Lec 8: Selection

Eric Hsienchen Chu*

Spring, 2024

(*) Suggested readings: Hansen (2022), Ch27.

1 Sample Selection Model

Motivation. Suppose Y_i is wage (log), X_i is characteristics, and u_i is unobserved skills. Consider $Y_i = m(X_i; \beta) + u_i$, where $\mathbb{E}[u_i] = 0$, $X_i \perp \!\!\!\perp u_i$ (so $\mathbb{E}[u_i|X_i] = 0$) and m is known up to β .

Problem. We only observe Y_i 's that are *employed!* Let employed be $D_i = 1$, then

$$D_i = \mathbb{1}\{X_i'\gamma + v_i \ge 0\},\tag{1.1}$$

where v_i is utility from work. We observe $Y_i \iff D_i = 1 \iff X_i' \gamma + v_i \ge 0$. Assume $X_i \perp \!\!\! \perp v_i \implies X_i \perp \!\!\! \perp (u_i, v_i)$. What we really "observe" is

$$\mathbb{E}[Y_i|X_i,\underbrace{X_i'\gamma + v_i \ge 0}_{\text{the "selection"}}] = \mathbb{E}[m(X_i;\beta) + u_i|X_i,X_i'\gamma + v_i \ge 0]$$
(1.2)

$$= m(X_i; \beta) + \mathbb{E}[u_i | X_i, X_i' \gamma + v_i \ge 0]$$
(1.3)

$$= m(X_i; \beta) + \underbrace{\mathbb{E}[u_i | X_i' \gamma + v_i \ge 0]}_{\text{Selection bias } (\bigstar)} \leftarrow \text{since } X_i \perp v_i \qquad (1.4)$$

Instead of our CEF of interest:

$$\mathbb{E}[Y_i|X_i] = m(X_i;\beta) \tag{1.5}$$

Remark. The selection bias = 0 if $u_i \perp \!\!\! \perp (X_i, v_i)$. But $u_i \perp \!\!\! \perp v_i$ is likely to be violated! Why? Skills (u_i) and utility from work (v_i) can be correlated positively.

^{*}Department of Economics, University of Wisconsin-Madison. hchu38@wisc.edu. This is lecture notes from the second half of ECON710: Economic Statistics and Econometrics II. Instructor: Prof. Harold Chiang. Materials and sources: Harold's handwritten notes.

Question. Can we identify the Selection bias $\mathbb{E}[u_i|X_i'\gamma + v_i \geq 0]$?

Answer. We need more assumptions.

Theorem 1.1. Under the above setup, if in addition, we assume joint normality of (u_i, v_i) :

$$\begin{pmatrix} u_i \\ v_i \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_u^2 & \sigma_{uv} \\ \sigma_{uv} & \sigma_v^2 \end{pmatrix} \right), \tag{1.6}$$

where σ_v^2 is normalized to 1. Then,

$$\mathbb{E}\left[u_i|X_i'\gamma + v_i \ge 0\right] = \sigma_{uv}\frac{\phi(X_i'\gamma)}{\Phi(X_i'\gamma)},\tag{1.7}$$

where $\phi(\cdot)$ is the PDF and $\Phi(\cdot)$ is the CDF of $\mathcal{N}(0,1)$.

Remark. We denote $\lambda(X_i'\gamma) \equiv \frac{\phi(X_i'\gamma)}{\Phi(X_i'\gamma)}$, the "inverse Mills Ratio." Note that $\phi'(t) = -t\phi(t)$.

Proof. By Property of bivariate Normal distribution, we have

$$u_i = \frac{\sigma_{uv}}{\sigma_v^2} \cdot v_i + \varepsilon_i = \sigma_{uv}v_i + \varepsilon_i, \text{ for some } \varepsilon_i \perp \!\!\!\perp v_i(\varepsilon_i \perp \!\!\!\perp (X_i, v_i))$$
(1.8)

Then,

$$\mathbb{E}\left[u_i|X_i'\gamma + v_i \ge 0\right] = \mathbb{E}\left[\sigma_{uv}v_i + \varepsilon_i|X_i'\gamma + v_i \ge 0\right]$$
(1.9)

$$= \mathbb{E}\left[\sigma_{uv}v_i|X_i'\gamma + v_i \ge 0\right] + \mathbb{E}\left[\varepsilon_i|X_i'\gamma + v_i \ge 0\right]$$
(1.10)

$$= \sigma_{uv} \mathbb{E} \left[v_i | X_i' \gamma + v_i \ge 0 \right] + 0 \tag{1.11}$$

$$= \sigma_{uv} \mathbb{E} \left[v_i | v_i \ge -X_i' \gamma \right] \tag{1.12}$$

$$= \sigma_{uv} \left[\frac{1}{1 - \Phi(-X_i'\gamma)} \int_{-X_i'\gamma}^{\infty} t\phi(t)dt \right]$$
 (1.13)

$$= \sigma_{uv} \left[\frac{1}{\Phi(X_i'\gamma)} \int_{-X_i'\gamma}^{\infty} \left[\frac{-d(\phi(t))}{dt} \right] dt \right] \leftarrow \text{by symmetry of } \Phi (1.14)$$

$$= \sigma_{uv} \left| \frac{1}{\Phi(X_i'\gamma)} \int_{-\infty}^{X_i'\gamma} \left[\frac{d(\phi(t))}{dt} \right] dt \right|$$
 (1.15)

$$= \sigma_{uv} \frac{1}{\Phi(X_i'\gamma)} \phi(t) \Big|_{-\infty}^{X_i'\gamma} = \sigma_{uv} \frac{\phi(X_i'\gamma)}{\Phi(X_i'\gamma)}$$
(1.16)

