Parallel Local Graph Clustering

Kimon Fountoulakis, joint work with J. Shun, X. Cheng, F. Roosta-Khorasani, M. Mahoney, D. Gleich University of California Berkeley and Purdue University

Based on

J. Shun, F. Roosta-Khorasani, KF, M. Mahoney. Parallel local graph clustering, VLDB 2016.

KF, X. Cheng, J. Shun, F. Roosta-Khorasani, M. Mahoney. Exploiting optimization for local graph clustering, arXiv:1602.01886v1.

KF, D. Gleich, M. Mahoney. An optimization approach to locally-biased graph algorithms, arXiv:1607.04940.

Local graph clustering: motivation

Facebook social network: colour denotes class year

Normalized cuts: finds 20% of the graph

Local graph clustering: finds 3% of the graph

Local graph clustering: finds 17% of the graph

Current algorithms and running time

Global, weakly and strongly local methods

Global methods: O(volume of graph)

The workload depends on the size of the graph

Weakly local methods: O(volume of graph)

- A seed set of nodes is given
- The solution is locally biased to the input seed set
- The workload depends on the size of the graph

Strongly local methods: O(volume of output cluster)

- A seed set of nodes is given
- The solution is locally biased to the input seed set

Global, weakly and strongly local methods

Weakly local

Strongly local

Global

We measure cluster quality using

Conductance :=

number of edges leaving cluster sum of degrees of vertices in cluster

Conductance($\{A,B\}$) = 2/(2 + 2) = 1/2Conductance($\{A,B,C\}$) = 1/(2 + 2 + 3) = 1/7

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms

We measure cluster quality using

Conductance :=

number of edges leaving cluster sum of degrees of vertices in cluster

Conductance($\{A,B\}$) = 2/(2 + 2) = 1/2 Conductance($\{A,B,C\}$) = 1/(2 + 2 + 3) = 1/7

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms

We measure cluster quality using

Conductance :=

number of edges leaving cluster sum of degrees of vertices in cluster

Conductance($\{A,B\}$) = 2/(2 + 2) = 1/2Conductance($\{A,B,C\}$) = 1/(2 + 2 + 3) = 1/7

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms

We measure cluster quality using

Conductance :=

number of edges leaving cluster sum of degrees of vertices in cluster

Conductance(
$$\{A,B\}$$
) = $2/(2 + 2) = 1/2$
Conductance($\{A,B,C\}$) = $1/(2 + 2 + 3) = 1/7$

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms

We measure cluster quality using

Conductance :=

number of edges leaving cluster sum of degrees of vertices in cluster

Conductance(
$$\{A,B\}$$
) = $2/(2 + 2) = 1/2$
Conductance($\{A,B,C\}$) = $1/(2 + 2 + 3) = 1/7$

- The smaller the conductance value the better
- Minimizing conductance is NP-hard, we use approximation algorithms

Local graph clustering methods

- MQI (strongly local): Lang and Rao, 2004
- Approximate Page Rank (strongly local): Andersen, Chung, Lang, 2006
- spectral MQI (strongly local): Chung, 2007
- Flow-Improve (weakly local): Andersen and Lang, 2008
- MOV (weakly local): Mahoney, Orecchia, Vishnoi, 2012
- Nibble (strongly local): Spielman and Teng, 2013
- Local Flow-Improve (strongly local): Orecchia, Zhu, 2014
- Deterministic HeatKernel PR (strongly local): Kloster, Gleich, 2014
- Randomized HeatKernel PR (strongly local): Chung, Simpson, 2015
- Sweep cut rounding algorithm

Shared memory parallel methods

- We parallelize 4 strongly local spectral methods + rounding
 - 1. Approximate Page Rank ---- this talk
 - 2. Nibble
 - 3. Deterministic HeatKernel Approximate Page-Rank
 - 4. Randomized HeatKernel Approximate Page-Rank
 - 5. Sweep cut rounding algorithm ---- this talk
 - · All local methods take various parameters
 - Parallel method 1: try different parameters independently in parallel
 - Parallel method 2: parallelize algorithm for individual run
 - Useful for interactive setting where tweaking of parameters is needed

