

Discrete Mathematics

Haiyang Liu

haiyangliu@bjtu.edu.cn

18611249791

Chapter 9: Relations

Outline:

- 9.1 Relations and Their Properties
- ●9.2 *n*-ary Relations and Their Applications
- 9.3 Representing Relations
- 9.4 Closures of Relations
- 9.5 Equivalence Relations
- 9.6 Partial Orderings

Partial Ordering

Definition:

A relation *R* on a set *S* is called a *partial ordering* or *partial order* if it is reflexive, antisymmetric, and transitive. A set *S* together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

- The notation $a \le b$ is used to denote that $(a, b) \subseteq R$ in an arbitrary poset (S, R), that is (S, \le) .
- The notation a < b denotes that $a \le b$, but $a \ne b$.

Show that the "greater than or equal" relation (≥) is a partial ordering on the set of integers.

1. (B):
$$fa(a > a)$$

2. (A): $fa(a > a)$

3. (B): $fa(a > a)$

3. (C): $fa(a > a)$

4. (C): $fa(a > a)$

5. (C): $fa(a > a)$

6. (C): $fa(a > a)$

7. (C): $fa(a > a)$

8. (C):

 \geq is a partial ordering on the set of integers and (\mathbf{Z}, \geq) is a poset.

Show that the divisibility relation | is a partial ordering on the set of positive integers.

[. (P:
$$\forall a (a | a)$$
)
2 (A): $\forall a \forall b (a | b \land b | a \rightarrow a = b)$
3 (D: $\forall a \forall b \forall c (a | b \land b | c \rightarrow a | c)$

We see that (\mathbf{Z}^+, \mid) is a poset.

Show that the inclusion relation \subseteq is a partial ordering on the power set of a set S.

(,
$$\triangle$$
): $\forall A (A \subseteq A)$.

2. \triangle : $\forall A \forall B (A \subseteq B \land B \subseteq A \longrightarrow A = B)$.

3. \triangle : $\forall A \forall B \forall C (A \subseteq B \land B \subseteq C \longrightarrow A \subseteq C)$.

Poset: ($P(S)$, \subseteq).

●1. Which of these relations on {0, 1, 2, 3} are partial orderings?

Determine the properties of a partial ordering that the others lack.

•5. Which of these are posets?

6. Which of these are posets?

8

Determine whether the relation with the directed graph shown is a partial order.

Comparable & Incomparable

Definition:

The elements a and b of a poset (S, \leq) are called *comparable* if either $a \leq b$ or $b \leq a$. When a and b are elements of S such that neither $a \leq b$ nor $b \leq a$, a and b are called *incomparable*.

Example:

$$B \leq 9$$
 (3,9) \in [

In the poset (**Z**⁺, |), are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Total Ordering

Definition:

If (S, \leq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \leq is called a total order or a linear order. A totally ordered set is also called a chain.

Example: $\forall a \in S \forall b \in S (a \preccurlyeq b \lor b \preccurlyeq a)$ The poset (**Z**, \leq) is totally ordered, because $a \leq b$ or $b \leq a$ whenever a and

b are integers.

The poset (**Z**⁺, |) is not totally ordered because it contains elements that are incomparable, such as 5 and 7.

- ullet 14. Which of these pairs of elements are comparable in the poset (\mathbf{Z}^+ , |)?
- a) 5, 15 / b) 6, 9 × c) 8, 16 / d) 7, 7

- •15. Find two incomparable elements in these posets.
- a) $(P(\{0, 1, 2\}), \subseteq)$

b) ({1, 2, 4, 6, 8}, |)

Well Ordering

Definition:

 (S, \leq) is a well-ordered set if it is a poset such that is a total ordering and every nonempty subset of S has a least element.

YASSJAEAHDGA (A+PMASS)

- **54.** Determine whether each of these posets is well-ordered.
- a) (S, \leq) , where $S = \{10, 11, 12, \ldots\}$
- **b)** ($\mathbf{Q} \cap [0, 1], \leq$) (the set of rational numbers between 0 and 1 inclusive)

- c) (S, \leq) , where S is the set of positive rational numbers with denominators
- not exceeding 3 $\left\{ \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \right\}$
- d) (\mathbf{Z}^{-}, \geq) , where \mathbf{Z}^{-} is the set of negative integers

Lexicographic Order

Example:

- □ In the poset ($\mathbf{Z} \times \mathbf{Z}$, \leq),(3, 5) \prec (4, 8), (3, 8) \prec (4, 5), and (4, 9) \prec (4, 11).
- Ordered pairs in $\mathbf{Z}^+ \times \mathbf{Z}^+$ that are less than (3, 4)

Lexicographic Order (Cont.)

