

SOLID-CHEM

Einführung eines LIMS/digitales Laborbuches in der SOLID-CHEM SOLID-CHEM GmbH Universitätsstraße 136 D-44799 Bochum

Bearbeitet von:

Dr. Kevin Grasmik

Gründe zur Einführung

- Momentan hat jeder Mitarbeiter sein eigenes Laborjournal.
- Informationen können nicht schnell ausgetauscht werden (Evtl. Suche nach Informationen nimmt viel Zeit in Anspruch).
- Generelle Datenerfassung erfolgt nur beim Probeneingang, in den Laborbüchern sowie in Projektabhängigen Exceltabellen.
- Hierbei treten die folgenden Probleme auf:
 - 1. Messnummern können doppelt vergeben werden.
 - 2. Experimentnummern können doppelt vergeben werden.
 - 3. Keine gute Übersicht bezüglich der erhaltenen Ergebnisse/Daten wie z.B.:
 - Festkörperform
 - Datenübertragung (Einwaagen etc.)
 - Thermische Eigenschaften
 - Übertragungsfehler (Handschrift/Leserlichkeit)
 - U.S.W.

Bisherige Datenerfassung – Probeneingang

- Eintragung der grundliegenden Daten der Probe
- Keine Doppelbenennung möglich → Fehlermeldung
- Die Daten sind generell für alle Mitarbeiter zugänglich
- Momentan keine direkte Verknüpfung mit den, auf der Probe basierenden Experimenten.
- Hierbei wäre wünschenswert (nicht final):
 - 1. Direkte Verknüpfung zu durchgeführten Experimenten
 - Verknüpfung zur durchgeführten Eingangsanalytik, welche jederzeit variieren kann.
 - 3. Beim Probeneingang werden Fotos gemacht. Hier sollte die Möglichkeit bestehen diese einbinden zu können.
 - 4. Nachsubstanz (fortlaufende Nummer) muss unter dem selben Projekt gespeichert werden können.
 - 5. ...

Bisherige Datenerfassung – Messbücher (DSC)

Datum	Probenname	Projekt	Emmage	Ac subage	Raupe	Tempoatur program	Tiegel	Benerlingen	Operator
28/11/15	Lactose monohydrat OOA	Hisma	4,170	101	10klmin	RT->160->RT	Pierced		Zeione
	Lactosemondydral 002	Fione	5,786		10K (min	RF-> 200 XPT	pierced		Férênce
03.12.19	Indian_031219-1016	Volidior-9	11, 81	1	10 K/min	RT 7 100 7 180 7 180 7 180 2 RT	piercod		Jesoga
	Indian 031219 516	U	2,664		lowlpun	REPROSE 1180 > Rt	4		Don's
34.12.19			2,112		1klum	87-72002 VRT	pierceal		Keun
78.17.19			4.280		10 K/min	NT - 3000 (-) NT	h.	+	SNY
6.12.15			10,526		10101min	RT-2 125 -3 RT NT-2 750°(-327-) 100-307	1	proparative DSC	Josefa.
19.12.14			7,222		11	NT-)200°(-)NT	u		wi

- Eintragung der grundliegenden Messparameter (Messabhängig).
- Starke Varianz der benötigten Eingabefelder.
- Momentan keine direkte Verknüpfung der Messparameter zur Excel-Experimenttabelle.
- Hierbei wäre wünschenswert (nicht final):
 - 1. Direkte Verknüpfung zu durchgeführten Experimenten
 - 2. Keine möglichen Doppelbelegung der Messnummer. (Beispielbennenung xyzXYZ001EXP001DSC001)
 - 3. Beobachtungen müssen eingetragen werden können.
 - 4. Erhöhte Flexibilität. Beispiel Rampe: Hier sollte man zwischen Heizrate und Kühlrate differenzieren können, da manche Programme einen Wechsel vorsehen (10 K/min aufheizen und 5 K/min abkühlen).
 - 5. ...

Bisherige Datenerfassung – Messbücher (PXRD)

Dotum	Probenomo. 1aw	Projoba	Probenpraparation	Program	n. 0g1	Berneley	90
22 juli Lots	SP187 MEDOON		lop @ 0.7 G les 14	kgs 1.5 50 pcd 1)2	_15Mint 8		2
	Greganst Prilam		V L		18		2
\$ IBR154->	ginHEK 40ml PRODON		n n	10	x8		DY
	KDONP A Maggard VA		~	_	34		2
	ESPASSP+12001		ч	4	K8		Sou

- Eintragung der grundliegenden Messparameter (Messabhängig).
- Starke Varianz der benötigten Eingabefelder.
- Momentan keine direkte Verknüpfung der Messparameter zur Excel-Experimenttabelle.
- Hierbei wäre wünschenswert (nicht final):
 - 1. Direkte Verknüpfung zu durchgeführten Experimenten
 - 2. Keine möglichen Doppelbelegung der Messnummer. (Beispielbennenung xyzXYZ001EXP001PXRD001)
 - 3. Beobachtungen müssen eingetragen werden können.
 - 4. Erhöhte Flexibilität. Beispiel Präparation: Hier sollte man Kapillar und Glastyp eintragen können.
 - 5. Bemerkungen können z.B. sein: Nach Präparativer DSC → Verlinkung zur anderen Messung sollte möglich sein.

