# 日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

12.09.00

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1999年 8月 6日

REC'D 27 OCT 2000

WIPO

PCT

出 頤 番 号 Application Number:

平成11年特許顯第224191号

出 頓 人 Applicant (s):

アルプス電気株式会社 油化電子株式会社 三菱化学株式会社 7200/05257

09/806992;

RU



# PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年10月13日

特 許 庁 長 官 Commissioner, Patent Office 及川耕



出証番号 出証特2000-3083100

#### 特平11-224191

【書類名】

特許願

【整理番号】

J04053

【提出日】

平成11年 8月 6日

【あて先】

特許庁長官

殿

【国際特許分類】

H01L 21/68

【発明の名称】

電子部品取り扱い用ポリカーボネート成形体

【請求項の数】

10

【発明者】

【住所又は居所】

東京都大田区雪谷大塚町1番7号 アルプス電気株式会

社内

【氏名】

田中 繁

【発明者】

【住所又は居所】

三重県四日市市大治田三丁目3番17号 油化電子株式

会社 四日市工場内

【氏名】

浅野 悦司

【発明者】

【住所又は居所】

三重県四日市市東邦町1番地 三菱化学株式会社 四日

市事業所内

【氏名】

田中 智彦

【発明者】

【住所又は居所】

三重県四日市市東邦町1番地 三菱化学株式会社 四日

市事業所内

【氏名】

驚坂 功一

【特許出願人】

【識別番号】

000010098

【氏名又は名称】

アルプス電気株式会社

【特許出願人】

【識別番号】

393032125

【氏名又は名称】

油化電子株式会社

【特許出願人】

【識別番号】

000005968

【氏名又は名称】 三菱化学株式会社

【代理人】

【識別番号】 100086911

【弁理士】

【氏名又は名称】

重野 剛

【手数料の表示】

【予納台帳番号】

004787

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

# 【書類名】 明細書

【発明の名称】 電子部品取り扱い用ポリカーボネート成形体

#### 【特許請求の範囲】

【請求項1】 導電性充填材0.25~50重量%を含有するポリカーボネート樹脂組成物を成形してなるポリカーボネート成形体であって、

該ポリカーボネート成形体のヘッドスペースガスクロマトグラムによる測定における、加熱温度 85%、平衡時間 16時間の条件で測定した表面積  $12.6cm^2$ からの塩素化炭化水素発生量が  $0.1\mu$  g / g 以下であることを特徴とする電子部品取り扱い用ポリカーボネート成形体。

【請求項2】 請求項1において、該ポリカーボネート成形体のヘッドスペースガスクロマトグラムによる測定における、加熱温度85℃、平衡時間16時間の条件で測定した表面積12.6 c  $m^2$ からの総アウトガス量が1 $\mu$ g/g以下で、塩化メチレン発生量が0.1 $\mu$ g/g以下でかつ炭化水素発生量が0.5 $\mu$ g/g以下であることを特徴とする電子部品取り扱い用ポリカーボネート成形体。

【請求項3】 請求項1又は2において、該導電性充填材が、DBP吸油量 100cc/100g以上の炭素系導電性物質であることを特徴とする電子部品 取り扱い用ポリカーボネート成形体。

【請求項4】 請求項1ないし3のいずれか1項において、該導電性充填材が、直径100nm以下で、長さ/径比が5以上の炭素フィブリルであることを特徴とする電子部品取り扱い用ポリカーボネート成形体。

【請求項 5 】 請求項 1 ないし 4 のいずれか 1 項において、該ポリカーボネート成形体の表面抵抗値が 1 0  $^3$   $\sim$  1 0  $^{12}$   $\Omega$  であることを特徴とする電子部品取り扱い用ポリカーボネート成形体。

【請求項6】 請求項1ないし5のいずれか1項において、ポリカーボネート樹脂として、温水滴下精製されたポリカーボネート樹脂を用いたことを特徴とする電子部品取り扱い用ポリカーボネート成形体。

【請求項7】 請求項1ないし6のいずれか1項において、ポリカーボネート樹脂として、無溶媒重合法により得られたポリカーボネート樹脂を用いたこと

を特徴とする電子部品取り扱い用ポリカーボネート成形体。

【請求項8】 請求項1ないし7のいずれか1項において、ポリカーボネート樹脂組成物の溶融混練時又は溶融成形時に、真空脱気を行ったことを特徴とする電子部品取り扱い用ポリカーボネート成形体。

【請求項9】 請求項1ないし8のいずれか1項において、成形後に80~ 140℃の温度で30分~20時間アニールしたことを特徴とする電子部品取り 扱い用ポリカーボネート成形体。

【請求項10】 請求項1ないし9のいずれか1項において、ハードディスクドライブ磁気ヘッド用キャリアであることを特徴とする電子部品取り扱い用ポリカーボネート成形体。

# 【発明の詳細な説明】

[0001]

#### 【発明の属する技術分野】

本発明は、ハードディスクドライブ用の磁気ヘッドを搭載し、加工、洗浄、移送、保管等を行うトレー型やケース型等のキャリアをはじめ、電子部品の組立の際のピックアップ用部品、テーブル、押さえ治具、洗浄槽、作業工具などの組立用治工具、さらにはハードディスクドライブのシャーシ、磁気ヘッド軸受け部品などの構成部品として好適な電子部品取り扱い用ポリカーボネート樹脂成形体に係り、特に、磁気抵抗効果型ヘッドのキャリアとして好適な電子部品取り扱い用ポリカーボネート樹脂成形体に関する。

[0002]

