MATH 421 Lecture Notes

Pongsaphol Pongsawakul

Fall 2022

Contents

Properties of Real Number			2	
Method of Proof Direct proof		3 3		
1	Rea	Intervals	4	
2	Functions & Their Representation			
	2.1	Operation between functions	6	
	2.2	Some examples of functions	7	
			7	
		Rational function	7	
		Construct functions	7	
		The identity	7	
	2.3		7	
	2.4	_	8	
	2.5	Graphs of functions	8	
	2.6	What is limit	9	
		definition of limit	0	
		what is no limit	.1	
	2.7	Identity of Limit	3	
	2.8	Infremum / Supremum	4	
3	Continuous Function			
	3.1	Definition of Continuous Function	8	
	3.2	Identity of Continuous Function	9	
	3.3	Definition of Left/Right Continuity		
	3.4		23	

Properties of Real Number

Definition 1. Given any $a \in \mathbb{R}$, we define its absolute value to be

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ a & \text{if } a < 0 \end{cases}$$

Theorem 2 (Triangular Inequality). Given $a,b\in\mathbb{R},$ there holds

$$|a+b| \le |a| + |b|$$

Method of Proof

Direct proof

some statements can be shown to be true through a direct arguement e.g. our proof of Theorem 1

Theorem 3. hello

Proof by induction

the aim is to proof that a statement is true for all rational number

- (i) Show the statement is true for n=1
- (ii) Assume the statement is true for general $n \in \mathbb{N}$
- (iii) Using assumption (ii), prove the statement is true for n+1
- (iv) Conclude your proof with a sentence like "by mathematical information, the result holds for all $n \in \mathbb{N}$ "

Example 4. Show that $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$

Theorem 5. Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Then, there holds the formula

$$(1+x)^n = \sum_{j=0}^n \binom{n}{j} x^j$$

1 Real Intervals

 $\forall a, b \in \mathbb{R}$ such that a < b, we denote [a, b], the set of all \mathbb{R} between a and b (inclusive)

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

Similarly, we have

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

by convention, $(a, a) = \emptyset$, the empty set

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$[a, b) = \{x \in \mathbb{R} : a \le x < b\}$$

Subset of this form are call intervals. We also adopt the notation

$$(\infty, a] = \{ x \in \mathbb{R} : x \le a \}$$

$$(b, \infty] = \{x \in \mathbb{R} : x > a\}$$

We'll never write $[\infty, a]$, since $\pm \infty$ are **not** real numbers.

[a,b],(a,b],[a,b),(a,b), they are **bounded**

Definition 6. A set $B \subseteq \mathbb{R}$ is bounded below (respectively bounded above) if $\exists b \in \mathbb{R}$ such that $x \geq b \ \forall x \in B$ (respectively $x \leq b$ for all $x \in B$)

e.g. $\{0,1,50^{72},-350\pi\}$ and $\left[-\frac{1}{\sqrt{10}},3\right)$ are bounded while $\mathbb R$ and $\mathbb N$ are not bounded e.g. $\left[-357,\infty\right)$ is bounded below but not above

Definition 7. Let $B \subseteq \mathbb{R}$ be a subset that is bounded. We say that $b \in \mathbb{R}$ is the least upper bound of B (also call the supremum of B) if

- (i) b is an upper bound for B
- (ii) if b' is also an upper bound for B, then we have $b \leq b'$

We denote this least upper bound by $\sup B$

Remark 8. It is easy to see that for a set B bounded above. sup B is unique. To see this, suppose that both β_1 and β_2 are least upper bound for B. Then since β_2 is least upper bound and β_1 is an upper bound. We have $\beta_2 \leq \beta_1$. But also since β_1 is least upper bound and β_2 is a lower bound, we have $\beta_1 \leq \beta_2$. Hence $\beta_1 = \beta_2$

We have the corresponding notation for lower bounds

Definition 9. Let $A \subseteq \mathbb{R}$ be a subset bounded below. We say that $a \in \mathbb{R}$ is the greatest lower bound for A (also called the infimum of A) if

- (i) a is an lower bound for A
- (ii) if a' is also an lower bound for A, then $a' \leq a$

For
$$B = (-1, \infty)$$
, inf $B = -1$.

For
$$B = [-1, \infty)$$
, inf $B = -1$.

For
$$A = [2, 10) \cup (510, 511] \cup \{520\}$$
, inf $A = 2$, sup $A = 520$

Note that some sets contain their infimum/supremum while others do not. We note down a property of the real-numbers which we state but do not prove

Example. Prove that if a = (0, 1), sup A = 1

Proof. Notice that if $x \in A$ then x < 1, so 1 is an upper bound for A. Suppose for contradiction that $\sup A \neq 1$. Then we must have $\sup A < 1$ but $m = \frac{1}{2}(\sup A + 1) \in A$ but $m > \sup A$. So $\sup A$ is not an upper bound for A

2 Functions & Their Representation

A function is a "thing" that assigns a number to another number

Example. the square function $x \mapsto x^2$

The way we represent this is by writing that f, the function such that $f(x) = x^2$, also written $f: x \mapsto x^2$

Example. We could also define a function, say g, that acts on $\{0, 1, 3\}$ and maps from elements of this set to $\{-1, 2\}$, for instance

$$q(0) = 1$$
, $q(1) = 2$, $q(3) = 2$

One way of representing this is with the diagram

When defining a function f, we write $f: A \to B$, where A is domain and B is range

Example. Define the function $r: \left[-17, -\frac{\pi}{3}\right] \to \mathbb{R}$ by the explicit formula

$$r(x) = x^3, r: \left[-17, -\frac{\pi}{3}\right] \to \left[-17^3, -\left(\frac{\pi}{3}\right)^3\right] \subseteq \mathbb{R}$$

