國立雲林科技大學資訊管理系

機器學習-作業三

Department of Information Management

National Yunlin University of Science & Technology

Assignment

Banana 資料集和 Size3 資料集分群演算法分析
Banana Datasets and Size3 Dataset Cluster Analysis

楊欣蓓、陳怡君、鄭皓名、陳郁云

指導老師:許中川博士

Advisor: Chung-Chian Hsu, Ph.D.

中華民國112年12月

December 2023

摘要

本研究對 Banana 資料集和 Size3資料集進行分群分析,由於這兩種資料集的資料分佈密度及資料群聚的狀態不同,因此透過觀察兩種資料集在 K-means、階層式分群 (Hierarchical Clustering)、DBSCAN 三種分群演算法的分群結果,來研究出在不同型態的資料集的情況下,較適合使用何者分群演算法。此外,本研究欲找出 DBSCAN 分群演算法的最佳超參數組合。在執行分群演算法前,對資料刪除離群值以及做正規化,使分群結果不受前兩因素影響,另外透過視覺化圖形,如:Dendrogram、Scatter 可以更清楚地檢視資料分佈狀況以及了解分群資訊,最後以 SSE (Sum of Squared Error)、Accuracy、Entropy 三種績效評估指標來衡量分群結果。實驗結果於 Banana 資料集和 Size3資料集中,DBSCAN皆為表現最佳,其最佳超參數組合在 Banana 資料集中為 eps=0.018、n=16,Accuracy為0.969;在 Size3資料集中為 eps=0.084、n=12,Accuracy 為0.957。

關鍵字:分群演算法、K-means、階層式分群 (Hierarchical Clustering)、DBSCAN

一、緒論

1.1 研究動機

本研究主要是在眾多的群聚分析中進行分析,因其資料集的資料雜亂,所以需要資料前處理才能進行分群分析,而選擇 Banana、Size3的主要原因是各個資料集的資料分佈不同,使得本研究可以使用不同的分群演算法(例如:K-means、Hierarchical Clustering、DBSCAN)來進行實驗,通過比較這些分群演算法表現,可以評估它們在處理不同形狀和密度的分群時的績效。

本研究發現 Banana、Size3的二維結構使得群集可視化相對容易,並且可以使用不同的分群演算法將數據點劃分到群集中,以及可視化這些群集的分佈,這有助於理解不同算法的群集結果,由於這些資料集包含不同形狀和密度的群集,所以可以嘗試調整不同群集算法的參數,以查看參數對結果的影響如何。如果這個資料集與某個實際應用相關,例如顧客購買行為、產品銷售模式等,使用 K-means、Hierarchical Clustering、DBSCAN 可以幫助本研究識別和理解樣本之間的相似性和差異性,並且為業務決策提供有價值的資訊。總上所述,本研究進行 K-means、Hierarchical Clustering、DBSCAN 分群演算法是為了從數據中挖掘有效資訊,理解潛在的結構和模式,並且比較不同算法在這個情境下的效能表現。

1.2 研究目的

本研究欲以 Banana 資料集和 Size3 資料集以各種分群來進行比較 K-means、Hierarchical Clustering、DBSCAN 三種分群所花費的時間,將此分群以 SSE、Accuracy、Entropy 為此衡量指標,並劃分出這三種分群所呈現的結果,其中本研究想以 DBSCAN 分群來進行不同的參數設定,此研究透過各種參數設定來進行比較後,藉由比較後的參數設定上分析出以 Banana 資料集和 Size3 資料集中的試驗以達成 Banana 資料集和 Size3 資料集的最佳設定值,也了解每種分群在不同情況下的優缺點及此限制,在碰到資料集中存在雜訊時,該如何使用各種分群來解決資料集的問題,並透過 K-means、Hierarchical Clustering、DBSCAN分群來分析資料集的 SSE、Accuracy、Entropy的結果。

