

Curves and Surfaces

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Introduce types of curves and surfaces
 - Explicit
 - Implicit
 - Parametric
 - Strengths and weaknesses
- Discuss Modeling and Approximations
 - Conditions
 - Stability

Escaping Flatland

- Until now we have worked with flat entities such as lines and flat polygons
 - Fit well with graphics hardware
 - Mathematically simple
- But the world is not composed of flat entities
 - Need curves and curved surfaces
 - May only have need at the application level
 - Implementation can render them approximately with flat primitives

Modeling with Curves

What Makes a Good Representation?

- There are many ways to represent curves and surfaces
- Want a representation that is
 - Stable
 - Smooth
 - Easy to evaluate
 - Must we interpolate or can we just come close to data?
 - Do we need derivatives?

Explicit Representation

Most familiar form of curve in 2D

$$y=f(x)$$

- Cannot represent all curves
 - Vertical lines
 - Circles

$$-y=f(x), z=g(x)$$

- The form z = f(x,y) defines a surface

Implicit Representation

Two dimensional curve(s)

$$g(x,y)=0$$

- Much more robust
 - All lines ax+by+c=0
 - Circles $x^2+y^2-r^2=0$
- Three dimensions g(x,y,z)=0 defines a surface
 - Intersect two surface to get a curve
- In general, we cannot solve for points that satisfy

Algebraic Surface

$$\sum_{i}\sum_{j}\sum_{k}\chi^{i}y^{j}\chi^{k}=0$$

- •Quadric surface $2 \ge i, j, k$
- At most 10 terms
- Can solve intersection with a ray by reducing problem to solving quadratic equation

Parametric Curves

Separate equation for each spatial variable

$$x=x(u)$$
 $y=y(u)$
 $p(u)=[x(u), y(u), z(u)]^T$
 $z=z(u)$

• For $u_{max} \ge u \ge u_{min}$ we trace out a curve in two or three dimensions

Selecting Functions

- Usually we can select "good" functions
 - not unique for a given spatial curve
 - Approximate or interpolate known data
 - Want functions which are easy to evaluate
 - Want functions which are easy to differentiate
 - Computation of normals
 - Connecting pieces (segments)
 - Want functions which are smooth

Parametric Lines

We can normalize u to be over the interval (0,1)

Line connecting two points \mathbf{p}_0 and \mathbf{p}_1

$$\mathbf{p}(\mathbf{u}) = (1 - \mathbf{u})\mathbf{p}_0 + \mathbf{u}\mathbf{p}_1$$

Ray from \mathbf{p}_0 in the direction \mathbf{d}

$$\mathbf{p}(\mathbf{u}) = \mathbf{p}_0 + \mathbf{u}\mathbf{d}$$

Parametric Surfaces

Surfaces require 2 parameters

$$x=x(u,v)$$

$$y=y(u,v)$$

$$z=z(u,v)$$

$$\mathbf{p}(u,v)=[x(u,v), y(u,v), z(u,v)]^{T}$$

- Want same properties as curves:
 - Smoothness
 - Differentiability
 - Ease of evaluation

Normals

We can differentiate with respect to u and v to obtain the normal at any point p

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = \begin{bmatrix} \partial \mathbf{x}(u,v)/\partial u \\ \partial \mathbf{y}(u,v)/\partial u \end{bmatrix} \qquad \frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \partial \mathbf{x}(u,v)/\partial v \\ \partial \mathbf{y}(u,v)/\partial v \end{bmatrix}$$

$$\mathbf{n} = \frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \partial \mathbf{x}(u,v)/\partial v \\ \partial \mathbf{y}(u,v)/\partial v \\ \partial \mathbf{z}(u,v)/\partial v \end{bmatrix}$$

Parametric Planes

point-vector form

$$\mathbf{p}(\mathbf{u},\mathbf{v})=\mathbf{p}_0+\mathbf{u}\mathbf{q}+\mathbf{v}\mathbf{r}$$

$$n = q x r$$

three-point form

$$\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_0$$
$$\mathbf{r} = \mathbf{p}_2 - \mathbf{p}_0$$

Parametric Sphere

$$x(u,v) = r \cos \theta \sin \phi$$

 $y(u,v) = r \sin \theta \sin \phi$
 $z(u,v) = r \cos \phi$

$$360 \ge \theta \ge 0$$
$$180 \ge \phi \ge 0$$

 θ constant: circles of constant longitude

φ constant: circles of constant latitude

differentiate to show $\mathbf{n} = \mathbf{p}$

Curve Segments

- After normalizing u, each curve is written
 p(u)=[x(u), y(u), z(u)]^T, 1 ≥ u ≥ 0
- In classical numerical methods, we design a single global curve
- In computer graphics and CAD, it is better to design small connected curve segments

Parametric Polynomial Curves

$$x(u) = \sum_{i=0}^{N} c_{xi} u^{i} \quad y(u) = \sum_{j=0}^{M} c_{yj} u^{j} \quad z(u) = \sum_{k=0}^{L} c_{zk} u^{k}$$

- •If N=M=L, we need to determine 3(N+1) coefficients
- •Equivalently we need 3(N+1) independent conditions
- •Noting that the curves for x, y and z are independent, we can define each independently in an identical manner
 - •We will use the form $p(u) = \sum_{k=0}^{L} c_k u^k$ where p can be any of x, y, z

Why Polynomials

- Easy to evaluate
- Continuous and differentiable everywhere
 - Must worry about continuity at join points including continuity of derivatives

Cubic Parametric Polynomials

 N=M=L=3, gives balance between ease of evaluation and flexibility in design

$$p(u) = \sum_{k=0}^{3} c_k u^k$$

- Four coefficients to determine for each of x, y and z
- Seek four independent conditions for various values of u resulting in 4 equations in 4 unknowns for each of x, y and z
 - Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

Cubic Polynomial Surfaces

$$\mathbf{p}(u,v)=[x(u,v), y(u,v), z(u,v)]^{T}$$

where

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} u^{i} v^{j}$$

p is any of x, y or z

Need 48 coefficients (3 independent sets of 16) to determine a surface patch