2.1 Operation between functions

Suppose f_1 , f_2 have the same domain A, then we can define a new function, say g, to take the values of the sum of f_1 and f_2 i.e., for $f_1:A\to B$ and $f_2:A\to B$ we define $g:A\to B'$ bo be

$$g(x) = f_1(x) + f_2(x) \ \forall x \in A$$

Note that B' might not be equal to B

Example. $f_1, f_2 : [0,1] \to [0,1], \ f_1(x) = x, \ f_2(x) = \frac{1}{2}x, \ g(x) = \frac{3}{2}x \text{ and } g : [0,1] \to [0,\frac{3}{2}]$

For ease of notation, we write g as $(f_1 + f_2)$

Similarly, we define the product function $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x) \ \forall x \in A$

Example. $f(x) = \log x$ for $x \ge 1$, $g(x) = 10x^2 \ \forall x \in \mathbb{R}$ To define f + g and $f \cdot g$, we must to the smaller domain $\{x \in \mathbb{R} : x \ge 1\}$

2.2 Some examples of functions

Polynomials

Definition 10. $f: \mathbb{R} \to \mathbb{R}$ is a polynomial function, if $\exists N \in \mathbb{N}$ and $\exists \{a_0, \dots, a_N\} \in \mathbb{R}^{N+1}$

$$f(x) = a_0 + a_1 x + \dots a_N x^N \ \forall x \in \mathbb{R}$$

Rational function

Definition 11. We say that f is a rational function if for some polynomial functions $p: \mathbb{R} \to \mathbb{R}$ and $q: \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = \frac{p(x)}{q(x)} \ \forall x \in \mathbb{R} \setminus R_q$$

where $R_q = \{x \in \mathbb{R} : q(x) = 0\}$ is the set of roots of q

Construct functions

Definition 12. $f: \mathbb{R} \to \mathbb{R}$ is a constant function if $\exists c \in \mathbb{R}$ such that $f(x) = c \ \forall x \in \mathbb{R}$

The identity

Definition 13. If $f(x) = x \ \forall x \in \mathbb{R}$ then we say that f is the identity map.

2.3 Composition

Definition 14. Let $f: A \to B$ and $g: B \to C$ be functions. We define the composition $g \circ f: A \to C$ by $g \circ f(x) = g(f(x)) \ \forall x \in A$

2.4 Formal definition

Definition 15. A function is a collection of pairs of points with the property if (a, b) and (a, c) belong to the collection, the b = c. The pairs of points are of the form (a, f(a)). The property in **Definition 15** ensure that we stay clear of a confusion of the sort f(2) = 2 and f(2) = 3, which would using the diagram representation.

NOT a function

Definition 16. Let f be a function and denote by \mathcal{F} its collection of points. The domain of f, written dom(f), is the set of all points a such that there exists some b for which $(a,b) \in \mathcal{F}$.

i.e., $dom(f) = \{a : \exists b \text{ for which } (a, b) \in \mathcal{F}\}$

Moreover, by **Definition 15** for each $a \in \text{dom}(f)$ there exists a unique b such that $(a,b) \in \mathbf{F}$

2.5 Graphs of functions

An intimidate way to represent a function is by writing its coordinate pair on curves, i.e., drawing its graph

This diagram is representation of $\{(x, f(x))\}, x \in A$

Definition 17. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say f is linear if $\exists a \in \mathbb{R}$ such that

$$f(x) = ax, \ \forall x \in \mathbb{R}$$

Definition 18. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say f is **affine** if $\exists a \in \mathbb{R}$ such that

$$f(x) = ax + b, \ \forall x \in \mathbb{R}$$

Definition 19. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say f is **even** if $\exists a \in \mathbb{R}$ such that

$$f(x) = f(-x), \ \forall x \in \mathbb{R}$$

Definition 20. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say f is **odd** if $\exists a \in \mathbb{R}$ such that

$$f(x) = -f(-x), \ \forall x \in \mathbb{R}$$

2.6 What is limit

What is a limit? Intutively, a function has a limit at a point x_* if the function values f(x) "approach" this limit number as x gets closer to x_*

if $f(x) = x \ \forall x \in \mathbb{R}$ that as x increases to 1

as $x \to \infty$, f(x) goes arbitrary close to 0, as $x \to 0$, f(x) "explodes" and has not limit

This idea of a function having a limit is also preserve for more basic objects, e.g., sequence e.g., the sequence of points $\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$ where the n^{th} element of the sequence may be written as $a_n = 1 - \frac{1}{n}$, converge to 1 as $n \to \infty$

definition of limit

Definition 21. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let $a, l \in \mathbb{R}$. We say that f approach the limit l near a if for all $\varepsilon > 0$ there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x) - l| < \varepsilon$$

We write $\lim_{x\to a} f(x) = l$

Some comments on **Definition** 21

- (i) δ is allowed to depend on ε, a, l
- (ii) "for all $\varepsilon > 0$ " can be read as "given any $\varepsilon > 0$ "

Example. Let f(x) = cx for some $c \in \mathbb{R}$ we show that $\lim_{x \to 1} f(x) = c$

Proof. let $\varepsilon > 0$ be given. Then

$$|f(x) - c| = |cx - c|$$
$$= |c| \cdot |1 - x|$$

So, letting $\delta = \delta(\varepsilon) = |c|^{-1} \cdot \varepsilon$, we get that

$$0 < |1 - x| < \delta \implies |f(x) - c| < \varepsilon$$

Since this hold for all $\varepsilon > 0$, we define $\lim_{x \to 1} f(x) = c$

Example. Let $g(x) = x \sin(\frac{1}{x})$ for some $x \in (0, \infty)$. Then $\lim_{x \to 0} g(x) = 0$

