Exercises

Viviana Arrigoni Internet of Things 2024-2025 Computer Science Department, Sapienza University of Rome

March 2025

Exercise 1 Consider the discrete-time homogeneous Markov chain described by the following transition matrix:

$$\mathbf{P} = \begin{pmatrix} s_1 & s_2 & s_3 \\ s_1 & 0.5 & 0.4 \\ s_2 & 0.5 & 0.3 \\ s_3 & 0.4 & 0.3 & 0.3 \end{pmatrix}$$
(1)

Let X_n be the state of the system at time n.

- 1. What does $\mathbb{P}[X_2 = s_1 | X_0 = s_1]$ represent? What is its value? Show the reasoning.
- 2. What is $\mathbb{P}[X_5 = s_2 | X_2 = s_3]$?
- 3. Find the stationary probability distribution π .

Solution:

1. $\mathbb{P}[X_2 = s_1 | X_0 = s_1]$ is the probability of transitioning from state s_1 to state s_1 in two time steps. We have seen that $\mathbb{P}[X_n = s' | X_0 = s] = p_{s,s'}^n$, that is, the (s, s') entry of the matrix $P^n = P \cdot \ldots \cdot P$ (n times). Hence, $\mathbb{P}[X_2 = s_1 | X_0 = s_1]$ can be computed as the dot product of the first row (that is the row related to s_1) of matrix \mathbf{P} and the first column (that is the column related to s_1) of matrix \mathbf{P} . Hence:

$$\mathbb{P}[X_2 = s_1 | X_0 = s_1] = 0.1 \cdot 0.1 + 0.5 \cdot 0.2 + 0.4 \cdot 0.4 = 0.27.$$

2. $\mathbb{P}[X_5 = s_2 | X_2 = s_3]$ is the probability of transitioning from state s_3 at time 2 to state s_2 at time 5. Since the Markov chain is homogeneous, this is just the probability of transitioning from state s_3 to state s_2 in 5-2=3 time steps. Such a probability is the entry (3,2) of matrix \mathbf{P}^3 . To compute this entry we need to multiply \mathbf{P} by itself to get \mathbf{P}^2 , and then multiply

the 3rd row of \mathbf{P}^2 by the second column of \mathbf{P} :

$$\begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.2 & 0.5 & 0.3 \\ 0.4 & 0.3 & 0.3 \end{pmatrix} \cdot \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.2 & 0.5 & 0.3 \\ 0.4 & 0.3 & 0.3 \end{pmatrix} = \begin{pmatrix} 0.2700 & 0.4200 & 0.3100 \\ 0.2400 & 0.4400 & 0.3200 \\ 0.2200 & 0.4400 & 0.3400 \end{pmatrix}$$

$$p_{s_3,s_2}^3 = 0.22 \cdot 0.5 + 0.44 \cdot 0.5 + 0.34 \cdot 0.3 = 0.432.$$

3. To find the stationary probability distribution $\pi = (\pi_1, \pi_2, \pi_3)$, we need to solve the linear system $\{P^T \pi^T = \pi^T; \sum \pi_i = 1\}$, that is:

$$\begin{cases} 0.1\pi_1 + 0.2\pi_2 + 0.4\pi_3 = \pi_1 \\ 0.5\pi_1 + 0.5\pi_2 + 0.3\pi_3 = \pi_2 \\ 0.4\pi_1 + 0.3\pi_2 + 0.3\pi_3 = \pi_3 \\ \pi_1 + \pi_2 + \pi_3 = 1 \end{cases}$$

that is equivalent to:

$$\begin{cases} -0.9\pi_1 + 0.2\pi_2 + 0.4\pi_3 = 0\\ 0.5\pi_1 - 0.5\pi_2 + 0.3\pi_3 = 0\\ 0.4\pi_1 + 0.3\pi_2 - 0.7\pi_3 = 0\\ \pi_1 + \pi_2 + \pi_3 = 1 \end{cases}$$

We can use any method to solve this system, for instance, the Gaussian elimination.

