

Tracking Functional Changes in Nonstationary Signals with **Evolutionary Ensemble Bayesian Model for Robust Neural Decoding**

Xinyun Zhu, Yu Qi*, Gang Pan, Yueming Wang* **Zhejiang University**

PROBLEM AND CHALLENGE

Problem: How to achieve **robust control** in brain-computer interface (BCI) systems?

Challenge: The changing neural functional mappings between neural activities and the intentions.

How to cope with neural functional changes to achieve robust online control?

THE MAIN INSIGHTS

The idea

- Using a pool of models to describe different neural functions
- > Dynamically changing the model pool to cope with neural changes
- ✓ Tuning the model weights
- ✓ Evolving the model parameters

Enabling model evolving with changes in functions.

EVOLUTIONARY ENSEMBLE MODELING

The framework of EvoEnsemble

EXPERIMENTS AND RESULTS

Simulations

EvoEnsemble successfully tracks the functional changes and obtains better state estimation in all five simulated conditions.

Condition Condition

Neural datasets with a macaque and a paralyzed man

EvoEnsemble outperforms other neural decoding methods and tracks the neural functions closer than that without evolution.

CONCLUSIONS

- Dynamic modeling is essential to robust online control in BCI systems.
- EvoEnsemble can adaptively change model weights and evolve model parameters to cope with the functional changes in neural encoding.
- EvoEnsemble provides a flexible adaptive neural decoding framework.

Please find details in our papers:

[1] Tracking Functional Changes in Nonstationary Signals with Evolutionary Ensemble Bayesian Model for Robust Neural Decoding, *NeurIPS* 2022

[2] Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-machine Interface, *IEEE Trans. BME 2022*

[3] Dynamic Ensemble Modeling Approach to Nonstationary Neural Decoding in Brain-Computer Interfaces, *NeurIPS* 2019

https://arxiv.org/abs/2204.11840 https://papers.nips.cc/paper/2019/file/3f7b cd0b3ea822683bba8fc530f151bd-Paper.pdf