Álgebra Lineal I

Matías Carrasco Jiménez y Victor Ortega Le Hénanff Facultad de Economía de la Universidad Nacional Autónoma de México

4 de enero de 2025

Índice general

1.	Esp	acios vectoriales	2
	1.1.	Preámbulo	2
	1.2.	Campos (\mathbb{K})	2
	1.3.	Espacios vectoriales	3
	1.4.	Subespacios vectoriales	6
	1.5.	Clases laterales	7
	1.6.	Combinaciones lineales	9
	1.7.	Dependencia e independencia lineal	12
	1.8.	Bases y dimensión	14
	1.9.	Subconjuntos máximos l.i	19
2.	Tra	nsformaciones lineales y matrices	21
	2.1.	Transformaciones lineales, núcleos e imágenes	21
	2.2.	Matrices asociadas a una transformación lineal	25
			20
	2.3.	Composición de transformaciones lineales y mutiplicación matricial	28
	2.3.2.4.		
		Composición de transformaciones lineales y mutiplicación matricial	28
3.	2.4.2.5.	Composición de transformaciones lineales y mutiplicación matricial	28 32
3.	2.4.2.5.Esp	Composición de transformaciones lineales y mutiplicación matricial	28 32 36 38

Capítulo 1

Espacios vectoriales

1.1. Preámbulo

Las siguientes son notas de clase del curso de Algebra Lineal I del Dr. Leobardo Fernández Román y la profesora Victoria Alejandra García Ortega, impartido en la Facultad de Ciencias de la Universidad Nacional Autónoma de México, en el semestre 2024-2 (verano).

1.2. Campos (\mathbb{K})

Definición 1.1. Un campo es un conjunto \mathbb{K} con dos operaciones, suma y producto:

- $\blacksquare \oplus : \mathbb{K} \times \mathbb{K} \to \mathbb{K}; (a,b) \to a+b$
- \bullet \odot : $\mathbb{K} \times \mathbb{K} \to \mathbb{K}$; $(a,b) \to a \cdot b$

 $\forall a, b, c... \in \mathbb{K}$ se satisfacen los siguientes axiomas (12 en total). cinco aditivos, cinco multiplicativos y dos distributivos).

Axioma 1.2.1 (*Cerradura aditiva*). $\forall a, b \in \mathbb{K} : a + b \in \mathbb{K}$

Axioma 1.2.2 (*Asociatividad aditiva*). $\forall a, b, c \in \mathbb{K} : a + (b + c) = (a + b) + c$

Axioma 1.2.3 (*Conmutatividad aditiva*). $\forall a, b \in \mathbb{K} : a + b = b + a$

Axioma 1.2.4 (*Neutro aditivo*). $\exists 0 \in \mathbb{K}, \forall a \in \mathbb{K}, \exists a+0=0+a=a$

Axioma 1.2.5 (*Inverso aditivo*). $\forall a \in \mathbb{K} \exists (-a) \in \mathbb{K}, \exists$

Axioma 1.2.6 (*Cerradura multiplicativa*). $\forall a, b \in \mathbb{K} : a \cdot b \in \mathbb{K}$

Axioma 1.2.7 (*Asociatividad multiplicativa*). $\forall a, b, c \in \mathbb{K} : a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Axioma 1.2.8 (*Conmutatividad multiplicativa*). $\forall a, b \in \mathbb{K} : a \cdot b = b \cdot a$

Axioma 1.2.9 (*Neutro multiplicativo*). $\exists 1 \in \mathbb{K}, \forall a \in \mathbb{K}, \exists: a \cdot 1 = 1 \cdot a = a$

Axioma 1.2.10 (*Inverso multiplicativo*). $\forall a \in \mathbb{K}, a \neq 0, \exists (a^{-1}) \in \mathbb{K}, \exists: a \cdot a^{-1} = a^{-1} \cdot a = 1$

Axioma 1.2.11 (*Distributivo I*). $\forall a, b, c \in \mathbb{K} : a \cdot (b+c) = ab + ac$

Axioma 1.2.12 (*Distributivo II*). $\forall a, b, c \in \mathbb{K} : (a+b) \cdot c = ac + ac$

1.3. Espacios vectoriales

Definición 1.2. ¹ Un espacio vectorial V sobre un campo \mathbb{K} es un conjunto de elementos donde están bien definidas las operaciones de **suma vectorial** y **multiplicación escalar**. Denotamos a todos los elementos de V como **vectores** y a todos los elementos de \mathbb{K} **escalares**. Tal que

- \blacksquare \oplus : $V \times V \to V$
- \bullet $\odot: V \times \mathbb{K} \to V$

y que cumple con las siguientes teoremaiedades (cinco aditivas, tres multiplicativas y dos distributivas):

Axioma 1.3.1 (*Cerradura aditiva*). $\forall \vec{v}, \vec{w} \in V : \vec{v} + \vec{w} \in V$

Axioma 1.3.2 (*Asociatividad aditiva*).
$$\forall \vec{v}, \vec{w}, \vec{z} \in V : \vec{v} + (\vec{w} + \vec{z}) = (\vec{v} + \vec{w}) + \vec{z}$$

 $^{^{1}}$ Nótese como todo campo es un espacio vectorial, más no todo espacio vectorial es un campo. La multiplicación entre vectores no está definida en sus axiomas. En relación a la definición de \mathbb{K} , las diez teoremaiedades de los espacios vectoriales no cuentan con la conmutatividad multiplicativa y la existencia de un inverso multiplicativo.

Axioma 1.3.3 (*Conmutatividad aditiva*). $\forall \vec{v}, \vec{w} \in V : \vec{v} + \vec{w} = \vec{w} + \vec{v}$

Axioma 1.3.4 (*Neutro aditivo*). $\exists \vec{0}_V \in V, \forall \vec{v} \in V, \exists \vec{v} + \vec{0}_V = \vec{0}_V + \vec{v} = \vec{v}$

Axioma 1.3.5 (*Inverso aditivo*). $\forall \vec{v} \in V \exists \vec{x} \in V, \exists \vec{v} + \vec{x} = \vec{x} + \vec{v} = \vec{0}_V$

Axioma 1.3.6 (*Cerradura multiplicativa*). $\forall \lambda \in \mathbb{K}, \forall \vec{v} \in V : \lambda \cdot \vec{v} \in V$

Axioma 1.3.7 (Asociatividad multiplicativa). $\forall \lambda, \mu \in \mathbb{K}, \forall \vec{v} \in V : (\lambda \cdot \mu) \cdot \vec{v} = \lambda(\cdot \mu \cdot \vec{v})$

Axioma 1.3.8 (*Neutro multiplicativo*). $1 \in \mathbb{K}, \forall \vec{v} \in V, \exists \vec{v} = \vec{v}$

Axioma 1.3.9 (*Distributiva I*). $\forall \vec{v}, \vec{w} \in V, \forall \lambda \in \mathbb{K} : \lambda \cdot (\vec{v} + \vec{w}) = \lambda \cdot \vec{v} + \lambda \cdot \vec{w}$

Axioma 1.3.10 (Distributiva II). $\forall \vec{v} \in V, \forall \lambda, \mu \in \mathbb{K} : \vec{v} \cdot (\lambda + \mu) = \vec{v} \cdot \lambda + \vec{v} \cdot \mu$

Teorema 1.1. $\forall \vec{v}, \vec{w}, \vec{z} \in V$, con V sobre un campo cualquiera \mathbb{K} , se cumple que $\vec{v} + \vec{z} = \vec{w} + \vec{z}$, entonces, $\vec{v} = \vec{w}$.

Demostración. Dado que $\vec{z} \in V$, sabemos, debido al Axioma 1.3.5, que $\exists \vec{u} \in V$, $\vec{z} + \vec{u} = \vec{0}_V$. De este hecho, y de la utilización de los Axiomas 1.3.3 y 1.3.4, podemos inferir que

$$\vec{v} = \vec{v} + \vec{0}_V = \vec{v} + (\vec{z} + \vec{u}) = (\vec{v} + \vec{z}) + \vec{u} = (\vec{w} + \vec{z}) + \vec{u} = \vec{w} + (\vec{z} + \vec{u}) = \vec{w} + \vec{0}_V = \vec{w}$$

Corolario 1.1.1. Sea V un espacio vectorial sobre cualquier campo \mathbb{K} , $\exists ! \vec{0}_V, \forall \vec{v} \in V$.

Demostración. Sean $\vec{0}_{V1}, \vec{0}_{V2} \in V$ dos distintos nuetros aditivos de $\vec{v} \in V$, tal que $\vec{v} + \vec{0}_{V1} = 0$ y $\vec{v} + \vec{0}_{V2} = 0 \Rightarrow \vec{v} + \vec{0}_{V1} = \vec{v} + \vec{0}_{V2}$, por el Teorema 1.1, de la cancelación de vectores, sabemos entonces que $\vec{0}_{V1} = \vec{0}_{V2}$.

Corolario 1.1.2. $\forall \vec{v} \in V, \exists ! \vec{w} \in V, \ tal \ que, \ \vec{v} + \vec{w} = \vec{0}_V$

Notación 1.1. Notación de ahora en adelante: $\forall \vec{v} \in V$, denotamos su inverso aditivo como $-\vec{v}$.

Demostración. Sean $\vec{w}_1, \vec{w}_2 \in V$ dos distintos inversos aditivos de $\vec{v} \in V$, tal que $\vec{v} + \vec{w}_1 = \vec{0}_V$ y $\vec{v} + \vec{w}_2 = \vec{0}_V \Rightarrow \vec{v} + \vec{w}_1 = \vec{v} + \vec{w}_2$, por el Teorema 1.1, de la cancelación de vectores, sabemos entonces que $\vec{w}_1 = \vec{w}_2$.

Teorema 1.2. Sea V cualquier espacio vectorial sobre cualquier campo K, se cumple:

1.
$$0\vec{v} = \vec{0}_V, \ \forall \vec{v} \in V$$

2.
$$(-\lambda)\vec{v} = -(\lambda\vec{v}), \ \forall \lambda \in \mathbb{K}, \forall \vec{v} \in V$$

3.
$$\lambda \vec{0}_V = \vec{0}_V, \forall \lambda \in \mathbb{K}$$

Demostración. (1.) Partiendo de $\vec{0}_V \vec{v} = 0$, si sumamos en ambos lados de la igualdad $\vec{0}_V \vec{v}$, se sigue que

$$0\vec{v} + 0\vec{v} = (0+0)\vec{v} = 0\vec{v} = 0\vec{v} + \vec{0}_V = \vec{0}_V + 0\vec{v}$$

(2.) Por el Teorema 1.1, se sigue entonces que $\vec{0}_V \vec{v} = 0$. Por el Axioma 1.3.5 sabemos que existe el inverso adtivo de todo vector en V, dado que $-(\lambda \vec{v})$ (por el Axioma 1.3.6 de cerradura aditiva)), sabemos que debe existir en V su inverso adtivo. Entonces $\lambda \vec{v} + [-(\lambda \vec{v})] = \vec{0}_V$, si asumimos que $\lambda \vec{v} + (-\lambda)\vec{v} = [\lambda + (-\lambda)]\vec{0}_V = \vec{0}_V$, tendríamos:

$$\lambda \vec{v} + [-(\lambda \vec{v})] = 0 = 0 \vec{v} = [\lambda + (-\lambda)] \vec{v} = \lambda \vec{v} + (-\lambda) \vec{v}$$

Lo que implica por el Teorema 1.1 que $(-\lambda)\vec{v} = -(\lambda\vec{v})$.

(3.) Sumando $\lambda \vec{0}_V$ en ambos lados de la igualdad, tenemos

$$\lambda \vec{0}_V + \lambda \vec{0}_V = (\vec{0}_V + \vec{0}_V)\lambda = \vec{0}_V \lambda = \vec{0}_V \lambda + \vec{0}_V = \vec{0}_V + \vec{0}_V \lambda$$

Por el Teorema 1.1, se sigue entonces que $\lambda \vec{0}_V = \vec{0}_V$.

1.4. Subespacios vectoriales

Definición 1.3. ² Un subconjunto W de V es un subespacio vectorial de V, si W forma un espacio vectorial sobre \mathbb{K} con las operaciones de suma vectorial y producto escalar definidas en V, restringidas a W. Estas condiciones, siendo mejor entendidas como:

- 1. $\exists \vec{0}_V \in W \ (\textbf{neutro aditivo en } W)$
- 2. $\vec{v} + \vec{w} \in W$, $\forall \vec{v}, \vec{w} \in W$ (certadura aditiva)
- 3. $c\vec{v} \in V$, $\forall c \in \mathbb{K}$, $\forall \vec{v} \in W$ (cerradura en el producto escalar)
- 4. $\forall \vec{v} \in W, \exists \vec{w} \in W, \exists \vec{v} + \vec{w} = \vec{0}_V \ (inverso \ aditivo \ en \ W)$

Teorema 1.3. Sea W un subconjunto del espacio vectorial V, W es un subespacio vectorial de V si se cumplen las siguientes condiciones para las operaciones de suma vectorial Y producto escalar definidas en V:

- 1. $\vec{0}_V \in W$
- 2. $\vec{v} + \vec{w} \in W, \forall \vec{v}, \vec{w} \in W$
- 3. $\lambda \vec{v} \in W, \forall \lambda \in \mathbb{K}, \forall \vec{v} \in W$

Demostración. Sea $\vec{0}_{V1} \in W$ un neutro aditivo distinto de $\vec{0}_V \in V$, entonces tendríamos que $\forall \vec{v} \in W$, $\vec{v} + \vec{0}_{V1} = \vec{v}$. Sin embargo, sabemos que $\vec{v} + \vec{0}_V = \vec{v}$. El Teorema 1.1 entonces nos dice que $\vec{0}_{V1} = \vec{0}_V$. Esto contradice la hipótesis inicial de que $\vec{0}_{V1} \neq \vec{0}_V$, lo que nos permite concluir que $\vec{0}_V \in W$ (probando el punto 1.). Si W es un subespacio de V, entonces W es un espacio vectorial con las mismas operaciones definidas para V (suma vectorial y multiplicación escalar), por lo que las condiciones 2. y 3. se cumplen.

Teorema 1.4. Sea un V un espacio vectorial sobre un campo \mathbb{K} , $y W_1 \leq V$ $y W_2 \leq V$ subespacios de $V \Rightarrow W_1 \cup W_2 \leq V \iff W_1 \subseteq W_2 \ \text{\'o} \ W_2 \subseteq W_1$.

²Si definieramos un espacio vectorial H, donde $H = \{\vec{0}_V\}$, veríamos entonces que este cumple con los Axiomas 1.3.1-1.3.10. Dado que en todo espacio vectorial $V, \exists \vec{0}_V \in V, \forall \vec{v} \in V$, podemos inferir que en todo espacio vectorial existe cuando menos un subespacio vectorial: el espacio vectorial del vector cero.

Demostración. (\Rightarrow) Sean $\vec{w_1} \in W_1$ y $\vec{w_2} \in W_2$, tal que $\vec{w_1} \notin W_2$ y $\vec{w_2} \notin W_1$, por demostrar que $(W_1 \subseteq W_2) \vee (W_2 \subseteq W_1)$. Si $W_1 \cup W_2 \leq V \Rightarrow \vec{w_1} + \vec{w_2} \in W_1 \cup W_2$. Sin embargo, por hipótesis, es imposible que

$$\vec{w}_1 + \vec{w}_2 \in W_1 \land \vec{w}_1 + \vec{w}_2 \in W_2$$

dado que esto implicaría una contradicción al decir que $\vec{w}_1 \notin W_2$ y $\vec{w}_2 \notin W_1$. Por lo tanto, se sigue que la cerradura se cumple si

$$\vec{w}_1 + \vec{w}_2 \in W_1 \lor \vec{w}_1 + \vec{w}_2 \in W_2$$

Si se cumple $\vec{w}_1 + \vec{w}_2 \in W_1$, entonces $\vec{w}_1 + \vec{w}_2 + (-\vec{w}_1) \in W_1$, lo que implica que $\vec{w}_2 \in W_1$ y $W_2 \subseteq W_1$. La misma lógica aplica para cuando $\vec{w}_1 + \vec{w}_2 \in W_2$. Queda entonces demostrado que si $W_1 \cup W_2 \leq V$, entonces $(W_1 \subseteq W_2) \vee (W_2 \subseteq W_1)$.

