VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Ústav elektrotechnologie

LABORATORNÍ CVIČENÍ Z PŘEDMĚTU ELEKTROTECHNICKÉ MATERIÁLY A VÝROBNÍ PROCESY

Číslo úlohy: 5

Název úlohy: Měření driftové pohyblivosti minoritních nosičů

prouduimpulsní metodou

Jméno a příjmení, ID:	Atmosférický tlak:	Teplota okolí:	Relativní vlhkost: 41.1%
Tomáš Vavrinec, 240893	124.4 hPa	24.3°C	
Měřeno dne: 7.10.2022	Odevzdáno dne:	Ročník, stud. skupina: 2	Kontrola:

Spolupracovali:

Daniel Poisl

Zadání

Určete driftovou pohyblivost minoritních nosičů a sledujte její změnu s měnící se intenzitou elektrického pole. Graficky znázorněte závislost pohyblivosti minoritních nosičů proudu na intenzitě elektrického pole.

Na emitor přiložte impulsy Stejnosměrný proud vzorkem nastavujte v rozmezí Změřte vzdálenost hrotů (d)

$$t = (5-20)[\mu s]$$

 $I = (5-35)[mA]$ min. 10 hodnot

Parametry vzorku a použitých materiálů

Rezistivita vzorku křemíku je Průřez vzorku je Vzdálenost hrotů je nutné změřit

$$\rho = 0.464 [\mu m]$$

$$S = (1.5x5)[mm^2]$$

Teoretický úvod

Normálně se v krystalu pohybují nosiče náboje nahodile všemi směry, dohromady se tedy proud který tvoří vykompenzuje. Po vložení krystalu do elektrického pole E se k náhodnému pohyby přičte pohyb v opačném směru než ve kterém působí el.pole. Rychlost tohoto pohybu značíme V_{drift} a definujeme vztahem V_{drift} kde μ_{drift} je driftová pohyblivost. Vzhledem k tomu, že předpokládáme dva druhy nosičů, elektrony a díry, uvažujeme i jejich různé pohyblivosti.

Pokud do krystalu, kterým protéká proud (je tedy trvale el.poli) vyšleme pomocí dvou elektrod ojedinělý impulz, můžeme na druhé straně pozorovat tento impulz "rozdvojený". Hlavní část impulzu je přenesena majoritními nosiči a sekundární pulz, který následuje těsně za hlavním je tvořen nosiči minoritními. Ze vzdálenosti těchto dvou pulzů můžeme určit pohyblivost minoritních nosičů podle vztahu $\mu = \frac{d}{E \cdot t_0}$ kde d je vzdálenost mezi elektrodami, E je intenzita el.pole a t_0 je doba mezi impulzu.

Intenzitu el.
pole můžeme spočítat podle vztahu $E = \frac{U}{d} = \frac{\rho I}{S}$

vzdálenost hrotů d=1.8[mm] měrná vodivost vzorku $\rho=0.464[\Omega m]$ plochá průřezu vzorku $S=7.5\cdot 10^{-6}[m^2]$

závislost pohyblivosti μ na intenzitě el.
pole E

Table 1: Naměřené a vypočtené hodnoty

10010 1	Table 1. Italierene a vypoetene nodnoty				
$t0[\mu s]$	I[mA]	E[V/m]	$\mu[m^2V^{-1}s^{-1}]$		
14.62	5	309.3	0.398		
14.68	8	494.9	0.248		
15.00	10	618.7	0.194		
15.08	12	742.4	0.161		
15.24	14	866.1	0.136		
15.44	16	989.9	0.118		
15.64	18	1113.6	0.103		
15.82	20	1237.3	0.092		
15.92	22	1361.1	0.083		
16.12	24	1484.8	0.075		
16.32	26	1608.5	0.069		
16.44	28	1732.3	0.063		
16.50	30	1856.0	0.059		
16.52	32	1979.7	0.055		
16.85	34	2103.4	0.051		

0.4 a proximace $\frac{117}{x-20}$ - 0.00450.350.3 0.250.20.150.1 $5\cdot 10^{-2}$ $\overline{1,250}$ 500 750 1,000 1,500 1,750 2,000 $E[Vm^{-1}]$

Příklad výpočtu el.
pole E a pohyblivosti μ :

$$E = \frac{\rho I}{S} = \frac{0.464 \cdot 5 \cdot 10^{-3}}{7.5 \cdot 10^{-6}} = 309.3 [V/m]$$

$$\mu = \frac{d}{E \cdot t_0} = \frac{1.8 \cdot 10^{-3}}{309.3 \cdot 14.62 \cdot 10^{-6}} = 0.398 [m^2 V^{-1} s^{-1}]$$

0.1 Závěr

Z měření plyne, že se stoupající intenzitou el.pole klesá pohyblivost minoritních nosičů. To odpovídá teorii, podle které se v tomto měření pohybujeme v oblasti 1 a 2, tedy v oblasti s nízkým a středním el.polem.