

Proyecto Final de Estudios

Cosechador de Lechugas Autónomo con Unidad de Detección por Inteligencia Artificial

> Brenda Gudiño Alan Vignolo

Fecha de presentación XX/XX/2025

Índice general

Re	Resumen					
1.	Intr	oducci	ón	4		
				4		
	1.2.		·	4		
	1.3.	•	·	4		
	1.4.		tura del Documento	4		
2.	Mar	co Teá		5		
	2.1.		1	5		
	2.2.		V I V	5		
	2.3.	Cinem	ática de Robots Cartesianos	5		
	2.4.	Sistem	as de Transmisión Mecánica	5		
	2.5.	Contro	ol de Motores Paso a Paso	5		
_	ъ	11		_		
3.				6		
	3.1.			7		
	3.2.		v	7		
				7		
		3.2.2.		7		
		3.2.3.		7		
		3.2.4.		7		
		3.2.5.		7		
		3.2.6.		7		
	2.2	3.2.7.	v	7		
	3.3.		v v	7		
		3.3.1.		7		
		3.3.2.	9	7		
		3.3.3.	v	7		
		3.3.4.		7		
		3.3.5.	Control de Movimiento	7		
			Protocolo de Comunicación UART	7		
	3.4.		a de Supervisión y Alta Gestión (Nivel Supervisor)	7		
		3.4.1.	Arquitectura del Nivel Supervisor	7		
		3.4.2.	Hardware Supervisor - Raspberry Pi 4	7		
		3.4.3.	Máquina de Estados Supervisora	7		
		3.4.4.	Coordinación con Nivel Regulatorio	7		
	3.5.	_	V I I	7		
		3.5.1.	Arquitectura General del Sistema de IA	7		
		3.5.2.	Sistema de Visión Artificial	7		
		3.5.3.	Calibración Espacial del Sistema	7		
		3.5.4.	Red Neuronal Convolucional para Clasificación	7		
		3.5.5.	Mapeo Inteligente del Entorno	7		
		3.5.6.	Optimización de Trayectorias	7		
		3.5.7.	Algoritmos de Corrección de Posición	7		
		3.5.8.	Integración de Módulos de IA	7		

Proyecto Final de Estudios: Robot cosechador automático

		Interfaz de Usuario y Supervisión	7 7			
4.	Pru	ebas y Resultados	8			
	4.1.	Metodología de Pruebas	8			
	4.2.	Pruebas del Sistema Mecánico	8			
	4.3.	Pruebas del Sistema de Control	8			
		Pruebas del Sistema de IA	8			
	4.5.	Pruebas de Integración	8			
		Análisis de Resultados	8			
5.	Con	iclusiones y Trabajo Futuro	9			
		Conclusiones Generales	9			
		Aportes del Proyecto	9			
		Trabajo Futuro	9			
\mathbf{A} .	Diag	gramas Eléctricos Completos	10			
в.	B. Código Fuente Relevante					
$\mathbf{C}.$	C. Especificaciones Técnicas de Componentes					
D.	D. Manual de Usuario					
Ε.	E. Hojas de Datos					
$\mathbf{R}_{\mathbf{c}}$	Referencias					

Resumen

1. Introducción

- 1.1. Contexto y Motivación
- 1.2. Objetivos del Proyecto
- 1.3. Alcance y Limitaciones
- 1.4. Estructura del Documento

2. Marco Teórico

- 2.1. Sistemas de Control Jerárquico
- 2.2. Fundamentos de Visión Artificial y Aprendizaje Profundo
- 2.3. Cinemática de Robots Cartesianos
- 2.4. Sistemas de Transmisión Mecánica
- 2.5. Control de Motores Paso a Paso

UNCuyo - Ing. Mecatrónica

3. Desarrollo del Sistema

- 3.1. Arquitectura General del Sistema
- 3.2. Modelado y Diseño Mecánico
- 3.2.1. Especificaciones de Diseño y Restricciones
- 3.2.2. Análisis Cinemático del Sistema
- 3.2.3. Diseño Estructural
- 3.2.4. Sistema de Movimiento Horizontal
- 3.2.5. Sistema de Movimiento Vertical
- 3.2.6. Brazo Robótico
- 3.2.7. Modelado CAD y Fabricación
- 3.3. Sistema de Control de Bajo Nivel (Nivel Regulatorio)
- 3.3.1. Arquitectura del Nivel Regulatorio
- 3.3.2. Hardware de Control Arduino Mega 2560
- 3.3.3. Selección y Dimensionamiento de Actuadores
- 3.3.4. Sensores de Seguridad
- 3.3.5. Control de Movimiento
- 3.3.6. Protocolo de Comunicación UART
- 3.4. Sistema de Supervisión y Alta Gestión (Nivel Supervisor)
- 3.4.1. Arquitectura del Nivel Supervisor
- 3.4.2. Hardware Supervisor Raspberry Pi 4
- 3.4.3. Máquina de Estados Supervisora
- 3.4.4. Coordinación con Nivel Regulatorio
- 3.5. Inteligencia Artificial y Visión por Computadora
- 3.5.1. Arquitectura General del Sistema de IA
- 3.5.2. Sistema de Visión Artificial
- 3.5.3. Calibración Espacial del Sistema

4. Pruebas y Resultados

- 4.1. Metodología de Pruebas
- 4.2. Pruebas del Sistema Mecánico
- 4.3. Pruebas del Sistema de Control
- 4.4. Pruebas del Sistema de IA
- 4.5. Pruebas de Integración
- 4.6. Análisis de Resultados

5. Conclusiones y Trabajo Futuro

- 5.1. Conclusiones Generales
- 5.2. Aportes del Proyecto
- 5.3. Trabajo Futuro

UNCuyo - Ing. Mecatrónica

Mendoza - Argentina - 2025

A. Diagramas Eléctricos Completos

B. Código Fuente Relevante

UNCuyo - Ing. Mecatrónica

Mendoza - Argentina - 2025

C. Especificaciones Técnicas de Componentes

D. Manual de Usuario

E. Hojas de Datos

Referencias