Fonctions définies récursivement

Soit c la fonction des naturels aux naturels définie récursivement par c(0)=1, $c(n)=\frac{(4n-2)*c(n-1)}{n+1}$ si $n\ge 1$.

Partie a (10 points). Démontrez par induction sur n que $c(n) = \frac{(2n)!}{n!(n+1)!}$ pour tout entier $n \ge 0$. (**Remarque:** par convention 0!=1.)

Solution.

Étape de base: n=0. Côté gauche = c(0) = 1. Côté droit = 0!/(0!1!) = 1/(1*1) = 1.

Étape inductive. Supposons que n>0 et que $c(n-1) = \frac{(2n-2)!}{(n-1)!n!}.$ À démontrer: $c(n) = \frac{(2n)!}{n(n+1)!}$

Selon la récurrence, côté gauche = $c(n) = \frac{(4n-2)*c(n-1)}{n+1} = (\text{selon l'hypothèse inductive})$

$$\frac{(4n-2)^*\frac{(2n-2)!}{(n-1)!n!}}{\binom{n+1}{n+1}} = \frac{2(2n-1)(2n-2)!}{(n-1)!n!(n+1)} = \frac{2(2n-1)!}{(n-1)!(n+1)!}.$$

Côté droit =
$$\frac{(2n)!}{n!(n+1)!} = \frac{2n*(2n-1)!}{n*(n-1)!(n+1)!} = \frac{2(2n-1)!}{(n-1)!(n+1)!} = \text{côté gauche.}$$

Partie b (6 points). Évaluez c(5). Vous pouvez utiliser soit la définition récursive, soit la définition non-récursive, mais vous devez indiquer quelle définition vous avez utilisée et la raison de votre choix.

Solution. L'utilisation de la formule non-récursive exige le calcul de 10! = 3 628 800. La solution à l'aide de la formule récursive ne traite pas des nombres si grands.

$$c(1) = 2*c(0)/2 = 2*1/2 = 1. \ c(2) = 6*c(1)/3 = 6*1/3 = 2. \ c(3) = 10*c(2)/4 = 10*2/4 = 5. \\ c(4) = 14*c(3)/5 = 14*5/5 = 14. \ c(5) = 18*c(4)/6 = 18*14/6 = 3*14 = 42.$$

Même si on multiplie 18 par 14 et puis divise par 6, le plus grand nombre qu'il faut traiter est 252, ce qui est beaucoup plus petit que 3 628 800.

Soit f la fonction avec domaine et codomaine N, l'ensemble des entiers naturels, définie par

$$f(0) = 1, f(n) = 1 + f(0) + f(1) + f(2) + \dots + f(n-1) \text{ si } n \ge 1.$$

Partie a (5 points). Remplir le tableau suivant.

Solution

n	0	1	2	3	4	5
f(n)	1	2	4	8	16	32

Partie b (5 points). Trouver une forme close (une expression algébrique explicite) pour f(n).

Solution: 2ⁿ.

Partie c (10 points). Démontrer par induction généralisée sur n que la forme close que vous avez obtenue en la partie **b**est valide pour tout entier $n \ge 0$.

Solution. Il faut démontrer que $f(n) = 2^n$ pour tout entier $n \ge 0$.

Étape de base: n=0. f(0) = 1 et $2^0 = 1$.

Étape d'induction. Supposons que $n \ge 1$ et que $f(m) = 2^m$ pour tout entier naturel m < n. À démontrer: $f(n) = 2^n$.

Selon la définition récursive de f(n),

$$f(n) = 1 + f(0) + f(1) + f(2) + \dots + f(n-1) = 1 + 2^0 + 2^1 + 2^2 + \dots + 2^{n-1}$$
.
Or $2^0 + 2^1 + 2^2 + \dots + 2^{n-1}$ est une série géométrique dont la somme est $2^n - 1$, d'où $f(n) = 1 + (2^n - 1) = 2^n$.

