Coping with NP-completeness: Exact Algorithms

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg Russian Academy of Sciences

Advanced Algorithms and Complexity Data Structures and Algorithms

Exact algorithms or intelligent exhaustive search: finding an optimal solution without

going through all candidate solutions

Outline

1 3-SatisfiabilityBacktrackingLocal Search

2 Traveling Salesman Problem Dynamic Programming Branch-and-bound

3-Satisfiability (3-SAT)

```
Input: A set of clauses, each containing at most three literals (that is, a 3-CNF formula).
```

Output: Find a satisfying assignment (if exists).

■ The formula

$$(x \vee y \vee z)(x \vee \overline{y})(y \vee \overline{z})$$

is satisfiable: set x = y = z = 1 or x = 1, y = z = 0.

The formula $(x \lor y \lor z)(x \lor \overline{y})(y \lor \overline{z})(z \lor \overline{x})(\overline{x} \lor \overline{y} \lor \overline{z})$

is unsatisfiable.

A brute force search algorithm checking satisfiability of a 3-CNF formula F with n variables, goes through all assignments and

has running time $O(|F| \cdot 2^n)$.

A brute force search algorithm checking satisfiability of a 3-CNF formula F with n variables, goes through all assignments and has running time $O(|F| \cdot 2^n)$.

Goal

Avoid going through all 2^n assignments

Outline

3-Satisfiability
 Backtracking
 Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

Main Idea of Backtracking

Construct a solution piece by piece

Main Idea of Backtracking

- Construct a solution piece by piece
- Backtrack if the current partial solution cannot be extended to a valid solution

$$(x_1 \vee x_2 \vee x_3 \vee x_4)(\overline{x}_1)(x_1 \vee x_2 \vee \overline{x}_3)(x_1 \vee \overline{x}_2)(x_2 \vee \overline{x}_4)$$

$$(x_1 \lor x_2 \lor x_3 \lor x_4)(\overline{x}_1)(x_1 \lor x_2 \lor \overline{x}_3)(x_1 \lor \overline{x}_2)(x_2 \lor \overline{x}_4)$$

$$x_1 = 0$$

$$(x_2 \lor x_3 \lor x_4)(x_2 \lor \overline{x}_3)(\overline{x}_2)(x_2 \lor \overline{x}_4)$$

$$(x_1 \lor x_2 \lor x_3 \lor x_4)(\overline{x}_1)(x_1 \lor x_2 \lor \overline{x}_3)(x_1 \lor \overline{x}_2)(x_2 \lor \overline{x}_4)$$

$$x_1 = 0$$

$$(x_2 \lor x_3 \lor x_4)(x_2 \lor \overline{x}_3)(\overline{x}_2)(x_2 \lor \overline{x}_4)$$

$$x_2 = 0$$

$$(x_3 \lor x_4)(\overline{x}_3)(\overline{x}_4)$$

if F has no clauses: return "sat"

if F has no clauses:
 return "sat"
if F contains an empty clause:
 return "unsat"

```
if F has no clauses:
    return "sat"

if F contains an empty clause:
    return "unsat"

x ← unassigned variable of F
```

```
if F has no clauses:
  return "sat"
if F contains an empty clause:
  return "unsat"
x \leftarrow \text{unassigned variable of } F
if SolveSAT(F[x \leftarrow 0]) = "sat":
  return "sat"
```

return "sat"

```
if F has no clauses:
  return "sat"
if F contains an empty clause:
  return "unsat"
x \leftarrow \text{unassigned variable of } F
if SolveSAT(F[x \leftarrow 0]) = "sat":
  return "sat"
if SolveSAT(F[x \leftarrow 1]) = "sat":
```

```
if F has no clauses:
  return "sat"
if F contains an empty clause:
  return "unsat"
x \leftarrow \text{unassigned variable of } F
```

return "sat"

return "sat"

return "unsat"

if SolveSAT($F[x \leftarrow 0]$) = "sat":

if SolveSAT($F[x \leftarrow 1]$) = "sat":

■ Thus, instead of considering all 2^n branches of the recursion tree, we track carefully each branch

- Thus, instead of considering all 2^n branches of the recursion tree, we track carefully each branch
- When we realize that a branch is dead (cannot be extended to a solution),

we immediately cut it

■ Backtracking is used in many

state-of-the-art SAT-solvers

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on and to simplify a formula before branching

