RLC 电路的谐振现象

马江岩

2021年12月19日

摘要

同时具有电感和电容两类元件的电路,在一定条件下会发生谐振现象.谐振时电路的阻抗、电压与电流以及它们之间的相位差、电路与外界之间的能量交换等均处于某种特殊状态,因而在实际中有着重要的应用,如在放大器、振荡器、滤波器电路中常用作选频等.本实验中,通过 RLC 电路的相频特性、幅频特性的测量,着重研究 LC 电路的谐振现象.

1 测 RLC 串联电路的谐振频率

RLC 串联电路如图 1 所示. 其总阻抗 |Z|、电压 u 与电流 i 之间的相位差 φ 、电流 i 分别为

$$\begin{split} |Z| &= \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}, \\ \varphi &= \arctan\frac{\omega L - \frac{1}{\omega C}}{R}, \\ i &= \frac{u}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}, \end{split}$$

其中 $\omega = 2\pi f$ 为角频率 (f 为频率), $|Z|, \varphi, i$ 都是 f 的函数, 当电路中其他元件参量取确定值的情况下, 它们的特性完全取决于频率.

当
$$\omega L - 1/\omega C = 0$$
, 即

$$\omega_0 = \frac{1}{\sqrt{LC}} \quad \vec{\boxtimes} \quad f_0 = \frac{1}{2\pi\sqrt{LC}}$$

时, $\varphi = 0$, 电压与电流同相位, 整个电路呈纯电阻性, 总阻抗达到极小值 $Z_0 = R$, 而总电流达到极大值 $i_{\rm m} = u/R$. 这种特殊状态称为串联谐振, 此时角频率 ω_0 (或频率 f_0) 称为谐振角频率 (或谐振频率).

按图 1 所示连接电路. 取 $L=0.1\,\mathrm{H}, C=0.05\,\mu\mathrm{F}, R=100\,\Omega$, 用 CH1, CH2 分别观测 RLC 串联电路的总电压 u 和电阻两端电压 u_R , 两个通道输入线的地 (黑色) 端在 b 点共地. 电感的电阻 $r_L\approx18\Omega$.

图 1: RLC 串联电路.

接通信号源, 先在示波器扫描模式下调好 CH1, CH2 的两条波线, 然后切换到 X-Y 模式, 取消 CH1 通道图线的显示, 适当将 CH2 通道图线的宽度调细, 便于观察. 在 2.25 kHz 左右调节电源频率, 使得 *RLC* 电路的电压和电流无相位差, 即示波器上的李萨如图形为一条直线. 读出此时电路的谐振频率为

$$f_0 = (2.2500 \pm 0.0003) \,\mathrm{kHz},$$

故谐振角频率

$$\omega_0 = 2\pi f_0 \approx (14137.17 \pm 1.88) \,\text{rad/s}.$$

用数字万用表测得 RLC 电路两端总电压为 $u=1.0000\,\mathrm{V}$,电阻两端电压为 $u_R=0.7601\,\mathrm{V}$,电容两端电压为 $u_C=10.579\,\mathrm{V}$. 故电路总电阻为

$$R' = \frac{u}{u_R} R \approx 131.56 \,\Omega,$$

用两种方法测得的品质因数为

$$Q_1 = \frac{1}{\omega_0 R'C} \approx 10.75,$$
$$Q_2 = \frac{u_C}{u} \approx 10.58.$$

下面进行误差分析. 首先有

$$\sigma_{\omega_0} = 1.88 \,\mathrm{rad/s}.$$

根据实验室提供的数据,

$$\sigma_R = \frac{0.01}{\sqrt{3}}\,\Omega = 0.006\,\Omega,$$

$$\sigma_C = 0.05\times0.65\%\,\mu\text{F} = 0.0003\,\mu\text{F}.$$

所用 FLUKE45 多用表交流电压 Medium 挡的允差为 $\pm (0.2\% + 10 \, \text{字})$, 故

$$\sigma_u = 0.0030 \,\text{V},$$

$$\sigma_{u_R} = 0.0025 \,\text{V},$$

$$\sigma_{u_G} = 0.022 \,\text{V}.$$

总电阻的不确定度为

$$\sigma_{R'} = R' \sqrt{\left(\frac{\sigma_u}{u}\right)^2 + \left(\frac{\sigma_{u_R}}{u_R}\right)^2 + \left(\frac{\sigma_R}{R}\right)^2} = 0.59 \,\Omega,$$