Proof. Indeed, let $\varepsilon > 0$ be given. Notice that $|g(x)| = |x| \cdot |\sin(\frac{1}{x})| \le |x|$

, thus, letting $\delta = \delta(\varepsilon) = \varepsilon$, we see that

$$0 < |x| < \delta \implies |g(x)| < \varepsilon$$

Definition 22. Let $f: \mathbb{R} \to \mathbb{R}$ and let $l \in \mathbb{R}$. We say that f apporaches the limit l as x tends to infinity if: for all $\varepsilon > 0$, there exists R > 0 such that

$$x > R \implies |f(x) - l| < \varepsilon$$

We write $\lim_{x\to\infty} f(x) = l$ (R is allowed to depend on ε, l)

Example. let $f(x) = \frac{1}{x}$ for x > 0. We show that $\lim_{x \to \infty} f(x) = 0$

letting $R(\varepsilon) = \varepsilon^{-1}$, we see that $x > R \implies |f(x) - 0| < \varepsilon$

Definition 23. Let $l \in \mathbb{R}$ and $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that a_n approaches the limit l as n tends to infinity if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n > N \implies |a_n - l| < \varepsilon$$

Write $\lim_{x \to \infty a_n} = l$

Example. For the sequence $\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$ where $a_n = 1 - \frac{1}{n} \ \forall n \in \mathbb{N}$ we see that $\lim_{x \to \infty a_n} = 1$

Proof. Indeed, let $\varepsilon > 0$ be given. Observe that $|a_n - 1| < \frac{1}{n}$, letting $N(\varepsilon) = \lceil \varepsilon^{-1} \rceil$, we see that, whenever n > N, $n > \varepsilon^{-1} \implies \frac{1}{n} < \varepsilon$ and $|a_n - 1| < \varepsilon$ for such n = 0.

What does it mean to not have a limit?

what is no limit

Corollary 24. $f: \mathbb{R} \to \mathbb{R}$ does not approach the limit $l \in \mathbb{R}$ at the point $a \in \mathbb{R}$ if there exists some $\varepsilon_0 > 0$ such that for all $\delta > 0$ there exists $x_{\delta} \in \mathbb{R}$ for which there holds

$$|x_{\delta} - a| < \delta$$
 and $|f(x_{\delta}) - l| \ge \varepsilon_0$

Example. We show that $f:(0,1)\to(0,\infty) \atop x\mapsto \frac{1}{x}$ has no limit at x=0

Proof. We show that $\forall p \geq 0$, f does not approach the limit p at x = 0 Let $p \geq 0$ be given. We'll show that Corollary 24 holds with $\varepsilon_0 = 1$ Note that $|f(x) - p| = |\frac{1}{x} - p| = \frac{1}{x} - p$ provided $0 < x \leq \frac{1}{p}$. Also observe that $0 < x \leq \frac{1}{p+1} \implies \frac{1}{x} - p \geq p + 1 - p = 1$ This given any $\delta > 0$, choosing $x_{\delta} = \min\{\frac{\delta}{2}, \frac{1}{p+1}\}$ we get $0 < x_{\delta} < \delta$ and by $|f(x_{\delta} - p) \geq 1$

Example. Let $f:(0,\infty)\to\mathbb{R}\atop x\mapsto\sin(\frac{1}{x})$. We show f does not approach the value 0 as $x\to 0$.

Proof. Indeed, for this case set $\varepsilon_0 = \frac{1}{2}$ and for every $\delta > 0$, set $x_\delta = \frac{1}{\frac{\pi}{2} + 2\pi n_\delta}$ where $n_\delta \in \mathbb{N}$ chosen sufficiently large such that $0 < x_\delta < \delta$. For instance, $n_\delta = \lceil \frac{\delta^{-1}}{2\pi} \rceil$ clearify that $x_\delta = \frac{1}{\frac{\pi}{2} + 2\pi n_\delta} < \frac{1}{2\pi n_\delta}$ and

$$n_{\delta} \ge \frac{\delta^{-1}}{2\pi}$$
$$2\pi n_{\delta} \ge \delta^{-1}$$
$$\frac{1}{2\pi n_{\delta}} \le \delta$$

Then, $0 < x_{\delta} < \delta$, and

$$f(x) = \sin\left(\frac{1}{x_{\delta}}\right)$$
$$= \sin\left(\frac{\pi}{2} + \frac{1}{x_{\delta}}\right)$$
$$= \sin\left(\frac{\pi}{2}\right) = 1$$

So,
$$|x_{\delta} - 0| < \delta$$
 and $f(x_{\delta}) - 0| = 1 > \frac{1}{2} = \varepsilon_0$ (So, $\lim_{x \to 0} f(x) \neq 0$)

Example 25. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

 $\lim_{x\to 0} f(x) = 0$ but f has no limit at any other point $a \neq 0$

Fact Given s < t real numbers:

- (i) $\exists q \in \mathbb{Q}$ such that s < q < t
- (ii) $\exists r \in \mathbb{R} \setminus \mathbb{Q}$ such that s < r < t

Proof. Fix a > 0 and let $l \in \mathbb{R}$ be arbitrary. There are 2 cases

- 1. Suppose l=0 set $\varepsilon_0=a$ Then, given $\delta>0$ by Fact(i), $\exists x_\delta\in\mathbb{Q}$ such that $a< x_\delta< a+\delta$ and thus $|x_\delta-a|<\delta$ and $|f(x_\delta)-l|=x_\delta>a=\varepsilon_0$ so $f(x)\nrightarrow 0$ as $x\to a$
- 2. Suppose $l \neq 0$ set $\varepsilon_0 = \frac{|l|}{2}$ then given any $\delta > 0$ by Fact(ii), $\exists x_\delta \in \mathbb{R} \setminus \mathbb{Q}$ such that $a < x_\delta < a + \delta$, $|x_\delta a| < \delta$ and $|f(x_\delta) l| = |l| > \frac{|l|}{2} = \varepsilon_0$ repeating the same strategy for a < 0 concludes the proof.

