TRUE: um sistema para rastreamento, localização e identificação de usuários em ambientes inteligentes

Tales M. A. Porto¹, Danilo Á. M. C. Ferreira¹, Fabricio N. Buzeto¹, Carla D. Castanho¹, Ricardo P. Jacobi¹

Abstract.

Resumo.

1. Introdução

A Computação Ubíqua, ou *ubicomp*, vem sendo tema de diversas pesquisas desde o início dos anos 90. Mark Weiser [Weiser 1991, Weiser 1993] propôs que a computação devia ser algo invisível, nos envolvendo, servindo e exigindo o mínimo de esforço possível permitindo, ao usuário, ter mais foco na tarefa do que na ferramenta. Nesse cenário se destaca os ambientes inteligentes. Tais ambientes, também chamados de *smart spaces*, interagem com seus usuários auxiliando-os de modo proativo e transparente.

A inteligência presente em um *smart space* é fruto de aplicações que levam em consideração as informações de contexto do ambiente, isto é, informações sobre os usuários e dispositivos. Dentre os inúmeros dados de contexto que podem ser extraídos do *smart space* destacam-se a localização e identidade do usuário, que são fundamentais para a implementação de serviços proativos e personalizados. A obtenção de informações acerca da localização e identificação dos usuários torna-se um desafio tendo em vista a dinamicidade do ambiente, onde usuários entram e saem a todo momento, além de interagirem entre si e com diversos dispositivos.

O objetivo desse trabalho foi o desenvolvimento de um sistema de rastreamento, localização, identificação de usuários em um ambiente inteligente denominado TRUE. TRUE é um acrônimo e vem de *Tracking and Recognizing User in the Environment*. O Sistema TRUE utiliza o sensor *Kinect* [Kinect 2012] da Microsoft como dispositivo de entrada. Esse dispositivo fornece imagens de cor e profundidade do ambiente. No caso específico, o foco do nosso trabalho foi prover essas informações ao Middleware *uOS* [Buzeto 2010]. O Middleware *uOS* é um projeto do grupo de pesquisa UnBiquitous da Universidade de Brasília que já existe desde 2007 coordenado pela Professora Carla Castanho e Professor Ricardo Jacobi cujo foco está na adaptabilidade de serviços em um ambiente de computação ubíqua, de modo que os serviços dos dispositivos presentes no ambiente possam ser oferecidos e compartilhados.

2. Fundamentação Teórica

Em ambientes inteligentes, as informações de contexto sobre os usuários como localização e identidade são de grande importância proporcionando uma maior acurácia nas tomadas de decisões. Informações de contexto como essas são de difícil obtenção devido à dinamicidade do ambiente, no qual usuários entram e saem a todo momento e interagem com diversos equipamentos.

¹ Departamento de Computação – Universidade Federal de Brasília (UnB)

Existem inúmeras maneiras de identificar um usuário, seja por meio da face, íris, voz, entre outras. Dentre estas, o reconhecimento por meio da face se destaca pois sua aquisição é realizada de maneira fácil e não intrusiva. O reconhecimento facial continua sendo um desafio por causa de várias dificuldades como iluminação, ângulos e poses, expressões, maquiagem e extração da face do contexto ou do fundo. Basicamente, o processo de reconhecimento facial pode ser divido em duas tarefas principais, a detecção de faces em imagens e o reconhecimento das faces encontradas.

A detecção de faces é definida como o processo que determina a existência ou não de faces em uma imagem. Atualmente, existem diferentes métodos/técnicas de detecção de faces. Um dos mais utilizados é o *Viola-Jones* [Ma 2007, P. Viola 2001]. Este método pode ser utilizado para construir uma abordagem de detecção facial rápida e eficaz utilizando apenas imagens em tons de cinza distinguindo-se dos outros métodos. Apesar da simplicidade obtém altas taxas de detecção.

Na etapa de reconhecimento, as faces detectadas, serão comparadas com um banco de dados de faces conhecidas. O *Eigenfaces* [Hewitt 2007] trata-se de uma técnica bastante satisfatória, ela permite ao sistema inferir das imagens suas principais características e, partindo delas, realizar o reconhecimento das imagens utilizando um número bastante reduzido de cálculos. Esta técnica aplica o PCA (*Principal Component Analisys*) [Belhumeur et al. 1996] nas imagens do banco de faces gerando uma lista de *eigenfaces*. A partir desta lista é calculada uma *eigenface* média. Cada *eigenface* possui um valor associado (*eigenvalue*) que representa a distancia da *eigenface* media da respectiva *eigenface*. A técnica é implementado pela biblioteca OpenCV [Bradski 2000] e é amplamente utilizada.

