

[Lecture 15] CS107, Computer Organization & Systems

Hash Table

Storing elements by their keys in $U = \{0, 1, ..., m-1\}$.

- Element e hashes to a key h(e) ∈ U
 - Stored at T[h(e)]
- ▶ Elements $e \neq e'$ but h(e) = h(e')
 - Collision resolved by chaining
 - T[i]'s are linked lists

Runtime analysis:

- Worst case: Θ(n)
 - All elements hash to the same key
- Uniformly random hash functions
 - Probability of hashing into each key is 1/m
 - Expected time O(1 + n/m), where n is the number of elements

Advice:

Improve your skills on probabilities

- ▶ Balance the tree by coloring its nodes. $h = O(\log n)$
- Coloring rules:
 - ► Leaves are NILs (not the real leaves)
 - Node is black, NILs are black
 - ► All children of red nodes are black
 - Number of black nodes on all root-leaft paths are equal
- Operations:
 - A mess. Good candidates for your cheatsheet.

³Credit: Wikipedia

Binary Search Tree in 1 slide

Rules: each node p has left, right sub-trees, both or none

- ► Things in the p.left of p are strictly less than p.val
- ► Things in the p.right of p are strictly greater than p.val

Operation	How?	Complexity
Search	compare and go	O(h)
Insert	search and decide left or right child	O(h)
Delete	search and remove; check for children	O(h)

Table: Basic operations on Binary Search Trees

²Credit: Wikipedia

rford ersity

Order Statistics and Selection Algorithm

Given $a_1, a_2, ..., a_n$. Want the k^{th} smallest element

- ▶ Idea: find the median of medians
- Don't worry if n is not divisible by 5
 - You can always add very large numbers to a

►
$$T(n) = T(n/5+1) + T(7n/10+5) + c \cdot n \Longrightarrow T(n) = O(n)$$
 ford

ford

Decision Tree:

- Represents an algorithm
- Starts at root, follows rules and ends at leaves
- Runtime = length of the root-leaf path taken
- ► Shameless self-reference: Piazza @246

Lower bound of comparison-based sorting algorithms:

- Sorting algorithms that don't assume anything about the values they sort
- ▶ Runtime $\Omega(n \log n)$
 - Proof: Based on Decision Tree, refer to Lecture 6

Quick Sort

- Idea: Divide and Conquer
- To sort a contiguous interval a_{i...j}:
 - Find a random pivot $p = a_k$ for any $i \le k \le j$
 - Break a_{i...j} into two halves: a_{<p} and a_{>p}
 - Sort each of them recursively
- ▶ Worst case complexity O(n²)
 - Always pick the smallest element
 - Almost never happens with uniform random pivot selection
- ► Expected runtime $O(n \log n)$
 - Proof: analyzing the comparisons between randomly selected pivots and other elements

Merge Sort

- ▶ Idea: Divide and Conquer
- ► To sort a contiguous interval a_{i...j}:
 - Break it into two halves: a_{i...m} and a_{m+1...j}
 - Sort each of them recursively
 - Merge them

$$T(n) = 2 \cdot T(n/2) + O(n) \Longrightarrow T(n) = O(n \log n)$$

1 Credit: http://www.ccodechamp.com/

aford versity

Divide and Conquer

Idea:

- ▶ Break task T into T₁, T₂, ..., T_k
- Solve each of them
- Merger their results 1

Examples: Merge Sort, Quick Sort, etc.

