Workshop 001 - Documentation

Valentina Bueno Collazos - 2230556

Project objective

This project analyzes data from candidates who participated in job selection processes. It includes an ETL (Extract, Transform, Load) pipeline to create the following visualizations for a dashboard:

- Hires by technology (pie chart)
- · Hires by year (horizontal bar chart)
- · Hires by seniority (bar chart)
- Hires by country over years (multiline chart, focusing on the USA, Brazil, Colombia, and Ecuador only)

Project Structure

```
recruitment_analysis/
   – dashboard/
   hires_visualization.pdf
                                 # PDF export of the dashboard
   – data/
   — candidates.csv
                               # Initial dataset of candidates
   - docs/
   └─ documentation.pdf
                                 # Detailed project documentation
   - images/
                            # Graphs generated during EDA
   plot1.png
      plot2.png
      plot3.png
   – notebooks/
   — 001_initial_data_load.ipynb # Initial data loading
     — 002_eda.ipynb
                               # Exploratory Data Analysis (EDA)
   — 003_clean_transform_load.ipynb # Data cleaning, transformation, and loading
   - scripts/
   — credentials.json
                               # Credentials for database connection
     — db_connector.py
                                # Script to connect and load data to the DB
   - .gitignore
                           # File to ignore files in Git
   - README.md
                               # General project description
```

Project ETL Process

Workshop 001 - Documentation 1

Extraction

Data is loaded from the candidates.csv file located in the data/ folder.

Initial Data Load Process (001_initial_data_load.ipynb)

This notebook performs the initial raw data loading from a CSV file into a PostgreSQL database without any transformations. It serves as the first step in the ETL pipeline.

• System Path Configuration

Adds the project root directory to the system path to enable importing custom scripts

```
import sys
import os
sys.path.append(os.path.abspath(".."))
```

Database Connection

Establishes connection to PostgreSQL using credentials from db_connector.py

```
from scripts.db_connector import get_db_engine
conn = get_db_engine()
```

Table Creation

Creates candidates_initial_data table with schema:

```
CREATE TABLE candidates_initial_data (
    first_name TEXT,
    last_name TEXT,
    email TEXT,
    application_date DATE,
    country TEXT,
    yoe INT,
    seniority TEXT,
    technology TEXT,
    code_challenge_score INT,
    technical_interview_score INT
)
```

· Data Loading

Loads raw CSV data using PostgreSQL COPY command:

```
csv_file_path = os.path.join(os.getcwd(), "data", "candidates.csv")

copy_sql = """COPY candidates_initial_data

FROM stdin

DELIMITER ';'

CSV HEADER;"""
```

Data Verification

Validates successful load with sample query:

```
query = "SELECT * FROM candidates_initial_data LIMIT 10;"

df = pd.read_sql(query, conn)
```

Sample Raw Data Structure

Transformation

EDA (002_EDA.ipynb)

The goal of this notebook is to understand data quality, detect anomalies, and guide subsequent cleaning/transformation steps.

Data Loading

Data was loaded from the candidates_initial_data table in a PostgreSQL database using pandas.read_sql.

- Initial Validations
 - Data Shape and Structure

Data Types:

After validating the DataFrame information, two key aspects were identified:

- 1. Absence of Null Values: No null values were found in any columns of the DataFrame.
- 2. Incorrect Data Type in application_date: Although the application_date column contains dates, its current data type is object. To facilitate analysis, it needs to be converted to datetime.

