Design and Analysis of Algorithms Part II: Dynamic Programming Lecture 15: Rod-Cutting

童咏昕

北京航空航天大学 计算机学院

动态规划篇概述

- 在算法课程第二部分"动态规划"主题中,我们将主要聚焦于如下 经典问题:
 - 0-1 Knapsack (0-1背包问题)
 - Maximum Contiguous Subarray II (最大连续子数组 II)
 - Longest Common Subsequences (最长公共子序列)
 - Longest Common Substrings (最长公共子串)
 - Minimum Edit Distance (最小编辑距离)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)

动态规划篇概述

- 在算法课程第二部分"动态规划"主题中,我们将主要聚焦于如下 经典问题:
 - 0-1 Knapsack (0-1背包问题)
 - Maximum Contiguous Subarray II (最大连续子数组 II)
 - Longest Common Subsequences (最长公共子序列)
 - Longest Common Substrings (最长公共子串)
 - Minimum Edit Distance (最小编辑距离)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)

• 钢条切割

• 现有一段长度为10的钢条,可以零成本将其切割为多段长度更小钢条

钢条长度	0	1	2	3	4	5	6	7	8	9	10
价格p	0	1	5	8	9	10	17	17	20	24	24

• 钢条切割

• 现有一段长度为10的钢条,可以零成本将其切割为多段长度更小钢条

钢条长度	0	1	2	3	4	5	6	7	8	9	10
价格p	0	1	5	8	9	10	17	17	20	24	24

一段长度为10的钢条

- 钢条切割
 - 现有一段长度为10的钢条,可以零成本将其切割为多段长度更小钢条

钢条长度	0	1	2	3	4	5	6	7	8	9	10
价格p	0	1	5	8	9	10	17	17	20	24	24

• 钢条切割

• 现有一段长度为10的钢条,可以零成本将其切割为多段长度更小钢条

钢条长度	0	1	2	3	4	5	6	7	8	9	10
价格p	0	1	5	8	9	10	17	17	20	24	24

切割	切割方案					
方案1	{10}	24				

10

• 钢条切割

• 现有一段长度为10的钢条,可以零成本将其切割为多段长度更小钢条

钢条长度	0	1	2	3	4	5	6	7	8	9	10
价格p	0	1	5	8	9	10	17	17	20	24	24

切割	总收益	
方案1	{10}	24
方案2	{5,5}	10+10=20

10	
10	

5 5

• 钢条切割

• 现有一段长度为10的钢条,可以零成本将其切割为多段长度更小钢条

钢条长度	0	1	2	3	4	5	6	7	8	9	10
价格p	0	1	5	8	9	10	17	17	20	24	24

切割	切割方案						
方案1	{10}	24					
方案2	{5,5}	10+10=20					
方案3	{2,2,6}	5+5+17=27					

• 钢条切割

• 现有一段长度为10的钢条,可以零成本将其切割为多段长度更小钢条

钢条长度	0	1	2	3	4	5	6	7	8	9	10
价格p	0	1	5	8	9	10	17	17	20	24	24

切割	切割方案		
方案1	{10}	24	10
方案2	{5,5}	10+10=20	5 5
方案3	{2,2,6}	5+5+17=27	2 2 6

问题:怎样合理切割,使总收益最大?

• 形式化定义

钢条切割问题

Rod Cutting Problem

输入

钢条长度n

• 形式化定义

钢条切割问题

Rod Cutting Problem

- 钢条长度n
- 价格表 $p_l(1 \le l \le n)$: 表示长度为l的钢条价格

• 形式化定义

钢条切割问题

Rod Cutting Problem

- 钢条长度n
- 价格表 $p_l(1 \le l \le n)$: 表示长度为l的钢条价格输出
- 求解一组切割方案 $T = \langle c_1, c_2, ..., c_m \rangle$, 令

$$\max \sum_{l=1}^m p_{c_l}$$

$$s. t. \sum_{l=1}^{m} c_l = n$$

• 形式化定义

钢条切割问题

Rod Cutting Problem

- 钢条长度n
- 价格表 $p_l(1 \le l \le n)$: 表示长度为l的钢条价格输出
- 求解一组切割方案 $T = \langle c_1, c_2, ..., c_m \rangle$, 令

