Franz Knobel Formelsammlung Analysis I. & II. 28.05.2016 15:05

Beweis durch Induktion

IA - Induktionsannahme

IV - Induktionsverankerung

IB/IS - Induktionsbeweis/-schluss

Abschätzungen

Dreiecksungleichung	$ x+y \le x + y $
Young	$2 x \cdot y \le \epsilon x^2 + \frac{1}{\epsilon} y^2$
Cauchy-Schwarz	$ x \cdot y \le x \cdot y $
Bernoulli-Ungleichung	$(1+x)^n \ge 1 + nx \qquad \forall x \ge 1, \ n \in \mathbb{N}$
	$\left \int_{a}^{b} f dx \right \leq \int_{a}^{b} \left f \right dx \leq \left\ f \right\ _{C^{0}} (b-a)$

Grenzwerte

L'Hôpital	Falls $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0}$ oder $\frac{\infty}{\infty}$ \Rightarrow $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$
Wurzeltrick	Falls $\sqrt{n-1} - \sqrt{n+1}$ multipliziere mit $\frac{\sqrt{n-1} + \sqrt{n+1}}{\sqrt{n-1} + \sqrt{n+1}}$
	$\sqrt{n^2+1} = n \cdot \sqrt{1 + \frac{1}{n^2}}$
	$\lim (f(x) \pm g(x)) = \lim f(x) \pm \lim g(x) \qquad \lim f(x)$
Regeln	$\lim_{\substack{x \to x_0 \\ \lim_{x \to x_0}}} (f(x) \pm g(x)) = \lim_{\substack{x \to x_0 \\ \lim_{x \to x_0}}} f(x) \pm \lim_{\substack{x \to x_0 \\ \lim_{x \to x_0}}} g(x) = \lim_{\substack{x \to x_0 \\ \lim_{x \to x_0}}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to x_0 \\ \lim_{x \to x_0}}} \frac{f(x)}{g(x)}$
$\overline{\lim \sqrt[n]{n}} = 1$	$\lim \sqrt[n]{n!} = \infty \qquad \lim \sqrt[n]{k} = 1 \text{für } k > 0 \qquad 0^n = 0 \qquad 1^n = 1$
$n \to \infty$	$n o \infty$ $n o \infty$
$\lim_{x \to \infty} \left(1 + \frac{a}{f(x)} \right)$	

Imaginäre Zahlen

$$z = x + iy \qquad \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2} \qquad ||zw|| = ||z|| ||w|| \qquad ||z||^2 = z\overline{z}$$

$$\phi = \arg(z) = \arctan\left(\frac{y}{x}\right) \qquad r = |z| = ||z|| \qquad z = r(\cos\phi + i\sin\phi) = re^{i\phi}$$

Logarithmus

$$\log_b(x \cdot y) = \log_b(x) + \log_b(y) \qquad \log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y) \qquad \log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$
$$\log_a a = 1 \qquad \log_a 1 = 0$$

