MPhil Econometrics – Limited Dependent Variables and Selection

Francis J. DiTraglia

University of Oxford

Complied on 2020-01-28 at 12:10:09

Housekeeping

Lecturer: Francis J. DiTraglia

Email: francis.ditraglia@ox.ac.uk

Course Materials: http://ditraglia.com/teaching

Office: 2132 Manor Road Building

Meetings: 10:30 on Wednesdays (after lecture) or by appointment

References

- ▶ Wooldridge (2010) Econometric Analysis of Cross Section & Panel Data
- ► Cameron & Trivedi (2005) Microeconometrics: Methods and Applications
- ► Train (2009) Discrete Choice Methods with Simulation

Lecture #1 – Maximum Likelihood Estimation Under Mis-specification

Review: the Poisson Distribution

The Kullback-Leibler Divergence

Example: Consistency of Poisson MLE

Asymptotic Theory for MLE Under Mis-specification

The Information Matrix Equality

Example: Asymptotic Variance Calculations for Poisson MLE

"All models are wrong; some are useful."

Question

What happens if we carry out maximum likelihood estimation, but our model is wrong?

This Lecture

Examine a simple example in excruciating detail; present the general theory.

Next Lecture

Apply what we've learned to study Poisson Regression, a model for count data.

Suppose that $y \sim \mathsf{Poisson}(\theta)$

Support Set: $\{0, 1, 2, ...\}$

A Poisson Random Variable is a count.

Probability Mass Function

$$f(y|\theta) = \frac{e^{-\theta}\theta^y}{y!}$$

Expected Value: $\mathbb{E}(y) = \theta$

Poisson parameter θ equals the mean of y.

Variance: $Var(y) = \theta$

You will show this on the problem set.

$$\sum_{y=0}^{\infty} \frac{e^{-\theta} \theta^y}{y!} = e^{-\theta} \sum_{y=0}^{\infty} \frac{\theta^y}{y!} = e^{-\theta} \left(e^{\theta} \right) = 1$$

$$\mathbb{E}(y) = \sum_{y=0}^{\infty} y \frac{e^{-\theta} \theta^y}{y!} = \sum_{y=1}^{\infty} y \frac{e^{-\theta} \theta^y}{y!}$$
$$= \theta \sum_{y=1}^{\infty} \frac{e^{-\theta} \theta^{y-1}}{(y-1)!} = \theta \sum_{y=0}^{\infty} \frac{e^{-\theta} \theta^y}{y!} = \theta$$

MLE for θ where $y_1, y_2, \dots, y_N \sim \text{ iid Poisson}(\theta)$.

The Likelihood (iid data)

$$L_N(\theta) \equiv \prod_{i=1}^N rac{e^{-\theta} \theta^{y_i}}{y_i!}$$

The Log-Likelihood

$$\ell_N(\theta) = \sum_{i=1}^{N} [y_i \log(\theta) - \theta - \log(y_i!)]$$

Maximum Likelihood Estimator

$$\widehat{ heta} \equiv rg \max_{ heta \in \Theta} \ell_{N}(heta) = ar{y}$$

$$rac{d}{d heta}\ell_N(heta) = \sum_{i=1}^N \left[rac{y_i}{ heta} - 1
ight]$$

$$\frac{d}{d\theta} \ell_N(\widehat{\theta}) = 0$$

$$\sum_{i=1}^N \left[y_i / \widehat{\theta} - 1 \right] = 0$$

$$\left(\sum_{i=1}^N y_i \right) / \widehat{\theta} = N$$

$$\frac{1}{N} \sum_{i=1}^N y_i = \overline{y} = \widehat{\theta}$$

The Kullback-Leibler (KL) Divergence

Motivation

How well does a parametric model $f(\mathbf{y}|\theta)$ approximate a *true* density/pmf $p_o(\mathbf{y})$?

Definition

$$\mathit{KL}(p_o; f_{m{ heta}}) \equiv \mathbb{E}\left[\log\left\{rac{p_o(\mathbf{y})}{f(\mathbf{y}|m{ heta})}
ight\}
ight]$$

KL Properties

- 1. Asymmetric: $KL(p_o; f_\theta) \neq KL(f_\theta; p_o)$
- 2. $KL(p_o; f_\theta) \ge 0$; zero iff $p_o = f_\theta$
- 3. Min KL iff max expected log-likelihood

Alternative Expression

$$\mathbb{E}\left[\log\left\{\frac{p_o(\mathbf{y})}{f(\mathbf{y}|\boldsymbol{\theta})}\right\}\right] = \underbrace{\mathbb{E}\left[\log p_o(\mathbf{y})\right]}_{\text{Constant wrt }\boldsymbol{\theta}} - \underbrace{\mathbb{E}\left[\log f(\mathbf{y}|\boldsymbol{\theta})\right]}_{\text{Expected Log-like.}}$$

All expectations are wrt p_o

 $p_o(\mathbf{y})$ and $f(\mathbf{y}|oldsymbol{ heta})$ are merely functions of the RV \mathbf{y}

$$\mathbb{E}[\log p_o(\mathbf{y})] = \int \log p_o(\mathbf{y}) p_o(\mathbf{y}) \ d\mathbf{y}$$

$$\mathbb{E}[\log f(\mathbf{y}|\boldsymbol{\theta})] = \int \log f(\mathbf{y}|\boldsymbol{\theta}) p_o(\mathbf{y}) \ d\mathbf{y}$$

Watch Out!

$$KL = \infty$$
 if $\exists y$ with $f(y|\theta) = 0$ & $p_o(y) \neq 0$

$$\mathsf{KL}(p_o; f) \geq 0$$
 with equality iff $p_o = f$

Jensen's Inequality

If φ is convex then $\varphi(\mathbb{E}[y]) \leq \mathbb{E}[\varphi(y)]$, with equality iff φ is linear or y is constant.

