OSNOVE UMETNE INTELIGENCE 2018/19

igranje iger planiranje

Pregled

- igranje iger
 - predstavitev problema
 - algoritem MINIMAX
 - rezanje alfa-beta
- planiranje
 - planiranje s "klasičnim" preiskovanjem prostora stanj
 - planiranje s sredstvi in cilji
 - planiranje z regresiranjem ciljev

- preiskovanje prostora med dvema nasprotnikoma (angl. adversarial search)
- več-agentno tekmovalno okolje, kjer mora vsak agent upoštevati vpliv akcij drugega agenta na svojo uspešnost
- večina iger: deterministične, izmenične poteze, dva igralca, transparentne (s popolno informacijo)
 - primeri iger s popolno informacijo: šah, dama, go
 - primeri iger z nepopolno informacijo: potapljanje ladjic, poker, scrabble
- rešitev igre je strategija, ki za vsako možno potezo nasprotnika predvidi akcijo
- izziv:
 - iskanje rešitev je lahko kompleksno, velik prostor stanj
 - primer: šah ima faktor vejanja okoli 35, igra vsebuje okoli 50 potez vsakega igralca \rightarrow to pomeni 35^{100} (= 10^{54}) stanj

- potek igre predstavimo z igralnim drevesom, v katerem si poteze izmenjujeta igralca
 MAX in MIN
- ciljna stanja vrednotimo s kriterijsko funkcijo (pozitivne vrednosti so ugodne za MAX, negativne za MIN)
 - pojem: igra s konstantno vsoto kriterijske funkcije (šah: 1+0, 0+1, ½+½)

- celotna igralna drevesa so lahko velika (križci in krožci 362.880 ciljnih vozlišč, šah 10^{40} ciljnih vozlišč)
- iskalno drevo vsebuje podmnožico vseh možnih stanj igralnega drevesa, ki razkriva dovolj informacije za izvedbo poteze
- ne zadošča iskanje končnega vozlišča, ker na pot vpliva nasprotni igralec (MIN)
- podobno predstavitvi z grafi AND/OR
 - OR: izbira poteze s strani igralca MAX
 - AND: predvideti je potrebno vse poteze nasprotnika MIN

- optimalno strategijo določa MINIMAX vrednost vozlišča, ki je enaka vrednosti kriterijske funkcije (za MAX), če oba igralca igrata optimalno
 - MAX preferira zvišanje vrednosti kriterijske funkcije (najboljša lastna poteza)
 - MIN preferira znižanje vrednosti kriterijske funkcije (najboljša protipoteza)
 - predpostavimo, da MIN igra optimalno
- algoritem MINIMAX: namenjen izračunu MINIMAX vrednosti za vozlišča
 - potek algoritma: rekurzivni spust v globino do listov drevesa, izračun vrednosti po formuli ob vračanju

$$MINIMAX(v) = \begin{cases} kriterijska_funkcija(v) & če je v končno stanje \\ \max_{a \in akcija(v)} MINIMAX(rezultat(v, a)) & če je igralec MAX \\ \min_{a \in akcija(v)} MINIMAX(rezultat(v, a)) & če je igralec MIN \end{cases}$$

Algoritem *MINIMAX*

Algoritem *MINIMAX*

- popolnost algoritma:
 - da, če je prostor stanj končen (ta je definiran s pravili igre)
- optimalnost algoritma: da, če nasprotnik igra optimalno strategijo
 - kaj, če ne?
- časovna zahtevnost: $O(b^m)$
- prostorska zahtevnost: O(bm) ali O(m)
 - od česa je zgornje odvisno?
- ali je potrebno preiskati celoten prostor stanj?
 - rezanje drevesa (alfa-beta rezanje)

Pregled

- predstavitev problema
- algoritem MINIMAX
- rezanje alfa-beta

planiranje

- planiranje s "klasičnim" preiskovanjem prostora stanj
- planiranje s sredstvi in cilji
- planiranje z regresiranjem ciljev

