CSE7850/CX4803 Machine Learning in Computational Biology

Lecture 7: Neural Networks

Yunan Luo

Recap: "Recipe" of (supervised) machine learning

Dataset

$$\mathcal{D} = \{(x^{(i)}, y^{(i)}) \mid i = 1, 2, \dots, n\}$$

Model

$$\hat{y} = f_{\theta}(x)$$

- Optimization
 - Fit the model parameters on the dataset
- Predictions
 - Apply the model to predict for new data samples

$$\hat{y}_{\text{new}} = f_{\theta}(x_{\text{new}})$$

Recap: "Recipe" of (supervised) machine learning

Dataset

$$\mathcal{D} = \{(x^{(i)}, y^{(i)}) \mid i = 1, 2, \dots, n\}$$

Model

$$\hat{y} = f_{\theta}(x)$$

- Optimization
 - Fit the model parameters on the dataset
- Predictions
 - Apply the model to predict for new data samples

$$\hat{y}_{\text{new}} = f_{\theta}(x_{\text{new}})$$

- So far: linear regression, logistic regression, SVM, decision tree
- Today: a new class of models (Neural Networks)

Neural networks are building blocks for complex Al algorithms

Alpha Fold (2018-2021)

SOpenAI **ChatGPT: Optimizing** Language Models for Dialogue We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to <u>InstructGPT</u>, which is trained to follow an instruction in a prompt and provide a detailed response.

Alpha Go (2016)

ChatGPT (2022)

Logistic regression

$$y = f_{\boldsymbol{w}}(\boldsymbol{x}) = \sigma(\boldsymbol{w}^T \boldsymbol{x})$$

where
$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Linear regression

$$y = f_{oldsymbol{w}}(oldsymbol{x}) = \sigma(oldsymbol{w}^Toldsymbol{x})$$
 where $\sigma(a) = a$

Neural network

Neural network

(Artificial) Neuron

A neuron computes an output using the inputs and a set of functions

Inspired by biological neural networks

Inspired by biological neural networks

Each neuron receives input signals from its dendrites

Inspired by biological neural networks

- Each neuron receives input signals from its dendrites
- If input signals are **strong enough**, neuron **fires output** along its axon, which connects to the dendrites of other neurons.

Computation in an Artificial Neuron

More formally, we say that a neuron is a model $f:\mathbb{R}^d o [0,1]$, with the following components:

- Inputs x_1, x_2, \ldots, x_d , denoted by a vector x.
- Weight vector $w \in \mathbb{R}^d$ that modulates input x as $w^{ op}x$.
- An activation function $\sigma:\mathbb{R}\to\mathbb{R}$ that computes the output $\sigma(w^{\top}x)$ of the neuron based on the sum of modulated features $w^{\top}x$.

Activation function

Example 1: Step function

$$\sigma(z) = \begin{cases} 1 & z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Recall in bio neurons: If input signals are **strong enough**, neuron fires an output

Activation function

Example 2: Logistic function

$$\sigma(z) = rac{1}{1 + \exp(-z)}$$

Recall in bio neurons: If input signals are **strong enough**, neuron fires an output

Biological and Artificial Neurons

Biological neuron

- Each neuron receives input signals from its dendrites
- If input signals are strong enough, neuron fires output along its axon, which connects to the dendrites of other neurons.

Artificial neuron

- Dendrite j gets signal x_j ; modulates multiplicatively to $w_j \cdot x_j$.
- The body of the neuron sums the modulated inputs: $\sum_{j=1}^d w_j \cdot x_j$.
- These go into the activation function that produces an ouput.

Neural Networks: Intuition

 A neural network is a directed graph in which a node is a neuron that takes as input the outputs of the neurons that are connected to it.

Networks are typically organized in layers.

A neural network layer is a model $f: \mathbb{R}^d \to \mathbb{R}^p$ that applies p neurons in parallel to an input x.

$$f(x) = egin{bmatrix} \sigma(w_1^ op x) \ \sigma(w_2^ op x) \ dots \ \sigma(w_p^ op x) \end{bmatrix}.$$

where each w_k is the vector of weights for the k-th neuron. We refer to p as the size of the layer.

