Fall 2015 Notes – Atiyah and McDonald, Munkres, Lucier

Carlos Salinas

September 4, 2015

Contents

C	ontents	1
	Commutative Algebra: Atiyah and McDonald 1.1 Rings and Ideals	2
2	Topology: Munkres	7

1 Commutative Algebra: Atiyah and McDonald

1.1 Rings and Ideals

Rings and ring homomorphisms

A ring A is a set with two binary operations (addition and multiplication) such that

- (1) A is an abelian group with respect to addition (so that A has a zero element, denoted by 0, and every $x \in A$ has an (additive) inverse, -x).
- (2) Multiplication is associative ((xy)z = x(yz)) and distributive over addition ((x(x+z) = xy + xz, (y+z)x = yx + zx)). We shall consider only rigs which are *commutative*:
- (3) xy = yx for all $x, y \in A$, and have an *identity element* (denoted by 1):
- (4) $\exists 1 \in A$ such that x1 = 1x = x for all $x \in A$. The identity element is then unique.

A ring homomorphism is a mapping f of a ring A into a ring B such that

- (i) f(x+y) = f(x) + f(y) (so that f is a homomorphism of abelian groups, and therefore also f(x-y) = f(x) f(y), f(-x) = -f(x), f(0) = 0),
- (ii) f(xy) = f(x)f(y),
- (iii) f(1) = 1.

In other words, f respects addition, multiplication and the identity element.

A subset S of a ring A is a subring of A if S is closed under addition and multiplication and contains the identity element of A. The identity mapping of S into A is then a ring homomorphism. If $f: A \to B$, $g: B \to C$ are ring homomorphisms so is their composition $g \circ f: A \to C$.

Ideals. Quotient rings

An *ideal* \mathfrak{a} of a ring A is a subset of A which is an additive subgroup and is such that $A\mathfrak{a} \subset \mathfrak{a}$ (i.e., $x \in A$ and $y \in \mathfrak{a}$). The quotient group A/\mathfrak{a} inherits a uniquely defined multiplication from A which makes it into a ring, called the *quotient ring* (or residue-class ring) A/\mathfrak{a} . The elements of A/\mathfrak{a} are the cosets of \mathfrak{a} in A, and the mapping $\varphi \colon A \to A/\mathfrak{a}$ which maps each $x \in A$ to its coset $x + \mathfrak{a}$ is a surjective ring homomorphism.

Proposition 1.1.1. There is a 1-to-1 order-preserving correspondence between the ideals \mathfrak{b} of A which contains \mathfrak{a} , and the ideals $\bar{\mathfrak{b}}$ of A/\mathfrak{a} , given by $\mathfrak{b} = \varphi^{-1}(\bar{\mathfrak{b}})$.

If $f: A \to B$ is any ring homomorphism, the *kernel* of $f(=f^{-1}(0))$ is an ideal \mathfrak{a} of A, and the *image* of f(=(f(A))) is a subring C of B; and f induces a ring isomorphism $A/\mathfrak{a} \cong C$.

We shall sometimes use the notation $x \equiv y \pmod{\mathfrak{a}}$; this means that $x - y \in \mathfrak{a}$.

Zero-divisors. Nilpotent elements. Units

A zero-divisor in a ring A is an element x which "divides 0", i.e., for which there exists $y \neq 0$ in A such that xy = 0. A ring with no zero-divisors $\neq 0$ (and in which $1 \neq 0$) is called an *integral domain*. For example, **Z** and $k[x_1, ..., x_n]$ (k a field, x_i indeterminates) are integral domains.

An element $x \in A$ is *nilpotent* if $x^n = 0$ for some n > 0. A nilpotent element is a zero-divisor (unless $A \neq 0$), but not conversely (in general).

A unit in A is an element x which "divides 1", i.e., an element x such that xy = 1 for some $y \in A$. The element y is then uniquely determined by x, and is written x^{-1} . The units in A form a (multiplicative) abelian group.

The multiples ax of an element $x \in A$ from a *principal* ideal, denoted by (x) or Ax. x is a unit $\iff (x) = A$. The zero ideal (0) is usually denoted by (x).

A field is a ring A in which $1 \neq 0$ and every nonzero element is a unit. Every field is an integral domain (but not conversely: **Z** is not a field).

