淡江大學數學學系碩士班

碩士論文

指導教授: 伍志祥 博士

比較季節性時間序列預測模型

-台灣地區能源消費之實證研究

A comparison of seasonal time series models for forecasting the energy consumption in Taiwan

研究生: 黃千珊 撰

中華民國 97年1月

論文名稱:比較季節性時間序列預測模型

一台灣地區能源消費之實證研究

頁數:59

校系(所)組別:淡江大學 數學學系(碩士班)B組

畢業時間及提要別:96 學年度 第1 學期 碩士學位論文提要

研究生: 黃千珊 指導教授: 伍志祥 博士

論文提要:

近年來,全球能源價格節節上升,需求量及消費量大增,由鑑於此,本文將針對台灣地區能源消費量進行預測,希望能掌握未來消費量趨勢,所以將採用四種預測模型,分別為季節性整合自我迴歸移動平均模型(SARIMA)、季節性時間數列迴歸模型(RMTSE)及倒傳遞類神經網路(BPN),第四種模型將混合 SARIMA 與BPN(SARIMABP),並探討此混合性模型是否能改善其預測結果。研究結果發現,當時間序列之資料圖形震盪較為明顯採用 BPN 能得到較好預測,反之,資料圖形震盪較為平穩,則採用 SARIMA 能得到較好預測,反之,資料圖形震盪較為平穩,則採用 SARIMA 能得到較好預測,且採用混合性模型更能改善預測誤差。

關鍵字:時間序列;能源;能源消費量

Title of Thesis: A comparison of seasonal time series models for forecasting the energy

consumption in Taiwan

Total pages: 59

Key word: Time series; energy; energy consumption

Name of Institute: Department of Mathematics, Tamkang University

Graduate date: January, 2008 Degree conferred: Master

Name of Student: Chian-Shan Huang Advisor: Dr. Jyh-Shyang Wu

黄千珊 伍志祥 博士

Abstract:

Recently, the energy price keeps increasing. Both the demand and the consumption are on the rise. Due to these scenarios, this essay will try to predict the energy consumption in Taiwan, hoping to get a better grasp of the future trend. We will use the following four models for prediction, and they are Seasonal Autoregressive Integrated Moving Average Models (SARIMA), Regression Models with Time Series Errors (RMTSE), Back-propagation Network(BPN), and hybrid SARIMA and BPN(SARIMABP). The findings discovered that, at that time series of graph the sequence shook obviously uses BPN to be able to obtain a better forecast, otherwise, the graph shook steadily, used SARIMA to be able to obtain a better forecast, and adopt the mixing model to be able to improve the forecast error.

致謝詞

時間過得很快,在淡江的日子也邁入第四年了,除了學習本科專業知識外, 也利用後兩年的時間修習教育學程,雖然加重自己課業上的負擔與壓力,但很高 興能在淡江的日子裡好好利用學校資源,從各位老師身上學習更多知識,這也是 一種甜蜜的負擔。

這篇論文的產生,首先,要感謝伍志祥老師及賈容老師長時間的指導,包容 我修習學程的課業壓力、體諒我時間上的不足,所以很感謝這兩位老師在這段期 間上給我的建議及協助,從中也發現我無法認清的錯誤,亦能立即給予糾正及釐 清。除此之外,也感謝陳天文老師撥空擔任這次口試委員,在最後陳天文老師也 給予書寫、排版論文並需要注意的事項,讓我得藉此機會改進。

此外,也感謝已畢業的同窗好友及學弟妹在生活、課業及教育學程上的協助。 最後,要感謝家人這四年來的付出及支持,讓我在這段期間無後故之憂的學習, 藉此機會,將完成論文的愉悅心情,分享給所有關心、支持我的人。

> 研究生 黃千珊 謹識於 淡江大學數學學系碩士班 2008 年 1 月

目 錄

第一章	緒論	1
第一節	石化能源	1
第二節	台灣能源政策白皮書	2
第三節	研究資料描述	4
第四節	研究目的	5
第五節	研究架構	6
第二章 3	文獻回顧與探討比較	7
第一節	國內文獻探討	7
第二節	國外文獻探討	9
第三章 石	研究方法	11
第一節	季節性整合自我迴歸移動平均模型 SARIMA·····	11
第二節	季節性時間序列迴歸模型 RMTSE	13
	3.2.1 季節性時間序列迴歸模型概念	13
	3.2.2 Duribin-Watson ·····	15
第三節	類神經網路—倒傳遞類神經網路 BPN	16
	3.3.1 類神經網路概念	- 0
	3.3.2 倒傳遞類神經網路	- 0
	3.3.3 倒傳遞類神經網路演算過程	
	3.3.4 類神經網路軟體計算過程	22
第四節	混和整合自我迴歸移動平均模型與倒傳遞類神經網路 SARIMAB	P 23
第五節	評估測量的預測誤差	24
第四章	實證研究	25
第一節	台灣地區能源消費量資料描述	25
第二節	台灣地區能源分析結果	
	4.2.1 台灣地區能源總消費量	28
	4.2.1.1 SARIMA	28
	4. 2. 1. 2 RMTSE	33
	4. 2. 1. 3 BPN ·····	34
	4.2.1.4 混合 SARIMA 與 BPN(SARIMABP)	35
	4.2.1.5 結論	35
	4.2.2 台灣地區煤炭消費量	37
	4.2.3 台灣地區電力消費量	
	4.2.4 台灣地區石油產品消費量	43
第五章 系	告論與建議	47
附錄		49
參考文獻		58

圖目錄

1.1	研究流程圖	6
3. 1	單變數 ARIMA 模型建構流程圖	12
3.2	生物神經元模型	
3.3	人工神經元模型	17
3.4	倒傳遞類神經網路架構	18
4.1	能源總消費量之歷史資料圖形	26
4.2	煤炭總消費量之歷史資料圖形	26
4.3	電力消費量之歷史資料圖形	
4.4	石油產品消費量之歷史資料圖形	27
4.5		
4.6	能源總消費量經自然對數後差分一次之圖形	29
4.7	能源總消費量經自然對數後差分一次之 acf 圖形 ···································	29
4.8	能源總消費量經自然對數後差分一次之 pacf 圖形	30
4.9	對能源總消費量做自然對數轉換,非季節性差分一次,季節性差分一	次所
	得之 acf 圖形 ···································	31
4.10	對能源總消費量做自然對數轉換,非季節性差分一次,季節性差分一	次所
	得之 pacf 圖形 ···································	31
4.11	能源總消費量 SARIMA 所得殘差之 acf 圖形 ···································	32
4. 12	能源總消費量 SARIMA 所得殘差之 pacf 圖形 ···································	32
4. 13	能源總消費量 RMTSE 所得殘差之 acf 圖形 ·······	33
4.14	能源總消費量 RMTSE 所得殘差之 pacf 圖形 ·······	34
4. 15	國內總消費量之歷史資料(實線)與預測值(虛線)	36
4. 16	煤炭消費量 RMTSE 所得殘差之 acf 圖形	37
4.17	煤炭消費量 RMTSE 所得殘差之 pacf 圖形	38
4. 18	國內煤炭消費量之歷史資料(實線)與預測值(虛線)	39
4. 19	電力消費量 RMTSE 所得殘差之 acf 圖形	40
4.20	電力消費量 RMTSE 所得殘差之 pacf 圖形	…41
4. 21	國內電力消費量之歷史資料(實線)與預測值(虛線)	42
4. 22	石油產品消費量 RMTSE 所得殘差之 acf 圖形	43
4. 23	石油產品消費量RMTSE所得殘差之pacf圖形 ·······	44
4. 24	石油產品消費量之歷史資料(實線)與預測值(虛線)	

表目錄

表一	能源總消費量預測模型比較36
表二	煤炭消費量預測模型比較39
表三	電力消費量預測模型比較42
表四	石油產品消費量預測模型比較45
表五	各類別能源之季節性迴歸模型 RMTSE 參數估計值46

附 錄

附表一:	台灣地區能源消費量 ······49
附圖一:	煤炭消費量月資料經自然對數及一次差分後之歷史資料圖形50
附圖二:	對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之 acf 之圖形
附圖三:	對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之 pacf 之圖形
附圖四:	對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之殘差 acf 之圖形
附圖五:	對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之殘差 pacf 之圖形
附圖六:	電力消費量月資料經自然對數及一次差分後之歷史資料圖形52
附圖七:	對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之 acf 之圖形
附圖八:	對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之 pacf 之圖形
附圖九:	對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之殘差 acf 之圖形
附圖十:	對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分
	一次所得之殘差 pacf 之圖形
附圖十一:	石油產品消費量月資料經自然對數及一次差分後之歷史資料圖形…55
附圖十二:	石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性
	差分一次所得之 acf 之圖形
附圖十三:	石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性
	差分一次所得之 pacf 之圖形
附圖十四:	石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性
	差分一次所得之殘差 acf 之圖形 ······56
附圖十五:	石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性
	差分一次所得之殘差 pacf 之圖形57

第一章 緒論

第一節 石化能源

近年來,經濟蓬勃發展、石化能源〔註1〕不足,能源議題成爲大家熱烈討論的話題。如原油,全球最大的石油生產壟斷集團 OPEC(石油輸出國家組織)繼續保持原有產量而不願意增產,再加上人類對原油的消耗速度越來越快,及油田漸漸開發殆盡,對長期時間來說,油價當然會居高不下。

國內油價的波動便因爲受供油量不足的影響,不斷節節高漲,民眾唉聲四起,但相對於其他依賴進口石油的國家,台灣並未徵收較高稅率,油價也相較其他國家低廉,油價低意味著使用成本低,也正因爲使用成本低,就未將能源(石油)視爲珍貴資產,更未能使其物盡其用,正是爲何在台灣鼓吹節約能源的成效不高。除了石油有這樣的問題出現,反觀其他能源(天然氣、媒等)亦有這樣的問題產生。進入二十一世紀後,石油僅夠未來41年之需,天然氣也僅能再開採67年,而煤炭可開採333年,雖然煤炭可供百年之需,若考慮開發中國家未來能源需求的快速成長,石化能源將可能在二十一世紀就消失殆盡。

除了石化能源供給量逐漸減少的問題外,使用石化能源所產生的有毒氣體,也影響全球氣候的變遷及生態等環境問題。能源議題是目前全球各國首要關注的議題,一面鼓吹節約能源、重視環保外,一面也在積極尋找替代性能源,如:自然再生能源(太陽能)、人工再生能源、替代性能源(生質柴油)。除了開發新能源、減少能源使用量外,若各國能精確掌握其能源需求量,更能作爲日後開發及控制能源產量的依據,不再重蹈石化能源一樣的覆轍,因爲無止盡的開發及使用,將會造成能源使用殆盡所帶來的民生衝擊和環境危害。

〔註1〕石化能源包括石油、煤、天然氣,及其衍生物。

第二節 台灣能源政策白皮書

能源是推動國家發展及經濟活動的基本動力,對於國家安全與人民生活是非常重要的,只是台灣天然能源蘊藏貧瘠,所需幾乎全依賴進口,因此易受國際能源情勢之影響,而造成國內能源價格的波動。再加上全球使用能源所排放的有毒氣體,造成全球暖化、溫室效應等危機,在環保意識抬頭下,國際訂定「京都議定書」等政策來掌握與改善全球環境的變遷,而台灣也順應國際潮流,在西元2005年召開「全國能源會議」,以兼顧經濟、能源與環境之永續發展爲主要訴求,爲調整未來國內能源實施政策而努力。

目前台灣能源是以「永續」、「安全」、「效率」及「潔淨」為核心目標,並以加強能源技術之研究發展爲實施方針,落實能源市場供需平穩、提高能源效能、開放能源事業、重視環保及教育宣導。放眼於國內自有能源不足,能源進口高度依賴,爲促使能源取得方式可以多元化,更可以提昇自有比率,能源科技研發爲必要發展方向,其中又以再生能源、能源新利用及節約能源技術爲推動重點。

以下爲「台灣能源政策白皮書」具體計畫:

1. 穩定能源供應,提高自主能源:

預定 2010 年發電裝置容量達到 513 萬瓩,2020 年達到 700~800 萬瓩,2025 年達到 800~900 萬瓩;並擴大低碳(天然氣)之潔淨能源使用,預定天然氣總用 量在 2010 年達 1,300 萬公噸,2020 年達到 1,600~2,000 萬公噸,2025 年達到 2,000~2,200 萬公噸。

2. 節約能源及提高能源使用效率

提升價格機能,加強效率管理,採行高效率發電設備,新設及更新擴建燃煤機組熱效率由目前的 35%提升到未來 40%。節約能源目標預計 2010 年可節約 658 萬公秉油當量、2015 年爲 1,243 萬公秉油當量、2020 年爲 2,400 萬公秉油當量、2025 年爲 3,512 萬公秉油當量。

3. 規劃能源與電源結構方向

未來能源結構中之石油配比將下降,煤炭配比隨著核能運用相對調整, 天然氣與再生能源配比增加,隨能源總使用量變化而變動。根據上述原則, 規劃及檢討中長程整體能源供需策略,能源結構配比在 2025 年: 煤 41~45%、 油約 30~31%、天然氣 16~19%、核能 4%、再生能源 5~7%。