EXP 51 Inhomogene Suspension EXP 52 homogene were Suspension EXP 53 X letare works for Festately EXP 54 X letare works for Festately EXP 54 X letare works for Festately EXP 55 X letare works for the festately INDICATE TO THE TOWN IN A CONTROL OF THE SPORE Noutralisation with 1 M Madel and Injury select P5010 17. 07.20 Grametrische casichest Websell (0.2 Mm) in en vorgewogener Vial gespritet/ workingt filmert Vial peckel + Beschrifting + Wasna worde gewogen Med BOR 068V EXP 176 5: 57420 9 EXP 181 6: 06464 9 EXP 182 6: 015201 9 EXP 182 6: 015201 9 EXP 183 5: 63664 9 EXP 184 5: 62012 9 EXP 187 5: 62012 9 EXP 188 6: 63809 9 EXP 189 5: 62012 9 EXP 189 6: 62012 9 EX	ban A (0567	Beasachtung
EXP 52 EXP 53 EXP 54 EXP 54 EXP 54 EXP 54 EXP 55	EVP 50	inhomogene Suspensin
EXP 34 X Klare Losins onne festitoff EXP 55 X Klare Losins onne festitoff Neutralisation un 1 m Naord und hydrolysieten Psolo 17.07.20 Grainetrische Caslichkeit Leiße, rünfange Sispension wirde ober Sphizen filter (0.2 mm) in en vorgewogener Vial gespritzt/ ober für t/ filmert Vial peckel + Beschrifting + Lössne wirde gewogen med BOR 068V EXP 176 5.57420 g EXP 180 5.68508 g EXP 182 5.6664 g EXP 182 6.015201 g EXP 183 5.63664 g EXP 183 5.63664 g EXP 184 5.62042 g EXP 174 5.62042 g	CONTROL OF THE PARTY OF THE PAR	
EXP 34 X Klare Losins onne festitoff EXP 55 X Klare Losins onne festitoff Neutralisation un 1 m Naord und hydrolysieten Psolo 17.07.20 Grainetrische Caslichkeit Leiße, rünfange Sispension wirde ober Sphizen filter (0.2 mm) in en vorgewogener Vial gespritzt/ ober für t/ filmert Vial peckel + Beschrifting + Lössne wirde gewogen med BOR 068V EXP 176 5.57420 g EXP 180 5.68508 g EXP 182 5.6664 g EXP 182 6.015201 g EXP 183 5.63664 g EXP 183 5.63664 g EXP 184 5.62042 g EXP 174 5.62042 g		honogene well supposion
Nontralisation up 1 m Naoth und hydrolysetten Psolo 17.0720 Grametrisone castionket wase, runfange suspension worde over spritzen filter (0.2 mm) in en vogowogener Vial gespritzt/voorfunt/filmert Vial + Peckel + Beschi Hung + Casuma worde gewogen med BOR 068V EXP176 5:57420 g EXP180 5:6308 g EXP182 5:63664 g EXP182 5:63664 g EXP183 5:63664 g EXP183 5:63664 g EXP183 5:63664 g EXP184 5:62043 g EXP187 5:62043 g EXP188 5:63664 g	EXP 54 X	ware losing been fortifold
Nontralisation up 1 m Naoth und hydrolysieten Psolo 17.0720 Grametrische Läslichkeit Ließe, rührfähige Suspension wurde über Spritzen filter (0.2 mm) in en vogewagener Vial gespritzt/überführt/filmert Vial + Peckel + Beschnittung + Läsung wurde gewagen med BOR 068V EXP176 5:57420 9 EXP180 5:63508 9 EXP182 5:66219 9 EXP182 5:63664 9 EXP182 6:015201 9 EXP183 5:63664 9 EXP183 5:63664 9 EXP184 5:62043 9 EXP187 5:62043 9 EXP174 5:62043 9	The state of the s	clare losing once
hydrolyseten Psolo 17.0720 Grametrisme caslichket webse, rinrfange suspension whole over spritzen filter (0.2 mm) in en vogewogener Vial geopatzt/overfinet/ filmert Vial peckel+ Beschrifters + Losma whole gewogen med BOR 068V EXP176 5.57420 9 EXP180 5.68508 9 EXP182 5.68669 9 EXP182 6.015201 9 EXP183 5.63669 9 EXP184 5.62042 9 EXP187 5.62042 9 EXP174 5.62042 9	OF	