$$\max \sum_{l=1}^m p_{c_l}$$
 优化目标

$$s. t. \sum_{l=1}^{m} c_l = n$$

• 形式化定义

钢条切割问题

Rod Cutting Problem

- 钢条长度n
- 价格表 $p_l(1 \le l \le n)$: 表示长度为l的钢条价格输出
- 求解一组切割方案 $T = \langle c_1, c_2, ..., c_m \rangle$, 令

$$\max \sum_{l=1}^{m} p_{c_l}$$
 优化目标

$$s.t.$$
 $\sum_{l=1}^{m} c_l = n$ 约束条件

- 假设至多切割1次
 - 枚举所有可能的切割位置

- 假设至多切割1次
 - 枚举所有可能的切割位置

o 不切: p[10]

10

- 假设至多切割1次
 - 枚举所有可能的切割位置

o 不切: p[10]

o 切割: p[i] + p[10 - i]

10

1 9

- 假设至多切割1次
 - 枚举所有可能的切割位置

o 不切: p[10]

o 切割: p[i] + p[10 - i]

10					
1	9				
2	8				

- 假设至多切割1次
 - 枚举所有可能的切割位置

o 不切: p[10]

o 切割: p[i] + p[10 - i]

• 假设至多切割1次

• 枚举所有可能的切割位置

o 不切: p[10]

o 切割: p[i] + p[10 - i]

• 最大收益 $\max_{1 \le i \le 9} \{p[i] + p[10 - i], p[10]\}$

		1				
10			5	5		
1 9			6	4		
2 8			7		3	
3	7		8			2
4 6			9			1

• 假设至多切割2次

10

- 假设至多切割2次
 - 先将钢条切割出一段

- 假设至多切割2次
 - 先将钢条切割出一段
 - 在剩余钢条中继续切割

- 假设至多切割2次
 - 先将钢条切割出一段
 - 在剩余钢条中继续切割

• 原始问题不限制切割次数

10

枚举切割长度,或不切割

• 原始问题不限制切割次数

• 可能存在最优子结构和重叠子问题

问题结构分析

- 给出问题表示
 - C[j]: 切割长度为j的钢条可得最大总收益

C[j]

j

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

问题结构分析

- 给出问题表示
 - C[j]: 切割长度为j的钢条可得最大总收益

C[j]

j

- 明确原始问题
 - C[n]: 切割长度为n的钢条可得最大总收益

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

递推关系建立:分析最优(子)结构

C[10]

10

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

递推关系建立:分析最优(子)结构

• $C[10] = \max_{1 \le i \le 9} \{p[i] + C[10 - i], p[10]\}$

• $C[j] = \max_{1 \le i \le j-1} \{p[i] + C[j-i], p[j]\}$

• 对于每个钢条长度j

•
$$C[j] = \max_{1 \le i \le j-1} \{p[i] + C[j-i], p[j]\}$$

问题结构分析

递推关系建立

自底向上计算

- 对于每个钢条长度j
 - $C[j] = \max_{1 \le i \le j-1} \{p[i] + C[j-i], p[j]\}$

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

p[j]

C[j]

max

C[j-1]	C[j-2]	C[j-3]	•••	C [1]
+	+	+	+	+
p [1]	p [2]	p [3]	• • •	p[j-1]

• 对于每个钢条长度j

•
$$C[j] = \max_{1 \le i \le j-1} \{ p[i] + C[j-i], p[j] \}$$

递推关系建立

自底向上计算

最优方案追踪

p[j]

C[j]

max

攵ঽ	举切割长原	夏 [j-2]	C[j-3]	•••	<i>C</i> [1]
	+	+	+	+	+
	<i>p</i> [1]	p [2]	<i>p</i> [3]	•••	p[j-1]

• 对于每个钢条长度j

自底向上计算:确定计算顺序

已知钢条价格

p[] p[1] p[2] ... p[n]

