

Crop Production Analysis in India

Project Report By: Aadithya Ram

Project Details

Project Title	Crop Production Analysis in India
Technologies	Data Science
Domain	Agriculture
Project Difficulties level	Advanced

Objectives and Problem Statement

Problem Statement

The Agriculture business domain, as a vital part of the overall supply chain, is expected to highly evolve in the upcoming years via the developments, which are taking place on the side of the Future Internet. This paper presents a novel Business-to-Business collaboration platform from the agri-food sector perspective, which aims to facilitate the collaboration of numerous stakeholders belonging to associated business domains, in an effective and flexible manner.

This dataset provides a huge amount of information on crop production in India ranging from several years. Based on the Information the ultimate goal would be to predict crop production and find important insights highlighting key indicators and metrics that influence crop production.

Make views and dashboards first and also make a story out of it.

Project Architecture

Dataset

```
[56]: # Import necessary libraries
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import matplotlib.ticker as ticker
      import plotly as px
      import seaborn as sns
      from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_squared_error, r2_score
      # Display plots inline
      %matplotlib inline
      # Load the dataset
      file_path = '/Users/aadithyaram/Desktop/cropanalysis.csv'
      data = pd.read_csv(file_path)
      # Display the first few rows of the dataset
      data.head()
[56]:
```

	State_Name	District_Name	Crop_Year	Season	Crop	Area	Production
0	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Arecanut	1254.0	2000.0
1	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Other Kharif pulses	2.0	1.0
2	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Rice	102.0	321.0
3	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Banana	176.0	641.0
4	Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Cashewnut	720.0	165.0

ETL

```
[57]: data.shape
[57]: (246091, 7)
[58]: data.columns
[58]: Index(['State_Name', 'District_Name', 'Crop_Year', 'Season', 'Crop', 'Area',
             'Production'],
            dtype='object')
     data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 246091 entries, 0 to 246090
      Data columns (total 7 columns):
           Column
                         Non-Null Count
                                          Dtype
          State_Name
                         246091 non-null object
          District_Name 246091 non-null object
          Crop Year
                         246091 non-null int64
           Season
                         246091 non-null object
           Crop
                         246091 non-null object
           Area
                         246091 non-null float64
           Production
                         242361 non-null float64
      dtypes: float64(2), int64(1), object(4)
      memory usage: 13.1+ MB
      data.isnull().sum()
[60]: State_Name
      District_Name
      Crop Year
      Season
      Crop
      Area
      Production
                       3730
      dtype: int64
```

data.	data.describe()								
	Crop_Year	Area	Production						
count	246091.000000	2.460910e+05	2.423610e+05						
mean	2005.643018	1.200282e+04	5.825034e+05						
std	4.952164	5.052340e+04	1.706581e+07						
min	1997.000000	4.000000e-02	0.000000e+00						
25%	2002.000000	8.000000e+01	8.800000e+01						
50%	2006.000000	5.820000e+02	7.290000e+02						
75%	2010.000000	4.392000e+03	7.023000e+03						
max	2015.000000	8.580100e+06	1.250800e+09						

Production Trends

Crop Distribution

Crop Production

State Wise Distribution

State Wise Distribution

State

Top Productions

Correlations

Production Trends

Top Productions

Crop Prediction

```
[74]: # Drop rows with missing values
      data = data.dropna(subset=['Production'])
      missing_values = data.isnull().sum()
      print(missing_values)
      State_Name
      District_Name
      Crop_Year
      Season
      Crop
      Area
      Production
      dtype: int64
[75]: X = data[['Crop_Year', 'Area']]
      y = data['Production']
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
      #Regression Model
      model = LinearRegression()
      model.fit(X_train, y_train)
      y_pred = model.predict(X_test)
      #Model Eval
      mse = mean_squared_error(y_test, y_pred)
      r2 = r2_score(y_test, y_pred)
      print(f'Mean Squared Error: {mse}')
      print(f'R-squared: {r2}')
      Mean Squared Error: 401500837552061.3
      R-squared: 0.00208025972940562
[76]: # Regression plot of Actual vs. Predicted Production
      plt.figure(figsize=(10, 6))
      sns.regplot(x=y_test, y=y_pred, line_kws={"color": "red"})
      plt.xlabel('Predicted Production')
      plt.ylabel('Production')
      plt.title('Regression Plot of Actual vs. Predicted Production')
      plt.show()
```

Crop Prediction

Crop Prediction

Crop Distribution

Top 10 Crop Distribution

Moong(Green Gram)

THANK YOU

Report by - Aadithya Ram

Full Code - https://github.com/Aadithya-4010002/Amazon-Sales-Data-Analytics LinkedIn - linkedin.com/in/aadiithyyya