Міністерство освіти та науки України Національний Технічний Університет України "Київський Політехнічний Інститут"

Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

KYPCOBA POBOTA

з дисципліни "Комп'ютерна логіка"

Виконав: Козій Дмитро Максимович

Група: 10-12

Спеціальність: Комп'ютерна інженерія

Залікова книжка 10-1212

(допущений до захисту)

(підпис викладача)

(захистив з оцінкою)

(підпис викладача)

Опис альбому

№ рядка	Формат	Поз	начені	чя		Найменуванн	Я	Кількість	Примітка
						Документація заго	<u>ільна</u>		
						<u>Розроблена зано</u>	<u>180</u>		
	Α4	ІАЛЦ.40	63626.0t	01 OA		Опис альбому	1	1	
	Α4	<i>IAЛЦ.4</i>	63626.0	02 T3		Технічне завдан	<i>НЯ</i>	4	
	A2	<i>IAЛЦ.4</i> .	63626.0	03 E2		Керуючий автом	ıam	1	
						Схема електрич	ιнα		
						Функціонально	7		
	A4	ІАЛЦ.40	63626.00	04 ПЭ)	Пояснювальна зап	иска	19	
						I	3626 NN	11 1	7 <i>A</i>
Зм.	Арк.	№ докум.	Підпис	Дата		<u>.</u>			
Розр	οδ.	Козій Д.М			Пои	істрій управляючий.		Рк.	Аркушів
Пере	вір.	Поспішний О.С.					1		1
Н. Ка	энтп	+				Опис альбому			ΚΠΙ» ΦΙΟΤ
	верд.	Жабін В.І.					/	руп	a 10-12

Технічне завдання

Зміст

1.	Призначення розроблюваного пристрою
	Вхідні дані для розробки
	 Склад пристроїв
	Етапи проектування
5	Пепелік текстової та графічної докиментації

					<i>IAЛЦ.46</i> 3	<i>3626</i> .	002 T3)
Зм.	Арк.	№ докум.	Підпис	Дата				
Розри	οδ.	Козій Д.М			Пристрій управляючий.		Арк.	Аркушів
Пере	вір.	Поспішний О.С.			прастра управляючаа.		1	4
					Технічне завдання	ŀ	НТУУ «КПІ»	» ΦΙΟΤ
Н. Ко	нтр.						<i>[1</i>	7 12
Заті	верд.						Група II	J – 1Z

1.Призначення розроблюємого пристрою

Керуючий автомат – це електрична схема для зберігання і перетворення двійкових змінних за заданим алгоритмом.

Комбінацийні схеми здійснюють відображення визначеної множини вхідних логічних змінних у вихідні.

2. Вхідні дані

Варіант завдання визначається дев'ятьма молодшими розрядами залікової книжки, представленної у двійковій системі числення.

Запишемо свої дані в таблиці

<u> Умови для синтезу автомату</u>

Табл. 2.1 Варіант в двійковій системі

140/1. 2	z. i Dupiu	11111 0 00	Ιυκοσίυ (Lucinem				
h_9	h_8	h_7	h_6	h 5	h₄	h₃	h ₂	h_1
0	1	0	1	1	1	1	0	0
T-5-	22 П) <i>4</i>		_ : @			
Ι ΦΟ/Ι. Δ	2.2 Поря	док з'єб	нання ф	ррагмент	חוס			
h ₈	h₄	h ₂			4,	1, 2		
Ταδη. Δ	2.3 /lozi ^u	нні умов	Ц					
h_{8}	h_7	h₃		/	not X2, r	not X2, X	(1	
	0 / 5	:2.0.:		:0				
Ιαδη. Δ	2.4 <i>110cn</i>	ідовніст	ь сигнал	าเช				
h ₉	h ₄	h_1	($(Y_1 Y_2)$, (Y_4 Y_5),	$Y_{2}, Y_{3}, (Y_{3}, Y_{3})$	Y_1 Y_3), Y_1	3
Ταδη. Δ	2.5 /lozi ^y	нні елем	енти					
h₃	h_2	h_1			2A50-	-HE, 41		
Ταδη. Δ	2.6 Сигн	ал трив	алістю 2	?†				
h_6	h_2				Y_3			
	•							

Ι αοπ.	Z. /	IUΠ	три	гера

h_6	<i>h</i> ₅	
		•

Ταδл. 2.8 Тип автомату

	h ₄	Мура
--	----------------	------

				·
Зм.	ADK.	№ доким.	Підпис	Дата

Табл. 2.9. Таблиця істинності функцій

							7 3 · · · ·
X 4	X 3	X 2	X ₁	f_1	f_2	f_3	f_4
0	0	0	0	1	1	1	0
0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	1
0	0	1	1	0	0	0	1
0	1	0	0	-	0	1	0
0	1	0	1	0	0	0	1
0	1	1	0	1	-	-	0
0	1	1	1	-	-	1	1
1	0	0	0	1	1	0	0
1	0	0	1	0	0	1	1
1	0	1	0	0	0	0	1
1	0	1	1	0	0	0	0
1	1	0	0	1	_	1	1
1	1	0	1	0	1	0	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	1

