Scikit-learn is a library for Python that provides machine learning developers with many unsupervised and supervised learning algorithms.

In [1]:

```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

```
Bad key "text.kerning_factor" on line 4 in C:\Users\91920\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\_cla ssic_test_patch.mplstyle.

You probably need to get an updated matplotlibrc file from https://github.com/matplotlib/matplotlib/blob/v3.1.3/matplotlibrc.template (https://github.com/matplotlib/matplotlib/blob/v3.1.3/matplotlibrc.templat e) or from the matplotlib source distribution
```

In [3]:

```
dataset = pd.read_csv('E:/Machine Learning/Linear Regression/Salary_Data.csv')
```

In [5]:

dataset

Out[5]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

In [6]:

```
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
```

In [6]:

```
dataset.iloc[:, 1]
```

Out[6]:

```
0
       39343.0
1
       46205.0
2
       37731.0
3
       43525.0
4
       39891.0
5
       56642.0
6
       60150.0
7
       54445.0
8
       64445.0
9
       57189.0
10
       63218.0
11
       55794.0
12
       56957.0
13
       57081.0
14
       61111.0
15
       67938.0
16
       66029.0
17
       83088.0
18
       81363.0
19
       93940.0
20
       91738.0
21
       98273.0
22
      101302.0
23
      113812.0
24
      109431.0
25
      105582.0
26
      116969.0
27
      112635.0
28
      122391.0
29
      121872.0
Name: Salary, dtype: float64
```

In [7]:

dataset.iloc[:, :-1]

Out[7]:

YearsExperience		
0	1.1	
1	1.3	
2	1.5	
3	2.0	
4	2.2	
5	2.9	
6	3.0	
7	3.2	
8	3.2	
9	3.7	
10	3.9	
11	4.0	
12	4.0	
13	4.1	
14	4.5	
15	4.9	
16	5.1	
17	5.3	
18	5.9	
19	6.0	
20	6.8	
21	7.1	
22	7.9	
23	8.2	
24	8.7	
25	9.0	
26	9.5	
27	9.6	
28	10.3	
29	10.5	

```
In [7]:
```

```
dataset.head()
```

Out[7]:

YearsExperience		Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0

In [8]:

```
dataset.shape
```

Out[8]:

(30, 2)

In [9]:

X.shape

Out[9]:

(30, 1)

In [10]:

```
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.80)
```

In [11]:

```
print(X_train.shape)
print(X_test.shape)
```

(24, 1) (6, 1)

In [13]:

```
print(y_train.shape)
print(y_test.shape)
```

(24,)

(6,)

```
In [12]:
```

```
# Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
cdac = LinearRegression()
cdac.fit(X_train, y_train)
Out[12]:
LinearRegression()
In [13]:
print(cdac.intercept_)
print(cdac.coef_)
26563.554306667575
[9456.23662661]
In [15]:
# Predicting the Test set results
y_pred = cdac.predict(X_test)
In [16]:
y_pred
Out[16]:
array([ 63442.87715046, 123962.79156079, 65334.12447578, 45476.02755989,
       117343.42592216, 64388.50081312])
In [17]:
y_test
Out[17]:
```

array([63218., 122391., 57081., 43525., 112635., 56957.])

In [18]:

```
# Visualising the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, cdac.predict(X_train), color = 'blue')
```

Out[18]:

[<matplotlib.lines.Line2D at 0x1987edcc048>]

In [19]:

```
# Visualising the Test set results
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_test, cdac.predict(X_test), color = 'blue')
plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()
```


In [20]:

import sklearn.metrics as metrics

In [21]:

```
mse = metrics.mean_squared_error(y_test,y_pred)
print("Mean Squared Error {}".format(mse))
```

Mean Squared Error 25306358.26590493

In [24]:

```
from sklearn.metrics import r2_score
r2_score(y_test, y_pred)
```

Out[24]:

0.9628229021977678

There are four assumptions associated with a linear regression model:

Linearity: The relationship between X and the mean of Y is linear.

Homoscedasticity: The variance of residual is the same for any value of X.

Independence: Observations are independent of each other.

Normality: For any fixed value of X, Y is normally distributed.

In []: