Physics 401 Unofficial Formula Sheet

Constants

 $\epsilon_0 = 8.854 \times 10^{-12} \, \frac{\text{C}^2}{\text{Nm}^2}$ Electric Constant $e = 1.602 \times 10^{-19} \,\mathrm{C}$ Elementary Charge Vacuum Permeability $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A^2}$

 $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 2.998 \times 10^8 \,\mathrm{m/s}$ Speed of Light

Phys 301 Review

Maxwell's Equations

$$\begin{split} \nabla \cdot \vec{E} &= \frac{\rho}{\epsilon_0} & \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{B} &= 0 & \nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \\ & \oiint \vec{E} \cdot d\vec{a} = \frac{Q_{\rm enc}}{\epsilon_0} & \oiint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \\ & \oiint \vec{B} \cdot d\vec{a} = 0 & \oiint \vec{B} \cdot d\vec{l} = \mu_0 I_{\rm enc} + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt} \\ & \text{Linear Media} \end{split}$$

Dielectric constant $\epsilon = \epsilon_r \epsilon_0$

Chapter 8

8.1.1 Continuity Equation

Continuity Equation $\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{J}$

8.1.2 Poynting's Theorem

 $W = \iiint u d\tau$ $u = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$ Total energy Energy density Poynting vector $\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})^{\mu}$ Energy continuity $\frac{\partial u}{\partial t} = -\nabla \cdot \vec{S}$

 $P = \frac{dW}{dt} = - \oiint \vec{S} \cdot d\vec{a}$ Power

8.2.3 Conservation of Momentum

Momentum $\vec{g} = \mu_0 \epsilon_0 \vec{S} = \epsilon_0 \left(\vec{E} \times \vec{B} \right)$ Momentum density

 $\vec{L} = \iiint \vec{l} d au$ Angular momentum Angular momentum density $\vec{l} = \vec{r} \times \vec{q}$

 $ec{N}=ec{r} imesec{F}$ Torque

8.2.4 Angular Momentum

 $\vec{L} = \iiint \vec{l} d au$ Angular momentum

Angular momentum density $\vec{l} = \vec{r} \times \vec{g} = \epsilon_0 \left(\vec{r} \times (\vec{E} \times \vec{B}) \right)$ Torque

Chapter 9: Wave Incidence and Propogation

Boundary Conditions

$$\begin{aligned}
\epsilon_1 \vec{E}_1^{\perp} &= \epsilon_2 \vec{E}_2^{\perp} & \vec{E}_1^{\parallel} &= \vec{E}_2^{\parallel} \\
\vec{B}_1^{\perp} &= \vec{B}_2^{\perp} & \frac{\vec{B}_1^{\parallel}}{\mu_1} &= \frac{\vec{B}_2^{\parallel}}{\mu_2} \\
E_{0I} + E_{0R} &= E_{0T} & B_{0I} - B_{0R} &= B_{0T} \Rightarrow \frac{1}{\mu_1 v_1} (E_{0I} - E_{0R}) &= \frac{E_{0T}}{\mu_2 v_2}
\end{aligned}$$

Incidence Diagrams

Electromagnetic Waves

Wave speed
$$v = \frac{1}{\sqrt{\mu\epsilon}} = \frac{\omega}{k} = \frac{c}{n}$$
 Index of refraction
$$n = \frac{c}{v} = \sqrt{\frac{\epsilon\mu}{\epsilon_0\mu_0}} \approx \sqrt{\epsilon_r}$$
 Polarization
$$\hat{n} = \cos\theta\hat{x} + \sin\theta\hat{y}$$
 Electric field
$$\vec{E} = E_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)}\hat{n}$$
 Magnetic field
$$\vec{B} = \frac{\vec{k}\times\vec{E}}{t}$$

