实

矢量与张量分析

⑥ LePtC (萌狸)

笔记项目主页: http://leptc.github.io/lenote

署名・非商用・相同方式共享

精

Matthews. Vector Calculus. Springer 黄克智. 张量分析(第二版). 清华大学出版社(较全)

参

余天庆. 张量分析及其应用. 清华大学出版社 (较精) (同高等代数, 微分几何, 电动力学, 狭相广相)

符号约定

上标撇 , 表示变换后, $\vec{e_a}$ 表示单位矢量 (不用 \hat{a}) , g_i 表示逆变基矢, g^i 表示协变基矢 (非单位长度) 斜系之后, 矢/张量不再画箭头, (在不致混淆时) 用其分量 A^μ $T^{\mu\nu}$ 来代指整个矢/张量, 撇标在指标上

相关笔记

矢量与张量代数见〈高等代数〉 流形上的张量分析见〈微分几何〉

(Last compiled on 2015/11/26 at 00:18:00)

magnitude scalar vector direction

标量 / 数量 $\varphi \in \mathbb{R}$ 矢量 / 向量 $\overrightarrow{A} = A \overrightarrow{e_a}$ ① 几何定义: 有 大小 和 方向 且满足 平行四边形法则 n **维矢量空间** $V^n = \mathbb{R}^n$ 上定义了两种运算: ① 矢量 m法 对应分量相加减, 满足交换律, 结合律 ② 标 和矢 **数乘** 每一分量与标量乘, 满足结合律, 左右分配律 (详见〈高代〉) ② 代数定义: 元素 $\overrightarrow{A} \in V^n$ V^n 的 **基底** 记为 $\{\vec{e_i}\}$,则任一矢量可唯一地表示为 $\vec{A} = \sum_i a_i \vec{e_i}$, a_i 称为 \vec{A} 在相应基底下的 **坐标**

仿射空间 $P^n = \mathbb{R}^n$, 区别是其元素视为 点

没有定义点和点的加法, 定义了点和矢量的运算 $P^n \otimes V^n \to P^n$, $O \mapsto O' = O + \overrightarrow{A}$ (详见〈高代〉)

从而 V^n 中每个 \overrightarrow{A} 都给出了 P^n 到自身的一个变换, 称为由 \overrightarrow{A} 决定的 $\overline{\mathbf{v}}$ $\overline{\mathbf{v}}$

sliding vector

例 作用在刚体上的力(力学)

定义了 |内积| 的矢量空间称为 |内积空间| (详见〈高代〉)

inner / dot / scalar product modulus

内积 / 点乘 / 数量积 $\vec{A} \cdot \vec{B} \equiv AB \cos \theta$ $\vec{E} = \sum_i a_i b_i$, 矢量的 \vec{E} $\vec{A} = |\vec{A}| \equiv \sqrt{\vec{A} \cdot \vec{A}}$ $\vec{E} = \sum_i a_i^2$ 内积满足交换律, 分配律 (不存在结合律, 标量不能和矢量点乘叉乘)

转动变换

基底不唯一, 记变换后的基底为 $\{\vec{e_i}'\}$, 新坐标为 $a_i'=\sum_j R_{ij}a_j$, 则 $\vec{A}=\sum_j a_j \vec{e_j}=\sum_i a_i' \vec{e_i}'$ (被动变换, 物不动, 基动坐标变) 「代入 = $\sum_i \sum_j R_{ij} a_j \vec{e_i}$ '对比」 $\vec{e_j} = \sum_i R_{ij} \vec{e_i}$ '(基底的新旧变换与坐标相反)

欧氏空间的等距变换为 **空间转动** $R_{ii} = \vec{e_i} \cdot \vec{e_i}' = \cos \langle j, i' \rangle$

性质 R 是正交阵 \langle 高代 \rangle $\lceil \sum_{j} R_{ij} R_{jk}^{\mathsf{T}} = \sum_{j} R_{ij} R_{kj} = \delta_{ik} \rightarrow \sum_{i} R_{ij} a_{i}^{\prime} = \delta_{ii} a_{j} \rfloor$

 \rightarrow | 逆变換| $a_i = \sum_j R_{ji} a_j'$, $\vec{e_j}' = \sum_i R_{ji} \vec{e_i}$

$$\begin{bmatrix} a_1' \\ a_2' \\ a_3' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

例 证矢量的内积是标量

 $(\overrightarrow{A} \cdot \overrightarrow{B})' = \sum_{i} a_{i}' b_{i}' = \sum_{i} \left(\sum_{j} R_{ij} a_{j} \right) \left(\sum_{k} R_{ik} b_{k} \right) = \sum_{ijk} R_{ij} R_{ik} a_{j} b_{k} = \sum_{jk} \delta_{jk} a_{j} b_{k} = \overrightarrow{A} \cdot \overrightarrow{B}$

(只有3维和7维空间能定义矢积,分别用四元数和八元数乘法表示,一般的乘法见(外积))

性质 有反交换律, 左右分配律, 雅可比恒等式, 不满足结合律 推论 平行矢量叉乘为零, $\overrightarrow{A} \times \overrightarrow{A} = \overrightarrow{0} = 0$ **囫** 直线方程 $\vec{r} = \vec{r_0} + \lambda \vec{k}$ 又可写成 $\vec{r} \times \vec{k} = \vec{h}$. \vec{h} 为常矢量

 $\lceil [\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C})]_x = a_y(b_xc_y - b_yc_x) - a_z(b_zc_x - b_xc_z) = b_x(a_yc_y + a_zc_z) + a_xb_xc_x - c_x(a_yb_y + a_zb_z) - a_xb_xc_x \rfloor$ Lagrange's identity

拉格朗日恒等式 $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$ (结果在 \vec{B}, \vec{C} 面内, 中间者系数为正) $(\vec{A} \times \vec{B}) \times \vec{C} = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{A}(\vec{B} \cdot \vec{C})$ 推论 当 $\vec{B} \times (\vec{A} \times \vec{C}) = 0$ 时上下两式相等

推论 $(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = \vec{A} \cdot (\vec{B} \times (\vec{C} \times \vec{D})) = (\vec{A} \cdot \vec{C}) (\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D}) (\vec{B} \cdot \vec{C})$

triple / mixed product

例 洛伦兹力 $q\vec{v} \times \vec{B} = m\vec{v}$ 两边点乘 \vec{v} 得 $0 = m\vec{v} \cdot \vec{v} = m_2^2 \frac{d}{dt} (\vec{v} \cdot \vec{v}) = m_2^2 \frac{d}{dt} (|v|^2)$ 得证速度大小不变

反射变换

polar vector

|极/真矢量| 空间反射变换下, 镜面垂直分量反向, 镜面平行分量不变 |例 \overrightarrow{r} , \overrightarrow{p} , \overrightarrow{E} , 电矩 \overrightarrow{p} axial / pseudo vector

轴/赝矢量 空间反射变换下, 镜面垂直分量不变, 镜面平行分量反向 **性质** 真矢量叉乘得赝矢量

例 $\vec{\omega}$, $\vec{M} = \vec{r} \times \vec{F}$, $\vec{L} = \vec{r} \times \vec{p}$, $\vec{B} \propto I \vec{r} \times \vec{e_r}$, 磁矩 \vec{m} , 涡度 $\vec{\zeta} = \nabla \times \vec{B}$ pseudo scalar

「变换时出个负号 | 矢量点乘赝矢量得 $\overline{\mathbb{G}}$ $\overline{\mathbb$

→ 赝标量乘矢量得赝矢量

coordinate basis vector rectangular

<u></u>直角坐标系</u> 下点的 <u>坐标</u> 记为 (x,y,z) , 基矢 记为 $\{\vec{e_x},\vec{e_y},\vec{e_z}\}$ <u></u>右手系 $\vec{e_x} \times \vec{e_y} = \vec{e_z}$, 矢量 $\vec{A} = \sum_{i=1}^{xyz} a_i \vec{e_x}$ metric xyz $g_{ij} \equiv \vec{e_i} \cdot \vec{e_j} = \sum (\vec{e_i} \cdot \vec{e_x})(\vec{e_x} \cdot \vec{e_j}) = \sum \frac{\partial x}{\partial u_i} \frac{\partial x}{\partial u_j}$, 一般基底下的 内积 为 $\vec{A} \cdot \vec{B} = \sum_{ij} g_{ij} a_i b_j$ 性质 欧氏空间 g_{ij} 是正定对称矩阵,存在基底使 $g_{ij} = \delta_{ij}$ 「施密特正交化」 (不唯一,差个转动变换)

curvilinear coordinate system

coordinate surface

coordinate curve

| 曲线坐标系| 下点的 | 坐标| 记为 (u_1,u_2,u_3) , u_i =常数 称为 | 坐标面| ,曲面的交线称为 | 坐标线| 坐标线的单位切向矢量记为 $\{\vec{e_i}\}$ (不一定是长度的量纲),指向 u_i 增加的方向,构成 局部标架

假设 坐标变换函数 $x=x(u_1,u_2,u_3)$ (y,z 同理) 单值连续可微 \rightarrow 存在逆变换 $(J\neq 0)$ $u_i=u_i(x,y,z)$

有 $\mathbf{d}\vec{r} = \sum \frac{\partial \vec{r}}{\partial u_i} \mathbf{d}u_i$, 定义 **协变基矢** $\vec{g_i} = \frac{\partial \vec{r}}{\partial u_i}$ (有长度的量纲, 不一定归一)

$$\frac{\operatorname{cylindrical}}{\stackrel{\textstyle \text{th}}{\cancel{N}}} \left\{ \begin{array}{l} x = r \cos \phi \\ y = r \sin \phi \\ z = z \end{array} \right. \left\{ \begin{array}{l} \overrightarrow{e_x} = \cos \phi \, \overrightarrow{e_r} - \sin \phi \, \overrightarrow{e_\phi} \\ \overrightarrow{e_y} = \sin \phi \, \overrightarrow{e_r} + \cos \phi \, \overrightarrow{e_\phi} \\ \overrightarrow{e_z} = \overrightarrow{e_z} \end{array} \right. \left\{ \begin{array}{l} \overrightarrow{e_r} = \cos \phi \, \overrightarrow{e_x} + \sin \phi \, \overrightarrow{e_y} \\ \overrightarrow{e_\phi} = -\sin \phi \, \overrightarrow{e_x} + \cos \phi \, \overrightarrow{e_y} \\ \overrightarrow{e_z} = \overrightarrow{e_z} \end{array} \right. \left\{ \begin{array}{l} \overrightarrow{e_r} = \cos \phi \, \overrightarrow{e_x} + \sin \phi \, \overrightarrow{e_y} \\ \overrightarrow{e_\phi} = -\sin \phi \, \overrightarrow{e_x} + \cos \phi \, \overrightarrow{e_y} \\ \overrightarrow{e_z} = \overrightarrow{e_z} \end{array} \right. \right\}$$

angular azimuthal angle

|**径向**| $\overrightarrow{e_{\sigma}}|$ |**横向**| $\overrightarrow{e_{\sigma}}|$ |**方位角**| (经度) ϕ (逆时针为正向) |**极角**| (余纬度) θ

parabolic

|抛物线系| $x=uv\cos\phi$, $y=uv\sin\phi$, $z=\frac{1}{2}(u^2-v^2)$

正交曲线系

坐标系	u_1	u_2	u_3	h_1	h_2	h_3
直角系	$x \in \mathbb{R}$	$y \in \mathbb{R}$	$z \in \mathbb{R}$	1	1	1
柱系	$0 \leqslant r < \infty$	$0 \leqslant \phi < 2\pi$	$z \in \mathbb{R}$	1	r	1
球系	$0 \leqslant r < \infty$	$0 \leqslant \theta < \pi$	$0 \leqslant \phi < 2\pi$	1	r	$r\sin\theta$
抛物线	u	v	z	$\sqrt{u^2+v^2}$	$\sqrt{u^2+v^2}$	uv

orthogonal curvilinear coordinates

|正交曲线坐标系|| 过任一点的各坐标线相互垂直 |正交条件|| $g_{ij}=0$ $(i\neq j)$ | 右手系惯例| $\vec{e_1} \times \vec{e_2} = \vec{e_3}$

定义 **拉梅系数** $h_i \equiv \sqrt{g_{ii}}$,则 $h_i = |\vec{g_i}|$,单位基矢 $\vec{e_i} = \vec{g_i}/h_i$

ightarrow <mark>线元</mark> $\frac{d}{d} \stackrel{?}{l} = \sum h_i \stackrel{?}{e_i} du_i$, 沿基矢的分量 $\frac{dl_i}{dl_i} = h_i du_i$, 模长 $\frac{dl^2}{dl^2} = \sum \sum g_{ij} du_i du_j \stackrel{\text{Ex}}{=} \sum h_i^2 du_i^2$ u_1 面上的 **面元** $dS = h_2 h_3 du_2 du_3$ 体积元 $dV = J du_1 du_2 du_3$,雅可比行列式 $J = h_1 h_2 h_3 = \sqrt{|g|} \neq 0$

|矢函数微分|

设 $\overline{\mathbf{c}}$ 函数 $\vec{r} = \vec{r}(t)$, 极限 连续 导数 偏导数 等的定义均和〈微积分〉类似

写矢 $\frac{d\vec{r}}{dt} = \dot{\vec{r}} = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}$ 是一个矢量 定理 其方向沿 $\vec{r}(t)$ 矢端曲线 的切线〈微几〉

矢量加减,数乘的导数公式均同理,內积,矢积,混合积的莱布尼茨法则亦同理,注意顺序勿变

微分 $\vec{d} \vec{r} = dx \vec{e_x} + dy \vec{e_y} + dz \vec{e_z}$, $|\vec{d} \vec{r}|^2 = (dx)^2 + (dy)^2 + (dz)^2$

弧长 $ds = \pm |d\vec{r}|$ (相对于正方向) **速率** $v = |\vec{v}| = \dot{s}$

极系 $\vec{r} = r\cos\phi\vec{e_x} + r\sin\phi\vec{e_y} = r\vec{e_r}$ 径向 $\vec{e_r} = \frac{\partial\vec{r}}{\partial r} = \cos\phi\vec{e_x} + \sin\phi\vec{e_y}$,

 $\vec{e_r} = \frac{\mathbf{d} \vec{e_r}}{\mathbf{d} \phi} \dot{\phi} = \dot{\phi} \vec{e_\phi}$ $\mathbf{b} = \mathbf{d} \mathbf{e_\phi} = \frac{1}{r} \frac{\partial \vec{r}}{\partial \phi} = -\sin \phi \vec{e_x} + \cos \phi \vec{e_y}$, $\vec{e_\phi} = \frac{\mathbf{d} \vec{e_\phi}}{\mathbf{d} \phi} \dot{\phi} = -\dot{\phi} \vec{e_r}$

参数方程消去 t 即为质点的 $\overline{\mathbf{1}}$,当轨迹已知时选用 $\overline{\mathbf{1}}$ 包含的 $\overline{\mathbf{1}}$ 较方便

arc length tangential 如何 s=s(t), $\vec{r}=\vec{r}(s)$ 如何 $\vec{e_t}=\frac{\text{d}\,\vec{r}}{\text{d}s}$, $\frac{\text{d}\,\vec{e_t}}{\text{d}\theta}=\vec{e_n}$ 法向 (指向曲线凹侧)

 $\frac{\mathrm{d} \vec{e_n}}{\mathrm{d} \theta} = -\vec{e_t} , \ \vec{e_t} = \frac{\mathrm{d} \vec{e_t}}{\mathrm{d} \theta} \frac{\mathrm{d} \theta}{\mathrm{d} s} \dot{s} = \vec{e_n} \frac{v}{o} \qquad \vec{v} = \dot{s} \vec{e_t} , \ \vec{a} = \ddot{s} \vec{e_t} + \frac{v^2}{o} \vec{e_n} , \ \tan \theta = \frac{a_n}{a_t}$

curvature radius $\rho = \frac{\mathrm{d}s}{\mathrm{d}\theta} = \frac{(1+y'^2)^{\frac{3}{2}}}{|y''|}$ 〈 微几 〉 常用 $a_t = \dot{v} = \frac{\mathrm{d}v}{\mathrm{d}s}v$

桂系 $\vec{e_r}$, $\vec{e_\theta}$ 同极系, $\vec{e_z}$ 同直角系 **球系** $\vec{r} = r\vec{e_r}$, $\vec{v} = \dot{r}\vec{e_r} + r\dot{\theta}\vec{e_\theta} + r\dot{\phi}\sin\theta\vec{e_\phi}$ $\overrightarrow{a} = (\ddot{r} - r\dot{\theta}^2 - r\sin^2\theta\dot{\phi}^2)\overrightarrow{e_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta} - r\sin\theta\cos\theta\dot{\phi}^2)\overrightarrow{e_\theta} + (r\ddot{\phi}\sin\theta + 2\dot{r}\dot{\phi}\sin\theta + 2r\dot{\theta}\dot{\phi}\cos\theta)\overrightarrow{e_\phi}$

不定积分 $\vec{r} = \int \vec{v}(t) dt + \vec{r_0}$, 基本性质均成立 $\int (\varphi \vec{A} \pm \vec{k} \cdot \vec{B}) dt = \varphi \int \vec{A} dt \pm \vec{k} \cdot \int \vec{B} dt$, \vec{k} 为常矢量 **定积分** $\int_{t_0}^t \vec{v}(\tau) d\tau = \vec{r}(t) - \vec{r}(t_0)$ **分部积分** $\int \varphi \vec{v} dt = \varphi \vec{r} - \int \dot{\varphi} \vec{r} dt$,内积,矢积公式同理

矢量场

(时变) **标量场** $\varphi(x,y,z,t)$ **矢量场** $\overrightarrow{A}(x,y,z,t) = \sum_{xyz} a_x(x,y,z,t) \overrightarrow{e_x}$ **静态场** 不含时 source sink

通量 矢量流过闭合曲面的分量的面积分 $\Phi \equiv \oiint_S a_{\perp} dS$, 表示有 \boxed{n} 或 \boxed{n} (流入和流出的不一样多) circulation

环量 矢量沿闭合环路的分量的线积分 $\Gamma \equiv \oint_{\Gamma} a_{\parallel} dl$, 表示有 **涡旋** (流体自转)

无散场 $\nabla \cdot \vec{B} = 0 \Leftrightarrow \vec{B} = \nabla \times \vec{A} \Leftrightarrow \iint_S \vec{B} \cdot d\vec{S}$ 与所选面无关 $\Leftrightarrow \oiint = 0$

连续性方程 $\partial_t \rho + \nabla \cdot (\rho \vec{v}) = 0$ 不可压缩流体 ρ 为常数 $\rightarrow \nabla \cdot \vec{v} = 0$ 〈流力〉

无旋场 / 势场 $\nabla \times \vec{E} = 0 \Leftrightarrow \vec{E} = -\nabla \varphi \Leftrightarrow \int_a^b \vec{E} \cdot d\vec{l}$ 与路径无关 $\Leftrightarrow \phi = 0$

一般矢量场总可表示为无旋场和无散场之和 $\overrightarrow{F} = -\nabla \varphi + \nabla \times \overrightarrow{A}$ (分解不唯一, 可相差任意的谐和场) Helmholtz theorem

加边界条件 \rightarrow **亥姆霍茲定理** 若场在无限远处(比 $\frac{1}{r^2}$ 更快地) 趋于零,则场可由其散度和旋度唯一确定 [拉方程无局域极值, 不存在无限远趋于零的非零谐和场 |

矢量场微分

nabla / del operator

医微算符 / 劈形算符 ∇ 或 $\overrightarrow{\nabla}$ (视作矢量,向右作用) $\boxed{\mathbf{M}}$ 「拉恒」 $(\nabla \times \overrightarrow{A}) \times \overrightarrow{A} = (\overrightarrow{A} \cdot \nabla) \overrightarrow{A} - \frac{1}{2} \nabla (A^2)$ $\mathbf{d}\varphi = \frac{\partial \varphi}{\partial x}\mathbf{d}x + \frac{\partial \varphi}{\partial y}\mathbf{d}y + \frac{\partial \varphi}{\partial z}\mathbf{d}z = [(\overrightarrow{e_x}\partial_x + \overrightarrow{e_y}\partial_y + \overrightarrow{e_z}\partial_z)\varphi] \cdot (\mathbf{d}x\,\overrightarrow{e_x} + \mathbf{d}y\,\overrightarrow{e_y} + \mathbf{d}z\,\overrightarrow{e_z}) \equiv \nabla\varphi \cdot \mathbf{d}\overrightarrow{l} \rightarrow \nabla\varphi \perp \overrightarrow{\mathbf{d}}\overrightarrow{l}|_{\mathbf{d}\varphi = 0}$

梯度 $\nabla \varphi$ 方向为该点处 φ 增速最大的方向 (垂直于等值面), 大小等于在这个方向上的斜率 \overline{Q} $\nabla r = \vec{e_r}$ 梯度为零可能是极大点(山顶),极小点(山谷),鞍点(某方向极大,另方向极小),肩点(升或降的平坦处)

 $\nabla \cdot \vec{A} = (\vec{e_x} \partial_x + \vec{e_y} \partial_y + \vec{e_z} \partial_z) \cdot (a_x \vec{e_x} + a_y \vec{e_y} + a_z \vec{e_z}) = \partial_x a_x + \partial_y a_y + \partial_z a_z$ (结果为标量场)

divergence

散度 $\nabla \cdot A$ 无限小闭合曲面围成空间中的通量除以围成空间体积, 描述矢量场中某点处是否有源或汇

$$\nabla \times \vec{A} = \begin{vmatrix} \vec{e_x} & \vec{e_y} & \vec{e_z} \\ \frac{\partial_x}{\partial_x} & \frac{\partial_y}{\partial_y} & \frac{\partial_z}{\partial_z} \\ a_x & a_y & a_z \end{vmatrix}$$
 (结果为矢量场) 例 流体整体以 ω 旋转, $\vec{v} = \omega(-y\vec{e_x} + x\vec{e_y})$, 则 $\nabla \times \vec{v} = 2\omega\vec{e_z}$ 流体绕轴旋转 $\omega \propto \frac{1}{r}$, 则 $\nabla \times \vec{v} = 0$

 $h_2 du_2$

旋度 $\nabla \times \vec{A}$ 无限小闭合曲线围成面积中的环量除以围成范围面积, 描述矢量场中某点处是否有涡旋

例 柱系 $\nabla \cdot \vec{A} = \frac{1}{r} \frac{\partial_r (ra_r) + \frac{1}{r} \partial_\phi a_\phi + \partial_z a_z}{\partial_\phi a_\phi + \partial_z a_z}$ 球系 $\nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial_r (r^2 a_r) + \frac{1}{r \sin \theta} \partial_\theta (\sin \theta a_\theta) + \frac{1}{r \sin \theta} \partial_\phi a_\phi}{\partial_\phi a_\phi}$ 推论 中心场 $\nabla f(r) = \frac{\mathrm{d}f}{\mathrm{d}r} \vec{e_r} \rightarrow \nabla \frac{1}{r} = -\frac{\vec{e_r}}{r^2}, \ \nabla \cdot \vec{A}(r) = \frac{1}{r^2} \partial_r(r^2 A_r) \rightarrow \nabla \cdot \vec{r} = 3, \ \nabla \cdot \vec{e_r} = \frac{2}{r}, \ \nabla \cdot \left(\frac{\vec{e_r}}{r^2}\right) = -\nabla^2 \frac{1}{r} = 4\pi \delta(\vec{r}) \ \lceil \hat{\sigma}$ 点要单独积分来求 $\int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \frac{1}{r^2} r^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi \, \rfloor, \ \nabla \times f(r) \vec{e_r} = 0 \ (中心场必无旋)$

矢量场加減数乘的微分公式简易, 标量场的公式和函数同理 $\nabla(fg) = f \nabla g + g \nabla f$, $\nabla(\frac{f}{g}) = (g \nabla f - f \nabla g)/g^2$ $[\partial_x (a_y b_z - a_z b_y) = (b_z \partial_x a_y - b_y \partial_x a_z) - (a_z \partial_x b_y - a_y \partial_x b_z)] \nabla \cdot (\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{B} \cdot (\nabla \times \overrightarrow{A}) - \overrightarrow{A} \cdot (\nabla \times \overrightarrow{B})$ ② 旋度公式 $\nabla \times (f\vec{A}) = (\nabla f) \times \vec{A} + f(\nabla \times \vec{A}), \ \nabla \times (\vec{A} \times \vec{B}) = \vec{A} (\nabla \cdot \vec{B}) - \vec{B} (\nabla \cdot \vec{A}) + (\vec{B} \cdot \nabla) \vec{A} - (\vec{A} \cdot \nabla) \vec{B}$ $\lceil \overrightarrow{A} \times (\nabla \times \overrightarrow{B}) = \overrightarrow{A} \times (\nabla_B \times \overrightarrow{B}) = \stackrel{\text{tile}}{=} \nabla_B (\overrightarrow{A} \cdot \overrightarrow{B}) - \overrightarrow{B} (\overrightarrow{A} \cdot \nabla_B), \ \ \overrightarrow{m} \ \ \overrightarrow{B} (\overrightarrow{A} \cdot \nabla_B) = (\overrightarrow{A} \cdot \nabla_B) \overrightarrow{B} = (\overrightarrow{A} \cdot \nabla) \overrightarrow{B} \ \rfloor$ ③ 梯度公式 $\nabla(\vec{A} \cdot \vec{B}) = (\nabla_A + \nabla_B)(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) + \vec{B} \times (\nabla \times \vec{A}) + (\vec{A} \cdot \nabla)\vec{B} + (\vec{B} \cdot \nabla)\vec{A}$

注 $(\vec{A} \cdot \nabla)$ 整体视为一个算符, $\vec{F} = (\vec{A} \cdot \nabla)\vec{B}$ 是指 $F_x = \vec{A} \cdot \nabla B_x$, y, z 分量同理 \rightarrow 若 \vec{k} 为常矢量,则 $(\vec{k} \cdot \nabla)\vec{r} = \vec{k} \rightarrow \nabla(\vec{k} \cdot \vec{r}) = \vec{k} \rightarrow \nabla(\vec{k} \cdot \vec{e_r}) = (\vec{k} \cdot \nabla)\vec{e_r} = \frac{1}{r}[\vec{k} - \vec{e_r}(\vec{k} \cdot \vec{e_r})] = \frac{1}{r}\vec{k_\perp}$ $\rightarrow \nabla(\vec{k} \cdot (\frac{1}{r})) = -\nabla(\frac{\vec{k} \cdot \vec{e_r}}{r^2}) = \frac{1}{r^3}[2(\vec{k} \cdot \vec{e_r}) - r\nabla(\vec{k} \cdot \vec{e_r})] = \frac{1}{r^3}[3(\vec{k} \cdot \vec{e_r})\vec{e_r} - \vec{k}] \rightarrow \nabla\nabla(\frac{1}{r}) = \frac{1}{r^3}(3\vec{e_r}\vec{e_r} - \vec{I})$ u(x,y,z) 连续可微,则复合函数求导 $\nabla f(u) = \frac{df}{du}\nabla u, \nabla \cdot \vec{A}(u) = \nabla u \cdot \frac{d\vec{A}}{du}, \nabla \times \vec{A}(u) = \nabla u \times \frac{d\vec{A}}{du}$ $\vec{D}(\vec{k},\vec{r}) = \vec{D}(\vec{k},\vec{r}) = \vec{D}(\vec{k},\vec{r}) = \vec{D}(\vec{k},\vec{r}) = \vec{D}(\vec{k},\vec{r}) = \vec{D}(\vec{k},\vec{r}) = \vec{D}(\vec{k},\vec{r}) = \vec{D}(\vec{k},\vec{r})$ $\nabla \times [\vec{E}\sin(\vec{k}\cdot\vec{r})] = \nabla\sin(\vec{k}\cdot\vec{r}) \times \vec{E} = \vec{k} \times \vec{E}\cos(\vec{k}\cdot\vec{r})$

