

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift ® DE 195 49 022 A 1

(51) Int. Cl.8: H 01 J 37/28 H 01 J 37/244

DEUTSCHES PATENTAMT Aktenzeichen: Anmeldetag:

195 49 022.3 28. 12. 95

Offenlegungstag:

11. 7.96

(3) Unionspriorität: (2) (3) (3)

28.12.94 JP 6-327068

(71) Anmelder:

Hitachi, Ltd., Tokio/Tokyo, JP

(74) Vertreter:

Strehl, Schübel-Hopf, Groening & Partner, 80538 München

(72) Erfinder:

Sato, Mitsugu, Hitachinaka, Ibaraki, JP

Prüfungsantrag gem. § 44 PatG ist gestellt

Rasterelektronenmikroskop und Probenbetrachtungsverfahren mittels eines solchen

Eine axialsymmetrische Elektrode (10), durch die ein Primärelektronenstrahl (4) hindurchlaufen kann, wird auf dem Elektronenstrahlpfad innerhalb des Magnetpols einer Objektivilnse (6) angeordnet, damit der durch die Objektivlinse laufende Primärelektronenstrahl eine höhere Energie hat, als es der endgültigen Beschleunigungsspannung entspricht. Der Probentisch (13) verfügt über einen Sensor (25) zum Erfassen der Probennelgung, und die an die Elektrode angelegte Spannung wird durch eine Steuereinrichtung (11) verringert oder auf Null gestellt, wenn der Winkel der Probenneigung zu groß ist.

Beschreibung

Die Erfindung betrifft eine Elektronenstrahlvorrichtung und ein Probenbetrachtungsverfahren mittels einer solchen, und speziell betrifft sie ein Rasterelektronenmikroskop (REM), das dafür geeignet ist, ein Bild hoher Auflösung bei niedriger Beschleunigungsspannung zu erhalten, wie auch ein mit diesem ausgeführtes Probenbetrachtungsverfahren.

Ein REM enthält eine Elektronenquelle, eine Kondensorlinse zum Bündeln von von dieser emittierten Elektronenstrahlen als feine Sonden auf eine Probe, ein Strahlablenksystem zum zweidimensionalen Durchrastern gebündelter Elektronenstrahlen über die Probe und einen Sekundärelektronen-Detektor zum Erfassen von Sekundärelektronen, wie sie durch Belichtung mit dem Elektronenstrahl von der Probe emittiert werden; es sorgt für Betrachtung feiner Strukturen auf der Probenoberfläche mit hoher Auflösung und hohen Vergrößerungen.

In den letzten Jahren bestand zunehmender Bedarf nach einem REM, das bei niedrigen Beschleunigungsspannungen im Bereich von 500 bis 1000 Volt betrieben werden kann, um Antistatikbedingungen zu genügen. Um bei niedrigen Beschleunigungsspannungen Bilder mit hoher Auflösung zu gewährleisten, ist es erforderlich, den Strahldurchmesser durch Verringern der Aberration der Objektivlinse zu verkleinern. Die Aberration der Objektivlinse kann dadurch verringert werden, daß die Unterseite des inneren Polstücks um denselben Weg wie die des äußeren Polstücks vorgeschoben oder in eine niedrigere Position gebracht wird, um dafür zu sorgen, daß das Magnetfeld der Linse auf der Probenseite erzeugt wird, was zu verringerter Brennweite der Objektivlinse führt.

Eine andere Vorgehensweise zum Verringern der Aberration der Objektivlinse ist im US-Patent Nr. 4,713,543 offenbart. Gemäß der dortigen Offenbarung ist eine axialsymmetrische Elektrode auf dem Elektronenstrahlpfad von der Elektronenkanone zur Objektivlinse angebracht, und an diese Elektrode wird eine hohe Spannung angelegt, um die Energie des Primärelektronenstrahls, der durch die Objektivlinse läuft, höher als die Energie zu machen, die dann vorliegt, wenn er die Probe erreicht (Endbeschleunigungsspannung). In diesem Fall wird die an die im Elektronenstrahlpfad angebrachte Elektrone angebrachte Spannung normalerweise proportional zu einer festgelegten Spannung oder der Beschleunigungsspannung des Primärelektronenstrahls verändert.

Um Bilder mit hoher Auflösung unter Verringerung der Aberration der Objektivlinse zu betrachten, ist es auch möglich, an eine kombinierte Verwendung dieser zwei Verfahren zu denken, wobei das Magnetfeld der Objektivlinse auf der Probenseite erzeugt wird und eine Elektrode im Elektronenstrahlpfad angeordnet wird, um für hohe Beschleunigungsenergie hinsichtlich des Elektronenstrahls zu sorgen, der durch das Magnetfeld der Objektivlinse läuft.

Der Erfindung liegt die Aufgabe zugrunde, ein REM und ein mit diesem ausgeführtes Probenbetrachtungsverfahren zu schaffen, die bei niedriger Beschleunigungsspannung Betrachtung mit hoher Auflösung ermöglichen.

