Sprawozdanie z układów logicznych	Ćwiczenie nr: 5
 Imię i nazwisko – student 1: Wojciech Krzos Imię i nazwisko – student 2: Natalia Marszałek 	Temat ćwiczenia: Analiza układu synchronicznego.
Grupa laboratoryjna nr (u prowadzącego): 5	Dzień tygodnia: Czwartek
Płyta montażowa nr (z tyłu zadajnika): NA	Godziny zajęć (od-do): 13:15 – 15:00

1.1 SYNTEZA AUTOMATU MOORE'A

1.1.1 Graf stanów-wyjść

1.1.2 Tablica przejść-wyjść

8	Z_1Z_2	0	1	Z_1	Z ₂
	X ₀₀	X ₀₀	X ₁₀	0	0
	X ₁₀	X ₀	X ₀₁	1	0
	X ₀₁	X ₀₀	X ₁₀	0	1
	X ₀	X ₀	X ₀₁	0	0

wyjsein ulcindu

1.1.3 Kodowanie stanów, tablica

11

Następnie, zajmiemy się analizą przerzutników typu D względem powyżej tabeli i grafu. Warto zwrócić uwagę na fakt, że z racji na naturę przerzutnika typu D, następne stany jego wyjścia (odpowiednio Q_1^{ord} i Q_2^{ord} dla obu przerzutników) równe są wejściom danych (D_1 i D_2). Pomoże to w stworzeniu osobnych tablic, które następnie zostaną wykorzystane do stworzenia funkcji wzbudzającej przerzutniki.

1.1.4 Otrzymanie funkcji wzbudzającej wejścia przerzutników

Używając powyższych, możemy stworzyć funkcję wzbudzającą przerzutniki oraz stworzyć jej tabelę:

$$D_1 = x * \neg Q_1 + \neg x * Q_1 = x \oplus Q_1$$

$$D_2 = Q_1$$

Zacieniowano wiersze, w których wyjście Z_1 lub Z_2 równe jest 1. Analizując, można dojść do wniosku, że dla Z_1 = 1, wejście Q_1 = 1 oraz Q_2 =0; można również zauważyć, że dla Z_2 =1: Q_1 =0, a Q_2 =1. Poniższy układ złożony z bramek AND i OR został następnie uproszczony do układu zawierającego bramki NAND i NOR. Dodatkowo, może zostać użyta własność algebry Bool'a: $a \times \neg b + \neg a \times b =$

Q_1	Q_2	Z ₁	Z ₂
0	0	0	0
0	1	0	1
1	1	0	0
1	0	1	0

 $a \oplus b$. Jest to układ używający najmniejszej ilości bramek, do jakiego doszliśmy w trakcie badania.

1.1.5 Symulacja w LogiSim

1.1.6 Diagram czasowy

Figure 1: Sekwencja 0101100010

1.2 SYNTEZA AUTOMATU MEALY'EGO

1.2.1 Graf stanów-wyjść

A - 00 stan początkowy
B - 10 stan po niepanystej 1
C - 01 stan po panystej 1
D - 11 stan po 1 a następnie 0

2.2.2 Tablica stanów-wyjść:

Stan\x	0	1
Α	A	В
В	D	С
С	A	В
D	D	С

Jak widzimy, nasza tabela składa się z dwóch identycznych części, zatem możemy ją zminimalizować do postaci:

STAN\X	0	1
AC(0)	AC	BD
BD(1)	BD	AC

A graf do postaci:

2.2.3 Kodowanie stanów

Aby móc przekształcić naszą fukcję do postaci układu z przerzutnikiem D potrzebujemy zakodować stany :

STAN\X	0	1
0	0	1
1	1	0

Stwórzmy mapę Karnoughta - dzięki której będziemy wiedzieli jakie dane należy przekazać do przerzutnika :

$$f(Q,x) = \overline{Q}x + Q\overline{x}$$

Korzystając z praw algebry Bool'a możemy uprościć funcję do jednego operatora XOR:

$$f(Q,x) = Q \oplus x$$

1.2.2 Otrzymanie funkcji wzbudzającej wejścia przerzutników

Aby otrzymać tę funkcję musimy przeanalizować tabele wartości na wyjściach Z_1 oraz Z_2 .

STAN\X	X	Z_1	Z_2
AC(0)	0	0	0
BD(1)	0	0	0
AC(0)	1	1	0
BD(1)	1	0	1

Otrzymaliśmy w ten sposób mapę Karnought, która pozwoli nam na pozyskanie potrzebnej fukcji dla każdego z wyjść :

Dla
$$Z_1$$
: $f(Z_1) = x\overline{Q}$

Dla
$$Z_2: f(Z_2) = Q\overline{x}$$

1.2.3 Symulacja w LogiSim

1.2.4 Diagramy czasowe

Figure 2: Diagram czasowy dla 0101100010

2 BIBLIOGRAFIA

- 1. Automat Moore'a. In: Wikipedia, wolna encyklopedia. 2019 [accessed 2023 Apr 19]. https://pl.wikipedia.org/w/index.php?title=Automat Moore%E2%80%99a&oldid=57488148
- 2. Automata Moore Machine Javatpoint. [accessed 2023 Apr 19]. https://www.javatpoint.com/automata-moore-machine
- 3. Finite State Machine Designer by Evan Wallace. [accessed 2023 Apr 19]. https://madebyevan.com/fsm/
- 4. TC Moduł 7 Studia Informatyczne. [accessed 2023 Apr 19]. https://wazniak.mimuw.edu.pl/index.php?title=TC Modu%C5%82 7