COMP 3031 Assignment 3

Logic Programming

Fall 2017

Due: 5PM on Nov 30 Thursday

Instructions

- There are five problems in this assignment. Each problem counts for two points.
- Write your prolog program according to the definition of the problem, with the same predicate name and number of arguments as specified. Write all the solutions in a single file named "ass3.pl". You can use any helper predications, including built-in predicates, e.g., member/2, var/1, in the solutions.
- Submit your code through Canvas.
- No late submissions will be accepted.
- Your submission will be run on a lab 2 machine with the following command: "?- [ass3].".

Please make sure your submission is executable. If it is not, a significant number of points will be deducted.

For the five problems in this assignment, we define a relation enroll (Stu, Courses) and a relation teach (Prof, Courses). In enroll (Stu, Courses), Stu is a student ID, and Courses is a list of course IDs the student Stu enrolls in. In teach (Prof, Courses), Prof is a professor id, and Courses is a list of course IDs taught by professor Prof. The course IDs in each enroll fact and each course fact are distinct.

Assume all input data are correct.

Examples are based on the following database:

```
/* The database of enroll and teach facts */
enroll(1701, [c01, c10]).
enroll(1602, [c21]).
enroll(1711, [c01, c21, c10]).
enroll(1501, []).
teach(p01, [c01, c21]).
teach(p02, [c23]).
teach(p03, [c10]).
teach(p04, []).
```

1. Listing all the professors of a student's enrollments

Define a relation $prof_ids(Stu, L)$ that specifies a list L of **all** the professor IDs of a student's enrollment. The order of professor IDs in L corresponds to the order of courses taught by these professors in enroll(Stu, Courses).

Examples:

```
?- prof_ids(1701, L).
L = [p01, p03].
?- prof ids(1501, L).
L = [].
?- prof_ids(Stu, [p01]).
Stu = 1602;
false.
?- prof_ids(Stu, [p01, p02]).
false.
?- prof ids(Stu, [p01, p03]).
Stu = 1701 ;
false.
?- prof_ids(Stu, [p01, p03, p04]).
false.
?- prof ids(Stu, L).
Stu = 1701,
L = [p01, p03];
Stu = 1602,
L = [p01];
Stu = 1711,
L = [p01, p01, p03];
Stu = 1501,
L = [].
```

2. Listing common enrollments of two students

Write a relation $common_enroll$ (X, Y, L) that specifies a list L of courses that two **different** students X and Y both enroll in.

Examples:

```
?- common_enroll(1701, 1602, L).
L = [].
?- common enroll(1701, 1501, L).
L = [].
?- common_enroll(1701, 1711, L).
L = [c01, c10].
?- common_enroll(1701, 1711, []).
true.
?- common enroll(1701, 1711, [c01]).
true.
?- common_enroll(1701, 1711, [c01, c23]).
false.
?- common_enroll(1701, 1711, [c10, c01]).
true.
?- common_enroll(1701, Y, L).
Y = 1602,
L = [];
Y = 1711,
L = [c01, c10];
Y = 1501,
L = [] ;
false.
?- common_enroll(X, 1711, L).
X = 1701,
L = [c01, c10];
X = 1602,
L = [c21];
X = 1501,
L = [];
false.
```

3. Listing distinct students that enroll in a professor's course(s)

Write a relation student_list(Prof, L) that specifies a list L of distinct students that enroll in at least one course taught by the professor Prof.

Examples:

```
?- student_list(p01, L).
L = [1711, 1602, 1701].
?- student list(p02, L).
L = [].
?- student_list(p04, L).
L = [].
?- student_list(p01, []).
true.
?- student list(p01, [1701, 1711]).
true.
?- student_list(p01, [1501, 1711]).
false.
?- student_list(X, L).
X = p01,
L = [1711, 1602, 1701];
X = p02,
L = [] ;
X = p03,
L = [1711, 1701] ;
X = p04,
L = [].
```

4. Listing courses taught by the professors

Write a relation $course_list(L)$ that specifies a list L of courses taught by the professors in the teach facts.

Examples:

```
?- course_list(L).
L = [c01, c21, c23, c10].
?- course_list([]).
true.
```

```
?- course_list([c01]).
true.
?- course_list([c23, c21]).
true.
?- course_list([c23, c02]).
false.
?- course_list([c01, c21, c23, c10]).
true.
```

5. Counting the number of students that enroll in a course

Write a relation $count_students(C, N)$ that counts the number of students that enroll in the course C.

Examples:

```
?- count_students(c01, N).
N = 2.
?- count_students(c01, 2).
true.
?- count students(c01, 0).
false.
?- count_students(c23, N).
N = 0.
?- count_students(c10, N).
N = 2.
?- count_students(X, 2).
X = c01 ;
X = c21 ;
X = c10.
?- count students(X, 0).
X = c23;
false.
?- count_students(X, 1).
```

```
false.
```

```
?- count_students(X, N).
X = c01,
N = 2;
X = c21,
N = 2;
X = c23,
N = 0;
X = c10,
N = 2.
```