Eigenschaften

genscharten			
Symmetrie	Vergleich mit $f(x,y) = f(-x,y) = f(-x,-y)$		
T7 1 .	Beschränkt und abgeschlossen		
Kompakt	f(x) ist kompakt, falls $f(x)$ stetig		
Beschränkt	Supremum & Infimum existieren (obere/untere Schranke)		
Abgeschlossen	$\overline{\Omega}: \overline{[0,1[} = [0,1]$		
Innere/offener Kern	Ω° : 0.1		
Rand	$\partial \Omega = \overline{\Omega} \backslash \Omega^{\circ}$		
Injektiv	$\forall a, b \in X \colon f(a) \neq f(b)$		
Surjektiv	f(a) = f(b) = c		
Bijektiv	Injektiv und surjektiv		
Ball	$\boldsymbol{B}_{r}(0)\mathrm{mit}$ Radius r und Mittelpunkt $(\boldsymbol{x}_{\!\scriptscriptstyle 0},\boldsymbol{y}_{\!\scriptscriptstyle 0},\boldsymbol{z}_{\!\scriptscriptstyle 0})$		
	an der Stelle $x_0 \in \Omega$,		
	falls gleichmässig stetig		
Stetig	falls der Grenzwert an der Stelle x_0 existiert		
	falls differenzierbar an der Stelle $x_{\scriptscriptstyle 0}$		
	an der Stelle $x_0 \in \overline{\Omega} \backslash \Omega$,		
Stetig ergänzbar	falls Lipschitz-stetig		
0 0	falls der Grenzwert an der Stelle x_0 existiert		
Gleichmässig Stetig	Beschränkt, stetig und stetig ergänzbar oder Lipschitzstetig		
Lipschitzstetig	$ f(x)-f(y) \le L x-y , \forall x, y \in \Omega$		
	Ist $f \colon \Omega \to \mathbb{R}$ differenzierbar an der Stelle $x_0 \in \Omega$,		
Differenzierbar	so ist f an der Stelle x_0 auch stetig		
Stetig Differenzierbar $f(x)$ differenzierbar und $f'(x)$ stetig			
Monotonie	$\text{monoton: } a_{\scriptscriptstyle n} \leq a_{\scriptscriptstyle n+1} \text{streng monoton: } a_{\scriptscriptstyle n} < a_{\scriptscriptstyle n+1}$		
	Falls $f' >= 0$ (>0) auf]a,b[, so ist f (streng) monoton		
Wachstum	wachsend		
	Falls $f: U \to V$ eine Lipschitzkonstante L hat, gibt es für		
Picard-Lindelöf	$y^{\prime} = f(y)$ mit $(x_{\scriptscriptstyle 0}, y_{\scriptscriptstyle 0})$ genau eine Lösung.		
	Falls $f: U \to U$ eine Lipschitzkonstante L < 1 hat:		
Fixpunktsatz	$\exists ! \ x_0 \in U \colon f(x_0) = x_0$		
Supremum/Infimum	$\sup(-A) = -\inf(A)$		
Lipschitzstetig ⇒ Differenz	ierbar ⇒ stetig ⇒ integrierbar		
Nicht integrierbar \Rightarrow nicht	stetig ⇒ nicht differenzierbar		
Lipschitz-stetig ⇒ absolut s	stetig ⇒ gleichmässig stetig ⇒ (punktweise) stetig		

1

Folgen und Reihen

Taylorreihe	$T_n f(a, b) = \sum f^{(n)}(b) \frac{(a-b)^n}{n!}$ mit a (ges.) > b (gew.)
	$T_{n}f(\vec{a},\vec{b}) = f(\vec{b}) + df(\vec{b})(\vec{a}-\vec{b}) +$
$ \underline{\frac{1}{2} \left[\frac{\partial^2 f}{\partial^2 x_{_1}} (\overrightarrow{b}) (a_{_1} - b_{_1})^2 \right. } $	$+ \ 2 \ \cdot \frac{\partial^2 f}{\partial x_1 \partial x_2} (\vec{b}) (a_1 - b_1) (a_2 - b_2) \ + \ \frac{\partial^2 f}{\partial^2 x_2} (\vec{b}) (a_2 - b_2)^2 \Bigg] + \dots$
Fehlerfunktion	$r_n f(b,a) \le \sup_{\xi \in [a,b]} f^{n+1}(\xi) \frac{(b-a)^{n+1}}{(n+1)!}$
$r_2 f(\vec{x}, \vec{x}_0) \leq \frac{1}{2!}$	$\left[f_{xx}(\vec{\xi}) (\vec{x} - \vec{x_{_0}})^2 + 2 f_{xy}(\vec{\xi}) (\vec{x} - \vec{x_{_0}}) (\vec{y} - \vec{y_{_0}}) + f_{yy}(\vec{\xi}) (\vec{y} - \vec{y_{_0}})^2 \right]$
Logarithmus	$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}$
Exponentialreihe	$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n e^{cx} = \sum_{k=0}^{\infty} \frac{(cx)^k}{k!} = 1 + \frac{cx}{1!} + \frac{(cx)^2}{2!} + \dots$ $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$
Sinus	$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$
Cosinus	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$
Arithmetische Folgen	$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{k=0}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$
Arithmetische Reihe	$\sum_{k=0}^{n} (a_0 + k d) = a_0(n+1) + d \frac{n(n+1)}{2}$
Geometrische Reihe	$\sum_{k = 0}^{n} a_{_{0}} q^{^{k}} \stackrel{q \equiv 1}{=} \ a_{_{0}} (n + 1) \stackrel{q \neq 1}{=} \ a_{_{0}} \frac{1 - q^{^{n + 1}}}{1 - q}$
Harmonische Reihe	$\sum_{k=1}^{\infty} \frac{1}{k^x} \stackrel{x=2}{=} \frac{\pi^2}{6} \stackrel{x=4}{=} \frac{\pi^4}{90} \text{divergiert für } x \le 1 \\ \text{konvergiert für } x > 1$
Alternierende	$\sum_{k=1}^{\infty} (-1)^{k+1} rac{x^k}{k} = \ln(1+x)$
harmonische Reihe	
Leibnitzreihe	$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$
$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$	$\sum_{k=0}^{\infty} (k+1)x^{k} = \frac{1}{(1-x)^{2}} \qquad \sum_{k=0}^{\infty} (-1)^{2} (x-1)^{k}$
$\sum_{k=0}^{n} a_0 q^k k \stackrel{q=1}{=} a_0 \frac{n(n+1)}{2}$	$\frac{1}{2} \stackrel{q \neq 1}{=} a_0 \frac{nq^{n+2} - (n+1)q^{n+1} + q}{(q-1)^2} \qquad \sum_{k=1}^{\infty} k q^k = \frac{q}{(1-q)^2}$

