Graph Theory In-class Exercises

1.

$$\textcircled{1} \ b \rightarrow e \rightarrow f \rightarrow g \rightarrow e \rightarrow b$$

$$② e \rightarrow b \rightarrow a \rightarrow c \rightarrow d \rightarrow e$$

$$\bigoplus f \rightarrow g \rightarrow e \rightarrow b \rightarrow c \rightarrow a$$

$$\textcircled{6} \ b \rightarrow e \rightarrow f \rightarrow g \rightarrow e \rightarrow d \rightarrow c \rightarrow b$$

(A) a path

(B) a circuit that is not a cycle

(C) an open walk that is not a trail

(D) a cycle

(E) a trail that is not a path

(F) a closed walk that is not a circuit

2. Calculate $\kappa(G)$ and $\lambda(G)$ for the following graphs.

(a)

$$\kappa(G) = 3$$

$$\lambda(G) = 3$$

(b)

$$\kappa(G) = 1$$

$$\lambda(G) = 2$$

- 3. Let G be the undirected graph
- a) How many connected subgraphs of G have 4 vertices and include a cycle?
- **b**) How many connected spanning subgraphs are there in *G*?
- c) Draw the subgraph of G induced by the set of vertices vertices $U = \{b, c, d, f, i, j\}$.
- d) For the graph G, let the edge $e = \{c, f\}$. Draw the subgraph G - e.

NIU CSIE – Discrete Mathematics

4.

- (a) K_n has $\frac{n(n-1)}{2}$ edges and n vertices.
- (b) $K_{m,n}$ has \underline{mn} edges and $\underline{m+n}$ vertices.
- (c) W_n has 2(n-1) edges and n vertices.
- (d) Q_n has $n \cdot 2^{n-1}$ edges and 2^n vertices.
- (e) $G_{m,n}$ has $\underline{2mn (m+n)}$ edges and \underline{mn} vertices.

- 5. Consider the graph here.
- (a) Does it have an Euler circuit? Yes
- (b) Does it have an Euler trail? Yes
- (c) Does it have a Hamilton cycle? No
- (d) Does it have a Hamilton path? Yes

Graph Theory Suggested Exercises

1. How many paths of length 4 are there in the complete graph K_7 ? (Remember that a path such as $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5$ is considered to be the same as the path $v_5 \rightarrow v_4 \rightarrow v_3 \rightarrow v_2 \rightarrow v_1$.)

$$\binom{7}{5} \times \frac{5!}{2}$$

$$= \frac{7 \times 6 \times 5 \times 3 \times 2}{2 \times 2}$$

$$= 1260$$

e.g.
$$V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_5$$

Collect 5 vertices from 7 vertices. $\binom{7}{5}$ permutations of 5 vertices (i.e. 5!). Reversing path is considered to be the same, thus divides 2.

- 2. Determine |V| for the following graphs or multigraphs G.
 - a) G has nine edges and all vertices have degree 3.
 - **b)** G is regular with 15 edges.
 - c) G has 10 edges with two vertices of degree 4 and all others of degree 3.

a)
$$|V| = n$$

 $3n = 2|E|$
 $= 2 \times 9$
 $n = 6$

c)
$$|V| = n$$

 $2 \times 10 = 2 \times 4 + (n-2) \times 3$
 $20 = 8 + 3n - 6$
 $n = 6$
 $|V| = 6$

b)
$$|E| = 15, |V| = n, m$$
 - regular.
 $2 \times 15 = m \cdot n = 1 \times 30 \text{ or } 2 \times 15 \text{ or } 3 \times 10, 5 \times 6, 6 \times 5, 10 \times 3$
or 30×1

3. Determine which of the graphs are planar. It a graph is planar, redraw it with no edges overlapping.

a) Not planar, b) Planar

4. Determine whether or not the graph is bipartite.

G'bipartite, *G''* Not bipartite

G':
$$V_1 = \{a, b, g, h\}$$

 $V_2 = \{c, d, e, f\}$

5. Let G = (V, E) be a loop-free connected undirected graph with $|V| \ge 2$. Prove that G contains two vertices v, w, where $\deg(v) = \deg(w)$.

Assume that a finite graph G has n vertices. Then each vertex has a degree between n-1 and 0. But if any vertex has degree 0, then no vertex can have degree n-1, so it's not possible for the degrees of the graph's vertices to include both 0 and n-1. Thus, the n vertices of the graph can only have n-1 different degrees, so by the pigeonhole principle at least two vertices must have the same degree.