Table 1: Calibration

Macroeconomic Parameters							
γ	0.36	Capital's Share of Income					
٦	$0.94^{1/4}$	Depreciation Factor					
σ_{Θ}^2	0.00001	Variance Aggregate Transitory Shocks					
σ_{Ψ}^2	0.00004	Variance Aggregate Permanent Shocks					
	Steady State of Perfect Foresight DSGE Model						
	$(\sigma_\Psi$	$=\sigma_{\Theta}=\sigma_{\psi}=\sigma_{\theta}=\wp=D=0,\Phi_t=1)$					
$reve{K}/reve{K}^{\gamma}$	12.0	SS Capital to Output Ratio					
$reve{K}$	48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\gamma)}$)					
W	2.59	SS Wage Rate $(=(1-\gamma)\breve{K}^{\gamma})$					
ř	0.03	SS Interest Rate $(= \gamma \check{K}^{\gamma-1})$					
$reve{\mathcal{R}}$	1.015	SS Between-Period Return Factor $(= 7 + \check{r})$					
		Preference Parameters					
ho	2.	Coefficient of Relative Risk Aversion					
β_{SOE}	0.970	SOE Discount Factor					
β_{DSGE}	0.986	HA-DSGE Discount Factor $(= \breve{\mathcal{R}}^{-1})$					
П	0.25	Probability of Updating Expectations (if Sticky)					
		Idiosyncratic Shock Parameters					
$\sigma_{ heta}^2$	0.120	Variance Idiosyncratic Tran Shocks (= $4\times$ Annual)					
σ_{ψ}^2	0.003	Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times \text{Annual})$					
\wp	0.050	Probability of Unemployment Spell					
D	0.005	Probability of Mortality					

Table 2: Equilibrium Statistics

	SOE Mod	 e]	HA-DSGE	Model
	Frictionless	Sticky	Frictionless	Sticky
Means				
A	7.49	7.43	56.85	56.72
C	2.71	2.71	3.44	3.44
Standard Deviations				
Aggregate Time Seri	es ('Macro')			
$\log A$	0.332	0.321	0.276	0.272
$\Delta \log {f C}$	0.010	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	0.010	0.010	0.007	0.007
Individual Cross Sec	tional ('Micro')			
$\log \mathbf{a}$	0.926	0.927	1.015	1.014
$\log \mathbf{c}$	0.790	0.791	0.598	0.599
$\log p$	0.796	0.796	0.796	0.796
$\log \mathbf{y} \mathbf{y}>0$	0.863	0.863	0.863	0.863
$\Delta \log \mathbf{c}$	0.098	0.098	0.054	0.055
Cost of Stickiness	4.82e-4		4.51e-	4

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a newborn frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3: Placeholder for Empirical US table

Table 4: Micro Consumption Regression on Simulated Data

$\Delta \log \mathbf{c}_{t+1,i} =$	$ \varsigma + \chi \Delta \log \mathbf{c}_{t,i} $	$+ \eta \mathbb{E}_{t,i}[\Delta \log \mathbf{y}_i]$	$_{t+1,i}] + \alpha \underline{a}_{t,i}$
------------------------------------	---	---	--

Model of				
Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.019			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.190	0.010
			(-)	
	0.061	0.016	-0.183	0.017
	(-)	(-)	(-)	
Sticky				
	0.012			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.191	0.010
			(-)	
	0.051	0.015	-0.185	0.016
Notes: Fue is the	(-)	(-)	(-)	

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t. The notation "(—)" indicates that standard errors are close to zero, given the very large simulated sample size.

Table 5: Aggregate Consumption Dynamics in SOE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expect	ations: De	p Var	OLS	2 nd Stage	KP p -val
Indepe	endent Vari	ables	or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$
Frictionless	: $\Delta \log \mathbf{C}_{t+}^*$	1 (with mea	sureme	nt error $\mathbf{C}_t^* =$	$\mathbf{C}_t \times \xi_t$);
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.295^{\bullet\bullet\bullet}$			OLS	0.087	
(0.066)					
$0.659^{\bullet \bullet}$			IV	0.040	0.237
(0.307)					0.594
	$0.456^{\bullet \bullet}$		IV	0.036	0.056
	(0.207)				0.429
		-7.08e-4	IV	0.027	0.000
		(5.76e-4)			0.361
0.410	0.258	$0.35\mathrm{e}{-4}$	IV	0.041	0.526
(0.434)	(0.369)	(9.60e-4)			0.533
Memo: For	instruments	$\mathbf{Z}_t,\Delta\logC$	$C_{t+1}^* = C_{t+1}^*$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	039; $var(\xi_t) = 5.99e-6$
Sticky : Δl	$og \mathbf{C}_{t+1}^*$ (wi	th measuren	nent err	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	$\xi_t);$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.508^{\bullet \bullet \bullet}$			OLS	0.263	
(0.058)					
0.803			IV	0.261	0.000
(0.102)					0.551
	$0.859^{\bullet\bullet\bullet}$		IV	0.198	0.057
	(0.179)				0.220
		$-8.46e-4^{\bullet \bullet}$	IV	0.067	0.000
		(3.91e-4)			0.001
$0.667^{\bullet\bullet\bullet}$	0.180	$0.47\mathrm{e}4$	IV	0.263	0.356
(0.184)	(0.271)	(4.91e-4)			0.546
Memo: For	instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.2$	262; $var(\xi_t) = 5.99e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{Y}_{t-2}\}.$

