MINI PROJECT

1.Problem Statement:Which model is suitable best for Insurance Dataset

In [49]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
```

Data Collection

Read the Data

In [50]:

```
df=pd.read_csv(r"C:\Users\rakesh\Downloads\insurance (1).csv")
df
```

Out[50]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

2.Data Cleaning and Preprocessing

In [51]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns): Column Non-Null Count Dtype 0 1338 non-null int64 age 1 1338 non-null object sex 2 bmi 1338 non-null float64 3 children 1338 non-null int64 4 smoker 1338 non-null object 5 1338 non-null region object charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB

In [52]:

df.columns

Out[52]:

Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dt
ype='object')

In [53]:

df.head()

Out[53]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [54]:

df.tail()

Out[54]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

```
In [55]:

df.shape

Out[55]:
(1338, 7)

In [56]:

df.describe()
```

Out[56]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

To find Duplicate Values

```
In [57]:
```

```
df.duplicated().sum()
```

Out[57]:

1

To find Unique Values

```
In [58]:
```

```
df['age'].unique()
df['children'].unique()
df['bmi'].unique()
```

Out[58]:

```
array([27.9 , 33.77 , 33. , 22.705, 28.88 , 25.74 , 33.44 , 27.74 ,
                      29.83 , 25.84 , 26.22 , 26.29 , 34.4 , 39.82 , 42.13 , 24.6 ,
                      30.78 , 23.845 , 40.3 , 35.3 , 36.005 , 32.4 , 34.1 , 31.92 ,
                      28.025, 27.72, 23.085, 32.775, 17.385, 36.3, 35.6, 26.315,
                      28.6 , 28.31 , 36.4 , 20.425, 32.965, 20.8 , 36.67 , 39.9
                      26.6 , 36.63 , 21.78 , 30.8 , 37.05 , 37.3 , 38.665, 34.77
                      24.53 , 35.2 , 35.625, 33.63 , 28. , 34.43 , 28.69 , 36.955,
                      31.825, 31.68, 22.88, 37.335, 27.36, 33.66, 24.7, 25.935,
                      22.42 , 28.9 , 39.1 , 36.19 , 23.98 , 24.75 , 28.5 , 28.1 ,
                                                                , 34.01 , 29.59 , 35.53 , 39.805, 26.885, 38.285,
                      32.01 , 27.4
                      37.62 , 41.23 , 34.8 , 22.895, 31.16 , 27.2 , 26.98 , 39.49 ,
3.Data Visualize 4 Visualize 4the unique counts
                      32.205, 28.595, 49.06, 27.17, 23.37, 37.1, 23.75, 28.975,
In [59]31.35 , 33.915, 28.785, 28.3 , 37.4 , 17.765, 34.7 , 26.505,
                      22.04, 35.9, 25.555, 28.05, 25.175, 31.9, 36., 32.49,
sns.cou<sup>2</sup> \mathbb{P}^{2} ot (d^{2})^{2} \mathbb{P}^{2} \mathbb{P
                      39.52 , 24.42 , 27.83 , 36.85 , 39.6 , 29.8 , 29.64 , 28.215,
Out[59]37.
                                        , 33.155, 18.905, 41.47 , 30.3 , 15.96 , 33.345, 37.7
27.835, 29.2 , 26.41 , 30.69 , 41.895, 30.9 , 32.2 , 32.11 , \langle Axes: \ ylabel{label} \ ylabely \ ylabely
             500
             400
            300
             200
             100
                                                                 , 21.3 , 33.535, 42.46 , 38.95 , 36.1 , 29.3
                                         , 19.
                                         , 38.19 , 42.4 , 34.96 , 42.68 , 31.54 , 29.81 , 21.375,
                      39.7
Find4the, Wull values 8.5 , 26.125, 41.69 , 24.1 , 36.2
                      40.185, 39.27 , 34.87 , 44.745, 29.545, 23.54 , 40.47 , 40.66 ,
                                                                , 27.075, 28.405, 21.755, 40.28 , 30.1
                                                                                                               , 37.905, 22.77 , 22.8 , 34.58 ,
                                         , 35.5 , 29.15 , 27.
                      23.7
                                     , 19.475, 26.7 , 34.32 , 24.4 , 41.14 , 22.515, 41.8 ,
                      26.18 , 42.24 , 26.51 , 35.815, 41.42 , 36.575, 42.94 , 21.01 ,
                                                                                                                 , 32.78 , 32.45 , 50.38 , 47.6
                                                                                        , 31.1
                      24.225, 17.67 , 31.5
                      25.4 , 29.9 , 43.7
                                                                                        , 24.86 , 28.8 , 29.5 , 29.04 , 38.94 ,
                                       , 20.045, 40.92 , 35.1 , 29.355, 32.585, 32.34 , 39.8 ,
                      24.605, 33.99, 28.2, 25.
                                                                                                                   , 33.2 , 23.2 , 20.1 , 32.5
                      37.18 , 46.09 , 39.93 , 35.8 , 31.255, 18.335, 42.9 , 26.79 ,
                      39.615, 25.9 , 25.745, 28.16 , 23.56 , 40.5 , 35.42 , 39.995,
                      34.675, 20.52 , 23.275, 36.29 , 32.7 , 19.19 , 20.13 , 23.32 ,
```

