编译原理作业3

1. 将下述文法 G(A) 修改为等价的非左递归文法。

$$A \rightarrow BaC \mid CbB$$

$$B \rightarrow Ac \mid c$$

$$C \rightarrow Bb \mid b$$

Solution: 首先将 $B \rightarrow Ac \mid c$ 进行改写,得到

$$B \rightarrow BaCc \mid CbBc \mid c$$

进而有

$$B \to BaCc \mid BbbBc \mid bbBc \mid c$$

将其改写为

$$B \to bbBcB' \mid cB', \quad B' \to aCcB' \mid bbBcB' \mid \varepsilon$$

带入 C 中有

$$C \rightarrow bbBcB'b \mid cB'b \mid b$$

带入 A 中有

$$A \rightarrow bbBcB'aC \mid cB'aC \mid bbBcB'bbB \mid cB'bbB \mid bbB$$

得到改写后的文法

$$\begin{split} A &\to bbBcB'aC \mid cB'aC \mid bbBcB'bbB \mid cB'bbB \mid bbB \\ B &\to bbBcB' \mid cB' \\ C &\to bbBcB'b \mid cB'b \mid b \\ B' &\to aCcB' \mid bbBcB' \mid \varepsilon \end{split}$$

2. 设有以下文法 G(A):

$$\begin{split} A &\to BCc \mid eDB \\ B &\to \varepsilon \mid bCD \\ C &\to DaB \mid ca \\ D &\to \varepsilon \mid dD \end{split}$$

(a) 计算每个候选式的 FIRST 集合,若候选式集合包含 ε ,计算左侧非终结符号的 FOLLOW 集合 **Solution:** 对于 A 来说,FIRST(BCc) = $\{a,b,c,d\}$,FIRST(eDB) = $\{e\}$ 。

对于 B 来说, $FIRST(bCD) = \{b\}$, $FIRST(\varepsilon) = \{\varepsilon\}$.

对于 C 来说, $FIRST(DaB) = \{a, d\}$, $FIRST(ca) = \{c\}$ 。

对于 D 来说, $FIRST(dD) = \{d\}$, $FIRST(\varepsilon) = \{\varepsilon\}$.

此时,对B、D求解FOLLOW集合。

 $FOLLOW(B) = FIRST(C) \cup FOLLOW(A) = \{a, c, d, \#\}$

 $FOLLOW(D) = FIRST(B) \cup FOLLOW(B) \cup FIRST(a) = \{a, b, c, d, \#\}$

(b) 根据 (1) 中的计算结果,构造 LL(1) 分析表。

Solution: 建立分析表如下

	a	b	c	d	e	#
A	$A \rightarrow bCD$	$A \rightarrow bCD$	$A \rightarrow bCD$	$A \rightarrow bCD$	$A \rightarrow eDB$	
В	$B \to \varepsilon$	$B \rightarrow bCD$	$B \to \varepsilon$	$B \to \varepsilon$		$B \to \varepsilon$
\mathbf{C}	C o DaB		$C \rightarrow ca$	C o DaB		
$_{\rm D}$	$D \to \varepsilon$	$D \to \varepsilon$	$D \to \varepsilon$	×		$D \to \varepsilon$

由于 $FIRST(dD) \cap FOLLOW(D) = \{d\} \neq \emptyset$,所以不属于 LL(1) 文法。

3. 设有以下文法 G(PROGRAM):

$$\begin{array}{c} \text{PROGRAM} \rightarrow \textbf{begin} \quad S \ \ \textbf{end} \\ S \rightarrow d; S \mid sT \\ T \rightarrow \varepsilon \mid : sT \end{array}$$

(a) 构造 LL(1) 分析表

Solution: 用 P 表示 PROGRAM, b 表示 **begin**, e 表示 **end**, 求解如下:

对于 P, $FIRST(bSe) = \{b\}$

对于 S, FIRST $(d; S) = \{d\}$, FIRST $(sT) = \{s\}$

对于 T, FIRST(ε) = { ε }, FIRST(;sT) = {;}, FOLLOW(T) = {e}

因此它为 LL(1) 文法,构建分析表如下:

	b	d	S	e	;	#
P	$P \rightarrow bSe$					
\mathbf{S}		$S \to d; S$	$S \to sT$			
\mathbf{T}				$T \to \varepsilon$	$T \rightarrow ; sT$	

(b) 给出句子 begin d; s end 的分析过程

Solution:

步	骤	分析栈	余留输入串	所用产生式
1		# P	bd;se#	$P \rightarrow bSe$
2		# eSb	bd;se#	p++
3		# eS	d;se#	$S \to d; S$
4		# eS;d	d;se#	p++
5		# eS;	;se#	p++
6		# eS	se#	$S \to sT$
7		# eTs	se#	p++
8		# eT	e#	$T \to \varepsilon$
9		# e	e#	p++
1()	#	#	分析成功

- 4. 判断下面的文法是否为 LL(1) 文法, 若不是则改写为 LL(1) 文法
 - (a) $A \rightarrow baB \mid \varepsilon, B \rightarrow Abb \mid a$

Solution: 对于 A,FIRST(baB)=b,FIRST $(\varepsilon)=\varepsilon$,FOLLOW(A)=b,因此 FIRST $(baB)\cap$ FOLLOW $(A)\neq\emptyset$,因此不属于 LL(1) 文法。将 A 带入 B,得到

$$B \rightarrow baBbb \mid bb \mid a$$

存在公因子, 提取得到

$$B \to bB' \mid a, \quad B' \to aBbb \mid b$$

形成的新文法是

$$A \to baB \mid \varepsilon$$
$$B \to bB' \mid a$$
$$B' \to aBbb \mid b$$

进行验证如下: $FIRST(baB) = \{b\}$, $FIRST(\varepsilon) = \{\varepsilon\}$, FOLLOW(A) = #, 无冲突 $FIRST(bB') = \{b\}$, $FIRST(a) = \{a\}$, 无冲突 $FIRST(aBbb) = \{a\}$, $FIRST(b) = \{b\}$, 无冲突, 因此为 LL(1) 文法。

(b) $M \to MaH \mid H$, $H \to b(M)(M) \mid b$

Solution: 存在左递归和公共因子, 因此先进行消除和提取公因子, 得到新的文法:

$$\begin{split} M &\to HM' \\ M' &\to aHM' \mid \varepsilon \\ H &\to bH' \\ H' &\to (M)(M) \mid \varepsilon \end{split}$$

进行验证如下:

FIRST $(aHM') = \{a\}$, FIRST $(\varepsilon) = \{\varepsilon\}$, FOLLOW $(M') = \{\#\}$, 无冲突 FIRST $((M)(M)) = \{(\}$, FIRST $(\varepsilon) = \{\varepsilon\}$, FOLLOW $(H') = FOLLOW(H) = FIRST(M') \cup FOLLOW(M') = \{a,\#\}$, 无冲突, 因此为 LL(1) 文法。

(c) $S \to AB$, $A \to Ba \mid \varepsilon$, $B \to Db \mid D$, $D \to d \mid \varepsilon$

Solution: 可以提取公因子,得到文法

$$S \to AB$$
, $A \to Ba \mid \varepsilon$, $B \to DD'$, $D' \to b \mid \varepsilon$, $D \to d \mid \varepsilon$

进行求解。 $FIRST(AB) = \{b,d\}$, $FIRST(Ba) = \{b,d\}$, $FOLLOW(A) = FIRST(B) = \{b,d\}$,出现冲突。进一步进行带入 $S \to AB$,得到。

$$S \rightarrow BaB \mid B$$

提取公因式,

$$S \to BB', B' \to aB \mid \varepsilon$$

建立新文法

$$S \to BB', \quad B' \to aB \mid \varepsilon, \quad B \to DD', \quad D' \to b \mid \varepsilon, \quad D \to d \mid \varepsilon$$

进行验证。FIRST(BB') = b,d, FIRST(aB) = $\{a\}$, FOLLOW(B') = $\{\#\}$, FIRST(DD') = $\{b,d\}$, FIRST(b) = $\{b\}$, FOLLOW(D') = $\{\#\}$, FIRST(D) = $\{d\}$, FOLLOW(D) = FIRST(D') \cup FOLLOW(D') = $\{b,\varepsilon\}$, 无冲突。所以为 LL(1) 文法。

(d) $S \rightarrow Ab \mid Ba$, $A \rightarrow aA \mid a$, $B \rightarrow a$ Solution: 先将 A,B 带入 S, 得到

$$S \rightarrow aAb \mid ab \mid aa$$

因此,消除公因子并建立新的文法

$$S \to aS'$$

$$S' \to Ab \mid b \mid a$$

$$A \to aA'$$

$$A' \to A \mid \varepsilon$$

仍然存在公因子,将 A 带入 S'

$$\begin{split} S &\to aS' \\ S' &\to aS'' \mid b \\ S'' &\to A'b \mid \varepsilon \\ A &\to aA' \\ A' &\to A \mid \varepsilon \end{split}$$

验证如下:对于 S',FIRST(aS'') = $\{a\}$,FIRST(b) = $\{b\}$,无冲突;

对于 S", FIRST(A'b) = {a,b}, FOLLOW(S'') = {#}, 无冲突;

对于 A',FIRST(A) = $\{a\}$,FOLLOW(A') = $\{b\}$ \cup FOLLOW(S") \cup FOLLOW(A) = $\{b,\#\}$,无冲突。

- 5. 判断下列文法是否为 LR(0) 文法, 如果是则构建 LR(0) 分析表, 否则说明理由
 - (a) $S \rightarrow cA \mid ccB$, $B \rightarrow ccB \mid b$, $A \rightarrow cA \mid a$ Solution: 构建项目集如下:

由此,可以构建 LR(0) 分析表:

由于不存在冲突, 所以该文法为 LR(0) 文法。

 状态		goto					
1/100	a	b	c	#	A	B	S
S_0			S_1			11	
S_1	S_4		S_3		2		
S_2	$S \to cA$	$S \to cA$	$S \to cA$	$S \to cA$			
S_3	S_4	S_6	S_8		7	5	
S_4	$A \rightarrow a$	$A \rightarrow a$	$A \rightarrow a$	$A \rightarrow a$			
S_5	$S \to ccB$	$S \to ccB$	$S \to ccB$	$S \to ccB$			
S_6	$B \rightarrow b$	$B \rightarrow b$	$B \rightarrow b$	$B \rightarrow b$			
S_7	$A \to cA$	$A \to cA$	$A \to cA$	$A \to cA$			
S_8	S_4		S_9		7		
S_9	S_4	S_6	S_8		7	10	
S_{10}	$B \to ccB$	$B \to ccB$	$B \to ccB$	$B \to ccB$			
S_{11}				acc			

(b) $S \to AaAb \mid BbBa, B \to \varepsilon, A \to \varepsilon$

Solution: 首先改写文法为

$$S' \to S$$
 (r_1)
 $S \to AaAb \mid BbBa$ (r_2, r_3)
 $B \to \varepsilon$ (r_4)
 $A \to \varepsilon$ (r_5)

求解 LR(0) 的项目集规范族。

$$I_0 = \{S' \to \cdot S, S \to \cdot AaAb, S \to \cdot BbBa, A \to \cdot, B \to \cdot\}$$

在这一列同时有两个规约项 r_4, r_5 ,则 LR(0) 分析表中会出现规约-规约冲突。因此,该文法不属于 LR(0) 文法。

- 6. 判断文法是否属于 SLR(1) 文法, 若是则构造 SLR(1) 分析表, 否则说明理由。
 - (a) $S \to Sab \mid bR$, $R \to S \mid a$

Solution 首先改写文法为:

$$S' \rightarrow S$$
 (r_1)
 $S \rightarrow Sab \mid bR$ (r_2, r_3)
 $R \rightarrow S \mid a$ (r_4, r_5)

求解 LR(0) 项目集规范族。

$$I_0 = S' \to \cdot S, S \to \cdot Sab, S \to \cdot bR$$

 $\diamondsuit \operatorname{GO}(I_0, S) = I_1$

$$I_1 = S' \to S \cdot S \to S \cdot ab$$

 $\diamondsuit \operatorname{GO}(I_0, b) = I_2$

$$\diamondsuit \operatorname{GO}(I_1, a) = I_3$$

$$I_3 = S \to Sa \cdot b$$

$$\diamondsuit$$
 GO(I_3, b) = I_4

$$I_4 = S \rightarrow Sab$$
·

$$\diamondsuit \operatorname{GO}(I_2, R) = I_5$$

$$I_5 = S \rightarrow bR$$

$$\diamondsuit \operatorname{GO}(I_2, S) = I_6$$

$$I_6 = R \to S \cdot , S \to S \cdot ab$$

$$\diamondsuit \operatorname{GO}(I_2, a) = I_7$$

$$I_7 = R \rightarrow a$$

$$GO(I_2, b) = I_2, \ GO(I_6, a) = I_3$$

再求解 $FOLLOW(R) = FOLLOW(S) = \{a, \#\}$ 由此建立 SLR(1) 分析表:

 状态	a	goto			
1八心	a	b	#	R	S
I_0	I_3	I_2			1
I_1	I_3		acc		
I_2	I_7	I_2		5	6
I_3		I_4			
I_4	r_2		r_2		
I_5	$egin{array}{c} r_2 \ r_3 \end{array}$		r_3		
I_6	$\begin{vmatrix} r_4, I_3 \\ r_4 \end{vmatrix}$		r_4		
I_7	r_4		r_4		

由于存在移进-规约冲突, 所以不属于 SLR(1) 文法。

(b) $S \to aA$, $A \to cAd \mid \varepsilon$

Solution: 将文法标号如下:

$$S \to aA \tag{r_1}$$

$$A \to cAd \mid \varepsilon \tag{r_2, r_3}$$

求解 LR(0) 项目集规范族:

$$I_0 = S \rightarrow aA$$

$$\diamondsuit \operatorname{GO}(I_0, a) = I_1$$

$$I_1 = S \rightarrow a \cdot A, A \rightarrow cAd, A \rightarrow cAd$$

$$\diamondsuit \operatorname{GO}(I_1, A) = I_2$$

$$I_2 = S \rightarrow aA$$

$$\diamondsuit \operatorname{GO}(I_1,c) = I_3$$

$$I_3 = A \rightarrow c \cdot Ad, A \rightarrow cAd, A \rightarrow cAd$$

$$GO(I_3, c) = I_3, \Leftrightarrow GO(I_3, A) = I_4$$

$$I_4 = cA \cdot d$$

$$\diamondsuit \operatorname{GO}(I_4, d) = I_5$$

$$I_5 = cAd$$
·

再求解 $FOLLOW(A) = \{d, \#\}$, 构造 SLR(1) 分析表如下:

状态		goto			
1八心	a	c	d	#	A
$\overline{I_0}$	I_1				
I_1		I_3	r_3	r_3	2
$I_2 \ I_3$				r_3 acc	
I_3		I_3	r_3	r_3	4
$I_4 \ I_5$			I_5		
I_5			r_2	r_2	

可以解决移进-规约冲突, 所以该文法为 SLR(1) 文法。

7. 判断文法属于哪类 LR 文法。

(a)
$$E \to E + T \mid T$$
, $T \to TF \mid F$ $F \to (E) \mid F* \mid a \mid b$

Solution: 先改写文法:

$$E' \to E$$
 (r_1)
 $E \to E + T \mid T$ (r_2, r_3)
 $T \to TF \mid F$ (r_4, r_5)
 $F \to (E) \mid F* \mid a \mid b$ (r_6, r_7, r_8, r_9)

