Вариационные приближения

Сергей Николенко НИУ ВШЭ — Санкт-Петербург 30 мая 2020 г.

Random facts:

- 30 мая Всемирный день черепахи, учреждённый в 2000 году по инициативе Американского общества спасения черепах
- 30 мая 1416 г. инквизиция сожгла чешского реформатора Иеронима Пражского, а 30 мая 1431 г. в Руане сожгли Жанну д'Арк
- 30 мая 1816 г. доктор Хосе Гаспар Родригес де Франсия, «Великий правитель» и «Отец парагвайской нации», был провозглашён вечным диктатором
- 30 мая 1896 г. в Нью-Йорке произошло первое в мире ДТП с участием автомобиля, в котором сломал ногу велосипедист Ивлин Томас; в Москве в тот же день произошла давка на Ходынском поле, в которой погибли 1389 человек
- 30 мая 1953 г. в Nature вышла статья Джеймса Уотсона и Френсиса Крика, в которой они предложили двойную спираль как структурную модель ДНК

ЕМ в общем виде

Приближения

- Часто нужно оценивать $p(Z \mid X)$ для латентных переменных Z и данных X.
- Но это слишком сложно! Один вариант сэмплировать из $p(Z \mid X)$.
- Другой вариант лапласовские приближения, но тоже нечасто работают.
- Давайте решать в общем виде.

- Вспомним сначала формальное обоснование алгоритма ЕМ.
- Мы решаем задачу максимизации правдоподобия по данным $\mathbf{X} = \{x_1, \dots, x_N\}.$

$$L(\theta \mid X) = p(X \mid \theta) = \prod p(x_i \mid \theta)$$

или, что то же самое, максимизации $\ell(\theta \mid \mathsf{X}) = \log L(\theta \mid \mathsf{X})$.

• EM может помочь, если этот максимум трудно найти аналитически.

- Давайте предположим, что в данных есть *скрытые* компоненты, такие, что если бы мы их знали, задача была бы проще.
- Замечание: совершенно не обязательно эти компоненты должны иметь какой-то физический смысл. :) Может быть, так просто удобнее.
- В любом случае, получается набор данных $\mathbf{Z} = (\mathbf{X}, \mathcal{Y})$ с совместной плотностью

$$p(z \mid \theta) = p(x, y \mid \theta) = p(y \mid x, \theta)p(x \mid \theta).$$

• Получается полное правдоподобие $L(\theta \mid \mathbf{Z}) = p(\mathbf{X}, \mathcal{Y} \mid \theta)$. Это случайная величина (т.к. \mathcal{Y} неизвестно).

- Заметим, что настоящее правдоподобие $L(\theta) = E_Y[p(X, \mathcal{Y} \mid \theta) \mid X, \theta].$
- Е-шаг алгоритма ЕМ вычисляет условное ожидание (логарифма) полного правдоподобия при условии ${\bf X}$ и текущих оценок параметров θ_n :

$$Q(\theta, \theta_n) = E[\log p(X, Y \mid \theta) \mid X, \theta_n].$$

• Здесь θ_n – текущие оценки, а θ – неизвестные значения (которые мы хотим получить в конечном счёте); т.е. $Q(\theta,\theta_n)$ – это функция от θ .

• Е-шаг алгоритма ЕМ вычисляет условное ожидание (логарифма) полного правдоподобия при условии ${\bf X}$ и текущих оценок параметров ${\boldsymbol \theta}$:

$$Q(\theta, \theta_n) = E \left[\log p(X, \mathcal{Y} \mid \theta) \mid X, \theta_n \right].$$

• Условное ожидание - это

$$E[\log p(X, Y \mid \theta) \mid X, \theta_n] = \int_{Y} \log p(X, Y \mid \theta) p(Y \mid X, \theta_n) dy,$$

где $p(y \mid X, \theta_n)$ – маргинальное распределение скрытых компонентов данных.

- EM лучше всего применять, когда это выражение легко подсчитать, может быть, даже аналитически.
- Вместо $p(y \mid X, \theta_n)$ можно подставить $p(y, X \mid \theta_n) = p(y \mid X, \theta_n) p(X \mid \theta_n)$, от этого ничего не изменится.

- В итоге после Е-шага алгоритма ЕМ мы получаем функцию $Q(\theta, \theta_n)$.
- На М-шаге мы максимизируем

$$\theta_{n+1} = \arg\max_{\theta} Q(\theta, \theta_n).$$

- Затем повторяем процедуру до сходимости.
- В принципе, достаточно просто находить θ_{n+1} , для которого $Q(\theta_{n+1},\theta_n)>Q(\theta_n,\theta_n)$ Generalized EM.
- Осталось понять, что значит $Q(\theta,\theta_n)$ и почему всё это работает.

