南昌大学物理实验报告

课程名称:		普通物理实验	(3)	
实验名称:	棱镜摄谱			
学院:	理学院	专业班级: _	物理学 151 班	
学生姓名:	黄泽豪	学号:	5502115014	
实验地点:	B415	座位号:	13	
实验时间:	第十二	周星期四上午九	点四十五开始	

【实验目的】

- 1.了解棱镜摄谱仪的构造原理。
- 2.掌握棱镜摄谱仪的调节方法和摄谱技术。
- 3.学会用照相法测定某一光谱线的波长。

【实验仪器】

玻璃棱镜摄谱仪, 汞灯, 读数显微镜

【实验原理】

汞灯发出的光线经过摄谱仪棱镜发生色散,会在读数显微镜上呈现出谱线。 假设在图 53-5 中一个较小的波长范围内,摄谱仪棱镜的色散是均匀的,可以认 为谱线在底板上的位置与波长有线性关系,即:

$$\frac{\lambda_2 - \lambda_1}{n_2 - n_1} = \frac{\lambda_x - \lambda_1}{n_x - n_1}$$

式中, λ_1 、 λ_2 为已知谱线的波长,介于 λ_1 与 λ_2 之间的待测谱线波长为 λ_x ,它们在底板上的位置分别为 n_1 、 n_2 和 n_x 。所以,待测谱线的波长为:

$$\lambda_x = \lambda_1 + \frac{n_x - n_1}{n_2 - n_1} (\lambda_2 - \lambda_1)$$

可见,只要在底板上测出谱线的位置 n_1 、 n_2 和 n_x ,就可用上式计算出待测谱线的波长 λ_x 。

【实验内容及步骤】

- 1.打开汞灯,调节共轴,尝试在目镜中观察到谱线。
- 2.调节仪器色散度,使黄光的两条谱线清晰可见。
- 3.调整仪器转角处旋钮, 使光谱线落在目镜可观察并读数的范围内。
- 4.慢慢转动螺旋,使十字叉丝对准谱线(黄或绿或蓝)的左侧或右侧边缘, 读取并记录数据。

5.继续转动螺旋,记录十组数据。

【实验注意事项】

1.记录同一组数据时,应该往同一个方向转动旋钮,减小螺距差对实验结果造成的影响。

2.记录数据时,应将十字叉丝对准谱线的边缘,使读数更加精确。

【数据处理】

$$\begin{split} \frac{\lambda_2 - \lambda_1}{n_2 - n_1} &= \frac{\lambda_x - \lambda_1}{n_x - n_1} \\ \lambda_x &= \lambda_1 + \frac{n_x - n_1}{n_2 - n_1} \left(\lambda_2 - \lambda_1 \right) \end{split}$$

	n_1 / mm	n_x / mm	n_2 / mm	$(n_x - n_1)/$ mm	$(n_2-n_1)/$ mm
1	14. 055	17. 652	38. 280	3. 597	24. 225
2	14. 081	17. 719	38. 310	3. 638	24. 229
3	14. 197	17. 863	38. 504	3.666	24. 307
4	14. 116	17. 778	38. 382	3. 662	24. 266
5	14. 290	17. 960	38. 596	3. 670	24. 306
6	14. 161	17. 726	38. 399	3. 565	24. 238
7	14. 268	17. 902	38. 500	3.634	24. 232
8	14. 151	17. 775	38. 349	3.624	24. 198
9	14. 205	17. 891	38. 460	3. 686	24. 255
10	14. 232	17. 748	38. 339	3. 516	24. 107

其中, n_1 为黄光谱线位置, n_x 为绿光谱线位置, n_2 为蓝光谱线位置。

$$\lambda_1 = 579.96$$
nm, $\lambda_2 = 435.83$ nm.

对
$$n_x - n_1$$
:
$$\overline{n_x - n_1} = 3.626 \text{nm}$$

$$\Delta_{A1} = 0.053 \text{nm}$$

$$\Delta_{B1} = 0.01 \text{nm}$$

$$u_1 = \sqrt{\Delta_A^2 - \Delta_B^2} = 0.054 \text{nm}$$

$$\overline{n_2 - n_1} = 24.236 \text{nm}$$

$$\Delta_{A2} = 0.057 \text{nm}$$

$$\Delta_{B2} = 0.01 \text{nm}$$

$$u_2 = \sqrt{\Delta_A^2 - \Delta_B^2} = 0.058 \text{nm}$$

$$\overline{\lambda_x} = \lambda_1 + \frac{\overline{n_x - n_1}}{\overline{n_2 - n_1}} (\lambda_2 - \lambda_1) = 558.396 \text{nm}$$

$$\ln \lambda_x = \ln \lambda_1 + \ln(n_x - n_1)(\lambda_2 - \lambda_1) - \ln(n_2 - n_1)$$

$$\frac{\partial \ln \lambda_x}{\partial (n_x - n_1)} = \frac{1}{n_x - n_1}, \frac{\partial \ln \lambda_x}{\partial (n_2 - n_1)} = \frac{1}{n_2 - n_1}$$

$$u_{r\lambda_x} = \frac{u_{\lambda_x}}{\overline{\lambda_x}} = \sqrt{\left(\frac{u_1}{n_x - n_1}\right)^2 + \left(\frac{u_2}{n_2 - n_1}\right)^2} = 0.015 = 1.5\%$$

$$u_{\lambda_x} = \overline{\lambda_x} u_{r\lambda_x} = 558.396 \times 1.5\% = 8.376 \text{nm}$$

$$\begin{cases} \lambda_x = (558.396 \pm 8.376) \text{nm} \\ u_{r\lambda_x} = 1.5\% \end{cases}$$

由于绿光波长为 546.07nm, 所以实验结果与标准值相比的相对误差为 2.26%。

【误差分析】

- 1. 记录谱线位置时可能产生偶然误差。
- 2. 读数显微镜固定不牢,转动旋钮产生的移动可能影响数据的准确性。

【思考题】

为什么摄谱仪的底板面必须与照相系统的光轴倾斜,才能使所有谱线同时清晰?

答:因为透镜对不同波长的光的焦距不同,需要通过倾斜的方式使底板处于 各色光的焦平面上。

【原始数据】

実验类型	: □验证 □综合 □设计 □]创新 实验日期:	实验成绩:
			135.83nm
	14.199 14.055		38.380
	14.08	17-719	38.310
3	14.197	17.863	38.504
4	14.116	17.778	38.882
2	14.290	17.960	38.596
6	14.161	17.726	38.399
7	14.268	17.902	38.5-00
8	14.151	17.775	38.349
9	14.205	17.891	38.460
10	14.232	17.748	38.234 5
12- nz-	$\frac{\lambda_1}{n_1} = \frac{\lambda_2 - \lambda_1}{n_2 - n_1}$	$\lambda_x = \lambda_1 + \frac{N_x}{N_x}$	$\frac{-n_1}{ -n_1 }(\lambda_2-\lambda_1)$
		3p 5.4	A