Sustainability, Modelling and Regional Transition (in Queensland)

Patrick O'Callaghan, John Mangan, Tina Rampino

AIBE, The University of Queensland April 28, 2022

Presenters

John Mangan

Patrick O'Callaghan

Tina Rampino

Other team members and thanks

Why are we here?

Brief discussion of the history of the project and why we are here.

- why the project is important to AIBE
- background of regional/sectoral economics at UQ
- Input-Output modelling
- the state of CGE modelling in Australia
 - CoPS, U Victoria (no uncertainty at all or proper dynamics)

Presenters

John Mangan

Patrick O'Callaghan

Tina Rampino

Other team members and thanks

Purpose

Yesterday in conversations with Flavio and John:

- Flavio: CGE is good for long-term problems
- John: real test of success is if we can provide new insights

Key points:

- Maiwar expands the scope of CGE to mid-term problems
- ► Tools we now have are being applied to design electricity grids

How we arrived at Maiwar: methodology

Recent literature on macroeconomic production networks:

Baqaee-Farhi, ...

- embeds network modelling in macro models (IO renaissance)
- main finding: nonlinear (beyond Cobb-Douglas) effects matter

Atalay has some good econometric estimates of elasticities

- elasticity of substitution for flows between sectors is about 0.1
- previously most assumed Cobb-Douglas elasticity of 1.0

Conclusion: nonlinear effects matter

- does not bode well for multi-sectoral steady-state approx.
- this includes Bagaee–Farhi, Atalay, CoPS, McKibben

How we arrived at Maiwar: methodology

How about "global" approximation e.g. Value Function Iteration? Building on Scheidegger's machine-learning approaches, we found

 for 1-sector model, grid approach is (at least) 1 order of magnitude more accurate than steady/ergodic-state approach

But, after a lot of hard work:

- VFI is also unstable (poorly suited to multi-sectoral flows)
- ▶ trouble with grid approach: 10¹² points for 12 dimensions
- approximation is poor outside of grid

MAIWAR model literature

- Solution method: Cai–Judd (2021, 2017)
- Model is a combination of Cai–Judd and Atalay
- Calibration/estimation methods and estimates from Atalay
- But Atalay's solution is not dynamic/stochastic . . .
- We next explain Cai—Judd in some detail.

Quote from Cai and Judd (Feb, 2021)

Macroeconomists [and CoPS] are often interested in obtaining solutions around the non-stochastic steady state. However in reality, the initial state could be far away from the steady state, and a policymaker may be more interested in the solutions for the initial periods in the forward-looking model than the far future states that could be around the steady state. For example, in environmental and climate change economics . . .

A bit more detail on the current state of CGE modelling

- McKibbin 1990s GCube (steady-state, no uncertainty either)
- Malakellis 1990s CoPS (Hamiltonian no uncertainty)
- ► Ha-Kompas 2017 Hamiltonian, no uncertainty, impressive.
- Wende 2019, Treasury Intersectoral Model (TIM) steady-state, no uncertainty

How we arrived at Maiwar . . . the research question

Herakles Polemarchakis: building a model without a question is putting the cart before the horse.

In 2022, settled on 2050 net-zero carbon emission targets.

- Most economists think Australia will be better off, but
- Adams 2021, CoPS: Qld -6% GSP and -100k jobs rel. to base.
- What about Qld targets over and above those of Australia?

MAIWAR (Modelling Australian Industry With AMPL Regions)

- 1. Flexible yet Fast: without steady-state approx
- 2. Look-forward property: flow of state-action dependent rewards

$$V_{t_0}(\omega_{t_0}) = r_{t_0}(\omega_{t_0}, a_{t_0}) + \cdots + r_{t_9}(\omega_{t_9}, a_{t_9}) + V_{t_{10}}(\omega_{t_{10}})$$

- 3. Uncertainty: easy way to improve on CoPS
- 4. Investment/saving behaviour: Euler equations: CGE Dixon–Rimmer 2020
- 5. Data: BLADE, calibration, econometrics
- 6. Robust/Reliable: works with a variety of set-ups
- 7. Accurate/Accessible: as open source as possible
- 8. Modern yet Trustworthy: best-in-class knowledge, 2+ solvers
- 9. Scalable: at least to 8 regions and 20 sectors

Maiwar: the current state of affairs

Currently developing strategies for easy Scaling (pre Calibration).

