References

- [1] Many parts of today's lecture were adapted from a lecture by David Mobley (https://github.com/MobleyLab/drug-computing/tree/master/uci-pharmsci/lectures/ free energy basics) under the CC BY 4.0 license. The lecture is part of the Drug Discovery Computing Techniques course (PharmSci 175/275) at UC Irvine.
- [2] Llinàs, A.; Glen, R. C.; Goodman, J. M. Solubility Challenge: Can You Predict Solubilities of 32 Molecules Using a Database of 100 Reliable Measurements? J. Chem. Inf. Model. 2008, 48 (7), 1289–1303. https://doi.org/10.1021/ci800058v.
- [3] Hopfinger, A. J.; Esposito, E. X.; Llinàs, A.; Glen, R. C.; Goodman, J. M. Findings of the Challenge To Predict Aqueous Solubility. J. Chem. Inf. Model. 2009, 49 (1), 1–5. https://doi.org/10.1021/ci800436c.
- [4] Prashad, M.; Sutton, P.; Wu, R.; Hu, B.; Vivelo, J.; Carosi, J.; Kapa, P.; Liang, J.
 Process Research and Development of a MTP Inhibitor: Another Case of Disappearing
 Polymorphs upon Scale-Up. Org. Process Res. Dev. 2010, 14 (4), 878–882. https://doi.org/10.1021/op100115u.

References

- [5] Hewitt, M.; Cronin, M. T. D.; Enoch, S. J.; Madden, J. C.; Roberts, D. W.; Dearden, J. C. In Silico Prediction of Aqueous Solubility: The Solubility Challenge. J. Chem. Inf. Model. 2009, 49 (11), 2572–2587. https://doi.org/10.1021/ci900286s.
- [6] Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. J. Chem. Inf. Model. 2013, 53 (7), 1563–1575. https://doi.org/10.1021/ci400187y.
- [7] Tang, B.; Kramer, S. T.; Fang, M.; Qiu, Y.; Wu, Z.; Xu, D. A Self-Attention Based Message Passing Neural Network for Predicting Molecular Lipophilicity and Aqueous Solubility. J Cheminform 2020, 12 (1), 15. https://doi.org/10.1186/s13321-020-0414-z. Figures adapted under the CC BY 4.0 license.
- [8] Schnieders, M. J.; Baltrusaitis, J.; Shi, Y.; Chattree, G.; Zheng, L.; Yang, W.; Ren, P. The Structure, Thermodynamics, and Solubility of Organic Crystals from Simulation with a Polarizable Force Field. J. Chem. Theory Comput. 2012, 8 (5), 1721–1736. https://doi.org/10.1021/ct300035u.