Package 'rvec'

September 15, 2024

Title Vector Representing a Random Variable Version 0.0.7 **Description** Random vectors, called rvecs. An rvec holds multiple draws, but tries to behave like a standard R vector, including working well in data frames. Rvecs are useful for working with output from a simulation or a Bayesian analysis. License MIT + file LICENSE **Encoding UTF-8** LazyData true RoxygenNote 7.3.2 **Depends** R (>= 4.3.0) Imports cli, glue, graphics, grDevices, matrixStats, methods, rlang, stats, tibble, tidyselect, utils, vctrs Suggests bookdown, covr, dplyr, ggdist, ggplot2, knitr, posterior, rmarkdown, testthat (>= 3.0.0), tidyr, vdiffr Config/testthat/edition 3 VignetteBuilder knitr URL https://bayesiandemography.github.io/rvec/, https://github.com/bayesiandemography/rvec BugReports https://github.com/bayesiandemography/rvec/issues NeedsCompilation no Author John Bryant [aut, cre], Bayesian Demography Limited [cph] Maintainer John Bryant < john@bayesiandemography.com> Repository CRAN **Date/Publication** 2024-09-15 04:10:02 UTC

Type Package

2 Contents

Contents

Index

rvec-package	 	
as_list_col	 	5
collapse_to_rvec	 	6
dbeta_rvec	 	9
dbinom_rvec	 	10
dcauchy_rvec	 	12
dchisq_rvec	 	13
dexp_rvec	 	15
df_rvec	 	16
dgamma_rvec	 	18
dgeom_rvec	 	20
dhyper_rvec	 	21
divorce	 	23
dlnorm_rvec	 	24
dmultinom_rvec	 	25
dnbinom_rvec	 	26
dnorm_rvec	 	28
dpois_rvec	 	30
draws_all	 	31
draws_ci	 	32
draws_fun	 	34
draws_median	 	35
draws_min		
draws_quantile	 	38
dt_rvec	 	40
dunif_rvec	 	41
dweibull_rvec	 	43
extract_draw	 	44
if_else_rvec	 	45
is_rvec	 	46
map_rvec	 	47
matrixOps.rvec	 	48
missing	 	48
new_rvec	 	50
n_draw	 	51
rank	 	52
reg_post	 	53
rvec	 	53
sd	 	55
var	 	56
weighted_mean	 	57

60

rvec-package 3

rvec-package

Package 'rvec'

Description

Tools for working with random draws from a distribution, eg draws from a posterior distribution in a Bayesian analysis.

Details

An rvec holds multiple draws, but wherever possible behaves like an ordinary R vector. For instance, if x is an rvec holding 1000 draws from a distribution, then 2 * x returns a new rvec where each draw has been multiplied by 2.

To summarise across draws, use a function starting with draws. For instance, to calculate a credible interval, use draws_ci().

Functions

Creating rvecs

- rvec() Class depends on input
- rvec_dbl() Doubles
- rvec_int() Integers
- rvec_lgl() Logical
- rvec_chr() Character
- collapse_to_rvec() Data in data frame
- new_rvec() Blanks

Manipulating rvecs

- if_else_rvec() if_else() where condition is rvec
- map_rvec() map() for rvecs
- extract_draw() Single draw from rvec

Probability distributions

- dbeta_rvec() Beta
- dbinom_rvec() Binomial
- dcauchy_rvec() Cauchy
- dchisq_rvec() Chi-square
- dexp_rvec() Exponential
- df_rvec() F
- dgamma_rvec() Gamma
- dgeom_rvec() Geometric

4 rvec-package

- dhyper_rvec() Hypergeometric
- dlnorm_rvec() Lognormal
- dmultinom() Multinomial
- dnbinom_rvec() Negative binomial
- dnorm_rvec() Normal
- dpois_rvec() Poisson
- dt_rvec() Student's T
- dunif_rvec() Uniform
- dweibull_rvec() Weibull

Summarizing across draws

- draws_all() All draws
- draws_any() Any draws
- draws_min() Minimum draw
- draws_max() Maximum draw
- draws_median() Median draw
- draws_mean() Mean draw
- draws_mode() Modal draw
- draws_ci() Credible intervals
- draws_quantile() Quantiles
- draws_fun() Arbitrary function
- n_draw() Number of draws

Coercion, classes

- as_list_col() Rvec or matrix to list
- expand_from_rvec() Inverse of collapse_to_rvec()
- is_rvec() Object an rvec?

Weighted summaries

- weighted_mad() Weighted mean absolute deviation
- weighted_mean() Weighted mean
- weighted_median() Weighted median
- weighted_sd() Weighted standard deviation
- weighted_var() Weighted variances

Datasets

- divorce() Divorce rates
- reg_post() Regression coefficients

as_list_col 5

Packages with similar functionality

- rv
- posterior

Author(s)

Maintainer: John Bryant < john@bayesiandemography.com>

Other contributors:

• Bayesian Demography Limited [copyright holder]

See Also

Useful links:

- https://bayesiandemography.github.io/rvec/
- https://github.com/bayesiandemography/rvec
- Report bugs at https://github.com/bayesiandemography/rvec/issues

as_list_col

Convert to List Column

Description

Convert an rvec or matrix to a list that can be used as a list column in a data frame.

Usage

```
as_list_col(x)
## S3 method for class 'rvec'
as_list_col(x)
## S3 method for class 'matrix'
as_list_col(x)
```

Arguments

Х

An rvecs or matrix.

Value

A list:

- If x is an rvec, then the list contains length(x) vectors, each of which has n_draw(x) elements.
- If x is a matrix, then the list contains nrow(x) vectors, each of which has ncol(x) elements.

6 collapse_to_rvec

See Also

- rvec() to construct an rvec.
- expand_from_rvec() to convert a data frame from using rvecs to using draw and value columns.
- as_rvar???
- converting rvecs to
- Functions for summarising and plotting distributions in package ggdist understand list columns.

Examples

collapse_to_rvec

Convert a Data Frame Between 'Database' and 'Rvec' Formats

Description

collapse_to_rvec() converts a data frame from a 'database' format to an 'rvec' format. expand_from_rvec(), does the opposite, converting a data frame from an rvecs format to a database format.

Usage

```
collapse_to_rvec(data, draw = draw, values = value, by = NULL, type = NULL)
## S3 method for class 'data.frame'
collapse_to_rvec(data, draw = draw, values = value, by = NULL, type = NULL)
## S3 method for class 'grouped_df'
collapse_to_rvec(data, draw = draw, values = value, by = NULL, type = NULL)
expand_from_rvec(data, draw = "draw")
## S3 method for class 'data.frame'
expand_from_rvec(data, draw = "draw")
## S3 method for class 'grouped_df'
expand_from_rvec(data, draw = "draw")
```

collapse_to_rvec 7

Arguments

data	A data frame, possibly grouped.
draw	<tidyselect> The variable that uniquely identifies random draws within each combination of values for the 'by' variables. Must be quoted for expand_from_rvec().</tidyselect>
values	<tidyselect> One or more variables in data that hold measurements.</tidyselect>
by	<tidyselect> Variables used to stratify or cross-classify the data. See Details.</tidyselect>
type	String specifying the class of rvec to use for each variable. Optional. See Details

Details

In database format, each row represents one random draw. The data frame contains a 'draw' variable that distinguishes different draws within the same combination of 'by' variables. In rvec format, each row represents one combination of 'by' variables, and multiple draws are stored in an rvec. See below for examples.

Value

A data frame.

- collapse_to_rvec() reduces the number of rows by a factor of n_draw().
- expand_from_rvec() **increases** the number of rows by a factor of n_draw().
- collapse_to_rvec() silently drops all variables that are not draw, value or grouping variables if data is a grouped data frame.

by argument

The by argument is used to specify stratifying variables. For instance if by includes sex and age, then data frame produced by collapse_to_rvec() has separate rows for each combination of sex and age.

If data is a grouped data frame, then the grouping variables take precedence over by.

If no value for by is provided, and data is not a grouped data frame, then collapse_to_rvec() assumes that all variables in data that are not included in value and draw should be included in by.

type argument

By default, collapse_to_rvec() calls function rvec() on each values variable in data. rvec() chooses the class of the output (ie rvec_chr, rvec_dbl, rvec_int, or rvec_lgl) depending on the input. Types can instead be specified in advance, using the type argument. type is a string, each character of which specifies the class of the corresponding values variable. The characters have the following meanings:

"c": rvec_chr"d": rvec_dbl"i": rvec_int"l": rvec_lgl

8 collapse_to_rvec

• "?": Depends on inputs.

The codes for type are modified from ones used by the readr package.

See Also

- rvec() to construct a single rvec.
- as_list_col() to convert an rvec to a list variable.
- dplyr::group_vars() gives the names of the grouping variables in a grouped data frame.

collapse_to_rvec() and expand_from_rvec() are analogous to tidyr::nest() and tidyr::unnest()
though collapse_to_rvec() and expand_from_rvec() move values into and out of rvecs, while
tidyr::nest() and tidyr::unnest() move them in and out of data frames. (tidyr::nest() and
tidyr::unnest() are also a lot more flexible.)

Examples

```
library(dplyr)
data_db <- tribble(</pre>
  ~occupation, ~sim, ~pay,
  "Statistician", 1,
                       100.
  "Statistician", 2,
                       80,
  "Statistician", 3, 105,
  "Banker", 1, 400,
  "Banker",
             2,
3,
                       350,
  "Banker",
                       420
)
## database format to rvec format
data_rv <- data_db |>
  collapse_to_rvec(draw = sim,
                  values = pay)
data_rv
## rvec format to database format
data_rv |>
  expand_from_rvec()
## provide a name for the draw variable
data_rv |>
  expand_from_rvec(draw = "sim")
## specify that rvec variable
## must be rvec_int
data_rv <- data_db |>
  collapse_to_rvec(draw = sim,
                  values = pay,
                  type = "i")
## specify stratifying variable explicitly,
## using 'by' argument
data_db |>
```

dbeta_rvec 9

dbeta_rvec

The Beta Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the Beta distribution, modified to work with rvecs.

Usage

```
dbeta_rvec(x, shape1, shape2, ncp = 0, log = FALSE)
pbeta_rvec(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qbeta_rvec(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rbeta_rvec(n, shape1, shape2, ncp = 0, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
shape1, shape2	Parameters for beta distribution. Non-negative. See stats::dbeta(). Can be an rvecs.
ncp	Non-centrality parameter. Default is 0. Cannot be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
p	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

10 dbinom_rvec

Details

Functions dbeta_rvec(), pbeta_rvec(), pbeta_rvec() and rbeta_rvec() work like base R functions dbeta(), pbeta(), qbeta(), and rbeta(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rbeta_rvec() also returns an rvec if a value for n_draw is supplied.

dbeta_rvec(), pbeta_rvec() and rbeta_rvec() use tidyverse vector recycling
rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dbeta()
- pbeta()
- qbeta()
- rbeta()
- stats::distributions.

Examples

dbinom_rvec

The Binomial Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the binomial distribution, modified to work with rvecs.

dbinom_rvec 11

Usage

```
dbinom_rvec(x, size, prob, log = FALSE)
pbinom_rvec(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom_rvec(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom_rvec(n, size, prob, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
size	Number of trials. See stats::dbinom(). Can be an rvec.
prob	Probability of success in each trial. See stats::dbinom(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \le x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot
	be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an
	rvec.

Details

Functions dbinom_rvec(), pbinom_rvec(), pbinom_rvec() and rbinom_rvec() work like base R functions dbinom(), pbinom(), qbinom(), and rbinom(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rbinom_rvec() also returns an rvec if a value for n_draw is supplied.

dbinom_rvec(), pbinom_rvec(), pbinom_rvec() and rbinom_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dbinom()
- pbinom()
- qbinom()
- rbinom()
- stats::distributions.

12 dcauchy_rvec

Examples

dcauchy_rvec

The Cauchy Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the Cauchy distribution, modified to work with rvecs.

Usage

```
dcauchy_rvec(x, location = 0, scale = 1, log = FALSE)
pcauchy_rvec(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy_rvec(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy_rvec(n, location = 0, scale = 1, n_draw = NULL)
```

Arguments

x	Quantiles. Can be an rvec.
location	Center of distribution. Default is 0. See stats::dcauchy(). Can be an rvec.
scale	Scale parameter. Default is 1. See stats::dcauchy(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

dchisq_rvec 13

Details

Functions dcauchy_rvec(), pcauchy_rvec(), pcauchy_rvec() and rcauchy_rvec() work like base R functions dcauchy(), pcauchy(), qcauchy(), and rcauchy(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rcauchy_rvec() also returns an rvec if a value for n_draw is supplied.

dcauchy_rvec(), pcauchy_rvec() and rcauchy_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dcauchy()
- pcauchy()
- qcauchy()
- rcauchy()
- stats::distributions.

Examples

dchisq_rvec

The Chi-Squared Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the chi-squared distribution, modified to work with rvecs.

14 dchisq_rvec

Usage

```
dchisq_rvec(x, df, ncp = 0, log = FALSE)
pchisq_rvec(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisq_rvec(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rchisq_rvec(n, df, ncp = 0, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
df	Degrees of freedom. See stats::dchisq(). Can be an rvec.
ncp	Non-centrality parameter. Default is 0. Cannot be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \le x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot
	be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an
	rvec.

Details

Functions dchisq_rvec(), pchisq_rvec(), pchisq_rvec() and rchisq_rvec() work like base R functions dchisq(), pchisq(), qchisq(), and rchisq(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rchisq_rvec() also returns an rvec if a value for n_draw is supplied.

dchisq_rvec(), pchisq_rvec() and rchisq_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dchisq()
- pchisq()
- qchisq()
- rchisq()
- stats::distributions.

dexp_rvec 15

Examples

dexp_rvec

The Exponential Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the exponential distribution, modified to work with rvecs.

Usage

```
dexp_rvec(x, rate = 1, log = FALSE)
pexp_rvec(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp_rvec(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp_rvec(n, rate = 1, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
rate	Vector of rates. See stats::dexp(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

16 df_rvec

Details

Functions dexp_rvec(), pexp_rvec(), pexp_rvec() and rexp_rvec() work like base R functions dexp(), pexp(), qexp(), and rexp(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rexp_rvec() also returns an rvec if a value for n_draw is supplied.

dexp_rvec(), pexp_rvec(), pexp_rvec() and rexp_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dexp()
- pexp()
- qexp()
- rexp()
- stats::distributions.

Examples

df_rvec

The F Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the F distribution, modified to work with rvecs.

df_rvec 17

Usage

```
df_rvec(x, df1, df2, ncp = 0, log = FALSE)

pf_rvec(q, df1, df2, ncp = 0, lower.tail = TRUE, log.p = FALSE)

qf_rvec(p, df1, df2, ncp = 0, lower.tail = TRUE, log.p = FALSE)

rf_rvec(n, df1, df2, ncp = 0, n_draw = NULL)
```

Arguments

Quantiles. Can be an rvec.
Degrees of freedom. See stats::df(). Can be rvecs.
Non-centrality parameter. Default is 0. Cannot be an rvec.
Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
Quantiles. Can be an rvec.
Whether to return $P[X \leq x],$ as opposed to $P[X > x].$ Default is TRUE. Cannot be an rvec.
Probabilities. Can be an rvec.
The length of random vector being created. Cannot be an rvec.
Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions df_rvec(), pf_rvec() and rf_rvec() work like base R functions df(), pf(), qf(), and rf(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rf_rvec() also returns an rvec if a value for n_draw is supplied.

df_rvec(), pf_rvec() and rf_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- df()
- pf()
- qf()
- rf()
- stats::distributions.

