Laborator 1

Modele teoretice de calculatoare paralele

Modelul RAM

Modelul RAM (Random Access Machine) de calculator secvential (Sheperdson si Sturgis):

Memoria consta dintr-un numar nelimitat de registre r_0 , r_1 , r_2 , r_3 , pentru numere intregi. Dupa fiecare citire / scriere banda de intrare / iesire avanseaza o pozitie. Timpul de executie al programului depinde de numarul de date de intrare n.

Modelul PRAM

Modelul PRAM (Parallel RAM) pentru un calculator paralel cu cost suplimentar nul de sincronizare si acces la memorie (Fortune si Wylie):

Optiunile de acces concurent al procesoarelor la memoria partajata sunt:

-ER (Exclusiv Read): intr-un ciclu cel mult un procesor poate sa citeasca dintr-o locatie de memorie;

- -EW (Exclusiv Write): intr-un ciclu cel mult un procesor poate sa scrie intr-o locatie de memorie;
- -CR (Concurrent Read): mai multe procesoare pot sa citeasca din aceeasi locatie de memorie in acelasi ciclu;
- -CW (Concurrent Write): mai multe procesoare pot sa scrie in aceeasi locatie de memorie in acelasi ciclu.

Rezulta urmatoarele variante ale modelului PRAM:

- -EREW-PRAM: este cel mai restrictiv;
- -CREW-PRAM: conflictele de scriere sunt evitate prin excludere mutuala;
- -ERCW-PRAM;
- -CRCW-PRAM: este cel mai puternic model.

Conflictele de scriere concurenta se rezolva printr-unul din urmatoarele moduri:

- -COMMON-PRAM: toate operatiile de scriere memoreaza aceeasi valoare la locatia accesata simultan;
- -ARBITRARY-PRAM: se memoreaza una din valori (oricare), iar celelalte sunt ignorate;
- -MINIMUM-PRAM: se memoreaza valoarea scrisa de procesorul cu indexul cel mai mic;
- -PRIORITY-PRAM: se memoreaza o valoare obtinuta prin aplicarea unei functii asociative (exemplu: insumare) tuturor valorilor cu care se acceseaza locatia de memorie.

Algoritm secvential pentru inmultire de matrici

Algoritmul necesita timpul de executie $T_s = O(n^3)$.

Algoritm CRCW-PRAM cu n³ procesoare pentru inmultire de matrici

Conflictele de scriere se rezolva cu modelul PRIORITY-PRAM folosind operatorul de insumare. Matricile a, b, c sunt in memoria partajata. Cele n^3 procesoare sunt plasate intr-un tablou 3D. Algoritmul se executa in doua etape:

Etapa 1: fiecare procesor $P_{i,j,k}$ calculeaza in paralel produsul a[i][k]*b[k][j].

Etapa 2: se face scrierea concurenta a procesoarelor $P_{i,j,0}$; $P_{i,j,1}$; $P_{i,j,2}$;; $P_{i,j,n-1}$ in locatia c[i][j] a termenilor a[i][0]*b[0][j], a[i][1]*b[1][j], a[i][2]*b[2][j], ..., a[i][n-1][j], care astfel se insumeaza.

Algoritmul paralel este:

```
forall (0 <= i < n)

forall (0 <= j < n)

forall (0 <= k < n) {

c[i][j] = 0.0;

c[i][j] = a[i][k]*b[k][j];

}
```

Timpul de executie paralela $T_p = O(1)$. Rezulta accelerarea $S = O(n^3)$ si eficienta E = 1.

Algoritm CREW-PRAM cu n³ procesoare pentru inmultire de matrici

Procesoarele sunt organizate intr-un tablou 3D. Este necesar un tablou suplimentar v cu n*n*n elemente in memoria partajata in locul matricii c. Algoritmul se executa in doua etape:

Etapa 1: fiecare procesor $P_{i,j,k}$ calculeaza in paralel produsul a[i][k]*b[k][j] si inscrie rezultatul in v[i][j][k].

Etapa 2: reducerea prin insumarea a n elemente ale fiecarui vector din tabloul 2D v[i][j] (in total n^2 vectori), folosind n procesoare pentru fiecare vector: $P_{i,j,0}$; $P_{i,j,1}$; $P_{i,j,2}$;; $P_{i,j,n-1}$, obtinand rezultatul in v[i][j][0].

Algoritmul este:

```
forall (0 <= i < n)

forall (0 <= j < n)

forall (0 <= k < n) {

v[i][j][k] = a[i][k] *b[k][j];

for (m = 0; m < log_2 n; m + +)

if (k \% 2^{m+1} == 0)

v[i][j][k] += v[i][j][k + 2^m];

}
```

Fiecare procesor executa un pas de calcul si log_2n pasi pentru reducerea paralela, deci timpul de executie este:

$$T_p = 1 + log_2 n = O(log_2 n)$$

fiind cuprins intre $O(n^3)$ in cadrul algoritmului secvential si O(1) in algoritmul CRCW. Se calculeaza accelerarea si eficienta:

$$S = O(n^3 / log_2 n)$$
$$E = O(1 / log_2 n)$$

Operatia de reducere paralela se poate efectua astfel (exemplu pentru 16 procesoare si 4 pasi):

Tema

Sa se scrie un program care sa simuleze executia algoritmilor CRCW-PRAM si CREW-PRAM pentru produsul de matrici. Sa se analizeze un algoritm ERCW-PRAM pentru produsul de matrici.