

数据分析及实践 Analysis and Practice of the Data

第四章 数据挖掘基础

刘 漢 Email: qiliuql@ustc.edu.cn

□ 常用方法——关于四个任务有哪些常用方法?

Association Analysis

Data

	- 5	Т		Н	1	Р
	L	Н	L	Н	L	Н
J	-6.0	8.8	60	100	986	1044
F	-2.8	10.9	48	100	973	1025
M	-5.6	17.7	34	100	976	1037
Α	-1.2	22.2	27	100	996	1036
M	-0.8	27.8	25	100	1003	1034
J	5.2	29.1	26	100	998	1030
J	9.8	30.6	23	99	997	1027
Α	5.6	26.1	31	100	992	1029
S	5.2	24.8	35	100	998	1028
0	-0.4	21.3	42	100	990	103
N	-7.6	17.3	55	100	963	1023
D	-10.4	9.2	53	100	987	1039
010 n	nonthly we		able 17	0.70%	ine (LIK)	

Classification

Anomaly Detection

□分类——贝叶斯分类器

□ A probabilistic framework for solving classification problems (概率模型来处理 分类问题) $P(C \mid A) = \frac{P(A,C)}{P(A)}$

□ Conditional Probability : $P(A \mid C) = \frac{P(A, C)}{P(C)}$

■ Bayes theorem: $P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$

回想参数估计:

$$p(\theta|X) = \frac{p(X|\theta) \cdot p(\theta)}{p(X)}$$

$$posterior = \frac{likelihood \cdot prior}{cvidence}$$

□分类——贝叶斯分类器

- □ Consider each attribute and class label as random variables (随机变量)
- □ Given a record with attributes (A1, A2,...,An)
 - Goal is to predict class C (目标是预测C)
 - Specifically, we want to find the value of C that maximizes P(C|A1, A2,...,An)
 (最大化这个值)
- □ Can we estimate P(C| A1, A2,...,An) directly from data?

	A1	A2	A3	C
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No

□分类——贝叶斯分类器

- Approach:
 - compute the posterior probability (后验概率) P(C | A1, A2, ..., An) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes
 P(C | A1, A2, ..., An)
- Equivalent to choosing value of C that maximizes
 P(A1, A2, ..., An|C) P(C)
- How to estimate P(A1, A2, ..., An | C)?

□分类——贝叶斯分类器

- □ Assume independence (独立性) among attributes Ai when class is given(Naïve):
 - P(A1, A2, ..., An |C) = P(A1| Cj) P(A2| Cj)... P(An| Cj)
 - Can estimate P(Ai| Cj) for all Ai and Cj.
 - New point is classified to Cj if P(Cj) ∏ P(Ai| Cj) is maximal.

 $P(C \mid A_1 A_2 \dots A_n) = P(A_1 \mid C) P(A_2 \mid C) \dots P(A_n \mid C) P(C)$

□分类——贝叶斯分类器

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 \square Class: $P(C) = N_c/N$

e.g., P(No) = 7/10, P(Yes) = 3/10

□ For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_c$$

- □ where |A_{ik}| is number of k instances having attribute A_i and belongs to class C_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

□分类——贝叶斯分类器

- How to Estimate Probabilities from Data?
- □ For continuous attributes (对于连续属性):
 - Discretize (离散化) the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split (二路分裂): (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation (概率密度估计):
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(Ai|c)

9

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

□分类——贝叶斯分类器

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- □ For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

10

For example: Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

P(X|Class=No) = P(Refund=No|Class=No)

× P(Married| Class=No)

× P(Income=120K| Class=No)

 $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

P(X|Class=Yes) = P(Refund=No| Class=Yes)

× P(Married| Class=Yes)

× P(Income=120K| Class=Yes)

 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No

11

For example:

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

A: attributes

M: mammals

N: non-mammals

1.P(M|A)

=P(M,A)/P(A)

=P(A|M)P(M)

=P(Give Birth=Yes, Can Fly=no, Live in Water= Yes, Have Legs= No | M) P(M)