Approximate Page-Rank

Personalized Page-Rank vector

	Adjacency matrix A							
	Α	В	С	D	Ε	F	G	Н
A		1	1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		
В	1		1		1 1 1 1 1 1 1			
С	1	1) - - - - - -	1))	
D		;	1	;	1	1	1	
Ε		;		1	;	†		
F			1 1 1 1 1 1	1	1 1 1 1 1 1 1	;		1
G				1	 			
Н		L				1		

Degree matrix D								
	A	В	С	D	Ε	F	G	Н
Α	2							
В		2						
C			3					
D				4				
Ε		 			1			
F						2		
G							1	
Н								1

Pick a vertex u of interest and define a vector:

$$s[u] = 1, \quad s[v] = 0 \quad \forall v \neq u$$

a teleportation parameter $0 \le \alpha \le 1$ and $W = AD^{-1}$ then the PPR vector is given by solving:

$$((1-\alpha)W + \alpha se^T)p = p \Leftrightarrow (I - (1-\alpha)W)p = \alpha s$$

R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006

Algorithm idea: iteratively spread probability mass from vector s around the graph.

- r is the residual vector, p is the solution vector
- ρ>0 is tolerance parameter

Run a coordinate descent solver for PPR until: any vertex u satisfies $r[u] \ge -\alpha pd[u]$

```
Initialize: p = 0, r = -as
```

While termination criterion is not met do

1. Choose any vertex u where r[u] < -αρd[u]

2.
$$p[u] = p[u] - r[u]$$

residual update
$$\begin{cases} 3. \text{ For all neighbours } v \text{ of } u : r[v] = r[v] + (1-\alpha)r[u]A[u,v]/d[u] \\ 4. r[u] = 0 \end{cases}$$

Final step: round the solution p using sweep cut.

Running time APPR

- At each iteration APPR touches a single node and its neighbours
 - Let supp(p) be the support of vector p at termination which satisfies $vol(supp(p)) \le 1/(\alpha p)$
 - -Overall until termination the work is: O(1/(ap)) [Andersen, Chung, Lang, FOCS, 2006]
- We store vectors p and r using sparse sets
- We can only afford to do work proportional to nodes and edges currently touched
- We used *unordered_map* data structure in STL (Standard Template Library)
- -Guarantees O(1/(ap)) work

L1-regularized Page-Rank

APPR is an approximation algorithm but what is it minimizing?

minimize
$$\frac{1-\alpha}{2} ||Bp||_2^2 + \alpha ||H(\mathbf{1}-p)||_2^2 + \alpha ||Zp||_2^2 + \rho \alpha ||Dp||_1$$

where

- B: is the incidence matrix
- Z, H: are diagonal scaling matrices

Incidence matrix B

	Α	В	С	D	E	F	G	Н
A-B	1	-1						
A-C	1		-1					
B-C		1	-1	: : : : : :			 	! ! ! ! !
C-D			1	-1				
D-E			, , , , ,	1	-1		, , , , ,	; ; ; ; ;
D-F				1		-1		
D-G				1			-1	
F-H						1		-1

KF, X. Cheng, J. Shun, F. Roosta-Khorasani, M. Mahoney. Exploiting optimization for local graph clustering, arXiv:1602.01886v1.

KF, D. Gleich, M. Mahoney. An optimization approach to locally-biased graph algorithms, arXiv:1607.04940.

Shared memory

Running time: work depth model

Work depth model: J. Jaja. Introduction to parallel algorithms. Addison-Wesley Profesional, 1992

Note that our results are not model dependent.

Model

- Work: number of operations required
- Depth: longest chain of sequential dependencies

Let P be the number of cores available.

By Brent's theorem [1] an algorithm with work W and depth D has overall running time: W/P + D.

In practice W/P dominates. Thus parallel efficient algorithms require the same work as its sequential version.

Brent's theorem: [1] R. P. Brent. The parallel evaluation of general arithmetic expressions. J ACM (JACM), 21(2):201-206, 1974

Parallel Approximate Personalized Page-Rank

While termination criterion is not met do

- 1. Choose **ALL** (instead of any) vertex u where r[u] < -αρdeg[u]
- 2. p[u] = p[u] r[u]
- 3. For all neighbours v of u: $r[v] = r[v] + (1-\alpha)/(2\deg[u])r[u]$
- 4. $r[u] = (1-\alpha)r[u]/2$
- Asymptotic work remains the same: $O(1/(\alpha\rho))$.
- Parallel randomized implementation: work O(1/(αρ)) and depth O(log(1/(αρ)).
 - Keep track of two **sparse** copies of p and r
 - Concurrent hash table for sparse sets <— important for $O(1/(\alpha\rho))$ work
 - Use atomic increment to deal with conflicts
 - Use of Ligra (Shun and Blelloch 2013) to process only "active" vertices and their edges
- Same theoretical graph clustering guarantees, Fountoulakis et al. 2016.