#### 【従来の技術】

ハードディスクの高密度化、高容量化のために磁気抵抗型ヘッドが用いられるようになってきた。従来の薄膜ヘッドが信号磁界がコイルに接近する際に発生する電流によって信号を検知するのに対して、この磁気抵抗効果型ヘッド(MRヘッド)は、MR素子に微弱なセンス電流を流し、信号磁界を電流の抵抗値によって検出するものであり、その機構により、検出感度が飛躍的に向上し、メディアの狭トラック化で大容量化が可能とされる。最近ではさらに大容量化を狙ったGMRヘッドも用いられている。

[0003]

このMRヘッドやGMRヘッドは、微量の腐食性ガスや、微少のノイズ電流などのコンタミネーションに対して極めてデリケートである。このため、これらのヘッドを搬送するためのキャリアをはじめとして、各種の取り扱い用部品や治具についても、ヘッドを汚染させないための要求性能が厳しくなってきている。

[0004]

従来の磁気ヘッド用キャリアは、ポリカーボネート樹脂に炭素繊維を配合して なる樹脂組成物を成形することにより製造されている。

[0005]

ここで使用されるポリカーボネート樹脂は、通常、二価フェノールのアルカリ 水溶液と、ホスゲンとを有機溶媒の存在下にて反応させる溶液法により製造され ており、かかる方法によれば、ポリカーボネート樹脂はその有機溶媒溶液として 得られる。この有機溶媒としては、塩化メチレン、クロロホルム、四塩化炭素などの塩素化脂肪族炭化水素、クロロベンゼン、クロロトルエンなどの塩素化芳香 族炭化水素が使用されており、中でも塩化メチレンが最も一般的に使用されている。

[0006]

ポリカーボネート樹脂は、得られたポリカーボネート樹脂溶液から、溶媒相を蒸発除去して分離精製することにより得られるが、この際、塩化メチレンに代表される有機溶媒がポリカーボネートとの親和力に優れるため、微量ではあるが樹脂中に残留することとなる。そして、樹脂中に残留した塩化メチレンは、成形加工を経て最終成形品である磁気ヘッド用キャリアとしての使用時に揮発成分として発生する。

[0007]

従来の電子部品用キャリアにおいて腐食性揮発成分として懸念されていた物質は、主に塩酸やクロルイオンなどのイオン性物質であったが、MR素子、GMR素子など腐食に対して極めて敏感な高密度磁気ヘッドにおいては、塩化メチレンのようなクロルイオンの前駆体であっても問題が生じるようになってきている。

[0008]

また、アルコール、ケトン類などのその他の揮発性成分に関しても磁気ヘッド に対する安全性は必ずしも確認されておらず、このため磁気ヘッド用キャリアに 対しては、総アウトガス量そのものも少ないことが要求されてきている。

[0009]

#### 【発明が解決しようとする課題】

本発明は上記従来の実情に鑑みてなされたものであって、腐食による磁気ヘッドの損傷の危険性の少ない磁気ヘッド用キャリア等の電子部品取り扱い用ポリカーボネート成形体を提供することを目的とする。

[0010]

#### 【課題を解決するための手段】

本発明の電子部品取り扱い用ポリカーボネート成形体は、導電性充填材 0. 2  $5\sim5$  0 重量%を含有するポリカーボネート樹脂組成物を成形してなるポリカーボネート成形体であって、該ポリカーボネート成形体のヘッドスペースガスクロマトグラムによる測定における、加熱温度 85  $\mathbb C$ 、平衡時間 16 時間の条件で測定した表面積 12.6  $\mathbb C$   $\mathbb C$ 

#### [0011]

ヘッドスペースガスクロマトグラムによる測定における、加熱温度85℃、平衡時間16時間の条件で測定した表面積12.6cm<sup>2</sup>からの塩素化炭化水素発生量(以下単に「塩素化炭化水素発生量」と記す。)が0.1 μg/g以下であるような、揮発成分の発生量の少ないポリカーボネート成形体であれば、磁気ヘッドの腐食による損傷の問題を排除することができる。

#### [0012]

本発明のポリカーボネート成形体は、特に、ヘッドスペースガスクロマトグラムによる測定における、加熱温度 85%、平衡時間 16時間の条件で測定した表面積  $12.6 \text{ cm}^2$ からの総アウトガス量(以下単に「総アウトガス量」と記す。)が  $1 \mu \text{ g}/\text{g}$ 以下で、塩化メチレン発生量(以下単に「塩化メチレン発生量」と記す。)が  $0.1 \mu \text{ g}/\text{g}$ 以下でかつ炭化水素発生量(以下単に「炭化水素

発生量」と記す。)が  $0.5 \mu g/g$ 以下であることが好ましい。

[0013]

また、本発明において用いる導電性充填材は、DBP吸油量100cc/100g以上の炭素系導電性物質、特に直径100nm以下で、長さ/径比が5以上の炭素フィブリルであることが好ましい。

[0014]

本発明の電子部品取り扱い用ポリカーボネート成形体はまた、表面抵抗値が  $10^3\sim 10^{12}\Omega$  であることが好ましい。

[0015]

このような本発明の電子部品取り扱い用ポリカーボネート成形体は、次の(A)~(D)の手法を採用することにより容易に実現することができる。

- (A) ポリカーボネート樹脂として、温水滴下精製されたポリカーボネート樹脂を用いる。
- (B) ポリカーボネート樹脂として、無溶媒重合法により得られたポリカーボネート樹脂を用いる。
- (C) ポリカーボネート樹脂組成物の溶融混練時又は溶融成形時に、真空脱気を行う。
  - (D) 成形後に80~140℃の温度で30分~20時間アニールする。

[0016]

