МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №2

по дисциплине: Архитектура вычислительных систем

тема: «Структура команд процессора»

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Осипов Олег Васильевич

Вариант 20

Цель работы: изучить структуру команд процессора, научиться составлять машинный код простейших команд.

Задание:

- 1. Ознакомиться с теоретическим материалом главы 2 учебника В.И. Юрова «Assembler» "Программно-аппаратная архитектура IA-32 процессоров Intel".
- 2. В соответствии с вариантом задания определить по символьному описанию команд их машинный код (для 5 команд), а также по машинному коду команд определить их символьное описание (для 2 машинных кодов).

Символьное описание команд на языке Assembler:

- 1. CMP ESP, 100
- 2. MOV BYTE PTR [EBP], 'Q'
- 3. ADD AX, [ESI]
- 4. XOR [EBX*2+ECX+2], EDX
- 5. SUB CX, AX

Машинные коды команд в 16 системе счисления:

- 1.83E8 22
- 2.8BD8

Выполнение:

• Символьное описание команд на языке Assembler:

Команда 1: СМР ESP, 100

В 16х представлении: 83FC 64

В двоичном: 1000 0011 1111 1100

Команда выполняет сравнение 32-битного регистра ESP и десятичного числа 100. Код операции данной команды $KO\Pi=100000/111$. w=1, т.к. размер операндов — 4 байт, d=1. Регистр ESP кодируется полем r/m=001, CH — полем reg=101. Операндов в памяти нет, поэтому mod=11. Построим машинный код данной команды:

KO	ЭΠ			d	W	m	1	K	O.	П	ľ	:/m	1				1(00			
1 0 0	0	0	0	1	1 1 1 1 1 1 0							0	0	1	1	0	0	1	0	0	
					F	ch							64	4h							

Таким образом, машинный код данной команды 83FC64. Размер команды – 3 байта

Kоманда 2: MOV BYTE PTR [EBP], 'Q'

Команда выполняет пересылку символа 'Q' в ячейку по адресу [EBR]. Первый операнд имеет базовую адресацию, второй – непосредственную. Данной команде SUB соответствует КОП=11000110/000. mod=00, так как поле смещения отсутствует. r/m=101 – эффективный адрес равен значению в регистре ESI. Данная команда кодируется следующим образом:

]	KC	ЭΠ				m	io I	K	О.	Π	1	r/m	1				'(Q'			
1	1	0	0	0	1	1	0	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	1
C6h											05	5h							5.	lh			

Таким образом, машинный код данной команды С64551. Размер команды – 3 байта

Команда 3: ADD AX, [ESI]

Команда выполняет сложение двойных слов из регистра AX и из памяти по адресу DS:[ESI] и запись результата в регистр AX. Первый операнд имеет регистровую адресацию, второй – базовую.

Для данной команды ADD KOП=000000. d=1, т.к. данные пересылаются из поля r/m в поле reg. Поле w=1 — пересылка двойного слова. Поле смещения отсутствует, поэтому mod=00. Регистру AX соответствует значение reg=000. r/m = 110, так как эффективный адрес задаётся в байте ESI, который добавляется к коду команды.

Префик с			KC	ЭΠ	[d	W	m]	reg	3	1	/n	ı
	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0
66h			3h							06	5h					

Таким образом, машинный код данной команды 66:0306. Размер команды – 3 байта

Kоманда 4: XOR [EBX*2+ECX+2], EDX

Команда выполняет исключающего или двойных слов из регистра EDX и из памяти по адресу DS: [EBX*2+ECX+2] и запись результата в регистр по адресу DS: [EBX*2+ECX+2]. Первый операнд имеет базово-индексную адресацию со смещением и масштабированием, второй – регистровую адресацию . Для данной команды XOR КОП=001100. d=0, т.к. данные пересылаются из поля reg в поле r/m. Поле w=1 – пересылка двойного слова. Для кодирования смещения необходимо не менее двух байт, поэтому mod=10. Регистру EDX соответствует значение reg=010. r/m = 100, так как эффективный адрес задаётся в байте SIB, который добавляется к коду команды. Поля SIB имеют значения: scale=01 (множитель 2), index=011 (EBX), base=001 (ECX). Смещение кодируется 1 байтом: 00000010b = 02h. Поля данной команды кодируются в следующей последовательности:

	J	KC	ЭΠ	-		d	w		10 1	1	:e	វ	1	r/n	1	s	C	j	inc	l	b	as	e				2	2			
)	0	1	1	0	0	0	1	0	1	0	1	0	1	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	1	0
31h						•				54	4h							59)h					•		02	2h				

Таким образом, машинный код данной команды 31545902. Размер команды – 4 байта

Команда 5: SUB CX, AX

Команда выполняет вычитание двойных слов из регистра CX и из регистра AX и запись результата в регистр CX. Первый и второй операнд имеет регистровую адресацию.

Для данной команды SUB КОП=001010. d=1, т.к. данные пересылаются из поля r/m в поле reg. Поле w=1 – пересылка двойного слова. Операндов в памяти нет, поэтому mod=11. Регистру CX соответствует значение reg=001. r/m = 000, так как соответствует регистру AX. Поля данной команды кодируются в следующей последовательности:

Префик с			KC	ЭΠ			d	W	m]	reg	5	1	/n	1
	0	0	1	0	1	0	1	1	1	1	0	0	1	0	0	0
66h		2Bh										C	3h			

Таким образом, машинный код данной команды 662ВС8. Размер команды – 3 байта

• Машинные коды команд в 16 системе счисления:

Машинный код 1: 83E8 22

Первый байт: 10000011, что соответствует операции **SUB** /**5 ib** у которой операнды располагаются в памяти или в регистрах. Разложим команду на части:

			KC	ЭΠ	[m		K	(O	П	1	:/m	1				3	2			
1	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0	1	0	0	0	1	0
83h									•		Ε	8h							22	2h	•	•	

Первый операнд имеет регистровую адресацию, второй является непосредственным операндом. Данной команде **SUB** соответствует **КОП**=10000011/101. **mod**=11, значит операндов памяти нет. **r/m**=000 соответствует регистру **AL**. Следовательно, команда имеет вид: SUB AL 32

Машинный код 2: 8BD8

Первый байт: 10001011, что соответствует операции MOV /r, это означает, что байт mod r/m команды содержит как регистровый операнд, так и операнд r/m. Разложим

команду на части:

]	KC	ЭΠ	-		d	W		10 1]	reg	3	1	:/m	1
1	0	0	0	1	0	1	1	1	1	0	1	1	0	0	0
8Bh											D	8h			

mod = 11, следовательно операндов памяти нет. w=1, значит размер данных 16 или 32 бита. D=1, значит первый операнд определяется полем reg, а второй r/m. Взаимодействие происходит с регистрами процессора. Reg=011, что соответствует регистру EBX. r/m=000, что соответствует регистру EAX. Следовательно, команда имеет вид: MOV EBX EAX.