Systems Analysis and Design-1

Chapter 2 Analyzing the Business Case

Definition

- A business case is an argument, usually documented, that is intended to convince a decision maker to approve some kind of action. The document itself is sometimes referred to as a business case.
- http://whatis.techtarget.com/definition/business-case

Introduction

- Analysts must consider company's mission, objectives, and IT needs
- Process starts with a systems request
- Preliminary investigation follows to evaluate:
 - Feasibility study
 - Fact finding techniques
 - Reporting to management

What is a Business Case?

- A business case refers to the reasons, or justification, for a proposal
 - Should be comprehensive, yet easy to understand
 - Should describe the project clearly, provide the justification to proceed, and estimate the project's financial impact

What is a Business Case? (Cont.)

- A business case should answer the following questions:
 - Why are we doing this project?
 - What is the project about?
 - How does this solution address key business issues?
 - How much will it cost?
 - How long will it take?
 - Will we suffer a productivity loss during the transition?

What is a Business Case? (Cont.)

- A business case should answer the following questions (Cont.):
 - What is the return on investment and payback period?
 - What are the risks of doing the project?
 - What are the risks of not doing the project?
 - How will we measure success?
 - What alternatives exist?

Information Systems Projects

Main Reasons for Systems Requests:

- Improved Service
 - Improving service to customers or users within the company
- Support for New Products and Services
 - New products and services often require new types or levels of IT support
- Better Performance
 - Current system might not meet performance requirements

Information Systems Projects (Cont.)

- Factors That Affect Systems Projects
 - Internal Factors
 - Strategic Plan
 - Top Managers
 - User Requests
 - Information Technology Department
 - Existing Systems and Data
 - External factors
 - Technology
 - Suppliers
 - Customers
 - Competitors
 - The Economy
 - Government

Information Systems Projects (Cont.)

FIGURE 2-10 Internal and external factors' that affect IT projects.

Evaluation of Systems Requests

- Systems Request Forms
 - Streamlines the request process
 - Ensures consistency
 - Easy to understand
 - Includes clear instructions
 - Indicates what supporting documents are needed
 - Submitted electronically

Evaluation of Systems Requests (Cont.)

Figure 2-13 Example of an online systems request form

Evaluation of Systems Requests (Cont.)

Systems Review Committee

- With a broader viewpoint, a committee can establish priorities more effectively than an individual
- One person's bias is less likely to affect the decisions
- Disadvantages:
 - Action on requests must wait until the committee meets
 - Members might favor projects requested by their own departments
 - Internal political differences could delay important decisions

Overview of Feasibility

- Is the proposal desirable in an operational sense?
 - Is it a practical approach that will solve a problem or take advantage of an opportunity to achieve company goals?
- Is the proposal technically feasible?
 - Are the necessary technical resources and people available for the project?
- Is the proposal economically desirable?
 - What are the projected savings and costs?
- Are other intangible factors involved, such as customer satisfaction or company image?
 - Is the problem worth solving, and will the request result in a sound business investment?
- Can the proposal be accomplished within an acceptable time frame?

FIGURE 2-14 A feasibility study examines operational, technical, economic, and schedule factors.

Operational Feasibility

- Does management support the project?
 - Do users support the project?
 - Is the current system well liked and effectively used?
 - Do users see the need for change?
- Will the new system result in a workforce reduction?
 - If so, what will happen to affected employees?
- Will the new system require training for users?
 - If so, is the company prepared to provide the necessary resources for training current employees?
- Will users be involved in planning the new system right from the start?

Operational Feasibility (Cont.)

- Will the new system place any new demands on users or require any operating changes?
 - For example:
 - Will any information be less accessible or produced less frequently?
 - Will performance decline in any way? If so, will an overall gain to the organization outweigh individual losses?
- Will customers experience adverse effects in any way, either temporarily or permanently?
- Will any risk to the company's image or goodwill result?
- Does the development schedule conflict with other company priorities?
- Do legal or ethical issues need to be considered?

Technical Feasibility

- Does the company have the necessary hardware, software, and network resources?
 - If not, can those resources be acquired without difficulty?
- Does the company have the needed technical expertise?
 - If not, can it be acquired?
- Does the proposed platform have sufficient capacity for future needs?
 - If not, can it be expanded?

Technical Feasibility (Cont.)

- Will a prototype be required?
- Will the hardware and software environment be reliable?
- Will it integrate with other company information systems, both now and in the future?
- Will it interface properly with external systems operated by customers and suppliers?
- Will the combination of hardware and software supply adequate performance?
- Do clear expectations and performance specifications exist?
- Will the system be able to handle future transaction volume and company growth?

Economic Feasibility

- Costs for people, including IT staff and users
- Costs for hardware and equipment
- Cost of software, including in-house development as well as purchases from vendors
- Cost for formal and informal training, including peer-to-peer support
- Cost of licenses and fees
- Cost of consulting expenses
- Facility costs
- The estimated cost of not developing the system or postponing the project

Tangible Benefits

- A new scheduling system that reduces overtime
- An online package tracking system that improves service and decreases the need for clerical staff
- A sophisticated inventory control system that cuts excess inventory and eliminates production delays

Intangible Benefits

- A user-friendly system that improves employee job satisfaction
- A sales tracking system that supplies better information for marketing decisions
- A new Web site that enhances the company's image

Schedule Feasibility

- Can the company or the IT team control the factors that affect schedule feasibility?
- Has management established a firm timetable for the project?
- What conditions must be satisfied during the development of the system?
- Will an accelerated schedule pose any risks?
 - If so, are the risks acceptable?
- Will project management techniques be available to coordinate and control the project?
- Will a project manager be appointed?

