```
import pandas as pd
import numpy as np
from google.colab import drive
drive.mount('/content/gdrive')

→ Mounted at /content/gdrive

data = pd.read_csv('/content/gdrive/MyDrive/Colab Notebooks/rlms_hse.csv')
columns = ['u.age', 'uh5', 'um1', 'um2', 'region']
data_compact = data[columns]
data_compact = data_compact.rename(columns = {
    'u.age' : 'age', 'uh5': 'gender', 'um1' : 'weight', 'um2' : 'height'})
data_compact.head()
₹
         age gender
                          weight height region
      0 61.0
                   2
                            89.0
                                   164.0
                   2 99999997.0
      1 72.0
                                   162.0
                   2
      2 70.0
                            50.0
                                   154.0
                   2
      3 62.0
                            84.0
                                   165.0
      4
        59.0
                            59.0
                                   165.0
data = data_compact
del data_compact
data = data[(data['age'] < 1000) \& \setminus
                    (data['height'] < 1000) & \
                    (data['weight'] < 1000)]</pre>
data.loc[data['age'] < 18, 'age_group'] = 'young'</pre>
data.loc[data['age'] >= 18, 'age_group'] = 'old'
data.loc[data['gender'] == 1, 'gender'] = 'male'
men = data[(data['gender'] == 'male') & \
                (data['age_group'] == 'old')& \
                (data['region'] == 14)]
men.head(100)
🚌 <ipython-input-6-ba52d49aa1c1>:3: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a fu
       data.loc[data['gender'] == 1, 'gender'] = 'male'
```

	age	gender	weight	height	region	age_group		
162	78.0	male	77.0	162.0	14	old		
164	74.0	male	78.0	163.0	14	old		
166	61.0	male	80.0	176.0	14	old		
169	38.0	male	87.0	180.0	14	old		
172	51.0	male	72.0	172.0	14	old		
5340	64.0	male	78.0	168.0	14	old		
5342	50.0	male	91.0	172.0	14	old		
7366	36.0	male	98.0	170.0	14	old		
7369	41.0	male	105.0	180.0	14	old		
10398	45.0	male	82.0	180.0	14	old		
79 rows × 6 columns								

men.shape

→ (79, 6)

4

Задание №1

```
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 14))
```

```
plt.subplot(2, 3, 1)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Стёрджесса)") # заголовок
plt.xlabel("Значения веса, кг") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid() # включение отображения сетки
plt.hist(men.weight, bins = 'sturges', color='darksalmon') # построение гистограммы
plt.subplot(2, 3, 2)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Скотта)") # заголовок
plt.xlabel("Значения веса, кг") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid() # включение отображения сетки
plt.hist(men.weight, bins = 'scott', color='darksalmon') # построение гистограммы
plt.subplot(2, 3, 3)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Фридмана-Диакониса)") # заголовок
plt.xlabel("Значения веса, кг") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid()
             # включение отображения сетки
plt.hist(men.weight, bins = 'fd', color='darksalmon')
                                                     # построение гистограммы
plt.subplot(2, 3, 4)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Стёрджесса)") # заголовок
plt.xlabel("Значения роста, см") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid() # включение отображения сетки
plt.hist(men.height, bins = 'sturges', color='royalblue') # построение гистограммы
plt.subplot(2, 3, 5)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Скотта)") # заголовок
plt.xlabel("Значения роста, см") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid() # включение отображения сетки
plt.hist(men.height, bins = 'scott', color='royalblue') # построение гистограммы
plt.subplot(2, 3, 6)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Фридмана-Диакониса)") # заголовок
plt.xlabel("Значения роста, см") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid()
               # включение отображения сетки
plt.hist(men.height, bins = 'fd', color='royalblue') # построение гистограммы
plt.show()
```


Проверим значения интервалов

```
k=1+ np.log2(len(men.weight))
print("Количество интервалов по формуле Стерджесса:", int(np.ceil(k)))

k_weight=int(np.ceil((max(men.weight)-min(men.weight))/(3.5*np.std(men.weight)*len(men.weight)**(-1/3))))
k_height=int(np.ceil((max(men.height)-min(men.height))/(3.5*np.std(men.height)*len(men.height)**(-1/3))))
print("Количество интервалов по формуле Стерджесса для данных веса: %d, для данных роста: %d." %(k_weight, k_height))

k_weight=int(np.ceil((max(men.weight)-min(men.weight))/(2*(np.percentile(men.weight, 75) - np.percentile(men.weight, 25))*len(men.weight k_height=int(np.ceil((max(men.height)-min(men.height))/(2*(np.percentile(men.height, 75) - np.percentile(men.height, 25))*len(men.height)
print("Количество интервалов по формуле Фридмана - Диакониса для данных веса: %d, для данных роста: %d." %(k_weight, k_height))

***

Количество интервалов по формуле Стерджесса 8

Количество интервалов по формуле Стерджесса для данных веса: 7, для данных роста: 7.

Количество интервалов по формуле Фридмана - Диакониса для данных веса: 10, для данных роста: 10.
```

Вывод по заданию №1: были построены гистограммы распределения для наборов данных роста и веса. Количество интервалов было вычеслено по формулам Стерджесса, Стокса и Фридмана - Диакониса. Полученные значения количества интервалов совпали со значениями, определяемыми программно.

