Álgebra Linear I - Aula 20

- 1. Matrizes diagonalizáveis.
- 2. Matrizes diagonalizáveis. Exemplos.
- 3. Forma diagonal de uma matriz diagonalizável.

1 Matrizes diagonalizáveis

Uma matriz quadrada

$$T = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

é diagonal quando $a_{i,j} = 0$ para todo $i \neq j$.

Observe que os autovalores de uma matriz diagonal são os elementos da sua diagonal.

Uma transformação linear T é diagonalizávelem quando é semelhante a uma matriz diagonal. O raciocínio no exemplo na seção anterior mostra que se T possui uma base de autovetores então é semelhante a uma matriz diagonal (de fato, semelhante à matriz diagonal cuja diagonal está formada pelos autovalores de T com suas multiplicidades).

De fato o processo é o o mesmo que usamos nos exemplos precedentes. Suponhamos que estamos em \mathbb{R}^3 , e assumimos que T possui uma base de autovetores $\{u,v,w\}$ associados aos autovalores λ , σ e ρ (observemos que estes autovalores não necessitam ser todos diferentes, de fato, podem ser todos iguais!). Afirmamos que T é semelhante à matriz

$$D = \left(\begin{array}{ccc} \lambda & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \rho \end{array}\right).$$

Para ver isto devemos achar uma matriz S tal que

 $T = S^{-1} D S$, ou equivalentemente, S T = D S.

 $\acute{\mathrm{E}}$ suficiente considerar S definida por

$$S(u) = (1,0,0) = \mathbf{i}, \quad S(v) = (0,1,0) = \mathbf{j}, \quad S(w) = (0,0,1) = \mathbf{k}.$$

Observe que

$$DS(u) = D(\mathbf{i}) = \lambda \mathbf{i}, \quad DS(v) = D(\mathbf{j}) = \sigma \mathbf{j}, \quad DS(u) = D(\mathbf{k}) = \rho \mathbf{k}.$$

Por outra parte,

$$ST(u) = S(\lambda u) = \lambda S(u) = \lambda \mathbf{i},$$

$$ST(v) = S(\sigma v) = \sigma S(v) = \sigma \mathbf{j},$$

$$ST(w) = S(\rho w) = \rho S(w) = \rho \mathbf{k}.$$

Portanto, ST = DS na base $\{u, v, w\}$, logo as transformações lineares são iguais. Ou seja,

$$T = S^{-1} D S,$$

portanto, por definição, T é diagonalizável.

Suponha agora que T é semelhante a D, onde D é uma matriz diagonal como acima. Afirmamos que $S^{-1}(\mathbf{i})$, $S^{-1}(\mathbf{j})$, e $S^{-1}(\mathbf{k})$, são autovetores de T associados a λ , σ e ρ , respetivamente. Como S é inversível e \mathbf{i} , \mathbf{j} e \mathbf{k} são l.i., $\{S^{-1}(\mathbf{i}), S^{-1}(\mathbf{j}), S^{-1}(\mathbf{k})\}$ é uma base, formada por autovetores de T. Vejamos a afirmação para $S^{-1}(\mathbf{i})$:

$$T(S^{-1}(\mathbf{i})) = S^{-1} D S(S^{-1}(\mathbf{i})) = S^{-1} D(\mathbf{i}) = S^{-1}(\lambda \mathbf{i}) = \lambda S^{-1}(\mathbf{i}),$$

como queriamos provar.

2 Matrizes diagonalizáveis. Exemplos

Observe que os autovalores de uma matriz diagonal são os elementos da sua diagonal.

Uma transformação linear T é diagonalizável quando existe uma base formada por autovetores. Vimos que neste caso a matriz de T é semelhante a uma matriz diagonal. De fato, as duas propriedades seguintes são equivalentes:

• possuir base de autovetores,

• ser semelhante a uma matriz diagonal.

Sejam A uma transformação linear diagonalizável, $\beta = \{v_1, v_2, \dots, v_n\}$ uma base de autovetores de A e $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ os autovalores associados a v_1, \dots, v_n . Uma forma diagonal de A é

$$D_A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Observe que A pode ter diferentes formas diagonais (é suficiente mudar a ordem dos vetores da base de autovetores!).

