Analyse I - Résumé

Mahel Coquaz

Semestre d'automne 2025

Contents

1	Pré	requis		7								
	1.1	Identit	tés algébriques	7								
	1.2			7								
		1.2.1		7								
		1.2.2		8								
	1.3	Trigon		8								
	1.4 Fonctions élémentaires											
		1.4.1		8								
		1.4.2		9								
		1.4.3		9								
		1.4.4		g								
			1									
2	Nor	nbre r	éels 1	1								
2.1 Ensembles												
		2.1.1	Opération ensemblistes	1								
	2.2 Nombres naturels, rationnels, réels											
		2.2.1	Borne inférieure et supérieure	1								
		2.2.2	Supremum et infimum	2								
		2.2.3	Notations d'intervalles									
	2.3	Nomb	res complexes	2								
	_	2.3.1	Propriétés des nombres complexes									
		2.3.2	Les 3 formes de nombres \mathbb{C}									

Cours

Cours $1 - 8$ septembre 2025 .													7
Cours 2 - 10 septembre 2025													11
Cours 3 - 15 septembre 2025													12
Cours 4 - 17 septembre 2025													12

COURS

Introduction

Ce qui suit se veut être un résumé ultra condensé du cours d'Analyse I pour IN (MATH-101e) donné au semestre d'automne 2025 à l'EPFL. Le contenu de ce cours ne m'appartient pas et est quasiment intégralement extrait du cours des Professeurs Anna Lachowska qui l'a enseigné. J'ai cependant pris la liberté de sauter/raccourcir certains passages et d'ajouter des notes lorsqu'il me semblait pertinent de le faire.

Ce résumé/polycopié n'est pas exempt d'erreurs, si vous en trouvez une, vous pouvez me contacter sur mon adresse EPFL mahel.coquaz@epfl.ch ou via le repo GitHub https://github.com/hotwraith/LectureNotes.

Le repository GitHub est aussi où se trouvent les dernières versions des fichiers PDFs et TEXpour ce cours (et éventuellement d'autres).

COURS COURS

Organisation par cours

- Cours 1 8 septembre 2025: "C'est trivial ça" p.7
- \bullet Cours 2 10 septembre 2025: For $\mathbb R$? p.11
- Cours 3 15 septembre 2025: Élisabeth Born(é)e p.12
- \bullet Cours 4 17 septembre 2025: ça se complique.. p.12

COURS COURS

Chapter 1

Prérequis

Cours 1 - 8 septembre 2025: "C'est trivial ça"

1.1 Identités algébriques

- $(x+y)^2 = x^2 + 2xy + y^2$
- $(x+y)(x-y) = x^2 y^2$
- $(x-y)(x^2 + xy + y^2) = x^3 y^3$
- $(x+y)(x^2 xy + y^2) = x^3 + y^3$

1.2 Exponentielles & Logarithmes

1.2.1 Exponentielles

Avec $a, b \in \mathbb{R}$

- $\bullet \ a^x a^y = a^{x+y}$
- $\bullet \ \frac{a^x}{a^y} = a^{x-y}$
- $\bullet (ab)^x = a^x b^x$
- $a^0 = 1$
- $\bullet \ (a^x)^y = a^{xy}$
- $\sqrt[n]{a} = a^{1/n}$
- $\bullet \ \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
- $a^1 = a$

1.2.2 Logarithmes

Avec ln = log le logarithme naturel

- $\ln(xy) = \ln(x) + \ln(y)$
- $\ln(\frac{x}{y}) = \ln(x) \ln(y)$
- $\ln(x^c) = c \cdot \ln(x)$
- ln(1) = 0
- $\log_a(a) = 1$

1.3 Trigonométrie

Avec $\sin(x), \cos(x) \ \forall x \in \mathbb{R}$

- $\tan x = \frac{\sin x}{\cos x} \& \cot x = \frac{\cos x}{\sin x}$
- $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$
- $cos(x \pm y) = cos(x) cos(y) \mp sin(x) sin(y)$
- $\cos(0) = \cos(x x) = \cos^2(x) + \sin^2(x) = 1$
- $\sin(2x) = \sin(x+x) = \sin(x)\cos(x) + \cos(x)\sin(x) = 2\sin(x)\cos(x)$
- $\cos(2x) = \cos(x+x) = \cos^2(x) \sin^2(x)$