先求 LR(0) 项目集规范族。

$$I_0 = E' \to \cdot E, E \to \cdot E + T, E \to \cdot T, T \to \cdot TF, T \to \cdot F, F \to \cdot (E), F \to \cdot F*, F \to \cdot a, F \to \cdot b$$

$$\Leftrightarrow GO(I_0, E) = I_1, \ \ \vec{\uparrow}$$

$$I_1 = E' \rightarrow E \cdot , E \rightarrow E \cdot + T$$

存在移进-规约冲突,但 $FOLLOW(E') = \{\#\} \cap \{+\} = \emptyset$,所以可以用 SLR(1) 分析。再令 $GO(I_0,T) = I_2$,得到

$$I_2 = E \rightarrow T \cdot T \rightarrow T \cdot F, F \rightarrow (E), F \rightarrow F^*, F \rightarrow a, F \rightarrow b$$

存在移进-规约冲突,而 FOLLOW(E) = {+} \cup {)} \cup {#} = {+,),#}。因此 FOLLOW(E) \cap {(,a,b) = \emptyset , 可以使用 SLR(1) 分析。令 GO(I_0 ,F) = I_3 , 得到

$$I_3 = T \rightarrow F \cdot , F \rightarrow F \cdot *$$

存在移进-规约冲突,而 $FOLLOW(T) = FIRST(F) \cup FOLLOW(E) = \{(,a,b,+,\#\}, FOLLOW(T) \cap \{\#\} = \emptyset$,可以使用 SLR(1) 分析。令 $GO(I_0,() = I_4$,得到

$$I_4 = F \to (\cdot E), E \to \cdot E + T, E \to \cdot T, T \to \cdot TF, T \to \cdot F, F \to \cdot (E), F \to \cdot F, F \to \cdot a, F \to \cdot b$$

$$I_5 = F \rightarrow a$$

$$I_6 = F \rightarrow b$$

$$I_7 = E \rightarrow E + \cdot T, T \rightarrow \cdot TF, T \rightarrow \cdot F, F \rightarrow \cdot (E), F \rightarrow \cdot F*, F \rightarrow \cdot a, F \rightarrow \cdot b$$

$$GO(I_2, () = I_4, GO(I_2, a) = I_5, GO(I_2, b) = I_6, GO(I_2, F) = I_3$$
。
 $\diamondsuit GO(I_3, *) = I_8,$ 得到

$$F \to F * \cdot$$

 $GO(I_4, T) = I_2$, $GO(I_4, F) = I_3$, $GO(I_4, () = I_4$, $GO(I_4, a) = I_5$, $GO(I_4, b) = I_6$ 。 \diamondsuit $GO(I_4, E) = I_9$, 得到

$$I_9 = F \to (E \cdot), E \to E \cdot +T$$

 $GO(I_7, F) = I_3$, $GO(I_7, () = I_4$, $GO(I_7, a) = I_5$, $GO(I_7, b) = I_6$ 。 \diamondsuit $GO(I_7, T) = I_{10}$,得到

$$I_{10} = E \rightarrow E + T \cdot T \rightarrow T \cdot F, F \rightarrow (E), F \rightarrow F^*, F \rightarrow a, F \rightarrow b$$

存在移进-规约冲突,但可以用 SLR(1) 解决。 $GO(I_9,+)=I_7$,令 $GO(I_9,)=I_{11}$,得到

$$I_{11} = F \rightarrow (E)$$

 $GO(I_{10}, F) = I_3$, $GO(I_{10}, () = I_4$, $GO(I_{10}, a) = I_5$, $GO(I_{10}, b) = I_6$ 综上所述,该文法为 SLR(1) 文法。