 (\Leftarrow) Si $(W_1 \subseteq W_2) \vee (W_2 \subseteq W_1)$, entonces $(W_1 \cup W_2 = W_1) \vee (W_1 \cup W_2 = W_2)$. Si $(W_1 \leq V) \wedge (W_2 \leq V)$, entonces $W_1 \cup W_2 \leq V$.

1.5. Clases laterales

Definición 1.4. Sea V un espacio vectorial sobre un campo \mathbb{K} , y $W \leq V$ un subespacio de V, entonces

$$\vec{v} + W = \{\vec{v} + \vec{w} \mid \vec{w} \in W\}$$

es la clase lateral de W que contiene a $\vec{v} \in V$.

Teorema 1.5. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y \ W \leq V$ un subespacio de V, entonces, $\vec{v} + W \leq V \iff \vec{v} \in W$.

Demostración. (\Rightarrow) Por definición, $\exists \vec{0}_V \in \vec{v} + W$, tal que $\vec{v} + \vec{w} = \vec{0}_V$, con $\vec{w} \in W$. Por lo tanto $w = -\vec{v}$, por cerradura en la multiplicación escalar, se sigue entonces que $\forall \lambda \in \mathbb{K}$, $\lambda(-\vec{v}) \in \vec{v} + W$, lo que implica, para $\lambda = -1$, que $(-1)(-\vec{v}) \in \vec{v} + W$, por lo tanto $\vec{v} \in W$. (\Leftarrow) Por demostrar que se cumplen los tres incisos del Teorema 1.3. (i) Dado que $\vec{v} \in W$, $\exists -\vec{v}$, tal que $\vec{v} - \vec{v} = \vec{0}_V$. Por lo tanto $\exists \vec{0}_V \in W$. (ii) Sea $\vec{w}_1 \in W$, tal que $\vec{v} + \vec{w}_1 \in \vec{v} + W$.

Ahora bien, sea $\vec{w}_2 \in \vec{v} + W$, se sigue entonces que $\vec{v} + \vec{w}_1 + \vec{w}_2 \in W$. Y también, que $\vec{v} + (\vec{v} + \vec{w}_1 + \vec{w}_2) \in \vec{v} + W$. (iii) Sea $\lambda \in \mathbb{K}$ y $\vec{z} \in W$, se sigue que $\vec{v} + \vec{z} \in \vec{v} + W$, entonces

$$\lambda \vec{v} + \lambda \vec{z} = \lambda \vec{v} + \lambda \vec{z} + \vec{0}_V = \lambda \vec{v} + \lambda \vec{z} + \vec{v} - \vec{v} = \vec{v} + (\lambda \vec{v} + \lambda \vec{z} - \vec{v}) \in \vec{v} + W$$

. \square

Teorema 1.6. Sea V un espacio vectorial sobre un campo \mathbb{K} , y $W \leq V$ un subespacio vectorial de V. Sean $\vec{v_1}, \vec{v_2} \in V$, entonces $\vec{v_1} + W = \vec{v_2} + W \iff \vec{v_1} - \vec{v_2} \in W$.

Demostración. (\Rightarrow) Supongamos que $\vec{v}_1 + W = \vec{v}_2 + W$

$$\Rightarrow \vec{0}_V \in W \Rightarrow \vec{v}_1 + \vec{0}_V \in \vec{v}_1 + W = \vec{v}_2 + W$$

$$\Rightarrow \vec{v}_1 + \vec{0}_V \in \vec{v}_2 + W \Rightarrow \vec{v}_1 \in \vec{v}_2 + W$$

$$\Rightarrow \exists \vec{w} \in W \ \vec{v}_1 = \vec{v}_2 + \vec{w} \in \vec{v}_2 + W$$

$$\Rightarrow \vec{v}_1 - \vec{v}_2 = \vec{w} \in W$$

(\Leftarrow) Supongamos que $\vec{v}_1 - \vec{v}_2 \in W$ Sea $\vec{w}_* = \vec{v}_1 - \vec{v}_2 \subseteq$ Sea $\vec{x} \in \vec{v}_1 + W \Rightarrow \vec{x} = \vec{v}_1 + \vec{w}_1$ para algún $\vec{w}_1 \in W \Rightarrow \vec{v}_1 = \vec{w}_* + \vec{v}_2$

$$\Rightarrow \vec{x} = \vec{w}_* + \vec{v}_2 + \vec{w}_1 \Rightarrow \vec{v}_2 + (\vec{w}_* + \vec{w}_1) \in W \Rightarrow \vec{x} \in \vec{v}_2 + W$$

 \supseteq Análogamente se
a $\vec{y} \in \vec{v}_2 + W \Rightarrow \vec{y} = \vec{v}_2 + \vec{w}_{**} \in W$

$$\vec{y} = \vec{v}_1 - \vec{w}_* + \vec{w}_{**} = \vec{v}_1 + (\vec{w}_{**} - \vec{w}_*) \Rightarrow \vec{y} \in \vec{v}_1 + W$$

Teorema 1.7. Sea V un espacio vectorial sobre un campo \mathbb{K} , y $W \leq V$ un subespacio de V, tal que una clase lateral de W toma la forma

$$\vec{v} + W = \{ \vec{v} + \vec{w} \mid \vec{v} \in V \land \vec{w} \in W \}$$

La suma vectorial y el producto por escalares de K se puede definir en el conjunto

$$S = \{ \vec{v} + W \mid \vec{v} \in V, \ W \le V \}$$

de todas las clases laterales de la siguiente forma:

$$\blacksquare$$
 \oplus : $(\vec{v_1} + W) + (\vec{v_2} + W) = (\vec{v_1} + \vec{v_2}) \in W, \ \forall \vec{v_1}, \vec{v_2} \in V$

$$\bullet \odot: \lambda(\vec{v} + W) = \lambda \vec{v}_1 + W, \ \forall \vec{v} \in V, \ \forall \lambda \in \mathbb{K}$$

De tal forma que S forma un espacio vectorial sobre un campo \mathbb{K} que se llama V módulo W y se denota V/W.

Demostración. Por demostrar que (i) las operaciones de suma y producto están bien definidas, y que (ii) S con esas operaciones forma un espacio vectorial sobre un campo \mathbb{K} con la notación V/W. (i) Si tenemos que $\vec{v}_1 + W = \vec{v}_{1*} + W$ y que $\vec{v}_2 + W = \vec{v}_{2*} + W$, entonces buscamos demostrar que

$$(\vec{v}_1 + W) + (\vec{v}_2 + W) = (\vec{v}_{1*} + W) + (\vec{v}_{2*} + W)$$

y que

$$\lambda(\vec{v}_1 + W) = \lambda(\vec{v}_{1*} + W) \ \forall \lambda \in \mathbb{K}$$

Sabemos que $\vec{v}_1 - \vec{v}_{1*} \in W \land \vec{v}_2 - \vec{v}_{2*} \in W$, entonces $(\vec{v}_1 - \vec{v}_{1*}) + (\vec{v}_2 - \vec{v}_{2*}) \in W$, reordenando tenemos $(\vec{v}_1 + \vec{v}_2) - (\vec{v}_{1*} + \vec{v}_{2*}) \in W$, lo que implica que

$$(\vec{v}_1 + \vec{v}_2) + W = (\vec{v}_{1*} + \vec{v}_{2*}) + W$$

y por último que $(\vec{v}_1 + W) + (\vec{v}_2 + W) = (\vec{v}_{1*} + W) + (\vec{v}_{2*} + W)$. Ahora bien, dado que $\vec{v}_1 - \vec{v}_{1*} \in W$, se sigue que $\lambda(\vec{v}_1 - \vec{v}_{1*}) \in W$, o bien, que $\lambda \vec{v}_1 - \lambda \vec{v}_{1*} \in W$. Por lo tanto $\lambda(\vec{v}_1 + W) = \lambda(\vec{v}_{1*} + W)$. (ii) De V se hereda la cerradura aditiva, multiplicativa, la conmutatividad y asociatividad en la suma vectorial y la multiplicación escalar, así como también las dos leyes distributivas. Para el neutro aditivo tenemos que $(\vec{v} + W) + W = \vec{v} + W$. Para el inverso aditivo tenemos que $(\vec{v} + W) + (-\vec{v} + W) = W$. Por último, para el neutro multiplicativo tenemos que $1(\vec{v} + W) = \vec{v} + W$.

1.6. Combinaciones lineales

Definición 1.5. ³ Sea V un espacio vectorial sobre un campo \mathbb{K} , y S un subconjunto no vacío de V. Una combinación lineal de elementos de S es un vector de la forma:

³Nota: las combinaciones lineales son, casi siempre, finitas.

$$\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n = \sum_{i=1}^n \lambda_i \vec{v}_i$$
$$\forall \lambda_i \in \mathbb{K}, \forall \vec{v}_i \in S, \forall n \in \mathbb{N}$$

Teorema 1.8. Sea V un espacio vectorial sobre un campo \mathbb{K} y $S \subseteq V$ no vacío de vectores de V. Entonces, el conjunto

$$\langle S \rangle = \left\{ \sum_{i=1}^{n} \lambda_i \vec{v}_i \mid \forall \lambda_i \in S, \ \forall \vec{v}_i \in S, \ i \in \{1, 2, ..., n\}, \ n \in \mathbb{N} \right\}$$

es un subespacio de V, de tal forma que cumple con el Teorema 1.3.

Demostración. Sea $\vec{u} \in S$ y $\lambda \in \mathbb{K}$, tal que $\lambda = 0$, entonces $\lambda \vec{u} = 0\vec{v} = \vec{0}_V$, lo que prueba el punto (1.) del Teorema 1.3, $\exists \vec{0}_V \in \langle S \rangle$. Ahora, sean $\vec{v}, \vec{w} \in \langle S \rangle$, se sigue entonces que $\exists \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S$ y $\exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$, $n \in \mathbb{N}$, tal que

$$\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n$$

También, $\exists \mu_1, \mu_2, \mu_3, ..., \mu_n \in \mathbb{K}$, por lo tanto

$$\vec{w} = \mu_1 \vec{v}_1 + \mu_2 \vec{v}_2 + \dots + \mu_n \vec{v}_n$$

Finalmente, podemos probar el punto (2.) del Teorema 1.3, dado que

$$\vec{v} + \vec{w} = (\lambda_1 \mu_1) \vec{v}_1 + (\lambda_2 \mu_2) \vec{v}_2 + \dots + (\lambda_n \mu_n) \vec{v}_n \in \langle S \rangle$$

Sea $\vec{v} \in \langle S \rangle$, y $\eta \in \mathbb{K}$, entonces

$$\eta \vec{v} = \eta(\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n) = \eta \lambda_1 \vec{v}_1 + \eta \lambda_2 \vec{v}_2 + \dots + \eta \lambda_n \vec{v}_n \in \langle S \rangle$$

Por lo tanto queda demostrado que $\langle S \rangle$, es decir, el conjunto de todas las posibles combinaciones lineales de S, es un subespacio de V, cuando $S \subseteq V$.

Definición 1.6. $\langle S \rangle$ es el subespacio vectorial generado por $S \subseteq V$, donde V es un espacio vectorial sobre un campo \mathbb{K} .

Teorema 1.9. Sea V un espacio vectorial sobre un campo \mathbb{K} , y W un subespacio de V, se cumple entonces

$$\sum_{i=1}^{n} \lambda_i \vec{v}_i = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n \in W$$

para cualesquiera $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}, \vec{v_1}, \vec{v_2}, ..., \vec{v_n} \in W, n \in \mathbb{N}.$

Demostración. Para n=2 se sigue que $\lambda_1 \vec{v}_1 \lambda_2 + \vec{v}_2 \in W$. Asumimos como hipótesis inductiva que se cumple esta aseveración para n=k. Sea

$$w_1 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k$$

Tal que $w_1 \in W$. Sea w_2 el vector resultante para n = k + 1, entonces se tien que $w_2 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_k \vec{v}_k + \lambda_{k+1} \vec{v}_{k+1} = w_1 + \lambda_{k+1} \vec{v}_{k+1}$. Por la definición de un subespacio vectorial, sabemos que $\lambda_{k+1} \vec{v}_{k+1} \in W$. Se sigue entonces que $w_2 \in W$.

Definición 1.7. Si $\langle S \rangle = V$, se dice entonces que S genera a V.

Teorema 1.10. Sea V un espacio vectorial sobre un campo \mathbb{K} , si $S \subseteq V$, y $S \neq \emptyset$. Si además, $W \subseteq V$, y $S \subseteq W$, entonces $\langle S \rangle \subseteq W$.

Demostración. Sea $\vec{v} \in \langle S \rangle$, entonces, $\exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ y $\exists \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S$ (con $n \in \mathbb{N}$), tales que $\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{2} + ... + \lambda_n \vec{v}_n$. Por hipótesis, se tiene que $S \subseteq W$, por lo tanto $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in W$. Por la demostración del Teorema 1.9 sabemos entonces que $\vec{v} \in W$, lo que finalmente implica que $\langle S \rangle \subseteq W$.

Teorema 1.11. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y \subseteq V$, demostrar que

$$\langle S \rangle = \cap \left\{ W \mid W \leq V, \ S \subseteq W \right\}$$

También, $\emptyset \subseteq W \subseteq V \ y \ \langle \emptyset \rangle = \{\vec{0}_V\} \subseteq V.$

Demostración. Sea $\vec{u} \in \langle S \rangle$, se sigue entonces que $\exists \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S$ y $\exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$, $n \in \mathbb{N}$, tal que $\vec{u} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_n \vec{v}_n$. Si $S \subseteq W$, entonces $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in W$, y por las propiedades de cerradura de los subespacios vectoriales $\vec{u} \in W$, lo que implica que $\langle S \rangle \subseteq W$. Esto es válido para cualquier $W \leq V$, tal que $S \subseteq W$: lo que implica que $\langle S \rangle$ está en la intersección de todos los subespacios $W \leq V$, tales que $S \subseteq W$. Ahora, sea $\vec{w} \in \cap \{W \mid W \leq V, S \subseteq W\}$, entonces $\vec{w} \in \langle S \rangle$, dado que $\langle S \rangle$ es parte del conjunto de todos los subespacios de V que contienen a S. Por lo tanto $\langle S \rangle = \cap \{W \mid W \leq V, S \subseteq W\}$. \square

1.7. Dependencia e independencia lineal

Definición 1.8. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y \in S \subseteq V$, donde $S \neq \emptyset$. Se dice que S es **linealmente dependiente** (l.d.) si $\exists \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S$ $y \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ (no todos iguales a cero), con $n \in \mathbb{N}$, tales que

$$\vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n$$

Definición 1.9. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y \in V$, donde $S \neq \emptyset$. Se dice que S es **linealmente independiente** (l.i.) si

$$\vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n$$

 $con \ \vec{v_1}, \vec{v_2}, ..., \vec{v_n} \in S \ y \ \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K} \ (n \in \mathbb{N}), \ cuando \ \lambda_1 = \lambda_2 = ... = \lambda_n = 0.$

Teorema 1.12. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y S_1, S_2 \subseteq V$, tales que $S_1 \subseteq S_2$, entonces

- 1. $\langle S_1 \rangle \subseteq \langle S_2 \rangle$. Si S_1 genera a V, entonces S_2 genera a V.
- 2. Si S_1 es l.d. entonces S_2 es l.d.
- 3. Si S_2 es l.i. entonces S_1 es l.i.

