Izagma Alonso, Tsee Lee

"YOUR MISSION:

Experiment with different possible distributions of 0 and 1 voters in Lilliputia

0) a situation where 1/3 of the voters are 1's, but a random districting plan is more likely to give them no districts than two districts.

(Two out of six is what they would get if you had proportional representation.)

1) a situation where 1/3 of the voters are 1's, but where they win no districts (sus)

Specific breakdown taken from the answer to zero.

	1	
1		130
		1
	1	
1		
		1

2) a situation where 1/3 of the voters are 1's, and they win 3 districts (again, sus)

3) a situation where 1/3 of the voters are 1's, but there is simply no way for them to win more than one district (sus much?)

100% 1 district

1		
		1
1		
		1
	1	1

4) situations where half the voters are 1's. More open-ended exploration is in order...

-Which arrangements of their voters are most advantageous for Party 1?

Always 2 or 3 districts: 64% 2 and 35% 3.

1	1
1	1
1	1

-Which are least advantageous?

Same as zero: 61% no districts, 24% 1 district, 6% 2 districts and 0% 3 districts.

-Are there arrangements that are hard to gerrymander in either direction?"

This produces 100% 2 districts, which is proportional, ½ 1's, ½ districts.

	1	1	
		1	L
			L
			L
1			L
1	1		