Fertilizantes

Nome: Matheus Amaral Moes

Disciplina: Análise de Séries Temporais

Professor: Alvaro Villarinho

Matrícula:

Análise exploratória

O conjunto de dados possui a quantidade de fertilizantes entregues mensalmente em uma série temporal de 1998 a Setembro de 2019. O volume de fertilizantes na série é sazonal com frequência anual, atingindo o pico todos os anos nos mêses de Setembro e Outubro, como é possível notar no gráfico a seguir. É de se notar que a série possui um aumento na amplitude da sazonalidade, indicando uma serie multiplicativa, e uma tendência de aumento no nível ao longo de toda sua duração dois fatos que podem ser melhor observados na decomposição da série posteriormente.

Transofrmações

Realizando transformacoes BoxCox e Logarítimica utilizando a base natural dois resultados são observados. Na transformação Logarítimica a amplitude da serie diminui ao longo do tempo e na transformação BoxCox a amplitude se manteve estavel ao longo do periodo indicando que a transformação mais adequada para a séria é a BoxCox.

Seasonal Plot

Com o Seasonal Plot é possivel ver com maior claridade a sazonalidade da serie e a forma como o pico se concentra entre os meses de Agosto e Outubro e o momento de maior baixa entre os meses de Fevereiro e Abril.

Lag Plot

A visao do Lag Plot da serie corrabora com a visão inicial de que a serie possui uma sazonalidade de 12 meses, uma vez que o valor de lag para 12 meses apresenta os menores valores no lag plot.

Auto Correlation Function (AFC) e Partial Auto Correlation Function (PACF)

Observando a função de autocorrelação da série podemos observar que o maior valor de correlação ocorre para um lag de 12 meses, reforcando a visão de que a serie possui uma sazonalidade de 12 meses.

Decomposição

Após a decomposicao da série em sazonalidade, tendencia e residuos alguns pontos observados anteriormente ficam mais claros. O primeiro deles é o aumento de amplitude na série ao longo do tempo, o segundo é o aumento no nível da série ao longo do tempo, partindo de um patamar inferior a 1.500 e chegando a um patamar de 3.000 ao fim da série.

Teste Unitário

Realizando o teste unitário da série temporal 2,6 no teste de hipótese indicando que a série é não estacionária.

Year

Test is of type: mu with 5 lags.

```
Value of test-statistic is: 2.6176

Critical value for a significance level of: 10pct 5pct 2.5pct 1pct critical values 0.347 0.463 0.574 0.739
```

Utilizando o algoritmo fornecido pelo programa R para determinar o número de diferenciações necessárias para atingir a estacionariedade chega-se a conclusão de que é necessária uma diferenciação para atingir a estacionariedade da série. Realizando o teste unitário após uma diferenciação é obtido um p-value de 0,011 indicando que de fato ocorre a estacionariedade após uma diferenciação, essa característica indica que em um modelo ARIMA provavlemnte será necessário um modelo com uma diferenciação.

Critical value for a significance level of: 10pct 5pct 2.5pct 1pct critical values 0.347 0.463 0.574 0.739

