Programmazione di Reti

Formulario

Luca Casadei - Francesco Pazzaglia - Martin Tomassi $21~{\rm maggio}~2024$

Indice

1	Rita	ardi di trasferimento	2	
	1.1	Tempo di trasmissione	2	
	1.2	Tempo di propagazione	2	
	1.3	Tempo totale	2	
	1.4	Quantità di bit presenti sul canale	3	
	1.5	Scenari Cut-Through e Store & Forward	3	
		1.5.1 Esempio con Store & Forward	3	
		1.5.2 Esempio con Cut-Through	3	
2	Round-Trip-Time (RTT)			
	2.1	Capacità di propagazione	4	
	2.2		4	
3	Effi	cienza protocolli "ARQ"	5	
		Go-back-N	5	
	3.2	Stop & Wait	5	
4	Live	ello Applicazione	6	
		Differenza di SAP per i protocolli TCP-UDP	6	
	4.2	HTTP	6	
		4.2.1 Connessioni parallele e persistenti	6	
	4.3	Distribuzione Client-server e Peer-to-peer	6	

Ritardi di trasferimento

1.1 Tempo di trasmissione

- $T_{trasmissione} = \text{Tempo di trasmissione } (s)$
- L = Lunghezza del pacchetto(bit)
- $R = \text{Frequenza} \text{ (capacità) di trasmissione (bit-rate) } (\frac{bit}{s})$

Trasferimento di un pacchetto da router ${\bf A}$ a router ${\bf B}$

$$T_{trasmissione} = \frac{L}{R}$$

1.2 Tempo di propagazione

- D = Lunghezza del collegamento (m)
- $v = \text{Velocità (ritardo) di propagazione } (\frac{m}{s})$
- $\tau =$ Tempo di propagazione (s)

Si può ricavare il tempo di propagazione:

$$\tau = \frac{D}{v}$$

Nel caso della suddivisione del canale in n sotto-canali e considerando la lunghezza del canale totale D:

$$\tau_n = \frac{\tau}{n}$$

1.3 Tempo totale

Si ricava da:

$$T_{tot} = \tau + T_{trasmissione} + T_{accodamento} + T_{elaborazione}$$

1.4 Quantità di bit presenti sul canale

Si ricava attraverso:

 $L = R * T_{propagazione}$

1.5 Scenari Cut-Through e Store & Forward

1.5.1 Esempio con Store & Forward

Consideriamo n elementi trasmissivi, avremmo n tempi di tramissione:

 $n * T_{trasmissione}$

Consideriamo ora k elementi che introducono latenza per accodamento e ritrasmissione, otteniamo:

 $k * T_{accodamento}$

Con tempo di propagazione fisico τ

 $T_{totale} = n * T_{trasmissione} + k * T_{accodamento} + \tau$

1.5.2 Esempio con Cut-Through

In questo caso si considera il tempo di accodamento del solo header e non di tutto il pacchetto, sapendo che per trasmettere un pacchetto trascurando eventuali tempi di elaborazione è: $T_H + (T - T_H)$, da questo si ottiene che con header H:

 $T_{totale} = n * T + k * T_H + \tau$

Round-Trip-Time (RTT)

2.1 Capacità di propagazione

 \bullet C=R come nella sezione precedente 1.1, è la capacità o frequenza di trasmissione.

2.2 RTT

• T_{ack} = Tempo acknowledge.

Equivale al $T_{trasmissione}$ più tutti i tempi di elaborazione e di accodamento $T_{accodamento}$, e anche dei tempi di propagazione τ , come nella sezione precedente 1.1, ma considerando tutta la tratta da percorrere sia per l'andata che per il ritorno (in genere si ha 2τ perché va considerata la propagazione di invio e ricezione.).

 $RTT = T_{trasmissione} + 2\tau + T_{ack}$

Efficienza protocolli "ARQ"

- MSS = Maximum segment size (equivalente a L) 1.1.
- \bullet SSTRESH = Segment size threshold (soglia).
- CWND =Congestion window.
- RCWND = Reciever congestion window.
- $T_{trasmissione} = \frac{MSS}{R}$

Dimensione del file trasferibile nella window (unità di misura MSS) = $\frac{L}{\text{CWND}}$, considerando che la conversione in MSS si ottiene facendo: $\frac{\text{RCWND}}{\text{CWND}}$ e la conversione in MSS del threshold: $\frac{\text{SSTHRESH}}{\text{CWND}}$, in generale, si ha $\frac{L(\text{byte})}{\text{CWND (byte})} = \text{MSS}$.

3.1 Go-back-N

- ullet W Numero di pacchetti della window (dimensione).
- \bullet T Tempo per pacchetto.

Dipende dal rapporto tra RTT 2 e la lunghezza della finestra NT, consideriamo il tempo di trasmissione $T_{trasmissione}$ e il tempo di propagazione τ :

Dobbiamo avere $WT \geq RTT \implies$ sviluppando i calcoli si ottiene W > x dove x è il numero di pacchetti da mandare prima dell'acknowledge per avere un'efficienza 1.

La trasmissione è continua quando $WT \geq RTT$ (discontinua quando WT < RTT)

3.2 Stop & Wait

• Efficienza $\eta = \frac{T_{trasmissione}}{T_{trasmissione} + T_{propagazione}}$

Livello Applicazione

4.1 Differenza di SAP per i protocolli TCP-UDP

Nel server UDP non esiste un socket di benvenuto, mentre in un socket TCP sono richiesti due socket per poter effettuare la connessione, per supportare quindi n connessioni simultanee, sono richiesti n+1 socket.

4.2 HTTP

- Δ = Tempo medio richiesto per inviare un oggetto sul collegamento. (In genere questo è riconducibile a 1.1)
- β = Frequenza di arrivo di oggetti al collegamento di accesso.
- $\Delta\beta$ = Intensità del traffico. (Può essere ridotta gestendo l'elaborazione in esterno, su altre reti).

Consideriamo il ritardo medio di accesso come: $\frac{\Delta}{(1-\Delta\beta)}$

4.2.1 Connessioni parallele e persistenti

Quando si trattano N connessioni parallele, il canale si divide in $\frac{1}{N}$ parti con capacità uguali, la differenza per le connessioni persistenti consiste nella possibilità di richiedere oggetti su una connessione già stabilita senza dover rieseguire la three-way-handshake (syn, ack, syn-ack).

4.3 Distribuzione Client-server e Peer-to-peer

- N = Numero di peer.
- D_{cs} = Tempo minimo di distribuzione (tempo necessario per far si che tutti gli N peer ricevano una copia del file) per un servizio client-server.
- D_{p2p} = Come il precedente ma per un servizio peer-to-peer.
- F = Dimensione del file.

 $\bullet \ u_{\rm s} =$ Velocità di uplo
ad del server.

Si ottiene: $D_{\text{cs}} = \max\{\frac{NF}{u_{\text{s}}}, \frac{F}{d_{\min}}\}$

Si ottiene: $D_{\text{p2p}} = \max \left\{ \frac{F}{u_{\text{s}}}, \frac{F}{d_{\min}}, \frac{NF}{(u_{\text{s}} + \sum_{i=1}^{N} (u_i))} \right\}$