Laplace operator

① 梯度的散度 $\nabla \cdot (\nabla \varphi) \equiv \nabla^2 \varphi$ (或记作 Δ , 不推荐) **拉普拉斯算符** $\nabla^2 = \nabla \cdot \nabla$ (可视作标量) 对标量场 $\nabla^2 \varphi = (\partial_x^2 + \partial_y^2 + \partial_z^2) \varphi$ 对矢量场 (直角系) $(\nabla^2 \overrightarrow{A})_x = \nabla^2 A_x$, y, z 分量同理 正交曲线系下 $\nabla^2 \varphi = \frac{1}{h_1 h_2 h_3} \left[\partial_1 \left(\frac{h_2 h_3}{h_1} \partial_1 \right) + \partial_2 \left(\frac{h_1 h_3}{h_2} \partial_2 \right) + \partial_3 \left(\frac{h_1 h_2}{h_3} \partial_3 \right) \right]$

例 柱系 $\nabla^2 = \frac{1}{r} \frac{\partial_r (r \partial_r) + \frac{1}{r^2} \partial_\phi^2 + \partial_z^2}{\partial_\phi^2 + \partial_z^2}$ 球系 $\nabla^2 = \frac{1}{r^2} \frac{\partial_r (r^2 \partial_r) + \frac{1}{r^2 \sin \theta}}{\partial_\theta (\sin \theta \partial_\theta) + \frac{1}{r^2 \sin^2 \theta}} \frac{\partial^2_{\theta} (\sin \theta \partial_\theta) + \frac{1}{r^2 \sin^2 \theta}}{\partial_\theta (\sin \theta \partial_\theta)}$

注 算符恒等式 (需作用在连续可微函数上才有意义) $\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}) \equiv \frac{1}{r} \frac{\partial^2}{\partial r^2} r$ 「都等于 $\frac{2}{r} \frac{\partial}{\partial r} r + \frac{\partial^2}{\partial r^2}$ 」

- ② 梯度的旋度 $\nabla \times (\nabla \varphi) = 0$ $\left[\frac{\partial_x (\partial_y \varphi)}{\partial_x (\partial_x \varphi)} \right]$ ④ 旋度的散度 $\nabla \cdot (\nabla \times \overrightarrow{A}) = 0$ $\left[\frac{\partial_x (\partial_y a_z)}{\partial_x (\partial_x a_z)} \right]$
- ③ 散度的梯度 $\nabla(\nabla \cdot \vec{A}) \neq \nabla^2 \vec{A}$, 很少用到
- ⑤ 旋度的旋度 $\nabla \times (\nabla \times \overrightarrow{A}) = \nabla (\nabla \cdot \overrightarrow{A}) \nabla^2 \overrightarrow{A}$ 「拉恒 |

推论 $\nabla \times (\nabla^2 \vec{A}) = -\nabla \times (\nabla \times (\nabla \times \vec{A})) = \nabla^2 (\nabla \times \vec{A})$ (旋度算符和拉普拉斯对易)

矢量场积分

矢场线积分 $\int_{L} \varphi \, d\vec{r}$ 和 $\int_{L} \vec{A} \times d\vec{r}$ 型的积分结果是个矢量, 计算时先对积分路径参数化再算各分量 例 沿 $y=x^2$ 积分, 设 $x=t,\ y=t^2,\$ 则 $\int_{(0,0)}^{(1,1)} (x+y^2) \, d\vec{r} = \int_{0}^{1} (t+t^4)(1,2t) \, dt = (0.7,1)$

例 沿 $y = \sin x$ 积分,设 x = t, $y = \sin t$,则 $\int_{(0,0,0)}^{(\pi,0,0)} (y,x,0) \times d\overrightarrow{r} = \overrightarrow{e_z} \int_0^{\pi} (\sin t \cos t - t) dt = -\frac{\pi^2}{2} \overrightarrow{e_z}$

医场面积分 $\iint_{S} \varphi d\vec{S}$ 和 $\iint_{S} \vec{A} \times d\vec{S}$ 型的积分结果是个矢量

矢量面积 $\vec{\Sigma} = \iint_S \mathbf{d}\vec{S} \ (= \iint_S \vec{e_n} \, \mathbf{d}S, \ \vec{e_n} \ \text{为外法线方向})$ 推论 $\vec{\Sigma} = \frac{1}{2} \oint \vec{r} \times \mathbf{d}\vec{l}$ (若 S 为平面, 则 $|\vec{\Sigma}|$ 等于标量面积)

例 半球面 $\vec{\Sigma} = \iint \cos\theta (r^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi) \, \vec{e_z} = 2\pi r^2 \, \vec{e_z} \int_0^{\pi/2} \sin\theta (\, \mathrm{d}\sin\theta) = \pi r^2 \, \vec{e_z}, \,$ 球面为零 「梯度体积分公式 $\varphi = 1$ 」 → 任何闭合曲面 $\vec{\Sigma} = 0$ → 有相同边界的曲面的 $\vec{\Sigma}$ 相同设 \vec{k} 为常矢量「梯度线积分公式 $\varphi \to \vec{k} \cdot \vec{r}$ 」 → $\phi(\vec{k} \cdot \vec{r}) \, \mathrm{d} \, \vec{l} = \vec{\Sigma} \times \vec{k}$

— 积分定理

《微积分》<mark>微积分基本定理</mark> $\int_a^b f' dx = f(b) - f(a)$ → 梯度定理 $\int_a^b (\nabla \varphi) \cdot d\vec{l} = \varphi(b) - \varphi(a)$ (与路径无关) **高斯定理** 散度体积分 $\iiint_V \nabla \cdot \vec{A} dV = \oiint_S \vec{A} \cdot d\vec{S}$ **斯托克斯定理** 旋度线积分 $\iint_S \nabla \times \vec{A} \cdot d\vec{S} = \oint_L \vec{A} \cdot d\vec{l}$ 「高斯定理中 $\vec{A} \to \varphi \vec{k}$, \vec{k} 为常矢量」梯度体积分 $\iiint_V \nabla \varphi dV = \oiint_S \varphi d\vec{S}$ 「高斯定理 $\vec{A} \to \vec{A} \times \vec{k}$ 」 旋度体积分 $\iiint_V \nabla \times \vec{A} dV = \oiint_S d\vec{S} \times \vec{A}$ 「斯托克斯定理 $\vec{A} \to \varphi \vec{k}$ 」 梯度线积分 $\iint_S d\vec{S} \times (\nabla \varphi) = \oint_L \varphi d\vec{l}$

 $(\varphi,\psi$ 在有界的 V 中有连续二阶偏导, 在 V 的边界 S 上有连续一阶偏导)

[高斯定理 $\vec{A} \to \psi \nabla \varphi$] **第一标量格林定理** $\oint_{S} \psi \nabla \varphi \cdot d\vec{S} = \iiint_{V} (\nabla \psi \cdot \nabla \varphi + \psi \nabla^{2} \varphi) dV$ (亦可写成 $\nabla \cdot (\psi \nabla \varphi)$)

 \rightarrow **第二标量格林定理** $\iint_S (\psi \frac{\partial \varphi}{\partial n} - \varphi \frac{\partial \psi}{\partial n}) dS = \iiint_V (\psi \nabla^2 \varphi - \varphi \nabla^2 \psi) dV \ (\nabla \varphi \cdot \overrightarrow{e_n} dS = \frac{\partial \varphi}{\partial n} dS, \ n \ \text{为外法线向})$

|矢量格林定理| $\bigoplus_{s} (\vec{A} \times \nabla \times \vec{B}) \cdot d\vec{S} = \iiint_{V} [(\nabla \times \vec{A}) \cdot (\nabla \times \vec{B}) - \vec{A} \cdot \nabla \times \nabla \times \vec{B}] dV$

函数和另一个函数导数乘积的积分可以用 分部积分

 $\lceil \nabla \cdot (\varphi \overrightarrow{A}) \! = \! \varphi(\nabla \cdot \overrightarrow{A}) + \overrightarrow{A} \cdot (\nabla \varphi) \rfloor \iiint_{V} \varphi(\nabla \cdot \overrightarrow{A}) \, \mathrm{d}V \! = \! \oiint_{S} \varphi \overrightarrow{A} \cdot \mathrm{d} \, \overrightarrow{S} - \iiint_{V} \overrightarrow{A} \cdot (\nabla \varphi) \, \mathrm{d}V$

