4

2

Want more revision exercises? Get MathsFit HSC Mathematics for \$2.95/topic

2016 13 Consider the function $y = 4x^3 - x^4$.

- **a** (i) Find the two stationary points and determine their nature.
 - (ii) Sketch the graph of the function, clearly showing the stationary points and the *x* and *y* intercepts.

(i)
$$y = 4x^3 - x^4$$

 $y' = 12x^2 - 4x^3 = 0$
 $4x^2(3 - x) = 0$
 $x = 0 \text{ or } 3$
 $y(0) = 4(0)^3 - (0)^4$
 $= 0$
 $y(3) = 4(3)^3 - (3)^4$
 $= 27$

 \therefore stationary points at (0, 0) and (3, 27).

$$y'' = 24x - 12x^{2}$$
$$y''(0) = 24(0) - 12(0)^{2} = 0$$

.. possible horizontal point of inflexion.

Now, consider the slope of curve near x = 0:

X	-1	0	1
y'	>0	0	>0

:. horizontal point of inflexion at (0, 0).

Also,
$$y''(3) = 24(3) - 12(3)^2 < 0$$

 \therefore maximum at (3, 27).

 \therefore horizontal point of inflexion at (0, 0) and maximum at (3, 27).

State Mean: **3.01**

BOSTES: Notes from the Marking Centre

This information is released by BOSTES in late Term 1 2017.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.