Problemario.

Matroid Theory (Oxley)

Sección 1.1 Conjuntos independientes y circuitos

Problemas 2,7 y 9.

2. Sea A la matriz

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}$$

Para $q \in \{2,3\}$, sea $M_q[A]$ el matroide vectorial de A cuando A es vista sobre GF(q), el campo de q elementos. Muestra que:

- (i) Los conjuntos de circuitos de $M_2[A]$ y $M_3[A]$ son distintos.
- (ii) $M_2[A]$ es gráfico, pero $M_3[A]$ no.
- (iii) $M_2[A]$ es representable sobre GF(3), pero $M_3[A]$ no es representable sobre GF(2).
- 7. Sean M_1 y M_2 matroides en conjuntos disjuntos E_1 y E_2 . Sea $E = E_1 \cup E_2$ y $\mathfrak{I} = \{I_1 \cup I_2 : I_1 \in \mathfrak{I}(M_1), I_2 \in \mathfrak{I}(M_2)\}$. Pruebe que (E, \mathfrak{I}) es un matroide.
- **9.** Sean M_1 y M_2 matroides en E. Da un ejemplo que muestre que $(E, \mathfrak{I}(M_1) \cap \mathfrak{I}(M_2))$ no necesariamente es un matroide.

Sección 1.2 Bases

Problemas 1 y 6.

- 1. Prueba que \mathfrak{B} es la colección de bases de un matroide en E si y sólo si \mathfrak{B} satisface (B1) y las siguientes dos condiciones:
- (B2)' Si $B_1, B_2 \in \mathfrak{B}$ y $e \in B_1$, entonces existe un elemento f de B_2 tal que $(B_1 e) \cup f \in \mathfrak{B}$.
- (B3) Si $B_1, B_2 \in \mathfrak{B}$ y $B_1 \subseteq B_2$ entonces $B_1 = B_2$.
- **6.** Sea B una base para un matroide M, $f \in E(M)$ y $e \in E(M) B$. Demuestra que $(B \cup e) f$ es una base si y sólo si $f \in C(e, B)$.

Sección 1.3 Rango

Problemas 4 y 5.

4. Muestra que un matroide M es uniforme si y sólo si no tiene circuitos de tamaño menor que r(M) + 1.

5.

- (i) Caracteriza los matroides paving en términos de sus colecciones de conjuntos independientes y en términos de sus colecciones de bases.
- (ii) Caracteriza los matroides uniformes en términos de sus colecciones de circuitos.

Sección 1.4 Cerradura

Problemas 2 y 6.

- $\mathbf{2}$. Muestra que un conjunto X es base para un matroide si y sólo si X es independiente y generador.
- **6.** Muestra que los enunciados (a)-(g) son equivalentes para un elemento e en un matroide M.
 - (a) e esta a todas las bases
 - (b) e no pertenece a ningún circuito.
 - (c) Si $X \subseteq E(M)$ y $e \in cl(X)$, entonces $e \in X$.
 - (d) r(E(M) e) = r(E(M)) 1
 - (e) E(M) e es un flat.
 - (f) E(M) e es un hiperplano.
 - (g) Si I es un conjunto independiente, entonces $I \cup e$ también.

Sección 1.6 Matroides Transversales

Problemas 1, 3 y 4.

- 1. Muestra lo siguiente:
 - (i) Todos los matroides uniformes son transversales.
 - (ii) Un matroide transversal no necesariamente es gráfico.
- (iii) Un matroide paving no necesariamente es transversal.
- **3.** Sea $S = \{1, 2, \dots, 6\}$ $yA = \{A_1, A_2, A_3\}$ donde $A_1 = \{1, 2, 3\}$, $A_2 = \{2, 3, 4\}$ $y A_3 = \{4, 5, 6\}$.
 - (i) Encuentra $\Delta[\mathcal{A}]$.
 - (ii) Da una representación geométrica para M[A].

4. Caracteriza los circuitos de M[A] en términos de la gráfica bipartita $\Delta[A]$.

Sección 1.7 Latices

5. Demuestra que en una lattice finita \mathfrak{L} es semimodular si para toda x, y en \mathfrak{L} , la siguiente condición se satisface:

si ambas x, y cubren $x \wedge y$, entonces $x \vee y$ cubre a $x \in y$.

Sección 1.8 Algoritmo Greedy

1.

(i) Encuentra todos los árboles generadores de peso máximo en la gráfica de la figura 1.32, ¿Es éste el único árbol?

Fig. 1.32. G and its minimum-weight spanning trees.

Figura 1

(ii) Encuentra todos los árboles generadores de peso máximo de la gráfica en la figura 1.28(a) donde las etiquetas de las aristas se interpretan como pesos.

Fig. 1.28. (a) A graph G.

Figura 2

4. Sea M un matroide y $w: E(M) \to \mathbb{R}$ una función inyectiva. Prueba que M tiene una única base con peso máximo.