Knowledge Graphs

Dieter Fensel et al. Chapter 2.4 ~ 2.5

CONTENTS

2.4

Knowledge Curation

- 1. A Maximal Simple Knowledge Representation Formalism
- 2. Knowledge Assessment
- 3. Knowledge Cleaning
- 4. Knowledge Enrichment

2.5

Knowledge Deployment

- Knowledge Curation
 - *Overall goal
 - To provide cost-sensitive methods to improve the quality of large knowledge graphs ensuring their usefulness for envisaged applications

A Maximal Simple Knowledge Representation Formalism

- *Representation formalism
 - In sync with schema.org
 - TBox
 - Schema definitions
 - Define types, hierarchy, properties with their domains and ranges
 - Two disjoint and finite sets of type and property names T and P
 - A finite number of type definitions
 - \rightarrow is $A(t_1, t_2)$
 - A finite number of property definitions
 - \rightarrow has Domain(p, t)
 - \rightarrow has Range(p, t_2)
 - $\rightarrow hasLocalRange(p, t_1, t_2)$

- A Maximal Simple Knowledge Representation Formalism
 - *Representation formalism
 - ABox
 - Assertional statement
 - Add assertions over the terminology
 - A countable set of instance identifiers I
 - Instance assertions
 - \rightarrow is Element Of(i, t)
 - Property value assertions
 - $\rightarrow p(i_1,i_2)$
 - Equality assertions
 - \rightarrow is Same As (i_1, i_2)

- *Describe and define the process of assessing the quality of a KG
- *****Goal
 - To measure the usefulness of a KG considering correctness and completeness

- *Literature
 - Accessibility
 - Accuracy (veracity)
 - Appropriate amount (relevancy)
 - Believability (trustworthiness)
 - Completeness
 - Concise representation
 - Consistent representation
 - Cost-effectiveness
 - Ease of manipulation
 - Ease of operation
 - Ease of understanding
 - Flexibility

- Free-of-error (accuracy)
- Interoperability
- Objectivity (part of Trustworthiness)
- Relevancy
- Reputation (part of Trustworthiness)
- Security (part of Accessibility)
- Timeliness (velocity)
- Traceability (verifiability)
- Understandability (ease of understanding)
- Value-added
- Variety

- Task Types
 - Given maximal simple knowledge representation formalism → distinguish three error sources
 - Instance assertions: isElementOf(i, t)
 - Property value assertions: $p(i_1, i_2)$
 - Equality assertions: $isSameAs(i_1, i_2)$
 - Considering the correctness and completeness → define six tasks
 - Correctness
 - →Identify the number of wrong instance assertions
 - →Identify the number of wrong property value assertions
 - →Identify the number of wrong equality assertions
 - Completeness
 - →Identify the number of missing instance assertions
 - →Identify the number of missing property value assertions
 - →Identify the number of missing equality assertions

Knowledge Assessment

Methods and Tools

- Methodologies
 - Total Data Quality Management (TDQM) (Wang 1998)
 - Data Quality Assessment (Pipino et al. 2002)
 - User-driven assessment (Zaveri et al. 2013)
 - Test-driven assessment (Kontokostas et al. 2014)
 - Manual assessment based on human expertise (Acosta et al. 2013)
 - Statistical distribution for measuring the correctness of statements (Paulheim and Bizer 2014)

Tools

- WIQL (Web Information Quality Assessment Framework)
- SWIQA (Semantic Web Information Quality Assessment Framework)
- LINK-QA
- Sieve
- Validata
- Luzzu

- *Methods and Tools
 - Approaches that help to define metrics and tackle the assessment of the tasks
 - Sieve for Data Quality Assessment (Mendes et al. 2012)
 - → Data quality indicators
 - →Scoring functions
 - → Assessment metrics
 - → Aggregate metrics
 - Using Semantic Web Resources for Data Quality Management (Furber and Hepp 2010)
 - →Missing literal values
 - → False literal values
 - →Functional dependency violations
 - SDType (Paulheim and Bizer 2013)
 - → Statistical distribution
 - Resolving Range Violations (Lertvittayakumjorn et al. 2017)
 - →Reduce search space
 - → Calculating scores

- Knowledge Cleaning
 - *****Goal
 - To improve the correctness of a KG
 - Major objectives
 - Error detection
 - Identifying wrong assertions in a KG
 - Error correction
 - Correcting wrong assertions by deleting or modifying

Knowledge Cleaning

- *Literature
 - Most of the approaches
 - Focus on the error detection or correction → not for both tasks
 - Focus on detecting errors than correcting
 - Error detection
 - SDType (Paulheim and Bizer 2013)
 - SDValidate (Paulheim and Bizer 2014)
 - Error correction
 - Katara (Chu et al. 2015)
 - →Correcting wrong instance and property value assertions
 - HoloClean (Rekatsinas et al. 2017)
 - →Correcting wrong property value assertions
 - LOD Laundromat (Beek et al. 2014)
 - →Correcting syntax errors

- Knowledge Cleaning
 - Task Types
 - \circ Detection/Correction of wrong instance assertions: isElementOf(i,t)
 - $\rightarrow i$ is not a proper instance identifier
 - $\rightarrow t$ is not an existing type name
 - \rightarrow The instance assertion is wrong
 - Obetection /Correction of wrong property value assertions: $p(i_1, i_2)$
 - $\rightarrow p$ is not a proper property name
 - $ightarrow i_1$ is not a proper instance identifier
 - $ightarrow i_1$ is not in any domain of p
 - $ightarrow i_2$ is not a proper instance identifier
 - $ightarrow i_2$ is not in any ranger of p
 - ightarrow The property assertion is wrong
 - \circ Detection /Correction of wrong equality assertions: $isSameAs(i_1, i_2)$
 - $ightarrow i_1$ is not a proper instance identifier
 - $ightarrow i_2$ is not a proper instance identifier
 - → The identity assertion is wrong

Knowledge Cleaning

- *Methods and Tools
 - Methods according to the cleaning target
 - Instance assertion
 - → A statistical distribution of types and properties
 - →Supervised machine learning and entity-type dictionaries
 - → Association rule mining
 - Property value assertion
 - → Statistical distribution
 - →Ontology reasoners
 - →Wikipedia pages
 - →Outlier detection
 - Equality assertion
 - →Outlier detection
 - →Constraints
 - →Logical verification
 - → Local context of instances

- Knowledge Cleaning
 - *Methods and Tools
 - Tools
 - HoloClean (Rekatsinas et al. 2017)
 - KATARA (Chu et al. 2015)
 - SDValidate (Paulheim and Bizer 2014)
 - SPIN (SPARQL Inferencing Notation)
 - LOD Laundromat (Beek et al. 2014)
 - TISCO (Temporal Scoping of Facts) (Rula et al. 2019)

- Knowledge Enrichment
 - *****Goal
 - To improve the completeness of a KG by adding new statements
 - *Process
 - Identify a relevant knowledge source
 - Integrate of TBox and ABox statements from the source to our KG
 - Issues
 - → Merging or aligning different schemata (TBox)
 - →Identifying and resolving duplicates (ABox)
 - →Invalid property statements (ABox)

- *Literature
 - Knowledge management shares some goals with data management
 - Data access, data quality, data cleansing, data integration, and more
 - Knowledge enrichment = data fusion
 - Issues to produce more consistent, accurate, and useful knowledge
 - Entity resolution
 - \rightarrow Deriving new $isSameAS(instance_1, instance_2)$ assertions and aligning the descriptions of these two identifiers
 - Resolving conflicting property value assertion
 - \rightarrow Handling for example situations such as $P(i_1, i_2)$, and $P(i_1, i_3)$, and $P(i_2, i_3)$, and $P(i_3, i_3)$, and $P(i_3$
 - → Refer to error detection and correction

- Knowledge Enrichment
 - *Task Types
 - \circ Identifying and resolving duplicates (lack of $isSameAs(i_1, i_2)$ assertions)
 - Resolving conflicting property value assertions

- Methods and Tools
 - Methods for identifying duplicates
 - String similarity measures (Winkler 2006)
 - Association rule mining (Hipp et al. 2000)
 - Topic modeling (Sleeman et al. 2015)
 - Support vector machine (Sleeman and Finin 2013)
 - Property-based (Hogan et al. 2007)
 - Crowd-sourced data (Getoor and Machanavajjhala 2013)
 - Graph-oriented techniques (Korula and Lattanzi 2014)

- *Methods and Tools
 - Methods and tools for identifying and resolving duplicates
 - ADEL (Adaptable Entity Linking) (Plu et al. 2017)
 - →Indexing and linking data based on the label and popularity of entities
 - Dedupe
 - →Python library that uses machine learning to find duplicate entries
 - Duke (Garshol and Borge 2013)
 - Legato (Achichi et al. 2017)
 - LIMES (Ngomo and Auer 2011)
 - SERIMI (Araujo et al. 2011)
 - Silk (Volz et al. 2009)

- *Methods and Tools
 - Methods and tools for resolving conflicting property value assertions
 - FAGI (Giannopoulos et al. 2014)
 - FuSem (Bleiholder et al. 2007)
 - HumMer (Bilke et al. 2005)
 - KnoFuss (Nikolov et al. 2008)
 - ODCleanStore (Knap et al. 2012)
 - Sieve (Mendes et al. 2012)

2.5 KNOWLEDGE DEPLOYMENT

Knowledge Deployment

- Linked Open Data (LOD)
 - Open data
 - Data that can be freely used, re-used and redistributed by anyone
 - Linked data
 - A method of publishing structured data so that it can be interlinked and become more useful through semantic queries
 - OLOD = Open data + Linked data
 - Linked data published as open data or Open data published as linked data
 - 5* criteria of the quality of LOD
 - *) if the data are provided under an open license
 - **) if the data are available as structured data
 - ***) if the data are also available in a non-proprietary format
 - ****) if URIs are used so that the data can be referenced
 - *****) if the dataset is linked to other datasets to provide context

2.5 KNOWLEDGE DEPLOYMENT

Knowledge Deployment

Overview of some KGs

Name	Instances	Facts	Types	Relations
DBpedia (English)	4,806,150	176,043,129	735	2813
YAGO	4,595,906	25,946,870	488,469	77
Freebase	49,947,845	3,041,722,635	26,507	37,781
Wikidata	15,602,060	65,993,797	23,157	1673
NELL	2,006,896	432,845	285	425
OpenCyc	118,499	2,413,894	45,153	18,526
Google's Knowledge Graph	570,000,000	18,000,000,000	1500	35,000
Google's Knowledge Vault	45,000,000	271,000,000	1100	4469
Yahoo! Knowledge Graph	3,443,743	1,391,054,990	250	800

2.5 KNOWLEDGE DEPLOYMENT

- Knowledge Deployment
 - *Building, implementing, and curating KG
 - Time-consuming and costly activities
 - The average cost for one fact in a KG
 - \$0.1 ~ \$6 depending on the amount of mechanization
 - *Alternatives of cost model
 - The data consumer is paying for service
 - The data supplier is paying for service (Open data or linked open data)