Deep Neural Networks

Embeddings

Embeddings

- Embedding is a mapping from one "world" into another one
- $t: X \to Y$
- Doesn't have to be injective

Most common scenario:

- X is either high-dimensional (e.g. tons of features) and/or inconvenient (for a machine) to work with (e.g. words)
- Y is a **vector space** with **lower dimensionality** and is convenient to work with (for a machine)

W(``cat'')=(0.2, -0.4, 0.7, ...)

W("mat")=(0.0, 0.6, -0.1, ...)

Sentence embedding

Image embedding

<whatever> embedding

Embeddings for data visualization

 For some objects we don't have a natural representation that is amenable and feasible for ML algorithms

- For some objects we don't have a natural representation that is amenable and feasible for ML algorithms:
 - Text (words, sentences, paragraphs...)
 - Users, brands, products, anything "id" based
 - o Images, movies...
- Dictionaries and one-hot encoding fail to encode meaningful information

- For some objects we don't have a natural representation that is amenable and feasible for ML algorithms:
 - Text (words, sentences, paragraphs...)
 - Users, brands, products, anything "id" based
 - o Images, movies...
- Dictionaries and one-hot encoding fail to encode meaningful information
- Original representation is very high-dimensional

- High-dimensional data is difficult to plot and difficult to understand
- Manifold hypothesis

- Natural candidates for embeddings
 - No dense and canonical representation
 - Many non-trivial relationships (synonyms, antonyms, gender, similarity, ...)

- Natural candidates for embeddings
 - No dense and canonical representation
 - Many non-trivial relationships (synonyms, antonyms, gender, similarity, ...)
- We would like to create a function W, mapping words into vectors (say 100-1000 dimensional)

- Natural candidates for embeddings
 - No dense and canonical representation
 - Many non-trivial relationships (synonyms, antonyms, gender, similarity, ...)
- We would like to create a function W, mapping words into vectors (say 100-1000 dimensional)
- W can be represented as a matrix, where each row represents one word

- Natural candidates for embeddings
 - No dense and canonical representation
 - Many non-trivial relationships (synonyms, antonyms, gender, similarity, ...)
- We would like to create a function W, mapping words into vectors (say 100-1000 dimensional)
- W can be represented as a matrix, where each row represents one word
- How to construct W?
 - Start with random W
 - Optimize W to perform some task

- Natural candidates for embeddings
 - No dense and canonical representation
 - Many non-trivial relationships (synonyms, antonyms, gender, similarity, ...)
- We would like to create a function W, mapping words into vectors (say 100-1000 dimensional)
- W can be represented as a matrix, where each row represents one word
- How to construct W?
 - Start with random W
 - Optimize W to perform some task
- Let's start with a toy example!

Possible task: classify whether a given 5-gram is valid.

Possible task: classify whether a given 5-gram is valid.

"cat sat on the mat"

Possible task: classify whether a given 5-gram is valid.

"cat sat on the mat"

"cat sat song the mat"

We can use a huge corpus to get the valid samples (e.g. Wikipedia)

Possible task: classify whether a given 5-gram is valid.

"cat sat on the mat"

- We can use a huge corpus to get the valid samples (e.g. Wikipedia)
- How to get negative examples?

Possible task: classify whether a given 5-gram is valid.

"cat sat on the mat"

- We can use a huge corpus to get the valid samples (e.g. Wikipedia)
- Negative examples can be created by switching a random word

Possible task: classify whether a given 5-gram is valid.

"cat sat on the mat"

- We can use a huge corpus to get the valid samples (e.g. Wikipedia)
- Negative examples can be created by switching a random word
- We plug W into a neural net so that it has to find the right values for it

- We don't care about the task at all... We just care about learning W.
- We can visualize the embeddings with t-SNE (wait for it...)

Similar words ended up nearby!

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	$_{ m BIT/S}$
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	$_{ m KBIT/S}$
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

 Having similar words nearby is a useful thing to do for W (it allows it to perform better)

- Having similar words nearby is a useful thing to do for W (it allows it to perform better)
- Note that two words can be similar in many ways:
 - Blue -> Red
 - Cat -> Dog
 - Jack -> John
 - France -> Austria

- Having similar words nearby is a useful thing to do for W (it allows it to perform better)
- Note that two words can be similar in many ways:
 - Blue -> Red
 - Cat -> Dog
 - Jack -> John
 - France -> Austria
- Seeing two sentences that differ just by one (similar) word encourages this
 effect

