МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ БУРЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

А. А. Дубанов

РЕШЕНИЕ ПРИКЛАДНЫХ ЗАДАЧ ИЗ ТЕОРИИ ОГИБАЮЩИХ ПОВЕРХНОСТЕЙ В СИСТЕМЕ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ МАТНСАD

Рекомендовано УМС БГУ в качестве учебного пособия для обучающихся по направлению подготовки 01.03.02 Прикладная математика

Улан-Удэ Издательство Бурятского госуниверситета 2018 УДК 619.673 ББК

Д

Утверждено к печати редакционно-издательским советом Бурятского государственного университета

Рецензенты

Т. В. Аюшеев

доктор технических наук,

доцент кафедры «Инженерная и компьютерная графика» Восточно-Сибирского государственного университета технологий и управления

Б. В. Заятуев

кандидат физико-математических наук, доцент кафедры «Геометрия и методика преподавания математики» Бурятского государственного университета

Дубанов А. А.

Решение прикладных задач из теории огибающих поверхностей в системе компьютерной математики MATHCAD: учебное пособие. — Улан-Удэ: Изд-во Бурятского госуниверситета, 2018. — 70 с. ISBN

Пособие предназначено для обучающихся по направлению подготовки 01.03.02 «Прикладная математика и информатика» в рамках дисциплины «Вычислительная геометрия»

УДК 619.673 ББК

[©] А. А. Дубанов, 2018

[©] Бурятский госуниверситет, 2018

ПРЕДИСЛОВИЕ

Настоящее учебное издание представляет собой учебное пособие для дисциплины «Вычислительная геометрия» в рамках реализации образовательной программы высшего образования по направлению подготовки 01.03.02 «Прикладная математика и информатика» очной формы обучения и подготовлено в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования.

Дисциплина «Вычислительная геометрия» относится к обязательным дисциплинам базовой части Блока 1. Изучение дисциплины направлено на формирование общекультурных/ общепрофессиональных/ профессиональных компетенций:

ОК-1 (способность к самоорганизации и самообразованию)

ОПК-2 (способностью использовать современные математические методы и современные прикладные программные средства и осваивать современные технологии программирования)

ПК-4 (способность публично представлять собственные и известные научные результаты)

В результате освоения дисциплины обучающийся должен:

Знать:

- пакеты прикладных программ;
- основные алгоритмы.

Уметь:

- решать задачи вычислительной геометрии с помощью прикладных программ;
 - реализовывать алгоритмы в виде прикладных программ.

Владеть:

- навыками программирования в пакетах прикладных программ;
- навыками решения исследовательских задач по вычислительной геометрии.

Основной задачей настоящего учебного пособия является изучение задач построения огибающих поверхностей в рамках дисциплины «Вычислительная геометрия».

Пособие состоит из предисловия, введения, 9 разделов, списка литературы и источников.

ВВЕДЕНИЕ

В данном учебном пособии рассматриваются методы и алгоритмы построения огибающих поверхностей и кривых с использованием системы компьютерной математики MATHCAD.

Огибающая может существовать у однопараметрического множества плоских линий. Уравнение отдельной плоской линии может быть представлено в неявном виде, явном виде и в параметрическом виде. Все эти способы задания плоских кривых и способы построения огибающих к ним будут подробно освещены в настоящем пособии. Также будут подробно освещены способы визуализации огибающих линий в системе МАТНСАD.

Огибающая поверхность может существовать у одно- и двухпараметрических множеств поверхностей. Каждая поверхность из множества поверхностей может быть представлена в явном, неявном и параметрическом видах. В данном пособии будут рассмотрены все способы задания поверхностей. Подробно будут рассмотрены способы нахождения огибающих поверхностей и способы визуализации в системе МАТНСАD.

Основным моментом является решение систем нелинейных уравнений. В данном пособии предлагается использовать встроенный решатель системы уравнений при помощи вычислительного блока GIVEN — FIND системы MATHCAD. Все особенности использования данного вычислительного блока подробно описаны в источниках [5], [6].

В качестве вспомогательного материала служит промежуточный символьный вывод результатов решения систем уравнений, взятия производных и т.д. Демонстрация символьных результатов не является основным в наших программах. Их отсутствие в листингах программ не повлияет на их работоспособность. Работа с символьной математикой подробно описана в источниках [5], [6].

Основные теоретические положения из теории огибающих взяты из монографии А. Фокс, М. Пратт «Вычислительная геометрия. Применение в проектировании и на производстве» [5].

Теоретические положения из дифференциальной геометрии взяты из источников [1], [2].

Хорошие приемы при проектировании алгоритмов взяты из источника [7].

Листинги программ размещены на сайте автора http://dubanov.exponenta.ru в разделе «Огибающие».

В листингах программ после знакам «->» вставлен комментарий к строке. При наборе программ комментарий можно не использовать.

Раздел 1. Огибающая однопараметрического множества плоских кривых

Рассмотрим некоторую кривую в неявном виде, уравнение которой в некоторый момент t времени задано в виде : f(x,y,t)=0. Точка пересечения двух близких кривых f(x,y,t)=0 и $f(x,y,t+\delta t)=0$ при малом δt расположена достаточно близко от огибающей. В этой точке $\frac{f(x,y,t+\delta t)-f(x,y,t)}{\delta t}=0$, поскольку оба члена в числителе равны нулю (рис. 1).

Рис. 1. Огибающая множества кривых

f(x,y,t)=0 В итоге имея систему уравнений $\frac{\partial}{\partial t}f(x,y,t)=0$, мы сможем из

второго уравнения найти зависимость t = t(x, y) в аналитическом или численном виде. Далее, подставляя найденное значение t в первое уравнение получим уравнение огибающей однопараметрического множества плоских кривых в неявном виде.

Пример. Есть однопараметрическое множество прямых, заданных в неявном виде: $F(x,y,t) = \vec{N}(t) \cdot \left(\vec{R} - \vec{R}_0(t)\right)$ (рис. 2).

Рис. 2. Однопараметрическое множество прямых

Известно, что координаты вектора $\vec{R}_0(t)$ изменяются по закону: $\vec{R}_0(t) = \begin{bmatrix} cos(t) \\ sin(t) \end{bmatrix}$. А координаты вектора $\vec{N}(t)$ изменяются так $\vec{N}(t) = \begin{bmatrix} cos(t) \\ sin(t) \end{bmatrix}$. Необходимо в системе компьютерной математики построить огибающую однопараметрического множества прямых, заданных в виде: F(x,y,t)=0.

<u>Решение.</u> В системе компьютерной математики «MathCAD» определяем функции:

$R_0(t) := \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$	Определение опорной точки на прямой (рис. 1)
$N(t) := \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$	Восстанавливаем нормаль к прямой в опорной точке.
$R(x,y) := \begin{pmatrix} x \\ y \end{pmatrix}$	Определяем точку на прямой

$F(x,y,t) := N(t)^{T} \cdot \left(R(x,y) - R_{0}(t)\right)$ $\frac{d}{dt}F(x,y,t) \rightarrow$	Записываем уравнение прямой в неявном виде для опорной точки $\vec{R}_0(t)$ с вектором нормали $\vec{N}(t)$ Уравнение производной по t
Given	Ключевое слово для встроенного решателя систем уравнений
$y \cdot \cos t - x \cdot \sin t = 0$	Для того, чтобы избежать в выражениях tg, sin и соз в знаменателях, уменьшить количество радикалов
$\cos^2 + \sin^2 = 1$	пришлось прибегнуть к искусственному приему с вводом переменных, фактически выполняющими роль тригонометрических функций. Сфомированная матрица
$Ans(x,y) := Find(cost, sint) \rightarrow$	ответов
$S(x,y) := x \cdot Ans(x,y)_{0,0} + y \cdot Ans(x,y)_{0,0}$	
Given	Процедура визуализации неявной функции
S(x,y) = 0	
Q(y,x) := Find(x,y)	

n := 100	
i := 0 n	
j := 0n	
$x_j := -3 + \frac{j}{n} \cdot (-0.01)$	
$y_i := -3 + \frac{i}{n} \cdot (6)$	
$X_{i,j} := Q(x_j, y_i)_0$	
$Y_{i,j} := Q(x_j, y_i)_1$	
Y 0 -2 0 2	
X	

В пакетах компьютерной математики можно столкнуться с трудностями вычислений, которые не позволяют корректно решить задачу. Одна из таких трудностей заключается в следующем: вычислительный блок Given-Find при решении систем уравнений в иногда в качестве ответа выдает выражения, где участвует функция агстед или ее комбинации. Дальнейшее использование таких функций иногда приводит к знакомой ошибке «division by zero». В данном примере, чтобы избежать подобной ситуации нам пришлось

вводить дополнительные переменные cost, sint и вводить дополнительное уравнение связывающее их как тригонометрические функции. Полностью просмотреть листинг программы можно просмотреть на сайте http://dubanov.exponenta.ru в разделе «Огибающие».

Задачи

множества.

- 1. Есть однопараметрическое множество прямых
- $y(x) = 2 \cdot C \cdot x + C^2$, построить огибающую кривую этого множества.
 - 2. Есть однопараметрическое множество прямых

$$y(x) = -\frac{1}{c^2} \cdot x + \frac{1}{c}$$
, построить огибающую кривую этого множества.

- 3. Есть однопараметрическое множество прямых
- $y(x) = e^C \cdot x + e^C$, построить огибающую кривую этого множества.
 - 4. Есть однопараметрическое множество прямых

$$y(x) = -\frac{1}{c^2} \cdot x + \frac{1}{c}$$
, построить огибающую кривую этого множества.

- 5. Есть однопараметрическое множество прямых
- $y(x) = \frac{1}{c} \cdot x + ln(C)$, построить огибающую кривую этого множества.
- 6. Есть однопараметрическое множество прямых $y(x) = \cos(C) \cdot x + \sin(C)$, построить огибающую кривую этого
 - 7. Есть однопараметрическое множество прямых
- $y(x) = \frac{1}{2\sqrt{C}} \cdot x + \sqrt{C}$, построить огибающую кривую этого множества.
 - 8. Есть однопараметрическое множество прямых

$$y(x) = -\frac{1}{C^2} \cdot x + \frac{1}{C}$$
, построить огибающую кривую этого множества.

Вопросы для самопроверки

1. Какое значение имеет выделение параметра t из системы

уравнений
$$\frac{f(x, y, t) = 0}{\frac{\partial}{\partial t} f(x, y, t) = 0}$$
?

- 2. Какие методы визуализации неявных функций вы знаете?
- 3. Для чего нужен был ввод дополнительных переменных $a = \cos t$, $b = \sin t$?
 - 4. Какова область визуализации в рассмотренном примере?

Раздел 2. Огибающая однопараметрического множества плоскостей

Рассмотрим уравнение плоскости в неявном виде: $A \cdot x + B \cdot y + C \cdot z + D = 0$. Приведем данное уравнение к записи в векторном виде: $\vec{N}(t) \cdot \left(\vec{R} - \vec{R}_0(t)\right) = 0$, где $\vec{N}(t)$ — вектор нормали к плоскости Σ (рис. 3).

Рис. 3. Плоскость, заданная в неявном виде

 \vec{R} — точка плоскости, $\vec{R}_0(t)$ — опорная точка плоскости. Уравнение F(x,y,z,t)=0, где $F(x,y,z,t)=\vec{N}(t)\cdot\left(\vec{R}-\vec{R}_0(t)\right)$, описывает однопараметрическое множество плоскостей в зависимости от параметра t.

Далее, возьмем производную по t функции F(x,y,z,t) : $\frac{\partial F}{\partial t}(x,y,z,t)=\frac{dN}{dt}(t)\cdot\left(\vec{R}-\vec{R}_0(t)\right)-\frac{d\vec{R}_0}{dt}(t)\cdot\vec{N}(t)$. После этого необходимо решить уравнение $\frac{\partial F}{\partial t}(x,y,z,t)=0$ относительно параметра t. И найденную зависимость t=t(x,y,z), в аналитическом или численном виде, подставить в уравнение F(x,y,z,t)=0. И полученное итоговое уравнение F(x,y,z,t(x,y,z))=0 будет огибающей однопараметрического множества плоскостей $\vec{N}(t)\cdot\left(\vec{R}-\vec{R}_0(t)\right)=0$.

Пример. Рассмотрим параболоид вращения $Z(x,y) = -(x^2 + y^2) + 5$. Возьмем окружность, принадлежащую параболои-

ду:
$$R(t) = \begin{bmatrix} 3 \cdot cos(t) \\ 3 \cdot sin(t) \\ Z(3 \cdot cos(t), 3 \cdot sin(t)) \end{bmatrix}$$
. Построим однопараметриче-

ское множество касательных плоскостей к параболоиду вдоль этой окружности и найдем огибающую поверхность этого множества.

В нашей задаче понятно, что такой поверхностью будет поверхность конуса. И сама постановка задачи позволяет получить явное уравнение огибающей такого множества.

Решение. Решение будет производится в системе MathCAD и надо понимать, что будут особенности при формировании вычислительного процесса. Рассказать об этом является целью данного методического пособия. Хочется отметить, отсутствие вывода символьных промежуточных не повлияет на работоспособность про-

грамм.

i pawiwi.	
$Z(x,y) := -(x^2 + y^2) + 5$	Уравнение пара-
	болоида вращения
	Z(x,y) =
	$-(x^2 + y^2) + 5$
$Pic_1 := CreateMesh(Z, -5, 5, -5, 5, 50, 50)$	Встроенная про-
1	цедура визуализа-
	ции графиков
	функций в явном
	виде и параметри-
	ческих функций
Radius := 3	Радиус окружно-
Tadias . 3	сти.
$X(t) := Radius \cdot cos(t)$	Задание абсциссы
	окружности
$Y(t) := Radius \cdot sin(t)$	Задание ординаты
	окружности
(X(t)	Формирование
	аппликаты
$Line_1(t) := Y(t)$	
	окружности
$Line_1(t) := \begin{pmatrix} Y(t) \\ Z(X(t), Y(t)) \end{pmatrix}$	

$\begin{split} \operatorname{Pic}_2 &\coloneqq \operatorname{CreateSpace} \left(\operatorname{Line}_1, 0, 2\pi, 100 \right) \\ F_1(x, y, z) &\coloneqq Z(x, y) - z \\ \\ N_1(x, y, z) &\coloneqq \left(\frac{\frac{d}{d}}{\frac{d}{d}} F_1(x, y, z) \right) \\ & \left(\frac{d}{d} F_1(x, y, z) \right) \\ & \left(\frac{d}{d} F_1(x, y, z) \right) \\ \end{split}$	Встроенная процедура визуализации графиков функций в явном виде и параметрических функций Уравнение параболоида вращения в неявном виде Вектор нормали касательной плоскости к параболоиду вращения
$R_{\mathbf{u}}(t) := \begin{pmatrix} \frac{\mathbf{d}}{\mathbf{t}} \mathbf{X}(t) \\ \frac{\mathbf{d}}{\mathbf{t}} \mathbf{Y}(t) \\ 0 \end{pmatrix}$	Касательный вектор к окружности, принадлежащей к параболоиду
$R_{\mathbf{V}}(t) := N_{1}(X(t), Y(t), Z(X(t), Y(t))) \times R_{\mathbf{U}}(t)$	Формирование динамического базиса. Если вектор касательной к окружности принять за абсциссу, а вектор нормали за аппликату, вектор ординат равен их векторному произведению
<u>N</u> ∴= 100	Формирование

$$\dot{\mathbf{i}} \coloneqq 0..\,\mathbf{N}$$
 данных для анимированного изображения

$$Plane(u,v) := Line_1(T_{FRAME}) + R_u(T_{FRAME}) \cdot u + R_v(T_{FRAME}) \cdot v$$

Визуализация касательной плоскости. Для нахождения огибающей поверхности это не требуется. Исключительно для формирования анимированного изображения

$$Pic_3 := CreateMesh(Plane, -2, 2, -2, 2, 50, 50)$$

Встроенная процедура визуализации графиков функций в явном виде и параметрических функций

$$\operatorname{Eq}_{\operatorname{plane}}(x,y,z,t) := \operatorname{N}_{1}(\operatorname{X}(t),\operatorname{Y}(t),\operatorname{Z}(\operatorname{X}(t),\operatorname{Y}(t)))^{T} \cdot \left[\begin{pmatrix} \operatorname{X}(t) \\ \operatorname{y} \\ z \end{pmatrix} - \begin{pmatrix} \operatorname{X}(t) \\ \operatorname{Y}(t) \\ \operatorname{Z}(\operatorname{X}(t),\operatorname{Y}(t)) \end{pmatrix} \right] \operatorname{simplify} \rightarrow 14 - 6 \cdot \operatorname{x} \cos(t) - 6 \cdot \operatorname{y} \cdot \sin(t) - 2 \cdot \operatorname{x} \cos(t) + 2 \cdot \operatorname{x$$

