Secant Varieties and Statistical Models

Elizabeth S. Allman University of Alaska Fairbanks

January 8, 2008

Joint Mathematics

Meetings

Joint work with

J. Rhodes

Mathematics and Statistics

C. Matias CNRS, Laboratoire

Background:

"An application of classical invariant theory to identifiability in non-parametric mixtures"

R. Elmore, P. Hall, and A. Neeman, Annales de L'institut Fourier, (2005) 55(1), 1-28.

secant varieties \infty identifiability of statistical parameters

Example

For a population, 3 observed variables X, Y, Z.

- 1. height < 6 ft (Y=1, N=2)
- 2. systolic blood pressure < 120 (Y= 1, N= 2)
- 3. eye color (Br= 1, Bl= 2, Gr= 3)

In addition,

one hidden variable W, with r=2 states: (ethnic group)

This can be formulated as a *conditional independence* model, with 9 parameters:

sub-pop proportions for ethnic groups:

$$\pi_1 = \mathsf{Prob}(\ W = 1\),$$
 $\pi_2 = 1 - \pi_1 = \mathsf{Prob}(\ W = 2\)$

probabilities of observations for sub-pop i:

$$\begin{cases} x_{ij} = \text{Prob}(X = j \mid W = i), \ j = 1, 2 \\ y_{ij} = \text{Prob}(Y = j \mid W = i), \ j = 1, 2 \\ z_{ij} = \text{Prob}(Z = j \mid W = i), \ j = 1, 2, 3 \end{cases}$$

Joint distribution is given by the 12 quantities:

$$p_{ijk} = \text{Proportion of population with } X = i, Y = j, Z = k$$

which the model predicts to be

$$p_{ijk} = \pi_1 \, x_{1i} \, y_{1j} \, z_{1k} + \pi_2 \, x_{2i} \, y_{2j} \, z_{2k}$$

Identifiability —

Is it possible to identify the parameters from these twelve quantities?

Identifiability is required for statistical consistency of inference methods such as Maximum likelihood.

A more geometric viewpoint:

In \mathbb{P}^1 , \mathbb{P}^2 , consider:

$$\begin{cases} \mathbf{x}_1 = (x_{11} \ x_{12}) \\ \mathbf{y}_1 = (y_{11} \ y_{12}) \\ \mathbf{z}_1 = (z_{11} \ z_{12} \ z_{13}) \end{cases} \qquad \begin{cases} \mathbf{x}_2 = (x_{21} \ x_{22}) \\ \mathbf{y}_2 = (y_{21} \ y_{22}) \\ \mathbf{z}_2 = (z_{21} \ z_{22} \ z_{23}) \end{cases}$$

The $2 \times 2 \times 3$ tensors

$$\mathbf{x}_1 \otimes \mathbf{y}_1 \otimes \mathbf{z}_1, \quad \mathbf{x}_2 \otimes \mathbf{y}_2 \otimes \mathbf{z}_2$$

give the distributions for sub-pops 1, 2. Thus

$$\pi_1 \mathbf{x}_1 \otimes \mathbf{y}_1 \otimes \mathbf{z}_1 + \pi_2 \mathbf{x}_2 \otimes \mathbf{y}_2 \otimes \mathbf{z}_2$$

is the parameterized distribution for the population as a whole.

Tensor products describe independence, secants describe conditional independence

The distribution lies in

$$\operatorname{Sec}(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2).$$

More generally:

- r state hidden variable \rightsquigarrow higher secant
- n observed variables X_j , $j=1,\ldots,n$, with s_j states $\leadsto n$ projective spaces \mathbb{P}^{s_j-1}

 $\mathcal{M}(r; s_1, \ldots, s_n)$ denotes the statistical model corresponding to $V = \operatorname{Sec}^r(\mathbb{P}^{s_1-1} \times \cdots \times \mathbb{P}^{s_n-1}).$

Note the particular parameterization is meaningful for statistics.

