PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN APUNTE IIC2223

Teoría de Autómatas y Lenguajes Formales

Autor Cristóbal Rojas En base a apuntes de Prof. Cristian RIVEROS

16 de noviembre de 2022

${\bf \acute{I}ndice}$

1.	Alg	oritmos para lenguajes libres de contexto	2
	1.1.	Autómatas apiladores	2
		1.1.1. Versión normal	2
		1.1.2. Versión alternativa	4
	1.2.	Autómatas apiladores vs gramáticas libres de contexto	6
		1.2.1. Desde CFG a PDA	7
		1.2.2 Desde PDA a CFG	8

1. Algoritmos para lenguajes libres de contexto

1.1. Autómatas apiladores

1.1.1. Versión normal

Figura 1: Idea de un autómata apilador

Definición. Un autómata apilador (*PushDown Automata*, PDA) es una estructura:

$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$

- Q es un conjunto finito de **estados**.
- Σ es el alfabeto del **input**.
- $q_0 \in Q$ es el estado **inicial**.
- F es el conjunto de estados **finales**.
- Γ es el alfabeto de **stack**.
- $\bot \in \Gamma$ es el símbolo **inicial del stack** (fondo).
- $\Delta \subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ es una relación finita de transición.

Intuitivamente, la transición:

$$((p, a, A), (q, B_1 B_2 \cdots B_k)) \in \Delta$$

si el autómata apilador está:

- ullet en el estado p, leyendo a, y en el tope del stack hay una A, entonces:
- cambia al estado q, y modifico el tope A por $B_1B_2\cdots B_k$.

Intuitivamente, la transición en vacío:

$$((p,\epsilon,A),(q,B_1B_2\cdots B_k))\in\Delta$$

si el autómata apilador está:

- \bullet en el estado p, sin lectura de una letra, y en el tope del stack hay una A, entonces:
- cambia al estado q, y modifico el tope A por $B_1B_2\cdots B_k$.

Ejemplo 1.1

$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, \{q_f\})$$

$$(q_0, a, \bot, q_0, A \bot) \quad q_0 \bot \xrightarrow{a} q_0 A \bot$$

$$(q_0, a, A, q_0, AA) \quad q_0 A \xrightarrow{a} q_0 AA$$

$$(q_0, b, A, q_1, \epsilon) \quad q_0 A \xrightarrow{b} q_1$$

$$(q_1, b, A, q_1, \epsilon) \quad q_1 A \xrightarrow{b} q_1$$

$$(q_1, \epsilon, \bot, q_f, \epsilon) \quad q_1 \bot \xrightarrow{\epsilon} q_f$$

Notación. Dada una palabra $A_1A_2...A_k \in \Gamma^+$ decimos que:

- $A_1 A_2 \dots A_k$ es un stack (contenido),
- A_1 es el **tope** del stack y
- $A_2 \dots A_k$ es la **cola** del stack.

Definición. Una configuración de \mathcal{P} es una tupla $(q \cdot \gamma, w) \in (Q \cdot \Gamma^*, \Sigma^*)$ tal que:

- \bullet q es el estado actual.
- γ es el contenido del stack.
- \bullet w es el contenido del input.

Decimos que una configuración:

$$(q \cdot \gamma, w) \in (Q \cdot \Gamma^*, \Sigma^*)$$

- es inicial si $q \cdot \gamma = q_0 \cdot \bot$.
- es final si $q \cdot \gamma = q_f \cdot \epsilon$ con $q_f \in F$ y $w = \epsilon$.

Definición. Se define la relación $\vdash_{\mathcal{P}}$ de **siguiente-paso** entre configuraciones de \mathcal{P} :

$$(q_1 \cdot \gamma_1, w_1) \vdash_{\mathcal{P}} (q_2 \cdot \gamma_2, w_2)$$

si, y sólo si, existe una transición $(q_1, a, A, q_2, \alpha) \in \Delta$ y $\gamma \in \Gamma^*$ tal que:

 $\bullet \ w_1 = a \cdot w_2$

Se define $\vdash_{\mathcal{P}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{P}}$. En otras palabras:

 $(q_1\gamma_1,w_1)\vdash_{\mathcal{P}}^* (q_2\gamma_2,w_2)$ si uno puede ir de $(q_1\gamma_1,w_1)$ a $(q_2\gamma_2,w_2)$ en 0 o más pasos.

