- **17.1.** Для каждого из следующих операторов T **1)** найдите $\sigma_{\rm ess}(T)$; **2)** вычислите $\operatorname{ind}(T-\lambda \mathbf{1})$ для всевозможных $\lambda \in \mathbb{C} \setminus \sigma_{\rm ess}(T)$:
- (a) диагональный оператор в ℓ^p или в c_0 ;
- (b) оператор умножения на непрерывную функцию в C[a, b];
- (c) оператор умножения на ограниченную измеримую функцию в $L^p(X,\mu)$;
- (d) оператор левого сдвига в ℓ^p или в c_0 ;
- (e) оператор правого сдвига в ℓ^p или в c_0 ;
- (f) оператор двустороннего сдвига в $\ell^p(\mathbb{Z})$ или в $c_0(\mathbb{Z})$;
- (g) произвольный компактный оператор.
- **17.2.** Пусть $f \in C(\mathbb{T})$, и пусть T_f соответствующий оператор Тёплица в пространстве Харди $H^2(\mathbb{T})$.
- 1) Предположим, что f(z) = 0 для некоторого $z \in \mathbb{T}$. Докажите, что T_f не фредгольмов.
- **2)** Найдите $\sigma_{\rm ess}(T_f)$ в терминах f.
- **3-b**) Найдите $||T_f||$ в терминах f.
- **17.3.** Пусть H бесконечномерное гильбертово пространство. Докажите, что для каждого $n \in \mathbb{Z}$ в H существует фредгольмов оператор индекса n.
- **17.4** (четвертое доказательство аддитивности индекса). Пусть X, Y, Z банаховы пространства и $T: X \to Y, S: Y \to Z$ фредгольмовы операторы. Рассмотрите оператор

$$\begin{pmatrix} \mathbf{1}_Y & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} \mathbf{1}_Y \cos t & -\mathbf{1}_Y \sin t \\ \mathbf{1}_Y \sin t & \mathbf{1}_Y \cos t \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & \mathbf{1}_Y \end{pmatrix},$$

действующий из $X \oplus Y$ в $Y \oplus Z$, и, пользуясь непрерывностью индекса, получите еще одно доказательство формулы $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$.

Теорема 1. Группа GL(H) ограниченных обратимых операторов в гильбертовом пространстве H линейно связна.

Доказать эту теорему мы сможем через некоторое время 1 . В оставшейся части листка разрешается ею пользоваться.

- **17.5.** Пусть H гильбертово пространство. Докажите, что фредгольмовы операторы $S,T \in \mathcal{B}(H)$ лежат в одной компоненте связности множества $\mathscr{F}red(H) \iff$ их можно соединить непрерывным путем в $\mathscr{F}red(H) \iff$ ind $S = \operatorname{ind} T$.
- **17.6.** Пусть H бесконечномерное гильбертово пространство и $\mathcal{Q}(H) = \mathcal{B}(H)/\mathcal{K}(H)$ алгебра Калкина. Обозначим через G группу обратимых элементов в $\mathcal{Q}(H)$, а через $G_0 \subset G$ связную компоненту единицы. Докажите, что фредгольмов индекс индуцирует изоморфизм групп $G/G_0 \cong \mathbb{Z}$.
- **17.7.** Пусть X, Y нормированные пространства. Докажите, что отображение

$$Y \otimes X^* \to \mathscr{F}(X,Y), \quad x \otimes f \mapsto f(\cdot)x$$
 (1)

— изоморфизм векторных пространств.

 $^{^{1}}$ На самом деле верно гораздо более сильное утверждение: если H бесконечномерно, то группа GL(H) стягиваема, т.е. гомотопически эквивалентна точке (теорема Кюйпера). Это уже гораздо более сложное утверждение, и мы его доказывать не будем. См. добавление к книге М. Атья «Лекции по K-теории», М.: Мир, 1967.

Определение 17.1. Пусть X — нормированное пространство. Функционал $\mathrm{Tr}\colon \mathscr{F}(X) \to \mathbb{C}$ строится как композиция отображения $\mathscr{F}(X) \to X \otimes X^*$, обратного к (1), и спаривания

$$X \otimes X^* \to \mathbb{C}, \quad x \otimes f \mapsto f(x).$$

Этот функционал называется следом.

- **17.8.** 1) Покажите, что при $\dim X < \infty$ определение 17.1 эквивалентно обычному определению следа.
- **2)** Докажите, что для $T \in \mathcal{B}(X,Y)$ и $S \in \mathcal{F}(Y,X)$ справедлива формула $\mathrm{Tr}(ST) = \mathrm{Tr}(TS)$.
- **17.9** (абстрактная формула Атья-Ботта). Пусть X, Y банаховы пространства и $T: X \to Y$ фредгольмов оператор. Выберем ограниченный оператор $S: Y \to X$ так, чтобы операторы $\mathbf{1}_X ST$ и $\mathbf{1}_Y TS$ были конечномерными. Докажите, что

$$ind T = Tr(\mathbf{1}_X - ST) - Tr(\mathbf{1}_Y - TS).$$

В частности, если X = Y, то ind T = Tr([T, S]).

17.10 (пятое доказательство аддитивности индекса). Придумайте доказательство формулы $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$, основанное на результате предыдущей задачи.