

Understanding dispersion

EM wave in vacuum

$$\vec{E} = \vec{E}_0 \cos(k_0 z - \omega t)$$

$$= \vec{E}_0 \cos\left(\frac{\omega}{c} z - \omega t\right)$$

$$\omega$$

EM wave in bulk material

$$\vec{E} = \overrightarrow{E_0} \cos(\beta z - \omega t)$$

P. Floyd (1973)

$$\beta = \frac{\omega}{v_p} = \frac{\omega}{c/n(\omega)} = \frac{\omega}{c}n(\omega)$$

 $\omega \leftarrow \text{unchaged!}$

EM waves in bulk material

Chart of $n(\omega)$ and $\beta(\omega)$

$$\beta = \frac{\omega}{c} n(\omega)$$

Chart of n(f) and $\beta(f)$

Chart of n(f) and $\beta(f)$

Zoom on NIR range

Difference in arrival time?

$$\Delta T = \frac{L}{v} - \frac{L}{v} = L\left(\frac{1}{v} - \frac{1}{v}\right)$$

What is a "pulse"?

$$E(z,t) = \int_{-\infty}^{\infty} \hat{E}(\omega) e^{i(\beta(\omega)z - \omega t)} d\omega$$

$$\beta(\omega) = \beta_0 + \beta_1(\omega_0)(\omega - \omega_0) + \cdots \text{(higher order terms)}$$

Use approximation of $\beta(\omega)$

$$E(z,t) \approx \int_{-\infty}^{\infty} \widehat{E}(\omega) e^{i([\beta_0(\omega_0) + \beta_1(\omega_0)(\omega - \omega_0)]z - \omega t)} d\omega$$

$$E(z,t) \approx e^{i\beta_0(\omega_0)z} \int_{-\infty}^{\infty} \hat{E}(\omega) e^{i(\beta_1(\omega_0)[\omega-\omega_0]z-\omega t)} \ d\omega$$

$$E(z,t) \approx e^{i\beta_0(\omega_0)z} e^{-i\omega_0 t} \int_{-\infty}^{\infty} \hat{E}(\omega) e^{i(\beta_1(\omega_0)[\omega-\omega_0]z-\omega t)} e^{+i\omega_0 t} d\omega$$

$$E(z,t) \approx e^{i(\beta_0(\omega_0)z - \omega_0 t)} \int_{-\infty}^{\infty} \hat{E}(\omega) e^{i(\beta_1(\omega_0)[\omega - \omega_0]z - (\omega - \omega_0)t)} d\omega$$

How does a "phase peak" move?

$$v_{phase} = \frac{\omega_0}{\beta_0}$$

How does the "Envelope peak" move?
$$v_{group} = \frac{(\omega - \omega_0)}{\beta_1(\omega_0)[\omega - \omega_0]} = \frac{1}{\beta_1(\omega_0)}$$

Difference in arrival time?

$$\Delta T = \frac{L}{v} - \frac{L}{v} = L(\beta_1(\omega) - \beta_1(\omega))$$

What if we "follow" a pulse?

What if we "follow" a pulse?

$$A(z,t) = E(z,t)e^{-i(\beta_0 z - \omega_0 t)}$$

$$A(z,t) = e^{-i(\beta_0 z - \omega_0 t)} \int_{-\infty}^{\infty} \hat{A}(\omega - \omega_0) e^{i(\beta(\omega) z - \omega t)} d\omega$$

Note: From now on, it's implicit that the value of every coefficient in the Taylor expansion of $\beta(\omega)$ depends on the chosen carrier frequency, i.e. $\beta_1 = \beta_1(\omega_0), \beta_2 = \beta_2(\omega_0)$ etc.

$$A(z,t) = e^{-i(\beta_0 z - \omega_0 t)} \int_{-\infty}^{\infty} \hat{A}(\omega - \omega_0) e^{i\left(\left[\beta_0 + \beta_1(\omega - \omega_0) + \frac{1}{2}\beta_2(\omega - \omega_0)^2 + \cdots\right]z - \omega t\right)} d\omega$$

$$A(z,t) = e^{-i(\beta_0 z - \omega_0 t)} \, e^{-i\omega_0 t} \int_{-\infty}^{\infty} \hat{A}(\omega - \omega_0) \, -\omega_0 e^{i\left(\left[\beta_0 + \beta_1(\omega - \omega_0) + \frac{1}{2}\beta_2(\omega - \omega_0)^2 + \cdots\right]z - \omega t\right)} \, e^{+i\omega_0 t} d\omega$$

$$A(z,t) = \int_{-\infty}^{\infty} \hat{A}(\omega - \omega_0) e^{i\left(\left[\beta_1(\omega - \omega_0) + \frac{1}{2}\beta_2(\omega - \omega_0)^2 + \cdots\right]z - (\omega - \omega_0)t\right)} d\omega$$

Change time variable

$$T = t - \beta_1 z$$
$$t = T + \beta_1 z$$

$$A(z,T) = \int_{-\infty}^{\infty} \hat{A}(\omega - \omega_0) e^{i\left(\left[\beta_1(\omega - \omega_0) + \frac{1}{2}\beta_2(\omega - \omega_0)^2 + \cdots\right]z - (\omega - \omega_0)[T + \beta_1 z]\right)} d\omega$$

$$A(z,T) = \int_{-\infty}^{\infty} \hat{A}(\omega - \omega_0) e^{i\left(\left[\beta_1(\omega - \omega_0) + \frac{1}{2}\beta_2(\omega - \omega_0)^2 + \cdots\right]z - (\omega - \omega_0)T - (\omega - \omega_0)\beta_1z\right)} d\omega$$

$$A(z,T) = \int_{-\infty}^{\infty} \hat{A}(\omega - \omega_0) e^{i\left(\left[\frac{1}{2}\beta_2(\omega - \omega_0)^2 + \cdots\right]z - (\omega - \omega_0)T\right)} d\omega$$

Before: Speed difference between two "frequency packets" centered at different carrier frequencies leads to difference in their arrival times.

Now: Speed difference of different waves within the same "frequency packet" leads to time delay between them. Pulse "spreads out" in time domain!

Changing the phase of frequency components

How to find β_2 ?

- Take derivative of $\beta(\omega)$ to find $\beta_1(\omega)$.
- Take derivative of $\beta_1(\omega)$ to find $\beta_2(\omega)$.

$\beta_2 > 0$ (Normal dispersion)

Why stop at β_2 ?

• Take one more derivative to get β_3 !

• What happens for $\beta_2 = 0$ and $\beta_3 > 0$?

$\beta_2 = 0$ and $\beta_3 > 0$

$\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_4 > 0$

EM waves in waveguides

EM in waveguides

$$n(\omega, x, y) \quad A(\omega, x, y)$$

$$n(\omega, x, y) \quad A(\omega, x, y) \quad n_{eff}(\omega) = \frac{\int \int n(\omega, x, y) |A(\omega, x, y)|^2 dx dy}{\int \int |A(\omega, x, y)|^2 dx dy}$$

