

Stochastic Processes

DTMCs: Recap of Important Results, Ergodicity, Convergence to Stationary Distribution

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

11 April 2025

• Period, transience, positive recurrence, and null recurrence are class properties

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.
- The following are equivalent.

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.
- The following are equivalent.
 - State x is transient.

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.
- The following are equivalent.
 - State x is transient.
 - $-\mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n < +\infty$

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.
- The following are equivalent.
 - State x is transient.
 - $-\mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n < +\infty$

$$-f_{xx} = \mathbb{P}(au_x^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xx}^{(n)} < 1, \qquad f_{xx}^{(n)} = \mathbb{P}(au_x^{(1)} = n \mid X_0 = x).$$

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.
- The following are equivalent.
 - State x is transient.
 - $-\mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n < +\infty$

$$-f_{xx} = \mathbb{P}(\tau_x^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xx}^{(n)} < 1, \qquad f_{xx}^{(n)} = \mathbb{P}(\tau_x^{(1)} = n \mid X_0 = x).$$

The following are equivalent.

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.
- The following are equivalent.
 - State x is transient.

$$\mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n < +\infty$$

$$-f_{xx} = \mathbb{P}(\tau_x^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xx}^{(n)} < 1, \qquad f_{xx}^{(n)} = \mathbb{P}(\tau_x^{(1)} = n \mid X_0 = x).$$

- The following are equivalent.
 - State x is recurrent.

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient. Closed communicating classes are recurrent. Finite closed communicating classes are positive recurrent.
- The following are equivalent.
 - State x is transient.

$$- \mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n < +\infty$$

$$- f_{xx} = \mathbb{P}(\tau_x^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xx}^{(n)} < 1, \qquad f_{xx}^{(n)} = \mathbb{P}(\tau_x^{(n)} = x)$$

$$-f_{xx} = \mathbb{P}(\tau_x^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xx}^{(n)} < 1,$$
 $f_{xx}^{(n)} = \mathbb{P}(\tau_x^{(1)} = n \mid X_0 = x).$

- The following are equivalent.
 - State x is recurrent.

$$-\mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n = +\infty$$

- Period, transience, positive recurrence, and null recurrence are class properties
- Open communicating classes are transient.
 Closed communicating classes are recurrent.
 Finite closed communicating classes are positive recurrent.
- The following are equivalent.
 - State x is transient.

$$- \mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n < +\infty$$

$$- f_{xx} = \mathbb{P}(\tau_x^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xx}^{(n)} < 1,$$

$$f_{xx}^{(n)}$$

$$f_{xx}^{(n)} = \mathbb{P}(\tau_x^{(1)} = n \mid X_0 = x).$$

- The following are equivalent.
 - State x is recurrent.

$$-\mathbb{E}[N_x \mid X_0 = x] = \sum_{n \in \mathbb{N}} P_{x,x}^n = +\infty$$

$$-f_{xx} = \mathbb{P}(\tau_x^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xx}^{(n)} = 1, \qquad f_{xx}^{(n)} = \mathbb{P}(\tau_x^{(1)} = n \mid X_0 = x).$$

• If x is transient, then

$$\lim_{n\to\infty} P_{x,x}^n = 0, \qquad \qquad \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n P_{x,x}^k = 0.$$

• If x is transient, then

$$\lim_{n\to\infty} P_{x,x}^n = 0, \qquad \qquad \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n P_{x,x}^k = 0.$$

• If *x* is recurrent, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P_{x,x}^k=\frac{1}{\mu_{xx}}.$$

• If x is transient, then

$$\lim_{n\to\infty} P_{x,x}^n = 0, \qquad \qquad \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n P_{x,x}^k = 0.$$

• If *x* is recurrent, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P_{x,x}^k=\frac{1}{\mu_{xx}}.$$

• If x is transient, then

$$\lim_{n\to\infty} P_{x,x}^n = 0, \qquad \qquad \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n P_{x,x}^k = 0.$$

• If x is recurrent, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P_{x,x}^k=\frac{1}{\mu_{xx}}.$$

In addition, if x is aperiodic, then

$$\lim_{n\to\infty} P_{x,x}^n = \frac{1}{\mu_{xx}}.$$

• For an irreducible Markov chain,

Unique stationary distribution exists \iff Markov chain is positive recurrent. Furthermore, in this case, $\pi_x = \frac{1}{\mu_{ex}}$ for all x.

• If $x \longleftrightarrow y$, and y is recurrent, then

$$\lim_{n\to\infty}\frac{1}{n}\,\sum_{k=1}^n P_{x,y}^k=\frac{1}{\mu_{yy}}.$$

• If $x \longleftrightarrow y$, and y is recurrent, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P_{x,y}^k=\frac{1}{\mu_{yy}}.$$

In addition, if y is aperiodic, then

$$\lim_{n\to\infty} P_{x,y}^n = \frac{1}{\mu_{yy}}.$$

Ergodicity and Ergodic Theorem

Ergodicity

Definition (Ergodic Markov Chain)

A time-homogeneous DTMC (on a finite or countably infinite state space) with TPM P is said to be ergodic if P is irreducible, aperiodic, and positive recurrent.

