Sequence Listing

TECH CENTER 1600/2900

Pan, James Zhong, Alan <120> UCP4

<110> Adams, Sean

<130> P1626R1

<140> US 09/397,342 <141> 1999-09-15

<150> US 60/101,279 <151> 1998-09-22

<150> US 60/114,223 <151> 1998-12-30

<150> US 60/129,674

<151> 1999-04-16

<160> 18

<210> 1

<211> 323

<212> PRT

<213> Homo sapiens

<400> 1

Met Ser Val Pro Glu Glu Glu Arg Leu Leu Pro Leu Thr Gln

Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala 20

Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr

Arg Leu Gln Met Gln Gly Glu Ala Ala Leu Ala Arg 1eu Gly Asp

Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Ang Thr Ala

Leu Gly Ile Ile Glu Glu Glu Gly Phe Leu Lys Leu Trp Gln Gly

Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg

Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Ly 110

Glu Asp Glu His Tyr Pro Leu Trp Lys Ser Val Ile Gly Gly Met

RECEIVED JUL 1 1 2002 TECH CENTER 1600/2900

Met Ala Gly Val Ile Gly Gln Phe Leu Ala Asn Pro Thr Asp Leu Val Lys Val Gln Met Gln Met Glu Gly Lys Arg Lys Leu Glu Gly Lys Pro Leu Arg Phe Arg Gly Val His His Ala Phe Ala Lys Ile 180 Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp Ala Gly Trp Val Pro 185 Asn Ile Gln Arg Ala Ala Leu Val Asn Met Gly Asp Leu Thr Thr 200 205 210 Tyr Asp Thr Val Lys His Tyr Leu Val Leu Asn Thr Pro Leu Glu Asp Asn Ile Met Thr His Gly Leu Ser Ser Leu Cys Ser Gly Leu 230 235 Val Ala Ser Ile Leu Gly Thr Pro Ala Asp Val Ile Lys Ser Arg Ile Met Asn Gln Pro Arg Asp Lys Gln Gly Arg Gly Leu Leu Tyr 265 Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala Val Gln Gly Glu Gly Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro Ser Trp Leu Arg Met Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg 310 Glu Met Ser Gly Val Ser Pro Phe

<210> 2

<211> 1039

<212> DNA

<213> Homo sapiens

<400> 2

ccgagctcgg atcccgttat cgtcttgcgc tactgctgaa tgtccgtccc 50 ggaggaggag gagaggcttt tgccgctgac ccagagatgg ccccgagcga 100 gcaaattcct actgtccggc tgcgcggcta ccgtggccga gctagcaacc 150 tttcccctgg atctcacaaa aactcgactc caaatgcaag gagaagcagc 200 tcttgctcgg ttgggagacg gtgcaagaga atctgcccc tataggggaa 250 tggtgcgcac agccctaggg atcattgaag aggaaggctt tctaaagctt 300 tggcaaggag tgacacccgc catttacaga cacgtagtgt attctggagg 350

tcgaatggtc acatatgaac atctccgaga ggttgtttt ggcaaaagtg 400 aagatgagca ttatcccctt tggaaatcag tcattggagg gatgatggct 450 ggtgttattg gccagttttt agccaatca actgacctag tgaaggttca 500 gatgcaaatg gaaggaaaaa ggaaactgga aggaaaacca ttgcgatttc 550 gtggtgtaca tcatgcattt gcaaaaatct tagctgaagg aggaatacga 600 gggctttggg caggctgggt acccaatata caaagagcag cactggtgaa 650 tatgggagt ttaaccactt atgatacagt gaaacactac ttggtattga 700 atacaccact tgaggacaat atcatgactc acggttatc aagtttatgt 750 tctggactgg tagcttctat tctgggaaca aggaatacga 800 cagaataatg aatcaaccac gagaataaaca aggaaggga cttttgtata 850 aatcatcgac tgactgctt atcaggctg tcaacggtga aggattcatg 900 agtctataa aaggctttt accatcttgg ctgagaatga ccccttggtc 950 aatggtgtc tggcttactt atgaaaaaat cagagagaga agtggagtca 1000 gtccatttta agaattctgc agatatcca cacactggc 1039