2.7 Identity of Limit

Theorem 26. Let $f: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Suppose that for $\mu, \nu \in \mathbb{R}$ we have $\lim_{x \to a} f(x) = \mu$ and $\lim_{x \to a} f(x) = \nu$ then $\mu = \nu$ (i.e., the limit is unique)

Proof. Let $\varepsilon > 0$ be given. By the definition of the limit $\exists \delta_1 = \delta_1(\varepsilon, a, \mu) > 0$ such that $0 < |x - a| < \delta_1 \implies |f(x) - \mu| < \frac{\varepsilon}{2}$ also $\exists \delta_2 = \delta_2(\varepsilon, a, \nu) > 0$ such that $0 < |x - a| < \delta_2 \implies |f(x) - \nu| < \frac{\varepsilon}{2}$ Letting $\delta = \min\{\delta_1, \delta_2\} > 0$, we see that $|\mu - \nu| \le |\mu - f(x)| + |f(x) - \nu|$, which provided $|x - a| < \delta$. Hence, $|\mu - \nu| < \varepsilon$ whenever $|x - a| < \delta$

We will show that $\mu - \nu = 0$. Suppose $\mu - \nu \neq 0$ then $|\mu - \nu| \geq 0$ but then, choosing $\varepsilon = \frac{1}{2}|\mu - \nu|$ we get $|\mu - \nu| < \frac{1}{2}|\mu - \nu|$

Theorem 27. Let $f, g : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Suppose that for $\mu, \nu \in \mathbb{R}$, $\lim_{x \to a} f(x) = \mu$ and $\lim_{x \to a} g(x) = \nu$ then

- (a) $\lim_{x \to a} (f+g)(x) = \mu + \nu$
- (b) $\lim_{x \to a} (f \cdot g)(x) = \mu \cdot \nu$

Proof. We will prove each separately

(a) Let $\varepsilon > 0$ be given. by the definition of limit, $\exists \delta_1 = \delta_1(\varepsilon, a, \mu) > 0$ such that $0 < |x - a| < \delta_1 \implies |f(x) - \mu| < \frac{\varepsilon}{2}$ and $\exists \delta_2 = \delta_2(\varepsilon, a, \nu) > 0$ such that $0 < |x - a| < \delta_2 \implies |g(x) - \nu| < \frac{\varepsilon}{2}$. Let $\delta = \min\{\delta_1, \delta_2\}$, provided $0 < |x - a| < \delta$,

and observe that

$$\begin{aligned} |(f+g)(x) - (\mu + \nu)| &= |(f(x) - \mu) + (g(x) - \nu)| \\ &\leq |f(x) - \mu| + |g(x) - \nu| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{aligned}$$

and
$$0 < |x - a| < \delta \implies |(f + g)(x) - (\mu + \nu)| < \varepsilon$$

(b) Let $\varepsilon > 0$ be given, and observe that

$$|(f \cdot g)(x) - (\mu \nu)| = |(f(x)g(x) - \mu g(x)) + (\mu g(x) - \mu \nu)|$$

$$\leq |g(x)| \cdot |f(x) - \mu| + |\mu| \cdot |g(x) - \nu|$$

By the definition of limit $\exists \delta_g = \delta_g(\varepsilon, a, \nu) > 0$ such that $|g(x) - \nu| < \min\{\frac{\varepsilon}{2(1+|\mu|)}, 1\}$, whenever $0 < |x - a| < \delta_g$.

Note: whenever $0 < |x - a| < \delta_q$, we have

(i)
$$|g(x) - \nu| < \frac{\varepsilon}{2(1+|\mu|)}$$
 and $|\mu| \cdot |g(x) - \nu| < \frac{\varepsilon}{2}$

(ii)
$$|g(x) - \nu| < 1$$
 and $g(x) \le |g(x) - \nu| + |\nu| < 1 + |\nu|$

Again, by the definition of limit, $\exists \delta_f = \delta_f(\varepsilon, a, \mu, \nu) > 0$ such that

$$|x-a| < \delta_f \implies |f(x) - \mu| < \frac{\varepsilon}{2(1+|\nu|)}$$

then, we see that, for $\delta = \min\{\delta_f, \delta_q\}$ we have

$$|(f \cdot g)(x) - (\mu \nu)| < (1 + |\nu|) \frac{\varepsilon}{2(1 + |\nu|)} + \frac{\varepsilon}{2} = \varepsilon$$

Our objective is to give a sense of infremum/supremum as limits. For example, consider [1,2]. This set has the property that for every $x \in [1,2]$, there exists a sequence of points $(x_n)_{n \in \mathbb{N}}$ belonging to [1,2] such that $x_n \to x$ as $n \to \infty$. Indeed, $x \in (1,2)$, then for $M_x > 0$ sufficiently large. $x_n = x + \frac{1}{n \cdot M_x}$ is such that $x_n \in (1,2)$ and $x_n \to x$. And for when $x \in \{1,2\}$, we can build the sequences $x_n = \frac{1}{100n}$ or $x_n = 2 - \frac{1}{100n}$ This property also holds for (1,2), but also even though $1,2 \notin (1,2)$, there exists sequences $(y_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$ such that $y_n, z_n \notin (1,2) \ \forall n \in \mathbb{N}$ and $y_n \to 1$ as $n \to \infty$, $z_n \to 2$ as $n \to \infty$

It turns out that the property of "having a sequence inside the set converging to this point" is a property that holds true for the inf and sup of any bounded set.

