NAME (printed): * SOLUTIONS *

- All 5 questions are equally weighted
- Partial credit may be given on problems 1 and 2 only show your work!
- Box-in your final answer for each problem
- 1) Find the conductance of 400 feet of #16 AWG wire made of copper at 20 Deg C:

$$G = \frac{1}{R}$$

$$R = \rho A = (10.37 \frac{cm}{f_{+}})(\frac{400f_{+}}{2581cm}) = 1.607_{n}$$

$$C = \frac{1}{1.607_{n}} = 0.6225$$

2) Find the resistance values R1 and R2 given the following I-V curves:

Problems 3 through 5 on the back →

Problems 3 through 5 refer to the following circuit:

• Assume V_{D1} = 0.6 V for all three problems

3) What is the current value and direction flowing in the circuit?

a. 75.5 mA, left to right through the resistors

b. 74.7 mA, right to left through the resistors

c. 71.8 mA, left to right through the resistors

d. 74.1 mA, right to left through the resistors

 $V_1 - V_{RT} - V_{01} = 0$ $V_{RT} = 12V - 0.6V$ $V_{RT} = 11.4V$

IT= 75.497MA

$$I_{+} = \frac{VRT}{RT} = \frac{11.4V}{151}$$

4) How much power is dissipated by resistor R3?

a. 3.91 mW

b. 52.4 mW

c. 57.0 mVV

d. 45.3 mW

5) What is the voltage across R_{1} , V_{R1} ?

a. 0.71 V

b. -0.62 V

c. 3.55 V

d. 2.49 V

$$V_{R,} = (I_{\tau})(R_{I})$$

$$= 2.49/V$$

Material	Rho (ρ) CM Ω/ft @ 20° C
Silver	9.9
Copper	10.37
Gold	14.7
Aluminum	17.0
Tungsten	33.0
Nickel	47.0
Iron	74.0
Constantan	295.0
Nichrome	600.0
· · · · · · · · · · · · · · · · · · ·	

Material	T _{ABS} (°C)
Silver	-234.0
Copper	-234.5
Gold	-274
Aluminum	-236
Tungsten	-204
Nickel	-147
Iron	-162
Nichrome	-2,250
Constantan	-125,000

$$\frac{\left|T_{ABS}\right| + T_1}{R_1} = \frac{\left|T_{ABS}\right| + T_2}{R_2}$$

American Wire Gage (AWG) Sizes - Copper

Gauge (AWG)			Maximum amps		
6	26244	0.3951	101		
7	20822	0.4982	89		
8	16512	0.6282	73		
9	13087	0.7921	64		
10	10384	0.9989	55		
11	8226	1.26	47		
12	6529	1.588	41		
13	5184	2.003	35		
14	4109	2.525	32		
15	3260	3.184	28		
16	2581	4.016	22		
17	2052	5.064	19		
18	1624	6.385	16		