結合写像を用いた一次元交通流のモデル化

大阪大学理学部物理学科 湯川諭 菊池誠

e-mail: yuk@phys.sci.osaka-u.ac.jp

kikuchi@phys.sci.osaka-u.ac.jp

1 はじめに

交诵流に対する理論的な取り扱いは、おもに二つ の観点から行なわれてきた。それはミクロな立場か らの研究とマクロな立場のものである。マクロな立 場では交通流を非圧縮性の流体とみなし、流体力学 的な手法で研究している[1]。これとは逆に車を一台 一台個別に取り扱うのがミクロなアプローチである [2, 3, 4]。ミクロな立場の典型的なモデルは、追従モ デル[2,4]と呼ばれるものであり、一台の車の運動 を微分方程式で表し、それらを連立させた連立微分 方程式で記述される。この追従モデルは主として車 の密度が比較的大きい状況の記述として用いられて いる。これは車の速度を相対速度や相対距離で決定 しているからであり、車の密度が疎な領域では現実 を再現することが難しいことが知られている。また、 モデルには負の速度や際限のない加速、頻繁な衝突 などの非現実的な振舞いが見られ、このモデルでは 現実の系で観測されているような非渋滞相と渋滞相 の性質の差を記述できないことが知られている。最 近、新しいタイプの追従モデルが坂東ら [5] によっ て提案されている。このモデルは二階の連立微分方 程式系で記述され、基準速度という概念が導入され ている。このために、モデルは負の速度や際限ない 加速などを示さず、特に高密度領域では現実の状況 が良く再現されている。ただし、このモデル化では、 現実の系で観測されているような車一台一台の揺ら ぎが考慮に入れられていない。

これら時間空間ともに連続なモデルとは別に、セルオートマトン (CA) [6] を用いた交通流に対する離散時間、離散空間でのモデル化が近年行われている [7, 8, 9, 10, 11, 12, 13]。これらのモデルは、交通流に存在する現象を一部再現するが、実際の交通流のモデルとしてはあまりにも簡単すぎる。

2 モデル化

ここで、 $我々は一次元交通流のモデルとして結合 で、パラメーターの<math>\delta$ は速度の v^F のまわりの揺らぎ写像格子 [14] の概念を用いた新しいミクロな立場か を決定し、 β は加速、減速の絶対値を決めており、 ϵ

らのモデルを提案する。結合写像を用いるために、モ デルは時間が離散的になり、連続な空間で記述され る。このモデル化の基本的なアイデアは、各々の車 に速度を決める写像を割り当てておき、この写像を 車間距離を通じて結合させるというものである。モ デルを具体的に構成するために、まず一台の車の運 動の記述を考えよう。実際の交通流では、各々の車 はどのような速度で走りたいかという好みの速度を 持っている。それぞれの車は他の車や道路の影響を 受けない時は、この速度で走るだろう。この速度を υ とする。また、それぞれの車には好みの速度に 現在の速度を近付けるような調整機構があり、現在 の速度が好みのものに近付いたら、車の速度は運転 手や車自体の揺らぎを受け ップ のまわりで揺らぐで あろう。このような状況を速度の写像で実現しよう。 いま、モデルを簡単にするために、現在の速度が好 みのものよりの離れているときの加速と減速を等加 速、等減速であるとする。このとき、速度の調整機 構と速度の揺らぎは次のような写像で実現される。

$$v^{t+1} = F(v^t)$$

 $\equiv \gamma v^t + \beta \tanh\left(\frac{v^F - v^t}{\delta}\right) + \epsilon, \quad (1)$

ここで、時刻 t における車の速度を v^t 、その車の好みの速度を v^F とした。 $\beta,\gamma,\delta,\epsilon$ はパラメーターである。この写像を今後、自由走行の写像と呼ぶことにする。このモデルでは、速度は単位時間当り動く距離で定義することにする。パラメーターを $\gamma=1,\beta\neq 0$ ととると、写像は、現在の速度が v^F から離れている時、等加速、等減速を表す。また、 γ を少しだけ 1 からずらし、 $\beta\neq 0$ ととれば、写像は等加速、等があまたのに保ったまま、速度の v^F のまわりでの揺らぎがカオス的になる。ここでは後者の場合を考えて、車の速度の揺らぎを決定論的カオスとして、モデルに採り入れることにする。この写像はカオスとして、コーラルネットワークのモデルで用いられたもの[15] とよく似ていることを注意しておく。写像 $F(v^t)$ で、パラメーターの δ は速度の v^F のまわりの揺らぎを決定し、 β は加速、減速の絶対値を決めており、 ϵ

図 1 写像 F(v) の第一リターンマップ。パラメーターはつ ぎのようにとった。 $\beta=0.6, \delta=0.1, \gamma=1.001, \epsilon=0.1, v^F=3.0$ また、初期の速度を 0.1 とした。

はそれらの差を示している。今回はパラメーターは、 $\beta=0.6, \gamma=1.001, \delta=0.1, \epsilon=0.1$ を用いる事にする。図 1 は写像 F(v) を用いた、第一リターンマップである。この図には、カオスの特徴がよく現れている。そして、この写像を用いたときの車の運動の軌跡を図 2 に示しておく。この軌跡には、カオスによる微妙な揺らぎが現れている。

次に、車が二台以上存在する状況を考えよう。こ のとき、車同士の衝突を避けるために新たな減速過 程が必要となる。具体的には、自由走行の写像に加 えて、車間距離から次の速度を決定する新しい写像 を各々の車に与えることにする。実際の交通流では、 各々の車はその速度を今の速度や前の車との車間距 離、相対速度などで決定しているのであるが、ここ では、モデルを簡単にするために各々の車の速度は、 すぐ前の車との車間距離で決まっていると仮定する。 減速過程として急プレーキ過程と穏やかな減速過程 の二つを考えることにし、急ブレーキ過程だけを持 ちいるモデルをモデル A とし、穏やかな減速過程と 急プレーキ過程の二つを用いるモデルをモデルBと 呼ぶ。まず、急プレーキ過程について考える。速度 v_0 を持った車と、その前、 Δx のところに別の車の 先頭が存在している状況を考えよう。車の長さを1と して、もし $\Delta x - l < v_0$ ならば、今注目している車は その速度を $\Delta x - l$ とする。これが急ブレーキ過程で ある。この急プレーキが行なえることから、車同士 の衝突を避けることができる。いまもちいた $\Delta x-l$ を今後、車間距離と呼ぶことにする。モデルBのも

図 2 自由走行している車のトラジェクトリ。黒い線が一台の車の軌跡に対応する。初期の速度と好みの速度は3.0 にとった。系の大きさを500 とし、周期的に境界をつないだ。500 時間ステップ緩和させて、その後の20 時間ステップをプロットした。

う一つの減速過程である穏やかな減速過程はもう少し複雑である。それは、車間距離から速度への次のような写像として与えられる。

$$v_{i}^{t+1} = G(\Delta x_{i}^{t}, v_{i}^{t})$$

$$\equiv \frac{F(v_{i}^{t}) - v_{i}^{t}}{(\alpha - 1)v_{i}^{t}}(\Delta x_{i}^{t} - l - v_{i}^{t}) + v_{i}^{t},$$

$$v_{i}^{t} \leq \Delta x_{i}^{t} - l \leq \alpha v_{i}^{t}, \qquad (2)$$

ここで、 $\Delta x_i^t = x_{i+1}^t - x_i^t$ であり、 x_i^t は i 番めの車の時刻 t での位置である。この写像 $G(\Delta x_i^t, v_i^t)$ は、車間距離 Δx_i^t と速度 v_i^{t+1} の空間で直線となっている。パラメーター α は減速の写像 $G(\Delta x, v^t)$ を使う距離の目安を与え、もし、 αv^t より車間距離が短いときは、減速写像 $G(\Delta x, v^t)$ を自由走行の写像 F(v) のかわりに用いる。車間過程が今の速度より小さいときは、減速過程は急ブレーキ過程と同じである。また、この減速写像は $\Delta x_i^t - l = v_i^t$ には $\Delta x_i^t - l = \alpha v_i^t$ には $F(v_i^t)$ を返すので、これは、自由走行と急ブレーキをつなぐ減速過程になっている。表 1 に車間距離とそれに対応した速度を決める写像をまとめておく。