Propagation

Reflected
$$\frac{E_{0R}}{E_{0I}} = \left(\frac{\alpha - \beta}{\alpha + \beta}\right), \quad R = \left(\frac{\alpha - \beta}{\alpha + \beta}\right)^{2}$$
Transmitted
$$\frac{E_{0T}}{E_{0I}} = \frac{2}{\alpha + \beta}, \quad T = \frac{4\alpha\beta}{(\alpha + \beta)^{2}}$$
Conservation of energy
$$R+T=1$$
Alpha
$$\alpha = \frac{\cos\theta_{T}}{\cos\theta_{I}}$$
Beta
$$\beta = \frac{\mu_{I}v_{I}}{\mu_{2}v_{2}} = \frac{\mu_{I}n_{2}}{\mu_{2}n_{1}}$$
Reflection and refraction
$$\theta_{I} = \theta_{R}, \quad \frac{\sin\theta_{T}}{\sin\theta_{I}} = \frac{n_{1}}{n_{2}}$$
Brewster's angle $(\vec{E}_{R} = \vec{0})$
$$\alpha = \beta : \sin^{2}\theta_{B} = \frac{1 - \beta^{2}}{\left(\frac{n_{1}}{n_{2}}\right)^{2} - \beta^{2}}$$

Chapter 9: Guided Waves

Propagation in a Conductor

 $\vec{J}_f = \sigma \vec{E}$ (where σ is conductivity) Current density Characteristic time

 $\tilde{k} = k_1 + k_2, \begin{cases} k_1 = \omega \sqrt{\frac{\epsilon \mu}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2} + 1 \right)^{1/2} \\ k_2 = \omega \sqrt{\frac{\epsilon \mu}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2} - 1 \right)^{1/2} \end{cases}$ Wave number

 $\begin{cases} \vec{E}(z,t) = E_0 e^{-k_2 z} \cos(k_1 z - \omega t + \delta_E) \hat{x} \\ \vec{B}(z,t) = B_0 e^{-k_2 z} \cos(k_1 z - \omega t + \delta_E + \phi) \hat{y} \end{cases}$ Fields

 $\tan(\phi) = \frac{k_2}{l}$ Phase shift

Amplitude relationship $\frac{B_0}{E_0} = \frac{|\tilde{k}|}{\omega} = \frac{\sqrt{k_1^2 + k_2^2}}{\omega} = \sqrt{\epsilon \mu \sqrt{1 + \left(\frac{\sigma}{\epsilon \omega}\right)^2}}$

Rectangular Wave Guide (TE or TM Waves)

TE Waves $E_z = 0$, $B_z = B_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$

TM Waves $B_z = 0$

E-field $E_{x} = \frac{i}{\left(\frac{\omega}{c}\right)^{2} - k^{2}} \left(k \frac{\partial E_{z}}{\partial x} + \omega \frac{\partial B_{z}}{\partial y} \right), \quad E_{y} = \frac{i}{\left(\frac{\omega}{c}\right)^{2} - k^{2}} \left(k \frac{\partial E_{z}}{\partial y} - \omega \frac{\partial B_{z}}{\partial x} \right)$ B-field $E_{x} = \frac{i}{\left(\frac{\omega}{c}\right)^{2} - k^{2}} \left(k \frac{\partial E_{z}}{\partial x} - \frac{\omega}{c^{2}} \frac{\partial B_{z}}{\partial y} \right), \quad E_{y} = \frac{i}{\left(\frac{\omega}{c}\right)^{2} - k^{2}} \left(k \frac{\partial E_{z}}{\partial y} + \frac{\omega}{c^{2}} \frac{\partial B_{z}}{\partial x} \right)$

Cut-off frequency $\omega_{mn} = c\pi \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$

Wave number $k = \frac{1}{c} \sqrt{\omega^2 - \omega_{mn}^2}$ Wave velocity $v = \frac{c}{k} = \frac{c}{\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2}} > c$

Group velocity $v_g = \frac{1}{\frac{dk}{\omega}} = c\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2} < c$

Coaxial Transmission Line (TEM Waves)

Fields
$$\vec{E} = \frac{A\cos(kz - \omega t)}{s}\hat{s}$$
, $\vec{B} = \frac{A\cos(kz - \omega t)}{cs}\hat{\phi}$

Chapter 10

Potentials

Electric Field	$\vec{E} = -\vec{\nabla}V - \frac{\partial \vec{A}}{\partial t}$
3.6	₹ ₹ 7 Ot

