2023 554 R Notes on Mapping for Point Data

Jon Wakefield Departments of Biostatistics and Statistics University of Washington

2023-03-06

Overview

In these notes we will consider mapping and modeling of point data in which the (nominal) exact locations are known.

We will look at modeling a spatially-indexed continuous response via:

- Conventional Kriging via MLE and variants
- A generalized additive model (GAM)
- A Bayesian approach using stochastic partial differential equations (SPDE)

Continuous Response: Motivating Example

We illustrate methods for continuous data using on Zinc levels in the Netherlands.

This data set gives locations and top soil heavy metal concentrations (in ppm), along with a number of soil and landscape variables, collected in a flood plain of the river Meuse, near the village Stein in the South of the Netherlands.

Heavy metal concentrations are bulk sampled from an area of approximately $28 \text{km} \times 39 \text{km}$.

The Meuse data are in a variety of packages. The version in the geoR library are not a spatial object, but can be used with likelihood and Bayes methods.

Meuse analysis using geostat functions

We look at the sampling locations and then examine variograms.

```
library(tidyverse)
library(ggpubr)
library(viridis)
library(geoR)
data("meuse")
library(sp)
pal <- function(n = 9){ brewer.pal(n, "Reds") }
data(meuse)</pre>
```

```
coords <- SpatialPoints(meuse[,c("x","y")])
meuse1 <- SpatialPointsDataFrame(coords,meuse)
data(meuse.riv)
river_polygon <- Polygons(list(Polygon(meuse.riv)),ID="meuse")
rivers <- SpatialPolygons(list(river_polygon))
coordinates(meuse) = ~x+y</pre>
```

Zinc: Sampling locations

```
plot(meuse1,axes=T)
plot(rivers,add=T)
```


Exploratory analysis

We work with log(zinc) as the distribution is more symmetric than on the original scale, and the variance more constant across levels of covariates.

It's often a good idea to do some exploratory data analysis (EDA), so let's see how $\log(zinc)$ varies by two possible covariates:

- Flooding frequency (ffreq); 1 = once in two years; 2 = once in ten years; 3 = one in 50 years
- Distance to the Meuse river (dist); normalized to [0,1]

We focus on these, since they are available across the study region and so can be used for prediction. Following previous authors, we take sqrt(dist) which is closer to linearity.

```
par(mfrow=c(1,2))
plot(log(meuse$zinc)~meuse$ffreq,ylab="log(zinc)",xlab="Flooding Frequency",col="blue")
plot(log(meuse$zinc)~sqrt(meuse$dist),ylab="log(zinc)",xlab="Sqrt distance to river",col="blue")
```


plot(log(meuse\$zinc)~meuse\$elev,ylab="log(zinc)",xlab="Elevation",col="blue")

Also map log(zinc) and these covariates.

```
m.sf <- sf::st_as_sf(meuse, coords = c("x","y"))
m.sf$logzinc <- log(m.sf$zinc)
m.sf$sdist <- sqrt(m.sf$dist)

a <- ggplot() + geom_sf(data = m.sf[,"logzinc"], aes(color = logzinc)) +
    theme_void() + scale_color_viridis_c() + labs(title = "log(Zinc)", color=NULL)

b <- ggplot() + geom_sf(data = m.sf[,"ffreq"], aes(color = ffreq)) +
    theme_void() + scale_color_viridis(discrete=T) + labs(title = "Flooding Frequency", color=NULL)

c <- ggplot() + geom_sf(data = m.sf[,"sdist"], aes(color = sdist)) +
    theme_void() + scale_color_viridis_c() + labs(title = "Sqrt Distance to Meuse", color=NULL)

# d <- ggplot() + geom_sf(data = m.sf[,"elev"], aes(color = elev)) + theme_void() + scale_color_viridis_ggpubr::ggarrange(a,b,c, nrow=2, ncol=2)</pre>
```


log(zinc): Variogram cloud, tremd removed

```
library(gstat)
cld <- variogram(log(zinc) ~ sqrt(meuse$dist)+as.factor(meuse$ffreq), meuse, cloud = TRUE)
plot(cld,ylab="Semi-variance",xlab="Distance (m)")</pre>
```


