Функциональный анализ Домашние задания

15 ноября 2023 г.

1 Метрические и топологические пространства

Задача 5. Пусть A – подмножество метрического пространства (X, ρ) . Доказать, что функция $f: X \to \mathbb{R}, f(x) = \rho(x, A) = \inf_{y \in A} \rho(x, y)$ непрерывна.

Решение. $\forall x, y \in X$

$$\begin{aligned} & \rho(x,A) \leq \rho(x,y) + \rho(y,A) \\ & \rho(y,A) \leq \rho(x,y) + \rho(x,A) \\ \Longrightarrow |f(x) - f(y)| = |\rho(x,A) - \rho(y,A)| \leq \rho(x,y). \end{aligned}$$

Задача 9. Исследовать пространство C[a,b]: доказать, что оно полно, сепарабельно, связно.

Решение. Пусть $\{f_n\} \subset C[a,b]$ — фундаментальна. Тогда $\{f_n(x)\}$ тоже фундаментальна для всех x и у нее есть предел f(x). Таким образом определена функция f. $\forall x,y \in [a,b]$

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|,$$

следовательно f непрерывна и C[a,b] полно.

C[a,b] является сепарабельным по теореме Вейерштрасса. Искомое счетное всюду плотное подмножество есть пространство всех многочленов с рациональными коэффициентами.

C[a,b] связно, поскольку $\forall f,g\in C[a,b]$ отрезок $[f,g]=\{\theta f+(1-\theta)g:\theta\in[0,1]\}$ тоже лежит в C[a,b].

Задача 13. Доказать, что пространство основных функций $D(\mathbb{R}^1)$ неметризуемо.

Решение (Functional Analysis, Walter Rudin, стр. 156, также см. здесь). Обозначим через D_K подпространство $D(\mathbb{R})$, состоящее из функций с носителем в K. Поскольку \mathbb{R} , как открытое множество, можно представить

как счетное объединение компактов (см. здесь), то $D(\mathbb{R})=\bigcup_{i=1}D_{K_i}$, где K_i – компакты. Значит, $D(\mathbb{R})$ – первой категории Бэра, так как все $\mathrm{int}D_{K_i}$ пусты

в $D(\mathbb{R})$ (если для некоторого i это не так, то $D_{K_i} = D(\mathbb{R})$, что неверно в силу некомпактности \mathbb{R} , см. здесь и здесь). Поскольку $D(\mathbb{R})$ – полное, то по теореме Бэра $D(\mathbb{R})$ неметризуемо.

2 Полные метрические пространства

Задача 2. Доказать, что пространства $l_p(1 \le p < \infty)$ — сепарабельные полные метрические пространства, а пространство l_∞ — полное, но не сепарабельное.

Решение. Сначала докажем сепарабельность $l_p, p[1, \infty)$. Рассмотрим счетное подмножество

$$S = \bigcup_{i=1}^{\infty} \{(x_1, x_2, ... x_i, 0, 0, ...) : x_i \in \mathbb{Q}\} \subset l_p.$$

Пусть даны $x \in l_p$ и $\varepsilon > 0$. Выберем достаточно большое $k \in \mathbb{N}$ и $y \in S$ так, чтобы

$$\sum_{i=k+1}^{\infty} |x_i|^p < \frac{\varepsilon}{2}, \qquad \sum_{i=1}^k |x_i - y_i|^p < \frac{\varepsilon}{2}.$$

Тогда $||x-y|| < \varepsilon$ и, тем самым, S – всюду плотно, что и требовалось.

Покажем полноту $l_p, p \in [1, \infty)$. Пусть $\{x_n\} \subset l_p$ — фундаментальна. Тогда $\forall \varepsilon > 0$ имеем, что $\sum_{i=1}^{\infty} |x_n^i - x_m^i|^p < \varepsilon$ начиная с некоторого момента, следовательно и $|x_n^i - x_m^i| < \varepsilon$, а значит $\{x_n^i\} \subset \mathbb{R}$ — фундаментальна для любого i и имеет предел x^i . Таким образом определена последовательность $x = (x^1, x^2, \ldots)$. Нужно показать, что $x \in l_p$. А это верно, поскольку

$$||x - x_n|| = \lim_{m \to \infty} ||x_m - x_n|| < \varepsilon$$

И

$$||x||_p \le ||x_n||_p + ||x - x_n||_p < \infty.$$

Покажем несепарабельность l_∞ . Пусть это не так и существует его счетное, всюду плотное подмножество S. Тогда оно должно пересекаться с любым шаром. Рассмотрим систему шаров $B=\{B(x,1/2):x\in\{0,1\}^\mathbb{N}\}$. Эти шары попарно не пересекаются, а значит S должно содержать по точке из каждого такого шара. Но ведь $B\cong\mathbb{R}$ — противоречие с счетностью S.

Доказательство полноты l_{∞} аналогично доказательству полноты $l_{p}, p \in$

$$[1,\infty)$$
 с тем отличием, что вместо $\sum_{i=1}^{\infty}|x_n^i-x_m^i|^p$ рассмотрим $\sup_{i\in\mathbb{N}}|x_n^i-x_m^i|.$

Задача 5. При помощи принципа сжимающих отображений найти достаточное условие на параметр λ , при котором уравнение

$$\varphi(x) = \lambda \int_{a}^{b} K(x, y)\varphi(y)dy + f(x)$$

имеет единственное решение $\varphi \in C[a,b]$. (Здесь $f \in C[a,b], K \in C([a,b]^2)$).

