

Responsive Functional Materials

Ass.-Prof. Dr. Heidi A. Schwartz

Photoactive Hybrid Materials

Universität Innsbruck

https://www.uibk.ac.at/en/aatc/ag-schwartz/

heidi.schwartz@uibk.ac.at

L01.063

Outline for today's lecture

Short conclusion of last lecture

2. Learning objectives

- Porous Materials (Zeolites, COFs) History, Properties, Synthesis
- Next time: MOFs History, Properties, Synthesis

carbons (1947)

Short recap from last time...

There are various methods to determine the average and the local structure: diffraction and spectroscopic methods.

Diffraction / no change in electronic structure

- X-ray diffraction
- Neutron diffraction
- Pair Distribution
 Function (PDF)

Ejection of Electrons

XPS (AES) and UPS

Vibrations and Rotations

IR and Raman

Electronic, nuclear transitions

- XAS spectroscopy
- UV/Vis spectroscopy
- NMR spectroscopy

Further methods: EDX, mass spectrometry, DSC-TGA, BET.

In nuclear magnetic resonance (= NMR) spectroscopy, the magnetic properties of atomic nuclei are used to obtain information on the structure of molecules/compounds.

E. M. Purcell (left) and F. Bloch (right) Independent discovery of NMR in 1945 Awarded with Nobel Prize in 1952.

In nuclear magnetic resonance (= NMR) spectroscopy, the magnetic properties of atomic nuclei are used to obtain information on the structure of molecules/compounds.

E. M. Purcell (left) and F. Bloch (right) Independent discovery of NMR in 1945 Awarded with Nobel Prize in 1952.

- ¹H has an angular momentum P
- The rotating nucleus induces a magnetic field and has a magnetic moment (μ) proportional to the spin

In nuclear magnetic resonance (= NMR) spectroscopy, the magnetic properties of atomic nuclei are used to obtain information on the structure of molecules/compounds.

E. M. Purcell (left) and F. Bloch (right) Independent discovery of NMR in 1945 Awarded with Nobel Prize in 1952.

- ¹H has an angular momentum P
- The rotating nucleus induces a magnetic field and has a magnetic moment (μ) proportional to the spin

When is a nucleus magnetic?

Sum of number of protons + number protons and neutrons is **even**: **no magnetic moment**.

Sum of number of protons + number protons and neutrons is odd: magnetic moment.

Nuclei with a magnetic moment μ are NMR active!

NMR Spectroscopy (msu.edu) (29th March, 2023)

White Board

In nuclear magnetic resonance (= NMR) spectroscopy, the magnetic properties of atomic nuclei are used to obtain information on the structure of molecules/compounds.

E. M. Purcell (left) and F. Bloch (right) Independent discovery of NMR in 1945 Awarded with Nobel Prize in 1952.

- ¹H has an angular momentum P
- The rotating nucleus induces a magnetic field and has a magnetic moment (μ) proportional to the spin

Angular momentum is a quantum mechanical property:

$$P = \sqrt{I(I+1)} \cdot \frac{h}{2\pi}$$

h = Planck's constant

I = nuclear spin quantum number $(0, \frac{1}{2}, 1, ..., 6)$

When is a nucleus magnetic?

Sum of number of protons + number protons and neutrons is **even**: **no magnetic moment**.

Sum of number of protons + number protons and neutrons is **odd**: **magnetic moment**.

Nuclei with a magnetic moment μ are NMR active!

NMR Spectroscopy (msu.edu) (29th March, 2023)

White Board

The magnitude of a magnetic moment generated by a nucleus with a spin is proportional to the angular momentum of the nucleus.

$$\mu = \gamma \cdot P = \gamma \cdot \sqrt{I(I+1)} \cdot \frac{h}{2\pi}$$

 γ is characteristic for each isotope/element!

- ¹H has an angular momentum P
- The rotating nucleus induces a magnetic field and has a magnetic moment (μ) proportional to the spin

Relation between P and μ : gyromagnetic ratio γ

The magnitude of a magnetic moment generated by a nucleus with a spin is proportional to the angular momentum of the nucleus.

$$\mu = \gamma \cdot P = \gamma \cdot \sqrt{I(I+1)} \cdot \frac{h}{2\pi}$$

 γ is characteristic for each isotope/element!

