Manoeuvring Models

(Module 4)

Prepared together with Andrew Ross

Dr Tristan Perez

Centre for Complex Dynamic Systems and Control (CDSC)

Professor Thor I Fossen

Department of Engineering Cybernetics

Vectorial Representation for Ships

From robotics to ship modeling (Fossen 1991)

Consider the classical robot manipulator model:

It is here assumed that the hydrodynamic coefficients are frequency independent.

This will be relaxed later!

$$M(q)\ddot{q} + C(q,\dot{q})q = \tau$$

- q is a vector of joint angles
- τ is a vector of torque
- M and C are the system inertia and Coriolis matrices

This model structure can be used as foundation to write the 6 DOF marine vessel equations of motion in a compact *vectorial* setting (**Fossen 1994, 2002**):

$$\dot{\eta} = J(\eta)v$$

$$M\dot{v} + C(v)v + D(v)v + g(\eta) = \tau$$

- body velocities: $\mathbf{v} = [u, v, w, p, q, r]^T$
- position and Euler angle $\mathbf{\eta} = [x, y, z, \phi, \theta, \psi]^T$
- M, C and D denote the system inertia,
 Coriolis and damping matrices
- **g** is a vector of gravitational and buoyancy forces and moments

Rigid-Body Equations of Motion

Newtonian Formulation (Body Frame)

$$\mathbf{M}_{RB}\dot{\mathbf{v}}+\mathbf{C}_{RB}(\mathbf{v})\mathbf{v}=\mathbf{\tau}_{RB}$$

where

M_{RB} rigid-body system inertia matrix*C_{RB}* rigid-body Coriolis/centripetal matrix

$$\mathbf{M}_{RB} = \begin{bmatrix} m & 0 & 0 & 0 & mz_g & -my_g \\ 0 & m & 0 & -mz_g & 0 & mx_g \\ 0 & 0 & m & my_g & -mx_g & 0 \\ 0 & -mz_g & my_g & I_X & -I_{XY} & -I_{XZ} \\ mz_g & 0 & -mx_g & -I_{YX} & I_Y & -I_{YZ} \\ -my_g & mx_g & 0 & -I_{ZX} & -I_{ZY} & I_Z \end{bmatrix}$$

Rigid-body system inertia matrix

See Fossen (1994, 2002) for parameterizations of C_{RB}

The generalized forces on a floating vessel are <u>superpositioned</u>:

$$\mathbf{\tau}_{RB} = \mathbf{\tau}_{H} + \mathbf{\tau}_{wave} + \mathbf{\tau}_{wind} + \mathbf{\tau}_{current} + \mathbf{\tau}_{control}$$

Hydrodyr

Hydrodynamic radiation-induced forces + viscous damping

Radiation-Induced Hydrodyn. Forces

- Forces on the body when the body is forced to oscillate with the wave excitation frequency and there are no incident waves (Faltinsen 1990):
 - (1) Added mass due to the inertia of the surrounding fluid
 - (2) Radiation-induced (linear) *potential damping* due to the energy carried away by generated surface waves
 - (3) Restoring forces due to *Archimedes* (weight and buoyancy)

$$\tau_R = -\underline{\mathbf{M}_A \dot{\mathbf{v}} - \mathbf{C}_A(\mathbf{v}) \mathbf{v}}_{\text{added mass}} - \underline{\mathbf{D}_P(\mathbf{v}) \mathbf{v}}_{\text{potential damping}} - \underline{\mathbf{g}(\mathbf{\eta})}_{\text{restoring forces}}$$

"hydrodynamic mass-damper-spring"

Faltinsen (1990). Sea Loads on Ships and Offshore Structures, Cambridge.

Added Mass and Inertia

- Fluid Kinetic Energy
- The concept of fluid kinetic energy:

$$T_A = \frac{1}{2} \mathbf{v}^{\mathsf{T}} \mathbf{M}_A \mathbf{v}$$

- can be used to derive the added mass terms.
- Any motion of the vessel will induce a motion in the otherwise stationary fluid. In order to allow the vessel to pass through the fluid, it must move aside and then close behind the vessel.
- Consequently, the fluid motion possesses kinetic energy that it would lack otherwise (Lamb 1932).

