Math 11: Discussion 2

TA: Thu Nguyen Tue. 04/07/2020

Recap of discussion 2:

- 1. Data visualization tools, their pros and cons: histograms, boxplots, scatter-plots, ...;
- 2. Quantifying the correlation between data points, within variables and among multiple variables;
- 3. Interpretation of linear correlation;

Contents

2.1	Upcor	ning assignments	1		
2.2	Describing Data				
	2.2.1	Histogram	2		
	2.2.2	Correlation, z-score \dots	4		
	2.2.3	Linear correlation	5		

2.1 Upcoming assignments

Assignments	Chapters	Deadlines
Homework	Ch. 3	Wed. 04/08
Quiz	Ch. 3	Thu. 04/09
Homework	Ch. 4, 6	Fri. 04/10
Quiz	Ch. 4, 6	Sat. 04/11
Homework	Ch. 7	Mon. $04/13$
Quiz	Ch. 7	Tue. 04/14
Lab 2		Fri. 04/10

Note: Assignments are spread out across the week.

Chapters:

- 3. Displaying and Describing Categorical Data
- 4. Displaying and Summarizing Quantitative Data
- 6. Standard Deviation as a Ruler and the Normal Model
- 7. Scatterplots, Association, and Correlation

Key concepts (not exhaustive):

- 1. contigency table
- 2. histogram, scatter-plot, boxplot
- $3.\ correlation,\ z\text{-}score$

2.2 Describing Data

Suppose we have a number of data points, it is natural to describe the data in some graphical ways. Some are histograms and barplots. For example:

2.2.1 Histogram

The most popular are histograms, which directly show us the frequency of the data. In describing a histogram, we have a number of notions:

Histogram shape	Preferred statistical measures
symmetric	mean & standard deviation/variance
skewed	$\mathrm{median} \ \& \ \mathrm{IQR}$

Example 1. Let's describe this histogram: Questions:

- 1. Is it unimodal, bimodal or what else?
- 2. Is it skewed?
- 3. What can we tell about the mean and median?
- 4. Between (mean, standard deviation) and (median, IQR), which one is more meaningful?

TA: Thu Nguyen

Tue. 04/07/2020

TA: Thu Nguyen Tue. 04/07/2020

Solution:

- 1. unimodal since there is only 1 peak
- 2. left-skewed since the peak is on the far right
- 3. mean < median, think about the effects from the outliers.
- 4. (median, IQR) is more meaningful, because of the presence of outliers.

In particular, we have some observations regarding a skewed histogram:

$left\ skewed$	mean < median	
$right\ skewed$	mean > median	

Additionally, report any outliers and modes, if appropriate.

2.2.2 Correlation, z-score

- 1. Correlation tells us if there is a linear relationship between variables (think of the graph of a straight line).
- 2. z-score tells us how far away a particular data point is from the mean.

Example 2. Consider the data points which describe the number of hours spent on study and the grades obtained:

Questions:

- 1. Calculate the correlation.
- 2. Suppose a student studies 13 hours a week, calculate the z-score.

Solution:

1. We first recall the definition of *correlation*:

$$corr[x, y] = r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)$$

Note we first need $\bar{H}, s_H, \bar{G}, s_G$, where H is hours, and G is grades:

$$\bar{H} = 10.2;$$
 $s_H = 2.04;$ $\bar{G} = 82;$ $s_G = 14.38;$

which gives the correlation r

$$r = \frac{1}{9} \sum_{i=1}^{10} \left(\frac{H_i - 10.2}{2.04} \right) \left(\frac{G_i - 82}{14.38} \right) = .93$$

2. We first recall the definition of z-score of a data point x_i :

$$z(x_i) = \frac{x_i - \bar{x}}{x_y}$$

Let $H_i = 13$, this gives:

$$z(13) = \frac{13 - 10.2}{2.04} = 1.38$$

TA: Thu Nguyen

Tue. 04/07/2020

Linear correlation

2.2.3

Example 3. Let's look at these examples and determine if there is any correlation, if yes, what kind.

Remark.

- Correlation does not mean causation: just because there is a linear (or any, in principle) correlation does not necessarily mean 1 variable causes the other.
- Just because there is no *linear* correlation does not necessarily mean the two variables are uncorrelated, they can be correlated in some other (more complicated) ways (graph C above).

TA: Thu Nguyen

Tue. 04/07/2020