CSC 580 Principles of Machine Learning

07 Linear models for classification

Chicheng Zhang

Department of Computer Science

Classification with linear models

- Logistic loss
 - $x_i \in \mathbb{R}^d$, $y_i \in \{1, -1\}$
 - $S = \{(x_i, y_i)\}_{i=1}^n$
 - $\ell(w; x_i, y_i) = \log(1 + \exp(-y_i \cdot w^{\mathsf{T}} x_i))$
- The ERM principle, again! $\widehat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} F(w), \ F(w) \coloneqq \sum_{i=1}^n \ell(w; x_i, y_i)$
- How to optimize?

First, is it convex?

- How do we check the convexity of *F*?
 - Is $\ell(w; x_i, y_i) = \log(1 + \exp(-y_i \cdot w^T x_i))$ convex in w?
 - Observation: $\ell(w; x_i, y_i) = h(y_i \cdot w^T x_i)$ where $h(z) = \log(1 + \exp(-z))$
 - It suffices to check that h(z) is convex
 - Indeed, $h''(z) = \frac{e^{-z}}{(1+e^{-z})^2} \ge 0$

- Alternative route: check the PSD-ness of $\nabla^2 \ell(w; x_i, y_i)$
- Great! Let's solve $\nabla F(w) = 0$

Finding the minimizer of F: gradient descent

Algorithm

Input: initial point
$$w_0 \in \mathbb{R}^d$$
 step sizes $\{\eta_t\}_{t=1}^\infty$ stopping tolerence $\epsilon > 0$

For t = 1, ..., max iter

•
$$w_t \leftarrow w_{t-1} - \eta_t \cdot \nabla F(w_{t-1})$$

• stop if
$$\left| \frac{F(w_t) - F(w_{t-1})}{F(w_{t-1})} \right| \le \epsilon$$

Hyperparameters

- w_0 : set it to 0
 - warmstart possible if you have a good guess
- stepsize
 - constant scheme: $\eta_t = \eta$, $\forall t$

•
$$\eta_t = \frac{1}{\sqrt{t}}$$

•
$$\eta_t = \frac{1}{t}$$

- Line search possible
- ϵ : 10^{-4} to 10^{-7} ... more of engineering.

More iterative methods

Algorithms	Number if iterations until convergence	Time complexity per iteration
Newton's method	Very small	nd^3
LBFGS	small	nmd
Gradient descent (GD)	large	nd
Stochastic gradient descent (SGD)	Very large	d

- *n*: #training examples
- *d*: dimensionality
- *m*: LBFGS's memory hyperparameter
- Will come back to SGD in later part of this lecture

Probabilistic interpretation of logistic regression

- How did they come up with the logistic loss?
- Let us begin using 1/0 encoding for the label (then later turn into 1/-1 encoding)
- $y_i \mid x_i \sim \text{Bernoulli}(p_i)$, where $p_i = g(x_i)$
- Modeling attempt 1: $g(x_i) = w^T x_i$
- Modeling attempt 2: $g(x_i) = \sigma(w^T x_i)$, where $\sigma(z) = \frac{1}{1 + e^{-z}}$ is the sigmoid function
 - i.e. $\log \left(\frac{p_i}{1 p_i} \right) = w^{\mathsf{T}} x_i$

Probabilistic interpretation of logistic regression

Logistic regression as maximum likelihood estimation

 $y_i \mid x_i \sim \text{Bernoulli}(\sigma(w^{\mathsf{T}}x_i))$

Caveat: Logistic regression may not have a minimizer without a regularizer

- E.g.,
 - training set has only one data point

Convex Analysis at Infinity: An Introduction to Astral Space

Miroslav Dudík, Ziwei Ji, Robert E. Schapire, Matus Telgarsky

$$\widehat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} \sum_{i=1}^n \ell(w; x_i, y_i) + \lambda ||w||_2^2$$

Support Vector Machines

- In a nutshell
 - Perform regularized ERM $\widehat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} \sum_{i=1}^n \ell(w; x_i, y_i) + \lambda \|w\|_2^2$ with the loss

$$\ell(w; x, y) = (1 - y \cdot w^{\mathsf{T}} x)_{+}$$
 hinge loss

- notation: $(z)_+ := \max\{0, z\}$
- Interesting aspects
 - Works well in general
 - No corresponding probabilistic motivation
 - Geometric Interpretation: maximize the margin.

Remaining parts of the lecture

• Q1: How is the loss function motivated and how is it maximizing the margin?

Q2: How to solve the SVM optimization problem efficiently?

