

All the information developers need from shader assembly instruction to a complete HLSL intrinsic function overview covering up to shader model 3.0.

Presented in a quick and easy to access format!

Sebastien St-Laurent

Vertex and Pixel Shader Assembly Language

Although the development of assembly level shaders is rare today because of the HLSL language, a proper understanding of the underlaying assembly instruction sets is core to the development and debugging of efficient shaders.

Both the vertex and pixel shader assembly languages are composed of setup and assembly instructions. Throughout the following pages you will find tables containing a summaty of both types of instructions along with a description of their function, parameter information, performance indications and support of various shader versions.

Before starting, I have to make a note in regards to some of the flow control instructions. For example, the *if_comp* instruction defines flow control based on a comparison where the *_comp* component will be replaced by a comparison operation. The table below summarizes all the operations which can be used within flow control:

Flow Control Comparison Modes

Mode	Description
_gt	Greater
_lt	Lesser
_ge	Greater or equal
_le	Lesser or equal
_eq	Equal
_ne	Not equal

In addition, the following tables contain some indication of the support of each instruction on every vertex and pixel shader version using a color coded system. The table below summarizes the coding:

Color	Description
	Requires less than 4 instructions slots.
	Requires between 4 and 7 instruction slots.
	Required 8 or more instruction slots.
	Unsupported.

I must also make a final note in regards to the performance values indicated over the next pages. The quoted values are based on the DirectX specifications and indicate the worst case performance that must be ensured by the rendering hardware. This means that certain hardware implementations may execute certain instructions faster than perscribed by the specifications.

Vertex Shader Assembly

Name	Description	1.1	2.0	2.x	3.0
dcl_usage	Declare input registers.				
def	Define constants.				
defb	Define boolean constants.				
defi	Define integer constants.				
label	Define flow control labels.				
vs	Retrieve the shader version.				

Name	1.1	2.0	2.x	3.0
	Description			
	Additional	Parameter In	fo	
abs dst, src		1	1	1
	Absolute va	lue of the src		
add dst, src0, src1	1	1	1	1
	Add src0 an	d src1 togeth	ier.	
break			1	1
	Break out o	f a <i>loop</i> or re	p block.	
break_comp src0,			3	3
src1		lly break out scalar condit	of a <i>loop</i> or <i>r</i> ional.	ep block
		mparison me source regis		
breakp			3	3
[!]p0.(x y z w)	Break out of predicate.	of a loop or re	p block based	l on a
	p0 = is a pr	al <i>NOT</i> opera edicate regist equired repli	er.	
call l#		2	2	2
	Call a subro	outine define	d by a label.	
	l# = label to	subroutine.		
callnz_bool l#,		2	3	3
[!]b#	Call a subro	outine if regis	ster is nonzer	o.
	l# = label to [!] = option b# = boolea	al NOT opera	itor.	
callnz_pred l#,			3	3
[!]p0.(x y z w)	Call a subro	outine based	on a predicat	e.
	p0 = predic	al NOT opera		
crs dst, src0, src1		2	2	2
	Cross produ	act of <i>src0</i> an	d src1.	
dp3 dst, src0, src1	1	1	1	1
	Three-comp	onent dot pi	oduct.	
dp4 dst, src0, src1	1	1	1	1
	Four-compe	onent dot pro	duct.	

Name	1.1	2.0	2.x	3.0			
	Description	1					
	Additional	Parameter In	fo				
dst dst, src0, src1	1	1	1	1			
	Calculate li	ahtina attenu	ation vector				
	Calculate lighting attenuation vector: src0 = (ignored, d×d, d×d, ignored).						
		ored, 1/d, igne					
	dst = (1, d,						
else		1	1	1			
	Begin an el	se block.					
endif		1	1	1			
·	End an if/ei	lse block.					
endloop		2.	2	2			
	End a loop	block					
endrep		2	2	2			
charep	End a rep b	lock					
exp dst, src	10	1	1	1			
exp usi, src	Full precisi	on 2X.		1			
anna dat ana	1 turi precisi	1	1	1			
expp dst, src	Doutiel mus	ioion (16 hite	1 2X	1			
Co. Let	Partiai pred	cision (16-bits	s) 2 .	1			
frc dst, src	T 1	1	<u> </u>	1			
		component o to .y and .xy		_1 can			
if bool	only write	3	3	3			
1,0001	Rogin on if	lalca/andif blo					
	Begin an if/else/endif block. bool = boolean register:						
if_comp src0, src1	D001 = D001	lean register.	3	3			
tj_comp srco, src1	Davis on it	la la calcanatala a					
	Begin an if block with a comparison.						
	_comp = comparison mode. src0, src1 = source registers.						
if [!]pred.(x y z w)	sico, sici =	source regis	3	3			
if Liferca.(x) c n)	Pagin on if	block with a	prodicate				
		al NOT opera					
		licate register					
		required repli					
lit dst, src	1	3	3	3			
	Partial ligh	ting calculati	on.				
	dst = destir	nation registe	r.				
	src = (N•L,	N•H, unused	l, exponent).				
log dst, src	10	1	1	1			
	Full precisi	on log2(x).					
logp dst, src	1	1	1	1			
	Partial pred	cision (16-bits	s) log2(x).				
loop aL, i#		3	3	3			
	Start a loop	block.					
		ounting regis	ter.				
	i# = consta	nt integer reg	ister.				
lrp dst, src0, src1,		2	2	2			
src2	Linearly in	terpolates be	tween src1 ar	nd src2			
	using src0	[01] range).					
m3x2 dst, src0,	2	2	2	2			
src1	Product of	vector and a	2×3 matrix.				
	-						

