COMP 322/L—Introduction to Operating Systems and System Architecture Assignment #4—Memory Allocation

Objective:

To simulate memory allocation with hole-fitting algorithms (First-fit, Best-fit) and implement deallocation and defragmentation of memory blocks.

Specification:

The program simulates memory allocation with a chosen hole-fitting algorithm (First-fit, Best-fit) and implements deallocation and defragmentation. A menu controls the operations, and each choice calls the appropriate procedure, where the choices are:

- 1) Enter parameters
- 2) Allocate memory for a block
- 3) Deallocate memory for a block
- 4) Defragment memory
- 5) Quit program and free memory

Assignment:

- The size of physical memory is represented by an integer *pm_size*.
- The allocated blocks are contained within a linked list, where each allocated block is a structure containing: (1) the id, (2) the starting address of the block, (3) the ending address of the block, and (4) a link to the next allocated block.
- Each allocation request prompts for: (1) the id and (2) the size of the new block. If the id is a duplicate and/or the remaining physical memory is not enough to fit the request, the request is rejected, and an appropriate message is displayed.
- Each deallocation request prompts for the id. If the id is invalid, the request is rejected.
- Defragmentation compacts the blocks to be contiguous, and coalesces the holes into one hole at the far--right end (highest memory addresses) of physical memory.

What NOT to do (any violation will result in an automatic score of 0 on the assignment):

- Do NOT modify the choice values (1,2,3,4,5) or input characters and then try to convert them to integers—the test script used for grading your assignment will not work correctly.
- Do NOT turn in an alternate version of the assignment downloaded from the Internet (coursehero, chegg, reddit, github, etc.) or submitted from you or another student from a previous semester.
- Do NOT turn in your assignment coded in another programming language (C++, C#, Java).

What to turn in:

- The source code as a C file uploaded to Canvas by the deadline of 11:59pm PST (-20% per consecutive day for late submissions, up to the 4th day—note 1 minute late counts as a day late, 1 day and 1 minute late counts as 2 days late, etc.)
- Make sure your code compiles with the online C compiler before submitting: https://www.onlinegdb.com/online_c_compiler

Sample output

Enter block size: 288

```
Memory allocation
1) Enter parameters
2) Allocate memory for block
3) Deallocate memory for block
4) Defragment memory
5) Quit program
Enter selection: 1
Enter size of physical memory: 1024
Enter hole-fitting algorithm (0=first fit, 1=best fit): 1
Memory allocation
1) Enter parameters
2) Allocate memory for block
3) Deallocate memory for block
4) Defragment memory
5) Quit program
Enter selection: 2
Enter block id: 0
Enter block size: 128
ID Start End
0 0 128
Memory allocation
1) Enter parameters
2) Allocate memory for block
3) Deallocate memory for block
4) Defragment memory
5) Quit program
Enter selection: 2
Enter block id: 1
Enter block size: 320
ID
   Start End
0 0 128
1 128 448
     128
            448
Memory allocation
1) Enter parameters
2) Allocate memory for block
3) Deallocate memory for block
4) Defragment memory
5) Quit program
Enter selection: 2
Enter block id: 2
Enter block size: 224
    Start End
-----
           128
448
672
0 0
    128
1
2
     448
Memory allocation
1) Enter parameters
2) Allocate memory for block
3) Deallocate memory for block
4) Defragment memory
5) Quit program
Enter selection: 2
Enter block id: 3
```

Start	End
0	128
128	448
448	672
672	960
	0 128 448

Memory allocation

- -----1) Enter parameters
- 2) Allocate memory for block
- 3) Deallocate memory for block
- 4) Defragment memory
- 5) Quit program

Enter selection: 3 Enter block id: 2

ID	Start	End
0	0	128
1	128	448
3	672	960

Memory allocation

- 1) Enter parameters
- 2) Allocate memory for block
- 3) Deallocate memory for block
- 4) Defragment memory
- 5) Quit program

Enter selection: 2 Enter block id: 4 Enter block size: 128

ID	Start	End
0	0	128
1	128	448
4	448	576
3	672	960

Memory allocation

- 1) Enter parameters
- 2) Allocate memory for block
- 3) Deallocate memory for block
- 4) Defragment memory
- 5) Quit program

Enter selection: 3 Enter block id: 1

ID	Start	End
0	0	128
4	448	576
3	672	960

Memory allocation _____

1) Enter parameters

- 2) Allocate memory for block
- 3) Deallocate memory for block
- 4) Defragment memory
- 5) Quit program

Enter selection: 2 Enter block id: 2 Enter block size: 224

ID	Start	End
0	0	128
2	128	352
4	448	576
3	672	960

Memory allocation

- Enter parameters
 Allocate memory for block
- 3) Deallocate memory for block
- 4) Defragment memory
- 5) Quit program

Enter selection: 2 Enter block id: 5 Enter block size: 64

ID	Start	End
		100
0	0	128
2	128	352
4	448	576
3	672	960
5	960	1024

Memory allocation

- 1) Enter parameters
- 2) Allocate memory for block
- 3) Deallocate memory for block
- 4) Defragment memory
- 5) Quit program

Enter selection: 4

ID	Start	End
		100
0	0	128
2	128	352
4	352	480
3	480	768
5	768	832

Memory allocation

- 1) Enter parameters
- 2) Allocate memory for block
- 3) Deallocate memory for block
- 4) Defragment memory
- 5) Quit program

Enter selection: 5
Quitting program...