- Descriptive Statistics
 - Numerical Columns

	yoe	code_challenge_score	technical_interview_score
count	50000.000000	50000.000000	50000.000000
mean	15.286980	4.996400	5.003880
std	8.830652	3.166896	3.165082
min	0.000000	0.000000	0.000000
25%	8.000000	2.000000	2.000000
50%	15.000000	5.000000	5.000000
75%	23.000000	8.000000	8.000000
max	30.000000	10.000000	10.000000

Key Observations:

- \rightarrow yoe ranges from **0–30 years**, with a median of 15.
- \rightarrow Score columns (code_challenge_score , technical_interview_score) follow uniform distributions between **0-10**.
- Categorical Columns

	first_name	last_name	email	application_date	country	seniority	technology
count	50000	50000	50000	50000	50000	50000	50000
unique	3007	474	49833	1646	244	7	24
top	Sarai	Murazik	fern70@gmail.com	2020-07-07	Malawi	Intern	Game Development
freq	33	138	3	50	242	7255	3818

• Duplicate Analysis

Full Duplicates

No duplicate rows were found ($\frac{df.duplicated().sum() = 0}{}$).

```
print(df.duplicated().sum())
0
```

Email Duplicates

167 duplicate emails were identified.

```
print(df["email"].duplicated().sum())

167
```

I decided to retain duplicates as they may represent valid re-applications (confirmed by checking uniqueness across <code>first_name</code>, <code>last_name</code>, and <code>application_date</code>).

```
num_duplicates = df.duplicated(subset=["first_name", "last_name", "email", "application_date"]).sum()
print(f"Total duplicated records: {num_duplicates}")

Total de registros duplicados: 0
```

• Outlier Detection

Numerical Columns

Years of Experience (yoe)

Distribution:

- IQR Analysis:
 - Valid range: [-14.5, 45.5].
 - All values fall within this range. No outliers removed.

Scores (code_challenge_score , technical_interview_score)

Distribution:

- All scores are within the expected 0-10 range.
- Categorical Columns
 - seniority: No unexpected values.

```
print(df['seniority'].unique())
['Intern' 'Mid-Level' 'Trainee' 'Junior' 'Lead' 'Architect' 'Senior']
```

technology: Categories align with job specializations.

```
print(df['technology'].unique())

['Data Engineer' 'Client Success' 'QA Manual'
    'Social Media Community Management' 'Adobe Experience Manager' 'Sales'
    'Mulesoft' 'DevOps' 'Development - CMS Backend' 'Salesforce'
    'System Administration' 'Security' 'Game Development'
    'Development - CMS Frontend' 'Security Compliance'
    'Development - Backend' 'Design'
    'Business Analytics / Project Management' 'Development - Frontend'
    'Development - FullStack' 'Business Intelligence'
    'Database Administration' 'QA Automation' 'Technical Writing']
```

EDA Conclusions to perform transformations

- The data type of application_date should be changed from object to datetime.
- The values of the categorical columns will be standardized by changing them to lowercase letters.
- I'll ad 2 columns: application_status and application_year. This to be able to do the visualizations easily.
- The columns first_name, last_name and email will be deleted because they are not relevant for the visualizations.

Cleaning and transformation (003_clean_transform_load.ipynb)

Data Cleaning

The goal is to prepare raw data for analysis by ensuring consistency and correct data types.

df["application_date"] = df["application_date"].astype("datetime64[ns]")

1. Convert application_date to datetime:

```
Changed the data type of application_date from object to datetime64[ns] to enable time-based operations.
```

```
2. Standardize Categorical Columns:
```

```
Converted all values of email, country, seniority, technology to lowercase to ensure uniformity.
```

```
cols = ["email", "country", "seniority", "technology"]
df[cols] = df[cols].apply(lambda x: x.str.lower())
```

Data Transformations

The goal is to enhance dataset for dashboard visualizations by deriving new metrics and removing non-essential fields.