二、實驗方法

2.1 實作說明

本研究使用 K-means、Hierarchical Clustering、DBSCAN 三種分群演算法對Banana、Size3進行分群實驗。在資料前處理的部分,對資料刪除了離群值,使分群結果不被離群值影響、對資料作正規化,使不同屬性的數值差距不會甚多;調整了分群演算法的參數,利用 SSE、Accuracy、Entropy 的結果去調整參數,使分群結果更加完確。此外本次實驗為分群分析,並透過 Dendrogram 和 Scatter的資料視覺化,去觀察不同演算法對資料的分群效果,進而去比較各個演算法的分群效果為何,最後記錄各個演算法的執行時長及分群結果並做出研究分析。

2.2 操作說明

本研究執行環境採用 Python3.10.10,以 Visual Studio Code 作為開發工具,利用 K-means、Hierarchical Clustering、DBSCAN 三種演算法進行分群實驗,並使用 Pandas、Numpy、Scikit-learn、Matplotlib 等函式庫來讀取資料、分析分群結果及資料視覺化呈現。於資料前處理,利用 skewness 和 kurtosis 去檢視資料離群值並刪除離群值、用 MinMaxScaler 將資料數值之間的差距縮至0至1之間,上述對資料的操作可以使資料在做分群時分得更完整、提高分群績效。

三、實驗設計

3.1 資料集

名稱:Banana 資料集

資料筆數:4811筆

表 1 Banana datasets 欄位介紹

欄位	屬性	內容
0	X	numeric
1	y	numeric
2	class	nominal

名稱:Size3 資料集

原始資料筆數:1000筆

刪除離群值後的資料筆數:820筆

表 2 Size3 datasets 欄位介紹

欄位	屬性	內容	
0	X	x numeric	
1	y	numeric	
2	class	nominal	

3.2 資料前處理

3.2.1 Banana 資料集

● 分析資料集:

- 透過將 Banana 資料集繪製成常態分布圖,如下圖1所示,觀察資料分布的偏度 (Skewness)與峰度 (Kurtosis) 是否呈現常態分佈,以檢測資料 集是否有離群值。
- 由於 Banana 資料集並非呈現常態分布,因此本研究利用四分位距法 (IQR¹) 檢測資料集中是否有離群值。經四分位距法檢測後,發現並無未在區間外的資料,故 Banana 資料集不須再刪除離群值。
- 由於 Banana 資料集轉成散佈圖後,可發現所以資料點的數值皆位在0 到1之間,故無需做正規化。

3.2.2 Size3 資料集

● 資料前處理:

- 透過 IQR 方法檢查資料前後筆數及 IQR 箱型圖確認資料是否存在離群值,並一一將離群值做刪除,使資料分群結果不受離群值影響,刪除離群值後的結果如下表 3 所示。
- 從資料散佈圖看出若干筆資料數值未落在 0 至 1 之間,為了不讓數值 之間的差距影響分群結果,使用正規化技術 (MinMaxScaler) 將資料數 值落在 0 到 1 之間。

表 3 部分經資料處理後的 Size3 資料集

資料 特徴	No.0	No.1	No.2	No.3	No.4	No.5
X	0.60260	0.78808	0.56988	0.59167	0.78194	0.70639
Y	0.87058	0.48759	0.68918	0.76108	0.50162	0.62674

¹ 四分位距法 (IQR): 將資料做排序後,取第三個四分位數 (Q3) 滅去第一個四分位數 (Q1) 可求得 IQR。當有資料數值落在 Q1-1.5 \times IQR 至 Q3+1.5 \times IQR 此區間外,則是為該筆資料為離群值,應做刪除。

3.3 實驗設計

3.3.1 Banana 資料集

Banana 資料集的實驗設計如圖1所示。在資料進行分群前,首先觀察Banana 資料集的資料分佈與檢測有無離群值,本研究透過 IQR 方法進行離群值檢測。接著,使用 K-means、Hierarchical Clustering、DBSCAN 分群演算法進行資料分群,以 SSE、Accuracy、Entropy 三種評估指標來衡量分群績效。最後,透過將分群後的資料以視覺化圖形來觀察分群結果,其中,包含以 Dendrogram和散佈圖呈現各個演算法分群結果。從該結果來決定是否再訓練及超參數的調整。