Задание №2

```
Для набора данных роста:
```

```
import statistics
print("Минимальное значение роста: ", min(men.height))
print("Максимальное значение роста: ", max(men.height))
print("Среднее значение роста: ", round(sum(men.height)/len(men.height),2))
print("Миедианное значение роста: ", statistics.median(men.height))
print("Стандартное отклонение: ", round(np.std(men.height),2))
→ Минимальное значение роста: 162.0
     Максимальное значение роста: 199.0
     Среднее значение роста: 174.18
     Миедианное значение роста: 174.0
     Стандартное отклонение: 6.89
Для набора данных веса:
print("Минимальное значение веса: ", min(men.weight))
print("Максимальное значение веса: ", max(men.weight))
print("Среднее значение веса: ", round(sum(men.weight)/len(men.weight),2))
print("Миедианное значение веса: ", statistics.median(men.weight))
print("Стандартное отклонение: ", round(np.std(men.weight),2))
→ Минимальное значение веса: 54.0
     Максимальное значение веса: 130.0
     Среднее значение веса: 81.59
     Миедианное значение веса: 80.0
     Стандартное отклонение: 14.19
Задание №3
Тест Шапиро-Уилка
from scipy.stats import shapiro, normaltest, kstest
stat, p = shapiro(men.height)
print("p = ", p)
alpha = 0.05 # уровень значимости
if p > alpha:
    print('Набор данных роста имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения)).')
else:
    print('Набор данных роста не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).')
stat, p = shapiro(men.weight)
print("p = ", p)
alpha = 0.05 # уровень значимости
if p > alpha:
    print('Набор данных веса имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения)).')
else:
    print('Набор данных веса не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).')
p = 0.18583221605253425
     Набор данных роста имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения)).
     p = 1.8674997092046943e-05
     Набор данных веса не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).
Тест Колмогорова-Смирнова
statistic, pvalue = kstest(men.height, 'norm', args=(np.mean(men.height), np.std(men.height)))
print("p = ", pvalue)
if pvalue > 0.05:
    print('Набор данных роста имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения)).')
else:
    print('Набор данных роста не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).')
```

```
statistic, pvalue = kstest(men.weight, 'norm', args=(np.mean(men.weight)), np.std(men.weight)))
print("p = ", pvalue)
if pvalue > 0.05:
   print('Набор данных веса имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения)).')
else:
    print('Набор данных веса не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).')
\rightarrow p = 0.7634171325136825
     Набор данных роста имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения)).
     p = 0.02892896493335284
     Набор данных веса не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).
Тест Д'Агостино
statistic, pvalue = normaltest(men.height)
print("p = ", pvalue)
if pvalue > 0.05:
    print('Набор данных роста имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения))')
    print('Набор данных роста не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).')
statistic, pvalue = normaltest(men.weight)
print("p = ", pvalue)
if pvalue > 0.05:
   print('Набор данных веса имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения))')
    print('Набор данных веса не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).')
    p = 0.7105055503963573
     Набор данных роста имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения))
     p = 0.0006511145743786286
     .
Набор данных веса не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).
```


Выводы

1. Тест Шапиро-Уилка

Результаты теста Шапиро-Уилка для столбца роста показывает, что расп нормальное, а для столбца веса - значительное отклонение от нормальн р-значением, близким к нулю. Данный тест очень чувствителен и может отклонения даже при небольших выборках.

2. Тест Колмогорова-Смирнова

Тест Колмогорова-Смирнова указал на нормальное распределение в столо значением р значительно выше уровня значимости 0.05, что указывает н отсутствие статистически значимого отклонения от нормального распред этой переменной. Для столбца веса тест показал отклонение от нормаль распределения. Однако следует отметить, что тест Колмогорова-Смирнов чувствителен и может пропустить отклонения, которые выявляет тест Ша

3. Тест Пирсона

Результаты теста Пирсона показали, что для столбца роста р-значение 71, что говорит о нормальности распределения. Однако для столбца веср-значение указывает на статистически значимое отклонение от нормаль распределения. Тест Пирсона может быть менее чувствителен к крайним более устойчив к нормальности в больших выборках.