Modelo

Tanto de acordo com as métricas de erro simple como erro médio quadrado (RMSE) e com o critério de Akaike (AICc) o modelo mais adequado foi o modelo ARIMA com sazonalidade e por isso esse foi o modelo adotado. Também tiveram resultados muito positivos os modelos de regressão linear utilizando Dummies e o modelo de regressão utilizando a transformada de Fourier. Outro ponto a ser destacado é a alta correlação observada nos modelos que naão consideram sazonalidade como Suavização Exponencial, Holt e ARIMA não sazonal, indicando que esses modelos não foram capazes de captar adequadamente as variações na série temporal.

```
Series: ts.train
ARIMA(1,0,1)(0,1,2)[12] with drift
Coefficients:
                          sma1
                                   sma2
                                          drift
         ar1
                 ma1
      0.6276 0.1693
                      -0.6984
                                -0.1545
                                         0.5351
s.e. 0.0713 0.0916
                        0.0796
                                 0.0781 0.0669
sigma<sup>2</sup> estimated as 273.9: log likelihood=-968.35
AIC=1948.69
              AICc=1949.07
                              BIC=1969.27
Training set error measures:
                             RMSE
                                      MAE
                                                  MPE
                                                          MAPE
                                                                     MASE
                      ME
Training set 0.08641124 15.95277 11.6103 -0.3792579 5.795372 0.5357892
Training set 0.008179276
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Naive	35,0	74,4	59,8	7,5	19,6	2,8	0,8
Naïve Sazonal	9,0	22,5	16,4	2,6	6,0	0,8	-0,2
Drift	29,2	71,0	57,9	5,4	19,4	2,7	0,8
Suavização Exponencial	35,0	74,4	59,8	7,5	19,6	2,8	0,8
Holt	290,3	319,8	290,3	99,9	99,9	13,4	0,8
Holt Winther Aditivo	1,0	25,1	19,1	-1,4	7,2	0,9	0,5
Holt Winther Multiplicativo	-25,2	32,3	26,9	-9,7	10,1	1,2	0,2
Dummy	-1,2	22,4	17,2	-2,0	6,6	0,5	0,6
Fourier	-1,2	22,4	17,2	-2,0	6,6	0,5	0,6
ARIMA	65,3	92,6	73,2	18,8	22,7	3,4	0,8
Seasonal ARIMA	-0,7	22,0	15,8	-1,8	6,1	0,7	0,4

Figure 1: resultados

	AIC	AICc	BIC
Suavização Exponencial	3.005,39	3.005,49	3.015,83
Holt	3.003,28	3.003,38	3.013,72
Holt Winther Aditivo	2.714,29	2.714,29	2.773,46
Holt Winther Multiplicativo	2.757,70	2.760,46	2.816,87
Dummy	2.399,14		
Fourier	2.399,14		
ARIMA	2.311,60	2.311,65	2.318,56
Seasonal ARIMA	1.948,69	1.949,07	1.969,27

Figure 2: AIC

Previsões

Alta aderência das previsões com baixo erro médio quadrado e pode ser visto visualmente também pela proximidade dos dados projetados e os dados realizados.

Resíduos

O teste de Portmanteau indica que os resíduos da série não possuem autocorreleação, fato que também é reforçado pelos baixos valores encontrados na função de autocorrelação.

Ljung-Box test

data: Residuals from ARIMA(1,0,1)(0,1,2)[12] with drift Q* = 34.256, df = 19, p-value = 0.01714

Model df: 5. Total lags used: 24

Conclusão

Os métricas calculadas mostram que o modelo de ARIMA com sazonalida é adequado para realização de previsões na série de tempora utilizada. Além do modelo ARIMA outros modelos também se mostraram adequados para a série em questão, principalmente os modelos de regressão utilizando Dummies e o modelo de regressão utilizando a transformada de Fourier. Foi possível notar também que modelos que não levam a sazonalidade em concideração não foram adequados para modelar o problme dado a sazonalidade da série temporal utilizada.

Anexo

Naive

Fertilizantes

Ljung-Box test

data: Residuals from Naive method Q* = 772.42, df = 24, p-value < 2.2e-16

Model df: 0. Total lags used: 24

 ME
 RMSE
 MAE
 MPE
 MAPE
 MASE
 ACF1

 Training set
 0.5276758
 33.46313
