Grade 12 Chemistry

Chemical Systems & Equilibrium

Class 11

Overall Expectations

- Analyze chemical equilibrium processes, and assess their impact on biological, biochemical, and technological systems
- Investigate the qualitative and quantitative nature of chemical systems at equilibrium, and solve related problems
- Demonstrate an understanding of the concept of dynamic equilibrium and the variables that cause shifts in the equilibrium of chemical systems

Chemical Equilibrium

"To what extent does the reaction happen?"

 Chemical Equilibrium = the state reached when the rates of the forward and reverse reactions are equal and the concentrations of reactants and products remain constant over time

$$N_2O_4(g) \leftrightarrows 2NO_2(g)$$

Rate of Forward = Rate of Reverse

Law of Chemical Equilibrium

 At equilibrium, there is a constant ratio between the concentrations of the products and reactants in any change

 The reaction of dinitrogen tetroxide involves both forward and reverse reactions which are elementary steps

$$N_2O_{4(g)} \Rightarrow 2NO_{2(g)}$$
colourless brown

Forward reaction: $N_2O_{4(g)} \rightarrow 2NO_{2(g)}$ Reverse reaction: $2NO_{2(g)} \rightarrow N_2O_{4(g)}$

Forward rate: $k_f[N_2O_4]$ Reverse rate: $k_f[NO_2]^2$

At equilibrium,

Foward rate = Reverse rate $k_{\rm f}[{\rm N_2O_4}] = k_{\rm r}[{\rm NO_2}]^2$

$$\frac{k_{\rm f}}{k_{\rm r}} = K_{\rm eq} = \frac{[{\rm NO_2}]^2}{[{\rm N_2O_4}]}$$

The Equilibrium Constant K_{eq}

$$aA + bB \Leftrightarrow cC + dD$$

$$K_{eq} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
Concentration of reactants

- Solids and liquids are not included because their concentrations do not change; only include concentrations of gases and aqueous solutions
- Also expressed as K_c for molar concentrations

Write the equilibrium equation for the following reactions:

- a) $N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$
- b) $CO_2(g) + C(s) \leftrightarrows 2CO(g)$
- c) $4\text{Fe(s)} + 3\text{O}_2(g) \leftrightarrows 2\text{Fe}_2\text{O}_3(s)$

- The value of K_{eq} tells you the direction the reaction favours:
 - $-K_{eq} < 10^{-3}$, reactants predominate and reaction proceeds hardly at all
 - K_{eq} from 10⁻³ to 10³, both reactants and products are present and reaction proceeds
 - $-K_{eq} > 10^3$, products predominate and reaction proceeds to nearly completion

$$N_2(g) + 3Cl_2(g) \leftrightarrows 2NCl_3(g)$$

When the 5.0L equilibrium mixture was analyzed, it was found to contain 0.0070mol of $N_2(g)$, 0.0022mol of $Cl_2(g)$ and 0.95mol of $NCl_3(g)$. Calculate the K_{eq} for this reaction.

Calculating Equilibrium Concentrations

- 1. Write the balanced equation for the reaction.
- 2. Under the balanced equation, write the:
 - I Initial concentration
 - **C** The change in concentration
 - **E** Equilibrium concentration
- 3. Substitute the equilibrium concentrations into the equilibrium equation for the reaction and solve for x

$$H_2(g) + I_2(g) \leftrightarrows 2HI(g)$$

At 700K, the K_{eq} = 57.0. If 1.00mol of $H_2(g)$ is allowed to react with 1.00mol of $I_2(g)$ in a 10.0L reaction vessel at 700K, what are the concentrations of $H_2(g)$, $I_2(g)$, $H_1(g)$ at equilibrium?

Step 1:
$$H_2(g) + I_2(g) \leftrightarrows 2HI(g)$$

Step 2:

	H ₂ (g)	I ₂ (g)	2HI(g)
Moles (mol)	1.00	1.00	0.00
Volume (L)	10.0	10.0	10.0
Concentration (M)	0.100	0.100	0.00

	H ₂ (g)	l ₂ (g)	2HI(g)
Initial (M)	0.100	0.100	0.00
Change (M)	-X	-X	+2x
Equilibrium (M)	0.100-x	0.100-x	2x

Step 3: Substitute the concentrations into the equation.