Name	1.1	2.0	2.x	3.0
	Description	1		
	Additional	Parameter In	fo	
m3x3 dst, src0,	3	3	3	3
src1	Product of	a vector and	a 3×3 matrix	
m3x4 dst, src0,	4	4	4	4
src1	Product of	a vector and	a 4×3 matrix	
m4x3 dst, src0,	3	3	3	3
src1	Product of	a vector and	a 3×4 matrix	
m4x4 dst, src0,	4	4	4	4
src1	Product of	a vector and	a 4v4 matrix	
mad dst, src0,	1	1	1	1
src1, src2	Multipling	src0 and src1	than adda an	
	Multiplies	sreo and srei	then adds s70	1
max dst, src0, src1	Maniana	- f 1	1	1
	Maximum	of src0 and sr	C1.	
min dst, src0, src1	1	1	1	1
	Minimum o	of src0 and sr	cI.	
mov dst, src	1	1	1	1
	Move data	from one reg	ister to anoth	
mova dst, src		1	1	1
	Move data	to an address	register.	
mul dst, src0, src1	1	1	1	1
	Multiplies :	src0 and src1	together.	
пор	1	1	1	1
	No operation	on.		
nrm dst, src		3	3	3
	Normalizes	s the input (si	c/length(src)).
pow dst, src0, src1		3	3	3
	Returns src	o ^{src1} .		
rcp dst, src	1	1	1	1
	Reciprocal	of the input	(1/src).	
rep i#		3	3	3
	Starts a rep	block.		
		r register with	repeat coun	it in x
	component		/	
ret		1	1	1
	End subrou	itine or main		
rsq dst, src	1	1	1	1
	Reciprocal	square root (1/sqrt(src)).	
setp_comp dst, src0, src1			1	1
3100, 3101		dicate registe		
		omparison me		
(nation predica source regis		
sge dst, src0, src1	1	1	1	1
3,,	Greater tha	n or equal co	mpare.	
sgn dst, src0, src1,	Sieuter the	3	3	3
src2	Returns the	e sign of the s	rc0.	
			1 for positiv	e
		ce registers.	1	
	src0 = sour	ce registers. temporary r		

Name	1.1	2.0	2.x	3.0		
	Description	1				
	Additional	Parameter In	ifo			
sincos dst.[x y xy],		8	8	8		
src0.(x y z w), src1, src2	Computes l	ooth the sine	and cosine.			
3102	dst = destination register (.x contains sin an .y contains cos and has to point to a tempor register). src0 = input angle source register. src1 = D3DSINCOSCONST1. src2 = D3DSINCOSCONST2.					
slt dst, src0, src1	1	1	1	1		
	Less than c	ompare.				
sub dst, sub0, sub1	1	1	1	1		
	Subtracts s	rc1 from src0).			
texldl dst, src0, src1				2, 5 for Cubemap		
	Loads a tex	ture sample.				
	src0 = textu	nation registe nre coordinat nre sampler.				

Pixel Shader Assembly

Name	Description	1.x	2.0	2.x	3.0
dcl	Declare input registers.				
dcl_samplerType	Declare texture dimensions for a sampler.				
phase	Transition between phase 1 and phase 2 shader code.				
def	Define constants.				
defb	Define boolean constants.				
defi	Define integer constants.				
label	Define labels.				
ps	Retrieve the shader version.				

Name	1.1	1.2	1.3	1.4	2.0	2.x	3.0
	Descr	Description					
	Parar	Parameter Information					
abs dst, src					1	1	1
	Return the absolute value of src.						
add dst, src0,	1	1	1	1	1	1	1
src1	Add	src0 a	nd src.	1 toget	her.		
bem dst.rg, src0,				2			
src1	Appl	y a fal	e bun	ıpmap	ing tra	ansfor	m.
	dst = destination register (.rg only). src0, src1 = source registers.						
break						1	1
	Brea	k out	of a lo	op or i	ep blo	ck.	