- ¹H has an angular momentum P
- The rotating nucleus induces a magnetic field and has a magnetic moment (μ) proportional to the spin

Absence of an external magnetic field

- All nuclei (same isotope) have same magnetic energy in the ground state
- From quantum mechanics: magnetic energy state is 2 I + 1 times degenerated

NMR Spectroscopy (msu.edu) (29th March, 2023)

White Board

Relation between P and μ : gyromagnetic ratio γ

The magnitude of a magnetic moment generated by a nucleus with a spin is proportional to the angular momentum of the nucleus.

$$\mu = \gamma \cdot P = \gamma \cdot \sqrt{I(I+1)} \cdot \frac{h}{2\pi}$$

 γ is characteristic for each isotope/element!

- ¹H has an angular momentum P
- The rotating nucleus induces a magnetic field and has a magnetic moment (μ) proportional to the spin

- two spin states exist, $+\frac{1}{2}$ and $-\frac{1}{2}$
- Never totally align with B_o because of P: complex rotational motion: precession!

Absence of an external magnetic field

- All nuclei (same isotope) have same magnetic energy in the ground state
- From quantum mechanics: magnetic energy state is 2 I + 1 times degenerated

Presence of an external magnetic field \mathbf{B}_0

- Degeneration is cancelled: +½ is favored
- Splitting of the magnetic energy states in 2 I + 1 energy niveaus: **Zeeman effect**

NMR Spectroscopy (msu.edu) (29th March, 2023)

White Board

Larmor frequency ω_0

NMR Spectroscopy (msu.edu) (29th March, 2023)

J. B. Lambert, S. Gronert, H. F. Shurvell, D. A. Lightner, *Spektroskopie – Strukturaufklärung in der Organischen Chemie*, 2. Auflage, **2012**, Pearson Deutschland GmbH, München.

White Board

Larmor frequency ω_0

Precession around z direction has a specific frequency, it is called the **Larmor frequency** with the unit ω_0 .

NMR Spectroscopy (msu.edu) (29th March, 2023)

J. B. Lambert, S. Gronert, H. F. Shurvell, D. A. Lightner, *Spektroskopie – Strukturaufklärung in der Organischen Chemie*, 2. Auflage, **2012**, Pearson Deutschland GmbH, München.

White Board

Larmor frequency ω_0

Precession around z direction has a specific frequency, it is called the **Larmor frequency** with the unit ω_0 .

Larmor frequency rises with B_0 by the factor γ

$$\omega_0 = \gamma \cdot \mathbf{B}_0$$

And with ΔE connected to ω_0 :

$$\Delta E = h \cdot v_0 = \frac{h}{2 \pi} \cdot \omega_0 = \gamma \cdot \hbar \cdot B_0$$

NMR Spectroscopy (msu.edu) (29th March, 2023)

White Board

And how is this useful for NMR?

Applying a radio frequency pulse

In an NMR experiment, the transition of the nuclei from one spin state to the other is induced by another (electro-) magnetic field B_1 , which has a frequency in the region of radio waves.

NMR Spectroscopy (msu.edu) (29th March, 2023)

And how is this useful for NMR?

Applying a radio frequency pulse

In an NMR experiment, the transition of the nuclei from one spin state to the other is induced by another (electro-) magnetic field B_1 , which has a frequency in the region of radio waves.

If the frequency of B_1 is exactly the Larmor frequency: **resonance occurs**!

If the absorption is plotted against the frequency of B_1 , a peak occurs, which corresponds to ω_0 of the studied nucleus.

Resonance is not only dependent on γ but also on the chemical environment: **chemical shift!**

NMR Spectroscopy (msu.edu) (29th March, 2023)

universität innsbruck

To account for the spectrometer frequency

Separation of NMR signals is dependent on the magnetic field: To correct frequency differences for their field dependence, they are divided by the spectrometer frequency: the **chemical shift**! Is multiplied by million to obtain the chemical shift δ with the unit ppm!

