Exercices corrigés sur les séries de fonctions

1 Enoncés

Exercice 1 Montrer que la série

$$\sum_{n>1} (-1)^n \frac{x^n}{n}$$

est uniformément convergente mais non normalement convergente sur [0, 1]

Exercice 2 Étudier la convergence sur \mathbb{R}_+ de la série de fonctions

$$\sum_{n>1} f_n(x), \quad \text{où} \quad f_n(x) = \begin{cases} n^{-1} & \text{si } x = n \\ 0 & \text{si } x \neq n. \end{cases}$$

Exercice 3 Étudier la convergence sur \mathbb{R} de la série de fonctions $\sum f_n$, où $f_n(x) = n^{-\alpha}x^2e^{-nx^2}$, avec $\alpha > 0$.

Exercice 4 Étudier la convergence sur [0,1] de la série de fonctions $\sum_{n\geq 1} f_n$, où $f_n(x) = x^{\alpha}(1-x)^n$, avec $\alpha > 1$.

Exercice 5 Soit $\sum_{n\geq 1} u_n$ la série de fonctions de terme général $u_n(x)=x^n(1-x), x\in [0,1]$.

- (1) Calculer la somme S(x) de la série $\sum u_n$.
- (2) La série est-elle uniformément convergente?

Exercice 6 Soit $\sum_{n\geq 1} u_n$ la série de fonctions de terme général $u_n(x) = x^2(1+x^2)^{-n}$, $x\in\mathbb{R}$.

- (1) Calculer la somme S(x) de la série $\sum u_n$.
- (2) La série est-elle uniformément convergente?

Exercice 7 On considère la série de fonctions $\sum f_n$ avec

$$f_n(x) = \frac{\sin(2^n x)}{n^n}.$$

Montrer que $\sum f_n$ converge normalement sur \mathbb{R} , puis montrer que sa somme est de classe $\mathscr{C}^{\infty}(\mathbb{R})$.

Exercice 8 Étudier la nature et, éventuellement, donner la somme de la série $\sum u_n$, où

$$u_n := (-1)^n \int_0^{\pi/2} \cos^n x \, \mathrm{d}x.$$

Exercice 9 On considère la série de fonctions $\sum_{n\geq 1}u_n(x),$ où

$$u_n(x) := (-1)^n \frac{n}{n^2 + |x|}.$$

(1) Montrer que, si (a_n) est une suite réelle positive croissante, alors, pour tout $n \in \mathbb{N}$,

$$0 \le (-1)^n \sum_{k=0}^n (-1)^k a_k \le a_n.$$

(2) Montrer que la série $\sum u_n$ converge uniformément sur \mathbb{R} . Converge-t-elle uniformément absolument?

Exercice 10 On considère la série de fonctions $\sum_{n\geq 1} f_n$, où

$$f_n(x) := \frac{x}{n(1+n^2x)}, \quad x \ge 0.$$

- (1) Etudier la convergence de cette série.
- (2) Etudier la dérivabilité de sa somme S, notamment en zéro à droite.
- (3) Montrer que $S(x) \to 0$ lorsque $x \to \infty$.

2 Solutions

Solution de l'exercice 1 On a :

$$\sup_{x \in [0,1]} \left| (-1)^n \frac{x^n}{n} \right| = \frac{1}{n}.$$

Or, 1/n est le terme général d'une série divergente (la série harmonique). La série de fonction considérée n'est donc pas normalement convergente. Soit

$$f_n(x) := \frac{x^n}{n}, \quad n \in \mathbb{N}^*, \quad x \in [0, 1].$$

Alors,

- (i) pour tout x fixé dans [0,1], $f_n(x)$ décroît lorsque n croît;
- (ii) la suite (f_n) converge uniformément vers la fonction nulle sur [0,1].

D'après le théorème du cours sur les séries alternées de fonctions, la série $\sum (-1)^n f_n$ converge uniformément sur [0,1].

