实验报告

层次1-探究认知

阶段1 - 隐身基本原理认知

场景1 - 多机型探测对比

型号	探测距离	RCS (头向) 认知	RCS与尺寸对比认知
F-15C	完成	完成	完成
F/A-18E	完成	完成	完成
F-22A	完成	完成	完成
B-52	完成	完成	完成
B-2	完成	完成	完成

场景2 - 与自然界目标探测对比

型号	探测距离	RCS(头向)认知	RCS与尺寸对比认知
F-15C	完成	完成	完成
F/A-18E	完成	完成	完成
F-22A	完成	完成	完成
B-52	完成	完成	完成
B-2	完成	完成	完成
成年鸭子	完成	完成	完成

阶段2 - 飞机隐身技术探究

场景3 - 飞机周向RCS对比

名称	操作
RCS曲线简介阅读	完成
360度绘制	完成

场景4-全机散射源巡查

散射源名称	类型	操作
外挂物	强散射源	完成
尾喷口	强散射源	完成
<u></u> 座舱	强散射源	完成
机翼前缘	强散射源	完成
雷达天线	强散射源	完成
雷达舱	强散射源	完成
二面角反射器	强散射源	完成
空速管、天线	弱散射源	完成
口盖	弱散射源	完成
蒙皮接缝	弱散射源	完成

场景5 - 隐身设计基本原则

原则	示例	操作
消除角反射器	垂尾外倾	完成
消除后向散射	平板曲面机身	完成
遮挡强散射源	尾部结构遮挡喷口	完成

平行原则设计	多处翼面前后缘平行	完成
消除强散射源	舱盖镀膜	完成
消除强散射源	进气道S弯设计	完成
消除强散射源	内埋式弹舱	完成
结构细节设计	锯齿形口盖边缘和缝隙	完成
利用吸波材料	表面涂覆吸波涂料	完成

阶段3 - 隐身飞机识别测试

场景6 - 虚拟航展漫游

型 号	选择	原则	部件
A330-200	非隐身飞机	平行设计原则	全部机翼
A330-200	非隐身飞机	遮挡强散射源	涡轮引擎喷口、座 舱盖和涡轮引擎进 气
A330-200	非隐身飞机	利用吸波材料	飞机表面
AC-130	非隐身飞机	消除角反射器	垂直尾翼,平行尾 翼和机翼
AC-130	非隐身飞机	平行设计原则	全机翼面
AC-130	非隐身飞机	结构细节设计	口盖边缘和缝隙
EF-2000	非隐身飞机	遮挡强散射源	机尾喷口
EF-2000	非隐身飞机	消除强散射源	弹舱
EF-2000	非隐身飞机	结构细节设计	口盖边缘和缝隙
F-35A	隐身飞机	消除角反射器	垂直尾翼、水平尾 翼和机翼
F-35A	隐身飞机	消除后向散射	平板曲面机身
F-35A	隐身飞机	遮挡强散射源	机尾喷口
F-35A	隐身飞机	平行设计原则	全机翼面
F-35A	隐身飞机	消除强散射源	舱盖、进气道
F-35A	隐身飞机	结构细节设计	口盖边缘和缝隙
J-10	非隐身飞机	消除强散射源	弹舱、挂载
J-10	非隐身飞机	遮挡强散射源	尾部喷口
J-10	非隐身飞机	利用吸波材料	飞机表面
J-20	隐身飞机	消除角反射器	垂尾,平尾和机翼
J-20	隐身飞机	消除后向散射	平板曲面机身
J-20	隐身飞机	遮挡强散射源	机尾喷口
J-20	隐身飞机	平行设计原则	整个机身
J-20	隐身飞机	消除强散射源	舱盖、进气道和弹 舱
J-20	隐身飞机	结构细节设计	口盖边缘和缝隙
J-15	非隐身飞机	消除角反射器	垂直尾翼和水平尾 翼
J-15	非隐身飞机	遮挡强散射源	进气道和挂载
J-15	非隐身飞机	细节结构设计	口盖边缘和缝隙
X-47B	隐身飞机	消除角反射器	无垂直尾翼
X-47B	隐身飞机	消除后向反射	平板曲面机身
X-47B	隐身飞机	遮挡强散射源	机尾喷口
X-47B	隐身飞机	平行设计原则	整个机身
X-47B	隐身飞机	结构细节设计	口盖边缘和缝隙
X-47B	隐身飞机	利用吸波材料	飞机表面

F-117A	隐身飞机	消除角反射器	尾翼不是相互垂直 情况
F-117A	隐身飞机	结构细节设计	口盖边缘和缝隙
F-117A	隐身飞机	遮盖强散射源	尾部喷口
F-117A	隐身飞机	平行设计原则	全机翼面
F-117A	隐身飞机	消除后向散射	平板曲面机身
F-117A	隐身飞机	消除强散射源	弹舱、进气道

层次2 - 设计分析

阶段4 - 隐身飞机布局设计

场景7 - 总体布局组合构建

方案名称	机身	机翼	尾翼	挂载
新的总体布局	机身2	机翼2	尾翼1	挂载方式2
方案				
测试	机身1	机翼1	尾翼1	挂载方式1

场景8 - 新布局RCS曲线生成与分析

方案名称	三维模型	RCS曲线	头向RCS均值	全向RCS均值
新的总体布局方案		ME 1000 COMMON TO STATE OF THE	0.005299441	24.3551
测试		No 1900 Class	0.007126397	780.0454

方案名称	设计特征	RCS雷达散射特性
新的总体布局方案		舱盖上的膜与机身上的吸
	吸波材料;尾翼不是垂直	波材料能很大程度上减少
	的;内部弹舱;机身保证	雷达波反射回去。机翼和
	平行设计原则;细节结构	尾翼的倾斜能有效减少角
	的设计上也是遵守的	反射器效应。弹舱在机体
		内部减少了强散射源。平
		行设计原则可以使雷达波
		反射尖峰叠在一起以减少
		强尖峰个数

测试	

阶段5 - 飞机空战对抗实验

场景9 - 仅考虑RCS因素的空战对抗

红方	红方 RCS (头向)	蓝方	蓝方 RCS (头向)	胜方	红方先于蓝 方探测时间
新的总体布 局方案	0.005	测试	0.007	平局	9.98

作战结果分析

双方差距很小,所以是平局收尾。蓝方因为头向RCS略大,所以会先被发现,但是不影响蓝方能差不多同时发现红方发动攻击。

场景10 - 多参数变化下的空战对抗

红刀	红方 RCS (头向)	红方飞 机飞行 速度	红方飞 机雷达 探测距	蓝方	蓝方 RCS (头向)	蓝方飞 机飞行 速度	胜方	红方先 于蓝方 探测时	测试
			宮					间	

作战结果分析

阶段6 - 飞机突防对抗实验

场景11 - 仅考虑RCS因素的突防对抗

红方	红方 RCS (全 向)	红方飞机 飞行速度	红方吸波 材料减缩 效果	蓝方防空 导弹飞行 速度	蓝方飞机 雷达探测 距离 (1m²)	突防结果
新的总体 布局方案	24.355	600	100 %	1500	150	失败

作战结果分析

场景12 - 多参数变化下的突防对抗

红方 红 RCS 向	(全 飞行速度	红方吸波 材料减缩 效果	蓝方防空 导弹飞行 速度	蓝方飞机 雷达探测 距离 (1m²)	突防结果
------------------	---------	--------------------	--------------------	-----------------------------	------

作战结果分析

感想与建议

实验整个做下来感觉十分有趣,吸引人的兴趣。