NMR Spectroscopy (msu.edu) (29th March, 2023)

Moving from liquid to solid state

Main difference to liquid-state NMR

In solid state, spins are oriented and not randomly distributed: broad signals as a result of nuclear spin interactions (these are dipolar coupling, chemical shift anisotropy (orientation dependence of chemical shift) and quadrupolar interactions).

Moving from liquid to solid state

Main difference to liquid-state NMR

In solid state, spins are oriented and not randomly distributed: broad signals as a result of nuclear spin interactions (these are dipolar coupling, chemical shift anisotropy (orientation dependence of chemical shift) and quadrupolar interactions).

Magic Angle Spinning

Sample is rotated at the magic angle of 54.74° with respect to the magnetic field.

Resolution improved, but not as good as in solution!

<u>University of Ottawa NMR Facility Blog: 1H NMR Spectra of Solids</u> (3rd March, 2025) <u>Solid-state NMR spectroscopy | Nature Reviews Methods Primers</u> (3rd March, 2025) <u>Solid-state nuclear magnetic resonance – Wikipedia</u> (3rd March, 2025)

universität innsbruck

Mass spectrometry – analyzation of fragments

Analytical method to measure masses of atoms (historically) and molecules and with that to solve structure and composition of substances.

M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 3. Auflage, 1987, Georg Thieme Verlag, Stuttgart

Mass spectrometry – analyzation of fragments

Analytical method to measure masses of atoms (historically) and molecules and with that to solve structure and composition of substances.

1. Sample insertion

gas inlet (liquid or gaseous samples) or direct inlet (crystalline samples)

2. Ion production

analyte is being ionized via various methods

3. Mass separation

ions are separated by mass in the field of an electromagnet (mass-to-charge-ratio, m/z)

4. Ion detection

M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 3. Auflage, 1987, Georg Thieme Verlag, Stuttgart

When it's getting hot: DSC/TGA measurements

Differential scanning calorimetry (DSC) is a method for measuring the amount of heat given off/absorbed by a sample during isothermal operation, heating or cooling.

Schematic representation of a DSC from NETZSCH.

universität innsbruck

When it's getting hot: DSC/TGA measurements

Differential scanning calorimetry (DSC) is a method for measuring the amount of heat given off/absorbed by a sample during isothermal operation, heating or cooling.

Schematic representation of a DSC from NETZSCH.

Thermogravimetric Analysis (TGA) is a method for measuring the change in mass of a sample as a function of temperature and time.

When it's getting hot: DSC/TGA measurements

Differential scanning calorimetry (DSC) is a method for measuring the amount of heat given off/absorbed by a sample during isothermal operation, heating or cooling.

Measurement principle

Two crucibles: (a) reference and (b) sample crucible

- Both are weighed before the temperature profile starts
- During in-/decrease of T, the heat flux is measured for both (a) and (b) as a function of T
- During in-/decrease of T, changes in mass are measured for both (a) and (b) as a function of T

Schematic representation of a DSC from NETZSCH.

Thermogravimetric Analysis (TGA) is a method for measuring the change in mass of a sample as a function of temperature and time.

universität innsbruck

When it's getting hot: DSC/TGA measurements

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) are often combined for deeper understanding of samples under changing T profiles.

Interpretation of data

DSC curve

- <u>Signal down</u>: endothermic process / heat is required for *e.g.*, phase transitions or release of fragments / molecules
- <u>Signal up</u>: exothermic process

TGA curve

- Flat line: no changes in mass
- Decreasing line: mass loss
- Increasing line: gain of mass

Information on: thermal stability, phase transitions, composition.

By Energy-dispersive X-ray spectroscopy (EDX), the elemental composition of a sample is determined *via* detection of emitted X-rays of this probe.

By Energy-dispersive X-ray spectroscopy (EDX), the elemental composition of a sample is determined *via* detection of emitted X-rays of this probe.

Fluorescent X-ray generation

Generally: same principle as for X-ray diffraction, but inverse

- Sample is irradiated with X-rays or electrons
- X-rays cause generation of "unique" X-rays, which are emitted from the sample (as a result of unique atomic structure)
- These fluorescent X-rays are characteristic for each element

Energy-dispersive X-ray spectroscopy

By Energy-dispersive X-ray spectroscopy (EDX), the elemental composition of a sample is determined *via* detection of emitted X-rays of this probe.

