数值代数实验报告

PB21010483 郭忠炜 2023 年 10 月 30 日

一. 问题描述

Exercise1.1

编写通用的 QR 分解算法子程序,将系数矩阵分解为正交矩阵 Q 和上三角矩阵 R, 然后编写子程序用于求解线性方程组。使用这些程序解决第一章上级习题中的三个方程组,比较各方法的结果,评估它们的优劣,输出计算结果、误差和运行时间。

Exercise 1.2

利用 QR 分解算法子程序,编写求解最小二乘线性问题的程序,以二次多项式形式 $y = at^2 + bt + c$ 来拟合第二题的数据,以使残差向量的二范数最小化。需要输出拟合的参数 a、b、c,残差向量的二范数(表示拟合的好坏),以及程序的运行时间。

Exercise 1.3

使用线性模型 $y=x_0+a_1x_1+a_2x_2+\ldots+a_{11}x_{11}$ 来拟合第三题的数据,并求出模型中参数 x_0,x_1,\ldots,x_{11} 的最小二乘解。计算后输出参数的最小二乘结果,残差向量的二范数(表示拟合的好坏),以及程序的运行时间。

二. 程序介绍

Exercise1.1

计算向量的 Householder 变换:

- 函数描述: house 函数用于对给定向量进行 Householder 变换。
- 使用方式: 调用 house(x, v, beta) 函数,传入向量 x 和向量 d 与 double 型变量 beta 作为输出 参数,函数会计算 Householder 变化并将结果存储在 v 和 beta 中。

Householder 方法的 QR 分解:

- 函数描述: QRDecomposition 函数用于对给定矩阵进行 Householder 方法的 QR 分解。
- 使用方式: 调用 QRDecomposition (A, d) 函数,传入矩阵 A 和一个空的向量 d 作为输出参数,函数会计算 QR 分解并将结果存储在 A 和 d 中。

QR 方程求解:

- 函数描述: QR_equation_solving 函数用于通过 QR 分解求解线性方程组。
- 使用方式:调用 QR_equation_solving(A, b) 函数,传入系数矩阵 A 和右侧向量 b,函数会使用 QR 分解计算方程组的解并返回结果。

QR 分解的 Householder 矩阵生成:

- 函数描述: HouseholdMatrix 函数用于生成 Householder 矩阵。
- 使用方式: 调用 HouseholdMatrix(A, d, k) 函数,传入矩阵 A、向量 d 和 k,函数会生成 Householder 矩阵并返回结果。

Exercise1.2 & Exercise1.3

最小二乘问题求解:

- 函数描述: LS_proplem_solving 函数用于通过 QR 分解求解最小二乘问题。
- 使用方式:调用 LS_proplem_solving(A, b)函数,传入系数矩阵 A 和右侧向量 b,函数会使用 QR 分解计算最小二乘问题的解并返回结果。

向量的二范数 (Vector Two-Norm):

- 函数描述: VectorTwoNorm 函数用于计算输入向量的二范数。
- 使用方式: 调用 VectorTwoNorm(x) 函数,传入向量 x,函数会返回它的二范数。

三. 实验结果

${\bf Exercise 1.1}$

	矩阵规模	10	30	50	55	56	84
求解方程 1	计算误差	1.64313e-14	5.35813e-07	0.658149	30.5912	inf	inf
	运行时间	0.004s	0.066s	0.413s	0.71s	0.997s	2.825s

表 1: QR 分解求解方程 1

求解 84 阶的方程 1	不选主元	全主元	列主元
计算误差	5.36838e + 08	5.36838e + 08	1.07374e + 09
运行时间	0.067s	0.073s	0.092s

表 2: Gauss 消去求解方程 1

	矩阵规模	10	50	100
求解方程 2	计算误差	3.50414e-16	4.44089e-16	5.55112e-16
	运行时间	0.007s	0.255s	2.872s

表 3: QR 分解求解方程 2

求解 100 阶的方程 2	不选主元	全主元	列主元
计算误差	2.22045e-16	0.808276	2.22045e-16
运行时间	0.030s	0.116s	0.103s

表 4: Gauss 消去法求解方程 2

	矩阵规模	10	13	20	40
求解方程 3	计算误差	0.000484919	9.15715	248.999	167.689
	运行时间	0.004s	0.013s	0.013s	0.099s

表 5: QR 分解求解方程 3

求解 40 阶的方程 3	不选主元	全主元	列主元
计算误差	115.617	929.253	115.617
运行时间	0.003s	0.007s	0.005s

表 6: Gauss 消去法求解方程 3

Exercise 1.2

拟合多项式为: $y = t^2 + t + 1$, 残向量的二范数为: 3.6545, 运行时间: 0.003 seconds.

Exercise 1.3

拟合得到的 x 为:

x_0	x_1	x_2	x_3	x_4	x_5
2.07752	0.718888	9.6802	0.153506	13.6796	1.98683
x_6	x_7	x_8	x_9	x_{10}	x_{11}
-0.958225	-0.484023	-0.0736469	1.0187	1.44352	2.90279

房屋估价的拟合模型为:

y = 2.07752 + 0.718888a1 + 9.6802a2 + 0.153506a3 + 13.6796a4 + 1.98683a5-0.958225a6 - 0.484023a7 - 0.0736469a8 + 1.0187a9 + 1.44352a10 + 2.90279a11

残向量的二范数为: 16.3404 运行时间: 0.071 seconds.

四. 结果分析

Exercise1.1

在用 QR 分解求解线性方程组时,对于给定的方程组 1: 当矩阵规模不大于 30 时,算法的求解误差保持在相当良好的范围之内; 当矩阵规模达到 50 时,与精确解(全 1 向量)的误差已经不容忽视; 而当矩阵达到 56 阶乃至更大之后,QR 分解求解线性方程组的误差会出现 inf。

对比同规模矩阵的求解(实验结果中只展示了84阶方程1求解的计算误差和运行时间), Gauss 消去表现出了一定的优越性。在矩阵规模较小时, Gauss 消去与QR分解求解误差相差不大,运行时间为QR分解求解的两倍左右; 当矩阵规模达到30时, QR分解求解的误差是Gauss消去的几百倍,而运行时间为Gauss消去的两倍多;当矩阵规模达到50时, Gauss消去的计算误差约为0.03左右,而QR分解求解约为0.66,不过二者的运行时间相近;但随着矩阵规模上涨到84,无论是QR分解求解还是Gauss消去,其解的误差都大到难以承受。对于方程2和方程3,Gauss消去也表现出了类似的优势。

回顾 Gauss 消去与 QR 分解, Gauss 消去具有更低的计算复杂度,而 QR 分解的主要优势是它在处理病态矩阵时具有更好的数值稳定性,因为它采用了正交变换来减少舍入误差的传播,这些特性在本次实验中亦有体现。

总的来说,QR 分解在处理小规模矩阵时具有较好的数值稳定性,随着矩阵规模的增加,计算复杂度急剧增加,可能导致数值不稳定性。相比之下,Gauss 消去具有较低的计算复杂度,对于非病态矩阵可以在较大的规模下表现出较于QR 分解的优势。

Exercise1.2 & Exercise1.3

对比两个问题的矩阵规模 (7 * 3 和 28 * 12), 可以发现用 QR 分解编写线性最小二乘问题时, 残向量二范数变化大致和矩阵规模变化成正比, 而运行时间上随矩阵规模大致呈二次多项式变化趋势。