Proposition 1.1.2. Let A be a ring $\neq 0$. Then the following are equivalent:

- (i) A is a field;
- (ii) the only ideals in A are 0 and (1);
- (iii) every homomorphism of A into a nonzero ring B is injective.
- *Proof.* (i) \Longrightarrow (ii). Let $\mathfrak{a} \neq 0$ be an ideal in A. Then \mathfrak{a} contains a nonzero element x, x is a unit, hence $\mathfrak{a} \supset (x) = A$, hence $\mathfrak{a} = A$.
- (ii) \implies (iii). Let $\varphi \colon A \to B$ be a ring homomorphism. Then $\ker \varphi$ is an ideal \neq (1) in A, hence $\ker \varphi = 0$, hence φ is injective.
- (iii) \implies (i). Let x be an element of A which is not a unit. Then $(x) \neq (1)$, hence B = A/(x) is not the zero ring. Let $\varphi \colon A \to B$ be the natural homomorphism of A onto B, with kernel (x). By hypothesis, φ is injective, hence x = 0.

Prime ideals and maximal ideals

An ideal \mathfrak{p} in A is prime if $\mathfrak{p} \neq (1)$ and if $xy \in \mathfrak{p} \implies x \in \mathfrak{p}$ or $y \in \mathfrak{p}$.

An ideal \mathfrak{m} in A is maximal if $\mathfrak{m} \neq (1)$ and if there is no ideal \mathfrak{a} such that $\mathfrak{a} \subsetneq \mathfrak{a} \subsetneq A$. Equivalently

 \mathfrak{p} is prime $\iff A/\mathfrak{p}$ is an integral domain;

 \mathfrak{m} is maximal $\iff A/\mathfrak{m}$ is a field.

Hence a maximal ideal is prime (but not conversely, in general). The zero ideal is prime $\iff A$ is an integral domain.

If $f: A \to B$ is a ring homomorphism and \mathfrak{q} is a prime ideal in B, then $f^{-1}(\mathfrak{q})$ is a prime ideal in A, for $A/f^{-1}(\mathfrak{q})$ is isomorphic to a subring of B/\mathfrak{q} and hence has a no zero-divisor $\neq 0$. But if \mathfrak{n} is a maximal ideal of B is not necessarily true that $f^{-1}(\mathfrak{n})$ is maximal in A; all we can say for sure is that it is prime. (Example: $A = \mathbf{Z}$, $B = \mathbf{Q}$, $\mathfrak{n} = 0$.)

Theorem 1.1.3. Every ring $A \neq 0$ has at least one maximal ideal.

Proof. This is a standard application of Zorn's lemma. Let Σ be the set of all ideals \neq (1) in A. Order Σ by inclusion. Σ is not empty, since $0 \in \Sigma$. To apply Zorn's lemma we must show that every chain in Σ has an upper bound in Σ ; let then (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α, β we have either $\mathfrak{a}_{\alpha} \subset \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\beta} \subset \mathfrak{a}_{\alpha}$. Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Then \mathfrak{a} is an ideal and $1 \notin \mathfrak{a}$. Hence $\mathfrak{a} \in \Sigma$, and \mathfrak{a} is an upper bound of the chain. Hence by Zorn's lemma Σ has a maximal element.

Corollary 1.1.4. If $\mathfrak{a} \neq (1)$ is an ideal of A, there exists a maximal ideal of A containing \mathfrak{a} .

Proof. Apply (1.3) to A/\mathfrak{a} bearing in mind (1.1). Alternatively, modify the proof of (1.3).

Corollary 1.1.5. Every nonunit of of A is contained in a maximal ideal.

- **Remarks**. (1) If A is Noetherian we can avoid the use f Zorn's lemma: the set of all ideals \neq (1) has a maximal element.
- (2) There exists rings with exactly one maximal ideal, for example fields. A ring A with exactly one maximal ideal \mathfrak{m} is called a *local ring*. The field $k = A/\mathfrak{m}$ is called the *residue field* of A.
- **Proposition 1.1.6.** (i) Let A be a ring and $\mathfrak{m} \neq (1)$ be an ideal of A such that every $x \in A \mathfrak{m}$ is a unit in A. Then A is a local ring and \mathfrak{m} its maximal ideal.
- (ii) Let A be a ring and \mathfrak{m} a maximal ideal of A, such that every element of $1 + \mathfrak{m}$ (i.e., every 1 + x, where $x \in \mathfrak{m}$) is a unit in A. Then A is a local ring.
- *Proof.* (i) Every ideal \neq (1) consists of nonunits, hence is contained in \mathfrak{m} . Hence \mathfrak{m} is the only maximal ideal of A.
- (ii) Let $x \in A \mathfrak{m}$. Since \mathfrak{m} is maximal, then the ideal generated by x and \mathfrak{m} is (1), hence there exists $y \in A$ and $\in \mathfrak{m}$ such that xy + t = 1; hence xy = 1 t belongs to $1 + \mathfrak{m}$ and therefore s a unit. Now use (i).

A ring with only a finite number of maximal ideals is called semilocal.

