Lycée Farabi ElFhas Durée : 60min

Devoir De Contrôte Nº4

Classe: 20mg sc Date: 19-02-2022

& Exercise 1 (4pts):

Calculer sans utiliser la calculatrice :

1)
$$\cos\frac{\pi}{12} + \cos\frac{5\pi}{12} + \cos\frac{7\pi}{12} + \cos\frac{11\pi}{12}$$

2)
$$\sin\frac{\pi}{12} + \sin\frac{5\pi}{12} - \sin\frac{7\pi}{12} - \sin\frac{11\pi}{12}$$

& Exercise 2 (11pts):

I/ La courbe ci-contre est la représentation graphique d'une fonction f

- 1- Déterminer D_f le domaine de f.
- 2- Déterminer f(-2); f(-1); f(1)et f(2)
- 3- Résoudre graphiquement dans Df:

$$a/f(x) = 0$$

- Donner la valeur minimale et la valeur maximale de f.
- 5- Tracer le tableau de variation de f.
- 6- Tracer la droite D: x y + 2 = 0.

Résoudre graphiquement f(x) = x + 2

II/ Soit la fonction $g(x) = \frac{2x-3}{x-3}$; $x \in IR$ et (C) sa courbe représentative dans repère orthonormé (O, \vec{l}, \vec{j}) .

- 1) Déterminer le domaine de définition D de q :
- 2) Déterminer l'abscisse a du point A de (C) d'ordonné 3.
- 3) a/ Vérifier que pour tout $x \in D$ on a : $g(x) = 2 + \frac{3}{x-3}$ b/ Etudier le sens de variation de g sur $]-\infty$, 3[. c/ Comparer $g(-1+\sqrt{3})$ et $g(\sqrt{2})$

& Exercise 3 (5pts):

Résoudre dans $[0, \pi]$ les équations suivantes :

- 1) (1 sinx)(cosx + 1) = 0
- 2) $(tanx)^2 3 = 0$
- 3) $(\cos x)^2 \sin x (\sin x)^2 = 0$
- 4) Sachant que $sinx = \frac{1}{3}$ et que $\frac{\pi}{2} < x < \pi$. Calculer cosx et tanx.

Lycée Farabi ElFhas

Durée : 60min

Devoir De Controle Nº4

Classe: 22me sc

Date: 19-02-2022

Exercise 1 (4pts): Calculer sans utiliser la calculatrice:

1)
$$\cos \frac{\pi}{12} + \cos \frac{5\pi}{12} + \cos \frac{7\pi}{12} + \cos \frac{11\pi}{12}$$

 $= \cos \frac{\pi}{12} + \cos \left(\pi - \frac{\pi}{12}\right) + \cos \frac{5\pi}{12} + \cos \left(\pi - \frac{5\pi}{12}\right)$
 $= \cos \frac{\pi}{12} - \cos \left(\frac{\pi}{12}\right) + \cos \frac{5\pi}{12} - \cos \left(\frac{5\pi}{12}\right)$
 $= 0$

2)
$$\sin \frac{\pi}{12} + \sin \frac{5\pi}{12} - \sin \frac{7\pi}{12} - \sin \frac{11\pi}{12}$$

 $= \sin \frac{\pi}{12} - \sin \left(\pi - \frac{\pi}{12}\right) + \sin \frac{5\pi}{12} - \sin \left(\pi - \frac{5\pi}{12}\right)$
 $= \sin \frac{\pi}{12} - \sin \left(\frac{\pi}{12}\right) + \sin \frac{5\pi}{12} - \sin \left(\frac{5\pi}{12}\right)$
 $= 0$

Exercise 2 (11pts):

I/ La courbe ci-contre est la représentation graphique d'une fonction f

- 1- Déterminer D_f le domaine de f. $D_f = [-2, 2]$
- 2- Déterminer f(-2); f(-1); f(1)et f(2)

$$f(-2) = 0$$
; $f(-1) = 4$; $f(1) = 0$ et $f(2) = 4$

3- Résoudre graphiquement dans D_f:

$$a/f(x) = 0 \Rightarrow x = -2 ou x = 1 \Rightarrow S_{IR} = \{-2, 1\}$$

b/
$$f(x) \le 3 \Rightarrow x \in [-2; -1.5[\cup] - 0.25; 1.9[$$

4- Donner la valeur minimale et la valeur maximale de f.

$$Minf = 0 \text{ si } x = -2 \text{ oux} = 1$$

$$Maxf = 4 \text{ si } x = -1 \text{ ou } x = 2$$

Tracer le tableau de variation de f.

