# **Maximum Flow**

### 26.1 Flow networks

**Flow networks:** a directed graph G=(V, E), in which each  $(u,v) \in E$  has a capacity  $c(u,v) \ge 0$ . If  $(u,v) \notin E$ , we assume c(u,v) = 0. There are a source vertex s and a sink vertex t in G. For every vertex v in G, there is a path  $s \rightarrow v \rightarrow t$ .





**Flow:** a real function  $f: V \times V \rightarrow R$  satisfying the following three properties.

**Capacity constraint:** For all  $u,v \in V$ ,  $f(u,v) \le c(u,v)$ **Skew symmetry:** For all  $u,v \in V$ , f(u,v) = -f(v,u)**Flow conservation:** For all  $u \in V - \{s, t\}$ ,

$$\sum_{v \in V} f(\underline{u}, v) = 0.$$
 -1 total flow out off  $u = 0$ 

\* **Positive net flow** entering (leaving) a vertex u:  $\sum_{v \in V \text{ and } f(v,u) > 0} f(v,v) = \int_{v \in V \text{ and } f(u,v) > 0} f(u,v) = 0$ 

- \* For all  $u \in V \{s, t\}$ , we have

  Positive net flow entering u= Positive net flow leaving u.

  (flow conservation: positive in = positive out)
- \* For all  $u \in V \{s, t\}$ ,  $\sum_{v \in V} f(v, u) = 0$ . (Total flow into a vertex is 0. (flow conservation: total in = 0)
- \* f(u,v) is called the **net flow** from u to v. It can be positive or negative.

  total out from s total into t
- \* The value of a flow f is  $|f| = \sum_{v \in V} f(s, v)$ .  $\stackrel{(= \sum_{v \in V} f(v, \underline{t}))}{v \in V}$
- \* **Maximum-flow problem:** finding a flow of maximum value from s to t.

- \* If  $(u,v) \notin E$  and  $(v,u) \notin E$ , f(v,u)=f(u,v)=0.  $\implies$  find a path: O(E) (not  $O(n^2)$ ) BFS or DFS
- \* Nonzero net flow from u to v implies  $(u,v) \in E$  or  $(v,u) \in E$ .

## \* Networks with multiple sources and sinks



\* Let X and Y be sets of vertices. For simplicity, define

See 26-6 example

$$f(X, Y) = \sum_{X \in X} \sum_{y \in Y} f(x, y)$$
 and  $c(X, Y) = \sum_{X \in X} \sum_{y \in Y} c(x, y)$ .

### 26.2 The Ford-Fulkerson method

\* We call it a method instead of algorithm, because it encompasses several implementations.

## FORD-FULKERSON-METHOD (G, s, t)

- 1 initialize flow f to 0 f = 0
- 2 while there exists an augmenting path p
- 3 **do** augment flow f along p
- 4 return f  $f = f + f_p$

### **Example:**

26-4x



Residual network  $G_f$  with an augmenting path p



New  $f \leftarrow f + f_p$ \* ignore negative 26-5

flows



New  $G_f$ 



### Residual networks G<sub>f</sub>

(1) <u>residual capacity</u> of (u, v) is given as

$$\frac{C_f(u,v)}{\text{capacity}} = \frac{C(u,v) - f(u,v)}{\text{capacity}}.$$

(2)  $G_f = (V, E_f)$ , where

only non-negative edges

$$E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}.$$

set of edges that still can be used!

**Augmenting path:** a simple path  $s \rightarrow t$  in  $G_f$ .

**Cut** of a flow network: a partition of V into S and T=V-S such that  $s \in S$  and  $t \in T$ .

Net flow across a cut: f(S, T).

(See 26-3 for de

Capacity of a cut: c(S, T).

26-6x

**Example:** |f|=19, f(S, T)=19, and c(S, T)=26.

=12 + 0 + 14



**Lemma 26.5:** For any cut (S, T), f(S, T)=|f|. (flow conservation)

Corollary 26.6: For any f,  $|f| \le c(S, T)$ .

(capacity constraint)

Every cut sets an upper bound on  $|f^*|$ .

Fig 26-4

### Theorem 26.7: (Maximum flow minimum cut) 26-7a The following are equivalent:

1. f is a maximum flow



- 2.  $G_f$  contains no augmenting paths
- 3. |f|=c(S, T) for some cut (S, T) of G.

 $|f| \le c(S, T) \longrightarrow c(S, T)$  is a minimum cut **Proof**: (1) $\rightarrow$ (2) (By contraction) Suppose there is an augmenting path p. We have  $|f+f_p|>|f|$ , which contradicts to "f is a maximum flow."

 $(2)\rightarrow(3)$  Since (2),  $G_f$  contains no path from s to t. Define  $S=\{v \mid \text{there is a } s \rightarrow v \text{ in } G_f\} \text{ and } T=V-S.$ Note that  $t \in T$ . Thus, (S, T) is a cut.