- **Examples 1.1.1.** (1) $A = k[x_1, ..., x_n]$, k a field. Let $f \in A$ be an irreducible polynomial. By unique factorization, the ideal (f) is prime.
 - (2) $A = \mathbf{Z}$. Every ideal in \mathbf{Z} is of the form (m) for some $m \geq 0$. The ideal (m) is prime $\iff m = 0$ or a prime number. All ideals (p), where p is a prime number, are maximal: $\mathbf{Z}/(p)$ is the field of p elements.
- (3) A principal ideal domain is an integral domain in which every ideal is principal. In such a ring every nonzero ideal is maximal. For if $(x) \neq 0$ is a prime ideal and $(y) \supset (x)$, we have $x \in (y)$, say x = yz, so that $yz \in (x)$ and $y \notin (x)$, hence $z \in (x)$, say z = tx. Then x = yz = ytx, so that yt = 1 and therefore (y) = 1.

Nilradical and Jacobson radical

Proposition 1.1.7. The set \mathfrak{N} of all nilpotent elements in a ring A is an ideal, and A/\mathfrak{N} has no nilpotent element $\neq 0$.

Proof. If $x \in \mathfrak{N}$, clearly $ax \in \mathfrak{N}$ for all $a \in A$. Let $x, y \in \mathfrak{N}$: say $x^m = 0$, $y^n = 0$. By the binomial theorem, $(x+y)^{m+n-1}$ is a sum of integer multiples of products x^ry^s , where r+s=m+n-1 we cannot have both r < m and s < n, hence each of these products vanishes and therefore $(x+y)^{m+n-1} = 0$. Hence $x+y \in \mathfrak{N}$ and therefore \mathfrak{N} is an ideal.

Let $\bar{x} \in \mathfrak{N}$ be represented by $x \in A$. Then \bar{x}^n is prepresented by x^n , so that $\bar{x}^n = 0$ implies $x^n \in \mathfrak{N}$ implies $(x^n)^k = 0$ for some k > 0 implies $x \in \mathfrak{N}$ implies $\bar{x} = 0$.

The ideal \mathfrak{N} is called the *nilradical* of A. The following proposition gives an alternative definition of \mathfrak{N} :

Proposition 1.1.8. The nilradical of A is the intersection of all the prime ideals of A.

Proof. Let \mathfrak{N}' denote the intersection of all the prime ideals of A. If $f \in A$ is nilpotent and if \mathfrak{p} is a prime ideal, then $f^n = 0 \in \mathfrak{p}$ for some n > 0, hence $f \in \mathfrak{p}$ (because \mathfrak{p} is prime). Hence $f \in \mathfrak{N}'$.

Conversely, suppose that f is not nilpotent. Let Σ be the set of ideals \mathfrak{a} with the property $n > 0 \implies f^n \notin \mathfrak{a}$. Then Σ is not empty because $0 \in \Sigma$. As in (1.3) Zorn's lemma can be applied to the set Σ , ordered by inclusion, and therefore Σ has a maximal element. Let \mathfrak{p} be a maximal element of Σ . We shall show that \mathfrak{p} is a prime ideal. Let $x, y \notin \mathfrak{p}$. Then the ideals $\mathfrak{p} + (x)$, $\mathfrak{p} + (y)$ strictly contain \mathfrak{p} and therefore do not belong to Σ ; hence

$$f^m \in \mathfrak{p} + (x), \qquad f^n \in \mathfrak{p} + (y)$$

for some m, n. It follows that $f^{m+n} \in \mathfrak{p} + (xy)$, hence the ideal $\mathfrak{p} + (xy)$ is not in Σ and therefore $xy \notin \mathfrak{p}$. Hence we have the prime ideal \mathfrak{p} such that $f \notin \mathfrak{p}$, so that $f \notin \mathfrak{N}'$.

The Jacobson radical \mathfrak{R} of A is defined to be the intersection of all maximal ideals of A. It can be characterized as follows:

Proposition 1.1.9. $x \in \Re$ if and only if 1 - xy is a unit for all $y \in A$.

Proof. \Longrightarrow : Suppose 1-xy is not a unit. By (1.5) it belongs to some maximal ideal \mathfrak{m} ; but $x \in \mathfrak{R} \subset \mathfrak{m}$, hence $xy \in \mathfrak{m}$ and therefore $1 \in \mathfrak{m}$ which is absurd.

 \Leftarrow : Suppose $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then \mathfrak{m} and x generate the unit ideal (1), so that we have u + xy = 1 for some $u \in \mathfrak{m}$ and some $y \in A$. Hence $1 - xy \in \mathfrak{m}$ and is therefore not a unit.