Data

Input graph	Num. vertices	Num. edges
soc-JL	4,847,571	42,851,237
cit-Patents	6,009,555	16,518,947
com-LJ	4,036,538	34,681,189
com-Orkut	3,072,627	117,185,083
Twitter	41,652,231	1,202,513,046
Friendster	124,836,180	1,806,607,135
Yahoo	1,413,511,391	6,434,561,035

Performance

- Slightly more work for the parallel version
- Number of iterations is significantly less

Performance

Self-relative speedup on 40 cores

Speedup on 40 cores relative to our optimized sequential code

- 3-16x speed up
- Speedup is limited by small active set in some iterations and memory effects

Network community profile plots

Friendster, 124M nodes, 1.8B edges

Yahoo, 1.4B nodes, 6.4B edges

- O(105) approximate PPR problems were solved in parallel for each plot,
- Agrees with conclusions of [Leskovec et al. 2008], i.e., good clusters tend to be small.

Rounding: sweep cut

- Round returned vector p of approximate PPR
- 1st step (O(1/(αρ) log(1/(αρ))) work): Sort vertices by non-increasing value of non-zero p[u]/d[u]
- **2nd step** (*O*(1/(ap)) work): Look at all prefixes of sorted order and return the cluster with minimum conductance,

Sorted vertices: {A,B,C,D}

Cluster	Conductance
{A}	1
{A,B}	1/2
{A,B,C}	1/7
$\{A,B,C,D\}$	3/11

Parallel sweep cut

- 1st step: Sort vertices by non-increasing value of non-zero p[u]/d[u].
 - Use parallel sorting algorithm, $O(1/(\alpha \rho) \log(1/(\alpha \rho)))$ work and $O(\log(1/(\alpha \rho)))$ depth.
- 2nd step: Look at all prefixes of sorted order and return the cluster with minimum conductance.
 - Naive implementation: for each sorted prefix compute conductance, $O((1/(\alpha \rho))^2)$.
 - We design a parallel algorithm based on integer sorting and prefix sums that takes $O(1/(\alpha\rho))$ time.
 - -The algorithm computes the conductance of ALL sets with a single pass over the nodes and the edges.

Parallel sweep cut: 2nd step

Incidence matrix B

	A	В	С	D	E	F	G	Н
A-B	1	-1						
A-C	1		-1					
B-C		1	-1					
C-D			1	-1				
D-E				1	-1			
D-F				1		-1		
D-G				1			-1	
F-H						1		-1

Sorted vertices: {A,B,C,D}

Cluster	Sum cols B	Volume	Conductance
$\{A\}$	2	2	2/2=1
{A,B}	2	4	2/4=1/2
$\{A,B,C\}$	1	7	1/7
$\{A,B,C,D\}$	3	11	3/11

- Sort vertices
- -work: *O*(1/(αρ) log(1/(αρ))), depth: *O*(log(1/(αρ)))
- Represent matrix B with a sparse set using vertex identifiers and the order of vertices
- -work: *O*(1/(αρ)), depth: *O*(log(1/(αρ)))
- Use prefix sums to sum elements of the columns
- -work: *O*(1/(αρ)), depth: *O*(log(1/(αρ)))

Parallel sweep cut: performance

Summary

- We parallelise 4 spectral algorithms for local graph clustering.
- The proposed algorithms are work efficient, i.e., same worst-case work.
- We parallelise the rounding procedure to obtain the clusters.
- Useful in interactive setting where one has to experiment with parameters.
- 3-15x faster than sequential version
- Parallelisation allowed us to solve problems of billions of nodes and edges.

Further work: distributed block coordinate descent

•Generalization to 12-regularized least-squares and kernel learning:

A. Devarakonda, KF, J. Demmel, M. Mahoney: Avoiding communication in primal and dual block coordinate descent methods (work in progress ≤ month)

- Given a positive integer k
- We reduce latency for BCD by a factor of k
- at the expense of a factor of k more work and number of words.

Thank you!