(b) $S \to aAd \mid bBd \mid aBe \mid bAe$, $A \to g$, $B \to g$

Solution: 先改写文法为

$$S' \to S$$
 (r_1)

$$S \rightarrow aAd \mid bBd \mid aBe \mid bAe$$
 (r_2, r_3, r_4, r_5)

$$A \to g$$
 (r_6)

$$B \to g$$
 (r_7)

先求解 LR(0) 项目集规范族。

$$I_0 = S' \rightarrow \cdot S, S \rightarrow \cdot aAd, S \rightarrow \cdot bBd, S \rightarrow \cdot aBe, S \rightarrow \cdot bAc$$

$$I_1 = S \rightarrow a \cdot Ad, S \rightarrow a \cdot Be, A \rightarrow g \cdot g \rightarrow g$$

$$I_2 = A \to g \cdot, B \to g \cdot$$

出现规约-规约冲突。而 FOLLOW(A) = $\{d,e\}$, FOLLOW(B) = $\{d,e\}$, 则 FOLLOW(A) \cap FOLLOW(B) $\neq \emptyset$ 。因此,无法用 SLR(1) 解决冲突,不属于 SLR(1) 文法。构建 LR(1) 项目集规范族。

$$I_0 = \{ \langle S' \to \cdot S, \# \rangle, \langle S \to \cdot aAd, \# \rangle, \langle S \to \cdot bBd, \# \rangle, \langle S \to \cdot aBe, \# \rangle, \langle S \to \cdot bAe, \# \rangle \}$$
 令 GO $(I_0, S) = I_1$,得到

$$I_1 = \{\langle S' \to S \cdot, \# \rangle\}$$

$$I_2 = \{ \langle S \to a \cdot Ad, \# \rangle, \langle S \to a \cdot Be, \# \rangle, \langle A \to g, d \rangle, \langle B \to g, e \rangle \}$$

$$I_3 = \{ \langle S \to b \cdot Bd, \# \rangle, \langle S \to b \cdot Ae, \# \rangle, \langle A \to g, e \rangle, \langle B \to g, d \rangle \}$$

$$I_4 = \{ \langle S \to aA \cdot d, \# \rangle \}$$

$$I_5 = \{\langle S \to aB \cdot e, \# \rangle\}$$

$$I_6 = \{ \langle A \to g \cdot, d \rangle, \langle B \to g \cdot, e \rangle \}$$

$$I_7 = \{\langle S \to bA \cdot e, \# \rangle\}$$

今 $GO(I_3,B)=I_8$,得到

$$I_8 = \{\langle S \to bB \cdot d, \# \rangle\}$$

$$I_9 = \{ \langle A \to g \cdot, e \rangle, \langle B \to g \cdot, d \rangle \}$$

$$I_{10} = \{ \langle S \to aAd \cdot, \# \rangle \}$$

$$I_{11} = \{\langle S \to aBe \cdot, \# \rangle\}$$

$$I_{12} = \{\langle S \to bAe \cdot, \# \rangle\}$$

$$I_{13} = \{ \langle S \rightarrow bBd \cdot, \# \rangle \}$$

可以看到,不存在冲突,因此为 LR(1) 文法。 I_6 、 I_9 为同心项目集,合并得到

$$I_{14} = \{ \langle A \to g \cdot, d/e \rangle, \langle B \to g \cdot, d/e \rangle \}$$

此时会出现新的规约-规约冲突, 因此不是 LALR(1) 文法。

(c) $S \to A \mid xb$, $A \to aAb \mid B$, $B \to x$

Solution: 先改写文法为

$$S' \rightarrow S$$
 (r_1)
 $S \rightarrow A \mid xb$ (r_2, r_3)
 $A \rightarrow aAb \mid B$ (r_4, r_5)
 $B \rightarrow x$ (r_6)

求解 LR(0) 项目集规范族:

$$I_0 = S' \rightarrow S, S \rightarrow A, S \rightarrow xb, A \rightarrow aAb, A \rightarrow B, B \rightarrow x$$

