Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

I - Matrices compagnons et endomorphismes cycliques

I.A -

- $\textbf{1.} \ \mathrm{Soit} \ M \in \mathscr{M}_n(\mathbb{K}). \ \chi_{M^T} \mathrm{det} \left(X I_n M^T \right) = \mathrm{det} \left(\left(X I_n M \right)^T \right) = \mathrm{det} \left(X I_n M \right) = \chi_M. \ \mathrm{Donc}, \ M \ \mathrm{et} \ M^T \ \mathrm{ont} \ \mathrm{même} \ \mathrm{spectre}.$
- 2. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Si M^T est diagonalisable, il existe $P \in GL_n(\mathbb{K})$ et $D \in \mathcal{D}_n(\mathbb{K})$ telles que $M^T = PDP^{-1}$. On sait que P est inversible si et seulement P^T est inversible et en transposant, on obtient $M = (P^T)^{-1} DP^T$. Donc, M est semblable à une matrice diagonale ou encore, M est diagonalisable. Réciproquement, en appliquant le résultat précédent à M^T , si M est diagonalisable, alors M^T est diagonalisable si et seulement si M est diagonalisable.

I.B - Matrices compagnons

$$\mathbf{3.} \ \chi_{C_Q} = \begin{vmatrix} X & 0 & \dots & 0 & \alpha_0 \\ -1 & X & 0 & \dots & 0 & \alpha_1 \\ 0 & -1 & \ddots & \ddots & \vdots & \alpha_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & -1 & X & \alpha_{n-2} \\ 0 & \dots & 0 & -1 & X + \alpha_{n-1} \end{vmatrix} .$$
 En développant suivant la dernière colonne, on obtient
$$\chi_{C_Q} = (X + \alpha_{n-1}) X^{n-1} + \sum_{k=0}^{n-2} (-1)^{k+n+1} \alpha_k \Delta_k = X^n + \alpha_{n-1} X^{n-1} + \sum_{k=0}^{n-2} (-1)^{k+n+1} \alpha_k \Delta_k$$

où Δ_k est un déterminant diagonal par blocs : $\Delta_k = \det \begin{pmatrix} A_k & \times \\ 0_{k,n-1-k} & B_k \end{pmatrix} = \det (A_k) \det (B_k)$ avec $A_k \in \mathscr{M}_k(\mathbb{K})$ et $B_k \in \mathscr{M}_{n-1-k}(\mathbb{K})$. $\det (A_k)$ est un déterminant triangulaire inférieur de format k dont les coefficients diagonaux sont tous égaux à X et donc $\det (A_k) = X^k$. $\det (B_k)$ est un déterminant triangulaire supérieur de format n-1-k dont les coefficients diagonaux sont tous égaux à -1 et donc $\det (B_k) = (-1)^{n-1-k}$. Finalement,

$$\begin{split} \chi_{C_Q} &= X^n + a_{n-1} X^{n-1} + \sum_{k=0}^{n-2} (-1)^{k+n+1} (-1)^{n-1-k} a_k X^k = X^n + a_{n-1} X^{n-1} + \sum_{k=0}^{n-2} a_k X^k \\ &= X^n + \sum_{k=0}^{n-1} a_k X^k = Q. \end{split}$$

4. Soit λ une valeur propre de C_Q^T . La matrice $A - \lambda C_Q^T$ n'est pas inversible et donc de rang au plus n-1. Mais la matrice extraite constituée des n-1 premières lignes et n-1 dernières colonnes de la matrice $A - \lambda C_Q^T$ est inversible, car triangulaire inférieure à coefficients diagonaux tous égaux à -1. Donc, $A - \lambda C_Q^T$ est une matrice de rang n-1. D'après le théorème du rang, dim $(\operatorname{Ker}(A - \lambda I_n)) = 1$. Donc, $E_{\lambda}\left(C_Q^T\right)$ est une droite vectorielle.

Soit
$$X = (x_k)_{1 \le k \le n} \in \mathcal{M}_n(\mathbb{K})$$
.

$$\begin{split} X \in E_{\lambda}\left(C_{Q}^{\mathsf{T}}\right) \Leftrightarrow C_{Q}^{\mathsf{T}}X &= \lambda X \Leftrightarrow \left\{ \begin{array}{l} x_{2} = \lambda x_{1} \\ x_{3} = \lambda x_{2} \\ \vdots \\ x_{n} = \lambda x_{n-1} \\ -\alpha_{0}x_{1} - \alpha_{1}x_{2} - \ldots - \alpha_{n-1}x_{n} = \lambda x_{n} \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} x_{2} = \lambda x_{1} \\ x_{3} = \lambda^{2}x_{1} \\ \vdots \\ x_{n} = \lambda^{n-1}x_{1} \\ -\alpha_{0}x_{1} - \alpha_{1}\lambda x_{1} - \ldots - \alpha_{n-1}\lambda^{n-1}x_{1} = \lambda^{n}x_{1} \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} x_{2} = \lambda x_{1} \\ x_{3} = \lambda^{2}x_{1} \\ \vdots \\ x_{n} = \lambda^{n-1}x_{1} \\ Q(\lambda)x_{1} = 0 \end{array} \right. \end{split}$$

 $\mathrm{Maintenant},\ Q(\lambda)=\chi_{C_{\mathrm{O}}^{\mathsf{T}}}(\lambda)=0\ \mathrm{et\ donc}\ X\in\mathsf{E}_{\lambda}\left(C_{Q}^{\mathsf{T}}\right)\Leftrightarrow\forall k\in[\![2,n]\!],\ \chi_{k}=\lambda^{k-1}\chi_{1}.\ \mathrm{Donc},$

$$\mathsf{E}_{\lambda}\left(\mathsf{C}_{Q}^{\mathsf{T}}\right) = \mathrm{Vect}\left(\mathsf{u}_{\lambda}\right) \text{ où } \mathsf{u}_{\lambda} = \left(\begin{array}{c} 1 \\ \lambda \\ \lambda^{2} \\ \vdots \\ \lambda^{n-1} \end{array}\right).$$

I.C - Endomorphismes cycliques

5. Supposons f cyclique. Il existe un vecteur $x_0 \in E$ tel que $\mathscr{B} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E (en particulier, $\dim(E) = n$). Le vecteur $f(f^{n-1}(x_0)) = f^n(x_0)$ s'écrit dans la base \mathscr{B} sous la forme

$$f^{n}(x_{0}) = -a_{0}x_{0} - a_{1}f(x_{0}) - \dots - a_{n-1}f^{n-1}(x_{0}).$$

La matrice de f dans la base \mathscr{B} est C_O .

