Title

D. Zack Garza

Thursday 17th September, 2020

Contents

1	Thu	ırsday, September 17	1
	1.1	Regular Functions	1
	1	Thursday, September 17	
		I nursday, September 17	

1.1 Regular Functions

See chapter 3 in the notes.

Some examples:

- X a manifold or an open set in \mathbb{R}^n has a ring of C^{∞} functions.
- $X \subset \mathbb{C}$ has a ring of holomorphic functions.
- $X \subset \mathbb{R}$ has a ring of real analytic functions

These all share a common feature: it suffices to check if a function is a member on an arbitrary open set about a point, i.e. they are *local*.

Definition 1.0.1 (?).

Let X be an affine variety and $U \subseteq X$ open. A **regular function** on U is a function $\varphi: U \to k$ such that φ is "locally a fraction", i.e. a ratio of polynomial functions.

More formally, for all $p \in U$ there exists a U_p with $p \in U_p \subseteq U$ such that $\varphi(x) = g(x)/f(x)$ for all $x \in U_p$ with $f, g \in A(X)$.

Example 1.1.

For X an affine variety and $f \in A(X)$, consider the open set $U := V(f)^c$. Then $\frac{1}{f}$ is a regular function on U, so for $p \in U$ we can take U_p to be all of U.

Example 1.2.

For $X = \mathbb{A}^1$, take f = x - 1. Then $\frac{x}{x - 1}$ is a regular function on $\mathbb{A}^1 \setminus \{1\}$.

Example 1.3.

Let $X + V(x_1x_4 - x_2x_3)$ and $U := X \setminus V(x_2, x_4) = \{ [x_1, x_2, x_3, x_4] \mid x_1x_4 = x_2x_3, x_2 \neq 0 \text{ or } x_4 \neq 0 \}$. Define

$$\varphi: U \to K$$

$$[x_1, x_2, x_3, x_4] \mapsto \begin{cases} \frac{x_1}{x_2} & \text{if } x_2 \neq 0 \\ \frac{x_3}{x_4} & \text{if } x_4 \neq 0 \end{cases}.$$

This is well-defined on $\{x_2 \neq 0\} \cap \{x_4 \neq 0\}$, since $\frac{x_1}{x_2} = \frac{x_3}{x_4}$. Note that this doesn't define an element of k at $[0,0,0,1] \in U$. So this is not globally a fraction.

Notation: we'll let $\mathcal{O}_X(U)$ is the ring of regular function on U.

Proposition 1.1(?).

Let $U \subset X$ be an affine variety and $\varphi \in \mathcal{O}_X(U)$. Then $V(\varphi) := \{x \in U \mid \varphi(x) = 0\}$ is closed in the subspace topology on U.

Proof.

For all $a \in U$ there exists $U_a \subset U$ such that $\varphi = g_a/f_a$ on U_a with $f_a, g_a \in A(X)$ with $f_a \neq 0$ on U_a .

Then

$$\left\{ x \in U_a \mid \varphi(x) \neq 0 \right\} = U_a \setminus V(g_a) \cap U_a$$

is an open subset of U_a , so taking the union over a again yields an open set. But this is precisely $V(\varphi)^c$.