The first output of the layer is a neuron with weights w₁

The second neuron has weights w₂

The second neuron has weights w₃

The parameters of the layer are w₁, w₂, and w₃

By combining the w_k into one matrix W, we can write in a more succinct vectorized form:

$$f(x) = \sigma(W \cdot x) = egin{bmatrix} \sigma(w_1^ op x) \ \sigma(w_2^ op x) \ dots \ \sigma(w_p^ op x) \end{bmatrix},$$

where $\sigma(W \cdot x)_k = \sigma(w_k^ op x)$ and $W_{kj} = (w_k)_j$.

Visually, we can represent this as follows:

A neural network can have multiple hidden layers

Two layers (one hidden layer + one output layer):

A neural network can have multiple hidden layers

Three layers (two hidden layers + one output layer):

A neural network can have multiple hidden layers

Four layers (three hidden layers + one output layer):

Neural Networks: Notation

A neural network is a model $f: \mathbb{R}^d \to \mathbb{R}$ that consists of a composition of L neural network layers:

$$f(x) = f_L \circ f_{L-1} \circ \ldots f_l \circ \ldots f_1(x).$$

The final layer f_L has size one (assuming the neural net has one outut); intermediary layers f_l can have any number of neurons.

The notation $f\circ g(x)$ denotes the composition f(g(x)) of functions.

We can visualize this graphically as follows.

Terminology

- Neural network is a broad concept, but this type of neural network is also known as
 - Fully connected neural networks
 - Multi-layer perceptron (MLP)
- The layers of MLP are often called "linear layers" or "dense layers" in popular deep learning packages
- We will cover other types of "neural networks" in this course, which all use MLP layer as building blocks:
 - Convolutional neural networks (CNN), Recurrent neural networks (RNN), Graph neural networks
 (GNN), Transformers

Suppose we already learned the weights of the neural network with sigmoid activation function.

To make a new prediction, we take in some new features (aka. the input layer) and perform the feed-forward computation.

$$.50 = 13(.1) + 2(.3) + 7(-.2)$$

 $.62 = \sigma(.50)$

$$1.4 = 13(-.4) + 2(.5) + 7(.8)$$

.80 = $\sigma(1.4)$

$$.29 = .62(-.7) + .80(.9)$$

.57 = $\sigma(.29)$

$$.50 = 13(.1) + 2(.3) + 7(-.2)$$
 $1.4 = 13(-.4) + 2(.5) + 7(.8)$ $.29 = .62(-.7) + .80(.9)$ $.62 = \sigma(.50)$ $.80 = \sigma(1.4)$ $.57 = \sigma(.29)$

- In this example, we assumed that we already learned the weights of the neural network.
- In practice, we have to learn to assign "useful" values to those weights such that the output value is close to the desired target value

Design Space of Neural Networks

Design decisions to make for building an NN

- # of hidden layers (depth)
- # of units per hidden layer (width)
- Type of activation function (nonlinearity)
- Form of objective function
- How to initialize the parameters

Activation functions

Activation function

Logistic function

$$\sigma(z) = rac{1}{1 + \exp(-z)}$$

Recall in bio neurons: If input signals are **strong enough**, neuron fires an output

Activation function

Hyperbolic tangent function (tanh)

$$\sigma(z) = \tanh(z)$$

Recall in bio neurons: If input signals are **strong enough**, neuron fires an output

Activation function

Rectified linear unit (ReLU)

$$\sigma(z) = \max(0,z)$$

* ReLU and its variants are widely used in modern deep neural networks

Recall in bio neurons: If input signals are **strong enough**, neuron fires an output

Loss functions & Output layers

Neural Network for Classification

Neural Network for Regression

Objective functions

Regression loss:

- We can use the same objective as Linear Regression
- i.e., mean squared error (MSE)

$$J = \ell_Q(y, y^{(i)}) = \frac{1}{2}(y - y^{(i)})^2$$

(Binary) Classification loss:

- We can use the same objective as Binary Logistic Regression
- a.k.a. Binary Cross-Entropy loss
- This requires our output y to be a probability in [0,1]

$$J = \ell_{CE}(y, y^{(i)}) = -(y^{(i)}\log(y) + (1 - y^{(i)})\log(1 - y))$$

Multi-class classification

Multi-class classification

Softmax:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$

Objective functions

(Multi-class) Classification loss:

Let y⁽ⁱ⁾ represent our true label as a one-hot vector:

Assume our model outputs a length K vector of probabilities:

$$y \ = \ f_{ heta}(x)_k = \sigma(heta_k^ op x)_k = rac{\exp(heta_k^ op x)}{\sum_{l=1}^K \exp(heta_l^ op x)},$$

The loss of a single training sample (x⁽ⁱ⁾, y⁽ⁱ⁾):

$$J = \ell_{CE}(\mathbf{y}, \mathbf{y}^{(i)}) = -\sum_{k=1}^{K} y_k^{(i)} \log(y_k)$$

How to optimize an NN?

