Approximation Algorithms for Multidimensional Bin Packing

Arindam Khan
Indian Institute of Science
(IISc), Bangalore

Packing Problems

Bin Packing Problem

- Given : n items with sizes $s_1, s_2, ... s_n$, s.t. $s_i \in (0,1]$,
- Goal: Pack all items into min # of unit bins.
- Example: items {0.8, 0.6, 0.3, 0.2, 0.1} can be packed in 2 unit bins: {0.8, 0.2} and {0.6, 0.3, 0.1}.
- 3/2 hardness of approximation (from *Partition*).
- This does not rule out OPT+1 guarantee.
- delaVega-Lueker, Combinatorica '81: APTAS,
- Karp-Karmarkar, FOCS '82: $OPT + O(\log^2(OPT))$,
- Hoberg-Rothvoss, SODA '17: OPT + $O(\log(OPT))$.

Talk Overview

- Five generalizations of Bin Packing:
- 1. Geometric Bin Packing (GBP),
- 2. Strip Packing (2SP),
- 3. Geometric Knapsack (2GK),
- 4. Vector Bin Packing (VBP),
- 5. Weighted Bipartite Edge Coloring (WBEC).

Pitas

PTAS

- Polynomial Time Approximation Schemes (PTAS): If for every $\varepsilon > 0$, there exists a poly-time ($O(n^{f(\varepsilon)})$ -time) algorithm A_{ε} such that $A_{\varepsilon}(I) \leq (1 + \varepsilon) OPT(I)$.
- Efficient PTAS (EPTAS): if running time is $O(f(\varepsilon), n^c)$.
- Fully PTAS (FPTAS): if running time is $O((n/\varepsilon)^c)$.
- Asymptotic PTAS (APTAS): $A_{\varepsilon}(I) \leq (1 + \varepsilon) OPT(I) + O(1)$.
- QuasiPTAS (QPTAS): $(1 + \varepsilon)$ -approximation in $n^{(\log n)^{O(1)}}$ -time.
- PseudoPTAS (PPTAS): $(1 + \varepsilon)$ -approximation in $n^{O(1)}$ -time, where n is the number of items and the numeric data is polynomially bounded in n.

1. Geometric Bin Packing

2-D Geometric Bin Packing

- Given: Collection of rectangles (by width, height),
- Goal: Pack them into minimum number of unit square bins.
- Orthogonal Packing: rectangles packed parallel to bin edges.
- With 90 degree rotations and without rotations.
- Reduces to 1-D bin packing, if all items have height = 1.
- For d-D GBP, we have d-D cuboids and bins instead of rectangles.

Applications:

- Cloth cutting, steel cutting, wood cutting
- Placing ads in newspapers
- Memory allocation in paging systems
- Truck Loading
- Palletization by robots

2D BP: Tale of approximability

Algorithm (Asymptotic) 2.125 [Chung Garey Johnson, JACM '82] 2+€ [Kenyon-Remilla, FOCS'96] 1.69 [Caprara, FOCS'02] 1.52 [Bansal-Caprara-Sviridenko, FOCS'06] 1.5 [Jansen-Praedel, SODA'13] 1.405 [Bansal-K., SODA'14] (with and w/o rotations)

Hardness

No APTAS (from 3D Matching) [Bansal-Sviridenko, SODA'04],

3793/3792 (with rotation), 2197/2196 (w/o rotation) [Chlebik-Chlebikova, CIAC'06]

- d-dimensional (d>2) GBP (without rotations): 1.69^{d-1} [Caprara, FOCS'02]. (with rotations): 1.69^{d-1} [Sharma, '21].
- APTAS for d-dimensional squares: [Bansal-Sviridenko, SODA'04].

Configuration LP

• C: set of configurations (possible way of feasibly packing a bin).

• Set of (maximal) configurations without rotations.

Configuration LP

• C: set of configurations (possible way of feasibly packing a bin).

• Set of (maximal) configurations with 90 degree rotations.

Configuration LP

• C: set of configurations (possible way of feasibly packing a bin).

Primal:

$$\min \left\{ \sum_{C} x_C : \sum_{C \ni i} x_C \ge 1 \ (i \in I), x_C \ge 0 \ (C \in \mathbb{C}) \right\}$$

Dual:

$$\max \left\{ \sum_{i \in I} v_i : \sum_{i \in C} v_i \le 1 \ (C \in \mathbb{C}), v_i \ge 0 (i \in I) \right\}$$

Separation problem of dual: Given one bin, pack as much area as possible.