$ break_comp \\ src0, src1 \\ \hline $	
$comp = comparison mode. \\ src0, src1 = source registers. \\ breakp \\ [l]p0.(x y z w) \\ Predicate break out of a loop or rep. \\ [!] = optional NOT operator. \\ p0 = predicate register. \\ [x y z w] = required replicate swizzle. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	src1
$ breakp \\ [!]p0.(x y z w) & \textbf{Predicate break out of a loop or rep.} \\ [!] = \text{optional NOT operator:} \\ p0 = \text{predicate register.} \\ [x y z w] = \text{required replicate swizzle.} $	
[!] po . $(x y z w)$ Predicate break out of a loop or rep. [!] = optional NOT operator: $p0$ = predicate register: $[x y z w]$ = required replicate swizzle.	n
[!] = optional NOT operator: p0 = predicate register: {x y z w} = required replicate swizzle.	
p0 = predicate register. {x y z w} = required replicate swizzle.	
41.40	
call l# 2 2	#
Call the specified subroutine.	
l# = label to call	
callnz l#, [!]b# 3 3	z l#, [!]b#
Call a subroutine on a nonzero boolean.	
l# = label to call.	
[!] = optional <i>NOT</i> operator.	
b# = boolean register.	
callnz l#, 3 3	
[!] $p0.(x y z w)$ Call a subroutine on a predicate.	$\{x y z w\}$
l# = label to call.	
[!] = optional <i>NOT</i> operator. p0 = predicate register.	
$\{x y z w\}$ = required replicate.	
cmp dst, src0, 2 2 1 1 1 1	dst. src0.
src1 Compare source vector to 0.	, , , , ,
cnd dst, src0, 1 1 1 1	st, src0,
src1, src2 Compare src0 vector to 0.5, returning	src2
either src1 or src2.	
crs dst, src0,	st, src0,
src1 Cross product of src0 and src1.	
dp2add dst, 2 2 2	
src0, src1, 2D dot product with scalar addition to	
src2.(x y z w) the result.	
dp3 dst, src0,	st, src0,
Src1 Three-component vector dot product.	
dp4 dst, src0, 2 2 1 1 1 1	st, src0,
Four-component dot product.	
dsx dst, src	st, src
Rate of change in the <i>x</i> direction.	
dsy dst, src 1 1 1	st, src
Rate of change in the y direction.	
else 1 1 1	
Begin an else block.	
endif 1 1	
End an if/else block.	

		1.0	1.2		2.0		2.0
Name	1.1	1.2	1.3	1.4	2.0	2.x	3.0
		ription	-				
11	Parai	neter Ir	nformat	ion		_	_
endloop						2	2
	End	a loop	/endlo	op blo	ck.		
endrep						2	2
	End	a repe	at bloc	ck.			
exp dst, src					1	1	1
	Full	precis	ion 2 ^x .				
frc dst, src					-1	1	1
, ,	Retu	ırn the	fracti	onal o	fsrc		
if bool	rtott	THE CITE	Tracti	OTICE O	1070.	3	3
1) 0001	Domi	n on i	f/else/e	un die la	look		
	DOOL	= DOO	lean r	egister		_	-
if_comp src0,						3	3
src1			block			pariso	n.
			ompar				
	src0	, src1 :	= sour	ce regi	sters.		
if_pred						3	3
[!] $pred.(x y z w)$			block			icate.	
			nal <i>NO</i>				
			dicate				
	{x y :	z w} =	requir	ed rep	licate	swizzl	
log dst, src					1	1	1
	Full	precis	ion log	g2(x).			
lrp dst, src0,	1	1	1	1	2	2	2
src1, src2	Inte	rpolati	on of	src1 ai	nd <i>src2</i>	2 base	d on
	src0	(in the	e [01]	range	e).		
m3x2 dst, src0,					2	2	2
src1	Proc	luct of	a vect	or and	l a 2×3	3 matr	ix.
m3x3 dst, src0,					3	3	3
src1	Proc	luct of	a vect	or and	l a 3×3	matr	ix.
m3x4 dst, src0,					4	4	4
src1	Proc	luct of	a vect	or and	la 4×3	matr	ix
m4x3 dst, src0,	1100	luct of	ti veet	or time	3	3	3
src1	Droc	luct of	a vect	or one	10.24	1 mote	_
m4x4 dst, src0,	1100	luct of	a veet	or and	4	111211	4
src1	Duo	luot of	o vio ot	0000	_	1 month	
	1100	1	a vect	01 and	1 4 4 8 4	1111111	1
mad dst, src0, src1, src2	1 1	1	1	1 1	1	1	. 1
3101, 3102			c0 and		togeth	er add	iing
	Src2	to the	result		1	1	1
max dst, src0,			Ļ		1		1
src1	Max	ımum	betwe	en src	v and	src1.	
min dst, src0,					1	1	1
src1	Min	imum	betwe	en <i>srct</i>	and s	src1.	
mov dst, src	1	1	1	1	1	1	1
	Mov	e data	from	one re	gister	to and	ther.