For each pair  $u \in S$  and  $v \in T$ , we have f(u,v) =c(u,v), since otherwise  $(u,v) \in E_f$  and v is in S. By lemma 26.5, |f|=f(S, T)=c(S, T).

(3) $\rightarrow$ (1): By corollary 26.6,  $|f| \le c(S, T)$  for all cuts. The condition |f|=c(S, T) thus implies f is a maximum flow.

Q.E.D.

### The basic algorithm

FORD-FULKERSON(G, s, t) for each edge  $(u, v) \in E[G]$ **do**  $f[u, v] \leftarrow 0$  $f[v,u] \leftarrow 0$ while there exists a path p from s to t in  $G_f$  $\operatorname{do}[c_f(p)] \leftarrow \min\{c_f(u,v) : (u,v) \text{ is in } p\}$ **for** each edge (u, v) in p**do**  $f[u, v] \leftarrow f[u, v] + c_f(p)$  $7 f = f + f_n$  $f[v,u] \leftarrow -f[u,v]$  $\rightarrow$  f[v,u] - c<sub>f</sub>(p) (f=0)



### **Analysis:**

(1) |f| is increasing. But, if p is chosen poorly, the algorithm might not even terminate (while c(u,v)'s are irrational numbers).



# find a path: O(E) BFS or DFS 26-10

- (2) If c(u,v)'s are integers, it performs in  $O(E|f^*|)$  time, where  $f^*$  is the maximum flow.

  at most  $|f^*|$  times
- (3) If *p* is chosen by using breadth-first search, the algorithm is called the *Edmonds-Karp* algorithm. It performs in  $O(VE^2)$  time. (We are not going to prove this.) at most VE times

## 26.3 Maximum bipartite matching

# A <u>bipartite</u> graph (undirected) $G=(V=L\cup R,E)$ and two matchings



### **Corresponding flow network:** G'=(V',E'), where

$$V = V \cup \{s, t\},\$$
 $E = \{(s,u): u \in L\}\$ 
 $\cup \{(u,v): u \in L, v \in R, \text{ and } (u,v) \in E\}$ 
 $\cup \{(v,t): v \in R\}, \text{ and }$ 

each edge is assigned unit capacity.



### matchina <--> integer-valued flow

26-12

**Lemma 26.10:** If M is a matching in G, then there is an integer-valued flow f in G' with |M|=|f|. Conversely, if f is an integer-valued flow f in G', then there is a matching M in G with |M|=|f|.

**Theorem 26.11:** If all c(u,v)'s are integer, all  $f^*(u,v)$ 's produced by Ford-Fulkerson method are integers. (by induction.)  $G,f \longrightarrow G_f \longrightarrow f_p \longrightarrow f + f_p$ 

**Corollary 26.12:**  $|f^*|$  of G is equal to the cardinality of a maximum matching in G.

\* The maximum bipartite matching problem can be solved in  $O(Ef^*)=O(EV)$  time.  $f^* \leq |V|/2$ 

Homework: Ex. 26.2-6, 26.2-11, Pro. 26-1, 26-2.

flow on undirected  $G: \bigcirc 4 \bigcirc \Rightarrow \bigcirc 4$ 



# Differences in the 3rd Edition

(Consider only positive flows)

### Flow networks:

Assume that *G* contains no *antiparallel* edges. (If  $(u, v) \in E$ , then  $(v, u) \notin E$ .)

### Handling antiparallel edges:



Converting a network with antiparallel edges into one with no antiparallel edges

**Flow:** a real function f:  $V \times V \rightarrow R$  satisfying the following TWO properties:

**Capacity constraint:** For all  $u, v \in V$ ,  $0 \le f(u,v) \le c(u,v)$ . Only positive flows!!! *Flow conservation*: For all  $u \in V - \{s, t\}$ ,  $\sum f(v, u) = \sum f(u, v)$ . (flow in equals flow out)

 $v \in V$   $v \in V$  positive in = positive out 1

The residual capacity:

(slightly complicated)

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

## The basic Ford-Fulkerson algorithm

FORD-FULKERSON $(G, s, t) \otimes$  (\* needs converting)

- 1. **for** each edge  $(u, v) \in E[G]$
- $\operatorname{do} f[u, v] \leftarrow 0$  one side (slightly simpler)  $\odot$
- 3. while there exists a path p from s to t in  $G_f$
- **do**  $c_f(p) \leftarrow \min\{c_f(u, v): (u, v) \text{ is in } p\}$
- for each edge (u, v) in p do 5.
- (if-then-else) **if**  $(u, v) \in E[G]$
- then  $f[u, v] \leftarrow f[u, v] + c_f(p)$ else  $f[v, u] \leftarrow f[v, u] c_f(p)$