國立虎尾科技大學機械設計工程系

電腦輔助設計實習期末報告

鋼球機構循環系統

第九組

學生: 40423159 張惟珉 40523237 楊順全 40423250 鄭裕倫 40423231 連 緒 40423233 郭雲軒 40423213 李世欽 40423220 林易寬

> 指導教授:嚴家銘 2018.01.15

摘要

報告動機:

製作提球運動系統,並且組員每個人做出一個可替換的軌道系統,而鋼球運動系統必須要能夠放置在郵局的〔23 x 18 x 19 (c m)] 小箱子中。

報告重點:

利用 Github 整合每個人的倉儲系統,並將組員設為協同者,之後由各組去設計鋼球運動系統的軌道,軌道設計與提球系統初步設計先利用 Solidworks 設計,之後倒入到 Onshape,利用 Onshape 組合,倒出到 v-rep 並進行模擬的動作,確保各零件不會因為開始作動而出現問題,之後利用 ShareX 進行錄影模擬整個運動的過程。

目錄

摘要	1
目錄	2
圖目錄	3
第一章前言	4
第二章機構介紹	5
2.1 機構設計	5
2.2 齒輪設計	6
2.3 提球機構設計	7
2.4 軌道設計	8
2.5 v-rep 模擬	9
2.6 使用軟體	10
2.7 模擬遇到的困難	11
2.8 v-rep 參數設定	12
第三章個人軌道	15
3.1 設計三甲 40423159 張惟珉	15
第四章結論	16
第五章討論與建議	17
第六章組員心得	18
參考文獻	20

圖目錄

昌	1.10	Github 協同倉儲	4
		鋼球運動系統主體	
		-2.3 齒輪設計	
		提球機構設計	
		-2.6 軌道設計	
		v-rep 模擬	
- 昌	2.8-	-2.9 v-rep 齒輪模擬參數	11
昌	2.10	0-2.15-rep 參數設定	12
		個人軌道 張惟珉	
		3D 列印	

第一章前言

設計是一種明確與具體的表達, 而且是在仔細思考、多 方考量後所完成的表達,表達具有六種形式,包括口語、 文字、2D、3D、數學與實體表達,設計的結果可以讓執行者 有所依循,根據指示執行後,可得預期之結果。

在第九週,進行 Github 協同分組,組員並分別練習所 分配到的兩個影片,拍攝 Onshape 中文化的影片,按照課程 所規劃的淮度,並且更新 fossil scm 網誌,

討論提球運動系統所需要設計與模擬,並且要按照規 節來製作,且各組員也需要自行設計一個軌道系統,做替 換的動作。

利用 Github 建立協同小組,並且將所有組員設為協同 者,利用多人分工,達到整合之目的,而各組員也能夠利 用自己空閒的時間完成自己的工作,使每個人的工作都可 以一目了然。

圖 1.1

第二章機構設計

2.1 機構設計:

利用齒輪機構來將 9mm 鋼球拉升至軌道入口,並藉由軌道連接至底部的入球點。用以形成鋼球的循環。機構本身必須侷限大小在能放入郵局紙箱 BOX2(230*18*19)之內。

提球機構主體:

圖 2.1

2.2 齒輪設計

圖 2.2

圖 2.3

2.3 提球機構設計

此機構利用兩齒輪配合,小齒輪為主動輪,大齒輪為從動輪, 利用齒輪咬合,帶動整個機構運作,而後檔板是為了不讓鋼球往後 面掉所設計出來的,前檔板是為了讓齒輪轉到軌道時,能夠順利進 入軌道裡面所設計的。

圖 2.4

2.4 軌道設計

利用一個螺旋的管子,將球丟入管中,之後在出口處底下設計 一個可讓球往齒輪方向的軌道。

圖 2.5

2.5 v-rep 模擬

在設定齒輪配合的時候,兩邊齒輪都會跑掉沒辦法咬合,原本設計中有一個支撐軸,但在設定參數的時候會讓齒輪沒辦法相互配合,所以我只好將齒輪的支撐軸拿掉,就可以進行咬合,只不過感覺咬合還是有一些怪怪的地方,但是鋼球在設定中是可以在這個機構中循環的。

圖 2.7

2.6 使用軟體:

Onshape:

能在網路上操作的作圖軟體,和 sildworks 十分雷同的操作方式故並不會難以上手,可以用來進行零件的繪製與組合,可將設計方面的公差配合做出概略。

Soildworks:

在此次報告上因為有 Soildworks 可以使用,故在繪製零件方面還是以此軟體為主,畢竟兩套軟體是極其相似的,而 Onshape 主要還是使用其共有雲端的功能。

V-rep:

用以模擬的軟體,能將我們所製作完成的組合圖放入其中,將其加上軸向限制後以進行做動模擬。看是否能做動順利。

2.7 模擬遇到的困難

剛開始在使用 V-rep 時,看影片都看不懂,之後請教別人以後,才大概了解 V-rep 該如何使用,在模擬的過程中,因為齒輪配合的問題,導致沒辦法讓機構運轉起來,雖然有請教別人,但好像沒辦法解決,之後才將齒輪中間挖空,並且插入支撐軸,方便定位也可以在 V-rep 中定位到齒輪的正中心,雖然模擬的過程中花費不少時間,但在完成的過程是滿開心的,因為總算成功了。

