2 Review: CW Complexes

2.1 Definition. Let X be a space and let $f: S^{n-1} \to X$ be a continuous function. We say that a space Y is obtained by *attaching an n-cell* to X if $Y = X \sqcup D^n/\sim$ where \sim is the equivalence relation given by $x \sim f(x)$ for all $x \in S^{n-1} \subseteq D^n$. We write $Y = X \cup_f e^n$.

- 2.2 Some terminology:
 - The map $f: S^{n-1} \to X$ is called the *attaching map* of the cell e^n .
 - The map $\bar{f}: D^n \to X \sqcup D^n \to X \cup_f e^n$ is called the *characteristic map* of the cell e^n .
 - The subspace $e^n = \overline{f}(D^n \setminus S^{n-1}) \subseteq X \cup_f e^n$ is called the *open cell*.
 - The subspace $\bar{e}^n = \bar{f}(D^n) \subseteq X \cup_f e^n$ is called the *closed cell*.
- **2.3 Proposition.** If $f, g: S^{n-1} \to X$ are maps such that $f \simeq g$ then $X \cup_f e^n \simeq X \cup_a e^n$.
- **2.4 Definition.** Let X be topological space and let $A \subseteq X$. The pair (X, A) is a *relative CW complex* if $X = \bigcup_{n=-1}^{\infty} X^{(n)}$ where
 - 1) $X^{(-1)} = A$;
 - 2) for $n \ge 0$ the space $X^{(n)}$ is obtained by attaching n-cells to $X^{(n-1)}$;
 - 3) the topology on X is defined so that a set $U \subseteq X$ is open if and only if $U \cap X^{(n)}$ is open in $X^{(n)}$ for all n.
- **2.5 Note.** If (X, A) is a relative CW complex then the space $X^{(n)}$ is called the *n-skeleton* of X.

- **2.6 Note.** By part 3) of Definition 2.4 if (X,A) is a relative CW complex then a function $f: X \to Z$ is continuous if and only if $f|_{X^{(n)}}: X^{(n)} \to Z$ is continuous for all $n \ge -1$.
- **2.7 Note.** Assume that (X,A) is a relative CW complex and that we are given a map $g\colon A\to Z$. In such situation, we will often want to construct a map $\bar g\colon X\to Z$ such that $\bar g|A=g$. Usually, this construction will proceed inductively with respect to the skeleta of X. We will assume that we have already constructed a map $\bar g_{n-1}\colon X^{(n-1)}\to Z$ such that $\bar g_{n-1}|_A=g$, and we will attempt to extend $\bar g_{n-1}$ to $\bar g_n\colon X^{(n)}\to Z$. The space $X^{(n)}$ is the quotient space of $X^{(n-1)}\sqcup \bigcup_i D^n$ with the equivalence relation defined by the attaching maps of n-cells. Therefore, to define $\bar g_n$ it will suffice, for each n-cell e^n with the attaching map $f\colon S^{n-1}\to Z$, to give a map $\varphi\colon D^n\to Z$ such that $\varphi|_{S^{n-1}}=\bar g_{n-1}f$.

Once we have maps \bar{g}_n for all n, we can define $\bar{g}: X \to Z$ by setting $\bar{g}|_{X^{(n)}} = \bar{g}_n$. The map \bar{g} is continuous by (2.6).

- **2.8 Definition.** A CW complex is a space X such that (X, \emptyset) is a relative CW complex.
- **2.9 Definition.** 1) A CW complex *X* is *finite* if it consists of finitely many cells.
- 2) A CW complex X is finite dimensional if $X = X^{(n)}$ for some n.
- 3) The dimension of a CW complex X is defined by

$$\dim X = \begin{cases} \min\{n \mid X = X^{(n)}\} & \text{if } X \text{ is finite dimensional} \\ \infty & \text{otherwise} \end{cases}$$

- **2.10 Definition.** Let X, Y be relative CW complexes. A map $f: X \to Y$ is *cellular* if $f(X^{(n)}) \subseteq Y^{(n)}$ for all $n \ge 0$.
- **2.11 Cellular Approximation Theorem.** Let X, Y be relative CW complexes. For any map $f: X \to Y$ there exists a cellular map $g: X \to Y$ such that $f \simeq g$. Moreover, if $A \subseteq X$ is a subcomplex and $f|_A: A \to Y$ is a cellular map then g can be selected so that $f|_A = g|_A$ and $f \simeq g$ (rel A).
- **2.12 Corollary.** If n > m then every map $f: S^m \to S^n$ is homotopic to a constant map.

