Ch. 2. Nombres complexes

Plan

- 0. Rappels de trigonométrie
- I. L'ensemble des nombres complexes
- II. Racines n-ième d'un nombre complexe
- III. Applications à la géométrie plane
- IV. Théorème fondamental de l'algèbre

0. Rappels de trigonométrie

Soit $\mathcal C$ un cercle d'origine O de rayon 1. On rappelle que l'on peut illustrer à l'aide de $\mathcal C$ les notions de cosinus et de sinus. On appelle ce cercle le cercle trigonométrique.

Valeurs remarquables sur le cercle trigonométrique :

Parité de cosinus et de sinus

Pour tout réel θ ,

- $\cos -\theta = \cos \theta$
- $\sin -\theta = -\sin \theta$

Formules d'addition de cosinus et de sinus

Pour tous réels θ et θ' ,

- $\cos(\theta + \theta') = \cos\theta\cos\theta' \sin\theta\sin\theta'$
- $\sin(\theta + \theta') = \sin\theta\cos\theta' + \cos\theta\sin\theta'$

Formules de duplication de cosinus et de sinus

Pour tout réel θ ,

- $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
- $\sin 2\theta = 2\cos\theta\sin\theta$

Proposition

Pour tout réel θ , $\cos^2 \theta + \sin^2 \theta = 1$.

Linéarisation du carré Pour tout réel θ ,

- $\cos^2 \theta = \frac{1+\cos 2\theta}{2}$
- $\sin^2 \theta = \frac{1 \cos 2\theta}{2}$

I. L'ENSEMBLE DES NOMBRES COMPLEXES

1. Construction de l'ensemble des nombres complexes $\mathbb C$

Considérons l'ensemble $\mathbb{R} \times \mathbb{R}$ muni des opérations suivantes :

- Addition: Pour tous (a_1, b_1) et $(a_2, b_2) \in \mathbb{R} \times \mathbb{R}$, $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$;
- Multiplication: Pour tous (a_1, b_1) et $(a_2, b_2) \in \mathbb{R} \times \mathbb{R}$, $(a_1, b_1).(a_2, b_2) = (a_1 a_2 b_1 b_2, a_1 b_2 + b_1 a_2)$.

Concernant cette addition, on peut remarquer que :

• L'addition est associative et commutative: Pour tous $(a_1, b_1), (a_2, b_2)$ et $(a_3, b_3) \in \mathbb{R} \times \mathbb{R}$, on a

$$((a_1, b_1) + (a_2, b_2)) + (a_3, b_3) = (a_1 + a_2, b_1 + b_2) + (a_3, b_3)$$

$$= (a_1 + a_2 + a_3, b_1 + b_2 + b_3)$$

$$= (a_1, b_1) + (a_2 + a_3, b_2 + b_3)$$

$$= (a_1, b_1) + ((a_2, b_2) + (a_3, b_3))$$

et
$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2) = (a_2 + a_1, b_2 + b_1) = (a_2, b_2) + (a_1, b_1).$$

- (0,0) est élément neutre pour l'addition : Pour tout $(a,b) \in \mathbb{R} \times \mathbb{R}$, (a,b) + (0,0) = (a+0, b+0) = (a,b) = (0+a, 0+b) = (0,0) + (a,b).
- Existence d'un opposé pour l'addition : Pour tout $(a,b) \in \mathbb{R} \times \mathbb{R}$, (a,b) + (-a,-b) = (a-a,b-b) = (0,0) = (-a,-b) + (a,b).

Concernant cette multiplication, on peut remarquer que :

• La multiplication est associative et commutative : Pour tous (a_1, b_1) , (a_2, b_2) et $(a_3, b_3) \in \mathbb{R} \times \mathbb{R}$, on a

$$((a_1,b_1).(a_2,b_2)).(a_3,b_3) = (a_1a_2 - b_1b_2, \ a_1b_2 + b_1a_2).(a_3,b_3)$$

$$= ((a_1a_2 - b_1b_2)a_3 - (a_1b_2 + b_1a_2)b_3, \ (a_1a_2 - b_1b_2)b_3 + (a_1b_2 + b_1a_2)a_3)$$

$$= (a_1a_2a_3 - b_1b_2a_3 - a_1b_2b_3 - b_1a_2b_3, \ a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3)$$

$$= (a_1(a_2a_3 - b_2b_3) - b_1(b_2a_3 - a_2b_3), \ a_1(a_2b_3 + b_2a_3) + b_1(a_2a_3 - b_2b_3))$$

$$= (a_1,b_1).(a_2a_3 - b_2b_3, \ b_2a_3 - a_2b_3)$$

$$= (a_1,b_1).((a_2,b_2).(a_3,b_3))$$

et
$$(a_1, b_1).(a_2, b_2) = (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2) = (a_2a_1 - b_2b_1, a_2b_1 + b_2a_1) = (a_2, b_2).(a_1, b_1).$$

