

E-Ink 系列

电子纸、墨水屏

纸质画面、超低反射、不刷新不耗电

目录

E-Ink 系	列	. 1
1.	型号说明	. 3
2.	产品简介	. 3
3.	产品特点	. 4
3.1	主要优点	4
3.2	主要缺点	4
4.	产品规格	. 5
4.1	接口说明	6
5.	使用方法	. 7
5.1	STM32	7
5.2	Arduino	8
5.3	显示效果	10
6.	图片制作	11
6.1	黑色显示	11
6.2	红色显示	12
联系我们	ĵ]	14

1. 型号说明

E-Ink_XXX-Z

E-Ink: electronic ink paper 的缩写,是电子纸显示屏的简称;

XXX:表示电纸屏的英制尺寸(公制尺寸见产品规格);

Z: 若型号中带有此后缀,表示可三色显示(黑白红).

例如:

E-Ink_1.54-Z: 1.54 寸电子纸显示屏,支持黑、白、红三色显示

2. 产品简介

电子纸也被称作墨水屏,是一种超薄、超轻的显示屏,成像原理是由电驱动的化学变化,是一种优缺点明显的显示屏。电子纸显示屏是靠反射环境光来显示图案的,它具有纸张印刷般的效果。与传统透射式液晶显示器相比,电子纸显示屏不需要背光,易于阅读,即使是在阳光底下,电子纸显示屏依然清晰可视。另外,电子纸显示屏显示柔和、不刺眼、无闪烁,且可视角度几乎达到了 180°,因此,电子纸显示屏非常适合阅读。此外,电纸屏支持断电显示,即在完全断电情况下依然能保持断电前的显示内容(可保持 4~6 个月),仅在屏幕刷新时需要耗电。

3. 产品特点

3.1主要优点

- ✓ SPI 接口
- ✓ 212x104 分辨率
- ✓ 超宽视角: >170°
- ✓ 支持局部刷新:对局部区域刷新,消除每次更换显示内容的黑白闪烁(三色 屏除外);
- ✓ 超低功耗: 只在刷新时候耗电,刷新功耗 26.5mW
- ✔ 断电显示: 断电后能保持显示断电前的内容长达 4~6 个月
- ✔ 高反射率: 在强光下依然清晰可视
- ✔ 超长寿命 (无故障刷新次数): 100 万次以上

3.2主要缺点

- ◆ 墨水屏的这些缺点是它本身的性质导致的,并非本公司设计缺陷。
- ◆ 无背光;
- ◇ 刷新速度慢;
- ◆ 屏幕承受较重的压力时,容易顺坏像素或引起屏幕碎裂

4. 产品规格

尺寸规格	1.54 寸	2.90 寸	2.13 寸
模块尺寸 (L×W ×H)	46.40×32.00×2.20	87.81×36.70×2.20	67.80×29.70×2.20
屏幕尺寸 (L×W ×H)	37.32×31.80×1.00	79.00×36.70×1.00	59.20×29.20×1.00
显示尺寸	27.60(L)×27.60(W)	66.85(L)×29.10(W)	48.55(L)×23.71(W)
点尺寸	0.138(H) X 0.138(W)	0.226(H) X 0.227(W)	0.228(H) X 0.229(W)
分辨率	200×200	296×128	212×104
显示颜色	黑、白		黑、白、红
工作电压	3.3V		
工作温度	0~50℃		
储存温度	-25~70℃		
刷新方式	全局刷新,局部刷新		全局刷新
刷新时间	3s	1s	85
刷新功耗	26.4mV		26.4mV
DPI:	184	112	111

4.1接口说明

VCC : 3~6V 电源正输入

GND : 电源地

SDI : SPI 通信 MOSI 引脚

CLK : SPI 通信 SCK 引脚

CS : SPI 片选引脚 (低电平有效)

D/C : 数据/命令控制引脚 (高电平写数据, 低电平写命令)

BUSY : 忙状态输出引脚 (高电平表示忙)

5. 使用方法

5.1 STM32

STM32 的例程是基于 STM32F103C8T6 的,编译环境为 Keil 5.23,其他型号芯片需要自行移植。引脚连接如下表:

E-Ink	STM32F103C8T6
VCC	3.3V
GND	GND
D/C	PB8
SDI	PA7
CS	PB6
CLK	PA5
BUSY	PA9

5.2 Arduino

Arduino 的例程是基于 Arduino UNO,WIFI_Kit8 and WIFI_Kit32 三种不同开发板版的,IDE 版本 1.8.3。

5.2.1 Arduino UNO 引脚连接:

E-Ink	Arduino
VCC	3.3V
GND	GND
D/C	D9
SDI	D11
CS	D10
CLK	D13
BUSY	D7

5.2.2 WIFI_Kit32 引脚连接(ESP32):

E-Ink	Arduino
VCC	3.3V
GND	GND
D/C	22
SDI	27
CS	18
CLK	5
BUSY	23

5.2.2 WIFI_Kit8 引脚连接(ESP8266):

E-Ink	Arduino
VCC	3.3V
GND	GND
D/C	D2
SDI	D7
CS	D8
CLK	SCL
BUSY	D1

Arduino 版本的示例代码:

https://github.com/HelTecAutomation/e-ink

为了方便使用,我们将各种规格屏和不同开发板的驱动程序整合到一起,修改 imagedata.h 文件中的宏定义即可(如图 5-1 所示)。

```
#ifndef E_INK_H
#define E_INK_H
#include "epdif.h"

#define USE_290

#if defined( USE_154 )

// Display resolution
#define EPD_WIDTH 200
#define EPD_HEIGHT 200

#define EPD_HEIGHT 200
```

图 5-1

5.3显示效果

图 5-2 1.54 寸

图 5-3 2.13 寸

图 5-4 2.90 寸

6. 图片制作

6.1黑色显示

图 6-1

- 1) 将需要显示的黑色部分做成 212*104 分辨率的黑白图片,需要显示的内容为 黑色,并将图片保存为 BMP 格式;
- 2) 使用取模软件 ImageLcd 将图片生成代码:在 ImageLcd 界面点击"打开",调入需要取模的图片;
- 3) 参数设置:
 - ▶ 输出数据类型: "C语言数组(*.c)";
 - ▶ 扫描方式:垂直扫描;
 - ▶ 输出灰度: 单色;
 - ▶ 最大宽度和高度: 212*104(输入后须点击后边小箭头确定);

- ▶ 在"颜色反转"前打钩 (说明: 打勾表示"白底黑字"最终显示效果如"图 一"中左图所示,不打勾则相反);
- ▶ 在"自右至左扫描"前打钩

点击"保存",将生成的".c"文件中的代码替换到程序中相应位置;

6.2 红色显示

- 1) 将需要显示的内容做成 212*104 分辨率的黑白图片,需要显示的内容为黑色, 并将图片保存为 BMP 格式;
- 2) 使用取模软件 ImageLcd 将图片生成代码:在 ImageLcd 界面点击"打开",调入需要取模的图片;

3) 参数设置:

- ▶ 输出数据类型: "C语言数组(*.c)";
- ▶ 扫描方式: 垂直扫描;
- ▶ 输出灰度: 单色;
- ▶ 最大宽度和高度: 212*104(输入后须点击后边小箭头确定);
- ▶ "颜色反转"前不打勾;
- ▶ 在"自右至左扫描"前打钩

点击"保存",将生成的".c"文件中的代码替换到程序中相应位置;

注:取模软件未注册时图片上会有"ImageLcd"字样的水印,如需注册请点击下方"注册",输入注册码: 1F3E-1A12-3CA4-1983-7D69(若注册码失效请"访问注册网页"申请)

联系我们

- 成都惠利特自动化科技有限公司 (HelTec AutoMation™)
- 四川省 成都市 成华区 龙潭工业园 成宏路 18号 钢铁领域 B座 13B10

● 电话/传真: 028-62374838

● 官方网站: www.heltec.cn

● 官方网店: heltec.taobao.com

● 商务电子邮件: heltec@heltec.com

● 技术支持邮件: support@heltec.com