenie danych logowania, takich jak adres e-mail i hasło. Pola te są obowiązkowe do wypełnienia, a po ich poprawnym uzupełnieniu użytkownik może uzyskać dostęp do swojego konta.

Figure 2: Panel logowania.

5.3 Panel urządzeń

Widok aplikacji został zaprojektowany tak, aby umożliwić intuicyjne zarządzanie urządzeniami użytkownika. Poszczególne elementy interfejsu są uporządkowane w logicznej kolejności:

1. Lista urządzeń użytkownika

W centralnej części aplikacji znajduje się lista urządzeń przypisanych do użytkownika.

2. Dane urządzenia

Po wybraniu urządzenia wyświetlane są szczegóły, takie jak:

- nazwa urządzenia,
- unikalny identyfikator (adres mac).

Figure 3: Panel urządzenia

Aplikacja, zależności od pory dnia przesyłanej z urządzenia, wyświetla ikonę reprezentujący aktualną porę (słońce - dzień, księżyc - noc).

3. Funkcjonalność do podlewania

Użytkownik ma możliwość uruchamiania funkcji podlewania bezpośrednio z poziomu aplikacji. Specyfikowany jest czas (w sekundach) jak długo ma trwać podlewanie.

Figure 4: Funkcja podlewania.

4. Lista pomiarów

Dane pomiarowe prezentowane są w przejrzystej liście, zawierającej:

- $\bullet\,$ wilgotność powietrza,
- wilgotność gleby,
- \bullet temperaturę,
- nasłonecznienie.

Figure 5: Pomiary.

5. Zmienianie częstotliwości wysyłki danych na serwer

Użytkownik może dostosować częstotliwość, z jaką dane z urządzenia są przesyłane na serwer.

Figure 6: Zmiana częstotliwości wysyłki danych.

6. **Zmiana minimalnych i maksymalnych wartości progów pomiaru** Aplikacja pozwala na edycję minimalnych i maksymalnych progów dla poszczególnych pomiarów, co umożliwia lepsze dopasowanie działania urządzenia

do indywidualnych potrzeb.

Figure 7: Progi pomiarów.

W przypadku, gdy otrzymane dane przekraczają ustalone progi - zbyt wysoki lub zbyt niski, na numer użytkownika wysyłane jest powiadomienie o tym stanie.

Figure 8: Powiadomienie o przekroczeniu progów (wersja Twilio trial).