Algorithm D (Deletion from AVL tree). Given a set of nodes which form an AVL-balanced binary tree, this algorithm searches for a given argument K and deletes it from the tree, and rebalances the tree if necessary. The nodes of the tree are assumed to contain KEY, LLINK, RLINK, and B fields. KEY is arbitrary data stored in a node, which must have <, =, and > operations defined for it. LLINK and RLINK are pointers to the node's left and right subtrees, respectively, and either or both may be Λ . B is the height of the node's right subtree minus the height of its left subtree, and must be -1, 0, or +1.

The tree has a special header node in location HEAD. LLINK(HEAD) is a pointer to the root of the tree. For convenience in description, the algorithm uses the notation LINK(a,P) as a synonym for LLINK(P) if a = -1, and for RLINK(P) if a = +1.

The algorithm makes use of a pair of auxiliary arrays named P and a, which are used as stacks. P_k is used to store pointers to nodes which may need to be rebalanced. a_k stores -1 or +1 such that LINK(a_k, P_k) = P_{k+1} .

- **D1.** [Initialize.] Set $a_0 \leftarrow -1$, $P_0 \leftarrow \text{HEAD}$, $k \leftarrow 1$, $P \leftarrow \text{LLINK(HEAD)}$. (The pointer variable P will move down the tree.)
- **D2.** [Compare.] If K < KEY(P), go to D3; if K > KEY(P), go to D4; and if K = KEY(P), go to D5.
- **D3.** [Move left.] Set $P_k \leftarrow P$, $a_k \leftarrow -1$, $k \leftarrow k+1$, $P \leftarrow LLINK(P)$. If $P \neq \Lambda$, go to D2; otherwise, terminate (the tree does not contain K).
- **D4.** [Move right.] Set $P_k \leftarrow P$, $a_k \leftarrow +1$, $k \leftarrow k+1$, $P \leftarrow RLINK(P)$. If $P \neq \Lambda$, go to D2; otherwise, terminate (the tree does not contain K).
- **D5.** [Is RLINK null?] Set $Q \leftarrow LOC(LINK(a_{k-1}, P_{k-1}))$. (Q now points to the link that was followed to arrive at P.) If RLINK(P) $\neq \Lambda$, go to D6. Otherwise, set CONTENTS(Q) \leftarrow LLINK(P). Then, if $Q \neq \Lambda$, set B(CONTENTS(Q)) \leftarrow 0, and go to D10.
- **D6.** [Find successor.] Set $R \leftarrow RLINK(P)$. If $LLINK(R) \neq \Lambda$, go to D7. Otherwise, set $LLINK(R) \leftarrow LLINK(P)$, CONTENTS(Q) $\leftarrow R$, $B(R) \leftarrow B(P)$, $a_k \leftarrow +1$, $P_k \leftarrow R$, $k \leftarrow k+1$, and go to D10.
- **D7.** [Set up to find null LLINK.] Set $S \leftarrow \text{LLINK(R)}, l \leftarrow k, k \leftarrow k+1, a_k \leftarrow -1, P_k \leftarrow R, k \leftarrow k+1.$
- **D8.** [Find null LLINK.] If LLINK(S) = Λ , go to D9. Otherwise, set R \leftarrow S, S \leftarrow LLINK(R), $a_k \leftarrow -1$, $P_k \leftarrow$ R, $k \leftarrow k+1$, and repeat this step.
- **D9.** [Fix up.] Set $a_l \leftarrow +1$, $P_l \leftarrow S$, LLINK(S) \leftarrow LLINK(P), LLINK(R) \leftarrow RLINK(S), RLINK(S) \leftarrow RLINK(P), B(S) \leftarrow B(P), and CONTENTS(Q) \leftarrow S.
- **D10.** [Adjust balance factors.] Set $k \leftarrow k-1$. If k=0 then terminate successfully. Otherwise, set $S \leftarrow P_k$, and consider the following cases:
 - i) If B(S) = 0, set $B(S) \leftarrow -a_k$, and terminate successfully.
 - ii) If $B(S) = a_k$, set $B(S) \leftarrow 0$, and repeat this step.
 - iii) Otherwise, $B(S) = -a_k$. Set $R \leftarrow LINK(-a_k, S)$. Go to D11 if B(R) = 0; go to D12 if $B(R) = -a_k$; otherwise, $B(R) = a_k$, and go to D13.
- **D11.** [Single rotation with balanced R.] Set LINK $(-a_k, S) \leftarrow \text{LINK}(a_k, R)$, LINK $(a_k, R) \leftarrow S$, B(R) $\leftarrow a_k$, LINK $(a_{k-1}, P_{k-1}) \leftarrow R$, and terminate successfully.
- **D12.** [Single rotation with unbalanced R.] Set LINK $(-a_k, S) \leftarrow \text{LINK}(a_k, R)$, LINK $(a_k, R) \leftarrow S$, B(S) \leftarrow B(R) $\leftarrow 0$, LINK $(a_{k-1}, P_{k-1}) \leftarrow R$, and go to D10.
- **D13.** [Double rotation.] Set $P \leftarrow \text{LINK}(a_k, R)$, $\text{LINK}(a_k, R) \leftarrow \text{LINK}(-a_k, P)$, $\text{LINK}(-a_k, P) \leftarrow R$, $\text{LINK}(-a_k, S) \leftarrow \text{LINK}(a_k, P)$, $\text{LINK}(a_k, P) \leftarrow S$. Update balance factors as follows:
 - i) If $B(P) = -a_k$, set $B(S) \leftarrow a_k$ and $B(R) \leftarrow 0$.
 - ii) If B(P) = 0, set $B(S) \leftarrow B(R) \leftarrow 0$.
 - iii) Otherwise, $B(P) = a_k$. Set $B(S) \leftarrow 0$ and $B(R) \leftarrow -a_k$.

Finally, set B(P) $\leftarrow 0$ and LINK $(a_{k-1}, P_{k-1}) \leftarrow P$, and go to D10.