TP1 - O circuito RLC como filtro de frequência (série e paralelo)

1ª Parte

Nesta 1ª Parte foi usado o seguinte circuito:

$$V_{in} \; \longrightarrow \; \stackrel{\overset{L}{\underset{\text{R}}{\overset{C}}{\overset{C}{\underset{\text{R}}{\overset{C}{\underset{\text{R}}{\overset{C}{\underset{\text{R}}{\overset{C}{\underset{\text{R}}{\overset{C}{\underset{\text{R}}{\overset{C}{\underset{\text{R}}{\overset{C}{\underset{\text{R}}{\overset{C}{\underset{\text{R}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\underset{\text{R}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\underset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{$$

V in e o V out deveriam ter sido observados no osciloscópio, mas durante a 1ª Parte da experiência foi executada de forma errada, tendo em conta que o valor de V out eficaz foi medido com o multímetro em paralelo nos terminais da resistência e o valor da frequência também foi medido com o multímetro em paralelo nos terminais do gerador.

Como estamos perante um circuito passa-banda:

Onde,

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\beta = \omega_2 - \omega_1 = \frac{R}{L}$$

$$Q = \frac{\omega_0}{\beta}$$

$$\omega_2$$
 & ω_1 são correspondem aos valores quando, $\frac{|V_{out}|}{|V_{in}|} = \frac{1}{\sqrt{2}}$

sendo assim obter um valor teórico e um experimental. Mas durante a experiência os valores de ω_2 & ω_1 não foram medidos com percisão, por isso nos cálculos apenas se usou o valor mais proximo.

Teoricamente sabemos também que:

$$ganho \equiv \left| \frac{V_{out}}{V_{in}} \right| = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$\theta = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

Por isso fazendo um ajuste dos pontos experimentais verificamos que os pontos se ajustam á reta teórica. Nesta 1^a Parte para as frequências superiores a ω_0 , o valor de V out/V in é inferior ao valor teórico. Poderá ter havido uma variação do V in e como a experiência estava a ser realizada de forma errada, não foi notado essa variação...

Dados e discussão

Com a os seguintes valores de componentes:

$$R = 1200 \,\Omega$$

$$C=1.5\times10^{-8}\,F$$

Como no laboratório não temos nenhum aparelho que mede a indutância da bobine, é necessário deduzir um valor aproximado a partir dos pontos experimentais. Sabemos que $\omega_0 = \frac{1}{\sqrt{LC}}$, por isso:

$$L=\omega_0{}^2C$$

Registamos os seguintes pontos experimentais:

Frequência (KHz)	V out/ V in
3	0,69
3,5	0,90
3,75	0,98
4	1,00
4,25	0,98
4,5	0,89
5	0,69
5,5	0,55
6	0,43
6,5	0,35
7	0,29
7,5	0,25
8	0,20
8,5	0,19
9	0,17
9,5	0,14
10	0,13
10,5	0,11
11	0,10
11,5	0,09
12	0,08
12,5	0,08
13	0,07

Podemos observar que segundo os pontos experimentais $f_0 = 4 \ kHz$ por isso:

$$L = 0,106 H$$

Tendo em conta o valor obtido podemos traçar um ajuste teórico aos valores experimentais. Para as correspondentes frequências temos os seguintes valores teóricos:

Frequência (KHz)	V out/ V in (Teórico)	Fase
3	0,61	-0,9
3,5	0,86	-0,5
3,75	0,96	-0,3
4	1,00	0,0
4,25	0,97	0,3
4,5	0,89	0,5
5	0,71	0,8
5,5	0,57	1,0
6	0,48	1,1
6,5	0,41	1,1
7	0,36	1,2
7,5	0,32	1,2
8	0,29	1,3
8,5	0,26	1,3
9	0,24	1,3
9,5	0,23	1,3
10	0,21	1,4
10,5	0,20	1,4
11	0,19	1,4
11,5	0,18	1,4
12	0,17	1,4
12,5	0,16	1,4
13	0,15	1,4

Assim,

Podem também ser obtidos os valores teóricos e experimentais de ω_0 , f_0 , β e Q:

Teórica	
ω _o (rad/s)	25133
fo (Hz)	4000
β (rad/s)	11370
Q	2,21

Pontos experimentais		
ω _o (rad/s)	25133	
fo (Hz)	4000	
β (rad/s)	12566	
Q	2,00	

Alterando apenas a resistência, agora com $R=3300~\Omega$:

Frequência (KHz)	V out/ V in	V out/ V in (Teórico)	Fase
3	0,96	0,91	-0,4
3,5	1,00	0,98	-0,2
4	0,97	1,00	0,0
4,5	0,92	0,98	0,2
5	0,88	0,94	0,3
5,5	0,76	0,89	0,5
6	0,68	0,83	0,6
6,5	0,61	0,78	0,7
7	0,54	0,73	0,8
7,5	0,48	0,68	0,8
8	0,41	0,64	0,9
8,5	0,39	0,60	0,9
9	0,34	0,57	1,0
9,5	0,31	0,54	1,0
10	0,28	0,51	1,0
10,5	0,26	0,48	1,1
11	0,23	0,46	1,1
11,5	0,21	0,44	1,1
12	0,19	0,42	1,1
12,5	0,18	0,41	1,2
13	0,16	0,39	1,2

Cujo ajuste é,

e os valores teóricos e experimentais de ω_0 , f_0 , β e Q:

Teórica		
ω _o (rad/s)	25133	
fo (Hz)	4000	
β (rad/s)	31267	
Q	0,80	

Pontos experimentais		
ω _o (rad/s)	21991	
fo (Hz)	3500	
β (rad/s)	31416	
Q	0,70	

Neste caso, deveríamos ter medido V out quando a frequência era 2 KHz, para calcular o β experimental. E por um motivo desconhecido, o valor de ω_0 experimental é muito diferente do teórico, isto só é possível se o valor da capacitância ou da indutância ter se alterado.