To this end, we prove the following lemma

2.8 Infremum / Supremum

Lemma 28. Let $B \subseteq \mathbb{R}$ be a nonempty set bounded above. Then, given any $\varepsilon > 0$, there exists some $b_{\varepsilon} \in B$ such that

$$\sup B - \varepsilon < b_{\varepsilon} \ (\leq \sup B)$$

Proof. Let $\varepsilon > 0$ be given. Denote $\sup B$ by β . Suppose for contradiction that no such b_{ε} exists, Then for all $b \in B$, we must have $b \leq \beta - \varepsilon$ but then $\beta - \varepsilon$ is the least upper bound for B

An analogous argument prove

Lemma 29. Let $A \subseteq \mathbb{R}$ be a nonempty set bounded below. Then, given any $\varepsilon > 0$, there exists some $a_{\varepsilon} \in B$ such that

$$(\inf A \leq) a_{\varepsilon} < \inf A + \varepsilon$$

Corollary 30. Let $A \subseteq \mathbb{R}$ be nonempty and bounded, then, $\exists (x_n)_{n \in \mathbb{N}}$ and $\exists (y_n)_{n \in \mathbb{N}}$ for which $x_n, y_n \in A$ for all $n \in \mathbb{N}$ and $\lim_{x \to \infty} x_n = \inf A$, $\lim_{x \to \infty} y_n = \sup A$

Proof. By Lemma 28 for each $n \in \mathbb{N}$, $\exists y_n \in A$ such that $\sup A - \frac{1}{n} < y_n \le \sup A$ and $|y_n - \sup A| < \frac{1}{n} \to 0$ as $n \to \infty$ So, $\lim_{x \to \infty} y_n = \sup A$. Also, for each $n \in \mathbb{N}$, by Lemma 29, $\exists x_n \in A$ such that $\inf A \le x_n < \inf A + \frac{1}{n}$. i.e., $|x_n - \inf A| < \frac{1}{n} \to 0$ as $n \to \infty$. So, $\lim_{x \to \infty} x_n = \inf A$.

Lemma 31. Suppose A is non-empty and bounded below. Let B be the set of all lower bounds of A. Then inf $A = \sup B$

Proof. There are 3 steps

Step 1 [B is nonempty] Since A is bounded below, there exists at least one lower bound, which belongs to B, so $B \neq \emptyset$

Step 2 [B is bounded above] Suppose for contradiction that B is not bounded above. Then given any $n \in \mathbb{N}$, $\exists x_n \in B$ such that $x_n \geq n$. Then by the definition of B, x_n is a lower bound for A for each $n \in \mathbb{N}$. Thus given any $a \in A$, we have $a \geq x_n \geq n \ \forall n \in \mathbb{N}$. Here B is bounded above.

Step 3 [showing the equality]

(\leq) Let $\nu = \inf A$ nad $\mu = \sup B$. Since ν is the infimum of A, ν is a lower bound for A. So $\nu \in B \implies \nu \leq \sup B = \mu$

(\geq) Let $\varepsilon > 0$ be arbitrary. Then by **Lemma 28** $\exists b_{\varepsilon} \in B$ such that $\mu - \varepsilon < b_{\varepsilon} \leq \mu$. Hence, $\mu < \varepsilon + b_{\varepsilon}$. Now, let $a \in A$ be any point of A and observe that since $b_{\varepsilon} \in B$, $b_{\varepsilon} \leq a \implies \mu < \varepsilon + b_{\varepsilon} \leq \varepsilon + a$. i.e., $\mu < \varepsilon + a$ for all $a \in A$. i.e., $\mu - \varepsilon < a \ \forall a \in A$. So, $\mu - \varepsilon$ is a lower bound for $A \implies \mu - \varepsilon < \inf A = \nu$ i.e., $\mu < \nu + \varepsilon$, but $\varepsilon > 0$ was arbitrary $\implies \mu \leq \nu$

3 Continuous Function

What does it mean for a function to be continuous?

Infinitely, this is some smoothness to the function i.g.,

But, on the other hand

is not continuous

3.1 Definition of Continuous Function

Definition 32. Let $f: \mathbb{R} \to \mathbb{R}$. We say f is continuous at the point $x_0 \in \mathbb{R}$ if there holds $\lim_{x \to x_0} f(x) = f(x_0)$

Remark. For f to be continuous at $x_0 \in \mathbb{R}$, we require

- (i) $\lim_{x\to 0} f(x)$ exists
- (ii) $\lim_{x \to 0} f(x) = f(x_0)$

Another way of writing Definition 32 is

Definition (32). f is continuous at x_0 if for all $\varepsilon > 0$, $\exists \delta = \delta(\varepsilon, x_0, f(x_0)) > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Example. f_3 is not continuous at the point x = 1.

Proof. Indeed, setting $\varepsilon_0=1$, we see that, given any $\delta>0$, the point $x_\delta=1+\frac{\delta}{2}$ is such that $|x_\delta=1|<\delta$ and $|f(x_\delta)-f(1)|=|1-(-1)|=2>\varepsilon_0$

Example. $f(x) = x^2$ is continuous.