weeke, runtange suspension whole was Spritzen filter (0.2 mm) in en vogewagener Vial gespritzt/worfunt/ filmert Vial + Peckel + Beschnitting + Wasma worde gewagen med BOR 068V EXP176 5.57420 g EXP181 6.06464 g EXP180 5.68508 g EXP172 5.66219 g EXP182 5.63664 g EXP182 6.015201 g EXP183 5.63664 g EXP184 5.62043 g EXP174 5.62043 g	Noutralisat hydrolyse	
Vial gesprite (0.2 mm) Vial gesprite (5 box first / filment Vial + Peckel + Beschri throng + Lossing mode gewegen med BOR 068V EXP176 5.57420 9 EXP181 6.06464 9 EXP180 5.68508 9 EXP182 5.66219 9 EXP183 5.63664 9 EXP182 6.015201 9 EXP183 5.6309 9 EXP174 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9	17.07.20 G	avinetrisme cäslichkeit
Vial gesprite (0.2 mm) Vial gesprite (5 box first / filment Vial + Peckel + Beschri throng + Lossing mode gewegen med BOR 068V EXP176 5.57420 9 EXP181 6.06464 9 EXP180 5.68508 9 EXP182 5.66219 9 EXP183 5.63664 9 EXP182 6.015201 9 EXP183 5.6309 9 EXP174 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9	wasa, ri	infinise suspension while over
Vial gesporter / Servint to printer Vial + Peckel + Beschriftung + Lasung worde gewagen medBorogsv Expita 5.57420 g Expita 6.06464 g Expita 5.68508 g Expita 5.68508 g Expita 5.66219 g Expita 5.6264 g Expita 5.6264 g Expita 5.62042 g	Sent 200 7	FIRE (C.Z MA)
Vial + Peckel + Beschi Huz + Lasma worde gewagen medBorogsV EXP176 5.57420 9 EXP181 6.06464 9 EXP180 5.68508 9 EXP182 5.66219 9 EXP183 5.63664 9 EXP182 6.015201 9 EXP183 5.62043 9 EXP184 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9	Vial gest	ontet/ oberfint/ pimere
medBOR 068V EXP176 5.57420 9 EXP181 6.06464 9 EXP180 5.68508 9 EXP182 5.66219 9 EXP183 5.63664 9 EXP182 6.015201 9 EXP183 5.62043 9 EXP184 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9		
medBOR 068V EXP176 5.57420 9 EXP181 6.06464 9 EXP180 5.68508 9 EXP182 5.66219 9 EXP183 5.63664 9 EXP182 6.015201 9 EXP183 5.62043 9 EXP184 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9	Vial + Per	chel + Beschrifturg + Cosma
medBORO68V EXPI76 5.57420 9 EXPI81 6.06464 9 EXPI80 5.68508 9 EXPI82 5.66219 9 EXPI83 5.63664 9 EXPI82 6.015201 9 EXPI83 5.6309 9 EXPI74 5.62043 9 EXPI74 5.62043 9	gewogen	
EXP176 5.57420 9 EXP181 6.06464 9 EXP180 5.68508 9 EXP172 5.66219 9 EXP183 5.63664 9 EXP182 6.015201 9 EXP173 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9 EXP174 5.62043 9		
EXPISI 6.06464 9 EXPISO 5.68308 9 EXPIZO 5.68219 9 EXPISO 5.6864 9 EXPISO 5.63664 9 EXPISO 6.015201 9 EXPITY 5.62043 9 EXPITY 5.62043 9 EXPITY 5.62043 9	medBORO	68V
EXPIBIT 6.06464 9 EXPIBO 5.68508 9 EXPIBO 5.68508 9 EXPIBO 5.6864 9 EXPIBO 5.63664 9 EXPIBO 5.63664 9 EXPIBO 5.62043 9 EXPIBO 5.62043 9 EXPIBO 5.62043 9 EXPIBO 5.62043 9	EXPIRE	557420 0
EXPLISO 5. 68508 9 EXP 172 5. 66219 9 EXP 183 5. 63664 9 EXP 182 6.0 15201 9 EXP 174 5. 62043 9 EXEL 2 (
EXPIT2 5.66219 g EXPITS 5.63664 g EXPITS 6.015201 g EXPITS 5.62043 g EXPITH 5.62043 g EXPITH 5.62043 g		5 68-0A 0
		5 66219 9
	100 P 20 S	5 62664 0
		6015201 6
		5 6 9 809 6
		5 62042 6 Excel 2 V
Geoffnet in der Abarg gestellt aur Verdampting	0111	5.075 5
30	Geoffnet	in den Albaig gestellt aur Verdampting
30		
30		
30		
30		
	30	