$$\mathbf{M}_{A} = - egin{bmatrix} X_{\dot{u}} & X_{\dot{v}} & X_{\dot{w}} & X_{\dot{p}} & X_{\dot{q}} & X_{\dot{r}} \ Y_{\dot{u}} & Y_{\dot{v}} & Y_{\dot{w}} & Y_{\dot{p}} & Y_{\dot{q}} & Y_{\dot{r}} \ Z_{\dot{u}} & Z_{\dot{v}} & Z_{\dot{w}} & Z_{\dot{p}} & Z_{\dot{q}} & Z_{\dot{r}} \ K_{\dot{u}} & K_{\dot{v}} & K_{\dot{w}} & K_{\dot{p}} & K_{\dot{q}} & K_{\dot{r}} \ M_{\dot{u}} & M_{\dot{v}} & M_{\dot{w}} & M_{\dot{p}} & M_{\dot{q}} & M_{\dot{r}} \ N_{\dot{u}} & N_{\dot{v}} & N_{\dot{w}} & N_{\dot{p}} & N_{\dot{q}} & N_{\dot{r}} \ \end{bmatrix}$$

6 DOF Body-Fixed Representation for Added Mass (Includes Coriolis/Centripetal Terms due to Added Mass)

$$X_{A} = X_{\dot{u}}\dot{u} + X_{\dot{w}}(\dot{w} + uq) + X_{\dot{q}}\dot{q} + Z_{\dot{w}}wq + Z_{\dot{q}}q^{2} \\ + X_{\dot{v}}\dot{v} + X_{\dot{p}}\dot{p} + X_{\dot{r}}\dot{r} - Y_{\dot{v}}vr - Y_{\dot{p}}rp - Y_{\dot{r}}r^{2} \\ - X_{\dot{v}}ur - Y_{\dot{w}}wr \\ + Y_{\dot{w}}vq + Z_{\dot{p}}pq - (Y_{\dot{q}} - Z_{\dot{r}})qr$$

$$Y_{A} = X_{\dot{v}}\dot{u} + Y_{\dot{w}}\dot{w} + Y_{\dot{q}}\dot{q} \\ + Y_{\dot{v}}\dot{v} + Y_{\dot{p}}\dot{p} + Y_{\dot{r}}\dot{r} + X_{\dot{v}}vr - Y_{\dot{w}}vp + X_{\dot{r}}r^{2} + (X_{\dot{p}} - Z_{\dot{r}})rp - Z_{\dot{p}}p^{2} \\ - X_{\dot{w}}(up - wr) + X_{\dot{u}}ur - Z_{\dot{w}}wp \\ - Z_{\dot{q}}pq + X_{\dot{q}}qr$$

$$Z_{A} = X_{\dot{w}}(\dot{u} - wq) + Z_{\dot{w}}\dot{w} + Z_{\dot{q}}\dot{q} - X_{\dot{u}}uq - X_{\dot{q}}q^{2} \\ + Y_{\dot{w}}\dot{v} + Z_{\dot{p}}\dot{p} + Z_{\dot{r}}\dot{r} + Y_{\dot{v}}vp + Y_{\dot{r}}rp + Y_{\dot{p}}p^{2} \\ + X_{\dot{v}}up + Y_{\dot{w}}wp \\ - X_{\dot{v}}vq - (X_{\dot{p}} - Y_{\dot{q}})pq - X_{\dot{r}}qr$$

$$K_{A} = X_{\dot{p}}\dot{u} + Z_{\dot{p}}\dot{w} + K_{\dot{q}}\dot{q} - X_{\dot{w}}wu + X_{\dot{r}}uq - Y_{\dot{w}}w^{2} - (Y_{\dot{q}} - Z_{\dot{r}})wq + M_{\dot{r}}q^{2} \\ + Y_{\dot{p}}\dot{v} + K_{\dot{p}}\dot{p} + K_{\dot{r}}\dot{r} + Y_{\dot{w}}v^{2} - (Y_{\dot{q}} - Z_{\dot{r}})vr + Z_{\dot{p}}vp - M_{\dot{r}}r^{2} - K_{\dot{q}}rp \\ + X_{\dot{w}}uv - (Y_{\dot{v}} - Z_{\dot{w}})vw - (Y_{\dot{r}} + Z_{\dot{q}})wr - Y_{\dot{p}}wp - X_{\dot{q}}ur \\ + (Y_{\dot{r}} + Z_{\dot{q}})vq + K_{\dot{r}}pq - (M_{\dot{q}} - N_{\dot{r}})qr$$

$$M_{A} = X_{\dot{q}}(\dot{u} + wq) + Z_{\dot{q}}(\dot{w} - uq) + M_{\dot{q}}\dot{q} - X_{\dot{w}}(u^{2} - w^{2}) - (Z_{\dot{w}} - X_{\dot{u}})wu \\ + Y_{\dot{q}}\dot{v} + K_{\dot{q}}\dot{p} + M_{\dot{r}}\dot{r} + Y_{\dot{p}}vr - Y_{\dot{r}}vp - K_{\dot{r}}(p^{2} - r^{2}) + (K_{\dot{p}} - N_{\dot{r}})rp \\ - Y_{\dot{w}}uv + X_{\dot{v}}vw - (X_{\dot{r}} + Z_{\dot{p}})(up - wr) + (X_{\dot{p}} - Z_{\dot{r}})(wp + ur) \\ - M_{\dot{r}}pq + K_{\dot{q}}qr$$

