Zhuolin Qu

Research Interests

Mathematical and Computational Epidemiology, Numerical Methods for Time-Dependent PDEs, Uncertainty Quantification, Optimization Algorithms

Education

Doctor of Philosophy, Applied Mathematics

New Orleans, LA

Tulane University, 3.98

2011-2016

Thesis: Fast Operator Splitting Methods for Nonlinear PDEs

Advisor: Professor Alexander Kurganov

New Orleans, LA

Tulane University, 4.00

2012–2016

Advisor: Professor Michelle Lacey

Master of Science, Statistics

Heifei, China

University of Science and Technology of China

2007-2011

Advisor: Professor Mengping Zhang

Bachelor of Science, Mathematics

Experience

Postdoctoral Fellow, Tulane University

New Orleans, LA

Mentor: James (Mac) Hyman

2016–present

- Work in multi-disciplinary team (public health, mathematics, statistics) to model infectious diseases, including vector-borne diseases and sexually transmitted diseases
- Propose and analyze both equation-based models and stochastic agent-based network models to study disease dynamics and optimize the mitigation resources

Visiting Scholar, Los Alamos National Laboratory

Los Alamos, NM

Host: Benjamin McMahon

summer 2017, 2018, 2019

- o Performed epidemiological analysis on invasive non-typhoidal Salmonella(iNTS) in sub-Saharan Africa
- Proposed agent-based multi-scale model describing host-pathogen interactions, risk factors for host susceptibility and family structure in disease transmission

Graduate Research Assistant, Tulane University

New Orleans, LA

Mentor: Alexander Kurganov

2012-2016

- Addressed numerical challenges for fluid dynamic systems, including hyperbolic systems of conservation laws, phase-field models and the modified Buckley-Leverett equations
- Designed highly efficient and stable numerical algorithms using finite-difference/finite-volume methods, operator splitting methods and pseudo-spectral methods

Summer Intern, Los Alamos National Laboratory

Los Alamos, NM

Mentor: Carl Gable, Nataliia Makedonska

summer 2015

- o Improved algorithms for calculating geometric coefficients of large unstructured mesh
- Independently implemented the algorithms using highly efficient parallel programming (in PETSc and MPI) and object-oriented programming in Fortran
- Codes are now part of dfnWorks, the software suit of flow and transport modeling in discrete fracture networks, used by the lab

Visiting Fellow, Shanghai Jiao Tong University

Shanghai, China

Institute of Natural Sciences

summer 2012, 2013

Summer Intern, Pohang University of Science and Technology

Pohang, Korea

Mentor: Kwang Ik Kim

summer 2010

Worked on the Singular Perturbation Theory in Combinatorial and Computational Mathematics (Com2MaC) Research Center of POSTECH

Publications

- Qu, Zhuolin, Hyman, J. M. Generating a Hierarchy of Reduced Models for a System of Differential Equations Modeling the Spread of Wolbachia in Mosquitoes, to appear in SIAM Journal on Applied Mathematics.
- **Qu, Zhuolin**, Xue, L., Hyman, J.M. Modeling the Transmission of *Wolbachia* in Mosquitoes for Controlling Mosquito-Borne Diseases, *SIAM Journal on Applied Mathematics*, 2018, 78(2):826–852.
- with Cheng, Y. Z., Kurganov, A., Tang, T. Fast and Stable Explicit Operator Splitting Methods for Phase-field Models, *Journal of Computational Physics*, 2015, 303:45-65.
- *with* Kao, C. Y., Kurganov, A., Wang, Y. A Fast Explicit Operator Splitting Method for Modified Buckley–Leverett Equations, *Journal of Scientific Computing*, 2015, 64(3):837-857.
- with Chertock, A., Kurganov, A., Wu, T. Three-Layer Approximation of Two-Layer Shallow Water Equations, *Mathematical Modelling and Analysis*, 2013, 18(5):675-693.
- with Kurganov, A., Wu, T. Adaptive Moving Mesh Central-Upwind Schemes for Hyperbolic System of PDEs. Applications to Compressible Euler Equations and Granular Hydrodynamics, submitted