• Мы хотели перейти от θ_n к θ , для которого $\ell(\theta) > \ell(\theta_n)$.

$$\ell(\theta) - \ell(\theta_n) =$$

$$= \log \left(\int_{y} p(X \mid y, \theta) p(y \mid \theta) dy \right) - \log p(X \mid \theta_n) =$$

$$= \log \left(\int_{y} p(y \mid X, \theta_n) \frac{p(X \mid y, \theta) p(y \mid \theta)}{p(y \mid X, \theta_n)} dy \right) - \log p(X \mid \theta_n) \ge$$

$$\ge \int_{y} p(y \mid X, \theta_n) \log \left(\frac{p(X \mid y, \theta) p(y \mid \theta)}{p(y \mid X, \theta_n)} \right) dy - \log p(X \mid \theta_n) =$$

$$= \int_{y} p(y \mid X, \theta_n) \log \left(\frac{p(X \mid y, \theta) p(y \mid \theta)}{p(X \mid \theta_n) p(y \mid X, \theta_n)} \right) dy.$$

• Получили

$$\begin{split} \ell(\theta) &\geq l(\theta, \theta_n) = \\ &= \ell(\theta_n) + \int_{y} p(y \mid X, \theta_n) \log \left(\frac{p(X \mid y, \theta) p(y \mid \theta)}{p(X \mid \theta_n) p(y \mid \mathcal{X}, \theta_n)} \right) \mathrm{d}y. \end{split}$$

• Мы нашли нижнюю оценку на $\ell(\theta)$ везде, касание происходит в точке θ_n .

Вариационные приближения

Вариационный вывод

- Вариационный вывод: функционалы, производные по функциям... в общем, можно оптимизировать функционалы.
- Для нас это значит, что можно оптимизировать приближение q из какого-то класса к заданному p.
- Пусть есть $X=\{x_1,\ldots,x_N\}$ и $Z=\{z_1,\ldots,z_N\}.$
- Мы знаем p(X,Z) из модели, хотим найти приближение для $p(Z\mid X)$ и p(X).

Вариационный вывод

· Как и в ЕМ:

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \mathrm{KL}(q\|p)$$
, где $\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \mathrm{d}\mathbf{Z}$, $\mathrm{KL}(q\|p) = -\int q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}\mid \mathbf{X})}{q(\mathbf{Z})} \mathrm{d}\mathbf{Z}$.

 \cdot $\mathcal{L}(q)$ — это вариационная нижняя оценка, её можно теперь максимизировать, и KL будет автоматически минимизироваться.

Вариационный вывод

• Пример – сравним с лапласовским:

- Если $q(\mathcal{Z})$ произвольное, то мы просто получим $q(\mathcal{Z}) = p(\mathbf{Z} \mid \mathbf{X})$; но это вряд ли получится.
- Будем ограничивать.

Факторизуемые распределения

 \cdot Главный частный случай — пусть $Z = Z_1 \sqcup \ldots \sqcup Z_M$, и

$$q(\mathbf{Z}) = \prod_{i=1}^{M} q_i(\mathbf{Z}_i).$$

- Но больше никаких предположений! В этом прелесть оптимизируем сразу функции!
- Это соответствует теории среднего поля в физике (mean field theory).

Факторизуемые распределения

• Тогда:

$$\begin{split} \mathcal{L}(q) &= \int \prod_{i} q_{i} \left(\ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right) d\mathbf{Z} \\ &= \int q_{j} \left[\int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i} \right] d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const} \\ &= \int q_{j} \ln \tilde{p}(\mathbf{X}, \mathbf{Z}_{j}) d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}, \end{split}$$

где
$$\ln \tilde{p}(X, Z_j) = E_{i \neq j} [\ln p(X, Z)] + \mathrm{const.}$$

• Как максимизировать теперь $\mathcal{L}(q)$ по q_i ?

Факторизуемые распределения

- Надо заметить, что мы получили там КL-дивергенцию между $q_j(\mathsf{Z}_j)$ и $\tilde{p}(\mathsf{X},\mathsf{Z}_j)$.
- Т.е. оптимальное решение получится при

$$\ln q_i^*(Z_j) = \mathrm{E}\left[\ln p(X,Z)\right] + \mathrm{const.}$$

- Константа здесь просто для нормализации.
- Оказывается, достаточно взять ожидание от логарифма совместного распределения.
- Но явных формул не получается, потому что ожидание считается по остальным q_i^* , $i \neq j$.
- И всё-таки обычно что-то можно сделать; давайте рассмотрим примеры.