CONTENSIONAL REPORT OF THE PROPERTY OF THE PRO	モデル A	モデル B
車間距離	i 番目の車の次の速度	i番目の車の次の速度
$\Delta x_i^l - l > \alpha v_i^l$	$F(v_i^t)$	$F(v_i^t)$
$v_i^t < \Delta x_i^t - l \le \alpha v_i^t$	$F(v_i^l)$	$G(\Delta x_i^l, v_i^l)$
$0 < \Delta x_i^t - l \le v_i^t$	$\Delta x_i^l - l$	$\Delta x_i^l - l$

表 1 車間距離とそれに対応した写像。それぞれの定義は、式(1)、と式(2)に与えられている。

3 シミュレーション

モデルAとBをサーキットのような循環する道 路を模した周期的な系でシュミレーションする。状 態更新は、すべての車の状態を一度に更新するパラ レルアップデートを用いる。具体的には、まずすべ ての車に対して位置を測定する。次に、位置から車 間距離を決め、それに応じて進める。これは、もし 車間距離が今の速度より大きいなら、今の速度を位 置に加え、もし小さいなら、今の車間距離を位置に 加えるというように行なう。そして、いま測定した 車間距離と表 1 をもちいてつぎの速度を決定する。 これら一連の過程をまとめてシミュレーションの一 単位時間とする。シミュレーションで測定する諸量 を定義しておく。まず、平均速度 (v) は、1単位時 間あたり一台あたりの動いた距離で定義する。そし て、系全体のグローバルな流量は平均速度と密度を 用いて、ρ×(v)で定義する。実際のシミュレーショ ンでは、車の大きさを単位として長さや速度をはか ることにし1=1ととる。初期の速度、好みの速度、 は区間 [2.0、4.0] に一様に分布させ、初期の位置をラ ンダムに選ぶ。モデルBのシミュレーションにおい Tは $\alpha = 4.0$ にとる。また、全系の車の数は固定し ておく。すなわち密度固定の条件の元でシミュレー ションする。

4 結果

図 3(a) にモデル A とモデル B の全系の車の密度に対する全系の流量のプロットを示した。このプロットは、通常、基本図と呼ばれるものである。これは、各密度に対して一つの初期配置をとり計算したので、誤差などの評価はできないが、典型的なものである。また、モデル B について局所的な密度に対する局所的な流量の全系の密度を固定して計算し

図 3(a) 基本図。初期の速度、好みの速度は、区間 [2.0,4.0] に一様に分布している。系の大きさは500 である。500 時間ステップ緩和させて、その後の100 時間ステップの全系の流量の平均をとった。この基本図では、密度は全系で固定して、それを動かしながら測定した。

た結果をすべての全系の密度にわたり重ね合わせたものを図 3(b)に示した。この図は非常に良く現実の観測結果を再現している [16, 17]。明白に自由走行の領域と渋滞相の領域がわかれており、低密度側の自由走行の領域では線型に立ち上がり、密度が 0.5 以下のところではっきりとした双安定なピークを持っている。また、全密度にわたる重ね合わせが現実の振舞いと良く一致するということは、現実の道路の測定区間では、車の数が保存しないという状況に良くあっている。

図 4(a)-4(c) は、モデル B の特徴的な三つの密度 領域における時空間の典型的なトラジェクトリであ る。 図 4(a) は密度 $\rho=0.10$ に対応しており、この 密度は図 3(a) のグローバルな基本図のピークより低 密度側に対応している。この図では、車のクラスタ リングが見られる。このクラスターは好みの速度が

図 4(a) 時空間におけるモデル B のトラジェクトリ、初期速度、好みの速度は、区間 [2.0,4.0] に一様に分布している。系の長さは 100 である。500 時間ステップ緩和させて、100 時間ステッププロットした。黒い線が一台の車に対応する。車の数は、10 台であり、密度は $\rho=0.10$ である。

