Model Performance Metrics

Project Name	AI POWERED NUTRITION ANALYZER	
	FORFITNESS ENTHUSIASTS	

1. Confusion Matrix

print(metrics.classification_report(test_data['label'].values, test_data['model_preds'].values))

	precision	recall	f1-score	support
0 1 2 3 4	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	157 287 160 294 157
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	1055 1055 1055

2. Accuracy - 100 %

```
[8] print(f"the accuracy is {metrics.accuracy_score(test_data['label'].values, test_data['model_preds'].values)}")
the accuracy is 1.0
```

3. Precision – 100 %

```
[11] print(f"the precision is {metrics.precision_score(test_data['label'].values, test_data['model_preds'].values, average = 'weighted')}")
the precision is 1.0
```

4. Recall – 100 %

```
[12] print(f"the recall is {metrics.recall_score(test_data['label'].values, test_data['model_preds'].values, average = 'weighted')}")

the recall is 1.0
```

5. Specificity – 100 %

- print(f"the specificity is {metrics.recall_score(test_data['label'].values, test_data['model_preds'].values, pos_label=0,average = 'weighted')}")
- the specificity is 1.0
- 6. F1-Score 100 %
 - [13] print(f"the f1 score is {metrics.f1_score(test_data['label'].values, test_data['model_preds'].values,average = 'weighted')}")

 the f1 score is 1.0