Лекція 7 - 8. Рівняння плошини

 $3a\partial a 4a$. Скласти рівняння площини, що проходить через точку $M_0(x_0, y_0, z_0)$ перпендикулярно вектору $\bar{n} = \{A, B, C\}$.

Рис 13. Рівняння площини

Відомо, що через точку проходить одна і тільки одна площина перпендикулярна даній прямій. Отже, шукана площина існує. Нехай точка M(x,y,z,) — довільна (біжуча) точка цієї площини. Відомо, що будь-яка пряма, яка лежить у площині, утворює прямий кут з перпендикуляром до площини. Тому вектор $\overline{M_0M} = \{x - x_0, y - y_0, z - z_0\}$ перпендикулярний до вектора $\overline{n} = \{A, B, C\}$. Тоді скалярний добуток $\overline{n} \cdot \overline{M_0M} = A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$; рівняння шуканої площини має вигляд:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0,$$

рівняння площини, що проходить через точку $M_0(x_0,y_0,z_0)$ перпендикулярно вектору $\overline{n}=\{A,B,C\}$. Розкриємо в цьому рівнянні дужки, згрупуємо доданки та введемо позначення $D=-Ax_0-By_0-Cz_0$; одержимо загальне рівняння площини:

$$Ax + By + Cz + D = 0.$$

3 попереднього видно, що вектор $\overline{n} = \{A, B, C\}$, складений з коефіцієнтів цього рівняння, перпендикулярний (нормальний) до площини.

Теорема. Кожне рівняння Ax + By + Cz + D = 0 визначає єдину площину, перпендикулярну вектору $\bar{n} = \{A, B, C\}$.

З попереднього також випливає

Теорема. Для того, щоб площини Ax + By + Cz + D = 0 і $A_1x + B_1y + C_1z + D_1 = 0$ були паралельні необхідно і достатньо, щоб виконувались рівності

$$\frac{A_1}{A} = \frac{B_1}{B} = \frac{C_1}{C};$$

щоб площини Ax + By + Cz + D = 0 і $A_1x + B_1y + C_1z + D_1 = 0$ співпадали необхідно і достатньо, щоб виконувались рівності

$$\frac{A_1}{A} = \frac{B_1}{B} = \frac{C_1}{C} = \frac{D_1}{D};$$

Рівняння площини у векторній формі, нормальне рівняння

Рис. 14. Нормальне рівняння площини

Нехай в прямокутній системі координат OXYZ задана площина ω . Проведемо з початку координат пряму, перпендикулярну до площини ω ; нехай R — точка перетину цього перпендикуляра з площиною ω . Позначимо $p = |\overline{OR}|$ — відстань від початку координат до площини ω . Розглянемо одиничний вектор \overline{n} перпендикуляра \overline{OR} : $\overline{n} \uparrow \uparrow \overline{OR}$, $|\overline{n}| = 1$. Тоді $\overline{n} = \{\cos \alpha, \cos \beta, \cos \gamma\}$, де α, β, γ — кути, які вектор \overline{n} утворює, відповідно, з осями OX, OY, OZ.

Нехай $\bar{r}=\overline{OM}=x\bar{i}+y\bar{j}+z\bar{k}$ — радіус-вектор біжучої точки M(x,y,z,) площини ω , точка O — початок координат. Позначимо φ — кут

між векторами \overline{OR} та \overline{n} . Перпендикуляр до площини ω утворює прямий кут з будь-якою прямою, що лежить в площині ω . Тому трикутник ORM — прямокутний. З прямокутного трикутника ORM випливає, що $|\overline{OM}|\cos\varphi=|\overline{OR}|=p$. Тоді для довільної (біжучої) точки $M\in\omega$ скалярний добуток $\overline{r}\cdot\overline{n}=\overline{OM}\cdot\overline{n}=$

 $|\overline{OM}||\overline{n}|\cos \varphi = |\overline{OM}|\cos \varphi = |\overline{OR}| = p$, отже, для всіх точок $M \in \omega$ виконується векторне рівняння площини

$$\bar{r} \cdot \bar{n} = p$$
.

Враховуючи, що радіус-вектор біжучої точки площини $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$, а вектор нормалі $\bar{n} = \{\cos\alpha, \cos\beta, \cos\gamma\}$, це рівняння площини можна записати в координатній формі (*нормальне рівняння площини*):

$$x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0, (3)$$

де p — відстань від початку координат до площини ω .

Зведення загального рівняння площини до нормального вигляду

Нехай дано загальне рівняння площини Ax + By + Cz + D = 0, а (3) – нормальне рівняння цієї ж площини. Тоді, за теоремою, коефіцієнти цих рівнянь пропорційні: $\frac{\cos \alpha}{A} = \frac{\cos \beta}{B} = \frac{\cos \gamma}{C} = \frac{-p}{D} = \mu$. Отже,

$$\mu A = \cos \alpha$$
, $\mu B = \cos \beta$, $\mu C = \cos \gamma$, $\mu D = -p$. (4)

Щоб знайти μ , піднесемо три перші з рівностей (4) до квадрату і додамо їх почленно, одержимо $\mu^2(A^2+B^2+C^2)=\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$. Звідси

$$\mu = \frac{\pm 1}{\sqrt{A^2 + B^2 + C^2}}, - \tag{5}$$

нормувальний множник. З четвертого рівняння (4) визначимо знак нормувального множника: $\mu D = -p \le 0 \Rightarrow$ знак нормувального множника протилежний знаку коефіцієнта D. Якщо D = 0, то знак нормувального множника можна брати довільно.