Backpropagation

Calculus review: Chain Rule

Given:

$$\boldsymbol{y} = g(\boldsymbol{u})$$
 and $\boldsymbol{u} = h(\boldsymbol{x})$

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k} \qquad \forall i, k$$

Calculus review: Chain Rule

Given:

$${m y}=g({m u})$$
 and ${m u}=h({m x})$

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k} \qquad \forall i, k$$

Backpropagation is just repeated application of the **chain rule**

• Consider billiards as an example

Backpropagation in Logistic Regression

In gradient descent, we need to compute

$$\frac{\partial J}{\partial \theta_j}$$

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backpropagation in Logistic Regression

In gradient descent, we need to compute

$$\frac{\partial J}{\partial \theta_i} = \frac{\partial J}{\partial y} \cdot \frac{\partial y}{\partial a} \cdot \frac{\partial a}{\partial \theta_i}$$

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backpropagation in Logistic Regression

In gradient descent, we need to compute

$$\frac{\partial J}{\partial \theta_i} = \frac{\partial J}{\partial y} \cdot \frac{\partial y}{\partial a} \cdot \frac{\partial a}{\partial \theta_i}$$

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{L} \theta_j x_j$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a) + 1)^2}$$

$$\frac{dJ}{d\theta_j} = \frac{dJ}{da} \frac{da}{d\theta_j}, \ \frac{da}{d\theta_j} = x_j$$

In gradient descent, we need to compute

$$\frac{\partial J}{\partial \alpha_{ij}} \qquad \frac{\partial J}{\partial \beta_{i}}$$

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$
$$y = \frac{1}{1 + \exp(-b)}$$
$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

In gradient descent, we need to compute

$$\frac{\partial J}{\partial \alpha_{ij}}$$
 $\frac{\partial J}{\partial \beta_{i}}$

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-b)}$$

$$dJ = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{1}{(1 - y^*)}$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{1}{(1 - y^*)}$$

$$\frac{dJ}{db} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = \frac{1}{(1 - y^*)}$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$$

Loss
$$J = y^* \log y + (1 - y^*) \log(1 - y) \quad \frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$
 Sigmoid
$$y = \frac{1}{1 + \exp(-b)} \qquad \frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \quad \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$
 Linear
$$\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \quad \frac{db}{dz_j} = z_j$$
 Sigmoid
$$z_j = \frac{1}{1 + \exp(-a_j)} \qquad \frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \quad \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$
 Linear
$$\frac{dJ}{dx_i} = \sum_{j=0}^{M} \alpha_{ji} x_i \qquad \frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \quad \frac{da_j}{d\alpha_{ji}} = x_i$$
 Linear

Gradient Descent

Now we know how to compute the gradient

$$abla_{ heta}J(heta) = egin{bmatrix} rac{\partial heta_0}{\partial J(heta)} \ rac{\partial J(heta)}{\partial heta_1} \ rac{\partial J(heta)}{\partial heta_d} \end{bmatrix}$$

We can run gradient descent to optimize the neural network

$$\theta^{(t)} = \theta^{(t-1)} - \alpha \cdot \nabla J(\theta^{(t-1)})$$

Revisit Gradient Descent

- 1. Start with an initial guess $\theta^{(0)}$ and set t = 0
- 2. While Termination Criterion is not satisfied
 - a. Compute the gradient

$$abla_{ heta}J(heta) = egin{bmatrix} rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ rac{\partial J^{(i)}(heta)}{\partial heta_1} \ \end{pmatrix} = rac{1}{n} \sum_{i=1}^n \left(f_{ heta}(x^{(i)}) - y^{(i)}
ight) \cdot x^{(i)}$$

- b. Update θ : $\theta^{(t)} = \theta^{(t-1)} \alpha \cdot \nabla J(\theta^{(t-1)})$
- c. Increment t: t = t + 1
- 3. Output $\theta^{(t)}$