常用 $\iint_{S} \varphi(\nabla \times \vec{A}) \cdot d\vec{S} = \iint_{S} [\vec{A} \times (\nabla \varphi)] \cdot \vec{S} + \oint_{L} \varphi \vec{A} \cdot d\vec{l}$

 $\iiint_{V} \overrightarrow{B} \cdot (\nabla \times \overrightarrow{A}) \, dV = \iiint_{V} \overrightarrow{A} \cdot (\nabla \times \overrightarrow{B}) \, dV + \oiint_{S} (\overrightarrow{A} \times \overrightarrow{B}) \cdot d\overrightarrow{S}$

指标表示

suffix notation

summation convention

<u>指标表示</u> $\overrightarrow{A} = \sum_{i} a_{i} \overrightarrow{e_{i}}$ **求和约定** (爱因斯坦) 某项中有指标变量成对出现, 表示对该指标的所有可能值求和, 省略 \sum 号 (物理惯例 i,j 表示求和 3 个, μ,ν 表示求和 4 个) free index

哑指标 作和的指标对, 可替换为其它相同取值范围的字母 自由指标 不作和的指标, 要替换必须全部替换 例 证明 $\operatorname{tr}(AB) = A_{jk}B_{kj} \xrightarrow{\frac{!}{!} !} A_{kj}B_{jk} \xrightarrow{\frac{!}{!} !} B_{jk}A_{kj} = \operatorname{tr}(BA)$

内积的指标表示 $\vec{A} \cdot \vec{B} = a_i b_i = \delta_{ij} a_i b_i$ **注** 哑指标不能重复, 属于不同内积的要改用不同指标符号区分

例 $u_i + a_i b_i c_i = a_i a_i b_k c_k a_i$ 表示 $\vec{U} + (\vec{A} \cdot \vec{B}) \vec{C} = |A|^2 (\vec{B} \cdot \vec{C}) \vec{A}$

全微分 $(\mathbf{d}\varphi)_i = \mathbf{d}x_j \partial_j \varphi_i$ 梯度 $(\nabla \varphi)_i = \partial_i$ 例 $(\nabla r)_i = \partial_i \sqrt{x_j x_j} = \frac{1}{2\sqrt{x_j x_j}} \partial_i (x_j x_j) = \frac{1}{2r} 2x_j \partial_i x_j = \frac{1}{r} x_j \delta_{ij} = \frac{x_i}{r}$

散度 $\nabla \cdot \vec{A} = \partial_i a_i$ 例 $\nabla \cdot \vec{r} = \partial_i x_i = \delta_{ii} = 3$ 拉普拉斯 $\nabla^2 \varphi = \partial_i^2 \varphi$ 散度的梯度 $[\nabla (\nabla \cdot \vec{A})]_i = \partial_i \partial_j a_j$

符号

Kronecker symbol 克罗内克符号 $\delta_{ij} = \left\{ egin{array}{ll} 1 & (i\!=\!j) \\ 0 & (i\!\neq\!j) \end{array} \right. = \left[egin{array}{ll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \quad (行 \ i\!=\!1,2,3 \ \emph{列} \ j\!=\!1,2,3)$ substitution tensor

性质 $\delta_{ij} = \delta_{ji}$, $\delta_{ii} = 3$, $\delta_{ij}a_i = a_j$, $\delta_{ij}a_j = a_i$ (故又称 **替换张量**), $\delta_{ij}\delta_{jk} = \delta_{ik}$

(又称 **交错张量**) **性质** $\varepsilon_{ijk} = \varepsilon_{jki} = \varepsilon_{kij} = -\varepsilon_{jik}$, $\varepsilon_{iik} = 0$, $\varepsilon_{ijk} \varepsilon_{ijk} =$ 所有项平方和=6

矢积指标表示 $(\vec{A} \times \vec{B})_i = \varepsilon_{ijk} a_i b_k$ 三重积 $[\vec{A}, \vec{B}, \vec{C}]_i = a_i (\vec{B} \times \vec{C})_i = \varepsilon_{ijk} a_i b_j c_k$

旋度 $(\nabla \times \vec{A})_i = \varepsilon_{ijk} \partial_j a_k$ 例 $(\nabla \times \vec{r})_i = \varepsilon_{ijk} \partial_j x_k = \varepsilon_{ijk} \delta_{jk} = 0$ 例 证拉格朗日恒等式 $(\vec{A} \times (\vec{B} \times \vec{C}))_i = \varepsilon_{ijk} a_j (\vec{B} \times \vec{C})_k = \varepsilon_{ijk} a_j \varepsilon_{klm} b_l c_m = (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) a_j b_l c_m = a_m b_i c_m - a_j b_j c_i = b_i (\vec{A} \cdot \vec{C})_i - c_i (\vec{A} \cdot \vec{B})_i$

广义列奇符号 $\varepsilon_{\mu\nu\alpha\beta...}$,有相同 =0,偶排列 =1,奇排列 =-1

「文克罗内克符号 $\delta_{lmn}^{ijk} = \varepsilon_{ijk} \varepsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}$ 当 i,j,k 和 l,m,n 都顺序或逆序时 =1 一顺一逆时 =-1,其它非序排列 =0

「缩并」 $\varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km} \equiv \delta_{mn}^{jk} \rightarrow \varepsilon_{ijk}\varepsilon_{ijn} = 2\delta_{kn} \rightarrow \varepsilon_{ijk}\varepsilon_{ijk} = 3!$

并矢

dyadic

所矢量并列(省略张量积 \otimes 符号) $\overrightarrow{AB} = a_i b_j \overrightarrow{e_i} \overrightarrow{e_j}$,其中 $\overrightarrow{e_i} \overrightarrow{e_j}$ 称为 <u>并矢基元</u> (共 9 个) 代表对矢量的线性映射 $\overrightarrow{AB} \cdot \overrightarrow{r} = \overrightarrow{A}(\overrightarrow{B} \cdot \overrightarrow{r})$, $\overrightarrow{r} \cdot \overrightarrow{AB} = (\overrightarrow{r} \cdot \overrightarrow{A})\overrightarrow{B}$ (只作用于最近邻) **例** $\overrightarrow{e_x} \cdot \overrightarrow{AB} \cdot \overrightarrow{e_y} = a_x b_y$ 性质 并矢运算以及数乘,满足结合律,分配律, $\overrightarrow{AB} \neq \overrightarrow{BA}$ 定义 并矢的转置 $(\overrightarrow{AB})^{\mathsf{T}} = \overrightarrow{BA}$

单位并矢 $\overrightarrow{I} = \delta_{ij} \overrightarrow{e_i} \overrightarrow{e_j}$ 性质 $\overrightarrow{I} \cdot \overrightarrow{A} = \overrightarrow{A} \cdot \overrightarrow{I} = \overrightarrow{A}$, $\overrightarrow{I} \cdot \overrightarrow{T} = \overrightarrow{T} \cdot \overrightarrow{I} = \overrightarrow{T}$

<u></u>三并矢 $\overrightarrow{ABC} = a_i b_j c_k \overrightarrow{e_i} \overrightarrow{e_j} \overrightarrow{e_k}$ (共 27 个基元) <u></u> **三阶张量** $\overrightarrow{T} = T_{ijk} \overrightarrow{e_i} \overrightarrow{e_j} \overrightarrow{e_k}$ 变换方式 $T'_{ijk} = R_{il} R_{jm} R_{kn} T_{lmn}$

性质 同阶的张量可以相加减, 结果仍为同阶张量, 有交换律 张量相等 所有分量都相等

<mark>张量内积</mark> $\overrightarrow{T} \cdot \overrightarrow{A} = T_{ij} a_k \overrightarrow{e_i} (\overrightarrow{e_j} \cdot \overrightarrow{e_k}) = T_{ij} a_j \overrightarrow{e_i}$, $\overrightarrow{T} \cdot \overrightarrow{S} = T_{ij} S_{jl} \overrightarrow{e_i} \overrightarrow{e_l}$, 不可交换 double dot

双点乘 $\overrightarrow{T}:\overrightarrow{AB} = (\overrightarrow{T}\cdot\overrightarrow{A})\overrightarrow{B} \rightarrow \overrightarrow{T}:\overrightarrow{S} = T_{ij}S_{ji}$ 例 $\overrightarrow{I}:\overrightarrow{T} = T_{ii} = \operatorname{tr}\overrightarrow{T}, \overrightarrow{I}:\overrightarrow{AB} = \overrightarrow{A}\cdot\overrightarrow{B}, \overrightarrow{I}:\nabla\nabla = \nabla^2$ 矢积的并矢表示 $\vec{A} \times \vec{B} = \underline{\epsilon} : \vec{A} \vec{B} = \vec{A} \vec{B} : \underline{\epsilon}$ **例** $\vec{T} \times \vec{k} = -\vec{T} \cdot \underline{\epsilon} \cdot \vec{k}, \ \vec{k} \times \vec{T} = -\vec{k} \cdot \underline{\epsilon} \cdot \vec{T}, \ \vec{T} \times \vec{S} = -\vec{T} \cdot \underline{\epsilon} \cdot \vec{S}$ 并矢 (即张量积) 运算的阶: 直接相加, 叉乘: 再减 1 阶, 点乘减 2 阶, 双点乘减 4 阶