Table 6: Aggregate Consumption Dynamics in HA-DSGE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expec	tations : De	p Var	OLS	2 nd Stage	KP p-val
Indep	endent Vari	ables	or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$
Frictionless	$s: \Delta \log \mathbf{C}_{t+}^*$	(with mea	sureme	nt error $\mathbf{C}_t^* =$	$=\mathbf{C}_t \times \xi_t);$
$\Delta \log \mathbf{C}_t^*$		A_t			
$0.189^{\bullet\bullet\bullet}$			OLS	0.037	
(0.072)					
0.473			IV	0.019	0.314
(0.349)					0.558
	0.363		IV	0.017	0.104
	(0.316)				0.459
		-0.40e-4	IV	0.016	0.000
		(0.96e-4)			0.439
0.275	0.189	-0.10e-4	IV	0.020	0.585
(0.469)	(0.600)	(1.88e-4)			0.538
Memo: For	instruments	$\mathbf{z}_t, \Delta \log \mathbf{C}$	$C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$.023; $var(\xi_t) = 4.16e-6$
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measurer	nent err	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t >$	$\times \xi_t);$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.468^{\bullet \bullet \bullet}$			OLS	0.223	
(0.061)					
$0.774^{\bullet\bullet\bullet}$			IV	0.231	0.000
(0.106)					0.541
	$0.906^{\bullet \bullet \bullet}$		IV	0.146	0.100
	(0.240)				0.175
		$-1.02\mathrm{e}\!\!-\!\!4^{\bullet}$	IV	0.060	0.000
		(0.54e-4)			0.001
$0.672^{\bullet\bullet\bullet}$	0.164	0.10e-4	IV	0.233	0.464
(0.180)	(0.362)	(0.85e-4)			0.553
Memo: For	instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = Z_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$.234; $var(\xi_t) = 4.16e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 7: Aggregate Consumption Dynamics in RA Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var				2 nd Stage	KP p -val
Inde	ependent Vari	ables	or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$
Frictionles	ss: $\Delta \log \mathbf{C}_{t+}^*$	1 (with mea	sureme	nt error $\mathbf{C}_t^* =$	$\mathbf{C}_t \times \xi_t$);
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
-0.015			OLS	0.002	
(0.077)					
0.403			IV	0.015	0.360
(0.391)					0.581
	0.395		IV	0.017	0.078
	(0.307)				0.471
		-0.27e-4	IV	0.016	0.000
		(1.08e-4)			0.490
0.133	0.267	0.11e-4	IV	0.019	0.561
(0.528)	(0.586)	(2.13e-4)			0.579
Memo: Fo	or instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$	018; $var(\xi_t) = 3.33e-6$
Sticky : Δ	$\Delta \log \mathbf{C}_{t+1}^*$ (wi	th measuren	nent err	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	$(\xi_t);$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.412^{\bullet \bullet \bullet}$	•		OLS	0.179	
(0.063)					
0.789	•		IV	0.184	0.001
(0.136)					0.541
	$0.650^{\bullet \bullet \bullet}$		IV	0.130	0.077
	(0.162)				0.185
		-0.49e-4	IV	0.076	0.000
		(0.50e-4)			0.023
$0.638^{\bullet\bullet\bullet}$	0.114	0.10e-4	IV	0.185	0.322
(0.225)	(0.290)	(0.78e-4)			0.494
Memo: Fo	or instruments	$\leq \mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$	187; $var(\xi_t) = 3.33e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{Y}_{t-2}\}.$