Ejemplo 1.2

Para la palabra w = aaabbb, tenemos la ejecución:

Definiciones. \mathcal{P} acepta w si, y sólo si, $(q_0 \perp, w) \vdash_{\mathcal{P}}^* (q_f, \epsilon)$ para algún $q_f \in F$. El **lenguaje aceptado** por \mathcal{P} se define como:

$$\mathcal{L}(\mathcal{P}) = \{ w \in \Sigma^* | \mathcal{P} \text{ acepta } w \}$$

Ejemplo 1.3

El lenguaje aceptado por el PDA utilizado en los ejemplos anteriores es $\mathcal{L}(\mathcal{P}) = \{a^n b^n \mid n \geq 0\}.$

1.1.2. Versión alternativa

Esta definición de autómata apilador es poco común pero trae algunas ventajas:

- Es un modelo que ayuda a entender mejor los algoritmos de evaluación para gramáticas.
- Es un modelo menos estándar pero mucho más sencillo.
- Al profe Cristian le gustó y lo encontró interesante.

Definición. Un PDA alternativo es una estructura:

$$\mathcal{D} = (Q, \Sigma, \Delta, q_0, F)$$

- Q es un conjunto finito de **estados**.
- Σ es el alfabeto del **input**.

- $q_0 \in Q$ es el estado inicial.
- F es el conjunto de estados **finales**.
- $\Delta \subseteq Q^+ \times (\Sigma \cup \{\epsilon\}) \times Q^*$ es una relación finita de transición.

Intuitivamente, la transición:

si el autómata apilador tiene:

• $A_1 \dots A_i$ en el tope del stack y leyendo a,

entonces:

• cambia el tope $A_1 \dots A_i$ por $B_1 \dots B_j$.

En este tipo de autómata apilador, no hay diferencia entre estados y alfabeto del stack.

Definición. Una configuración de \mathcal{D} es una tupla

$$(q_1 \dots q_k, w) \in (Q^+, \Sigma^*)$$

tal que:

- $q_1 \dots q_k$ es el contenido del stack con q_1 el tope del stack.
- w es el contenidod el input.

Decimos que una configuración:

- (q_0, w) es inicial.
- (Q_f, ϵ) es final si $q_f \in F$.

Definición. Se define la relación $\vdash_{\mathcal{D}}$ de **siguiente-paso** entre configuraciones de \mathcal{D} :

si, y sólo si, existe una transición $(\alpha, a, \beta) \in \Delta$ y $\gamma \in \Gamma^*$ tal que:

- $\bullet \ w_1 = a \cdot w_2$

Se define $\vdash^*_{\mathcal{D}}$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{D}}$.

Definiciones. \mathcal{D} acepta w si, y sólo si, $(q_0, w) \vdash_{\mathcal{D}}^* (q_f, \epsilon)$ para algún $q_f \in F$. Además, el **lenguaje** aceptado por \mathcal{D} se define como:

$$\mathcal{L}(\mathcal{D}) = \{ w \in \Sigma^* || \mathcal{D} \text{ acepta } w \}$$

Ejemplo 1.4

$$\mathcal{D} = (Q, \{a, b\}, \Delta, q_0, F)$$

• $Q = \{ \bot, q_0, q_1, q_f \}$ y Δ :

$$\mathcal{L}(\mathcal{D}) = \{ a^n b^n \mid n \ge 1 \}$$

Teorema 1

Para todo autómata apilador \mathcal{P} existe un autómata apilador alternativo \mathcal{D} , y viceversa, tal que:

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{D})$$

El teorema anterior nos dice que podemos usar ambos modelos de manera equivalente.

1.2. Autómatas apiladores vs gramáticas libres de contexto

¿En qué se parecen CFG a PDA?

Figura 2: Gramáticas vs Autómatas apiladores

Teorema 2

Todo lenguaje libre de contexto puede ser descrito equivalentemente por:

- ◆ Una gramática libre de contexto (CFG).
- ullet Un autómata apilador (**PDA**).