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on and to simplify a formula before branching
- Another commonly used technique is local search will consider it in the next part

Outline

3-Satisfiability
 Backtracking
 Local Search

2 Traveling Salesman Problem Dynamic Programming Branch-and-bound

Start with a candidate solution

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

■ Let F be a 3-CNF formula over variables

 X_1, X_2, \ldots, X_n

- Let F be a 3-CNF formula over variables X_1, X_2, \ldots, X_n
- A candidate solution is a truth

assignment to these variables, that is,

a vector from $\{0,1\}^n$

Definition

Hamming distance (or just distance) between two assignments $\alpha, \beta \in \{0, 1\}^n$ is the number of bits where they differ: dist $(\alpha, \beta) = |\{i : \alpha_i \neq \beta_i\}|$.

Definition

Hamming distance (or just distance) between two assignments $\alpha, \beta \in \{0, 1\}^n$ is the number of bits where they differ: dist $(\alpha, \beta) = |\{i : \alpha_i \neq \beta_i\}|$.

Definition

Hamming ball with center $\alpha \in \{0,1\}^n$ and radius r, denoted by $\mathcal{H}(\alpha,r)$, is the set of all truth assignments from $\{0,1\}^n$ at distance at most r from α .

$$\blacksquare \mathcal{H}(1011,0) = \{1011\}$$

- - $\blacksquare \mathcal{H}(1011,0) = \{1011\}$
 - $\mathcal{H}(1011,1) = \{1011,0011,11111,1001,1010\}$

 \blacksquare $\mathcal{H}(1011,0) = \{1011\}$

0111,0001,0010,1101,1110,1000}

Searching a Ball for a Solution

Lemma

Assume that $\mathcal{H}(\alpha, r)$ contains a satisfying assignment β for F. We can then find a (possibly different) satisfying assignment in time $O(|F| \cdot 3^r)$.

lacksquare If lpha satisfies \emph{F} , return lpha

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause say, $(x_i \vee \overline{x}_j \vee x_k)$

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause say, $(x_i \vee \overline{x}_j \vee x_k)$
- \bullet α assigns $x_i = 0, x_j = 1, x_k = 0$

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause say, $(x_i \vee \overline{x}_j \vee x_k)$
- \bullet α assigns $x_i = 0, x_j = 1, x_k = 0$
- Let $\alpha^i, \alpha^j, \alpha^k$ be assignments resulting from α by flipping the *i*-th, *j*-th, *k*-th bit, respectively

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause say, $(x_i \vee \overline{x}_j \vee x_k)$
- \bullet assigns $x_i = 0, x_j = 1, x_k = 0$
- Let $\alpha^i, \alpha^j, \alpha^k$ be assignments resulting from α by flipping the *i*-th, *j*-th, *k*-th bit, respectively
- lacktriangle Crucial observation: at least one of them is closer to eta than lpha

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause say, $(x_i \vee \overline{x}_j \vee x_k)$
- \bullet α assigns $x_i = 0, x_j = 1, x_k = 0$
- Let $\alpha^i, \alpha^j, \alpha^k$ be assignments resulting from α by flipping the *i*-th, *j*-th, *k*-th bit, respectively
- \blacksquare Crucial observation: at least one of them is closer to β than α
- Hence there are at most 3^r recursive calls

if α satisfies F: return α

```
if \alpha satisfies F:

return \alpha

if r = 0:

return 'not found'
```

```
if \alpha satisfies F:
  return \alpha
if r=0:
```

return "not found" $x_i, x_i, x_k \leftarrow \text{variables of unsatisfied clause}$

 $\alpha^i, \alpha^j, \alpha^k \leftarrow \alpha$ with bits i, j, k flipped

if α satisfies F: return α if r=0:

return "not found"

CheckBall $(F, \alpha^i, r-1)$ CheckBall $(F, \alpha^j, r-1)$ CheckBall $(F, \alpha^k, r-1)$

 $x_i, x_i, x_k \leftarrow \text{variables of unsatisfied clause}$ $\alpha^i, \alpha^j, \alpha^k \leftarrow \alpha$ with bits i, j, k flipped

```
if \alpha satisfies F:
  return \alpha
if r=0:
  return "not found"
```

