The Total Area Statistic for Dyck Paths

James Harbour

March 29, 2024

Contents

1	Preliminaries	1
2	Counting Dyck Paths	1
3	Computing the Total Area	1

1 Preliminaries

$$c_n = \frac{1}{n+1} {2n \choose n}, \quad C = C(x) = \sum_{n \ge 0} c_n x^n = 1 + xC^2 = \frac{1 - \sqrt{1 - 4x}}{2x}.$$

2 Counting Dyck Paths

3 Computing the Total Area

We follow the approaches in [CEF07] and [MSV96]

Theorem 3.0.1. Let A_n be the total area of all of the c_n Catalan paths of length n. Then

$$A_n = 4^n - \binom{2n+1}{n}$$

References

- [CEF07] Szu-En Cheng, Sen-Peng Eu, and Tung-Shan Fu. "Area of Catalan paths on a checkerboard". In: European Journal of Combinatorics 28.4 (2007), pp. 1331–1344.
- [MSV96] Donatella Merlini, Renzo Sprugnoli, and M. Cecilia Verri. "The area determined by underdiagonal lattice paths". In: *Trees in Algebra and Programming CAAP '96*. Ed. by Hélène Kirchner. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 59–71.