図 3(b) 局所的な基本図を全密度に対して重ね合わせた もの。初期の速度、好みの速度は、区間 [2.0,4.0] に一様に分布している。系の大きさは 500 である。 500 時間ステップ緩和させて、その後の 100 時間 ステップの長さ 20 の局所的な領域における局所的 な流量の平均をとった。これを、全系の密度を固定 して測定し、最後にこの結果を重ね合わせた。

図 4(b) 時空間におけるモデル B のトラジェクトリ。密度以外の条件は図 4(a) と同じである。車の数は 30 台で、密度は $\rho=0.30$ である。

図 4(c) 時空間におけるモデル B のトラジェクトリ。密度以外の条件は図 4(a) と同じである。車の数は 20 台で、密度は $\rho=0.20$ である。

もっとも遅い車が原因となって形成されている。こ のもっとも遅い車は自由走行の写像をもちいて走っ ている。時おり、トラジェクトリに揺らぎが後方の車 に伝播していく様子が見られる。密度で $\rho = 0.30$ に 対応しているのが図 4(b) である。この密度は基本図 でいうと、ピークより高密度側に対応する。ここで は、車が止まっているような領域が見られる。この領 域は明らかに渋滞しており、これをハード渋滞と呼 ぶことにする。ハード渋滞は負の群速度を持って移 動している。このようなハード渋滞は現実の交通流 においても観測されている。図 4(c)が、基本図での ピークの密度に対応しているものである。この図に は、周囲の速度よりは明らかに遅い領域が見られる。 この領域では車は動いているが、その速度が他とは 比べ小さいことからこの領域も一種の渋滞と考える ことができる。この渋滞をソフト渋滞と呼ぶことに する。この図では、ソフト渋滞は正の群速度で動い ている。車の初期配置のみをかえたシミュレーショ ンでは、負の群速度を持つソフト渋滞やハード渋滞 も同じ密度で見られる。負の群速度を持つソフト渋 滞は実際の交通流でも観測されている。モデルAの トラジェクトリの振舞いも同じようなものである。

図 5(a)-(c) は、モデルBに対していろいろな密度 において一台の車に注目し、その車間距離とそれか

図 5(a) 車間距離と、それから決まる速度の平面での一台の車の軌跡。サンプルにした車の好みの速度は、3.0である。初期速度、好みの速度は、区間 [2.0,4.0] に一様に分布している。系の長さは 500 である。500 時間ステップ緩和させて、4000 時間ステップ測定した。全体の車の密度は $\rho=0.10$ である。

ら決まった速度の軌跡をプロットしたものである。 それぞれのプロットは密度が違い、順に $\rho = 0.10$ 、 $\rho = 0.30$ 、 $\rho = 0.20$ に対応している。この密度はトラ ジェクトリの時と同様に、基本図のピークより低密度 側、高密度側、ピーク付近に対応している。図 5(a) は、密度 $\rho = 0.10$ である。この時、サンプルとし た車は図 5(a) のトラジェクトリでのクラスターの内 部にいる状態と対応している。この図中の左に見え る直線の境界は、急ブレーキ過程による境界である。 また上の直線は、この平面で直線である穏やかな減 速過程の写像 $G(\Delta x!, v!)$ の傾きがゼロになる極限と 一致している。この二つの直線の交点の右下に見え る軌跡は、基本的には反時計まわりにまわっており、 これは、徐々に加速してきて、穏やかな減速過程の 傾きゼロの極限の線にそって減速し、急ブレーキで 速度が遅くなる過程を示している。図 5(b) は、密度 $\rho = 0.30$ に対応している。この密度では、穏やかな 減速過程の極限の線は見られない。これは、車の数 が多く、その境界まで加速できないためである。こ

図 5(b) 車間距離と、それから決まる速度の平面での一 台の車の軌跡。密度以外の条件は図 5(a) と同じで ある。全体の車の密度は $\rho = 0.30$ である。

図 5(c) 車間距離と、それから決まる速度の平面での一台の車の軌跡。密度以外の条件は図 5(a) と同じである。全体の車の密度は $\rho=0.20$ である。

