Exponential Lower-bounds via Exponential Sums

Somnath Bhattacharjee

(Chennai Mathematical Institute)

Joint work with Markus Bläser (Saarland University), Pranjal Dutta (NUS), Saswata Mukherjee (NUS)

(ICALP 2024)

Outline

Motivation

High level idea

Towards Explicitness

Conclusion

Given a word x, check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

Given a word x, check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

M runs in m time

Given a word x, check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

M runs in m time

Running time upper bound : 2ⁿm (Brute force!)

Given a word x, check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

M runs in m time

- Running time upper bound : 2ⁿm (Brute force!)
- Improve to $2^{o(n)} poly(m)$ possible?

Given a word x, check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

M runs in m time

- Running time upper bound : 2ⁿm (Brute force!)
- Improve to $2^{o(n)} poly(m)$ possible?
- ETH says NO! (informally)

Is Brute Force Optimal?

• Can we ask the same question in *algebraic setting*?

Is Brute Force Optimal?

- Can we ask the same question in *algebraic setting*?
- What is even the Computational Model in that setting?

Is Brute Force Optimal?

- Can we ask the same question in algebraic setting?
- What is even the Computational Model in that setting?
- Hence Algebraic Circuit enters the picture

• Arithmetic Circuits are directed acyclic graphs.

- Arithmetic Circuits are directed acyclic graphs.
- Each internal node: + or \times gate.

- Arithmetic Circuits are directed acyclic graphs.
- Each internal node: + or \times gate.
- Each leaf: $\{1,0,-1\}$ or variables X

- Arithmetic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: $\{1,0,-1\}$ or variables X
- Computes a polynomial in Z[X]

- Arithmetic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: $\{1,0,-1\}$ or variables X
- Computes a polynomial in Z[X]
- Complexity Measure: # Edges in the circuit

Given a polynomial $P(X) \in \mathbb{Z}[X]$

Given a polynomial $P(X) \in \mathbb{Z}[X]$

 $\tau(P(X))$: Size of smallest circuit that computes P(X)

Given a polynomial $P(X) \in \mathbb{Z}[X]$

 $\tau(P(X))$: Size of smallest circuit that computes P(X)

Examples

1.
$$\tau(2^{2^k}) = \Theta(k), \qquad \tau(x^n) = \Theta(\log n)$$

Given a polynomial $P(X) \in \mathbb{Z}[X]$

 $\tau(P(X))$: Size of smallest circuit that computes P(X)

Examples

1.
$$\tau(2^{2^k}) = \Theta(k), \qquad \tau(x^n) = \Theta(\log n)$$

1.
$$\tau(2^{2^k}) = \Theta(k), \quad \tau(x^n) = \Theta(\log n)$$

2. $\tau(n!) = ?, \quad \tau(\prod_{i=1}^n (x+i)) = ?$

Given a polynomial $P(X) \in \mathbb{Z}[X]$

 $\tau(P(X))$: Size of smallest circuit that computes P(X)

Examples

1.
$$\tau(2^{2^k}) = \Theta(k), \qquad \tau(x^n) = \Theta(\log n)$$

1.
$$\tau(2^{2^k}) = \Theta(k), \quad \tau(x^n) = \Theta(\log n)$$

2. $\tau(n!) = ?, \quad \tau(\prod_{i=1}^n (x+i)) = ?$

We believe these are $\geq \Omega(n)$

Blum-Shub-Smale Tau-Conjecture:

Blum-Shub-Smale Tau-Conjecture: For $P(x) \in \mathbb{Z}[x]$

Blum-Shub-Smale Tau-Conjecture: For $P(x) \in \mathbb{Z}[x]$

$$\tau(P(x)) \geq [\# \text{ integer roots of } P(x)]^c$$

Blum-Shub-Smale Tau-Conjecture: For $P(x) \in \mathbb{Z}[x]$

 $\tau(P(x)) \geq [\# \text{ integer roots of } P(x)]^c$

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Exponential sum (VNP₀)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Circuit size of g is m, $g[X, Y] \in \mathbb{Z}[X, Y]$.

• Note $\tau(P_{n,m}) \leq 2^n m$

Exponential sum (VNP₀)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

- Note $\tau(P_{n,m}) \leq 2^n m$
- $\tau(P_{m,n}) = 2^{o(n)} poly(m)$ possible?

