University of Saskatchewan Department of Mathematics & Statistics

Mathematics 110.3

Time: 3 hours

Final Examination

9am, December 9, 1999

CLOSED BOOK EXAMINATION - NO CALCULATORS ALLOWED

Student #:_____ Math 110 section #_ Name:

PART I

Questions in this part will be marked right or wrong. Please carefully write your answers in the spaces provided.

[7]1. (a) $\lim_{x \to 2} x - 4 =$

(b)
$$\lim_{t \to -2} \frac{t+2}{2t^3+7t^2+7t+2} =$$

(d)
$$\lim_{h\to 0} \frac{(2+h)^5 - 32}{h} =$$

(e)
$$\lim_{\theta \to 0} \frac{\sin(2\theta)}{\sin(\theta)} = \underline{\hspace{1cm}}$$

(f)
$$\lim_{x \to 1^+} \frac{x-1}{|x-1|} =$$

(g)
$$\lim_{x \to 4^-} \frac{x^2 - 2}{x^2 - 5x + 4} = \frac{-}{}$$

2. (a) At what x-value(s) does the graph of $y = \frac{x-1}{x^2-4x+3}$ have a vertical [3] asymptote?

(b) Find
$$\lim_{x \to \infty} \frac{3x^2 - 7x + 22}{1 - 3x^2}$$
.

(c) Find
$$\lim_{x \to -\infty} \frac{2x + 12}{\sqrt{4x^2 + 2x + 10}}$$
.

Name: ______ Student #:_____ Math 110 section #____

[20] 3. Carry out the indicated differentiations. It is not necessary to simplify your answers.

(a) If
$$p(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \frac{1}{4}x^4$$
, then $p'(x) = \underline{\hspace{1cm}}$

(b) If
$$y = \tan(3x)$$
, then $\frac{dy}{dx} =$

(c) If
$$w = 3^{(t-1)}$$
, then $\frac{dw}{dt} =$ ______

(d) If
$$f(t) = \frac{1}{\sqrt{2\pi}}e^{\frac{-t^2}{2}}$$
, then $f'(t) =$ _____

(e) If
$$g(x) = \frac{1}{1+x^3}$$
, then $g'(x) = \underline{\hspace{1cm}}$

(f) If
$$u = \frac{t^2 - 1}{t^2 + t + 1}$$
, then $\frac{du}{dt} =$

(g) If
$$f(t) = t^2(\ln t)(\sin t)$$
, then $f'(t) =$ ______

(h) If
$$y = \ln \left[\frac{x^2 - 4}{x^2 + 1} \right]$$
, then $\frac{dy}{dx} =$

(i) If
$$h(s) = s^{\cos s}$$
, then $h'(s) =$

(j) If
$$V = \frac{4}{3}\pi r^3$$
, then $\frac{dV}{dr} =$

		nal Examination December 199. Student #:	
[10]		n of the function $\ln(1-x^2)$?	
	(b) Find an antideriva	tive $F(x)$ of $f(x)=x^2-\sqrt{x}$ that	t satisfies $F(1) = 1$.
		wing definition. A function f is x_1 whenever $x_1 < x_2$ in I .	called <u>decreasing</u> on an interval
		owing statement: If $f'(x) = g'(x)$ istant C so that	
	(e) Complete the following statement: If f has a local maximum or minimum at c and if $f'(c)$ exists, then		
		PART II	
	Please provide carefully wr	itten answers to questions 5 thr	ough 14 in an answer booklet.
6]	the slope of the tangen	. Use the formal definition of the derivative (that is; work from first principles) to find the slope of the tangent line to the graph of $y = 2 + x^2$ at the point $(2,6)$. (No marks will be given for using the rules of differentiation.)	
		h.	
[6]	forms a growing circul	a large lake starts to leak. The ar shaped slick with a uniform wed to have a radius of 100 met.	thickness of 2 cm. At a given

(a) What is the domain of f(x)? At what point(s) x is f(x) = 0?

at a rate of 2 meters per minute. At what rate is the oil leaking from the pipe?

- (b) Identify the intervals where f(x) is increasing or decreasing.
- (c) Identify the intervals where f(x) is concave up or down.
- (d) Identify any local maxima or minima of f(x).
- (e) Sketch a graph of $y = xe^{-x}$.
- (f) Based on your graph, what do you think $\lim_{x\to\infty} xe^{-x}$ might be?

Name: ______ Student #:_____ Math 110 section #____

- [6] 8. A cylindrical can without a top is required to hold 8π cm³ of liquid. What is the smallest possible area of material that can be used in making this can? (Assume there is no wastage in constructing the can.)
- [6] 9. Find the equation of the tangent line to the graph of $x^{2/3} + y^{2/3} = 5$ at the point (-8, 1).
- [6] 10. (a) Let $f(\theta) = \sin(2\theta)$. Find $f'(\theta)$, $f''(\theta)$, $f^{(3)}(\theta)$ and $f^{(4)}(\theta)$. (b) What is $f^{(9)}(0)$?
- [6] 11. Use one step of Newton's method to estimate the cube root of 30. That is, let $f(x) = x^3 30$ and estimate the root of f(x) by starting with an initial guess of $x_1 = 3$ and applying one step of Newton's method. Leave your answer in fractional form.
- [6] 12. Let $f(x) = \frac{x+2}{1+x^2}$ for $x \in [-2, 2]$.
 - (a) Find all points $x \in [-2, 2]$ that are critical numbers for f.
 - (b) What are the absolute maximum value and absolute minimum value of f(x) for $x \in [-2, 2]$.
- [6] 13. (a) Show that the equation $x-1+\sin(\frac{\pi}{2}x)=0$ has at least one solution in the interval [0,1].
 - (b) How many solutions to the equation in (a) are there? Give justifications for your answers. (Do not try to calculate the value of any solutions.)
- [6] 14. Let c be a constant and $f(x) = x^3 + 3cx^2 + 3x + 2$. Find those values of c for which f(x) has no local maximum. Verify your claim.

The End