Diese Aufgabe ist hinsichtlich der Vorrichtung durch 65 die Lehren der beigefügten unabhängigen Ansprüche l, 6 und 7 und hinsichtlich des Verfahrens durch die Lehren der beigefügten unabhängigen Ansprüche 12 und 15

gelöst.

Gemäß der Erfindung erfolgt die Betrachtung unter optimalen Ausrüstungseinstellungen und/oder abhängig von der Beschaffenheit einer Probe, die z.B. Vorsprünge und Vertiefungen aufweist und/oder auf einer schrägen Ebene angeordnet ist oder eine schräge Oberfläche aufweist.

Die Erfindung beruht auf Erkenntnissen, die die Autoren dabei gewonnen haben, daß sie versuchsweise ein REM aufgebaut haben, das für den oben beschriebenen kombinierten Aufbau konzipiert war. Es hat sich gezeigt, daß im Ergebnis Betrachtung mit hoher Auflösung möglich ist, wenn eine Probe mit ebener Oberfläche betrachtet wird und der Probentisch horizontal angeordnet ist; Aberration im Probenbild tritt dagegen auf, ohne daß die erwarteten Bilder mit hoher Auflösung erhalten werden, wenn die Probe schräg gestellt ist oder wenn die Probe große Vorsprünge oder Kanten an der betrachteten Oberfläche hat.

Bei der Erfindung wird eine Objektivlinse verwendet, die dafür sorgt, daß ihr Magnetfeld auf der Probenseite erzeugt wird. Eine Elektrode ist im Elektronenstrahlpfad innerhalb des Magnetpols der Objektivlinse angeordnet, um dem durch dieses Magnetfeld laufenden Elektronenstrahl hohe Beschleunigungsenergie zu verleihen. Das Anlegen der Spannung an die Elektrode kann gekoppelt mit der Beschleunigungsspannung für den Primärelektronenstrahl erfolgen oder sie kann mit konstanter Spannung erfolgen, unabhängig von der Beschleunigungsspannung des Primärelektronenstrahls.

In diesem Fall tritt zwischen der Objektivlinse und der Probe ein starkes elektrisches Verzögerungsfeld auf. Wenn eine Probe betrachtet wird, die eine ebene, nicht schräg gestellte Fläche aufweist, ist dieser Ausrüstungszustand optimal, um die Aberration der Objektivlinse zu minimieren, und es ist eine Betrachtung mit hoher Auflösung bei niedriger Beschleunigungsspannung möglich.

Wenn jedoch eine Probe mit ebener Fläche auf einem schräg gestellten Probentisch zu betrachten ist oder wenn eine leitende Probe mit großen Vorsprüngen und Vertiefungen auf der Oberfläche zu betrachten ist, wird das zwischen der Objektivlinse und der Probe ausgebildete elektrische Verzögerungsfeld durch die Schrägstellung des Probentischs oder die Vorsprünge und Vertiefungen an der Probenoberfläche gestört. Die Störung des elektrischen Verzögerungsfelds erhöht entgegen den Erwartungen den Astigmatismus der Objektivlinse, was es unmöglich macht, eine Betrachtung mit hoher Auflösung auszuführen.

Die Erfindung ist das Ergebnis einer Analyse der Gründe für diesen Mangel. Gemäß der Erfindung wird der Mangel dadurch überwunden, daß eine optimale Einstellung der Stärke des elektrischen Felds zwischen der Probe und der Objektivlinse abhängig von einer Schrägstellung des Probentischs und Bedingungen an der Probenoberfläche vorgenommen wird und die Objektivlinsenaberration bei allen Betrachtungsbedingungen minimiert wird. Dies wird durch die Maßnahme gemäß dem beigefügten Anspruch 1 erzielt.

Wenn der Winkel der Probentischneigung einen vorgegebenen Wert überschreitet, kann die Steuereinrichtung für eine stufenweise Steuerung sorgen, bei der die an die Elektrode angelegte Spannung auf Null oder auf einen vorgegebenen Wert umgeschaltet wird, der kleiner ist als derjenige der Spannung, die dann angelegt wird, wenn der Winkel der Probentischneigung null ist. Alternativ kann die Steuereinrichtung für eine kontinu-

ierliche Änderung der angelegten Spannung abhängig vom Winkel der Probentischneigung sorgen.

Es ist auch möglich, die Vorrichtung gemäß Anspruch 6 auszubilden. Außerdem ist es möglich, für eine Steuerung zu sorgen, bei der die Spannung, die an die näher an die Probe liegenden Elektroden angelegt wird, mit der Spannung gekoppelt ist, die an die weiter von der Probe weg liegenden Elektroden angelegt wird, wobei die Spannung an den weiter weg liegenden Elektroden auf eine vorgegebene konstante Spannung eingestellt 10 wird.

Ferner ist es auch möglich, eine Einrichtung zum Einstellen des Erregerstroms der Objektivlinse gekoppelt mit der an die Elektrode angelegten Spannung bereitzustellen oder eine Einrichtung zum Einstellen der Abrasterbreite des Primärelektronenstrahls. Die Objektivlinse kann auf solche Weise konzipiert sein, daß das innere Polstück mehr als das äußere Polstück auf der Probenseite vorsteht, und der Sekundärelektronen-Detektor kann über der Objektivlinse angebracht sein.