Réciproquement, supposons qu'il existe une base $\mathscr{B}=(e_1,\ldots,e_n)$ de E dans laquelle la matrice de f est C_Q . Alors, $e_2=f(e_1),e_3=f(e_2),\ldots,e_n=f(e_{n-1})$ puis $e_2=f(e_1),e_3=f^2(e_1),\ldots,e_n=f^{n-1}(e_1)$. Mais alors, $\left(e_1,f(e_1),\ldots,f^{n-1}(e_1)\right)=\left(e_1,\ldots,e_n\right)$ est une base de E et donc f est cyclique.

En résumé, f est cyclique si et seulement si il existe une base de E dans laquelle la matrice de f est une matrice compagnon.

6. Soit f un endomorphisme cyclique. Si χ_f est scindé sur \mathbb{K} à racines simples, on sait que f est diagonalisable.

Réciproquement, supposons f diagonalisable. Alors, C_Q est diagonalisable puis C_Q^T est diagonalisable.

Nécessairement, $\chi_f = \chi_{C_Q^T} = \chi_{C_Q} = Q$ est scindé sur \mathbb{K} et l'ordre de multiplicité de chaque valeur propre de C_Q^T est égale à la dimension du sous-espace propre correspondant. D'après la question 4, les sous-espaces propres sont des droites vectorielles et donc chaque valeur propre est simple.

En résumé, f est diagonalisable si et seulement si Q est scindé sur \mathbb{K} à racines simples.

7. Soit f un endomorphisme cyclique. Soit $x_0 \in E$ tel que $\mathscr{B} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E.

Soit $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{K}^n$ tel que $\alpha_0 \operatorname{Id}_E + \alpha_1 f + \ldots + \alpha_{n-1} f^{n-1} = 0$. En évaluant en x_0 , on obtient $\alpha_0 x_0 + \alpha_1 f(x_0) + \ldots + \alpha_{n-1} f^{n-1}(x_0) = 0$ puis $\alpha_0 = \alpha_1 = \ldots = \alpha_{n-1} = 0$ car la famille $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ est libre. Ceci montre que la famille $(\operatorname{Id}_E, f, f^2, \ldots, f^{n-1})$ est libre.

Dit autrement, il n'existe pas de polynôme non nul de degré inférieur ou égal à n-1 et annulateur de f. Donc, π_f est de degré supérieur ou égal à n. Mais d'autre part, d'après le théorème de CAYLEY-HAMILTON, π_f divise χ_f et en particulier, π_f est de degré inférieur ou égal à n. Finalement, π_f est de degré n exactement. Plus précisément, puisque π_f divise χ_f , que π_f et χ_f ont même degré et sont unitaires, on a $\pi_f = \chi_f = Q$.

I.D - Application à une démonstration du théorème de CAYLEY-HAMILTON

8. Soit f un endomorphisme quelconque de E. Soit $x \in E \setminus \{0\}$. Soit $\mathscr{E} = \{k \in \mathbb{N}^* / (x, f(x), ..., f^{k-1}(x)) \text{ libre}\}$. \mathscr{E} est une partie non vide de \mathbb{N} car contient 1 (car $x \neq 0$), et majorée car le cardinal d'une famille libre est inférieur ou égal à la dimension \mathfrak{n} de E. \mathscr{E} admet donc un plus grand élément $\mathfrak{p} \in \mathbb{N}^*$.

Par définition de p, la famille $(x, f(x), \ldots, f^{p-1}(x))$ est libre et la famille $(x, f(x), \ldots, f^{p-1}(x), f^p(x))$ est liée. On sait alors que $f^p(x) \in \text{Vect}\left(x, f(x), \ldots, f^{p-1}(x)\right)$ et donc il existe $(\alpha_0, \ldots, \alpha_{p-1}) \in \mathbb{K}^p$ tel que $f^p(x) = -\alpha_0x - \alpha_1f(x) - \ldots - \alpha_{p-1}f^{p-1}(x)$ ou encore $\alpha_0x + \alpha_1f(x) + \ldots + \alpha_{p-1}f^{p-1}(x) + f^p(x) = 0$.

$$\begin{split} f\left(\operatorname{Vect}\left(x,f(x),\ldots,f^{p-1}x\right)\right) &= \operatorname{Vect}\left(f(x),f^2(x),\ldots,f^{p-1}(x),f^p(x)\right) \\ &= \operatorname{Vect}\left(f(x),f^2(x),\ldots,f^{p-1}(x),-\alpha_0x-\alpha_1f(x)-\ldots-\alpha_{p-1}f^{p-1}(x)\right) \\ &\subset \operatorname{Vect}\left(x,f(x),\ldots,f^{p-1}(x)\right). \end{split}$$

Donc, $F = \text{Vect}(x, f(x), \dots, f^{p-1}x)$ est stable par f.

10. Notons f' l'endomorphisme de F induit par f et notons $\mathscr{B}' = \mathrm{Vect}\left(x, f(x), \ldots, f^{p-1}(x)\right)$. \mathscr{B}' est une base de F (car génératrice de F et libre). On sait que le polynôme caractéristique de f' divise le polynôme caractéristique de f. La matrice de f' dans \mathscr{B}' est la matrice compagnon associée au polynôme $X^p + \alpha_{p-1}X^{p-1} + \ldots + \alpha_1X + \alpha_0$. Donc, $\chi_{f'} = X^p + \alpha_{p-1}X^{p-1} + \ldots + \alpha_1X + \alpha_0$. Mais alors, $X^p + \alpha_{p-1}X^{p-1} + \ldots + \alpha_1X + \alpha_0$ divise χ_f .

11. Soit x un vecteur non nul. Soit $Q = X^p + \alpha_{p-1}X^{p-1} + \ldots + \alpha_1X + \alpha_0$ associé à x comme à la question précédente. Il existe un polynôme R tel que $\chi_f = R \times Q$ puis $\chi_f(f) = R(f) \circ Q(f)$. En évaluant en x, on obtient

$$\chi_f(f)(x) = R(f)(Q(f)(x)) = R(f)(0) = 0.$$

Ainsi, pour tout vecteur non nul x, $\chi_f(f)(x) = 0$ et donc $\chi_f(f) = 0$.