このような本発明の電子部品取り扱い用ポリカーボネート成形体の用途としては特に制限はなく、前述の各種の電子部品取り扱い用品に適用可能であるが、本発明のポリカーボネート成形体は、特にハードディスクドライブ磁気ヘッド用キャリア、とりわけMRヘッド又はGMRヘッドのキャリアとして好適である。

[0017]

【発明の実施の形態】

以下に本発明の実施の形態を詳細に説明する。

[0018]

本発明の電子部品取り扱い用ポリカーボネート成形体は、ヘッドスペースガスクロマトグラムにより、例えば、下記測定方法で測定した塩素化炭化水素発生量

が 0. 1 μg/g以下のものである。

[0019]

#### <発生ガス量測定方法>

ポリカーボネート成形体より切り出した分析サンプル(22mm(長さ)×10mm(幅)×3mm(厚さ))2ピース(総表面積12.6cm<sup>2</sup>)を、容量22mLのバイヤル中で、内標としてn-オクタンを10μL添加して、加熱温度85℃、平衡時間16時間の条件でガスを抽出した後、ガスクロマトグラム(GC)にて測定し、イオンクロマトグラムにおけるn-オクタンとの面積比より発生量を算出する。ただし、分析サンプルの形状は上記長さ、幅、厚さに何ら制限されず、また、分析サンプルの総表面積が異なる場合には、12.6cm<sup>2</sup>に換算すれば良い。

#### [0020]

この塩素化炭化水素発生量が 0. 1 μg/g以下であればヘッドへの悪影響は極めて少ない。塩素化炭化水素発生量は、望ましくは 0. 0 2 μg/g以下である。

#### [0021]

また、ヘッドへの悪影響を考慮した場合、総アウトガス量は $1 \mu g/g$ 以下、特に $0.5 \mu g/g$ 以下、塩化メチレン発生量は $0.1 \mu g/g$ 以下、炭化水素発生量は $0.5 \mu g/g$ 以下、特に $0.2 \mu g/g$ 以下であることが望ましい。なお、この炭化水素とは、後述のポリカーボネート樹脂の製造において使用されるn-ヘプタンや、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン等である。

# [0022]

本発明において、導電性充填材を含有するポリカーボネート樹脂組成物を成形 することにより、このようなガス発生量のポリカーボネート成形体を得る方法に ついて、以下に説明する。

#### [0023]

本発明において、ポリカーボネート樹脂としては、例えば界面重合法、ピリジン法、クロロホーメート法などの溶液法により、二価フェノール系化合物をホス

ゲンと反応させることによって製造される一般的なものを使用できる。この場合、ポリカーボネート成形体からの揮発成分となる、重合溶媒として用いた塩化メチレンなどの塩素化炭化水素等を、得られるポリカーボネート成形体に残留させない方法としては、例えば以下の(A),(C),(D)の方法が挙げられる。また、下記(B)の如く、溶媒を用いない方法で製造されたポリカーボネート樹脂を用いる方法も有効である。

#### [0024]

- (A) 塩素化炭化水素溶液として得られたポリカーボネート樹脂を精製するに当り、ポリカーボネート樹脂の水懸濁液を得、これを濾過や遠心分離等により湿潤粉末を得る。例えば、ポリカーボネートの塩化メチレン溶液に、nーヘプタンなどのポリカーボネート樹脂の貧溶媒(ポリカーボネートが溶解しないか、溶解しても僅かな溶媒)を沈殿が生じない程度添加してなる樹脂液を、温水中に滴下し、適宜湿式粉砕を行いながら貧溶媒を留去する(以下、この方法を「温水滴下精製」と記す。)。このとき、80~100℃に加熱しながら貧溶媒を留去する際、腐食性の揮発性ガスの原因となる塩化メチレン等の塩素化炭化水素が効率よく除去される。
- (B) 重合溶媒を使用しない重合方法により得られたポリカーボネート樹脂(例えば、特開平4-103626号公報等に開示されたポリカーボネート樹脂)を使用する。
- (C) 溶融混練又は溶融成形に当り、真空脱気する。例えば、通常の精製方法、或いは上記(A)法又は(B)法により得られたポリカーボネート樹脂をベント付き押し出し機に供給して、ベントより真空脱気することにより、溶媒を除去する。この際、特開平9-29738号公報に記載されるように、原料粉末或いは溶融状態の樹脂に水を添加すると、残存溶媒の除去の点で好適である。
- (D) 通常の精製方法或いは、上記(A)~(C)の方法より得られたポリカーボネート樹脂を使用した樹脂組成物を用いて、所定形状に成形したポリカーボネート成形体を、アニールすることによって揮発成分を除去する。この場合、アニール処理は、80℃以上の温度で30分以上行うのが好ましい。このアニール処理温度が140℃を超えるとポリカーボネート成形体の寸法変化や変形を引き

起こす可能性があり、また、アニール処理時間が20時間を超えても揮発成分の 除去効果の向上は望めないことから、アニール処理は80~140℃で30分~ 20時間とするのが好ましい。

[0025]

なお、上記(A)~(D)の方法のうち、(A)法では、塩素化炭化水素は低減できるものの、nーヘプタンなどの貧溶媒成分が残留する可能性が高い。nーヘプタンはヘッドを腐食することはないものの、最近のより高密度化されたMR素子においては、ヘッド素子表面への微少なデポジットの危険性が問題とされることから、前述の如く、nーヘプタン等の炭化水素発生量についても、極力抑えることが望まれる。

[0026]

