5CCS2FC2: Foundations of Computing II

Efficient SAT Solving

Week 7

Dr Christopher Hampson

Department of Informatics

King's College London

Warm-up: Who is telling the truth?

Consider the six statements made by the following six individuals.

Alice: If Bob is telling the truth then so is Connie,

Bob: Either David or Francis is telling the truth,

Connie: Alice and Ellen are both lying,

David: Francis and Alice and both telling the truth,

Ellen: If David is telling the truth then Bob must be lying,

Francis: If Ellen is lying then so is Connie.

Objectives for Today

- To be able to perform the Greedy SAT Algorithm
 - and to be able to explain why it is incompete.
- To be able to perform the DPLL Algorithm to solve (small) instances of SAT
- To solve easy instances of SAT using the implication graph

The first example of a problem shown to be NP-complete

(recall the Cook-Levin Theorem from week 4)

- All NP-complete problems can be reduced to SAT
- Finding a polynomial time algorithm for SAT proves that P = NP
- Reductions to SAT are often straightforward
 (logic acts as a specification language to describe real-world problems)
- Even if P ≠ NP we still want to be able to answer real-world problems as quickly as possible

• Example:

 We can each of the six statement from earlier with a propositional formula

٠	:	If Bob is telling the truth then so is Connie	B o C
()	:	Either David or Francis is telling the truth	$D \lor F$
	:	Alice and Ellen are both lying	$\neg A \wedge \neg E$
0,0	:	Francis and Alice and both telling the truth	$F\wedge A$
	:	If David is telling the truth then Bob must be lying	$D \to \neg B$
	:	If Ellen is lying then so is Connie	$\neg E o \neg C$

(ther variable A denotes the proposition "Alice is telling the truth", etc.)

• Example:

 However, each statement is true if and only if the individual uttering it is telling the truth. Therefore

$$egin{array}{lll} A & \leftrightarrow & (B
ightarrow C) \\ B & \leftrightarrow & (D ee F) \\ C & \leftrightarrow & (\neg A \wedge \neg E) \end{array}$$

$$egin{array}{lll} D & \leftrightarrow & (F \wedge A) \\ E & \leftrightarrow & (D
ightarrow
eg B) \\ F & \leftrightarrow & (
eg E
ightarrow
eg C) \end{array}$$

 We are seeking a satisfying assignment that makes all of the formulas true at the same time

						•	Above formulas
_	???	???	???	???	???	???	true

 However, it is not straightforward to find a satisfying assignment for large problems!

(270 variables requires more rows than there are atoms in the observable universe!)

Indeed, we know that SAT is an NP-complete problem!

 Given the importance of SAT is solving many real-world problems, a great deal of research has been invested in finding efficient algorithms for solving the satisfiability problem.

- Naïve Greedy Algorithm
 - Step 1) Guess a variable assignment!

$$P := \mathsf{TRUE}, \ \ Q := \mathsf{FALSE}, \ \ \ \mathsf{and} \ \ \ R := \mathsf{FALSE}$$

(for example)

- Step 2) Count the number of satisfied clauses
- Step 3) Flip the assignment of a variable that leads the the *biggest* increase in the number of satisfied clauses,
- **Step 4)** Repeat until no further improvements to the 'score' are possible.

• Example:

_1	P	Q	R	$(\neg P \lor Q \lor R)$	$(P \vee Q)$	$(Q\vee R)$	$(\neg P \lor Q)$	$(\neg P \vee \neg Q \vee R)$	$(D {\vdash} {\vee} A {\vdash})$	$(P \vee \neg Q \vee R)$	Score
•	Т	F	F	F	T	F	F	T	T	T	4
	T	T	F	T	T	T	T	F	F	T	5
	F	T	F	T	T	T	T	T	T	F	6
I	F	T	T	T	T	T	T	T	T	T	7

(we found a solution with only 3 changes!)

- What is the running time for the greedy algorithm?
 - Choosing an initial assignment takes constant time O(1),

 (e.a., we could choose all false, by default)
 - Evaluating the set of clauses takes linear time O(n),
 - For each of the n possible flips, we need to evaulate the set of clauses. This requires quadratic time $O(n^2)$.
 - In the worst case we may need to flip all n assignements. Hence we must repeat the above step at most n times!

$$T(n) = O(1) + O(n) + n \cdot O(n^2) = O(n^3)$$

Unfortunately the algorithm is incomplete

(it does not always find a solution if it exists!)

• Example:

$$(P \lor Q) \quad \begin{tabular}{cccc} & \begin{tabular}{c} & \begin{tabular}$$

Unfortunately the algorithm is incomplete

(it does not always find a solution if it exists!)

• Example:

$$(P \lor Q) \checkmark$$

$$(P \lor R) \checkmark$$

$$(P \lor \neg Q \lor R) \checkmark$$

$$(\neg P \lor \neg Q) \checkmark$$

$$(\neg P \lor Q) \checkmark$$

$$(\neg P \lor \neg R) \checkmark$$

$$(P \lor Q \lor \neg R) \checkmark$$

Unfortunately the algorithm is incomplete

(it does not always find a solution if it exists!)

• Example:

$$(P \lor Q) \checkmark$$

$$(P \lor R) \checkmark$$

$$(P \lor \neg Q \lor R) \checkmark$$

$$(\neg P \lor \neg Q) \checkmark$$

$$(\neg P \lor Q) \checkmark$$

$$(\neg P \lor \neg R) \checkmark$$

$$(P \lor Q \lor \neg R) \checkmark$$

Unfortunately the algorithm is incomplete

(it does not always find a solution if it exists!)

• Example:

$$(P \lor Q) \checkmark$$

$$(P \lor R) \checkmark$$

$$(P \lor \neg Q \lor R) \checkmark$$

$$(\neg P \lor \neg Q) \checkmark$$

$$(\neg P \lor Q) \checkmark$$

$$(\neg P \lor \neg R) \checkmark$$

$$(P \lor Q \lor \neg R) \checkmark$$

$$(P \lor Q \lor R) \qquad (\neg P \lor Q \lor R)$$
 $(P \lor \neg R) \qquad (P \lor \neg Q) \qquad (\neg Q \lor R)$

• Depth-first search:

Assigned trueAssigned false

$$(P \lor Q \lor R) \qquad (\neg P \lor Q \lor R) \ (P \lor \neg R) \qquad (P \lor \neg Q) \qquad (\neg Q \lor R)$$

• Depth-first search:

Assigned trueAssigned false

$$(P \lor Q \lor R) \qquad (\neg P \lor Q \lor R) \ (P \lor \neg R) \qquad (P \lor \neg Q) \qquad (\neg Q \lor R)$$

$$(P \lor Q \lor R) \not X \qquad (\neg P \lor Q \lor R) \checkmark$$

$$(P \lor \neg R) \checkmark \qquad (P \lor \neg Q) \checkmark \qquad (\neg Q \lor R) \checkmark$$

$$(P \lor Q \lor R) \checkmark (\neg P \lor Q \lor R) \checkmark$$

$$(P \lor \neg R) \checkmark (P \lor \neg Q) \checkmark (\neg Q \lor R) \checkmark$$

$$(P \lor Q \lor R) \checkmark (\neg P \lor Q \lor R) \checkmark$$

$$(P \lor \neg R) \checkmark (P \lor \neg Q) \checkmark (\neg Q \lor R) \checkmark$$

Depth-first search:

Assigned trueAssigned false

$$(P \lor Q \lor R) \checkmark (\neg P \lor Q \lor R) \checkmark$$

$$(P \lor \neg R) \checkmark (P \lor \neg Q) \checkmark (\neg Q \lor R) \checkmark$$

$$(P \lor Q \lor R) \checkmark (\neg P \lor Q \lor R) \checkmark$$

$$(P \lor \neg R) \checkmark (P \lor \neg Q) \checkmark (\neg Q \lor R) \checkmark$$

- Problems with this approach
 - May still need to search the entire tree,
 - The tree grows exponentialy in the number of variables,
 - May end up duplicating a lot of the same calculations,

- How to address these problems?
 - Unfortunately, we can't avoid having to occasionally search the entire tree.

(unsatisfiable formulas must be *fully* explored)

However, we can attempt to prune the tree, so there is less to search!

- The Davis-Putnam-Logemann-Loveland (DPLL) algorithm
 - A backtrack search algorithm,

(similar to DFS)

- Employs pure literal elimination and unit propogation
- Proposed in 1962 by M.Davis, G.Logemann, and D.Loveland
- Previous work in 1960 by M.Davis and H.Putnam.

(the DP algorithm is *resolution-based* – not covered in this course)

M.Davis

H.Putnam

G.Logemann

D.Loveland

• Pure Literal Elimination:

 A pure literal is any literal that occurs only positively or negatively in all cluases.

$$(P \lor Q \lor \lnot S) \;,\;\; (P \lor \lnot Q \lor R) \;,\;\; (Q \lor \lnot R \lor \lnot S)$$

(both P and $\neg S$ are pure literals)

We can always assign pure literals without risk of a conflict

$$P := \mathsf{TRUE}$$
 and $S := \mathsf{FALSE}$

We can then eliminate any clause containing a pure literal.

(pure literal elimination assigns literals that SHOULD be assigned)

- Unit Propogation:
 - A unit clause is any any clause that contains only a single literal

$$\neg Q, \quad (P \lor Q), \quad (\neg P \lor \neg R \lor S), \quad (\neg P \lor Q \lor \neg S)$$

$$(\neg P \lor \neg Q), \quad R, \quad (Q \lor R \lor S)$$

(both $\neg Q$ and R is a *unit clauses*)

We have no choice in the assignment of unit clauses!

$$Q := { t FALSE} \qquad { t and} \qquad R := { t TRUE}$$

(unit propogation assigns literals that MUST be assigned)

- Unit Propogation (cont.):
 - We can eliminate any clause containing a unit clause

We can simplify any clause containing the neation of the unit clause

$$\begin{array}{cccc} (P \vee \mathbf{Q} \) & , & (\neg P \vee \neg \mathbf{R} \vee S) & , & (\neg P \vee \mathbf{Q} \vee \neg S) \\ & & & & & \downarrow \\ P & & , & (\neg P \vee S) & , & (\neg P \vee \neg S) \end{array}$$

- Unit Propogation (cont.):
 - These assignments propagate leading to further elimination,

$$P := \mathsf{TRUE}$$

(new unit clauses can be assigned)

The DPLL Algorithm

DPLL(set of clauses C, partial assignment U)

- Set of clauses C
 - The set we of clauses that we seek to satisfy,
- ullet Partial Assignment U
 - A set of literals that have we already been assigned TRUE
 - Initially empty to indicate the start of the search,
 - ullet We add new literals to U as the search progresses,

Inputs: set of clauses C, partial assignment $U = \emptyset$

- **Step 1)** If $C = \emptyset$ then return **TRUE**
- **Step 2)** If C contains a conflict then return FALSE,
- **Step 3)** Apply unit propagation
 - ullet Add any unit clauses to U , and simplify all clauses in C
- **Step 4)** Apply pure literal elimination
 - ullet Add any pure literals to U , and simplify all clauses in C
- **Step 5)** Choose any unassigned variable *P* to branch with
 - Step 5a) If DPLL $(C,\ U\cup\{\neg P\})=$ TRUE, then return TRUE
 - Step 5b) Else if DPLL $(C, U \cup \{P\}) = \text{TRUE}$, then return TRUE
 - Step 5c) Else return FALSE

Example of DPLL:

Applicable RuleBranch on *P*

$$(P \vee R \vee \neg S)$$

$$(P \vee R \vee S)$$

$$(\neg R \lor \neg T)$$

$$(P \lor \neg R \lor T)$$

$$(\neg P \lor R \lor \neg S)$$

$$(\neg P \lor \neg Q \lor R)$$

$$(Q \lor R \lor S)$$

$$(Q \lor \neg R \lor T)$$

Partial Assignemnt

Ø

• Example of DPLL:

Applicable Rule Pure Literal Q

$$(R \lor \neg S)$$
 $(R \lor S)$
 $(\neg R \lor \neg T)$
 $(\neg R \lor T)$
 $(\neg P \lor R \lor \neg S)$
 $(\neg P \lor \neg Q \lor R)$
 $(Q \lor R \lor S)$
 $(Q \lor \neg R \lor T)$

Partial Assignemnt

 $\{\neg P\}$

• Example of DPLL:

Applicable Rule Branch on R

$$(R \lor \neg S)$$
 $(R \lor S)$
 $(\neg R \lor \neg T)$
 $(\neg R \lor T)$
 $(\neg P \lor R \lor \neg S)$
 $(\neg P \lor \neg Q \lor R)$
 $(Q \lor R \lor S)$
 $(Q \lor \neg R \lor T)$

Partial Assignemnt

 $\{\neg P, Q\}$

• Example of DPLL:

Applicable Rule Conflict

$$\neg S$$

$$S$$

$$(\neg R \lor \neg T)$$

$$(\neg R \lor T)$$

$$(\neg P \lor R \lor \neg S)$$

$$(\neg P \lor \neg Q \lor R)$$

$$(Q \lor R \lor S)$$

$$(Q \lor \neg R \lor T)$$

$$\{\neg P, \ Q, \ \neg R\}$$

• Example of DPLL:

Applicable Rule Backtrack to R

$$\neg S$$

$$S$$

$$(\neg R \lor \neg T)$$

$$(\neg R \lor T)$$

$$(\neg P \lor R \lor \neg S)$$

$$(\neg P \lor \neg Q \lor R)$$

$$(Q \lor R \lor S)$$

$$(Q \lor \neg R \lor T)$$

Partial Assignemnt $\{\neg P, Q, \neg R\}$

• Example of DPLL:

Applicable Rule Conflict

$$(R \vee \neg S)$$

$$(R \vee S)$$

$$\neg T$$

$$T$$

$$(\neg P \vee R \vee \neg S)$$

$$(\neg P \vee \neg Q \vee R)$$

$$(Q \vee R \vee S)$$

$$(Q \vee \neg R \vee T)$$

Partial Assignemnt

 $\{\neg P, Q, R\}$

• Example of DPLL:

Applicable RuleBacktrack to *P*

$$\begin{array}{c} (R \vee \neg S) \\ (R \vee S) \\ \neg T \\ T \\ \hline (\neg P \vee R \vee \neg S) \\ (\neg P \vee \neg Q \vee R) \\ (Q \vee R \vee S) \\ \hline (Q \vee \neg R \vee T) \\ \end{array}$$

Partial Assignemnt

 $\{\neg P,\ Q,\ R\}$

• Example of DPLL:

Applicable Rule Brach on Q

$$(P \lor R \lor \neg S)$$

$$(P \lor R \lor S)$$

$$(\neg R \lor \neg T)$$

$$(P \lor \neg R \lor T)$$

$$(R \lor \neg S)$$

$$(\neg Q \lor R)$$

$$(Q \lor R \lor S)$$

$$(Q \lor \neg R \lor T)$$

Partial Assignemnt

 $\{P\}$

• Example of DPLL:

Applicable Rule Branch on R

$$(P \lor R \lor \neg S)$$

$$(P \lor R \lor S)$$

$$(\neg R \lor \neg T)$$

$$(P \lor \neg R \lor T)$$

$$(R \lor \neg S)$$

$$(\neg Q \lor R)$$

$$(R \lor S)$$

$$(\neg R \lor T)$$

$$\{P, \neg Q\}$$

• Example of DPLL:

Applicable Rule Conflict

$$(P \lor R \lor \neg S)$$
 $(P \lor R \lor S)$
 $(\neg R \lor \neg T)$
 $(P \lor \neg R \lor T)$
 $\neg S$
 $(\neg Q \lor R)$
 S
 $(\neg R \lor T)$

$$\{P, \neg Q, \neg R\}$$

• Example of DPLL:

Applicable Rule Backtrack

$$(P \lor R \lor \neg S)$$
 $(P \lor R \lor S)$
 $(\neg R \lor \neg T)$
 $(P \lor \neg R \lor T)$
 $\neg S$
 $(\neg Q \lor R)$
 S
 $(\neg R \lor T)$

$$\{P,\ \neg Q,\ \neg R\}$$

• Example of DPLL:

Applicable Rule Conflict

$$(P \lor R \lor \neg S)$$
 $(P \lor R \lor S)$
 $\neg T$
 $(P \lor \neg R \lor T)$
 $(R \lor \neg S)$
 $(\neg Q \lor R)$
 $(R \lor S)$
 T

$$\{P, \ \neg Q, \ R\}$$

• Example of DPLL:

Applicable Rule Backtrack

$$(P \lor R \lor \neg S)$$
 $(P \lor R \lor S)$
 $\neg T$
 $(P \lor \neg R \lor T)$
 $(R \lor \neg S)$
 $(\neg Q \lor R)$
 $(R \lor S)$
 T

$$\{P, \ \neg Q, \ R\}$$

• Example of DPLL:

Applicable Rule Unit Clause

$$(P \lor R \lor \neg S)$$
 $(P \lor R \lor S)$
 $(\neg R \lor \neg T)$
 $(P \lor \neg R \lor T)$
 $(R \lor \neg S)$
 R
 $(Q \lor R \lor S)$
 $(Q \lor \neg R \lor T)$

Partial Assignemnt $\{P,\ Q\}$

• Example of DPLL:

Applicable RuleUnit Clause

$$(P \lor R \lor \neg S)$$

$$(P \lor R \lor S)$$

$$\neg T$$

$$(P \lor \neg R \lor T)$$

$$(R \lor \neg S)$$

$$R$$

$$(Q \lor R \lor S)$$

$$(Q \lor \neg R \lor T)$$

Partial Assignemnt $\{P,\ Q,\ R\}$

• Example of DPLL:

Applicable Rule Success

$$(P \lor R \lor \neg S)$$

$$(P \lor R \lor S)$$

$$\neg T$$

$$(P \lor \neg R \lor T)$$

$$(R \lor \neg S)$$

$$R$$

$$(Q \lor R \lor S)$$

$$(Q \lor \neg R \lor T)$$

$$\{P, Q, R, \neg T\}$$

• Alternative Presentation:

Rule	Partial Assignment	$(P \vee R \vee \neg S)$	$(P \vee R \vee S)$	$(\neg R \vee \neg T)$	$(P \vee \neg R \vee T)$	$(\neg P \vee R \vee \neg S)$	$(\neg P \vee \neg Q \vee R)$	$(Q \vee R \vee S)$	$\bigg (Q \vee \neg R \vee T)$
Initial	Ø								
Branch	eg P					1	✓		
Pure Literal	eg P, Q					1	✓	✓	1
Branch	eg P, Q, eg R	X	X	✓	✓	✓	✓	✓	✓
Backtrack	eg P, Q, R	1	✓	X	X	√	✓	✓	1
Backtrack	P	1	✓		✓				
Branch	P, eg Q	1	✓		✓		✓		

• Alternative Presentation (cont.):

Rule	Partial Assignment	$(P \vee R \vee \neg S)$	$(P \vee R \vee S)$	$(\neg R \vee \neg T)$	$(P \vee \neg R \vee T)$	$(\neg P \vee R \vee \neg S)$	$(\neg P \vee \neg Q \vee R)$	$(Q\vee R\vee S)$	$(Q \vee \neg R \vee T)$
Cont.	$P, \neg Q$	1	✓		✓		✓		
Branch	P, eg Q, eg R	1	✓	✓	✓	X	✓	X	✓
Backtrack	P, eg Q, R	✓	✓	X	✓	✓	✓	✓	X
Backtrack	P,Q	1	✓		✓			✓	✓
Unit Prop.	P,Q,R	1	✓		✓		✓	✓	✓
Unit Prop.	P,Q,R, eg T	✓	✓	✓	✓	✓	✓	✓	✓

Are all SAT problems hard?

The NSAT problem:

Input) A propositional formula F such that:

- F is in Conjunctive Normal Form (CNF),
- each clause of F contains at most N literals.

Output) Decide if the formula F is satisfiable.

It is easy to reduce one version of SAT to the next

$$\mathsf{2SAT} \ \leq_p \ \mathsf{3SAT} \ \leq_p \ \mathsf{4SAT} \ \leq_p \ \mathsf{5SAT} \ \leq_p \ \ldots \ \leq_p \ \mathsf{SAT}$$

(a formula with 'at most N' literals trivially has 'at most (N+1)' literals)

More surprisingly, we can find a reduction that goes the other way

$$\mathsf{SAT} \ \leq_p \ \ldots \ \leq_p \ \mathsf{5SAT} \ \leq_p \ \mathsf{4SAT} \ \leq_p \ \mathsf{3SAT}$$

- What is required?
 - It is enough to show that

$$\mathsf{SAT} \ \leq_p \ \mathsf{3SAT}$$

(since then we have (N+1)SAT \leq_p SAT \leq_p 3SAT \leq_p NSAT)

 We need a reduction that converts any CNF formula into a CNF formula in which each clause contains at most 3 literals!