18 dgamma_rvec

Examples

dgamma_rvec

The Gamma Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the gamma distribution, modified to work with rvecs.

Usage

```
dgamma_rvec(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma_rvec(
 q,
  shape,
 rate = 1,
  scale = 1/rate,
 lower.tail = TRUE,
 log.p = FALSE
)
qgamma_rvec(
  p,
  shape,
  rate = 1,
  scale = 1/rate,
  lower.tail = TRUE,
  log.p = FALSE
rgamma_rvec(n, shape, rate = 1, scale = 1/rate, n_draw = NULL)
```

Arguments

```
    x Quantiles. Can be an rvec.
    shape Shape parameter. See stats::dgamma(). Can be an rvec.
    rate Rate parameter. See stats::dgamma(). Can be an rvec.
    scale Scale parameter. An alterative to rate. See stats::dgamma(). Can be an rvec.
```

dgamma_rvec 19

log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
p	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions dgamma_rvec(), pgamma_rvec(), pgamma_rvec() and rgamma_rvec() work like base R functions dgamma(), pgamma(), qgamma(), and rgamma(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rgamma_rvec() also returns an rvec if a value for n_draw is supplied.

dgamma_rvec(), pgamma_rvec() and rgamma_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dgamma()
- pgamma()
- qgamma()
- rgamma()
- stats::distributions.

Examples

20 dgeom_rvec

dgeom_r	vec
---------	-----

The Geometric Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the geometric distribution, modified to work with rvecs.

Usage

```
dgeom_rvec(x, prob, log = FALSE)
pgeom_rvec(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom_rvec(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom_rvec(n, prob, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
prob	Probability of success in each trial. See stats::dgeom(). Can be an rvec.
log,log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions dgeom_rvec(), pgeom_rvec(), pgeom_rvec() and rgeom_rvec() work like base R functions dgeom(), pgeom(), qgeom(), and rgeom(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rgeom_rvec() also returns an rvec if a value for n_draw is supplied.

dgeom_rvec(), pgeom_rvec() and rgeom_rvec() use tidyverse vector recycling
rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

dhyper_rvec 21

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dgeom()
- pgeom()
- qgeom()
- rgeom()
- stats::distributions.

Examples

dhyper_rvec

The Hypergeometric Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the hypergeometric distribution, modified to work with rvecs.

Usage

```
dhyper_rvec(x, m, n, k, log = FALSE)
phyper_rvec(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper_rvec(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper_rvec(nn, m, n, k, n_draw = NULL)
```

22 dhyper_rvec

Arguments

X	Quantiles. Can be an rvec.
m	Number of white balls in the urn. See stats::dhyper(). Can be an rvec.
n	Number of black balls in the urn. See stats::rhyper(). Can be an rvec.
k	Number of balls drawn from urn. See stats::dhyper(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
nn	The length of the random vector being created. The equivalent of n in other random variate functions. See stats::rhyper(). Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions dhyper_rvec(), phyper_rvec(), phyper_rvec() and rhyper_rvec() work like base R functions dhyper(), phyper(), qhyper(), and rhyper(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rhyper_rvec() also returns an rvec if a value for n_draw is supplied.

dhyper_rvec(), phyper_rvec() and rhyper_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dhyper()
- phyper()
- qhyper()
- rhyper()
- stats::distributions.

divorce 23

Examples

divorce

Divorce Rates in New Zealand

Description

Posterior sample from a model of divorce rates in New Zealand.

Usage

divorce

Format

A tibble with 30,000 rows and the following variables:

- age: Age, in 5-year age groups, 15-19 to 65+.
- sex: "Female" or "Male".
- draw: Index for random draw.
- rate: Divorce rate, per 1000.

Source

Derived from data in tables "Age at divorces by sex (marriages and civil unions) (Annual-Dec)" and "Estimated Resident Population by Age and Sex (1991+) (Annual-Dec)" in the online database Infoshare on the Statistics New Zealand website, downloaded on 22 March 2023.

24 dlnorm_rvec

dlnorm_rvec

The Log-Normal Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the log-normal distribution, modified to work with rvecs.

Usage

```
dlnorm_rvec(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm_rvec(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm_rvec(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm_rvec(n, meanlog = 0, sdlog = 1, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
meanlog	Mean of distribution, on log scale. Default is 0. See stats::dlnorm(). Can be an rvec.
sdlog	Standard deviation of distribution, on log scale. Default is 1. See <pre>stats::dlnorm()</pre> . Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \le x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions dlnorm_rvec(), plnorm_rvec(), plnorm_rvec() and rlnorm_rvec() work like base R functions dlnorm(), plnorm(), qlnorm(), and rlnorm(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rlnorm_rvec() also returns an rvec if a value for n_draw is supplied.

dlnorm_rvec(), plnorm_rvec() and rlnorm_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

dmultinom_rvec 25

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dlnorm()
- plnorm()
- qlnorm()
- rlnorm()
- stats::distributions.

Examples

 $dmultinom_rvec$

The Multinomial Distribution, Using Multiple Draws

Description

Density function random generation for the multinomial distribution, modified to work with rvecs.

Usage

```
dmultinom_rvec(x, size = NULL, prob, log = FALSE)
rmultinom_rvec(n, size, prob, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
size	Total number of trials. See stats::dmultinom(). Can be an rvec.
prob	Numeric non-negative vector, giving the probability of each outcome. Internally normalized to sum to 1. See stats::dmultinom(). Can be an rvec.
log	Whether to return log(p) rather than p. Default is FALSE. Cannot be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an ryec.

26 dnbinom_rvec

Details

Functions dmultinom_rvec() and rmultinom_rvec() work like base R functions dmultinom() and rmultinom(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rmultinom_rvec() also returns an rvec if a value for n_draw is supplied.

Like the base R functions dmultinom() and [rmultinom(), dmultinom_rvec() and rmultinom_rvec() do not recycle their arguments.

Value

- dmultinom()
 - If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
 - Otherwise an ordinary R vector.
- rmultinom()
 - If n is 1, an rvec or ordinary R vector.
 - If n is greater than 1, a list of rvecs or ordinary R vectors

See Also

- dmultinom()
- rmultinom()
- stats::distributions.

Examples

dnbinom_rvec

The Negative Binomial Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the negative binomial distribution, modified to work with rvecs.

dnbinom_rvec 27

Usage

```
dnbinom_rvec(x, size, prob, mu, log = FALSE)
pnbinom_rvec(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
qnbinom_rvec(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
rnbinom_rvec(n, size, prob, mu, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
size	Number of trials. See stats::dnbinom(). Can be an rvec.
prob	Probability of success in each trial. See stats::dnbinom(). Can be an rvec.
mu	Mean value. See stats::dnbinom(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x],$ as opposed to $P[X > x].$ Default is TRUE. Cannot be an rvec.
p	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions dnbinom_rvec(), pnbinom_rvec(), pnbinom_rvec() and rnbinom_rvec() work like base R functions dnbinom(), pnbinom(), qnbinom(), and rnbinom(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rnbinom_rvec() also returns an rvec if a value for n_draw is supplied.

dnbinom_rvec(), pnbinom_rvec(), pnbinom_rvec() and rnbinom_rvec() use tidyverse vector
recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

28 dnorm_rvec

See Also

- dnbinom()
- pnbinom()
- qnbinom()
- rnbinom()
- stats::distributions.

Examples

dnorm_rvec

The Normal Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the normal distribution, modified to work with rvecs.

Usage

```
dnorm_rvec(x, mean = 0, sd = 1, log = FALSE)
pnorm_rvec(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm_rvec(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm_rvec(n, mean = 0, sd = 1, n_draw = NULL)
```

Arguments

x	Quantiles. Can be an rvec.
mean	Mean of distribution. Default is 0. See stats::dnorm(). Can be an rvec.
sd	Standard deviation. Default is 1. See stats::dnorm(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.

dnorm_rvec 29

lower.tail	Whether to return $P[X \le x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an
	rvec.

Details

Functions dnorm_rvec(), pnorm_rvec(), pnorm_rvec() and rnorm_rvec() work like base R functions dnorm(), pnorm(), qnorm(), and rnorm(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rnorm_rvec() also returns an rvec if a value for n_draw is supplied.

dnorm_rvec(), pnorm_rvec(), pnorm_rvec() and rnorm_rvec() use tidyverse vector recycling
rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dnorm()
- pnorm()
- qnorm()
- rnorm()
- stats::distributions.

Examples

dpois_rvec

		٠					
d	po	1	C		r١	10	_
u	νν	_	J	_'	·	·	·

The Poisson Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the Poisson distribution, modified to work with rvecs.

Usage

```
dpois_rvec(x, lambda, log = FALSE)

ppois_rvec(q, lambda, lower.tail = TRUE, log.p = FALSE)

qpois_rvec(p, lambda, lower.tail = TRUE, log.p = FALSE)

rpois_rvec(n, lambda, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
lambda	Vector of means. See stats::rpois(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x],$ as opposed to $P[X > x].$ Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions dpois_rvec(), ppois_rvec(), ppois_rvec() and rpois_rvec() work like base R functions dpois(), ppois(), qpois(), and rpois(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rpois_rvec() also returns an rvec if a value for n_draw is supplied.

dpois_rvec(), ppois_rvec() and rpois_rvec() use tidyverse vector recycling
rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

draws_all 31

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dpois()
- ppois()
- qpois()
- rpois()
- stats::distributions.

Examples

draws_all

Logical Operations Across Random Draws

Description

Apply all or any logical summaries across random draws.

Usage

```
draws_all(x, na_rm = FALSE)
## S3 method for class 'rvec_chr'
draws_all(x, na_rm = FALSE)
## S3 method for class 'rvec'
draws_all(x, na_rm = FALSE)
draws_any(x, na_rm = FALSE)
## S3 method for class 'rvec_chr'
draws_any(x, na_rm = FALSE)
## S3 method for class 'rvec'
draws_any(x, na_rm = FALSE)
```

32 draws_ci

Arguments

x An object of class rvec.

na_rm Whether to remove NAs before calculating summaries. Default is FALSE.

Value

A vector.

See Also

Apply pre-specified functions across draws:

```
• draws_min()
```

- draws_max()
- draws_median()
- draws_mean()
- draws_mode()
- draws_ci()
- draws_quantile()

Apply arbitrary function across draws:

• draws_fun()

For additional functions for summarising random draws, see tidybayes and ggdist. Function as_list_col() converts rvecs into a format that tidybayes and ggdist can work with.

Examples

draws_ci

Credible Intervals from Random Draws

Description

Summarise the distribution of random draws in an rvec, using credible intervals.

draws_ci 33

Usage

```
draws_ci(x, width = 0.95, prefix = NULL, na_rm = FALSE)
## S3 method for class 'rvec'
draws_ci(x, width = 0.95, prefix = NULL, na_rm = FALSE)
## S3 method for class 'rvec_chr'
draws_ci(x, width = 0.95, prefix = NULL, na_rm = FALSE)
```

Arguments

X	An object of class rvec.
width	Width(s) of credible interval(s). One or more numbers greater than 0 and less than or equal to 1. Default is 0.975.
prefix	String to be added to the names of columns in the result. Defaults to name of x.
na rm	Whether to remove NAs before calculating summaries. Default is FALSE.

Value

A tibble with three columns.

Warning

It is tempting to assign the results of a call to draws_ci() to a column in a data frame, as in my_df\$ci <- draws_ci(my_rvec)

However, creating columns in this way can corrupt an ordinary data frames. For safer options, see the examples below.

See Also

draws_quantile() gives more options for forming quantiles.

Other ways of applying pre-specified functions across draws are:

- draws_all()
- draws_any
- draws_min()
- draws_max()
- draws_median()
- draws_mean()
- draws_mode()
- draws_quantile()

Apply arbitrary function across draws:

• draws_fun()

For additional functions for summarising random draws, see tidybayes and ggdist. Function as_list_col() converts rvecs into a format that tidybayes and ggdist can work with.

34 draws_fun

Examples

```
set.seed(0)
m \leftarrow rbind(a = rnorm(100, mean = 5, sd = 2),
           b = rnorm(100, mean = -3, sd = 3),
           c = rnorm(100, mean = 0, sd = 20))
x <- rvec(m)
draws_ci(x)
draws_ci(x, width = c(0.5, 0.99))
draws_ci(x, prefix = "results")
## results from 'draws_ci'
## assigned to a data frame
library(dplyr)
df <- data.frame(x)</pre>
## base R approach
cbind(df, draws_ci(x))
## a tidyverse alternative:
## mutate with no '='
df |> mutate(draws_ci(x))
```

draws_fun

Apply Summary Function Across Random Draws

Description

Summarise the distribution of random draws in an rvec, using a function.

Usage

```
draws_fun(x, fun, ...)
## S3 method for class 'rvec'
draws_fun(x, fun, ...)
```

Arguments

```
x An object of class rvec.fun A function.... Additional arguments passed to fun.
```

Value

The results from calls to fun, combined using vctrs::vec_c().

draws_median 35

See Also

Apply pre-specified functions across draws:

```
draws_all()
draws_any()
draws_ci()
draws_min()
draws_max()
draws_median()
draws_mean()
draws_mode()
```

• draws_quantile()

Examples

draws_median

Medians, Means, and Modes Across Random Draws

Description

Summarise the distribution of random draws in an rvec, using means, medians, or modes.

Usage

```
draws_median(x, na_rm = FALSE)

## S3 method for class 'rvec_chr'
draws_median(x, na_rm = FALSE)

## S3 method for class 'rvec'
draws_median(x, na_rm = FALSE)

draws_mean(x, na_rm = FALSE)
```

36 draws_median

```
## S3 method for class 'rvec'
draws_mean(x, na_rm = FALSE)

## S3 method for class 'rvec_chr'
draws_mean(x, na_rm = FALSE)

draws_mode(x, na_rm = FALSE)

## S3 method for class 'rvec'
draws_mode(x, na_rm = FALSE)
```

Arguments

x An object of class rvec.

na_rm Whether to remove NAs before calculating summaries. Default is FALSE.

Details

When method is "mode", reduce_rvec() returns the most common value for each observation. When there is a tie, it returns NA.

Value

A vector.

See Also

Apply pre-specified functions across draws:

- draws_all()
- draws_any()
- draws_min()
- draws_max()
- draws_ci()
- draws_quantile()

Apply arbitrary function across draws:

• draws_fun()

For additional functions for summarising random draws, see tidybayes and ggdist. Function as_list_col() converts rvecs into a format that tidybayes and ggdist can work with.

Examples

draws_min 37

```
draws_median(x)
draws_mean(x)
draws_mode(x)
```

draws_min

Minima and Maxima Across Random Draws

Description

Apply min or max across random draws.

Usage

```
draws_min(x, na_rm = FALSE)

draws_max(x, na_rm = FALSE)

