Problem Set 2

Student Name: Aniruddha Deshpande

Problem 1

Problem 1.1

I will proceed with this problem in the following way. First, I will derive the analytical form for the minimizing function $f_{\rho} = \arg\min_{f} \mathcal{E}(f)$. I will do this by using the same approach as used in Q1 of pset 1 (or section 1.5.1 of the book) where, to find the f that minimizes L(f) as given below (and $L_x(a) = l(y, a)dP(y|x)$) it is sufficient to minimize $L_x(f(x))$ over f and that will give us the same optimal function.

$$L(f) = \int dP_X(x)L_x(f(x)) \tag{2.1}$$

Then, once I have this, I will characterize $|R(f) - R(f_{\rho})|$. To find f_{ρ} -

$$\mathcal{E}(f) = \int_{X \times Y} (f(x) - y)^2 p(x, y) \, dx \, dy$$
$$= \int_X \left[(f(x) - 1)^2 p(x, 1) + (f(x) + 1)^2 p(x, -1) \right] dx$$

As mentioned above, f_{ρ} can be found by just minimizing the term inside the integral. This can be done by setting the derivative of this with respect to f to 0.

$$2(f_{\rho}(x) - 1)p(x, 1) + 2(f_{\rho}(x) + 1)p(x, -1) = 0$$
$$f_{\rho}(x)p(x) = p(x, 1) - p(x, -1)$$
$$f_{\rho}(x) = \frac{p(x, 1) - p(x, -1)}{p(x)}$$

Note, that the optimal function that minimizes the expected risk is a pretty intuitive function, which gives a positive value (and hence predicts $\hat{y} = +1$) when p(x, 1) > p(x, -1) and a negative value when p(x, 1) < p(x, -1).

Now, to characterize the quantity $|R(f) - R(f_{\rho})|$. For any arbitrary function $f \in \mathcal{F}$ and f_{ρ} we can divide the input space \mathcal{X} into 4 regions $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3, \mathcal{X}_4$ such that :-

$$\mathcal{X}_{1} = \{x \in \mathcal{X} | f_{\rho}(x) \geq 0, f(x) \geq 0\}$$

$$\mathcal{X}_{2} = \{x \in \mathcal{X} | f_{\rho}(x) < 0, f(x) \geq 0\}$$

$$\mathcal{X}_{3} = \{x \in \mathcal{X} | f_{\rho}(x) \geq 0, f(x) < 0\}$$

$$\mathcal{X}_{4} = \{x \in \mathcal{X} | f_{\rho}(x) < 0, f(x) < 0\}$$

$$\mathcal{X} = \mathcal{X}_{1} \cup \mathcal{X}_{2} \cup \mathcal{X}_{3} \cup \mathcal{X}_{4}$$

Using this, we can write the R(f) and $R(f_{\rho})$ as :-

$$\begin{split} R(f) &= \mathbb{P}(sign(f(x)) \neq y) \\ &= \mathbb{P}(\{f(x) \geq 0, y = -1\} \cup \{f(x) < 0, y = +1\}) \\ &= \mathbb{P}(f(x) \geq 0, y = -1) + \mathbb{P}(f(x) < 0, y = +1) \\ &= \int_{\mathcal{X}_1 \cup \mathcal{X}_2} p(x, -1) \, dx + \int_{\mathcal{X}_2 \cup \mathcal{X}_4} p(x, 1) \, dx \end{split}$$

Similarly, for $R(f_{\rho})$, we have:-

$$R(f_{\rho}) = \mathbb{P}(sign(f_{\rho}(x)) \neq y)$$

$$= \mathbb{P}(\{f_{\rho}(x) \geq 0, y = -1\} \cup \{f_{\rho}(x) < 0, y = +1\})$$

$$= \mathbb{P}(f_{\rho}(x) \geq 0, y = -1) + \mathbb{P}(f_{\rho}(x) < 0, y = +1)$$

$$= \int_{\mathcal{X}_{1} \cup \mathcal{X}_{3}} p(x, -1) dx + \int_{\mathcal{X}_{2} \cup \mathcal{X}_{4}} p(x, 1) dx$$