$$K_{eq} = \frac{[HI]^2}{[H_2][I_2]} = \frac{(2x)^2}{(0.100 - x)(0.100 - x)}$$

$$57.0 = \left(\frac{2x}{0.100 - x}\right)^{2}$$

$$\sqrt{57.0} = \frac{2x}{0.100 - x}$$

$$\pm 7.55 = \frac{2x}{0.100 - x}$$

$$-7.55(0.100 - x) = 2x$$

$$-0.755 = 2x - 7.55x$$

$$x = \frac{-0.755}{-5.55} = 0.136M$$

$$x = \frac{0.755}{9.55} = 0.079M$$

The value of x cannot exceed 0.10M therefore we can discard x = 0.136 M

Equilibrium Concentrations:

$$[H_2] = 0.100 - x = 0.100 - 0.079 = 0.021M$$

 $[I_2] = 0.10 - x = 0.100 - 0.079 = 0.021M$
 $[HI] = 2x = 2(0.079) = 0.158M$

$$H_2(g) + I_2(g) \leftrightarrows 2HI(g)$$

At 700K, the K_{eq} = 57.0. Calculate the concentrations of H₂(g), I₂(g), HI(g) at equilibrium if the initial concentrations are $[H_2] = 0.100M$ and $[I_2] = 0.200M$.

Step 1:
$$H_2(g) + I_2(g) \leftrightarrows 2HI(g)$$

	H ₂ (g)	I₂(g)	2HI(g)
Initial (M)	0.100	0.200	0.00
Change (M)	-X	-X	+2x
Equilibrium (M)	0.100-x	0.200-x	2x

$$K_{eq} = \frac{[HI]^2}{[H_2][I_2]}$$

$$57.0 = \frac{(2x)^2}{(0.100 - x)(0.200 - x)}$$

$$57.0 = \frac{(2x)^2}{(x^2 - 0.300x + 0.02)}$$
To solve for x, use quadratic formula
$$57.0(x^2 - 0.300x + 0.02) = 4x^2$$

$$57.0x^2 - 17.1x + 1.14 = 4x^2$$

 $53.0x^2 - 17.1x + 1.14 = 0$

$$a = 53.0$$

$$b = -17.1$$

$$c = 1.14$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{17.1 \pm \sqrt{(-17.1)^2 - 4(53.0)(1.14)}}{2(53.0)}$$

$$x = \frac{17.1 \pm 7.12}{106}$$

$$x = 0.228 \text{ and } 0.0941$$

Choose 0.0941M:

$$[H_2] = 0.100 - x = 0.100 - 0.0941 = 0.0059M$$

 $[I_2] = 0.200 - x = 0.200 - 0.0941 = 0.1059M$
 $[HI] = 2x = 2(0.0941) = 0.1882M$

Approximation with Small K_{eq}

- When K_{eq} is small compared to the initial concentration, the value of the (initial concentration x) is approximately equal to the initial concentration so you can ignore x
- Divide the smallest initial concentration by the value of $K_{e\alpha}$:
 - Answer > 500 = ignore x
 - Answer between 100-500 = maybe ignore x
 - Answer < 100 = use quadratic formula

$$N_2(g) + O_2(g) \leftrightarrows 2NO(g)$$

The chemist puts 0.085mol of $N_2(g)$ and 0.038mol of $O_2(g)$ in a 1.0L cylinder. At a certain temperature, the value of $K_{eq} = 4.2 \times 10^{-8}$. What is the concentration of NO(g) in the mixture at equilibrium?

Step 1: $N_2(g) + O_2(g) \leftrightarrows 2NO(g)$

Step 1
$$\frac{\text{Smallest initial concentration}}{K_c} = \frac{0.038}{4.2 \times 10^{-8}}$$

= 9.0×10^5

Because this is well above 500, you can ignore the changes in $[N_2]$ and $[O_2]$.

Step 2

Concentration (mol/L)	$N_{2(g)}$	+ O _{2(g)}	-	2NO _(g)
Initial	0.085	0.038		0
Change	-x	-x		+2x
Equilibrium	$0.085 - x \approx 0.085$	5 0.038 – x :	$0.038 - x \approx 0.038$	

Step 3
$$K_{\rm c} = \frac{[{\rm NO}]^2}{[{\rm N_2}][{\rm O_2}]}$$

$$4.2 \times 10^{-8} = \frac{(2x)^2}{0.085 \times 0.038}$$

$$= \frac{4x^2}{0.003\,23}$$

$$x = \sqrt{3.39 \times 10^{-11}}$$

$$= 5.82 \times 10^{-6}$$

Step 4 [NO] = 2x

Therefore, the concentration of $NO_{(g)}$ at equilibrium is $1.2\times 10^{-5}\ mol/L.$

Reaction Quotient Q

- K_{eq} is the constant at equilibrium
- Q is the constant at any point in time, not just at equilibrium
 - Q lets us predict the direction of the reaction by comparing Q and $K_{e\alpha}$

$$Q = \frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}$$

Figure 7.8 This diagram shows how Q_c and K_c determine reaction direction. When $Q_c < K_c$, the system attains equilibrium by moving to the right, favouring products. When $Q_c = K_c$, the system is at equilibrium. When $Q_c > K_c$, the system attains equilibrium by moving to the left, favouring reactants.