1.4 Fonctions élémentaires

1.4.1 Types de fonctions

- 1. Polynomiales
 - Linéaire: f(x) = ax + b; $a, b \in \mathbb{R}$
 - Quadratiques: $f(x) = ax^2 + bx + c$; $a, b, c \in \mathbb{R}, a \neq 0$
- 2. Fonctions rationnelles: $f(x) = \frac{P(x)}{Q(x)}$ où P(x) et Q(x) sont des polynômes, et $Q(x) \neq 0$
- 3. Fonctions algébriques: Toute fonction qui est une solution d'une équation polynomiale, ex: $f(x) = \sqrt{x}$
- 4. Fonctions transcendantes: fonctions non algébriques
 - (a) Exponentielles et logarithmiques: $f(x) = e^x$, $g(x) = \ln(x)$
 - (b) Fonctions trigos et réciproques: $f(x) = \sin(x), g(x) = \cos(x)$

1.4.2 Injectivité, surjectivité, bijectivité

Définition 1.4.1 $D(f) = \{x \in \mathbb{R} : f(x) \text{ est bien définie }\} = \text{le domaine de définition de } f$

 $f(D) = \{y \in R : \exists x \in D(f) : f(x) = y\} = l$ 'ensemble image de f

Définition 1.4.2 Surjectivité

 $f: E \to F$ est surjective $si \ \forall y \in F, \exists \ au \ \underline{moins} \ un \ x \in E: f(x) = y$

Définition 1.4.3 Injectivité

 $f: E \to F$ est injective $si \ \forall y \in F, \exists$ au <u>plus</u> un $x \in E: f(x) = y$ Autrement dit: Soit $x_1, x_2 \in D_f: f(x_1) = \overline{f(x_2)} \to x_1 = x_2$

Définition 1.4.4 Bijectivité $Si\ f: E \to F$ est injective ET surjective, alors elle est bijective

1.4.3 Fonctions réciproques

Définition 1.4.5 N'existent que si $f: E \to F$ est **bijective** et est définie par $f^{-1}: F \to E$ donc $f(x) = y \Leftrightarrow x = f^{-1}(y)$

1.4.4 Fonctions composées

Soit $f:D_f\to\mathbb{R}$ et $g:D_g\to\mathbb{R}$ avec $f(D_f)\subset D_g$ on peut alors définir la fonction composée $g\circ f:D_f\to \operatorname{par}\,g\circ f(x)=g(f(x))^{-1}$

¹Il est bon de noter que de manière générale: $g \circ f \neq f \circ g$

Chapter 2

Nombre réels

Cours 2 - 10 septembre 2025: For $\mathbb R$?

2.1 Ensembles

Un ensemble est une "Collection des objets définis et distincts" (G. Cantor)

Définition 2.1.1 $\mathbf{X} \subset \mathbf{Y}$ Soit $\forall b \in X \Rightarrow b \in Y$ Sa négation: $\mathbf{X} \not\subset \mathbf{Y}$ $\exists a \in X : a \notin Y$

Définition 2.1.2 $X = Y \Leftrightarrow Y \subset X$ et $X \subset Y$

Définition 2.1.3 \emptyset *l'ensemble vide:* $\emptyset = \{\}$ $\forall X : \emptyset \subset X$ $\forall X : X \subset X$

2.1.1 Opération ensemblistes

- Réunion: $X \cup Y = \{a \in \cup : a \in X \text{ ou } a \in Y\}$
- Intersection: $X \cap Y = \{a \in \cap : a \in X \text{ et } a \in Y\}$
- Différence: $X \setminus Y = \{a \in \setminus : a \in X \text{ et } a \notin Y\}$

Propriété $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$

2.2 Nombres naturels, rationnels, réels

2.2.1 Borne inférieure et supérieure

Définition 2.2.1 Soit $S \subset \mathbb{R}, S \neq \emptyset$. Alors $a \in \mathbb{R}(b \in \mathbb{R})$ est un minorant/majorant de S si $\forall x \in S$ on a: $a \leq x$ ou $x \leq b$ Si S possède un minorant/majorant on dit que S est minoré/majoré. Si S est majoré et minoré, alors S est dit borné.

Cours 3 - 15 septembre 2025: Élisabeth Born(é)e

2.2.2 Supremum et infimum

Théorème 2.2.1 Tout sous-ensemble non-vide majoré/minoré $S \subset \mathbb{R}$ admet un supremum/infimum qui est unique.

Unicité Si inf/supS existe alors il est le plus grand minorant/majorant de S

2.2.3 Notations d'intervalles

Soit $a < b, a, b \in \mathbb{R}$.