Решение. Введем линейный оператор $h:C[a,b]\to C[a,b]$, в терминах которого данное в условии уравнение переписывается как $\varphi=h\varphi$. Тогда $\forall \varphi,\psi\in C[a,b]$

$$\rho(h\varphi, h\psi) = \sup_{x \in [a,b]} \left| \lambda \int_{a}^{b} K(x,y)(\varphi(x) - \psi(x)) dy \right|$$

$$\leq \sup_{x \in [a,b]} \left| \lambda(b-a) \sup_{y \in [a,b]} K(x,y)(\varphi(x) - \psi(x)) \right|$$

$$\leq |\lambda|(b-a) \sup_{x,y \in [a,b]} |K(x,y)|\rho(\varphi,\psi).$$

Значит, для единственности решения $\varphi = h \varphi$ достаточно требовать

$$|\lambda| < \frac{1}{(b-a) \sup_{x,y \in [a,b]} |K(x,y)|}.$$

Задача 6. Найти пополнение метрического пространства, состоящего из непрерывных финитных на числовой оси функций с метрикой

$$\rho(x,y) = \max_{t} |x(t) - y(t)|.$$

Решение. Докажем, что искомым пополнением является пространство $E \subset C(\mathbb{R})$ всех непрерывных функций на \mathbb{R} , имеющих предел в $-\infty$ и $+\infty$. Сначала покажем, что E содержится в любом пополнении. Пусть $f \in E$.

Сначала покажем, что E содержится в любом пополнении. Пусть $f \in E$ Определим

$$f_N(x) = \begin{cases} f(x) & \text{если } x \in [-N,N] \\ a = f(-\infty) & \text{если } x \in \left(-\infty,-N-\frac{1}{N}\right] \\ b = f(+\infty) & \text{если } x \in \left[N+\frac{1}{N},+\infty\right) \\ \text{линейно} & \text{на } \left[-N-\frac{1}{N},-N\right] \text{ и } \left[N,N+\frac{1}{N}\right] \end{cases}$$

Последовательность $\{f_N\}$ фундаментальна и сходится к f поточечно. Значит E лежит в любом пополнении.

Покажем теперь, что любая фундаментальная последовательность $\{\varphi_n\}$ непрерывных финитных функций сходится к функции φ , имеющей конечные пределы в $\pm\infty$. Сходимость равномерная, следовательно φ непрерывна и принадлежит к E.

3 Компактные метрические пространства

Задача 4. Пусть X — метрическое пространство, обладающее тем свойством, что любая непрерывная на нем функция ограничена. Доказать, что X — компакт.

Решение здесь.

 Задача 11. Доказать, что множество M в l_2 компактно \Longleftrightarrow оно замкнуто, ограничено и

$$\forall \varepsilon > 0 \quad \exists n \quad \forall x \in M \quad \sum_{k=n}^{\infty} |x_k|^2 < \varepsilon.$$
 (1)

 $(3десь x = (x_1, x_2, ...)).$

Решение. Проведем доказательство в правую сторону. M компактно в l_2 , следовательно $(M,\|\cdot\|_2)$ – полное и M – замкнуто. Затем, M ограничено, т.к. оно вполне ограничено. Также, из вполне ограниченности следует, что $\forall \varepsilon>0$ существует конечная ε -сеть $\{x_1,\ldots,x_m\}\subset M$. Для каждого $i\in[m]$ имеем $x_i\in l_2$, следовательно для некоторого N_i

$$\sum_{k=N_i}^{\infty} |x_i(k)|^2 < \varepsilon.$$

Положим $N = \max_{i \in [m]} N$. Для любого $x \in M$ существует $l \in [m]$ для которого

$$\sum_{k=1}^{\infty} |x(k) - x_l(k)|^2 < \varepsilon,$$

следовательно

$$\sum_{k=N}^{\infty} |x(k)|^2 \le \sum_{k=N}^{\infty} |x(k) - x_l(k)|^2 + \sum_{k=N}^{\infty} |x_l(k)|^2 < 2\varepsilon.$$

Докажем утверждение в левую сторону. M замкнуто в l_2 , следовательно $(M,\|\cdot\|)$ – полное (банахово). Покажем, что M – вполне ограничено. Оттуда будет следовать его компактность. Определим

$$A = \{(x(1), \dots, x(n)) \mid x \in M\} \subset \mathbb{R}^n.$$

Это множество компактно, значит существует его ε -сеть

$$\{(x_s(1),\ldots,x_s(n)) \mid s \in [m]\}.$$

Положим $x_s(k)=0$ для k>n и таким образом определим $T=\{x_s\}_{s\in[m]}.$ Тогда $\forall x\in M\ \exists s\in[m]$ со свойством

$$\sum_{i=1}^{n} |x(k) - x_s(k)|^2 < \varepsilon$$

И

$$||x - x_s||_2^2 = \sum_{k=1}^n |x(k) - x_s(k)|^2 + \sum_{k=n+1}^\infty |x(k)|^2 < 2\varepsilon.$$

Значит, $T-2\varepsilon$ -сеть для M.

