The Multinomial Logit Model for Nominal Response Data

Lin Chen

Department of Public Health Sciences
The University of Chicago

Nominal Categorical Data

- A nominal response variable takes on discrete categories, but there is not an intrinsic ordering of the categories.
- Examples:
 - Blood type: A, B, AB, or O.
 - Hair color: blonde, brown, black, red, etc.
 - Tumor cell pathologic feature categories
 - College majors: maths, computer sciences, English literature, etc.

Nominal Response: notation

- Let $C_1, C_2, ..., C_k$, $k \ge 2$ denote the k categories for the response (no intrinsic order).
- Let Y_i be the response variable for the i^{th} individual, with Y_i taking the value j if the response is in category C_j , j = 1, 2, ..., k.
- $p_{ij} = P(Y_i = j) = P[$ individual i responds in category $C_j]$
- Does it make sense to model the <u>cumulative probability</u> γ_{ij} = P(Y_i ≤ j) as in the ordinal response case?
 Not really, in ordinal logistic regression the cumulative probability γ_{ij} is order-dependent. When modeling nominal categorical responses, there is no ordering of the categories. We cannot collapse any categories.

Standard Logit Model — Multinomial Logit Model

- Standard logit model: $\log(\frac{p}{1-p}) = x^T \beta$, where p is the probability of response and 1-p is the probability of non-response.
- Multinomial logit model:
 - Pick a baseline/reference category (which plays the same role as category "non-response" in standard logit model), let's say C_1
 - Model can be written as:

$$\log(\frac{p_j}{p_1}) = \alpha_j + \mathbf{x}^T \mathbf{\beta}_j, \ j = 2, 3, ..., k$$
 (1)

• Under model (1) and given the fact that $\sum_{j=1}^{j=k} p_j = 1$,

$$p_1 = \frac{1}{1 + \exp(\alpha_2 + \boldsymbol{x}^T \boldsymbol{\beta}_2) + \exp(\alpha_3 + \boldsymbol{x}^T \boldsymbol{\beta}_3) + \dots + \exp(\alpha_k + \boldsymbol{x}^T \boldsymbol{\beta}_k)}$$
(2)

$$p_{j} = \frac{\exp(\alpha_{j} + \boldsymbol{x}^{T}\boldsymbol{\beta}_{j})}{1 + \exp(\alpha_{2} + \boldsymbol{x}^{T}\boldsymbol{\beta}_{2}) + \exp(\alpha_{3} + \boldsymbol{x}^{T}\boldsymbol{\beta}_{3}) + \dots + \exp(\alpha_{k} + \boldsymbol{x}^{T}\boldsymbol{\beta}_{k})}, j = 2, 3, \dots, k \quad (3)$$

Proportional Odds (i.e. Ordinal Logit) Model vs. Multinomial Logit Model

As in other logit models, x is a covariate vector without intercept and is of dimension p. Contrasting the two model extensions of the standard logit model:

- Proportional odds (i.e. Ordinal logit) model: $\log(\frac{\gamma_j}{1-\gamma_i}) = d_j x^T \beta$, j = 1, 2, ..., k-1
- Multinomial logit model: $\log(\frac{p_j}{p_1}) = \alpha_j + x^T \beta_j$, j = 2, 3, ..., k

Proportional Odds Model vs. Multinomial Logit Model

- Proportional odds model: $\log(\frac{\gamma_j}{1-\gamma_j}) = d_j x^T \beta$, j = 1, 2, ..., k-1 cumulative
- Multinomial logit model: $\log(\frac{p_j}{p_1}) = \alpha_j + x^T \beta_j$, j = 2, 3, ..., k Individual
- Comparisons:
 - Proportional odds model predicts cumulative probability (except the last category), whereas multinomial logit model predicts the probability for each category (see Slide 4).
 - Proportional odds model has constant slope β : the effect of x, is the same for all k-1 ways to collapse response into binary outcomes. Multinomial logit model has different slope β_j depending on the response category.
 - Proportional odds model, has (k-1) intercepts plus p slopes, for a total of k-1+p parameters to be estimated. Multinomial logit model, has (k-1) intercepts plus $(k-1) \times p$ slopes, for a total of $(k-1)+p\times(k-1)$ parameters to be estimated.