Proof. Indeed, let $x_0 \in \mathbb{R}$ be any point and observe that

$$|f(x) - f(x_0)| = |x^2 - x_0^2|$$

$$= |(x + x_0)(x - x_0)|$$

$$= |x + x_0| \cdot |x - x_0|$$

Let $\varepsilon > 0$ be given. Now let $\delta = \min\{1, \frac{\varepsilon}{2(1+|x_0|)}\}$, then

$$|x + x_0| = |x - x_0 + 2x_0|$$

$$\leq |x + x_0| + 2|x_0|$$

$$\leq 1 + 2|x_0|$$

Then provided $|x - x_0| < \delta$ we get

$$|f(x) - f(x_0)| \le (1 + 2|x_0|) \cdot \frac{\varepsilon}{2(1 + |x_0|)} < \varepsilon$$

Example.

$$f(x) = \begin{cases} 0 & x = 0\\ x \sin\left(\frac{1}{x}\right) & x \neq 0 \end{cases}$$

f is continuous at x = 0

Proof. Indeed, let $\varepsilon > 0$ be given and observe that

$$|f(x) - f(0)| = |x| \cdot \left| \sin \left(\frac{1}{x} \right) \right| \text{ for } x \neq 0$$

 $\leq |x|$

So, letting $\delta(\varepsilon) = \frac{\varepsilon}{2}$, we see that

$$|x - 0| < \delta \implies |f(x) - f(0)| \le \frac{\varepsilon}{2} < \varepsilon$$

3.2 Identity of Continuous Function

Lemma 33. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous at $a \in \mathbb{R}$. Then

- (i) f + g is continuous at a
- (ii) $f \cdot g$ is continuous at a

Proof. We will prove each separately

(i) let $\varepsilon > 0$ be given. By the definition of continuous, $\exists \delta_f = \delta_f(\varepsilon, a) > 0$ such that

$$|x - a| < \delta_f \implies |f(x) - f(a)| < \frac{\varepsilon}{2}$$

and, $\exists \delta_g = \delta_g(\varepsilon, a) > 0$ such that

$$|x-a| < \delta_g \implies |g(x) - g(a)| < \frac{\varepsilon}{2}$$

So, letting $\delta = \min\{\delta_f, \delta_g\}$, suppose $|x - a| < \delta$, we see that

$$|f(x) + g(x) - (f(a) + g(a))| \le |f(x) - f(a)| + |g(x) - g(a)|$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

(ii) let ε be given. Note that

$$|f(x)g(x) - f(a)g(a)| \le |g(x)| \cdot |f(x) - f(a)| + |f(a)| \cdot |g(x) - g(a)|$$

Since g is continuous at a, $\exists \delta_g = \delta_g(\varepsilon, a) > 0$ such that

$$|x-a| < \delta_g \implies |g(x) - g(a)| < \min\left\{1, \frac{\varepsilon}{2(1+|f(a)|)}\right\}$$

Then, provided $|x-a| < \delta_g$, we get

$$|g(x)| \le \overbrace{|g(x) - g(a)|}^{\le 1} + |g(a)| < 1 + |g(a)|$$

Also, since f is continuous at a, $\exists \delta_f = \delta_f(\varepsilon, a) > 0$ such that

$$|x-a| < \delta_f \implies |f(x) - f(a)| < \frac{\varepsilon}{2(1+|g(a)|)}$$

Then, letting $\delta = \min\{\delta_f, \delta_g\}$, we see that whenever $|x - a| < \delta$, we have form

$$|f(x)g(x) - f(a)g(a)| < (1 + |g(a)|) \left(\frac{\varepsilon}{2(1 + |g(a)|)}\right) + |f(a)| \cdot \frac{\varepsilon}{2(1 + |f(a)|)} < \varepsilon$$

Lemma 34. Let $g: \mathbb{R} \to \mathbb{R}$ be continuous at $a \in \mathbb{R}$ and $f: \mathbb{R} \to \mathbb{R}$ be continuous at g(a). Then $f \circ g$ is continuous at a

Proof. Let $\varepsilon > 0$ be given. Since f is continuous at g(a), $\exists \delta_f = \delta_f(\varepsilon, a) > 0$ such that

$$|y - g(a)| < \delta_f \implies |f(y) - f(g(a))| < \varepsilon$$

Meanwhile, g is continuous at a, so $\exists \delta_g = \delta_g(\delta_f(\varepsilon, a), a) > 0$ such that

$$|x-a| < \delta_q \implies |g(x) - g(a)| < \delta_f$$

So, letting $\delta = \delta_q$, we see that

$$|x - a| < \delta \implies |g(x) - g(a)| < \delta_f$$

 $\implies |f(g(x)) - f(g(a))| < \varepsilon$

Lemma 35. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at a, and suppose f(a) > 0. Then $\exists \delta > 0$ such that $f(x) > 0 \ \forall x \in [a - \delta, a + \delta]$

Proof. Since f is continuous at a, $\exists \delta_f = \delta_f(a, \overbrace{f(a)}^{\varepsilon}) > 0$ such that

$$|x-a| < \delta_f \implies |f(x) - f(a)| < \underbrace{\frac{\varepsilon}{2} f(a)}^{\varepsilon}$$

It follows that, for $x \in (a - \delta_f, a + \delta_f)$, we have

$$f(x) = (f(x) - f(a)) + f(a)$$

$$\geq f(a) - |f(x) - f(a)|$$

$$\geq f(a) - \frac{1}{2}f(a)$$

$$= \frac{1}{2}f(a) > 0$$

In turn, letting $\delta = \frac{1}{2}\delta_f$, we see that $f(x) > 0 \ \forall x \in [a - \delta, a + \delta]$

3.3 Definition of Left/Right Continuity

f continuous on (a,b) if f is continuous at x, for all $x \in (a,b)$. What does it mean for f to be continuous at on [a,b]? Should there be a difference between "continuous on (a,b)" and "continuous on [a,b]".