 $x_i, x_i, x_k \leftarrow \text{variables of unsatisfied clause}$ $\alpha^i, \alpha^j, \alpha^k \leftarrow \alpha$ with bits i, j, k flipped CheckBall $(F, \alpha^i, r-1)$ CheckBall $(F, \alpha^j, r-1)$

if a satisfying assignment is found:

CheckBall $(F, \alpha^k, r-1)$

return "not found"

return it

else:

Assume that F has a satisfying assignment β

- Assume that F has a satisfying assignment β
- If it has more 1's than 0's then it has

assignment

distance at most n/2 from all-1's

- Assume that F has a satisfying assignment β
- If it has more 1's than 0's then it has distance at most n/2 from all-1's assignment
- Otherwise it has distance at most n/2

from all-0's assignment

- $\begin{tabular}{ll} \blacksquare & \textbf{Assume that } \pmb{F} & \textbf{has a satisfying} \\ & \textbf{assignment } \beta \\ \end{tabular}$
- If it has more 1's than 0's then it has distance at most n/2 from all-1's assignment
- assignment
 Otherwise it has distance at most n/2 from all-0's assignment
- Thus, it suffices to make two calls: CheckBall(F, 11...1, n/2) and CheckBall(F, 00...0, n/2)

Running Time

The running time of the resulting algorithm is $O(|F| \cdot 3^{n/2}) \approx O(|F| \cdot 1.733^n)$

Running Time

- The running time of the resulting algorithm is $O(|F| \cdot 3^{n/2}) \approx O(|F| \cdot 1.733^n)$
- On one hand, this is still exponential

Running Time

- The running time of the resulting algorithm is $O(|F| \cdot 3^{n/2}) \approx O(|F| \cdot 1.733^n)$
- On one hand, this is still exponential
- On the other hand, it is exponentially faster than a brute force search algorithm that goes through all 2ⁿ truth assignments!

Outline

3-SatisfiabilityBacktrackingLocal Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

Traveling salesman problem (TSP)

Input: A complete graph with weights on edges and a budget b.

Output: A cycle that visits each vertex exactly once and has total weight at most b.

Traveling salesman problem (TSP)

Input: A complete graph with weights on edges and a budget b.

Output: A cycle that visits each vertex exactly once and has total weight at most b.

It will be convenient to assume that vertices are integers from 1 to n and that the salesman starts his trip in (and also returns back to) vertex 1.

length: 15

Example

length: 9

Brute Force Solution

A naive algorithm just checks all possible (n-1)! cycles.

Brute Force Solution

A naive algorithm just checks all possible (n-1)! cycles.

This part

Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$

Brute Force Solution

A naive algorithm just checks all possible (n-1)! cycles.

This part

- Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$
- The running time is exponential, but is much better than (n-1)!.

Outline

3-SatisfiabilityBacktrackingLocal Search

2 Traveling Salesman Problem Dynamic Programming Branch-and-bound

 We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems

- We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems
- A subproblem refers to a partial solution

- We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems
- A subproblem refers to a partial solution
- A reasonable partial solution in case of TSP is the initial part of a cycle

- We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems
- A subproblem refers to a partial solution
- A reasonable partial solution in case of TSP is the initial part of a cycle
- To continue building a cycle, we need to know the last vertex as well as the set of already visited vertices

Subproblems

For a subset of vertices $S \subseteq \{1, ..., n\}$ containing the vertex 1 and a vertex $i \in S$, let C(S, i) be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once

Subproblems

- For a subset of vertices $S \subseteq \{1, ..., n\}$ containing the vertex 1 and a vertex $i \in S$, let C(S, i) be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once
- $C(\{1\},1)=0$ and $C(S,1)=+\infty$ when |S|>1

Recurrence Relation

Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
- The subpath from 1 to j is the shortest one visiting all vertices from $S \{i\}$ exactly once

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
- The subpath from 1 to j is the shortest one visiting all vertices from $S \{i\}$ exactly once
- Hence $C(S, i) = \min\{C(S \{i\}, j) + d_{ji}\},$ where the minimum is over all $j \in S$ such that $j \neq i$

Order of Subproblems

Need to process all subsets $S \subseteq \{1, \ldots, n\}$ in an order that guarantees that when computing the value of C(S, i), the values of $C(S - \{i\}, j)$ have already been computed