- ▶ Don't care about [·], [·]
- Don't care if the numbers are less than 1
- Make appropriate replacements

$$T(n) = T(n/3) + T(n/4) + O(1)$$

$$\longrightarrow T(n) = T(n/3) + T(n/4) + c$$

$$T(n) = T(n/5) + T(n/7) + O(n^5)$$

$$\longrightarrow T(n) = T(n/5) + T(n/7) + c \cdot n^5$$

Recursion Tree

Given a recurrence: $T(n) = T(n_1) + T(n_2) + \cdots + T(n_k) + f(n)$

- ▶ Idea: count the work at each level / node / etc. in the resulting recursion tree
- Only useful for manageable values of k
 - Each node the recursion tree doesn't have too many children

[Lecture 15] CS107, Computer Organization & Systems

Examples

Solve the following recurrences

►
$$T(n) = 5 \cdot T(n-1) + 1$$

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n^2$$

$$T(n) = 5 \cdot T(n/10) + \log \log n$$

Fibonacci recurrence:
$$T(n) = T(n-1) + T(n-2)$$

Strategies:

- See if you can use Master theorem. If so, how?
- ▶ Need to guess? Look at T(n) for small values of n.

Want more practice?

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99recurrences.pdf

Substitution Method

Given a recurrence: $T(n) = T(n_1) + T(n_2) + \cdots + T(n_k) + f(n)$ Important: $n_1, n_2, ..., n_k < n$

- Guess an upper bound g(n)
 - Might not be tight. You will get partial credits...
- **Prove** by induction that T(n) = O(g(n))
 - ▶ Want to find n_0 , c such that $\forall n \geq n_0$, $T(n) \leq c \cdot g(n)$
 - ▶ Base case: $T(n_0) \le c \cdot g(n_0)$
 - No need to care about this. Just find no later
 - ▶ Induction step: Assume $T(n') \le c \cdot g(n')$ for all n' < n
 - Use the recurrence

$$T(n) = T(n_1) + T(n_2) + \cdots + T(n_k) + f(n)$$

$$\leq c \cdot (g(n_1) + g(n_2) + \cdots + g(n_k)) + f(n)$$

Choose c such that

$$(g(n_1)+g(n_2)+\cdots+g(n_k))+f(n)\leq c\cdot g(n)$$

tan ford

Master Theorem

Theorem (Master Theorem)

Let
$$T(n) = a \cdot T(n/b) + f(n)$$
, where $a \ge 1$, $b > 1$. Then

Conditions	T(n)
$f(n) = O(n^{\log_b a - \varepsilon})$	$\Theta(n^{\log_b a})$
$f(n) = \Theta(n^{\log_b a})$	$\Theta(f(n)\log n)$
$f(n) = \Omega(n^{\log_b a + \varepsilon})$ and $a \cdot f(n/b) < c \cdot f(n)$	$\Theta(f(n))$

Advice:

- Straightforward result follows from the recurrence
- ▶ Be careful with $\varepsilon > 0$ and c < 1 in Case 1 and Case 3

Example

Analyze the following algorithm

```
1: function MATRIXMUL(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p})
         C \leftarrow \text{Array}[m, p]
3:
        for i = 1 to m do
4:
            for j = 1 to p do
5:
                 C_{i,i} \leftarrow 0
6:
             end for
7:
        end for
8:
        for i = 1 to m do
9:
            for j = 1 to p do
10:
                  for k = 1 to n do
                      C_{i,j} \leftarrow C_{i,j} + A_{i,k} \cdot B_{k,j}
11:
12:
                  end for
13:
              end for
14:
         end for return C
15: end function
```

► Lines 3-7:

$$O(m) \cdot O(p) = O(mp)$$

► Lines 8-14:

$$O(m) \cdot O(p) \cdot O(n) = O(mnp)$$

Overall:

$$O(mp) + O(mnp) = O(mnp)$$

Stanford University

O, Ω and Θ notations

Let $f, g: \mathbb{R}^+ \to \mathbb{R}^+$

- $f(n) = O(g(n)) \Leftrightarrow \exists c, n_0 : \forall n \geq n_0, f(n) \leq c \cdot g(n)$
- $f(n) = \Omega(g(n)) \Leftrightarrow \exists c, n_0 : \forall n \geq n_0, f(n) \geq c \cdot g(n)$
- ▶ $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