Demostración. (1.) Sea $\vec{v} \in \langle S_1 \rangle$, se sigue entonces que $\exists \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S_1 \text{ y } \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$, tal que $\vec{v} = \lambda \vec{v}_1 + \lambda \vec{v}_2 + ... + \lambda_n \vec{v}_n$. Como $S_1 \subseteq S_2$, entonces $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S_2$, y $\vec{v} \in \langle S_2 \rangle$. Así, toda combinación lineal de vectores de S_1 es, también, una combinación lineal de vectores de S_2 . Por lo tanto, si $V = \langle S_1 \rangle$, entonces $V = \langle S_2 \rangle$.

(3.) S_2 es l.i. Expresamos al neutro aditivo del espacio vectorial como una combinación lineal de elementos de S_1 , tal que $\vec{0}_V = \lambda_1 \vec{v}_1 + \lambda \vec{v}_2 + ... + \lambda_n \vec{v}_n$, con $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S_1$ y $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$. Por hipótesis, $S_1 \subseteq S_2$, por lo tanto $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S_2$, lo que implica que $\vec{0}_V$ ha sido expresado como una combinación lineal de elementos de S_2 , y como este subconjunto es l.i. entonces $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$. La combinación lineal de elementos de S_1 que ha expresado al neutro aditivo por lo tanto revela que S_1 es l.i.

(2.) Nótese que si la implicación del inciso (3.) se lee como un $A \Rightarrow B$, la implicación del inciso (2.) se lee con la forma $\neg B \Rightarrow \neg A$. Por lo tanto queda probada al ser la implicación contrapositivo de la implicación del inciso (3.).

Teorema 1.13. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y \in S \subseteq V$ un conjunto l.i. de vectores de V, sea $\vec{v} \in V \setminus S = V_2$, entonces, $\vec{v} \in \langle S \rangle \iff S \cup \{\vec{v}\}$ es l.d.

Demostración. (\Rightarrow) $\vec{v} \in \langle S \rangle$, por lo tanto $\exists \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in S$ y $\exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$, tales que $\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda \vec{v}_n$. Se sigue entonces que

$$\vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda \vec{v}_n + (-1)\vec{v}$$

El vector $\vec{0}_V$ ha sido expresado como una combinación lineal de elementos de $S \cup \{\vec{v}\}\$, donde no todos los escalares son iguales a cero. Por lo tanto, $S \cup \{\vec{v}\}$ es l.d.

(\Leftarrow) Sean $\vec{w}_1, \vec{w}_2, ..., \vec{w}_n \in S \cup \{\vec{v}\}$, una combinación lineal de este conjunto que expresa el neutro aditivo de V toma la forma: $\vec{0}_V = \eta_2 \vec{w}_1 + \eta_2 \vec{w}_2 + ... + \eta_n \vec{w}_n$. Con $\eta_1, \eta_2, ..., \eta_n \in \mathbb{K}$, donde algún $\eta_i \neq 0$, con $i \in \{1, 2, ..., n\}$. Por hipótesis, algún $\vec{w}_i = \vec{v}$, sin pérdida de generalidad, dígase que $\vec{w}_1 = \vec{v}$, de lo contrario, el conjunto sería l.i. Entonces, se tiene que $\vec{0}_V = \eta_1 \vec{v} + \eta_2 \vec{w}_2 + ... + \eta_n \vec{w}_n$. Con $\eta_1 \neq 0$. Esto implica que $\eta_1 \vec{v} = -\eta_2 \vec{w} - \eta_3 \vec{w}_3 - ... - \eta_n \vec{w}_n$, y por último que, $\vec{v} = -\frac{\eta_2}{\eta_1} \vec{w} - \frac{\eta_3}{\eta_1} \vec{w}_3 - ... - \frac{\eta_n}{\eta_1} \vec{w}_n$. Esto implica que \vec{v} puede ser expresado como una combinación lineal de elementos de S, y por lo tanto $\vec{v} \in \langle S \rangle$

Teorema 1.14. Sea V un espacio vectorial sobre un campo \mathbb{K} , y sean $\vec{v}, \vec{u} \in V$ vectores no nulos, entonces $\{\vec{v}, \vec{u}\}$ es un conjunto $l.d. \iff \vec{v}$ o \vec{u} es múltiplo del otro.

Demostración. (\Rightarrow) El conjunto $\{\vec{v}, \vec{u}\}$ es l.d. Por lo tanto, el neutro aditivo de V, puede ser expresado como una combinación lineal de la siguiente forma: $\vec{0}_V = \lambda \vec{v} + \mu \vec{u}$, con $\lambda, \mu \in \mathbb{K}$. Sin pérdida de generalidad, dígase que $\lambda \neq 0$, tal que se cumpla la definición de l.d. Entonces, se tiene que $\vec{v} = -\frac{\mu}{\lambda}\vec{v}$, y por lo tanto \vec{v} es un múltiplo de \vec{u} . (\Leftarrow) La prueba es análoga, sin importar que vector sea múltiplo de cual. Sin pérdida de generalidad, sea $\vec{v} = \lambda \vec{u}$, con $\lambda \in \mathbb{K}$. Entonces, se sigue que $\vec{0}_V = \lambda \vec{u} + (-1)\vec{v}$, y por lo tanto el conjunto $\{\vec{v}, \vec{u}\}$ es l.d.

Teorema 1.15. Sea V un espacio vectorial sobre un campo \mathbb{K} y sean $\vec{v}, \vec{u} \in V$, entonces, $\{\vec{v}, \vec{u}\}$ es $l.i. \iff \forall \lambda, \mu \in \mathbb{K}, \ \lambda \neq 0 \neq \mu$, se sigue que $\{\lambda \vec{v}, \mu \vec{u}\}$ es l.i.

Demostración. (\Rightarrow) El conjunto $\{\vec{v}, \vec{u}\}$ es l.i. Entonces, se sigue que $\vec{0}_V = \alpha_1 \vec{v} + \alpha_2 \vec{v}$, donde $\alpha_1 = \alpha_2 = 0$. Por lo tanto, sean $\eta_1, \eta_2 \in \mathbb{K}$, se sigue que $\vec{0}_V = \eta_1(\lambda \vec{v}) + \eta_2(\mu \vec{u}) = (\eta_1 \lambda) \vec{v} + (\eta_2 \mu) \vec{u}$. Por hipótesis, $\lambda, \mu \in \mathbb{K}$ son escalares en el campo distintos de cero, entonces $\eta_1 = \eta_2 = 0$, tal que $\eta_1 \lambda = 0$ y $\eta_2 \mu = 0$. (\Leftarrow) Sea $\{\lambda \vec{v}, \mu \vec{u}\}$ un conjunto l.i. donde $\lambda, \mu \in \mathbb{K}$ son escalares distintos de cero. Entonces, se tiene que $\vec{0}_V = \beta_1(\lambda \vec{v}) + \beta_2(\mu \vec{u})$. Esto implica que $\beta_1 = \beta_2 = 0$, y por lo tanto $\vec{0}_V = (\beta_1 \lambda) \vec{v} + (\beta_2 \mu) \vec{u} = (0\lambda) \vec{v} + (0\mu) \vec{u} = 0 \vec{v} + 0 \vec{u}$. Se concluye entonces que $\{\vec{v}, \vec{u}\}$ es un conjunto l.i.

Teorema 1.16. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y \ S \subseteq V$, tal que $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ un subconjunto de V. Entonces, S es $l.d. \iff \vec{v}_1 = \vec{0}_V$, $o, \vec{v}_k \in \langle \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_{k-1}\} \rangle$.

Demostración. (\Rightarrow) Sea $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ tal que S es l.d. entonces $\exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$, con $n \in \mathbb{N}$, tales que

$$\vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n$$

Sabemos entonces que algún $\lambda_i \neq 0$, $i \in \{1, 2, ..., n\}$. Si $\vec{v}_1 =$ se cumple que S es l.d. Si $\vec{v}_1 \neq 0$, como S es l.d. podemos decir que k es el máximo índice tal que $\lambda_k \neq 0$, y por lo tanto $\vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + ... + \lambda_k \vec{v}_k$.

 (\Leftarrow) Si $\vec{v}_1=0$, entonces S es l.d. Si $\vec{v}_1\neq 0$, y $\exists \vec{v}_k\in \langle \{\vec{v}_1,\vec{v}_2,...,\vec{v}_{k-1}\}\rangle$, entonces $\exists \lambda_1,\lambda_2,...,\lambda_{k-1}\in \mathbb{K}$, con $k\in \mathbb{N}$, tal que

$$\vec{v}_k = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \ldots + \lambda_{k-1} \vec{v}_{k-1}$$

$$\Rightarrow \vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_{k-1} \vec{v}_{k-1} + (-1)\vec{v}_k$$

Lo que implica que S es un conjunto l.d.

1.8. Bases y dimensión

Definición 1.10. Sea V un espacio vectorial sobre un campo \mathbb{K} . Un conjunto β es base de V si β es l.i. y $\langle \beta \rangle = V$.

Teorema 1.17. Sea V un espacio vectorial sobre un campo \mathbb{K} y $\beta \subseteq V$ un subconjunto de vectores de V, entonces, β es base de $V \iff \forall \vec{u} \in V$ se tiene que, \vec{u} se escribe de forma única como combinación lineal de elementos de β .

Demostración. (\Leftarrow) Todo $\vec{u} \in V$ se escribe de forma única como combinación lineal de elementos de β , basta entonces demostrar que β es un conjunto l.i. Sean $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n \in \beta$ tales que

$$\vec{0}_V = 0\vec{v}_1 + 0\vec{v}_2 + \dots + 0\vec{v}_n$$

$$\Rightarrow \vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n, \text{ con } \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}, \text{ y } n \in \mathbb{N}$$

$$\Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

Dado que cada combinación lineal es única. Por lo tanto β es l.i. y es una base de V. \square

Teorema 1.18. Sea V un espacio vectorial sobre un campo \mathbb{K} generado por un conjunto finito $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \subseteq V$, entonces, $\exists \beta \subseteq S$ que es base de V. Más aún, V tiene una dimensión finita.

Demostración. (Caso I) Si $S = \emptyset \lor S = \{\vec{0}_V\}$, entonces $V = \langle S \rangle = \{\vec{0}_V\}$, esto implica que $\beta = \emptyset \subseteq S$, y por lo tanto es base de V. (Caso II) $\exists \vec{v}_1 \in S$, tal que $\vec{v}_1 \neq 0$. Se sigue entonces que $\{\vec{v}_1\}\subseteq S$ es l.i. Agregamos vectores hasta que se tenga $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}\subseteq S$, donde $k \in \mathbb{N}$ representa el índice máximo tal que $\beta \cup \{\vec{v}_{k+1}\}$ es l.d. Afirmación: β es base de V. Como β es l.i. basta probar que $S \subseteq \langle \beta \rangle$. Sea $\vec{v} \in S$, (Caso II.a) si $\vec{v} \in \beta$, entonces $\vec{v} \in \langle \beta \rangle$. (Caso II.b) Si $\vec{v} \in S \setminus \beta$, entonces $\beta \cup \{\vec{v}\}$ es l.d. y por el Teorema 1.13 $\vec{v} \in \langle \beta \rangle$, y por lo tanto

$$S \subseteq \langle \beta \rangle \Rightarrow \langle S \rangle = V \subseteq \langle \langle \beta \rangle \rangle = \langle \beta \rangle$$

Teorema 1.19. Sea V un espacio vectorial sobre un campo \mathbb{K} y \vec{v} , $\vec{u} \in V$, tal que $\vec{v} \neq \vec{u}$ y $\lambda \in \mathbb{K}$ tal que $\lambda \neq 0$. Si $\{\vec{v}, \vec{u}\}$ es base de V, entonces $\{\vec{u} + \vec{v}, \lambda \vec{u}\}$ es base de V.

Demostración. Por demostrar que (i) $\{\vec{u} + \vec{v}, \lambda \vec{u}\}$ es l.i. (ii) y $V = \langle \{\vec{u} + \vec{v}, \lambda \vec{u}\} \rangle$. (i) Sean $\alpha_1, \alpha_2 \in \mathbb{K}$, tal que $\vec{0}_V = \alpha_1(\vec{u} + \vec{v}) + \alpha_2(\lambda \vec{u}) \Rightarrow \vec{0}_V = (\alpha_1 + \alpha_2 \lambda)\vec{u} + \alpha_1\vec{v} \Rightarrow \alpha_1 = 0 \land \alpha_2 \lambda = 0$ Como por hipótesis $\lambda \neq 0$, entonces $\alpha_2 = 0$, y por lo tanto $\{\vec{u} + \vec{v}, \lambda \vec{u}\}$ es l.i. (ii) Sea $\vec{z} \in V$, entonces, sabemos que $\exists \mu_1, \mu_2 \in \mathbb{K}$ tales que $\vec{z} = \mu_1 \vec{u} + \mu_2 \vec{v}$. Sean $\gamma_1, \gamma_2 \in \mathbb{K}$ tales que $\vec{z} = \gamma_1(\vec{u} + \vec{v}) + \gamma_2(\lambda \vec{u}) \Rightarrow \vec{z} = (\gamma_1 + \gamma_2 \lambda)\vec{u} + \gamma_1 \vec{v} \Rightarrow \gamma_1 + \gamma_2 \lambda = \mu_1 \land \gamma_1 = \mu_2$

$$\Rightarrow \mu_2 + \gamma_2 \lambda = \mu_1$$

$$\Rightarrow \gamma_2 = \frac{\mu_1 - \mu_2}{\lambda} \Rightarrow \vec{z} = \mu_2(\vec{u} + \vec{v}) + \frac{\mu_1 - \mu_2}{\lambda}(\lambda \vec{u})$$

Por lo tanto $\vec{z} \in \langle \{\vec{u} + \vec{v}, \lambda \vec{u}\} \}$, lo que implica que $\{\vec{u} + \vec{v}, \lambda \vec{u}\}$ es base de V.

Teorema 1.20. Sea V un espacio vectorial sobre un campo \mathbb{K} , generado por un subconjunto G con exactamente n vectores (con $n \in \mathbb{N}$) y L un subconjunto l.i. de V con exactamente m vectores (con $m \in \mathbb{N}$). Entonces $m \leq n$, y más aún, $\exists H \subseteq G$ con exactamente n-m vectores tal que $\langle L \cup H \rangle = V$.

