# ORGANIC ELECTROLUMINESCENT ELEMENT

Publication number: JP2261889

Publication date: 1990-10-24

Inventor:

EKUSA TAKASHI

Applicant:

TOKYO SHIBAURA ELECTRIC CO

Classification:

- international: H

H05B33/14; C09K11/06; G09F9/30; H01L51/50; H05B33/12; H05B33/14; C09K11/06; G09F9/30; H01L51/50; H05B33/12; (IPC1-7): C09K11/06;

G09F9/30; H05B33/14

- European:

Application number: JP19890083568 19890331 Priority number(s): JP19890083568 19890331

Report a data error here

#### Abstract of JP2261889

PURPOSE:To obtain the subject element having high luminous intensity and luminous efficiency and capable of controlling the emission wavelength by providing a luminescent layer comprising a specified thin film of organic dyes between electrodes at least one of which transmits light. CONSTITUTION:Between two electrodes at least one of which transmits light is provided a luminescent layer which comprises a thin film of organic dyes, made of a dispersion formed by mixing a first organic dye (e.g. anthracene) with a second organic dye having the light absorption edge on the side of wavelength longer than the light absorption edge of the first organic dye (e.g. perylene, tetracene or pentacene) in an amount of 10mol% or less based on the first organic dye.

Data supplied from the esp@cenet database - Worldwide

- (19)【発行国】日本国特許庁(JP)
- (12)【公報種別】公開特許公報(A)
- (11)【公開番号】特開平2 261889
- (43)【公開日】平成2年(1990)10月24日
- (54)【発明の名称】有機電界発光素子
- (51)【国際特許分類第5版】

C09K 11/06

G09F 9/30 360

H05B 33/14

【審査請求】\*

【全頁数】7

- (21)【出願番号】特願平1-83568
- (22)【出願日】平成1年(1989)3月31日
- (71)【出願人】

【識別番号】999999999

【氏名又は名称】株式会社東芝

【住所又は居所】\*

(72)【発明者】

【氏名】江草俊

【住所又は居所】\*

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。

2

1

# 【特許請求の範囲】

少なくとも一方が光を透過する2枚の電極間に、有機色素薄膜からなる発光層を設けた有機電界発光素子において、前記発光層が、第1の有機色素に、該第1の有機色素の光吸収端を有する第2の有機色素を、該第2の有機色素が10モル%以下の割合となるように分散させた有機色素薄膜からなることを特徴とする有機電界発光素子。

-2-

# 19日本国特許庁(JP)

命等許出麗公開

#### 母公開特許公報(A) 平2-261889

@Int. Cl. 5

識別記号

庁内臺理書号

❷公開 平成2年(1990)10月24日

C 09 K G 09 F H 05 B 11/06 9/30 33/14

Z

7043-4H 6422-5C 6649-3K

審査請求 未請求 請求項の数 1 (全 7 頁)

有機電界殆光素子 64発明の名称

> ■ 平1-83568 **2019**

包出 〒 平1(1989)3月31日

1

神奈川県川崎市奉区小向東芝町 1 番地 株式会社東芝総合

研究所内

の出 ■ 人 株式会社東芝 神奈川県川崎市幸区堀川町72番地

弁理士 鈴江 武彦 外3名

1. 発明の名称

有被电界强光索子

2. 特許請求の範囲

少なくとも一方が光を透過する2枚の電極器 に、有機色素薄膜からなる発光層を設けた有機電 界発光素子において、前記発光層が、第1の有機 色素に、波第1の有機色素の光吸収増よりも長波 基側にその光硬収縮を有する第2の有限色素を、 は第2の有機色素が18モル%以下の製合となるよ うに分散させた有機色素薄膜からなることを特徴 とする有機電界発光素子。

3. 発明の詳細な説明

【発明の目的】

(産業上の利用分野)

本発明は表示素子、展明素子などとして用い られる有機電界発光素子に関する。

(従来の技術)

