

Alan Brooks and Li Gao for ECE 432 Computer Vision at Northwestern University taught by Dr. Ying Wu

June 2, 2004

Outline

- Problem & History
- Mathematics
- Results
 - UMIST (controlled lighting)
 - ALAN (typical face snapshots)
- Ideas for Further Work

Problem Definition

Who is this?

Assumptions

- Face detection is done, so we know:
 - scale,
 - rotation,
 - and alignment

http://www.vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi

detected 77/80 faces with defaults. See results here:

http://vasc.ri.cmu.edu/demos/faceindex/05312004/users/4333.html.

History: Influential Contributions

- 1964, 1970, 1977: Facial feature-based recognition (Bledsoe, Kelly Kanade)
- 1984: WIZARD neural net approach (Stonham)
- 1991, 1994: Eigenface PCA (Pentland & Turk)
- 1997: Fisherface FLD + PCA (Belheumeur)
- 2000: FERET standard testing method & database
- 2002: Indep Component Analysis (ICA) captures higher-order statistics (Bartlett)
- 2003: Kernel, SVM, RBF, combos (Liu, Er)
- 2004: Plenoptic light-fields (Gross), 2D-PCA (Yang)

our focus

Mathematics: Eigenface

Given:

recognition #c

recognition #c

images N

Mp = desired #
of principal
components

Feature Extraction:

```
X = [x_1 \ x_2 \ ... \ x_m]
me = mean(X, 2)
A = X - [me me ... me]
```

column vector for each train face

average face

[U,E,V] = svd(A,0)

eigVals = diag(E)
lmda = eigVals(1:Mp)
P = U(:,1:Mp)

avoids N²xN² matrix computation of [V,D]=eig(A*A') only computes M columns of U: A=U*E*V'

pick face-space principal components (eigenfaces)

train_wt = P'*A

store weights of training data projected into eigenspace

Nearest-Neighbor Classification:

A2 created from the recog data

ith recog face, jth train face

euDis(i,j) = sqrt((recog_wt(:,j)-train_wt(:,i)).^2)

Mathematics: Fisherface

Given: P_1 = eigenface result (used by fisherface) Feature Extraction: same as eigenface A = X - [me me ... me]computes N²xN² between-class scatter matrix for i=1:c Sb = Sb + clsMean; *clsMean; ' computes N²xN² within-class scatter matrix for i=1:c, j=1:c; $Sw = Sw + (X(j)-clsMean_i)*(X(j)-clsMean_i)'$ PCA project into (N-c) x (N-c) subspace Sbb = P_1 '*Sb* P_1 Sww = P_1 '*Sw* P_1 generalized eigenvalue decomposition [V,D] = eig(Sbb,Sww)solves Sbb*V = Sww*V*D eigVals = diag(D) store training lmda = eigVals(1:Mp) weights P = P1*V(:,1:Mp)

train_wt = P'*A

Databases

UMIST

- By Daniel B Graham
- http://images.ee.umist.ac.uk/dann y/database.html
- 20 people, 565 images
 (avg of 28 images per person)
- Constructed under controlled lighting & background conditions, with a purpose of being used for facial recognition algorithm testing.
- Varied pose uniformly from frontal to side view.

ALAN

- By Alan Brooks
- http://pubweb.northwestern.edu/~ acb206/ece432/tmbwClassOval40 x60.zip
- 14 people, 47 images

 (avg of 3 images per person)
- Gathered from collections of snapshots taken at different times. No controlled lighting or backgrounds.
- Pre-processed by hand to align, normalize, and remove background.

Image produced using ImageMagick's "montage" command like this:
\$ montage +frame +shadow +label -tile 30x20 -geometry 23x28+0+0 -background gray *.* joined.jpg

UMIST Results Using Eigenface Approach

- 545 training faces from 20 people
- 20 recognition faces (randomly picked from database)

Feature Extraction

Training

- Keeping Mp (20) principal components, project all training data into subspace and store projection weights.
- Weights can be used to reconstruct faces.

Projection

Project new faces into eigenface-space.

Classification

- Classify by comparing projection weights of new faces to known face weights.
- 20 of 20 (100%) faces correctly classified.

UMIST Results Using Fisherface Approach

- Subset of UMIST data
- 60 training faces from 20 people (front, angled, profile pose)
- 20 recognition faces (randomly picked from database)

Feature Extraction

eigenfaces

Classification

- Fisherface: 16 of 20 (80%) faces correctly classified.
- Pose invariant in top 3: often (13 times) picks all 3 correct database images.

Classification

For comparison:

- Eigenface (with the same data): only 14 of 20 (70%) were correctly classified.
- Picks same pose, wrong people in top 3. Never gets all 3 correct poses.

Fisherface (FLD) vs. Eigenface (PCA)

	Fisherface	Eigenface
Computational Complexity	slightly more complex	simple
Effectiveness across Pose	good, even with limited data	some, with enough data
Sensitivity to Lighting	little	very

ALAN Database Results

- 26 training faces from 11 people
- 11 recognition faces (randomly picked)

Preprocessing Important

Lighting, scale, alignment, background

Performance Improvement

Before Pre-Processing

After Pre-Processing

Fisherface Modification

 Impose a maximum on the number of PCA components to use in dimension reduction. Rationale: "face-space" doesn't need more than Mp eigenvectors to be well-represented.

Further Work

- Integrate with face detector.
- Incorporate time info in classifier.
- Try SVM, kernel, ICA, wavelet, plenoptic (light-field) approaches.
- Acquire & use CMU PIE and FERET databases and formal evaluation techniques.

References

- M. Turk and A. Pentland, "Eigenfaces for recognition," *J. Cognitive Neuroscience*, vol. 3, no. 1, 1991.
- M. Turk and A. Pentland, "Face recognition using eigenfaces," Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1991, pp. 586-591.
- P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. fisherfaces: recognition using class specific linear projection," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 19, no. 7, pp. 711-720, July 1997.