Уравнение однопараметрического множества плоскостей $F(x,y,z,t) = \vec{N}(t) \cdot \left(\vec{R} - \vec{R}_0(t)\right)$

$$\frac{d}{t!} Eq_{\text{Plane}}(x, y, z, t) \rightarrow 6 \cdot x \cdot \sin(t) - 6 \cdot y \cdot \cos(t)$$

Производная функции, описывающей однопараметрическое множество плоскостей па параметру t

$$\frac{\partial F}{\partial t}(x,y,z,t) = \frac{dN}{dt}(t) \cdot \left(\vec{R} - \vec{R}_0(t) \right) - \frac{d\vec{R}_0}{dt}(t) \cdot \vec{N}(t)$$

 $Eq_1(x, y, z, t, a) := \frac{d}{t} Eq_{Plane}(x, y, z, t) \text{ substitute, } \cos(t) = a \rightarrow 6 \cdot x \cdot \sin(t) - 6 \cdot a \cdot y$

$$\mathsf{Eq}_2(\mathsf{x},\mathsf{y},\mathsf{z},\mathsf{a},\mathsf{b}) \coloneqq \mathsf{Eq}_1(\mathsf{x},\mathsf{y},\mathsf{z},\mathsf{t},\mathsf{a}) \; \mathsf{substitute}, \mathsf{sin}(\mathsf{t}) = \mathsf{b} \;\; \to 6 \cdot \mathsf{b} \cdot \mathsf{x} - 6 \cdot \mathsf{a} \cdot \mathsf{y}$$

Искусственный прием. Ввод величин $a = \cos(t)$ и $b = \sin(t)$. Для того, чтобы избавиться в ответах от обратных тригонометрических функций. Наличие которых иногда приводит к неприятным оповещениям «division by zero»

Given		
$\operatorname{Eq}_{2}(x, y, z, a, b) = 0$	после к упрош	

	и подстановок за- писано уравнение $\frac{\partial F}{\partial t}(x,y,z,t) = \frac{dN}{dt}(t) \cdot \left(\vec{R} - \vec{R}_0(t)\right) - \frac{d\vec{R}_0}{dt}(t) \cdot \vec{N}(t)$
	$= \frac{dt}{dt} (t) \cdot N(t)$ $= 0$
$a^2 + b^2 = 1$	Здесь в переменные а, b вкладывается тригоно-
	метрический смысл
$Ans(x,y,z) := Find(a,b) \rightarrow \begin{pmatrix} x \sqrt{\frac{1}{2}} & -x \sqrt{\frac{1}{2}} \\ \sqrt{x^2 + y^2} & \sqrt{x^2 + y^2} \\ y \sqrt{\frac{1}{x^2 + y^2}} & -y \sqrt{\frac{1}{x^2 + y^2}} \end{pmatrix}$ $P_{\mathbf{x}}(x,y,z,t,C_{\mathbf{x}}) := Fans (x,y,z,t) \text{ substitute } \cos(t)$	Вполне предска- зуемый результат: $a = \frac{x}{\sqrt{x^2 + y^2}}$, $b = \frac{y}{\sqrt{x^2 + y^2}}$
$\Gamma(x,y,z,t,\omega_1) = \text{Explane}(x,y,z,t) \text{ substitute}(x,y,z,t)$	
$Surf(x, y, z, C_1, C_2) := P_1(x, y, z, t, C_1)$ substitute, $sin(t)$	$= C_2 \rightarrow 14 - 6 \cdot C_1 \cdot x - 14 - 6 \cdot C_1 \cdot x - 14 - 14 \cdot C_1 \cdot x $
Процедура обратной подстановки тригонометр	ических функций
$Surf_{1}(x, y, z) := Surf(x, y, z, Ans(x, y, z)_{0, 0}, Ans(x, y, z)_{0, 0})$	$(0)_{1,0}$ simplify $\rightarrow 14-6$
Формирование итогового вида поверхности, и нопараметрическое множество плоскостей F(х	_
Given	
$Surf_1(x, y, z) = 0$	Сама постановка задачи, начальные условия, линия касания поверхностей позволяют получить итого-
	111010

	вую поверхность	
	как явную функ-	
	, 1,	
	, ,, ,	
	ментов	
$Surf_2(x,y) := Find(z) \rightarrow 14 - 6 \cdot y^2 \cdot \sqrt{\frac{1}{x^2 + y^2} - 6 \cdot x^2} \cdot \sqrt{\frac{1}{x^2 + y^2}}$	Явная функция	
$\sqrt{\frac{2}{x} + y^2} \qquad \sqrt{\frac{2}{x} + y^2}$	конической по-	
	верхности	
$Pic_4 := CreateMesh(Surf_2, -5, 5, -5, 5, 100, 100)$		
, ,	цедура визуализа-	
	ции графиков	
	функций в явном	
	виде и параметри-	
	ческих функций	
	Итоговый резуль-	
	тат. На график	
	выведены поверх-	
	ность параболои-	
40-/	да, коническая	
	поверхность, ка-	
	сательная плос-	
	кость, линия каса-	
N. January C. Company of the Company	ния. Если запу-	
	стить режим ани-	
	мации, то можно	
	увидеть как каса-	
	тельная плоскость	
	пробегает по ли-	
X 2	нии касания.	
Pic ₁ , Pic ₂ , Pic ₃ , Pic ₄		

Задачи

1. Есть базовая поверхность, поверхность параболоида $Z(x,y) = -(x^2 + y^2) + 5$. Есть линия пересечения данного параболоида с плоскостью Y = 0. Вдоль этой линии пересечения, в каждой ее точке, построено множество касательных плоскостей. Необходимо построить в математическом пакете огибающую поверхность

данного однопараметрического множества плоскостей. (Цилиндрическая поверхность — подсказка)

- 2. Есть базовая поверхность, поверхность параболоида $Z(x,y) = e^{-(x^2+y^2)}$. Есть линия пересечения данного параболоида с плоскостью Z=1. Вдоль этой линии пересечения, в каждой ее точке, построено множество касательных плоскостей. Необходимо построить в математическом пакете огибающую поверхность данного однопараметрического множества плоскостей. (Поверхность конуса)
- 3. Есть базовая поверхность, поверхность параболоида $Z(x,y)=e^{-(x^2+y^2)}$. Есть линия пересечения данного параболоида с плоскостью Y=0. Вдоль этой линии пересечения, в каждой ее точке, построено множество касательных плоскостей. Необходимо построить в математическом пакете огибающую поверхность данного однопараметрического множества плоскостей. (Поверхность цилиндра)
- 4. Есть сфера единичного радиуса с центром в начале координат. Данную сферу пересекает плоскость $\vec{N}\cdot(\vec{r}-\vec{R})=0$, $N=\begin{bmatrix}1\\1\\1\end{bmatrix}$

нормаль плоскости,
$$R = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$$
 — опорная точка плоскости, $r = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

- точка плоскости. Вдоль этой линии пересечения, в каждой ее точке, построено множество касательных плоскостей. Необходимо построить в математическом пакете огибающую поверхность данного однопараметрического множества плоскостей.
- 5. Есть гиперболоид вращения $x^2 + y^2 z^2 1 = 0$. Данный гиперболоид пересекает плоскость Z = 3. Вдоль этой линии пересечения, в каждой ее точке, построено множество касательных плоскостей. Необходимо построить в математическом пакете огибающую поверхность данного однопараметрического множества плоскостей.
- 6. Есть сфера вращения $x^2 + y^2 + z^2 1 = 0$. Данный гипер-болоид пересекает плоскость Z = 0.5. Вдоль этой линии пересечения, в каждой ее точке, построено множество касательных плоско-

стей. Необходимо построить в математическом пакете огибающую поверхность данного однопараметрического множества плоскостей.

- 7. Есть гиперболоид вращения $x^2 + y^2 z^2 1 = 0$. Данный гиперболоид пересекает плоскость Y = 0. Вдоль этой линии пересечения, в каждой ее точке, построено множество касательных плоскостей. Необходимо построить в математическом пакете огибающую поверхность данного однопараметрического множества плоскостей.
- 8. Есть два параболоида $Z(x,y) = -((x-1)^2 + y^2) + 5$ и $Z(x,y) = -((x+1)^2 + y^2) + 5$, необходимо построить однопараметрическое множество плоскостей, касающихся одновременно двух параболоидов. Найти огибающую поверхность.

Вопросы для самопроверки

- 1. Для чего в примере вводится нормаль в точке касания?
- 2. Для чего вводится в приведенном примере динамический локальный базис?
- 3. Какому типу поверхностей принадлежит поверхность, рассмотренная в примере?
- 4. Какой вид представления поверхностей используется в задачах данного раздела?

Раздел 3. Огибающая множества плоских кривых, заданных в параметрическом виде

Рассмотрим плоские параметрические кривые. Если плоская отдельная параметрическая кривая задается в виде $\vec{L}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$, то семейство кривых будет задаваться в виде $\vec{L}(t,h) = \begin{bmatrix} x(t,h) \\ y(t,h) \end{bmatrix}$. Рассмотрим отдельную кривую соответствующую параметру h . И предположим, что существуют такие неявные функции F(t,h) = 0 и f(x,y,h) = f(x(t,h),y(t,h),h) = 0 , для которых соблюдается F(t,h) = f(x(t,h),y(t,h),h) = 0 . Продифференцируем функцию F(t,h) = 0 по t и h:

$$\frac{\partial F}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} = 0$$
$$\frac{\partial F}{\partial h} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial h} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial h} + \frac{\partial f}{\partial h} = 0$$

Для любой точки огибающей имеем: $\frac{\partial f}{\partial h}=0$, откуда следует $\frac{\partial f}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial t}=0$, преобразуя данную однородную систему уравне-

ний относительно переменных $\begin{array}{ccc} f_x x_t + f_y y_t & \xrightarrow{f_x} \frac{x_t}{y_t} + f_y \\ f_x x_h + f_y y_h & \xrightarrow{f_x} \frac{x_h}{y_h} + f_y \end{array} \longrightarrow$

 $f_{x}\left[\frac{x_{t}}{y_{t}}-\frac{x_{h}}{y_{h}}\right] \to x_{t}y_{h}-x_{h}y_{t} \to \begin{vmatrix} x_{t} & x_{h} \\ y_{t} & y_{h} \end{vmatrix}=0$. Из данного соотношения можно найти зависимость h=h(t) и подставить в формулу $\vec{L}(t,h(t))=egin{bmatrix} x(t,h(t)) \\ y(t,h(t)) \end{bmatrix}$. Рассмотрим это на примере.

Пример. Рассмотрим множество прямых в параметрическом $x(t,h) = \cos(t) - h \cdot \sin(t)$ виде $y(t,h) = \sin(t) + h \cdot \cos(t)$. Для данного однопараметрического множества прямых необходимо найти огибающую кривую.

Решение. Легко видеть, что данный пример рассматривался в разделе 1 данного пособия, и что он просто переписан в параметрическом виде.

(())	Φ
$R_0(t) := \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$	Формирование
$\sin(t) = \sin(t)$	окружности,
	необходимо толь-
	ко для визуализа-
	ции, что подтвер-
	дить, что однопа-
	раметрическое
	множество пря-
	мых огибает
	именно ее
1	Формирование
$ \underset{\mathcal{M}}{L}(t,h) := R_0(t) + \frac{d}{t} R_0(t) \cdot h $	однопараметриче-
tl Oct	ского множества
-(4 1) . I (4 1) (4)	прямых. $\Gamma_{\nu}(t,h)$
$x(t,h) := L(t,h)_0 \rightarrow \cos(t) - h \cdot \sin(t)$	$\vec{L}(t,h) = \begin{bmatrix} x(t,h) \\ y(t,h) \end{bmatrix}.$
	Однопараметри-
$y(t,h) := L(t,h)_1 \rightarrow \sin(t) + h \cdot \cos(t)$	ческое множество
	прямых. Параметр
	h — положение
	точки на прямой.
	Параметр t — от-
	вечает за выбор
	прамой
	прямой
$\left[\begin{array}{cccc} \frac{d}{dt}x(t,h) & \frac{d}{dt}x(t,h) \end{array}\right]$	Якобиан у у у у
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) t) ti
$ \left(\begin{array}{ccc} \frac{d}{d}x(t,h) & \frac{d}{d}x(t,h) \\ \frac{d}{d}y(t,h) & \frac{d}{d}y(t,h) \end{array}\right) \rightarrow \left(\begin{array}{ccc} -\sin(t) & -h \cdot \cos(t) & -\sin(t) \\ \cos(t) & -h \cdot \sin(t) & \cos(t) \end{array}\right) $	
$ \left \left(\frac{d}{d} x(t,h) \frac{d}{d} x(t,h) \right) \right \rightarrow -h \cdot \cos(t)^{2} - h \cdot \sin(t)^{2} $ $ \left \frac{d}{d} y(t,h) \frac{d}{d} y(t,h) \right \rightarrow -h \cdot \cos(t)^{2} - h \cdot \sin(t)^{2} $	Определитель
$\left \begin{array}{ccc} \frac{u}{d}x(t,h) & \frac{u}{d}x(t,h) \end{array} \right $	$ x_t x_h $
$\left \begin{array}{ccc} & \mathbf{u} & \mathbf{a} \\ & & \\ & \rightarrow -\mathbf{h} \cdot \cos(t)^2 - \mathbf{h} \cdot \sin(t)^2 \end{array} \right $	$\begin{vmatrix} x_t & x_h \\ y_t & y_h \end{vmatrix}$. Легко
	видеть, что соот-
$\left \begin{array}{ccc} -y(t,n) & -y(t,n) \\ H \end{array} \right $	ношение
\ "	$\begin{vmatrix} x_t & x_h \end{vmatrix}$
	$\begin{vmatrix} x_t & x_h \\ y_t & y_h \end{vmatrix} = 0$ вы-
	полнятся только
	1
	тогда, когда $h=0$

N.:= 100 i := 0 N	Подготовка к анимации, при
$T_{\dot{\mathbf{W}}} := \mathbf{i} \cdot \frac{2\pi}{N}$	анимации видно, что семейство
	прямых огибает
7	окружность
$X(h) := x(T_{FRAME}, h)$	
$Y(h) := y(T_{FRAME}, h)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Если написать данную программу и изготовить в ней анимацию на 100 кадров, то можно убедиться в том, что каждая прямая действительно касается этой окружности.

Пример. Рассмотрим однопараметрическое множество парабол, вращающихся вокруг центра координат. Поскольку, мы имеем дело с вращающейся параболой, возможно представление ее уравнения только в неявном виде или в параметрическом. Мы будем решать задачу только в параметрическом виде. Рассмотрим базовое уравнение параболы: $r_b(t) = \left[\left(\frac{t}{4}\right)^2\right]$, вершина этой будет принадлежать окружности $30 \cdot \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$. А координатные оси для этой параболы

будут следующие: $e_1(\propto) = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$, $e_2(\propto) = \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix}$. У такого однопараметрического множества парабол существует огибающая кривая, естественно, это будет окружность $30 \cdot \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$. Изначально, условия задачи были смоделированы так, чтобы вращающаяся парабола касалась окружности $30 \cdot \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$. Необходимо найти и построить огибающую, используя теоретические положения раздела 3.

