Algorithmen der Sequenzanalyse: Statistischer Vergleich von k-mer Häufigkeiten

22.10.2024

Prof. Michael Smmeth

Algorithm 1: HÄUFIGEWÖRTERNOCHSCHNELLER(Text,k)

```
for i = 0 to 4^k - 1 do
     Anzahl(i) \leftarrow 0
H\ddot{a}ufigeW\ddot{o}rter \leftarrow \emptyset
maxAnzahl \leftarrow 0
for i = 0 to |Text| - k do
     kmer \leftarrow |Text(i, k)|
     index \leftarrow kmerZuIndex(kmer)
     Anzahl(index) \leftarrow An\overline{zahl(index)} + 1
     if Anzahl(index) = maxAnzahl then
          H\ddot{a}ufigeW\ddot{o}rter \leftarrow H\ddot{a}ufigeW\ddot{o}rter \cup \{kmer\}
     else if Anzahl(index) > maxAnzahl then
          H\ddot{a}ufigeW\ddot{o}rter \leftarrow \{kmer\}
         maxAnzahl \leftarrow Anzahl(index)
```

return Häufige Wörter

"Versteckte Nachrichten" im *oriC* von *Thermotoga petrophila*

Anwenden von $H\ddot{a}ufigeW\ddot{o}rter(Text, k)$ auf Text = oriC von $Thermotoga\ petrophila$ (548 Nukleotide), und k = 3, 4, ..., 9

ergibt:

k	3	4	5	6	7	8	9
häufigste Anzahl	24	11	6	6	5	5	5
häufigste(s) k-mer(e)	ttt	tacc	gatca	tgatca	acctacc	acctacca	acctaccac
	att		tgatc				

Frage: ist eine / welche dieser häufigsten k-mere verschiedener Längen ist "überraschend" häufig?

Statistik: wie oft ist überraschend oft?

k	3	4	5	6	7	8	9
häufigste Anzahl	24	11	6	6	5	5	5

je größer k, desto weniger Vorkommnisse (Kombinatorik)

Appproximation der Wahrscheinlichkeit p_f , dass ein k-mer in einem Text der Länge N über das Alphabet A mindestens t-mal* vorkommt:

$$p_f(N, A, k, t) \approx \frac{\binom{N-t(k-1)}{t}}{|A|^{(t-1)k}}$$

* <u>nicht-überlappend</u>

für DNA-Sequenzen mit |A| = 4

$$p_f(N,k,t) \approx \frac{\binom{N-t(k-1)}{t}}{4^{(t-1)k}}$$

z.B. $p_f(500, 9, 5) \sim 5*10^{-11} \rightarrow$ "seeehr überraschend"

Statistik: wie oft ist überraschend oft?

Anwenden von $H\ddot{a}ufigeW\ddot{o}rter(Text, k)$ für k = 3, 4, ..., 9 auf den oriC

• von *Thermotoga petrophila* ergibt:

k	3	4	5	6	7	8	9
häufigste Anzahl	24	11	6	6	5	5	5
$p_f(N, k, t)$	10 ⁻¹	1* 10 ⁻²	2* 10 ⁻²	10 ⁻⁵	10 -6	10-8	10-11

9-mere am "überraschensten",

Hypothese: DnaA-boxen sind Nonamere

• von Vibrio cholerae ergibt:

k	3	4	5	6	7	8	9
häufigste Anzahl	25	12	8	8	5	4	3
häufigste(s) k-mer(e)	tga	atga	gatca	tgatca	atgatca	atgatcaa	atgatcaag
			tgatc				cttgatcat
							tcttgatca
							ctcttgatc
$p_f(N, k, t)$	10-2	10-3	10 ⁻⁵	10-9	10 ⁻⁶	10 ⁻⁵	10-4

Was bedeuten mehrere überraschend häufige *k*-mere?

Im *oriC* von *Vibrio cholerae*:

reverses Komplement muß bei häufigen Wörtern berücksichtigt werden!