近年、携帯用TV、コンピュータの需要の増 加に伴い、フラットパネルディスプレイを中心と した舞型製量の塩汞素子の開発が急速に進められ ている。現在、その主流は液晶表示素子であるが、 被昌衰示索子は大酺画化しにくく、役角によって はみずらいなどの欠点がある。

このため、色の鮮やかさ、鳥面表示の容易さ、 略い場所でも表示可能であるなど、優れた表示機 誰が期待できる発光型表示素子の調発が要望され ている。このような発光型表示素子としては、ブ ラズマディスプレイ、無線系エレクトロルミネッ センス素子、蛍光表示管、光光ダイオードなどが 研究されている。これらの素子でフルカラーディ スプレイを実現するには、高輝度のRG8発光が 要求される。しかし、現状ではいずれの素子も質 色を発光させることが困難であり、フルカラーデ ィスプレイは実現されていない。

ところで、有機色素分子のなかにはそのフォト ルミネッセンスにおいて青色情味(放長488 ma近 舞)に蛍光やリン光を発するものが多い。このこ とから、2枚の電腦の間に有機色素帯膜からなる 発光順を設けた構造の有機電界発光素子は、フル

# 特周平2-261889(2)

カラーの表示者子などを実現できる可能性が高く、 大きい前枠が寄せられている。しかし、有機電界 発光素子では、内臓で延載できないほど輝度の低いことが問題となっていた。

そこで、有機電界発光素子の輝度を向上するために、有機色素を混合した有機色素薄膜又は有機色素薄膜の多層散腫構造を素子の基本構造とし、発光性色素に対する電子供与性色素と電子受容性色素とを標々な影響で組合わせた構造の有機電界現光素子が提案されている(特別町 81-48984号、特別町 81-44931号、特別町 81-44984号など)。

また、プラス福と発光層との間に正孔移動層を設けた領途の有機電界発光素子では、低電圧の直 後電視で高輝度の発光が得られることが報告され ている(Appl. Phys. Lett., <u>51</u>, 21 (1987) 、特別報 82-49458号、仲間昭 88-284892 号、仲間昭 68-285895号)。

また、九州大学の斎藤省苔らは、プラス極と発 光暦との間に正孔夢動脈を設けるとともに、マイ

る。 (J.J.App). Phys., 27, L718(1988))。 他方、有機電界発光素子には以下に述べるようなもう1つの問題がある。すなわち、発光器に発光性リアが注入されて色素分子が静起され、、 助の色素分子が動産体化し、この発光が動産体化し、この発光が多点をはよりを発光と呼ばれて生じなどの発光でするとなり、その発光被長は大力も表になり、その発光被長は大力も表になり、その発光被長よりも長ま子の発光を対したの発光を表になり、有機電界発光まうに発展の対料を設計したつもりでも、実際の発光をあるとが長期のグリーンやレッドになることがある。

(発明が解決しようとする環境)

以上のように、有機電界発光素子では、発光 層と電極との間にキャリア移動器を設けることに より、低電圧の直旋電源で高輝度の発光が得られ る可能性があることが見出されている。しかし、 有機色素分子が関体凝集状態である場合には、発 ナス版と発光層との間に電子移動層を設けた構造の有機電界発光素子では、夏に輝度が向上することを報告している(J.J.App1.Phys.・25.L175(1988)。そして、発光層を構成する色素として、異えばアントラセン(B)、コロネン(G)、ペサレン(R)の3種を用いることにより、RGB発光を得ることができる。

光が生じにくいという問題がある。また、発光が生じたとしても二量体化又は多量体化した助起色素分子からの発光が主であり、発光被長が長被長機にシフトするという問題がある。

本発明はこれらの問題を解決し、発光輝度が高く、しかも発光被長を制御することができる有機 電界発光素子を提供することを目的とする。

#### [発明の構成]

(課題を解決するための手数と作用)

