CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

D. Patterson and J. Hennessy, Computer Organization and Design

So Far....

- A system and a digital system
- High level specification of a system
- Data Representation

Unsigned

Signed Magnitude

Two's Complement

Addition

- To add two two's complement numbers, simply use the "elementary school algorithm", throwing away any carry out of the MSB position
- To subtract, simply negate and add
- Problem: what if answer cannot be represented? (called overflow)
- Overflow in addition cannot occur if one number is positive and the other negative
- If both addends have same sign but answer has different sign, overflow has occurred

Examples

```
0101+0011
```

```
1101
```

```
0101 -
```

Examples

0101 5 + 3

Over flow

1 1 0 1 -3 + 1 1 1 1 -1

Clicker Question

 In which one, overflow has occurred? (numbers are presented in 2's compliment)

• E) A and D

Clicker Question

Convert (121)₄ to decimal:

- a) 481
- b) 28
- c) 25
- d) 100
- e) none

So Far....

- A system and a digital system
- High level specification of a system
- Data Representation

Next....

Binary Specification and switching functions

SWITCHING FUNCTIONS

Figure 2.7: a) BINARY COMBINATIONAL SYSTEM; b) A SWITCHING FUNCTION FOR n=3

TABULAR REPRESENTATION OF SWITCHING FUNCTIONS

$x_2x_1x_0$	$ f(x_2, x_1, x_0) $
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
1 0 0	0
1 0 1	0
1 1 0	1
111	1

2D TABULAR REPRESENTATION

	$x_2x_1x_0$							
x_4x_3	000	001	010	011	100	101	110	111
00	0	0	1	1	0	1	1	1
01	0	1	1	1	1	0	1	1
10	1	1	0	1	1	0	1	1
11	0	1	0	1	1	0	1	0

INCOMPLETE SWITCHING FUNCTIONS

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	_
1	0	0	1
1	0	1	0
1	1	0	_
1	1	1	1

SWITCHING EXPRESSIONS

- 1. Symbols 0 and 1 are SEs.
- 2. A symbol representing a binary variable is a SE.
- 3. If A and B are SEs, then
 - ullet (A)' is a SE. This is referred to as "A complement." Sometimes we use \overline{A} to denote complementation.
 - (A) + (B) is a SE. This is referred as "A OR B"; it is also called "A plus B" or "sum" due to the similarity with the corresponding arithmetic symbol.
 - $(A) \cdot (B)$ is a SE. This is referred to as "A AND B"; it is also called "A times B" or "product" due to the similarity with the corresponding arithmetic symbol.

SWITCHING ALGEBRA AND EXPRESSION EVALUATION

• Switching algebra:

two elements 0 and 1

operations +, \cdot , and '

$$E(x_2, x_1, x_0) = x_2 + x_2' x_1 + x_1 x_0'$$

The value of E for assignment (1,0,1) is

$$E(1,0,1) = 1$$

SWITCHING ALGEBRA AND EXPRESSION EVALUATION

• Switching algebra:

two elements 0 and 1

operations +, \cdot , and '

$$E(x_2, x_1, x_0) = x_2 + x_2' x_1 + x_1 x_0'$$

The value of E for assignment (1,0,1) is

$$E(1,0,1) = 1 + 1' \cdot 0 + 0 \cdot 1' = 1 + 0 + 0 = 1$$

REPRESENTING SFs BY SWITCHING EXPRESSIONS

 $E(x_2, x_1, x_0) = x_2 + x_2'x_1 + x_1x_0'$ represents f:

$x_2x_1x_0$	f
000	0
001	0
010	
011	
100	
101	
110	
111	_

	2 variables	n variables
AND	x_1x_0	$x_{n-1}x_{n-2}\ldots x_0$
OR	$x_1 + x_0$	$x_{n-1} + x_{n-2} + \ldots + x_0$
XOR	$x_1x_0' + x_1'x_0 = x_1 \oplus x_0$	
EQUIV	$x_1'x_0' + x_1x_0$	
NAND	$(x_1x_0)' = x_1' + x_0'$	$(x_{n-1}x_{n-2}\dots x_0)'=x'_{n-1}+x'_{n-2}+\dots+x'_0$
NOR	$(x_1 + x_0)' = x_1' x_0'$	$(x_{n-1} + x_{n-2} + \dots + x_0)' = x'_{n-1} x'_{n-2} \dots x'_0$