Fluorescent X-ray generation

Generally: same principle as for X-ray diffraction, but inverse

- Sample is irradiated with X-rays or electrons
- X-rays cause generation of "unique" X-rays, which are emitted from the sample (as a result of unique atomic structure)
- These fluorescent X-rays are characteristic for each element

Moseleys law: Relation of wavelength of K_a and atomic number Z:

$$\frac{1}{\lambda_{K_0}} = (Z - 1)^2 \cdot R_{\infty} \cdot \frac{3}{4}$$

Energy-dispersive X-ray spectroscopy

By Energy-dispersive X-ray spectroscopy (EDX), the elemental composition of a sample is determined *via* detection of emitted X-rays of this probe.

Information on: qualitative and quantitative elemental composition.

Fluorescent X-ray generation

Generally: same principle as for X-ray diffraction, but inverse

- Sample is irradiated with X-rays or electrons
- X-rays cause generation of "unique" X-rays, which are emitted from the sample (as a result of unique atomic structure)
- These fluorescent X-rays are characteristic for each element

Moseleys law: Relation of wavelength of K_a and atomic number Z:

$$\frac{1}{\lambda_{K_{\alpha}}} = (Z - 1)^2 \cdot R_{\infty} \cdot \frac{3}{4}$$

Brunauer-Emmett-Teller method, BET method, is a procedure for determining the specific surface area (in m^2/g) of powders and porous adsorbents, developed by S. Brunauer, P.H. Emmett, and E. Teller in 1938. In this method, a measuring gas (N_2 , Ar, or Kr) is gradually introduced to the adsorbent at a constant temperature. The amount of gas adsorbed, mm, is determined by weighing, while the equilibrium pressure, pp, is measured.

BET – Brunauer, Emmett and Teller

Brunauer-Emmett-Teller method, BET method, is a procedure for determining the specific surface area (in m²/g) of powders and porous adsorbents, developed by S. Brunauer, P.H. Emmett, and E. Teller in 1938. In this method, a measuring gas (N₂, Ar, or Kr) is gradually introduced to the adsorbent at a constant temperature. The amount of gas adsorbed, mm, is determined by weighing, while the equilibrium pressure, pp, is measured.

Measurement principle

In principle, the smallest pores are filled first during gas adsorption. As the pressure or relative pressure increases, the larger pores are successively filled. The volume of gas is measured at the boiling point.

General assumption: Gas condenses on the surface in a monolayer fashion – amount of adsorbed gas is correlated to the total surface area and pores by utilization of the BET method.

Sorption Isotherms

Fig. 2: Classification of physisorption isotherms.

Reversible Type I: a) microporous solids with narrow micropores

b) **microporous** solids with wider micropores + narrow nanopores

Reversible Type II: **nonporous** or **macroporous** adsorbents

Reversible Type III: no monolayer formation (point B is missing)

<u>Type IV</u>: **mesoporous** adsorbents

a) capillary condensation with hysteresis (pores exceed critical width)

b) reversible, smaller pore width

<u>Type V</u>: hydrophobic **microporous** and **mesoporous** adsorbents: most **MOFs!**

<u>Type VI</u>: layer-by-layer adsorption on a uniform **nonporous** surface

Macropores: > 50 nm; Mesopores: 2 nm - 50 nm; Micropores: $\le 2 \text{ nm}$.

S. Brunauer, P. H. Emmett, E. Teller, *J. Am. Chem. Soc.* **1938**, *60*, *2*, 309–319.

M. Thommes et al., *Pure Appl. Chem.* **2015**, 87 (9-10): 1051–1069.

BET theory – Wikipedia (25th April, 2023)

Plenum

Methods-Table: Finalization

Porous materials

Evolution of porous materials

"Porous materials contain regions of empty space into which guest molecules can be selectively adsorbed or chemically transformed. They can be of organic, inorganic or hybrid nature."