4. 綠色能源發展與提高能源使用效率

發展綠色能源〔註 2〕及提高能源效率應合併考量、相輔相成,在建立再生能源永續發展環境上,應健全再生能源發展機制,再生能源推廣目標: 2010年占總能源 3%~5%,或發電裝置容量為 500 萬瓩約 10%。

(出處:台灣經濟部能源局)

[註2] 綠色能源是指可再生能源,如水能、生物能、太陽能、風能、地熱能和海洋能。這些能源消耗之後可以恢復補充,很少產生污染包括在能源的生產、及其消費過程中。

第三節 研究資料描述

國內能源消費量節節高升,民國 81 年(西元 1992 年)已破 55,000 千公秉油當(10³ KLOE)大關,已來到 56,020.5 千公秉油當,而今年(民國 96 年,西元 2007 年)第一季(1至 3月)的消費量已有 26,347.8 千公秉油當。需求量是反應市場消費能力的一種指標,所以能源局也預估今年能源總需求量可能會達到173,900 千萬公秉油當,雖然國內需求量大但其能源結構並沒有太大改變,還是以傳統性能源爲主,約爲媒占 40~42%、石油占 32%、天然氣占 14~18%、核能占 7%、再生能源占 4~6%,相對上其能源消費結構依然以傳統性能源爲主。

在國際上,國際能源總署更指出到了西元 2030 年時,全球需求量比目前增加 50%,而美國能源情報署也在近日公布西元 2007 年國際能源展望報告,預估在西元 2004 年至 2030 年之間,國際能源消費量總量將增加百分之五十七,主要來自於開發中亞洲國家能源需求暴增所致,尤見國內外年年對能源需求大增,再加上能源需求結構依然沒有太大改變,因此必須更精確掌握未來能源的需求量,並且有效提高能源使用效率爲要,所以將針對國內能源消費量來探討,瞭解國內能源消費量,再配合國內能源政策,進而掌握能源消費量。預測模型之變數分別以能源總消費、煤炭、電力(單位:百萬度 GWh)及石油產品消費量來做研究對象,其資料採取自於 AREMOS 經濟統計資料庫系統中的「台灣地區能源統計資料庫」,以月爲資料頻率,其資料期間從民國 85 年(西元 1996 年)1 月至民國 95 年(西元 2006 年)12 月,共計 11 年,得月資料 132 筆,在本文將以前 10 年(民國 85 年 1 月至民國 94 年 12 月止),共 120 筆月資料作爲預測模式的資料,最後一年(民國 95 年)共 12 筆月資料作爲檢測預測模型誤差資料。

第四節 研究目的

本文有鑑於環保意識抬頭及國內能源政策實施,想要瞭解國內能源消費量未來趨勢,所以將針對國內能源消費量之不同類別:能源總消費量、煤炭消費量、電力消費量及石油產品消費量分別作為變數,進行單變數之預測,本文採用四種不同的預測模型,以整合自我迴歸移動平均模型(ARIMA)模型、迴歸模型、類神經網路(ANN)及混合 ARIMA與 ANN,分別對這些單變數做預測並加以比較其預測誤差,從中選擇出較適合能源消費量之預測模型,作為往後預測能源消費量之依據。由於某些變數具有季節性的特性,所以將 ARIMA 和迴歸模型配置為季節性整合自我迴歸移動平均模型(SARIMA)、季節性時間數列迴歸模型及類神經網路,因此對於所採用的預測模型皆須考慮此特性,。

第五節 研究架構

本研究共分成五章,分別爲第一章緒論,說明研究動機與目的、資料來源及研究架構。第二章爲文獻探討,針對國內外文獻、預測模型及能源資料,進行分析與比較。第三章爲研究方法,分別利用季節性整合自我迴歸移動平均模型(SARIMA)、季節性時間數列迴歸模型、類神經網路(ANN)及混合 SARIMA與 ANN,四種模型來探討國內能源需求資料,並建立適當模式及參數,預測未來資料。第四章爲實證研究與分析結果,對於模擬結果與預測結果加以整理彙整並說明之。第五章爲結論與建議,就資料模擬結果及研究探討,提出研究結論並提供後續之研究。

圖 1.1: 研究流程圖

第二章 文獻回顧與探討比較

因地球暖化日趨嚴重,全球逐漸重視到使用能源所產生之有毒氣體,造成全球氣候的異常,及石化能源的供應量不足,造成價格不斷翻漲,並開始關注能源的使用量和所排放的廢氣量造成的問題,所以能源是目前全球最爲關注的議題,許多國內、外學者紛紛提出他們對未來能源趨勢的看法,也採用不同模式、方式進行各種能源分析及探討,欲瞭解未來能源的趨勢,本章將分別以國內文獻與國外文獻兩部分進行探討與比較。

第一節 國內文獻探討

國內對於能源領域的探討研究還並不盛行,所以針對本節將進行國內近期有關能源或是與本文採用相同預測模式的文獻進行探討。

黃正忠(1982)因國內自產能源有限,大多都是仰賴進口,所以能源供給、價格易受國際能源的影響,因此利用最小平方法研究能源供需是受需求與價格的影響。分別按部門別及能源類別之供需,以普通最小平方法進行估計,並預測民國七十一年至八十一年之能源需求。由模型實證結果,可瞭解國內能源需求結構之變化、短期需求、及國際原油價格變遷對國內能源價格之影響等,亦有顯著的效果。

歐員弟、吳榮華(1998)利用單根檢定、BDS 殘差分析、時間數列分析法、 R/S 分析法和相關維度分析法等進行短期國際油價變動是否符合效率市場假說的 探討,研究結果知道原油效率市場之可能性是存在。 劉蘇萍(2002)針對台灣各種能源需求進行討論,所以利用結構性轉換、因素分解及向量誤差修正模型,來針對台灣能源需求之結構性變化、影響因素及節能政策效果三方面進行討論。對結構性轉變將採用 Chow test、CUSUM test 及 CUSUM of square test 來檢測,因此先建立能源需求的 ARIMA 模型及線性迴歸模型來實行,其實證結果顯示,政府實施能源自由化措施使車用汽油及燃料油的消費量上升。對於因素分解的實證結果顯示柴油、燃料油及液化石油氣的節能成效良好,但是實際分解節能成效良好因素,可以發現多爲耗能產業的外移所導致的產業結構變遷效果,並非純粹能源使用效果提升。

許哲強、賴正文及陳家榮(2003)將採用類神經網路進行台灣整體及各區域設立區域一次變電所負載預測之研究,用以推估各區域未來一次變電所非同時尖峰負載之情形,研究結果可供未來興建及規劃一次變電所之參考依據。根據類神經網路進行區域一次變電所不同時間尖峰負載預測,結果發現,在北部地區尖峰負載成長最快,其次則爲中部地區,所以結果顯示未來若欲興建一次變電所,應首先考量北部地區。

孫育伯、廖惠珠(2005)檢測國際原油價格是否具有結構性轉變,採用 BP (Benerjee et al.及 Perron and Vogelsang,1992)單一方程式迴歸測定多重結構轉變的方法,其轉折點發生在 1999 年 10 月,亦顯示出結構轉變使得西德州原油(West Texas Intermediate,簡稱 WTI)平均每桶上升 10 美元之多,且我國經濟體系相當依賴國際原油,易提醒國人油價將有大幅走揚之趨勢。

第二節 國外文獻探討

R.E Abdel-Aal and A.Z.Al-Garni (1996) 探討東沙烏地阿拉伯這個開發中國家,使用季節性整合自我迴歸移動平均模型(SARIMA)對於其電力消費量月資料來做預測,採用兩種模型(1)結合季節性之自我迴歸模型(AR) (2)結合季節性之移動平均模型(MA),比較此兩種模型,並選取預測誤差較小的模型來做未來電力消費量的預測,對此單變數數列而言,結合季節性之AR模型所得的預測誤差較小,因此提出以電力消費量爲變數之預測模型,可以使用結合季節性之AR模型來做未來預測。

Chavez et al. (1998)採用整合自我迴歸移動平均模型(ARIMA)預測北西班牙 Asturias 能源產品消費量—家用電、工業用電、黑媒、無煙媒及總電力五種能源產品,其資料期間從西元 1980 年至 1996 年,利用平均絕對誤差(MAE)及平均絕對百分誤差(MAPE)來得到適合之模型,之後採用此配適模型去預測西元 1997 年至 1998 年各能源產品消費量。

Tseng et al. (1999~2000) 採用類神經網路(ANN)與 SARIMA 來預測台灣地區機械工業(The Taiwan machinery industry)生產值及英國蒙哥馬利群(Montgomery)每月清涼飲料銷售量來做預測,並結合 ANN與 SARIMA 得到另一配適模型,並用此模型來預測。所謂結合 ANN中倒傳遞類神經網路(BPN)與 SARIMA(SARIMABP),就是先將資料先做 SARIMA 預測得到預測值及殘差,再將 SARIMA 所得到預測值及殘差輸入 BPN中,之後去得到較小殘差。使用上述三種方法及不同資料期間來預測,並採用平均平方誤差(MSE)、平均絕對誤差(MAE)及平均絕對百分誤差(MAPE)來比較三種模型之預測誤差,得到的結果則是採用 SARIMABP模型及資料期間較短者所得到的誤差較小,亦可說明採用 SARIMABP模型及資料期間較短者來做預測所得到的預測能能較佳。

G. Peter Zhang (1999~2001) 混和 ARIMA 和 ANN、ARIMA 及 ANN 三種模式,欲探討何種方式能得到較小預測誤差,實證包含有西元 1770 年至 1987 年共 288 筆太陽黑子月資料、西元 1821 年至 1934 年共 114 筆山貓個數年資料及西元 1980 年至 1993 年共計 731 筆英鎊與美金匯率週資料,並採用 MSE 及 MAD 兩種測量誤差。

Saab et al. (2000)探討 Lebanon(黎巴嫩)電力能源消費量(資料期間:西元 1990 年 1 月至 1999 年 5 月),採用單變數模型之預測。分別採用 AR、ARIMA 及 AR 結合 Highpass filter(AR+HPF)三種預測模式,並採用 MAPE 及 MSPE 兩種測量誤差,對於電力能源消費量的預測,採用 AR(1)/HPE 能得到較好的預測結果。

Tugba Taskaya-Temizel and Matthew C. Casey(2005)結合 SARIMA 及 ANN 模式得到混和型模式,先將預測資料先做 ARIMA 預測得到預測資料及殘差,再利用所得的殘差配適 ANN 得到預測殘差,再將 ARIMA 所得到預測資料再加上 ANN 得到的預測殘差,既是使用混和型模式所得到的預測值。此論文採用時間延緩類神經網路(time-delay neural network, TDNN)及 ARIMA 做結合,與 TDNN模式、ARIMA 模式預測結果做比較,可以得到混和型模式較單一模式所得到的配適結果較好。

Volkan S. and Sertac (2007) 利用 ARIMA、SARIMA 來預測 2005 年至 2020 年土耳其主要能源需求量對國內生產總值(GDP)的影響,其預測變數有石油、天然氣、煤及主要能源等十七個項目中,其預測結果發現西元 2005 年至西元 2020 年,個別能源的需求量都有在增加,但總能源需求量相對上是減少的,所以可解釋爲這十幾年內能源需求量達到最高峰並且造成 GDP 的快速成長,因 GDP 的成長量大於能源消費量,而造成這樣的狀況發生,但也知道能源需求量對國家的經濟體系有很大的影響,若未來能源需求量減少,也會帶動國家經濟成長率的降低。從預測結果中也發現土耳其在未來幾年內,其能源需求量有逐漸下降的趨勢,但其石化燃料在未來土耳其能源需求上依然扮演著重要角色。

第三章 研究方法

第一節 季節性整合自我迴歸移動平均模型 SARIMA

(Seasonal Autoregressive Integrated Moving Average Models)

季節性時間序列可認為在一個正常狀況下的一種干擾現象,因其具有規則性,故可以預知,但若此序列為無定向序列,則需對此序列進行季節性差分,將其轉為平穩型的季節性序列。

一般 $SARIMA(p,d,q)\times(P,D,Q)$ 。可表示為:

$$\Phi_{P}(B^{s})\phi_{p}(B)(1-B^{s})^{D}(1-B)^{d}Z_{t} = \Theta_{Q}(B^{s})\theta_{q}(B)a_{t}$$
(1)

其中 p,d,q,P,D,Q,s,t 皆爲整數;

s 為季節性序列的週期;

d 爲例行性差分次數,第d 次差分運算子 $\nabla^d = (1-B)^d$;

D 爲季節性差分的次數,第d 次季節性差分運算子 $\nabla_s^D = (1-B^s)^D$;

 Z_t 在時間點 t 時的實際觀測值 $t=1,2,\ldots,k$,每個觀測值可以用諸個獨立且 具相同機率分配之隨機變數序列 $a_t,a_{t-1},a_{t-2},\cdot\cdot\cdot$ 之線性組合,稱此序列 $\{a_t\}$ 爲白色干擾過程(White Noise Process),通常假設 $\{a_t\}$ 爲常態分配,期望值爲 0、變異數爲 σ_a^2 。

$$\begin{split} \phi_p(B) = & 1 - \phi_1 B - \phi_2 B^2 - \cdot \cdot \cdot - \phi_p B^p, (\phi_1, \phi_2, \cdot \cdot \cdot, \phi_p)$$
 爲自我迴歸參數;
$$\theta_q(B) = & 1 - \theta_1 B - \theta_2 B^2 - \cdot \cdot \cdot - \theta_q B^q, (\theta_1, \theta_2, \cdot \cdot \cdot, \theta_q)$$
 爲移動平均參數;
$$\Phi_p(B) = & 1 - \Phi_1 B^s - \Phi_2 B^{2s} - \cdot \cdot \cdot - \Phi_p B^{Ps}, \\ & (\Phi_1, \Phi_2, \cdot \cdot \cdot \cdot, \Phi_p)$$
 爲季節性自我迴歸參數;

$$\Theta_{\mathcal{Q}}(B^s) = 1 - \Theta_1 B^s - \Theta_2 B^{2s} - \cdot \cdot \cdot - \Theta_{\mathcal{Q}} B^{\mathcal{Q}s},$$