Magnetic Field
$$\vec{B} = \vec{\nabla} \times \vec{A}$$

Maxwell's Eqns
$$\begin{cases} \nabla^2 V + \frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{A}) = -\frac{1}{\epsilon_0} \rho \\ \nabla^2 \vec{A} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} - \vec{\nabla} (\vec{\nabla} \cdot \vec{A} + \mu_0 \epsilon_0 \frac{\partial V}{\partial t}) = -\mu_0 \vec{J} \end{cases}$$

Gauge Freedom
$$\begin{cases} A' = A + \nabla \lambda \\ V' = V - \frac{\partial \lambda}{\partial V} \end{cases}, \quad \lambda = f(\vec{r}, t)$$

Gauge Freedom
$$\begin{cases}
\nabla^{2}A - \mu_{0}\epsilon_{0}\frac{\delta}{\partial t^{2}} - V(V \cdot A + \mu_{0}\epsilon_{0}\frac{\delta}{\partial t}) = -\mu_{0}J \\
\vec{A}' = \vec{A} + \vec{\nabla}\lambda \\
V' = V - \frac{\partial\lambda}{\partial t}, & \lambda = f(\vec{r}, t)
\end{cases}$$
Coulomb Gauge
$$\vec{\nabla} \cdot \vec{A} = 0, & \begin{cases}
\nabla^{2}V = -\frac{1}{\epsilon_{0}}\rho \\
\nabla^{2}\vec{A} - \mu_{0}\epsilon_{0}\frac{\partial^{2}\vec{A}}{\partial t^{2}} = -\mu_{0}\vec{J} + \mu_{0}\epsilon_{0}\vec{\nabla}(\frac{\partial V}{\partial t})
\end{cases}$$

$$\vec{\nabla} \cdot \vec{A} = 0, & \vec{\nabla}^{2}V - \mu_{0}\epsilon_{0}\frac{\partial^{2}V}{\partial t^{2}} = -\frac{1}{\epsilon_{0}}\rho$$

Lorentz Gauge
$$\vec{\nabla} \cdot \vec{A} = -\mu_0 \epsilon_0 \frac{\partial V}{\partial t}, \quad \begin{cases} \nabla^2 V - \mu_0 \epsilon_0 \frac{\partial^2 V}{\partial t^2} = -\frac{1}{\epsilon_0} \rho \\ \nabla^2 \vec{A} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} \end{cases}$$

d'Alembertian Operator
$$\Box^2 = \nabla^2 - \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2}$$

Lorentz force
$$\vec{F} = q \left(-\nabla V - \frac{\partial \vec{A}}{\partial t} + \vec{v} \times (\nabla \times \vec{A}) \right)$$

Total Derivative of
$$\vec{A}$$
 $\frac{d\vec{A}}{dt} = \frac{\partial \vec{A}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{A}$

Canonical Momentum
$$\vec{p}_{can} = \vec{p} + q\vec{A}$$

Potential Energy
$$U_{\text{vel}} = q(V - \vec{v} \cdot \vec{A})$$

Retarded potentials

Retarded time
$$t_r = t - \frac{\imath}{c}$$

Potentials
$$V(\vec{r},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}',t_r)}{t} d\tau', \quad \vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}',t_r)}{t} d\tau'$$

Moving Point Charges

 $\vec{w}(t)$ position of q at time t

Retarded time
$$\mathbf{\imath} = |\vec{r} - \vec{w}(t_r)| = c(t - t_r)$$

Potential
$$V(\vec{r},t) = \frac{1}{4\pi\epsilon_0} \frac{qc}{(\varkappa c - \vec{\imath} \cdot \vec{v})}$$

Vector potential
$$\vec{A}(\vec{r},t) = \frac{\vec{v}}{c^2}V(\vec{r},t)$$

$$\vec{u}$$
 vector $\vec{u} = c\hat{\imath} - \vec{v}$

Electric field
$$\vec{E}(\vec{r},t) = \frac{q}{4\pi\epsilon_0} \frac{\imath}{(\vec{\imath} \cdot \vec{u})^3} \left((c^2 - v^2)\vec{u} + \vec{\imath} \times (\vec{u} \times \vec{a}) \right)$$

Magnetic field
$$\vec{B}(\vec{r},t) = \frac{1}{c} \hat{\imath} \times \vec{E}(\vec{r},t)$$

