

Presentation Overview

Problem Overview

Solution

Concluding Statements

- Problem Statement
- The Numbers
- Limitations
- Other Solutions

- Function/Purpose
- Demo
- Hardware
- Image Processing
- User Feedback/Response

- Profitability Projections
- Potential Marketing Plan
- Environmental & Social Ramifications
- Applications
- Next Steps

Presentation Overview

Problem Overview

Solution

Concluding Statements

- Problem Statement
- The Numbers
- Limitations
- Other Solutions

- Function/Purpose
- Demo
- Hardware
- Image Processing
- User Feedback/Response

- Profitability Projections
- Potential Marketing Plan
- Environmental & Social Ramifications
- Applications
- Next Steps

Problem Statement

Individuals with auditory disabilities face a universal challenge; their lack of audial clarity imposes natural limitations on them when in pursuit of education, employment, and communication.

Hearing Impairment Statistics

- Roughly 5% of the world's population have hearing loss
- 466 million people have hearing loss greater tan 40 dB

/ Deaf **\ 81 dB**+

Moderate to Severe Hearing Loss

41-80 dB

Mild Hearing Loss
20-40 dB

The Limitations

Other Solutions

Presentation Overview

Problem Overview

Solution

Concluding Statements

- Problem Statement
- The Numbers
- Limitations
- Other Solutions

- Function/Purpose
- Demo
- Hardware
- Image Processing
- User Feedback/Response

- Profitability Projections
- Potential Marketing Plan
- Environmental & Social Ramifications
- Applications
- Next Steps

Function and Purpose

- Users with hearing impairment often face difficulty communicating with others
- Premium equipment for equipment cost incredible sums of money (e.g hearing aids)
- We-sign offers both ASL-tospeech and speech-to-text capabilities for fluid conversation

Architecture

Check out the Video in the

README to see this Visual Demonstration

Packaging

Hardware

Schematic

\$75.80
Prototype Cost: \$247.53

Components

Cost of Production					
Item	Prototyping (Source: Amazon)	Manufactering (Source: Alibaba)			
Raspberry Pi	\$99.99	\$31.00			
Power Supply Adapter	\$11.85	\$1.02			
4-Inch LED Screen	\$44.99	\$23.28			
Microphone	\$11.00	\$2.56			
Camera	\$39.99	\$8.77			
Packaging	\$15.00	\$5.67			
Speaker	\$24.71	\$3.50			
Total	\$247.53	\$75.80			

Our Approach

Image Processing

Motion-Based Background Subtractor

Our Approach:

- We further advanced the device's image processing capabilities to distinguish hands from its environment using background subtractor techniques
- This was done by extracting the moving foreground (hand) from the static background while minimizing the detection of interference/noise

Our Implementation:

 OpenCV, a library that houses multiple image processing functions, was used to implement background subtraction

Visual Demonstration of Background Subtraction Capabilities

Image Processing

Hand Tracking

Our Approach:

- The need to locate where exactly the hand is in the frame is obviously crucial to ensure that the algorithm is successful
- Locating the hand was done by plotting the location of parts of the hand and using a set to determine a box around

Our Implementation:

- MediaPipe, Google's popular heavily customized ML library, allows us to plot exactly the hand placement
- Additionally, this implementation allows us to expand into more complex phrases in ASL in the future

Visual Demonstration of the ML hand tracking

Model Accuracy

Training Data

- Used a publicly available ASL training dataset (Sign Language MINST)
- Over 27,000 of training images, 7,000 of testing
- Representing multiple people repeating the standard gestures against different backgrounds

Sequential Layers

Model Accuracy

Word Inference

Character String Transformation

Our Approach:

• The ASL Frame classifier returns a continuous string of characters – string meaning cannot be determined without inferring spaces

Our Implementation:

- Use Zipf's Law which determines the probability of a word occurrence based on frequency – to construct a cost dictionary of words
- Find lowest-cost string by backtracking cost arrays of different word possibilities

Word inference from ASL character string code component

Text-to-Speech

Character String Transformation

Our Approach:

 A text-to-speech component from user ASL input encourages seamless and convenient communication between two parties

Our Implementation:

 Pyttsx3 – a text-to-speech Python library – is implemented to express user ASL input in voice-form

pyttsx3 2.90

```
import pyttsx3

# initialize engine
engine = pyttsx3.init()

# set properties
engine.setProperty('rate', 150) # speed percent
engine.setProperty('volume', 0.9) # Volume 0-1

# Text-to-speech function
def speak(s):
engine.say(s)
engine.runAndWait()
```

Text to Speech Component

Voice Recognition

User Interface

Our Approach:

- Main criteria in designing the user interface consisted of enabling a seamless interaction between the two users
- A speech-to-text peripheral enables the device to be efficiently used and avoids interference with ongoing tasks

Our Implementation:

• Using the speech-to-text Google Cloud API, our device can accurately pick up on verbal phrases to be displayed on the screen towards the impaired user

Google Cloud

```
import speech_recognition as sr

r = sr.Recognizer()

speech = sr.Microphone(device_index=1)

with speech as source:

print("say something!.")

audio = r.adjust_for_ambisent_noise(source)

audio = r.listen(source)

try:

recog = r.recognize_google(audio, language = 'en-US')

print("You said: " + recog)

except sr.Unknoom/valuetror:

print("Google Speech Recognition could not understand audio")

except sr.RequestError as e:

print("Could not request results from Google Speech Recognition service; {0}".format(e))
```