- Starke Varianz der benötigten Eingabefelder.
 (Einwaagen, Temperaturen, Beobachtungen, Skizzen, Bilder, Datum, Uhrzeit (manchmal), und vieles mehr)
- Momentan keine direkte Verknüpfung der Daten zur Excel-Experimenttabelle bis auf Beobachtungsfeld.
- Hierbei wäre wünschenswert (nicht final):
 - Direkte Verknüpfung zu durchgeführten Experimenten
 - Ergänzungsmöglichkeit für eigene Felder zur Erweiterung der Parameter.
 - 3. Erhöhte Flexibilität. Bsp: Änderung der Einheiten (mL, L, g, mg, K, °C etc.)
 - Verlinkung zur anderen Messung sollte möglich sein da evtl eine Reproduktion, folge Experiment etc.

12.05.20		D-TIMM!	1 15 (95)	2.	Zeit	Julabo soll		Lsg. 1	Lsg.2	Anmerkung
DETRIE	EXHUNKIS	SBESTIMMU	100 (8)	(3); (35)25)		[0]	[,0]	[00]	[°C]	z 1.
					12:32	1.19	1.35	3.4	4.2	1.
-> Julat	oo Program	m			12:34	1.01	1.17	3.3	40	
		0.1.00	0-10 - 1	K	12.36	0.82	0.98	3.1	3.8	
STE	P 1 30	5°C → 4°C		nin	12: 38	0.63	0.79	2.9	3.6	
					12: 40	0.43	0.61	2.8	3.5	
STE	P 2 4°	C > -20°C	Rate : - 0.	1 4	12 42	022	0.39	2.6	3.3	
				- mn	12: 44	0.01	6.17	2.4	3.1	
				Lösungz	12: 46	-0.17	-0.01	2.2	2.9"	
Zeit	Julabo	Julabo	Lösang 1	Drimerkov	12: 48	-0.39	+6.23	2.0	2.7	
	[c]sou	[GIST	[cc]	10070	12: 50	-0.60	-0.44	1.8	2.5	
12					12: 52	-0.78	-0.63	1.6	2.4	
11:38	30.0	30.0	30.0	30.0	12: 54	-0.98	-0.81	1.4	2.2	
11:40					12: 56	-1.16	-0.95	1.3	2.0	
11:462					12: 58	-1.38	-1.22	1.1	1.9	
11: 44	23.03	24.64	25.7	26.1	13: 60	-1.57	-1.42	0.9	17	
11: 46	21.97	3.62	75.2	25.6	13: 02	-1.78	-1.63	0.7	1.5%	
11: 48	19.91	21.55	23.2	23.8	13: 04	-198	-781	0.6	1.3	
11:50	17.83	19.95	21.3	21.8	13: 06	, -2.17	-201	0.4	1.2	
	16.05	17.72	19.7	20.2	13: 08	-2.36	-2.22	0.3	1.6	
11: 52	13.89	15.54	0.7	18.3	13: 10	-2.57	-2.42	0.1	0.9	
11: 56	11:80	13.43	15.5	99	13: 12	-2.77	- 2.59	0.0	0.8	
	9.75	11.36	13.8	14.5	13: 14	-2.95	-2.80	-0.1	0.6	
		9.76	12.5	13.0	13: 16	-3.16	-301	- 0.3	0.4	
12: 00	8.06		10.8	11.4	13: 18	-3.38	-3.21	-0.5	0.3	
12: 02	6.16	7.82	8.9	9.5	13 , 20	357	-3.41	-0.7	0.1	
12: 04	4.07	5.7)		7.6	13 : 2	Take Separate	- 3.60	-0.9	-0.2	
12:06	3.79	4.20	6.1	6.8	43 , 21	THE RESERVE TO SHARE THE PARTY OF THE PARTY	-3.79	-1.0	-0.2	
12: 08	361	3.81		6.3	13 : 20		-4.01	-1.2	-0.4	
12: 10	3.41	3.60	5.5		13 : 21		- 4.20	-1.4	- 0.5	
12: 12	3-22	3.37	5.3	5.8	13:30		-44	-1.6	-0.8	
12: 14	3.03	3.8	5.1		13 : 32	THE PERSON NAMED IN	- 4.62	- 1.8	-0.9	
12. 16	2.83	2.95	4.9	5.6	13:3		- 4.80	-2.0	-11	
12: 18	263	2.79	4.7	5.4		The second second	- 5.00	-2.1	- 1.2	
12. 20	242	2.55	4.5	5.3	13:3		-5.21	- 2.3	- 1.4	
11: 22	2.21	2.38	4.3	5.1	13 38			- 2.5	- 16	
12: 24	2.03	220	4.2	45	13 40	Color	-5.40	- 2.7	1	
11: 26	181	1.97	40	4.7	13: 4		-5.61	3 -2,9		
12. 28	162	180	38	4.5	13: 4	4 - 5,89	3 -5,8	2 -13	- 7	

