Instrumentación electrónica

Gonzalo Bastos González

77543085B

Índice

1.	Cor	riente continua
	1.1.	Objetivos
	1.2.	Materiales y metodología
		Análisis de datos
	1.4.	Conclusión
2.	Cor	riente alterna
		Objetivos
	2.2.	Materiales y metodología
	2.3.	Análisis de datos
	2.4.	Conclusión

1. Corriente continua

- 1.1. Objetivos
- 1.2. Materiales y metodología
- 1.3. Análisis de datos
- 1.4. Conclusión

2. Corriente alterna

2.1. Objetivos

- Familiarizarse con el uso de un osciloscopio digital, así como con el manejo de circuitos de corriente alterna
- Obtener los parámetros característicos de un circuito de corriente alterna, como la frecuencia de corte, la impedancia o la reactancia capacitiva

2.2. Materiales y metodología

- Placa base y cables de conexión
- Resistencia ($10k\Omega$) y condensador (12k pF)
- Generador de señales (fuente de fem senoidal)
- Osciloscopio digital

Para llevar a cabo nuestro experimento lo primero que haremos es construir un circuito muy básico con la resistencia y el condensador, conectados en serie, además de nuestro generador de señales. Este circuito nos servirá para medir los potenciales en bornes de la fuente, la resistencia y el condensador, como se muestra en la Fig.1 y en la Fig.2

2.3. Análisis de datos

2.4. Conclusión

Figura 1: Configuración para medir los potenciales en bornes de la fuente y la resistencia

Figura 2: Configuración para medir el potencial en bornes del condensador