Example:

- \square (1, 2, 3, 5) \prec (1, 2, 4, 3)
- □ discreet < discrete
- □ discreet < discreet ness
- □ discrete < discreti
- ☐ discrete < discretion

- **16.** Let $S = \{1, 2, 3, 4\}$. With respect to the lexicographic order based on the usual "less than" relation,
- a) find all pairs in $S \times S$ less than (2, 3).

b) find all pairs in $S \times S$ greater than (3, 1).

- **17.** Find the lexicographic ordering of these *n*-tuples:
- a) (1, 1, 2), (1, 2, 1)
- **b)** (0, 1, 2, 3), < (0, 1, 3, 2)
- c) (1, 0, 1, 0, 1), (0, 1, 1, 1, 0) (0, 1, 1, 1, 0) (0, 1, 1, 1, 0)

● 18. Find the lexicographic ordering of these strings of lowercase English letters:

a) quack, quick, quicksilver, quicksand, quacking

c) zoo, zero, zoom, zoology, zoological

●19. Find the lexicographic ordering of the bit strings 0, 01, 11, 001, 010, 011, 0001, and 0101 based on the ordering 0 < 1.

Hasse Diagrams

3, 4}.

Steps for Drawing Hasse Diagrams

 (S, \leqslant)

- ✓ Start with the directed graph for this relation.
- ✓ Remove all the loops.
- Remove all edges (x, y) for which there is an element $z \in S$ such that x < z and z < y.
- ✓ Arrange each edge so that its initial vertex is below its terminal vertex.
- Remove all the arrows .

• Draw the Hasse diagram representing the partial ordering $\{(a, b) | a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12\}$.

•21. Draw the Hasse diagram for the "less than or equal to" relation on {0, 2, 5, 10, 11, 15}.

●20. Draw the Hasse diagram for the "greater than or equal to" relation on {0, 1, 2, 3, 4, 5}.

23

- **22.** Draw the Hasse diagram for divisibility on the set
- **a)** {1, 2, 3, 4, 5, 6}. **b)** {3, 5, 7, 11, 13, 16, 17}.
- c) {2, 3, 5, 10, 11, 15, 25}. d) {1, 3, 9, 27, 81, 243}.

- **23.** Draw the Hasse diagram for divisibility on the set
- **a)** {1, 2, 3, 4, 5, 6, 7, 8}. **b)** {1, 2, 3, 5, 7, 11, 13}.
- c) {1, 2, 3, 6, 12, 24, 36, 48}. d) {1, 2, 4, 8, 16, 32, 64}.

List all ordered pairs in the partial ordering with the accompanying

Hasse diagram.

Maximal and Minimal Elements

ullet a is **maximal** in the poset (S, \leq) if there is no $b \in S$ such that a < b.

ullet a is **minimal** if there is no element $b \in S$ such that $b \prec a$.

• Maximal and minimal elements are easy to spot using a Hasse diagram.

• Which elements of the poset ({2, 4, 5, 10, 12, 20, 25}, |) are maximal, and which are minimal?

4×12, 2×4 12, 120 4, 10, 225

4<12, 2<4 Maximal: 12,20,25

120 Minimal: 2,5

Greatest and Least Element

ullet a is the **greatest element** of the poset (S, \leq) if $b \leq a$ for all $b \in S$.

ullet a is the **least element** of the poset (S, \leq) if $a \leq b$ for all $b \in S$.

- There is exactly one greatest element of a poset, if such an element exists.
- There is exactly one least element of a poset, if such an element exists.

• Determine whether the posets represented by each of the Hasse diagrams in Figure 6 have a greatest element and a least element.

FIGURE 6 Hasse Diagrams of Four Posets.

31

•Let S be a set. Determine whether there is a greatest element and a least element in the poset $(P(S), \subseteq)$.

Ceast: P greatest: S.

● Is there a greatest element and a least element in the poset (**Z**⁺, |)?

no greatest Least : 1

Upper and Lower Bound

Sometimes it is possible to find an element that is greater than or equal to all the elements in a subset A of a poset (S, \leq) . If u is an element of S such that $a \leq u$ for all elements $a \in A$, then u is called an **upper bound** of A. Likewise, there may be an element less than or equal to all the elements in A. If I is an element of S such that $I \leq a$ for all elements $a \in A$, then I is called a **lower bound** of A.

Find the lower and upper bounds of the subsets $\{a, b, c\}$, $\{j, h\}$, and $\{a, c, d, f\}$ in the poset with the Hasse diagram shown in Figure 7.

FIGURE 7 The Hasse Diagram of a Poset.