More variograms, with sample sizes

```
library(lattice)
cld <- variogram(log(zinc) ~ sqrt(meuse$dist)+as.factor(meuse$ffreq), meuse, cloud = TRUE)</pre>
svgm <- variogram(log(zinc) ~ sqrt(meuse$dist)+as.factor(meuse$ffreq), meuse)</pre>
d <- data.frame(gamma = c(cld$gamma, svgm$gamma),</pre>
    dist = c(cld$dist, svgm$dist),
    id = c(rep("cloud", nrow(cld)), rep("sample variogram", nrow(svgm)))
xyplot(gamma ~ dist | id, d,
    scales = list(y = list(relation = "free",
      #ylim = list(NULL, c(-.005, 0.25)))),
      limits = list(NULL, c(-.005,0.25)))),
    layout = c(1, 2), as.table = TRUE,
    panel = function(x,y, ...) {
        if (panel.number() == 2)
            ltext(x+10, y, svgmnp, adj = c(0,0.5), cex=.4) #$
        panel.xyplot(x,y,...)
    },
    xlim = c(0, 1590),
    cex = .5, pch = 3
)
```


More variograms

```
cld <- variogram(log(zinc) ~ 1, meuse, cloud = TRUE)</pre>
svgm <- variogram(log(zinc) ~ 1, meuse)</pre>
d <- data.frame(gamma = c(cld$gamma, svgm$gamma),</pre>
    dist = c(cld$dist, svgm$dist),
    id = c(rep("cloud", nrow(cld)), rep("sample variogram", nrow(svgm)))
xyplot(gamma ~ dist | id, d,
    scales = list(y = list(relation = "free",
      #ylim = list(NULL, c(-.005, 0.7)))),
      limits = list(NULL, c(-.005, 0.7)))),
    layout = c(1, 2), as.table = TRUE,
    panel = function(x,y, ...) {
        if (panel.number() == 2)
            ltext(x+10, y, svgmnp, adj = c(0,0.5), cex=.4) #$
        panel.xyplot(x,y,...)
    },
    xlim = c(0, 1590),
    cex = .5, pch = 3
```


Monte Carlo simulations of semi-variogram

We simulate 100 datasets with random relabeling of points, and then form variograms for each.

```
v <- variogram(log(zinc) ~ sqrt(meuse$dist)+as.factor(meuse$ffreq), meuse)
plot(v, type = 'b', pch = 3,xlab="Sqrt Distance (m)",ylab="Semi-variance")
fn = function(n = 100) {
    for (i in 1:n) {
        meuse$random = sample(meuse$zinc)
        v = variogram(log(random) ~ 1, meuse)
        trellis.focus("panel", 1, 1, highlight = FALSE)
        llines(v$dist, v$gamma, col = 'grey')
        trellis.unfocus()
    }
}
fn()</pre>
```


Monte Carlo envelopes under no spatial dependence - it is clear there is dependence here.

```
v <- variogram(log(zinc) ~ sqrt(meuse$dist)+as.factor(meuse$ffreq), meuse)
plot(v, type = 'b', pch = 3,xlab="Sqrt Distance (m)",ylab="Semi-variogram")
fn = function(n = 100) {
    for (i in 1:n) {
        meuse$random = sample(meuse$zinc)
        v = variogram(log(random) ~ 1, meuse)
        trellis.focus("panel", 1, 1, highlight = FALSE)
        llines(v$dist, v$gamma, col = 'grey')
        trellis.unfocus()
    }
}
fn()</pre>
```


 $\log(\mathrm{zinc})$: Variogram cloud, detrended

```
cld2 <- variogram(log(zinc) ~ sqrt(meuse$dist)+as.factor(ffreq), meuse, cloud = TRUE)
plot(cld2,ylab="Semi-variance",xlab="Sqrt Distance (m)")</pre>
```


Binned variogram for log(zinc), detrended

```
gstatbin <- variogram(log(zinc) ~ sqrt(meuse$dist)+as.factor(ffreq), meuse, width=200)
plot(gstatbin,ylab="Semi-variance",xlab="Distance (m)")</pre>
```


Directional variogram with linear trend removed

We form 4 variograms with data taken from different directions, with 0 and 90 corresponding to north and east, respectively.

