MATH2: Correction rapide du CC1 du 6 avril 2016.

Exercice 1. 1. La solution générale de l'équation homogène est $y_h(x) = C e^{-3x}$, $C \in \mathbf{R}$.

2. Une primitive de la fonction a(x)=2/x sur $]0,+\infty[$ est $A(x)=2\ln(x)=\ln(x^2)$. Par conséquent la solution générale de l'équation homogène est $y_h(x)=C\,e^{\ln(x^2)}=C\,x^2,\,C\in\mathbf{R}$.

Exercice 2. 1. (a) La solution générale de l'équation homogène associée à (E1) est $y_h(x) = C e^{-2x}$, $C \in \mathbf{R}$. On cherche une solution particulière sous la forme $y_p(x) = x(ax+b)e^{-2x} = (ax^2+b)e^{-2x}$. y_p est solution de (E1) si et seulement si, pour tout $x, y_p'(x) + 2y_p(x) = xe^{-2x}$ c'est à dire

$$\forall x \in \mathbf{R}, \quad (2ax+b)e^{-2x} - 2(ax^2+b)e^{-2x} + 2(ax^2+b)e^{-2x} = xe^{-2x} \quad \text{soit} \quad 2a = 1, \ b = 0.$$

Finalement, $y_p(x) = x^2 e^{-2x}/2$ et $y_q(x) = (C + x^2/2) e^{-2x}$.

- (b) La condition y(0) = 1 donne C = 1 soit $y(x) = (1 + x^2/2) e^{-2x}$.
- 2. On a, d'après le cours, $y_h(x) = C e^{-x}$, $C \in \mathbf{R}$. On cherche une solution particulière sous la forme $y_p(x) = A\cos(3x) + B\sin(3x)$. Un calcul élémentaire donne

$$y_p'(x) + y_p(x) = -3A\sin(3x) + 3B\cos(3x) + A\cos(3x) + B\sin(3x)$$
$$= (A+3B)\cos(3x) + (B-3A)\sin(3x).$$

Par conséquent, y_p est une solution si et seulement si A+3B=1 et B-3A=0. En remplaçant B par 3A dans la 1^{re} équation, on obtient A=1/10 puis B=3/10 et donc $y_p(x)=(\cos(3x)+3\sin(3x))/10$. Par suite, $y_q(x)=C\,e^{-x}+(\cos(3x)+3\sin(3x))/10$, $C\in\mathbf{R}$.

Exercice 3. 1. Une primitive de $x \mapsto 2x$ est $x \mapsto x^2 : y_h(x) = C e^{x^2}$, $C \in \mathbf{R}$. On cherche une solution particulière sous la forme $y_p(x) = u(x) e^{x^2}$. y_p est solution de l'équation si et seulement si $u'(x)e^{x^2} = \sin(x)e^{x^2}$ soit $u'(x) = \sin(x)$. Prenant $u(x) = -\cos(x)$ on a $y_p(x) = -\cos(x)e^{x^2}$ et finalement $y_q(x) = (C - \cos(x)) e^{x^2}$, $C \in \mathbf{R}$.

2. On réécrit l'équation sous la forme $y'(x) - y(x)/x = \ln(x)/x$. Une primitive de $x \mapsto 1/x$ sur $]0, +\infty[$ est $x \mapsto \ln(x) : y_h(x) = C e^{\ln(x)} = C x, C \in \mathbf{R}$. La fonction $y_p(x) = u(x) x$ est solution de l'équation si et seulement si $u'(x) x = \ln(x)/x$ soit $u'(x) = \ln(x)/x^2$. Une intégration par partie en posant $f'(x) = 1/x^2$, $g(x) = \ln(x)$ donne, puisque f(x) = -1/x, g'(x) = 1/x,

$$u(x) = \int \frac{\ln x}{x^2} \, dx = -\frac{\ln x}{x} - \int \frac{-1}{x^2} \, dx = -\frac{\ln x}{x} + \int \frac{1}{x^2} \, dx = -\frac{\ln x}{x} - \frac{1}{x}.$$

Par conséquent, $y_p(x) = -\ln(x) - 1$ et $y_g(x) = Cx - \ln(x) - 1$, $C \in \mathbf{R}$. La condition y(1) = 1 donne C = 2 soit $y(x) = 2x - \ln(x) - 1$.

Exercice 4. 1. De manière évidente, z'(t) = x'(t) + y'(t) = 2[x(t) + y(t)] - [x(t) + y(t)] c'est à dire z'(t) = x(t) + y(t) = z(t). Par conséquent, $z(t) = Ce^t$ où $C \in \mathbf{R}$. Comme z(0) = 2, on a C = 2 et $z(t) = 2e^t$.

2. On a alors $x'(t) = 2z(t) = 4e^t$ c'est à dire $x(t) = 4e^t + c$. Comme x(0) = 3, c = -1 et $x(t) = 4e^t - 1$. De la même manière, $y'(t) = -z(t) = -2e^t$ et donc $y(t) = -2e^t + k$. Puisque y(0) = -1, k = 1 et $y(t) = -2e^t + 1$.