Statistique en grande dimension

Devoir maison II

Exercice 1.

On suppose $y=f+\xi$ avec ξ vecteur σ -SG . Soient $\Theta\subseteq \mathbf{B}_1(L):=\{\theta:|\theta|_1\leq L\},\ \tilde{f}:=X\hat{\theta}^{\mathrm{MC}}(\Theta)\ \mathrm{et}\ \delta\in\]\mathrm{o}$; 1 [fixé.

Montrer qu'avec une probabilité d'au moins $1 - \delta$, on a l'inégalité suivante:

$$\forall f \in \mathbb{R}^n : ||\tilde{f} - f||^2 \le \inf_{\theta \in \Theta} ||X\theta - f||^2 + U_{\delta}$$

où U_{δ} désigne un terme indépendant de f et que l'on précisera.

Solution 1.

Par le lemme 1.1, on a

$$\forall f \in \mathbb{R}^p, \forall \theta \in \Theta \quad \|\tilde{f} - f\|^2 \le \|f - X\theta\|^2 + 2\left(\xi \,|\, \tilde{f} - X\theta\right)$$

Concentrons nous sur le terme de gauche. En utilisant la relation $\tilde{f} := X\hat{\theta}^{MC}$ et en notant $\hat{\theta} := \hat{\theta}^{MC}(\Theta)$, on a successivement

$$\left(\xi \,|\, \tilde{f} - X\theta\right) = \left(X^{\mathsf{T}}\xi \,|\, \hat{\theta} - \theta\right) \leq \frac{1}{n} \sum_{j=1}^{p} [X^{\mathsf{T}}\xi]_{j} (\hat{\theta}_{i} - \theta_{i}) \leq \frac{1}{n} \max_{1 \leq j \leq p} \left|x_{j}^{\mathsf{T}}\xi\right| \cdot \left|\hat{\theta} - \theta\right|_{1}$$

avec x_j désignant la jème colonne de la matrice X. Comme θ et $\hat{\theta}$ appartiennent à $\Theta \subseteq \mathbf{B}_1(L)$, on a par inégalité triangulaire que $|\hat{\theta} - \theta|_1 \le 2L$.

inégalité triangulaire que $\left|\hat{\theta}-\theta\right|_1 \leq 2L$. En introduisant $v_j:=\frac{x_j}{|x_j|_2}$ et $x^{\bigstar}:=\max_{1\leq j\leq p}\left\|x_j\right\|=\frac{1}{\sqrt{n}}\max_{1\leq j\leq p}\left|x_j\right|_2$, on a par ailleurs

$$\max_{1 \le j \le p} \left| x_j^T \xi \right| \le \sqrt{n} x^{\star} \cdot \max_{1 \le j \le p} \left| v_j^T \xi \right|$$

Par définition de ξ vecteur σ -SG , on a $v_j^{\scriptscriptstyle T}\xi$ variable σ -SG . On en déduit grâce au lemme 1.4 l'inégalité

$$\max_{1 \le j \le p} \left| v_j^T \xi \right| \le \sigma \sqrt{2 \log \left(\frac{2p}{\delta} \right)}$$

vérifiée avec une probabilité d'au moins $1 - \delta$.

En posant $U_{\delta} = 4\sigma L x^* \sqrt{\frac{2\log\left(\frac{2p}{\delta}\right)}{n}}$ on a donc avec une probabilité d'au moins $1-\delta$ l'inégalité suivante:

$$\forall f \in \mathbb{R}^p, \forall \theta \in \Theta \quad \|\tilde{f} - f\|^2 \le \|f - X\theta\|^2 + U_\delta$$

Il suffit alors de prendre l'infimum sur θ dans Θ pour conclure.