1.2.1. Desde CFG a PDA

Partimos enunciado un teorema:

Teorema 3

Para toda gramática libre de contexto \mathcal{G} , existe un **autómata apilador alternativo** \mathcal{D} , tal que:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{D})$$

Construcción \mathcal{D} desde \mathcal{G} . Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG. Construimos un PDA alternativo \mathcal{D} que acepta $\mathcal{L}(\mathcal{G})$:

$$\mathcal{D} = \left(V \cup \Sigma \cup \{q_0, q_f\}, \Sigma, \Delta, q_0, \{q_f\}\right)$$

La relación de transición Δ se define como:

$$\begin{array}{lll} \Delta & = & \{(q_0,\epsilon,S\cdot q_f)\} & & \cup \\ & & \{(X,\epsilon,\gamma)\mid X\to\gamma\in P\} & \cup & \textbf{(Expandir)} \\ & & \{(a,a,\epsilon)\mid a\in\Sigma\} & \textbf{(Reducir)} \end{array}$$

Demostración $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{D})$. Debemos demostrar dos direcciones: $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{D})$ y $\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$.

Demostración $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{D})$. Para cada $w \in \mathcal{L}(\mathcal{G})$ debemos encontrar una ejecución de aceptación de \mathcal{D} sobre w. ¿Cómo encontramos esta ejecución? La idea es que para cada árbol de derivación \mathcal{T} de \mathcal{G} sobre w, construimos una ejecución de \mathcal{D} sobre w que recorre el árbol \mathcal{T} en **profundidad** (DFS). Por tanto, debemos usar **inducción** sobre la altura del árbol \mathcal{T} .

Hipótesis de inducción. Para todo árbol de derivación \mathcal{T} de \mathcal{G} con altura h tal que:

- la raíz de \mathcal{T} es X, y
- \bullet \mathcal{T} produce la palabra w

entonces $(X \cdot \gamma, w) \vdash_{\mathcal{D}}^* (\gamma, \epsilon)$ para todo $\gamma \in Q^+$.

Caso base: h = 1. Si \mathcal{T} tiene altura 1, entonces:

- \mathcal{T} produce la palabra w = a para algún $a \in \Sigma$ y
- \mathcal{T} consiste de un nodo X y un hijo a con $X \to a$.

Entonces para todo $\gamma \in Q^+$:

$$(X \cdot \gamma, a) \vdash_{\mathcal{D}} (a \cdot \gamma, a) \vdash_{\mathcal{D}} (\gamma, \epsilon)$$

es una ejecución de \mathcal{D} sobre a.

Caso inductivo: h = n. Suponemos que el árbol de derivación \mathcal{T} de \mathcal{G} tiene altura n tal que:

- la raíz de \mathcal{T} es X, y
- \mathcal{T} produce la palabra w.

Sin pérdida de generalidad, suponga que \mathcal{T} es de la forma:

donde $w = u \cdot v$ y $X \to YZ$. Por HI, se tiene que para todo $\gamma_1, \gamma_2 \in Q^+$:

$$(Y \cdot \gamma_1, u) \vdash_{\mathcal{D}}^* (\gamma_1, \epsilon)$$
$$(Z \cdot \gamma_2, v) \vdash_{\mathcal{D}}^* (\gamma_2, \epsilon)$$

Para $\gamma \in Q^+$ construimos la siguiente ejecución de \mathcal{D} sobre w = uv:

$$(X \cdot \gamma, uv) \vdash_{\mathcal{D}} (YZ \cdot \gamma, uv) \vdash_{\mathcal{D}}^{*} (Z \cdot \gamma, v) \vdash_{\mathcal{D}}^{*} (\gamma, \epsilon)$$

La demostración de $\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$ se deja como ejercicio propuesto al lector.

1.2.2. Desde PDA a CFG

Partimos enunciando el siguiente teorema:

Teorema 4

Para todo autómata apilador \mathcal{P} , existe una gramática libre de contexto \mathcal{G} tal que:

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{G})$$

Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{G})$. Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA (normal). Los pasos a seguir son:

- 1. Convertir \mathcal{P} a un PDA \mathcal{P}' con **UN solo estado**.
- 2. Convertir \mathcal{P}' a una gramática libre de contexto \mathcal{G} .

Paso 1. Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA. Podemos analizar:

- ¿Por qué NO necesitamos la información de los estados?
- ¿Cómo guardamos la información de los estados en el stack?

Esto conlleva a la siguiente pregunta: Si el PDA está en el estado p y en el tope del stack hay una A, ¿a cuál estado llegaré al remover A del stack?

La solución a esta pregunta es que podemos **adivinar** (no-determinismo) el estado que vamos a llegar cuando removamos A del stack.

Sin pérdida de generalidad, podemos asumir que

1. Todas las transiciones son de la forma:

$$qA \xrightarrow{c} pB_1B_2$$
 o $qA \xrightarrow{c} p\epsilon$

con $c \in (\Sigma \cup \{e\})$.

