(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年10月23日(23.10.2003)

(10) 国際公開番号 WO 03/087381 A1

(51) 国際特許分類7: C12N 15/70, 15/53, 15/12, C12P 7/62 // C12N 15/53, 1/21, (C12N 15/70, C12R 1:04) (C12N 15/53, C12R 1:38) (C12N 15/12, C12R 1:465) (C12N 15/12, C12R 1:38) (C12P 7/62, C12R 1:19) (C12N 1/21, C12R 1:19)

(21) 国際出願番号:

PCT/JP03/04609

(22) 国際出願日:

2003 年4 月11 日 (11.04.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2002-110311 2002年4月12日(12,04,2002)

(71) 出願人 (米国を除く全ての指定国について): メルシャ ン株式会社 (MERCIAN CORPORATION) [JP/JP]; 〒 104-8305 東京都 中央区 京橋一丁目 5 番 8 号 Tokyo

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 有澤 章 (ARI-SAWA,Akira) [JP/JP]; 〒438-0078 静岡県 磐田市 中泉 1797 ひかりハイツ313 Shizuoka (JP). 久米田 綾子 (KUMEDA, Ayako) [JP/JP]; 〒140-0011 東京都品 川区東大井1-3-19-201 Tokyo (JP).

- (74) 代理人: 小田島平吉, 外(ODAJIMA,Heikichi et al.); 〒107-0052 東京都港区 赤坂1丁自9番15号 日本 自転車会館小田島特許事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

明細書とは別に規則13の2に基づいて提出された 生物材料の寄託に関する表示。

2 文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: EXPRESSION SYSTEM OF ACTINOMYCETE-ORIGIN CYTOCHROME P-450 IN ESCHERICHIA COLI

(54) 発明の名称: 大腸菌における放線菌由来チトクロームP-450遺伝子の発現系

7381 (57) Abstract: It is intended to provide an expression system of cytochrome P-450 with the use of Escherichia coli as a host. An E. coli strain containing a ferredoxin gene originating in actinomycete, a ferredoxin gene foreign to E. coli and a ferredoxin deluctase gene, which is useful in the progress of an effective reaction of adding monographic oxygen to an experience company correspondence of the containing and a ferredoxin redoxin r gene, which is useful in the progress of an effective reaction of adding monoatomic oxygen to an organic compound serving as a substrate, is provided.

◯ (57) 要約: 宿主大腸菌を用いるチトクロームP-450遺伝子の発現系の提供。放線菌由来のフェレドキシン遺伝子、な らびに大腸菌に対して異種のフェレドキシン遺伝子およびフェレドキシン還元酵素遺伝子を含む大腸菌が提供され る、基質有機化合物の効果的な一原子酸素添加反応を進めるのに有用である。

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 26.01.2005 Bulletin 2005/04

(21) Application number: 03723103.2

(22) Date of filing: 11.04.2003

(51) Int Cl.7: **C12N 15/70**, C12N 15/53, C12N 15/12, C12P 7/62 // (C12N15/53, 1:21, 15:70), C12R1:04, C12N15:53, C12R1:38, C12N15:12, C12R1:465, C12N15:12, C12R1:38, C12P7:62, C12R1:19, C12N1:21, C12R1:19

(86) International application number: PCT/JP2003/004609

(11)

(87) International publication number: WO 2003/087381 (23.10.2003 Gazette 2003/43)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States:

AL LT LV MK

(30) Priority: 12.04.2002 JP 2002110311

(71) Applicant: MERCIAN CORPORATION Chuo-ku, Tokyo 104-8305 (JP)

(72) Inventors:

 ARISAWA, Akira Iwata-shi, Shizuoka 438-0078 (JP)

 KUMEDA, Ayako Tokyo 140-0011 (JP)

(74) Representative: Hiebl, Inge, Dr. Kraus & Weisert Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 80539 München (DE)

(54) EXPRESSION SYSTEM OF ACTINOMYCETE-ORIGIN CYTOCHROME P-450 IN ESCHERICHIA COLI

(57) This invention relates to a system for the expression of cytochrome P-450 gene in host *Escherichia coli*, and provides *Escherichia coli* which contains actinomycete ferredoxin gene and also ferredoxin gene and ferredoxin reductase gene which are xenogenic to *Es-*

cherichia coli.

Thus, this invention is useful for the promotion of effective single oxygen atom insertional reaction of a substrate organic compound.

Description

5

20

25

45

50

Technical Field

[0001] This invention relates to a system for the expression of actinomycete cytochrome P-450 genes in *Escherichia coli*.

Background Technology

[0002] Cytochrome P-450 enzymes (hereinafter referred to simply as "P-450s") which are encoded by cytochrome P-450 genes are a general name of a group of protoheme-containing proteins whose reduced form shows Soret band around 450 nm when bound to carbon monoxide. P-450s are bound to microsome in tissue of various kinds of animal or plant, or in fungi or yeasts, or to inner membrane of mitochondrion in tissue of some kind of animals. In certain kinds of bacteria and fungi, P-450s exist in soluble state.

[0003] P-450s show various types of substrate-specificity. Some P-450s have abnormally so wide substrate-specificity that they can react with various kinds of organic compounds as substrate. Some, on the other hand, have considerably strict substrate-specificity, and react only with comparatively limited kinds of organic compounds. P-450s also show excellent stereo- and/or regio-specificity to reaction site. With regard to concrete functions, P-450s are known to catalyze reactions such as hydroxylation, epoxidation, dealkylation and denitrification, of xenobiotics in a cell which expresses said P-450s. For example, most of drugs which are administered to human are metabolized and inactivated in the body by various or specific action, such as hydroxylation, of P-450. In some cases, on the contrary, pharmacological effects of the drugs are improved, or subsidiary action is enhanced. P-450 is, therefore, medically very important from the viewpoint of the research of metabolism of medicine or the development of prodrugs.

[0004] Thus, P-450s which have drug-metabolizing functions for higher organisms including human have been studied from every angle for long years. Although these enzymes are obtained from microsome fractions of liver of higher organisms, it is difficult to purify these enzymes into single isozyme. On this account, there has been developed a technology to express functionally a gene which encodes single isozyme in a host such as *Escherichia coli* or yeast, and to thus conveniently investigate the metabolic role of the enzyme.

[0005] P-450s of higher organisms which have such drug-metabolizing functions as mentioned above have never been successfully applied to material production on industrial scale. P-450s of higher organisms, when functionally expressed in a host such as *Escherichia coli* or yeast, show only low productivity as compared with P-450s of bacteria, and also cause various side reactions. For these reasons, P-450s of higher organisms have been used only restrictively. [0006] In the case of P-450 originated from microorganisms such as fungi and bacteria, on the other hand, some kinds of P-450s are known to serve for the production of industrially useful materials. Some of such kinds of P-450s have actually been utilized for industrial production of useful medicine. Typical example is the production of pravastatin, a medicine to remedy hyperlipidemia, by means of the hydroxylation at 6β-position of compactin with *Storeptomyces carbophilus*, a species of actinomycete (Watanabe et al., Gene, 163 (1995) 81-85, Japanese Patent Application Laid-Open (Kokai) Publication No. Hei 6 (1994)-70780). There has also been put into practice a method by which to produce active vitamin D₃ by means of the hydroxylation at 1α- and 25-positions of vitamin D₃ with use of *Pseudonocardia autotrophica*, a species of actinomycete.

[0007] Such microbial conversion of drugs with use of actinomycete cytochrome P-450 enzymes as mentioned above have been carried out with use of culture liquids or cells of actinomycetes which express said enzymes. There have also been used culture liquids wherein genes which encode actinomycete P-450s have been introduced into *Storeptomyces lividans*, that is also a species of actinomycete and that is suitable as a host, to express the enzymatic activity. The microbial conversion of substrate compounds with the actinomycete strains which have such genes as mentioned above takes considerable time for the cultivation of the strains and for the conversion of substrate compounds into desired products. Furthermore, some enzymes need consideration on expression-inducible conditions under which to increase the amount of enzyme expressed. Moreover, some species of actinomycetes which are to be used for the conversion have, in themselves, a system for metabolizing or degrading substrate or desired product, which causes the formation of by-products or the reduction of substrate or desired product, and thus decreases the productivity of desired product.

[0008] There is also a report of experiment wherein, after the example of functionally expressing a gene which encodes single isozyme of the above-mentioned higher organism-originated P-450s in a host of microorganism such as *Escherichia coli*, CYP105D1 gene which is a *Storeptomyces griseus* originated cytochrome P-450 gene was functionally expressed in *Escherichia coli* (Taylor *et al.*, Biochemical and Biophysical Research Communications (1999) 263: 838-842). It seems that, in this expression system, some suitable electron donor for the P-450 in periplasm of *Escherichia coli* hydroxylates hydrocarbons in cooperation with the P-450 (Kaderbhai *et al.*, Applied and Environmental Microbiology, 67 (2001) 2136-2138). Such a P-450 gene-expressing system has a merit that *Escherichia coli* as a host

needs less time for cultivation as compared with actinomycetes or the like.

Disclosure of Invention

5

10

20

25

30

35

45

[0009] The above-mentioned system for the conversion of organic compounds with microorganisms which have P-450s is intended to be used, for instance, for the application to biocatalyst or for the research of drug metabolism. In consideration of application to biocatalyst, in particular, more efficient bioconversion would be demanded. In order to achieve the efficient screening of industrially important and desired actinomycete P-450 enzymes, there would be needed a suitable gene library as an object of robotized enzyme-assaying operation or other convenient and rapid enzyme-assaying operation in high throughput screening or the like. Concretely, there is demanded a library which has actinomycete-originated different cytochrome P-450 genes (actinomycete cytochrome P-450-expression library) and wherein microorganism, preferably handy and quick-growing microorganism, is used as a host in which each constituent clone is capable of expression.

[0010] In order to attain the above-mentioned objective, it would be useful to use, as a host, *Escherichia coli* which, at least, needs comparatively short time for cultivation, and which is considered to have only a few systems for the metabolism or degradation of substrate compounds or products from said substrate compounds. It has been confirmed, however, that only introducing an actinomycete P-450 gene into a host *Escherichia coli* and cultivating the same, as in the above-mentioned Taylor *et al.* wherein *Escherichia coli* is used as a host, does not achieve the functional expression of most of various kinds of P-450 genes which are originated from other species of actinomycete (or, in other words, enzymatic activity of P-450 is not shown as expected). Thus, the inventors of the present invention have studied how to construct a system which is capable of functionally expressing actinomycete-originated various kinds of P-450 genes surely and with high enzymatic activity. As a result, they have found out that, when a certain electron transport system originated from microorganism which is xenogenic to *Escherichia coli* is introduced together with P-450 gene and is then allowed to co-express, the P-450 gene originated from various species of actinomycete is functionally expressed.

[0011] Based on such a finding as mentioned above, this invention provides a system for the expression of actinomycete cytochrome P-450 genes in host *Escherichia coli*, wherein said *Escherichia coli* supports a recombinant DNA molecule which comprises xenogenic microorganism-originated ferredoxin gene, ferredoxin reductase gene and said cytochrome P-450 gene in operable state.

[0012] Such an expression system as explained above is capable of the expression of such a gene as mentioned in the above Taylor *et al.* which encodes actinomycete cytochrome P-450, and which is incapable of conjugating native electron transport system of *Escherichia coli*. In other words, the expression system of this invention achieves expected enzymatic activity of P-450 whether P-450 gene may conjugate native electron transport system of *Escherichia coli* or not. Thus, the term "functionally express" in this specification means that, a gene of interest expresses protein, which is encoded by the gene, in an active form.

[0013] In the following, this invention is explained in more detail.

[0014] Host Escherichia coli means certain kinds of Escherichia coli which are usable for the propagation of vectors such as plasmids and phages and of inserted genes. Any species of host will do if only, in a recombinant DNA experiment with use of host-vector system, a vector with an exogenous DNA fragment is capable of replication after transformation. As a host for said host-vector system, Escherichia coli on the market would be conveniently utilized.

[0015] Actinomycete cytochrome P-450 genes in this invention include P-450 genes originated from any genus of bacteria that belong to order *Actinomycetales* if only the bacteria have P-450 genes which serve to achieve the objective of this invention in some form or other (e.g., on chromosome or plasmid). Thus, cytochrome P-450 genes include all that encodes protein mentioned above which has such activity as to catalyze single oxygen atom insertional reaction in accordance with this invention. Although not restrictive, examples of P-450 genes which are intended to be incorporated into the expression system of this invention include those which have the above-mentioned function, at least a part of whose DNA sequences have been determined, and each of whose sequence information is available from gene data base (EMBL and GenBank), concretely, those which are originated from the following species of actinomycte and which encode protein having the above-mentioned activity, or those which have functions of cytochrome P-450 as mentioned below.

Actinomycete	Function of cytochrome P-450	
Amycolatopsis orientalis	Unknown	
Actinomadura verrucosospora	Biosynthesis of vercopeptin	
Amycolata autotrophica	Unknown	
Amycolatopsis mediterranei	Biosynthesis of rifamycin	

55

(continued)

	Actinomycete	Function of cytochrome P-450
İ	Amycolatopsis mediterranei	Biosynthesis of balhimycin
5	Kitasatospora griseospola	Biosynthesis of terpentecin
	Micromonospora griseorubida	Biosynthesis of mycinamicin
	Micromonospora inyoensis	Unknown
	Microtetraspora recticatena	Hydroxylation of compactin
10	Mycobacterium smegmatis mc2155	Degradation of piperidine and pyrrolidine
10	Mycobacterium sp. FM10	Unknown
	Mycobacterium tuberculosis H37Rv	22 P-450 genes in whole genome (function unknown)
	Myxococcus xanthus	Polyketide antibiotic TA
	Pseudonocardia autotrophica	Hydroxylation of vitamin D ₃
15	(old name: Amycolata autotrophica)	, ,
	Rhodococcus erythropolis	Degradation of thiocarbamate herbicide
	Rhodococcus fascians (D 188)	Synthesis of phytophysiologically active substance
	Rhodococcus ruber	Degradation of ethyl-tert-butyl ether
	Saccharopolyspora erythraea	Hydroxylation of erythromycin
20	Streptoalloteichus hindustanus	Unknown
	Streptomyces acidiscables	Biosynthesis of thaxtomin A
	Streptomyces albus	Unknown
	Streptomyces ansochromogenes	Biosynthesis of nikkomycin
25	Streptomyces antibioticus	Biosynthesis of oleandomycin
	Streptomyces antibioticus	Biosynthesis of simocyclinone
	Streptomyces aureofaciens Re n 71	Unknown
	Streptomyces avermitilis	Formation of furan ring of avermectin
30	Streptomyces avermitilis	Biosynthesis of oligomycin
30	Streptomyces avermitilis	Biosynthesis of polyketide-4
	Streptomyces avermitilis	Biosynthesis of polyketide-9
	Streptomyces avermitilis	Biosynthesis of other type
		polyketide
35	Streptomyces avermitilis	Biosynthesis of polyene macrolide
	Streptomyces avermitilis	Biosynthesis of peptide-7
	Streptomyces carbophilus	Hydroxylation of compactin
	Streptomyces clavuligerus	Biosynthesis of clavulanic acid
40	Streptomyces coelicolor A3(2)	18 P-450 genes in whole genome
10		(function unknown)
	Streptomyces fluvus	Hydroxylation of compactin
	Streptomyces fradiae	Biosynthesis of tylosin
	Streptomyces glaucescens	Unknown
45	Streptomyces griseolus	Degradation of sulfonylurea herbicide
	Streptomyces griseus	Unknown
	Streptomyces hygroscopicus	Biosynthesis of rapamycin
	Streptomyces hygroscopicus var. ascomyceticus	Biosynthesis of FK520
50	Streptomyces lavendulae	Biosynthesis of mitomycin
••	Streptomyces la vendulae	Biosynthesis of complestatin
	Streptomyces lividans	Unknown
	Streptomyces maritimus	Biosynthesis of enterocin
	Streptomyces natalensis	Biosynthesis of pimaricin
55 .	Streptomyces nodosus	Biosynthesis of amphotericin
	Streptomycesnogalater	Biosynthesis of nogalamycin
l	Streptomyces noursei	Biosynthesis of nystatin

(continued)

Actinomycete	Function of cytochrome P-450
Streptomyces peucetius	Hydroxylation of daunomycin
Streptomyces peucetius subsp. caesius	Hydroxylation of daunomycin
Streptomyces rishiriensis strain DSM 40489	Biosynthesis of coumermycin A1
Streptomyces sclerotialus	Unknown
Streptomyces sp.	Hydroxylation of FK-506
Streptomyces sp.	Unknown
Streptomyces spheroids	Biosynthesis of novobiocin
Streptomyces tendae	Biosynthesis of nikkomycin
Streptomyces thermotolerans	Epoxidation of carbomycin
Streptomyces venezuelae	Biosynthesis of pikromycin, methymycin

[0016] The following actinomycete P-450 are also included as usable in this invention. Each of the following literatures gives guidance how to prepare gene which encodes each enzyme.

