

DIGITAL LOGIC AND CIRCUIT DESIGN (ACSE0304) UNIT-I

SESSION: 2022-23

CLASS/SEM: CSE/ IIIrd

(ODD)

Assignment Given Date: 22/09/2022 Maximum Points: 10
Assignment Submission Date: 24/09/2021
Faculty Name: Mohd Raza Faculty Mail_Id: m.raza@niet.co.in

Note: Write solution of each question in clear handwriting.

Q.	Question Statement	Pts	СО	BLOOM'S KNOWLEDGE
N.		10		LEVEL
1	Do as directed:	10	1	К3
	1. (250.5)10 = ()8= ()4			
	2. (2ED)16= ()8= ()2			
	3. Obtain the 9's and 10's complement of (864)10			
	4. (347)10 = ()2= ()8= ()5 = ()16 = () BCD			
	5. (11010111.110)2 = ()10= ()12= ()16			
2	1. Explain Hamming Code with an example	10	1	K2
	2. Construct the hamming code, if 4-bit data 1001 is transformed.			
	3. A receiver receives the hamming code 1110101, What is the correct code for even parity?			
	4. Convert 1110110 binary code into gray code.			
3	Do as directed:	10	1	К3
	1. (198)12+(12121)3= ()8			
	2. Determine the value of base x if (50)x=(203)4			
	3. Given the two binary numbers $X = 1010101$ and $Y = 1001011$, perform the subtraction X-Y using 1's complements.			
	4. Using 10's complement performs (4572)10-(2102)10.			
	5. Multiply the (135)6 and (43)6 in the given base without converting to decimal.			

	6. Given the two binary numbers $X = 11010$ and $Y = 1101$, perform the subtraction X-Y using 2's complement.			
	7. Using 9's complement perform (582)10-(1002)10			
4	What are the invalid BCD codes? Perform BCD Addition of 999 and 989.	10	1	K1
5	The solution to the quadratic equation $k^2 - 11k + 22 = 0$ are $k = 3$ and $k = 6$. What are the base of number systems?	10	1	K3
6	Simplify the expression using DEMORGAN'S THEOREM:(a(b+c)+a'b)'	10	1	K3
7	Prove that a positive-logic AND gate is a negative-logic OR gate and vice-versa	10	1	K1
8	(a) F= (A +B') (CD+E) using only NAND gates.	10	1	K2
	(b) F=A (B+CD) +BC' with only NOR gates.			
	Simplify the following Boolean expressions.			К3
	1. $F(w,x,y,z) = xy+wy'+wx+xyz$			
	2. $F(p, q, r, s) = (p'+q)(p+q+s)s'$			
	3. $F(x,y,z)=xy+xyz+xyz'+x'yz$			
	4. F(A,B,C,D)=A'C(A'BD)'+A'BC'D'+AB'C			
9	Simplify the Boolean functions	10	1	К3
	F=w'(x'y+x'y'+xyz)+x'z' (y+w) using don'tcare conditions d=w'x (y'z+yz') + wyz in (i) sum of products and (ii) product of sums using Karnaugh map.			
10	Simplify the following Boolean functions using the Karnaugh map:	10	1	К3
	1. $F(A,B,C,D)=\Pi(0,1,2,3,4,10,11)$			
	2. $F(w,x,y,z)=\Sigma m(0,1,2,4,5,12,13,14) + don't care conditions \Sigma d(6,8,9)$			
	$3.F(A,B,C,D,E)=\Sigma m(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$ using Karnaugh map.			