Задача 12. Пусть E – компактное метрическое пространство с метрикой $\rho(\dot{\cdot})$. Пусть $f:E\to E$, причем $\rho(f(x),f(y))<\rho(x,y)$ для всех $x\neq y$. Доказать, что f имеет неподвижную точку? Верно ли, что неподвижная точка единственна? Верно ли, что f – сжимающее отображение?

Решение. Понятно, что f непрерывна. Тогда $g: E \to \mathbb{R}$, определенная как $g(x) = \rho(x, f(x))$, непрерывна на E. Действительно, пусть $x_n \to x_0$. Тогда $f(x_n) \to f(x_0)$ и

$$\rho(x_0, f(x_0)) \le \rho(f(x_0), f(x_n)) + \rho(f(x_n), x_n) + \rho(x_n, x_0)$$

$$\Longrightarrow \rho(x_0, f(x_0)) - \rho(x_n, f(x_n)) \le \rho(f(x_0), f(x_n)) + \rho(x_n, x_0).$$

Проводя аналогичное рассуждение получим

$$|\rho(x_0, f(x_0)) - \rho(x_n, f(x_n))| \le \rho(f(x_0), f(x_n)) + \rho(x_n, x_0) \xrightarrow[n \to \infty]{} 0.$$

Значит g непрерывна. Поскольку E – компакт, то g достигает свою минимум на E в некоторой $x_0 \in E$, следовательно $\forall x \in E$

$$\rho(x_0, f(x_0)) \le \rho(x, f(x)).$$

Допустим, x_0 не неподвижна. Тогда

$$g(x_0) = \rho(x_0, f(x_0)) > \rho(f(x_0), f(f(x_0))) = g(f(x_0))$$

– противоречие. Значит x_0 неподвижна.

Допустим, что существует отлочная от x_0 неподвижная точка \tilde{x}_0 . Тогда

$$\rho(x_0, \tilde{x}_0) = \rho(f(x_0), f(\tilde{x}_0)) < \rho(x_0, \tilde{x}_0)$$

– противоречие. Значит x_0 – единственная неподвижная точка.

f не всегда сжимающее. Например, для $f(x) = 1 - e^{-x}, x \in E = [0,1]$ имеем

$$|f(x) - f(y)| = |f'(\xi)||x - y| = e^{-\xi}|x - y| < |x - y|$$

для некоторого $\xi \in (0,1)$, но не сущетвует $q \in [0,1)$, для которой $|f(x) - f(y)| \le q|x-y|$, поскольку $e^{-\xi}$ может принимать все значения из [0,1).

4 Нормированные и топологические векторные пространства

Задача 1. Доказать, что нормированное пространство полно \iff в нем всякий абсолютно сходящийся ряд сходится.

Решение. Докажем утверждение в левую сторону. Рассмотрим произвольный абсолютно сходяийся ряд $\sum_{i=1}^{\infty} x_n$, т.е. для которого $\sum_{i=1}^{\infty} \|x_n\|$ сходится. По критерию Коши

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n > m > N \quad \sum_{k=m}^{n} ||x_k|| < \varepsilon.$$

Значит

$$\left\| \sum_{k=1}^{n} x_k - \sum_{k=1}^{m} x_k \right\| \le \sum_{k=m+1}^{n} \|x_k\| < \varepsilon$$

и по критерию Коши ряд $\sum_{k=1}^{\infty} x_k$ сходится.

Теперь докажем обратное. Пусть $\{x_n\}$ – фундаментальная последовательность. Рассмотрим ряд

$$x_1 + (x_2 - x_1) + (x_3 - x_2) + \dots$$
 (2)

Имеем $\forall \varepsilon > 0 \quad \exists N \quad \forall n > m > N$

$$\varepsilon > ||x_n - x_m|| = ||(x_m - x_{m-1}) + \dots + (x_{n+1} - x_n)||,$$

следовательно по критерию Коши ряд (2) сходится абсолютно, а значит, по условию задачи этот ряд сходится. Но его n-я частичная сумма есть x_n , т.е. последовательность $\{x_n\}$ сходится.

Задача 11. Верно ли, что система функций $\{x^k\}_{k=1}^{\infty}$ является а) полной в C[0,1]; б) базисом в C[0,1]?

Решение (отсюда). Ответ на вопрос пункта а) положительный по теореме Вейерштрасса. Ответ пункта б) отрицательный, которое можно видеть на примере функции

$$f(x) = \begin{cases} 0 & \text{если } 0 \le x \le 1/2 \\ x - 1/2 & \text{если } 1/2 < x \le 1 \end{cases}.$$

Действительно, пусть ряд $S(x)=\sum_{n=1}^\infty a_nx^n$ равномерно сходится к f на [0,1]. Тогда S равномерно сходится к 0 на [0,1/2]. Значит $a_n=0$ для всех $n=0,1,\ldots$, что невозможно, поскольку S сходится к x-1/2 на [1/2,1].

Задача 12. В каких пространствах $l_p(1 \le p \le \infty),\ c_0,\ c$ система $\{e_k\}_{k=1}^\infty,\ e_k(n) = \delta_{kn}$ является базисом. Существует ли базис в пространстве c?

