R-Help Session 1

January 29th, 2019

Downloading Data into R

- Importing directly from GitHub
 - https://github.com/brianlukoff/sta371g
 - Data → Click on relevant data set
 - Click on Raw
 - Copy the URL and place it in this command, like this
 - Motorcycles < read.csv("https://raw.githubusercontent.com/brianlukoff/sta371g/
 master/data/Motorcycles.csv")</pre>
- Import "Motorcycles.csv" into R-Studio
 - Save "Motorcycles.xlsx" file through Microsoft Excel
 - In R-Studio, under "Environment" tab, click "Import Dataset"
 - Click "From Excel..."
 - Click "Browse..." and navigate to the appropriate folder
 - Click "Import".

Simplifying Commands

- Naming variables helps to simplify running regressions
- You can name variables using a generic command: "Name <- Data\$Variable"
 - o For example, if I want to name the MSRP Variable as just "MSRP", I would do the following:
 - > MSRP <- Motorcycles\$MSRP
- Practice with remaining variables
 - 1 > Model <- Motorcycles\$Model</pre>
 - 2 > MSRP <- Motorcycles\$MSRP</pre>
 - 3 > Bore <- Motorcycles\$Bore</pre>
 - 4 > Displacement <- Motorcycles\$Displacement</pre>
 - 5 > Clearance <- Motorcycles\$Clearance</p>
 - 6 > EngineStrokes <- Motorcycles\$EngineStrokes</p>
 - 7 > Wheelbase <- Motorcycles\$Wheelbase</p>

Creating a Histogram

- Create a Histogram of the "Clearance" Variable
 - O Run the command: > hist (Clearance)
 - If your variables are unnamed, you can also run: > hist (Motorcycles\$Clearance)
 - You can add colors using the 'col' command: > hist (Clearance, col='orange')
 - You can add labels using the 'xlab' and 'ylab' commands:
 - > hist(Clearance, col ='orange', xlab = 'Clearance', ylab = 'Frequency')
 - Make sure to use apostrophes after command, and to separate commands using commas

Creating a Scatterplot

- Create a Scatterplot of "MSRP" vs. "Clearance"
 - o Run the command: > plot (MSRP ~ Clearance)
 - Take note: The variable on the left will appear in the y-axis
 - o For a fancy plot, run: > plot (MSRP ~ Clearance, pch=16, col='blue')
 - "pch=16" will fill in the circles, and "col='blue'" will turn your data points blue

Finding Correlation

- There looks to be some linear correlation between MSRP and Clearance
- In order to analyze correlation between the two variables, run the command:
 - o > cor(MSRP, Clearance)
- What correlation do you find? What does this tell you about the data?

Running a Simple Regression

- Run a regression predicting MSRP from Clearance, and assign the result to a variable called "model1":
 - O Run the command: > model1 <- lm (MSRP ~ Clearance)</p>
 - To analyze the regression, run the command: > summary(model1)
- In the readout below, you can analyze the intercept, slope and R² Value

```
Call:
lm(formula = MSRP ~ Clearance)
Residuals:
   Min
            10 Median
                                  Max
-3286.3 -764.4 166.5 759.2 3568.0
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -2149.69
                        608.41 -3.533 0.000647 ***
                         48.25 11.466 < 2e-16 ***
Clearance
             553.22
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 1287 on 91 degrees of freedom
Multiple R-squared: 0.591
                              Adjusted R-squared: 0.5865
F-statistic: 131.5 on 1 and 91 DF, p-value: < 2.2e-16
```

Visualizing Your Regression

- Visualize your regression by running the following two commands:
 - > plot(MSRP ~ Clearance, data = Motorcycles)
 - o > abline (model1)
- Running the two commands will draw a line of best fit over a scatterplot of the data

Predictions and Intervals

- Making predictions using our model
 - o predict(model1, list(Clearance = 10.00))
- Making prediction intervals
 - Confidence Intervals
 - Predicting the mean value of Y for a particular X.
 - Among all motorcycles with clearance of 10.00, on average, what will the MSRP be?
 - predict(model1, list(Clearance = 10.00), interval =
 'confidence')
 - Prediction Intervals
 - Predicting Y for a single new case
 - For a particular motorcycle with clearance 10.00, what is its MSRP?
 - predict(model1, list(Clearance = 10.00), interval =
 'prediction')

Checking Regression Assumptions (LINE)

- Linearity
 - o > plot(model1)
 - Look at the red line (should be relatively horizontal)
- Independence
 - Infer based on question
- Normality of residuals
 - o ggnorm(resid(model1))
 - o hist(resid(model1))
 - Or just do plot(model1)
- Equal Variance (Homoscedasticity)
 - o plot(model1)
 - Look at the first plot: Residuals vs fitted

