UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

KEMMY BUSINESS SCHOOL

Department of Economics

End of Term Assessment

ACADEMIC YEAR:	Autumn, 2009/10
MODULE CODE:	EC4307
DURATION OF EXAMINATION:	2.5 hours
MODULE TITLE:	ECONOMETRICS
PERCENTAGE OF TOTAL MARKS:	60% (Remaining 40% awarded for two course work assignments)
LECTURER:	Declan Dineen
EXTERNAL EXAMINER:	Dr Lisa De Propris
Instructions to Candidate	is:
 Answer 3 (THREE) questions or 	nly out of the 6 (SIX) questions on this exam paper.
 Answer at least ONE question fine. 	rom SECTION A and at least ONE question from SECTION
 Put your answers to Section A a 	and Section B in SEPARATE ANSWER BOOKS.
 PLEASE PRESENT YOUR ANSW 	ERS IN A MANNER THAT IS CLEAR AND READABLE.
 All answers should be concise a 	and relevant.
 All questions carry equal marks indicated on the paper. 	s. Marks awarded for individual parts of each question are
 All rough work should be hande 	ed up with the exam paper.
Non-programmable calculators	are permitted.
	
STUDENT NAME:	
ID NUMBER:	
Course of Study:	

SECTION A

A1. Consider the following model used to estimate how a hamburger chain's weekly revenue tr depends on price p, and advertising expenditure a

$$tr_t = \beta_1 + \beta_2 p_t + \beta_3 a_t + \varepsilon_t$$

where price p is measured in Euro while total revenue tr and advertising expenditure a are measured in Euro (000s).

The least squares output from estimating this equation appears in TABLE 1.0 below.

TABLE 1.0

Dependent v	variable:	tr		
Number of c	bservations:	52		
Variable	Coefficient	Std. Error	t-statistic	<i>p</i> -value
Intercept	104.7855	6.482719	16.16382	0.0000
Price	-6.641930	3.191193	?	0.0427
Advert	2.984299	0.166936	17.87689	0.0000
R-squared		?		
Adjusted R-	squared	0.861660		
$\sum (Y_t - \overline{Y})^2$		13581.35		
Sum of squa	red residuals (F	RSS) 1805.168		

- (a) Interpret the estimates $\hat{\beta}_2$ and $\hat{\beta}_3$. Are the signs on these coefficients what you would expect from a theory or logical point of view? (10%)
- (b) Calculate the estimated error variance $\hat{\sigma}_{\varepsilon}^2$ and standard error. (10%)
- (c) Calculate the R^2 . (10%)
- (d) Calculate the *t*-statistic for $\hat{\beta}_2$ and using the test of significance approach, without using the reported *p*-value, test the null hypothesis that $\beta_2 = 0$ at the 5% level of significance. (10%)
- (e) Interpret the p-value = 0.0427 given above, and say how this can be used to test for significance (i.e. to test the null hypothesis that $\beta_2 = 0$) at the 5% level. (10%)
- (f) Calculate a 95% confidence interval for the true population parameter β_3 . What does the interval tell you (i.e. in what are you 95% confident)? (15%)

- (g) Test the joint hypothesis that $\beta_2 = 0$ and $\beta_3 = 0$ (that is, $\beta_2 = \beta_3 = 0$) using the F-test at the 5 per cent level of significance. (15%)
- (h) Decompose the total sum of squares (TSS) of the dependent variable in a regression into its two components: the explained sum of squares (ESS) and the residual sum of squares (RSS). You may use a diagram to illustrate.

(20%)

A2. (a) Explain the difference between a regression model which is linear in the variables and a model which is linear in the parameters.

With reference to the above, determine which of the following models satisfy the linearity assumption and, if nonlinear, say how the model can be transformed (to satisfy the classical linear regression model assumptions)

$$Y = \beta_1 + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$$

$$Y = \beta_1 X \beta_2 + e^{\varepsilon}$$

$$\log(Y) = \beta_1 + \beta_2 X + \varepsilon$$
(20%)

Given the two-variable regression model

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

- (b) Apart from the linearity assumption referred to above, briefly, describe the other classical linear regression model assumptions underlying the OLS estimation technique. Use well-labelled diagrams to support your answer where appropriate. (20%)
- (c) Derive the least-squares normal equations for β_1 and β_2 and proceed to derive the estimator for β_2 . (35%)
- (d) Describe the Gauss-Markov theorem and prove that the estimator for β_2 is linear and unbiased. (25%)

A3. Suppose we posit the following demand for money relation

$$M0_t = \beta_1 + \beta_2 GNP_t + \beta_3 i_t + \varepsilon_t$$

where $M0_t$ = demand for money (nominal cash balances)

 i_t = an interest rate indicator (%)

 GNP_t = Gross National Product

Based on quarterly data for 1972Q1-1989Q4, the following results in TABLE 2.0 were obtained:

TABLE 2.0

*****	******	Ordinary	Least Squ	ıares Estin	nation ********	*******
Dependent variations		imation fro	om 1972Q	1 to 19890	Q4 *********	******
Regressor	Coefficie	ent	Standard	Error	T-Ratio[Prob]	
INPT	-27.9858	}	6.8392		-4.0920[.000]	
GNP	.19020		.0032369)	58.7617[.000]	
I	-3.6733		.83807		-4.3831[.000]	
********	******	********	******	*******	*******	******
R-Squared		.98135		R-Bar-Sq	uared	.98081
S.E. of Regressi	on	11.3900		F-stat. F	(2, 69)	1815.7[.000]
Mean of Depend	dent Variabl	e239.4806	í	S.D. of D	ependent Variable	82.2268
Residual Sum o	f Squares	8951.5			Log-likelihood	-275.7885
Akaike Info. Cr.	iterion	-278.788	5		Bayesian Criterion	-282.2035
DW-statistic		.14432			•	
*********	******	******	*****	*******	**********	******

Diagnostic Tests

 Test Statistics 	*	F Version
********	******	*********
*	*	
* A: Serial Correlation	* F(4	1 , 65) = 111.9423[.000]
*	* `	, ,
* B: Functional Form	* F(1	(68) = 53.1390[.000]
*	* `	, , , , , , , , , , , , , , , , , , , ,
* C: Heteroscedasticity	* F(1	(70) = 65.4813[.000]

- A: Lagrange multiplier test of residual serial correlation
- B: Ramsey's RESET test using the square of the fitted values
- C: Based on the regression of squared residuals on squared fitted values

Plotting the estimated residuals from this regression on their values lagged one time period gives FIGURE 1.0:

FIGURE 1.0

(a) What is autocorrelation?

How would you distinguish between "pure" autocorrelation and apparent autocorrelation resulting from specification error?

Discuss the consequences of "pure" autocorrelation for estimation and hypothesis testing using OLS estimates. (30%)

(25%)

(b) Derive the Durbin-Watson test statistic and describe how it is used to test for autocorrelation.

What are the weaknesses of this test?

- (c) What does FIGURE 1.0 show? Based on the results given in TABLE 2.0, conduct a formal test for autocorrelation in this model. Does the outcome of this test support the evidence from FIGURE 1.0? (20%)
- (d) In the presence of "pure" autocorrelation, describe the Cochrane-Orcutt method for estimating the autocorrelation coefficient ρ . (25%)

SECTION B

- B1. (a) What is heteroscedasticity? Illustrate with the aid of a diagram(s)

 Discuss the consequences of heteroscedasticity for estimation and hypothesis testing using OLS estimates. (30%)
 - (b) Given the demand for money regression model

$$M0_t = \beta_1 + \beta_2 GNP_t + \beta_3 i_t + \varepsilon_t$$

where

 $M0_t$ = demand for money (nominal cash balances)

 i_t = an interest rate indicator (%)

 GNP_t = Gross National Product

Two scatter plots of the estimated squared residuals on

- (i). the fitted values from the regression line and
- (ii). the GNP explanatory variable

are shown in FIGURE 2.0 below.

Explain what the researcher hoped to achieve with the scatter plots in FIGURE 2.0? What does FIGURE 2.0 show? (15%)

FIGURE 2.0

1000-800-600-

> 400 200

> > 100

(i).

where

RESSQ denotes the residual squared $\hat{\varepsilon}_t^2$ and

150

FIT denotes the fitted values from the regression line.

FIT

(ii).

where

RESSQ denotes the residual squared $\hat{\varepsilon}_t^2$ and

GNP denotes the values for the explanatory GNP variable.

(c) Describe the White's test method which can be used to detect the presence of heteroscedasticity.

Based on the results given below, what do you find in relation to the presence of heteroscedasticity? Does the outcome of the White's test here support the evidence from FIGURE 2.0? (25%)

Diagno	Diagnostic Tests									
* Test Statistics	* FVer	sion								
*	*	*****								
* A: Serial Correlation	* F(4, 65) = 11	1.9423[.000]								
* B: Functional Form	* F(1, 68) = 53	.1390[.000]								
* C: Heteroscedasticity	* F(1, 70) = 65	.4813[.000]								

- A: Lagrange multiplier test of residual serial correlation
- B: Ramsey's RESET test using the square of the fitted values
- C: Based on the regression of squared residuals on squared fitted values
- (d) Describe the GLS/ WLS method of correcting for heteroscedasticity when σ_i^2 is known.

Consider the two-variable regression model

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

Explain how the weighted or generalised least squares estimator works when:

$$\sigma_i^2 = \sigma^2 X_i^2$$

$$\sigma_i^2 = \sigma^2 X_i$$
(30%)

B2. Explain/ discuss the following:

(a) In intuitive terms, what is the difference between stationary and nonstationary time series processes?

What is a "stationary stochastic process"? (20%)

- (b) The autocorrelation function (ACF). The general characteristics of the correlogram for stationary and nonstationary processes. (15%)
- (c) The Dickey-Fuller (DF) and Augmented DF tests. (25%)
- (d) The meaning of a series being "integrated of order 1," that is I(1). The concept of cointegration and ONE test of whether two time series are cointegrated.

 (25%)
- (e) A regression between two nonstationary variables can produce spurious results. If the variables are nonstationary, and not cointegrated, is there any relationship that can be estimated (mention any problems with your approach here)?

 (15%)

B3. (a) What is meant by multicollinearity?