Chapter 11: Radiation

WTF is Radiation

Power
$$P(r,t) = \iint \vec{S} \cdot d\vec{a} = \frac{1}{\mu_0} \oint (\vec{E} \times \vec{B}) \cdot d\vec{a}$$

Radiative Power
$$P_{rad}(t_0) = \lim_{r \to \infty} P(r, t - \frac{r}{c})$$

Electric Dipole Radiation

Source
$$q(t) = q_0 \cos(\omega t), \quad \vec{p}(t) = p_0 \cos(\omega t)\hat{z}, \quad p_o \equiv q_0 d$$

Approximations 1)
$$0 < d \ll r$$
, 2) $d \ll \frac{c}{c}$, $3 r \gg \frac{c}{c}$

Potential
$$V(r,\theta,t) = -\frac{p_0\omega}{4\pi\epsilon_0c} \left(\frac{\cos\theta}{r}\right) \sin\left(\omega(t-\frac{r}{c})\right), \quad \cos\theta = \frac{\vec{p}\cdot\hat{z}}{p_0}$$

Current
$$I(t) = \frac{dq}{dt}\hat{z} = -q_0\omega\sin\omega t\hat{z}$$

Current
$$I(t) = \frac{dq}{dt}\hat{z} = -q_0\omega\sin\omega t\hat{z}$$
 Vector potential
$$\vec{A}(r,\theta,t) = -\frac{\mu_0 p_0\omega}{4\pi r}\sin\left(\omega(t-\frac{r}{c})\right)\hat{z}$$

Electric field
$$\vec{E} = -\frac{\mu_0 p_0 \omega^2}{4\pi} \left(\frac{\sin \theta}{r} \right) \cos \left(\omega (t - \frac{r}{c}) \right) \hat{\theta}$$

Electric field
$$\vec{E} = -\frac{\mu_0 p_0 \omega^2}{4\pi} \left(\frac{\sin \theta}{r} \right) \cos \left(\omega (t - \frac{r}{c}) \right) \hat{\theta}$$
Magnetic field
$$\vec{B} = -\frac{\mu_0 p_0 \omega^2}{4\pi c} \left(\frac{\sin \theta}{r} \right) \cos \left(\omega (t - \frac{r}{c}) \right) \hat{\phi} = \frac{1}{c} (\hat{r} \times \vec{E})$$

Poynting Vector
$$\vec{S}(\vec{r},t) = \frac{\mu_0}{c} \left(\frac{p_0 \omega^2}{4\pi} \left(\frac{\sin \theta}{r} \right) \cos \left(\omega \left(t - \frac{r}{c} \right) \right) \right)^2 \hat{r}$$

Intensity
$$I = \left\langle \vec{S} \right\rangle = \frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c} \frac{\sin^2 \theta}{r^2} \hat{r}$$

Total Radiated Power
$$\langle P \rangle = \int \left\langle \vec{S} \right\rangle \cdot d\vec{a} = \frac{\mu_0 p_0^2 \omega^4}{12\pi c}$$

Magnetic Dipole Radiation

Source
$$I(t) = I_0 \cos(\omega t), \quad \vec{m}(t) = m_0 \cos(\omega t)\hat{z}$$

Vector potential
$$\vec{A}(r,\theta,t) = -\frac{\mu_0 m_0 \omega}{4\pi c} \left(\frac{\sin \theta}{r}\right) \sin \left(\omega (t - \frac{r}{c})\right) \hat{\phi}$$

Electric field
$$\vec{E} = \frac{\mu_0 m_0 \omega^2}{4\pi c} \left(\frac{\sin \theta}{r}\right) \cos \left(\omega (t - \frac{r}{c})\right) \hat{\phi}$$

Magnetic field
$$\vec{B} = -\frac{\mu_0 m_0 \omega^2}{4\pi c^2} \left(\frac{\sin \theta}{r} \right) \cos \left(\omega (t - \frac{r}{c}) \right) \hat{\theta}$$

General Electric Dipole Radiation

Potential
$$V(\vec{r},t) \cong \frac{1}{4\pi\epsilon_0} \left(\frac{Q}{r} + \frac{\hat{r} \cdot \vec{p}(t_0)}{r^2} + \frac{\hat{r} \cdot \dot{p}_0(t_0)}{rc} \right)$$

