Rank-73801 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(8)$ is 1227395733

General information

Number of lines	7
Number of points	89
Number of singular points	0
Number of Eckardt points	3
Number of double points	0
Number of single points	54
Number of points off lines	32
Number of Hesse planes	0
Number of axes	0
Type of points on lines	97
Type of lines on points	$3^3, 1^{54}, 0^{32}$

Singular Points

The surface has 0 singular points:

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{25}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & \gamma^4 & \gamma^3 \\ 0 & 1 & 1 & \gamma^3 \end{bmatrix}_{3472} = \begin{bmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 1 & 5 \end{bmatrix}_{3472} = \mathbf{Pl}(4, 3, 2, 6, 6, 1)_{4013}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & \gamma & \gamma^{4} \\ 0 & 1 & 1 & \gamma^{6} \end{bmatrix}_{4283} = \begin{bmatrix} 1 & 0 & 2 & 7 \\ 0 & 1 & 1 & 6 \end{bmatrix}_{4283} = \mathbf{Pl}(4, 3, 7, 5, 3, 1)_{2725}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & \gamma & \gamma^{6} \\ 0 & 1 & 1 & \gamma^{6} \end{bmatrix}_{3699} = \begin{bmatrix} 1 & 0 & 2 & 6 \\ 0 & 1 & 1 & 6 \end{bmatrix}_{3699} = \mathbf{Pl}(7, 5, 4, 3, 3, 1)_{2595}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & \gamma^{2} & \gamma \\ 0 & 1 & 1 & \gamma^{5} \end{bmatrix}_{1485} = \begin{bmatrix} 1 & 0 & 4 & 2 \\ 0 & 1 & 1 & 3 \end{bmatrix}_{1485} = \mathbf{Pl}(7, 5, 2, 6, 5, 1)_{3491}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \gamma^{4} & \gamma^{2} \\ 0 & 1 & 1 & \gamma^{3} \end{bmatrix}_{2888} = \begin{bmatrix} 1 & 0 & 7 & 4 \\ 0 & 1 & 1 & 5 \end{bmatrix}_{2888} = \mathbf{Pl}(2, 6, 4, 3, 6, 1)_{4088}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & \gamma^{2} & \gamma^{5} \\ 0 & 1 & 1 & \gamma^{5} \end{bmatrix}_{2069} = \begin{bmatrix} 1 & 0 & 4 & 3 \\ 0 & 1 & 1 & 3 \end{bmatrix}_{2069} = \mathbf{Pl}(2, 6, 7, 5, 5, 1)_{3703}$$

Rank of lines: (4689, 3472, 4283, 3699, 1485, 2888, 2069)

Rank of points on Klein quadric: (25, 4013, 2725, 2595, 3491, 4088, 3703)

Eckardt Points

The surface has 3 Eckardt points:

 $0: P_{217} = \mathbf{P}(0, \gamma, \gamma, 1) = \mathbf{P}(0, 2, 2, 1),$

1: $P_{361} = \mathbf{P}(0, \gamma^2, \gamma^2, 1) = \mathbf{P}(0, 4, 4, 1),$ 2: $P_{577} = \mathbf{P}(0, \gamma^4, \gamma^4, 1) = \mathbf{P}(0, 7, 7, 1).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 54 single points:

The single points on the surface are:

```
0: P_3 = (0,0,0,1) lies on line \ell_0
                                                                      17: P_{175} = (6, 4, 1, 1) lies on line \ell_5
1: P_{19} = (0, 1, 1, 0) lies on line \ell_0
                                                                      18: P_{178} = (1, 5, 1, 1) lies on line \ell_6
2: P_{29} = (2, 2, 1, 0) lies on line \ell_1
                                                                      19: P_{186} = (1, 6, 1, 1) lies on line \ell_1
3: P_{36} = (1,3,1,0) lies on line \ell_2
                                                                      20: P_{196} = (3, 7, 1, 1) lies on line \ell_2
4: P_{47} = (4, 4, 1, 0) lies on line \ell_3
                                                                      21 : P_{207} = (6, 0, 2, 1) lies on line \ell_4
5: P_{52} = (1, 5, 1, 0) lies on line \ell_4
                                                                      22: P_{208} = (7,0,2,1) lies on line \ell_1
6: P_{60} = (1, 6, 1, 0) lies on line \ell_5
                                                                      23: P_{214} = (5, 1, 2, 1) lies on line \ell_6
7: P_{74} = (7,7,1,0) lies on line \ell_6
                                                                      24: P_{230} = (5, 3, 2, 1) lies on line \ell_5
8: P_{96} = (6, 2, 0, 1) lies on line \ell_6
                                                                      25: P_{274} = (1, 1, 3, 1) lies on line \ell_2
9: P_{97} = (7, 2, 0, 1) lies on line \ell_5
                                                                      26: P_{286} = (5, 2, 3, 1) lies on line \ell_1
10: P_{108} = (2, 4, 0, 1) lies on line \ell_2
                                                                      27: P_{289} = (0, 3, 3, 1) lies on line \ell_0
11: P_{109} = (3, 4, 0, 1) lies on line \ell_1
                                                                      28: P_{309} = (4, 5, 3, 1) lies on line \ell_5
12: P_{134} = (4,7,0,1) lies on line \ell_4
                                                                      29: P_{312} = (7, 5, 3, 1) lies on line \ell_4
13: P_{135} = (5,7,0,1) lies on line \ell_3
                                                                      30: P_{315} = (2,6,3,1) lies on line \ell_6
14: P_{146} = (0, 1, 1, 1) lies on line \ell_0
                                                                      31: P_{317} = (4,6,3,1) lies on line \ell_3
15: P_{158} = (5, 2, 1, 1) lies on line \ell_4
                                                                      32: P_{331} = (2,0,4,1) lies on line \ell_3
16: P_{162} = (1, 3, 1, 1) lies on line \ell_3
                                                                      33: P_{332} = (3,0,4,1) lies on line \ell_5
```

```
34: P_{343} = (6, 1, 4, 1) lies on line \ell_1
                                                                      45: P_{485} = (4, 3, 6, 1) lies on line \ell_2
35: P_{375} = (6, 5, 4, 1) lies on line \ell_2
                                                                      46: P_{499} = (2, 5, 6, 1) lies on line \ell_1
36: P_{402} = (1, 1, 5, 1) lies on line \ell_4
                                                                      47: P_{504} = (7, 5, 6, 1) lies on line \ell_3
37: P_{421} = (4, 3, 5, 1) lies on line \ell_1
                                                                      48: P_{505} = (0, 6, 6, 1) lies on line \ell_0
                                                                      49 : P_{516} = (3,7,6,1) lies on line \ell_6
38 : P_{424} = (7, 3, 5, 1) lies on line \ell_6
39: P_{431} = (6, 4, 5, 1) lies on line \ell_3
                                                                      50: P_{525} = (4, 0, 7, 1) lies on line \ell_6
40: P_{433} = (0, 5, 5, 1) lies on line \ell_0
                                                                      51: P_{526} = (5,0,7,1) lies on line \ell_2
41 : P_{443} = (2, 6, 5, 1) lies on line \ell_5
                                                                      52: P_{532} = (3, 1, 7, 1) lies on line \ell_3
42: P_{448} = (7, 6, 5, 1) lies on line \ell_2
                                                                      53: P_{572} = (3, 6, 7, 1) lies on line \ell_4
43: P_{466} = (1, 1, 6, 1) lies on line \ell_5
44: P_{483} = (2, 3, 6, 1) lies on line \ell_4
```

The single points on the surface are:

Points on surface but on no line

The surface has 32 points not on any line: The points on the surface but not on lines are:

$0: P_0 = (1,0,0,0)$	$17: P_{355} = (2, 3, 4, 1)$
$1: P_{75} = (1,0,0,1)$	$18: P_{367} = (6, 4, 4, 1)$
$2: P_{159} = (6, 2, 1, 1)$	19: $P_{373} = (4, 5, 4, 1)$
$3: P_{164} = (3,3,1,1)$	$20: P_{406} = (5, 1, 5, 1)$
$4: P_{172} = (3, 4, 1, 1)$	$21: P_{429} = (4,4,5,1)$
$5: P_{182} = (5, 5, 1, 1)$	$22: P_{440} = (7,5,5,1)$
$6: P_{191} = (6, 6, 1, 1)$	$23: P_{453} = (4,7,5,1)$
$7: P_{198} = (5, 7, 1, 1)$	$24: P_{471} = (6, 1, 6, 1)$
$8: P_{215} = (6, 1, 2, 1)$	$25: P_{480} = (7, 2, 6, 1)$
$9: P_{222} = (5, 2, 2, 1)$	$26: P_{507} = (2, 6, 6, 1)$
$10: P_{227} = (2, 3, 2, 1)$	$27: P_{520} = (7, 7, 6, 1)$
11: $P_{256} = (7, 6, 2, 1)$	$28: P_{534} = (5, 1, 7, 1)$
$12: P_{276} = (3, 1, 3, 1)$	$29: P_{565} = (4, 5, 7, 1)$
$13: P_{283} = (2, 2, 3, 1)$	$30: P_{576} = (7, 6, 7, 1)$
$14: P_{293} = (4, 3, 3, 1)$	$31: P_{580} = (3,7,7,1)$
$15: P_{299} = (2,4,3,1)$	
$16: P_{340} = (3, 1, 4, 1)$	

Line Intersection Graph

	0123456
0	0111111
1	1000010
2	1001000
3	1010000
4	1000001
5	1100000
6	$\begin{array}{c} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

	Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
ſ	in point	P_{577}	P_{217}	P_{217}	P_{361}	P_{577}	P_{361}