1. Calculate application_status:

A candidate is marked as "hired" (1) if both code_challenge_score and technical_interview_score are ≥7. Otherwise, "not hired" (0). Then a new column is created and the values calculated by the function are imputed to it.

```
def assign_application_status(df):
    if (df["code_challenge_score"] >= 7) and (df["technical_interview_score"] >= 7):
        return 1
    else:
        return 0
df["application_status"] = df.apply(assign_application_status, axis=1)
```

2. Extract application_year:

Extract application_year from application_date. This to facilitate time-series analysis (e.g., hires per year).

```
df["application_year"] = df["application_date"].dt.year
```

- 3. Remove Non-Essential Columns:
 - Columns Dropped: first_name , last_name , email .
 - Reason: Reduce noise and focus on analytical fields.

```
df.drop(columns=["first_name", "last_name", "email"], inplace=True)
```

Key Considerations

- Data Integrity: No imputation or deletion was needed per EDA conclusions.
- **Performance**: Used vectorized operations (e.g., .dt.year) for efficiency.
- Privacy: Explicit removal of PII (email, first_name, last_name) aligns with GDPR compliance.
- **Dashboard Readiness**: Final schema includes only fields relevant to analytics (e.g., technology, seniority, application_status).

This documentation reflects alignment with the notebook logic, prior discussions on data privacy, and optimization for analytical use cases.

Loading

Load (003_clean_transform_load.ipynb)

The goal of this part of the notebook is to persist cleaned and transformed data into the database for dashboard consumption.

· Database connection

SQLAlchemy engine with credentials loaded from credentials.json.

```
with open("scripts/credentials.json", "r", encoding="utf-8") as file:
    credentials = json.load(file)
pg_engine = create_engine(
    f"postgresql://{credentials['db_user']}:{credentials['db_password']}@{credentials['db_host']}:5432/{credentials['db_name']}"
)
```

· Load Data to Database:

The processed data is loaded into a database

df.to_sql("candidates_final_data", pg_engine, index=False)

Verification:

A sample query confirms successful load.

SELECT * FROM candidates_final_data LIMIT 10;

Visualizations in Power BI

Charts

- 1. Hires by Technology: Pie chart showing hires by technology.
- 2. Hires by Year: Horizontal bar chart showing hires by year.
- 3. Hires by Seniority: Bar chart showing hires by seniority level.
- 4. **Hires by Country Over Years**: Multiline chart showing the evolution of hires in the USA, Brazil, Colombia, and Ecuador.

Analysis

- 1. Hiring trends by country and year:
 - There is variability in hiring in different countries over time.
 - Brazil and Colombia have maintained a steady flow of hires, while Ecuador had an increase in 2020 and then a
 drop.
 - The U.S. shows a decrease in hires from 2018 to 2021, with a slight recovery in 2022.

2. Hirings by seniority level:

• The distribution of hires by experience level is fairly balanced.

• Interns, juniors, trainees and architects have similar volumes of hires, indicating a diversified hiring strategy in terms of experience.

3. Hirings by year:

- There was a high volume of hires between 2018 and 2021, with a notable decrease in 2022.
- This could indicate a reduction in demand for talent or changes in hiring strategy.

4. Hiring by technology:.

- · There is a high diversity in the technologies hired.
- Some of the most represented include Game Development, DevOps and System Administration.
- This analysis allows us to identify which technology areas are most in demand and where future hiring strategies could be focused.

Usage Instructions

Requirements

The technologies used are:

- Python
 - o Libraries: Pandas , Psycopg2, SQLAlchemy, Matplotlib, Pandas, Seaborn
- Jupyter Notebook
- PostgreSQL
- · PowerBl Desktop

Steps to Run the Project

- 1. Clone the repository.
- 2. Install dependencies: pip install -r requirements.txt.
- 3. Run the notebooks in order:
 - 001_initial_data_load.ipynb: Initial data loading.
 - 002_eda.ipynb: Exploratory Data Analysis.
 - 003_clean_transform_load.ipynb: Data cleaning, transformation, and loading.
- 4. Open the hires_visualization.pbix file in Power BI to view the visualizations.

Conclusion

This project provides a clear and detailed view of recruitment processes, enabling the identification of trends and data-driven decision-making. The documentation and code are designed to be easy to understand, reproduce, and maintain.