Revisit Gradient Descent

- 1. Start with an initial guess $\theta^{(0)}$ and set t = 0
- 2. While Termination Criterion is not satisfied
 - a. Compute the gradient

$$abla_{ heta}J(heta) = egin{bmatrix} rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J^{(i)}(heta)}{\partial heta_1} \ \end{pmatrix} = egin{bmatrix} rac{1}{n} \sum_{i=1}^n \left(f_{ heta}(x^{(i)}) - y^{(i)}
ight) \cdot x^{(i)} \ rac{\partial J^{(i)}(heta)}{\partial heta_1} \ rac{\partial J^{(i)}(heta)}{\partial heta_1} \ \end{pmatrix}$$

- b. Update θ : $\theta^{(t)} = \theta^{(t-1)} \alpha \cdot \nabla J(\theta^{(t-1)})$
- c. Increment t: t = t + 1

- Need to go over all data samples
- Inefficient: O(Nd) time, where d is #features
- What if the training set has 10⁶ images?

3. Output $\theta^{(t)}$

Stochastic Gradient Descent

- 1. Start with an initial guess $\theta^{(0)}$ and set t = 0
- 2. While Termination Criterion is not satisfied
 - a. Randomly sample a data sample (**x**⁽ⁱ⁾, **y**⁽ⁱ⁾)
 - b. Compute the pointwise gradient

$$abla_{ heta}J(heta) = egin{bmatrix} rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ rac{\partial J(heta)}{\partial heta_1} \ rac{\partial J^{(i)}(heta)}{\partial heta_1} \ \end{pmatrix} = rac{1}{n} \left(f_{ heta}(x^{(i)}) - y^{(i)}
ight) \cdot x^{(i)}$$

- c. Update θ : $\theta^{(t)} = \theta^{(t-1)} \alpha \cdot \nabla J(\theta^{(t-1)})$
- d. Increment t: t = t + 1
- 3. Output $\Theta^{(t)}$

Stochastic Gradient Descent

- 1. Start with an initial guess $\theta^{(0)}$ and set t = 0
- 2. While Termination Criterion is not satisfied
 - a. Randomly sample a data sample (**x**⁽ⁱ⁾, **y**⁽ⁱ⁾)
 - b. Compute the pointwise gradient

$$abla_{ heta}J(heta) = egin{bmatrix} rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J^{(i)}(heta)}{\partial heta_d} \ \end{pmatrix} = egin{bmatrix} egin{pmatrix} f_{ heta}(x^{(i)}) - y^{(i)} \end{pmatrix} \cdot x^{(i)} \ dots \ rac{\partial J^{(i)}(heta)}{\partial heta_d} \ \end{pmatrix}$$

- c. Update θ : $\theta^{(t)} = \theta^{(t-1)} \alpha \cdot \nabla J(\theta^{(t-1)})$
- d. Increment t: t = t + 1
- 3. Output $\theta^{(t)}$

Stochastic Gradient Descent vs. Gradient Descent

Mini-batch Stochastic Gradient Descent

- 1. Start with an initial guess $\theta^{(0)}$ and set t = 0
- 2. While Termination Criterion is not satisfied
 - a. Randomly sample a batch of data samples (with size m << n), $\{({m x}^{(i)}, {m y}^{(i)})\}_{i=1}^m$
 - b. Compute the batch-wise gradient

$$abla_{ heta}J(heta) = egin{bmatrix} rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ rac{\partial J(heta)}{\partial heta_1} \ rac{\partial J^{(i)}(heta)}{\partial heta_1} \ \end{pmatrix} = rac{1}{m} \sum_{i=1}^m \left(f_{ heta}(x^{(i)}) - y^{(i)}
ight) \cdot x^{(i)}$$

- c. Update θ : $\theta^{(t)} = \theta^{(t-1)} \alpha \cdot \nabla J(\theta^{(t-1)})$
- d. Increment t: t = t + 1
- 3. Output 0^(t)

- *m* is called "batch size"
- SGD and Mini-batch SGD are terms used interchangeably in the literature

Conclusions

- Neural Networks
 - Multi-layer architecture
 - Nonlinear transformation (activation function)
- Design space of NN
- Backpropagation
- Stochastic Gradient Descent