Para localizar um usuário é muito utilizado as imagens de profundidade. Essas são imagens cujo valor em cada pixel é uma função da distância do ponto ao sensor. Estas imagens podem ser adquiridas diretamente utilizando sensores específicos.

Alguns dos métodos para se obter imagens de profundidade mais conhecidos são o tempo de voo (TOF - Time of flight) [Jain et al. 1995, Rougier et al. 2011] e a luz estruturada [Rougier et al. 2011]. A luz estruturada consiste em uma imagem de profundidade. Uma imagem de profundidade não pode ser obtida utilizando somente um sensor de vídeo. Porém, adicionando uma textura artificial na cena, uma imagem de profundidade pode ser recuperada. Esse princípio consiste na projeção de pontos de luz infravermelhos na cena que são recuperados por uma câmera infravermelha que lê a textura. Trata-se de um método mais acessível que o TOF, porém é pouco eficiente para estimar a distância dos pontos nas bordas dos objetos e em posições muito longe do sensor.

O rastreamento pode ser definido como o problema de estimar a trajetória de uma entidade (objeto ou pessoa) em um plano de imagem à medida em que se move na cena. Em um ambiente inteligente, o rastreamento de pessoas é uma das principais ferramentas para detectar novos usuários e serve como base para que novas informações possam ser coletadas [Yilmaz et al. 2006]. Basicamente, o processo de rastreamento pode ser dividido em duas etapas detecção do objeto e rastreamento do objeto detectado.

Antes de falar como são feitos a detecção e o rastreamento de entidades, vamos mostrar como as entidades rastreadas são representadas. As entidades rastreadas devem ser representadas de alguma maneira. Geralmente, as representações são baseados em

suas formas, existindo uma forte relação entre a representação e o algoritmo de rastreamento escolhido. Dentre as representações conhecidas se destacam a por pontos, por formas geométricas primitivas, por silhueta e contorno, por modelos de formas articuladas e por modelos de esqueletos. A representação por silhueta e contorno é mais indicada para rastrear entidades complexas de forma não rígida. Ela é popular devido à sua simplicidade e é mais utilizada no rastreamento de pessoas.

Todo método de rastreamento requer um mecanismo de detecção de entidades que pode ser realizada a cada *frame* (quadro) obtido ou na primeira vez que a entidade a ser rastreada entra no campo de visão. Dentre os métodos de rastreamento se destacam o detector de pontos, a subtração de fundo e a segmentação. A subtração de fundo é um método popular para segmentação de movimento, especialmente nas situações em que o plano de fundo é relativamente estático. Ele detecta as regiões de movimento na imagem obtendo a diferença pixel a pixel entre o quadro corrente e o quadro referente ao plano de fundo.

Os métodos de rastreamento de entidades mais utilizados atualmente são o rastreamento de pontos, o rastreamento de núcleo e o rastreamento de silhuetas. O rastreamento de silhuetas é feito estimando a região da entidade a cada quadro a partir das silhuetas geradas nos quadros anteriores. Dado os modelos de entidades, silhuetas são rastreadas por qualquer forma de correspondência ou evolução de contorno.

3. Trabalhos Correlatos

Rastreamento, localização e identificação de usuários é um tema que tem motivado diversos trabalhos na academia. Aqui apresentaremos alguns projetos que se destacam dentro desta área de pesquisa.

O Projeto CHIL [Stiefelhagen et al. 2008, Waibel et al. 2010] possui foco em auxiliar nas interações de pessoas em ambientes colaborativos, como salas de reuniões e palestras. Ele se utiliza de dados de áudio e vídeo do ambiente como fontes de informação. Porém, para a identificação e localização do usuários são utilizados apenas o áudio coletado através de um vetor de microfones.

