Office Hours!

Instructor:

Peter M. Garfield, garfield@math.ucsb.edu

Office Hours:

Mondays 1–2PM Tuesdays 10:30–11:30AM Thursdays 1–2PM or by appointment

Office:

South Hall 6510

© 2017 Daryl Cooper, Peter M. Garfield

Quick Survey!

What did you score on the entrance quiz in discussion section? The answer to this is anonymous.

A = 9-10

B = 7-8

C = 5-6

D = 3-4

E = 0-2

The intent is you can all see how your peers are doing. Many students do poorly on the test, work very hard, and get a good final grade \bigcirc

1. What is the length of the hypotenuse of a right triangle when the other two sides have length 3 and 4?

$$A = 3$$
 $B = 4$ $C = 6$ $D = 25$ $E = none$ of these

1. What is the length of the hypotenuse of a right triangle when the other two sides have length 3 and 4?

A = 3 B = 4 C = 6 D = 25 E = none of these

1. What is the length of the hypotenuse of a right triangle when the other two sides have length 3 and 4?

$$A = 3$$
 $B = 4$ $C = 6$ $D = 25$ $E = none of these$

 \mathbf{E}

2. Now lengths are 2 and 3. What's the hypotenuse?

$$A = \sqrt{5}$$
 $B = \sqrt{13}$ $C = 13$ $D = 5$

1. What is the length of the hypotenuse of a right triangle when the other two sides have length 3 and 4?

$$A = 3$$
 $B = 4$ $C = 6$ $D = 25$ $E = none of these$

Е

2. Now lengths are 2 and 3. What's the hypotenuse?

$$A = \sqrt{5}$$
 $B = \sqrt{13}$ $C = 13$ $D = 5$

- 1. What is the length of the hypotenuse of a right triangle when the other two sides have length 3 and 4?
 - A = 3 B = 4 C = 6 D = 25 E = none of these
- 2. Now lengths are 2 and 3. What's the hypotenuse?

$$A = \sqrt{5}$$
 $B = \sqrt{13}$ $C = 13$ $D = 5$ B

3. Lengths 3x and 4x. What's the hypotenuse?

$$A = 5 + x$$
 $B = 5x^2$ $C = 25x$ $D = 5x$

1. What is the length of the hypotenuse of a right triangle when the other two sides have length 3 and 4?

$$A = 3$$
 $B = 4$ $C = 6$ $D = 25$ $E = none of these$

2. Now lengths are 2 and 3. What's the hypotenuse?

$$A = \sqrt{5}$$
 $B = \sqrt{13}$ $C = 13$ $D = 5$ B

3. Lengths 3x and 4x. What's the hypotenuse?

$$A = 5 + x$$
 $B = 5x^2$ $C = 25x$ $D = 5x$

 \mathbf{E}

Pythagorean Theorem Applications

This is very useful to calculate how far apart two things are.

4. You and Marie are in Vegas. You drive north at 40 mph and Marie drives east at 30 mph. How far apart are you after 1 hour? Click A when you have the answer.

Pythagorean Theorem Applications

This is very useful to calculate how far apart two things are.

- 4. You and Marie are in Vegas. You drive north at 40 mph and Marie drives east at 30 mph. How far apart are you after 1 hour? Click A when you have the answer.
- **5.** How many miles apart are you after t hours?

$$A = 50t$$
 $B = 50 + t$ $C = 50t^2$ $D = 2500t^2$

Pythagorean Theorem Applications

This is very useful to calculate how far apart two things are.

- **4.** You and Marie are in Vegas. You drive north at 40 mph and Marie drives east at 30 mph. How far apart are you after 1 hour? Click A when you have the answer.
- **5.** How many miles apart are you after t hours?

$$A = 50t$$
 $B = 50 + t$ $C = 50t^2$ $D = 2500t^2$ A

Another Application

6. The vertical mast of a yacht is 40 feet high. A rope runs in a straight line from the top to a pulley 30 feet horizontally from the base of the mast. How many feet long is the rope?

