ARIMA models

Exponential Smoothing

Time	series	ana	lysis:

Forecasting accuracy

Let us define a forecasting error $e_t = Y_t - F_t$. We may then define some forecasting accuracy measures: Mean Error, Mean Absolute Error, Mean Squared Error

$$\begin{aligned} \text{ME} &= \frac{1}{n} \sum_{t=1}^n e_t \\ \text{MAE} &= \frac{1}{n} \sum_{t=1}^n |e_t| \\ \text{MSE} &= \frac{1}{n} \sum_{t=1}^n e_t^2. \end{aligned}$$

Forecasting accuracy

The value of ME, MAE, MSE depend on the scale of data. This makes difficult to compare different models. We may define the percentage error and related measures.

$$\begin{aligned} \text{PE}_t &= \frac{Y_t - F_t}{Y_t} 100 \\ \text{MPE} &= \frac{1}{n} \sum_{t=1}^n \text{PE}_t \\ \text{MAPE} &= \frac{1}{n} \sum_{t=1}^n |\text{PE}_t| \end{aligned}$$

The simple exponential smoothing is defined as

$$F_{t+1} = F_t + \alpha (Y_t - F_t)$$

where α is a constant term taking values between 0 e 1. The new forecast F_{t+1} is the old forecast F_t with an adjustment.

An equivalent way to express the simple exponential smoothing is

$$F_{t+1} = \alpha Y_t + (1 - \alpha) F_t$$

The new forecast F_{t+1} is a weighted average of the last observation, Y_t , and the last forecast, F_t .

Why exponential smoothing?

$$F_{t+1} = \alpha Y_t + (1 - \alpha)[\alpha Y_{t-1} + (1 - \alpha)F_{t-1}]$$

= $\alpha Y_t + \alpha (1 - \alpha)Y_{t-1} + (1 - \alpha)^2 F_{t-1}$

so that we obtain

$$F_{t+1} = \alpha Y_t + \alpha (1 - \alpha) Y_{t-1} + \alpha (1 - \alpha)^2 Y_{t-2} + \alpha (1 - \alpha)^3 Y_{t-3} + \dots + \alpha (1 - \alpha)^{t-1} Y_1 + (1 - \alpha)^t F_1$$

Initialization of the process

$$F_2 = \alpha Y_t + (1 - \alpha)F_1$$

Since F_1 is not available, typically we use the first observation, $Y_1 = F_1$.

- A crucial point in exponential smoothing concerns choosing a suitable value for α .
- A higher value for α is more sensitive to a change in the data structure, while a lower value generates a 'flat' forecast.
- ightharpoonup A suitable selection for α is that minimizing the MSE.

Oil production in Saudi Arabia: forecasting with $\hat{\alpha}=0.83$

- ► The Holt's linear trend method is a useful extension to allow the forecasting of data with a trend.
- ► This method involves a forecast equation and two smoothing equations (one for the level and one for the trend)

$$L_{t} = \alpha Y_{t} + (1 - \alpha)(L_{t-1} + b_{t-1})$$

$$b_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)b_{t-1}$$

$$F_{t+m} = L_{t} + b_{t}m$$

 L_t denotes an estimate of the level of the series at time t and b_t an estimate of the slope t.

- ▶ This exponential smoothing is a double smoothing.
- ▶ The forecast function is no longer flat but trending.
- ▶ The *m*-step-ahead forecast is equal to the last estimated level plus times the last estimated trend value.
- ▶ Hence the forecasts are a linear function of m.

Short-term forecasting: Damped trend methods

- The forecasts generated by Holt's linear method display a constant trend (increasing or decreasing) indefinitely into the future.
- Empirical evidence indicates that these methods tend to over-forecast, especially for longer forecast horizons.
- lacktriangle A useful extension includes a damping parameter $0<\phi<1$

$$L_{t} = \alpha Y_{t} + (1 - \alpha)(L_{t-1} + \phi b_{t-1})$$

$$b_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)\phi b_{t-1}$$

$$F_{t+m} = L_{t} + (\phi + \phi^{2} + \dots + \phi^{h})b_{t}$$

Airline passengers: Holt's and Dampened Holt's exponential smoothing $\phi=0.90$

ARIMA models: introduction

- ARIMA models provide a typical approach to time series forecasting.
- Exponential smoothing and ARIMA models are the two most widely used approaches to time series forecasting, and provide complementary approaches to the problem.
- While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in the data.

Stationarity and differencing

A stationary time series is one whose properties do not depend on the time at which the series is observed.

Thus, time series with trends, or with seasonality, are not stationary.

Which of these series are stationary? (a) Google stock price for 200 consecutive days; (b) Daily change in the Google stock price for 200 consecutive days; (c) Annual number of strikes in the US; (d) Monthly sales of new one-family houses sold in the US; (e) Annual price of a dozen eggs in the US (constant dollars); (f) Monthly total of pigs slaughtered in Victoria, Australia; (g) Annual total of lynx trapped in the McKenzie River district of north-west Canada; (h) Monthly Australian beer production; (i) Monthly Australian electricity production.