Exemplos 1. Espelhamentos e projeções (ortogonais ou não) são transformações lineares diagonalizáveis.

Prova: Para provar a afirmação devemos encontrar uma base de autovetores. Por exemplo, em \mathbb{R}^3 e considerando projeções P e espelhamentos E no plano

$$\pi$$
: $ax + by + cz = 0$,

podemos considerar dois vetores não nulos v e w não paralelos do plano e o vetor ℓ correspondente à direção de projeção ou de espelhamento. Obtemos assim a base

$$\beta = \{v, w, \ell\}.$$

Trata-se de uma base de autovetores de P e de E:

$$P(v) = v$$
, $P(w) = w$, e $P(\ell) = \bar{0}$.

Também temos

$$E(v) = v$$
, $E(w) = w$, $e E(\ell) = \ell$.

No caso de projeções e espelhamentos em retas o raciocínio é similar.

Exemplos 2. A transformações lineares $A, B, C : \mathbb{R}^3 \to \mathbb{R}^3$ cujas matrizes na base canônica são

$$[A] = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad [B] = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}, \quad [C] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

não são diagonalizáveis.

Prova: Por exemplo, a matriz A possui um único autovalor igual a 1 de multiplicidade 3. Faça os cálculos e veja que os autovetores de A são os vetores não nulos da forma (t,0,0). Portanto, no máximo é possível um autovetor l.i. de A. Logo A não possui uma base de autovetores.

No caso da matriz B, os autovalores são 2 (simples ou de multiplicidade um) e 1 de multiplicidade 2. Associados a 2 obtemos autovetores da forma (0,0,t). Os autovetores associados a 1 são da forma (t,0,0). Portanto, somente é possível obter dois autovetores l.i. de B. Logo B não possui uma base de autovetores.

Nos dois casos anteriores o fato de não ser possível obter uma base de autovetores é devido a que há um autovalor de multiplicidade k (3 no caso da matriz A e 2 no caso de B) que possui um número de autovetores l.i. menor do que k (em ambos os casos 1).

O fato da matriz C não ser diagonalizável é devido a outros motivos: tem um autovalor complexo (não real).

Exemplos 3. As formas diagonais das projeções (ortogonais ou não) P e espelhamentos R em \mathbb{R}^2 são, respectivamente,

$$D_P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad D_R = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

As formas diagonais das projeções (ortogonais ou não) P_1 em uma reta e P_2 em um plano de \mathbb{R}^3 são, respectivamente,

$$D_{P_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad D_{P_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

As formas diagonais dos espelhamentos E_1 em torno de uma reta e E_2 em torno de um plano em \mathbb{R}^3 são, respectivamente,

$$D_{E_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad D_{E_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Exemplos 4. A transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(1,1,2) = 2(1,1,2), T(1,0,1) = 2(1,0,1), T(1,1,1) = 3(1,1,1)$$

é diagonalizável: $\{(1,1,2),(1,0,1),(1,1,1)\}$ formam uma base de autovetores cuja forma diagonal é

$$D_T = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

Uma condição suficiente, porém não necessária, para uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ ser diagonalizável é ter n autovalores reais distintos. Para ver isto, sejam $\lambda_1, \ldots, \lambda_n$ os autovalores e v_1, \ldots, v_n os autovetores associados a estes autovalores. Por resultados já vistos, como $\lambda_1, \ldots, \lambda_n$ são diferentes, os vetores v_1, \ldots, v_n são l.i.. Portanto, formam uma base (de autovetores) de \mathbb{R}^n (n vetores l.i. de \mathbb{R}^n formam uma base).

Exemplo 1. Suponha que A é uma transformação linear de \mathbb{R}^3 cujo polinômio característico é

$$p(\lambda) = -(\lambda - 1)(\lambda - 2)(\lambda - 3).$$

Estude se A é diagonalizável e calcule sua forma diagonal.

Prova: A transformação é diagonalizável: tem três autovalores distintos: 1,2,3. Sua forma diagonal é

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

Exemplo 2. Estude se a afirmação a seguir é verdadeira: Suponha que A é transformação linear de \mathbb{R}^3 cujo polinômio característico é $p(\lambda) = -(\lambda - 1)^2(\lambda - 2)$, então A não é diagonalizável.

