

HACETTEPE UNIVERSITY

BBM 411: Fundamentals of Bioinformatics - 2022 FALL

Assignment 2

TUNCA DOĞAN

Student name: Ataberk ASAR Student Number: 2210356135

1 Question 1

- (a) 2 axes represent torsional angles of amino acids contained in a protein molecule. They are important since the used the describe the 3d structure of the proteins, and in Ramachandran plot, they show what Ψ and Φ angles are possible for said protein structure.
- (b) Protein structures are made out of amino acids forming peptide bonds. The secondary structure is determined by the dihedral angles of the peptide bonds. The tertiary structure is determined by the folding of protein chains in 3d space.
- (c) The term is used to describe similarities in protein sequences. They are important to show shared biological functions and evolutionary connections between protein families.
- (d) DNA sequencing is such a procedure, that is used determine order of nucleotides in a DNA molecule. Process fragments DNA molecules into smaller pieces and sequences each fragment separately. It is generally less expensive since it requires fewer steps than protein sequencing.

2 Question 2

Note that python used to obtain these results. Hits:

3 0 1 ${\tt MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDI}$ seq: alpha: * *** ******* beta: *** seq: EQWFTEDPGPDEAPRMPEAAPPVAPAPAPAPAPAPAPAPSWPLSSSVPSQ alpha: ** beta: *** seq: KTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDST alpha: ****** *** beta: ***** **** ***** seq: PPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGN alpha: beta: seq: LRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRP alpha: * beta: *** *** ***** ** ILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP seq: alpha: **** **** beta: **** **** *** PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALEL seq: alpha: **** beta: ***** KDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD seq: alpha: **** *** ***** beta: ***

After extending regions:

	0	1		2			3		4	Į	
seq:	MEEPQSE	PSVEPPI	SQETFS	DLW	/KL	LPEN	NVL	SPLPS	SQAMI	DDLML	SPDDI
alpha:	****	***	*****	***	**	***	***	***	****	****	****
beta:	****	***	*****	***	**	****	***	****	****	****	****
turn:	** *	*				*		* *	**	;	* *
seq:	EQWFTEI	OPGPDEA	PRMPEA	APP	VA]	PAPA	APT	PAAP	APAPS	WPLSS	SVPSQ
alpha:	*****	**	*****	<***	**	***	***	***	****	****	****
beta:	*****									****	****
turn:	*	*				*			* *	**	*
seq:	KTYQGSY	GFRLGFL	HSGTAK	SVT	CTY	YSPAL	NKN	/IFCQI	AKTC	PVQLV	VVDST
alpha:	****	*****	:			***	***	***	****	****	* *
beta:	*****	*****	*****	***	**	****	***	****	****	****	****
turn:	****		*		*	*					*
seq:	PPPGTRV	RAMAIYI	KQSQHM	TEV	VRF	RCPHI	ERO	CSDSD	GLAPI	PQHLIF	RVEGN
alpha:	**	*****	*****	***	:				***	****	****
beta:	**	*****	*****	***	**	****	***		***	****	****
turn:	**					*	*	***			
seq:	LRVEYLD	DRNTFRE	ISVVVPY	EPP.	EVO	GSDCI	ПП	YNYN	ICNSS(CMGGN	INRRP
alpha:	*****	*****	*****	***	**			***	****	****	****
beta:	*****	***	*****	***	**	***	***	***	****	****	****
turn:	**	*		*		**		*	***	* *	*
seq:	ILTITLEI	OSSGNLLC	GRNSFEV	/RV	CAC	CPGR1	DRR	TEEE	NLRK	KGEPI	HELP
alpha:	*****	* **	*****	***	**	*		***	****	****	***
beta:	*****	*	*****	***	**	**	*	***	***		
turn:		***	*		*	***	*		**	*	**
seq:	PGSTKRA	LPNNTSS	SPQPKK	KPL	DG	EYFT	LQII	RGRE	RFEMI	FRELN	EALEL
alpha:	***	****	****	***	**	****	***	***	****	****	****
beta:				*	**	****	***	***	****	****	****
turn:	***	*****	* **		*						
seq:	KDAQAGI	ÆPGGSR.	AHSSHLK	SKK	G Q	STSRF	IKK	LMFK	TEGPI	OSD	
alpha:	*****	*	*****	***	**	***	***	***	**		
beta:	*****	*					*	***	**		
turn:		****	**	**	*	* *			**		