Speech to Text Component

Presentation Overview

Problem Overview

Solution

Concluding Statements

- Problem Statement
- The Numbers
- Limitations
- Other Solutions

- Function/Purpose
- Demo
- Hardware
- Image Processing
- User Feedback/Response

- Profitability Projections
- Potential Marketing Plan
- Environmental & Social Ramifications
- Applications
- Next Steps

Cost Breakdown

Cost of Production					
Item	Prototyping (Source: Amazon)	Manufactering (Source: Alibaba)			
Raspberry Pi	\$99.99	\$31.00			
Power Supply Adapter	\$11.85	\$1.02			
4-Inch LED Screen	\$44.99	\$23.28			
Microphone	\$11.00	\$2.56			
Camera	\$39.99	\$8.77			
Packaging	\$15.00	\$5.67			
Speaker	\$24.71	\$3.50			
Total	\$247.53	\$75.80			

Manufacturing: \$75.80/Unit Prototyping: \$247.53/Unit

Projected Profitability

We-Sign Inc.						
Projected Income Statement						
<u>Item</u>	<u>Assumption</u>	<u>2021</u>	<u>2022</u>			
Revenue						
Net Sales	2021: Sold 10 Units 2022: Sold 50 Units @ \$300/Unit	\$3,000	\$15,000			
COGS	\$75.80/Unit (See Cost Breakdown of Manufactering)	\$758	\$3,790			
Gross Profit		\$2,242	\$11,210			
Expenses						
General & Administrative Expense	5% of Net Sales	(150)	(750)			
Utilities Expense	3% of Net Sales	(90)	(450)			
Advertisment Expense	30% of Net Sales	(900)	(4,500)			
Research & Development Expense	10% of Net Sales (Continuous Prototyping)	(300)	(1,500)			
Total Expenses		(1,440)	(7,200)			
Income Before Tax		\$802	\$4,010			
Income Tax	30%	(241)	(1,203)			
Net Income		\$561	\$2,807			

Key Assumptions:

Unit Price: Approximately manufacturing cost per unit x4

Units Sold: Based on potential partnerships with small-medium institutions

Expenses: Small portions of revenue would be allocated to basic operating expenses, with an additional large focus on advertisement

Income Tax: A conservative yet common rate placed on most corporate entities

Marketing Plan

Price: \$300/Unit

Promotion/Growth:
Partnerships with
Franchises

Target Market: Retail and Service Centres

Product: Seamless Use and Effectiveness Placement: B2B Distribution

Environmental & Social Ramifications

Mitigations

Environmental Mitigations

- Bringing production processes to Canada specifically in locations that use primarily renewable energy, this would also simultaneously lower We-sign's transportation/shipping footprint
- Create a safe disposal program to deal with the hardware after it has reached its useful life

Social Mitigations

• Work with associations such as the Ontario Association of the Deaf to determine those that need the device the most

Applications

Next Steps

Expanded Functionality:

The integration of the ML hand detection algorithm to enables a unique opportunity to increase the functionality to include more mobile phrases

Educational Capabilities:

Implement a learning program alongside the device so that education providers can use the tool to promote ASL learning

References

- [1] "Deafness and hearing loss", Who.int, 2021. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. [Accessed: 08-Jan-2021].
- [2] "How Deaf Children Are Being Locked Out of Language", *OZY*, 2021. [Online]. Available: https://www.ozy.com/news-and-politics/how-deaf-children-are-being-locked-out-of-language/89643/. [Accessed: 08- Jan- 2021].
- [3] *Deafjobwizard.com*, 2021. [Online]. Available: https://www.deafjobwizard.com/post/unemployment-in-the-deaf-community-barriers-recommendations-and-benefits-of-hiring-deaf-employees. [Accessed: 08- Jan- 2021].
- [4] Mayo Clinic. [Online]. Available: https://www.mayoclinic.org/tests-procedures/cochlear-implants/about/pac-20385021 [Accessed: 08-Jan-2021].
- [5] "Hearing Aids," *National Institute of Deafness and Other Communication Disorders*, 14-Dec-2020. [Online]. Available: https://www.nidcd.nih.gov/health/hearing-aids. [Accessed: 08-Jan-2021].
- [7] B. Garcia and S. A. Viesca, "Real-time American Sign Language Recognition with Convolutional Neural Networks," *Stanford University*, 27-Nov-2012. [Online]. Available: http://cs231n.stanford.edu/reports/2016/pdfs/214_Report.pdf. [Accessed: 08-Jan-2021].
- [8] K. Suri and R. Gupta, "Convolutional Neural Network Array for Sign Language Recognition Using Wearable IMUs," 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), 2019.
- [9] S. Mathur and P. Sharma, "Sign Language Gesture Recognition using Zernike Moments and DTW," 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), 2018.
- [10] "Sign Language Recognition using Hybrid Neural Networks," *International Journal of Innovative Technology and Exploring Engineering Regular Issue*, vol. 9, no. 2, pp. 1092–1098, 2019.
- [11] "Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com," *Alibaba*. [Online]. Available: https://www.alibaba.com/. [Accessed: 08-Jan-2021].
- [12] "Projecting Income Statement Line Items Step by Step Guide," *Corporate Finance Institute*, 08-Apr-2020. [Online]. Available: https://corporatefinanceinstitute.com/resources/knowledge/modeling/projecting-income-statement-line-items/. [Accessed: 08-Jan-2021].
- [13] Tecperson, "Sign Language MNIST," *Kaggle*, 20-Oct-2017. [Online]. Available: https://www.kaggle.com/datamunge/sign-language-mnist. [Accessed: 08-Jan-2021].
- [14] "Flaticon, the largest database of free vector icons," Flaticon. [Online]. Available: https://www.flaticon.com/. [Accessed: 08-Jan-2021].