Compactin-hydroxylating enzyme originated from Streptomyces carbophilus (P-450 _{sca} -2)	Watanabe et al., Gene 163 (1995) 81-85 or Japanese Laid-Open (Kokai) Patent Publication No. Hei 6 (1994)- 70780
Microtetraspora recticatena	Japanese Laid-Open (Kokai) Patent Publication No. 2001-286293
Vitamin D ₃ -hydroxylating enzyme originated from Amycolata sp.	Sasaki et al., Applied Microbiology and Biotechnology (1992) 38: 152-157

[0017] Streptomyces roseochromogenes-originated progesterone-hydroxylating enzyme (Berrie et al., Journal of Steroid Biochemistry & Molecular Biology 77 (2001) 87-96) can also be mentioned. Although gene sequence of this Streptomyces roseochromogenes is not mentioned in published literatures, function and biochemical properties of this P-450 enzyme have detailedly determined, and, on the basis of which information, it is easy to prepare gene which encodes said P-450 enzyme.

[0018] Cytochrome P-450-encoding genes (or P-450 genes) as mentioned in this invention include any gene so long as it can be isolated from total DNAs of the above-mentioned actinomycetes or can be amplified by PCR reaction, which is mentioned later, on the basis of information of nucleotide sequences of said total DNAs, and so long as it is capable of functional expression in the system of this invention for the expression of P-450 genes. Also included in P-450 genes of this invention are polynucleotides which are functionally equivalent to the above-mentioned genes (also called native gene), and which have activity to catalyze single oxygen atom insertional reaction against corresponding substrates in the expression system of this invention. It is guessed that complement base sequences of said equivalent polynucleotides hybridize with corresponding native genes under a certain hybridization condition, e.g., under stringent condition in 2 × SSC (standard saline citrate) at 60°C, preferably in 0.5 × SSC at 60°C, most desirably 0.2 × SSC at 60°C. When each of the polynucleotides is lined up side by side with the corresponding native gene, there would be shown homology of 80 %, preferably 90 %, most desirably at least about 95 %. This "% homology" means percentage of nucleotide which is in common between two sequences when the two sequences are lined up side by side with each other in an optimum manner. [Thus, "% homology" = (number of coincident positions/total number of positions) x 100. This can be calculated with use of algorithm on the market. Such an algorithm is incorporated in NBLAST and XBLAST programs which are mentioned in Altschul et al., J. Mol. Biol. 215 (1990) 403-410.]

[0019] Ferredoxin gene which is incorporated in the expression system of this invention is a DNA molecule which is originated from microorganisms (or bacteria) which are xenogenic to host *Escherichia coli*. Ferredoxin gene generally encodes protein which functions as an electron transporter having a molecular weight of about 6,000 to 14,000. Ferredoxin gene may be originated from any bacteria except *Escherichia coli* so long as the bacteria participate in the functional expression of P-450 gene when co-expressed with the above-mentioned actinomycete P-450 gene and further with ferredoxin reductase gene which will be mentioned later. Concrete examples of said bacteria, although not restrictive, include actinomycete which may or may not be the same as mentioned above from which P-450 gene is originated.

[0020] Also usable is ferredoxin gene originated from bacteria, e.g., of genus *Pseudomonas*, which belong to different genus from that of actinomycete from which P-450 gene is originated. Examples of such a ferredoxin gene include putidaredoxin gene (also called *camB*) as mentioned in Peterson *et al.*, The Journal of Biological Chemistry, 265 (1990) 6066-6073.

[0021] When ferredoxin gene is originated from the same actinomycete from which P-450 gene is originated, P-450 gene and ferredoxin gene may sometimes constitute a gene cluster in which said P-450 gene and ferredoxin gene exist adjacent to each other on genomic DNA. In such a case, a DNA fragment which contains both of said genes may be used in the expression system of this invention. In the expression system of this invention, ferredoxin gene may exist with another ferredoxin. A preferable example of such a case is the use of ferredoxin gene originated from actinomycete in combination with the above-mentioned camB originated from *Pseudomonas putida*. Such a ferredoxin gene also includes functionally equivalent polynucleotide which can be specified in the same manner as in the above-mentioned P-450 gene.

[0022] Ferredoxin reductase gene which is incorporated in the expression system of this invention as an essential factor may be originated from bacteria which are xenogenic to host *Escherichia coli*, and which, under circumstances, may also be xenogenic to the origin of P-450 gene. Concretely, ferredoxin reductase gene originated from any bacteria is usable in this invention so long as the bacteria are capable of co-expression with the above-mentioned P-450 gene and with ferredoxin gene, and so long as the gene encodes ferredoxin reductase which shows the expected activity of P-450 enzyme, i.e., the product of said gene expression of P-450, or, in other words, which catalyzes single oxygen atom insertional reaction against substrate. Examples of such ferredoxin reductase gene, although non-restrictive, include ferredoxin reductase gene originated from *Streptomyces coelicolor* (hereinafter sometimes referred to as "fdr-1" or "fdr-2") and putidaredoxin reductase gene originated from the above-mentioned *Pseudomonas putida* (hereinafter referred to also as *camA*). Such a gene also includes functionally equivalent polynucleotide which can be specified in the same manner as in the above-mentioned P-450 gene.

[0023] In the expression system of this invention, the above-mentioned P-450 gene, ferredoxin gene and ferredoxin reductase gene are introduced in *Escherichia coli* in an operable state. The term "operable state" means that said genes are present in host in such a manner that all of the genes are capable of functional expression. In a typical example of such a state, all of the above-mentioned genes exist in a plasmid, which is capable of autonomous replication in *Escherichia coli*, together with autonomously replicating sequence, promoter sequence, terminator sequence and drug resistant gene, in a suitable order. Otherwise, all of said genes exist in chromosome of host *Escherichia coli* in such a manner that they are capable of functional expression via a chromosomal DNA integrative vector. The above-mentioned P-450 gene, ferredoxin gene and ferredoxin reductase gene may be arranged in any order in said plasmid. Usually, however, P-450 gene is preferably placed uppermost in the stream. When, in particular, P-450 gene and ferredoxin gene are used as a gene cluster fragment of the same origin, the following orders may be preferable: P-450 gene-ferredoxin gene-ferredoxin reductase gene-putidaredoxin gene-putidaredoxin reductase gene-putidaredoxin gene; or P-450 gene-putidaredoxin reductase gene-putidaredoxin gene.

[0024] Plasmid or vector which is usable in the above-mentioned expression system may be capable of stable autonomous replication in *Escherichia coli*, or may be an integrative vector which is capable of integrating chromosome of *Escherichia coli* with exogenous gene. Both can be available from those on the market, or by modification where necessary. Plasmids which have a strong promoter for gene transcription are conveniently used for the above-mentioned purpose. Examples of such plasmids include those on the market, such as pET11 and pUC18.

[0025] Thus provided actinomycete P-450 gene expression system of this invention is usable for the screening of P-450 enzymes which are suitable for the modification of various kinds of drugs or the bioconversion from precursor into desired drugs, or further for the manufacture of desired drugs from precursor.

Brief Explanation of Drawings

[0026]

5

10

15

20

25

30

35

40

45

50

55

Fig. 1 shows the structure of plasmid pMoxAB.

Fig. 2 shows the structure of plasmid pMoxAB-fdr1.

Fig. 3 shows the structure of plasmid pMoxAB-fdr2.

Fig. 4 shows the structure of plasmid pMoxAB-camAB.

Fig. 5 shows the structure of plasmid pT7NS-camAB.

Fig. 6 shows the structure of plasmid pCBM-camAB.

Fig. 7 shows the structure of plasmid pSC154A1-camAB.

Fig. 8 shows the structure of plasmid pDoxA1-camAB.

[0027] In the following, this invention is concretely explained with working examples.

Best Mode for Working this Invention

[0028] This invention will be further explained with reference to examples of the construction of P-450 gene which forms pravastatin of the following formula:

or a mixture (which is called "RT-5.8 substances" in this specification) of isomers thereof which have the following formulae:

• 55

by means of single oxygen atom insertional reaction of compactin of the following formula:

5

10

15

20

25

30

35

40

45

50

55

(or also existent as δ -lactone compound corresponding to the above formula) or a salt thereof.

[0029] Incidentally, pravastatin sodium is a clinically important medicine as an agent to cure hyperlipidemia.

[0030] Actinomycete which has an enzymatic activity to hydroxylate compactin (also called mevastatin) belongs to genus *Streptomyces* (Japanese Laid-Open (Kokai) Patent Publication Sho 57 (1982)-50894, Japanese Patent No. 2672551) or to genus *Microtetraspora*. As for the latter, which has been confirmed by the inventors of this invention, a DNA fragment which contains P-450 gene can be prepared by the following process.

Preparation of P-450 gene from Microtetraspora recticatena IFO 14525

[0031] Said gene can be obtained by polymerase chain reaction (PCR) with use of primers which have been designed in accordance with an amino acid sequence of the region which is known to keep amino acid sequence with a high probability among a family of lot of P-450 hydroxylation enzymes (J. Bacteriol. 172, 3335-3345 (1990)). For example, IFO 14525 strain is cultivated under certain cultivation conditions, and, then, thus obtained cells are crushed to give chromosomal DNA. Thus obtained chromosomal DNA is subjected to PCR reaction with use of primers which have been designed from amino acid sequences for oxygen-binding domain and heme-binding domain which exist in common with P-450 hydroxylation enzyme family. There is obtained a DNA fragment which has been amplified by the PCR reaction, on the basis of which a further PCR reaction is conducted, and, thus, there is obtained flanking regions of the DNA fragment which has been amplified by the first PCR reaction (in the downstream, there existed a gene which encoded ferredoxin). All of the above-mentioned manipulation can be carried out by any method that is known well in this art. Details of these sets of manipulation are mentioned in the specification of Japanese Patent Application No. 2001-47664 by the same applicant as that of the present application (the contents of said specification are incorporated into the present specification by citation). Sequence No. 1 in the sequence listing shows a nucleotide sequence (and amino acid sequences encoded) which includes adjacent region of thus obtained P-450 gene.

[0032] In the above-mentioned sequence, a continuous nucleotide sequence from base 313 to base 1533 corresponds to P-450 gene (moxA), and a continuous nucleotide sequence from base 1547 to base 1741 corresponds to ferredoxin gene (moxB).

Preparation of P-450 gene from Streptomyces sp. TM-6 or TM-7

5

10

20

25

45

50

55

[0033] From among a lot of microorganisms that belong to *Streptomyces* which were isolated from the soil in Japan, the applicant has identified the above-captioned TM-6 and TM-7 strains as microorganisms which are capable of biologically converting compactin as a substrate into pravastatin. Said strains were deposited on April 25, 2001, at the International Patent Organism Depository (IPOD) in the National Institute of Advanced Industrial Science and Technology (AIST) at Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan, and thus have been received with Deposit Nos. FERM P-18311 and FERM P-18312.

[0034] Later, a demand was made on the above-mentioned IPOD, which is also an international depositary authority under the Budapest Treaty, for the transfer of these strains TM-6 and TM-7 to said international depositary authority under said Treaty, and, thus, these strains have been received with Deposit Nos. FERM BP-8002 and FERM BP-8003. [0035] With regard to said TM-7 strain, a region of target gene was amplified by PCR in the same manner as in the above-mentioned IFO 14525, and, thus, the sequence of DNA fragment containing the target gene and its adjacent region was determined. The result is shown in Sequence No. 2. In this sequence, a continuous nucleotide sequence from base 544 to base 1758 corresponds to P-450 gene (boxA), and a continuous nucleotide sequence from base 1782 to base 1970 corresponds to ferredoxin gene (boxB). The manipulation to obtain these genes is mentioned detailedly in the specification of Japanese Patent Application No. 2001-166412 which has been filed by the applicant of the present application (the contents of said specification are incorporated into the present specification by citation). [0036] When compared with the sequence of P-450 gene of Streptomyces carbophilus SANK 62585 strain (FERM BP-1145) which is mentioned, for instance, in Japanese Patent No. 2672551, the nucleotide sequence of the abovementioned boxA was found to have a homology of about 75 %. With the above-mentioned moxA, the boxA has a homology of about 46 %. With hydroxylation enzyme gene of Streptomyces lividans, the boxA has a homology of about 75 %. Said boxA has a homology of about 46 % with a gene encoding pyridylhomothreonine monooxygenase which is an intermediate in the course of biosynthesis of nikkomycin by Streptomyces tendae Tji 901 strain.

[0037] On the basis of the above explanation or explanation in working examples mentioned below or, furthermore, on the basis of techniques which are known well in this art or of information in gene database, anyone skilled in the art would be able to obtain various kind of P-450 genes by means of firstly screening actinomycetes which are known (from type culture catalogue published by ATCC) with respect to bio-conversion of substrates for single oxygen atom insertion, then identifying strains having expected enzumatic activity, and thus conducting PCR operation as mentioned above. Hence, actinomycete cytochrome P-450 genes as called in this invention include not only known ones but also all that skilled persons could obtain.

[0038] The preparation of ferredoxin gene and ferredoxin reductase gene which are included in the expression system of this invention, and the construction of expression system by means of operable connection between these genes and P-450 genes, could be achieved quite easily by anyone skilled in the art in the same manner as in the above-mentioned P-450 genes, or in accordance with methods as mentioned in literatures (Sambrook *et al.*, Molecular Cloning, A Laboratory Manual, 3rd edition (2001), Cold Spring Harbor Laboratory Press, New York), and in the light of the methods in working examples as mentioned later.

[0039] Thus constructed expression system for P-450 genes is capable of functionally expressing P-450 genes under conditions where *Escherichia coli* is grown. When such an expression system is incubated under a suitable condition together with a substrate for enzyme as a product of P-450 gene (or when transformant as an expression system is cultivated), there is obtained a product wherein single oxygen atom has been inserted in substrate.

[0040] Cultivation is usually conducted on a medium which can be a nutritious medium for *Escherichia coli*, and which has no adverse effects on biological conversion of substrate. Such a medium is composed of suitable carbon source, nitrogen source, inorganic salt and natural organic nutriment. As said carbon source, there can be used glucose, fructose, glycerol, sorbitol and organic acids, either singly or in combination. The concentration of these carbon sources when used is suitably about 1 to 10 %, not particularly limited. As said nitrogen source, there can be employed one or two from ammonia, urea, ammonium sulfate, ammonium nitrate and ammonium acetate. As said inorganic salt, there can be used salts such as potassium dihydrogenphosphate, dipotassium hydrogenphosphate, magnesium sulfate, manganese sulfate and ferrous sulfate. As organic nutrient which has growth promoting effects on microorganism used, there can be used peptone, meat extract, yeast extract, corn steep liquor and casamino acids. Furthremore, a small amount of vitamins and nucleic acids may be included in medium.

[0041] In the expression system of this invention, high-titer P-450 enzymes with expected activity can be obtained when P-450 enzymes are induced at a temperature of about 25°C or less, preferably at 20 to 24°C, after host Escherichia coli has been cultivated at a temperature suitable for the growth of Escherichia coli, e.g. at 28 to 40°C.

[0042] The following is a detailed explanation of an example of construction of expression system for *mox*A gene originated from *Microtetraspora recticatena* IFO 14525 which encodes a compactin-hydroxylating enzyme as an instance of actinomycete cytochrome P-450 enzymes. This invention is, however, not restricted at all by this example.

Polymerase Chain Reaction (PCR):

[0043] In the following example, PCT is conducted under conditions as follows.