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

- Note $\tau(P_{n,m}) \leq 2^n m$
- $\tau(P_{m,n}) = 2^{o(n)} poly(m)$ possible?
- Does τ-conjecture imply some lower bound?

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

- Note $\tau(P_{n,m}) \leq 2^n m$
- $\tau(P_{m,n}) = 2^{o(n)} poly(m)$ possible?
- Does τ -conjecture imply some lower bound?
- [Bürgisser'07] showed super-polynomial lowerbound on $P_{m,n}$ assuming τ -conjecture

Main result

Conditional Optimal Lower Bound

Assuming τ -conjecture \exists a polynomial family $P_{n,m}(\mathbf{X}) \in \mathbb{Z}[\mathbf{X}]$ of exponential sum which requires $2^{\Omega(n)} poly(m)$ size circuit.

Bürgisser's Proof analysis

Assume every $P_{n,m}(X)$ has poly(m) circuit

Bürgisser's Proof analysis

Assume every $P_{n,m}(X)$ has poly(m) circuit

 \downarrow

Lots of Bad things happen

Bürgisser's Proof analysis

Assume every $P_{n,m}(X)$ has poly(m) circuit

 \downarrow

Lots of Bad things happen

$$\prod_{i=1}^{n} (x+i) \text{ has easy coefficients}$$

It has poly(log n) size circuit

Bürgisser's Proof analysis: Observations

But we can improve it!

$$\prod_{i=1}^{n} (x+i) = \sum_{k=0}^{n} S_{n,k}(1,\ldots,n) x^{k}$$

$$\prod_{i=1}^{n} (x+i) = \sum_{k=0}^{n} S_{n,k}(1,\ldots,n) x^{k}$$

where

$$S_{n,k}(X_1,\ldots,X_n) = \sum_{S\subseteq [n],|S|=k} \prod_{i\in S} X_i$$

 $1, 2, \ldots, n, x^k$

$$1 \times \ldots \times k$$
, $2 \times \ldots \times (k+1)$, \ldots

$$1, 2, \ldots, n, x^k$$

$$S_{n,k} := 1 \times \cdots \times k + 2 \times \cdots \times (k+1) + \ldots$$

$$1 \times \ldots \times k$$
, $2 \times \ldots \times (k+1)$, \ldots

$$1, 2, \ldots, n, x^k$$

$$S_{n,n}x^n + S_{n,n-1}x^{n-1} + \cdots + S_{n,0}$$

$$S_{n,k} := 1 \times \cdots \times k + 2 \times \cdots \times (k+1) + \ldots$$

$$1 \times \ldots \times k$$
, $2 \times \ldots \times (k+1)$, \ldots

$$1, 2, \ldots, n, x^k$$

$$S_{n,n}x^n + S_{n,n-1}x^{n-1} + \cdots + S_{n,0}$$

3 level

$$S_{n,k} := 1 \times \cdots \times k + 2 \times \cdots \times (k+1) + \ldots$$

2 level

$$1 \times \ldots \times k$$
, $2 \times \ldots \times (k+1)$, \ldots

1 level

$$1, 2, \ldots, n, \quad x^k$$

0 level

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K,

Linear Counting Hierarchy

Given a complexity class K, we define C_{lin} .K by

Linear Counting Hierarchy

Given a complexity class K, we define $\mathbf{C}_{lin}.K$ by $A \in \mathbf{C}_{lin}.K$ if there is some $B \in K$

Linear Counting Hierarchy

Given a complexity class K, we define $\mathbf{C}_{lin}.K$ by $A \in \mathbf{C}_{lin}.K$ if there is some $B \in K$ and a linear function $\ell : \mathbb{N} \to \mathbb{N}$, $\ell(n) = O(n)$

Linear Counting Hierarchy

```
Given a complexity class K, we define \mathbf{C}_{lin}.K by A \in \mathbf{C}_{lin}.K if there is some B \in K and a linear function \ell : \mathbb{N} \to \mathbb{N}, \ \ell(n) = O(n) and some polynomial time computable function f : \{0,1\}^* \to \mathbb{N}
```