- Conopt: for a well-scaled model, all values (variable, dual variable and derivative) in $[10^{-2}, 10^{+2}]$.
- ► E.g. Beyond 10 sectors log Cobb-Douglas Utility: *corner sol*.
 - To help identify scaling parameters: NIMROD, RCC working!
 - Last Friday: 120 runs in 1 hour on 12 CPUs.

In February, we obtained access to BLADE and established that can use for for government contracts (not for commercial gain).

▶ Illion Credit-reporting agency: possible BLADE integration . . .

Quick interlude on formal model

$$V_0(\omega_0) = \max_{a} \quad \mathbb{E}\left\{\sum_{t=0}^{9} \beta^t r_t(\omega_t, a_t) + \beta^{10} V_{10}(\omega_{10})\right\}$$
s.t.
$$\omega_{t+1} = g_t(\omega_t, a_t, \varepsilon_t), \quad t = 0, \dots, 9$$

$$f_t(\omega_t, a_t) \ge 0, \quad t = 0, \dots, 9.$$

With current state ω_t , action a_t , expectation \mathbb{E} , reward r_t , discount factor $0 < \beta < 1$, terminal value function V_{10} , transition law g_t , error ε_t and feasibility constraints f_t on actions.

Grid-free: all about paths . . . a simple example.

Cai-Judd's SCEQ: Simple (yet Powerful) Certainty Equivalent Method

E.g. Irreversible risk: one-off, permanent 5% productivity shock.

Loosely resembles tipping points: each year, chance of ice-shelf . . .

In this simple example there are 28 paths to 2050:

- path where shock never happens
- path where shock happens in 2023;
- path where shock happens in 2024;

Each path has 28 periods (PathTimes).

Agents make 10-year plans (LookForward) at each time and path.

Goal: Balance consumption today vs uncertain consumption tomorrow.

On path p: once plan t_0 is made, time reveals state $\omega_{t_1} \to \text{new plan}$.

What do we (the modeller) do with all this info?

- ► For each path *p* and step *s* along the path, take the plan that starts at time *s* and store the values for time *s*.
 - For consumption store in a matrix $C_{s,p}$. The values of this matrix are the solutions for each r in Regions and i in Sectors.
 - similarly for investment $INV_{s,p}$, labour $L_{s,p}$, kapital $K_{s,p}$, etc.
- We have generated an empirical distribution of solutions.
- Can now derive the sample means (paths), variances, etc.
- Check that the Euler equation holds for the sample mean.

Example of results

See spreadsheet and live-run output.

Main contribution to Cai-Judd: multi-sectoral flows

For each Region *r*, Sector *j* and LookForward time *t*:

$$k_{r,j,t+1} = (1 - \delta)k_{r,j,t} + s_{r,j,t}$$

where $s_{r,j,t}$ is a CES function of intermediate Long-Plosser flows.

$$s_{r,j,t} = \left(\sum_{i} \sigma_{ij} S_{r,ij,t}^{\rho}\right)^{\frac{1}{\rho}}$$

From Atalay's model: $\rho = \frac{0.1-1}{0.1} = -9$.

But: 20 Sectors implies 400 flows: $8 \times 400 \times 10 = 32,000$ in total.

Jacobi Equations, for $\mathbf{S}_{r,ij,t} = S_{r,ij,t}/\sigma_{r,ij}$:

$$\mathbf{S}_{r,ij,t} = \mathbf{S}_{r,ik,t} \times \mathbf{S}_{r,kj,t}^{-1} \times \mathbf{S}_{r,kj,t}.$$

Use main diagonal and one column of S: 39 flows with total 3, 120.

Other innovations

So far, the main contributions are:

To CGE: a tractable way of modelling uncertainty.

To Atalay: we take his model beyond the steady-state.

To Cai–Judd: a framework for sectoral/production networks.

Cai-Judd: under the bonnet

For each plan, the terminal value function V_{10} is arbitrary.

One solution is to make longer plans: discount factor $\beta^t \to 0$.

- Behaviourally unrealistic?
- Costly computationally . . .

