The algorithm chooses an arbitrary vertex and finds the minimum weight set of edges that disconnects the vertex from all other terminals. According to the algorithm, an optimal solution partitions the graph G into k subgraphs to ensure that none of the terminals can connect to each other.

We use E_{ij} to denote the total weight of all edges that connect subgraphs G_i to G_j in an optimal solution. That is, every edge in the set has one vertex in G_i and one in G_j , and is counted only once in one of the subsets. For convenience purpose we set $E_{ii} = 0$. Then we can represent the optimal solution as

$$C^*(x) = |E_{12}| + |E_{13}| + |E_{23}| + |E_{14}| + \dots$$

We use E_A to denote the set of all edges starting from G_A in an optimal solution. That is, every edge in the set has one vertex in G_A and one in some other subgraph. By definition, we have

$$|E_i| = |E_{i1}| + |E_{i2}| + |E_{i3}| + ... + |E_{ik}|$$

For every pair of the subgraphs G_i and G_j , every cut edge between them will be counted in both E_{ij} and E_{ji} . In addition, for any $i \neq j$ we have $|E_{ij}| = |E_{ji}|$ because they contain the same edges. Therefore,

$$|E_1| + |E_2| + |E_3| + ... |E_k| = 2(|E_{12}| + |E_{13}| + |E_{23}| + |E_{14}| + ...) = 2C^*(x).$$

The algorithm ensures that B_i is the optimal for every single terminal,

$$\mid B_i \mid \leq \mid E_i \mid$$
.

The algorithm takes the union of B_i for every terminal i where overlapping edges are counted only once,

$$C(x) = |B_1 \cup B_2 \cup B_3 \cup ... \cup B_{k-1}| \le |B_1| + |B_2| + ... + |B_{k-1}|$$
.

Taking into account what has been analyzed above,

$$C(x) \le |B_1| + |B_2| + ... + |B_{k-1}| \le |E_1| + |E_2| + ... + |E_{k-1}| = 2C^*(x) - |E_k| < 2C^*(x)$$
.

Since $2C^*(x)$ is the upper bound of C(x),

$$1 \le \frac{C(x)}{C^*(x)} < 2.$$

Therefore, the algorithm has an approximation ratio of 2.