Функцію f4 необхідно представити в канонічних формах алгебри Буля, Жегалкіна, Пірса та Шеффера. Визначити належність данної функції до п'яти передповних классів. Виконати мінімізацію функції методами:

- -Квайна (або Квайна-Макласкі)
- -Невизначених коефіцієнтів
- -Діаграм Вейча

Необхідно виконати сумісну мінімізацію функцій f_1 f_2 f_3 . Отримати операторні представлення для реалізації системи функцій на программувальних логічних матрицях.

3. Склад пристроїв

Керуючий автомат

Керуючий автомат складається з комбінаційної схеми і пам'яті на тригерах. Тип тригерів та елементний базис подані в технічному завданні.

Программувальна логічна матриця

ПЛМ складається з двох кон'юнктивних матриць, де виходи першої приєднуються до входів другої і дозволяють реалізувати комбінаційну схему в базисі І/АБО, І/АБО-НЕ

Зм.	Арк.	№ докум.	Підпис	Дата

4. Етапи проектування

- Синтез автомата
 - 1) Побудова графічної схеми алгоритму
 - 2) Розмітка станів автомата
 - 3) Побудова графу автомата
 - 4) Побудова таблиці переходів
 - 5) Побудова структурної таблиці автомата
 - 6) Синтез комбінаційних схем для функцій збудження тригерів та віхідних сигналів
 - 7) Побудова схеми автомата в заданному базисі
- Синтез комбінаційних схем
 - 1) Представлення функції f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна:
 - 2) Визначення належності функції f4 до п'яти передповних класів
 - 3) Мінімізація функції f4
 - 4) Спільна мінімізація функцій f1, f2, f3
 - 5) Одержання операторних форм для реалізації на ПЛМ

5. Перелік текстової і графічної документації

- 1) Титульний аркуш
- 2) Опис альбому
- 3) Технічне завдання
- 4) Керуючий автомат схема електрична функціональна
- 5) Пояснювальна записка

Зм.	Арк.	№ докум.	Підпис	Дата

Керуючий автомат. Схема електрична функціональна

Пояснювальна записка

Зміст 1. Bcmyn ______2 1) Побудова графічної схеми алгоритму......2 2) Розмітка станів автомата......2 3) Побудова графу автомата......3 5) Ποδηдοβα структурної таблиці автомата......4 б) Синтез комбінаційних схем для функцій збудження тригерів та віхідних сигналів......4 3. Синтез комбінаційних схем......7 1) Представлення функції f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна......7 2) Визначення належності функції f4 до п'яти передповних класів......9 3) Мінімізація функції f4......10 4) Спільна мінімізація функцій f1, f2, f3......12 5) Одержання операторних форм для реалізації на ПЛМ......15 5. Cnucok літератури......18 *IAЛЦ.463626.004* ПЗ Підпис № докум. Дата Розроб. Козій Д.М Аркцшів Перевір Поспішний О.С. Пристрій управляючий. ΗΤΥΥ «ΚΠΙ» ΦΙΟΤ Пояснювальна записка Н. Контр.

Затверд.

Група 10-12

<u>1.Bcmyn</u>

Дана курсова робота виконана за номером технічного завдання $1212_{(10)}$ (10010111100 $_{(2)}$) і складається з двох частин:

1.Синтез автомата

2.Синтез комбінаційних схем

2.Синтез автомата

Відповідно до технічного завдання складаємо графічну схему алгоритму з урахуванням тривалості сигналів(рис. 4.1) і виконуємо розмітку станів автомата.

Рисунок 4.1. Графічна схема алгоритму з розміченими станами

Зм.	Арк.	№ докум.	Підпис	Дата

Згідно з блок-схемою алгоритму побудуємо граф автомату і виконаємо кодування станів автомату(рис. 4.2)

Рисунок 4.2. Граф автомата з закодованими вершинами

Для синтезу логічної схеми тригера необхідно виконати синтез функцій збудження тригерів та вихідних функцій автомата. Кількість станів автомата дорівнює 10, кількість тригерів знаходимо за формулою $K \ge \lfloor \log_2 N \rfloor = \lfloor \log_2 9 \rfloor = 4$. Для синтезу цього автомату необхідно використовувати T-тригери. Запишемо таблицю переходів цього типу тригерів(рис. 4.3)

Рис. 4.3. Таблиця переходів Т-тригера

Зм.	Арк.	№ докум.	Підпис	Дата

Використовуючи дані з рисунку 4.2 заповнимо структурну таблицю автомата (табл. 4.1).