このようなn-ヘプタンや、オリゴマー、その他の低分子量揮発成分も効率的に除去する点からは、特に、(C)法の真空脱気による溶媒除去法が望ましい。この(C)法の押し出し機での真空脱気は、導電性充填材を溶融混練により複合化する際に行っても良いし、この混練前又は混練後に行っても良い。

[0027]

本発明において、導電性充填材としては、導電性を有する、粒子状、フレーク 状、短繊維状などの各種のフィラーを使用することができる。

[0028]

具体的には、アルミニウム、銀、銅、亜鉛、ニッケル、ステンレス、真鍮、チタンなどの金属系フィラー、各種カーボンブラック、黒鉛(人工黒鉛、天然黒鉛)、ガラス状カーボン粒子、ピッチ系炭素繊維、PAN系炭素繊維、グラファイトウィスカー、炭素フィブリル等の炭素系充填材、酸化亜鉛、酸化スズ、酸化インジウム等の金属酸化物系充填材などの導電性充填材が挙げられる。なお、金属酸化物系フィラーのなかでも格子欠陥の存在により余剰電子が生成して導電性を示すものの場合には、ドーパントを添加して導電性を増加させたものを用いても良い。この場合、例えば、酸化亜鉛にはアルミニウム、酸化スズにはアンチモン、酸化インジウムにはスズ等がそれぞれドーパントとして用いられる。また、炭素繊維などに金属をコーティングしたり、チタン酸カリウムウィスカーやホウ酸素繊維などに金属をコーティングしたり、チタン酸カリウムウィスカーやホウ酸

アルミニウムウィスカーの表面に導電性酸化スズを形成した複合系導電性フィラーを使用することもできる。

[0029]

上記導電性充填材の中でも、以下の理由から、DBP吸油量が100cc/100g以上のもの、好ましくは250cc/100g以上のもの、より好ましくは400cc/100g以上のものが望ましい。

[0030]

即ち、DBP吸油量が大きいほど充填材の表面積が大きいことを表しており、従って、一般にDBP吸油量の数値が大きいものほど微細な形状なものとなる。一方、導電性充填材の配合による樹脂の導電性の発現は、導電性充填材同士の連続的な接触による導電経路の形成により、導電性充填材間の距離が10~30Å程度離れた不完全な接触状態においては、充填材間に電子のホッピングによる電気伝導が生じる。このホッピングによる導電性は導電性充填材の内部での導電性に比較して低い。ところで、ポリカーボネート成形体には、後述の如く、表面抵抗値(或いは導電性)が中位に安定していることが望まれる。従って、樹脂内部に導電性充填材の不完全な接触状態を多数形成することにより、樹脂組成物の導電性を中位(例えば10<sup>6</sup>Ω)に安定して得ることが望ましい。DBP吸油量が大きく微細な形状の充填材ほど、このような不完全な接触状態が形成される確率が高いため、本発明では、上述のようなDBP吸油量の大きい導電性充填材を用いるのが好ましい。

[0031]

ところで、前述の導電性充填材としての金属フィラーや、炭素繊維などは、ポリカーボネート樹脂との親和性を補うために、通常はシランカップリング剤などの有機性の表面処理剤によって処理される。しかし、この表面処理剤は低分子量化合物が多く、そのため、得られたポリカーボネート成形体から発生するアウトガスの増加に寄与する場合がある。これに対して、DBP吸油量が100cc/100g以上のカーボンブラック等の炭素系導電性充填材の表面は、一般に極めて活性に富み、表面処理なしでポリカーボネート樹脂とよく親和して良好な分散性を示す。従って、表面処理剤に由来するアウトガスが発生することがない点に

おいても、DBP吸油量の大きい導電性充填材が好適である。

[0032]

このようなDBP吸油量を満足する導電性充填材としては、具体的にはファーネスブラック、アセチレンブラック、ケッチェンブラックなどのカーボンブラックや、炭素フィブリルなどの炭素系導電性物質が挙げられる。

[0033]

本発明においては、このような炭素系導電性物質のなかでも、ポリカーボネート成形体からの導電性充填材の脱落が少ない点で特に炭素フィブリル、とりわけ 繊維径が100nm以下の炭素フィブリルが好ましく、例えば特表平8-508 534号公報に記載されているものを使用することができる。

[0034]

即ち、炭素フィブリルは、当該フィブリルの円柱状軸に実質的に同心的に沿って沈着されているグラファイト外層を有し、その繊維中心軸は直線状でなく、うねうねと曲がりくねった管状の形態を有するため、ポリカーボネート成形体からの脱落が少ない。

[0035]

また、前述の導電性充填材のうち、例えば、一部のカーボンブラックは、イオウなどの原料由来の不純物を微量含んでいる場合があり、これが揮発成分としてポリカーボネート成形体のアウトガス量を増加させる。これに対して、炭素フィブリルは、高純度のエチレンガス等を原料として気相にて生成するために、充填材そのものに含まれる揮発成分も極めて少なく、アウトガスを全く発生しない点で、最も望ましい。

[0036]

なお、炭素フィブリルの繊維径は製法に依存し、分布のあるものであるが、ここで言う繊維径とは顕微鏡観察して5点測定した平均値を指す。炭素フィブリルの繊維径が100nmより大きいと、樹脂中でのフィブリル同士の接触が不十分となり、安定した抵抗値が得られにくい。従って、炭素フィブリルとしては繊維径100nm以下のものが好ましい。

[0037]

特に、炭素フィブリルの繊維径が20nm以下であると、万が一炭素フィブリルがキャリアの表面から脱落し、ヘッド等に付着した場合であっても、作動時のヘッドとハードディスクとのクリアランスは繊維径より比較的大きい(50μm 程度)ため、ディスククラッシュの危険性が低下するので好ましい。