Proof. Consider S^n with the structure of a CW complex with one 0-cell and one n-cell. By Theorem 2.11 any map $f: S^m \to S^n$ is homotopic to a cellular map. Since the m-skeleton of S^n consists of a single point, such a cellular map is constant.

2.13 Definition. Let X be a topological space, and let $A \subseteq X$. The pair (X, A) has the *homotopy* extension property if any map

$$h: X \times \{0\} \cup A \times [0,1] \rightarrow Y$$

can be extended to a map $\bar{h}: X \times [0,1] \to Y$.

- **2.14 Theorem.** Any relative CW complex (X, A) has the homotopy extension property.
- **2.15 Proposition.** If (X, A) has the homotopy extension property and A is a contractible space, then the quotient map $q: X \to X/A$ is a homotopy equivalence.
- **2.16 Inductive Homotopy Lemma.** Let (X,A) be a relative CW complex and let $A=X_{-1}\subseteq X_0\subseteq X_1\subseteq \cdots\subseteq X$ be subcomplexes of X such that $\bigcup_n X_n=X$. Assume that for $n\geq -1$ we have maps $f_n\colon X\to Y$ such that
 - 1) $f_n|_{X_{n-1}} = f_{n-1}|_{X_{n-1}}$ for all $n \ge 0$
 - 2) $f_n \simeq f_{n-1}$ (rel X_{n-1}) for all $n \ge 0$

Let $g: X \to Y$ be given by $g(x) = f_n(x)$ if $x \in X_n$. Then g is a continuous function and $f_{-1} \simeq g$ (rel A).

2.17 Example. Take

$$S^{n} = \left\{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_{i}^{2} = 1 \right\}$$

Denote also $S^{-1} = \emptyset$. For each n we have an embedding $j: S^n \hookrightarrow S^{n+1}$ given by $j(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_{n+1}, 0)$. Define $S^{\infty} = \bigcup_n S^n$. A set $U \subseteq S^{\infty}$ is open if for each $n \ge 0$ the set $U \cap S^n$ is open in S^n .

The space S^{∞} has a CW complex structure where S^n is the *n*-skeleton of S^{∞} .

2.18 Proposition. S^{∞} is a contractible space.

Proof. Let $x_0 \in S^0 \subseteq S^\infty$. We can assume that S^∞ has a CW complex structure such that x_0 is a 0-cell. By Lemma 2.16 it will suffice to construct functions $f_n \colon S^\infty \to S^\infty$ for $n \ge 0$ such that

- 1) $f_{-1} = id_{S^{\infty}}$
- 2) $f_n|_{S^n} = x_0$ for all $n \ge 0$
- 3) $f_n \simeq f_{n-1}$ (rel S^{n-1}) for all $n \ge 0$

We will construct functions f_n by induction with respect to n. Assume that we already have a function f_n satisfying the above properties. This, in particular, means that $f_n|_{S^n}=x_0$. We want to get a function f_{n+1} such that $f_{n+1}|_{S^{n+1}}=x_0$ and $f_n\simeq f_{n+1}$ (rel S^n). By Theorem 2.11, the function f_n is homotopic (rel S^n) to a cellular function $g\colon S^\infty\to S^\infty$. The function g restricts to a map $g|_{S^{n+1}}\colon S^{n+1}\to S^{n+2}\subseteq S^\infty$. Using Corollary 2.12 we obtain that there exists a homotopy $h\colon S^{n+1}\times [0,1]\to S^\infty$ between $g|_{S^{n+1}}$ and the constant map to x_0 . We can choose this homotopy so that it is relative to S^n . By Theorem 2.14 we can extend h to a homotopy $\bar{h}\colon S^\infty\times [0,1]\to S^\infty$. Take $f_{n+1}=\bar{h}_1$.