O *SmartFlow* [Salah et al. 2008] é um middleware que realiza a detecção de movimento, rastreamento de pessoas, reconhecimento facial, localização baseada em áudio. O objetivo do sistema é identificar cada usuário ao entrar pela porta e rastreá-lo no ambiente. Para identificar os usuários quando entram o ambiente possui uma câmera voltada para a porta que fornece imagens de melhor qualidade.

O o AVIARY e MICASA [Trivedi et al. 2005] são dois *smart spaces*. Estes ambientes inteligentes são separados fisicamente, porém conectados. O primeiro (AVIARY) foi projetado para ser uma pequena sala de conferências. O segundo (MICASA) foi projetado para ser uma pequena sala de aula. Nesse trabalho foi desenvolvido uma nova arquitetura para ambientes inteligentes chamado DIVA. O sistema proposto por este projeto monitora o ambiente em baixa resolução de forma contínua, detectando somente a presença e suas dimensões. Formas de aquisição de imagens mais detalhadas são ativadas quando um evento ou atividade de potencial interesse é detectado. Esses eventos são os focos de atenção do sistema.

Os projetos aqui apresentados mostram avanços na localização e identificação de

usuários. Cada um busca utilizar os dados mais importantes ou abundantes encontrados para estas finalidades (nos casos citados: áudio ou vídeo). Independente da fonte de informação quando a característica de identificação é interrompida (a face do usuário não está voltada a câmera ou o usuário não está falando) não temos o rastreamento do mesmo. Sendo assim, manter esta informação relacionada a outros dados disponíveis permitiria rastrear o usuário mesmo durante momentos de oclusão de sua identificação.

4. Sistema TRUE

O sistema TRUE (*Tracking and Recognizing Users in the Environment*) realiza a identificação, localização e rastreamento de usuário em um ambiente inteligente. Para isso são utilizados os dados de vídeo e profundidade providos pelo sensor *Kinect* [Kinect 2012]. Por fim estas informações são disponibilizadas para as aplicações através do middleware *uOS* [Buzeto 2010, Gomes 2007]. O projeto é composto por 4 módulos conforme representado na Figura 1.

Figura 1. Interação entre o módulos do Sistema TRUE.

4.1. Módulo de Rastreamento

O Módulo de Rastreamento é responsável por rastrear os usuários no ambiente, determinar a sua localização física em relação ao sensor *Kinect* e gerenciar suas identidades. Para realizar o rastreamento e localização dos usuários é utilizada a biblioteca *OpenNI* (*Open Natural Interaction*). Trata-se de um *framework* que define *APIs* para o desenvolvimento de aplicações de interação natural.

Para a detecção e rastreamento do usuário é utilizada a técnica de subtração de fundo com a representação de silhuetas. A localização, por sua vez, é realizada utilizando-se imagens de profundidade que fornecem as coordenadas do centro de massa do usuário.

Tais coordenadas são compostas por três dimensões onde o sensor é considerado como a origem do plano.

O processo de rastreamento começa inicializando o dispositivo de entrada, no caso o sensor *Kinect*, registrando as ações a serem tomadas quando eventos em relação aos usuários ocorram, como, por exemplo, evento de novo usuário detectado ou usuário perdido. Obtém-se então uma imagem de fundo da cena que será utilizada no processo de subtração de fundo. Para cada imagem obtida da cena, o processo de subtração de fundo é realizado atualizando os parâmetros de cada usuário, como sua posição na imagem e sua posição em relação ao sensor.

O Módulo de Rastreamento detém as informações sobre todos os usuários rastreados no ambiente e é responsável por requisitar identificação ao Módulo de Reconhecimento. Isto acontece sempre que um novo usuário for detectado ou quando for necessário reconhecer novamente um usuário já rastreado. Quando um novo usuário for detectado, o Módulo de Rastreamento obtém 20 imagens de cor sucessivas deste usuário. De cada imagem é extraída a região correspondente a face e enviada ao Módulo de Reconhecimento requisitando identificação ao mesmo. O Módulo de Reconhecimento, por sua vez, realiza o reconhecimento facial e retorna ao Módulo de Rastreamento o nome do usuário e a confiança obtida. A cada 500ms, o Módulo de Reconhecimento verifica se chegou algum resultado de identificação. Caso tenha chegado, o Módulo de Rastreamento computa o resultado e decide qual identidade será atribuída ao respectivo usuário.

Ao invés de realizar o reconhecimento somente quando novos usuários são detectados, com o objetivo de melhorar a confiança do reconhecimento, o Sistema TRUE realiza continuamente a identificação dos usuários já reconhecidos. Essas tentativas de reconhecer novamente os usuários ocorrerão a cada 5 segundos seguindo as mesmas etapas de quando um novo usuário for detectado. A única etapa que se difere é a primeira, ou seja, ao invés de obter várias imagens de um mesmo usuário, é obtida uma imagem de cada usuário rastreado e a mesma é enviada ao Módulo de Reconhecimento.

Ao obter um resultado de reconhecimento para determinado usuário, o Módulo de Rastreamento deve computar qual identidade será atribuída ao mesmo. Para isso, este módulo mantém para cada usuário o número total de vezes que este já foi reconhecido e os diferentes nomes obtidos pelo Módulo de Reconhecimento bem como a confiança média para cada nome e o número de vezes que cada nome foi atribuído àquele usuário. Com todos esses dados, a identidade do usuário é definida por meio da Fórmula 1.

$$M_p = \frac{N_1 * C_1 + N_2 * C_2 + \dots + N_n * C_n}{N_1 + N_2 + \dots + N_n}$$
 (1)

4.2. Módulo de Reconhecimento

O Módulo de Reconhecimento é responsável pela identificação dos usuários no ambiente. Para isto é utilizada a imagem do usuário (obtida pelo módulo de rastreamento) de onde se obtém a face do mesmo. Desta forma o reconhecimento pode ser realizado sem atuação explícita ou intrusão nas atividades do usuário. Seu funcionamento consiste nos seguintes passos:

Obtenção da imagem de entrada composta somente pelo usuário cujo reconhecimento foi requisitado.

- 2. Pré-processamento da imagem, ou seja, conversão da imagem em escala de cinza.
- 3. Detecção facial na imagem. Caso nenhuma face seja encontrada, retorna "vazio". Observa-se que no máximo uma face pode ser encontrada nesta imagem.
- 4. Processamento da imagem, ou seja, uma nova imagem é criada recortando a região da face encontrada. A imagem é, então, redimensionada e equalizada criando assim um padrão de tamanho, brilho e contraste aumentando a acurácia do reconhecimento.
- 5. Reconhecimento facial com a técnica Eigenfaces.
- 6. Retorno do nome do usuário com a face "mais parecida" e a confiança do reconhecimento.

A detecção facial foi desenvolvida utilizando o método *Viola-Jones* [Ma 2007, P. Viola 2001]. O *Viola-Jones* é implementado pela biblioteca *OpenCV* [Bradski 2000] (*Open Source Computer Vision*). Basicamente, o processo de detecção facial procura por uma face em uma imagem pré-processada. Para realizar detecção facial utilizando o método *Viola-Jones* é necessário a utilização de um classificador em cascata. O Sistema TRUE utiliza um classificador treinado para detectar faces frontais em imagens.

O reconhecimento facial foi desenvolvido utilizando a técnica *Eigenfaces* [Hewitt 2007, Korting and Filho]. Consiste em uma técnica bastante satisfatória quando utilizada sobre uma base de faces relativamente grande, permitindo ao sistema inferir, das imagens das faces suas principais características e, partindo delas, realizar o reconhecimento facial utilizando um número reduzido de cálculos, permitindo, assim, um reconhecimento em tempo real. A base de dados utilizada no Sistema TRUE é formada por imagens no formato PGM (*Portable Gray Map*) com tamanho de 92x112 pixels e em escala de cinza.

O reconhecimento facial inicia-se projetando a imagem no subespaço através do método PCA [Belhumeur et al. 1996] que reduz sua dimensionalidade. Então, calcula-se a distância da imagem projetada a cada um dos *eigenfaces* obtidos na etapa de treinamento obtendo uma lista de distâncias. Esta lista de distâncias é comparada com a lista de distâncias de cada usuário, também obtidas na etapa de treinamento, obtendo o usuário cuja lista de distâncias é a mais similar. Para o cálculo da distância é utilizado tanto a distância Euclidiana como o Mahalanobis [Perlibakas 2004]. Conforme exposto na Sessão 5 foi observado que a utilização de ambas apresentou resultados mais satisfatórios que ambas isoladamente.

