

PROJECT SCOPE AND OBJECTIVES

Project Scope

- Develop a system for generating graph environments for robots to traverse and map, so that they can retrieve various objects throughout the environment.

OBJECTIVES

- 1. Develop efficient mapping algorithm for mapping graphs
- 2. Implementing optimized path planning strategies
- 3. Generating graphical representation of an explorable environment

LITERATURE REVIEW

- What is a Robot Swarm: A Definition for Swarming Robotics – LINK
 - Defines a robot swarm as a group of 3+ entities, the entities work together, and the swarm has limited human control
 - 'Many real-world problems can be addressed through use of swarms'
- Real Applications for Swarm Robotics Applications LINK
 - Swarm robotics can coordinate multiple robots for search-and-rescue missions, navigating complex environments to locate survivors and deliver assistance efficiently, not path constrained.
 - Groups of robotic units can work together to monitor crop health, plant seeds, and optimize irrigation, enhancing productivity while minimizing resource use.

METHODOLOGY - NODES AND GRAPHS

- A graph is just a list of nodes, where each node keeps track of its neighbors
- Nodes are generated with states assigned randomly (80% chance of Clear, 10% Obstacle, 10% Object) with 1 control point
- Nodes also store their respective neighbors, allows for robot to know where to go next
- Using stacks to hold node neighbor

Graph Generation Pseudocode

- 1. Loop through the number of nodes and generate randomly based on state distributions
- 2. Set one nodes state as the control point
- 3. Loop through all the nodes again
 - A. Choose a random number of neighbors
- B. Loop through the number of neighbors and choose a random node to add as a neighbor
 - C. Check if the neighbor is already a current neighbor
- D. Push each node to the neighbor list of each other Time Complexity: O(n*m)

enum NodeState:

- CLEAR = 0
- OBSTACLE = 1
- OBJECT = 2
- CONTROL = 3

class GraphNode:

- int NodelD
- NodeState state
- Vector<GraphNode*> neighbors

class Graph:

- int numNodes
- Vector<GraphNode*> nodes
- GraphNode* controlPoint

METHODOLOGY - ROBOTS AND CONTROLLER

Controller::Map Function

- Create the robots
- Move robots to control point
- Initialize exploredMap with control point and its neighbors
- Loop through the robots and Move them one node at a time, updating controller's exploredMap with new explored nodes
- Track the number of "seen" nodes vs "visited" nodes
- Backtracking when no neighbor nodes to visit
- Stop mapping when "seen" nodes = "visited" nodes

Mapping Time Complexity

- $O(N + E^2)$ (worst case)
- O(N + E) average case
- N is number of Nodes
- E is number of edges

Data Structures Used

- Graphs
- Vectors
- Stacks

- Robots are objects that traverse the graph node by node, communicating with controller to relay information about surrounding nodes and retrieve objects
- Controller handles the robots, sends/stores data from/to robots while traversing, also plans the paths for the robots to move

class Controller:

- vector<Robot*> robots
- vector<GraphNode*> visitedNodes
- Graph* graphMap
- Graph* exploredMap

class Robot:

- int robotID
- GraphNode* currNode
- stack<GraphNode*> prevNodeStack

HOURS SPENT PER WEEK

- 5 HOURS SPENT PER WEEK
- 4 WEEKS PER MONTH
- 20 HOURS PER MONTH

- GROUP CODING
- DISCUSSIONS

ANALYSIS AND RESULTS

RESULTS

- Created an algorithm to successfully create random graph environments
- Developed methods for robots to travel through graphs efficiently and ensuring they explore every node
- Created a platform for robots to map graphs completely to perform path planning