 $(\Theta_1,\Theta_2,\cdot\cdot\cdot,\Theta_{\mathcal{Q}})$ 為季節性移動平均參數;

分別爲 p,q,P 及 Q 階之 B 的多項式, B 稱爲後移運算子(backward shift operator)。

圖 3.1: 單變數 ARIMA 模型建構流程圖。

第二節 季節性時間序列迴歸模型 RMTSE

(Regression Models with Time Series Errors)

3.2.1 季節性時間序列迴歸模型概念

當在分析依時間序列其有固定的季節性變異時,常使用下列模式:

$$Z_{t} = TR_{t} + SN_{t} + \varepsilon_{t} \tag{2}$$

其中 Z,在時間點t時的實際觀測值;

TR, 在時間點t時的趨勢;

SN, 在時間點t時的季節性因子;

 ε ,在時間點t時的誤差。

先只考慮 Z_t 對時間t做的一般性迴歸模式期表示爲 $Z_t = TR_t + \varepsilon_t$,其中

$$TR_{t} = \beta_{0} + \beta_{1}t + \beta_{2}t^{2} + \cdots + \beta_{p}t^{p}$$
 (2)-1

, TR_t 稱爲 p 階多項式趨勢模式(p th-order ploynomial trend model),其中 eta_0 、 eta_1 、 eta_2 · · · · eta_p 爲參數 。

再假設一時間序列每年有L個季節,我們可以將其季節性因子 SN_t 利用虛擬變數(dummy variables)來表示,則

$$SN_t = \beta_{s1} x_{s1,t} + \beta_{s2} x_{s2,t} + \dots + \beta_{s(L-1)} x_{s(L-1),t}$$
 (2)-2

其中 β_{s1} , β_{s2} · · · $\beta_{s(L-1)}$ 為季節性參數(seasonal parameter), $X_{s1,t}$, $X_{s2,t}$ · · ·

 $X_{s(L-1),t}$ 爲虛擬變數(dummy variables)定義爲:

$$x_{\mathrm{s1,t}} = \begin{cases} 1 & \text{if time period t is season 1} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{\mathrm{s2,t}} = \begin{cases} 1 & \text{if time period t is season 2} \\ 0 & \text{otherwise} \end{cases}$$

$$\vdots$$

$$x_{\mathrm{s(L-1),t}} = \begin{cases} 1 & \text{if time period t is season L-1} \\ 0 & \text{otherwise} \end{cases}$$

在使用季節性時間序列迴歸模式時,常發現誤差項 ε_t 與時間t有自我相關性,若在時間點t誤差項爲正(負)的,則在時間點t+k時誤差項亦爲正(負)的,也就是說當正(負)的誤差項經過一固定時間後還是正(負)的誤差項,則其誤差項的正自我相關性(positive autocorrelation)存在,如下例:

+表示爲正的誤差項;-表示爲負的誤差項。

若在時間點t 誤差項爲正(負)的,則在時間點t+k 時誤差項亦爲負(正)的,也就是說當正(負)的誤差項經過一固定時間後還是負(正)的誤差項,則其誤差項的負自我相關性(negative autocorrelation)存在,如下例:

然而,其誤差項呈現一隨機型態,則其誤差項沒有自我相關性。正自我相關性與 負自我相關性亦可稱爲一階自我相關性,則時間點t的誤差項可以表示爲

$$\varepsilon_t = \phi_1 \varepsilon_{t-1} + a_t \tag{2}-3$$

其中 ϕ 爲 ε_{t} 和 ε_{t-1} 的相關係數 (correlation coefficient),

 a_t 爲 ε_t 的誤差項,亦可稱隨機干擾(random shock),通常假設 $\{a_t\}$ 爲獨立常態分配、期望値爲 0、變異數爲 σ_a^2 。

因此通常利用 Duribin-Watson 檢定判斷其模式的誤差項 ε ,是否具有一階自我相關性。

3. 2. 2 Duribin-Watson

Duribin-Watson 一階正自我相關檢定:

 H_0 : 誤差項 ε ,沒有一階正自我相關性。

 H_1 : 誤差項 ε_i 有一階正自我相關性。

Duribin-Watson 的統計量爲
$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$
 (3)

其中 e_t 在時間點t時的殘差 $t=1,2,3,\dots,n$ 。

假設第一型誤差的機率爲 α ,Duribin-Watson 的臨界値爲 $\mathbf{d}_{\mathbf{L},\alpha}$ 、 $\mathbf{d}_{\mathbf{U},\alpha}$:

- (1) 假設 d < d_{L, α} 時,拒絕 H $_0$;
- (2) 假設 $d > d_{U,\alpha}$ 時,不拒絕 H_0 ;
- (3) 假設 $d_{L,\alpha} \le d \le d_{U,\alpha}$ 時,沒有結果。

Duribin-Watson 的臨界值爲 $\mathbf{d}_{\mathbf{L},\alpha}$ 、 $\mathbf{d}_{\mathbf{U},\alpha}$ 可利用查表的方式得知,當遇到其樣本數大於 100 或是虛擬變數大於 5 時,就無法從表中得知,因此利用 ε_{ι} 所求出來的一階自我相關係數 ϕ_{ι} 來辦別,當 $\phi_{\iota} > 0$,可以相信 ε_{ι} 具有正相關性;若 $\phi_{\iota} < 0$,則可以相信 ε_{ι} 具有負相關性。

所以將原有模式 $Z_t = TR_t + SN_t + \varepsilon_t$ 的誤差項配適 ARMA 模式中的一階自我迴歸模型加以修正,則模式改變爲:

$$Z_{t} = TR_{t} + SN_{t} + \varepsilon_{t} \quad \text{where} \quad \varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + a_{t}$$
 (4)

第三節 類神經網路 — 倒傳遞類神經網路 BPN (Back-propagation Network)

3.3.1 類神經網路概念

類神經網路是一種模仿生物神經網絡的資訊處理系統。生物神經網絡是由各種神經細胞(neuron 或稱神經元)所組成,神經細胞包含(圖 3.2):

- (1) 神經核(soma): 神經細胞呈核狀的處理系統。
- (2)神經軸(axon,又稱爲軸索):神經細胞成軸索狀的輸送機制。
- (3)神經樹(dendrites,又稱爲樹突):神經細胞呈現樹枝狀的輸出入機制。
- (4)神經節(synapse,又成爲突觸):神經樹上呈現點狀連結機構。

圖 3.2: 生物神經元模型。

當神經細胞透過神經節與神經樹從其他神經元輸入一個訊號,經神經核處理後產生一個新的訊號,這個訊號在經過神經軸傳送至神經樹,再透過神經節與神經樹成爲其他神經元的輸入訊號。若訊號經過興奮神經節(excitatory synapse),則會增加訊號的速率,若經過抑制神經節(inhibitory synapse),則會降低訊號速率,因此訊號速率是同時取決於輸入訊號時的速度、儲存資訊之所在。

因類神經網路是仿效生物神經網絡的處理系統,所以類神經網路亦是由很多個人工神經元(artificial neuron)所組成的,這些人工神經元又稱爲處理單元(processing unit),下圖爲人工神經元模型(圖 3.3):

圖 3.3:人工神經元模型。

人工神經元模型中介於每個處理單元間的訊號傳遞路徑稱爲連結(connection)。每個連結上有一個加權值 \mathbf{W}_{ij} ,用以表示第i個輸入處裡單元對第j個輸出處理單元之影響強度。其處理單元之輸入值與輸出值的關係式,一般可使用輸入值的加權乘積和之函數來表示:

$$Y_{j} = f\left(\sum_{i} W_{ij} X_{i} - \theta_{j}\right) \tag{5}$$

其中 X_i = 模仿生物神經元模型之輸入訊號, $i = 1,2,3,\dots,m$ 。

 $Y_i =$ 模仿生物神經元模型之輸出訊號, $j = 1,2,3,\dots,n$ 。

 \mathbf{W}_{ij} = 模仿生物神經元模型之神經節強度,又稱連接加權值。

f =模仿生物神經元模型之轉換函數,是一個將其他處理單元輸 入值之加權乘積和轉換成輸出值的數學公式。

 θ_{i} =模仿生物神經元模型的偏權值(閥值)。

此外一個類神經網路經常包含若干隱藏層(hidden layer),隱藏層的存在是提供類神經網路表現處裡單元間的交互作用,與問題的內在結構能力。

3.3.2 倒傳遞類神經網路

一個類神經網路是由許多人工神經元與其連結而成並可組成各種網路模型, 其中以倒傳遞類神經網路應用最爲普遍, 倒傳遞類神經網路基本原理是利用最陡 坡降法(the gradient steepest descent method)的觀念,將誤差函數予以最小化,其 屬於監督式學習網路因而適合診斷、預測等應用。倒傳遞類神經網路架構如下圖 (圖 3.4):

圖 3.4: 倒傳遞類神經網路架構

其中 輸入層:用以輸入外在環境之變數,使用線性轉換函數 f(x) = x。

隱藏層:用以表現輸入處理單元間的交互影響,網路可以不只一層隱藏層,也可以沒有隱藏層。

倒傳遞類神經網路模型之輸入層與輸出層的處裡單元個數依問題而定,一般而言,一至二層隱藏層即可解決大部份問題,而少於一層或多於二層時,通常會有較大誤差。對於解決倒傳遞網路問題時,可先用無隱藏層架構做做看,若無法得

到良好的結果再使用一層及二層隱藏層來試試看。而隱藏層處理單元個數並無標準方法可以決定,經常需以試驗方式來決定其最佳數目,通常有以下選取原則可以利用:

平均法:處理單元個數=(輸入層處理單元數 + 輸出層處理單元數)/2

處理單元個數=(輸入層處理單元數 + 輸出層處理單元數) 1/2

總和法:處理單元個數=(輸入層處理單元數 + 輸出層處理單元數)

加倍法:處理單元個數=(輸入層處理單元數 + 輸出層處理單元數) × 2。 但通常隱藏層處理單元之數目越多則收斂越慢,其處理單元個數應由少試到多, 在本文中將採用平均法來決定隱藏層處理單元的個數。

3.3.3 倒傳遞類神經網路演算過程

倒傳遞類神經網路的演算過程,首先是輸入處裡單元 $\{X_i\}$ 至輸入層,然後直接將資料傳送至隱藏層,其隱藏層處理單元 $\{H_i\}$ 計算如下:

$$\mathbf{H}_{k} = \sum_{i} \mathbf{W}_{ik} \mathbf{X}_{i} - \boldsymbol{\theta}_{k} \tag{6}$$

再由隱藏層處理單元 $\{H_k\}$ 利用非線性轉換函數(雙變曲函數)輸出至輸出層的處理單元 $\{Y_j\}$,其計算如下:

$$Y_{j} = f\left(\sum_{k} W_{kj} H_{k} - \theta_{j}\right) \tag{7}$$

得到網路輸出值 $\{Y_j\}$,再計算出網路輸出值 $\{Y_j\}$ 與原有的目標值 $\{T_j\}$ 誤差,其間差距一般稱爲誤差函數(E,又稱爲能量函數)表示網路之學習品質:

$$E = \frac{1}{2} \sum_{i} (T_{i} - Y_{j})^{2}$$
 (8)

因此網路學習過程也就是將誤差函數最小化的過程,通常倒傳遞類神經網路以最 陡坡降法來使誤差函數最小化,每當輸入一個訓練範圍,網路即小幅調整加權值 W 及偏權值 θ 的大小,其加權值調整幅度與誤差函數對該加權值的敏感程度成正 比,既與誤差函數對加權值的偏微分值大小成正比:

$$\Delta W = -\eta \times \frac{\partial E}{\partial W} \tag{9}$$

其中 η 爲學習速率(learning rate),是控制每次以最陡坡降法最小化誤差函數之步幅。

偏權値的改變量
$$\Delta\theta = -\eta \times \frac{\partial E}{\partial \theta}$$
 (10)

若倒傳遞類神經網路採用三層網路架構,其加權值及偏權值的變化有兩種情況, ,可根據(6)、(7)、(8)、(9)與(10)式得到這兩種情況之加權值及偏權值的 變化:

(1) 隱藏層第 k 個處理單元與輸出層第 j 個處理單元

其加權値及偏權値調整公式如下:

$$\Delta W_{kj} = \eta \delta_j H_k \quad , \quad \Delta \theta_j = -\eta \delta_j$$
 (11)

其中 δ_{j} 爲隱藏層第 k 個處理單元與輸出層第 j 個處理單元之差異量

$$\delta_{j} = (T_{j} - Y_{j}) \times (Y_{j})^{'}$$
(12)