 \log is concave so $(-\log)$ is convex

$$\mathbb{E}\left[\log\left\{\frac{p_o(y)}{f(y)}\right\}\right] = \mathbb{E}\left[-\log\left\{\frac{f(y)}{p_o(y)}\right\}\right] \ge -\log\left\{\mathbb{E}\left[\frac{f(y)}{p_o(y)}\right]\right\}$$

$$= -\log\left\{\int_{-\infty}^{\infty} \frac{f(y)}{p_o(y)} \cdot p_o(y) \, dy\right\}$$

$$= -\log\left\{\int_{-\infty}^{\infty} f(y) \, dy\right\}$$

$$= -\log(1) = 0$$

A Simple Example: Calculating the KL Divergence

Remember: all expectations are calculated using p_o .

True Distribution p_o

 $y_1, \ldots, y_N \sim \text{iid } p_o \text{ where:}$

$$p_o(0) = \frac{2}{5}, p_o(1) = \frac{1}{5}, p_o(2) = \frac{2}{5}.$$

Mis-specified Model f_{θ}

 $y_1, \ldots, y_N \sim \mathsf{iid} \; \mathsf{Poisson}(\theta)$

KL Divergence

$$\mathit{KL}(p_o; f_{\theta}) = \theta - \log \theta + (\mathsf{Constant})$$

$$\mathit{KL}(p_o; f_{ heta}) = \mathbb{E}[\log p_o(y)] - \mathbb{E}[\log f(y| heta)]$$

$$\begin{split} \mathbb{E}[\log p_o(y)] &= \sum_{\text{all } y} \log \left[p_o(y) \right] p_o(y) \\ &= \log \left(\frac{2}{5} \right) \times \frac{2}{5} + \log \left(\frac{1}{5} \right) \times \frac{1}{5} + \log \left(\frac{2}{5} \right) \times \frac{2}{5} \end{split}$$

$$\mathbb{E}[\log f(y|\theta)] = \sum_{\text{all } y} \log \left[\frac{e^{-\theta} \theta^{y}}{y!} \right] p_{o}(y)$$

$$= \log \left(e^{-\theta} \right) \times \frac{2}{5} + \log \left(e^{-\theta} \theta \right) \times \frac{1}{5} + \log \left(\frac{e^{-\theta} \theta^{2}}{2} \right) \times \frac{2}{5}$$

$$= -\left[\theta - \log(\theta) + \log(2) \times \frac{2}{5} \right]$$

A Simple Example Continued: Minimizing the KL Divergence

Model = Poisson(
$$\theta$$
); True Dist. $p_o(0) = p_o(2) = \frac{2}{5}$ and $p_o(1) = \frac{1}{5}$

Best Approximation

What parameter value θ_o makes the Poisson(θ) model as close as possible to the true distribution p_o , where we measure "closeness" using the KL-divergence?

Using the previous slide

$$KL(p_0; f_\theta) = \theta - \log \theta + (Const.)$$

FOC:
$$0 = 1 - \frac{1}{\theta} \implies \boxed{\theta = 1}$$

A more direct approach

Min KL ←⇒ Max Expected Log-like.

$$\frac{d}{d\theta} \mathbb{E}[\log f(y|\theta)] = \mathbb{E}\left[\frac{d}{d\theta} \left\{-\theta + y \log(\theta) - \log(y!)\right\}\right]$$
$$= \mathbb{E}[-1 + y/\theta] = \mathbb{E}[y]/\theta - 1 = 0$$
$$\implies \theta = \mathbb{E}[y]$$

A Simple Example Continued: Minimizing the KL Divergence

Model = Poisson(
$$\theta$$
); True Dist. $p_o(0) = p_o(2) = \frac{2}{5}$ and $p_o(1) = \frac{1}{5}$

Best Approximation

What parameter value θ_o makes the Poisson(θ) model as close as possible to the true distribution p_o , where we measure "closeness" using the KL-divergence?

Using the previous slide: $\theta_o = 1$

A more direct approach: $\theta_o = \mathbb{E}[y]$

Both Methods Agree

- ▶ For the specified p_o we have: $\mathbb{E}[y] = 0 \times \frac{1}{5} + 1 \times \frac{2}{5} + 2 \times \frac{2}{5} = 1$.
- \triangleright The "Direct approach" is general: works for any p_o (under regularity conditions)

Is this just a coincidence?

We have shown that:

- 1. Under an iid Poisson(θ) model for y_1, \ldots, y_N , the MLE for θ is $\hat{\theta} = \bar{y}$
- 2. For any (reasonable) p_o , setting $\theta_o = \mathbb{E}[y_i]$ minimizes $KL(p_o; f_\theta)$.

By the (weak) law of large numbers:

If $y_1, \ldots, y_N \sim \text{iid}$, then \bar{y} is a consistent estimator of $\mathbb{E}[y_i]$ as N approaches infinity.

So at least in this example...

The maximum likelihood estimator $\widehat{\theta}$ is a consistent estimator of θ_o , the minimizer the KL divergence from the true distribution p_o to the Poisson(θ) model $f(y|\theta)$.

Maximum Likelihood Estimation Under Mis-specification

Note: expectations and variances are calculated using p_o

Theorem

Suppose that $\mathbf{y}_1, \dots, \mathbf{y}_N \sim \text{ iid } p_o \text{ and let } \widehat{\boldsymbol{\theta}} \text{ denote the MLE for } \boldsymbol{\theta} \text{ under the possibly mis-specified model } f(\mathbf{y}|\boldsymbol{\theta}). \text{ Then, under mild regularity conditions:}$

(i) $\widehat{\theta}$ is consistent for the pseudo-true parameter value θ_o , defined as the minimizer of $KL(p_o, f_{\theta})$ over the parameter space Θ .

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$$

where we define
$$\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$$
 and $\mathbf{K} \equiv \operatorname{Var}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right]$.

Why is this result such a big deal?

- 1. Provides an interpretation of MLE when we acknowledge that our models are only an approximation or reality: MLE recovers the pseudo-true parameter θ_o .
- Yields a formula for standard errors that is robust to mis-specification of our model: compare to Heteroskedasticity consistent SEs for regression.
- 3. If the model is correctly specified, we recover the "classical" MLE result.

