ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

52

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5 :
C12N 15/12, C07K 13/00
C12P 21/08, A61K 37/02, 39/395
G01N 33/577, C12Q 1/68

(11) Numéro de publication internationale: WO 93/21314
(43) Date de publication internationale: 28 octobre 1993 (28.10.93)

(21) Numéro de la demande internationale: PCT/FR93/00382 (74) Mandataire: BECKER, Philippe; Rhône-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR).

(30) Données relatives à la priorité:
92/04827
21 avril 1992 (21.04.92)
FR

(81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond-Aron, F-92160 Antony (FR).

(72) Inventeurs; et
(75) Inventeurs/Déposants (US seulement): SCHWEIGHOF-FER, Fabien [FR/FR]; 53, boulevard de la Libération, F-94300 Vincennes (FR). TOCQUE, Bruno [FR/FR]; 259, boulevard Péreire, F-75017 Paris (FR).

Publiée

Avec rapport de recherche internationale.

Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

(54) Title: PEPTIDES HAVING A GDP EXCHANGE FACTOR ACTIVITY, NUCLEIC ACID SEQUENCES CODING FOR SAID PEPTIDES, PREPARATION AND UTILIZATION

(54) Titre: PEPTIDES AYANT UNE ACTIVITE DE FACTEUR D'ECHANGE DU GDP, SEQUENCES D'ACIDES NU-CLEIQUES CODANT POUR CES PEPTIDES, PREPARATION ET UTILISATION

(57) Abstract

The present invention relates to peptides capable of modulating the levels of GDP exchange on p21-GDP complexes, the nucleic acid sequences coding for said peptides, preparation thereof and pharmaceutical compositions containing them.

(57) Abrégé

La présente invention concerne des peptides capables de moduler les niveaux d'échange du GDP sur des complexes p21-GDP, les séquences d'acides nucléiques codant pour ces peptides, leur préparation et des compositions pharmaceutiques les contenant.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanie
AU	Australie .	GA:	Gahon	MW	Malawi
BB	Barbade	GB	Royaume-Uni	· NL·	Pays-Bas
BE	Belgique	GN	Guinée	NO	Norvège
BF	Burkina Faso	GR	Grèce	NZ.	Nouvelle-Zélande
8G	Bulgarie	HU	Hongrie .	PL	Pologne
BJ	Bênin	ΙE	Irlande	PT	Portugal
BR	Br¢sil	ΙT	Italie	RO	Roumanic
CA	Canada	JP	Japon	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique	SD	Soudan
CC.	Congo		de Corée	SE	Suède
CH	Suisse	- KR	République de Corée	SK	République slovaque
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Sénégal
CM	Cameroun	Li	Liechtenstein	SU	Union soviétique
CS	Tchécoslovaquie	LK	Sri Lanka	TD	Tchad
CZ	République telièque	LU	Luxembourg	TG .	Togo
DE	Allemagne	MC	Monaco .	UA	Ukraine
DK	Dangmark	MG	Madagascar	US	Etats-Unis d'Amérique
ES	Espagne	ML.	Mali	VN	Vict Nam
FI	länlande	MN	Moneolic		

20

25

30

1

PEPTIDES AYANT UNE ACTIVITE DE FACTEUR D'ECHANGE DU GDP. SEQUENCES D'ACIDES NUCLEIOUES CODANT POUR CES PEPTIDES. PREPARATION ET UTILISATION

La présente invention concerne de nouvelles séquences peptidiques et nucléotidiques, et leur utilisation pharmaceutique. Plus particulièrement, l'invention concerne des peptides capables de moduler les niveaux d'échange du GDP sur des complexes p21-GDP.

Les produits des gènes ras, généralement désignés protéines p21, jouent un rôle clé dans le contrôle de la division cellulaire chez tous les organismes eucaryotes où ils ont été recherchés. Certaines modifications spécifiques de ces protéines leur font perdre leur contrôle normal et les conduisent à devenir oncogéniques. Ainsi, un grand nombre de tumeurs humaines ont été associées à la présence de gènes ras modifiés. De même, une surexpression de ces protéines p21 peut conduire à un dérèglement de la prolifération cellulaire. La compréhension du rôle exact de ces protéines p21 dans les cellules, de leur mode de fonctionnement et de leurs caractéristiques constitue donc un enjeu majeur pour la compréhension et l'approche thérapeutique de la cancérogénèse.

In vivo, on ne connait pas encore la nature exacte des événements responsables de l'activation des protéines p21. On sait qu'elles exercent leurs fonctions en oscillant entre deux états conformationnels : une forme inactive liée au GDP et une forme active liée au GTP, mais les facteurs agissant sur la transition entre ces deux formes ne sont pas clairement identifiés. Des travaux récents rapportent des situations physiologiques au cours desquelles la proportion de protéines ras liées au GTP augmente dans la cellule. Il s'agit de l'activation des lymphocytes T et de la stimulation des fibroblastes 3T3 par des facteurs de croissance dont l'EGF et le PDGF (Downward et al., Nature 346 (1990) 719; Gibbs et al., J. Biol. Chem. 265 (1990) 20437). L'augmentation de la proportion de p21-GTP peut s'expliquer au moins en partie par l'action d'une protéine jouant un rôle analogue à celui d'un récepteur pour les protéines G de transduction. A cet égard, certaines protéines capables de promouvoir l'échange du GDP sur les protéines p21 ont été identifiées, à partir de cerveau de boeuf [West et coll., FEBS Lett. 259 (1990) 245] et de rat [Wolfman et Macara, Science 248 (1990) 67]. La localisation cellulaire distincte de ces facteurs et les conditions expérimentales très différentes dans lesquelles ils ont été obtenus

10

15

20

30

laissent supposer qu'il s'agit de protéines différentes. Elles sont aussi actives sur les protéines ras normales que sur celles qui sont oncogéniques. Ces activités sont regroupées sous le terme de GEF: Facteur d'Echange des nucléotides Guanidiques, ou GRF.

Chez la levure Saccharomyces cerevisiae, l'activité GRF a été attribuée au produit du gène CDC25 [Camonis et al., EMBO J. 5 (1986) 375], et des études ont été réalisées afin de comprendre la voie de signalisation faisant intervenir le produit des gènes CDC25, RAS1 et RAS2 d'une part et l'adénylate cyclase d'autre part chez la levure Saccharomyces cerevisiae. En particulier, de nombreux travaux ont été focalisés sur la caractérisation du produit du gène CDC25 qui était l'élément le plus mal connu de cette chaîne. Le produit du gène CDC25 constitue l'élément le plus en amont de la cascade de réactions conduisant à l'activation de la p21 chez la levure. Les travaux réalisés dans ce domaine ont contribué à démontrer que le produit de ce gène devait agir comme facteur d'échange GDP -> GTP pour activer les protéines ras. Un second gène de la levure S.cerevisiae, SDC25, structurellement très voisin de CDC25, a été isolé et caractérisé. Le domaine actif de SDC25 semble être un facteur d'échange capable d'agir in vitro et in vivo sur les protéines ras. Ce domaine constitue le premier constituant moléculaire décrit doué de cette activité.

Très récemment, une protéine de type GRF a été également mise en évidence chez la souris [Vanoni et Martegani, J. Cell. Bioch. Suppl. 16B (1992) 220].

Toutefois, jusqu'à aujourd'hui, aucune activité GRF n'a été isolée et caractérisée chez l'homme. La présente invention résulte précisément de la démonstration par la demanderesse de l'existence d'un facteur humain d'échange du GDP. La présente invention résulte plus particulièrement de l'identification, de l'isolement et de la caractérisation de peptides et de séquences nucléotidiques d'origine humaine, désignés hGRF et hSOS, capables de moduler l'état d'activation des protéines p21.

Un premier aspect de l'invention consiste donc en des peptides utilisables pharmaceutiquement. Plus particulièrement, un objet de l'invention réside dans des peptides capables de moduler les niveaux d'échange du GDP sur des complexes p21-GDP. Il est entendu que p21 désigne tout produit d'expression d'un gène ras normal ou oncogénique.

10

15

20

30

Plus particulièrement, les peptides de l'invention sont choisis parmi tout ou partie des séquences SEQ ID n° 2, 3, 4, 6 ou 8 ou d'un dérivé de celles-ci.

Au sens de la présente invention, le terme dérivé désigne toute molécule obtenue par modification de nature génétique et/ou chimique de ces séquences et conservant l'activité recherchée. Par modification de nature génétique et/ou chimique, on doit entendre toute mutation, substitution, délétion, addition et/ou modification d'un ou plusieurs résidus. De tels dérivés peuvent être générés dans des buts différents, tels que notamment celui d'augmenter l'affinité du peptide pour son site d'interaction, celui d'améliorer ses niveaux de production, celui d'augmenter sa résistance à des protéases, celui d'augmenter son efficacité thérapeutique ou de réduire ses effets secondaires, ou celui de lui conférer de nouvelles propriétés pharmacocinétiques et/ou biologiques.

Dans un mode particulier de l'invention, les peptides de l'invention sont des peptides capables de stimuler l'échange du GDP sur le complexe p21-GDP.

Dans un autre mode particulier de l'invention, les peptides de l'invention sont des peptides capables de ralentir ou d'inhiber l'échange du GDP sur le complexe p21-GDP. De tels peptides sont préférentiellement des peptides capables d'antagoniser l'interaction du facteur d'échange du GDP avec le complexe p21-GDP. Il peut donc s'agir de fragments des séquences indiquées ci-dessus ou de dérivés de celles-ci. De tels fragments peuvent être générés de différentes façons. En particulier, ils peuvent être synthétisés par voie chimique, sur la base des séquences données dans la présente demande, en utilisant les synthétiseurs peptidiques connus de l'homme du métier. Ils peuvent également être synthétisés par voie génétique, par expression dans un hôte cellulaire d'une séquence nucléotidique codant pour le peptide recherché. Dans ce cas, la séquence nucléotidique peut être préparée chimiquement en utilisant un synthétiseur d'oligonucléotides, sur la base de la séquence peptidique donnée dans la présente demande et du code génétique. La séquence nucléotidique peut également être préparée à partir des séquences données dans la présente demande (SEQ ID n° 1, 5 et 7), par coupures enzymatiques, ligature, clonage, etc, selon les techniques connues de l'homme du métier, ou par criblage de banques d'ADN avec des sondes élaborées à partir de ces séquences. Par ailleurs, les peptides de l'invention capables de ralentir ou d'inhiber l'échange du GDP sur le complexe p21-GDP peuvent également être des peptides ayant une séquence correspondant au site d'interaction du facteur d'échange sur le complexe p21-GDP.

WO 93/21314 PCT/FR93/00382

4

Un autre objet de l'invention réside dans des anticorps ou fragments d'anticorps polyclonaux ou monoclonaux dirigés contre un peptide tel que défini ci-avant. De tels anticorps peuvent être générés par des méthodes connues de l'homme du métier, compte tenu des enseignements donnés dans la présente demande. En particulier, ces anticorps peuvent être préparés par immunisation d'un animal contre un peptide de l'invention, prélèvement du sang, et isolement des anticorps. Ces anticorps peuvent également être générés par préparation d'hybridomes selon les techniques connues de l'homme de l'art.

Plus préférentiellement, les anticorps ou fragments d'anticorps de l'invention présentent la capacité d'inhiber au moins partiellement l'interaction du facteur d'échange avec le complexe p21-GDP. Ils peuvent ainsi être utilisés pour réguler l'etat d'activation du produit des gènes ras.

10

15

20

25

30

Par ailleurs, ces anticorps peuvent également être utilisés pour détecter et/ou doser le facteur d'échange du GDP humain dans des échantillons biologiques, et de ce fait, pour renseigner sur l'etat d'activation du produit des gènes ras.

La présente invention permet donc de générer des peptides dérivés des séquences SEQ ID n° 2-4, 6 et 8, ainsi que des anticorps dirigés contre ces peptides, présentant des propriétés biologiques interessantes en vue d'une utilisation pharmaceutique. L'activité biologique des différents peptides et anticorps de l'invention sur l'échange du GDP peut être évaluée de différentes façon ainsi qu'illustré dans les exemples.

L'invention fournit également des composés non peptidiques ou non exclusivement peptidiques utilisables pharmaceutiquement. Il est en effet possible, à partir des motifs protéiques actifs décrits dans la présente demande, de réaliser des molécules inhibitrices de la voie de signalisation dépendante des protéines ras non exclusivement peptidiques et compatibles avec une utilisation pharmaceutique. A cet égard, l'invention concerne l'utilisation d'un polypeptide de l'invention tel que décrit ci-avant pour la préparation de molécules non-peptidiques, ou non exclusivement peptidiques, actives pharmacologiquement sur les niveaux d'échange du GDP, par détermination des éléments structuraux de ce polypeptide qui sont importants pour son activité et reproduction de ces éléments par des structures non-peptidiques ou non exclusivement peptidiques. L'invention a aussi pour objet des compositions pharmaceutiques comprenant une ou plusieurs molécules ainsi préparées.

10

15

20

25

30

La présente invention a également pour objet toute séquence d'acide nucléique codant pour un polypeptide tel que défini ci-dessus. Plus préférentiellement, il s'agit d'une séquence choisie parmi :

- (a) tout ou partie des séquences SEQ ID n° 1, 5 ou 7 ou de leur brin complémentaire,
- (b) toute séquence hybridant avec une séquence (a) et codant pour un polypeptide selon l'invention, et
- (c) les séquences dérivées des séquences (a) et (b) en raison de la dégénérescence du code génétique.

