★ Hypothesis testing

- **n**: number of observations
- k: number of regressors (independent varibles) under the unrestricted model
- k+1: number of parameters under the unrestricted model (= number of estimated coefficients)
- **q**: number of restrictions (number of linear hypothese with **equal** sign)

Regression Model	$\textit{share} = \beta_0 + \beta_1 \textit{tax} + \beta_2 \textit{year} + \epsilon$	$\textit{share} = \beta_0 + \beta_1 \textit{tax} + \beta_2 \textit{year} + \epsilon$	$share = eta_0 + eta_1 tax + eta_2 year + eta_3 gwth + e$
Test hypothesis	(c) In the year 2000 , the expected income share of the top 1% would have been 5% if the marginal tax rate had been 64% Test the hypothesis at 5% significance level	(d) A marginal tax rate of 64% would lead to the same 5% share for the top income earners in both 1925 and 2000 Test the hypothesis at 10% significance level	(f) Test the overall significance of the model at 1% significance level
1. Null hypothesis H0	$H_0: \beta_0 + 64\beta_1 + 80\beta_2 = 5$	$H_0: \beta_0 + 64\beta_1 + 5\beta_2 \equiv 5$ and $\beta_0 + 64\beta_1 + 80\beta_2 \equiv 5$ $q = 2$	$H_0: \beta_1 \equiv 0$ and $\beta_2 \equiv 0$ and $\beta_3 \equiv 0$
2. Alternative hypothesis H1	$H_1: \beta_0 + 64\beta_1 + 80\beta_2 \neq 5$	H_1 : at least one equality in H_0 does not hold	H_1 At least one of eta_j is non-zero $j=1,2,3$
3. Test statistic	. quiet reg share tax year, robust	. quiet reg share tax year, robust	. quiet reg share tax year gwth, robust
F-statistic	. test (_cons + 64*tax + 80*year = 5)	. test (_cons + 64*tax + 5*year = 5) (_cons + 64*tax + 80*year = 5)	. test (tax = 0) (year = 0) (gwth = 0)
	(1) 64*tax + 80*year + _cons = 5 F(1, 77) = 0.02	(1) 64*tax + 5*year + _cons = 5 (2) 64*tax + 80*year + _cons = 5 F(2, 77) = 2.83 Prob > F = 0.0651	<pre>(1) tax = 0 (2) year = 0 (3) gwth = 0</pre>
	Prob > F = 0.8891 . display r(F) .01957989 Heteroskedasticity-robust <i>F</i> -statistic = 0.0196	Prob > F = 0.0651 . display r(F) 2.8313648 Heteroskedasticity-robust F-statistic = 2.8314	F(3, 76) = 127.07 Prob > F = 0.0000 Heteroskedasticity-robust F -statistic = 127.07
4. Rejection region	*Calculate Critical Value or p-value	*Calculate Critical Value or p-value	*Calculate Critical Value or p-value
F-stalistic	+, alpha = 5% +, Degree of freedom:	+, alpha = 10% +, Degree of freedom:	+, alpha = 1% +, Degree of freedom:
>Fc => Reject Ho	df1 = q = 1 df2 = n - k - 1 = 80 - 2 - 1 = 77 => Critical value F(1,77) at 5% level of significance display invFtail(1,77,0.05)	df1 = q = 2 df2 = n - k - 1 = 80 - 2 - 1 = 77 => Critical value F(2,77) at 10% level of significance display invFtail(2,77,0.1)	df1 = q = 3 df2 = n - k - 1 = 80 - 3 - 1 = 76 => Critical value F(3,76) at 10% level of significance display invFtail(3,76,0.01)
prohe < a => Reject Ho	3.9650941 *Compare F-statistic and Critical value Or Compare p-value and level of significance	2.3728344 *Compare F-statistic and Critical value Or Compare p-value and level of significance F-statistic = 2.8314 > 2.3728 = Critical Value	*Compare F-statistic and Critical value Or Compare p-value and level of significance F-statistic = 127.07 > 4.0503 = Critical Value
=> Reject Ho	F-statistic = 0.0196 < 3.9651 = Critical Value Or p-value = 0.8891 > 0.05 = level of significance => Do not reject H0 at 5% significance level	Or p-value = 0.0651 < 0.1 = level of significance => Reject H0 at 10% significance level	Or p-value = 0.0000 < 0.01 = level of significance => Reject H0 at 1% significance level
5. Conclusion	Data do not contradict conjecture about income share in 2000 for a marginal tax rate of 64%	A marginal tax rate of 64% does not lead to the same 5% share for the top income earners in both 1925 and 2000.	At least one of the regressors has a statistically significan relationship with share.

Relationship Between *t*-Test and *F*-Test

- What happens if we have a null hypothesis which has only one restriction?
 - Example: $H_0: \beta_1 = 2 \text{ vs } H_1: \beta_1 \neq 2$
- ullet For a two-sided test with a single restriction (q=1), either a t-test or an F-test can be used
 - ► Two-sided *t*-tests are equivalent to *F*-tests when there is a single hypothesis *H*₀
- When q = 1, $F = t^2$
- This result holds for both homoskedastic and heteroskedastic errors