4.3. Módulo de Registro

O Módulo de Registro é responsável por cadastrar novos usuários no sistema e treiná-lo para também reconhecer esse novo usuário. Este consiste das seguintes etapas:

- 1. Obtenção das imagens do novo usuário;
- 2. Processamento das imagens, isto é, as imagens são convertidas em escala de cinza, novas imagens são criadas recortando a região da face encontrada. Em seguida, as imagens são redimensionadas e equalizadas criando assim padrões de tamanho, brilho e contraste;
- 3. Armazenamento das imagens;
- 4. Treinamento do sistema para reconhecer esse usuário.

A última etapa do módulo de registro consiste no treinamento do sistema. O treinamento inicia-se liberando os atuais dados de treinamento. Então, um vetor de imagens é obtido lendo todas as imagens contidas no banco de faces. Através deste vetor, obtém-se a *eigenface* média, os *eigenfaces* e os *eigenvalues*. Para cada usuário cadastrado no Sistema TRUE, suas imagens são projetadas no subespaço através do método PCA que reduz suas dimensionalidades, e são calculadas suas distâncias em relação aos eigenfaces obtendo um vetor de distâncias. Os *eigenfaces*, os *eigenvalues*, a *eigenface* média e os vetores de distâncias são armazenados e podem ser utilizados pelo Módulo de Reconhecimento.

Após o treinamento, o Sistema TRUE é reiniciado para que o reconhecimento seja feito utilizando as novas imagens e informações obtidas com o treinamento.

4.4. Modulo de Integração

O Módulo de Integração é responsável por disponibilizar ao ambiente os dados dos usuários. Para isto o Sistema TRUE disponibiliza um *Driver* de Usuário (*UserDriver*) para o middleware *uOS*. Tal *driver* fornece os seguintes serviços de consulta e eventos:

• Serviços:

- Consultas as informações dos usuários no ambiente: através dessas consultas, as aplicações tem acesso aos nomes, e-mails, posições correntes e confiança do reconhecimento de todos os usuários presentes no ambiente;
- Cadastro: as aplicações podem cadastrar novos usuários fornecendo ao *UserDriver* o nome, o e-mail e as imagens do novo usuário;
- Treino do sistema: após cadastrar novos usuários as aplicações podem retreinar o sistema para poder reconhecer o novo usuário cadastrado;
- Remoção: as aplicações podem remover usuários cadastrados fornecendo o e-mail do usuário.

• Eventos:

- Novo Usuário: evento gerado assim que um novo usuário foi detectado pelo Sistema TRUE.
- Usuário Perdido: evento gerado assim que um usuário deixou de ser rastreado pelo Sistema TRUE.
- Atualização dos dados do usuário: evento gerado a cada cinco segundos atualizando os dados de todos os usuários rastreados.

5. Testes

Com o intuito de verificar o desempenho do Sistema TRUE foram realizados uma série de testes abrangendo os dados de Rastreamento, Localização e Reconhecimento. Tais testes ocorreram no Laboratório LAICO (LAboratório de Sistemas Integrados e COncorrentes) do Departamento de Ciência da Computação da Universidade de Brasília.

5.1. Rastreamento

Foram realizados teste com o objetivo de verificar a eficiência da detecção e o dimensão da oclusão dentro do sistema. A oclusão era um problema esperado uma vez que o Sistema TRUE utiliza somente um sensor *Kinect* como dispositivo de entrada.

Os testes para a detecção foram feitos simulando a entrada de um usuário na cena e analisando o momento em que o mesmo era detectado. Em todos os testes o usuário era detectado antes mesmo de entrar na área de visão do sistema por completo.

Foram realizados 2 testes para a oclusão. No primeiro foi testado o caso em que um usuário oculta propositalmente outro já rastreado. Nesta situação, caso o usuário rastreado continuasse oculto, o sistema o determinava como perdido. Por outro lado, nos casos de oclusão parcial, o sistema se mostrou robusto. No segundo teste foi simulada a situação de oclusão momentânea, ou seja, um usuário em movimento oculta outro por um curto período de tempo em razão da sua movimentação. Nestes casos, o sistema TRUE perde o usuário rastreado, mas rapidamente é capaz de detectá-lo novamente.