• (1,0) est élément neutre pour la multiplication : Pour tout $(a,b) \in \mathbb{R} \times \mathbb{R}$,

$$(a,b).(1,0) = (a \times 1 - b \times 0, \ a \times 0 + b \times 1)$$

= $(a,b) = (1 \times a - 0 \times b, \ 0 \times a + 1 \times b)$
= $(1,0).(a,b).$

• Existence d'un inverse pour la multiplication : Pour tout $(a,b) \in \mathbb{R} \times \mathbb{R}$ tel que $(a,b) \neq (0,0), (a,b). \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right) = \left(a.\frac{a}{a^2+b^2} - b.\frac{-b}{a^2+b^2}, \ a.\frac{-b}{a^2+b^2} + b.\frac{a}{a^2+b^2}\right) = \left(\frac{a^2+b^2}{a^2+b^2}, \frac{-ab+ab}{a^2+b^2}\right) = (1,0) = \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right).(a,b).$

Enfin, on retrouve la distributivité de la multiplication par rapport à l'addition : Pour tous (a_1, b_1) , (a_2, b_2) et $(a_3, b_3) \in \mathbb{R} \times \mathbb{R}$, on a

$$(a_1, b_1).((a_2, b_2)) + (a_3, b_3)) = (a_1, b_1).(a_2 + a_3, b_2 + b_3)$$

$$= (a_1(a_2 + a_3) - b_1(b_2 + b_3), \ a_1(b_2 + b_3) + b_1(a_2 + a_3))$$

$$= ((a_1a_2 - b_1b_2) + (a_1a_3 - b_1b_3), \ (a_1b_2 + b_1a_2) + (a_1b_3 + b_1a_3))$$

$$= (a_1a_2 - b_1b_2, \ a_1b_2 + b_1a_2) + (a_1a_3 - b_1b_3, \ a_1b_3 + b_1a_3)$$

$$= (a_1, b_1).(a_2, b_2) + (a_1, b_1).(a_3, b_3).$$

Avec toutes ces propriétés, on dit que l'ensemble $\mathbb{R} \times \mathbb{R}$ muni de l'addition et la multiplication précédemment définies est un corps. On l'appelle **corps des complexes** et on le note \mathbb{C} .

Notation dans \mathbb{C} : Le corps des complexes utilise généralement la notation a+ib. Soit $z=(a,\ b)\in\mathbb{C}$ tel que défini précédemment. On a :

$$(a, b) = (a, 0) + (0, b)$$

= $(a, 0) + (0, 1).(0, b)$

On pose i=(0,1). Alors pour tout $(a, b) \in \mathbb{C}$, on a : (a, b)=(a, 0).(1,0)+i.(0, b). On associe alors au complexe (a, b) l'écriture a+ib. On remarque que $i^2=(-1, 0)$.

2. Écriture (ou forme) algébrique

Proposition Unicité de l'écriture algébrique

Soit $z \in \mathbb{C}$. z s'écrit de manière unique sous la forme a+ib avec a et b réels. Cette écriture est appelée écriture (ou forme) algébrique de z.

DÉMONSTRATION

L'unicité vient de la définition de la notation a+ib avec a et b réels dans $\mathbb C$ correspondant au couple (a,b).

Corollaire

- Soient $x, y \in \mathbb{R}$. x + iy = 0 si et seulement si x = 0 et y = 0.
- Soient a, b, c et d des réels. a + ib = c + id si et seulement si a = c et b = d.

Définition Parties réelles et imaginaires

Soient a et b deux réels. On pose z = a + ib un nombre complexe. On dit que a est la partie réelle de z, notée Re(z) et que b est la partie imaginaire de z, notée Im(z).

Remarques

Soit $z = a + ib \in \mathbb{C}$ avec $a, b \in \mathbb{R}$.

- Si b = 0 alors $z = a \in \mathbb{R}$, donc $\mathbb{R} \subseteq \mathbb{C}$.
- Si a=0 alors z=ib, on dit alors que z est imaginaire pur. On note $i\mathbb{R}$ l'ensemble des imaginaires purs.

Propriétés Addition et multiplication

Soient z et s' deux nombres complexes et a+ib et a'+ib' leurs écritures algébriques respectives.

- z + z' = (a + ib) + (a' + ib') = (a + a') + i(b + b');
- zz' = (a+ib)(a'+ib') = (aa'-bb') + i(ab'+a'b);
- Si $z \neq 0$, $\frac{1}{z} = \frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a}{a^2+b^2} i\frac{b}{a^2+b^2}$

Propriétés Linéarité des parties réelles et imaginaires

Soient z et s' deux nombres complexes et soit $\lambda \in \mathbb{R}$.

- $\operatorname{Re}(z+z') = \operatorname{Re}(z) + \operatorname{Re}(z')$;
- $\operatorname{Im}(z+z') = \operatorname{Im}(z) + \operatorname{Im}(z')$;
- $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$;
- $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z)$.

3. Représentation graphique des nombres complexes

On se place dans un plan affine \mathcal{P} muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

Définition-Proposition

On associe à tout nombre complexe z d'écriture algébrique a+ib avec $a,\ b\in\mathbb{R}$ le point M de coordonnées $(a,\ b)$ dans le repère (O,\vec{u},\vec{v}) . z détermine M de manière unique et inversement. Le nombre z est appelé affixe du point M et du vecteur \overrightarrow{OM} . Sa partie réelle est l'abscisse de M et sa partie imaginaire l'ordonnée de M. On notera M(z) le point M d'affixe z. On définit ainsi le plan complexe.

Propriétés

Soient z et $z' \in \mathbb{C}$.

- Soient deux points M(z) et M'(z'). L'affixe du vecteur $\overrightarrow{MM'}$ est égal à z-z'.
- Soient deux vecteurs $\vec{w}(z)$ et $\vec{w'}(z')$. L'affixe du vecteur $\vec{w} + \vec{w'}$ est égal à z + z'.

4

- Soit $k \in \mathbb{R}$ et soit un vecteur $\vec{w}(z)$. L'affixe du vecteur $k\vec{w}$ est égal à kz.
- Soient deux vecteurs $\vec{w}(z)$ et $\vec{w'}(z')$. Alors $\vec{w} = \vec{w'}$ si et seulement si z = z'.

4. Nombre complexe conjugué

Définition

Soit z un nombre complexe d'écriture algébrique a+ib. On appelle $conjugu\acute{e}$ de z le nombre a-ib et on le note \bar{z} .

Interprétation géométrique

Dans le plan complexe, \bar{z} est le symétrique de z par rapport à l'axe des réels.

Propriétés

Soient z et $z' \in \mathbb{C}$.

- $\overline{\overline{z}} = z$;
- $\bullet \ \overline{z+z'} = \bar{z} + \bar{z'};$
- $\overline{zz'} = \bar{z} \times \bar{z'}$;
- Si $z \neq 0$, $\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$.

DÉMONSTRATION

On pose z = a + ib et z' = c + id leurs écritures algébriques respectives.

- $\overline{z} = a ib$, donc $\overline{\overline{z}} = a (-ib) = a + ib = z$;
- $\bullet \ \overline{z+z'} = \overline{a+ib+c+id} = \overline{(a+c)+i(b+d)} = a+c-i(b+d) = a-ib+c-id = \bar{z}+\bar{z'}\,;$
- $\overline{zz'} = \overline{(a+ib)(c+id)} = \overline{(ac-bd)+i(ad+bc)} = ac-bd) i(ad+bc) = a(c-id) ib(c-id) = (a-ib)(c-id) = \overline{z} \times \overline{z'}$;
- Si $z \neq 0$, $\overline{z \times \frac{1}{z}} = \overline{1} = 1 = \overline{z} \times \overline{\left(\frac{1}{z}\right)}$, donc $\frac{1}{\overline{z}} = \overline{\left(\frac{1}{z}\right)}$.

Propriétés

Soient $z \in \mathbb{C}$.

- $\operatorname{Re}(z) = \frac{1}{2}(z + \bar{z});$
- $\operatorname{Im}(z) = \frac{1}{2i}(z \bar{z});$

DÉMONSTRATION

On pose z = a + ib son écriture algébrique.

- $\frac{1}{2}(z+\bar{z}) = \frac{1}{2}(a+ib+a-ib) = a$
- $\frac{1}{2i}(z-\bar{z}) = \frac{1}{2-}(a+ib-(a-ib)) = b$

Propriété Caractérisation des réels et des imaginaires purs

Soient $z \in \mathbb{C}$. Alors

- $z \in \mathbb{R}$ si et seulement si $z = \bar{z}$;
- $z \in i\mathbb{R}$ si et seulement si $z = -\bar{z}$;

DÉMONSTRATION

On pose z = a + ib son écriture algébrique.

Supposons que $z \in \mathbb{R}$, donc b = 0 et $z = a + i \times 0 = a$. Donc $\bar{z} = a - i \times 0 = a$.

Supposons que $z = \bar{z}$, donc a + ib = a - ib donc a = a et b = -b, i.e. b = 0.

Supposons que $z \in i\mathbb{R}$, donc a = 0 et z = 0 + ib = ib. Donc $\bar{z} = 0 - ib = -ib = -z$.

