Lagrange-DFA Offline Verification Scheme

Alex Jiang *

Department of Mathematics, University of California, Berkeley

June 2025

1 Introduction

This document describes an adaptable cryptographic scheme for offline verification of whether data associated with pre-encoded identifiers matches pre-encoded secret patterns. The scheme is designed such that if and only if the data associated with an identifier matches the associated pre-encoded regular expression, a pre-defined signal can correctly be decrypted, otherwise any incorrect identifier or data produces a decryption failure indistinguishable from random failure.

2 Notation

Let I be the set of identifiers $i \in \mathbb{Z}_{p_1} \setminus \{0\}$ whose data d_i should be verified against a regular expression R_i . Let $\mathbf{AES_CTR}_k(m)$ denote AES in CTR mode with key k, message m, and a null IV. Upon a successful verification of i against R_i , we would like to be able to decrypt a signal s_i , which was encrypted with a key k_i , by somehow retrieving k_i and computing $plaintext = \mathbf{AES_CTR}_{k_i}(s)$.

Let p_1, p_2 be large primes. Let $g \in \mathbb{Z}_{p_1} \setminus \{0\}$ be arbitrary and assume the discrete logarithm problem is hard. Let $L_k : \mathbb{Z}_{p_k} \to \mathbb{Z}_{p_k}$ denote a Lagrange polynomial over \mathbb{F}_{p_k} whose coefficients are also mod p_k . Let M be the set of DFA representations of all R_i and be defined by $\{(Q_i, \Sigma, \delta_i, q_{0_i}, F_i)\}$, where $Q_i \subseteq \mathbb{Z}_{p_2}$ is a set of states, $\Sigma = \{0, 1\}^8$ is the byte alphabet, $\delta_i : Q_i \times \Sigma \to Q_i$ is the transition function, q_{0_i} is the initial state, and $F_i \subseteq Q_i$ are accepting states. Let Q_0 denote the set of all q_{0_i} . Let $\|$ denote bit concatenation.

^{*}Electronic address: jiang.alexander@berkeley.edu

3 Construction

For each valid transition in a DFA M_i , given by a state q, byte c, and next state q', compute the point $(q \parallel c, q') \mod p_2$. Collect these points into the set T_i . The set of states Q_i is such that $\forall j, k \in I$, $Q_j \cap Q_k = \emptyset$. The set of accepting states F_i is such that its single element is the encryption key k_i . Construct L_2 by interpolating over $\bigcup_{i \in I} T_i$. Note that L_2 does not contain any information about starting states or accepting states.

For each i, compute its commitment $c_i = g^i \mod p_1$. Suppose the encrypted signal s_i is identified by some d_{s_i} . Construct L_1 by interpolating over $\{(c_i, q_{0_i} | d_{s_i}), (d_{s_i}, s_i)\}$. q_{0_i} and d_{s_i} are carefully selected such that q_{0_i} and d_{s_i} fit into the most and least significant halves of $q_{0_i} || d_{s_i}$, respectively, with zero-padding as needed.

4 Usage

Suppose j is an identifier associated with data d_j . Note that j is not necessarily an element of I. Compute $d_{intermediary} = L_1(c_j)$ and extract arbitrary values q_{0_j} and d_{s_j} from the most and least significant halves of $d_{intermediary}$, respectively. Compute $s_j = L_1(d_{s_j})$. Regardless of whether q_{0_j} is an element of the true Q_0 , or whether s_j is a true signal, treat them as such. Initialize $q \leftarrow q_{0_j}$. For each byte c in d_j , update $q \leftarrow L_2(q \parallel c)$. Finally, attempt to decrypt s_j by computing $plaintext = \mathbf{AES_CTR}_q(s_j)$.