Ctrl-DNA: Controllable Cell-Type-Specific Regulatory DNA Design via Constrained RL

Xingvu Chen^{1,2,3}*

Shihao Ma^{1,2,3}*

Runsheng Lin¹

Jiecong Lin4

Bo Wang^{1,2,3†}

¹University of Toronto

²Vector Institute for Artificial Intelligence

³University Health Network ⁴Changping Laboratory

Abstract

Designing regulatory DNA sequences that achieve precise cell-type-specific gene expression is crucial for advancements in synthetic biology, gene therapy and precision medicine. Although transformer-based language models (LMs) can effectively capture patterns in regulatory DNA, their generative approaches often struggle to produce novel sequences with reliable cell-specific activity. Here, we introduce Ctrl-DNA, a novel constrained reinforcement learning (RL) framework tailored for designing regulatory DNA sequences with controllable cell-type specificity. By formulating regulatory sequence design as a biologically informed constrained optimization problem, we apply RL to autoregressive genomic LMs, enabling the models to iteratively refine sequences that maximize regulatory activity in targeted cell types while constraining off-target effects. Our evaluation on human promoters and enhancers demonstrates that Ctrl-DNA consistently outperforms existing generative and RL-based approaches, generating high-fitness regulatory sequences and achieving state-of-the-art cell-type specificity. Moreover, Ctrl-DNA-generated sequences capture key cell-type-specific transcription factor binding sites (TFBS), short DNA motifs recognized by regulatory proteins that control gene expression, demonstrating the biological plausibility of the generated sequences.

Code available at: github.com/bowang-lab/Ctrl-DNA

1 Introduction

Cis-Regulatory elements (CRE), such as promoters and enhancers, are critical DNA sequences that control gene expression. The ability to engineer DNA sequences with precise regulatory activities has widespread implications in biotechnology, including gene therapy, synthetic biology, and precision medicine [1, 2]. A particularly desirable but challenging goal is designing CREs that drive high gene expression in a target cell type while maintaining controlled or limited fitness ³ in off-target cell types. A CRE's regulatory function is largely determined by its transcription factor binding sites (TFBSs), which are short DNA motifs recognized by transcription factors (TFs) that mediate gene regulation in cells. The presence or absence of specific TFBSs directly influences the fitness of a sequence across different cellular contexts. Although millions of regulatory sequences have evolved naturally [3], these sequences are not optimized for targeted biomedical applications. For example,

^{*}Equal contribution.

[†]Corresponding author: bo.wang@vectorinstitute.ai

³CRE fitness is defined as the ability to enhance gene expressions.

despite the human body comprising over 400 distinct cell types, very few cell-type-specific promoters have been identified [4]. This scarcity highlights the need for novel, engineered CREs with precise cell-type specificity. However, the design space for regulatory sequences is immense: a 100-base sequence yields approximately 4^{100} possibilities, making purely experimental approaches expensive and impractical.

Massively parallel reporter assays (MPRAs) have significantly advanced our ability to evaluate large libraries of DNA sequences for their cell-type-specific fitness [5, 6]. Building upon these assays, recent deep learning approaches leverage predictive models as reward functions to guide the optimization of CREs [1, 7]. However, these methods typically rely on iterative optimization strategies based on mutating existing or randomly initialized sequences, which often limits the sequence diversity and can trap optimization in local optima. Furthermore, enforcing complex constraints in multiple cell types is non-trivial in these frameworks.

Recent studies have adapted autoregressive language models (LMs) for regulatory DNA sequence design, successfully capturing functional sequence patterns and enabling the generation of sequences with desired properties, such as enhanced gene expression levels [8]. However, these models primarily imitate the distribution of known sequences, limiting their ability to explore novel regions of the sequence landscape. Reinforcement learning (RL) has emerged as an approach to finetune genomics LMs for optimizing DNA sequence design. However, existing RL-based approaches for cell-type-specific CRE design typically focus on maximizing fitness in a target cell type without accounting for fitness in other cell types [9]. To date, integrating explicit constraints within RL frameworks to suppress off-target regulatory activity using genomic LMs remains unexplored. Furthermore, conventional RL optimization strategies often depend on accurate value models and dense reward signals, introducing increased difficulty and inefficiency when navigating the vast DNA sequence space with complex biological constraints and sparse fitness reward signals.

To address these limitations, we introduce *Ctrl-DNA*, a reinforcement learning framework for controllable cell-type-specific regulatory DNA design via constrained RL. To the best of our knowledge, this work represents one of the first efforts to design regulatory DNA sequences with precise and controllable cell-type specificity. Building on recent advances in RL [10, 11, 12], we develop an RL-based fine-tuning framework based on pre-trained autoregressive genomic LMs. Our method avoids value model training by incorporating Lagrangian-regularized policy gradients directly from batch-normalized rewards, enabling stable and efficient optimization across multiple cell types. *Ctrl-DNA* supports explicit cell-type-specific constraints, enabling the generation of sequences with high expression in target cell types while constraining off-target activities. We evaluate *Ctrl-DNA* on human promoter and enhancer design tasks across six cell types. Our results show that *Ctrl-DNA* consistently outperforms existing generative and RL-based methods, achieving higher activity in target cell types while improving constraint satisfaction in non-target cell types. We also show that *Ctrl-DNA*-generated sequences maintain substantial sequence diversity and effectively capture biologically meaningful, cell-type-specific regulatory motifs.

Our main contributions are as follows:

- We develop a novel constraint-aware RL framework for CRE design, utilizing Lagrange multipliers explicitly and effectively to control cell-type specificity. To our knowledge, this represents one of the first efforts to incorporate constraint-based optimization into regulatory sequence generation.
- By directly computing policy gradients from batch-normalized biological rewards and constraints, our method eliminates the need for computationally expensive value models, enabling efficient learning under complex CRE design constraints.
- Through extensive empirical evaluations on human promoter and enhancer design tasks, we
 demonstrate that Ctrl-DNA consistently outperforms existing generative and RL-based methods, achieving higher targeted regulatory activity with state-of-the-art cell-type specificity.

2 Related Works

DNA Sequence Design Optimization: Optimization strategies complement generative models by explicitly steering sequences toward desired functions. Classical evolutionary algorithms, such as genetic algorithms, iteratively refine sequences using fitness predictors, but they are often computa-

tionally expensive and may converge to suboptimal solutions [13]. To improve efficiency, heuristic techniques such as greedy search have been developed, incrementally editing sequences toward higher predicted performance [1]. Gradient-based approaches leverage differentiable surrogate models (e.g., neural predictors like Enformer) to perform gradient ascent directly in sequence space [4, 14]. Although computationally efficient, these methods often initialize from random or high-fitness observed sequences, reducing the diversity of generated sequences. Reinforcement learning (RL) offers a powerful framework that combines generative modelling with goal-directed optimization. DyNA-PPO [15] demonstrated the effectiveness of deep RL for DNA design, outperforming random mutation-based methods. GFlowNets further advanced this direction by learning stochastic policies that align with reward distributions, enabling diverse exploration of sequence space [16]. More recently, TACO [9] used RL to fine-tune pretrained DNA language models with biologically informed rewards. However, these approaches primarily focus on optimizing fitness in a single target cell type, without mechanisms to suppress or constrain activity in undesired cell types.

Constrained Reinforcement Learning: Constrained Reinforcement Learning (CRL), or often formulated as constrained Markov decision processes (CMDPs), addresses the critical challenge of optimizing policies under explicit constraints. Early foundational studies include actor-critic methods [17] and constrained policy optimization with function approximation [18]. Subsequent studies have explored integrating constraints into RL, often using Lagrangian methods that introduce non-stationarity into rewards [19, 20, 21]. Regularized policy optimization augments standard objectives with Kullback–Leibler (KL) or trust-region constraints [22], and is widely used in both single-task [23] and multi-task settings [24]. CRL has been applied in language generation to suppress undesired outputs through techniques like Lagrangian reward shaping [11, 12, 25], balancing primary objectives with safety constraints. However, such approaches remain largely unexplored in regulatory DNA design, where sparse rewards and multiple cell-type-specific constraints introduce significant challenges for standard constrained RL frameworks.

3 Methods

3.1 Problem Formulation

We formulate DNA sequence design as a constrained Markov decision process (CMDP). A DNA sequence is defined as $X=(x_1,x_2,\ldots,x_L)\in V^L$, where $V=\{A,C,G,T\}$ is the nucleotide vocabulary and L is the sequence length. The CMDP is defined as $\mathcal{M}=(\mathcal{S},\mathcal{A},p,R_0,\{R_i\}_{i=1}^m,\{\delta_i\}_{i=1}^m)$, where \mathcal{S} is the state space, $\mathcal{A}=V$ is the action space. $p(s_{t+1}\mid s_t,a_t)$ is a transition function that appends nucleotide a_t to the current sequence prefix s_t . The sequence is evaluated by m black-box reward functions $\{R_i:V^L\to\mathbb{R}\}_{i=0}^m$, where we denote reward R_0 as the CRE fitness in target cell, and reward R_i for $i\geq 1$ as CRE fitness in off-target cell types. The values $\delta_i\in\mathbb{R}$ is the constraint threshold for off-target cell i. At each time step t, the agent observes state $s_t=(x_1,\ldots,x_{t-1})\in\mathcal{S}$, selects an action $a_t\in\mathcal{A}$ according to a policy $\pi_{\theta}(a_t\mid s_t)$, and transitions to the next state s_{t+1} . Rewards $\{R_i(X)\}$ are only calculated at the terminal step t=L.

Our objective is to learn a policy π_{θ} that maximizes the expected CRE fitness in the target cell type while ensuring off-target fitness remains within the specified constraints. Formally, we aim to solve:

$$\max_{\pi_{\theta}} \mathbb{E}_{X \sim \pi_{\theta}}[R_0(X)] \quad \text{s.t.} \quad \mathbb{E}_{X \sim \pi_{\theta}}[R_i(X)] \le \delta_i, \quad \forall i \in \{1, \dots, m\}.$$
 (1)

For clarity, we define $J_i(\theta) = \mathbb{E}_{X \sim \pi_\theta}[R_i(X)]$ as the expected reward for cell type i, where $J_0(\theta)$ is referred to as task rewards and $J_i(\theta)$ for $i \geq 1$ is referred to as constraints(also called off-target rewards throughout this paper).

3.2 Constrained Batch-wise Relative Policy Optimization

We now describe our approach for solving the constrained reinforcement learning problem for CRE sequence generation introduced in Section 3.1. Most deep-learning-based constrained RL methods rely on training one or more value models to estimate expected returns and costs [11, 26, 12], which can significantly increase training complexity. Moreover, reward signals that are sparse and only available at the end of a generated sequence may further complicate the training of value models that need accurate values at each step [27].

Figure 1: Overview of the *Ctrl-DNA* framework for controllable regulatory sequence generation. *Ctrl-DNA* builds on a pre-trained autoregressive DNA language model and applies constrained reinforcement learning to guide sequence generation toward high fitness in a target cell type (e.g., HepG2) while suppressing off-target fitness (e.g., K562, SK-N-SH), enabling the generation of CREs with strong cell-type specificity.

To address this, we adapt work in [27, 10] for our constrained DNA sequence design task, avoiding value network training for each cell type while enforcing constraints on off-target cell CRE fitness. We adopt a primal-dual approach based on Lagrangian relaxation, which introduces adaptive multipliers to enforce constraints while optimizing the main objective.

Lagrangian Relaxation and Constrained RL. The Lagrangian relaxation of the constrained objective in Eq. 1 defines a primal-dual optimization problem:

$$\mathcal{L}_{\text{lag}}(\theta, \lambda) = \max_{\theta} \min_{\lambda \ge 0} \left[J_0(\theta) - \sum_{i=1}^{m} \lambda_i (J_i(\theta) - \delta_i) \right], \tag{2}$$

where δ_i is a user-specified threshold and $\lambda_i \geq 0$ is a dual variable for constraint i.

In practice, we solve primal-dual policy optimization by taking iterative gradient ascent-descent steps of the policy parameter θ and Lagrangian multiplier λ_i :

$$\theta_{k+1} = \theta_k + \eta_{\theta} \nabla_{\theta} \mathcal{L}_{\text{lag}}(\theta, \lambda) = \theta_k + \eta_{\theta} \nabla_{\theta} \left[J_0(\theta) - \sum_{i=1}^m \lambda_i J_i(\theta) \right], \tag{3}$$

$$\lambda_{i,k+1} = \lambda_{i,k} - \eta_{\lambda_i} \nabla_{\lambda_i} \mathcal{L}_{\text{lag}}(\theta, \lambda) = \lambda_k - \eta_{\lambda_i} \nabla_{\lambda_i} \left[\lambda_i (\delta_i - J_i(\theta)) \right]. \tag{4}$$

where η_{θ} and η_{λ_i} are learning rates. k denotes the optimization step. This min-max formulation seeks a saddle point that maximizes reward while satisfying constraints [21, 11].

Our Methods. As commonly done in reinforcement learning [28, 29], $\nabla_{\theta}J(\theta)$ is calculated by policy gradient methods where $\nabla_{\theta}J(\theta) = \mathbb{E}_{\pi}\left[\Psi_{t}\nabla_{\theta}\log\pi_{\theta}(a_{t}\mid s_{t})\right]$. Ψ_{t} represents a surrogate signal such as rewards, state-action values or advantage estimates [30]. While standard approaches compute advantages using learned value functions, we avoid value network training by drawing inspirations from the Group Relative Policy Optimization (GRPO) framework [10, 27]. GRPO estimates advantages by comparing outputs generated from the same prompt. In contrast, we propose a batch-level variant for CRE sequence optimization, where advantages are computed by grouping sequences within each training batch.

Formally, for each objective $i \in \{0,\dots,m\}$, the normalized advantage for sequence X_j is defined as $A_i^{(j)} = \frac{R_i(X_j) - \bar{R}_i}{\sigma(R_i)}$, where $R_i(X_j)$ is the reward assigned by the i-th reward function, and \bar{R}_i , $\sigma(R_i)$ denote the batch mean and standard deviation of R_i over the current batch of sequences. To guide policy updates under constraints, we use the Lagrange multipliers to form a convex combination of advantages from different cell types. We define the Lagrangian advantage as:

$$\hat{A}^{(j)} = \left(m - \sum_{i=1}^{m} \lambda_i\right) A_0^{(j)} + \sum_{i=1}^{m} \lambda_i A_i^{(j)},\tag{5}$$

where m is the number of constraints, and $\lambda_i^{(j)}$ is the Lagrange multiplier applied for constraint i. This encourages the policy to favor sequences with high target rewards while discouraging those that violate constraints.

To estimate $\nabla_{\theta} J(\theta)$ during policy updates, we adopt a clipped surrogate objective with KL regularization [10, 29]:

$$\mathcal{L}_{\text{policy}}(\theta) = \frac{1}{B} \sum_{j=1}^{B} \sum_{i=1}^{T} \min \left\{ \rho_i^{(j)} \hat{A}^{(j)}, \operatorname{clip}_{\epsilon}(\rho_i^{(j)}) \hat{A}^{(j)} \right\} - \beta \cdot \operatorname{KL}(\pi_{\theta} \mid\mid \pi_{\text{ref}}), \tag{6}$$

where π_{θ} and π_{old} denote the current and previous policy networks. π_{ref} is the reference model, which usually is the initial policy model. Here, $\rho_i^{(j)} = \frac{\pi_{\theta}(a_i^j|s_i^j)}{\pi_{\text{old}}(a_i^j|s_i^j)}$ is the importance sampling ratio, and $\operatorname{clip}_{\epsilon}(\rho_i^{(j)}) = \operatorname{clip}(\rho_i^{(j)}, 1-\epsilon, 1+\epsilon)$ restricts large policy updates. The coefficient β controls the strength of the KL divergence penalty, and ϵ sets the clipping threshold.

To adaptively enforce constraints, we update the Lagrangian multiplier λ_i based on batch-level constraint satisfaction. For each constraint i, we define the multiplier loss as $\mathcal{L}_{\text{multiplier}}(\lambda_i)$ $\frac{1}{B}\sum_{j=1}^{B}\left(R_{i}^{(j)}-\delta_{i}\right)\lambda_{i}$, where δ_{i} is the constraint for cell type i. This formulation increases the penalty on off-target cell types whose predicted fitness exceeds the constraint thresholds, while reducing the weight of those that already satisfy the constraints.