Note that 0 is the same as 180.

```
dircld <- variogram(log(zinc)~sqrt(meuse$dist)+as.factor(ffreq), meuse, alpha=c(0,45,90,135))
```

Directional variogram with linear trend removed

Other capabilities in gstat

See

- fit.variogram for estimation from the variogram
- krige (and associated functions) for Kriging,
- vgm generates variogram models

geoR for geostatistics

We continue the analysis using functions from the geoR library, for which a geodata data type is required. There are 155 observations (sampling locations)

log(zinc) Variogram

First we will be assuming a spatial model on the residuals with ffreq and sdist in the model. Fit this initial linear model, and view the residuals by histogram and map.

```
LSmod <- lm(log(meuse$zinc)~sqrt(meuse$dist)+as.factor(meuse$ffreq))
LSresid <- residuals(LSmod,type="pearson")
hist(LSresid,nclass=25)</pre>
```

Histogram of LSresid


```
m.sf$resid <- LSresid
ggplot() + geom_sf(data = m.sf[,"resid"], aes(color = resid)) +
   theme_void() + scale_color_viridis_c() + labs(title = "Residual", color=NULL)</pre>
```

Residual

Moran's I

We can calculate Moran's I to see the strength of spatial dependence in the residuals. Our results show that we can reject the null hypothesis that there is zero spatial autocorrelation present in LSresid at the $\alpha=0.05$ level.

```
library(ape)
dists <- as.matrix(dist(cbind(geozinc[1]$coords[, 1], geozinc[1]$coords[, 2])))</pre>
dists.inv <- 1/dists</pre>
diag(dists.inv) <- 0</pre>
dists.inv[1:5, 1:5]
## 1 0.000000000 0.014116748 0.008414063 0.003857440 0.002729898
## 2 0.014116748 0.000000000 0.007063831 0.003535423 0.002757553
## 3 0.008414063 0.007063831 0.000000000 0.006984644 0.003983684
## 4 0.003857440 0.003535423 0.006984644 0.000000000 0.006482446
## 5 0.002729898 0.002757553 0.003983684 0.006482446 0.000000000
Moran.I(LSresid, dists.inv)
## $observed
## [1] 0.1210698
##
## $expected
## [1] -0.006493506
##
## $sd
```

```
## [1] 0.01060145
##
## $p.value
## [1] 0
```

Variogram Cloud

Variogram cloud for log zinc residuals, after taking out ffreq and dist.

```
cloudzinc <- variog(geozinc,option="cloud", trend=~sqrt(meuse$dist)+as.factor(meuse$ffreq))
## variog: computing omnidirectional variogram
plot(cloudzinc,ylab="Semi-variance",xlab="Sqrt Distance (m)",col="grey",cex=.4)</pre>
```


Binned Variogram

Maximum likelihood for log(zinc)

We fit with the Matern covariance model with

$$\rho(h) = \frac{1}{2^{\kappa - 1} \Gamma(\kappa)} \left(\frac{h}{\phi} \right)^{\kappa} K_{\kappa} \left(\frac{h}{\phi} \right),$$

where h is the distance between 2 points and we take $\kappa = 0.5$ so that ϕ is the only estimated parameter. The other parameters estimated are τ^2 , the nugget, and σ^2 , the spatial variance. The practical range reported is the distance at which the correlations drop to 0.05, and is a function of ϕ .

We suppress the output from the call.

```
mlfit <- likfit(geozinc,cov.model="matern",ini=c(.2,224),trend=~sqrt(meuse$dist)+as.factor(meuse$ffreq)</pre>
```

We examine the results, specifically point estimates and standard errors.

```
mlfit$parameters.summary
              status
                        values
##
## beta0
           estimated
                        7.0712
## beta1
           estimated
                       -2.1208
                       -0.5154
## beta2
           estimated
## beta3
           estimated
                       -0.5266
## tausq
           estimated
                        0.0372
## sigmasq estimated
                        0.1316
## phi
           estimated 300.5381
## kappa
               fixed
                        0.5000
## psiA
               fixed
                        0.0000
               fixed
                        1.0000
## psiR
## lambda
               fixed
                        1.0000
for (i in 1:3){
cat(cbind(mlfit$beta[i],sqrt(mlfit$beta.var[i,i])),"\n")
}
## 7.071249 0.1326244
## -2.120796 0.2365602
## -0.5153624 0.06780136
mlfit$practicalRange
## [1] 900.3318
```

Note that the standard errors change from the least squares fit.

Restricted maximum likelihood for log(zinc)

Restricted MLE is preferable in general for estimation when there are variance parameters.