T. D. Bennett, F.-X. Coudert, S. L. James, A. Cooper, *Nat. Mater.* **2021**, *20*, 1179–1187.

Clays – already used by the Mayan people

Clay is a type of natural soil containing clay minerals, which are hydrous aluminium **phyllosilicates** *e.g.*, palygorskite or attapulgite.

Clay

Structural linkage schemes among silicates Cyclosilicates Unit composition: (Si₆O₁₈)¹²-Unit composition: (SiO₄)4-Unit composition: (Si2O7)6-Example: olivine, Example: hemimorphite Example: beryl, Zn₄Si₂O₇(OH)₂ · H₂O BeaAloSiaO18 (Mg, Fe)2SiO4 Unit composition: (Si₂O₆)4-Example: pyroxene-e.g., Inosilicates (double chain Unit composition: (Si₄O₁₁)6-Example: amphibole-e.g., anthophyllite, Mg7Si8O22(OH) Unit composition: (Si₂O₅)2-

Clays – already used by the Mayan people

Clay is a type of natural soil containing clay minerals, which are hydrous aluminium **phyllosilicates** e.g., palygorskite or attapulgite.

Mayan blue painting containing indigo as coloring agent and clay as stabilizer

Chemical sum formula of palygorskite: $(Mg,Al)_2Si_4O_{10}(OH) \cdot 4 (H_2O)$

Maya blue – Wikipedia (17th April, 2023) Phyllosilicate | Structure & Facts | Britannica (17th April, 2023)

Framework Silicates (Tectosilicates)

b-cage

 $\begin{array}{c} Sodalith \\ Na_{4}[Al_{3}Si_{3}O_{12}]Cl \end{array}$

Lapislazuli (Lapis Lazuli) is a deep-blue metamorphic rock primarily composed of lazurite ($Na_4[Al_3Si_3O_{12}]S_x$, where x = 2-3). It belongs to the **ultramarine group**, which also includes synthetically produced blue pigments. A well-known example of a synthetic ultramarine pigment is the **typical blue color seen on Nivea tins**.

Framework Silicates (Tectosilicates)

b-cage

 $Na_4[Al_3Si_3O_{12}]Cl$

Lapislazuli (Lapis Lazuli) is a deep-blue metamorphic rock primarily composed of lazurite ($Na_4[Al_3Si_3O_{12}]S_x$, where x = 2-3). It belongs to the **ultramarine group**, which also includes synthetically produced blue pigments. A well-known example of a synthetic ultramarine pigment is the **typical blue color seen on Nivea tins**.

Ultramarine blue Ultramarine middle

Ultramarine purple

Ultramarine red

Framework Silicates (Tectosilicates)

Sodalith $Na_4[Al_3Si_3O_{12}]Cl$

Lapislazuli (Lapis Lazuli) is a deep-blue metamorphic rock primarily composed of lazurite (Na₄[Al₃Si₃O₁₂]S_x, where x = 2-3). It belongs to the ultramarine group, which also includes synthetically produced blue pigments. A well-known example of a synthetic ultramarine pigment is the typical blue color seen on Nivea tins.

Ultramarine blue Ultramarine middle

Ultramarine purple

Ultramarine red

Zeolite Database Help (iza-structure.org) (17th April, 2023)

Zeolite – Wikipedia (17th April, 2023)

The boiling stones - zeolites

Definition of Zeolites

- Crystallized hydrated aluminosilicates
- Can be synthetic or natural (≈ 40 types)
- Rigid framework structures made of SiO₄ and AlO₄ tetrahedra
- Defined periodic cavities and/or channels
- Cavities contain chemically exchangeable metal cations *e.g.*, alkali or alkaline earth metal ions
- Cavities can also contain water or other gas molecules

Discovery

- In 1756, the Swedish Baron Axel Cronstedt discovered minerals that released water when heated → "boiling stones" → zeo = "I boil", lithos = "stone"
- In 1949, **Milton at Union Carbide** synthesized the first artificial zeolites

The boiling stones - zeolites

Definition of Zeolites

- Crystallized hydrated aluminosilicates
- Can be synthetic or natural (≈ 40 types)
- Rigid framework structures made of SiO₄ and AlO₄ tetrahedra
- Defined periodic cavities and/or channels
- Cavities contain chemically exchangeable metal cations *e.g.*, alkali or alkaline earth metal ions
- Cavities can also contain water or other gas molecules