(2) 輸入層第 i 個處理單元與隱藏層第 k 個處理單元

其加權值及偏權值調整公式如下:

$$\Delta W_{ik} = \eta \delta_k X_i \quad , \quad \Delta \theta_k = -\eta \delta_k \tag{13}$$

其中 δ_k 爲輸入層第 i 個處理單元與隱藏層第 k 個處理單元之差異量

$$\delta_{k} = (\sum_{j} \delta_{j} W_{kj}) \times (Y_{j})^{'}$$
(14)

可利用(11)、(12)、(13)與(14)式得到新的加權值與偏權值 $\mathbf{W}^* = \mathbf{W} + \Delta \mathbf{W}$; $\theta^* = \theta + \Delta \theta$ 。此學習過程通常一次一個訓練範例方式進行,直到所有範例學習 完,既稱爲一個學習循環(learning cycle),一個網路可將訓練範例反覆學習數個 學習循環,直到學習誤差收斂爲止既學習結束,有兩種方法可以判斷:

(1) 誤差均方根=
$$\sqrt{\frac{\sum_{t=j}^{m}\sum_{j}^{n}(T_{j}^{p}-Y_{j}^{p})^{2}}{m\cdot n}}$$

其中 $T_i^p =$ 第 p 個訓練範例的第 j 個輸出單元之目標值。

 $Y_i^p =$ 第 p 個訓練範例的第 j 個輸出單元之輸出值。

m=訓練範例數目。

n =輸出層處理單元數目。

(2)總錯率=誤分類範例總數/範例總數

一般而言,誤差均方根與總錯率的收斂情況並不一定相同,若只對單一類型的問題,會採用總錯率來判斷此學習是否收斂,反之,則使用誤差均方根。本文將採用誤差均方根來評斷學習是否收斂。其中通常學習率 n 太大或太小對網路的收斂性質均不利,所以依據經驗取 0.5,或是 0.1 到 1.0 間的値作爲學習率的值,大都可以得到良好的收斂性。除了學習率之外,尚可利用其他方法來改善學習速度及學習精度,本文將採用慣性項(momentum term)來改善學習速度及學習精度。所謂慣性項是將(13)與(14)式再加上某一比例的前一次加權值的改變量,以改善收斂過程之震盪現象,及加速收斂,因此(13)與(14)是可改寫爲

$$\Delta W_{ik}(t) = \eta \delta_k X_i + \alpha \cdot \Delta W_{ik}(t-1) \tag{15}$$

$$\Delta\theta_{k}(t) = -\eta \delta_{k} + \alpha \cdot \Delta\theta_{k}(t-1) \tag{16}$$

其中 $\Delta W_{ik}(t) =$ 加權值 W_{ik} 第 t 次的改變量,其餘類推。

 α 稱爲慣性因子(momentum factor),其作用是控制慣性項之比例, $0 \le \alpha \le 1$,通常建議採用 0.5。

3.3.4 類神經網路軟體計算過程

本文將採用 Qnet 軟體來做倒傳遞類神經網路分析,其網路計算過程如下:

- 1.設定倒傳遞類神經網路層數,及各層處理單元之個數。
- 2.由電腦隨機亂數設定初始加權值 W_{ii} 、偏權值 θ_{i} 。
- 3.自行選定學習率 η 、慣性因子 α 與學習循環次數。
- 4.輸入一個訓練範例資料 $\{X_i\}$,與原有的目標值 $\{T_i\}$ 。
- 5.(1) 計算隱藏層處理單元的輸出值 $\{H_k\}$
 - (2)計算輸出層處理單元的輸出值 $\{Y_i\}$
 - (3) 計算隱藏層與輸出層的差異量 δ_i
 - (4) 計算輸入層與隱藏層的差異 δ_{ι}
 - (5) 修正輸出層與隱藏層間的權重 W_{kj} (new) = W_{kj} + ΔW_{kj} 、 θ_j (new) = θ_j + $\Delta \theta_j$
 - (6)修正隱藏層與輸入層間的權重 W_{ik} (new) = W_{ik} + ΔW_{ik} 、 θ_k (new) = θ_k + $\Delta \theta_k$
- 6.重複(1)至(6)步驟,直到誤差差異小於某一特定値或是執行到一定數目的 學習循環。

第四節 混和整合自我迴歸移動平均模型 與倒傳遞類神經網路 SARIMABP

傳統統計模式包含移動平均模型(MA)、指數平滑(exponential smoothing)和 ARIMA 都要求必須使用過去資料所形成線性函數來預測未來資料,相當然而,預測出來的資料依然是線性的。因此傳統的線性模式相對上也較容易完成、易瞭解。在實質問題上,並非每個資料都能成線性,也就是說,每個問題上並非都是呈現線性,也有一部份呈現非線性,而非線性的部分將不能採用傳統模式來做預測,因爲類神經網路具由可改變的非線性模式之能力,所以本文將採用 ARIMA來預測線性部分,使用 ANN來預測非線性的部分。

時間序列並由兩個部分所建構而成,一部份為線性相關結構,另一部份為非 線性結構,也就是

$$y_t = L_t + N_t \tag{17}$$

其中 L_t ,爲線性結構部分, N_t ,爲非線性結構部分。結合這兩部分來估計時間序列資料。第一步,採用 ARIMA 模擬線性相關部分,從 ARIMA 模型中得到其預測值及殘差,殘差是唯一在線性模式中包含有非線性關係。假設從線性模式中時間點t所得的殘差記爲 e_t ,

$$e_t = y_t - \hat{L}_t \tag{18}$$

其中 \hat{L}_{t} ,爲在時間點t所得預測値。因殘差是唯一具有非線性相關結構部分,所以將採用 ANN 模式來預測殘差。若單以 SARIMA 之殘差值最爲 BPN 的輸入值,假設有n個輸入值,則其殘差之 ANN 模式爲

$$e_{t} = f(e_{t-1}, e_{t-2}, \dots, e_{t-n}) + \varepsilon_{t}$$
(19)

其中 f 爲非線性函數、 ε ,爲隨機誤差。由(19)式所得的預測既爲 \hat{N} ,

結合此兩預測得到

$$\hat{\mathbf{y}}_t = \hat{L}_t + \hat{N}_t \tag{20}$$

總而言之,混合性模式包含兩個步驟,第一步驟,使用 ARIMA 模式進行問題線性結構部分的分析。第二步驟,再從 ARIMA 模式中所得之預測值與殘差,再利用 ANN 模式來發展殘差估計。本文在第二步驟 ANN 模式將採用倒傳類神經網路(BPN)進行非線性結構部分預測,其輸入值將的選取分成兩部分:(1) 根據 SARIMA 所產生的預測值;(2) SARIMA 之殘差。

第五節 評估測量的預測誤差

欲比較上述四種模型之預測能力,從中來瞭解資料預測該採用何種預測模式 是最適合的,所以分別對不同類別及不同模式進行下列三種預測誤差方式 (Wei,1993)。分別為:

1.平均絕對誤差(Mean Absolute error; MAE)

$$MAE = \frac{\sum_{t=1}^{n} |y_t - \hat{y}_t|}{n}$$

2.均方誤差平方根(Root Mean Squared error; RMSE)

$$RMSE = \sqrt{\frac{\sum_{t=1}^{n} (y_t - \hat{y}_t)}{n}}$$

3.平均絕對百分誤差(Mean Absolute Percentage error; MAPE)

MAPE =
$$(\frac{1}{n} \sum_{t=1}^{n} \frac{|y_t - \hat{y}_t|}{y_t}) \times 100\%$$

其中 n 爲預測的個數; y, 爲實際值; ŷ, 爲預測值。

第四章 實證研究

第一節 台灣地區能源消費量資料描述

依台灣地區能源類別:能源總消費量、煤炭消費量、電力消費量及石油產品 消費量,分別作爲變數來探討其預測模型。資料期間從民國85年1月至民國95年12月,共計11年。使用前10年,共計120筆月資料來建立預測模型,並保 留後面12筆月資料(民國95年1月至12月)用來測試模型的預測能力,圖4.1 爲能源總消費量之歷史資料,圖4.2 爲煤炭總消費量之歷史資料,圖4.3 爲電力 消費量之歷史資料,圖4.4 爲石油產品消費量之歷史資料,可從這些歷史資料圖 形中,看出各類別之能源消費量均具有季節性,所以在預測模型時要考慮模型季 節件的特性。

圖 4.1:能源總消費量之歷史資料圖形。

圖 4.2: 煤炭總消費量之歷史資料圖形。

圖 4.3:電力消費量之歷史資料圖形

圖 4.4:石油產品消費量之歷史資料圖形。

第二節 台灣地區能源分析結果

本文採用 SARIMA、RMTSE、BPN 及 SARIMABP 四種模型,分別對台灣地區能源總消費量、煤炭消費量、電力消費量及石油產品消費量四種能源資料進行預測。

4.2.1 台灣地區能源總消費量

4. 2. 1. 1 SARIMA

圖 4.1 可以看出能源總消費量呈現遞增的趨勢且具有季節性變異,所以此序列(令原有資料爲 y)並非平穩型經過一次差分後(令差分一次後資料爲 diffy),此差分後序列爲平穩型季節性序列(圖 4.5: diffy*T)

圖 4.5: 能源總消費量經差分一次之圖形。

,因此採用 SARIMA 模型,先鑑定模型可以發現此序列平均數為 25824.18,其平均數並非等於零,所以再將此差分一次的數列採用自然對數做轉換(令其資料

爲 diffly)後,再重新鑑定模型得其平均數爲 0.003605,其平均數近乎等於零, 所以我們採用原來總消費量數列先經對數轉換後,再進行一次差分得到(圖 4.6: diffly*T),可從圖 4.6 中知道,此數列轉換後成爲一平穩型數列,其 acf 與 pacf 如圖 4.7、圖 4.8。

圖 4.6:能源總消費量經自然對數後差分一次之圖形。

圖 4.7: 能源總消費量經自然對數後差分一次之 acf 圖形。

圖 4.8: 能源總消費量經自然對數後差分一次之 pacf 圖形。

從圖 4.7、圖 4.8 依然可以看出,經過轉換、一次差分後序列依然具有季節性, 所以考慮將此序列進行 12 時期的季節性差分,既

$$(1-B)(1-B^{12})\ln Y_t$$

求此模型之 acf 和 pacf (如圖 4.9、圖 4.10),在第 1 個與第 12 個 acf 値較 爲顯著,因此採用移動平均模型

$$(1-B)(1-B^{12})\ln Y_t = (1-\theta_1 B)(1-\theta_{12} B^{12})a_t$$

此模型殘差之 acf 與 pacf 之圖形(如圖 4.11、圖 4.12),由兩圖形可以觀察出殘差之 acf 値與 pacf 値均小於兩倍誤差,所以不需要再進行模型調整,得其配適 SARIMA(0,1,1)(0,1,1),模式如下:

$$(1-B)(1-B^{12})\ln Z_t = (1-0.78918B - 0.6556B^{12} + 0.5609413B^{13})a_t$$

$$(13.06) \qquad (8.21) \qquad (-6.42)$$

$$\hat{\sigma}_a = 0.0469$$

			The ARIMA Procedur	e	
			Name of Variable =	ly	
		Period(s) of D Mean of Working Standard Deviat Number of Otse Observation(s)	r Series tion	1,12 5.479E-6 0.046978 107 encing 18	
			Autocorrelations		
Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2	101234567891	Std Error
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 22 24	0.0021976 -0.0011975 0.00036291 -0.0002298 7.39209E-6 0.00007506 0.00003644 -0.0002703 0.00026424 -0.0001588 0.00048880 -0.000559390 -0.0002511 0.00048889 -0.0004285 0.0002485 0.0002485 0.0002485 0.0002485 0.0002485 0.0002485	1.00000 64493 0.16514 10449 0.003416 0.01618 12298 0.12024 01522 07224 0.19876 44282 0.26109 19500 0.12228 09964 0.14595 10840 0.05295 07246 0.11308 01812	404040404 014	*** *** *** *** *** *** *** *** *** **	0 0.086674 0.122050 0.124121 0.124941 0.1249441 0.126028 0.126048 0.126074 0.127257 0.127257 0.127257 0.130500 0.148618 0.148618 0.148888 0.152102 0.155919 0.155919 0.155919

圖 4.9:對能源總消費量做自然對數轉換,非季節性差分一次,季節性差分一次所得之 acf 圖形。

	1/1	Partial Autocorrelations	
Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 3 1	
1	-0.54493	*****	
2	-0.18748	**** .	
3	-0.14712	_***	
4	-0.15162	_***	
2 3 4 5 6 7 8 9	-0.06007	. * .	
6	0.01936		
7	-0.15569	_ *** .	
8	-0.04763	_ * _	
9	0.05517	. * .	
10	-0.09105	_ ** _	
	0.16771	, ****,	
12	-0.36850	******	
18	-0.29800	****	
14	-0.24570	##### .	
15	0.07991	. + .	
16	-0.I1868	_ ** _	
17	-0.04979	_ * .	
18	-0.07142	_ * .	
19	-0.04843	_ * .	
20	-0.01474		
21	0.04693	_ * .	
22	-0.12643	_*** .	
23	0.06853	. * .	
24	-0.11597	**	