Montrer que

$$\hat{\theta}^{H} = \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left(\sum_{j=1}^{p} \left(Y_{j} - \theta_{j} \right)^{2} + \tau^{2} |\theta|_{o} \right)$$
(1)

$$\hat{\theta}^{S} = \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left(\sum_{j=1}^{p} (Y_{j} - \theta_{j})^{2} + 2\tau |\theta|_{1} \right)$$
(2)

Solution 2.

(1) Notons $\hat{\theta}$ un argmin de la fontion à minimiser. En réécrivant cette dernière, on a successivement:

$$\sum_{j=1}^{p} (Y_{j} - \theta_{j})^{2} + \tau^{2} |\theta|_{o} = \sum_{j=1}^{p} \{ (Y_{j} - \theta_{j})^{2} + \tau^{2} \mathbb{1}_{\theta_{j} \neq o} \} = \sum_{j=1}^{p} \psi(\theta_{j}, Y_{j})$$

où
$$\psi : \begin{cases} \mathbb{R}^2 & \mapsto \mathbb{R} \\ (\theta, Y) & \mapsto (Y - \theta)^2 + \tau^2 \mathbb{1}_{\theta \neq 0} \end{cases}$$

Minimiser cette somme sur θ à Y donné reviens simplement à minimiser la fonction ψ à Y fixé et on aura $\hat{\theta}_j = \underset{\theta \in \mathbb{R}}{\operatorname{argmin}} \psi \left(\theta, Y_j \right)$.

On cherche à connaître la position relative de $\psi(\theta, Y)$ par rapport à $\psi(0, Y)$:

$$\psi(\theta, Y) - \psi(0, Y) = (Y - \theta)^2 + \tau^2 - Y^2 = \theta^2 - 2Y\theta + \tau^2.$$

En posant $\Delta' = Y^2 - \tau^2$, les trois configurations suivantes sont alors possibles:

• $\Delta < o$, i.e. $Y^2 < \tau^2$. On a alors

$$\forall \theta \in \mathbb{R} - \{o\}, \quad \psi(\theta, Y) > \psi(o, Y).$$

L'argmin est donc unique est vaut o.

• $\Delta = 0$, i.e. $Y^2 : \tau^2$. On a alors

$$\forall \theta \in \mathbb{R} - \{o\}, \quad \psi(\theta, Y) - \psi(o, Y) = (\theta - Y)^2.$$

On a donc $\theta = 0$ et $\theta = Y$ qui minimisent la fonction objectif.

• $\Delta > 0$, i.e. $Y^2 > \tau^2$. On a alors

$$\forall \theta \in]Y - \sqrt{\Delta'}; Y + \sqrt{\Delta'}[, \quad \psi(\theta, Y) < \psi(o, Y).$$

Seul $\theta = Y$ minimise $(\theta, Y) = (Y - \theta)^2 + \tau^2$ sur cet intervalle.

Finalement les coordonnées de $\hat{\theta}_j^H := Y_j I(|Y_j| > \tau)$ vérifient bien les conditions obtenues cidessus ¹.

(2) Posons $G(\theta) = ||Y - \theta||^2 + 2\tau |\theta|_1$. Par somme, on a bien G fonction convexe et l'équivalence suivante est vérifiée:

$$\hat{\theta} \in \underset{\theta \in \mathbb{R}^p}{\operatorname{argmin}} G(\theta) \Longleftrightarrow o \in \partial G(\hat{\theta}). \tag{3}$$

Calculons la sous-différentielle de G:

$$\partial G(\theta) = 2(\theta - Y) + 2\tau \cdot \partial |\theta|$$

^{1.} On aurait aussi pu choisir $\hat{\theta}_j^H := Y_j I\left(\left|Y_j\right| \ge \tau\right)$ puisque l'argmin contient aussi Y lorsque $Y^2 = \tau^2$.

avec

$$\forall j \in \{1, \dots p\} \quad (\partial |\theta|_1)_j = \begin{cases} \left\{ \text{signe}(\theta_j) \right\}, & \text{si } \theta_j \neq 0 \\ [-1;1], & \text{sinon} \end{cases}.$$