[0038]

一方、炭素フィブリルの繊維径は、0.1 n m以上、特に0.5 n m以上であることが好ましい。繊維径がこれより小さいと、製造が著しく困難である。

[0039]

また、炭素フィブリルは、長さと径の比(長さ/径比、即ちアスペクト比)が 5以上のものが好ましく、特に100以上、とりわけ1000以上の長さ/径比 を有するものが好ましい。なお、この炭素フィブリルの長さ/径比は、透過型電 子顕微鏡での観察において、5点の実測値の平均値によって得られる。

[0040]

また、微細な管状の形態を有する炭素フィブリルの壁厚み(管状体の壁厚)は、通常3.  $5 \sim 7.5$  n m程度である。これは、通常、炭素フィブリルの外径の約0.  $1 \sim 0$ . 4 倍に相当する。

[0041]

炭素フィブリルはその少なくとも一部分が凝集体の形態である場合、原料となる樹脂組成物中に、面積ベースで測定して約50μmより大きい径を有するフィブリル凝集体、望ましくは10μmよりも大きい径を有するフィブリル凝集体を含有していないことが望ましい。

[0042]

このような炭素フィブリルは、市販品を使用することができ、例えば、ハイペリオンカタリシスインターナショナル社の「BN」が使用可能である。

[0043]

本発明において、導電性充填材の添加量はポリカーボネート樹脂組成物中 0. 25~50重量%とする。導電性充填材の添加量が 0. 25重量%未満では十分な導電性が得られず、50重量%を超えると、ポリカーボネート樹脂組成物の成

形性が著しく低下する。

#### [0044]

特に、導電性充填材が炭素フィブリル等の炭素系導電性充填材の場合、その添加量はポリカーボネート樹脂組成物中1~8重量%とするのが好ましい。添加量がこれよりも少ないと導電性が発現しにくく、一方これより多く添加しても増量に見合う効果の向上は認められず、むしろポリカーボネート成形体からの粉塵の発生が見られると共に成形性も低下することとなる。

#### [0045]

本発明では、導電性充填材として、高分子型の帯電防止剤を使用することもできる。この場合、例えば、ポリエーテル、4級アンモニウム塩、スルホン酸塩等の導電性単位をブロックもしくはランダムに組み込んだ高分子や、特開平1-259051号公報に記載されているような、ホウ素原子を分子中に有する高分子電荷移動型結合体などが使用できる。

#### [0046]

特に、高分子型帯電防止剤のなかでも、ポリエーテル系高分子帯電防止剤が耐熱性の点で望ましい。具体的には、ポリエチレンオキシド、ポリエーテルエステルアミド、ポリエーテルアミドイミド、エチレンオキシドーエピハロヒドリン共重合体、メトキシポリエチレングリコールー(メタ)アクリレート共重合体等、好ましくは、ポリエーテルエステルアミド、ポリエーテルアミドイミド、より好ましくはポリエーテルエステルアミドが挙げられる。

#### [0047]

このような高分子型帯電防止剤の添加量は、ポリカーボネート樹脂組成物中に 1~50重量%、特に5~30重量%とするのが好ましい。

#### [0048]

上述の各種導電性充填材は、1種類を単独で使用しても、2種以上のものを組 み合わせて使用しても良い。

#### [0049]

本発明に係るポリカーボネート樹脂組成物には、必要に応じて、本発明の目的を損なわない範囲で各種の添加成分を配合することができる。例えば、ガラス繊

維、シリカ繊維、シリカ・アルミナ繊維、チタン酸カリウム繊維、ほう酸アルミニウム繊維等の無機繊維状強化材、アラミド繊維、ポリイミド繊維、フッ素樹脂繊維等の有機繊維状強化材、タルク、炭酸カルシウム、マイカ、ガラスビーズ、ガラスパウダー、ガラスバルーン等の無機充填材、フッ素樹脂パウダー、二硫化モリブデン等の固体潤滑剤、パラフィンオイル等の可塑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、相溶化剤、防曇剤、アンチブロッキング剤、スリップ剤、分散剤、着色剤、防菌剤、蛍光増白剤等といった各種添加剤を配合することができる。

#### [0050]

また、本発明に係るポリカーボネート樹脂組成物には、本発明の目的を損なわない範囲で各種の樹脂をブレンドして用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等の脂肪族ポリオレフィンや脂環族ポリオレフィン、芳香族ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、各種ポリアミド(ナイロン6、66、ナイロン610、ナイロンMXD6等)、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルケトン、アクリル系樹脂、スチレン系樹脂、変性ポリフェニレンエーテル、液晶性ポリエステル等の非オレフィン系樹脂をブレンドすることができる。更に、スチレン系エラストマー(スチレンーブタジエン共重合体等)、オレフィン系エラストマー(エチレンープロピレン共重合体等)、ポリエステルエラストマー、ポリウレタンエラストマー、ポリアミドエラストマーなどの各種の熱可塑性エラストマーを併用添加しても良い。

#### [0051]

本発明の電子部品取り扱い用ポリカーボネート成形体の製造方法には、特に制限はなく、通常の熱可塑性樹脂の加工方法で製造できる。例えば、ポリカーボネート樹脂に導電性充填材を予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押し出し機、二軸混練押し出し機、ニーダーなどで溶融混練することによってポリカーボネート樹脂組成物を製造することができ、その後、各種の溶融成形法により、この樹脂組成物を所定形状に成形してポリカーボネー

ト成形体を得ることができる。この成形法としては、具体的には、プレス成形、押し出し成形、真空成形、ブロー成形、射出成形などを挙げることができる。これらの成形法の中でも、特に射出成形法、真空成形法が望ましい。