Tum 16.6	06 70 mesapico1	Dienstag, der 0100 20
Einwaag	e API leight oranges / gallers Pulvar	Kernporen filbration onc ETO cos
EXP0017		Janoina durangatina
	Michsaure Mson = 0.905mg	· Anlagone mang van Jascha duringelint 15 min Etott + 15 min Kenstussier in 15 min Etott + 15 min Kenstussier in enem Ultraschallbad (Sven + Drokel) enem Ultraschallbad (Sven + Drokel)
	mst = 1,2 ms	Ivamidet 08m)
		· Peinigng des Filters (vergoldet, 08/m)
EXPOOIS	milansaure 9 10 g	of tenhetskontrolle annual un optische
	API mson 100,32 mg	Mikroskopie
	mor 100, 05 mg	jeden Detekte im Filter (klen) sichtbar
EXP0019	API: 10.004 mg	(localisies and der rechter mittleren sete
EXP0020	API: 8/48 9,998 mg	· Einsatz des Filters in der KPF-Anlage ohne
EXPOOSI	API: 6.448 9 -6.445 6.4509	marking nit tolding, in Verlanta being spiles mit Etoti zu verninden
	6.450 9	· Filtration over Probe
		3x Vial nachapiles mit ca 3-4ml absolut
EXPCOIT	be 50°C in 500/11 CDres Delost	3x KPP mit absolven Etoti nachgespilt
	Dampfdittusion in 1,5 ml Ponta	(Spritzenfilter 92 jun ans PTFE verwendet)
VB0010	auna michaille annudid	- Absorgen bis Filter tracken ist
EXPOOLS	and 100.05 mg API engewagen	· Faser out den filts identifiziert und filt in Plastikologe überführt
	2 gabe von alt mi prim -> vortarbung: gelbe Lösung	Faser läst sich leint
		· Fixieurs mit Klebepnzetten
	1.5 h Rühren bei RT	THE CSKOPIE
	Abdampter and in 200 ml mTBE shermen	Filtr arch Filtration genelle, dance euts. Petterionen aut den Bilden; Parbpolanisation Blastikdae; neben gesuchter Faver weitere
	Ober Nacht bei 40°C	Partikel gesilhet level Vernrening durch

Bisherige Datenerfassung –

Laborjournale

	Tu ToDo Ruherfolge Volizen
DATUM/DATE Fortselving 21.01.2020	Fostsebrung 21.01.2020 DATUM/DATE
13 198285 [Place 50 P)	05 198257 (blanes Partibel) hat vermutlichuix
oben P1 1st ? (ONS; Cl ilant?)	66 mitden Thukollaurt band rutun ?
unter Pr 154 #1 2 Folio?	Banden denten auf Doly este vilies hin ?
unteuP1 ist #12 Folio? Dedie!	Darbhel chercema ph 05 Raman 77R
(0 198255 (PlaceSof)	
oben VUAStahl	OF 198258 Thulorlavier band Clas-Partitul unfelicht blanes Torbstoff auf blas, winso ist da blaschin Kerl Knalronglas P2-75
unten Talkmit Spiken/spikes? Salze ? inishalli, sam	Kal Knahonglas P2-75
	08 198257 (blanes Particul) Si +0 aus blas - Forbshoff C-hally
@ Methodiesat / Ourofec/ SC-19-0128	nach cle TTR- Messing = wach Ruman?
ouc MTX 001 = blane Partilet du Sprilee	was ist unter Italis fair eine Praiparellan?
oucMTX002 = in Duranflasche 16 Gouz.	was ist unter Italis für eine Präparation? as genome non si takkrikasstaff Rest noch (dute) dem EDX Promont. Too Sshoff? PRason SZ Genet and normal
Methobexaf soughul	SZ Gearch and normal 1800 }
onc MTX 003 = Julo Ilaviersand	10 138256 (UPF) 2 potyestis hallshrams presente the rishel -blam rate unley
01 198258 ? one Mix 003 Band? 03 " Da sindent Classpille doin? 1 103 ist das Glaspærkel ungedockt	10 138256 (UPF) oben live Thung
03 " Da sindent Clarge He doin	unteg
agro 04 1982 56 = KP7 + bland P. du schon abjonomica winds (Separin fish.	11 138256 (UZF) unten
Misolice (Separier Hist.	12 198256 (UPI) Osen Rine Thus
Mäallig viele Facon wordle glich ?	hier missel have a use by Zeit Invesheren + Pereger?