Suppose you want to fit the model

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$

using a sample for which $X_{3i} = a + b X_{2i}$ for all i,

can you estimate the three unknowns $\hat{\beta}_1$, $\hat{\beta}_2$ and $\hat{\beta}_3$? Why or why not? (15%)

- (b) Discuss the consequences of multicollinearity for OLS estimation. (20%)
- (c) Describe the auxiliary regression method which can be used to detect for the presence of multicollinearity. (20%)
- (d) "A high degree of multicollinearity may have an adverse effect on regression results, but this is by no means inevitable."

Discuss this statement. (20%)

(e) When faced with severe multicollinearity, one remedial measure might be to drop one of the collinear variables, describe how you would test whether the exclusion of a variable significantly decreases the explanatory power of a regression model.

Are there any problems which might be encountered in dropping a variable from the model? (25%)

Cumulative normal distribution

Critical values of the *t* distribution

Critical values of the *F* distribution

Critical values of the chi-squared distribution

TABLE A.2

t Distribution: Critical Values of t

				Significa	ınce level		
Degrees of freedom	Two-tailed test: One-tailed test:	10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%
1		6.314	12.706	31.821	63.657	318.309	636.619
2		2.920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2.015	2.571	3.365	4.032	5.893	6.869
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1.894	2.365	2.998	3.499	4.785	5.408
8		1.860	2.306	2.896	3.355	4.501	5.041
9 10		1.833	2.262	2.821	3.250	4.297	4.781
10		1.812	2.228	2.764	3.169	4.144	4.587
11		1.796	2.201	2.718	3.106	4.025	4.437
12		1.782	2.179	2.681	3.055	3.930	4.318
13 14		1.771	2.160	2.650	3.012	3.852	4.221
14 15		1.761 1.753	2.145 2.131	2.624 2.602	2.977 2.947	3.7 8 7 3.733	4.140 4.073
16		1.746	2.120	2.583	2.921	3.686	4.015
17		1.740	2.110	2.567	2.898	3.646	3.965
18 19		1.734 1.729	2.101 2.093	2.552 2.539	2.878 2.861	3.610 3.579	3.922 3.883
20		1.725	2.086	2.528	2.845	3.552	3.850
21		1.721	2.080	2.518	2.831	3.527	3.819
22 23		1.717 1.714	2.074 2.069	2.508 2.500	2.819 2.807	3.505 3.485	3.792 3.768
23 24		1.714	2.064	2.492	2.797	3.4 6 3 3.467	3.745
25		1.708	2.060	2.485	2.787	3.450	3.725
26		1.706	2.056	2.479	2.779	3.435	3.707
27		1.703	2.052	2.473	2.771	3.421	3.690
28		1.701	2.048	2.467	2.763	3.408	3.674
29		1.699	2.045	2.462	2.756	3.396	3.659
30		1.697	2.042	2.457	2.750	3.385	3.646
32		1.694	2.037	2.449	2.738	3.365	3.622
34		1.691	2.032	2.441	2.728	3.348	3.601
36		1.688	2.028	2.434	2.719	3.333	3.582
38 40		1.686 1.684	2.024 2.021	2.429 2.423	2.712	3.319	3.566
					2.704	3.307	3.551
42		1.682	2.018	2.418	2.698	3.296	3.538
44 46		1.680	2.015	2.414	2.692	3.286	3.526
46 48		1.679 1.677	2.013 2.011	2.410 2.407	2.687 2.682	3.277 3.269	3.515 3.505
50		1.676	2.009	2.403	2.678	3.261	3.496
60		1.671	2.000	2.390	2.660	3.232	3.460
70		1.667	1.994	2.381	2.648	3.232	3.435
80		1.664	1.990	2.374	2.639	3.195	3.416
90		1.662	1.987	2.368	2.632	3.183	3.402
100		1.660	1.984	2.364	2.626	3.174	3.390
120		1.658	1.980	2.358	2.617	3.160	3.373
150		1.655	1.976	2.351	2.609	3.145	3.357
200		1.653	1.972	2.345	2.601	3.131	3.340
300		1.650	1.968	2.339	2.592	3.118	3.323
400		1.649	1.966	2.336	2.588	3.111	3.315
500		1.648	1.965	2.334	2.586	3.107	3.310
600		1.647	1.964	2.333	2.584	3.104	3.307
∞		1.645	1.960	2.326	2.576	3.090	3.291

.

TABLE A.3

F Distribution: Critical Values of F (5% significance level)