(1) Condition where genomic DNA is used as a template:

[0044]

10	

(Composition of reaction liquid)	
Sterilized purified water	15 µl
Twice-concentrated GC buffer I (Takara Shuzo)	25 μl
dNTP mixed solution (dATP, dGTP, dTTP, dCTP each 2.5 mM)	
Forward primer (100 pmol/µl)	0.5 μΙ
Reverse primer (100 pmol/μl)	0.5 μΙ
Genomic DNA (10 ng/μl)	0.5 μΙ
LA Taq (5 units/μl Takara Shuzo)	0.5 μ1

20

15

25

(Temperature condition)	
94°C	3 minutes
(98°C 20 seconds; 63°C 30 seconds; 68°C 2 minutes) 30 cycles	
72°C	5 minutes

(2) Condition where plasmid DNA (pMoxAB-fdr1) is used as a template:

₃₀ [0045]

(Composition of reaction liquid)	
Sterilized purified water	15 µl
Twice-concentrated GC buffer I (Takara Shuzo)	25 μΙ
dNTP mixed solution (dATP, dGTP, dTTP, dCTP each 2.5 mM)	
Mox-3F primer (100 pmol/μl)	0.5 μl
Mox-5R primer (100 pmol/μl)	0.5 μl
Plasmid DNA (1 ng/μl)	0.5 μl
LA Taq (5 units/μl Takara Shuzo)	0.5 μΙ

45

50

35

(Temperature condition)	
94°C	3 minutes
(98°C 20 seconds; 63°C 30 seconds; 68°C 2 minutes) 25 cycles	
72°C	5 minutes

Example 1 Construction of plasmid

(1) pT7-fdr1

[0046] PCR was carried out with use of primer FDR1-1F (5'-GCCATATGACTAGTGCGCCTCACAGACTGGAACGGGAATCTCATG -3') (see Sequence No. 3) and FDR1-2R (5'-GCGAATTCTGTCGGTCAGGCCTGGTCTCCCGTCGGCCG-3') (see Sequence No. 4) by using, as a template, genomic DNA of *Streptomyces coelicolor* A3(2) [imparted by John Innes Institute (Norwich, UK)], and, thus, there was amplified a 1.3-kb fragment of gene (hereinafter referred

to as *fdr-1*; see Sequence No. 5) encoding a protein which has homology with ferredoxin reductases. This fragment was treated with restriction enzyme Nde I and Bam HI, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, the *fdr-1* gene fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said gene fragment, which had been cut out from the gel, and was purified. Said fragment was ligated to *Nde* I site and *Bam* HI site of *Escherichia coli* plasmid vector pET11a (manufactured by Stratagene Co.) with use of T4 DNA ligase, and, then, *Escherichia coli* DH5α was transformed with the resultant DNA reaction liquid, and, thus, pT7-fdr1 was constructed.

(2) pT7-fdr2

5

10

15

20

25

30

35

50

55

[0047] Under the same condition, PCR was carried out with use of primer FDR2-3F (5'-CGACTAGTGACGAGGAGGCAGGAGAGACAATGGTCGACGAGGATCAG-3') (see Sequence No. 6) and FDR2-4R (5'-CGGGATCCGACAACTAT-GCGACGAGGCTTTCGAGGG-3') (see Sequence No. 7) by using genomic DNA of the above-mentioned *Streptomyces coelicolor* A3(2), and, thus, there was amplified a 1.3-kb fragment of gene (hereinafter referred to as *fdr-2*, see Sequence No. 8), which is different from *fdr-1*, encoding a protein which has homology with ferredoxin reductases. This fragment was treated with restriction enzyme *Bam* HI and *Spe* I, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, *fdr-1* gene fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said gene fragment, which had been cut out from the gel, and was purified. Apart from that, plasmid pT7-fdr1 was treated with *Bam* HI and *Spe* I, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, pET11a vector fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said vector fragment which had been cut out from the gel, and was purified. Said vector fragment and the above-mentioned *fdr-1* gene fragment were ligated to each other with use of T4 DNA ligase, and, then, *Escherichia coli* DH5α was transformed, and, thus, pT7-fdr2 was constructed.

(3) pT7-camAB

[0048] PCR was carried out with use of primer PRR-1F (5'-GCCCCCCATATGAACGCAAACGACAACGTGGTCATC-3') (see Sequence No. 9) and PRR-2R (5'-GCGGATCCTCAGGCACTACTCAGTTCAGCTTTGGC-3') (see Sequence No. 10) by using, as a template, genomic DNA of *Pseudomonas putida* ATCC17453, and, thus, there was amplified a 1.65 kb fragment (*camAB* fragment; see Sequence No. 16) which contained putidaredoxin reductase gene (*camA*) and putidaredoxin gene (*camB*) which was just downstream of said *camA*. This fragment was treated with restriction enzyme *Nde* I and *Bam* HI, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, *camAB* fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said fragment, which had been cut out from the gel, and was purified. Said fragment was ligated to *Nde* I site and *Bam* HI site of *Escherichia coli* plasmid vector pET11a (manufactured by Stratagene Co.) with use of T4 DNA ligase, and, then, *Escherichia coli* DH5α was transformed, and, thus, pT7-camAB was constructed.

(4) pMoxAB

[0049] PCR was carried out with use of primer Mox-1F (5'-GCCGCCCATATGACGAAGAACGTCGCCGACGAACTG-3') (see Sequence No. 11) and Mox-12R (5'-GCAGATCTAGTGGCTTCAGGCGTCCCGCAGGATGG-3') (see Sequence No. 12) by using, as a template, genomic DNA of IFO.14525 strain, and, thus, there was amplified a 1.4-kb fragment (moxAB fragment) which contained a gene (moxA) encoding compactin-hydroxylation enzyme and ferredoxin gene (moxB) which was adjacent downstream thereto. This fragment was treated with restriction enzyme Nde I and Bg/II I, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, moxAB fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said fragment, which had been cut out from the gel, and was purified. Said fragment was ligated to Nde I site and Bam HI site of the abovementioned plasmid pET11a with use of T4 DNA ligase, and, then, Escherichia coli DH5α was transformed with resultant reaction liquid, and, thus, plasmid pMoxAB was constructed.

(5) pMoxAB-fdr1 and pMoxAB-fdr2

[0050] PCR was carried out with use of primer Mox-1F (5'-GCCCCCCATATGACGAAGAACGTCGCCGACGAACTG-3') (see Sequence No. 11 as mentioned above) and Mox-2R (5'-CGACTAGTGGCTTCAGGCGTCCCGCAGGATGG-3') (see Sequence No. 13) by using, as a template, genomic DNA of IFO14525 strain, and, thus, there was amplified a 1.4-kb fragment (moxAB fragment) which contained a gene (moxA) encoding compactin-hydroxylation enzyme and ferredoxin gene (moxB) which was adjacent downstream thereto. This fragment was treated with restriction enzyme Nde I and Spe I, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over,

moxAB fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said fragment, which had been cut out from the gel, and was purified. Said fragment was ligated to *Nde* I site and *Spe* I site of the above-mentioned plasmid pT7-fdr1 with use of T4 DNA ligase, and, then, *Escherichia coli* DH5α was transformed with resultant reaction liquid, and, thus, plasmid pMoxAB-fdr1 was constructed. Fig. 2 shows the structure of this pMoxAB-fdr1.

[0051] The same inserted fragment was ligated to *Nde* I site and *Spe* I site of another plasmid pT7-fdr2 with use of T4 DNA ligase, and, then, *Escherichia coli* DH5α was transformed with resultant reaction liquid, and, thus, plasmid pMoxAB-fdr2 was constructed. Fig. 3 shows the structure of this pMoxAB-fdr2.

(6) pMoxAB-camAB

5

10

15

25

35

40

45

50

[0052] PCR was carried out with use of primer Mox-3F (5'-GGAGATATACATATGACGAAGAAC-3') (see Sequence No. 14) and Mox-5R (5'-GCCCCCATATGACGCACTCCTAGTGGCTTCAGGCGTCCCG-3') (see Sequence No. 15) by using, as a template, DNA of pMoxAB-fdr1, and, thus, there was amplified a 1.5-kb fragment which contained a gene encoding cytochrome P-450 enzyme having compactin-hydroxylating activity and ferredoxin gene (*mox*AB) which was adjacent downstream thereto. This fragment was ligated to *Nde* I site of the plasmid pT7-camAB with use of T4 DNA ligase, and, then, *Escherichia coli* DH5α was transformed with resultant reaction liquid, and, thus, plasmid pMox-AB-camAB was constructed. Fig: 4 shows the structure of this pMoxAB-camAB.

20 Example 2 Preparation of recombinant which has actinomycete cytochrome P-450 enzymatic activity

[0053] Escherichia coli BL21(DE3) was transformed with three plasmids, i.e., pMoxAB-fdr1, pMoxAB-fdr2 and pMoxAB-camAB, and, thus, transformant strains corresponding to these plasmids were obtained. Single colony of each of these strains was seeded on 2 ml of LB medium, and was subjected to shake culture at 28°C for 16 hours at 220 rpm. Thus obtained culture liquid in an amount of 200 µl was mixed with an equal amount (200 µl) of 40 % glycerol (sterilized) to give a glycerol culture, which was preserved at -80°C until used. On the other hand, with use of pMoxAB and pET11a which was used as a vector, Escherichia coli BL21(DE3) was transformed, and, thus, transformant strains corresponding to these plasmids were obtained. Said transformant strains were used as control.

- 30 Example 3 Production of pravastatin and its hydroxylated analogues from compactin
 - (1) Production process with use of static cells:

[0054] Glycerol culture of transformant strain of BL21(DE3) as obtained in the above Example 2 in an amount of 10 μl was added to 2 ml of LB medium to which 50 μg/ml (final concentration) of ampicillin had been added, and was then subjected to shake culture at 28°C for 16 hours at 220 rpm. The resultant culture liquid in an amount of 250 μl was added to 25 ml of NZCYM medium to which 50 µg/ml (final concentration) of ampicillin had been added, and was then subjected to shake culture at 37°C for 2.5 hours. Then, 25 μl of 100 mM IPTG and 25 μl of 80 mg/ml 5-aminolevulinic acid were added in this order, and the resultant mixture was subjected to shake culture at 18-28°C (this temperature is hereinafter called as "induction temperature") for 16 hours at 120 rpm. Cells were recovered by centrifugation from 10 ml of the resultant culture liquid, and were then washed once with conversion buffer-2 (50 mM NaH₂PO₄, 1 mM EDTA, 0.2 mM DTT, 10 % glycerol, [pH 7.3]). Subsequently, the cells were suspended in 1 ml of said buffer to give a suspension of static cells. To this suspension of static cells, there were added compactin sodium salt (final concentration 250 µg/ml) and NADPH (final concentration 1 mM), and the resultant mixture was incubated at 32°C for 24-48 hours (this time is hereinafter referred to as "conversion time") under shaking condition (220 rpm). Later, to 100 μl of thus obtained reaction liquid, there was added 100 μl of acetonitrile, and the resultant mixture was subjected to vortex for one minute at room temperature, and was then centrifuged for 10 minutes at 16,000 rpm with an Epfendorf centrifugator. So obtained supernatant was analyzed with HPLC, and, thus, there were detected pravastatin and other hydroxylated analogues which had been formed by the hydroxylation of substrate compactin. The following shows detailed condition for this HPLC.

Analytical apparatus	Shimadzu C-4RA Chromatopac
Column	J' sphere ODS-H80 (YMC, Inc.), 75 mm x 4.6 mm I.D.
Mobile phase A	Ion-exchange water/acetic acid/triethylamine = 998:1:1
В	Methanol/acetic acid/triethylamine = 998:1:1

Gradient time program	0 minute Mobile phase A/B = 50:50
	3.00 minute Mobile phase A/B = 10:90
	3.50 minute Mobile phase A/B = 10:90
	3.51 minute Mobile phase A/B = 50:50
	6.00 minute End

Flow rate	2.0 ml/minute
Detection	UV 237 nm
Injection content	10 μΙ
Column temperature	40°C
Analysis time	6 minutes
Retention time	compactin 4.2 minutes
	pravastatin 2.7 minutes
	RT-5.8 substances 3.6 minutes

(2) Production process by Fed-batch method:

[0055] Glycerol culture of transformant strain of BL21(DE3) in an amount of 10 μl was added to 2 ml of LB medium to which 50 µg/ml (final concentration) of ampicillin had been added, and was then subjected to shake culture at 28°C for 16 hours at 220 rpm. The resultant culture liquid in an amount of 250 μl was added to 25 ml of M9-plus medium (M9 salt, 0.4 % glucose, 0.5 % casamino acids, 100 μ g/ml thiamin, 20 μ l/ml thymine, 0.1 mM CaCl₂, 1 mM MgCl₂) to which 50 µg/ml (final concentration) of ampicillin had been added, and was then subjected to shake culture at 37°C for 2.5 hours. Then, 25 µl of 100 mM IPTG and 25 µl of 80 mg/ml 5-aminolevulinic acid were added in this order, and the resultant mixture was subjected to shake culture at 22°C for 16 hours at 120 rpm. To the resultant culture liquid, there was added 2.5 ml of conversion mixture (2.5 mg/ml compactin sodium salt, 1 mg/ml FeSO₄·7H₂O, 10 mM NADPH, 50 % glycerol), and, thus, cultivation was continued at 22°C for 96 hours. The period of time which has passed after the addition of this conversion mixture is hereinafter referred to as "cultivation time". Then, to 100 μ l of this culture liquid, there was added 100 μl of acetonitrile, and the resultant mixture was subjected to vortex for one minute at room temperature, and was then centrifuged for 10 minutes at 16,000 rpm with an Epfendorf centrifugator. So obtained supernatant was analyzed with HPLC, and, thus, there were detected pravastatin and other hydroxylated analogues which had been formed by the hydroxylation of substrate compactin.

[0056] Table 1 shows results of the measurement of the amount of pravastatin and RT-5.8 substance produced by static cells as mentioned in Example 3(1) with use of Escherichia coli transformant strain, under the protein induction condition of 18-28°C and with a conversion time of 48 hours.

5

15

10

20

25

30

35

40

45

50

5	28°C	RT-5.8 substances	0	0.3	0.61	1.65	5.49
10		Pravastatin	0	0	0	0.35	0.97
15	25°C	RT5.8 substances	0	0	1.92	0.84	16.53
20	73	Pravastatin F	0	0	0.43	0	4.05
25							
30	1able 1	RT-5.8 substances	0	0	8.48	10.21	33.55
35		Pravastatin	0	0	1.72	2.15	60.9
40		RT-5.8 substances	0	0.18	1.24	1.31	22.07
45	18°C	RT-5					
50		Pravastatin	0	0	0.24	0.25	3.84
55	Induction temperature	Hydroxylated compactin (μg/ml)	BL21(DE3)/ pET11a	BL21(DE3)/ pMoxAB	BL21(DE3)/ pMoxAB-fdr1	BL21(DE3)/ pMoxAB-fdr2	BL21(DE3)/ pMoxAB-camAB

[0057] Productivity was the highest when induction temperature was 22°C, under which condition each of strains wherein *Streptomyces coelicolor* A3(2)-originated ferredoxin reductase (fdr-1 or fdr-2) had been co-expressed accumulated, in medium, 1.7 to 2.1 µg/ml of pravastatin and 8.4 to 10.2 µg/ml of RT-5.8 substances. A strain wherein camAB had been expressed showed much higher productivity; it accumulated, in medium, 6.09 µg/ml of pravastatin and 33.55 µg/ml of RT-5.8 substance. In the case where there was used, as control, vector alone (BL21(DE3)/pET11a) or a strain which contained no gene to encode ferredoxin reductase (BL21(DE3)/pMoxAB), there were hardly detected pravastatin and RT-5.8 substances.

[0058] Table 2 shows results of test of productivity of pravastatin in Fed-batch method as mentioned in Example 4 (2).