Theorem SAT is polynomially reducible to 3SAT.

Proof:

Step 1) Find a clause which contains more than 3 literals

$$\begin{array}{ccc} (P \vee \neg Q \vee R \vee S) \; \wedge \; (Q \vee \neg R \vee \neg T) \\ & \swarrow \end{array}$$

Step 2) Break up the clause into two pieces

$$(P \vee \neg Q \hspace{0.2cm} \not \hspace{0.2cm} \not \hspace{0.2cm} R \vee S) \hspace{0.2cm} \wedge \hspace{0.2cm} (Q \vee \neg R \vee \neg T)$$

Step 3) Introduce a fresh propositional variable to 'bridge the gap'

$$(P \lor \neg Q \lor X) \land (\neg X \lor R \lor S) \land (Q \lor \neg R \lor \neg T)$$

(it is important that X does not occur in the original formula!)

This is equivalent to the original formula because of the following identify

$$(A \vee B) \ \equiv \ (A \vee X) \wedge (\neg X \vee B)$$

Step 4) Repeat until all clauses contain at most 3 literals

The resultant formula is *satisfiable* if and only if the with the original formula is satisfiable!

Q.E.D

Why can't we use this trick to reduce

$$\mathsf{SAT} \leq_p \mathsf{2SAT}$$

Consider a single clause with 3 literals

$$(P \vee \neg Q \vee R)$$

We can break the clause into two pieces however we like,

$$(P \lor \neg Q \overset{*}{\swarrow} R)$$

However, by introducing a fresh variable, we run into problems!

$$(P \vee \neg Q \vee X) \ \wedge \ (\neg X \vee R)$$

(this formula is equivalent but we are still stuck with 3 literals!)

...but maybe there is some other trick we could use?

Theorem 2SAT is solvable in polynomial time.

Proof: We can reduce 2SAT to the strongly connected component problem for directed graphs.

Step 1) Write each clause as two implications

$$(A \vee B) \ \equiv \ (\neg A \to B) \wedge (\neg B \to A)$$

• Example:

$$\begin{array}{c} (\neg P \lor Q) \\ (\neg Q \lor R) \\ (P \lor \neg R) \\ (R \lor Q) \end{array} \qquad \begin{array}{c} (P \to Q) & \land & (\neg Q \to \neg P) \\ (Q \to R) & \land & (\neg R \to \neg Q) \\ (\neg P \to \neg R) & \land & (R \to P) \\ (\neg R \to Q) & \land & (\neg Q \to R) \end{array}$$

Step 2) Construct the implication graph

Step 3) F is satisfiable iff every strongly connected component is consistent. (consistent = does not contain a literal and its negation)

Step 2) Construct the implication graph

Strongly Connected Components
$$\{P, Q, R\}$$
 \blacksquare $\{\neg P, \neg Q, \neg R\}$

Step 3) F is satisfiable iff every strongly connected component is consistent. (consistent = does not contain a literal and its negation)

Conclusion) The reduction can be performed in polynomial time, therefore

$$\mathsf{2SAT} \ \leq_p \ \mathsf{SCC}$$

(where SCC denotes the strongly connected component problem)

However, the SCC problem is decidable in polynomial time.

(in fact, even in *linear* time!)

Q.E.D

Summary

- Every formula with at most 2 literals per clause can be decided in (deterministic) polynomial time
- There are some formulas with 3 literals per clause that cannot be decided in polynomial time!
 (unless P = NP ... we don't know!)
- Is every formula with 3 literals per clause is hard to solve?

Propositional Horn Clauses:

$$P,\; (\neg P \vee Q),\; (\neg P \vee \neg Q \vee R),\; (\neg Q \vee S),\; (\neg S \vee \neg R \vee T)$$

(each clause contains at most one positive literal)

Can be solved with just Unit Propagation and Pure Literal Elimination

Summary

Breakdown of all (propositional) formulas:

Next Time...

- Heuristic Search
- Optimisation Algorithms
 - Revisiting Travelling Salesman Problem

End of Slides!

Feedback

• Let me know how you found today's lecture?

https://goo.gl/forms/5TVc7aDIEjZ5WyhC2