Durante os testes realizados com rastreamento foi observado alguns problemas quando o usuário rastreado interagia com objetos do ambiente ou com outros usuários. Na grande maioria das vezes em que o usuário interagiu com objetos, o Sistema TRUE considerou o objeto como sendo parte do usuário. Entretanto, esta situação não prejudicou a eficiência do sistema. Por outro lado, os problemas com interação entre usuários foram mais raros, porém tiveram impacto maior. Tais problemas consistem em "interferências" que ocorreram em algumas situações de contato entre dois ou mais usuários.

Apesar dos problemas relatados, o rastreamento conseguiu, na maioria dos testes, atender às necessidades rastreando os diversos usuários no ambiente em suas atividades diárias.

5.2. Localização

O Sistema TRUE obtém a localização dos usuários no ambiente por meio de coordenadas dos mesmos em relação ao *Kinect*. Para verificar a acurácia dessas coordenadas foram realizados alguns testes. Os testes foram realizados para as coordenada do eixo x e z.

Para testar a precisão as coordenadas do eixo z foi realizado o seguinte teste: um objeto (uma caixa de papelão) foi colocada em frente ao sensor a diferentes distâncias do mesmo (1000mm, 2000mm, 3000mm, 4000mm, 4057mm). Foi observado, a discrepância aumenta conforme o objeto se distância do sensor. Neste teste o menor erro obtido foi de 3,21mm e o maior de 111,75mm.

Para testar a precisão das coordenadas do eixo x foi realizado o seguinte teste: um objeto (uma caixa de papelão) foi colocada a uma distância fixa de 3000 milímetros do sensor e colocada em diferentes posições ao longo do eixo x (0, $\pm 330mm$, $\pm 660mm$, $\pm 990mm$). Foi observado que existe uma diferença constante de poucos centímetros ao longo de todo teste. É possível inferir então, que o Sistema TRUE consegue fazer estimativas das coordenadas no eixo x com erro de poucos centímetros. Neste caso o menor e o maior erro obtido foi de 27,19mm e 79,29mm respectivamente.

Acredita-se que os erros apresentados não são significativos a ponto de comprometer o uso dos dados fornecidos.

5.3. Identificação

Para testar os resultados de identificação foram realizadas 2 iterações de testes. Primeiramente foi construído um cenário de testes que não apresentou resultados satisfatórios, com isto foi construído um segundo cenário de teste com uma nova abordagem para a coleta de faces. Para sumarizar os resultados encontrados utilizamos três taxas. A de verdadeiro positivo, quando o sistema identifica o usuário de maneira correta, a verdadeiro negativo, quando o sistema identifica o usuário de maneira errada e a falso negativo, quando o sistema não identifica o usuário cadastrado.

No primeiro conjunto de testes, os cadastros dos usuários foram feitos utilizando 10 imagens de faces de cada usuário: 6 imagens frontais da face, 2 imagens da face ligeiramente rotacionada para direita e 2 imagens da face ligeiramente rotacionada para esquerda. Os cadastros foram realizados com essa estratégia com o objetivo de diminuir o impacto das variações de poses e ângulo no reconhecimento facial. Observa-se que a taxa de Verdadeiro Positivo (73,63%) foi uma taxa baixa para um sistema de reconhecimento automático. Neste conjunto de testes, a taxa de Verdadeiro Negativo foi bem superior a taxa de Falso Negativo mostrando que a principal deficiência do reconhecimento facial consiste na confusão entre os usuários cadastrados no sistema.

Os resultados deste primeiro cenário não se mostrou satisfatório. Sob a hipótese do resultado ter sido influenciado pela baixa quantidade de faces e poses, construiu-se um segundo cenário de testes. Neste a estratégia utilizada nos cadastros do usuários foi diferente. Os cadastros foram feitos utilizando 100 imagens das faces de cada usuário em diferentes ângulos, posições e expressões faciais. No momento do cadastro, foi solicitado que os usuários movimentassem o rosto levemente para cima, para baixo, para esquerda e para direita de maneira aleatória e com diferentes expressões faciais.

Para esse segundo cenário houve um aumento na taxa de Verdadeiro Positivo de 73,63% para 82,5% e redução significativa na taxa de Verdadeiro Negativo de 17,27% para 6,0%, mostrando que os casos de confusões entre os usuários foram mais raros. A melhora obtida comprova a hipótese que um número maior de poses e faces aprimorou a capacidade do sistema de reconhecer seus usuários. Este acréscimo de informações torna os resultados mais robustos devido a inclusão de informações de mais cenários dos usuários no sistema.