		-	-				
5	96 hours	RT-5.8 substances	0	0	0.61	0.28	12.44
10		Pravastatin	0	0	0	0	0.95
15	LS	RT-5.8 substances	0	0	0.87	0.29	7.74
20	48 hours	RT-5					
25	4	Pravastatin	0	0	0	0	0.64
30 Table 2	24 hours	RT-5.8 substances	0	0	0	0	2.82
35	2	Pravastatin	0	0	0	0	0.28
40	ſS	RT-5.8 substances	0	0	0	0	0
45	4 hours						
50		Pravastatin	0	0	0	0	0
55	Cultivation time	Hydroxylated compactin (µg/ml)	BL21(DE3)/ pET11a	BL21(DE3)/ pMoxAB	BL21(DE3)/ pMoxAB-fdr1	BL21(DE3)/ pMoxAB-fdr2	BL21(DE3)/ pMoxAB-camAB

[0059] In the results with cultivation time of 96 hours, strains wherein *Streptomyces coelicolor* A3(2)-originated ferredoxin reductase (*fdr-1* or *fdr-2*) had been co-expressed accumulated, in medium, 0.28 to 0.61 μg/ml of RT-5.8 substances while accumulating no pravastatin. A strain wherein *camAB* had been expressed showed high productivity; it accumulated, in medium, 0.95 μg/ml of pravastatin and 12.44 μg/ml of RT-5.8 substances. In the case where there was used, as control, vector alone (BL21(DE3)/pET11a) or a strain which contained no gene to encode ferredoxin reductase (BL21(DE3)/pMoxAB), pravastatin and RT-5.8 substances were not detected.

[0060] In a strain wherein camAB had been co-expressed, i.e., in Escherichia coli wherein pMoxAB-camAB had been introduced, moxB (ferredoxin gene) and camB (putidaredoxin gene) among thus introduced genes overlap with each other in their function. In order to know which gene among the constituent genes contained in said pMoxAB-camAB are indispensable for the expression of activity, the inventors of this invention constructed a plasmid which lacked one or two of said constituent genes, and introduced the plasmid into Escherichia coli. Table 3 shows results of productivity of hydroxylated compactin with use of static cells of thus prepared strain, and with a conversion time of 24 hours.

15

20

25

30

5

10

Table 3

	Constituent gene (+: existent; -: non-existent)				Hydroxylated compactin (μg/ml)	
	moxA	moxB	camA	camB	Pravastatin	RT-5.8 substances
BL21(DE3)/ pET11a	-	-	-	-	0	0
BL21(DE3)/ pMoxAB	+	+	-	-	0	0
BL21(DE3)/ pMoxAB-camA	+	+	+	-	0.17	0.82
BL21(DE3)/ pMoxA-camAB	+	-	+	+	0	0
BL21(DE3)/ pMoxAB- camAB	+	+	+	+	1.67	9.96

[0061] The above shows that three kinds of gene of moxA, moxB and camA are essential for the expression of activity, and that the addition of camB achieves a remarkable increase in activity; the yield of hydroxylated compactin increased about 10 times.

Example 5 Construction of plasmid

(1) pT7NS-camAB

35

[0062] PCR was carried out under the following condition with use of primer PRR-1F (5'-GCCCCCCATATGAACG-CAAACGACAACGTGGTCATC-3') (see Sequence No. 9) and PRR-2R (5'-GCGGATCCTCAGGCACTACTCAGT-TCAGCTTTGGC-3') (see Sequence No. 10) by using, as a template, genomic DNA of *Pseudomonas putida* ATCC17453.

40

(Composition of reaction liquid)	
Sterilized purified water	15 µl
Twice-concentrated GC buffer I (Takara Shuzo)	25 µl
dNTP mixed solution (dATP, dGTP, dTTP, dCTP each 2.5 mM)	8 µl
PRR-1F primer (100 pmol/µl)	0.5 μΙ
PRR-2R primer (100 pmol/μl)	0.5 μl
Pseudomonas putida ATCC 17453 Genomic DNA (10 ng/μl)	0.5 μl
LA Taq (5 units/µl Takara Shuzo)	0.5 μΙ

50

45

(Temperature condition)			
95°C	3 minutes		
(98°C 20 seconds; 63 cycles	°C 30 seconds; 68°C 2 minutes) 30		
72°C	5 minutes		

[0063] An amplified 1.5-kb fragment (camAB fragment) which contained ferredoxin reductase gene (camA) and putidaredoxin gene (camB) just downstream thereto was treated with restriction enzyme Nde I and Bam HI, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, camAB fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said gene fragment which had been cut out from the gel, and was purified. Said fragment was ligated to Nde I site and Bam HI site of Escherichia coli plasmid vector pET11a (manufactured by Stratagene Co.) with use of T4 DNA ligase, and, then, Escherichia coli DH5\alpha was transformed, and, thus, pT7-camAB was constructed. To Nde I site of said plasmid pT7-camAB, there was ligated by T4 DNA ligase one molecule of linker which had been prepared by the annealing of two kinds of synthetic oligo DNAs SP-1 (5'-TATGCGTCACTAGTCGGGAGTGCGTTA-3') (see Sequence No. 17) and SP-2 (5'-TATAACGCACTC-CCGACTAGTGACGCA-3') (see Sequence No. 18), with which Escherichia coli DH5\alpha was transformed, and, thus, plasmid pT7NS-camAB was constructed. Fig. 5 shows the structure of pT7NS-camAB.

(2) pCBM-camAB

5

10

20

25

30

35

40

50

55

[0064] PCR was carried out under the following condition with use of primer CB-4F (5'-GCCCCCCATATGACAGCTIT-GAATCTGATG-3') (see Sequence No. 19) and CB-5R (5'-GCACTAGTCAGAGACGGACCGGCAGAC-3') (see Sequence No. 20) by using, as a template, total DNA of *Streptomyces thermotolerans* ATCC11416, and, thus, there was prepared 1.25 kb fragment of ORF-A (cytochrome P-450 gene which encodes enzyme to epoxidize 12- and 13-positions of carbomycin B) (gene sequence of ORF-A and the function of ORF-A are mentioned in Bioscience Biotechnology Biochemistry vol. 59, 582-588, 1995; the contents of this literature is incorporated into the present specification by this citation).

(Composition of reaction liquid)	
Sterilized purified water	61 µl
10 times-concentrated buffer (Takara Shuzo)	10 μΙ
25 mMgCl2	10 μΙ
dNTP mixed solution (dATP, dGTP, dTTP, dCTP each 2.5 mM)	16 μΙ
CB-4F primer (100 pmol/μl)	0.5 μΙ
CB-5R primer (100 pmol/μl)	0.5 μΙ
Total DNA (100 ng/μl) of Streptomyces thermotolerans ATCC11416	1 μΙ
LA Taq (5 units/μl, Takara Shuzo)	1 μΙ

(Temperature condition)		
95°C	3 minutes	
(98°C 20 seconds; 6 cycles	3°C 30 seconds; 68°C 2 minutes) 30	
72°C	5 minutes	

[0065] This gene fragment was digested with restriction enzyme *Nde* I and *Spe* I, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, ORF-A fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said gene fragment, which had been cut out from the gel, and was purified. Said fragment was ligated to *Nde* I-*Spe* I site of pT7NS-camAB with use of T4 DNA ligase, and, with the resultant reaction liquid, *Escherichia coli* DH5 α was transformed, and, thus, plasmid pCBM-camAB was constructed. Fig. 6 shows the structure of pCBM-camAB.

(3) pSC154A1-camAB

[0066] Total DNA of Streptomyces coelicolor A3(2) (imparted by John Innes Institute, Norwich, UK) was digested with restriction enzyme Bam HI and Pst I to give a 100 ng/μl solution of TE (10 mM Tris-HCI [pH 8.0], 1 mM EDTA). PCR was carried out under the following condition by using this DNA as a template with use of primer 154A1-1F (5'-GCCCCCATATGGCGACCCAGCAGCCCGCCTC-3') (see Sequence No. 21) and 154A1-2R (5'-GCACTAGT-CAGCCGGCGTGCAGCAGCAGCAGCCGG-3') (see Sequence No. 22), and, thus, there was prepared 1.2 kb gene fragment which encoded CYP154A1 (DNA sequence of gene which encodes Streptomyces coelicolor A3(2)-originated CYP154A1 has been published in gene database, e.g., Gen Bank, under gene name of SCE6.21).

(Composition of reaction liquid)	
Sterilized purified water	61 µl
10 times-concentrated buffer (Takara Shuzo)	10 μΙ
25 mMgCl2	10 μΙ
dNTP mixed solution (dATP, dGTP, dTTP, dCTP each 2.5 mM)	16 µl
154A1-1F primer (100 pmol/μl)	0.5 μl
154A1-2R primer (100 pmol/μl)	0.5 μΙ
Total DNA (100 ng/µl) of Streptomyces coelicolor A3(2) digested with Bam HI-Pst I	1 μΙ
LA Taq (5 units/μl, Takara Shuzo)	1 μΙ

(Temperature condition	on)
95°C	3 minutes
(98°C 20 seconds; 63 cycles	°C 30 seconds; 68°C 2 minutes) 30
72°C	5 minutes

[0067] This gene fragment was digested with restriction enzyme Nde I and Spe I, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, CYP154Å1-encoding gene fragment was recovered, with use of SUPREC-01 (Takara Shuzo), from a gel piece containing said gene fragment which had been cut out from the gel, and was purified. Said fragment was ligated to Nde I-Spe I site of pT7NS-camAB with use of T4 DNA ligase, and, with the resultant reaction liquid, Escherichia coli DH5 α was transformed, and, thus, plasmid pSC154A1-camAB was constructed. Fig. 7 shows the structure of pSC154A1-camAB.

(4) pDoxA1-camAB

[0068] PCR was carried out under the following condition with use of primer DoxA-1F (5'-GCCCCCATATGGCCGTC-GACCCGTTCGCGTG-3') (see Sequence No. 23) and DoxA-2R (5'-GCACTAGTCAGCGCAGCCAGACGGGCAGT-TC-3') (see Sequence No. 24) by using, as a template, total DNA of daunomycin-producing bacterium *Streptomyces peucetius* ATCC 29050, and, thus, there was prepared 1.2-kb fragment of *doxA* (cytochrome P-450 gene which participates in the biosynthesis of daunomycin). DNA sequence of the *doxA* gene is mentioned in Journal of Bacteriology, vol. 181, No. 1, 305-318, 1999 (the contents of this literature is incorporated into the present specification by this citation).

(Composition of reaction mixture)	
Sterilized purified water	61 µl
10 times-concentrated buffer (Takara Shuzo)	10 μΙ
25 mMgCl2	10 μΙ
dNTP mixed solution (dATP, dGTP, dTTP, dCTP each 2.5 mM)	16 µl
DoxA-1F primer (100 pmol/μl)	0.5 μΙ
DoxA-2R primer (100 pmol/μl)	0.5 μΙ
Total DNA (100 ng/μl) of Streptomyces peuceticus ATCC 29050	1 μΙ
LA Taq (5 units/μl, Takara Shuzo)	1 μΙ

(Temperature condition)		
95°C	3 minutes	
(98°C 20 seconds; 63 cycles	°C 30 seconds; 68°C 2 minutes) 30	
72°C	5 minutes	

[0069] This gene fragment was digested with restriction enzyme *Nde* I and *Spe* I, and was then subjected to electrophoresis in 0.8 % agarose gel. After the electrophoresis was over, *doxA* fragment was recovered, with use of SU-PREC-01 (Takara Shuzo), from a gel piece containing said gene fragment which had been cut out from the gel, and was purified. Said fragment was ligated to *Nde* I-*Spe* I site of pT7NS-camAB with use of T4 DNA ligase, and, with the resultant reaction liquid, *Escherichia coli* DH5α was transformed, and, thus, plasmid pDoxA1-camAB was constructed. Fig. 8 shows the structure of pDoxA1-camAB.

Example 6 Microbial conversion with use of Escherichia coli recombinant wherein cytochrome P-450 had been expressed

(1) Production of carbomycin A

5

10

20

25

30

35

40

45

50

55

[0070] Glycerol culture, in an amount of 10 µl, of Escherichia coli BL21(DE3) strain which had been transformed with pCBM-camAB among the plasmids as obtained in the above-mentioned Example 4 was added to 2 ml of LB medium to which 50 ug/ml (final concentration) of ampicillin had been added, and the resultant mixture was subjected to shake culture at 28°C for 16 hours at 220 rpm. Thus obtained culture liquid in an amount of 250 µl was added to 25 ml of NZCYM medium to which 50 ug/ml of ampicillin had been added, and the resultant mixture was subjected to shake culture at 37°C for 2.5 hours. Then, 25 μl of 100 mM IPTG and 25 μl of 80 mg/ml δ-aminolevulinic acid were added in order, and the resultant mixture was subjected to shake culture at 22°C at 120 rpm for 16 hours. Cells were recovered by centrifugation from the resultant culture liquid, and were then washed once with conversion buffer-2 (50 mM NaH₂PO₄, 1 mM EDTA, 0.2 mM DTT, 10 % glycerol, [pH 7.3]). Subsequently, the cells were suspended in 3 ml of said buffer to give a suspension of static cells. To 600 µl of this suspension of static cells, 3 µl of 100 mg/ml methanol solution of carbomycin B was added, and the resultant mixture was incubated at 28°C for five hours with shaking (220 rpm). Later, to thus obtained reaction liquid, there was added 100 μl of 50 % K₂HPO₄ (pH 8.5) and 100 μl of ethyl acetate, and the resultant mixture was subjected to vortex, and then to centrifugation for five minutes at 16,000 rpm with an Epfendorf centrifugator. A TLC plate was spotted with 10 µl of so obtained ethyl acetate phase, and was then subjected to development with a developer (ethyl acetate : diethylamine = 100:2). Subsequently, this plate was sprayed with 10 % sulfuric acid, and heated at 100°C for 10 minutes. Spots on which color had come out were analyzed for coloring intensity with a dual-wavelength chromatoscanner CS-930 (manufactured by Shimadzu Seisakusho) at a wavelength of 600 nm, and, thus, there was evaluated the amount of carbomycin A (RF value in TLC: 0.64) which had been formed by the epoxidation of substrate carbomycin B (RF value in TLC: 0.71). As a result, it was confirmed that carbomycin A had been formed with a yield of 90 µg/ml. Then, substrate conversion reaction was conducted with use of a control strain BL21(DE3) (pET11a) under the same condition as stated above. As a result of analysis, no formation of carbomycin A was detected.

(2) De-ethylation of 7-ethoxycoumarin

[0071] Glycerol culture, in an amount of 10 µl, of Escherichia coli BL21(DE3) strain which had been transformed with pSC154A1-camAB among the plasmids as obtained in the above-mentioned Example 5 was added to 2 ml of LB medium to which 50 µg/ml (final concentration) of ampicillin had been added, and the resultant mixture was subjected to shake culture at 28°C for 16 hours at 220 rpm. Thus obtained culture liquid in an amount of 250 μl was added to 25 ml of NZCYM medium to which 50 μg/ml of ampicillin had been added, and the resultant mixture was subjected to shake culture at 37°C for 2.5 hours. Then, 25 μl of 100 mM IPTG and 25 μl of 80 mg/ml δ-aminolevulinic acid were added in order, and the resultant mixture was subjected to shake culture at 22°C at 120 rpm for 16 hours. Cells were recovered by centrifugation from the resultant culture liquid, and were then washed once with conversion buffer-2 (50 mM NaH₂PO₄, 1 mM EDTA, 0.2 mM DTT, 10 % glycerol, [pH 7.3]). Subsequently, the cells were suspended in 6 ml of said buffer to give a suspension of static cells. To 1 ml of this suspension of static cells, 5 µl of 50 mM DMSO solution of 7-ethoxycoumarin was added, and the resultant mixture was incubated at 28°C for five hours with shaking (220 rpm). Later, to thus obtained reaction liquid, there was added 200 μl of ethyl acetate, and the resultant mixture was subjected to vortex, and then to centrifugation for five minutes at 16,000 rpm with an Epfendorf centrifugator. There was taken out 100 μl of so obtained ethyl acetate phase, which was then evaporated to dryness in vacuum. The resultant dried pellet was dissolved in 1 ml of 100 mM potassium phosphate buffer (pH 7.4). Thus obtained solution was 80-times diluted, and was then measured for fluorescence (wavelength: 460 nm) with F-2000 spectrophotofluorometer (manufactured by Hitachi Science Systems, Co.) at an excitation wave length of 380 nm for the purpose of evaluation of the amount of 7-hydroxycoumarin which had been formed by de-ethylation of substrate 7-ethoxycoumarin. As a result, fluorescence intensity was 2770, and, thus, the formation of 7-hydroxycoumarin was confirmed. Then, substrate conversion reaction was conducted with use of a control strain BL21(DE3) (pET11a) under the same condition as stated above. As a result of analysis, fluorescence intensity was three or less.