A Consistent Asymptotic Variance Matrix Estimator: $\hat{\mathbf{J}}^{-1}\hat{\mathbf{K}}\hat{\mathbf{J}}^{-1}$

 $\widehat{\theta} \rightarrow_{p} \theta_{o}$ plus Uniform Weak Law of Large Numbers: Newey & McFadden (1994)

$$oldsymbol{ heta}_o \equiv rg\max_{oldsymbol{ heta} \in oldsymbol{\Theta}} \mathbb{E}\left[\log f(\mathbf{y}_i|oldsymbol{ heta})
ight]$$

$$\theta_o \equiv \underset{\theta \in \Theta}{\operatorname{arg max}} \mathbb{E} \left[\log f(\mathbf{y}_i | \theta) \right] \qquad \widehat{\theta} \equiv \underset{\theta \in \Theta}{\operatorname{arg max}} \frac{1}{N} \sum_{i=1}^{N} \log f(\mathbf{y} | \theta)$$

$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1} \mathbf{K} \mathbf{J}^{-1})$$

$$\widehat{oldsymbol{ heta}} pprox \mathcal{N}(oldsymbol{ heta}_o, \widehat{oldsymbol{\mathsf{J}}}^{-1} \widehat{oldsymbol{\mathsf{K}}} \widehat{oldsymbol{\mathsf{J}}}^{-1}/\mathcal{N})$$

$$\mathbf{J} \equiv -\mathbb{E}\left[rac{\partial^2 \log f(\mathbf{y}_i|oldsymbol{ heta}_o)}{\partial^2 oldsymbol{ heta} \partial oldsymbol{ heta}'}
ight]$$

$$\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}_i|\boldsymbol{\theta}_o)}{\partial^2 \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] \qquad \widehat{\mathbf{J}} \equiv -\frac{1}{N} \sum_{i=1}^N \frac{\partial^2 \log f(\mathbf{y}_i|\widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$$

$$\mathbf{K} \equiv \mathsf{Var} \left[rac{\partial \log f(\mathbf{y}_i | oldsymbol{ heta}_o)}{\partial oldsymbol{ heta}}
ight]$$

$$\mathbf{K} \equiv \operatorname{Var} \left[\frac{\partial \log f(\mathbf{y}_i | \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}} \right] \qquad \quad \widehat{\mathbf{K}} \equiv \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial \log f(\mathbf{y}_i | \widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}} \right] \left[\frac{\partial \log f(\mathbf{y}_i | \widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}} \right]'$$

Some Notes on the Preceding Slide

What happened to the KL divergence?

 $\mathbb{E}[\log p_o(\mathbf{y})]$ does not involve $\boldsymbol{\theta}$. Hence, $\underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\arg \max} \mathbb{E}[\log f(\mathbf{y}_i|\boldsymbol{\theta})] = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\arg \min} \ KL(p_o, f_{\boldsymbol{\theta}}).$

Isn't $\widehat{\mathbf{K}}$ missing a term?

The sample variance of \mathbf{x} is given by $\left(\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i}\mathbf{x}_{i}'\right)-\left(\bar{\mathbf{x}}\bar{\mathbf{x}}'\right)$ where $\bar{\mathbf{x}}=\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i}$. In our formula for $\hat{\mathbf{K}}$, the " $\bar{\mathbf{x}}\bar{\mathbf{x}}'$ " term appears to be missing, but it is in fact equal to zero, since $\hat{\boldsymbol{\theta}}$ is the solution to the MLE first-order condition.

Some Terminology

I will call $\hat{\mathbf{J}}^{-1}\hat{\mathbf{K}}\hat{\mathbf{J}}^{-1}$ the robust asymptotic variance matrix estimator, since it is correct regardless of whether the model is correctly specified.

Maximum Likelihood Estimation Under Correct Specification

"Classical" large-sample theory for MLE

Theorem

Suppose that $\mathbf{y}_1, \dots, \mathbf{y}_N \sim \text{ iid } f(\mathbf{y}|\boldsymbol{\theta}_o)$. Then, under mild regularity conditions:

(i) θ_o is consistent for θ_o .

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1})$$
 where $\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial^2 \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$.

Why? If
$$p_o(\mathbf{y}) = f(\mathbf{y}|\boldsymbol{\theta}_o)$$
, then:

- 1. $KL(p_o; f_{\theta})$ equals zero at $\theta = \theta_o$.
- 2. The information matrix equality gives K = J which implies $J^{-1}KJ^{-1} = J^{-1}$.

$$\mathbf{J} \equiv -\mathbb{E}\left[rac{\partial^2 \log f(\mathbf{y}|oldsymbol{ heta}_o)}{\partial^2 oldsymbol{ heta} oldsymbol{ heta} \partial^2}
ight], \quad \mathbf{K} \equiv \operatorname{Var}\left[rac{\partial \log f(\mathbf{y}|oldsymbol{ heta}_o)}{\partial oldsymbol{ heta}}
ight]$$

Step 1: Alternative Expression for K

$$\operatorname{Var}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right] - \mathbb{E}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right] \mathbb{E}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right]'$$

but since θ_o minimizes $\mathbb{E}[\log f(\mathbf{y}|\theta)]$,

$$\mathbb{E}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right] = \frac{\partial}{\partial \boldsymbol{\theta}} \mathbb{E}\left[\log f(\mathbf{y}|\boldsymbol{\theta}_o)\right] = \mathbf{0}$$

so it suffices to show that

$$-\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial^2 \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right]$$

$$\text{suffices to show } - \mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right]$$

Step 2: Chain Rule & Product Rule

$$\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(\mathbf{y}|\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{i}} \left[\frac{\partial}{\partial \theta_{j}} \log f(\mathbf{y}|\boldsymbol{\theta}) \right] = \frac{\partial}{\partial \theta_{i}} \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \right] \\
= \left[-\frac{1}{f^{2}(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{i}} f(\mathbf{y}|\boldsymbol{\theta}) \right] \left[\frac{\partial}{\partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \right] + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \\
= -\left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{i}} f(\mathbf{y}|\boldsymbol{\theta}) \right] \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \right] + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \\
= -\frac{\partial}{\partial \theta_{i}} \log f(\mathbf{y}|\boldsymbol{\theta}) \frac{\partial}{\partial \theta_{i}} \log f(\mathbf{y}|\boldsymbol{\theta}) + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{i}} f(\mathbf{y}|\boldsymbol{\theta})$$

