Pour signifier qu'un processus attend d'acquérir une ressource, on dessine ceci :

Pour signifier qu'un processus détient d'une ressource, on dessine ceci :

À chaque instant d'un scénario donné comportant des processus et des ressources, on peut donc dessiner le **graphe d'allocation des ressources**. Une situation d'**interblocage** survient si, à un instant donné, le graphe comporte un **circuit** (suite d'arcs consécutifs dont les deux sommets extrémités sont identiques), tel l'exemple suivant :

Le circuit R1-P3-R3-P4-R2-P2-R1 montre le phénomène d'attente circulaire.

Exercice 2

Y a-t-il interblocage? Si oui préciser le circuit.

Exercice 3

Tracer le graphe d'allocation des ressources correspondant :

Processus	Ressources demandées	Ressources détenues
А	2	1
В	3	
С	2	
D	2 et 3	4
Е	5	3
F	2	6
G	4	5

Y a-t-il interblocage? Si oui, préciser le cycle.

Exercice 4

On considère 3 processus P1, P2, P3 et 3 ressources R1, R2 et R3.

En traçant étape par étape le graphe d'allocation des ressources, expliquer pourquoi il y a interblocage.

- 1. P2 demande R1
- 2. P3 demande R2
- 3. P1 demande R1
- 4. P3 demande R3
- 5. P2 libère R1
- 6. P1 demande R2
- 7. P3 demande R1

Exercice 5

On considère un robot pilotable à distance qui effectue en parallèle les processus suivants :

- P1 Pilotage manuel: reçoit ordres via wifi et active moteurs en conséquence

- P2 Envoi flux vidéo: envoi du flux vidéo de la caméra via la liaison wifi

- P3 Auto-test matériel: tests des composants embarqués (hors communication réseau)

Il dispose des ressources suivantes :

- R1: moteurs

- **R2**: wifi

- R3: caméra

Voici ce qui doit être exécuté (on n'indique pas les étapes de traitement des données) :

P1	P2	P3
demande R1 (moteurs)	demande R2 (wifi)	demande R3 (caméra)
demande R2 (wifi)	demande R3 (caméra)	demande R1 (moteurs)
libère R1 (moteurs)	libère R2 wifi	libère R3 (caméra)
libère R2 (wifi)	libère R3 caméra	libère R1 (moteurs)

On admet que l'ordonnanceur de l'OS exécute un seul processus à la fois et que les ressources sont à usage exclusif.

- **1.** Montrer que si l'ordonnancement commence par P1 P3 P1 P3 P2 P1 alors il n'y a pas d'interblocage
- 2. Trouver un scénario d'ordonnancement qui conduit à un interblocage.