Bahamirahe Cilvale Do 4. 7. 2013 51029 Penchles Buhamirahe Céluale) + 3 Ag Ahliv Rolle une ky + 3 ag Ce (ile (Filherecholihis) +1515 City Isopropanol eshiben and 60-65°C unber Pühren während virastoff sich vollstardig lit Filher + Woschen der Pipeline mit 66 Libra Jsopropand Varsichliges 76 lühlen auf 36-40°c Produgit fällt aus 3-5 Shunden bû 36-40°C (Zinhrenlassen Daynauf 10°c abhühlen Waschen des Filles auchen mitje 110 Like Isopropanol Trobuen bis 35°C Bisdu Gewichts outust 60,5% beligt (co 24.48 h)

Bisherige Datenerfassung – Experimenttabellen

		SOLL	IST									26.06.2020	0		21.08.2020			13.11.20	20
												Vial + P + D nach		Vial + P + D	Vial + P + D nach	PXRD, DSC, TGA, HPLC		Vial + P + D nach	PXRD, DSC, TGA, HPLC
	API	(mg)	(mg)	Vial N°	Vial	D	Vial + P	Vial + P + D	Start	Bemerkung	Vial + P + D	Probenentnahme	HPLC [mg]	Vial + P + D	Probenentnahme	[mg]	Vial + P + D	Probenentnahme	[mg]
					g	g													
PImodALAG001	APIOO1	90,00	90,886	1	4,64223	0,7097	4,7331	5,44277	29.05.2020	25°C, 6 Monate	5,44229	5,42755	14,74	5,42759	5,40841		5,40839		
PImodBLAG001	01EXP009R1	90,00	89,946	2	4,641618	0,7523	4,7316	5,48396	29.05.2020	25°C, 6 Monate	5,48417	5,46516	19,01	5,46502	5,44075		5,44062		
PlhydratLAG001	LEXP117_2R1	90,00	89,678	3	4,6977	0,7382	4,7874	5,52557	29.05.2020	25°C, 6 Monate	5,52611	5,51138	14,73	5,51174	5,49036		5,49026		
lamorphLAG001	01recGRI001	90,00	90,058	4	4,683592	0,7345	4,7737	5,50815	29.05.2020	25°C, 6 Monate	5,50855	5,49220	16,35	5,49222	5,46310		5,46243		
PImodALAG002	API001	90,00	90,888	5	4,597094	0,6974	4,6880	5,38540	29.05.2020	50°C, 6 Monate	5,40614	5,39403	12,110	5,3933	5,35957		5,35861		
PImodBLAG002	01EXP009R1	90,00	89,980	6	4,619332	0,7101	4,7093	5,41942	29.05.2020	50°C, 6 Monate	5,41862	5,39922	19,400	5,39852	5,36202		5,36133		
PlhydratLAG002	LEXP117_2R1	90,00	90,434	7	4,60993	0,7461	4,7004	5,44649	29.05.2020	50°C, 6 Monate	5,44459	5,43459	10,000	5,43358	5,40631		5,40544		
lamorphLAG002	01recGRI002	90,00	89,116	8	4,616138	0,7348	4,7053	5,44009	29.05.2020	50°C, 6 Monate	5,4379	5,42158	16,320	5,42083	5,38686		5,38611		
PImodALAG003	API001	90,00	90,002	9	4,678128	0,7099	4,7681	5,47795	29.05.2020	85 %rH, 25 °C, 6Monate	5,47784	5,46266	15,180	5,46324	5,43679		5,43987		
PImodBLAG003	01EXP009R1	90,00	90,768	10	4,644776	0,7000	4,7355	5,43553	29.05.2020	85 %rH, 25 °C, 6Monate	5,43594	5,42231	13,630	5,42325	5,37963		5,38588		
PlhydratLAG003	LEXP117_2R1	90,00	90,732	11	4,617778	0,7076	4,7085	5,41608	29.05.2020	85 %rH, 25 °C, 6Monate	5,42028	5,4079	12,380	5,40891	5,38846		5,39002		
PlhydratLAG004	LEXP117_2R1	90,00	90,618	12	4,614956	0,7351	4,7056	5,44062	29.05.2020	15 %rH, 25 °C, 6Monate	5,44055	5,42414	16,410	5,42985	5,40426		5,40401		
lamorphLAG003	D1recGRI003	90,00	90,756	13	4,638006	0,7447	4,7288	5,47348	29.05.2020	85 %rH, 25 °C, 6Monate	5,47197	5,44822	23,750	5,44874	5,4145		5,41549		
it-Proben sind sehr elektr	rostatisch																		
										Mengen die für Analytik ge	plant sind		Anmerkung 6 Monate	<u>u</u>					
										PXRD 10 mg pro Zeitpunkt			TGA Rechner defekt, P	roben sind daher w	vieder in die Lageru	ng gegangen ohne diese	Auszuweige	n	
										DSC 2 mg pro Zeitpunkt			HPLC muss noch ange	füllt werden					
										TGA 5 mg pro Zeitpunkt									
										HPLC 1 mg pro Zeitpunkt									
										18 mg/Messzeitpunkt									
✓ ► Scale !	Up Repros Einlagerung	Pfe	rderenne	en	Löslichke	itsbestim	mung	Löslich	keitsbestim	nmung II Proben zu	m (+)	1							
		_								-									
reit																			

