Notations

The book makes use of large number of notations; we have striven to stick to accepted notation and to be consistent throughout the book. The coordinates of a vector are always denoted by a subscript index, $x = (x_i)_{i=1}^n$, while the indices of the elements of sequences are always denoted by a superscript index, x^1, x^2, \ldots The index of a player in a set of players is always denoted by a subscript index, while a time index (in repeated games) is always denoted by a superscript index. The end of the proof of a theorem is indicated by \square , the end of an example is indicated by \blacktriangleleft , and the end of a remark is indicated by \spadesuit .

For convenience we provide a list of the mathematical notation used throughout the book, accompanied by a short explanation and the pages on which they are formally defined. The notations that appear below are those that are used more than once.

$\frac{0}{0}$	chance move in an extensive-form game	50
0	origin of a Euclidean space	570
Ø	strategy used by a player who has no decision vertices in an extensive-form game	5
1_{A}	function that is equal to 1 on event A and to 0 otherwise	595
2^{Y}	collection of all subsets of Y	325
X	number of elements in finite set X	603
$ x _{\infty}$	$L_{\infty} \text{ norm, } x _{\infty} := \max_{i=1,2,\dots,n} x_i $	531
x	norm of a vector, $ x := \sqrt{\sum_{l=1}^{d} (x_l)^2}$	570
$A \vee B$	maximum matching (for men) in a matching problem	895
$A \wedge B$	maximum matching (for women) in a matching problem	896
$A \subseteq B$	set A contains set B or is equal to it	
$A \subset B$	set A strictly contains set B	
$\langle x, y \rangle$	inner product	570
$\langle\langle x^0,\ldots,x^k\rangle\rangle$	k-dimensional simplex	920
\succsim_i	preference relation of player i	14
\succ_i	strict preference relation of player i	10
$pprox_i$	indifference relation of player i	10, 897
\succsim_P	preference relation of an individual	857
\succ_Q	strict preference relation of society	857
$pprox_{Q}$	indifference relation of society	857
$x \ge y$	$x_k \ge y_k$ for each coordinate k, where x, y are vectors in	
	a Euclidean space	625
x > y	$x \ge y$ and $x \ne y$	625

$x \gg y$	$x_k > y_k$ for each coordinate k, where x, y are vectors in	
	a Euclidean space	625
x + y	sum of vectors in a Euclidean space, $(x + y)_k := x_k + y_k$	625
xy	coordinatewise product of vectors in a Euclidean space,	
	$(xy)_k := x_k y_k$	625
x + S	$x + S := \{x + s : s \in S\}$, where $x \in \mathbb{R}^d$ and $S \subseteq \mathbb{R}^d$	625
xS	$xS := \{xs : s \in S\}$, where $x \in \mathbb{R}^d$ and $S \subseteq \mathbb{R}^d$	625
cx	product of real number c and vector x	625
cS	$cS := \{cs : s \in S\}$, where c is a real number and $S \subseteq \mathbb{R}^d$	625
S+T	sum of sets; $S + T := \{x + y : x \in S, y \in T\}$	625
$\lceil c \rceil$	smallest integer greater than or equal to c	534
$\lfloor c \rfloor$	largest integer less than or equal to c	534
X^{\top}	transpose of a vector, column vector that corresponds to	
	row vector x	571
$\operatorname{argmax}_{x \in X} f(x)$	set of all x where function f attains its maximum	
	in the set <i>X</i>	125, 625
a(i)	producer i's initial endowment in a market	703
A	set of actions in a decision problem with experts	601
A	set of alternatives	856
A_i	player i's action set in an extensive-form game,	
	$A_i := \cup_{j=1}^{k_i} A(U_i^j)$	221
A_k	possible outcome of a game	13
A(x)	set of available actions at vertex x in an extensive-form gam	ne 44
$A(U_i)$	set of available actions at information set U_i of player i in	
	an extensive-form game	54
b_i	buyer i's bid in an auction	91, 466
b(S)	$b(S) = \sum_{i \in S} b_i$ where $b \in \mathbb{R}^N$	669
$br_{I}(y)$	Player I's set of best replies to strategy y	125
$br_{II}(x)$	Player II's set of best replies to strategy x	125
B_i	player <i>i</i> 's belief operator	392
B_i^p	set of states of the world in which the probability that	
ı	player i ascribes to event E is at least p, $B_i^p(E) :=$	
	$\{\omega \in Y : \pi_i(E \mid \omega) \ge p\}$	426
$BZ_i(N; v)$	Banzhaf value of a coalitional game	780
\mathcal{B}	coalitional structure	673
\mathcal{B}_i^T	set of behavior strategies of player i in a T -repeated game	525
$\mathcal{B}_i^{'\infty}$	set of behavior strategies of player i in an infinitely	
1	repeated game	538
c	coalitional function of a cost game	661
c_+	maximum of c and 0	840
c_i	$c_i(v_i) := v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$	501
\dot{C}	function that dictates the amount that each buyer pays given	
	the vector of bids in an auction	466