Rezanje alfa-beta

- vrne isto zaporedje potez kot bi algoritem MINIMAX s to razliko, da ne upošteva vej, ki ne vplivajo na končno odločitev
- za vsako vozlišče spremljamo vrednosti $[\alpha, \beta]$:
 - α najboljša do sedaj najdena rešitev za vozlišča MAX (najvišji že najdeni maksimum)
 - β najboljša do sedaj najdena rešitev za vozlišča MIN (najnižji že najdeni minimum)
- algoritem:
 - podoben kot MINIMAX, izvaja nastavljanje vrednosti MIN in MAX s preiskovanjem v globino; za začetno vozlišče velja $[\alpha, \beta] = [-\infty, +\infty]$
 - na vsakem koraku v globino prenaša vrednosti [α, β]
 - ob vračanju posodablja vrednosti $[\alpha, \beta]$ nadrejenega vozlišča
 - če v nekem vozlišču velja $\alpha \ge \beta$, lahko prekinemo preiskovanje ostalih poddreves (izvedemo rezanje)

Primer

Propagiranje $[\alpha, \beta]$ navzdol. Ob vračanju za vozlišče B velja β =3 (najnižji najdeni minimum)

Naslednji naslednik B (vrednost 12) ne spremeni vrednosti najdenega minimuma za B. Ostane β =3.

Tudi tretji naslednik B (vrednost 8) ohrani β =3. Za vozlišče A to pomeni, da je α =3 (najvišji najdeni maksimum). Preiskujemo naprej (iščemo višji maksimum).

 $[3,+\infty]$ se ob preiskovanju propagira k nasledniku C. Ob vračanju za C velja β =2, $[\alpha,\beta]$ = [3,2]. Ker $\alpha \ge \beta$, preiskovanje ostalih poddreves ne bi vplivalo na vrednost vozlišča A. Porežemo.

 $[3,+\infty]$ se ob preiskovanju propagira k nasledniku D. Ob vračanju za D velja β =14, torej [3,14]. Preiskujemo naprej.

Preiskovanje ostalih poddreves D ne spremeni $[\alpha, \beta]$ v vozlišču D. Rezultat se propagira navzgor. Konec iskanja.

Drugi primer (poenostavitev zapisa α in β)

Lastnosti rezanja alfa-beta

potek algoritma je odvisen od vrstnega reda naslednikov

- rezanje alfa-beta zniža časovno zahtevnost algoritma MINIMAX z zahtevnosti z $O(b^m)$ na $O(b^{m/2})$
 - šah: faktor vejanja se zniža s 35 na 6
 - v splošnem: možna globina preiskovanja se podvoji
 - uporaba strategij za določanje vrstnega reda preiskovanja naslednikov (uporabi se lahko znanje iz preteklih iger)

Pregled

- igranje iger
 - predstavitev problema
 - algoritem *MINIMAX*
 - rezanje alfa-beta
- planiranje
 - planiranje s "klasičnim" preiskovanjem prostora stanj
 - planiranje s sredstvi in cilji
 - planiranje z regresiranjem ciljev

Planiranje

A B C C B A

- postopek načrtovanja akcij, ki dosežejo želene cilje
- plan: zaporedje akcij, ki pripelje od začetnega do končnega stanja
- praktična uporaba:
 - logistični problemi, planiranje operacij
 - robotika
 - razporejanje opravil, urniki
- Za formalni opis problema planiranja potrebujemo:
 - definicijo začetnega stanja in ciljnih stanj
 - definicijo akcij (angl. actions) z njihovimi predpogoji (angl. conditions) in učinki (angl. effects)
 - definicijo omejitev (angl. constraints)
 - predpostavko zaprtega sveta:
 - za vsa dejstva, ki niso omenjena, predpostavimo, da niso resnična
 - akcija nima učinkov, ki niso omenjeni
- za formalizacijo problema planiranja uporabljamo predstavitev s formalnim jezikom:
 - STRIPS: Stanford Research Institute Problem Solver (1971)
 - ADL: Action Description Language (1986)
 - PDDL: Planning Domain Definition Language (1998-2005)