- Verminderte Übersicht durch Segmentierung in Reiter
- Beobachtungen aus Laborjournal müssen öfters nachgetragen werden weil gleichzeitiges arbeiten in Exceltabelle nicht möglich. Wird oft vergessen zu schließen.
- Keine Direkte Datenübertragung zu einzelnen Messmethoden oder Parametern.
- Hierbei wäre wünschenswert (nicht final):
 - 1. Direkte Verknüpfung zu durchgeführten Messmethoden und Parametern
 - 2. Ergänzungsmöglichkeit für eigene Felder zur Erweiterung der Parameter (Unterschiedliche Experimenttypen benötigen oft unterschiedliche Kategorien (Cofomer, Lösemittel/Gemisch, Datum, Uhrzeit, experimentelle Parameter).
 - B. Erhöhte Flexibilität. Bsp: Änderung der Einheiten (mL, L, g, mg, K, °C etc.) und Tabellenfelder (Experimentabhängig)
 - 4. Verlinkung zur anderen Messung/Experimenten sollte möglich sein da evtl. eine Reproduktion, folge Experiment etc.

Bisherige Datenerfassung – Experimenttabellen - Beispiele

(A	В	С	D	E	F	G	Н	I	J	K	L	M
Scale Up	Start	Тур	Anzahl	Exp-No	API	(mg)	(mg)	Bemerkung	PXRD - D2	Phasenanalyse		
Amorphe Phase		Grinding	1	1API001EXP140	Reste oder bay1API	500,0		120 min, 50 Hz				
Amorphe Phase		Grinding	2	1API001EXP141	Reste oder bay1API	500,0		120 min, 50 Hz				
Amorphe Phase		Grinding	1	1API001EXP142	Reste oder bay1API	500,0		120 min, 50 Hz				
					SOLL	IST		SOLL	IST			
								4	4	-		
Тур	Тур	Anzahl	Exp-No	API (kristallin)	(mg)	(mg)	Lösemittel	(mL)	(μL)	Temperatur	PXRD	Bemerkung
Typ Siedetemperatur			Exp-No LAPI001EXP143		(mg) 1500,0		Lösemittel Methanol		(μL)	65 °C	PXRD	Bemerkung schön lange refluxen lassen, dann langsam abkühlen mit Nadel in Septum, Septum auch auf Rückflusskühler später
-116			_						(µL)		PXRD	•
-116			_						(μL)		PXRD	•
-116			_						(µL)		PXRD	•
-116			_						(µL)		PXRD	•
-775			_						(μL)		PXRD	•