En utilisant 3, on en déduit donc:

$$\forall j \in \{1, \dots p\} \qquad \begin{cases} o = 2(\hat{\theta}_j - Y_j) + 2\tau \operatorname{signe}(\hat{\theta}_j), & \operatorname{si} \theta_j \neq 0 \\ o = 2(\hat{\theta}_j - Y_j) + 2\tau \alpha_j, & \operatorname{sinon} \end{cases}.$$

avec $|\alpha_i| \le 1$ ce qui est équivalent à

$$\hat{\theta}_{j} = \begin{cases} Y_{j} - \tau, & \text{si } Y_{j} > \tau \\ \text{o,} & \text{si } |Y_{j}| \leq \tau \\ Y_{j} + \tau, & \text{sinon} \end{cases}$$

pour tout $j \in \{1, ... p\}$. On retrouve bien l'expression attendue de l'estimateur de soft-thresholding $\hat{\theta}_j^S := \left(\mathbf{1} - \frac{\tau}{|Y_i|}\right) Y_j.$

$\overline{\mathcal{E}_{xercice 3.}}$

Montrer que sous l'hypothèse ORT $\left(\frac{1}{n}X^T \cdot X = I_p\right)$, on a les égalités suivantes:

$$\hat{\theta}^D = \hat{\theta}^L = \hat{\theta}^S$$
.

Solution 3. Rappelons la définition de chacun d'entre eux:

$$\hat{\theta}^{S} = \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left(\sum_{j=1}^{p} (Y_{j} - \theta_{j})^{2} + 2\tau |\theta|_{1} \right)$$
(4)

$$\hat{\theta}^{L} = \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left(\left\| y - X\theta \right\| + 2\tau |\theta|_{1} \right) \tag{5}$$

$$\hat{\theta}^{L} = \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left(\left\| y - X\theta \right\| + 2\tau |\theta|_{1} \right)$$

$$\hat{\theta}^{D} = \underset{\theta \in \mathbb{R}^{p} \text{ tq } \left| \frac{1}{n} X^{T} (y - X\theta) \right|_{\infty} \le \tau}{\operatorname{argmin}} |\theta|_{1}$$
(6)

• Montrons que $\hat{\theta}^L = \hat{\theta}^S$. En utilisant les relations $\frac{1}{n} X^T \cdot X = I_p$ et $Y = \frac{1}{n} X^T y$, on a successivement:

$$\begin{aligned} \left\| y - X\theta \right\|^2 &= \frac{1}{n} \left| y - X\theta \right|_2^2 \\ &= \frac{1}{n} \left(y^T y - y^T X\theta - (X\theta)^T y + (X\theta)^T X\theta \right) \\ &= \frac{1}{n} y^T y - Y^T \theta - \theta^T Y + \theta^T \theta \\ &= |Y - \theta|_2^2 + C \end{aligned}$$

où $C = \frac{1}{n} y^T y - Y^T Y$ indépendant de θ variable d'optimisation.

Les deux fonctions objectifs définissant les estimateurs $\hat{\theta}^L$ et $\hat{\theta}^S$ ne différant que d'une constante, on a bien égalité de ces derniers².

Montrons que $\hat{\theta}^D = \hat{\theta}^S$. Commençons par réécrire la contrainte de Dantzig en terme de Y. Les conditions d'orthonormalité sur X et la relation $Y = \frac{1}{n} X^T y$ nous permettent d'écrire:

$$\frac{1}{n}X^{T}(y-X\theta)=Y-\theta.$$

^{2.} Les deux fonctions objectifs étant strictement convexes, on a bien unicité de ce dernier, son existence étant garanti par la coercivité des fonctions objectifs.

