INPUT: Formula F of the form $G_1 \wedge ... \wedge G_n$, where each G_i can be of the form:

• $t_1 \diamond t_2$. Possible forms of t_1, t_2 and \diamond are presented in the table:

t_1	t_2	♦
arithmetic term a	arithmetic term	$\{<,<,\leq,\geq,=,\neq\}$
record	record	$\{=, \neq\}$
record	symbolic constant	{≠}
record	arithmetic term	{≠}
variable	record	$\{=, \neq\}$
variable	symbolic constant	$\{<,<,\leq,\geq,=,\neq\}$
variable	arithmetic term	$\{<,<,\leq,\geq,=,\neq\}$

^afor definition of arithmetic term, see algorithms.pdf

• $t \in D$. Possible forms of t and D are presented in the table :

t	D
arithmetic term	n_1n_2 , $\{n_1,,n_k\}$, where $n_1,,n_k$ are numbers
non -arithmetic $variable^a$	$\{t_1,\ldots,t_n\}$, where all t_i are arbitrary ground terms.

 $[^]a {\rm for}$ definition of arithmetic variable, see algorithms.pdf

• $\neg(t \in D)$ the possible forms of t and D are the same as in $(t \in D)$.

OUTPUT: True if F is satisfiable and false otherwise.

BEGIN. $BODY := \mathbf{true}; \Pi_{prolog} := \emptyset$

For each G_i in $G_1 \wedge \ldots \wedge G_n$

1. G_i of the form $t_1 \diamond t_2$ or $\neg (t_1 \diamond t_2)$

 $BODY := BODY \wedge G_i$

- 2. G_i of the form $(t \in D)$
 - (a) **t** is an arithmetic term, and **D** is of the form n1..n2 $BODY := BODY \wedge t \ in \ n1..n2$
 - (b) **t** is an arbitrary term, **D** is of the form $\{t1, t2, ..., tn\}$ $\Pi_{prolog} := \Pi_{prolog} \cup set_d(X) : -member(X, [t1, t2, ..., tn]).^1$ $BODY := BODY \wedge set_d(t)$
- 3. G_i of the form $\neg(t \in D)$,
 - (a) **t** is an arithmetic term and D is of the form n1..n2 Let g_i is an unique label for G_i $\Pi_{prolog} := \Pi_{prolog} \cup g_i(t) : -n\# > n_2. \cup g_i(t) : -n\# < n_2.$ $BODY := BODY \wedge g_i(t)$
 - (b) **t** is an arbitrary term, **D** is of the form $\{t1, t2, ..., tn\}$ $\Pi_{prolog} := \Pi_{prolog} \cup set_d(X) : -member(X, [t1, t2, ..., tn]).^2$ $BODY := BODY \land \land + set_d(t)$

 $^{^1\}mathrm{if}$ t is arithmetic, we preprocess D and remove all non-numbers to avoid errors $^2\mathrm{same}$ as above

End for

```
Let V_1, \ldots V_n be all arithmetic variables in G_1, \ldots, G_n

BODY : -REORDER(BODY) \cap labeling([], [V_1, \ldots V_n]).

\Pi_{prolog} := \Pi_{prolog} \cap p : -BODY.

If the answer to query ?-p to program \Pi_{prolog} is 'yes', return true; else return false.
```

\mathbf{END}