= P(Give Birth=Yes|M) P(Can
Fly=no |M) P(Live in Water= Yes
|M) P(Have Legs= No |M) P(M)

For example:

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

 $P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

数据挖掘基础-练习

给定以下7个用户的数据,使用<mark>朴素贝叶斯方法</mark>预测用户8={有工作=否,婚姻状况=已婚}的拖欠贷款属性最有可能是Yes还是No,并给出求解过程。

用户ID	有工作	婚姻状况	拖欠贷款
1	否	己婚	No
2	是	单身	Yes
3	否	单身	No
4	是	己婚	Yes
5	否	单身	No
6	是	单身	Yes
7	是 否	己婚	No
8	否	己婚	?

如果有一个属性值在训练样本中不存在,这时候算出的所有类别的后验概率都是0,导致无法准确分类(仅使用数据记录的比例来估计类条件概率的方法显得太脆弱了),尤其是当训练数据很少而属性数目又很大时。

一般可采用M估计(M-Estimate)来平滑类条件概率的计算,从而得到非0的可比较的近似概率值,达到分类的目的。

$$P(x_i|y_j) = \frac{n_c + mp}{n + m}$$

其中,n 是类 y_j 中的实例总数, n_c 是类 y_j 的训练样例中取值 x_i 的样例数,m 是称为等价样本大小的参数,而 p 是用户指定的参数。如果没有训练集(即 n=0),则 $P(x_i|y_j)=p$ 。因此 p 可以看作是在类 y_j 的记录中观察属性值 x_i 的先验概率。等价样本大小决定先验概率 p 和观测概率 n_c/n 之间的平衡。

例题:使用朴素贝叶斯m估计,对该测试样本X进行分类,设m=3,且对类Yes的所有属性p=1/3,对类No的所有属性p=2/3

X = (Refund = No, Married, Income = 120K)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$P(X|No) = P(有房=否|No) \times P(婚姻状况=已婚|No) \times P(年收入=$120K|No)$$

= 6/10×6/10×0.0072 = 0.0026

$$P(X|Yes) = P(有房=否|Yes) \times P(婚姻状况=已婚|Yes) \times P(年收入=$120K|Yes)$$

= $4/6 \times 1/6 \times 1.2 \times 10^{-9} = 1.3 \times 10^{-10}$

$$P(X|No)P(No)=0.0026*0.7=0.00182$$

 $P(X|Yes)P(Yes)=1.3*10^{-10}*0.3=3.9*10^{-11}$

Since
$$P(X|No)P(No) > P(X|Yes)P(Yes)$$

Therefore
$$P(No|X) > P(Yes|X)$$
 => Class = No

□分类——K近邻方法

□使用k个最近的点用来进行分类任务

■ Basic idea:

☐ If it walks like a duck, quacks like a duck, then it's probably a duck

□分类——K近邻方法

- Requires three things
 - The set of stored records
 - Distance Metric (距离矩阵)
 to compute distance between
 records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - 计算到其他训练数据的距离
 - 找到 k 最近邻邻居
 - 使用邻居的label来预测未知数据的label(投票方法等)

□分类——K近邻方法

- > 距离度量
- ▶ k值选取

- □分类——感知机(perceptron)
 - □ 1957年由Rosenblatt提出,是神经网络与支持向量机的基础
- 感知机,是二类分类的线性分类模型,其输入为样本的特征向量,输出为样本的类别,取+1和-1二值,即通过某样本的特征,就可以准确判断该样本属于哪一类。感知机能够解决的问题首先要求特征空间是线性可分的,再者是二类分类,即将样本分为{+1,-1}两类。由输入空间到输出空间的符号函数:

$$f(x) = sign(w \cdot x + b)$$

称为感知机,w和b为感知机参数,w为权值(weight),b为偏置(bias)。

- □分类——感知机(perceptron)
- □ sign为符号函数: $sign(x) = \begin{cases} +1, & x \ge 0 \\ -1, & x < 0 \end{cases}$
- □在感知机的定义中,线性方程w·x + b = 0对应于问题空间中的 一个超平面S,位于这个超平面两侧的样本分别被归为两类, 例如下图,红色作为一类,蓝色作为另一类,它们的特征很 简单,就是它们的坐标

