Rules of Inference, Propositional Logic Keith Burgess-Jackson 16 October 2014

Implication (One-Way) Rules ("∴" =df. "therefore")					
Name	Abbreviation	Rule	Comments		
Modus Ponens	MP	p⊃q p ∴ q	Pithy statement: "Anything materially implied by a truth is true."		
Modus Tollens	MT	p⊃q ~q ∴~p	Pithy statement: "Anything that materially implies a falsehood is false."		
Hypothetical Syllogism	HS	p⊃q q⊃r ∴p⊃r	Pithy statement: "Material implication is transitive."		
Disjunctive Syllogism	DS	p ∨ q ~p ∴ q	Pithy statement: "If at least one of two propositions is true, and one of them is false, then the other is true."		
Constructive Dilemma	CD	(p ⊃ q) • (r ⊃ s) p ∨ r ∴ q ∨ s	Pithy statement: "Both of these conditionals are true; at least one of their antecedents is true; therefore, at least one of their consequents is true."		
Simplification	Simp	p • q ∴ p	Pithy statement: "Both propositions are true; therefore, each proposition is true."		
Conjunction	Conj	p q ∴ p•q	Pithy statement: "Each proposition is true; therefore, both propositions are true."		
Addition	Add	p ∴ p∨q	Pithy statement: "Any proposition may be disjoined to any proposition."		
Replacement (Two-Way) Rules ("::" =df. "is logically equivalent to")					
De Morgan's Theorems	DM	~ (p • q) :: ~p ∨ ~q ~ (p ∨ q) :: ~p • ~q	Pithy statement: "The negation of the {conjunction/disjunction} of two propositions is logically equivalent to the {disjunction/conjunction} of the negations of the two propositions."		
Commutation	Com	p \left q :: q \left p p \left q :: q \left p			

Association	Assoc	$p \lor (q \lor r) :: (p \lor q) \lor r$ $p \bullet (q \bullet r) :: (p \bullet q) \bullet r$	
Distribution	Dist	$p \bullet (q \lor r) :: (p \bullet q) \lor (p \bullet r)$ $p \lor (q \lor r) :: (p \lor q) \lor (p \lor r)$	
Double Negation	DN	p::~~p	Pithy statement: "Tildes can be added or subtracted in pairs."
Transposition	Trans	p⊃q::~q⊃~p	Note the similarity between this rule and contraposition (from categorical logic): "All S are P" :: "All nonP are nonS."
Material Implication	MI	p ⊃ q :: ~p ∨ q	To say that p materially implies q is to say that either p is false or q is true.
Material Equivalence	ME	$p \equiv q :: (p \supset q) \bullet (q \supset p)$ $p \equiv q :: (p \bullet q) \lor (\sim p \bullet \sim q)$	"Biconditional" means "two conditionals." To say that p is materially equivalent to q is to say two things: first, that p and q materially imply each other; and second, that either both are true or both are false.
Exportation	Ехр	(p • q) ⊃ r :: p ⊃ (q ⊃ r)	Example: "If it's an even- numbered year and it's November, then there are Congressional elections" is logically equivalent to "If it's an even-numbered year, then, if it's November, then there are Congressional elections."
Tautology	Taut	p :: p ∨ p p :: p • p	Be careful: p is <i>not</i> logically equivalent to $p \supset p$ or $p \equiv p$. To see this, suppose p is false; then $p \supset p$ and $p \equiv p$ are <i>true</i> .

There are 72 inferences represented on this chart. Each implication rule, of which there are eight, represents one inference, for a total of eight. Each logical equivalence, of which there are 16 (count the double colons), represents four inferences, for a total of 64. Eight plus 64 = 72. To see how one double colon generates four inferences, consider Double Negation: "p:: \sim p" generates (1) p; therefore, \sim p; (2) \sim p; therefore, p; (3) \sim p; therefore, \sim p; and (4) \sim 0.