We can observe that the last two rows represent the same equation, so one is redundant and can be omitted. By rewriting the matrix in a system format, we get that:

$$\begin{cases} \pi_1 + \pi_2 + \pi_3 = 1 \\ \pi_2 + 0.2\pi_3 = 0.5 \\ 1.08\pi_3 = 0.35 \end{cases}$$

$$\begin{cases} \pi_1 + \pi_2 + \pi_3 = 1 \\ \pi_2 + 0.2\pi_3 = 0.5 \\ \pi_3 = \frac{0.35}{1.08} \sim 0.324 \end{cases}$$

$$\begin{cases} \pi_1 + \pi_2 + \pi_3 = 1 \\ \pi_2 = 0.5 - 0.2\pi_3 \sim 0.5 - 0.2 \cdot 0.324 \sim 0.435 \\ \pi_3 \sim 0.324 \end{cases}$$

$$\begin{cases} \pi_1 = 1 - \pi_2 - \pi_3 \sim 1 - 0.435 - 0.324 \sim 0.24 \\ \pi_2 \sim 0.435 \\ \pi_3 \sim 0.324 \end{cases}$$

This means that around the 24% of the time, the system will be in state s_1 , around the 43% of the time it will be in state s_2 , and around the 32% of the time it will be in state s_3 .

Exercise 2 Consider the Markov Chain described by the following transition matrix:

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Are there absorbing states? If so, what are they? Is it periodic? Why?

Solution:

There are no absorbing states because, from any state, it is possible to reach any other state in a finite number of steps. Let's see if s_1 is periodic. Starting from s_1 , it is not possible to reach state s_1 in one time step, hence $1 \notin \{n: p_{1,1}^n > 0\}$. From state s_1 , with probability 1, the next state is state s_2 . From this state, we can only move to step s_3 in one step, hence $2 \notin \{n: p_{1,1}^n > 0\}$. From state s_3 , the system gets back to state s_1 , meaning that it is possible to move from s_1 to s_1 in three time steps, hence $3 \in \{n: p_{1,1}^n > 0\}$. We can see that the system is deterministic, and that from s_1 , it goes back to s_1 only after n time steps, where n is a multiple of 3. Hence $d(s_1) = 3$. The same result holds for states s_2 and s_3 , which also have period 3.

Exercise 3 Find the stationary probability distributions of the discrete-time

homogeneous Markov chains described by the following transition matrices:

$$\mathbf{P}_{1} = \begin{pmatrix} s_{1} & s_{2} & s_{3} \\ s_{2} & \begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.4 & 0.6 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \mathbf{P}_{2} = \begin{pmatrix} s_{1} & s_{2} \\ s_{2} & \begin{pmatrix} 0.9 & 0.1 \\ 0.8 & 0.2 \end{pmatrix}$$
 (2)

Exercise 4 Consider the Markov Chain described by the following transition matrix:

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0.4 & 0 & 0.6 \\ 0 & 0 & 1 \end{pmatrix}$$

Are there absorbing states? If so, what are they?

Exercise 5 Consider the following binary encoding defined over the set of words $\mathcal{M} = \{m_1, m_2, m_3\}$ as $f(m_1) = 0$, $f(m_2) = 10$, $f(m_3) = 11$.

- 1. Is it prefix-free?
- 2. Consider the following two distributions over \mathcal{M} :

$$P_1: P_1(m_1) = \frac{1}{5}, P_1(m_2) = \frac{2}{5}, P_1(m_3) = \frac{2}{5}$$
 and

$$P_2: P_2(m_1) = \frac{3}{6}, P_2(m_2) = \frac{2}{6}, P_2(m_3) = \frac{1}{6}.$$

Which one does the definition of f fit better (meaning that it has the lower average length)? Why?

Exercise 6 Consider the random variables X, Y defined over the set $\{A, B, C\}$. The variable X follows the distribution P_X such that $P_X(X = A) = P_X(X = B) = P_X(X = C) = \frac{1}{3}$. The random variable Y follows the distribution $P_Y(Y = A) = \frac{1}{4}$, $P_Y(Y = B) = \frac{1}{2}$, $P_Y(Y = C) = \frac{1}{4}$.

- 1. Compute the entropy of P_X and P_Y . Which one is larger and why?
- 2. Provide a prefix-free encoding for X and a prefix-free encoding for Y and compute their average length.

Exercise 7 Consider the random variable X defined over the set $\{A, B, C, D\}$. The variable X follows the distribution P_X such that $P_X(X = A) = \frac{1}{10}$, $P_X(X = B) = \frac{2}{10}$, $P_X(X = C) = \frac{3}{10}$, $P_X(X = D) = \frac{4}{10}$.

