boites-robotisees-a-double-embrayage-22/

Sciences
Industrielles de
l'Ingénieur

Chapitre 1

Approche énergétique

Savoirs et compétences :

Cours

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.
- Res1.C3.SF1: Choisir une méthode pour déterminer la valeur des paramètres conduisant à des positions d'équilibre.
- □ Mod1.C4.SF1 : Associer les grandeurs physiques aux échanges d'énergie et à la transmission de puissance.
- Mod1.C5.SF1 : Identifier les pertes d'énergie .
- □ Mod1.C6.SF1 : Évaluer le rendement d'une chaîne d'énergie en régime permanent.
- Mod1.C5.SF2: Déterminer la puissance des actions mécaniques extérieures à un solide ou à un ensemble de solides, dans son mouvement rapport à un autre solide.
- ☐ Mod1.C5.SF3 : Déterminer la puissance des actions mécaniques intérieures à un ensemble de solides.

1	Caractéristiques d'inertie des solides 2
1.1	Détermination de la masse d'un solide 2
1.2	Centre d'inertie d'un solide
1.3	Grandeurs inertielles d'un solide 2
2	Cinétique et dynamique du solide indéformable 4
2.1	Le torseur cinétique4
2.2	Le torseur dynamique
2.3	Énergie cinétique6
3	Puissance 6
3.1	Puissance d'une action mécanique extérieure à un ensemble matériel
3.2	Puissance d'une action mécanique extérieure à un solide 6
3.3	Puissance d'actions mutuelles entre deux solides 7
3.4	Puissances d'actions mutuelles dans les liaisons 7
4	Principe fondamental de la dynamique 8
5	Théorème de l'énergie puissance 8
4	Méthodologie

1 Caractéristiques d'inertie des solides

L'inertie d'un solide peut se « caractériser » par la résistance ressentie lorsqu'on souhaite mettre un solide en mouvement. Pour un mouvement de translation, la connaissance de la masse permet de déterminer l'effort nécessaire à la mettre en mouvement. Pour un mouvement de rotation, il est nécessaire de connaître la répartition de la masse autour de l'axe de rotation.

■ Exemple

- Couple pour faire tourner une hélice bipale, tripale, quadripale.
- Couple pour faire tourner une bille et effort pour faire translater une bille.

1.1 Détermination de la masse d'un solide

1.1.1 Définition

Définition

On peut définir la masse M d'un système matériel (solide) S par :

$$M = \int_{S} dm = \int_{P \in V} \mu(P) dv$$

avec:

- $\mu(P)$ la masse volumique au point P;
- dv un élément volumique de S.

1.1.2 Principe de conservation de la masse

1.2 Centre d'inertie d'un solide

1.2.1 Définition

Définition — Centre d'inertie d'un solide. La position du centre d'inertie G d'un solide S est définie par $\int_{P \in S} \overrightarrow{GP} dm = \overrightarrow{0}.$

Pour déterminer la position du centre d'inertie d'un solide S, on passe généralement par l'origine du repère associé à S. On a alors $\int\limits_{P\in S}\overrightarrow{GP}\,\mathrm{d}m=\int\limits_{P\in S}\left(\overrightarrow{GO}+\overrightarrow{OP}\right)\mathrm{d}m=\overrightarrow{0}\Leftrightarrow\int\limits_{P\in S}\overrightarrow{OG}\,\mathrm{d}m=\int\limits_{P\in S}\overrightarrow{OP}\,\mathrm{d}m\Leftrightarrow M\overrightarrow{OG}=\int\limits_{P\in S}\overrightarrow{OP}\,\mathrm{d}m.$

Méthode Pour déterminer les coordonnées (x_G, y_G, z_G) du centre d'inertie G du solide S dans la base $(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ on a donc :

$$\begin{cases} M x_G = \mu \int_{P \in S} x_P \, dV \\ M y_G = \mu \int_{P \in S} y_P \, dV \\ M z_G = \mu \int_{P \in S} z_P \, dV \end{cases}$$

avec:

- d*V* : un élément volumique de *S* ;
- μ : la masse volumique supposée constante.