On doit donc montrer que

$$\hat{\theta}^{S} = \underset{\theta \in \mathbb{R}^{p} \text{ tq } |Y - \theta|_{\infty} \leq \tau}{\operatorname{argmin}} |\theta|_{1}.$$

Notons $\hat{\theta}$ l'armin de la fonction ci-dessus. Minimiser $|\theta|_1 = \sum_{j=1}^p |\theta_i|$ étant donné les contraintes indépendantes sur les θ_i reviens à résoudre le problème de minimisation ci-dessous pour p=1, i.e.du type et illustrer figure 3: $\underset{\theta \in \mathbb{R}}{\operatorname{tq}} |Y-\theta| \le \tau$

On cherche à minimiser la valeur absolue de θ sous la contrainte de ne pas s'éloigner de Y de plus d'un τ

Trois configurations sont alors possibles:

• $Y - \tau \ge 0$:

Dans ce cas $\hat{\theta} = Y - \tau$ minimise bien la valeur absolue.

• $Y + \tau \le 0$:

Dans ce cas $\hat{\theta} = Y + \tau$ minimise bien la fonction objectif.

• $Y - \tau \ge 0$:

Dans ce cas $\hat{\theta} = o$ est bien la valeur optimale.

Finalement, on a bien $\hat{\theta}_j^D = \hat{\theta}_j^S$ pour tout j dans $\{1, ..., p\}$ ce qui conclut la preuve.

Exercice 4

Soit $y = X\theta^* + \xi$ avec θ^* sparse. On suppose que les hypothèses d'orthogonalité de $X\left(\frac{1}{n}X^T \cdot X = I_p\right)$ et de gaussianité du bruit : $\xi \sim \mathcal{N}\left(0, \sigma^2 I_{n \times n}\right)$. On peut donc écrire: $Y_j = \theta_i^* + \epsilon + \eta_j$ avec $\epsilon = \frac{\sigma}{\sqrt{n}}$ et $\eta_j \sim \mathcal{N}\left(0, 1\right)$.

Soit $\tau = A\sigma\sqrt{\frac{2\log(\frac{p}{\delta})}{n}}$ pour $\delta \in]0;1[$ et $A \geq 1$. Montrer que l'on a avec une probabilité supérieure à $1-\delta$ l'inégalité d'oracle en probabilité suivante :

$$\left|\hat{\theta}^{S} - \theta^{\star}\right|_{2}^{2} \le C \frac{\sigma^{2}}{n} \left|\theta^{\star}\right|_{o} \log\left(\frac{p}{\delta}\right).$$

Solution 4.

Comme pour l'estimateur de hard-thresholding, considérons l'évènement suivant :

$$\mathcal{A} := \left\{ \max \left| Y_j - \theta_j^* \right| \le r \mid \forall j = 1 \dots p \right\}.$$

où $r := \sigma \sqrt{\frac{2\log(\frac{p}{\delta})}{n}} = \epsilon \sqrt{2\log(\frac{p}{\delta})}^3$. Procédons par étape:

• Montrons que $\mathbb{P}(\mathcal{A}^C) \leq \delta$. En utlisant la relation $Y_j = \theta_j^* + \epsilon \eta_j$, on a successivement:

$$\begin{split} \mathbb{P}\left(\mathcal{A}^{C}\right) &= \mathbb{P}\left(\max\left|Y_{j} - \theta_{j}^{\star}\right| > r \mid \forall j = 1 \dots p\right) \\ &= \mathbb{P}\left(\max\left|Y_{j} - \theta_{j}^{\star}\right| > \epsilon \sqrt{2\log\left(\frac{p}{\delta}\right)}\right) \\ &= \mathbb{P}\left(\max\left|\eta_{j}\right| > \sqrt{2\log\left(\frac{p}{\delta}\right)}\right) \leq \delta \end{split}$$

en vertu du lemme 2.3 a) 4.