(3) Dehydrogenation of 13-dihydrodaunomycin

[0072] Glycerol culture, in an amount of 10 µl, of Escherichia coli BL21(DE3) strain which had been transformed by pDoxA1-camAB among the plasmids as obtained in the above-mentioned Example 5 was added to 2 ml of LB medium to which 50 ug/ml (final concentration) of ampicillin had been added, and the resultant mixture was subjected to shake culture at 28°C for 16 hours at 220 rpm. Thus obtained culture liquid in an amount of 250 μl was added to 25 ml of NZCYM medium to which 50 μg/ml of ampicillin had been added, and the resultant mixture was subjected to shake culture at 37°C for 2.5 hours. Then, 25 μl of 100 mM IPTG and 25 μl of 80 mg/ml δ-aminolevulinic acid were added in order, and the resultant mixture was subjected to shake culture at 22°C at 120 rpm for 24 hours. Cells were recovered by centrifugation from the resultant culture liquid, and were then washed once with conversion buffer-2 (50 mM NaH₂PO₄, 1 mM EDTA, 0.2 mM DTT, 10 % glycerol, [pH 7.3]). Subsequently, the cells were suspended in 4 ml of said buffer to give a suspension of static cells. To 1 ml of this suspension of static cells, 10 µl of 10 mg/ml methanol solution of 13-dihydrodaunomycin was added, and the resultant mixture was incubated at 28°C for 24 hours with shaking (220 rpm). Later, to 400 μl of thus obtained reaction liquid, there was added 1.2 ml of acetone, and the resultant mixture was subjected to vortex, and was then extracted with 300 μl of chloroform. Thus obtained extract was evaporated to dryness in vacuum, and was then dissolved in $500\,\mu$ l of $0.3\,\mathrm{M}$ hydrochloric acid, and thus obtained solution was heated at 80°C for 30 minutes. This solution was extracted with 100 µl of chloroform, and thus obtained extract was evaporated to dryness in vacuum. The resultant dried pellet was dissolved in 100 µl of methanol, and the resultant solution was subjected to HPLC under the following condition, and, thus, there was detected daunomycin which had been formed by the dehydrogenation of substrate 13-dihydrodaunomycin.

(Analytical condition of HPLC)

[0073]

5

10

15

20

25

35

40

20	
	Analy
	Colun
	Mobile
30	
	Flow
	Wave
	Inject

tical apparatus Shimadzu LC10 Chromatopac (manufactured by Shimadzu Seisakusho) mn ZORBAX TMS (5 μ) 4.6 mm \times 250 mm I.D. le phas To a mixture of water/acetonitrile/methanol/phosphoric acid = 540:290:170:2 (volume ratio), 1.0 g of sodium lauryl sulfate was added and dissolved, and, to the resultant mixture, 2N NaOH was added for the adjustment of pH to 3.6. rate 1.5 ml/minute length for detection 254 nm tion content 20 µl Column temperature 40°C Analysis time 20 minutes Retention time 13-dihydrodaunomycin 4.8 minutes daunomycin 5.9 minutes

[0074] Analysis detected 3.7 μ g/ml of daunomycin. Then, substrate conversion reaction was conducted with use of a control strain BL21(DE3) (pET11a) under the same condition as stated above. As a result of analysis, no formation of daunonycin was detected.

Industrial applicability

45

[0075] In accordance with this invention, single oxygen atom insertional reaction of organic compound as a substrate can efficiently be conducted with use of a recombinant which has been constructed by use of actinomycete cytochrome P-450 gene and *Escherichia coli* as a host.

[0076] This invention also provides a gene library suitable as an objective of high throughput screening or other simple and rapid enzymatic assay screening for the screening of industrially important and desired actinomycete P-450 enzymes.

55

	<110> MERCIAN CORPORATION
5	<120> EXPRESSION SYSTEM OF ACTINOMYCETE-ORIGIN CYTOCHROME P-450 IN ESCHERICHIA COLI
	<130> 14890EP
10	<140> 03 723 103.2 <141> 2003-04-11
	<150> JP2002-110311 <151> 2002-04-12
	<160> 32
15	<170> PatentIn Ver. 2.1
20	<210> 1 <211> 2696 <212> DNA <213> Microtetraspora recticatena IFO14525
	<220> <221> CDS <222> (313)(1536)
?5	
	<220> <221> CDS <222> (1547)(1741)
30	<400> 1 tgcgctccac cgcgttcttc gacggccgag gggccaccca ctccgtcatc gtcctgctcg 60
	cctggctcac gctcggtgtc gtgctgtgcg tggccagcgg cctgcgcgcg cgccgtgccg 120
	ccaccgtcgc cgcgggactt gtgaggacgc cggcagcacc ggcccctacg acgttcgcaa 180
35	ccccgagagg ctgaccgcat cgctgcccac gaagcggcgg cgcgacagcc acctgaccag 240
	gcaccgcttc tggcctcacc atccgaacag cccagaacga attcagccag atctctcacc 300
10	aggaggttat tc atg acg aag aac gtc gcc gac gaa ctg gcc ggc ctg gaa 351 Met Thr Lys Asn Val Ala Asp Glu Leu Ala Gly Leu Glu 1 5 10
15	ctg ccg gtc gag cgg ggc tgc ccg ttc gcc ccg ccc gcc gc
	cgg ctg cgc gag cgg gcg ccg atc aac aag gtc cgc ctg acc agc ggc 447
	Arg Leu Arg Glu Arg Ala Pro Ile Asn Lys Val Arg Leu Thr Ser Gly 30 45
50	ggc cag gcg tgg tgg gtg tcc ggg cac gag gag gcc cgt gcc gtc ctc 495 Gly Gln Ala Trp Trp Val Ser Gly His Glu Glu Ala Arg Ala Val Leu 50 55 60
55	gcc gac ggc cgc ttc tcc tcc gac aag cgc aag gac ggc ttc ccg ctc 543 Ala Asp Gly Arg Phe Ser Ser Asp Lys Arg Lys Asp Gly Phe Pro Leu 65 70 75

5	ttc Phe	acc Thr	ctc Leu 80	gac Asp	gcg Ala	gcg Ala	acc Thr	ctg Leu 85	cag Gln	cag Gln	ctc Leu	cgc Arg	agc Ser 90	cag Gln	ccg Pro	ccg Pro	591
								gcg Ala									639
10	gtg Val 110	atc Ile	ggc Gly	gag Glu	ttc Phe	acc Thr 115	gtg Val	aag Lys	cgg Arg	ctg Leu	gcc Ala 120	gcg Ala	ctg Leu	cgc Arg	ccg Pro	agg Arg 125	687
15	atc Ile	cag Gln	gac Asp	atc Ile	gtc Val 130	gac Asp	cac His	ttc Phe	atc Ile	gac Asp 135	gac Asp	atg Met	ctc Leu	gcc Ala	acc Thr 140	gac Asp	735
	cag Gln	cgc Arg	ccg Pro	gtc Val 145	gac Asp	ctg Leu	gtg Val	cag Gln	gcg Ala 150	ctg Leu	tcc Ser	ctg Leu	ccg Pro	gtg Val 155	ccc Pro	tca Ser	783
20	ctg Leu	gtg Val	atc Ile 160	tgc Cys	gaa Glu	ctg Leu	ctc Leu	ggc Gly 165	gtc Val	ccc Pro	tac Tyr	acc Thr	gac Asp 170	cac His	gac Asp	ttc Phe	831
25								atg Met									879
<i>30</i>	cgc Arg 190	cgg Arg	cga Arg	gcc Ala	ttc Phe	gcc Ala 195	gaa Glu	ctg Leu	cgc Arg	gcc Ala	tac Tyr 200	atc Ile	gac Asp	gac Asp	ctg Leu	atc Ile 205	927
30								ggc Gly									975
35	Ala	Arg	Gln	Arg 225	Gln	Glu	Gly	acc Thr	Leu 230	qsA	His	Ala	Gly	Leu 235	Val	Ser	1023
40	Leu	Ala	Phe 240	Leu	Leu	Leu	Thr	gcc Ala 245	Gly	His	Glu	Thr	Thr 250	Ala	Asn	Met	1071
	Ile	Ser 255	Leu	Gly	Val	Val	Gly 260	ctg Leu	Leu	Ser	His	Pro 265	Glu	Gln	Leu	Thr	1119
45	Val 270	Val	Lys	Ala	Asn	Pro 275	Gly	aga Arg	Thr	Pro	Met 280	Ala	Val	Glu	Glu	Leu 285	1167
50								gac Asp									1215
								gtg Val									1263
55	atc Ile	gtc Val	tcg Ser 320	atg Met	ctg Leu	tcg Ser	gcc Ala	aac Asn 325	tgg Trp	gac Asp	ccg Pro	gcg Ala	gtg Val 330	ttc Phe	aag Lys	gac Asp	1311

5	ccg gcc gtg ctg gat gtc gag cgc ggg gcc cgt cac cac ctc gcc ttc 1359 Pro Ala Val Leu Asp Val Glu Arg Gly Ala Arg His His Leu Ala Phe 335 340 345	
	ggc ttc ggc ccg cac cag tgc ctc ggc cag aac ctg gcc cgg atg gag 1407 Gly Phe Gly Pro His Gln Cys Leu Gly Gln Asn Leu Ala Arg Met Glu 350 365	
10	ctg cag atc gtc ttc gac acg ctg ttc cgc cgt atc cct tcc ctg cgg 1455 Leu Gln Ile Val Phe Asp Thr Leu Phe Arg Arg Ile Pro Ser Leu Arg 370 375 380	
15	ctc gcc gta ccg atg gag gac gtg ccg ttc aag ggg gac tcc gtc atc 1503 Leu Ala Val Pro Met Glu Asp Val Pro Phe Lys Gly Asp Ser Val Ile 385 390 395	
	tac ggc gtt cac gaa ctc ccg gtc acc tgg tga gcgggacatg atg cgg 1552 Tyr Gly Val His Glu Leu Pro Val Thr Trp Met Arg 400 405 410	
20	atc aaa gcg gaa acc ggg ctc tgc gtc ggc tcc ggc cag tgc gtc ctg 1600 Ile Lys Ala Glu Thr Gly Leu Cys Val Gly Ser Gly Gln Cys Val Leu 415 420 425	l
25	ace gaa eeg gee gte tte gae eag gae gae gge ate gtg gee etg 1648 Thr Glu Pro Ala Val Phe Asp Gln Asp Asp Gly Ile Val Ala Leu 430 435 440	!
30	ctg acc gac cac ccc gac gac cag agc gcc gc	;
	gtc acc ctg tgc ccg tcc cgc gcg ctg tcc atc ctg cgg gac gcc 1741 Val Thr Leu Cys Pro Ser Arg Ala Leu Ser Ile Leu Arg Asp Ala 460 465 470	
35	tgaagccact gactccggtg ttctcctgct caccgaggec tcggcccgcc gtcgactcgg 1801	
40	gaccccgtgt cgccgaggga gacgagcagg cggcgcagga gcaccgggat ctggtcgcgg 1921 tcggcggagc tcaggccctc caggagccgc cgctcgttgg cgacgtgatg ctcgacgagc 1981	
	ctgttgacca ggctcagccc ctgatcggtg agggagatca ggacgcggcg ccggtgggcc 2041	
45	geggeegage tgaccatege egeegtgete agttegeegg egetgaggae gtggggegge 2161	
	ceggagegea geagggtage cageacateg aacteecagg getegatgee gtgeagggag 2221 aagtggteec tgatggegeg ttegaggagg egggagaeec gggacaggeg acegatgate 2281	
50	tecateggtg ageagtecag ateggggege geeetetgee aetggetgat gateaegtee 2341	
	actcegtcgt ggggttcgtc ggtcgtcatc gtgtgtcctg tcctgagcgt gggctgtgca 2401 cagagactaa cacttagacg tcgaagggtt tgactctggc gaacatcgtg gtctaagttt 2461	
55	tcgacatcga aattttcgag aggagacttt gatgaagatc ctgcttatcg gtgccggcgg 252]	

ttacctcggc teggeggteg eggaceacet ggacgaggee ggacaceaca tegtegaact 2581

qacccgcgcc accgacgacc gcccggagaa cgggcgccaa gcaqccqtqt cqqcqacctt 2641 qaccgatece gegttegett aacceeggge ggtgaceee egacattgae egece <210> 2 <211> 407 <212> PRT <213> Microtetraspora recticatena IFO14525 <400> 2 Met Thr Lys Asn Val Ala Asp Glu Leu Ala Gly Leu Glu Leu Pro Val Glu Arg Gly Cys Pro Phe Ala Pro Pro Ala Ala Tyr Glu Arg Leu Arg Glu Arg Ala Pro Ile Asn Lys Val Arg Leu Thr Ser Gly Gly Gln Ala Trp Trp Val Ser Gly His Glu Glu Ala Arg Ala Val Leu Ala Asp Gly Arg Phe Ser Ser Asp Lys Arg Lys Asp Gly Phe Pro Leu Phe Thr Leu Asp Ala Ala Thr Leu Gln Gln Leu Arg Ser Gln Pro Pro Leu Met Leu Gly Met Asp Gly Ala Glu His Ser Ala Ala Arg Arg Pro Val Ile Gly Glu Phe Thr Val Lys Arg Leu Ala Ala Leu Arg Pro Arg Ile Gln Asp Ile Val Asp His Phe Ile Asp Asp Met Leu Ala Thr Asp Gln Arg Pro Val Asp Leu Val Gln Ala Leu Ser Leu Pro Val Pro Ser Leu Val Ile Cys Glu Léu Leu Gly Val Pro Tyr Thr Asp His Asp Phe Phe Gln Ser Arg Thr Thr Met Met Val Ser Arg Thr Ser Met Glu Asp Arg Arg Ala Phe Ala Glu Leu Arg Ala Tyr Ile Asp Asp Leu Ile Thr Arg Lys Glu Ser Glu Pro Gly Asp Asp Leu Phe Ser Arg Gln Ile Ala Arg Gln Arg Gln Glu Gly Thr Leu Asp His Ala Gly Leu Val Ser Leu Ala Phe Leu Leu Leu Thr Ala Gly His Glu Thr Thr Ala Asn Met Ile Ser Leu Gly Val Val Gly Leu Leu Ser His Pro Glu Gln Leu Thr Val Val Lys Ala Asn Pro Gly Arg Thr Pro Met Ala Val Glu Glu Leu Leu Arg Tyr Phe Thr Ile Ala Asp Gly Val Thr Ser Arg Leu Ala Thr Glu Asp Val Glu Ile Gly Gly Val Ser Ile Lys Ala Gly Glu Gly Val Ile Val Ser Met Leu Ser Ala Asn Trp Asp Pro Ala Val Phe Lys Asp Pro Ala Val Leu Asp Val Glu Arg Gly Ala Arg His His Leu Ala Phe Gly Phe Gly Pro His Gln Cys Leu Gly Gln Asn Leu Ala Arg Met Glu Leu Gln Ile Val Phe Asp Thr Leu Phe Arg Arg Ile Pro Ser Leu Arg Leu Ala Val Pro Met Glu Asp Val Pro Phe Lys Gly Asp Ser Val Ile Tyr Gly Val

