BIOS 667: Longitudinal Data Analysis

Vectors and Matrices

Matrix notation is used in this class because it provides compact expressions that are easy to read and understand. The approach here is a practical one with very minimal theory involved.

We will only deal with vectors and matrices of real-values. The term *scalar* means one number such as 2.7.

All vectors will be column vectors. A set of real numbers such as a_1, \ldots, a_n can be collected into a vector denoted $a = (a_1, \ldots, a_n)^{\top}$. This vector has length n. The superscript $^{\top}$ denotes the transpose. The notation (a_1, \ldots, a_n) represents a row vector, while $(a_1, \ldots, a_n)^{\top}$ is a column vector.

A special vector is a vector of 1's, denoted 1_n or $1_{n\times 1}$ or just 1 provided there is no confusion with the scalar 1.

Another special vector is the zero vector, a vector of zeros, $0_{n\times 1}$.

Vectors of the same length can be added and subtracted elementwise, a = b + c, d = b - c mean that $a_i = b_i + c_i$, $d_i = b_i - c_i$, and a, b, c and d have the same length.

The inner product is an operation on two vectors of the same length n, defined as $a^{\top}b = b^{\top}a = \sum_{i=1}^{n} a_i b_i$. The result is a scalar (one number).

A matrix is a rectangular array of numbers. In matrix A, the entry in the ith row and jth column is a_{ij} .

A matrix A with 10 rows and 3 columns is a 10×3 matrix. The pair of numbers (10,3) is called the *dimension* or *dimensions* of the matrix. The transpose of A is A^{\top} which is a 3×10 matrix with a_{ji} in the ith row and jth column; i goes from 1 to 3 while j goes from 1 to 10.

If the number of rows equals the number of columns the matrix is called a *square* matrix.

If $A = A^{\top}$, then A is said to be *symmetric*. Covariance matrices are symmetric.

Matrices of the same dimension can be added and subtracted elementwise, A = B + C, D = B - C mean that $a_{ij} = b_{ij} + c_{ij}$, $d_{ij} = b_{ij} - c_{ij}$, and A, B, C and D must have the same dimension.

The product of matrices A and B is denoted AB and is defined only if the number of columns in A is equal to the number of rows in B. If A is $m \times n$ and B is $n \times p$, then the product C = AB is an $m \times p$ matrix (m rows and p columns), and element c_{ij} in C is the inner product of the ith row of A and the jth column of B.

Order of matrix multiplication does not matter, ABC = A(BC) = (AB)C. Matrix multiplication is not commutative, generally $AB \neq BA$.

Note that if $a_{m\times 1}$ and $b_{n\times 1}$ are vectors then ab^{\top} is an $m\times n$ matrix.

A special square matrix is the identity matrix, usually denoted $I_{n\times n}$, I_n or just I if there is no

confusion about its dimension.

Another special matrix is a matrix of 1's, usually denoted $J_{m \times n}$ and it can be represented by $1_m 1_n^{\top}$. Since J need not be square the notation J_n should be avoided.

If there is no linear dependence among the columns (or rows) of an $n \times n$ matrix A, we say that A is nonsingular.

If A and B are $n \times n$ matrices and AB = BA = I, we say that B is the inverse of A and express that by $B = A^{-1}$. The inverse exists only if A is nonsingular. The inverse is unique (when it exists).

Exercises:

Let
$$a = (1, 2, 3, 4, 5, 6)^{\mathsf{T}}$$
, $b = (2, -1, 4, -3, 6, -5)^{\mathsf{T}}$.
Compute $a^{\mathsf{T}}a$, $b^{\mathsf{T}}b$, $a^{\mathsf{T}}b$, $a^{\mathsf{T}}b$, $a^{\mathsf{T}}d$,

What is the inverse of A^{-1} ?

Random vectors and matrices are vectors and matrices whose elements are random variables. For example, $Y = (Y_1, Y_2, Y_3, Y_4)^{\top}$ is a random vector. Its mean is $E[Y] = (\mu_1, \mu_2, \mu_3, \mu_4)^{\top}$. With multivariate observations Y_1, \ldots, Y_n , each Y_i is itself a vector. In the TLC study each Y_i is a 4×1 vector. The sample mean vector, as a random vector, is \bar{Y} , and its realized (observed) value is \bar{y} The sample covariance matrix S is a 4×4 matrix, and its realized value is s. Note that in the univariate case the common notation is different, S^2 and s^2 .

If the random vector $Y_{n\times 1}$ has mean vector $\mu_{n\times 1} = \mathrm{E}[Y]$ and covariance matrix $\Sigma_{n\times n} = \mathrm{cov}(Y)$, and $A_{m\times n}$ is a matrix, then $\mathrm{E}[AY] = A\mu$ and $\mathrm{cov}(AY) = A\Sigma A^{\top}$ It follows that if a is an $n\times 1$ vector then the linear combination $a^{\top}Y$ is a scalar random variable with mean $\mathrm{E}[a^{\top}Y] = a^{\top}\mu$ and variance $\mathrm{var}(a^{\top}Y) = a^{\top}\Sigma a$.

Expressions of the type $a^{\top}Ba$ where B is a matrix are called *quadratic forms*. Examples include sums of squares in ANOVA and regression and many test statistics.

A square matrix $A_{n\times n}$ is said to be *positive definite* if $x^{\top}Ax > 0$ for all non-zero vectors x (of length n). If A is the covariance matrix of a random vector Y, positive definiteness of A guarantees that all non-zero linear combinations $a^{\top}Y$ have strictly positive variance, i.e. $var(a^{\top}Y)$ can't be negative and can't be zero unless a = 0.

A square matrix $A_{n\times n}$ is said to be *positive semidefinite* if $x^{\top}Ax \geq 0$ for all non-zero vectors x.

If Σ is a positive definite $n \times n$ covariance matrix, there exists a unique lower-triangular matrix L with positive diagonal elements such that $\Sigma = LL^{\top}$. Matrix L is known as the Choleski root of Σ . The Cholesky root of A can be computed by "chol(A)" in both SAS/IML and R.