 26.91195
 -1.070538
 13.30554
 1.241926
 0.4189777

 Test set
 35.0437972
 74.37272
 59.82303
 7.480002
 19.64148
 2.760699
 0.7777121

Theil's U

Training set NA Test set 1.525694

Forecast method: Naive method

Model Information:

Call: naive(y = ts.train, h = 21)

Residual sd: 33.5292

Error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.5276758 33.46313 26.91195 -1.070538 13.30554 1.241926 0.4189777

Forecasts:

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		248.1736	205.28888	291.0583	182.587078	313.7601
Feb	2018		248.1736	187.52545	308.8218	155.420245	340.9270
Mar	2018		248.1736	173.89508	322.4521	134.574401	361.7728
Apr	2018		248.1736	162.40415	333.9431	117.000542	379.3467
May	2018		248.1736	152.28044	344.0668	101.517661	394.8296
Jun	2018		248.1736	143.12791	353.2193	87.520067	408.8272
Jul	2018		248.1736	134.71128	361.6359	74.647951	421.6993
Aug	2018		248.1736	126.87728	369.4699	62.666877	433.6804
Sep	2018		248.1736	119.51942	376.8278	51.414006	444.9332
Oct	2018		248.1736	112.56019	383.7870	40.770777	455.5765
Nov	2018		248.1736	105.94105	390.4062	30.647683	465.6995
Dec	2018		248.1736	99.61655	396.7307	20.975189	475.3720
Jan	2019		248.1736	93.55052	402.7967	11.697996	484.6492
Feb	2019		248.1736	87.71364	408.6336	2.771268	493.5760
Mar	2019		248.1736	82.08177	414.2655	-5.841947	502.1892
Apr	2019		248.1736	76.63469	419.7125	-14.172529	510.5198
May	2019		248.1736	71.35534	424.9919	-22.246601	518.5938
Jun	2019		248.1736	66.22911	430.1181	-30.086492	526.4337
Jul	2019		248.1736	61.24341	435.1038	-37.711468	534.0587
Aug	2019		248.1736	56.38727	439.9600	-45.138291	541.4855
Sep	2019		248.1736	51.65109	444.6961	-52.381651	548.7289

Seasonal Naive

Fertilizantes

Ljung-Box test

data: Residuals from Seasonal naive method Q* = 287.89, df = 24, p-value < 2.2e-16

12

<u>.</u>24

Lag

Model df: 0. Total lags used: 24

36

100

Ö

residuals

50

-50

ME RMSE MAE MPE MAPE MASE ACF1
Training set 6.277218 29.22272 21.66952 1.929988 10.785796 1.0000000 0.7046447
Test set 9.022473 22.51227 16.43766 2.569095 6.017326 0.7585614 -0.1600989
Theil's U

Training set NA
Test set 0.5652217

Forecast method: Seasonal naive method

Model Information:

Call: snaive(y = ts.train, h = 21)

Residual sd: 28.6034

Error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 6.277218 29.22272 21.66952 1.929988 10.7858 1 0.7046447

Forecasts:

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		265.3239	227.8735	302.7743	208.04840	322.5993
Feb	2018		225.8062	188.3558	263.2567	168.53077	283.0817
Mar	2018		204.9195	167.4691	242.3699	147.64403	262.1950
Apr	2018		174.0318	136.5814	211.4822	116.75630	231.3072
May	2018		254.5293	217.0789	291.9797	197.25383	311.8048
Jun	2018		283.4108	245.9604	320.8612	226.13536	340.6863
Jul	2018		314.1044	276.6540	351.5548	256.82890	371.3798
Aug	2018		355.1285	317.6781	392.5790	297.85307	412.4040
Sep	2018		365.2126	327.7622	402.6630	307.93712	422.4881
Oct	2018		315.8860	278.4355	353.3364	258.61048	373.1614
Nov	2018		309.1001	271.6497	346.5505	251.82463	366.3756
Dec	2018		248.1736	210.7232	285.6240	190.89814	305.4491
Jan	2019		265.3239	212.3610	318.2868	184.32412	346.3236
Feb	2019		225.8062	172.8434	278.7691	144.80649	306.8060
Mar	2019		204.9195	151.9566	257.8824	123.91975	285.9192
Apr	2019		174.0318	121.0689	226.9947	93.03202	255.0315
May	2019		254.5293	201.5664	307.4922	173.52955	335.5290
Jun	2019		283.4108	230.4479	336.3737	202.41108	364.4106
Jul	2019		314.1044	261.1415	367.0673	233.10462	395.1041
Aug	2019		355.1285	302.1657	408.0914	274.12879	436.1283
Sep	2019		365.2126	312.2497	418.1755	284.21285	446.2123

Drift Method

Ljung-Box test

data: Residuals from Random walk with drift Q* = 772.42, df = 23, p-value < 2.2e-16

Model df: 1. Total lags used: 24

Training set 0.4189777 NA
Test set 0.7782601 1.482231

Forecast method: Random walk with drift