Les différentes séquences nucléotidiques de l'invention peuvent être d'origine artificielle ou non. Il peut s'agir de séquences génomiques, d'ADNc, d'ARN, de séquences hybrides ou de séquences synthétiques ou semi-synthétiques. Ces séquences peuvent être obtenues par exemple par criblage de banques d'ADN (banque d'ADNc, banque d'ADN génomique) au moyen de sondes élaborées sur la base des séquences SEQ ID n° 1, 5 ou 7. De telles banques peuvent être préparées à partir de cellules de différentes origines par des techniques classiques de biologie moléculaires connues de l'homme du métier. Les séquences nucléotidiques de l'invention peuvent également être préparées par synthèse chimique, notamment selon la méthode des phosphoramidites, ou encore par des méthodes mixtes incluant la modification chimique ou enzymatique de séquences obtenues par criblage de banques.

Ces séquences nucléotidiques selon l'invention sont utilisables dans le domaine pharmaceutique, soit pour la production in vitro des peptides de l'invention, soit pour la réalisation de séquences antisens ou pour la production des peptides de l'invention dans le cadre d'une thérapie génique, soit encore pour la détection et le diagnostic, par des expériences d'hybri-dation, de l'expression ou d'une surexpression d'un facteur d'échange du GDP amplifié, muté ou réarrangé dans des échantillons biologiques ou pour l'isolement de séquences homologues à partir d'autres sources cellulaires.

Pour la production des peptides de l'invention, les séquences nucléiques définies ci-dessus sont généralement placées sous le contrôle de signaux permettant leur expression dans un hôte cellulaire. Le choix de ces signaux (promoteurs, terminateurs, sequence "leader" de sécrétion, etc) peut varier en fonction de l'hôte cellulaire utilisé. Préférentiellement, ces séquences nucléotidiques de l'invention font

15

20

Ç.

partie d'un vecteur, qui peut être à réplication autonome ou intégratif. Plus particulièrement, des vecteurs à réplication autonome peuvent être préparés en utilisant des séquences à réplication autonome chez l'hôte choisi. S'agissant des vecteurs intégratifs, ceux-ci peuvent être préparés par exemple en utilisant des séquences homologues à certaines régions du génome de l'hôte, permettant, par recombinaison homologue, l'intégration du vecteur.

Les hôtes cellulaires utilisables pour la production des peptides de l'invention sont aussi bien des hôtes eucaryotes que procaryotes. Parmi les hôtes eucaryotes qui conviennent, on peut citer les cellules animales, les levures, ou les champignons. En particulier, s'agissant de levures, on peut citer les levures du genre Saccharomyces, Kluyveromyces, Pichia, Schwanniomyces, ou Hansenula. S'agissant de cellules animales, on peut citer les cellules COS, CHO, Cl27, etc. Parmi les champignons, on peut citer plus particulièrement Aspergillus ssp. ou Trichoderma ssp. Comme hôtes procaryotes, on préfère utiliser les bactéries suivantes E.coli, Bacillus, ou Streptomyces.

Les séquences d'acides nucléiques selon l'invention peuvent également servir à la réalisation d'oligonucléotides antisens ou d'antisens génétiques utilisables comme agents pharmaceutiques. L'inhibition de l'expression de certains oncogènes par des séquences antisens s'est avérée être une stratégie utile dans la compréhension du rôle de ces oncogènes et une voie particulièrement prometteuse dans la réalisation d'un traitement anticancéreux. Les séquences antisens sont des oliogonucléotides de petite taille, complémentaire du brin codant d'un gène donné, et de ce fait capables d'hybrider spécifiquement avec l'ARNm transcrit, inhibant sa traduction en proteine. L'invention a ainsi pour objet les séquences antisens capables d'inhiber au moins partiellement la production de peptides stimulant l'échange du GDP sur des complexes p21-GDP. De telles séquences peuvent être constituées par tout ou partie des séquences nucléiques définies ci-avant. Il s'agit généralement de séquences ou de fragments de séquences complémentaires de séquences codant pour des peptides stimulant l'échange du GDP. De tels oligonucléotides peuvent être obtenus à partir des séquences SEQ ID n° 1, 5 ou 7, par fragmentation, etc, ou par synthèse chimique. De telles séquences peuvent être utilisées dans le cadre de thérapies géniques, pour le transfert et l'expression in vivo de séquences antisens ou de peptides capables de moduler les niveaux d'échanges du GDP sur les protéines ras. A cet égard, les séquences peuvent être incorporées dans des vecteurs, notamment d'origine virale.

15

20

25

30

L'invention concerne également, comme séquences nucléotidiques, les sondes nucléotidiques, synthétiques ou non, capables de s'hydrider avec les séquences nucléotidiques définies ci-avant qui codent pour un peptide de l'invention, ou avec l'ARNm correspondant. De telles sondes peuvent être utilisées in vitro comme outil de diagnostic, pour la détection de l'expression du facteur d'échange du GDP, ou encore pour la mise en évidence d'anomalies génétiques (mauvais épissage, polymorphisme, mutations ponctuelles, etc). De telles sondes doivent être préalablement marquées, et pour cela différentes techniques sont connues de l'homme du métier. Les conditions d'hybridation dans lesquelles ces sondes peuvent être utilisées sont les conditions normales de stringence (voir notamment les techniques générales de clonage ci-après ainsi que les exemples). Ces sondes peuvent également être utilisées pour la mise en évidence et l'isolement de séquences d'acides nucléiques homologues codant pour un peptide de l'invention, à partir d'autres sources cellulaires, ainsi qu'illustré dans les exemples.

L'invention a encore pour objet toute composition pharmaceutique comprenant comme principe actif au moins un peptide tel que défini ci-avant.

Elle a aussi pour objet toute composition pharmaceutique comprenant comme principe actif au moins un anticorps et/ou un fragment d'anticorps tel que défini ci-avant, ains: que toute composition pharmaceutique comprenant comme principe actif au moins une séquence nucléotidique telle que définie ci-avant.

Par ailleurs, elle a aussi pour objet les compositions pharmaceutiques dans lesquelles les peptides, anticorps et séquence nucléotidique définis ci-avant sont associés entre-eux ou avec d'autres principes actifs.

Les compositions pharmaceutiques selon l'invention peuvent être utilisées pour moduler l'activation des protéines p21 et de ce fait pour moduler la prolifération de certains types cellulaires. Plus particulièrement, ces compositions pharmaceutiques sont destinées au traitement de cancers. De nombreux cancers ont en effet été associés à la présence de protéines ras oncogéniques. Parmi les cancers renfermant le plus souvent des gènes ras mutés, on peut citer notamment les adénocarcinomes du pancréas, dont 90 % ont un oncogène Ki-ras muté sur le douzième codon [Almoguera et coll., Cell 53 (1988) 549], les adénocarcinomes du colon et les cancers de la thyroïde (50 %), ou les carcinomes du poumon et les leucémies myéloïdes [30 %, Bos, J.L. Cancer Res. 49 (1989) 4682].

10

15

20

25

L'invention a encore pour objet l'utilisation des molécules décrites ci-avant pour moduler l'activité des protéines p21. En particulier, l'invention concerne l'utilisation de ces molécules pour inhiber au moins partiellement l'activation des protéines p21.

L'invention fournit également un procédé de détection de l'expression et/ou d'une surexpression d'un gène ras dans un échantillon biologique. Un tel procédé comprend par exemple la mise en contact d'un tel échantillon avec un anticorps ou fragment d'anticorps selon l'invention, la révélation des complexes antigène-anticorps, et la comparaison des résultats obtenus avec un échantillon standard. Dans un tel procédé, l'anticorps peut être en suspension ou préalablement immobilisé sur un support. Ce procédé peut également comprendre la mise en contact de l'échantillon avec une sonde nucléotidique selon l'invention, la mise en évidence des hybrides obtenus, et la comparaison avec ceux obtenus dans le cas d'un échantillon standard.

La présente invention peut être utilisée dans le domaine thérapeutique : les peptides, anticorps et séquences nucléotidiques de l'invention étant capables de moduler l'activité des gènes ras, ils permettent en effet d'intervenir dans le processus de développement des cancers. Ainsi qu'illustré dans les exemples, les séquences nucléotidiques de l'invention permettent notamment d'exprimer des peptides capables de complémenter la thermosensibilité de levures portant une mutation cdc25. Elles permettent également d'exprimer des peptides capables de supprimer une mutation dominante RAS2ts, démontrant une compétition avec le produit normal d'expression du gène CDC25 pour l'interaction avec les protéines p21. L'invention peut également être utilisée dans le domaine du diagnostic et du typage de cancers : les anticorps et sondes nucléotidiques de l'invention permettent en effet l'identification des cancers dans lesquels un gène ras est impliqué ainsi que le diagnostic de cancers liés à la surexpression d'un gène ras normal ou oncogénique.

D'autres avantages de la présente invention apparaîtront à la lecture des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

Légende des figures

Figure 1 : Test de transactivation : Cette figure présente en ordonnée les niveaux d'activité CAT (% par rapport au bruit de fond) des souches CHO recombinantes, en fonction de la séquence d'ADNc utilisée pour la transformation.

15

20

25

30

Figure 2 : Test d'activité d'échange du GTP : Cette figure présente en ordonnée le rapport des formes p21-GDP/p21-GTP des souches CHO recombinantes, en fonction de la séquence d'ADNc utilisée pour la transformation.

Figure 3 : Test d'activité d'échange du GDP in vitro : Cette figure montre, en fonction du temps et pour 2 concentrations d'un peptide de l'invention, la diminution de la proportion de GDP retant lié à la protéine p21.

Techniques générales de clonage

Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, l'électrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extractions de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans *Escherichia coli*, etc, sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F.M. et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].

Les enzymes de restriction ont été fournies par New England Biolabs (Biolabs), Bethesda Research Laboratories (BRL) ou Amersham et sont utilisées selon les recommandations des fournisseurs.

Les plasmides de type pBR322, pUC, \(\lambda\)gt11, pGEX 2T et les phages de la série M13 sont d'origine commerciale.

Pour les ligatures, les fragments d'ADN sont séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur.

Le remplissage des extrémités 5' proéminentes est effectué par le fragment de Klenow de l'ADN Polymérase I d'E. coli (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase S1.

20

La mutagénèse dirigée in vitro par oligodéoxynucléotides synthétiques est effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. 13 (1985) 8749-8764] en utilisant le kit distribué par Amersham.

L'amplification enzymatique de fragments d'ADN par la technique dite de PCR [Polymérase-catalyzed Chain Reaction, Saiki R.K. et al., Science 230 (1985) 1350-1354; Mullis K.B. et Faloona F.A., Meth. Enzym. 155 (1987) 335-350] est effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.

La vérification des séquences nucléotidiques est effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, <u>74</u> (1977) 5463-5467] en utilisant le kit distribué par Amersham.

Pour les expériences d'hybridation, les conditions de stringence normales sont généralement les suivantes : hybridation : 3 x SCC en présence de 5 x Denhart's à 65°C; lavage : 0,5 x SSC à 65°C.

15 1. Isolement du gène du facteur humain d'échange du GDP (hGRF)

5.10⁵ phages d'une banque de cerveau humain construite dans le vecteur λgt11 [Skolnik et al., Cell <u>65</u> (1991) 83] ont été criblés selon les techniques décrites par Sambrook, Fritsch et Maniatis (Molecular cloning ; Cold Spring Harbor Laboratory Press ; 1989).

La sonde utilisée pour le criblage de cette banque est un fragment d'ADNc humain de 137 paires de bases marqué au ³²P. Cette sonde a été préparée par PCR sur l'ADN total de la banque précitée en utilisant comme amorces les oligonucléotides dégénérés suivants :

pour l'oligonucléotide de l'extrémité 3' du fragment, et

pour l'oligonucléotide de l'extrémité 5' du fragment.

10

15

20

La sonde a été marquée au ³²P par "random priming" selon la technique de Feinberg et Vogelstein [Anal. Biochem. <u>137</u> (1984) 266], et la réaction de PCR a été menée à 40°C environ dans les conditions décrites dans les techniques générales de clonage.

Parmi les différents clones positifs obtenus par hybridation avec cette sonde, un comprend la totalité d'une phase ouverte qui porte l'activité d'échange vis-à-vis de Ha-Ras.

Ce clone de \(\lambda\)gt11 contient un ADNc de 3 kb qui a été introduit, sous forme d'un fragment EcoRI, au site correspondant d'un vecteur M13mp18. Cet ADNc a ensuite été séquencé à l'aide des amorces commerciales "reverse" et "-20" ainsi qu'à l'aide d'oligonucléotides spécifiques selon la technique de Sanger (Cf techniques générales de clonage).

La séquence nucléotidique du gène du facteur humain d'échange du GDP porté par le fragment ainsi obtenu est présentée sur la séquence SEQ ID n° 1, ainsi que les séquences peptidiques déduites (SEQ ID n° 2, 3 et 4).