Решение. Сначала рассмотрим случай $1 \leq p < \infty$. При $n \to 0$ имеем

$$\left\| x - \sum_{k=1}^{n} x(k)e_k \right\|^p = \left\| \sum_{k=n+1}^{\infty} x(k)e_k \right\|^p = \sum_{k=n+1}^{\infty} |x(k)|^p \to 0.$$

Значит $x=\sum_{k=1}^{\infty}x(k)e_k$ и линейно независимая система $\{e_k\}$ является базисом в $l_p,\ 1\leq p<\infty.$

Рассмотрим l_{∞} . Покажем, что в нем $\{e_k\}$ не базис. Действительно, пусть $x\in l_{\infty}$ таков, что x(k)=1 для всех $k\in\mathbb{N}$. Предположим, что нашлись такие $c_k,k\in\mathbb{N}$, что $x=\sum_{k=1}^{\infty}x_ke_k$. Тогда должно существовать такое N, что

$$\left\| x - \sum_{k=1}^{n} c_k e_k \right\| < 1.$$

Но

$$\left\| x - \sum_{k=1}^{n} c_k e_k \right\| \ge |x(n+1)| = 1$$

– противоречие. Значит $\{e_k\}$ в l_∞ не базис.

Доказательства того, что $\{e_k\}$ является базисом в c_0 , а в c не является проводятся аналогично доказательствам выше.

5 Геометрия гильбертова пространства

Задача 2. а) Доказать, что любая последовательность вложенных непустых замкнутых выпуклых ограниченных множеств в гильбертовом пространстве имеет непустое пересечение.

б) Показать, что последовательность вложенных непустых замкнутых выпуклых ограниченных множеств в банаховом пространстве может иметь пустое пересечение.

Решение. а) См. здесь.

б) Определим

$$A_k = \left\{ x \in c_0 : \begin{matrix} x(n) = 1 & \forall n \leq k \\ x(n) \leq 1 & \forall n \end{matrix} \right\} \subset c_0.$$

Очевидно $A_{k+1}\subset A_k$, а также A_k замкнуто, ограничено и выпукло. Тогда если $x=\bigcap_{k=1}^\infty A_k$, то x(n)=1 для всех $n\in\mathbb{N}$, т.е. $x\notin c_0$.

Задача 3. Привести пример последовательности вложенных ограниченных замкнутых множеств из l_2 , имеющих пустое пересечение.

Решение. Пусть $\{e_i\}_{i=1}^{\infty}$ — стандартный базис в l_2 . Определим $A_k = \{e_i\}_{i=k}^{\infty}$. Тогда $A_{k+1} \subset A_k$ и все A_k ограничены, замкнуты и выпуклы. Также $\forall k \ \forall x \in A_k$ имеем $\|x\| = 1$. Но если $x = \bigcap_{k=1}^{\infty} A_k$, то x = 0 и его норма не единица. Значит множества A_k имеют пустое пересечение.

Задача 4. Пусть H – сепарабельное гильбертово пространство, $\{e_k\}_{k=1}^{\infty}$ – ортонормированный базис в H, $\{g_k\}_{k=1}^{\infty}$ – ортонормированная система в H, причем $\sum_{k=1}^{\infty}\|e_k-g_k\|^2<\infty$. Доказать, что $\{g_k\}_{k=1}^{\infty}$ является ортонормированным базисом в H.

Решение. См. здесь.

Задача 5. Пусть $\{x_n\}, \{y_n\}$ – последовательности в гильбертовом пространстве, причем $\|x_n\| \le 1$, $\|y_n\| \le 1$, $(x_n, y_n) \to 1$. Доказать, что $\|x_n - y_n\| \to 0$.

Решение. Имеем

$$0 \le ||x_n - y_n||^2 = ||x_n||^2 + ||y_n||^2 - 2(x_n, y_n) \le 2 - 2(x_n, y_n) \to 0.$$

Задача 8. Пусть $\{e_1,\dots,e_n\}$ – базис подпространства $L\subset H$. Доказать, что $\forall x\in H$ $\rho^2(x,L)=\frac{G(x,e_1,\dots,e_n)}{G(e_1,\dots,e_n)},$ где $G(a_1,\dots,a_n)$ – определитель Грама. **Решение.** Имеем $H=L\oplus L^\perp$, следовательно для $x\in H$ верно $x=\pi+y,$

Решение. Имеем $H = L \oplus L^{\perp}$, следовательно для $x \in H$ верно $x = \pi + y$, где $\langle \pi, y \rangle = 0$ и $\pi = \pi_L(x) = \arg\min_{y \in L} \|x - y\|$. Для удобства переобозначим через $G(a_1, \ldots, a_n)$ матрицу Грама, а не определитель. По определению

$$\det G(x, e_1, \dots, e_n) = \det \begin{bmatrix} \langle x, x \rangle & \langle x, e_1 \rangle & \dots & \langle x, e_n \rangle \\ \langle e_1, x \rangle & \langle e_1, e_1 \rangle & \dots & \langle e_1, e_n \rangle \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Имеем $\pi = \sum_{k=1}^n \alpha_k e_k$. Значит определитель выше равен

$$\det G(x - \pi, e_1, \dots, e_n) = \det \begin{bmatrix} \langle y, x \rangle & 0 \\ * & G(e_1, \dots, e_n) \end{bmatrix} = \langle y, x \rangle \det G(e_1, \dots, e_n).$$

Наконец, $\langle y, x \rangle = \langle y, y \rangle = \rho^2(x, L)$, что завершает доказательство.