Pour simplifier les calculs, on peut noter que le centre d'inertie appartient au(x) éventuel(s) plan(s) de symétrie du solide.

1.2.2 Centre d'inertie d'un solide constitué de plusieurs solides

Soit un solide composé de n solides élémentaires dont la position des centres d'inertie G_i et les masses M_i sont connues. On note $M = \sum_{i=1}^{n} M_i$. La position du centre d'inertie G de l'ensemble S est donné par :

$$\overrightarrow{OG} = \frac{1}{M} \sum_{i=1}^{n} M_i \overrightarrow{OG_i}.$$

- 1.2.3 Théorème de Guldin
- 1.2.3.1 Centre d'inertie d'une courbe plane
- 1.2.3.2 Centre d'inertie d'une surface plane
 - 1.3 Grandeurs inertielles d'un solide
 - 1.3.1 Moment et produit d'inertie

Définition — **Moment d'inertie par rapport à un point dans** \mathscr{R} . Soit un repère $\mathscr{R}\left(O;\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ et un point P de coordonnées (x,y,z) dans \mathscr{R} . On appelle moment d'inertie du solide S par rapport à un point O la quantité :

$$I_O(S) = \int_C \overrightarrow{OP}^2 dm = \int_C (x^2 + y^2 + z^2) dm.$$

Définition — Moment d'inertie par rapport à un axe dans \mathcal{R} . On appelle moment d'inertie du solide S par rapport à une droite (Δ) la quantité positive :

$$I_{\Delta}(S) = \int_{S} \left(\overrightarrow{\delta} \wedge \overrightarrow{AP}\right)^{2} dm$$

Par suite, le moment d'inertie du solide S par rapport à la droite (O, \overrightarrow{x}) est donné par :

$$I_{(O,\overrightarrow{x})}(S) = \int_{S} (\overrightarrow{x} \wedge \overrightarrow{OP})^2 dm.$$

On détermine donc les moments d'inerties par rapport à $(O, \overrightarrow{x}), (O, \overrightarrow{y})$ et (O, \overrightarrow{z})

$$I_{(O,\overrightarrow{x})}(S) = \int_{S} (y^2 + z^2) dm \qquad I_{(O,\overrightarrow{y})}(S) = \int_{S} (x^2 + z^2) dm \qquad I_{(O,\overrightarrow{z})}(S) = \int_{S} (x^2 + y^2) dm.$$

1.3.2 Matrice d'inertie Définition Soient :

- un solide S de masse m en mouvement par rapport à un repère $\mathcal{R}_0 = (O_0; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$;
- $\mathcal{R}_S = (O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ le repère lié au solide S;
- P un point de S tel que $\overrightarrow{OP} = x_p \overrightarrow{i} + y_p \overrightarrow{j} + z_p \overrightarrow{k}$;
- \overrightarrow{u} un vecteur unitaire du solide S.

On appelle opérateur d'inertie l'application linéaire définie par :

$$\overrightarrow{u} \to \overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \int_{S} \overrightarrow{OP} \wedge (\overrightarrow{u} \wedge \overrightarrow{OP}) dm$$

On appelle matrice d'inertie du solide S en O, $I_O(S)$, l'image de cette application linéaire : $\overline{I_{(O,S)}(\overrightarrow{u})} = I_O(S)\overrightarrow{u}$.

Recherchons la matrice de l'application linéaire. On note $\overrightarrow{u} = u_x \overrightarrow{i} + u_y \overrightarrow{j} + u_z \overrightarrow{k}$. On a donc :

$$\begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} \wedge \begin{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} \wedge \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} \wedge \begin{bmatrix} u_y z_p - y_p u_z \\ -u_x z_p + x_p u_z \\ u_x y_p - x_p u_y \end{bmatrix} = \begin{bmatrix} y_p \left(u_x y_p - x_p u_y \right) - z_p \left(-u_x z_p + x_p u_z \right) \\ -x_p \left(u_x y_p - x_p u_y \right) + z_p \left(u_y z_p - y_p u_z \right) \\ x_p \left(-u_x z_p + x_p u_z \right) - y_p \left(u_y z_p - y_p u_z \right) \end{bmatrix}$$

