學號:R05921033 系級: 電機所碩一 姓名: 余政穎

1. (1%)請問 softmax 適不適合作為本次作業的 output layer? 寫出你最後選擇的 output layer 並說明理由。

Ans:

首先,我先簡述除了 output layer 以外我的模型架構,資料處理的部份,先將 training data 用 Tokenizer 編碼,並用 padding sequence 使其長度相同,並將字詞出現頻率介於 4~4999 之間的字詞保留下來,其餘字詞去掉忽略不計,把必要的字詞保留(出現很少的對於預測幫助不大,出現很多的如 the, a, I 這類亦對預測無幫助的字詞);第一層先使用 pre-trained 好的word embedding vector (200 維),輸入兩層大小為 256 的 GRU layers(activation function 為 ReLu,dropout 率為 0.5),接著依序接大小為 $512 \times 256 \times 128 \times 64$ 的 DNN(activation function 為 PReLu,類似 LeakyReLu,只是 alpha 是動態調整的,dropout 率為 0.3),並接到 output layer,output layer 的 threshold 出來若大於 0.4,則預測有該值對應的 class,若無則沒有,目標進行 multi-label and multi-class 的預測。

softmax 所代表的意義是,對於所有的 output,將 output layer 的值經過轉換後,使其加起來為 1,用來代表每一個 class 的可能的機率,對於 multi-label task 來說,由於一筆 test data(在此處即是一篇短文),可能屬於多個不同的 class,用 softmax 所產生出來的結果,會使得最後出來僅有 1~2 個 class(在 threshold 設為 0.4 的情況下),即使調低 threshold,由於總共有 38 種不同的 class,加上 softmax 會將越可能的 class 的值放大(假如原本兩筆 data 前一層出來是 1 跟 2 ,經過 softmax 後一個分子是 e 、另一個是 e^2 ,會差到 e 倍),預測出的 class 機率會互相影響,要達成準確的估計並不容易,故結論是,softmax 並不適合做為 output layer。

因此,我最後使用 sigmoid 作為 output layer,因為其輸入值只要夠大,output 要就可以 大於 threshold,並不會受到其他 class 影響,對於此作業所需要達成的目標,multi-label and multi-class task 是頗為合適的,而最後跑出的結果,也確實不差,能夠在 kaggle 上的 leaderboard 達到 f1 score 分別為 0.52388 跟 0.50897。

2. (1%)請設計實驗驗證上述推論。

Ans:

為了確認第一題中所敘述的推論是合理的,基本上我以第一題的架構下去實作,但因為加兩層 GRU 對於 softmax 會訓練不起來,所以只使用一層 GRU,將 output layer 以外的所有參數固定進行訓練,並觀察 validation 的準確率、validation 的 loss、上傳 Kaggle 的結果。

最後一層	Validation f1	Validation loss	Public f1	Private f1
Activation				
softmax	0.2031	4.8071	0.18372	0.14631
sigmoid	0.5389	4.5237	0.52388	0.50897

可以看到在各種數據上,softmax 當最後一層 activation,都比使用 sigmoid 當最後一層 activation 差很多,而且在越複雜的模型下,softmax 會訓練越不好(兩層 GRU 完全訓練不起來);接著我們再檢查 predict 出來,於兩種模型下 test data 預測出平均的 tags 數量,以及原本 training data 中,每筆資料的 tags 數量平均個數。

最後一層	原本 training data,tags 平均	預測 test data,tags 平均數量
Activation	數量	
softmax	2.0695	0.18785
sigmoid	2.0695	2.58219

我們可以很明顯的看到,使用 softmax 作為最後一層,預測出來的 test data 的 tags 數量非常少,相較於 sigmoid 還預測太多(表示應該要調低 threshold),其 tags 數量預測的少的誇張,除非要把 threshold 設很低,但這樣又同時可能把太多不相關的也算進來,設定並不容易,因此 softmax 並不適合作為最後一層的 activation。

