ECE551, Fall 2016: Homework Problem Set #5

Due Oct. 18 2016 in class or eMail by class time.

Rev 1: minor updates and clarifications

1. Sampling and Interpolation for Band-Limited Vectors

A vector $x \in \mathbb{C}^M$ is called *band limited* when there exists an odd $0 \le k_0 \le M-1$ such that its DFT coefficient sequence X satisfies

$$X[k] = 0$$
 for all $\frac{k_0 + 1}{2} \le k \le M - \frac{k_0 + 1}{2}$ (1)

For a given bandlimited $x \in \mathbb{C}^M$, we call the smallest such k_0 the bandwidth of x. A vector in \mathbb{C}^M that is not band limited is called a full-band vector.

(a) Determine the bandwidth of the following $x_1, x_2 \in \mathbb{C}^M$ for every $M \geq 1$:

$$x_1[n] = 1 + \cos(2\pi n/M) + \cos(8\pi n/M), \quad x_2[n] = \cos(3\pi n/M)$$

(b) The set of vectors in \mathbb{C}^M with the bandwidth of at most k_0 is a subspace. For x in such a band limited subspace, find Φ so that the sampling followed by interpolation described by $\Phi\Phi^*$ in Section 5.2.1 achieves perfect recovery, $\hat{x} = x$.

2. Band Limited Space With Rational Sampling Rate Changes

Consider sampling followed by interpolation in the figure below

$$x[n] \circ \longrightarrow (\uparrow M) \longrightarrow g[-n] \longrightarrow (\downarrow N) \xrightarrow{y[n]} (\uparrow N) \longrightarrow g[n] \longrightarrow (\downarrow M) \longrightarrow \hat{x}[n]$$

where the input sequence $x \in BL[-\frac{2\pi}{K}, \frac{2\pi}{K}]$ is band-limited, and the rectangular blocks are convolution systems. For the cases below, what condition on the filter g ensures that $\hat{x} = x$?

- (i) M = 2, N = 3 and K = 3.
- (ii) M = 2, N = 3 and K = 4.
- (iii) General M, N, and K (with M < N).

3. Multirate system

Given is the discrete-time system $y = U_3GD_2x$, with G an LSI filter, U_3 the upsampling-by-3 operator, and D_2 the downsampling-by-2 operator.

- (a) Express the z-transform of the output sequence y in terms of the z-transform of the input sequence x and the z-transform of the filter q.
- (b) Suppose that the input sequence x is obtained by sampling a continuous-time function q(t) at sampling frequency $\frac{1}{T}$ Hz, namely x[n] = q(nT), where the function $q \in BL\left[\frac{-\pi}{T}, \frac{\pi}{T}\right]$ is band limited. Write the DTFT $Y(\omega)$ as a function of the Fourier transform $Q(\omega)$ and the DTFT $G(\omega)$. What are the conditions on $Q(\omega)$ to avoid aliasing?

4. Pseudo-Inverse of Interpolation Filter: Single Channel case

Read about the polyphase decomposition and the single channel filter bank in supplementary notes #2 (until and including Section 2.1).

Consider the discrete-domain sampling followed by interpolation depicted in Figure 1.

Figure 1: Sampling and Interpolation

Given an interpolation sequence $g[\cdot]$, our goal is to find $h[\cdot]$ such that the output \hat{x} best approximates the input x in standard norm error: $||x - \hat{x}||^2$.

Recall from Eq. (5) in supplementary notes #2 the input/output polyphase relation: $\widehat{X}_p(w) = G_p(w)\widetilde{H}_p(w)X_p(w)$. Show that for a given $g[\cdot]$, the optimal sampling sequence $h[\cdot]$ has the (type-II) polyphase vector

$$\tilde{H}_p(w) = (G_p^T(w^{-1})G_p(w))^{-1}G_p^T(w^{-1}).$$

Hint: the output \hat{x} is a sum of shifted instances of g, living in a shift-generated subspace:

$$\hat{x} \in V := \overline{\operatorname{span}} \{ \sigma^{kN} g \}_{k \in \mathbb{Z}}$$

here $(\sigma g)[n] = g[n-1]$. By the orthogonality principle, the best \hat{x} we can come up with has an orthogonal residue $x - \hat{x}$ to the subspace V, or equivalently

$$x - \hat{x} \perp V \iff \langle x - \hat{x}, \sigma^{kN} g \rangle = 0, \text{ for all } k \in \mathbb{Z}.$$
 (2)

5. Ideally-Matched Sampling and Interpolation with Nonorthogonal Filters Assume the setup of Problem 4 with N=2 and $g[n]=\delta[n]+\frac{1}{2}(\delta[n-1]+\delta[n+1])$.

