MyStandard Specifiche di Architettura Tecnica

Versione 1.3

SOMMARIO

2	2 RIFERIMENTI	3
3	3 GLOSSARIO	3
	4 ACRONIMI	
	5 CONTESTO	
	6 ARCHITETTURA	
	6.1 FUNZIONALE	4
	6.1.1 Le Ontologie di MyStandard e OntoPIA	5
	6.2 TECNOLOGICO	5
	6.3 FISICO	8
	6.4 FUSEKI2 – TDB2 – HIGH AVAILABILITY	
	6.4.1 DELTA PATCH SERVER HIGH AVAILABILITY	1 1

2 RIFERIMENTI

N.	Titolo	Autore	Versione	Data

3 GLOSSARIO

Termine	Descrizione

4 ACRONIMI

Termine	Descrizione

5 CONTESTO

Il Progetto MyStandard ha lo scopo di gestire Knowledge base semantiche secondo gli standard OWL / RDF.

L'obbiettivo del progetto è la realizzazione di un'applicazione che permetta:

- La definizione di un'ontologia di base (catalogo di base) con le entità di base per le ontologie di tutti domini di business
- La definizione di un'ontologia specifica sul dominio dei pagamenti.
- Di interrogare attraverso metadati, ricerche full text e ricerche semantiche delle interrogazioni sulle ontologie definite.
- La definizione di un processo di definizione di uno standard.
- L'integrazione (opzionale) con MyIntranet per permettere agli operatori degli enti di proporre / definire nuovi standard e con MyPortal per la pubblicazione dei cataloghi.

Lo scopo del presente documento è di illustrare la composizione architetturale della nuova applicazione MyStandard

6 ARCHITETTURA

Si descrive l'architettura della soluzione distinguendola sui tre livelli: funzionale, tecnologico e fisico.

6.1 FUNZIONALE

L'applicativo MyStandard nasce per la gestione di cataloghi e ontologie basati sugli standard OWL e RDF.

Il progetto prevede le seguenti macro funzionalità:

- Gestione CRUD dei Cataloghi di Base (Ontologia di Base di MyStandard)
 - o Entità Generica
 - o Ente
 - o Azienda ICT
 - o Processi
 - o API
- Gestione delle Entità specifiche del Mondo Pagamenti (Ontologia Dominio Pagamenti)
- Implementazione delle funzionalità di Ricerca sul catalogo attraverso:
 - o Ricerca per Metadati comuni a tutte le entità (codice, versione, nome)
 - o Ricerche Full Text
 - o Ricerche Semantiche attraverso Query Semantiche (SPARQL)
- Possibilità di definire e salvare per uso successivo un catalogo di Query Semantiche
- Integrazione (opzionale) di MyStandard con MyIntranet e MyPortal.
- Autenticazione e Autorizzazione tramite MyId e MyProfile. Implementazione delle funzionalità di definizione ed esecuzione di Query semantiche tramite SPARQL

Il progetto prevede l'organizzazione e la persistenza delle informazioni secondo gli standard semantici OWL e RDF.

6.1.1 Le Ontologie di MyStandard e OntoPIA

Uno degli obiettivi e dei requisiti del progetto MyStandard è la definizione di una o più ontologie con lo scopo di rappresentare al meglio i concetti semantici (componente terminologica T- BOX) e le entità (componente asserzionale A-BOX) presenti nell'ecosistema della piattaforma MyPortal 3.

Nella modellazione concettuale e nello sviluppo delle Ontologie di MyStandard si farà riferimento all'iniziativa OntoPIA di AGiD il cui scopo è la definzione e la formalizzazione di un insieme di Ontologie a copertura dei concetti presenti nel mondo della PA.

In particolare:

- Le Ontologie di MyStandard utilizzano ed estendono alcuni concetti gia presenti nelle
 Ontologie di OntoPIA preservandone l'aderenza ai vocabolari controllati e agli standard
 DCAP-AT con profilo IT
 (https://ontopia-lode.agid.gov.it/lode/extract?url=https://w3id.org/italia/onto/DCAT#d4e1847)
- Le Ontologie di MyStandard quando riutilizzano le Ontologie di OntoPIA sono sempre estensioni e non ridefiniscono la struttura sintattica e semantica dei concetti di OntoPIA. Non vi è quindi la necessità di applicare il validatore CPSV-AT sulle ontologie proprie definite da MyStandard.