6 Линейные ограниченные операторы в нормированных пространствах

Задача 6. Доказать, что следующие операторы являются линейными ограниченными и найти их нормы:

a)
$$A: C[0,1] \to C[0,1],$$
 $(Ax)(t) = \int_0^t x(s)ds;$

6)
$$A: C[-1,1] \to C[-1,1], \quad (Ax)(t) = \int_{-1}^{t} x(s)ds - \int_{0}^{1} sx(s)ds;$$

B)
$$A: L_1[0,1] \to L_1[0,1],$$
 $(Ax)(t) = x(\sqrt{t});$

r)
$$A: L_2[0,1] \to L_2[0,1],$$
 $(Ax)(t) = t \int_0^1 x(s) ds.$

Решение. Линейность операторов очевидна во всех пунктах.

a)
$$||Ax|| = \sup_{t \in [0,1]} \left| \int_0^t x(s)ds \right| \le \sup_{s \in [0,1]} |x(s)| = ||x||.$$

При $x \equiv 1$ дистигается равенство. Значит ||A|| = 1.

б) Имеем

$$||Ax|| = \sup_{t \in [-1,1]} \left| \int_{-1}^{0} x(s)ds + \int_{0}^{t} (1-s)x(s)ds - \int_{t}^{1} sx(s)ds \right|$$

$$\leq ||x|| + \int_{0}^{1} (1-s)x(s)ds \leq \frac{3}{2} ||x||.$$

При $x \equiv 1$ достигается равенство, следовательно ||A|| = 3/2.

в) Рассмотрим x из единичной сферы, т.е. $\int_0^1 |x(s)| ds = 1$. Тогда

$$\int_0^1 \frac{|x(\sqrt{t})|}{2\sqrt{t}} dt = 1.$$

$$||Ax|| = \int_0^1 |x(\sqrt{t})| dt = \int_0^1 2\sqrt{t} \cdot \frac{|x(\sqrt{t})|}{2\sqrt{t}} dt \le 2 \int_0^1 \frac{|x(\sqrt{t})|}{2\sqrt{t}} dt = 2.$$

Рассмотрим последовательность $\{x_n\}\subset L_1[0,1],$ определенную как

$$x_n(s) = \begin{cases} n & \text{если } s \ge 1 - \frac{1}{n} \\ 0 & \text{иначе} \end{cases}.$$

Тогда $\|x_n\| = 1$ и

$$||Ax_n|| = \int_0^1 x_n(s) \cdot 2sds = n\left(1 - \left(1 - \frac{1}{n}\right)^2\right) \to 2.$$

Значит ||A|| = 2.

г) Имеем

$$||Ax|| = \left| \left| t \int_0^1 x(s)ds \right| = \int_0^1 t^2 dt \left| \int_0^1 x(s)ds \right| \le \frac{1}{3} \sqrt{\int_0^1 x^2(s)ds} = \frac{1}{3} ||x||.$$

При $x \equiv 1$ достигается равенство, следовательно ||A|| = 1/3.

Задача 7. Будет ли ограниченным оператор $A:C[0,1]\to C[0,1]$ $(Ax)(t)=\frac{dx}{dt}$ с областью определения L – линейным многообразием непрерывно дифференцируемых на [0,1] функций?

Решение. Рассмотрим последовательность $\left\{x_n(t) = \frac{e^{nt}}{e^n}\right\}$. Тогда $\|x_n\| = 1$, но $(Ax_n)(t) = nx_n(t)$ и $\|Ax_n\| = n \to \infty$, следовательно A неограничен.

Задача 8. а) Доказать, что оператор $D = \frac{d}{dx} : C^1[a,b] \to C[a,b]$ непрерывен.

б) Доказать тождество $(xDx)^nu=x^nD^n(x^nu),\,u\in C^n[a,b].$ Решение. а) Пусть $x_n\to x_0,\,\{x_n\}\subset C^1[a,b].$ Тогда

$$||Ax_n - Ax_0|| = \sup_{t \in [a,b]} |x'_n(t) - x'_0(t)|$$

$$\leq \sup_{t \in [a,b]} |x'_n(t) - x'_0(t)| + \sup_{t \in [a,b]} |x_n(t) - x_0(t)| = ||x_n - x_0|| \to 0.$$

б) Индукция по n. При n=1 имеем (xDx)u=xD(xu). Совершим переход $n\mapsto n+1$:

$$\begin{split} (xDx)^{n+1}u &= (xDx)(xDx)^nu = (xDx)(x^nD^n(x^nu)) = xD(x^{n+1}D^n(x^nu)) \\ &= x((n+1)x^nD^n(x^nu) + x^{n+1}D^{n+1}(x^nu)) \\ &= x^{n+1}(D^{n+1}(x^{n+1}u) - D^nx^{n+1}Du + xD^{n+1}(x^nu)). \end{split}$$

Имеем

$$\begin{split} xD^{n+1}x^n u &= DxD^n x^n u - D^n x^n u \\ &= D^2 xD^{n-1}x^n u - 2D^n x^n u = \dots \\ &= D^{n+1}x^{n+1}u - (n+1)D^n x^n u \\ &= D^n((n+1)x^n u + x^{n+1}Du) - (n+1)D^n x^n u = D^n x^{n+1}Du. \end{split}$$

Значит $(xDx)^{n+1}u = x^{n+1}D^{n+1}(x^{n+1}u).$

Задача 17. Пусть E — линейное пространство, f — ненулевой линейный функционал на E. Доказать, что существует $x \in E$ такой, что $E = \ker f \oplus \langle x \rangle$].