Operations on Ideals

Two ideals \mathfrak{a} and \mathfrak{b} are said to be *coprime* (or *comaximal*) if $\mathfrak{a} + \mathfrak{b} = (1)$. Thus for coprime ideals we have $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$.

Let $A_1, ..., A_n$ be rings. Their direct product

$$A = \prod_{i=1}^{n} A_i$$

is the set of all sequences $x=(x_1,...,x_n)$ with $x_i\in A_i$ $(1\leq i\leq n)$ and componentwise addition and multiplication.

Let A be a ring and $\mathfrak{a}_1,...,\mathfrak{a}_n$ ideals of A. Define a homomorphism

$$\varphi \colon A \longrightarrow \prod_{i=1}^n \frac{A_i}{a_i}$$

by the rule $\varphi(x) = (x + \mathfrak{a}_1, ..., x + \mathfrak{a}_n)$.

Proposition 1.1.10. (i) If \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$, then $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$.

- (ii) φ is injective \iff \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$.
- (iii) φ is injective $\iff \bigcap \mathfrak{a}_i = (0)$.

Proof. (i) By induction on n. The case n=2 is dealt with above. Suppose n>2 and the result true for $\mathfrak{a}_1,...,\mathfrak{a}_{n-1}$, and let $\mathfrak{b}=\prod_{i=1}^{n-1}\mathfrak{a}_i=\bigcap_{i=1}^{n-1}\mathfrak{a}_i$. Since $\mathfrak{a}_i+a_j=(1)$ $(1\leq i\leq n-1)$ we have equations $x_i+y_i=1$ $(x_i\in\mathfrak{a}_i,\,y_i\in\mathfrak{a}_n)$ and therefore

$$\prod_{i=1}^{n-1} x_i = \prod_{i=1}^{n-1} (1-y_i) \equiv 1 \pmod{\mathfrak{a}_n}.$$

Hence

$$\prod_{i=1}^n \mathfrak{a}_i = b\mathfrak{a}_n = \mathfrak{b} \cap \mathfrak{a}_n = \bigcap_{i=1}^n \mathfrak{a}_i.$$

(ii) \Longrightarrow : Let us show for example that \mathfrak{a}_1 and \mathfrak{a}_2 are coprime. There exists $x \in A$ such that $\varphi(x) = (1, 0, ..., 0)$; hence $x \equiv 1 \pmod{\mathfrak{a}_1}$ and $x \equiv 0 \pmod{\mathfrak{a}_2}$, so that

$$1 = (1 - x) + x \in \mathfrak{a}_1 + \mathfrak{a}_2.$$

 $\Longleftrightarrow \text{: It is enough to show, for example, that there is an element } x \in A \text{ such that } \varphi(x) = (1,0,...,0). \text{ Since } \mathfrak{a}_1+\mathfrak{a}_2=(1) \ (i>1) \text{ we have equation } u_i+v_i=1 \ (u_i\in\mathfrak{a}_1,\ v_i\in\mathfrak{a}_i). \text{ Take } x=\prod_{i=2}^n v_i, \text{ then } x=\prod(1-u_i)\equiv 1 \ (\text{mod } \mathfrak{a}_i), \text{ and } x\equiv 0 \ (\text{mod } \mathfrak{a}_i),\ i>1. \text{ Hence } \varphi(x)=(1,0,...,0) \text{ as required.}$

(iii) Clear, since $\bigcap \mathfrak{a}_i$ is the kernel of φ .

Proposition 1.1.11. (i) Let $\mathfrak{p}_1,...,\mathfrak{p}_n$ be prime ideals and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subset \mathfrak{p}_i$ for some i.

(ii) Let $\mathfrak{a}_1,...,\mathfrak{a}_n$ be ideals and let \mathfrak{p} be a prime ideal containing $\bigcap_{i=1}^n \mathfrak{a}_i$. Then $\mathfrak{p} \supset \mathfrak{a}_i$ for some i.

Proof. (i) Is proved by induction on n in the form

$$\mathfrak{a} \subsetneq \mathfrak{p}_i \ (1 \leq i \leq n) \implies \mathfrak{a} \not\subset \bigcup_{i=1}^n \mathfrak{p}_i.$$

It is certainly true for n=1. If n>1 and the result is true for n-1, then for each i there exists $x_i \in \mathfrak{a}$ such that $x_i \in \mathfrak{p}_i$ for all i. Consider the element

$$y = \sum_{i=1}^n x_1 \cdots x_{i-1} x_{i+1} \cdots x_n;$$

we have $y \in \mathfrak{a}$ and $y \notin \mathfrak{p}_i$ $(1 \le i \le n)$. Hence $\mathfrak{a} \not\subset \bigcup_{i=1}^n \mathfrak{p}_i$.

(ii)

2 Topology: Munkres