With this setup, the primal-dual updates (Equation 3& 4) become:

$$\theta_{k+1} = \theta_k + \eta_\theta \nabla_\theta \mathcal{L}_{\text{policy}}(\theta), \quad \lambda_{i,k+1} = \lambda_{i,k} - \eta_{\lambda_i} \nabla_{\lambda_i} \mathcal{L}_{\text{multiplier}}(\lambda_i).$$

 $\theta_{k+1} = \theta_k + \eta_\theta \nabla_\theta \mathcal{L}_{\text{policy}}(\theta), \quad \lambda_{i,k+1} = \lambda_{i,k} - \eta_{\lambda_i} \nabla_{\lambda_i} \mathcal{L}_{\text{multiplier}}(\lambda_i).$ Detailed pseudocode for the full algorithm and gradient functions are provided in Appendix A.

Empirical Designs. To improve training stability and model performance, we introduce several empirical modifications. First, we maintain a replay buffer of previously generated sequences and mix them with samples from the current policy. This helps reduce variance in batch-level reward statistics and leads to smoother advantage estimation. Second, we clip each Lagrange multiplier λ_i to the range [0, 1], which prevents overly aggressive constraint enforcement and stabilizes the dual updates. Lastly, to prevent the main objective from being overwhelmed when constraint weights are large, we clip its coefficient in Eq. 5 as $\min(1, m - \sum_{i=1}^{m} \lambda_i)$, ensuring sufficient signal for optimizing the target reward.

Regularizing Generated Sequences via TFBS Frequency Correlation

Although Ctrl-DNA effectively optimizes sequence generation under specified constraints, the resulting sequences may still deviate from biologically realistic distributions due to reward hacking [31]. To further regularize the generated distribution toward biologically plausible patterns, we introduce an additional reward term based on the correlation between transcription factor binding site (TFBS) frequencies in generated and real sequences.

Specifically, we first compute TFBS frequencies from a reference set of real DNA sequences. For each TFBS, we calculate its occurrence frequency across these real sequences, forming a reference frequency vector q_{real} . Similarly, for each sequence generated by the policy π_{θ} , we compute a corresponding motif frequency vector $q_{\rm gen}$. We then quantify the similarity between generated and real sequence distributions using the Pearson correlation coefficient: $R_{TFBS}(X) = Corr(q_{gen}, q_{real})$ for each generated sequence X.

We treat R_{TFBS} as an additional constraint reward function to maintain realistic TFBS patterns in generated sequences. However, to prevent the policy from overfitting to correlation alone and generating sequences that merely replicate the real distribution, we apply a clipped upper bound on the corresponding dual multiplier λ_{TFBS} . That is, from Equation 4, we clip λ_{TFBS} to the range $[0, \lambda_{max}]$ where $\lambda_{max} \leq 1$. where λ_{max} is a predefined hyperparameter. This clipping mechanism ensures a balanced optimization process that maintains realistic TFBS frequencies without overly constraining policy exploration or the main optimization objective.

TFBS information is widely used in CRE design [8, 4, 32]. However, existing methods typically incorporate TF motifs either as post-hoc evaluation metrics or through explicit tiling strategies during sequence design. A closely related approach is TACO [9], which trains a LightGBM model to predict sequence fitness from motif frequencies and derives motif-level rewards from SHAP values. In contrast, our method bypasses the need for additional predictive models by directly aligning the motif frequency distribution of generated sequences with that of real sequences. This removes the potential biases introduced by model training and provides a more reliable regularization signal from real biological distributions.

Table 1: Performance comparison across methods for each target cell type on the Human Enhancer and Human Promoter datasets. For each target, we report ΔR (\uparrow) and motif correlation (\uparrow). Constraint thresholds are set to 0.5 for all six cell types. Note that K562* refers to the K562 cell type in the Human Promoter dataset. Motif Corr † computed using 90th-percentile reference sequences.

Cell Type	Metric	AdaLead	ВО	CMAES	PEX	RegLM	PPO	TACO	PPO-Lag	Ctrl-DNA
HepG2	$\Delta R \uparrow$ Motif Corr \uparrow	0.02 (0.04) 0.45 (0.03)	-0.03 (0.03) 0.21 (0.10)	0.01 (0.01) 0.15 (0.08)	0.13 (0.03) 0.31 (0.04)	0.16 (0.01) 0.22 (0.07)	-0.06 (0.02) 0.41 (0.14)	-0.05 (0.01) 0.30 (0.03)	-0.02 (0.03) 0.41 (0.02)	0.49 (0.01) 0.43 (0.07)
K562	$\Delta R \uparrow$ Motif Corr \uparrow	0.16 (0.05) 0.49 (0.07)	0.08 (0.02) 0.08 (0.18)	0.03 (0.02) 0.06 (0.04)	0.17 (0.03) 0.21 (0.06)	0.19 (0.02) 0.23 (0.01)	0.14 (0.04) 0.35 (0.11)	0.11 (0.01) 0.28 (0.02)	0.05 (0.05) 0.44 (0.05)	0.54 (0.01) 0.51 (0.02)
SK-N-SH	$\Delta R \uparrow$ Motif Corr \uparrow	-0.02 (0.07) 0.15 (0.13)	-0.01 (0.02) 0.05 (0.06)	0.00 (0.01) 0.03 (0.04)	-0.04 (0.01) 0.17 (0.02)	0.14 (0.01) 0.18 (0.01)	-0.04 (0.08) 0.23 (0.01)	0.08 (0.02) 0.11 (0.12)	-0.04 (0.07) 0.42 (0.03)	0.37 (0.11) 0.25 (0.04)
JURKAT	$\Delta R \uparrow$ Motif Corr \uparrow	0.09 (0.06) 0.41 (0.07)	0.04 (0.03) 0.19 (0.23)	-0.00 (0.01) 0.30 (0.02)	0.15 (0.03) 0.60 (0.05)	0.09 (0.01) 0.14 (0.02)	0.04 (0.02) 0.61 (0.11)	0.03 (0.12) 0.55 (0.11)	0.11 (0.01) 0.29 (0.33)	0.25 (0.01) 0.69 (0.02)
K562*	$\Delta R \uparrow$ Motif Corr \uparrow	-0.12 (0.01) 0.60 (0.15)	-0.15 (0.02) 0.13 (0.16)	-0.17 (0.02) 0.24 (0.08)	-0.04 (0.02) 0.63 (0.02)	-0.08 (0.03) 0.42 (0.04)	-0.09 (0.03) 0.39 (0.11)	-0.10 (0.02) 0.50 (0.12)	-0.22 (0.04) 0.42 (0.22)	0.12 (0.02) 0.75 (0.06)
THP1	$\Delta R \uparrow$ Motif Corr \uparrow Motif Corr \dagger	0.24 (0.01) 0.63 (0.06) 0.16 (0.13)	0.20 (0.02) 0.26 (0.09) 0.06 (0.08)	0.20 (0.01) 0.19 (0.06) 0.06 (0.04)	0.29 (0.01) 0.84 (0.01) 0.04 (0.02)	-0.01 (0.01) 0.35 (0.01) 0.29 (0.01)	0.24 (0.03) 0.42 (0.10) 0.37 (0.04)	0.24 (0.08) 0.36 (0.03) 0.33 (0.01)	0.18 (0.03) 0.42 (0.10) -0.02 (0.07)	0.56 (0.01) 0.25 (0.04) 0.60 (0.02)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our method on human promoter and enhancer datasets [33, 34]. The enhancer dataset includes 200 bp sequences from three cell lines: HepG2, K562, and SK-N-SH. The promoter dataset consists of 250 bp sequences from Jurkat, K562, and THP1. Each dataset contains sequence-fitness pairs across the three respective cell types, with fitness measured via massively parallel reporter assays (MPRAs) [35]. We adopt the preprocessing pipeline described in [8] to preprocess all datasets. Please refer to Appendix B for details.

Motif Processing and Real Sequence Statistics. We obtain human-specific position probability matrices (PPMs) and pairwise motif correlation data from the JASPAR 2024 database [36]. Following the preprocessing procedure described in [8], we retain a curated set of 464 human transcription factor motifs. For each task, we identify real sequences by selecting those in the top 50th percentile for fitness in the target cell type and the bottom 50th percentile in off-target cell types. We then apply FIMO [37] to scan for motif occurrences and compute motif frequency distributions, which serve as the reference motif distribution for optimization and evaluation.