$$= \begin{bmatrix} y_p^2 u_x - y_p x_p u_y + z_p^2 u_x - z_p x_p u_z \\ -x_p y_p u_x + x_p^2 u_y + z_p^2 u_y - z_p y_p u_z \\ -x_p z_p u_x + x_p^2 u_z - y_p z_p u_y + y_p^2 u_z \end{bmatrix} = \begin{bmatrix} y_p^2 + z_p^2 & -y_p x_p & -x_p z_p \\ -x_p y_p & x_p^2 + z_p^2 & -z_p y_p \\ -x_p z_p & -y_p z_p & y_p^2 + x_p^2 \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$

Définition — **Matrice d'inertie**. La matrice d'inertie s'écrit ainsi :

$$I_O(S) = \begin{pmatrix} \int\limits_S \left(y_p^2 + z_p^2\right) \mathrm{d}m & -\int\limits_S \left(x_p y_p\right) \mathrm{d}m & -\int\limits_S \left(x_p z_p\right) \mathrm{d}m \\ -\int\limits_S \left(x_p y_p\right) \mathrm{d}m & \int\limits_S \left(x_p^2 + z_p^2\right) \mathrm{d}m & -\int\limits_S \left(y_p z_p\right) \mathrm{d}m \\ -\int\limits_S \left(x_p z_p\right) \mathrm{d}m & -\int\limits_S \left(y_p z_p\right) \mathrm{d}m & \int\limits_S \left(x_p^2 + y_p^2\right) \mathrm{d}m \end{pmatrix}_{\mathcal{R}_S} = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{\mathcal{R}_S}.$$

On appelle moments d'inertie par rapport aux axes $(O, \overrightarrow{i}), (O, \overrightarrow{j})$ et (O, \overrightarrow{k}) les termes A, B et C. On appelle produits d'inertie par rapport aux plans $(O, \overrightarrow{j}, \overrightarrow{k}), (O, \overrightarrow{k}, \overrightarrow{i})$ et $(O, \overrightarrow{i}, \overrightarrow{j})$ les termes D, E et F.

Propriétés des matrices d'inertie

Théorème de Huygens

Théorème — **Théorème de Huygens**. Le moment d'inertie d'un solide par rapport à un axe $(A, \vec{\delta})$ est donné par :

$$I_{(A,\overrightarrow{\delta})}(S) = I_{(G,\overrightarrow{\delta})}(S) + m d^2$$

- d: distance séparant $(A, \overrightarrow{\delta})$ et $(G, \overrightarrow{\delta})$ en m; m: masse de S en kg.

Théorème — **Théorème de Huygens**. Soit S un solide de centre d'inertie G, de masse m, d'inertie $I_G(S)$ et d'inertie $I_O(S)$ avec $\overrightarrow{OG} = a\overrightarrow{x} + b\overrightarrow{y} + c\overrightarrow{z}$. Les matrices $I_O(S)$ exprimées dans la base $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ sont liées par :

$$\begin{pmatrix} A_O & -F_O & -E_O \\ -F_O & B_O & -D_O \\ -E_O & -D_O & C_O \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} A_G & -F_G & -E_G \\ -F_G & B_G & -D_G \\ -E_G & -D_G & C_G \end{pmatrix}_{\mathcal{B}} + \begin{pmatrix} m(b^2+c^2) & -mab & -mac \\ -mab & m(a^2+c^2) & -mbc \\ -mac & -mbc & m(a^2+b^2) \end{pmatrix}_{\mathcal{B}}.$$

Si le solide est modélisé par une masse ponctuelle m en G et si on souhaite connaître le moment d'inertie pour un point situé à une distance d de G, on a $I = md^2$.

Démonstration

Par définition, $\overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \int \overrightarrow{OP} \wedge (\overrightarrow{u} \wedge \overrightarrow{OP}) dm$.