<210> 3 <211> 31 <212> DNA <213> Artificial <220>

<221> Misc-feature

<222> 1-31

<223> Sequence is synthesized

<400> 3 cgcggatccc gttatcgtct tgcgctactg c 31

<210> 4 <211> 34 <212> DNA

<213> Artificial

<220>

<221> Misc-feature

<222> 1-34

<223> Sequence is synthesized

<400> 4

gcggaattct taaaatggac tgactccact catc 34

<210> 5

<211> 1248

<212> DNA

<213> Artificial

<220> <221> Misc-feature <222> 1-1248 <223> Sequence is synthesized <220> <221> unsure <222> 1231 <223> unknown base <400> 5 cqttatcqtc ttqcqctact qctqaatqtc cqtcccqqaq qaqqaqqaqa 50 ggcttttgcc gctgacccag agatggcccc gagcgagcaa attcctactg 100 teeggetgeg eggetaeegt ggeegageta geaacettte eeetggatet 150 cacaaaaact cgactccaaa tgcaaggaga agcagctctt gctcggttgg 200 gagacggtgc aagagaatct gcccctata ggggaatggt gcgcacagcc 250 ctagggatca ttgaagagga aggctttcta aagctttggc aaggagtgac 300 accegecatt tacagacacg tagttatttc tggaggtcga atggtcacat 350 atgaacatct ccgagaggtt gtgtttggca aaagtgaaga tgagcattat 400 cccctttgga aatcagtcat tggagggatg atggctggtg ttattggcca 450 gtttttagcc aatccaactg acctagtgaa ggttcagatg caaatggaag 500 gaaaaaggaa actggaagga aaaccattgc gatttcgtgg tgtacatcat 550 gcatttgcaa aaatcttagc tgaaggagga atacgaaggc tttgggcagg 600 ctiggtaccc aatatacaaa gagcagcact ggtgaatatg ggagatttaa 650 ccacttatga tacagtgaaa cactacttgg tattgaatac accacttgag 700 gacaatatca tgactcacgg tttatcaagt ttatgttctg gactggtagc 750 ttctattctg ggaacaccag ccgatgtcat caaaagcaga ataatgaatc 800 aaccacgaga taaacaagga aggggacttt tgtataaatc atcgactgac 850 tgcttgattc aggctgttca aggtgaagga ttcatgagtc tatataaagg 900 ctttttacca tcttggctga gaatgacccc ttggtcaatg gtgttctggc 950 ttacttatga aaaaatcaga gagatgagtg gagtcagtcc attttaaacc 1000 cctaaagatg caaccettaa agatacagtg ttcagtatta ttgaaatatg 1050 ggcatctgca acacataccc cctattattt ctacctcttt aggaagacac 1100 ctattccaca gagactgatt tatagggggc agcactttat ttttttctgg 1150 aaacccaagt tototttgac tootottttt gtocaaaagt gatotggtog 1200


```
gatctcacaa ggccatccaa tgagaccccg nacagcattt tctaaaga 1248
 <210> 6
 <211> 58
 <212> DNA
 <213> Artificial
 <220>
 <221> Misc-feature
 <222> 1-58
 <223> Sequence is synthesized
  cgcggatccg aaatggacta caaggacgac gatgacaagt ccgtcccgga 50
 ggaggagg 58
 <210> 7
 <211> 35
 <212> DNA
 <213> Artificial