Vector Potential
$$\vec{A}(\vec{r},t) \cong \frac{\mu_0}{t} \vec{p}(t_0)$$

Electric field
$$\vec{E}(\vec{r},t) = \frac{4\pi}{\mu_0} \hat{r} \times (\hat{r} \times \vec{p})$$

Magnetic field
$$\vec{B}(\vec{r},t) = -\frac{4\pi \mu_0}{4\pi rc}(\hat{r} \times \vec{p})$$

Poynting vector
$$\vec{S} = \frac{\mu_0}{16\pi^2 r^2 c} [\ddot{\vec{p}}^2 - (\hat{r} \cdot \ddot{\vec{p}})^2] \hat{r} = \frac{\mu_0}{16\pi^2 c} |\ddot{\vec{p}}|^2 \left(\frac{\sin^2 \theta}{r^2}\right) \hat{r} = \frac{E_{\rm rad}^2}{\mu_0 c} \hat{r}$$

Larmor formula
$$P = \frac{\mu_0 q^2 a^2}{6\pi c}$$
, $v \ll c$ (Non-relativistic)

Radiation force
$$\vec{F}_{\rm rad} = \frac{\mu_0 q^2}{6\pi c} \vec{a}$$
,
 $\begin{cases} \text{Time average and only when} \\ \text{system returns to initial state} \end{cases}$

Use in EoM
$$\vec{F}_{rad} = m\tau \ddot{x}, \quad \tau \equiv \frac{\mu_0 q^2}{6\pi mc}$$

Chapter 12: Relativistic Electrodynamics

Relativity?!?

-	
Lorentz Factor	$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$
Beta Ratio	$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$ $\beta = \frac{v}{c}$
Time Dilation	$\Delta \bar{t} = \frac{1}{2} \Delta t$
Lorentz Contraction	$\Delta \overline{x} = \gamma \Delta x$
Lorentz Transformations	$\begin{cases} \overline{x} = \gamma(x - vt) \\ \overline{y} = y \\ \overline{z} = z \\ \overline{t} = \gamma(t - \frac{v}{c^2}x) \end{cases} \begin{cases} x = \gamma(\overline{x} + v\overline{t}) \\ y = \overline{y} \\ z = \overline{z} \\ t = \gamma(\overline{t} + \frac{v}{c^2}\overline{x}) \end{cases}$
Lorentz Tranformation Matrix	$\Lambda = \begin{bmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Lorentz Gauge Condition	$\frac{1}{2}\frac{\partial V}{\partial A} + \vec{\nabla} \cdot \vec{A} = 0$
Proper Time	$d\tau = \sqrt{1 - u^2/c^2}dt$
Proper Velocity	$d\tau = \sqrt{1 - u^2/c^2} dt$ $\vec{\eta} = \frac{d\vec{l}}{d\tau} = \frac{1}{\sqrt{1 - u^2/c^2}} \vec{u}, \vec{\eta}^{\mu} = \Lambda^{\mu}_{\nu} \eta^{\nu}$
Momentum	$ec{p}=mec{\eta}, p^{\mu}=m\eta^{\mu}$
Energy	$E = p^0 c = \frac{mc^2}{\sqrt{1 - u^2/c^2}}$
	$E^2 - p^2 c^2 = m^2 c^4$
Wave number	$\overline{k} = \gamma \left(k - \frac{v\omega}{c^2} \right), \overline{\omega} = \gamma (\omega - kv)$
Red/blue shift	$\begin{cases} \text{red shift if } \overline{\omega} < \omega \\ \text{blue shift if } \overline{\omega} > \omega \end{cases}$

Relativistic Fields

Electric Field
$$\overline{E_x} = E_x, \overline{E_y} = \gamma(E_y - vB_z), \overline{E_z} = \gamma(E_z + vB_y)$$
Magnetic Field
$$\overline{B_x} = B_x, \overline{B_y} = \gamma(B_y + \frac{v}{c^2}E_z), \overline{B_z} = \gamma(B_z - \frac{v}{c^2}E_y)$$
If $\vec{B} = 0$
$$\overline{\vec{B}} = -\frac{1}{c^2}(\vec{v} \times \overline{\vec{E}})$$
If $\vec{E} = 0$
$$\overline{\vec{E}} = \vec{v} \times \overline{\vec{B}}$$