Models and Baselines. We adopt the Enformer architecture [38] to train cell-type-specific reward models, following protocols from previous CRE design studies [8, 9, 4, 32, 33]. For sequence generation, we fine-tune HyenaDNA [39], an autoregressive genomic LM pre-trained on the human genome, as our policy model. We compare our proposed method, *Ctrl-DNA*, against a diverse set of baselines, including evolutionary algorithms (AdaLead [40], BO [41], CMAES [42], PEX [43]), generative models (regLM [8]), and reinforcement learning approaches (TACO [9], PPO [29], PPO-Lagrangian [12]). Full baseline details are provided in Appendix C.

Evaluation Metrics. To assess the performance of each method, we report median rewards (**Median**) over the generated sequences in the final round. Additionally, we report **Reward Difference** (ΔR) to quantify the average difference between the target cell's fitness and the fitness across off-target cell types, indicating the cell-type fitness specificity. **Motif Correlation** is defined as the Pearson correlation between TFBS frequencies in generated sequences and real sequences. A higher correlation indicates greater alignment with biologically plausible motif distributions. Lastly, **Diversity** is calculated as the Shannon entropy of the generated sequences in the final round, reflecting the model's ability to explore diverse solutions. We report the mean and standard deviation of each metric over 5 runs initialized with different random seeds.

4.2 Ctrl-DNA optimizes enhancer and promoter sequences under cell-type-specific constraints

We evaluate *Ctrl-DNA* on two regulatory sequence design tasks using the Human Enhancer and Human Promoter datasets. Results are presented in Figure 2. In these plots, points positioned

Figure 2: Pairwise fitness comparison of generated CREs highlights Ctrl-DNA's cell-type specificity. Each subplot compares mean \pm s.d. fitness in two human cell lines (y = target, x = off-target); points in the **top-right** denote sequences with high on-target and low off-target fitness. Baseline methods are shown in pastel colors, while Ctrl-DNA variants (δ = 0.3/0.4, 0.5, 0.6) are connected in red dotted lines, illustrating the trade-off as constraint strength increases and Ctrl-DNA's dominance in the top-right corner for both enhancer (a) and promoter (b) datasets.

further to the right indicate lower fitness in off-target cell types (i.e., better constraint satisfaction), while points higher on the vertical axis indicate higher fitness in the target cell type. Methods that appear in the upper-right corner achieve the best trade-off between maximizing target cell fitness and minimizing off-target expression.

For enhancers, we evaluate performance under three constraint thresholds ($\delta=0.3,0.5,0.6$). Across all thresholds, Ctrl-DNA consistently achieves the highest target-cell fitness while satisfying the off-target constraints. PPO-Lagrangian (PPO-Lag) struggles to balance optimization and constraint satisfaction, likely due to the difficulty of training value networks under sparse, sequence-level reward signals. Notably, while methods such as TACO and CMAES achieve relatively high expression in the target cell type, they fail to suppress off-target fitness, leading to poor cell-type specificity.

The promoter design task is a more challenging task because all three target cell types are mesoderm-derived hematopoietic cells, which share substantial transcriptional similarity [4]. We test under three constraint thresholds ($\delta=0.4,0.5,0.6$). Ctrl-DNA outperforms all baselines in maximizing target cell-type fitness and satisfying constraints at $\delta=0.5$ and 0.6. However, no method, including Ctrl-DNA, successfully reduces THP1 fitness below the stricter threshold of $\delta=0.4$. We hypothesize that this is due to the data distribution: the 25th percentile of THP1 fitness is already 0.49 (Appendix B), indicating that most sequences exhibit high expression in this cell type. Despite this challenge, when THP1 is treated as an off-target cell, Ctrl-DNA still achieves the lowest THP1 fitness among all methods.

Figure 3: (a) Fraction of Ctrl-DNA-generated enhancers containing selected cell type-specific transcription factor (TF) motifs. (b) Diversity scores of generated sequences for HepG2 enhancers (left) and K562 promoters (right) across different methods.

Across both enhancer and promoter tasks, *Ctrl-DNA* consistently achieves the best trade-off between optimizing target cell types and enforcing cell-type-specific constraints, substantially outperforming existing RL and generative baselines. Interestingly, we observe a clear trade-off when enforcing stricter constraints: as the constraint threshold decreases, the fitness in the target cell type slightly declines. This trend likely arises because stricter constraint enforcement potentially narrows the feasible sequence space, making it more challenging to simultaneously optimize target cell-type activity and minimize off-target expression. Despite this inherent difficulty, *Ctrl-DNA*'s constraint-aware optimization framework remains highly effective, demonstrating robustness in maintaining superior target-cell fitness even under rigorous constraint conditions.

4.3 Ctrl-DNA captures biologically relevant motifs with higher specificity

Besides the fitness of generated CRE sequences in each cell type, we also evaluate the sequences with three other metrics: reward difference (ΔR), motif correlation and diversity. In Table 1, we can observe that Ctrl-DNA achieves highest reward differences across all cell types in both human promoter and enhancers, indicating it is better at optimizing DNA sequences for cell-specific fitness. For motif correlation, Ctrl-DNA also achieves stronger performance across most cell types, except for THP1 in promoter design. As noted in Section 4.2, THP1 fitness values are skewed, with the majority of sequences in the dataset exhibiting fitness around 0.5. Since motif correlation is evaluated against sequences near the 50th percentile (see Section 4.1), the resulting motif frequency distribution may not accurately reflect the high-activity sequences we aim to design.

To further investigate this discrepancy, we extract motifs from promoter sequences in the 90th percentile of THP1 fitness, applying a significance threshold of q < 0.05 to avoid false positives. We then re-evaluate the motif correlation between generated sequences and this more selective reference set. These results, denoted as Motif Corr † in Table 1, show that *Ctrl-DNA* outperforms all baselines under this stricter setting. In contrast, most baseline methods exhibit reduced motif correlation, suggesting that they tend to align with non-informative or broadly distributed motifs. Despite being regularized using motifs from a less selective reference set, *Ctrl-DNA* successfully prioritizes the most discriminative motifs during optimization.

To further demonstrate that *Ctrl-DNA* selects more cell-type-discriminative motifs during sequence generation, we evaluated the frequency of known cell-type-specific TFBS in the generated sequences. In particular, we examined generated sequences for liver-specific and erythropoietic-specific motifs. As shown in Figure 3a, *Ctrl-DNA*-generated sequences for HepG2 (a liver-derived cell line) show the highest frequency of liver-specific motifs such as HNF4A and HNF4G. Similarly, sequences generated for K562 (an erythropoietic lineage cell line) contain the highest frequency of erythropoietic-specific motifs such as GATA1 and GATA2. These findings indicate that *Ctrl-DNA* not only optimizes for target-cell fitness, but also learns regulatory patterns that reflect underlying cell-type specificity.

Finally, we assess the diversity of generated sequences in Figure 3b and Appendix D. *Ctrl-DNA* achieves comparable or higher diversity than most baselines, indicating its ability to generate diverse sequences without sacrificing regulatory control.

Table 2: Ablation study on constraint formulation and TFBS regularization. We compare variants of $\mathit{Ctrl-DNA}$ using alternative constraint handling methods ($\mathit{Ctrl-DNA-IPO}$, $\mathit{Ctrl-DNA-Log}$) and varying TFBS regularization strengths (λ_{\max}). Results are reported on the Human Enhancer dataset (target cell: HepG2), with constraint threshold $\delta=0.5$ in both experiments. See Appendix E for complete results across all datasets.