目标函数:

$$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b)$$

其中M是错分类的数据集合

■感知机学习策略

- □ 数据集线性可分性
 - 在二维平面中,可以用一条直线将+1类和-1类完美分开,那么这个样本空间就是 线性可分的。下图中的样本就是线性不可分的,感知机就不能处理这种情况。因 此,感知机都基于一个前提:问题空间线性可分
- □ 定义损失函数,找到参数w和b,使得损失函数最小

□损失函数的选取

- □损失函数的一个自然选择就是误分类点的总数,但是这样的点不是参数 w,b的连续可导函数,不易优化
- □ 损失函数的另一个选择就是误分类点到划分超平面S(w.x+b=0)的总距离

假设数据集 $T = \{(x_1, y_1), (x_2, y_2)...(x_n, y_n)\}$ 中所有的 $y_i = +1$ 的实例i,有 $w \cdot x + b > 0$; 对 $y_i = -1$ 的实例有 $w \cdot x + b < 0$ 这里 先给出输入空间 R^n 中任意一点 X_0 到超平面**S**的距 离:

$$\frac{1}{\|w\|} |w \bullet x_0 + b|$$
 这里 $\frac{1}{\|w\|}$ 是W的 l_2 范数。所以,对于误分类数据(x_i, y_i) 因为对 x_i 错分了,所以若 y_i 为-1,一 $y_i(w \bullet x_i + b) > 0$ 则计算的($w.x_i + b$)>0,反之若 y_i 为+1,

则计算的(w.x_i+b)<0

- □ 点x₀到超平面S: **w.x**+b=0(注: x₀,**w**,**x**全为*N*维向量)距离*d*的计算过程为:
 - □ 设点 x_0 在平面S上的投影为 x_1 ,则 $w.x_1+b=0$
 - □由于向量x₀x₁与S平面的法向量w平行,所以(乘积的模=模的乘积)

$$|w \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$$
 $|w \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = |w| |\overline{x_0} x_1 = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)^2} d = |w| d$
 $|x \cdot \overline{x_0} x_1| = \sqrt{(w^1)^2 + ... + (w^N)$

因此误分类点 (x_i, y_i) 到超平面S的距离可以写作:

$$-\frac{1}{\|w\|}y_i(w\bullet x_i+b)$$

假设误分类点的集合为M,那么所有误分类点到超平面S的总距离为: $-\frac{1}{\|w\|}\sum_{x_i\in M}y_i(w\bullet x_i+b)$

这里的||w||值是固定的,不必考虑,这样就得到了感知机学习的损失函数:在误分类时是参数w,b的线性函数。也就是说,为求得正确的参数w,b,我们的目标函数为

$$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \bullet x_i + b)$$

而它是连续可导的,这就使得我们比较容易求得其最小值

■感知机学习算法的原始形式

$$\left| \min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i (w \bullet x_i + b) \right|$$

□ 所谓原始形式,就是我们用梯度下降的方法,对参数w和b进行不断的迭代更新。先任意选取一个超平面 S₀ ,对应的参数分别为 w₀ 和 b₀ ,当然现在是可以任意赋值的,比如说选取w₀为全为0的向量, b₀ 的值为0。然后用梯度下降不断地极小化损失函数:每次随机选取一个误分类点对w和b进行更新。设误分类点集合M是固定的,那么损失函数 L(w, b)的梯度为:

$$\nabla_w L(w,b) = -\sum_{x_i \in M} y_i x_i$$
$$\nabla_b L(w,b) = -\sum_{x_i \in M} y_i$$

■接下来随机选取一个误分类点 (x_i, y_i) 对w,b进行更新

$$w \leftarrow w + \eta y_i x_i$$
$$b \leftarrow b + \eta y_i$$

其中 $\eta(0<\eta\leq 1)$ 为步长,也称为学习速率(learnin rate),一般在0到1之间取值,通过迭代,直到损失函数为0

算法 1 (感知机学习算法的原始形式)

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, 其中 $x_i \in \mathcal{X} = \mathbb{R}^n$, $y_i \in \mathcal{Y} = \{-1, +1\}$, $i = 1, 2, \dots, N$; 学习率 $\eta(0 < \eta \leq 1)$;

输出: w,b; 感知机模型 $f(x) = sign(w \cdot x + b)$.