Решение отсюда. Для $x \in E$ положим

$$x_1 = x - \frac{f(x)}{f(x_0)}x_0, \quad x_2 = \frac{f(x)}{f(x_0)}x_0.$$

Тогда $x = x_1 + x_2, x_2 \in [x_0]$ и

$$f(x_1) = f(x) - \frac{f(x)}{f(x_0)} f(x_0) = 0,$$

следовательно $x_1 \in \ker f$. Наконец, $\ker f \cap [x_0] = \{0\}$, поскольку если $cx_0 \in \ker f$ то $f(cx_0) = cf(x_0) = 0$, откуда c = 0.

Задача 22. Доказать, что последовательность операторов $\{A_n\}$, $A_n \in \mathcal{L}(C[0,1])$, $(A_nf)(x) = f(x^{1+\frac{1}{n}})$ поточечно сходится к I. Верно ли, что A_n сходится к I по операторной норме?

Решение отсюда. Заметим сначала, что $x^{1+\frac{1}{n}}$ равномерно сходится к x на [0,1]:

$$\sup_{x \in [0,1]} |x - x^{1 + \frac{1}{n}}| = \frac{1}{n+1} \left(\frac{n}{n+1} \right)^n \to 0.$$

Пусть $f \in C[0,1]$, $\varepsilon > 0$. По теореме Кантора f равномерно непрерывна на [0,1], следовательно существует $\delta > 0$ т.ч. для всех $x,y \in [0,1]$ с $|x-y| < \delta$ верно $|f(x)-f(y)| < \varepsilon$. В силу равномерной сходимости $x^{1+\frac{1}{n}} \to x$ на [0,1] существует N т.ч. $|x^{1+\frac{1}{n}}-x| < \delta$ для всех $x \in [0,1]$ и $n \geq N$. Для таких $n \geq N$

$$||A_n f - f|| = \sup_{x \in [0,1]} |f(x^{1 + \frac{1}{n}}) - f(x)| \le \sup_{\substack{x,y \in [0,1] \\ |x-y| < \delta}} |f(x) - f(y)| < \varepsilon.$$

Покажем, что A_n не сходится к I по операторной норме. Действительно, рассмотрим последовательность функций f_n , линейно соединяющих точки $(0,0), (1/2^{n+1},0), (1/2^n,1), (1,1)$. Тогда $||f_n|| = 1$, но

$$||A_n f_n - f_n|| \ge \left| f_n \left(\left(\frac{1}{2^n} \right)^{1 + \frac{1}{n}} \right) - f_n \left(\frac{1}{2^n} \right) \right|$$
$$= \left| f_n \left(\frac{1}{2^{n+1}} \right) - f_n \left(\frac{1}{2^n} \right) \right| = 1.$$

Задача 26. Доказать, что

- а) тригонометрическая система не является базисом в пространстве $CP[-\pi,\pi]$;
- б) система $\{x^k\}_{k=0}^{\infty}$ не является базисом в $L_2[0,1]$.

Решение. а) См. Лекции по функциональному анализу, Р.В. Константинов, стр. 225.

б) (Методические указания по курсу функциоанльный анализ, стр. 5) Предположим, что $\{t^k\}$ – базис в $L_2[0,1]$, т.е.

$$\forall x \in L_2[0,1] \quad \exists \{\alpha_k\} : \quad \left\| x(t) - \sum_{k=1}^{\infty} \alpha_k t^{k-1} \right\| \to 0.$$

Для каждого $s\in[0,1]$ определим характеристическую функцию отрезка [0,s] как $y_s(t)=I\{t\in[0,s]\}.$ Тогда $\langle x,y_s\rangle=\sum_{k=1}^\infty\alpha_k\langle t^{k-1},y_s\rangle$ в силу непрерывности скалярного произведения. Имеем

$$\langle t^{k-1}, y_s \rangle = \int_0^s t^{k-1} dt = \frac{s^k}{k}$$

$$\langle x, y_s \rangle = \int_0^s x(t)dt = \sum_{k=1}^\infty \alpha_k \frac{s^k}{k},$$

причем ряд в правой части сходится $\forall s \in [0,1]$. Поэтому функция f(s) = $\int_{0}^{s} x(t)dt$ аналитическая при $s \in [0,1]$, и, следовательно, ее производная также аналитическая. С другой стороны, производная f(s) почти всюду совпадает с x(s). Следовательно каждая функция из $L_2[0,1]$ является почти всюду аналитической, что неверно.

Задача 28. Пусть X – банахово пространство, $A \in \mathcal{L}(X)$. Доказать, что ряд $\sum_{k=0}^{\infty} A^k$ сходится в $\mathcal{L}(X)$ тогда и только тогда, когда для некоторого натурального k выполняется неравенство $\|A^k\| < 1$.

Решение. Если $\sum_{k=0}^{\infty} A^k < \infty$, то $\|A^k\| \to 0$. Докажем в другую сторону.