```
45.32 , 34.6 , 18.715, 21.565, 23. , 37.07 , 52.58 , 42.655,
In [60]21.66 , 32.
In [60] 21.66 , 32. , 18.3 , 47.74 , 22.1 , 19.095, 31.24 , 29.925, df.isnulf(35sum(5), 41.1 , 40.37 , 28.49 , 33.55 , 40.375, 27.28 , 17.86 ,
Out[60]33.3 , 39.14 , 21.945, 24.97 , 23.94 , 34.485, 21.8 , 23.3 ,
        36.96 , 21.28 , 29.4 , 27.3 , 37.9 , 37.715, 23.76 , 25.52 ,
        27.610, 27.06, 39.4, 34.9, 22., 30.36, 27.8, 53.13,
age
sex
        39.710, 32.87, 44.7, 30.97])
bmi
children
             0
             0
smoker
             0
region
charges
dtype: int64
```

In [61]:

```
Insuranced=df[['age','bmi','children','charges']]
plt.figure(figsize=(4,4))
sns.heatmap(Insuranced.corr(),annot=True)
```

Out[61]:

<Axes: >

To Check The Null values

```
In [62]:
```

```
df.replace(np.nan,'0',inplace=True)
```

Feature Scaling:To Split the data into train and test data

```
In [64]:

x=np.array(df['age']).reshape(-1,1)
y=np.array(df['charges']).reshape(-1,1)

In [65]:

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.06675725446475311

In the Linear Regression is not suitable for this model because of accuracy is very less

Logistisc Regression

```
In [67]:
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [68]:

sns.pairplot(df)

Out[68]:

<seaborn.axisgrid.PairGrid at 0x18a12fd62f0>

In [69]:

```
Insuranced=df[['age','bmi']]
plt.figure(figsize=(4,4))
sns.heatmap(Insuranced.corr(),annot=True)
```

Out[69]:

<Axes: >

In [70]:

```
x = df.iloc[:,:-1].values
y = df.iloc[:,1].values
```

In [71]:

```
#Split the train and test dataset
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2)
```

In [72]:

```
ml = LogisticRegression()
```

In [81]:

```
x=np.array(df['smoker']).reshape(-1,1)
x=np.array(df['age']).reshape(-1,1)
df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=1)
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(max_iter=10000)
```

```
In [82]:
```

```
lr.fit(x_train,y_train)
```

Out[82]:

```
LogisticRegression
LogisticRegression(max_iter=10000)
```

In [83]:

```
score=lr.score(x_test,y_test)
print(score)
```

0.48059701492537316

In [91]:

```
sns.scatterplot(data=df,x='smoker',y='charges')
```

Out[91]:

<Axes: xlabel='smoker', ylabel='charges'>

Decision Tree

```
In [97]:
```

```
# Decision Tree
from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier()
clf.fit(x_train,y_train)
```

Out[97]:

```
v DecisionTreeClassifier
DecisionTreeClassifier()
```

In [98]:

```
score=clf.score(x_test,y_test)
print(score)
```

0.37910447761194027

Random Forest

In [100]:

```
#random forest
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[100]:

```
▼ RandomForestClassifier
RandomForestClassifier()
```

In [1]:

In [102]:

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=params,cv=2,scoring="accuracy")
```

In [106]:

```
grid_search.fit(x_train,y_train)
```

Out[106]:

```
▶ GridSearchCV▶ estimator: RandomForestClassifier▶ RandomForestClassifier
```

```
In [105]:
```

```
grid_search.best_score_
```

Out[105]:

0.5134670897249326

In [109]:

```
rf_best=grid_search.best_estimator_
rf_best
```

Out[109]:

```
RandomForestClassifier

RandomForestClassifier(max_depth=20, min_samples_leaf=100, n_estimators=5
0)
```

In [115]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],class_names=['1','0'],filled=True);
```

```
x[0] <= 45.5
                                         gini = 0.5
                                      samples = 656
                                    value = [499, 504]
                                         class = 0
              x[0] \le 22.5
                                                                 x[0] <= 55.5
              gini = 0.498
                                                                 gini = 0.496
             samples = 417
                                                                samples = 239
           value = [301, 340]
                                                              value = [198, 164]
                class = 0
                                                                   class = 1
                          x[0] \le 30.5
   gini = 0.5
                                                    gini = 0.493
                                                                              gini = 0.498
                           gini = 0.497
samples = 112
                                                   samples = 138
                                                                             samples = 101
                         samples = 305
value = [88, 90]
                                                  value = [121, 95]
                                                                            value = [77, 69]
                        value = [213, 250]
   class = 0
                                                      class = 1
                                                                               class = 1
                            class = 0
              gini = 0.487
                                        gini = 0.499
             samples = 115
                                      samples = 190
            value = [67, 93]
                                     value = [146, 157]
                class = 0
                                         class = 0
```

In [116]:

```
score=rfc.score(x_test,y_test)
print(score)
```

0.39104477611940297

```
In [122]:
convert={"sex":{"male":1,"female":0}}
df=df.replace(convert)
df
```

Out[122]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	southwest	16884.92400
1	18	1	33.770	1	no	southeast	1725.55230
2	28	1	33.000	3	no	southeast	4449.46200
3	33	1	22.705	0	no	northwest	21984.47061
4	32	1	28.880	0	no	northwest	3866.85520
1333	50	1	30.970	3	no	northwest	10600.54830
1334	18	0	31.920	0	no	northeast	2205.98080
1335	18	0	36.850	0	no	southeast	1629.83350
1336	21	0	25.800	0	no	southwest	2007.94500
1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

```
In [123]:
```

```
from sklearn.metrics import r2_score
```

In [129]:

```
import pickle
```

In [130]:

```
filename="Prediction"
pickle.dump(rfc,open(filename,'wb'))
```

Conclusion

for the above different types of models we get accuracy based on the accuracy We can predict the which model is better for this dataset .When we comparing the above accuracies Logistic regression is getting more accuracy among all the models.So, the given dataset is best fit for LogisticRegression

In []:		