Para finalizar alterando apenas o condensador do circuito inicial, com $C = 100 \, nF$:

Frequência (KHz)	V out/ V in	V out/ V in (Teórico)	Fase
0,5	0,45	0,39	-1,2
0,75	0,73	0,59	-0,9
1	0,87	0,79	-0,7
1,2	0,95	0,91	-0,4
1,4	1,00	0,99	-0,2
1,6	1,00	1,00	0,1
1,8	0,95	0,97	0,3
2	0,89	0,91	0,4
2,5	0,74	0,76	0,7
3	0,58	0,64	0,9
3,5	0,48	0,54	1,0
4	0,34	0,47	1,1
5	0,35	0,37	1,2
6	0,21	0,31	1,3
7	0,17	0,26	1,3
8	0,14	0,23	1,3
9	0,11	0,20	1,4
10	0,08	0,18	1,4
11	0,07	0,17	1,4

Cujo ajuste é,

e os valores teóricos e experimentais de ω_0 , f_0 , β e Q:

Teórica	
ω _o (rad/s)	9734
fo (Hz)	1549
β (rad/s)	11370
Q	0,86

Pontos experimentais		
ω _o (rad/s)	9425	
fo (Hz)	1500	
β (rad/s)	12566	
Q	0,75	

Para uma comparação melhor do que acontece em cada um dos casos é colocado num gráfico os 3 ajustes teóricos de modo a compreender melhor:

Onde, (1) corresponde ao 1° conjunto de dados, (2) aos valores de resistência diferente e (3) aos de condensador diferente. Por isso, verifica-se assim que alterando a resistência do circuito, o valor da frequência angular de ressonância (ω_0) mantém-se, já a largura de banda (β) aumenta quanto maior a resistência. Quando o condensador é alterado, a largura de banda (β) não é alterada, mas já o valor da frequência angular de ressonância (ω_0) diminui quanto maior o valor da capacitância do condensador. Os Valores teóricos e experimentais de cada caso podem ser vistos nas páginas correspondentes.

2ª Parte

Nesta segunda parte é usado o seguinte circuito:

Neste caso:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\beta = \omega_2 - \omega_1 = \frac{1}{RC}$$

$$Q = \frac{\omega_0}{\beta}$$

Dados e discussão

Com a os seguintes valores de componentes:

$$R = 1200 \Omega$$

$$C = 1.5 \times 10^{-8} F$$

$$L = 0.106 H$$

Foram retirados os seguintes valores experimentais:

Frequência (Hz)	V out/ V in
1100	0,52
1500	0,68
1940	0,80
2400	0,91
2900	0,99
3500	1,00
4200	1,00
4600	1,00
5000	0,99
5700	0,95
6200	0,92
6600	0,89
7300	0,86
7900	0,82
8300	0,80
8900	0,76
9300	0,74
10200	0,69
11000	0,65
12000	0,60
13000	0,53

Cujo pontos experimentais se representam,

e os valores teóricos e experimentais de ω_0 , f_0 , β e Q:

Teórica		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ω _o (rad/s)	25133	
fo (Hz)	4000	
β (rad/s)	55556	
Q	0,45	

Pontos experimentais	
ω _o (rad/s)	26389
fo (Hz)	4200
β (rad/s)	54664
Q	0,48

Alterando apenas a resistência, agora com $R=1000~\Omega$:

Frequência (Hz)	V out/ V in
1200	0,47
1500	0,60
2100	0,78
2500	0,87
2900	0,94
3400	0,99
3700	1,00
4000	1,00
4400	0,99
4800	0,98
5400	0,95
6000	0,89
6500	0,86
7000	0,81
7600	0,78
8000	0,75
8500	0,71
9000	0,68
9500	0,65
10000	0,61
11000	0,57
12000	0,54
13000	0,48

Então,

Teórica	
ω _o (rad/s)	25133
fo (Hz)	4000
β (rad/s)	63492
Q	0,40

Pontos experi	Pontos experimentais	
ω _o (rad/s)	25133	
fo (Hz)	4000	
β (rad/s)	47124	
Q	0,53	

Para finalizar alterando apenas o condensador do circuito com $R=1200\,\Omega$, com $C=100\,nF$:

	1
Frequência (Hz)	V out/ V in
450	0,26
810	0,53
970	0,66
1200	0,84
1400	0,97
1500	1,00
1700	0,99
1900	0,92
2200	0,79
2600	0,66
3000	0,54
3500	0,45
4000	0,38
4600	0,34
5000	0,30
6000	0,25
7000	0,22
8200	0,18
9200	0,16

Por isso,

Teórica	
ω _o (rad/s)	9734
fo (Hz)	1549
β (rad/s)	8333,33
Q	1,17

Pontos experimentais	
ω _o (rad/s)	9425
fo (Hz)	1500
β (rad/s)	10242
Q	0,92

Para uma comparação melhor do que acontece em cada um dos casos é colocado num gráfico com as 3 distribuições de pontos:

Onde, (1) corresponde ao 1° conjunto de dados, (2) aos valores de resistência diferente e (3) aos de condensador diferente. E verifica-se o mesmo verificado na 1° Parte com a alteração de C e R.