Щоб перейти від загального рівняння площини

$$Ax + By + Cz + D = 0 ag{6}$$

до нормального рівняння (3) достатньо помножити рівняння (6) на множник μ (див. (5)).

Відстань від точки до площини. Різні рівняння площини

Нехай $M_*(x_*, y_*, z_*)$ — точка простору, d — відстань від точки $M_*(x_*, y_*, z_*)$ до даної площини ω .

Теорема. Відстань d від точки $M_*(x_*, y_*, z_*)$ до площини ω , заданої нормальним рівнянням (3) визначається за формулою:

$$d = |x_* \cos \alpha + y_* \cos \beta + z_* \cos \gamma - p|.$$

Якщо площина ω задана загальним рівнянням Ax + By + Cz + D = 0, то відстань d від точки $M_*(x_*, y_*, z_*)$ до площини ω можна знайти за рівносильною формулою

$$d = \frac{|Ax_* + By_* + Cz_* + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Рис. 15. Відстань від точки до площини

Доведення. Припустимо, для визначеності, що початок координат O і точка $M_*(x_*,y_*,z_*)$ розміщенні по різні сторони від площини (1). Вектор $\overline{OM_*}=x_*\bar{\iota}+y_*\bar{\jmath}+z_*\bar{k}$ — радіус-вектор точки $M_*(x_*,y_*,z_*)$. Розглянемо пряму, яка проходить через початок координат O перпендикулярно до площині ω ; нехай \overline{n} — одиничний вектор, який визначає напрямок на цьому перпендикулярі, $|\overline{n}|=1$. Буквою R позначимо точку перетину розглянутої

прямої з площиною ω . Тоді $|\overline{OP}| = p$ — відстань від початку координат до площини ω . Якщо α, β, γ — кути, які вектор \overline{n} утворює, відповідно, з осями OX, OY, OZ, то вектор \overline{n} має координати $\overline{n} = \{\cos \alpha, \cos \beta, \cos \gamma\}$. Через φ позначимо кут між векторами \overline{n} та \overline{OM}_* .

Спроектуємо точку $M_*(x_*, y_*, z_*)$ на перпендикуляр, проведений з точки O на площину (1). Нехай Q — ця проекція (намалюйте рисунок). Тоді

$$|\overline{OQ}| = |\overline{OM_*}| \cos \varphi = |\overline{\boldsymbol{n}}| |\overline{OM_*}| \cos \varphi =$$

$$= \overline{\boldsymbol{n}} \cdot \overline{OM_*} = x_* \cos \alpha + y_* \cos \beta + z_* \cos \gamma;$$

$$d = |\overline{OQ}| - |\overline{OP}| = |\overline{OQ}| - p = x_* \cos \alpha + y_* \cos \beta + z_* \cos \gamma - p.$$

Рівняння площини у відрізках

Розглянемо загальне рівняння площини Ax + By + Cz + D = 0. Припустимо, що в цьому рівнянні всі коефіцієнти $A, B, C, D \neq 0$. Обидві частини рівняння площини поділимо на -D, після простого перетворення одержимо $\frac{x}{\frac{-D}{A}} + \frac{y}{\frac{-D}{B}} + \frac{z}{\frac{-D}{C}} = 1$, або, позначаючи $\frac{-D}{A} = a$, $\frac{-D}{B} = b$, $\frac{-D}{C} = c$, матимемо:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
, -

рівняння площини у відрізках. Знайдемо точку перетину цієї площини з віссю OX, для чого покладемо в останньому рівнянні y=0, z=0. Одержимо $\frac{x}{a}=1$, x=a. Отже, площина перетинає вісь OX в точці з координатами x=a, y=0, z=0 (площина відтинає на осі OX відрізок величини a). Аналогічно доводять, що площина, задана рівнянням у відрізках, відтинає на осі OY відрізок величини b, і на осі OZ — відрізок величини c

Часткові випадки розміщення площини

Розглянемо загальне рівняння площини Ax + By + Cz + D = 0.

1) Якщо в рівнянні площини коефіцієнт A=0, то рівняння площини набуває вигляду By+Cz+D=0. Вектор нормалі до цієї площини $\overline{\boldsymbol{n}}=\{0,B,C\}$, тобто проекція вектора $\overline{\boldsymbol{n}}$ на вісь OX дорівнює 0. Це означає, що

вектор $\overline{n} \perp OX \Rightarrow$ сама площина By + Cz + D = 0 паралельна осі OX (в рівнянні площини немає змінної x, і площина By + Cz + D = 0 паралельна осі OX).

