Lecture #12

MA 511, Introduction to Analysis

June 10, 2021

Sets of discontinuity

Definition

Given a function $f: \mathbb{R} \to \mathbb{R}$ the **set of discontinuities of** f, denoted by D_f , is the set of points where f fails to be continuous.

- For Dirichlet's function g(x), we saw that $D_g = \mathbb{R}$. For the modified Dirichlet function h(x), we saw that $D_h = \mathbb{R} \setminus \{0\}$. For Thomae's function t(x), we saw that $D_t = \mathbb{Q}$.
- For an arbitrary subset $A \subseteq \mathbb{R}$, can we find a function f such that $D_f = A$?
- First, we will consider the possible D_f for a simpler class of functions: monotone functions.

Definition

A function $f: A \to \mathbb{R}$ is **increasing on** A if $f(x) \le f(y)$ whenever x < y and **decreasing** if $f(x) \ge f(y)$ whenever x < y in A. A function is **monotone** if it is either increasing or decreasing.

Right-hand and left-hand limits

■ We need to formalize what we mean when we say that a function approaches a limit "from the right" or "from the left".

Definition (Right-hand limit)

Given a limit point c of a set A and a function $f:A\to\mathbb{R}$, we write $\lim_{x\to c^+}f(x)=L$ if for all $\varepsilon>0$, there exists a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $0< x-c<\delta$. Equivalently, $\lim_{x\to c^+}f(x)=L$ if $\lim f(x_n)=L$ for all sequences (x_n) such that $x_n>c$ and $\lim (x_n)=c$.

Definition (Left-hand limit)

Given a limit point c of a set A and a function $f:A\to\mathbb{R}$, we write $\lim_{x\to c^-}f(x)=L$ if for all $\varepsilon>0$, there exists a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $-\delta< x-c<0$. Equivalently, $\lim_{x\to c^-}f(x)=L$ if $\lim f(x_n)=L$ for all sequences (x_n) such that $x_n< c$ and $\lim (x_n)=c$.

Types of discontinuities

Theorem

Given $f: A \to \mathbb{R}$ and a limit point c of A, $\lim_{x \to c} f(x) = L$ if and only if

$$\lim_{x\to c^+} f(x) = L$$
 and $\lim_{x\to c^-} f(x) = L$.

Classification of discontinuities

Given $f: A \to \mathbb{R}$ and a point $c \in A$, if f is not continuous at c, then c falls into one of the following categories:

- If $\lim_{x\to c} f(x)$ exists, but has a value different from f(c), then f has a **removable discontinuity** at c.
- ii If $\lim_{x\to c} f(x)$ does not exist because $\lim_{x\to c^+} f(x) \neq \lim_{x\to c^-} f(x)$, then f has a **jump discontinuity** at c.
- If $\lim_{x\to c} f(x)$ does not exist for some other reason, then f has an essential discontinuity at c.

Characterizing sets of discontinuity

Theorem (D_f for monotone functions)

The only type of discontinuity that a monotone function can have is a jump discontinuity. Furthermore, D_f is either finite or countable.

Definition

Let f be defined on \mathbb{R} , and let $\alpha > 0$. The function f is α -continuous at $x \in \mathbb{R}$ if there exists a $\delta > 0$ such that for all $y, z \in (x - \delta, x + \delta)$ it follows that $|f(y) - f(z)| < \alpha$. We also define D_f^{α} to be the set of points where f fails to be α -continuous.

Theorem (D_f for an arbitrary function)

Let $f: \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Then, D_f is an F_{σ} set.

- Since \mathbb{I} is not F_{σ} , there is no function $f: \mathbb{R} \to \mathbb{R}$ that has $D_f = \mathbb{I}$.
- How can we construct a function f such that D_f is a given finite, countable or F_{σ} set?