Graph Convolutional Reinforcement Learning...

Seminarium: Reinforcement learning dla gier

Maria Wyrzykowska

...czyli nauka kooperacji w systemach wieloagentowych

Seminarium: Reinforcement learning dla gier

Maria Wyrzykowska

Systemy wieloagentowe (Multi Agent Systems)

- wielu agentów, wiele obserwacji, dynamiczne środowisko
- zazwyczaj: agenci realizują wspólne cele
- kooperacja jest wartościowa
- przykłady:
 - sterowanie autonomicznymi pojazdami
 - kontrola sygnalizacji świetlnej
 - kontrola robotów (np eksploracja)

Różne podejścia do kooperacji: MeanField

Podejście 1:

"Standardowy" Q-learning

$$Q^{j}(s,a)$$

Problem:

niepraktyczne dla dużej liczby agentów

Pomysł (Mean Field):

• aproksymujemy Q, uśredniając akcje sąsiadów danego agenta

$$Q^{j}(s, \mathbf{a}) = \frac{1}{N^{j}} \sum_{k} Q^{j}(s, a^{j}, a^{k}) \approx Q^{j}(s, a^{j}, \bar{a}^{j}) \qquad \bar{a}^{j} = \frac{1}{N^{j}} \sum_{k} a^{k}$$

Problem: uśredniając, eliminujemy różnice między agentami, tracimy informacje

https://arxiv.org/pdf/1802.05438.pdf, Mean Field Multi-Agent Reinforcement Learning, Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, Jun Wang, ICML 2018

Różne podejścia do kooperacji: CommNet

Podejście 2:

Pozwalamy agentom komunikować się.

Przykładowa implementacja (CommNet):

Problem:

ilu agentów powinno się ze sobą komunikować?

https://arxiv.org/pdf/1605.07736.pdf, Learning Multiagent Communication with Backpropagation, Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus, NIPS 2016

Różne podejścia do kooperacji: Casual Influence

Podejście 3:

Nagradzamy zachowania agentów, mające wpływ na innych.

Szczegóły:

Jak bardzo zmiana akcji agenta k zmieni dystrybucję prawdopodobieństw akcji agenta j?

$$c_t^k = \sum_{j=0, j \neq k}^{N} \left[D_{KL}[p(a_t^j \mid a_t^k, s_t^j) \middle\| \sum_{\tilde{a}_t^k} p(a_t^j \mid \tilde{a}_t^k, s_t^j) p(\tilde{a}_t^k \mid s_t^j)] \right]$$

Problem:

Nagradzany wpływ na innych agentów może być negatywny

Rozwiązanie*: Wprowadzamy komunikację, nagradzamy wpływ komunikatów, a nie akcji

https://arxiv.org/abs/1810.08647, Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning, Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A. Ortega, DJ Strouse, Joel Z. Leibo, Nando de Freitas, ICML 2018

Co chcemy osiągnąć?

- 1. Komunikacja:
 - a. szeroki zakres
 - b. umiejętność decydowania, które informacje są ważne
- 2. Skalowalność do dużej liczby agentów
- 3. Consistent (spójna?) współpraca

Jak to chcemy osiągnąć?

- 1. Komunikacja:
 - a. szeroki zakres: **GNN**
 - b. umiejętność decydowania, które informacje są ważne: attention (uwaga?)
- Skalowalność do dużej liczby agentów:
 GNN, współdzielenie parametrów
- Consistent (spójna?) współpraca: regularyzacja

Encoder

Konwolucje na grafach

Konwolucje na grafach

- zamiast sąsiednich pikseli, patrzymy na sąsiadów w grafie
- stała liczba parametrów
- kolejne warstwy = szersze pole widzenia
- detal implementacyjny:
 sąsiadów danego agenta
 kodujemy jako macierz,
 gdzie każdy wiersz to
 one-hot encoding indeksu
 kolejnego sąsiada

