EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

A. MECANICĂ

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

SUBIECTUL I (15 puncte)

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

- 1. Notațiile fiind cele din manuale, unitatea de măsură pentru lucru mecanic se exprimă în unități fundamentale S.I. prin:
- **a.** $kg \cdot m/s^2$
- **b.** kg · m/s

repaus. Perechea de forțe care reprezintă o acțiune și o reacțiune este:

- c. $ka \cdot m^2/s^2$
- **d.** $ka \cdot s^2/m^2$

a. \vec{F} și \vec{N}

b. \vec{F} și \vec{G}

c. \vec{N} și \vec{G}

d. oricare dintre ele

(3p)

- 3. Asupra unui automobil care se mișcă accelerat pe un drum orizontal acționează forța de tracțiune dezvoltată de motor \vec{F}_t şi forța de rezistență \vec{F}_r . Între modulele celor două forțe există relația:
- a. $F_t = F_r$

4. Un corp de masă m_1 este suspendat de tavan prin intermediul unui fir. De corpul de masă m_1 este legat un resort ideal, de constantă elastică k. La capătul celălalt al resortului se suspendă un corp de masă m_2 , ca în figura alăturată. La echilibru, alungirea resortului este:

2. În figura alăturată este reprezentat ansamblul de forte, egale în modul, care actionează asupra sistemului format dintr-un corp si suprafata orizontală pe care acesta se află în

b.
$$\Delta \ell = \frac{|m_1 - m_2|g}{k}$$
 c. $\Delta \ell = \frac{m_1 g}{k}$

c.
$$\Delta \ell = \frac{m_1 g}{k}$$

$$\mathbf{d.} \ \Delta \ell = \frac{m_2 g}{k}$$

5. Un corp este aruncat vertical în sus cu viteza v_0 , dintr-un punct în care energia potențială se consideră nulă. Fortele de frecare sunt neglijabile. Înăltimea, măsurată fată de nivelul aruncării, la care energia cinetică devine egală cu energia potențială, este:

a.
$$h = \frac{v_0^2}{g}$$

b.
$$h = \frac{v_0^2}{2g}$$

c.
$$h = \frac{v_0^2}{3a}$$

d.
$$h = \frac{v_0^2}{4g}$$

(3p)