C(x)	set of children of vertex x in an extensive-form game		5
C(N, v)	core of a coalitional game		687
$C(N, v; \mathcal{B})$	core for a coalitional structure		732
$conv\{x_1,\ldots,x_K\}$	smallest convex set that contains the vectors $\{x_1, \ldots, x_K\}$		
	Also called the convex hull of $\{x_1, \ldots, x_K\}$ 530,	625,	917
d	disagreement point of a bargaining game		625
d_i	debt to creditor <i>i</i> in a bankruptcy problem		833
d^t	distance between average payoff and target set		581
d(x, y)	Euclidean distance between two vectors in Euclidean space		571
d(x, S)	Euclidean distance between point and set		571
$\mathcal{D}(\alpha, x)$	collection of coalitions whose excess is at least α ,		
	$\mathcal{D}(\alpha, x) := \{ S \subseteq N, S \neq \emptyset : e(S, x) \ge \alpha \}$		818
e(S, x)	excess of coalition S , $e(S, x) := v(S) - x(S)$		802
E	set of vertices of a graph	41	1, 43
E	estate of bankrupt entity in a bankruptcy problem		833
E	set of experts in a decision problem with experts		601
F	set of feasible payoffs in a repeated game	530,	578
F	social welfare function		857
F_i	cumulative distribution function of buyer i 's private values		
	in an auction		466
$F_i(\omega)$	atom of the partition \mathcal{F}_i that contains ω		324
F^N	cumulative distribution function of joint distribution of		
	vector of private values in an auction		466
$\mathcal F$	collection of all subgames in the game of chess		5
${\mathcal F}$	family of bargaining games		625
\mathcal{F}^N	family of bargaining games with set of players N		650
\mathcal{F}_d	family of bargaining games in $\mathcal F$ where the set of		
	alternatives is comprehensive and all alternatives are at		
	least as good as the disagreement point, which is $(0,0)$		644
\mathcal{F}_i	player <i>i</i> 's information in an Aumann model of incomplete		
	information		323
g^T	average payoff up to stage T (including) in a repeated game		572
G	graph		41
G	social choice function		865
h	history of a repeated game		525
h_t	history at stage t of a repeated game		602
H(t)	set of <i>t</i> -stage histories of a repeated game	525,	601
$H(\infty)$	set of plays in an infinitely repeated game		538
$H(\alpha, \beta)$	hyperplane, $H(\alpha, \beta) := \{x \in \mathbb{R}^d : \langle \alpha, x \rangle = \beta\}$	577,	943
$H^+(\alpha,\beta)$	half-space, $H^+(\alpha, \beta) := \{x \in \mathbb{R}^d : \langle \alpha, x \rangle \ge \beta\}$	577,	
$H^-(\alpha,\beta)$	half-space, $H^-(\alpha, \beta) := \{x \in \mathbb{R}^d : \langle \alpha, x \rangle \le \beta\}$	577,	943
i	player		
-i	set of all players except of player i		