Using the above we get:-

$$R(f) - R(f_{\rho}) = \int_{\mathcal{X}_{2}} p(x, -1) dx - \int_{\mathcal{X}_{2}} p(x, 1) dx + \int_{\mathcal{X}_{3}} p(x, 1) dx - \int_{\mathcal{X}_{3}} p(x, -1) dx$$

$$= \int_{\mathcal{X}_{3}} [p(x, 1) - p(x, -1)] dx + \int_{\mathcal{X}_{2}} [p(x, -1) - p(x, 1)] dx$$

$$= \int_{\mathcal{X}_{3}} |p(x, 1) - p(x, -1)| dx + \int_{\mathcal{X}_{2}} |p(x, 1) - p(x, -1)| dx$$

$$= \int_{\mathcal{X}_{2} \cup \mathcal{X}_{3}} |p(x, 1) - p(x, -1)| dx$$

$$= \int_{\mathcal{X}_{f}} |p(x, 1) - p(x, -1)| dx$$

$$= \int_{\mathcal{X}_{f}} \frac{|p(x, 1) - p(x, -1)|}{p(x)} p(x) dx$$

$$= \int_{\mathcal{X}_{f}} \frac{|p(x, 1) - p(x, -1)|}{p(x)} d\rho(x)$$

$$= \int_{\mathcal{X}_{f}} |f_{\rho}(x)| d\rho(x)$$

Where, the third equality is because $\forall x \in \mathcal{X}_3$ we have $f_{\rho} \geq 0$, which implies $p(x,1) \geq p(x,-1)$. Similarly $\forall x \in \mathcal{X}_3$ we have $f_{\rho} < 0$, which implies p(x,1) < p(x,-1). The last equality follows from the definitions of $\mathcal{X}_2, \mathcal{X}_3, \mathcal{X}_f$.

Problem 1.2

Now, to prove the inequalities. The first inequality is straightforward from the observation that for the space \mathcal{X}_f the functions f and f_ρ have the opposite signs. This means that $\forall x \in \mathcal{X}_f$ the following is always true:

$$|f_{\rho}(x)| \le |f_{\rho}(x) - f(x)|$$
$$|f_{\rho}(x)|p(x) \le |f_{\rho}(x) - f(x)|p(x)$$

Where, the second inequality holds because p(x) is a positive quantity.

Integrating this inequality on both sides over \mathcal{X}_f will preserve the inequality and hence we have.

$$\int_{\mathcal{X}_f} |f_{\rho}(x)| p(x) \, dx \le \int_{\mathcal{X}_f} |f_{\rho}(x) - f(x)| p(x) \, dx$$

To prove the second inequality, I will use the Jensen's inequality for concave functions (specifically the square root function).

$$\int_{\mathcal{X}_f} |f_{\rho}(x) - f(x)| p(x) \, dx = \int_{\mathcal{X}_f} \sqrt{|f_{\rho}(x) - f(x)|^2} p(x) \, dx$$
$$= \mathbb{E}_{p(x)} \left[\sqrt{|f_{\rho}(x) - f(x)|^2} \right]$$
$$\leq \sqrt{\mathbb{E}_{p(x)} (|f_{\rho}(x) - f(x)|^2)}$$

Where as mentioned above, the last inequality is using the Jensen's inequality for the concave square root function.

Problem 1.3

This part can be proved by writing out the definition of $\mathcal{E}(f)$, $\mathcal{E}(f)$ and f_{ρ} as derived in 1.1

$$\begin{split} \mathcal{E}(f) - \mathcal{E}(f_{\rho}) &= \int_{X \times Y} [(f(x) - 1)^2 - (f_{\rho}(x) - 1)^2] p(x, y) \, dx \, dy \\ &= \int_{X} ([(f(x) - 1)^2 - (f_{\rho}(x) - 1)^2] p(x, 1) + [(f(x) + 1)^2 - (f_{\rho}(x) + 1)^2] p(x, -1)) \, dx \, dy \\ &= \int_{X} ([f^2(x) + 1 - 2f(x) - f_{\rho}^2(x) - 1 + 2f_{\rho}(x)] p(x, 1) \\ &+ [f^2(x) + 1 + 2f(x) - f_{\rho}^2(x) - 1 - 2f_{\rho}(x)] p(x, -1)) \, dx \, dy \\ &= \int_{X} [f^2(x) p(x) - f_{\rho}^2(x) p(x) - 2f(x) (p(x, 1) - p(x, -1)) + 2f_{\rho}(x) (p(x, 1) - p(x, -1))] \, dx \, dy \\ &= \int_{X} [f^2(x) p(x) - f_{\rho}^2(x) p(x) - 2f(x) (f_{\rho}(x) p(x)) + 2f_{\rho}(x) (f_{\rho}(x) p(x))] \, dx \, dy \\ &= \int_{X} [f(x) - f_{\rho}(x)]^2 p(x) \, dx \, dy \\ &= \int_{X} [f(x) - f_{\rho}(x)]^2 p(x) \, dx \, dy \\ &= \mathbb{E}(|f(x) - f_{\rho}(x)|^2) \end{split}$$