En introduisant le point G, on a $\overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \int\limits_{S} \left(\overrightarrow{OG} + \overrightarrow{GP}\right) \wedge \left(\overrightarrow{u} \wedge \left(\overrightarrow{OG} + \overrightarrow{GP}\right)\right) dm = \int\limits_{S} \left(\overrightarrow{OG} + \overrightarrow{GP}\right) \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} + \overrightarrow{u} \wedge \overrightarrow{GP}\right) dm$ $= \int\limits_{S} \left(\overrightarrow{OG} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} + \overrightarrow{u} \wedge \overrightarrow{GP} \right) + \overrightarrow{GP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} + \overrightarrow{u} \wedge \overrightarrow{GP} \right) \right) \mathrm{d}m$ $= \int_{S}^{\widetilde{S}} \left(\overrightarrow{OG} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} \right) + \overrightarrow{OG} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{GP} \right) \right) dm + \int_{S} \left(\overrightarrow{GP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} \right) + \overrightarrow{GP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{GP} \right) \right) dm$ $= \int_{S}^{\widetilde{S}} \left(\overrightarrow{OG} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} \right) \right) dm + \int_{S} \left(\overrightarrow{OG} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{GP} \right) \right) dm + \int_{S} \left(\overrightarrow{GP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} \right) \right) dm + \int_{S} \left(\overrightarrow{GP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OG} \right) \right) dm$ $=\overrightarrow{J_{(G,S)}(\overrightarrow{u})}+\overrightarrow{OG}\wedge\left(\overrightarrow{u}\wedge\smallint\overrightarrow{GP}\operatorname{d}m\right)+\smallint\left(\overrightarrow{GP}\wedge(\overrightarrow{u}\wedge\overrightarrow{OG})+\left(\overrightarrow{GP}\wedge(\overrightarrow{u}\wedge\overrightarrow{GP})\right)\smallint_{S}\operatorname{d}m$

G étant le centre d'inertie du solide, on a \overrightarrow{GP} d $m = \overrightarrow{0}$ (par défintion du centre d'inertie).

En conséquences, $\overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \overrightarrow{J_{(G,S)}(\overrightarrow{u})} + (\overrightarrow{GP} \land (\overrightarrow{u} \land \overrightarrow{GP})) \int dm$

On note $\overrightarrow{GP} = a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}$ et $M_S = \int_S dm$.

En reprenant le calcul vu en 1.3.2, on a : $(\overrightarrow{GP} \land (\overrightarrow{u} \land \overrightarrow{GP})) = \begin{bmatrix} b^2 + c^2 & -ab & -ac \\ -ab & a^2 + c^2 & -bc \\ -ac & -bc & a^2 + b^2 \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u \end{bmatrix}$.

CQFD.

Rotation de la matrice d'inertie 1.3.5

Cinétique et dynamique du solide indéformable 2

2.1 Le torseur cinétique

2.1.1 **Définition**

Définition Le torseur cinétique d'un solide S dans son mouvement par rapport à R_0 exprimé en un point Aquelconque se définit de la façon suivante,

$$\{\mathscr{C}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = \int_{P \in S} \overrightarrow{V}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\sigma(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A.$$

• La résultante du torseur cinétique $\overrightarrow{R_c}(S/R_0)$ s'exprime en kg m s⁻¹ et ne dépend pas du point A mais uni-

- quement du centre d'inertie G de S (de masse m) : $\overrightarrow{R_c(S/R_0)} = m \overrightarrow{V}(G/R_0)$.
- Le moment cinétique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point : $\overrightarrow{\sigma(B,S/R_0)} = \overrightarrow{\sigma(A,S/R_0)} + \overrightarrow{BA} \wedge \overrightarrow{R_c}(S/R_0)$.