Решение. Решение является достаточно простым. Просто, мы усложнили ход решения введя дополнительные визуализации и анимированные изображения. Уравнение вращающейся параболы будет таким: $R_{rotate}(t, \propto) = \begin{bmatrix} x_{rotate}(t, \propto) \\ y_{rotate}(t, \infty) \end{bmatrix} = \begin{bmatrix} r_b(t) \cdot h_1(\alpha) \\ r_b(t) \cdot h_2(\alpha) \end{bmatrix} + 30$

$$\begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}. \ \Gamma \text{де } h_1(\alpha) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot e_1(\alpha) \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot e_2(\alpha) \end{pmatrix}, \ h_2(\alpha) = \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot e_1(\alpha) \\ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot e_2(\alpha) \end{pmatrix}. \ \Pi$$
рисва-

иваем определителю нулевое значение: $\begin{vmatrix} \frac{\partial x_{rotate}}{\partial t} & \frac{\partial x_{rotate}}{\partial \alpha} \\ \frac{\partial y_{rotate}}{\partial t} & \frac{\partial y_{rotate}}{\partial \alpha} \end{vmatrix} = 0. \text{ Из}$

полученного уравнения находим зависимость t = t(x) и подставляем это значение в уравнение $R_{final}(t(\alpha), \alpha) = \begin{bmatrix} x_{final}(t(\alpha), \alpha) \\ y_{final}(t(\alpha), \alpha) \end{bmatrix} =$

 $\begin{bmatrix} r_b(t(lpha)) \cdot h_1(lpha) \\ r_b(t(lpha)) \cdot h_2(lpha) \end{bmatrix} + 30 \cdot \begin{bmatrix} \cos lpha \\ \sin lpha \end{bmatrix}$. Указанное уравнение и будет являться уравнением огибающей кривой.

(t) ²	Формирование
$x_b(t) := \left(\frac{c}{4}\right)$	параметрических
$y_h(t) := t$	функций парабо- лы
$\left(x_{b}(t)\right)$	ЛЫ
$r_b(t) := \begin{pmatrix} x_b(t) \\ y_b(t) \end{pmatrix}$	

$y_b(t)$ 0	Визуализация базовой параболы
$H_1 := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $H_2 := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Базисные векторы мировой системы координат
N∴= 100	Ввод данных для анимации. Вводится число кадров. Можно в данном скрипте изготовить анимированное изображение с числом кадров -100, частотой — 5 кадров в секунду.
i := 0 N	Создание ранжированной переменной.
$\phi_i := i \cdot \frac{2\pi}{N}$	Создаем массив значений угла вращения.
$E_{1_{i}} := \begin{pmatrix} \cos(\phi_{i}) \\ \sin(\phi_{i}) \end{pmatrix}$	Базисные векторы динамической си- стемы координат.

$\left(-\sin(\phi)\right)$	
$E_{2_{i}} := \begin{pmatrix} \sin(\phi_{i}) \\ \cos(\phi_{i}) \end{pmatrix}$	
$\mathbf{H_{1b}_{i}} \coloneqq \begin{pmatrix} \mathbf{H_{1}}^{T} \cdot \mathbf{E_{1}}_{i} \\ \mathbf{H_{1}}^{T} \cdot \mathbf{E_{2}}_{i} \end{pmatrix}$	Сопряженный базис динамической системы координат
$\mathbf{H_{2b}}_{i} \coloneqq \begin{pmatrix} \mathbf{H_{2}}^{T} \cdot \mathbf{E_{1}}_{i} \\ \mathbf{H_{2}}^{T} \cdot \mathbf{E_{2}}_{i} \end{pmatrix}$	
$ \mathbb{R}(t) := \begin{pmatrix} r_b(t)^T \cdot H_{1b} \\ r_b(t)^T \cdot H_{2b} \\ FRAME \end{pmatrix} + 30 \begin{pmatrix} \cos(\phi_{FRAME}) \\ \sin(\phi_{FRAME}) \end{pmatrix} $	Как будет выгля- деть вращающая- ся парабола в ми- ровой системе ко- ординат.
50	Результат вращения. Можно просмотреть анимацию.
- 50 - FO	
-100	
$e_1(\alpha) := \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix}$	Базисные векторы динамической си-
$e_{1}(\alpha) := \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix}$ $e_{2}(\alpha) := \begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix}$	все, что рассчитывалось выше,
	делалось исклю- чительно для ани-

	мации
$\left(H_1^T \cdot e_1(\alpha)\right)$	Расчет сопряжен-
$h_1(\alpha) := \begin{bmatrix} h_1 & h_1(\alpha) \\ h_2(\alpha) & h_2(\alpha) \end{bmatrix}$	ного базиса.
$h_1(\alpha) := \begin{pmatrix} H_1^T \cdot e_1(\alpha) \\ H_1^T \cdot e_2(\alpha) \end{pmatrix}$	
$h_{2}(\alpha) := \begin{pmatrix} H_{2}^{T} \cdot e_{1}(\alpha) \\ H_{2}^{T} \cdot e_{2}(\alpha) \end{pmatrix}$	Расчет сопряжен-
$h_2(\alpha) := \begin{bmatrix} 2 & 1 \\ & & \end{bmatrix}$	ного базиса.
$R_{\text{rotate}}(t,\alpha) := \begin{pmatrix} r_b(t)^T \cdot h_1(\alpha) \\ r_b(t)^T \cdot h_2(\alpha) \end{pmatrix} + 30 \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\cos(\alpha) \cdot t^2}{16} - \sin(\alpha) \cdot t + 30 \cdot \cos(\alpha) \\ \frac{\sin(\alpha) \cdot t^2}{16} + \cos(\alpha) \cdot t + 30 \cdot \sin(\alpha) \end{pmatrix}$	
$\left(\frac{r_{h}(t)^{T} \cdot h_{1}(\alpha)}{r_{h}(t)^{T} \cdot h_{1}(\alpha)}\right) = \left(\frac{\cos(\alpha) \cdot t^{2}}{r_{h}(t)^{T}} - \sin(\alpha) \cdot t + 30 \cdot \cos(\alpha)\right)$	$R_{rotate}(t, \propto) =$
$R_{\text{rotate}}(t,\alpha) := \begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} + 30 \begin{pmatrix} \cos(\alpha) & 0 & 1 & 0 \\ \sin(\alpha) & 0 & 0 & 0 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$	$\left \left r_b(t) \cdot n_1(\alpha) \right + \right $
$\left(\frac{r_b(t) \cdot h_2(\alpha)}{16} + \cos(\alpha) \cdot t + 30 \cdot \sin(\alpha)\right)$	$[r_b(t) \cdot h_2(\alpha)]$
	$30 \cdot \left \frac{\cos \alpha}{\sin \alpha} \right $
	Уравнение вра-
	щающегося пара-
	болоида
Given	Встроенный ре-
	шатель
	MATHCAD
$\left \left \left(\frac{d}{dR} + (t,\alpha) - \frac{d}{dR} + (t,\alpha) \right) \right \right $	$\begin{vmatrix} \frac{\partial x_{rotate}}{\partial t} & \frac{\partial x_{rotate}}{\partial \propto} \\ \frac{\partial y_{rotate}}{\partial t} & \frac{\partial y_{rotate}}{\partial \propto} \end{vmatrix}$
$ \left \frac{\frac{d}{d}R_{rotate}(t,\alpha)}{\frac{d}{d}R_{rotate}(t,\alpha)} \frac{\frac{d}{d}R_{rotate}(t,\alpha)}{\frac{d}{d}R_{rotate}(t,\alpha)} \right = 0 $	$\int \partial t \partial \propto \int$
	$\frac{\partial y_{rotate}}{\partial y_{rotate}}$
$\left \left \frac{\mathbf{d}}{\mathbf{d}} \mathbf{R}_{\text{rotate}}(\mathbf{t}, \alpha) \right \frac{\mathbf{d}}{\mathbf{d}} \mathbf{R}_{\text{rotate}}(\mathbf{t}, \alpha) \right $	$\int_{0}^{\infty} \partial t \qquad \partial \propto \int_{0}^{\infty} dt$
$ (\mathbf{u} - \mathbf{u} - \mathbf{u}) $	= 0
	Определитель в
	задаче построения
	огибающей равен 0.
$\operatorname{Ans}(\alpha) := \operatorname{Find}(\mathfrak{t}) \to \left(0 \ 4\mathrm{i} \cdot \sqrt{38} \ -4\mathrm{i} \cdot \sqrt{38}\right)$	Ответ. Зависи-
$Ans(\alpha) := rma(1) \rightarrow (0.41 \cdot \sqrt{38} - 41 \cdot \sqrt{38})$	мость $t = t(\alpha)$.
	κ Как и ожидалось
	неоднозначный
	ответ. Нас устраи-
	вает только дей-
	ствительный от-
	вет.

$R_{\text{final}}(\alpha) := R_{\text{rotate}} \left(\text{Ans}(\alpha)_0, \alpha \right) \to \begin{pmatrix} 30 \cdot \cos(\alpha) \\ 30 \cdot \sin(\alpha) \end{pmatrix}$	Подстановка в уравнение вращающегося параболоида значения $t = t(\propto)$. Дает уравнение окружности, как и ожидалось.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Итоговая визуализация. Синим выделена огибающая кривая. Возможна анимация.

Задачи

- 1. Найти огибающую однопараметрического множества прямых $L(t,h) = R(t) + \frac{d}{dt}R(t) \cdot h$, где $R(t) = \begin{bmatrix} 2 \cdot cos(t) \\ 3 \cdot sin(t) \end{bmatrix}$.
- 2. Найти огибающую однопараметрического множества прямых $L(t,h)=R(t)+\frac{d}{dt}R(t)\cdot h$, где $R(t)=\begin{bmatrix}cos(2\cdot t)\\sin(t)\end{bmatrix}$.
- 3. Найти огибающую однопараметрического множества прямых $L(t,h) = R(t) + \frac{d}{dt}R(t) \cdot h$, где $R(t) = \begin{bmatrix} cos(2 \cdot t) \\ sin(3 \cdot t) \end{bmatrix}$
- 4. Найти огибающую однопараметрического множества прямых $L(t,h)=R(t)+\frac{d}{dt}R(t)\cdot h$, где $R(t)=\begin{bmatrix}cos(2\cdot t)\\sin(3\cdot t)+sin(t)\end{bmatrix}$
- 5. Найти огибающую однопараметрического множества прямых $L(t,h) = R(t) + \frac{d}{dt}R(t) \cdot h$, где $R(t) = \begin{bmatrix} e^{-t^2} \cdot cos(2 \cdot t) \\ sin(3 \cdot t) \end{bmatrix}$

- 6. Найти огибающую однопараметрического множества прямых $L(t,h) = R(t) + \frac{d}{dt}R(t) \cdot h$, где $R(t) = \begin{bmatrix} t \\ sin(3 \cdot t) \end{bmatrix}$
- 7. Найти огибающую однопараметрического множества прямых $L(t,h)=R(t)+\frac{d}{dt}R(t)\cdot h$, где $R(t)=\begin{bmatrix}cos(2\cdot t)\\t\end{bmatrix}$
- 8. Найти огибающую однопараметрического множества прямых $L(t,h) = R(t) + \frac{d}{dt}R(t) \cdot h$, где $R(t) = \begin{bmatrix} cos(2 \cdot t) \\ sin(3 \cdot t) \end{bmatrix}$

Вопросы для самопроверки

- 1. В каком виде задана вращающаяся парабола во втором примере?
- 2. Для чего вводится в приведенном примере динамический ло-кальный базис?
- 3. В каком виде представления ищется огибающая линия второго примера?
- 4. Какие переменные в листингах программ отвечают за создание анимации?

Раздел 4. Огибающая однопараметрического множества параболоидов

Рассмотрим однопараметрическое множество параболоидов, которые в пространстве от параметра t зависят следующим образом: $Z(x,y)=(x-t)^2+(y-t)^2-3t^2$. Необходимо найти огибающую поверхность данного множества. Ниже приведен код в программе MathCAD, выполняющий решение данной задачи.

2 2 2	Формирование не-
$F(x,y,z,t) := (x-t)^2 + (y-t)^2 - z - 3 \cdot t^2$	явной функции,
	описывающей дан-
	ное множество
4	Взятие частной
$dF(x,y,z,t) := \frac{d}{dt}F(x,y,z,t) \rightarrow -2\cdot x - 2\cdot t - 2\cdot y$	производной неяв-
dt	ной функции по
	1.5
Al.	параметру
Given	Решение уравнения
dF(x,y,z,t) = 0	$\frac{\partial F}{\partial t} = 0$ встроенны-
$A(x,y,z) := Find(t) \rightarrow -x - y$	ми средствами
	MathCAD относи-
	тельно параметра t
$G(x,y,z) := F(x,y,z,A(x,y,z)) \rightarrow (2\cdot x + y)^2 + (2\cdot y + x)^2 - z - 3\cdot (-x - y)^2$	Подстановка в
	уравнение неявной
	функции найденно-
	го значения пара-
	метра
$(2 \cdot x + y)^2 + (2 \cdot y + x)^2 - z - 3 \cdot (-x - y)^2$ simplify $\rightarrow 2 \cdot x^2 + 2 \cdot x \cdot y + 2 \cdot y^2 - z$	Упрощение
	найденного выра-
	жения для огибаю-
	щей поверхности
P := CreateMesh(Z, -5, 5, -5, 5, 20, 20)	Визуализация оги-
	бающей поверхно-
	сти однопарамет-
	рического множе-
	ства параболоидов

$ZZ(x,y,t) := (x-t)^2 + (y-t)^2 - 3 \cdot t^2$	Исходный вид функции. Необходима для демонстрации самого множества параболоидов
ZZ0(x,y) := ZZ(x,y,0)	Визуализация не-
ZZ1(x,y) := ZZ(x,y,1)	скольких параболо-
ZZ2(x,y) := ZZ(x,y,2)	идов
ZZ3(x,y) := ZZ(x,y,3) P0 := CreateMesh(ZZ0,-5,5,-5,5,10,10)	
P1 := CreateMesh(ZZ1,-5,5,-5,5,10,10)	
P2 := CreateMesh(ZZ2,-5,5,-5,5,10,10)	
P3 := CreateMesh(ZZ3,-5,5,-5,5,10,10)	
2,P0,P1,P2,P3	

Рассмотрим еще один пример. Пусть по траектории окружности $Ring(\propto) = \begin{bmatrix} \cos \propto \\ \sin \propto \end{bmatrix}$ движется параболоид вращения $F_b(x_b,y_b,z_b) = x_b^2 + y_b^2 - z_b = 0$ или в явном виде $Z_b(x_b,y_b) = x_b^2 + y_b^2$ или в па-

раметрическом $R_b(u,v) = \begin{bmatrix} u \\ v \\ u^2 + v^2 \end{bmatrix}$. Вершина параболоида принадлежит кольцу. Динамический базис, где у нас располагается параболоид вращения, задается векторами $e_3(\propto) = \begin{bmatrix} \cos \propto \\ \sin \propto \end{bmatrix}$ — аппликата, $e_2(\propto) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ — ордината, $e_1(\propto) = e_2(\propto) \times e_3(\propto)$ — абсцисса.

