

What is the value of the LP position?

Under no arbitrage, position of numeraire $\mathbf{R_1}$ and asset $\mathbf{R_2}$ with price \mathbf{p} at time \mathbf{t} has value

$$V(p,t) = \text{minimize} \qquad R_1 + pR_2$$

subject to $R \in S_t$

where $\mathbf{S}_{\mathbf{t}}$ is the set of allowable states of the AMM at time \mathbf{t} .

Constant function market maker (CFMM):

$$S_t = \{R \mid \varphi(R) \ge k\}$$

Example: Constant Product AMM

For a constant product AMM with $\, \varphi(R) = \sqrt{R_1 R_2} \, \Box$

$$V(p,t) = 2k(\sqrt{p} - \sqrt{p_0}) + \mathbf{fees}(t)$$

Considerations:

- Do I want this derivative?
- What rebalancing costs do I pay arbitrageurs? (LVR)
- How can I hedge the price movement?

Replicating Market Makers: V $\rightarrow \phi$

Examples in practice:

- Zero coupon bonds at maturity (yield token pools)
- Weighted portfolios (geometric mean MMs, perpetual exchange lending pools)
- Covered calls & other options
- [Proposed] prediction markets

General theory [Angeris et al. 2021, 2023]

• For **V** concave, homogeneous, increasing:

$$\phi(R) = \inf_{p>0} \left(\frac{R_1 + pR_2}{V(p)} \right)$$

Why do some work & some fail?

Key factors (hypotheses):

Ease of **hedging** price movement

Amount extracted by **arbitrage**

Usefulness of custom V(p, t)

(if desire "delta neutral" strategy)

(LVR or "rebalancing fees")

(is the portfolio value useful?)

There are over \$10T of assets in ETFS

Let's bring passive liquidity on chain.