Next class (9/28)

- Answering
 - Q1 (geometric perspective; margin maximization)
 - Q2 (induced practical optimization algorithms; Dual of SVM)
- Kernel methods

Plan to release HW2

Assigned reading: CIML 11.1-11.2

SVM: motivation

- The goal of linear classifier: Find w so that the rule $h_w(x) = \text{sign}(w^T x)$ will have small generalization error $err(h_w)$.
- ERM: it seems natural to use the loss $1\{h_w(x) \neq y\}$, but...
 - NP-hard (e.g. Guruswami and Raghavendra, 2009)
 - There might be multiple minima. How to break ties?
- Okay, we're stuck. Let us consider a **simple problem** and then try to extend it to the generic problem.
- The simple case: <u>linearly separable data</u> (recall perceptron)

Linearly separable data

- Recall: we can minimize 0-1 loss here with a reasonable time complexity!
 - e.g., run perceptron until it classifies train set perfectly
- But, among these minimizers, which one should we pick?

• Idea: pick the hyperplane such that its distances to all training examples are far

Facts on vectors

• (Lem 1) a vector x has distance $\frac{w^{\top}x}{\|w\|}$ to the hyperplane $w^{\top}x=0$

- How about with bias? $w^Tx + b = 0$
- Let us be explicit on the bias: $f(x; w, b) = w^{T}x + b$
- recall: w is orthogonal to the hyperplane $w^Tx + b = 0$
 - why? (left as exercise)

Facts on vectors

• (Lem 2) x has distance $\frac{|w^{T}x+b|}{\|w\|}$ to the hyperplane $w^{T}x+b=0$

claim1 : x can be written as $x = x_{\perp} + r \frac{w}{\|w\|}$ where x_{\perp} is the projection of x onto the hyperplane.

claim 2: then, |r| is the distance between x and the hyperplane

Solving for r: $w^{\mathsf{T}}x + b = w^{\mathsf{T}}x_{\perp} + r\frac{w^{\mathsf{T}}w}{\|w\|} + b = r\|w\|$. this implies $|r| = \frac{|w^{\mathsf{T}}x + b|}{\|w\|}$

SVM derivation (1)

• Margin of (w, b) over all training points: $\gamma'(w, b) = \min_{i} \frac{|w^{\top}x_{i} + b|}{\|w\|}$

- Choose (w, b) with the maximum margin? .. wait, we also want it to be a perfect classifier
 - redefine it

$$\gamma(w,b) = \min_{i} \frac{y_i(w^{\mathsf{T}}x_i + b)}{\|w\|}$$

• Choose w with the maximum margin (and perfect classification)

$$(\widehat{w}, \widehat{b}) = \max_{w,b} \min_{i=1}^{n} \frac{y_i(w^{\mathsf{T}}x_i + b)}{\|w\|}$$

One more issue: still, infinitely many solutions..!

SVM derivation (2)

$$(\widehat{w}, \widehat{b}) = \max_{w,b} \min_{i=1}^{n} \frac{y_i(w^{\mathsf{T}}x_i + b)}{\|w\|}$$

- Infinitely many solutions...
- It's actually a matter of removing 'duplicates'; ∃ many (w,b)'s that actually represent the same hyperplane.

Quick solution

= achieves the smallest margin

- For any solution $(\widehat{w}, \widehat{b})$, let x_{i^*} be the <u>closest to the hyperplane</u> $\widehat{w}x_i + \widehat{b} = 0$
- Imagine rescaling $(\widehat{w}, \widehat{b})$ so that $|\widehat{w}^{\mathsf{T}} x_{i^*} + \widehat{b}| = 1$
- We can always do that, but can we find a formulation that automatically finds that modified solution?
 - add the constraint $\min_{i} y_i(w^{T}x_i + b) = 1$

SVM derivation (3)

$$\max_{w,b} \min_{i=1}^{n} \frac{y_i(w^{\top}x_i + b)}{\|w\|}$$
s. t. $\min_{i} y_i(w^{\top}x_i + b) = 1$

- Summary: the constraint encodes (1) correct classification (2) there are no two solutions that represent the same hyperplane!
 - Note: If $(\widehat{w}, \widehat{b})$ is a solution, then the margin is $\frac{1}{\|\widehat{w}\|}$

$$\max_{\substack{w,b \ ||w|| \\ s.t. \ \min_{i} y_{i}(w^{\top}x_{i}+b) = 1}} \frac{1}{\max_{\substack{w,b \ ||w|| \\ (turns out to be equivalent)}}} \max_{\substack{w,b \ ||w|| \\ (turns out to be equivalent)}} \frac{1}{\max_{\substack{w,b \ ||w|| \\ (turns out to be equivalent)}}} \frac{1}{\max_{\substack{w,b \ ||w|| \\ (turns out to be equivalent)}}}$$

$$\max_{w,b} \frac{1}{\|w\|}$$
s. t. $\min_{i} y_i(w^{\mathsf{T}}x_i + b) \ge 1$ (turns out to be equivalent..)