Solution de l'exercice 2 Il est facile de voir que la limite simple de la série est la fonction

$$F(x) = \begin{cases} x^{-1} & \text{si } x \in \mathbb{N}^* \\ 0 & \text{sinon.} \end{cases}$$

De plus,

$$\left| \sum_{n=1}^{N} f_n(x) - F(x) \right| = \left\{ \begin{array}{ll} x^{-1} & \text{si } x \in \mathbb{N}^* \text{ et } x \ge N+1 \\ 0 & \text{sinon.} \end{array} \right.$$

Ainsi,

$$\sup_{x \in \mathbb{R}_+} \left| \sum_{n=1}^N f_n(x) - F(x) \right| = \frac{1}{N+1} \longrightarrow 0 \quad \text{lorsque} \quad N \to \infty.$$

La convergence est donc uniforme. Puisque $|f_n| = f_n$, ce qui précède montre aussi que la série converge uniformément absolument. Reste à déterminer si la convergence est normale. On a :

$$\sup_{x \in \mathbb{R}_+} |f_n(x)| = \frac{1}{n}.$$

Puisque la série $\sum n^{-1}$ est divergente, la série $\sum_{n\geq 1} f_n$ n'est pas normalement convergente.

Solution de l'exercice 3 La fonction f_n est paire, de dérivée $f'_n(x) = n^{-\alpha}e^{-nx^2} \cdot 2x(1-nx^2)$. Il est alors facile de faire un tableau de variation de f_n , duquel on déduit que

$$\sup_{x \in \mathbb{R}} |f_n(x)| = f_n\left(\frac{1}{\sqrt{n}}\right) = n^{-\alpha} \frac{1}{n} \frac{1}{e} = \frac{1}{e} \frac{1}{n^{1+\alpha}},$$

qui est le terme général d'une série convergente (série de Riemann). On a donc montré que la série est normalement convergente, ce qui implique toutes les autres formes de convergence.

Solution de l'exercice 4 On procède à l'étude de la fonction f_n , dont la dérivée est donnée par

$$f'_n(x) = x^{\alpha - 1} (1 - x)^{n - 1} (\alpha - (n + \alpha)x).$$

La fonction f_n est croissante sur $\left[0, \alpha(n+\alpha)^{-1}\right]$ puis décroissante sur $\left[\alpha(n+\alpha)^{-1}, 1\right]$. On en déduit que

$$\sup_{x \in [0,1]} |f_n(x)| = f_n\left(\frac{\alpha}{n+\alpha}\right) = \left(\frac{\alpha}{n+\alpha}\right)^{\alpha} \left(1 - \frac{\alpha}{n+\alpha}\right)^n \le \frac{\alpha^{\alpha}}{n^{\alpha}},$$

qui est le terme général d'une série convergente (série de Riemann). Il s'ensuit que la série est normalement convergente, ce qui implique toutes les autres formes de convergence.

Solution de l'exercice 5

(1) Pour $x \in [0, 1[$,

$$\sum_{n=1}^{\infty} x^n (1-x) = (1-x) \left(\sum_{n=0}^{\infty} x^n - 1 \right) = (1-x) \left(\frac{1}{1-x} - 1 \right) = x.$$

De plus, la somme de la série est nulle si x=0 ou x=1, de manière évidente. En somme,

$$S(x) = \begin{cases} x & \text{si } x \in [0, 1[, \\ 0 & \text{si } x = 1. \end{cases}$$

(2) Chaque u_n est continue sur [0,1], mais la somme S n'est pas continue (en x=1). La convergence ne peut donc pas être uniforme.

Solution de l'exercice 6

(1) Pour $x \neq 0$,

$$\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n} = x^2 \left(\sum_{n=0}^{\infty} \left(\frac{1}{1+x^2} \right)^n - 1 \right) = x^2 \left(\frac{1}{1-\frac{1}{1+x^2}} - 1 \right) = 1.$$

De plus, la somme de la série est nulle si x=0, de manière évidente. Donc,

$$S(x) = \begin{cases} 1 & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

(2) Chaque u_n est continue sur [0,1], mais la somme S n'est pas continue (en x=0). La convergence ne peut donc pas être uniforme.

Solution de l'exercice 7 Il est facile de voir que

$$\sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1}{n^n},$$

qui est le terme général d'une série convergente. On en déduit que $\sum f_n$ est normalement convergente. En calculant les dérivées successives de f_n , on voit que

$$\sup_{x \in \mathbb{R}} \left| f_n^{(m)}(x) \right| = \left(\frac{2^m}{n} \right)^n.$$

Or,

$$\left(\left(\frac{2^m}{n}\right)^n\right)^{1/n} = \frac{2^m}{n} \longrightarrow 0 \quad \text{lorsque} \quad n \to \infty,$$

et la règle de Cauchy montre alors que $\sum \sup_{\mathbb{R}} \left| f_n^{(m)} \right|$ est convergente, autrement dit, que $\sum f_n^{(m)}$ est normalement convergente. Ceci étant vrai quelque soit $m \in \mathbb{R}$, on voit que F admet des dérivées continues d'ordre quelconque, c'est-à-dire, que F est de classe $\mathscr{C}^{\infty}(\mathbb{R})$.