- 初始化
 - C[0] = 0 切割长度为0的钢条,总收益为0

问题结构分析

递推关系建立

自底向上计算

自底向上计算:确定计算顺序

已知钢条价格

$$p[]$$
 $p[1]$ $p[2]$... $p[n]$

- 初始化
 - C[0] = 0 切割长度为0的钢条,总收益为0
- 递推公式
 - $C[j] = \max_{1 \le i \le j-1} \{p[i] + C[j-i], p[j]\}$

自底向上计算

	0	1	2	•••	\boldsymbol{n}
C []	0 —				→ ★
C[]	U				

问题结构分析

递推关系建立

自底向上计算

已知钢条价格

p[] p[1] p[2] ... p[n]

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

已知钢条价格

问题结构分析

递推关系建立

自底向上计算

已知钢条价格

问题结构分析

递推关系建立

自底向上计算

已知钢条价格

问题结构分析

递推关系建立

自底向上计算

已知钢条价格

问题结构分析

递推关系建立

自底向上计算

已知钢条价格

问题结构分析

递推关系建立

自底向上计算

最优方案追踪: 记录决策过程

构造追踪数组rec[1..n]

最优方案追踪: 记录决策过程

构造追踪数组rec[1..n]

问题结构分析

递推关系建立

自底向上计算

最优方案追踪:记录决策过程

- 构造追踪数组rec[1..n]
- rec[j]: 记录长度为j钢条的最优切割方案

问题结构分析

自底向上计算

最优方案追踪:记录决策过程

- 构造追踪数组rec[1..n]
- rec[j]: 记录长度为j钢条的最优切割方案
 - 不切: rec[j] = j

问题结构分析

递推关系建立

自底向上计算

最优方案追踪:记录决策过程

- 构造追踪数组rec[1..n]
- rec[j]: 记录长度为j钢条的最优切割方案
 - 不切: rec[j] = j 切割: rec[j] = k

问题结构分析

递推关系建立

自底向上计算

- 根据追踪数组,递归输出方案
 - 輸出长度为k₁的钢条

问题结构分析

递推关系建立

自底向上计算

- 根据追踪数组,递归输出方案
 - 输出长度为k₁的钢条

问题结构分析

递推关系建立

自底向上计算

- 根据追踪数组,递归输出方案
 - 输出长度为k₂的钢条

问题结构分析

递推关系建立

自底向上计算

- 根据追踪数组,递归输出方案
 - 输出长度为*k*₂的钢条

问题结构分析

递推关系建立

自底向上计算

- 根据追踪数组,递归输出方案
 - 输出长度为k₃的钢条

问题结构分析

递推关系建立

自底向上计算

- 根据追踪数组,递归输出方案
 - 递归出口:输出的钢条总长度已达*n*

问题结构分析

递推关系建立

自底向上计算

n = 10

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	Ř	刀始化								
rec	0	1	2	3	4	5	6	7	8	9	10

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 1$$

$$[i \quad 1 \quad p[j] = p[1]$$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0										
rec	0	1	2	3	4	5	6	7	8	9	10

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 1$$

$$\max\{p[i] + C[j-i], p[j]\}$$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0										
rec	0	1	2	3	4	5	6	7	8	9	10

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 1$$

$$\max\{p[i] + C[j-i], p[j]\}$$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1									
rec	0	1	2	3	4	5	6	7	8	9	10
		1									

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i										

$$j = 2$$

$$\begin{array}{c|c} i & 1 \\ \hline \end{array} p[1] + C[1]$$

		,									
i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1									
rec	0	1	2	3	4	5	6	7	8	9	10
		1									

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	_5_	8	9	10	17	17	20	24	24

$$j = 2$$

i	1	2	p[j] = p[2]
	2	5	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1									
rec	0	1	2	3	4	5	6	7	8	9	10
		1									

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 2$$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1									
rec	0	1	2	3	4	5	6	7	8	9	10
		1									

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 2$$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5								
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2								

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i										

$$j = 3$$

i	1	p[1] + C[2]
	6	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5								
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2								

$$n = 10$$

		2								
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 3$$

i	1	2	p[2] + C[1]
	6	6	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5								
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2								

