

MAXIMUM LIKELIHOOD AND LEAST JOWARES
how do we get the best model y?
$y = f(x, w) + \epsilon$
$\hat{y} = f(x, w) + \epsilon$ Liquinian addition moine
$P(\epsilon) = \mathcal{N}(H=0, 6=1)$
Gnormal digt.
let's write down the probability of getting
an autput y given a model y
P(y y) = P(y x,w,p)
$= \mathcal{N}\left(\mathcal{Y}\left\{\mathcal{S},\mathcal{W}\right\},\frac{1}{B}\right)$
the probability is a Gaussian with mean
$\mu = f(x, y)$ ethe prediction and varion a B
FROM NOW ON
· we drop the dependence of p on x
· we write f m condensed form $f(x, w) = W^{\dagger} \phi(x)$

goal: maximize
$$p(y|w,z)$$

minimize $E(w)$

The serious $E(w)$

The serious $E(w)$
 $P(y|w,z) = \sum_{i=1}^{m} [y_i - w^T \phi(x_i)] \phi(x_i)$
 $P(y|w,z) = \sum_{i=1}^{m} [y_i - w^T \phi(x_i)] \phi(x_i)$
 $P(w,z) = \sum_{i=1}^{m} [y_i - w^T \phi(x_i)] \phi(x_i)$
 $P(w,z)$