CO544: Machine Learning and Data Mining

Lab 1: Python Data Science Toolbox

E/20/197 Kawya A.H.D.

Exercise 1: NumPy Advanced Operations

Exercise	Observation	Insight
Generating	Unless we set a seed, each run gives	np.random.randint() is a key tool in data
Random Values	different values.	science workflows. It is used for
		generating test inputs.
Boolean	This is useful for data filtering,	Boolean indexing is used to select
Indexing to Filter	conditional selection and data	elements based on conditions without
Values ≥ 50	cleaning.	loops.
Demonstrate	NumPy automatically expanded the	Broadcasting is a core concept for
broadcasting	dimensions of the smaller array to	vectorized computations.
	match the larger array.	
Compute dot	Dot product represents the sum of	The dot product is fundamental in
product of two	element-wise multiplication.	machine learning. This is how inputs are
arrays		combined with weights.

Exercise 2: Matplotlib Subplots

Exercise	Observation	Insight
Prepare data for	X values have generated, and sine	This simulates periodic wave behavior.
sine and cosine	and cosine values have calculated for	
functions	each x-value.	
Create subplots	Two side_by_side subplots have been	Using subplots helps in comparing
	created. Titles and labels clarify the	multiple datasets or functions within a
	purpose of each subplot.	single figure.
		Sharing axes improves readability and
		removes redundant visual elements.

Exercise 3: Pandas Cleaning & Preprocessing

Exercise	Observation	Insight
Load Titanic dataset	We have loaded a real-world dataset containing passenger data from the Titanic voyage.	Always start by understanding data before any modeling.
Imputing Missing Values	For 'Age- Numerical', missing values are filled with the median. It is less sensitive to outliers than the mean. For 'Embarked- Categorical', filled with the mode, which is the most frequently occurring part	Imputation preserves data integrity without deleting rows, which is especially important in datasets with limited samples.

Dropping	Any duplicate rows have been	These duplicate rows can be bias
Duplicates	deleted to ensure each record is	analysis in model training. It leads to
	unique.	model overfitting.
Detecting	Values which are significantly higher	Outlier detection is crucial for model
Outliers in Fare	and lower than most fares are called	performance.
	outliers	

Exercise 4: Pandas Essentials

Exercise	Observation	Insight
Create and inspect Series	Two Pandas series have been created with default integer index & manually defined indexed labels.	However we have defined the series, they can be accessed by default or manually defined labels.
Build Data Frame and summarize	Small Structured Data Frame has been created, and it represents a simple table with names and their scores. A random Numerical Data Set has been created, and it contains 100 rows and 3 columns filled with random numbers from a normal distribution.	Manually constructed data frames are suitable for testing, prototyping or handling small datasets. Randomly generated data helps test statistical methods, visualize distributions, or benchmark machine learning algorithms.
Indexing, sorting, and dropping	loc is for label access, not position. iloc is position-based indexing sort_values is for sorting the entire data framedrop is for dropping a column.	Using these functions allows flexible data success by label or index, while other sorting and dropping helps revel patterns by ordering rows and simplifies the data frames by removing unnecessary columns or rows.
Handle missing data	These functions are used to handle missed values.	These functions remove incomplete data to ensure clean records & missing values with default but possibly introducing bias.
Excel I/O	The tail() function lets us quickly inspect if the last few records are intact or contain anomalies. Saving to a new Excel file ensures we don't overwrite the original file.	Excel I/O in Pandas allows easy integration of tabular data workflows.

Exercise 5: Loading Open Dataset from UCI Repository

Exercise	Observation	Insight
Load Wine	The data is loaded directly from the	Loading and inspecting a labeled
dataset	UCI Machine Learning Repository. The dataset has no header row, so column names are manually assigned.	dataset like the Wine dataset is essential for understanding its structure.
Group by class	We can compare feature averages across wine class. It provides a numerical summary.	Grouping by class and calculating feature means is a fundamental step in data analysis.

Exercise 6: scikit-learn Iris Dataset (Extended)

Exercise	Observation	Insight
Load and	The dataset has 150 samples and 4	Loading and structuring the Iris dataset
preview Iris	features per sample.	into a labeled Data Frame allows for
		easy analysis.
Train/test split	The dataset is divided into training	Splitting the data into training and test
	and test sets to evaluate model	sets ensures that model evaluation is
	performance fairly.	fair and unbiased.
Model training	The classification report gives a	Logistic Regression, when applied to a
and evaluation	detailed performance breakdown for	well-balanced and linearly separable
	each Iris class.	dataset-like Iris. It offers high
		interpretability and reliable
		performance.