

Ginan Workshop IGNSS 2024 - February 6th, 2024

Ginan – a precise point positioning software toolkit and position correction service

Guides for the Workshop

- Please find all guides written up for this workshop at the following link:
- https://linktr.ee/ginan_GA
- Click on the first link to be directed to a Dropbox Folder with Word Documents outlining:
 - Setting Up Your Workspace
 - Running Ginan
 - Setting Up Docker Desktop (For those using Docker)

NPIC - Ginan Workshop Agenda

Intro ~15 min (Simon)

- What is Ginan
- Major functionality

Ginan Installation ~ 45 min (Ron)

- Supported platforms
 Linux, Mac, Rpi, Windows (via WSL)
- Docker, Native

Break 15 min

Configuring and Running Ginan ~ 45 min (Ron/Simon)

Hands on Ginan ~ 60 min (Ron/Simon/Jami...)

The Ginan name

Ginan comes from the Wardaman people of Northern Territory

Is a Wardaman word for a red dilly-bag filled with songs of knowledge

Is the fifth-brightest star in the Southern Cross

The Southern Cross helped the First Australians to navigate

What is Ginan?

Positioning Australia (PA) National Positioning Infrastructure Capability (NPIC)

"Accurate and reliable positioning for everyone"

The Ginan Concept

Ginan - Geoscience Australia's (GA) GNSS Analysis Centre Software

- Part of GA's Positioning Australia (PA) National Positioning Infrastructure Capability (NPIC)
- Open-source software toolkit for precise positioning and navigation
- Multi-GNSS data processing and analysis capability
- Undifferenced, State Space Representation (SSR) using Precise Point Positioning (PPP) methodology
- Capable of delivering precise positioning products and services for post processed and real-time applications
- Enables centimetre level accuracy positioning in areas with mobile phone/internet coverage

Methodology - PPP (SSR) vs RTK (OSR)

$$P_{r,f}^s = \rho_r^s + c(\delta \tau_r^q - \delta \tau^s) + \nabla_r^s + \mu_f I_r^s + \lambda_{r,f}^q + \lambda_f^s + \lambda_f^s + \delta^s + \varepsilon_{r,f}^s$$

- P Observed range between satellite & receiver
- Geometric distance between satellite and receiver *
- c Speed of light
- δau Receiver and satellite clock offsets
- *T* Troposphere delay between satellite and receiver
 - Frequency dependent ionosphere delay factor
- I Ionosphere delay between satellite and receiver
- **d** Receiver and satellite hardware signal biases
- *O* Satellite orbit errors
- arepsilon Range measurement noise
- s, r, f, q satellite, receiver, frequency, constellation indices

* The geometric range ρ is what is used for positioning More precisely known ρ 's == more precise positioning

OSR vs SSR positioning

Observation Space Representation (OSR) - RTK

Centimetre level accuracy

Dense base station network

Local coverage

High bandwidth

Two-way communication

Not scalable

Fast convergence

State Space Representation (SSR) - PPP

Centimetre level accuracy

Sparce base station network

Global coverage

Low bandwidth

One-way communication

Easily scalable

Key deliverables and milestones

- **Ginan v1:** Dual frequency, multi-GNSS constellations, undifferenced, ionosphere-free, ambiguity resolved, real time configuration.
 - Operational release July 2022

- Operational release by May 2023
- **Ginan v3:** Integration of Ionosphere & Troposphere models to achieve precise positioning in a shorter timeframe i.e. quick convergence time.
 - Operational release December 2023

Ginan Components

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

```
#YAML configuration file
input files:
   root input directory: products/
   snxfiles: [ "igs*.snx"
   blqfiles: [ OLOAD GO.BLQ
   sp3files: [ igs20624.sp3
   bsxfiles: [ TUGORO3FIN 20191990000 01D 01D OSB.BIA ]
   rnxfiles:
       - "ALIC*.rnx"
       - "MAW*.rnx"
output files:
                                  <CONFIG>/
   root output directory:
```

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

RINEX (Observations)

RTCM (Observations)

SP3 (Orbits)

ANTEX (Antenna Meta)

SINEX (Station meta)

EOP (Earth Orientation)

CLK (Clocks)

BSX (Biases)

IONEX (Ionospheres)

TROP

(Tropospheres)

NAV (Broadcast) **ORBEX** (Orbits)

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

Antenna Orbits Ionosphere Offsets Receiver Clocks **Clock Biases Positions Satellite** Relativity Troposphere Orientation **Phase Windup Satellite Laser Inertial Dead** + Ambiguities Reckoning Ranging

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

Measurement and Process Noise

Sensitivity Matrices

Filtering and Estimate Updates

Correlation + Uncertainty Estimates

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

Statistical Checks

Cycle Slip Detection

Satellite Maneuver Detection

Earthquake Detection

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

Ambiguity Resolution

Minimum Constraints

RTS Smoothing

Ionosphere Modelling

Combinations

Configuration

Data Input

Modelling + Prediction

Filtering + Estimation

Error Handling

Augmentation

Products Output

RINEX (Observations)

RTCM (Observations)

SP3 (Orbits)

ANTEX

(Antenna Meta)

SINEX (Station meta)

EOP (Earth Orientation)

CLK

(Clocks)

BSX (Biases)

IONEX (Ionospheres)

TROP

(Tropospheres)

NAV (Broadcast) **ORBEX** (Orbits)

Setting up Environment to Run Ginan

1. Prerequisites – Linux

- The workshop has been tested and written with Ubuntu in mind
- It has been tested on Ubuntu 22.04 and works for that version but should work for any Debian flavour
- Please let us know if you are having problems with your Linux distribution.

1. Prerequisites – Windows (using WSL)

- 1. Open Windows Powershell
- 2. To see if WSL is installed run the following command:

```
wsl --list --verbose
```

- 3. If not installed (or Ubunut not installed), go to (3a.) otherwise go to (4)
 - a. Run the install command:

```
wsl --install -d ubuntu
```

- **b.** Follow the on-screen instructions to set up your user
- 4. Open up WSL by running the command:

ws1

1. Prerequisites – MacOS

- The easiest way to Run Ginan on a Mac is to use Docker
- Therefore, the first step is to ensure that Docker is installed on your machine,
- Follow the instructions on the Docker website and the Docker Guide provided

2. Setting up Workspace – Create Directory

- Open up a Linux Terminal
- Choose a location to hold files used in this Workshop
- Create a new directory:
 - \$ mkdir ginanworkshop
- Change directory:
 - \$ cd ginanworkshop

2. Setting up Workspace – Update: Python, wget

Update package list and install wget (if not yet installed)

```
$ sudo apt update
$ sudo apt install wget
```

- Upgrade python 3 and install virtual environment package (python3-venv)
 - \$ sudo apt upgrade python3
 - \$ sudo apt install python3-venv

2. Setting up Workspace – Create virtual python env

- Create a new virtual Python environment
 - \$ python3 -m venv ginanenv
- Activate virtual environment
 - \$ source ginanenv/bin/activate
- You should now see (ginanenv) on the terminal line

2. Setting up Workspace – Install python packages

• Ensure pip is running on the latest version:

```
$ pip install --upgrade pip
```

• Install the required python packages to run our scripts:

```
$ pip install click
$ pip install numpy
$ pip install requests
$ pip install Hatanaka
```

{Update: pip install gnssanalysis will be the only package necessary after 1 July 2024}

2. Setting up Workspace – Download Ginan Image

Download the Ginan Applmage which can be used to run Ginan on the command line directly

```
$ wget https://github.com/GeoscienceAustralia/ginan/raw/develop-weekly-
appimage/Ginan-x86_64.AppImage
```

Make the file executable:

```
$ chmod 777 Ginan-x86_64.AppImage
```

2. Setting up Workspace – Download input files

Download a configuration YAML file which tells Ginan what and how to run

```
$ wget https://raw.githubusercontent.com/GeoscienceAustralia/ginan/main/
exampleConfigs/ppp example.yaml
```

 Download the auto_download_PPP.py script and a dependency script which downloads input files based on datetime:

{Update: The dependency script gn_functions.py will not be necessary after 1 July 2024}

```
$ wget https://raw.githubusercontent.com/GeoscienceAustralia/ginan/main/
scripts/auto download PPP.py
```

\$ wget https://raw.githubusercontent.com/GeoscienceAustralia/ginan/main/ scripts/gn functions.py

2. Setting up Workspace – Test environment

• Test that the *auto_download_PPP.py* script runs correctly:

```
$ python3 auto_download_PPP.py --help
```

Test that Ginan runs:

```
$ ./Ginan-x86 64.AppImage --help
```


Downloading Inputs and Editing the YAML

3. Downloading Reference Inputs and RINEX Data

- In this workshop we will use the auto_download_PPP.py script to download all the necessary model reference inputs as well as the RINEX data
- This script has a number of options for downloading specific input files, like model files, SP3, CLK, BIA files, etc.

• The observation data we will be using comes from one of the Continuously Operating Reference Stations (CORS) in the Geoscience Australia network—specifically the ALIC00AUS station in Alice Springs, NT.

