POLYNOMIAL BICOMODULES ARE PARAMETRIC RIGHT ADJOINTS

Recall that the substitution product of polynomials P and Q, denoted $P \triangleleft Q$, is characterized as follows.

- A position a in $P \triangleleft Q$ consists of a position a_{base} in P and positions a_f in Q for each direction f from a_{base} .
- A direction from position a in $P \triangleleft Q$ consists of a direction f from a_{base} and a direction g from a_f .

We denote such a direction from such a position in a substitution product by $f \triangleleft g$. Accordingly, id $_{\triangleleft}$ will denote the unique direction from the unique position in the unit for substitution id $_{\triangleleft}$ (a.k.a. the polynomial y).¹

Let α and β be maps between polynomials. As we will frequently encounter maps composed in parallel via \triangleleft , we will repeatedly use the following identity.

$$(\alpha \triangleleft \beta)_x^{\sharp}(f \triangleleft g) = \underbrace{\alpha_{(x_{\text{base}})}^{\sharp}(f)}_{\bigstar} \triangleleft \beta_{(x_{\bigstar})}^{\sharp}(g).$$

Or in brief, " $(\alpha \triangleleft \beta)^{\sharp}(f \blacktriangleleft g) = \alpha^{\sharp}(f) \blacktriangleleft \beta^{\sharp}(g)$ wherever this makes sense."

Proposition 1. Polynomial comonoids are categories.

Proof. Let C be a polynomial comonoid. Denote counit by ε and comultiplication by δ .

Observe first that the right unit law forces $(\delta_1(a))_{\text{base}} = a$ for all $a \in C(1)$.

¹Given directions f, g, and h respectively belonging to polynomials P, Q, and R, the directions of the form $(f \triangleleft g) \triangleleft h$ belonging to $(P \triangleleft Q) \triangleleft R$ and the directions of the form $f \triangleleft (g \triangleleft h)$ belonging to $P \triangleleft (Q \triangleleft R)$ are identified under the relevant monoidal coherence isomorphism. Hence brackets can be omitted.

Similarly, for any direction f belonging to a polynomial P, we have that $\mathrm{id}_{\blacktriangleleft} \blacktriangleleft f$ and $f \blacktriangleleft \mathrm{id}_{\blacktriangleleft}$ (respectively belonging to $\mathrm{id}_{\dashv} \triangleleft P$ and $P \triangleleft \mathrm{id}_{\dashv}$) are both canonically identified with f.

Therefore the expression $(\delta_1(a))_f$ for $f \in C[a]$ has a well-defined meaning. We gather the data of a category C.

- The set of objects Ob(C) is C(1), i.e., the set of positions in C.
- The set of arrows $Arr(\mathcal{C})$ is $\sum_{a \in C(1)} C[a]$, i.e., the set of all directions in C.
- The source map s sends each $f \in C[a]$ to a. (Hence the polynomial C is described by the bundle $Arr(\mathcal{C}) \xrightarrow{s} Ob(\mathcal{C})$.)
- The target map t sends each $f \in C[a]$ to $(\delta_1(a))_f$.
- The identity map e sends each $a \in C(1)$ to $\varepsilon_a^{\sharp}(\mathrm{id}_{\bullet})$.
- The composition map m sends each pair of compatible arrows $f \in C[a], g \in C[t(f)]$ to $\delta_a^{\sharp}(f \triangleleft g)$.

Now we verify these data satisfy the laws of a category.

- The law s(e(a)) = a is true by construction; e(a) is a direction from the position a.
- The law t(e(a)) = a is forced to hold by the comonoid left unit law, which identifies with .
- The law s(m(f,g)) = s(f) is true by construction; m(f,g) is a direction from the position s(f).
- The law t(m(f,g)) = t(g).
- The left unit law m(e(s(f)), f) = f is directly expressed by the comonoid left unit law.
- The right unit law m(f, e(t(f))) = f is directly expressed by the comonoid right unit law.
- The associativity law m(m(f,g)h) = m(f,m(g,h)) is directly expressed by the comonoid associativity law.

Conversely, let \mathcal{C} be a category. We immediately obtain the bundle $\operatorname{Arr}(\mathcal{C}) \xrightarrow{s} \operatorname{Ob}(\mathcal{C})$. Let C denote the polynomial described by this bundle (the "outfacing polynomial" of \mathcal{C}); we exhibit a comonoid struture on C.

Lastly, these translation processes between polynomial comonoids and categories are inverse by construction. \Box

Proposition 2. A polynomial left comodule amounts to a copresheaf and a presheaf on that copresheaf's category of elements.

Proof. Let C be a polynomial comonoid and let M be a left comodule on C. Denote left comodule comultiplication by λ .

Proposition 3. A polynomial right comodule amounts to a set of copresheaves.

Proof. Let D be a polynomial comonoid and let M be a right comodule on D. Denote right comodule comultiplication by ρ .

Proposition 4. Polynomial bicomodules are prafunctors.

 \square

Proposition 5. Maps between bicomodules are natural transformations between prafunctors.

4 POLYNOMIAL BICOMODULES ARE PARAMETRIC RIGHT ADJOINTS

Proposition 6. Composition of bicomodules is composition of prafunctors.

Proof. Recall bicomodules from D to 0 are copresheaves on D (and maps between such bicomodules are copresheaf maps). Hence each bicomodule M from D to D induces a functor F_M from D-copresheaves to C-copresheaves by precomposition. Accordingly, we have $F_{M \triangleleft_D N} \cong F_M \circ F_N$ (for bicomodules M from C to D and N from D to E).

We show that the prafunctor corresponding to the bimodule M is F_M .