т.	-1	
Line	1	intersects

Line	ℓ_0	ℓ_5
in point	P_{577}	P_{577}

Line 2 intersects

Line	ℓ_0	ℓ_3
in point	P_{217}	P_{217}

Line 3 intersects $\frac{1}{2}$

Line	ℓ_0	ℓ_2
in point	P_{217}	P_{217}

Line 4 intersects

Line	ℓ_0	ℓ_6
in point	P_{361}	P_{361}

Line 5 intersects

Line	ℓ_0	ℓ_1
in point	P_{577}	P_{577}

Line 6 intersects

Line	ℓ_0	ℓ_4
in point	P_{361}	P_{361}

The surface has 89 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$30: P_{208} = (7, 0, 2, 1)$	$60: P_{421} = (4, 3, 5, 1)$
$1: P_3 = (0,0,0,1)$	$31: P_{214} = (5, 1, 2, 1)$	$61: P_{424} = (7, 3, 5, 1)$
$2: P_{19} = (0, 1, 1, 0)$	$32: P_{215} = (6, 1, 2, 1)$	$62: P_{429} = (4, 4, 5, 1)$
$3: P_{29} = (2, 2, 1, 0)$	$33: P_{217} = (0, 2, 2, 1)$	$63: P_{431} = (6,4,5,1)$
$4: P_{36} = (1, 3, 1, 0)$	$34: P_{222} = (5, 2, 2, 1)$	$64: P_{433} = (0, 5, 5, 1)$
$5: P_{47} = (4, 4, 1, 0)$	$35: P_{227} = (2, 3, 2, 1)$	$65: P_{440} = (7, 5, 5, 1)$
$6: P_{52} = (1, 5, 1, 0)$	$36: P_{230} = (5, 3, 2, 1)$	$66: P_{443} = (2, 6, 5, 1)$
$7: P_{60} = (1, 6, 1, 0)$	$37: P_{256} = (7, 6, 2, 1)$	$67: P_{448} = (7,6,5,1)$
$8: P_{74} = (7, 7, 1, 0)$	$38: P_{274} = (1, 1, 3, 1)$	$68: P_{453} = (4,7,5,1)$
$9: P_{75} = (1,0,0,1)$	$39: P_{276} = (3, 1, 3, 1)$	$69: P_{466} = (1, 1, 6, 1)$
$10: P_{96} = (6, 2, 0, 1)$	$40: P_{283} = (2, 2, 3, 1)$	$70: P_{471} = (6, 1, 6, 1)$
$11: P_{97} = (7, 2, 0, 1)$	$41: P_{286} = (5, 2, 3, 1)$	71: $P_{480} = (7, 2, 6, 1)$
$12: P_{108} = (2, 4, 0, 1)$	$42: P_{289} = (0, 3, 3, 1)$	$72: P_{483} = (2, 3, 6, 1)$
13: $P_{109} = (3, 4, 0, 1)$	$43: P_{293} = (4, 3, 3, 1)$	73: $P_{485} = (4, 3, 6, 1)$
$14: P_{134} = (4,7,0,1)$	$44: P_{299} = (2,4,3,1)$	$74: P_{499} = (2, 5, 6, 1)$
$15: P_{135} = (5,7,0,1)$	$45: P_{309} = (4, 5, 3, 1)$	$75: P_{504} = (7, 5, 6, 1)$
$16: P_{146} = (0, 1, 1, 1)$	$46: P_{312} = (7, 5, 3, 1)$	76: $P_{505} = (0, 6, 6, 1)$
$17: P_{158} = (5, 2, 1, 1)$	$47: P_{315} = (2, 6, 3, 1)$	77: $P_{507} = (2, 6, 6, 1)$
$18: P_{159} = (6, 2, 1, 1)$	$48: P_{317} = (4, 6, 3, 1)$	$78: P_{516} = (3,7,6,1)$
19: $P_{162} = (1, 3, 1, 1)$	$49: P_{331} = (2,0,4,1)$	79: $P_{520} = (7,7,6,1)$
$20: P_{164} = (3, 3, 1, 1)$	$50: P_{332} = (3,0,4,1)$	$80: P_{525} = (4,0,7,1)$
$21: P_{172} = (3, 4, 1, 1)$	$51: P_{340} = (3, 1, 4, 1)$	$81: P_{526} = (5,0,7,1)$
$22: P_{175} = (6, 4, 1, 1)$	$52: P_{343} = (6, 1, 4, 1)$	$82: P_{532} = (3, 1, 7, 1)$
$23: P_{178} = (1, 5, 1, 1)$	$53: P_{355} = (2, 3, 4, 1)$	$83: P_{534} = (5, 1, 7, 1)$
$24: P_{182} = (5, 5, 1, 1)$	$54: P_{361} = (0, 4, 4, 1)$	$84: P_{565} = (4, 5, 7, 1)$
$25: P_{186} = (1, 6, 1, 1)$	$55: P_{367} = (6, 4, 4, 1)$	$85: P_{572} = (3, 6, 7, 1)$
$26: P_{191} = (6, 6, 1, 1)$	$56: P_{373} = (4, 5, 4, 1)$	$86: P_{576} = (7, 6, 7, 1)$
$27: P_{196} = (3,7,1,1)$	$57: P_{375} = (6, 5, 4, 1)$	$87: P_{577} = (0,7,7,1)$
$28: P_{198} = (5, 7, 1, 1)$	$58: P_{402} = (1, 1, 5, 1)$	$88: P_{580} = (3, 7, 7, 1)$
$29: P_{207} = (6, 0, 2, 1)$	$59: P_{406} = (5, 1, 5, 1)$	