Prova: A afirmação é falsa. Da afirmação deduzimos que A tem um autovalor 1 (de multiplicidade 2) e um autovalor 2 simples. Por exemplo,

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)$$

tem polinômio característico $p(\lambda) = -(\lambda - 1)^2(\lambda - 2)$ e é diagonalizável (de fato, já é diagonal!). Porém, a matriz

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)$$

tem o mesmo polinômio característico e não é diagonalizável. Ou seja, no caso em que existem raízes repetidas não é possível deduzir se é diagonalizável ou não somente com a análise do polinômio característico (é necessário estudar os autovetores).

Exemplo 3. Sabendo que a matriz P,

$$P = \begin{pmatrix} 5/6 & -2/6 & 1/6 \\ -2/6 & 2/6 & 2/6 \\ 1/6 & 2/6 & 5/6 \end{pmatrix}$$

representa um espelhamento ou uma projeção ortogonal em um plano determine a opção válida. Determine o plano de projeção ou de espelhamento.

Resposta: A matriz tem traço 2. Logo não pode ser um espelhamento. Será, portanto, uma projeção. Para determinar o plano de projeção há três opções. Determinar os autovetores associados a 1 (obtendo assim o plano), determinar os autovetores de 0 (obtendo a direção normal do plano) ou como segue. Observe que P(1,0,0) e P(0,1,0) são vetores do plano. Logo (5,-2,1) e (-1,1,1) são vetores paralelos do plano. Logo o vetor normal do plano é (1,2,-1). Verifique que $P(1,2,-1)=\bar{0}$.

Exemplo 4. Considere a transformação linear T,

$$T = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

Estude se T é diagonalizável. Em caso afirmativo, determine sua forma diagonal. Determine seu significado geométrico.

Resposta: Uma projeção ortogonal na reta (1,1,1) seguida de uma multiplicação por 3. É diagonalizável e sua forma diagonal é

$$T = \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Veja que os autovalores são 3 (simples) e 0 (multiplicidade 2). Os autovetores são $(t,t,t),\ t\in\mathbb{R}, t\neq 0$, e os vetores não nulos de x+y+z=0. Observe que existe uma base ortogonal de autovetores

$$\{(1,1,1),(1,-1,0),(1,1,-2)\}$$

de T

Exemplo 5. Mostre que λ é um autovalor de uma matriz inversível A se, e somente se, λ^{-1} é um autovalor de A^{-1} . Os autovetores associados são os mesmos?

Prova: Seja v um autovetor de A e $\sigma \neq 0$ seu autovalor (pelo exercício anterior sabemos que σ é não nulo). Temos,

$$v = A^{-1}A(v) = A^{-1}(\sigma v) = \sigma A^{-1}(v).$$

Portanto,

$$A^{-1}(v) = (1/\sigma) v.$$

Logo v é um autovetor de A^{-1} com autovalor associado σ^{-1} .

Observe que o argumento anterior prova que se A é inversível, então A é diagonalizável se, e somente se, A^{-1} é diagonalizável.

Outra forma de provar esta propriedade é a seguinte: suponha que A é inversível e diagonalizável, então

$$A = P^{-1} D. P.$$

onde D é diagonal. Como o determinante do produto é o produto dos determinantes, D tem determinante não nulo e portanto é inversível. De fato, a inversa de uma matriz diagonal é outra matriz diagonal, mais precisamente:

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}, \qquad D^{-1} = \begin{pmatrix} \lambda_1^{-1} & 0 & \dots & 0 \\ 0 & \lambda_2^{-1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^{-1} \end{pmatrix},$$

observe que $\det(D) \neq 0$ implica que $\lambda_1, \dots, \lambda_n$ são todos diferentes de 0. Finalmente, como $(C E)^{-1} = E^{-1} C^{-1}$, temos

$$A^{-1} = (P^{-1} D P)^{-1} = P D^{-1} P^{-1},$$

e A^{-1} é semelhante a D^{-1} que é diagonal. Portanto, A^{-1} é diagonalizável.