						_	
Name	1.1	1.2	1.3	1.4	2.0	2.x	3.0
		iption					
	Parar	neter Ir	format	ion			
mul dst, src0,	1	1	1	1	1	1	1
src1	Mult	iplies	src0 a	nd src.	1 toge	ther.	
пор	1	1	1	1	1	1	1
<u>r</u>	No.c	perati	on				
nrm dst, src	- 10				3	3	3
nim usi, sic	NT	1:		(-/1	1. ()	3
1 . 0	Nort	папие	a veci	.01. (37	chengi	h(src)	. 3
pow dst, src0,			a errol		5	3	- 5
src1	Retu	rn src	05.0				_
rcp dst, src					1	1	1
	Retu	rn the	recipi	rocal o	of src.		
rep i#						3	3
	Star	a rep	block.				
					ecifvin	ng the l	oop
		it in th					_op
ret				.,		1	1
101	End	a subı	couting	or m	ain		
1 .	Ellu	a subi	outine	or m	am.	1	- 1
rsq dst, src					1	1	1
	Reci	procal	squar	e root	, or 1/.	sqrt(sr	
setp_comp dst,						1	1
src0, src1	Set t	he pre	dicate	regist	er.		
	_con	np = co	ompar	ison n	node.		
	dst =	desti	nation	predi	cate re	egister.	
	src0	src1 =	sour	ce regi	sters.		
sincos					8	8	8
$dst.\{x y xy\},$	Com	pute b	oth th	e sine	and c	osine.	
src0.(x y z w),	dst =	desti	nation	regist	er (.x	contai	ns
src1, src2						as to p	
		tempo					
	src0	= inpu	it angl	6			
	src1	D21		С.			
		= D3L	SINC		NST1.		
	src2	= D3L = D3L		osco.			
sub dst, src0,	src2			osco.		1	1
sub dst, src0, src1	1	= D3L	SINC 1	OSCO. OSCO.	NST2.	1	1
	1	= <i>D3L</i>	SINC 1	OSCO. OSCO.	NST2.	1	1
src1	1 Subt	= D3L 1 ract sr	SINC 1 rc1 fro	OSCO. OSCO. 1 m srcl	NST2.	1	1
src1 tex dst	1 Subt	= D3L 1 ract sr 1 ple a t	1 rc1 fro 1 exture	OSCO. OSCO. 1 m srcl	NST2.	1	1
src1	Subt 1 Sam	= D3L 1 ract si 1 ple a t	1 rc1 fro 1 exture	OSCO. OSCO. 1 m srcl	NST2. 1	1	1
tex dst texbem dst, src	Subt 1 Sam	= D3L 1 ract sr 1 ple a t	1 rc1 fro 1 exture	OSCO. OSCO. 1 m srcl	NST2. 1	1	1
src1 tex dst	Subto 1 Sam 1 Appl 2	= D3L 1 rract sn 1 ple a t 1 y a fak	1	OSCO. OSCO. 1 m src(NST2.	aform.	1
tex dst texbem dst, src texbeml dst, src	Subto 1 Sam 1 Appl 2	= D3L 1 rract sn 1 ple a t 1 y a fak	1	OSCO. OSCO. 1 m src(NST2.	1	1
tex dst texbem dst, src	Subto 1 Sam 1 Appl 2 Appl 1	= D3L 1 ract sr 1 ple a t 1 y a fak 2 y a bu	PSINCE 1 rc1 fro 1 exture 1 xe bun 2 mpma	OSCO. OSCO. Imm srcb	NST2.	aform.	
tex dst texbem dst, src texbeml dst, src	Subto 1 Sam 1 Appl 2 Appl 1	= D3L 1 ract sr 1 ple a t 1 y a fak 2 y a bu	PSINCE 1 rc1 fro 1 exture 1 xe bun 2 mpma	OSCO. OSCO. Imm srcb	NST2.	aform.	
tex dst texbem dst, src texbeml dst, src	Subto 1 Sam 1 Appl 2 Appl 1	= D3L 1 ract sr 1 ple a t 1 y a fak 2 y a bu	PSINCE 1 rc1 fro 1 exture 1 xe bun 2 mpma	OSCO. OSCO. Imm srcb	NST2.	aform.	
tex dst texbem dst, src texbeml dst, src texcoord dst	Subto 1 Sam 1 Appl 2 Appl 1 Trea	= D3L 1 ract ss 1 ple a t 1 y a fal 2 y a bu 1 t textu	osince 1 re1 fro 1 exture 1 exe bun 2 mpma 1 re coo	OSCO. OSCO. 1 m srcb	NST2.	aform.	ata.
tex dst texbem dst, src texbeml dst, src texcoord dst texcrd dst, src	Subto 1 Sam 1 Appl 2 Appl 1 Trea	= D3L 1 ract ss 1 ple a t 1 y a fal 2 y a bu 1 t textu	osince 1 re1 fro 1 exture 1 exe bun 2 mpma 1 re coo	OSCO. OSCO. 1 m srcb	NST2.	aform.	ata.
tex dst texbem dst, src texbeml dst, src texcoord dst	1 Subt 1 Sam 1 Appl 2 Appl 1 Trea	= D3L 1 ract ss 1 ple a t 1 y a fal 2 y a bu 1 t textu	osince 1 exture 1 exe bun 2 mpma 1 re coo	osco. 1 m src(ppmap ppmap prdinat 1 rdinat	NST2.	aform.	ata.