Method			Target: Hep	G2		
	HepG2↑	K562 ↓	SK-N-SH↓	ΔR	Motif Correlation	Diversity
Ctrl-DNA-Log	0.24 (0.02)	0.24 (0.03)	0.21 (0.04)	0.02 (0.06)	0.16 (0.13)	1.62 (0.08)
Ctrl-DNA-IPO	0.74 (0.01)	0.86 (0.02)	0.83 (0.02)	-0.10 (0.02)	0.39 (0.14)	1.58 (0.13)
Ctrl-DNA ($\lambda_{max} = 0.00$)	0.78 (0.02)	0.40 (0.06)	0.33 (0.03)	0.42 (0.02)	0.33 (0.12)	1.82 (0.02)
Ctrl-DNA ($\lambda_{max} = 0.01$)	0.77 (0.01)	0.34 (0.04)	0.30 (0.02)	0.45 (0.02)	0.16 (0.10)	1.84 (0.01)
Ctrl-DNA ($\lambda_{max} = 0.1$)	0.77 (0.01)	0.36 (0.04)	0.31 (0.04)	0.44 (0.03)	0.43 (0.07)	1.82 (0.04)

4.4 Ablation Study

Constraint Formulations. To investigate alternative constraint enforcement strategies, we explored several other constrained methods from current works. First, we adapt the loss from Interior-point Policy Optimization (IPO) [44], referring to this variant as *Ctrl-DNA-IPO*. Second, we implement a log-barrier penalty on constraint rewards following [45], which we denote as *Ctrl-DNA-Log*. All experiments are conducted using a constraint threshold of 0.5. See Appendix E for detailed setup. As shown in Table 2, *Ctrl-DNA-Log* suppresses off-target rewards effectively but fails to maintain high fitness in the target cell type. In contrast, *Ctrl-DNA-IPO* improves target reward but does not enforce constraints adequately. These results highlight that our proposed formulation strikes a better balance between optimizing target cell-type fitness and minimizing off-target expression.

TFBS Regularization. In Section 3.3, we introduced a correlation-based regularization using TFBS motif frequencies to promote biologically plausible sequences. By changing the upper bound on the TFBS multiplier ($\lambda_{\rm max}$) we can limit the weight we put on this regularization. From Table 2, we observe that increasing $\lambda_{\rm max}$ from 0.0 to 0.1 improves motif correlation without substantially degrading other metrics. In certain cell types, such as JURKAT, a higher value of $\lambda_{\rm max}$ also leads to improved optimization performance (See Appendix Table 7). This supports the utility of TFBS regularization in guiding sequence generation. However, since our comparisons use motif frequencies computed from a loosely matched reference set, we recommend tuning $\lambda_{\rm max}$ carefully in practical applications depending on the reliability of the available ground truth.

5 Discussion

Designing cell-type-specific cis-regulatory sequences presents a challenging optimization problem that involves balancing competing objectives. Our proposed method, *Ctrl-DNA*, achieves strong performance across both enhancer and promoter datasets, outperforming evolutionary and RL baselines in maximizing target cell-type fitness while satisfying off-target constraints. In addition, *Ctrl-DNA* supports explicit control over constraint thresholds, enabling flexible and controllable CRE sequence design. By computing Lagrangian advantages directly from batch-normalized rewards without training value models, *Ctrl-DNA* offers a lightweight and effective solution to constrained CRE DNA sequence generation.

Nevertheless, the ability to enforce constraints is inherently limited by the data distribution. For instance, in the THP1 promoter dataset, a large proportion of sequences exhibit high baseline activity, making it difficult to enforce stricter constraints such as $\delta=0.4$. This challenge affects both the accuracy of the learned reward model and the capacity of *Ctrl-DNA* to suppress expression in such settings. These observations highlight the importance of considering dataset-specific characteristics when setting constraint thresholds or evaluating constrained RL methods.

Although *Ctrl-DNA* already demonstrates robust performance, there are several directions for improvement. First, tuning Lagrange multipliers remains empirical. Future work could explore adaptive control methods such as proportional–integral–derivative controllers [46]. Second, additional bi-

ological constraints could be incorporated to further improve the plausibility and functionality of generated sequences. Finally, our current framework is limited to reinforcement learning fine-tuning on autoregressive models. As a next step, we plan to extend *Ctrl-DNA* to other structures such as diffusion-based DNA models.

References

- [1] Sager J Gosai, Rodrigo I Castro, Natalia Fuentes, John C Butts, Kousuke Mouri, Michael Alasoadura, Susan Kales, Thanh Thanh L Nguyen, Ramil R Noche, Arya S Rao, et al. Machine-guided design of cell-type-targeting cis-regulatory elements. *Nature*, pages 1–10, 2024.
- [2] Shannon E Boye, Sanford L Boye, Alfred S Lewin, and William W Hauswirth. A comprehensive review of retinal gene therapy. *Molecular therapy*, 21(3):509–519, 2013.
- [3] Tianshun Gao and Jiang Qian. Enhanceratlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. *Nucleic acids research*, 48(D1):D58–D64, 2020.
- [4] Aniketh Janardhan Reddy, Xinyang Geng, Michael Herschl, Sathvik Kolli, Aviral Kumar, Patrick Hsu, Sergey Levine, and Nilah Ioannidis. Designing cell-type-specific promoter sequences using conservative model-based optimization. Advances in Neural Information Processing Systems, 37:93033–93059, 2024.
- [5] Ryan Tewhey, Dylan Kotliar, Daniel S Park, Brandon Liu, Sarah Winnicki, Steven K Reilly, Kristian G Andersen, Tarjei S Mikkelsen, Eric S Lander, Stephen F Schaffner, et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell, 165(6):1519–1529, 2016.
- [6] Carl G de Boer, Eeshit Dhaval Vaishnav, Ronen Sadeh, Esteban Luis Abeyta, Nir Friedman, and Aviv Regev. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. *Nature biotechnology*, 38(1):56–65, 2020.
- [7] Ibrahim I Taskiran, Katina I Spanier, Hannah Dickmänken, Niklas Kempynck, Alexandra Pančíková, Eren Can Ekşi, Gert Hulselmans, Joy N Ismail, Koen Theunis, Roel Vandepoel, et al. Cell-type-directed design of synthetic enhancers. *Nature*, 626(7997):212–220, 2024.
- [8] Avantika Lal, David Garfield, Tommaso Biancalani, and Gokcen Eraslan. Designing realistic regulatory dna with autoregressive language models. *Genome Research*, 34(9):1411–1420, 2024.
- [9] Zhao Yang, Bing Su, Chuan Cao, and Ji-Rong Wen. Regulatory dna sequence design with reinforcement learning. In *The Thirteenth International Conference on Learning Representations*.
- [10] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [11] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In *International conference on machine learning*, pages 22–31. PMLR, 2017.
- [12] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning. *arXiv* preprint arXiv:1910.01708, 7(1):2, 2019.
- [13] Eeshit Dhaval Vaishnav, Carl G de Boer, Jennifer Molinet, Moran Yassour, Lin Fan, Xian Adiconis, Dawn A Thompson, Joshua Z Levin, Francisco A Cubillos, and Aviv Regev. The evolution, evolvability and engineering of gene regulatory dna. *Nature*, 603(7901):455–463, 2022.
- [14] Johannes Linder and Georg Seelig. Fast activation maximization for molecular sequence design. BMC bioinformatics, 22:1–20, 2021.
- [15] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy Colwell. Model-based reinforcement learning for biological sequence design. In *International conference* on learning representations, 2019.
- [16] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al. Biological sequence design with gflownets. In *International Conference on Machine Learning*, pages 9786–9801. PMLR, 2022.
- [17] Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems & control letters, 54(3):207–213, 2005.

- [18] Shalabh Bhatnagar and K Lakshmanan. An online actor–critic algorithm with function approximation for constrained markov decision processes. *Journal of Optimization Theory and Applications*, 153:688–708, 2012.
- [19] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. *arXiv* preprint arXiv:1805.11074, 2018.
- [20] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid lagrangian methods. In *International Conference on Machine Learning*, pages 9133–9143. PMLR, 2020.
- [21] Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for cmdps with non-stationary objectives and constraints. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 7396–7404, 2023.
- [22] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pages 1889–1897. PMLR, 2015.
- [23] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin Riedmiller. Maximum a posteriori policy optimisation. *arXiv preprint arXiv:1806.06920*, 2018.
- [24] Ted Moskovitz, Michael Arbel, Jack Parker-Holder, and Aldo Pacchiano. Towards an understanding of default policies in multitask policy optimization. In *International Conference on Artificial Intelligence and Statistics*, pages 10661–10686. PMLR, 2022.
- [25] Ted Moskovitz, Aaditya K Singh, DJ Strouse, Tuomas Sandholm, Ruslan Salakhutdinov, Anca D Dragan, and Stephen McAleer. Confronting reward model overoptimization with constrained rlhf. arXiv preprint arXiv:2310.04373, 2023.
- [26] Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space. *Advances in Neural Information Processing Systems*, 33:15338–15349, 2020.
- [27] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.
- [28] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. Advances in neural information processing systems, 12, 1999.
- [29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
- [30] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. *arXiv* preprint arXiv:1506.02438, 2015.
- [31] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *International Conference on Machine Learning*, pages 10835–10866. PMLR, 2023.
- [32] Anirban Sarkar, Ziqi Tang, Chris Zhao, and Peter K Koo. Designing dna with tunable regulatory activity using discrete diffusion. bioRxiv, pages 2024–05, 2024.
- [33] Sager J Gosai, Rodrigo I Castro, Natalia Fuentes, John C Butts, Susan Kales, Ramil R Noche, Kousuke Mouri, Pardis C Sabeti, Steven K Reilly, and Ryan Tewhey. Machine-guided design of synthetic cell type-specific cis-regulatory elements. bioRxiv, 2023.
- [34] Aniketh Janardhan Reddy, Michael H Herschl, Xinyang Geng, Sathvik Kolli, Amy X Lu, Aviral Kumar, Patrick D Hsu, Sergey Levine, and Nilah M Ioannidis. Strategies for effectively modelling promoter-driven gene expression using transfer learning. *bioRxiv*, pages 2023–02, 2024.
- [35] Eilon Sharon, Yael Kalma, Ayala Sharp, Tali Raveh-Sadka, Michal Levo, Danny Zeevi, Leeat Keren, Zohar Yakhini, Adina Weinberger, and Eran Segal. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. *Nature biotechnology*, 30(6):521–530, 2012.
- [36] Jaime A Castro-Mondragon, Rafael Riudavets-Puig, Ieva Rauluseviciute, Roza Berhanu Lemma, Laura Turchi, Romain Blanc-Mathieu, Jeremy Lucas, Paul Boddie, Aziz Khan, Nicolás Manosalva Pérez, et al. Jaspar 2022: the 9th release of the open-access database of transcription factor binding profiles. *Nucleic acids research*, 50(D1):D165–D173, 2022.

- [37] Timothy L Bailey, James Johnson, Charles E Grant, and William S Noble. The meme suite. *Nucleic acids research*, 43(W1):W39–W49, 2015.
- [38] Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska, Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene expression prediction from sequence by integrating long-range interactions. *Nature methods*, 18(10):1196–1203, 2021.
- [39] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution. Advances in neural information processing systems, 36:43177–43201, 2023.
- [40] Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic. Adalead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv preprint arXiv:2010.02141, 2020.
- [41] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. *Advances in neural information processing systems*, 25, 2012.
- [42] Nikolaus Hansen. The cma evolution strategy: a comparing review. *Towards a new evolutionary computation: Advances in the estimation of distribution algorithms*, pages 75–102, 2006.
- [43] Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration for model-guided protein sequence design. In *International Conference on Machine Learning*, pages 18520–18536. PMLR, 2022.
- [44] Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 4940–4947, 2020.
- [45] Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine, and Tommaso Biancalani. Reward-guided iterative refinement in diffusion models at test-time with applications to protein and dna design. *arXiv* preprint arXiv:2502.14944, 2025.
- [46] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid lagrangian methods. In *International Conference on Machine Learning*, pages 9133–9143. PMLR, 2020.
- [47] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score model for biological sequence generation. In *International Conference on Machine Learning*, pages 1276–1301. PMLR, 2023.
- [48] Simon Senan, Aniketh Janardhan Reddy, Zach Nussbaum, Aaron Wenteler, Matei Bejan, Michael I Love, Wouter Meuleman, and Luca Pinello. Dna-diffusion: Leveraging generative models for controlling chromatin accessibility and gene expression via synthetic regulatory elements. In ICLR 2024 Workshop on Machine Learning for Genomics Explorations, 2024.
- [49] Zehui Li, Yuhao Ni, Tim August B Huygelen, Akashaditya Das, Guoxuan Xia, Guy-Bart Stan, and Yiren Zhao. Latent diffusion model for dna sequence generation. arXiv preprint arXiv:2310.06150, 2023.
- [50] Jan Zrimec, Xiaozhi Fu, Azam Sheikh Muhammad, Christos Skrekas, Vykintas Jauniskis, Nora K Speicher, Christoph S Börlin, Vilhelm Verendel, Morteza Haghir Chehreghani, Devdatt Dubhashi, et al. Controlling gene expression with deep generative design of regulatory dna. *Nature communications*, 13(1):5099, 2022.

A Training Details for *Ctrl-DNA*

We provide a high-level overview of our constrained reinforcement learning procedure for optimizing constraint-aware regulatory sequence generation. We also present the hyperparameter settings used in our experiments in Table 3. All models were trained using the Adam optimizer with a learning rate specified in Table 3 with 100 training epochs.

Experiments were conducted on a single NVIDIA A100 GPU with 40 GB of memory. Each experiment typically required between 1 to 2 hours of wall-clock time. The experiment results reported are mean performances across five seeds.

Algorithm 1 Ctrl-DNA

Require: Initialized policy π_{θ} , Reference policy π_{ref} , Lagrangian multipliers $\{\lambda_i\}_{i=1}^m$, reward functions $\{R_i\}_{i=0}^m$, reference TFBS frequency q_{real} , constraint thresholds $\{\delta_i\}$, learning rates η_{θ} , η_{λ} , hyperparameters β , ϵ , replay buffer β , batch size β , replay batch size β .

```
1: for each training iteration do
 2:
            Update \pi_{\text{old}} = \pi_{\theta}
           Sample B sequences \{X_j\}_{j=1}^B from policy \pi_{\text{old}}
 3:
           Compute rewards \{R_i(X_j)\} for i = 0, ..., m
 4:
           Compute TFBS frequency q_{\rm gen}^{(j)} and correlation R_{\rm TFBS}(X_j) = {\rm Corr}(q_{\rm real}, q_{\rm gen}^{(j)}). Treat R_{\rm TFBS} as additional reward R_{m+1} and append to the reward set
 5:
 6:
           Sample B_r sequences from replay buffer \mathcal{B} and merge with current batch
 7:
           Compute normalized advantage: A_i^{(j)} = \frac{R_i(X_j) - \bar{R}_i}{\sigma(R_i)} for each reward R_i
 8:
           Compute clipped main reward coefficient:
 9:
                            \alpha_0 = \min(1, m - \sum_{i=1}^m \lambda_i)
10:
11:
           Construct mixed advantage:
           \hat{A}^{(j)} = \alpha_0 \cdot A_0^{(j)} + \sum_{i=1}^m \lambda_i A_i^{(j)} Add current batch \{(X_j, \{r_i^{(j)}\})\} to replay buffer \mathcal B
12:
13:
14:
           for each policy update step do
                  Update policy parameters \theta using \mathcal{L}_{policy}(\theta) (Eq. 6)
15:
16:
                  for each constraint i = 1, \ldots, m+1 do
                       Update \lambda_i using:

\mathcal{L}_{\text{multiplier}}(\lambda_i) = \frac{1}{B+B_r} \sum_{j=1}^{B+B_r} (R_i(X_j) - \delta_i) \cdot \lambda_i
17:
18:
19:
                 end for
20:
           end for
21: end for
```

Table 3: Experiment Hyperparameters.

Hyperparameter	HepG2	K562	SK-N-SH	JURKAT	K562	THP1
Batch Size	256	256	256	256	256	256
Replay Buffer Batch Size	24	24	24	24	24	24
Policy Learning Rate (η_{θ})	1e-4	1e-4	1e-4	1e-4	1e-4	1e-4
Multiplier Learning Rate (η_{λ})	3e-4	3e-4	3e-4	3e-4	3e-3	3e-3
KL Value Coefficient (β)	0.2	0.2	0.2	0.2	0.2	0.2
TFBS Multiplier Upper Bound (λ_{max})	0.1	0.1	0.1	0.1	0.1	0.1

A.1 Policy Optimization Objective

As discussed in Section 3.2, the objective for updating policy parameters θ is defined as:

$$\mathcal{L}_{\text{policy}}(\theta) = \frac{1}{B} \sum_{j=1}^{B} \sum_{i=1}^{T} \min \left\{ \rho_i^{(j)} \hat{A}^{(j)}, \ \text{clip}_{\epsilon}(\rho_i^{(j)}) \hat{A}^{(j)} \right\} - \beta \cdot \text{KL}(\pi_{\theta} || \pi_{\text{ref}}), \tag{7}$$

where $\rho_i^{(j)} = \frac{\pi_{\theta}(a_i^j|s_i^j)}{\pi_{\text{old}}(a_i^j|s_i^j)}$ is the importance sampling ratio, and $\text{clip}_{\epsilon}(\rho_i^{(j)}) = \text{clip}(\rho_i^{(j)}, 1 - \epsilon, 1 + \epsilon)$ applies clipping for stability. Following [27], we assume one policy update per iteration, allowing $\pi_{\text{old}} = \pi_{\theta}$ for simplification.