Ergodicity and Convergence to Stationary Distribution

Theorem (Ergodicity and Convergence to Stationary Distribution)

Consider a time-homogeneous DTMC $\{X_n\}_{n=0}^{\infty}$ on a discrete state space $\mathcal X$ with TPM P. Assume that $X_0=x$, and for each $n\in\mathbb N$, let π_n denote the PMF of X_n . If P is ergodic with associated stationary distribution π , then

$$\lim_{n\to\infty} d_{\mathrm{TV}}(\pi_n,\pi) = \lim_{n\to\infty} \frac{1}{2} \|\pi_n - \pi\|_1 = 0,$$

where d_{TV} denotes the total variation distance.

Ergodicity and Convergence to Stationary Distribution

Theorem (Ergodicity and Convergence to Stationary Distribution)

Consider a time-homogeneous DTMC $\{X_n\}_{n=0}^{\infty}$ on a discrete state space $\mathcal X$ with TPM P. Assume that $X_0=x$, and for each $n\in\mathbb N$, let π_n denote the PMF of X_n . If P is ergodic with associated stationary distribution π , then

$$\lim_{n\to\infty} d_{\mathrm{TV}}(\pi_n,\pi) = \lim_{n\to\infty} \frac{1}{2} \|\pi_n - \pi\|_1 = 0,$$

where d_{TV} denotes the total variation distance.

Remark: We shall present the proof only for \mathcal{X} finite.

We note that the result holds even when ${\cal X}$ is countably infinite.

• Consider an independent copy of $\{X_n\}_{n=0}^{\infty}$, say $\{Y_n\}_{n=0}^{\infty}$

- Consider an **independent copy** of $\{X_n\}_{n=0}^{\infty}$, say $\{Y_n\}_{n=0}^{\infty}$
- Assume that $X_0 = x$ and $Y_0 \sim \pi$

- Consider an **independent copy** of $\{X_n\}_{n=0}^{\infty}$, say $\{Y_n\}_{n=0}^{\infty}$
- Assume that $X_0 = x$ and $Y_0 \sim \pi$
- Let τ be the first time at which both Markov chains meet, i.e.,

$$\tau \coloneqq \inf\{n \geq 0 : X_n = Y_n\}.$$

- Consider an **independent copy** of $\{X_n\}_{n=0}^{\infty}$, say $\{Y_n\}_{n=0}^{\infty}$
- Assume that $X_0 = x$ and $Y_0 \sim \pi$
- Let τ be the first time at which both Markov chains meet, i.e.,

$$\tau := \inf\{n \geq 0 : X_n = Y_n\}.$$

• The random variable au is called the **coupling time**

- Consider an **independent copy** of $\{X_n\}_{n=0}^{\infty}$, say $\{Y_n\}_{n=0}^{\infty}$
- Assume that $X_0 = x$ and $Y_0 \sim \pi$
- Let τ be the first time at which both Markov chains meet, i.e.,

$$\tau := \inf\{n \geq 0 : X_n = Y_n\}.$$

- The random variable au is called the **coupling time**
- Let $Z_n = (X_n, Y_n)$; clearly, $\{Z_n\}_{n=0}^{\infty}$ is a DTMC on $\mathcal{X} \times \mathcal{X}$

- Consider an **independent copy** of $\{X_n\}_{n=0}^{\infty}$, say $\{Y_n\}_{n=0}^{\infty}$
- Assume that $X_0 = x$ and $Y_0 \sim \pi$
- Let τ be the first time at which both Markov chains meet, i.e.,

$$\tau := \inf\{n \geq 0 : X_n = Y_n\}.$$

- The random variable τ is called the **coupling time**
- Let $Z_n = (X_n, Y_n)$; clearly, $\{Z_n\}_{n=0}^{\infty}$ is a DTMC on $\mathcal{X} \times \mathcal{X}$
- Define the TPM Q of $\{Z_n\}_{n=0}^{\infty}$ as

$$Q_{(x,w),(y,z)} = P_{x,y} \cdot P_{w,z}.$$

- Consider an **independent copy** of $\{X_n\}_{n=0}^{\infty}$, say $\{Y_n\}_{n=0}^{\infty}$
- Assume that $X_0 = x$ and $Y_0 \sim \pi$
- Let τ be the first time at which both Markov chains meet, i.e.,

$$\tau := \inf\{n \geq 0 : X_n = Y_n\}.$$

- The random variable τ is called the **coupling time**
- Let $Z_n = (X_n, Y_n)$; clearly, $\{Z_n\}_{n=0}^{\infty}$ is a DTMC on $\mathcal{X} \times \mathcal{X}$
- Define the TPM Q of $\{Z_n\}_{n=0}^{\infty}$ as

$$Q_{(x,w),(y,z)} = P_{x,y} \cdot P_{w,z}.$$

• By Chapman-Kolmogorov,

$$Q_{(x,w),(y,z)}^n = P_{x,y}^n \cdot P_{w,z}^n \quad \forall n \in \mathbb{N}.$$

