

On etuche in nound (baneau) numerate i. ∑ M<sub>(0≥)</sub> = C (-θ<sub>i</sub> + θ<sub>i-1</sub>) + ( ∈θ<sub>i</sub> + Θ<sub>i+n</sub>) en effet, le soul moment subiest color des 2 bouts de câble de torsion, assairs aux mediles i-1 et i +1.  $TMC: J\ddot{\theta} = \sum_{i \neq j} M_{02i} = C(\sqrt{i} + \theta_{i-1} + \theta_{i+1})$ (On solcommit le soine type d'équetion pulavec une chaine de sussents avec  $m \to T$ ,  $k \to C$  et  $\xi \to \theta$ .) 2. Avec  $\theta_i = \theta(z)$ :  $\theta_{i-1} = \theta(z-k) \ell \theta_{i+1} = \theta(z+k)$ Vanc:  $\theta(z) + \frac{c}{T}(2\theta(z) - \theta(z-k) - \theta(z+k)) = 0$ . 3.  $\theta_i(x,t) = A(\alpha x)(wt - kx_i)(\text{fase d'order programmes})$  $\theta_i(x_i,t) = -\omega^2\theta_i(x_i,t)$ On note  $\theta_i = A e^{i[\omega t - kz_i]} tg \theta_i = Re(\theta_i)$ .

Alow  $\theta_{i+1} = A e^{i[\omega t - kz_i - kh]} = \theta_i e^{-ikh}$ et  $\theta_{i-1} = \theta_i e^{ikh}$ . Letuc denet - w = = = = (ikh - ikh ) \( \text{i} \) Done -w2 = 2 = (cos(kh)-1). =-4 = mi(\frac{kh}{2}) 4. Milieu non dispessif => spredepend de lu fréqueu ie. w => w 2 ~ k2

On, w2 ~ sin2 ( h k), done, mix à part pour h k << 1, le milieu est dispersif. 5.  $rg = \frac{dw}{dh} = \frac{d}{dh} \left( 2\sqrt{\frac{c}{r}} \sin\left(\frac{hh}{2}\right) \right) = h \sqrt{\frac{c}{r}} \cosh\left(\frac{hh}{2}\right)$  $= h\sqrt{\frac{c}{\tau}} \cdot \sqrt{1-\sin^2\left(\frac{hh}{2}\right)} = h\sqrt{\frac{c}{\tau}} \cdot \sqrt{1-\frac{\sigma}{4c}} \omega^2$  $\frac{h}{2}\sqrt{4\frac{c}{J}} - u^{2}$   $\int \sqrt{g(u^{2})} \qquad \int \sqrt{g(u^{2})$ 6. h << a => D'après 4., le milien est non digerif => passage à la limite continue: Ö- CK 0'=0: D) Alembert. 7. a ajort un frattenert Frattener = -b- à és => Tradents(02) = -2(2a). It is le signe est correct: 6>0

les 2

hus de lavie jour la foice de

longue module

-4 a b - 6. Jackmets < 0 Nowear TMC: J & = c (\theta\_{i-1} + \theta\_{i+1} - 2\theta\_i) - 4ab \theta\_i.