II - Etude des endomorphismes cycliques

II.A - Endomorphismes cycliques nilpotents

12. On sait que $r \leq n$ (conséquence du théorème de CAYLEY-HAMILTON).

Supposons f cyclique. Il existe $x_0 \in E$ tel que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E. On ne peut avoir $f^{n-1}(x_0) = 0$ et donc n-1 < r ou encore $n \le r$. Par suite, r = n.

Supposons que f est nilpotent d'indice n ou encore supposons que $f^{n-1} \neq 0$ et $f^n = 0$. Soit $x_0 \in E$ tel que $f^{n-1}(x_0) \neq 0$. Supposons par l'absurde qu'il existe $(\alpha_0, \alpha_1, \ldots, \alpha_{p-1}) \neq (0, 0, \ldots, 0)$ tel que $\alpha_0 x_0 + \alpha_1 f(x_0) + \ldots + \alpha_{n-1} f^{n-1}(x_0) = 0$. Soit k le plus petit des entiers $i \in [0, n-1]$ tel que $\alpha_i \neq 0$. Par définition de k, on a $\alpha_k f^k(x_0) + \ldots + \alpha_{n-1} f^{n-1}(x_0) = 0$. En prenant l'image des deux membres par f^{n-1-k} , on obtient

$$0=\alpha_k f^{n-1}\left(x_0\right)+\alpha_{k+1} f^n\left(x_0\right)+\ldots+\alpha_{n-1} f^{2n-1-k}\left(x_0\right)=\alpha_k f^{n-1}\left(x_0\right)$$

car pour $i \ge n$, $f^i = 0$. Ceci est absurde car $\alpha_k \ne 0$ et $f^{n-1}(x_0) \ne 0$. Ceci montre que la famille $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ est libre. Puisque card $(x_0, f(x_0), \ldots, f^{n-1}(x_0)) = n = \dim(E) < +\infty$, $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ est une base de E et donc f est cylique.

On a montré qu'un endomorphisme nilpotent d'indice $r \in [1, n]$ est cyclique si et seulement si r = n. Immédiatement, la

II.B -

13. Les polynômes $(X - \lambda_k)^{m_k}$, $k \in [1, p]$, sont deux à deux premiers entre eux. D'après le théorème de décomposition des noyaux,

$$E = \bigoplus_{k=1}^{p} \operatorname{Ker} \left((f - \lambda_{k})^{m_{k}} \right) = \bigoplus_{k=1}^{p} F_{k}.$$

Soit $k \in [1,p]$. Deux polynômes en f commutent et en particulier f et $(f-\lambda_k)^{m_k}$ commutent. On sait alors que $\operatorname{Ker}\left((f-\lambda_k)^{m_k}\right) = F_k$ est stable par f.

14. F_k est encore stable par $f - \lambda_k Id_E$ et donc ϕ_k est un endomorphisme de F_k . Par définition de F_k , pour tout $x \in F_k$,

$$\phi_k^{\mathfrak{m}_k}(x) = \left(f - \lambda_k Id_{F_k}\right)^{\mathfrak{m}_k}(x) = 0$$

et donc φ_k est nilpotent d'indice inférieur ou égal à m_k .

- 15. On sait que l'indice de nilpotence d'un endomorphisme nilpotent est inférieur ou égal à la dimension de l'espace (conséquence du théorème de Cayley-Hamilton) et donc $\nu_k \leq \dim(F_k)$.
- 16. Par hypothèse, la famille $(Id_E, f, ..., f^{n-1})$ est libre et donc, il n'existe pas de polynôme non nul de degré strictement inférieur à n et annulateur de f.

Soit $k \in [1,p]$. On a déjà $v_k \leq m_k$. Supposons par l'absurde que $v_k < m_k$. Vérifions que $F_k = \mathrm{Ker}\left((f - \lambda_k \mathrm{Id}_E)^{v_k}\right)$. Déjà, puisque $v_k \leq m_k$, pour $x \in E$,

$$x\in\mathrm{Ker}\left(\left(f-\lambda_{k}\mathrm{Id}_{E}\right)^{\nu_{k}}\right)\Rightarrow\left(f-\lambda_{k}\mathrm{Id}_{E}\right)^{\nu_{k}}\left(x\right)=0\Rightarrow f^{m_{k}-\nu_{k}}\left(\left(f-\lambda_{k}\mathrm{Id}_{E}\right)^{\nu_{k}}\left(x\right)\right)=0\Rightarrow x\in\mathrm{Ker}\left(\left(f-\lambda_{k}\mathrm{Id}_{E}\right)^{m_{k}}\right)$$

et donc $\operatorname{Ker}\left(\left(f-\lambda_{k} Id_{E}\right)^{\nu_{k}}\right) \subset F_{k}.$ D'autre part, par définition de $\nu_{k},$ pour $x \in E,$

$$x \in F_k \Rightarrow (f - \lambda_k Id_F)^{\nu_k} (x) = 0$$

et donc $F_k \subset \operatorname{Ker} ((f - \lambda_k \operatorname{Id}_E)^{\nu_k})$. Finalement, $F_k = \operatorname{Ker} ((f - \lambda_k \operatorname{Id}_E)^{\nu_k})$.

Soit $P=(X-\lambda_k)^{\nu_k}\times\prod_{i\neq k}\left(X-\lambda_i\right)^{m_i}.$ P est un polynôme de degré

$$\nu_k + \sum_{i \neq k} m_i < m_k + \sum_{i \neq k} m_i = n.$$

 $\text{V\'erifions que P est annulateur de f. Pour } i \in [\![1,p]\!], \text{ posons } \mathfrak{m}_i' = \left\{ \begin{array}{l} \mathfrak{m}_i \text{ si } i \neq k \\ \nu_k \text{ si } i = k \end{array} \right. \text{ Soient } i \in [\![1,p]\!] \text{ puis } x \in F_i = \{ \begin{array}{l} \mathfrak{m}_i \text{ si } i \neq k \\ \nu_k \text{ si } i = k \end{array} \right.$ $\operatorname{Ker}\left(\left(f-\lambda_{i}\operatorname{Id}_{e}\right)^{\mathfrak{m}_{i}^{\prime}}\right)$. Puisque des polynômes en f commutent,

$$P(f)(x) = \prod_{i \neq k} \left(f - \lambda_i Id_E \right)^{\mathfrak{m}_i'} \left(\left(f - \lambda_i Id_E \right)^{\mathfrak{m}_k'}(x) \right) = 0.$$

L'endomorphisme P(f) s'annule donc sur les sous-espaces supplémentaires F_1, \ldots, F_p . On en déduit que P(f) = 0. Mais ceci est impossible car P(f) est un polynôme non nul de degré strictement inférieur à n. Donc, $v_k = m_k$.

