Nome:	Cognome:	Matricola:
-------	----------	------------

Esercizio 1Si consideri il seguente schema ER relativo ad un torneo di calcio.

Lo studente completi la seguente tavola dei volumi, sapendo che:

- In media, ciascuna squadra partecipa a 5 partite, di cui la metà in casa e la metà in trasferta.
- Ciascuna squadra ha, in media, 20 giocatori.
- A ciascuna partita partecipano, in media, 15 giocatori per squadra.
- La relazione Partecipano è una ridondanza.

Soluzione:

Entità / Relazione	Numero istanze	Motivazione
Squadre	16	Per ipotesi (dato del problema)
Allena	16	Cardinalità (1,1) con l'entità Squadre
Allenatore	16	Cardinalità (1,1) con la relazione Allena
Appartengono	320	320 = 16 x 20 (in media 20 giocatori per squadra)
Giocatori	320	Cardinalità (1,1) con la relazione Appartengono
In casa	40	$40 = 16 \times 5 / 2$ (5 partite a squadra, di cui la metà in casa)
In trasferta	40	$40 = 16 \times 5 / 2$ (5 partite a squadra, di cui la metà in trasferta)
Partite	40	Cardinalità (1,1) con la relazione Trasferta o Cardinalità (1,1) con la relazione In casa
Giocano	1200	1200 = 40 x 15 x 2 (a ciascuna partita partecipano 15 giocatori per ciascuna squadra)
Partecipano	80	80 = 40 x2 (a ciascuna partita partecipano 2 allenatori)

Esercizio 2

Lo studente scriva la definizione di Forma Normale di Boyce-Codd

Soluzione:

Una tabella r si dice in Forma Normale di Boyce-Codd quando, per ogni dipendenza funzionale $X \rightarrow Y$ che vale su di essa, X è superchiave della tabella r.

Esercizio 3

Lo studente consideri la seguente tabella (del tutto indipendente dall'esercizio 1):

Tabella (NomeGiocatore, CognomeGiocatore, DataNascitaGiocatore, NomeSquadra, PresidenteSquadra, CodiceAllenatore, NomeAllenatore, CognomeAllenatore, DataNascitaAllenatore)

Lo studente indichi le dipendenze funzionali non banali che valgono su tale tabella.

Soluzione:

NomeGiocatore, CognomeGiocatore \rightarrow DataNascitaGiocatore, NomeSquadra NomeSquadra \rightarrow PresidenteSquadra, CodiceAllenatore CodiceAllenatore \rightarrow NomeAllenatore, CognomeAllenatore, DataNascitaAllenatore

Lo studente decomponga la tabella in BCNF, , senza perdite e mantenendo tutte le dipendenze funzionali.

Soluzione:

Giocatore (<u>NomeGiocatore</u>, <u>CognomeGiocatore</u>, DataNascitaGiocatore, NomeSquadra) Squadra (<u>NomeSquadra</u>, PresidenteSquadra, CodiceAllenatore) Allenatore (<u>CodiceAllenatore</u>, NomeAllenatore, CognomeAllenatore, DataNascitaAllenatore)

Esercizio 4

Si consideri la seguente basi di dati:

- Citta (CodCitta, Nome, Popolazione, CodStato)
- Citta_attraversate (<u>CodFiume</u>, <u>CodCitta</u>)
- Confini (CodStato_1, CodStato_2)
- Fiumi (CodFiume, Nome, Lunghezza, CodStatoSorgente, Foce, CodStatoFoce)
- Stati_attraversati (<u>CodFiume</u>, <u>CodStato</u>, Km)
- Stati (<u>CodStato</u>, Nome, Popolazione, CodCapitale, Superficie)

Parte A - Lo studente scriva un'espressione in algebra relazionale che produca l'elenco dei fiumi (il loro nome) che hanno origine in Italia e che hanno una lunghezza maggiore di quella dell'Arno. **Soluzione:**

$$\Pi_{\text{Nome}} \begin{pmatrix} \rho_{\text{LA}\leftarrow \text{Lung}} \left(\Pi_{\text{Lung}} \left(\sigma_{\text{Nome}='\text{Arno}'}(\text{Fiumi}) \right) \right) \triangleright \triangleleft_{\text{Lung}>\text{LA}} \\ \Pi_{\text{Nome},\text{Lung}} \begin{pmatrix} \Pi_{\text{CS}} \left(\sigma_{\text{Nome}='\text{Italia'}}(\text{Stati}) \right) \triangleright \triangleleft_{\text{CS}=\text{CSS}} \\ \Pi_{\text{Nome,Lung},\text{CSS}} \left(\text{Fiumi} \right) \end{pmatrix}$$

Parte B - Lo studente scriva un'espressione in algebra relazionale che elenchi i nomi dei fiumi che hanno origine in Germania, ma sfociano in uno stato diverso dalla Germania. **Soluzione:**

$$\Pi_{\textit{Nome}} \begin{pmatrix} \rho_{\textit{CS1}\leftarrow\textit{CS}} \big(\Pi_{\textit{CS}} \big(\sigma_{\textit{Nome}='\textit{Germania'}}(\textit{Stati}) \big) \big) \triangleright \triangleleft_{\textit{CS1}=\textit{CSS}} \\ \Pi_{\textit{CS}} \big(\sigma_{\textit{Nome}\neq'\textit{Germania'}}(\textit{Stati}) \big) \triangleright \triangleleft_{\textit{CS}=\textit{CSF}} \\ \Pi_{\textit{Nome},\textit{CSS},\textit{CSF}} \big(\textit{Fiumi} \big) \end{pmatrix}$$

Parte C - Lo studente esprima la query della Parte B anche nel calcolo relazionale dei domini. **Soluzione:**