Notations

I	function that dictates the winner of an auction given the vector of bids	466
J $J(x)$	number of lotteries that compose a compound lottery player who chooses a move at vertex <i>x</i> of an extensive-form	14 n
· /	game	44
$-k$ k_i	player who is not k in a two-player game number of information sets of player i in an extensive-form	571
•	game	54
K	number of outcomes of a game	16
K_i	player i's knowledge operator	325
KS, KS(S)	Kalai–Smorodinsky solution to bargaining games	648
L	lottery: $L = [p_1(A_1), p_2(A_2), \dots, p_K(A_K)]$	13
$\stackrel{L}{\widehat{}}$	number of commodities in a market	703
\widehat{L}	compound lottery: $\widehat{L} = [q_1(L_1), \dots, q_J(L_J)]$	14
$rac{\mathcal{L}}{\widehat{\mathcal{L}}}$	set of lotteries	13
\mathcal{L}	set of compound lotteries	15
$m(\epsilon)$	minimal coordinate of vector ε	264, 268
m_i	number of pure strategies of player i	147
$m_i(S)$	highest possible payoff to player i in a bargaining game	643
M	maximal absolute value of a payoff in a game	521
$M_{m,l}$	space of matrices of dimension $m \times l$	204
$M(\epsilon)$	maximal coordinate of vector ε	264, 268
$\mathcal{M}(N; v; \mathcal{B})$	bargaining set for coalitional structure ${\cal B}$	786
n	number of players	77
n	number of buyers in an auction	466
n_x	number of vertices in subgame $\Gamma(x)$	4
N	- ·	, 833, 660
N	set of buyers in an auction	466
N	set of individuals	856
N	set of producers in a market	703
N	set of natural numbers, $\mathbb{N} := \{1, 2, 3, \ldots\}$	620
N N(N)	$\mathcal{N}(S,d)$, Nash's solution to bargaining games	630
$\mathcal{N}(N;v)$	nucleolus of a coalitional game	805
$\mathcal{N}(N; v; \mathcal{B})$	nucleolus of a coalitional game for coalitional structure \mathcal{B}	805
$\mathcal{N}(N; v; K)$	nucleolus relative to set K	804
0	set of outcomes	13, 43
p	common prior in a Harsanyi game with incomplete	
	information	347
p_k	probability that the outcome of lottery L is A_k	13
p_x	probability distribution over actions at chance move x	50
P	binary relation	857

P	set of all weakly balancing weights for collection \mathcal{D}^* of all coalitions	701
P	common prior in an Aumann model of incomplete information	334
$\mathbf{P}_{\sigma}(x)$	probability that the play reaches vertex x when the players	337
$\mathbf{I}_{\sigma}(x)$	implement strategy vector σ in an extensive-form game	254
$\mathbf{P}_{\sigma}(U)$	probability that the play reaches a vertex in information	254
10(0)	set U when the players implement strategy vector σ in an	
	extensive-form game	273
P^N	vector of preference relations	857
PO(S)	set of efficient (Pareto optimal) points in S	627
$PO^{W}(S)$	set of weakly efficient points in S	627
$\mathcal{P}(A)$	set of all strict preference relations over a set of	027
, (11)	alternatives A	857
$\mathcal{P}(N)$	collection of nonempty subsets of N , $\mathcal{P}(N) :=$	057
, (11)	$\{S \subseteq N, S \neq \emptyset\}$	670, 701
$\mathcal{P}^*(A)$	set of all preference relations over a set of alternatives A	857
$\mathcal{PN}(N;v)$	prenucleolus of a coalitional game	805
$\mathcal{PN}(N; v; \mathcal{B})$	prenucleolus of a coalitional game for coalitional	003
, , , (11, 0, 2)	structure \mathcal{B}	805
q	quota in a weighted majority game	664
q(w)	minimal weight of a winning coalition in a weighted	
	majority game, $q(w) := \min_{S \in \mathcal{M}^m} w(S)$	828
\mathbb{Q}_{++}	set of positive rational numbers	
	total probability that the result of a compound lettery is A	18
r_k	total probability that the result of a compound lottery is A_k	10
$R_1(p)$	set of possible payoffs when Player 1 plays mixed action	576
$\mathbf{p}_{i}(\mathbf{p})$	$p, R_1(p) := \{puq^\top : q \in \Delta(\mathcal{J})\}$	370
$R_2(p)$	set of possible payoffs when Player 2 plays mixed action $q, R_2(p) := \{puq^\top : q \in \Delta(\mathcal{I})\}$	576
\mathbb{R}	$q, K_2(p) := \{puq^{\perp} : q \in \Delta(\mathcal{I})\}$ real line	370
\mathbb{R}_+	set of nonnegative numbers	
\mathbb{R}_{++} \mathbb{R}^n	set of positive numbers n-dimensional Euclidean space	
\mathbb{R}^n_+	nonnegative orthant in an <i>n</i> -dimensional Euclidean space, $\mathbb{R}^n_+ := \{x \in \mathbb{R}^n : x_i \geq 0, \forall i = 1, 2,, n\}$	
\mathbb{R}^S	!	
IIZ -	S -dimensional Euclidean space, where each coordinate	669
man and (C)	corresponds to a player in S	870
range(G)	range of a social choice function	8/0
S	strategy vector	45
\mathfrak{s}	function that assigns a state of nature to each state of	
	the world	323
s^t	action vector played at stage t of a repeated game	525
Si	strategy of player i	45, 56