- If Q < K_{eq}, net reaction goes from reactants to products
- If Q = K_{eq}, no net reaction, in equilibrium
- If Q > K_{eq}, net reaction goes from products to reactants

$$2COF_2(g) \leftrightarrows CO_2(g) + CF_4(g)$$

The K_{eq} for this reaction is 2. If a 1L reaction container holds 1mol each of CO_2 and CF_4 and 0.5mol of COF_2 , how will the reaction proceed?

Le Chatelier's Principle

- If stress is applied to a reaction mixture at equilibrium, net reaction occurs in the direction that relieves the stress
- Factors:
 - Concentration of reactants or products
 - Pressure and volume
 - Temperature

Changes in Concentration

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$
 $K_c = 0.291$ at 700K

- If we increase [N₂], Le Chatelier's Principle tells us that the reaction will relieve the excess by converting the N₂ into NH₃
- If we decrease [N₂], the reaction will go from right to left to compensate for the decrease

$$N_2O_4(g)$$
 + heat \leftrightarrows 2NO₂(g)

 $[N_2O_4]$ is 3.0M and $[NO_2]$ is 1.0M

$N_2O_4(g)$ + heat \leftrightarrows 2NO₂(g) Increase [NO₂] to 2.0M at 2min

Common Ion Effect

$$Mg(OH)_2(s) \leftrightarrows Mg^{2+}(aq) + 2OH^{-}(aq)$$

- If we added NaOH to this solution, it would dissociate into Na⁺(aq) and OH⁻(aq)
- Addition of NaOH caused an increase in OH⁻, which means the concentration of the products has increased
- System will move towards the left to compensate

Change of Volume and Pressure

$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$$

- If we decrease the volume, we increase the pressure = towards the direction that decreases the number of moles of gas
- If we increase the volume, we decrease the pressure = towards the direction that increases the number of moles of gas
- If you increase the pressure by adding an inert gas, equilibrium remains unchanged

$$N_2O_4(g)$$
 + heat \leftrightarrows 2NO₂(g)
Decrease Volume

Change of Temperature

Heat can be treated like a reactant or a product

Exothermic ($\Delta H < 0$)

Reactants

→ Products + Heat

• If you increase the temperature, the system will move towards the reactants

Endothermic (ΔH>0)

Reactants + Heat

→ Products

 If you increase the temperature, the system will move towards the products

$$N_2O_4(g)$$
 + heat \leftrightarrows 2NO₂(g)
Increase temperature

Adding a Catalyst

- Recall that the catalyst lowers the activation energy thereby increasing the rate of reaction
- Because the rates of the forward and reverse reaction increase by the same factor, adding a catalyst has no effect on the equilibrium
- A catalyst only affects the time it takes to achieve equilibrium

Checkpoint

$$PCl_5(g) \leftrightarrows PCl_3(g) + Cl_2(g)$$

$$\Delta H = 56kJ$$

For the above reaction, in which direction does the equilibrium shift as a result of each change?

- a) Adding PCl₅(g)
- b) Removing Cl₂(g)
- c) Decreasing the temperature
- d) Increasing the pressure by adding helium gas
- e) Using a catalyst

 $[Co(H_2O)_6]^{2+}(aq)(pink) + 4Cl^{-}(aq) \rightleftharpoons [CoCl_4]^{2-}(aq)(blue) + 6H_2O(l)$

For the above endothermic reaction, graph the equilibrium shift as a result of the following changes:

- a) Adding H₂O(I)
- b) Adding HCl(aq)
- c) Adding Pb(NO₃)₂
- d) Ice Bath
- e) Heat Bath
- f) Catalyst

Manufacturing Ammonia

- Global production of ammonia is 100 million tonnes
 - 80% used to make fertilizers
- Originally derived from bird droppings in Peru to be used as fertilizer; scarce and expensive
- Fritz Haber experimented with the direct synthesis of ammonia

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} \quad \Delta H^{\circ} = -92 \text{ kJ/mol}$$

- As the ammonia is created under high pressure, it is removed from the reaction vessel to shift the equilibrium towards the production of more ammonia
- Haber also chose an iron catalyst that would work well for higher temperatures
- Carl Bosch designed the high pressure plant to allow for the synthesis of ammonia under high pressure
- Haber-Bosch process is used to manufacture almost all ammonia produced in the world