Выводы

- 1. Тест Шапиро-Уилка Результаты теста Шапиро-Уилка для столбца роста показывает, что распределение нормальное, а для столбца веса значительное отклонение от нормальности с р-значением, близким к нулю. Данный тест очень чувствителен и может выявить отклонения даже при небольших выборках.
- 2. Тест Колмогорова-Смирнова Тест Колмогорова-Смирнова указал на нормальное распределение в столбце роста со значением р значительно выше уровня значимости 0.05, что указывает на отсутствие статистически значимого отклонения от нормального распределения для этой переменной. Для столбца веса тест показал отклонение от нормального распределения. Однако следует отметить, что тест Колмогорова-Смирнова менее чувствителен и может пропустить отклонения, которые выявляет тест Шапиро-Уилка.
- 3. Тест Пирсона Результаты теста Пирсона показали, что для столбца роста р-значение составило 0.71, что говорит о нормальности распределения. Однако для столбца веса р-значение указывает на статистически значимое отклонение от нормального распределения. Тест Пирсона может быть менее чувствителен к крайним выбросам и более устойчив к нормальности в больших выборках.

Дополнительное задание: исследование респондентов детского возраста

```
data = pd.read_csv('/content/gdrive/MyDrive/Colab Notebooks/rlms_hse.csv')
columns = ['u.age', 'uh5', 'um1', 'um2', 'region']
data_compact = data[columns]
data_compact = data_compact.rename(columns = {
```

```
age gender
                   weight height region
0 61.0
            2
                     89.0
                            164.0
            2 99999997.0
1 72.0
                            162.0
                                       1
2 70.0
             2
                      50.0
                            154.0
            2
3 62.0
                     84.0
                            165.0
                                       1
                      59.0
                            165.0
```


	age	gender	weight	height	region	age_group
2690	16.0	male	85.0	175.0	14	young
3254	12.0	male	29.0	142.0	14	young
4227	17.0	male	64.0	174.0	14	young
4402	14.0	male	36.0	150.0	14	young
4403	12.0	male	35.0	135.0	14	young
4850	9.0	male	25.0	140.0	14	young
4854	8.0	male	25.0	110.0	14	young
4857	7.0	male	23.0	129.0	14	young
4859	10.0	male	25.0	128.0	14	young
4860	7.0	male	32.0	130.0	14	young
5220	6.0	male	22.0	126.0	14	young
5224	6.0	male	29.0	120.0	14	young
5238	8.0	male	30.0	140.0	14	young
5245	7.0	male	21.0	122.0	14	young
5260	14.0	male	83.0	172.0	14	young
5272	8.0	male	32.0	140.0	14	young
5273	7.0	male	30.0	135.0	14	young
5305	8.0	male	24.0	133.0	14	young
5306	7.0	male	26.0	133.0	14	young
5328	16.0	male	68.0	172.0	14	young
5329	11.0	male	37.0	145.0	14	young
7365	5.0	male	19.0	115.0	14	young
7368	9.0	male	32.0	103.0	14	young
7371	16.0	male	65.0	178.0	14	young
7375	5.0	male	20.0	119.0	14	young
8423	7.0	male	17.0	115.0	14	young
8424	6.0	male	19.0	117.0	14	young
8427	4.0	male	18.5	114.0	14	young
10401	2.0	male	13.0	92.0	14	young
10964	1.0	male	13.0	86.0	14	young
10968	2.0	male	14.0	96.0	14	vouna

boys.shape

→ (31, 6)