由是令 $GO(I_{I_0},x)=I_1$,得到

$$I_1 = S \to x \cdot b, B \to x \cdot$$

出现移进-规约冲突,因此文法不属于 LR(0) 文法。由于 $FOLLOW(B) = FOLLOW(A) = \{b\} \cup FOLLOW(S) = \{b, \#\}$, $FOLLOW(B) \cap \{b\} \neq \emptyset$,因此该文法不属于 SLR(1) 文法。求解 LR(1) 项目集规范族:

$$I_0 = \{ \langle S' \to \cdot S, \# \rangle, \langle S \to \cdot A, \# \rangle, \langle S \to \cdot xb, \# \rangle, \langle A \to \cdot aAb, \# \rangle, \langle A \to \cdot B, \# \rangle, \langle B \to \cdot x, \# \rangle \}$$

$$I_1 = \{\langle S' \to S \cdot, \# \rangle\}$$

$$I_2 = \{\langle S \to A \cdot, \# \rangle\}$$

$$I_3 = \{ \langle S \to x \cdot b, \# \rangle, \langle B \to x \cdot, \# \rangle \}$$

$$I_4 = \{ \langle A \to a \cdot Ab, \# \rangle, \langle A \to aAb, b \rangle, \langle A \to B, b \rangle, \langle B \to x, b \rangle \}$$

$$I_5 = \{ \langle A \to B \cdot, \# \rangle \}$$

$$I_6 = \{\langle S \to xb \cdot, \# \rangle\}$$

$$I_7 = \{ \langle A \rightarrow aA \cdot b, \# \rangle \}$$

$$I_8 = \{ \langle A \to a \cdot Ab, b \rangle, \langle A \to aAb, b \rangle, \langle A \to B, b \rangle, \langle B \to x, b \rangle \}$$

$$I_9 = \{ \langle A \to B \cdot, b \rangle \}$$

$$I_{10} = \{ \langle B \to x \cdot, b \rangle \}$$

$$I_{11} = \{\langle A \rightarrow aAb \cdot, \# \rangle\}$$

$$GO(I_8, a) = I_8, GO(I_8, B) = I_9, GO(I_8, x) = I_{10}$$
。 \diamondsuit $GO(I_8, A) = I_{12}$,得到

$$I_{12} = \{ \langle A \to aA \cdot b, b \rangle \}$$

$$I_{13} = \{ \langle A \to aAb \cdot, b \rangle \}$$

可以发现无冲突,所以该文法为 LR(1) 文法。考虑同心项目集, I_4 , I_8 、 I_5 , I_9 、 I_7 , I_{12} 、 I_{11} , I_{13} 为同心项目集,进行合并:

$$I_4' = \{ \langle A \to a \cdot Ab, b/\# \rangle, \langle A \to aAb, b \rangle, \langle A \to B, b \rangle, \langle B \to x, b \rangle \}$$

未引入规约-规约冲突;同理,

$$I_5' = \{\langle A \rightarrow B \cdot, \#/b \rangle\}, I_7' = \{\langle A \rightarrow aA \cdot b, \#/b \rangle\}, I_{11}' = \{\langle A \rightarrow aAb \cdot, b/\# \rangle\}$$

均无新的规约-规约冲突。综上所述,该文法为 LALR(1) 文法。

8. 设有以下文法

$$E \rightarrow$$
 while E do $E \mid id := E \mid E + E \mid id$

(a) 判定该文法有二义性。

Solution: 考虑语句 id := id + id,存在如下两种最左推导: $E \Rightarrow E := E \Rightarrow E := E + E \Rightarrow id := E + E \Rightarrow id := id + E \Rightarrow id := id + id$ $E \Rightarrow E + E \Rightarrow E := E + E \Rightarrow id := E + E \Rightarrow id := id + E \Rightarrow id := id + id$ 则存在两种不同的最左推导序列,因此该文法为二义性文法。