Konwolucje na grafach: kernel

- pożądana cecha: niezależność od kolejności w której są sąsiedzi
- możliwości: uśrednianie, suma, ..., attention
- dla agenta i i jego sąsiada j oraz głowicy m:

$$\alpha_{ij}^{m} = \frac{\exp\left(\tau \cdot \mathbf{W}_{Q}^{m} h_{i} \cdot (\mathbf{W}_{K}^{m} h_{j})^{\mathsf{T}}\right)}{\sum_{k \in \mathbb{B}_{+i}} \exp\left(\tau \cdot \mathbf{W}_{Q}^{m} h_{i} \cdot (\mathbf{W}_{K}^{m} h_{k})^{\mathsf{T}}\right)}$$

$$h_{i}^{'} = \sigma(\text{concatenate}[\sum_{j \in \mathbb{B}_{+i}} \alpha_{ij}^{m} \mathbf{W}_{V}^{m} h_{j}, \forall m \in \mathsf{M}])$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \underbrace{h_{i}}_{h_{i}} \underbrace{h_{i}}_{\mathbf{W}_{Q}^{l}} \underbrace{\mathbf{W}_{K}^{l} \cdot \mathbf{W}_{V}^{l}}_{\mathbf{W}_{K}^{l}} \underbrace{\mathbf{W}_{V}^{l}}_{\mathbf{W}_{V}^{l}} \underbrace{\mathbf{W}_{V}^{l}}_$$

Q-learning

Q-learning

- input: konkatenacja outputów wszystkich poprzednich warstw
- gromadzimy memory buffer $(\mathcal{O}, \mathcal{A}, \mathcal{O}', \mathcal{R}, \mathcal{C})$ gdzie:
 - O obserwacje (wszystkich agentów)
 - o A akcje
 - o O' kolejne obserwacje
 - o R nagrody
 - C macierze sąsiedztwa
- trening: standardowy*

$$\mathcal{L}(\theta) = \frac{1}{\mathsf{S}} \sum_{\mathsf{S}} \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} (y_i - Q(O_{i,\mathcal{C}}, a_i; \theta))^2$$

$$y_i = r_i + \gamma \max_{a'} Q\left(O'_{i,C}, a'_i; \theta'\right)$$

 detal implementacyjny: graf dynamicznie się zmienia, ale macierze sąsiedztwa aktualizujemy w co drugim kroku

Regularyzacja

- Cel: kooperacja powinna być "stabilna"
- Pomysł: dystrybucje wag pochodzących z danego attention head dla danego agenta powinny być podobne w kolejnych momentach
- Implementacja: do funkcji starty dodajemy regularyzacje karamy w zależności od tego, jak bardzo różnią się dystrybucje (KL)

$$\mathcal{L}(\theta) = \frac{1}{\mathsf{S}} \sum_{\mathsf{S}} \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \left((y_i - Q(O_{i,\mathcal{C}}, a_i; \theta))^2 + \lambda \frac{1}{\mathsf{M}} \sum_{m=1}^{\mathsf{M}} D_{\mathsf{KL}}(\mathcal{G}_m^{\kappa}(O_{i,\mathcal{C}}; \theta)) ||\mathcal{G}_m^{\kappa}(O_{i,\mathcal{C}}'; \theta)) \right)$$

Eksperymenty

- platforma: MAgent
- plansza: 30x30, lokalne obserwacje agentów: 11x11
- scenariusze: battle, jungle, routing
- baseliny: independent Q-learning, DQN, CommNet, MeanField (MFQ)
- wersje DGN: DGN, DGN-R (bez regularyzacji), DGM-M (z średnią jako kernelem)
- wszystkie modele współdzielą parametry między agentami
- podobne rozmiary, takie same hiperparametry

Battle

- 20 agentów vs 12 przeciwników (sterowanych przez DQN)
- agent: może się poruszać/atakować 4 sąsiednie pola
- przeciwnik: może się poruszać na 12 sąsiednich pól, atakować 8
- gracze mają po 6 hp, po śmierci są losowo respawnowani
- przeciwnicy są silniejsi niż agenci by wygrać, muszą kooperować