- PTAS [BCJPS, ISAAC 2009]

- Problem: Exponential number of configurations!
- Solution: Can be solved within $(1 + \epsilon)$ accuracy using separation problem for the dual.

Round and Approx (R&A) Framework [Bansal-K. '14]

- Given a packing problem Π
- 1. If the configuration LP is solved within $(1 + \epsilon)$ factor

$$\min \left\{ \sum_{C} x_C : \sum_{C \ni i} x_C \ge 1 \ (i \in I), x_C \ge 0 \ (C \in \mathbb{C}) \right\}$$

- 2. There is a p approximation rounding-based algorithm.
- Then there is $(1+\ln \rho)$ approximation for Π .

Rounding based Algorithms:

- Rounding based algorithms are ubiquitous in bin packing.
- In general, packing of small items is easy.
- Big items are problematic.
- Big Items are replaced by larger items from O(1) types.
- Loss: Due to larger items.
- Gain: Fewer configurations. O(1) types of large items imply rounded instance can be solved optimally.
- Example: Linear grouping [delaVega-Luker, Kenyon-Remilla], Geometric Grouping [Karp-Karmarkar], Harmonic Rounding [Lee-Lee, Caprara, Bansal et al.], JP rounding [JansenPradel].

Rounding based Algorithms in 2D

• Classification of items into big, wide, long, medium and small by defining two parameters δ , μ ($\ll \delta$) such that total area of medium rectangles is very small.

Rounding based Algorithms in 2D

- Small & medium rectangles are packed separately, not incurring much loss.
- The main difficulty is in packing large, long/vertical & wide/horizontal items.

 Container is an axis-aligned rectangular region such that

- Container is an axis-aligned rectangular region such that
- either it contains one large item.

 Container is an axis-aligned rectangular region such that

either it contains one large item.

 or items are packed inside the containers either as a horizontal stack or vertical stack

 Container is an axis-aligned rectangular region such that

either it contains one large item.

 or items are packed inside the containers either as a horizontal stack or vertical stack

- Container is an axis-aligned rectangular region such that
- either it contains one large item.
- or items are packed inside the containers either as a horizontal stack or vertical stack
- or all items inside it are very small in both dimensions.

- If there are O(1) types of containers, then one can view that all large dimensions are rounded to O(1) number of values.
- In polynomial time we can guess the sizes of containers.
- The gap between δ and μ ensures fractional and integral packing of wide/long items are very close.

Rounding in 2D : α -approximation using container-based packing.

1

Rounding in 2D : α -approximation using container-based packing.

- Existence: For any arbitrary feasible packing in m bins, items can be packed in $\alpha m + O(1)$ bins of container-based packing with O(1) type of containers.
- Guess the packing: Guess the sizes and positions) of C containers in $n^{O(C)}$ time.
- Pack the items: Containers can be packed using a Dynamic Program based PTAS for multiple-knapsack problem.

Round and Approx Framework (R & A)

• 1. Solve configuration LP using APTAS. Let $z^* = \sum_{\{C \in \mathbb{C}\}} x_C^*$.

Primal:

$$\min \left\{ \sum_{C} x_C : \sum_{C \ni i} x_C \ge 1 \ (i \in I), x_C \ge 0 \ (C \in \mathbb{C}) \right\}$$

Round and Approx Framework (R & A)

- 1. Solve configuration LP using APTAS. Let $z^* = \sum_{\{C \in \mathbb{C}\}} x_C^*$.
- 2. Randomized Rounding: For q iterations : select a configuration C' at random with probability $\frac{x_{C'}^*}{z^*}$.

Primal:

$$\min \left\{ \sum_{C} x_C : \sum_{C \ni i} x_C \ge 1 \ (i \in I), x_C \ge 0 \ (C \in \mathbb{C}) \right\}$$

Round and Approx Framework (R & A)

- 1. Solve configuration LP using APTAS. Let $z^* = \sum_{\{C \in \mathbb{C}\}} x_C^*$.
- 2. Randomized Rounding: For q iterations : select a configuration C' at random with probability $\frac{x_{C'}^*}{z^*}$.
- 3. Approx: Apply a ρ approximation rounding based algorithm A on the residual instance S.
- 4. Combine: the solutions from step 2 and 3.

R & A Rounding Based Algorithms

• Probability item *i* left uncovered after rand. rounding

$$= \left(1 - \sum_{\{C \ni i\}} \frac{x_C^*}{z^*}\right)^q \le \frac{1}{\rho} \text{ by choosing } q = (\ln \rho) LP(I) .$$

• Number of items of each type shrinks by a factor ρ e.g., $\mathbb{E}[|B_j \cap S|] = \frac{|B_j|}{\rho}$ for some item type B_j .

Concentration using Independent Bounded Difference Inequality.

Proof Sketch

- Rounding based Algo : O(1) types of items = O(1) number of constraints in configuration LP.
- $ALGO(S) \approx OPT(\tilde{S}) \approx LP(\tilde{S})$.
- As # items for each item type shrinks by ρ , $LP(\tilde{S}) \approx \frac{1+\epsilon}{\rho} LP(\tilde{I})$.
- ρ approximation: $ALGO(I) \approx LP(\tilde{I}) \leq \rho \ OPT(I) + O(1)$.
- $ALGO(S) \approx OPT(I)$.

3/6/21 31

Proof Sketch

- Thm: R&A gives a $(1 + \ln \rho + \epsilon)$ approximation.
- Proof:
- Randomized Rounding : $q = \ln \rho . LP(I)$
- Residual Instance S = $(1 + \epsilon)OPT(I) + O(1)$.

• Round + Approx => $(\ln \rho + 1 + \epsilon)OPT(I) + O(1)$.

3/6/21 32

Guillotine Packing

Guillotine Packing

Guillotine Cut: Edge to Edge cut across a bin

Guillotine packing: All items can be separated by a sequence of guillotine cuts.

Objective: Minimize number of bins such that packing in each bin is a guillotine packing.

Connection between guillotine & general packing

- APTAS for guillotine 2-D bin packing [Bansal Lodi Sviridenko, FOCS'05].
- Conjecture: Given any packing of m bins, there is a guillotine packing in 4m/3 + O(1) bins. This will imply $(4/3 + \varepsilon)$ -approximation for 2-D BP.
- Conjecture: Given any packing of m bins, there is a 2-stage packing in 3m/2 + O(1) bins.

2. Strip Packing

• Input :

- Input:
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .

- Input:
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .

- Input:
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .
 - A strip of integral width W and infinite height.

- Input :
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .
 - A strip of integral width W and infinite height.

- Input:
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .
 - A strip of integral width W and infinite height.
- Goal :
 - Pack all rectangles minimizing the height of the strip.

- Input:
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .
 - A strip of integral width W and infinite height.
- Goal :
 - Pack all rectangles minimizing the height of the strip.
 - Axis-parallel non-overlapping packing.

- Input:
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .
 - A strip of integral width W and infinite height.
- Goal :
 - Pack all rectangles minimizing the height of the strip.
 - Axis-parallel non-overlapping packing.

Variant 1:

No rotations are allowed!

- Input:
 - Rectangles $R_1, R_2, ..., R_n$; Each R_i has integral width and height (w_i, h_i) .
 - A strip of integral width W and infinite height.
- Goal :
 - Pack all rectangles minimizing the height of the strip.
 - Axis-parallel non-overlapping packing.

Variant 2: 90° rotations are allowed!

Strip Packing:

- Strip Packing generalizes
 - bin packing (when all rectangles have same height),

Strip Packing:

- Strip Packing generalizes
 - bin packing (when all rectangles have same height),
 - makespan minimization (when all rectangles have same width).

Tale of approximability.

- Asymptotic PTAS [Kenyon-Remila, FOCS'96] (Without rotations),
- Asymptotic PTAS [Jansen-vanStee, STOC'05] (With rotations).
- Absolute Approximation: (Polynomial time)
- 2.7-appx. [First-Fit-Decreasing-Height, Coffman-Garey-Johnson-Tarjan '80].
- 2-appx [Steinberg'97]
- 5/3+ε [Harren-Jansen-Pradel-vanStee, Comp.Geom. 14].
- Hardness of appx in poly-time: 3/2 (from Bin Packing).
- (3/2+ε)-appx for non-large rectangles [GGJJKR; APPROX'20]

Tale of approximability.

- Pseudopolynomial time $(O(nW)^c)$:
- Algorithms:
- 1.5+ ϵ [Jansen-Thole, SICOMP'10]
- 1.4 + ϵ [Nadiradze-Wiese, SODA'16]
- 4/3 + ϵ [Galvez, Grandoni, Ingala, K., FSTTCS'16; Jansen-Rau, WALCOM'17]
- 5/4 +*€* [Jansen, Rau, ESA'19]
- Hardness:
- 12/11 Adamaszek, Kociumaka, Pilipczuk, and Pilipczuk, TOCT'17
- 5/4 Henning, Jansen, Rau, and Schmarje, CSR'18

3. Geometric Knapsack

• Input:

- Rectangles $I:=\{R_1,R_2,...,R_n\}$; Each R_i has integral width and height (w_i,h_i) and profit p_i .
- A Square K × K knapsack.