Discovery

- In 1756, the Swedish Baron Axel Cronstedt discovered minerals that released water when heated → "boiling stones" → zeo = "I boil", lithos = "stone"
- In 1949, **Milton at Union Carbide** synthesized the first artificial zeolites

General Composition

- Derived from SiO₂ (silicon dioxide)
- Partial replacement of Si⁴⁺ by Al³⁺
- This creates excess charges, which are compensated by incorporated metal ions

 $M_{x/n}[(AlO_2)_x(SiO_2)_y] \cdot m H_2O$

Zeolite Database Help (iza-structure.org) (17th April, 2023) Zeolite – Wikipedia (17th April, 2023)

The boiling stones - zeolites

Database of zeolite structures:

"Classically, zeolites are defined as aluminosilicates with open 3-dimensional framework structures composed of corner-sharing TO₄ tetrahedra, where T is Al or Si."

(1948)

Zeolite means: boiling stone.

Natural (Natrolite) and synthetic zeolite.

Name	N(Si) : N(Al)
Zeolite A	1:1
Zeolite X	1.2:1
Chabazite	2:1
ZSM-5	30:1

Mordenite (MOR framework)

General sum formula of zeolites: $M_{x/n}[(AlO_2)_x(SiO_2)_y] \cdot m H_2O$

Zeolite Database Help (iza-structure.org) (17th April, 2023)

Zeolite – Wikipedia (17th April, 2023)

There are 251 ordered and 9 disordered Zeolite Framework Types classified to date by the IZA-SC.

- C https://europe.iza-structure.org/IZ	A-SC/ftc_table.php																	A ⁿ
	X	7		D	ata	ba	se (of Z	Zeo	lite	Stı	ruc	jure	es	Section of the		And the second	
	IZA-SC All Co	odes	Intergro	wths								Adva	nced Se	arch 🕶	Tool	s 🕶	Other Links -	
	Home > Codes Help Credits Zeolite Framework Types														edits			
	Search for a Framework Type Code																	
	Enter one character to search for a code or two or more to search for a code or material name																	
	or select one from the table below:																	
		ABW	ACO	AEI	AEL	AEN	AET	AFG	AFI	AFN	AFO	AFR	AFS	AFT	AFV	AFX		
		AFY	AHT	ANA	ANO	APC	APD	AST	ASV	ATN	ATO	ATS	ATT	ATV	AVE	AVL		
		AWO	AWW	ВСТ	BEC	BIK	BOF	BOG	BOZ	BPH	BRE	BSV	CAN	CAS	CDO	CFI		
		CGF	CGS	CHA	-CHI	-CLO	CON	CSV	CZP	DAC	DDR	DFO	DFT	DOH	DON	EAB	1	
		EDI	EEI	EMT	EON	EPI	ERI	ESV	ETL	ETR	ETV	EUO	EWF	EWO	EWS	-EWT	1	
		-IFU	FAR IFW	FAU IFY	FER IHW	FRA IMF	GIS	GIU IRR	-IRT	GON	GOO	HEU	-HOS	IFO ITH	IFR ITR	-IFT	ı I	
		-ITV	ITW)	IWR	IWS	IWV	IWW	JBW]	JNT	JOZ	JRY	JSN	JSR	JST]	JSW]	JZO	1	
		KFI	LAU	LEV	LIO	-LIT	LOS	LOV	LTA	LTF	LTJ	LTL	LTN	MAR	MAZ	MEI		
		MEL	MEP)	MER	MFI	MFS	MON	MOR	MOZ	MRT	MSE	MSO	MTF	MTN]	MTT)	MTW		
		MVY	MWF	MWW	NAB	NAT	NES	NON]	NPO	NPT	NSI	OBW	OFF	око	OSI	oso		
		OWE	-PAR	PAU	PCR	PHI	PON	POR	POS	PSI	PTF	РТО	PTT	PTY	PUN	PWN		
		PWO	PWW	RHO	-RON	RRO	RSN	RTE	RTH	RUT	RWR	RWY	SAF	SAO	SAS	SAT		
		SAV	SBE	SBN	SBS	SBT	SEW	SFE	SFF	SFG	SFH	SFN	SFO	SFS	SFW	SGT		
		SIV	SOD	SOF	SOR	sos	sov	SSF	-SSO	SSY	STF	STI	STT	STW	-SVR	svv		
		SWY	-SYT	SZR	TER	THO	TOL	TON	TSC	TUN	UEI	UFI	uos	UOV	UOZ	USI	J	
		UTL	UWY	VET	VFI	VNI	VSV	WEI	-WEN	YFI	YUG	ZON						
	A "-" sign preceding a th	ree-letter	code indi	cates tha	t the fram	nework is	interrupte	d. That is	s, not all	Γatoms a	are 4-con	nected.						
://europe.iza-structure.org/IZA-SC/framework.php?STC=FAU	For zeolites with disordered framework structures click on the "Intergrowths" tab above																	