 Первый пример — приблизим двумерный гауссиан одномерными:

$$\begin{split} p(\mathbf{z}) &= \mathcal{N}(\mathbf{z} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}), \\ \boldsymbol{\mu} &= \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \boldsymbol{\Lambda} &= \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}. \end{split}$$

- И мы хотим приблизить $q(\mathbf{z}) = q_1(z_1)q_2(z_2)$.
- Повычисляем...

• ...получится, что

$$\label{eq:lnq1} \ln q_1^*(z_1) = -\frac{1}{2} z_1^2 \Lambda_{11} + z_1 \mu_{11} \Lambda_{11} - z_1 \Lambda_{12} (\mathrm{E}[z_2] - \mu_2) + \mathrm{const.}$$

- Чудесным образом получился гауссиан! Сам собой, без предположений.
- Найдём его среднее и дисперсию...

• ...ПОЛУЧИТСЯ

$$q_1^*(z_1) = \mathcal{N}(z_1 \mid m_1, \Lambda_{11}^{-1}),$$
 где $m_1 = \mu_1 - \Lambda_{11}^{-1} \Lambda_{12}(\mathrm{E}[z_2] - \mu_2).$

• Аналогично,

$$q_2^*(z_2) = \mathcal{N}(z_2 \mid m_2, \Lambda_{11}^{-1}),$$
 где $m_2 = \mu_2 - \Lambda_{22}^{-1} \Lambda_{21}(\mathrm{E}[z_1] - \mu_1).$

• Какое решение у этой системы?

- · Да просто $\mathrm{E}[\mathsf{z}_1] = m_1 = \mu_1$, $\mathrm{E}[\mathsf{z}_2] = m_2 = \mu_2$.
- · А если бы мы минимизировали $\mathrm{KL}(p\|q)$, получилось бы

$$\mathrm{KL}(p\|q) = -\int p(\mathsf{Z}) \left[\sum_{i} \ln q_{i}(\mathsf{Z}_{i}) \right] \mathrm{d}\mathsf{Z} + \mathrm{const},$$

и можно оптимизировать по отдельности:

$$q_j^*(Z_j) = \int p(Z) \prod_{i \neq j} dZ_i = p(Z_j).$$

- Т.е. просто маргинализация.
- Почему бы так и не сделать? В чём разница?

Разные KL-дивергенции

• Разные дисперсии ответа:

Разные KL-дивергенции

• Минимизация $\mathrm{KL}(p\|q)$ накрывает всю p, а $\mathrm{KL}(q\|p)$ строит всю q в регионе больших p:

Разные KL-дивергенции

• Например, для двумерного гауссиана:

• В машинном обучении гораздо интереснее, конечно, пик найти.

Вариационное приближение для гауссиана

• И ещё пример: давайте найдём параметры одномерного гауссиана по точкам $\mathbf{X} = \{x_1, \dots, x_N\}$. Правдоподобие:

$$p(\mathbf{X} \mid \mu, \tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} e^{-\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2}.$$

• Вводим сопряжённые априорные распределения:

$$p(\mu \mid \tau) = \mathcal{N}(\mu \mid \mu_0, (\lambda_0 \tau)^{-1}),$$

$$p(\tau) = \text{Gamma}(\tau \mid a_0, b_0).$$

• Мы это только что подсчитали точно, но давайте приблизим теперь апостериорное распределение как

$$q(\mu,\tau)=q_{\mu}(\mu)q_{\tau}(\tau).$$

- На самом деле так не раскладывается!
- \cdot Это то, что мы делали для $q(\mathsf{Z}) = \prod_{i=1}^M q_i(\mathsf{Z}_i)$. Посчитаем...

• ... $q_{\mu}(\mu)$ – гауссиан с параметрами

$$\mu_{N} = \frac{\lambda_{0}\mu_{0} + N\bar{x}}{\lambda_{0} + N}, \quad \lambda_{N} = (\lambda_{0} + N)\mathrm{E}[\tau].$$

· А $q_{ au}(au)$ – гамма-распределение с параметрами

$$a_N = a_0 + \frac{N+1}{2}, \quad b_N = b_0 + \frac{1}{2} \mathrm{E}_{\mu} \left[\sum_n (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right].$$

- Всё получилось как надо, но без предположений о форме $q_{ au}$ и q_{μ} .

• Вот такой вывод в пространстве (μ, τ) :

• А для $\mu_0=a_0=b_0=\lambda_0=0$ (non-informative priors) можно и точно посчитать...

• Получатся моменты для μ

$$E[\mu] = \bar{x}, \quad E[\mu^2] = \bar{x}^2 + \frac{1}{NE[\tau]}.$$

• Это можно подставить и найти $\mathrm{E}[au]$:

$$\frac{1}{E[\tau]} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2.$$

Спасибо!

Спасибо за внимание!