Ein erfindungsgemäßes Probenbetrachtungsverfahren ist im Anspruch 12 angegeben. Wenn der Winkel der Probentischneigung einen vorgegebenen Wert überschreitet, kann die an die Elektrode angelegte Spannung dadurch eingestellt werden, daß sie auf Null oder einen 25 vorgegebenen Wert umgeschaltet wird, der kleiner als der Wert derjenigen Spannung ist, die angelegt wird, wenn der Winkel der Probentischneigung null ist. Alternativ kann die Steuereinrichtung für eine kontinuierliche Änderung der angelegten Spannung abhängig vom 30 liegenden Elektroden angelegte konstante Spannung Winkel der Probentischneigung sorgen. Es ist auch möglich, einen Neigungswinkelsensor auf dem Probentisch anzubringen und für automatische Einstellung mittels einer auf dem Sensorausgangssignal beruhenden Steuerung zu sorgen. Diese Steuerung kann auch von 35 die an die Elektrode angelegt wird, die auf dem Elektro-Hand erfolgen.

Ein weiteres erfindungsgemäßes Betrachtungsverfahren ist durch die Lehre des beigefügten Anspruchs 15 gegeben. Wenn eine Objektivlinse mit kurzer Brennweite und kleiner Aberration verwendet wird, kann der 40 Elektronenstrahlfleck-Durchmesser verringert werden, was Bilder mit hoher Auflösung gewährleistet. Die Aberration der Objektivlinse kann dadurch weiter verringert werden, daß der durch den Magnetpol der Objektivlinse laufende Elektronenstrahl mittels der Elek- 45 trode beschleunigt wird, die innerhalb des Magnetpols der Objektivlinse angebracht ist. Das elektrische Feld, das von der innerhalb des Magnetpols der Objektivlinse angeordneten Elektrode herrührt, dient auch dazu, die kundärelektronen-Detektor zu leiten. Demgemäß ermöglicht die Erfindung bei normalen Betrachtungsbedingungen ohne Schrägstellung des Probentischs die Betrachtung von Bildern hoher Auflösung bei optimalen Bedingungen und minimaler Aberration der Objektiv- 55

Wenn die Spannung, die an die auf dem Elektronenstrahlpfad innerhalb des Magnetpols der Objektivlinse angebrachte Elektrode angelegt wird, proportional zur Beschleunigungsspannung des Primärelektronenstrahls 60 eingestellt wird, ist es möglich, eine verbesserte Auflösung zu erwarten, die für verschiedene Beschleunigungsspannungen immer gleich ist. Wenn dagegen die Elektrodenspannung unabhängig von der Beschleunigungsspannung des Primärelektronenstrahls immer auf 65 einen konstanten Wert eingestellt wird, kann eine bessere Auflösungswirkung bei niedrigerer Beschleunigungsspannung bei verringerter Auflösung erhalten werden.

Wenn der Probentisch vorhanden ist, stört dageger. eine Schrägstellung desselben das elektrische Verzögerungsfeld, wie es zwischen der Probe und der auf dem Elektronenstrahlpfad innerhalb des Magnetpols der Objektivlinse angebrachten Elektrode erzeugt wird, was entgegen der Erwartung zu erhöhter Aberration führt. In diesem Fall wird die Aberration der Objektivlinse dadurch eher verringert, wenn die Elektrodenfunktion dadurch beendet wird, daß die an die Elektrode angelegte Spannung verringert wird, unter Umständen auf Null. was für Bilder mit hoher Auflösung bei optimalen Bedingungen sorgt.

Wenn mehrere Elektroden auf dem Pfad innerhalb des Magnetpols der Objektivlinse angebracht werden. wird die an die Elektroden näher an der Probe angelegte Spannung in Übereinstimmung mit dem Winkel der Probentischneigung geändert, wodurch die Zunahme der Aberration der Objektivlinse gesteuert wird. In diesem Fall ist es möglich, den Erfassungswirkungsgrad für Sekundärelektronen zu verbessern, ohne die Linsenaberration zu erhöhen, und zwar durch das Anlegen einer positiven Spannung von einigen 10 bis einigen 100 Volt an die Elektroden, die weiter weg von der Probe liegen, unabhängig vom Winkel der Probentischneigung. Der Erfassungswirkungsgrad für Sekundärelektronen kann noch mehr verbessert werden, wenn die Einstellung gekoppelt mit der Spannung erfolgt, die an die näher an der Probe liegenden Elektroden angelegt wird, ohne daß die an die weiter von der Probe weg beibehalten wird.