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i										

$$j = 3$$

i	1	2	3	p[j] = p[3]
	6	6	8	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5								
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2								

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 3$$

i	1	2	3
	6	6	8

$$\max\{p[i] + C[j-i], p[j]\}$$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5								
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2								

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 3$$

i	1	2	3	$\max\{p[i] + C[j-i], p[j]\}$
	6	6	8	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8							
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3							

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 4$$

$$p[1] + C[3]$$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8							
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3							

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 4$$

i	1	2	p[2] + C[2]
	Q	10	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8							
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3							

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 4$$

i	1	2	3	p[3] + C[1]
	9	10	9	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8							
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3							

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 4$$

i	1	2	3	4	p[j] = p[4]
	9	10	9	9	

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8							
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3							

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 4 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4
	9	10	9	9

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8							
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3							

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 4 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4
	9	10	9	9

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10						
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2						

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 5$$

i	1	2	3	4	5
	11	13	13	10	10

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	,					
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2						

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 5 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5
	11	13	13	10	10

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10						
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2						

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 5 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5
	11	13	13	10	10

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13					
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2					

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 6$$

i	1	2	3	4	5	6
	14	15	16	14	11	17

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13					
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2					

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 6$$

i					5	
	14	15	16	14	11	17

 $\max\{p[i] + C[j-i], p[j]\}$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13					
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2					

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 6$$

i	1	2	3	4	5	6
	14	15	16	14	11	17

 $\max\{p[i] + C[j-i], p[j]\}$

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17				
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6				

n = 10

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

j = 7

i	1	2	3	4	5	6	7
	18	18	18	17	15	18	17

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17				
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6				

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 7 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5	6	7
	18	18	18	17	15	18	17

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17				
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6				

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 7 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5	6	7
	18	18	18	17	15	18	17

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18			
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1			

$$n = 10$$

i	1	2		4				8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 8$$

i	1	2	3	4	5	6	7	8
	19	22	21	19	18	22	18	20

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18			
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1			

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 8 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5	6	7	8
	19	22	21	19	18	22	18	20

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18			
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1			

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 8 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5	6	7	8
					18			

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22		
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2		

n = 10

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5_	8	9	10	17	17	20	24,	24

j=9

i	1	2	3	4	5	6	7	8	9
	23	23	25	22	20	25	22	21	24

i	0	1	3			8	9	10
C[i]	0				 18	22		
rec	0				7		9	10

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 9$$

$\max\{p[i] + C[j-i], p[j]\}$

i	1	2	3	4	5	6	7	8	9
	23	23	25	22	20	25	22	21	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22		
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2		

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 9 \qquad \max\{p[i] + C[j-i], p[j]\}$$

				5				
23	23	25	22	20	25	22	21	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	

n = 10

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

j = 10

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0							7	8	9	10
C[i]	0		5					18	22	25	
rec	0								8		10
		1	2	3	2	2	6	1	2	3	

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10 \qquad \max\{p[i] + C[j-i], p[j]\}$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	27
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	2

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	27
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	2

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	27
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	2

最大收益= C[10] = 27

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	27
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	2

最大收益= *C*[10] = 27 切割方案= { 2,

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	27
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	2

最大收益= *C*[10] = 27 切割方案= { 2, 2

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	27
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	2

最大收益= *C*[10] = 27 切割方案= { 2, 2, 6

$$n = 10$$

i	1	2	3	4	5	6	7	8	9	10
p_i	1	5	8	9	10	17	17	20	24	24

$$j = 10$$

i	1	2	3	4	5	6	7	8	9	10
	26	27	26	26	23	27	25	25	25	24

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	27
rec	0	1	2	3	4	5	6	7	8	9	10
		1	2	3	2	2	6	1	2	3	2