17. Pour tout $k \in [1, p]$, $\dim(F_k) \geqslant v_k = m_k$. S'il existe $k \in [1, p]$ tel que $\dim(F_k) > m_k$, alors

$$n=\sum_{i=1}^p\dim\left(F_i\right)>\sum_{i=1}^pm_i=n.$$

Ceci est impossible et donc : $\forall k \in [1, p], \dim(F_k) = m_k$.

Dans une base quelconque adaptée à la décomposition $E = \bigoplus_{i=1}^r F_i$, la matrice de f est diagonale par blocs de la forme

$$\begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A_p \end{pmatrix} \text{ où, pour tout } k \in \llbracket 1,p \rrbracket, \, A_k \text{ est une matrice carr\'ee de format } \dim (F_k) = \mathfrak{m}_k.$$

Soit $k \in [1, p]$. φ_k est nilpotent d'indice $\mathfrak{m}_k = \dim(F_k)$. D'après la question 12, il existe une base \mathscr{B}_k de F_k dans laquelle

$$F_k \text{ induit par f est} \begin{pmatrix} \lambda_k & \ddots & \ddots & \ddots & \vdots \\ 1 & \lambda_k & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & 0 & 1 & \lambda_k \end{pmatrix} \in \mathcal{M}_{\mathfrak{m}_k}(\mathbb{C}). \text{ La concaténation des bases } \mathcal{B}_1, \, \dots, \, \mathcal{B}_p \text{ fournit une base}$$

18. D'après le théorème de Cayley-Hamilton, $\chi_f(f) = 0$ et en particulier, $\chi_f(f)(x_0) = 0$. Mais alors, tout multiple Q de χ_f est un polynôme tel que $Q(f)(x_0) = 0$.

Réciproquement, montrons que si $Q(f)(x_0) = 0$, alors Q est un multiple de χ_f . Soit donc Q un polynôme tel que $Q(f)(x_0) = 0$. Dans ce qui suit, la somme $m_1 + \ldots + m_{k-1}$ est par convention nulle quand k = 1. On a

$$Q(f)\left(x_{0}\right) = \sum_{k=1}^{p} Q(f)\left(u_{m_{1}+...+m_{k-1}+1}\right).$$

Pour tout $k \in [\![1,p]\!]$, F_k est stable par f puis par tout polynôme en f. Par suite, pour tout $k \in [\![1,p]\!]$, $Q(f)(u_{m_1+\ldots+m_{k-1}+1}) \in F_k$. Puisque les sous-espaces F_1,\ldots,F_p , sont supplémentaires, on en déduit que

$$Q(f)(x_0) 0 \Rightarrow \forall k \in [1, p], \sum_{k=1}^{p} Q(f)(u_{m_1 + \dots + m_{k-1} + 1}) = 0.$$

Soit $k \in [\![1,p]\!]$. On sait que la formule de Taylor fournit le reste de la division euclidienne de Q par $(X-\lambda_k)^{\mathfrak{m}_k}$:

$$Q = \sum_{i=0}^{m_k-1} \frac{Q^{(i)}(\lambda_k)}{i!} (X - \lambda_k)^i + (X - \lambda_k)^{m_k} \times Q_1$$

où Q_1 est un polynôme et $R = \sum_{i=0}^{m_k-1} \frac{Q^{(i)}(\lambda_k)}{i!} (X - \lambda_k)^i$ est de degré strictement inférieur à m_k . En évaluant en $u_{m_1+\ldots+m_{k-1}+1}$, on obtient

$$\begin{split} 0 &= \sum_{i=0}^{m_k-1} \frac{Q^{(i)}\left(\lambda_k\right)}{i!} \left(f - \lambda_k I d_E\right)^i \left(u_{m_1+\ldots+m_{k-1}+1}\right) \\ &= \sum_{i=0}^{m_k-1} \frac{Q^{(i)}\left(\lambda_k\right)}{i!} u_{m_1+\ldots+m_{k-1}+1+i} \left(\operatorname{par d\'efinition de la base} \mathscr{B}\right). \end{split}$$

Puisque la famille $(\mathfrak{u}_{\mathfrak{m}_1+\ldots+\mathfrak{m}_{k-1}+1+i})_{0\leqslant i\leqslant \mathfrak{m}_k-1}$ est une base de F_k , on en déduit que $Q(\lambda_k)=Q'(\lambda_k)=\ldots=Q^{(\mathfrak{m}_k-1)}(\lambda_k)=0$ et donc que λ_k est racine d'ordre au moins \mathfrak{m}_k de Q.

Ainsi, Q est divisible par chaque $(X - \lambda_k)^{m_k}$, $1 \le k \le p$. Ces polynômes étant deux à deux premiers entre eux, Q est divisible par $\prod_{k=1}^p (X - \lambda_k)^{m_k} = \chi_f$.

On a montré que l'ensemble des polynômes Q tels que $Q(f)(x_0) = 0$ est $\chi_f \mathbb{C}[X]$.

19. Il n'existe donc pas de polynôme Q non nul, de degré inférieur ou égal à n-1, tel que $Q(f)(x_0)=0$. Ceci montre que la famille $(x_0,\ldots,f^{n-1}(x_0))$ est libre, de cardinal $n=\dim(E)<+\infty$ et donc que la famille $(x_0,\ldots,f^{n-1}(x_0))$ base de E. On en déduit que f est cyclique.

