STA 674

Regression Analysis And Design Of Experiments
Fitting Simple Linear Regression Models – Lecture 9

Fitting Simple Linear Regression Models

- Last time: we shook the cobwebs loose on significance (or hypothesis) testing by looking at the major concepts and doing an example for the population mean
- This time, we'll give the setup for the population slope in the linear regression setting (and talk about how you *could* do it for the intercept, but it's not often done.)

Fitting Simple Linear Regression Models

Significance test for the population slope (Testing that $\beta_1 \neq \beta_1^*$)

- Hypotheses: $H_0: \beta_1 = \beta_1^*$ vs. $H_a: \beta_1 \neq \beta_1^*$
- Test Statistic: $t = (b_1 \beta_1^*)/s_{b_1}$
- Critical Values: $\pm t_{\alpha/2,n-2}$
- Rule: Reject H_0 and conclude that $\beta_1 \neq \beta_1^*$ at the α level of significance if $t < -t_{\alpha/2,n-2}$ or $t > t_{\alpha/2,n-2}$. Otherwise, we fail to reject H_0 .
- **P-value**: $2 \times P(|t| > t_{n-2})$ =Probability that t_{n-2} is "farther away from 0" than TS t.

Beta 1 = parameter of interest

H0 = null hypothesis = Beta1=0

Ha = alternative hypothesis = beta 1 does not equal 0: two tail test

n=60

df = 58 (we're estimating two parameters - slope

to Z distribution

STA 674, RADOE:

t = (15.1-0) / 6.4 = 2.35

critical value = \pm 2.002 (from t-distribution with df=58)

t falls within rejection region (beyond critical value)...so

reject null hypothesis

P value = 0.022 (plotting t on t-distribution...doubling because two tail test...

and intercept...so it's n-2); also because df is so high...it's close Fitting Simple Linear Regression Models

Test statistic and P suggest that mortality does change with nitrous oxide potential

Example: Significance test for the population slope: air pollution and mortality

The following plot depicts mortality rates in 60 US cities versus the nitrous oxide potential (NOxPot). Is there evidence that mortality changes with

differing NOxPot? Use $\alpha = 0.05$.

$$n = 60$$

$$n = 60$$
 $b_0 = 905.6$ $s_{b_0} = 16.7$ $s_e = 59.96$ $b_1 = 15.1$ $s_{b_1} = 6.4$

$$s_{b_0} = 16.7$$

$$s_e = 59.96$$

$$b_1 = 15.1$$

$$s_{b_1} = 6.4$$

Recall:
$$b_1 \sim \text{Normal}\left(\beta_1, \frac{s_e^2}{(n-1)s_x^2}\right)^*$$

Fitting Simple Linear Regression Models

Example: Significance test for the population slope: air pollution and mortality

SAS code and output:

```
PROC REG DATA=NOXPOT;
```

MODEL mortality = lognoxpot / CLB;

RUN;

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits
Intercept	1	905.61317	16.67218	54.32	<.0001	872.24018	938.98616
lognoxpot	1	15.09896	6.41871	2.35	0.0221	2.25052	27.94741

Fitting Simple Linear Regression Models

Tests for β_0 :

- Tests can also be conducted for the intercept—but this is usually of less interest.
- To conduct a test for the intercept you simply need to replace:
 - β_1 with β_0 ,
 - b_1 with b_0 ,
 - β_1^* with β_0^* , and
 - S_{b_1} with S_{b_0}
- in the formulas on the previous slides.