Problem Set 8 MATH 25700

8 *p*-Sylows and Simple Groups

- 12/2: 1. Show that the 2-Sylow subgroups of S_4 and S_5 are isomorphic to D_8 , and the 2-Sylow subgroups of A_4 and A_5 are isomorphic to the Klein 4-group.
 - 2. Let H be the subset of $GL_3(\mathbb{F}_p)$ of matrices of the form

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Prove that H is a p-Sylow subgroup of $GL_3(\mathbb{F}_p)$.
- (b) Prove that H is not normal.
- (c) Determine the number n_p of p-Sylow subgroups of $GL_3(\mathbb{F}_p)$.
- (d) Determine the normalizer of H.
- 3. Suppose that P is a normal p-Sylow subgroup of G. Suppose that H is a subgroup of G. Prove that $P \cap H$ is the unique p-Sylow subgroup of H. (Exercise 4.5.33 of Dummit and Foote (2004).)
- 4. Prove that if $n < p^2$, the p-Sylow subgroup of S_n is abelian. Prove that if $n \ge p^2$, the p-Sylow subgroup of S_n is not abelian.
- 5. Let N be a normal subgroup of G, and suppose that the largest power of p dividing |N| is equal to the largest power of p dividing |G|. Prove that the p-Sylow subgroups of G are precisely the p-Sylow subgroups of N.
- 6. Prove that there do not exist any simple groups of order p^2q for distinct primes p,q. (Hint: Consider the congruence restrictions from Sylow III.)
- 7. Prove that there do not exist any simple groups of the following orders. (Warning: Not in order of difficulty.)
 - (a) (*) 336.
 - (b) 1176.
 - (c) 2907.
 - (d) 6545.