Dutch Energy Generation Изучение генерации энергии Нидерландов

Мустафина Анна

Датасет с Kaggle, 09.2023

Вопрос проекта: Можно ли нивелировать недостатки альтернативных источников (зависимость солнца, ветра от сезона) регулированием остальных элементов энергосистемы?

О выборе проекта

Уникальность данного датасета:

- 1) в учёте времени (данные поступают каждые 15 мин), что позволяет сделать среднесуточный график
- 2) разделение по источникам, оценка лидерства
- 3) поскольку энергии свойственна одномоментность потребления и генерации, можно косвенно оценить потребление

Оданных

Набор данных содержит данные о выработке энергии в Нидерландах по типам производства (источникам)

- Полных дубликатов нет
- Из 21 столбца с источниками данные есть только в 8.
- Представлены данные чуть более чем за год (с 04.08.2022 по 20.09.2023). Последняя дата совпадает с описанием проекта датасет был загружен 21.09.2023
- Для анализа годового распределения исследовался период с 20.09.2020 по 20.09.2023.
- Пропущено 1,9% дат всего периода. Маленькая доля пропусков позволяет проводить анализ всего периода.
- Ещё по 10 % времени по разным датам нет данных о генерации.

Общая годовая генерация по месяцам

Летом потребление энергии меньше, чем зимой. Логично предположить, что добавляется отопление. Пик выработки - в декабре

Генерация с альтернативных источников

Сразу заметно, что выработка ветроэнергии на порядок отличается от солнечной. Для солнечной энергии сезонность очень сильна. В ветроэнергии тоже есть пики, однако они распределены по всему году.

Годовой баланс ресурсов

Лидер — природный газ — был ожидаем. Второе место за сжиганием каменного угля. Удивительно, какую большую долю занимает ветрогенерация. Солнечной энергии меньше процента.

Распределение потребления ресурсов по годовой генерации

1.0

0.5

0.0

10

Месяц

10

Месяц

Относительное

Летом уменьшается сжигание каменного угля и увеличивается сжигание природного газа. Так же в марте уменьшение выработки аномной энергии компенсировалось сжиганием каменного угля. За счёт увеличения сезонной выработки прибрежной ветроэнергии, сжигание каменного угля сократилось

20

Среднесуточная генерация

Совпадает с ожидаемым графиком потребления в пиках

За сутки два пика потребления - в 8 утра и в 8 вечера, соответствует ожидаемому пределу. Провал в генерации днём больше, чем ночью. Это странно, но понять почему в рамках этих данных невозможно. Среднесуточно все источники распределены равномерно. Доля солнечной энергии так мала, что влияние на среднесуточный график незаметно.

Средненедельная генерация Совпадает с ожидаемым графиком потребления

В будни генерация больше, чем в выходные. Пик приходится на среду, минимум на воскресенье. Регулирование в течении недели происходит за счёт природного газа

Ответ на вопрос проекта:

- Нестабильность ветроэнергии можно нивелировать регулировкой сжигания природного газа (сжигать меньше газа при большой выработке ветроэнергии).
- Выработка солнечной энергии пока так мала, что её влияние на систему незначительно.