In practice

- For algorithm analysis, we (mostly) care about $O(\cdot)$
- Some useful stuffs:
 - $O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$
 - Useful to breakdown algorithm into steps
 - $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$
 - Useful when analyzing loops

Outline

Asymptotic Analysis

O, Ω and Θ notations

Solving Recurrences

Divide and Conquer

Sorting

Merge Sort

Quick Sort

Decision Tree and Lower Bound of Sorting

Order Statistics and Selection Algorithm

Binary Search Tree

Red-Black Tree

Hashing

Hash Table

Open Address Hashing

I'm going to give you guys a review of all the topics in your glass sofa.

ford

[Lecture 14] CS107, Computer Organization & Systems

Semi-connected Graphs

Problem

A directed graph G = (V, E) is **semi-connected** if for all $u, v \in V$, either we can go from u to v, or we can go from v to u. Given G = (V, E), determine whether it is semi-connected in O(m+n).

► First, consider only directed acyclic graphs (DAG)

ford ersity

[Lecture 14] CS107, Computer Organization & Systems


```
1: procedure MaxFlow(G = (V, E), s, t \in V)
         f(u,v) \leftarrow 0
        G_f \leftarrow G
         while t is reachable from s in G_f do
 5:
             P \leftarrow st-path
             F \leftarrow \min \text{ weight on } P
             for (u, v) \in P do
                if (u,v) \in E then
                    f(u,v) \leftarrow f(u,v) + F
10:
                else
                    f(v,u) \leftarrow f(v,u) - F
11:
12:
                end if
13:
             end for
14:
         end while
15: end procedure
```

- ▶ How to find the st-paths? DFS / BFS
- ▶ Runtime: $O((m+n) \cdot \#runs)$

	Min st-cut	Max st-flow	
Input	$G = (V, E)$ and $s, t \in V$		
Output	a subset $s \in S, t \in V \backslash S$	$f(u,v), \forall (u,v) \in E$	
Requires	min sum weights	$\sum_{u} c(u, v) = \sum_{u} c(v, u)$	

Theorem

For any
$$G = (V, E)$$
 and $s, t \in V$,

$$MinCut_G(s,t) = MaxFlow_G(s,t)$$

lford ersity

Karger's Algorithm

```
1: procedure Karger(G = (V, E), s \in V)
```

- 2: for i = 1 to |V| 2 do
- 3: $(u, v) \leftarrow \text{random edge}$
- 4: CONTRACT(u, v)
- 5: end for
- 6: end procedure
- Correct iff always pick good edges
 - $P((u,v) \text{ is good}) \geq \frac{n-2}{n}$
 - $P(correctcut) \ge \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdots \frac{1}{3} = \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}}$
- ▶ Runtime: $O(n^2)$
 - ▶ Each Contract(u, v) takes O(n)
 - n-2 contractions

ford ersity

Global Minimum Cut

Problem

- ▶ Input: G = (V, E)
- ▶ Output: a partition $V = S \cup (V \setminus S)$ that minimizes the number of edges between S and $V \setminus S$

Minimum Spanning Tree algorithms

- Boruvka
 - Maintain a set of disjoint trees
 - Each tree picks the edge with smallest weight out of it and merge
 - $ightharpoonup O(m \log n)$
- Kruskal
 - Sort all the edges by their weights. Choose edges of unmerged vertices
 - ▶ $O(m(\log m + f^{-1}(n)))$, where $f^{-1}(n)$ is the inverse Ackermann function
- ▶ Prim
 - ▶ Similar to Dijkstra, with $d(v) \leftarrow w(v, \pi(v))$
 - $O(m + n \log n \text{ with Fibonacci heap})$

	Dijkstra	Bellman-Ford	Floyd-Warshall
Finds	SSSP	SSSP	APSP
Negative edges	×	1	✓
Negative cycles	×	1	1
Runtime	$O(m + n \log n)$	O(nm)	$O(n^3)$

ford