Demostración. (Base inductiva) Si m=0, entonces $L=\emptyset$, además $m\leq n\Rightarrow H=G\Rightarrow L\cup H=\emptyset\cup H=\emptyset\cup G=G$, por lo tanto $\langle L\cup H\rangle=\langle G\rangle=V$. (Hipótesis inductiva) Supóngase el resultado cierto para $m\leq n$. (Paso inductivo) Por demostrar que se cumple para $m+1\leq n$. Sea $L=\{\vec{v}_1,\vec{v}_2,...,\vec{v}_{m+1}\}$ un conjunto l.i. Entonces, $L'=\{\vec{v}_1,\vec{v}_2,...,\vec{v}_m\}$ es l.i. con m vectores. Por la hipótesis inductiva, sabemos que $m\leq n$, y además, que $\exists H'\subseteq G$ con n-m vectores con la forma $H=\{\vec{u}_1,\vec{u}_2,...,\vec{u}_{n-m}\}$. Esto implica que $\langle L'\cup H'\rangle=V$, y como $v_{m+1}\in V, \exists \lambda_1,\lambda_2,...,\lambda_m\in \mathbb{K}$ y $\exists \eta_1,\eta_2,...,\eta_{n-m}\in \mathbb{K}$ tales que

$$\vec{v}_{m+1} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \ldots + \lambda_m \vec{v}_m + \eta_1 \vec{u}_1 + \eta_2 \vec{u}_2 + \ldots + \eta_{n-m} \vec{u}_{n-m}$$

Afirmación: $n-m \ge 1$, y por lo tanto $m+1 \le n$, tal que L continúe siendo l.i. Sin pérdida de generalidad, supóngase que $\eta_1 \ne 0$, entonces

$$\begin{split} & \eta_1 \vec{u}_1 = -\lambda_1 \vec{v}_1 - \lambda_2 \vec{v}_2 - \ldots - \lambda_m \vec{v}_m + \vec{v}_{m+1} - \eta_2 \vec{u}_2 - \ldots - \eta_{n-m} \vec{u}_{n-m} \\ \\ \Rightarrow & \vec{u}_1 = -\frac{\lambda_1}{\eta_1} \vec{v}_1 - \frac{\lambda_2}{\eta_1} \vec{v}_2 - \ldots - \frac{\lambda_m}{\eta_1} \vec{v}_m + \frac{1}{\eta_1} \vec{v}_{m+1} - \frac{\eta_2}{\eta_1} \vec{u}_2 - \ldots - \frac{\eta_{n-m}}{\eta_1} \vec{u}_{n-m} \end{split}$$

Esto implica que $\vec{u} \in \langle L \cup H \rangle$, y como $L' \subseteq \langle L \cup H \rangle \land H' \subseteq \langle L \cup H \rangle$, se tiene que

$$L' \cup H' \subseteq \langle L \cup H \rangle$$

$$\Rightarrow \langle L' \cup H' \rangle \subseteq \langle \langle L \cup H \rangle \rangle = \langle L \cup H \rangle$$

$$\Rightarrow V = \langle L \cup H \rangle$$

Corolario 1.20.1. Sea V un espacio vectorial finitamente generado⁴ sobre un campo \mathbb{K} , entonces, todas las bases de V tienen el mismo número de elementos.

Demostración. Sean β y γ bases de V, con cardinalidades $\#\beta = p \land \#\gamma = q$, como $\langle \beta \rangle = V$, y γ es l.i. entonces $q \leq p$. Como $\langle \gamma \rangle = V$ y β es l.i. entonces $p \leq q$, lo que implica que q = p.

Definición 1.11. Sea V un espacio vectorial sobre un campo \mathbb{K} y $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$, con $n \in \mathbb{N}$, una base de V. La dimensión de V sobre \mathbb{K} es la cardinalidad de cualquier base base y se denota

$$\#\beta = dim_{\mathbb{K}}(V)$$

Corolario 1.20.2. Sea V un espacio vectorial de dimensión finita sobre un campo \mathbb{K} , tal $que\ dim_{\mathbb{K}}(V)=n,\ con\ n\in\mathbb{N}$:

- 1. Cualquier conjunto generador tiene al menos n elementos. Más aún, si G genera y #G = n, entonces G es base de V.
- 2. Si $L \subseteq V$ es l.i. y # L = n, entonces L es base de V.
- 3. Cualquier conjunto l.i. de V se puede extender a una base de V.

Demostración. Sea $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$, con $n \in \mathbb{N}$, una base de V. (1.) Si G es un conjunto generador, entonces por el Teorema $\ref{eq:conjunto}$ $\exists \gamma \subseteq G$, tal que γ es base de V. De donde se sigue que $n = \#\gamma \le \#G$. Si G genera, y además, #G = n, entonces, también por Teorema $\ref{eq:conjunto}$ sabemos que $\exists \gamma \subseteq G$ que es base de V. Entonces $n = \#\gamma = \#G = n$, lo que implica que $\gamma = G$, y por lo tanto G es base de V. (2.) Sea L un conjunto l.i. tal que #L = n. Como β genera, entonces $\exists H \in \beta$ con cardinaldiad #H = n - n tal que $\langle L \cup H \rangle = V$. Como $H = \emptyset$, entonces $\langle L \cup \emptyset \rangle = \langle L \rangle = V$. Por lo tanto L es base de V.

Nota 1.1. Sea un conjunto $G \subseteq V$, donde $dim_{\mathbb{K}}(V) = n$, con $n \in \mathbb{N}$, tal que #G > n, entonces G es l.d. y nada garantiza que genere.

⁴Se dice que un espacio vectorial V sobre un campo \mathbb{K} es finitamente generado si $\exists G \subseteq V$ con cardinalidad finita, tal que $\langle G \rangle = V$.

Nota 1.2. Sea un conjunto $L \subseteq V$, donde $dim_{\mathbb{K}}(V) = n$, con $n \in \mathbb{N}$), tal que #L < n, entonces L no genera y nada garantiza que sea l.i.

Teorema 1.21. Sea V un espacio vectorial sobre un campo \mathbb{K} de dimensión finita, $y W \leq V$ un subespacio de v, entonces V/W es de dimensión finita y

$$dim_{\mathbb{K}}(V/W) = dim_{\mathbb{K}}(V) - dim_{\mathbb{K}}(W)$$

Demostración. Sea $\gamma = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_n\}$ una base para W, así $dim_{\mathbb{K}}(W) = n$, con $n \in \mathbb{N}$. Como $\gamma \subseteq V$, más aún, γ es l.i. Entonces, por el Teorema 1.20, γ puede ser extendido para formar una base de V. Entonces $\delta = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_n, \vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$, con $k \in \mathbb{N}$, es una base de V, tal que $dim_{\mathbb{K}}(V) = n + k$. Afirmación: $\Omega = \{\vec{v}_1 + W, \vec{v}_2 + W, ..., \vec{v}_k + W\}$ es base de V/W. Por demostrar que (i) Ω es l.i. y (ii) $V/W = \langle \Omega \rangle$. (i) Sean $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{K}$, tal que

$$W = \lambda_1(\vec{v}_1 + W) + \lambda_2(\vec{v}_2 + W) + \dots + \lambda_k(\vec{v}_k + W)$$

$$\Rightarrow W = (\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k) + W$$

$$\Rightarrow \vec{v}_* = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k \in W$$

Ahora, $\exists \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{K}$, tales que $\vec{v}_* = \alpha_1 \vec{w}_1 + \alpha \vec{w}_2 + ... + \alpha_n \vec{w}_n$, tenemos entonces que

$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k = \alpha_1 \vec{w}_1 + \alpha \vec{w}_2 + \dots + \alpha_n \vec{w}_n$$

$$\Rightarrow \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k - \alpha_1 \vec{w}_1 - \alpha \vec{w}_2 - \dots - \alpha_n \vec{w}_n = \vec{0}_V$$

Esta es un combinación lineal de elementos de δ que produce al neutro aditivo, por lo tanto $\lambda_1 = \lambda_2 = ... = \lambda_k = \alpha_1 = \alpha_2 = ... = \alpha_n = 0$, lo que implica que Ω es l.i. (ii) Sea $\vec{v} \in V$, entonces, $\exists \mu_1, \mu_2, ..., \mu_n, \pi_1, \pi_2, ..., \pi_k \in \mathbb{K}$, tales que

$$\vec{v} = \mu_1 \vec{w}_1 + \mu_2 \vec{w}_2 + \dots + \mu_n \vec{w}_n + \pi_1 \vec{v}_1 + \pi_2 \vec{v}_2 + \dots + \pi_k \vec{v}_k$$

$$\Rightarrow \vec{v} + W = (\mu_1 \vec{w}_1 + \mu_2 \vec{w}_2 + \dots + \mu_n \vec{w}_n + \pi_1 \vec{v}_1 + \pi_2 \vec{v}_2 + \dots + \pi_k \vec{v}_k) + W$$

$$\Rightarrow \vec{v} + W = (\pi_1 \vec{v}_1 + \pi_2 \vec{v}_2 + \dots + \pi_k \vec{v}_k) + (\mu_1 \vec{w}_1 + \mu_2 \vec{w}_2 + \dots + \mu_n \vec{w}_n) + W$$

$$\Rightarrow \vec{v} + W = (\pi_1 \vec{v}_1 + \pi_2 \vec{v}_2 + \dots + \pi_k \vec{v}_k) + W$$

$$\Rightarrow \vec{v} + W = \pi_1 (\vec{v}_1 + W) + \pi_2 (\vec{v}_2 + W) + \dots + \pi_k (\vec{v}_k + W)$$

Por lo tanto Ω es base de V/W. Se sigue entonces que

$$dim_{\mathbb{K}}(V/W) = dim_{\mathbb{K}}(V) - dim_{\mathbb{K}}(W) = (n+k) - n = k + n - n = k$$

Teorema 1.22. Sea V un espacio vectorial sobre un campo \mathbb{K} tal que $dim_{\mathbb{K}}(V) = n$, $W \leq V$ un subespacio de V, se sigue que $dim_{\mathbb{K}}(W) \leq dim_{\mathbb{K}}(V)$. Si $dim_{\mathbb{K}}(W) = dim_{\mathbb{K}}(V)$, entonces W = V.

Demostración. (Caso I) Sea V un espacio vectorial sobre un campo \mathbb{K} , tal que $dim_{\mathbb{K}}(V) = n$, con $n \in \mathbb{N}$. Si $W = \{\vec{0}_V\}$, entonces \emptyset es base de W, por lo tanto $dim_{\mathbb{K}}(W) = 0 \le n$. (Caso II) Si $\exists \vec{w}_1 \in W$, tal que $\vec{w}_1 \neq 0$. Sea $S = \{\vec{w}_1\}$ un subconjunto l.i. de W, podemos agregar vectores de W a S hasta tener el subconjunto $\gamma = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_k\}$, con $k \in \mathbb{N}$, el cual es l.i. y al agregar cualquier otro vector de W este se vuelve l.d. Afirmación: γ es base de W. Basta demostrar, entonces, que $W = \langle \gamma \rangle$. Sea $\vec{w} \in W$. (Caso II.a) $\vec{w} \in \gamma$, por lo tanto $\vec{w} \in \langle \gamma \rangle$. (Caso II.b) $\vec{w} \notin \gamma$, entonces $\gamma \cup \{\vec{w}\}$ es l.d. Esto implica que, por el Teorema 1.13, $\vec{w} \in \langle \gamma \rangle$, y por lo tanto, $W = \langle \gamma \rangle$. Además, nótese que $k \leq n$, lo que implica que $dim_{\mathbb{K}}(W) \leq dim_{\mathbb{K}}(V)$. Si $\#\gamma = n$, como γ es un conjunto l.i. con n elementos, entonces γ es base de V, por el Corolario 1.20.2.

Corolario 1.22.1. Sea V un espacio vectorial sobre un campo \mathbb{K} , y $W \leq V$. Entonces, cualquier base de W puede ser extendida a una base de V.

1.9. Subconjuntos máximos l.i.

Definición 1.12. Sea V un espacio vectorial sobre un campo \mathbb{K} y $L \subseteq V$ un subconjunto l.i. de V. Se dice que L es $m\'{a}ximo$ l.i. si L es l.i. y al agregar cualquier vector de $\vec{v} \in V \setminus L$ tenemos que $L \cup \{\vec{v}\}$ es l.d.

Teorema 1.23. Sea V un espacio vectorial sobre un campo \mathbb{K} y $L \subseteq V$ un subconjunto de vectores de V, entonces, L es base de $V \iff L$ es máximo l.i.

 $Demostración. \ (\Rightarrow)$ Supongamos que L es base de V. Entonces L es l.i. y $V = \langle L \rangle$. Sea $\vec{v} \in V$, se sigue que $\vec{v} \in \langle L \rangle$, lo que implica que $L \cup \{\vec{v}\}$ es l.d. Así, L es entonces máximo l.i.

(⇐) Supongamos que L es máximo l.i. Por demostrar que L genera a V. Sea $\vec{u} \in V$. (Caso I) Si $\vec{u} \in L$, entonces $\vec{u} \in \langle L \rangle$. (Caso I) Si $\vec{u} \in V \setminus L$, entonces $L \cup \{\vec{u}\}$ es l.d. Por lo tanto (por el Teorema 1.13) $\vec{u} \in \langle L \rangle$. L es entonces base de V.

Definición 1.13. Sea \mathscr{F} una familia de conjuntos. Un elemento $M \in \mathscr{F}$ es maximal con respecto a la inclusión \subsetneq si M no está contenido en ningún otro elemento de \mathscr{F} además de sí mismo.

Definición 1.14. Una colección de conjuntos \mathscr{C} **es una cadena** si para cada par de conjuntos $C_1, C_2 \in \mathscr{C}$ se tiene que $C_1 \subsetneq C_2 \lor C_2 \subsetneq C_1$.

Definición 1.15. Sea \mathscr{F} una familia de conjuntos. Si $\forall \mathscr{C} \subseteq \mathscr{F} \exists M \in \mathscr{F}$, tal que $\mathscr{C} \subseteq M$, entonces, hay elementos maximales en \mathscr{F} .

Teorema 1.24. Sea V un espacio vectorial sobre un campo \mathbb{K} , $y \in V$ un subconjunto l.i. de V. Entonces, existe un conjunto máximo l.i. que contiene a S.

Demostración. Sea

$$\mathscr{F} = \{ L \subseteq V \mid L \text{ es l.i. } \land S \subseteq L \}$$

Nótese que $\mathscr{F} \neq \emptyset$, dado que $S \subseteq \mathscr{F}$. Sea $\mathscr{C} \subseteq \mathscr{F}$ una cadena de \mathscr{F} , por demostrar que $\exists U \in \mathscr{F}$, tal que $C \subseteq U$, $\forall C \in \mathscr{C}$. Sea

$$U = \bigcup_{C \in \mathscr{C}} C$$

Falta ver entonces que $U \in \mathscr{F}$, es decir que (i) $S \subseteq U$ y (ii) U es l.i. (i) Como $S \subseteq C$, $\forall C \in \mathscr{C}$, entonces, $S \subseteq U$. (ii) Sean $\vec{u}_1, \vec{u}_2, ..., \vec{u}_k \in U$ y $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{K}$, con $k \in \mathbb{N}$, entonces

$$\vec{0}_V = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k$$

Como \mathscr{C} es una cadena, entonces $\exists C_0 \in \mathscr{C}$, tal que $\vec{u}_1, \vec{u}_2, ..., \vec{u}_k \in C_0$, más aún, por construcción C_0 es l.i. Esto implica que $\lambda_1 = \lambda_2 = ... = \lambda_k = 0$, y por lo tanto U es l.i. Como $U \subseteq \mathscr{F}$, se tiene entonces que existen conjuntos maximales en \mathscr{F} .

Corolario 1.24.1. Todo espacio vectorial V sobre un campo \mathbb{K} tiene una base.

 $^{^5}$ Es es el *principio de maximalidad*, el cual es lógicamente equivalente al *Axioma de Elección*: este es un supuesto presente en la mayoría de los desarrollos axiomáticos de la teoría de conjuntos.