Таблиця 4.1. Структурна таблиця автомата

Переход и	C	тари	ū cmc	lΗ	F	Товий	і стаі	Ч	Вхі сигн	ідні нали	,	Вихідні сигнали			Функціі збудження тригерів				
	Q_1	Q ₂	Q ₃	Q ₄	Q_1	Q ₂	Q ₃	Q ₄	<i>X</i> ₁	<i>X</i> ₂	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	<i>Y</i> ₄	Y ₅	T_1	<i>T</i> ₂	<i>T</i> ₃	<i>T</i> ₄
$Z_1 \rightarrow Z_2$	0	0	0	0	0	0	0	1	-	1	0	0	0	0	0	0	0	0	1
$Z_1 \rightarrow Z_3$	0	0	0	0	0	0	1	0	-	0	0	0	0	0	0	0	0	1	0
$Z_2 \rightarrow Z_2$	0	0	0	1	0	0	0	1	-	1	1	1	0	0	0	0	0	0	0
$Z_2 \rightarrow Z_3$	0	0	0	1	0	0	1	0	-	0	1	1	0	0	0	0	0	1	1
$Z_3 \rightarrow Z_4$	0	0	1	0	0	0	1	1	-	-	0	0	0	1	1	0	0	0	1
$Z_4 \rightarrow Z_4$	0	0	1	1	0	0	1	1	-	1	0	1	0	0	0	0	0	0	0
$Z_4 \rightarrow Z_5$	0	0	1	1	0	1	0	0	-	0	0	1	0	0	0	0	1	1	1
$Z_5 \rightarrow Z_6$	0	1	0	0	0	1	0	1	-	-	0	0	1	0	0	0	0	0	1
$Z_6 \rightarrow Z_7$	0	1	0	1	0	1	1	0	-	-	0	0	1	0	0	0	0	1	1
$Z_7 \rightarrow Z_8$	0	1	1	0	0	1	1	1	-	-	1	0	1	0	0	0	0	0	1
$Z_8 \rightarrow Z_1$	0	1	1	1	0	0	0	0	1	-	0	0	1	0	0	0	1	1	1
$Z_8 \rightarrow Z_9$	0	1	1	1	1	0	0	0	0	-	0	0	1	0	0	1	1	1	1
$Z_9 \rightarrow Z_{10}$	1	0	0	0	1	0	0	1	-	-	0	0	1	0	0	0	0	0	1
$Z_{10} \rightarrow Z_1$	1	0	0	1	0	0	0	0	-	-	0	0	1	0	0	1	0	0	1

На основі структурної таблиці автомата виконаємо синтез комбінаційних схем для вихідних сигналів і функцій збудження тригерів. Аргументами функцій тригерів є коди станів та вхідні сигнали, для вихідних сигналів – тільки коди станів. Виконаємо мінімізацію функцій методом діаграм Вейча. Враховуючи заданий елементний базис (2АБО-НЕ, 4I), мінімізувати функції будемо за ДДНФ.

Зм.	Арк.	№ докум.	Підпис	Дата

			G	13					T_2		
		Ĺ	I_1			Ĺ.	l_1			_	
	Q_2	_	-	1	1	<u>-</u>	-	0	0		
Q_4		-	-	1	1	-	-	0	0	<i>X</i> ₁	
LSI 4		-	-	0	1	0	0	0	0		
		-	-	0	1	0	0	0	0		
	Q_2	<u>-</u>	_	_	-	0	0	0	0		
				-	-	0	0	0	0	<i>X</i> ₁	
		-	-	0	0	0	0	0	0		
		Į.	-	0	0	0	0	0	0		
	,		λ	(2			λ	(2		•	

			G	13					7	3
		Ĺ	Q_1				I_1			
	Q_2	-	-	1	1	-	-	1	1	
Q_4		-	-	1	1	-	-	1	1	<i>X</i> ₁
G 4		-	-	0	1	0	0	0	1	
		-	_	0	1	0	0	0	1	
	Q_2	-	-	-	-	0	0	0	0	
		-	-	-	_	0	0	0	0	X_1
		-	-	0	0	0	0	0	1	
		-	Ŀ	0	0	0	0	0	1	
			7	(2			λ	(2		

$$T_3 = \overline{\overline{Q}_4 Q_2} \ v \ \overline{\overline{Q}_3 Q_1} \ v \ \overline{\overline{Q}_2} x_2 \ v \ \overline{\overline{Q}_4 Q_3} \overline{\overline{Q}_2} \overline{\overline{Q}_1}$$

Зм.	Арк.	№ докум.	Підпис	Дата

|--|

	٦	l_2			<i>Y</i> ₁
Q_1	_		0	0	
	-	-	-		Q_3
	1	0	0	0	
	0	0	1	0	
		G	 1,		-

 $Y_{1} = \overline{Q_{1} \ v \ \overline{Q}_{1} Q_{2} \overline{Q}_{3} \ v \ \overline{Q}_{1} Q_{3} Q_{4} \ v \ \overline{Q}_{2} Q_{4} \ v \ \overline{Q}_{2} \overline{Q}_{4}}$

 $Y_2 = \overline{Q_1} \quad v \quad \overline{Q_2} \quad v \quad \overline{\overline{Q}_2} \overline{\overline{Q}_4}$

	G	12					
Q_1	-	-	1	1			
	-	-	_	-	Q ₃		
	1	1	0	0			
	1	1	0	0			
'		G	14		•		

 $Y_3 = \overline{\overline{Q}_1 \overline{Q}_2}$

Зм.	Арк.	№ докум.	Підпис	Дата

V	_	Π	.,	Ω	Ω	.,	\cap
Ι,	=	IJ,	V	$\boldsymbol{u}_{2}\boldsymbol{v}$	IJ,	V	$Q_{1}Q_{2}$
4		1		Z	4		1 3

$$Y_5 = \overline{Q_1 \ v \ Q_2 \ v \ Q_4 \ v \ \overline{Q}_1 \overline{Q}_3}$$

Отриманих після мінімізації даних достатньо для побудови комбінаційних схем функцій збудження тригерів і функцій сигналів виходів, таким чином, і всієї комбінаційної схеми. Автомат будуємо на Т-тригерах. Автомат є синхронним, так як його роботу синхронизує генератор, а Т-тригер керований перепадом сигналу.

3.Синтез комбінаційних схем

Дана система з 4 перемикальних функцій(табл. 4.2):

Таблиця 4.2. Система перемикальних функцій

			-				
X 4	X 3	X 2	X ₁	f_1	f_2	f_3	f_4
0	0	0	0	1	1	1	0
0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	1
0	0	1	1	0	0	0	1
0	1	0	0	-	0	1	0
0	1	0	1	0	0	0	1
0	1	1	0	1	ı	ı	0
0	1	1	1	-	-	1	1
1	0	0	0	1	1	0	0
1	0	0	1	0	0	1	1
1	0	1	0	0	0	0	1
1	0	1	1	0	0	0	0
1	1	0	0	1	ı	1	1
1	1	0	1	0	1	0	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	1

Зм.	Арк.	№ докум.	Підпис	Дата

Представимо функцію f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна:

1. Алгебра Буля {I, АБО, НЕ}

$$f4_{IIIIH\Phi} = \overline{X_4 X_3 X_2 X_1} \ V \ \overline{X_4$$

$$f4_{AKH\Phi} = (\overline{x}_{4} \ v \ \overline{x}_{3} \ v \ \overline{x}_{2} \ v \ \overline{x}_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ \overline{x}_{2} \ v \ \overline{x}_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ \overline{x}_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ \overline{x}_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{1}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline{x}_{4} \ v \ x_{3} \ v \ x_{2} \ v \ x_{2}) \cdot (\overline$$

2. Алгебра Шеффера {I-HE}.

$$f4 = \frac{((x_4/x_4)/(x_3/x_3)/(x_2/x_2)/x_1)/((x_4/x_4)/(x_3/x_3)/x_2/(x_1/x_1))/}{((x_4/x_4)/(x_3/x_3)/x_2/x_1)/((x_4/x_4)/x_3/(x_2/x_2)/x_1)/((x_4/x_4)/x_3/x_2/x_1)/}{(x_4/(x_3/x_3)/(x_2/x_2)/x_1)/(x_4/(x_3/x_3)/x_2/(x_1/x_1))/(x_4/x_3/(x_2/x_2)/(x_1/x_1))/(x_4/x_3/x_2/x_1)}$$

3. Алгебра Пірса {AБО-HE}. Отримується із ДКНФ із застосуванням правила де Моргана і аксіоми $\overline{0} = x \ \hat{T} x$

$$f4 = (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \cdot (\overline{X_4} \vee X_3 \vee \overline{X_2} \vee \overline{X_1}) \cdot (\overline{X_4} \vee X_3 \vee X_2 \vee \overline{X_1}) \cdot (\overline{X_4} \vee X_3 \vee X_2 \vee \overline{X_1}) \cdot (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \cdot (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \cdot (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \cdot (\overline{X_4} \wedge \overline{X_3} \wedge \overline{X_2} \wedge \overline{X_1}) \wedge (\overline{X_4} \wedge \overline{X_1}) \wedge (\overline{X_4} \wedge \overline{X_1} \wedge \overline{X_1}) \wedge (\overline{X_1} \wedge \overline{X_1} \wedge \overline{X_1}) \wedge (\overline{X_1} \wedge \overline{$$

Зм.	Арк.	№ докум.	Підпис	Дата

Apĸ.

- 4. Алгебра Жегалкіна {ВИКЛЮЧНЕ АБО, I, const 1}. Одержуємо з ДДНФ наступним способом:
 - Виписуємо ДДНФ

• Замінюємо знак операції АБО між термами на ВИКЛЮЧНЕ АБО

- Кожний аргумент з запереченням замінюється на його сумму по модулю 2 з одиницею згідно з аксіомою $\overline{x} = x \oplus 1$
 - $f4 = (x_4 \oplus 1)(x_3 \oplus 1)(x_2 \oplus 1)x_1 \oplus (x_4 \oplus 1)(x_3 \oplus 1)x_2(x_1 \oplus 1) \oplus (x_4 \oplus 1)(x_3 \oplus 1)x_2x_1 \oplus (x_4 \oplus 1)x_3(x_2 \oplus 1)x_1 \oplus (x_4 \oplus 1)x_3x_2x_1 \oplus x_4(x_3 \oplus 1)(x_2 \oplus 1)x_1 \oplus x_4(x_3 \oplus 1)x_2(x_1 \oplus 1) \oplus x_4x_3(x_2 \oplus 1)(x_1 \oplus 1) \oplus x_4x_3x_2x_1$
- Розкриваємо дужки і спрощуємо вираз шляхом видалення парних термів за аксіомами $x \oplus x = 0, x \oplus 0 = x$.

$$f4 = x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{3}x_{1} \oplus x_{4}x_{2}x_{1} \oplus x_{4}x_{1} \oplus x_{3}x_{2}x_{1} \oplus x_{3}x_{1} \oplus x_{2}x_{1} \oplus x_{1} \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{2}x_{1} \oplus x_{2}x_{1} \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{2}x_{1} \oplus x_{3}x_{2} \oplus x_{2} \oplus x_{4}x_{3}x_{2}x_{1} \oplus x_{4}x_{3}x_{2}$$

Визначимо приналежність функції f4 до передповних классів:

- f(111) = 1 => функція зберігає одиницю
- f(000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = 1 => функція не самодвоїста
- f(0001) > f(1011) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінієн

Зм.	Арк.	№ докум.	Підпис	Дата

Мінімізація функції f4 методом Квайна-Макласкі

Виходячи з табл. 4.2, запишемо стовпчик ДДНФ, розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми группами та виконаємо поглинання термів(рис.4.4).

$$K_0$$
 K_1
 K_2
 0001
 $00x1$
 $0xx1$
 0010
 $0x01$
 $0xx1$
 0011
 $x001$
 $001x$
 0101
 $x010$
 $0xx1$
 1001
 $0xx1$
 $0xx1$
 1100
 $0xx1$
 $0xx1$
 1111
 $0xx1$
 $0xx1$

Рисунок 4.4. Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття(табл. 4.3).

Ταδлиця 4.3 Ταδлиця покриття

						. ,			
	0001	0010	0011	0101	0111	1001	1010	1100	1111
1100								€	
x001	+					€			
001x		+	+						
x010		+					€		
x111					+				€
0xx1	+		+	Θ	+				

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро =
$$x_4 x_3 x_2 x_1 v x_3 x_2 x_1 v x_3 x_2 x_1 v x_3 x_2 x_1 v x_4 x_1$$

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною

$$f4_{MDH\phi} = x_4x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_4x_1$$

Зм.	Арк.	№ докум.	Підпис	Дата

Мінімізація функції f4 методом невизначених коефіцієнтів

Ідея цього методу полягає у відшуканні ненульових коефіцієнтів при кожній імпліканті. Метод віконується у декілька етапів:

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці(табл. 2.3).
 - 2.Виконується вікреслення нульових рядків.
 - з.Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках.
 - 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

