Pytorch_Project

December 4, 2024

Capstone Project: INFO6147 Deep Learning with Pytorch

Topic: IT Support Email Classification

Author: Amaan Ahmad Student Number: 1252398

```
[1]: #Importing required modules
     import spacy
     import torch
     import torch.nn as nn
     import torch.optim as optim
     from torch.utils.data import DataLoader, Dataset
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import LabelEncoder
     from sklearn.metrics import classification_report, confusion_matrix
     import matplotlib.pyplot as plt
     import seaborn as sns
     import pandas as pd
     from tqdm import tqdm
     from sklearn.metrics import roc_curve, auc, roc_auc_score
     import numpy as np
     # Loading spacy small model
     nlp = spacy.load("en_core_web_sm")
     # Loading the support emails dataset (Reading 5000 rows)
     data = pd.read_csv("support_emails.csv", nrows=5000)
```

```
[2]: # Using label encoder to enconding the labels
label_encoder = LabelEncoder()
data['Topic_group'] = label_encoder.fit_transform(data['Topic_group'])

# Splitting the dataset in training and test data.
train_val_text, test_text, train_val_labels, test_labels = train_test_split(
    data['Document'], data['Topic_group'], test_size=0.2, random_state=7
)
```

```
# Split the training data into training and validation data.
train_text, val_text, train_labels, val_labels = train_test_split(
    train_val_text, train_val_labels, test_size=0.2, random_state=7
)
```

Pre-Processing text data

```
[3]: # Cleaning text and tokenization using spacy
def clean_text(text):
    doc = nlp(text)
    tokens = []
    for token in doc:
        text = text.lower()
        if not token.is_stop and not token.is_punct and not token.is_digit:
            tokens.append(token.lemma_)
        return tokens

vocab = set(token for text in train_text for token in clean_text(text))
word_to_index= {word: idx + 1 for idx, word in enumerate(vocab)}
word_to_index['<PAD>'] = 0 # Adding padding
```

```
[5]: # Converting Text to Tensor
def convert_text_to_tensor(text, word_to_index, max_len):
    tokens = clean_text(text)
    indices = [word_to_index.get(token, 0) for token in tokens[:max_len]]
    return torch.tensor(indices + [0] * (max_len - len(indices)), dtype=torch.
    long)
```

```
train_dataset = EmailDataset(train_text, train_labels)
val_dataset = EmailDataset(val_text, val_labels)
test_dataset = EmailDataset(test_text, test_labels)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
test_loader = DataLoader(test_dataset, batch_size=32)
```

Defining CNN

```
[6]: # Model Definition
     class TextCNN(nn.Module):
         def __init__(self, vocab_size, embedding_dim, num_classes):
             super(TextCNN, self).__init__()
             self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
             self.conv1 = nn.Conv1d(embedding_dim, 128, kernel_size=3, padding=1)
             self.conv2 = nn.Conv1d(embedding_dim, 128, kernel_size=5, padding=2)
             self.conv3 = nn.Conv1d(embedding_dim, 128, kernel_size=7, padding=3)
             self.fc = nn.Linear(128 * 3, num_classes)
             self.dropout = nn.Dropout(0.5)
         def forward(self, x):
             x = self.embedding(x).permute(0, 2, 1)
             x1 = torch.relu(self.conv1(x)).max(dim=2)[0]
             x2 = torch.relu(self.conv2(x)).max(dim=2)[0]
             x3 = torch.relu(self.conv3(x)).max(dim=2)[0]
             x = torch.cat((x1, x2, x3), dim=1)
             x = self.dropout(x)
             return self.fc(x)
```