圖 4.10 :對能源總消費量做自然對數轉換,非季節性差分一次,季節性差分一次所得之 pacf 圖形。

		Auto	correlation Plot of Residuals	
Lag	Covariance	Correlation	-1 8 8 7 6 5 4 3 2 1 0 1 2 3 4 5 3 7 8 9 1	3td Error
0	0.0010249	1.00000		0
1	0.00005438	0.05306	. * .	0.093674
2	0.00009907	0.09666	. **.	0.093945
3	-4.1888E-7	00041		0.097842
4	-0.0000263	02564	. * .	0.097842
5	1.64482E-6	0.00160		0.097905
6	-0.0000860	08387	**	0.097905
7	-0.0001256	12259	**	0.093574
8	-0.0000228	02226		0.093989
23456789	-0.0001072	10461	. **	0.10)035
10	-0.0001539	15021	.*** .	0.101053
11	-0.0000397	03878	. * .	0.103118
12	-0.0000439	04282	. * .	0.103254
13	9.90799E-6	0.00967		0.103420
14	-0.0000446	04353	. * .	0.103429
15	0.00009716	0.03481	, ** .	0.103600
16	-0.0000387	03779	. * .	0.104407
17	0.00007360	0.07181	. * .	0.104535
18	0.00002024	0.01975		0.104995
19	0.00008998	0.08780	** .	0.105030
20	-9.8787E-6	00964		0.105714
21	0.00002600	0.02537	* .	0.105722
22	7.41225E-6	0.00723		0.105779
23	0.00016796	0.16388	. ***,	0.105788
24	0.00005140	0.05015	* .	0.103130

圖 4.11 :能源總消費量 SARIMA 所得殘差之 acf 圖形。

	4113	Partial	Autocc	rrelatio	ns									
Lag	Correlation	-1 9 8	7 6 5	4 3 2 1	0 1	2 3	4	5	6	7	8	9	1	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.05306 0.09411 -0.01017 -0.03464 0.00562 -0.07940 -0.11783 0.00349 -0.08396 -0.15287 -0.01730 -0.02278 -0.01494 -0.08769 -0.08769 -0.0880 0.05390 -0.06371	TING TING	UNI	**************************************	**		7	J	u	r	U	J		
21 22	0.01458 0.01731			•	th about	•								
28 24	0.15730 0.04803			-	***	•								

圖 4.12 :能源總消費量 SARIMA 所得殘差之 pacf 圖形。

4. 2. 1. 2 RMTSE

若能源總消費量存在一固定的季節變異,且每年有 12 個月份,所以配適 11 個虛擬變數(x_{s1} ,…, x_{s11})及一個時間變數(T),數列具有線性遞增趨勢,先將數列進行對數轉換,再進行季節性迴歸模式之預測。先使用含有一個時間變數及 11 個虛擬變數模型先做迴歸模型,得到每個變數之參數估計值及 t 值,再從中調整迴歸模式。當去除第 5、第 6 及第 11 個虛擬變數(其參數值如表五),其誤差項經 Durbin-Watson 檢定其值爲 1.484,參數爲 n=120和k-1=9 其值較大,無法藉由 Durbin-Watson 表中查出,所以利用一階自相關係數來判斷是否有相關性,一階自相關係數爲 0.224 大於零,所以相信此誤差項具有正相關,所以對誤差項配適 ARMA 模式,當配適 MA(1)其殘差之 acf 與 pacf 值均小於兩倍誤差(如圖 4.13 與圖 4.14),得到 RMTSE 模型爲

$$Z_{t} = 15.56 + 0.0042t - 0.0399x_{s1,t} - 0.1536x_{s2,t} - 0.0284x_{s3,t} - 0.0429x_{s4,t} + 0.0512x_{s7,t}$$

$$(2422) \quad (55.57) \quad (-3.98) \quad (-15.34) \quad (-2.84) \quad (-4.45) \quad (5.12)$$

$$+ 0.0621x_{s8,t} + 0.0320x_{s9,t} + 0.0387x_{s10,t} + \varepsilon_{t}$$

$$(6.20) \quad (3.20) \quad (3.87)$$

where $\varepsilon_t = (1 - 0.18659B)a_t$

		Auto	correlation Plot of Resi	iduals	
Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0	11234567891	Std Error
0	0.00077037	1.00000	TIME	****	0
1	0.00002182	0.02832		* .	0.091287
2	0.00013009	0.16887		***	0.091360
3	0.00008140	0.10567		** <u> </u>	0.093925
4	0.00007229	0.09384		** <u> </u>	0.094911
5	0.00004138	0.05372		* .	0.095681
6	-1.8026E-8	00002			0.095932
7	-0.0000875	11356	. **		0.095932
8 9	0.00006826	0.08860		** _	0.097045
	-0.0000176	02278			0.097717
10	-0.0000593	07694	. **		0.097762
11	0.00001813	0.02353		_	0.098265
12	-3.4789E-6	00452		_	0.098312
13	0.00003770	0.04894		* .	0.098314
14	-0.0000138	01791		_	0.098516
15	0.00010928	0.14185		***	0.098544
16	-0.0000186	02418			0.100231
17	0.00008395	0.10897		** .	0.100279
18	7.90982E-6	0.01027			0.101261
19	0.00005285	0.06861		* .	0.101270
20	0.00001254	0.01627		.	0.101657

圖 4.13: 能源總消費量 RMTSE 所得殘差之 acf 圖形。

圖 4.14:能源總消費量 RMTSE 所得殘差之 pacf 圖形。

4.2.1.3 BPN

本文使用 Qnet 軟體來做倒傳遞類神經網路的資料分析,步驟如下:

- (1) 欲採用含有一層隱藏層的網路系統,若要求 Y_t ,則使用時間點t 前 12 個值作爲輸入變數(Y_{t-1}, \dots, Y_{t-12}),則此系統輸入層有 12 個變數、輸出層有 1 個變數,隱藏層個數使用平均法(個數 $6\sim7$)來選取。
- (2)此資料共有 132 筆資料,所以有 102 個訓練範例,12 個測試範例,做 10000 次學習循環。
- (3)自行訂定初始學習率 0.5,每經一次循環電腦會自行乘上一折減因子,但學 習率不得低於下限 0.001。
- (4) 訂定初始慣性因子爲 0.5。
- (5) 每跑完 10000 次學習循環,既可得到訓練範例的誤差均方根及測試範例的誤差均方根。
- (6) 再調整初始學習率及初始慣性因子,分別每次調整±0.1,重複(3)至(5) 步驟。

(7) 從結果中,可得到最適合的參數設定使訓練範例的誤差均方根及測試範例的誤差均方根值最小。對此變數將使用 BPN 12-6-1 模型,初始學習率為 0.01 及初始慣性因子為 0.5 時,能得到訓練範例的誤差均方根 0.03473 及測試範例的誤差均方根 0.024108 收斂狀況十分良好。

4.2.1.4 混合 SARIMA 與 BPN (SARIMABP)

因歷史資料並非完全是線性模式,所以先對資料進行線性部分的預測後,再進行非線性部分的預測。因此先對資料進行 SARIMA 模型之線性預測,所得預測模型為 $(0,1,1)(0,1,1)_{12}$,並得到其預測値與殘差,我們再將線性預測所得的預測值及殘差進行 ANN 預測。本文採用將以下七個値作為 BPN 的輸入值 $\ln Z_{t-1}$ 、 $\ln Z_{t-12}$ 、 $\ln Z_{t-13}$ 、 $\ln \hat{Z}_{t}$ 、 a_{t-1} , a_{t-12} 及 a_{t-13} , BPN 的輸出值為 a_{t} ,其中 $\ln \hat{Z}_{t}$ 及 a_{t} 為 SARIMA 所預測出來的結果。本文將使用一層隱藏層共有四個處理單元,其模式為 BPN 7-4-1,當初始學習率為 0.2 及初始慣性因子為 0.9 時,能得到訓練範例的誤差均方根 0.00084 及測試範例的誤差均方根 0.001074 其值均小,所以此收斂狀況十分良好。

4.2.1.5 結論

以能源總消費量做為變數,分別以 SARIMA、RMTSE、BPN 及 SARIMABP模式進行預測所得預測誤差(如表一),由表一可知 BPN 12-6-1模式所得到的相對誤差(MAPE)為 1.66%較低,則表示在此四種預測模式方法中,類神經網路的預測能力較佳,其預測結果(如圖 4.15)。

採用 SARIMABP 模式,能夠同時解釋線性及非線性的部分,當在能源總消費量在線性部分的預測結果較 BPN 差,所以當其殘差使用 BPN 模式估計後,再

將其代回 SARIMA 之預測模型,依然無法改善線性部分預測結果,所以採用 SARIMABP 模式在總能源資料上未能得到較好的預測結果。

表一:能源總消費量預測模型比較											
Method	Model	MAE	RMSE	MAPE							
SARIMA	$(0,1,1)(0,1,1)_{12}$	195050.66	240927.16	2.14%							
RMTSE	ARMA(0,1)	490764.51	578610.08	5.35%							
BPN	12-6-1	149512.83	167009.35	1.66%							
SARIMABN	BPN7-4-1	187976.22	235301.74	2.06%							

圖 4.15: 國內總消費量之歷史資料(實線)與預測値(虛線)。

4.2.2 台灣地區煤炭消費量

依煤炭消費量歷史資料圖(如圖 4.2)可以看出此序列具有遞增趨勢和季節性,所以也將此序列進行自然對數轉換、非季節性差分一次及季節性差分一次(12時期),所配滴之 SARIMA 模式如下:

$$(1-B)(1-B^{12})\ln Z_t = (1-0.67658B - 0.77147B^{12} + 0.44806B^{13})a_t$$

$$(8.48) \qquad (9.81) \qquad (-4.51)$$

$$\hat{\sigma}_a = 0.0614$$

RMTSE 模型由圖 4.2 可以看出此序列具有一線性遞增趨勢,先將序列進行對數轉換,再進行季節性迴歸模式之預測其誤差項經 Durbin-Watson 檢定其值爲 0.844,參數爲 n=120和k-1=9 其值較大(其參數如表五),無法藉由 Durbin-Watson 表中查出,所以利用一階自相關係數來判斷是否有相關性,一階自相關係數爲 0.559 大於零,所以相信此誤差項具有正相關,所以對誤差項配適 ARMA(1,1)模式,其殘差之 acf 與 pacf(如圖 4.16 與圖 4.17),其值均小於兩倍 誤差,其模式爲

$$\begin{split} Z_t = & 14.70 + 0.0065t - 0.05708x_{s1,t} + 0.167x_{s2,t} + 0.0175x_{s5,t} + 0.0167x_{s6,t} + 0.0167x_{s7,t} \\ & (1363) \quad (51.75) \quad (-3.04) \qquad (-10.21) \qquad (4.63) \qquad (4.99) \qquad (8.05) \\ & + 0.0167x_{s8,t} + 0.0167x_{s9,t} + 0.0167x_{s10,t} + \varepsilon_t \\ & (7.40) \qquad (4.37) \qquad (3.15) \\ where \qquad & (1 - 0.96634B)\varepsilon_t = (1 - 0.61592B)a_t \end{split}$$

		Auto	correlation Plot of Residuals								
Lag	Covariance	Correlation	-1 9 8 7 6 5 4 9 2 1 0 1 2 9 4 5 6 7 8 3 1	Std Error							
0	0.0013256	1.00000	**********	0							
1	-4.8767E-6	00368		0.091287							
2	0.00002899	0.02262		0.091200							
9	-0.0000221	01664		0.091335							
4	0.00004748	0.08E82	. * .	0.091360							
5	-4.2351E-6	00819		0.091477							
8	-0.0001854	19587	_ *** _	0.091478							
7	-0.0000787	05558	. * .	0.098248							
8	0.00005891	0.04444	. * .	0.093619							
8	0.00008068	0.06887	. * .	0.093695							
10	0.00003757	0.02834	. * .	0.094110							
11	0.00004071	0.08071	. * .	0.094181							
12	-0.0000241	01617		0.094264							
18	0.00017628	0.18224	, ***,	0.084288							
14	-0.0000725	05473	. * .	0.095826							
15	0.00013465	0.10150	. փա	0.000000							
16	-0.0001°91	00535	. HH .	0.096977							
17	-0.0001000	14299	. ### .	0.097601							
18	0.00002395	0.0180/		0.09931/							
19	-0.0001873	14127	, ***	0.099345							
20	0.00008704	O_ORFRR	_	0 . 10 1005							
21	-0.0000'46	01102		0.101360							
22	-0.0000638	04810	. * .	0.101870							
28	0.00015.89	0.11458	**	0.101580							
24	0.00002'24	0.01602		0.102631							

圖 4.16: 煤炭消費量 RMTSE 所得殘差之 acf 圖形。

		Par	t i	B.	A	ut	occ	ori	e	l a.	Ł j	יחם	s										
Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1	
1	-0.00368	Ī					984					1											Ī
2	0.02261						*																
8	-0.01648																						
2 8 4 5 6 7 8 9	0.03523											H	#										
5	-0.00224																						
6	-0.14202										HH	#											
7	-0.05680											#											
8	0.05048											-	×										
9	0.06942											-	×										
1 0	0.03646									_			×	_									
11	0.03284									-			#	-									
12	-0.04314										- 1	*											
13	0.11297												**										
14	-0.04361											#											
15	0.12106												##										
16 17	-0.06769											#											
17	-0.16242									. :	k#:	#											
18	0.01586																						
19	-0.13079									. :	k#:	#											
20	0.07664												##										
21	U. U2558												#										
22	-0.08880										*	- 1											
23	0.08364			1			1_	5-	_			H	###										
24	-0.02118	_	-	_	_	1				7													

