

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencias de la Computación Matías Fernández - matias.fernandez@uc.cl

IIC2213 - Lógica para ciencia de la computación

Ayudantía 6 - Viernes 28 de Abril del 2023

Problema 1. Demuestre o dé un contraejemplo para las siguientes afirmaciones

- a) Si $L_1, L_2 \in NP$ entonces $L_1 \cap L_2 \in NP$ y $L_1 \cup L_2 \in NP$
- b) Si L_1 y L_2 son NP-completos entonces $L_1 \cap L_2 \in \text{NP-completo}$
- c) Si L_1 y L_2 son NP-completos entonces $L_1 \cup L_2 \in \text{NP-completo}$

Problema 2. Sean $L_1 \subseteq \{0,1\}^*$ y $L_2 \subseteq \{0,1\}^*$ dos lenguajes tales que L_1 es NP-completo y $L_2 \in P$.

- a) ¿Es $L_1 \cup L_2$ NP-completo?
- b) Si $L_1 \cap L_2 = \emptyset$, ¿Es $L_1 \cup L_2$ NP-completo?
- c) Si $L_1 \cap L_2 = \emptyset$ y NP \neq P, ¿Es $L_1 \cup L_2$ NP-completo?

Problema 3. Sea $U = \{(M, w, \#^t) \mid M \text{ MT no determinista tal que acepta a } w \text{ en } t \text{ pasos en al menos una ejecución}\}$. Pruebe que U es NP-completo.

Problema 4. Pruebe que el lenguaje HAMPATH es NP-completo.

 $HAMPATH = {cod(G) | G posee un camino hamiltoniano}$