例 $\vec{A}\vec{B}\cdot\vec{C}\vec{D}=(\vec{B}\cdot\vec{C})\vec{A}\vec{D}$, 串联 $\vec{A}\vec{B}\cdot\vec{C}\vec{D}=(\vec{B}\cdot\vec{C})(\vec{A}\cdot\vec{D})$ 并联 $\vec{A}\vec{B}:\vec{C}\vec{D}=(\vec{A}\cdot\vec{C})(\vec{B}\cdot\vec{D})$

并矢的矢场微分 $\nabla \cdot (\overrightarrow{AB}) = (\nabla \cdot \overrightarrow{A}) \overrightarrow{B} + (\overrightarrow{A} \cdot \nabla) \overrightarrow{B}, \ \nabla \times (\overrightarrow{AB}) = (\nabla \times \overrightarrow{A}) \overrightarrow{B} - (\overrightarrow{A} \cdot \nabla) \overrightarrow{B}$ (若微分算符后没有括号,则表示只对紧邻张量进行)

梯度升一阶, 散度降一阶, 旋度不变 \mathbf{Q} $\nabla \vec{r} = \vec{I}$, $\nabla \cdot (\varphi \vec{I}) = \nabla \varphi$ $\nabla \cdot (\vec{A}r^2) = r^2 \nabla \cdot \vec{A} + 2\vec{r} \cdot \vec{A}, \ \nabla \cdot (\vec{A}\vec{r}) = (\nabla \cdot \vec{A})\vec{r} + \vec{A}, \ \nabla \cdot (\vec{A}\vec{r}\vec{r}) = (\nabla \cdot \vec{A})\vec{r}\vec{r} + \vec{A}\vec{r} + \vec{r}\vec{A}$

场量的泰勒展开 $f(\vec{r}) = f(\vec{r_0}) + \nabla f(\vec{r_0}) \cdot (\vec{r} - \vec{r_0}) + \frac{1}{2!} \nabla \nabla f(\vec{r_0}) \cdot (\vec{r} - \vec{r_0}) (\vec{r} - \vec{r_0}) + \dots$

 $\boxed{ f(\overrightarrow{r}-\overrightarrow{r_0}) = f(\overrightarrow{r}) - \nabla f(\overrightarrow{r}) \cdot \overrightarrow{r_0} + \frac{1}{2!} \nabla \nabla f(\overrightarrow{r}) : \overrightarrow{r_0}\overrightarrow{r_0} + \dots \quad \frac{1}{|\overrightarrow{r}-\overrightarrow{r_0}|} = \frac{1}{r} + \frac{\overrightarrow{r_0} \cdot \overrightarrow{e_r}}{r^2} + \frac{\overrightarrow{r_0}\overrightarrow{r_0} : (3\overrightarrow{e_r}\overrightarrow{e_r} - \overrightarrow{I})}{2r^3} + \dots }$

「 $\vec{e_r} \cdot \vec{e_r} \cdot \vec{I} = \vec{e_r} \cdot \vec{e_r} = 1$, $\vec{r_0} \cdot \vec{r_0} \cdot \vec{I} = r_0^2$ | 第三项分子亦可写成 $(3\vec{r_0}\vec{r_0} - r_0^2\vec{I}) : \vec{e_r} \cdot \vec{e_r}$

[引入矢量乃至高阶张量,是为了使物理学定律写成与坐标系无关的形式] tensor rank indices

张量 (里奇 1890) 多重线性量 (广义的数量), r 阶张量有 r 组<mark>指标</mark>, n 维空间的张量共有 n^r 个分量 Ø 标量为零阶张量, 矢量为一阶张量, 矩阵为二阶张量

不同基下像张量一样变换即为张量 **例** 证 $\partial_j a_i$ 是 2 阶张量 $\frac{\partial a_i}{\partial x_i^2} = R_{ik} \frac{\partial a_k}{\partial x_i^2} = R_{ik} \frac{\partial a_k}{\partial x_i} = R_{ik} R_{jl} \frac{\partial a_k}{\partial x_l}$

商法则 若 $a_i = T_{ij}b_i$ 在任何坐标系对任意矢量 \overrightarrow{B} 成立,则 T_{ij} 是张量

可推广为: 若m 阶张量A 和n 阶张量B 通过(m+n) 个指标的量T 线性联系,则T 是(m+n) 阶张量 isotropic tensor

|各向同性张量| 其分量在所有坐标系都不变 M $\delta_{ij}^2 = R_{ik}R_{jm}\delta_{km} = R_{ik}R_{jk} = \delta_{ij}$, 而 δ 的确在任何坐标系定 义都一样, 故 δ 是 (2 阶对称) 张量, 同理可证 $\varepsilon_{ijk} = \varepsilon_{ijk}$ 是 (3 阶反对称赝) 张量 定理 1 阶各向同性只有 零矢量, 2 阶都是 δ 的倍数, 3 阶都是 ϵ 的倍数, 4 阶各向同性张量可表示成 $T_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \delta_{ik} \delta_{jl} + \nu \delta_{il} \delta_{jk}$ symmetric tensor

对称张量 $T_{ii}=T_{ii}$, 一般为 6 个独立分量 (主轴坐标系下剩 3 个, 即 **主值**) (对 n 维有 $\frac{1}{2}n(n+1)$ 个)

性质 $\varepsilon_{ijk}T_{jk}$ =0 $\left[0=\varepsilon_{mni}\varepsilon_{ijk}T_{jk}=\left(\delta_{mj}\delta_{nk}-\delta_{mk}\delta_{nj}\right)T_{jk}=T_{mn}-T_{nm}\right]$

张量的 对称化 对选中指标的所有排列取算数平均 例 $T_{(ij)k(l)} = \frac{1}{3!} (T_{ijkl} + T_{jlki} + T_{likj} + T_{ljki} + T_{jikl})$ 若已对称则不变 $T_{\mu\nu}=T_{(\mu\nu)}$, 若做对称化的指标是哑标则有 传染性 $T^{(\mu\nu)}F_{\mu\nu}=T^{(\mu\nu)}F_{(\mu\nu)}$

antisymmetric tensor

反对称张量 $T_{ij} = -T_{ji}$, 3 个独立分量 (对于 n 维有 $\frac{1}{2}(n-1)n$ 个) 性质 $\operatorname{tr}(T) = 0$

张量的 反对称化 同理, 但奇排列变减号 例 $T_{[ij]k[l]} = \frac{1}{3!} (T_{ijkl} + T_{jlki} + T_{likj} - T_{ilkj} - T_{ljki} - T_{jikl})$

记 T 的 $\boxed{\mathbf{2}$ **反对称化张量** 为 $[T] = \frac{1}{h} \delta_{i}^{j} T_{i}$ 性质 [T] 运算对加法和数乘有线性性, 对张量积有结合律

定理 任何张量可表示成对称和反对称之和 $T_{ij} = \frac{1}{2}(T_{ij} + T_{ji}) + \frac{1}{2}(T_{ij} - T_{ji}) = T_{(ij)} + T_{[ij]}$

性质 坐标变换不改变对称性 (混合张量除外) [已知 $T_{ij}=T_{ji}$ 则 $T'_{ij}=R_{ik}R_{jm}T_{km}=R_{jm}R_{ik}T_{mk}=T'_{ji}$]

 V^n 中的 p 阶反对称张量, 称为 p 次外形式, 简称 p 形式 $[T] \in V_{[n]}^n$

(若 p+q>n 则 $T\wedge F=0\in V_{[0]}^n$)

定义在 V^n 上的 $V^n_{[p]}$ 共 n+1 个 \to <mark>格拉斯曼代数</mark> (1844) $\{\bigoplus_{p=0}^{n+1} V^n_{[p]},+,\wedge\}$

性质 $\varphi \wedge T = \varphi T$, 线性性, 结合律, **斜交换律** $T \wedge F = (-1)^{pq} F \wedge T$

例 两矢量外积 $\vec{A} \wedge \vec{B} = \frac{2!}{1!1!} a_{[i}b_{j]} = \vec{A}\vec{B} - \vec{B}\vec{A} = -\vec{B} \wedge \vec{A}$

推论 线性相关矢量外积为零, $\overrightarrow{A} \wedge \overrightarrow{A} = 0$ 几何意义: $\overrightarrow{A} \wedge \overrightarrow{B} = 有向面积, 3 矢量外积为有向体积$