6- Tracer la droite $D: x - y + 2 = 0 \Rightarrow y = x + 2$

Résoudre graphiquement $f(x) = x + 2 \Rightarrow x = -2$ ou x = 0 ou x = 2

II/ Soit la fonction $g(x) = \frac{2x-3}{x-3}$; $x \in IR$ et (C) sa courbe représentative dans repère orthonormé $(0,\vec{i},\vec{j})$.

- Déterminer le domaine de définition D de g : D_q = IR \ {3}
- Déterminer l'abscisse a du point A de (C) d'ordonné 3.

$$g(a) = 3 \Rightarrow \frac{2a-3}{a-3} = 3 \Rightarrow 2a-3 = 3(a-3) \Rightarrow 3a-2a = 9-3 \Rightarrow a = 6$$

3) a/Vérifier que pour tout $x \in D$ on a : $g(x) = 2 + \frac{3}{x-3}$.

$$2 + \frac{3}{x-3} = \frac{2(x-3)}{x-3} + \frac{3}{x-3} = \frac{2x-6+3}{x-3} = \frac{2x-3}{x-3} = g(x)$$

b/ Etudier le sens de variation de g sur 1-∞, 3[

Soit a et b deux réels appartenant à $]-\infty$, 3[tel que a < b

$$\Rightarrow a - 3 < b - 3 \Rightarrow \frac{1}{a - 3} > \frac{1}{b - 3} \Rightarrow \frac{3}{a - 3} > \frac{3}{b - 3} \Rightarrow 2 + \frac{3}{a - 3} > 2 + \frac{3}{b - 3} \Rightarrow g(a) > g(b)$$

Donc la fonction g est décroissante sur $]-\infty$, 3

c/ Comparer $g(-1+\sqrt{3})$ et $g(\sqrt{2})$

On a : $(-1+\sqrt{3})$ et $\sqrt{2} \in]-\infty$; 3[, et $(-1+\sqrt{3})<\sqrt{2}$ et puisque g est décroissante donc Comparer $g(-1+\sqrt{3}) > g(\sqrt{2})$.

Exercise 3 (5pts): Résoudre dans $[0, \pi]$ les équations suivantes :

1)
$$(1 - sinx)(cosx + 1) = 0$$

$$\Rightarrow 1 - \sin x = 0 \text{ on } \cos x + 1 = 0 \Rightarrow \sin x = 1 \text{ ou } \cos x = -1 \Rightarrow x = \frac{\pi}{2} \text{ ou } x = \pi$$

$$\Rightarrow S_{\{0;\pi\}} = \left\{\frac{\pi}{2}; \pi\right\}$$

$$2) (tanx)^2 - 3 = 0$$

$$3 = 0$$

$$\Rightarrow (tanx)^2 = 3 \Rightarrow tanx = -\sqrt{3} \text{ ou } \sqrt{3} \Rightarrow x = -\frac{\pi}{3} \text{ (à rejeter) ou } x = \frac{\pi}{3}$$

$$\Rightarrow \mathcal{S}_{[0;n]} = \left\{ \frac{\pi}{3} \right\}$$

3)
$$(\cos x)^2 - \sin x - (\sin x)^2 = 0$$

$$1 - (sinx)^2 - sinx - (sinx)^2 = 0 \Rightarrow 2(sinx)^2 + sinx - 1 = 0$$

On pose X = sinx. Résoudrons l'équation : $2X^2 + X - 1 = 0$

$$a = 2; b = 1 \text{ et } c = -1$$

$$a - b + c = 0$$

$$\Rightarrow X_1 = -1 \text{ et } X_2 = \frac{1}{2}$$

$$\Rightarrow X_1 = -1 \text{ et } X_2 = \frac{1}{2}$$

$$\Rightarrow \sin x = -1 \text{ ou } \sin x = \frac{1}{2}$$

$$\Rightarrow x = -\frac{\pi}{2} \text{ (à rejeter)} \text{ou } x = \frac{\pi}{6}$$

$$\Rightarrow S_{[0;\pi]} = \left\{\frac{\pi}{6}\right\}$$

4) Sachant que $sinx = \frac{1}{3}$ et que $\frac{\pi}{2} < x < \pi$.

Calculer cosx et tanx.

$$cosx = \sqrt{1 - (sinx)^2} = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3}$$
$$tanx = \frac{sinx}{cosx} = \frac{\frac{1}{3}}{\frac{2\sqrt{2}}{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$