Name	1.1 1.2 1.3 1.4 2.0 2.x 3.0				
	Description				
	Parameter Information				
texdp3 dst, src	1 1				
	Three-component dot product between				
	texture and the texture coordinates.				
texdp3tex dst,	1 1				
src	Three-component dot product and 1D				
	texture lookup.				
texkill src	1 1 1 1 Note 1 2				
	Cancel rendering of pixels based on a				
	comparison.				
	src0 = kill pixel if any component < 0.				
texld dst, src	1 1 Note 2 Note 5				
	Sample a texture.				
texldb dst, src0,	1 Note 3 6				
src1	Sample texture with level of detail				
	bias from w-component of the texture				
	coordinates.				
	dst = destination register.				
	src0 = texture coordinates.				
	src1 = sampler.				
texldd dst, src0,	3 3				
src1, src2, src3	Sample texture with gradient.				
	dst = destination register.				
	src0 = texture coordinates.				
	src1 = sampler.				
	src2 = x gradient.				
. 111 1	src3 = y gradient.				
texldl dst, src0, src1	Note 6				
3101	Sample texture with LOD from w-				
	component.				
	dst = destination register. src0 = texture coordinates.				
	src1 = sampler.				
Texldp dst, src0,	1 Note 4 Note 7				
src1	Sample texture with projective divide				
	by <i>w</i> -component.				
	dst = destination register.				
	src0 = texture coordinates.				
	src1 = sampler.				
texm3x2depth	1				
dst, src	Calculate per-pixel depth values.				
texm3x2pad	1 1 1				
dst, src	First row matrix multiply of a two.				
texm3x2tex	1 1 1 1				
dst, src	Final row matrix multiply of a two.				
texm3x3 dst, src	1 1 1				
texmisks ust, src	2v2 motriy multiply				
	3×3 matrix multiply.				

Name	1.1	1.2	1.3	1.4	2.0	2.x	3.0
	Description						
	Parameter Information						
texm3x3pad	1	1	1				
dst, src	First	or sec	cond re	ow mu	ıltiply	of thre	ee.
texm3x3spec	1	1	1				
dst, src0, src1	Fina	l row 1	multip	ly of t	hree.		
texm3x3tex	1	1	1				
dst, src	Texture look up using a 3×3 matrix multiply.						
texm3x3vspec	1	1	1				
dst, src	Texture look up using a 3×3 matrix multiply, with nonconstant eye-ray vector.						
texreg2ar dst,	1	1	1				
src	Sample a texture using the alpha and red components.						
texreg2gb dst,	1	1	1				
src			exture onents		the gi	reen ai	nd
texreg2rgb dst,		1	1				
src			exture ompor		the re	ed, gre	en

Note 1: If D3DPS20CAPS_NOTEXINSTRUCTIONLIMIT is set, slots = 2: otherwise slots = 1.

Note 2: If $D3DPS20CAPS_NOTEXINSTRUCTIONLIMIT$ is set and the texture is a cube map, slots = 4; otherwise slot = 1.

Note 3: If *D3DPS20CAPS_NOTEXINSTRUCTIONLIMIT* is set, slots = 6; otherwise slots = 1.

Note 4: If $D3DPS20CAPS_NOTEXINSTRUCTIONLIMIT$ is not set, slots = 1; otherwise: if the texture is a cube map, slots = 4; if the texture is not a cube map, slots = 3.

Note 5: If the texture is a cube map, slots = 4; otherwise slots = 1.

Note 6: If the texture is a cube map, slots = 5; otherwise slots = 2.

Note 7: If the texture is a cube map, slots = 4; otherwise slots = 3.

HLSL Intrinsic Functions

To simplify the development of shaders, the HLSL shading language introduces a high-level programming scheme similar to C. This simplifies the developers tasks and take their burden away from manual instruction optimization and register allocation.

The following table contains a complete overview of all the HLSL intrinsic functionality. The table contains information about the function such as a description of its use, parameter overview, performance consideration and an indication of the minimal shader version required to execute the function.

Keep in mind that performance figures given below are based on a simple shader using only the specified instruction in order to avoid optimizations. This should serve as a worst case scenario as real use cases will generally result in better performing shaders.

Name	VS	PS	Performance		
	Parameters				
	Description				
ret abs(x)	1.1	1.4	Implemented in one instruction slot.		
	x in scalar, vector or matrix float, int ret out same as input x same as input x				
	Retu	rn the	e absolute value of x.		
ret acos(x)	1.1	2.0	Taylor series taking 17 instruction slots.		
			lar, vector or matrix float same as input x float		
	Retu	rn the	e arccosine value x (valid for [-1, 1]).		
ret all(x)	1.1	1.4	Implemented using 5 instruction slots.		
	x in scalar, vector or matrix float, int, bool ret out scalar bool				
	Test	if all t	he components of x are nonzero.		
ret any(x)	1.1	1.4	Implemented using 3 instruction slots.		
	x in scalar, vector or matrix float, int, bool ret out scalar bool				
	Tests	if an	y of the components of x are nonzero.		
ret asin(x)	1.1	2.0	Taylor series using 18 instruction slots.		
	x in scalar, vector or matrix float ret out same as input x float				
	Retu	rn the	e arcsine value of x (valid for $[-\pi/2, \pi/2]$).		
ret atan(x)	1.1	2.0	Taylor series using 21 instruction slots.		
	x in scalar, vector or matrix float ret out same as input x float				
	Return the arctan value of x (result range $[-\pi/2, \pi/2]$).				
ret atan2(x, y)	1.1	2.0	Taylor series using 25 instruction slots.		
	y ir	san	lar, vector or matrix float ne as input x float same as input x float		
	Retu	rn the	e arctan of x/y (result range $[-\pi/2, \pi/2]$).		