S_t	state of nature that corresponds to type vector t in a	
	Harsanyi game with incomplete information	347
$\mathfrak{s}^{-1}(C)$	set of states of the world that correspond to a state of	
	nature in C , $\mathfrak{s}^{-1}(C) := \{ \omega \in Y : s(\omega) \in C \}$	330
S	set of all vectors of pure strategies	77
S	set of states of nature in models of incomplete informat	ion 323
S	set of states of nature in a decision problem with expert	s 601
S	set of alternatives in a bargaining game	625
S_i	set of player <i>i</i> 's pure strategies	77
Sh	Shapley value	754
supp	support of a probability distribution	206
supp	support of a vector in \mathbb{R}^n	925
t_i	player <i>i</i> 's type in models of incomplete information	452
T	set of vectors of types in a Harsanyi model of incomple	te
	information	347
T	number of stages in a finitely repeated game	528
T_i	player <i>i</i> 's type set in a Harsanyi model of incomplete	
•	information	347
и	payoff function in a strategic-form game	43, 601
u_i	player <i>i</i> 's utility function	14
u_i	player <i>i</i> 's payoff function	77
u_i	producer <i>i</i> 's production function in a market	703
u_t^i	payoff of player i at stage t in a repeated game	527
u^{t}	vector of payoffs at stage t in a repeated game	527
u(s)	outcome of a game under strategy vector s	45
U_i^j	information set of player i in an extensive-form game	54
U_i	mixed extension of player i's payoff function	147
U(C)	uniform distribution over set C	
$U[\alpha]$	scalar payoff function generated by projecting the payor	ffs
	in direction α in a game with payoff vectors	588
v	value of a two-player zero-sum game	114
v	coalitional function of a coalitional game	660
<u>v</u>	maxmin value of a two-player non-zero-sum game	113
\overline{v}	minmax value of a two-player non-zero-sum game	113
\overline{v}	maximal private value of buyers in an auction	471
v_0	root of a game tree	42, 43
v_i	buyer <i>i</i> 's private value in an auction	91
v^*	superadditive closure of a coalitional game	732
\underline{v}_i	player i's maxmin value in a strategic-form game	103, 104, 176
\overline{v}_i	player i's minmax value in a strategic-form game	177, 529
val(A)	value of a two-player zero-sum game whose payoff	
	function is given by matrix A	588
V	set of edges in a graph	41, 43
V	set of individually rational payoffs in a repeated game	530