Таблиця 4.3. Метод невизначених коефіцієнтів

			luoni			,,,,,,	· ,,_	000,,,	u , c , , ,	<u> </u>	усфіці				
f	X 4	X 3	X ₂	X ₁	X ₄ X ₃	X_4X_2	X_4X_1	X ₃ X ₂	<i>X</i> ₃ <i>X</i> ₁	X_2X_1	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	$X_3X_2X_1$	$X_4X_3X_2X_1$
0	θ —	0	0	0	00	00	00	-00	-00	-00	000	000	000	000	0000
1	θ	0	0	1	00	-00-	01	-00	01	01	000	001	001	001	0001
1	0	0	1	0	00	01	00	01	00	10	001	-000	010	010	_0010
1	θ	0	1	1	00	-01	01	-01	01	11	001	001	011	-011 -	0011
0	θ	1	θ	0	01	00	00	10	10	00	010	010	000	100	0100
1	Đ	1	0	1	01	00	01	10	11	01	010	011	001	-101 -	0101
0	0	1	1	0	01	01	00	11	10	10	011	010	010	110	0110
1	Đ	1	1	1	01	01	01	-11	11	11	011	011	011	11	-0111
0	1	0	0	0	10	10	10	00	00	00	100	100	100	000	1000
1	1	0	0	1	10	10	11	-00	-01	01	100	101	101 -	001	1981
1	1	0	1	0	10	11	10	01	-00	10	101	100	110	010	1010
0	1	0	1	1	10	11	11	01	01	11	101	101	111	011	1011
1	1	1	0	0	11	10	10	10	10	-00	110	110	100	100	1100
0	1	1	θ	1	11	10	11	10	11	01	110	111	101	101	1101
0	1	1	1	0	11	11	10	11	10	10	111	110	110	110	1110
1	1	1	1	1	11	11	11	11	11	11	111	111	111	111	1111

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро =
$$x_4 x_3 x_2 x_1 v x_3 x_2 x_1 v x_3 x_2 x_1 v x_3 x_2 x_1 v x_4 x_1$$

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною

$$f4_{MJH\phi} = x_4 x_3 x_2 x_1 \ v \ x_4 x_1$$

Зм.	Арк.	№ докум.	Підпис	Дата

Мінімізація функції f4 методом діаграм Вейча

Метод діаграм Вейча – це графічний метод, призначений для ручної мінімізації. Його наочність зберігається за невеликої кількості аргументів.

Кожна клітинка відповідає конституенті. Кожний прямокутник, що містить 2 к елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті(рис. 2.1).

Рисунок 4.5. Метод діаграм Вейча

 $f4_{MJH\phi} = x_4x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_3x_2x_1 \ v \ x_4x_1$

Спільна мінімізація функцій f1,f2,f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень.

Проведемо мінімізацію функцій методом Квайна-Макласкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання і поглинання(рис.4.5).Побудуємо таблицю покриття(табл.4.4).

$K_{\mathcal{O}}$	K_1	K_2
<i>0000{1,2,3}</i>	000x{1,2}	<i>0xx0{1,3}</i>
<i>0001{1,2}</i>	00x0{ 1, 2, 3}	0xx0{1,3}
0010{1,2,3}	0x00{1,3}	xx00{1}
<i>0100{1,3}</i>	X000{ 1, 2}	xx00{1}
<i>0110{1,2,3}</i>	0x10{ 1, 2, 3}	x1x0{1}
0111{1,2,3}	01x0{1,3}	x1x0{1}
1000{1,2}	X100{ 1, 3}	x11x{1,2}
1001{3}	011x{ 1,2 ,3}	x11x{1,2}
1100{1,2,3}	X110{1,2}	11xx{2}
-1101{2}	X111{ 1,2, 3}	11xx{2}
-1110{1,2}	1x00{ 1, 2}	
1111{1,2,3}	110x{2}	
	11x0{1,2}	
	11x1{2}	
	111x{1,2}	

Рисунок 4.5. Склеювання і поглинання термів системи

						Арк.
					ΙΑΛЦ.463626.004 Π3	12
Зм.	Арк.	№ докум.	Підпис	Дата		12

Таблиця 2.4. Таблиця покриття системи

	Υ ₁										<u> </u>	Y ₂			···· C	<i>Y</i> ₃						
	0000	0001	0010	0110	1000	1100	1110	1111	0000	0001	0010	1000	1101	1110	1111	0000	0010	0100	0111	1001	1100	1111
1001{3}																				$\boldsymbol{\mathscr{D}}$		
000x{1,2}	+	$\boldsymbol{\mathscr{D}}$							+	$\boldsymbol{\mathscr{D}}$												
00x0{2}									+		+											
X000{2}									+			+										
0x10{2}											+											
X100{3}																		+			$\boldsymbol{\mathscr{D}}$	
011x{3}																			+			
X111{3}																			+			\mathcal{D}
1x00{2}												+										
0xx0{1,3}	+		$\boldsymbol{\mathscr{D}}$	+												θ	$\boldsymbol{\mathscr{D}}$	+				
xx00{1}	+				\mathcal{D}	+																
x1x0{1}				+		+	+															
x11x{1,2}				+			+	$\boldsymbol{\mathscr{D}}$						+	+							
11xx{2}													⊕	+	+							