Hello Swarm Robots!	·	Size of explored: 10 Size of visited: 5	Size of explored: 10 Size of visited: 10
Node ID: 0 Node State: OBSTACLE	ROBOT 0 CREATED. ROBOT 1 CREATED.	Current Robot: 1	all nodes have been visited
Neighbors: 5 4 7 8 9	ROBOT 2 CREATED.	value pushed to prevNodeStack: 8 - rand neighbor selected: 3	Printing Explored Graph
Node ID: 1 Node State: CONTROL	 Start Mapping On node: 1	Node ID: 3 Node State: OBSTACLE	Node ID: 1 Node State: CONTROL
Neighbors: 4 5 8 9	Control Node neighbors: 4 5 8 9	Neighbors: 2 5 6 8 9 pushing 3 to visited	Neighbors: 4 5 8 9
Node ID: 2	Pushing node 4 to explored map	added 3 <-> 2 added 3 <-> 5	Node ID: 4
Node State: CLEAR Neighbors: 6 3 8 7	Pushing node 5 to explored map Pushing node 8 to explored map Pushing node 9 to explored map	added 3 <-> 5 added 3 <-> 6 Size of explored: 10	Node State: CLEAR Neighbors: 1 0 7 9 5
Node ID: 3	Current Robot: 0	- Size of visited: 6	Node ID: 5
Node State: OBSTACLE Neighbors: 2 5 6 8 9	value pushed to prevNodeStack: 1 rand neighbor selected: 4	Current Robot: 2 value pushed to prevNodeStack: 9	Node State: CLEAR Neighbors: 1 4 0 3 7
Node ID: 4	······································	rand neighbor selected: 6 Node ID: 6	Node ID: 8
Node State: CLEAR Neighbors: 0 1 7 9 5	Neighbors: 0 1 7 9 5 pushing 4 to visited	Node State: OBSTACLE Neighbors: 2 9 3	Node State: CLEAR Neighbors: 1 2 3 0
Node ID: 5	Pushing node 0 to explored map added 4 <-> 0	pushing 6 to visited added 6 <-> 2	Node ID: 9
Node State: CLEAR Neighbors: 0 1 3 4 7	Pushing node 7 to explored map added 4 <-> 7 added 4 <-> 9	Size of explored: 10 Size of visited: 7	Node State: CLEAR Neighbors: 1 4 6 3 0
Node ID: 6	added 4 <-> 5	Current Robot: 0 value pushed to prevNodeStack: 0	Node ID: 0
Node State: OBSTACLE Neighbors: 2 9 3	Size of explored: 7 Size of visited: 2	rand neighbor selected: 5 Node ID: 5	Node State: OBSTACLE Neighbors: 4 8 9 5 7
Node ID: 7	Current Robot: 1 value pushed to prevNodeStack: 1	Node State: CLEAR Neighbors: 0 1 3 4 7	Node ID: 7
Node State: CLEAR Neighbors: 4 0 2 5	rand neighbor selected: 8 Node ID: 8	pushing 5 to visited added 5 <-> 7	Node State: CLEAR Neighbors: 4 0 5 2
Node ID: 8	Node State: CLEAR Neighbors: 2 1 3 0	Size of explored: 10 Size of visited: 8	Node ID: 2
Node State: CLEAR Neighbors: 2 1 3 0	pushing 8 to visited Pushing node 2 to explored map	Current Robot: 1	Node State: CLEAR Neighbors: 8 3 6 7
Node ID: 9	added 8 <-> 2 Pushing node 3 to explored map	value pushed to prevNodeStack: 3 rand neighbor selected: 2	Node ID: 3
Node State: CLEAR Neighbors: 4 6 3 1 0	added 8 <-> 3 added 8 <-> 0	Node ID: 2 Node State: CLEAR	Node State: OBSTACLE Neighbors: 8 9 2 5 6
Object Count: 1	Size of explored: 9 Size of visited: 3	Neighbors: 6 3 8 7 pushing 2 to visited	Node ID: 6
Obstacle Count: 3	Current Robot: 2	- added 2 <-> 7 Size of explored: 10	Node State: OBSTACLE Neighbors: 9 3 2
Clear Count: 6	value pushed to prevNodeStack: 1 rand neighbor selected: 9	Size of visited: 9	
ROBOT 0 CREATED.	Node ID: 9 Node State: CLEAR	Current Robot: 2 All possible neighbor nodes have been visited.	Obstacle Count: 0 Clear Count: 0

CONCLUSION

- Overall, gave idea of how professional software development teams operate
 - Improved our understanding of graph theory
 - Strengthened our problem solving and algorithm design skills

Projects Limitations/Need to Implement

- Have platform for path finding and object retrieval but still need to implement
 - Going to use a modified Dijkstra's algorithm
 - Implement obstacle node avoidance

Future Work

- Create a better interface for managing and analyzing swarm status
 - Add different node states for more variability