V_0	set of vertices in an extensive-form game where a chance		42
V	move takes place		43 43
V_i V_i	set of player <i>i</i> 's decision points in an extensive-form game random variable representing buyer <i>i</i> 's private value in	4	43
v i	an auction	40	67
\mathbb{V}	buyer's set of possible private values in a symmetric auctio		71
\mathbb{V}_i	buyer i 's set of possible private values		66
\mathbb{V}^N	set of vectors of possible private values: $\mathbb{V}^N := \mathbb{V}_1 \times \mathbb{V}_2$		
	$\times \cdots \times \mathbb{V}_n$	40	66
w_i	player i's weight in a weighted majority game	6	64
\mathcal{W}^m	collection of minimal winning coalitions in a simple		
	monotonic game	82	26
x_{-i}	$x_{-i} := (x_j)_{j \neq i}$;	85
x(S)	$x(S) := \sum_{i \in S} x_i$, where $x \in \mathbb{R}^N$	60	69
X	$X := \times_{i \in N} X_i$		2
X_k	space of belief hierarchies of order k		42
X_{-i}	$X_{-i} := \times_{j \neq i} X_j$;	85
X(n)	standard $(n-1)$ -dimensional simplex,	0.1	~ -
W/M	$X(n) := \{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, x_i \ge 0 \ \forall i \}$	9.	35
X(N; v)	set of imputations in a coalitional game,	(74.0)	02
$X^0(N;v)$	$X(N; v) := \{x \in \mathbb{R}^n : x(N) = v(N), x_i \ge v(i) \ \forall i \in N \}$ set of preimputations, $X^0(N; v) :=$	674, 80	UZ
$\mathbf{A}^{-}(\mathbf{IV},\mathbf{U})$	$\{x \in \mathbb{R}^N : x(N) = v(N)\}$	80	05
$X(\mathcal{B};v)$	set of imputations for coalitional structure \mathcal{B} ,	0.	05
11(2,0)	$X(\mathcal{B}; v) := \{x \in \mathbb{R}^N : x(S) = v(S) \ \forall S \in \mathcal{B}, x_i \ge v_i \ \forall i\}$	6	74
$X^0(\mathcal{B};v)$	set of preimputations for coalitional structure \mathcal{B} ,		
. ,	$X^{0}(\mathcal{B}; v) := \{ x \in \mathbb{R}^{N} : x(S) = v(S) \ \forall S \in \mathcal{B} \}$	80	05
Y	set of states of the world	323, 33	34
$\widetilde{Y}(\omega)$	minimal belief subspace in state of the world ω		01
$\widetilde{Y}_i(\omega)$	minimal belief subspace of player i in state of the world ω	40	03
Z_k	space of coherent belief hierarchies of order k	4	45
Z(P,Q;R)	preference relation in which alternatives in R are preferred		
	to alternatives not in R , the preference over alternatives in		
	R is determined by P , and the preference over alternatives		
	not in R is determined by Q	80	66
$Z(P^N, Q^N; R)$	preference profile in which the preference of		
	individual i is $Z(P_i, Q_i; R)$	80	67
eta_i	buyer i's strategy in an auction	40	67
β_i	buyer i's strategy in a selling mechanism	49	95
eta_i^*	buyer i's strategy in a direct selling mechanism in which		۰.
П	he reports his private value		95 = 1
Γ Γ	extensive-form game extension of a strategic-form game to mixed strategies	43, 50, 3	54 47
1	CARCHAROLL OF A MUARCEIC-TOTHE SAILIE TO HITACU MUARCEICS	14	+/

Notations

Γ_T	T-stage repeated game	528
Γ_{λ}	discounted game with discount factor λ	544
Γ_{∞}	infinitely repeated game	539
$\Gamma(x)$	subgame of an extensive-form game that starts at vertex x	4, 45, 55
$\Gamma^*(p)$	extended game that includes a chance move that selects	
	a vector of recommendations according to the probability	
	distribution p in the definition of a correlated equilibrium	305
$\Delta(S)$	set of probability distributions over S	146
ε	vector of constraints in the definition of perfect	
	equilibrium	264
ε_i	vector of constraints of player i in the definition of perfect	
	equilibrium	264
$\varepsilon_i(s_i)$	minimal probability in which player i selects pure	
	strategy s_i in the definition of perfect equilibrium	264
$\theta(x)$	vector of excesses in decreasing order	802
θ_i^k	$A_k \approx [\theta_i^k(A_K), (1 - \theta_i^k)(A_0)]$	20
λ	discount factor in a repeated game	543
λ_{lpha}	egalitarian solution with angle α of bargaining games	640
μ^k	belief hierarchy of order k	442
χ^S	incidence vector of a coalition	693
П	belief space: $\Pi = (Y, \mathcal{F}, s, (\pi_i)_{i \in N})$	466
π_i	player i's belief in a belief space	387
σ	strategy in a decision problem with experts	601
σ_i	mixed strategy of player i	146
σ_{-k}	strategy of the player who is not player k in a two-player	
	game	571
Σ_i	set of mixed strategies of player i	147
$ au_i$	strategy in a game with an outside observer $\Gamma^*(p)$	305
$ au_i$	player i's strategy in a repeated game	525, 538
$ au_i^*$	strategy in a game with an outside observer in which	
	player i follows the observer's recommendation	306
$\varphi, \varphi(S, d)$	solution concept for bargaining games	626
φ	solution concept for coalitional games	673
φ	solution concept for bankruptcy problems	833
Ω	universal belief space	453