## S3 method for class 'rvec_chr'
draws_min(x, na_rm = FALSE)

## S3 method for class 'rvec'
draws_min(x, na_rm = FALSE)

## S3 method for class 'rvec_chr'
draws_max(x, na_rm = FALSE)

## S3 method for class 'rvec'
draws_max(x, na_rm = FALSE)
```

Arguments

x An object of class rvec.

na_rm Whether to remove NAs before calculating minima and maxima. Default is

FALSE.

Value

A vector.

See Also

Apply pre-specified functions across draws:

- draws_all()
- draws_any()
- draws_median()
- draws_mean()

38 draws_quantile

- draws_mode()
- draws_ci()
- draws_quantile()

Apply arbitrary function across draws:

• draws_fun()

For additional functions for summarising random draws, see tidybayes and ggdist. Function as_list_col() converts rvecs into a format that tidybayes and ggdist can work with.

Examples

draws_quantile

Quantiles Across Random Draws

Description

Summarise the distribution of random draws in an rvec, using quantiles.

Usage

```
draws_quantile(x, probs = c(0.025, 0.25, 0.5, 0.75, 0.975), na_rm = FALSE)
## S3 method for class 'rvec'
draws_quantile(x, probs = c(0.025, 0.25, 0.5, 0.75, 0.975), na_rm = FALSE)
## S3 method for class 'rvec_chr'
draws_quantile(x, probs = c(0.025, 0.25, 0.5, 0.75, 0.975), na_rm = FALSE)
```

Arguments

```
    x An object of class rvec.
    probs Vector of probabilities.
    na_rm Whether to remove NAs before calculating summaries. Default is FALSE.
```

Details

The probs argument defaults to c(0.025, 0.25, 0.5, 0.75, 0.975), the values needed for a median, a 50% credible intervals, and a 95% credible interval.

draws_quantile 39

Value

A tibble.

Warning

It is tempting to assign the results of a call to draws_quantile() to a column in a data frame, as in my_df\$quantile <- draws_quantile(my_rvec)

However, creating data frame columns in this way can corrupt data frames. For safer options, see the examples below.

See Also

draws_ci() creates simple credible intervals.

Other functions for applying pre-specified functions across draws are:

```
• draws_all()
```

- draws_any()
- draws_ci()
- draws_min()
- draws_max()
- draws_median()
- draws_mean()
- draws_mode()

Apply arbitrary function across draws:

• draws_fun()

For additional functions for summarising random draws, see tidybayes and ggdist. Function as_list_col() converts rvecs into a format that tidybayes and ggdist can work with.

dt_rvec

```
## a tidyverse alternative:
## mutate with no '='
df |>
   mutate(draws_quantile(x))
```

dt_rvec

Student t Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the t distribution, modified to work with rvecs.

Usage

```
dt_rvec(x, df, ncp = 0, log = FALSE)
pt_rvec(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qt_rvec(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rt_rvec(n, df, ncp = 0, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
df	Degrees of freedom. See stats::dt(). Can be an rvec.
ncp	Non-centrality parameter. Default is 0. See stats::dt(). Cannot be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \le x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot
	be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an
	rvec.

Details

Functions dt_rvec(), pt_rvec() and rt_rvec() work like base R functions dt(), pt(), qt(), and rt(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rt_rvec() also returns an rvec if a value for n_draw is supplied.

dt_rvec(), pt_rvec(), pt_rvec() and rt_rvec() use tidyverse vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

dunif_rvec 41

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dt()
- pt()
- qt()
- rt()
- stats::distributions.

Examples

dunif_rvec

Uniform Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the uniform distribution, modified to work with rvecs.

Usage

```
dunif_rvec(x, min = 0, max = 1, log = FALSE)
punif_rvec(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
qunif_rvec(p, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
runif_rvec(n, min = 0, max = 1, n_draw = NULL)
```

dunif_rvec

Arguments

х	Quantiles. Can be an rvec.
min	Lower limits. Default is 0. See stats::dunif(). Can be an rvec.
max	Upper limited. Default is 1. See stats::dunif(). Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions $dunif_rvec()$, $punif_rvec()$, $punif_rvec()$ and $runif_rvec()$ work like base R functions dt(), pt(), qt(), and rt(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function $runif_rvec()$ also returns an rvec if a value for n_draw is supplied.

dunif_rvec(), punif_rvec(), punif_rvec() and runif_rvec() use tidyverse vector recycling
rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dunif()
- punif()
- qunif()
- runif()
- stats::distributions.

dweibull_rvec 43

```
runif_rvec(n = 2,

min = c(0, 0.5),

n_draw = 1000)
```

dweibull_rvec

Weibull Distribution, Using Multiple Draws

Description

Density, distribution function, quantile function and random generation for the Weibull distribution, modified to work with rvecs.

Usage

```
dweibull_rvec(x, shape, scale = 1, log = FALSE)
pweibull_rvec(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull_rvec(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull_rvec(n, shape, scale = 1, n_draw = NULL)
```

Arguments

X	Quantiles. Can be an rvec.
shape	Shape parameter. See stats::dweibull(). Can be an rvec.
scale	Scale parameter. See stats::dweibull() Default is 1. Can be an rvec.
log, log.p	Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.
q	Quantiles. Can be an rvec.
lower.tail	Whether to return $P[X \leq x]$, as opposed to $P[X > x]$. Default is TRUE. Cannot be an rvec.
р	Probabilities. Can be an rvec.
n	The length of random vector being created. Cannot be an rvec.
n_draw	Number of random draws in the random vector being created. Cannot be an rvec.

Details

Functions dweibull_rvec(), pweibull_rvec(), pweibull_rvec() and rweibull_rvec() work like base R functions dt(), pt(), qt(), and rt(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rweibull_rvec() also returns an rvec if a value for n_draw is supplied.

dweibull_rvec(), pweibull_rvec() and rweibull_rvec() use tidyverse
vector recycling rules:

- Vectors of length 1 are recycled
- All other vectors must have the same size

44 extract_draw

Value

- If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec
- Otherwise an ordinary R vector.

See Also

- dweibull()
- pweibull()
- qweibull()
- rweibull()
- stats::distributions.

Examples

extract_draw

Extract a Single Draw From an Rvec

Description

Extract a single draw from x. If a value is supplied for i, extract the ith draw; otherwise extract a random draw.

Usage

```
extract_draw(x, i = NULL)
```

Arguments

x An rvec.

Index for the draw to be extracted. A number between 1 and n_draw(x). If no value is supplied, a draw is chosen at random.

if_else_rvec 45

Value

A vector, with type

- double, if x has class "rvec_dbl",
- integer, if x has class "rvec_int",
- character, if x has class "rvec_chr",
- logical, if x has class "rvec_lgl".

See Also

```
n_draw() Number of draws
```

Examples

```
x <- rvec(matrix(1:50, ncol = 5))
extract_draw(x, i = 1)
extract_draw(x)</pre>
```

if_else_rvec

Vectorised If-Else, When Condition is an Rvec

Description

A version of if_else for the situation where condition is an rvec.

Usage

```
if_else_rvec(condition, true, false, missing = NULL, size = NULL)
```

Arguments

condition An object of class rvec_lgl.

true, false Vectors (including rvecs) to use for TRUE and FALSE values of condition.

missing Vectors to use for NA values of condition. Optional.

size Length of output. Optional.

Value

An rvec with the same number of draws as condition.

See Also

- base R function ifelse() does not not work correctly if any of the inputs are rvecs.
- **dplyr** function **if_else** works correctly if arguments true, false or missing are rvecs, but not if argument condition is an rvec.

is_rvec

Examples

is_rvec

Is an Object an Rvec

Description

Test whether x inherits from class "rvec".

Usage

```
is_rvec(x)
```

Arguments

Χ

An object.

