Universidade do Minho

24 de Abril de 2013

1° Teste

Lógica EI

Lic. Eng. Informática

Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

- 1. Seja $A = \{1, 2, 3\}$ e seja G o subconjunto de A^* definido indutivamente como se segue:
 - (1) $1 \in G$;
 - (2) se $x \in G$ então $2x \in G$, para todo $x \in A^*$;
 - (3) se $x, y \in G$ então $3xy \in G$, para todo $x, y \in A^*$.

Considere ainda a função $S:G\longrightarrow \mathbb{N}$ definida, por recursão estrutural, do seguinte modo:

- S(1) = 1;
- para todo $x \in G$, S(2x) = 2 + S(x);
- para todo $x, y \in G$, S(3xy) = 3 + S(x) + S(y).
- (a) Indique uma sequência de formação do elemento u=3213211 de G.
- (b) Calcule S(3211).
- (c) Enuncie o Princípio de Indução Estrutural para G.
- (d) Mostre que, para todo $x \in G$, S(x) é impar.
- 2. Defina, por recursão estrutural em \mathcal{F}^{CP} , a função $f: \mathcal{F}^{CP} \to \mathbb{N}_0$ que a cada $\varphi \in \mathcal{F}^{CP}$ faz corresponder o comprimento da palavra φ . (Não deverá assumir qualquer convenção para a omissão de parênteses. Por exemplo, $f((\neg p_0) \land p_1)) = 8$.)
- 3. Dê exemplo de uma fórmula $\varphi \in \mathcal{F}^{CP}$ tal que $var((p_0 \land \neg p_1)[\varphi/p_1]) = \{p_0, p_1, p_2\}.$
- 4. Apresente uma forma normal disjuntiva logicamente equivalente à fórmula $(p_1 \lor (p_2 \land \neg p_3)) \to ((p_1 \lor p_2) \land \neg p_3).$
- 5. Considere o conjunto de fórmulas $\Gamma = \{p_1 \to p_2, \neg p_2, p_1 \leftrightarrow (p_2 \lor p_3)\}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - (a) Γ é consistente.
- (b) $\Gamma \models \neg p_3$.
- 6. Considere as seguintes afirmações:
 - Se há vida em Marte, então Zuzarte gosta de tarte.
 - Zuzarte é um marciano ou não gosta de tarte.
 - Zuzarte não é um marciano, mas há vida em Marte.
 - (a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - (b) Mostre que as três afirmações acima não podem ser simultaneamente verdadeiras.
- 7. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - (a) Para todo $\varphi \in \mathcal{F}^{CP}$, $\Gamma \subseteq \mathcal{F}^{CP}$, se Γ é consistente e φ não é contradição, então $\Gamma \cup \{\varphi\}$ é consistente.
 - (b) Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, $\Gamma \subseteq \mathcal{F}^{CP}$, se $\Gamma \models \varphi \in \varphi \rightarrow \psi$ é tautologia, então $\Gamma \models \psi$.

Cotações	1.	2.	3.	4.	5.	6.	7.
	1,5+1,5+1,5+2	1,5	1,5	1,5	1,5+1,5	1,5+1,5	1,5+1,5