Model Information:

Call: rwf(y = ts.train, h = 21, drift = TRUE)

Drift: 0.5277 (se 2.1688) Residual sd: 33.5292

Error measures:

ME RMSE MAE MPE MAPE MASE
Training set -1.60573e-15 33.45897 26.85422 -1.338443 13.30201 1.239262
ACF1

Training set 0.4189777

Forecasts:

		${\tt Point}$	${\tt Forecast}$	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		248.7013	205.73190	291.6707	182.985283	314.4173
Feb	2018		249.2290	188.33408	310.1239	156.098273	342.3597
Mar	2018		249.7566	175.02073	324.4926	135.457923	364.0554
Apr	2018		250.2843	163.80786	336.7608	118.029990	382.5386
May	2018		250.8120	153.92882	347.6952	102.641969	398.9820
Jun	2018		251.3397	144.99132	357.6880	88.693907	413.9854
Jul	2018		251.8673	136.76285	366.9718	75.830217	427.9045
Aug	2018		252.3950	129.09227	375.6978	63.819741	440.9703
Sep	2018		252.9227	121.87483	383.9706	52.502287	453.3431
Oct	2018		253.4504	115.03445	391.8663	41.761488	465.1393
Nov	2018		253.9780	108.51381	399.4423	31.509701	476.4464
Dec	2018		254.5057	102.26851	406.7429	21.678993	487.3325
Jan	2019		255.0334	96.26329	413.8035	12.215471	497.8513
Feb	2019		255.5611	90.46966	420.6525	3.075541	508.0466
Mar	2019		256.0888	84.86418	427.3133	-5.776639	517.9541
Apr	2019		256.6164	79.42730	433.8055	-14.370950	527.6038
May	2019		257.1441	74.14256	440.1456	-22.732609	537.0208
Jun	2019		257.6718	68.99587	446.3477	-30.883117	546.2267
Jul	2019		258.1995	63.97515	452.4238	-38.840982	555.2399
Aug	2019		258.7271	59.06989	458.3844	-46.622264	564.0765
Sep	2019		259.2548	54.27091	464.2387	-54.241005	572.7506

Suavização Exponencial

Fertilizantes

Ljung-Box test

data: Residuals from Simple exponential smoothing Q* = 775.74, df = 22, p-value < 2.2e-16

Model df: 2. Total lags used: 24

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.5255948 33.39475 26.80105 -1.066245 13.25068 1.236808 0.4190543
Test set 35.0377043 74.36985 59.82100 7.477730 19.64114 2.760605 0.7777121
Theil's U

Training set NA
Test set 1.525661

Forecast method: Simple exponential smoothing

Model Information:

Simple exponential smoothing

Call:

ses(y = ts.train, h = 21)

Smoothing parameters:
 alpha = 0.9999

Initial states:
 1 = 122.0496

sigma: 33.5348

AIC AICc BIC 3005.385 3005.486 3015.827

Error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.5255948 33.39475 26.80105 -1.066245 13.25068 1.236808 0.4190543

Forecasts:

		${\tt Point}$	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		248.1797	205.20317	291.1562	182.452773	313.9066
Feb	2018		248.1797	187.40475	308.9547	155.232433	341.1270
Mar	2018		248.1797	173.74713	322.6123	134.344907	362.0145
Apr	2018		248.1797	162.23309	334.1263	116.735698	379.6237
May	2018		248.1797	152.08895	344.2705	101.221572	395.1378
Jun	2018		248.1797	142.91790	353.4415	87.195673	409.1637
Jul	2018		248.1797	134.48424	361.8752	74.297491	422.0619
Aug	2018		248.1797	126.63435	369.7251	62.292131	434.0673
Sep	2018		248.1797	119.26157	377.0978	51.016432	445.3430
Oct	2018		248.1797	112.28821	384.0712	40.351598	456.0078
Nov	2018		248.1797	105.65563	390.7038	30.207946	466.1515
Dec	2018		248.1797	99.31828	397.0411	20.515800	475.8436
Jan	2019		248.1797	93.23992	403.1195	11.219752	485.1397
Feb	2019		248.1797	87.39118	408.9682	2.274875	494.0845
Mar	2019		248.1797	81.74785	414.6116	-6.355855	502.7153
Apr	2019		248.1797	76.28969	420.0697	-14.703381	511.0628
May	2019		248.1797	70.99960	425.3598	-22.793878	519.1533
Jun	2019		248.1797	65.86294	430.4965	-30.649721	527.0091
Jul	2019		248.1797	60.86709	435.4923	-38.290214	534.6496
Aug	2019		248.1797	56.00107	440.3583	-45.732153	542.0916
Sep	2019		248.1797	51.25525	445.1042	-52.990257	549.3497

Holt

Ljung-Box test

data: Residuals from Damped Holt's method Q* = 308.18, df = 19, p-value < 2.2e-16

24

Lag

Model df: 5. Total lags used: 24

Ö

residuals

50

-50

