"Coefficient of Variation" Lecture #12

Relative measure of variance and Standard deviation is called coefficient of variation and is denoted by C.V.

More Consistent C.VA>C.VB Ans: B.

* Sample coefficient of variation.

$$CV = \frac{S}{X} \times 100\%$$

Q-1: The following are the scores made by two batsman A and B in a series of innings:

A: 12 15 6 73 7 19 199 36 84 29

B: 47 12 76 48 4 51 37 48 13 0

i) find coefficient of variation of both players.

ii) Who is better as a run getter?

'iii) Who is more consistent player?

XA	X	XB	X ₈	
12	144	47	2209	
15	225	12	144	
6	36	76	5776	
73	5319	48	2304	
7	49	4 51	16 2601	
199	39601	37	1369	0
3 6	1296	48	2304	
84	7056	13	169	Y
29	841	0	Ō	
480	54938	336	16892	
: N _# =	10,	EX = 480.	$\sum_{A} X_{A}^{2} = 3$	5 4 9 3 8
) X _A =	TA EXA	480 = 48	3 21	81 A
	$\frac{\sum X_A^2}{\Omega_A}$			7 0
	54938	- (48)2		
		. 2 1.	= 3189-8	2

Thus

$$\frac{CV}{X_A} = \frac{S_A}{X_A} \times 100 \%$$

Now

$$X_{B} = 10$$
, $\Sigma X_{B} = 336$, $\Sigma X_{B}^{2} = 16892$.

$$\frac{1}{X_8} = \frac{\sum X_8}{N_8} = \frac{336}{10} = 33.6$$

$$A S_B^2 = \frac{\sum X_B^2}{n_B} - \left[\frac{\sum X_B}{n_B}\right]^2$$

$$= \frac{16892}{10} - (33.6)^2$$

$$\frac{\text{C-V}_{\text{B}}}{\overline{X}_{\text{B}}} = \frac{S_{\text{B}}}{\overline{X}_{\text{B}}} \times 100^{-1/6}$$

$$= \frac{33.67}{33.6} \times 100^{-1/6}$$

ii) Because

$$\overline{X}_{A} > \overline{X}_{B}$$

Therefore batsman A. is better as a run getter.

iii) Because

Therefore batsman B is more consistent player.

Activity: If two machines A and B are tested and following informations are recieved: Machine A Machine B N 50 45 X 112 128 S 76 51 Which machine is more Consistent?

Which machine is more Consistent? and Why?

- i) M±6 Contains approx. 68% data.
- ii) M± 26 contains approx. 95% data.
- (iii) M±36 Contains approx. 99.71. data.
- Q-1:- Check approximations for the following data Set:

13, 15, 21, 9, 36, 25, 35, 29, 16, 14, 18, 39, 39, 11, 6, 19, 8.

Sel. For the given data Set:-M = 20.35 6 = 10.19

 $\mu - 6 = 90.35 - 10.19 = 10.16$ $\mu + 6 = 90.35 + 10.19 = 30.54$

Values: 13, 15, 21, 25, 29, 16, 14, 18, 11, 19

:. $\gamma_{r} = \frac{10}{17} \times 100 \ \gamma_{r} = 59\%$ (=: data is not large)

- Standard deviation as 10 and 3 respectively.

 then there will be approximately 95.1.

 of values in the range 4 to 16.
- ii) 99.7 .. of data approx. lies in $\mu \pm 36$ of any data.