Konvergenz

Konvergenz einer Folge	$a_{_{n}} \leq a_{_{n+1}}$ mit Grenzwertannahme: $G = a_{_{n}} = a_{_{n+1}}$		
Konvergenz einer Reihe	Glieder müssen gegen 0 streben und kleiner als die harmonische Reihe		
Absolut konvergent	Falls $\sum_{i=1}^{\infty} a_{i} $ konvergiert		
Gleichmässig Konvergent	$\sup_{x \in \Omega} \left f_k(x) - f(x) \right \to 0 (k \to \infty)$		
Bolzano-Weierstrass	Jede beschränkte Folge besitzt eine konvergente Teilfolge, also auch einen Häufungspunkt.		
Cauchy-Folge	$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \forall n , l \geq n_0 \colon \left a_n - a_l \right < \epsilon$		
Cauchy-Kriterium	$a_n ist konvergent \Leftrightarrow a_n ist Cauchy - Folge \left \sum_{k=1}^{\infty} a_k \right \to 0$		
Leibnitzkriterium	Sei a_n eine monoton fallende, reelle Nullfolge,		
	dann konvergiert die alternierende Reihe $\sum_{k=0}^{\infty} \left(-1\right)^k a_k$		
Quotientenkriterium	$\sum_{k=1}^{\infty} a_k \colon \lim \sup_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right < 1 (\text{ konvergent })$		
	$\sum_{k=1}^{\infty} a_k: \liminf_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right > 1 (\text{ divergent })$		
Wurzelkriterium	$\sum_{k=1}^{\infty} a_k : \lim \sup_{k \to \infty} \sqrt[k]{ a_k } < 1 (\text{ konvergent })$		
wuizeikiiteiiuii	$\sum_{k=1}^{\infty} a_k : \lim_{k \to \infty} \inf \sqrt[k]{ a_k } > 1 (\text{ divergent })$		
Konvergenzradius	$\sum_{k=0}^{\infty} c_k z^k \colon \rho = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{ c_k }} = \left \frac{a_k}{a_{k+1}} \right $		
	$ z < ho ightarrow ext{konvergent}$ $ z > ho ightarrow ext{divergent}$		

Vektorgeometrie

Skalarprodukt $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \phi = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_4$ **Kreuzprodukt** $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \phi = \begin{vmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \end{vmatrix}$ $\begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix} \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos x & 0 & \sin x \\ 0 & 1 & 0 \\ -\sin x & 0 & \cos x \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos x & -\sin x \\ 0 & \sin x & \cos x \end{bmatrix}$ Rotationsmatrix

Winkel- und Hyperbelfunktionseigenschaften

$$\sin^2 x + \cos^2 x = 1 \qquad 1 + \tan^2 x = \frac{1}{\cos^2 x} \qquad \cot x = \frac{1}{\tan x} \qquad \sin(-x) = -\sin x$$

$$\sin(x) = \frac{1}{2i} (e^{ix} - e^{-ix}) \qquad \cos(x) = \frac{1}{2} (e^{ix} + e^{-ix}) \qquad \cos(-x) = \cos x$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \qquad \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \qquad \sin x \cos y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)] \qquad \cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\sinh x = \frac{1}{2} (e^x - e^{-x}) = -i \sin(ix) \qquad \cosh x = \frac{1}{2} (e^x + e^{-x}) = \cos(ix)$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{1}{\coth x} \qquad \sinh^2 x - \cosh^2 x = 1 \qquad \cosh x + \sinh x = e^x$$

