

Álgebra Relacional

- Licenciatura e Ingeniería en Informática
- 2do. año

Introducción

- Lenguajes de consulta
 - Consultas para obtener información sobre nuestros datos.
 - Lenguajes de alto nivel.
 - Conjunto de operadores para consultar las bases de datos relacionales.

Algebra Relacional

- Dos clases de operadores para consultar los datos
 - Operadores Fundamentales
 - Podemos realizar todas las consultas sobre los datos
 - Proyección, Selección, Producto Cartesiano, Unión y Diferencia.
 - Operadores Adicionales.
 - Se pueden escribir en base a operadores fundamentales.
 - Nos brindan mayor expresividad.
 - Join Natural, Theta join, Intersección, Cociente y Renombrar atributos.
- Notación
 - Instancia de Relación I (RS,T)
 - RS es un esquema de relación primitivo (ATR,DOM,dom)
 - T conjunto de tuplas {t₁,...,t_n}.

Operadores Fundamentales

Proyección

 Obtendremos una instancia de relación acotada a un subconjunto de atributos de una relación.

$$\prod (I, B_1, \ldots, B_r)$$

- Consulto sobre I (RS,T)
- I proy (RS proy, Tproy)
 - RS proy = $(\{B_1,...,B_r\},DOM,dom)$
 - El esquema resultado tendrá el subconjunto de atributos {B₁,...,B_r}
 - B incluido o igual al ATR (conjunto de atributos definido para RS.
 - $T_{proy} = \{t_1, ..., t_m\} t_i = t(B)$

Proyección

Instancia H

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
301	3	True	3	250
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Instancia M

Número-mucama	Número-habit
M1	201
M1	202
M2	203
M1	301
M1	302
M2	303
M2	304
M2	305

• Ej.:

- Saber la cantidad de camas que posee cada cuarto.
 Quiero representar sólo esa información.
- I_{proy} será:

Número-habit	Número-camas
201	3
202	2
203	2
301	3
302	2
303	2
304	1
305	1

 \prod (H, Numero - habit, Numero - camas)

Selección

 Obtendremos la instancia de relación que cumple una determinada condición.

 $\sigma(I, Condición C)$

- Consulto sobre I (RS,T)
- Condición es una condición lógica sobre los valores de los atributos de las tuplas resultado.
- I selec (RS selec, T selec)
 - RS _{selec} se mantiene
 - T_{selec} está incluido o es igual a T

Selección

Instancia H

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
301	3	True	3	250
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Instancia M

Número-mucama	Número-habit
M1	201
M1	202
M2	203
M1	301
M1	302
M2	303
M2	304
M2	305

• Ej.:

- Habitaciones con costo inferior a 160 dólares.
- I_{selec} será:

Número-habit	Número-Camas	Baño	Piso	Precio
202	2	True	2	150
203	2	True	2	150
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

$$\sigma(H, Precio < 160)$$

Producto Cartesiano

 Obtendremos el producto cartesiano de dos instancias de relación.

$$I_1 x I_2$$

- Consulto sobre I₁ (RS₁,T₁) e I₂ (RS₂,T₂)
- I prod (RS prod, T prod)
 - $-RS_{prod} = \{RS_1, RS_2\}$
 - El esquema estará compuesto por los atributos de RS₁ seguidos de los atributos de RS₂
 - $T_{prod} = T1 \times T2$
 - Las tuplas son generadas por todas las combinaciones posibles de las tuplas de RS₁ y RS₂

Producto Cartesiano

RxS

• Ej.:

- Quiero combinar todas las posibles tuplas entre dos instancias de relación.
- I_{prod} será:

RxS

Α	В	Α	С
1	а	1	С
1	а	1	d
1	а	2	C
1	р	1	C
1	b	1	d
1	b	2	С

Unión

• Obtendremos la unión de dos instancias de relación.

$$I_1 \cup I_2$$

- Consulto sobre I₁ (RS₁,T₁) e I₂ (RS₂,T₂)
- RS₁y RS₂ deben tener igual esquema o compatible
- I union (RS union, T union)
 - $RS_{union} = RS_1 = RS_2$
 - $-T_{union} = T1 U T2$

Unión

Instancia H

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
301	3	True	3	250
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Instancia H1

Número-habit	Número-Camas	Baño	Piso	Precio
205	3	True	2	300
207	2	True	2	250
301	3	True	3	250
302	2	True	3	150

• Ej.:

- Quiero listar todas las habitaciones de mi hotel.
 Tengo la información en dos instancias H y H₁.
- I_{union} será:

H U H1

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
205	3	True	2	300
207	2	True	3	250
301	3	True	з	250
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Diferencia

 Obtendremos una instancia de relación que contiene la diferencia de las dos instancias de relación iniciales.

$$I_1$$
- I_2

- Consulto sobre I₁ (RS₁,T₁) e I₂ (RS₂,T₂)
- RS₁y RS₂ deben tener igual esquema o compatible
- I dif (RS dif, T dif)
 - $-RS_{dif} = RS_1 = RS_2$
 - $T_{dif} = T_1 T_2$
 - Serán las tuplas que están en T₁ que no están en T₂
 - La resta de las tuplas de T₁ menos las de T₂

Diferencia

Instancia H

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
301	3	True	3	250
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Instancia H1

Número-habit	Número-Camas	Baño	Piso	Precio
205	3	True	2	300
207	2	True	2	250
301	3	True	3	250
302	2	True	3	150

• Ej.:

- Quiero listar las habitaciones de la instancia H que no están en la instancia H₁.
 Tengo la información en dos instancias H y H₁.
- I_{dif} será:

H - H1

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Operadores Adicionales

Theta Join θ - Join

 Obtendremos una instancia de relación que será la combinación otras instancias.

$$(I_1 \bowtie I_2, condición \theta)$$

- Consulto sobre I₁ (RS₁,T₁) e I₂ (RS₂,T₂)
- Será como una selección sobre el producto cartesiano de I₁ e I₂.
 σ(I₁x I₂, Condición θ)
- I join (RS join, T join)
 - $RS_{join} = \{RS_1, RS_2\}$
 - T_{join} incluido o igual a T1 x T2 / t_i pertenece a T_{join} si y sólo si t_i satisface la condición θ

Join Natural

 Obtendremos una instancia de relación que será la combinación otras instancias.

$$I_1^*I_2$$

- Consulto sobre I₁ (RS₁,T₁) e I₂ (RS₂,T₂)
- Será como una selección sobre el producto cartesiano de I₁ e I₂ y proyectar eliminando columnas repetidas.
- I join (RS join, T join)
 - $RS_{join} = \{RS_1, RS_2\}$
 - T_{join} incluido o igual a T1 x T2 / t_i pertenece a T_{join} si y sólo si tengo igualdad en los atributos comunes.
 - Los atributos comunes aparecerán sólo una vez.

Instancia H

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
301	3	True	3	250
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Instancia M

Número-mucama	Número-habit
M1	201
M1	202
M2	203
M1	301
M1	302
M2	303
M2	304
M2	305

Join

• Ej.:

- Saber la información de habitaciones y las mucamas que trabajan en ellas.
- I_{join} será:

H.Número-habit	Número-Camas	Baño	Piso	Precio	Número-mucama	M.Número-habit
201	3	True	2	250	M1	201
202	2	True	2	150	M1	202
203	2	True	2	150	M2	203
301	3	True	3	250	M1	301
302	2	True	3	150	M1	302
303	2	True	3	150	M2	303
304	1	False	3	100	M2	304
305	1	False	3	100	M2	305

 $(H \bowtie M, H. Numero - habit = M. Numero - habit)$

Intersección

 Obtendremos la intersección de dos instancias de relación.

$$I_1 \cap I_2$$

- Consulto sobre I_1 (RS₁, I_1) e I_2 (RS₂, I_2)
- RS₁y RS₂ deben tener igual esquema o compatible
- Podremos reescribir la intersección con operadores fundamentales como:

$$I_1 \cap I_2 = I_1 - (I_1 - I_2)$$

- I inter (RS inter, T inter)
 - $-RS_{inter} = RS_1 = RS_2$
 - T_{inter} = T1 intersección T2

Intersección

Instancia H

Número-habit	Número-Camas	Baño	Piso	Precio
201	3	True	2	250
202	2	True	2	150
203	2	True	2	150
301	3	True	3	250
302	2	True	3	150
303	2	True	3	150
304	1	False	3	100
305	1	False	3	100

Instancia H1

Número-habit	Número-Camas	Baño	Piso	Precio
205	3	True	2	300
207	2	True	2	250
301	3	True	3	250
302	2	True	3	150

• Ej.:

- Quiero listar las habitaciones de mi hotel que están tanto en la instancia H como la instancia H1. Tengo la información en dos instancias H y H_{H \cap H1}
- I_{inter} será:

Número-habit	Número-Camas	Baño	Piso	Precio
301	3	True	3	250
302	2	True	3	150

Cociente

 Obtendremos una instancia de relación con los datos que se relacionan de una instancia de relación con todos los elementos de otra instancia de relación.

$$I_1 \stackrel{\bullet}{\leftarrow} I_2$$

- Consulto sobre I₁ (RS₁,T₁) e I₂ (RS₂,T₂)
- ATR_{RS2} incluido en ATR_{RS1}
- El esquema resultado serán los atributos de RS₁ que no están en RS₂
- Si X son los atributos que no están en I₂ e Y el resto de I₁
 T_{cociente} = El conjunto de valores X tal que la tupla XY aparece en la instancia para todo valor Y de I₂

Cociente

r			
Α	В	С	D
а	а	1	1
b	Ь	1	2
а	a	2	1
а	b	1	1
а	b	1	2
b	а	1	2
b	а	1	1

S		
Α	В	
b	а	
а	а	
а	b	

- Ej.:
 - Quiero averiguar los elementos de r que se vinculan con todos los elementos de s
 - I_{cociente} será:

$$r \div s$$

Renombrar Atributos

• Obtendremos una nueva instancia de relación renombrando cada atributo del conjunto ATR.

$$\mu(I,f)$$

- Consulto sobre I (RS,T)
- $I_{ren}(RS_{ren},T_{ren})$
 - RS _{ren} = RS con los atributos renombrados
 - ATR _{ren} = f(ATR) Asociaremos cada elemento de ATR.
 - $-T_{ren} = T$

Renombrar Atributos

Instancia M

Número-mucama	Número-habit
M1	201
M1	202
M2	203
M1	301
M1	302
M2	303
M2	304
M2	305

• Ej.:

- f(ATR) será
 - Numero-mucama -> NM
 - Numero-habit -> NH
- I_{ren} será:

NM	NH
M1	201
M1	202
M2	203
M1	301
M1	302
M2	303
M2	304
M2	305

 μ (H, { Numero-Mucama \rightarrow NM, Numero-Habit \rightarrow NH)