故

$$\sigma_{Q_1} = Q_1 \sqrt{\left(\frac{\sigma_{\omega_0}}{\omega_0}\right)^2 + \left(\frac{\sigma_{R'}}{R'}\right)^2 + \left(\frac{\sigma_C}{C}\right)^2} = 0.08,$$

$$\sigma_{Q_2} = Q_2 \sqrt{\left(\frac{\sigma_{u_C}}{u_C}\right)^2 + \left(\frac{\sigma_u}{u}\right)^2} = 0.04.$$

综上, 我们测得 RLC 电路的谐振频率为

$$f_0 = (2.2500 \pm 0.0003) \,\mathrm{kHz},$$

并用两种方法测出电路的品质因数为

$$Q_1 = 10.75 \pm 0.08,$$

 $Q_2 = 10.58 \pm 0.04.$

2 测量 RLC 串联电路的相频特性

用读出示波器 (在双踪显示下) 测出电压、电流间相位差 φ , 其计算公式为

$$\varphi = f\Delta t \times 360^{\circ},$$

其中 Δt 可从示波器显示屏幕上读出.

表 1: 测量 RLC 串联电路的相频特性实验数据.

1.960 -0.102 -71.97 2.080 -0.080 -59.90 2.147 -0.059 -45.60			
1.960 -0.102 -71.97 2.080 -0.080 -59.90 2.147 -0.059 -45.60	(kHz)	ms) $\varphi(^{\circ})$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.759	128 - 81.05	0
2.147 -0.059 -45.60	1.960	102 -71.97	0
	2.080	080 -59.90	0
2.192 -0.038 -29.99	2.147	059 - 45.60	0
	2.192	038 -29.99	0
2.220 -0.019 -15.18	2.220	019 -15.18	0
$2.250 0.000 0.00^{\circ}$	2.250	0.00° 0.00°	
$2.275 \qquad 0.019 \qquad 15.56^{\circ}$	2.275)19 15.56°	
$2.311 0.037 30.78^{\circ}$	2.311	30.78°	
$2.353 \qquad 0.052 \qquad 44.05^{\circ}$	2.353	$052 44.05^{\circ}$	
$2.436 \qquad 0.069 \qquad 60.51^{\circ}$	2.436	069 60.51°	
$2.589 0.078 72.70^{\circ}$	2.589	72.70°	
2.907 0.077 80.58°	2.907	977 80.58°	

图 2: RLC 串联电路的相频特性曲线.

信号频率在 $1.40 \sim 3.10 \,\mathrm{kHz}$ 范围内, 选择相位差 $0^\circ, \pm 15^\circ, \pm 30^\circ, \pm 45^\circ, \pm 60^\circ, \pm 72^\circ, \pm 80^\circ$ 所对应的频率, 进行测量. 测量数据如表 1 所示.

绘出 RLC 串联电路的相频特性曲线, 如图 2 所示.

由图 2 可知, 当 $f < f_0$ 时, $\varphi < 0$, 电流的相位超前于电压, 整个电路呈电容性, 且随 f 降低, φ 趋近于 $-\pi/2$; 而当 $f > f_0$ 时, $\varphi > 0$, 电流的相位落后于电压, 整个电路呈电感性, 且随 f 升高, φ 趋近于 $\pi/2$.