Where I get the 5th equality by replacing (p(x,1) - p(x,-1)) with $f_{\rho}(x)p(x)$

Problem 2

First, combining the two inequalities given in the question into 1, we get:

$$\mathbb{P}(\left|\frac{1}{n}\sum_{i=1}^{n}U_{i} - \mathbb{E}(U)\right| > \epsilon) \le 2\exp\left\{-\frac{2n\epsilon^{2}}{(a-b)^{2}}\right\}$$

We also have $\forall j \in [n]$:-

$$\mathbb{L}(f_j) = \mathbb{E}_{(x,y) \sim \mathcal{D}}[l(f_j(x), y)]$$
$$\hat{\mathbb{L}}(f_j) = \frac{1}{n} \sum_{i=1}^{n} l(f_j(x_i), y_i)$$

Note, that for any chosen function, $\hat{\mathbb{L}}$ is a sum of iid random variables, given that $\{x_i, y_i\}$ are sampled iid.

Now, I will try to bound the term given in the question. I will use the following facts. First, I will use the fact that, given 2 events A and B; $\mathbb{P}(A) \leq \mathbb{P}(A \cup B)$. I will then use the union bound, followed by Hoeffding's inequality mentioned above.

$$\mathbb{P}(\max_{f \in \mathcal{F}} |\mathbb{L}(f) - \hat{\mathbb{L}}(f)| > \epsilon) \leq \mathbb{P}(\bigcup_{i=1}^{n} \{ |\mathbb{L}(f_i) - \hat{\mathbb{L}}(f_i)| > \epsilon \})$$

$$\leq \sum_{i=1}^{n} \mathbb{P}(|\mathbb{L}(f_i) - \hat{\mathbb{L}}(f_i)| > \epsilon)$$

$$\leq 2N \exp\{-\frac{2n\epsilon^2}{(C+M)^4}\}$$

The last inequality comes from the Hoeffding's bound. The denominator in the exponential $(a-b)^2$ is essentially the square of the range of the random variable U_i . In my application of this bound, $U_i \to l(f_j(x_i), y_i) = (f_j(x_i) - y_i)^2$. The minimum value of l(., .) is 0. The maximum value of this loss would be achieved when y = M and $f_j(x_i) = -C$. So, the range of $l(f_j(x_i), y_i)$ is $[0, (C+M)^2]$. Substituting this range into the Hoeffding bound we get the result.

Problem 2.2

To solve this question, I will first use the following idea.

$$\mathbb{P}(\max_{f \in \mathcal{F}} |\mathbb{L}(f) - \hat{\mathbb{L}}(f)| \ge \epsilon) \ge \mathbb{P}(|\mathbb{L}(f) - \hat{\mathbb{L}}(f)| \ge \epsilon) \qquad \forall f \in \mathcal{F}$$

This is true, because the event that the max value of some function is greater than a given value, is included within the event that the value of the function at any other point is greater than a given value, ie. if the event on the right hand side takes place, then the event on the left hand side taking place is implied. Using this, we have

$$\mathbb{P}(|\mathbb{L}(\hat{f}_n) - \hat{\mathbb{L}}(\hat{f}_n)| \ge \epsilon) \le \mathbb{P}(\max_{f \in \mathcal{F}} |\mathbb{L}(f) - \hat{\mathbb{L}}(f)| \ge \epsilon)$$
$$\le 2N \exp\{-\frac{2n\epsilon^2}{(C+M)^4}\}$$

Splitting the LHS, we get

$$\mathbb{P}(\mathbb{L}(\hat{f}_n) - \hat{\mathbb{L}}(\hat{f}_n) \ge \epsilon) + \mathbb{P}(\hat{\mathbb{L}}(\hat{f}_n) - \mathbb{L}(\hat{f}_n) \ge \epsilon) \le 2N \exp\{-\frac{2n\epsilon^2}{(C+M)^4}\}$$

