```
In [11]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import os
         import scipy.stats as sts
         import matplotlib as mpl
         %matplotlib inline
In [14]: from sklearn.decomposition import FactorAnalysis as fact
         from sklearn.decomposition import PCA as pca
In [16]:
         #Clustering modules
         import sklearn.metrics as metcs
         from scipy.cluster import hierarchy as hier
         from sklearn import cluster as cls
In [87]: | #For the tree
         from sklearn.feature_extraction.image import grid_to_graph
         from sklearn import tree
         from sklearn.externals.six import StringIO
         from IPython.display import Image
         import pydotplus
In [5]: path = "C:/Users/Administrator/Documents/Master/MSIS-5223-70250 - Programming
          for Data Sci - 8282017 - 159 PM/Data for Tutorials and ICE/Data"
         os.chdir(path)
         df = pd.read_table('car.test.frame.txt', sep= '\t')
In [27]: df = df.dropna()
In [28]: df1 = df.copy()
In [29]: df1.columns
Out[29]: Index(['Price', 'Country', 'Reliability', 'Mileage', 'Type', 'Weight', 'Dis
         p.',
                 'HP'],
               dtype='object')
In [89]: df1.dtypes
Out[89]: Price
                           int64
         Country
                          object
         Reliability
                         float64
         Mileage
                           int64
         Type
                        category
         Weight
                           int64
                           int64
         Disp.
         HP
                           int64
         dtype: object
```

In [90]: df1.head()

Out[90]:

	Price	Country	Reliability	Mileage	Туре	Weight	Disp.	HP
0	8895	USA	4.0	33	Small	2560	97	113
1	7402	USA	2.0	33	Small	2345	114	90
2	6319	Korea	4.0	37	Small	1845	81	63
3	6635	Japan/USA	5.0	32	Small	2260	91	92
4	6599	Japan	5.0	32	Small	2440	113	103

In [91]: rows, cols = df1.shape

rows, cols

Out[91]: (49, 8)

In [43]: df1.head()

Out[43]:

	Price	Country	Reliability	Mileage	Туре	Weight	Disp.	HP
0	8895	USA	4.0	33	Small	2560	97	113
1	7402	USA	2.0	33	Small	2345	114	90
2	6319	Korea	4.0	37	Small	1845	81	63
3	6635	Japan/USA	5.0	32	Small	2260	91	92
4	6599	Japan	5.0	32	Small	2440	113	103

In [49]: df1.describe()

Out[49]:

	Price	Reliability	Mileage	Weight	Disp.	НР
count	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000
mean	12452.081633	3.387755	24.795918	2897.755102	156.714286	125.408163
std	4229.656447	1.455111	4.813088	500.257289	57.374138	32.514688
min	6319.000000	1.000000	18.000000	1845.000000	81.000000	63.000000
25%	9599.000000	2.000000	21.000000	2560.000000	114.000000	102.000000
50%	11650.000000	3.000000	23.000000	2885.000000	146.000000	115.000000
75%	14944.000000	5.000000	27.000000	3265.000000	181.000000	150.000000
max	24760.000000	5.000000	37.000000	3855.000000	305.000000	225.000000

```
In [52]: #Use 6 clusters
         km = cls.KMeans(n_clusters=6).fit(df1.loc[:,['Price','Mileage']])
         km.labels
                         #assigned clusters
```

```
Out[52]: \ array([1,\ 5,\ 5,\ 5,\ 5,\ 1,\ 5,\ 5,\ 1,\ 1,\ 5,\ 1,\ 3,\ 1,\ 3,\ 3,\ 1,\ 0,\ 3,\ 1,\ 1,\ 3,\ 1,
                   3, 3, 3, 4, 3, 1, 3, 3, 4, 2, 3, 3, 0, 0, 3, 0, 2, 4, 3, 2, 0, 0, 4,
                   0, 3, 0])
```

```
In [54]:
         #Use 4 clusters
         km = cls.KMeans(n_clusters=4).fit(df1.loc[:,['Price','Mileage']])
         km.labels
                         #assigned clusters
```

```
Out[54]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2, 0,
                2, 2, 2, 1, 2, 0, 2, 2, 1, 3, 2, 2, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 1,
                1, 2, 1])
```



```
In [106]: df1['Type'] = df1['Type'] .astype('category')
```

```
In [105]: col_names = list(df1.columns.values)
          classnames = list(df1.Type.unique())
```

Out[105]:

	Price	Country	Reliability	Mileage	Туре	Weight	Disp.	НР
0	8895	USA	4.0	33	Small	2560	97	113
1	7402	USA	2.0	33	Small	2345	114	90
2	6319	Korea	4.0	37	Small	1845	81	63
3	6635	Japan/USA	5.0	32	Small	2260	91	92
4	6599	Japan	5.0	32	Small	2440	113	103
5	8672	Mexico	4.0	26	Small	2285	97	82
6	7399	Japan/USA	5.0	33	Small	2275	97	90
7	7254	Korea	1.0	28	Small	2350	98	74
8	9599	Japan	5.0	25	Small	2295	109	90
10	8748	Japan/USA	5.0	29	Small	2390	97	102
11	6488	Japan	5.0	35	Small	2075	89	78
12	9995	Germany	3.0	26	Small	2330	109	100
13	11545	USA	1.0	20	Sporty	3320	305	170
14	9745	USA	1.0	27	Sporty	2885	153	100
15	12164	USA	1.0	19	Sporty	3310	302	225
16	11470	USA	3.0	30	Sporty	2695	133	110
17	9410	Japan	5.0	33	Sporty	2170	97	108
18	13945	Japan	5.0	27	Sporty	2710	125	140
19	13249	Japan	3.0	24	Sporty	2775	146	140
23	10565	USA	2.0	23	Compact	2640	151	110
24	10320	USA	1.0	26	Compact	2655	133	95
25	10945	USA	4.0	25	Compact	3065	181	141
26	9483	USA	2.0	24	Compact	2750	141	98
27	12145	Japan/USA	5.0	26	Compact	2920	132	125
28	12459	Japan/USA	4.0	24	Compact	2780	133	110
29	10989	Japan	5.0	25	Compact	2745	122	102
30	17879	Japan	4.0	21	Compact	3110	181	142
31	11650	Japan	5.0	21	Compact	2920	146	138
32	9995	USA	2.0	23	Compact	2645	151	110
34	11499	Japan/USA	5.0	23	Compact	2935	135	130
35	11588	Japan/USA	5.0	27	Compact	2920	122	115
36	18450	Sweden	3.0	23	Compact	2985	141	114

	ICE3_NIAIII_FIIAIII								
	Price	Country	Reliability	Mileage	Туре	Weight	Disp.	HP	
37	24760	Japan	5.0	20	Medium	3265	163	160	
38	13150	USA	3.0	21	Medium	2880	151	110	
39	12495	USA	2.0	22	Medium	2975	153	150	
40	16342	USA	3.0	22	Medium	3450	202	147	
41	15350	USA	2.0	22	Medium	3145	180	150	
42	13195	USA	3.0	22	Medium	3190	182	140	
43	14980	USA	1.0	23	Medium	3610	232	140	
45	23300	Japan	5.0	21	Medium	3480	180	158	
46	17899	Japan	5.0	22	Medium	3200	180	160	
47	13150	USA	2.0	21	Medium	2765	151	110	
49	21498	Japan	3.0	23	Medium	3480	180	190	
50	16145	USA	3.0	23	Large	3325	231	165	
51	14525	USA	1.0	18	Large	3855	305	170	
52	17257	USA	3.0	20	Large	3850	302	150	
54	15395	USA	3.0	18	Van	3735	202	150	
55	12267	USA	3.0	18	Van	3665	182	145	
56	14944	Japan	5.0	19	Van	3735	181	150	

```
In [107]: tre1 = tree.DecisionTreeClassifier('gini').fit(df1.ix[:,1:8],df1.Type)
          ValueError
                                                     Traceback (most recent call last)
          <ipython-input-107-5a7803fcbe2f> in <module>()
           ----> 1 tre1 =
          tree.DecisionTreeClassifier('gini').fit(df1.ix[:,1:8],df1.Type)
          C:\Users\Administrator\Anaconda3\lib\site-packages\sklearn\tree\tree.py in fi
          t(self, X, y, sample_weight, check_input, X_idx_sorted)
                               sample weight=sample weight,
              737
              738
                               check input=check input,
          --> 739
                               X idx sorted=X idx sorted)
              740
                           return self
              741
          C:\Users\Administrator\Anaconda3\lib\site-packages\sklearn\tree\tree.py in fi
          t(self, X, y, sample weight, check input, X idx sorted)
                           random_state = check_random_state(self.random_state)
              120
              121
                           if check input:
          --> 122
                               X = check_array(X, dtype=DTYPE, accept_sparse="csc")
              123
                               y = check array(y, ensure 2d=False, dtype=None)
              124
                               if issparse(X):
          C:\Users\Administrator\Anaconda3\lib\site-packages\sklearn\utils\validation.p
          y in check array(array, accept sparse, dtype, order, copy, force all finite,
           ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype,
           estimator)
              380
                                                         force all finite)
              381
                      else:
          --> 382
                           array = np.array(array, dtype=dtype, order=order, copy=copy)
              383
              384
                           if ensure 2d:
          ValueError: could not convert string to float: 'Van'
          dot data = StringIO()
 In [99]:
          tree.export graphviz(tre1, out file=dot data,
                                feature names=col names[1:7],
                                class names=classnames,
                                filled=True,
                                rounded=True,
                                special_characters=True)
          graph = pydotplus.graph from dot data(dot data.getvalue())
          Image(graph.create png())
          NameError
                                                     Traceback (most recent call last)
          <ipython-input-99-e7bc95015e40> in <module>()
                1 dot data = StringIO()
          ----> 2 tree.export graphviz(tre1, out file=dot data,
                3
                                        feature_names=col_names[1:7],
                4
                                        class names=classnames,
                5
                                        filled=True,
          NameError: name 'tre1' is not defined
```