Battle: wyniki

7.0	DGN	DGN-R	DGN-M	MFQ	CommNet	DQN
mean reward	0.91	0.84	0.50	0.70	0.03	-0.03
# kills	220	208	121	193	7	2
# deaths	97	101	84	92	27	74
kill-death ratio	2.27	2.06	1.44	2.09	0.26	0.03

(b) DQN in battle

Jungle

- 20 agentów, 12 jedzenia (stacjonarnego)
- agent: może się poruszać/atakować 4 sąsiednie pola
- nagroda za zaatakowanie agenta jest wyższa, niż za jedzenie
- agenci powinni nauczyć się dzielić zasobami, a nie atakować się wzajemnie

Jungle: wyniki

	DGN	MFQ	CommNet	DQN
mean reward	0.66	0.62	0.30	0.24
# attacks	1.14	2.74	5.44	7.35

(d) DQN in jungle

Routing

- 20 agentów-paczek z danymi (losowych rozmiarów), 20 routerów, każdy z nich połączony z 3 innymi
- każde połączenie ma jakiś bandwidth
- każda paczka ma source i destination
- obserwacje to: atrybuty paczki, atrybuty sąsiednich paczek i połączeń
- akcje to wybór kolejnych połączeń
- przejście paczki przez połączenie zajmuje czas liniowy do jego długości

Routing: wyniki

Table 3: Routing

(N, L)		Floyd	Floyd w/ BL	DGN	MFQ	CommNet	DQN
	mean reward			1.23	1.02	0.49	0.18
(20, 20)	delay	6.3	8.7	8.0	9.4	18.6	46.7
	throughput	3.17	2.30	2.50	2.13	1.08	0.43
(40, 20)	mean reward			0.86	0.78	0.39	0.12
	delay	6.3	13.7	9.8	11.8	23.5	83.6
	throughput	6.34	2.91	4.08	3.39	1.70	0.49
(60, 20)	mean reward			0.73	0.59	0.31	0.06
	delay	6.3	14.7	12.6	15.5	27.0	132.0
	throughput	9.52	4.08	4.76	3.87	2.22	0.45

delay: czas, jaki zajęła paczce podróż

throughput: liczba dostarczonych paczek/timestep

Zastosowania DGN: CoLight

Model	$Grid_{6 \times 6}$ -Uni	$Grid_{6\times 6}$ -Bi	$D_{NewYork}$	$D_{Hangzhou}$
Fixedtime [15]	209.68	209.68	1950.27	728.79
MaxPressure [24]	186.07	194.96	1633.41	422.15
CGRL [23]	1532.75	2884.23	2187.12	1582.26
Individual RL [30]	314.82	261.60	-*	345.00
OneModel [5]	181.81	242.63	1973.11	394.56
Neighbor RL [1]	240.68	248.11	2280.92	1053.45
GCN [18]	205.40	272.14	1876.37	768.43
CoLight-node	178.42	176.71	1493.37	331.50
CoLight	173.79	170.11	1459.28	297.26

https://arxiv.org/abs/1905.05717, CoLight: Learning Network-level Cooperation for Traffic Signal Control, Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yanmin Zhu, Kai Xu, Zhenhui Li, ACM, 2018

Zastosowania DGN: CAV

https://arxiv.org/abs/2010.05437, A DRL-based Multiagent Cooperative Control Framework for CAV Networks: a Graphic Convolution Q Network, Jiqian Dong, Sikai Chen, Paul Young Joun Ha, Yujie Li, Samuel Labi, TRB 2021

Zastosowania DGN: CAV

Wnioski

- MARL jest ciekawą dziedziną, stawiającą wiele wyzwań i mającą wiele aplikacji w życiu
- Zastosowanie attention (jak zwykle?) wydaje się być wartościowe
- Praca o DGN była trochę krytykowana jako niejasna, ale autorzy wkładają wysiłek, żeby ją poprawiać
- Wiarygodność wyników z pracy o DGN może nie jest bardzo duża, ale zastosowanie architektury w innych pracach trochę bardziej do nich przekonuje

Dziękuję za uwagę!