

Objetivo

Conhecer o funcionamento do AGV;

- Caminhos retos
- Curvas
- Pontos de controle

Fazer com que os task executers sigam um caminho utilizando os recursos do AGV

O AGV

Diferença entre Network Node e AGV

A diferença está na lógica do módulo AGV que possui um mecanismo de antecipação do sistema AGV mais sofisticado. AGV vai olhar para todo o caminho à frente até o próximo Ponto de Controle (Control Point) no seu caminho e tentar alocar, ou reivindicar, aquele Ponto de Controle (Control Point). Se um AGV não pode usar o seu próximo Ponto de Controle (Control Point), ele vai parar no ponto de controle (Control Point) anterior.

Objetos do AGV

AGV Paths define as rotas que os AGVs tomam para chegar em seus destinos sobre a rede dos AGV.

Um Path pode ser: Straight Path

ou Curved Path

Um Path pode ser one-way

ou two-way

Objetos do AGV

Control Points são pontos sobre a rede do AGV onde várias decisões lógicas acontecem.

Modelo

- Um pequeno sistema composto de 2 AGV's são responsáveis pelo carregamento de itens de um local (source) para descarregamento em outro local (sink) através de um circuito fechado, conforme imagens a seguir.
- Represente este sistema utilizando a biblioteca de AGV's.

 Iniciar a construção do modelo pelos caminhos

Para a conexão dos task executers, seguir conforme a Figura abaixo

1. Com ctrl selecione os dois AGVs e conecte-os com o Ponto de Controle perto do Sink com "A".

2. A partir do menu pop-up, escolha Traveler AGV. Isto diz ao AGV que suas operações de viagem devem ser feitas usando a rede AGV.

• Execute o modelo

Mensagem de impasse (deadlock)

O impasse é chamado de espera circular, porque a alocação/ pedido de alocação em cadeia forma um loop circular dos AGVs esperando um ao outro.

Mensagem de impasse (deadlock)

Mensagem de impasse (deadlock)

Resolvendo o impasse

Adicione um Ponto de Controle (Control Point) no circuito

Desalocação de Pontos de Controle (Control Point)

- 1. Adicionar o 4º ponto de controle
- 2. Selecionar os 4 pontos de controle
- 3. Clique (duplo) em um dos pontos

4. Em properties selecione"Deallocate When Past Current" (Desalocar quando passar o atual)

Versão anterior 2022

Criando pequenos trechos sem saída na rede AGV para descarregar itens (drop-off).

Conexões de Pontos de Controle (Control Point Connections)

São associações entre pontos de controle em um modelo, ou associações entre Pontos de Controle e outros objetos do modelo. Conhecido como Drop-off (pontos de saída)

Com a conexão "A", ligue os 2 pontos adicionados com o Ponto de Controle da saída. Esta conexão tem que ser feita do Ponto de Controle do circuito fechado para o Ponto de Controle da região sem rua de saída (spurs area).

No modelo:

1. Adicione pontos de controle

- Selecione os 3 pontos de controle que estão destacados em vermelho na figura
- 3. Faça a conexão com a letra "A"

4. Clique em dropoff

No modelo:

3. Selecione pressionando o ctrl conforme as linhas vermelhas

None

Conditional Rule

Renomear os pontos de controle

Configurando para descarregar no caminho sem saída

2. Vá para aba Way point