1, ,																	
	,	,	SOLL	IST			\Box	I T	SOLL	IST							
Scale U	Exp-No	Тур	(mg)	(mg)	API (kristallin)			Lösemittel	(µL)	(µL)	Beoachtung	g PXRD	Ende	Phasenanalyse			
1	bay1API001EXP153	Slurry 7 Tage	100,0	99,7	bay1API001 oder Reste	1		Methanol	100,0	200	rosa Slurry		10.08.2020		bei Zugabe von 100 uL sr	≟hr trocken, we	eitere Zugabe von weiteren 100 uL, damit slurry rührfähig wird
			الص			السلا											
1																	
i		السسا	SOLL	IST		SOLL	IST			SOLL	IST	1	'		<u> </u>	'	
Anzahl	Exp-No	API (Mod. A)	(mg)	(mg)	API (Mod. B)	(mg)	(mg)	Lösemittel	T (°C)	(µL)	(µL)	Experimenttyp	Dauer	Start -> Ende	Beobachtung	Phasenanalyse	1
1	API001EXP132R2	bay1API001	10,0		API001EXP153	10,0		Ethanol	80	ca. 100	100,0	Slurry	28 Tage	10.08.2020-07.09.2020		<u> </u>	
2	APIOO1EXP133R2	bay1API001	10,0		API001EXP153	10,0		Isobutanol	80	ca. 100	100,0	Slurry	28 Tage	10.08.2020-07.09.2020			
3	APIOO1EXP134R2	bay1API001	10,0		API001EXP153	10,0		Isobuthylmethylketon	80	ca. 100	100,0	Slurry	28 Tage	10.08.2020-07.09.2020		<u>'</u>	
4	APIOO1EXP135R2	bay1API001	10,0		API001EXP153	10,0		Ethylenglycol	80	ca. 100	100,0	Slurry	28 Tage	10.08.2020-07.09.2020			

					SOLL	IST		SOLL	IST		
Тур	Тур	Anzahl	Exp-No	API (kristallin)	(mg)	(mg)	Lösemittel (gemische)	(μL)	(μL)	Temperatur	PXRD
Siedetemperatur	Verdampfung	1	LAPI001EXP103	1API001EXP010R1	200,0	200,6	2,2,2-Trifluoroethanol	?	12000	78 °C	scNF0
Siedetemperatur	Verdampfung	2	LAPI001EXP104	1API001EXP010R1	200,0	198,7	Anisol/2-Picolin (95/5)	?	11000	154 °C/129 °C	scNF0
Siedetemperatur	Verdampfung	3	LAPI001EXP105	1API001EXP010R1	200,0	200,2	Methanol	?	11000	65 °C	scNF1&3
Verdampfung		4	LAPI001EXP106	1API001EXP010R1	200,0	204,3	2,2,2-Trifluoroethanol			RT	scNF0
Verdampfung		5	LAPI001EXP107	1API001EXP010R1	200,0	199,7	Anisol/2-Picolin (95/5)	?		50°C	scNF1+X
Verdampfung		6	LAPI001EXP108	1API001EXP010R1	200,0	201,9	Methanol	?		RT	scNF1
					7						


```
Buspiel Experimentures
```

```
Mit einer Probe (Proben-Nr: XYZ) wird ein Experiment-Setup geplant mit
unterschriedlichen Experiment - Typen, z. 3.
      5 Drude - Experimente (Statisch)
                                                        habenalle Experiment-Nr.
                                                            basierend and xyz eshalten
      (69 Vedampfungs Dristallisationen)
                                    Analysen Huswerlung
    22 vou 42 => 4
                                                                      => 5 DSC/TH/IR/Raman
22 vou 42 => 4 => 22 PXRD => 5 | stud => 1 DSC | TG1 |

-> 5 vou 5 => Kristalle eutstanden => 5 PXRD => 1 | interessant => 6 DSC | TG1 |

46 vou 69 => 0 => 42 PXRD => 12 | => 6 DSC | TG1 |
                                                                     => 6 DSC [TG] H-NUR
    46 vou69=> "
                                         14 zursseuis
                                                                           2 H-NMR
                                           Substan2)
                            USW. - ... Analyse
                                                                       30 Experimenter
                                                                        basse rend out
                                                                        Erfebuislen
```



```
Analysey rounen untersitiedlich
                       Setul Die Häufigsbenstudjedoch:
 Julen
                                                                  Extern (wanger)
PXRD (BB+ Map.)
                   Methodey
                                                              REM/EDX
DSC/mdsc
                     KPF
                                                              TOF-SIMS
T61
                     Roefveld
 Ramaulmitrospett.
                                                              DVS
                    Bildanalyse
IR
                                                              H-NMR
                     Fotodo Junea la lon
 KŦ
                                                            BC-NMR
                     Quantifizanny (Sperbostopisch)
 SLS
                                                              XPS
                     LOD - Beskinding
 DLS
                                                               MS
                      Screenings
                                                              TCP-OESO.MS
 PLM
                                                               SCNMR
 OMI
                                                               6.C
 BEHALA
                                                              BET
 Bildadalyse
                                                               Raman (milrospell)
 T-PXRD
                                                   Flewentovauxlyse T-PXRD
  Impedanspelchostogie
                                                     Syndridron RFF
                                                       DMA NIR
                                                       CARS Elapoleghial
                                                     Houtastwingel SXRD
```


Mögliche Herangehensweise – Aufbau