Как любая математическая задача, задача построения такой огибающей поверхности имеет несколько вариантов решения.

$$R_{\text{hyper}}(h,\beta) := R_{\text{rotate}}(0,h,\beta) \rightarrow \begin{pmatrix} \cos(\beta) \cdot h^2 + \cos(\beta) \\ \sin(\beta) \cdot h^2 + \sin(\beta) \\ h \end{pmatrix}$$

Мы сейчас рассмотрим вариант решения, когда представление параболоида имеет параметрический вид. Первое, что мы сделаем, мы выполним преобразование, чтобы посмотреть, как будет выглямировой системы

$$\begin{split} R_{rotate}(u,v, \propto) &= \begin{bmatrix} R_b(u,v) \cdot h_1(\alpha) \\ R_b(u,v) \cdot h_2(\alpha) \\ R_b(u,v) \cdot h_3(\alpha) \end{bmatrix} + Center(\propto) \quad \text{, где} \quad h_1(\propto) = \\ \begin{bmatrix} H_1 \cdot e_1(\alpha) \\ H_1 \cdot e_2(\alpha) \\ H_1 \cdot e_3(\alpha) \end{bmatrix}, \ h_2(\propto) &= \begin{bmatrix} H_2 \cdot e_1(\alpha) \\ H_2 \cdot e_2(\alpha) \\ H_2 \cdot e_3(\alpha) \end{bmatrix}, \ h_1(\propto) &= \begin{bmatrix} H_3 \cdot e_1(\alpha) \\ H_3 \cdot e_2(\alpha) \\ H_3 \cdot e_3(\alpha) \end{bmatrix}, \ a \ H_1 &= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \end{split}$$

$$\begin{bmatrix} H_1 \cdot e_1(\alpha) \\ H_1 \cdot e_2(\alpha) \\ H_1 \cdot e_3(\alpha) \end{bmatrix}, h_2(\alpha) = \begin{bmatrix} H_2 \cdot e_1(\alpha) \\ H_2 \cdot e_2(\alpha) \\ H_2 \cdot e_3(\alpha) \end{bmatrix}, h_1(\alpha) = \begin{bmatrix} H_3 \cdot e_1(\alpha) \\ H_3 \cdot e_2(\alpha) \\ H_3 \cdot e_3(\alpha) \end{bmatrix}, a H_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, H_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 — базисные векторы мировой системы коорди-

нат. Вектор *Center*(∝) начала динамической систем координат сов-

падает точками окружности $Ring(\propto) = \begin{vmatrix} \cos \alpha \\ \sin \alpha \end{vmatrix}$. Если принять

$$R_{rotate}(u,v,\propto) = \begin{bmatrix} x_{rotate}(u,v,\propto) \\ y_{rotate}(u,v,\propto) \\ z_{rotate}(u,v,\propto) \end{bmatrix}$$
, то после формирования опреде-

лителя
$$\begin{vmatrix} \frac{\partial x_{rotate}}{\partial \alpha} & \frac{\partial y_{rotate}}{\partial \alpha} & \frac{\partial z_{rotate}}{\partial \alpha} \\ \frac{\partial x_{rotate}}{\partial u} & \frac{\partial y_{rotate}}{\partial u} & \frac{\partial z_{rotate}}{\partial u} \\ \frac{\partial x_{rotate}}{\partial v} & \frac{\partial y_{rotate}}{\partial v} & \frac{\partial z_{rotate}}{\partial v} \end{vmatrix} = 0, \text{ мы приходим к решению}$$

уравнения $-u \cdot (2u^2 + 2v^2 + 3) = 0$, которое из вещественных решений имеет только u = 0. После подстановки найденного значения получаем уравнение огибающей поверхности $R_{hyper}(v, \alpha) =$

$$\begin{bmatrix} \cos \alpha \cdot h^2 + \cos \alpha \\ \sin \alpha \cdot h^2 + \sin \alpha \\ h \end{bmatrix}$$
, которое видно на рисунке в программе (под-

крашена красным цветом)

Теперь рассмотрим случай, когда параболоид задан в неявном виде $F_b(x_b,y_b,z_b)=x_b^2+y_b^2-z_b=0$. Для точек параболоида име-

ем следующее
$$\begin{bmatrix} x_b \\ y_b \\ z_b \end{bmatrix} = \begin{bmatrix} (R - Center(\propto)) \cdot e_1(\alpha) \\ (R - Center(\propto)) \cdot e_2(\alpha) \\ (R - Center(\propto)) \cdot e_3(\alpha) \end{bmatrix}$$
, где $R = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. К со-

жалению, формат экспортируемых рисунков из MATHCAD не позволяет их просмотреть в печатном издании, сам рабочий файл MATHCAD размещен на сайте автора: http://dubanov.exponenta.ru в разделе «Огибающие». Далее составляется система уравнений:

$$F_b(x, y, z, \infty) = 0$$
$$\frac{\partial F_b(x, y, z, \infty)}{\partial x} = 0$$

Из которой исключается параметр ∝. В итоге, мы получаем неявное уравнение огибающей поверхности. Условия данной задачи позволяют получить явное уравнение поверхности. Правда, нам пришлось немного поработать с областью допустимых значений нашей огибающей поверхности. Результат работы программы вы можете посмотреть на рисунке, подкрашен черным цветом. Область значений, где функция огибающей поверхности имеет недопустимые значения, приравнена нулю. В рассматриваемом примере также, как и во всех примерах пособия, отсутствие символьного вывода промежуточных выражений не влияет на работоспособность программ.

$F_{b}(x_{b}, y_{b}, z_{b}) := x_{b}^{2} + y_{b}^{2} - z_{b}$ $Z_{b}(x_{b}, y_{b}) := (x_{b})^{2} + (y_{b})^{2}$ $R_{b}(u, v) := \begin{pmatrix} u \\ v \\ Z_{b}(u, v) \end{pmatrix} \rightarrow \begin{pmatrix} u \\ v \\ u^{2} + v^{2} \end{pmatrix}$	Базовая поверхность вращения в неявном виде, явном и параметрическом
$\operatorname{Ring}(\alpha) := \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \\ 0 \end{pmatrix}$	Траектория движения
Center(α) := Ring(α)	Центр дина- мической си- стемы коор- динат
$e_{3}(\alpha) := \frac{\operatorname{Ring}(\alpha)}{\sqrt{\operatorname{Ring}(\alpha)}^{T} \cdot \operatorname{Ring}(\alpha)} \text{ simplify } \rightarrow \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \\ 0 \end{pmatrix}$	Аппликата динамической системы ко- ординат
$e_2(\alpha) := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	Ордината динамической системы координат
$e_{1}(\alpha) := e_{2}(\alpha) \times e_{3}(\alpha) \to \begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \\ 0 \end{pmatrix}$	Абсцисса динамической системы координат
$H_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	Базисные векторы ми- ровой систе- мы координат
$H_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	

$H_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	
$h_{1}(\alpha) := \begin{pmatrix} H_{1}^{T} \cdot e_{1}(\alpha) \\ H_{1}^{T} \cdot e_{2}(\alpha) \\ H_{1}^{T} \cdot e_{3}(\alpha) \end{pmatrix}$	Так будут выглядеть базисные векторы мировой системы координат из
$h_{2}(\alpha) := \begin{pmatrix} H_{2}^{T} \cdot e_{1}(\alpha) \\ H_{2}^{T} \cdot e_{2}(\alpha) \\ H_{2}^{T} \cdot e_{3}(\alpha) \end{pmatrix}$	динамической системы ко- ординат.
$h_{3}(\alpha) := \begin{pmatrix} H_{3}^{T} \cdot e_{1}(\alpha) \\ H_{3}^{T} \cdot e_{2}(\alpha) \\ H_{3}^{T} \cdot e_{3}(\alpha) \end{pmatrix}$	
$R_{\text{rotate}}(\mathbf{u}, \mathbf{v}, \alpha) := \begin{pmatrix} R_{\mathbf{b}}(\mathbf{u}, \mathbf{v})^{\mathrm{T}} \cdot \mathbf{h}_{1}(\alpha) \\ R_{\mathbf{b}}(\mathbf{u}, \mathbf{v})^{\mathrm{T}} \cdot \mathbf{h}_{2}(\alpha) \\ R_{\mathbf{b}}(\mathbf{u}, \mathbf{v})^{\mathrm{T}} \cdot \mathbf{h}_{3}(\alpha) \end{pmatrix} + \text{Center}(\alpha)$	Так будет выглядеть базовая вращаемая поверхность из мировой системы координат
ৣ∷= 100	Подготовка к анимации
i := 0 100	
$\phi_i := i \cdot \frac{2\pi}{N}$	
Paraboloid $(u, v) := R_{rotate}(u, v, \phi_{FRAME})$	

Pic := CreateMesh(Paraboloid, -2,2,-2,2,50,50)	
Rine. Pic.	Возможно изготовление анимации. Видео доступно для просмотра на канале https://youtu.be/ils6egfmGJ Y
$\mathcal{R}_{\text{notate}}(\mathbf{u}, \mathbf{v}, \alpha) := \begin{pmatrix} \mathbf{R}_{b}(\mathbf{u}, \mathbf{v})^{\mathrm{T}} \cdot \mathbf{h}_{1}(\alpha) \\ \mathbf{R}_{b}(\mathbf{u}, \mathbf{v})^{\mathrm{T}} \cdot \mathbf{h}_{2}(\alpha) \\ \mathbf{R}_{b}(\mathbf{u}, \mathbf{v})^{\mathrm{T}} \cdot \mathbf{h}_{3}(\alpha) \end{pmatrix} + \operatorname{Center}(\alpha) \rightarrow \begin{bmatrix} \cos(\alpha) + \cos(\alpha) \cdot \left(\mathbf{u}^{2} + \mathbf{v}^{2}\right) - \mathbf{u} \cdot \sin(\alpha) \cdot \left(\mathbf{u}^{2} + \mathbf{v}^{2}\right) + \mathbf{u} \cdot \cos(\alpha) \\ \mathbf{v} \end{bmatrix}$	
$ \left \begin{array}{c} \left(\frac{d}{d} R_{rotate}(u,v,\alpha)_{0} \frac{d}{d} R_{rotate}(u,v,\alpha)_{1} \frac{d}{d} R_{rotate}(u,v,\alpha)_{2} \\ \frac{d}{d} R_{rotate}(u,v,\alpha)_{0} \frac{d}{d} R_{rotate}(u,v,\alpha)_{1} \frac{d}{d} R_{rotate}(u,v,\alpha)_{2} \\ \frac{d}{d} R_{rotate}(u,v,\alpha)_{0} \frac{d}{d} R_{rotate}(u,v,\alpha)_{1} \frac{d}{d} R_{rotate}(u,v,\alpha)_{2} \end{array} \right \\ \text{simplify} $	$\rightarrow -u \cdot \left(2 \cdot u^2 + 2 \cdot v^2 + 3\right)$
Этот определитель должен быть равен 0	
$-\mathbf{u} \cdot \left(2 \cdot \mathbf{u}^2 + 2 \cdot \mathbf{v}^2 + 3\right)$	Итоговое уравнение определителя.
	Видно, что вещественное решение возможно только при $u = 0$

$$R_{hyper}(h,\beta) \coloneqq R_{rotate}(0,h,\beta) \to \begin{pmatrix} \cos(\beta) \cdot h^2 + \cos(\beta) \\ \sin(\beta) \cdot h^2 + \sin(\beta) \end{pmatrix}$$
Огибающая поверхность в параметрическом виде
$$Pic_1 \coloneqq CreateMesh \begin{pmatrix} R_{hyper}, -5, 5, 0, 2\pi, 50, 50 \end{pmatrix} \quad \begin{array}{c} \Pi_{Oдготовка \ k} \\ \text{визуализащии} \\ \text{возможно} \\ \text{изготовление} \\ \text{анимации.} \\ \text{Видео доступно для} \\ \text{просмотра на канале} \\ \text{https://youtu.b} \\ \text{e/d4GVQSQU} \\ \text{cTI} \\ \\ R(x,y,z) \coloneqq \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$Paccmatpubaen em pemenue ches hoй \\ \phi yhktqueй. \\ Bektop B мировой системе координат}$$

$$R(x,y,z) - Center(\alpha) \to \begin{pmatrix} x - \cos(\alpha) \\ y - \sin(\alpha) \\ z \end{pmatrix}$$

$$R_p(x,y,z,\alpha) := \begin{bmatrix} (R(x,y,z) - \operatorname{Center}(\alpha))^T \cdot e_1(\alpha) \\ (R(x,y,z) - \operatorname{Center}(\alpha))^T \cdot e_2(\alpha) \\ (R(x,y,z) - \operatorname{Center}(\alpha))^T \cdot e_2(\alpha) \end{bmatrix} \rightarrow \begin{bmatrix} \cos(\alpha) \cdot (y - \sin(\alpha)) - \sin(\alpha) \cdot (x - \cos(\alpha)) \\ \cos(\alpha) \cdot (x - \cos(\alpha)) + \sin(\alpha) \cdot (y - \sin(\alpha)) \end{bmatrix}$$

$$Tot \text{ же вектор, та же точка в динамической системе координат.}$$

$$\underline{\mathbb{G}}_{(x,y,z,\alpha)} = \overline{\mathbb{F}}_b[\mathbb{F}_p(x_0,z,z_0)_p,\mathbb{F}_p(x_0,z,z_0)_p) \rightarrow \overline{\mathcal{E}}_{-\frac{1}{2}}(\sin(\alpha)(y - \sin(\alpha)) - \cos(\alpha)(x - \cos(\alpha)) + (\sin(\alpha) \cdot (y - \sin(\alpha)))^2}$$

$$F_b(x_b,y_b,z_b) = x_b^2 + y_b^2 - z_b = 0$$

$$Q(x,y,z,\alpha) := \frac{d}{d}G(x,y,z,\alpha) \rightarrow \sin(\alpha) \cdot (x - \cos(\alpha)(x - \cos(\alpha)) + (\sin(\alpha)(y - \sin(\alpha)))^2}$$

$$P(x,y,z,\alpha,b) := Q(x,y,z,\alpha) \text{ substitute, } \cos(\alpha) = a,\sin(\alpha) = b$$

$$Other \text{ отдельные вычисления для того, чтобы избежать, чтобы в будущем избежать в символьном ответе выражений arctg и как следствие результата операции division by zero
$$Given$$

$$P(x,y,z,a,b) = 0$$

$$a^2 + b^2 = 1$$

$$A_{\text{ra}(x,y,z)} = F_{\text{rad}(z,b)} \rightarrow \begin{cases} x\sqrt{\frac{1}{x^2+y^2}} - x\sqrt{\frac{1}{x^2+y^2}} & \frac{y(y+x\sqrt{xx^2+xy^2-1})}{x^2+y^2} & \frac{y(x+x\sqrt{xx^2+xy^2-1})}{x^2+y^$$$$

цию огибаю- щей поверх-

- 1. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y) = \big(x-cos(t)\big)^2 + \big(y-sin(t)\big)^2$. Необходимо найти и построить огибающую поверхность
- 2. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y) = \left(x-cos(2t)\right)^2 + \left(y-sin(3t)\right)^2$. Необходимо найти и построить огибающую поверхность

- 3. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y)=(x-t)^2+\left(y-sin(t)\right)^2$. Необходимо найти и построить огибающую поверхность
- 4. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y)=(x-t)^2+(y-2t)^2$. Необходимо найти и построить огибающую поверхность
- 5. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y)=(x-t)^2+(y-t^2)^2$. Необходимо найти и построить огибающую поверхность
- 6. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y)=(x-t)^2+\left(y-ln(t)\right)^2$. Необходимо найти и построить огибающую поверхность
- 7. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y)=(x-t)^2+\left(y-e^{-t^2}\right)^2$. Необходимо найти и построить огибающую поверхность
- 8. Однопараметрическое множество параболоидов характеризуется уравнением $Z(x,y) = \big(x-\cos(t)\cdot\sin(t)\big)^2 + \big(y-\sin(t)\big)^2$. Необходимо найти и построить огибающую поверхность

- 1. Для чего во втором примере данного раздела вводится составная поверхность
- 2. Каково происхождение значения u=0 во втором примере данного раздела.
- 3. Какому типу поверхностей принадлежит поверхность, рассмотренная в примере?
- 4. Какова траектория движения вершины параболоида в втором примере?

Раздел 5. Огибающая параболоидов, движущихся по окружности

Рассмотрим уравнение однопараметрического множества параболоидов движущихся по окружности радиуса 10, с центром в начале координат:

$$F(x, y, z, t) = (x - 10 \cdot cos(t))^{2} + (y - sin(t))^{2} - \frac{z}{0.1}$$

Необходимо найти огибающую этого множества. Ниже приведен код в программе MathCAD, выполняющий решение данной задачи.

В рассматриваемом примере также, как и во всех примерах пособия, отсутствие символьного вывода промежуточных выражений не влияет на работоспособность программ.