To gather intution, let's look at $f(x) = \frac{1}{x}$ on (0,1) and [0,1].

It's clar that f is continuous at every point $a \in (0,1)$ but $\lim_{x\to 0} f(x)$ is not defined. So, it ought to not be continuous on [0,1] We make the following define

Definition (32). Let $f : \mathbb{R} \to \mathbb{R}$ and a < b be real numbers.

- (i) We say f is continuous on (a, b) if f is continuous at x for every $x \in (a, b)$
- (ii) We say f is continuous on [a,b] if f is continuous on (a,b) and $\lim_{x\to a^+}f(x)=f(a)$ and $\lim_{x\to b^-}f(x)=f(b)$

We write $\lim_{x\to a^+} f(x)$ to mean "The limit f as x tends to a from above" also written $\lim_{x\searrow a} f(x)$ and $\lim_{x\to b^-} f(x)$ to mean "The limit f as x tends to b from below" also written $\lim_{x\nearrow a} f(x)$

Definition (32). Let $f: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$

- (i) We write $\mu = \lim_{x \searrow a} f(x)$ if for all $\varepsilon > 0$, $\exists \delta > 0$ such that whenever $a < x < a + \delta$ we have $|\mu f(x)| < \varepsilon$
- (ii) We write $\nu = \lim_{x \nearrow a} f(x)$ if for all $\varepsilon > 0$, $\exists \delta > 0$ such that whenever $a \delta < x < a$ we have $|\nu f(x)| < \varepsilon$

Example. Considered this graph

then, $\lim_{x\searrow a} f(x) = 1$ and $\lim_{x\nearrow b} f(x) = 2$ on the other hand $\lim_{x\nearrow a} f(x) = 0$ and $\lim_{x\searrow b} f(x) = 0$

Example. $\lim_{x\to x_0} f(x)$ exists $\iff \lim_{x\nearrow x_0} f(x)$ and $\lim_{x\searrow x_0} f(x)$ exists and are equal.

3.4 3 Hard Theorems

Theorem 36 (Intermediate Value Theorem). Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on [a, b] for a < b. Suppose f(a) < 0 < f(b) Then $\exists \xi \in (a, b)$ such that $f(\xi) = 0$

Theorem 37. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on [a, b] for a < b. Then f is bounded above on [a, b], i.e., $\exists M \in \mathbb{R}$ such that $f(x) \leq M$ $x \in [a, b]$

Theorem 38. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on [a, b]. Then $\exists \xi \in [a, b]$ such that $f(x) \leq f(\xi) \ \forall x \in [a, b]$ i.e., $f(\xi) = \sup\{f(x) : x \in [a, b]\}$ (we say that f achieves its supremum on [a, b])

Lemma (35'). Let $f: \mathbb{R} \to \mathbb{R}$ and $b \in \mathbb{R}$. Suppose $\lim_{x \nearrow b} f(x) = f(b) > 0$ Then $\exists \delta > 0$ such that f(x) > 0 for all $x \in (b - \delta, b)$

Proof. Directly from Definition 32(ii) (definition of $\lim_{x \nearrow b} f(x)$) such that

$$x \in (b - \delta, b) \implies |f(x) - f(b)| < \frac{1}{2}f(b)$$

Then for such $x \in (b - \delta, b)$ we have

$$f(x) = (f(x) - f(b)) + f(b)$$

$$\stackrel{< \frac{1}{2}f(b)}{\ge f(b) - |f(x) - f(b)|}$$

$$> \frac{1}{2}f(b) > 0$$

Hence, for $x \in (b - \frac{\delta}{2}, b)$ we have f(x) > 0

Lemma (35'). Let $f: \mathbb{R} \to \mathbb{R}$ and $b \in \mathbb{R}$. Suppose $\lim_{x \searrow a} f(x) = f(a) > 0$ Then $\exists \delta > 0$ such that f(x) > 0 for all $x \in (a, a + \delta)$

Proof Theorem 36. Define the set $A = \{x \in [a,b] : f(y) < 0 \ \forall y \in [a,x]\}$ Since f(a) < 0, so $a \in A$, so $A \neq \emptyset$ Also, using Lemma 35" $\exists \delta_1 > 0$ such that $f(y) < 0 \ \forall y \in [a,a+\delta_1]$ so $a + \delta_1 \in A$, and by Lemma 35' $\exists \delta_2 > 0$ such that $f(y) > 0 \ \forall y \in [b - \delta_2, b]$ where

 $b - \delta_2$ is an upper bound for A. So A is bounded above and $\sup A$ is well-defined. Let $\alpha = \sup A$. We already know that $\alpha \in (a,b)$ our aim is to show that $f(\alpha) \neq 0$ We proceed by contradiction:

Suppose for contradiction that $f(\alpha) \neq 0$ There are 2 possibilities

- (i) $f(\alpha) < 0$
- (ii) $f(\alpha) > 0$

Suppose (i) holds, Since $\alpha \in (a, b)$ and $f(\alpha) < 0$ by **Lemma 35**, $\exists \delta_3 > 0$ such that $f(y) < 0 \ \forall y \in [\alpha - \delta_3, \alpha + \delta_3]$ But then $\alpha + \delta_3 \in A$ and $\alpha + \delta_3 > \alpha$