Capítulo 2

Transformaciones lineales y matrices

2.1. Transformaciones lineales, núcleos e imágenes

Definición 2.1. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} . Una transformación lineal (o función lineal) es una función que tiene la forma $T:V\to W$ que satisface:

1.
$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}), \ \forall \vec{u}, \vec{v} \in V$$

2.
$$T(\lambda \vec{u}) = \lambda T(\vec{u}), \forall \vec{u} \in V \land \forall \lambda \in \mathbb{K}$$

Proposición 2.1.1. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} , entonces una transformación lineal $T:V\to W$ cumple con las siguientes propiedades:

1. Si
$$T: V \to Wes \ lineal \Rightarrow T(\vec{0}_V) = \vec{0}_W$$

2.
$$T: V \to W$$
 es lineal $\iff T(\lambda \vec{u} + \vec{v}) = \lambda T(\vec{u}) + T(\vec{v}), \ \forall \vec{u}, \vec{v} \in V \land \forall \lambda \in \mathbb{K}$

3.
$$T: V \to W$$
 es lineal $\iff T(\sum_{i=1}^n \lambda_i \vec{u}_i) = \sum_{i=1}^n \lambda_i T(\vec{u}_i)$

Demostración. (1.) Como $\vec{0}_V = 0 \cdot \vec{u}$, para algún $\vec{u} \in V$

$$\Rightarrow T(\vec{0}_V) = T(0 \cdot \vec{u}) = 0 \cdot T(\vec{u}) = \vec{0}_W$$

(2.) (
$$\Rightarrow$$
) Si $T: V \to W$ es lineal $\Rightarrow T(\lambda \vec{u} + \vec{v}) = T(\lambda \vec{u}) + T(\vec{v}) = \lambda T(\vec{u}) + T(\vec{v})$. (\Leftarrow) Se tiene que $T(\vec{u} + \vec{v}) = T(1\vec{u} + \vec{v}) = 1T(\vec{u}) + T(\vec{v}) = T(\vec{u}) + T(\vec{v})$. También, $T(\lambda \vec{u}) = T(\lambda \vec{u} + \vec{0}_V) = T(\lambda \vec{u} + \vec{0}_V) = T(\lambda \vec{u} + \vec{0}_V)$

 $\lambda T(\vec{u}) + T(\vec{0}_V) = \lambda T(\vec{u}) + \vec{0}_W.$ (3.) (\Rightarrow) Si T es lineal, entonces

$$T(\sum_{i=1}^{n} \lambda_i \vec{u}_i) = T(\lambda_1 \vec{u}_1) + T(\sum_{i=1}^{n-1} \lambda_i \vec{u}_i) = \dots = \sum_{i=1}^{n} T(\lambda_i \vec{u}_i) = \sum_{i=1}^{n} \lambda_i T(\vec{u}_i)$$

(\Leftarrow) Sea n=2, tal que $T(\lambda_1\vec{u}_1 + \lambda_2\vec{u}_2) = \lambda_1T(\vec{u}_1) + \lambda_2T(\vec{u}_2)$. Sin pérdida de generalidad dígase que $\lambda_2=1$, entonces $T(\lambda_1\vec{u}_1+\vec{u}_2)=\lambda_1T(\vec{u}_1)+T(\vec{u}_2)$. Esta última igualdad, dado que se cumple $\forall n \in \mathbb{N}$, implica que T es lineal, por la propiedad (2.).

Definición 2.2. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} y $T:V\to W$ una transformación lineal. El núcelo (o kernel) de T está dado por

$$N(T) = \{ \vec{u} \in V \mid T(\vec{u}) = \vec{0}_W \} \subseteq V$$

La imagen (o rango) de T está dada por

$$Im(T) = {\vec{w} \in W \mid \exists \vec{u} \in V, \ T(\vec{u}) = \vec{w}} \subseteq W$$

Teorema 2.1. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} y $T:V \to W$ una transformación lineal \Rightarrow

- 1. $N(T) \leq V$
- 2. $Im(T) \leq W$

Demostración. (1.) (i) Como T es lineal $T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_V \in N(T)$. (ii) Sean $\vec{u}, \vec{v} \in N(T) \Rightarrow T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) = \vec{0}_W + \vec{0}_W = \vec{0}_W \Rightarrow \vec{u} + \vec{v} \in N(T)$. (iii) Sean $\vec{u} \in N(T) \land \lambda \in \mathbb{K}$, por demostrar que $\lambda \vec{u} \in N(T)$. Como T es lineal $T(\lambda \vec{u}) = \lambda T(\vec{u}) = \lambda \vec{0}_W = \vec{0}_W \Rightarrow \lambda \vec{u} \in N(T)$. Por lo tanto $N(T) \leq V$. (2.) (i) Como T es lineal $T(\vec{0}_V) = \vec{0}_W \in Im(T)$. (ii) Sean $\vec{z}, \vec{w} \in Im(T)$. Sabemos que $\exists \vec{u}, \vec{v} \in V$ tales que $T(\vec{u}) = \vec{z} \land T(\vec{v}) = \vec{w}$. Se sigue que $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) = \vec{z} + \vec{w} \Rightarrow \vec{z} + \vec{w} \in Im(T)$. (iii) Sean $\vec{w} \in Im(T) \land \lambda \in \mathbb{K}$. Se tiene que $\exists \vec{u} \in V$, tal que $T(\vec{u}) = \vec{w}$. Como T es lineal $T(\lambda \vec{v}) = \lambda T(\vec{v}) = \lambda \vec{w} \in Im(T)$. Por lo tanto $Im(T) \leq W$.

Teorema 2.2. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} , $T:V\to W$ una transformación lineal y $\beta\subseteq V$ una base de V. Entonces

$$T(\beta) = \{ T(\vec{v}) \mid \vec{v} \in \beta \}$$

genera a $Im(T) = \{ \vec{w} \in W \mid \exists \vec{u} \in V, \ T(\vec{u}) = \vec{w} \} \subseteq W$

Demostración. Sea $\vec{w} \in Im(T) \Rightarrow \exists \vec{u} \in V$ tal que $T(\vec{u}) = \vec{w}$. Como β es base de V, $\exists \vec{u}_1, \vec{u}_2, ..., \vec{u}_k \wedge \lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{K}$ tales que $\vec{u} = \sum_{i=1}^k \lambda_i \vec{u}_i \Rightarrow T(\vec{u}) = T(\sum_{i=1}^k = \lambda_i \vec{u}_i)$

$$\Rightarrow \vec{w} = \sum_{i=1}^{k} \lambda_i T(\vec{u}_i)$$

 \vec{w} se expresa entonces como una combinación lineal de elementos de $T(\beta)$.

Teorema 2.3. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} , donde $dim_{\mathbb{K}}(V) = n < \infty$ y sea $T: V \to W$ una transformación lineal

$$\Rightarrow dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(N(T)) + dim_{\mathbb{K}}(Im(T))$$

Demostración. Sea $\gamma = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ una base de N(T), sabemos que $\gamma \subseteq V$ es l.i. Por lo tanto puede ser extendida a una base de V. Sea $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k, \vec{v}_{k+1}, \vec{v}_{k+2}, ..., \vec{v}_n\}$ una base de V. Afirmación: $T(\beta - \gamma) = \{T(\vec{v}_{k+1}), T(\vec{v}_{k+2}), ..., T(\vec{v}_n)\}$ es base de Im(T). Por demostrar que (i) $T(\beta - \gamma)$ genera a Im(T) y (ii) que $T(\beta - \gamma)$ es l.i. (i) Sea $\vec{w} \in Im(T) \Rightarrow \exists \vec{v} \in V$ tal que $T(\vec{v}) = \vec{w}$

$$\Rightarrow \vec{v} = \sum_{i=1}^{n} \lambda_i \vec{v}_i, \ \forall \lambda \in \mathbb{K}$$

$$\Rightarrow \vec{v} = \sum_{i=1}^{k} \lambda_i \vec{v}_i + \sum_{i=k+1}^{n} \lambda_i \vec{v}_i$$

$$\Rightarrow T(\vec{v}) = T(\sum_{i=1}^{k} \lambda_i \vec{v}_i + \sum_{i=k+1}^{n} \lambda_i \vec{v}_i)$$

$$\Rightarrow T(\vec{v}) = \sum_{i=1}^{k} \lambda_i T(\vec{v}_i) + \sum_{i=k+1}^{n} \lambda_i T(\vec{v}_i)$$

$$\Rightarrow T(\vec{v}) = \vec{0}_W + \sum_{i=k+1}^{n} \lambda_i T(\vec{v}_i)$$

Lo que implica que $Im(T) = \langle T(\beta - \gamma) \rangle$. (ii) Sean $\eta_{k+1}, \eta_{k+2}, ..., \eta_n \in \mathbb{K}$ tales que

$$\vec{0}_W = \sum_{j=k+1}^n \eta_j T(\vec{v}_j) = T(\sum_{j=k+1}^n \eta_j \vec{v}_j)$$

$$\Rightarrow \sum_{j=k+1}^n \eta_j \vec{v}_j \in N(T)$$

$$\Rightarrow \exists \vec{v}_1, \vec{v}_2, ..., \vec{v}_k \in \gamma \subseteq V \land \zeta_1, \zeta_2, ..., \zeta_k \in \mathbb{K} \text{ tales que } \sum_{j=k+1}^n \eta_j \vec{v}_j = \sum_{i=1}^k \zeta_i \vec{v}_i$$

$$\Rightarrow \vec{0}_V = \sum_{j=k+1}^n \eta_j \vec{v}_j + \sum_{i=1}^k (-\zeta_i) \vec{v}_i$$

Como esta última es una combinación lineal de elementos de $\beta \subseteq V$ que expresa al neutro aditivo, sabemos que $\eta_{k+1} = \eta_{k+2} = \dots = \eta_n = 0$. Por lo tanto $T(\beta - \gamma)$ es l.i. Además, note usted que

$$dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(N(T)) + dim_{\mathbb{K}}(Im(T)) = k + (n - k) = n$$

Teorema 2.4. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} y $T:V\to W$ una transformación lineal $\Rightarrow T$ es inyectiva $\iff N(T) = \{\vec{0}_V\}.$

 $\begin{array}{l} \textit{Demostraci\'on.} \ (\Leftarrow) \ \text{Supongamos que} \ N(T) = \{\vec{0}_V\}. \ \text{Sean} \ \vec{u}, \vec{v} \in V \ \text{tales que} \ T(\vec{u}) = T(\vec{v}) \Rightarrow \\ T(\vec{u}) - T(\vec{v}) = \vec{0}_W \Rightarrow T(\vec{u} - \vec{v}) = \vec{0}_W \Rightarrow \vec{u} - \vec{v} \in N(T) \Rightarrow \vec{u} - \vec{v} = \vec{0}_V \Rightarrow \vec{u} = \vec{v}. \ \text{Por lo tanto} \ T \ \text{es} \\ \text{inyectiva.} \ (\Rightarrow) \ \text{Suponga} \ \text{usted que} \ T \ \text{es} \ \text{inyectiva.} \ \text{Sea} \ \vec{u} \in N(T) \Rightarrow T(\vec{u}) = \vec{0}_W. \ \text{Sin embargo,} \\ \text{como} \ T(\vec{0}_V) = \vec{0}_W \Rightarrow T(\vec{u}) = T(\vec{0}_V). \ \text{Como} \ T \ \text{es} \ \text{inyectiva} \Rightarrow \vec{u} = \vec{0}_V \Rightarrow N(T) = \{\vec{0}_V\} \end{array}$

Teorema 2.5. Sea V y W dos espacios vectoriales de dimensión finita sobre un campo \mathbb{K} y $T:V\to W$ una transformación lineal. Son equivalentes:

- 1. T es inyectiva
- 2. T es sobreyectiva
- 3. $Dim_{\mathbb{K}}(Im(T)) = Dim_{\mathbb{K}}(W)$

Demostración. T es inyectiva $\iff N(T) = \{\vec{0}_V\} \iff dim_{\mathbb{K}}(N(T)) = 0 \iff dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(Im(T)) \iff dim_{\mathbb{K}}(W) = dim_{\mathbb{K}}(Im(T)) \iff W = Im(T) \iff T$ es suprayectiva.

Corolario 2.5.1. Sean $T \wedge R$ dos transformaciones lineales. Si estas coinciden en los elementos de una base $\Rightarrow T = R$.

Teorema 2.6. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} , suponga que $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ es una base de V. Sean $\vec{w}_1, \vec{w}_2, ..., \vec{w}_n \in W \Rightarrow \exists ! T : V \to W$ tal que $T(\vec{v}_i) = \vec{w}_i \ \forall i \in \{1, 2, ..., n\}$.

Demostración. Sea $\vec{v} \in V$. Como β base de $V \Rightarrow \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ tales que $\vec{v} = \sum_{i=1}^n \lambda_i \vec{v}_i$. Sea $T: V \to W \Rightarrow T(\vec{v}) = \sum_{i=1}^n \lambda_i \vec{w}_i$ por demostrar que T es lineal. Sean $\vec{u}, \vec{z} \in V$ y $\alpha \in \mathbb{K} \Rightarrow \exists \mu_1, \mu_2, ..., \mu_n \text{ y } \eta_1, \eta_2, ..., \eta_n \in \mathbb{K}$ tales que $\vec{u} = \sum_{i=1}^n \mu_i \vec{v}_i \wedge \vec{z} = \sum_{i=1}^n \eta_i \vec{v}_i$. Note usted que

$$\alpha \cdot \vec{u} + \vec{z} = \sum_{i=1}^{n} (\alpha \cdot \mu_i + \eta_i) \vec{v}_i$$

$$\Rightarrow T(\alpha \cdot \vec{u} + \vec{z}) = \sum_{i=1}^{n} (\alpha \cdot \mu_i + \eta_i) \vec{w_i} = \alpha \sum_{i=1}^{n} \mu_i \vec{w_i} + \sum_{i=1}^{n} \eta_i \vec{w_i} = \alpha T(\vec{u}) + T(\vec{z})$$

Por lo tanto T es lineal. También, es evidente que $T(\vec{v}_i) = \vec{w}_i$, tomando $\lambda_1 = \lambda_2 = \dots = \lambda_i = 1 \Rightarrow T(1 \cdot \vec{v}_i) = 1 \cdot \vec{w}_i \forall i \in \{1, 2, \dots, n\}$. T también es única. Suponga que $\exists R : V \to W$ tal que $R(\vec{v}_i) = \vec{w}_i$. Sin embargo, por el Corolario 2.5.1 T = R.

Teorema 2.7. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} , y sea $T:V \to W$ una transformación lineal. Si $dim_{\mathbb{K}}(V) < dim_{\mathbb{K}}(W) \Rightarrow T$ no es puede ser inyectiva.

Demostración. Suponga que $dim_{\mathbb{K}}(V) < dim_{\mathbb{K}}(W) \wedge T$ es suprayectiva. Se tiene entonces que $dim_{\mathbb{K}}(Im(T)) = dim_{\mathbb{K}}(W)$. Por el Teorema 2.3 se tiene que

$$dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(Im(T)) + dim_{\mathbb{K}}(N(T)) = dim_{\mathbb{K}}(W) + dim_{\mathbb{K}}(N(T)) > dim_{\mathbb{K}}(W)$$

Por lo tanto T no puede ser suprayectiva, más aún $dim_{\mathbb{K}}(N(T)) \neq \emptyset$, lo que implica que T no es inyectiva.

2.2. Matrices asociadas a una transformación lineal

Definición 2.3. Sea V un espacio vectorial sobre un campo \mathbb{K} . Una base ordenada de V es una base que tiene un orden específico.

Definición 2.4. Sea V un espacio vectorial sobre un campo \mathbb{K} , $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ una base ordenada de V y $\vec{v} \in V$. El **vector coordenado** de \vec{v} con respecto a β está dado por

$$[\vec{v}]_{\beta} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathbb{K}^n$$

donde $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ son los escalares únicos tales que $\vec{v} = \sum_{i=1}^n \lambda_i \vec{v}_i$.

Definición 2.5. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} , $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$, $\gamma = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_m\}$ bases ordenadas de V y W respectivamente y $T: V \to W$ una transfomación lineal. $\forall j \in \{1, 2, ..., n\}$ $\exists a_{1j}, a_{2j}, ..., a_{mj} \in \mathbb{K}$ tales que $T(v_j) = \sum_{i=1}^m a_{ij}\vec{w}_i$. La matriz asociada a T con respecto a β y γ está dada por

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix} \in M_{m \times n}(\mathbb{K})$$

Note usted que la j-ésima columna de la matriz $[T]^{\gamma}_{\beta} = [T(\vec{v}_j)]_{\gamma}$.