	-1.0000e+03 5.0000e+00 s zero
Control properties	Apply to selection
Control loop enabled	
Target position [deg]	-2.0000e+01
Upper velocity limit [deg/s]	
Custom control	Edit custom control loop
Position control (PID)	
Proportional parameter	0.100
Integral perameter	0.000
Dezivative parameter	0.000
Spring-damper mode	
Spring constant K [N]	1.000e-01
Damping coefficient C [N*s]	0.000e+00
	Apply to selection

圖 2.8

✓ Motor enabled	
Target velocity [deg/s]	-1.5000e+03
Maximum toxque [N*m]	5.0000e+00
✓ Lock motor when target velocity	is zero
Edit engine specific properties	
	Apply to selection
	(appl) (appl)
ntuol puoperties	
Control loop enabled	
Target position [deg]	+5.0000e+01
Upper velocity limit [deg/s]	
Custom control	Edit custom control loop
Position control (PID)	
Proportional parameter	0.100
Integral parameter	0.000
Dezivative parameter	0.000
Spring-damper mode	
Spaing constant K [N]	1.000e-01
Damping coefficient C [N*s]	0.000e+00
	Apply to selection

圖 2.9

2.8 v-rep 參數設定

2.8.1 本體

圖 2.10

2.8.2 球

圖 2.11

2.8.3 大齒輪軸承

圖 2.12

2.8.4 大齒輪

圖 2.13

2.8.5 小齒輪軸承

圖 2.14

2.8.6 小齒輪

圖 2.15

第三章個人軌道

3.1 四設三甲 張惟珉

圖 3.1 張惟珉 個人軌道

Onshape 中文化影片

https://vimeo.com/250430977

https://vimeo.com/250432825

彈珠台模擬

https://vimeo.com/249768543

個人軌道模擬

https://vimeo.com/250954209

第四章結論

在做3D列印時,考慮到時間的因素關係,以至於列印出來的東西太小,沒辦法將鋼球放入實體中,不過還是有設計出來,而齒輪配合得效果比在V-rep好很多,不會卡卡的。

圖 4.1

討論與建議

製作過程因為卡到許多不同時間因素(例:段考)所以再討論以及確立提默樣貌時耗時過久,以至於之後的部分皆有延宕。最主要還是關於時間規畫的部分還有所欠缺,再調配時間上著實遇到大大的困難。

在 V-rep 的模擬上可能還要再多加一點心思,因為在模擬的過程花太多時間了,可能自己不是那麼熟悉這個軟體,可能還要再花多一點時間來使用,才可能更熟練。

組員心得

40423159 張惟珉

這次的期末報告,做為一個協同者,需要盡心盡力,每個都需要做一些事情,而不是在旁邊看戲而已,教授出了這樣的報告就是要我們自己動手做,雖然在模擬的過程上出現許多問題,不過我還是想自己親自模擬出來,那種成就感是別人幫助你所得不到的,雖然在堂課上教授所教得我不是全部都懂,不過大部分都能夠吸收,並且去把它弄出來,因為做為一個協同者最需要的是分工,每個人都有自己所需要做的事情,在軟體的使用上,我從來沒有使用過 Solvespace、V-rep、Onshape,這學期真的認是滿多不一樣的軟體,而這些軟體都各有優缺點,每個都有它獨特的地方,也謝謝教授在這學期的教導,讓我學到很多珍貴的程式應用。

40523237 楊順全:

在這次期末報告之中,體會到分工的不易,而 且在升上2年級後的課業越發沉重,再時間分 配上仍然需要更多的努力,而且藉由分工、整 合能夠體會到諸多事情是非藝人得以完成的事 實。也因此時間的掌握真的太重要了。

40423231 連緒:

期中後加入到第九組,跟之前修過的有所差別,老師出的作業也有所研究,雖然使用的軟體跟去年一樣但是,有很多繪圖及模擬的問題也因為老師拍的影片跟教學才慢慢了解,沒想到 onshape跟 v-rep 是一個這麼好用的軟體,許多東西能在雲端上儲存,非常非常方便謝謝老師一學期的教導~

40423250 鄭裕倫:

這堂課,體會到設計的過程是要靠分工合作,,有很多繪圖及模擬的問題也因為老師拍的影片跟教學才慢慢了解,沒想到 onshape 跟 v-rep 是一個這麼好用的軟體,許多東西都能在裡面做使用。這學期也將設計的產品時做出來,學習到很多。

40423213 李世欽:

這學期教的課程跟去年有些差異,多了 foaail 的應用,使得 github 進行小組的管理時不再出現版次的錯誤。作業的部分多出設計彈珠台及上升系統和軌道的組合應用,繪製完成後再使用 V-rep 進行模擬實際畫面,雖然難度提升許多,但完成後感覺自己也多學到不少東西。

40423233 郭雲軒:

這學期有嘗試蠻多之前第一次修所不會的 也有得到一些收穫 能在這方面繼續加強 對未來工程師的我一定能做到更多其他所不能做的 製造出和其他工程師的差異

40423220 林易寬:

這學期的課程比去年還要更注重於團隊合作, 作為一個設計系的學生,必須要有適當的版次 管理與可以跟組員合作的團隊能力。在這十八 週裡,我學到了 fossil 與 github 的資源分享, 這項能力可以加強組員的溝通能力實在令我獲 益良多。然後利用 v-rep 的模擬可以找出問題點 在與組員討論去解決問題。一起完成這項鋼球 提取系統。

參考文獻

https://mde1a1.kmol.info/2017fall/wiki?name=cadpw10-w12 https://mde1a1.kmol.info/2017fall/index