

Language: French

Day: **1**

Vendredi 10 juillet 2015

Problème 1. On dit qu'un ensemble fini \mathcal{S} de points du plan est équilibré si, pour tous points A et B de \mathcal{S} distincts, il existe un point C de \mathcal{S} tel que AC = BC. On dit que \mathcal{S} est excentrique si, pour tous points A, B et C de \mathcal{S} distincts, il n'existe pas de point P de \mathcal{S} tel que PA = PB = PC.

- (a) Prouver que pour tout entier $n \ge 3$, il existe un ensemble équilibré contenant exactement n points.
- (b) Déterminer tous les entiers $n \ge 3$ pour lesquels il existe un ensemble équilibré et excentrique contenant exactement n points.

Problème 2. Déterminer tous les triplets (a, b, c) d'entiers strictement positifs pour lesquels chacun des nombres

$$ab-c$$
, $bc-a$, $ca-b$

est une puissance de 2.

(Une puissance de 2 est un entier de la forme 2^n , où n est un entier positif ou nul.)

Problème 3. Soit ABC un triangle dont tous les angles sont aigus, avec AB > AC. Soit Γ son cercle circonscrit, H son orthocentre et F le pied de sa hauteur issue de A. On désigne par M le milieu du segment [BC]. Soit Q le point de Γ tel que $\widehat{HQA} = 90^{\circ}$ et soit K le point de Γ tel que $\widehat{HKQ} = 90^{\circ}$. On suppose que les points A, B, C, K et Q sont tous distincts et dans cet ordre sur Γ .

Prouver que le cercle circonscrit au triangle KQH est tangent au cercle circonscrit au triangle FKM.

Language: French

Durée: 4 heures et 30 minutes

Chaque problème vaut 7 points

Language: French

Day: 2

Samedi 11 juillet 2015

Problème 4. Soit ABC un triangle de cercle circonscrit Ω , et soit O le centre de Ω . Un cercle Γ de centre A rencontre le segment [BC] aux points D et E, de sorte que B, D, E et C sont distincts et dans cet ordre sur la droite (BC). On note F et G les points d'intersection de Γ et Ω , de sorte que A, F, B, C et G sont dans cet ordre sur Ω . Soit K le second point d'intersection du cercle circonscrit au triangle BDF avec le segment [AB]. Soit L le second point d'intersection du cercle circonscrit au triangle CGE avec le segment [CA].

On suppose que les droites (FK) et (GL) ne sont pas confondues et qu'elles se rencontrent au point X. Prouver que X appartient à la droite (AO).

Problème 5. Soit \mathbb{R} l'ensemble des nombres réels. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ qui vérifient l'équation

$$f(x+f(x+y)) + f(xy) = x + f(x+y) + yf(x)$$

pour tous réels x et y.

Problème 6. La suite a_1, a_2, \ldots d'entiers vérifie les conditions :

- (i) $1 \leqslant a_j \leqslant 2015$ pour tout $j \geqslant 1$,
- (ii) $k + a_k \neq \ell + a_\ell$ pour tous $1 \leq k < \ell$.

Prouver qu'il existe deux entiers strictement positifs b et N pour lesquels

$$\left| \sum_{j=m+1}^{n} (a_j - b) \right| \leqslant 1007^2$$

pour tous les entiers m et n tels que $n > m \ge N$.

Language: French

Durée: 4 heures et 30 minutes

Chaque problème vaut 7 points