Package 'LACE'

March 28, 2020

version 1.0.0
Date 2020-03-28
Title Longitudinal Analysis of Cancer Evolution (LACE)
Maintainer Daniele Ramazzotti <daniele.ramazzotti@yahoo.com></daniele.ramazzotti@yahoo.com>
Depends R (>= 3.6.0)
Imports graphics, grDevices, igraph, parallel, RColorBrewer, Rfast, stats, utils
Suggests BiocGenerics, BiocStyle, testthat, knitr
Name LACE: an R package for the inference of longitudinal cancer evolution models
Description LACE is an algorithmic framework that processes single-cell somatic mutation profiles from cancer samples collected at different time points and in distinct experimental settings, to produce longitudinal models of cancer evolution. The approach solves a Boolean Matrix Factorization problem with phylogenetic constraints, by maximizing a weighed likelihood function computed on multiple time points.
Encoding UTF-8
LazyData TRUE
License file LICENSE
URL https://github.com/BIMIB-DISCo/LACE
BugReports https://github.com/BIMIB-DISCo/LACE
biocViews BiomedicalInformatics
RoxygenNote 7.0.2
VignetteBuilder knitr
NeedsCompilation no
Author Daniele Ramazzotti [cre, aut], Fabrizio Angaroni [aut], Davide Maspero [aut], Alex Graudenzi [aut]
R topics documented:
compute.mutation.distance

2 data

inference													 			
LACE													 			
longitudinal.tr	ee.plot												 			

Index

compute.mutation.distance

compute.mutation.distance

Description

Compute mutation distance from LACE corrected genotype.

Usage

```
compute.mutation.distance(inference)
```

Arguments

inference

Results of the inference by LACE.

Examples

```
data(inference)
mutation_distance <- compute.mutation.distance(inference)</pre>
```

data

mutation data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

Description

mutation data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell $174.4\ (2018)$: 843-855.

Usage

data(data)

Format

list of mutation data for four time points

Value

list of mutational data for a total of 475 single cells

Source

Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

inference 3

inference

results obtained with the function LACE on the provided input data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

Description

results obtained with the function LACE on the provided input data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

Usage

```
data(inference)
```

Format

results obtained with the function LACE on the provided input data

Value

results obtained with the function LACE on the provided input data

LACE

LACE

Description

Perform inference of the maximum likelihood clonal tree from longitudinal data.

Usage

```
LACE(
  D,
  lik_w = NULL,
  alpha = NULL,
  beta = NULL,
  initialization = NULL,
  keep_equivalent = TRUE,
  check_indistinguishable = TRUE,
  num_rs = 50,
  num_iter = 10000,
  n_{try_bs} = 500,
  learning_rate = 1,
  marginalize = FALSE,
  num_processes = Inf,
  seed = NULL,
  verbose = TRUE,
  log_file = ""
)
```

4 LACE

Arguments

D Mutation data from multiple experiments for a list of driver genes. lik_w Weight for each data point. If not provided, weights to correct for sample sizes are used. alpha False positive error rate provided as list of elements; if a vector of alpha (and beta) is provided, the inference is performed for multiple values and the solution at maximum-likelihood is returned. False negative error rate provided as list of elements; if a vector of beta (and albeta pha) is provided, the inference is performed for multiple values and the solution at maximum-likelihood is returned. initialization Starting point of the meme; if not provided, a random starting point is used. keep_equivalent Boolean. Shall I return results (B and C) at equivalent likelihood with the best returned solution? check_indistinguishable Boolean. Shall I remove any indistinguishable event from input data prior infer-Number of restarts during mcmc inference. num_rs Maximum number of mcmc steps to be performed during the inference. num_iter n_try_bs Number of steps without change in likelihood of best solution after which to stop the mcmc. learning_rate Parameter to tune the probability of accepting solutions at lower values during mcmc. Value of learning_rate = 1 (default), set a probability proportional to the difference in likelihood; values of learning rate greater than 1 inclease the chance of accepting solutions at lower likelihood during mcmc while values lower than 1 decrease such probability. Boolean. Shall I marginalize C when computing likelihood? marginalize Number of processes to be used during parallel execution. To execute in single num_processes process mode, this parameter needs to be set to either NA or NULL. seed Seed for reproducibility. verbose Boolean. Shall I print to screen information messages during the execution? log_file log file where to print outputs when using parallel. If parallel execution is dis-

Value

A list of 9 elements: B, C, clones_prevalence, relative_likelihoods, joint_likelihood, clones_summary and error_rates. Here, B returns the maximum likelihood longitudinal clonal tree, C the attachment of cells to clones, corrected_genotypes the corrected genotypes and clones_prevalence clones' prevalence; relative_likelihoods and joint_likelihood are respectively the likelihood of the solutions at each individual time points and the joint likelihood; clones_summary provide a summary of association of mutations to clones. In equivalent_solutions, solutions (B and C) with likelihood equivalent to the best solution are returned. Finally error_rates provides the best values of alpha and beta among the considered ones.

abled, this parameter is ignored.

longitudinal.tree.plot 5

Examples

longitudinal.tree.plot

longitudinal.tree.plot

Description

Plot a longitudinal tree inferred by LACE.

Usage

```
longitudinal.tree.plot(
  inference,
  labels = "mutations",
  clone_labels = NULL,
  label.cex = 1,
  iter_max = 100,
  size = 500,
  size2 = NULL,
  tk_plot = FALSE,
  tp_mark = TRUE,
  tp_mark_alpha = 0.5,
  legend = TRUE,
  legend_position = "topleft",
  legend_cex = 0.8
)
```

Arguments

inference

Results of the inference by LACE.

labels

Specify which type of label should be placed on the tree; options are, "mutations": parental edges are labeled with the acquired mutation between the two nodes (genotypes); "clones": nodes (genotypes) are labeled with their last acquired mutation; "both": either nodes and edges are labeled as specified above; "none": no labels will show on the longitudinal tree.

clone_labels

Character vector that specifies the name of the nodes (genotypes). If it is NULL (default), nodes will be labeled as specified by "label" parameter.

6 longitudinal.tree.plot

label.cex	Specify the size of the labels.
iter_max	Maximum number of iteration to be used to remove intersecting edges.
size	Specify size of the nodes. The final area is proportional with the node prevalence.
size2	Specify the size of the second dimension of the nodes. If NULL (default), it is set equal to "size".
tk_plot	If TRUE, uses tkplot function from igraph library to plot an interactive tree. Default is FALSE.
tp_mark	If TRUE (defaul) the function draws different colored area under the nodes in different time points.
tp_mark_alpha	Specify the alpha value of the area drawed when tp_mark = TRUE.
legend	If TRUE (default) a legend will be displayed on the plot.
legend_position	n
	Specify the legend position.
legend_cex	Specify size of the legend text.

Examples

Index

```
compute.mutation.distance, 2
data, 2
inference, 3
LACE, 3
longitudinal.tree.plot, 5
```