$$N_{A} = X_{\dot{r}}\dot{u} + Z_{\dot{r}}\dot{w} + M_{\dot{r}}\dot{q} + X_{\dot{v}}u^{2} + Y_{\dot{w}}wu - (X_{\dot{p}} - Y_{\dot{q}})uq - Z_{\dot{p}}wq - K_{\dot{q}}q^{2} \\ + Y_{\dot{r}}\dot{v} + K_{\dot{r}}\dot{p} + N_{\dot{r}}\dot{r} - X_{\dot{v}}v^{2} - X_{\dot{r}}vr - (X_{\dot{p}} - Y_{\dot{q}})uq - Z_{\dot{p}}wq - K_{\dot{q}}q^{2} \\ - (X_{\dot{u}} - Y_{\dot{v}})uv - X_{\dot{w}}vw + (X_{\dot{q}} + Y_{\dot{p}})up + Y_{\dot{r}}ur + Z_{\dot{q}}vp \\ - (X_{\dot{q}} + Y_{\dot{p}})vq - (K_{\dot{p}} - M_{\dot{q}})pq - K_{\dot{q}}qr$$

Kirchhoff's Equations (1869)

$$T = \frac{1}{2} \mathbf{v}^{\mathsf{T}} \mathbf{M}_A \mathbf{v}$$

kinetic energy due to the fluid

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \mathbf{v}_1} \right) + \mathbf{S}(\mathbf{v}_2) \frac{\partial T}{\partial \mathbf{v}_1} = \mathbf{\tau}_1$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \mathbf{v}_2} \right) + \mathbf{S}(\mathbf{v}_2) \frac{\partial T}{\partial \mathbf{v}_2} + \mathbf{S}(\mathbf{v}_1) \frac{\partial T}{\partial \mathbf{v}_1} = \mathbf{\tau}_2$$

$$\frac{d}{dt} \frac{\partial T_A}{\partial u} = r \frac{\partial T_A}{\partial v} - q \frac{\partial T_A}{\partial w} - X_A$$

$$\frac{d}{dt} \frac{\partial T_A}{\partial v} = p \frac{\partial T_A}{\partial w} - r \frac{\partial T_A}{\partial u} - Y_A$$

$$\frac{d}{dt} \frac{\partial T_A}{\partial w} = q \frac{\partial T_A}{\partial u} - p \frac{\partial T_A}{\partial v} - Z_A$$

$$\frac{d}{dt} \frac{\partial T_A}{\partial p} = w \frac{\partial T_A}{\partial v} - v \frac{\partial T_A}{\partial w} + r \frac{\partial T_A}{\partial q} - q \frac{\partial T_A}{\partial r} e - K_A$$

$$\frac{d}{dt} \frac{\partial T_A}{\partial q} = u \frac{\partial T_A}{\partial w} - w \frac{\partial T_A}{\partial u} + p \frac{\partial T_A}{\partial r} - r \frac{\partial T_A}{\partial p} - M_A$$

$$\frac{d}{dt} \frac{\partial T_A}{\partial r} = v \frac{\partial T_A}{\partial u} - u \frac{\partial T_A}{\partial v} + q \frac{\partial T_A}{\partial p} - p \frac{\partial T_A}{\partial q} - N_A$$

 $C_{A}(\nu)$

 M_A

Viscous Hydrodynamic Damping

In addition to potential damping we have to include other dissipative viscous terms like skin friction, wave drift damping etc:

$$au_D = - \underbrace{\mathbf{D}_S(\mathbf{v})\mathbf{v}}_{\text{skin}} - \underbrace{\mathbf{D}_W(\mathbf{v})\mathbf{v}}_{\text{wave drift}} - \underbrace{\mathbf{D}_M(\mathbf{v})\mathbf{v}}_{\text{damping due to}}$$
 damping vortex shedding

Total hydrodynamic damping matrix:

$$\mathbf{D}(\mathbf{v}) := \mathbf{D}_P(\mathbf{v}) + \mathbf{D}_S(\mathbf{v}) + \mathbf{D}_W(\mathbf{v}) + \mathbf{D}_M(\mathbf{v})$$

The hydrodynamic forces and moments τ_H can be now be written as the sum of τ_R and τ_D :

$$\tau_H = -\mathbf{M}_A \dot{\mathbf{v}} - \mathbf{C}_A(\mathbf{v})\mathbf{v} - \mathbf{D}(\mathbf{v})\mathbf{v} - \mathbf{g}(\mathbf{\eta})$$