- 2) Якщо в рівнянні площини коефіцієнт B=0, то рівняння площини набуває вигляду Ax+Cz+D=0. Вектор нормалі до цієї площини $\overline{\boldsymbol{n}}=\{A,0,C\}$, тобто проекція вектора $\overline{\boldsymbol{n}}$ на вісь OY дорівнює 0. Це означає, що вектор $\overline{\boldsymbol{n}}\perp OY\Rightarrow$ сама площина Ax+Cz+D=0 паралельна осі OY (в рівнянні площини немає змінної y, і площина Ax+Cz+D=0 паралельна осі OY).
- 3) Якщо в рівнянні площини коефіцієнт C=0, то рівняння площини набуває вигляду Ax+By+D=0. Вектор нормалі до цієї площини $\overline{\boldsymbol{n}}=\{A,B,C\}$, тобто проекція вектора $\overline{\boldsymbol{n}}$ на вісь OZ дорівнює 0. Це означає, що вектор $\overline{\boldsymbol{n}}\perp OZ\Rightarrow$ сама площина Ax+By+D=0 паралельна осі OZ (в рівнянні площини немає змінної z, і площина Ax+By+D=0 паралельна осі OZ).
- 4) Якщо в рівнянні площини коефіцієнт D=0, то рівняння площини набуває вигляду Ax+By+Cz=0. Таке рівняння задовольняють координати точки O(0,0,0) початку координат, отже ця площина проходить через початок координат.
- 5) Якщо в рівнянні площини Ax + By + Cz + D = 0 коефіцієнти A = 0, B = 0, то рівняння площини вироджується до вигляду Cz + D = 0, або $z = -\frac{D}{C}$, $C \neq 0$. Це все ще рівняння площини; оскільки в цьому рівнянні немає змінних x, y, площина паралельна і осі OX і осі $OY \Rightarrow$ площина $z = -\frac{D}{C}$ перпендикулярна осі OZ і перетинає цю вісь у точці $M\left(0, 0, -\frac{D}{C}\right)$.

Рівняння площини, яка проходить через три задані точки

Із стереометрії відомо, що через три точки, що не лежать на одній прямій, проходить одна і тільки одна площина.

 $3a\partial a 4a$. Скласти рівняння площини, яка проходить через точки $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2), M_3(x_3,y_3,z_3)$.

Рис. 16: Рівняння площини

Існує площина, яка проходить через ці точки. На цій площині візьмемо біжучу точку M(x,y,z). Розглянемо вектори $\overline{M_1M}$, $\overline{M_1M_2}$, $\overline{M_1M_3}$. Ці вектори лежать в одній площині, отже, вони компланарні. Тому мішаний добуток $\overline{M_1M}$ $\overline{M_1M_2}$ $\overline{M_1M_3}=0$. Але $\overline{M_1M}=\{x-x_1,y-y_1,z-z_1\}$, $\overline{M_1M_2}=$

 $=\{x_2-x_1,y_2-y_1,z_2-z_1\}$, $\overline{M_1M_3}=\{x_3-x_1,y_3-y_1,z_3-z_1\}$. Тому мішаний добуток

$$\overline{M_1M}$$
 $\overline{M_1M_2}$ $\overline{M_1M_3}=\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \ x_2-x_1 & y_2-y_1 & z_2-z_1 \ x_3-x_1 & y_3-y_1 & z_3-z_1 \ \end{vmatrix}=0$. Рівняння площини,

що проходить через три задані точки має вигляд

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Із стереометрії відомо, що дві не співпадаючі площини, які мають спільну точку, перетинаються по прямій, яка проходить через цю точку. Нехай не співпадаючі площини α і α_1 мають рівняння α : Ax + By + Cz + D = 0 і α_1 : $A_1x + B_1y + C_1z + D_1 = 0$, а їх лінією перетину є деяка пряма

h. Координати точок прямої h , яка ϵ спільною для обох площин, задовольняють систему рівнянь

$$\begin{cases} \alpha: & Ax + By + Cz + D = 0, \\ \alpha_1: & A_1x + B_1y + C_1z + D_1 = 0, \end{cases}$$
 (1)

рівняння прямої, як лінії перетину двох площин.

Пучок площин

Із стереометрії відомо, що дві не співпадаючі площини, які мають спільну точку, перетинаються по прямій, яка проходить через цю точку. Нехай не співпадаючі площини α і α_1 мають рівняння α : Ax + By + Cz + D = 0 і α_1 : $A_1x + B_1y + C_1z + D_1 = 0$, а їх лінією перетину є деяка пряма h.

Пучком площин називають сукупність усіх площин, які проходять через одну пряму (вісь пучка) h. Рівняння будь-якої площини, що проходить через пряму їхнього перетину (рівняння пучка площин), можна записати у вигляді

$$\mu(Ax + By + Cz + D) + \lambda(A_1x + B_1y + C_1z + D_1) = 0,$$
(2)

де μ і λ — деякі числа.