Lecture 1

Tuesday, January 17, 2017 5:06 PM

Introduction :

Alg. topology is studying topological spales via abstract algebra

Top. Spale + Algebraic invariants, invariant up to homomorphism or homotopy equivalence

* As in the book, maps between spales are Continuous unless stated otherwise

Def • homotopy % family $f_t: X \longrightarrow f$ for $t \in [0,1]$ such that $F: X \times [0,1] \longrightarrow f$ given by $F(x,t) = f_t(x)$ is Continuous.

• Maps $f,g: X \rightarrow Y$ called <u>homotopic</u> if there exist a homotopy $f_t: X \rightarrow Y$ s.t. $f = f_0$, $g = f_1$, $f \sim g$

· homotopy equivalence: f: X > Y is a homotopy equivalence if $\exists g: Y \to X$ S+. $fg \sim I_{x} gf \sim I_{x}$

* Any homeomorphism is a homotopy equivalene.

· X and Y are Called homotopy equivalent if \exists a homotopy equivalence $f: X \longrightarrow Y$

Ex (1) for any n>0, IRn is homotopy equivalent with {0} (Exercise)

homotopy equivalent but not homeomorphic.

If a figure id

Special care of homotopy equivalence called deformation retraction of

• ACX subspace, $r: X \longrightarrow X$ st. r(x) = A, for any $x \in A$, r(x) = x i.e. $r|_{A} = 1$

A deformation retraction of X onto A is a homotopy $f_t: X \longrightarrow X$ between 1 and a Contraction of X onto A s.t. $f_t|_{A} = II$ for any t. A is called a deformation retract of X.

Mf deformation retraits onto Y. by s

· X is called <u>Contractible</u> if I:X—X is nullhomotopic i.e. Il v Constant mag. X has the homotopy type of a pt.

 $X \xrightarrow{f} P \Rightarrow fi = II, fi : X \xrightarrow{Constand} X$

Ex Dn: Contractable

Q A < X Contractible subspale, is 9: X - X/A & homotopy equivalene?

map $f_0: X \longrightarrow Y$ and any homotopy $f_t: A \longrightarrow Y$ of $f_0|_A$, there exists an externion $f_t: X \longrightarrow Y$.

For $f_0:$ Homotopy extension property o (X, A) have homotopy extension property if for any

lemma (X, A) has homotopy externin property AXIUXX{0} is a retract of XXI. $(\Rightarrow) = A \times I \cup X \times \{0\}$ 1: $A \times I \cup X \times \{0\}$ $\longrightarrow A \times I \cup X \times \{0\}$

my extends to a map XXI - AXI UXX{0} retracts!

(E) A closed Subspale F: AXIUXX{0} => For extended retraction.

Prope: If (X, A) Satisfy homotopy extension property and A is contractible the $q: X \longrightarrow X_A$ is a homotopy equivalene.

Det: X, Y, wedge Sum of X and Y: XIII/x0~y0

Prope $A \subset X \cap Y$ Such that (X,A) and (Y,A) have homotopy extension property: $f: X \longrightarrow Y$ homotopy equivalence such that $f|_A = 1$ $\Rightarrow f$ is a homotopy equivalence relative A.

i.e. $\exists g: Y \longrightarrow X$ s.+. $g|_A = 1$ and $fg \simeq 11$ gf $\simeq 1$ s.+. homotopies are equal to 11 on A at all times.

e.g. deformation retraction is a relative homotopy botween II and antraction map.

Cor $A \subset X$ Subspace S.t. $i A \subset X$ is a homotopy equivalent and (X,A) Satisfies hom. ext. prop then A is a deform retract of X.

Cor f: X -> Y homotopy equivalence (>> X is a determation retrout of Mf.

X has a mapping cylinder nod in $M_f \Rightarrow (M_f, X)$ homotopy exten. Property

 $X \xrightarrow{f} Y$ $f = ri \Rightarrow if i \text{ is homotopy equivalenc} \Rightarrow f \text{ homotopy equiv}$ $i \xrightarrow{i} Y$ $i \xrightarrow{r} Y$

f homoto equiv () i homotop equi (X is a deformation retract

Attaching Spaces:

Xo, X, , A CX, closed subspale, f: A -> Xo then

 X_0 attached $X_0 \coprod_f X_1 = \frac{X_0 \coprod X_1}{\{a \sim f(a) \mid a \in A\}}$ $Y_0 = \frac{X_0 \coprod X_1}{\{a \sim f(a) \mid a \in A\}}$

Mapping Cylineder Ms for f:X-Y is the attached space of XXI to Y along X x {1} via f

Q If $f,g:A\longrightarrow X$, are homotopic, are $X_o \sqcup_f X_i \simeq X_o \coprod_g X_i ?$ No

Prop: If (X,,A) has HEP, then XoLl X, ~ XoLl g X, rel Xo.