- 1. Compute the entropy of X.
- 2. Provide a prefix-free encoding for X and compute its average length.

Exercise 8 Consider the following discrete memoryless binary channel with input alphabet $\mathcal{X} = \{0, 1\}$ and output alphabet $\mathcal{Y} = \{a, b\}$ such that $\varphi(a) = 0$, $\varphi(b) = 1$:

$$W(Y|X) = \begin{array}{cc} \mathbb{P}[Y = a|X] & \mathbb{P}[Y = b|X] \\ \mathbb{P}[Y|X = 0] & 0.9 & 0.1 \\ \mathbb{P}[Y|X = 1] & 0.2 & 0.8 \end{array}$$
(3)

1. Compute the following probabilities:

$$\mathbb{P}[\underline{Y} = aa | \underline{X} = 00],$$

$$\mathbb{P}[Y = ab|X = 00],$$

$$\mathbb{P}[\underline{Y} = ab | \underline{X} = 10],$$

$$\mathbb{P}[Y = bbb|X = 110].$$

2. Consider the two following options for the probability distribution of X:

$$P_1(X = 0) = 0.55, P_1(X = 1) = 0.45,$$

 $P_2(X = 0) = 0.4, P_2(X = 1) = 0.6.$

• Which one guarantees a higher channel capacity?

(hint: use the law of total probability:

$$\mathbb{P}[Y = a] = \mathbb{P}[Y = a | X = 0] \mathbb{P}[X = 0] + \mathbb{P}[Y = a | X = 1] \mathbb{P}[X = 1],$$

$$\mathbb{P}[Y = b] = \mathbb{P}[Y = b | X = 0] \mathbb{P}[X = 0] + \mathbb{P}[Y = b | X = 1] \mathbb{P}[X = 1]).$$

• What is your intuition for your result?

Partial solution to point 2:

To answer this question, we need to compute the mutual information of X and Y, and see for what choice of the probability distribution of X (either P_1 or P_2) the mutual information is maximal.

Let $X \sim P_1$. The entropy of Y is:

$$H(Y) = \mathbb{P}[Y = a] \log \frac{1}{\mathbb{P}[Y = a]} + \mathbb{P}[Y = b] \log \frac{1}{\mathbb{P}[Y = b]}$$

Therefore, we need to compute $\mathbb{P}[Y=a]$ and $\mathbb{P}[Y=b]$

$$\mathbb{P}[Y=a] = \mathbb{P}[Y=a|X=0]\mathbb{P}[X=0] + \mathbb{P}[Y=a|X=1]\mathbb{P}[X=1] = 0.9 \cdot 0.55 + 0.2 \cdot 0.45 = 0.585$$

$$\mathbb{P}[Y=b] = \mathbb{P}[Y=b|X=0]\mathbb{P}[X=0] + \mathbb{P}[Y=b|X=1]\mathbb{P}[X=1] = 0.1 \cdot 0.55 + 0.8 \cdot 0.45 = 0.415$$

Hence H(Y) = 0.9791. Let's now compute H(Y|X), that is:

$$H(Y|X) = \mathbb{P}[X = 0]\mathbb{P}[Y = a|X = 0] \log \frac{1}{\mathbb{P}[Y = a|X = 0]} + \\ + \mathbb{P}[X = 1]\mathbb{P}[Y = a|X = 1] \log \frac{1}{\mathbb{P}[Y = a|X = 1]} + \\ + \mathbb{P}[X = 0]\mathbb{P}[Y = b|X = 0] \log \frac{1}{\mathbb{P}[Y = b|X = 0]} + \\ + \mathbb{P}[X = 1]\mathbb{P}[Y = b|X = 1] \log \frac{1}{\mathbb{P}[Y = b|X = 1]}$$

which is:

$$H(Y|X) = 0.55 \cdot 0.9 \log \frac{1}{0.9} + \\ + 0.45 \cdot 0.2 \log \frac{1}{0.2} + \\ + 0.55 \cdot 0.1 \log \frac{1}{0.1} + \\ + 0.45 \cdot 0.8 \log \frac{1}{0.8} = 0.5828.$$

Therefore, I(X,Y)=0.3962 when $X\sim P_1$. To complete the exercise, compute the mutual information of X and Y for when $X\sim P_2$ and explain the reason for your result.