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t. $y_i(w^{\mathsf{T}}x_i + b) \ge 1, \forall i$

Final formulation in the linearly separable setting: (quadratic programming)

$$\min_{\substack{w,b\\ \text{s.t. } y_i(w^\top x_i + b) \ge 1, \forall i}} ||w||^2$$

SVM formulation: the nonseparable setting

$$\min_{w,b} ||w||^2$$
s.t. $y_i(w^{\mathsf{T}}x_i + b) \ge 1, \forall i$

- What if data is linearly nonseparable?
- Introduce 'slack' variables

$$\min_{w,b,\{\xi_i\geq 0\}} \lVert w\rVert^2 + C\sum_{i=1}^n \xi_i \qquad //\ C \text{ is a hyper-parameter}$$

$$s.\ t.\ \ y_i(w^\top x_i + b) \geq 1 - \xi_i, \forall i$$

- Again, a quadratic programming problem
- Fix any w, b, the optimal ξ ?

$$\xi_i = 0 \text{ if } y_i(w^{\mathsf{T}}x_i + b) \ge 1, \text{ and } \xi_i = 1 - y_i(w^{\mathsf{T}}x_i + b)$$

$$\min_{w,b} ||w||^2 + C \sum_{i=1}^n (1 - y_i(w^\top x_i + b))_+ \Leftrightarrow \text{Regularized hinge loss minimization } \lambda = \frac{1}{c}$$

Solving SVM optimization problem

Two popular methods

• Method 1: stochastic gradient descent

• Method 2: solve the *dual problem* and transform the dual solution back

Stochastic gradient descent (SGD)

- Finding $\widehat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} F(w)$, $F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$, where $f_i(w)$ is convex + quadratic, e.g. $(1 y_i \langle w, x_i \rangle)_+ + \lambda \|w\|_2^2,$ $\log(1 + \exp(-y_i \cdot w^\mathsf{T} x_i)) + \lambda \|w\|_2^2$
- Observation: gradient descent is computationally expensive
 - calculating exact gradient $\nabla F(w)$ takes at least $\Omega(n)$ time
- Key idea (Robbins-Monro'51): descend in directions that are in-expectation $\nabla F(w)$
- For t = 1, 2, ..., T:
 - Choose $i_t \sim \text{Uniform}(\{1, ..., n\})$
 - $w_{t+1} \leftarrow w_t \eta_t \nabla f_{i_t}(w)$
- Output: (1) \overline{w}_T : = $\frac{1}{T}\sum_{t=1}^T w_t$ (average iterate); (2) w_T (last iterate)

Batch Gradient Descent

Stochastic Gradient Descent

SGD: handling nondifferentiable objectives

• Hinge loss:

$$f(w) = h(w) + \frac{\lambda}{2} ||w||_2^2$$
, where $h(w) = (1 - y\langle w, x \rangle)_+$

• For some w, $\nabla h(w)$ does not exist (say, d=1)

• [Def] For convex function $h, g \in \mathbb{R}^d$ is said to be a subgradient of h at w, if for any u, $h(u) \geq h(w) + \langle g, u - w \rangle$

The set of subgradients of h at w is denoted as $\partial h(w)$

• For differentiable h, $\partial h(w) = {\nabla h(w)}$

Subgradient: intuition and properties

• Example: $h(w) = (1 - w)_{+}$,

$$\partial h(w) = \begin{cases} \{-1\}, & w < 1 \\ [-1,0], & w = 1 \\ \{0\}, & w > 1 \end{cases}$$

- (Lem) If $h(w) = l(\langle a, w \rangle + b)$ for some convex l on \mathbb{R} , and suppose $z \in \partial l(\langle a, w \rangle + b)$. Then, $az \in \partial h(w)$
 - Generalizes chain rule of differentiation
- Practical implication: For $f(w) = (1 y\langle w, x \rangle)_+$, the following vector(s) are in $\partial f(w)$ (and are thus valid descent directions):

$$\begin{cases}
-yx, & y\langle w, x \rangle < 1 \\
-uyx \text{ for } u \in [0,1], & y\langle w, x \rangle = 1 \\
0, & y\langle w, x \rangle > 1
\end{cases}$$

SGD: convergence guarantee

• (Thm) Suppose $F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$, where $f_i(w) = h_i(w) + \lambda ||w||_2^2$, and $h_i(w)$ is L-Lipschitz, then SGD with step size $\eta_t = \frac{1}{\lambda t}$ satisfies that

$$\mathbb{E}[F(\overline{w}_T)] - \min_{w} F(w) \le O\left(\frac{L^2 \log T}{\lambda T}\right),\,$$

where
$$\overline{w}_T = \frac{1}{T} \sum_{t=1}^T w_t$$

- [Def] h is said to be L-Lipschitz, if for any u,v, $|h(u)-h(v)| \leq L\|u-v\|_2$
- $\tilde{O}\left(\frac{1}{T}\right)$ rate; if target optimization precision ϵ , then $O\left(\frac{1}{T}\right) \le \epsilon \Longleftarrow T \ge O\left(\frac{1}{\epsilon}\right)$
- Larger λ , "Smoother" $h_i \Longrightarrow$ easier to optimize