(b) 构造识别该文法的关于 LR(0) 项目有效的可归前缀的 DFA。

Solution: 首先改写文法为:

$$E' \rightarrow E$$
 (r_1)
 $E \rightarrow wEdE \mid i : E \mid E + E \mid i$ (r_2, r_3, r_4, r_5)

求解 LR(0) 项目集规范族如下:

$$I_0 = E' \rightarrow E, E \rightarrow wEdE, E \rightarrow i : E, E \rightarrow E + E, E \rightarrow i$$

 \diamondsuit GO $(I_0, E) = I_1$

$$I_1 = E' \to E$$
.

$$\diamondsuit \operatorname{GO}(I_0, w) = I_2$$

$$I_2 = E \rightarrow w \cdot EdE, E \rightarrow E \cdot + E, E \rightarrow \cdot wEdE, E \rightarrow \cdot i : E, E \rightarrow \cdot E + E, E \rightarrow \cdot i$$

$$\diamondsuit \operatorname{GO}(I_0, i) = I_3$$

$$I_3 = E \rightarrow i \cdot : E, E \rightarrow i \cdot$$

$$GO(I_2, w) = I_2$$
, $GO(I_2, i) = I_3$. $\diamondsuit GO(I_2, E) = I_4$

$$I_4 = E \rightarrow wE \cdot dE, E \rightarrow E \cdot + E$$

$$\diamondsuit \operatorname{GO}(I_2,+) = I_5$$

$$I_5 = E \to E + \cdot E, E \to \cdot wEdE, E \to \cdot i : E, E \to \cdot E + E, E \to \cdot i$$

$$\diamondsuit \operatorname{GO}(I_3,:) = I_6$$

$$I_6 = E \rightarrow i : \cdot E, E \rightarrow \cdot wEdE, E \rightarrow \cdot i : E, E \rightarrow \cdot E + E, E \rightarrow \cdot i$$

$$GO(I_4, +) = I_5$$
. $\diamondsuit GO(I_4, d) = I_7$

$$I_7 = E \rightarrow wEd \cdot E, E \rightarrow wEdE, E \rightarrow i : E, E \rightarrow E + E, E \rightarrow i$$

$$GO(I_5, w) = I_2, GO(I_5, i) = I_3$$
, $\Leftrightarrow GO(I_5, E) = I_8$

$$I_8 = E \rightarrow E + E \cdot , E \rightarrow E \cdot + E$$

$$GO(I_6, w) = I_2, GO(I_6, i) = I_3 \, \circ \, \Leftrightarrow GO(I_6, E) = I_9$$

$$I_9 = E \rightarrow i : E \cdot E \rightarrow E \cdot E$$

$$GO(I_7, w) = I_2, GO(I_7, i) = I_3$$
. $\diamondsuit GO(I_7, E) = I_{10}$

$$I_{10} = E \rightarrow wEdE \cdot , E \rightarrow E \cdot + E$$

$$GO(I_8,+) = I_5, GO(I_9,+) = I_5, GO(I_{10},+) = I_5$$
构建 DFA 如下:

(c) 规定文法中优先级与结合顺序如下:

i. + 优先级优于 while...do

ii. + 优先级优于:=

iii. + 服从左结合

则根据以上规则构造文法的无冲突 SLR(1) 分析表。

Solution: $FOLLOW(E) = \{d, +, \#\}$

构造如下

状态	action						goto
1000	w	d	i	:	+	#	E
I_0 I_1	I_2		I_3				1
I_1						acc	
I_2	I_2		I_3		I_5		4
I_3		r_5		I_6	r_5	r_5	
I_4		r_5 I_7			I_5		
I_5	I_2		I_3				8
I_6	$egin{array}{c} I_2 \ I_2 \end{array}$		I_3 I_3				9
I_7	I_2		I_3				10
I_8		r_4			r_4	r_4	
I_4 I_5 I_6 I_7 I_8 I_9 I_{10}		r_3			I_5	r_3	
I_{10}		r_2			I_5	r_2	