1 Кватернионы

Кватернионы можно определить как множество формальных сумм a+ib+jc+kd, где $a,b,c,d \in \mathbb{R}$, а i,j,k определяются следующими соотношениями $i^2=j^2=k^2=ijk=-1$.

Множество кватернионов обозначается как Н.

Сложение двух кватернионов покомпонентное, и таким образом, свойства поля \mathbb{R} индуцируются (для операции сложения) на кватернионы, т.е. оно будет ассоциативным и коммутативным.

Умножение должно быть дистрибутивно относительно сложения, так что достаточно уметь умножать базисные кватернионы.

Таблица умножения для кватернионов выглядит следующим образом:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

Из таблицы умножения можно заметить, что разные кватернионные "единицы" не коммутируют, а антикоммутируют: ij=k и ji=-k. Таким образом, если знать, что ij=k, то остальное выводится из ассоциативности умножения. Например, ik=iij=-j, поскольку $i^2=-1$.

Правило умножения базисных кватернионов получается из формулы ij=k циклическими перестановками: ij=k, jk=i, ki=j.

Conpяженным к q=a+ib+jc+kd называется кватернион $\overline{q}=a-ib-jc-kd$.

Нормой кватерниона называется величина $\|q\|:=\sqrt{q\cdot\overline{q}}=\sqrt{a^2+b^2+c^2+d^2}.$ Обозначается: $N(q),\ \|q\|.$

Если кватернион $q=\overrightarrow{0} \Leftrightarrow \|q\|=0$, а поэтому всякий ненулевой кватернион обратим: $q^{-1}=\frac{\overline{q}}{\|q\|}$.

Множество $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ является мультипликативной группой, а $\mathbb H$ является примером некоммутативного тела.

Также кватернионы можно определить через комплексные матрицы вида:

$$\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} = \begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$

Тогда
$$i=\begin{pmatrix}i&0\\0&-i\end{pmatrix},\,j=\begin{pmatrix}0&1\\-1&0\end{pmatrix},\,k=\begin{pmatrix}0&i\\i&0\end{pmatrix}.$$

Свойства такого представления

1. Сопряженному кватерниону соответсвует сопряженная матрица;

2. Квадрат нормы кватерниона равен определителю матрицы.

Аналогично комплексным числам, кватернионы можно определить через **вещественные** матрицы вида:

$$\begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$

При таком определении вытекают следующие свойства.

- 1. Сопряженному кватерниону соответсвует транспонированная матрица;
- 2. Норма кватерниона равна корню из определителя матрицы.

Подгруппы и факторгруппы группы Q_8

Если h — любой элемент Q_8 , отличный от 1 и -1, то $h^2 = -1$. Поэтому любая подгруппа (отличная от тривильной $\{1\}$) содержит элемент -1. Первую подгруппу получаем, если ограничимся элементами $\{1, -1\}$.

Так как элемент -1 входит в любую (нетривиальную) подгруппу, то элементы i и -i либо оба входят, либо оба не входят в подгруппу. То же верно для j и -j, k и -k. Так как (нетривиальная) подгруппа в группе кватернионов может содержать только 2 или 4 элемента (по теореме Лагранжа), то мы получаем еще только 3 подгруппы: $\{1,-1,i,-i\},\{1,-1,j,-j\},\{1,-1,k,-k\}$.

Все подгруппы нормальны.

$$\begin{array}{l} Q_8/\{1,\,-1\}=\{\{1,\,-1\},\,\{i,\,-i\},\,\{j,\,-j\},\,\{k,\,-k\}\}.\\ Q_8/\{1,\,-1,\,i,\,-i\}=\{\{1,\,-1,\,i,\,-i\},\,\{j,\,-j,\,k,\,-k\}. \end{array}$$

Первая факторгруппа изоморфна V_4 , факторгруппы по трем подгруппам 4-го порядка изоморфны C_2 .

Коммутант и центр группы Q_8

Элементы 1 и -1 коммутируют со всеми остальными элементами группы кватернионов. Поэтому если один из элементов g_1, g_2 совпадает с 1 или -1, то $g_1g_2g_1^{-1}g_2^{-1}=1$. Если g - любой элемент, отличный от 1 и -1, то $g\cdot (-g)=-g^2=-(-1)=1$, т. е. $g^{-1}=-g$. Поэтому, если g_1 и g_2 - элементы, отличные от 1 и -1, то $g_1g_2g_1^{-1}g_2^{-1}=g_1g_2(-g_1)(-g_2)=g_1g_2g_1g_2=(g_1g_2)^2$. Но квадрат любого элемента в группе кватернионов равен 1 или -1. Поэтому коммутант может содержать только элементы 1 и -1, а так как группа кватернионов не коммутативна, то коммутант отличен от $\{1\}$. Следовательно, коммутант - это $\{1,-1\}$.

Так как 1 и -1 (и только они) коммутируют со всеми остальными элементами группы кватернионов, то $Z(G) = \{1, -1\}.$