Les tris

Octobre 2014

Les tris par comparaison

Données

- Collection de TailleMax valeurs du même type rangées dans un tableau T
- Un opérateur de comparaison (\leq, \geq)

But

Ré-ordonner les valeurs de T de telle sorte que :

$$T[i] \leq T[i+1], \forall i \in \{1 \dots TailleMax - 1\}$$

Quelques algorithmes de tris

- Le tri par insertion
- Le tri à bulles (par permutation)
- Le tri fusion
- Le tri rapide (Quicksort)

Le tri par insertion

Principe Général

A tout moment le tableau T est séparé en 2 parties :

- $T[1] \dots T[TailleCourante]$: Partie déjà triée du tableau
- T[TailleCourante + 1] ... T[TailleMax] : Partie non triée du tableau.

Le tri par insertion (2)

Une Etape

- Prendre un élément non encore trié;
- L'insérer à sa place dans l'ensemble des éléments triés.

Le tri par insertion (3)

Algorithme 1 Tri par insertion

```
TriInsertion(T: tableau d'entiers, TailleMax: entier)

    ∨ariables I ocales

     TC, i, p, temp : entiers
Début
pour TC de 1 à TailleMax - 1 faire
     temp \leftarrow T[TC + 1]
     p \leftarrow 1
       tant que T[p] < temp faire
            p \leftarrow p + 1
                                                              Chercher la position p
       fin tant que
       pour i de TC en décroissant à p faire
            T[i+1] \leftarrow T[i]
                                                                 Décaler les éléments
       fin pour
     T[p] \leftarrow temp
fin pour
Fin
```

Tri par insertion(4)

Complexité pour *n* éléments

- Le corps de la boucle est exécuté n-1 fois
- Une itération :
 - Recherche de la position : p
 - Décalage des éléments : TC p
 - Total : TC
- Au total :

$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

La complexité du tri par insertion est en $O(n^2)$.

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Tri par permutation

Principe général

- Si deux éléments voisins ne sont pas ordonnés correctement, on les échange.
- Deux parties dans le tableau :
 - Une partie avec des éléments triés
 - Une partie avec des éléments non triés

de telle sorte que les éléments de la partie triée sont inférieurs aux éléments de la partie non triée.

Tri par permutation (2)

Fin

Algorithme 2 Tri par permutation

```
\begin{split} &\operatorname{TriPermutation}(T: \operatorname{tableau} \text{ d'entiers}, \ \textit{TailleMax}: \operatorname{entier}) \\ &\triangleright \textit{Variables Locales} \\ &\quad i, \ TC: \operatorname{entiers} \\ &\textbf{Début} \\ &\textbf{pour} \ TC \ \text{de} \ 2 \ \textbf{\grave{a}} \ \operatorname{TailleMax} \ \textbf{faire} \\ &\quad \textbf{pour} \ i \ \text{de} \ \operatorname{TailleMax} \ \textbf{en décroissant} \ \textbf{\grave{a}} \ \operatorname{TC} \ \textbf{faire} \\ &\quad \textbf{si} \ T[i-1] > T[i] \ \textbf{faire} \\ &\quad T[i-1] \leftrightarrow T[i] \\ &\quad \textbf{fin pour} \end{split}
```

Tri par permutation (3)

Complexité pour *n* éléments

- Boucle externe : n-2 fois
- Boucle interne : TailleMax TC fois
- Total : $\frac{(n-1)(n-2)}{2}$

La complexité du tri par permutation est en $O(n^2)$.

8 4 3 5 7 2 1 6

Tri Fusion

- Machine à trier des cartes perforées en 1938;
- 1er algo de tri fusion écrit par Von Neumann pour l'EDVAC en 1945;
- Basé sur le paradigme

«Diviser pour régner»

Diviser Pour Régner

- Séparer le problème en plusieurs sous-problèmes similaires au problème initial.
- 3 étapes :
 - Diviser le problème en un certain nombre de sous-problèmes
 - Régner sur les sous-problèmes en les résolvant
 - Combiner les solutions des sous-problèmes en une solution unique au problème initial.

Tri Fusion (2)

3 étapes :

- Diviser le tableau de n éléments à trier en 2 sous-tableaux de $\frac{n}{2}$ éléments.
- Régner :
 - Tout tableau de longueur 1 est trié.
 - Trier les 2 sous-tableaux récursivement à l'aide du Tri Fusion
- Combiner : Action Principale : la Fusion
 - Fusionner les 2 sous-tableaux triés pour produire un tableau trié.

