

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет»

(ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент информационных и компьютерных систем

ОТЧЕТ

по дисциплине «системы искусственного интеллекта»

Выполнил студенты группы Б9122-		
09.03.03пикд		
	Зверев Р. И.	
Проверил преподаватель		
	Бочарова В. В.	
зачтено/не зачтено		

г. Владивосток

2025 г

Оглавление

Цель работы	2
Введение	3
Конфигурации нейронных сетей	4
Сравнение архитектур	5
Заключение	7
Список литературы	8

Цель работы

Целью работы является сравнение разных конфигураций нейронной сети на подготовленном наборе данныъ из лабораторной работы №3.2.

Постановка задачи

В данной работе рассматривается задача предсказания стоимости дома с помощью разных настроек нейронной сети.

Необходимо реализовать следующие этапы и функции:

• Сравнить среднюю квадратичную ошибку (RMSE) при разных настройках нейронной сети.

Введение

В этой лабораторной работе проводится экспериментальное сравнение различных конфигураций искусственной нейронной сети для задачи прогнозирования стоимости дома на уже подготовленном наборе данных из лабораторной 3.2. Будут варьироваться архитектура (число слоёв и нейронов), функции активации, скорость обучения и приёмы регуляризации, чтобы оценить их влияние на качество предсказаний. Критерием сравнения служит среднеквадратичная ошибка (RMSE) на валидационной/тестовой выборке — модель с наименьшим RMSE признаётся наиболее удачной в рамках исследования. Результаты позволят сделать выводы о том, какие настройки нейросети лучше подходят для данной задачи и датасета.

Конфигурации нейронных сетей

Всего для данной лабораторной работы будет рассмотрено 20 архитектур нейронных сетей, которые можно разбить на 4 группы:

- 1 слой + функция активации ReLU;
- 1 слой + функция активации Sigmoid;
- 2 слоя + функция активации ReLU;
- 2 слоя + функция активации Sigmoid.

В каждой группе будет создано 5 сетей с разным количеством нейронов для каждого слоя: 64, 128, 256, 512, 1024.

Каждая сеть будет обучаться 300 эпох на нестандартизированном датасете.

Датасет разделен на тренировочную, валидационную и тестовую выборки в соотношении 70%:15%:15%. Конечная оценка RMSE показана для тестовой выборки, которую нейронная сеть не видела во время обучения.

Сравнение архитектур

Все архитектуры обучаются на одном датасете и результаты представлены в таблице:

Таблица 1. Сравнение архитектур нейронных сетей

Конфигурация	RMSE
Линейная регрессия	552142.655
64 нейрона + ReLU	485809.815
128 нейрона + ReLU	437121.293
256 нейрона + ReLU	386825.763
512 нейрона + ReLU	364463.418
1024 нейрона + ReLU	322834.233
64 нейрона + Sigmoid	557407.713
128 нейрона + Sigmoid	557395.661
256 нейрона + Sigmoid	557370.852
512 нейрона + Sigmoid	557319.526
1024 нейрона + Sigmoid	557219.947
64 нейрона + 64 нейрона + ReLU	349146.063
128 нейрона + 128 нейрона + ReLU	226708.869
256 нейрона + 256 нейрона + ReLU	202727.736
512 нейрона + 512 нейрона + ReLU	202302.593
1024 нейрона + 1024 нейрона + ReLU	200778.160
64 нейрона + 64 нейрона + Sigmoid	557402.160
128 нейрона + 128 нейрона + Sigmoid	557388.048
256 нейрона + 256 нейрона + Sigmoid	557363.827
512 нейрона + 512 нейрона + Sigmoid	557315.146
1024 нейрона + 1024 нейрона + Sigmoid	557208.479

Как видно из таблицы, с ростом параметров улучшается точность (уменьшается RMSE), но функция активации Sigmoid для этой задачи не подходит.

Также, построен график для наглядного сравнения архитектур:

Рисунок 1. Сравнение архитектур по группам

Заключение

С усложнением архитектуры нейронной сети растет ее точность, но и растет расход ресурсов для ее обучения. Двухслойная сеть по 1024 нейрона с функцией активации ReLU обучалась на CPU минут 15-20.

Точность сети обеспечивает оптимальная архитектура: баланс между точностью и ресурсами на обучение, а также, выбор функции активации.

Список литературы

1. GitHub: исходный код лабораторной работы. — URL: <u>Лабораторная</u> работа №3.6 (дата обращения: [09.10.2025]). — Текст: электронный.