SENAI DESENVOLVIMENTO DE SISTEMAS

Jean Lucas Pereira Silva, Iwin de Lima Borges, Silas Gabriel Pereira de Jesus, Raynan Silva de Carvalho, Catriel Farias Dias

TRANCA INTELIGENTE DE BICICLETA CONTROLADA POR APLICATIVO

Feira de Santana

2025

JEAN LUCAS

TRANCA INTELIGENTE DE BICICLETA CONTROLADA POR APLICATIVO

Projeto apresentado como parte dos requisitos para a conclusão da disciplina de INTERNET DAS COISAS sob orientação de Ivanildo Gomes da Silva, no curso de DESENVOLVIMENTO DE SISTEMAS, do SENAI.

Cidade

2025

RESUMO

Este documento apresenta o desenvolvimento de uma tranca inteligente de bicicleta, que utiliza sensores e um aplicativo móvel para proporcionar maior segurança e praticidade ao usuário. O sistema permite o travamento e destravamento remoto da bicicleta por meio de um aplicativo integrado ao Firebase Realtime Database. Além disso, um sensor ultrassônico monitora a presença de objetos próximos, e um alarme sonoro é acionado em caso de movimentações suspeitas. A proposta visa modernizar o sistema de segurança convencional de bicicletas, utilizando recursos eletrônicos acessíveis e conectividade em tempo real.

Palavras-chave: segurança, bicicleta, tranca inteligente, IoT, Firebase.

SUMÁRIO

-			-		
		m	2	rı	
_	u		a		u

1 INTRODUÇÃO	5
2 OBJETIVOS	5
3 FUNDAMENTAÇÃO TEÓRICA	5
4 MATERIAIS E MÉTODOS	5
5 RESULTADOS ESPERADOS	ϵ
6 CONSIDERAÇÕES FINAIS	ϵ
7 REFERÊNCIAS	6

1 INTRODUÇÃO

O aumento dos furtos de bicicletas em áreas urbanas exige soluções mais seguras e tecnológicas. Este projeto propõe uma tranca inteligente baseada em sensores e controle remoto via aplicativo, com comunicação em tempo real por meio do Firebase.

2 OBJETIVOS

2.1 Objetivo Geral

Desenvolver um sistema de tranca inteligente para bicicletas, controlado por aplicativo, que integre monitoramento de presença e alerta sonoro.

2.2 Objetivos Específicos

- Integrar sensor ultrassônico para detectar aproximação suspeita;
- Utilizar o Firebase Realtime Database para comunicação em tempo real;
- Acionar um buzzer em caso de tentativa de violação;
- Controlar a trava remotamente por meio de aplicativo.

3 FUNDAMENTAÇÃO TEÓRICA

A aplicação da Internet das Coisas (IoT) em sistemas de segurança permite o monitoramento e controle remoto de dispositivos. Tecnologias como sensores ultrassônicos e bancos de dados em nuvem, como o Firebase, têm sido amplamente utilizadas em projetos de automação e segurança.

4 MATERIAIS E MÉTODOS

4.1 Componentes Utilizados

- ESP32 (microcontrolador com Wi-Fi);
- Sensor Ultrassônico HC-SR04;
- Buzzer Piezoelétrico;
- Trava eletromecânica (solenoide ou motor);
- Firebase Realtime Database;
- Fonte de alimentação com bateria recarregável.

4.2 Arquitetura do Sistema

O sistema se comunica com o Firebase Realtime Database. O microcontrolador ESP32 recebe comandos do app e aciona a trava eletrônica. O sensor ultrassônico detecta presença próxima, e o buzzer é ativado caso uma movimentação seja registrada sem autorização.

5 RESULTADOS ESPERADOS

Espera-se que o sistema funcione de forma estável, permitindo o controle remoto da tranca, monitoramento de proximidade e emissão de alarme, proporcionando mais segurança ao usuário.

6 CONSIDERAÇÕES FINAIS

A tranca inteligente desenvolvida é uma alternativa viável e acessível para aumentar a segurança de bicicletas, integrando recursos modernos de automação e conectividade. Futuramente, pode-se integrar GPS e biometria ao sistema.

7 REFERÊNCIAS

G1 BAHIA. Ciclistas reclamam de insegurança em vias de Feira de Santana após série de assaltos. G1, 21 fev. 2023. Disponível em:

https://g1.globo.com/ba/bahia/noticia/2023/02/21/ciclistas-reclamam-de-inseguranca-em-vias-de-feira-de-santana-apos-serie-de-assaltos.ghtml. Acesso em: 09 maio 2025.

OPENAI. *ChatGPT* (versão GPT-4) [sistema de inteligência artificial]. Disponível em: https://chat.openai.com/. Acesso em: 9 maio 2025.

JENKO, Jakob; LIKAR, Gal; SMRKOLJ, Urh; ANDREJC, Ziga. *TapLock – A bike lock with machine learning*. Hackster.io, 28 maio 2021. Disponível em:

https://www.hackster.io/taplock/taplock-a-bike-lock-with-machine-learning-85641c. Acesso em: 9 maio 2025.

ESPRESSIF SYSTEMS. **ESP32 Series Datasheet (Version 4.9)**. Shanghai: Espressif Systems, 2025. Disponível em:

https://www.espressif.com/sites/default/files/documentation/esp32 datasheet en.pdf. Acesso em: 09 maio 2025.