#### [0052]

射出成形法としては、一般的な射出成形法の他に、インサート射出成形法による金属部品その他の部品との一体成形や、二色射出成形法、コアバック射出成形法、サンドイッチ射出成形法、インジェクションプレス成形法等の各種成形法を用いることができる。射出成形においては、樹脂温度、金型温度、成形圧力によって得られるポリカーボネート成形体の表面抵抗値が変化するので、目的に応じて適切な条件を設定する必要がある。

#### [0053]

ところで、MRヘッドはMR素子の微少電流(センス電流)の抵抗変化により 磁気を感知するという機構によるため、微弱なノイズ電流でもMR素子を損傷さ せてしまう危険性が大きい。このため、磁気ヘッドのトレーとの電位差に起因す る静電気放電や、ヘッドとトレーとの接触により生じる接触電流に対して、従来 の集積型磁気ヘッドやICに比べて遙かにデリケートである。

#### [0054]

即ち、MRへッドの組み付け工程においては、ヘッドチップにリード線が結線され、このヘッドチップがジンバルに組み付けられる。このリード線(金属線)にはポリイミドが被覆されているが、ポリイミドと金属線との接触電位差に起因して接触部は常に電荷分離した、電気的に不安定な状態にある。この結果、リード線先端が磁気ヘッドのトレー等に接触した際、接触部における電荷のやりとりがより生じ易くなり、損傷の危険性が高くなる。

#### [0055]

従来の磁気ヘッド用キャリアの表面抵抗値は10<sup>1</sup>~10<sup>2</sup>Ω/□程度であり、 静電気放電によるヘッドの損傷の危険性はないものの、キャリアの表面抵抗が低 すぎることによる、ヘッドとキャリア間、または周辺部品とキャリア間の過度な 接触電流による損傷が深刻な問題となっている。 [0056]

このような問題を回避するために、本発明の電子部品取り扱い用ポリカーボネート成形体は、その表面抵抗値が2探針プローブを用いた測定において、 $10^3$   $\sim 10^{12} \Omega$ 、特に $10^4 \sim 10^{11} \Omega$ 、とりわけ $10^5 \sim 10^{10} \Omega$ であることが好ましい。表面抵抗値がこの範囲であると、帯電防止性に優れるだけでなく、ポリカーボネート成形体との接触における過大な接触電流が防止できるため、電子部品への損傷が少ない。

[0057]

なお、一般に表面抵抗値とは、測定サンプルの厚みや幅方向への電流の回り込みを考慮して、抵抗値を形状要因で換算することにより(Ω/□)の単位で得られるが、本発明の電子部品取り扱い用ポリカーボネート成形体のように複雑な形状の場合、この換算が極めて困難である。一方、実用においては、形状を含んだ上での見かけの抵抗値が重要であり、必ずしも形状で換算された単位(Ω/□)を用いる必要はない。従って、本発明においては、上記表面抵抗値、Ω)で評価する。

[0058]

#### 【実施例】

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。

[0059]

なお、以下の実施例及び比較例において、二軸混練押し出し機としては、池貝 鉄鋼社製「PCM45」L/D=32(L;スクリュー長、D;スクリュー径) を用い、バレルは、先端より4.4Dから5.8Dの部分にベント開口部を有す る形状とした。

[0060]

また、ポリカーボネート樹脂組成物から成形したトレイの形状及び寸法は、図1 (斜視図)及び図2(a)(平面図)、(b)(図2(a)のB-B線に沿う断面図)に示す通りである。図中、1はトレイ本体、2は位置決めリブ、3は位置決めボス、4は磁気ヘッドをそれぞれ示す。

[0061]

#### 実施例1

ピスフェノールAより製造したポリカーボネート樹脂の塩化メチレン溶液を精製し、樹脂濃度20重量%の溶液とした。この樹脂溶液200リットルに、n- ヘプタン40リットルを加え均一に混合した後、温水中に滴下しつつ湿式粉砕器で粉砕した。この温水滴下精製における滴下中の容器内の液温度は40 $^{\circ}$ 、内圧は0.1 Kg/c  $m^2$ に調整した。

[0062]

滴下終了後、容器内温度を100℃まで昇温し、約15分間で溶媒を蒸発除去し、得られたポリカーボネート樹脂の水スラリー液を取り出し、濾過、水切りをした後、140℃にて乾燥を行い、ポリカーボネート樹脂の粉末を得た。

[0063]

得られたポリカーボネート樹脂に、平均繊維径7μm、平均繊維長6mmのエポキシ表面処理されたPAN系炭素繊維を組成物中に10重量%配合して、二軸混練押し出し機によりベント開放状態にて300℃の温度でスクリュー回転数100RPM、吐出量30Kg/hの条件で混練して樹脂組成物ペレットを得た。

[0064]

得られたペレットを射出成型機にて、300  $\mathbb{C}$  の成形温度にて成形して図示の磁気ヘッド用トレイ (総表面積420.8  $\mathrm{cm}^2$ ) を得た。

[0065]

得られたトレイの表面抵抗値を下記の方法で測定し、結果を表1に示した。なお、表面抵抗値は、図2(a)の斜線を付した範囲の任意の5ヶ所で測定し、平均値を算出した。

[0066]