Linear Counting Hierarchy

Given a complexity class K, we define $\mathbf{C}_{lin}.K$ by $A \in \mathbf{C}_{lin}.K$ if there is some $B \in K$ and a linear function $\ell : \mathbb{N} \to \mathbb{N}$, $\ell(n) = O(n)$ and some polynomial time computable function $f : \{0,1\}^* \to \mathbb{N}$ such that,

$$x \in A \iff |\{y \in \{0,1\}^{\ell(|x|)} : \langle x,y \rangle \in B\}| > f(x).$$

Linear Counting Hierarchy

Given a complexity class K,

Linear Counting Hierarchy

Given a complexity class K, We define $\operatorname{C-lin}_0 K := K$ and for all $k \in \mathbb{N}$, $\operatorname{C-lin}_{k+1} K := \mathbf{C}_{\operatorname{lin}} \cdot \operatorname{C-lin}_k K$.

Linear Counting Hierarchy

Given a complexity class K,

We define C-lin₀K := K and for all $k \in \mathbb{N}$,

 $C-lin_{k+1}K := \mathbf{C}_{lin}.C-lin_kK.$

The linear counting hierarchy is $CH_{lin}K := \bigcup_{k>0} C-lin_k K$

Linear Counting Hierarchy (CH_{lin})

Characterization of CH_{lin}

 $(k+1)^{th}$ level of CH_{lin} is Exponential sum of k^{th} level

Characterization of CH_{lin}

 $(k+1)^{th}$ level of CH_{lin} is Exponential sum of k^{th} level

Hence Exponential sum is EASY \implies CH_{lin} collapses

$$\implies \prod_{i=1}^{n} (x+i)$$
 is EASY

Permanent

Given a variable matrix

$$\mathbf{X} := \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & & \ddots & \vdots \\ X_{n1} & X_{s2} & \dots & X_{nn} \end{bmatrix}_{n \times n}$$

Permanent

Given a variable matrix

$$\mathbf{X} := \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & & \ddots & \vdots \\ X_{n1} & X_{s2} & \dots & X_{nn} \end{bmatrix}_{n \times n}$$

$$Per_n(\mathbf{X}) := \sum_{\sigma \in S_n} X_{1,\sigma_1} X_{2,\sigma_2} \dots X_{n,\sigma_n}$$

Ryser formula: Per_n can be written as Exponential sum (n, n^2)

Ryser formula: Per_n can be written as Exponential sum (n, n^2)

Ryser formula: Per_n can be written as Exponential sum (n, n^2)

[Valiant 79]: Any Exponential sum (n, m) can be written as *Per* of $m^4 \times m^4$ matrix with entries 1, 0, -1, X

Super Polynomial lower bound on Exponential sum

Super Polynomial lower bound on Per

Ryser formula: Per_n can be written as Exponential sum (n, n^2)

- Super Polynomial lower bound on Exponential sum <=>
 Super Polynomial lower bound on Per
- NOT true for Exponential lower bounds

Ryser formula: Per_n can be written as Exponential sum (n, n^2)

- Super Polynomial lower bound on Exponential sum

 Super Polynomial lower bound on Per
- NOT true for Exponential lower bounds
- We gave $2^{n^{1/8}}$ lower bound for Per_n

Ryser formula: Per_n can be written as Exponential sum (n, n^2)

- Super Polynomial lower bound on Exponential sum

 Super Polynomial lower bound on Per
- NOT true for Exponential lower bounds
- We gave $2^{n^{1/8}}$ lower bound for Per_n (Conditionally)

Other Results

1. We achieved optimal lower bound from tau conjecture for Parameterized Algebraic classes defined in [Bläser and Engles 18] (which are analogous to #W[t] classes)

Other Results

- We achieved optimal lower bound from tau conjecture for Parameterized Algebraic classes defined in [Bläser and Engles 18] (which are analogous to #W[t] classes)
- 2. We achieved completeness result for parameterized valiant classes.

Open Problems

- 1. Can we established conditional truly exponential (ie, $2^{\Omega(n)} poly(n)$) lower bound for Per_n ? (Unconditional will be better :))
- Can we get Lower Bounds for NP from tau-conjecture? (We don't know even super-polynomial bound)