After overlap treatments:

	0 1 2 3 4
seq:	MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDI
alpha:	********************************
beta:	
turn:	** * * * * * **
seq:	EQWFTEDPGPDEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQ
alpha:	*****
beta:	
turn:	* * * * * * *
seq:	KTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDST
alpha:	**
beta:	****** ****** ********
turn:	**** * * * *
seq:	PPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGN
alpha:	
beta:	*************
turn:	** * ***
seq:	LRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRP
alpha:	
beta:	***** ****** ****
turn:	*** * ** * *** * **
seq:	ILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP
alpha:	
beta:	*****
turn:	*** * * *** * * ** * * ** DOCUTED A L DAINTECCEDODIZIZZOLD DOCUMENTO OLD CODED DE MEDIEN MEDIEN LE A L EL
seq:	PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALEL
alpha: beta:	
turn:	***
	KDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD
seq: alpha:	OCO JEST I LIMITATINI CONTRICATINICA PARACALI
beta:	
turn:	**** ** ** * *
ourn.	יייי ייייי ייייי אייייי אייייייייייייי

Prediction:		
TT_TTHHHHHHH		Г ТТИННИНТТИН
—————————————————————————————————————		
HHTTTTEEEEEEEETEEEE	EEET TEEEEEE	EEEEEEEEEEET
TTEEEEEEEEEEEEEE	EEEEETEEEEETTT	T EEEEEEEEEEE
EEEEETTT EEEEEEEEE	ET TTEEEEET	TTT T T TEEE
EEEEEEETTTT_ TTTTTTTTT_T_TT_	T TTT T	TT TT TT
TTT TTTTTT T	T	
TTTTTT	TT_T_T_T	TT
True Labels:		
HHHH_TTTF		
τπππππτ		
nnnnn TTTT_EEEE	EETTTEEEETTTTEE	EEEEEEEE_EE
E EEEE TT EEEEE		EEEEEEEEE
EEEE_TTTEEEEEE		DEEHHHTTTTTT_
_EEEEEEE_EEE_EEEEEE	EEEEHHHHHHH	
НННН	HHHHHH	
Confusion Matrix:		
20 7 13		
3 53 14		
0 13 6		

recall

0.500

0.757

0.316

f1-score

0.635

0.741

0.231

 ${\tt accuracy} \;:\; 0.612$

precision

0.870

0.726

0.182

Η

Е

Τ

3 Question 3

(a) Transition Matrix:

[0.905212	0.008710	0.086078]
[0.036419	0.810262	0.153319
[0.138269	0.195079	0.666652]

Emission Matrix:

Note that transpose of emission matrix given in order to fit it into the page.

[0.086532	0.046444	0.047183
0.047693	0.036164	0.036065
[0.025190]	0.019383	0.050506
[0.039027]	0.024453	0.062136
[0.007488]	0.010399	0.006947
[0.072084]	0.285287	0.051891
[0.037294]	0.021803	0.026560
[0.050490]	0.035652	0.124552
[0.215385]	0.017750	0.019925
[0.046701]	0.075349	0.019691
[0.094096]	0.079416	0.042847
[0.051509]	0.035461	0.047318]
[0.031303]	0.035401 0.015803	0.010401
[0.013331]	0.013303 0.043282	0.010401 0.022296
[0.031447]	0.045232 0.015731	0.022230]
[0.037402	0.037108	0.155632
[0.032365]	0.048548	0.174939
[0.011798]	0.013276	0.007234
[0.048256]	0.101823	0.025771]
[0.026316]	0.036867	0.020006]

Pi:

[0.47154485, 0.27856788, 0.24988727]

Forward algorithm used to compute the probability of the sequence being emitted from this HMM.

Prob: 7.56e-225

Viterbi algorithm used to find most probable path, ie. predictions.

Prediction:

True Labels:

(b) Confusion Matrix:

$$\begin{vmatrix}
33 & 13 & 5 \\
28 & 36 & 28 \\
15 & 8 & 3
\end{vmatrix}$$

	precision	recan	11-score
Н	0.434	0.647	0.520
Ε	0.632	0.391	0.483
Τ	0.083	0.115	0.097

accuracy: 0.426

(c) As one can see Chou-Fasman method outperforms our HMM. One reason is that HMM model tends to predict alpha helix much more than other secondary structures, thus prediction has large alpha helix regions. Performance can be improved by using better datasets suitable for this task.