Supposons que $z = -\bar{z}$, donc a + ib = -(a - ib) donc a = -a et b = b, i.e. a = 0.

5. Module d'un nombre complexe

A. Définition et propriétés

Définition

Soit $z \in \mathbb{C}$ d'écriture algébrique a + ib.

On appelle module de z et on note |z| le réel positif $\sqrt{a^2 + b^2}$.

Remarque

Si $z \in \mathbb{R}$, alors b = 0 et z = a. Alors $|z| = \sqrt{a^2} = |a|$. La notation du module est donc cohérente avec la notation de la valeur absolue.

Interprétation géométrique

On se place dans le plan complexe \mathcal{P} muni du repère (O, \vec{u}, \vec{v}) .

Soient $z, z' \in \mathbb{C}$ et M et M' les points d'affixe z et z' respectivement. Alors OM = |z| et MM' = |z' - z|.

Propriétés

Soient $z, z' \in \mathbb{C}$.

- $\bullet \mid \bar{z} \mid = \mid z \mid$.
- |zz'| = |z| |z'|. En particulier, si $z = \lambda \in \mathbb{R}$, $|\lambda z'| = |\lambda| |z'|$.
- si $z \neq 0$, $\left| \frac{1}{z} \right| = \frac{1}{|z|}$.

DÉMONSTRATION

On pose z = a + ib et z' = c + id, avec $a, b, c, d \in \mathbb{R}$.

•
$$|\bar{z}| = |a - ib| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$$

•

$$|zz'| = |(ac - bd) + i(ad + bc)|$$

$$= \sqrt{(ac - bd)^2 + (ad + bc)^2}$$

$$= \sqrt{a^2c^2 + b^2d^2 - 2abcd + a^2d^2 + b^2c^2 + 2abcd}$$

$$= \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2}$$

$$= \sqrt{a^2(c^2 + d^2) + b^2(c^2 + d^2)}$$

$$= \sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$= |z||z'|$$

• Si $z \neq 0$, $\left|z \times \frac{1}{z}\right| = |1| = 1 = |z| \times \left|\frac{1}{z}\right|$ donc $\left|\frac{1}{z}\right| = \frac{1}{|z|}$.

Propriétés

Soit $z \in \mathbb{C}$.

- |z| = 0 si et seulement si z = 0
- $\bullet |z|^2 = z\bar{z}$
- Si $z \neq 0$, $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$

DÉMONSTRATION

Soit $z \in \mathbb{C}$ tel que z = a + ib avec $a, b \in \mathbb{R}$.

• Si z = 0, alors $|z| = \sqrt{0^2 + 0^2} = 0$. Si $z \neq 0$, alors $a \neq 0$ ou $b \neq 0$ donc $a^2 \neq 0$ ou $b^2 \neq 0$ donc $a^2 + b^2 > 0$. Ainsi |z| > 0 et donc $|z| \neq 0$.

Ainsi |z| = 0 si et seulement si z = 0.

- $|z|^2 = a^2 + b^2 = a^2 (i)^2 b^2 = (a+ib)(a-ib) = z\bar{z}$.
- Si $z \neq 0$, $\frac{1}{z} = \frac{a-ib}{a^2+b^2} = \frac{\bar{z}}{|z|^2}$.

Exemple

z = 5 - 3i alors $frac1z = \frac{5+3i}{34}$.

Attention! De manière générale, si z et $z' \in \mathbb{C}$, $|z+z'| \neq |z| + |z'|$

Exemple

Si
$$z = 2 + i$$
 et $z' = 1 - i$, $|z + z'| = |3| = 3$ et $|z| + |z'| = \sqrt{5} + \sqrt{2}$.

Propriété

Soient $z, z' \in \mathbb{C}$.

$$|z + z'|^2 = |z|^2 + 2\operatorname{Re}(\bar{z}z') + |z'|^2$$

DÉMONSTRATION

$$|z + z'|^2 = (z + z')(\overline{z + z'})$$

$$= (z + z')(\overline{z} + \overline{z'})$$

$$= z\overline{z} + z\overline{z'} + z'\overline{z} + z'\overline{z'}$$

$$= |z|^2 + |z'|^2 + z\overline{z'} + z'\overline{z}$$

On pose $t = \bar{z}z'$ donc $\bar{t} = z\bar{z}'$. Ainsi $z\bar{z}' + z'\bar{z} = t + \bar{t} = 2\operatorname{Re}(t) = 2\operatorname{Re}(\bar{z}z')$. Donc $|z + z'|^2 = |z|^2 + 2\operatorname{Re}(\bar{z}z') + |z'|^2$.

Proposition Inégalité triangulaire

Pour tous $z, z' \in \mathbb{C}$,

$$|z + z'| \le |z| + |z'|$$
.

Interprétation géométrique

On se place dans le plan complexe \mathcal{P} muni du repère (O, \vec{u}, \vec{v}) .