```
RMSE
                                        MAE
                                                            MAPE
                                                                     MASE
Training set -0.1510174 33.24857 26.31503 0.6792363 13.34938 1.21438
            290.2985333 319.78976 290.29853 99.8978507 99.89785 13.39663
                   ACF1 Theil's U
Training set 0.04222199
Test set
            0.81526010 7.229639
Forecast method: Damped Holt's method
Model Information:
Damped Holt's method
Call:
holt(y = ts.train, h = 21, damped = TRUE, alpha = 0.97, beta = 0.7,
 Call:
    phi = 0.9)
  Smoothing parameters:
   alpha = 0.97
   beta = 0.7
   phi
        = 0.9
  Initial states:
   1 = 124.7858
   b = -2.9794
  sigma: 33.6004
     AIC
            AICc
                      BIC
3003.279 3003.381 3013.721
Error measures:
                            RMSE
                                     MAE
                                               MPE
                                                        MAPE
                                                               MASE
                    ME
Training set -0.1510174 33.24857 26.31503 0.6792363 13.34938 1.21438 0.04222199
Forecasts:
                              Lo 80
        Point Forecast
                                      Hi 80
                                                  Lo 95
                                                            Hi 95
Jan 2018
            208.085960
                        165.02529 251.1466
                                              142.23034
                                                         273.9416
Feb 2018
            170.724973
                         89.47826 251.9717
                                               46.46885
                                                         294.9811
Mar 2018
            137.100085
                          13.37358 260.8266
                                             -52.12327
                                                         326.3234
Apr 2018
            106.837685
                         -62.27526 275.9506 -151.79824
                                                         365.4736
May 2018
             79.601525 -136.82664 296.0297
                                             -251.39679
                                                         410.5998
Jun 2018
             55.088982 -209.87862 320.0566
                                             -350.14400
                                                         460.3220
Jul 2018
             33.027692 -281.18320 347.2386
                                             -447.51640
                                                         513.5718
Aug 2018
             13.172532 -350.59458 376.9396
                                             -543.16125
                                                         569.5063
Sep 2018
             -4.697112 -418.03667 408.6424
                                             -636.84542
                                                         627.4512
Oct 2018
            -20.779792 -483.48177 441.9222
                                             -728.42141
                                                          686.8618
Nov 2018
            -35.254204 -546.93599 476.4276
                                                          747.2956
                                             -817.80397
Dec 2018
            -48.281175 -608.42911 511.8668 -904.95352
                                                          808.3912
```

869.8532

931.4397

-60.005449 -668.00731 547.9964 -989.86405

-70.557295 -725.72790 584.6133 -1072.55427

-80.053957 -781.65549 621.5476 -1153.06091 992.9530

Jan 2019

Feb 2019

Mar 2019

