

Algèbre relationnelle En juin 1970, E. F. Codd publie un article qui présente les fondements du modèle relationnel: « A Relational Model of Data for Large Shared Data Banks » Cet article important présente un nouveau paradigme et des solutions innovantes à de nombreux problèmes des outils de gestion de données de l'époque. Afin d'appuyer son modèle relationnel, Codd développe: 12 règles fondamentales à suivre pour créer un système de gestion relationnel; 11 'algèbre relationnelle qui devient le formalisme mathématique derrière le modèle relationnel et la base des implémentations qui suivront.

Algèbre relationnelle

3

GPA775

- L'algèbre relationnelle (AR) est une partie autonome de la mathématique et attachée à l'étude d'ensembles constitués d'autres éléments.
- Cette algèbre est constituée d'un ensemble de règles et d'opérations formelles qui permettent de manipuler les relations (au sens du modèle relationnel).
- Ainsi, les relations sont à la base de l'AR. Toutes les opérations présentent ces caractéristiques :
 - ▶ à l'entrée se trouve une ou plusieurs relations;
 - ▶ le résultat est toujours une relation (qu'elle contienne plusieurs éléments, un seul ou qu'elle soit vide).

Algèbre relationnelle Éléments fondamentaux

- ▶ Formellement, la relation est définie comme suit dans le cadre de l'AR :
 - À la base, on retrouve la notion de domaine qui détermine la nature d'une valeur (d'un objet) atomique (numérique, chaîne de caractères, date, types énumérés, ...).
 - Une relation est d'abord définie par son schéma, c'est-à-dire la définition de sa structure. Un schéma est constitué d'une liste de plusieurs domaines portant un nom unique pour cette liste.
 - Une relation possède ensuite une extension qui est constituée de tuples respectant le schéma. À même l'extension, l'ordre des tuples n'a aucune importance.

Algèbre relationnelle **Éléments fondamentaux**

5

GPA775

- ▶ Tel que nous l'avons vu pour le modèle relationnel, une relation respecte les règles suivantes :
 - une relation porte une nom
 - une relation est définie par un schéma qui est constitué de n_a domaine(s) nommé(s) attribut(s) $n_a > 0$
 - une relation possède une clé définie par un ou une composition minimale d'attributs
 - ▶ une extension est constitué de n_t tuple(s) $n_t \ge 0$ lorsque $n_t = 0$, on dit que la relation est vide

Algèbre relationnelle **Opérateurs**

- L'algèbre relationnelle permet de manipuler les informations afin d'extraire efficacement de l'information à partir d'une base de données constituée de plusieurs relations.
- ▶ Il existe plusieurs familles d'opérateurs :
 - opérateurs unaires;
 - opérateurs ensemblistes;
 - opérateurs de jointure;
 - opérateurs et fonctions arithmétiques;
 - opérateurs et fonctions sur les chaînes de caractères;
 - opérateurs d'agrégation (de regroupement).

Algèbre relationnelle

Opérateurs unaires | Projection

7

- La projection est l'opérateur qui permet de sélectionner des attributs selon le prédicat donné.
- Notation:

$$R' = \prod_{a_1,a_2,...} R$$

- ▶ Interprétation : la relation R' correspond à la projection des attributs a_1 et a_2 de la relation R.
- On remarque qu'il est possible que le résultat soit sans clé primaire définie. Dans ce cas, le résultat défini automatiquement une clé primaire par la composition de tous les attributs restant et élimine tous les doublons existants.

Algèbre relationnelle Opérateurs unaires | Projection

GPA775

8

ightharpoonup Par exemple : $\Pi_{\mathsf{Nom,Pr\acute{e}nom}}$ Client

Client			
<u>ld</u>	Nom	Prénom	Couriel
3	Bernard	Alain	ab@gmail.com
23	Perrier	Charles	cp@yahoo.ca
2	Labbé	Caroline	cl@hotmail.com
8	Barrette	Patricia	pb@bell.ca

<u>Nom</u>	<u>Prénom</u>
Bernard	Alain
Perrier	Charles
Labbé	Caroline
Barrette	Patricia

ightharpoonup Par exemple : $\Pi_{
m Nom}$ Client

Cilett			
<u>ld</u>	Nom	Prénom	Couriel
3	Bernard	Alain	ab@gmail.com
23	Perrier	Charles	cp@yahoo.ca
2	Perrier	Caroline	cl@hotmail.com
8	Barrette	Patricia	pb@bell.ca
	-		

Nom
Bernard
Perrier
Barrette

Algèbre relationnelle

Opérateurs unaires | Sélection

9

- La sélection (parfois appelé restriction) est l'opérateur qui permet de sélectionner des tuples selon le prédicat donné.
- Notation:

 $R' = \sigma_{condition}R$

- ▶ Interprétation : la relation R' correspond à la sélection des tuples de R respectant la ou les conditions données.
- Les conditions sont déterminées par des opérateurs appliqués sur les valeurs des attributs { =, ≠, <, ≤, >, ≥, ∪, ∩ }

Algèbre relationnelle Opérateurs unaires | Sélection

10

GPA775

Par exemple : σ_{Id>4} Client

CI	nt

Cilette			
<u>ld</u>	Nom	Prénom	Couriel
3	Bernard	Alain	ab@gmail.com
23	Perrier	Charles	cp@yahoo.ca
2	Labbé	Caroline	cl@hotmail.com
8	Barrette	Patricia	pb@bell.ca

<u>ld</u>	Nom	Prénom	Couriel
23	Perrier	Charles	cp@yahoo.ca
8	Barrette	Patricia	pb@bell.ca

▶ Par exemple : $\sigma_{\text{Id} \leq 2 \cup \text{Id} \geq 20}$ Client

Client

<u>Id</u>	Nom	Prénom	Couriel
3	Bernard	Alain	ab@gmail.com
23	Perrier	Charles	cp@yahoo.ca
2	Labbé	Caroline	cl@hotmail.com
8	Barrette	Patricia	pb@bell.ca

<u>ld</u>	Nom	Prénom	Couriel
23	Perrier	Charles	cp@yahoo.ca
2	Labbé	Caroline	cl@hotmail.com

Algèbre relationnelle

Opérateurs unaires | Synonyme

11

- Le synonyme (souvent appelé l'alias ou le renommage) est l'opérateur qui permet de donner un nouveau nom à un attribut existant.
- Notation:

$$R' = \rho_{a/b}R$$

- ▶ Interprétation : la relation **R'** correspond en tout point à la relation R à la différence où l'attribut **a** se nomme maintenant **b**.
- ▶ Cet opérateur peut devenir très utile pour préciser le rôle d'un attribut ou pour lever l'ambiguïté d'une attribut lorsqu'un opérateur met en commun deux relations ayant des noms d'attributs similaires.

Algèbre relationnelle Opérateurs unaires | Sélection

12

GPA775

 $\qquad \text{Par exemple}: \rho_{\text{Id/NoRef}, \text{Couriel/Contact}} \text{ Client} \\$

Client				
<u>ld</u>	Nom	Prénom	Couriel	
3	Bernard	Alain	ab@gmail.com	
23	Perrier	Charles	cp@yahoo.ca	
2	Labbé	Caroline	cl@hotmail.com	
8	Barrette	Patricia	pb@bell.ca	

Client

<u>NoRef</u>	Nom	Prénom	Contact
3	Bernard	Alain	ab@gmail.com
23	Perrier	Charles	cp@yahoo.ca
2	Labbé	Caroline	cl@hotmail.com
8	Barrette	Patricia	pb@bell.ca

Algèbre relationnelle Opérateurs ensemblistes | Union

- L'union est un opérateur binaire permettant de produire une relation R' avec tous les tuples appartenant à R_1 ou à R_2 .
- Notation:

 $R' = R1 \cup R2$

- ightharpoonup Interprétation : la relation m R' est le résultat de l'union des tuples des relations $m R_1$
- \mathbf{R}_1 et \mathbf{R}_2 doivent être de même schéma sinon l'union est impossible. \mathbf{R}' est de même schéma.
- L'union élimine tous les doublons existants.
- Cet opérateur est commutatif.

Algèbre relationnelle Opérateurs ensemblistes | Union

GPA775

14

Par exemple : Client ∪ Employé

Client

Nom	Prénom
Prévost	Charlotte
Richter	Karl
Barette	Patricia

Cilett	
Nom	Prénom
Bernard	Alain
Perrier	Charles
Labbé	Caroline
Barrette	Patricia

Nom	Prénom
Prévost	Charlotte
Richter	Karl
Barette	Patricia
Bernard	Alain
Perrier	Charles
Labbé	Caroline

Algèbre relationnelle

Opérateurs ensemblistes | Intersection

15

GPA775

- L'intersection est un opérateur binaire permettant de produire une relation \mathbf{R}' avec tous les tuples qui appartiennent à \mathbf{R}_1 et à \mathbf{R}_2 à la fois.
- Notation:

 $R' = R1 \cap R2$

- ▶ Interprétation : intersection des tuples des relations R_1 et R_2 .
- R₁ et R₂ doivent être de même schéma sinon l'intersection est impossible.
 R' est de même schéma.
- Cet opérateur est commutatif.

Algèbre relationnelle

Opérateurs ensemblistes | Différence

17

- ▶ La différence est un opérateur binaire permettant de produire une relation R' avec tous les tuples qui appartiennent à R₁ et qui n'appartiennent pas à R₂.
- Notation :

$$R' = R1 - R2$$

- ▶ Interprétation : différence des tuples des relations R₁ et R₂.
- ightharpoonup
 igh
- Cet opérateur n'est pas commutatif.

Algèbre relationnelle Opérateurs ensemblistes | Différence

18

GPA775

Par exemple : Client - Employé

Employé		
Nom	Prénom	
Prévost	Charlotte	
Richter	Karl	
Barette	Patricia	
	-	

Client		
Nom	Prénom	
Bernard	Alain	
Perrier	Charles	
Labbé	Caroline	
Barrette	Patricia	

Nom	Prénom
Bernard	Alain
Perrier	Charles
Labbé	Caroline

GPA775

20

Algèbre relationnelle Opérateurs ensemblistes | Quotient Le quotient est un opérateur binaire (plus complexe) permettant de produire une relation R' qui inclue tous les tuples de R₁ qui ont un lien total vers R₂ (c'est-à-dire, il existe un lien de R₁ à R₂ pour chaque instance de R₁ et pour chaque valeur de R₂). Notation: R' = R1 ÷ R2 Interprétation: quotient des tuples des relations R₁ et R₂. Cet opérateur n'est pas commutatif.

Algèbre relationnelle Opérateurs ensemblistes | Quotient

21

Par exemple : Producteur ÷ Produit

Produit

Id	Nom
4	Fraise
7	Mais

Producteur

Nom	Prénom	Produit
Bernard	Alain	4
Perrier	Charles	2
Labbé	Caroline	4
Perrier	Charles	7

Prénom Charles

Algèbre relationnelle Opérateurs ensemblistes | Produit cartésien

- Le produit cartésien est un opérateur binaire permettant de produire une relation R' avec tous les tuples qui appartiennent à R_1 combinés à chacun des tuples de R_2 . De plus, le schéma de R' est l'union des schémas de R_1 et R2.
- Notation:

$$R' = R1 \times R2$$

- ▶ Interprétation : produit cartésien des tuples des relations R_1 et R_2 .
- Cet opérateur est commutatif.

GPA775

23

GPA775

24

Algèbre relationnelle Opérateurs ensemblistes | Produit cartésien

- ▶ Attention, le résultat obtenu n'est pas garantie de sens.
- Par exemple : Producteur X Produit

Produit

Id	Nom	Prix
4	Fraise	3.99\$
7	Mais	3.50\$

Producteur

Nom	Prénom
Bernard	Alain
Perrier	Charles
Labbé	Caroline

Algèbre relationnelle Opérateurs ensemblistes | Produit cartésien

- C'est ce qu'on fait du résultat qui donne du sens au résultat.
- ▶ Par exemple : Producteur X Produit

Produit

Id	Nom
4	Fraise
7	Mais

Producteur

Nom	Prénom	Produit
Bernard	Alain	4
Perrier	Charles	2
Labbé	Caroline	4

Algèbre relationnelle Opérateurs ensemblistes | Produit cartésien

- L'opérateur de produit cartésien est au cœur de l'algèbre relationnelle et donc des bases de données relationnelles.
- Néanmoins, nous verrons que cet opérateur est rarement utilisé tel quel étant donné sa très grande inefficacité.
- ► En effet, pensez à deux relations ayant chacune 10 000 et 750 000 tuples. Le résultat obtenu serait est une relation de 15 000 000 000 de tuples!

Algèbre relationnelle **Opérateurs de jointure**

GPA775

25

26

- ▶ Les jointures (parfois dérivé de l'anglais et appelé jonction), permettent d'effectuer un ensemble d'opérations de base afin de maximiser la combinaison de deux relations.
- Il existe plusieurs types de jointure et elles sont regroupées principalement en deux catégories :
 - jointures internes (théta-jointure, équi-jointure, jointure naturelle, semi-jointure et anti-jointure);
 - jointure externes (jointure externe entière, jointure externe gauche et jointure externe droite).

Algèbre relationnelle

Opérateurs de jointure | Théta-jointure

27

- La théta-jointure est l'opération qui consiste à appliquer à la fois un produit cartésien et une sélection.
- Notation:

$$R' = R_1 \bowtie_{condition} R_2$$

► Interprétation (même sens mathématique*) :

$$R' = \sigma_{condition}(R_1 \times R_2)$$

Algèbre relationnelle Opérateurs de jointure | Théta-jointure

28

GPA775

Lorsque la théta-jointure n'a exclusivement que des opérateurs de rapprochement, on la nomme équi-jointure.

▶ Par exemple : Producteur Produit = Id Produit

Produit

ld	Nom
4	Fraise
7	Mais

Proc	luct	eur

Nom	Prénom	Produit
Bernard	Alain	4
Perrier	Charles	2
Labbé	Caroline	4

Nom	Prénom	Produit	ld	Nom
Bernard	Alain	4	4	Fraise
Labbé	Caroline	4	4	Fraise

Algèbre relationnelle

Opérateurs de jointure | Jointure naturelle

29

- La jointure naturelle est une équi-jointure dont la condition de rapprochement concerne tous les attributs de même nom et de même domaine.
- ▶ De plus, une seule occurrence des attributs communs est gardée.
- Notation:

$$R' = R_1 \bowtie R_2$$

Algèbre relationnelle Opérateurs de jointure | Jointure naturelle

30

GPA775

Par exemple : Producteur Produit

Produit

IdProduit	Nom
4	Fraise
7	Mais

Producteur

Nom	Prénom	IdProduit
Bernard	Alain	4
Perrier	Charles	2
Labbé	Caroline	4

Nom	Prénom	IdProduit	Nom
Bernard	Alain	4	Fraise
Labbé	Caroline	4	Fraise

Algèbre relationnelle

Opérateurs de jointure | Semi-jointure

31

- La semi-jointure est une jointure naturelle pour laquelle on ne garde que les attributs de \mathbf{R}_1 (semi-jointure de gauche) ou de \mathbf{R}_2 (semi-jointure de droite).
- Notation:

 $R' = R_1 \bowtie R_2$ (semi-jointure de gauche)

 $R' = R_1 \rightarrow R_2$ (semi-jointure de droite)

Algèbre relationnelle Opérateurs de jointure | Semi-jointure

32

GPA775

Par exemple : Producteur Produit

Produit

IdProduit	Nom
4	Fraise
7	Mais

Producteur

Nom	Prénom	IdProduit
Bernard	Alain	4
Perrier	Charles	2
Labbé	Caroline	4

Nom	Prénom	IdProduit
Bernard	Alain	4
Labbé	Caroline	4

Algèbre relationnelle

Opérateurs de jointure | Jointures externes

37

- Les trois types de jointures externes sont toutes basées sur le même principe (qu'on nomme jointure externe entière).
- Les jointures externes sont des opérateurs qui créent une nouvelle relation \mathbf{R} à partir du produit cartésien de \mathbf{R}_1 et \mathbf{R}_2 . De plus, on identifie les tuples qui correspondent au prédicat donnés. Les tuples ne correspondant pas au prédicat sont mis à une valeur nulle.
- Notation:

 $R' = R_1 \triangleleft \triangleright R_2$ (jointure externe entière)

 $R' = R_1 < \triangleright R_2$ (jointure externe gauche)

 $R' = R_1 \triangleleft R_2$ (jointure externe droite)

Algèbre relationnelle Opérateurs de jointure | Jointures externes

38

GPA775

▶ Par exemple : Production < ▷ Produit</p>

Étape 1 : produit cartésien

Produit

ld	Nom
4	Fraise
7	Mais

Drad	ucteur
Tou	ucteui

Nom	Prénom	Produit
Bernard	Alain	4
Perrier	Charles	2
Labbé	Caroline	4

Nom	Prénom	Produit	Id	Nom
Bernard	Alain	4	4	Fraise
Bernard	Alain	4	7	Mais
Perrier	Charles	2	4	Fraise
Perrier	Charles	2	7	Mais
Labbé	Caroline	4	4	Fraise
Labbé	Caroline	4	7	Mais

Algèbre relationnelle Opérateurs de jointure | Jointures externes

 \blacktriangleright Étape 2 : en considérant chaque tuple de $\bf R_1$, on identifie les tuples qui ne trouvent pas de correspondant dans $\bf R_2$ et on met les attributs propres à $\bf R_2$ égale à nulle.

Nom	Prénom	Produit	ld	Nom
Bernard	Alain	4	4	Fraise
Bernard	Alain	4	7	Mais
Perrier	Charles	2	-	-
Perrier	Charles	2	-	-
Labbé	Caroline	4	4	Fraise
Labbé	Caroline	4	7	Mais

Algèbre relationnelle Opérateurs de jointure | Jointures externes

• Étape 3 : en considérant chaque tuple de ${\bf R_2}$, on identifie les tuples qui ne trouvent pas de correspondant dans ${\bf R_1}$ et on met les attributs propres à ${\bf R_1}$ égale à nulle.

Nom	Prénom	Produit	Id	Nom
Bernard	Alain	4	4	Fraise
-	-	-	7	Mais
Perrier	Charles	2	-	-
Perrier	Charles	2	-	-
Labbé	Caroline	4	4	Fraise
-	-	-	7	Mais

GPA775

39

40

Algèbre relationnelle Opérateurs de jointure | Jointures externes

Étape 4 : on supprime les doublons.

	Nom	Prénom	Produit	Id	Nom
	Bernard	Alain	4	4	Fraise
	-	-	-	7	Mais
	Perrier	Charles	2	-	-
-	Perrier	Charles	2	-	-
	Labbé	Caroline	4	4	Fraise
	-	-	-	7	Mais

Nom	Prénom	Produit	ld	Nom
Bernard	Alain	4	4	Fraise
-	-	-	7	Mais
Perrier	Charles	2	-	-
Labbé	Caroline	4	4	Fraise

Algèbre relationnelle Opérateurs de jointure | Jointures externes

Étape 5 : dans le cadre d'une jointure naturelle, on supprime les occurrences des attributs en double.

Nom	Prénom	ld	Nom
Bernard	Alain	4	Fraise
-	-	7	Mais
Perrier	Charles	-	-
Labbé	Caroline	4	Fraise

▶ En regardant ce résultat, on peut identifier rapidement les producteurs qui ne produisent pas (Perrier), les produits qui n'on aucun producteur (maïs) et finalement les producteurs qui produisent associés à leurs produits.

43

GPA775

Algèbre relationnelle Opérateurs de jointure | Jointures externes

▶ Étape 5 : dans le cadre d'une jointure naturelle, on supprime les occurrences des attributs en double.

Nom	Prénom	ld	Nom
Bernard	Alain	4	Fraise
-	-	7	Mais
Perrier	Charles	-	-
Labbé	Caroline	4	Fraise

► En regardant ce résultat, on peut identifier rapidement les producteurs qui ne produisent pas (Perrier), les produits qui n'on aucun producteur (maïs) et finalement les producteurs qui produisent associés à leurs produits.

Algèbre relationnelle Opérateurs de jointure | Jointures externes

Les jointures externes gauches et droites suppriment les tuples concernés par l'étape 3 au lieu de mettre les valeurs à nulles.

▶ Par exemple : Production < ▷ Produit et Production < ▷ Produit</p>

Nom	Prénom	ld	Nom
Bernard	Alain	4	Fraise
-	-	7	Mais
Perrier	Charles	-	-
Labbé	Caroline	4	Fraise

à gauche

Nom	Prénom	ld	Nom
Bernard	Alain	4	Fraise
Perrier	Charles	-	-
Labbé	Caroline	4	Fraise

 Nom
 Prénom
 Id
 Nom

 Bernard
 Alain
 4
 Fraise

 7
 Mais

 Labbé
 Caroline
 4
 Fraise

Algèbre relationnelle Opérateurs et fonctions arithmétiques

45

- On utilise les opérateurs et les fonctions arithmétiques dans les expressions algébriques pour :
- 1. les opérateurs de l'AR les nécessitant (sélection et jointures) :
 - $\sigma_{\text{Salaire} < 1000}$ Employé
- 2. modifier les valeurs numériques des attributs utilisés :
 - $\sigma_{\text{Salaire * 1,05 < 25000}}$ Employé
- 3. comme élément de valeur calculée :
 - σ AngleEnDegré > DEGREES(PI()/2) Employé

Algèbre relationnelle Opérateurs et fonctions arithmétiques

- Opérateurs conditionnels :
 - ► = (égal)
 - <> (différent)
 - < (plus petit)</p>
 - <= (plus petit ou égal)</p>
 - > (plus grand)
 - >= (plus grand ou égal)

- ▶ Opérateurs arithmétiques :
 - + (addition)
 - (soustraction ou val. Nég.)
 - * (multiplication)
 - / (division)
 - ^ (exposant)
 - % (pourcentage)
 - div (division entière)
 - ▶ mod (modulo)

- ► Fonctions:
 - ABS, SIGN
 - ▶ PI, DEGREES, RADIANS
 - COS, SIN, TAN
 - ► ACOS, ASIN, ATAN, ATAN2
 - ▶ LOG, LOG2, LOG10, LN
 - ▶ POW, EXP
 - ► RAND
 - ► ROUND, FLOOR, CEIL

Algèbre relationnelle Opérateurs et fonc. sur les chaînes de car. 47

- On utilise l'opérateur sur les chaînes de caractères LIKE afin d'offrir plus de flexibilité que l'opérateur de comparaison habituel.
- L'opérateur LIKE permet des caractères spéciaux permettant :
 - de remplacer le caractère «_» par un caractère quelconque à la position déterminée;
 - de remplacer le caractère « % » par une chaîne de caractères de longueur quelconque à la position déterminée;
- Attention, les opérateurs conditionnels standards sont toujours disponibles pour les chaînes de caractères.

Algèbre relationnelle Opérateurs et fonc. sur les chaînes de car.

GPA775

48

▶ Par exemple :

 σ Nom LIKE 'Tremblay'
 Employé
 donne le nom Tremblay

 σ Nom LIKE 'T______, Employé
 donne tous les noms de 6 caractères mais débutant par la lettre T

 σ Nom LIKE 'T''
 Employé
 donne tous les noms commençant par T (longueur quelconque)

 σ Nom LIKE '%y'
 Employé
 donne tous les noms terminant par y (longueur quelconque)

 σ Nom LIKE '_a''
 Employé
 donne tous les noms ayant un a comme deuxième lettre

Algèbre relationnelle Opérateurs et fonc. sur les chaînes de car. Les fonctions de transformations habituelles sur les chaînes de caractères sont aussi disponibles. LENGTH (longueur de la chaîne de caractères) LOWER (mise en minuscule) UPPER (mise en majuscule) CONCAT (concaténation de plusieurs chaînes de car.) ... Par exemple: Gupper(Nom) LIKE 'TREMBLAY' Employé donne le nom Tremblay peut importe la casse utilisée

Algèbre relationnelle Opérateurs d'agrégation On utilise les opérateurs d'agrégation afin d'exécuter de simples calculs statistiques sur un ensemble de données. Ces opérateurs font un calcul sur un ensemble de données et retourne une seule valeur. Les fonctions suivantes sont disponibles: COUNT (nombre de valeurs); MIN (valeur minimum); MAX (valeur maximum); SUM (somme des valeurs); AVG (valeur moyenne).

Algèbre relationnelle Opérateurs d'agrégation 51

Notation:

$$R' = {}_{a1, a2, \dots} \lambda_{f1, f2, \dots} R$$

- ▶ Interprétation : la relation R' correspond aux valeurs calculées par f1 et f2 des regroupements faits sur les attributs a_1 et a_2 de la relation R.
- Si aucun attribut de regroupement n'est spécifié alors les fonctions s'appliquent sur tous les tuples à la fois.
- Le nom des attributs de sortie est constitué de la concaténation de la fonction et de l'attribut spécifié.

Algèbre relationnelle Opérateurs d'agrégation

52

GPA775

▶ Par exemple :

 $\mbox{NombreProducteurParProduit} \ = \ _{\mbox{IdProduit}} \lambda_{\mbox{COUNT(IdProduit)}} \mbox{Producteur}$

 $Nombre Produit Par Producteur = \underset{Nom, Pr\acute{e}nom}{\lambda}_{COUNT(IdProduit)} Producteur$

Producteur				
Nom	Prénom	IdProduit		
Bernard	Alain	4		
Perrier	Charles	7		
DeBlois	Sylvain	2		
Labbé	Caroline	7		
Perrier	Charles	4		
DeBlois	Sylvain	4		
DeBlois	Sylvain	7		

NombreProduitParProducteur

Nom	Prénom	COUNT_IdProduit
Bernard	Alain	1
Perrier	Charles	2
DeBlois	Sylvain	3
Labbé	Caroline	1
	Bernard Perrier DeBlois	Bernard Alain Perrier Charles DeBlois Sylvain

Algèbre relationnelle Note complémentaire sur les opérateurs

53

- ▶ Pour tous les opérateurs, il est possible de nommer les attributs de la relation résultat en les déclarant directement sur la structure de sortie.
- La déclaration doit respecter le même nombre d'attributs que le schéma de sortie le requiert.
- Aussi, l'ordre des noms données dans la déclaration est appliqué dans le même ordre aux colonnes de sortie.

Algèbre relationnelle Note complémentaire sur les opérateurs

54

GPA775

▶ Par exemple :

ProdProd(NomProducteur, PrénomProducteur, Produit, Id, NomProduit) = Producteur X Produit

Produit

Id	Nom
4	Fraise
7	Mais

Producteur

Nom	Prénom	Produit
Bernard	Alain	4
Perrier	Charles	2
Labbé	Caroline	4

NomProducteur	PrénomProducteur	Produit	Id	NomProduit
Bernard	Alain	4	4	Fraise
Bernard	Alain	4	7	Mais
Perrier	Charles	2	4	Fraise
Perrier	Charles	2	7	Mais
Labbé	Caroline	4	4	Fraise
Labbé	Caroline	4	7	Mais