Value

TRUE or FALSE.

See Also

- rvec() to create an rvec
- as.matrix(), as_list_col(), to convert an rvec into other formats

```
x <- rvec_dbl()
is_rvec(x)</pre>
```

map_rvec 47

map_rvec

Apply a Function and Put Results in an Rvec

Description

Apply function .f to each element of .x, and then combine the results into an rvec with the same length as .x.

Usage

```
map_rvec(.x, .f, ...)
```

Arguments

```
.x A vector..f A function.... Additional arguments passed to .f.
```

Details

Each call to function . f should produce an rvec with length 1.

Value

An rvec with the same length as .x.

See Also

map_rvec() is based on the map functions in package purrr, though the internal implementation is different.

Base R functions sapply() and vapply() do not work properly with rvecs. [lapply() works, but to combine the results into a single rvec, functions such as c() or vctrs::vec_c() are needed.

48 missing

matrixOps.rvec

Matrix Multiplication with Rvecs

Description

Matrix multiplication %*% can be used with rvecs. However, in constrast to standard R vectors, multiplying an rvec by a matrix does not produce a row or column vector. Instead it produces an ordinary rvec, with no dimensions.

Usage

```
## S3 method for class 'rvec'
matrixOps(x, y)
```

Arguments

x, y

Vectors, matrices, or rvecs.

Value

An rvec, if x or y is an rvec.

Examples

missing

Missing, Finite, and Infinite Values in Rvecs

Description

Detect or remove missing and infinite values in rvecs. Operations are done independently on each draw, though na.omit(), na.exclude(), and na.fail() also look across draws.

missing 49

Usage

```
## S3 method for class 'rvec'
anyNA(x, recursive = FALSE)

## S3 method for class 'rvec'
is.na(x)

## S3 method for class 'rvec'
na.exclude(object, ...)

## S3 method for class 'rvec'
na.omit(object, ...)
```

Arguments

x, object An rvec.

recursive Whether anyNA() should be applied recursively to lists. Ignored when x is an rvec.

... Currently ignored.

Details

The behavior of the rvec methods for is.na(), is.nan(), is.finite(), and is.infinite() differs from the standard vctrs behavior, which is to return a logical vector with length equal to length(x). With rvecs, the standard vctrs behavior would entail summarising across draws, which is the job of the draws * functions.

Value

- anyNA() A logical rvec with length 1.
- is.na(), is.nan(), is.finite(), is.infinite() A logical rvec with the same length as the original rvec.
- na.omit(), na.exclude() An rvec with the same class as the original rvec, minus any elements that have NAs in any draws.
- na.fail() The original rvec, or an error.

See Also

- if_else_rvec() for modifying individual values within draws.
- Base R functions is.na(), is.nan(), is.finite(), is.infinite(), anyNA(), na.omit(), na.exclude()
- vctrs::vec_detect_missing() to test whether all draws for an observation are missing.
- vctrs::vec_detect_complete() to test whether any draws for an observation are missing.
- draws_any(), draws_all() to summarise across draws.

new_rvec

Examples

```
x \leftarrow rvec(list(c(1.2, NA),
               c(Inf, 3),
               c(-1, NaN)))
## return a logical rvec
is.na(x)
is.nan(x)
is.finite(x)
is.infinite(x)
## return a logical rvec with length 1
anyNA(x)
## summarise across draws
draws_any(anyNA(x))
## return an NA-free version of 'x'
na.omit(x)
na.exclude(x)
## use 'if_else_rvec' to modify values
## within rvec
if_else_rvec(is.na(x), 999, x)
## vctrs functions
library(vctrs, warn.conflicts = FALSE)
## all draws missing
vec_detect_missing(x)
## any draws missing
vec_detect_complete(x)
```

new_rvec

Create a Blank Rvec

Description

Create an rvec, consisting entirely of NAs, with a given length and number of draws.

Usage

```
new_rvec(x = double(), length = 0, n_draw = 1000)
```

Arguments

x Object with the intended type. Default is double().

length Desired length of rvec. Default is 0.

n_draw Number of draws of rvec. Default is 1000.

n_draw 51

Details

The type of the object is taken from x. If typeof(x) is "integer", for instance, then new_rvec() returns an object of class "rvec_int".

Value

An rvec.

See Also

- rvec() rvec_chr(), rvec_dbl(), rvec_int(), rvec_lgl() Create an rvec from data.
- n_draw() Query number of draws.

Examples

```
new_rvec()
new_rvec(TRUE, length = 3, n_draw = 100)
x <- new_rvec(length = 2)
x[1] <- rnorm_rvec(n = 1, n_draw = 1000)
x[2] <- runif_rvec(n = 1, n_draw = 1000)</pre>
```

n_draw

Query Number of Draws

Description

Get a count of the random draws held by x. If x does not hold random draws, then $n_draw()$ throws an error.

Usage

```
n_draw(x)
## Default S3 method:
n_draw(x)
## S3 method for class 'rvec'
n_draw(x)
```

Arguments

Х

An object that holds random draws, eg an rvec.

Value

An integer scalar.

52 rank

See Also

• is_rvec() to test if an object is an rvec.

Examples

```
m <- matrix(1:40, nrow = 4, ncol = 10)
x <- rvec(m)
n_draw(x)</pre>
```

rank

Sample Ranks, Including Rvecs

Description

Calculate sample ranks for ordinary vectors or for rvecs. In the case of rvecs, ranks are calculated independently for each draw.

Usage

```
rank(
    x,
    na.last = TRUE,
    ties.method = c("average", "first", "last", "random", "max", "min")
)
```

Arguments

```
x An ordinary vector or an rvec().
na.last Treatment of NAs. Options are TRUE, FALSE, or "keep". See base::rank() for details.
ties.method Treatment of ties. See base::rank() for details.
```

Details

To enable different behavior for rvecs and for ordinary vectors, the base R function base::rank() is turned into a generic, with base::rank() as the default.

For details on the calculations, see the documentation for base::rank().

Value

An object of class rvec_int() if x is an rvec. Otherwise an ordinary integer vector.

reg_post 53

reg_post

Posterior Sample from Linear Regression

Description

Posterior sample for parameters from a linear regression model.

Usage

```
reg_post
```

Format

A matrix with 200 columns and the following rows:

• alpha: Intercept parameter

• beta: Slope parameter

• sigma: Standard deviation of error term

Source

reg_post contains values from the second half of the line dataset in package coda. The line dataset draws on the BUGS manual: Spiegelhalter, D.J., Thomas, A., Best, N.G. and Gilks, W.R. (1995) BUGS: Bayesian inference using Gibbs Sampling, Version 0.5, MRC Biostatistics Unit, Cambridge.

rvec

Create an Rvec from Data

Description

Create an object of class "rvec", based on input data.

Usage

```
rvec(x)
rvec_chr(x = NULL)
rvec_dbl(x = NULL)
rvec_int(x = NULL)
rvec_lgl(x = NULL)
```

54 rvec

Arguments

Х

A matrix, a list of vectors, an atomic vector, or an rvec.

Details

Class "rvec" has four subclasses, each dealing with a diffent type:

- "rvec_db1" doubles
- "rvec_int" integers
- "rvec_lgl" logical
- "rvec_chr" character

These subclasses are analogous to double(), integer(), logical(), and character() vectors.

Function rvec() chooses the subclass, based on x. Functions rvec_dbl(), rvec_int(), rvec_lgl(), and rvec_chr() each create objects of a particular subclass.

x can be

- a matrix, where each row is a set of draws for an unknown quantity;
- a list, where each element is a set of draws;
- an atomic vector, which is treated as a single-column matrix; or
- · an rvec.