Calculons alors le moment cinétique

$$\overrightarrow{\sigma(A,S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(P \in S/R_0)} dm = \int_{P \in S} \overrightarrow{AP} \wedge \left(\overrightarrow{V(A \in S/R_0)} + \overrightarrow{PA} \wedge \overrightarrow{\Omega(S/R_0)} \right) dm$$

$$= \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(A \in S/R_0)} dm + \int_{P \in S} \overrightarrow{AP} \wedge \left(\overrightarrow{PA} \wedge \overrightarrow{\Omega(S/R_0)} \right) dm$$

$$= \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(A \in S/R_0)} dm + \int_{P \in S} \overrightarrow{AP} \wedge \left(\overrightarrow{\Omega(S/R_0)} \wedge \overrightarrow{AP} \right) dm$$

On reconnaît l'opérateur d'inertie : $\int_{P \in S} \overrightarrow{AP} \wedge \left(\overrightarrow{\Omega(S/R_0)} \wedge \overrightarrow{AP} \right) dm = I_A(S) \overrightarrow{\Omega(S/R_0)}.$

On a donc
$$\overrightarrow{\sigma(A, S/R_0)} = \int\limits_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(A \in S/R_0)} \, dm + I_A(S) \overrightarrow{\Omega(S/R_0)} = \int\limits_{P \in S} \overrightarrow{AP} \, dm \wedge \overrightarrow{V(A \in S/R_0)} + I_A(S) \overrightarrow{\Omega(S/R_0)}.$$

On reconnaît $\int_{R} \overrightarrow{AP} dm = m\overrightarrow{AG}$

Au final,
$$\overrightarrow{\sigma(A,S/R_0)} = \overrightarrow{mAG} \wedge \overrightarrow{V(A \in S/R_0)} + I_A(S)\overrightarrow{\Omega(S/R_0)}$$
.

2.1.2 Cas particuliers

2.2 Le torseur dynamique

2.2.1 Définition

Définition Le **torseur dynamique** d'un solide S dans son mouvement par rapport à R_0 se définit de la façon suivante.

$$\{\mathscr{D}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_d}(S/R_0) = \int_{P \in S} \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\delta(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A$$

• La résultante du torseur dynamique, $\overrightarrow{R_d}(S/R_0)$ ne dépend pas du point A mais uniquement du centre de gravité G de S (de masse m) et vérifie :

$$\overrightarrow{R_d}(S/R_0) = m \overrightarrow{\Gamma}(G/R_0).$$

• Le moment dynamique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point :

$$\overrightarrow{\delta(B, S/R_0)} = \overrightarrow{\delta(A, S/R_0)} + \overrightarrow{BA} \wedge \overrightarrow{R_d}(S/R_0).$$

Calculons le moment dynamique. Pour cela, commençons par dériver le moment cinétique :

$$\left[\frac{d\overline{\sigma(A,S/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0} = \frac{d}{dt} \left[\int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m \right]_{\mathscr{R}_0} = \int_{P \in S} \frac{d}{dt} \left[\overrightarrow{AP} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right]_{\mathscr{R}_0} \, \mathrm{d}m$$

$$= \int_{P \in S} \frac{d}{dt} \left[\overrightarrow{AP} \right]_{\mathscr{R}_0} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m + \int_{P \in S} \overrightarrow{AP} \wedge \frac{d}{dt} \left[\overrightarrow{V(P \in S/\mathscr{R}_0)} \right]_{\mathscr{R}_0} \, \mathrm{d}m$$

$$= \int_{P \in S} \frac{d}{dt} \left[\overrightarrow{AO} + \overrightarrow{OP} \right]_{\mathscr{R}_0} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathscr{R}_0)} \, \mathrm{d}m$$

$$= \int_{P \in S} \left(-\overrightarrow{V(A \in S/\mathscr{R}_0)} + \overrightarrow{V(P \in S/\mathscr{R}_0)} \right) \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathscr{R}_0)} \, \mathrm{d}m$$

$$= \int_{P \in S} \left(\overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} - \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right) \, \mathrm{d}m + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathscr{R}_0)} \, \mathrm{d}m$$

$$= -\int_{P \in S} \left(\overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right) \, \mathrm{d}m + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathscr{R}_0)} \, \mathrm{d}m$$

