THE ENTROPY-PERFECT MOLLIFIER FAMILY: CONVOLUTION IDENTITY, DUALITY WITH AMPLIFIERS, AND YANG-LANGLANDS ENTROPY INTEGRATION

PU JUSTIN SCARFY YANG

ABSTRACT. We define the Entropy—Perfect Mollifier Family as a class of convolution kernels that suppress all non-spectral contributions outside a designated entropy-support band, and act as identity operators when composed with their amplifier duals. These mollifiers are classified by entropy-symmetry, convolutional minimality, and exact trace localization. We prove a convolution identity theorem, construct the amplifier—mollifier inverse* diagram, and integrate the mollifier family into the entropy—Langlands kernel stack hierarchy.

Contents

1.	Introduction	1
2.	Definition of Entropy-Perfect Mollifiers	2
3.	Convolution Identity with Amplifiers	2
4.	Entropy Convolution Diagram and Yang-Langlands Functor	2
5.	Entropy Convolution in Yang-Langlands Stack	3
6.	Philosophical and Interdisciplinary Implications	3
7.	Future Research and Expansion	3
References		4

1. Introduction

In analytic number theory, mollifiers have long been employed to smooth L-functions, regularize moments, and isolate zero distributions. The entropy-theoretic perspective now offers a categorified refinement: a mollifier kernel not only damps noise, but also respects spectral entropy stratification.

In this paper, we define the **Entropy-Perfect Mollifier Family**—a class of mollifiers that:

• Perfectly suppress spectral components outside a designated entropy band;

Date: May 24, 2025.

- Act as identity operators when composed with their amplifier duals;
- Are integrable into Yang-style convolution modules over Langlands period stacks.

We develop convolutional properties, prove identity theorems, and construct the duality diagram showing mollifier—amplifier interactions in the entropy-trace hierarchy.

2. Definition of Entropy-Perfect Mollifiers

Definition 2.1 (Entropy–Perfect Mollifier). Let \mathcal{H} be a spectral Hilbert space with orthonormal basis $\{\phi_{\lambda}\}$ and entropy weight function $H_Y(\lambda)$. An entropy–perfect mollifier is a kernel:

$$M^{(Y)}(x,y) := \sum_{\lambda \in \Lambda} e^{-H_Y(\lambda)} \phi_{\lambda}(x) \overline{\phi_{\lambda}(y)},$$

such that:

- (M1) $e^{-H_Y(\lambda)} = 0$ for all $\lambda \notin \Lambda_Y$;
- (M2) $e^{-H_Y(\lambda)} = 1$ for all $\lambda \in \Lambda_Y$;
- (M3) Λ_Y is an entropy-filtered spectral band such that $M^{(Y)} * f = f$ if and only if $\operatorname{Spec}(f) \subset \Lambda_Y$.

Remark 2.2. This is a projection mollifier: it erases all spectral content outside Λ_Y and leaves target-band functions invariant.

3. Convolution Identity with Amplifiers

Theorem 3.1 (Mollifier–Amplifier Identity). Let $M^{(Y)}$ be an entropy–perfect mollifier supported on Λ_Y , and $A^{(Y)}$ an ultra amplifier supported on the same Λ_Y . Then:

$$M^{(Y)} * A^{(Y)} = \mathrm{Id}_{\Lambda_Y} = A^{(Y)} * M^{(Y)}.$$

Proof. Both $M^{(Y)}$ and $A^{(Y)}$ are identity operators on $\mathrm{Span}\{\phi_{\lambda} \mid \lambda \in \Lambda_{Y}\}$, and zero outside. Their convolution thus equals the identity on that subspace, satisfying mutual inversion.

Corollary 3.2. Let f be any spectral function with $\operatorname{Spec}(f) \subset \Lambda_Y$. Then:

$$M^{(Y)} * A^{(Y)} * f = f.$$

Hence, mollifier-amplifier composition forms a spectral identity chain.

4. Entropy Convolution Diagram and Yang-Langlands Functor

Figure 1. Amplifier-Mollifier Convolution Identity Diagram

5. Entropy Convolution in Yang-Langlands Stack

Theorem 5.1 (Stack Functorial Mollifier). Let \mathcal{M}_{BunG} be the moduli stack of G-bundles, and $\mathcal{F} \in Sh(\mathcal{M}Bun_G)$ an automorphic sheaf with spectral support in Λ_Y . Then the entropy-perfect mollifier kernel

$$\mathcal{M}^{(Y)} := \sum_{\lambda \in \Lambda_Y} \phi_\lambda \boxplus \phi_\lambda^\vee$$

acts via:

$$\mathcal{M}^{(Y)} \star \mathcal{F} = \mathcal{F}, \quad and \quad \mathcal{M}^{(Y)} \star \mathcal{F} = 0 \quad for \quad \operatorname{Spec}(\mathcal{F}) \cap \Lambda_Y = \emptyset$$

6. Philosophical and Interdisciplinary Implications

The entropy—perfect mollifier constructs a precise filtration device: it projects functions or sheaves onto a designated spectral—entropic band while erasing all non-compatible entropy components. This mirrors information-theoretic compression and signal fidelity operations in computational neuroscience, AI, and quantum information

In particular:

In physics, it corresponds to exact projection of quantum states onto energy eigenbands;

In machine learning, it mirrors selective attention or learned representation layers; In philosophy, it instantiates the idea of pure intentionality—a mechanism that filters "meaning" from "noise."

7. FUTURE RESEARCH AND EXPANSION

Define entropy convolution algebras formed by compositions of mollifiers and amplifiers;

Introduce dynamic entropy stacks that evolve under convolution flows;

Formally connect zeta spectral dynamics with entropy flow categories;

Extend the entropy convolution framework to quantum differential stacks and categorified period integrals.

This foundational mollifier–amplifier module opens a full entropy-geometric perspective on the Langlands program and trace spectral field theories.

References

- [1] J. Conrey, More than 50% of the zeros of the Riemann zeta function are on the critical line, J. Reine Angew. Math.
- [2] P.J.S. Yang, Entropy-Langlands Zeta Trace Kernels and Dual Convolution Categories, 2025.
- [3] E. Frenkel, Langlands Correspondence for Loop Groups, Cambridge University Press.