2. Préparation de sous fragments

Différents dérivés ou fragments du gène ainsi obtenu peuvent être préparés et utilisés, notamment pour l'expression de peptides de l'invention. En particulier, les fragments suivants ont été préparés par coupure enzymatique, et séparés par électroélution :

- un fragment PstI-EcoRI comprenant une partie de la région codante du facteur d'échange (du nucléotide 936 jusqu'au codon stop) ainsi que la région 3' non codante du fragment,
- un fragment EcoNI-EcoRI comprenant une partie de la région codante du facteur
 d'échange (du nucléotide 910 jusqu'au codon stop) ainsi que la région 3' non codante du fragment,
 - un fragment EagI-EcoRI comprenant une partie de la région codante du facteur d'échange (du nucléotide 638 jusqu'au codon stop) ainsi que la région 3' non codante du fragment,
- un fragment Ball-EcoRI comprenant une partie de la région codante du facteur d'échange (du nucléotide 88 jusqu'au codon stop) ainsi que la région 3' non codante du fragment, et,

10

20

25

- un fragment Nael-EcoRl comprenant une partie de la région codante du facteur d'échange (du nucléotide 196 jusqu'au codon stop) ainsi que la région 3' non codante du fragment,

Il est entendu que la région 3' non codante portée par ces fragments est accessoire et qu'elle peut être éliminée, soit par digestion au moyen d'une nucléase, soit par coupure avec une enzyme ayant un site proche du codon stop, telle que notamment SmaI, dont le site est localisé environ 30 pb après le codon stop.

Il est entendu également que d'autres fragments peuvent être préparés, tels que notamment des fragments ne contenant pas la région codant pour la partie C-terminale entière, ainsi que des dérivés de ces fragments, obtenus par mutation, substitution, addition, ou modification de nature chimique et/ou génétique.

3. Caractérisation biologique

Les fonctionnalités des peptides selon l'invention ont été testées :

- 15 dans des cellules mammifères,
 - dans la levure Saccharomyces cerevisiae, ou encore
 - in vitro sur la protéine Ha-Ras recombinante.
 - 3.1. Pour l'évaluation fonctionnelle dans les cellules mammifères, les séquences d'ADN codant pour des peptides de l'invention, tels que par exemple ceux décrits dans l'exemple 2, peuvent être placées sous contrôle du promoteur précoce de SV40 dans le vecteur pCym1 décrit par Camonis et al. [Gene <u>86</u> (1990) 263].

Dans cet exemple, les fragments PstI-EcoRI et EcoNI-EcoRI décrit dans l'exemple 2 ont été insérés dans ce vecteur.

Les vecteurs ainsi obtenus ont été testés par transfection transitoire dans des cellules CHO selon le protocole décrit par Rey et al. [Oncogene <u>6</u> (1991) 347].

Deux critères de fonctionnalité ont ainsi été étudiés :

- la capacité des vecteurs à transactiver un promoteur gouvernant l'expression d'un gène reporteur qui est ici le gène bactérien codant pour la chloramphénicol acétyl transférase (gène CAT).
- leur capacité à promouvoir la charge en GTP des protéines Ras des cellules CHO transfectées.
 - a) Pour les tests de transactivation, des cellules CHO à 50 % de confluence ont été transfectées (voir par exemple le protocole décrit par Schweighoffer et al.

10

15

20

Science, In Press) d'une part avec 0,5 µg d'un vecteur portant le gène CAT sous contrôle d'un promoteur synthétique composé du promoteur murin du gène de la thymidine kinase et de 4 éléments PEA1 répétés dérivés de l'enhancer du polyôme [Wasylyk et al., EMBO J. 7 (1988) 2475], et d'autre part avec 4,5 µg d'un vecteur d'expression portant, sous contrôle du promoteur précoce de SV40, aucun ADNc codant (piste 1), l'ADNc de Ha-Ras normal (piste 2), l'ADNc de Ha-Ras activé en 12 (Val 12) (piste 3), l'extrémité 3' du cDNA de SDC25 décrite par Rey et al. précitée (piste 4), et l'ADNc codant pour un peptide selon l'invention décrit ci-dessus (piste 5).

Les résultats sont présentés sur la figure 1. La piste 1 correspondant à l'activation basale, la piste 3 (obtenue pour le fragment PstI-EcoRI : CDC hum.) montre que l'expression d'un peptide de l'invention permet la transactivation du promoteur synthétique utilisé.

Le même résultat qualitatif a été obtenu pour les autres fragments étudiés.

b) De façon à vérifier que cette transactivation implique bien une charge nucléotidique des protéines ras des cellules CHO, les mêmes transfections transitoires ont été réalisées, le milieu de culture étant additionné d'orthophosphate marqué au 32p.

Ce protocole de marquage ainsi que celui de l'immunoprécipitation des protéines ras cellulaires est décrit par Rey et al. précitée. Les résultats obtenus sont présentés sur la figure 2. Ils montrent que les peptides de l'invention sont capables de moduler les niveaux d'échange du GDP sur les protéines ras puisque certains d'entre-eux (peptide CDC Hum. exprimé par le fragment PstI-EcoRI décrit ci-avant) sont capables de promouvoir la charge en GTP des protéines ras de cellules CHO immunoprécipitées par l'anticorps Y 13-259.

3.2. Les peptides de l'invention ont également été testés fonctionnellement dans la levure S.cerevisiae cdc25⁻. Pour cela, les vecteurs décrits précédemment (3.1.), qui sont des vecteurs navettes, ont été introduits dans la souche de levure OL97-1-11B [Camonis et Jacquet, Mol. Cell. Biol. 8 (1988) 2980]. Les résultats obtenus montrent que les fragments d'ADNc selon l'invention codent pour des peptides qui sont capables de complémenter le défaut de croissance de cette souche à 36°C. Ces résultats montrent ainsi que ces fragments codent pour des peptides fonctionnels in vivo dans S.cerevisiae.

10

15

20

25

3.3. La capacité des séquences d'ADN de l'invention à coder pour des peptides capables de promouvoir l'échange du GDP sur des protéines Ha-Ras purifiées a également été démontrée *in vitro* selon le protocole décrit par Rey et al. Mol. Cell. Biol. 2 (1989) 3904].

Pour cela les séquences de l'invention sont exprimées dans la souche d'E.coli TG1 sous forme de protéines de fusion avec la glutathion S-transférase (GST) selon Ia technique décrite par Smith et Johnson [Gene 67 (1988) 31]. Pour cela, les différents fragments d'ADN décrits en 3.1. ci-dessus ont été clonés, sous forme de fragments SmaI-EcoRI, dans le vecteur pGEX 2T (Pharmacia), en 3' et en phase d'un ADNc codant pour la GST. Les fragments Smal-EcoRI sont obtenus par ajout d'un adaptateur au moyen d'une ligase. Les vecteurs ainsi obtenus sont ensuite utilisés pour transformer la souche E.coli TG1. Les cellules ainsi transformées sont précultivées une nuit à 37°C, diluées au 1/10e dans du milieu LB, ajoutées d'IPTG pour induire l'expression (2 heures, 25°C), puis cultivées 21 heures environ à 25°C. Les cellules sont ensuite lysées, et les protéines de fusions produites sont purifiées par affinité sur colonne Agarose-GSH. Pour cela, le lysat bactérien est incubé en présence du gel (préparé et équilibré avec le tampon de lyse) pendant 15 minutes à 4°C. Après 3 lavages avec un tampon Tris-HCl pH 7,4, les protéines sont éluées en présence d'un tampon Tris-HCl pH 7,7 contenant un excès de GSH. Le surnageant est récolté et centrifugé.

L'activité d'échange du GDP des peptides de l'invention sur des protéines Ha-Ras purifiées a ensuite été démontrée *in vitro* selon le protocole décrit par Rey et al. (Mol. Cell. Biol. précitée). Les résultats obtenus sont présentés sur la figure 3. Ils montrent notamment que le peptide de l'invention correspondant à la séquence CDC hum exprimée pae le fragment PstI-EcoRI décrit ci-avant stimule l'échange du GDP.

4. Mise en évidence de séquences homologues

Des séquences d'acides nucléiques homologues à celle présentée sur la figure 1 ont été mises en évidence par deux stratégies différentes :

par PCR, dans les conditions décrites dans les techniques générales de clonage, sur des ADNc néosynthétisés à partir d'ARNm de placenta, en utilisant comme amorces des oligonucléotides dégénérés choisis pour recouvrir des séquences conservées entre la séquence SEQ ID n°1 et la séquence de la protéine SOS [Bonfini et al., Science 255 (1992) 603].

25

30

•

- Par criblage d'une banque d'ADNc de placenta à l'aide d'une sonde constituée par la totalité de la séquence SEQ ID n°1 marquée au ³²P. Ce criblage a été réalisé dans des conditions de faible stringence : hybridation à 50°C en milieu 5 x SSC, 5 x Denhart's; puis lavage à 50°C en milieu 2 x SSC.

Ces deux stratégies ont permis de révéler des séquences homologues à la séquence SEQ ID n°1. Ces séquences peuvent être aisément isolées et caractérisées. Elles constituent des séquences nucléiques au sens de la présente invention, lorsqu'elles codent (ou leurs fragments ou dérivés) pour des peptides capables de moduler les niveaux d'échanges du GDP sur des complexes p21-GDP.

En particulier, cette stratégie a permis l'identification, à partir d'ARNm de placenta et en utilisant les oligonucléotides oligo 2449 (SEQ ID n° 9) et oligo 2451 (SEQ ID n° 10), de 2 ADNc codant pour des facteurs désignés hSOS1 et hSOS2, dont les séquences partielles sont représentées sur les SEQ ID n° 5 et SEQ ID n° 7 respectivement. Les ARNm correspondant à ces facteurs sont présents dans tous les tissus dans lesquels ils ont été recherchés, contrairement au facteur décrit dans l'exemple 1 qui semble localisé uniquement dans le cerveau. La localisation chromosomique de ces gènes a été effectuée et a donné les résultats suivants:

- h-GRF: 15q2.4.

- h-SOS1 : 4q2.1.

²⁰ - h-SOS2 : 14q2.2.

5. Recherche de facteurs d'échange de type h-GRF dans d'autres tissus

Un anticorps anti h-GRF a été préparé chez le lapin, par immunisation avec un antigène correspondant au fragment de 280 acides aminés localisé entre les résidus 211 et 489 du facteur h-GRF présenté sur la SEQ ID n° 4.

Cet anticorps a permis la détection, par ELISA, dans du cortex humain et des cellules précurseur du cerveau, de protéines de poids moléculaires apparents 30, 55, 75, 95 et 140 kDa. La diversité des poids moléculaires suggère la présence d'ADNc multiples. La préincubation de l'anticorps anti h-GRF avec le h-GRF supprime la détection des protéines identifiées, ce qui démontre la spécificité du signal.

LISTE DE SEQUENCES

(i) DEPOSANT: (A) NOM: RHONE-POULENC RORER S.A. (B) RUE: 20, avenue Raymond ARON (C) VILLE: ANTONY 10 (E) PAYS: FRANCE	
(B) RUE: 20, avenue Raymond ARON (C) VILLE: ANTONY	
(C) VILLE: ANTONY	
10 (F) DAVC. EDAMOR	
(E) PAYS: FRANCE (F) CODE POSTAL: 92165	
(ii) TITRE DE L' INVENTION: PEPTIDES INHIBANT L'AC PROTEINES RAS, PREPARATION ET UTILISATION	CTIVITE DES
(iii) NOMBRE DE SEQUENCES: 10	
(iv) FORME LISIBLE PAR ORDINATEUR:	
(A) TYPE DE SUPPORT: Tape 20 (B) ORDINATEUR: IBM PC compatible	
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS	
(D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)
25 (2) INFORMATION POUR LA SEQ ID NO: 1:	
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 2652 paires de bases	
(B) TYPE: acide nucléque (C) NOMBRE DE BRINS: double	
(D) CONFIGURATION: linéire	•
(ii) TYPE DE MOLECULE: ADNC	
35 (iii) HYPOTHETIQUE: NON	
(iii) ANTI-SENS: NON	
40 (ix) CARACTERISTIQUE ADDITIONELLE:	
(A) NOM/CLE: CDS (B) EMPLACEMENT: 12445	
(ix) CARACTERISTIQUE ADDITIONELLE:	
45 (A) NOM/CLE: CDS	
(B) EMPLACEMENT: 4452445 (SEQ ID NO 3)	
(ix) CARACTERISTIQUE ADDITIONELLE: (A) NOM/CLE: CDS	•
50 (B) EMPLACEMENT: 9762445 (SEQ ID NO 4)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:	
	A 48
55 GGC GAT GGC TGT AAG ATC CTC CTG GAC ACC AGC CAG ACC TTT GTG AG	
Gly Asp Gly Cys Lys Ile Leu Leu Asp Thr Ser Gln Thr Phe Val Arc	g ·
Gly Asp Gly Cys Lys Ile Leu Leu Asp Thr Ser Gln Thr Phe Val Arc 1 5 10 15	
Gly Asp Gly Cys Lys Ile Leu Leu Asp Thr Ser Gln Thr Phe Val Arc 1 5 10 15 CAA GGT TCC CTC ATT CAG GTG CCC ATG TCT GAA AAG GGC AAG ATC ACC Gln Gly Ser Leu Ile Gln Val Pro Met Ser Glu Lys Gly Lys Ile Th	3 06
Gly Asp Gly Cys Lys Ile Leu Leu Asp Thr Ser Gln Thr Phe Val Arc 1 5 10 15 CAA GGT TCC CTC ATT CAG GTG CCC ATG TCT GAA AAG GGC AAG ATG ACG	2 96 r .

