MAT422 Notes

Arjun Vardhan

†

Created: 7th September 2022 Last updated: 3rd October 2022

1 Basic Definitions

•

2 Convergence of Sequences

•

3 Open Sets and Interior Points

- Let $x \in X$, r > 0. The open sphere/ball/disc centered at x with radius r, denoted S(x,r) is $\{y \in X : d(y,x) < r\}$.
- Alternate definition of convergence: $(x_n) \to x \Leftrightarrow \forall \epsilon > 0, \exists M : n \geq M \implies d(x_n, x) < \epsilon \implies \forall \epsilon > 0, \exists M : n \geq M \implies x_n \in S(x, \epsilon).$
- Let $a \in X$, $A \subseteq X$. a is said to be an interior point of A if and only if $\exists r > 0 : S(a,r) \subseteq A$.
- The set of all interior points of A is called the interior of A, denoted Int(A) or A° .
- Let $b \in X$. $N \subseteq X$ is said to be a neighborhood of b if and only if $b \in N^{\circ}$.
- $A^{\circ} \subseteq A$. Proof: Let $a \in A^{\circ}$. Then $\exists r > 0 : S(a,r) \subseteq A$. As $a \in S(a,r)$, $a \in A$.
- $A \subseteq B \implies A^{\circ} \subseteq B^{\circ}$. Proof: Let $a \in A^{\circ}$. Then $\exists r > 0 : S(a,r) \subseteq A \subseteq B$. So $a \in B^{\circ}$.
- Let $A \subseteq B$, and A be a neighborhood of a. Then B is a neighborhood of a. Proof: $a \in A^{\circ} \implies a \in B^{\circ} \implies B$ is a neighborhood of A.
- $(A^{\circ})^{\circ} = A^{\circ}$. Proof: We know that $(A^{\circ})^{\circ} \subseteq A^{\circ}$. So let $a \in A^{\circ}$. Then $\exists r > 0 : S(a,r) \subseteq A$.

•

4 Closed Sets and Limit Points

•

5 Countability and Uncountability

•

6 Functions

- Let (X, d) and (Y, ρ) be metric spaces. Let $f: X \to Y$, $a \in X$, $l \in Y$. Then we say $\lim_{x \to a} f(x) = l$ if and only if given $\epsilon > 0$, $\exists \delta > 0: \forall x \in X$, $0 < d(x, a) < \delta \implies \rho(f(x), l) < \epsilon$.
- $S'(x,r) = S(x,r) \setminus \{x\}$ is called the deleted open sphere of x with radius r. Similarly, $S'[x,r] = S[x,r] \setminus \{x\}$ is the deleted closed sphere of x with radius r.
- Thus, $\lim_{x\to a} f(x) = l$ if and only if given $\epsilon > 0$, $\exists \delta > 0 : x \in S'(x,\delta) \implies f(x) \in S(l,\epsilon)$.
- $\lim_{x \to a} f(x) \neq l$ when $\exists \epsilon_0 > 0, \forall \delta > 0 : \exists x_\delta : 0 < d(a, x_\delta) < \delta$ but $\rho(f(x), l) \ge \epsilon_0$.
- If a is an isolated point of X, then every member of Y is a limit of f as $x \to a$. Proof:
- If $a \in X^l$, then $\lim_{x \to a} f(x)$ is unique. *Proof:*
- f is said to be continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.
- \bullet Thus every function on X is continuous at every isolated point in X.
- Alternatively, f is continuous at a when given $\epsilon > 0$, $\exists \delta > 0 : d(a, x) < \delta \implies \rho(f(a), f(x)) < \epsilon$. Or when given $\epsilon > 0$, $\exists \delta > 0 : x \in S(a, \delta) \implies f(x) \in S(f(a), \epsilon)$. Or when given $\epsilon > 0$, $\exists \delta > 0 : S(a, \delta) \subseteq f^{-1}(S(f(a), \epsilon))$.
- f is continuous if and only if $f^{-1}(G)$ is open in X for all open sets G in Y. Proof:
- f is continuous if and only if $f^{-1}(G)$ is closed in X for all closed sets G in Y. Proof:
- f is an open function if f(G) is open in Y when G is open in X.
- f is a closed function if f(G) is closed in Y when G is closed in X.
- Sequential Criterion: $\lim_{x\to a} f(x) = l$ if and only if for all sequences $(x_n) \in X$ such that $x_n \neq a$ and $x_n \to a$, $f(x_n) \to l$. Proof:
- Let (X,d) and (Y,ρ) be metric spaces. Then $f:(X,d)\to (Y,\rho)$ is a homeomorphism if and only if f is bijective, f is continuous and f^{-1} is continuous.
- X is said to be homeomorphic to Y or $X \sim Y$ if a homeomorphism exists between the two spaces. It can be shown that \sim here is an equivalence relation.
- Let d_1 , d_2 be metrics on X. Then d_1 and d_2 are equivalent if and only if the identity map from (X, d_1) to (X, d_2) is a homeomorphism. *Proof:*
- If d is a discrete metric on X, then every function from (X,d) to any metric space is continuous. *Proof:*
- Let (X,d) and (Y,ρ) be metric spaces. Then $f:(X,d)\to (Y,\rho)$ is an isometry if and only if $d(x_1,x_2)=\rho(f(x_1),f(x_2))$ for all $x_1,x_2\in X$.
- Isometries are injective. *Proof:*
- Isometries are continuous. Proof:
- (X,d) is said to be isometric, or isometrically isomorphic to (Y,ρ) if and only if $\exists \phi: X \to Y$ such that ϕ is an isometry and ϕ is surjective.
- Let $f:(X,d) \to (Y,\rho)$. f is said to be uniformly continuous on $A \subseteq X$ if and only if: given $\epsilon > 0$, $\exists \delta > 0$ such that $d(a_1,a_2) < \delta \implies \rho(f(a_1),f(a_2)) < \epsilon, \forall a_1,a_2 \in A$.
- f is NOT uniformly continuous on A if $\exists \epsilon_0 > 0, \forall \delta > 0, \exists a_\delta, b_\delta \in A: d(a_\delta, b_\delta) < \delta$ and $\rho(f(a_\delta), f(b_\delta)) \geq \epsilon_0$.

- Alternatively, f is not uniformly continuous if there exist sequences $(a_n), (b_n)$ in A such that $d(a_n, b_n) \to 0$ but $\rho(f(a_n), f(b_n)) \not\to 0$.
- $f: X \to Y$ is said to be a Lipschitz function if $\exists K: \rho(f(x), f(y)) \leq Kd(x, y)$. If K < 1, then f is called a contraction.
- $(X_d \times Y_\rho, d_\infty)$, where $d_\infty((x_1, y_1), (x_2, y_2)) = \max(d(x_1, x_2), \rho(y_1, y_2))$, is called the product space of X and Y.

•