Matrix Calculus

Steve Canves

yqykrhf@163.com

1 Scalar With Respect To Matrix

Think of the defination of derivative of the scalar f with respect to matrix $X_{m \times n}$

$$\frac{\partial f}{\partial X} = \left[\frac{\partial f}{\partial X_{ij}} \right]_{m \times n} \tag{1}$$

i.e. derivative of f with respect to X's by element, then which is arranged into a matrix with the same size to X. However, derivation by element breaks the integrity. Let's find another approach from whole aspect.

Review derivative in one variable(scalar with respect to scalar):

$$df = f'(x)dx$$

And derivative in mutiple variables(scalar with respect to vector) is

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i = (\frac{\partial f}{\partial \boldsymbol{x}})^T d\boldsymbol{x}$$

Similarily, relate matrix derivative to differentiation:

$$df = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial X_{ij}} dX_{ij} = tr((\frac{\partial f}{\partial X})^{T} dX)$$
(2)

Here X is matrix, X_{ij} is element. If X is a vector, then $df = (\frac{\partial f}{\partial X})^T dX$

Note: $tr(A^TB) = \sum_{i,j} A_{ij}B_{ij}$

Rules for matrix differentiation:

- 1. $d(X \pm Y) = dX \pm dY$; d(XY) = d(X)Y + Xd(Y); $d(X^T) = (dX)^T$; dtr(X) = tr(dX)
- 2. $dX^{-1} = -x^{-1}dXX^{-1}$. Both sides differentiate $XX^{-1} = I$ to prove it.
- $3.\ d(|X|)=tr(X^{adjoint}dX)=|X|tr(X^{-1}dX)$
- 4. element-wise mutiplication:

$$d(X \odot Y) = dX \odot Y + X \odot dY$$

5. element-wise function:

$$d\sigma(X) = \sigma'(X) \odot dX$$

$$X = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}, d\sin(X) = \begin{bmatrix} \cos X_{11} dX_{11} & \cos X_{12} dX_{12} \\ \cos X_{21} dX_{21} & \cos X_{22} dX_{22} \end{bmatrix} = \cos(X) \odot dX$$

Trace trick:

1.
$$tr(scalar) = a$$

$$2. tr(A^T) = tr(A)$$

3.
$$tr(A \pm B) = tr(A) \pm tr(B)$$

4.
$$tr(AB) = tr(BA) = \sum_{i,j} A_{ij}B_{ji}$$

5.
$$tr(A^T(B \odot C)) = tr((A \odot B)^T C) = \sum_{i,j} A_{ij} B_{ij} C_{ij}$$

Examples:

ex1

 $f = a^T X b$, solve $\frac{\partial f}{\partial X}$. f is scalar, a is $m \times 1$ column vector, X is $m \times n$ matrix, b is $n \times 1$

$$df = da^T X b + a^T dX b + a^T X db = a^T dX b$$

then trace both sides:

$$df = tr(a^T dXb) = tr(ba^T dX) = tr((ab^T)^T dX)$$

then

$$\frac{\partial f}{\partial X} = ab^T$$

ex2

 $f = a^T exp(Xb)$, solve $\frac{\partial f}{\partial X}$. f is scalar, \mathbf{a} is $m \times 1$ column vector, \mathbf{X} is $m \times n$ matrix, \mathbf{b} is $n \times 1$ exp is element-wise operation.

$$df = a^T(exp(Xb) \odot d(Xb))$$

then trace both sides:

$$df = tr((a \odot exp(Xb))^T dXb)$$
$$= tr(b(a \odot exp(Xb))^T dX)$$
$$= tr(((a \odot exp(Xb))b^T)^T dX)$$

then

$$\frac{\partial f}{\partial X} = (a \odot exp(Xb))b^T$$

ex3.

 $f=tr(Y^TMY), Y=\sigma(WX)$, solve $\frac{\partial f}{\partial X}$. f is scalar, \mathbf{W} is $l\times m$ matrix, X is $m\times n$ matrix, Y is $l\times n$ matrix, M is $l\times l$ symetric matrix, σ is element-wise operation.

$$df = tr(d(Y)^T)MY) + tr(Y^TMdY)$$
$$= tr(Y^TM^TdY) + tr(Y^TMdY)$$
$$= tr(Y^T(M + M^T)dY)$$
$$= tr(Y^T2MdY)$$

$$\frac{\partial f}{\partial Y} = 2M^T Y = 2MY$$

$$\begin{split} df &= tr((\frac{\partial f}{\partial Y})^T dY) \\ &= tr((\frac{\partial f}{\partial Y})^T (\sigma'(WX) \odot d(WX))) \\ &= tr\left((\frac{\partial f}{\partial Y})^T (\sigma'(WX) \odot W dX)\right) \\ &= tr\left((\frac{\partial f}{\partial Y} \odot \sigma'(WX))^T W dX\right) \\ &= tr\left((W^T (\frac{\partial f}{\partial Y} \odot \sigma'(WX)))^T dX\right) \end{split}$$

$$\frac{\partial f}{\partial X} = W^T(2MY \odot \sigma'(WX))$$

ex4. least square estimation

 $E=||AX-b||^2$, solve $\frac{\partial E}{\partial X}$'s zero point. E is scalar, A is $m\times n$ matrix, X is $n\times 1$ column vector, b is $m\times 1$ column vector.

$$E = (AX - b)^{T} (AX - b)$$

$$dE = (AX - b)^{T} (AX - b)$$

$$= (AdX)^{T} (AX - b) + (AX - b)^{T} (AdX)$$

$$= 2(AX - b)^{T} (AdX)$$

$$\frac{\partial E}{\partial X} = 2A^{T} (AX - b) = 0$$

then

$$A^T A X = A^T b$$

2 Matrix With Respect To Matrix

Define derivative of vector with respect to vector firstly. Derivative of vector $f_{p\times 1}$ with respect to vector x is defined as:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_p}{\partial x_1} \\
\frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_p}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_1}{\partial x_m} & \frac{\partial f_2}{\partial x_m} & \cdots & \frac{\partial f_p}{\partial x_m}
\end{bmatrix}$$
(3)

3 Reference

- This blog.
- This blog.