His Glu Leu Pro Val Thr Trp

55

405 5 <210> 3 <211> 65 <212> PRT <213> Microtetraspora recticatena IFO14525 10 Met Arg Ile Lys Ala Glu Thr Gly Leu Cys Val Gly Ser Gly Gln Cys Val Leu Thr Glu Pro Ala Val Phe Asp Gln Asp Asp Gly Ile Val 20 Ala Leu Leu Thr Asp His Pro Asp Asp Gln Ser Ala Ala Gln Val Arg 15 40 His Ala Val Thr Leu Cys Pro Ser Arg Ala Leu Ser Ile Leu Arg Asp 55 Ala 65 20 <210> 4 <211> 1992 <212> DNA <213> Streptomyces sp.TM-7 25 <220> <221> CDS <222> (544)..(1761) 30 <220> <221> CDS <222> (1782)..(1970) <400> 4 tegeegggee eggeggtgtg gacegttege ggaceageeg ggegaatteg gggtegtgea 60 35 tgacctcggt gagcaggccg cggagtatgt ccgccgtgcg aggcggccaa cctggcggag 120 agtcgccgta gcgcggtgat gacatcggtg cgcagggcgc cggtgtcggg caggtcggcg 180 teggacagee ggtgggeege geaggegteg acgacgagtt eggeacggee gggccacete 240 40 cggtacaggg tggccttgcc ggtacgggcc cgtgcggcca cgcgctccat cgtcagtccc 300 ggcgtagtcc gacctcggtc agtttcctcg agggtcgcgg ccaggatggc cctctccagt 360 45 tectetecte ggeoggegag ggtttttega tggtegeggt egteeggtee ggegegteee 420 cgtgggttgg aggcatgact cccagccatt tgtcgagcac ccgttgtgag cgtcgggtgg 480 gtaagcctag cetteegtta gagaactgae egttetttaa gegtegagtg categaggga 540 50 ccg atg acc gag acc gtt acg acg ccc aca tca ggc gcc ccc gcc ttc Met Thr Glu Thr Val Thr Thr Pro Thr Ser Gly Ala Pro Ala Phe 1 ccc agt gac cgc acc tgc ccc tac cac ctc ccc gac cgg tac aac gac 636 Pro Ser Asp Arg Thr Cys Pro Tyr His Leu Pro Asp Arg Tyr Asn Asp

30

5		cgg Arg															684
		cag Gln															732
10	gcc Ala	gac Asp 65	Pro	cgg Arg	ctc Leu	tcg Ser	tcc Ser 70	gac Asp	cgg Arg	aca Thr	cac His	gcc Ala 75	gac Asp	ttc Phe	ccc Pro	gcc Ala	780
15	acc Thr 80	tcc Ser	Gly ggg	cgg Arg	gtg Val	gag Glu 85	agc Ser	ttc Phe	cgg Arg	gac Asp	cgc Arg 90	cgg Arg	ccg Pro	gcg Ala	ttc Phe	atc Ile 95	828
	agc Ser	ctg Leu	gac Asp	ccg Pro	Pro 100	gag Glu	cac His	GJÀ ààà	ccg Pro	aaa Lys 105	Arg Arg	cgc Arg	cat His	gac Asp	cat His 110	cag Gln	876
20		ttc Phe															924
25	Ile	gtg Val	His 130	Gly	Phe	Leu	Asp	Glu 135	Met	Ile	Ala	Gly	Gly 140	Pro	Pro	Ala	972
20	Asp	145	Val	Ser	Gln	Phe	Ala 150	Leu	Pro	Val	Pro	Ser 155	Leu	Val	Ile	Cys .	1020
30	Arg 160	ctg Leu	Leu	Gly	Val	Pro 165	Tyr	Ala	Asp	His	Asp 170	Phe	Phe	Gln	Asp	Ala 175	1068
35	Ser	gca Ala	Arg	Leu	11e 180	Gln	Ser	Pro	Asp	Ala 185	Ala	Gly	Ala	Arg	Ala 190	Ala	1116
40	Arg	gac Asp	Asp	Leu 195	Glu	Ser	Tyr	Leu	200 Gly	Ala	Leu	Val	Asp	Ser 205	Leu	Arg	1164
	Gly	gag Glu	Ser 210	Arg	Pro	Gly	Leu	Leu 215	Ser	Thr	Leu	Val	Arg 220	'Glu	Gln	Leu	1212
45	Glu	aag Lys 225	Gly	Ala	Ile	Asp	Arg 230	Glu	Glu	Leu	Val	Ser 235	Thr	Ala	Ile	Leu	1260
50	Leu 240	ctg Leu	Val	Ala	Gly	His 245	Glu	Ala	Thr	Ala	Ser 250	Met	Thr	Ser	Leu	Ser 255	1308
		atc Ile															1356
55	gat Asp	ccg Pro	tcg Ser	ctg Leu 275	gtg Val	ccc Pro	ggc Gly	gcg Ala	gtg Val 280	gag Glu	gag Glu	ctg Leu	ctg Leu	cgc Arg 285	tat Tyr	ctg Leu	1404

5	gcc Ala	atc Ile	gcc Ala 290	gac Asp	atc Ile	gcc Ala	ggc Gly	999 Gly 295	cgg Arg	atc Ile	gcg Ala	acg Thr	gcg Ala 300	gac Asp	atc Ile	gag Glu	1452
	atc Ile	gac Asp 305	ggg Gly	cag Gln	cgc Arg	atc Ile	cgg Arg 310	gcg Ala	ggg Gly	gag Glu	ggg Gly	gtc Val 315	atc Ile	gtc Val	acc Thr	aac Asn	1500
10	tcg Ser 320	atc Ile	gcc Ala	aac Asn	cgc Arg	gac Asp 325	ggc Gly	tcc Ser	gtc Val	ttc Phe	gcc Ala 330	gac Asp	ccg Pro	gac Asp	gcc Ala	ttc Phe 335	1548
15	gac Asp	gtg Val	cgg Arg	cgc Arg	gag Glu 340	gcc Ala	cgc Arg	cac His	cac His	ctg Leu 345	gcg Ala	ttc Phe	ggc Gly	tac Tyr	ggg Gly 350	gtg Val	1596
20			tgc Cys														1644
	ctc Leu	acg Thr	gcg Ala 370	ctg Leu	ttc Phe	gag Glu	cgg Arg	ctg Leu 375	ccc Pro	ggt Gly	ctg Leu	cgg Arg	ctg Leu 380	gcg Ala	gtg Val	ccg Pro	1692
25	gtg Val	gac Asp 385	cgg Arg	ctg Leu	acc Thr	ctg Leu	cgc Arg 390	ccg Pro	ggc Gly	acg Thr	acg Thr	atc Ile 395	cag Gln	ggc Gly	gtg Val	aac Asn	1740
30	Glu 400	Leu	Pro	Val	Thr	Trp 405							Me	et A	rg Va	g acg al Thr 410	1793
	gcc Ala	gac Asp	cgg Arg	gag Glu	gtc Val 415	tgc Cys	gtg Val	gga Gly	gcg Ala	ggc Gly 420	ctg Leu	tgc Cys	gcc Ala	ttg Leu	acg Thr 425	gcg Ala	1841
35			gtc Val														1889
40	gcg Ala	gaa Glu	ccc Pro 445	ggc Gly	gag Glu	gcc Ala	ggc Gly	cgt Arg 450	gcg Ala	gcg Ala	gca Ala	ctc Leu	gaa Glu 455	gcc Ala	ggc Gly	gtg Val	1937
45			Pro				_			_		tag	gggc	egt (geggé	gccgt	1990
45	ga																1992
50	<21 <21	0> 5 1> 40 2> P1 3> S1		comy	ces :	sp.Tl	M-7										
		0> 5 Thr	Glu	Thr	Val 5	Thr	Thr	Pro	Thr	Ser 10	Gly	Ala	Pro	Ala	Phe 15	Pro	·
55		Asp	Arg	Thr 20	Cys	Pro	Tyr	His	Leu 25		Asp	Arg	Tyr	Asn 30		Leu	

```
Arg Asp Arg Glu Gly Ser Leu Gln Arg Val Thr Leu Tyr Asp Gly Arg
                  35
                                      40
                                                          45
         Gln Ala Trp Leu Val Thr Gly Tyr Asp Thr Ala Arg Lys Leu Leu Ala
                                  55
5
          Asp Pro Arg Leu Ser Ser Asp Arg Thr His Ala Asp Phe Pro Ala Thr
                              70
                                                  75
          Ser Gly Arg Val Glu Ser Phe Arg Asp Arg Arg Pro Ala Phe Ile Ser
                                              90
                          85
          Leu Asp Pro Pro Glu His Gly Pro Lys Arg Arg His Asp His Gln Glu
10
                                         105
          Phe Thr Val Arg Arg Ile Lys Gly Met Arg Ala Asp Val Glu Gln Ile
                 115
                                     120
                                                         125
          Val His Gly Phe Leu Asp Glu Met Ile Ala Gly Gly Pro Pro Ala Asp
            130
                                 135
                                                     140
          Leu Val Ser Gln Phe Ala Leu Pro Val Pro Ser Leu Val Ile Cys Arg
15
                             150
                                                 155
          Leu Leu Gly Val Pro Tyr Ala Asp His Asp Phe Phe Gln Asp Ala Ser
                                             170
                         165
                                                                  175
          Ala Arg Leu Ile Gln Ser Pro Asp Ala Ala Gly Ala Arg Ala Ala Arg
                                         185
                    180
                                                             190
          Asp Asp Leu Glu Ser Tyr Leu Gly Ala Leu Val Asp Ser Leu Arg Gly
20
                                    200
                195
                                                        205
          Glu Ser Arg Pro Gly Leu Leu Ser Thr Leu Val Arg Glu Gln Leu Glu
                                                      220
                                 215
          Lys Gly Ala Ile Asp Arg Glu Glu Leu Val Ser Thr Ala Ile Leu Leu
                             230
                                                 235
25
          Leu Val Ala Gly His Glu Ala Thr Ala Ser Met Thr Ser Leu Ser Val
                         245
                                              250
          Ile Thr Leu Leu Glu His Pro Asp Gln His Ala Ala Leu Arg Ala Asp
                     260
                                         265
                                                             270
          Pro Ser Leu Val Pro Gly Ala Val Glu Glu Leu Leu Arg Tyr Leu Ala
                 275
                                     280
30
          Ile Ala Asp Ile Ala Gly Gly Arg Ile Ala Thr Ala Asp Ile Glu Ile
                                 295
                                                      300
          Asp Gly Gln Arg Ile Arg Ala Gly Glu Gly Val Ile Val Thr Asn Ser
                             310
                                                  315
          305
          Ile Ala Asn Arg Asp Gly Ser Val Phe Ala Asp Pro Asp Ala Phe Asp
35
                          325
                                              330
          Val Arg Arg Glu Ala Arg His His Leu Ala Phe Gly Tyr Gly Val His
                     340
                                          345
                                                              350
          Gln Cys Leu Gly Gln Asn Leu Ala Arg Leu Glu Leu Glu Val Ile Leu
                 355
                                     360
                                                         365
          Thr Ala Leu Phe Glu Arg Leu Pro Gly Leu Arg Leu Ala Val Pro Val
40
             370
                                  375
                                                      380
          Asp Arg Leu Thr Leu Arg Pro Gly Thr Thr Ile Gln Gly Val Asn Glu
                            390
                                                  395
          Leu Pro Val Thr Trp
                         405
45
          <210> 6
          <211> 63
          <212> PRT
          <213> Streptomyces sp.TM-7
50
          <400> 6
          Met Arg Val Thr Ala Asp Arg Glu Val Cys Val Gly Ala Gly Leu Cys
                                               10
          Ala Leu Thr Ala Pro Glu Val Phe Asp Gln Asp Asp Asp Gly Val Val
                   20
                                          25
          Thr Val Leu Ala Ala Glu Pro Gly Glu Ala Gly Arg Ala Ala Ala Leu
                                       40
```

	Glu Ala Gly Val Leu Cys Pro Ser Gly Ala Val Arg Val Val Glu 50 55 60	
5		
10	<210> 7 <211> 45 <212> DNA <213> Artificial Sequence	
	<pre><220> <223> Description of Artificial Sequence:FDR1-1F Primer</pre>	
15	<400> 7 gccatatgae tagtgegeet cacagactgg aacgggaate teatg	45
20	<210> 8 <211> 38 <212> DNA <213> Artificial Sequence	
0.5	<220> <223> Description of Artificial Sequence:FDR1-2R Primer <400> 8	
25	gegaattetg teggteagge etggteteee gteggeeg	38
30	<210> 9 <211> 1438 <212> DNA <213> Streptomyces coelicolor A3(2)	
35	<220> <221> CDS <222> (117)(1376)	
	<pre><400> 9 gatcacgggg gccgggtagg cccgtgccac ggtgtcacaa cgcgtgtcgt cgcccggtct</pre>	60
40	gaaggatgac cggaccactc ggtccgtgtg cgcctcacag actggaacgg gaatct atg Met 1	119
45	ccg cgt gcg aag acg ttc gtg atc gtc ggg ggc ggc ctg gcc gcc ggc Pro Arg Ala Lys Thr Phe Val Ile Val Gly Gly Gly Leu Ala Ala Gly 5 10 15	167
45	aag gcc gcg gag gaa ctg cgc gag cac ggc cac gac ggg ccg ctt ctc Lys Ala Ala Glu Glu Leu Arg Glu His Gly His Asp Gly Pro Leu Leu 20 25 30	215
50	gtg atc ggg gac gag cgg gaa cga ccg tac atc cgg ccg ccg ctg tcc Val Ile Gly Asp Glu Arg Glu Arg Pro Tyr Ile Arg Pro Pro Leu Ser 35 40 45	263
55	aag ggg tac ctg ctg ggc aag gag gac cgc gag tcc atc cac gtg cac Lys Gly Tyr Leu Leu Gly Lys Glu Asp Arg Glu Ser Ile His Val His 50 55 60 65	311

					cac His								359
5					cgt Arg								407
10					ggt Gly 105								455
15					ggc Gly								503
					gag Glu								551
20					ggc Gly								599
25					ggc								647
					gtc Val 185								695
30	-		_		cac His			-	_	-		-	743
35					acc Thr								791
40					Pro			Ala					839
40					ctg Leu		Glu						887
45					gcc Ala 265	Arg							935
50		Āla			gcc					Pro			983
	His				tgg Trp								1031
55				Met	ggc Gly			Ala					1079

5				tac Tyr 325													1127
				ccg Pro													1175
10				cgg Arg													1223
15				agc Ser													1271
20				tcg Ser													1319
				ctg Leu 405													1367
25		cag Gln		tgad	cgad	cag o	cgcto	ccg	eg ed	egct	geget	: cgi	atgc	egga			1416
	cga	ctgg	egg (cggg	ccto	gg co	=										1438
30	<21:	0> 10 1> 4: 2> P: 3> S:	20 RT	tomy	ces (coel:	icol	or A	3(2)								
35	<21: <21: <21: <40:	1> 4: 2> P1 3> S ² 0> 10	20 RT trep	tomy« Ala						Val	Gly	Gly	Gly	Leu	Ala 15	Ala	·
	<21: <21: <21: <40: Met	1> 4: 2> Pi 3> S: 0> 1: Pro	20 RT trept		Lys 5	Thr	Phe	Val	Ile	10	_	Ī	•		15		
35	<21: <21: <21: <400 Met 1	1> 4: 2> P: 3> S: 0> 1: Pro	20 RT trep O Arg	Ala	Lys 5 Glu	Thr	Phe Leu	Val Arg	Ile Glu 25	10 His	Gly	His	Asp	Gly 30	15 Pro	Leu	
35	<21: <21: <21: <40: Met 1 Gly	1> 4: 2> P: 3> S: 0> 1: Pro Lys	20 RT trept Arg Ala Ile 35	Ala Ala 20	Lys 5 Glu Asp	Thr Glu Glu	Phe Leu Arg	Val Arg Glu 40	Ile Glu 25 Arg	10 His Pro	Gly Tyr	His Ile	Asp Arg 45	Gly 30 Pro	Pro	Leu Leu	
35 40	<21: <21: <21: <400 Met 1 Gly Leu	1> 4: 2> P: 3> S: 0> 10 Pro Lys Val	20 RT trept Arg Ala Ile 35	Ala Ala 20 Gly	Lys 5 Glu Asp Leu	Thr Glu Glu Leu	Phe Leu Arg Gly 55	Val Arg Glu 40 Lys	Ile Glu 25 Arg Glu	10 His Pro	Gly Tyr Arg	His Ile Glu 60	Asp Arg 45 Ser	Gly 30 Pro	Pro Pro	Leu Leu Val	
35 40	<21: <21: <21: <400 Met 1 Gly Leu Ser His 65	1> 4: 2> P: 3> S: 0> 10 Pro Lys Val Lys 50	20 RT trept Arg Ala Ile 35 Gly	Ala 20 Gly	Lys 5 Glu Asp Leu Trp	Thr Glu Glu Leu Tyr 70	Phe Leu Arg Gly 55 Arg	Val Arg Glu 40 Lys	Ile Glu 25 Arg Glu His	10 His Pro Asp	Gly Tyr Arg Val 75 Arg	His Ile Glu 60 Asp	Asp Arg 45 Ser Leu	Gly 30 Pro Ile	15 Pro Pro His	Leu Val Gly 80	
35 40 45	<21: <21: <21: <400 Met 1 Gly Leu Ser His 65	1> 4: 2> P: 3> S: 0> 10 Pro Lys Val Lys 50 Pro	20 RT trept Arg Ala Ile 35 Gly Glu Val	Ala 20 Gly Tyr Ser	Lys 5 Glu Asp Leu Trp	Thr Glu Glu Leu Tyr 70 Val	Phe Leu Arg Gly 55 Arg	Val Arg Glu 40 Lys Glu Ala	Ile Glu 25 Arg Glu His	10 His Pro Asp Asp Gly 90	Gly Tyr Arg Val 75 Arg	His Ile Glu 60 Asp	Asp Arg 45 Ser Leu Val	Gly 30 Pro Ile Leu	Pro Pro His Leu Leu 95	Leu Val Gly 80 Asp	