III - Endomorphismes commutants, décomposition de Frobenius

20. $0 \in C(f)$ et si $(g,h) \in (C(f))^2$ et $(\alpha,\beta) \in \mathbb{C}^2$, alors

$$f \circ (\alpha g + \beta h) = \alpha f \circ g + \beta f \circ h = \alpha g \circ f + \beta h \circ f = (\alpha g + \beta h) \circ f$$

puis $\alpha g + \beta h \in C(f)$. Ainsi, C(f) est un sous-espace vectoriel de $(\mathcal{L}(E), +, .)$. Ensuite, si $(g, h) \in (C(f))^2$,

$$f \circ (g \circ h) = f \circ g \circ h = g \circ f \circ h = g \circ h \circ f = (g \circ h) \circ f$$

puis $g \circ h \in C(f)$. Enfin, $Id_E \in C(f)$ et finalement C(f) est un sous-algèbre de $(\mathcal{L}(E), +, \cdot, \cdot, \circ)$.

III.A - Commutant d'un endomorphisme cyclique

21. Puisque la famille $\left(x_0,f\left(x_0\right),\ldots,f^{n-1}\left(x_0\right)\right)$ est une base de E, il existe $(\lambda_0,\ldots,\lambda_{n-1})\in\mathbb{K}^n$ tel que $g\left(x_0\right)=\sum_{k=0}^{n-1}\lambda_kf^k\left(x_0\right).$

22. Pour tout $i \in [0, n-1]$,

$$g\left(f^{i}\left(x_{0}\right)\right) = \sum_{k=0}^{n-1} \lambda_{k} f^{k+i}\left(x_{0}\right) = \left(\sum_{k=0}^{n-1} \lambda_{k} f^{k}\right) \left(f^{i}\left(x_{0}\right)\right).$$

Les deux endomorphismes g et $\sum_{k=0}^{n-1} \lambda_k f^k$ coïncident sur une base de E et donc, $g = \sum_{k=0}^{n-1} \lambda_k f^k \in \mathbb{K}[f]$.

23. Supposons $g \in C(f)$. D'après les deux questions précédentes, il existe un polynôme P de degré inférieur ou égal à n-1tel que g = R(f). Inversement, si g est un polynôme en f, alors $g \in C(f)$. Donc, $C(f) = \mathbb{K}_{n-1}[f]$.

III.B - Décomposition de Frobenius

 $\textbf{24.} \ \mathrm{Si} \ \mathrm{l'un} \ \mathrm{des} \ \mathrm{sous\text{-}espaces} \ F_i, \ 1 \leqslant i \leqslant r, \ \mathrm{contient} \ \mathrm{chacun} \ \mathrm{des} \ \mathrm{sous\text{-}espaces} \ F_1, \ldots, \ F_r, \ \mathrm{alors} \ \bigcup_{k=1}^r F_k = F_i \ \mathrm{est} \ \mathrm{un} \ \mathrm{sous\text{-}espace}$ de E.

 $\text{Montrons par récurrence que pour tout } r \in \mathbb{N}^*, \text{ si } F_1, \ldots, F_r, \text{ sont } r \text{ sous-espaces de E tels que } \bigcup_{r=1}^r F_k \text{ soit un sous-espac$ de E, alors l'un de ces sous-espaces contient tous les autres.

- Le résultat est vrai quand r = 1.
- $\bullet \ \text{Soit} \ r \geqslant 1. \ \text{Supposons le résultat pour r. Soient} \ F_1, \ \dots, \ F_r, \ F_{r+1} \ r+1 \ \text{sous-espaces de E tels que} \ \bigcup_{k=1}^r F_k \ \text{soit}$ un sous-espace de E. Posons $F = \bigcup_{k=1}^r F_k$

Si F_{r+1} contient F, F_{r+1} contient chacun des autres sous-espaces et c'est fini. Si F contient F_{r+1} , alors $F = \bigcup_{k=1}^{r+1} F_k = \bigcup_{k=1}^{r+1} F_k$

est un sous-espace de E. Par hypothèse de récurrence, l'un des $F_i,\,1\leqslant i\leqslant r,$ contient tous les autres. Montrons maintenant qu'il n'est pas possible que $F \not\subset F_{r+1}$ et $F_{r+1} \not\subset F$. Supposons le contraire par l'absurde. Donc, il existe un vecteur $x \in F_{r+1}$ qui n'est pas dans F et il existe un vecteur y de F qui n'est pas dans F_{r+1} . Pour tout $\lambda \in \mathbb{K}$, $y - \lambda x$ est dans $F \cup F_{r+1}$ (car $F \cup F_{r+1}$ est un sous-espace de E). Si $y - \lambda x$ est dans F_{r+1} , alors $y = (y - \lambda x) + \lambda x$ est dans F_{r+1} ce qui n'est pas. Donc, pour tout $\lambda \in \mathbb{K}$, $y - \lambda x$ est dans F. Ainsi, pour chaque $\lambda \in \mathbb{K}$, il existe $i(\lambda) \in [1, r]$ tel que $y - \lambda x \in F_{i(\lambda)}$.

S'il existe $\lambda \neq \mu$ tel que $\mathfrak{i}(\lambda) = \mathfrak{i}(\mu)$, alors $x = \frac{1}{\mu - \lambda} \left((y - \lambda x) - (y - \mu x) \right) \in \mathsf{F}_{\mathfrak{i}(\lambda)} \subset \mathsf{F}$ ce qui n'est pas. Donc, pour $\lambda \neq \mu$, on a $\mathfrak{i}(\lambda) \neq \mathfrak{i}(\mu)$. Mais ceci est impossible car $\mathbb K$ est infini et l'ensemble des indices \mathfrak{i} est fini.

Le résultat est démontré par récurrence.

25. Soit $x \in E \setminus \{0\}$. Vérifions que $I_x = \{Q \in \mathbb{C}[X]/Q(f)(x) = 0\}$ est un idéal de $\mathbb{C}[X]$.

- $\begin{array}{l} \bullet \ \mathrm{Soit} \ (Q_1,Q_2) \in I^2. \ (Q_1-Q_2) \, (f)(x) = Q_1(f) \, (x) Q_2(f)(x) = 0. \ \mathrm{Donc}, \ Q_1-Q_2 \in I_x. \\ \bullet \ \mathrm{Soit} \ (P,Q) \in \mathbb{C}[X] \times I. \ (P \times Q)(f)(x) = P(f) \circ Q(f)(x) = P(f)(Q(f)(x)) = P(f)(0) = 0 \ \mathrm{et} \ \mathrm{donc} \ P \times Q \in I_x. \end{array}$

Ceci montre que I_x est un idéal de $\mathbb{C}[X]$. De plus, $\pi_f(f) = 0$ et en particulier, $\pi_f \in I_x$. Donc, I_x est un idéal de $\mathbb{C}[X]$ non réduit à $\{0\}$. Puisque $(\mathbb{C}[X], +, \times)$ est anneau principal, on sait alors que I_x est constitué des multiples d'un certain polynôme unitaire $\pi_{f,x}$. De plus, $\pi_{f,x}$ est un diviseur unitaire de π_f .