$$= -\int_{P \in S} \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathscr{R}_0)} \, \mathrm{d}m$$

$$= \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathscr{R}_0)} \, \mathrm{d}m + \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma(P \in S/\mathscr{R}_0)} \, \mathrm{d}m$$

$$= \int_{P \in S} \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m = \left[\overrightarrow{d\sigma(A,S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right] \, \mathrm{d}m$$

$$= \int_{P \in S} \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m = \left[\overrightarrow{\sigma(A,S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right] \, \mathrm{d}m$$

$$= \int_{P \in S} \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m = \left[\overrightarrow{\sigma(A,S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right] \, \mathrm{d}m$$

$$= \int_{P \in S} \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m = \left[\overrightarrow{\sigma(A,S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right] \, \mathrm{d}m$$

$$= \int_{P \in S} \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \, \mathrm{d}m = \left[\overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \right] \, \mathrm{d}m$$

$$= \int_{P \in S} \overrightarrow{V(A \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}_0)} \wedge \overrightarrow{V(P \in S/\mathscr{R}$$

$$\overline{\delta(A,S/R_0)} = \left[\frac{\mathrm{d}\overline{\sigma(A,S/\mathcal{R}_0)}}{\mathrm{d}t}\right]_{\mathcal{R}_0} + m\overline{V(A \in S/\mathcal{R}_0)} \wedge \overline{V(G \in S/\mathcal{R}_0)} \text{ ou encore } \overline{\delta(A,S/R_0)} = \left[\frac{\mathrm{d}\overline{\sigma(A,S/\mathcal{R}_0)}}{\mathrm{d}t}\right]_{\mathcal{R}_0} + \overline{V(A \in S/\mathcal{R}_0)} \wedge \overline{R_c(S/\mathcal{R}_0)}.$$

- 2.2.2 Cas particuliers
- 2.3 Énergie cinétique
- 2.3.1 Définition
- 2.3.2 Cas du solide indéformable
- 2.3.3 Cas d'un système de solide
- 2.3.4 Inertie équivalente
 - 3 Puissance
- 3.1 Puissance d'une action mécanique extérieure à un ensemble matériel

Définition On définit la **puissance d'une action mécanique extérieure** à un ensemble matériel (E) en mouvement par rapport à un référentiel R subissant une densité d'effort $\overrightarrow{f}(M)$ (où M est un point courant de (E)) comme :

$$\mathscr{P}(\operatorname{ext} \to E/R) = \int_{M \in E} \overrightarrow{f}(M) \cdot \overrightarrow{V(M \in E/R)} dV.$$

- On appellera **puissance galiléenne**, la puissance d'un ensemble matériel (E) en mouvement dans un **référentiel galiléen** $R_g: \mathscr{P}(\text{ext} \to E/R_g)$.
- Dimensions et homogénéité.
 - Une puissance est une grandeur scalaire s'exprimant en Watt.
 - Elle est homogène à un produit entre un effort et une vitesse et peut donc s'exprimer en unité SI en Nms⁻¹.
 - Historiquement on a utilisé longtemps les « chevaux » ou « cheval vapeur » (1 ch = 736 W).

Propriété — Calcul des actions mécaniques s'appliquant sur un ensemble E. On considère un ensemble matériel E composé de n solides S_i .

Dans la pratique pour calculer la puissance totale des actions mécaniques s'appliquant sur E dans son mouvement par rapport à R il faut sommer toutes les puissances s'appliquant sur les S_i venant de l'extérieur de E.

$$\mathscr{P}(\operatorname{ext} \to E/R) = \sum_{\forall S_i \in E} \mathscr{P}(\operatorname{ext} \to S_i/R).$$

3.2 Puissance d'une action mécanique extérieure à un solide

Définition — Puissance d'une action mécanique extérieure à un solide (S). La puissance d'une action mécanique extérieure à un solide (S) en mouvement dans un référentiel R peut s'écrire comme le comoment entre le torseur des actions mécaniques que subit (S) et le torseur cinématique du mouvement de S dans le référentiel R.

$$\mathscr{P}(\operatorname{ext} \to S/R) = \{\mathscr{T}(\operatorname{ext} \to S)\} \otimes \{\mathscr{V}(S/R)\}.$$

En développant l'expression, on a : $\mathscr{P}(\text{ext} \to S/R) = \overrightarrow{R(\text{ext} \to S)} \cdot \overrightarrow{V(P \in S/R)} + \overrightarrow{\mathcal{M}(P, \text{ext} \to S)} \cdot \overrightarrow{\Omega(S/R)}$.

- On veillera bien, pour effectuer le **comoment** de deux torseurs, à les avoir exprimé au préalable **en un même point.**
- Le comoment des torseurs est défini par $\{\mathcal{T}(\text{ext} \to S)\} \otimes \{\mathcal{V}(S/R)\} = \left\{\begin{array}{c} \overline{R(\text{ext} \to S)} \\ \overline{\mathcal{M}(P, \text{ext} \to S)} \end{array}\right\}_{P} \otimes \left\{\begin{array}{c} \overline{\Omega(S/R)} \\ \overline{V(P \in S/R)} \end{array}\right\}_{P}$
 - $= \overrightarrow{R(\text{ext} \to S)} \cdot \overrightarrow{V(P \in S/R)} + \overrightarrow{\mathcal{M}(P, \text{ext} \to S)} \cdot \overrightarrow{\Omega(S/R)}.$ Lorsque le torseur cinématique de S/R est un couple (mouvement de translation) alors en tout point A la puissance est alors donnée par $\mathscr{P}(\text{ext} \to S/R) = \overrightarrow{R(\text{ext} \to S)} \cdot \overrightarrow{V(P \in S/R)} \forall P$.
 - Lorsque le torseur des actions mécaniques est un torseur couple alors la puissance est donnée par $\mathscr{P}(\text{ext} \to S/R) = \overline{\mathscr{M}(P, \text{ext} \to S)} \cdot \overline{\Omega(S/R)} \, \forall P$.

Démonstration

On a par définition
$$\mathscr{P}(\text{ext} \to E/R) = \int_{M \in E} \overrightarrow{f}(M) \cdot \overrightarrow{V(M \in E/R)} dV$$
.

En exprimant la vitesse au point M en fonction du point P appartenant au solide E, on a $\overline{V(M \in E/R)} =$ $V(P \in E/R) + \overrightarrow{MP} \wedge \Omega(E/R)$.

En conséquence,

$$\mathscr{P}(\text{ext} \to E/R) = \int_{M \in E} \overrightarrow{f}(M) \cdot \left(\overrightarrow{V(P \in E/R)} + \overrightarrow{MP} \wedge \overrightarrow{\Omega(E/R)} \right) dV$$

$$\mathscr{P}(\text{ext} \to E/R) = \int_{M \in E} \overrightarrow{f}(M) \cdot \overrightarrow{V(P \in E/R)} dV + \int_{M \in E} \overrightarrow{f}(M) \cdot \left(\overrightarrow{MP} \wedge \overrightarrow{\Omega(E/R)} \right) dV.$$

$$\overrightarrow{P} \text{ étant un point fixe de } E \text{ et indépendant de } dV, \text{ le produit mixte étant invariant par permutation circulaire et } \overrightarrow{F}(M) \cdot \overrightarrow{F}(M)$$

