Statistical Methodology for Software Engineering

Hadas Lapid, PhD

Contents

How to choose correct statistical analysis

- Single sample
- Two samples
- Multiple parameters

Single sample against theoretical distribution

Comparison of two samples

Statistics for Software Engineers

© Hadas Lapid all rights reserved

Multiple Comparisons

Auxilliary Summaries

Descriptive Data Analysis

bar chart pie chart freq. table

mode

bar chart pie chart freq. table box plot ECDF

median, mode, quartiles, range, IQR box plot histogram kernel density plot ECDF

median, mean, quartiles, variance, absolute median deviation, range, IQR

¹ not explained in this book; alternative: Mood's median test

² use option paired=TRUE for dependent data

³ not explained in this book; use Friedman test for dependent data

¹ alternative: χ²-independence test (chisq.test()) (test decision equivalent to χ²-homogeneity test)

 $^{^2}$ not explained in this book

 $^{^3}$ test decision equivalent to χ^2 -independence test

 $^{^{1}}$ test decision equivalent to χ^{2} -homogeneity test (prop.test)