Common Four-Vectors

Position	$x^{\mu} = (ct, \vec{x})$	Velocity	$\eta^{\mu} = \left(\frac{E}{mc}, \vec{v}\right)$
Momentum	$p^{\mu}=\left(rac{E}{c},ec{p} ight)$	Wave number	$k^{\mu}=\left(rac{\omega}{c},ec{k} ight)$
Current density	$J^{\mu}=\left(c ho,ec{J} ight)$	Potential	$A^{\mu} = \left(\frac{V}{c}, \vec{A}\right)$
Force	$f^{\mu} = \left(\frac{\vec{F} \cdot \frac{\vec{v}}{c}}{\sqrt{1 - \frac{v^2}{c^2}}}, \frac{\vec{F}}{\sqrt{1 - \frac{v^2}{c^2}}}\right),$	$\vec{F} = \frac{d\vec{p}}{dt}$,
4 Force EoM	$m_0 \frac{d^2 x^\mu}{ds^2} = f^\mu = q u^\nu F^{\mu\nu}$		
Example	$f^x = q(u^t F^{xt} - u^y F^{xy} - u^z F^{xz})$		

Chapter 12: More Relativity

Tensors

Field Tensor $F^{\mu\nu}=G^{\mu\nu}=G^{\mu\nu}$ Dual Tensor $G^{\mu\nu}=G^{\mu\nu}=G^{\mu\nu}$ Current Density $\vec{J}=\rho\vec{u}$,	0	E_x/c E	E_y/c E_Z/c
	$E^{\mu\nu}$ $ \int -E_x/c$	0	$B_z - B_y$
	$ -E_y/c$	$-B_z$	$0 B_x$
	$\left(-E_z/c\right)$	B_y -	$-B_x = 0$
Dual Tensor $G^{\mu\nu}$ =	\int_{0}^{∞}	B_x	$B_y B_z$
	$C^{\mu\nu}$ $ \int -B_x$	0 -	E_z/c E_y/c
	$ -B_y$	E_z/c	$0 -E_x/c$
	$\left(-B_z\right)$	$-E_y/c$ I	E_x/c 0
Current Density	$\vec{J}=\rho\vec{u},\rho=\tfrac{Q}{V},$	Q = charge	ve, $V = volume$
4-Current Density	$\begin{cases} J^{\mu} = (c\rho, J_x, c) \\ \frac{\partial J^{\mu}}{\partial x^{\mu}} = 0 \\ \frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \mu_0 J^{\mu}, \end{cases}$	$J_y, J_z)$	
Maxwell's Equations	$\frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \mu_0 J^{\mu},$	$\frac{\partial G^{\mu\nu}}{\partial x^{\nu}} = 0$)
Minkowski Force	$K^{\mu} = q\eta_{\nu}F^{\mu\nu},$	$\eta = \text{prope}$	r velocity

Minkowski Force Relativistic Potentials

Vector Potential $A^{\mu} = (V/c, A_x, A_y, A_z)$ Field Tensor $F^{\mu\nu} = \frac{\partial A^{\nu}}{\partial x_{\mu}} - \frac{\partial A^{\mu}}{\partial x_{\nu}}$ Lorentz Gauge $\Box^2 A^{\mu} = -\mu_0 J^{\mu}$

Relativistic Fields of a Point Charge with a Constant Velocity

Four Vectors

Vector	$A^{\mu} = (A_t, A_x, A_y, A_z) = (A_t, \vec{A})$
Scalar Product	$A^{\mu}B^{\mu} = A_t B_t - \vec{A} \cdot \vec{B}$
Vector Operator	$ abla^{\mu} = (\partial/\partial t, -\vec{ abla})$
Gradient	$ abla^{\mu}\phi=(rac{\partial\phi}{\partial t},-ec{ abla}\phi)$
Divergence	$ abla^{\mu}A^{\mu} = \frac{\partial A_t}{\partial t} + \vec{\nabla}\vec{A}$
Laplacian and d'Alembertian	$ abla^{\mu} abla^{\mu} = rac{\partial^2}{\partial t^2} - abla^2 = \Box^2$