Performing training

```
model.train()
             train loss = 0
             for texts, labels in tqdm(train_loader):
                 texts, labels = texts.to(device), labels.to(device)
                 optimizer.zero_grad()
                 outputs = model(texts)
                 loss = criterion(outputs, labels)
                 loss.backward()
                 optimizer.step()
                 train_loss += loss.item()
             training_losses.append(train_loss / len(train_loader))
             model.eval()
             val loss = 0
             with torch.no_grad():
                 for texts, labels in val_loader:
                     texts, labels = texts.to(device), labels.to(device)
                     outputs = model(texts)
                     loss = criterion(outputs, labels)
                     val_loss += loss.item()
             validation_losses.append(val_loss / len(val_loader))
             print(f"Epoch {epoch + 1}/{num_epochs}, Train Loss: {train_loss / ___
      Glen(train_loader):.4f}, Val Loss: {val_loss / len(val_loader):.4f}")
         return training_losses, validation_losses
[8]: #Function to evaluate the model performance
     def evaluate_model(model, test_loader):
         model.eval()
         all preds = []
         all_labels = []
         with torch.no_grad():
             for texts, labels in test_loader:
                 texts, labels = texts.to(device), labels.to(device)
                 outputs = model(texts)
                 preds = outputs.argmax(dim=1).cpu().numpy()
                 all_preds.extend(preds)
                 all_labels.extend(labels.cpu().numpy())
         return all_preds, all_labels
[9]: # Performing Training
     train_losses, val_losses = train_model(
         model, train_loader, val_loader, criterion, optimizer, num_epochs=10
     )
    100%|
              | 100/100 [00:35<00:00, 2.85it/s]
```

```
Epoch 1/10, Train Loss: 1.4402, Val Loss: 0.9598
               | 100/100 [00:35<00:00, 2.82it/s]
     Epoch 2/10, Train Loss: 0.7680, Val Loss: 0.7609
               | 100/100 [00:33<00:00, 3.03it/s]
     Epoch 3/10, Train Loss: 0.5203, Val Loss: 0.7096
               | 100/100 [00:32<00:00, 3.05it/s]
     100%|
     Epoch 4/10, Train Loss: 0.3698, Val Loss: 0.6898
               | 100/100 [00:33<00:00, 2.94it/s]
     100%|
     Epoch 5/10, Train Loss: 0.2776, Val Loss: 0.6746
     100%|
               | 100/100 [00:34<00:00, 2.93it/s]
     Epoch 6/10, Train Loss: 0.2058, Val Loss: 0.6870
               | 100/100 [00:36<00:00, 2.75it/s]
     100%|
     Epoch 7/10, Train Loss: 0.1588, Val Loss: 0.7409
     100%|
               | 100/100 [00:35<00:00, 2.80it/s]
     Epoch 8/10, Train Loss: 0.1371, Val Loss: 0.7309
               | 100/100 [00:33<00:00, 3.02it/s]
     100%|
     Epoch 9/10, Train Loss: 0.1227, Val Loss: 0.7897
               | 100/100 [00:32<00:00, 3.10it/s]
     100%|
     Epoch 10/10, Train Loss: 0.0962, Val Loss: 0.7609
[10]: #Plotting training loss vs validation loss
      plt.figure(figsize=(10, 6))
      plt.plot(train_losses, label="Training Loss")
      plt.plot(val_losses, label="Validation Loss")
      plt.title("Training and Validation Loss")
      plt.xlabel("Epoch")
      plt.ylabel("Loss")
      plt.legend()
      plt.grid()
      plt.show()
```



```
[11]: #Function to plot the roc curve
      def plot_roc_curve(model, test_loader, num_classes):
          model.eval()
          all_pred = []
          all_labels = []
          with torch.no_grad():
              for texts, labels in test_loader:
                  texts, labels = texts.to(device), labels.to(device)
                  outputs = model(texts)
                  pred = torch.softmax(outputs, dim=1)
                  all_pred.append(pred.cpu().numpy())
                  all_labels.append(labels.cpu().numpy())
          all_pred = np.concatenate(all_pred, axis=0)
          all_labels = np.concatenate(all_labels, axis=0)
          # Compute ROC curve and ROC AUC for each class
          plt.figure(figsize=(10, 8))
          for i in range(num_classes):
              fpr, tpr, _ = roc_curve((all_labels == i).astype(int), all_pred[:, i])
              roc_auc = auc(fpr, tpr)
              plt.plot(fpr, tpr, label=f"Class {i} (AUC = {roc_auc:.2f})")
```

```
plt.plot([0, 1], [0, 1], "k--", 1w=2)
plt.title("ROC Curve")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend()
plt.grid()
plt.show()
```

	precision	recall	f1-score	support
Access	0.90	0.82	0.86	174
Administrative rights	0.94	0.65	0.77	26
HR Support	0.76	0.86	0.81	212
Hardware	0.72	0.75	0.74	208
Internal Project	0.81	0.88	0.84	48
Miscellaneous	0.74	0.73	0.74	166
Purchase	0.97	0.84	0.90	81
Storage	0.90	0.84	0.87	85
accuracy			0.80	1000
macro avg	0.84	0.80	0.81	1000
weighted avg	0.81	0.80	0.80	1000