3. (1%)請試著分析 tags 的分布情況(數量)。

Ans:

這是我統計訓練資料中,每一個 tag 的分布狀況:

	起定找統計訓練貝科中,母一個 tag 的分布狀況·						
Tags	<u>HUMOUR</u>	<u>NOVEL</u>	CRIME-FICTION	<u>SUSPENSE</u>			
數量	18	992	368	318			
Tags	<u>HORROR</u>	<u>FANTASY</u>	<u>FICTION</u>	NON-FICTION			
數量	192	773	1672	102			
Tags	UTOPIAN-AND-	SPECULATIVE-	TECHNO-	CHILDREN'S			
	<u>DYSTOPIAN-</u>	FICITON	<u>THRILLER</u>	<u>LITERATURE</u>			
	<u>FICTION</u>						
數量	11	1448	18	777			
Tags	<u>AUTOBIOGRAPHY</u>	SPY-FICTION	<u>SATIRE</u>	<u>COMEDY</u>			
數量	51	75	35	59			
Tags	YOUNG-ADULT-	ROMANCE-	SCIENCE-	HISTORICAL-			
	<u>LITERATURE</u>	<u>NOVEL</u>	<u>FICTION</u>	<u>FICTION</u>			
數量	288	157	959	137			
Tags	COMIC-NOVEL	SHORT-STORY	<u>HIGH-FANTSY</u>	<u>BIOGRAPHY</u>			
數量	37	41	15	42			
Tags	<u>MEMOIR</u>	MYSTERY	<u>HISTORY</u>	<u>NOVELLA</u>			
數量	35	642	40	29			
Tags	DETECTIVE-	GOTHIC-	ALTERNATIVE-	HISTORICAL-			
	<u>FICTION</u>	FICTION	<u>HISTORY</u>	NOVEL			
數量	178	12	40	222			
Tags	<u>DYSTOPIA</u>	THRILLER	WAR-NOVEL	ADVENTURE-			
				<u>NOVEL</u>			
數量	30	243	31	109			
Tags	AUTOBIOGRAPHICAL-NOVEL		APOCALYPTIC-AND-POST-				
			APOCALYPTIC-FICTION:				
數量	31		14				

可以看到,這裡面最多數量的 tags 是 <u>FICTION</u>, 共 1672 個, 最少數量的 tags 是 <u>UTOPIAN-AND-DYSTOPIAN-FICTION</u>, 共 11 個, 觀察整個 tags 的分布狀況, 不難看出這些訓練資料中, tags 的數量差異甚大,表示有些資料我們其實並不容易讓模型辨認出來,因為本身有這個 label 的訓練資料就不夠多,要求模型在 test data 中猜出這些資料是屬於這個 label,其實是滿不合理的,應該設法平衡一下這樣的狀況。

同時,觀察 tags 的名稱,亦可看出有些 tag 彼此之間有高度相關性,甚至有些 tag 可說是屬於另一個 tag 之下,比方說:<u>UTOPIAN-AND-DYSTOPIAN-FICTION</u> 跟 <u>DYSTOPIA</u> 有高度相關、<u>ADVENTURE-NOVEL</u>應屬於 <u>NOVEL</u> 之下,然而,在 labels 上這兩項直接相關的不太會被重複 tag 到,即使這兩者對於模型來說是有一定的相似性,故提升辨認的難度。

綜上所述,如果直接照訓練資料直接丟進去,而沒經過特別的處理,要有好的辨識度 其實並不容易,若未來要真正使用機器學習解決問題,一些 data 跟 features 前處理是必要 的。

4. (1%)本次作業中使用何種方式得到 word embedding?請簡單描述做法。

Ans:

此次作業我使用 GloVe 訓練好的 model 得到 word embedding model,使用的為200 維度的 Wikipedia 2014 + Gigaword 5 pre-trained model。轉換資料的過程依序為:使用tokenizer.fit_on_texts 將每個字詞編號、用 tokenizer.texts_to_sequence 將每個文章轉成以數字表示的 sequence、用 pad_sequence 把上一步所得到的 sequence 調整成一樣長度、用 Glove 200 dimension 建立 embedding matrix、將 embedding matrix 和 sequence 放入 Embedding layer,把第三步得到的 sequence 投影到 200 維的空間上。

GloVe 所使用的訓練方式是根據 word-word co-occurrence matrix,若以矩陣X代表這個 matrix, X_{ij} 代表的就是 word j 在 word i 的上下文中所出現的次數, $X_i = \sum_k X_{ik}$, $P_{ij} = P(j|i) = \frac{x_{ij}}{x_i}$,後者表示 word j 在 word i 中出現的機率,亦可稱為兩個單詞之間的 co-occurrence 的機率。對於上述矩陣X進行分析 P_{ik} 與 P_{jk} ,可以知道對於一個固定的單詞 k,word i 與 word j 之間的比例關係,用來區分單詞之間彼此的相關性,以及大略知道相關詞之間的涵義為何。

至於 GloVe 中的訓練目標為讓兩個單詞的 vector 彼此之間的內積,等同於這兩個單詞的 co-occurrence 的機率取 log,會取 log 的原因為當我們分析 P_{ik} 與 P_{jk} 時,我們是看其比例(亦即 $\frac{P_{ik}}{P_{jk}}$),若將其取 log,便可以將其轉換為兩個 log term 的相減,如此一來,兩個單詞向量之間的相似性,便會與兩個單詞之間的相似性有正相關,使得其訓練出來的 word vector,彼此之間的相似性及類比能力得以被保留下來,此外,GloVe 的計算複雜度主要依賴於 X 矩陣中的非零項,故只要此項的數量不太大,計算複雜度也在可接受範圍以內。參照該篇 paper 的結論,由於 GloVe 的模型有使用到 word 之間彼此出現的次數,但同時又能保持單詞之間的substructure,使其產生的 vector 能代表字的意義,基本上是融合了 count-base 的 prediction-base 模型。

5. (1%)試比較 bag of word 和 RNN 何者在本次作業中效果較好。

Ans:

我將字詞出現頻率介於 $4\sim4999$ 之間的字詞保留下來,其餘字詞去掉忽略不計,接著統計每筆資料中出現字詞的數量,以建立相應的 bag-of-word 的 vector,刪去字詞的目的是使 bag-of-word 建出來的 matrix 的 non-zero element 數量不會太多,同時也能把必要的字詞保留 (出現很少的對於預測幫助不大,出現很多的如 the, a, I 這類亦對預測無幫助的字詞)。接著,由於不需要 RNN 的 layer,我便把第一層的 word embedding layer 和前兩層的 GRU 拿掉,改成接一層大小為 1024 的 DNN layer,此 layer 所使用的 activation function 為 PReLu,所有 DNN layer 的 dropout 率皆為 0.3,以減少 overfit 的狀況,其他設定同第一題。

以上述模型跑此次實驗,與第一題所跑出的模型,觀察 validation set 的正確率,以及 丢上去 Kaggle 的 score(在 Kaggle deadline 後測,所以可得到 public 跟 private 的分數)

模型	Validation f1	Public fl	Private f1
Bag-of-Word	0.4797	0.49563	0.46343
RNN	0.5389	0.52388	0.50897

從上表可知,Bag-of-Word 的結果比較不好,其實觀察訓練的過程,可以發現相較於RNN,Bag-of-Word 模型的 training data 的 fl score 會急遽上升,表示在這架構下 Bag-of-Word 容易 overfit,推測可能的原因是 Bag-of-Word 只考慮有什麼詞,而未考慮字跟字之間的語意,因此容易把某個字詞直接分類到某種 tag 的 novel 底下,但有些字詞可能是在多個 tags 中皆容易出現的,故可知,一般來說,RNN 模型在本次作業的目標上,還是比 Bag-of-Word 的模型來的好。