Simple Linear Regression

In this example, we will consider sales based on 'TV' marketing budget.

We'll build a linear regression model to predict 'Sales' using 'TV' as the predictor variable.

Understanding the data

Import pandas

```
In [1]: import pandas as pd
```

Read the dataset with pandas

```
In [2]: df = pd.read_csv('tvmarketing.csv')
```

View the first five rows of the dataset

```
In [3]: df.head()
```

Out[3]:		TV	Sales
	0	230.1	22.1
	1	44.5	10.4
	2	17.2	9.3
	3	151.5	18.5
	4	180.8	12.9

View the last 5 rows

```
In [4]: df.tail()
```

Out[4]:

	TV	Sales
195	38.2	7.6
196	94.2	9.7
197	177.0	12.8
198	283.6	25.5
199	232.1	13.4

Check info about the dataset

```
In [5]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 2 columns):
    # Column Non-Null Count Dtype
--- 0 TV 200 non-null float64
1 Sales 200 non-null float64
dtypes: float64(2)
```

dtypes: float64(2)
memory usage: 3.2 KB

Check the number of rows and columns in the dataset

```
In [6]: df.shape
Out[6]: (200, 2)
```

Quick view the basic statistical information about the dataset

Sales

```
In [7]: df.describe()
```

Out[7]:

		- Juico
count	200.000000	200.000000
mean	147.042500	14.022500
std	85.854236	5.217457
min	0.700000	1.600000
25%	74.375000	10.375000
50%	149.750000	12.900000
75%	218.825000	17.400000
max	296.400000	27.000000

TV

Visualising the data using Seaborn Library

Import Matplotlib, Seaborn and set matplotlib inline

```
In [8]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Visualize the relationship between the features and the response using scatterplots

Performing Simple Linear Regression

Equation of linear regression

$$y = c + m_1 x_1 + m_2 x_2 + \ldots + m_n x_n$$

- y is the response
- *c* is the intercept
- m_1 is the coefficient for the first feature
- m_n is the coefficient for the nth feature

In our case: $y = c + m_1 \times TV$

Generic Steps in Model Building using sklearn

Before you read further, it is good to understand the generic structure of modeling using the scikit-learn library. Broadly, the steps to build any model can be divided as follows:

Preparing X and y (Independent and Dependent variables)

- The scikit-learn library expects X (feature variable) and y (response variable) to be NumPy arrays.
- However, X can be a dataframe as Pandas is built over NumPy.

Assign feature variable(Independent variable) to X

```
In [10]: X = df[['TV']]
```

Print the first five rows of X

Assign response variable(Dependent variable or target variable) to y

```
In [12]: y = df['Sales']
```

Split the data into Training and testing Sets

```
In [13]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y , test_size = 0.3, rar
```

```
In [14]: # random_state is the seed used by the random number generator, it can be any
         # If we don't specify a random state integer, we get different training and te
 In [ ]: train_test_split #Press Tab to auto-fill the code
         #Press Tab+Shift to read the documentationy
         Check the shape of training and testing set
In [20]: print(X_train.shape)
         print(y_train.shape)
         print(X_test.shape)
         print(y_test.shape)
         (140, 1)
         (140,)
         (60, 1)
         (60,)
         Performing Linear Regression
         Import LinearRegression from sklearn linear model
In [21]: from sklearn.linear model import LinearRegression
```

Create a LinearRegression object

```
In [22]: lr = LinearRegression()
```

Train the model (Ir) using fit

```
In [23]: lr.fit(X_train, y_train)
Out[23]: LinearRegression()
```

Print the coefficient and Intercept

```
In [24]: print(lr.coef_)
print(lr.intercept_)

[0.04649736]
6.989665857411679
```

Check the score of our model

```
In [27]: lr.score(X_train, y_train)
Out[27]: 0.6134312469429994
```

Make predictions on the testing set

```
In [25]: y_pred = lr.predict(X_test)
```

Plot a graph to check the accuracy of our prediction

```
In [26]: c = [i for i in range(1,61,1)] #Creating an Index, 61 is used because we hav
fig = plt.figure()
plt.plot(c,y_test, color = 'green') # Plotting y test
plt.plot(c,y_pred, color = 'blue') # Plotting predicted values
fig.suptitle('Actual (Green) Vs Predicted (Blue)') # Set title
plt.xlabel('Index') # Set X Label
plt.ylabel('Sales') # Set Y Label
plt.show()
```

Actual (Green) Vs Predicted (Blue)

Plot a scatterplot of actual values vs predicted

```
In [36]: sns.scatterplot(x = y_test, y = y_pred)
plt.xlabel('Actual Values')
plt.ylabel('Predicted values')
plt.show()
```


Calculate mean squared error and r2_score

Mean Squared Error:It is the sum, over all the data points, of the square of the difference between the predicted and actual target variables, divided by the number of data points.

y-ypred²

$$e_i = YPred - Yi$$

$$Ypred = mx + c$$
 i.e,
$$e_1 = ((m_i * x + c) - y_i)$$
 i.e,
$$e_1^2 = (y_1 - (m_i * x + c))^2$$

Import mean_squared_error and r2_score from sklearn.metrics

In [30]: from sklearn.metrics import mean_squared_error,r2_score

Calculate the mean squared error

```
In [33]: mean_squared_error(y_test, y_pred)
```

Out[33]: 7.97579853285485

Calculate r2_score

```
In [34]: r2_score(y_test, y_pred)
```

Out[34]: 0.5942987267783302