Zeolite Database Help (iza-structure.org)

Zeolite – Wikipedia (17th April, 2023)

Ita (t-grc)

There are 251 ordered and 9 disordered Zeolite Framework Types classified to date by the IZA-SC.

Faujasite type 12-ring entrance Large-pore zeolite

Zeolite – Wikipedia (17th April, 2023)

There are 251 ordered and 9 disordered Zeolite Framework Types classified to date by the IZA-SC.

Faujasite type 12-ring entrance Large-pore zeolite

Ita (t-grc)

LTA type 8-ring entrance Small-pore zeolite

Zeolite – Wikipedia (17th April, 2023)

There are 251 ordered and 9 disordered Zeolite Framework Types classified to date by the IZA-SC.

ZSM-5 (Zeolite Socony Mobile - MFI type) has a 10-ring entrance Medium-pore zeolite

Zeolite – Wikipedia (17th April, 2023)

White Board

- 1. Zeolites with one-dimensional channels (fiber zeolites)
- 2. Zeolites with two-dimensional channel systems (lamellar zeolites)
- 3. Zeolites with three-dimensional channel systems (e.g., cube zeolites, pentasils)

Natrolite $Na_2[Al_2Si_3O_{10}]$. 2 H_2O

Fiber zeolites have a predominantly one-dimensional channel system. The most well-known examples are zeolites from the **Natrolite/Skolezite group**:

- Edingtonite Ba[Al₂Si₃O₁₀] · 4H₂O, which has an almost identical structure to the synthetic **Z-F Thomsonite**
- **Thomsonite** NaCa₂[Al₅Si₅O₂₀] · 6H₂O also exhibits a very similar structure.

Skolezite

William D. Callister, David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, WILEY-VCH, 2013.

- 1. Zeolites with one-dimensional channels (fiber zeolites)
- 2. Zeolites with two-dimensional channel systems (lamellar zeolites)
- 3. Zeolites with three-dimensional channel systems (e.g., cube zeolites, pentasils)

Heulandite

Lamellar zeolites usually have a **platy habit**. The most well-known representatives are:

- **Phillipsite**: (K,Na)₅[Si₁₁Al₅O₃₂] · 10H₂O, with tetrahedra and a pure silicon framework.
- **Heulandite**: $Ca[AlSi_3O_8] \cdot 5H_2O$.

- 1. Zeolites with one-dimensional channels (fiber zeolites)
- 2. Zeolites with two-dimensional channel systems (lamellar zeolites)
- 3. Zeolites with three-dimensional channel systems (e.g., cube zeolites, pentasils)

Chabasite

Zeolites with 3D channels are the largest group of zeolites!

ZSM-5

William D. Callister, David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, WILEY-VCH, 2013.

Most common synthesis strategies in industry:

- slow crystallization of silica-alumina gel in the presence of alkalis and organic templates
- Sol-gel processing

Synthesis and Applications

Most common synthesis strategies in industry:

- slow crystallization of silica-alumina gel in the presence of alkalis and organic templates
- Sol-gel processing

Ion exchange in laundry&washing devices

Self-cooling beer barrel.

Drying agent for double windows.

Absorption material in cat litter.