3 测量 RLC 串联电路的幅频特性

在 u = 1.0000 V 保持不变的条件下, 选择在表 1 中所选频率、再加选其相邻两频率间某一合适频率, 测相应的 u_R , 并算出电路的总电流 i. 实验数据如表 2 所示.

f(kHz)	$u_R(V)$	i(mA)	f(kHz)	$u_R(V)$	i(mA)
1.759	0.1403	1.403	2.268	0.7461	7.461
1.850	0.1755	1.755	2.275	0.7358	7.358
1.960	0.2436	2.436	2.290	0.7059	7.059
2.020	0.3027	3.027	2.311	0.6533	6.533
2.080	0.3903	3.903	2.330	0.6022	6.022
2.110	0.4496	4.496	2.353	0.5425	5.425
2.147	0.5402	5.402	2.385	0.4698	4.698
2.170	0.6049	6.049	2.436	0.3809	3.809
2.192	0.6675	6.675	2.505	0.2997	2.997
2.205	0.7013	7.013	2.589	0.2371	2.371
2.220	0.7331	7.331	2.750	0.1698	1.698
2.235	0.7535	7.535	2.907	0.1339	1.339
2.250	0.7593	7.593			

表 2: 测量 RLC 串联电路的幅频特性实验数据.

绘出 RLC 串联电路的幅频特性曲线, 如图 3 所示.

由图 3 可知, 随 f 偏离 f_0 越远, 阻抗越大, 而电流越小. 当频率 $f=2.250\,\mathrm{kHz}$ 时, 电流达到最大值 $i_\mathrm{m}=7.593\,\mathrm{mA}$.

设 f_1, f_2 为谐振峰两侧 $i = i_{\rm m}/\sqrt{2}$ 处所对应频率. 由于在表 2 中, 没有与电流

$$i = \frac{i_{\rm m}}{\sqrt{2}} \approx 5.369 \,\mathrm{mA}$$

4 测量未知元件参数 6

图 3: RLC 串联电路的幅频特性曲线.

所对应的频率, 故我们采用线性插值, 可以求出其所对应的插值后的频率为

$$f_1' = 2.146 \,\text{kHz},$$

$$f_2' = 2.355 \,\text{kHz}.$$

为了验证我们插值得到的 f_1', f_2' 的合理性, 我们在频率 f_1', f_2' 下再次进行实验, 测得所对应的 电流为

$$i_1 = 5.375 \,\mathrm{mA},$$

$$i_2 = 5.372 \,\mathrm{mA},$$

与 $5.369\,\mathrm{mA}$ 很接近, 故不妨就取 $f_1=f_1',f_2=f_2'$. 于是可求出 RLC 串联电路的品质因数为

$$Q_3 = \frac{f_0}{\Delta f} = \frac{f_0}{f_2 - f_1} \approx 10.77.$$

4 测量未知元件参数

下面我们设计电路测量一个未知元件的组成及其参数. 未知元件是由电阻、电容、电感中的其中两个元件串联组成的,实验中,我所测量的是 (16) 号未知元件. 测量电路如图 4 所示.

4 测量未知元件参数 7

图 4: 测量未知元件参数的电路.

仍取 $R = 100 \Omega$, 用 CH1, CH2 分别观测电路的总电压 u 和电阻两端电压 u_R , 两个通道输入线的地 (黑色) 端在 b 点共地. 接通电源后, 在示波器显示屏上观察到电压 u 的相位落后于电流 i, 故未知元件为电容性; 进一步地, 改变电源频率, 发现无论频率如何变化, 电路始终无法达到谐振, 电压的相位始终落后于电流, 故猜测未知元件为电阻与电容串联.

设未知阻值为 R_0 , 电容值为 C_0 , 则未知元件的阻抗为

$$Z = R_0 - j \frac{1}{\omega C},$$

其中 ω 为电源的角频率. 设电源频率为 f, 则

$$\omega = 2\pi f$$
.

设电压与电流的相位差为 φ , 在频率 f 下, 未知元件两端的电压为 u_0 , 通过未知元件的电流为 i_0 , 则可以推出

$$R_0 = rac{u_0}{i_0} rac{1}{\sqrt{1 + an^2 |arphi|}},$$
 $C_0 = rac{1}{2\pi f R_0 an |arphi|}.$

改变电源频率, 同时测量 u_0 , i_0 , 计算出 u 和 i 的相位差 φ , 代入公式求出阻值 R_0 和电容 C_0 . 重复进行 3 次实验, 实验数据如表 3 所示.