Value

An rvec with the following class:

```
rvec_dbl(): "rvec_dbl"
rvec_int(): "rvec_int"
rvec_lgl(): "rvec_lgl"
rvec_chr(): "rvec_chr"
rvec(): "rvec_chr", "rvec_dbl" "rvec_int", or "rvec_lgl"
```

See Also

- new_rvec() Create a blank rvec.
- collapse_to_rvec() Create rvecs within a data frame.
- rnorm_rvec(), rbinom_rvec(), etc. Create rvecs representing probability distributions.

sd 55

sd

Standard Deviation, Including Rvecs

Description

Calculate standard deviation of x, where x can be an rvec. If x is an rvec, separate standard deviations are calculated for each draw.

Usage

```
sd(x, na.rm = FALSE)
```

Arguments

x A numeric vector or R object, including an rvec().
na.rm Whether to remove NAs before calculating standard deviations.

Details

To enable different behavior for rvecs and for ordinary vectors, the base R function stats::sd() is turned into a generic, with stats::sd() as the default.

For details on the calculations, see the documentation for stats::sd().

Value

An rvec, if x is an rvec. Otherwise typically a numeric vector.

See Also

```
var()
```

```
x <- rvec(cbind(rnorm(10), rnorm(10, sd = 20)))
x
sd(x)</pre>
```

56 var

var

Correlation, Variance and Covariance (Matrices), Including Rvecs

Description

Calculate correlations and variances, including when x or y is an rvec.

Usage

```
var(x, y = NULL, na.rm = FALSE, use)
```

Arguments

X	A numeric vector, matrix, data frame, or rvec().
У	$NULL$ (default) or a vector, matrix, data frame, or rvec with compatible dimensions to $\boldsymbol{\boldsymbol{x}}.$
na.rm	Whether NAs removed before calculations.
use	Calculation method. See stats::var().

Details

To enable different behavior for rvecs and for ordinary vectors, the base R function stats::var() is turned into a generic, with stats::var() as the default.

For details on the calculations, see the documentation for stats::var().

Value

An rvec, if x or y is an rvec. Otherwise typically a numeric vector or matrix.

See Also

sd()

```
x <- rvec(cbind(rnorm(10), rnorm(10, sd = 20)))
x
var(x)</pre>
```

weighted_mean 57

weighted_mean

Calculate Weighted Summaries

Description

Calculate weighted

- means
- medians
- MADs (mean absolute deviations)
- · variances
- standard deviations.

These functions all work with ordinary vectors and with rvecs.

Usage

```
weighted_mean(x, wt = NULL, na_rm = FALSE)
## Default S3 method:
weighted_mean(x, wt = NULL, na_rm = FALSE)
## S3 method for class 'rvec'
weighted_mean(x, wt = NULL, na_rm = FALSE)
weighted_mad(x, wt = NULL, na_rm = FALSE)
## Default S3 method:
weighted_mad(x, wt = NULL, na_rm = FALSE)
## S3 method for class 'rvec'
weighted_mad(x, wt = NULL, na_rm = FALSE)
weighted_median(x, wt = NULL, na_rm = FALSE)
## Default S3 method:
weighted_median(x, wt = NULL, na_rm = FALSE)
## S3 method for class 'rvec'
weighted_median(x, wt = NULL, na_rm = FALSE)
weighted_sd(x, wt = NULL, na_rm = FALSE)
## Default S3 method:
weighted_sd(x, wt = NULL, na_rm = FALSE)
```

58 weighted_mean

```
## S3 method for class 'rvec'
weighted_sd(x, wt = NULL, na_rm = FALSE)
weighted_var(x, wt = NULL, na_rm = FALSE)
## Default S3 method:
weighted_var(x, wt = NULL, na_rm = FALSE)
## S3 method for class 'rvec'
weighted_var(x, wt = NULL, na_rm = FALSE)
```

Arguments

X	Quantity being summarised. An ordinary vector or an rvec.
wt	Weights. An ordinary vector, an rvec, or NULL (the default.) If NULL, an unweighted summary is returned.
na_rm	Whether to remove NAs in x or wt before calculating. Default is FALSE. See matrixStats::weightedMean() for a description of the algorithm used.

Details

x and wt must have the same length.

Internally the calculations are done by matrixStats functions such as matrixStats::weightedMean() and matrixStats::colWeightedMeans().

Value

If x or wt or is rvec, then an rvec of length 1. Otherwise, a scalar.

See Also

- Functions mean(), median(), mad(), var(), sd() for unweighted data all have methods for rvecs
- The original matrixStats weighted summary functions have additional options not implemented in the functions here.
- weighted.mean() is a base R function for weighted data
- For numeric summaries of draws in an rvec, use draws_median(), draws_mean, draws_quantile(), draws_fun().

weighted_mean 59

Index

* datasets	dgeom_rvec(), 3
divorce, 23	dhyper(), 22
reg_post, 53	dhyper_rvec, 21
W 0 10	dhyper_rvec(), 4
anyNA(), 49	divorce, 23
anyNA.rvec (missing), 48	divorce(),4
as.matrix(), 46	dlnorm(), 24, 25
as_list_col,5	dlnorm_rvec, 24
as_list_col(), 4, 8, 32, 33, 36, 38, 39, 46	dlnorm_rvec(), 4
hada mank () 52	dmultinom(), 4, 26
base::rank(), 52	dmultinom_rvec, 25
c(),47	dnbinom(), 27, 28
character(), 54	<pre>dnbinom_rvec, 26</pre>
collapse_to_rvec, 6	<pre>dnbinom_rvec(), 4</pre>
collapse_to_rvec(), 3, 4, 54	dnorm(), 29
collapse_to_n vec(), 3, 4, 34	dnorm_rvec, 28
dbeta(), <i>10</i>	<pre>dnorm_rvec(), 4</pre>
dbeta_rvec, 9	double(), <i>54</i>
dbeta_rvec(), 3	dpois(), 30, 31
dbinom(), 11	dpois_rvec, 30
dbinom_rvec, 10	<pre>dpois_rvec(), 4</pre>
dbinom_rvec(), 3	draws, <i>45</i>
dcauchy(), <i>13</i>	draws_*, <i>49</i>
dcauchy_rvec, 12	draws_all, 31
dcauchy_rvec(), 3	draws_all(), 4, 33, 35–37, 39, 49
dchisq(), 14	draws_any, 33
dchisq_rvec, 13	draws_any(draws_all),31
dchisq_rvec(), 3	draws_any(), 4, 35-37, 39, 49
dexp(), 16	draws_ci,32
dexp_rvec, 15	draws_ci(), 3, 4, 32, 35, 36, 38, 39
$dexp_rvec(), 3$	draws_fun, 34
df(), 17	draws_fun(), 4, 32, 33, 36, 38, 39, 58
df_rvec, 16	draws_max (draws_min), 37
$df_rvec(), 3$	draws_max(), 4, 32, 33, 35, 36, 39
dgamma(), <i>19</i>	draws_mean, 58
dgamma_rvec, 18	draws_mean (draws_median), 35
$dgamma_rvec(), 3$	draws_mean(), 4, 32, 33, 35, 37, 39
dgeom(), 20, 21	draws_median, 35
dgeom_rvec, 20	draws_median(), 4, 32, 33, 35, 37, 39, 58

