МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление: Прикладная математика и информатика Отделение экспериментальной физики

Отчет по лабораторной работе №3

Частотные характеристики динамических звеньев

по дисциплине «Теория управления»

Выполнил:	
Студент группы	 Саматов Д. С.
0B01	
Проверил:	
Доцент ОИТ	
доцент Отт	 Шипуля М. А.

Целью работы является исследование частотных характеристик типовых динамических звеньев первого и второго порядков.

Программа работы

- 1. Составить схему моделирования апериодического звена первого порядка, изображенную на рис. 4.1.1. Коэффициент *с* задать равным 2.
- 2. Провести исследование модели при коэффициенте a, равном 1, 0.5 и -1. Получить графики h(t), расположение корней на комплексной плоскости и $W(j\omega)$ диаграмму Найквиста для разомкнутой системы. По полученным графикам, оценить устойчивость звена и определить для a=1 коэффициенты передачи системы в замкнутом и разомкнутом состояниях.
- 3. Составить схему моделирования интегро-дифференцирующего звена, представленную на рис. 4.1.2 при c=10.
 - 4. Провести исследование модели по п. 2.
- 5. Составить схему моделирования апериодического звена второго порядка, представленную на рис. 4.2.1.
- 6. Провести для данной модели исследование влияния коэффициентов K_1 и K_2 на устойчивость звена по частотным характеристикам bode и диаграмме Найквиста. Варьирование коэффициентов K_1 и K_2 представлено в табл. 4.3.1.

Таблица 4.3.1

тиолици 1.5		
Номер	Κ,	Ka
эксперимента	II.	112
1	5	10
2	10	5
3	10	100

- 7. Сделать выводы по полученным графикам, оценить устойчивость звена. Почему диаграммы Найквиста начинаются при $\omega = 0$ с точки с координатами [1,0]
- 8. Составить схему моделирования апериодического звена второго порядка, представленную на рис. 4.2.2, и выставить в блоках модели коэффициенты: K_1 =5, K_2 =10.
- 9. Провести исследования данной модели по частотным характеристикам bode и диаграмме Найквиста, используя перебор значений коэффициентов a_1 и a_2 согласно табл. 4.3.2.

Таблица 4.3.2

Номер эксперимента	a_1	a_2
1	-1	1
3	1	1
3	1	-0.5

Сделать выводы по полученным графикам, оценить устойчивость звена.

Ход работы

1. Создание модели, рис. 1.

Рисунок 1 – Схема моделирования апериодического звена первого порядка

2. Проведем исследование модели при коэффициенте a, равном 1, 0.5, -1. Получим график h(t), расположение корней на комплексной плоскости и $W(j\omega)$ – диаграмму Найквиста для разомкнутой системы. По полученным графикам, оценить устойчивость звена и определить для a=1 коэффициент передачи системы в замкнутом и разомкнутом состоянии.

Рисунок 2 – График h(t) для a=1

Рисунок 3 – Диаграмма Найквиста для a=1

Рисунок 4 — График расположение корней на комплексной плоскости для a=1

Рисунок 5 – График h(t) для a=0.5

Рисунок 6 — Диаграмма Найквиста для a=0.5

Рисунок 7 — График расположение корней на комплексной плоскости для a=

Рисунок $8 - \Gamma$ рафик h(t) для a = -1

Рисунок 9 – Диаграмма Найквиста для a=-1

Рисунок 10 — График расположение корней на комплексной плоскости для a=-1

По полученным графикам видно, что при a=1 и 0.5 звенья являются устойчивыми.

Коэффициент передачи системы в замкнутом и разомкнутом состоянии для a=1 соответственно равен:

- K=1 для разомкнутой;
- К=2 для замкнутой.
- 3. Составим схему моделирования интегро-дифференцирующего звена, при $c\,=\,10$

Рисунок 11 — Схема моделирования интегро-дифференцирующего звена, при c = 10

4. Проведем исследование модели по пункту 2.

Рисунок 12 – График h(t) для a=1

Рисунок 13 – Диаграмма Найквиста для a=1

Рисунок 14 — График расположение корней на комплексной плоскости для a=1

Рисунок 15 – График h(t) для a=0.5

Рисунок 16 – Диаграмма Найквиста для a=0.5

Рисунок 17 – График расположение корней на комплексной плоскости для a=0.5

Рисунок $18 - \Gamma$ рафик h(t) для a = -1

Рисунок 19 – Диаграмма Найквиста для a=-1

Рисунок 20 — График расположение корней на комплексной плоскости для a=-1

По полученным графикам видно, что при a=1 и 0.5 звенья являются устойчивыми.

Коэффициент передачи системы в замкнутом и разомкнутом состоянии для a=1 соответственно равен:

- K = 1 для разомкнутой;
- K = 10 для замкнутой.
- 5. Составим схему моделирования апериодического звена второго прядка.

Рисунок 21 — Схема моделирования апериодического звена второго прядка

6. Проведем для данной модели исследование влияния коэффициентов K1 и K2 на устойчивость звена по частотным характеристикам — bode и диаграмме Найквиста. Варьирование коэффициентов K1 и K2 представлено в табл. 4.3.1.

Рисунок $22 - \Gamma$ рафик bode при K1 = 5, K2 = 10

Рисунок 23 - Диаграмма Найквиста при <math>K1 = 5, K2 = 10

Рисунок $24 - \Gamma$ рафик bode при K1 = 10, K2 = 5

Рисунок 25 — Диаграмма Найквиста при $K1=10,\,K2=5$

Рисунок $26 - \Gamma$ рафик bode при K1 = 10, K2 = 100

Рисунок 27 - Диаграмма Найквиста при <math>K1 = 10, K2 = 100

- 7. Все звенья в данном случае являются устойчивыми.
- 8. Составим схему моделирования апериодического звена второго порядка, и выставить в блоках модели коэффициенты: K1=5, K2=10.

Рисунок 28 — Схема моделирования апериодического звена второго порядка

9. Проведем исследование данной модели по частотным характеристикам — bode и диаграмме Найквиста, используя перебор значений коэффициентов a1 и a2 согласно табл. 4.3.2.

10.

Рисунок $29 - \Gamma$ рафик bode при a1 = -1, a2 = 1

Рисунок 30 — Диаграмма Найквиста при a1 = -1, a2 = 1

Рисунок $31 - \Gamma$ рафик bode при a1 = 1, a2 = 1

Рисунок 32 - Диаграмма Найквиста при а<math>1 = 1, а2 = 1

Рисунок $33 - \Gamma$ рафик bode при a1 = 1, a2 = -0.5

Рисунок 34 - Диаграмма Найквиста при а1 = 1, а2 = -0.5

11. При параметрах a1 = 1, a2 = -0.5 звено является неустойчивым. В остальных случаях звенья устойчивы.

Вывод

В ходе выполнения лабораторной работы проведено исследование частотных характеристик типовых динамических звеньев первого и второго порядков.