Die Fokussierwirkung hinsichtlich des Primärelektronenstrahls und die Abrasterbreite desselben auf der Probe werden durch Ändern der Spannung verändert, nenstrahlpfad innerhalb des Magnetpols der Objektivlinse angeordnet ist. Demgemäß kann dann, wenn der Erregerstrom der Objektivlinse und die Abrasterlinie des Primärelektronenstrahls gekoppelt mit diesem gesteuert werden, der Brennpunkt immer an derselben Probenposition gehalten werden, ohne daß die Vergrö-Berung geändert wird, und zwar selbst dann, wenn die an die Elektrode angelegte Spannung verändert wird.

Ferner wird dann, wenn die Probe Vorsprünge und Vertiefungen auf der Oberfläche aufweist, z. B. bei der Betrachtung der Probenkante, und insbesondere dann, wenn die Probe elektrisch leitend ist, das elektrische Feld durch die Vorsprünge und Vertiefungen gestört, was zu erhöhter Linsenaberration führt. Demgemäß von der Probe erzeugten Sekundärelektronen zum Se- 50 kann die Betrachtung einer derartigen Probe unter optimalen Bedingungen für minimale Linsenaberration erfolgen, wenn die Spannung, die an die Elektrode angelegt wird, die auf dem Elektronenstrahlpfad innerhalb des Magnetpols der Objektivlinse angeordnet ist, auf Null oder einen Wert eingestellt wird, der kleiner als der Wert derjenigen Spannung ist, die an eine Probe mit ebener Fläche angelegt wird.

Auch in diesem Fall kann, wenn eine niedrige Spannung von einigen 10 bis einigen 100 Volt an mehrere Elektroden, die weiter von der Probe weg liegen, angelegt wird, der Einfangwirkungsgrad für Sekundärelektronen verbessert werden, ohne die Wahrscheinlichkeit. daß ein gestörtes elektrisches Feld dicht an der Probe erzeugt wird, was zu erhöhter Aberration führen würde.

Gemäß der Erfindung kann die Objektivlinsenaberration dadurch minimiert werden, daß die an die Elektrode angelegte Spannung (oder an die Elektroden, die näher an der Probe liegen, wenn mehrere Elektroden vorhan-

den sind) erhöht wird, die auf dem Elektronenstrahlpfad innerhalb des Magnetpols der Objektivlinse liegt, wenn die Probe keine großen Vorsprünge und Vertiefungen hat und der Winkel der Probentischneigung klein ist. Wenn die Probe große Vorsprünge und Vertiefungen aufweist und/oder der Winkel der Probentischneigung zur Betrachtung erhöht ist, wird die Elektrodenspannung verringert, was zu verkleinertem elektrischem Feld zwischen der Objektivlinse und der Probe führt, grund der Störung des elektrischen Felds zunimmt. Dies ermöglicht es, die Probe immer unter Bedingungen für höchste Auflösung zu betrachten, die am besten für die jeweilige Probenoberfläche und Beobachtungsbedingungen geeignet sind.

Die Erfindung wird im folgenden anhand von durch Figuren veranschaulichten Ausführungsbeispielen näher beschrieben.

Die Fig. 1 und 2 sind Zeichnungen, die jeweils ein Ausführungsbeispiel der Erfindung veranschaulichen.

Fig. 1 ist eine Schnittansicht durch ein erstes Ausführungsbeispiel der Erfindung. Ein Primärelektronenstrahl 4, der von einer Kathode 1 aufgrund einer Spannung V1 (z. B. 4 kV) emittiert wird, die zwischen die Kathode 1 und eine erste Anode 2 gelegt wird, wird 25 durch eine Beschleunigung Vacc (z. B. 1 kV) beschleunigt, die an eine zweite Anode 3 angelegt wird, wodurch er ein in einer späteren Stufe liegendes Linsensystem erreicht. Dieser Primärelektronenstrahl 4 wird durch eine Kondensorlinse 5 und eine Objektivlinse 6, gesteu- 30 ert durch eine Linsensteuerungs-Spannungsversorgung 16, zu einem feinen Fleck auf einer Probe 7 gebündelt. wobei der Bündelungswinkel (Strahlöffnungswinkel) der auf die Probe 7 gestrahlten Primärelektronen durch eine Objektivlinsenblende 14 bestimmt wird; dann wird 35 einstimmung mit dem Wert der an die Elektrode 10 er mittels einer Ablenkspule 8 zweidimensional über die Probe gerastert. Das Abrastersignal für die Ablenkspule 8 wird durch eine Ablenksteuerschaltung 15 abhängig von der Betrachtungsvergrößerung gesteuert.