Questions:

• When is the dimension of *V* as *'expected'*?

Much recent work, including
Catalisano, Geramita, Gimigliano
Abo, Ottaviani, Peterson

ullet What are generators for the ideals of V?

Garcia, Stillman, Sturmfels Landsberg, Manivel, Weyman Allman, Rhodes

- Identifiability of parameters,
 - J. Kruskal,
 - J. Chang,

Elmore, Hall, Neeman

Note: Understanding dimension =

understanding if parameterization is generically finite

This is *not* enough for statistical identifiability.

Label swapping for hidden variable $\leftrightarrow \rightarrow$ at least a r!-to-one map

Want to understand

- structure of generic fiber
- characterize exceptional points, and their fibers

EHN thm — n binary observed variables:

$$V = \operatorname{Sec}^r(\underbrace{\mathbb{P}^1 \times \dots \times \mathbb{P}^1}_{n})$$

Modify parameterization Φ' , to account for r!-to-1-ness (symmetrize parameter space)

Theorem (Elmore, Hall, Neeman): For each $r \geq 2$ there exists a constant C(r) depending only on r, so that if n > C(r) then the map Φ' is birational onto its image.

Moreover,

$$\underbrace{c_1 \ln r}_{\text{Darameter count}} \leq C(r) \leq \underbrace{c_2 r \ln r}_{\text{EHN bound}}$$

Statistical interpretation:

$$\Phi'$$

Parameters
$$\longrightarrow \operatorname{Sec}^r(\underbrace{\mathbb{P}^1 \times \cdots \times \mathbb{P}^1}_n)$$

Stochastic Parameters — Joint Distributions

For r sub-populations, if the number n of observed binary variables is 'large,' then parameters are (generically) identifiable up to label swapping.

'Large' means $n>c_2r\ln r$.

(Bound here is poor.)

Desirable extensions:

- required number of observed variables should be reduced
- consider observed variables with more than 2 states:

$$\mathcal{M}(r; s_1, \dots, s_n) \longleftrightarrow \operatorname{Sec}^r(\mathbb{P}^{s_1-1} \times \dots \times \mathbb{P}^{s_n-1})$$

- allow application to identifiability of many statistical models with hidden variables:
 - multivariate Bernoulli mixture distributions
 - hidden Markov models
 - random graph models, etc.

Basic tool:

Kruskal's Theorem (1977)

Consider the model $\mathcal{M}(r; s_1, s_2, s_3)$ with 3 observed variables.

Let $\pi = (\pi_1 \dots \pi_r)$ be the sub-pop proportions, and M_j the $r \times s_j$ Markov matrix whose rows describe the jth observed variable for each sub-pop.

Define $I_j = \max\{k \mid every \text{ set of } k \text{ rows of } M_j \text{ is independent}\}.$

Theorem: If all entries of π are non-zero and

$$I_1 + I_2 + I_3 \ge 2r + 2$$
,

then from the model's probability distribution π , M_1 , M_2 , M_3 are uniquely determined, up to some permutation.

Theorem (A-, Matias, Rhodes)

Consider the model $\mathcal{M}(r; s_1, s_2, \ldots, s_n)$ where $n \geq 3$. Suppose there exists a tripartition of the set $S = \{1, 2, 3, \ldots, n\}$ into three subsets S_1, S_2, S_3 , such that if $\sigma_i = \prod_{j \in S_i} s_j$ then

$$\min(r, \sigma_1) + \min(r, \sigma_2) + \min(r, \sigma_3) \ge 2r + 2.$$

Then the model is generically identifiable, up to label swapping.

Cor. The r-class, n-binary-feature model $\mathcal{M}(r;2,2,\ldots,2)$ is generically identifiable, up to label swapping, provided

$$n > 2\lceil \log_2 r \rceil,$$

i.e.
$$C(r) = \Theta(\ln r)$$
.

Cor. (in progress...) Applications to identifiability of hidden Markov models, random graph models etc.