MAS242 ANALYSIS I QUIZ 3

Problem 1. (15 points) For $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$ in \mathbb{R}^2 , define

$$d_1(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2|$$

- (1) Show that d_1 is a metric on \mathbb{R}^2 .(5pt)
- (2) Define a 1-neighborhood $N_1(\mathbf{x}; s)$ of $\mathbf{x} = (x_1, x_2)$ to be $N_1(\mathbf{x}; s) = {\mathbf{y} \in \mathbb{R}^2 : d_1(\mathbf{x}, \mathbf{y}) < s}$. Let $N(\mathbf{x}; r)$ be any (Euclidean) neighborhood of \mathbf{x} . Show that there exist positive r_1 and r_2 such that

$$N_1(\mathbf{x}; r_1) \subset N(\mathbf{x}; r) \subset N_1(\mathbf{x}; r_2)$$

(10pt)

Proof. (1) Let $\mathbf{z} = (z_1, z_2) \in \mathbb{R}^2$.

Positive definiteness: $|x_1 - y_1| \ge 0$, $|x_2 - y_2| \ge 0 \implies d_1(\mathbf{x}, \mathbf{y}) \ge 0$ $d_1(\mathbf{x}, \mathbf{y}) = 0 \iff |x_1 - y_1| = |x_2 - y_2| = 0 \iff \mathbf{x} = \mathbf{y}$ Symmetry: $d_1(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| = |y_1 - x_1| + |y_2 - x_2| = d_1(\mathbf{y}, \mathbf{x})$ The triangle inequality: $d_1(\mathbf{x}, \mathbf{z}) = |x_1 - z_1| + |x_2 - z_2| = |x_1 - y_1 + y_1 - z_1| + |x_2 - y_2 + y_2 - z_2|$ $\le |x_1 - y_1| + |y_1 - z_1| + |x_2 - y_2| + |y_2 - z_2| = d_1(\mathbf{x}, \mathbf{y}) + d_1(\mathbf{y}, \mathbf{z})$

(2) Let $r_1 = r, r_2 = 2r$. For $\mathbf{y} \in N_1(\mathbf{x}; r), |y_1 - x_1| + |y_2 - x_2| \le r$. $(y_1 - x_1)^2 + (y_2 - x_2)^2 \le (y_1 - x_1)^2 + (y_2 - x_2)^2 + 2|y_1 - x_1||y_2 - x_2| = \|\mathbf{x} - \mathbf{y}\|^2 \le r^2$ $\therefore N_1(\mathbf{x}; r) \subset N(\mathbf{x}; r)$

For
$$\mathbf{y} \in N(\mathbf{x}; r)$$
, $\|\mathbf{x} - \mathbf{y}\|^2 \le r^2$.
 $|y_1 - x_1| < r$ and $|y_2 - x_2| < r$. So, $|y_1 - x_1| + |y_2 - x_2| \le 2r$
 $\therefore N(\mathbf{x}; r) \subset N_1(\mathbf{x}; r_2)$.

Problem 2. (15 points) Prove that, if $\{\mathbf{x}_k\}$ is a bounded sequence in \mathbb{R}^n and $\mathbf{y}_1, \dots, \mathbf{y}_M$ are cluster points of $\{\mathbf{x}_k\}$, then $S = \{\mathbf{x}_k : k \in \mathbb{N}\} \cup \{\mathbf{y}_1, \dots, \mathbf{y}_M\}$ is closed

Proof. Let \mathbf{x}_0 be a limit point of S.

For each $\epsilon_k \downarrow 0$, $\exists n_k \in \mathbb{N}$ such that $0 < ||\mathbf{x}_{n_k} - \mathbf{x}_0|| < \epsilon_k$.

For any $\epsilon > 0$, $\epsilon_m < \epsilon$ for some m.

Then $\{\mathbf{x}_{n_k}\}$ is a subsequence of $\{\mathbf{x}_k\}$ that converges to $\{\mathbf{x}_0\}$.

By theorem 2.1.10 in textbook, \mathbf{x}_0 is a cluster point of $\{\mathbf{x}_k\}$.

 \therefore A limit point of S is a cluster point of $\{\mathbf{x}_k\}$.

By theorem 2.2.4 in textbook, S is closed.

Date: 25 March 2021.