- (1) 选取初值 w₀, b₀
- (2) 在训练集中选取数据 (x_i, y_i)
- (3) 如果 $y_i(w \cdot x_i + b) \leq 0$

$$w \leftarrow w + \eta y_i x_i$$
$$b \leftarrow b + \eta y_i$$

(4) 转至(2), 直至训练集中没有误分类点.

该算法直观上有如下解释: 当一个样本被误分类时,就调整w, b使超平面S向误分类点的一侧移动,以减少误分类点到超平面的距离,直至超平面越过改点使之正确分类。

例 如图3所示的训练数据集,其正实例点是 $x_1=(3,3)^T$, $x_2=(4,3)^T$,负实例点是 $x_3=(1,1)^T$,试用感知机学习算法的原始形式求感知机模型 $f(x)=sign(w\cdot x+b)$,即求出w和b。这里 $w=(w^{(1)},w^{(2)})^T$, $x=(x^{(1)},x^{(2)})^T$

假设学习速率为**1**,则每步 更新为:

$$w=w+y_ix_i$$

 $b=b+y_i$

(0≥)

\mathcal{F}_i	(11 12, 10)			
迭代次数	误分类点	w	ь	$w \cdot x + b$
0		0	0	0
1	$\boldsymbol{x}_{\!\scriptscriptstyle 1}$	$(3,3)^{T}$	1	$3x^{(1)} + 3x^{(2)} + 1$
2	x3	$(2,2)^{T}$	0	$2x^{(1)} + 2x^{(2)}$
3	x3	(1,1) ^T	-1	$x^{(1)} + x^{(2)} - 1$
4	<i>x</i> ₃	$(0,0)^{T}$	-2	-2
5	x_1	$(3,3)^{T}$	-1	$3x^{(1)} + 3x^{(2)} - 1$
6	<i>x</i> ₃	$(2,2)^{T}$	-2	$2x^{(1)} + 2x^{(2)} - 2$
7	x ₃	$(1,1)^{T}$	-3	$x^{(1)} + x^{(2)} - 3$
8	0	$(1,1)^{T}$	-3	$x^{(1)} + x^{(2)} - 3$

28

□分类——感知机(perceptron)

29

□分类——支持向量机(Support Vector Machine)

30

□分类——支持向量机(Support Vector Machine)

另一个可行解

31

□分类——支持向量机(Support Vector Machine)

其他可行解

32

□分类——支持向量机(Support Vector Machine)

找到使问隔最大化的超平面 => B1比B2更好

33

□分类——区别

感知机

$$f(x) = sign(w \cdot x + b)$$

SVM

优化目标:

$$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b)$$

34

- □分类——支持向量机
- □研究起因
 - □如何找到最优的切分面
 - ■分类间隔(Classification Margin)

35

- □分类——支持向量机
- □研究起因
 - □如何找到最优的切分面

- □分类——支持向量机
- □研究起因
 - □如何找到最优的切分面
 - ■最大化分类间隔
 - ■直观上最有效
 - 概率的角度,就是使得置信度最小的点置信度最大
 - 即使我们在选边界的时候犯了小错误,使得边界有偏移,仍然 有很大概率保证可以正确分类绝大多数样本
 - 很容易实现交叉验证,因为边界只与极少数的样本点有关
 - 有一定的理论支撑(如VC维)
 - ■实验结果验证了其有效性

- 给定训练数据x_i ε X=Rⁿ, 其类标签为y_i ε Y={+1,-1}
- $点x_i$ 到平面 $w \cdot x + b = 0$ 的距离:

$$r_i = d(x_i) = \frac{y_i(w \cdot x_i + b)}{\|w\|}$$

■ 切分面满足距离:

$$r = \min_{i=1,\dots,N} \frac{y_i(w \cdot x_i + b)}{\|w\|}$$

■ 目标: 最大化

$$r = \min_{i=1,\dots,N} \frac{y_i(w \cdot x_i + b)}{\|w\|}$$

即为优化问题:

$$\max_{w,b} r$$

$$s.t. \frac{y_i(w \cdot x_i + b)}{\|w\|} \ge r, i = 1, 2, ...N$$

A(x) A(x) A(x)