Soient $z, z' \in \mathbb{C}$ tels que z = 2 + 3i et z' = -3 - i. On pose M et M' les points d'affixe z et z' respectivement.

On note N le point d'affixe z + z'.

Pour démontrer l'inégalité triangulaire, nous allons utiliser le résultat suivant :

Lemme

Soit $z \in \mathbb{C}$. Alors $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$.

DÉMONSTRATION

 $z = a + ib \text{ avec } a, b \in \mathbb{R} \text{ alors } |z| = \sqrt{a^2 + b^2}.$ Or pour tous $a, b \in \mathbb{R}$, $a^2 \le a^2 + b^2$ et $b^2 \le a^2 + b^2$. Donc $|a| \le \sqrt{a^2 + b^2}$ et $|b| \le \sqrt{a^2 + b^2}$.

DÉMONSTRATION Inégalité triangulaire

On a $|z+z'|^2 = |z|^2 + 2\operatorname{Re}(\bar{z}z') + |z'|^2$ et $(|z|+|z'|)^2 = |z|^2 + 2|z||z'| + |z'|^2 = |z|^2 + 2|\bar{z}||z'| + |z'|^2$ $|z'|^2 = |z|^2 + 2|\bar{z}z'| + |z'|^2$.

En utilisant le lemme précédent, on a donc que $(|z| + |z'|)^2 \ge |z|^2 + 2|\operatorname{Re}(\bar{z}z')| + |z'|^2$ et donc que $(|z| + |z'|)^2 \ge |z|^2 + 2\operatorname{Re}(\bar{z}z') + |z'|^2 = |z + z'|^2$ donc $|z + z'| \le |z| + |z'|$.

B. Nombres complexes de module 1

Notation

On note $\mathbb U$ l'ensemble des nombres complexes de module 1.

Remarque

Soit $z \in \mathbb{U}$ donc par définition, |z| = 1. Donc si on pose M point d'affixe z dans le plan complexe, alors OM = 1, donc M appartient au cercle de centre O et de rayon 1.

Interprétation géométrique

Propriétés

Soient $z, z' \in \mathbb{U}$.

• $\bar{z} \in \mathbb{U}$

- $zz' \in \mathbb{U}$
- $\frac{1}{z} \in \mathbb{U}$

Proposition Caractérisation des éléments de U

Pour tout $z \in \mathbb{C}^*$, z est un élément de \mathbb{U} si et seulement si $\frac{1}{z} = \bar{z}$.

DÉMONSTRATION

Supposons $z \in \mathbb{U}$ donc |z| = 1. Comme $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$, on a donc $\frac{1}{z} = \bar{z}$. Inversement, supposons que $\frac{1}{z} = \bar{z}$. Donc $z \times \frac{1}{z} = z\bar{z} = |z|^2$. Donc $|z|^2 = 1$ donc |z| = 1, i.e. $z \in \mathbb{U}$.

6. Argument d'un nombre complexe

Interprétation géométrique

Soit M un point d'affixe z dans le plan complexe P.

M peut être aussi défini par la longueur OMet l'angle $\theta = (\vec{u}, \overrightarrow{OM})$.

Définition

Soit $z \in \mathbb{C}^*$. On considère le point M d'affixe z.

On appelle argument de z, et on le note Arg(z), toute mesure de l'angle $(\vec{u}, \overrightarrow{OM})$

Remarques

- On utilise généralement la mesure de l'angle entre $[0, 2\pi]$.
- L'argument est défini à $2k\pi$ près, i.e. modulo 2π .

Propriété

Soit
$$z \in \mathbb{C}^*$$
. On pose $\theta = \arg(z)$.
Alors $\cos \theta = \frac{\operatorname{Re}(z)}{|z|}$ et $\sin \theta = \frac{\operatorname{Im}(z)}{|z|}$.

DÉMONSTRATION

Soit
$$z \in \mathbb{C}^*$$
.

$$z = \operatorname{Re}(z) + i \operatorname{Im}(z) = |z| \left(\frac{\operatorname{Re}(z)}{|z|} + i \frac{\operatorname{Im}(z)}{|z|} \right).$$

On pose $z' = \frac{\operatorname{Re}(z)}{|z|} + i \frac{\operatorname{Im}(z)}{|z|}$, alors $|z'| = \left(\frac{\operatorname{Re}(z)}{|z|}\right)^2 + (frac\operatorname{Im}(z)|z|)^2$, i.e. $|z'| = \frac{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}{|z|^2} = 1$. Donc $z' \in \mathbb{U}$, de plus $\frac{\operatorname{Re}(z)}{|z|} \le 1$ et $\frac{\operatorname{Im}(z)}{|z|} \le 1$. Donc M'(z()) appartient au cercle trigonométrique. Donc $\cos \theta = \frac{\operatorname{Re}(z)}{|z|}$ et $\sin \theta = \frac{\operatorname{Im}(z)}{|z|}$ par définition de l'écriture algébrique.