So best to treat it as another form of parametric uncertainty.

Scaling this term: important for avoiding corner solutions.

Checking the Euler Equations in multi-sectoral models is tricky compared to Cai–Judd baseline models.

- Maximum of deviations from the Jacobi Identity helps here.
 - my first guide to a good solution.

Data

Late December 2020: lunch with Alicia, discussion of regional identifiers that had only just been added to BLADE.

- This represents a unique opportunity for regional modelling
- Moreover, Type of Activity Units
 - ABS uses employment data to split larger firms
- This means upto SA1-level regions and 4-digit ANZSIC sectors!

Presenters

John Mangan

Patrick O'Callaghan

Tina Rampino

Other team members and thanks

BLADE: Business Longitudinal Analysis Data Environment

- Economic data tool integrating tax, trade and intellectual property data with information from ABS surveys
- Contains data on all active businesses from 2001-02 to 2018-19.
- We are currently using BLADE Core to construct parameters to scale down the Input-Output tables for Australia.
- Approx. 2.4 million operating businesses in 2020
- Patrick and I currently have access and are building variables that will allow us to capture number of TAUs in a given region.
- Alicia and Martie-Louise are discussants.

BLADE benefits and usage

- Publicly-available data not granular enough for local policy makers.
- BLADE is especially relevant in the case of Qld (state with the highest regional population)
- Projects must benefit the public:
- SMaRT in Qld modelling provides insights on policy interventions
- "Pulse of the region" industry engagement meetings: DAF interested in assessing the impact of COVID-19 using CGE framework (they think SA4 level, we can model SA1, which is more relevant for rural Queensland)

Presenters

John Mangar

Patrick O'Callaghar

Tina Rampino

Other team members and thanks

Thanks for listening!

And many thanks to the absent members of the team:

- Josh Aberdeen (UQ Student Joint Bachelors)
- Patrick Duenow (UQ Student PhD Health Economics)
- Cameron Gordon (U Adelaide Student PhD Machine Learning)
- Alexander Yelkhovsky (Research Fellow Computing)

Also Alicia Rambaldi for her advice on BLADE

Jorge Miranda-Pinto for his advice and expertise on the literature

Brent Ritchie for making the project happen.

Presenters

John Mangan

Patrick O'Callaghan

Tina Rampino

Other team members and thanks

Why CGE modelling?

- "Old-fashioned", "black-box", "intractible", . . .
- Yet industry demands "CGE" modelling and uses it as a basis for key decisions.
- A guide to quantifying the broader repurcussions of sector-specific shocks.
- A guide to analysing the sector-specific implications of macroeconomic shocks

Why the focus on uncertainty?

John Williams (Federal Reserve, San Fransisco):

There is pretty strong evidence that the rise in uncertainty is a significant factor holding back the pace of recovery now. [...] research shows that heightened uncertainty slows economic growth, raises unemployment, and reduces inflationary pressures. [...] There is no question that slow growth, high unemployment, and significant uncertainty are challenges for monetary policy.

From Caggiano, Castelnuovo, Groshenny 2015.

Why not use a CoPS CGE model?

- Cost of software and of data for the model.
- ► CoPS already have a recent paper on 2050 targets

Moreover:

- no proper savings/investment: intertemporal behaviour
 - leads to strange "macro-closure conditions"
- no model of risk/uncertainty and associated behaviour

CoPS assume current economy is in Deterministic Steady-State.

Treasury Intersectoral Model (TIM, 2017)

Part of a new generation of Australian models

J. Miranda-Pinto of UQ had a hand in TIM (and in our choices)

TIM has a sister called EMMA (Macro-econometric forecasting)

- TIM has proper savings
- ▶ 114-sector model of Australia
- but no risk
- Deterministic steady state & we can't access

Adapting the Atalay model

Atalay assumes economy in (non-determistic) steady state

- pretty complete and quite good empirical foundations
- we have full access via Matlab & Stata

Our adaptation of Atalay is the first model in our suite.

- ▶ less than 1 second to solve a 20-sector model
- regionalise using LGA-level income data via Table Builder
- capital flows matrix by adapting a US flows table from 1997
- ► Social Accounting Matrix using Current and Capital Accounts