圖 4.17: 煤炭消費量 RMTSE 所得殘差之 pacf 圖形。

使用 BPN 模型預測,其過程如 4.2.1.3(1)至(6),對此變數將使用 BPN 12-7-1模型,當初始學習率為 0.2 及初始慣性因子為 0.9 時,能得到訓練範例的誤差均方根 0.023249,及測試範例的誤差均方根 0.040644,可見其收斂狀況十分良好。

對於混和性模型,其 SARIMA 模型之線性預測,所得預測模型為 $(0,1,1)(0,1,1)_{12}$,本文採用將以下七個値作為 BPN 的輸入值 $\ln Z_{t-1}$ 、 $\ln Z_{t-12}$ 、 $\ln Z_{t-13}$ 、 $\ln \hat{Z}_{t}$ 、 a_{t-1} , a_{t-12} 及 a_{t-13} , BPN 的輸出值為 a_{t} ,其中 $\ln \hat{Z}_{t}$ 及 a_{t} 為 SARIMA 所預測出來的結果。其預測模型為 BPN 7-4-1,當初始學習率為 0.3 及初始慣性因子為 0.9時,能得到訓練範例的誤差均方根 0.000998 及測試範例的誤差均方根 0.002064 其值均小,所以此收斂狀況十分良好。

以煤炭消費量做為變數,以能源總消費量做為變數,分別以 SARIMA、RMTSE、BPN 及 SARIMABP 模式進行預測所得預測誤差(如表二),由表二可知採用 SARIMABP 模式所得到的相對誤差(MAPE)為 2.31%較其他三個模型誤差低,則表示在此四種預測模式方法中,SARIMABP 的預測能力較佳,其預測

結果(如圖 4.28)。當採用 SARIMABP 模式,能夠同時解釋線性及非線性的部分,當在煤炭消費量在線性部分的預測結果較 RMTSE 及 BPN 好,因 SARIMA 所得殘差爲非線性的,所以當其殘差使用 BPN 模式估計後,既能改善 SARIMA 的殘差項,所以當 BPN 所預測之殘差代回 SARIMA 模式就能得到較好誤差。

	表二:煤炭消費量預測模型比較											
Method	Model	MAE	RMSE	MAPE								
SARIMA	$(0,1,1)(0,1,1)_{12}$	120315.12	130502.81	2.34%								
RMTSE	ARMA(1,1)	155920.50	188889.80	3.03%								
BPN	12-7-1	154989	201741.61	3.23%								
SARIMABP	BPN7-4-1	118722.61	128931.10	2.31%								

圖 4.18: 國內煤炭消費量之歷史資料(實線)與預測値(虛線)。

4.2.3 台灣地區電力消費量(單位:百萬度)

電力消費量歷史資料圖如圖 4.3,可以看出此序列具有遞增趨勢和季節性, 所以也將此序列進行自然對數轉換、非季節性差分一次及季節性差分一次(12時期),所配滴之 SARIMA 模式如下:

$$(1-B)(1-B^{12})\ln Z_t = (1-0.91203B - 0.73111B^{12} + 0.64314B^{13})a_t$$

$$(17.85) \qquad (9.88) \qquad (-7.93)$$

$$\hat{\sigma}_a = 0.0716$$

RMTSE 模型由圖 4.3 可知此序列具有線性遞增趨勢,先將序列進行對數轉換,再進行季節性迴歸模式之預測,其誤差項經 Durbin-Watson 檢定其值爲 1.753,參數爲 n=120和k-1=10 其值較大(其參數如表五),無法藉由 Durbin-Watson 表中查出,所以利用一階自相關係數來判斷是否有相關性,一階自相關係數爲 0.116 大於零,所以相信此誤差項具有正相關,所以對誤差項配適 MA(2)模式,其殘差之 acf 與 pacf(如圖 4.19 與圖 4.20),其值均小於兩倍誤差,其模式爲

$$\begin{split} Z_t = & 16.11 + 0.0048t - 0.0406x_{s1,t} - 0.1337x_{s2,t} + 0.0630x_{s5,t} + 0.1054x_{s4,t} + 0.1587_{s7,t} \\ & (1728) \quad (47.16) \quad (-2.91) \quad (-9.59) \quad (4.34) \quad (7.57) \quad (11.40) \\ & + 0.1910x_{s8,t} + 0.1616x_{s9,t} + 0.1359x_{s10,t} + 0.0734x_{s11,t} + \varepsilon_t \\ & (13.72) \quad (11.61) \quad (9.76) \quad (5.27) \end{split}$$

where $\varepsilon_t = (1 + 0.04763B + 0.22872B^2)a_t$

Autocorrelation Plot of Residuals										
.ag	Covariance	Correlation	-1 8 8 7 6 6 4 8 2 1 0 1 2 8 4 6 6 7 8 8 1	Std Error						
0	0.0014088	1.00000	**********	0						
1	0.00008208	0.02278		0.081287						
2	0.00001028	0.00730		0.091334						
8	0.00020787	0.14766	***.	0.081888						
4	0.00004119	0.02924	. * .	0.093304						
5	0.00025445	0.18061	. ****	0.098381						
6	0.00009673	0.06866	. * .	0.096248						
7	-0.0001542	10846	. ** .	0.096655						
8	0.00024307	0.17253	***	0.097682						
	0.00008666	0.02624	. * .	0.100180						
10	0.00001760	0.01249		0.100243						
11	0.00001472	0.01045		0.100256						
12	0.00002290	0.01625		0.100265						
13	0.00015776	0.11198	_ ** _	0.100287						
14	-0.0000707	05016	. * .	0.101323						
15	0.00006392	0.04537	. * .	0.101530						
16	-0.0000175	01240		0.101699						
17	0.00003240	0.02300		0.101712						
18	0.00002891	0.02052		0.101755						
19	-2.6542E-6	00188		0.101789						
20	-0.0000882	08282	. * .	0.101790						
21	-0.0000391	02778	. * .	0. 1021 10						
22	-0.0000992	07040	. * .	0.102178						
28	0.00005035	0.03574	. * .	0.102578						
24	-0.0001920	13827	_*** _	0.102880						

圖 4.19:電力消費量 RMTSE 所得殘差之 acf 圖形。

·		Partial Autocorrelations
Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1	0.02278	
2	0.00878	_ _
2 3	0.14731	_ HHHH_
4 5 6 7	0.02318	_ _
5	0.18213	_
6	0.04934	_ + _
7	-0.12193	_ ## _
Θ	0.13262	_ HHHH_
9	-0.00856	_ _
9 10	0.01231	
11	-0.04594	_ # _
12	0.04675	. * .
13	0.07500	_ h# _
14	-0.09357	_ ## _
15	0.08530	_ h# _
16 17	-0.06667	_ # _
17	0.03802	. * .
18	-0.03928	. * .
19	0.03226	. + .
20	-0.07074	. * .
21	-0.07536	. ## .
22	-0.03800	. * .
23	0.02334	
24	-0.11847	_ ** _

圖 4.20:電力消費量 RMTSE 所得殘差之 pacf 圖形。

使用 BPN 模型過程如 4.2.1.3(1)至(6),對此變數將使用 BPN 12-6-1, 當初始學習率為 0.01 及初始慣性因子為 0.9 時,能得到訓練範例的誤差均方根 0.032521,及測試範例的誤差均方根 0.031286,可見其收斂狀況十分良好。

對於混和性模型,其 SARIMA 模型之線性預測,所得預測模型為 $(0,1,1)(0,1,1)_{12}$,並得到其預測値與殘差,再將線性預測所得的預測値及殘差進行 ANN 預測,所以本文採用 $\ln Z_{t-1}$, $\ln Z_{t-12}$, $\ln Z_{t-13}$, $\ln \hat{Z}_{t}$, a_{t-1} , a_{t-12} , a_{t-13} 作為 BPN 的 輸入值,輸出值為 a_{t} ,其中 $\ln \hat{Z}_{t}$, a_{t} , 為 SARIMA 所預測出來的結果。將使用 BPN 7-4-1 模型,初始學習率為 0.2 及初始慣性因子為 0.9 時,能得到訓練範例的誤差 均方根 0.001834 及測試範例的誤差均方根 0.001118,可見其收斂狀況十分良好。

以電力消費量做爲變數,以能源總消費量做爲變數,分別以 SARIMA、RMTSE、BPN 及 SARIMABP 模式進行預測所得預測誤差(如表三),由表三可知 SARIMABP 模式所得到的相對誤差(MAPE)爲 2.08%較其他三個模型誤差低,則表示在此四種預測模式方法中 SARIMABP 的預測能力較佳,其預測結果如圖4.21。當採用 SARIMABP 模式,其結果同煤炭源消費量,因 SARIMA 之預測較

好,再加上利用 BPN 來改善殘差,所以使用混合型模式能得到較佳之預測。

	表三:電力消費量預測模型比較											
Method	Model	MAE	RMSE	MAPE								
SARIMA	$(0,1,1)(0,1,1)_{12}$	426701.55	575543.34	2.30%								
RMTSE	ARMA(0,2)	917498.29	1091616.03	4.95%								
BPN	12-6-1	460671.67	551369.07	2.42%								
SARIMABP	BPN7-4-1	398140.43	567322.75	2.08%								

圖 4.21: 國內電力消費量之歷史資料(實線)與預測値(虛線)。

4.2.4 台灣地區石油產品消費量

依石油產品消費量歷史資料圖(如圖 4.4)可以看出此序列具有遞增趨勢和季節性,所以也將此序列進行自然對數轉換、非季節性差分一次及季節性差分一次(12時期),所配適之 SARIMA 模式如下:

$$(1-B)(1-B^{12})(1-0.0472B^{12})\ln Z_t = (1-0.8316B-0.73028B^{12}+0.56326B^{13})a_t$$

$$(0.31) \qquad (17.85) \qquad (9.88) \qquad (-5.45)$$

$$\hat{\sigma}_a = 0.0702$$

RMTSE 模型由圖 4.4 可知此數列具有線性遞增趨勢,先將序列進行對數轉換,再進行季節性迴歸模式之預測,其誤差項經 Durbin-Watson 檢定其值爲 1.666,參數爲n=120和k-1=5其值較大(其參數如表五),無法藉由 Durbin-Watson 表中查出,所以利用一階自相關係數來判斷是否有相關性,一階自相關係數爲 0.161 大於零,所以相信此誤差項具有正相關,所以對誤差項配適 ARMA(1,0)模式,其殘差之 acf 與 pacf(如圖 4.22 與圖 4.23),其值均小於兩倍誤差,其模式爲

$$Z_{t} = 14.94 + 0.0034t - 0.0363x_{s1,t} - 0.1619x_{s2,t} - 0.0330x_{s4,t} - 0.0306x_{s11,t} + \varepsilon_{t}$$

$$(1756) \quad (20.79) \quad (-2.50) \quad (-11.12) \quad (-2.37) \quad (-2.10)$$

$$where \quad (1 - 0.1705B)\varepsilon_{t} = a_{t}$$

				#XC-// 4	
		Auto	correlation Plot of Res	iduels	
.ag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 1	1 1 2 3 4 5 6 7 8 9 1	Std Error
0	0.0018439	1.00000	7	****	0
Ī	0.00004069	0.02207	_	<u> </u>	0.091287
2	-0.0002413	13086	_ kxs k	_ I	0.091332
3	0.00003004	0.01629	_	_ I	0.092881
4	-0.0001'80	06401	_ *	_ I	0.092905
5	0.00012717	0.06897	_	* .	0.093271
6	0.00003055	0.01657	1		0.093696
7	9.34294E-6	0.0507	_	_	0.093720
8	-0.0002473	13409	_ k/sk	<u> </u>	0.093722
9	0.00009328	0.05059	<u>-</u>	* .	0.095308
10	-0.0001728	(9371	, **		0.095531
11	-0.0003682	19971	***	_	0.096294
12	0.00007430	0.04030	_	* .	0.099686
13	-0.0001578	(8556	_ \		0.099822
14	-0.0001482	(8037	_ 191	_	0.100431
15	0.00008782	0.04763	_	* .	0.100965
16	-0.0001359	(7373	_ #	_	0.101152
17	0.00002495	0.01353	_		0.101599
18	0.00006262	0.(3396		* .	0.101614
19	-0.0001598	(8637	_ //sk		0.101709
20	-0.0000892	03758	_ *	.	0.102818
21	0.00006918	0.03752	_	* .	0.102433
22	0.00015047	0.08180		** .	0.102547
29	0.00001'46	0.00621	-	.	0.103087
24	0.00017477	0.09478		** .	0.108090

圖 4.22: 石油產品消費量 RMTSE 所得殘差之 acf 圖形。

		Partial Autocorrelations
Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1	0.02207	• •
2845 678 9	-0.13141 0.02287	. ***
4	-0.08377	**
5	0.08038	**
Ē	-0.00918	
2	0.08002	· * ·
Ä	-0.14844	, ####
10	0.08183 -0.15645	-
iĭ	-0.16577	արարարի իրարարարարարարարարարարարարարարար
iż	-0.01841	
18	-0.11804	**
1 <u>4</u>	-0.10253	, **
15	0.01658	• •
18 17	-0.10895	. **
18	0.03088 -0.03037	· * * · · · · · · · · · · · · · · · · ·
19	-0.12316	
żŏ	-0.04748	
21	-0.06196	. # .
22	0.00568	
23	-0.02079	
24	0.03098	. * .