6. Conclusão

As informações de contexto são importantes para auxiliar as aplicações em suas decisões, em especial a localização e a identificação, que fornecem as aplicações um maior entendimento do contexto. Como visto, existem poucos projetos que proveem essas duas informações em conjunto.

Foram conduzidos alguns conjuntos de testes para cada um dos propósitos do Sistema TRUE. O sistema se mostrou eficaz tendo em vista que, para cada um dos propósitos testados, os resultados se mostraram satisfatórios e os objetivos foram alcançados.

Atualmente estamos aprimorando a confiança estudando técnicas mais seguras de reconhecimento. Além disso estamos trabalhando a ideia de agregar os dados de múltiplos Kinects minimizando as zonas de oclusão.

Referências

Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1996). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. *European Conference on Computer Vision*.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb's Journal of Software Tools.

Buzeto, F. N. (2010). Um conjunto de soluções para a construção de aplicativos de computação ubíqua. Master's thesis, Departamento de Ciência da Computação, Universidade de Brasília, http://monografias.cic.unb.br/dspace/handle/123456789/257.

- Gomes, A. R. (2007). Ubiquitos uma proposta de arquitetura de middleware para a adaptabilidade de serviços em sistemas de computação ubíqua. Master's thesis, Departamento de Ciência da Computação, Universidade de Brasília, http://monografias.cic.unb.br/dspace/handle/123456789/110.
- Hewitt, R. (2007). Face recognition with eigenface. SERVO Magazine.
- Jain, R., Kasturi, R., and Schunck, B. G. (1995). *Machine vision*. McGraw-Hill, Inc., New York, NY, USA.
- Kinect (2012). Kinect. http://www.xbox.com/en-US/kinect.
- Korting, T. and Filho, N. Utilizando eigenfaces para reconhecimento de imagens. *Fundação Universidade Federal do Rio Grande*.
- Ma, E. L. H. (2007). Avaliação de características haar em um modelo de detecção de face. Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação.
- P. Viola, M. J. (2001). Robust real-time object detection. Second International Workshop on Statistical and Computational Theories of Vision Modeling, Learning, Computing, and Sampling.
- Perlibakas, V. (2004). Distance measures for pca-based face recognition. *Pattern Recogn. Lett.*, 25:711–724.
- Rougier, C., Auvinet, E., Rousseau, J., Mignotte, M., and Meunier, J. (2011). Fall detection from depth map video sequences. In Abdulrazak, B., Giroux, S., Bouchard, B., Pigot, H., and Mokhtari, M., editors, *ICOST*, volume 6719 of *Lecture Notes in Computer Science*, pages 121–128. Springer.
- Salah, A. A., Morros, R., Luque, J., Segura, C., Hernando, J., Ambekar, O., Schouten, B., and Pauwels, E. (2008). Multimodal identification and localization of users in a smart environment. *Journal on Multimodal User Interfaces*, 2(2):75–91.
- Stiefelhagen, R., Bernardin, K., Ekenel, H. K., and Voit, M. (2008). Tracking identities and attention in smart environments contributions and progress in the chil project. In *FG*, pages 1–8.
- Trivedi, M. M., Huang, K. S., and Mikic, I. (2005). Dynamic context capture and distributed video arrays for intelligent spaces. *Ieee Transactions On Systems, Man, and Cybernetics—part A: Systems and Humans*, 35(1):145 163.
- Waibel, A., Stiefelhagen, R., Carlson, R., Casas, J. R., Kleindienst, J., Lamel, L., Lanz, O., Mostefa, D., Omologo, M., Pianesi, F., Polymenakos, L., Potamianos, G., Soldatos, J., Sutschet, G., and Terken, J. (2010). Computers in the human interaction loop. In *Handbook of Ambient Intelligence and Smart Environments*, pages 1071–1116.
- Weiser, M. (1991). The computer for the 21st century. *Scientific American*.
- Weiser, M. (1993). The world is not a desktop. ACM Interactions, 1.
- Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. *ACM Comput. Surv.*, 38(4):13+.