• Soient $\hat{J} = \{j \text{ tq } \hat{\theta}_j^S \neq 0\} = \{j \text{ tq } |Y_j| > \tau\}^5$. Montrons que $\hat{J} \subseteq J^*$ sur \mathcal{A} . En effet, pour $j \in \hat{J}$, on a par inégalité triangulaire:

$$\left|\theta_{j}^{\star}\right| \geq \left|Y_{j}\right| - \left|\theta_{j}^{\star} - Y_{j}\right| = \left|Y_{j}\right| - \left|\epsilon\eta_{j}\right| \geq \left|Y_{j}\right| - r > \tau - Ar = 0.$$

• Reste maintenant à majorer $|\hat{\theta}^S - \theta^*|_2$. On a:

$$\left|\hat{\theta}^{S} - \theta^{\star}\right|_{2}^{2} = \sum_{j \in J^{\star}} \left|\hat{\theta}_{j}^{S} - \theta_{j}^{\star}\right|^{2} + \sum_{j \notin J^{\star}} \left|\hat{\theta}_{j}^{S} - \theta_{j}^{\star}\right|^{2}.$$

 $\sum_{j \notin J^{\star}} \left| \hat{\theta}_{j}^{S} - \theta_{j}^{\star} \right|^{2}. \text{ Comme } \hat{J} \subseteq J^{\star}, \text{ on a } \left(J^{\star} \right)^{C} \subseteq \left(\hat{J} \right)^{C}. \text{ D'où la nullité de cette somme.}$

 $\sum_{j \in J^*} \left| \hat{\theta}_j^S - \theta_j^* \right|^2$. Faisons une disjonction de cas:

• Si $|Y_j| > \tau$, alors $\hat{\theta}_j^S = Y_{j\pm\tau} = \theta_j^* + \epsilon \eta_{j\pm\tau}$. On a donc la majoration:

$$\left|\hat{\theta}_{j}^{S} - \theta_{j}^{\star}\right|^{2} \leq \left(\epsilon \left|\eta_{j}\right| + \tau\right)^{2} \leq 2\left(\epsilon^{2}\eta_{j}^{2} + \tau^{2}\right).$$

5. On rappelle que
$$\hat{\theta}_j^S = \left(1 - \frac{\tau}{|Y_j|}\right)_+ Y_j$$

^{3.} On a alors la relation $\tau = Ar$.

^{4.} Ceci est inchangé par rapport à la preuve avec l'estimateur de hard-thresholding puisqu'aucun estimateur n'intervient dans la définition de A.

• Si $|Y_j| \le \tau$. Dans ce cas $\hat{\theta}_j^S = 0$ et on a:

$$\left|\hat{\theta}_{j}^{S}-\theta_{j}^{\star}\right|^{2} = \left|\theta_{j}^{\star}\right|^{2} \leq \left(\left|Y_{j}\right|+\epsilon\left|\eta_{j}\right|\right)^{2} \leq \left(\tau+\epsilon\left|\eta_{j}\right|\right)^{2} \leq 2\left(\epsilon^{2}\eta_{j}^{2}+\tau^{2}\right).$$

Finalement, en utilisant $\left|Y_j - \theta_j^{\star}\right| = \left|\epsilon \eta_j\right| \le r \text{ sur } A \text{ et la relation } \tau = Ar$:

$$\begin{split} \left| \hat{\theta}^{S} - \theta^{\star} \right|_{2}^{2} &\leq 2 \left| \theta^{\star} \right|_{o} \left(\epsilon^{2} \eta_{j}^{2} + \tau^{2} \right) \\ &\leq 2 \left| \theta^{\star} \right|_{o} \left(r^{2} + \tau^{2} \right) \\ &\leq 2 \left| \theta^{\star} \right|_{o} \left(1 + A^{2} \right) r^{2} \\ &\leq C \frac{\sigma^{2}}{n} \left| \theta^{\star} \right|_{o} \log \left(\frac{p}{\delta} \right) \end{split}$$

où $C = 4(1 + A^2)$ est une constante absolue, d'où le résultat.