(Probably) the most remarkable property is encoding analogies as differences

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``aunt"}) - W(\text{``uncle"})$$

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``queen"}) - W(\text{``king"})$$

...and this goes beyond trivial relationships

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

- We can use pretrained embeddings for a number of NLP tasks:
 - Entity recognition
 - Translation
 - Sentiment analysis
 - Part-of-speech tagging
 - Parsing
 - 0 ...
- Those embeddings can be further optimized for the selected task

- All of those properties are side effects
- "a word is characterized by the company it keeps" John Rupert Firth
- Distributional Hypothesis: words that appear in the same contexts share semantic meaning

- All of those properties are side effects
- "a word is characterized by the company it keeps" John Rupert Firth
- Distributional Hypothesis: words that appear in the same contexts share semantic meaning
- There are many ways to compute the embeddings:
 - Count-based methods (e.g. LSA)
 - Predictive methods (e.g. Word2Vec)
 - Combined (e.g. GloVe)

- Comes in one of two flavours:
 - Continuous Bag-of-Words predict the word based on the context words
 - Skip-Gram predict the context words based on the word

- Comes in one of two flavours:
 - Continuous Bag-of-Words predict the word based on the context words
 - Skip-Gram predict the context words based on the word
- Example: "the quick brown fox jumped over the lazy dog"
 - CBOW: ([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...
 - Skip-Gram: (quick, the), (quick, brown), (brown, quick), (brown, fox), ...

Softmax classifier

Hidden layer

Projection layer

$$egin{aligned} P(w_t|h) &= \operatorname{softmax}(\operatorname{score}(w_t,h)) \ &= rac{\exp\{\operatorname{score}(w_t,h)\}}{\sum_{\operatorname{Word} \ \operatorname{w'} \ \operatorname{in} \ \operatorname{Vocab}} \exp\{\operatorname{score}(w',h)\}} \end{aligned}$$

- Having the probability distribution, we can maximize the log-likelihood
- Problem: the denominator can be infeasible we'd have to iterate over the whole Vocabulary

$$P(w_t|h) = \operatorname{softmax}(\operatorname{score}(w_t, h)) = \frac{\exp\{\operatorname{score}(w_t, h)\}}{\sum_{\operatorname{Word } \operatorname{w' \ in \ Vocab}} \exp\{\operatorname{score}(w', h)\}}$$

Word2Vec

- Having the probability distribution, we can maximize the log-likelihood
- Problem: the denominator can be infeasible we'd have to iterate over the whole Vocabulary
- We can overcome this by using a binary loss instead distinguishing between real words and "imaginary" noise words

$$J(w) = \log \sigma(score(w_t, h)) + \sum_{\tilde{w} \sim \mathbf{P}_{noise}} \log \sigma(-score(\tilde{w}, h))$$

GloVe

- Combining the two worlds:
 - We learn the embeddings that correspond to co-occurrence counts

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2 \qquad f \sim \int_{0.2 \text{ od } 0.6 \text{ obs } 10}^{10} f(P_{ij}) dt$$

Nearest neighbours

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

3. litoria

4. leptodactylidae

5. rana

7. eleutherodactylus

Company - CEO

Superlatives

Shared representations

- Sometimes we would like to embed data from two or more distinct representations, e.g.:
 - Shared representation for two languages
 - Shared representation for images and words

Shared representations

- Sometimes we would like to embed data from two or more distinct representations, e.g.:
 - Shared representation for two languages
 - Shared representation for images and words
- To achieve this we can force the embedding to map two representations that we know are of the same object to nearby points

Shared representations

Embedding for classification/matching

- Are those two pictures of the same individual?
- Are those two descriptions of the same object?
- Finding relevant/similar objects
- One-shot or zero-shot learning

Embedding for classification/matching

- Are those two pictures of the same individual?
- Are those two descriptions of the same object?
- Finding relevant/similar objects
- One-shot or zero-shot learning

Why not ordinary classification?

- Possibly too many classes
- Not enough training samples per class
- Frequent updates (adding new classes/objects)

Embedding for classification/matching

Triplet loss

Triplet loss

Positive sample should be closer than the negative one:

$$D(f(p_i), f(p_i^+)) < D(f(p_i), f(p_i^-))$$

Triplet loss

Positive sample should be closer than the negative one:

$$D(f(p_i), f(p_i^+)) < D(f(p_i), f(p_i^-))$$

Based on this we can create a loss function (with a regularizer g)

$$l(p_i, p_i^+, p_i^-) = \max\{0, g + D(f(p_i), f(p_i^+)) - D(f(p_i), f(p_i^-))\}$$

Embedding for dimensionality reduction

- Commonly used:
 - As a part of feature engineering pipeline (e.g. to battle overfitting)
 - To map the data to 2D or 3D and visualize it
 - PCA, Autoencoders, t-SNE

Embedding for dimensionality reduction

- Commonly used:
 - As a part of feature engineering pipeline (e.g. to battle overfitting)
 - To map the data to 2D or 3D and visualize it
 - PCA, Autoencoders, t-SNE
- A naive idea for embedding:
 - Preserve the distances between points (as much as possible)
 - One can actually to do this with gradient descent

$$C = \sum_{i \neq i} (d_{i,j}^* - d_{i,j})^2$$

Embedding for dimensionality reduction

- Commonly used:
 - As a part of feature engineering pipeline (e.g. to battle overfitting)
 - o To map the data to 2D or 3D and visualize it
 - o PCA, Autoencoders, t-SNE
- A naive idea for embedding:
 - Preserve the distances between points (as much as possible)
 - One can actually to do this with gradient descent

$$C = \sum_{i \neq j} (d_{i,j}^* - d_{i,j})^2$$

Distances in the original space may misbehave (e.g. images)

$$d(1, 1) = 4.53$$
 $d(9, 3) = 12.0$

- State-of-the-art dimensionality reduction
- Very well suited for visualization of high-dimensional data
- Works with large datasets
- Can be used for various types of data (numerical, images, words)

• Idea - preserve the neighbourhood and similarities (in terms of points):

- Idea preserve the neighbourhood and similarities (in terms of points):
 - Define a probability distribution of similarities in the original space how much does this guy look like my nearest neighbour

- Idea preserve the neighbourhood and similarities (in terms of points):
 - Define a probability distribution of similarities in the original space how much does this guy look like my nearest neighbour
 - Define a probability distribution of similarities in the embedded space

- Idea preserve the neighbourhood and similarities (in terms of points):
 - Define a probability distribution of similarities in the original space how much does this guy look like my nearest neighbour
 - Define a probability distribution of similarities in the embedded space
 - Make sure that those two distributions are close to each other use gradient descent to optimize embeddings

- Idea preserve the neighbourhood and similarities (in terms of points):
 - Define a probability distribution of similarities in the original space how much does this guy look like my nearest neighbour

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)}$$

- Define a probability distribution of similarities in the embedded space
- Make sure that those two distributions are close to each other use gradient descent to optimize embeddings

- Idea preserve the neighbourhood and similarities (in terms of points):
 - Define a probability distribution of similarities in the original space how much does this guy look like my nearest neighbour

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)} \qquad \qquad p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$$

- Define a probability distribution of similarities in the embedded space
- Make sure that those two distributions are close to each other use gradient descent to optimize embeddings

- Idea preserve the neighbourhood and similarities (in terms of points):
 - Define a probability distribution of similarities in the original space how much does this guy look like my nearest neighbour

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)} \qquad \qquad p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$$

Define a probability distribution of similarities in the embedded space

$$q_{ij} = rac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k
eq m} (1 + \|\mathbf{y}_k - \mathbf{y}_m\|^2)^{-1}}$$

 Make sure that those two distributions are close to each other - use gradient descent to optimize embeddings

- Idea preserve the neighbourhood and similarities (in terms of points):
 - Define a probability distribution of similarities in the original space how much does this guy look like my nearest neighbour

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)} \qquad \qquad p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$$

Define a probability distribution of similarities in the embedded space

$$q_{ij} = rac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k
eq m} (1 + \|\mathbf{y}_k - \mathbf{y}_m\|^2)^{-1}}$$

 Make sure that those two distributions are close to each other - use gradient descent to optimize embeddings

$$\mathit{KL}(P||Q) = \sum_{i
eq i} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

Where to read more about it?

- Word embeddings:
 - http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
 - http://p.migdal.pl/2017/01/06/king-man-woman-gueen-why.html
 - http://cs224d.stanford.edu/syllabus.html (especially lectures 2 and 3)
- Visualizing high-dimensional data:
 - http://colah.github.io/posts/2014-10-Visualizing-MNIST/
 - http://colah.github.io/posts/2015-01-Visualizing-Representations/
- Triplet-loss:
 - https://arxiv.org/pdf/1503.03832.pdf (FaceNet)
 - https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf (Ranking with triplet-loss)
- t-SNE:
 - https://lvdmaaten.github.io/tsne/
 - http://distill.pub/2016/misread-tsne/