<表面抵抗値測定方法>

2探針プローブで、プローブ先端: 2 m m ø、プローブ中心間距離: 2 0 m m にて下記プローブ間印可電圧にて測定した。

表面抵抗値が $10^3\Omega$ 以上 $10^9\Omega$ 未満の場合: 10V

表面抵抗値が $10^9$ Ω以上の場合 : 100V

ただし、表面抵抗値 $10^8\Omega$ 以上の測定には、プローブ先端を $5 mm\phi$ として、さらに厚み2 mmt、直径 $5 mm\phi$ 、 $10 \Omega cm$ 以下の導電性シリコンゴムをアセンブリして、サンプル表面との密着が安定するようにして測定した。

[0067]

また、測定機としては次のものを用いた。

表面抵抗値 $10^2$ Ω以上、 $10^4$ Ω未満の場合:アドバンテスト社製「高抵抗計 R 8 3 4 0 I

表面抵抗値10<sup>4</sup>Ω以上の場合

: ダイヤインスツルメント社製

「ハイレスタAP」

(なお、比較例1の表面抵抗値10 $^1$  $\Omega$ の測定には、ダイヤインスツルメント社製「ロレスタ 1 P (4探針プローブ)」を用いた。)

また、このトレイにMRヘッドを12個搭載して、ガラス製の容器(容量20 1.5mL)中で、80℃、90%、95時間放置した。その後、MRヘッドをトレイから取り出し、100倍の顕微鏡にてMR素子部の腐食の有無を観察し、下記基準で評価を行い、結果を表1に示した。

〇…磁気ヘッド(素子)に、腐食は見られなかった。

×…全ての磁気ヘッド (素子) のパーマロイにより構成されている部位に腐食が発生した。

[0068]

別に、トレイより分析サンプルとして 22mm (長さ)  $\times 10mm$  (幅)  $\times 3mm$  (厚さ) のサンプルを 2 ピース (総表面積  $12.6cm^2$ ) 切り出して、内標として  $n-オクタンを 10 \mu$  L添加した容量 22mLのバイヤル中で、加熱温度 85%、平衡時間 16 時間の条件でガスを抽出した。

[0069]

バイヤル中に発生したガスをガスクロマトグラム(GC/MS)にて測定した。このときの測定条件は以下に示す通りである。

[0070]

装 : 島津製作所社製「GC/MS QP5050」

カ ラ ム : CHROMPAK PORAPLOT Q 0.32

 $mm \times 25m$ 

カラム温度 : 35~240℃ (10℃/min)

注入口温度 :230℃

(

インターフェース温度:280℃

キャリアガス : ヘリウム

注入口圧力 : 100K Pas

全 流 量 :60mL/min

注 入 量 : 2 m L

発生ガスの定性分析の結果、主成分はn-ヘプタン、アセトン、1-プロペン、2-プロパノール、及びその他の微量成分であった。

[0071]

総アウトガス量、塩化メチレン発生量、n-ヘプタン発生量をそれぞれ以下の 式により算出し、結果を表1に示した。

総アウトガス量(µg/g)

= (サンプル総ピーク面積-ブランク総ピーク面積)

/ (n-オクタンのピーク面積/n-オクタンの重量(g))×1

/(サンプル重量(g))

塩化メチレン発生量(μg/g)

= (塩化メチレンピーク面積)

/(n-オクタンのピーク面積/n-オクタンの重量(g))×1

/(サンプル重量(g))

ヘプタン発生量 (μg/g)

= (ヘプタンピーク面積)

/(n-オクタンのピーク面積/n-オクタンの重量(g))×1

/ (サンプル重量(g))

#### 実施例2

実施例1と同様にしてポリカーボネート樹脂粉末を調製し、これを二軸混練押 し出し機にてベントを20Torrに減圧しながら、300℃の温度でスクリュ ー回転数200RPM、吐出量20Kg/hの条件で混練して、ペレットを得た 。このペレットにアセチレンブラック(電気化学(株)製「デンカブラック」DBP吸油量300cc/100g)18重量%を二軸混練押し出し機にてベント開放状態にて280℃の温度でスクリュー回転数200RPM、吐出量30Kg/hの条件で混練して、ポリカーボネート樹脂組成物のペレットを得た。

[0072]

このペレットを用いて実施例1と同様にして成形及び評価を行い、表面抵抗値 、腐食試験及び発生ガス分析の結果を表1に示した。

[0073]

#### 実施例3

実施例1と同様にして調製したポリカーボネート樹脂粉末100重量部に対して1重量部の純水を添加し、二軸混練押し出し機にてベントを20Torrに減圧しながら、300℃の温度でスクリュー回転数200RPM、吐出量20Kg/hの条件で混練して、ペレットを得た。このペレットに炭素フィブリル(ハイペリオンカタリシスインターナショナル社製「タイプBN」DBP吸油量700cc/100g)4.3重量%を配合し、二軸混練押し出し機にてベントを20Torrに減圧しながら、280℃の温度でスクリュー回転数200RPM、吐出量20Kg/hの条件で混練して、ポリカーボネート樹脂組成物のペレットを得た。なお炭素フィブリルの配合混練は、予め15重量%の添加量で分散させた炭素フィブリルマスターバッチを使用して、所定の含有量となるように添加した

[0074]

このペレットを用いて実施例1と同様にして成形及び評価を行い、表面抵抗値 、腐食試験及び発生ガス分析の結果を表1に示した。

[0075]

#### 実施例4

実施例3において、ポリカーボネート樹脂ペレットを、重合溶媒を使用しない 製造方法によるポリカーボネートとして、GEプラスチック社製「MHL-11 10-111」に変えたこと以外は、実施例3と同様にしてポリカーボネート樹 脂組成物のペレットを製造し、同様に成形、評価を行って、表面抵抗値、腐食試 験及び発生ガス分析の結果を表1に示した。

[0076]