MPhil 'Metrics, HT 2020

suffices to show
$$-\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right]$$

Step 3: Multiply by -1, Evaluate at θ_o , and Take Expectations

$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}) = -\frac{\partial}{\partial \theta_i} \log f(\mathbf{y}|\boldsymbol{\theta}) \frac{\partial}{\partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}) + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta})$$

$$-\mathbb{E}\left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}_o)\right] = \mathbb{E}\left[\frac{\partial}{\partial \theta_i} \log f(\mathbf{y}|\boldsymbol{\theta}_o) \frac{\partial}{\partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}_o)\right] - \underbrace{\mathbb{E}\left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right]}_{\text{suffices to show this is zero!}}$$

suffices to show
$$\mathbb{E}\left[\frac{1}{f(\mathbf{y}|\boldsymbol{ heta}_o)}\cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{ heta}_o)\right] = 0$$

Step 4: Use
$$p_o(\mathbf{y}) = f(\mathbf{y}|\boldsymbol{\theta}_o)$$

$$\mathbb{E}\left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right] \equiv \int \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right] \rho_o(\mathbf{y}) \, d\mathbf{y}$$

$$= \int \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right] f(\mathbf{y}|\boldsymbol{\theta}_o) \, d\mathbf{y} = \int \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o) \, d\mathbf{y}$$

$$= \frac{\partial^2}{\partial \theta_i \partial \theta_i} \int f(\mathbf{y}|\boldsymbol{\theta}_o) \, d\mathbf{y} = \frac{\partial^2}{\partial \theta_i \partial \theta_i} (1) = 0$$

A Simple Example Continued Again: Asymptotic Variance Calculations

Poisson(θ) model, possibly mis-specified.

Ingredients

$$egin{aligned} \log f(y| heta) &= - heta + y \log(heta) - \log(y!) \ &rac{d}{d heta} \log f(y| heta) &= -1 + y/ heta \ &rac{d^2}{d heta^2} \log f(y| heta) &= -y/ heta^2 \ &rac{d}{ heta o} &= \mathbb{E}[y], \quad \widehat{ heta} &= ar{y} \end{aligned}$$

$$J = -\mathbb{E}\left[\frac{d^2}{d\theta^2}\log f(y|\theta_o)\right] = 1/\mathbb{E}[y]$$

$$\widehat{J} = -\frac{1}{N}\sum_{i=1}^N \frac{d^2}{d\theta^2}\log f(y_i|\widehat{\theta}) = 1/\bar{y}$$

$$K = \text{Var}\left[\frac{d}{d\theta}\log f(y|\theta_o)\right] = \text{Var}(y)/\mathbb{E}[y]^2$$

$$\widehat{K} = \frac{1}{N}\sum_{i=1}^N \left[\frac{d}{d\theta}\log f(y_i|\widehat{\theta})\right]^2 = s_y^2/(\bar{y})^2$$

where
$$s_y^2 \equiv \frac{1}{N} \sum_{i=1}^N (y_i - \bar{y})$$
 and $\bar{y} \equiv \frac{1}{N} \sum_{i=1}^n y_i$

A Simple Example Continued Again: Asymptotic Variance Calculations

From Previous Slide

$$heta_0 = \mathbb{E}[y], \quad J = 1/\mathbb{E}[y], \quad \widehat{J} = 1/\overline{y}, \quad K = \mathsf{Var}(y)/\mathbb{E}[y]^2, \quad \widehat{K} = s_y^2/(\overline{y})^2$$

Correct Specification

Potential Mis-specification

$$oxed{y_1,\ldots,y_N\sim \ \ \mathsf{iid}} \implies oxed{J=1/\mathbb{E}[y], \quad \mathcal{K}=\mathsf{Var}(y)/\mathbb{E}[y]^2} \implies oxed{J^{-1}\mathcal{K}J^{-1}=\mathsf{Var}(y)}$$

A Simple Example Continued Again: Asymptotic Variance Calculations

Comparison of Asymptotic Distributions

$$\begin{bmatrix}
y_1, \dots, y_N \sim & \text{iid Poisson}(\theta_o)
\end{bmatrix} \implies \sqrt{N}(\widehat{\theta} - \theta_o) = \sqrt{N}(\overline{y} - \mathbb{E}[y]) \to_d \mathcal{N}(0, \mathbb{E}[y]) \\
y_1, \dots, y_N \sim & \text{iid}
\end{bmatrix} \implies \sqrt{N}(\widehat{\theta} - \theta_o) = \sqrt{N}(\overline{y} - \mathbb{E}[y]) \to_d \mathcal{N}(0, \text{Var}[y])$$

Comparison of Asymptotic 95% Cls

$$\boxed{ \begin{array}{c} y_1, \dots, y_N \sim \text{ iid Poisson}(\theta_o) \\ \hline \\ y_1, \dots, y_N \sim \text{ iid} \end{array} } \implies \bar{y} \pm 1.96 \times \sqrt{\bar{y}/N}$$

Punch Line

Unless $Var(y) = \mathbb{E}[y]$, CIs/tests that assume the Poisson model is true are wrong!

Lecture #2 – Poisson Regression

Review: Minimum MSE Predictor / Minimum MSE Linear Predictor

Why not just use OLS?

Conditional Maximum Likelihood Estimation

Poisson Regression: A Robust Model for Count Data

Asymptotic Variance Calculations for Poisson Regression

How to predict a count variable?

Example

Suppose we want to predict y using x, where:

- ▶ $y \equiv \#$ of children a woman has: a count variable, i.e. $y \in \{0, 1, 2, ...\}$
- $\mathbf{x} \equiv \{\text{years of schooling, age, married, etc.}\}$

Minimum MSE Predictor

$$\mu(\mathbf{x}) \equiv \mathbb{E}(y|\mathbf{x})$$
 minimizes $\mathbb{E}\left[\left\{y - \varphi(\mathbf{x})\right\}^2\right]$ over all possible predictors $\varphi(\cdot)$.