Equations of Motion

The resulting model is (frequency-independent coefficients):

$$\mathbf{M}\dot{\mathbf{v}} + \mathbf{C}(\mathbf{v})\mathbf{v} + \mathbf{D}(\mathbf{v})\mathbf{v} + \mathbf{g}(\mathbf{\eta}) = \mathbf{\tau}_{wave} + \mathbf{\tau}_{wind} + \mathbf{\tau}_{current} + \mathbf{\tau}_{control}$$

Manoeuvring Hydrodynamics

In classical manoeuvring theory, the forces are modelled at a general non-linear function:

$$\mathbf{M}\dot{\mathbf{v}} = \mathbf{f}(\dot{\mathbf{v}}, \mathbf{v}, \mathbf{\eta}) + \mathbf{\tau}$$

A particular affine parameterization is then used, and the coefficients are estimated linear regression from the data.

The disadvantage of this model representation to a energy-based (Lagrangian) approach is that model reduction, symmetry/skew-symmetry properties, positive matrices, etc. are difficult to exploit in simulation and control design.

This model can, however, be related to the <u>Lagrangian model</u>: as shown by Ross et al. 2007:

$$\mathbf{M}\dot{\mathbf{v}} + \mathbf{C}(\mathbf{v})\mathbf{v} + \mathbf{D}(\mathbf{v})\mathbf{v} + \mathbf{g}(\mathbf{\eta}) = \mathbf{\tau}$$

9

Parameterisations

Two types of parameterisations for the hydrodynamic forces are generally used in classical manoeuvring theory:

- Truncated Taylor-series expansions:
 - Davison and Shiff (1946): 1st-order (linear) terms.
 - Abkowitz (1964): odd terms up to 3rd order.
- 2nd -order modulus
 - Fedyaevsky and Sobolev (1963)
 - Norrbin (1970)

Parameterisations

2nd -order modulus

$$Y' = Y'_{v}v' + Y'_{r}r' + Y'_{v|v|}v'|v'| + Y'_{v|r|}v'|r'|$$

$$+ Y'_{|v|r}|v'|r' + Y'_{r|r|}r'|r'|$$

$$N' = N'_{v}v' + N'_{r}r' + N'_{v|v|}v'|v'| + N'_{v|r|}v'|r'|$$

$$+ N'_{|v|r}|v'|r' + N'_{r|r|}r'|r'|$$

Taylor-series

$$Y' = Y'_{v}v' + Y'_{r}r' + Y'_{vvv}v'^{3} + Y'_{vvr}v'^{2}r'$$

$$+ Y'_{vrr}v'r'^{2} + Y'_{rrr}r'^{3}$$

$$N' = N'_{v}v' + N'_{r}r' + N'_{vvv}v'^{3} + N'_{vvr}v'^{2}r'$$

$$+ N'_{vrr}v'r'^{2} + N'_{rrr}r'^{3}$$

Parameterisations

As commented by Clarke (2003),

- Taylor expansions give rise to a smooth representation of the forces, but have no physical meaning.
- 2nd-order modulus expansions represent well the hydrodynamic forces at angles of incidence: <u>cross-flow drag</u>.

Taylor-Series Expansions

$$\boldsymbol{\tau}_{hyd} = \mathbf{f}_{hyd}(\mathbf{x}) + \frac{\partial \mathbf{f}_{hyd}}{\partial \mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) + \frac{\partial^2 \mathbf{f}_{hyd}}{\partial \mathbf{x}^2} (\mathbf{x} - \overline{\mathbf{x}})^2 + \dots$$
$$\mathbf{x} = \begin{bmatrix} \dot{\mathbf{v}} & \mathbf{v} & \mathbf{\eta} \end{bmatrix}^T$$

Where the partial derivatives are taken at an equilibrium:

$$\overline{\mathbf{x}} = \begin{bmatrix} \mathbf{0} & \overline{\mathbf{v}} & \mathbf{0} \end{bmatrix}^T \qquad \overline{\mathbf{v}} = \begin{bmatrix} U & 0 & 0 & 0 & 0 \end{bmatrix}^T$$