	Tyr	Leu 130	Arg	Arg	Val	Gly	Asp 135	Ser	Glu	Arg	Leu	Lys 140	Glu	Ala	Phe	Thr
5	Glu 145	Gly	Ala	Arg	Ile	Val 150	Val	Val	Gly	Gly	Gly 155	Trp	Ile	Gly	Leu	Glu 160
	Thr	Ala	Ala	Ala	Ala 165	Arg	Ala	Ala	Gly	Ala 170	Glu	Val	Thr	Val	Leu 175	Glu
10	Arg	Gly	Glu	Leu 180	Pro	Leu	Leu	Lys	Val 185	Leu	Gly	Arg	Glu	Ala 190	Ala	Glu
	Val	Phe	Ala 195	Gly	Leu	His	Arg	Asp 200	His	Gly	Val	Asp	Leu 205	Arg	Pro	His
15		Arg 210	Ile	Glu	Ala	Val	Thr 215	Gly	Thr	Gly	Gly	Arg 220	Val	Asp	Gly	Val
20	Arg 225	Leu	Ala	Asp	Gly	Thr 230	His	Leu	Pro	Ala	Asp 235	Ala	Val	Val	Val	Gly 240
20	Val	Gly	Ile	Thr	Pro 245	Asn	Val	Arg	Leu	Ala 250	Glu	Glu	Ala	Gly	Leu 255	Asp
25	Val	Arg	Asn	Gly 260	Ile	Val	Thr	Asp	Ala 265	Arg	Leu	Arg	Thr	Ser 270	Ala	Ala
	Gly	Val	His 275	Ala	Ala	Gly	Asp	Val 280	Ala	Asn	Ala	Tyr	His 285	Pro	Arg	Leu
30		290					Glu 295					300				
	305					310	Met				315					320
35					325		Asp		_	330					335	
	_	•		340			Gly	_	345					350	•	
40			355				Leu	360					365			
		370					Asn 375					380				
45	385					390					395					400
					405	GIU	Ser	ren	reu	410	Pro	HIS	ATA	Arg	415	Thr
50	GIÀ	Asp	GIN	420												
55	<21 <21	0> 1: 1> 4: 2> Di 3> A:	3 NA	icia	l Se	quen	ce								•	

5	<220> <223> Description of Artificial Sequence:FDR2-3F Primer <400> 11 cgactagtga cgaggaggca gacaaatggt cgacgcggat cag	43
10	<210> 12 <211> 36 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence:FDR2-4R Primer <400> 12 cgggatccga caactatgcg acgaggcttt cgaggg	36
20	<210> 13 <211> 1319 <212> DNA <213> Streptomyces coelicolor A3(2)	
25	<220> <221> CDS <222> (34)(1296)	
30	<pre><400> 13 cacgtggcgg caccctgacg aggaggcaga caa gtg gtc gac gcg gat cag aca 5</pre>	54
35	ttc gtc atc gtc gga ggc ggc ctg gcg ggc gcg aaa gcg gcc gag acg Phe Val Ile Val Gly Gly Gly Leu Ala Gly Ala Lys Ala Ala Glu Thr 10 15 20	102
	ctc cgc acg gag ggc ttc acc ggc cgg gtg atc ctc gtc tgc gac gaa : Leu Arg Thr Glu Gly Phe Thr Gly Arg Val Ile Leu Val Cys Asp Glu 25 30 35	150
40	cgc gac cac ccc tac gag cgc ccg ccg ctg tcc aag ggc tac ctc ctg Arg Asp His Pro Tyr Glu Arg Pro Pro Leu Ser Lys Gly Tyr Leu Leu 40 45 50 55	198
45	ggc aag gag gag cgc gac agc gtc ttc gtg cac gag ccc gcc tgg tac Gly Lys Glu Glu Arg Asp Ser Val Phe Val His Glu Pro Ala Trp Tyr 60 65 70	246
	gcc cgg cac gac atc gag ctg cac ctc ggc cag acc gtc gtc gcg atc Ala Arg His Asp Ile Glu Leu His Leu Gly Gln Thr Val Val Ala Ile 75 80 85	294
50	gac cgc gcc aag acc gtc cac tac ggc gac gac ggc acc cac gtc Asp Arg Ala Ala Lys Thr Val His Tyr Gly Asp Asp Gly Thr His Val 90 95 100	342
55	age tac gac aag ctg ctc atc gcg acc ggc gcc gag ccc cgc ctg : Ser Tyr Asp Lys Leu Leu Ile Ala Thr Gly Ala Glu Pro Arg Arg Leu 105 110 115	390

													ctg Leu				438
5													ctc Leu				486
10													Gly ggc				534
15													gtc Val 180				582
	gcc Ala	ccg Pro 185	acc Thr	ccg Pro	ctg Leu	cac His	ggc Gly 190	gtc Val	ctc Leu	ggt Gly	ccc Pro	gag Glu 195	ctg Leu	ggc Gly	gcc Ala	gtc Val	630
20													cgc Arg				678
25													ctg Leu				726
													ctc Leu				774
30													ggg Gly 260				822
35													gac Asp				870
40	Thr 280	Ser	Asp	Pro	Asp	11e 285	Phe	Ala	Ala	Gly	Asp 290	Val	gcc Ala	Ser	Phe	His 295	918
	His	Ala	Leu	Phe	300	Thr	Ser	Leu	Arg	Val 305	Glu	His	tgg Trp	Ala	Asn 310	Ala	966
45	Leu	Asn	Ğİy	Gly 315	Pro	Ala	Ala	Ala	Arg 320	Ala	Met	Leu	ggc	Arg 325	Gly	Leu	1014
50	Ala	His	Asp 330	Arg	Val	Pro	Tyr	Phe 335	Phe	Thr	Asp	Gln	tac Tyr 340	Asp	Leu	Gly	1062
	Met	Glu 345	Tyr	Ser	Gly	Trp	Ala 350	Pro	Ala	Gly	Ser	Tyr 355	gac Asp	Gln	Val	Val	1110
55													ttc Phe				1158

5									aac Asn								1206
	gag Glu	ccg Pro	atc Ile	cag Gln 395	cag Gln	ctg Leu	atc Ile	cgc Arg	tcg Ser 400	aag Lys	acc Thr	cgg Arg	gtg Val	gac Asp 405	acg Thr	gag Glu	1254
10	_	_			_		-		ctc Leu	-	_		-	_			1296
	tagt	tgt	egg t	ccgc	ccc	g ta	ag										1319
15	<211 <212	0> 14 1> 42 2> PE 3> St	21	omyc	ces o	coeli	icol	or Al	3 (2)								
20)> 14 Val		Ala	Asp 5	Gln	Thr	Phe	Val	Ile 10	Val	Gly	Gly	Gly	Leu 15	Ala	
25	Gly	Ala	Lys	Ala 20	Ala	Glu	Thr	Leu	Arg 25	Thr	Glu	Gly	Phe	Thr 30	Gly	Arg	
	Val	Ile	Leu 35	Val	Cys	Asp	Glu	Arg 40	Asp	His	Pro	Tyr	Glu 45	Arg	Pro	Pro	
30 .	Leu	Ser 50	Lys	Gly	Tyr	Leu	Leu 55	Gly	Lys	Glu	Glu	Arg 60	Asp	Ser	Val	Phe	
	Val 65	His	Glu	Pro	Ala	Trp 70	Tyr	Ala	Arg	His	Asp 75	Ile	Glu	Leu	His	Leu 80	
35	Gly	Gln	Thr	Val	Val 85	Ala	Ile	Asp	Arg	Ala 90	Ala	Lys	Thr	Val	His 95	Tyr	
	Gly	Asp	Asp	Gly 100	Thr	His	Val	Ser	Tyr 105	Asp	Lys	Leu	Leu	Ile 110	Ala	Thr	
40	Gly	Ala	Glu 115	Pro	Arg	Arg	Leu	Asp 120	Val	Pro	Gly	Thr	Gly 125	Leu	Ala	Gly	
	Val	His 130	His	Leu	Arg	Arg	Leu 135		His	Ala	Glu	Arg 140	Leu	Lys	Gly	Val	
45	Leu 145	Ala	Thr	Leu	Gly	Arg 150	_	Asn	Gly	His	Leu 155	Val	Ile	Ala	Gly	Ala 160	
	Gly	Trp	Ile	Gly	Leu 165		Val	Ala	Ala	Ala 170		Arg	Glu	Tyr	Gly 175	Ala	
50	Glu	Val	Thr	Val 180	Ile	Glu	Pro	Ala	Pro 185		Pro	Leu	His	Gly 190	Val	Leu	
	Gly	Pro	Glu 195	Leu	Gly	Ala	Val	Phe 200	Ala	Glu	Leu	His	Glս 205		Arg	Gly	
55	Val	Arg 210		Arg	Phe	Gly ·	Val 215	_	Leu	Thr	Glu	Ile 220	Val	Gly	Gln	Asp	

5	G1y 225	Val	Val	Leu	Ala	230	Arg	Thr	Asp	Asp	235	GIU	Glu	His	Pro	Ala 240	
5	His	Asp	Val	Leu	Ala 245	Ala	Ile	Gly	Ala	Ala 250	Pro	Arg	Thr	Ala	Leu 255	Ala	
10	Gln	Ala	Ala	Gly 260	Leu	Glu	Ile	Ala	Asp 265	Arg	Ala	His	Gly	Gly 270	Gly	Ile	
	Vai	Val	Asp 275	Asp	His	Leu	Arg	Thr 280	Ser	Asp	Pro	Asp	Ile 285	Phe	Ala	Ala	
15	Gly	Asp 290	Val	Ala	Ser	Phe	His 295	His	Ala	Leu	Phe	Asp 300	Thr	Ser	Leu	Arg	
	Val 305	Glu	His	Trp	Ala	Asn 310	Ala	Leu	Asn	Gly	Gly 315	Pro	Ala	Ala	Ala	Arg 320	
20	Ala	Met	Leu	Gly	Arg 325	Gly	Leu	Ala	His	Asp 330	Arg	Val	Pro	Tyr	Phe 335	Phe	
	Thr	Asp	Gln	Tyr 340	Asp	Leu	Gly	Met	Glu 345	Tyr	Ser	Gly	Trp	Ala 350	Pro	Ala	
25	Gly	Ser	Tyr 355	Asp	Gln	Val	Val	11e 360	Arg	Gly	Asp	Ala	Ala 365	Lys	Arg	Glu	
		370				Val	375		_			380		•			
30	385					Val 390					395					400	
					405	Thr	Glu	Asp	Leu	Ala 410	Asn	Pro	His	Val	Ser 415	Leu	
35	Glu	Ser	Leu	Val 420	Ala												
40	<21:	0> 1! 1> 30 2> DI 3> A:	6 NA	icia.	l Se	quen	ce			-							
45	<40	3> De 0> 1:	5			f Ar						R-1F	Pri	mer			
				tgaa	cgca	aa c	gaca	acgt	g gt	catc							36
50	<21:	0> 10 1> 3! 2> DI 3> A:	5 NA	icia	l Se	quen	ce										
55		3> Di		ipti	on o	f Ar	tifi	cial	Seq	uenc	e:PR	R-2R	Pri	mer			
	<40	0> 1	6														

	geggateete aggeaetaet eagtteaget ttgge	35
5	<210> 17	
	<211> 37	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
70	<223> Description of Artificial Sequence: Mox-1F Primer	
	<400> 17	
	gccccccat atgacgaaga acgtcgccga cgaactg	37
15		
	<210> 18	
	<211> 35	
	<212> DNA <213> Artificial Sequence	
20	<220>	
	<223> Description of Artificial Sequence:Mox-12R Primer	
	<400> 18	
	gcagatetag tggetteagg egteeegeag gatgg	35
25		
	<210> 19	
	<211> 32	
	<212> DNA	
30	<213> Artificial Sequence	
30	<220>	
	<223> Description of Artificial Sequence: Mox-2R Primer	
	<400> 19	
	cgactagtgg cttcaggcgt cccgcaggat gg	32
35		
	<210> 20	
	<211> 24	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Mox-3F Primer	
	<400> 20	
45	ggagatatac atatgacgaa gaac	24
	<210> 21	
	<211> 41	
	<212> DNA	
50	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Mox-5R Primer	
	<400> 21	
55	gcccccata tgacgcactc ctagtggctt caggcgtccc g	41

· 5	<210> 22 <211> 1950 <212> DNA <213> Pseudomonas putida ATCC17453
	<220> <221> CDS <222> (115)(1383)
10	<220> <221> CDS <222> (1439)(1759)
15	<400> 22 ccgggtgccc agattcagca caagagcggc atcgtcagcg gcgtgcaggc actccctctg 60
	gtctgggatc cggcgactac caaagcggta taaacacatg ggagtgcgtg ctaa gtg 117 Val 1
20	aac gca aac gac aac gtg gtc atc gtc ggt acc gga ctg gct ggc gtt 165 Asn Ala Asn Asp Asn Val Val Ile Val Gly Thr Gly Leu Ala Gly Val 5 10 15
25	gag gtc gcc ttc ggc ctg cgc gcc agc ggc tgg gaa ggc aat atc cgg 213 Glu Val Ala Phe Gly Leu Arg Ala Ser Gly Trp Glu Gly Asn Ile Arg 20 25 30
	ttg gtg ggg gat gcg acg gta att ccc cat cac cta cca ccg cta tcc 261 Leu Val Gly Asp Ala Thr Val Ile Pro His His Leu Pro Pro Leu Ser 35 40 45
30	aaa gct tac ttg gcc ggc aaa gcc aca gcg gaa agc ctg tac ctg aga 309 Lys Ala Tyr Leu Ala Gly Lys Ala Thr Ala Glu Ser Leu Tyr Leu Arg 50 55 60 65
35	acc cca gat gcc tat gca gcg cag aac atc caa cta ctc gga ggc aca 357 Thr Pro Asp Ala Tyr Ala Ala Gln Asn Ile Gln Leu Leu Gly Gly Thr 70 75 80
40	cag gta acg gct atc aac cgc gac cga cag caa gta atc cta tcg gat 405 Gln Val Thr Ala Ile Asn Arg Asp Arg Gln Gln Val Ile Leu Ser Asp 85 90 95
40	ggc cgg gca ctg gat tac gac cgg ctg gta ttg gct acc gga ggg cgt 453 Gly Arg Ala Leu Asp Tyr Asp Arg Leu Val Leu Ala Thr Gly Gly Arg 100 105 110
45	cca aga ccc cta ccg gtg gcc agt ggc gca gtt gga aag gcg aac aac 501 Pro Arg Pro Leu Pro Val Ala Ser Gly Ala Val Gly Lys Ala Asn Asn 115 120 125
50	ttt cga tac ctg cgc aca ctc gag gac gcc gag tgc att cgc cgg cag 549 Phe Arg Tyr Leu Arg Thr Leu Glu Asp Ala Glu Cys Ile Arg Arg Gln 130 135 140 145
	ctg att gcg gat aac cgt ctg gtg gtg att ggt ggc ggc tac att ggc 597 Leu Ile Ala Asp Asn Arg Leu Val Val Ile Gly Gly Gly Tyr Ile Gly 150 155 160
55	ctt gaa gtg gct gcc acc gcc atc aag gcg aac atg cac gtc acc ctg 645 Leu Glu Val Ala Ala Thr Ala Ile Lys Ala Asn Met His Val Thr Leu 165 170 . 175