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y \qquad \cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

$$\arcsin x = \ln(x + \sqrt{x^2 + 1}) \qquad \arcsin x = \ln(x + \sqrt{x^2 - 1}) \qquad \arctan x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right)$$

Spezielle Winkel

•	ф	0 ° 0	$30 \circ \frac{\pi}{6}$	45 ° $\frac{\pi}{4}$	$60^{\circ} \mid \frac{\pi}{3}$	$90^{\circ} \mid \frac{\pi}{2}$
	$\sin \phi$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	$\cos \phi$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\tan \phi$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm\infty$
	$\cot \phi$	$\pm \infty$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{2}$	0

Geometrie

Kugel

Tetraeder

 $V = \frac{4}{3}\pi r^3$ $A = 4\pi r^2$ $V = \frac{4}{3}\pi abc$ Ellipsoid $V = 2\pi^2 ar^2 \qquad A = 4\pi^2 ar$ Torus (Donut) Gerader Kreiskegel $V = \frac{1}{2}\pi r^2 h$ $A = \pi r(m+r)$ **Gerader Kreiskegelstumpf** $V = \frac{1}{2}\pi(r_1^2 + r_2^2 + r_1r_2)$ $A = \pi(r_1^2 + r_2^2 + m(r_1 + r_2))$

Tangentialebene in einem Punkt

$$P = (x_0, y_0, f(x_0, y_0)) z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

 $V = \frac{1}{3}Gh$

Invertierbarkeit/Störungstheorie

Falls
$$\det \left| \frac{\partial F}{\partial y}(x_0, y_0) \right| \neq 0$$
, dann ist $\frac{\partial F}{\partial y}$ invertierbar. $\Rightarrow \exists U \in \mathbb{R}$ von x_0 und $y \in C^1(U; \mathbb{R})$ mit $y(x_0) = y_0$, sodass $F(x, y(x)) = 0$ für alle $x \in U$. $y'(x) = dy(x) = -(\partial_x f(x, y(x)))^{-1} \partial_x f(x, y(x))$

Eigenschaften einer DGL

gewöhnlich (~partiell) Von einer Variable abhängig

explizit (~implizit) Nach der höchsten Ableitung aufgelöst

linear (~nicht linear) Keine Produkte, Potenzen und algebraische Funktionen von y

homogen (~inhomogen) Kein Term ohne gesuchte Funktion oder Ableitung

DGL 1. Ordnung

$$y'(x) = \frac{\partial y}{\partial x} = p(x) \cdot h(y) + q(x);$$
 $y(x) = y_h(x) + y_p(x)$

Homogene Lösung
$$(q(x) = 0)$$

Partikuäre Lösung
$$(q(x) \neq 0)$$

$$\int \frac{1}{h(y_h)} dy_h = \int p(x) dx \text{ nach } y_h \text{ auflösen}$$

1. Ansatz:
$$y_p(x) = c(x) \cdot y_h(x)$$

2.
$$c'(x) = \frac{q(x)}{y_{\iota}(x)}$$
 integrieren

DGL n-ter Ordnung

$$y^{(n)} + a_{n-1} \cdot y^{(n-1)} + a_{n-2} \cdot y^{(n-2)} + a_0 \cdot y^{(0)} = q(x)$$

- 1. Char. Polynom berechnen: $\lambda^n + a_{n-1} \cdot \lambda^{n-1} + a_{n-2} \cdot \lambda^{n-2} + \dots + a_n \cdot \lambda^0 = 0$
- 2. Ansatz für $y_b(x)$ nehmen (Tabelle: «Nullstellen»)
- 3. Als $y_n(x)$ wird ein Ansatz für q(x) gewählt (Tabelle: «Störfunktion»)
- 4. $y_n(x)$ in DGL einsetzen und auflösen.