v_1 v_2	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.36	246.46	247.32	248 01
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.42	19.43	19.44	19.45
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.71	8.69	8.67	8.66
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.87	5.84	5.82	5.80
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.96	3.92	3.90	3.87
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.53	3.49	3.47	3.44
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.24	3.20	3.17	3.15
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	2.94
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.86	2.83	2.80	2.77
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.74	2.70	2.67	2.65
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.64	2.60	2.57	2.54
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.55	2.51	2.48	2.46
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.44	2.41	2.39
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.42	2.38	2.35	2.33
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.37	2.33	2.30	2.28
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.33	2.29	2.26	2.23
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.29	2.25	2.22	2.19
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.26	2.21	2.18	2.16
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.22	2.18	2.15	2.12
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.20	2.16	2.12	2.10
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.20	2.10	2.12	2.10
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.15	2.11	2.08	2.05
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.13	2.09	2.05	2.03
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.11	2.07	2.04	2.01
26	4.22	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.09	2.05	2.02	1.99
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.08	2.04	2.02	1.97
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.06	2.02	1.99	1.96
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.05	2.01	1.97	1.94
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.04	1.99	1.96	1.93
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.04	1.99	1.94	1.91	1.88
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.95	1.90	1.87	1.84
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.95	1.89	1.85	1.81	1.78
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.86	1.82	1.78	1.75
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97	1.89	1.84	1.79	1.75	1.72
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.88	1.82	1.77	1.73	1.70
90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.86	1.80	1.76	1.72	1.69
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.85	1.79	1.75	1.71	1.68
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.78	1.73	1.69	1.66
150	3.90	3.06	2.66	2.43	2.27	2.16	2.07	2.00	1.94	1.89	1.82	1.76	1.71	1.67	1.64
200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.80	1.74	1.69	1.66	1.62
250	3.88	3.03	2.64	2.41	2.25	2.13	2.05	1.98	1.92	1.87	1.79	1.73	1.68	1.65	1.61
300	3.87	3.03	2.63	2.40	2.24	2.13	2.04	1.97	1.91	1.86	1.78	1.72	1.68	1.64	1.61
400	3.86	3.02	2.63	2.39	2.24	2.12	2.03	1.96	1.90	1.85	1.78	1.72	1.67	1.63	1.60
500	3.86	3.01	2.62	2.39	2.23	2.12	2.03	1.96	1.90	1.85	1.77	1.71	1.66	1.62	1.59
600	3.86	3.01	2.62	2.39	2.23	2.11	2.02	1.95	1.90	1.85	1.77	1.71	1.66	1.62	1.59
750	3.85	3.01	2.62	2.38	2.23	2.11	2.02	1.95	1.89	1.84	1.77	1.70	1.66	1.62	1.58
1000	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.89	1.84	1.76	1.70	1.65	1.61	1.58

TABLE A.3 (continued)

F Distribution: Critical Values of F (5% significance level)

ν ₁	25	30	35	40	50	60	75	100	150	200
ν ₂	249 26	250 10	250.60	251 14	251 77	252.20	252 62	252.04	252.46	252 60
2	19.46	19.46	19.47	19.47	19.48	19.48	19.48	19.49	19.49	19.49
3	8.63	8.62	8.60	8.59	8.58	8.57	8.56	8.55	8.54	8.54
4	5.77	5.75	5.73	5.72	5.70	5.69	5.68	5.66	5.65	5.65
5	4.52	4.50	4.48	4.46	4.44	4.43	4.42	4.41	4.39	4.39
_	2.02	201	2 20	2.55						
6	3.83	3.81	3.79	3.77	3.75	3.74	3.73	3.71	3.70	3.69
7	3.40	3.38	3.36	3.34	3.32	3.30	3.29	3.27	3.26	3.25
8 9	3.11 2.89	3.08 2.86	3.06 2.84	3.04	3.02 2.80	3.01 2.79	2.99	2.97	2.96	2.95
10	2.73	2.70	2.68	2.83 2.66	2.64	2.79	2.77 2.60	2.76 2.59	2.74	2.73 2.56
10	2.13	2.70	2.00	2.00	2.04	2.02	2.00	2.39	2.57	2.50
11	2.60	2.57	2.55	2.53	2.51	2.49	2.47	2.46	2.44	2.43
12	2.50	2.47	2.44	2.43	2.40	2.38	2.37	2.35	2.33	2.32
13	2.41	2.38	2.36	2.34	2.31	2.30	2.28	2.26	2.24	2.23
14	2.34	2.31	2.28	2.27	2.24	2.22	2.21	2.19	2.17	2.16
15	2.28	2.25	2.22	2.20	2.18	2.16	2.14	2.12	2.10	2.10
16	2.23	2.19	2.17	2.15	2.12	2.11	2.09	2.07	2.05	2.04
17	2.18	2.15	2.12	2.10	2.08	2.06	2.04	2.02	2.00	1.99
18	2.14	2.11	2.08	2.06	2.04	2.02	2.00	1.98	1.96	1.95
19	2.11	2.07	2.05	2.03	2.00	1.98	1.96	1.94	1.92	1.91
20	2.07	2.04	2.01	1.99	1.97	1.95	1.93	1.91	1.89	1.88
21	2.05	2.01	1.98	1.96	1.94	1.92	1.90	1.88	1.86	1.84
22	2.02	1.98	1.96	1.94	1.91	1.89	1.87	1.85	1.83	1.82
23	2.00	1.96 1.94	1.93	1.91	1.88 1.86	1.86	1.84	1.82	1.80	1.79
24 25	1.97 1.96	1.94	1.91 1.89	1. 89 1. 87	1.84	1.84 1.82	1.82 1.80	1.80 1.78	1.78 1.76	1.77
43	1.90	1.72	1.07	1.07	1.04	1.62	1.60	1.70	1.70	1.75
26	1.94	1.90	1.87	1.85	1.82	1.80	1.78	1.76	1.74	1.73
27	1.92	1.88	1.86	1.84	1.81	1.79	1.76	1.74	1.72	1.71
28	1.91	1.87	1.84	1.82	1.79	1.77	1.75	1.73	1.70	1.69
29	1.89	1.85	1.83	1.81	1.77	1.75	1.73	1.71	1.69	1.67
30	1.88	1.84	1.81	1.79	1.76	1.74	1.72	1.70	1.67	1.66
35	1.82	1.79	1.76	1.74	1.70	1.68	1.66	1.63	1.61	1.60
40	1.78	1.74	1.72	1.69	1.66	1.64	1.61	1.59	1.56	1.55
50	1.73	1.69	1.66	1.63	1.60	1.58	1.55	1.52	1.50	1.48
60	1.69	1.65	1.62	1.59	1.56	1.53	1.51	1.48	1.45	1.44
70	1.66	1.62	1.59	1.57	1.53	1.50	1.48	1.45	1.42	1.40
80	1.64	1.60	1.57	1.54	1.51	1.48	1.45	1.43	1.39	1.38
90	1.63	1.59	1.55	1.53	1.49	1.46	1.43	1.43	1.38	1.36
100	1.62	1.57	1.54	1.52	1.48	1.45	1.42	1.39	1.36	1.34
120	1.60	1.55	1.52	1.50	1.46	1.43	1.40	1.37	1.33	1.32
150	1.58	1.54	1.50	1.48	1.44	1.41	1.38	1.34	1.31	1.29
200	1.56	1.52	1.48	1.46	1.41	1.39	1.35	1.32	1.28	1.26
250	1.55	1.50	1.47	1.44		1.37	1.34	1.31	1.27	1.25
300	1.54	1.50	1.46	1.43	1.39	1.36	1.33	1.30	1.26	1.23
400	1.53	1.49	1.45	1.42	1.38	1.35	1.32	1.28	1.24	1.22
500	1.53	1.48	1.45	1.42	1.38	1.35	1.31	1.28	1.23	1.21
600	1.52	1.48	1.44	1.41	1.37	1.34	1.31	1.27	1.23	1.20
750	1.52	1.47		1.41	1.37	1.34	1.30	1.26	1.22	1.20
1000	1.52	1.47	1.43	1.41	1.36	1.33	1.30	1.26	1.22	1.19

