Correction TD2 2020

I. On utilise un thermocouple fer-constantan.

Les deux fils, le fer métallique et l'alliage constantan sont soudés à leurs extrémités. Lorsque les deux soudures S1 et S2 sont portées à des températures différentes, on peut constater l'existence d'une tension Uthermocouple entre les deux soudures. S1 la soudure dite froide reste à température fixe, la température de la soudure S2 dite chaude varie, selon la température que l'on désire mesurer.

 La soudure froide S₁ étant dans les deux cas à la température θ₁ de 20°C, on fait les deux mesures suivantes:

premier cas: Température de
$$S_2$$
: $\theta_2 = 0^{\circ}C$ $U_{thermocouple} = -1,10 \text{ mV}$ deuxième cas: Température de S_2 : $\theta_2 = 600^{\circ}C$ $U_{thermocouple} = 33,75 \text{ mV}$

Calculer la sensiblité moyenne s $_{moy}=\frac{\Delta U}{\Delta \theta}$ du thermocouple entre 0 et 600°C en $\mu V.^{\circ}C^{-1}$

$$S_{moy} = \frac{33,75 - (-1,10)}{600 - 0} \text{ (mV/°C)} \implies S_{moy} = 58,08 \ \mu\text{V/°C}$$

 Pour mieux connaître le fonctionnement du thermocouple, on fait une série de mesures, en faisant varier la température de la soudure chaude entre 0°C et 150°C, la soudure froide étant toujours maintenue à 20°C. Le graphique ci-dessous représente les variations de la tension U_{thermocouple} en fonction de Δθ = θ₂- θ₁

a. Peut-on considérer que le thermocouple est capteur de température linéaire pour -20°C<Δθ<130°C?

Oui car la courbe $U(\theta)$ est un droite passant par (0,0)

b. A partir du graphique, déduire la sensibilité S du capteur. Donner son unité.

$$S = (5,5-0)/(100-0) \Rightarrow S = 55 \mu V/^{\circ}C$$

c. Le thermocouple a-t-il un comportement linéaire pour $\Delta\theta > 130^{\circ}\text{C}$? Justifier.

Non car S est différent de Smoy

 $\bf 3.$ La tension $U_{thermocouple}$ étant faible, on l'envoie sur l'une des deux entrées d'un amplificateur opérationnel pour l'amplifier.

3.1. Donner l'expression du gain en tension du montage en fonction de R₁ et R₂;

$$Ud = 0 = U^{+} - U^{-}$$

$$U^{+} = U_{therm} \text{ et } - U^{-} = \frac{\frac{0}{R_{1}} + \frac{Us}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} \text{ on a } Us = U_{therm} * (R1 + R2)/R1$$

$$Le \text{ gain} = 1 + \frac{R2}{R1}$$

3.2. On désire que le millivoltmètre affiche 100mV, lorsque la différence de température entre les deux soudures, $\Delta\theta$, est de 100°C. La valeur de R_1 est 2 k Ω . Quelle valeur doit-on donner à R_2 pour obtenir le réglage désiré ?

$$\Delta\theta = 100^{\circ}\text{C} \rightarrow \text{U}_{\text{therm}} = \text{S} * \Delta\theta \text{ ; U}_{\text{therm}} = 5,50 \text{ mV}$$

$$R2 = (\frac{Us}{Utherm} - 1) * R1 \rightarrow R2 = 34,36 \text{ k}\Omega$$

3.3. La soudure froide étant toujours à θ_1 = 20°C, on mesure la température d'un four à 550°C. La valeur de U_s lue est 560mV. Est-ce normal ?

Pour S on a Us = 530 *0,055*(1+17,18) soit U_S = 530 mV normal car le capteur n'est pas linéaire pour $\Delta\theta$ >130°C