The gradient of this objective with respect to θ becomes:

$$\nabla_{\theta} \mathcal{L}_{\text{policy}}(\theta) = \frac{1}{B} \sum_{j=1}^{B} \sum_{i=1}^{T} \hat{A}^{(j)} \nabla_{\theta} \log \pi_{\theta}(a_{i}^{(j)} \mid s_{i}^{(j)})$$

$$-\beta \cdot \nabla_{\theta} \left(\frac{\pi_{\text{ref}}(a_{i}^{(j)} \mid s_{i}^{(j)})}{\pi_{\theta}(a_{i}^{(j)} \mid s_{i}^{(j)})} - \log \frac{\pi_{\text{ref}}(a_{i}^{(j)} \mid s_{i}^{(j)})}{\pi_{\theta}(a_{i}^{(j)} \mid s_{i}^{(j)})} - 1 \right)$$

$$= \frac{1}{B} \sum_{j=1}^{B} \sum_{i=1}^{T} \left[\hat{A}^{(j)} - \beta \left(\frac{\pi_{\text{ref}}(a_{i}^{(j)} \mid s_{i}^{(j)})}{\pi_{\theta}(a_{i}^{(j)} \mid s_{i}^{(j)})} - 1 \right) \right] \nabla_{\theta} \log \pi_{\theta}(a_{i}^{(j)} \mid s_{i}^{(j)}).$$
(8)

A.2 Lagrangian Multiplier Update

We apply Lagrangian relaxation to enforce soft constraints on off-target cell types. The gradient of the multiplier objective with respect to each Lagrange multiplier λ_i is given by:

$$\nabla_{\lambda_i} \mathcal{L}_{\text{multiplier}}(\lambda_i) = \frac{1}{B} \sum_{i=1}^{B} \left(R_i(X_j) - \delta_i \right),$$

where $R_i(X_j)$ is the constraint-specific reward (e.g., off-target activity) for sample X_j , and δ_i is the user-defined constraint threshold.

B Dataset

In this section, we describe the datasets used in our experiments. The human enhancer dataset contains cis-regulatory element (CRE) activity measured by MPRA across three cell lines: HepG2 (liver cell line), K562 (erythrocyte cell line), and SK-N-SH (neuroblastoma cell line). Each sequence in this dataset is 200 base pairs long.

The human promoter dataset contains promoter activity (CRE fitness) measured from three leukemia-derived cell lines: JURKAT, K562, and THP1. All three are mesoderm-derived hematopoietic cell lines and share high biological similarity. Each sequence in this dataset is 250 base pairs in length. Compared to enhancer datasets that span multiple germ layers and tissue types, optimization and constraint satisfaction in the promoter dataset is more challenging due to the biological similarity between the cell lines [4].

We provide percentile statistics of normalized activity scores in Tables 4 and 5. Notably, in the THP1 cell line, even the 25th percentile activity reaches 0.49, suggesting a right-skewed distribution. This distributional bias may partially explain the increased difficulty in constraining THP1 activity, as discussed in Section 4.2.

Table 4: Percentile statistics of normalized activity scores across cell types in Human Enhancer datasets

Cell Line	25th Percentile	50th Percentile	75th Percentile	90th Percentile
HepG2	0.34	0.36	0.40	0.45
K562	0.34	0.36	0.40	0.45
SK-N-SH	0.35	0.37	0.40	0.45

Table 5: Percentile statistics of normalized activity scores across cell types in Human Promoter datasets.

Cell Line	25th Percentile	50th Percentile	75th Percentile	90th Percentile
JURKAT	0.35	0.38	0.44	0.54
K562	0.23	0.26	0.32	0.40
THP1	0.49	0.51	0.53	0.59

C Baselines

In this section, we provide detailed descriptions of all baseline methods compared in the main paper:

- AdaLead [40]: A hill-climbing evolutionary algorithm that uses a novelty-guided search strategy to explore high-fitness sequences.
- **Bayesian Optimization (BO)** [40]: A black-box optimization method that models the fitness function with a Gaussian process surrogate and selects new candidates by maximizing an acquisition function.
- CMA-ES [42]: A population-based evolutionary algorithm that adapts a multivariate Gaussian distribution over iterations. We apply CMA-ES on one-hot encoded sequence representations.
- PEX [43]: An evolutionary approach that prioritizes generating high-fitness variants with minimal mutations relative to the wild-type sequence.
- **RegLM** [8]: An autoregressive model trained to generate cis-regulatory element (CRE) sequences conditioned on cell-type-specific fitness signals.
- TACO [9]: A reinforcement learning method based on REINFORCE [28], which incorporates transcription factor motif rewards to guide generation toward high-fitness sequences.
- PPO [29]: A widely used policy optimization algorithm that updates policies using clipped surrogate objectives to ensure stable training.
- **PPO-Lagrangian** [12]: A constrained variant of PPO that incorporates Lagrangian relaxation to balance main rewards and constraint satisfaction.

D Sequence Diversity

In this section, we report the full results of sequence diversity for *Ctrl-DNA* and baseline methods as shown in Figure 4.

E Extended Ablation Results

This section provides additional results and implementation details for the ablation experiments introduced in Section 4.4. We evaluate ablations on both the Human Enhancer and Human Promoter datasets.

Ctrl-DNA-Log. Following the reward-guided approach proposed in [45], we implement a log-barrier transformation of the constraint reward. Specifically, we define a log-augmented reward as

$$R_{\log}(X) = R_0(X) + \sum_{i=1}^{m} \log(\max(\delta_i - R_i(X), c_1)),$$
(9)

where R_0 is the target reward, R_i is the constraint reward for $i \ge 1$, c is the threshold, and c_1 is a small constant for numerical stability. We then compute normalized advantages using this transformed

Figure 4: Sequence diversity scores for generated sequences on the human enhancer and promoter datasets. Higher values indicate greater variability among generated sequences.

Table 6: Ablation study for Ctrl-DNA across three target cell types in Human Enhancer datasets.