Hint: Draw a picture!

$$A = 30$$
 $B = 40$ $C = 50$ $D = 60$ $E = 70$

Another Application

The vertical mast of a yacht is 40 feet high. A rope runs in a straight line from the top to a pulley 30 feet horizontally from the base of the mast. How many feet long is the rope?

Hint: Draw a picture!

$$A = 30$$
 $B = 40$ $C = 50$ $D = 60$ $E = 70$

$$E = 60$$
 $E = 7$

Why Pythagorean Theorem works

§4.2: Area and Volume

You need to know:

- Area of a rectangle = length \times width
- Area of a circle = πR^2 (R = radius)
- Circumference of a circle = $2\pi R$
- Area of a triangle = half base \times height = $\frac{1}{2}bh$
- volume of rectangular box = (length \times width) \times height = (area of base) \times height

triangle = half a rectangle

$$A = R$$
 $B = 2\pi$ $C = \pi$ $D =$ the what now?

$$A = R$$
 $B = 2\pi$ $C = \pi$ $D = \text{the what now?}$

The definition of π is

$$\pi = \frac{\text{circumference of circle}}{\text{diameter}}$$

$$A = R$$
 $B = 2\pi$ $C = \pi$ $D = \text{the what now?}$

The definition of π is

$$\pi = \frac{\text{circumference of circle}}{\text{diameter}} = \frac{C}{2R},$$

so $C = 2\pi R$.

$$A = R$$
 $B = 2\pi$ $C = \pi$ $D = \text{the what now?}$

The definition of π is

$$\pi = \frac{\text{circumference of circle}}{\text{diameter}} = \frac{C}{2R},$$

so $C = 2\pi R$.

Thus Area =
$$(R)(\pi R) = \pi R^2$$

7. A rectangular parking lot is to be made in the shape of a rectangle. It will have an area of 2000 square meters. Express the length of the parking lot in terms of the W = width.

$$A = (2000 - 2W)/2$$
 $B = 2000/W$ $C = 2000 - W$ $D = Other$

7. A rectangular parking lot is to be made in the shape of a rectangle. It will have an area of 2000 square meters. Express the length of the parking lot in terms of the W = width.

$$A = (2000 - 2W)/2$$
 $B = 2000/W$ $C = 2000 - W$ $D = Other$ B

8. The parking lot will be surrounded by a fence. Express the total length of the fence in terms of W.

$$A = 2000 + 2W$$
 $B = L + W$ $C = 4000W^{-1} + 2W$

7. A rectangular parking lot is to be made in the shape of a rectangle. It will have an area of 2000 square meters. Express the length of the parking lot in terms of the W = width.

$$A = (2000 - 2W)/2$$
 $B = 2000/W$ $C = 2000 - W$ $D = Other$ B

8. The parking lot will be surrounded by a fence. Express the total length of the fence in terms of W.

$$A = 2000 + 2W$$
 $B = L + W$ $C = 4000W^{-1} + 2W$

7. A rectangular parking lot is to be made in the shape of a rectangle. It will have an area of 2000 square meters. Express the length of the parking lot in terms of the W = width.

$$A = (2000 - 2W)/2$$
 $B = 2000/W$ $C = 2000 - W$ $D = Other$ B

8. The parking lot will be surrounded by a fence. Express the total length of the fence in terms of W.

$$A = 2000 + 2W$$
 $B = L + W$ $C = 4000W^{-1} + 2W$ C

9. The fence cost \$7 per meter. Express the total cost of all the fence in terms of W.

$$A = 7 \times 2000 \quad B = 7 \times 4000W^{-1} + 2W$$
$$C = 28000W^{-1} + 14W$$

7. A rectangular parking lot is to be made in the shape of a rectangle. It will have an area of 2000 square meters. Express the length of the parking lot in terms of the W = width.