INDEX 61

draws_min, 37	na.omit(), <i>49</i>
draws_min(), 4, 32, 33, 35, 36, 39	na.omit.rvec(missing),48
draws_mode(draws_median),35	new_rvec, 50
draws_mode(), 4, 32, 33, 35, 38, 39	$new_rvec(), 3, 54$
draws_quantile,38	
draws_quantile(), 4, 32, 33, 35, 36, 38, 58	pbeta(), <i>10</i>
dt(), 40–43	pbeta_rvec (dbeta_rvec), 9
dt_rvec, 40	pbinom(), <i>11</i>
dt_rvec(), 4	<pre>pbinom_rvec (dbinom_rvec), 10</pre>
dunif(), 42	pcauchy(), <i>13</i>
dunif_rvec,41	pcauchy_rvec (dcauchy_rvec), 12
dunif_rvec(),4	pchisq(), <i>14</i>
dweibull(), 44	<pre>pchisq_rvec (dchisq_rvec), 13</pre>
dweibull_rvec, 43	pexp(), <i>16</i>
dweibull_rvec(), 4	pexp_rvec (dexp_rvec), 15
_	pf(), <i>17</i>
<pre>expand_from_rvec (collapse_to_rvec), 6</pre>	pf_rvec (df_rvec), 16
expand_from_rvec(), 4, 6	pgamma(), <i>19</i>
extract_draw, 44	pgamma_rvec(dgamma_rvec), 18
$extract_draw(), 3$	pgeom(), 20, 21
	pgeom_rvec (dgeom_rvec), 20
if_else_rvec,45	phyper(), 22
if_else_rvec(), <i>3</i> , <i>49</i>	phyper_rvec (dhyper_rvec), 21
ifelse(), 45	plnorm(), 24, 25
integer(), <i>54</i>	plnorm_rvec(dlnorm_rvec), 24
is.finite(), <i>49</i>	pnbinom(), 27, 28
is.infinite(),49	<pre>pnbinom_rvec(dnbinom_rvec), 26</pre>
is.na(), <i>49</i>	pnorm(), 29
is.na.rvec(missing),48	pnorm_rvec (dnorm_rvec), 28
is.nan(), <i>49</i>	ppois(), <i>30</i> , <i>31</i>
is_rvec,46	<pre>ppois_rvec (dpois_rvec), 30</pre>
is_rvec(), 4, 52	pt(), 40-43
	pt_rvec (dt_rvec), 40
logical(), <i>54</i>	punif(), <i>4</i> 2
	<pre>punif_rvec (dunif_rvec), 41</pre>
mad(), 58	pweibull(),44
map_rvec, 47	<pre>pweibull_rvec(dweibull_rvec), 43</pre>
$map_rvec(), 3$	
matrixOps.rvec,48	qbeta(), <i>10</i>
matrixStats::colWeightedMeans(),58	qbeta_rvec (dbeta_rvec), 9
matrix S tats::weighted M ean(), 58	qbinom(), <i>11</i>
mean(), 58	<pre>qbinom_rvec (dbinom_rvec), 10</pre>
median(), 58	qcauchy(), <i>13</i>
missing, 48	qcauchy_rvec (dcauchy_rvec), 12
	qchisq(), <i>14</i>
n_draw, 51	<pre>qchisq_rvec (dchisq_rvec), 13</pre>
n_draw(), 4, 7, 45, 51	qexp(), <i>16</i>
na.exclude(), <i>49</i>	<pre>qexp_rvec (dexp_rvec), 15</pre>
na.exclude.rvec(missing),48	qf(), <i>17</i>

62 INDEX

qf_rvec (df_rvec), 16	<pre>rnbinom_rvec (dnbinom_rvec), 26</pre>
qgamma(), <i>19</i>	rnorm(), 29
qgamma_rvec(dgamma_rvec), 18	<pre>rnorm_rvec (dnorm_rvec), 28</pre>
qgeom(), 20, 21	<pre>rnorm_rvec(), 54</pre>
qgeom_rvec(dgeom_rvec), 20	rpois(), 30, 31
qhyper(), <u>22</u>	<pre>rpois_rvec (dpois_rvec), 30</pre>
qhyper_rvec (dhyper_rvec), 21	rt(), 40–43
qlnorm(), 24, 25	rt_rvec (dt_rvec), 40
qlnorm_rvec(dlnorm_rvec), 24	runif(), 42
qnbinom(), 27, 28	<pre>runif_rvec (dunif_rvec), 41</pre>
<pre>qnbinom_rvec (dnbinom_rvec), 26</pre>	rvec, 5, 7, 10, 11, 13, 14, 16, 17, 19, 21, 22,
qnorm(), 29	25–27, 29, 31–34, 36–38, 41, 42, 44,
qnorm_rvec (dnorm_rvec), 28	47, 49, 51, 53, 58
qpois(), 30, 31	rvec(), 3, 6–8, 46, 51, 52, 55, 56
<pre>qpois_rvec (dpois_rvec), 30</pre>	rvec-package, 3
qt(), 40–43	rvec_chr (rvec), 53
qt_rvec (dt_rvec), 40	rvec_chr(), 3, 51
qunif(), 42	rvec_dbl (rvec), 53
<pre>qunif_rvec (dunif_rvec), 41</pre>	rvec_dbl(), 3, 51
qweibull(), 44	rvec_int (rvec), 53
<pre>qweibull_rvec (dweibull_rvec), 43</pre>	rvec_int(), 3, 51, 52
	rvec_lg1, 45
rank, <u>52</u>	rvec_lgl (rvec), 53
rbeta(), <i>10</i>	rvec_lgl(), 3, 51
rbeta_rvec (dbeta_rvec), 9	rvecs, 5, 48, 57
rbinom(), <i>11</i>	rweibull(), 44
rbinom_rvec(dbinom_rvec), 10	<pre>rweibull_rvec (dweibull_rvec), 43</pre>
rbinom_rvec(),54	
rcauchy(), <i>13</i>	sapply(), <i>47</i>
rcauchy_rvec (dcauchy_rvec), 12	sd, 55
rchisq(), <i>14</i>	sd(), 56, 58
rchisq_rvec (dchisq_rvec), 13	stats::dbeta(),9
reg_post,53	stats::dbinom(), 11
reg_post(),4	stats::dcauchy(), 12
rexp(), <i>16</i>	stats::dchisq(), 14
rexp_rvec (dexp_rvec), 15	stats::dexp(), <i>15</i>
rf(), <i>17</i>	stats::df(), <i>17</i>
rf_rvec (df_rvec), 16	stats::dgamma(), 18
rgamma(), <i>19</i>	stats::dgeom(), 20
rgamma_rvec(dgamma_rvec), 18	stats::dhyper(), 22
rgeom(), 20, 21	stats::distributions, 10, 11, 13, 14, 16,
rgeom_rvec(dgeom_rvec), 20	17, 19, 21, 22, 25, 26, 28, 29, 31, 41,
rhyper(), 22	42, 44
rhyper_rvec (dhyper_rvec), 21	stats::dlnorm(), 24
rlnorm(), 24, 25	stats::dmultinom(), 25
rlnorm_rvec(dlnorm_rvec), 24	stats::dnbinom(), 27
rmultinom(), 26	stats::dnorm(), 28
rmultinom_rvec(dmultinom_rvec), 25	stats::dt(), 40
rnbinom(), 27, 28	stats::dunif(),42

INDEX 63

```
stats::dweibull(), 43
stats::rhyper(), 22
stats::rpois(), 30
stats::sd(), 55
stats::var(), 56
tibble, 33, 39
tidyselect, 7
tidyverse, 10, 11, 13, 14, 16, 17, 19, 20, 22,
        24, 27, 29, 30, 40, 42, 43
vapply(), 47
var, 56
var(), 55, 58
vctrs::vec_c(), 34, 47
vctrs::vec_detect_complete(), 49
vctrs::vec_detect_missing(), 49
weighted.mean(), 58
weighted_mad (weighted_mean), 57
weighted_mad(), 4
weighted_mean, 57
weighted_mean(), 4
weighted_median (weighted_mean), 57
weighted_median(), 4
weighted_sd (weighted_mean), 57
weighted_sd(), 4
weighted_var (weighted_mean), 57
weighted_var(), 4
```