	Ar	g Gl	y Are	g Le	u Gly	y Se:	r Leu	Ser 40	Leu	Lys	s Ly	s Glı	ن Gl 4!		u Ar	g Gln	
5	TG(Cys	TTO S Phe 50	- nei	G TT:	r TCT e Sei	Lys	G CAT S His 55	Leu	ATI Ile	ATC	TG:	ACC Thi	AGA		C TC: y Sei	r GGA r Gly	192
10	GG(G1 ₃ 65		G CT	CAC His	TTC Lev	ACC Thr	TAS	AAT Asn	GGA Gly	GTC Val	: AT/ : Ile 75	e Ser	CTC Let	C ATT	GAC Asp	TGC Cys 80	240
15	ACT Thr	TT! Let	TTO Lev	GAC Glu	GAG Glu 85	PIC	GAA Glu	AGC Ser	ACG Thr	GAG Glu 90	. Glu	GAA 1 Glu	GCC Ala	AAA Lys	GGA Gly 95	TCC Ser	288
	GGC Gly	CAA Gln	A GAC	Ile 100	: ASP	CAC His	TTG Leu	GAT Asp	TTT Phe 105	AAA Lys	ATC	GGG Gly	GTG Val	GAG Glu	Pro	AAG Lys	336
20	GAT Asp	TCC Ser	Pro	PIO	TTT Phe	ACA Thr	GTC Val	ATC Ile 120	CTA Leu	GTG Val	GCC Ala	TCG Ser	TCC Ser 125	Arg	CAG Gln	GAG Glu	384
25	AAG Lys	GCA Ala 130	*****	TGG	ACC Thr	AGT Ser	GAC Asp 135	ATC Ile	AGC Ser	CAG Gln	TGT Cys	GTT Val 140	GGT Gly	AAC Asn	ATC Ile	CGA Arg	432
30	TGC Cys 145		GGG	CTC Leu	ATG Met	ATG Met 150	AAG Lys	CCA Pro	TTT Phe	GAA Glu	GAA Glu 155	Asn	TCC Ser	AAG Lys	GTC Val	ACT Thr 160	480
35	GTG Val	CCG Pro	CAG Gln	ATG Met	ATC Ile 165	AAG Lys	TCC Ser	GAC Asp	GCC Ala	TCC Ser 170	TTA Leu	TAT Tyr	TGT Cys	GAT Asp	GAT Asp 175	GTT Val	528
	GAC Asp	ATT Ile	CGC Arg	TTC Phe 180	AGC Ser	AAA Lys	ACC Thr	ATG Met	AAC Asn 185	TCC Ser	TGC Cys	AAA Lys	GTG Val	CTG Leu 190	CAG Gln	ATC Ile	576
40	GCC Ala	TAC Tyr	GCC Ala 195	AGT Ser	GTG Val	GAG Glu	CGG Arg	CTG Leu 200	CTG Leu	GAG Glu	AGG Arg	CTG Leu	ACG Thr 205	GAC Asp	CTG Leu	CGC Arg	624
45	TTC Phe	CTG Leu 210	AGC Ser	ATC Ile	GAC Asp	TTC Phe	CTC Leu 215	AAC Asn	ACC Thr	TTC Phe	CTG Leu	CAC His 220	TCC Ser	TAC Tyr	CGC Arg	GTC Val	672
50	TTC Phe 225	ACC Thr	ACC Thr	GCC Ala	ATC Ile	GTG Val 230	GTC Val	CTG Leu	GAC Asp	AAG Lys	CTC Leu 235	ATT Ile	ACC Thr	ATC Ile	TAC Tyr	AAG Lys 240	720
55	AAG Lys	CCT Pro	ATC Ile	AGT Ser	GCC Ala 245	ATT Ile	CCT Pro	GCC . Ala .	Arg	TCG Ser 250	CTG Leu	GAG Glu	CTC Leu	CTG Leu	TTT Phe 255	GCC Ala	768
	AGT Ser	GGC Gly	CAG Gln	AAC Asn 260	AAT Asn	AAG Lys	CTC Leu	Leu:	TAC Tyr 265	GGT Gly	GAA Glu	CCC Pro	CCC Pro	AAG Lys 270	TCC Ser	CCG Pro	816
60	CGC Arg	GCC Ala	ACC Thr 275	CGC Arg	AAG Lys	TTC Phe	ser :	TCG (Ser) 280	CCG (Pro :	CCA Pro	CCT Pro	Leu	TCC Ser 285	ATC Ile	ACC Thr	AAG Lys	864

•																	
	AC. Th	A TC Se: 29		A CCO	G AGO Sei	C CGC	CGG Arg 295	Arg	AAC Lys	CTC Let	TC(Se)	C CT r Le	u As:	C ATO	C CC	C ATC	912
5	AT(116 30		r GG	A CJ C CC	C AAG / Lys	GCC Ala 310	. neu	GAC Asp	CTC Lev	GCC Ala	GCC A Ala 315	a Lei	C AG	TGC Cys	C AAG	TCC Ser 320	960
10	AA! Asi	r GG(TAC TÝI	C ACC	Ser 325	MEL	TAC	TCG Ser	GCC	Met 330	Ser	A CCC	C TTO Phe	E AGO	AA(Lys	GCC Ala	1008
15	ACC Thi	CTC Let	GAC AST	Thr 340	Der	AAG Lys	CTC Leu	TAT Tyr	GTG Val 345	Ser	AGC Ser	AGC Ser	TTC Phe	ACC Thr 350	Ası	AAG Lys	1056
20.	ATT Ile	CCA Pro	GAT AST 355	010	GGC Gly	GAT Asp	ACG Thr	ACC Thr 360	CCT Pro	GAG Glu	AAG Lys	CCC	GAA Glu 365	. Asp	CCI Pro	TCA Ser	1104
•	GCG Ala	Leu 370		AAG Lys	CAG Gln	AGC Ser	TCA Ser 375	GAA Glu	GTC Val	TCC	ATG Met	AGA Arg 380	Glu	GAG Glu	TCA Ser	GAT Asp	1152
25	ATT Ile 385	GAT Asp	CAA Gln	AAC Asn	CAG Gln	AGT Ser 390	GAT Asp	GAT Asp	GGT Gly	GAT Asp	ACT Thr 395	Glu	ACA Thr	TCA Ser	CCA Pro	ACT Thr 400	1200
30	AAA Lys	TCT	CCA Pro	ACA Thr	ACA Thr 405	CCC Pro	AAA Lys	TCA Ser	GTC Val	AAA Lys 410	AAC Asn	AAA Lys	AAT Asn	TCT Ser	TCA Ser 415	GAG Glu	1248
35	TTC Phe	CCA Pro	CTC	TTT Phe 420	TCC Ser	TAT Tyr	AAC Asn	AAT Asn	GGA Gly 425	GTC Val	GTC Val	ATG Met	ACC Thr	TCC Ser 430	TGT Cys	CGT	1296
40	GAA Glu	CTG Leu	GAC Asp 435	AAT Asn	AAC Asn	CGC	AGT Ser	GCC Ala 440	TTG Leu	TCG Ser	GCC Ala	GCC Ala	TCT Ser 445	GCC Ala	TTT Phe	GCC Ala	1344
	ATA Ile	GCA Ala 450	ACC Thr	GCC Ala	GGG Gly	GCC Ala	AAC Asn 455	GAG Glu	GGC Gly	ACC Thr	CCA Pro	AAC Asn 460	AAG Lys	GAG Glu	AAG Lys	TAC Tyr	1392
45	CGG Arg 465	AGG Arg	ATG Met	TCC Ser	TTA Leu	GCC Ala 470	AGT Ser	GCA Ala	GGG	Pue	CCC Pro 475	CCA Pro	GAC Asp	CAG Gln	AGG Arg	AAT Asn 480	1440
50	GGA Gly	GAC Asp	AAG Lys	GAG Glu	TTT Phe 485	GTG Val	ATC	CGC .	AGA Arg	GCA Ala 490	GCC Ala	ACC Thr	AAT Asn	CGT Arg	GTC Val 495	·	1488
55	AAC Asn	GTG Val	CTC Leu	CGC Arg 500	CAC His	TGG Trp	GTG S	ser .	AAG Lys 505	CAC His	TCT Ser	CAG Gln	GAC Asp	TTT Phe 510		ACC Thr	1536
60	AAC Asn	GAT Asp	GAG Glu 515	CTC Leu	AAA Lys	TGC /	rys '	GTG / Val 520	ATC Ile	GGC GGC	TTC Phe	CTG Leu	GAA Glu 525		GTC Val	ATG Met	1584
	CAC His	GAC Asp 530	CCG Pro	GÄG Glu	CTC Leu	neu .	ACC (Thr (CAG (Gln (GAG Glu	CGG /	rys .	GCT Ala 540	GCA Ala	GCC Ala	AAC Asn	ATC Ile	1632

5	ATC 116 545	C AGG Arg	G AC	r CTO	ACC Thi	CAC Glr 550	r GTA	GAC Asp	CCA Pro	GG1	GAC Asp 555) Ası	C CAG	G ATO	C AC	G CTG r Leu 560	1680
-	GA0 Glu	GA(G ATO	C ACC	Gln 565	met	GCT Ala	GAA Glu	GGC Gly	GTG Val 570	. Lys	G GCT	GA(CCC Pro	TT: Phe 57	r GAA e Glu	1728
10	AAC Asn	CAC His	TCA S Ser	GCC Ala 580	Tien	GAG Glu	ATC Ile	GCG Ala	GAG Glu 585	CAG Gln	CTC Lev	ACC Thr	CTC Lev	CTA Leu 590	Ası	CAC His	1776
15	CTC Leu	GTC Val	Phe 595	: nys	AAG Lys	ATT	CCT Pro	TAT Tyr 600	GLu	GAG Glu	TTC Phe	TTC Phe	GGA Gly 605	Gln	GG!	TGG Trp	1824
20.	ATG Met	AAA Lys 610	- neu	GAA Glu	AAG Lys	AAT Asn	GAA Glu 615	AGG Arg	ACC Thr	CCT Pro	TAT Tyr	ATC Ile 620	Met	AAA Lys	ACC	ACT	1872
25	AAG Lys 625		TTC Phe	AAT Asn	GAC Asp	ATC Ile 630	AGT Ser	AAC Asn	TTG Leu	ATT Ile	GCT Ala 635	TCA Ser	GAA Glu	ATC	ATC	CGC Arg 640	1920
	AAT Asn	GAG Glu	GAC Asp	ATC Ile	AAC Asn 645	GCC Ala	AGG Arg	GTG Val	AGC Ser	GCC Ala 650	ATC Ile	GAG Glu	AAG Lys	TGG	GTG Val 655	GCC Ala	1968
30	GTA Val	GCT Ala	GAC Asp	ATA Ile 660	TGC Cys	CGC Arg	TGC Cys	CTC Leu	CAC His 665	AAC Asn	TAC Tyr	AAT Asn	GCC Ala	GTA Val 670	CTG Leu	GAG Glu	2016
3 5			675	001	r.ec	veii	CGC Arg	680	ATA	TTE	Phe	Arg	Leu 685	Lys	Lys	Thr	2064
40	•	690	-,-	· · · ·	Der	пуs	CAG Gln 695	THE	тÀ2	ATA	Leu	700	Asp	Lys	Leu	Gln	2112
45	705			Del	Ser	710	GGC Gly	Arg	Pne	гуѕ	715	Leu	Arg	Glu	Ala	Leu 720	2160
	-		-12		725	110	TGT Cys	vaı	PIO	730	Leu	GIÀ	Met	Tyr	Leu 735	Thr	2208
50	•	_		740	116	GIU	GAG (Glu (СТУ	745	Pro	ASN	Tyr	Thr	Glu 750	Asp	Gly	2256
55	CTG Leu	GTC Val	AAC Asn 755	TTC Phe	TCC Ser	AAG Lys	ATG A	AGG Arg 760	ATG . Met	ATA Ile	TCC Ser	CAT His	ATT Ile 765	ATC Ile	CGA Arg	GAG Glu	2304
60	ATT	CGC Arg 770	CAG Gln	TTT Phe	CAA Gln	GIII	ACT (Thr 1 775	GCC Ala	TAC .	AAA Lys	тте	GAG Glu 780	CAC His	CAA Gln	GCA Ala	AAG Lys	2352
	GTA . Val	ACG Thr	CAA Gln	TAT Tyr	TTA Leu	CTG (Leu /	GAC (Asp (CAA ' Gln :	TCT Ser	rrr Phe	GTA Val	ATG Met	GAT Asp	GAA Glu	GAA Glu	AGC Ser	2400