#### 実施例5

ピスフェノールAより製造したポリカーボネート樹脂の塩化メチレン溶液を精製し、樹脂濃度20重量%の溶液とした。この樹脂溶液を100℃の水蒸気中に噴霧して溶媒を除去し、直接ポリカーボネートの湿潤粉末を得、これを140℃で乾燥してポリカーボネート樹脂粉末を得た。

[0077]

得られたポリカーボネート粉末に実施例3で使用したと同様の炭素フィブリルを4.3重量%配合し、二軸混練押し出し機でベントを20Torrに減圧しながら、280℃の温度でスクリュー回転数200RPM、吐出量20Kg/hの条件で混練して、ポリカーボネート樹脂組成物のペレットを得た。

[0078]

得られたペレットを射出成型機にて、300℃の成形温度にて成形した後、オーブン中で130℃にて10時間アニールした。

[0079]

得られたトレイについて実施例1と同様にして評価を行い、表面抵抗値、腐食 試験及び発生ガス分析の結果を表1に示した。

[0080]

#### 比較例1

実施例5で得られたポリカーボネート樹脂粉末に、実施例1で使用した炭素繊維を組成物中に20重量%配合して、ベント開放状態にて300℃の温度でスクリュー回転数100RPM、吐出量30Kg/hの条件で混練してポリカーボネート樹脂組成物のペレットを得た。

[0081]

このペレットを用いて、実施例1と同様にして成形及び評価を行い、表面抵抗 値、腐食試験及び発生ガス分析の結果を表1に示した。

[0082]

比較例2

# 特平11-224191



比較例1において、炭素繊維を実施例3で使用したと同様の炭素フィブリルに変えて4.3重量%添加したこと以外は比較例1と同様にしてペレットの製造、成形及び評価を行い、表面抵抗値、腐食試験及び発生ガス分析の結果を表1に示した。



【表1】

| jeg                 |                   | TEAC              | 東着                | 例                                                 |                   | 귀                 | 比較例               |
|---------------------|-------------------|-------------------|-------------------|---------------------------------------------------|-------------------|-------------------|-------------------|
| Ĩ.                  | 1                 | 2                 | ဗ                 | 4                                                 | ည                 | -                 | 2                 |
| 表面抵抗値<br>(Ω)        | 1×10 <sup>4</sup> | 4×10 <sup>8</sup> | 7×10 <sup>7</sup> | 8×10 <sup>7</sup>                                 | 3×10 <sup>7</sup> | 1×10 <sup>1</sup> | 4×10 <sup>7</sup> |
| 塩化メチレン発生量<br>(μ8/8) | ND(<0.01)         | ND(<0.01)         | ND(<0.01)         | ND(<0.01) ND(<0.01) ND(<0.01) ND(<0.01)           | 0.06              | 0.6               | 0.7               |
| 総アウトガス量<br>(μ8/8)   | 1.5               | 0.8               | e .0              | 0.0                                               | o. 3              | 1.2               | 1.1               |
| nーヘプタン発生量<br>(με/ε) | 6.0               | 9 .0              | .ND(<0.01)        | ND(<0.01) ND(<0.01) ND(<0.01) ND(<0.01) ND(<0.01) | ND(<0.01)         | ND(<0.01)         | ND(<0.01)         |
| 磁気ヘッド(素子)腐食         | 0                 | 0                 | 0                 | 0                                                 | 0                 | ×                 | ×                 |

[0084]

表1より、本発明の電子部品取り扱い用ポリカーボネート成形体は、塩化メチ



レン等の発生量が極めて少なく、ヘッドの腐食の危険性が少ない上に、表面抵抗 値が中位に安定しており、ヘッドへの電気的な損傷も少ないことがわかる。

[0085]

#### 【発明の効果】

以上詳述した通り、本発明によれば、腐食による磁気ヘッドの損傷の問題のない磁気ヘッドキャリア等の電子部品取り扱い用ポリカーボネート成形体が提供される。

#### 【図面の簡単な説明】

#### 【図1】

実施例及び比較例において製造した磁気ヘッドのトレイを示す斜視図である。

#### 【図2】

図2 (a) は図1に示すトレイの平面図、図2 (b) は図2 (a) のB-B線に沿う断面図である。

# 【符号の説明】

- 1 トレイ本体
- 2 位置決めリブ
- 3 位置決めボス
- 4 磁気ヘッド

【書類名】 図面

# 【図1】







#### 【書類名】 要約書

#### 【要約】

【課題】 腐食による磁気ヘッドの損傷の危険性の少ない磁気ヘッド用キャリア 等の電子部品取り扱い用ポリカーボネート成形体を提供する。

【解決手段】 導電性充填材  $0.25\sim50$  重量%を含有するポリカーボネート 樹脂組成物を成形してなるポリカーボネート成形体であって、ヘッドスペースガスクロマトグラムによる測定における、加熱温度 85%、平衡時間 16 時間の条件で測定した表面積 12.6 c m 2 からの塩素化炭化水素発生量が 0.1  $\mu$  g / g以下である電子部品取り扱い用ポリカーボネート成形体。

# 【選択図】 図1



# 出願人履歷情報

識別番号

[000010098]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所

東京都大田区雪谷大塚町1番7号

氏 名 アルプス電気株式会社



# 出願人履歴情報

識別番号

[393032125]

1. 変更年月日 1997年 4月17日

[変更理由]

住所変更

住 所

東京都港区芝五丁目31番19号

氏 名

油化電子株式会社



# 出願人履歷情報

識別番号

[000005968]

1. 変更年月日

1994年10月20日

[変更理由]

名称変更

住 所

東京都千代田区丸の内二丁目5番2号

氏 名

三菱化学株式会社