One Fourth Labs

Introducing Tanh and ReLU activation functions

What are the other alternatives to the Logistic function?

1. tanh

a. The following figure illustrates the tanh function

b.
$$f(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

b.
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

c. $f'(x) = \frac{\partial f(x)}{\partial x} = (1 - (f(x))^2)$

- d. The tanh function ranges from -1 to +1, whereas the logistic function ranges from 0 to 1
- e. It is a zere centered function.
- f. The function saturates at f(x) = -1 or 1, thus causing the gradients to vanish.
- g. tanh is computationally expensive because of ex
- h. However, it is still preferred over the logistic function

PadhAl: Activation Functions & Initialization Methods

One Fourth Labs

2. ReLU

a. The following figure illustrates the ReLU function

b.
$$f(x) = max(0, x)$$

c.
$$f'(x) = \frac{\partial f(x)}{\partial x} = 0$$
 if $x < 0 \mid 1$ if $x > 0$

- d. ReLU outputs the input value itself if it is positive, else it outputs zero, i.e. f(1) = 1, f(-1) = 0
- e. It does not saturate in the positive region
- f. It is not zero centered
- g. Easy to compute (no expensive e^x)