れも図 5(a) と同じように基本的には反時計まわりにまわっている。図 5(c) は、密度 $\rho=0.20$ に対応する図である。ここでは、急ブレーキ過程の直線、穏やかな減速過程の傾きゼロの極限の直線の他に、右下に自由走行による等加速を表す直線が、あらわれてきている。この直線と穏やかな減速過程の傾きゼロの極限の直線との交点付近に、自由走行におけるカオス的揺らぎが現れている。

5 まとめ、今後の課題

この研究では、一次元の交通流を結合写像の概念 を用いたモデル化を提案した。このモデルは従来の 伝統的な追従モデルと比較して、一台の車の揺らぎ を採り入れていること、時間を離散的にしたために 車の衝突が完全に防げるということ、などの点で有 利である。また、局所的な基本図では実際の交通流 で観測されている結果を非常に良く再現しているよ うに見える。時空間のトラジェクトリにおいても、 ハード渋滞や負の群速度を持つソフト渋滞、低密度 における群形成など実際の観測で見られているよう な結果を再現した。特に、トラジェクトリで渋滞相か ら抜け出ていく車の運動が良く再現できているよう に見える。しかし、渋滞相に加わろうとしている車 の運動はあまりよくない。これは、減速過程に少し 問題があり、モデルBにおいても、減速が無過ぎる ためである。この減速過程の改善は今取り組んでい る最中である。また、モデルは多くのパラメーター を含んでいる。これらを第一原理から決定すること は困難である。しかし同時にパラメーターをいろい ろとることにより、さまざまな状況を生み出すこと ができるので、この状況はモデルの持つ柔軟性を表 している。カオスの生み出す効果も含めたモデルの 詳細な研究は現在行なっている。

铅檔

この研究を通じいろいろな助言、議論をしていただきました、大阪大学の阿久津泰弘氏、時田恵一郎氏、山下満氏、佐賀大学の只木進一氏、愛知大学の坂東昌子氏、長谷部勝也氏に感謝します。また、この研究は一部日本科学協会からの研究助成を受けています。

参考文献

- M. J. Lighthill and G. B. Whitham: Proc. Roy. Soc. A 229 (1955) 317.
- [2] R. Herman, E. W. Montroll, R. B. Potts, and R. W. Rothery: Oper. Res. 7 (1959) 86.
- [3] I. Prigogine and F. C. Andrews: Oper. Res. 8 (1960) 789.
- [4] D. C. Gazis, R. Herman, and R. W. Rothery: Oper. Res. 9 (1961) 545.
- [5] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama: Japan J. Indust. Appl. Math. 11 (1994) 203.
- [6] S. Wolfram: Rev. Mod. Phys. 55 (1983) 601.
- [7] O. Biham, A. A. Middleton, and D. Levine: Phys. Rev. A46 (1992) 6124.
- [8] J. A. Cuesta, F. C. Martínez, J. M. Molera, and A. Sánchez: Phys. Rev. E48 (1993) R4175.
- [9] T. Nagatani: Phys. Rev. E48 (1993) 3290; J. Phys. Soc. Jpn. 63 (1994) 52; J. Phys. Soc. Jpn. 63 (1994) 1228.
- [10] S. Tadaki and M. Kikuchi: to appear in Phys. Rev. E.
- [11] S. Yukawa, M. Kikuchi, and S. Tadaki: J. Phys. Soc. Jpn. 63 (1994) 3609.
- [12] K. Nagel and M. Schreckenberg: J. Phys. I France 2 (1992) 2221.
- [13] M. Takayasu and H. Takayasu: Fractals 1 (1993) 860.
- [14] K. Kaneko ed.: Theory and application of coupled map lattices (Wiley, New York, 1993) and references therein.
- [15] H. Nozawa: CHAOS 2 (1992) 377.
- [16] W. Leutzbach: Introduction to the theory of traffic flow (Springer-Verlag, Berlin, 1988).
- [17] 越 正毅、石崎 征人、大蔵 泉、 西宮 良一: 土木学会 論文報告選集、第 306 号、1981 年 2 月、59