	785	790	٠	795	800
.5	CTC TAC GALLER TYP GI	AG TCT TCT CTC lu Ser Ser Leu 805	CGA ATA GAA CCA Arg Ile Glu Pro 810	Lys Leu Pro Thr	TGAAGCTGTG 2452 815
	CCCAGCCCAG	G ACCCAGCTGC T	CCCGGGGAC ATGTGCT	AGA TGATACTGTA C	ATATTCGTT 2512
10	TGGTTTCACT	T GGATTTTCTT C	ITCAGTATG TGCTTCT	CCA AGAATACAAA T	CGTCCTTGT 2572
10	TCTTAGATTC	C CTGTAGAACC G	GAATATGAA TTTCTGC	ACC GTTTCAGACT T	CGCCCACCC 2632
	ATCCCTCCCC	C TCGCCCGAAT			2652
15	(2) INFORM	MATION POUR LA	SEQ ID NO: 2:		
20	(i)) CARACTERISTI (A) LONGUEUR: (B) TYPE: acid (D) CONFIGURA	QUES DE LA SEQUEN 814 acides aminé de aminé TION: linéire	Œ:	
	(ii) T	TYPE DE MOLECU	LE: proténe		
25	(xi) D	DESCRIPTION DE	LA SEQUENCE: SEQ	ID NO: 2:	
•	Gly Asp Gl	ly Cys Lys Ile 5	Leu Leu Asp Thr S	Ser Gln Thr Phe	Val Arg
30	Gln Gly Se	er Leu Ile Gln 20	Val Pro Met Ser (25	Slu Lys Gly Lys :	Ile Thr
35	Arg Gly Ar 3	rg Leu Gly Ser	Leu Ser Leu Lys I 40	ys Glu Gly Glu 7 45	Arg Gln
	Cys Phe Le	eu Phe Ser Lys	His Leu Ile Ile (ys Thr Arg Gly :	Ser Gly
40	Gly Lys Le 65	eu His Leu Thr 70	Lys Asn Gly Val 1	le Ser Leu Ile 7	Asp Cys 80
•	Thr Leu Le	eu Glu Glu Pro 85	Glu Ser Thr Glu 6	lu Glu Ala Lys (Gly Ser 95
45	Gly Gln As	sp Ile Asp His 100	Leu Asp Phe Lys 1	le Gly Val Glu 1 110	Pro Lys
50	Asp Ser Pr 11	o Pro Phe Thr	Val Ile Leu Val A	la Ser Ser Arg (125	Gln Glu
	Lys Ala Al 130	a Trp Thr Ser	Asp Ile Ser Gln 0 135	ys Val Gly Asn 1 140	lle Arg
55	Cys Asn Gly 145	y Leu Met Met 150	Lys Pro Phe Glu 6 1	lu Asn Ser Lys \ 55	/al Thr 160
	Val Pro Gl	n Met Ile Lys 165	Ser Asp Ala Ser I 170		asp Val 75
60	Asp Ile Are	g Phe Ser Lys 180	Thr Met Asn Ser C 185	ys Lys Val Leu (190	In Ile
	Ala Tur al	a Ser Val Clu	3 mm Tau Tau 631 3		

			19	5				20	0				20	5		
5	Ph	e Le 21	u Se 0	r Il	e As	p Phe	e Le 21	u As: 5	n Th	r Ph	e Le	u Hi: 22	s Se		r Ar	g Val
	Pho 22:	e Th 5	r Th	r Ala	a Ile	e Vai 23(l Va	l Le	u As	р Гу	s Le	u Ile 5	e Th	r Ile	∋ Туз	Lys 240
10	Ly	s Pr	o Il	e Se	r Ala 245	a Ile	e Pro	o Ala	a Ar	g Se: 25	r Lei	ı Glı	ı Le	u Lei	1 Phe 255	Ala
					•				20:	•				270)	Pro
15								400	,				28	5		Lys
20							23.	,				300)			Ile
						310					315)		Cys		32 <u>0</u>
25										330	l			e Ser	335	
20									343					Thr 350		
30								200					365			
35							3/3					380		Glu		
						270					395			Ser		400
40					-05					410				Ser	415	
45									425					Ser 430		
45								440					445	Ala		
50							777					460		Glu		
						470					4/5			Gln		480
55					.05					490				Arg	495	
(0									505					Phe 510		
60								320					525	Glu		
	His	Asp	Pro	Glu	Leu	Leu	Thr	Gln	Glu	Arg	Lys	Ala	Ala	Ala	Asn	Tle

•		530					535				•	540)			
5	Ile 545	Arg	Thr	Leu	Thr	Gln 550	Glu	Asp	Pro	Gly	Asp 555	Asn	Gln	Ile	Thr	Leu 560
	Glu	Glu	Ile	Thr	Gln 565	Met	Ala	Glu	Gly	Val 570	Lys	Ala	Glu	Pro	Phe 575	
10	Asn	His	Ser	Ala 580	Leu	Glu	Ile	Ala	Glu 585	Gln	Leu	Thr	Leu	Leu 590	Asp	His
	Leu	Vaì	Phe 595	Lys	Lys	Ile	Pro	Tyr 600	Glu	Glu	Phe	Phe	Gly 605	Gln	Gly	Trp
15	Met	Lys 610	Leu	Glu	Lys	Asn	Glu 615	Arg	Thr	Pro	Tyr	Ile 620	Met	Lys	Thr	Thr
20	Lys 625	His	Phe	Asn	Ąsp	Ile 630	Ser	Asn	Leu	Ile	Ala 635	Ser	Glu	Ile	Ile	Arg 640
•	Asn	Glu ·	Asp	Ile	Asn 645	Ala	Arg	Val	Ser	Ala 650	Ile	Glu	Lys	Trp	Val 655	Ala
25	Val	Ala	Asp	Ile 660	Cys	Arg	Cys	Leu ·	His 665	Asn	Tyr	Asn	Ala	Val 670	Leu	Glu
			075					Ser 680					685			
30		050					כעס	Thr				700				
35	,05					/10		Arg			715					720
					125	•		Val		730					735	
40				740				Gly	/45	•		•		750		
45			133					Arg 760					765			
45		,,,					1/5	Ala				780				
50	,,,					190		Gln			795				Glu	Ser 800
	Leu	Tyr	Glu	Ser	Ser 805	Leu	Arg	Ile	Glu	Pro 810.	Lys	Leu	Pro	Thr		

- 55 (2) INFORMATION POUR LA SEQ ID NO: 3:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 666 acides aminé
 (B) TYPE: acide aminé
 (D) CONFIGURATION: linéire
- 60
 - (ii) TYPE DE MOLECULE: proténe

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

Met Met Lys Pro Phe Glu Glu Asn Ser Lys Val Thr Val Pro Gln Met 5 Ile Lys Ser Asp Ala Ser Leu Tyr Cys Asp Asp Val Asp Ile Arg Phe Ser Lys Thr Met Asn Ser Cys Lys Val Leu Gln Ile Ala Tyr Ala Ser 35 40 45 10 Val Glu Arg Leu Glu Arg Leu Thr Asp Leu Arg Phe Leu Ser Ile Asp Phe Leu Asn Thr Phe Leu His Ser Tyr Arg Val Phe Thr Thr Ala 15 Ile Val Val Leu Asp Lys Leu Ile Thr Ile Tyr Lys Lys Pro Ile Ser 20 Ala Ile Pro Ala Arg Ser Leu Glu Leu Leu Phe Ala Ser Gly Gln Asn Asn Lys Leu Leu Tyr Gly Glu Pro Pro Lys Ser Pro Arg Ala Thr Arg 25 Lys Phe Ser Ser Pro Pro Pro Leu Ser Ile Thr Lys Thr Ser Ser Pro 135 30 Ser Arg Arg Arg Lys Leu Ser Leu Asn Ile Pro Ile Ile Thr Gly Gly Lys Ala Leu Asp Leu Ala Ala Leu Ser Cys Asn Ser Asn Gly Tyr Thr 35 Ser Met Tyr Ser Ala Met Ser Pro Phe Ser Lys Ala Thr Leu Asp Thr Ser Lys Leu Tyr Val Ser Ser Ser Phe Thr Asn Lys Ile Pro Asp Glu 40 200 Gly Asp Thr Thr Pro Glu Lys Pro Glu Asp Pro Ser Ala Leu Ser Lys 45 Gln Ser Ser Glu Val Ser Met Arg Glu Glu Ser Asp Ile Asp Gln Asn Gln Ser Asp Asp Gly Asp Thr Glu Thr Ser Pro Thr Lys Ser Pro Thr 50 Thr Pro Lys Ser Val Lys Asn Lys Asn Ser Ser Glu Phe Pro Leu Phe Ser Tyr Asn Asn Gly Val Val Met Thr Ser Cys Arg Glu Leu Asp Asn 55 Asn Arg Ser Ala Leu Ser Ala Ala Ser Ala Phe Ala Ile Ala Thr Ala 60 Gly Ala Asn Glu Gly Thr Pro Asn Lys Glu Lys Tyr Arg Arg Met Ser

Leu Ala Ser Ala Gly Phe Pro Pro Asp Gln Arg Asn Gly Asp Lys Glu

					325	5				330)				335	5
5	Phe	e Vai	l Ile	340	g·Arç	y Ala	a Ala	1 Thr	Ası 34:	n Arç	y Vai	l ·Leı	ı Ası	n Val 350		i Arg
	His	Trį	9 Val 355	Ser	: Lys	His	Sei	Glr 360	ı Ası) Phe	e Glu	Thr	Asr 365	a Asp	Glu	Leu
10	Lys	370	Lys)	Va]	Ile	e Gly	Phe 375	Lev	Gli	ı Glu	ı Val	Met 380	His	Asp	Pro	Glu
	Let 385	Leu i	Thr	Glr	Glu	Arg 390	Lys	. Ala	Ala	Ala	Asn 395	Ile	Ile	arg	Thr	Leu 400
15	Thr	Glr	Gļu	Asp	Pro 405	Gly	Asp	Asn	Gln	11e 410	Thr	Leu	Glu	Glu	Ile 415	Thr
20	Gln	Met	: Ala	Glu 420	Gly	.Val	Lys	Ala	Glu 425	Pro	Phe	Glu	. Asn	His 430		.Ala
	Leu	Glu	1le 435	Ala	Glu	Gln	Leu	Thr 440	Leu	Leu	Asp	His	Leu 445		Phe	Lys
25	Lys	Ile 450	Pro	Tyr	Glu	Glu	Phe 455	Phe	Gly	Gln	Gly	Trp 460	Met	Lys	Leu	Glu
	Lys 465	Asn	Glu	Arg	Thr	Pro 470	Tyr	Ile	Met	Lys	Thr 475	Thr	Lys	His	Phe	Asn 480
30	Asp	Ile	Ser	Asn	Leu 485	Ile	Ala	Ser	Glu	Ile 490	Ile	Arg	Asn	Glu	Asp 495	Ile
35	Asn	Ala	Arg	Val 500	Ser	Ala	Ile	Glu	Lys 505	Trp	Val	Ala	Val	Ala 510	Asp	Ile
	Cys	Arg	Cys 515	Leu	His	Asn	Tyr	Asn 520	Ala	Val	Leu	Glu	Ile 525	Thr	Ser	Ser
. 40	Met	Asn 530	Arg	Ser	Ala	Ile	Phe 535	Arg	Leu	Lys	Lys	Thr 540	Trp	Leu	Lys	Val
			Gln			JJ0.			,		222					560
45	Ser	Glu	Gly	Arg	Phe [.] 565	Lys	Asn	Leu	Arg	Glu 570	Ala	Leu	Lys	Asn	Суз 575	Asp
50	Pro	Pro	Cys	Val 580	Pro	Tyr	Leu	Gly	Met 585	Tyr	Leu	Thr	Asp	Leu 590	Ala	Phe
			Glu 595					000				•	605			
55	Ser	Lys 610	Met	Arg	Met	Ile	Ser 615	His	Ile	Ile	Arg	Glu 620	Ile	Arg	Gln	Phe
	Gln 625	Gln	Thr	Ala	Tyr	Lys 630	Ile	Glu	His	Gln	Ala 635	Lys	Val	Thr		Tyr 640
60			Asp		042		٠			650	Glu	Ser	Leu	Tyr	Glu 655	Ser
	Ser	Leu	Arg	Ile	Glu	Pro	Lys	Leu	Pro	Thr						