 <220>
 <221> Misc-feature
 <222> 1-35
 <223> Sequence is synthesized
 <400> 7
 gcgaagcttg ccatggttgg actgaagcct tcaga 35
 <210> 8
 <211> 33
<212> DNA
<213> Artificial
 <220>
 <221> Misc-feature
 <222> 1-33
 <223> Sequence is synthesized
 cgcgaattct caaaacggtg attcccgtaa cat 33
<210> 9
 <211> 61
 <212> DNA
 <213> Artificial
<220>
<221> Misc-feature
<222> 1-61
<223> Sequence is synthesized
<400> 9
 gcgaagcttg ccatggacta caaggacgac gatgacaagg ttggactgaa 50
 gccttcagac g 61
```

```
<210> 10
 <211> 19
 <212> DNA
 <213> Artificial
 <220>
 <221> Misc-feature
 <222> 1-19
 <223> Sequence is synthesized
 <400> 10
  aatgcctatc gccgaggag 19
 <210> 11
 <211> 20
 <212> DNA
 <213> Artificial
 <220>
 <221> Misc-feature
 <222> 1-20
 <223> Sequence is synthesized
 <400> 11
  gtaggaactt gctcgtccgg 20
 <210> 12
 <211> 22
 <212> DNA
 <213> Artificial
 <220>
<221> Misc-feature
 <222> 1-22
 <223> Sequence is synthesized
 <400> 12
 tgctcgcgct cacgcagaga tg 22
 <210> 13
 <211> 24
 <212> DNA
 <213> Artificial
 <220>
 <221> Misc-feature
 <222> 1-24
 <223> Sequence is synthesized
 <400> 13
 gaaatcgtgc gtgacatcaa agag 24
<210> 14
<211> 23
 <212> DNA
<213> Artificial
<220>
```

```
<221> Misc-feature
<222> 1-23
<223> Sequence is synthesized
<400> 14
ctccttctgc atcctgtcag caa 23
<210> 15
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Misc-feature
<222> 1-22
<223> Sequence is synthesized
<400> 15
cggttccgat gccctgaggc tc 22
<210> 16
<211> 307
<212> PRT
<213> Homo sapiens
<400> 16
Met Gly Gly Leu Thr Ala Ser Asp Val His Pro Thr Leu Gly Val
Gln Leu Phe Ser Ala Pro Ile Ala Ala Cys Leu Ala Asp Val Ile
Thr Phe Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Val Gln Gly
Glǘ Cys Pro Thr Ser Ser Val Ile Arg Tyr Lys Gly Val Leu Gly
Thr Ile Thr Ala Val Val Lys Thr Glu Gly Arg Met Lys Leu Tyr
Ser Gly Leu Pro Ala Gly Leu Gln Arg Gln Ile Ser Ser Ala Ser
Leu Arg Ile Gly Leu Tyr Asp Thr Val Gln Glu Phe Leu Thr Ala
Gly Lys Glu Thr Ala Pro Ser Leu Gly Ser Lys Ile Leu Ala Gly
                 110
Leu Thr Thr Gly Gly Val Ala Val Phe Ile Gly Gln Pro Thr Glu
                                     130
Val Val Lys Val Arg Leu Gln Ala Gln Ser His Leu His Gly Ile
Lys Pro Arg Tyr Thr Gly Thr Tyr Asn Ala Tyr Arg Ile Ile Ala
```

