Version: **Finnish** Kilpailuaika: $4\frac{1}{2}$ tuntia.

1. Etsi kaikki kahden muuttujan funktiot f, joiden muuttujat x, y ja arvot f(x, y) ovat positiivisia kokonaislukuja ja jotka toteuttavat seuraavat ehdot (kaikilla positiivisilla kokonaisluvuilla x ja y):

$$f(x,x) = x,$$

$$f(x,y) = f(y,x),$$

$$(x+y)f(x,y) = yf(x,x+y).$$

- **2.** Positiivisten kokonaislukujen kolmikko (a, b, c) on kvasipythagoralainen, jos on olemassa kolmio, jonka sivujen pituudet ovat a, b, c ja jonka sivun c vastainen kulma on 120°. Todista, että jos (a, b, c) on kvasipythagoralainen kolmikko, niin luvulla c on lukua 5 suurempi alkutekijä.
- 3. Etsi kaikki positiivisten kokonaislukuparit x, y, jotka toteuttavat yhtälön

$$2x^2 + 5y^2 = 11(xy - 11).$$

- 4. Olkoon P kokonaiskertoiminen polynomi. Oletetaan, että jokaisella $n=1,2,3,\ldots,1998$ luku P(n) on kolminumeroinen positiivinen kokonaisluku. Todista, että polynomilla P ei ole kokonaislukujuuria.
- **5.** Olkoon a pariton ja b parillinen numero. Todista, että jokaista positiivista kokonaislukua n kohti on olemassa luvulla 2^n jaollinen positiivinen kokonaisluku, jonka kymmenjärjestelmäesityksessä esiintyy vain numeroita a and b.
- **6.** Olkoot P kuudennen asteen polynomi ja a ja b reaalilukuja, joille 0 < a < b. Oletetaan, että P(a) = P(-a), P(b) = P(-b) ja P'(0) = 0. Osoita, että P(x) = P(-x) kaikille reaaliluvuille x.
- 7. Olkoon \mathbb{R} reaalilukujen joukko. Etsi kaikki funktiot $f: \mathbb{R} \to \mathbb{R}$, joille kaikilla $x, y \in \mathbb{R}$ pätee f(x) + f(y) = f(f(x)f(y)).
- 8. Olkoon $P_k(x) = 1 + x + x^2 + \dots + x^{k-1}$. Osoita, että

$$\sum_{k=1}^{n} \binom{n}{k} P_k(x) = 2^{n-1} P_n\left(\frac{1+x}{2}\right)$$

kaikilla reaaliluvuilla x ja kaikilla positiivisilla kokonaisluvuilla n.

- 9. Reaaliluvuille α , β pätee $0<\alpha<\beta<\pi/2$ ja luvut γ ja δ määritellään ehdoilla:
 - (i) $0<\gamma<\pi/2$, ja $\tan\gamma$ on lukujen $\tan\alpha$ ja $\tan\beta$ aritmeettinen keskiarvo;
 - (ii) $0 < \delta < \pi/2$, ja $\frac{1}{\cos \delta}$ on lukujen $\frac{1}{\cos \alpha}$ ja $\frac{1}{\cos \beta}$ aritmeettinen keskiarvo. Osoita, että $\gamma < \delta$.
- 10. Olkoon $n \ge 4$ parillinen kokonaisluku. Säännöllinen n-kulmio ja säännöllinen (n-1)-kulmio on piirretty yksikköympyrän sisään. Jokaisesta n-kulmion kärjestä mitataan etäisyys lähimpään

että S riippuu vain luvusta n, ei monikulmioiden keskinäisestä sijainnista.

11. Olkoot a, b ja c kolmion sivujen pituudet. Olkoon R kolmion ympäripiirretyn ympyrän säde. Osoita, että

$$R \ge \frac{a^2 + b^2}{2\sqrt{2a^2 + 2b^2 - c^2}}$$
.

Milloin yhtäsuuruus on voimassa?

12. Kolmiolle ABC pätee $\angle BAC = 90^{\circ}$. Piste D on sivulla BC ja toteuttaa ehdon $\angle BDA = 2\angle BAD$. Osoita, että

$$\frac{1}{AD} = \frac{1}{2} \left(\frac{1}{BD} + \frac{1}{CD} \right).$$

- 13. Kuperan viisikulmion ABCDE sivut AE ja BC ovat yhdensuuntaisia ja $\angle ADE = \angle BDC$. Lävistäjät AC ja BE leikkaavat pisteessä P. Osoita, että $\angle EAD = \angle BDP$ ja $\angle CBD = \angle ADP$.
- 14. Kolmiolle ABC pätee AB < AC. Pisteen B kautta kulkeva sivun AC suuntainen suora leikkaa kulman $\angle BAC$ vieruskulman puolittajan pisteessä D. Pisteen C kautta kulkeva sivun AB suuntainen suora kohtaa saman kulmanpuolittajan pisteessä E. Piste F on sivulla AC ja toteuttaa ehdon FC = AB. Osoita, että DF = FE.
- 15. Teräväkulmaisessa kolmiossa ABC piste D on pisteestä A sivulle BC piirretyn korkeusjanan kantapiste. Piste E on janalla AD ja toteuttaa ehdon

$$\frac{AE}{ED} = \frac{CD}{DB}.$$

Piste F on pisteestä D sivulle BE piirretyn korkeusjanan kantapiste. Osoita, että $\angle AFC = 90^{\circ}$.

- 16. Voiko 13×13 -shakkilaudan peittää neljälläkymmenelläkahdella 4×1 -nappulalla niin, että vain shakkilaudan keskiruutu jää peittämättä? (Oletetaan, että jokainen nappula peittää täsmälleen neljä shakkilaudan ruutua.)
- 17. Olkoot n ja k positiivisia kokonaislukuja. Käytössä on nk (samankokoista) esinettä ja k laatikkoa, joista kuhunkin mahtuu n esinettä. Jokainen esineistä väritetään yhdellä k:sta eri väristä. Osoita, että esineet voidaan pakata laatikoihin niin, että jokaiseen laatikoista tulee enintään kahden eri värin esineitä.
- 18. Määritä kaikki sellaiset positiiviset kokonaisluvut n, että on olemassa joukko S, jolla on seuraavat ominaisuudet:
 - (i) S koostuu n positiivisesta kokonaisluvusta, jotka kaikki ovat pienempiä kuin 2^{n-1} ;
 - (ii) Jos A ja B ovat joukon S eri osajoukkoja, niin joukon A alkioiden summa on eri kuin joukon B alkioiden summa.
- 19. Tarkastellaan kahden joukkueen välistä pöytätennisottelua; kummassakin joukkueessa oli 1000 pelaajaa. Jokainen pelaaja pelasi täsmälleen yhden pelin kutakin toisen joukkueen pelaajaa vastaan (pöytätenniksessä ei ole tasapelejä). Todista, että on olemassa sellaiset kymmenen

näitä kymmentä pelaajaa vastaan.

20. Positiivisen kokonaisluvun m sanotaan peittävän luvun 1998, jos 1, 9, 9, 8 esiintyvät, tässä järjestyksessä, luvun m numeroina. (Esimerkiksi 215993698 peittää luvun 1998, mutta 213326798 ei.) Olkoon k(n) niiden positiivisten kokonaislukujen lukumäärä, jotka peittävät luvun 1998 ja joissa on tasan n nollasta poikkevaa numeroa $(n \geq 5)$. Mikä on jakojäännös, kun luku k(n) jaetaan luvulla 8?