5	(2) IN	FORM	ATIO	N PO	UR L	A SE	Q ID	NO:	4:						
10				(A) 1 (B) 1	LONG TYPE	RIST: JEUR: aci IGUR!	: 489 ide a	9 ac: aminé	ides É	amin	ENCE: né	:				
		(i:	i) T	YPE I	DE MO	DLECT	ΠE:	prot	éne							
		(x:	i) D1	ESCRI	[PTI	ON DE	LA	SEQU	JENCE	E: SI	II QE	NO:	: 4:			
15	Met	Туз	Sea	r Ala	Met	Ser	Pro	Phe	e Ser	Lys 10	a Ala	Thr	Let	Ast	Thr 15	Ser
20	Lys	Let	1 Туг	val 20	Ser	Ser	Ser	Phe	Thr 25	Asn	Lys	Ile	Pro	Asp 30		Gly
	Asp	Thr	Thr 35	Pro	Glu	Lys	Pro	Glu 40	Asp	Pro	Ser	Ala	Leu 45		Lys	Gln
25	Ser	Ser 50	Glu	ı Val	Ser	Met	Arg 55	Glu	Glu	Ser	Asp	Ile 60	Asp	Gln	Asn	Gln
	Ser 65	Asp) Asp	Gly	Asp	Thr 70	Glu	Thr	Ser	Pro	Thr 75	Lys	Ser	Pro	Thr	Thr 80
30	Pro	Lys	Ser	Val	Lys 85	Asn	Lys	Asn	Ser	Ser 90	Glu	Phe	Pro	Leu	Phe 95	Ser
35	Tyr	Asn	Asn	Gly 100	Val	Val	Met	Thr	Ser 105	Cys	Arg	Glu	Leu	Asp 110	Asn	Asn
	Arg	Ser	Ala 115	Leu	Ser	Ala	Ala	Ser 120	Ala	Phe	Ala	Ile	Ala 125	Thr	Alá	Gly
40	Ala	Asn 130	Glu	Gly	Thr	Pro	Asn 135	Lys	Glu	Lys	Tyr	Arg 140	Arg	Met	Ser	Leu
	Ala 145	Ser	Ala	Gly	Phe	Pro 150	Pro	Asp	Gln	Arg	Asn 155	Gly	Asp	Lys	Glu	Phe 160
45	Val	Ile	Arg	Arg	Ala 165	Ala	Thr	Asn	Arg	Val 170	Leu	Asn	Val	Leu	Arg 175	His
50				. • •		Ser			105					190		
	Cys	Lys	Val 195	Ile	Gly	Phe	Leu	Glu 200	Glu	Val	Met	His	Asp 205	Pro	Glu	Leu
55	Leu	Thr 210	Gln	Glu	Arg	Lys	Ala 215	Ala	Ala	Asn	Ile	Ile 220	Arg	Thr	Leu	Thr
	Gln 225	Glu	Asp	Pro	Gly	Asp 230	Asn	Gln	Ile	Thr	Leu 235	Glu	Glu	Ile	Thr	Gln 240
60	Met	λla	Glu	Gly	Val 245	Lys	Ala	Glu	Pro	Phe 250	Glu	Asn	His	Ser	Ala 255	Leu
	Glu	Ilė	Ala	Glu	Gln	Leu	Thr	Leu	Leu	azA	His	Lev	Val	Pho	Luc	Tura

				260				٠	265					270		
5	Ile	Pro	Tyr 275	Glu	Glu	Phe	Phe	Gly 280	Gln	Gly	Trp	Met	Lys 285	Leu	Glu	Lys
	Asn	Glu 290	Arg	Thr	Pro	Tyr	Ile 295	Met	Lys	Thr	Thr	Lys 300	His	Phe	Asn	Asp
10	Ile 305	Ser	Asn	Leu	Ile	Ala 310	Ser	Glu	Ile	Ile	Arg 315	Asn	Glu	Asp	Ile	Asn 320
	Äĺa	Arg	Val	Ser	Ala 325	Ile	Glu	Lys	Trp	Val 330	Ala	Val	Ala	Asp	Ile 335	Cys
15	Arg	Cys	Leu	His 340	Asn	Tyr	Asn	Ala	Val 345	Leu	Glu	Ile	Thr	Ser 350	Ser	Met
20	Asn	Arg	Ser 355	Ala	Ile	Phe	Arg	Leu 360	Lys	Lys	Thr	Trp	Leu 365	Lys	Val	Ser
	Lys	Gln 370	Thr	Lys	Ala	Leu	Ile 375	Asp	Lys	Leu	Gln	Lys 380	Leu	Ϋal	Ser	Ser
25	Glu 385	Gly	Arg	Phe	Lys	Asn 390	Leu	Arg	Glu	Ala	Leu 395	Lys	Asn	Cys	Asp	Pro 400
	Pro	Cys	Val	Pro	Tyr 405	Leu	Gly	Met	Tyr	Leu 410	Thr	Asp	Leu	Ala	Phe 415	Ile
30	Glu	Glu	Glý	Thr 420	Pro	Asn	Tyr	Thr	Glu 425	Asp	Gly	Leu	Val	Asn 430	Phe	Ser
35	Lys	Met	Arg 435	Met	Ile	Ser	His	Ile 440	Ile	Arg	Glu	Ile	Arg 445	Gln	Phe	Gln
	Gln	Thr 450	Ala	Tyr	Lys	Ile	Glu 455	His	Gln	Ala	Lys	Val 460	Thr	Gln	Tyr	Leu
40	Leu 465	Asp	Gln	Ser	Phe	Val 470	Met	Asp	Glu	Glu	Ser 475	Leu	Tyr	Glü	Ser	Ser 480
	Leu	Arg	Ile	Glu	Pro 485	Lys	Leu	Pro	Thr		-					
45	(2)	INFO	RMAI	CION	POUR	LA	SEQ	ID N	io: 5	5:	-		•			
	•	(i)	CAF	ACTE	RISI	IQUE	S DE	LA	SEQU	ENCE	: :					-
50		*	(E	3) TY 2) NO 0) CO	PE: MBRE	ació DE	le nu BRIN	cléc S: c	ne loubl	.e	ases		• .			
EE		(ii)	TYE	E DE	MOI	ECUI	E: A	DNc								
55	(iii)	HYF	OTHE	TIQU	E: N	ION						•			
	((iii)	ANT	I-SE	NS:	иои			•							
60		(ix)	(A	ACTE) NO i) EM	M/CL	E: C	DS			E:		•		e en		

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:

		,	.,			M DE	· III	SEQU	ENCE	.: 51	O II	NO:	5:					
5	ATI Ile 1	ACT Thr	AAA Lys	ATA Ile	ATC Ile	GIN	AGG Arg	AAA Lys	AAA Lys	ATI Ile	Ala	A AGA	GAC Asp	AAT Asn	GGA Gly	CCA Pro	•	48
10	GGT Gly	CAT His	AAT Asn	ATT Ile 20	Thr	TTT Phe	CAG Gln	AGT Ser	TCA Ser 25	Pro	CCC Pro	ACA Thr	GTT Val	GAG Glu 30	Trp	CAT		96
15	ATA Ile	AGC Ser	AGA Arg 35	PIO	GGG	CAC His	ATA Ile	GAG Glu 40	ACT Thr	TTT	GAC Asp	CTG Leu	CTC Leu 45	ACC Thr	TTA Leu	CAC		144
20	CCA Pro	ATA Ile 50	GIU	ATT	GCT Ala	CGA Arg	CAA Gln 55	CTC Leu	ACT Thr	TTA Leu	CTT Leu	GAT Asp 60	Ser	GAT Asp	CTA Leu	TAC Tyr		192
•	CGA Arg 65	UTG	GTA Val	CAG Gln	CCA Pro	TCA Ser 70	GAT Asp	TTA Leu	GTT Val	GGA Gly	AGT Ser 75	GTG Val	TGG Trp	ACA Thr	AAA Lys	GAA Glu 80		240
25	GAC Asp	AAA Lys	GAA Glu	ATT Ile	AAC Asn 85	TCT Ser	CCT Pro	AAT Asn	CTT Leu	CTG Leu 90	AAA Lys	ATG Met	ATT Ile	CGA Arg	CAT His 95	ACC Thr		288
30	ACC Thr	AAC Asn	CTC	ACT Thr 100	CTG Leu	TGG Trp	TTT Phe	GAG Glu	AAA Lys 105	TGT Cys	ATT Ile	GTA Val	GAA Glu	ACT Thr 110	GAA Glu	AAT Asn		336
35	TTA Leu	GAA Glu	GAA Glu 115	AGA Arg	GTA Val	GCT Ala	GTG Val	GTG Val 120	AGT Ser	CGA Arg	ATT Ile	ATT Ile	GAG Glu 125	ATT Ile	CTA Leu	CAA Gln		384
40	GTC Val	TTT Phe 130	CAA Gln	GAG Glu	TTG Leu	AAC Asn	AAC Asn 135	TTT Phe	AAT Asn	GGG Gly	GTC Val	CTT Leu 140	GAG Glu	GTT Val	GTC Val	AGT Ser		432
	GCT Ala 145	ATG Met	AAT Asn	TCC Ser	TCA Ser	CCT Pro 150	GTT Val	TAC Tyr	AGA Arg	CTA Leu	GAC Asp 155	CAC His	ACA Thr	TTT Phe	GAG Glu	CAA Gln 160		480
45	ATA Ile	CCA Pro	AGT Ser	CGC Arg	CAG Gln 165	AAG Lys	AAA Lys	ATT Ile	TTA Leu	GAA Glu 170	GAA Glu	GCT Ala	CAT His	GAA Glu	TTG Leu 175	AGT Ser		528
50	GAA Glu	GAT Asp	1172	TAT Tyr 180	nys	AAA Lys	TAT Tyr	TTG Leu	GCA Ala 185	AAA Lys	CTC Leu	AGG Arg	TCT Ser	ATT Ile 190	AAT Asn	CCA Pro	į	576
55	CCA Pro	TGT Cys	GTG Val 195	CCT Pro	TTC Phe	TTT Phe	GGA Gly	ATT Ile 200	TAT Tyr	CTA Leu	CAT His	AAT Asn	ATC Ile 205	TTG Leu	AAA Lys	ACA Thr	ć	524
60	GAA Glu	GAA Glu 210	GLY	AAC Asn	CCT Pro	GIU	GTC Val 215	CTA Leu	AAA Lys	AGA Arg	CAT His	GGA Gly 220	AAA Lys	GAG Glu	CTT Leu	ATA Ile	6	572
	AAC Asn 225	TTT Phe	AGC Ser	AAA Lys	AGG Arg	AGG Arg 230	AAA Lys	GTA Val	GCA Ala	GAA Glu	ATA Ile 235	ACA Thr	GGA Gly	GAG . Glu	Ile	CAG Gln 240	7	720

									•								
5	CAG Gln	TAC	CAA Gln	AAT Asn	CAG Gln 245	PIO	TAC	TGT Cys	TTA Leu	CGA Arg 250	Val	GAA Glu	TCA Ser	GAT Asp	ATC Ile 255	AAA Lys	768
J	AGG Arg	TTC Phe	TTT Phe	GAA Glu 260	Asn	TTG Leu	AAT Asn	CCG	ATG Met 265	GGA Gly	AAT Asn	AGC Ser	ATG Met	GAG Glu 270	AGG Arg	GAA Glu	816
10	TTT Phe	ACA Thr	GAT Asp 275	TAT Tyr	CTT Leu	TTC Phe	AAC Asn	AAA Lys 280	Ser	CTA Leu	GAA Glu	ATA Ile	GAA Glu 285	CCA Pro	CGA Arg	AAC Asn	864
15	CCT Pro	AAG Lys 290	PIO	CTC Leu	CCA Pro	AGA Arg	TTT Phe 295	CCA Pro	AAA Lys	AAA Lys	TAT Tyr	ACG Thr 300	TAT Tyr	CCC Pro	CTA Leu	AAA Lys	912
20	TCT Ser 305	FIU	GGT Gly	GTC Val	CGG Arg	CCA Pro 310	TCA Ser	AAC Asn	CCA Pro	Arg	CCG Pro .315	GGT Gly	ACC Thr	ATG Met	AGG Arg	ATC Ile 320	960
25	CCC Pro	ACC Thr	Pro	CTA Leu	CAG Gln 325	GIN	GAA Glu	CCA Pro	CGA Arg	AAA Lys 330	ATA Ile	AGT Ser	TAT Tyr	AGT Ser	AGA Arg 335	ATA Ile	1008
	CCA Pro	GAG Glu	TCA Ser	GAG Glu 340	ACA Thr	GAG Glu	AGT Ser	ACT Thr	GCT Ala 345	AGT Ser	GCA Ala	CCT Pro	AAT Asn	TCA Ser 350	CCA Pro	AGG Arg	1056
30	ACA Thr	CCT Pro	CTA Leu 355	ACA Thr	CCT Pro	CCA Pro	CCT Pro	GCA Ala 360	TCA Ser	GGA Gly	ACA Thr	TCA Ser	•				1092
35	(2)		ORMAT				-			•							
40		•	(E	1) LC 3) TY	NGUE (PE:	UR: acid	364 le an	ació	A SE les a méair	miné	ICE:						
			TYE									-					
45	Ile					•						NO:		Asn	~ 3	_	
	•				Э	•				10			٠.	•	15		
50	GTĀ	His	Asn	Ile 20	Thr	Phe	Gln	Ser	Ser 25	Pro	Pro	Thr	Val	Glu 30	Trp	His	
	Ile	Ser	Arg 35	Pro	Gly	His	Ile	Glu 40	Thŗ	Phe	Asp	Leu	Leu . 45	Thr	Leu	His	
55	Pro	Ile 50	Glu	Ile	Ala	Arg	Gln 55	Feń	Thr	Leu	Leu	Asp 60	Ser	Asp	Leu	Tyr	
60	Arg 65	Ala	Val	Gln	Pro	Ser 70	Asp	Leu	Val	Gly	Ser 75	Val	Trp	Thr	Lys	Glu 80·	
	Asp	Lys	Glu	Ile	Asn	Ser	Pro	Asn	Leu :	Leu	Lys	Met	Ile	Arg	His	Thr	