Задание №1

```
{\tt import\ matplotlib.pyplot\ as\ plt}
plt.figure(figsize=(20, 14))
plt.subplot(2, 3, 1)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Стёрджесса)") # заголовок
plt.xlabel("Значения веса, кг") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid()
               # включение отображения сетки
plt.hist(boys.weight, bins = 'sturges', color='darksalmon')  # построение гистограммы
plt.subplot(2, 3, 2)
plt.title("Значения веса (кол-во интервалов\n определялось по \phi-ле Скотта)") # заголовок
plt.xlabel("Значения веса, кг") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid()
               # включение отображения сетки
plt.hist(boys.weight, bins = 'scott', color='darksalmon')
                                                           # построение гистограммы
plt.subplot(2, 3, 3)
plt.title("Значения веса (кол-во интервалов\n определялось по \phi-ле \Phiридмана-Диакониса)") # заголовок
plt.xlabel("Значения веса, кг") # ось абсцисс
```

```
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid() # включение отображения сетки
plt.hist(boys.weight, bins = 'fd', color='darksalmon') # построение гистограммы
plt.subplot(2, 3, 4)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Стёрджесса)") # заголовок
plt.xlabel("Значения роста, см") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid()
              # включение отображения сетки
plt.hist(boys.height, bins = 'sturges', color='royalblue')  # построение гистограммы
plt.subplot(2, 3, 5)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Скотта)") # заголовок
plt.xlabel("Значения роста, см") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid()
              # включение отображения сетки
plt.hist(boys.height, bins = 'scott', color='royalblue')  # построение гистограммы
plt.subplot(2, 3, 6)
plt.title("Значения веса (кол-во интервалов\n определялось по ф-ле Фридмана-Диакониса)") # заголовок
plt.xlabel("Значения роста, см") # ось абсцисс
plt.ylabel("Количество опрошенных") # ось ординат
plt.grid()
             # включение отображения сетки
plt.hist(boys.height, bins = 'fd', color='royalblue') # построение гистограммы
plt.show()
```

```
Проверим значения интервалов
                     ....
                                                                                                                                             k=1+ np.log2(len(boys.weight))
print("Количество интервалов по формуле Стерджесса:", <math>int(np.ceil(k)))
k\_weight=int(np.ceil((max(boys.weight)-min(boys.weight))/(3.5*np.std(boys.weight)*len(boys.weight)**(-1/3))))
k\_height=int(np.ceil((max(boys.height)-min(boys.height)))/(3.5*np.std(boys.height)*len(boys.height)**(-1/3))))
print("Количество интервалов по формуле Стерджесса для данных веса: %d, для данных роста: %d." %(k_weight, k_height))
\label{eq:kweight} $$k_{\text{weight}}=\inf(\text{np.ceil}(\text{max}(\text{boys.weight})-\text{min}(\text{boys.weight}))/(2*(\text{np.percentile}(\text{boys.weight}, 75) - \text{np.percentile}(\text{boys.weight}, 25))*\\ \end{equation}$$ k_{\text{weight}}=\inf(\text{np.ceil}(\text{max}(\text{boys.weight})-\text{min}(\text{boys.weight}))/(2*(\text{np.percentile}(\text{boys.weight}, 75) - \text{np.percentile}(\text{boys.weight}, 25))*\\ \end{equation}
k\_height=int(np.ceil((max(boys.height)-min(boys.height)))/(2*(np.percentile(boys.height, 75) - np.percentile(boys.height, 25))*len(boys.height, 15) - np.percentile(boys.height, 15) - np.percentile
print("Количество интервалов по формуле Фридмана - Диакониса для данных веса: %d, для данных роста: %d." %(k_weight, k_height))
        Количество интервалов по формуле Стерджесса: 6
         Количество интервалов по формуле Стерджесса для данных веса: 4, для данных роста: 4.
         Количество интервалов по формуле Фридмана - Диакониса для данных веса: 9, для данных роста: 6.
Вывод по заданию №1: были построены гистограммы распределения для наборов данных роста и веса. Количество интервалов
было вычеслено по формулам Стерджесса, Стокса и Фридмана - Диакониса. Полученные значения количества интервалов совпали
со значениями, определяемыми программно.
                                                                                           ....
                                                                               П
Задание №2
           ĔΙ
                                                                                                                                                              ă I
                                                                                                                                                                                                                                             Для набора данных роста:
           9 7 |
                                                                                                                                                                        ٠ <u>۴</u>
import statistics
print("Минимальное значение роста: ", min(boys.height))
print("Максимальное значение роста: ", max(boys.height))
print("Среднее значение роста: ", round(sum(boys.height)/len(boys.height),2))
print("Миедианное значение роста: ", statistics.median(boys.height))
print("Стандартное отклонение: ", round(np.std(boys.height),2))
       Минимальное значение роста: 86.0
        Максимальное значение роста: 178.0
        Среднее значение роста: 131.81
        Миедианное значение роста: 130.0
        Стандартное отклонение: 23.88
Для набора данных веса:
print("Минимальное значение веса: ", min(boys.weight))
print("Максимальное значение веса: ", max(boys.weight))
print("Среднее значение веса: ", round(sum(boys.weight)/len(boys.weight),2))
print("Миедианное значение веса: ", statistics.median(boys.weight))
print("Стандартное отклонение: ", round(np.std(boys.weight),2))
       Минимальное значение веса: 13.0
         Максимальное значение веса: 85.0
        Среднее значение веса: 32.63
        Миедианное значение веса: 26.0
        Стандартное отклонение: 19.15
Задание №3
Тест Шапиро-Уилка
from scipy.stats import shapiro, normaltest, kstest
stat, p = shapiro(boys.height)
alpha = 0.05 # уровень значимости
print("p = ", p)
if p > alpha:
      print('Набор данных роста имеет нормальное распределение (не можем отклонить гипотезу о нормальности распределения)).')
else:
```

print('Набор данных роста не имеет нормального распределения (отклоняем гипотезу о нормальности распределения).')