The second term $\mathbb{P}(\hat{\mathbb{L}}(\hat{f}_n) - \mathbb{L}(\hat{f}_n) = 0$, as $\hat{\mathbb{L}}(\hat{f}_n) - \mathbb{L}(\hat{f}_n) \leq 0$. This is because ... Now, using this we can see that:

$$1 - \mathbb{P}(\mathbb{L}(\hat{f}_n) - \hat{\mathbb{L}}(\hat{f}_n) \ge \epsilon) = \mathbb{P}(\mathbb{L}(\hat{f}_n) - \hat{\mathbb{L}}(\hat{f}_n) < \epsilon)$$
$$\ge 1 - 2N \exp\{-\frac{2n\epsilon^2}{(C+M)^4}\}$$

Now, given the framing of the question, we can see that $\delta \to 2n \exp\{-\frac{2n\epsilon^2}{(C+M)^4}\}$. So, the problem becomes finding ϵ in terms of δ which can be given by:-

$$\epsilon(n, M, \gamma) = \sqrt{\frac{(C+M)^4}{2n} \log(\frac{2N}{\delta})}$$

Problem 2.3

Starting with the LHS in the question and adding/subtracting a few terms we get:-

$$\mathbb{L}(\hat{f}_n) - \hat{\mathbb{L}}(\hat{f}_n) + \hat{\mathbb{L}}(\hat{f}_n) - \hat{\mathbb{L}}(\hat{f}_n) + \hat{\mathbb{L}}(f_{\mathcal{F}}) - \hat{\mathbb{L}}(f_{\mathcal{F}}) < \mathbb{L}(\hat{f}_n) - \hat{\mathbb{L}}(\hat{f}_n) - \mathbb{L}(\hat{f}_{\mathcal{F}}) + \hat{\mathbb{L}}(f_{\mathcal{F}})$$

The inequality is because $\hat{\mathbb{L}}(\hat{f}_n) - \hat{\mathbb{L}}(f_{\mathcal{F}}) < 0$ as \hat{f}_n is the minimizer of the empirical risk. Now I will proceed as follows:-

$$\mathbb{P}(\{\mathbb{L}(\hat{f}_{n}) - \hat{\mathbb{L}}(\hat{f}_{n}) > \epsilon\} \cup \{\hat{\mathbb{L}}(f_{\mathcal{F}}) - \mathbb{L}(\hat{f}_{\mathcal{F}}) > \epsilon\}) \leq \mathbb{P}(\max_{f \in \mathcal{F}} |\mathbb{L}(f) - \hat{\mathbb{L}}(f)| > \epsilon)$$

$$\leq \delta$$

$$1 - \mathbb{P}(\{\mathbb{L}(\hat{f}_{n}) - \hat{\mathbb{L}}(\hat{f}_{n}) > \epsilon\} \cup \{\hat{\mathbb{L}}(f_{\mathcal{F}}) - \mathbb{L}(\hat{f}_{\mathcal{F}}) > \epsilon\}) \geq 1 - \delta$$

$$\mathbb{P}(\{\mathbb{L}(\hat{f}_{n}) - \hat{\mathbb{L}}(\hat{f}_{n}) > \epsilon\}^{C} \cap \{\hat{\mathbb{L}}(f_{\mathcal{F}}) - \mathbb{L}(\hat{f}_{\mathcal{F}}) > \epsilon\}^{C}) \geq 1 - \delta$$

$$\mathbb{P}(\{\mathbb{L}(\hat{f}_{n}) - \hat{\mathbb{L}}(\hat{f}_{n}) \leq \epsilon\} \cap \{\hat{\mathbb{L}}(f_{\mathcal{F}}) - \mathbb{L}(\hat{f}_{\mathcal{F}}) \leq \epsilon\}) \geq 1 - \delta$$

$$\mathbb{P}(\mathbb{L}(\hat{f}_{n}) - \hat{\mathbb{L}}(\hat{f}_{n}) - \mathbb{L}(\hat{f}_{\mathcal{F}}) + \hat{\mathbb{L}}(f_{\mathcal{F}}) \leq 2\epsilon) \geq \mathbb{P}(\{\mathbb{L}(\hat{f}_{n}) - \hat{\mathbb{L}}(\hat{f}_{n}) \leq \epsilon\} \cap \{\hat{\mathbb{L}}(f_{\mathcal{F}}) - \mathbb{L}(\hat{f}_{\mathcal{F}}) \leq 2\epsilon\}) \geq 1 - \delta$$

$$1 - \delta$$

The first inequality is true because of a similar argument as used in 2.2; the event that the max of a function within a class is greater than a given value is more likely than any other function within the class being greater than a given value, and the same applies for any 2 functions being greater than a given value. The third line is true using $(A \cup B)^C = A^C \cap B^C$. The last line is true because $\mathbb{P}(a+b<2c) \geq \mathbb{P}(\{a< c\} \cap \{b< c\})$.