	Thi	c Ası	n Lei	100	: Leu	Trp	Phe	≘ Glu	Lys 105	Cys	s Ile	· Val	Glu	Thr 110	Glı	ı Asn
5	Leu	ı Glı	1 Glu 115	Arg	Val	Ala	. Val	l Val 120	Ser	Arç	J Ile	: Ile	Glu 125	ı Ile	e Lev	Gln
	Val	130	Gln	Glu	Leu	Asn	Asr 135	Phe	asn	Gly	/ Val	Leu 140	Glu	Val	. Val	. Ser
10						150		Tyr			155					160
15					.03			Ile		170					175	
				, 00				Leu	185					190		
20.								Ile 200					205			
25							213	Leu				220				
25	_					230		Val			235					240
30	•				~15			Cys		250					255	
								Pro	200					270		
35			_					Lys 280					285			
40							295	Pro				300				
						3.0		Asn			315					320
45								Pro		330					335	
				310					345					Ser 350	Pro	Arg
50			223					Ala 360			Thr	Ser				
55	(2)		CAR (A (B (C	ACTE	RIST: NGUET PE: & MBRE	IQUES UR: acide DE E	S DE 1956 e nu BRIN	ID No LA : pai: cléic S: do line	SEQUI res (que	ENCE de b	: ases					

- 60 (ii) TYPE DE MOLECULE: ADNC
 - (iii) HYPOTHETIQUE: NON

(iii) ANTI-SENS: NON

5		(i:		(A) 1	NOM/C	STIQU LE: ACEME	CDS			LE:								•
10	N.C.C					ON DE								•			•	
	Arg	Phe	r GAZ ≥ Gli	A ATC	Pro) GIU	CCA Pro	GAA Glu	CCI Pro	ACA Thr	Glu	A GCA 1 Ala	A GAT A Asp	Lys	A CTA S Let 15	A GCA 1 Ala 5		48
15	CTI Leu	GA(AAA 1 Lys	A GGA Gly 20	GTU	CAA Gln	CCA Pro	ATC Ile	TCI Ser 25	. ATS	GAI Asp	CTA Lev	A AAC	AGG Arg	Phe	AGA Arg	:	96
20	AAG Lys	GAA Glu	TAT Tyr 35		CAA Gln	CCA Pro	GTA Val	CAG Gln 40	. ren	CGG Arg	GTG Val	TTO	AAC Asn 45	Val	CAG Gln	CGG Arg		144
25	CAC His	TGC Trp 50	, 4077	GAA Glu	CAT His	CAC His	CCC Pro 55	Hls	GAC Asp	TTT Phe	GAA Glu	AGA Arg	Asp	TTG Leu	GAA Glu	CTG		192
30	CTC Leu 65	GAA Glu	AGA Arg	CTA Leu	GAA Glu	TCC Ser 70	TTC Phe	ACC Thr	TCA Ser	AGC Ser	GCT Ala 75	His	AGA Arg	GCG Ala	AAA Lys	GCA Ala 80		240
	ATG Met	AAG Lys	AAG Lys	TGG	GTA Val 85	GAG Glu	AGC Ser	ATC Ile	GCT Ala	AAG Lys 90	ACC Thr	ATC	AGG Arg	AGG Arg	AAG Lys 95	AAG Lys		288
35	CAA Gln	GCT Ala	CAG Gln	GCA Ala 100	AAT Asn	GGA Gly	GTA Val	AGC Ser	CAT His 105	AAT Asn	ATT	ACC Thr	TTT Phe	GAA Glu 110	AGT Ser	CCA Pro		336
40	Pro	CCA Pro	CCA Pro 115	ATT	GAA Glu	TGG Trp	CAT His	ATC Ile 120	AGC Ser	AAA Lys	CCA Pro	GGA Gly	CAG Gln 125	TTT Phe	GAA Glu	ACA Thr		384
45	TTT Phe	GAT Asp 130	CTC Leu	ATG Met	ACA Thr	CTT Leu	CAT His 135	CCA Pro	ATA Ile	GAA Glu	ATT Ile	GCA Ala 140	CGT Arg	CAG Gln	CTG Leu	ACA Thr		432
50	CTT Leu 145	TTG Leu	GAG Glu	TCT Ser	GAT Asp	CTT Leu 150	TAC Tyr	AGG Arg	AAA Lys	val	CAA Gln 155	CCG Pro	TCT Ser	GAA Glu	CTT Leu	GTA Val 160		480
	GGG	AGT Ser	GTG Val	TGG Trp	ACC Thr 165	AAA Lys	GAA Glu	GAT Asp	AAA Lys	GAA Glu 170	ATA Ile	AAT Asn	TCT Ser	CCA Pro	AAT Asn 175	TTA Leu		528
55	TTA Leu	AAA Lys	ATG Met	ATT Ile 180	CGC Arg	CAT His	ACC Thr	ACA Thr	AAT Asn 185	CTC Leu	ACC Thr	CTC Leu	TGG Trp	TTT Phe 190		AAA Lys		576
60	TGC Cys	ATT Ile	GTG Val 195	GAA Glu	GCA Ala	GAA : Glu :	Asn	TTT Phe 200	GAA Glu	GAA Glu	CGG	GTG Val	GCA Ala 205	GTA Val	CTA Leu	AGT Ser		624
	AGA	ATT	ATA	GAA	ATT	CTG	CAA	GTT	TTT	CGA	GAT	TTG	AAT	AAT	TTC	AAT		672

									•	•										
									•				۷.	20				≥ Asn		
5	22	5					23	0		a va	T M	23	er va 35	at S	er V	'al	Туг	AGA Arg 240		720
10						245	5		. ne	1 61	25	0	.g r?	/S A	rg L	ys	11e 255			768
15					260			, Der	. 611	26	р н <u>т</u> 5	s Pn	е гу	's L	ys T 2	yr 70	Leu	GTA Val		816
			2	75		-,			280) Cy:	s va	ı Pr	o Ph	e Pi 28	1e G. 35	lу	Ile	TAT Tyr		864
20		29	0				-,-	295	GIU	. 61	ı Gı	y As:	n As 30	n As O	ip Pi	ne	Leu			,912
25	AAG Lys 305	Ly:	A GO	GG /	AAA Lys	GAT Asp	TTA Leu 310	ATC	AAT Asn	TTC Phe	AG'.	T AAG Ly:	S Ar	G AG g Ar	G A	AA /s	GTA Val	GCT Ala 320		960
30						325		CAG Gln	GIII	TYL	330	ASI	ı GII	ı Pr	о Ту	T	Cys 335	Leu		1008
35			-	3	340			AGG Arg	ary	345	Pne	: GIV	ASI	ı Le	u As 35	n 1	Pro	Met		1056
	GGA Gly	AGT Ser	GC Al 35	A 1 a C 5	GT Ys	G.AA Glu	AAA Lys	GAG Glu	TTT Phe 360	ACA Thr	GAT Asp	TAI Tyr	TTC Leu	TTO Pho 365	e As	C A	AAA Lys	AGT Ser		1104
40	TTA Leu	GAA Glu 370	AT Il	A G e G	AA (CCA Pro	CGA Arg	AAT Asn 375	TGT Cys	AAA Lys	CAG Gln	CCA Pro	CCA Pro 380	Arç	A TT J Ph	T (CCA Pro	CGA Arg		1152
45	AAA Lys 385	AGT Ser	AC. Th	A T	TT (CTA Leu 390	AAA Lys	GAA Glu	CCA Pro	GGA Gly	ATA Ile 395	Arg	CCA	A AA' O Asi	r c	la	GGA Gly 400		1200
50	CGA Arg	CAT His	GG; Gl;	A G.	AA A lu 1	ACA Thr :	AGT Ser	GGA Gly	ACA Thr	AGA Arg	GGA Gly 410	CAT His	CCA Pro	ACA Thr	CC) L				1248
55	AGA Arg	GAA Glu	CC! Pro	A T/ O T/ 4/	AT A yr I 20	AAA ;	ATA Ile	GAA ! Glu :		GAA Glu 425	AGA Arg	ATA Ile	GCT Ala	GAA Glu	ACA Thr	G	AA (lu]	CTA Leu	.'	1296
	GAA Glu	AGT Ser	ACA Thr 435	Va	ra a al s	GT (Ger #	GCA :		ACA A	AGT Ser	CCA Pro	AAT Asn	ACT Thr	CCC Pro 445	TCA Ser	A A	CA (CCA		1344
60	CCA (GTT Val 450	TCA Ser	GC Al	CA T la S	CA Ter S		GAT (Asp H 155	CAC :	rca Ser	GTA Val	TTT Phe	TTA Leu 460		GTA Val	G. A:	AT C	TA. eu		1392

	AAC Asn 465	. oer	AGT Ser	CAC His	GGA Gly	TCA Ser 470	Asn	ACA Thr	ATC	TTT Phe	GCA Ala 475	Pro	GTC Val	CTA Leu	CTA Leu	CCA Pro 480	1	440
5	AAG Lys	TCC Ser	AAG Lys	TCT Ser	TTC Phe 485	TTT Phe	AGT Ser	TCA Ser	TGT Cys	GGA Gly 490	Ser	TTA Leu	CAT	AAA Lys	CTA Leu 495	AGT Ser	1	488
10	GAA Glu	GAG Glu	CCC	CTG Leu 500	TTE	CCT Pro	CCT Pro	CCT Pro	CTT Leu 505	CCT Pro	CCT Pro	CGA Arg	AAA Lys	AAG Lys 510	TTT Phe	GAT Asp	. 1	536
15	CAT His	GAT Asp	GGC Gly 515	TCA Ser	AAT Asn	TCC Ser	AAG Lys	GGA Gly 520	AAT Asn	ATG Met	AAA Lys	TCT Ser	GAT Asp 525	GAT Asp	GAT Asp	CCT Pro	1	584
20		530	TTE	PIO	PIO	Arg	535	PIO	Pro	Pro	Pro	Lys 540	Val	Lys	Pro	Arg	1	632
•	545	110	vai	PIO	THE	550	ATA	Pne	qzA	Gly	Pro 555	Leu	His	AGT Ser	Pro	Pro 560	1	680
25		110	FIO	PIO	565	Asp	Pro	ren	Pro	Asp 570	Thr	Pro	Pro	CCA Pro	Val 575	Pro	1	728
30		***Y	PIO	580	GIU	HIS	Pne	TTE	585	C <u>y</u> s	Pro	Phe	Asn	CTT Leu 590	Gln	Pro	17	776
35		120	595	GIY	nis	ren	HIS	600	Asp	Ser	Asp	Trp	Lец 605	AGA Arg	Asp	Ile	18	824
40.	001	610	Cys	PLO	ASN	ser	615	ser.	Thr	Pro	Pro	Ser 620	Thr	CCC Pro	Ser	Pro	18	3 7 2
	625	•••	210	ALG	Arg	630	TÄL	 va.t	Leu	Ser	Ser 635	Ser	CAG Gln	AAT Asn	Asn	CTT Leu 640	19	920
45	GCT Ala	CAT His	CCT Pro	Pro	GCT [·] Ala 645	Pro	CCT Pro	GTT Val	Pro	Pro	Arg	GAG Glu		•			19	956
50	(2)	INFO	RMAT	NOI	POUR	LA.	SEQ :	ID N	0: 8	:			• •		•			
55			(A (B	.) LO) TY	NGUE PE:	STIQ UR: acid URAT	652 a e am	acid iné	es a	miné	CE:							
		(ii)				ECUL					•							
60						DE :				SEQ	ID 1	NO:	8:					

Arg Phe Glu Ile Pro Glu Pro Glu Pro Thr Glu Ala Asp Lys Leu Ala 1 5 10 15

	Le	u G	lu I	ys	Gly 20	Gli	ı Gl	n Pr	0 Il	e S	er <i>1</i> 25	\la	As	p Le	u Ly	's Ai	g 1	Phe	Arg
5	Ly	s G	lu T	yr : 35	Ile	Glr	Pro	o Va	1 Gl 4	n Le O	eu A	lrg	Va.	l Le	u As	n Va	1 (Sln	Arg
	Hi	s Ti	p V	al (Glu	His	His	Pro 5	o Hi 5	s As	p F	he	Glı	ı Ar	g As O	p Le	u G	lu	Leu
10	Le ^c	ս G] 5	lu A	rg I	Leu	Glu	Ser 70	Phe	e Th	r Se	r s	er	Ala 75	Hi:	s Ar	g Al	a I	ys	Ala 80
15	Me	t Ly	'S L	ys I	rp	Val 85	Glu	Se	r Ile	e Al	a L	ys 90	Thr	Ile	e Ar	g Ar		ys 95	
	Glı	n Al	a G	ln A	la 00	Asn	Gly	Val	l Se	r Hi 10	s A	sn	Ile	Thi	Ph	e Gl		er	Pro
20									120	,					12				
									•					140	1	g Glı			
25							. 50						155			Glı			160
30												<i>,</i> 0				Pro	17	75	
					•					10	,					Phe 190)		
35									200						205				
								2.5						220		Asn			
40												•	235			Val		2	240
45											25	U				Lys	25	5	
					_					205						Tyr 270			
50	Lys								200						285				
FF	Leu						,	2,5					•	300					
55	Lys 305											3	13					3	20
60	Glu				-						330	,					335	5	
	Arg	Ile	Glu	Pro 340	э A:)	sp M	let 1	Arg .	Arg	Phe 345	Phe	e G.	lu A	Asn	Leu	Asn 350	Pro) M	et