圖 4.23:石油產品消費量 RMTSE 所得殘差之 pacf 圖形。

使用 BPN 模型過程如 4.2.1.3 (1)至(6),對此變數將使用 BPN 12-6-1,當初始學習率爲 0.1 及初始慣性因子爲 0.8 時,能得到訓練範例的誤差均方根.050492,及測試範例的誤差均方根 0.052759,可見其收斂狀況十分良好。

對於混和性模型,其 SARIMA 模型之線性預測,所得預測模型為 $(0,1,1)(1,1,1)_{12}$,並得到其預測値與殘差,本文再將線性預測所得的預測値及殘差 進行 ANN 預測,依然採用 $\ln Z_{t-1}$, $\ln Z_{t-12}$, $\ln Z_{t-13}$, $\ln \hat{Z}_{t}$, a_{t-1} , a_{t-12} , 及 a_{t-13} 作為 BPN 的 輸入值,輸出值為 a_{t} ,其中 $\ln \hat{Z}_{t}$, 及 a_{t} , 為 SARIMA 所預測出來的結果。當使用 BPN 7-4-1 模型,初始學習率為 0.2 及初始慣性因子為 0.9 時,能得到訓練範例的誤差 均方根 0.002186 及測試範例的誤差均方根 0.022967 其值均小,所以此收斂狀況十分良好。

以石油產品消費量做爲變數,以能源總消費量做爲變數,分別以 SARIMA、RMTSE、BPN 及 SARIMABP 模式進行預測所得預測誤差(如表四),由表四可知 BP 12-6-1 模式所得到的相對誤差(MAPE)爲 2.92%較其他三個模型誤差低,則表示在此四種預測模式方法中,類神經網路的預測能力較佳,其預測結果如圖4.24。

採用 SARIMABP 模式結果同總能源資料,在線性部分的預測結果較 BPN 差,所以當其殘差使用 BPN 模式估計後,再將其代回 SARIMA 之預測模型,依 然無法改善線性部分預測結果,所以採用 SARIMABP 模式在石油產品消費量上 未能得到較好的預測結果。

	表四:石油產品消費量預測模型比較				
Method	Model	MAE	RMSE	MAPE	
SARIMA	$(0,1,1)(1,1,1)_{12}$	257414.15	299223.33	6.63%	
RMTSE	ARMA(1,0)	188228.59	249390.17	4.91%	
BPN	12-6-1	115003.08	135782.65	2.92%	
SARIMABP	BPN7-4-1	256714.56	319635.75	6.48%	

圖 4.24 石油產品消費量之歷史資料 (實線)與預測値 (虛線)。

	表五:	各類別能		5性迴歸極		SE 參數信	 	
類別	總濟	肖費	煤	炭	電	カ	石油	產品
參數	估計值	t-value	估計值	t-value	估計值	t-value	估計值	t-value
$oldsymbol{eta}_0$	15.5634	2422.91	14.7015	1363.48	16.1084	1728.58	14.9449	1756.69
$oldsymbol{eta}_{t}$	0.00415	55.57	0.00646	51.57	0.00478	47.16	0.00238	20.79
$oldsymbol{eta}_{s1}$	-0.03989	-3.98	-0.05075	-3.04	-0.04063	-2.91	-0.03635	-2.50
β_{s2}	-0.15357	-15.34	0.01670	-10.21	-0.13370	-9.59	-0.16191	-11.12
$oldsymbol{eta}_{s3}$	-0.02839	-2.84		_			_	_
$oldsymbol{eta}_{s4}$	-0.04291	-4.45	_	_	_	_	-0.03302	-2.37
$oldsymbol{eta}_{s5}$		1	0.01745	4.63	0.06301	4.34	_	_
$oldsymbol{eta}_{s6}$	_	-3	0.01668	4.99	0.10540	7.57	_	_
$oldsymbol{eta}_{s7}$	0.05118	5.12	0.01688	8.05	0.15874	11.40	_	_
$oldsymbol{eta}_{s8}$	0.06205	6.20	0.01667	7.40	0.19101	13.72	_	_
$oldsymbol{eta}_{s9}$	0.03200	3.20	0.1667	4.37	0.16157	11.61	_	_
$oldsymbol{eta}_{s10}$	0.03874	3.87	0.01667	3.15	0.13589	9.76	_	_
$oldsymbol{eta}_{s11}$		1	1/3		0.07339	5.27	-0.03059	-2.10
D-Wtest	1.484		0.844		1.753		1.666	
1storder	0.224		0.559		0.116		0.161	
Adj R-sq	0.9687		0.9629		0.9627		0.8283	
Estimate	15.56399	Intercept	14.66614	Intercept	16.10883	Intercept	14.9447	Intercept
arma	Moving Factors: 1 + 0.1865	Average 59 B**(1)	Autoregree actors Fac 1-0.96634 Moving Factors: 1 + 0.6159	tors: B**(1) Average	Moving Factors: 1+0.04763 +0.22872E		Autoregree actors Factors: 1 -0.1705	

第五章 結論與建議

本文分別對台灣地區總能源消費量、煤炭、電力及石油產品消費量進行四種預測模式,資料期間從民國85年1月至民國95年1月共132筆月資料。先將其四種消費量繪製歷史圖形(圖4.1、圖4.2、圖4.3 及圖4.4),由這四種圖形大致可以看出此四種消費量具有遞增趨勢與季節性,因此本文均先將此四種消費量經自然對數轉換及差分後,其歷史圖形如圖4.2、附圖一、附圖六及附圖十一,可以從四個圖形看出經由轉換差分後,其資料均以轉換爲平穩行序列,所以在採用模型均並需考慮轉換及季節性。

四種消費量採用四種預測模型其結果可以看出,針對總能源消費量及石油產品消費量採用倒傳神經網路來做預測所得的 MAPE 分別為 1.66%、2.92%,較使用 SARIMA、RMTSE 與 SARIMABP 都來的小,可以解釋爲此兩資料歷史圖形其震盪較爲顯著,也就是說,其資料一定具有非線性部分,若採用 SARIMA 與RMTSE 這兩種線性預測較不能正確的預測出未來總能源消費量與石油產品消費量,而採用 SARIMA 與 BPN 混合性模型,以 SARIMA 作爲模式並改善其殘差,依然無法得到較好預測。反之,對於煤炭消費量及電力消費量若採用 SARIMA所得的相對誤差爲 2.34%、2.30%,較採用倒傳神經網路所得到的 MAPE 分別爲 3.23%、2.42%來的小,所以可以解釋爲其歷史資料圖形若其震盪起伏較爲平緩,亦可將其視爲線性模式,所以再採用 SARIMABP 混合性模型就能得到較好預測結果其 MAPE 分別爲 2.31%、2.09%。

在文獻中,多位學者指出採用混合性模型做預測,能進一步改善單一模型預測之結果,所以本文想知道採用混合性模型是否能夠改改善預測結果,所以進行 SARIMA 與 BPN 的混合模型(SARIMABP),從實證研究也可以知道,對於四種資料,採用 SARIMABP 都有能改善其預測結果,亦可佐證多位學者之研究。 所以在往後的資料預測上,亦可利用混合性模式來改善其預測結果。

本文所採用四種預測模式 SARIMA、RMTSE、BPN 及 SARIMABP 在每一個能源消費量資料上,所得的預測誤差的結果都不盡相同,在總能源消費量及石油消費量採用 BPN 其預測誤差結果小;而在煤炭消費量及電力消費量採用 SARIMABP 其預測誤差結果小,所以可以發現在同類型資料中,其採用預測方式也會不同,也就是說,沒有任何一個預測方式、模式能夠正確無誤的預測資料,因此本文所給的建議乃是由本文實證研究發現,可作爲往後預測能源資料的依據與參考。

對於本文所研究的四種不同能源消費量,所採用四種模式 SARIMA、RMTSE、BPN 及 SARIMABP 的預測結果,其中以 BPN 所得的預測平均絕對百分誤差均小於百分之五,亦可看出 BPN 在預測能源資料較能準確的預測資料,所以在未來預測能源資料時可先採用 BPN 來做預測。在生活實例上,其資料並不一定呈現線性狀況,而 SARIMA 與 RMTSE 均爲線性預測,相對上,SARIMA與 RMTSE 的預測誤差也會較高,因資料可能含有非線性部分,所以往後在預測其他資料部分亦可先採用類神經網路系統做預測、估計誤差來推估未來資料,亦可採用 SARIMA與 ANN 之混合型模式來改善其預測結果。

因本文研究的方式僅利用單一變數之歷史資料來探討其適合之預測模式,並 未考慮其他解釋變數,在日後研究上可考慮相關政策、價格、環境等影響因素, 可藉由這些解釋變數進一步改善其預測模型,對於其預測能力也有改善的空間。 除了,增加其他解釋變數來改善其預測能力,亦可使用不同資料期間來做預測, 本文採用月資料、資料期間 10 年,在未來研究上,可選取日資料、年資料或縮 短、延長資料期間來做預測,亦能改善預測結果。近年來,能源是相當熱門的話 題,所以在此方面可改變多種變數,作爲進一步的後續研究的概念。

附 錄

出處:台灣經濟部能源局 單位:千公秉油當(10^3 KLOE)

年 別(季)	總計	で 日	電力	石油產品
80年1991	52,555.9	4,484.9	23,108.2	23,066.5
81年1992	56,020.5	4,847.2	24,560.2	24,632.1
82 年 1993	59,058.7	5,149.1	26,075.3	25,831.4
83 年 1994	63,623.1	5,288.8	27,889.3	28,227.0
84年1995	66,477.2	5,303.2	29,630.4	29,200.6
85 年 1996	69,849.0	5,480.3	31,450.7	30,494.5
86年1997	73,409.6	5,803.6	34,135.2	31,072.9
87年1998	76,974.7	6,219.9	36,523.8	31,784.3
88年1999	81,648.1	5,966.4	39,808.3	33,557.6
89年2000	86,794.6	6,522.5	44,109.8	33,647.6
90 年 2001	91,255.7	7,028.3	45,100.2	36,741.1
91 年 2002	96,841.8	7,361.0	47,304.2	39,584.4
92 年 2003	99,984.0	7,486.2	49,515.0	40,636.8
93 年 2004	104,960.5	7,947.7	52,064.0	42,534.6
94 年 2005	107,888.5	7,749.5	54,547.3	43,036.1
95 年 2006	109,797.5	8,375.2	56,526.2	42,325.7
96年2007(一)	26,347.8	2,120.4	12,943.0	10,578.3
96年2007(二)	28,338.9	2,366.4	14,288.2	11,016.6
96年2007(三)	30,846.4	2,416.1	16,291.2	11,539.1

附表一:台灣地區能源消費量。

附圖一:煤炭消費量月資料經自然對數及一次差分後之歷史資料圖形。

			Administra		
		기당	The ARINA Procedure	* 1514	
		711=	Name of Variable = ly	1/5/	
		Period(s) of Dif Mean of Working Standard Deviati Number of Observ Observation(s) e	Series on	1,12 -0.00046 0.061359 07 010s 19	
			Autocorrelations		
Lag	Covariance	Correlat on	-1 8 8 7 8 5 4 8 2 1	0 1 2 8 4 5 8 7 8 8 1	Std Error
0 1 2 3 4 5 6 7 8 9 10 11 12 14 16 17 18 19 20 21 22 24	0.0037349 -0.0018488 0.00045371 -0.0004305 -0.0001349 0.00078385 -0.0005350 0.00018415 -0.00018355 0.00061355 0.0006137384 0.0012307 -0.0006303 0.0006355 0.0006355 -0.0008786 0.00075352 -0.0008786 0.00075301 -0.0008386 0.0008386	1.00000 61782 0.12731 10699 10694 0.19486 15597 0.03569 08200 0.04259 0.142576 47368 0.31691 18289 0.18328 0.18289 0.18289 0.18289 0.18289 0.18289 0.18289 0.18289 0.18289	**************** ********** ******* ****	*** **** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** **	0.086874 0.119824 0.121838 0.121838 0.124813 0.126507 0.126701 0.128778 0.127048 0.127048 0.127048 0.152458 0.162568 0.162568 0.168100 0.161228 0.162596

附圖二:對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之 $\mathop{\mathrm{acf}}$ 之 圖形。

Lag	Correlation	-198765432101234567891
1	-0.5 [.] 782	*****
2	0.20004	փախի _
3	-0.19201	****
2 3 4	-0.24640	****
5	0.06689	. * .
Ē	-0.0.622	
5 6 7	-0.07898	*
9	-0.06269	
9 8	0.00684	
10	0.04681	
11	0.33182	<u>.</u> *****
12	-0.86814	****
13	-0.16914	. ***
14	-0.09400	**
15	-0.06791	. * .
16	0.10658	
17	-0.06054	*
18	-0.12013	**
19	-0.13345	, #HHH
20	-0.15676	, փոկոի
21	-0.05131	. * .
22	-0.14236	, skeskesk
23	0.18060	***
24	-0.27489	******