They can also be presented using tables:

ALGEBRAIC METHOD OF OBTAINING EQUIVALENT EXPRESSIONS

• MAIN IDENTITIES OF BOOLEAN ALGEBRA

1.	a + b	= b + a	ab	=ba	Commutativity
2.	a + (bc)	= (a + b)(a + c)	a(b + c)	=(ab) + (ac)	Distributivity
3.	a + (b + c)	=(a + b) + c	a(bc)	=(ab)c	Associativity
		= a + b + c		= abc	
4.	a + a	= a	aa	= a	Idempotency
5.	a + a'	=1	aa'	=0	Complement
6.	1 + <i>a</i>	=1	0a	=0	
7.	0 + a	= a	1a	= a	Identity
8.	(a')'	= a			Involution
9.	a + ab	= a	a(a + b)	= a	Absorption
10.	a + a'b	= a + b	a(a' + b)	=ab	Simplification
11.	(a + b)'	=a'b'	(ab)'	=a' + b'	DeMorgan's Law

2. a + (bc) = (a + b)(a + c) a(b + c) = (ab) + (ac) Distributivity

3.
$$a + (b + c) = (a + b) + c$$
 $a(bc) = (ab)c$ Associativity $= a + b + c$ $= abc$

4. a + a = a

aa = a Idempotency

| 6. 1 + a = 1

0a = 0

| 7. 0 + a = a

1a = a Identity

| 8.
$$(a')' = a$$

Involution

9. a + ab = a a(a + b) = a Absorption

10. a + a'b = a + b a(a' + b) = ab Simplification

 $| 11. \qquad (a + b)' = a'b'$

(ab)' = a' + b' DeMorgan's Law

00

SHOW THAT E_1 AND E_2 ARE EQUIVALENT:

$$E_1(x_2, x_1, x_0) = x_2x_1 + x_2x_1' + x_2x_0$$

 $E_2(x_2, x_1, x_0) = x_2$

.

EXAMPLE

SHOW THAT E_1 AND E_2 ARE EQUIVALENT:

$$E_1(x_2, x_1, x_0) = x_2x_1 + x_2x_1' + x_2x_0$$

 $E_2(x_2, x_1, x_0) = x_2$

$$x_2x_1 + x_2x'_1 + x_2x_0 = x_2(x_1 + x'_1) + x_2x_0$$
 using $ab + ac = a(b + c)$
 $= x_2 \cdot 1 + x_2x_0$ using $a + a' = 1$
 $= x_2(1 + x_0)$ using $ab + ac = a(b + c)$
 $= x_2 \cdot 1$ using $1 + a = 1$
 $= x_2$ using $a \cdot 1 = a$

o

SHOW THAT E_1 AND E_2 ARE EQUIVALENT: (Using a table)

$$E_1(x_2, x_1, x_0) = x_2x_1 + x_2x_1' + x_2x_0$$

 $E_2(x_2, x_1, x_0) = x_2$

Clicker Question

Which one is equal to x + y

- a) x' + y'
- b) (x . y)'
- c) (x'. y')'
- d) (xx'+x+y)
- e) cand d

Gate type	Symbol	Switching expression
NOT	$ \begin{array}{c c} x & \hline & or & z \\ x & \hline \end{array} $	z = x'
AND	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix} $ z	$z = x_1 x_0$
OR	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$ z	$z = x_1 + x_0$
NAND	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$ z	$z = (x_1 x_0)'$
NOR	$x_1 \longrightarrow z$	$z = (x_1 + x_0)'$
XOR	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix} $ z	$z = x_1 x_0' + x_1' x_0$ $= x_1 \oplus x_0$
XNOR	$\begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$ z	$z = x_1' x_0' + x_1 x_0$

Gate type	Symbol	Switching expression
AND	$ \begin{array}{c} x \\ n-1 \\ x \\ n-2 \\ x_0 \end{array} $	$z = x_{n-1} x_{n-2} \dots x_0$
OR	$ \begin{array}{c} x \\ n-1 \\ x \\ n-2 \\ x_0 \end{array} $	$z = x_{n-1} + x_{n-2} \dots + x_0$

Г

Clicker Question

Gates

Which of the following is/are a NOR gate?

e b and c