Minimum MSE Linear Predictor

$$\beta \equiv \mathbb{E}\left[\mathbf{x}\mathbf{x}'\right]^{-1}\mathbb{E}[\mathbf{x}y]$$
 minimizes $\mathbb{E}\left[\left(y-\mathbf{x}'\boldsymbol{\theta}\right)^2\right]$ over all linear predictors $\mathbf{x}'\boldsymbol{\theta}$.

Proof: $\mathbb{E}(y|\mathbf{x})$ is the minimum MSE predictor

Step 1: add and subtract $\mu(\mathbf{x}) \equiv \mathbb{E}(y|\mathbf{x})$

$$\mathbb{E}\left[\left\{y - \varphi(\mathbf{x})\right\}^{2}\right] = \mathbb{E}\left[\left\{\left(y - \mu(\mathbf{x})\right) - \left(\varphi(\mathbf{x}) - \mu(\mathbf{x})\right)\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\}^{2}\right] - 2\mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\}\left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}\right] + \mathbb{E}\left[\left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}^{2}\right]$$

Step 2: iterated expectations

$$\mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\} \left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}\right] = \mathbb{E}\left(\mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\} \left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\} | \mathbf{x}\right]\right)$$
$$= \mathbb{E}\left(\left[\varphi(\mathbf{x}) - \mu(\mathbf{x})\right] \left[\mathbb{E}(y|\mathbf{x}) - \mu(\mathbf{x})\right]\right) = 0$$

Step 3: combine steps 1 & 2

$$\mathbb{E}\left[\left\{y - \varphi(\mathbf{x})\right\}^{2}\right] = \mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\}^{2}\right] + \mathbb{E}\left[\left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}^{2}\right]$$
constant wrt φ
cannot be negative; zero if $\varphi = \mu$

Proof: OLS is the Minimum MSE Linear Predictor

Objective Function

$$\mathbb{E}\left[\left(y - \mathbf{x}'\boldsymbol{\theta}\right)^{2}\right] = \mathbb{E}[y^{2}] - 2\mathbb{E}[y\mathbf{x}']\boldsymbol{\theta} + \boldsymbol{\theta}'\mathbb{E}\left[\mathbf{x}\mathbf{x}'\right]\boldsymbol{\theta}$$

Recall: Matrix Differentiation

$$\frac{\partial (\mathbf{a}'\mathbf{z})}{\partial \mathbf{z}} = \mathbf{a}, \quad \frac{\partial (\mathbf{z}'\mathbf{A}\mathbf{z})}{\partial \mathbf{z}} = (\mathbf{A} + \mathbf{A}')\mathbf{x}$$

First-Order Condition

$$-2\mathbb{E}\left[\mathbf{x}'y\right] + 2\mathbb{E}[\mathbf{x}\mathbf{x}']\boldsymbol{\theta} = 0 \implies \boldsymbol{\beta} = \mathbb{E}\left[\mathbf{x}\mathbf{x}'\right]^{-1}\mathbb{E}\left[\mathbf{x}'y\right]$$

MPhil 'Metrics, HT 2020

Problems with linear-in-parameters models for count data

Best predictor is $\mathbb{E}(y|\mathbf{x})$ but how can we estimate this?

Plain-vanilla OLS?

- ▶ If $\mathbb{E}(y|\mathbf{x}) \approx \mathbf{x}'\boldsymbol{\beta}$, OLS is a reasonable approach.
- **Problem**: y is a count so it can't be negative, but OLS prediction $\mathbf{x}'\boldsymbol{\beta}$ could be.

OLS for log(y)?

- ▶ Log-linear model $\log(y) = \mathbf{x}'\beta + \varepsilon$
- ▶ Solves the problem of negative predictions: log(y) can be negative.
- **Problem**: if y is a count it could equal zero but $\log(0) = \infty!$

A realistic model for count data *must* be nonlinear in parameters.

General Approach

- Assume that $\mathbb{E}(y|\mathbf{x}) = m(\mathbf{x}; \boldsymbol{\beta})$ where m is a known parametric function.
- ▶ Choose m so that it is always positive, regardless of \mathbf{x} and β .
- This means *m cannot* be linear.

This Lecture: $m(\mathbf{x}; \boldsymbol{\beta}) = \exp(\mathbf{x}'\boldsymbol{\beta})$

- Always strictly positive
- Common choice in practice
- Everything I'll discuss works with other choices of m, making appropriate changes.

How to estimate β_o ?

Assumption: $\mathbb{E}(y|\mathbf{x}) = \exp(\mathbf{x}'\boldsymbol{\beta}_o)$

Using our argument from above, β_o minimizes $\mathbb{E}\left[\left\{y_i - \exp(\mathbf{x}_i'\beta)\right\}^2\right]$ over all $\boldsymbol{\beta}$.

Nonlinear Least Squares (NLLS)

 \widehat{eta}_{NLLS} is the minimizer of $\sum_{i=1}^{N}\left\{y_{i}-\exp\left(\mathbf{x}_{i}^{\prime}oldsymbol{eta}
ight)
ight\}^{2}$

Poisson Regression (MLE)

 \widehat{eta}_{MLE} is the MLE for eta_o under the model $y_i|\mathbf{x}_i\sim \ \ ext{indep.}$ Poisson $\left(\exp(\mathbf{x}_i'oldsymbol{eta}_o)
ight)$

Conditional versus Unconditional MLE

Last Lecture: Unconditional MLE

Model *unconditional* dist. of a random vector \mathbf{y} : $f(\mathbf{y}|\boldsymbol{\theta})$.

This Lecture: Conditional MLE

Model *conditional* dist. of a random variable y given a random vector \mathbf{x} : $f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})$.

Why Conditional MLE?

- ▶ Unconditional MLE requires joint distribution: $f(y, \mathbf{x}|\theta) = f(y|\mathbf{x}, \theta)f(\mathbf{x}|\theta)$
- $ightharpoonup \mathbb{E}(y|\mathbf{x})$ only depends on $f(y|\mathbf{x}, \theta)$ not $f(\mathbf{x}|\theta)$.
- Not interested in $f(\mathbf{x}|\theta)$; coming up with a good model for it is challenging.
- Caveat: unconditional MLE is more efficient provided the model for x is correct.

The Conditional Maximum Likelihood Estimator

Assuming iid data.