Application in organic syntheses and in catalysis

Reactand selectivity

Covalent Organic Frameworks are porous organic materials, which are ingeniously constructed with organic building blocks *via* strong **covalent** bonds.

O. M. Yaghi: First report on COF together with A. P. Côte in 2005 on a series of 2D COFs.

The father of porosity – Introduction of COFs

Covalent Organic Frameworks are porous organic materials, which are ingeniously constructed with organic building blocks *via* strong **covalent** bonds.

O. M. Yaghi: First report on COF together with A. P. Côte in 2005 on a series of 2D COFs.

A. P. Côte. A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, *Science* **2005**, *310*, 1166-1170. S.-Y. Ding, W. Wang, *Chem. Soc. Rev.* **2013**, *42*, 548-568.

The father of porosity – Introduction of COFs

Covalent Organic Frameworks are porous organic materials, which are ingeniously constructed with organic building blocks *via* strong **covalent** bonds.

O. M. Yaghi: First report on COF together with A. P. Côte in 2005 on a series of 2D COFs.

Condensation reactions of boronic acids and HHTP lead to strong covalent bonds.

A. P. Côte. A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, *Science* **2005**, *310*, 1166-1170. S.-Y. Ding, W. Wang, *Chem. Soc. Rev.* **2013**, *42*, 548-568.

Crystallinity of porous organic compounds

Structures of the COF-1 framework was modelled and then compared to experimental data from X-ray diffraction and NMR spectroscopy.

A. P. Côte. A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, *Science* 2005, 310, 1166-1170.

Crystallinity of porous organic compounds

Structures of the COF-5 framework was modelled and then compared to experimental data from X-ray diffraction and NMR spectroscopy.

A. P. Côte. A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, *Science* 2005, 310, 1166-1170.

Evolution of COFs

A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control - Chemical Society Reviews (RSC Publishing) (8th March, 2025)

Reticular synthesis: Control of topology through selection of precursors that result in characteristic bondings for the final network formation.

Reticular synthesis: Control of topology through selection of precursors that result in characteristic bondings for the final network formation.

A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control - Chemical Society Reviews (RSC Publishing) (8th March, 2025)

Reticular synthesis: Control of topology through selection of precursors that result in characteristic bondings for the final network formation.

A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control - Chemical Society Reviews (RSC Publishing) (8th March, 2025)

Reticular synthesis: Control of topology through selection of precursors that result in characteristic bondings for the final network formation.

COFs can be synthesized *via* boron-, nitrogen- or other atom linkages. Mainly condensation reactions!

A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control - Chemical Society Reviews (RSC Publishing) (8th March, 2025)

Evolution of COF synthesis

universität innsbruck

The synthesis of COFs is highly dependent on the desired application.

Solvothermal synthesis

High temperature and organic solvent as reaction medium

Microwave-assisted synthesis

Rapid heating of reaction mixtures using microwave energy

Mechanochemical synthesis

Uses mechanical force to stimulate chemical reactions

Ultrasonic synthesis

Uses ultrasonic mechanical vibration

Photochemical synthesis

Chemical reactions under light

A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control - Chemical Society Reviews (RSC Publishing) (8th March, 2025)

Evolution of COF synthesis

The synthesis of COFs is highly dependent on the desired application.

Room temperature synthesis

• chemical reactions at relatively low temperatures

Plasma-assisted synthesis

using high-voltage plasma discharge

Electric field-mediated synthesis

• uses external electric fields to promote chemical reactions

Note: Every method has its advantages and disadvantages, ranging from yield, speed of reaction, energy consumption etc.!

A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control - Chemical Society Reviews (RSC Publishing) (8th March, 2025)

Properties and Applications

Due to their high structural versatility and therewith varying properties, COFs find use in various applications.

Hg2- Receptor

- Gas storage and separation
- Catalysis
- Semiconduction and photoconduction
 - A a c b d f e

- Energy storage
- Sensing
- Small molecule adsorption
- Drug delivery
- ..

<u>Applications of covalent organic frameworks (COFs): From gas storage</u> and separation to drug delivery – ScienceDirect (9th March, 2025)

Ouenched Fluorescence

Questions?

