Théorie des langages II - TD1

Wassim SAIDANE, Anthony BERTRAND

Question 1

Montrer que le langage a^nb^n (pour $n \ge 1$) n'est pas rationnel. Concevoir un automate à pile qui reconnît ce langage.

Langage rationnel 1 :

- Ce sont les langages décrits par les expressions régulières ou rationnelles, d'où le nom de langages réguliers.
- Ce sont les langages obtenus, à partir des lettres et de l'ensemble vide, par les opérations rationnelles, à savoir l'union, le produit et l'étoile de Kleene, d'où le nom de langages rationnels.
- ce sont les langages reconnus par des automates finis, d'où le nom de langages reconnaissables.

Soit le langage $L = \{a^nb^n \mid n \ge 1\}$ sur l'alphabet $A = \{A, B\}$. Supposons par l'absurde que L est rationnel.

Par le lemme d'itération, $\{\exists x, y, z \mid w=xyz\}, \mid xy \mid \leq p, \mid y \mid \geq 1 \text{ et } \forall i \geq 0, xy'z \in L.$

Comme $|xy| \supseteq p$, alors $w = a^l a^{l'} a^{l''} b^p$ où $x = a^l$, $y = a^{l'}$, $z = a^l b^p$ $l' \ge 1$. Si on applique la proposition 4 ($\forall i \ge 0, xy^iz \in L$) du lemme d'itération avec i = 0 on obtient $a^l a^{l''} b^p \in L$, or l + l'' < P. $(l + l' + l'' = p, l' \ge 1)$

CONTRADICTION.

L n'est donc pas un langage rationnel.

Pour définir l'automate à pile, nous allons définir des règles de transition (q, y, z, p, h) où :

- q est l'état de départ
- y est la lettre utilisée
- z est le symbole qu'on dépile
- p est l'état d'arrivé
- h est le symbole qu'on empile

^{1.} D'après wikepedia

Par exemple, soit les 4 règles suivantes :

- 1. (q, a, ω, q, A)
- 2. (q, a, A, q, AA)
- 3. (q, ϵ, A, p, A)
- 4. (p, n, A, p, ϵ)

La première règle nous dit qu'en prenant 'a' à partir de l'état 'q', on reste en 'q' en n'ayant rien dépilé mais en ayant empilé 'A'. Il n'y a pas d'état final, la reconnaissance du mot se fait par pile vide (sauf le mot vide car n > 0)

Voici la représentation de l'automate à pile (MERCI WIKIPEDIA) :

Question 2

Montrer que le langage des mots composés avec autant de 'a' que de 'b' n'est pas rationnel. Concevoir un automate à pile qui reconnaît ce langage.

Soit le langage $L = \{w \in \Sigma^* \mid |w|_a = |w|_b\}$, prenons un entier n quelquonque

On considère
$$\omega = a^n.b^n = \underbrace{a \dots a}_n.\underbrace{b \dots b}_n$$
. On a donc $|w| = 2n \ge n$

On considère $\omega = a^n.b^n = \underbrace{a \dots a}_n.\underbrace{b \dots b}_n$. On a donc $|w| = 2n \ge n$.

Par le lemme d'itération, $\{\exists x, y, z \mid w = xyz\}, |xy| \le n$. On a $w = a^l a^{l'} a^{l''} b^n$ où $a = l, y^{l'}, z = a^l b^n$ avec Y > 0 puisque $y \ne \epsilon$.

Prenons k=2, on a : $m\stackrel{def}{=}x\cdot y^2\cdot z=a^X\cdot a^{2y}\cdot a^{z_1}\cdot b^n$ et $|m|_a=X+2Y+Z_1=\underbrace{X+Y+Z_1}+Y=n+Y$ et $|m|_b=n$.

Alors
$$\underbrace{\left|\begin{array}{c} m_a \\ m_+Y \end{array}\right|}_{n+Y} \neq \underbrace{\left|\begin{array}{c} m_b \\ n \end{array}\right|}_{n}$$
 puisque $Y > 0$.

CONTRADICTION

L n'est donc pas rationnel.