1. Unit vector along \overrightarrow{PQ} , where coordinates of P and Q respectively are $(2,\,1,\,-1)$ and $(4,\,4,\,-7)$ is

(A)
$$2\hat{i} + 3\hat{j} - 6\hat{k}$$

(B)
$$-2\hat{i} - 3\hat{j} + 6\hat{k}$$

(C)
$$\frac{-2\hat{i}}{7} - \frac{3\hat{j}}{7} + \frac{6\hat{k}}{7}$$

(D)
$$\frac{2\hat{i}}{7} + \frac{3\hat{j}}{7} - \frac{6\hat{k}}{7}$$

2. If in $\triangle ABC$, $\overrightarrow{BA} = 2\overrightarrow{a}$ and $\overrightarrow{BC} = 3\overrightarrow{b}$, then \overrightarrow{AC} is

(A)
$$2\vec{a} + 3\vec{b}$$

(B)
$$2\vec{a} - 3\vec{b}$$

(C)
$$3\vec{b} - 2\vec{a}$$

(D)
$$-2\vec{a} - 3\vec{b}$$

3. Equation of line passing through origin and making 30°, 60° and 90° with x,y,z axes respectively is

(A)
$$\frac{2x}{\sqrt{3}} = \frac{y}{2} = \frac{z}{0}$$

(B)
$$\frac{2x}{\sqrt{3}} = \frac{2y}{1} = \frac{z}{0}$$

(C)
$$2x = \frac{2y}{\sqrt{3}} = \frac{z}{1}$$

(D)
$$\frac{2x}{\sqrt{3}} = \frac{2y}{1} = \frac{z}{1}$$

- 4. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero unequal vectors such that $\vec{a}. \vec{b} = \vec{a}. \vec{c}$, then find the angle between \vec{a} and \vec{b} \vec{c} .
- 5. If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.
- 6. Using Integration, find the area of triangle whose vertices are (-1, 1), (0, 5) and (3, 2).