Evaluating Feasibility

- Identify and weed out systems requests that are not feasible
- Even if the request is feasible, it might not be necessary
- Requests that are not currently feasible can be resubmitted as new hardware, software, or expertise becomes available

Setting Priorities

Factors That Affect Priority

- Will the proposed system reduce costs?
 - Where? When? How? How much?
- Will the system increase revenue for the company?
 - Where? When? How? How much?
- Will the systems project result in more information or produce better results?
 - How? Are the results measurable?
- Will the system serve customers better?
- Will the system serve the organization better?
- Can the project be implemented in a reasonable time period?
 - How long will the results last?
- Are the necessary financial, human, and technical resources available?

Setting Priorities (Cont.)

Discretionary Projects

- Projects where management has a choice in implementing them
 - Creating a new report for a user

Nondiscretionary Projects

- Projects where management has must implement them
 - Adding a report required by federal law
 - Most of these projects are predictable
 - Annual updates to payroll
 - Tax percentages
 - Quarterly changes

- Interaction with Managers and Users
 - Meet with key managers, users, and IT staff to describe the project, explain responsibilities, answer questions, and invite comments
 - Focus on improvements and enhancements, not problems

(Cont.)

FIGURE 2-16 Six main steps in a typical preliminary investigation.

Preliminary Investigation Overview (Cont.)

Step 1: Understand the Problem or Opportunity

- Develop a business profile that describes business processes and functions
- Understand how modifications will affect business operations and other information systems
- Determine which departments, users, and business processes are involved
- Systems request may not reveal an underlying problem
- Consider using a fishbone diagram

(Cont.)

- Step 2: Define the Project Scope and Constraints
 - Define the specific boundaries, or extent, of the project
 - Define project scope by creating a list with sections called Must Do, Should Do, Could Do, and Won't Do
 - Define project scope as clearly as possible to avoid project creep
 - Identify Constraints
 - A constraint is a requirement or condition that the system must satisfy or an outcome that the system must achieve

(Cont.)

Step 3: Perform Fact-Finding

- Gather data about project usability, costs, benefits, and schedules
- Analyze organization charts
 - Understand the functions and identify people you want to interview

Conduct Interviews

- Determine the people to interview
- Establish objectives for the interview
- Develop interview questions
- 4. Prepare for the interview
- Conduct the interview
- Document the interview
- Evaluate the interview

(Cont.)

- Step 3: Perform Fact-Finding (Cont.)
 - Review Documentation
 - Investigate the current system documentation
 - Check with users to confirm that you are receiving
 - accurate and complete information
 - Observe Operations
 - See how workers carry out typical tasks
 - Sample inputs and outputs of the system

FIGURE 2-20 Sometimes, an analyst can get a better understanding of a system by watching actual operations.

Preliminary Investigation Overview (Cont.)

- Step 3: Perform Fact-Finding (Cont.)
 - Conduct a User Survey
 - A survey is not as flexible as a series of interviews, but it is less expensive, generally takes less time, and can involve a broad cross-section of people
 - Analyze the Data
 - Systems analyst might use a Pareto chart
 - Analysts may use an XY chart to identify if there is a correlation of variables

(Cont.)

FIGURE 2-22 An XY chart shows correlation between variables, which is very important in problem solving. Conversely, a *lack* of correlation suggests that the variables are independent, and that you should look elsewhere for the cause.

(Cont.)

- Step 4: Analyze Project Usability, Cost, Benefit, and Schedule Data
 - What information must you obtain, and how will you gather and analyze the information?
 - Will you conduct interviews? How many people will you interview, and how much time will you need to meet with the people and summarize their responses?
 - Will you conduct a survey? Who will be involved? How much time will it take people to complete it? How much time will it take to tabulate the results?
 - How much will it cost to analyze the information and prepare a report with findings and recommendations?

(Cont.)

Step 5: Evaluate Feasibility

- OPERATIONAL FEASIBILITY
 - Review of user needs, requirements, and expectations
 - Look for areas that might present problems for system users and how they might be resolved
- TECHNICAL FEASIBILITY
 - Identify the hardware, software, and network resources needed to develop, install, and operate the system
 - Develop a checklist that will highlight technical costs and concerns
- ECONOMIC FEASIBILITY
 - Apply the financial analysis tools
 - · The cost-benefit data will be important
- SCHEDULE FEASIBILITY
 - Include stakeholder expectations regarding acceptable timing and completion dates

Preliminary Investigation Overview (Cont.)

- Step 6: Present Results and Recommendations to Management
 - Typical Report Includes:
 - Introduction
 - Systems Request Summary
 - Findings
 - Case for Action
 - Project Roles
 - Time and Costs Estimates
 - Expected Benefits
 - Appendix

• Sources:

[1] Systems Analysis and Design Elevent Edition (Shelly Cashman Series) authors Tilley / Rosenblatt PUblisher Cengage ISBN 978-1-337-68715-7.