Hyperparameter tuninng

```
[13]: #Defining model v2
class TextCNN_V2(nn.Module):
    def __init__(self, vocab_size, embedding_dim, num_classes):
        super(TextCNN_V2, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
        self.conv1 = nn.Conv1d(embedding_dim, 64, kernel_size=3, padding=1)
        self.conv2 = nn.Conv1d(embedding_dim, 64, kernel_size=5, padding=2)
        self.conv3 = nn.Conv1d(embedding_dim, 64, kernel_size=7, padding=3)
        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(64)
        self.bn3 = nn.BatchNorm1d(64)
        self.fc = nn.Linear(64 * 3, num_classes)
        self.dropout = nn.Dropout(0.8) #Increased the drop out

    def forward(self, x):
        x = self.embedding(x).permute(0, 2, 1)
```

```
x1 = torch.relu(self.bn1(self.conv1(x))).max(dim=2)[0]
        x2 = torch.relu(self.bn2(self.conv2(x))).max(dim=2)[0]
        x3 = torch.relu(self.bn3(self.conv3(x))).max(dim=2)[0]
        x = torch.cat((x1, x2, x3), dim=1)
        x = self.dropout(x)
        return self.fc(x)
model_v2 = TextCNN_V2(len(word_to_index), embedding_dim, num_of_classes)
optimizer_v2 = optim.Adam(model_v2.parameters(), lr=0.002, weight_decay=1e-6)
 →#Increased learning rate and added regularization.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_v2.to(device)
# Training again with adjusted hyperparameters
train_losses_2, val_losses_2 = train_model(
    model_v2, train_loader, val_loader, criterion, optimizer_v2, num_epochs=10
)
100%|
          | 100/100 [00:33<00:00, 3.01it/s]
Epoch 1/10, Train Loss: 2.8134, Val Loss: 1.2356
100%
          | 100/100 [00:34<00:00, 2.87it/s]
Epoch 2/10, Train Loss: 1.5781, Val Loss: 1.0755
          | 100/100 [00:35<00:00, 2.85it/s]
Epoch 3/10, Train Loss: 1.3317, Val Loss: 0.9783
          | 100/100 [00:34<00:00, 2.91it/s]
Epoch 4/10, Train Loss: 1.1673, Val Loss: 0.8878
         | 100/100 [00:32<00:00, 3.05it/s]
Epoch 5/10, Train Loss: 1.0487, Val Loss: 0.7981
100%|
         | 100/100 [00:33<00:00, 3.03it/s]
Epoch 6/10, Train Loss: 0.9638, Val Loss: 0.7492
100%|
          | 100/100 [00:33<00:00, 2.96it/s]
Epoch 7/10, Train Loss: 0.8048, Val Loss: 0.7047
100%|
          | 100/100 [00:33<00:00, 2.99it/s]
Epoch 8/10, Train Loss: 0.7538, Val Loss: 0.6787
100%|
          | 100/100 [00:32<00:00, 3.07it/s]
Epoch 9/10, Train Loss: 0.6825, Val Loss: 0.6600
          | 100/100 [00:32<00:00, 3.11it/s]
100%|
```

Epoch 10/10, Train Loss: 0.6237, Val Loss: 0.6599

```
[14]: #Plotting training loss vs validation loss curve
   plt.figure(figsize=(10, 6))
   plt.plot(train_losses_2, label="Training Loss")
   plt.plot(val_losses_2, label="Validation Loss")
   plt.title("Training and Validation Loss")
   plt.xlabel("Epoch")
   plt.ylabel("Loss")
   plt.legend()
   plt.grid()
   plt.show()
```


		precision	recall	f1-score	support
1	Access	0.89	0.86	0.88	174
Administrative	rights	0.83	0.58	0.68	26

HR Support	0.79	0.88	0.83	212
Hardware	0.70	0.77	0.73	208
Internal Project	0.89	0.81	0.85	48
Miscellaneous	0.78	0.78	0.78	166
Purchase	0.97	0.86	0.92	81
Storage	0.97	0.76	0.86	85
accuracy			0.81	1000
macro avg	0.85	0.79	0.82	1000
weighted avg	0.82	0.81	0.82	1000


```
[16]: #Plotting the confusion matrix

cm = confusion_matrix(true_labels, preds)

plt.figure(figsize=(10, 8))

sns.heatmap(cm, annot=True, fmt="d", xticklabels=label_encoder.classes_,__

syticklabels=label_encoder.classes_)

plt.title("Confusion Matrix")
```

```
plt.ylabel("Actual")
plt.xlabel("Predicted")
plt.show()
```


[16]: