Serpent

Криптоалгоритм *Serpent* (Змея) ¹ шифрует 128-битовые блоки открытых данных под управлением 256-битового секретного ключа. (Допускается использование более короткого ключа — в этом случае он расширяется до требуемого размера добавлением одной битовой единицы и необходимого числа битовых нулей.) Число раундов шифрования равно 32.

Serpent оперирует со 128-битовым блоком данных B, представленным в виде четырех 32-битовых слов: $B = (B_0, B_1, B_2, B_3)$. Биты в словах индексируют от 0 до 31, в 128-битовом блоке — от 0 до 127, а в 256-битовом ключе — от 0 до 255. В словах принят (little-endian-порядок байтов (младший байт размещен слева, занимая младшую адресную позицию).

Алгоритм шифрования представляет собой вариант общей подстановочноперестановочной сети (SP-сети), построенной по схеме KASLT: "key-addition-substitutionlinear transformation" — прибавление ключевого элемента — подстановка — линейное преобразование. В качестве криптографических операций используются только табличные подстановки и следующие операции над 32-битовыми словами a и b:

```
a \oplus b – побитовое сложение по модулю 2 слов a и b;
```

 $shl_s(a)$ – сдвиг битов слова a влево на s позиций;

 $rol_s(a)$ – циклический сдвиг a влево на s позиций; (отметим, что $rol_s(a) = shl_s(a) \oplus shl_{32-s}(a) = shl_s(a) \vee shl_{32-s}(a)$, $1 \le s \le 31$).

Таблица 1

Преобразования L(X) и $L^{-1}(X)$ в Serpent

L(X)	$L^{-1}(X)$
$X_0 := rol_{13}(X_0);$	$X_2 := rol_{10}(X_2);$
$X_2 := rol_3(X_2);$	$X_0 := rol_{27}(X_0);$
$X_1:=X_1\oplus X_0\oplus X_2;$	$X_2:=X_2 \oplus X_3 \oplus shl_7(X_1);$
$X_3:=X_3\oplus X_2\oplus shl_3(X_0);$	$X_0:=X_0 \oplus X_1 \oplus X_3;$
$X_1 := rol_1(X_1);$	$X_3 := rol_{25}(X_3);$
$X_3 := rol_7(X_3);$	$X_1 := rol_{31}(X_1);$
$X_0 := X_0 \oplus X_1 \oplus X_3;$	$X_3 := X_3 \oplus X_2 \oplus shl_3(X_0);$
$X_2:=X_2\oplus X_3\oplus shl_7(X_1);$	$X_1 := X_1 \oplus X_0 \oplus X_2;$
$X_0 := rol_5(X_0);$	$X_2 := rol_{29}(X_2);$
$X_2 := rol_{22}(X_2)$.	$X_0 := rol_{19}(X_0)$.

Таблица 2

Таблица замены в Serpent (в 16-ичном представлении)

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S_0	3	8	f	1	а	6	5	b	е	d	4	2	7	0	9	С
S_1	f	С	2	7	9	0	5	а	1	b	e	8	6	d	3	4
S_2	8	6	7	9	3	С	а	f	d	1	e	4	0	b	5	2
S_3	0	f	b	8	C	9	6	3	d	1	2	4	а	7	5	e
S_4	1	f	8	3	С	0	b	6	2	5	4	а	9	e	7	d
S_5	f	5	2	b	4	а	9	C	0	3	е	8	d	6	7	1
S_6	7	2	C	5	8	4	6	b	е	9	1	f	d	3	а	0
S_7	1	d	f	0	e	8	2	b	7	4	С	а	9	3	5	6

Преобразование L(X) и обратное к нему преобразование $L^{-1}(X)$, определённые в табл. 1, выполняются над 128-битовым блоком $X=(X_0,X_1,X_2,X_3)$, представленным в виде четырех 32-битовых слов X_0,X_1,X_2,X_3 .

Табличные подстановки $S_i(x)$, j = 0, 1, ..., 7, применяются к 128-битовым блокам

¹ Авторы шифра: Ross Anderson (Великобритания), Эли Бихам (Израиль) и Lars Knudsen (Норвегия)

 $X = (x_0, x_1, ..., x_{31})$, представленным в виде массива из 32 полубайтов (полубайт — четыре бита): каждый из полубайтов x_i заменяется на соответствующий полубайт $S_j(x)$ согласно табл. 2. Например, для блока

V = 15ab503b 12436578 9af0d84e f1e2c3d2

имеем:

$$S_3(V) = f9249084 f8c8693d 12e07dc5 e05ba87b$$

Преобразование IP(X) – это перестановка битов в блоке $X=b_0b_1\dots b_{127}$: бит i перемещается в позицию 4(i-32j)+j, где j=i div 32, i=0,1,...,127. Обратная перестановка FP(X) перемещает бит i в позицию $(i\ div\ 4)+32(i\ mod\ 4), i=0,1,...,127$.

В алгоритмах зашифрования и расшифрования используются 128-битовые раундовые подключи $K_0, K_1, ..., K_{32}$, генерируемые на основе 256-битового секретного ключа К с использованием 32-битовых переменных $W_0, W_1, ..., W_{11}$:

```
W[0..7]:=K;
for \ i:=0 \ to \ 32 \ do \ \{
for \ j:=0 \ to \ 3 \ do \ W_{j+8}:=rol_{11} \left(W_{j} \oplus W_{j+3} \oplus W_{j+5} \oplus W_{j+7} \oplus G \oplus word_{4}(4i+j)\right);
K_{i} \coloneqq IP\left(S_{(11-i)mod\ 8}(W[8..11])\right);
W[0..7]:=W[4..11]
}.
```

Здесь G = 0х9e3779b9 — дробная часть отношения золотого сечения ($\sqrt{5} + 1$)/2 в 16-ичном представлении; $word_4(m) - 4$ -байтовое слово со значением m.

Алгоритм зашифрования Serpent

```
Bxo\partial: B-128-битовый блок открытых данных. C:=IP(B); for\ i:=0\ to\ 30\ do\ C:=L(S_{i\ mod\ 8}(C\oplus K_i)); C:=S_7(C\oplus K_{31})\oplus K_{32}; C:=FP(C). Bыxo\partial: C-128-битовый блок шифртекста .
```

Алгоритм расшифрования Serpent

```
Bxo\partial: C-128-битовый блок шифртекста. B:=IP(C); B:=S_7^{-1}(B \oplus K_{32}) \oplus K_{31}; for \ i:=30 \ downto \ 0 \ do \ B:=S_{i\ mod\ 8}^{-1}(L^{-1}(B)) \oplus K_i; B:=FP(B). Bыxo\partial: B-128-битовый блок открытых данных.
```