CS614: Advanced Compilers

SSA Construction. Sparse Simple CP

Manas Thakur

CSE, IIT Bombay

Things we learnt in the last class

- ➤ Flow-sensitive constant propagation (IDFA)
 - ➤ Fits well within worklist-based implementation too
- ➤ Flow-insensitive constant propagation
 - ➤ Much faster than flow-sensitive but imprecise

- > SSA form as a program representation
 - ➤ Each variable is assigned to at a single statement
 - ➤ Each use has exactly one corresponding definition
 - \blacktriangleright Achieved using variable renaming and insertion of Φ functions

We don't remember days, we remember moments.

- Cesare Pavese

Insertion of Φ functions

➤ Intuitively:

- ► If two paths in a CFG with a definition of a variable ν converge at a node n, then we need a Φ function at node n.
- \triangleright The number of arguments of the Φ function is the same as the *in-degree* of *n*.

 \blacktriangleright A Φ function is also an assignment to the variable being addressed, so a Φ -insertion may lead to the insertion of more Φ -assignments at other nodes.

 \blacktriangleright Let's devise a *simple* forward algorithm to insert Φ functions.

Ф Insertion (Cont.)

- ➤ Naive approach:
 - For each variable, insert a Φ function at the head of a basic block with multiple predecessors.
 - > Too many unnecessary Φ functions.
- \blacktriangleright We truly need a Φ function for a variable ν at a node m when:
 - There are distinct nodes x and y that define v; and
 - There are two non-empty paths x = -m and y = -m that are disjoint except the final node, such that v is defined only at x and y.

Path Convergence Criterion

Too expensive to compute.

Dominators

- \triangleright A node d dominates a node n if every path from entry to n goes through d.
 - ➤ Every node dominates itself.
- ➤ Compute dominators of each node:

- Node x strictly dominates node y if it dominates y and $x \neq y$.
- \triangleright Node x immediately dominates node y if x is the closest strict dominator of y.

Dominator Tree

➤ Parent-child relationship between a node and its immediate dominees.

Dominance Frontier

➤ For a node *x*, the set of all nodes *y* such that *x* dominates a predecessor of *y* but does not strictly dominate *y*.

frontier: a border separating two regions.

DF(x): set of nodes that define x's border of dominance.

$$>$$
 DF(B1) = {}

$$ightharpoonup$$
 DF(B2) = DF(B3) = {B2}

$$\rightarrow$$
 DF(B4) = {}

$$ightharpoonup$$
 DF(B5) = {B7}

$$ightharpoonup$$
 DF(B6) = {B7}

$$ightharpoonup$$
 DF(B7) = {B2}

Iterated Dominance Frontier

 \triangleright Iterated dominance frontier of a node x is the closure of DF(x).

$$DF(\mathcal{S}) = \bigcup_{x \in \mathcal{S}} DF(x)$$

$$DF^{(1)}(\mathcal{S}) = DF(\mathcal{S})$$

$$DF^{(i+1)}(\mathcal{S}) = DF(\mathcal{S} \cup DF^{(i)}(\mathcal{S}))$$

➤ For our example:

$$ightharpoonup$$
 IDF(B1) = IDF(B4) = IDF(B5) = {}

$$\rightarrow$$
 IDF(B2) = IDF(B3) = {B2}

$$\rightarrow$$
 IDF(B5) = {B7, B2}

$$\rightarrow$$
 IDF(B6) = {B7, B2}

$$\rightarrow$$
 IDF(B7) = {B2}

$$ightharpoonup$$
 DF(B1) = {}

$$ightharpoonup$$
 DF(B2) = DF(B3) = {B2}

$$\rightarrow$$
 DF(B4) = {}

$$ightharpoonup$$
 DF(B5) = {B7}

$$ightharpoonup$$
 DF(B6) = {B7}

$$ightharpoonup$$
 DF(B7) = {B2}

Ф Insertion at IDFs

For each variable ν defined at a set S of nodes, iteratively insert Φ -functions at the nodes in IDF(S).

$$\rightarrow$$
 IDF(B1) = {}

$$ightharpoonup$$
 IDF(B2) = IDF(B3) = {B2}

$$ightharpoonup$$
 IDF(B4) = IDF(B5) = {}

$$ightharpoonup$$
 IDF(B5) = {B7, B2}

$$\rightarrow$$
 IDF(B6) = {B7, B2}

$$\rightarrow$$
 IDF(B7) = {B2}

Start

Path Convergence and Dominance Frontier

 \blacktriangleright We truly need a Φ function for a variable ν at a node m when:

Path Convergence Criterion

- There are distinct nodes x and y that define v; and
- There are two non-empty paths x = -m and y = -m that are disjoint except the final node, such that v is defined only at x and y.

Whenever a node x contains a definition of some variable v, then any node z in the dominance frontier of x needs a Φ function for v.

Dominance Frontier Criterion

Theorem. The *iterated* path convergence criterion and the *iterated* dominance frontier criterion specify exactly the same set of nodes at which to insert Φ functions.

Ф Insertion — Reloaded

> Can our algorithm still insert redundant Φ functions?

 \blacktriangleright We don't need Φ functions for x and y at B5.

Pruned SSA Form

 \blacktriangleright Insert a Φ function for a variable ν at node n only if ν is live(-in) at n.

> Requires another IDFA, but liveness information is usually computed anyway.