$$A = (2000 - 2W)/2$$
 $B = 2000/W$ $C = 2000 - W$ $D = Other$ B

8. The parking lot will be surrounded by a fence. Express the total length of the fence in terms of W.

$$A = 2000 + 2W$$
 $B = L + W$ $C = 4000W^{-1} + 2W$ C

9. The fence cost \$7 per meter. Express the total cost of all the fence in terms of W.

A =
$$7 \times 2000$$
 B = $7 \times 4000W^{-1} + 2W$
C = $28000W^{-1} + 14W$ C

Applications II

10. A rectangular poster is to have a total area of 500 cm². There is an empty margin where nothing is printed 6 cm wide at the top and 4 cm wide along the sides and bottom. The rest is the printed area.

Hint: Draw a picture! Name your unknowns!

• Express printed area in terms of width W and height H of the poster.

$$A = HW$$
 $B = (H - 8)(W - 8)$ $C = Other$

Applications II

A rectangular poster is to have a total area of 500 cm². There is an empty margin where nothing is printed 6 cm wide at the top and 4 cm wide along the sides and bottom. The rest is the printed area.

Hint: Draw a picture! Name your unknowns!

• Express printed area in terms of width W and height H of the poster.

$$A = HW$$
 $B = (H - 8)(W - 8)$ $C = Other$

Applications II

10. A rectangular poster is to have a total area of 500 cm². There is an empty margin where nothing is printed 6 cm wide at the top and 4 cm wide along the sides and bottom. The rest is the printed area.

Hint: Draw a picture! Name your unknowns!

• Express printed area in terms of width W and height H of the poster.

$$A = HW$$
 $B = (H - 8)(W - 8)$ $C = Other$

ullet Express the area of the printed part in terms of the width W of the poster.

A = got it! B = working on it C = help**Hint:** Express H in terms of W.

11. When you substitute x = y + 3 into $x^2 - 6x + 8$ you get...

$$A = y^2 - 6y - 1$$
 $B = y^2 + 35$ $C = y^2 - 6y + 35$ $D = y^2 - 1$

11. When you substitute x = y + 3 into $x^2 - 6x + 8$ you get...

$$A = y^2 - 6y - 1$$
 $B = y^2 + 35$ $C = y^2 - 6y + 35$ $D = y^2 - 1$

Answer: D

11. When you substitute x = y + 3 into $x^2 - 6x + 8$ you get...

$$A = y^2 - 6y - 1$$
 $B = y^2 + 35$ $C = y^2 - 6y + 35$ $D = y^2 - 1$

Answer: D

12. Can you check your answer to the previous question?

11. When you substitute x = y + 3 into $x^2 - 6x + 8$ you get...

$$A = y^2 - 6y - 1$$
 $B = y^2 + 35$ $C = y^2 - 6y + 35$ $D = y^2 - 1$

Answer: D

12. Can you check your answer to the previous question?

Hint: Plug in, say, y = 1. What is x?

11. When you substitute x = y + 3 into $x^2 - 6x + 8$ you get...

$$A = y^2 - 6y - 1$$
 $B = y^2 + 35$ $C = y^2 - 6y + 35$ $D = y^2 - 1$

Answer: D

12. Can you check your answer to the previous question?

Hint: Plug in, say, y = 1. What is x?

When
$$y = 1$$
, $x = 4$ so $x^2 - 6x + 8 = 4^2 - 6(4) + 8 = 0$.

11. When you substitute x = y + 3 into $x^2 - 6x + 8$ you get...

$$A = y^2 - 6y - 1$$
 $B = y^2 + 35$ $C = y^2 - 6y + 35$ $D = y^2 - 1$

Answer: D

12. Can you check your answer to the previous question?

Hint: Plug in, say, y = 1. What is x?

When y = 1, x = 4 so $x^2 - 6x + 8 = 4^2 - 6(4) + 8 = 0$.

The other expressions are...

$$A = y^2 - 6y - 1 = -6$$

$$B = y^2 + 35 = 36$$

$$C = y^2 - 6y + 35 = 30$$

$$D = y^2 - 1 = 0$$