- (a) Find the optimal sampling filter h (in the mean square error) for that given interpolation filter g.
- (b) Find the shortest possible h that is consistent with the g (i.e $\tilde{H}_p(w)G_p(w)=1$).

6. Python Exercise: DTFT Approximation using DFT

Let $x \in \ell_1(\mathbb{Z})$ be a signal whose DTFT is $X(\omega)$. Let $I = \{n_0, \ldots, n_{N-1}\}$ be a set of N indices, and let $\hat{x} := [x[n_0] \ x[n_1] \ \ldots \ x[n_{N-1}]]$ be a vector of the corresponding values of x on I. Lastly, let $\Omega = \{\omega_0, \ldots, \omega_{M-1}\}$ be a set of M frequencies in $[0, 2\pi]$.

- (a) Write an approximation of $X(\omega)$ at the frequencies Ω based on the samples in \hat{x} , and implement in a Python function $\mathtt{dtft_approx}(\mathtt{I},\mathtt{hat_x},\mathtt{omegas})$.
- (b) Assume that the indices in I are consecutive: $n_k = n_0 + k$ where $k = 0, \ldots, N-1$, and the frequencies in Ω are equi-spaced: $\omega_m = 2\pi \frac{m}{M}$ for $m = 0, \ldots, M-1$. Write an approximation of $X(\omega)$ using the DFT of the vector \hat{x} (hint: consider two separate cases: $M \geq N$ and M < N). Implement your formula as a Python function eq_dtft_approx(hat_x,n0,M). Use numpy.fft.fft(). Verify that the functions of part (a) and part (b) give similar results for a random \hat{x} with N = 4096 and M = 200, 5000. Which of the functions runs faster?
- (c) Use your function from (b) to plot the magnitude and phase of the DTFT of the filters/signals in problems 2(b) and 3(b) of Homework $\{3,4\}$. Explain how the choice of n_0 , N and M affects the approximation. Comment on the results.

7. Python Exercise: Image Scaling with Separable Filters

In some applications we store down-scaled versions of images (reducing pixel count), and rescale to their original size when required. This *lossy* process is depicted in Figure. 1.

The actual downscaling is done by simple downsampling:

$$c[m, n] = (D_N r)[m, n] := r[mN, nN],$$

and stores approximately $\frac{1}{N^2}$ of the original pixel count.

To prevent aliasing, the sampling is often preceded by a 2D convolution filter:

$$r[m, n] := \sum_{m', n'} h_2[m' - m, n' - n]x[m, n].$$

We will assume a *separable* convolution filter, namely, the same 1D sequence $h[\cdot]$ is convolved with the rows and with the columns of the image, or $h_2[m,n] = h[m]h[n]$. For any sequence $h[\cdot]$ we define the seprable filter system L_h as

$$(L_h x)[m, n] = \sum_{m', n'} h[m' - m]h[n' - n]x[m, n].$$
(3)

and the down-scaled image is $c = D_N L_h x$. Upscaling $c[\cdot, \cdot]$ back to the original size is done by upsampling U_N :

$$(U_N c)[m, n] = \begin{cases} c[i, j] & m = iN, n = jN \\ 0 & \text{otherwise} \end{cases}$$

followed by a separable interpolation filter L_q , as defined in (3). The recovered image,

$$\hat{x} = L_a U_N D_N L_h x,$$

depends on the sampling and interpolation sequences $h[\cdot]$ and $g[\cdot]$. We are interested in experimenting with different choices of pairs (h, g).

Assume a separable interpolation filter $g[n] = \delta[n] + \frac{1}{2}(\delta[n-1] + \delta[n+1])$ and a down-sampling factor N = 2. Experiment with the following four different pre-filters:

- (a) $h = \delta$ no pre-filtering.
- (b) h[n] = g[-n] the adjoint of the interpolation operator as the sampling operator.
- (c) h is the shortest consistent sampling filter you designed in Problem 5(b).
- (d) h is the optimal (pseudo-inverse) sampling filter you designed in Problem 5(a).

Evaluate these 4 methods with this test image, using the mean square error $||x - \hat{x}||^2$ as performance index. Comment on aliasing (focus on legs/scarf), and total filtering gain. Useful functions: scipy.signal.convolve2d, outer (to make a separable filter), scipy.signal.filtfilt (apply a stable rational IIR filter).