Naive Bayes classifier

Problem#1: Email classifier using a naive Bayes classifier

training set:

E1: "good".	not spam (NS)
E2: " very good"	not spam
E3: "Bad"	spam (S)
E4: " very bad"	spam
E5: " very bad, very bad"	spam

$$p(NS) = n(NS)/n(NS) + n(S) = 2/2+3 = 2/5 = 0.4$$

 $p(S) = n(S)/n(NS) + n(S) = 3/5 = 0.6$

unique words are seen in email = {"good", "very", "bad"}

$$p(good) = 2/5 = 0.4$$

 $p(very) = 3/5 = 0.6$
 $p(bad) = 3/5 = 0.6$

```
p(NS/very) = 1/3 = 0.33

p(S/good) = 0 = 0.05

p(NS/bad) = 0 = 0.05
```

p(good/NS) = p(NS/good) P(good) / p(NS) = 0.4 * 0.4 / 0.4 = 0.4p(good/S) = p(S/good) p(good) / p(S) / = 0.05 * 0.4 / 0.6 = 0.033

p(very/NS) = p(NS/very) p(very) / p(NS) = 0.33 * 0.6 / 0.4 = 0.495p(very/S) = p(S/very) p(very) / p(S) = 0.66 * 0.6 / 0.6 = 0.66

p(bad/NS) = p(NS/bad) * p(bad) / p(NS) = 0.05 * 0.6 / 0.4 = 0.075p(bad/S) = p(S/bad) * p(bad) / p(S) = 1 * 0.6 / 0.6 = 1

test data

E6 : good bad very bad

p(E6/S) = P(good/S) * p(bad/S) * p(very/S) = 0.033 * 1 * 0.66 = 0.02178 p(E6/NS) = p(good/NS) * p(bad/NS) * p(very/NS) = 0.4 * 0.075 * 0.495 = 0.01485

p(S/E6) = P(E6/S) * P(S) / p(E6) = 0.6 * p(E6/S) / p(E6) = 0.6 * 0.02178 / p(E6) = 0.0130/p(E6)

p(NS/E6) = p(E6/NS) p(NS) / p(E6) = 0.4 * p(E6/NS) / p(E6) = 0.4 * 0.01485 / p(E6) = 0.0059/p(E6)

say p(E6) = 1% = 0.01

p(S/E6) = 0.0013p(NS/E6) = 0.00059

since p(S/E6) > p(NS/E6), E6 will be classified as "S" aka SPAM

Problem#2: Classify fruits using a naive Bayes classifier

Let's say the fruit basket consists of fruits as shown in below table

Fruit	Total count		
Bananas (B)	50		
Orange (O)	30		
Other fruit (OF)	100		

Attribute s	Long (L)	Not long (NL)	Sweet(S	Not Sweet(N S)	Yellow(Y	Not yellow (NY)
Bananas	40	10	35	15	45	5
Orange	0	30	15	15	30	0
Other fruit	50	50	65	35	80	20
Total	90	90	115	65	155	25

$$p(B) = n(B) / n(Total fruits in the basket) = 50 / 50+30+100 = 50/180 = 0.2778$$

 $p(O) = 30/180 = 1/6 = 0.1667$
 $p(OF) = 100/180 = 10/18 = 5/9 = 0.5556$

$$p(L) = n(L)/n(L) + n(NL) = 90 / 90+90 = 0.5$$

$$p(S) = n(S) / n(S) + n(NS) = 115 / 115+65 = 115/180$$

$$p(Y) = n(Y) / n(Y) + n(NY) = 155 / 155 + 25 = 155 / 180$$

$$p(L, S, Y) = p(L) * p(S) * p(Y) = 0.5 * 115/180 * 155/180 =$$

$$p(L, S, Y/B) = p(L/B) * p(S/B) * p(Y/B) = 40/50 * 35/50 * 45/50 =$$

$$p(B/L, S, Y) = p(L, S, Y/B) p(B)/p(L, S, Y) = 40/50 * 35/50 * 45/50 * 0.2778 / (0.5 * 115/180 * 155/180) =$$

$$p(B/L, S, NY) =$$

$$p(B/L, NS, Y) =$$

$$p(B/NL, S, Y) =$$

$$p(B/NL, S, NY) =$$

$$p(B/NL, NS, Y) =$$

$$p(B/NL, NS, NY) =$$

```
p(O/ L, S, Y) =
p(O/ L, S, NY) =
p(O/ L, NS, Y) =
p(O/ L, NS, NY)
p(O/ NL, S, Y) =
p(O/ NL, S, NY) =
p(O/ NL, NS, Y) =
p(O/ NL, NS, NY) =
```

```
p(OF/ L, S, Y) =
p(OF/ L, S, NY) =
p(OF/ L, NS, Y) =
p(OF/ L, NS, NY)
p(OF/ NL, S, Y) =
p(OF/ NL, S, NY) =
p(OF/ NL, NS, Y) =
p(OF/ NL, NS, NY) =
```

Given it is long, sweet & yellow, which fruit it is likely to be?