Suppose (ii) holds. Then since $\alpha \in (a,b)$, $f(\alpha) > 0$ and f is continuous. By **Lemma 35**, $\exists \delta_4 > 0$ such that $f(x) > 0 \ \forall x \in [\alpha - \delta_4, \alpha + \delta_4]$ But then $\alpha = \sup A$ by **Lemma 28** $\exists x_0 \in A$ such that $\alpha - \frac{\delta_4}{2} < x_0$ Thus $x_0 \in (\alpha - \frac{\delta_4}{2}, \alpha) \subseteq [\alpha - \delta_4, \alpha + \delta_4] \implies f(x_0) > 0$ But $x_0 \in A$ so $(f_x) < 0$

Corollary 39. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on [a, b] and let $c \in \mathbb{R}$. Suppose f(a) < c < f(b). Then $\exists \xi \in (a, b)$ such that $f(\xi) = c$

Proof. Define g(x) = f(x) - c and apply **Theorem 36** to g

Example 40. Let $f(x) = x^4 + x - 3 \ \forall x \in \mathbb{R}$ Fact: all polynomials are continuous $\forall x \in \mathbb{R}$ A nice application of the Intermidiate Value Theorem is to find roots of continuous functions We can see by plugging in that

$$f(1) = 1 + (-1) - 3 = 3$$

$$f(2) = 16 + 2 - 3 = 15$$

IVT $\implies \exists x_0 \in (1,2)$ such that $f(x_0) = 0$ This at least lets us estimate where roots are

Example 41. Let $f(x) = x^4 + x - 3 + \tan\left(\frac{x}{2}\right)$ (continuous on $(-\pi, \pi)$)

$$f(-1) = -3 - \tan\left(\frac{1}{2}\right) < 0$$

$$f(2) = 15 - \tan\left(\frac{1}{2}\right) > 0$$

IVT $\implies \exists x_0 \in (-1,2) \text{ such that } f(x_0) = 0$

What is it useful for? If we look at the set $f([a,b]) = \{f(x) : x \in [a,b]\}$ and Theorem 37 tell us that set is bounded. Since the set is bounded, it has a supremum. You can think of this as "local max" of f on the interval [a,b]

Before proving Theorem 37, let's look at one of its consequences.

Corollary 42. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on [a, b]. Then f is bounded below on [a, b], i.e., $\exists m \in \mathbb{R}$ such that $m \leq f(x) \ \forall x \in [a, b]$

Proof. Since f is continuous, so is (-f). Now apply Theorem 37 to -f. $\exists M \in \mathbb{R}$ such that $-f(x) \leq M \ \forall x \in [a,b]$ the, $f(x) \leq -M \ \forall x \in [a,b]$

Takeaway: If f is continuous on [a, b], then f is bounded above + below on [a, b] To prove Theorem 37, we'll need a few Lemmas.

Lemma 43. Let $f: \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$, then $\exists \delta > 0$ such that f is bounded above on the interval $[a - \delta, a + \delta]$

Proof. Since f is continuous at a, $\exists \delta = \delta(a, \underbrace{1})$ such that $|x-a| < \delta \implies |f(x)-f(a)| < 1$ This for such x we have

$$f(x) = f(x) - f(a) + f(a)$$

$$\leq |f(x) - f(a)| + |f(a)|$$

$$< 1 + |f(a)|$$

For x satisfying $|x - a| < \delta$, we have f(x) < 1 + f(a).

In particular,
$$f(x) < 1 + f(a) \ \forall x \in \left[a - \frac{\delta}{2}, a + \frac{\delta}{2} \right]$$

Lemma. (43') Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $b \in \mathbb{R}$. Suppose $\lim_{x \nearrow b} f(x) = f(b)$. Then $\exists \delta > 0$ such that f is bounded above on $[b - \delta, b]$

Proof. By Definition 32", $\exists \delta = \delta(b, 1)$ such that

$$0 < |x - b| < \delta \implies |f(x) - f(b)| < 1$$

Therefore, for such x,

$$f(x) = f(x) - f(b) + f(b)$$

$$\leq |f(x) - f(b)| + |f(b)|$$

$$< 1 + |f(b)|$$

$$f(x) < f(b) + 1 \ \forall x \in \left[b - \frac{\delta}{2}, b\right]$$

Lemma. (43") Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $a \in \mathbb{R}$. Suppose $\lim_{x \searrow a} f(x) = f(a)$. Then $\exists \delta > 0$ such that f is bounded above on $[a, a + \delta]$

Proof Theorem 37. As in the proof of Theorem 36, consider the set

$$A = \{x \in [a, b] : f \text{ is bounded above on } [a, x]\}$$

Since $a \in A$, we know $a \neq \emptyset$. Moreover, the point b is an upper bound for A, so $\sup A = \alpha$ exists.

Goal: Show $\alpha = b$.

Suppose for the sake of contradiction that $\alpha < b$. Note that we must have $a < \alpha$. Why? We can't have $a > \alpha$ since $a \in A$. and $\sup A \ge a$. If $\alpha = a$, then $A = \{a\}$, but we know from Lemma 43" that $\exists \delta > 0$ such that $[a, a + \delta] \subset A$.

So far, we know $a < \alpha < b$ and so Lemma 43 $\implies \delta > 0$ such that f is bounded on $[\alpha - \delta, \alpha + \delta]$. Let's say $f(x) \leq m_2$ on this interval $[\alpha - \delta, \alpha + \delta]$.

By Lemma 28 (Alternate definition of supremum) $\exists x_0 \in A \text{ such that } \alpha - \delta < x_0 \leq \alpha$. f is bounded above on $[a, x_0]$ (by the definition of A). say $f(x) \leq m_1$ on $[a, x_0]$