Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named Sets

empty set	Ø
real numbers	R
ordered pairs	${f R}^2$

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set Symbols

Meaning	Symbol
is a member	€
subset	C
intersection	

Meaning	Symbol
union	U
complement	$superscript^{C}$
set minus	\

Logic Symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	3

Function Notation

dom(F)	domain of function F
range(F)	range of function F
C_A	set of continuous functions on set A
C_A^1	set of differentiable functions on set A
$A \to B$	set of functions from A to B

Magnitude & Conjugate

For all $a, b \in \mathbf{R}$

$$|a + ib| = \sqrt{a^2 + b^2}$$
$$\overline{a + ib} = a - ib$$

For all $x, y, z \in \mathbf{C}$, we have

$$|xy| = |x||y|$$

$$|x + y| \le |x| + |y|$$

$$||x| - |y|| \le |x - y|$$

$$\overline{xy} = \overline{xy}$$

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} (\text{ for } z \ne 0)$$

$$\overline{\left(\frac{x}{y}\right)} = \frac{\overline{x}}{\overline{y}}$$

Complex Exponential

For $x, y \in \mathbf{R}$

$$e^{iy} = \cos(y) + i\sin(y)$$
$$e^{x+iy} = e^x (\cos(y) + i\sin(y))$$

For all $z_1, z_2 \in \mathbf{C}$,

$$e^{z_1+z_2} = e^{z_1}e^{z_2}$$

 $[e^{z_1} = e^{z_2}] \equiv [z_1 - z_2 = 2\pi n, n \in \mathbf{Z}]$

Argument & Polar form

For all $z \in \mathbf{C}_{\neq 0}$, there is $\theta \in \mathbf{R}$ such that

$$z = |z|(\cos(\theta) + i\sin(\theta))$$

 $\arg(z) = \theta$

We have

$$\sqrt{z} = \sqrt{|z|}(\cos(\theta/2) + i\sin(\theta/2))$$

$$z^{a} = |z|^{a}(\cos(\theta/a) + i\sin(\theta/a)) \quad \text{(for } a \in \mathbf{R})$$

$$\log(z) = \log(|z|) + i\arg(z)$$

When $\theta \in (-\pi, \pi]$, we say θ is the principle argument Arg(z); further

$$\operatorname{Arg}(z) = \operatorname{arg}(z) - 2\pi \left[\frac{\operatorname{arg}(z) - \pi}{2\pi} \right].$$

Principal Logarithm

$$\operatorname{Ln}(z) = \ln(|z|) + i\operatorname{Arg}(z).$$

The function Ln is holomorphic on $\mathbf{C} \setminus (-\infty, 0]$ and its domain is $\mathbf{C}_{\neq 0}$. Its derivative is

$$\operatorname{Ln}'(z) = \frac{1}{z}, \quad z \in \mathbf{C} \setminus (-\infty, 0].$$

Topology & Disks

For $a \in \mathbf{C}$ and $r \in \mathbf{R}_{>0}$, we define

$$D[a, r] = \{z \in \mathbf{C} | |z - a| < r\},\$$

$$D'[a, r] = \{z \in \mathbf{C} | 0 < |z - a| < r\},\$$

$$C[a, r] = \{z \in \mathbf{C} | |z - a| = r\}.$$

Let G be a subset of \mathbb{C} . We say

- z is an interior point of G provided $(\exists r \in \mathbf{R}_{>0})(D[z,r] \subset G)$.
- z is a boundary point of G provided $(\forall r \in \mathbf{R}_{>0})(D[z,r] \cap G \neq \emptyset \wedge D[z,r] \cap G^C \neq \emptyset).$
- z is an accumulation point of G provided $(\forall r \in \mathbf{R}_{>0})(D'[z,r] \cap G \neq \varnothing)$.
- *G* is *open* provided every member of *G* is an interior point of *G*.
- G is bounded provided $(\exists r \in \mathbf{R}_{>0})(G \subset D[0, r])$.

Power Series

For $z \in D[0,1]$, we have

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$$

For all $z \in \mathbf{C}$, we have

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Limits

Let G be a subset of \mathbf{C} , z_o be an accumulation point of G, and $F \in G \to \mathbf{C}$. We say F has a limit towards z_o provided

- (a) $\exists L \in \mathbf{C}$
- (b) $\forall \varepsilon \in \mathbf{R}_{>0}$
- (c) $\exists \delta \in \mathbf{R}_{>0}$
- (d) $\forall z \in D[z_o, \delta]$
- (e) we have $|F(z) L| < \varepsilon$.

Continuity

Let G be a subset of C and let $z_o \in \text{dom} F$. We say F is continuous at z_o provided

- (a) $\forall \varepsilon \in \mathbf{R}_{>0}$
- (b) $\exists \delta \in \mathbf{R}_{>0}$
- (c) $\forall z \in D[z_o, \delta]$
- (d) we have $|F(z) F(z_o)| < \varepsilon$.

Derivatives

Let G be a subset of \mathbf{C} and let z_o be an interior point of G. We say F is differentiable at z_o provided

$$\lim_{z \to z_o} \frac{F(z) - F(z_o)}{z - z_o}$$

exists.

Cauchy Reimann

Let $F(x+\mathrm{i}y)=u(x,y)+\mathrm{i}v(x,y)$. The function F is differentiable on a region G provided for all $x+\mathrm{i}y\in G$, we have

$$\begin{bmatrix} u \\ v \end{bmatrix}_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}_y$$