2 2 7	Формирова-
$F(x,y,z,t) := \left((x - 10\cos(t))^2 + (y - 10\sin(t))^2 - \frac{z}{0.1} \right)$	ние неявной
[0.1]	
	функции,
	описывающей
	данное мно-
	жество
$dF(x,y,z,t) := \frac{d}{dt}F(x,y,z,t) \rightarrow 20 \cdot (x - 10 \cdot \cos(t)) \cdot \sin(t) - 20 \cdot (y - 10 \cdot \sin(t)) \cdot \cos(t)$	Частная про-
dt	изводная
	данной функ-
	ции по пара-
	метру
$ZZ(x,y,t) := \left[(x - 10\cos(t))^2 + (y - 10\sin(t))^2 \right] \cdot 0.1$	
ZZO(x,y) := ZZ(x,y,0)	Визуализация
P0 := CreateMesh(ZZ0,-10 + 10·cos(0),10 + 10·cos(0),-10 + 10·sin(0),10 + 10·sin(0),20,20	нескольких
π π	функций из
$ZZ1(x,y) := ZZ\left(x,y,\frac{\pi}{6}\right)$	однопарамет-
π	рического
P1 := CreateMesh $\left(ZZ1, -10 + 10\cos\left(\frac{\pi}{6}\right), 10 + 10\cos\left(\frac{\pi}{6}\right), -10 + 10\sin\left(\frac{\pi}{6}\right), 10 + 10\sin\left(\frac{\pi}{6}\right), 10, 10 \right)$	множества
$ZZ2(x,y) := ZZ\left(x,y,2\frac{\pi}{6}\right)$	
$ P2 := \text{CreateMesh} \left(ZZ2, -10 + 10\cos\left(2\frac{\pi}{6}\right), 10 + 10\cos\left(2\frac{\pi}{6}\right), -10 + 10\sin\left(2\frac{\pi}{6}\right), 10 + 10\sin\left(2\frac{\pi}{6}\right), 10, 10 \right) $	

$ \begin{array}{c} F3 = \operatorname{CreateMesh}(223, -10 + 10 \cos\left(3\frac{\pi}{6}\right), 10 + 10 \cos\left(3\frac{\pi}{6}\right), -10 + 10 \sin\left(3\frac{\pi}{6}\right), 10 + 10 \sin\left(3\frac{\pi}{6}\right), 10, 10 \right) \\ ZZ4(x,y) := ZZ\left(x,y,4\frac{\pi}{6}\right) \\ F4 = \operatorname{CreateMesh}(224, -10 + 10 \cos\left(3\frac{\pi}{6}\right), 10 + 10 \cos\left(4\frac{\pi}{6}\right), -10 + 10 \sin\left(4\frac{\pi}{6}\right), 10 + 10 \sin\left(3\frac{\pi}{6}\right), 10, 10 \right) \\ ZZ5(x,y) := ZZ\left(x,y,5\frac{\pi}{6}\right) \\ F5 = \operatorname{CreateMesh}(225, -10 + 10 \cos\left(5\frac{\pi}{6}\right), 10 + 10 \cos\left(5\frac{\pi}{6}\right), -10 + 10 \sin\left(5\frac{\pi}{6}\right), 10 + 10 \sin\left(5\frac{\pi}{6}\right), 10, 10 \right) \\ Given & & Bctpoehhuih pelliate_{DB} \\ Sin(h) \cdot x - \sqrt{1 - \sin(h)^2} \cdot y = 0 & K \ Aahhomy \ ypashehuih multipullipullipullipullipullipullipullip$	/ \	
$ZZ4(x,y) := ZZ\left(x,y,4\frac{\pi}{6}\right)$ $ZZ5(x,y) := ZZ\left(x,y,5\frac{\pi}{6}\right)$ $ZZ5(x,y) := ZZ\left(x,y,5\frac{\pi}{6}\right)$ $P5 := CreateMeath (ZZ5,-10+10 cos (5\frac{\pi}{6}),10+10 cos (5\frac{\pi}{6}),-10+10 sin (5\frac{\pi}{6}),10+10 sin (5\frac{\pi}{6}),10,10) Given BCTPOCHHЫЙ решатель MathCAD K данному уравнению Sin(h)·x - \sqrt{1-\sin(h)^2}·y = 0 X = \frac{1}{\sqrt{y^2+x^2}} A(x,y,z) := Find(h)^T \rightarrow \begin{bmatrix} asin & 1 & y \\ (y^2+x^2)^2 & y \\ -asin & 1 & y \\ (y^2+x^2)^2 & y \end{bmatrix} -asin = \frac{1}{\sqrt{y^2+x^2}} A(x,y,z) := F[x,y,z,A(x,y,b_0)] \rightarrow \begin{bmatrix} x-10\left(1-\frac{1}{y^2+x^2},y^2\right)^{\frac{1}{2}} + \left[y-\frac{10}{(y^2+x^2)^2},y^2\right]^2 - 1.10^{\frac{1}{2}} В ТРОСННЫЙ ответ в символьном виде Подстановка в уравнение неявной функции найденного значения па-$	$ZZ3(x,y) := ZZ\left(x,y,3\frac{\pi}{6}\right)$	
$ZZ5(x,y) := ZZ\left(x,y,\frac{\pi}{6}\right)$ $ZZ5(x,y) := ZZ\left(x,y,\frac{\pi}{6}\right)$ $E^{5} = \text{CreateMesh}\left(2Z4,-10+10\cos\left(\frac{\pi}{6}\right),10+10\cos\left(\frac{\pi}{6}\right),-10+10\sin\left(\frac{\pi}{6}\right),10+10\sin\left(\frac{\pi}{6}\right),10+10\sin\left(\frac{\pi}{6}\right),10,10}$ $E^{6} = \text{CreateMesh}\left(2Z5,-10+10\cos\left(\frac{\pi}{6}\right),10+10\cos\left(\frac{\pi}{6}\right),-10+10\sin\left(\frac{\pi}{6}\right),10+10\sin\left(\frac{\pi}{6}\right),10,10}\right)$ $Sin(h) \cdot x - \sqrt{1-\sin(h)^{2}} \cdot y = 0$	$P3 := \text{CreateMesh}\left(ZZ3, -10 + 10 \cdot \cos\left(3\frac{\pi}{6}\right), 10 + 10 \cdot \cos\left(3\frac{\pi}{6}\right), -10 + 10 \cdot \sin\left(3\frac{\pi}{6}\right), 10 + 10 \cdot \sin\left(3$	
$ZZ5(x,y) := ZZ\left(x,y,5\frac{\pi}{6}\right)$ Р5 > CreateMesh $(225,-10+10\cos\left(5\frac{\pi}{6}\right),10+10\cos\left(5\frac{\pi}{6}\right),10+10\sin\left(5\frac{\pi}{6}\right),10+10\sin\left(5\frac{\pi}{6}\right),10,10\right)$ Given BCTPOEHHBIЙ решатель МаthCAD $Sin(h) : x - \sqrt{1-\sin(h)^2} : y = 0$ $Sin(h) : x - \sqrt{1-\sin(h)^2} : y$	$ZZ4(x,y) := ZZ\left(x,y,4\frac{\pi}{6}\right)$	
$ \begin{array}{c} \text{Given} \\ \\ \text{Given} \\ \\ \text{Sin(h)} \cdot \textbf{x} - \sqrt{1 - \sin(\textbf{h})}^2 \cdot \textbf{y} = 0 \\ \\ \text{Sin(h)} \cdot \textbf{x} - \sqrt{1 - \sin(\textbf{h})}^2 \cdot \textbf{y} = 0 \\ \\ \text{Sin(h)} \cdot \textbf{x} - \sqrt{1 - \sin(\textbf{h})}^2 \cdot \textbf{y} = 0 \\ \\ \text{A(x,y,z)} := \text{Find(h)}^T \rightarrow \\ \\ \text{C(x,y,z)} := \text{F[x,y,z,A(x,y,z)_0]} \rightarrow \\ \\ \text{C(x,y,z)} := \text{F[x,y,z,A(x,y,z)_0]} \rightarrow \\ \\ \text{C(x,y,z)} := \text{F[x,y,z,A(x,y,z)_0]} \rightarrow \\ \\ \text{C(x,y,z)} := \text{CreateMesh} \left(\frac{3\pi}{6} \right) \cdot 10 + 10 \sin\left(\frac{5\pi}{6}\right) \cdot 10 + 10 \sin\left(\frac{5\pi}{6}\right) \cdot 10 \cdot 10 \right) \\ \text{K данному уравнению мы пришли после анализа уравнения для частной производной Полученный ответ в сим-вольном виде } \\ \text{Полученный ответ в сим-вольном виде} \\ \text{С(x,y,z)} := \text{F[x,y,z,A(x,y,z)_0]} \rightarrow \\ \text{C(x,y,z)} := \text{F[x,y,z,A(x,y,z)_0]} \rightarrow \\ \text{C(x,y,z)} := \text{C(x,y,z)} \cdot C(x,y,z$	$P4 := \text{CreateMesh} \left(2Z4, -10 + 10 \cdot \cos\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \cos\left(4\frac{\pi}{6}\right), -10 + 10 \cdot \sin\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \cos\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \sin\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \cos\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \sin\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \sin\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \cos\left(4\frac{\pi}{6}\right), 10 + 10 \cdot \cos\left(4$	
Given Bcтроенный решатель МаthCAD $\sin(h) \cdot x - \sqrt{1 - \sin(h)^2} \cdot y = 0$ К данному уравнению мы пришли после анализа уравнения для частной производной Полученный ответ в символьном виде $\left[\frac{1}{y^2 + x^2}\right]^2 + \left[y - \frac{10}{y^2 + x^2}\right]^2 - 1.10^{1}z$ Подстановка в уравнение неявной функции найденного значения па-	$ZZS(x,y) := ZZ\left(x,y,5\frac{\pi}{6}\right)$	
Given Bcтроенный решатель МаthCAD $\sin(h) \cdot x - \sqrt{1 - \sin(h)^2} \cdot y = 0$ К данному уравнению мы пришли после анализа уравнения для частной производной Полученный ответ в символьном виде $\left[\frac{1}{y^2 + x^2}\right]^2 + \left[y - \frac{10}{y^2 + x^2}\right]^2 - 1.10^{1}z$ Подстановка в уравнение неявной функции найденного значения па-	P5 := CreateMesh $(225,-10+10\cdot\cos(5\frac{\pi}{2}),10+10\cdot\cos(5\frac{\pi}{2}),-10+10\cdot\sin(5\frac{\pi}{2}),10+10\cdot\sin(5\frac{\pi}{2}),10,10)$	
$sin(h) \cdot x - \sqrt{1 - sin(h)^2} \cdot y = 0$ $sin(h) \cdot x - \sqrt{1 - sin(h)^2} \cdot y = 0$ $R $		
$sin(h) \cdot x - \sqrt{1 - sin(h)^2} \cdot y = 0$ $sin(h) \cdot x - \sqrt{1 - sin(h)^2} \cdot y = 0$ $K данному уравнению мы пришли после анализа уравнения для частной производной Полученный ответ в символьном виде A(x,y,z) := Find(h)^T \rightarrow \begin{bmatrix} asin \boxed{\frac{1}{y^2 + z^2}} \\ y \end{bmatrix}^{-\frac{1}{2}} - asin \boxed{\frac{1}{(y^2 + z^2)^2}} \end{bmatrix} + \begin{bmatrix} y - \frac{10}{(y^2 + z^2)^2} \\ y \end{bmatrix}^{-1 \cdot 10^1 \cdot z} \end{bmatrix} F(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x - 10 \left(1 - \frac{1}{y^2 + z^2} y^2\right)^{\frac{1}{2}} \end{bmatrix}^2 + \begin{bmatrix} y - \frac{10}{(y^2 + z^2)^2} \\ y \end{bmatrix}^2 - 1 \cdot 10^1 \cdot z \end{bmatrix} F(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x - 10 \left(1 - \frac{1}{y^2 + z^2} y^2\right)^{\frac{1}{2}} \end{bmatrix}^2 + \begin{bmatrix} y - \frac{10}{(y^2 + z^2)^2} \\ y \end{bmatrix}^2 - 1 \cdot 10^1 \cdot z \end{bmatrix} F(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x - 10 \left(1 - \frac{1}{y^2 + z^2} y^2\right)^{\frac{1}{2}} \end{bmatrix}^2 + \begin{bmatrix} y - \frac{10}{(y^2 + z^2)^2} \\ y \end{bmatrix}^2 - 1 \cdot 10^1 \cdot z \end{bmatrix} F(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x - 10 \left(1 - \frac{1}{y^2 + z^2} y^2\right)^{\frac{1}{2}} \\ y - \frac{10}{(y^2 + z^2)^2} \end{bmatrix} F(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x - 10 \left(1 - \frac{1}{y^2 + z^2} y^2\right)^{\frac{1}{2}} \\ y - \frac{10}{(y^2 + z^2)^2} \end{bmatrix}$	Given	Встроенный
$sin(h) \cdot x - \sqrt{1 - sin(h)^2} \cdot y = 0$ $R (данному уравнению мы пришли после анализа уравнения для частной производной Полученный ответ в символьном виде A(x,y,z) := Find(h)^T \rightarrow \begin{bmatrix} asin & 1 & & & & & & & & & & & & & & & & & $		решатель
$sin(h) \cdot x - \sqrt{1 - sin(h)^2} \cdot y = 0$ $R (данному уравнению мы пришли после анализа уравнения для частной производной Полученный ответ в символьном виде A(x,y,z) := Find(h)^T \rightarrow \begin{bmatrix} asin & 1 & & & & & & & & & & & & & & & & & $		MathCAD
$A(x,y,z) := Find(h)^T ightarrow \begin{bmatrix} 1 & y \\ y^2 + x^2 \end{bmatrix}^2 - 1 \cdot 10^1 \cdot$	$sin(h) \cdot y = \sqrt{1 - sin(h)^2} \cdot y = 0$	К данному
$A(x,y,z) := Find(h)^T \rightarrow \begin{bmatrix} asin & \frac{1}{\sqrt{2}} & y \\ \left(y^2 + x^2\right)^2 & & Topous Bodhoù \\ -asin & \frac{1}{\sqrt{2}} & y \\ \left(y^2 + x^2\right)^2 & & Topous Bodhoù Bodhoù Bude \end{bmatrix}$ $G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x - 10 \cdot \left(1 - \frac{1}{y^2 + x^2} \cdot y^2\right)^{\frac{1}{2}} \\ y - \frac{10}{\sqrt{y^2 + x^2}} & y \end{bmatrix}^2 + \begin{bmatrix} y - \frac{10}{\sqrt{y^2 + x^2}} \cdot y \\ \left(y^2 + x^2\right)^2 \end{bmatrix}^2 - 1 \cdot 10^{1-2} \cdot y \\ \left(y^2 + x^2\right)^2 & Topous Bodhoù Bude Bodhoù $	samin v Vi samin y = 0	уравнению
$A(x,y,z) := Find(h)^T \rightarrow \begin{bmatrix} asin & \frac{1}{\sqrt{2}} & y \\ \left(y^2 + x^2\right)^2 & & Topous Bodhoù \\ -asin & \frac{1}{\sqrt{2}} & y \\ \left(y^2 + x^2\right)^2 & & Topous Bodhoù Bodhoù Bude \end{bmatrix}$ $G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x - 10 \cdot \left(1 - \frac{1}{y^2 + x^2} \cdot y^2\right)^{\frac{1}{2}} \\ y - \frac{10}{\sqrt{y^2 + x^2}} & y \end{bmatrix}^2 + \begin{bmatrix} y - \frac{10}{\sqrt{y^2 + x^2}} \cdot y \\ \left(y^2 + x^2\right)^2 \end{bmatrix}^2 - 1 \cdot 10^{1-2} \cdot y \\ \left(y^2 + x^2\right)^2 & Topous Bodhoù Bude Bodhoù $		мы пришли
$A(x,y,z) \coloneqq \text{Find(h)}^T \to \begin{bmatrix} a\sin\left[\frac{1}{\frac{1}{y^2+x^2}}\right]^2 \\ -a\sin\left[\frac{1}{\frac{1}{y^2+x^2}}\right]^2 \end{bmatrix} + \begin{bmatrix} y \\ y - \frac{10}{\frac{1}{y^2+x^2}} \end{bmatrix}^2 - 1.10^{1} \cdot y$ Подстановка в уравнение неявной функции найденного значения па-		-
$\mathbb{A}(x,y,z) \coloneqq Find(h)^{T} \to \begin{bmatrix} a \sin \left[\frac{1}{\frac{1}{y^2 + x^2}} \right]^2 \\ -a \sin \left[\frac{1}{\frac{1}{y^2 + x^2}} \right]^2 \end{bmatrix} = \begin{bmatrix} Полученный \\ ответ \ в \ сим- \\ вольном \ виде \end{bmatrix}$ $\mathbb{G}(x,y,z) \coloneqq F(x,y,z,\mathbb{A}(x,y,z)_0) \to \begin{bmatrix} x - 10 \left(1 - \frac{1}{y^2 + x^2} \cdot y^2 \right)^{\frac{1}{2}} \right]^2 + \begin{bmatrix} y - \frac{10}{\frac{1}{y^2 + x^2}} \cdot y \end{bmatrix}^2 - 1 \cdot 10^4 \cdot z} \end{bmatrix}$ $\mathbb{I} Подстановка$ $в \ уравнение$ $нея в \ и$ $нея в и$ $функции$ $найденного$ $значения \ па$		уравнения
$\mathbb{A}(x,y,z) \coloneqq \text{Find(h)}^T \to \begin{bmatrix} a\sin\left[\frac{1}{\frac{1}{y^2+z^2}}\right]^2 \\ -a\sin\left[\frac{1}{\frac{1}{y^2+z^2}}\right]^2 \end{bmatrix} + \begin{bmatrix} u& & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $		для частной
$\mathbb{A}(x,y,z) \coloneqq \text{Find(h)}^T \to \begin{bmatrix} a\sin\left[\frac{1}{\frac{1}{y^2+z^2}}\right]^2 \\ -a\sin\left[\frac{1}{\frac{1}{y^2+z^2}}\right]^2 \end{bmatrix} + \begin{bmatrix} u& & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $		производной
$A(x,y,z) := Find(h)^T \to \begin{bmatrix} \frac{1}{2} & y \\ y^2 + x^2 \end{bmatrix} - asin \begin{bmatrix} \frac{1}{2} & y \\ y^2 + x^2 \end{bmatrix}^2 + \begin{bmatrix} y & y \\ y^2 + x^2 \end{bmatrix}^2 = \begin{bmatrix} y & y \\ y^2 + x^2 \end{bmatrix}^2 - 1.10^1 = B$ ОТВЕТ В СИМ-ВОЛЬНОМ ВИДЕ $G(x,y,z) := F(x,y,z,A(x,y,z)_0) \to \begin{bmatrix} x & y & y \\ x^2 + x^2 & y^2 \end{bmatrix}^2 + \begin{bmatrix} y & \frac{10}{2} & y \\ y^2 + x^2 \end{bmatrix}^2 - 1.10^1 = B$ Уравнение неявной функции найденного значения па-	[[1]]	•
$A(x,y,z) \coloneqq \text{Find(h)}^T \to \begin{bmatrix} \left\{ y^2 + x^2 \right\}^{\frac{1}{2}} \right] - \text{asin} \begin{bmatrix} \frac{1}{y^2 + x^2} \end{bmatrix}^2 - \frac{1}{y^2 + x^2} \end{bmatrix}$ Вольном виде вольном виде $G(x,y,z) \coloneqq F(x,y,z,A(x,y,z)_0) \to \begin{bmatrix} x - 10 \cdot \left(1 - \frac{1}{y^2 + x^2} \cdot y^2\right)^{\frac{1}{2}} \end{bmatrix}^2 + \begin{bmatrix} y - \frac{10}{y^2 + x^2} \cdot y^2 \end{bmatrix}^2 - \frac{1}{y^2 + x^2} \cdot y^2 - \frac{1}{y^2 + x^2} \cdot y^2 = \frac{1}{$		•
$G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x-10 \cdot \left(1-\frac{1}{y^2+x^2}\cdot y^2\right)^{\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} y-\frac{10}{y^2+x^2} \cdot y^2 \end{bmatrix}^2 - \frac{1}{1\cdot 10^{\frac{1}{2}}} & \text{в уравнение } \\ \left(y^2+x^2\right)^{\frac{1}{2}} \end{bmatrix}^2 - \frac{1}{1\cdot 10^{\frac{1}{2}}} & \text{в уравнение } \\ \left(y^2+x^2\right)^{\frac{1}{2}} & \text{функции } \\ & \text{найденного } \\ & \text{значения па-} \end{bmatrix}$		
$G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x-10 \cdot \left(1-\frac{1}{y^2+x^2}\cdot y^2\right)^{\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} y-\frac{10}{y^2+x^2} \cdot y^2 \end{bmatrix}^2 - \frac{1}{1\cdot 10^{\frac{1}{2}}} & \text{в уравнение } \\ \left(y^2+x^2\right)^{\frac{1}{2}} \end{bmatrix}^2 - \frac{1}{1\cdot 10^{\frac{1}{2}}} & \text{в уравнение } \\ \left(y^2+x^2\right)^{\frac{1}{2}} & \text{функции } \\ & \text{найденного } \\ & \text{значения па-} \end{bmatrix}$	$\left[\left(y^2 + x^2 \right)^2 \right]$	вольном видс
$G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x-10 \cdot \left(1-\frac{1}{y^2+x^2}\cdot y^2\right)^{\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} y-\frac{10}{y^2+x^2} \cdot y^2 \end{bmatrix}^2 - \frac{1}{1\cdot 10^2} \cdot y = \frac{1}{2} + \frac{1}{2} \cdot y = \frac{1}{2} \cdot $	$A(x,y,z) = \operatorname{Find}(h) \rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
$G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x-10 \cdot \left(1-\frac{1}{y^2+x^2}\cdot y^2\right)^{\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} y-\frac{10}{y^2+x^2} \cdot y^2 \end{bmatrix}^2 - \frac{1}{1\cdot 10^2} \cdot y = \frac{1}{2} + \frac{1}{2} \cdot y = \frac{1}{2} \cdot $	-asin	
$G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x-10 \cdot \left(1-\frac{1}{y^2+x^2}\cdot y^2\right)^{\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} y-\frac{10}{y^2+x^2} \cdot y^2 \end{bmatrix}^2 - \frac{1}{1\cdot 10^2} \cdot y = \frac{1}{2} + \frac{1}{2} \cdot y = \frac{1}{2} \cdot $	$\left \begin{array}{ccc} 1 & 1 & \frac{1}{2} \end{array} \right $	
$G(x,y,z) := F(x,y,z,A(x,y,z)_0) \rightarrow \begin{bmatrix} x-10 \cdot \left(1-\frac{1}{y^2+x^2}\cdot y^2\right)^{\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} y-\frac{10}{y^2+x^2} \cdot y^2 \end{bmatrix}^2 - \frac{1}{1\cdot 10^{\frac{1}{2}}} & \text{в уравнение } \\ \left(y^2+x^2\right)^{\frac{1}{2}} \end{bmatrix}^2 - \frac{1}{1\cdot 10^{\frac{1}{2}}} & \text{в уравнение } \\ \left(y^2+x^2\right)^{\frac{1}{2}} & \text{функции } \\ & \text{найденного } \\ & \text{значения па-} \end{bmatrix}$	$\left[\left(y^2 + x^2 \right)^2 \right]$	
найденного значения па-	$\left[\begin{array}{cc} & \frac{1}{2} \end{array}\right]^2$	Подстановка
найденного значения па-	$G(x, y, z) := F(x, y, z, A(x, y, z)_0) \rightarrow x - 10 \left(1 - \frac{1}{1 - y^2}\right)^2 + y - \frac{10}{y^2} - \frac{1}{1 - 10^3}$	в уравнение
найденного значения па-	$\begin{bmatrix} 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	неявной
значения па-	$\left[\left(y^2 + x^2 \right)^2 \right]$	функции
		найденного
namerna		значения па-
paintipa		раметра

- 1. Найти и построить огибающую поверхность параболоидов (параболоиды вращаются по окружности единичного радиуса) из системы координат: Центр координат совпадает с $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, базисные векторы $e_1 = \begin{bmatrix} \cos \frac{\pi}{6} \\ \sin \frac{\pi}{6} \end{bmatrix}$, $e_2 = \begin{bmatrix} -\sin \frac{\pi}{6} \\ \cos \frac{\pi}{6} \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
- 2. Найти и построить огибающую поверхность параболоидов (параболоиды вращаются по окружности единичного радиуса) из системы координат: Центр координат совпадает с $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, базисные $\begin{bmatrix} \cos \frac{\pi}{6} \end{bmatrix}$ $\begin{bmatrix} \cos \frac{\pi}{6} \end{bmatrix}$
- векторы $e_1=egin{bmatrix} \cos\frac{\pi}{6} \\ \sin\frac{\pi}{6} \\ 0 \end{bmatrix}, e_2=egin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, e_3=egin{bmatrix} -\sin\frac{\pi}{6} \\ \cos\frac{\pi}{6} \\ 0 \end{bmatrix}$
- 3. Найти и построить огибающую поверхность параболоидов (параболоиды вращаются по окружности единичного радиуса) из системы координат: Центр координат совпадает с $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, базисные

векторы
$$e_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, e_2 = \begin{bmatrix} \cos \frac{\pi}{6} \\ \sin \frac{\pi}{6} \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} -\sin \frac{\pi}{6} \\ \cos \frac{\pi}{6} \\ 0 \end{bmatrix}$$

- 4. Вершина параболоидов движется по единичной окружности, расположенной в плоскости x+2y-z=0. Центр окружности совпадает с началом координат. Найти и построить огибающую поверхность параболоидов.
- 5. Вершина параболоидов движется по единичной окружности, расположенной в плоскости x+2y-z=0. Центр окружности совпадает с началом координат. Найти и построить огибающую поверхность параболоидов.
- 6. Вершина параболоидов движется по единичной окружности, расположенной в плоскости x + 2y z = 0. Центр окружности

совпадает с началом координат. Найти и построить огибающую поверхность параболоидов.

- 7. Вершина параболоидов движется по единичной окружности, расположенной в плоскости 2x+y-z=0. Центр окружности совпадает с началом координат. Найти и построить огибающую поверхность параболоидов.
- 8. Вершина параболоидов движется по единичной окружности, расположенной в плоскости x-2y+z=0. Центр окружности совпадает с началом координат. Найти и построить огибающую поверхность параболоидов.

- 1. В рассматриваемом примере существует ли линия самопересечения?
- 2. Является ли огибающая поверхность поверхностью второго порядка?
- 3. Какому типу поверхностей принадлежит поверхность, рассмотренная в примере?
- 4. Используются ли в данном примере вычислительные схемы, которые могли бы привести результат вычислений «division by zero»?

Раздел 6. Огибающая параболоидов, движущихся по прямой

Рассмотрим однопараметрическое множество параболоидов, движущихся вдоль некоторой прямой. Уравнение такого семейства параболоидов в неявном виде будет : $F(x,y,z,t) = (x-t)^2 + (y-t)^2 - z = 0$.

Необходимо построить огибающую поверхность данного множества параболоидов. Ниже приведен код в программе MathCAD, выполняющий решение данной задачи.

$F(x,y,z,t) := [(x-t)^2 + (y-t)^2 - z]$	Задание неявной функции, описывающей однопараметрическое множество параболоидов: $F(x,y,z,t) = (x-t)^2 + (y-t)^2 - z = 0.$
$dF(x,y,z,t) := \frac{d}{dt}F(x,y,z,t) \rightarrow -2\cdot x + 4\cdot t - 2\cdot y$	Частная производная данной функции по параметру
Given	Встроенный ре- шатель MathCAD
dF(x,y,z,t) = 0	Решение уравнения $\frac{\partial F}{\partial t} = 0$ встроенными средствами MathCAD относительно параметра t
$A(x,y,z) := Find(t) \rightarrow \frac{1}{2} \cdot x + \frac{1}{2} \cdot y$	Выражение зна- чения параметра <i>t</i> через перемен-

	ные х и у.
$(1, 1)^2 (1, 1)^2$	
$G(x,y,z) := F(x,y,z,A(x,y,z)) \rightarrow \left(\frac{1}{2} \cdot x - \frac{1}{2} \cdot y\right)^2 + \left(\frac{1}{2} \cdot y - \frac{1}{2} \cdot x\right)^2 - z$	уравнение неяв-
(2 2) (2 2)	ной функции
	найденного зна-
	чения параметра
$\begin{bmatrix} 1 & 1 & 1 & 2 & 1 & 1 & 2 \end{bmatrix}$	Визуализация
$Z(x,y) := \left \left(\frac{1}{2} \cdot x - \frac{1}{2} \cdot y \right)^2 + \left(\frac{1}{2} \cdot y - \frac{1}{2} \cdot x \right)^2 \right $	огибающей по-
	верхности одно-
	параметрическо-
	го множества
	параболоидов
P := CreateMesh(Z,-20,40,-20,40,20,20)	
$ZZ(x,y,t) := \left[(x-t)^2 + (y-t)^2 \right]$	
ZZO(x,y) := ZZ(x,y,0)	Визуализация
P0 := CreateMesh(ZZ0,-20,20,-20,20,10,10)	нескольких для
ZZ1(x,y) := ZZ(x,y,5)	демонстрации
P1 := CreateMesh($ZZ1,-20+5,20+5,-20+5,20+5,10,10$)	семейства пара-
ZZ2(x,y) := ZZ(x,y,10)	болоидов
P2 := CreateMesh(ZZ2, -20 + 10, 20 + 10, -20 + 10, 20 + 10, 10, 10)	
ZZ3(x,y) := ZZ(x,y,20)	
P3 := CreateMesh(ZZ3, -20 + 20, 20 + 20, -20 + 20, 20 + 20, 10, 10)	
	Итоговый ре-
	зультат
N 1	
1500	
\mathcal{M}	
_ 1000	
- 500	
200	
10 20 0	
P,P0,P1,P2,P3	
<u> </u>	

- 1. Вершина однопараметрического множества параболоидов $z=(x)^2+(y)^2$ движется по прямой $R(t)=\begin{bmatrix} 0\\0\\0\end{bmatrix}+t\cdot\begin{bmatrix} 3\\2\\0\end{bmatrix}$. Найти и построить огибающую поверхность однопараметрического множества параболоидов.
- 2. Вершина однопараметрического множества параболоидов $z=(x)^2+(y)^2$ движется по прямой $R(t)=\begin{bmatrix}1\\0\\0\end{bmatrix}+t\cdot\begin{bmatrix}1\\2\\1\end{bmatrix}$. Найти и построить огибающую поверхность однопараметрического множества параболоидов.
- 3. Вершина однопараметрического множества параболоидов $z=(x)^2+(y)^2$ движется по прямой $R(t)=\begin{bmatrix} 0\\1\\2\end{bmatrix}+t\cdot \begin{bmatrix} 1\\1\\4\end{bmatrix}$. Найти и построить огибающую поверхность однопараметрического множества параболоидов.
- 4. Вершина однопараметрического множества параболоидов $z=(x)^2+(y)^2$ движется по прямой $R(t)=\begin{bmatrix} 0\\0\\3\end{bmatrix}+t\cdot\begin{bmatrix} 3\\2\\4\end{bmatrix}$. Найти и построить огибающую поверхность однопараметрического множества параболоидов.
- 5. Вершина однопараметрического множества параболоидов $z=(x)^2+(y)^2$ движется по прямой $R(t)=\begin{bmatrix}0\\2\\0\end{bmatrix}+t\cdot\begin{bmatrix}8\\2\\1\end{bmatrix}$. Найти и построить огибающую поверхность однопараметрического множества параболоидов.
- 6. Вершина однопараметрического множества параболоидов $z=(x)^2+(y)^2$ движется по прямой $R(t)=\begin{bmatrix} 0\\1\\1 \end{bmatrix}+t\cdot \begin{bmatrix} 3\\1\\6 \end{bmatrix}$. Найти и построить огибающую поверхность однопараметрического множества параболоидов.

7. Вершина однопараметрического множества параболоидов $z=(x)^2+(y)^2$ движется по прямой $R(t)=\begin{bmatrix}1\\4\\7\end{bmatrix}+t\cdot\begin{bmatrix}-1\\2\\3\end{bmatrix}$. Найти и

построить огибающую поверхность однопараметрического множества параболоидов.

8. Вершина однопараметрического множества параболоидов

$$z = (x)^2 + (y)^2$$
движется по прямой $R(t) = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} + t \cdot \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$. Найти и

построить огибающую поверхность однопараметрического множества параболоидов.

- 1. В рассматриваемом примере существует ли линия самопересечения?
- 2. Является ли огибающая поверхность поверхностью второго порядка?
- 3. Какому типу поверхностей принадлежит поверхность, рассмотренная в примере?
- 4. Какова траектория движения вершины параболоида в данном примере?

Раздел 7. Огибающая двухпараметрического множества параболоидов

Рассмотрим двухпараметрическое семейство поверхностей. Уравнение в неявном виде, описывающее данное множество, будет выглядеть так: $F(x,y,z,C_1,C_2)$. Здесь подход будет аналогичный, как и в случае однопараметрического множества. Составляем систему уравнений:

$$\frac{\partial F}{\partial C_1}(x, y, z, C_1, C_2) = 0$$
$$\frac{\partial y}{\partial C_2}(x, y, z, C_1, C_2) = 0$$

И данную систему уравнений решаем относительно переменных C_1 и C_2 . И найденные зависимости $C_1 = C_1(x, y, z)$, $C_2 = C_2(x, y, z)$ подставляем в исходное уравнение $F(x, y, z, C_1(x, y, z), C_2(x, y, z))$.

$F(x,y,z,X,Y) := (x - X)^2 + (y - Y)^2 - (z - X^2 - X^2)^2$	уФормирование неявной функции F(x, y, z, C ₁ , C ₂), описывающей двухпараметрическое множество параболоидов.
$dFX(x,y,z,X,Y) := \left(\frac{d}{dX}F(x,y,z,X,Y)\right)$ $dFY(x,y,z,X,Y) := \left(\frac{d}{dY}F(x,y,z,X,Y)\right)$	Частные производные по параметрам
Given (dY	Встроенный решатель MathCAD
dFX(x,y,z,X,Y) = 0 $dFY(x,y,z,X,Y) = 0$	Система уравнений $\frac{\partial F}{\partial C_1}(x,y,z,C_1,C_2)=0$ $\frac{\partial y}{\partial C_2}(x,y,z,C_1,C_2)=0$

(1,,)	Выражение значений па-
$A(x,y,z) := Find(X,Y) \rightarrow \begin{bmatrix} \frac{1}{2} \cdot x \\ \frac{1}{2} \cdot y \end{bmatrix}_{*}$	раметров через перемен-
$A(x,y,z) := Find(X,Y) \rightarrow _{1}$	ные x, y, z . Условия данной
1 · y	задачи позволяют полу-
(2)	чить явные символьные
	выражения
$G(x,y,z) := F(x,y,z,A(x,y,z)_{0.0},A(x,y,z)_{1}$	Подстановка полученных
, ,,,,	$C_1 = C_1(x, y, z),$
	$C_2 = C_2(x, y, z)$ в уравне-
	ние
	$F(x, y, z, C_1(x, y, z), C_2(x, y, z))$
Z(x,y) := G(x,y,0)	Визуализация огибающей
P := CreateMesh(Z,-10,10,-10,10,20,20)	поверхности и некоторых
Z0(x,y) := F(x,y,0,0,0)	поверхностей из семейства
P0 := CreateMesh(Z0,-3,3,-3,3,20,20)	параболоидов
Z11(x,y) := F(x,y,0,-5,-5)	
P11 := CreateMesh(Z11,-3 - 5,3 - 5,-3 - 5,3 - 5,20	ý.
Z12(x,y) := F(x,y,0,-5,5)	
P12 := CreateMesh(Z12,-3 - 5,3 - 5,-3 + 5,3 + 5,20,	21
Z13(x,y) := F(x,y,0,5,5)	

Z14(x,y) := F(x,y,0,5,-5)P14 := CreateMesh(Z14,-3 + 5,3 + 5,-3 - 5,3 - 5,20,2

P13 := CreateMesh(Z13, -3 + 5, 3 + 5, -3 + 5, 3 + 5, 20).

Итоговый результат

Рис. 4. Огибающая поверхность двухпараметрического множества параболоидов

Рассмотрим другое двухпараметрическое множество параболоидов. Пусть параболоид, заданный уравнением P(u, v, r) движется в пространстве, причем вершина параболоида принадлежит по-

верхности
$$Center(\alpha,r) = \begin{bmatrix} r \cdot \cos \alpha \\ r \cdot \sin \alpha \\ r^2 \end{bmatrix}$$
. Динамический локальный ба-

зис в мировой системе координат $e_1(\propto,r)$, $e_2(\propto,r)$, $e_3(\propto,r)$. В программе мы придали для вершины параболоида значения, принадлежащие точно такому же параболоиду. Соответственно, $e_3(\propto,r)=$

$$n(\cos \propto, \sin \propto, r) \ , \ e_2(\propto, r) = \begin{bmatrix} -e_3(\propto, r)_1 \\ e_3(\propto, r)_0 \\ 0 \end{bmatrix} \ , \ e_1(\propto, r) = e_2(\propto, r) \times (e_1(\sim, r) + e_2(\sim, r)) \times (e_2(\sim, r) + e_2(\sim, r))$$

 $e_3(\propto,r)$, где основную роль играет задание вектора $e_3(\propto,r)$, мы выбрали , что это есть ортонормированное значение вектора нормали к параболоида. То есть, другими словами параболоид скользит по точно такому же параболоиду. Точки касания — это вершины параболоидов, главная ось параболоидов совпадает с нормалью огибающей поверхности (тоже параболоид).

После подстановки преобразования из системы координат $e_1(\propto,r)$, $e_2(\propto,r)$, $e_3(\propto,r)$, $Center(\alpha,r)$ в мировую систему координат мы получим уравнение двухпараметрического множества пара-

болоидов
$$R_{rotate} = \begin{bmatrix} x_{rotate}(u,v,\propto,r) \\ y_{rotate}(u,v,\propto,r) \\ z_{rotate}(u,v,\propto,r) \end{bmatrix}$$
, где u,v — точка на парабо-

лоиде, \propto , r — выделение отдельного параболоида из двухпараметрического множества.

Далее решение систем уравнений из двух определителей равных 0

$$\begin{vmatrix} \frac{\partial x_{rotate}}{\partial \propto} & \frac{\partial y_{rotate}}{\partial \propto} & \frac{\partial z_{rotate}}{\partial \propto} \\ \frac{\partial x_{rotate}}{\partial u} & \frac{\partial y_{rotate}}{\partial u} & \frac{\partial z_{rotate}}{\partial u} \\ \frac{\partial x_{rotate}}{\partial v} & \frac{\partial y_{rotate}}{\partial v} & \frac{\partial z_{rotate}}{\partial v} \\ \frac{\partial x_{rotate}}{\partial v} & \frac{\partial y_{rotate}}{\partial v} & \frac{\partial z_{rotate}}{\partial v} \\ \frac{\partial x_{rotate}}{\partial r} & \frac{\partial y_{rotate}}{\partial r} & \frac{\partial z_{rotate}}{\partial r} \\ \frac{\partial x_{rotate}}{\partial u} & \frac{\partial y_{rotate}}{\partial u} & \frac{\partial z_{rotate}}{\partial u} \\ \frac{\partial x_{rotate}}{\partial v} & \frac{\partial y_{rotate}}{\partial v} & \frac{\partial z_{rotate}}{\partial v} \end{vmatrix} = 0$$

Для исключения переменных u, v приводит нас к мысли, что выражения для u, v, где u, v будут выражены через \propto, r , будут иметь вещественные значения только при u = 0, v = 0.

Откуда, мы имеем вполне естественный результат для огибающей поверхности

$$R_{rotate}(\alpha, r) = \begin{bmatrix} x_{rotate}(\alpha, r) \\ y_{rotate}(\alpha, r) \\ z_{rotate}(\alpha, r) \end{bmatrix} = \begin{bmatrix} r \cdot \cos \alpha \\ r \cdot \sin \alpha \\ r^2 \end{bmatrix}.$$

Нетрудно было сделать такой вывод и без проведенных выкладок. Передвигаемый параболоид касается вершиной огибающей поверхности, что возможно только при u=0, v=0.

В рассматриваемом примере также, как и во всех примерах пособия, отсутствие символьного вывода промежуточных выражений не влияет на работоспособность программ.

$$P(u,v,r) := \begin{bmatrix} r \cdot u \\ r \cdot v \\ r^2 \cdot \left(u^2 + v^2\right) \end{bmatrix} \rightarrow \begin{bmatrix} r \cdot u \\ r \cdot v \\ r^2 \cdot \left(u^2 + v^2\right) \end{bmatrix} \qquad P(u,v,r)$$

$$\frac{\frac{d}{d}P(u,v,r) \times \frac{d}{d}P(u,v,r)}{\sqrt{\left[\left(\frac{d}{d}P(u,v,r)\right) \times \left(\frac{d}{d}P(u,v,r)\right) \times \left(\frac{d}{d}P(u,v,r)\right)\right]}} \qquad n(\cos \alpha, \sin \alpha, r)$$

$$Ring(\alpha,r) := \begin{bmatrix} r\cos(\alpha) \\ r\sin(\alpha) \\ r^2 \end{bmatrix} \qquad Haчало ло- кальной динамической системы координат$$

$$Center(\alpha,r) := Ring(\alpha,r) \rightarrow \begin{bmatrix} r\cdot\cos(\alpha) \\ r\cdot\sin(\alpha) \\ r^2 \end{bmatrix} \qquad Haчало ло- кальной динамической системы координат$$

$$e_3(\alpha,r) := n(\cos(\alpha), \sin(\alpha), r) \text{ simplify} \rightarrow \begin{cases} \frac{2 \cdot r^3 \cdot \cos(\alpha)}{\sqrt{4 \cdot r^6 + r^4}} \\ \frac{2 \cdot r^3 \cdot \sin(\alpha)}{\sqrt{4 \cdot r^6 + r^4}} \\ -\frac{r^2}{\sqrt{4 \cdot r^6 + r^4}} \end{cases}$$

$$e_{2}(\alpha, r) := \begin{pmatrix} -e_{3}(\alpha, r) \\ e_{3}(\alpha, r) \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -\frac{2 \cdot r^{3} \cdot \sin(\alpha)}{\sqrt{4 \cdot r^{6} + r^{4}}} \\ \frac{2 \cdot r^{3} \cdot \cos(\alpha)}{\sqrt{4 \cdot r^{6} + r^{4}}} \\ 0 \end{pmatrix}$$
 Аппликата динамического базиса

Аппликата динамического базиса	
$e_{1}(\alpha, \mathbf{r}) := e_{2}(\alpha, \mathbf{r}) \times e_{3}(\alpha, \mathbf{r}) \text{ simplify } \rightarrow \begin{pmatrix} -\frac{2 \cdot \mathbf{r} \cdot \cos(\alpha)}{4 \cdot \mathbf{r}^{2} + 1} \\ -\frac{2 \cdot \mathbf{r} \cdot \sin(\alpha)}{4 \cdot \mathbf{r}^{2} + 1} \\ -\frac{1}{4 \cdot \mathbf{r}^{2} + 1} \end{pmatrix}$	
Абсцисса	
$H_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $H_2 := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Мировая си- стема коорди- нат
$H_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	
$h_{1}(\alpha, r) := \begin{pmatrix} H_{1}^{T} \cdot e_{1}(\alpha, r) \\ H_{1}^{T} \cdot e_{2}(\alpha, r) \\ H_{1}^{T} \cdot e_{3}(\alpha, r) \end{pmatrix}$	
$h_{2}(\alpha, \mathbf{r}) := \begin{pmatrix} H_{2}^{T} \cdot e_{1}(\alpha, \mathbf{r}) \\ H_{2}^{T} \cdot e_{2}(\alpha, \mathbf{r}) \\ H_{2}^{T} \cdot e_{3}(\alpha, \mathbf{r}) \end{pmatrix}$	Сопряженный базис

$$\begin{array}{c} h_{3}(\alpha,r) := \begin{pmatrix} H_{3}^{T} \cdot e_{1}(\alpha,r) \\ H_{3}^{T} \cdot e_{2}(\alpha,r) \\ H_{3}^{T} \cdot e_{2}(\alpha,r) \\ \end{pmatrix} \\ = \frac{1}{R_{\text{Book}}(0,v,\alpha,r)} \cdot \frac{1}{N_{0}(\alpha,r)} \cdot \frac{1}{N_{0}(\alpha,r)} \\ & + \text{Centr}(\alpha,r) \cdot \frac{1}{N_{0}(\alpha,r)} \cdot \frac{1}{N_{0}(\alpha,r)} \cdot \frac{1}{N_{0}(\alpha,r)} \\ & + \text{Centr}(\alpha,r) \cdot \frac{1}{N_{0}(\alpha,r)} \cdot \frac{1}{N_{0}$$

	1
<u>N</u> := 100	
i := 0100	
$r_{F_i} := 0.1 + \frac{i \cdot 3}{N}$	Данные анима- ции
$Paraboloid(u,v) := Rot(u,v,r_{F_{50}})$	
Pic := CreateMesh(Paraboloid, $-2, 2, 0, 2\pi, 50, 50$)	
Control of the contro	Итоговый результат
Ring, Pic	

- 1. Вершина параболоидов вращения принадлежит поверхности однополостного гиперболоида вращения $x^2+y^2-z^2-1=0$. Найти и построить огибающую двухпараметрического множества параболоидов.
- 2. Вершина параболоидов вращения принадлежит поверхности однополостного гиперболоида вращения $(3x)^2 + y^2 z^2 1 = 0$. Найти и построить огибающую двухпараметрического множества параболоидов.
- 3. Вершина параболоидов вращения принадлежит поверхности однополостного гиперболоида вращения $x^2 + (2y)^2 z^2 1 = 0$. Найти и построить огибающую двухпараметрического множества параболоидов.
- 4. Вершина параболоидов вращения принадлежит поверхности однополостного гиперболоида вращения $x^2 + y^2 (z/2)^2 1 = 0$. Найти и построить огибающую двухпараметрического множества параболоидов.
- 5. Вершина параболоидов вращения принадлежит поверхности другого параболоида вращения $x^2+(y-2)^2-(2z)^2-1=0$. Найти и построить огибающую двухпараметрического множества параболоидов.
- 6. Вершина параболоидов вращения принадлежит поверхности другого параболоида вращения $(x+3)^2+y^2-z^2-1=0$. Найти и построить огибающую двухпараметрического множества параболоидов.
- 7. Вершина параболоидов вращения принадлежит поверхности другого параболоида вращения $(3x)^2 + y^2 z^2 1 = 0$. Найти и построить огибающую двухпараметрического множества параболоидов.
- 8. Вершина параболоидов вращения принадлежит поверхности другого параболоида вращения $(2x-1)^2+y^2-z^2-1=0$. Найти и построить огибающую двухпараметрического множества параболоидов.

- 1. В рассматриваемом примере принадлежит ли ось параболоида плоскости вращения?
 - 2. Каково происхождение определителей в данных задачах?

- 3. Во втором примере данного раздела является ли огибающая поверхность поверхностью второго порядка?
- 4. Какова траектория движения вершины параболоида в данном примере?

Раздел 8. Сферы движутся по окружности

Рассмотрим уравнение сферы в параметрической виде $R(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \end{bmatrix}$. Если мы говорим о том, что эти сферы принадлежат од-

нопараметрическому множеству, то следует говорить о таком урав-

нении:
$$R(u,v,t) = \begin{bmatrix} x(u,v,t) \\ y(u,v,t) \\ z(u,v,t) \end{bmatrix}$$
, где параметр t выделяет одну сферу

из множества, а параметры u и v отвечают за точку на сфере. Пусть теоретически существуют неявная функция f(x,y,z)=0 и неявная функция F(u,v,t)=0. Поскольку все параметры в этих уравнениях связаны между собой мы сможем продифференцировать функцию:

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} = 0$$

$$\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v} = 0$$

$$\frac{\partial F}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t} + \frac{\partial f}{\partial t} = 0$$

Для каждой точки огибающей имеем $\frac{\partial f}{\partial t} = 0$, откуда имеем:

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} = 0$$

$$\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v} = 0 \longrightarrow \begin{vmatrix} \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \end{vmatrix} = 0$$

$$\frac{\partial F}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t} = 0$$

$$\begin{vmatrix} \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t} \\ \frac{\partial u}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial z}{\partial v} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} = 0$$

Ниже приведен код в программе MathCAD, выполняющий решение задачи, выполняющей построение огибающей однопараметрического множества сфер, движущихся по окружности.

$X(u,v,t) := \cos(u) \cdot \cos(v) - 2\cos(t)$	Формирование пара-
$Y(u,v,t) := \cos(u) \cdot \sin(v) - 2\sin(t)$	метрических функций $R(u, v, t) =$
$Z(u,v,t) := \sin(u)$	$\begin{bmatrix} x(u,v,t) \\ x(u,v,t) \end{bmatrix}$
	$\begin{bmatrix} x(u, v, t) \\ y(u, v, t) \\ z(u, v, t) \end{bmatrix}$
	[z(u, v, t)]
Given	Встроенный решатель

	MathCAD
(d d d)	
$\begin{vmatrix} \frac{d}{dt}X(u,v,t) & \frac{d}{dt}Y(u,v,t) & \frac{d}{dt}Z(u,v,t) \\ \frac{d}{du}X(u,v,t) & \frac{d}{du}Y(u,v,t) & \frac{d}{du}Z(u,v,t) \\ \frac{d}{dv}X(u,v,t) & \frac{d}{dv}Y(u,v,t) & \frac{d}{dv}Z(u,v,t) \end{vmatrix} = 0$	уравнений
	$\left \frac{\partial x}{\partial x} - \frac{\partial y}{\partial x} - \frac{\partial z}{\partial x} \right $
$\left \left \frac{d}{d} X(u,v,t) \right = 0$	$\begin{bmatrix} \partial t & \partial t & \partial t \\ \partial x & \partial y & \partial z \end{bmatrix}$
du du du	$\left \frac{\partial u}{\partial u} \right \left \frac{\partial u}{\partial u} \right = 0$.
$\begin{bmatrix} d & \chi(v, v, t) & d & \chi(v, v, t) & d & Z(v, v, t) \end{bmatrix}$	$\left \frac{\partial x}{\partial y} - \frac{\partial y}{\partial y} \right = \frac{\partial z}{\partial y}$
$\left \left(\frac{dv}{dv} \right)^{1/3} \left(\frac{dv}{dv} \right)^{1/3} \right $	Выражение значения
	<i>t</i> через параметры
7	u,v.
$A(u,v) := Find(t) \rightarrow atan\left(\frac{\sin(v)}{\cos(v)}\right)$	У MathCAD хватает
(cos(v))	вычислительной мо- щи, чтобы выражение
	для t в символьном
	виде $t = v$.
x(u,v) := X(u,v,v)	И в итоге, мы видим,
y(u,v) := Y(u,v,v)	что огибающая одно-
F	параметрического семейства сфер, будет
z(u,v) := Z(u,v,v)	поверхность тора.
	Визуализация ито-
	говой поверхности.
/2	
2 /-2	
2	
(x,y,z)	

1. Рассмотрим однопараметрическое множество сфер, задан-

ное в виде:
$$R(u,v,t) = \begin{bmatrix} cos(u)cos(v) + 2\cos t \\ cos(u)sin(v) + 2\sin t \\ sin(u) \end{bmatrix}$$
. Найти и построить

огибающую поверхность этого однопараметрического множества сфер.