Notación 2.1. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} , entonces

$$\mathcal{L}(V, W) = \{T : V \to W \mid T \text{ es lineal}\}$$

Definición 2.6. Sean $T, R \in \mathcal{L}(V, W)$, definimos

- 1. $T + R : V \rightarrow W \ como \ (T + R)(\vec{v}) = T(\vec{v}) + R(\vec{v}) \ \forall \vec{v} \in V.$
- 2. $\lambda T: V \to W \ como \ (\lambda \cdot T)(\vec{v}) = \lambda T(\vec{v}).$

Como la suma (1.) de transformaciones lineales y produto (2.) por escalar de transformaciones lineales.

Teorema 2.8. Sean $T, R \in \mathcal{L}(V, W)$. Se tiene entonces que $\forall \lambda \in \mathbb{K} \Rightarrow \lambda T + R$ es lineal.

Demostraci'on. Sean $T,R\in \mathscr{L}(V,W),\, \vec{v},\, \vec{u}\in V$ y $\mu\in \mathbb{K}\Rightarrow$

$$(\lambda T + R)(\mu \vec{v} + \vec{u}) = \lambda T(\mu \vec{v} + \vec{u}) + R(\mu \vec{v} + \vec{u})$$

$$= \lambda [T(\mu \vec{v} + \vec{u})] + \mu R(\vec{v}) + R(\vec{u})$$

$$= \lambda [\mu T(\vec{v}) + T(\vec{u})] + \mu R(\vec{v}) + R(\vec{u})$$

$$= \lambda \mu T(\vec{v}) + \lambda T(\vec{u}) + \mu R(\vec{v}) + R(\vec{u})$$

$$= \lambda \mu T(\vec{v}) + \mu R(\vec{v}) + \lambda T(\vec{u}) + R(\vec{u})$$

$$= \mu(\lambda T + R)(\vec{v}) + (\lambda T + R)(\vec{v})$$

Por lo tanto $\lambda T + R$ es lineal.

Corolario 2.8.1. El conjunto $\mathcal{L}(V,W)$ forma un espacio vectorial sobre \mathbb{K} con las operaciones dadas en la Definición 2.6.

Teorema 2.9. Sean V y W dos espacios vectoriales, finitamente generados, sobre un campo \mathbb{K} ; sean $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ y $\gamma = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_m\}$ bases de V y W respectivamente; y sean $T, R \in \mathcal{L}(V, W) \Rightarrow$

1.
$$[T+R]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [R]^{\gamma}_{\beta}$$

2.
$$[\lambda T]^{\gamma}_{\beta} = \lambda [T]^{\gamma}_{\beta} \ \forall \lambda \in \mathbb{K}$$

Demostración. (1.) Sean a_{ij} y b_{ij} las j-ésimas columnas de las matrices $[T]^{\gamma}_{\beta}$ y $[R]^{\gamma}_{\beta}$, donde $i \in \{1, 2, ..., m\}$ y $j \in \{1, 2, ..., n\}$. Entonces $\forall \vec{v}_j \in \beta$ se tiene que

$$T(\vec{v}_{j}) = \sum_{i=1}^{m} a_{ij} \vec{w}_{i} \wedge R(\vec{v}_{j}) = \sum_{i=1}^{m} b_{ij} \vec{w}_{i}$$

$$\Rightarrow (T+R)(\vec{v}_{j}) = \sum_{i=1}^{m} (a_{ij} + b_{ij}) \vec{w}_{i}$$

$$\Rightarrow ([T+R]_{\beta}^{\gamma})_{ij} = a_{ij} + b_{ij} = ([T]_{\beta}^{\gamma} + [R]_{\beta}^{\gamma})_{ij}$$

(2.) Sea $([T]_{\beta}^{\gamma})_{ij} = A_{ij}$

$$\Rightarrow T(v_j) = \sum_{i=1}^m A_{ij} w_i$$

$$\Rightarrow \lambda T(\vec{v}_j) = \sum_{i=1}^m \lambda A_{ij} w_i \text{ donde } \lambda \in \mathbb{K}$$

Esto implica que $(\lambda[T]^{\gamma}_{\beta})_{ij} = \lambda A_{ij} : [\lambda T]^{\gamma}_{\beta} = \lambda[T]^{\gamma}_{\beta}$

2.3. Composición de transformaciones lineales y mutiplicación matricial

Teorema 2.10. Sean V, W y Z tres espacios vectoriales (sobre un campo \mathbb{K}), y sean T: $V \to W$ y $R: W \to Z$ transformaciones lineales. Entonces $RT: V \to Z$ es lineal.

Demostración. Sean $\vec{v}, \vec{u} \in V$ y $\lambda \in \mathbb{K}$. Se sigue entonces que

$$(RT)(\lambda \vec{v} + \vec{u}) = R(T(\lambda \vec{v} + \vec{u}))$$

$$= R(\lambda T(\vec{v}) + T(\vec{u}))$$

$$= \lambda R(T(\vec{v})) + R(T(\vec{u}))$$

$$= \lambda (RT)(\vec{v}) + (RT)(\vec{u})$$

Teorema 2.11. Sea V un espacio vectorial sobre un campo \mathbb{K} , y sean $T, R, S \in \mathcal{L}(V)^1 \Rightarrow$

1.
$$T(R+S) = TR + TS \wedge (R+S)T = RT + ST$$

2.
$$T(RS) = (TR)S$$

3.
$$TI = IT = T^2$$

4.
$$\lambda(RS) = (\lambda R)S = R(\lambda S) \ \forall \lambda \in \mathbb{K}$$

Demostración. Sea $\vec{v} \in V$. (1.) Se sigue que $[T(R+S)](\vec{v}) = T[(R+S)(\vec{v})]$. Por las operaciones definidas para el espacio $\mathcal{L}(V)$, sabemos que

$$T[R(\vec{v}) + S(\vec{v})] = T(R(\vec{v})) + T(S(\vec{v})) = TR + TS$$

La demostración para (R+S)T=RT+ST resulta ser trivial. (2.) Vea que

$$[T(RS)](\vec{v}) = T[(RS)(\vec{v})] = T[R(S(\vec{v}))] = TR[S(\vec{v})] = [(TR)S](\vec{v})$$

¹Esto denota que $T, R, S: V \to V$.

²Donde I : $V \to V$ tal que I $(\vec{v}) = \vec{v} \ \forall \vec{v} \in V$. Usamos un subíndice para señalar en que espacio sucede la transformación, por ejemplo I $_V$.

Por lo tanto T(RS) = (TR)S. (3.) Note que

$$(TI)(\vec{v}) = T(I(\vec{v})) = T(\vec{v}) = I(T(\vec{v})) = (IT)(\vec{v})$$

(4.) Se tiene que

$$[\lambda(RS)](\vec{v}) = \lambda[(RS)(\vec{v})] = \lambda[R(S(\vec{v}))] = (\lambda R)[S(\vec{v})]$$

Lo que implica que $\lambda(RS) = (\lambda R)S$, sin embargo, es evidente que

$$[R(\lambda S)](\vec{v}) = R[\lambda S(\vec{v})] = (\lambda R)[S(\vec{v})]$$

Por lo tanto $\lambda(RS) = (\lambda R)S = R(\lambda S)$.

Definición 2.7. Sean $M_{m\times n}(\mathbb{K})$ y $M_{n\times p}(\mathbb{K})$ los espacios vectoriales de las matrices con dimensión $m\times n$ y $n\times p$ con entradas de \mathbb{K} . Sea $A\in M_{m\times n}(\mathbb{K})$ y $B\in M_{n\times p}(\mathbb{K})$. Definimos el producto de A y B, denotado como AB, donde $AB\in M_{m\times p}(\mathbb{K})$, como la operación

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}, \ donde \ i \in \{1, 2, ..., m\} \ y \ p = \{1, 2, ..., p\}$$

Note usted que la entrada $(AB)_{ij}$ es la suma de los productos de la i-ésima fila de la matriz A y la j-ésima columna de la matriz B.

Teorema 2.12. Sean V, W, Z tres espacios vectoriales (sobre un campo \mathbb{K}), finitamente generados, con sus respectivas bases ordenadas $\alpha = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$, $\beta = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_m\}$ $y = \{\vec{z}_1, \vec{z}_2, ..., \vec{z}_p\}$. Sean $T: V \to W$ $y : W \to Z$ dos transformaciones lineales \Rightarrow

$$[RT]^{\gamma}_{\alpha} = [R]^{\gamma}_{\beta} [T]^{\beta}_{\alpha}$$

Demostración. Sean $A = [R]^{\gamma}_{\beta}$ y $B = [T]^{\beta}_{\alpha}$. Considere la matriz $C = AB = [RT]^{\gamma}_{\alpha}$. Entonces, para $j \in \{1, 2, ..., n\}$ tenemos

$$(RT)(\vec{v}) = R(T(\vec{v}_j)) = R\left(\sum_{k=1}^m B_{kj}\vec{w}_k\right) = \sum_{k=1}^m B_{kj}R(\vec{w}_k)$$
$$= \sum_{k=1}^m B_{kj}\left(\sum_{i=1}^p A_{ik}\vec{z}_i\right)$$
$$= \sum_{i=1}^p \left(\sum_{k=1}^m A_{ik}B_{kj}\right)\vec{z}_i$$
$$= \sum_{i=1}^p C_{ij}\vec{z}_i$$

Corolario 2.12.1. Sea V un espacio vectorial (sobre un campo \mathbb{K}), finitamente generado, sea β una base ordenada de dicho espacio. Sean $T, R \in \mathcal{L}(V) \Rightarrow [RT]_{\alpha}^{\gamma} = [R]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$.

Definición 2.8. Definimos a la delta de Kronecker δ_{ij} tal que $\delta_{ij} = 1$ si i = j y $\delta_{ij} = 0$ si $i \neq j$. La matriz $I_n \in_n (\mathbb{R})$ es una matriz de con dimensión $n \times n$ cuyas entradas siguen la regla $(I_n)_{ij} = \delta_{ij}$.

Teorema 2.13. Sean $A \in M_{m \times n}(\mathbb{K})$ y $B \in M_{n \times p}(\mathbb{K})$. $\forall j \in (1 \leq j \leq p)$, sean u_j y v_j las j-ésimas columnas de AB y B, respectivamente. Entonces

- 1. $u_j = Av_j$.
- 2. $v_j = Be_j$, donde e_j es el j-ésimo vector estándar de \mathbb{K}^p .

Demostración. (1.) Se tiene que

$$u_{j} = \begin{pmatrix} (AB)_{1j} \\ (AB)_{2j} \\ \vdots \\ (AB)_{mj} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{n} A_{1k} B_{kj} \\ \sum_{k=1}^{n} A_{2k} B_{kj} \\ \vdots \\ \sum_{k=1}^{n} A_{mk} B_{kj} \end{pmatrix} = A \begin{pmatrix} B_{1j} \\ B_{2j} \\ \vdots \\ B_{mj} \end{pmatrix} = Av_{j}$$

(2.) Tenemos que $Be_j \in \mathbb{K}^m$, y sabemos que $(Be_j)_i = \sum_{k=1}^n B_{ik}(e_j)_i = B_{ij}$, dado que $(e_j)_i = 1$ solo cuando i = j, de otro modo $(e_j)_i = 0$.

Teorema 2.14. Sean V y W dos espacios vectoriales (sobre un campo \mathbb{K}), finitamente generados, con bases ordenadas β y γ respectivamente, y sea $T:V\to W$ una transformación $\Rightarrow \forall \vec{v} \in V$ se tiene que

$$[T(\vec{v})]_{\gamma} = [T]_{\beta}^{\gamma} [\vec{v}]_{\beta}$$

Demostración. Sea $\vec{v} \in V$ fija, definimos $f : \mathbb{K} \to V$ con la regla de correspondencia $f(\lambda) = \lambda \vec{v}$ y $g : \mathbb{K} \to W$ con la regla de correspondencia $g(\lambda) = \lambda T(\vec{v})$, donde $\lambda \in \mathbb{K}$. Sea $\alpha = \{1\}$ la base canónica, y ordenada, de \mathbb{K} . Note usted entonces que g = Tf. Usando el Teorema 2.12 obtenemos

$$[T(\vec{u})]_{\gamma} = [g(1)]_{\gamma} = [g]_{\alpha}^{\gamma} = [Tf]_{\alpha}^{\gamma} = [T]_{\beta}^{\gamma}[f]_{\alpha}^{\beta} = [T]_{\beta}^{\gamma}[f(1)]_{\beta} = [T]_{\beta}^{\gamma}[\vec{v}]_{\beta}$$

Definición 2.9. Sea $A \in M_{m \times n}(\mathbb{K})$. Denotamos a L_A como la función $L_A : \mathbb{K}^n \to \mathbb{K}^m$ definida por $L_A(\vec{x}) = A\vec{x} \ \forall \vec{x} \in \mathbb{K}^n$. Nombramos L_A como la multiplicación por izquierda de la transformación.

Teorema 2.15. Sea $A \in M_{m \times n}(\mathbb{K})$. Entonces $L_A : \mathbb{K}^n \to \mathbb{K}^m$ es una transformación lineal. Más aún, si $B \in M_{m \times n}(\mathbb{K})$ y β y γ son las bases canónicas, y ordenadas, de \mathbb{K}^n y \mathbb{K}^m , respectivamente, entonces se cumplen las siguientes propiedades:

- 1. $[L_A]^{\gamma}_{\beta} = A$.
- 2. $L_A = L_B \iff A = B$.
- 3. $L_{A+B} = L_A + L_B \ y \ L_{\lambda A} = \lambda L_A \ \forall \lambda \in \mathbb{K}$.
- 4. Si $T: \mathbb{K}^n \to \mathbb{K}^m$ es lineal $\Rightarrow \exists ! C \in M_{m \times n}(\mathbb{K})$ tal que $T = L_C$, más aún $C = [T]_{\beta}^{\gamma}$.
- 5. Si $E \in M_{n \times p}(\mathbb{K}) \Rightarrow L_{AE} = L_A L_E$.
- 6. Si $m = n \Rightarrow L_{I_n} = I_{F^n}$

Demostración. (1.) La j-ésima columna de la matriz $[L_A]^{\gamma}_{\beta}$ es igual a $L_A(e_j)$. Sin embargo, note usted que $L_A(e_j) = Ae_j$, lo que implica que e_j también es la j-ésima columna de A, por lo tanto $[L_A]^{\gamma}_{\beta} = A$. (2.) (\Rightarrow) Por (1.), podemos entonces decir que $[L_A]^{\gamma}_{\beta} = A$ y $[L_B]^{\gamma}_{\beta} = B \Rightarrow A = B$. El regreso es trivial según Friedberg. (3.) El pinshi de Friedberg lo deja como ejercicio (a ver si lo resuelves Vic). (4.) Sea $C = [T]^{\gamma}_{\beta}$. Por el Teorema 2.14 tenemos que $[T(\vec{v})]_{\gamma} = [T]^{\gamma}_{\beta}[\vec{v}]_{\beta}$. O también que $T(\vec{v}) = C\vec{v} = L_C(\vec{v}) \ \forall \vec{v} \in \mathbb{K}^n$. La unicidad de C se sigue de (2.). (5.) $\forall j \in \{1, 2, ..., p\}$ usamos el Teorema 2.13 varias veces para notar que $(AE)_{ej}$ es la j-ésima columna de AE y que esta es igual a $A(E_{e_j})$. Entonces $(AE)_{e_j} = A(E_{e_j}) \Rightarrow$

$$L_{AE}(e_j) = (AE)_{ej} = A(E_{e_j}) = L_A(E_{e_j}) = L_A(L_E(e_j))$$

Por lo tanto $L_{AE} = L_A L_E$ por el Teorema 2.6. (6.) $\forall \vec{x} \in \mathbb{K}^n$ tenemos que $L_{I_n}(\vec{x}) = I_n(\vec{x}) = \vec{x}$.