Example: High School Program Choice

Students entering high school make a program choice among general, vocational, and academic program studies. Their choice might be related to their writing score and their socio-economic status (SES). These data describe 200 high school students.

```
. list prog ses write in 1/15, clean
```

	prog	ses	write
1.	vocation	low	44
2.	vocation	middle	41
3.	academic	low	65
4.	academic	low	50
5.	academic	low	40
6.	academic	low	41
7.	academic	middle	54
8.	academic	low	44
9.	vocation	middle	49
10.	general	middle	54
11.	academic	middle	46
12.	vocation	middle	44
13.	vocation	middle	46
14.	academic	high	41
15.	vocation	high	39

. . .

7 / 20

High School Program Choice - looking at the data

Examine the variables using codebook. In this data, both prog and ses are numeric with labels attached, and can be analyzed directly.

```
. codebook prog
                                                                    type of program
prog
                 type: numeric (float)
                label: sel
                range: [1,3]
                                                    units: 1
        unique values: 3
                                                missing .: 0/200
           tabulation: Freq.
                              Numeric Label
                                     1 general
                                  2 academic
                          105
                           50
                                     3 vocation
. codebook ses
                                                                    (unlabeled)
ses
                 type: numeric (float)
                label:
                                                    units: 1
                range: [1,3]
        unique values:
                                                missing .: 0/200
           tabulation: Freq.
                              Numeric Label
                                  1 low
                           47
                           95
                                     2 middle
                           58
                                        high
```

HS Program Choice: exploratory analyses

. tab prog s	ses, row col	chi2		
freque row perce column per	entage			
type of program	low	ses middle	high	Total
general general	16 35.56 34.04	20 44.44 21.05	9 20.00 15.52	45 100.00 22.50
academic academic	19 18.10 40.43	44 41.90 46.32	42 40.00 72.41	105 100.00 52.50
vocation 	12 24.00 25.53	31 62.00 32.63	7 14.00 12.07	50 100.00 25.00
 Total 	47 23.50 100.00	95 47.50 100.00	58 29.00 100.00	200 100.00 100.00
Pe	earson chi2(4	4) = 16.604	44 Pr = 0.	002

Test of association suggests strong relationship between SES and program choice

L. Chen (UChicago) Lecture 11 April 25, 2024 9 / 20

HS Program Choice: some exploratory analyses

. oneway write prog, means

type of program	Summary of writing score Mean
general academic vocation	51.333333 56.257143 46.76
Total	52.775

Analysis of Variance							
Source	SS 	df 	MS 	F 	Prob > F		
Between groups	3175.69786	2	1587.84893	21.27	0.0000		
Within groups	14703.1771	197	74.635417				
Total	17878.875	 199	 89.843593				

Bartlett's test for equal variances: chi2(2) = 2.6184 Prob>chi2 = 0.270

Difference in mean writing score by program choice. Writing score may affect how students choose different programs.

Now consider program choice as a nominal categorical variable with three categories, general, vocational or academic (setting reference using the option base(2)). We will fit a multinomial logit model (using mlogit) comparing each category to reference. This model produces odds ratios from sub-tables of the 3x3 table of program type choice by SES.