注: 约束保证了所有点到切 分面的距离都不比r小

■间隔转换

$$\left| \max_{w,b} r \right|$$

$$s.t. \frac{y_i(w \cdot x_i + b)}{\|w\|} \ge r, i = 1, 2, ...N$$

$$\max_{w,b} \hat{r}$$

$$s.t. \quad y_i(w \cdot x_i + b) \ge \hat{r}, i = 1, 2, ...N$$

r_i:几何间隔
^
r: 函数间隔

函数间隔取值不影响最优化问题的解,因为若将W和b按比例改变为 λ W和 λ b,则函数间隔变为 λ r,而超平面不会变化。

■ 进一步简化

$$\begin{vmatrix} \max_{w,b} r \\ s.t. & \frac{y_i(w \cdot x_i + b)}{\|w\|} \ge r, i = 1, 2, ...N \end{vmatrix}$$

Λ

$$\hat{\Rightarrow} \hat{r} = 1$$

$$\max_{w,b} r$$
s.t. $y_i(w \cdot x_i + b) \ge \hat{r}, i = 1, 2, ...N$

$$\max_{w,b} \frac{1}{\|w\|} \longleftrightarrow \min_{w,b} \frac{1}{2} \|w\|^2$$

 $s.t. \ y_i(w \cdot x_i + b) - 1 \ge 0, i = 1, 2, ...N$

优化目标:平 方和系数都是 为了求导方便

■ 理解

有:
$$w \cdot x^+ + b = +1$$

 $w \cdot x^- + b = -1$

$$w \cdot (x^+ - x^-) = 2$$

$$M = \frac{w}{\|\mathbf{w}\|} \cdot (x^+ - x^-) = \frac{2}{\|\mathbf{w}\|}$$

其实就是两边支持向量之间的距离 (即**2**倍的支持向量到切分面的距离)

- □如果两个数据对象的Cosine相似度为1,则这两个数据对象可以被当作相同的数据
 - □ A.该论断错误 B.该论断正确
- □ 朴素 (Naive) 贝叶斯为什么被叫做"朴素"?
- □如果一个数据集包含两类数据,其中一类占的比例约为0.2%,则。
 - □ 该数据集的信息熵值趋近于1。
 - □ 该数据集的信息熵值趋近于0。
 - □ 该数据集的信息熵值趋近于0.3。
 - □ 该数据集的信息熵值趋近于0.8。

 $Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$

- □下列不属于K近邻方法关键步骤的是____
 - □ A. 抽样样本的比例
 - □ B. 距离函数的选择
 - C. K值的选取
 - D. 分类决策规则的确定
- □如何判断决策树的分裂过程何时结束?
 - □ A. 每个叶子结点中的所有数据属于同一类时
 - □ B.每个叶子结点中所有数据有相同的属性值时
 - □ C:继续分裂不能带来分类效果的提升时
 - □ D:叶子结点中的数据记录数小于某个阈值时

□分类——集成学习

- □ All the competitors of data mining competition, such as KDD CUP, adopt ensemble methods to enhance the performance of their algorithm.
 - Bagging(装袋)、Boosting(提升)
- General Idea

结果

4!

