

Introduction course

SUSIE JENTOFT, ASLAUG FOSS

DAY 1: 26 FEBRUAR, 2025

Goals for course

- Gain an understanding for R and RStudio
- Open RStudio og run calculations
- Read in and manipulate data
- Create tables and summary statistics
- Create figures
- Edit and impute data

- Re-using code with loops
- Able to write own functions
- Able to create RMarkdown
 documents and visualize data in
 different ways
- Production organisation

Main themes

Wednesday 26.02	Friday 28.02	Wednesday 05.03	Friday 05.03	Wednesday 19.03	Friday 21.03
Introduction	Data manipulation	Data validation	Reusing code with loops	Documentation	Package management
Reading in data	Merging and plotting	Imputation	Writing functions	Github	Organising production code

Day structure

Time	Learning type
09:00-09:10	Review of previous day
09:10 - 09:45	Introduction to topic 1
09:45 – 10:15	Exercises
10:15 – 10:30	Coffee/tea break
10:30 – 11:15	Introduction to topic 2
11:15 – 11:50	Exercises
11:50 – 12:00	Summary

Susie Jentoft (susie.jentoft@ssb.no)

Aslaug Foss (aslaug.hurlen.foss@ssb.no)

Course format and guidelines

- Use chat for asking questions or
- Raise hand to ask a question
- **Exercises:** Write or ask questions to us and eachother.
- Code for course is on GitHub
- Mute microphone when you are not speaking

What is ?

- Programming language and environment for statistics
- Developed by Ross Ihaka & Robert Gentleman (1993)
- Base + Packages
- RStudio:
 - IDE/development environment
 - Open source + commercial licenses

Why learn ?

- Open source
- Large society and support
- Good graphics
- Good integration with other programmes
- Developed specifically for statistics
- Used within many statistical bureaus:
 - https://github.com/SNStatComp/awesome-official-statistics-software

RStudio

Statistisk sentralbyrå
Statistics Norway

Working with code files

Create a new file

• File > New File > R Script

or

Open an existing file

• File > Open File ...

or

Save file

- File > Save

or

Running code

- Write code in source/code files
- Run code by clicking on

■→ Run or ctrl + enter

- This will run the line your mouse is on
- Highlight an area to run a segment or several lines
- Also possible to run whole code with

- Lines that start with # are for comments (not run)
- Use 4x# to create headings (#### Heading ####)

Basic operations

Basic calculations

Base functions

All functions in R have help files:

Git and GitHub

- Git: version control for code
- Distribute code and manage projects with several contributors
- Git is well integrated in RStudio

Clone a repository

- **Github**: https://github.com/statisticsnorway/kurs-r-ukraine
 - Click on

- Copy HTTPS address (URL)
- In **RStudio**:
 - File > New project > Version Control > Git
 - Paste in address under «Repository URL»
 - Click Create Project
 - **Save files** you change (for example exercises) with a new name

Example code for today

Example code for today is in the examples folder and is called:

Rcode_day1.R

Strings

```
"Hello, world!"
```

- Single (' ') or double quotes (" ") be consistent!
- Combine two or more with paste()
- Take out part of a string:

substr(string, start, stopp)

Print to console

print()

Objects

- Creating an objects gives a name to a value/or string
- We use <- to allocate (give a name to) an object

$$x < - 2$$

To see what is stored in the object, write and run the name

X

Objects

- CASE SENSITIVE
- Must start with a letter
- No spaces (use _)
- Different contents: number, string
- Can be written over/replaced

```
X <- 5
```

Oblast ≠ oblast

Object type

Find out type with

Common object types:

Object type	Description
chr	Character/string
num	Number
Date	Date (use <u>lubridate</u> package)
Factor	Categorical variable (fixed levels)
data.frame	Dataset

Vectors

- Objects which hold several values
- Use c() to create vector (combine)
- Use comma to separate elements
- Must be same object type

```
c(1, 7, 10)
c("Kongsvinger", "Oslo")
```


Vectors as objects

Give vectors a name with

Find the length of a vector with

Determine the object type with

Access an element []

- Use [] with an index number to fetch a value
- Indexing starts from 1
- Possible to index several values
- Exclude an value with "-"

```
vector_name[2]
vector_name[c(2,3)]
vector_name[2:4]
```


Exercise 1

- Clone repository for the course
- Open file Exercises_day1.R and do exercise 1

Logical statements/tests

- Compare objects
 - TRUE/FALSE

Code i R	Description
==	Compare if the same
!=	Compare if they are different
>	Greater than
>=	Greater than or equal
<	Less than
<=	Less than or equal
%in%	Is in/contains

- Can be used for single values or vectors
- Combine with & (and), | (or)

Create data

data.frame()

- Objects can also be data (with rows and columns)
- Combine different types of data (numbers and strings)

```
data.frame(object1, object2)
```

```
data.frame(column_name1 = c(1, 2), column_name2 = c("Industry", "Agriculture"))
```


Look at the data

- Write data name
- Click on dataset name under Environment
- Or

View()

R Packages

- Collection of code and functions
- CRAN (<u>www.r-project.org</u>)
- Install package one time

install.packages("package_name")

• Load package each time RStudio starts

Read in data: .csv file

```
library(tidyverse)
                              seperator = , decimal = .
read_csv()
     Path to data
library(tidyverse)
read_csv2()
                                seperator = ; decimal = ,
      Path to data
```


Read in data: stata file

• We can read in stata datsets direct to R using

```
library(haven)
read_dta()

Path to data
```


Read in dataset: fixed width format file

Need to specify positions/widths. Use extra function: fwf_cols

```
library(tidyverse)
read_fwf(file, col_positions)

Path to data

Position or widths of variables
```


Look at the data

Exercise 2:

• Exercise 2 is in the file : **Exercises_day1.R**

Vectors, lists and data

