Interview Questions: Directed Graphs

3/3 points earned (100%)

Excellent!

Retake

Course Home

1/1 points

1.

Shortest directed cycle. Given a digraph G, design an efficient algorithm to find a directed cycle with the minimum number of edges (or report that the graph is acyclic). The running time of your algorithm should be at most proportional to V(E+V) and use space proportional to E+V, where V is the number of vertices and E is the number of edges.

a

Thank you for your response.

Hint: run BFS from each vertex.

2.

Hamiltonian path in a DAG. Given a directed acyclic graph, design a linear-time
algorithm to determine whether it has a Hamiltonian path (a simple path that visits
every vertex), and if so, find one.

а		
		/.

Thank you for your response.

Hint: topological sort.

1/1 points

3.

Reachable vertex.

- *DAG*: Design a linear-time algorithm to determine whether a DAG has a vertex that is reachable from every other vertex, and if so, find one.
- *Digraph*: Design a linear-time algorithm to determine whether a digraph has a vertex that is reachable from every other vertex, and if so, find one.

a			

Thank you for your response.

Hint (DAG): compute the outdegree of each vertex.

Hint (digraph): compute the strong components and look at the kernel DAG (the digraph that results when you contract each strong component to a single vertex).

