LoRa

Martin Heusse LIG / Drakkar

Lora in the ISM bands channel spacing: 200kHz

- 433MHz Band
 - √ Max Tx power I0dBm
- EU 863-870MHz Band
 - √ Max Tx power : 20dBm, by default 14dBm
 - √ Rx channels for the gateways

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10	DR0 to	3	<1%
		868.30	DR5		
		868.50	/ 0.3-5		
			kbps		

- √ Duty cycle is computed per sub band
- √ Each gateway may listen to 16 canaux in parallel.

Specified to the devices when they associate

Lora in the ISM bands channel spacing: 200kHz (cont.)

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	

TXPower	Configuration		
0	20 dBm (if		
	supported)		
1	14 dBm		
2	11 dBm		
3	8 dBm		
4	5 dBm		
5	2 dBm		
615	RFU		

• Real world range : a few km NLOS, \approx 20 km with LOS

Payload max size: from 59 to 230 B

(for datarate 4 and higher)

ISM 868MHz band

http://www.arcep.fr/uploads/tx_gsavis/14-1263.pdf

http://www.anfr.fr/fileadmin/mediatheque/documents/tnrbf/TNRBF_ Ed2013 Mod8 - Version du 19 février 2016.pdf

EIRP: 14dBm

Freq.	Duty cycle	other uses
863-865 MHz	0,1 %	Cordless microphones
865-868 MHz	1%	RFID − ??
868-868,6 MHz	1%	(802.15.4 Sub-GHz)
868.6-868,7 MHz	_	Alarms
868,7-869,2 MHz	0,1%	
869,2-869,7 MHz	_	Alarms
869,7-870 MHz	1%	air force

LoRa — page 4 — transp. 4

ERC Recommendation 70-03

http://www.erodocdb.dk/docs/doc98/official/pdf/rec7003e.pdf

Sub band	Freq. (MHz)	Power	Duty cycle	BW (MHz)
hI.3	863-870	14 dBm	0.1%	7
h1.4	868-868.6	14 dBm	1%	0.6
h1.5	868.7-869.2	14 dBm	0.1%	0.5
h1.6	869.4-869.65	27 dBm	10%	0.25
h1.7	869.7-870	7 dBm	100%	0.3
h1.7	869.7-870	14 dBm	Ι%	0.3

Duty cycles are computed per sub-band: a device may consume 1% in h1.4, 10% in h1.6, 1% in h1.7, during the same hour for instance

h1.4 encompasses the 3 defaults LoRa channels,

h1.6 is used by the GW to respond to the devices (cf. RX2)

Transmissions

- Classe A (All devices)
 - ✓ Exchange always initiated by the device

Aloha access

2 rx windows follow the transmission at +I s (same channel as TX) and +2 s (channel and SF fixed in advance)

By default: RX2 at 869.525 MHz (center of h1.6), DR0 (SF12, 125 kHz)

- Each frame carries the Confirmed bit: (expecting and ACK) or unconfirmed
- Classe B: Beacons Device listen periodically to beacons. Regular downlink slots are defined relative to the beacon
- classe C : Continuous reception

LoRaWAN

LoRaWAN (cont.)

LoRa — page 8 — transp. 8

LoRaWAN (cont.)

- The frames only carry a single address, the device source/destination
- Application demultiplexing: "FPort" (0: pure MAC command)
- Piggybacking of MAC commands (power, data rate, channels, device state, rx delay ...) in the will typically get several copies of the same frame (they have a seq. number)
 - The net. server selects the best GW for a reply (if applicable)
- In the core networks, the frames are forwarded with guite a bit of ancillary data (power, timestamp...)

Activation

- ABP Activation By Personalization
- OTAA Over-The-Air Activation
 - DevAddr allocation: the DevAddr is composed of 7 bits of Network ID and then a device-specific addr. (The DevAddr is assigned by the guest network. The real / immutable device identifiers are its NetEUI and AppEUI, which are stored in the device)
 - √ Computation of the session keys: AppSKey, NetSKey, from the AppKey (128 bits) stored in the device

What is a chirp? CSS: Chirp Spread Spectrum

• A linear frequency sweep/ramp $-\frac{{\it BW}}{2} < {\it f} < \frac{{\it BW}}{2}$

Used by radars, bats, dolphins...
 LoRa — page II — transp. II

Coding information on a chirp

• It is the start freq. offset that codes the information (line 514)

Reception

Multiplication of rx signal with a complex conjugate chirp (down chirp)

$$\begin{array}{c} \mathrm{e}^{2\pi\mathrm{j}t[f_0+(at+b)\bmod{BW}]}\times\mathrm{e}^{-2\pi\mathrm{j}t[f_0+(at)\bmod{BW}]} \\ =\mathrm{e}^{2\pi\mathrm{j}t[b\bmod{BW}]} \end{array}$$

N.B. :
$$a=rac{\mathrm{BW}^2}{2^{\mathrm{SF}}}
ightarrow \mathrm{sweep}~\mathrm{BW}$$
 in time $rac{2^{\mathrm{SF}}}{\mathrm{BW}}$

Reception (cont.)

• if both chirps are in sync, we get a constant, otherwise

FFT-based reception

- · FFT after sampling at rate BW
- The symbol duration is N/BW \rightarrow N samples
- By frequency aliasing, a single frequency appears in the FFT!

Spread spectrum

- Spreading factors from 7 to 12 \Leftrightarrow N goes from 2^7 to 2^{12}, 7 to 12 bits per symbol
- The bigger the SF the longer the chirp 33 ms @ SFI2.
 For LoRa, the preamble is also proportional to the SF

The actual SF dynamics are
$$pprox 20$$
 $extbf{\textit{R}}_{\textit{b}} = extsf{SF} imes rac{ extsf{BW}}{2^{ extsf{SF}}}$

- Error correcting codes $R=\frac{4}{5}$
- The actual max. SF is \approx 340 ($2^{12}/12$), so a transmission may survive a collision with a node closer by a ratio of $\approx \sqrt{340}$

Frame sizes

- Depends on SF: 51B payload at SF12, 242 at SF8 and SF7...
- 51B @ SF12 \rightarrow 1,3 s of continuous transmission!

Initial Synchronisation

- The device may quickly assess if there is a transmission → short rxI and rx2 windows
- The inverted chips in the preamble allow to find the two unknown variable the transmitter frequency and the relative time reference

Localization

- The observed δt at several GW allow to compute relative time of arrival
- Trilateration
- · Time ref. from GPS at the GWs

A few remarks

- A receiver can receive at several SF simultaneously ($\approx 30 \, dB$)².
- It needs as many reception circuits as there are SFs
 7 channels (6 CSS + 1 FSK) on all LoRa GWs
- Localization is a by product of PHY initial sync.
- · Cell breathing
 - √ Having more GWs allows:
 - ► Lower the SF for closer devices
 - ► lower the power

²C. Goursaud & J.M. Gorce: "Dedicated networks for IoT: PHY / MAC state of the art and challenges"