

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

- Geant4 collaboration and software
- A world-wide software collaboration: (~100 members, 47 institutions) and a software toolkit for building simulations.
 - The kernel: particle tracking in a 3D geometry with electric and magnetic fields.
 - The rest: many physics processes (models), detector response, biasing, scoring, visualization.
 - Modern object-oriented (C++) software architecture and development process.
 - Large user community, with some users developing specialized turnkey applications: e.g. for space, medical, and accelerator physics.

RIUMF

G4Beamline

- A Geant4-based application
- Free and open-source: www.muonsinc.com

- Contains a wide range of beam line components with detailed specification via named element parameters, and flexible specification of fields and field maps.
- User defines the beam, machine components, layout, fields, output options
 via a text file. Input scripting language is similar to MAD and is a good fit to
 most beam physics application needs.

Cyclotron Simulation Model

Magnetic field preparation

- Field data stored as Fourier harmonics tabulated as a function of radius. Original survey data taken at 3" and 1° intervals, together with trim coil contributions.
- Reconstructed on 3D Cartesian grid (0.5") by Fourier series evaluation and first-order expansion off the midplane.
- Due to a limitation in G4Beamline's beam input format, all tests were done using protons instead of H⁻.
- To preserve isochronism it is sufficient to scale the entire field by the ratio of masses m_p/m_{H_-} .

Simulation Model - 2

Dee gap field

- Field region is defined in G4Beamline to be 9" wide (approximate width of the flat-top field region for 6" physical gap)
- Simplification: uniform peak field $\times \cos 2\pi$ f t
- Frequency 23.05508 MHz, period 43.37439 ns, 5th harmonic.
- Peak RF voltage 188 kV max. energy gain 376 keV/turn
- Geant4 adaptively samples the field based on the particle position and time coordinates.
- Energy gain is slightly underestimated (~1%) due to neglect of the fringe field regions.

G4Beamline input

```
G4Beamline: TRIUMF Cyclotron
   Magnetic field from policyinita6.dat, EOs from cycdata581.dat, with RF
   acceleration
physics OGSP_BIC doStochastics=0
beam ascii filename=fort.81 nEvents=$nEvents
trackcuts kineticEnergyMax=502.757831
param worldMaterial=Vacuum
fieldmap TRICYCLO filename=policyinita6-scaleB.blfieldmap current=1
param pi=acos(-1) INCH=25.4
param tau=0.2*216.872
fieldexpr RFGAP Ex=0.188/(9*0.0254) time=cos(2*pi*t/$tau) factorE=1.0
          length=660*$INCH width=9*25.4 height=200 period=$tau
place TRICYCLO rename=TRICYCLO. z=0 rotation=X-90
place RFGAP rename=RFGAP. z=0 rotation=Y-90
zntuple format=asciiExtended z=0 coordinates=global require=x>0
```

```
#BLTrackfile created by GENRAYS

fort.81:  #x y z Px Py Pz t PDGid EvNum TrkId Parent weight

#mm mm mm MeV/c MeV/c MeV/c ns - - - -

1066.86255 0. 0. 1.74445093 0. 96.9777298 -1.2 2212 1 1 0 1
```


Equilibrium orbits and isochronism

- Geant4 tracking of CYCLOPS equilibrium orbits starting at 0° azimuth.
 - Closure of Orbits
 - Isochronism

Differences in the codes

	CYCLOPS & GOBLIN	G4Beamline + Geant4	
Field map	2D polar	3D cartesian	
Mesh spacing	Radial: 3" Azimuthal: 1°	0.5"	
Interpolation	R: 4-point Lagrange θ: none* Z: none (calculated from 2 nd order expansion)	8-point linear from 3D mesh	
Integration	4 th order Runge-Kutta	4 th order Runge-Kutta	
Step size	2° azimuthal intervals*	Adaptive to error requirements	
RF gap	Energy kick at gap center with correction terms (GOBLIN)	Tracking through finite gap with time-dependent electric field	

Stability of orbits

Equilibrium orbits are very stable ...

Equilibrium orbit deviations in mm

Energy (MeV)	Difference from CYCLOPS E.O.	After 1000 turns	After 10000 turns	After 50000 turns
5	0.9688	-0.1068	-0.5011	-1.8025
20	1.0985	-0.0653	-0.2859	-1.1428
100	2.0026	-0.0612	-0.1339	-0.5755
200	2.6716	-0.0171	-0.0572	-0.1997
500	1.9482	0.0060	0.0062	-0.0038

... but horizontal phase space is not well conserved in tracking 5mm from the E.O. for 2000 turns. (Vertical is much better)

0.5" mesh: emittance changes up to ±50%

110 MeV, 0.5" mesh

0.25" mesh: emittance change reduced to ±7%

110 MeV, 0.25" mesh

Tune measurements

Tunes in Geant4 determined by 1000-turn tracking near (5mm) to equilibrium orbits, FFT of R and Z data sampled once per turn.

Accelerated orbits

Acceleration test → 500 MeV

- Launch on 5 & 10 MeV equilibrium orbits
- Initial rf phase of -7° from GOBLIN reference runs
- Small adjustment (10⁻⁵) to rf frequency for comparable phase tracking.
- Tuning of Vrf for comparable energy gain per turn.
- Finite-gap effect: occupies 25°+25° of azimuth at 5 MeV.

Detail at end of acceleration

Phase history

Acceleration vs starting rf phase

Phase scan:

- Launch particles on 10 MeV equilibrium orbit at 1-degree intervals
- Stop after 1320 turns and record final energy.
- Phase sensitivity has the same profile, with optimal phase shifted by 2-3°

ETRIUMF

Conclusions

- Geant4 is not a cyclotron code by design, but it is sufficiently accurate and versatile to produce results that compare well with the CYCLOPS and GOBLIN codes, using the same magnetic field data.
- Isochronism, repeatable equilibrium orbits, tunes, and acceleration have been demonstrated and are in accord with the cyclotron codes.
- Limitations
 - Multiparticle longer-term (~1000 turns) tracking is a problem: further adaptations (field mesh, interpolation, integrator) would be required for better performance and emittance conservation.
- Potential applications
 - Applications should focus on unique Geant4/G4Beamline abilities.
 - Overlapping/superimposed and orientable fields: finite rf gap, electric focusing of gap, extraction elements, etc.
 - Interactions in matter: extraction foils, probes, loss processes (+decays)
 - 3D geometry: automatic and accurate detection of particle losses
 - Interactive visualization: indispensable for checking/adjusting the model.