Основы VerirogHDL/SystemVerilog (синтез и моделирование)

Задание lab7 (4 часа лабораторных занятий)

Часть lab7_1

- □ На языке Verilog создайте описание параметризированного без знакового умножителя двух чисел разрядностью N(параметр).
- □ Умножение должно быть реализовано на ROM памяти: адресные входы множимое и множитель; выход памяти ROM результат умножения.
- □ Инициализацию ROM следует выполнить в процедурном блоке initial, с использованием циклов.
- □ Базовое значение параметра N: 4
- □ Выводы устройства для моделирования и реализации на плате
 - ✓ вход множимого [N-1:0]da (при реализации на плате подать на sw[7:4]); На входе следует использовать регистр.
 - ✓ вход множителя [N-1:0]db (при реализации на плате подать на sw[3:0]); На входе следует использовать регистр.
 - ✓ clk вход тактового сигнала
 - ✓ выход результат умножения [N-1:0]q (при реализации на плате подать на led[7:0]); На выходе следует использовать регистр.

Ожидаемая структура модуля (при базовом значении параметра N)

□ Пример текстового описания модуля

```
module lab7 1
     #(parameter DATA_WIDTH=4)
    □( input [(DATA_WIDTH-1):0] da. db.
         input clk,
        output reg [(2*DATA_WIDTH-1):0] q);
     // ROM memory array
     reg [2*DATA_WIDTH-1:0] rom[2**(2*DATA_WIDTH)-1:0];
     // Internal varaibles
     reg [DATA_WIDTH-1:0] ta, tb, ia, jb;
   // Specify the initial contents of the ROM. 

pinitial begin: INIT
12
        integer i,j;
        for (i = 0; i \le 2**DATA_WIDTH-1; i = i + 1)
            for(j = 0; j \le 2**DATA_WIDTH-1; j = j + 1)
15
            beain
16
               ia = i:
               jb = j;
               rom[\{ia,jb\}] = ia * jb;
19
            end
20
    ∟end
21
22
23
24
        store data from inputs.
     always @ (posedge clk)
        begin
            ta <= da:
            tb <= db:
         end
     // read ROM and return the result
     always @ (posedge clk)
29
            q <= rom[{ta, tb}];</pre>
     endmodule
```

□ Пример временной диаграммы для моделирования

- □ Дополнительные требования:
 - ✓ стандарты и номера выводов СБИС для платы miniDiLaB_CIV задайте с помощью атрибутов.
- Осуществите функциональное моделирование.
- □ Подготовьте конфигурационный файл для реализации на плате.

□ Имя проекта – lab7_1. Имя модуля верхнего уровня – lab7_1

Часть lab7_2

□ На языке Verilog создайте структурное описание устройства,
 приведенного на рисунке (разрядность на рисунке показана при базовых значениях параметров data_W и word_num – см. следующий слайд)

- □ В состав устройства входят:
- □ cnt_d счетчик делитель (параметризированный, параметр DIV)
 - ✓ счетчик-делитель, обеспечивает счет по модулю DIV (базовое значение 3) и формирование синхронного сигнала переноса (активный уровень сигнала 1, длительность один такт тактовой частоты) по достижению счетчиком значения DIV-1.
- □ Параметризированный счетчик cnt_N
 - двоичный счетчик на сложение с параметризированной разрядностью (параметр N, базовое значение 4), имеющий вход тактовых сигналов (clk), вход разрешения работы (ena), вход асинхронного сброса (rst) и выход q[N-1:0]

- data формирователь данных для модуля памяти
 - ✓ реализован на базе параметризированного счетчика cnt_N
- adr формирователь адреса для модуля памяти
 - ✓ реализован на базе параметризированного счетчика cnt_N
- □ RAM модуль памяти (простая одно портовая память с **чтением старых данных** в процессе записи) параметризированный, параметры:
 - ✓ word_num число слов базовое значение 16,
 - ✓ data_W разрядность данных базовое значение 4

RAM – модуль памяти

- простая одно портовая память с чтением старых данных в процессе записи
- ✓ параметризированный, параметры:
 - word_num число слов базовое значение 16,
 - Для расчета разрядности шины адреса следует использовать функцию с постоянным значением для вычисления log2 word_num (пример был в лекции 6).
 - data_W разрядность данных базовое значение 4
- ✓ Вход wre вход разрешения записи (=0 запись в память разрешена)
- ✓ Модуль RAM памяти должен быть инициализирован данными:
 - 0000 четные адреса; 1111 нечетные адреса
 - Инициализацию реализовать с помощью \$readmemb или \$readmemh

□ Выводы устройства:

✓ Входы:

- ARSTn- вход асинхронного сброса ('0'– сброс), при реализации на плате – кнопка pbb .
- WEn– вход разрешения записи в память ('0'– запись разрешена), при реализации на плате – кнопка pba.
- clk вход тактового сигнала (clk), при реализации на плате подается от тактового генератора 25МГц (см. описание стенда).

✓ Выходы

 [data_W-1:0] q, при реализации на плате – светодиоды led[3:0]. На выходах должен быть использован регистр, который по сигналу ARSTn = 0 устанавливается, во всех разрядах, в 1.