Chaque $\operatorname{Ker}(\pi_{f,x}(f)), x \in E \setminus \{0\}$, contient x (et 0) et donc $\bigcup \operatorname{Ker}(\pi_{f,x}(f)) = E$. Les diviseurs unitaires de π_f sont en

nombre fini et donc E est la réunion d'un nombre fini de sous-espaces $\operatorname{Ker}(\pi_{f,x}(f))$. D'après la question précédente, E est l'un de ces sous-espaces et donc, il existe $x_1 \in E$ tel que $E = Ker(\pi_{f,x_1}(f))$. Ceci signifie que $\pi_{f,x_1}(f) = \emptyset$ et donc que $\pi_{f,x_1}(f) = \emptyset$ est un multiple de π_f . Puisque π_{f,x_1} est aussi un diviseur unitaire de π_f , on en déduit que $\pi_{f,x_1}=\pi_f$. Ainsi, $I_{x_1}=\pi_f\mathbb{K}[X]$.

On en déduit qu'il n'existe pas de polynôme non nul Q de degré inférieur ou égal à d-1 tel que $Q(f)(x_1)=0$. Ceci signifie que la famille $(x_1, f(x_1), \dots, f^{d-1}(x_1))$ est libre.

26. L'égalité $\pi_f(x_1) = \pi_{f,x_1}(f)(x_1) = 0$ montre que $f^d(x_1) \in \text{Vect}(x_1, f(x_1), \dots, f^{d-1}(x_1))$. Donc,

$$f\left(E_{1}\right)=\operatorname{Vect}\left(f\left(x_{1}\right),f^{2}\left(x_{1}\right),\ldots,f^{d-1}\left(x_{1}\right),f^{d}\left(x_{1}\right)\right)\subset\operatorname{Vect}\left(x_{1},f\left(x_{1}\right),\ldots,f^{d-1}\left(x_{1}\right)\right)=E_{1}.$$

$$\begin{split} E_1 \ \mathrm{est} \ \mathrm{stable} \ \mathrm{par} \ f. \ \mathrm{Ensuite}, \ E_1 \ = \ \mathrm{Vect} \left(x_1, f \left(x_1 \right), \ldots, f^{d-1} \left(x_1 \right) \right) \\ = \{ P(f) \left(x_1 \right), \ P \in \mathbb{K}_{d-1}[X] \} \subset \{ P(f) \left(x_1 \right), \ P \in \mathbb{K}[X] \}. \end{split}$$
 Inversement, si $P \in \mathbb{K}[X]$, la division euclidienne de P par π_{f, x_1} fournit deux polynômes $Q \in \mathbb{K}[X]$ et $R \in \mathbb{K}_{d-1}[X]$ tel que $P = Q \chi_{f, x_1} + R$. Mais alors $P(f) \left(x_1 \right) = Q(f) \left(\pi_{f, x_1}(f) \left(x_1 \right) \right) + R(f) \left(x_1 \right) = R \left(x_1 \right) \in E_1$. Finalement, $E_1 = \{ P(f) \left(x_1 \right), \ P \in \mathbb{K}[X] \}. \end{split}$

- 27. Par définition de E_1 et ψ_1 , $(x_1, \psi_1(x_1), \dots, \psi_1^{d-1}(x_1))$ est une base de E_1 et donc ψ_1 est cyclique.
- **28.** $F = \bigcap_{i \in \mathbb{N}} \operatorname{Ker} \left(\Phi \circ f^i \right)$ est un sous-espace de E. Soit $x \in F$. Pour tout $i \in \mathbb{N}$, $\Phi \left(f^i(f(x)) \right) = \Phi \left(f^{i+1}(x) \right) = 0$ et donc $f(x) \in F$. Ainsi, F est stable par f.

Soit $x \in E_1 \cap F$. Posons $x = a_0x_1 + a_1f(x_1) + \ldots + a_{d-1}f^{d-1}(x_1) = a_0e_1 + a_1e_2 + \ldots + a_{d-1}e_d$. Les égalités $\Phi(x) = 0$, $\Phi(f(x)) = 0$, ..., $\Phi(f^{d-1}(x)) = 0$, fournissent successivement $a_{d-1} = 0$ puis $a_{d-2} = 0$ puis ... puis $a_0 = 0$ et donc x = 0. Donc, $E_1 \cap F = \{0\}$ ou encore, la somme $E_1 + F$ est directe.

 $\textbf{29.}\ \psi \in \mathscr{L}\left(E,\mathbb{K}^d\right).\ \mathrm{Soit}\ x \in E_1 \cap \mathrm{Ker}(\Phi).\ \mathrm{Comme}\ \grave{\mathrm{a}}\ \mathrm{la}\ \mathrm{question}\ \mathrm{pr\'ec\'edente},\ x\ s\'{\mathrm{e}\mathrm{crit}}\ \mathrm{sous}\ \mathrm{la}\ \mathrm{forme}\ x = a_0x_1 + a_1f\left(x_1\right) + \ldots + a_{d-1}f^{d-1}\left(x_1\right)\ \mathrm{et}\ \mathrm{les}\ \acute{\mathrm{e}\mathrm{galit\'es}}\ \Phi(x) = 0,\ \Phi(f(x)) = 0,\ \ldots,\ \Phi\left(f^{d-1}(x)\right) = 0,\ \mathrm{fournissent}\ \mathrm{successivement}\ a_{d-1} = 0\ \mathrm{puis}\ a_{d-2} = 0\ \mathrm{puis}\ \ldots\mathrm{puis}\ a_0 = 0\ \mathrm{et}\ \mathrm{donc}\ x = 0.\ \mathrm{Donc}\ \mathrm{Ker}\left(\Psi_{/E_1}\right) = \{0\}.$

De plus, $\dim (E_1) = d = \dim (\mathbb{K}^d) < +\infty$ et donc $\psi_{/E_1}$ est un isomorphisme de E_1 sur \mathbb{K}^d .

30. Vérifions que $F = \text{Ker}(\Psi)$. On a déjà $F \subset \text{Ker}(\Psi)$. Inversement, soit x un (éventuel) vecteur non nul de $\text{Ker}(\psi)$. $\pi_{f,x}$ est un polynôme non nul de degré inférieur ou égal à $\deg(\pi_f) = d$. Pour $i \ge d$, la division euclidienne de X^i par $\chi_{f,x}$ fournit Q et R tels que $X^i = Q\pi_{f,x} + R$. Mais alors, $\Phi(f^i(x)) = \Phi(R(f)(x)) = 0$ par linéarité de Φ et donc $x \in F$.

Ainsi, $\operatorname{Ker}(\Psi) = F$. D'autre part, $\mathbb{K}^d = \operatorname{Im}\left(\Psi_{/E_1}\right) \subset \operatorname{Im}(\Psi)$ puis $\operatorname{Im}(\Psi) = \mathbb{K}^d$. D'après le théorème du rang,

$$\dim(\mathsf{F}) = \dim(\mathrm{Ker}(\Psi)) = \mathfrak{n} - \dim(\mathrm{Im}(\Psi)) = \mathfrak{n} - \mathfrak{d}.$$

En résumé, $E_1 \cap F = \{0\}$ et $\dim(E_1) + \dim(F) = \dim(E)$. On en déduit que $E = E_1 \oplus F$.

31. On a donc décomposé l'espace E en $E=E_1\oplus F$ où E_1 est stable par f, de dimension $d=\deg(\pi_f)\in\mathbb{N}^*$ et ψ_1 l'endomorphisme de E_1 induit par f est cyclique et F est stable par f. De plus, le polynôme minimal de ψ_1 est π_f . On note aussi que si on note f_F l'endomorphisme de F induit par f, π_{f_F} est un diviseur de $\pi_f=P_1$.

Si $F \neq \{0\}$, on recommence avec $F: F = E_2 \oplus F_2$ puis $E = E_1 \oplus E_2 \oplus F_2$ où E_2 est un sous-espace non nul stable par f, l'endomorphisme ψ_2 de E_2 induit par f est cyclique, et F_2 est stable par f. De plus, le polynôme minimal P_2 de ψ_2 est π_{f_F} qui est un diviseur de P_1 ... Puisque E est de dimension finie, ce processus s'arrête en un temps fini et fournit la décomposition demandée par l'énoncé.

III.C - Commutant d'un endomorphisme quelconque

32. Avec les notations des questions précédentes, pour chaque $i \in [\![1,r]\!]$, $C(\psi_i) = \mathbb{K}_{d_i-1}[\psi_i]$ où $d_i = \dim(E_i)$. De plus, la famille $\left(Id_{E_i}, \psi_i, \ldots, \psi_i^{d_i-1}\right)$ est libre (en évaluant en x_i une combinaison linéaire nulle de $Id_{E_i}, \psi_i, \ldots, \psi_i^{d_i-1}$). Donc, pour chaque $i \in [\![1,r]\!]$, $\dim(C(\psi_i)) = d_i$.

Soit $g \in \mathscr{L}(E)$. Si g laisse stable chaque E_i et si pour chaque $i \in [\![1,r]\!]$, l'endomorphisme g_i de E_i induit par g commute avec ψ_i , alors $g \in C(f)$. Ainsi, C(f) contient un sous-espace isomorphe à $\prod^r C(\psi_i)$. Donc,

$$\dim(C(f))\geqslant\dim\left(\prod_{i=1}^rC\left(\psi_i\right)\right)=\sum_{i=1}^{t=1}d_i=n.$$

33. Soit $f \in \mathcal{L}(E)$ tel que $C(f) = \mathbb{K}[f]$. Soit $P \in \mathbb{K}[X]$. La division euclidienne de P par χ_f fournit $(Q,R) \in (\mathbb{K}[X])^2$ tel que $P = Q\chi_f + R$ et $\det(R) < n$. En évaluant en f, on obtient P(f) = R(f) d'après le théorème de Cayley-Hamilton. Ceci montre que $C(f) = \mathbb{K}[f] = \mathbb{K}_{n-1}[f] = \text{Vect}\left(\text{Id}_E, f, \ldots, f^{n-1}\right)$.

D'après la question précédente, C(f) est de dimension supérieure ou égale à n et donc égale à n. Par suite, $\left(Id_E,f,\ldots,f^{n-1}\right)$ est une famille génératrice de C(f) de cardinal $n=\dim(C(f))<+\infty$. On en déduit que $\left(Id_E,f,\ldots,f^{n-1}\right)$ est une base de C(f) et en particulier que $\left(Id_E,f,\ldots,f^{n-1}\right)$ est une famille libre. D'après la question 19, f est cyclique.

Partie IV - Endomorphismes orthocycliques

IV.A - Isométries vectorielles orthocycliques

34. Soit $f \in O(E)$. On sait qu'il existe une base orthonormale $\mathscr{B} = (e_1, \dots, e_n)$ dans laquelle la matrice de f est une matrice Δ , diagonale par blocs, les blocs diagonaux étant de format 1 du type (1) ou (-1) ou de format 2 du type $R(\theta) = \begin{pmatrix} \cos{(\theta)} & -\sin{(\theta)} \\ \sin{(\theta)} & \cos{(\theta)} \end{pmatrix}, \ \theta \in]0, \pi[\cup]\pi, 2\pi[$. Le polynôme caractéristique de f s'écrit alors

$$\chi_f = (X-1)^{\alpha} (X+1)^{\beta} \prod_{i=1}^k (X^2 - 2X \cos(\theta_i) + 1),$$

où chaque trinôme $X^2 - 2X\cos(\theta_i) + 1$ est irréductible sur \mathbb{R} . Si maintenant, f' est un automorphisme orthogonal ayant le même polynôme caractéristique que f, il existe une base orthonormée $\mathscr{B}' = (e'_1, \dots, e'_n)$ dans laquelle la matrice A' de f' est du même type que A. Le nombre de coefficients diagonaux égaux à 1 est α et le nombre de coefficients diagonaux égaux à -1 est β . Il y a aussi un même nombre de blocs du type $R(\theta_i')$, $1 \le i \le k$, où pour chaque i, $\theta_i' = \pm \theta_i$. Il reste à vérifier que l'on peut choisir \mathscr{B}' de sorte que, pour chaque $\mathfrak{i}, \theta_{\mathfrak{i}}' = \theta_{\mathfrak{i}}$.

Soit (u, v) une base orthonormée d'un espace euclidien de dimension 2 dans laquelle la matrice d'un certain automorphisme orthogonal g est $R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. Alors, (u, -v) est une base orthonormée dans laquelle la matrice de g est $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} = R(-\theta)$. Donc, quite à remplacer certains des vecteurs \mathbf{e}_i' de la base \mathscr{B}' par $-\mathbf{e}_i'$, on a obtenu une

35. Soit $f \in O(E)$. Si f est orthocyclique, il existe une base orthonormale \mathcal{B} dans laquelle la matrice de f est de la forme C_Q . Puisque $\mathcal B$ est orthonormée, C_Q est une matrice orthogonale et donc la dernière colonne de C_Q doit être orthogonale aux n-1 premières et unitaire. Donc, $\alpha_1=\ldots=\alpha_{n-1}=0$ et $\alpha_0^2=1$. Par suite, C_Q est l'une des deux matrices

$$\begin{pmatrix} 0 & \dots & 0 & \pm 1 \\ 1 & 0 & & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} . \text{ D'après la question } 3, \, \chi_f = \chi_{C_Q} = X^n \pm 1.$$

Réciproquement, supposons que $\chi_f = X^n \pm 1$. Soient \mathcal{B}' une base orthonormale fixée de E puis f' l'endomorphisme de

$$\text{matrice } A = \begin{pmatrix} 0 & \dots & 0 & \pm 1 \\ 1 & 0 & & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \text{ dans } \mathcal{B}'. \text{ Puisque la matrice de f' dans une base orthonormale est une matrice}$$

orthogonale, $f' \in O(E)$. Ainsi, f et f' sont deux automorphismes orthogonaux ayant le même polynôme caractéristique. D'après la question précédente, il existe une base orthonormale \mathscr{B} telle $\mathrm{Mat}_{\mathscr{B}}(f) = A$ où de plus A est une matrice compagnon. Donc, f est orthocyclique.

On a montré que pour tout $f \in O(E)$, f est orthocyclique si et seulement si $\chi_f = X^n - 1$ ou $\chi_f = X^n + 1$.

IV.B - Endomorphismes nilpotents orthocycliques

36. Soit f un endomorphisme nilpotent. Le polynôme caractéristique de f est $\chi_f = X^n$. χ_f est scindé sur $\mathbb R$ et donc f est triangulable. Il existe une base $\mathcal{B}_0 = (\mathfrak{u}_1, \mathfrak{u}_2, \dots, \mathfrak{u}_n)$ dans laquelle la matrice A de f est triangulaire inférieure à coefficients diagonaux tous nuls. Soit $\mathcal{B}=(e_1,\ldots,e_n)$ telle que (e_n,\ldots,e_1) soit l'orthonormalisée de la base (u_1,\ldots,u_n) . \mathcal{B} est une base orthonormale et $P=\mathcal{P}_{\mathcal{B}_0}^{\mathcal{B}}$ est triangulaire inférieure. Mais alors, $\mathrm{Mat}_{\mathcal{B}}(f)=P^{-1}AP$ est une matrice triangulaire inférieure en tant que produit de trois matrices triangulaires inférieures.

37. Supposons f orthocyclique et nilpotent. Il existe une base orthonormale $\mathscr{B}_0=(e_1,\ldots,e_n)$ dans laquelle la matrice de f est C_Q (définie à la question 3). Les égalités $X^n=\chi_f=\chi_{C_Q}=Q$ montre que la dernière colonne de C_Q est nulle.

matrice est de rang n-1 car sa dernière colonne est nulle et la matrice extraite de format n-1 constituée des n-1dernières lignes et n-1 premières colonnes est inversible. $\operatorname{Ker}(f) = \operatorname{Vect}(e_n)$ et donc $(\operatorname{Ker}(f))^{\perp} = \operatorname{Vect}(e_1, \dots, e_{n-1})$.

Soient $x = \sum_{i=1}^{n-1} x_i e_i$ et $y = \sum_{i=1}^{n-1} y_i e_i$ deux éléments de $(\text{Ker}(f))^{\perp}$. Puisque \mathscr{B} est orthonormale.

$$(f(x)|f(y)) = \left(\sum_{i=1}^{n-1} x_i e_{i+1}\right) | \left(\sum_{j=1}^{n-1} y_j e_{j+1}\right) = \sum_{i=1}^{n-1} x_i y_i = x | y.$$

Supposons que f est nilpotent, de rang n-1 et que $\forall (x,y) \in \left((\mathrm{Ker}(f))^{\perp}\right)^2$, (f(x)|f(y))=(x|y). Il existe une base orthonormale $\mathscr{B}=(e_1,\ldots,e_n)$ dans laquelle la matrice de f est triangulaire inférieure $T=(t_{i,j})_{1\leqslant i,j\leqslant n}$ à coefficients diagonaux tous nuls. Puisque T est de rang n-1, les coefficients $t_{i+1,i}$, $1\leqslant i\leqslant n-1$, sont nécessairement tous non nuls. Ker(f) est de dimension 1 et donc $\mathrm{Ker}(f)=\mathrm{Vect}\,(e_n)$ puis $(\mathrm{Ker}(f))^{\perp}=\mathrm{Vect}\,(e_1,\ldots,e_{n-1})$. Soit $T'=(t'_{i,j})_{1\leqslant i,j\leqslant n-1}$ où pour tout $(i,j) \in [1,n-1]^2$, $t'_{i,j} = t_{i+1,j}$. La condition imposée à f montre que les colonnes de T' sont unitaires et deux à deux orthogonales ou encore T' est une matrice orthogonale. Par récurrence descendante, les coefficients diagonaux de T'

sont de carrés égaux à 1 et les coefficients non diagonaux sont nuls. Ainsi, T est de la forme
$$\begin{pmatrix} \pm 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \pm 1 & 0 \end{pmatrix}$$
 Ensuite, en remplaçant éventuellement e_2 par $-e_2$, puis éventuellement e_3 par $-e_3$, ..., puis éventuellement e_n par

 $-e_{n}, \text{ on obtient une base orthonormale dans laquelle la matrice de f est} \begin{pmatrix} 0 & \dots & & & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}. \text{ Mais alors, f est}$

orthocyclique.