```
Apr 2019
             -88.600952
                         -835.85910 658.6572 -1231.43368 1054.2318
May 2019
             -96.293248
                         -888.41009 695.8236 -1307.73142 1115.1449
Jun 2019
            -103.216314
                         -939.38058 732.9480 -1382.01921 1175.5866
Jul 2019
            -109.447074
                         -988.84231 769.9482 -1454.36603 1235.4719
Aug 2019
            -115.054758 -1036.86583 806.7563 -1524.84313 1294.7336
Sep 2019
            -120.101673 -1083.51984 843.3165 -1593.52262 1353.3193
```

Holt Winther Aditivo

Fertilizantes

Residuals from Holt-Winters' additive method

Ljung-Box test

data: Residuals from Holt-Winters' additive method Q* = 46.306, df = 8, p-value = 2.079e-07

Model df: 16. Total lags used: 24

ME RMSE MAE MPE MAPE MASE
Training set 0.1386898 17.17784 13.12741 -0.5059202 6.645539 0.6058007
Test set 0.9741971 25.09012 19.12669 -1.4184047 7.227631 0.8826538
ACF1 Theil's U

Training set 0.03056295 NA
Test set 0.48862134 0.6320488

Forecast method: Holt-Winters' additive method

Model Information:

Holt-Winters' additive method

Call:

hw(y = ts.train, h = 21, seasonal = "additive")

Smoothing parameters:

alpha = 0.9999

beta = 1e-04

gamma = 1e-04

Initial states:

1 = 151.5888

b = 0.3987

s = -32.819 26.3995 72.9962 71.4922 56.0314 26.8346 0.1561 -25.6253 -63.6621 -53.5693 -42.9382 -35.2959

sigma: 17.7808

AIC AICc BIC 2714.291 2717.048 2773.462

Error measures:

ME RMSE MAE MPE MAPE MASE Training set 0.1386898 17.17784 13.12741 -0.5059202 6.645539 0.6058007 ACF1

Training set 0.03056295

Forecasts:

		${\tt Point}$	${\tt Forecast}$	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		246.1041	223.3171	268.8910	211.25443	280.9537
Feb	2018		238.8544	206.6290	271.0798	189.56993	288.1388
Mar	2018		228.6256	189.1566	268.0947	168.26289	288.9884
Apr	2018		218.9358	173.3590	264.5126	149.23205	288.6395
May	2018		257.3713	206.4126	308.3300	179.43667	335.3059
Jun	2018		283.5592	227.7342	339.3843	198.18221	368.9363
Jul	2018		310.6443	250.3436	370.9451	218.42225	402.8664

Aug	2018	340.2422	275.7749	404.7096	241.64793	438.8365
Sep	2018	356.0980	287.7167	424.4793	251.51787	460.6781
Oct	2018	358.0055	285.9218	430.0892	247.76295	468.2480
Nov	2018	311.8121	236.2064	387.4179	196.18309	427.4411
Dec	2018	252.9983	174.0268	331.9698	132.22176	373.7748
Jan	2019	250.9287	168.7278	333.1296	125.21329	376.6441
Feb	2019	243.6790	158.3710	328.9871	113.21159	374.1465
Mar	2019	233.4503	145.1437	321.7569	98.39703	368.5035
Apr	2019	223.7604	132.5533	314.9675	84.27115	363.2497
May	2019	262.1959	168.1771	356.2147	118.40658	405.9852
Jun	2019	288.3839	191.6346	385.1332	140.41856	436.3492
Jul	2019	315.4690	216.0636	414.8744	163.44156	467.4964
Aug	2019	345.0669	243.0740	447.0597	189.08230	501.0515
Sep	2019	360.9226	256.4059	465.4394	201.07808	520.7672

Holt Winther Multiplicativo

Fertilizantes

Residuals from Holt-Winters' multiplicative method

Ljung-Box test

data: Residuals from Holt-Winters' multiplicative method Q* = 70.037, df = 8, p-value = 4.831e-12

Model df: 16. Total lags used: 24

 ME
 RMSE
 MAE
 MPE
 MAPE
 MASE

 Training set
 -0.5385824
 17.64582
 13.67573
 -0.8246467
 6.853081
 0.6311042

 Test set
 -25.2293039
 32.32965
 26.89050
 -9.6822304
 10.131861
 1.2409362

ACF1 Theil's U

Training set 0.0872113 NA
Test set 0.2064641 0.7998586

Forecast method: Holt-Winters' multiplicative method

Model Information:

Holt-Winters' multiplicative method

Call:

hw(y = ts.train, h = 21, seasonal = "multiplicative")

Smoothing parameters:

alpha = 0.9999beta = 2e-04

gamma = 2e-04

Initial states:

1 = 144.0414

b = 1.4777

```
s = 0.84 \ 1.0912 \ 1.3002 \ 1.3104 \ 1.2602 \ 1.1283
           1.0013 0.8912 0.7288 0.7689 0.8202 0.8592
  sigma: 0.0935
     AIC
             AICc
                       BIC
2757.699 2760.456 2816.870
Error measures:
                     ME
                            RMSE
                                      MAE
                                                  MPE
                                                          MAPE
                                                                    MASE
Training set -0.5385824 17.64582 13.67573 -0.8246467 6.853081 0.6311042
                  ACF1
Training set 0.0872113
Forecasts:
         Point Forecast
                           Lo 80
                                    Hi 80
                                               Lo 95
               255.0765 224.5225 285.6306 208.34819 301.8049
Jan 2018
Feb 2018
               244.7159 203.2711 286.1607 181.33153 308.1003
Mar 2018
               230.5108 182.7064 278.3153 157.40021 303.6215
Apr 2018
               219.5231 166.9623 272.0840 139.13827 299.9080
May 2018
               269.7415 197.5429 341.9402 159.32322 380.1598
Jun 2018
               304.5421 215.2586 393.8256 167.99481 441.0895
Jul 2018
               344.7748 235.6077 453.9419 177.81813 511.7314
Aug 2018
               386.9171 255.9579 517.8762 186.63231 587.2018
               404.2165 259.1121 549.3210 182.29841 626.1347
Sep 2018
               402.9335 250.4729 555.3942 169.76510 636.1020
Oct 2018
Nov 2018
               339.7365 204.9185 474.5546 133.55006 545.9230
Dec 2018
               262.7281 153.8355 371.6207
                                           96.19130 429.2649
Jan 2019
               269.9638 153.5031 386.4245 91.85247 448.0751
Feb 2019
               258.9293 143.0113 374.8474 81.64796 436.2107
               243.8347 130.8404 356.8290
Mar 2019
                                           71.02484 416.6446
Apr 2019
               232.1511 121.0389 343.2633 62.21969 402.0825
May 2019
               285.1842 144.4816 425.8869
                                          69.99808 500.3704
Jun 2019
               321.8944 158.4653 485.3235
                                          71.95123 571.8376
Jul 2019
               364.3266 174.2712 554.3820
                                           73.66189 654.9913
Aug 2019
               408.7555 189.9643 627.5468 74.14318 743.3679
Sep 2019
               426.9246 192.7410 661.1082 68.77168 785.0776
ETS
ETS(A,N,A)
Call:
 ets(y = ts.total)
  Smoothing parameters:
    alpha = 0.9999
    gamma = 1e-04
  Initial states:
   1 = 167.2623
```

-0.5442 -29.2881 -65.0344 -56.6661 -43.0889 -32.1819

 $s = -33.704 \ 25.563 \ 72.7694 \ 71.7423 \ 61.052 \ 29.381$

sigma: 18.2498

AIC AICc BIC 2983.920 2985.879 3037.387

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.4812123 17.75362 13.5058 -0.3440582 6.67491 0.6365459 0.03075803

Year

Dummy

Residuals from Linear regression model

Breusch-Godfrey test for serial correlation of order up to 24

data: Residuals from Linear regression model
LM test = 155.86, df = 24, p-value < 2.2e-16</pre>

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -1.214474 22.39923 17.24986 -2.049079 6.626138 0.5171863 0.5855158

Call:

tslm(formula = ts.total ~ trend + season + bizdays(ts.total))

Residuals:

Min 1Q Median 3Q Max -84.924 -10.719 0.916 12.510 65.420

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	56.57296	37.26048	1.518	0.130215	
trend	0.53538	0.01913	27.989	< 2e-16	***
season2	-7.05247	7.29087	-0.967	0.334340	
season3	-29.49324	7.58848	-3.887	0.000131	***
season4	-35.31609	7.05602	-5.005	1.06e-06	***
season5	-1.77560	7.20876	-0.246	0.805646	
season6	26.58467	7.31469	3.634	0.000339	***
season7	58.78892	7.19088	8.175	1.55e-14	***
season8	86.70926	7.82836	11.076	< 2e-16	***
season9	103.21620	7.02013	14.703	< 2e-16	***
season10	97.48104	7.87078	12.385	< 2e-16	***
season11	55.63757	7.10959	7.826	1.48e-13	***
season12	-4.64139	7.25585	-0.640	0.522976	

bizdays(ts.total) 3.20739 1.81636 1.766 0.078658 .

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 23.27 on 247 degrees of freedom Multiple R-squared: 0.8872, Adjusted R-squared: 0.8813 F-statistic: 149.5 on 13 and 247 DF, p-value: < 2.2e-16

[1] 2399.14

Fourier

Fertilizantes

Residuals from Linear regression model

10-

0 .

-50

residuals

50

36

Breusch-Godfrey test for serial correlation of order up to 24

. 24

data: Residuals from Linear regression model
LM test = 155.86, df = 24, p-value < 2.2e-16</pre>

Lag

12

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -1.214474 22.39923 17.24986 -2.049079 6.626138 0.5171863 0.5855158

Call:

tslm(formula = ts.total ~ trend + bizdays(ts.total) + fourier(ts.total,
 K = 6))

Residuals:

0.00

-0.25

Min 1Q Median 3Q Max -84.924 -10.719 0.916 12.510 65.420

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	85.75119	38.27783	2.240	0.0260	*
trend	0.53538	0.01913	27.989	< 2e-16	***
bizdays(ts.total)	3.20739	1.81636	1.766	0.0787	
fourier(ts.total, $K = 6$)S1-12	-64.50270	2.16439	-29.802	< 2e-16	***
<pre>fourier(ts.total, K = 6)C1-12</pre>	-2.14996	2.17151	-0.990	0.3231	
fourier(ts.total, $K = 6$)S2-12	3.23587	2.08624	1.551	0.1222	
fourier(ts.total, $K = 6$)C2-12	-11.06085	2.03931	-5.424	1.39e-07	***
fourier(ts.total, $K = 6$)S3-12	2.75123	2.09453	1.314	0.1902	
fourier(ts.total, $K = 6$)C3-12	-11.71024	2.07504	-5.643	4.56e-08	***
fourier(ts.total, $K = 6$)S4-12	-1.81359	2.06215	-0.879	0.3800	
fourier(ts.total, $K = 6$)C4-12	-5.26168	2.06485	-2.548	0.0114	*
fourier(ts.total, $K = 6$)S5-12	0.89921	2.58727	0.348	0.7285	