 $\Omega(E/R)$ étant un vecteur indépendant du point d'écriture, on a donc :

$$\mathscr{P}(\operatorname{ext} \to E/R) = \overline{V(P \in E/R)} \int_{M \in E} \overrightarrow{f}(M) dV + \int_{M \in E} \overline{\Omega(E/R)} \cdot \left(\overrightarrow{f}(M) \wedge \overrightarrow{MP} \right) dV.$$

$$\mathscr{P}(\operatorname{ext} \to E/R) = \overline{V(P \in E/R)} \int_{M \in E} \overrightarrow{f}(M) dV + \overline{\Omega(E/R)} \cdot \int_{M \in E} \overrightarrow{f}(M) \wedge \overrightarrow{MP} dV.$$

$$\mathscr{P}(\operatorname{ext} \to E/R) = \overline{V(P \in E/R)} \int_{M \in E} \overrightarrow{f}(M) dV + \overline{\Omega(E/R)} \cdot \int_{M \in E} \overrightarrow{FM} \wedge \overrightarrow{f}(M) dV.$$

$$\operatorname{Or,} \int_{M \in E} \overrightarrow{f}(M) dV = \overline{R(\operatorname{ext} \to E)} \operatorname{et} \int_{M \in E} \overrightarrow{PM} \wedge \overrightarrow{f}(M) dV = \overline{\mathcal{M}(P, \operatorname{ext} \to E)}.$$
En conséquences,
$$\mathscr{P}(\operatorname{ext} \to E/R) = \overline{V(P \in E/R)} \cdot \overline{R(\operatorname{ext} \to E)} + \overline{\Omega(E/R)} \cdot \overline{\mathcal{M}(P, \operatorname{ext} \to E)}.$$

Puissance d'actions mutuelles entre deux solides

Définition — Puissance d'actions mutuelles entre deux solides. Soient deux solides (S_1) et (S_2) distincts, en mouvement par rapport à un référentiel galiléen R_g , et exerçant une action mécanique l'un sur l'autre. La **puissance des actions mutuelles** entre (S_1) et (S_2) , dans leur mouvement par rapport au repère R, est :

$$\mathscr{P}(S_1 \longleftrightarrow S_2/R_g) = \mathscr{P}(S_1 \to S_2/R_g) + \mathscr{P}(S_2 \to S_1/R_g).$$

La puissance des actions mutuelles entre (S_1) et (S_2) est indépendante du repère R. Ainsi,

$$\mathscr{P}(S_1 \longleftrightarrow S_2/R) = \mathscr{P}(S_1 \longleftrightarrow S_2).$$

- On peut parler parfois de puissance des inter-efforts.
- Pour un ensemble E, on peut exprimer l'ensemble de la puissance des inter-effort comme la puissance intérieure à l'ensemble E:

$$\mathscr{P}_{\text{int}}(E) = \sum_{i=1}^{n} \sum_{j=1}^{j-1} \mathscr{P}(S_i \longleftrightarrow S_j).$$

Puissances d'actions mutuelles dans les liaisons

Définition — Puissances d'actions mutuelles dans les liaisons. Si deux solides S_1 et S_2 sont en liaison, on a :

$$\mathscr{P}(S_1 \longleftrightarrow S_2) = \{\mathscr{T}(S_1 \to S_2)\} \otimes \{\mathscr{V}(S_2/S_1)\}.$$

La liaison parfaite si et seulement si quel que soit le mouvement de S_2 par rapport à S_1 autorisé par la liaison entre ces deux solides, la puissance des actions mutuelles entre S_1 et S_2 est nulle.

$$\mathscr{P}(S_1 \longleftrightarrow S_2) = 0.$$

- La notion de liaison parfaite s'étend facilement à une liaison équivalente à plusieurs liaisons placées en parallèle et en série entre deux solide S_1 et S_2 . Pour cela il suffit de considérer les torseurs d'action mécanique transmissible et cinématique de la liaison équivalente.
- L'hypothèse d'une liaison parfaite a pour avantage de mettre en place le théorème de l'énergie cinétique (qui est une conséquence du principe fondamental de la dynamique) sans préjuger de la technologie de la liaison.

- 4 Principe fondamental de la dynamique
- 5 Théorème de l'énergie puissance
- 6 Méthodologie

Références

 $[1] \ \, \acute{\rm Emilien} \ \, {\rm Durif}, Approche \ \, \acute{\rm energ\'etique} \ \, des \ \, syst\`{\rm emes}, Lyc\'{e}e \ \, La \ \, Martini\`{\rm ere} \ \, Monplaisir, Lyon.$