Пусть $||A^k|| \leq 1$. Тогда

$$||A^n|| \le ||A^{n-k}|| ||A^k|| \le \dots \le ||A^k||^{\left[\frac{n}{k}\right]} \cdot ||A^{\frac{n}{k} - \left[\frac{n}{k}\right]}||$$

$$\left\| \sum_{n=0}^{\infty} A^k \right\| \leq \sum_{n=0}^{\infty} \|A^k\| \leq \sum_{r=0}^{k-1} \|A^r\| \sum_{n=0}^{\infty} \|A^k\|^{\left[\frac{n}{k}\right]} < \infty,$$

следовательно ряд $\sum_{k=0}^{\infty} A^k < \infty$ сходится, так как последовательность его частичных сумм фундаментальна.

Обратный оператор, спектр, резольвента

Задача 5. Рассмотрим оператор $A: C[0,1] \to C[0,1]$

$$(Ax)(t) = \int_0^t x(s)ds.$$

Что представляет собой множество значений оператора A? Существует ли оператор A^{-1} , определенный на множестве значений и ограничен ли он?

Решение. Образы Ах представляют собой непрерывно дифференцируемые функции, поэтому $im A = C^{1}[0,1]$.

Обратный оператор $A^{-1}:C^{1}[0,1]\to C[0,1]$ определяется как $(A^{-1}y)(t)=$ $\frac{d}{dt}y(t)$. Он ограничен согласно пункту а) задачи 8.

Задача 6. Рассмотрим оператор $A: C[0,1] \to C[0,1]$

$$(Ax)(t) = \int_0^t x(s)ds + x(t).$$

Доказать, что A имеет ограниченный обратный на всем C[0,1] и найти A^{-1} . Решение отсюда. Имеем

$$\int_0^t x(s)ds + x(t) = y(t)$$

$$\int_0^t x(s)ds + \frac{d}{dt} \int_0^t x(s)ds = y(t)$$

$$\frac{d}{dt}\left(e^t \int_0^t x(s)ds\right) = e^t y(t)$$

$$e^t \int_0^t x(s)ds = \int_0^t e^s y(s)ds$$

$$\int_0^t x(s)ds = e^{-t} \int_0^t e^s y(s)ds$$

$$x(t) = \frac{d}{dt}\left(e^{-t} \int_0^t e^s y(s)ds\right)$$

$$x(t) = y(t) - \int_0^t e^{s-t} y(s)ds = (A^{-1}y)(t).$$

Ограниченность A^{-1} следует из $||A^{-1}y|| \le 2||y||$.

Мера и интеграл Лебега 8

9 Сопряжённое пространство, теорема Хана-Банаха, теорема Рисса-Фреше

Задача 1. Доказать, что $l_p^* \simeq l_q \ (1 Верно ли, что <math>l_\infty^* \simeq l_1?$ Решение. Доказательство $l_p^* \simeq l_q \ (1 можно$

Докажем $l_1^* \simeq l_\infty$. Каждому $z \in l_\infty$ можно сопоставить $f \in l_1^*, f(x) =$ $\sum x_i z_i$. Действительно,

$$|f(x)| \le \sum_{i=1}^{\infty} |x_i||z_i| \le \sup_i |z_i| \sum_{i=1}^{\infty} |x_i| = ||z||_{\infty} ||x||_1.$$

С другой стороны, если $f \in l_1^*$, то $f(x) = \sum_{i=1}^{\infty} x_i f(e_i)$. Функционалу f сопоставим $z = (f(e_1), f(e_2), ...)$. Тогда

$$|f(x)| \le \sum_{i=1}^{\infty} |x_i| |f(e_i)| \le \sup |f(e_i)| \sum_{i=1}^{\infty} |x_i| = ||z||_{\infty} ||x||_1.$$

Значит $||f|| \le ||z||$. С другой стороны $\forall i$

$$||z|| = \sup |f(e_i)| \le ||f|| ||e_i|| = ||f||$$

и ||z|| = ||f||, как и требовалось.

Докажем $c_0^*\simeq l_1$. Всякому $z\in l_1$ можно сопоставить $f\in c_0^*,\ f(x)=\sum_{i=1}^\infty x_nz_n$. Действительно,

$$|f(x)| \le \sup |x_i| \sum_{i=1}^{\infty} |z_i| = ||x||_{c_0} ||z||_1 \implies ||f|| \le ||z||.$$

Также каждому функционалу $f \in c_0^*$ можно сопоставить последовательность $z = (f(e_1), f(e_2), \dots) \in l_1$:

$$||z|| = \sum_{i=1}^{\infty} |f(e_i)| = \lim_{n \to \infty} |f(y_n)| \le ||f||,$$

где $y_n = (\operatorname{sgn} f(e_1), \dots, \operatorname{sgn} f(e_n), 0, 0, \dots).$

Доказательство $c^* \simeq l_1$ можно найти здесь или здесь.

Доказательство неизоморфности l_{∞}^* и l_1 можно найти здесь.

Задача 9. Пусть $L\subset H$ — линейное многообразие в гильбертовом пространстве, f — непрерывный линейный функционал на L. Доказать, что $\exists! \tilde{f} \in H^*: \tilde{f}|_L = f, \|\tilde{f}\| = \|f\|$.

Решение. См. здесь.

10 Слабая и слабая* сходимость

Задача 1. Найти замыкание единичной сферы пространства l_2 в смысле слабой сходимости.

Решение. См. здесь.

Задача 2. Будет ли гильбертово (произвольное банахово) пространство полным в смысле слабой сходимости?

Решение. См. здесь.

