Работа 1.4.8

Измерение модуля юнга методом акустического резонанса

Морозов Александр

30 ноября 2022 г.

1 Введение

Цель работы: исследовать явление акустического резонанса в тонком стержне; измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга различных материалов.

В работе используются: генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

2 Теоретический сведения

Основной характеристикой упругих свойств твёрдого тела является его модуль Юнга Е. Согласно закону Гука, если к элементу среды приложено некоторое механическое напряжение σ , действующее вдоль некоторой оси х (напряжения по другим осям при этом отсутствуют), то в этом элементе возникнет относительная деформацию вдоль этой же оси $\varepsilon = \frac{\delta x}{x}$, определяемая соотношением

Рис. 1. Силы, действующие на элемент стержня при продольных колебаниях

Рассмотрим стержень постоянного круглого сечения, радиус которого много меньше его длины. С точки зрения распространения волн стержень можно считать тонким, если длина звуковых волн в нём велика по сравнению с его радиусом. Такая волна может свободно распространяться только вдоль стержня, поэтому можно считать, что стержень испытывает деформации растяжения и сжатия только вдоль своей оси (заметим, что в обратном пределе коротких

волн стержень следует рассматривать как безграничную сплошную среду). Если боковые стенки тонкого стержня свободны (т.е. стержень не сжат с боков), то его деформации описывается законом Гука в форме (1), и, следовательно, его упругие свойства определяются исключительно модулем Юнга среды. Акустическая волна, распространяющаяся в стержне конечной длины испытает отражение от торцов стержня. Если при этом на длине стержня укладывается целое число полуволн, то отражённые волны будут складываться в фазе с падающими, что приведёт к резкому усилению амплитуды их колебаний и возникновению акустического резонанса в стержне. Измеряя соответствующие резонансные частоты, можно определить скорость звуковой волны в стержне и, таким образом, измерить модуль Юнга материала стержня. Акустический метод является одним из наиболее точных методов определения упругих характеристик твёрдых тел.

3 Методика измерений

Все измерения проводятся с использованием описанного ниже оборудование, далее они вносятся в таблицу Exel и подлежат обработке для нахождения погрешностей и построения графиков.

4 Используемое оборудование

Генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, тактический запас еды, набор стержней из различных материалов.

5 Результаты измерений и обработка данных

5.1 Зависимость частоты от номера резонансного пика

Построим график зависимости частот, при которых получается фигура Лиссажу от номера резонансного пика:

Подсчитаем скорости звука при помощи метода наименьших квадратов:

Таблица 1: Резонансные частоты стержней

	n	1	2	3	4		
Медь	<i>f</i> , Гц	3129	6439	9658	12878		
Сталь	<i>f</i> , Гц	4131	8262	12393	16524		
Аллюминий	<i>f</i> , Гц	4237	8475	12712	16950		

Таблица 2: Подсчет скорости звука

	f_1 , к Γ ц	δf_1 , к Γ ц	c, м/с	δc , м/с
Медь	3.245	$3 \cdot 10^{-3}$	3894	33
Сталь	4.119	$2 \cdot 10^{-3}$	4943	35
Дюраль	4.245	$3 \cdot 10^{-3}$	5094	36

5.2 Вычисление плотности материала

Для измерения плотности возьмем пробные цилиндры каждого материала и измерим их соответствующи параметры:

Цилиндр	nig					Среднее
Длина	4,27	4,25	4,25	4,27	4,27	4,262
Диаметр	1,2	1,21	1,2	1,2	1,21	1,204
Macca	37,07	37,074	37,067	37,07	37,67	37,1902
Цилиндр аллюминий						
Длина	4,14	4,12	4,12	4,13	4,14	4,13
Диаметр	1,17	1,17	1,18	1,19	1,17	1,176
Macca	12,453	12,453	12,452	12,49	12,45	12,4596
Цилиндр м	иедь					
Длина	4,15	4,12	4,02	4,13	4,02	4,088
Диаметр	1,17	1,19	1,18	1,17	1,16	1,174
Macca	38,69	38,694	38,69	38,695	38,692	38,6922

Погрешности линейки, штангенциркуля и микрометра:

$$\sigma_{\scriptscriptstyle \rm J}=0.5$$
 мм, $\sigma_{\scriptscriptstyle \rm IMT}=0.05$ мм, $\sigma_{\scriptscriptstyle \rm BECOB}=5$ г $\sigma_{\scriptscriptstyle \rm MKM}=50$ мкм

Таким образом получим значение плотностей для 3-х материалов:

	Плотность (кг/м^3)	Погрешность (кг/м^3)
Медь	8783	103
Сталь	1207	107
Аллюминий	2725	112

5.3 Подсчет модуля Юнга

$$E = c^{2} \cdot \rho$$
$$\delta E = \sqrt{4(\frac{\delta c}{c})^{2} + (\frac{\delta \rho}{\rho})^{2}}$$

Так как мы ранее подсчитали все нужные величины, вычислим модуль Юнга по ним.

	Е (ГПа)	Е, погрешность (ГПа)	
Медь	136		3
Сталь	190		3
Аллюминий	69		1,2

5.4 Построение графика для частоты резонанса

При изменении частоты в окрестности резонансного пика заметим, что амплитуда значительно меняется, построим график зависимости, чтобы убедится в этом:

6 Обсуждения результатов

Результаты можно считать вполне точными, так как они лежат в пределе погрешности и были сделаны моими золотыми руками, которые никогда не ошибаются в измерении величин.

7 Вывод

Измерение модуля Юнга данным способом очень эффективно и интересно.