.

Table A.3 (continued)

F Distribution: Critical Values of F (1% significance level)

ν ₁	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
ν ₂	A052 18	4000 SO	5402.25	5624 50	5762 65	5060 nn	5029 26	5001.07	6022 17	(055.05	6106.32	<140.6 3	4170.10		
2	98.50	99.00	99.17		99.30						99.42		99.44		
3	34.12	30.82	29.46		28.24	27.91	27.67		27.35		27.05	26.92	26.83	26.75	26.69
4	21.20	18.00	16.69	15.98		15.21	14.98	14.80	14.66		14.37	14.25	14.15	14.08	14.02
5	16.26	13.27	12.06	11.39		10.67	10.46	10.29	10.16		9.89	9.77	9.68	9.61	9.55
												2.11		7.01	7.55
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.60	7.52	7.45	7.40
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.36	6.28	6.21	6.16
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.56	5.48	5.41	5.36
9	10.56	8.02	6.99	6.42	6.06	5.80		5.47	5.35		5.11	5.01	4.92	4.86	4.81
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.60	4.52	4.46	4.41
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.29	4.21	4.15	4.10
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.05	3.97	3.91	3.86
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.86	3.78	3.72	3.66
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.80	3.70	3.62	3.56	3.51
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.56	3.49	3.42	3.37
16	0.52	6 22	5.29	4 77	4 44	4.20	4.02	2.00	2 70	2.60	2.55	2.45	2 22		
16 17	8.53 8.40	6.23 6.11	5.18	4.77 4.67	4.44 4.34	4.20 4.10	4.03	3.89	3.78	3.69	3.55	3.45	3.37	3.31	3.26
18	8.29	6.01	5.09	4.58	4.25	4.10	3.93 3.84	3.79 3.71	3.68 3.60	3.59	3.46	3.35	3.27	3.21	3.16
19	8.18	5.93	5.01	4.50	4.23	3.94	3.77	3.63	3.52	3.51 3.43	3.37	3.27	3.19	3.13	3.08
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56			3.30	3.19	3.12	3.05	3.00
40	6.10	5.65	7.77	7.73	4.10	3.07	3.70	3.50	3.46	3.37	3.23	3.13	3.05	2.99	2.94
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.07	2.99	2.93	2.88
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	3.02	2.94	2.88	2.83
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.97	2.89	2.83	2.78
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.93	2.85	2.79	2.74
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	2.99	2.89	2.81	2.75	2.70
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	2.96	2.86	2.78	2.72	2.66
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.93	2.82	2.75	2.68	2.63
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.90	2.79	2.72	2.65	2.60
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.87	2.77	2.69	2.63	2.57
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.84	2.74	2.66	2.60	2.55
35	7.42	5.27	4.40	3.91	3.59	3.37	3.20	3.07	2.96	2.88	2.74	2.64	2.56	2.50	2.44
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.66	2.56	2.48	2.42	2.37
50	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.78	2.70	2.56	2.46	2.38	2.32	2.27
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.50	2.39	2.31	2.25	2.20
70	7.01	4.92	4.07	3.60	3.29	3.07	2.91	2.78	2.67	2.59	2.45	2.35	2.27	2.20	2.15
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.64	2.55	2.42	2.31	2.23	2.17	2.12
90	6.93	4.85	4.01	3.53	3.23	3.01	2.84	2.72	2.61	2.52	2.39	2.29	2.21	2.14	2.09
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59	2.50	2.37	2.27	2.19	2.12	2.07
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.34	2.23	2.15	2.09	2.03
150	6.81	4.75	3.91	3.45	3.14	2.92		2.63	2.53	2.44	2.31	2.20	2.12	2.06	2.00
200	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50	2.41	2.27	2.17	2.09	2.03	
250	6.74	4.69	3.86	3.40	3.09	2.87		2.58	2.48	2.39	2.27	2.17	2.09	2.03	1.97 1.95
300	6.72	4.68	3.85	3.38	3.08	2.86	2.70	2.57	2.46	2.38	2.24	2.13	2.07	1.99	1.93
400	6.70	4.66	3.83	3.37	3.06	2.85	2.68	2.56	2.45	2.37	2.23	2.14	2.05	1.98	1.94
500	6.69	4.65	3.82	3.36	3.05	2.84	2.68	2.55	2.44	2.36	2.22	2.13	2.03	1.97	1.92
600	6.68	4.64	3.81	3.35	3.05	2.83	2.67	2.54	2.44	2.35	2.21	2.11	2.03	1.96	1.91
750	6.67	4.63	3.81	3.34	3.04	2.83	2.66	2.53	2.43	2.34	2.21	2.11	2.02	1.96	1.90
000	6.66	4.63	3.80	3.34	3.04	2.82	2.66	2.53	2.43	2.34	2.20	2.10	2.02	1.95	1.90