Tri Fusion (3)

Fin

Algorithme 3 Tri Fusion

```
\begin{aligned} & \operatorname{TriFusion}(T: \text{tableau d'entiers, } p: \text{entier, } r: \text{entier}) \\ & \triangleright p \text{ et } r \text{ sont les indices entre lesquels on veut trier le tableau. On suppose } p \leq r. \\ & \textbf{Début} \\ & \textbf{si } p < r \text{ faire} \\ & q \leftarrow \lfloor \frac{p+r}{2} \rfloor \\ & \operatorname{TriFusion}(T,p,q) \\ & \operatorname{TriFusion}(T,q+1,r) \\ & \operatorname{Fusion}(T,p,q,r) \end{aligned}
```

Tri Fusion (4)

Algorithme 4 Tri Fusion

```
Fusion(T: tableau d'entiers, p: entier, q: entier, r: entier)
> Entrées : T : tableau d'entiers. p, q et r : indices entre lesquels on veut trier le tableau avec
p < a < r.
▶ Sortie : T : tableau trié entre les indices p et r.
\triangleright Pré-condition : T tableau trié entre les indices p et q et T trié entre les indices q+1 et r

    Variables locales : i,j,k : entiers et B : tableau d'entiers

Début
i \leftarrow p; k \leftarrow p; j \leftarrow q + 1;
tant que (i < q \text{ et } j < r) faire
                                                        tant que i < q faire
                                                               B[k] \leftarrow T[i]
      si T[i] < T[j] faire
             B[k] \leftarrow T[i]
                                                               i \leftarrow i + 1
             i \leftarrow i + 1
                                                               k \leftarrow k + 1
                                                        fin tant que
      sinon
                                                        tant que i < r faire
             B[k] \leftarrow T[j]
                                                               B[k] \leftarrow T[j]
            i \leftarrow i + 1
                                                               j \leftarrow j + 1
                                                               k \leftarrow k + 1
      fin si
                                                        fin tant que
      k \leftarrow k + 1
                                                        T \leftarrow B
                                                        Fin
fin tant que
                                                      Les tris
```

Tri Fusion (5)

Complexité pour *n* élements

Intuitivement il faut résoudre :

$$Tri(n) = 2 \times Tri(\frac{n}{2}) + \Theta(n)$$

 \bullet $\Theta(n)$: complexité de la fusion

La complexité du tri fusion est en $\Theta(n \log_2 n)$.

8 4 3 5

7

◆ロ → ◆部 → ◆ き → ◆き → き め へ ○

4 D > 4 A > 4 B > 4 B > B = 900

Tri Rapide

- Proposé par Hoare en 1962.
- Basé sur le paradigme «diviser pour régner» :
 - **Diviser**: le Tableau T[p..r] est divisé en 2 sous-tableaux non vides. Trouver q de telle sorte que chaque élément de T[p..q] soit inférieur à chaque élément de T[q+1..r].
 - Régner : 2 sous-tableaux sont triés grâce à la récursité.
 - Combiner : rien à faire.

Tri Rapide (2)

Algorithme 5 Tri Rapide

Tri Rapide (3)

Algorithme 6 Partitionner

```
Partitionner (T: tableau d'entiers, p: entier, r: entier)
\triangleright p et r sont les indices entre lesquels on veut trier le tableau. On suppose p < r.

    Variables locales : i.i.pivot : entiers

Début
i \leftarrow p; j \leftarrow r; pivot \leftarrow T[p];
tant que (i < j) faire
      tant que (T[i] < pivot) faire i \leftarrow i+1 fin tant que
      tant que (T[j] > pivot) faire j \leftarrow j - 1 fin tant que
      si (i < j) faire
            T[i] \leftrightarrow T[j]
            i \leftarrow i + 1
            i \leftarrow i - 1
      fin si
fin tant que
retourner j
Fin
```

Tri Rapide (4)

Complexité pour *n* éléments

- Partitionner n éléments coûte $\Theta(n)$.
- Temps d'éxécution dépend de l'équilibre ou non du partitionnement :
 - S'il est équilibré : aussi rapide que le tri fusion
 - S'il est déséquilibré : aussi lent que le tri par insertion

Tri Rapide (5)

Partitionnement dans le pire cas

- 2 sous-tableaux de 1 élement et n-1 éléments.
- Trier un élément coûte $\Theta(1)$
- Supposons que ce partitionnement déséquilibré intervienne à chaque étape.
- Résolution de :

$$Tri(n) = Tri(n-1) + \Theta(n)$$

Tri Rapide (6)

Partitionnement dans le pire cas

$$Tri(n) = Tri(n-1) + \Theta(n)$$

$$= \sum_{k=1}^{n} \Theta(k)$$

$$= \Theta(\sum_{k=1}^{n} k)$$

$$= \Theta(n^{2})$$

- Ce partitionnement apparaît quand le tableau est trié!
- Dans ce cas-là le tri par insertion est linéaire!

Tri Rapide (7)

Partitionnement dans le meilleur cas

- Le partitionnement est équilibré
- Il faut résoudre :

$$Tri(n) = 2 \times Tri(\frac{n}{2}) + \Theta(n)$$

• Solution : $Tri(n) = \Theta(n \log_2 n)$

Optimalité des tris par comparaisons

- Un tri par comparaison a une complexité en $\Omega(n \log_2 n)$
- Les tris qui ont une complexité en θ(n log₂ n) sont optimaux

Synthèse

Algorithme	Pire cas	En moyenne	Meilleur cas
Insertion	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
Permutation	$O(n^2)$	$O(n^2)$	$O(n^2)$
Fusion	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$
Rapide	$O(n^2)$	$O(n\log_2 n)$	$O(n\log_2 n)$