本発明の有機電界発光常子は、少なくとも一方が光を退退する2枚の電極関に、有機色素薄膜からなる発光器を設けた有機電界発光常子において、前起発光器が、第1の有機色素に、旋第1の有機色素の光管収縮よりも長波長側にその光吸収縮を有する第2の有機色素を、旋第2の有機色素が10モル%以下の割合となるように分散させた有機色素薄膜からなることを特徴とするものである。

本発明において、第1の有機色素に要求される 特性としては、電極からキャリアとして正孔又は 電子が効率よく注入されること、注入されたキャ

#### 特閒平2-261889(3)

リアが効率よく色素分子と再結合すること、キャリアの再結合によって色素分子が効率よく動配されること、助配状態からの無傷射失話過程が少ないことが挙げられる。このほか、薄膜形成が容易なこと、構造的及び化学的安定性に優れていることが挙げられる。

本発明において、第2の有機色素の要求される 特性としては、動配状態の第1の有機色素から効 率よく動配エネルギーを受け取り (エネルギー受 客性が高い)、特定被長の発光が効率よく得られ ることが挙げられる。

ここで、第1の有機色素の助起状態には一重項状態と三重項状態との2つの状態がある。このは、 労働機能界角光素子で主に発光に寄与するのは、 励起一重項からの変光であることが知られている。 したがって、第2の有機色素としては、一重項ー 一度項の励起エネルギー移動を起こしやすいもの が選択される。その選択の基準になるのは、第1 の有機色素の変光を入べクトルと第2の存在する まの光要収スペクトルとの間に重なりが存在する

け取る有額色素とを分散させることにより、効率 よく発光させることが可能となる。また、第1の 有級色素中に第2の有額色素として複数の色素を 分散させることにより、多数長の発光特性が得られ、RGB強度を調節することにより高効率で白 色発光が得られる。

お述したような第1および第2の有機色素としては、第1表に示すように、(a) C、日元素のみからなる補合多類型芳香族色素、(b) C、日元素以外に、その骨格にO、N、Sなどのヘテロ原子を含む補合多類型芳香族色素、(c) 色素レーザー用に関発された供売性色素などが挙げられる。

ことである。一般的には、第1の有機色素の光板 収スペクトルの吸収増減長より、第2の有機色素 の光板収スペクトルの吸収増減長が長波長側にあ ればよい。

また、有機電界発光素子については、常温では もう1つの勝起状態である三重項状態からの発光 であるリン光の寄与は認められていない。これは 第1の有機色素として適当な有限色素の多くだし、 常温ではリン光を示さないからである(ただしし、 されらの色素でも低温ではリン光を示す)。した がって、第1の有機色素の縁起三重項状態から 起エネルギーを受け取って縁起状態となり。 常温で質光を発光する性質のある第2 の有機色素を選択することができる。

本発明において、第1の有機色素中に分散される第2の有機色素は1種に限らず、2種以上でもよい。例えば、第1の有機色素中に第2の有機色素として、第1の有機色素の酶起一量項状態から 酶起エネルギーを受け取る有機色素と、第1の有機色素の酶起三量項状態から酶起エネルギーを受



# 特開平2-261889(4)



本発明において、第2の有機色素は、第1の有 機色素中に10モル%以下の割合で分散される。

本発明の有機電界発光素子は、発光層以外の部分はどのような構造であってもよい。例えば、プラス版と発光器との間に正孔移動器を設けた構造でもよいし、更にマイナス版と発光層との間に電子移動層を設けた構造でもよい。

以下、本発明の有機電界発光素子について更に 算績に説明する。

どによるもので、常温では一重項、三重項とも 18'~18' 秒 つのオーダーである。このため、な 温では蛍光はよく観察されるが、リン光は観察さ れないのが普遍である。

ところで、関体結晶のように有機色素が凝集した状態では、 時起した有機色素が凝集を子(エキ・シトン)となり、その動品を含えられている。そのでエネルギー移動できる範囲に不能物や格子欠を開発してある。この範囲に不能物や格子欠を有いてある。このを観点に不らいないである。このに、ガスや検索されなくない。 大手 第 5 が 報告 ない は 変 光が 観察 されなくない は で も 、 の は この た か で も 。