Method		Target: HepG2							
	HepG2 ↑	K562↓	SK-N-SH↓	ΔR	Motif Correlation	Diversity			
Ctrl-DNA-Log	0.24 (0.02)	0.24 (0.03)	0.21 (0.04)	0.02 (0.06)	0.16 (0.13)	1.62 (0.08			
Ctrl-DNA-IPO	0.74 (0.01)	0.86 (0.02)	0.83 (0.02)	-0.10 (0.02)	0.39 (0.14)	1.58 (0.13			
Ctrl-DNA ($\lambda_{max} = 0.00$)	0.78 (0.02)	0.40 (0.06)	0.33 (0.03)	0.42 (0.02)	0.33 (0.12)	1.82 (0.02			
Ctrl-DNA ($\lambda_{max} = 0.01$)	0.77 (0.01)	0.34 (0.04)	0.30 (0.02)	0.45 (0.02)	0.16 (0.10)	1.84 (0.01			
Ctrl-DNA ($\lambda_{max} = 0.1$)	0.77 (0.01)	0.36 (0.04)	0.31 (0.04)	0.44 (0.03)	0.43 (0.07)	1.82 (0.04			
Method		Target: K562							
	K562↑	HepG2 ↓	SK-N-SH↓	ΔR	Motif Correlation	Diversity			
Ctrl-DNA-Log	0.28 (0.01)	0.16 (0.06)	0.19 (0.02)	0.11 (0.02)	0.14 (0.07)	1.68 (0.16)			
Ctrl-DNA-IPO	0.84 (0.11)	0.65 (0.09)	0.73 (0.19)	0.15 (0.03)	0.39 (0.05)	1.08 (0.62)			
Ctrl-DNA ($\lambda_{max} = 0.00$)	0.93 (0.01)	0.43 (0.01)	0.35 (0.01)	0.54 (0.01)	0.50 (0.02)	1.72 (0.02)			
Ctrl-DNA ($\lambda_{max} = 0.01$)	0.93 (0.01)	0.42 (0.05)	0.35 (0.01)	0.54 (0.06)	0.52 (0.03)	1.73 (0.05)			
$\frac{\text{Ctrl-DNA} (\lambda_{max} = 0.1)}{}$	0.93 (0.01)	0.43 (0.01)	0.35 (0.01)	0.54 (0.01)	0.51 (0.02)	1.82 (0.04)			
Method	Target: SK-N-SH								
	SK-N-SH↑	HepG2 ↓	K562↓	ΔR	Motif Correlation	Diversity			
Ctrl-DNA-Log	0.46 (0.07)	0.05 (0.01)	0.05 (0.01)	0.41 (0.07)	0.12 (0.02)	1.68 (0.08)			
Ctrl-DNA-IPO	0.91 (0.04)	0.87 (0.01)	0.70 (0.01)	0.13 (0.03)	0.13 (0.04)	1.66 (0.07)			
Ctrl-DNA ($\lambda_{max} = 0.00$)	0.83 (0.04)	0.57 (0.11)	0.38 (0.07)	0.35 (0.10)	0.35 (0.06)	1.78 (0.03)			
Ctrl-DNA ($\lambda_{max} = 0.01$)	0.88 (0.01)	0.47 (0.05)	0.30 (0.03)	0.49 (0.03)	0.15 (0.02)	1.84 (0.04)			
Ctrl-DNA ($\lambda_{max} = 0.1$)	0.86 (0.02)	0.54 (0.13)	0.44 (0.01)	0.37 (0.11)	0.51 (0.02)	1.82 (0.04)			

Table 7: Ablation study for Ctrl-DNA across three target cell types in Human Promoter datasets.

Method	Target: JURKAT						
	JURKAT ↑	K562 ↓	THP1↓	ΔR	Motif Correlation	Diversity	
Ctrl-DNA-Log	0.46 (0.02)	0.17 (0.02)	0.45 (0.02)	0.15 (0.01)	0.11 (0.36)	1.61 (0.07)	
Ctrl-DNA-IPO	0.55 (0.14)	0.28 (0.18)	0.55 (0.15)	0.15 (0.01)	0.31 (0.29)	1.22 (0.38)	
Ctrl-DNA ($\lambda_{max} = 0.00$)	0.59 (0.11)	0.19 (0.03)	0.49 (0.02)	0.25 (0.09)	0.28 (0.36)	1.56 (0.09)	
Ctrl-DNA ($\lambda_{max} = 0.01$)	0.56 (0.12)	0.18 (0.02)	0.49 (0.02)	0.22 (0.10)	0.18 (0.31)	1.56 (0.07)	
Ctrl-DNA ($\lambda_{max} = 0.1$)	0.69 (0.09)	0.38 (0.02)	0.49 (0.01)	0.25 (0.01)	0.69 (0.01)	1.69 (0.03)	

Method		Target: K562					
	K562↑	JURKAT ↓	ТНР1 ↓	ΔR	Motif Correlation	Diversity	
Ctrl-DNA-Log Ctrl-DNA-IPO	0.26 (0.04)	0.29 (0.03) 0.59 (0.06)	0.44 (0.03) 0.69 (0.09)	-0.11 (0.06) -0.11 (0.06)	0.60 (0.01)	1.49 (0.11)	
Ctrl-DNA ($\lambda_{max} = 0.00$)	0.59 (0.02) 0.61 (0.04)	0.49 (0.03)	0.69 (0.09)	0.11 (0.03)	0.57 (0.05) 0.61 (0.16)	1.65 (0.14) 1.63 (0.06)	
Ctrl-DNA ($\lambda_{max} = 0.01$) Ctrl-DNA ($\lambda_{max} = 0.1$)	0.58 (0.04) 0.58 (0.03)	0.52 (0.03) 0.43 (0.06)	0.49 (0.01) 0.50 (0.01)	0.08 (0.02) 0.12 (0.02)	0.67 (0.05) 0.75 (0.06)	1.62 (0.11) 1.64 (0.04)	

Method		Target: THP1					
	THP1↑	JURKAT \downarrow	K562 ↓	ΔR	Motif Correlation	Diversity	
Ctrl-DNA-Log	0.51 (0.01)	0.10 (0.04)	0.16 (0.01)	0.38 (0.02)	0.42 (0.05)	1.50 (0.03)	
Ctrl-DNA-IPO	0.88 (0.04)	0.59 (0.06)	0.42(0.11)	0.38 (0.01)	0.57 (0.05)	1.77 (0.06)	
Ctrl-DNA ($\lambda_{max} = 0.00$)	0.92 (0.01)	0.51 (0.02)	0.33 (0.05)	0.50 (0.03)	0.23 (0.07)	1.82 (0.01)	
Ctrl-DNA ($\lambda_{max} = 0.01$) Ctrl-DNA ($\lambda_{max} = 0.1$)	0.92 (0.01) 0.92 (0.01)	0.50 (0.01) 0.51 (0.01)	0.32 (0.01) 0.31 (0.03)	0.51 (0.02) 0.51 (0.01)	0.23 (0.02) 0.25 (0.04)	1.82 (0.01) 1.81 (0.01)	

reward:

$$A_{log}^{(j)} = \frac{R_{log}(X_j) - \bar{R}_{log}}{\sigma(R_{log})}.$$
(10)

We replace the mixed advantages in the original loss function (Equation 6) with $A_{log}^{(j)}$. All other settings (e.g., surrogate loss, clipping, KL regularization) remain the same as in *Ctrl-DNA*.

Ctrl-DNA-IPO. Based on Interior Policy Optimization (IPO) [44], we incorporate the log-barrier directly into the optimization objective. The surrogate loss becomes:

$$\mathcal{L}^{\text{IPO}}(\theta) = \frac{1}{B} \sum_{i=1}^{B} \sum_{i=1}^{T} \min \left\{ \rho_i^{(j)} A_0^{(j)}, \text{ clip}_{\epsilon}(\rho_i^{(j)}) A_0^{(j)} \right\} - \beta \cdot \text{KL}(\pi_{\theta} \mid\mid \pi_{\text{old}}) - \sum_{i=1}^{m} \phi\left(\hat{J}_i^{\pi_{\theta}}\right), \tag{11}$$

where the log-barrier penalty is defined as

$$\phi(\hat{J}_i^{\pi_{\theta}}) = \frac{1}{t} \log \left(\delta_i - \hat{J}_i^{\pi_{\theta}} \right), \tag{12}$$

with t>0 controlling the sharpness of the approximation to the indicator function. A larger t yields a tighter barrier. We set t=50 in our experiments. Note that, unlike the main Ctrl-DNA method, this variant does not compute mixed advantages as in Equation 5. Instead, we compute advantages using only the target reward:

$$A_0^{(j)} = \frac{R_0(X_j) - \bar{R}_0}{\sigma(R_0)}. (13)$$

F Additional Related Work

Generative Models for Biological Sequence Design: Deep generative models have advanced the design of functional DNA sequences. Diffusion-based approaches have emerged as promising tools, beginning with the Dirichlet Diffusion Score Model (DDSM), which creates promoters based on expression levels [47]. Building on this foundation, several subsequent studies have further developed diffusion models for designing regulatory DNA sequences[48, 49, 32]. Researchers have also leveraged Generative Adversarial Networks (GANs) for regulatory sequence design, with [7] creating cell-type-specific enhancers in Drosophila and humans, and ExpressionGAN [50] generates

yeast promoters that outperform natural sequences in expression efficiency. Autoregressive genomic language models have recently been applied to model DNA sequences, learning statistical patterns from large-scale genomic datasets. For example, RegLM[8] fine-tuned the HyenaDNA model [39] using prefix tokens that encode expression levels, allowing the generation of enhancers with controlled activity. However, despite producing biologically plausible sequences, generative models typically replicate distributions observed in training data, constraining their ability to explore novel, out-of-distribution solutions. This inherent limitation underscores the need for integrating generative approaches with optimization frameworks such as reinforcement learning.