Aziz HACHICHA

Edam CHAABEN 2 IDSD 1

Sherlock Holmes Deception
Detection Model

TF-IDF (Unigrammes)

$$ext{tfidf}(t,d) = \underbrace{rac{f_{t,d}}{\sum_{t'} f_{t',d}}}_{ ext{TF}} imes \underbrace{rac{N}{n_t}}_{ ext{IDF}}$$

Variables:

- $\circ \;\; f_{t,d}$ = fréquence du terme t dans le document d
- $\circ N$ = nombre total de documents
- $\circ \ \ n_t$ = nombre de documents contenant t

N-grams (Bigrammes)

$$\phi_{ ext{bigram}}(d) = (\mathbb{I}[(w_i, w_{i+1}) \in d])_{(w_i, w_{i+1}) \in \mathcal{V}^2}$$

Où :

- $\circ \mathcal{V}$ = vocabulaire
- \circ \mathbb{I} = fonction indicatrice

Modèle de Classification

Naïve Bayes Multinomial

$$\hat{y} = rg \max_{y \in \{0,1\}} P(y) \prod_{i=1}^{|\mathcal{F}|} P(f_i \mid y)^{x_i}$$

• Avec lissage Laplace ($\alpha=1$) :

$$P(f_i \mid y) = \frac{\operatorname{count}(f_i, y) + \alpha}{\sum_{f} (\operatorname{count}(f, y) + \alpha |\mathcal{F}|)}$$

Metrics:

	precision	recall	f1-score
0 1	0.76 0.94	0.95 0.73	0.84 0.82
accuracy macro avg weighted avg	0.85 0.85	0.84 0.83	0.83 0.83 0.83

$$\text{Pr\'{e}cision} = \frac{TP}{TP + FP} \qquad \text{Rappel} = \frac{TP}{TP + FN} \quad F_1 = 2 \times \frac{\text{Pr\'{e}cision} \times \text{Rappel}}{\text{Pr\'{e}cision} + \text{Rappel}}$$