□分类——集成学习: Bagging (装袋)

Decision Tree

□ 单树最好的分类点: X<=0.35 or X<=0.75 with precision 70%

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	-1	-1	-1	-1	1	1	1

□ Bagging: 根据均匀概率重复(有放回)抽样

Round 1

x	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.7	0.7
У	1	1	1	1	-1	-1	-1	-1	-1	-1

X<=0.35 y=1 X>0.35 y=-1

Round 2

x	0.1	0.2	0.3	0.4	0.5	0.8	0.9	1	1	1
У	1	1	1	-1	-1	1	1	1	1	1

X<=0.65 y=1 X>0.65 y=1

46

One Round,	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
One Classifier	1	1	1	-1	-1	-1	-1	1	1	1

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

Accuracy of ensemble classifier: 100% ©

47

□分类——集成学习: Bagging Summary

- □ Works well if the base classifiers are unstable (complement each other)
- □ Increased accuracy because it *reduces the variance (方差)* of the individual classifier (提升准确率的原因)
- Does not focus on any particular instance of the training data
 - Therefore, less susceptible to model over-fitting when applied to noisy data
- □ What if we want to focus on a particular instances of training data?

学习器 各自学习 结果 最终学习结果

48

- □分类——集成学习: Boosting(提升)
- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - □ Initially, all N records are assigned equal weights(每个基分类器开始权值是相同的)
 - □ Unlike bagging, weights may change at the end of a boosting round (训练后权 值会发生改变)
 - 权重包含两层意思:被抽样的概率或者被错分时的权重

□分类——集成学习: Boosting(提升)

- □ Records that are wrongly classified will have their weights increased (错误分类的权值会得到提升)
- □ Records that are classified correctly will have their weights decreased (正确分类的权值会下降)

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

- □分类——集成学习: Boosting(提升)
 - Adaboost (Adaptive Boost) Training
- □ Training data D contain N labeled data (X_1,y_1) , (X_2,y_2) , (X_3,y_3) ,.... (X_N,y_N)
- □ Initially assign equal weight 1/N to each data (初始权值相同)
- □ To generate *T* base classifiers, we need *T* rounds or iterations(迭代 T 次)
 - \blacksquare Round i, data from D are sampled with replacement, to form D_i (size N)
- □ Each data's chance of being selected in the next rounds depends on its weight
 - □ Correctly classified: Decrease weight(分类器分类正确,权值下降)
 - □ Incorrectly classified: Increase weight(分类器分类错误,权值提高)

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases} \quad \text{w}_j^{(i)} \text{ 是第j个样本在第i轮的}$$

where Z_i is the normalization factor

51

- □分类——集成学习: Boosting(提升)
 - Adaboost (Adaptive Boost) Testing
 - The lower a classifier error rate, the more accurate it is, and therefore, the higher its weight for voting (投票) should be
 - Weight of a classifier C_i's vote is
 - Error rate: (i = index of classifier, j=index of instance)

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

 $\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$

- □分类——集成学习: Boosting(提升)
 - Adaboost (Adaptive Boost) Testing
 - The lower a classifier error rate, the more accurate it is, and therefore, the higher its weight for voting (投票) should be
 - Weight of a classifier C_i's vote is

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Testing:

- □ For each class c, sum the weights of each classifier that assigned class c to x (unseen data)
- The class with the highest sum is the WINNER!

$$C*(x_{test}) = \underset{y}{\operatorname{arg\,max}} \sum_{i=1}^{T} \alpha_i \delta(C_i(x_{test}) = y)$$

□分类——模型评估方法: 混淆矩阵

- □着重于评估模型的预测能力
 - Rather than how fast it takes to classify or build models, scalability, etc.
- □ Confusion Matrix (混淆矩阵):

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	а	b				
CLASS	Class=No	С	d				

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

□分类——模型评估方法: 混淆矩阵

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)			
CLASS	Class=No	c (FP)	d (TN)			

■ Most widely-used metric Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

□分类——模型评估方法: 样本不均衡问题

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- □ If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Count	PREDICTED CLASS							
		Class=Yes	Class=No					
ACTUAL	Class=Yes	а	b					
CLASS	Class=No	С	d					

□分类——模型评估方法: Cost-Sensitive Measures

□ 正确率 Precision (p) =
$$\frac{a}{a+c}$$

□ 召回率 Recall (r) =
$$\frac{a}{a+b}$$

Count	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	а	b				
CLASS	Class=No	С	d				

- □ Precision is biased towards C(Yes|Yes) & C(Yes|No)
- □ Recall is biased towards C(Yes|Yes) & C(No|Yes)
- □ F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F值即为正确率和召 回率的<u>调和平均值</u>) F=(2/(1/r+1/p))