Papers in Preparation

- Thongsripong, P., Qu, Zhuolin, Yukich, J., Hyman, J. M., Wesson, D. Quantification of Human-mosquito Contact Rate Using Surveys and its Application in Determining Dengue Viral Transmission Risk
- **Qu, Zhuolin**, Hyman, J. M., Azizi, A., Schmidt, N., Kissinger, P., Modeling Impact of Community-based male-screeing on the Ct prevalence of Women
- **Qu, Zhuolin**, Gulbudak, H., Hyman, J. M., Milner, F., Sensitivity Analysis in a Vector-Host Immuno-Epidemiological Model with Application to Rift Valley Fever

Honors and Awards

Postdoctoral Fellow Travel Fund, Tulane University	2017–2019
Health Sciences Research Days Award for Excellence in Research and Presentation	n 2017
by a Postdoctoral Fellow, Tulane University	
SAMSI Workshop Travel Award, SAMSI	2016
KI-Net Conference Travel Award, KI-Net	2015
Graduate Studies Student Association Travel Award, Tulane University	2015
Tulane Science and Engineering Dean's Office Travel Award, Tulane University	2015
Summer Research Fellowship, Tulane University	2012–2015
Outstanding Students Fellowship, University of Science and Technology of China	2008-2010
Special Freshmen Fellowship, University of Science and Technology of China	2007

Conference and Talks

2019.

• The Fifth International Conference on Computational and Mathematical Population Dynamics (CMPD5), invited talk, Fort Lauderdale, May

- o Workshop on Modeling the Spread of Infectious Diseases, Tulane University, February
- Scientific Computing around Louisiana, contributed talk, Tulane University, February
- o NIMBioS tutorial: Network Modeling, workshop, University of Tennessee, February

2018.....

- o University of Louisiana at Lafayette, Mathematics Department Colloquium, October
- **Biomathematics and Ecology: Education and Research** (BEER) conference, contributed talk, Arizona State University, October
- **SAMSI workshop**, Model Uncertainty: Mathematical and Statistical, poster presentation, Duke University, August
- SIAM Annual Meeting 2018, contributed talk, July
- Los Alamos National Laboratory, Brown bag meeting on disease transmission modeling and surveillance, seminar talk, July
- Joint Research Conference on Statistics in Quality, Industry, and Technology, participation, Santa Fe, June
- MBI Emphasis Workshop on Multiscale Dynamics of Infections, poster presentation, Ohio State University, April
- o NIH-MIDAS Network Meeting, poster presentation, April
- 42nd SIAM SEAS Sectional Conference, invited talk, UNC Chapel Hill, March
- 29th Annual Health Sciences Research Days, poster presentation, Tulane University, February
- Scientific Computing around Louisiana (SCALA), contributed talk, Louisiana State University,
 February

2017.

- o Mathematical Biology Center, Guangzhou University, invited talk, November
- o Mathematics and Science College, Shanghai Normal University, invited talk, November
- **Tropical Medicine Seminar**, School of Public Health and Tropical Medicine, Tulane, seminar talk, September
- Los Alamos National Laboratory, Center for Nonlinear Studies, seminar talk, August
- 9th Annual Summer Institute in Statistics and Modeling in Infectious Diseases, workshop,
 University of Washington, July
- SMB Annual Meeting 2017, poster presentation, July
- SIAM Annual Meeting 2017, contributed talk, July
- NIMBioS Tutorial: Uncertainty Quantification for Biological Models, workshop, June
- NIH-MIDAS Network Meeting, poster presentation, May
- How Mathematical Models are helping Guide Mitigation Efforts to Control Epidemics, guest lecture, Georgia State University, May
- Scientific Computing around Louisiana (SCALA), contributed talk, Tulane University, March
- SIAM Conference on Computational Science and Engineering, poster presentation, March