6.2 TECNOLOGICO

È prevista la realizzazione di un nuovo applicativo denominato "MyStandard".

Il seguente schema architetturale evidenzia l'architettura della soluzione:

In particolare:

- La **nuova applicazione MyStandard** si compone di due moduli distinti:
 - o **MyStandard Frontend** sviluppato con tecnologia Angular 10
 - o **MyStandard Backend** sviluppato con tecnologia Java / SpringBoot.

Per la gestione dei dati OWL e RDF il modulo di backend utilizzerà i framework open source:

 Apache JENA per l'implementazione della logica di business e la manipolazione delle entità secondo lo standard RDF e per l'implementazione sei servizi di query con lo standard SparQL.

La scelta di utilizzare il framework JENA deriva dal requisiti per cui la soluzione MyStandard deve gestire / interrogare / manipolare informazioni secondo gli standard propri nativi del web semantico (RDF / OWL) e le interrogazioni in formato SPARQL.

Apache JENA è stato scelto in quanto

- Il framework è disponibile con licenza open source
- Dispone di API per la gestione semplificati degli standard RDF e OWL
- E' potente e flessibile nell'implementazione di query semantiche con lo standard SPARQL.
- I due moduli sono organizzati e deployati su un unico container Docker e il modulo di frontend è servito direttamente dall'applicazione SpringBoot
- L' Applicazione MyStandard ha le seguenti dipendenze verso i seguenti servizi applicativi offerti da MyPlace
 - o **MyId:** Per l'autenticazione
 - MyProfile: Per la gestione dei Profili. L'istanza MyProfile utilizzata da MyStandard deve essere la medesima utilizzata dagli enti che utilizzano MyIntranet per la configurazione dei profili su MyProfile.
 - Ceph (MyBox): Per la gestione degli allegati.
 MyStandard utilizza un bucket "dedicato" per la gestione degli allegati per cui può utilizzare anche un'istanza di MyBox separata dagli altri servizi MyPlace.
 - Logstash (MyLogs) per la gestione dei log.

MyStandard utilizza SLF4J come libreria di Logging, configurata con un appender LogStash per raggiungere il servizio MyLogs.

Può utilizzare il servizio MyLogs condiviso con MyPortal o un servizio MyLogs separato, purché sia disponibile la console di consultazione dei Log

• A livello di servizi infrastrutturali si evidenziano le seguenti dipendenze

o **Jena Fuseki2 TDB (OWL / RDF Persistent Store):** È la componente infrastrutturale core per i dati semantici e ontologici.

Questa soluzione soddisfa tutti i requisiti richiesti:

- E' una soluzione totalmente Free Open Source (licenza Apache 2)
- La community è attiva e il progetto è gestito nella community Apache.
- E' compatibile con gli standard RDF / OWL
- Ha un motore SparQL 1.1
- Supporta Jena e RDF4J (attraverso Jena)
- E' possibile installare il prodotto come:
 - Server Standalone <u>https://jena.apache.org/documentation/fuseki2/fuseki-</u> webapp.html#fuseki-standalone-server
 - Web Application
 https://jena.apache.org/documentation/fuseki2/fuseki-webapp.html#fuseki-web-application
 - Immagine Docker <u>https://jena.apache.org/documentation/fuseki2/fuseki-main#fuseki-docker</u>
- ELK: È una dipendenza diretta per le ricerche fulltext.
 MyStandard utilizza delle "collection" di ELK dedicate, per cui può utilizzare anche un'istanza di ELK separata dagli altri servizi MyPlace
- o **Postgres :** È una dipendenza indiretta, che deriva dall'utilizzo di MyProfile
- Mongo: Per la gestione di alcuni metadati e la gestione di uno storico approvazioni legato alle "Entità" che non è persistito sullo store RDF
- Alcuni servizi REST devono essere esposti ed essere raggiungibili dall'applicazione MyPortal.

