COMS W4733: Computational Aspects of Robotics

Lecture 22: Graph SLAM

Instructor: Tony Dear

State Estimation

Belief distribution

Transition model

$$p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_t)$$

• Observation model $p(\mathbf{z}_t \mid \mathbf{x}_t)$

Bayes Filter Algorithm

```
Algorithm Bayes filter(B(x), d):
          \eta = 0
2.
          if d is an action data item u then
3.
              for all x do
4.
                   B(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{x}',\mathbf{u})B(\mathbf{x}')d\mathbf{x}'
5.
          if d is a perceptual data item z then
6.
              for all x do
                   \overline{B}(x) = p(\mathbf{z}|x)B(x)
7.
8.
                   \eta = \eta + B(x)
              for all x do
9.
                   \overline{B}(x) = \eta^{-1}\overline{B}(x)
10.
          return \overline{B}(x)
11.
```

Prediction:

$$B'(\boldsymbol{x}_t) = \int \underline{p(\boldsymbol{x}_t | \boldsymbol{x}_{t-1}, \boldsymbol{u}_t)} B(\boldsymbol{x}_{t-1}) \ d\boldsymbol{x}_{t-1}$$
Transition model

Observation:

$$B(\mathbf{x}_t) = \eta^{-1} \underline{p(\mathbf{z}_t | \mathbf{x}_t)} B'(\mathbf{x}_t)$$
Observation model

Kalman Filter

Start with current belief distribution:

$$Bel(\boldsymbol{x}_{k-1}) \sim N(\widehat{\boldsymbol{x}}_{k-1|k-1}, P_{k-1|k-1})$$

• Predict according to transition model: $\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + B_k u_k$

$$\mathbf{\hat{x}}_{k|k-1} = \mathbf{F}_k \mathbf{\hat{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k$$

$$\mathbf{P}_{k|k-1} = \mathbf{F}_k \mathbf{P}_{k-1|k-1} \mathbf{F}_k^T + \mathbf{Q}_k$$

Update according to observation model and measurement:

$$K_k = P_{k|k-1}H_k^T (H_k P_{k|k-1}H_k^T + R_k)^{-1}$$

$$\widehat{x}_{k|k} = \widehat{x}_{k|k-1} + K_k (z_k - H_k \widehat{x}_{k|k-1})$$

$$P_{k|k} = P_{k|k-1} - K_k H_k P_{k|k-1}$$

Example: Kalman Filter

Particle Filter

Algorithm **Particle_filter**(X_{t-1} , u_t , z_t):

- 1. $\overline{X}_t = \emptyset, X_t = \emptyset$
- 2. **for** each particle x_{t-1}^j in X_{t-1} **do**
- 3. sample x_t^j from $p(x_t|x_{t-1}^j, u_t)$
- 4. compute weight $w_t^j = p(\mathbf{z}_t | \mathbf{x}_t^j)$
- 5. insert (x_t^j, w_t^j) into \overline{X}_t
- **6**. **for** all *j* **do**
- 7. sample $i \in \{1, 2, ..., J\}$ with prob $\frac{w_t^J}{\sum w_t^J}$
- 8. insert x_t^i from \overline{X}_t into X_t
- 9. return X_t

$$B'(x_t) = \int p(x_t|x_{t-1}, u_t)B(x_{t-1}) dx_{t-1}$$

$$B(\mathbf{x}_t) = \eta^{-1} p(\mathbf{z}_t | \mathbf{x}_t) B'(\mathbf{x}_t)$$

Example: Particle Filter

Example: Particle Filter

Example: Particle Filter

Navigation Tasks

- Localization: Given a map, infer the robot's location
- Variations: Known/unknown initial location, false location (kidnapped robot)
- **Mapping**: Given location(s), infer a map of the environment
 - Manually driven or fully autonomous?
 - How to define exploration of the area?
 - Termination condition?