5 思考题 8

f(kHz)	$u_0(V)$	$i_0(\mathrm{mA})$	$\varphi(^{\circ})$	$R_0(\Omega)$	$C_0(\mu \mathrm{F})$
1.000	1.0877	4.2160	-77.04°	131.54	0.30
1.200	1.2520	2.5144	-75.17°	127.46	0.28
2.355	1.2727	2.1346	-59.35°	133.72	0.27

表 3: 测量未知元件参数实验数据.

取平均值,得到

$$R_0 = \frac{131.54 + 127.46 + 133.72}{3} \Omega \approx 130.91 \Omega,$$

$$C_0 = \frac{0.30 + 0.28 + 0.27}{3} \,\mu\text{F} \approx 0.28 \,\mu\text{F}.$$

我得到的未知电阻阻值与实验室的参考数据有较大出入,但我确实没有找出我的实验操作和公式中存在什么问题.这有可能是实验室的参考数据不准确的缘故,也可能是我自身的问题,还请老师指正.

5 思考题

1. 若把图 1 中的 R 改为 500Ω , 而其他条件不变时, 电路的谐振特性会有什么变化? 若 R 由 100Ω 改为 500Ω , 电路的谐振频率

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

不变, 但电路的总电阻 R' 将从原来的 131.56Ω 增加到 531.56Ω . 而

$$Q = \frac{1}{\omega_0 R'C},$$

故品质因数 Q 将从原来的 10.75 下降到约 2.66, 即原来的四分之一. 又由

$$Q = \frac{f_0}{\Delta f},$$

故 Q 减小为原来的四分之一意味着谐振峰将被削平, 通频带宽度变为原来的四倍, 而电容和电感上的谐振电压变为原来的四分之一. 反映到曲线上, 相当于幅频特性曲线和相频特性曲线都被水平拉长为原来的四倍.

2. Q 表是常用的一种测量电抗元件 Q 值的仪器。图 5 为其原理图。待测样品为磁环上绕制的电感线圈,它等效于一个纯电感 L 和损耗电阻 $R_{\rm r}$, C 为近乎无损耗的空气介质电容器,f 为高频信号源,V, V_C 为毫伏表。

5 思考题 9

图 5: Q 表原理图.

(a) 说明测量原理;

品质因数 Q 具有电压分配特性, 即谐振时 $u_L = u_C = Qu$, 电感、电容上的电压均为 总电压的 Q 倍. Q 表测量品质因数 Q 就是利用了这一原理.

(b) 写出测量步骤;

在总电压 u 不变的条件下, 调节电源频率, 使电容两端电压 u_C 达到最大值, 此时可认为电路达到谐振. 则品质因数

$$Q = \frac{u_C}{u},$$

电阻和电感分别为

$$R_{\rm r} = \frac{1}{\omega_0 CQ} = \frac{1}{2\pi f_0 CQ},$$

$$L = \frac{QR_{\rm r}}{\omega_0} = \frac{QR_{\rm r}}{2\pi f_0}.$$

(c) 若在测某样品时, $C=330\,\mathrm{pF}$, $f_0=600\,\mathrm{kHz}$, $u=10\,\mathrm{mV}$, $u_C=1.00\,\mathrm{V}$, 试求 L,R_r,Q 值.

由上一问的公式,

$$Q = \frac{u_C}{u} = 100,$$

$$R_{\rm r} = \frac{1}{2\pi f_0 CQ} \approx 8.04 \,\Omega,$$

$$L = \frac{QR_{\rm r}}{2\pi f_0} \approx 0.213 \,\mathrm{mH}.$$

参考文献

[1] 吕斯骅, 段家忯, 张朝晖. 新编基础物理实验[M]. 北京: 高等教育出版社, 2006.