Problem 3

Problem 3.1

This part can be proved using the triangle inequality as mentioned in the hint. I will start with the definition of replace-one stability and proceed from there:

$$|V(f_{S}, z') - V(f_{S_{i,z}}, z')| = |V(f_{S}, z') - V(f_{S_{i}}, z') + V(f_{S_{i}}, z') - V(f_{S_{i,z}}, z')|$$

$$\leq |V(f_{S}, z') - V(f_{S_{i}}, z')| + |V(f_{S_{i}}, z') - V(f_{S_{i,z}}, z')|$$

$$\leq \beta + \beta$$

$$= 2\beta$$

where, the first inequality is using the triangle inequality and the second inequality is using the fact that the given algorithm is β -uniform leave one out stable.

Problem 3.2

Given that \mathcal{Z} has finite support. Let $|\mathcal{Z}| = N > n$. Now given that the learning algorithm is λ L1-stable, then we have $\forall z \in \mathcal{Z}$ and any distributions p, q:

$$|V(f_p, z') - V(f_q, z')| \le \lambda ||p - q||_1$$

Now, to prove that the above implies uniform leave one-out stability it would be sufficient to show that $V(f_{\mathcal{S}},z')=V(f_p,z')$ and $V(f_{\mathcal{S}_i},z')=V(f_q,z')$ for some choice of p and q. Note that any dataset \mathcal{S} can be fully identified by a set of indices $\mathcal{S}_{ind}\subset[N], |\mathcal{S}_{ind}|=n$ It can be observed that giving the data set \mathcal{S} to the algorithm is equivalent to feeding the algorithm with data $z\in\mathcal{Z}$ such that $p_j=\frac{1}{n}$, $\forall j\in S_{ind}$ and 0 otherwise. Similarly giving the data set \mathcal{S}_i to the algorithm is equivalent to feeding the algorithm with data $z\in\mathcal{Z}$ such that $q_j=\frac{1}{n-1}$, $\forall j\in S_i^{ind}$ and 0 otherwise. Also noted that given the definitions of the sets S^{ind} and S_i^{ind} , $S_i^{ind}\subset S^{ind}$, there is only one index in the former set which is not included in the latter. So, using this we can get the upper bound on the p,q stability as:

$$\lambda ||p - q||_1 = \lambda [(n - 1)(\frac{1}{n - 1} - \frac{1}{n}) + \frac{1}{n}]$$

$$= \frac{2\lambda}{n}$$

Problem 3.3

I couldn't figure out a good enough solution for this problem. We tried using an approach where we defined a switch ϵ stability where instead of fully swapping out a sample from the data set we slightly re-weight the probabilities by adding and subtracting ϵ from the probabilities of 2 samples. But this didn't work out. Curious to see the solution to this!

Problem 3.4

First, note that the LHS of the inequality to be proven follows:

$$\mathbb{E}_{\mathcal{S},z}[|V(f_{\mathcal{S}},z') - V(f_{\mathcal{S}_i},z')|] = \mathbb{E}_{\mathcal{S},z}(\mathbb{1}_{\{f_{\mathcal{S}_i(x) \neq f_{\mathcal{S}_i}(x)}\}})$$
$$= \mathbb{P}(f_{\mathcal{S}}(x) \neq f_{\mathcal{S}_i(x)})$$

The first equality is true because of the definition of V(f, z). The term will be zero every time $f_{\mathcal{S}}$ and $f_{\mathcal{S}_i}$ is the same give the same prediction and 1 otherwise and hence the term can be replaced by the appropriate indicator function.

Then, the proof follows from the observation that the prediction of $f_{\mathcal{S}}$ and $f_{\mathcal{S}_i}$ can differ only if the removed sample z_i is one of the k-nearest neighbours of z. By the symmetry of the algorithm I can argue that the probability of this event is $\frac{k}{n}$. The inequality in the result given is because, even when the chosen sample to be removed from the data set is one of the k-nearest neighbours the output of the algorithm doesn't not necessarily change, so the probability of the outputs of $f_{\mathcal{S}}$ and $f_{\mathcal{S}_i}$ being different is at most $\frac{k}{n}$.