Задача 3. Пусть $f_n(x) = \sin nx \ (-\pi \le x \le \pi)$. Доказать, что f_n в $L_2[-\pi,\pi]$ сходится слабо, но не сильно.

Решение. См. здесь.

Задача 8. Пусть H – гильбертово пространство, $\|x_n - x\| \to 0$, $y_n \stackrel{\text{сл.}}{\to} y$. Доказать, что $(x_n, y_n) \to (x, y)$. Можно ли условие $\|x_n - x\| \to 0$ заменить более слабым $x_n \stackrel{\text{сл.}}{\to} x$?

Решение. При $x_n \stackrel{\text{сл.}}{\to} x$ утверждение неверно: $e_n \stackrel{\text{сл.}}{\to} 0$, но $(e_n, e_n) = 1 \not\to 0 = (0, 0)$. Остальнеое см. здесь.

Задача 9. Пусть последовательность x_n гильбертова пространства H слабо сходится к x, причем $||x_n|| \to ||x||$ при $n \to \infty$. Доказать, что $||x_n||$

 $x\|\to 0$ при $n\to\infty.$ Верно ли это утверждение для произвольного банахова пространства?

Решение. См. здесь.

11 Сопряженные операторы, самосопряженные операторы

Задача 1. Найти сопряженный к оператору $A: L_2[0,1] \to L_2[0,1],$ если

a)
$$(Ax)(t) = \int_0^1 tx(s)ds;$$

б)
$$(Ax)(t) = \int_0^t sx(s)ds$$
.

Решение. Имеем $(Ax, y) = (x, A^{\dagger}y)$.

а) Покажем, что $(A^{\dagger}y)(t) = \int_{0}^{1} ty(t)dt$:

$$(Ax,y) = \int_0^1 (Ax)(t)\overline{y(t)}dt = \int_0^1 \overline{y(t)} \left(\int_0^1 tx(s)ds \right) dt$$
$$= \int_0^1 x(s) \left(\int_0^1 t\overline{y(t)}dt \right) ds$$
$$= \int_0^1 x(s) \overline{\left(\int_0^1 ty(t)dt \right)} ds = (x, A^{\dagger}y).$$

б) Покажем, что $(A^\dagger y)(s) = s \int_s^1 y(t) dt$:

$$\begin{split} \int_0^1 \overline{y(t)} \left(\int_0^t sx(s)ds \right) dt &= \int_0^1 sx(s) \left(\int_s^1 \overline{y(t)} dt \right) ds \\ &= \int_0^1 x(s) \overline{\left(s \int_s^1 y(t) dt \right)} ds = (x, A^\dagger y). \end{split}$$

Задача 2. Пусть H – вещественное гильбертово пространство; $x_k \in H$, $a_k \in \mathbb{R}$ $(k=\overline{1,n})$. Доказать, что

$$\sup_{\sum a_k^2 \le 1} \left\| \sum_{k=1}^n a_k x_k \right\| = \sup_{\|x\| \le 1} \left(\sum_{k=1}^n (x, x_k)^2 \right)^{1/2}.$$

Решение. $A: H \to \mathbb{R}^n, \ A(x) = ((x,x_1),\dots,(x,x_n)) \in \mathbb{R}^n$. Тогда $A^{\dagger}: (\mathbb{R}^n)^* \to H^*$, но в силу гильбертовости \mathbb{R}^n и H имеем $A^{\dagger}: \mathbb{R}^n \to H$. Найдем $A^{\dagger}:$

$$(Ax,b) = \sum_{i=1}^{n} (x,x_i)b_i = \left(x,\sum_{i=1}^{n} b_i x_i\right) \Longrightarrow A^{\dagger}(b) = \sum_{i=1}^{n} b_i x_i.$$

Следовательно,

$$\sup_{\sum a_i^2 \le 1} \left\| \sum_{i=1}^n a_i x_i \right\| = \sup_{\|a\| \le 1} \|A^{\dagger}(a)\| = \|A^{\dagger}\| = \|A\| = \sup_{\|x\| \le 1} \|A(x)\| = \sup_{\|x\| \le 1} \left(\sum_{k=1}^n (x, x_k)^2 \right)^{1/2}.$$

Задача 9. $A \in \mathcal{L}(l_2): Ax = (0, x^1, x^2, \dots)$. Найти $\sigma(A)$ и $\sigma(A^*)$. Решение. См. здесь и здесь.

Задача 11. Пусть H – гильбертово пространство, оператор $A: H \to H$ линеен и (Ax,y)=(x,Ay) для всех $x,y\in H.$ Доказать, что $A\in \mathcal{L}(H)$. **Решение**. См. здесь.

12 Компактные операторы

Задача 9. Пусть A – диагональный оператор в l_2 : $Ax = (\lambda_1 x_1, \lambda_2 x_2, \dots)$.

- а) Доказать, что $\sigma(A) = \overline{\{\lambda_n\}}$.
- б) Доказать, что A компактен $\iff \lambda_n \to 0$.

Решение. См. здесь и здесь.

Задача 10. Является ли пробразование Фурье $Ff(x) = \int_{-\infty}^{\infty} f(y) e^{-ixy} dy$ компактным оператором в случае

- a) $F: L_2(\mathbb{R}) \to L_2(\mathbb{R})$,
- б) $F: L_1(\mathbb{R}) \to BC(\mathbb{R}).$