Order of Subproblems

- Need to process all subsets $S \subseteq \{1, \ldots, n\}$ in an order that guarantees that when computing the value of C(S, i), the values of $C(S \{i\}, j)$ have already been computed
- For example, we can process subsets in order of increasing size

TSP(G)

 $C(\{1\},1)\leftarrow 0$

TSP(G)

 $C(S,1) \leftarrow +\infty$

for all $1 \in S \subseteq \{1, ..., n\}$ of size s:

```
C(\{1\},1) \leftarrow 0 for s from 2 to n:
```

```
TSP(G)
C(\{1\},1) \leftarrow 0
for s from 2 to n:
```

 $C(S,1) \leftarrow +\infty$

for all $i \in S$, $i \neq 1$:

for all $i \in S$, $i \neq i$:

for all $1 \in S \subseteq \{1, ..., n\}$ of size s:

 $C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ii}\}$

TSP(G)

 $C(\{1\}, 1) \leftarrow 0$

 $C(S,1) \leftarrow +\infty$

for all $i \in S$, $i \neq 1$:

for s from 2 to n:

for all $i \in S$, $i \neq i$:

return $\min_{i} \{ C(\{1, ..., n\}, i) + d_{i,1} \}$

 $C(S,i) \leftarrow \min\{C(S,i),C(S-\{i\},j)+d_{ii}\}$

for all $1 \in S \subseteq \{1, ..., n\}$ of size s:

Implementation Remark

■ How to iterate through all subsets of $\{1, \ldots, n\}$?

Implementation Remark

- How to iterate through all subsets of $\{1, \ldots, n\}$?
- There is a natural one-to-one correspondence between integers in the range from 0 and $2^n 1$ and subsets of $\{0, \ldots, n-1\}$:

$$k \leftrightarrow \{i : i\text{-th bit of } k \text{ is } 1\}$$

Example

k	bin(k)	$\{i: i\text{-th bit of } k \text{ is } 1\}$
0	000	Ø
1	001	{0}
2	010	{1}
3	011	{0,1}
4	100	{2}
5	101	{0,2}
6	110	{1,2}
7	111	{0,1,2}

If k corresponds to S, how to find out the integer corresponding to $S - \{j\}$ (for $j \in S$)?

- If k corresponds to S, how to find out the integer corresponding to $S \{j\}$ (for $j \in S$)?
- For this, we need to flip the j-th bit of k (from 1 to 0)

- If k corresponds to S, how to find out the integer corresponding to S − {j} (for j ∈ S)?
 For this, we need to flip the j-th bit of k
- (from 1 to 0) For this, in turn, we compute a bitwise XOR of k and 2^{j} (that has 1 only in j-th position)

- If k corresponds to S, how to find out the integer corresponding to $S \{j\}$ (for $j \in S$)?
- For this, we need to flip the j-th bit of k (from 1 to 0)
- For this, in turn, we compute a bitwise XOR of k and 2^{j} (that has 1 only in j-th position)
 - position)

 In C/C++, Java, Python:

 k^(1 << j)

Outline

3-SatisfiabilityBacktrackingLocal Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

■ The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems

- The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems
- We grow a tree of partial solutions

- The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems
- We grow a tree of partial solutions
- At each node of the recursion tree we check whether the current partial solution can be extended to a solution which is better than the best solution found so far

- The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems
- We grow a tree of partial solutions
- At each node of the recursion tree we check whether the current partial solution can be extended to a solution which is better than the best solution found so far
- If not, we don't continue this branch

Example: brute force search

Example: brute force search

Example: pruned search

Example: pruned search

We used the simplest possible lower bound: any extension of a path has

length at least the length of the path

- We used the simplest possible lower bound: any extension of a path has
- bound: any extension of a path haslength at least the length of the pathModern TSP-solvers use smarter lower

bounds to solve instances with

thousands of vertices

Example: lower bounds (still simple)

 \blacksquare $\frac{1}{2} \sum_{v \in V} (\text{two min length edges adjacent to } v)$

Example: lower bounds (still simple)

The length of an optimal TSP cycle is at least

15 (1)

■ the length of a minimum spanning tree

■ $\frac{1}{2}\sum_{v\in V}$ (two min length edges adjacent to v)

Next time

Approximation algorithms: polynomial algorithms that find a solution that is not

much worse than an optimal solution