Autre solution (pour 8 points puisqu'elle utilise l'induction simple):

$$f(n) = 1 + f(0) + f(1) + f(2) + \dots + f(n-2) + f(n-1)$$
 si $n \ge 1$. En substituant $n-1$ pour n on obtient $f(n-1) = 1 + f(0) + f(1) + f(2) + \dots + f(n-2)$ si $n \ge 2$. En soustrayant on obtient $f(n) - f(n-1) = f(n-1)$, doù $f(n) = 2f(n-1)$ si $n \ge 2$.

Étape de base: n=0 et n=1. f(0) = 1 et $2^0 = 1$; f(1) = 1 et $2^1 = 2$.

Étape d'induction: Supposons que $n \ge 2$ et que $f(n-1) = 2^{n-1}$. À démontrer: $f(n) = 2^n$.

Depuis la nouvelle récurrence, $f(n) = 2 \times 2^{n-1} = 2^n$.

Soit f la fonction avec domaine et codomaine N, l'ensemble des nombres naturels, définie récursivement ainsi:

$$f(0)=1$$
; $f(1)=2$; $f(n)=2f(n-1)-f(n-2)+1$ si $n>1$.

Partie a (5 points). Calculez f(2), f(3), f(4), f(5) et f(6) et remplissez le tableau suivant.

Solution.

n	0	1	2	3	4	5	6
f(n)	1	2	4	7	11	16	22

Partie b (15 points). Démontrez par induction généralisée sur n que $f(n) = \frac{n(n+1)}{2} + 1$ pour tout entier $n \ge 0$.

Solution.

Étape de base: n=0 et n=1. Pour n=0, f(n)=1 et $\frac{n(n+1)}{2}+1=(0\times 1)/2+1=1$. Pour n=1, f(n)=2 et $\frac{n(n+1)}{2}+1=(1\times 2)/2+1=2$.

Étape inductive. Supposons que $n \ge 2$ et que $f(m) = \frac{m(m+1)}{2} + 1$ pour tout entier m tel que $0 \le m \le n$. À démontrer: $f(n) = \frac{n(n+1)}{2} + 1$.

Puisque $n \ge 2$, $0 \le n - 1 < n$ et $0 \le n - 2 < n$, d'où $f(n - 1) = \frac{(n - 1)n}{2} + 1$ et $f(n - 2) = \frac{(n - 2)(n - 1)}{2} + 1$. Selon la récurrence, $f(n) = 2 \times \left(\frac{(n - 1)n}{2} + 1\right) - \left(\frac{(n - 2)(n - 1)}{2} + 1\right) + 1 = \left(\frac{n - 1}{2}\right) \times \left(2n - (n - 2)\right) + 2 - 1 + 1 = \left(\frac{n - 1}{2}\right) \times (n + 2) + 2 = \left(\frac{n^2 + n - 2}{2}\right) + 2 = \left(\frac{n^2 + n}{2}\right) + 1 = \frac{n(n + 1)}{2} + 1$.

Une fonction $f: N \rightarrow N$ est définie récursivement par :

$$f(0)=0.$$

$$f(n+1) = f(n) + 2n + 4$$
 pour tout entier $n \ge 0$.

Partie a (4 points). Donnez les valeurs de f(n) pour n = 1, 2, 3 et 4.

Solution.

1

2

10

3 4

f(n)

18 28

Partie b (16 points). Démontrez par induction standard sur n que $\forall n \in \mathbb{N}$, $f(n) = n^2 + 3n$. Solution.

Étape de base: n=0. Côté gauche = f(0)=0. Côté droit = $0^2 + 3 \times 0 = 0$.

Étape inductive. Supposons que $n \ge 0$ et que $f(n) = n^2 + 3n$.

À démontrer. $f(n+1) = (n+1)^2 + 3(n+1)$.

Côté gauche = $f(n) + 2n + 4 = (n^2 + 3n) + (2n + 4) = n^2 + 5n + 4$. Côté droit = $(n+1)^2 + 3(n+1) = n^2 + 2n + 1 + 3n + 3 = n^2 + 5n + 4$.