point	
P 3	Separate the data into distinct groups by similarity
	Creating a new representation of the data with fewer features
	Accumulate data into groups based on labels
	Compress elongated clouds of data into more spherical representations
1 point	Which of the following are advantages to using decision trees over other models? (Select all that apply)
	Trees are naturally resistant to overfitting
	Decision trees can learn complex statistical models using a variety of kernel functions
	Trees are easy to interpret and visualize
	Trees often require less preprocessing of data
	To increase interpretability of the model
	To increase interpretability of the model To learn which features are not strong predictors To reduce the computational complexity associated with training each of the trees needed for the random forest. To improve generalization by reducing correlation among the trees and making the model more robust to bias.
1 A.	To learn which features are not strong predictors To reduce the computational complexity associated with training each of the trees needed for the random forest. To improve generalization by reducing correlation among the trees and making the model more robust to bias.
	To learn which features are not strong predictors To reduce the computational complexity associated with training each of the trees needed for the random forest. To improve generalization by reducing correlation among the trees and making the model more robust to bias. Which of the following supervised machine learning methods are greatly affected by
	To learn which features are not strong predictors To reduce the computational complexity associated with training each of the trees needed for the random forest. To improve generalization by reducing correlation among the trees and making the model more robust to bias. Which of the following supervised machine learning methods are greatly affected by feature scaling? (Select all that apply)
	To learn which features are not strong predictors To reduce the computational complexity associated with training each of the trees needed for the random forest. To improve generalization by reducing correlation among the trees and making the model more robust to bias. Which of the following supervised machine learning methods are greatly affected by feature scaling? (Select all that apply)
	To learn which features are not strong predictors To reduce the computational complexity associated with training each of the trees needed for the random forest. To improve generalization by reducing correlation among the trees and making the model more robust to bias. Which of the following supervised machine learning methods are greatly affected by feature scaling? (Select all that apply) Decision Trees Support Vector Machines

Decision Tree
 Neural Network

Neural Network
 KNN (k=1)
 Decision Tree

1 point A decision tree of depth 2 is visualized below. Using the `value` attribute of each leaf, find the accuracy score for the tree of depth 2 and the accuracy score for a tree of depth 1.

What is the improvement in accuracy between the model of depth 1 and the model of depth 2? (i.e. accuracy2 - accuracy1)

0.067	

compliant or non-compliant

1 point 8. For the autograded assignment in this module, you will create a classifier to predict whether a given blight ticket will be paid on time (See the module 4 assignment notebook for a more detailed description). Which of the following features should be removed from the training of the model to prevent data leakage? (Select all that apply)

collection_status - Flag for payments in collections
agency_name - Agency that issued the ticket
grafitti_status - Flag for graffiti violations
ticket_issued_date - Date and time the ticket was issued
compliance detail - More information on why each ticket was m

1 noint

- 9. Which of the following might be good ways to help prevent a data leakage situation?
 - If time is a factor, remove any data related to the event of interest that doesn't take place prior to the event.
 - Ensure that data is preprocessed outside of any cross validation folds.
 - Remove variables that a model in production wouldn't have access to
 - Sanity check the model with an unseen validation set

1 point Given the neural network below, find the correct outputs for the given values of x1 and x2.

The neurons that are shaded have an activation threshold, e.g. the neuron with >1?will be activated and output 1 if the input is greater than 1 and will output 0 otherwise.

x1	x2	output
0	0	0
0	1	0
1	0	0
1	1	1

x1	x2	output
0	0	0
0	1	1
1	0	1
1	1	0

_