STRIPS / PDDL

 $s1 = (s - del(a)) \cup add(a)$


```
stanje:
          [on(c,a), on(a,1), on(b,3), clear(c), clear(2), clear(b), clear(4)]
          [on(a,b), on(b,c)]
cilj:
akcija (akcijska shema):
                                                                                      atomi
                     move(Block, From, To)
                                                                               (literali, končni objekti)
     predpogoji:
                     [clear(Block), on(Block, From), clear(To)]
     učinki
                                                                                   spremenljivke
          add:
                     [on(Block,To), clear(From)]
                                                                                (z veliko začetnico),
          del:
                     [on(Block,From), clear(To)]
                                                                                  so eksistenčno
     omejitve:
                     [block(Block), To≠From, To≠Block, From≠Block]
                                                                                  kvantificirane (∃)
                                                                                učinki akcij in stanja
                                                                               so konjunkcije trditev
Rezultat izvedbe akcije a v stanju s je stanje s1:
```

Kako se predpostavka zaprtega sveta odraža na zapisu stanja in akcij?

STRIPS / PDDL

PDDL uporablja sorodno (alternativno) sintakso:

- dovoljuje negacije učinkov
- spremenljivke z malimi črkami, atomi z velikimi (ravno obratno)
- imena akcij z velikimi črkami

STRIPS:

PDDL:

```
Action(Move(block, from, to),

PRECOND: Clear(block) \( \Lambda \) On(block, from) \( \Lambda \) Clear(to)

EFFECT: On(block,to) \( \Lambda \) Clear(from) \( \Lambda \) ¬On(block,from) \( \Lambda \) ¬clear(to))
```

Primer 1: Svet kock

Plan: zaporedje akcij, ki pripelje od začetnega do končnega stanja

Možna rešitev:

plan =
$$[move(b,3,2), move(c,a,3), move(b,2,c), move(a,1,b)]$$

Primer 2: menjava pnevmatike (PDDL)

```
Init(Tire(Flat) A Tire(Spare) A At(Flat, Axle) A At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
    PRECOND: At(obj, loc)
    EFFECT: ¬At(obj, loc) A At(obj, Ground))
Action(PutOn(t, Axle),
    PRECOND: Tire(t) A At(t, Ground) A ¬At(Flat, Axle) A ¬At(Spare, Axle)
    EFFECT: ¬At(t, Ground) A At(t, Axle))
Action(LeaveOvernight,
    PRECOND:
    EFFECT: ¬At(Spare, Ground) A ¬At(Spare, Axle) A ¬At(Spare,Trunk)
    A ¬At(Flat, Ground) A ¬At(Flat, Axle) A ¬At(Flat, Trunk))
```

- Možna rešitev?
- Kako se akcije odražajo na zaporednih spremembah stanja?

Preiskovanje prostora stanj

- uporaba neinformiranih, informiranih ali lokalnih preiskovalnih algoritmov
- iskanje v smeri od začetnega k ciljnemu stanju lahko razvija vozlišča z uporabo akcij, ki niso relevantne
- kombinatorična eksplozija prostora stanj
- primeri:
 - možni premiki kock iz začetnega stanja
 - akcija: buy(Isbn)
 začetno stanje: [],
 predpogoji: [],
 učinki: add [own(Isbn)],
 cilj: [own(1234567890)]
- rešitve:
 - dobra hevristična ocena
 - drugačen pristop k preiskovanju

Planiranje s sredstvi in cilji

primer iz sveta kock

```
stanje: [on(c,a), on(a,1), on(b,3), clear(c), clear(2), clear(b), clear(4)]
cilj: [on(a,b),on(b,c)]
```

- način reševanja:
 - 1. izberi nerešen cilj
 - 2. izberi **akcijo**, ki lahko vzpostavi ta cilj
 - 3. ker ima akcija **predpogoje**, omogoči akcijo z izvedbo predpogojev
 - 4. izvedi akcijo
 - vrni se v korak 1

Planiranje s sredstvi in cilji

primer iz sveta kock

```
stanje: [on(c,a), on(a,1), on(b,3), clear(c), clear(2), clear(b), clear(4)]
cilj: [on(a,b),on(b,c)]
```

rešitev plana pri preiskovanju v globino:

- pomembne podrobnosti:
 - strategija preiskovanja (v globino, širino, iterativno poglabljanje)
 - ali bi iterativno poglabljanje in iskanje v širino našla najkrajši plan?
 - princip varovanja (ščitenja) ciljev (angl. goal protection): pri preiskovanju lahko dodatno varujemo, da ne podremo že doseženih ciljev

Planiranje s sredstvi in cilji

primer iz sveta kock

```
stanje: [on(c,a), on(a,1), on(b,3), clear(c), clear(2), clear(b), clear(4)]
cilj: [on(a,b),on(b,c)]
```

pri iskanju v širino / iterativnem poglabljanju dobimo naslednjo rešitev:

- najkrajši plan ni (vsebinsko) optimalen?
- zakaj?

Sussmanova anomalija

- Sussman anomaly (Gerald Sussman, 1975)
- · je problem interakcije med cilji
 - algoritem za planiranje (STRIPS) obravnava cilje "lokalno" (enega po enega, ne ozirajoč se na drugega med reševanjem prvega)
 - z doseganjem enega cilja algoritem razveljavi že dosežene cilje ali predpogoje za njihovo doseganje
 - planiranje poteka linearno (najprej prvi cilj, šele nato naslednji, ...)
 - vrstni red obravnavanja ciljev vpliva tudi na nepotrebne korake pri planiranju
- rešitve
 - drugačen algoritem za planiranje (regresiranje ciljev)
 - ne vztrajaj na urejenosti ciljev, če to ni nujno potrebno (nelinearno planiranje)

- rešitev za Sussmanovo anomalijo
- vzvratno preiskovanje od cilja proti začetnemu stanju (angl. goal regression through action)
- drugačna filozofija:
 - globalno planiranje, ker algoritem za planiranje obravnava vse cilje hkrati
 - ne obravnavamo samo akcij, ki so možne, temveč najbolj smiselne
- postopek:
 - izberemo akcijo, ki doseže izbrani cilj (in čim več preostalih ciljev)
 - izračunamo "predhodne" cilje ob uporabi te akcije (= regresiranje ciljev skozi akcijo)
 - nadaljujemo z regresiranjem, dokler ne pridemo do ciljev, ki so izpolnjeni v začetnem stanju

- regresirani cilji = cilji \cup predpogoji(A) add(A)
- veljati mora cilji \cap del $(A) = \emptyset$
- "stanja" pri preiskovanju so množice ciljev
- **ciljni pogoj:** <u>regresirani cilji ⊆ cilji</u> v začetnem stanju
- uporabimo znane preiskovalne algoritme (neinformirani / informirani algoritmi; A*, hevristika?)

v primeru iz sveta kock velja:

rešitev z regresiranjem ciljev najde optimalno rešitev (rešitev na vajah)

```
move(c,a,2)
move(b,3,c)
move(a,1,b) %plan zaključen, vsi cilji izpolnjeni
```

vaja regresiranja:

Regresiraj cilja $C = \{on(a, b), on(b, c)\}$ skozi akcijo move(a, 2, b).

```
Regresirani cilji = C \cup predpogoji(A) - add(A)
= \{on(a,b), on(b,c)\} \cup \{clear(a), clear(b), on(a,2)\} - \{on(a,b), clear(2)\} =
= \{on(b,c), clear(a), clear(b), on(a,2)\}
```

Pogoj: $\{on(a,b), on(b,c)\} \cap \{on(a,2), clear(b)\} = \emptyset$

primer: roboti na pravokotni mreži

začetno stanje: [at(a,1), at(b,2), at(c,3), clear(4), clear(5), clear(6)]

ciljno stanje: [at(a,3)]

akcija: move(Robot, From, To)

predpogoj: [at(Robot,From), clear(To)]

implicitne omejitve: [robot(Robot), adjacent(From,To)]

• plan: move(b,2,5), move(a,1,2), move(c,3,6), move(a,2,3)