Sample

Population

$$m{ heta}_o \equiv rg \max_{m{ heta} \in m{\Theta}} rac{1}{N} \sum_{i=1}^N \log f(y_i | \mathbf{x}_i, m{ heta})$$

$$oldsymbol{ heta}_o \equiv rg \max_{oldsymbol{ heta} \in oldsymbol{\Theta}} \mathbb{E}\left[\log f(y_i|\mathbf{x}_i,oldsymbol{ heta})
ight]$$

Important

- ▶ We only model the conditional distribution $y|\mathbf{x}$, but...
- ▶ ...the expectation $\mathbb{E}[\log f(y_i|\mathbf{x}_i,\theta)]$ is taken over the *joint distribution* of (y,\mathbf{x}) .
- $ightharpoonup f(y_i|\mathbf{x}_i,\theta)$ is merely a function of the RVs (y_i,\mathbf{x}_i) .

Poisson Regression as a Conditional MLE

Model: $y_i | \mathbf{x}_i \sim \text{Poisson}(\exp{\{\mathbf{x}_i'\boldsymbol{\beta}\}})$

$$\ell_i(\boldsymbol{\beta}) \equiv \log f(y_i|\mathbf{x}_i,\boldsymbol{\beta}) = y_i\mathbf{x}_i'\boldsymbol{\beta} - \exp(\mathbf{x}_i'\boldsymbol{\beta}) - \log(y_i!)$$

$$\underbrace{\mathbf{s}_{i}(\boldsymbol{\beta})}_{\text{score vector}} \equiv \frac{\partial \ell_{i}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{x}_{i} \left[y_{i} - \exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}\right) \right]$$

$$\widehat{\boldsymbol{\beta}}$$
 solves $\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \underbrace{[y_{i} - \exp(\mathbf{x}_{i}\boldsymbol{\beta})]}_{\text{residual: } u_{i}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} u_{i}(\boldsymbol{\beta}) = \mathbf{0}$

Average Partial Effects

Partial Effects

For continuous x_j , we call $\frac{\partial}{\partial x_j}\mathbb{E}(y|\mathbf{x})$ the partial effect of x_j . For discrete x_j the partial effect is the difference of $\mathbb{E}(y|\mathbf{x})$ at two different values of x_j

Average Partial Effects (APE)

In nonlinear models, partial effects typically vary with \mathbf{x} . The average partial effect is the expectation of the partial effect over the distribution of \mathbf{x} .

Average Partial Effects for Poisson Regression

Partial Effect

$$\frac{\partial}{\partial x_j} \mathbb{E}(y|\mathbf{x}) = \frac{\partial}{\partial x_j} \exp(\mathbf{x}_j'\boldsymbol{\beta}) = \exp(\mathbf{x}_j'\boldsymbol{\beta}) \beta_j$$

Estimated Partial Effect

$$\exp\left(\mathbf{x}_{i}^{\prime}\widehat{\boldsymbol{\beta}}\right)\widehat{\beta}_{j}$$

Average Partial Effect

$$\mathbb{E}\left[\frac{\partial}{\partial \mathsf{x}_{j}}\exp\left(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta}\right)\right]=\mathbb{E}\left[\exp\left(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta}\right)\right]\beta_{j}$$

Estimated Average Partial Effect

$$\left[\frac{1}{N}\sum_{i=1}^{N}\exp\left(\mathbf{x}_{i}^{\prime}\widehat{\boldsymbol{\beta}}\right)\right]\widehat{\beta}_{j}$$

Relative Effects

The ratio of partial effects does not depend on x: relative effects are constant.

Problem Set

Poisson regression: APE= $\bar{y}\hat{\beta}_{j}$. Multiply by \bar{y} to put coefficients on the scale of OLS.

Conditional MLE Under Mis-specification

Basically identical to the unconditional version.

Theorem

Suppose that $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \sim \text{ iid } p_o \text{ and let } \widehat{\boldsymbol{\theta}} \text{ denote the Conditional MLE for } \boldsymbol{\theta} \text{ under the possibly mis-specified model } f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}). \text{ Then, under mild regularity conditions:}$

(i) $\widehat{\theta}$ is consistent for the pseudo-true parameter value θ_o , defined as the maximizer of the expected log likelihood $\mathbb{E}\left[\log f(y|\mathbf{x},\theta)\right]$ over the parameter space Θ .

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$$

where we define
$$\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$$
 and $\mathbf{K} \equiv \mathrm{Var}\left[\frac{\partial \log f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right]$.

Conditional MLE Under Correct Specification

Basically identical to the unconditional version.

Theorem

Suppose that $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \sim \text{ iid } \text{ where the conditional distribution of } y_i | \mathbf{x}_i \text{ is given by } f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)$. Then, under mild regularity conditions,

(i) $\widehat{\theta}$ is consistent for θ_o

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1})$$
 where $\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$

What value of β maximizes $\mathbb{E}[\ell_i(\beta)]$?

Iterated Expectations

$$\mathbb{E}[\ell_i(\boldsymbol{\beta})] = \mathbb{E}\left\{\mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right]\right\} = \mathbb{E}\left\{\mathbb{E}\left[y_i\mathbf{x}_i'\boldsymbol{\beta} - \exp(\mathbf{x}_i'\boldsymbol{\beta}) - \log\left(y_i!\right)|\mathbf{x}_i\right]\right\}$$

Simplify Inner Expectation

$$\mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right] = \mathbf{x}_i'\boldsymbol{\beta}\mathbb{E}\left[y_i|\mathbf{x}_i\right] - \exp\left(\mathbf{x}_i'\boldsymbol{\beta}\right) - \underbrace{\mathbb{E}\left[\log\left(y_i!\right)|\mathbf{x}_i\right]}_{\text{constant wrt }\boldsymbol{\beta}}$$

FOC for Inner Expectation

$$\frac{\partial}{\partial \boldsymbol{\beta}} \mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right] = \left\{ \mathbb{E}\left[y_i|\mathbf{x}_i\right] - \exp\left(\mathbf{x}_i'\boldsymbol{\beta}\right) \right\} \boldsymbol{\beta} = \mathbf{0}$$

What value of β maximizes $\mathbb{E}[\ell_i(\beta)]$?

$$rac{\partial}{\partialoldsymbol{eta}}\mathbb{E}\left[\ell_i(oldsymbol{eta})|\mathbf{x}_i
ight] = \left\{\mathbb{E}\left[y_i|\mathbf{x}_i
ight] - \exp\left(\mathbf{x}_i'oldsymbol{eta}
ight)
ight\}oldsymbol{eta} = \mathbf{0}$$

What does this mean?