Nullstellen	Lösungsansatz $y_h(x)$	
$\lambda_1 \neq \lambda_2 \neq \dots \neq \lambda_n$	$C_{_{1}} \cdot e^{\lambda_{_{1}} \cdot x} + C_{_{2}} \cdot e^{\lambda_{_{2}} \cdot x} + C_{_{3}} \cdot e^{\lambda_{_{3}} \cdot x} + \dots$	
$\lambda_1 = \lambda_2 = \dots = \lambda_n$	$C_{_1}\cdot e^{\lambda_{_1}\cdot x}+\ C_{_2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\lambda_n = a_n \pm b_n$ ů	$e^{a_1 \cdot x}[C_{_1} \cdot \cos(b_{_1} \cdot x) + C_{_2} \cdot \sin(b_{_1} \cdot x)]$	
Störfunktion $q(x)$	Fälle	Lösungsansatz $y_{_p}(x)$
P(x)	$a_{_{0}} \neq 0, \ a_{_{Rest}} \in \mathbb{R}$	$Q_k(x)$
$P_k(x)$	$a_0 = \dots = a_{n-1} = 0$	$x^n Q_k(x)$
e^{cx}	$c \neq \lambda_n$	$A\cdot e^{cx}$
e	$c = \lambda_1 = \dots = \lambda_n$	$A \cdot x^n \cdot e^{cx}$
$\sin(bx)$ or	b i $\neq \lambda_n$	$A \cdot \cos(bx) + B \cdot \sin(bx)$
$\cos(bx)$	b i $=$ $\lambda_{_1}$ $=$ \dots $=$ $\lambda_{_n}$	$x^{n}[A \cdot cos(bx) + B \cdot sin(bx)]$
$P_k(x) e^{cx} \sin(bx)$ or	$c + b \mathring{\mathbf{i}} \neq \lambda_n$	$e^{cx}[Q_k(x)\cos(bx) + R_k(x)\sin(bx)]$
$P_{k}(x)e^{cx}\cos(bx)$	$\boxed{c + b \mathbb{i} = \lambda_1 = \dots = \lambda_n}$	$x^n e^{cx} [Q_k(x)\cos(bx) + R_k(x)\sin(bx)]$

Extremalstellen

- 1. Eckpunkte
- 2. Alle nicht regulären Punkte
- 3. Lagrange-Multiplikationsregel (Falls keine Fkt. g gegeben, g=0)
- 4.1 Punkte in der Hessmatrix einsetzen und Eigenwerte berechnen (Nur wenn g=0)

$$\begin{split} & \operatorname{rank} \left(\, df \right) \, \neq \, \, \operatorname{max} \\ & 0 \, = \, dL \, = \, df \, + \, \sum \lambda_{\scriptscriptstyle i} \, dg_{\scriptscriptstyle i} \\ & \rightarrow \operatorname{LGS} \, \operatorname{mit} \, \left\{ \, \, L_{\scriptscriptstyle x}, L_{\scriptscriptstyle y}, L_{\scriptscriptstyle z}, L_{\lambda_{\scriptscriptstyle i}}, L_{\lambda_{\scriptscriptstyle i}}, \ldots \right. \end{split}$$

positiv de finit
ightarrow Minimal stelle negativ de finit
ightarrow Maximal stelle inde finit
ightarrow Sattel punkt semi de finit
ightarrow ???

4.2 Punkte in f(x) einsetzen

Substitutionen und infinitesimale Elemente

Polarkoordinaten in \mathbb{R}^2 $dxdy = r \cdot dr d \phi$	$ \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot \cos(\phi) \\ r \cdot \sin(\phi) \end{pmatrix} $	$0 \le r \le \infty$ $0 \le \phi \le 2\pi$
Zylinderkoordinaten in \mathbb{R}^3 $dxdydz = r \cdot dr d \phi dz$	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot \cos(\phi) \\ r \cdot \sin(\phi) \\ z \end{pmatrix}$	$0 \le r \le \infty$ $0 \le \phi \le 2\pi$ $0 \le z \le \infty$
Kugelkoordinaten in \mathbb{R}^3 $dxdydz = r^2 \cdot \sin(\phi) \cdot dr d\varphi d\theta$	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot \sin(\theta) \cdot \cos(\phi) \\ r \cdot \sin(\theta) \cdot \sin(\phi) \\ r \cdot \cos(\theta) \end{pmatrix} $	$0 \le r \le \infty$ $0 \le \theta \le \pi$ $0 \le \phi \le 2\pi$
Elliptische Koordinaten in \mathbb{R}^2 $dxdy = a b r \cdot dr d \phi$	$ \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot a \cdot \cos(\phi) \\ r \cdot b \cdot \sin(\phi) \end{pmatrix} $	$0 \le r \le \infty$ $0 \le \phi \le 2\pi$
Elliptische Koordinaten in \mathbb{R}^3 $dxdydz = abcr^2 \cdot \sin(\theta) dr d\phi d\theta$	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} r \cdot a \cdot \sin(\theta) \cdot \cos(\phi) \\ r \cdot b \cdot \sin(\theta) \cdot \sin(\phi) \\ r \cdot c \cdot \cos(\theta) \end{pmatrix}$	$0 \le r \le \infty$ $0 \le \theta \le \pi$ $0 \le \phi \le 2\pi$

