

Exercise 1 *Using the polar form to calculate:*

a)
$$(1+i)^2$$

d)
$$(-2+2i)^{10}$$

g)
$$\sqrt[4]{-1}$$

b)
$$(1+\sqrt{3}i)^4$$

e)
$$i^{2020}$$

c)
$$(\sqrt{3}-i)^8$$

f)
$$\sqrt[3]{i}$$

Exercise 2 Convert to Cartesian (rectangular) form the following complex numbers:

a)
$$e^{i\pi/6}$$
,

c)
$$e^{-i\pi/4}$$
,

$$e) e^{\pi i} (1 - e^{-\pi i/3}),$$

b)
$$e^{-1+i\pi/3}$$
,

$$d) \ \frac{1 - e^{\pi i/2}}{1 + e^{\pi i/2}},$$

$$f) \ \frac{1-i^3}{(1+i)^3}.$$

Exercise 3 *Expressing complex numbers exponentially:*

$$-\sqrt{3}+i$$
, $-2-2\sqrt{3}i$, $\sqrt{3}-i$, $3\sqrt{2}+3\sqrt{2}i$

Exercise 4 Find $x \in \mathbb{R}$ such as $z = \frac{x^2 + 2i}{8-i}$ is:

- a) pure immaginary
- b) real

Exercise 5 a) Plot on a unit radius circumference the following angles: $\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{6}, \frac{5\pi}{4}, \frac{2\pi}{3}, -\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$.

b) Plot the following complex numbers: $z_1 = -1 + i$, $z_2 = 1 + i$, $z_3 = \frac{1+i}{\sqrt{2}}$, $z_4 = -\sqrt{3} + i$, $z_5 = \frac{1}{2}(-\sqrt{3} - i)$, $z_6 = \frac{1}{2}(1 - \sqrt{3}i)$.

Exercise 6 Graphically represent and express in polar, binomial, Cartesian and exponential form the following complex numbers:

$$\frac{2_{\pi/6}3_{\pi/6}}{2_{2\pi/3}1_{-\pi/3}}; \quad \frac{i^{32}i^{17}}{i^2i^3}$$

Escuela de Ingeniería Informática Practice Complex Numbers 2020 –2021

Exercise 7 *Plot the following sets of complex numbers:*

a)
$$A = \{z \in \mathbb{C} \mid |z| = 5, Im(z) = 3\}$$

d)
$$D = \left\{ z \in \mathbb{C} \mid \operatorname{Real}\left(\frac{z+1}{z-1}\right) > 1 \right\}$$

b)
$$B = \{ z \in \mathbb{C} \mid |z - 1 + i| = 2 \}$$

$$c) \ C = \big\{z \in \mathbb{C} \quad \big/ \quad |z-2| < 1 \big\}.$$

Mark the pure complex numbers.

Exercise 8 What does it mean (geometrically) the multiplication of a complex number z by i? And the multiplication by 2i? Now rotate z = 3 + i by $\frac{\pi}{4}$ radians counterclockwise. Give the rectangular form of the resulting complex number.

Exercise 9 Factorizing the following polynomials

a)
$$p(z) = z^3 - 4z^2 + 6z - 4$$
,

b)
$$p(z) = z^2 - 2iz + 1$$
.

Exercise 10 *Solve the following equations:*

a)
$$z^8 - 1 = 0$$

b)
$$z^3 + i = 0$$

c)
$$z^2 - 6z + 10 = 0$$

Exercise 11 Finding a polynomial that has at least the roots z = 1, z = 2 + i.

Exercise 12 Finding the intersection points between the circumference $x^2 + y^2 = 1$ and the line y = x - 3.

Exercise 13 If z_1 , z_2 are the roots of the equation with real coefficients $z^2 + az + b = 0$, prove that $z_1^n + z_2^n$ is a real number for any natural value of n. In the particular case of the equation $z^2 - 2z + 2 = 0$, express that sum as a function of n.