COMP3670/6670: Introduction to Machine Learning

Question 1 Bayesian linear regression, one parameter, one training point

Consider a linear regression problem with a single training point (x, y) where x, y are scalars, and an one-dimensional parameter θ (with no bias/intercept):

prior:
$$p(\theta) = \mathcal{N}(\theta; m_o, v_o) \tag{1}$$

likelihood:
$$p(y|\theta, x) = \mathcal{N}(y; \theta x, v)$$
 (2)

- a) Find the marginal likelihood $p(y|x) = \int d\theta p(y|\theta, x)p(\theta)$
- b) Find the posterior distribution $p(\theta|y,x) = \frac{p(y|\theta,x)p(\theta)}{p(y|x)}$
- c) Assuming $x \neq 0$, what happens when v_o is very large?
- d) What happens when x = 0?

Question 2

Bomb Defusal

You are a bomb defusal specialist, and you've come across a bomb that has just armed itself. You know from experience with these kinds of bomb, that the time till it explodes is controlled by a random variable T, sampled from the interval $[0, +\infty)$, according to the prior pdf function

$$p(t) = e^{-t}$$
 minutes

which when plotted, looks like this

- a) How likely is it for the bomb to take between 1 and 2 minutes to explode?
- b) How long on average until the bomb explodes?
- c) For any $\phi \in [0, 1)$, how much time t_{ϕ} would have to pass such that the probability of the bomb having exploded by then is ϕ ?

- d) Suppose you waited a minute, and the bomb has not yet exploded. What is the posterior distribution $p(t \mid t \ge 1)$ of the bomb's detonation time? Plot $p(t \mid t \ge 1)$ against the prior $p(t) = e^{-t}$.
- e) You're a fast defuser, but an even faster runner. The bomb is placing 5 other people in mortal danger. It would take you 15 seconds to move out of the blast radius of the bomb, and 90 seconds to complete a defusal of the bomb. What action maximizes the expected number of lives saved? Attempting a defuse, or running away?
- f) You discover a bomb just as it arms itself. This bomb is equipped with a display, reading out the time left till detonation in minutes in seconds (e.g the display says 1: 30 for 90 seconds). Unfortunately, part of the display is damaged, and you can only read the first digit (the minutes digit), which is a 1. What is the posterior $p(t \mid \text{First digit is 1})$ based on this evidence? Plot this against p(t).
- g) Suppose two bombs¹ (with the same distribution $p(t) = e^{-t}$ as before) are armed simultaneously. Let T_1, T_2 denote random variables for the detonation time of each bomb. We define $T_e = \min(T_1, T_2)$, a random variable for the time taken for either bomb to explode, and $T_b = \max(T_1, T_2)$, a random variable for the time taken for both bombs to explode. Find the pdf $p_e(t)$ corresponding to T_e , and $p_b(t)$ corresponding to T_b , satisfying

$$\int_{0}^{t} p_{e}(x) dx = P(T_{e} \le t) \quad \int_{0}^{t} p_{b}(x) dx = P(T_{b} \le t)$$

Plot $p(t) = e^{-t}$ vs. $p_b(t)$ vs. $p_e(t)$. How long, on average, before any bomb explodes? How long, on average, before both bombs explode?

(Hint: Bayes rule is not useful here.)

Question 3

Definitions of variance

Recall that given a continuous random variable X defined over a domain $D \subset \mathbb{R}$ with probability distribution function $p(x): D \to \mathbb{R}$, and a function $f(x): \mathbb{R} \to \mathbb{R}$, we define ²

$$\mathbb{E}_X[f(x)] := \int_D f(x)p(x) \ dx$$

The variance $\mathbb{V}[X]$ of a random variable X is defined as

$$\mathbb{V}_X[x] := \mathbb{E}_X\left[(x - \mathbb{E}_X[x])^2 \right]$$

It can also be represented in the alternate form

$$\mathbb{V}_X[x] := \mathbb{E}_X \left[x^2 \right] - \left(\mathbb{E}_X[x] \right)^2$$

Prove this!

Question 4

Substitution of Random variables

Assume that we have a random variable X on the interval [0,1] characterized by a pdf $p(x) = \frac{3}{2}\sqrt{x}$. Let Y be a random variable on [0,1] such that $Y = X^3$. Compute the pdf of Y

¹The bombs are placed sufficiently far apart that if one explodes, the other will be undisturbed. The detonation time of each bomb are independent of each other.

²Note that \int_D means to integrate over the entire domain D. For example, if D = [0, 1], then \int_D means the same thing as \int_0^1 .