. mlogit prog Multinomial lo	Number LR chi2		=	200 16.78			
				Prob >	` '	_ =	0.0021
Log likelihood	= -195.70519	9		Pseudo		=	0.0411
prog	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
general							
Ses	0100071	4004000	1 10	0.155	1 100	24.00	000004
middle	6166071	.4334269	-1.42	0.155	-1.466		.232894
high	-1.368595	.5000522	-2.74	0.006	-2.348	0079	3003103
_cons	1718503	.3393104	-0.51	0.613	8368	8865	.493186
academic	emic (base outcome)						
vocation							
ses							
middle	.1093299	.4369785	0.25	0.802	7471		.9657921
high	-1.332227	.5501196	-2.42	0.015	-2.410)442	2540125
_cons	4595323	.3687342	-1.25	0.213	-1.182	2238	.2631734

SES only

What are these parameters? Create a 2x2 table with outcome the program choice (general vs. academic) and the 'exposure' variable SES, with middle SES exposed and low SES unexposed:

	SES				
Program	SES middle	low	Ged .		
caset general	20	16	36		
case academic	44	19	63		

Note that the OR from this table is $(20 \times 19)/(44 \times 16) = 0.5398$. Taking the log yields the parameter from the above model (-.6166). Individuals of middle SES are less likely than low SES individuals to choose the general program over the academic program. $\sqrt{}$

You may expand this table to a 2x3 table and consider different SES as multiple exposures. This will estimate the model comparing general versus academic programs.

Another subtable. Create a 2x2 table with outcome the program choice (vocational vs. academic) and the 'exposure' variable SES, with middle SES exposed and low SES unexposed:

	SES				
Program	middle	low			
vocational	31	12	43		
academic	44	19	63		

OR from this table is 1.1155. Taking the log yields the parameter from the above model (0.1093). Individuals of middle SES are not any more or less likely to choose the vocational program over the academic program. \sim no difference

Similarly, you may expand this table to consider all SESs to estimate the parameters comparing vocational and academic programs.

HS Program Choice: multiple predictors model

Model with writing score added:

. mlogit prog i.ses write, base(2) nolog Multinomial logistic regression				Number of obs = 20 LR chi2(6) = 48.2 Prob > chi2 = 0.000 Pseudo R2 = 0.118		
prog	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
general	 					
ses middle high	 	.4437321 .5142195	-1.20 -2.26	0.229 0.024	-1.40299 -2.170684	.336408 1549804
write _cons	0579284 2.852186	.0214109 1.166439	-2.71 2.45	0.007 0.014	0998931 .5660075	0159637 5.138365
academic	(base outco	ome)				
vocation	+ 					
middle high	.2913931 9826703	.4763737 .5955669	0.61 -1.65	0.541 0.099	6422822 -2.14996	1.225068 .1846195
write _cons	1136026 5.2182	.0222199 1.163549	-5.11 4.48	0.000	1571528 2.937686	0700524 7.498714

The model produces equations as follows:

$$\log(\frac{\hat{p}_{general}}{\hat{p}_{academic}}) = 2.852 - 0.533 \times middle - 1.16 \times high - 0.0579 \times write$$

$$\log(\frac{\hat{p}_{\textit{vocational}}}{\hat{p}_{\textit{academic}}}) = 5.218 + 0.291 \times \textit{middle} - 0.983 \times \textit{high} - 0.114 \times \textit{write}$$

Note that only none or 1 of the covariates *middle* and *high* take on value 1 in any given prediction. The categories are mutually exclusive.

can't be both middle and high middle the bigh

15 / 20

HS Program Choice: Model prediction

• What is the predicted <u>relative chance</u> of a student with writing score of 60 from high SES choosing vocational program over <u>vocational</u> academic program?

Here is the fitted model:

$$\log\left(\frac{\hat{p}_{\textit{vocational}}}{\hat{p}_{\textit{academic}}}\right) = 5.218 + 0.291 \times \textit{middle} - 0.983 \times \textit{high} - 0.114 \times \textit{write}$$

Based on the fitted model,

$$\log\left(\frac{\hat{p}_{\textit{vocational}}}{\hat{p}_{\textit{academic}}}\right) = 5.218 - 0.983 \times 1 - 0.114 \times 60$$

The relative chance is

$$\frac{\hat{p}_{\textit{vocational}}}{\hat{p}_{\textit{academic}}} = \exp(5.218 - 0.983 - 0.114 \times 60) = 0.074 \, \checkmark$$

