Even Tree

You are given a tree (a simple connected graph with no cycles). The tree has $\it N$ nodes numbered from $\it 1$ to $\it N$ and is rooted at node $\it 1$.

Find the maximum number of edges you can remove from the tree to get a forest such that each connected component of the forest contains an even number of vertices.

Input Format

The first line of input contains two integers N and M. N is the number of vertices, and M is the number of edges.

The next M lines contain two integers u_i and v_i which specifies an edge of the tree.

Constraints

• 2 < N < 100

Note: The tree in the input will be such that it can always be decomposed into components containing an even number of nodes.

Output Format

Print the number of removed edges.

Sample Input

Sample Output

2

Explanation

On removing edges (1,3) and (1,6), we can get the desired result.

Original tree:

Decomposed tree:

