Brønsted acid-base chemistry

Bronsted base

Bronsted acid

 Brønsted acid --proton donor

 $HA + B \longrightarrow A^{\Theta} + BH^{\oplus}$ (Eq. 4.1)

 Brønsted base -- proton acceptor

OH + H_2SO_4 OH + HSO_4 (Eq. 4.2)

Conjugate base

- Conjugate acid
 - ** Any molecule containing hydrogen is a potential Brønsted acid, whereas any molecule at all is a potential Brønsted base.

Acid and base in diluted aqueous solutions

HA +
$$H_2O \longrightarrow A^{\Theta} + H_3O^{\Theta}$$
 (Eq. 4.4)
$$Ka = \frac{[H_3O^+][A^-]}{[HA]}$$
 (Eq. 4.5)
$$pKa = -lgKa$$
 (Eq. 4.6)
$$pH = pKa + lg(\frac{[A^-]}{[HA]})$$
 (Eq. 4.7)

pKa of H_3O^+ is -1.74, in diluted aqueous solutions, it is the strongest acid --- any acid stronger than H_3O^+ is fully dissociated in water

pKa of various acids

Acid	Base	Approximate (relative to wa
Super Acids		
HF-SbF ₅	SbF ₆ ⁻	
FSO ₃ H-SbF ₅ -SO ₃		
FSO ₃ H-SbF ₅		
FSO ₃ H	FSO_3^-	
RNO_2H^+	RNO_2	-12
ArNO ₂ H ⁺	$ArNO_2$	-11
HClO ₄	${ m ClO_4}^-$	-10
HI	I^-	-10
RCNH ⁺	RCN	-10
R-C-H	R-C-H	10
+ OH	Ö	-10
H_2SO_4	${ m HSO_4}^-$	
HBr	Br^-	_9
Ar — C — OR ²⁴	Ar-C-OR	7.4
+ OH	Ar—C—OR II O	-7.4
ICl	Cl^-	-7
SH ₂ +	RSH	-7
Ar — C — OH ²⁴	Ar—C—OH	7
+ OH	O	-7
Ar—C—H	Ar-C-H	-7
+ OH	Ar — C — H II O	-/
R-C-R	R-C-R II O	-7
+ÖH	Ö	— /
arSO ₃ H	$ArSO_3^-$	-6.5

Acid Base (relative to water) $R-C-OR^{24}$ $R-C-OR^{10}$ -6.5 $R-C-OR^{24}$ $R-C-OR^{10}$ -6.5 $R-C-OR^{24}$ $R-C-OR^{10}$ -6.5 $R-C-OH_{2}^{+}$ $R-C-OH_{10}^{-}$ -6.5 $R-C-OH_{2}^{+}$ $R-C-OH_{10}^{-}$ -6.5 $R-C-OH_{10}^{-}$ $R-C-OH_{10}^{-}$ -6.5 $R-C-OH_{10}^{-}$ $R-C-OH_{10}^{-}$ -6.5 $R-C-R_{10}^{-}$ $R-C-R_{10}^{-}$ $R-C-R_{10}^{-}$ -6.5 $R-C-R_{10}^{-}$ $R-C-R_{10}^{-}$ $R-C-R_{10}^{-}$ $R-C-C-R_{10}^{-}$ $R-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Base	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R-C-OR ²⁴ HOH	R-C-OR II O	-6.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ArOH	-6.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R-C-OH ²⁴ +OH	R-C-OH II O	-6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar-C-R II + OH	Ar — C — R II O	-6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar-Ö-R II H	Ar^{O}_{R}	-6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{-}C(CN)_{3}$	-5
$R - \overset{\dagger}{O} - R$ H $R - \overset{\dagger}{O} - R$ $R_3 COH_2^+$ $R_3 COH$ $R_2 CHOH_2^+$ $R_2 CHOH$ $R_3 COH$ $R_4 CHOH$ $R_5 CHOH$ $R_5 CHOH$ $R_7 CHOH$	Ar_3NH^+	Ar ₃ N	-5
$R_3COH_2^+$ R_3COH -2 $R_2CHOH_2^+$ R_2CHOH -2	H-C-H II +OH	H-C-H II	-4
$R_2CHOH_2^+$ R_2CHOH -2	R−Ö−R I H	$R^{O_{R}}$	-3.5
	$R_2CHOH_2^+$	R_2 CHOH	-2

pKa of various acids

Acid	Base	Approximate photographic (relative to water
$\mathrm{H_3O}^{ar{+}}$	${ m H_2O}^-$	-1.74
Ar-C-NH ₂ ²⁴ +OH	Ar — C — NH ₂	-1.5
HNO_3	$\mathrm{NO_3}^-$	-1.4
R-C-NH ₂ ²⁴ +OH	R-C-NH ₂	-0.5
$Ar_2NH_2^+$ HSO_4^-	Ar_2NH SO_4^{2-}	1 1.99
HF HONO	${ m F}^ { m NO_2}^-$	3.17 3.29
ArNH ₃ ⁺	ArNH ₂	3-5
ArNR ₂ H ⁺ RCOOH	ArNR ₂ RCOO ⁻	3-5 4-5
HCOCH ₂ CHO	HCOC-HCHO	5
H ₂ CO ₃ ⁴² H ₂ S	HCO ₃ ⁻ HS ⁻	6.35 7.00
ArSH	ArS ⁻	6–8

Acid	Base	Approximate pK_a (relative to water)
CH ₃ COCH ₂ COCH ₃ ⁴⁴	CH ₃ COC-HCOCH ₃	9
HCN	CN^-	9.2
NH_4^+	NH_3	9.24
ArOH	ArO^-	8-11
RCH ₂ NO ₂	$RC-HNO_2$	10
R_3NH^+	R_3N	10-11
RNH ₃ ⁺	RNH_2	10-11
HCO ₃	CO_3^{2-}	10.33
RSH	RS^-	10-11
$R_2NH_2^+$	R_2NH	11
$N \equiv CCH_2C \equiv N$	N≡CC−HC≡N	11
CH ₃ COCH ₂ COOR	CH ₃ COC-HCOOR	11
CH ₃ SO ₂ CH ₂ SO ₂ CH ₃	CH ₃ SO ₂ C-HSO ₂ CH ₃	12.5
EtOOCCH2COOEt	EtOOCC-HCOOEt	13
CH ₃ OH	$\mathrm{CH_{3}O^{-}}$	15.2
H_2O	OH^-	15.74
	\bigcirc	16
RCH ₂ OH	RCH_2O^-	16
RCH ₂ CHO	RC-HCHO	16
R ₂ CHOH	R_2CHO^-	16.5
R_3COH	R_3CO^-	17
RCONH ₂	$RCONH^-$	17
RCOCH ₂ R	RCOC-HR	$19-20^{56}$

pKa of various acids

Acid	Base	Approximate pK_a (relative to water)
		20
$Ph \xrightarrow{O} CH_2 - S \xrightarrow{II} Ph$	$Ph \longrightarrow \begin{array}{c} O \\ O \\ CH_2 - S \sim P \end{array}$	h 20.08 ^a
$Ph \xrightarrow{CH_2 - S} Ph$	Ph————————————————————————————————————	18.91 ^a
		23
ROOCCH ₂ R	ROOCC-HR	24.5
$RCH_2C\equiv N$	RC-HC=N	25
HC≡CH	HC≡CC [−]	25
Ph ₂ NH	PH_2N^-	24.95^{b}
EtOCOCH ₃	EtOCOCH ₂	25.6
$PhNH_2$	PhNH ⁻	30.6^{b}
Ar ₃ CH	Ar_3C^-	31.5
Ar_2CH_2	Ar ₂ CH ⁻	33.5
H_2	H^-	35
NH_3	$\mathrm{NH_2}^-$	38
PhCH ₃	PhCH ₂ ⁻	40
CH ₂ =CHCH ₃	$\begin{bmatrix} H \\ C \\ H_2C \end{bmatrix}^{\ominus}$	43
PhH	Ph ⁻	43

Acid	Base	Approximate pK_a (relative to water)
CH ₂ =CH ₂	CH ₂ =CH ⁻	44
cyclo-C ₃ H ₆	c - C_3H_5	46
CH_4^{72}	$\mathrm{CH_3}^-$	48
C_2H_6	$C_2H_5^-$	50
$(CH_3)_2CH_2^{72}$	$(CH_3)_2CH^-$	51
$(CH_3)_3CH^{72}$	$(CH_3)_3C^-$	

 $^{{}^{}a}pK_{a}$ in THF. ${}^{b}pK_{a}$ in DMSO.

The leveling effect

- An acid stronger than the conjugate acid of the solvent can not exist in that solvent
- A base stronger than the conjugate base of the solvent can not exist in that solvent

Relative acidities of acids can be determined in various solvents and scaled to a consistent set of values for a single solvent (pKa relative to an aqueous solution)

Acids in concentrated aqueous solutions

Acidity function vs pH

Acidity function: a measurement of the effective ability of the concentrated solution to donate protons to an organic compound

pH: the ability of a diluted acid solution to donate protons

Hammett acidity function:

$$H_0 = pKa + lg([B]/[BH^+])$$

H_o values for mixtures of several different acids in water as a function of their mole fractions. The data come from Cox, R. A., and Yates, K. "Acidity Functions: An Update." Can. J. Chem., 61, 2225 (1983).

Super acids

- Acid with H_o<-12
- The extreme of strongly acidic solutions are those formed from BF₃, PF₅, AsF₅ and especially SbF₅ in liquid HF, often diluted with FSO₃H and SO₂ClF.
- Acids of the extremely non-nucleophilic and non-coordinating anions BF₄⁻, PF₆⁻, AsF₆⁻, and SbF₆⁻
- Such solution can protonate bases as weak as benzene and alkane to create persistent carbenium ions.

Carbenium ions created by super acids

$$HSO_{3}F, HSO_{3}F-SbF_{5}, HF-SbF_{5}$$

$$ROH \longrightarrow R^{+}$$

$$H \downarrow H$$

$$R \downarrow H \downarrow H$$

$$R \downarrow H$$

Acid and base in nonaqueous systems

 pKa values change significantly when measured in different solvents

Table 4.1 pK_a s of Various Acids in Differing Solvents

			Solvent		
Acid	H ₂ O	СН₃ОН	DMSO	DMF	CH ₃ CN
CH ₃ CO ₂ H	4.76	9.5	12.6	13.5	
p-NO ₂ C ₆ H ₄ OH	7.15	11.4	11.0	12.6	21
PhNH ₃ ⁺	4.6		3.2	4.2	

Acid and base in nonaqueous systems

 Solvation has a large influence in altering the intrinsic ability of a compound to act as a proton donor

Table 4.2 pK_a Values for Various Acids in Water and DMSO*

Acid	pK_a (water)	pK_a (DMSO)	
HBr	-9	0.9	
HCl	-8	1.8	
HF	3.2	15	
Picric acid	0.4	0.0	
Acetic acid	4.75	12.3	
Phenol	10.0	18.0	
Methanol	15.5	29.0	
Water	15.57	32	
HCN	9.1	12.9	
$CH_2(CN)_2$	11.0	11.0	

^{*}Bordwell, F. G. "Equilibrium Acidities in Dimethyl Sulfoxide Solution." *Acc. Chem. Res.*, **21**, 456 (1988).

Strengths of BrØnsted acids and bases

Do you know the right answers to questions like:

- What base to use for a base-initiated reaction?
- What acid to use to remove a protecting group?
- Conditions to generate reactive carbanion intermediate?

How?

- pK_a values of common structures (all standard pK_as are referenced to water!)
- The ability to predict relative acid or base strength!

Predicting relative acidities

Guiding principles for predicting relative acidities

- When the acids being compared are neutral (HA) and create negative conjugate bases (A⁻), it is most convenient to predict the relative acidities by examining the relative stabilities of the anionic conjugate bases. The acid with the most stable conjugate base A⁻ will be the strongest acid.
- When the acids being compared are cationic (HA+) and create neutral conjugate bases (A), it is most convenient to predict the relative acidities by examining the relative stabilities of the acids themselves. The acid HA+ that is the most stable will be the weakest acid.

Predicting relative acidities

Important factors related to acidity

- Electronegativity effect
- Inductive effects
- Electrostatic effects
- Resonance
- Aromaticity/antiaromaticity
- Solvation
- Hybridization effects
- Polarizability
- Bond strengths
- Steric effects