对偶

Hodge dual

Hodge dual 霍奇对偶 / 星算符 $*:V_{[p]}^n \to V_{[n-p]}^n$, $T \mapsto *T \equiv \frac{\sqrt{|g|}}{p!} \delta_{i_1...i_n}^{1...n} T^{i_1...i_n} \ (0 \leqslant p \leqslant n)$ 性质 线性性,对偶性 **T = 0 $(-1)^{p(n-p)}T$ **例** E^3 中有 4 种对偶: $*\varphi = \varphi \vec{e_1} \wedge \vec{e_2} \wedge \vec{e_3}$, $*(a^i \vec{e_i}) = \sum a^1 \vec{e_2} \wedge \vec{e_3}$, $*(\sum T^{12} \vec{e_1} \wedge \vec{e_2}) = \sum T^{23} \vec{e_1}$ $(\sum$ 表示指标轮换, 3 项求和) * $(\varphi\vec{e_1}\wedge\vec{e_2}\wedge\vec{e_3})=\varphi$ 推论 $\overrightarrow{A}\times\overrightarrow{B}=*(\overrightarrow{A}\wedge\overrightarrow{B})\to$ 外积和矢积同构 $(V^n + (n-1))$ 个矢量外积, 得 1 个和它们都垂直矢量的矢量, 故称外积为矢积的推广)

外微分

构造方法: 从 n 个基底微分中选 p 个外积, 这 \mathbb{C}_n^p 种外积设上系数 $(f,\varphi,P,Q,R$ 均为坐标的函数) 作和

p 形式	n=1	n=2	n=3
0 形式	f(x)	f(x,y)	f(x,y,z)
1 形式	φdx	P dx + Q dy	$P \frac{\mathrm{d}x + Q \frac{\mathrm{d}y} + R \frac{\mathrm{d}z}{2}}{2}$
2 形式		$\varphi dx \wedge dy$	$P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy$
3 形式			$\varphi dx \wedge dy \wedge dz$

$\mathrm{d}\omega$	n=1	n=2
1 形式	$\int f' dx$	$\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$
2 形式	0	$\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathrm{d}x \wedge \mathrm{d}y$
3 形式		0

3 维 p 形式的物理意义 $\boxed{0}$ 0 形式: 标量场, 1 形式: 做功 $\overrightarrow{F} \cdot \mathbf{d} \overrightarrow{l}$, 2 形式: 通量 $\overrightarrow{B} \cdot \mathbf{d} \overrightarrow{S}$, 3 形式: 质量 $\rho \cdot \mathbf{d} V$

 $dy \wedge dz \quad dz \wedge dx \quad dx \wedge dy$ 例 1 形式外积 $(1 \land 1 \rightarrow 2)$ $(P_1 dx + Q_1 dy + R_1 dz) \land (P_2 dx + Q_2 dy + R_2 dz) =$

 $(1 \land 2 \rightarrow 3) (P_1 \mathbf{d}x + Q_1 \mathbf{d}y + R_1 \mathbf{d}z) \land (P_2 \mathbf{d}y \land \mathbf{d}z + Q_2 \mathbf{d}z \land \mathbf{d}x + R_2 \mathbf{d}x \land \mathbf{d}y) = (P_1 P_2 + Q_1 Q_2 + R_1 R_2) \mathbf{d}x \land \mathbf{d}y \land \mathbf{d}z$ 设 $\omega = \sum f \, \mathrm{d} x_1 \wedge \mathrm{d} x_2 \wedge \dots \, \mathrm{d} x_p$ **外微分** 系数对所有基全微分, 其它同 p 形式, 共 C_n^p 种作和

 $\mathbf{d}\omega = \sum \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \mathbf{d}x^i \right) \wedge \mathbf{d}x_1 \wedge \mathbf{d}x_2 \wedge \dots \mathbf{d}x_p$ 性质 0 形式外微分就是微分, p 形式的外微分为 (p+1) 形式

庞加莱引理 $dd\omega=0$ 「既交换又反交换」

generalized Stokes' theorem

广义斯托克斯定理 $\int_{G} d\omega = \int_{\partial G} \omega$, 高维区域积分等于低一次形式在区域边界上的积分

n	p	$\int_{(p+1)^{4}} (p+1)$ 形式= $\oint_{(p)^{4}} (p)$ 形式	名称
1		$\int_{a}^{b} f' dx = f(b) - f(a)$	微积分基本定理
3	0	$\int_{a}^{b} \left(\frac{\partial \varphi}{\partial x} \mathrm{d}x + \frac{\partial \varphi}{\partial y} \mathrm{d}y + \frac{\partial \varphi}{\partial z} \mathrm{d}z \right) = \varphi(b) - \varphi(a)$	梯度定理
		$\iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P dx + Q dy$	格林公式
3	1	$\iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P dx + Q dy + R dz$	斯托克斯定理
3	2		高斯定理

oblique

斜角坐标系 设有非正交非归一基 g_1, g_2 , 夹角为 θ , $\vec{A} = a^1 g_1 + a^2 g_2$ a^i 称为 \vec{A} 的 逆变分量 (投影 \neq 分量) , g_i 称为 **协变基矢** 引入另一组 **对偶基** $g^2 \perp g_1$, $g^1 \perp g_2$ (详见〈高代〉) , 有 $\vec{A} = a_1 g^1 + a_2 g^2$ a_i 称为 \vec{A} 的 **协变分量** , g^i 称为 逆变基矢 , 取其长度 $|g^i| = \frac{1}{|g_i|\sin\theta}$

从而满足 **对偶条件** $g^i \cdot g_i = \delta^i_i \rightarrow$ **内积** 用逆变乘协变来表示较简便 $\vec{A} \cdot \vec{B} = (a^i g_i)(b_i g^j) = a^i b_i \delta^j_i = a^i b_i$

对于三维斜角系, 取三个斜交的 g_i , 为右手系时混合积为正, 记 $[g_1,g_2,g_3]=\sqrt{g}$

对偶基矢 的构造方式为 $g^1 = \frac{1}{\sqrt{g}}(g_2 \times g_3)$,有 $g^1 \cdot g_1 = 1$,从而满足对偶条件

推论 $[g^1, g^2, g^3] = \frac{1}{\sqrt{g}}$ 故也为右手系, $g_1 = \sqrt{g}(g^2 \times g^3)$

ightarrow 基矢分解 $g^i = g^{ij} g_j$, $g_i = g_{ij} g^j$ 指标升降 $a^i = \overrightarrow{A} \cdot g^i = (a_j g^j) \cdot g^i = g^{ij} a_j$, $a_i = g_{ij} a^j$

从而 内积 可表示为 $\vec{A} \cdot \vec{B} = a^i b_i = a_i b^i = g^{ij} a_i b_j = g_{ij} a^i b^j$

(直角系有 **自对偶性** $a^i=a_i$ $[g_{ij}=\delta_{ij}]$, 故此前未区分逆变和协变, 指标均写在下方)

||斜系转动变换||

 g_i 和直角系的转换关系为 $g_i = \sum_{i=1}^{xyz} \frac{\partial x}{\partial u^i} e_x \left[g_i \cdot (\nabla u^j) = \frac{\partial x^k}{\partial u^i} \frac{\partial u^j}{\partial x^k} = \delta_i^j \right]$ 推论 $g^i = \nabla u^i$

对于曲线系, $\overrightarrow{\mathbf{dr}} = g_i \mathbf{du}^i = g^i \mathbf{du}_i$, $g_i = \frac{\partial \overrightarrow{r}}{\partial u^i}$, 基矢变换方式为 $g_{i'} = \frac{\partial \overrightarrow{r}}{\partial u^{i'}} = \frac{\partial \overrightarrow{r}}{\partial u^{i'}} = \frac{\partial \overrightarrow{r}}{\partial u^{i'}} = R_{i'}^j g_j$

雅可比矩阵 $R_i^j = \frac{\partial u^j}{\partial u^i}$ (写成 (新)'= $R(\Pi)$, 撇号在下为协变, 在上为逆变)

「 $\vec{A}=a^jg_j=a^{i^i}g_{i^i}=a^{i^i}R_{i^i}^jg_j$ 」某一分量的变换方式和基矢相反 $a^{i^i}=R_j^{i^i}a^j$,逆变基矢同理 $g^{i^i}=R_j^{i^i}g^j$

例 分量 u^i 的全微分 $\mathbf{d}u^i$ 是逆变矢量 $\left[\mathbf{d}u^i\right] = \frac{\partial u^i}{\partial u^j} \mathbf{d}u^j$

梯度 $\partial_i \varphi$ 是协变矢量 $\left[\frac{\partial \varphi}{\partial u^i} = \frac{\partial \varphi}{\partial u^j} \frac{\partial u^j}{\partial u^{i'}}\right]$ 亦可用商法则来证 $\left[\mathbf{d}\varphi = \frac{\partial \varphi}{\partial u^i} \mathbf{d}u^i\right]$,而 $\mathbf{d}u^i$ 是任意逆变矢量 $\left[\mathbf{d}\varphi = \frac{\partial \varphi}{\partial u^i} \mathbf{d}u^i\right]$

度规张量的变换方式为 $(g')_{ij} \equiv g_{i'j'} = g_{i'} \cdot g_{j'} = R_{i'}^k, g_k \cdot R_{j'}^l, g_l = R_{i'}^k, R_{j'}^l, g_{kl}$,同理可证 $g_{ij} = R_{i'}^{k'}, R_{j'}^l, g_{k'l'}$