• Because $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ are irreducible and aperiodic, there exists $N \in \mathbb{N}$ sufficiently large such that

$$P^n > 0 \qquad \forall n \geq N.$$

• Because $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ are irreducible and aperiodic, there exists $N \in \mathbb{N}$ sufficiently large such that

$$P^n > 0 \qquad \forall n \geq N.$$

• As a consequence, it follows that $Q^n > 0$ for all $n \ge N$. This in turn implies $\{Z_n\}_{n=0}^{\infty}$ is irreducible and aperiodic

• Because $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ are irreducible and aperiodic, there exists $N \in \mathbb{N}$ sufficiently large such that

$$P^n > 0 \qquad \forall n \geq N.$$

- As a consequence, it follows that $Q^n > 0$ for all $n \ge N$. This in turn implies $\{Z_n\}_{n=0}^{\infty}$ is irreducible and aperiodic
- Important observation:

 $\lambda = 1$ is a simple eigenvalue of Q^n for all n > N.

Therefore, there exists a unique probability vector heta such that heta= heta Q.

This means that $\{Z_n\}_{n=0}^{\infty}$ is positive recurrent, and $\mathbb{P}(\tau < +\infty) = 1$.

• Because $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ are irreducible and aperiodic, there exists $N \in \mathbb{N}$ sufficiently large such that

$$P^n > 0 \qquad \forall n \geq N.$$

- As a consequence, it follows that $Q^n > 0$ for all $n \ge N$. This in turn implies $\{Z_n\}_{n=0}^{\infty}$ is irreducible and aperiodic
- Important observation:

 $\lambda=1$ is a simple eigenvalue of Q^n for all $n\geq N$. Therefore, there exists a unique probability vector $\boldsymbol{\theta}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta}Q$. This means that $\{Z_n\}_{n=0}^\infty$ is positive recurrent, and $\mathbb{P}(\tau<+\infty)=1$.

• A simple observation shows that θ defined via

$$\theta(\mathbf{x}, \mathbf{w}) = \pi(\mathbf{x}) \cdot \pi(\mathbf{w})$$

is a stationary distribution for Q, and the only such one

• From the coupling time onwards, the two processes $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ will have identical statistics:

$$\mathbb{P}(X_n = y, n \ge \tau \mid X_\tau = x) = \mathbb{P}(Y_n = y, n \ge \tau \mid Y_\tau = x)$$

• From the coupling time onwards, the two processes $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ will have identical statistics:

$$\mathbb{P}(X_n = y, n \ge \tau \mid X_\tau = x) = \mathbb{P}(Y_n = y, n \ge \tau \mid Y_\tau = x)$$

• Finally, we note that

$$|\pi_n(y) - \pi(y)| = \left| \mathbb{P}(X_n = y) - \mathbb{P}(Y_n = y) \right|$$

• From the coupling time onwards, the two processes $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ will have identical statistics:

$$\mathbb{P}(X_n = y, n \ge \tau \mid X_\tau = x) = \mathbb{P}(Y_n = y, n \ge \tau \mid Y_\tau = x)$$

• Finally, we note that

$$|\pi_n(y) - \pi(y)| = \left| \mathbb{P}(X_n = y) - \mathbb{P}(Y_n = y) \right|$$

• From the coupling time onwards, the two processes $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ will have identical statistics:

$$\mathbb{P}(X_n = y, n \ge \tau \mid X_\tau = x) = \mathbb{P}(Y_n = y, n \ge \tau \mid Y_\tau = x)$$

• Finally, we note that

$$|\pi_n(y) - \pi(y)| = \left| \mathbb{P}(X_n = y) - \mathbb{P}(Y_n = y) \right|$$

= $\left| \mathbb{P}(X_n = y, \tau > n) - \mathbb{P}(Y_n = y, \tau > n) \right|$

• From the coupling time onwards, the two processes $\{X_n\}_{n=0}^{\infty}$ and $\{Y_n\}_{n=0}^{\infty}$ will have identical statistics:

$$\mathbb{P}(X_n = \gamma, \ n \ge \tau \mid X_\tau = x) = \mathbb{P}(Y_n = \gamma, \ n \ge \tau \mid Y_\tau = x)$$

Finally, we note that

$$|\pi_n(y) - \pi(y)| = \left| \mathbb{P}(X_n = y) - \mathbb{P}(Y_n = y) \right|$$

$$= \left| \mathbb{P}(X_n = y, \tau > n) - \mathbb{P}(Y_n = y, \tau > n) \right|$$

$$\leq 2 \mathbb{P}(\tau > n)$$

• Taking limits as $n \to \infty$, and noting that $\mathbb{P}(\tau < +\infty) = 1$, we arrive at the result