また、関体額条状態では助起状態にある分子が 隣接した分子と多量体化(一般には二量体(エキサイマー)化)してエネルギー的に安定状態にな ることが知られている。これはエネルギー移動が

#### 特間平2~261889(5)

からんだ一種の発光性トラップである。 前述した ように、前記状態の色素分子は二量体又は多量体 すると安定となり、その発光被長は、 額立した時 記状態の色素分子からの発光被長よりも長波長側 ヘシフトする。

以上をまとめると、①常温では最起三重項状態からの発光過程(リン光)が生じにくいため、理論発光効率が低下する。②助起エネルギー移動が生じる過程で18<sup>9</sup> ~10<sup>9</sup> 個分子に1個の割合でも非発光サイトが存在すると、発光が観測されない。③励起状態にある分子が多量体化して安定になると、発光波長が長波長側へシフトする。これらが風図となって、有機電界発光電子の実現を困難にしていた。

これに対して、本発明では、第1の有機色素中に第2の有機色素を分散させることにより、これらの問題を解消して発光効率を向上することができる。

すなわち、①については、常義でもリン光が観 減される有機色素があり、これを第2の有機色素

第2の有機色素自体に②、③の問題が生じるので、 これを適当な適度に抑え、第2の有機色素を基立 状態にする必要がある。

木発明において、第1の有機色素(A)に対す る気2の有機色素(B)の製合を10モル%以下。 つまり B / (A + B) ≤ 8.1 としたのは次のよう な理由による。すなわち、第1の有機色素中に第 2の有機色素を分散させ、前述したように動起状 姓の第1の有難色素からエネルギーを受け取って 第2の有機色素が最起するようにすれば、孤立し た騎起状態の第2の有線色素からの発光が得られ ると考えられる。本発明者らの実験によれば、第 1の有機色素に対する第2の有機色素の割合が19 モル%を超えると、満起した第2の有額色素が二 量体化又は多量体化する確率が大きくなり、この 場合発光被長は孤立した第2の有観色素からの発 光よりも長波長側ペシフトする。第1の有級色素 に対する第2の有機色素の割合は、0.1~1モル %の範囲であることがより望ましい。

このような本発明の有機電昇発光素子は、発光

として用いることにより、第1の有機色素の動起 三重項状態のエネルギーを効率よく利用すること ができる。このような有機色素としては、カルボ ニル基を有するもの、水素が重水素に関換されて いるもの、ハロゲンなどの重元素を含むものなど がある。これらの関接基はいずれもリン先発光速 度を進め、非発光速度を低下させる作用を有する。 ただし、このような有機色素ので違切ではない。

②については、非発光サイトより高級皮で第2の有機色素を分散させることにより、助起状態、特に助起一重項状態の第1の有機色素からのエネルギーが非発光サイトへ移動するのを防止し、第2の有機色素へのエネルギー等曲により効率よく発光させることができる。

②についても関係であり、動起状態の第1の有機色素が多量体化して安定になる前に、第2の有機色素へのエネルギー多動により効率よく発光させることができる。

ただし、第2の有機色素の製合が大きくなると、

物率が高く、しかも孤立した胎起状態の第2の有機色素からの発光被長等性が得られ、素子の発光 色に関する設計が容易となる。

### (実施門)

以下、本発明の実施例を説明する。

第1間に本発明に係る有機電界発光素子の構成 関を示す。第1間において、ガラス基板1上には 1 T O 電腦2、正孔移動器(T P D) 3、第1の 有機色素としてアントラセン及び第2の有機色素 としてペリレン、テトラセン、又はペンテセンか らなる発光層4、電子移動脈(P V) 5、及び A 2 電腦6が順次形成されている。また、1 T O 電腦2とA 2 電腦6との間には直旋電瓶7が接続 される。

【Tの電腦 2 はスパック技により形成された。 正孔移動態 3 、発光器 4 、電子移動器 5 は、有機 化合物を真空昇率することにより形成され、それ ぞれの類単は 8.5 ~ 1 m である。 A 2 電極 6 は真 空霊者法により形成された。