o 28th Annual Health Sciences Research Days, poster presentation, Tulane University, February		
2016		
o SAMSI Optimization Program Summer	School, workshop, August	
2015		
• KI-Net: Collective Dynamics in Biologic ber	cal and Social Systems, poster presentation, Novem-	
o Tulane Mathematics Department, Gradu	ate Student Colloquium, invited talk, September	
o Los Alamos National Laboratory, SFT Br	own Bag Seminar, invited talk, August	
• Student Symposium : "Championing So National Laboratory, August	cientific Careers", poster presentation, Los Alamos	
 The Ninth IMACS International Conference Phenomena, invited talk, April 	rence on Nonlinear Evolution Equations and Wave	
o Scientific Computing Around Louisiana	(SCALA), poster presentation, March	
2014		
o Tulane Mathematics Department, applie	ed mathematics seminar, invited talk, April	
 KI-Net Conference on Modern Perspective PDEs, participation, April 	ves in Applied Mathematics: Theory and Numerics of	
before		
 Clifford Lectures Conference on Numeri ential Equations, participation, March 201 	cal Methods for Convection Dominated Partial Differ- 13	
• American Mathematical Society Section		
Commiss		
Service		
	DT 6 0 VT	
o Journal of Biological Dynamics	• PLoS ONE	
o Journal of Theoretical Biology	Mathematical Biosciences	
Letters in Biomathematics	 Journal of Biological Systems 	
o Li Guan, Department of Mathematics, Tu	lane University, Spring 2018	
1		
 Organizer, New Orleans workshop on M University, Spring 2019 	Modeling the Spread of Infectious Diseases, Tulane	
o Co-organizer, Clifford Lectures Conference	ce 2017, Tulane University, 2017	
Media Coverage		
• Forbes Magazine, Innovation-Science, "Diseases", January 14th, 2019	Math-Based Mosquito Control To Prevent Human	
• Los Alamos Monitor, "Solving epidemic	s with math", October 10th, 2018	
• The Times-Picayune, "Tulane researcher	s use math to contain the spread of mosquito-borne	

o SIAM News, Research Nugget on "Sustained bacterial outbreak in mosquitoes limits spread of

illnesses", August 30th, 2018

life-threatening diseases", March 20th, 2018

Poster Judge, School of Science and Engineering Research Day, Tulane University 2018, 2019 **Newcomb Fellow,** Newcomb College Institute, Tulane University 2016–present

Teaching Experience

Instructor	
Scientific Computation III (graduate course)	Spring 2019
Scientific Computation III (graduate course)	Spring 2018
Calculus III	Fall 2016
Long Calculus II	Spring 2014
Calculus II	Fall 2013
Teaching Assistant	
Calculus II	Spring 2016
Calculus I	Fall 2015
Introduction to Applied Mathematics	Spring 2015
Consolidated Calculus	Fall 2014
Linear Algebra	Spring 2013
Linear Algebra	Fall 2012
Introduction to Applied Mathematics	Fall 2012
Introduction to Applied Mathematics	Spring 2012
Calculus III	Spring 2012
Calculus I	Fall 2011
Guest Teaching Lectures.	
Optimization (graduate course)	Fall 2018
Applied Mathematics II (graduate course)	Spring 2017
Ordinary Differential Equation	Fall 2016

Mentoring Experience

- Assist in mentoring doctoral dissertation, Public Health student, on quantifying humanmosquito contact rate, manuscript submitted. (Tulane, 2017-2018)
- Assist in mentoring doctoral dissertation, Mathematics student, on modeling epidemics with distribution parameters, committee member for Dissertation defense (Tulane, 2017-2019)
- Assist in mentoring master thesis project, Computational Science student, on modeling chikungunya disease and quantifying model uncertainty (Tulane, 2018-2019)
- Assist in mentoring undergraduate honor thesis, Neuroscience student, on modeling Tuberculosis progression with treatment, Senior Scholar Award for undergraduate (Tulane, 2018-2019)
- Assist in mentoring doctoral dissertation, Biostatistics student, on characterizing the spread of epidemics over networks (Tulane, 2018-2019)

 \circ Mentoring committee member for Society of Mathematical Biology mentoring program at the annual meeting 2017

Computer Skills

Script: Matlab, Octave, Fortran, Mathematica, C, R, Python, Maple, MySQL, NetLogo

Software: Latex, Git, Vim, Inkscape, ParaView, Adobe Illustrator, Origin

Other: MPI, PETSc, LaGriT, PFLOTRAN