Model of Abkowitz (1964)

$$\mathcal{X} = \mathcal{X}_{0} + \mathcal{X}_{u}\dot{u} + \mathcal{X}_{u}\Delta u + \mathcal{X}_{uu}\Delta u^{2} + \mathcal{X}_{uuu}\Delta u^{3} + \mathcal{X}_{vv}v^{2} + \mathcal{X}_{rr}r^{2}$$

$$+ \mathcal{X}_{\delta\delta}\delta^{2} + \mathcal{X}_{rv}rv + \mathcal{X}_{r\delta}r\delta + \mathcal{X}_{v\delta}v\delta + \mathcal{X}_{vvu}v^{2}\Delta u + \mathcal{X}_{rru}r^{2}\Delta u$$

$$+ \mathcal{X}_{\delta\delta u}\delta^{2}\Delta u + \mathcal{X}_{rvu}rv\Delta u + \mathcal{X}_{r\delta u}r + \delta\Delta u + \mathcal{X}_{v\delta u}v\Delta u$$

$$+ (1-t)T + \mathcal{X}_{ext}$$

$$\mathcal{Y} = \mathcal{Y}_{0} + \mathcal{Y}_{u}\Delta u + \mathcal{Y}_{uu}\Delta u^{2} + \mathcal{Y}_{r}r + \mathcal{Y}_{v}v + \mathcal{Y}_{\dot{r}}\dot{r} + \mathcal{Y}_{\dot{v}}\dot{v} + \mathcal{Y}_{\delta}\delta$$

$$+ \mathcal{Y}_{rrr}r^{3} + \mathcal{Y}_{vvv}v^{3} + \mathcal{Y}_{\delta\delta\delta}\delta^{3} + \mathcal{Y}_{rr\delta}r^{2}\delta + \mathcal{Y}_{\delta\delta r}\delta^{2}r + \mathcal{Y}_{rrv}r^{2}v$$

$$+ \mathcal{Y}_{vvr}v^{2}r + \mathcal{Y}_{\delta\delta v}\delta^{2}v + \mathcal{Y}_{vv\delta}v^{2}\delta + \mathcal{Y}_{\delta vr}\delta vr + \mathcal{Y}_{vu}v\Delta u + \mathcal{Y}_{ru}r\Delta u$$

$$+ \mathcal{Y}_{vuu}v\Delta u^{2} + \mathcal{Y}_{ruu}r\Delta u^{2} + \mathcal{Y}_{\delta u}\delta\Delta u + \mathcal{Y}_{\delta uu}\delta\Delta u^{2} + \mathcal{Y}_{ext}$$

$$\mathcal{N} = \mathcal{N}_{0} + \mathcal{N}_{u}\Delta u + \mathcal{N}_{uu}\Delta u^{2} + \mathcal{N}_{r}r + \mathcal{N}_{v}v + \mathcal{N}_{\dot{r}}\dot{r} + \mathcal{N}_{\dot{v}}\dot{v} + N_{\delta}\delta$$

$$+ \mathcal{N}_{rrr}r^{3} + \mathcal{N}_{vvv}v^{3} + \mathcal{N}_{\delta\delta\delta}\delta^{3} + \mathcal{N}_{rr\delta}r^{2}\delta + \mathcal{N}_{\delta\delta r}\delta^{2}r + \mathcal{N}_{rrv}r^{2}v$$

$$+ \mathcal{N}_{vvr}v^{2}r + \mathcal{N}_{\delta\delta v}\delta^{2}v + \mathcal{N}_{vv\delta}v^{2}\delta + \mathcal{N}_{\delta vr}\delta vr + \mathcal{N}_{vu}v\Delta u + \mathcal{N}_{ru}r\Delta u$$

$$+ \mathcal{N}_{vuu}v\Delta u^{2} + \mathcal{N}_{ruu}r\Delta u^{2} + \mathcal{N}_{\delta u}\delta\Delta u + \mathcal{N}_{\delta uu}\delta\Delta u^{2} + \mathcal{N}_{ext}$$

The coefficients are called hydrodynamic derivatives.

Many terms are set to zero by exploiting physically properties. If not, there will thousands of coefficients.

Model of Norrbin (1970)

Speed equation:

$$(1 - X_{\dot{u}}'')\dot{u} = \frac{1}{2}L^{-1}X_{uu}''u^2 + \frac{1}{24}L^{-2}g^{-1}X_{uuuu}''u^4 + g(1 - t)T'' + (1 + X_{vr}'')vr + L(x_g'' + \frac{1}{2}X_{rr}'')r^2 + \frac{1}{6}L^{-2}g^{-1}X_{uvvv}''u|v|v^2 + \frac{1}{4}L^{-1}X_{c|c|\delta\delta}|c|c\delta_e^2$$

