1. INTRODUÇÃO

Um sistema baseado em microcomputador utiliza os barramentos de endereços, dados e controle para efetuar a comunicação entre o microprocessador e os dispositivos associados.

Quando um sistema microprocessado deseja se comunicar com outro sistema microprocessado se faz necessário a existência de um formato padrão para os barramentos.

2. CARACTERÍSTICAS DOS PRINCIPAIS BARRAMENTOS

2.1. ISA (Industry Standard Architecture)

As principais características do barramento ISA são:

- a versão 8 bits veio com o PC original (esta versão também é identificada como barramento XT)
- a versão 16 bits veio em meados dos anos 80 juntamente com o 80.286 (PC/AT) (esta versão também é identificada como barramento AT)
- frequência de operação é 8 MHz
- velocidade máxima de transmissão é 8 M bytes por segundo
- o barramento e o microprocessador são dissociados (cada um pode trabalhar numa frequência, permitindo com isso o microprocessador ter frequências de trabalho muito maiores que o barramento)
- suporta até 8 periféricos
- não foi projetada para ser auto-configurável (não permite Plug and Play)

A1: CHKDSK	B1: GND	C1: SBHE	D1: MEMCS16
A2: D7	B2: RESDRV	C2: A23	D2: I/OCS16
A3: D6	B3: +5 Vcc	C3: A22	D3: IRQ10
A4: D5	B4: IRQ2	C4: A21	D4: IRQ11
A5: D4	B5: -5 Vcc	C5: A20	D5: IRQ12
A6: D3	B6: DRQ2	C6: A19	D6: IRQ15
A7: D2	B7: -12 Vcc	C7: A18	D7: IRQ14
A8: D1	B8: reservado	C8: A17	D8: DACK0
A9: D0	B9: +12 Vcc	C9: MEMR	D9: DRQ0
A10: I/OCHRDY	B10: GND	C10: MEMW	D10: DACK5
A11: AEN	B11: MEMW	C11: D8	D11: DRQ5
A12: A19	B12: MEMR	C12: D9	D12: DACK6
A13: A18	B13: I/OW	C13: D10	D13: DRQ6
A14: A17	B14: I/OR	C14: D11	D14: DACK7
A15: A16	B15: DACK3	C15: D12	D15: DRQ7
A16: A15	B16: DRQ3	C16: D13	D16: +5 Vcc
A17: A14	B17: DACK1	C17: D14	D17: MASTER
A18: A13	B18: DRQ1	C18: D15	D18: GND
A19: A12	B19: REFRESH		
A20: A11	B20: CLK		
A21: A10	B21: IRQ7		
A22: A9	B22: IRQ6		
A23: A8	B23: IRQ5		
A24: A7	B24: IRQ4		
A25: A6	B25: IRQ3		
A26: A5	B26: DACK2		
A27: A4	B27: T/C		
A28: A3	B28: ALE		

A29: A2 B29: +5 Vcc A30: A1 B30: OSC A31: A0 B31: GND

2.2 – EISA (Extended Industry Standard Architecture)

As principais características do barramento EISA são:

- é uma evolução do barramento ISA e continua compatível com os antigos de 8 e 16 bits
- é um padrão não-proprietário (é aberto)
- velocidade máxima de transmissão é 30 M bytes por segundo
- foi desenvolvido por 9 fabricantes de computadores liderados pela COMPAQ (as outras 8 são: AST, EPSON, HP, NEC, OLIVETTI, TANDY, WYSE e ZENITH)
- o primeiro microcomputador a utilizar o EISA foi o VECTRA da HP
- transmite dados em 32 bits
- o conector EISA tem duas camadas. A camada superior é exatamente igual ao do ISA (para manter a compatibilidade com o ISA de 8 e 16 bits) e a camada inferior contém a extensão EISA. O conector EISA possui proteção para evitar que uma placa ISA acesse os pinos da camada da extensão EISA.

Nota: o conector EISA está apresentado na figura 2.4.