このうち、発光層4は以下のようにして形成さ

## 特閒平2-261889(6)

第1間の親戚で、1TO電腦2をブラス種、 A2電腦6をマイナス版として直旋電圧を印無し、 電波量を確定するとともに、ガラス基板1側で発 光スペクトル及びその強度を制定した。

その抽景、直流電圧88Vで5mA/cm<sup>®</sup>の電液が流れ、最大算度5000cd/m<sup>®</sup>が得られた。また、発光スペクトルはそれぞれペリレン、テトラセン、又はペンタセンの孤立した動配一盤項から

も孤立した動起状態の第2の有機色素からの発光 被長棒性が得られ、素子の発光色に関する設計が 容易となる。

### 4. 西面の簡単な説明

第1回は本発明の実施例における有機電界発 光素子の構成器、第2回は本発明の実施例におけ る有機電界発光素子の吸収スペクトルを示す面、 第3回は本発明の実施例における有機電界発光素 子のアントラセン中のペリレンの脈細量と発光強 度との関係を示す図、第4回は比較何の有機電界 発光素子の吸収スペクトルを示す図である。

1 …ガラス基板、2 … I T O 電板、3 … 正孔 砂動脂、4 … 発光層、5 …電子砂動脂、6 … A g 電板、7 …直旋電車。 の発光が主であった(第2個)。また、発光層としてアントラセン中にペリレンを分散させたものを用いた素子について、ペリレンの添加量と発光強度との関係を第3個に示す。第3回から、ペリレンの振加量は 8.1 ~1 モル%の範囲が最適であることがわかる。

比較のために、発光層がアントラセンのみからなる常子、及びペリレンのみからなる常子をそれぞれ作戦し、前記と関係の測定を行った。

その結果、直流電圧 8.6 V のとき、輝度はわずかに 1.6 8 c d / m 2 であった。また、発光スペクトルについては、アントラセン発光層を有する素子では青色発光を示したが、ペリレン発光層を有する素子では青色発光は得られず、熱起状態二量体からの複色発光となった。

#### [元明の効果]

以上詳述したように本海明の有機電界発光素子は、発光器として第1の有機色素に第2の有機 色素を10モルが以下の割合となるように分散させたものを用いているので、発光効率が高く、しか





**夢 2 図** 

出版人代理人 弁理士 炸江武彦



#### 手統補正書

平成元年 10月12日

# 特許庁長官 吉田文 蒙 雅

1 東鉄の東谷

特惠平1-83568年

2. 発明の女士

模型界级光索子

3. 補正をする4

事件との関係 特許出額人

(807) 株式会社 亩罗

A # = 1

東京都千代田区賞が開3丁目7番2号 〒 100 電話 03 (502) 3181 (大代表)

弁理士 弟 江 黄 童

自発補正



----

, ---



第 3 図



第 4 国

# 7. 雑正の内容

- (1) 明細智第5頁第8行に「多量体」とあるを、 「多量体化」と訂正する。
- (2) 羽額音第15頁第2行に「多量体」とある を、「多量体化」と訂正する。
- (3) 明報書第15頁第6行の「①」から第8行の「低下する。」までの文を削除する。
- (4) 明細書第15頁第8行に「②」とあるを、
- 「O」と訂正する。
- (5) 明知者第15頁第11行に「②」とあるを、「②」と打正する。
- (8) 明細書第15頁第19行の「すなわち、」から第16頁第9行の「適切ではない。」までの文を削除する。
  - (7) 明朝書第16頁第10行に「②」とあるを、
- 「①」と訂正する。
- (4) 明報書第16頁第16行に「②」とあるを、「②」と打正する。
- (9) 明朝書第17頁第1行に「②、③」とある を、「①、②」と訂正する。

(10)明編書第18頁第14行の後に下記の文を m み ナ る。

#### 2

正孔参斯層を構成するTPD、電子参助層を構成するPVはそれぞれ下記の構造式で変わされる。