2. Existe $q_f \in Q$ tal que si $w \in \mathcal{L}(\mathcal{P})$ entonces:

$$(q_0 \perp, w) \vdash_{\mathcal{D}}^* (q_f, \epsilon)$$

Estos dos puntos nos aseguran que siempre llegamos al **mismo estado** q_f . Luego, construimos el autómata apilador \mathcal{P}' con **un solo estado**:

$$\mathcal{P}' = (\{q\}, \Sigma, \Gamma', \Delta', \{q\}, \bot', \{q\})$$

 $\bullet \ \Gamma' = Q \times \gamma \times Q.$

" $(p, A, q) \in \Gamma'$ si desde p leyendo A en el tope del stack llegamos a q al hacer pop de A".

• $\bot' = (q_0, \bot, q_f).$

"El autómata parte en q_0 y al hacer pop de \perp llegará a q_f ".

• Si $pA \xrightarrow{c} p'B_1B_2 \in \Delta$ con $c \in (\Sigma \cup \{\epsilon\})$, entonces **para todo** $p_1, p_2 \in Q$:

$$q(p, A, p_2) \xrightarrow{c} q(p', B_1, p_1)(p_1, B_2, p_2) \in \Delta'$$

• Si $pA \xrightarrow{c} p' \in \Delta$ con $c \in (\Sigma \cup \{\epsilon\})$, entonces:

$$q(p, A, p') \stackrel{c}{\rightarrow} q \in \Delta'$$

Hipótesis de inducción (en el número de pasos n). Para todo $p, p' \in Q, A \in \Gamma$ y $w \in \Sigma^*$ se cumple que:

$$(pA, w) \vdash_{\mathcal{D}}^{n} (p', \epsilon)$$
 si, y solo si, $(q(p, A, p'), w) \vdash_{\mathcal{D}'}^{n} (q, \epsilon)$

donde $\vdash_{\mathcal{P}}^{n}$ es la relación de **siguiente-paso** de \mathcal{P} *n*-veces.

Si demostramos esta hipótesis, habremos demostrado que $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$. ¿Por qué?

Caso base: n=1. Para todo $p,p'\in Q,$ y $A\in \Gamma$ se cumple que:

$$(pA, c) \vdash_{\mathcal{P}} (p', \epsilon)$$
 si, y solo si, $(q(p, A, p'), c) \vdash_{\mathcal{P}'} (q, \epsilon)$

para todo $c \in (\Sigma \cup \{\epsilon\}).$

Caso inductivo. Sin pérdida de generalidad, suponga que $pA \stackrel{a}{\to} p_1A_1A_2$ y w = auv, entonces

$$(pA, \underbrace{auv}_{w}) \vdash_{\mathcal{P}}^{n} (p', \epsilon) \text{ ssi } (pA, auv) \vdash_{\mathcal{P}} (p_{1}A_{1}A_{2}, uv) \vdash_{\mathcal{P}}^{i} (p_{2}A_{2}, v) \vdash_{\mathcal{P}}^{j} (p', \epsilon)$$

ssi
$$(p_1A_1, u) \vdash^{i}_{\mathcal{P}} (p_2, \epsilon)$$
 y $(p_2A_2, v) \vdash^{j}_{\mathcal{P}} (p', \epsilon)$

ssi
$$(q(p_1, A_1, p_2), u) \vdash_{\mathcal{P}'}^{i} (q, \epsilon) y \quad (q(p_2, A_2, p'), v) \vdash_{\mathcal{P}'}^{j} (q, \epsilon)$$

ssi
$$(q(p, A, p'), auv) \vdash_{\mathcal{P}} (q(p_1, A_1, p_2)(p_2, A_2, q)), uv) \vdash_{\mathcal{P}}^{i+j} (q, \epsilon)$$

Paso 2. Sea $\mathcal{P}=(\{q\},\Sigma,\Gamma,\Delta,q,\perp,\{q\})$ un PDA con **UN solo estado**. Contruimos la gramática:

$$\mathcal{G} = (V, \Sigma, P, \bot)$$

- $V = \gamma$.
- $\bullet \ \mbox{Si} \ qA \xrightarrow{\epsilon} q\alpha \in \Delta \mbox{ entonces } A \rightarrow \alpha \in P$

La demostración de este paso queda como ejercicio propuesto al lector.