Eine axialsymmetrische Zylinderelektrode 10 ist auf 40 dem Elektronenstrahlpfad der Objektivlinse 6 angeordnet, und es wird eine positive Spannung Va (z. B. 500 Volt) durch eine geregelte Spannungsversorgung 11 an sie angelegt. Nachdem der Primärelektronenstrahl 4 durch die an die Elektrode 10 angelegte Spannung Va 45 über die Beschleunigungsspannung Vacc hinaus beschleunigt wurde, wird er zwischen der Objektivlinse 6 und der Probe 7 auf die ursprüngliche Energie (Vacc) verzögert und auf die Probe 7 gestrahlt. Die Konstruktion ist dergestalt, daß auf der Probenseite der Objektiv- 50 linse 6 ein Magnetfeld vorliegt. Wenn an die Elektrode 10 die positive Spannung Va angelegt wird, durchläuft der Primärelektronenstrahl 4 das Magnetfeld der Objektivlinse mit einer Energie über Vacc, was zu verkleinerter Linsenaberration führt. Die von der Probe 7 55 durch Einstrahlung des Primärelektronenstrahls 4 emittierten Sekundärelektronen 9 werden durch das Magnetfeld der Objektivlinse eingefangen und über die Objektivlinse einem Sekundärelektronen-Detektor 20 zugeführt, um von diesem gemessen zu werden. Das von 60 ihm ausgegebene Signal wird in eine Bildanzeige 17 eingegeben, die ein vergrößertes Bild der Probe zeigt. Beim vorliegenden Ausführungsbeispiel ist die Spannung Va unabhängig von der Beschleunigungsspannung Vacc auf einen vorgegebenen Wert eingestellt, so daß 65 bei kleinerer Beschleunigungsspannung eine größere Wirkung hinsichtlich der Auflösungsverbesserung erzielt wird, mit einer beachtlichen Auflösungsverkleine-

Die Beschleunigungsspannung Vacc und die Elektrodenspannung Va müssen miteinander gekoppelt geändert werden, um dafür zu sorgen, daß der Erregungsstrom der Objektivlinse 6 größer wird, wenn die Beschleunigungsspannung Vacc und die Elektrodenspannung Va größer werden. Die Beziehung zwischen der Beschleunigungsspannung Vacc und der Elektrodenspannung Va, die dazu erforderlich sind, den Elektrowodurch verhindert wird, daß der Astigmatismus auf- 10 nenstrahl auf denselben Punkt zu fokussieren, und der Erregerstrom der Objektivlinse wird vorab durch Versuche und Simulation aus einer Formel oder in Tabellenform erhalten, und diese Formel oder die Tabellen werden bei der Realisierung verwendet.

Der Probentisch 13 ermöglicht es, die Probe sowohl in horizontaler Richtung (X, Y) als auch in vertikaler Richtung (Z) zu verstellen, und er ermöglicht es, eine Probe zu neigen. Ein Senor 25 ist vorhanden, um den Neigungswinkel zu messen. Ferner ist der Probentisch 20 13 elektrisch leitend, und er wird auf Massepotential oder einer negativen Konstantspannung gehalten. Der Probenneigungswinkel-Meßsensor 25 gibt Signale aus, wenn der Winkel der Probentischneigung größer als ein vorgegebener Wert (z. B. 30 Grad) ist, und dieses Signal betätigt die geregelte Spannungsversorgung 11 so, daß die an die Elektrode 10 angelegte Spannung Va auf einen kleineren Wert oder Null geändert wird. Dieser Steuervorgang erniedrigt das Magnetfeld zwischen der Objektivlinse 6 und der Probe 7, um dadurch zu verhindern, daß der Astigmatismus aufgrund einer Störung des elektrischen Felds zunimmt, die von der Schrägstellung des Probentischs herrührt.

Wie die Elektrodenspannung Va abhängig vom Winkel der Probentischneigung zu ändern ist, wird in Überangelegten Spannung Va und dem Wert der Beschleunigungsspannung Vacc in solcher Weise ermittelt, daß der Astigmatismus bei allen Betrachtungsbedingungen minimal ist. Die angelegte Spannung Va kann schrittweise abhängig vom Winkel der Probentischneigung geändert werden, oder sie kann kontinuierlich geändert werden.

Die geregelte Spannungsversorgung 11 ist mit einem Handschalter 12 versehen. Wenn die Probe elektrisch leitend ist und große Vorsprünge und Vertiefungen an der Oberfläche aufweist, was zu einer Störung des zwischen der Elektrode 10 und der Probe 7 ausgebildeten elektrischen Felds führt, wird das Magnetfeld dadurch verkleinert, daß die an die Elektrode 10 angelegte Spannung unabhängig vom Signal vom Probenneigungswinkel-Meßsensor 25 auf einen kleineren Wert oder auf Null eingestellt wird.

Gemäß dem vorliegenden Ausführungsbeispiel wird das Magnetfeld zwischen der Probe und der Objektivlinse in Übereinstimmung mit dem Probentisch-Neigungswinkel und den Probenoberflächenzuständen auf den optimalen Wert eingestellt, und die Objektivlinseaberration wird bei allen Betrachtungsbedingungen minimiert, um dadurch eine Betrachtung der Probe mit hoher Auflösung zu gewährleisten.