最大收益= *C*[10] = 27 切割方案= { 2, 2, 6}


```
输入: 钢条价格表p[1..n],钢条长度n
输出: 最大收益C[n],钢条切割方案
//初始化
新建一维数组C[0..n], rec[0..n]
                                                        初始化
C[0] \leftarrow 0
#动态规划
for j \leftarrow 1 to n do
    q \leftarrow p[j]
   rec[j] \leftarrow j
    for i \leftarrow 1 to j - 1 do
       if q < p[i] + C[j-i] then
         q \leftarrow p[i] + C[j-i]
         rec[j] \leftarrow i
       end
    end
    C[j] \leftarrow q
end
```



```
输入: 钢条价格表p[1..n],钢条长度n
输出: 最大收益C[n],钢条切割方案
//初始化
新建一维数组C[0..n], rec[0..n]
C[0] \leftarrow 0
#动态规划
                                                     依次计算子问题
for j \leftarrow 1 to n do
\neg \vdash \overline{q} \leftarrow \overline{p}[j] \neg
    rec[j] \leftarrow j
    for i \leftarrow 1 to j - 1 do
        if q < p[i] + C[j-i] then
          q \leftarrow p[i] + C[j-i]
          rec[j] \leftarrow i
        end
    end
    C[j] \leftarrow q
end
```



```
输入: 钢条价格表p[1..n],钢条长度n
输出: 最大收益C[n],钢条切割方案
//初始化
新建一维数组C[0..n], rec[0..n]
C[0] \leftarrow 0
//动态规划
for j \leftarrow 1 to n do
   q \leftarrow p[j]
                                                 不切割钢条
   for i \leftarrow 1 to j - 1 do
       if q < p[i] + C[j-i] then
         q \leftarrow p[i] + C[j-i]
         rec[j] \leftarrow i
       end
   end
   C[j] \leftarrow q
end
```



```
输入: 钢条价格表p[1..n],钢条长度n
输出: 最大收益C[n],钢条切割方案
//初始化
新建一维数组C[0..n], rec[0..n]
C[0] \leftarrow 0
//动态规划
for j \leftarrow 1 to n do
   q \leftarrow p[j]
  for i \leftarrow 1 to j - 1 do
                                               枚举切割长度
 - - if q < p[i] + C[j-i] then - -
       q \leftarrow p[i] + C[j-i]
        rec[j] \leftarrow i
       end
   end
   C[j] \leftarrow q
end
```



```
输入: 钢条价格表p[1..n],钢条长度n
输出: 最大收益C[n],钢条切割方案
//初始化
新建一维数组C[0..n], rec[0..n]
C[0] \leftarrow 0
//动态规划
for j \leftarrow 1 to n do
   q \leftarrow p[j]
   rec[j] \leftarrow j
   for i \leftarrow 1 to j - 1 do
      if q < p[i] + C[j-i] then
                                                记录价格和决策
         q \leftarrow p[i] + C[j-i]
          rec[j] \leftarrow i
       end
   end
   C[j] \leftarrow q
end
```

伪代码


```
输入: 钢条价格表p[1..n],钢条长度n
输出: 最大收益C[n],钢条切割方案
//初始化
新建一维数组C[0..n], rec[0..n]
C[0] \leftarrow 0
//动态规划
for j \leftarrow 1 to n do
   q \leftarrow p[j]
   rec[j] \leftarrow j
   for i \leftarrow 1 to j - 1 do
       if q < p[i] + C[j-i] then
          q \leftarrow p[i] + C[j-i]
          rec[j] \leftarrow i
       \mathbf{end}
                                                    保存子问题的解
\mathbf{e}\mathbf{n}\mathbf{d}
```

伪代码


```
/输出最优方案
while n>0 do
    print rec[n]
    n \leftarrow n-rec[n]
end
```

时间复杂度分析

• RodCutting(p, n)

```
输入: 钢条价格表p[1..n],钢条长度n
输出: 最大收益C[n],钢条切割方案
 //初始化
新建一维数组C[0..n], rec[0..n]
C[0] \leftarrow 0
<u>//动态规划</u>_
for j \leftarrow 1 to n do
    q \leftarrow p[j]
   rec[j] \leftarrow j
  for i \leftarrow 1 to j - 1 do
   if q < p[i] + C[j-i] then
        q \leftarrow p[i] + C[j-i]
         rec[j] \leftarrow i
        end
    end
    C[j] \leftarrow q
 end
```

时间复杂度: $O(n^2)$