- Input:
 - Rectangles $I:=\{R_1,R_2,...,R_n\}$; Each R_i has integral width and height (w_i,h_i) and profit p_i .
 - A Square K × K knapsack.

- Input:
 - Rectangles $I:=\{R_1,R_2,...,R_n\}$; Each R_i has integral width and height (w_i,h_i) and profit p_i .
 - A Square *K* × *K* knapsack.
- Goal: Find an axis-parallel non-overlapping packing of a subset of input rectangles into the knapsack that maximizes the total profit.

- Input :
 - Rectangles $I:=\{R_1,R_2,...,R_n\}$; Each R_i has integral width and height (w_i,h_i) and profit p_i .
 - A Square *K* × *K* knapsack.
- Goal: Find an axis-parallel non-overlapping packing of a subset of input rectangles into the knapsack that maximizes the total profit.

- Input :
 - Rectangles $I:=\{R_1,R_2,...,R_n\}$; Each R_i has integral width and height (w_i,h_i) and profit p_i .
 - A Square *K* × *K* knapsack.
- Goal: Find an axis-parallel non-overlapping packing of a subset of input rectangles into the knapsack that maximizes the total profit.

Geometric Knapsack: Complexity

- Geometric Knapsack is Strongly NP-hard (even when all items are squares with profit 1), [Leung et al., 1990]
 - No exact algorithm even in pseudo-polynomial time (unless P=NP).
- W[1]-hard [Grandoni, Kratsch, Wiese, ESA'19], So no EPTAS.
- Not known whether the problem is APX-hard.
- The existence of a PTAS/QPTAS/PPTAS is still open!
- (1+ε)-approximation known if
 - profit of an item is equal to its area. [Bansal et al., ISAAC '09].
 - items are relatively small [Fishkin et al., MFCS '05].
 - items are squares [Wiese-Heydrich, SODA '17].

Geometric Knapsack:

- (2+ε)-approximation [Jansen-Zhang, SODA'04]
 - for both with and without rotations.
 - even in the cardinality case (when all profits are 1).
- Broke the barrier of 2 [Galvez-Grandoni-Ingala-K.-Wiese, FOCS'17]
 - Without rotations: $(17/9+\epsilon)<1.89$ -appx.
 - With rotations: $(1.5+\epsilon)$ -appx.
 - Cardinality case: 1.72, $(4/3+\epsilon)$ -appx., resp.
- Pseudopolynomial time (4/3+ε)-appx.
 [Galvez-Grandoni-K.-Romero-Wiese, SoCG'21]
- PPTAS for guillotine 2-D knapsack [K.-Maiti-Sharma-Wiese, SoCG '21]

Corridor decomposition

- Any feasible packing can be partitioned into O(1) corridors (rectilinear polygons) defined by O(1) number of line segments and intersecting only rectangles of profit ≤εp(OPT).
- Process the corridors so that we can retain a large fraction of profits in a packing that only have O(1) types of containers or corridors with two bends.

4. Vector packing

Vector Packing: Multidimensional Bin Packing

Goal: Assign all jobs to the servers s.t. min number of servers are needed.

Vector packing

Input:

Set of d-dimensional vectors: $[0,1]^d$

Goal:

pack all vectors into minimum # of unit vector bins such that for each bin for each dimension the coordinate wise sum of packed vector in it is ≤ 1 .

A tale of approximability

- Dimension d is constant, otherwise approximation hardness $\Omega(d^{1-\epsilon})$.
- Asymptotic Approximation:
 - $d + \epsilon$ [Linear grouping: de la Vega-Lueker '81]
 - 2 + ln(d) + ϵ [Assignment LP: Chekuri-Khanna '99]
 - 1 + ln(d) + ϵ [Configuration LP: Bansal-Caprara-Sviridenko FOCS '06]
- Absolute/Nonasymptotic: 2 for d=2 [Kellerer-Kotov 2003]
- Hardness:
- No APTAS (from 3D Matching)[Woeginger 1997].

Recent progress:

- Bansal, Elias, K., SODA' 16: [Multiobjective matching+R&A framework]
- Almost tight $(1.5 + \epsilon)$ (Absolute) Approximation for 2-D. 1.405 Asymptotic Approximation for 2-D.
- $0.807 + \ln(d+1)$ Asymptotic Approximation for d dim.
- Hardness of d for constant rounding based algorithms.
- If we allow extra resource of ϵ in (d-1) dimensions, we can find a packing in polynomial time in $(1+\epsilon)0pt+O(1)$ number of bins.
- Sai Sandeep, 2021: $\Omega(\log d)$ -hardness, when d is large.