Fig. 2 ist eine Schnittansicht nahe der Objektlivlinse gemäß einem weiteren Ausführungsbeispiel der Erfindung. Die Objektivlinse 6 gemäß diesem Ausführungsbeispiel verfügt über ein inneres Polstück 6a, das mehr zur Probe vorsteht als ein äußeres Polstück 6b, um dafür zu sorgen, daß eine große Probe 7 unter einem engen Winkel schräg gestellt werden kann. Dies erhöht den Abstand zwischen der Unterseite der Objektivlinse und dem sekundärelektronen-Detektor 20; daher ist es zum

Gewährleisten einer wirksamen Erkennung von von der Probe 7 emittierten Sekundarelektronen 9 erforderlich. die Sekundärelektronen 9 zu beschleunigen, um sie bis zur Seite des Sekundärelektronen-Detektors 20 zu transportieren. Um diesem Zweck zu genügen, sind zwei unabhängige axialsymmetrische Elektroden 10a

und 10b am Elektronenstrahlpfad innerhalb des Ma-

gnetpols der Objektivlinse angeordnet und an die obere Elektrode 10b wird eine vorgegebene positive Spannung Vb angelegt, um dadurch die Sekundärelektronen 10 nung Vb vorab durch Versuche oder Simulation zu 9 auf die Seite des Sekundärelektronen-Detektors zu beschleunigen. An die Elektrode 10a, die näher an der Probe 7 liegt, wird eine positive Spannung Va angelegt, und der Primärelektronenstrahl 4 wird so beschleunigt, daß er eine höhere Energie als Vacc aufweist, wobei er 15 durch das Magnetfeld der Objektivlinse hindurchgeführt wird. Wenn der Probentisch 13 nicht schräg gestellt ist oder der Winkel der Schrägstellung sehr klein ist, bewirkt dieser Vorgang eine Optimierung der Objektivlinsenaberration, was für eine Betrachtung der 20

Probe mit hoher Auflösung sorgt. Wenn der Probentisch 13 schräg gestellt wird, wobei die Spannung Va weiterhin an die Elektrode 10a an der Unterseite angelegt wird, wird das zwischen der Elektrode 10a und der Probe 7 ausgebildete elektrische Feld 25 gestört, wie es durch die Äquipotentiallinie 30 in Fig. 2 angezeigt ist, und die Axialsymmetrie geht verloren, was zu Aberration führt. Demgemäß wird dann, wenn der Probentisch 13 geneigt wird, die Spannung an der Elektrode 10a auf Null oder einen kleineren Wert eingestellt, 30 wozu die geregelte Spannungsversorgung 11 und das Signal des Probenneigungswinkel-Meßsensors 25 verwendet werden, um dadurch zu verhindern, daß Astigmatismus durch ein axial asymmetrisches elektrisches Feld zwischen der Objektivlinse und der Probe erzeugt 35 wird.

Ferner wird dann, wenn eine Probe mit Vorsprüngen und Vertiefungen vorliegt, die Spannung an der Elektrode 10a mittels des Handschalters 12 auf Null oder einen kleineren Wert eingestellt, unabhängig vom Signal vom 40 Probenneigungswinkel-Meßsensor 25, um dadurch zu verhindern, daß ein axial asymmetrisches Feld zwischen der Objektivlinse und der Probe erzeugt wird.

Die an die Elektroden 10a und 10b angelegte Spannung kann durch die steuernde CPU (nicht dargestellt) 45 abgelesen werden. Gekoppelt mit dieser angelegten Spannung werden die Linsensteuerungs-Spannungsversorgung 16 und die Ablenksteuerschaltung 15 gesteuert, und der Erregerstrom der Objektivlinse 16 und das Abrastersignal für die Ablenkspule 8 werden ebenfalls ge- 50 steuert. Der Erregerstrom der Objektivlinse 6 und das Abrastersignal der Ablenkspule 8 werden ebenfalls entsprechend der Steuerformel eingestellt, die vorab mittels Versuch oder Simulation erhalten werden oder mittels der aus der genannten Tabelle ausgelesenen Daten, 55 so daß augenscheinlich Fokussier- und Vergrößerungsbedingungen hinsichtlich Änderungen der an die Elektrode angelegten Spannung verschwinden.

Gemäß dem vorliegenden Ausführungsbeispiel werden selbst dann, wenn die an die Elektrode 10a an der 60 Unterseite angelegte Spannung auf Null oder einen kleineren Wert verringert wird, die von der Probe 7 erzeugten Sekundärelektronen 9 durch die an die Elektrode 10b angelegte Spannung Vb beschleunigt, und sie laufen dadurch zum Sekundärelektronen-Detektor 20, 65 da diese Spannung Vb mit vorgegebenem Wert an die Elektrode 10b an der oberen Seite angelegt ist. Dies ermöglicht es, die Aberration der Objektivlinse 6 zu

allen Zeitpunkten zu minimieren, während ein no Wirkungsgrad der Sekundärelektronenerfassung du den Sekundärelektronen-Detektor 20 gewährleistet i

Die an die Elektrode 10b an der Oberseite angele 5 Spannung Vb ist im obigen Fall als konstant angene men. Es ist auch möglich, diese Spannung Vb gekop: mit der Spannung Va einzustellen, die weiterhin an Elektrode 10a an der Unterseite angelegt wird. In a sem Fall ist es wirkungsvoll, die Beziehung zur St mitteln, um dafür zu sorgen, daß der Wirkungsgrad Sekundärelektronenerfassung für keine der jeweili. Elektrodenspannungen Va beeinträchtigt wird, und die Spannungen Vb und Va auf Grundlage dieser Be: hung zu koppeln.

Gemäß dem vorliegenden Ausführungsbeispiel v. das Magnetfeld zwischen der Probe und der Objekt linse abhängig vom Probentisch-Neigungswinke: den Bedingungen der Probenoberfläche optimal ein: stellt, und die Objektivlinsenaberration wird bei all Betrachtungsbedingungen minimiert, wodurch e: Probenbetrachtung mit hoher Auflösung gewährleis

Patentansprüche

1. Rasterelektronenmikroskop mit:

(1) einem Kondensorlinsensystem (5) zur. E strahlen eines Primärelektronenstrahls (4): eine Probe (7) unter Verringerung des Durc messers des Primärelektronenstrahls;

(2) einer Elektronenstrahl-Ablenkeinrichte

(8) zum zweidimensionalen Durchraster c Primärelektronenstrahls über die Probe;

(3) einer Objektivlinse (6) und

(4) einem Probentisch (13) mit einem Meci nismus zum Schrägstellen der Probe;

dadurch gekennzeichnet, daß

- der Probentisch mit einer Neigungsmeße. richtung (25) versehen ist;

eine axialsymmetrische Elektrode (1 durch die der Primärelektronenstrahl hi durchlaufen kann, auf dem Elektronenstal pfad innerhalb des Magnetpols der Objekt linse angebracht ist; und

 eine Steuereinrichtung (11) vorhanden. die die an die Elektrode angelegte Sparaus mit der Schrägstellung des Probentischs er sprechend dem Ausgangssignal der Neigung

meßeinrichtung koppelt.

2. Rasterelektronenmikroskop nach Anspruth dadurch gekennzeichnet, daß die Steuereinrichtu-(11) dadurch für Steuerung sorgt, daß sie die an c Elektrode (10) angelegte Spannung dann, went d Winkel der Probentischneigung einen vorgegeb nen Wert überschreitet, auf Null oder einen vorg gebenen Wert umschaltet, der kleiner ist als d Wert derjenigen Spannung, die angelegt wi wenn der Winkel der Probentischneigung null at. 3. Rasterelektronenmikroskop nach Anspruis dadurch gekennzeichnet, daß die Steuereinrichtu (11) für eine kontinuierliche Änderung der 22 c Elektrode (10) angelegten Spannung abhängig vo Winkel der Probentischneigung sorgt.

4. Rasterelektronenmikroskop nach einem der vo stehenden Ansprüche, gekennzeichnet durch = Einrichtung (16) zum Steuern des Erregersteit der Objektivlinse (6) gekoppelt mit der an die Ele trode (10) angelegten Spannung.

5. Rasterelektronenmikroskop nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Einrichtung (16) zum Steuern der Rasterbreite des Primärelektronenstrahls (4) gekoppelt mit der an die Elektrode (10) angelegten Spannung.

6. Rasterelektronenmikroskop mit:

- (1) einem Kondensorlinsensystem (5) zum Einstrahlen eines Primärelektronenstrahls (4) auf eine Probe (7) unter Verringerung des Durchnessers des Primärelektronenstrahls;
- (2) einer Elektronenstrahl-Ablenkeinrichtung (8) zum zweidimensionalen Durchrastern des Primärelektronenstrahls über die Probe;

(3) einer Objektivlinse (6) und

(4) einem Probentisch (13) mit einem Mechanismus zum Schrägstellen der Probe;

gekennzeichnet durch

- (a) eine Steuereinrichtung, bei der der Probentisch mit einer Neigungsmeßeinrichtung (25) versehen ist; wobei mehrere axialsymmetrische Elektroden (10a, 10b) auf dem Elektronenstrahlpfad innerhalb des Magnetpols der Objektivlinse in der axialen Richtung getrennt voneinander angeordnet sind; und wobei die Spannung, die an die näher an der Probe liegenden Elektroden (10a) angelegt wird, so eingestellt wird, daß sie abhängig vom Ausgangssignal der Neigungsmeßeinrichtung mit dem Winkel der Probentischneigung gekoppelt ist; 30 und
- (b) eine Einrichtung (11) zum Anlegen einer vorgegebenen positiven Spannung an die Elektroden (10b), die weiter von der Probe weg liegen.