5					gcc Ala									693
					gag Glu									741
10					gtg Val									789
15					ctc Leu 230									837
20					att Ile									885
					gtt Val									933
25					ttg Leu									981
30					gac Asp									1029
0.5	-		_	-	cga Arg 310	_	_	_		_	 _			1077
35					gcg Ala									1125
40	-	_	_	-	gga Gly	_	-		_			_	_	1173
45					caa Gln									1221
					gtc Val									1269
50					atc Ile 390									1317
55					gtg Val									1365

	gaa Glu					tga	aato	tata	icc c	cacaa	taaa	it ca	ıccgt	tttg	ī		1413
5	cccc	atag	jeg t	gtga	iggat	a aa	cag								tca Ser		1465
10	gat Asp	gga Gly	acg Thr 435	cgt Arg	cgc Arg	gaa Glu	ctg Leu	gat Asp 440	gtg Val	gcg Ala	gat Asp	ggc Gly	gtc Val 445	agc Ser	ctg Leu	atg Met	1513
15	cag Gln	gct Ala 450	gca Ala	gtc Val	tcc Ser	aat Asn	ggt Gly 455	atc Ile	tac Tyr	gat Asp	att Ile	gtc Val 460	ggt Gly	gat Asp	tgt Cys	ggc Gly	1561
	ggc Gly 465	agc Ser	gcc Ala	agc Ser	tgt Cys	gcc Ala 470	acc Thr	tgc Cys	cat His	gtc Val	tat Tyr 475	gtg Val	aac Asn	gaa Glu	gcg Ala	ttc Phe 480	1609
20	acg Thr	gac Asp	aag Lys	gtg Val	ccc Pro 485	gcc Ala	gcc Ala	aac Asn	gag Glu	cgg Arg 490	gaa Glu	atc Ile	ggc Gly	atg Met	ctg Leu 495	gag Glu	1657
25	tgc Cys	gtc Val	acg Thr	gcc Ala 500	gaa Glu	ctg Leu	aag Lys	ccg Pro	aac Asn 505	agc Ser	agg Arg	ctc Leu	tgc Cys	tgc Cys 510	cag Gln	atc Ile	1705
	atc Ile																1753
30	caa Gln		taaa	acca	caa t	iggta	aaaco	ca ct	gega	agcc	a aaa	acago	ccga	gca	ggago	egc	1809
															_	ctgca	
35	aagt aaat						gggci	tcca	a gca	aagga	agcc	cgga	aatci	tct (cacco	gccacg	1929 1950
40	<210 <211 <212 <213	> 42 > PF	?2 ?T	omona	as pi	utida	a ATC	CC17	153								
45	<400 Val	Asn	Ala		5					10	_		_		15	-	
	Val			20					25					30			
	Arg Ser		35	_	_			40					45				
50	Arg	50					55					60			_		
	65					70					75				_	80	
55	Thr Asp				85					90					95		
55	ىردى	y	A.y	100	AC U	nap	1 y 1	nap	105	Jeu	· a ·	Ten	AT 0	110	GIY	атĀ	

```
Arg Pro Arg Pro Leu Pro Val Ala Ser Gly Ala Val Gly Lys Ala Asn
             115 120
                                                        125
           Asn Phe Arg Tyr Leu Arg Thr Leu Glu Asp Ala Glu Cys Ile Arg Arg
                                135
5
           Gln Leu Ile Ala Asp Asn Arg Leu Val Val Ile Gly Gly Gly Tyr Ile
                   150
                                          155
           Gly Leu Glu Val Ala Ala Thr Ala Ile Lys Ala Asn Met His Val Thr
                          165
                                             170 175
           Leu Leu Asp Thr Ala Ala Arg Val Leu Glu Arg Val Thr Ala Pro Pro
10
                     180
                                         185
           Val Ser Ala Phe Tyr Glu His Leu His Arg Glu Ala Gly Val Asp Ile
                                     200
                                                        205
           Arg Thr Gly Thr Gln Val Cys Gly Phe Glu Met Ser Thr Asp Gln Gln
                                 215
                                                    220
           Lys Val Thr Ala Val Leu Cys Glu Asp Gly Thr Arg Leu Pro Ala Asp
15
                              230
                                                 235
           Leu Val Ile Ala Gly Ile Gly Leu Ile Pro Asn Cys Glu Leu Ala Ser
                         245
                                             250
                                                                255
           Ala Ala Gly Leu Gln Val Asp Asn Gly Ile Val Ile Asn Glu His Met
                      260
                                         265
           Gln Thr Ser Asp Pro Leu Ile Met Ala Val Gly Asp Cys Ala Arg Phe
20
                                      280
                                                         285
           His Ser Gln Leu Tyr Asp Arg Trp Val Arg Ile Glu Ser Val Pro Asn
                                 295
                                                    300
           Ala Leu Glu Gln Ala Arg Lys Ile Ala Ala Ile Leu Cys Gly Lys Val
                             310
                                                 315
           Pro Arg Asp Glu Ala Ala Pro Trp Phe Trp Ser Asp Gln Tyr Glu Ile
25
                          325
                                             330
                                                                335
           Gly Leu Lys Met Val Gly Leu Ser Glu Gly Tyr Asp Arg Ile Ile Val
                                      345
           Arg Gly Ser Leu Ala Gln Pro Asp Phe Ser Val Phe Tyr Leu Gln Gly 355 360 365
30
           Asp Arg Val Leu Ala Val Asp Thr Val Asn Arg Pro Val Glu Phe Asn
               370
                                  375
                                                     380
           Gln Ser Lys Gln Ile Ile Thr Asp Arg Leu Pro Val Glu Pro Asn Leu
                              390
                                                 395
           Leu Gly Asp Glu Ser Val Pro Leu Lys Glu Ile Ile Ala Ala Lys
                          405
                                        410
35
           Ala Glu Leu Ser Ser Ala
                      420
           <210> 24
           <211> 107
40
           <212> PRT
           <213> Pseudomonas putida ATCC17453
            <400> 24
           Met Ser Lys Val Val Tyr Val Ser His Asp Gly Thr Arg Arg Glu Leu
                                              10
           Asp Val Ala Asp Gly Val Ser Leu Met Gln Ala Ala Val Ser Asn Gly
                                          25
           Ile Tyr Asp Ile Val Gly Asp Cys Gly Gly Ser Ala Ser Cys Ala Thr
                    35
                                      40
           Cys His Val Tyr Val Asn Glu Ala Phe Thr Asp Lys Val Pro Ala Ala
                                   55
           Asn Glu Arg Glu Ile Gly Met Leu Glu Cys Val Thr Ala Glu Leu Lys
                               70
                                                  75
           Pro Asn Ser Arg Leu Cys Cys Gln Ile Ile Met Thr Pro Glu Leu Asp
                                            90
                           85
           Gly Ile Val Val Asp Val Pro Asp Arg Gln Trp
```

5	<211> 27	
•	<212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
	<223> Description of Artificial Sequence:SP-1	
10		
	<400> 25	
	tatgcgtcac tagtcgggag tgcgtta	27
		7.
	<210> 26	
15	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> Description of Artificial Sequence:SP-2	
	<400> 26	
	tataacgcac tcccgactag tgacgca	27
	tataagaaa taaagaatag tgaagaa	21
	22105 27	
25	<210> 27	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
30	<223> Description of Artificial Sequence: CB-4F Primer	
	The second of th	
	<400> 27	
	gcccccata tgacagcttt gaatetgatg	2.0
	goodcata tgatagotti gaatetgatg	30
35	1070	
	<210> 28	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
40	<223> Description of Artificial Sequence: CB-5R Primer	
	<400> 28	
	gcactagtea gagacggace ggcagac	27
45	(210) 00	
	<210> 29	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
50	<220> ·	
	<223> Description of Artificial Sequence:154A1-1F	
	=== Seconsperon of American Dequence.134A1-11	
	<400> 29	
,	gcccccata tggcgaccca gcagcccgcc ctc	33
55	•	
	<210> 30	

	<211> 31	
	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: 154A1-2R Primer	
40	<400> 30	
10	gcactagtca gccggcgtgc agcaggaccg g	31
	<210> 31	
	<211> 32	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence:DoxA-1F Primer	
20	<400> 31	
	gcccccata tggccgtcga cccgttcgcg tg	32
	<210> 32	
25	<211> 31	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
30	<223> Description of Artificial Sequence:DoxA-2R Primer	
	<400> 32	
	gcactagtca gcgcagccag acgggcagtt c	31
35		

Claims

40

50

- A system for the expression of actinomycete cytochrome P-450 genes in host Escherichia coli, wherein said Escherichia coli supports a recombinant DNA molecule which comprises xenogenic microorganism-originated ferredoxin gene, ferredoxin reductase gene as well as said cytochrome P-450 gene, in operable state.
- An expression system of claim 1 wherein ferredoxin gene and ferredoxin reductase gene are independently originated from some strain of actinomycete.
 - 3. An expression system of claim 1 wherein ferredoxin gene is originated from microorganism selected from the group consisting of those belonging to genus *Microtetraspora* and those belonging to genus *Pseudomonas*.
 - **4.** An expression system of claim 1 wherein ferredoxin reductase gene is originated from microorganism selected from the group consisting of those belonging to genus *Streptomyces* and those belonging to genus *Pseudomonas*.
- 5. An expression system of claim 1 wherein actinomycete cytochrome P-450 gene and ferredoxin gene are originated from one and the same gene cluster of actinomycete.
 - 6. An expression system of claim 1 wherein ferredoxin reductase gene is originated from Streptomyces coelicolor.

- An expression system of claim 1 wherein actinomycete cytochrome P-450 gene and ferredoxin gene are originated from one and the same gene cluster of actinomycete, and wherein ferredoxin reductase gene is originated from Streptomyces coelicolor.
- 8. An expression system of claim 1 wherein ferredoxin gene and ferredoxin reductase gene are respectively putidaredoxin gene (camB) and putidaredoxin reductase gene (camA) which are each originated from Pseudomonas putida.
 - 9. An expression system of claim 1 in which actinomycete cytochrome P-450 gene and ferredoxin gene are originated from one and the same gene cluster of actinomycete, and which further contains, as another ferredoxin gene, putidaredoxin gene (camB) originated from Pseudomonas putida.

10

15

20

25

30

35

40

45

50

55

- 10. An expression system of claim 1 in which actinomycete cytochrome P-450 gene and ferredoxin gene are originated from one and the same gene cluster of actinomycete, in which ferredoxin reductase gene is putidaredoxin reductase gene (camA) originated from Pseudomonas putida, and which further contains, as another ferredoxin gene, putidaredoxin gene (camB) originated from Pseudomonas putida.
- 11. An expression system of claim 1 wherein actinomycete cytochrome P-450 gene and ferredoxin gene are respectively compactin-hydroxylating enzyme-encoding gene (moxA) originated from Microtetraspora recticatina and ferredoxin gene (moxB) which is adjacent downstream to moxA.
- 12. An expression system of claim 1 wherein actinomycete cytochrome P-450 gene and ferredoxin gene are respectively compactin-hydroxylating enzyme-encoding gene (moxA) originated from Microtetraspora recticatina and ferredoxin gene (moxB) which is adjacent downstream to moxA, and wherein ferredoxin reductase gene is ferredoxin reductase gene fdr-1 or fdr-2 originated from Streptomyces coelicolor.
- 13. An expression system of claim 1 in which actinomycete cytochrome P-450 gene and ferredoxin gene are respectively compactin-hydroxylating enzyme-encoding gene (moxA) originated from Microtetraspora recticatina and ferredoxin gene (moxB) adjacent downstream to moxA, and which further contains, as another ferredoxin gene, putidaredoxin gene (camB) originated from Pseudomonas putida, and in which ferredoxin reductase gene is putidaredoxin reductase gene (camA) originated from Pseudomonas putida.
- 14. An expression system of claim 1 in which the induction of expression of cytochrome P-450 gene is conveniently carried out at 20 to 24°C.
- 15. An expression system of claim 1 wherein said cytochrome P-450 gene comprises polynucleotide which is selected from the group consisting of polynucleotide having a continuous nucleotide sequence from base 313 to base 1533 in Sequence No. 1 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence, and polynucleotide having a continuous nucleotide sequence from base 544 to base 1758 in Sequence No. 2 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence.
- 16. An expression system of claim 1 wherein said ferredoxin gene comprises polynucleotide which is selected from the group consisting of polynucleotide having a continuous nucleotide sequence from base 1547 to base 1741 in Sequence No. 1 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence, and polynucleotide having a continuous nucleotide sequence from base 1782 to base 1970 in Sequence No. 2 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence.
- 17. An expression system of claim 1 wherein said ferredoxin reductase gene comprises polynucleotide which is selected from the group consisting of polynucleotide having a continuous nucleotide sequence from base 118 to base 1377 in Sequence No. 5 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence, and polynucleotide having a continuous nucleotide sequence from base 34 to base 1296 in Sequence No. 8 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence.
- 18. An expression system of claim 1 wherein said ferredoxin gene comprises polynucleotide having a continuous nucleotide sequence from base 1439 to base 1759 in Sequence No. 16 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence.
- 19. An expression system of claim 1 wherein said ferredoxin reductase gene comprises polynucleotide having a con-

tinuous nucleotide sequence from base 115 to base 1380 in Sequence No. 16 or functionally equivalent polynucleotide with homology of at least 80 % to said nucleotide sequence.

20. A method to introduce a hydroxyl group at 6β-position of compactin with use of the expression system of claim 12

5

10				
15	·			
20				
25				
30				
35				
40				
45				
50				
55				

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04609

	SIFICATION OF SUBJECT MATTER C1	N15/12, C12P7/62 // C12P	N15/53,
According t	(C12N17/21, (C12N15/70, C12N (C12N15/12, C12R1:465), (C12N15/12, C12R1:465), (C12N15/12, C12R1:465), (C12N15/70, C12R1)	C12N15/12, C12R1:38),	KI:30),
<u> </u>	S SEARCHED		
Minimum d	ocumentation searched (classification system followed		
Int.	C1' C12N15/00-90, C12P1/00-41,	/00, C12N1/00-38, C12N9,	/00-99
Dogumenta	tion searched other than minimum documentation to th	a code that such documents are included	in the Stalds namehod
Locamena	GOD SESICIEU OTHEL LIBIT IIITHILIU OCCUMENIADON TO SI	e exient man each nocuments are included	in the neigs searched
MEDI	ata base consulted during the international search (name in EINE (STN), WPI (DIALOG), BIOSIS (SPROT/PIR/GeneSeq		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.
Y A	JP 07-067666 A (Sumitomo Che 14 March, 1995 (14.03.95), & EP 477961 A1 & US	emical Co., Ltd.),	1-10,14 11-13,15-20
Y A	WO 93/12236 A1 (E.I. DU PONT 24 June, 1993 (24.06.93), & JP 07-502650 A & EP & US 5466590 A	DE NEMOURS & CO.),	1-10,14 11-13,15-20
Y	Peterson J.A. et al., "Putidand putidaredoxin. Cloning, sand heterologous expression of J.Biol.Chem.(1990), Vol.265, to 6073	sequence determination, of the proteins.",	3,4,8-10
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.	
Special	categories of cited documents:	"T" later document published after the inte	
conside	ent defining the general state of the art which is not red to be of particular relevance	priority date and not in conflict with the understand the principle or theory und	erlying the invention
date	document but published on or after the international filing	"X" document of particular relevance; the considered novel or cannot be considered.	red to involve an inventive
	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the	
	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	
means "P" docume	ent published prior to the international filing date but later e priority date claimed	"&" document member of the same patent	skilled in the art
	actual completion of the international search ay, 2003 (06.05.03)	Date of mailing of the international search 27 May, 2003 (27.05	
Name and m	nailing address of the ISA/	Authorized officer	
Japa	nese Patent Office		
Facsimile N	0.	Telephone No.	

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04609

ategory*	Citation of document, with indication, where appropriate, of the relevant pas	engas Palamata 11	
A	WO 97/19917 A1 (L'OREAL SA),		ם מי
	05 June, 1997 (05.06.97), & JP 10-504845 A & EP 805800 A1 & US 6278001 B1	20	
		÷	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04609

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl7 (C12P7/62, C12R1:19), (C12N1/21, C12R1:19)

(According to International Patent Classification (IPC) or to both national classification and IPC)

Form PCT/ISA/210 (extra sheet) (July 1998)