Intervalles bornés

- $\{x \in \mathbb{R} : a \le x \le b\} = [a, b]$ intervalle fermé borné
- $\{x \in \mathbb{R} : a < x < b\} = [a, b]$ intervalle ouvert borné
- $\{x \in \mathbb{R} : a \le x < b\} = [a, b]$ intervalle borné ni ouvert ni fermé

Intervalles non-bornés:

- $\{x \in \mathbb{R} : x \ge a\} = [a, +\infty[\text{ ferm\'e}]$
- $\{x \in \mathbb{R} : x > a\} = [a, +\infty[$ ouvert
- $\{x \in \mathbb{R} : x < b\} =]-\infty, b]$ fermé
- $\{x \in \mathbb{R} : x < b\} =]-\infty, b[$ ouvert

2.3 Nombres complexes

Cours 4 - 17 septembre 2025: ça se complique...

On sait que $x^2=-1$ n'a pas de solutions dans $\mathbb{R},$ alors on introduit i tel que $i^2=-1$

2.3.1 Propriétés des nombres complexes

Prenons les \mathbb{C}^2 de la forme $\{z=a+ib\}$, où $a,b\in\mathbb{R}$

•
$$(+) (a+ib) + (c+id) = (a+c) + i(b+d)$$

$$-\exists = \in C : 0 + 0i = 0 \text{ tel que } (a+ib) + 0 + 0i = a+ib \ \forall a, b \in \mathbb{R}$$

 $-\exists \text{ l'opposé pour } (a+ib) : (-a+i(-b)) + (a+ib) = 0 + 0i = 0$

•
$$(\cdot)(a+ib)\cdot(c+id) = ac - bd + i(ad+bc)$$

 $^{^1{\}rm Oui},$ en maths quand un truc marche pas on invente un truc pour que ça marche, si seulement on pouvait faire ça en exam...

²ℂ dénote l'ensemble des complexes

$$-\exists 1 \in \mathbb{C} : 1 + 0i = 1 : (a + ib) \cdot (1 + 0i) = a + ib$$

$$-z \in \mathbb{C}, z \neq 0 \Rightarrow \exists z^{-1} \in \mathbb{C} : z \cdot z^{-1} = z^{-1} \cdot z = 1$$

- Pour
$$z = a + ib \in \mathbb{C}^* \Rightarrow z^{-1} = \frac{a - ib}{a^2 + b^2}$$

$$- z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$$

–
$$\mathbb{C}$$
 n'est pas ordonné: $i > 0 \Rightarrow i^2 = -1 > 0$ et $i < 0 \Rightarrow (-i)^2 = -1 > 0$, on voit qu'on a $-1 > 0$ ce qui est absurde.

2.3.2 Les 3 formes de nombres \mathbb{C}

Forme cartésienne

 $\mathbf{z} = \mathbf{a} + \mathbf{ib}, \, a, b \in \mathbb{R}$

z=Re(z)+Im(z)i (Re et Im respectivement les parties réelles et imaginaires de z)

$$|z| = \sqrt{(Re(z)^2 + (Im(z))^2} = \sqrt{a^2 + b^2} \ge 0^3$$

Trouver φ et arg(z):

•
$$a > 0$$
: $arg(z) = \arctan(\frac{b}{a}) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ à $2k\pi$ près, $k \in \mathbb{Z}$

•
$$a < 0$$
: $arg(z) = \arctan(\frac{b}{a}) + \pi \in \frac{\pi}{2}, \frac{3\pi}{2}$ à $2k\pi$ près, $k \in \mathbb{Z}$

• Si
$$a = 0$$
:

$$-arg(z) = \frac{\pi}{2} \text{ si } Im(z) = b > 0$$

$$- arg(z) = \frac{3\pi}{2} \text{ si } Im(z) = b < 0$$

Forme polaire trigonométrique

$$\mathbf{z} = \rho(\cos(\varphi) + \mathbf{i}\sin(\varphi) \ \rho \le 0, \ \varphi \in \mathbb{R}$$
$$|z| = \rho \le 0 \ \rho \ne 0 \Rightarrow \sin(\varphi) = \frac{Im(z)}{\rho}, \ \cos(\varphi) = \frac{Re(z)}{\rho}, \ \tan(\varphi) = \frac{Im(z)}{Re(z)} = \frac{a}{b} \ \text{si}$$
$$a = Re(z) \ne 0$$

 $^{3|}z| = 0 \Leftrightarrow z = 0$