Table 8: Aggregate Consumption Dynamics in SOE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var Independent Variables				$2^{\rm nd}$ Stage \bar{R}^2	$\begin{array}{c} \text{KP } p\text{-val} \\ \text{Hansen J } p\text{-val} \end{array}$
Frictionless	: $\Delta \log \mathbf{C}_{t+}$	1 (no measu	ırement	error)	
$\Delta \log \mathbf{C}_t$ Δ	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.394^{\bullet\bullet\bullet}$			OLS	0.156	
(0.062)					
$0.688^{\bullet \bullet}$			IV	0.049	0.206
(0.281)					0.569
	$0.466^{\bullet \bullet}$		IV	0.041	0.058
	(0.192)				0.393
		-7.10e-4	IV	0.031	0.000
		(5.43e-4)			0.336
0.459	0.261	$0.60\mathrm{e}{-4}$	IV	0.049	0.522
	,	,			
(0.405)	(0.337)	(8.74e-4)			0.502
,	,	,	$C_{t+1} = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	
Memo: For	instruments	$\mathbf{z}_t, \Delta \log \mathbf{C}$			
,	instruments $og \mathbf{C}_{t+1}$ (no	$\mathbf{z}_t, \Delta \log \mathbf{C}$			
Memo: For Sticky : Δl	instruments $og \mathbf{C}_{t+1}$ (no	$\mathbf{Z}_t, \Delta \log \mathbf{C}$			
Memo: For Sticky: $\Delta \log \mathbf{C}_t$	instruments $og \mathbf{C}_{t+1}$ (no	$\mathbf{Z}_t, \Delta \log \mathbf{C}$	ent erro	r)	
Memo: For Sticky: $\Delta \ln \Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$	instruments $og \mathbf{C}_{t+1}$ (no	$\mathbf{Z}_t, \Delta \log \mathbf{C}$	ent erro	r)	
Memo: For Sticky: $\Delta \log \mathbf{C}_t$	instruments $og \mathbf{C}_{t+1}$ (no	$\mathbf{Z}_t, \Delta \log \mathbf{C}$	ent error	0.768	47
Memo: For Sticky: $\Delta \ln \Delta \log \mathbf{C}_t$ $\Delta \log C$	instruments $og \mathbf{C}_{t+1}$ (no	$\mathbf{Z}_t, \Delta \log \mathbf{C}$	ent error	0.768	0.000
Memo: For Sticky: $\Delta \ln \Delta \log \mathbf{C}_t$ $\Delta \log C$	instruments $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	$\mathbf{Z}_t, \Delta \log \mathbf{C}$	OLS	0.768 0.394	0.000 0.309
Memo: For Sticky: $\Delta \ln \Delta \log \mathbf{C}_t$ $\Delta \log C$	instruments $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	$\mathbf{Z}_t, \Delta \log \mathbf{C}$	OLS IV IV	0.768 0.394	0.000 0.309 0.052
Memo: For Sticky: $\Delta \ln \Delta \log \mathbf{C}_t$ $\Delta \log C$	instruments $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	$\mathbf{z}_t, \Delta \log \mathbf{C}$ measurement A_t	OLS IV IV	0.768 0.394 0.278	0.000 0.309 0.052 0.123
Memo: For Sticky: $\Delta \ln \Delta \log \mathbf{C}_t$ $\Delta \log C$	instruments $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	$\mathbf{Z}_t, \Delta \log \mathbf{C}$ measureme A_t $-8.45 \mathrm{e}{-4}^{\bullet \bullet}$	OLS IV IV	0.768 0.394 0.278	0.000 0.309 0.052 0.123 0.000
Memo: For Sticky: $\Delta \ln \Delta \log \mathbf{C}_t$ $\Delta \log C$	instruments $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$ $0.871^{\bullet \bullet \bullet}$ (0.159)	measurement A_t $-8.45e-4^{\bullet \bullet}$ $(3.24e-4)$	OLS IV IV IV	0.768 0.394 0.278 0.091	0.000 0.309 0.052 0.123 0.000 0.000