Map Representations

Grid-based:

Collection of discretized obstacle / free-space pixels

Feature-based:

Collection of landmark locations and correlated uncertainties

Topological:

Collection of nodes and interconnections

Map Representations

	Grid-Based	Feature-Based	Topological
Resolution vs. Scale	Discrete localization	Arbitrary localization	Localize to nodes
Computational Complexity	Grid size <i>and</i> resolution	Landmark covariance (N ²)	Minimal complexity
Obstacle Avoidance	Discretized obstacles	Only structured obstacles	GVG defines the safest path
Exploration Strategies	Frontier-based exploration	No inherent exploration	Graph exploration

SLAM

- Simultaneous localization and mapping (SLAM) entails learning a map and locating the robot at the same time!
- Clearly harder than either problem separately

Main approach: Add the map (e.g., in the form of feature locations) to the state and

update using Bayesian filtering

Map is another hidden state!

Feature-Based SLAM

- At any given time, robot may be able to observe some number of landmarks
- These measurements are always *relative*, not absolute
- Errors in robot pose estimate and map representation are correlated!

Bayes Filter with Landmarks

■ Belief distribution: $B(x_t, m) = p(x_t, m | u_{1:t}, z_{1:t})$

Prediction:

$$B'(\boldsymbol{x}_{t}, \boldsymbol{m}) = \int \underline{p(\boldsymbol{x}_{t} | \boldsymbol{x}_{t-1}, \boldsymbol{u}_{t})} B(\boldsymbol{x}_{t-1}, \boldsymbol{m}) d\boldsymbol{x}_{t-1}$$
Transition model

Observation:

$$B(\mathbf{x}_t, \mathbf{m}) = \eta^{-1} \underbrace{p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m})}_{\text{Observation model}} B'(\mathbf{x}_t, \mathbf{m})$$

Graph SLAM

- We need to be able to correlate different observations of the same landmarks
- Idea: Use a graph to capture structure and constraints between observations
- Nodes: Poses of the robot and landmark locations
- Edges: Spatial constraints between poses due to successive transitions or between poses and landmarks due to observations

 Once graph is constructed, use optimization to minimize the total error as the difference between predicted and actual observations

Graph Construction

- n nodes x_i , one for each robot pose at time t_i
- Odometry edge between x_i and x_{i+1}

• Observation edge if observed l_j from x_i

Graph Construction

Graph Construction

Linear Optimization

- If our models are linear (or can be linearized), then we can solve for bestfitting poses over time and landmark locations using least-squares
- Ex: 1-D state, 3 timesteps, 1 landmark

$$AX = b$$
 Can solve for X by "pseudo-inverting" A

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ L \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \\ -3 \\ -10 \\ -5 \\ -2 \end{bmatrix}$$

Adding Uncertainty

- Recall form of left pseudo-inverse: $\mathbf{X} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$
- How to deal with uncertainty from transitions or observations?
- They will weight our constraints—the greater the uncertainty (variance), the less that we should trust the particular constraint $X = (A^T W A)^{-1} A^T W b$
- **W** is block-diagonal, containing 1/variance terms:

$$W = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Full Graph SLAM Problem

- In the most general case, each constraint represents an error
- Implicit assumption that this is zero-mean, normally distributed
- Odometry constraints weighted by \boldsymbol{Q}_t^{-1}
- Observation constraints weighted by R_t^{-1}
- May also have covariance for initial state x_0
- Loss function to be minimized (may be linearized):

$$J = x_0^T \Omega_0 x_0 + \sum_{t} (x_t - f(x_{t-1}, u_t))^T R_t^{-1} (x_t - f(x_{t-1}, u_t)) + \sum_{t, i} (z_t^i - h(x_t, m_i))^T Q_t^{-1} (z_t^i - h(x_t, m_i))$$

Full Graph SLAM Problem

Example: Graph SLAM

KUKA Halle 22, courtesy P. Pfaff

Summary

- Graph SLAM addresses full problem by optimizing (sparse) link graph between poses and landmarks
- Inference is baked into costs on edges
- Maximum likelihood estimate of both poses and map
- Still haven't really addressed the data association problem
- Long trajectories require more storage; method better suited for offline use
- Next time: Back to probabilistic methods (Kalman and particle filters!)