2.3 – MCA (Micro Channel Architecture)

As principais características do barramento MCA são:

- também chamado de micro canal
- é proprietário e de uso exclusivo da IBM na linha PS
- não é compatível com o ISA/EISA
- velocidade máxima de transmissão é de 30 M bytes por segundo
- transmite dados em 32 bits
- 2.4 VL-Bus (Vesa Local Bus)

As principais características do barramento VL-Bus são:

- é um barramento local
- foi desenvolvido pela VESA (Video Electronics Standards Association), que é um consórcio de mais de 120 empresas
- é uma ampliação do barramento EISA através de um conector extra à frente do existente (acréscimo de 112 pinos)
- basicamente duplica os sinais do 80486
- projetado para o 486 e especificamente para controladores de vídeo, porém funciona bem com IDE e SCSI
- transmite dados em 32/64 bits
- velocidade máxima de transmissão:
 - VL-Bus de 32 bits = 132 M bytes por segundo
 - VL-Bus de 64 bits = 250 M bytes por segundo
- número de periféricos conectáveis ao VL-Bus é muito pequeno (+/- 3)
- 2.5 PCI (Peripheral Component Interconnect)

As principais características do barramento PCI são:

é um barramento intermediário que fica entre o barramento local e tradicional

- desenvolvido pela INTEL e lançado em 22/06/92, logo após a VESA ter apresentado o VL-Bus
- pode trabalhar independente do microprocessador
- pode ter seus periféricos autoconfiguráveis (suporte ao padrão Plug and Play)
- no início = 33 MHz, depois 66 MHz (atualmente já tem frequência de até 133 MHz)
- é síncrono
- multiplexa os pinos de endereços e dados
- existe PCI para trabalhar com 5 Vcc e PCI para trabalhar com 3,3 Vcc
- tem conector à parte do barramento normal do microcomputador, que possui
 124 pinos para versão de 32 bits e 178 pinos para versão de 64 bits
- implementado em PCs e também em microcomputadores ALPHA e POWER
 PC
- muito bom para trabalhar com multiprocessamento e multimídia
- velocidade máxima de transmissão
 - PCI de 32 bits = 132 M bytes por segundo, para 33 MHz
 - PCI de 64 bits = 264 M bytes por segundo, para 33 MHz
- permite até 5 periféricos, mas as controladoras PCI e ISA (ou outra) também contam deixando 3 conexões disponíveis.

2.6 - QUICKRING

As principais características do barramento QUICKRING são:

- é um barramento local
- desenvolvido pelo APPLE
- velocidade máxima de transmissão é 350 M bytes por segundo

3. GLOSSÁRIO

AUTOCONFIGURAÇÃO

Capacidade de um periférico em estabelecer seus números de interrupção, endereços base e DMA sem intervenção do usuário, no momento da inicialização do microcomputador.

BARRAMENTO LOCAL

É aquele ligado diretamento ao microprocessador, compartilhando seus sinais e funcionando na mesma frequência do mesmo.

É representado fisicamente por um conector especial de expansão na placa principal do microcomputador que permite colocar placas para conexão de vídeo ou disco. Para o vídeo pode-se conectar uma placa aceleradora gráfica e para o disco uma placa controladora de disco IDE (Interface Design Enchancements) ou SCSI (Small Computer System Interface).

DMA

Circuito especializado ou microprocessador dedicado que transfere dados de uma memória para outra memória sem usar a CPU.

IDE

Interface de hardware largamente usada para conectar discos rígidos em PCs.

PLUG AND PLAY

Padrão da Intel para projeto de placas de expansão para PCs em que os parâmetros IRQ (interrupção), DMA e endereços I/O (Input / Output) são configurados automaticamente.

SCSI

Interface de hardware largamente usada que permite que uma placa de expansão em um computador seja conectada a até 16 dispositivos periféricos (disco rígido, CD-ROM, scanner, etc).

SIGLAS

DMA = Direct Memory Access

EISA = Extended Industry Standard Architecture

IDE = Integrated Drive Electronics

ISA = Industry Standard Architecture

SCSI = Small Computer System Interface

VESA = Video Electronics Standards Association

TAXA DE TRANSFERÊNCIA

Velocidade com que os dados podem trafegar no barramento.