Differentiale

$(u \circ v)' = (u' \circ v) v'$	
(uv)' = u'v + uv'	
$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	
$(f^{-1})'(y) = rac{1}{f'(f^{-1}(y))}$	$df^{-1}(f(x)) = \frac{1}{df(x)}$
$f_{xy} = f_{yx}$, gilt auch mit mehr	r als zwei Variablen
$H_f(x,y,)$	$) = \begin{pmatrix} f_{xx} & f_{xy} & \dots \\ f_{yx} & f_{yy} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$
trix $H_f(x,y,)$ kation)	$) = \begin{pmatrix} 0 & 0 & g_{1,x} & g_{1,y} & \dots \\ 0 & 0 & g_{2,x} & g_{2,y} & \dots \\ g_{1,x} & g_{2,x} & L_{xx} & L_{xy} & \dots \\ g_{1,y} & g_{2,y} & L_{yx} & L_{yy} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$
	$) = \begin{pmatrix} f_{_{1,x}} & f_{_{1,y}} & \dots \\ f_{_{2,x}} & f_{_{2,y}} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$
	$\frac{\left(uv\right)'=u'v+uv'}{\left(\frac{u}{v}\right)'=\frac{u'v-uv'}{v^2}}$ $\frac{\left(f^{-1}\right)'(y)=\frac{1}{f'(f^{-1}(y))}}{f_{xy}=f_{yx},\text{gilt auch mit meh}}$ $\frac{a^b=e^{\ln a\cdotb}}{H_f(x,y,\dots}$ $H_f(x,y,\dots)$ trix $H_f(x,y,\dots)$

 $\textbf{Rotation} \quad (\textit{Wirbelst\"{a}rke im 2D} \) \quad \textit{rot} (\vec{v}) = \textit{v}_{2,x} - \ \textit{v}_{1,y}$ $(\textit{Wirbelst\"{a}rke im 3D}\) \quad \textit{rot}(\vec{v}) = (v_{_{3,y}} - \ v_{_{2,z}} \mid v_{_{1,z}} - \ v_{_{3,x}} \mid \ v_{_{2,x}} - \ v_{_{1,y}})^T$

 $\frac{\Delta f = \nabla^2 f = f_{xx} + f_{yy} + f_{zz}}{\operatorname{grad}(f(x, y, z)) = \nabla f = (f_x \mid f_y \mid f_z)^T}$ Laplace-Operator Gradient

dabei ist f das *Potential* vom «Gradientenfeld/Potentialfeld» \vec{F} ist konservativ falls $rot(\vec{F}) = 0 \rightarrow$ es existiert ein Potential fPoincaré $\operatorname{div}(\vec{f}(x,y,z)) = \nabla \vec{f} = f_{1,x} + f_{2,y} + f_{3,z}$ (Quellstärke) Divergenz $rot(grad(f)) = \vec{0}$ $\operatorname{div}(\operatorname{rot}(\vec{v})) = 0$ Identitäten $\operatorname{div}(\operatorname{grad}(f) \times \operatorname{grad}(g)) = 0 \qquad \operatorname{rot}(\operatorname{rot}(\vec{v})) = \operatorname{grad}(\operatorname{div}(\vec{v})) - \Delta \vec{A}$

Partialbruchzerlegung

$$\frac{U(x)}{(x-1)^2} = \frac{A}{(x-1)^2} + \frac{B}{(x-1)}$$

$$\frac{U(x)}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{(x^2+1)}$$

Integrale

Haupsatz	$F(x) = \int_{-\infty}^{\infty} f(t) dt$ mit $F'(x) = f(cx)$	
Potenzumformung	$a^b = e^{\ln a \cdot b}$	
Partielle Integration	$\int_{a}^{b} f'(x)g(x) dx = \left[f(x)g(x) \right]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$	
Substitution	$\int_{a}^{b} f(u(x))u'(x)dx = \int_{u(a)}^{u(b)} f(z)dz, \text{ wobei } z = u(x)$	
	$\int\limits_a^b f(x)dx = \int\limits_{u^{-1}(a)}^{u^{-1}(b)} f(u(z))u'(z)dz$, wobei $x=u(z)$	
Satz von Fubini	$\int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$	

Substitutions regel
$$\int\limits_{\Phi(\Omega)} f \, d\mu = \int\limits_{\Omega} (f \circ \Phi) \cdot |\det(d\Phi)| \, d\mu(\Phi)$$

$$\int\limits_{S} f \, do = \int\limits_{\Omega} (f \circ \Phi) \cdot |\Phi_{u} \times \Phi_{v}| \, d\mu(u, v)$$

Fluss
$$\int_{S} \vec{f} \cdot \vec{n} \ do = \int_{\Omega} (\vec{f} \circ \Phi) \cdot (\Phi_{u} \times \Phi_{v}) d\mu(u, v)$$

Wegintegral
$$\int\limits_{\gamma}\vec{\lambda}=\int\limits_{0}^{1}\vec{\lambda}(\vec{\gamma}(t))\dot{\vec{\gamma}}(t)\;dt$$

Satz von Stokes (Zirkulation im 3D, ccw)
$$\int_{S} rot(\vec{v}) \cdot \vec{n} dO = \int_{\partial S} \vec{v} d\vec{s}$$

Satz von Green (Zirkulation im 2D, ccw)
$$\int_{\Omega} rot(\vec{v}) d\mu = \int_{\partial \Omega} \vec{v} ds$$

Satz von Gauss (Fluss, inside out)
$$\int_{\Omega} \operatorname{div}(\vec{v}) dV = \int_{\partial \Omega} \vec{v} \cdot \vec{n} dO$$

Ableitungen spezieller Funktionen

$$(c)' = 0, \text{ c konstant} \qquad (cx)' = c, \text{ c konstant}$$

$$(x^s)' = sx^{s-1} \qquad \left(\frac{1}{x}\right)' = -\frac{1}{x^2} \qquad \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

$$(\ln|x|)' = \frac{1}{x} \qquad (\log_a|x|)' = (\log_a e) \cdot \frac{1}{x} = \frac{1}{x \ln a}$$

$$(e^x)' = e^x \qquad (a^x)' = (\ln a)a^x$$

$$(\sin x)' = \cos x \qquad (\cos x)' = -\sin x \qquad (\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} \qquad (\arcsin x)' = -\frac{1}{\sqrt{1-x^2}} \qquad (\arctan x)' = \frac{1}{1+x^2}$$

$$(\sinh x)' = \cosh x \qquad (\cosh x)' = \sinh x \qquad (\tanh x)' = \frac{1}{\cosh^2 x} = 1 - \tanh^2 x$$

$$(\arcsin x)' = \frac{1}{\sqrt{x^2+1}} \qquad (\operatorname{arcosh} x)' = \frac{1}{\sqrt{x^2-1}} \qquad (\operatorname{artanh} x)' = \frac{1}{1-x^2}$$

Spezielle bestimmte Integrale

$$\int_{0}^{2\pi} \sin mx \sin nx \, dx = \int_{0}^{2\pi} \cos mx \cos nx \, dx = \begin{cases} 0, \text{ wenn } m \neq n \\ \pi, \text{ wenn } m = n \neq 0 \end{cases}, m, n \in \mathbb{Z}$$

$$\int_{0}^{2\pi} \sin mx \cos nx \, dx = 0, m, n \in \mathbb{Z}$$

$$\int_{0}^{\infty} \frac{\sin ax}{x} \, dx = \frac{\pi}{2}, a > 0$$

$$\int_{0}^{\infty} e^{-ax} x^{n} \, dx = \frac{n!}{a^{n+1}}, a > 0$$

$$\int_{0}^{\infty} e^{-ax^{2}} x^{2^{n}} \, dx = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}, a > 0, n \in \mathbb{N}$$

