Fields and Galois Theory

tuyaux.winak.be/index.php/Fields_and_Galois_Theory

Algebra III: Fields

Richting <u>Wiskunde</u>

Jaar 2BWIS

Examenvragen

2022-2023 juni

- 1. (4pts) Let FF be a field and RR a domain, prove the following:
 - 1. If $F \subset RF \subset R$ and $[R:F] < \infty \rightarrow R[R:F] < \infty \rightarrow R$ is a field.
 - 2. Let $F \subset KF \subset K$ be an extension of fields. For $\alpha \in K\alpha \in K$, let $F[\alpha]F[\alpha]$ be the FFalgebra generated by $\alpha\alpha$. Show that $[F[\alpha]:F] < \infty \leftrightarrow \alpha[F[\alpha]:F] < \infty \leftrightarrow \alpha$ is algebraic over FF.
- 2. (4pts) Let FqFq be a finite field with q=pmq=pm, pp prime, elements.
 - 1. Show that the Frobenius map Fr:Fq→Fq:x→xpFr:Fq→Fq:x→xp is an isomorphism and compute its order.
 - 2. Find an irreducible polynomial $f \in F2[X]f \in F2[X]$ sucht that $F2/(f) \cong F23F2/(f) \cong F23$.
 - 3. Use the previous item to find a generator of the multiplicative group F23F23.
- 3. (7pts) Consider $Q \subset Q(3-\sqrt{2}-\sqrt{2})Q \subset Q(3,2)$.
 - 1. Show that $Q(3-\sqrt{2}-\sqrt{2})Q(3,2)$ is Galois.
 - 2. Compute the Galois group.
 - 3. Use the fundamental theorem of Galois Theory to describe all the intermediate field extensions $Q \subset K \subset Q(3-\sqrt{2}-\sqrt{2})Q \subset K \subset Q(3,2)$. For each KK describe the corresponding subgroup $H \subset GH \subset G$ for which $K = Q(3-\sqrt{2}-\sqrt{2})H \in Q(3,2)H$.
 - 4. $\forall g \in G \forall g \in G$ write down $g(2-\sqrt{+3}-\sqrt{})g(2+3)$. Use this to compute the minimal polynomial of $2-\sqrt{+3}-\sqrt{2}+3$ over QQ. Conclude that $Q(3-\sqrt{,2}-\sqrt{})=Q(3-\sqrt{+2}-\sqrt{})Q(3,2)=Q(3+2)$.
- 4. (3pts) Show that the field extension $Q \subset Q(1+2-\sqrt{-----}\sqrt{})Q \subset Q(1+2)$ is not Galois.
- 5. (2pts) Let KK be an algebraic field extension of FF. Define $m\alpha:K\to K:x\mapsto \alpha\cdot xm\alpha:K\to K:x\mapsto \alpha\cdot x$ for all $\alpha\in K\alpha\in K$. Consider the FF-linear trace map of KK over F:F: $TrK/F:K\to F:\alpha\mapsto Tr(m\alpha)TrK/F:K\to F:\alpha\mapsto Tr(m\alpha)$.
 - 1. Describe the trace map TrC/RTrC/R.
 - 2. Show that if $x \in Fx \in F$, then TrK/F(x) = ([K:F])xTrK/F(x) = ([K:F])x.
 - 3. Let $\alpha \in K\alpha \in K$ be an element with minimal polynomial $f(X)=Xd+ad-1Xd-1+...+a0 \in F[X]f(X)=Xd+ad-1Xd-1+...+a0 \in F[X]$. Show that $TrK/F(\alpha)=ad-1\cdot[K:F]dTrK/F(\alpha)=ad-1\cdot[K:F]d$. You may use the fact that if $F\subset L\subset KF\subset L\subset K$, then $TrK/F=TrL/F\circ TrK/LTrK/F=TrL/F\circ TrK/L$.

Categorieën:

- <u>Wiskunde</u>
- <u>2BWIS</u>