Solution de l'exercice 8 Pour tout $x \in]0, \pi/2]$, $f_n(x) := \cos^n x \to 0$ lorsque $n \to \infty$. La limite simple de la suite de fonctions (f_n) est donc la fonction f définie par

$$f(x) = \begin{cases} 1 & \text{si } x = 0, \\ 0 & \text{si } x \in]0, \pi/2]. \end{cases}$$

Cette limite n'est pas uniforme car, pour tout n, $\sup_{[0,\pi/2]} |f_n - f| = 1$. Toutefois, il facile de voir que $\int_0^{\pi/2} \cos^n x \, dx$ tend vers zéro lorsque $n \to \infty$. En effet, fixons $\varepsilon \in]0, \pi/2[$. Il existe $N \in \mathbb{N}$ tel que

$$n \ge N \Longrightarrow \cos^n \frac{\varepsilon}{2} \le \frac{\varepsilon}{\pi}.$$

Ainsi, pour tout $n \ge N$,

$$\int_0^{\pi/2} \cos^n x \, \mathrm{d}x = \int_0^{\varepsilon/2} \cos^n x \, \mathrm{d}x + \int_{\varepsilon/2}^{\pi/2} \cos^n x \, \mathrm{d}x \le \frac{\varepsilon}{2} + \frac{\varepsilon}{\pi} \left(\frac{\pi}{2} - \frac{\varepsilon}{2} \right) \le \varepsilon.$$

Puisque ε peut être choisi arbitrairement petit, on a bien la convergence vers zéro de $\int_0^{\pi/2} \cos^n x \, dx$. La série $\sum u_n$ est donc convergente, d'après le théorème sur les séries alternées.

On remarque que la série de fonctions $\sum (-1)^n \cos^n x$ ne converge pas uniformément sur $[0, \pi/2]$, ni même sur $[0, \pi/2]$. On ne peut donc pas s'appuyer sur le théorème permettant d'interchanger intégration et sommation. Toutefois, pour tout $\alpha \in]0, \pi/2[$, la série $\sum (-1)^n \cos^n x$ est normalement (donc uniformément) convergente sur $[\alpha, \pi/2]$, car

$$\sup_{x \in [\alpha, \pi/2]} |(-1)^n \cos^n x| = \cos^n \alpha \longrightarrow 0 \quad \text{lorsque} \quad n \to \infty.$$

Ecrivons alors $u_n = v_n + w_n$, avec

$$v_n := (-1)^n \int_0^\alpha \cos^n x \, dx$$
 et $w_n := (-1)^n \int_0^{\pi/2} \cos^n x \, dx$

D'une part, le théorème sur les séries alternées montre que $\sum v_n$ est convergente, et que

$$0 \le \sum_{n=0}^{\infty} v_n \le v_0 = \int_0^{\alpha} \mathrm{d}x = \alpha.$$

D'autre part, puisque $\sum (-1)^n \cos^n x$ converge uniformément sur $[\alpha, \pi/2]$,

$$\sum_{n=0}^{\infty} w_n = \int_{\alpha}^{\pi/2} \left(\sum_{n=0}^{\infty} (-1)^n \cos^n x \right) dx = \int_{\alpha}^{\pi/2} \frac{1}{1 + \cos x} dx = \int_{\lg(\alpha/2)}^{1} du = 1 - \lg \frac{\alpha}{2},$$

où l'on a effectué le changement de variable

$$u = \operatorname{tg} \frac{x}{2}$$
, $\cos x = \frac{1 - u^2}{1 + u^2}$, $dx = \frac{2}{1 + u^2} du$.

On obtient donc l'encadrement

$$1 - \operatorname{tg} \frac{\alpha}{2} \le \sum_{n=0}^{\infty} u_n \le 1 - \operatorname{tg} \frac{\alpha}{2} + \alpha,$$

et en faisant tendre α vers zéro, on voit que $\sum_{n=0}^{\infty} u_n = 1$.