2.4. Invertibildiad e isomorfismos

Definición 2.10. Sean V y W dos espacios vectoriales, sobre un campo \mathbb{K} , y sea $T:V\to W$ una transformación lineal. Se dice que una función $R:W\to V$ es la inversa de T si $TR=\mathrm{I}_W$ y $RT=\mathrm{I}_V$. Se dice que T es invertible si T tiene una inversa. Si T es invertible entonces la inversa es única y se denota T^{-1} . Más aún, se cumplen las siguientes propiedades

- 1. $(TR)^{-1} = R^{-1}T^{-1}$.
- 2. $(T^{-1})^{-1} = T$, es decir T^{-1} es invertible.
- 3. Sean V y W dos espacios vectoriales, de dimensión finita, sobre un campo \mathbb{K} , donde $dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$ y sea $T: V \to W$ una transformación lineal. Se dice entonces que T es invertible $\iff dim_{\mathbb{K}}(Im(T)) = dim_{\mathbb{K}}(V)$.

Definición 2.11. Sea $A \in M_n(\mathbb{K})$. Entonces A es invertible si $\exists ! B \in M_n(\mathbb{K})$ tal que $AB = BA = I_n$. La matriz B se llama la inversa de A y se denota como A^{-1} .

Lema 2.1. Sea $T: V \to W$ una transformación lineal invertible. Se dice que $dim_{\mathbb{K}}(V) < \infty \iff dim_{\mathbb{K}}(W) < \infty$. Más aún $dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$.

Demostración. (\Rightarrow) Suponga que V es de dimensión finita, y sea $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ una base ordenada de V. Por el Teorema 2.2 sabemos que $\langle T(\beta) \rangle = Im(T) = W$, por lo tanto (por el Teorema 1.18) $dim_{\mathbb{K}}(W) < \infty$. (\Leftarrow) Si $dim_{\mathbb{K}}(W) < \infty$, entonces la prueba es análoga a la ida, solo que utilizando T^{-1} con una base de W. Suponga que V y W son de dimensión finita, como T es invertible (T es inyectiva y sobreyectiva), entonces

$$dim_{\mathbb{K}}(N(T)) = 0 \text{ y } dim_{\mathbb{K}}(Im(T)) = dim_{\mathbb{K}}(W)$$

Por el Teorema 2.3 se sigue entonces que $dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$.

Teorema 2.16. Sean V y W dos espacios vectoriales, finitamente generados (sobre un campo \mathbb{K}), donde β y γ son bases ordenadas de V y W, respectivamente. Sea $T:V\to W$ una transformación lineal. Entonces T es invertible $\iff [T]_{\beta}^{\gamma}$ es invertible. Más aún, $[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}$.

Demostración. (\Rightarrow) Suponga que T es invertible. Por el Lema 2.1, tenemos que $dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$, sea $n = dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$. Se igue entonces que $[T]_{\beta}^{\gamma} \in M_n(\mathbb{K})$. Por la Definición 2.10 sabemos que $TT^{-1} = I_W \wedge T^{-1}T = I_V$

$$\Rightarrow I_n = [I_V]_\beta = [T^{-1}T]_\beta = [T^{-1}]_\gamma^\beta [T]_\beta^\gamma$$

Note, también, que

$$I_n = [I_W]_{\gamma} = [TT^{-1}]_{\gamma} = [T]_{\beta}^{\gamma} [T^{-1}]_{\gamma}^{\beta}$$

Esto implica, por la Definición 2.11, que $[T]^{\gamma}_{\beta}$ es invertible y que $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$. (\Leftarrow) Suponga que $A = [T]^{\gamma}_{\beta}$ es invertible $\Rightarrow \exists B \in M_n(\mathbb{K})$ tal que $AB = BA = I_n$. Por el Teorema 2.6 $\exists R \in \mathcal{L}(W, V)$ tal que

$$R(\vec{w}_j) = \sum_{i=1}^n B_{ij} \vec{v}_i \text{ para } j \in \{1, 2, ..., n\}$$

Donde $\gamma = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ y $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$. Esto implica que $B = [R]_{\gamma}^{\beta}$. Note usted (por el Teorema 2.12) que

$$[RT]_{\beta} = [R]_{\gamma}^{\beta}[T]_{\beta}^{\gamma} = BA = I_n = [I_V]_{\beta}$$

y que

$$[TR]_{\gamma} = [T]_{\beta}^{\gamma} [R]_{\gamma}^{\beta} = AB = I_n = [I_W]_{\gamma}$$

Por lo tanto $R = T^{-1}$, dado que se cumple $RT = I_V \wedge TR = I_W$.

Corolario 2.16.1. Sea V un espacio vectorial, finitamente generado, sobre un campo \mathbb{K} , con una base ordenada β , y sea $T:V\to V$ una transformación lineal. Entonces T es invertible $\iff [T]_{\beta}$ es invertible. Más aún, $[T^{-1}]_{\beta} = ([T]_{\beta})^{-1}$.

Demostración. Suponga que V=W y $\beta=\gamma$, entonces la prueba es obvia dado el Teorema 2.16.

Corolario 2.16.2. Sea $A \in M_n(\mathbb{K})$. Entonces A es invertible $\iff L_A$ es invertible. Más $a\'un, L_{A^{-1}} = (L_A)^{-1}$.

Demostración. Dado el Corolario 2.16.1, si se toma $V = \mathbb{K}^n$ la demostración se sigue del Teorema 2.16.

Definición 2.12. Sean V y W dos espacios vectoriales sobre un campo \mathbb{K} . Decimos que V es **isomorfo** a W si $\exists T: V \to W$ tal que T es lineal e invertible. Se dice entonces que T es un **isomorfismo** de V sobre W.

Notación 2.2. Si V es isomorfo a W, entonces se denota $V \approx W \Rightarrow W \approx V$.

Teorema 2.17. Sean V y W dos espacios vectoriales (sobre un campo \mathbb{K}) finitamente generados. Entonces $V \approx W \iff dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$.

Demostración. (\Rightarrow) Suponga que V es isomorfo a W, y que $T:V\to W$ es un ismorfismo de V a W. Por el Lema 2.1 sabemos entonces que $dim_{\mathbb{K}}(V)=dim_{\mathbb{K}}(W)$. (\Leftarrow) Suponga que $dim_{\mathbb{K}}(V)=dim_{\mathbb{K}}(W)$, y sean $\beta=\{\vec{v}_1,\vec{v}_2,...,\vec{v}_n\}$ y $\gamma=\{\vec{w}_1,\vec{w}_2,...,\vec{w}_n\}$ bases de V y W, respectivamente. Por el Teorema 2.6 sabemos que $\exists!T:V\to W$ tal que T es lineal y $T(\vec{v}_i)=\vec{w}_i$ para $i\in\{1,2,...,n\}$. Usando el Teorema 2.2 tenemos

$$Im(T) = \langle T(\beta) \rangle = \langle \gamma \rangle = W$$

Esto implica que T es sobreyectiva e inyectiva, por el Teorema 2.5. Por lo tanto T es un isomorfismo.

Corolario 2.17.1. Sea V un espacio vectorial sobre un campo \mathbb{K} . Entonces V es ismorfo a $\mathbb{K}^n \iff dim_{\mathbb{K}}(V) = n$.

Teorema 2.18. Sean V y W dos espacios vectoriales (sobre un campo \mathbb{K}), finitamente generados, donde $dim_{\mathbb{K}}(V) = n$ y $dim_{\mathbb{K}}(W) = m$, y sean $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ y $\gamma = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_m\}$ bases ordenadas de V y W, respectivamente. Entonces la función

$$\Phi: \mathscr{L}(V,W) \to M_{m \times n}(\mathbb{K})$$

definida como $\Phi(T) = [T]^{\gamma}_{\beta}$ para $T \in \mathcal{L}(V, W)$, es un isomorfismo.

Demostración. Por el Teorema 2.9 sabemos que Φ es lineal. Basta demostrar que Φ es sobreyectiva e inyectiva. Sea $A \in M_{m \times n}(\mathbb{K})$, por el Teorema 2.6 $\exists !T : V \to W$ tal que

$$T(\vec{v}_j) = \sum_{i=1}^{m} A_{ij} \vec{w}_i \text{ para } j \in \{1, 2, ..., n\}$$

Lo que implica que $[T]^{\gamma}_{\beta} = A$, o bienn que $\Phi(T) = A$, por lo tanto Φ es un isomorfismo. \square

Corolario 2.18.1. Sean V y W dos espacios vectoriales (sobre un campo \mathbb{K}), finitamente generados, donde $dim_{\mathbb{K}}(V) = n$ y $dim_{\mathbb{K}}(W) = m$. Entonces $\mathcal{L}(V, W)$ es de dimensión finita y $dim_{\mathbb{K}}(\mathcal{L}(V, W)) = m \cdot n$

Demostración. Se sigue del Teorema 2.18 (al probar que Φ es un isomorfismo) y del Teorema 2.17 (por el hecho de que un isomorfismo implica la igualdad de dimensiones entre el dominio y codominio de la transformación).

Definición 2.13. Sea V un espacio vectorial, sobre un campo \mathbb{K} , donde $\dim_{\mathbb{K}}(V) = n$, y sea β una base ordenada. La **representación estándar de V** con respecto a β es la función $\Phi_{\beta}: V \to \mathbb{K}^n$ definida como $\Phi_{\beta}(\vec{v}) = [\vec{v}]_{\beta} \ \forall \vec{v} \in V$.

Teorema 2.19. Para todo espacio vectorial V finitamente generado sobre un campo \mathbb{K} , con una base ordenada β , se tiene que Φ_{β} es un isomorfismo.

Demostración. Por demostrar que (i) Φ_{β} es lineal y (ii) Φ_{β} es sobreyectiva e inyectiva. (i) Sean $\vec{u}, \vec{z} \in V$, y sea $\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \Rightarrow \exists \lambda_1, \lambda_2, ..., \lambda_n \text{ y } \mu_1, \mu_2, ..., \mu_n \in \mathbb{K} \text{ tales que } \vec{u} = \sum_{i=1}^n \lambda_i \vec{v}_i \text{ y } \vec{z} = \sum_{i=1}^n \mu_i \vec{v}_i.$ Sea $\eta \in \mathbb{K}$, sabemos que $\vec{u} + \eta \vec{z} \in V$, lo que implica que $\vec{u} + \eta \vec{z} = \sum_{i=1}^n \lambda_i \vec{v}_i + \eta \mu_i \vec{v}_i = (\lambda_i + \eta \mu_i) \vec{v}_i.$ Se sigue entonces que

$$\Phi_{\beta}(\vec{u} + \eta \vec{z}) = \begin{pmatrix} \lambda_1 + \eta \mu_1 \\ \lambda_2 + \eta \mu_2 \\ \vdots \\ \lambda_n + \eta \mu_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} + \eta \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix} = \Phi_{\beta}(\vec{u}) + \eta \Phi_{\beta}(\vec{z})$$

Por lo tanto Φ_{β} es una transformación lineal. (ii) Sea $\vec{v} \in V$. Si

$$\Phi_{\beta}(\vec{v}) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

entonces sabemos que $\vec{v} = \sum_{i=1}^{n} 0 \vec{v}_i = \vec{0}_V$, lo que implica que Φ_{β} es inyectiva. Además para

toda

$$\Phi_{eta}(\vec{v}) = egin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix} + \eta$$

donde $\kappa_1, \kappa_2, ..., \kappa_n \in \mathbb{K}$, tenemos que $\vec{v} = \sum_{i=1}^n \kappa_i \vec{v}_i$ está asociada a ella.

2.5. Matrices de cambio de base

Teorema 2.20. Sean β y β' dos bases ordenadas de un espacio vectorial V, finitamente generado, sobre un campo \mathbb{K} , y sea $Q = [I_V]_{\beta'}^{\beta} \Rightarrow$

- 1. Q es invertible.
- 2. $\forall \vec{v} \in V \text{ se tiene que } [\vec{v}]_{\beta} = Q[\vec{v}]_{\beta'}$

Demostración. (1.) Sabemos que I_V es invertible, entonces, por el Teorema 2.16, sabemos que Q es invertible. (2.) $\forall \vec{v} \in V$ se tiene que

$$[\vec{v}]_{\beta} = [I_V(\vec{v})]_{\beta} = [I_V]_{\beta'}^{\beta} [\vec{v}]_{\beta'} = Q[\vec{v}]_{\beta'}$$

por el Teorema 2.14. Por lo tanto Q es la matriz de cambio de base.

Definición 2.14. Definimos a la transformación lineal $T:V\to V$ como un **operador** lineal sobre V.

Teorema 2.21. Sea V un espacio vectorial, finitamente generado, sobre un campo \mathbb{K} , sea T un operador lineal sobre V, y sean β y β' bases ordenadas de V. Suponga que Q es la matriz de cambio de base de β' a β , entonces

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$$

Demostración. Sea I la transformación identidad en $V \Rightarrow T = IT = TI$, por el Teorema 2.11. Se sigue entonces que

$$Q[T]_{\beta'} = [I]_{\beta'}^{\beta}[T]_{\beta'}^{\beta'} = [IT]_{\beta'}^{\beta} = [TI]_{\beta'}^{\beta} = [T]_{\beta}^{\beta}[I]_{\beta'}^{\beta} = [T]_{\beta}Q$$

Por lo tanto $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$.

Corolario 2.21.1. Sea $A \in M_{m \times n}(\mathbb{K})$, y sea γ una base ordenada de $\mathbb{K}^n \Rightarrow [L_A]_{\gamma} = Q^{-1}AQ$, donde $Q \in M_n(\mathbb{K})$ y la j-ésima columna de Q es el j-ésimo vector de γ .

Definición 2.15. Sean $A, B \in M_n(\mathbb{K})$. Decimos que B es **similar** a A si $\exists Q \in M_n(\mathbb{K})$ tal que $B = Q^{-1}AQ$.

Capítulo 3

Espacios con producto interior

3.1. Productos interiores y normas

Definición 3.1. Sean V un espacio vectorial sobre un campo \mathbb{K} . Un producto interior en V es una función $\langle , \rangle : V \times V \to \mathbb{K}$ que satisface lo siguiente

1.
$$\forall \vec{v}, \vec{u}, \vec{w} \in V \Rightarrow \langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$
.

2.
$$\forall \vec{v}, \vec{u} \in V \ y \ \forall \lambda \in \mathbb{K} \Rightarrow \langle \lambda \vec{u}, \vec{v} \rangle = \lambda \langle \vec{u}, \vec{v} \rangle$$
.

3.
$$\forall \vec{v}, \vec{u} \in V \Rightarrow \langle \vec{v}, \vec{u} \rangle = \overline{\langle \vec{u}, \vec{v} \rangle} \ donde \ \vec{\cdot} \ es \ el \ conjugado \ complejo.$$

4.
$$\forall \vec{u} \in V \Rightarrow \langle \vec{u}, \vec{u} \rangle > 0 \text{ si } \vec{u} \neq \vec{0}.$$

Nota 3.1. Sea $z,w\in\mathbb{C}\ y\ a,b\in\mathbb{R}\ donde\ z=a+ib\ y\ \overline{z}=a-ib\Rightarrow$

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$
.

$$2. \ \overline{z \cdot w} = \overline{z} \cdot \overline{w}.$$

$$3. \ \left(\frac{\overline{z}}{w}\right) = \frac{\overline{z}}{\overline{w}}.$$

4.
$$z + \overline{z} = 2\Re(z)$$
.