-----混合张量

张量总可用并矢基表示 $T=T^i{}_j{}^ke^ie_je^k$ (并矢不可交换, 故每个指标需明确占一列以区分前后 $T^i{}_j \neq T_i{}^j$)

| 逆变张量| $T^{i'j'} = R_k^{i'} R_l^{j'} T^{kl}$ | 协变张量| $T_{i'j'} = R_k^k R_j^l, T_{kl}$ | 混合张量| $T^{i'j'} = R_k^{i'} R_j^l, T^k_l$ | $T_{i'}^{j'} = R_i^l, R_j^{j'} T_l^k$

囫 克罗内克符号是混合张量 $\delta_j^{i'} = R_k^{i'} R_j^l, \delta_l^k = R_k^{i'} R_j^k, = \frac{\partial u^{i'}}{\partial u^{j'}} = \delta_j^i$

张量的 指标升降 不可变前后顺序 \boxed{M} $T_{ij} = T_i{}^l g_{lj} = g_{ik} T^k{}_j = g_{ik} T^{kl} g_{lj}$

交换指标的前后顺序 (不改变上下) 称为张量的 [转置], 对不同指标, 转置的结果不同

→ **对称张量** 可以不区分前后顺序 (混合指标一般不定义对称性, 克罗内克符号是特例)

缩并 同一张量中一上一下指标相同, 按求和约定应视为内积并消掉 「可以证明结果是降两阶的张量」

例 $T^{ilj}_{kl} = F^{ij}_{k}$, 顺序不同张量不同 $T^{ilj}_{kl} \neq T^{ijl}_{kl}$

注 同为上标或下标不可缩并或做内积, 因为求和结果不一定是张量

Eddington

愛丁顿张量 ε_{ijk} \equiv $[g_i, g_j, g_k] = \pm \sqrt{g}, 0$, $\varepsilon^{ijk} = \pm 1/\sqrt{g}, 0$ (偶/奇排列规则同列奇符号)

 $\varepsilon_i^{jk} = \pm g_{ii}/\sqrt{g}, 0$,另有 $= \pm g_{li}/\sqrt{g}$ (当 i=j 或 j=k,且 ljk 是偶/奇排列时) $\left[\varepsilon_i^{jk} = g_{il}\varepsilon^{ljk}\right]$

不要求内积正定 ightarrow **伪欧氏空间** (详见〈高代〉) <mark>性质</mark> g_{ij} 是不定对称矩阵, 存在基底使 $g_{ij}=\pm\delta_{ij}$ Minkowski Space

|**号差**| 三个维度同号, 一个维度异号的四维伪欧空间称为 |**闵氏空间**| (以下均以闵氏空间为例)

(伪欧必须区分逆变协变) 仿射 (平直) 闵氏空间的 **度规** 记作 $\eta_{\mu\nu} = \eta^{\mu\nu} = \text{diag} \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$ 〈狭相〉

内积 $a^{\mu}b_{\mu}=a_{\mu}b^{\mu}=\eta_{\mu\nu}a^{\mu}b^{\nu}=\eta^{\mu\nu}a_{\mu}b_{\nu}=a^{0}b^{0}-\overrightarrow{a}\cdot\overrightarrow{b}$ (上标指第 0 分量) **例** $\eta^{\rho}_{\mu}=\eta_{\mu\nu}\eta^{\nu\rho}=\delta^{\rho}_{\mu}$

逆变坐标 $x^{\mu} = (ct, x, y, z)$ (列矢量) 协变坐标 $x_{\mu} = (ct, -x, -y, -z)$, $(\frac{d}{d}s)^2 = \eta_{\mu\nu} \frac{d}{d}x^{\mu} \frac{d}{d}x^{\nu}$

単位张量 (四维) $\delta^{\mu}_{\nu}x^{\nu}=x^{\mu}$, 迹 $\delta^{\mu}_{\mu}=4$ 性质 η , δ , ε 均为各向同性张量 Ricci tensor density $\varepsilon^{\mu\nu\rho\sigma}$ (实际上是张量密度 $\tilde{\varepsilon}$, 此处懒得区分) $\varepsilon^{0123}=+1$, $\varepsilon_{0123}=-1$

公式 $\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\mu\nu\tau\omega} = -2(\delta^{\rho}_{\tau}\delta^{\sigma}_{\omega} - \delta^{\rho}_{\omega}\delta^{\sigma}_{\tau})$, $\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\mu\nu\rho\tau} = -6\delta^{\sigma}_{\tau}$, $\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\mu\nu\rho\sigma} = -4!$

若 $F^{\mu\nu}$ 是反对称张量, 则它的 对偶 是赝张量 $*F^{\mu\nu} = \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$ (几何上表示垂直的面) 内积 $F^{\mu\nu} * F_{\mu\nu}$ 是赝标量, 矢量的对偶是三阶反对称赝张量 $*F^{\mu} = \frac{1}{3!} \epsilon^{\mu\nu\rho\sigma} F_{\nu\rho\sigma}$ (几何上表示法向量), $*F^{\mu\nu\rho} = \epsilon^{\mu\nu\rho\sigma} F_{\sigma}$

伪欧空间的等距变换为 推动 / 伪转动

(〈狭相〉中称为 **洛伦兹变换** LT) $(上标 \mu 记行, 下标 \nu 记列)$

$$A^{\mu}_{\nu} = \begin{bmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cosh\xi & -\sinh\xi & 0 & 0 \\ -\sinh\xi & \cosh\xi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

公式 $\Lambda^{\mu}_{\nu}\Lambda^{\nu}_{\rho} = \delta^{\mu}_{\rho} \rightarrow \Lambda^{\mu}_{\nu}\Lambda^{\nu}_{\mu} = 4$ 注 $\Lambda_{\nu}^{\mu} = (\Lambda^{-1})^{\mu}_{\nu}$ 本章不必区分前后

标量 不随坐标系的推动变换 \mathbf{M} 内积, 固有量, 电量, 4 体积元 \mathbf{d}^4x 等

4 矢量 分量变换方式为: 矩阵写法 $\vec{x}' = \vec{\Lambda} \vec{x}$, 指标表示 $x^{\mu'} = \Lambda^{\mu'}_{\nu} x^{\nu}$, 对偶的变换方式相反 $x_{\mu'} = \Lambda^{\nu}_{\nu}, x_{\nu}$ $[V = V^{\nu} e_{\nu} = V^{\mu'} e_{\mu'} = \Lambda^{\mu'}_{\nu} V^{\nu} e_{\mu'} \rightarrow e_{\nu} = \Lambda^{\mu'}_{\nu} e_{\mu'}]$ 基矢和分量的变换方式相反 $e_{\mu'} = \Lambda^{\nu}_{\nu} e_{\nu}, \ e^{\mu'} = \Lambda^{\mu'}_{\nu} e^{\nu}$

账量 分量变换方式为: 矩阵写法 (不能换序) $\eta = \Lambda^{\mathsf{T}} \eta \Lambda$, 指标表示 $(\eta')^{\mu\nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\alpha} \eta^{\rho\sigma}$

[间隔不变 $(\Delta s)^2 = (\Delta x)^\mathsf{T} \eta(\Delta x) = (\Delta x')^\mathsf{T} \eta(\Delta x') = (\Delta x)^\mathsf{T} \Lambda^\mathsf{T} \eta \Lambda(\Delta x)$, 狭相中称为相对性原理 |

伪欧中的微分

例 标量的 4 梯度是 4 矢量 $\partial_{\mu}\phi = (\frac{1}{c}\partial_{t}\phi, \nabla\phi)$, 4 矢量的散度是标量 $\partial_{\mu}x^{\nu} = \delta^{\nu}_{\mu} \rightarrow \partial_{\mu}x^{\mu} = 4$

性质 $\partial^{\mu}x^{\nu} = \eta^{\mu\nu}$, $\partial_{\mu}x_{\nu} = \eta_{\mu\nu}$, $\partial^{\mu} = \eta^{\mu\nu}\partial_{\nu}$, $\partial_{\mu}\partial_{\nu} = \partial_{\nu}\partial_{\mu}$ (是对称张量)

达朗贝尔算符 □²= $\partial^{\mu}\partial_{\mu}$ = $\frac{1}{c^{2}}\partial_{t}^{2}$ - ∇^{2} (或记作 □ , 不推荐) (是标量算符) (东岸度规与此相反)

注 实伪欧空间可等效地表示成复真欧空间

囫 复闵氏空间 取 $x_{\mu}=x^{\mu}=(\mathbf{i} ct,x,y,z)$ 亦可实现非正定内积

(此为泡利度规, 已弃用, 把t 换成it 的 trick 仅限狭相, 不适用于广相)

 $\lceil \cos \vartheta \! = \! \gamma \,, \ \sin \vartheta \! = \! \mathbf{i} \, \gamma \beta \,, \ \tan \vartheta \! = \! \mathbf{i} \, \beta \! = \! \mathbf{i} \, \tan \theta \! = \! \tanh \left(\mathbf{i} \, \theta \right) \rfloor$ Wick rotation

LT 表现为复闵空间的 |**维克转动**| \rightarrow LT 构成 SO(4) 群 \langle 群论 \rangle