Solution de l'exercice 9

(1) Posons $A_n := \sum_{k=0}^n (-1)^k a_k$. Nous allons montrer par récurrence la propriété

$$(\mathscr{P}_n)$$
 $|A_n| = (-1)^n A_n$ et $|A_n| \le a_n$.

La propriété (\mathscr{P}_0) est trivialement satisfaite, puisque $A_0 = a_0 \ge 0$. Supposons alors (\mathscr{P}_n) vraie. On a : $A_{n+1} = A_n + (-1)^{n+1}a_{n+1}$, et donc

$$\begin{array}{rcl} (-1)^{n+1}A_{n+1} & = & a_{n+1}-(-1)^nA_n \\ & = & a_{n+1}-|A_n| & [\mathrm{d'après}(\mathscr{P}_n)] \\ & \geq & a_n-|A_n| & [\mathrm{car}\ (a_n)\ \mathrm{est\ croissante}] \\ & \geq & 0, & [\mathrm{d'après}(\mathscr{P}_n)] \end{array}$$

de sorte que $|A_{n+1}| = (-1)^{n+1}A_{n+1}$, et la deuxième égalité montre aussi que $|A_{n+1}| \le a_{n+1}$. Donc (\mathscr{P}_{n+1}) est encore vraie.

(2) Etudions, pour x fixé, la fonction

$$g_x \colon y \longmapsto \frac{y}{y^2 + |x|} \quad (y \ge 0).$$

La dérivée est donnée, pour $y \in \mathbb{R}_+^*$, par

$$g'_x(y) = \frac{|x| - y^2}{(y^2 + |x|)^2},$$

ce qui montre que la fonction g_x est croissante entre 0 et $\sqrt{|x|}$, puis décroissante entre $\sqrt{|x|}$ et l'infini. On voit donc que $u_n(x) = (-1)^n g_x(n)$, où la suite numérique $(g_x(n))_n$ est décroissante à partir du rang $n = E(\sqrt{|x|}) + 1$. Ici, E(r) désigne commme d'habitude la partie entière du réel r. Le théorème sur les séries alternées montre alors que $\sum u_n(x)$ converge simplement. Pour établir la convergence uniforme sur \mathbb{R} , nous allons montrer que le reste

$$R_N(x) := \sum_{n=N}^{\infty} (-1)^n \frac{n}{n^2 + |x|}$$

tend uniformément vers la fonction nulle sur \mathbb{R} lorsque $N \to \infty$, et pour cela, nous allons établir que

$$\sup_{x \in \mathbb{R}} |R_N(x)| \le \frac{1}{N}.$$

• Pour tout x tel que $\sqrt{|x|} \leq N$, la suite $(|u_n(x)|)_{n\geq N}$ est décroissante d'après ce que nous avons établi sur la fonction g_x . Le théorème sur les séries alternées montre alors que

$$|R_n(x)| \le |u_N(x)| \le \sup_{x' \in \mathbb{R}} |u_N(x')| = \frac{1}{N}.$$

• Pour tout x tel que $\sqrt{|x|} > N$, nous avons, en posant $M := E(\sqrt{|x|})$,

$$R_N(x) = \alpha + \beta$$
 avec $\alpha := \sum_{n=N}^{M} (-1)^n |u_n(x)|$ et $\beta := \sum_{n=M+1}^{\infty} (-1)^n |u_n(x)|$.

Nous voyons que dans la première somme, c'est le terme d'indice M qui domine, car $(|u_n(x)|)_n$ est croissante entre n=N et n=M, alors que dans la deuxième somme, c'est le terme d'indice M+1 qui domine, car $(|u_n(x)|)_n$ est décroissante à partir du rang n=M+1. Plus précisément :

$$\alpha = \sum_{k=0}^{M-N} (-1)^{N+k} |u_{N+k}(x)| = (-1)^N \sum_{k=0}^{M-N} (-1)^k |u_{N+k}(x)|,$$

et comme la suite $(|u_{N+k}(x)|)_{k\geq 0}$ est croissante et positive jusqu'au rang k=M-N, le point (1) montre que

$$0 \le (-1)^{M-N} \sum_{k=0}^{M-N} (-1)^k |u_{N+k}(x)| \le |u_M(x)|.$$

Il s'ensuit que

$$|\alpha| = (-1)^{M-N} \sum_{k=0}^{M-N} (-1)^k |u_{N+k}(x)| \le \sup_{x \in \mathbb{R}} |u_M(x)| = \sup_{x \in \mathbb{R}} \frac{M}{M^2 + |x|} = \frac{1}{M} \le \frac{1}{N}.$$