Differencing

Differencing can help stabilise the mean of a time series by removing changes in the level of a time series, and therefore eliminating (or reducing) trend and seasonality.

$$y_t' = y_t - y_{t-1}.$$

Seasonal differencing (for monthly data)

$$y_t' = y_t - y_{t-12}.$$

A further differencing may be performed

$$y_t^* = y_t' - y_{t-1}' = (y_t - y_{t-12}) - (y_{t-1} - y_{t-13}).$$

Backshift notation

The backward shift operator B is a useful notational device when working with time series lags:

$$By_t = y_{t-1}.$$

In other words, ${\cal B}$ has the effect of shifting the data back one period.

Two applications of B shifts the data back two periods

$$B(By_t) = B^2 y_t = y_{t-2}.$$

Backshift notation

The backward shift operator is convenient for describing the process of differencing. A first difference can be written as

$$y_t' = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$

Similarly, if second-order differences have to be computed, then

$$y_t'' = (y_t' - y_{t-1}')$$

$$= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

$$= y_t - 2y_{t-1} + y_{t-2}$$

$$= (1 - 2B + B^2)y_t$$

$$= (1 - B)^2 y_t$$

Autoregressive models

In a multiple regression model, we forecast the variable of interest using a linear combination of predictors.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon.$$

▶ In an autoregression model, we forecast the variable of interest using a linear combination of past values of the variable. The term autoregression indicates that it is a regression of the variable against itself.

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + \varepsilon_t$$

- ightharpoonup We refer to this as an AR(p), an autoregressive model of order p.
- ightharpoonup This is like a multiple regression but with lagged values of y_t as predictors.

Moving-average models

Rather than using past values of the forecast variable in a regression, a moving average model uses past forecast errors in a regression-like model.

$$y_t = \beta_0 + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} + \ldots + \beta_q \varepsilon_{t-q} + \varepsilon_t$$

We refer to this as an MA(q), a Moving Average of order q.

ARIMA models

- ► If we combine differencing with autoregression and a moving average model, we obtain a non-seasonal ARIMA model.
- ▶ ARIMA is an acronym for AutoRegressive Integrated Moving Average, ARIMA (p,d,q) where p refers to the AR part, q refers to the MA part and d is the degree of first differencing involved.
- Notice that a White Noise model $y_t = c + \varepsilon_t$ is an ARIMA(0,0,0), while a Random Walk $y_t = y_{t-1} + \varepsilon_t$, is an ARIMA (0,1,0).

ARMA(p,q) models

An ARMA (p,q) may be expressed as

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_q y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \dots - \theta_q \varepsilon_{t-q}$$

or, by using backshift notation,

$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 - \theta_1 B - \dots - \theta_q B^q) \varepsilon_t$$

ARIMA(p,d,q) models

If an ARMA (p,q) model is non stationary, we obtain an ARIMA (p,d,q) model. The simplest case, ARIMA (1,1,1), is defined as

$$(1 - \phi_1 B)(1 - B)y_t = c + (1 - \theta_1 B)\varepsilon_t$$

The general form of an ARIMA (p,d,q) may produce a great variety of ACF and PACF.

ARIMA(p,d,q) and seasonality

A further extension to ARMA models concerns seasonality. An ARIMA model with seasonal components is an ARIMA $(p,d,q)(P,D,Q)_s$, where (p,d,q) indicates the non-seasonal part of the model, while (P, D, Q) indicates the seasonal part of order s.

The ARIMA model $(1, 1, 1)(1, 1, 1)_4$ is

$$(1 - \phi_1 B)(1 - \Phi_1 B^4)(1 - B)(1 - B^4)y_t = (1 - \theta_1 B)(1 - \Theta_1 B^4)\varepsilon_t$$

Model selection

A drug's sales (July 1991- June 2008) What are the main features of the series?

Seasonal differencing

Model	AICc
ARIMA(3,0,1)(0,1,2) ₁₂	-485.5
ARIMA(3,0,1)(1,1,1) ₁₂	-484.2
ARIMA(3,0,1)(0,1,1) ₁₂	-483.7
ARIMA(3,0,1)(2,1,0) ₁₂	-476.3
ARIMA(3,0,0)(2,1,0) ₁₂	-475.1
ARIMA(3,0,2)(2,1,0) ₁₂	-474.9
ARIMA(3,0,1)(1,1,0) ₁₂	-463.4

Different models have been estimated and compared on the basis of the $\ensuremath{\mathsf{AIC}}$

Are residuals white noise?

Model	RMSE
ARIMA(3,0,1)(0,1,2) ₁₂	0.0622
ARIMA(3,0,1)(1,1,1) ₁₂	0.0630
ARIMA(2,1,4)(0,1,1) ₁₂	0.0632
ARIMA(2,1,3)(0,1,1) ₁₂	0.0634
ARIMA(3,0,3)(0,1,1) ₁₂	0.0639
ARIMA(2,1,5)(0,1,1) ₁₂	0.0640
ARIMA(3,0,1)(0,1,1) ₁₂	0.0644
ARIMA(3,0,2)(0,1,1) ₁₂	0.0644
ARIMA(3,0,2)(2,1,0) ₁₂	0.0645
ARIMA(3,0,1)(2,1,0) ₁₂	0.0646
ARIMA(4,0,2)(0,1,1) ₁₂	0.0648
ARIMA(4,0,3)(0,1,1) ₁₂	0.0648
ARIMA(3,0,0)(2,1,0) ₁₂	0.0661
ARIMA(3,0,1)(1,1,0) ₁₂	0.0679

Test set (july 2006–june 2008) Auto.arima and model comparison by RMSE

Forecast with the selected model