HF reading group session 3

Transformers Anatomy

Scaled Dot product attention

• Why sqrt of d?

Figure 3-4. Operations in scaled dot-product attention

Scaled Dot product attention

Question - Why not use the embeddings as queries, keys and values?

Answer -

- Assuming norm of the embedding vectors is 1, the maximum achievable dot product is 1
- This is achieved by vectors that are the same
- The attention scores will have 1s on the diagonal and softmax will assign highest weight to itself
- As a result the representation of the embedding would not change much among successive layers and won't take context into consideration

Multi-head attention

Figure 3-5. Multi-head attention

Feed-forward layer

LayerNorm and skip connections

Post layer normalization

Pre layer normalization

Positional Embeddings

Masked Multi-head self attention

Encoder-decoder attention

Figure 3-7. Zooming into the transformer decoder layer

The Entire Transformers model

