

Pruebas de Acceso a las Universidades de Castilla y León

MATEMÁTICAS II

Texto para los Alumnos

Nº páginas 2

CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

DATOS O TABLAS (SI HA LUGAR): Podrá utilizarse una calculadora no programable y no gráfica.

OPTATIVIDAD: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas, PR-1 y PR-2, y cuatro cuestiones, C-1, C-2, C-3 y C-4. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. **EL ALUMNO DEBERÁ ESCOGER UNA DE LAS PRUEBAS, A ó B, Y DESARROLLAR LAS PREGUNTAS DE LA MISMA EN EL ORDEN QUE DESEE**.

PRUEBA A

PROBLEMAS

PR-1.- Se considera el plano $\pi = x + ay + 2az = 4$ y la recta $r = \begin{cases} x + y + 2z = 2 \\ x + 2y - z = 3 \end{cases}$.

a) Determinar los valores de a para los cuales la recta y el plano son paralelos

(1 punto)

b) Para a=2, calcular la recta que pasa por P(1,0,-1), es paralela al plano π y se apoya en la recta r. (2 puntos)

PR-2.- Sea
$$f(x) = \frac{\ln x}{x^2}$$
 con $x \in (0,+\infty)$. Se pide:

a) Calcular los intervalos de crecimiento y decrecimiento, los extremos relativos y las asíntotas. Esbozar su gráfica. (2 puntos)

b) Calcular
$$\int f(x) dx$$
. (1 punto)

CUESTIONES

C-1.- Calcular
$$\lim_{x\to 0} \frac{\operatorname{sen}^2(2x)}{x^3 + x^2}$$
. (1 punto)

C-2.- Determinar el valor de a para que la recta tangente a la función $f(x) = x^3 + ax$ en el punto x = 0 sea perpendicular a la recta y + x = -3. (1 punto)

C-3.- Sean las matrices
$$B = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$$
 y $C = \begin{pmatrix} 13 & 8 \\ 8 & 5 \end{pmatrix}$. Calcular la matriz A, sabiendo que

$$A^2 = B y A^3 = C$$
. (1 punto)

C-4.- Sabiendo que tres de los vértices de un paralelogramo son los puntos A(1,1,2), B(1,1,4) y C(3,3,6), hallar el área del mismo. (1 punto)

PRUEBA B

PROBLEMAS

PR-1.- Se considera el sistema $\begin{cases} x - y + z = -1 \\ y + z = 2a \\ x + 2z = a^2 \end{cases}$ donde a es un parámetro real.

- a) Discutir el sistema en función del valor de a. (1,5 puntos)
- b) Resolver el sistema para a = 0. (0,5 puntos)
- c) Resolver el sistema para a = 1. (1 punto)

$$\mathbf{PR-2.-} \, \mathbf{Dada} \, f(x) = \begin{cases} \frac{\operatorname{sen}(x^2)}{x} & \operatorname{si} x > 0 \\ x & , \text{ se pide:} \end{cases}$$

- a) Estudiar la continuidad y derivabilidad de la función f(x). (2 puntos)
- b) Calcular $\int_{\sqrt{\pi}}^{\sqrt{2\pi}} x^2 f(x) dx$. (1 punto)

CUESTIONES

- C-1.- Calcular las asíntotas de la función $f(x) = \frac{(2x-1)^2}{4x^2+1}$. (1 punto)
- C-2.- Calcular el rango de la matriz $\begin{pmatrix} 1 & 3 & -1 & -5 \\ -1 & 1 & -3 & -3 \\ 2 & 4 & 0 & -6 \\ 3 & 2 & 4 & -1 \end{pmatrix}$ (1 punto)
- C-3.- Demostrar que la ecuación $x^3 + x 5 = 0$ tiene al menos una solución en el intervalo (1,2). (1 punto)
- **C-4.-** Dada la recta r = 2x + y = 2, calcular el punto P de la recta r tal que la perpendicular a r por P pase por el punto (1,-1). (1 punto)