Règles de calcul:

Soient $z_1, z_2 \in \mathbb{C}^*$ et soit $\lambda \in \mathbb{R}$.

- $z_1 \in \mathbb{R}$ si et seulement si $\operatorname{Arg}(z_1) \equiv 0 \mod \pi$
- $z_1 \in i\mathbb{R}$ si et seulement si $\operatorname{Arg}(z_1) \equiv \frac{\pi}{2} \mod \pi$
- $\operatorname{Arg}(-z_1) \equiv \operatorname{Arg}(z_1) + \pi \mod 2\pi$
- $\operatorname{Arg}(z_1 z_2) \equiv \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) \mod 2\pi$
- $\operatorname{Arg}(\bar{z_1}) \equiv -\operatorname{Arg}(z_1) \mod 2\pi$
- $\operatorname{Arg}\left(\frac{1}{z_1}\right) \equiv -\operatorname{Arg}(z_1) \mod 2\pi$

DÉMONSTRATION

On pose $\theta_1 = \arg(z_1)$ et $\theta_2 = \arg(z_2)$.

- $z_1 \in \mathbb{R}$ ssi $M(z_1)$ se trouve sur l'axe des réels ssi $(\vec{u}, \overrightarrow{OM}) \equiv 0[2\pi]$ ou $(\vec{u}, \overrightarrow{OM}) \equiv \pi[2\pi]$ ssi $(\vec{u}, \overrightarrow{OM}) \equiv 0[\pi]$
- $z_1 \in i\mathbb{R}$ ssi $M(z_1)$ se trouve sur l'axe des imaginaires ssi $(\vec{u}, \overrightarrow{OM}) \equiv \frac{\pi}{2}[2\pi]$ ou $(\vec{u}, \overrightarrow{OM}) \equiv$ $\frac{3\pi}{2}[2\pi] \operatorname{ssi}(\vec{u}, \overrightarrow{OM}) \equiv \frac{\pi}{2}[\pi]$
- $M_1(-z_1)$ est le symétrique de de $M(z_1)$ par rapport à O donc $\overrightarrow{OM} = -\overrightarrow{OM_1}$ donc $(\overrightarrow{OM}, \overrightarrow{OM_1}) = (\overrightarrow{OM}, \overrightarrow{M_1O}) \equiv \pi[2\pi] \text{ donc } (\overrightarrow{u}, \overrightarrow{OM_1}) = (\overrightarrow{u}, \overrightarrow{OM}) + (\overrightarrow{OM}, \overrightarrow{OM_1}) \text{ soit}$
- $Arg(-z_1) \equiv Arg(z_1) + \pi \mod 2\pi.$ $z_1 z_2 = |z_1||z_2| \left(\frac{\text{Re}(z_1)}{|z_1|} + i\frac{\text{Im}(z_1)}{|z_1|}\right) \left(\frac{\text{Re}(z_2)}{|z_2|} + i\frac{\text{Im}(z_2)}{|z_2|}\right)$ $z_1 z_2 = |z_1||z_2| \left(\frac{\text{Re}(z_1) \text{Re}(z_2) \text{Im}(z_1) \text{Im}(z_2)}{|z_1||z_2|} + i\frac{\text{Im}(z_1) \text{Re}(z_2) + \text{Re}(z_1) \text{Im}(z_2)}{|z_1||z_2|}\right) = |z_1||z_2|((\cos \theta_1 \cos \theta_1 \sin \theta_1 \sin \theta_2) + i(\sin \theta_1 \cos \theta_1 + \cos \theta_1 \sin \theta_2)) = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)). \text{ Donc}$ $Arg(z_1z_2) = \theta_1 + \theta_2.$
- $\operatorname{Arg}(z_1\bar{z_1}) = \operatorname{Arg}(z_1) + \operatorname{Arg}(\bar{z_1}) = \operatorname{Arg}(|z_1|) \equiv 0[2\pi] \operatorname{donc} \operatorname{Arg}(\bar{z_1}) \equiv -\operatorname{arg}(z_1)[2\pi]$ De même $\operatorname{Arg}\left(z_1\frac{1}{z_1}\right) = \operatorname{Arg}(z_1) + \operatorname{Arg}\left(\frac{1}{z_1}\right) = \operatorname{Arg}(1) \equiv 0[2\pi] \operatorname{donc} \operatorname{Arg}\left(\frac{1}{z_1}\right) \equiv 0[2\pi]$ $-\arg(z)[2\pi]$

7. Écritures polaire et exponentielle

Définition

Soit $z \in \mathbb{C}^*$. On pose r = |z| et $\theta = \operatorname{Arg}(z)$.

