Chapter5-Synchronous Sequential Logic

Lecture 7- Design of Clocked Sequential Circuits

Fall 2021

Objectives

- Design of Clocked Sequential Circuits
- Conversion of Flip-Flops

Fall 2021

Design Procedure

- Design starts from verbal specifications of design and results in a logic diagram or a list of Boolean functions.
- The steps to be followed are:
 - Derive a state diagram
 - Reduce the number of states
 - Assign binary values to the reduced states
 - Obtain the binary coded state table
 - Choose the type of flip flops to be used
 - ➤ Derive the simplified flip flop input equations and output equations
 - Draw the logic diagram

Design Steps

Design Example: A Sequence Detector

- Design a sequence detector (Moore FSM) that detects three or more consecutive 1's from the serial binary data.
 - From the verbal specifications of design, we derive state diagram as shown below.

Fig. 5-24 State Diagram for Sequence Detector

Fall 2021

5

Synthesis Using D Flip Flops

- The next step is to create a state table and reduce states. No state reduction is possible in our design example.
- Make binary assignment to the four states i.e 00, 01, 10, and 11 and list Transition Table (Binary Coded State Table).
- ➤ Choose the type of flip-flops i.e two D flip flops to represent four states, and label their outputs as A and B.
- There is one input, x, and one output, y, representing the input sequence and the output value respectively.
- Remember that the characteristic equation of the D flip flop is
 - \circ Q(t + 1) = D₀
 - This means that the next-state values in the state table specify the D input condition for the flip flop.

State Table for Sequence Detector

Present State		Input	Next State		Output
Α	В	\mathbf{x}	Α	\mathbf{B}	\mathbf{y}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

 Input equations can be obtained directly from the table using minterms:

$$- A(t + 1) = D_A(A, B, x) = \sum (3, 5, 7)$$

$$- B(t + 1) = DB(A, B, x) = \sum (1, 5, 7)$$

$$- y(A, B, x) = \sum (6, 7)$$

Fall 2021

Boolean Minimization

• K-Maps can be used to minimize the input equations, resulting in

$$-D_A = Ax + Bx;$$
 $D_B = Ax + B'x;$ $Y = AB$

Fig. 5-25 Maps for Sequence Detector

 From Flip Flop Input Equations and Output Equation we can draw the logic diagram of the circuit as shown in the next slide.

Logic Diagram

Fig. 5-26 Logic Diagram of Sequence Detector

Timing Diagram Moore

Excitation Table

- The design of sequential circuits other than D type flip flops is complicated by the fact that input equations must be derived indirectly from the state table.
 - ➤ It is necessary to derive a functional relationship between the state table and the input equations.
- During the design, we usually know the transition from present to next state but we need to find the flip flop input conditions that will cause the required transition.
 - ➤ We need a table that lists the required inputs for a given change of state, called an excitation table.

Excitation Tables for JK and T Flip-Flops

T Flip Flop				Q(t)	Q(t+1)	T
Т	0(t+1)	···r		0	0	0
T	Δ(r±r)			0	1	1
0	Q(t)	No change		1	0	1
1	Q'(t)	Complement		1	1	0

Synthesis Using JK Flip Flops

- Synthesis of circuits with JK flip flops is the same as with D flip flops except that the input equations must be evaluated from the present-state to the next-state transition derived from the excitation table.
- Consider a sequential circuit described by the state table shown in the next slide.
- Note that one extra section i.e Flip Flop Inputs has been added and we are required to derive algebraic expressions for Flip Flop Inputs as a function of present state and external inputs.

Example JK Synthesis

Present State		Input Next State		Flip-Flop Inputs				
Α	В	X	A	В	J _A	K _A	J _B	K _Β
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Q(t)	Q(t + 1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Synthesis Logic Cont...

• By using K-maps we can minimize the flip flop input equations as under:-

$$J_A = Bx'$$
; $K_A = Bx$ $J_B = x$; $K_B = (A \oplus x)'$

Fig. 5-27 Maps for J and K Input Equations

Fall 2021

15

JK Synthesis Logic Cont...

Fig. 5-28 Logic Diagram for Sequential Circuit with *JK* Flip-Flops

Synthesis using T flip-flops

Example: Three-bit binary counter Design. The state diagram is as shown

State Table

Present State			Next State			Flip-Flop Inputs		
A ₂	A ₁	A_0	A ₂	A ₁	A_0	T _{A2}	T _{A1}	T _{A0}
•	•	•		•			•	
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1
								F:

Fig. 5-29 State Diagram of 3-Bit Binary Counter

Synthesis using T flip-flops Cont...

• By using K-maps we can minimize the flip flop input equations as under:-

$$T_{A2} = A_1 A_0$$
; $T_{A1} = A_0$; $T_{A0} = 1$

Fig. 5-30 Maps for 3-Bit Binary Counter

Synthesis using T flip-flops Cont...

Fig. 5-31 Logic Diagram of 3-Bit Binary Counter

Design Example: A Sequence Detector

- Design a sequence detector (Mealy FSM) that detects three or more consecutive 1's from the serial binary data.
 - From the verbal specifications of design, we derive state diagram as shown below.

Problem: Design a Sequence detector to detect an overlapping sequence 1010

Design a FSM that has one input w and one output z. The machine is a sequence detector that produces z=1 when the previous two values of w were 00 or 11; otherwise z=0.

Conversion of Flip-Flops

- We can covert one flip flop to another by the following procedure.
 - > List characteristic table of flip flop to be constructed.
 - > From this derive excitation table of the given flip flop.
 - > Derive flip flop input equations of given flip flop as a function of present state and inputs of flip flop to be designed.
 - From this we can draw the logic diagram of new flip-flop and perform hardware implementation.

Example-Conversion From D to T Flip-Flop

Т	Q(t)	Q(t+1)	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	Ü	U

Conversion from D to T Flip Flop

The End