MA

Quadripôles et filtres passifs

I. Quadripôles

1. Définition

C'est un circuit qui assure la transmission ou la transformation d'un signal .

Schéma équivalent d'un quadripôle

Tel que:

 V_{ρ} , i_{ρ} : tension et courant d'entrée .

 V_{ς} , i_{ς} : tension et courant de sortie .

Si le quadripôle dissipe uniquement de l'énergie par effet Joule, il est passif. Dans le cas contraire, il est actif .

2. Paramètres d'un quadripôle

2.1. Paramètres impédances ou matrice Z

On considère les intensités comme des variables .

on a
$$\begin{cases} V_e = z_{11}i_e + z_{12}i_s \\ V_s = z_{21}i_e + z_{22}i_s \end{cases}$$

Tel que les coefficients z_{ij} ont la dimension d'une impédance $[\Omega]$

et :
$$z_{11} = \left(\frac{V_e}{i_e}\right)_{i_e=0}$$
 : Impédance d'entrée (sortie ouverte)

$$z_{12} = \left(\frac{V_e}{i_s}\right)_{i_s=0}$$
: Trans-impédance d'entrée (entrée ouverte)

$$z_{21} = \left(\frac{V_s}{i_e}\right)_{i=0}$$
: Trans-impédance de sortie (sortie ouverte)

$$z_{22} = \left(\frac{V_s}{i_s}\right)_{i_e = 0}$$
: Impédance de sortie (entrée ouverte)

Schéma équivalent :

Exemple:

Soit le quadripôle en T suivant :

Loi des mailles :

$$\begin{split} V_e &= R_1 i_e + R_3 (i_e + i_s) \iff V_e = (R_1 + R_3) i_e + R_3 i_s \\ V_s &= R_2 i_s + R_3 (i_e + i_s) \iff V_s = R_3 i_e + (R_2 + R_3) i_s \\ \text{D'où} \qquad z_{11} &= R_1 + R_3 \\ z_{12} &= z_{12} = R_3 \\ z_{22} &= R_2 + R_3 \end{split}$$

D'après les définitions :

$$z_{11} = \left(\frac{V_e}{i_e}\right)_{i_s=0} = R_1 + R_3$$

$$v_e \qquad \downarrow i_e \qquad$$

$$z_{21} = \left(\frac{V_s}{i_e}\right)_{i_s=0} = R_3$$

$$v_e = \begin{bmatrix} R_1 \\ R_3 \end{bmatrix} v_s$$

$$z_{22} = \left(\frac{v_s}{i_s}\right)_{i_e=0} = R_2 + R_3$$

$$v_e R_3 v_s$$

2.2. Paramètres admittance ou matrice Y

On considère les tensions comme des variables .

On a
$$\begin{cases} & i_e = y_{11} V_e + y_{12} V_s \\ & i_s = y_{21} V_e + y_{22} V_s \end{cases}$$

Tel que les coefficients \boldsymbol{y}_{ij} ont la dimension d'une admittance $[\boldsymbol{\Omega}^{-1}]$

et :
$$y_{11} = \left(\frac{\frac{i_e}{V_e}}{V_e}\right)_{V=0}$$
 : Admittance d'entrée (sortie en court-circuit)

$$y_{12} = \left(\frac{\frac{i_e}{V_s}}{V_s}\right)_{V=0}$$
: Trans-admittance d'entrée (entrée en court-circuit)

$$y_{21} = \left(\frac{\frac{i_s}{V_e}}{V_e}\right)_{V=0}$$
: Trans-admittance de sortie (sortie en court-circuit)

$$y_{22} = \left(\frac{i_s}{V_s}\right)_{V_s=0}$$
: Admittance de sortie (entrée en court-circuit)

Remarque : $y_{22} = \frac{1}{Z_{TH}}$ tel que Z_{TH} est l'impédance du générateur de Thévenin équivalent

au quadripôle vu de ces bornes de sorties

Schéma équivalent :

Exemple:

Soit le quadripôle en π suivant :

où
$$y_{11} = \frac{1}{R_1} + \frac{1}{R_2}$$

 $y_{12} = y_{12} = -\frac{1}{R_2}$
 $y_{22} = \frac{1}{R_2} + \frac{1}{R_3}$

2.3. Paramètres hybrides ou matrice H

On a
$$\left\{ \begin{array}{c} V_{e} = h_{11}i_{e} + h_{12}V_{s} \\ i_{s} = h_{21}i_{e} + h_{22}V_{s} \end{array} \right.$$

Tel que
$$[h_{11}]$$
 = $[\Omega]$, $[h_{21}]$ = $[h_{12}]$ = 1 , $[h_{22}]$ = $[\Omega^{-1}]$.