Після мінімізації визначили кожну з функцій в формі І/АБО

$$Y_{1} = \overline{X_{4}X_{3}X_{2}} \quad V \quad \overline{X_{4}X_{1}} \quad V \quad \overline{X_{2}X_{1}} \quad V \quad X_{3}X_{2}$$

$$Y_{2} = \overline{X_{4}X_{3}X_{2}} \quad V \quad X_{4}X_{3} \quad V \quad \overline{X_{4}X_{2}X_{1}} \quad V \quad \overline{X_{4}X_{2}X_{1}}$$

$$Y_{3} = \overline{X_{4}X_{3}X_{2}X_{1}} \quad V \quad \overline{X_{3}X_{2}X_{1}} \quad V \quad \overline{X_{3}X_{2}X_{1}} \quad V \quad \overline{X_{4}X_{1}}$$

Проведемо мінімізацію функцій методом Квайна-Макласкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання і поглинання(рис.4.6).

Побудуємо таблицю покриття(табл. 4.5)

Зм.	Арк.	№ докум.	Підпис	Дата

$\mathcal{K}_{\scriptscriptstyle{\mathcal{O}}}$	K_1	K_2
0001{3}	00x1{3}	01xx{2}
0011{1,2,3}	0x01{3}	
0100{1,2}	X011{1,2,3}	
0101{1,2,3}	0x11{1,2}	
0110{ 2 ,3}	010x{1,2}	
0111{1,2}	x100{2}	
1000{3}	01x0{2}	
1001{1,2}	01x1{1, 2}	
1010{1,2,3}	X101{1,3}	
1011{1,2,3}	10x0{3}	
1100{2}	10x1{1,2}	
1101{1,3}	1x01{1}	
1110{3}	101x{1,2,3}	
	1x10{3}	
	011x{2}	

Рисунок 4.6. Склеювання і поглинання термів системи Таблиця 4.5. Таблиця покриття системи

	Y ₁						<i>Y</i> ₂					Y ₃														
	0011	0100	0101	1001	1010	1011	0111	1101	0011	0100	0101	1001	1010	1011	0110	0111	1100	0001	0011	0101	1000	1010	1011	0110	1101	1110
0110{3}																								⊕		
00x1{3}																		+	+							
0x01{3}																		+		+						
X011{1,2,3}	+					+			+					+					+				+			
0x11{1,2}	+						+		+							+										
010x{1,2}		$\boldsymbol{\mathscr{D}}$	+																							
x100{2}										+							⊕									
01x1{1}			+				+																			
X101{1,3}			+					+												+					\oplus	
10x0{3}																					⊕	+				
10x1{1,2}				+		+						⊕		+												
1x01{1}				+				+																		
101x{1,2,3}					$\boldsymbol{\mathscr{D}}$	+							⊕	+								+	+			
1x10{3}																						+				\mathcal{D}
01xx{2}										+	⊕				⊕	+										

Зм.	Арк.	№ докум.	Підпис	Дата

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ

$$Y_{1} = \overline{x_{4}x_{3}x_{2}} \quad v \quad x_{4}\overline{x_{3}x_{2}} \quad v \quad \overline{x_{4}x_{2}x_{1}} \quad v \quad x_{4}\overline{x_{2}x_{1}}$$

$$Y_{2} = \overline{x_{4}x_{2}x_{1}} \quad v \quad x_{3}\overline{x_{2}x_{1}} \quad v \quad x_{4}\overline{x_{3}x_{1}} \quad v \quad x_{4}\overline{x_{3}x_{2}} \quad v \quad \overline{x_{4}x_{3}}$$

$$Y_{3} = \overline{x_{4}x_{2}x_{1}} \quad v \quad x_{4}\overline{x_{3}x_{1}} \quad v \quad x_{3}\overline{x_{2}x_{1}} \quad v \quad \overline{x_{4}x_{3}x_{2}x_{1}} \quad v \quad \overline{x_{4}x_{3}x_{2}x_{2}} \quad v \quad \overline{x_{4}x_{3}x_{2}x_{2}}$$

Одержання операторних форм для реалізації на ПЛМ

Для программування ПЛМ використовують нормальні форми I/AБO, I/AБO-HE. Розглянемо программування ПЛМ для системи перемикальних функцій, що подана в формі I/AБO.

$$Y_{1} = \overline{X_{4}X_{3}X_{2}} \quad V \quad \overline{X_{4}X_{1}} \quad V \quad \overline{X_{2}X_{1}} \quad V \quad X_{3}X_{2}$$

$$Y_{2} = \overline{X_{4}X_{3}X_{2}} \quad V \quad X_{4}X_{3} \quad V \quad \overline{X_{4}X_{2}X_{1}} \quad V \quad X_{4}\overline{X_{2}X_{1}}$$

$$Y_{3} = \overline{X_{4}X_{3}X_{2}X_{1}} \quad V \quad \overline{X_{3}X_{2}X_{1}} \quad V \quad \overline{X_{3}X_{2}X_{1}} \quad V \quad \overline{X_{4}X_{1}}$$

