

CERTAINTY IS EASIER

Would you pay \$2 for the right to choose a cup and receive its contents?

If so, which cup will you choose?

2

Real-Life is Between Certainty And Ignorance

Would you pay \$2 for the right to choose a cup and receive its contents?

If so, which cup will you choose?

In Real-Life, We Combine Expectations And Data

How many boxes are shown in this picture?

4

In Real-Life, We Combine Expectations And Data Which is behind the tree?

Data Helps Us To Better Calibrate Our Uncertainty

- 1. Beliefs that are consistent with the data become more plausible
- 2. Beliefs that are inconsistent with the data become less plausible

Data Helps Us To Better Calibrate Our Uncertainty

- 1. Beliefs that are consistent with the data become more plausible
- 2. Beliefs that are inconsistent with the data become less plausible

Analytics is Simply Using Data to Inform What "Guesses" Seem to Be Better Than Others

All Data (i.e. measurements) Are Random Variables

 $X \equiv Randomly\ Chosen\ Person\ In\ This\ Class\ Drives\ a\ Honda$

14

All Data (i.e. measurements) Are Random Variables

 $X \equiv Randomly\ Chosen\ Person\ In\ This\ Room\ Drives\ a\ Honda$

Random Variables Map Outcomes to Real Numbers

What values of X are possible?

 $X \equiv Randomly Chosen Person In This Class Drives a Honda$

$$X \equiv \begin{cases} 0, & \text{if person does not drive a Honda} \\ 1, & \text{if person does drive a Honda} \end{cases}$$

16

Probability Describes Uncertainty in Random Variables

 $X \equiv Randomly Chosen Person In This Class Drives a Honda$

$$X \equiv \begin{cases} 0, & \text{if person does not drive a Honda} \\ 1, & \text{if person does drive a Honda} \end{cases}$$

Outcome	Realization (x)	P(X=x)
No Honda	0	80%
Honda	1	20%

A Probability Distribution Tells Us Everything

Outcome	Realization (x)	P(X=x)
No Honda	0	80%
Honda	1	20%

What values of X are possible?

What is the probability someone drives a Honda?

What is the probability X = 0?

What is the probability X = 2?

What is the probability $X \leq 2$?

WIVERSITY OF ELAWARE.

18

Some Probability Distributions Get Special Names

 $X \sim Bernoulli(\theta)$

$$X \equiv \begin{cases} 0, & failure \\ 1, & success \end{cases}$$

Outcome	Realization (x)	P(X=x)
Failure	0	$1-\theta$
Success	1	θ

A Probability Distribution Tells Us Everything (revisited)

 $X \sim Bernoulli(\theta = 60\%)$

What values of X are possible?

What is the probability X = 0?

What is the probability X = 0.6?

What is the probability $X \leq 1$?

20

Same questions, just answer without knowing heta

 $X \sim Bernoulli(\theta)$

What values of X are possible?

What is the probability X = 0?

What is the probability X = 0.6?

What is the probability $X \leq 1$?

Two Ways of Mathematically Specifying a Bernoulli Random Variable

 $X \sim Bernoulli(\theta)$

Math Notation

Outcome	Realization (x)	P(X=x)
Failure	0	$1-\theta$
Success	1	θ

A Lookup Table

NIVERSITY OF ELAWARE.

22

Examples of Bernoulli Random Variables

- Will the user click my ad?
- Will the drug lower a patient's cholesterol?
- Will the new store layout increase sales?
- Will the well yield oil?
- Will the customer pay back their loan?
- Will the passenger show up for their flight?
- Is this credit card transaction fraudulent?

Simulating seven flips of a mathematically perfect coin

library(causact)
set.seed(123)
rbern(n=7,prob=0.5)

Based only these seven flips, what might you estimate for P(X = 1)?

24

Representative Samples

Do you think seven coin flips: 0 1 0 1 1 0 1 gives a representative sample?

NIVERSITY OF ELAWARE

How many flips do you think you need to get a representative sample of coin flips?

 $X \equiv Outcome \ of \ Coin \ Flip \ is \ Heads$

How many flips do you 1) Open numFlips.R representative sa 2) Change the value of: $X \equiv Outcome \ of$ numflips and see how many flips you need to get a library(tidyverse) representative sample? set.seed(123) numFlips = 7df = data.frame(flipNum = 1:numFlips, coinFlip = rbern(n=numFlips,prob=0.5)) %>% mutate(headsProportion = cummean(coinFlip)) ggplot(df, aes(x = flipNum, y = headsProportion)) + geom_point() + geom_line() + geom_hline(yintercept = 0.5, color = "red")

All Data (i.e. measurements) Are Random Variables

 $X \equiv Randomly\ Chosen\ Person\ In\ This\ Class\ Drives\ a\ Honda$

28

Often Interested in Parameters of Probability Dist

 $X \equiv Randomly\ Chosen\ Person\ In\ This\ Class\ Drives\ a\ Honda$

Calibrating Your Beliefs

- Create a 90% confidence interval
 - Provide both an upper bound and a lower bound that you believe there is a 90% chance that the answer will be between your bound
 - 1. You will win \$1,000 if the true answer is between the numbers you gave for the upper and lower bound
 - 2. You win \$1,000 if you draw a red marble from a sack of marbles with 9 red marbles and 1 white marble. (i.e. there is a 90% chance you win \$1,000).

32

Let's Get Calibrated

Poll for true value of θ

See CANVAS for calibration activity