3. Downloading Reference Inputs and RINEX Data

• In your terminal window, run the following command:

```
$ python3 auto_download_PPP.py --target-dir products --preset igs-station
--station-list ALIC --start-datetime 2024-01-06_00:00:00 --end-datetime
2024-01-06_23:59:30 --product-dir products --rinex-data-dir data
```

- This tells the script to:
 - download files to the /products directory
 - using the preset igs-station
 - which allows us to specify an IGS station (here: ALIC)
 - o for data between midnight 6 Jan 2024 and the end of the same day.
- It will also gather all model reference files and orbits, clocks, biases, SNX positions from CDDIS

4. Editing YAML – Input Files

- Next is to edit the YAML file. This is the configuration (or control) file for running Ginan
- We will begin by editing the inputs: section so that Ginan will grab the files we downloaded
- First, we will **comment out** the following:
 - o the weekly SNX file under snx_files
 - o the CLK, BSX and SP3 files under satellite data
 - o the RINEX files under gnss_observations:rnx_inputs
- Next, we will **uncomment** the following:
 - the *.SNX wildcard under snx_files
 - o the *.CLK, *.BSX and *.SP3 wildcards under satellite_data as well as uncomment nav_files and its ".rnx" wildcard from the satellite_data field
 - the *.rnx wildcard for RINEX data under gnss_observations:rnx_inputs

4. Editing YAML – Outputs and Processing Options

- We will leave all outputs: options as they are (you can rename files here if you wish)
- The next section is processing_options:, and the primary thing we will do here is turn off processing the Galileo constellation
- We do this by setting process: to false, which is located under processing_options:gnss_general:gal
- This is in the interest of time for this workshop but for your own processing you can leave it on

4. Editing YAML – Outputs and Processing Options

- An important note here, especially when processing your own RINEX files, is the code_priorities: list for each constellation
 - You must ensure that the list is not too long (each code will be processed)
 - o You must ensure that the codes you specify are in the RINEX data you are processing
- We will now check the ALIC RINEX file that we downloaded and adjust accordingly
- By default, the example YAML has the following set: [L1W, L1C, L2W]
- The L1W signal can be removed from our list

4. Editing YAML – Turn Off Mongo

- Lastly, we will turn off Mongo
- Scroll down to the end of the Document
- The last block is mongo:
- Here you will set the enable: field to none
- The Mongo Database is required if you use the Ginan Exploratory Data Analysis (EDA) tool
- We will showcase this feature during the workshop but do not provide a walkthrough of getting it up and running
- Please ask us for further information later

Running Ginan

5. Running Ginan

• With all data and YAML settings in place, we can run the following command to start Ginan processing:

```
$ ./Ginan-x86_64.AppImage --config ppp_example.yaml &>stdout.txt
```

- Above, we are using the Ginan Applmage to run Ginan
- Giving the option --config specifies where it should find configuration to run with
- At the end, we are piping what is output to screen to a file stdout.txt instead to browse later
- Once complete, we can browse through our new /outputs directory to see the results
- We will primarily concentrate on the GPX file that is output

6. Visualising Results

We will use a simple online GPX viewer to see the results of our processing run:

https://www.maplorer.com/view_gpx.html

- This allows you to upload the GPX file from the /outputs directory and view it on a map
- To do this:
 - Click on "Choose File" and browse to the relevant location.
 - Choose the ".GPX_smoothed" file if possible (result of RTS smoothing)
 - Click the "View Profile" button at the bottom of the page
- A new window should appear with a map of the results

7. Use Your Own Data

- We have now covered the main instructions for this Workshop
- Hopefully, we have provided you with enough information for you to continue to process your own data
- Assuming we have time at the point in the Workshop, we can now come around and help you
 with your particular use case / RINEX file

8. Contribute to Ginan

- Ginan is an open-source piece of software: https://github.com/GeoscienceAustralia/ginan
- You can freely take it and use it for your own projects
- You can also contribute back to the GitHub Repository that we maintain
- Please consider making a Fork of the Codebase and contribute back via a Pull Request against our repository
- We have external contributions right now
- E.g. Andrew Cleland has built a python tool for automatically generating YAML configuration files and downloading required inputs based on a given RINEX file
- https://github.com/GeoscienceAustralia/ginan/pull/62

Thanks for Attending the IGNSS 2024 Ginan Workshop!

Workshop Team:

Simon McClusky, Ronald Maj, Umma Zannat, Eldar Rubinov, Lachlan Ng, Thomas Maile

To contact us, please send an email to:

GNSSAnalysis@ga.gov.au