The results show slight differences from ML.

```
remlfit$parameters.summary
##
             status values
## beta0 estimated 7.0823
## beta1 estimated -2.1109
## beta2 estimated -0.5280
## beta3 estimated -0.5455
## tausq estimated 0.0442
## sigmasq estimated 0.1476
## phi
        estimated 401.4313
             fixed 0.5000
## kappa
             fixed 0.0000
## psiA
## psiR
             fixed 1.0000
## lambda
             fixed 1.0000
remlfit$practicalRange
## [1] 1202.581
for (i in 1:3){
cat(cbind(mlfit$beta[i],sqrt(mlfit$beta.var[i,i]),remlfit$beta[i],sqrt(remlfit$beta.var[i,i])),"\n")
}
## 7.071249 0.1326244 7.082279 0.1527493
## -2.120796 0.2365602 -2.110917 0.2515499
## -0.5153624 0.06780136 -0.5280202 0.06913553
```

Comparison of estimates

Prediction for log(zinc) by Kriging

We now fit a linear model in distance and elevation to log(zinc). We then form a geodata object with the residuals as the response.

```
lmfit <- lm(geozinc$data ~ sqrt(meuse$dist) + as.factor(meuse$ffreq))</pre>
lmfit
##
## Call:
## lm(formula = geozinc$data ~ sqrt(meuse$dist) + as.factor(meuse$ffreq))
##
## Coefficients:
##
                                     sqrt(meuse$dist) as.factor(meuse$ffreq)2
                (Intercept)
##
                     7.0299
                                              -2.2660
                                                                         -0.3605
## as.factor(meuse$ffreq)3
                    -0.3167
detrend <- as.geodata(cbind(geozinc$coords,lmfit$residuals))</pre>
```

Finally, we can obtain spatial predictions on a grid, using the parameter estimates from the ML fit.

To view the results produce an image plot of the predictions, with the data superimposed.

Standard deviations of prediction for log(zinc)

We now plot the Kriging standard deviations of the predictions.

The standard deviation is smallest close to the datapoints, as expected.

Another example, using categorical flooding frequency covariate

Now, we'll repeat, but use categorical flooding frequency and distance to the Meuse River as covariates. These two covariates are available for a grid, in the meuse.grid data object. This means we can predict log(Zinc) for a grid, using the sum of the linear model fit and the interpolated spatial field.

First take a look at the grid covariates.

```
library(sp)
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
gridded(meuse.grid) = TRUE</pre>
```

spplot(meuse.grid["ffreq"])

spplot(meuse.grid["dist"])

Now proceed with Kriging for log(Zinc).

```
# (label objects associated with this version with a "3")
lmdata <- data.frame(logzinc=geozinc$data, dist=sqrt(meuse$dist), ffreq=as.factor(meuse$ffreq))</pre>
lmfit3 <- lm(logzinc~dist+ffreq, data=lmdata)</pre>
detrend3 <- as.geodata(cbind(geozinc$coords,lmfit3$residuals))</pre>
mlfit3 <- likfit(detrend3,ini=c(.2,224))</pre>
## -----
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
           arguments for the maximisation function.
          For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
          times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## likfit: end of numerical maximisation.
# get meuse.grid and expand to all combinations
data(meuse.grid)
pred.grid3 <- expand.grid(sort(unique(meuse.grid$x)),</pre>
                          sort(unique(meuse.grid$y)))
# kriqinq
kc3 <- krige.conv(detrend3,loc=pred.grid3,</pre>
                  krige=krige.control(obj.m=mlfit3))
## krige.conv: model with constant mean
## krige.conv: Kriging performed using global neighbourhood
# merge linear predictions onto grid
pred_lm <- meuse.grid[, c("x", "y", "dist", "ffreq")]</pre>
pred_lm$pred_lm <- predict(lmfit3, newdata = pred_lm)</pre>
pred_resid <- data.frame(pred_resid = kc3$predict, x = pred.grid3$Var1,</pre>
                          y = pred.grid3$Var2)
pred_logzinc <- merge(pred_resid, pred_lm, by = c("x","y"), all=T)</pre>
pred_logzinc$pred_logzinc <- pred_logzinc$pred_lm + pred_logzinc$pred_resid</pre>
pred_logzinc <- pred_logzinc %>% arrange(y,x)
# plot prediction
image.plot(x=unique(pred.grid3[["Var1"]]), y=unique(pred.grid3[["Var2"]]),
           z=matrix(pred logzinc$pred logzinc,nrow=78,ncol=104),col=terrain.colors(100),
           xlab="x-coordinate",ylab="y-coordinate")
symbols(detrend3$coords[,1],detrend3$coords[,2],
        circles=(detrend3$data-min(detrend3$data))/1,add=T,inches=0.04)
```