D'autre part, $\beta = R_{M+1}(x)$, de sorte que

$$|\beta| = |R_{M+1}(x)| \le |u_{M+1}(x)| \le \sup_{x \in \mathbb{R}} |u_{M+1}(x)| = \frac{1}{M+1} \le \frac{1}{N},$$

où la première inégalité provient du théorème sur les séries alternées, puisque la suite $(|u_n(x)|)$ est décroissante à partir du rang n=M+1. En remarquant que α est du signe de $(-1)^M$ et β est du signe de $(-1)^{M+1}$, on a :

$$|R_N(x)| = |\alpha + \beta| = ||\alpha| - |\beta|| \le \frac{1}{N}.$$

En résumé, on a bien montré que

$$\sup_{x \in \mathbb{R}} |R_N(x)| \le \frac{1}{N},$$

ce qui entraîne la convergence uniforme de la série $\sum u_n$ sur \mathbb{R} . Enfin, la série $\sum u_n$ ne converge pas uniformément absolument : en fait, la série numérique $\sum |u_n(x)|$ ne converge pour aucune valeur de x!

Solution de l'exercice 10

(1) On a:

$$f'_n(x) = \frac{n(1+n^2x) - xn^3}{n^2(1+n^2x)^2} = \frac{1}{n(1+n^2x)^2}.$$

La fonction f_n est donc croissante sur \mathbb{R}_+ , et son sup est sa limite lorsque $x \to \infty$:

$$\sup_{x \in \mathbb{R}_+} |f_n(x)| = \lim_{x \to \infty} \frac{x}{n(1+n^2x)} = \frac{1}{n^3}.$$

On voit donc que $\sum f_n$ est normalement convergente sur \mathbb{R}_+ . Chaque fonction f_n étant continue, la somme S est définie et continue sur \mathbb{R}_+ .

(2) Soit a > 0 quelconque. Pour tout $x \ge a$,

$$|f'_n(x)| = \frac{1}{n(1+n^2x)^2} \le \frac{1}{n(1+n^2a)^2} \le \frac{1}{a^2} \frac{1}{n^5}.$$

On voit donc que $\sum f'_n$ est normalement convergente sur tout intervalle de la forme $[a, \infty[$ avec a > 0. Le théorème sur les séries de fonctions continûment dérivables montre que la somme S est continûment dérivable sur \mathbb{R}_+^* et que, pour tout $x \in \mathbb{R}_+^*$,

$$S'(x) = \sum_{n=1}^{\infty} f'_n(x).$$

Etudions la dérivabilité à droite en zéro :

$$\frac{S(x) - S(0)}{x} = \frac{S(x)}{x} = \sum_{n=1}^{\infty} \frac{1}{n(1+n^2x)} \ge \int_{1}^{\infty} \frac{1}{t(1+t^2x)} dt = \frac{1}{2} \int_{x}^{\infty} \frac{1}{u(1+u)} du,$$

où l'on a effectué le changement de variable $u = t^2x$. Or,

$$\int_{x}^{\infty} \frac{1}{u(1+u)} du = \int_{x}^{\infty} \left(\frac{1}{u} - \frac{1}{1+u}\right) du = \left[\ln \frac{u}{1+u}\right]_{x}^{\infty} = -\ln \frac{x}{1+x} \longrightarrow \infty$$

lorsque $x \to 0^+$. Ainsi, (S(x) - S(0))/x tend vers l'infini lorsque $x \to 0^+$, et la somme S n'est donc pas dérivable en zéro à droite.

(3) $\lim_{x \to \infty} S(x) = \zeta(3)$, c'est-à-dire $\lim_{x \to \infty} \sum_{n=1}^{\infty} \frac{x}{n(1+n^2x)} = \sum_{n=1}^{\infty} \frac{1}{n^3}$. En effet,

$$\sum_{n=1}^{\infty} \frac{x}{n(1+n^2x)} - \zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3 + \frac{n}{x}} - \frac{1}{n^3} = \sum_{n=1}^{\infty} \frac{-\frac{n}{x}}{n^6 + \frac{n^4}{x}} =$$

$$= -\frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n^5 + \frac{n^3}{x}}.$$

Cette dernière série est positive, convergente et de somme majorée par $\zeta(5)$. Ceci prouve que la limite, lorsque x tends vers $+\infty$ est bien comme annoncé.