Alors $z = r(\cos \theta + i \sin \theta)$ est appelée écriture (ou forme) polaire (ou trigonométrique). Dans cette écriture, r est un réel positif et est unique, θ est un réel déterminé à $2k\pi$ près avec $k \in \mathbb{Z}$.

A. Fonction exponentielle complexe

Proposition

La fonction

$$f: \mathbb{C}$$
 $\to \mathbb{C}$ $z = a + ib$ $\mapsto e^{a}(\cos b + i\sin b)$

est un prolongement de la fonction exponentielle réelle.

Cette fonction est appelée exponentielle complexe et est notée e^z .

Propriété

Pour tous $z_1, z_2 \in \mathbb{C}$,

$$e^{z_1 + z_2} = e^{z_1} e^{z_2}.$$

DÉMONSTRATION

On pose $z_1 = a + ib$ et $z_2 = c + id$. Alors $z_1 + z_2 = (a + c) + i(b + d)$. Donc $e^{z_1 + z_2} = e^{a + c}(\cos(b + d) + i\sin(b + d)) = e^a e^c((\cos b \cos d - \sin b \sin d) + i(\sin b \cos d + \cos b \sin d)) = e^a e^c(\cos b(\cos d + i \sin d) + i^2 \sin b \sin d + i \sin b \cos d) = e^a e^c(\cos b(\cos d + i \sin d) + i \sin b(\cos d + i \sin d)) = e^a e^c(\cos b + i \sin b)(\cos d + i \sin d) = e^{z_1} e^{z_2}$.

Corollaire

Pour tout $z \in \mathbb{C}$, $e^{-z} = (e^z)^{-1}$.

Pour tout $z \in \mathbb{C}$ et pour tout $p \in \mathbb{Z}$, $e^{pz} = (e^z)^p$.

Corollaire Cas des imaginaires purs

Pour tous θ_1 , $\theta_2 \in \mathbb{R}$, $e^{i(\theta_1 + \theta_2)} = e^{i\theta_1}e^{i\theta_2}$.

Pour tous $\theta_1, \ \theta_2 \in \mathbb{R}$ et pour tout $p \in \mathbb{Z}, e^{ip\theta} = (e^{i\theta})^p$.

Propriété

Pour tout $\theta \in \mathbb{R}$,

$$\overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}.$$

DÉMONSTRATION

$$e^{i\theta} = e^{0}(\cos\theta + i\sin\theta) = \cos\theta + i\sin\theta.$$
$$\overline{e^{i\theta}} = \cos\theta - i\sin\theta = \cos(-\theta) + i\sin(-\theta) = e^{-i\theta} = \frac{1}{e^{i\theta}}$$

B. Ecriture exponentielle

Définition

Soit $z \in \mathbb{C}^*$. On note r = |z| et θ un argument de z. Alors z peut s'écrire $z = re^{i\theta}$.

Proposition Formule d'Euler

Pour tout $\theta \in \mathbb{R}$,

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

Proposition Fomule de Moivre

Pour tout $\theta \in \mathbb{R}$ et pour tout $n \in \mathbb{Z}$,

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$$

DÉMONSTRATION

$$(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i \sin n\theta.$$

II. Puissance et racine n^{e}

1. Équation du second degré

Soit $z_0 \in \mathbb{C}$. On cherche les « racines carrées de z_0 » (« racines 2^e de z_0 »), c'est-à-dire les solutions de l'équation $z^2 = z_0$ d'inconnue $z \in \mathbb{C}$.

Remarque

L'équation $z^2 = 0$ d'inconnue $z \in \mathbb{C}$ a pour unique solution z = 0

DÉMONSTRATION

Il est clair que 0 est une solution.

On suppose par l'absurde que $z \neq 0$ et $z^2 = 0$. En multipliant deux fois de suite chaque membre de l'égalité $z^2 = 0$ par $\frac{1}{z}$, on en déduit que 1 = 0. Contradiction.

Proposition (racines carrées en coordonnées polaires)

Soit $z_0 = r\mathrm{e}^{\mathrm{i}\theta} \in \mathbb{C} \setminus \{0\}$ avec r > 0 et $\theta \in \mathbb{R}$. L'équation $z^2 = z_0$ d'inconnue $z \in \mathbb{C}$ a deux solutions qui sont : $\sqrt{r} \, e^{\mathrm{i} \frac{\theta}{2}}$ et $-\sqrt{r} \, e^{\mathrm{i} \frac{\theta}{2}}$.

DÉMONSTRATION

Cela découle de l'égalité suivante :
$$z^2 - z_0 = (z - \sqrt{r} e^{i\frac{\theta}{2}})(z + \sqrt{r} e^{i\frac{\theta}{2}})$$
.