圖 1
Banana 資料集實驗設計流程圖

3.3.2 Size3 資料集

Size3資料集實驗設計如圖2所示。於資料前處理,本研究利用 IQR 方法發現資料集有離群值,因此將其刪除後做正規化 (MinMaxScaler),將數值範圍落在0至1之間。分析資料時,透過 K-means、Hierarchical、DBSCAN 三種演算法分別做分群,並依 SSE、Accuracy、Entropy 三種績效指標調整參數。本實驗將Size3資料集分成四群,利用散布圖將分群結果可視化,其四群標籤分別為「1」、「2」、「3」、「4」,此外,也利用樹狀圖比較不同度量距離的參數,用來評估各個分群結果。

圖 2 Size3實驗設計流程圖

3.4 實驗結果

本研究實驗結果如下列兩資料集實驗結果所述,分為兩個部分。第一部分主要討論三種分群演算法 (K-means、Hierarchical Clustering、DBSCAN) 分群所耗費的時間及透過三種衡量指標 (SSE、Accuracy、Entropy) 評估分群結果;第二部分主要比較 DBSCAN 分群演算法在不同超參數組合下的分群準確度,以找到準確度最高的超參數組合。

3.4.1 Banana 資料集實驗結果

首先對 Banana 資料集使用三種分群演算法 (K-means、Hierarchical Clustering、DBSCAN) 進行分群,分群結果如圖3,以三種衡量指標 (SSE、Accuracy、Entropy) 評估分群結果與分群演算法所耗費的時間,如表4。其中,分群資料散佈圖將兩群的標籤分別標為「+」及「O」以清楚地觀察分群的結果。

K-means 的超參數設定為 n_clusters 為 $2 \times n_i$ ninit 為 auto、更新次數的上限值 (max_iter) 採演算法預設數值、每個 Cluster 的中心點收斂容忍度 (tol),預設為 0.0001。Hierarchical Clustering 使用 AgglomerativeClustering 方式做分群,階層 圖如圖4所示,超參數設定為 n_clusters 為 $2 \times metric$ 為 euclidean、計算群間資料點的距離 linkage 為 average,其中,階層圖以 Dendrogram 呈現,可觀察群內兩 兩資料之間合併的結果和群與群之間合併的過程,藉由上述去分析在不同度量 距離下,分群結果會產生多少變化,進而去挑選出最適當的分群方式。

DBSCAN的超參數設定以第二部分比較 DBSCAN分群演算法在不同超參數組合下的分群準確度之實驗,找到分群準確度最高的超參數組合做 DBSCAN演算法的分群實驗,組合為 eps 為0.01769180601295415及 min samples 為16。

比較三種分群演算法的結果,可以發現,以 DBSCAN 作為分群演算法在 Accuracy與 Entropy 兩種評估指標下,表現皆為最優異,因此,可推論 DBSCAN 演算法在針對似月形的資料做分群時,可以做到較好的分群效果,準確度高達 0.97、Entropy 為0.02、執行時間為0.08秒

表4 各演算法績效表現

模型	SSE	Accuracy	Entropy	Run Time(s)
K-means	185.21	0.83	0.66	0.01
Hierarchical Clustering	_	0.82	0.58	0.30
DBSCAN	_	0.97	0.02	0.08

圖 3Banana 資料集分群散佈圖-K-means、Hierarchical Clustering、DBSCAN

圖 4Hierarchical Clustering 階層圖

接著,針對不同超參數組合的 DBSCAN 分群演算法對 Banana 資料集分群的結果作分析與觀察其準確度的變化,如下表5所示。圖5為第二部分實驗:找出 DBSCAN 中最佳超參數組合,以最近鄰居演算法找出最佳的 Eps。

表 5

DBSCAN 演算法在 Banana 資料集下各參數組合之 Accuracy

組合	eps	min_samples	Accuracy
1	0.018	16	0.969
2	0.018	17	0.968
3	0.016	13	0.964
4	0.017	15	0.964
5	0.016	14	0.964

圖 5 搜尋 DBSCAN 的最佳 Eps

3.4.2 Size3資料集實驗結果

Hierarchical Clustering 使用 AgglomerativeClustering 方式做分群,階層圖如上圖5所示,超參數設定為 n_clusters 為4、metric 為 euclidean、計算群間資料點的距離 linkage 為 average。

DBSCAN的超參數設定以第二部分比較 DBSCAN分群演算法在不同超參數組合下的分群準確度之實驗,找到分群準確度最高的超參數組合做 DBSCAN演算法的分群實驗,組合為 eps 為0.07741470944658732及 min samples 為10。

比較三種分群演算法的結果,如下表6所示,可以發現,以 DBSCAN 作為分群演算法在 Accuracy 評估指標下,表現最優異,而 Entropy 評估指標則是 Hierarchical Clustering 與 DBSCAN 並列。在實驗過程中,發現未做資料前處理時,DBSCAN 分群結果與預期分群數不一致績效也不盡理想,而在完成資料前處理後,DBSCAN 才能正常分為四群,由上述結果,可得知 DBSCAN 演算法在針對 Size3資料集做分群時,可以做到較好的分群效果,準確度高達0.96、Entropy 為0.17、執行時間為0.01秒。

表 6

各演算法績效表現

模型	SSE	Accuracy	Entropy	Run Time(s)
K-means	20.63	0.35	0.22	0.08
Hierarchical Clustering	_	0.89	0.17	0.02
DBSCAN	_	0.96	0.17	0.01

圖 6Size3 資料集分群散佈圖-K-means、Hierarchical Clustering、DBSCAN

接著,針對不同超參數組合的 DBSCAN 分群演算法對 Size3資料集的分群 結果作分析與觀察其準確度的變化,如下表7所示。圖7中的 DBSCAN 為本研究 找出的最佳超參數組合,以最近鄰居演算法找出最佳的 Eps。

表 7
DBSCAN 演算法在 Size3 資料集下各參數組合之 Accuracy

組合	eps	min_samples	Accuracy
1	0.084	12	0.957
2	0.095	15	0.955
3	0.099	16	0.955
4	0.099	17	0.955
5	0.081	11	0.954

圖7 搜尋 DBSCAN 的最佳 Eps

結論

本研究主要為兩個部分。第一項實驗中,針對 Banana 與 Size3兩資料集討論三種分群演算法 (K-means、Hierarchical Clustering、DBSCAN) 分群結果。實驗過程,先透過 IQR 找出離群值並刪除後,透過 SSE、Accuracy、Entropy 三項指標做評估並做為調整超參數之依據。在 Banana 資料集中,DBSCAN 在Accuracy 與 Entropy 兩項指標皆最佳,其 Accuracy 達到0.97、Entropy 為0.02、執行總時長為0.08;另外,在 Size3資料集中,DBSCAN 各項指標也最為亮眼,其 Accuracy 達到0.96;Entropy 為0.17,與 Hierarchical Clustering 相同;執行總時長為0.01。

第二項實驗,主要比較 DBSCAN 分群演算法在不同超參數組合下的分群準確度。實驗結果發現,Banana 資料集在 eps=0.018且 n=16的超參數組合下,Accuracy 評估指標為0.969,表現最優異;Size3資料集在 eps=0.084且 n=12的操參數組合下,Accuracy 評估指標為0.957,表現最佳。

参考文獻

Jason (2023)。【學習筆記】K-means 實作篇。

https://medium.com/@jason8410271027/%E5%AD%B8%E7%BF%92%E7%AD%86%E8%A8%98-k-means%E5%AF%A6%E4%BD%9C%E7%AF%87-5c3fb9faf17

Pylnvest (2020)。層次聚類 Hierarchical Clustering。 https://pyecontech.com/2020/06/15/python hierarchical clustering/

Pylnvest (2020)。密度聚類 DBSCAN。

https://pyecontech.com/2020/07/17/python dbscan/