5.
$$z \cdot \overline{z} = |z|^2 = a^2 + b^2$$
.

6.
$$|z| = \sqrt{a^2 + b^2}$$
.

Teorema 3.1. Sea V un espacio vectorial sobre un campo \mathbb{K} . Entonces para $\vec{u}, \vec{v}, \vec{w} \in V$ y para $\lambda \in \mathbb{K}$ se cumplen lo siguiente

1.
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$
.

2.
$$\langle \vec{u}, \lambda \vec{v} \rangle = \overline{\lambda} \langle \vec{u}, \vec{v} \rangle$$
.

3.
$$\langle \vec{u}, 0 \rangle = \langle 0, \vec{u} \rangle = 0$$
.

4.
$$\langle \vec{u}, \vec{u} \rangle = 0 \iff \vec{u} = 0.$$

5.
$$Si \langle \vec{u}, \vec{v} \rangle = \langle \vec{u}, \vec{w} \rangle \ \forall \vec{u} \in V \Rightarrow \vec{v} = \vec{w}$$
,

Demostración. (1.) Tenemos que

$$\begin{split} \langle \vec{u}, \vec{v} + \vec{w} \rangle &= \overline{\langle \vec{v} + \vec{w}, \vec{u} \rangle} = \overline{\langle \vec{v}, \vec{u} \rangle + \langle \vec{w}, \vec{u} \rangle} \\ &= \overline{\langle \vec{v}, \vec{u} \rangle} + \overline{\langle \vec{w}, \vec{u} \rangle} = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle \end{split}$$

(2.)

$$\langle \vec{u}, \lambda \vec{v} \rangle = \overline{\langle \lambda \vec{v}, \vec{u} \rangle} = \lambda \overline{\langle \vec{v}, \vec{u} \rangle} = \overline{\lambda} \langle \vec{u}, \vec{v} \rangle$$

(3.) Por la propiedad (2.) se tiene que

$$\langle \vec{u}, 0 \rangle = \overline{0} \langle \vec{u}, 0 \rangle = 0$$

y también tenemos que

$$\langle 0, \vec{u} \rangle = \overline{\langle \vec{u}, 0 \rangle} = 0$$

 $(4.) \ (\Leftarrow) \ \text{Si} \ \vec{u} = 0 \Rightarrow \langle 0, 0 \rangle = 0, \ \text{por la propiedad} \ (3.). \ (\Rightarrow) \ \text{Suponga que} \ \vec{u} \neq 0 \Rightarrow \langle \vec{u}, \vec{u} \rangle > 0.$

$$(5.) \text{ Si } \langle \vec{u}, \vec{v} \rangle = \langle \vec{u}, \vec{w} \rangle \ \forall \vec{u} \in V \Rightarrow \langle \vec{u}, \vec{v} - \vec{w} \rangle = 0 \ \forall \vec{u} \in V. \text{ Tenemos entonces que } \langle \vec{v} - \vec{w}, \vec{v} - \vec{w} \rangle = 0 \Rightarrow \vec{v} - \vec{w} = 0 \Rightarrow \vec{v} = \vec{w}.$$

Definición 3.2. Sea V un espacio vectorial (sobre un campo \mathbb{K}) con producto interior. Para $\vec{u} \in V$, definimos la **norma** de \vec{u} como $\|\vec{u}\| = \sqrt{\langle \vec{u}, \vec{u} \rangle}$.

Teorema 3.2. Sea V un espacio vectorial (sobre un campo \mathbb{K}) con producto interior. Entonces $\forall \vec{u}, \vec{v} \in V$ y $\forall \lambda \in \mathbb{K}$ se cumplen las siguientes propiedades

1.
$$\|\lambda \vec{u}\| = |\lambda| \|\vec{u}\|$$
.

- 2. $\|\vec{u}\| = 0 \iff \vec{u} = 0$, de lo contrario $\|\vec{u}\| \ge 0$.
- 3. (Designal and Cauchy-Schwarz) $|\langle \vec{u}, \vec{v} \rangle| \leq ||u|| \cdot ||v||$.
- 4. (Designaldad del triángulo) $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| \cdot \|\vec{v}\|$.

Demostración. (1.) Note que

$$\|\lambda \vec{u}\|^2 = \langle \lambda \vec{u}, \lambda \vec{u} \rangle = \lambda \overline{\lambda} \langle \vec{u}, \vec{u} \rangle = |\lambda|^2 \|\vec{u}\|^2 = (|\lambda| \|\vec{u}\|)^2 \Rightarrow \|\lambda \vec{u}\| = |\lambda| \|u\|$$

(2.) (\Rightarrow) Si $||\vec{u}|| = 0 \Rightarrow \langle \vec{u}, \vec{u} \rangle^{\frac{1}{2}} = 0 \Rightarrow \vec{u} = 0$. (\Leftarrow) Si $\vec{u} = 0 \Rightarrow ||0|| = \langle 0, 0 \rangle^{\frac{1}{2}} = 0$, por el Teorema 3.1. (3.) Si $\vec{v} = 0$ entonces la prueba es trivial. Asuma que $\vec{v} \neq 0$, entonces $\forall \lambda \in \mathbb{K}$ tenemos

$$0 \leq \|\vec{u} - \lambda \vec{v}\|^{2} = \langle \vec{u} - \lambda \vec{v}, \vec{u} - \lambda \vec{v} \rangle = \langle \vec{u}, \vec{u} - \lambda \vec{v} \rangle - \lambda \langle \vec{v}, \vec{u} - \lambda \vec{v} \rangle$$
$$= \langle \vec{u}, \vec{u} \rangle - \overline{\lambda} \langle \vec{u}, \vec{v} \rangle - \lambda \langle \vec{v}, \vec{u} \rangle + \lambda \overline{\lambda} \langle \vec{v}, \vec{v} \rangle$$
$$= \|\vec{u}\|^{2} - \overline{\lambda} \langle \vec{u}, \vec{v} \rangle - \lambda \langle \vec{v}, \vec{u} \rangle + \lambda \overline{\lambda} \|\vec{v}\|^{2}$$

Sea
$$\lambda = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^2}$$
 y $\overline{\lambda} = \frac{\overline{\langle \vec{u}, \vec{v} \rangle}}{\|\vec{v}\|^2}$

$$\Rightarrow 0 \leq \|\vec{u}\|^2 - \frac{\overline{\langle \vec{u}, \vec{v} \rangle}}{\|\vec{v}\|^2} \langle \vec{u}, \vec{v} \rangle - \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^2} \overline{\langle \vec{u}, \vec{v} \rangle} + \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^2} \cdot \frac{\overline{\langle \vec{u}, \vec{v} \rangle}}{\|\vec{v}\|^2} \cdot \|\vec{v}\|^2$$

$$= \|\vec{u}\|^2 - 2 \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2} + \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2} = \|\vec{u}\|^2 - \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2}$$

$$\Rightarrow \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2} \leq \|\vec{u}\|^2 \Rightarrow |\langle \vec{u}, \vec{v} \rangle|^2 \leq \|\vec{u}\|^2 \cdot \|\vec{v}\|^2 \Rightarrow |\langle \vec{u}, \vec{v} \rangle| \leq \|\vec{u}\| \cdot \|\vec{v}\|$$

(4.) Tenemos que

$$\begin{split} \|\vec{u} + \vec{v}\|^2 &= \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle = \langle \vec{u}, \vec{u} + \vec{v} \rangle + \langle \vec{v}, \vec{u} + \vec{v} \rangle = \langle \vec{u}, \vec{u} \rangle + \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle \\ &= \|\vec{u}\|^2 + \langle \vec{u}, \vec{v} \rangle + \overline{\langle \vec{u}, \vec{v} \rangle} + \|\vec{v}\|^2 \\ &= \|\vec{u}\|^2 + 2\Re\langle \vec{u}, \vec{v} \rangle + \|\vec{v}\|^2 \\ &\leq \|\vec{u}\|^2 + 2|\langle \vec{u}, \vec{v} \rangle| + \|\vec{v}\|^2 \\ &\leq \|\vec{u}\|^2 + 2\|\vec{v}\| \cdot \|\vec{v}\| + \|\vec{v}\|^2 \text{ (esto usando la designal dad } Cauchy-Schwarz) \\ &= (\|\vec{u}\| + \|\vec{v}\|)^2 \Rightarrow \|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\| \end{split}$$

Definición 3.3. Sea V un espacio vectorial (sobre un campo \mathbb{K}) con producto interior. (i) Se dice que $\vec{u}, \vec{v} \in V$ son **ortogonales** (o perpendiculares) si $\langle \vec{u}, \vec{v} \rangle = 0 \Rightarrow \vec{u} \perp \vec{v}$. (ii) Se dice que $S \subseteq V$ es un **conjunto ortogonal** si $\vec{u} \perp \vec{v} \forall \vec{u}, \vec{v} \in S$. (iii) Se dice que $\vec{u} \in V$ es un **vector unitario** si $||\vec{u}|| = 1$. (iv) Se dice que $S \subseteq V$ es un **ortonormal** si S es ortogonal $S \subseteq V$ es un **ortonormal** si $S \subseteq V$ es un **ortonormal** s

3.2. El proceso de ortogonalización de Gram-Schmidt

Definición 3.4. Sea V un espacio vectorial (sobre un campo \mathbb{K}) con productor interior. Se dice que $\beta \subseteq V$ es una base ortonormal de V si es una base ordenada y es ortonormal.

Teorema 3.3. Sean V un espacio vectorial sobre \mathbb{K} con producto interior, $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ un conjunto ortogonal donde $\vec{v}_i \neq \vec{0}$ y $\vec{u} \in V$. Si $\vec{u} \in \langle S \rangle \Rightarrow$

$$\vec{u} = \sum_{i=1}^{k} \frac{\langle \vec{u}, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i$$

Demostración. Como $\vec{u} \in \langle S \rangle \exists \lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{K}$ tales que $\vec{u} = \sum_{i=1}^k \lambda_i \vec{v}_i$. Sea $j \in \{1, 2, ..., k\}$

$$\Rightarrow \langle \vec{u}, \vec{v}_j \rangle = \langle \sum_{i=1}^k \lambda_i \vec{v}_i, \vec{v}_j \rangle = \sum_{i=1}^k \lambda_i \langle \vec{v}_i, \vec{v}_j \rangle = \lambda_j \langle \vec{v}_j, \vec{v}_j \rangle \text{ dado que } S \text{ es ortogonal.}$$

$$\Rightarrow \lambda_j = \frac{\langle \vec{u}, \vec{v}_j \rangle}{\|\vec{v}_j\|^2} \Rightarrow \vec{u} = \sum_{i=1}^k \lambda_i \vec{v}_i = \sum_{i=1}^k \frac{\langle \vec{u}, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i$$

Corolario 3.3.1. Si $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ es un conjunto ortonormal $\Rightarrow \vec{u} = \sum_{i=1}^n \langle \vec{u}, \vec{v}_i \rangle \vec{v}_i$.

Corolario 3.3.2. Sea V un espacio vectorial (sobre un campo \mathbb{K}) con producto interior, y sea $S \subseteq V$ un cojunto ortogonal donde todos los vectores son distintos de cero $\Rightarrow S$ es un cojunto l.i.

Teorema 3.4. Sea V un espacio vectorial (sobre un campo \mathbb{K}) con producto interior, y sea $S \subseteq V = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ un conjunto l.i. Definimos $S' = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ donde $\vec{v}_1 = \vec{w}_1$ y

$$\vec{v}_n = \vec{w}_n - \sum_{i=1}^{n-1} \frac{\langle \vec{w}_n, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i \text{ donde } n \in \{2, 3, ..., n\}$$

Entonces S' es un conjunto ortogonal de vectores distintos al cero tales que $\langle S' \rangle = \langle S \rangle$.

Demostración. Por inducción sobre n. (Base inductiva) Si $n=1 \Rightarrow S=\{\vec{w}_1\}=S'$. (Hipótesis inductiva) Supongamos el resultado cierto para n-1. (Paso inductivo) Por demostrar que (i) S'_n no contiene al cero, (ii) S'_n es ortogonal y (iii) $\langle S'_n \rangle = \langle S_n \rangle$. (i) Sea $S_n = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_n\}$ un conjunto l.i. y sea $S'_n = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ como en el Teorema 3.4. Suponga que $\vec{0} \in S'_n$. Como $S_{n-1} = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_{n-1}\}$ es l.i. y tiene n-1 vectores $\Rightarrow S'_{n-1} = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_{n-1}\}$ es un conjunto ortogonal que no contiene al cero, y además, $\langle S'_{n-1} \rangle = \langle S_{n-1} \rangle$. Sabemos que $\vec{0} \in S'_n \wedge \vec{0} \notin S'_{n-1} \Rightarrow \vec{v}_n = \vec{0}$

$$\Rightarrow \vec{0} = \vec{w}_n - \sum_{j=1}^{n-1} \frac{\langle \vec{w}_n, \vec{v}_j \rangle}{\|\vec{v}_j\|^2} \vec{v}_j \Rightarrow \vec{w}_n = \sum_{j=1}^{n-1} \frac{\langle \vec{w}_n, \vec{v}_j \rangle}{\|\vec{v}_j\|^2} \vec{v}_j \in \langle S'_{n-1} \rangle = \langle S_{n-1} \rangle$$

Lo que es una contradicción, porque S_n ya no sería un conjunto l.i $\Rightarrow \vec{0} \notin S'_n$. (ii) Sea $i \in \{1, 2, ..., n-1\}$

$$\Rightarrow \langle \vec{v}_n, \vec{v}_i \rangle = \left\langle \vec{w}_n - \sum_{j=1}^{n-1} \frac{\langle \vec{w}_n, \vec{v}_j \rangle}{\left\| \vec{v}_j \right\|^2} \vec{v}_j, \vec{v}_i \right\rangle = \left\langle \vec{w}_n, \vec{v}_i \right\rangle - \sum_{j=1}^{n-1} \frac{\langle \vec{w}_n, \vec{v}_j \rangle}{\left\| \vec{v}_j \right\|^2} \langle \vec{v}_j, \vec{v}_i \rangle$$

Como $S_{'n-1}$ es ortogonal se tiene que $\langle \vec{v}_j, \vec{v}_i \rangle \neq 0 \iff j=i$

$$\Rightarrow \langle \vec{v}_n, \vec{v}_i \rangle = \langle \vec{w}_n, \vec{v}_i \rangle - \frac{\langle \vec{w}_n, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \langle \vec{v}_i, \vec{v}_i \rangle = \langle \vec{w}_n, \vec{v}_i \rangle - \frac{\langle \vec{w}_n, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \|\vec{v}_i\|^2 = 0$$

Esto implica que S_n' es ortogonal. (iii) Sabemos que

$$\vec{v}_n = \vec{w}_n + \vec{z}$$
 donde $\vec{z} \in \langle S_{n-1} \rangle = \langle S'_{n-1} \rangle$

$$\Rightarrow \vec{v}_n \in \langle S_n \rangle \Rightarrow S'_n \subseteq \langle S_n \rangle \Rightarrow \langle S'_n \rangle \subseteq \langle S_n \rangle$$

También, note usted que

$$\vec{w}_n = \vec{v}_n - \vec{z}$$

$$\Rightarrow \vec{w}_n \in \langle S'_n \rangle \Rightarrow S_n \subseteq \langle S'_n \rangle \Rightarrow \langle S_n \rangle \subseteq \langle S'_n \rangle$$

Por la doble contención $\langle S'_n \rangle \subseteq \langle S_n \rangle \land \langle S_n \rangle \subseteq \langle S'_n \rangle \Rightarrow \langle S'_n \rangle = \langle S_n \rangle$: queda completo el paso inductivo.