•

Table A.3 (continued)

F Distribution: Critical Values of F (1% significance level)

v_1	25	30	35	40	50	60	75	100	150	200
ν_2										
						6313.03				
2	99.46	99.47	99.47	99.47	99.48	99.48	99.49	99.49	99.49	99.49
3	26.58	26.50	26.45	26.41	26.35	26.32	26.28	26.24		26.18
4	13.91	13.84	13.79		13.69			13.58		13.52
5	9.45	9.38	9.33	9.29	9.24	9.20	9.17	9.13	9.09	9.08
6	7.30	7.23	7.18	7.14	7.09	7.06	7.02	6.99	6.95	6.93
7	6.06	5.99	5.94	5.91	5.86	5.82	5.79	5.75		5.70
8	5.26	5.20	5.15	5.12	5.07	5.03		4.96		4.91
9	4.71	4.65	4.60	4.57	4.52	4.48	4.45	4.41	4.38	4.36
10	4.31	4.25	4.20	4.17		4.08		4.01	3.98	3.96
	4.01	204	2.00							
11	4.01	3.94	3.89	3.86	3.81	3.78	3.74	3.71	3.67	3.66
12	3.76	3.70	3.65	3.62	3.57	3.54		3.47		3.41
13	3.57	3.51	3.46	3.43	3.38	3.34		3.27		3.22
14	3.41	3.35	3.30	3.27	3.22	3.18	3.15	3.11	3.08	3.06
15	3.28	3.21	3.17	3.13	3.08	3.05	3.01	2.98	2.94	2.92
16	3.16	3.10	3.05	3.02	2.97	2.93	2.90	2.86	2.83	2.81
17	3.07	3.00	2.96	2.92	2.87	2.83	2.80	2.76	2.73	2.71
18	2.98	2.92	2.87	2.84	2.78	2.75	2.71	2.68	2.64	2.62
19	2.91	2.84	2.80	2.76	2.71	2.67		2.60	2.57	2.55
20	2.84	2.78	2.73	2.69	2.64	2.61	2.57	2.54	2.50	2.48
21	2 70	2 22	2.67	264	2.50			2.40		2.42
21	2.79	2.72	2.67	2.64	2.58	2.55	2.51	2.48	2.44	2.42
22 23	2.73 2.69	2.67	2.62 2.57	2.58	2.53	2.50	2.46	2.42	2.38 2.34	2.36
		2.62		2.54	2.48	2.45	2.41	2.37		2.32
24 25	2.64 2.60	2.58 2.54	2.53 2.49	2.49		2.40	2.37	2.33	2.29	2.27
45	2.00	2.34	2.49	2.45	2.40	2.36	2.33	2.29	2.25	2.23
26	2.57	2.50	2.45	2.42	2.36	2.33	2.29	2.25	2.21	2.19
27	2.54	2.47	2.42	2.38	2.33	2.29	2.26	2.22	2.18	2.16
28	2.51	2.44	2.39	2.35	2.30	2.26	2.23	2.19	2.15	2.13
29	2.48	2.41	2.36	2.33	2.27	2.23	2.20	2.16	2.12	2.10
30	2.45	2.39	2.34	2.30	2.25	2.21	2.17	2.13	2.09	2.07
35	2.35	2.28	2.23	2.19	2.14	2.10	2.06	2.02	1.98	1.96
40	2.27	2.20	2.15	2.11	2.14	2.02	1.98	1.94	1.90	1.87
50	2.17	2.10	2.15	2.01	1.95	1.91	1.87	1.82	1.78	1.76
60	2.10	2.03	1.98	1.94	1.88	1.84	1.79	1.75	1.70	1.68
70	2.05	1.98	1.93	1.89	1.83	1.78	1.74	1.70	1.65	1.62
								1.70		
80	2.01	1.94	1.89	1.85	1.79	1.75	1.70	1.65	1.61	1.58
90	1.99	1.92	1.86	1.82	1.76	1.72	1.67	1.62	1.57	1.55
100	1.97	1.89	1.84	1.80	1.74	1.69	1.65	1.60	1.55	1.52
120	1.93	1.86	1.81	1.76	1.70	1.66	1.61	1.56	1.51	1.48
150	1.90	1.83	1.77	1.73	1.66	1.62	1.57	1.52	1.46	1.43
200	1.87	1.79	1.74	1.69	1.63	1.58	1.53	1.48	1.42	1.39
250	1.85	1.77	1.72	1.67	1.61	1.56	1.51	1.46		1.36
300	1.84	1.76	1.70	1.66	1.59	1.55	1.50	1.44	1.38	1.35
400	1.82	1.75	1.69	1.64	1.58	1.53	1.48	1.42	1.36	1.32
500	1.81	1.74	1.68	1.63	1.57	1.52	1.47	1.41	1.34	1.31
600	1.80	1.73	1.67	1.63	1.56	1.51	1.46	1.40	1.34	1.30
750	1.80	1.72	1.66	1.62	1.55	1.50	1.45	1.39	1.33	1.29
000	1.79	1.72	1.66	1.61	1.54	1.50	1.44	1.38	1.32	1.28