7. Rasterelektronenmikroskop mit:

- (1) einem Kondensorlinsensystem (5) zum Einstrahlen eines Primärelektronenstrahls (4) auf eine Probe (7) unter Verringerung des Durchmessers des Primärelektronenstrahls;
- (2) einer Elektronenstrahl-Ablenkeinrichtung (8) zum zweidimensionalen Durchrastern des Primärelektronenstrahls über die Probe;

(3) einer Objektivlinse (6) und

(4) einem Probentisch (13) mit einem Mecha- 45 nismus zum Schrägstellen der Probe;

gekennzeichnet durch

- (a) eine Steuereinrichtung, bei der der Probentisch mit einer Neigungsmeßeinrichtung (25) versehen ist; wobei mehrere axialsymmetrische Elektroden (10a, 10b) auf dem Elektronenstrahlpfad innerhalb des Magnetpols der Objektivlinse in der axialen Richtung getrennt voneinander angeordnet sind; und wobei die Spannung, die an die näher an der Probe liegenden Elektroden (10a) angelegt wird, so eingestellt wird, daß sie abhängig vom Ausgangssignal der Neigungsmeßeinrichtung mit dem Winkel der Probentischneigung gekoppelt ist; und
- (b') eine zweite Steuereinrichtung zum gekoppelten Einstellen der Spannung, die an die weiter von der Probe weg liegenden Elektroden (10b) angelegt wird, und der Spannung, die an die näher an der Probe liegenden Elektroden 65 (10a) angelegt wird.

8. Rasterelektronenmikroskop nach einem der Ansprüche 6 oder 7, gekennzeichnet durch eine Ein-

richtung (16) zum Einstellen des Erregerstroms der Objektivlinse (6) gekoppelt mit der an die mehreren Elektroden (10a, 10b) angelegten Spannung.

9. Rasterelektronenmikroskop nach einem der Ansprüche 6 bis 8, gekennzeichnet durch eine Einrichtung zum Einstellen der Abrasterbreite des Primärelektronenstrahls (4) gekoppelt mit der an mehrere der Elektroden (10a, 10b) angelegten Spannung.

10. Rasterelektronenmikroskop nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet. daß die Objektivlinse (6) ein inneres Polstück (62, aufweist, das näher zur Probe vorsteht als ein äußeres Polstück (6b).

11. Rasterelektronenmikroskop nach einem cervorstehenden Ansprüche, dadurch gekennzeichnet, daß der Sekundärelektronen-Detektor (20) über der Objektivlinse (6) angeordnet ist.

12. Probenbetrachtungsverfahren unter Verwendung eines Rasterelektronenmikroskops, mit den

folgenden Schritten:

(a) Anbringen einer axialsymmetrischen Elektrode (10) auf dem Elektronenstrahlpfad innerhalb des Magnetpols einer Objektivlinse (6), wobei ein Primärelektronenstrahl (4) durch diese Elektrode hindurchlaufen kann;

(b) Abrastern einer auf einem Probentisch (13) angebrachten Probe (7) mittels des Primzelektronenstrahls, der durch die Elektrode lief, an die eine positive Spannung angelegt ist; und

(c) Erfassen der von der Probe emittierten Sekundärelektronen (9) mittels eines Sekundärelektronen-Detektors (20), der über der Orjektivlinse angebracht ist, um dadurch Probesbilder zu erzeugen;

gekennzeichnet durch den folgenden Schritt:

 Verwenden eines Rasterelektronenmikraskops, bei dem die an die Elektrode angelegte Spannung gekoppelt mit dem Winkel der Probentischneigung eingestellt wird.

- 13. Verfahren nach Anspruch 12, gekennzeichnet durch das Umschalten der an die Elektrode (10) angelegten Spannung, wenn der Winkel der Probentischneigung einen vorgegebenen Wert überschreitet, auf Null oder auf einen speziellen Wert der kleiner als der Wert derjenigen Spannung ist, die angelegt wird, wenn der Winkel der Probentischneigung null ist.
- 14. Verfahren nach Anspruch 12, gekennzeichnet durch eine kontinuierliche Änderung der an de Elektrode (10) angelegten Spannung abhängig vom Winkel der Probentischneigung.

15. Probenbetrachtungsverfahren unter Verwezdung eines Rasterelektronenmikroskops, mit den folgenden Schritten:

(a) Anbringen einer axialsymmetrischen Electrode (10) auf dem Elektronenstrahlpfad innerhalb des Magnetpols einer Objektivlinse (5), wobei ein Primärelektronenstrahl (4) durch diese Elektrode hindurchlaufen kann;

(b) Abrastern einer auf einem Probentisch (13) angebrachten Probe (7) mittels des Primèelektronenstrahls, der durch die Elektrode lief, an die eine positive Spannung angelegt ist; und (c) Erfassen der von der Probe emittierten Sekundärelektronen (9) mittels eines sekundärelektronen-Detektors (20), der über der Ozjektivlinse angebracht ist, um dadurch Probenbilder zu erzeugen;

gekennzeichnet durch den folgenden Schritt:

Verwenden eines Rasterelektronenmikroskops, bei dem die an die Elektrode angelegte
 Spannung abhängig von Vorsprüngen und
 Vertiefungen an der Oberfläche der Probe 5
 ausgewählt wird.

Hierzu 2 Seite(n) Zeichnungen

– Leerseite –

Nummer: Int. Cl.⁶: Offenlegungstag: **DE** 195 49 022 A **H** 01 **J** 37/28
11. Juli 1996

FIG. 1

Int. Cl.6:
Offenlegungstag:

DE 195 49 022 H 01 J 37/28 11. Juli 1996

FIG. 2