- □ Алгоритм работы устройства:
 - ✓ Модуль памяти RAM инициализируется данными 4'hf – четные адреса; 4'h0 – нечетные адреса.
 - ✓ Если ARSTn и WEn равны 0 (кнопки pba и pbb на плате не нажаты): осуществляется чтение данных из памяти. При реализации на плате данные отображаются на светодиодах: светодиоды переключаются (все включенывсе выключены) ~ 1 раз в секунду
 - ✓ Если установить ARSTn =1 (на плате нажать на кнопку pbb и удерживать ее), то счетчики адреса и данных сбрасываются в 0, выходной регистр данных устанавливается в 1 во всех разрядах и на выходах устройства во всех разрядах должны быть 1. (На плате светодиоды должны быть выключены).

- ✓ Если установить ARSTn = 0 и WEn = 1 (на плате нажать на кнопку pba) разрешить запись данных в модуль памяти в память по адресам, формируемым модулем adr, будут записываться данные формируемые модулем data. При этом на выходе устройства должны отображаться записываемые данные (модуль памяти реализует режим: чтение новых данных в процессе записи). При реализации на плате: для записи всей памяти потребуется около 16 секунд, записываемые данные будут отображаться на светодиодах.
- ✓ Если дождаться записи во все 16 ячеек памяти, то в модуль памяти будут записаны значения от 0 до 15.
- ✓ Если после записи данных в модуль памяти установить ARSTn =0 и WEn =0 (на плате кнопки pba и pbb не нажаты) осуществляется чтение данных из RAM, значений от 0 до 15, и отображение их на выходах q. На плате: на светодиодах появляются значения от 0 до 15 с периодом равным ~ 1 секунде.

- □ Дополнительные требования:
 - ✓ стандарты и номера выводов СБИС для платы miniDiLaB_CIV задайте с помощью атрибутов.
- □ Осуществите функциональное моделирование при **DIV=3**, word_num = 16, data_W=4:
 - ✓ Режим 1: ARSTn =1 и WEn =1 (модуль памяти заполнен базовыми значениями 4'hf и 4'h0)
 - ✓ Режим 2: ARSTn =0 и WEn =1
 - ✓ Режим 3: ARSTn =1 и WEn =0 следует дождаться заполнения всего модуля памяти новыми значениями
 - ✓ Режим 4: ARSTn =1 и WEn =1 (модуль памяти заполнен базовыми значениями от 0 до 15).
- □ Подготовьте конфигурационный файл для реализации на плате при **DIV=25 000 000**, word_num = 16, data_W=4

☐ Имя проекта — lab7_2. Имя модуля верхнего уровня — lab7_2

Часть lab7_3

- □ На языке Verilog создайте описание модуля, который, в зависимости от параметра dir, осуществляет преобразование двоичного 5-ти разрядного кода в:
 - ✓ Двоично-десятичный при dir="bd"
 - ✓ Код Грея при dir="grey"
 - ✓ Константное значение (равное номеру в списке группы) по адресу, равному номеру в списке группы (по остальным адресам 0) при любых других значениях dir.
- □ Преобразования должны быть реализованы на модуле памяти ROM. Начальные значения ROM для каждого преобразователя задать с помощью \$readmemb или \$readmemh
- □ Разрядность данных модуля ROM 8 бит (две тетрады для двоично-десятичного преобразователя; Код Грея отображается в младших 5 разрядах, в старших – 0; константное значение отображается в 8 разрядах).
- □ Разрядность адреса модуля ROM 5 бит (на вход адреса поступает преобразуемый двоичный код).
- Анализ параметра dir и формирование алгоритма работы модуля следует реализовать с помощью оператора generate.
 - ✓ Например, можно с помощью generate case анализировать параметр dir и выбирать считываемый для заполнения ROM файл.

□ Выводы устройства:

✓ Входы:

- [4:0] bc преобразуемый двоичный код (при реализации на плате подключен к sw[4:0])
- clk вход тактового сигнала (clk), при реализации на плате подается от тактового генератора 25МГц (см. описание стенда).

✓ Выходы

 [7:0] q (при реализации на плате подключены к светодиодам led[7:0]).

Пример таблиц для файлов с начальным содержимым ROM

• • •				
	содержимое ROM			pe ROM
				Номер
				в списке
двоичный	адрес	2-10		(например для студента с
код	ROM	код	Код Грея	номером 31)
00000	0	0000_0000	0000_0000	0000_0000
00001	1	0000_0001	0000_0001	0000_0000
00010	2	0000_0010	0000_0011	0000_0000
	3			0000_0000
	4			0000_0000
	5			0000_0000
	6			0000_0000
	7			0000_0000
	8			0000_0000
	9			0000_0000
01010	10	0001_0000	0000_1111	0000_0000
	11			0000_0000
	12			0000_0000
	13			0000_0000
	14			0000_0000
				0000_0000
11111	31	0011 0001		0001 1111

- □ Дополнительные требования:
 - ✓ стандарты и номера выводов СБИС для платы miniDiLaB_CIV задайте с помощью атрибутов.
- □ Осуществите функциональное моделирование (и приведите в отчете результаты) для всех трех вариантов реализации модуля.
- □ Подготовьте конфигурационный файл для реализации на плате
- Имя проекта lab7_3. Имя модуля верхнего уровня lab7_3