.

Durbin-Watson test statistic d: 5% significance points of $d_{\rm L}$ and $d_{\rm U}$.

	k'=1		k'=2		k'=	= 3	k'=	= 4	k' =	= 5
n	$d_{\mathtt{L}}$	$d_{\scriptscriptstyle m U}$	$d_{\mathtt{L}}$	$d_{\scriptscriptstyle m U}$	$d_{\mathtt{L}}$	$d_{\scriptscriptstyle m U}$	$d_{\scriptscriptstyle m L}$	$d_{\scriptscriptstyle m U}$	$d_{\scriptscriptstyle m L}$	$d_{_{ m U}}$
15	1.08	1.36	0.95	1.54	0.82	1.75	0.69	1.97	0.56	2.21
16	1.10	1.37	0.98	1.54	0.86	1.73	0.74	1.93	0.62	2.15
17	1.13	1.38	1.02	1.54	0.90	1.71	0.78	1.90	0.67	2.10
18	1.16	1.39	1.05	1.53	0.93	1.69	0.82	1.87	0.71	2.06
19	1.18	1.40	1.08	1.53	0.97	1.68	0.86	1.85	0.75	2.02
20	1.20	1.41	1.10	1.54	1.00	1.68	0.90	1.83	0.79	1.99
21	1.22	1.42	1.13	1.54	1.03	1.67	0.93	1.81	0.83	1.96
22	1.24	1.43	1.15	1.54	1.05	1.66	0.96	1.80	0.86	1.94
23	1.26	1.44	1.17	1.54	1.08	1.66	0.99	1.79	0.90	1.92
24	1.27	1.45	1.19	1.55	1.10	1.66	1.01	1.78	0.93	1.90
25	1.29	1.45	1.21	1.55	1.12	1.66	1.04	1.77	0.95	1.89
26	1.30	1.46	1.22	1.55	1.14	1.65	1.06	1.76	0.98	1.88
27	1.32	1.47	1.24	1.56	1.16	1.65	1.08	1.76	1.01	1.86
28	1.33	1.48	1.26	1.56	1.18	1.65	1.10	1.75	1.03	1.85
29	1.34	1.48	1.27	1.56	1.20	1.65	1.12	1.74	1.05	1.84
30	1.35	1.49	1.28	1.57	1.21	1.65	1.14	1.74	1.07	1.83
31	1.36	1.50	1.30	1.57	1.23	1.65	1.16	1.74	1.09	1.83
32	1.37	1.50	1.31	1.57	1.24	1.65	1.18	1.73	1.11	1.82
33	1.38	1.51	1.32	1.58	1.26	1.65	1.19	1.73	1.13	1.81
34	1.39	1.51	1.33	1.58	1.27	1.65	1.21	1.73	1.15	1.81
35	1.40	1.52	1.34	1.58	1.28	1.65	1.22	1.73	1.16	1.80
36	1.41	1.52	1.35	1.59	1.29	1.65	1.24	1.73	1.18	1.80
37	1.42	1.53	1.36	1.59	1.31	1.66	1.25	1.72	1.19	1.80
38	1.43	1.54	1.37	1.59	1.32	1.66	1.26	1.72	1.21	1.79
39	1.43	1.54	1.38	1.60	1.33	1.66	1.27	1.72	1.22	1.79
40	1.44	1.54	1.39	1.60	1.34	1.66	1.29	1.72	1.23	1.79
45	1.48	1.57	1.43	1.62	1.38	1.67	1.34	1.72	1.29	1.78
50	1.50	1.59	1.46	1.63	1.42	1.67	1.38	1.72	1.34	1.77
55	1.53	1.60	1.49	1.64	1.45	1.68	1.41	1.72	1.38	1.77
60	1.55	1.62	1.51	1.65	1.48	1.69	1.44	1.73	1.41	1.77
65	1.57	1.63	1.54	1.66	1.50	1.70	1.47	1.73	1.44	1.77
70	1.58	1.64	1.55	1.67	1.52	1.70	1.49	1.74	1.46	1.77
75	1.60	1.65	1.57	1.68	1.54	1.71	1.51	1.74	1.49	1.77
80	1.61	1.66	1.59	1.69	1.56	1.72	1.53	1.74	1.51	1.77
85	1.62	1.67	1.60	1.70	1.57	1.72	1.55	1.75	1.52	1.77
90	1.63	1.68	1.61	1.70	1.59	1.73	1.57	1.75	1.54	1.78
95	1.64	1.69	1.62	1.71	1.60	1.73	1.58	1.75	1.56	1.78
100	1.65	1.69	1.63	1.72	1.61	1.74	1.59	1.76	1.57	1.78