Name	VS PS Performance					
	Parameters					
	Description					
ret ceil(x)	1.1 2.0 Implemented with the frc instruction and takes 2 instruction slots but may take more on 1.x hardware.					
	x in scalar, vector or matrix float ret out same as input x float					
	Return the integer greater or equal to x.					
ret clamp(ret, min, max)	1.1 1.4 Implemented using the <i>min</i> and <i>max</i> instructions taking 3 instruction slots.					
	in scalar, vector or matrix float, int min in same as input x same as input x max in same as input x same as input x ret out same as input x same as input x					
	Returns the input x clamped to the range [min, max].					
clip(x)	N/A 1.1 Removes the benefits of early Z rejection.					
	x in scalar, vector or matrix float This function will discard the current pixel if any of components of <i>x</i> are less than zero.					
ret cos(x)	1.1 2.0 Taylor series using 15 instruction slots.					
	x in scalar, vector or matrix float ret out same as input x float					
	Return the cosine of x.					
ret cosh(x)	1.1 2.0 Numerical approximation using the <i>exp</i> instruction. Uses 83 instructions slots on 1.x hardware , 11 slots on 2.0+ hardware.					
	x in scalar, vector or matrix float ret out same as input x float					
	Return the hyperbolic cosine of x.					
ret cross(x,y)	1.1 1.4 Emulated on 1.x hardware using 4 slots.					
	x in vector float y in vector float ret out vector float					
	Execute the cross product between x and y.					
ret ddx(x)	N/A 2.x Verify capabilities before using.					
	x in scalar, vector or matrix float ret out same as input x float					
	Partial derivate in the screen space x coordinate.					
ret ddy(x)	N/A 2.x Verify capabilities before using.					
	x in scalar, vector or matrix float ret out same as input x float					
	Partial derivate of x in the screen space y coordinate.					
ret degrees(x)	1.1 2.0 N/A					
	x in scalar, vector or matrix float ret out same as input x float					
	Convert x from radians to degrees.					
ret determinant(x)	1.1 1.4 Implemented using the proper equations taking about 12 instruction slots.					
	x in matrix float ret out scalar float					
	Return the determinant of the square matrix x.					

Name	VS PS Performance			
	Parameters			
	Description			
ret distance(x, y)	1.1 2.0 Implemented in 5 instructions slots.			
	x in vector float			
	y in vector float			
	ret out scalar float			
	Compute the distance between x and y.			
ret dot(x, y)	1.1 2.0 N/A			
	x in vector float, int			
	y in vector float, int			
	ret out scalar float, int			
	Compute the dot product between x and y.			
ret exp(x)	1.1 2.0 Excecutes in 5 instructions slots and 41 slots on 1.x hardware.			
	x in scalar, vector or matrix float			
	ret out same as input x float			
	Return base-e exponential of x.			
ret exp2(x)	1.1 2.0 Executes in 4 instructions slots and 40 slots on 1.x hardware.			
	x in scalar, vector or matrix float			
	ret out same as input x float			
	Return base-2 exponential of x.			
ret	1.1 1.4 Implemented in 7 instruction slots.			
faceforward(n, i, ng)	n in vector float			
ι, πς/	i in vector float ng in vector float			
	ret out vector float			
	Test if a face is visible using the following equation:			
	ret = -n * sign(dot(i, ng)).			
ret floor(x)	1.1 2.0 Implemented using the frc function in two			
	instruction slots but may take more on 1.x hardware.			
	x in scalar, vector or matrix float			
	ret out same as input x float			
	Return the largest integer that is lesser than x.			
ret fmod(x, y)	1.1 2.0 Implemented in 11 instruction slots and			
	15 slots on 1.x hardware.			
	x in scalar, vector or matrix float, int			
	y in same as input x same as input x			
	ret out same as input x same as input x			
not func(n)	Return the floating-point reminder f of x/y.			
ret frac(x)	1.1 2.0 Implemented in 3 instructions slots using the frc instructions and is subject to			
	restrictions on 1.x hardware.			
	x in scalar, vector or matrix float			
	ret out same as input x float			
	Return the fractional part of x.			
ret frexp(x, out	1.1 2.0 Implemented using a sequence of exp, log			
exp)	and rcp instructions requiring 19 instruc-			
	tions slots and 97 slots on 1.x hardware.			
	x in scalar, vector or matrix float			
	exp out same as input x float ret out same as input x float			
	Separate x into mantissa and exponent components.			
	copurate a fine mantissa and exponent components.			