Since $\mathbb{E}\left[y_i|\mathbf{x}_i\right] = \exp\left(\mathbf{x}_i'\boldsymbol{\beta}_o\right)$, setting $\boldsymbol{\beta} = \boldsymbol{\beta}_o$ solves the FOC for the inner expectation!

In other words:

For any realization of \mathbf{x}_i and any $\boldsymbol{\beta}$,

$$\mathbb{E}[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i] \leq \mathbb{E}[\ell_i(\boldsymbol{\beta}_o)|\mathbf{x}_i]$$

so taking expectations of both sides:

$$\mathbb{E}\left[\ell_i(\boldsymbol{\beta})\right] = \mathbb{E}\left\{\mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right]\right\} \leq \mathbb{E}\left\{\mathbb{E}\left[\ell_i(\boldsymbol{\beta}_o)|\mathbf{x}_i\right]\right\} = \mathbb{E}\left[\ell_i(\boldsymbol{\beta}_o)\right]$$

Poisson Regression is consistent if $\mathbb{E}(y|\mathbf{x})$ is correctly specified.

We showed this for a particular choice of $m(x; \beta)$ but the result is general.

Result

Provided that we have correctly specified $\mathbb{E}(y_i|\mathbf{x}_i)$, it *doesn't matter* if $y_i|\mathbf{x}_i$ actually follows a Poisson distribution: Poisson regression is *still consistent* for $\boldsymbol{\beta}_o$.

Compare

This is very similar to our result for the $Poisson(\theta)$ model from last lecture.

Caveat

Strictly speaking we need to show that β_o is the *unique* maximizer of the expected log likelihood. *Multiple solutions* if \mathbf{x}_i perfectly co-linear (compare to OLS regression).

Asymptotic Variance Calculations for Poisson Regression

$$\underbrace{\mathbf{s}_{i}(\boldsymbol{\beta})}_{\text{score vector}} \equiv \frac{\partial \ell_{i}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{x}_{i} \left[y_{i} - \exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}\right) \right] = \mathbf{x}_{i} u_{i}(\boldsymbol{\beta})$$

$$\underbrace{\mathbf{H}_{i}(\boldsymbol{\beta})}_{\text{score nector}} \equiv \frac{\partial \mathbf{s}_{i}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}'} = -\exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}\right) \mathbf{x}_{i} \mathbf{x}_{i}'$$
Hessian matrix

$$\mathbf{J} \equiv -\mathbb{E}\left[\mathbf{H}_{i}(\boldsymbol{\beta}_{o})\right] = \mathbb{E}\left[\exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}_{o}\right)\mathbf{x}_{i}\mathbf{x}_{i}'\right]$$

$$\mathbf{K} \equiv \mathsf{Var}\left[\mathbf{s}_{i}(\boldsymbol{\beta}_{o})\right] = \mathbb{E}\left[\mathbf{s}_{i}(\boldsymbol{\beta}_{o})\mathbf{s}_{i}(\boldsymbol{\beta}_{o})'\right] = \mathbb{E}\left[u_{i}^{2}(\boldsymbol{\beta}_{o})\mathbf{x}_{i}\mathbf{x}_{i}'\right]$$

Asymptotic Variance Calculations for Poisson Regression

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta}_{o}\right)\mathbf{x}_{i}\mathbf{x}_{i}^{\prime}\right], \quad \mathbf{K} = \mathbb{E}\left[u_{i}^{2}(\boldsymbol{\beta}_{o})\mathbf{x}_{i}\mathbf{x}_{i}^{\prime}\right]$$

Notice

J does not depend on y but **K** does:

$$\mathbf{K} = \mathbb{E}\left[u_i^2(\boldsymbol{\beta}_o)\mathbf{x}_i\mathbf{x}_i'\right] = \mathbb{E}\left\{\mathbb{E}\left[u_i^2(\boldsymbol{\beta}_o)|\mathbf{x}_i\right]\mathbf{x}_i\mathbf{x}_i'\right\} = \mathbb{E}\left(\mathbb{E}\left[\left\{y_i - \mathbb{E}(y_i|\mathbf{x}_i)\right\}^2|\mathbf{x}_i\right]\right)$$
$$= \mathbb{E}\left[\operatorname{Var}(y_i|\mathbf{x}_i)\mathbf{x}_i\mathbf{x}_i'\right]$$

Assumptions about $Var(y|\mathbf{x})$ affect the asymptotic variance through \mathbf{K} .

Possible Assumptions for $Var(y|\mathbf{x})$: Strongest to Weakest

- 1. Poisson Assumption: $Var(y|\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$
 - holds if Poisson model is correct.
- 2. Quasi-Poisson Assumption: $Var(y|\mathbf{x}) = \sigma^2 \mathbb{E}(y|\mathbf{x})$
 - Allows for possibility that $y | \mathbf{x}$ is *not* Poisson
 - Overdispersion: $\sigma^2 > 1 \implies \mathsf{Var}(y|\mathbf{x}) > \mathbb{E}(y|\mathbf{x})$
 - Underdispersion $\sigma^2 > 1 \implies \text{Var}(y|\mathbf{x}) < \mathbb{E}(y|\mathbf{x})$
 - If $\sigma^2 = 1$ we're back to the Poisson Assumption.
- 3. No Assumption: $Var(y|\mathbf{x})$ unspecified

Asymptotic Variance Under Poisson Assumption

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'oldsymbol{eta}_o
ight)\mathbf{x}_i\mathbf{x}_i'
ight], \quad \mathbf{K} = \mathbb{E}\left[\operatorname{Var}(y_i|\mathbf{x}_i)\mathbf{x}_i\mathbf{x}_i'
ight]$$