HS Program Choice: Model prediction

 What is the predicted absolute chance of a student with writing score of 60 from high SES choosing vocational program? (check log (vocational) - log (general) = log (vocational acadenic) acadenic) Slide 4)

Based on the fitted model:

he fitted model:
$$\log(\frac{\hat{p}_{general}}{\hat{p}_{academic}}) = 2.852 - 1.16 \times 1 - 0.0579 \times 60$$

$$\log(\frac{\hat{p}_{\textit{vocational}}}{\hat{p}_{\textit{academic}}}) = 5.218 - 0.983 \times 1 - 0.114 \times 60$$

The absolute chance is
$$\hat{p}_{vocational} = \frac{\hat{p}_{vocational}}{\exp(\hat{\alpha}_{vocational} + \boldsymbol{x}^T \hat{\boldsymbol{\beta}}_{vocational})} = \frac{\exp(\hat{\alpha}_{vocational} + \boldsymbol{x}^T \hat{\boldsymbol{\beta}}_{vocational})}{1 + \exp(\hat{\alpha}_{general} + \boldsymbol{x}^T \hat{\boldsymbol{\beta}}_{general}) + \exp(\hat{\alpha}_{vocational} + \boldsymbol{x}^T \hat{\boldsymbol{\beta}}_{vocational})} = \exp(5.218 - 0.983 - 0.114 \times 60)$$

$$1 + \exp(2.852 - 1.16 - 0.0579 \times 60) + \exp(5.218 - 0.983 - 0.114 \times 60)$$

0.06

Note that a different set of ORs can be produced by changing the reference category (here to vocational=3)

```
. mlogit prog i.ses write, base(3) nolog
Multinomial logistic regression
                                             Number of obs
                                                                       200
                                                                   48.23
                                             LR chi2(6)
                                              Prob > chi2 =
                                                                    0.0000
Log likelihood = -179.98173
                                             Pseudo R2
                                                                    0.1182
               Coef. Std. Err. z P>|z| [95% Conf. Interval]
       prog |
general
        ses
                                      -1.68
                                                                  .1359392
    middle
               -.8246841
                        .4901229
                                             0.092
                                                      -1.785307
               -.1801617
                         .648455
                                      -0.28
                                              0.781
                                                       -1.45111
                                                                   1.090787
      high
                                                   .0099456
                                                                  .1014028
      write
               .0556742
                         .0233313
                                       2.39
                                              0.017
               -2.366014
                          1.174248
                                      -2.01
                                             0.044
                                                      -4.667498
                                                                  -.0645293
      cons
academic
        ses
    middle
               -.2913931
                         .4763737
                                      -0.61
                                             0.541
                                                      -1.225068
                                                                  .6422822
                .9826703
                          .5955669
                                      1.65
                                             0.099
                                                      -.1846195
                                                                   2.14996
      high
      write
                .1136026
                         .0222199
                                       5.11
                                             0.000
                                                      .0700524
                                                                  .1571528
                 -5.2182
                          1.163549
                                      -4.48
                                             0.000
                                                      -7.498714
                                                                  -2.937686
      cons
               (base outcome)
vocation
```

HS Program Choice: changing the reference category in the model

- In the above model, the first set of estimates changed this is a different outcome - logit for general vs. vocational program choice - i.e., a different 2x2 subtable than earlier
- The second set of estimates is identical except for sign why? This is the logit for academic versus vocational before we
 estimated the logit of vocational versus academic, i.e., the
 reciprocal
- General model fit summaries (log likelihood, etc) are identical to the earlier model with a different baseline outcome category

Summary

Multinomial Logit Model

- A straightforward extension of binary logit model (i.e. logit model or logistic regression)
- The multinomial logit model for outcomes with *K* categories involves (*K* − 1) sets of comparisons of each outcome category to the reference outcome category for calculating sets of parameters (log relative probability or change in log relative prob.). The simultaneous MLE estimation algorithm in the multinomial model can be statistically more efficient than estimating each pair of categories separately.
- These models have history in social science, analysis of multi-way contingency tables (log-linear models for table frequencies)