MA

et :
$$h_{11} = \left(\frac{V_e}{i_e}\right)_{V=0}$$
 : Impédance d'entrée (sortie en court-circuit)

$$h_{12} = \left(\frac{\frac{V_e}{V_s}}{V_s}\right)_{i=0}$$
: Gain inverse en tension (entrée ouverte)

$$h_{21} = \left(\frac{\frac{i_s}{s}}{\frac{i_e}{s}}\right)_{V=0}$$
: Gain en courant (sortie en court-circuit)

$$h_{22} = \left(\frac{\frac{i_s}{V_s}}{V_s}\right)_{i=0}$$
: Admittance de sortie (entrée ouverte)

Schéma équivalent :

2.4. Paramètres de transfert ou matrice T

On considère les grandeurs V_s et $-i_s$ comme des variables .

on a
$$V_e = t_{11} V_s - t_{12} i_s$$

 $i_e = t_{21} V_s - t_{22} i_s$

et :
$$t_{11} = \left(\frac{V_e}{V_s}\right)_{i=0}$$
 : Gain inverse en tension (sortie ouverte)

$$t_{12} = -\left(\frac{V_e}{i_s}\right)_{V=0}$$
: Trans-impédance d'entrée (sortie en court-circuit)

$$t_{21} = \left(\frac{\frac{i_e}{V_s}}{V_s}\right)_{i=0}$$
: Trans-admittance d'entrée (sortie ouverte)

$$t_{22} = -\left(\frac{i_e}{i_s}\right)_{V=0}$$
: Gain inverse en courant (sortie en court-circuit)

3. Autres caractéristiques d'un quadripôle

3.1. Impédance d'entrée

L'impédance d'entrée est définie par : $Z_e = \frac{V_e}{i_s}$, elle dépend de la charge de sortie .

Tel que : Z_g est l'impédance interne du générateur .

 E_g est la f.é.m du générateur .

3.2. Impédance de sortie

MA

On peut calculer l'impédance de sortie $Z_{_{S}}$ ou $Z_{_{TH}}$ on utilisant l'une des deux méthodes suivantes :

1. On éteint les générateurs indépendants (en les remplaçant par leur impédance interne) . On place une source de tension parfaite à la sortie de Q et l'impédance de sortie est donc

$$Z_s = \frac{E_s}{I_s}$$

2. Après avoir déterminer la tension de Thévenin E_{TH} (égale à V_s pour I_s = 0) ainsi que le courant de court-circuit (I_N = I_{cc}) du quadripôle vu de la sortie .

Donc
$$Z_{_S}=Z_{_{TH}}=Z_{_N}=\frac{E_{_{TH}}}{I_{_{cc}}}$$

3.3. Fonction de transfert ou transmittance

La transmittance est défini par : H = $\frac{S}{E}$ (en notation complexe !)

Tel que S est une grandeur de sortie et E est une grandeur d'entrée

La transmittance en tension ou gain en tension : $A_v = \frac{V_s}{V_s}$

La transmittance en courant ou gain en courant : $A_i = \frac{I_s}{I_e}$

II. Les filtres

1. Définition

C'est un dispositif qui permet d'atténuer des signaux dans une bande de fréquences données .

2. Différents types de filtres

Filtre passe bas:

Laisse passer uniquement les signaux de fréquences inférieures à $f_c = \frac{\omega_c}{2\pi}$

Filtre passe haut :

Laisse passer uniquement les signaux de fréquences supérieures à $f_c = \frac{\omega_c}{2\pi}$

Filtre passe bande :

La bande passante est limitée entre $f_{c1}=\frac{\omega_{c1}}{2\pi}$ et $f_{c2}=\frac{\omega_{c2}}{2\pi}$

Filtre coupe bande :

Permet de couper une bande du spectre de fréquence

3. Diagramme de Bode

En régim sinusoïdal, la transmittance d'un quadripôle dépend généralement de la fréquence. La réponse fréquentielle d'un quadripôle consiste en l'étude de la fonction de transfert dynamique H avec la fréquence .

Une façon de faire, c'est le diagramme de Bode qui est l'ensemble des deux courbes de réponses : en gain et en phase de la fonction de transfert. Etant donné que les fréquences

M

peuvent varier sur de très larges intervalles, on les place alors sur un axe à graduation logarithmique et en exprime le gain G=|H| en décibel (dB), soit $G_{dB}=20log(G)$. L'argument ou la phase de H est calculé en degré .