2. Рассмотрим однопараметрическое множество сфер, задан-

ное в виде:
$$R(u,v,t) = \begin{bmatrix} cos(u)cos(v) + cos t \\ cos(u)sin(v) \\ sin(u) + sin t \end{bmatrix}$$
. Найти и построить

огибающую поверхность этого однопараметрического множества сфер.

3. Рассмотрим однопараметрическое множество сфер, задан-

ное в виде:
$$R(u,v,t)=\begin{bmatrix} cos(u)cos(v)\\ cos(u)sin(v)+2\sin t\\ sin(u)+2\cos t \end{bmatrix}$$
. Найти и построить

огибающую поверхность этого однопараметрического множества сфер.

4. Рассмотрим однопараметрическое множество сфер, заданное в виде: R(u, v, t) =

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ 0 & \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix} \begin{bmatrix} \cos(u)\cos(v) + 2\cos t \\ \cos(u)\sin(v) + 2\sin t \\ \sin(u) \end{bmatrix}.$$
 Найти и $\sin(u)$

построить огибающую поверхность этого однопараметрического множества сфер.

5. Рассмотрим однопараметрическое множество сфер, задан-

ное в виде:
$$R(u,v,t) = \begin{bmatrix} cos(u)cos(v) \\ cos(u)sin(v) \\ sin(u) \end{bmatrix} +$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ 0 & \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix} \begin{bmatrix} 2\cos t \\ 2\sin t \\ 0 \end{bmatrix}.$$
 Найти и построить огибаю-

щую поверхность этого однопараметрического множества сфер.

6. Рассмотрим однопараметрическое множество сфер, задан-

ное в виде:
$$R(u,v,t) = \begin{bmatrix} cos(u)cos(v) \\ cos(u)sin(v) \\ sin(u) \end{bmatrix} +$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ 0 & \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix} \begin{bmatrix} 2\cos t \\ 0 \\ 2\sin t & 0 \end{bmatrix}.$$
 Найти и построить огибающую по-

верхность этого однопараметрического множества сфер.

7. Рассмотрим однопараметрическое множество сфер, заданное в виде: R(u, v, t) =

$$\begin{bmatrix} cos(u)cos(v) \\ cos(u)sin(v) \\ sin(u) \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ 0 & \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{bmatrix} \begin{bmatrix} 2\cos t \\ 2\sin t \\ 0 \end{bmatrix}.$$
 Найти и

построить огибающую поверхность этого однопараметрического множества сфер.

8. Рассмотрим однопараметрическое множество сфер, заданное в виде: R(u, v, t) =

$$\begin{bmatrix} cos(u)cos(v) \\ cos(u)sin(v) \\ sin(u) \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ 0 & \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix} \begin{bmatrix} 2\cos t \\ 2\sin t \\ 0 \end{bmatrix}.$$
 Найти и

построить огибающую поверхность этого однопараметрического множества сфер.

- 1. Является ли огибающая поверхность тором?
- 2. Каково значение параметра в данном примере?
- 3. Есть в данном примере линия самопересечения?
- 4. В каком виде задана огибающая поверхность?

Раздел 9. Огибающая двухпараметрического множества сфер

Рассмотрим уравнение сферы в параметрической виде $R(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \end{bmatrix}$. Если мы говорим о том, что эти сферы принадлежат $\begin{bmatrix} x(u,v) \\ y(u,v) \end{bmatrix}$

двухпараметрическому множеству, то следует говорить о таком

уравнении:
$$R(u,v,t_1,t_2)=\begin{bmatrix}x(u,v,t_1,t_2)\\y(u,v,t_1,t_2)\\z(u,v,t_1,t_2)\end{bmatrix}$$
, где параметры t_1,t_2 вы-

деляют одну сферу из двухпараметрического множества, а параметры u и v отвечают за точку на сфере. Пусть теоретически существуют неявная функция f(x,y,z)=0 и неявная функция F(u,v,t)=0. Поскольку все параметры в этих уравнениях связаны между собой мы сможем продифференцировать функцию: $\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} = 0$

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} = 0$$

$$\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v} = 0$$

$$\frac{\partial F}{\partial t_1} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t_1} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t_1} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t_1} + \frac{\partial f}{\partial t_1} = 0$$

$$\frac{\partial F}{\partial t_2} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t_2} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t_2} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t_2} + \frac{\partial f}{\partial t_2} = 0$$

Для каждой точки огибающей имеем $\frac{\partial f}{\partial t_1} = 0$, $\frac{\partial f}{\partial t_2} = 0$ откуда имеем право записать следующее:

 $\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} = 0$ $\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v} = 0 \qquad \rightarrow \begin{vmatrix} \frac{\partial x}{\partial t_1} & \frac{\partial y}{\partial t_1} & \frac{\partial z}{\partial t_1} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \end{vmatrix} = 0 \text{ IM}$ $\frac{\partial F}{\partial t_1} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t_1} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t_1} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t_1} + \frac{\partial f}{\partial t_1} = 0$ $\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} = 0$ $\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} = 0$ $\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v} = 0$ $\frac{\partial F}{\partial t_2} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t_2} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t_2} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t_2} + \frac{\partial f}{\partial t_2} = 0$ $\frac{\partial F}{\partial t_2} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t_2} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t_2} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t_2} + \frac{\partial f}{\partial t_2} = 0$ $\frac{\partial F}{\partial t_2} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t_2} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t_2} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t_2} + \frac{\partial f}{\partial t_2} = 0$

Ниже приведен код в программе MathCAD, выполняющий решение задачи, выполняющей построение огибающей двухпараметрического множества сфер, движущихся по поверхности параболоида.

$X(u,v,t1,t2) := \sin(u) \cdot \cos(v) + t1$	Формирование функ-
$Y(u,v,t1,t2) := \sin(u) \cdot \sin(v) + t2$	ции $R(u, v, t_1, t_2) =$
$Z(u,v,t1,t2) := \cos(u) + t1^2 + t2^2$	$\left[x(u,v,t_1,t_2)\right]$
2(4,7,11,12) 005(4) 1 11 1 12	$ y(u,v,t_1,t_2) $, опи-
	$z(u, v, t_1, t_2)$
	сывающих двухпара-
	метрическое множе-
	ство сфер.
Given	Встроенный решатель
	MathCAD
$\left \left(\frac{d}{dt1} X(u,v,t1,t2) \right) \frac{d}{dt1} Y(u,v,t1,t2) \right = \frac{d}{dt1} Z(u,v,t1,t2)$	Решение систем урав-
1 11	нений
$ \frac{d}{du}X(u,v,t1,t2) \frac{d}{du}Y(u,v,t1,t2) \frac{d}{du}Z(u,v,t1,t2) = 0 $	$\begin{vmatrix} \frac{\partial x}{\partial t_1} & \frac{\partial y}{\partial t_1} & \frac{\partial z}{\partial t_1} \end{vmatrix}$
	$\begin{bmatrix} \partial t_1 & \partial t_1 & \partial t_1 \\ \partial t_1 & \partial t_2 & \partial t_1 \end{bmatrix}$
$\left\ \frac{d}{dv} X(u,v,t1,t2) - \frac{d}{dv} Y(u,v,t1,t2) - \frac{d}{dv} Z(u,v,t1,t2) \right\ $	$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \end{vmatrix} = 0$
ED TO TO THE STATE OF THE STATE	$\left \frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} \right $
$\left \frac{d}{dt2} X(u,v,t1,t2) \frac{d}{dt2} Y(u,v,t1,t2) \frac{d}{dt2} Z(u,v,t1,t2) \right $	$\begin{vmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \end{vmatrix}$
	$\frac{1}{2}\partial v \partial v \partial v$
$ \left \begin{array}{ccc} \frac{d}{du} X(u,v,t1,t2) & \frac{d}{du} Y(u,v,t1,t2) & \frac{d}{du} Z(u,v,t1,t2) \end{array} \right = 0 $	$\begin{bmatrix} n \\ 1 \partial x & \partial y & \partial z \end{bmatrix}$
$\left \frac{d}{dv} X(u,v,t1,t2) - \frac{d}{dv} Y(u,v,t1,t2) - \frac{d}{dv} Z(u,v,t1,t2) \right $	$\left \frac{\partial x}{\partial t_2} \frac{\partial y}{\partial t_2} \frac{\partial z}{\partial t_2} \right $
$\left \begin{array}{ccc} -\lambda(u,v,t1,t2) & -\lambda(u,v,t1,t2) & -\lambda(u,v,t1,t2) \\ dv & dv & dv \end{array} \right $	$\begin{bmatrix} 0\iota_2 & 0\iota_2 & 0\iota_2 \\ 2\iota_2 & 2\iota_2 & 2\iota_2 \end{bmatrix}$
	$\left \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \frac{\partial z}{\partial u} \right = 0$
	$\begin{vmatrix} \partial u & \partial u & \partial u \\ \partial x & \partial y & \partial z \end{vmatrix}$
	$\left \begin{array}{ccc} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{array} \right $
(-1	<i>от ду ду</i> Выражение значений
$\frac{1}{2} \cdot \tan(\mathbf{u}) \cdot \cos(\mathbf{v})$	параметров t_1, t_2 через
$A(u,v) := Find(t1,t2) \rightarrow \begin{vmatrix} 2 \\ 1 \end{vmatrix}$	параметры u и v .
$A(u,v) := Find(t1,t2) \rightarrow \begin{bmatrix} \frac{-1}{2} \cdot tan(u) \cdot cos(v) \\ \frac{-1}{2} \cdot tan(u) \cdot sin(v) \end{bmatrix}$	pa• . p
$x(u,v) := X[u,v,A(u,v)_0,A(u,v)_1]$	Подстановка полу-

$y(u,v) := Y[u,v,A(u,v)_0,A(u,v)_1]$	ченных значений
	t_1, t_2 в выражение для
$z(u,v) := Z(u,v,A(u,v)_0,A(u,v)_1)$	векторной функции
	$R(u,v,t_1,t_2) =$
	$[x(u,v,t_1,t_2)]$
	$y(u, v, t_1, t_2)$, опи-
	$ z(u,v,t_1,t_2) $
	сывающее двухпара-
	метрическое множе-
	ство сфер, центры ко-
	торых принадлежат
	параболоиду.
P := CreateMesh(x,y,z,-5,5,-5,5,200,100)	Визуализация данной
	поверхности. На гра-
	фике данная поверх-
	ность выведена в виде
	точек и линиями
(-)	уровня
$XX(t) := x\left(t, \frac{\pi}{2}\right)$	Получение профиля
	(среза) по одной из плоскостей огибаю-
$YY(t) := y\left(t, \frac{\pi}{2}\right)$	щей поверхности
· · · · · ·	-
$ZZ(t) := z\left(t, \frac{\pi}{2}\right)$	
(XX(t))	
F(t) := YY(t)	
$\left(z_{Z(t)}\right)$	
PP := CreateSpace(F,-6,6,1000)	Частичный вывод
x0(u,v) := X(u,v,0,0)	сфер на общий график
y0(u,v) := Y(u,v,0,0)]
z0(u,v) := Z(u,v,0,0)]
xl(u,v) := X(u,v,0,1)	
y1(u,v) := Y(u,v,0,1)	
z1(u,v) := Z(u,v,0,1)	
x11(u,v) := X(u,v,0,1.5)	
y11(u,v) := Y(u,v,0,1.5)	

- 1. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_1 + t_2 \end{bmatrix}.$ Необходимо найти и построить огибающую поверхность.
- 2. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_1^2 + t_2 \end{bmatrix}.$ Необходимо найти и построить огибающую поверхность.
- 3. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} \sqrt{t_1} \\ t_2 \\ t_1 + t_2 \end{bmatrix}.$ Необходимо найти и построить огибающую поверхность.

- 4. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_1 + t_2^2 \end{bmatrix}.$ Необходимо найти и построить огибающую поверхность.
- 5. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ (t_1+t_2)^2 \end{bmatrix} .$ Необходимо найти и построить огибающую поверхность.
- 6. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_1 + t_2 \end{bmatrix}.$ Необходимо найти и построить огибающую поверхность.
- 7. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 t_1 \\ t_1 + t_2 \end{bmatrix}.$ Необходимо найти и построить огибающую поверхность.
- 8. Рассмотрим двухпараметрическое множество сфер $R(u,v,t_1,t_2) = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ \sqrt{t_1+t_2} \end{bmatrix}.$ Необходимо найти и построить огибающую поверхность.

- 1. Является ли огибающая поверхность параболоидом?
- 2. Каково значение параметров в данном примере?
- 3. Есть в данном примере линия самопересечения?
 - 4. В каком виде задана огибающая поверхность?

Библиографический список

- 1. Выгодский М. Я., Дифференциальная геометрия: учебник/ Выгодский М. Я., Государственное издательство технико-теоретической литературы, М.-Л., 1949. 513 с.
- 2. Рашевский П.К., Курс дифференциальной геометрии: учебник/ Рашевский П.К., Государственное издательство технико-теоретической литературы, М.-Л., 1949. 440 с.
- 3. Фокс А., Вычислительная геометрия. Применение в проектировании и на производстве: монография/ Фокс А., Пратт М. М., Мир, 1982. 304 с.
- 4. Геометрическое моделирование в MathCAD, режим доступа: http://dubanov.exponenta.ru Геометрическое моделирование в MathCAD (дата обращения : 12.10.2018)
- 5. Кирьянов Д.В., МАТНСАD 13: учебник/ Кирьянов Д.В., СПб, БХВ-Петербург, 2006 . 592 с.
- 6. Макаров Е.Г., МАТНСАD: Учебный курс/ Макаров Е.Г., СПб, Питер, 2009. 385 с.
- 7. Вычислительная геометрия. Алгоритмы и приложения.: монография/ Берг М., [и др.]; под ред Берг М., ДМК-Пресс, 2017, 387 с.

Содержание

Предисловие Введение

- 1. Огибающая однопараметрического множества плоских кривых
- 2. Огибающая однопараметрического множества плоскостей
- 3. Огибающая множества плоских кривых, заданных в параметрическом виде
- 4. Огибающая однопараметрического множества параболоидов
- 5. Огибающая параболоидов движущихся по окружности
- 6. Огибающая параболоидов движущихся по прямой
- 7. Огибающая двухпараметрического множества параболоидов
- 8. Сферы движутся по окружности
- 9. Огибающая двухпараметрического множества сфер

Библиографический список

Учебное издание

Александр Анатольевич Дубанов

РЕШЕНИЕ ПРИКЛАДНЫХ ЗАДАЧ ИЗ ТЕОРИИ ОГИБАЮЩИХ ПОВЕРХНОСТЕЙ В СИСТЕМЕ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ МАТНСАD

Учебное пособие

Компьютерная верстка Т. А. Олоевой

Свидетельство о государственной аккредитации № 2670 от 11 августа 2017 г.

Подписано в печать 20.11.18. Формат $60x84^{-1/1}6$. Уч.-изд. л. ,21. Усл. печ. л. 0,46. Тираж . Заказ . Цена свободная.

Издательство Бурятского госуниверситета 670000, г. Улан-Удэ, ул. Смолина, 24a E-mail: riobsu@gmail.com

Отпечатано в типографии Издательства Бурятского государственного университета 670000, г. Улан-Удэ, ул. Сухэ-Батора, За