在一次垃圾邮件检测中,使用贝叶斯分类法认为有100篇邮件是垃圾邮件,后经过砖家判定,其中真是垃圾邮件的为60篇,其余的40篇为误分,那么请问本次分类的正确率Precision就等于______。假如砖家发现邮件样本集里还有90篇垃圾邮件,由于各种原因而未被检出(漏检),那么按照上述公式,本次分类的查全率Recall就等于______,F1值等于_____。

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F₁) = $\frac{2rp}{r + p}$ = $\frac{2 \times TP}{2 \times TP + FN + FN}$

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)			
CLASS	Class=No	c (FP)	d (TN)			

□ 分类——模型比较方法: Cost-Sensitive Measures

- ROC (Receiver Operating Characteristic)与AUC
 - "受试者工作特征",ROC曲线的面积就是AUC (Area Under the Curve)。 AUC用于衡量"二分类问题"机器学习算法性能(泛化能力)
 - Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
 - ROC curve plots TP (on the y-axis) against FP (on the x-axis)
 - 样本中的真实正例类别总数即TP+FN。
 - 真正例率TPR即True Positive Rate, TPR = TP/(TP+FN)。
 - 样本中的真实反例类别总数为FP+TN。
 - 假正例率False Positive Rate, FPR=FP/(TN+FP)。

真正例率等于 预测为正且实际为正的样本 在所有的正样本中的比例 **假正例率**等于 预测为正但实际为负的样本 占所有负样本的比例

	PREDICTED CLASS					
ACTUAL		Class=Yes	Class=No			
	Class=Yes	a (TP)	b (FN)			
CLASS	Class=No	c (FP)	d (TN)			

□ 分类——模型比较方法: Cost-Sensitive Measures

■ ROC (Receiver Operating Characteristic)与AUC

ROC图的绘制:给定 m^+ 个正例和 m^- 个负例,根据学习器预测结果对样例进行排序,将分类阈值设为每个样例的预测值,当前标记点坐标为(x,y),当前若为真正例,则对应标记点的坐标为 $(x,y+\frac{1}{m^-},y)$;当前若为假正例,则对应标记点的坐标为 $(x+\frac{1}{m^-},y)$,然后用线段连接相邻点.

基于有限样例绘制的 ROC 曲线 与 AUC

假设ROC曲线由 $\{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$ 的点按序连接而形成 $(x_1 = 0, x_m = 1)$,则: AUC可估算为:

$$AUC = \frac{1}{2} \sum_{i=1}^{m-1} (x_{i+1} - x_i) \cdot (y_i + y_{i+1})$$

AUC衡量了样本预测的排序质量。

60

□分类——模型比较方法: Cost-Sensitive Measures

- □ ROC (Receiver Operating Characteristic)与AUC
- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

61

□分类——模型比较方法: Cost-Sensitive Measures

- □ ROC (Receiver Operating Characteristic)与AUC
- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

□ 分类——模型比较方法: Cost-Sensitive Measures

□ ROC (Receiver Operating Characteristic)与AUC

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

- □分类——模型比较方法: Test of Significance
- □ 关于性能比较:
 - □测试性能并不等于泛化性能
 - □测试性能随着测试集的变化而变化
 - □ 很多机器学习算法本身有一定的随机性

Given two models:

Model M1: accuracy = 85%, tested on 30 instances

Model M2: accuracy = 75%, tested on 5000 instances

□ 进行假设检验,判断差别是否具有统计意义

假设检验为学习器性能比较提供了重要依据,基于其结果我们可以推断出若在测试集上观察到学习器A比B好,则A的泛化性能是否在统计意义上优于B,以及这个结论的把握有多大。

□分类——模型验证方法:

□ 交叉验证法 (Cross Validation):

将数据集分层采样划分为k个大小相似的互斥子集,每次用k-1个子集的并集作为训练集,余下的子集作为测试集,最终返回k个测试结果的均值,k最常用的取值是10.

10 折交叉验证示意图