Lista 3 - Topologia 2024

Definicja. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Powiemy, że $\mathcal{B} \subseteq \mathcal{T}$ jest bazą tej przestrzeni, jeżeli każdy zbiór otwarty (czyli element \mathcal{T}) jest sumą pewnej podrodziny rodziny \mathcal{B} . (Np. w przestrzeniach metrycznych rodziny kul stanowią bazy.).

- Zad. 1 Pokaż, że strzałka jest przestrzenia Hausdorffa.
- **Zad. 2** Pokaż, że zbiory postaci [a,b) jest domknięte w topologii strzałki. Pokaż, że zbiory postaci (a,b) są otwarte, ale nie są domknięte w topologii strzałki.
- **Zad. 3** Pokaż, że w przestrzeni Hausdorffa punkty są domknięte, a ciągi zbieżne mają tylko jedną granicę.
- **Zad.** 4 Ustalmy X i topologię \mathcal{T} na X. Pokaż, że $\mathcal{B} \subseteq \mathcal{T}$ jest bazą topologii \mathcal{T} wtedy i tylko wtedy, gdy dla każdego $x \in X$ i dla każdego zbioru otwartego $U \ni x$ istnieje $B \in \mathcal{B}$ taki, że $x \in B \subseteq U$.
- **Zad. 5** Rozważmy zbiór X i rodzinę $A \subseteq \mathcal{P}(X)$, która zawiera (jako elementy) \emptyset i X i jest zamknięta na skończone przekroje. Pokaż, że rodzina wszystkich sum elementów A jest topologią.
- **Zad. 6** Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Powiemy, że rodzina \mathcal{B} jest podbazą topologii \mathcal{T} , jeżeli rodzina skończonych przekrojów elementów \mathcal{A} jest bazą \mathcal{T} . Wywnioskuj z poprzedniego zadania, że każda rodzina (zawierająca jako elementy \emptyset i X) jest podbazą pewnej topologii.
- **Zad. 7** Jak się ma topologia przestrzeni $C_p([0,1])$, funkcji ciągłych $f:[0,1] \to \mathbb{R}$ z topologią zbieżności punktowej, do topologii indukowanej przez metrykę supremum?
- Zad. 8 Pokaż, że podprzestrzenie przestrzeni Hausdorffa są przestrzeniami Hausdorffa.
- **Zad. 9** Pokaż, że przestrzeń $C_p([0,1])$ nie jest metryzowalna.
- **Zad. 10** Pokaż, że zbiory postaci $\{x \in \{0,1\}^{\mathbb{N}} : x(n) = i\}$, gdzie $n \in \mathbb{N}$ i $i \in \{0,1\}$, stanowią podbazę kostki Cantora $\{0,1\}^{\mathbb{N}}$.