Problem 4

Problem 4.1

I will proceed with derivation for the first bound as in lecture 6.

$$\mathcal{R}_{X}(\mathcal{F}_{W}) = \mathbb{E}_{\sigma}\left(\sup_{||w|| \leq W} \left(\frac{1}{n} \sum_{i} \sigma_{i} < w, x_{i} > \right)\right)$$

$$= \mathbb{E}_{\sigma}\left(\sup_{||w|| \leq W} \left(< w, \frac{1}{n} \sum_{i} \sigma_{i} x_{i} > \right)\right)$$

$$\leq \mathbb{E}_{\sigma}\left(\sup_{||w|| \leq W} ||w|| . || \frac{1}{n} \sum_{i} \sigma_{i} x_{i} || \right)$$

$$\leq W \mathbb{E}_{\sigma}\left(\sqrt{||\frac{1}{n} \sum_{i} \sigma_{i} x_{i}||^{2}}\right)$$

$$\leq W \sqrt{\mathbb{E}_{\sigma}(||\frac{1}{n} \sum_{i} \sigma_{i} x_{i} ||^{2})}$$

$$= W \sqrt{\frac{1}{n^{2}} \mathbb{E}_{\sigma}\left(\sum_{i,j} \sigma_{i} \sigma_{i} < x_{i}, x_{j} > \right)}$$

$$= W \sqrt{\frac{1}{n^{2}} \mathbb{E}_{\sigma}\left(\sum_{i} \sigma_{i}^{2} ||x_{i}^{2}|| + \sum_{i \neq j} \sigma_{i} \sigma_{i} < x_{i}, x_{j} > \right)}$$

$$= W \sqrt{\frac{1}{n^{2}} \mathbb{E}_{\sigma}\left(\sum_{i} ||x_{i}^{2}||\right)}$$

$$\leq W \sqrt{\frac{1}{n^{2}} n B^{2}}$$

$$= \frac{BW}{\sqrt{n}}$$

where, we have the second equality by the linearity of the inner product operator. The first inequality is using the Cauchy-Schwarz inequality. The second inequality comes from the fact that ||w|| is bounded and the third inequality is the Jensen's inequality applied for the concave square root function. The last inequality comes ||x|| being bounded.

Problem 4.2

Using the definitions given in the question, we have:

$$\mathcal{R}_{X}(\mathcal{F}_{1} + \mathcal{F}_{2}) = \mathbb{E}_{\sigma}(\sup_{g \in \mathcal{F}_{1} + \mathcal{F}_{2}} (\frac{1}{n} \sum_{i} \sigma_{i} g(x_{i})))$$

$$= \mathbb{E}_{\sigma}(\sup_{f_{1} \in \mathcal{F}_{1}, f_{2} \in \mathcal{F}_{2}} (\frac{1}{n} (\sum_{i} \sigma_{i} f_{1}(x_{i}) + \sum_{i} \sigma_{i} f_{2}(x_{i})))$$

$$= \mathbb{E}_{\sigma}(\sup_{f_{1} \in \mathcal{F}_{1}} \frac{1}{n} \sum_{i} \sigma_{i} f_{1}(x_{i}) + \sup_{f_{2} \in \mathcal{F}_{2}} \frac{1}{n} \sum_{i} \sigma_{i} f_{2}(x_{i}))$$

$$= \mathbb{E}_{\sigma}(\sup_{f_{1} \in \mathcal{F}_{1}} \frac{1}{n} \sum_{i} \sigma_{i} f_{1}(x_{i})) + \mathbb{E}_{\sigma}(\sup_{f_{2} \in \mathcal{F}_{2}} \frac{1}{n} \sum_{i} \sigma_{i} f_{2}(x_{i})))$$

$$= \mathcal{R}_{X}(\mathcal{F}_{1}) + \mathcal{R}(\mathcal{F}_{2})$$

where, the second equality is by the structure of the function class $\mathcal{F}_1 + \mathcal{F}_2$. The third equality follow from the linearity of the supremum operator and the fact that the first term only depends on f_1 and the second only on f_2 . The next equality follows from linearity of expectation.