Apache Jena Fuseki2 con TDB2

Questa soluzione soddisfa tutti i requisiti richiesti:

- E' una soluzione totalmente Free Open Source (licenza Apache 2)
- La community è attiva e il progetto è gestito nella community Apache.
- E' compatibile con gli standard RDF / OWL
- Ha un motore SparQL 1.1

- Supporta Jena e RDF4J (attraverso Jena)
- E' possibile installare il prodotto come:
 - Server Standalone
 https://jena.apache.org/documentation/fuseki2/fuseki-webapp.html#fuseki-standalone-server
 - Web Application
 https://jena.apache.org/documentation/fuseki2/fuseki-webapp.html#fuseki-web-application
 - Immagine Docker <u>https://jena.apache.org/documentation/fuseki2/fuseki-main#fuseki-docker</u>

Come sintesi finale dell'analisi comparativa e considerando la matrice requisiti prodotti il prodotto Persistent Store migliore per MyStandard risulta essere:

6.3 FISICO

L'applicazione MyStandard verrà fornito come un'unica immagine Docker.

L'applicazione MyStandard prevede l'utilizzo della soluzione Apache Jena Fuseki 2 con TDB2 (https://jena.apache.org/documentation/fuseki2/) come Persistent Store RDF

con le seguenti note:

- L'installazione di Fuseki 2 può essere fatta in modalita: Standalone / Web / Docker.

- La componente Fuseki2 ed in particolare TDB2 **farà uso di un volume persistente in lettura e scrittura** (alla stregua di altro prodotti DB) per la quale è richiesto di applicare una politica di backup secondo le modalità preferite dalla struttura di Operations.

Nel caso di installazione con Docker, il volume deve essere montato e reso disponibile in lettura e scrittura all'immagine Docker.

- Deve essere garantita la connettività di rete tra l'immagine di MyStandard e il server fuseki2.

6.4 FUSEKI2 - TDB2 - HIGH AVAILABILITY

Come descritto nei paragrafi precedenti la soluzione Fuseki2 con TDB2 è stata scelta come Persistent Store per l'applicativo MyStandard in quanto soddisfa tutti i requisiti funzionali / tecnici e di dispiegamento richiesti.

Relativamente al dispiegamento installazione della componente Fuseki 2 sono disponbili tre diverse modalità:

- 1. Docker
- 2. Webapp
- 3. Standalone

Per l'installazione in produzione e garantire una soluzione in alta affidabilità è tuttavia consigliato utilizzare la modalità di dispiegamento di nodi multipli in modalità standalone di Fuseki 2 con il modulo Delta RDF (https://afs.github.io/rdf-delta/)

La soluzione per l'alta affidabilità prevede:

 La presenza di n - nodi (minimo 2) dove sia installato il prodotto Fuseki 2 TDB con le estensioni client del modulo Delta RDF (https://repo1.maven.org/maven2/org/seaborne/rdf-delta/rdf-delta-dist/0.9.0/rdf-delta-dist-0.9.0.zip)

Ognuno degli n nodi è attivo e ha un suo volume dedicato per i dati. Sugli n nodi viene installato il modulo RDF che è responsabile di propagare le notifiche al Delta RDF Server

- 2. La presenza di un bilanciatore di carico davanti agli n nodi Fuseki
- 3. La presenza di una componente Delta RDF Patch Server che riceve le notifiche di cambiamento dai nodi Fuseki2 e le propaga agli altri nodi. Nell'ottica dell'alta affidabilità va prevista anche l'installazione in alta affidabilità della componente Delta RDF Patch Server.

6.4.1 DELTA PATCH SERVER HIGH AVAILABILITY

Per la messa in affidabilità della componente Delta RDF Patch Server si ipotizza una soluzione basata su n nodi del patch server (almeno 3 nodi) coordinati da Apache Zookeper.

La soluzione è descritta qui:

https://afs.github.io/rdf-delta/ha-system.html#ha-patch-store

Sono previste le seguenti componenti per il Delta RDF Patch Server:

- 1. Almeno 3 nodi coordinanti da Apache Zookeper
- 2. L'uso di uno storage HA per il salvataggio del Patch Logs (S3 Like, per esempio CEPH)