160

Thr Thr Glu Gly Leu Thr Gly Leu Trp Lys Gly Thr Thr Pro Asn 170 175 Leu Met Arg Ser Val Ile Ile Asn Cys Thr Glu Leu Val Thr Tyr Asp Leu Met Lys Glu Ala Phe Val Lys Asn Asn Ile Leu Ala Asp 200 Asp Val Pro Cys His Leu Val Ser Ala Leu Ile Ala Gly Phe Cys 215 Ala Thr Ala Met Ser Ser Pro Val Asp Val Val Lys Thr Arg Phe 230 235 Ile Asn Ser Pro Pro Gly Gln Tyr Lys Ser Val Pro Asn Cys Ala 250 Met Lys Val Phe Thr Asn Glu Gly Pro Thr Ala Phe Phe Lys Gly Leu Val Pro Ser Phe Leu Arg Leu Gly Ser Trp Asn Val Ile Met Phe Val Cys Phe Glu Gln Leu Lys Arg Glu Leu Ser Lys Ser Arg Gln Thr Met Asp Cys Ala Thr 305

<210> 17 <211> 309 <212> PRT <213> Homo sapiens

<400> 17

Met Val Gly Phe Lys Ala Thr Asp Val Pro Pro Thr Ala Thr Val 15

Lys Phe Leu Gly Ala Gly Thr Ala Ala Cys Ile Ala Asp Leu Ile 20

Thr Phe Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Ile Gln Gly \$35\$

Glu Ser Gln Gly Pro Val Arg Ala Thr Val Ser Ala Gln Tyr Arg $50 \,$ 55 $\,$ 60

Gly Val Met Gly Thr Ile Leu Thr Met Val Arg Thr Glu Gly Pro 657075

Ser Phe Ala Ser Val Arg Ile Gly Leu Tyr Asp Ser Val Lys Gln 95 100 105

									•					
Phe	Tyr	Thr	Lys	Gly 110	Ser	Glu	His	Ala	Ser 115	Ile	Gly	Ser	Arg	Leu 120
Leu	Ala	Gly	Ser	Thr 125	Thr	Gly	Ala	Leu	Ala 130	Val	Ala	Val	Ala	Gln 135
Pro	Thr	Asp	Val	Val 140	Lys	Val	Arg	Phe	Gln 145	Ala	Gln	Ala	Arg	Ala 150
Gly	Gly	Gly	Arg	Arg 155	Tyr	Gln	Ser	Thr	Val 160	Asn	Ala	Tyr	Lys	Thr 165
Ile	Ala	Arg	Glu	Glu 170	Gly	Phe	Arg	Gly	Leu 175	Trp	Lys	Gly	Thr	Ser 180
Pro	Asn	Val	Ala	Arg 185	Asn	Ala	Ile	Val	Asn 190	Cys	Ala	Glu	Leu	Val 195
Thr	Tyr	Asp	Leu	Ile 200	Lys	Asp	Ala	Leu	Leu 205	Lys	Ala	Asn	Leu	Met 210
Thr	Asp	Asp	Leu	Pro 215	Cys	His	Phe	Thr	Ser 220	Ala	Phe	Gly	Ala	Gly 225
Phe	Cys	Thr	Thr	Val 230	Ile	Ala	Ser	Pro	Val 235	Asp	Val	Val	Lys	Thr 240
Arg	Tyr	Met	Asn	Ser 245	Ala	Leu	Gly	Gln	Tyr 250	Ser	Ser	Ala	Gly	His 255
Cys	Ala	Leu	Thr	Met 260	Leu	Gln	Lys	Glu	Gly 265	Pro	Arg	Ala	Phe	Tyr 270
Lys	Gly	Phe	Met	Pro 275	Ser	Phe	Leu	Arg	Leu 280	Gly	Ser	Trp	Asn	Val 285
Val	Met	Phe	Val	Thr 290	Tyr	Glu	Gln	Leu	Lys 295	Arg	Ala	Leu	Met	Ala 300
Ala	Cys	Thr	Ser	Arg 305	Glu	Ala	Pro	Phe						
<210> 18 <211> 300 <212> PRT <213> Homo sapiens														
<400> Met 1		Val	Lys	Phe 5	Leu	Gly	Ala	Gly	Thr 10	Ala	Ala	Cys	Phe	Ala 15
Asp	Leu	Val	Thr	Phe 20	Pro	Leu	Asp	Thr	Ala 25	Lys	Val	Arg	Leu	Gln 30

Ile Gln Gly Glu Asn Gln Ala Val Gln Thr Ala Arg Leu Val Gln \$35\$ \$40\$ Leu Val Gln \$45\$

Tyr Arg Gly Val Leu Gly Thr Ile Leu Thr Met Val Arg Thr Glu Gly Pro Cys Ser Pro Tyr Asn Gly Leu Val Ala Gly Leu Gln Arg Gln Met Ser Phe Ala Ser Ile Arg Ile Gly Leu Tyr Asp Ser Val Lys Gln Val Tyr Thr Pro Lys Gly Ala Asp Asn Ser Ser Leu Thr Thr Arg Ile Leu Ala Gly Cys Thr Thr Gly Ala Met Ala Val Thr 120 110 Cys Ala Gln Pro Thr Asp Val Val Lys Val Arg Phe Gln Ala Ser 130 Ile His Leu Gly Pro Ser Arg Ser Asp Arg Lys Tyr Ser Gly Thr 140 145 150 Met Asp Ala Tyr Arg Thr Ile Ala Arg Glu Glu Gly Val Arg Gly 160 Leu Trp Lys Gly Thr Leu Pro Asn Ile Met Arg Asn Ala Ile Val 170 Asn Cys Ala Glu Val Val Thr Tyr Asp Ile Leu Lys Glu Lys Leu Leu Asp Tyr His Leu Leu Thr Asp Asn Phe Pro Cys His Phe Val Ser Ala Phe Gly Ala Gly Phe Cys Ala Thr Val Val Ala Ser Pro Val Asp Val Lys Thr Arg Tyr Met Asn Ser Pro Pro Gly Gln 230 Tyr Phe Ser Pro Leu Asp Cys Met Ile Lys Met Val Ala Gln Glu Gly Pro Thr Ala Phe Tyr Lys Gly Phe Thr Pro Ser Phe Leu Arg Leu Gly Ser Trp Asn Val Val Met Phe Val Thr Tyr Glu Gln Leu Lys Arg Ala Leu Met Lys Val Gln Met Leu Arg Glu Ser Pro Phe