Computer Graphics and Multimedia

Tutorial 3: Interpolation and Approximating Curves

1. Four points P_0, \ldots, P_3 are given. Find a polynomial curve (PC) that passes through these points and has the form

$$P(t) = at^{3} + bt^{2} + ct + d$$

$$= [t^{3} t^{2} t 1][a b c d]^{T}$$

$$= T(t)A \text{ for } t \in [0, 1].$$
(1)

Plot the polynomial blending functions.

- 2. Hermite interpolation is based on two points P_1 and P_2 and two tangent vectors P_1^t and P_2^t . It computes a curve segment that starts at P_1 , going in direction P_1^t and ends at P_2 moving in the direction P_2^t . Derive the expression of the Hermite interpolation P(t) = T(t)HB, where P_1^t is the column P_1^t in P_2^t in P_2^t
- 3. The first approach to the Bezier curve expresses it as a weighted sum of the points. Each control point is multiplied by a weight and the products are added. We denote, the control points by P_0, \ldots, P_n (n is therefore defined as 1 less than the number of points) and the weights by $B_i^{\,1}$. The expression of weighted sum is

$$P(t) = \sum_{t=0}^{n} P_i B_{n,i}(t), \ 0 \le t \le 1, \tag{2}$$

where $B_{n,i}(t) = \binom{n}{i} t^i (1-t)^{n-i}$.

Calculate the Bezier curve for the four points $P_0 = (0,0,0)$, $P_1 = (1,0,0)$, $P_2 = (2,1,0)$ and $P_3 = (3,0,1)$. Notice that this is a space curve since the first three points are in the z = 0 plane, while the fourth one is outside that plane. Calculate the (unnormalized) principal normal vector of the curve and find its values for t = 0, 0.5, and 1. Calculate the osculating plane of the curve and find its equations for t = 0, 0.5, and 1 as above.

4. Calculate the corner points and boundary curves of the surface patch

$$P(u,v) = ((c-a)u + a, (d-b)w + b, 0),$$
(3)

where a, b, c and d are given constants and the parameters u and w vary independently in the range [0,1]. What kind of a surface is this?

¹Berntein's polynomials