5. Weighted Bipartite Edge Coloring

Edge Coloring

Bin Packing

Weighted Bipartite Edge Coloring

- Given: An edge-weighted bipartite multi-graph $G := (L \cup R, E)$ with edge-weights $w : E \rightarrow [0,1]$.
- Goal: Find a proper weighted coloring with minimum number of colors.
- Proper weighted coloring:
 Sum of the edges incident to any vertex of any color is ≤ 1.

Weighted Bipartite Edge Coloring

- Given: An edge-weighted bipartite multi-graph $G := (L \cup R, E)$ with edge-weights $w : E \rightarrow [0,1]$.
- Goal: Find a proper weighted coloring with minimum number of colors.
- Proper weighted coloring:
 Sum of the edges incident to any vertex of any color is ≤ 1.
- Reduces to bin packing if |L|=|R|=1.

Weighted Bipartite Edge Coloring: Previous Works

• Conjecture 1. [Chung & Ross, 1991] There is a proper weighted coloring with 2m -1 colors where $m = \max_{\{v \in V\}} \{\min \# bins \ to \ pack \ w'_e s \mid e \in \delta(v)\}.$

Lower bound:

• Ngo -Vu SODA'03 : 1.25 *m*

Upper bound:

- Correa-Goemans *STOC '04*: 2.548 *m*
- Feige-Singh *ESA '08*: 9m/4 = 2.25 m
- K.-Singh, FSTTCS'15: 2.22m. [FF-based algorithm, Config LP-based analysis]

Other related problems.

- Approximation and Online Algorithms for Multidimensional Bin Packing: A Survey, Christensen-K.-Pokutta-Tetali, Computer Science Review 2017.
- Storage Allocation Problem [Momke, Wiese, ICALP'20].
- Unsplittable Flow on a Path [Grandoni, Momke, Wiese, Zhou, STOC'18].
- Dynamic Storage Allocation [Buchsbaum et al., STOC'03].
- Maximum Independent Set of Rectangles [Mitchell'21].
- Pach-Tardos Conjecture [K., Reddy, APPROX'20].

Summary of present status

Problem	Approximation Guarantee	Hardness
1-D Bin Packing	OPT+O(log OPT)	Strongly NP-hard
2-D Geometric BP (NR/R) d-D Geometric BP (NR/R) (d>2)	1.405 [BK, SODA'14] 1.69^{d-1} [C, MathOR'08]	No APTAS [BCKS, MathOR'06].
d-D Vector BP	$0.81 + O(\log d)$ [BE K , SODA 2016]	$\Omega(\log d)$ [Sai Sandeep, '21]
2-D Strip Packing (NR/R) 3-D Strip Packing (NR) d-D Strip Packing (NR)	PT (abs.): $5/3 + \epsilon$. [HJPS, CompGeo'14] PPT(abs.): $5/4 + \epsilon$ [JR, ESA'19] $3/2 + \epsilon$ [JP, SOFSEM'14] 1.69^{d-1} [C, MathOR'08]	3/2 [Folklore] 5/4 [HJRD, CSR'18] No APTAS
2-D Geometric Knapsack (NR/R) d-D Geometric Knapsack (NR/R)	PT: 1.89, 1.5 + ϵ [GGHIKW FOCS'17] PPT: 4/3+ ϵ [GGKRW SoCG'21] PT: $3^d(1+\epsilon)$ [Sharma '21]	W[1]-hard [GKW ESA'19] APX-hard (d>2)
Weighted Bipartite Edge Coloring	2.22 [KS FSTTCS'15]	Strongly NP-hard.

Top 10 open problems

- 1. Algorithm with OPT+O(1)-guarantee for bin packing.
- 2. Resolve integrality gap of configuration LP.
- 3. A poly(d)-approximation or hardness for d-dim geometric bin packing?
- 4. Improve 1.405- asymp approximation for 2D GBP.
- 5. Resolve guillotine conjecture (4/3) for 2-D BP.
- 6. Resolve 2-stage conjecture (3/2) for 2-D BP.
- 7. $(3/2+\varepsilon)$ -(absolute) approximation for 2D strip packing?
- 8. PTAS (or PPTAS or QPTAS) for 2-D GK (even with rotations)?
- 9. Resolve Chung-Ross Conjecture.
- 10. Study parameterized approximation/exact/practical algorithms.

#