Exemple

On choisit $z_0 = 1 + i = \sqrt{2} e^{i\frac{\pi}{4}}$. Les racines carrées de 1 + i sont : $2^{\frac{1}{4}} e^{i\frac{\pi}{8}}$ et $-2^{\frac{1}{4}} e^{i\frac{\pi}{8}}$.

Proposition (racines carrées en coordonnées cartésiennes)

Soit $z_0 = x_0 + iy_0 \in \mathbb{C}$ avec $x_0, y_0 \in \mathbb{R}$.

Pour tout
$$z = x + iy \in \mathbb{C}$$
 avec $x, y \in \mathbb{R}$, on a :
$$z^2 = x_0 + iy_0 \iff \begin{cases} x^2 - y^2 = x_0 & \text{(égalité des parties réelles)} \\ 2xy = y_0 & \text{(égalité des parties imaginaires)} \end{cases}$$
 $(x^2 + y^2 = \sqrt{x_0^2 + y_0^2})$ (égalité des modules, redondante)

Ce point de vue permet de résoudre l'équation $z^2=z_0$ d'inconnue $z=x+\mathrm{i} y\in\mathbb{C},$ où $x,y \in \mathbb{R}$, en commençant par chercher x^2 et y^2 avec une condition de signe pour xy.

DÉMONSTRATION

L'équivalence est immédiate. L'affirmation de la fin découle e

$$z^{2} = x_{0} + iy_{0} \iff \begin{cases} |x| = \sqrt{\frac{1}{2}(\sqrt{x_{0}^{2} + y_{0}^{2}} + x_{0}}) \\ |y| = \sqrt{\frac{1}{2}(\sqrt{x_{0}^{2} + y_{0}^{2}} - x_{0}}) \\ sg(xy) = sg(y_{0}) \quad \text{si } y_{0} \neq 0 \end{cases}.$$

Parmi les $\underbrace{2}_{-}$ ou 4 nombres complexes z déduit des deux premières égalités, seuls $\underbrace{1}_{\text{cas } z_0 = 0}$ ou 2 nombres complexes (opposés) réalisent la dernière condition.

Exemple

On choisit
$$z_0=1+\mathrm{i}$$
. Pour tout $z=x+\mathrm{i}y\in\mathbb{C},$ on a:
$$z^2=1+\mathrm{i}\iff \begin{cases} x^2-y^2=1\\ 2xy=1\\ x^2+y^2=\sqrt{2} \end{cases} \iff \begin{cases} x^2=\frac{\sqrt{2}+1}{2}\\ y^2=\frac{\sqrt{2}-1}{2}\\ 2xy=1 \end{cases} \iff \begin{cases} x=\sqrt{\frac{\sqrt{2}+1}{2}} \text{ ou } x=-\sqrt{\frac{\sqrt{2}+1}{2}}\\ y=\sqrt{\frac{\sqrt{2}-1}{2}} \text{ ou } y=-\sqrt{\frac{\sqrt{2}-1}{2}}\\ 2xy=1 \end{cases}.$$

Les deux racines carrées de 1+i sont $\underbrace{\operatorname{donc}}_{(la \text{ condition } xy) > 0 \text{ les impose})}$ et $-\left(\sqrt{\frac{\sqrt{2}+1}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}\right)$.

Proposition

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$. On pose $\Delta := b^2 - 4ac$ et fixe $\delta \in \mathbb{C}$ tel que $\delta^2 = \Delta$.

Les solutions de l'équation $az^2 + bz + c = 0$ d'inconnue $z \in \mathbb{C}$ sont :

$$-\frac{b}{2a}$$
 si $\Delta = 0$, ou, $\frac{-b-\delta}{2a}$ et $\frac{-b+\delta}{2a}$ (distinctes) si $\Delta \neq 0$.

DÉMONSTRATION

Cela découle de l'égalité suivante : $az^2+bz+c=a\left((z+\frac{b}{2a})^2-(\frac{\delta}{2a})^2\right)$ pour tout $z\in\mathbb{C}$.

Remarque

Il résulte de cette démonstration que les nombres complexes obtenus par extensions quadratiques successives à partir de \mathbb{Q} (« constructibles à la règle et au compas ») sont ceux dont les parties réelle et imaginaire sont obtenues à partir de \mathbb{Q} en utilisant des sommes, produits, quotients et extractions de racine carrée. D'après le théorème de Gauss-Wantzel, le nombre complexe $e^{i\frac{2\pi}{n}}$ avec $n \in \mathbb{N}$ et $n \geq 2$ s'obtient ainsi si et seulement si les facteurs premiers impairs de n sont de la forme $2^{2^k} + 1$ pour un certain $k \in \mathbb{N}$.