Least Upper and Greatest Lower bound

- The element *x* is called the **least upper bound** of the subset *A* if *x* is an upper bound that is less than every other upper bound of *A*, denoted by lub(*A*).
- The element y is called the **greatest lower bound** of the subset A if y is a lower bound that is greater than every other lower bound of A, denoted by glb(A).
- The least upper bound of a set in a poset is unique if it exists.
- The greatest lower bound of a set in a poset is unique if it exists.

• Find the greatest lower bound and the least upper bound of $\{b, d, g\}$, if they exist, in the poset shown in Figure 7.

FIGURE 7 The Hasse Diagram of a Poset.

Example 12

• Find the greatest lower bound and the least upper bound of the sets {3,

9, 12} and $\{1, 2, 4, 5, 10\}$, if they exist, in the poset $(\mathbf{Z}^+, \|)$.

(glb=最大公司数 lub=最大公宫数

3,36. 1,20

32. Answer these questions for the partial order represented by this

Hasse diagram.

a) Find the maximal elements.

b) Find the minimal elements. \bigcirc

c) Is there a greatest element? NO

d) Is there a least element? $\bigcap \mathcal{D}$

●32. Answer these questions for the partial order represented by this

Hasse diagram.

e) Find all upper bounds of {a, b, c}.

k, l, m

f) Find the least upper bound of $\{a, b, c\}$, if it exists.

g) Find all lower bounds of $\{f, g, h\}$.

p0

h) Find the greatest lower bound of $\{f, g, h\}$, if it exists.

- **33.** Answer these questions for the poset ({3, 5, 9, 15, 24, 45}, |).
- a) Find the maximal elements. 29,45
- **b)** Find the minimal elements.
- d) Is there a least element? γ 0
- e) Find all upper bounds of {3, 5}.
- f) Find the least upper bound of $\{3, 5\}$, if it exists.
- g) Find all lower bounds of {15, 45}. 3, 5, 15.
- h) Find the greatest lower bound of {15, 45}, if it exists.

- ●34. Answer these questions for the poset ({2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72}, |).
- a) Find the maximal elements. 27, 48,60,72
- **b)** Find the minimal elements. 2, 9
- c) Is there a greatest element? Λ 0
- d) Is there a least element? \wedge \circ
- e) Find all upper bounds of $\{2, 9\}$. $\{8, 3\}$
- **f)** Find the least upper bound of {2, 9}, if it exists.
- g) Find all lower bounds of $\{60, 72\}$. $\geq 14, 6, 12$
- h) Find the greatest lower bound of {60, 72}, if it exists. / \(\rightarrow \)

- **35.** Answer these questions for the poset ({{1}, {2}, {4}, {1, 2}, {1, 4}, {2,
- 4}, $\{3, 4\}$, $\{1, 3, 4\}$, $\{2, 3, 4\}$ }, \subseteq).
- a) Find the maximal elements. $\{1,2\}$ $\{1,3,4\}$, $\{2,3,4\}$ }, $\{2,3,4\}$ }
- **b)** Find the minimal elements. $\{1\}$ $\{2\}$ $\{4\}$
- c) Is there a greatest element?
- d) Is there a least element?

- 35. Answer these questions for the poset ({{1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}, ⊆).
- e) Find all upper bounds of $\{\{2\}, \{4\}\}\}$. $\{2, 4\}\}$.
- **f)** Find the least upper bound of $\{\{2\}, \{4\}\}$, if it exists. $\{2, 4\}$
- **g)** Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}. \$\frac{4}{7}, \frac{7}{3}, \frac{4}{7}}
- **h)** Find the greatest lower bound of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$, if it exists. $\{3, 4\}$

Lattice

Definition:

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a **lattice**.

Example:

•43. Determine whether the posets with these Hasse diagrams are lattices.

Example 13

■Is the poset (Z+, |) a lattice?

Yes. Let *a* and *b* be two positive integers. The least upper bound and greatest lower bound of these two integers are the least common multiple and the greatest common divisor of these integers, respectively.

• Determine whether the posets ({1, 2, 3, 4, 5}, |) and ({1, 2, 4, 8, 16}, |) are lattices.

Example 14

● Determine whether $(P(S), \subseteq)$ is a lattice where S is a set.

•44. Determine whether these posets are lattices.

- a) ({1, 3, 6, 9, 12}, |)
- **b)** ({1, 5, 25, 125}, |)
- c) (Z,≥)
- **d)** $(P(S), \supseteq)$, where P(S) is the power set of a set S

Partial Orderding	(Z, ≥) (Z, ≤)	(Z ⁺ ,)	$(P(S), \subseteq)$ $(P(S), \supseteq)$
Total Ordering	yes	no	no
Well Ordering	no	no	no
Lattice	yes	yes	yes
Greatest/Least	None/None	None/1	√ S/Ø