```
fourier(ts.total, K = 6)C5-12 -1.75282 2.04322 -0.858 0.3918 fourier(ts.total, K = 6)C6-12 -1.88407 1.45620 -1.294 0.1969 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 23.27 on 247 degrees of freedom Multiple R-squared: 0.8872, Adjusted R-squared: 0.8813 F-statistic: 149.5 on 13 and 247 DF, p-value: < 2.2e-16

[1] 2399.14

Arima nao sasonal

Forecasts from ARIMA(0,1,1)

Ljung-Box test

data: Residuals from ARIMA(0,1,1) Q* = 345.89, df = 23, p-value < 2.2e-16

Model df: 1. Total lags used: 24

 ME
 RMSE
 MAE
 MPE
 MAPE
 MASE

 Training set
 0.2769404
 30.14828
 24.42535
 -0.4628617
 12.13153
 1.127175

 Test set
 65.2932280
 92.55506
 73.17336
 18.7570963
 22.69551
 3.376787

ACF1 Theil's U

Training set 0.03470858 NA
Test set 0.77771207 1.833074

Series: ts.train
ARIMA(0,1,1)

Coefficients:

ma1

0.4470

s.e. 0.0562

sigma^2 estimated as 916.6: log likelihood=-1153.8 AIC=2311.6 AICc=2311.65 BIC=2318.56

Training set error measures:

ME RMSE MAE MPE MAPE MASE

Training set 0.2769404 30.14828 24.42535 -0.4628617 12.13153 1.127175

ACF1

Training set 0.03470858

Arima sasonal

Forecasts from ARIMA(1,0,1)(0,1,2)[12] with drift

Residuals from ARIMA(1,0,1)(0,1,2)[12] with drift

Ljung-Box test

data: Residuals from ARIMA(1,0,1)(0,1,2)[12] with drift Q* = 34.256, df = 19, p-value = 0.01714

Model df: 5. Total lags used: 24

Series: ts.train

ARIMA(1,0,1)(0,1,2)[12] with drift

Coefficients:

ar1 ma1 sma1 sma2 drift 0.6276 0.1693 -0.6984 -0.1545 0.5351 s.e. 0.0713 0.0916 0.0796 0.0781 0.0669

sigma^2 estimated as 273.9: log likelihood=-968.35

AIC=1948.69 AICc=1949.07 BIC=1969.27

Training set error measures:

ME RMSE MAE MPE MAPE MASE Training set 0.08641124 15.95277 11.6103 -0.3792579 5.795372 0.5357892

ACF1

Training set 0.008179276

MASE Training set 0.08641124 15.95277 11.61030 -0.3792579 5.795372 0.5357892
Test set -0.68440888 22.02509 15.75203 -1.7658648 6.058180 0.7269208
ACF1 Theil's U

Training set 0.008179276 NA Test set 0.380699192 0.5806079

Warning in rbind(accuracy(fit.naive, ts.test)[2,], accuracy(fit.seasonal_naive, : number of columns of result is not a multiple of vector length (arg 8)