Steering equations:

$$\begin{split} (1-Y_{\dot{v}}'')\dot{v} &= L(Y_{\dot{r}}''-x_{g}'')\dot{r} + (Y_{ur}''-1)ur + \frac{1}{2}(Lg)^{-1/2}Y_{uur}''u^{2}r \\ &+ L^{-1}Y_{uv}''uv + \frac{1}{2}L^{-3/2}g^{-1/2}Y_{uuv}''u^{2}v + \frac{1}{2}L^{-1}Y_{|v|v}''|v|v + \frac{1}{2}LY_{|r|r}''|r|r \\ &+ Y_{|v|r}''|v|r + Y_{v|r|}''v|r| + \frac{1}{2}L^{-1}Y_{|c|c\delta}''|c|c\delta\epsilon + k_{\gamma}gT'' \end{split}$$

$$\begin{split} ((k_z'')^2 - N_{\dot{r}}'')\dot{r} &= L^{-1}(N_{\dot{v}}'' - x_g'')\dot{v} + L^{-1}(N_{ur}'' - x_g'')ur \\ &+ \frac{1}{2}L^{-3/2}g^{-1/2}N_{uur}''u^2r + L^{-2}N_{uv}''uv + \frac{1}{2}L^{-5/2}g^{-1/2}N_{uuv}''u^2v \\ &+ \frac{1}{2}L^{-2}N_{|v|v}''|v|v + \frac{1}{2}N_{|r|r}''|r|r + L^{-1}N_{|v|r}''|v|r \\ &+ L^{-1}N_{v|r|}''v|r| + \frac{1}{2}L^{-2}N_{|c|c\delta}''|c|c\delta\epsilon + L^{-1}gk_NT'' \end{split}$$

2nd-Order Modulus

From Blanke and Christiansen (1986):

Sway terms

$$\tau_{\text{2hyd}}^{b} = Y_{\dot{v}}\dot{v} + Y_{\dot{r}}\dot{r} + Y_{\dot{p}}\dot{p}
+ Y_{|u|v}|U|v + Y_{ur}Ur + Y_{v|v|}v|v| + Y_{v|r|}v|r| + Y_{r|v|}r|v|
+ Y_{\phi|uv|}\phi|Uv| + Y_{\phi|ur|}\phi|Ur| + Y_{\phi uu}\phi U^{2}.$$
(4.46)

Roll terms

$$\tau_{\text{4hyd}}^{b} = K_{\dot{v}}\dot{v} + K_{\dot{p}}\dot{p}
+ K_{|u|v}|U|v + K_{ur}Ur + K_{v|v|}v|v| + K_{v|r|}v|r| + K_{r|v|}r|v|
+ K_{\phi|uv|}\phi|Uv| + K_{\phi|ur|}\phi|Ur| + K_{\phi uu}\phi U^{2} + K_{|u|p}|U|p
+ K_{p|p|}p|p| + K_{p}p + K_{\phi\phi\phi}\phi^{3} - \rho g\nabla GZ(\phi).$$
(4.47)

Yaw terms

$$\begin{split} \tau^{b}_{6\mathrm{hyd}} &= N_{\dot{v}}\dot{v} + N_{\dot{r}}\dot{r} \\ &+ N_{|u|v} \left| U \right| v + N_{|u|r} \left| U \right| r + N_{r|r|}r \left| r \right| + N_{r|v|}r \left| v \right| \\ &+ N_{\phi|uv|}\phi \left| Uv \right| + N_{\phi u|r|}\phi \left| U \right| r + N_{p}p + N_{|p|p}|p|p + N_{|u|p}|U|p \\ &+ N_{\phi u|u|}\phi \left| U \right| U \right|. \end{split} \tag{4.48}$$

Measurement of Hydrodynamic Derivatives

- Experiments with model tests.
- Full scale sea trials and system identification.
- Theoretical prediction methods.
- Regression analysis results from similar designs.

Model tests that can be performed

- Straight line in a towing tank,
- Rotating arm,
- Planar motion mechanism PMM,
- Oscillator tests,
- Free running (radio controlled).

PMM

Experimental Methods

Model testing in Peerlesspool in London

Measurement of Hydrodynamic Derivatives

Rotating arm

19

Typical Tests

Pure Sway:

Pure yaw:

Drift and yaw:

Different tests are used to fit different parts of the model.

Measurement of Hydrodynamic Derivatives

During the model tests, the model is forces to move and forces velocities and accelerations are recorded.

Then the hydrodynamic derivatives are estimated from regression analysis.

A Novel 4 DOF Manoeuvring Model

Ross et. al. (2007) has reassessed the manoeuvring models in the literature, and formulated a novel 4 DOF (surge, sway, roll, yaw) <u>Lagrangian model</u> using first principles and superposition of:

- Potential (added mass)
- Circulation effects: lift and drag
- Effect of roll on circulation effects
- Cross-flow drag.

$$\mathbf{M}\dot{oldsymbol{
u}} + \mathbf{N}\left(oldsymbol{
u}
ight)oldsymbol{
u} + \mathbf{g}\left(oldsymbol{\eta}
ight) = oldsymbol{ au}, \ \dot{oldsymbol{\eta}} = \mathbf{J}\left(oldsymbol{\eta}
ight)oldsymbol{
u}$$

The advantage of the Lagrangian model is its vector representation which is tailor made for <u>energy-based control design (Lyapunov)</u>.

Added Mass and Coriollis

The 4 DOF solution of Kirchhoff's equations can be expressed as (Fossen, 2002)

$$\begin{bmatrix} X_A \ Y_A \ K_A \ N_A \end{bmatrix}^{\top} = -\mathbf{M}_A \dot{\boldsymbol{\nu}} - \mathbf{C}_A (\boldsymbol{\nu}) \, \boldsymbol{\nu}$$

Added mass

Added mass Coriollis and Centripetal terms

$$\mathbf{C}_{A}(\boldsymbol{\nu}) = \begin{bmatrix} 0 & 0 & 0 & Y_{\dot{v}}v + Y_{\dot{p}}p + Y_{\dot{r}}r \\ 0 & 0 & 0 & -X_{\dot{u}}u \\ 0 & 0 & 0 & 0 \\ -Y_{\dot{v}}v - Y_{\dot{p}}p - Y_{\dot{r}}r & X_{\dot{u}}u & 0 & 0 \end{bmatrix}$$

Model of Ross et al. (2007)

Circulation effects (lift and drag), effect of roll on circulation effects and crossflow drag (modulus representation) are derived in Ross et al. (2007):

$$\mathbf{N}(\boldsymbol{\nu})\boldsymbol{\nu} \triangleq (\mathbf{C}(\boldsymbol{\nu}) + \mathbf{D}(\boldsymbol{\nu}))\boldsymbol{\nu}$$
$$= \begin{bmatrix} X_N & Y_N & K_N & N_N \end{bmatrix}^{\top}$$

where the components are:

$$\begin{split} X_N &= -X_{uu}^L u^2 - X_{uuu}^L u^3 - X_{vv}^L v^2 - X_{rr}^L r^2 - X_{rv}^L rv - X_{uvv}^L uv^2 \\ &- X_{rvu}^L rvu - X_{urr}^L ur^2 - X_{uv\phi\phi}^L uv\phi^2 + Y_{\dot{v}}vr + Y_{\dot{p}}pr + Y_{\dot{r}}r^2 \\ Y_N &= -Y_{uv}^L uv - Y_{ur}^L ur - Y_{uur}^L u^2r - Y_{uuv}^L u^2v - Y_{vvv}^L v^3 - Y_{rrr}^L r^3 - Y_{rrv}^L r^2v \\ &- Y_{vvr}^L v^2r - Y_{uv\phi\phi}^L uv\phi^2 - Y_{|v|v} |v|v - Y_{|r|v} |r|v - Y_{|v|r} |v|r - Y_{|r|r} |r|r - X_{\dot{u}}ur \\ K_N &= -K_p p - K_{ppp} p^3 - K_{uv}^L uv - K_{ur}^L ur - K_{uur}^L u^2r - K_{uuv}^L u^2v - K_{vvv}^L v^3 - K_{rrr}^L r^3 - K_{rrv}^L r^2v \\ &- K_{vvr}^L v^2r - K_{uv\phi\phi}^L uv\phi^2 - K_{|v|v} |v|v - K_{|r|v} |r|v - K_{|v|r} |v|r - K_{|r|r} |r|r \\ N_N &= -N_{uv}^L uv - N_{ur}^L ur - N_{uur}^L u^2r - N_{uuv}^L u^2v - N_{vvv}^L v^3 - N_{rrr}^L r^3 - N_{rrv}^L r^2v - N_{vvr}^L v^2r - N_{uu\phi\phi}^L uv\phi^2 \\ &- N_{|v|v} |v|v - N_{|r|v} |r|v - N_{|v|r} |v|r - N_{|r|r} |r|r - Y_{\dot{p}}pu - Y_{\dot{r}}ru + (X_{\dot{u}} - Y_{\dot{v}})uv. \end{split}$$

Manoeuvring Model

Combining all the terms in a matrix for, we obtain the manoeuvring equations in Lagrangian form (Fossen 1994, 2002).

$$\mathbf{M}\dot{\boldsymbol{\nu}} + \mathbf{N}(\boldsymbol{\nu})\,\boldsymbol{\nu} + \mathbf{g}(\boldsymbol{\eta}) = \boldsymbol{\tau},$$
 $\dot{\boldsymbol{\eta}} = \mathbf{J}(\boldsymbol{\eta})\,\boldsymbol{\nu}$

Model Validation with PMM Data

To validate the model, Ross et al. (2007) used data of several PMM tests, and perform a regression based on the model structure derived.

Then compared the fit with that of a model fitted by a tank testing facility to the same dataset.

Fitting Using PMM Data @ 30kt

Validation in Full Scale (Perez et al., 2007)

Perez et al. (2007) fitted a simplified model to data recorded on full scale manoeuvres of Austal's Trimaran Hull 260.

The parameters were fitted with data of a 20-20 zigzag test, and then the model validated with data of a 10-10 zig-zag test.

Simplified Model

The model was simplified according to the that of Blanke (1981). This was done because the excitation signal was not rich enough to estimate all the parameters—the zig-zag test is not designed for system identification!

$$\begin{split} &\dot{\eta} = J(\eta) \ v \\ &M \ \dot{v} + C(v) \ v + D(v) \ v + G(\eta) = \tau \end{split}$$

$$\mathbf{D}(\mathbf{v}) = \mathbf{D}_{LD}(\mathbf{v}) + \mathbf{D}_{NL}(\mathbf{v})$$

$$\mathbf{D}_{LD}(\mathbf{v}) = \begin{bmatrix} 0 & 0 & 0 & Xrv & v \\ 0 & Yuv & u & 0 & Yur & u \\ 0 & Kuv & u & 0 & Kur & u \\ 0 & Nuv & u & 0 & Kur & u \end{bmatrix} \quad \mathbf{D}_{NL}(\mathbf{v}) = \begin{bmatrix} X_{|u|u} & 0 & 0 & 0 \\ 0 & Y_{|v|v} & |v| + Y_{|r|v} & |r| & 0 & Y_{|v|r} & |v| + Y_{|r|r} & |r| \\ 0 & 0 & K_{|p|p} & |p| + Y_p & 0 \\ 0 & N_{|v|v} & |v| + N_{|r|v} & |r| & 0 & N_{|v|r} & |v| + N_{|r|r} & |r| \end{bmatrix}$$

Model Fitting (20-20 ZZ)

Model Validation (10-10 ZZ)

31

Effects of Currents

In some applications, where positioning is important, the effects of current must be considered:

$$\dot{\mathbf{\eta}} = \mathbf{J}(\mathbf{\eta})\mathbf{v}$$

$$(\mathbf{M}_{RB} + \mathbf{M}_{A})\dot{\mathbf{v}} + \mathbf{C}_{RB}(\mathbf{v}) + \mathbf{C}_{A}(\mathbf{v}_{r})\mathbf{v}_{r} + \mathbf{D}_{A}(\mathbf{v}_{r})\mathbf{v}_{r} + \mathbf{G}(\mathbf{\eta}) = \mathbf{\tau}$$

$$\mathbf{v}_{r} = \mathbf{v} - \mathbf{v}_{c}$$

The current has to effects, which are represented with the velocity of the vessel relative to the current velocity:

- Potential: The Munk moment is incorporated in the added mass Coriollis-Centripetal terms.
- Viscous: eddy making and skin friction. These are incorporated in the cross-flow drag.

References

- Davidson, K. S. M. and L. I. Schiff (1946). "Turning and Course Keeping Qualities." Transactions of SNAME.
- Abkowitz, M. A. (1964). "Lectures on Ship Hydrodynamics Steering and Manoeuvrability." Technical Report Hy-5. Hydro- and Aerodynamic Laboratory. Lyngby, Denmark.
- Fedayevsky, K.K. and G.V. Sobolev (1963). "Control and Stability in Ship Design." State Union Shipbuilding Publishing House. Leningrad, USSR.
- Norrbin, N. (1971). "Theory and observations on the use of a mathematical model for ship manoeuvring in deep and conned water." Technical Report 63.Swedish State Shipbuilding Experimental Tank. Gothenburg.
- Clarke, D. (2003). "The foundations of steering and manoeuvring." In: Proceedings of the IFAC Conference on Control Applications. Plenary talk.
- Ross, A., T. Perez, and T. Fossen (2007) "A Novel Manoeuvring Model based on Low-aspect-ratio Lift Theory and Lagrangian Mechanics." IFAC Conference on Control Applications in Marine Systems (CAMS). Bol, Croatia, Sept.
- Blanke, M. (1981). Ship Propulsion Losses Related to Automated Steering and Prime Mover Control. PhD thesis. The Technical University of Denmark, Lyngby.
- Christensen, A. and M. Blanke (1986). A Linearized State-Space Model in Steering and Roll of a High-Speed Container Ship. Technical Report 86-D-574.Servolaboratoriet, Technical University of Denmark. Denmark.
- Perez,T., T, Mak, T. Armstrong, A.Ross, T. I. Fossen (2007) "Validation of a 4DOF Manoeuvring Model of a High-speed Vehicle-Passenger Trimaran." In Proc. 9th International conference on Fast Transportation. Shanghai, China Sept.