Spezielle unbestimmte Integrale

$$\int 0 \, dx = C \qquad \int a \, dx = ax + C$$

$$\int x^* dx = \frac{1}{s+1} x^{s+1} + C, \ s \neq -1 \qquad \int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int (ax+b)^s \, dx = \frac{1}{a(s+1)} (ax+b)^{s+1} + C, \ s \neq 1$$

$$\int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + C$$

$$\int (ax^p+b)^s x^{p-1} \, dx = \frac{(ax^p+b)^{s+1}}{ap(s+1)} + C, \ s \neq 1, \ a \neq 0, \ p \neq 0$$

$$\int (ax^p+b)^{-1} x^{p-1} \, dx = \frac{1}{ap} \ln|ax^p+b| + C, \ a \neq 0, \ p \neq 0$$

$$\int \frac{ax+b}{cx+d} \, dx = \frac{ax}{c} - \frac{ad-bc}{c^2} \ln|cx+d| + C$$

$$\int \frac{ax+b}{x^2+cx+d} \, dx = \frac{a}{2} \ln|x^2+cd+d| + \frac{b-\frac{ac}{2}}{\sqrt{d-\frac{c^2}{4}}} \arctan\left(\frac{x+\frac{c}{2}}{\sqrt{d-\frac{c^2}{4}}}\right) + C, \ c^2-4 \, d < 0$$

$$\int \frac{1}{x^2+a^2} \, dx = \frac{1}{a} \arctan \frac{x}{a} + C \qquad \int \frac{1}{x^2-a^2} \, dx = \frac{1}{2a} \ln\left|\frac{x-a}{x+a}\right| + C$$

$$\int \sqrt{a^2+x^2} \, dx = \frac{x}{2} \sqrt{a^2+x^2} + \frac{a^2}{2} \ln(x+\sqrt{a^2+x^2}) + C$$

$$\int \sqrt{a^2-a^2} \, dx = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \arcsin \frac{x}{|a|} + C$$

$$\int \int \frac{1}{\sqrt{x^2-a^2}} \, dx = \ln|x+\sqrt{x^2-a^2}| + C$$

$$\int \frac{1}{\sqrt{x^2-a^2}} \, dx = \ln|x+\sqrt{x^2-a^2}| + C$$

$$\int \frac{1}{\sqrt{x^2-a^2}} \, dx = \ln|x+\sqrt{x^2-a^2}| + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int a^{4x} \, dx = \frac{1}{k} \ln a^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} \ln a^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x} \, dx = \frac{1}{k} e^{4x} + C$$

$$\int e^{4x}$$

$$\int e^{kx} \cos(ax+b) \, dx = \frac{e^{kx}}{a^2 + k^2} [k \sin(ax+b) - a \cos(ax+b)] + C$$

$$\int e^{kx} \sin(ax+b) \, dx = \frac{e^{kx}}{a^2 + k^2} [k \cos(ax+b) + a \sin(ax+b)] + C$$

$$\int \ln|x| \, dx = x (\ln|x| - 1) + C \qquad \int \log_a |x| \, dx = x (\log_a |x| - \log_a e) + C$$

$$\int x^k \ln x \, dx = \frac{x^{k+1}}{k+1} [\ln x - \frac{1}{k+1}] + C, \quad k \neq -1$$

$$\int x^{-1} \ln x \, dx = \frac{1}{2} (\ln x)^2 + C$$

$$\int \sin x \, dx = -\cos + C \qquad \int \sin(ax+b) \, dx = -\frac{1}{a} \cos(ax+b) + C$$

$$\int \cos x \, dx = \sin x + C \qquad \int \cos(ax+b) \, dx = \frac{1}{a} \sin(ax+b) + C$$

$$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cos x) + C \qquad \int \frac{1}{\sin x} \, dx = \ln \left| \tan \frac{x}{2} \right| + C$$

$$\int \cos^2 x \, dx = \frac{1}{2} (x + \sin x \cos x) + C \qquad \int \frac{1}{\cos x} \, dx = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C$$

$$\int \tan^2 x \, dx = \tan x - x + C \qquad \int \frac{1}{\tan x} \, dx = \ln \left| \sin x \right| + C$$

$$\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx, \quad n \geq 2$$

$$\int \cos^n x \, dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x \, dx, \quad n \geq 2$$

$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1-x^2} + C$$

$$\int \arctan x \, dx = x \arcsin x - \ln(1+x^2) + C$$

$$\int \sinh x \, dx = \cosh x + C \qquad \int \arcsin x \, dx = x \arcsin x - \sqrt{x^2 - 1} + C$$

$$\int \tanh x \, dx = \ln \cosh x + C \qquad \int \arctan x \, dx = x \arcsin x - \sqrt{x^2 - 1} + C$$

$$\int \tanh x \, dx = \ln \cosh x + C \qquad \int \arctan x \, dx = x \arctan x + \frac{1}{2} \ln(1-x^2) + C$$