附圖三:對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之 pacf 之圖形。

		/ /	The AFIMA Procedure	
		Auto	orrelation Plot of Residuals	
Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 8 1	Std Error
0	0.0015879	1.00000	**************************************	0
1	-9.3792E-7	00059	E /65/-/	0.096674
2	-0.0000312	01964	165/17	0.096674
3	-0.0001342	0845 l	. **	0.0967
4	-0.0000944	05946		0.097399
5	0.00011616	0.07315	SANG LINES A	0.097737
6	-0.0002625	16533	_***	0.098248
7	0.0000001	.05074	77	0.100014
8	-0.0000464	02924	*	0.101112
9	0.00001340	0.00844		0.101191
1Ô	-0.0000484	03045] *]	0.101198
ίĬ	-0.0000110	00893		0.101283
12	-0.0000900	05669] *]	0.101288
13	0.00030148	0.18986		0.101584
14	-0.0001299	08183	_ **	0.104848
15	0.00005482	0.03452		0.105443
1ĕ	-0.0001042	06561] * [*]	0.105548
iř.	-0.0002386	15024		0.105929
18	0.00006123	0.03856	# "	0.107802
19	-0.0002509	15797	_**** · · · ·	0.101002
20	8.48771E-6	0.00535		0.100001
21	-0.0000138	00871	· •	0 110171
22	-0.0001640	10329	**	0.110177
23	0.00018975	0.11950	- "" ** -	0.111079
24	3.0511E G	.00102	· · · ·	0.112274

附圖四:對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之殘差 acf 之圖形。

附圖五:對煤炭消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之殘差 pacf 之圖形。

附圖六:電力消費量月資料經自然對數及一次差分後之歷史資料圖形。

			The ARIMA Procedure		
			Name of Variable = ly		
		Period(s) of Dil Wean of Working Standard Deviati Number of Observ Observation(s)	Series on	1,12 -0.00039 0.071812 107 cins 13	
			Autocorrelations		
Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1	0 1 2 3 4 5 6 7 8 9 1	Std Error
0 1 2 3 4 5 6 7 8 9 10 11 13 14 16 17 18 19 20 21 22 23 24	0.0051288 -0.0082538 0.00021960 -0.0010622 0.00003798 -0.0015317 -0.0015317 0.000831781 0.000831781 0.000894 -0.0019894 -0.0019894 -0.0019894 -0.000881 0.000881 0.000881 0.000881 0.00062167 -0.0006854 0.000881	1.00000 81580 0.16094 0.02622 21018 0.20713 0.00741 25381 0.2868 18227 0.06187 0.06187 0.17408 44828 0.38402 29776 0.16443 06079 0.00687 01717 0.08898 15249 0.12122 13366 0.17102	**************************************	**** **** *** *** *** *** *** *** ***	0.0988/4 0.128177 0.130183 0.133317 0.136291 0.136295 0.140848 0.148656 0.148656 0.14877 0.150694 0.175089 0.175180 0.175687 0.175685 0.175685 0.177625 0.177625

附圖七:對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之 acf 之圖形。

\ \^	= \ \ \ //\:\-\/\
/ //	Partial Autocorrelations
Correlation	-1 9 8 7 8 5 4 3 2 1 0 1 2 3 4 5 8 7 8 9 1
-0.61560	*****
-0.35107	*****
-0.07244	. * .
-0.28040	*****
-0.15434	_ ***
0.13561	_ *** <u>,</u>
-0.22720	*****
-0.09106	_ ** _
0.01085	
-0.00325	
0.24126	<u>******</u>
-0.24818	****
-0.10109	**
-0.24807	****
0.01746	
-0.16571	***
	* .
	**
-0.11272	**

	**
	Correlation -0.81580 -0.85107 -0.07244 -0.28040 -0.15434 0.13561 -0.22720 -0.09106 -0.01085 -0.00925 0.24126 -0.24318 -0.10109 -0.24807 0.01746 -0.16571 0.03316 0.07189 -0.02526 -0.02526 -0.08912

附圖八:對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之 pacf 之圖形。

		Auto	orrelation Plot of Residuals	
Lag	Covariance	Correlation	-1 8 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1	Std Errcr
0	0.0018195	1.00000	****	0
1	-0.0000717	03933	. * .	0.096674
2	0.00024610	0.13525	_ ***_	0.096824
3	0.00017424	0.09576		0.098574
Ă	-0.0001936	10639	**	0.099439
5	0.0000800.	0.04398	" u	0.100497
e	-0.0000000	04989	1	0.100407
6 7	-0.0000308	04363 22033	****	0.100877
8	0.00009724	0.05344	· · · · · •	0.100308
_			. !* !	
9	-0.0001445	07942	. *** .	0.10556°
10	-0.0000122	00671		0.106110
11	-0.0000408	02244		0.106122
12	0.00001654	0.00909		0.10616
13 14	0.0001928/ -0.000145F	0.10598 07999	. **	0.106174 0.10715#
15	0.0001498 0.00014238	0.07822	- *** - ***	0.10719# 0.10771#
16	-0.00014282	07041	- * *** -	0.107714
17	-0.0001201	06420		0.10867
18	-0.00011055	05800	"	0.109025
iğ 💮	-Ŏ.ŎŎŎĬŢŢĬ	09735	**	0.109313
20	-0.0002778	15241	***	0.11012
21	-0.0000428	02355	- Av	0.11207\$
22	-0.0002222	12214	. **	0.11212
23	0.00011341	0.06233	A 11/2 W	0.11335#
24	0.0000752	.04104	7 - W	0.110077

附圖九:對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之殘差 acf 之圖形。

Lag	; Correlation	The ARIMA Procedure Partial Autocorrelations -188785482101284587881
128458789012845878901284 1112345878901284	-0.08889 0.18891 0.10776 -0.11980 0.00726 -0.02848 -0.21842 0.08414 0.00291 -0.06920 0.04058 0.09961 -0.18020 0.05478 -0.06893 -0.067654 -0.12881 -0.06162 0.04212 -0.06152	***
	Estimete Period(s	Model for variable ly ed Mean -0.00021 s) of Differencing 1,12
Facto		Moving Average Factors 3 B**(1) - 0.78111 B**(12) + 0.84814 B**(18)

附圖十:對電力消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之殘差 pacf 之圖形。

附圖十一:石油產品消費量月資料經自然對數及一次差分後之歷史資料圖形。

		71/5	The ARIMA Procedure	1051.1	
		1/2	Name of Yariable = ly	1.62/17	
		Period(s) of Dif Mean of Workins Standard Deviati Number of Observ Observation(s)	Series Ion	0.000484 0.000484 0.070224 107 elns: 13	
			Autocorrelations		
Lag	Covarlance	Correlation	-1 9 9 7 6 6 4 9 2 1 (1 2 3 4 5 6 7 8 8 1	Std Error
0128458789012345678901284	0.0049313 -0.0015412 -0.0005995 -0.0002988 0.00019677 -0.0001987 -0.0002482 0.00089877 -0.0002458 0.00029458 0.00029458 0.00029458 0.00029450 -0.0018188 0.00029450 -0.0018188 0.00039995 0.0004799 0.0004799 0.00088808 0.00032498 -0.00082498 -0.00082498 -0.00082498 -0.00082498 -0.00082498 -0.00082498 -0.00082498 -0.00082498 -0.00082498	1.00000812541418606368 0.039900208106064 0.1840118022 0.10119 0.00498 0.0414788789 0.16005 0.198170307409732 0.07870 0.0656918801 0.202721147702895 0.09496	**************************************	하다 하다	0.098674 0.105686 0.107769 0.107769 0.107907 0.107907 0.108186 0.110486 0.1112748 0.112748 0.112748 0.112748 0.112787 0.126694 0.128798 0.129241 0.129666 0.132027 0.134906 0.195814 0.136884

附圖十二:石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之 acf 之圖形。

		Partial Autocorrelations
Lag	Correlation	-1 8 8 7 8 5 4 8 2 1 0 1 2 3 4 5 8 7 8 9 1
1	-0.31254	*****
2	-0.26547	****
3	-0.23686	****
4	-0.14196	_ ####
0	-0.14557 -0.18502	_ ###
7	0.10002 0.04615	
234 56789	-0.11802	**
9	0.08194	
10	0.08062	_ ## _
ļŢ	0.14608	***
12 13	-0.36009	Acadesis Acadesis a
14	-0.15383 -0.10050	_ ***
15	-0.09354	- mm mm mm mm mm mm mm mm -
16	-0.24570	****
17	-0.07968	**
18	-0.04588	_ *
19	-0.18194	_ ***
20	0.07611	_ ## _
21 22	0.00201 -0.05953	_
23	0.10321	* ** -
24	-0.20384	****

附圖十三:石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之 pacf 之圖形。

Autocorrelation Plot of Residuals										
.ag	Covariance	Correlation	-1 9 8 7 6 5 4	3 2 1	0 1 2 3 4 5 6 7 8 9 1	Std Error				
0	0.0028473	1.00000	35 PH ST	4.73	******	0				
ī	0.00057627	0.20239	37		***	0.096674				
ż	-0.0002908	10212	< / /	. **	2/17	0.100556				
3	-0.0004551	15985		***		0.101520				
ă.	-0.0001994	07004	YAZ			0.103846				
5	0.00027359	0.09609	SCACE III	M_A	** .	0.104287				
6	0.00027333	0.06570	9 01		* -	0.104287				
7	0.00018708	0.06070 0.12160	7	-1	中 	0.105111 0.105494				
8	-0.00034040	09489	7	. **	mm	0.100434 0.108798				
9	-0.0002702	03403 10825		, դար ական	•	0.100738				
ıŏ	-0.0004415	15506		_ ###	[0.107556				
iĭ	-0.0008686	12878		***	1 - 1	0.110646				
2	-6.4879E-6	00228			1 : 1	0.112059				
8	0.00014826	0.05207		-	* <u>-</u>	0.112060				
4	0.00001764	0.00619			-	0.112285				
5	-0.0002424	08512		. **	-	0.112289				
16	-0.0001160	04076		. *		0.112890				
7	0.00038611	0.13561			*** .	0.113028				
8	0.00029006	0.10187		•	** .	0.114538				
9	-7.2447E-8	00254			•	0.115382				
20 21	0.00008728 -0.0001707	0.02382 05998		-	·	0.115382 0.115427				
C I 22	-0.0001707 0.00010000	05556 0.03512		. *	H	0.115427 0.115718				
.z 29	0.00010000	0.03312 0.10182		-	m	0.115818 0.115818				
24	0.00018333	0.10102		-	mm	0.113616 0.116648				

附圖十四:石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之殘差 acf 之圖形。

附圖十五:石油產品消費量月資料作對數轉換後,非季節性差分一次,季節性差分一次所得之殘差 pacf 之圖形。

參考文獻

- [1] Bowerman Bruce L. and O'Connell Richard T. (1993), Forecasting And Time series: An Applied Approach (third edition).
- [2] Bowerman Bruce L., O'Connell Richard T. and Anne B. Koehler, *Forecasting, Time Series, And Regression(fourth edition)*.
- [3] R.E Abdel-Aal and A.Z.Al-Garni (1996), Forecasting Monthly Electric Energy

 Consumption In Eastern Saudi Arabia Using Univariate Time-Series Analysis.
- [4] S.Gonzales Chavez, J.Xiberta Bernat and H.Llaneza Coalla (1998), Forecasting of energy production and consumption in Asturias(northern Spain), Energy24 (1999)183-198.
- [5] Fang-Mei Tseng, Hsiao-Cheng Yu and Gwo-Hsiung Tzeng (1999~2000),

 Combining neural network model with seasonal time series ARIMA model,

 Technological For- Ecasting & Social Change69(2002)71-87.
- [6] G. Peter Zhang(1999~2001), Times series forecasting using a hybrid ARIMA and neural network model, Neurocomputing50(2003)1159-175.
- [7] Samer Saab, Elie Badr and Georage Nasr (2000), Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon, Energy26 (2001)1-14.
- [8] Tugba taskaya-temizel and Matthew C. Casey (2005), *A comparative study of autoregressive neural network hybrids*, Neural Networks18(2005)781-789.
- [9] Volkan S. Ediger and Sertac Akar (2006), *ARIMA forecasting of primary demand by fuel in Turkey*, Energy Policy35(2007)1701-1708.

- [10] 歐員弟、吳榮華(2000),「短期國際油價效率市場之研究」,能源季刊 第三十卷 第四期(民國八十九年十月)。
- [11] 劉蘇萍,「台灣能源需求之結構性變化、影響因素及節能政策效果」,中原 大學國際貿易學系,民國九十一年六月。
- [12] 許哲強、賴正文及陳家榮(2003),「工神經網路在區域一次變電所負載預測之應用研究」,能源季刊第三十三卷第一期(民國九十二年一月)。
- [13] 孫育伯、廖惠珠(2005),「原油價格結構性轉變分析」,能源季刊 第三十 五卷 第一期(民國九十四年一月)。
- [14] 林茂文,「時間數列分析與預測」,民國九十二年十一月初版。
- [15] 葉怡成,「應用類神經網路」,西元 1997年7月初版。
- [16] 葉怡成,「類神經網路應用與實作」, 西元 2003 年 3 月第八版。
- [17] 經濟部能源局,「能源報導」。
- [18] 經濟部能源局,能源相關統計資料、國內能源政策白皮書。
- [19] 經濟部能源政策審議小組,「能源季刊 Energy quarterly」。
- [20] 相關能源之新聞資料、雜誌(商業週刊)等。