Assumption: $Var(y_i|\mathbf{x}_i) = \mathbb{E}(y_i|\mathbf{x}_i) = \exp(\mathbf{x}_i'\boldsymbol{\beta}_o)$

- ▶ Implies $\mathbf{K} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'\boldsymbol{\beta}_o\right)\mathbf{x}_i\mathbf{x}_i'\right]$
- ightharpoonup Hence $\mathbf{K} = \mathbf{J}$ (Information Matrix Equality)
- ► Therefore: $\sqrt{N}(\widehat{\boldsymbol{\beta}} \boldsymbol{\beta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1})$
- ► Consistent Estimator: $\hat{\mathbf{J}}^{-1} = \left[\frac{1}{N} \sum_{i=1}^{N} \exp\left(\mathbf{x}_{i}' \widehat{\boldsymbol{\beta}}\right) \mathbf{x}_{i} \mathbf{x}_{i}'\right]^{-1}$

Asymptotic Variance Under Quasi-Poisson Assumption

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'oldsymbol{eta}_o
ight)\mathbf{x}_i\mathbf{x}_i'
ight], \quad \mathbf{K} = \mathbb{E}\left[\operatorname{Var}(y_i|\mathbf{x}_i)\mathbf{x}_i\mathbf{x}_i'
ight]$$

Assumption: $Var(y_i|\mathbf{x}_i) = \sigma^2 \mathbb{E}(y_i|\mathbf{x}_i) = \sigma^2 \exp(\mathbf{x}_i'\boldsymbol{\beta}_o)$

- ► Implies $\mathbf{K} = \sigma^2 \mathbb{E} \left[\exp \left(\mathbf{x}_i' \boldsymbol{\beta}_o \right) \mathbf{x}_i \mathbf{x}_i' \right] = \sigma^2 \mathbf{J}$
- Hence $J^{-1}KJ^{-1} = \sigma^2J^{-1}$
- ► Therefore: $\sqrt{N}(\hat{\boldsymbol{\beta}} \boldsymbol{\beta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{J}^{-1})$
- ► Consistent estimator of J^{-1} on prev. slide but how can we estimate σ^2 ?

How to estimate σ^2 under the Quasi-Poisson Assumption?

$$\begin{aligned} \mathsf{Var}(y|\mathbf{x}) &= \sigma^2 \mathbb{E}(y|\mathbf{x}) \\ \sigma^2 &= \mathsf{Var}(y|\mathbf{x}) / \mathbb{E}(y|\mathbf{x}) \\ \sigma^2 &= \mathbb{E}\left[\left\{y - \mathbb{E}(y|\mathbf{x})\right\}^2 |\mathbf{x}\right] / \mathbb{E}(y|\mathbf{x}) \\ \sigma^2 &= \mathbb{E}\left[\left.\frac{\left\{y - \mathbb{E}(y|\mathbf{x})\right\}^2 |\mathbf{x}\right]}{\mathbb{E}(y|\mathbf{x})} |\mathbf{x}\right] \\ \sigma^2 &= \mathbb{E}\left[\left.\frac{\left\{y - \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right\}^2 |\mathbf{x}\right]}{\exp(\mathbf{x}'\boldsymbol{\beta})} |\mathbf{x}\right] \\ \mathbb{E}[\sigma^2] &= \mathbb{E}\left(\mathbb{E}\left[\left.\frac{\left\{y - \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right\}^2 |\mathbf{x}\right\}\right]}{\exp(\mathbf{x}'\boldsymbol{\beta})} |\mathbf{x}\right]\right) \\ \sigma^2 &= \mathbb{E}\left[\left.\frac{\left\{y - \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right\}^2 |\mathbf{x}\right\}}{\exp(\mathbf{x}'\boldsymbol{\beta})}\right] \\ \sigma^2 &= \mathbb{E}\left[u^2(\boldsymbol{\beta}_o) / \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right] \end{aligned}$$

Consistent Estimator of σ^2

$$\widehat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{[y_i - \exp(\mathbf{x}_i'\widehat{\boldsymbol{\beta}})]^2}{\exp(\mathbf{x}_i\widehat{\boldsymbol{\beta}})} = \frac{1}{N} \sum_{i=1}^{N} \frac{\widehat{u}_i^2}{\exp(\mathbf{x}_i\widehat{\boldsymbol{\beta}})}$$

Robust Asymptotic Variance Matrix

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'\boldsymbol{eta}_o\right)\mathbf{x}_i\mathbf{x}_i'\right], \quad \mathbf{K} = \mathbb{E}\left[u_i^2(\boldsymbol{eta}_o)\mathbf{x}_i\mathbf{x}_i'\right]$$

No Assumption on $Var(y_i|\mathbf{x}_i)$

- $lacksquare \sqrt{N}(\widehat{eta}-eta_o)
 ightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$
- $lackbox{Consistent Estimator: } \widehat{\mathbf{J}}^{-1} = \left[\frac{1}{N} \sum_{i=1}^N \exp\left(\mathbf{x}_i' \widehat{eta}\right) \mathbf{x}_i \mathbf{x}_i' \right]^{-1}$
- ► Consistent Estimator: $\widehat{\mathbf{K}} = \frac{1}{N} \sum_{i=1}^{N} \left[y_i \exp(\mathbf{x}_i \widehat{\boldsymbol{\beta}}) \right]^2 \mathbf{x}_i \mathbf{x}_i' = \frac{1}{N} \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{x}_i \mathbf{x}_i'$

Why Poisson Regression rather than NLLS?

Assume that $\mathbb{E}(y|\mathbf{x}) = \exp(\mathbf{x}'\beta_o)$

Both Poisson Reg. & NLLS are consistent if the conditional mean is correctly specified.

Count data are typically heteroskedastic.

If $Var(y|\mathbf{x})$ varies with \mathbf{x} , NLLS will be relatively inefficient.

Efficiency of Poisson Regression

- ► Correct model ⇒ lowest variance among all estimators that leave the distribution of x unspecified.
- ▶ $Var(y|\mathbf{x}) = \sigma^2 \mathbb{E}(y|\mathbf{x}) \implies$ Poisson regression is more efficient than NLLS and various other count data models.