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 9: Aggregate Consumption Dynamics in HA-DSGE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var Independent Variables				$2^{\rm nd}$ Stage \bar{R}^2	KP p -val Hansen J p -val
Frictionless	: $\Delta \log \mathbf{C}_{t+}$	-1 (no measu	ırement	error)	
$\Delta \log \mathbf{C}_t$ Δ	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.258^{\bullet\bullet\bullet}$			OLS	0.067	
(0.071)					
0.507			IV	0.024	0.287
(0.335)					0.538
	0.369		IV	0.019	0.102
	(0.300)				0.437
		-0.40e-4	IV	0.018	0.000
		(0.92e-4)			0.419
0.308	0.226	0.00e-4	IV	0.025	0.576
(0.484)	(0.586)	(1.86e-4)			0.522
,	(0.000)	(1.000 1)			0.522
Memo: For	, ,	,	$C_{t+1} = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	
	instrument	s \mathbf{Z}_t , $\Delta \log \mathbf{C}$			
Sticky : Δ le	instrument $\operatorname{og} \mathbf{C}_{t+1}$ (no	s \mathbf{Z}_t , $\Delta \log \mathbf{C}_t$			
	instrument $\operatorname{og} \mathbf{C}_{t+1}$ (no	s \mathbf{Z}_t , $\Delta \log \mathbf{C}$			
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.845^{\bullet\bullet\bullet}$	instrument $\operatorname{og} \mathbf{C}_{t+1}$ (no	s \mathbf{Z}_t , $\Delta \log \mathbf{C}_t$	ent erro	r)	
Sticky : Δ log \mathbf{C}_t	instrument $\operatorname{og} \mathbf{C}_{t+1}$ (no	s \mathbf{Z}_t , $\Delta \log \mathbf{C}_t$	ent erro	r)	
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.845$ 0.802	instrument $\operatorname{og} \mathbf{C}_{t+1}$ (no	s \mathbf{Z}_t , $\Delta \log \mathbf{C}_t$	ent error	r) 0.715	027
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.845^{\bullet\bullet\bullet}$ $\Delta 0.038$	instrument $\operatorname{og} \mathbf{C}_{t+1}$ (no	$\mathbf{z}_t, \Delta \log \mathbf{C}_t$ measurement A_t	ent error	r) 0.715	0.000
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.845$ 0.802	instrument $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$)	$\mathbf{z}_t, \Delta \log \mathbf{C}_t$ measurement A_t	OLS	0.715 0.361	0.000 0.351
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.845$ 0.802	instrument $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	$\mathbf{z}_t, \Delta \log \mathbf{C}_t$ measurement A_t	OLS IV	0.715 0.361	0.000 0.351 0.093
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.845$ 0.802	instrument $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$)	s \mathbf{Z}_t , $\Delta \log \mathbf{C}_t$ measurement A_t	OLS IV	0.715 0.361 0.209	0.000 0.351 0.093 0.103
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.845$ 0.802	instrument $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$)	\mathbf{z} $\mathbf{Z}_t, \Delta \log \mathbf{C}_t$ measurement A_t	OLS IV	0.715 0.361 0.209	0.000 0.351 0.093 0.103 0.000
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}$	instrument $\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$) $0.917^{\bullet \bullet \bullet}$ (0.217)	s \mathbf{Z}_t , $\Delta \log \mathbf{C}_t$ measurement A_t $-1.02 \mathrm{e}{-4}^{\bullet \bullet}$ $(0.45 \mathrm{e}{-4})$	OLS IV IV	0.715 0.361 0.209 0.085	0.000 0.351 0.093 0.103 0.000 0.000

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 10: Aggregate Consumption Dynamics in RA Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

•	ations : De endent Vari	•	OLS or IV	2^{nd} Stage \bar{R}^2	KP p -val Hansen J p -val
Frictionless	: $\Delta \log \mathbf{C}_{t+}$. ₁ (no measu	rement e	error)	
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.017			OLS	0.003	
(0.078)					
0.421			IV	0.017	0.339
(0.378)					0.569
	0.378		IV	0.018	0.077
	(0.294)				0.453
		-0.27e-4	IV	0.018	0.000
		(1.04e-4)			0.472
0.126	0.202	$0.20\mathrm{e}{-4}$	IV	0.021	0.531
(0.525)	(0.555)	(2.04e-4)			0.582
Memo: For	instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = \mathbf{Z}$	$t\zeta$, $\bar{R}^2 = 0.0$	20
Sticky : Δl	$\log \mathbf{C}_{t+1}$ (no	measureme	ent error)		
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.790^{\bullet\bullet\bullet}$			OLS	0.625	
(0.044)					
$0.825^{\bullet\bullet\bullet}$					
0.0-0			IV	0.306	0.000
(0.069)			IV	0.306	0.000 0.401
	0.684		IV IV	0.306 0.195	
	$0.684^{\bullet \bullet \bullet}$ (0.147)				0.401
		-0.50e-4			0.401 0.068
		-0.50e-4 $(0.41e-4)$	IV	0.195	0.401 0.068 0.106
			IV	0.195	0.401 0.068 0.106 0.000
(0.069)	(0.147)	(0.41e-4)	IV IV	0.195 0.107	0.401 0.068 0.106 0.000 0.003

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2$