								. 500	,		•		36	5		s Ser
5							٥,,	,				380)			Arg
						-	•				395	•				Gly
10						•				410	,				415	
15									420	,		•		430	}	Leu
								440					445			Pro
20							400					460		-		Leu
			-			470	٠.				4/5					Pro 480
25		•								490	-			•	495	Ser
30									305		Pro			510		
								320			Lys		525			
35							ردد				Pro	540				
40											Pro 555		-			560
.40										570	Thr				575	
45									202		Pro		_	590		
•			-					000			Asp		6 05 ·			
50						•	0.5					620				
	Arg 625							•			035		Gln	Asn .		Leu 640
55	Ala	His	Pro	Pro	Ala 645	Pro	Pro	Val:		Pro 650	Arg (Glu				

- (2) INFORMATION POUR LA SEQ ID NO: 9: 60
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 41 bases
 (B) TYPE: acide nucléique

	(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
5	(ii) TYPE DE MOLECULE: ADNo	
	(iii) HYPOTHETIQUE: NON	
	(iii) ANTI-SENS: NON	
10	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:	
15	GATATCGAAT TCCGIGTIYT IAAYGTIYTI MGICAYTGGG T	41
	(2) INFORMATION POUR LA SEQ ID NO: 10:	
20	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 34 bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
25	(ii) TYPE DE MOLECULE: ADNC	•
	(iii) HYPOTHETIQUE: NON	
30	(iii) ANTI-SENS: NON	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:	
35	AAGCTTGAAT TCCKIMKYTT ISWRAARTTI AKIA	34

₹

REVENDICATIONS

- 1. Peptide caractérisé en ce qu'il ralentit ou inhibe l'échange du GDP sur le complexe p21-GDP.
- 2. Peptide selon la revendication 1 caractérisé en ce qu'il comprend tout ou partie des séquences SEQ ID n° 2, 3, 4, 6 ou 8 ou d'un dérivé de celles-ci.
 - 3. Peptide comprenant tout ou partie des séquences SEQ ID n° 2, 3, 4, 6 ou 8 ou d'un dérivé de celles-ci.
 - 4. Anticorps ou fragment d'anticorps dirigé contre un peptide selon l'une quelconque des revendications 1 à 3.
- 5. Anticorps ou fragment d'anticorps selon la revendication 4 caractérisé en ce qu'il est dirigé contre la séquence peptidique SEQ ID n° 1.
 - 6. Anticorps ou fragment d'anticorps selon la revendication 5 caractérisé en ce qu'il possède la capacité d'inhiber au moins partiellement l'échange du GDP sur le complexe p21-GDP.
- 7. Séquence nucléotidique codant pour un peptide tel que défini dans l'une quelconque des revendications 1 à 3.
 - 8. Séquence nucléotidique selon la revendication 7 caractérisée en ce qu'elle est choisie parmi :
- (a) tout ou partie des séquences SEQ ID n° 1, 5 ou 7 ou de leur brin 20 complémentaire,
 - (b) toute séquence hybridant avec une séquence (a) et codant pour un polypeptide selon l'invention, et
 - (c) les séquences dérivées des séquences (a) et (b) en raison de la dégénérescence du code génétique.
- 9. Séquence antisens capable d'inhiber au moins partiellement la production de peptides selon la revendication 3.
 - 10. Séquence nucléotidique capable de s'hydrider avec une séquence selon les revendications 7 ou 8 ou avec l'ARNm correspondant.

30

- 11. Utilisation d'une séquence selon la revendication 10 pour la détection de l'expression du facteur d'échange du GDP ou pour la mise en évidence d'anomalies génétiques (mauvais épissage, polymorphisme, mutations ponctuelles, etc).
- 12. Utilisation d'un peptide selon l'une quelconque des revendications 1 à 3 pour la réalisation d'un composé non peptidique ou non exclusivement peptidique capable de moduler les niveaux d'échange du GDP sur des complexes p21-GDP, par détermination des éléments structuraux de ce peptide qui sont importants pour son activité et reproduction de ces éléments par des structures non peptidiques ou non exclusivement peptidiques.
- 13. Composition pharmaceutique comprenant comme principe actif au moins un peptide selon l'une des revendications 1 à 3 et/ou un anticorps ou fragment d'anticorps selon l'une des revendications 4 à 6 et/ou une séquence nucléotidique selon la revendication 8 et/ou un composé préparé selon la revendication 12.
- 14. Composition pharmaceutique selon la revendication 13 destinée à moduler l'activation des protéines p21.
 - 15. Composition pharmaceutique selon la revendication 14 destinée à inhiber au moins partiellement l'activation des protéines p21.
 - 16. Composition pharmaceutique selon la revendication 13 destinée au traitement des cancers.
- 20 17. Utilisation d'un anticorps ou fragment d'anticorps selon l'une des revendications 4 à 6 et/ou d'une séquence nucléotidique selon la revendication 10 pour la détection de l'expression et/ou d'une surexpression d'un facteur d'échange di GDP amplifié, muté ou réarrangé dans un échantillon biologique.
- 18. Utilisation d'un anticorps ou fragment d'anticorps selon l'une des
 revendications 4 à 6 et/ou d'une séquence nucléotidique selon la revendication 10 pour le typage de cancers.
 - 19. Procédé de préparation d'un peptide selon l'une quelconque des revendications 1 à 3 caractérisé en ce que l'on cultive une cellule contenant une séquence nucléotidique selon la revendication 7 dans des conditions d'expression de ladite séquence et on récupère le peptide produit.

FIGURE 1

FIGURE 2

FIGURE 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 93/00382

		FCI/FR 93/	00302
Int. C	A61K39/395: G01N33/577•	Cl2P21/08; A61K37	/02
	to International Patent Classification (IPC) or to be	th national classification and IPC	
B. FIE	LDS SEARCHED		
Minimum d	ocumentation searched (classification system followed	by classification symbols)	
Int. C	15 G07K; A61K; C12N G01N; C12Q	N ; C12P	
Documentat	tion searched other than minimum documentation to the	e extent that such documents are included in t	he fields searched
Electronic d	ata base consulted during the international search (nam	e of data base and, where practicable, search	terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
x	ONCOGENE vol. 5, No. 9, September 19 pages 1321 - 1328	90,	1,7,20
	YASUO FUKUMOTO ET AL. 'Mole and characterization of a n regulatory protein (GDI) fo proteins, ras p21-like smal proteins'	ovel type of r the rho	
	see abstract see page 1321, left-hand co 1- right-hand column, parag- see page 1321, right-hand co 3 - page 1323, left-hand co see page 1325, right-hand co 2 - page 1326, left-hand co	raph 1 olumn, paragraph lumn, paragraph 2 olumn, paragraph	·
		-/-	
Further	documents are listed in the continuation of Box C	See patent family annex.	
'A" documen to be of p	ategories of cited documents: It defining the general state of the art which is not considered particular relevance	the principle of theory underlying the	ation but cited to understand
'L" document cited to e	cument but published on or after the international filing date t which may throw doubts on priority claim(s) or which is establish the publication date of another citation or othe sason (as specified)	considered novel or cannot be considered step when the document is taken alone	ered to involve an inventive
O" documen means 'P" documen	t referring to an oral disclosure, use, exhibition or other t published prior to the international filing date but later that	considered to involve an inventive s combined with one or more other such d being obvious to a person skilled in the	step when the document is locuments, such combination e art
the phon	ty date claimed	"&" document member of the same patent Date of mailing of the international search	
	ugust 1993 (13.08.93)	27 August 1993 (27.08.93)	-
lame and ma	iling address of the ISA/	Authorized officer	
EURO acsimile No.	PEAN PATENT OFFICE	Telephone No.	
m PCT/ISA	/210 (second sheet) (July 1992)		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 93/00382

0.1	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	1
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	MOLECULAR AND CELLULAR BIOLOGY vol. 10, No. 8, August 1990, WASHINGTON US pages 4116 - 4122 YASUSHI MATSUI ET AL. 'Molecular cloning and characterization of a novel type of regulatory protein (GDI) for smg p25A, a ras p21-like GTP-binding protein' see abstract see page 4116, right-hand column, paragraph 2 - page 4117, left-hand column, paragraph 1; figure 2 see page 4120, right-hand column, paragraph 2 - page 4121, right-hand column, paragraph	1,7,20
A	JOURNAL OF CELLULAR BIOCHEMISTRY vol. 16B, 8 February 1992, page 220 RENATA ZIPPEL ET AL. 'CDC25 proteins in growth regulation and signal transduction in yeast and mammalian cells' cited in the application see abstract H 362	1,8
	-	
	•	
		·

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

e Internationale No.

PCT/FR 93/00382

I CLASSEMENT DE LONZON	TION	Demande Internationale No	
Edea la elección de L'INVEN	TION (si plusieurs symboles de classific	ation sont applicables, les indiquer tous) 7	
CIB 5 C12N15/1 A61K39/3		C12P21/08;	A61K37/02
II. DOMAINES SUR LESQUEI	S LA RECHERCHE A PORTE		
	Documentatio	n minimale consultée ⁸	
Système de classification		Symboles de classification	
CIB 5	CO7K; A61K; GO1N; C12Q	C12N ; C12P	
	Documentation consultée autre que où de tels documents font partie des	la documentation minimale dans la mesure domaines sur lesquels la recherche a porté	
III. DOCUMENTS CONSIDERE	S COMME DESCRIPTION OF THE		
			•
Catégorie ° Ide	ntification des documents cités, avec in des passages pertinents	dication, si nécessaire,12 5 13	No. des revendications visées 14
X ONCOGEN vol. 5,	no. 9, Septembre 1990	0,	1,7,20
YASUD Fl and char regulate proteins proteins voir abs voir page 3 - page voir page		vel type of the rho GTP-binding auche, alinéa 1 1 roite, alinéa 2 coite, alinéa	
"L" document pouvant jeter un priorité ou cité pour détern autre citation ou pour une "O" document se référant à un une exposition ou tous aut "P" document publié avant ia d postérieurement à la date de priorité IV. CERTIFICATION Date à laquelle la recherche interna	général de la technique, non brement pertinent publié à la date de dépôt interna- doute sur une revendication de niner la date de publication d'une raison spéciale (telle qu'indiquée) e divulgation orale, à un usage, à res moyens ate de dépôt international, mais e revendiquée	"T" document ultérieur publié postérieurem international ou à la date de priorité et à l'état de la technique pertinent, mais le principe ou la théorie constituant la "X" document particulièrement pertinent; l' quée ne peut être considérée comme mimpliquant une activité inventive "V" document particulièrement pertinent; l' diquée ne peut être considérée comme i activité inventive lorsque le document e plusieurs autres documents de même en naison étant évidente pour une personn "&" document qui fait partie de la même fait do	n'appertemenant pas cité pour comprendre base de l'invention invention revendi- uvelle ou comme invention reven- invention re
Administration chargée de la rechen	che internationale	Signature du fonctionnaire autorisé	
OFFICE E	JR PEEN DES BREVETS	MONTERO LOPEZ B.	

III. DOCUME	NTS CONSIDERES COMME PERTINENTS ¹⁴ (SUITE DES RENSEIGNEMENTS IN DEUXIEME FEUILLE)	DIQUES SUR LA
Catégorie ^o	Identification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendication visées 18
	MOLECULAR AND CELLULAR BIOLOGY vol. 10, no. 8, Août 1990, WASHINGTON US pages 4116 - 4122 YASUSHI MATSUI ET AL. 'Molecular cloning and characterization of a novel type of regulatory protein (GDI) for smg p25A, a ras p21-like GTP-binding protein' voir abrégé voir page 4116, colonne de droite, alinéa 2 - page 4117, colonne de gauche, alinéa 1; figure 2 voir page 4120, colonne de droite, alinéa 2 - page 4121, colonne de droite, alinéa	1,7,20
	JOURNAL OF CELLULAR BIOCHEMISTRY vol. 16B, 8 Février 1992, page 220 RENATA ZIPPEL ET AL. 'CDC25 proteins in growth regulation and signal transduction in yeast and mammalian cells' cité dans la demande see abstract H 362	1,8
		-
	·	•
		,
		,
<u> </u> 	·	
		•
ŀ		

Formulaire PCT/ISA/210 (festile additionnelle) (Octobre 1981)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 2 November 2000 (02.11.2000)

PCT

English

(10) International Publication Number WO 00/65054 A3

(51) International Patent Classification?: C12N 15/12, C07K 14/705, 16/28, C12Q 1/68, A61K 38/17, G01N 33/53

(21) International Application Number: PCT/US00/10884

(22) International Filing Date: 20 April 2000 (20.04.2000)

(25) Filing Language: English

(26) Publication Language:

(30) Priority Data: 60/130.694 23 April 1999 (23.04.1999) U 60/140,580 23 June 1999 (23.06.1999) U

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/130,694 (CIP)
Filed on 23 April 1999 (23.04.1999)
US 60/140,580 (CIP)
Filed on 23 June 1999 (23.06.1999)

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). REDDY, Roopa

[IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US).

(74) Agents: HAMLET-COX, Diana et al.: Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.
- (88) Date of publication of the international search report: 15 February 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

00/65054 A3

(54) Title: HUMAN MEMBRANE-ASSOCIATED PROTEINS