Семинар №4

Рассматриваем функции в \mathbb{R}^2 .

Def. (предел f(x, y) в точке (x_0, y_0) по направлению \vec{l}).

Пусть f(x) определена в некоторой $\mathring{\mathrm{U}}(x_0,y_0)$ и пусть $\overrightarrow{l}(\cos\varphi,\sin\varphi)$ — некоторый единичный вектор.

$$\lim_{\substack{x \to x_0 \\ y \to y_0 \\ (x, y) \in I(\varphi)}} \frac{\det}{\rho \to +0} f(x_0 + \rho \cos \varphi, y_0 + \rho \sin \varphi)$$

Замечание. $l(\varphi)=\{(x,y)\,|\,x=x_0+\rho\cos\varphi,\,y=y_0+\rho\sin\varphi,\,\rho\in(0,+\infty)\}$ — луч.

Рис. 1

Th (необходимое условие $\exists \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$).

$$\exists \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = a \Rightarrow \forall \varphi \in [0, 2\pi) \exists \lim_{\substack{x \to x_0 \\ y \to y_0 \\ (x, y) \in I(\alpha)}} f(x, y) = a$$

 $\exists \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y) = a \Rightarrow \forall \varphi \in [0,2\pi) \ \exists \lim_{\substack{x \to x_0 \\ y \to y_0 \\ (x,y) \in l(\varphi)}} f(x,y) = a$ Следствие. $\lim_{\substack{x \to x_0 \\ y \to y_0 \\ (x,y) \in l(\varphi)}} f(x,y) \ \text{зависит от } \varphi \ \text{или } \nexists \Rightarrow \nexists \lim_{\substack{x \to x_0 \\ y \to y_0 \\ (x,y) \in l(\varphi)}} f(x,y).$

Весна 2018 г. 1