Name	VS PS Performance			
	Parameters			
	Description			
ret fwidth(x)	N/A 2.x See ddx and ddy for more information.			
	x in scalar, vector or matrix float			
	ret out same as input x float			
	Compute the partial derivate of x . This function essentially computes $abs(ddx(x)) + abs(ddy(x))$.			
ret isfinite(x)	1.1 2.0 Implemented using 3 instruction slots.			
rei isjiniie(x)	x in scalar, vector or matrix float			
	ret out scalar bool			
	Return true if x is finite, false otherwise.			
ret isinf(x)	1.1 2.0 See isfinite.			
	x in scalar, vector or matrix float			
	ret out scalar bool			
	Return <i>true</i> if <i>x</i> is not finite, <i>false</i> otherwise.			
ret isnan(x)	1.1 2.0 See isfinite.			
	x in scalar, vector or matrix float			
	ret out scalar bool Return true if x is either NAN or QNAN.			
ret ldexp(x, exp)	1.1 2.0 Implemented using exp.			
rei (uexp(x, exp))	x in scalar, vector or matrix float			
	exp in scalar, vector or matrix float			
	ret out same as input x float			
	Perform the reverse operation of frexp and returns			
	x * 2 ^{exp} .			
ret length(x)	1.1 2.0 Implemented in 3 instruction slots.			
	x in vector float ret out scalar float			
	Return the length of the input vector x.			
ret lerp(x, y, s)	1.1 1.4 Implemented in 4 instruction slots.			
	x in scalar, vector or matrix float			
	y in scalar, vector or matrix float			
	s in scalar, vector or matrix float			
	ret out same as input x same as input x Linear interpolation between x and y based on			
	s, interpolation factor in the range [0, 1].			
ret lit(n dot l, n	1.1 2.0 Implemented using the <i>lit</i> instruction and			
dot h, m)	takes 4 instruction slots.			
	1 in scalar float			
	h in scalar float m in scalar float			
	ret out vector float			
	Calculates a lighting vector containing the ambient,			
	diffuse and specular lighting components.			
ret log(x)	1.1 2.0 Implemented using the log instruction tak-			
	ing 5 slots and 41 slots on 1.x hardware. x in scalar, vector or matrix float			
	ret out same as input x float			
	Returns the base-e logarithm of the input x.			
ret log2(x)	1.1 2.0 Implemented using the log instruction tak-			
	ing 4 slots and 40 slots on 1.x hardware.			
	x in scalar, vector or matrix float			
	ret out same as input x float			
	Returns the base-2 logarithm of the input x.			

NT	we be before					
Name	VS PS Performance					
	Parameters					
	Description					
ret log10(x)	1.1 2.0 Implemented using the <i>log</i> instruction taking 5 slots and 41 slots on 1.x hardware.					
	x in scalar, vector or matrix float					
	ret out same as input x float					
	Returns the base-10 logarithm of the input x.					
ret max(x, y)	1.1 1.4 N/A					
	x in scalar, vector or matrix float, int					
	y in same as input x same as input x					
	ret out same as input x same as input x					
	Returns the maximum of both x and y.					
ret min(x, y)	1.1 1.4 N/A					
	x in scalar, vector or matrix float, int					
	y in same as input x same as input x ret out same as input x same as input x					
	Return the minimum of both x and y.					
10/	1					
ret modf(x, out ip)	tion slots and 13 on 1.1 hardware.					
	x in scalar, vector or matrix float, int					
	ip out same as input x same as input x ret out same as input x same as input x					
	Separates x into its fractional and integer part.					
. 1/	1 1					
ret mul(x, y)	1.1 1.1 Dependant on the input types.					
	x in scalar float, int					
	y in scalar same as input x ret out scalar same as input x					
	x in scalar float, int					
	y in vector float, int					
	ret out vector float, int					
	x in scalar float, int y in matrix float, int					
	ret out matrix float, int					
	x in vector float, int y in scalar float, int					
	ret out vector float, int					
	x in vector float, int					
	y in vector float, int					
	ret out scalar float, int					
	x in vector float, int					
	y in matrix float, int ret out vector float, int					
	x in matrix float, int					
	y in scalar float, int					
	ret out matrix float, int					
	x in matrix float, int y in vector float, int					
	ret out vector float, int					
	x in matrix float, int					
	y in matrix float, int					
	ret out matrix float, int					
	Perform a multiplication between x and y.					
ret noise(x)	N/A N/A Only operates on texture shaders.					
	x in vector float					
	ret out scalar float					
	Generates Perlin noise values based on x.					

Name	VS	PS	Performance			
Traille	_	meter				
	_					
	_	riptio				
ret normalize(x)	1.1	2.0	Implemented in 3 instruction slots.			
			tor float			
	_		same as input x float			
	Retu	rns a	normalized version of x.			
ret pow(x, y)	1.1	2.0	Implemented using exp and log taking 9			
			slots and 81 on 1.x hardware.			
			lar, vector or matrix float			
			ne as input x <mark>float</mark> same as input x float			
			·			
11 ()	_	_	to the power of y.			
ret radians(x)	1.1		N/A			
			lar, vector or matrix float			
			same as input x float			
	_	_	from degrees to radians.			
ret reflect(i, n)	1.1	1.1	Implemented in 5 instruction slots.			
			tor float			
			ector float			
			vector float			
			a reflection vector given the incident vector lection surface normal n.			
		_				
ret refract(i, n, ri)	1.1		Implemented in 13 instruction slots.			
			tor float			
	n in vector float ri in scalar float					
	ret out vector float					
		Computes a refracted vector given an incident vector				
			e normal n and a refraction index ri.			
ret round(x)	1.1	2.0	Implemented using frc instruction and is			
			limited on 1.x hardware.			
	x ir	sca	lar, vector or matrix float			
	ret	out	same as input x float			
	Rou	nds th	e input x to its nearest integer.			
ret rsqrt(x)	1.1	2.0	N/A			
	x ir	sca	lar, vector or matrix float			
	ret	out	same as input x float			
	Retu	rns th	ne reciprocal square root of x.			
ret saturate(x)	1.1	1.1	See clamp.			
	x ir	sca	lar, vector or matrix float			
	ret	out	same as input x float			
	Retu	rns th	ne absolute of x clamped to the range $[0, 1]$.			
ret sign(x)	1.1	1.4	Implemented in 3 instruction slots.			
	x ir		lar, vector or matrix float, int			
			same as input x int			
	Retu	rns th	ne sign of x.			
ret sin(x)	1.1	_	Taylor series using 15 instruction slots.			
			lar, vector or matrix float			
	ret out same as input x float					
	-		ne sine of x.			
	1000	- 210 ti				