Позначимо терми системи:

$$P_{1} = x_{4}x_{3}x_{2};$$

$$P_{2} = \overline{x_{4}}x_{1};$$

$$P_{3} = \overline{x_{2}}x_{1};$$

$$P_{4} = x_{3}x_{2};$$

$$P_{5} = x_{4}x_{3};$$

$$P_{6} = \overline{x_{4}}x_{2}x_{1};$$

$$P_{7} = x_{4}\overline{x_{2}}x_{1};$$

$$P_{8} = x_{4}\overline{x_{3}}x_{2}x_{1};$$

$$P_{9} = \overline{x_{3}}x_{2}x_{1};$$

$$P_{10} = x_{3}x_{2}x_{1};$$

Тоді функції виходів описуються системою:

$$Y_{1} = \overline{x_{4}} \overline{x_{3}} x_{2} \quad v \quad \overline{x_{4}} x_{1} \quad v \quad \overline{x_{2}} x_{1} \quad v \quad x_{3} x_{2} = P_{1} \quad v \quad P_{2} \quad v \quad P_{3} \quad v \quad P_{4}$$

$$Y_{2} = \overline{x_{4}} \overline{x_{3}} x_{2} \quad v \quad x_{4} x_{3} \quad v \quad \overline{x_{4}} \overline{x_{2}} x_{1} \quad v \quad x_{4} \overline{x_{2}} x_{1} = P_{1} \quad v \quad P_{5} \quad v \quad P_{6} \quad v \quad P_{7}$$

$$Y_{3} = x_{4} \overline{x_{3}} \overline{x_{2}} x_{1} \quad v \quad \overline{x_{3}} \overline{x_{2}} x_{1} \quad v \quad x_{3} x_{2} x_{1} \quad v \quad \overline{x_{4}} \overline{x_{1}} = P_{8} \quad v \quad P_{9} \quad v \quad P_{10} \quad v \quad P_{2}$$

Зм.	Арк.	№ докум.	Підпис	Дата

Визначимо мінімальні параметри ПЛМ:

n = 4 – число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 10 – число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

m = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,10,3) - рис. 4.7.

Рисунок 4.7. Мнемонічна схема

Складемо карту программування ПЛМ(4,10,3) – табл. 2.6.

Таблиця 2.6. Карта программування ПЛМ

Nº		Вха	оди		Виходи			
ШИНИ	X_1	<i>X</i> ₂	X₃	<i>X</i> ₄	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	
1	-	0	0	0	1	1	0	
2	0	_	_	0	1	0	1	
3	0	0	_	_	1	0	0	
4	-	1	1	_	1	0	0	
5	-	-	1	1	0	1	0	
6	0	1	-	0	0	1	0	
7	0	0	-	1	0	1	0	
8	1	0	0	1	0	0	1	
9	0	1	0	_	0	0	1	
10	1	1	1	_	0	0	1	

Зм.	Арк.	№ докум.	Підпис	Дата

4.Висновок

В завданні в даній курсовій роботі необхідно було за номером залікової книжки, переведеним в двійкову систему числення, побудувати блок-схему автомата, визначити тип автомата, типи використовуваних тригерів, набір логічних елементів, сигнал з подвійною тривалістю, визначити систему з чотирьох перемикальних функцій.

Використовуючи ці данні, треба було провести абстрактний та структурний синтез автомата і побудувати його. Систему із перших трьох перемикальних функцій із заданої таблиці необхідно було мінімізувати і отримати операторні представлення для реалізації системи на програмованих логічних матрицях.

Для виконання завдання були розкодовані вихідні таблиці завдання варіанта. При побудові автомата була проведена побудова графа з урахуванням сигналів подвійної тривалості, зашифровані стани автомата, побудована структурна схема автомата, мінімізована система із функцій виходів і функцій збудження тригерів, був побудований і відлагоджений автомат.

При виконанні другої частини роботи: мінімізована функція f4 різними методами, f4 представлена в канонічних формах алгебр Буля, Жегалкіна, Пірса і Шеффера, а також проведена сумісна мінімізація системи функцій з наступною реалізацією на програмованих логічних матрицях.

Зм.	Арк.	№ докум.	Підпис	Дата

<u>5.Список літератури</u>

- 1. Жабін В.І., Жуков І.А. Прикладна теорія цифрових автоматів. Навчальний посібник Київ: книжкове видавництво НАУ, 2007р.
 - 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2011р.

Зм.	Арк.	№ докум.	Підпис	Дата