n = number of observations

k' = number of explanatory variables

Durbin-Watson test statistic d: 1% significance points of $d_{\rm L}$ and $d_{\rm U}$.

	k'=1	k'=2	k'=3	k' = 4	k'=5		
n	$d_{ m L}$ $d_{ m U}$	$d_{\scriptscriptstyle m L} = d_{\scriptscriptstyle m U}$	$d_{\mathtt{L}} d_{\mathtt{U}}$	$d_{\scriptscriptstyle m L} = d_{\scriptscriptstyle m U}$	$d_{\scriptscriptstyle m L} = d_{\scriptscriptstyle m U}$		
15	0.81 1.07	0.70 1.25	0.59 1.46	0.49 1.70	0.39 1.96		
16	0.84 1.09	0.74 1.25	0.63 1.44	0.53 1.66	0.44 1.90		
17	0.87 1.10	0.77 1.25	0.67 1.43	0.57 1.63	0.48 1.85		
18	0.90 1.12	0.80 1.26	0.71 1.42	0.61 1.60	0.52 1.80		
19	0.93 1.13	0.83 1.26	0.74 1.41	0.65 1.58	0.56 1.77		
20	0.95 1.15	0.86 1.27	0.77 1.41	0.68 1.57	0.60 1.74		
21	0.97 1.16	0.89 1.27	0.80 1.41	0.72 1.55	0.63 1.71		
22	1.00 1.17	0.91 1.28	0.83 1.40	0.75 1.54	0.66 1.69		
23	1.02 1.19	0.94 1.29	0.86 1.40	0.77 1.53	0.70 1.67		
24	1.04 1.20	0.96 1.30	0.88 1.41	0.80 1.53	0.72 1.66		
25	1.05 1.21	0.98 1.30	0.90 1.41	0.83 1.52	0.75 1.65		
26	1.07 1.22	1.00 1.31	0.93 1.41	0.85 1.52	0.78 1.64		
27	1.09 1.23	1.02 1.32	0.95 1.41	0.88 1.51	0.81 1.63		
28	1.10 1.24	1.04 1.32	0.97 1.41	0.90 1.51	0.83 1.62		
29	1.12 1.25	1.05 1.33	0.99 1.42	0.92 1.51	0.85 1.61		
30	1.13 1.26	1.07 1.34	1.01 1.42	0.94 1.51	0.88 1.61		
31	1.15 1.27	1.08 1.34	1.02 1.42	0.96 1.51	0.90 1.60		
32	1.16 1.28	1.10 1.35	1.04 1.43	0.98 1.51	0.92 1.60		
33	1.17 1.29	1.11 1.36	1.05 1.43	1.00 1.51	0.94 1.59		
34	1.18 1.30	1.13 1.36	1.07 1.43	1.01 1.51	0.95 1.59		
35	1.19 1.31	1.14 1.37	1.08 1.44	1.03 1.51			
36	1.21 1.32	1.15 1.38	1.10 1.44	1.04 1.51	0.99 1.59		
37	1.22 1.32	1.16 1.38	1.11 1.45	1.06 1.51	1.00 1.59		
38	1.23 1.33	1.18 1.39	1.12 1.45	1.07 1.52	1.02 1.58		
39	1.24 1.34	1.19 1.39	1.14 1.45	1.09 1.52			
40	1.25 1.34	1.20 1.40	1.15 1.46	1.10 1.52	1.05 1.58		
45	1.29 1.38	1.24 1.42	1.20 1.48	1.16 1.53			
50	1.32 1.40	1.28 1.45	1.24 1.49	1.20 1.54			
55	1.36 1.43	1.32 1.47	1.28 1.51	1.25 1.55			
60	1.38 1.45	1.35 1.48	1.32 1.52	1.28 1.56			
65	1.41 1.47	1.38 1.50	1.35 1.53	1.31 1.57			
70	1.43 1.49	1.40 1.52	1.37 1.55	1.34 1.58			
75	1.45 1.50	1.42 1.53	1.39 1.56	1.37 1.59	1.34 1.62		
80	1.47 1.52	1.44 1.54	1.42 1.57	1.39 1.60	1.36 1.62		
85	1.48 1.53	1.46 1.55	1.43 1.58	1.41 1.60	1.39 1.63		
90	1.50 1.54	1.47 1.56	1.45 1.59	1.43 1.61	1.41 1.64		
95	1.51 1.55	1.49 1.57	1.47 1.60	1.45 1.62	1.42 1.64		
100	1.52 1.56	1.50 1.58	1.48 1.60	1.46 1.63	1.44 1.65		

n = number of observations

k' = number of explanatory variables