Name	VS	PS	Performance			
	Parameters					
	Desci	Description				
ret sincos(x, out	1.1	2.0	Taylor series using 24 instruction slots.			
s, out c)	x in	sca	lar, vector or matrix float			
			me as input x float			
			me as input x float			
	-		same as input x float oth the sine and cosine of x.			
	1.1					
ret sinh(x)	1.1	2.0	Numerical approximation using <i>exp</i> using 11 instruction slots or 83 on 1.x hardware.			
			lar, vector or matrix float			
	-		same as input x float			
	_		e hyperbolic sine of x.			
ret smoothstep(min,	1.1	2.0	Implemented using 14 instruciton slots.			
max, x)			lar, vector or matrix float			
,,			same as input x float same as input x float			
			same as input x float			
	Retui	ns a	smooth Hermite interpolation between 0			
	and 1	if th	e input x is in the range of [min, max].			
ret sqrt(x)	1.1	2.0	N/A			
	x in scalar, vector or matrix float					
	ret out same as input x float					
	Retui	ns th	e square root of x.			
ret step(y, x)	1.1	1.4	Implemented using the sge instruction.			
	x in scalar, vector or matrix float					
	y in same as input x float					
	ret out same as input x float					
ret tan(x)	1.1	2.0	Taylor series yielding 23 instruction slots			
ret tun(x)			and 35 on 1.x hardware.			
	x in scalar, vector or matrix float					
	-	ret out same as input x float				
	_		te tangent of x.			
ret tanh(x)	1.1	2.0	Numerical approximation with exp resulting in 16 slots and 88 on 1.x shader			
			hardware.			
	x in scalar, vector or matrix float					
	ret out same as input x float					
	Returns the hyperbolic tangent of x.					
ret transpose(x)	1.1	1.1	N/A			
	x in	ma	trix float, int, bool			
	ret out matrix float, int, bool					
	Retu	ns th	ne transpose of the input matrix x.			

HLSL Texture Functions

There are several flavors of texture access functions serving different purposes. However, each of them exists for several types of textures. The variety of texture function will be presented in the form texXX, where XX can be one of the following:

- 1D: Texture access to a 1D texture
- · 2D: Texture access to a 2D texture.
- 3D: Texture access to a 3D texture.
- CUBE: Texture access to a cubemap texture.

PS Performance

Name	PS Performance
	Parameters
	Description
ret texXX(s, t)	1.1 N/A
	s in object sampler
	t in vector float
	ret out vector float
	Performs a simple texture lookup.
ret texXX(s, t, ddx, ddy)	1.1 N/A
	s in object sampler t in vector float
	ddx in scalar float
	ddy in scalar float
	ret out vector float
	Performs a texture lookup using the derivates ddx and ddy to pick the proper texture mipmap.
ret texXXbias(s, t)	2.0 N/A
	s in object sampler
	t in scalar, vector float
	ret out vector float
	Performs a texture lookup using the w component to bias mipnapping.
ret texXXlod(s, t)	3.0 N/A
	s in object sampler
	t in scalar, vector float
	ret out vector float
	Performs a texture lookup using the <i>w</i> component to determine the mipmap.
ret texXXgrad(s, t,	2.0 Under ps_3_x, the texture access must
ddx, ddy)	be done outside of flow control.
	s in object sampler
	t in vector float ddx in scalar float
	ddy in scalar float
	ret out vector float
	Performs a texture lookup using the derivates
	ddx and ddy to pick the proper texture mipmap.
ret texXXproj(s, t)	1.4 N/A
	s in object sampler
	t in scalar, vector float ret out vector float
	Performs a projective texture lookup.

© 2005 by Paradoxal Press.

All rights reserved. No part of this booklet may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system without written permission from Paradoxal Press, except for the inclusion of brief quotations in a review.

Front cover and background illustration contains screenshots of various demos created by ATI Technologies Inc, used with their premission.

Author: Sebastien St-Laurent
Technical Review: Wolfgang Engel
Layout & Design: Sebastien St-Laurent
Proofreader: Nicole St-Laurent

PRINTED IN THE U.S.A.

Paradoxal Press 9981 Avondale Rd. NE Redmond, WA 98052 sebastien.st.laurent@gmail.com

\$7 99 USA / \$9 99 CANADA

ISBN-13 978-0-9766132-0-6 ISBN-10 0-9766132-0-4