2 Heckit Estimator with 2-step Estimation

Summary. From Equation (1.7), we obtain a nice expression for Selection bias:

$$\mathbb{E}\left[u_i|X_i'\gamma + v_i \ge 0\right] = \sigma_{uv} \frac{\phi(X_i'\gamma)}{\Phi(X_i'\gamma)}.$$
 (2.1)

Let's denote $\delta \equiv \sigma_{uv}$ and define parameters $(\beta', \gamma', \delta')'$. Construct $D_i = \mathbb{1}\{X_i'\gamma + v_i \geq 0\}$ \Longrightarrow CCP with joint normality: $\mathbb{P}(D_i = 1|X_i) = \Phi(X_i'\gamma)$, where $\Phi(\cdot)$ is the CDF of Probit. Since we do not know " γ ", we use the following **2-step estimation**:

- ① Estimate $\hat{\gamma}$ by Probit (MLE): $D_i = \mathbb{1}\{X_i'\gamma + v_i \geq 0\}$, get $\hat{\gamma}$ \Longrightarrow construct $\hat{\lambda}_i(X_i'\hat{\gamma})$
- ② Regress Y_i on $(X_i, \hat{\lambda}_i(X_i'\hat{\gamma})) \implies$ recover estimates $(\hat{\beta}', \hat{\delta}')'$:

$$\mathbb{E}[Y_i|X_i'\gamma + v_i \ge 0] = m(X_i;\beta) + \mathbb{E}[u_i|X_i'\gamma + v_i \ge 0]$$
(2.2)

$$= m(X_i; \beta) + \delta \hat{\lambda}(X_i' \hat{\gamma})$$
 (2.3)

3 General 2-step Estimation

Motivation. The Sample Selection Model is a special case of 2-step Estimation with a *finite* dimensional first-stage nuisance parameter.

Definition 3.1 (2-step Estimation). Suppose we have two unknown parameters (θ_0, γ_0) with the following system of moment equations m & g:

$$\begin{cases}
\mathbb{E}\left[m(W_i; \gamma_0)\right] = 0, \text{ where } \gamma_0 \text{ is 'nuisance' parameter} \\
\mathbb{E}\left[g(W_i; \theta_0, \gamma_0)\right] = 0, \text{ where } \theta_0 \text{ is 'parameter of interest'}
\end{cases}$$
(3.1)

- \circledast Note that g has same dim as θ , and m has same dim as γ . We can estimate $\hat{\theta}$ by 2-step Estimation:
 - ① Estimate $\hat{\gamma}$ by solving sample analog $\frac{1}{n} \sum_{i=1}^{n} m(W_i; \hat{\gamma}) = 0$
 - ② Use this $\hat{\gamma}$ to estimate $\hat{\theta}$ by solving sample analog $\frac{1}{n} \sum_{i=1}^{n} g(W_i; \hat{\theta}, \hat{\gamma}) = 0$

Example 3.1 (2SLS). If # of endogeneous variables matches # of exogeneous variables, then 2SLS is well-behaved.

Example 3.2 (Sample Selection Model). We can apply the 2-step Estimation for Sample selection model:

① Get $\hat{\gamma}$: by Probit of **D** on **X**, we have:

$$m(Z;\gamma) = \left[\mathbf{D} \frac{\phi(\mathbf{X}'\gamma)}{\Phi(\mathbf{X}'\gamma)} - (1 - \mathbf{D}) \frac{\phi(\mathbf{X}'\gamma)}{1 - \Phi(\mathbf{X}'\gamma)} \right] \mathbf{X}$$
(3.2)

 \implies construct $\lambda(X'\hat{\gamma}) = \frac{\phi(X'\hat{\gamma})}{\Phi(X'\hat{\gamma})}$

② OLS of Y on $(X, \lambda(X'\hat{\gamma}))$ using only D = 1, we get:

$$g(Z; \theta, \gamma) = \mathbf{D} \begin{bmatrix} \mathbf{X} \\ \boldsymbol{\lambda}(\mathbf{X}'\gamma) \end{bmatrix} (\mathbf{Y} - \mathbf{X}'\beta - \delta \boldsymbol{\lambda}(\mathbf{X}'\gamma)), \text{ where } \theta = \begin{pmatrix} \beta \\ \delta \end{pmatrix}$$
(3.3)

Question. How to do inference?

Answer. We can stack g & m to form $\tilde{g}(Z; \theta, \gamma) = \begin{bmatrix} m(Z; \gamma) \\ g(Z; \theta, \gamma) \end{bmatrix}$ Then, we view it as a GMM and solve:

$$\frac{1}{n}\sum_{i=1}^{n}\tilde{g}(Z_i;\hat{\theta},\hat{\gamma}) = 0 \tag{3.4}$$

References

Hansen, B. E. (2022). Econometrics. Princeton University Press. https://users.ssc.wisc.edu/~bhansen/econometrics/