Time Series Econometrics Project

Andrea Pio Cutrera (965591)

December-2020

1 Introduction

Series in ECB forecasts are the forecasts of the professional forecasters and the Realizations of inflation for the euro area. We are going to use observations 2 to 54 (1999Q2-2012Q2) to produce a model to forecast inflation (for 2012Q3-2020Q1).

In the following graph we can see how realizations (true values) of inflation go in the sample 1999Q2-2012Q2:

Figure 1: Realised values of inflation

We can see how inflation stays more or less at 2 points level. In 2008 there is a shock in which it steeply increases up to about 4 points and then decreases to a 0 percent before adjusting from 2010 on, again to that "fair" level of 2 percent.

Model Selection and Estimation $\mathbf{2}$

Before estimating the equations with the parameters and the attached likelihood and information criterion, we are going to make a preliminary investigation on the eventual presence of a unit root.

Null Hypothesis: REALISED has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=10)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level	-4.218593 -3.574446 -2.923780 -2.599925	0.0016

^{*}MacKinnon (1996) one-sided p-values.

Figure 2: Augmented Dickey and Fuller Test

From the Augmented Dickey-Fuller Test we can see that the process has NOT a unit root, by rejecting the null hypothesis (intercept and no time trend). Here the process seems to be almost mean-reverting (not fully) because there is a "fair" level of inflation of 2 point in percent (mean = 2.15 points). So, we can continue with the estimation of our model without any unit root. In a preliminary investigation from the correlogram we could attempt to say which model can be fitted, but it will be safer if we choose it with an information criterion.

	iid	MA(1)	MA(2)	MA(3)	MA(4)
iid	2.352063	1.638368	1.641671	1.121882	0.893601
AR(1)	1.569833	1.541158	1.457845	0.530251	1.198534
AR(2)	1.501454	0.952780	1.646536	0.703114	0.926435
AR(3)	1.505486	1.479813	1.456306	1.337207	1.210969
AR(4)	1.508547	1.481536	1.563433	1.463767	1.365355

Figure 3: Information criterion

In particular we are going to compare the Bayes information criterion (i.e. Schwarz criterion) in order to select our model. I'm going to report only the BIC (Schwarz score) for all the possible ARMA (p,q) models with $p \le 4$ and $q \le 4$. Our selected model is the ARMA(1,3).

Dependent Variable: REALISED Method: ARMA Conditional Least Squares (Gauss-Newton / Marguardt

steps)
Date: 12/02/20 Time: 16:06
Sample (adjusted): 2000Q1 2012Q2

Included observations: 50 after adjustments

Failure to improve likelihood (non-zero gradients) after 289 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: OFF (Roots of MA process too large)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1) MA(2) MA(3)	2.702127 0.732999 0.311345 1.282130 1.275398	0.193811 0.046979 0.235418 0.256704 0.221636	13.94210 15.60280 1.322521 4.994587 5.754465	0.0000 0.0000 0.1927 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.883340 0.872970 0.273423 3.364215 -3.476217 85.18416 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2.162000 0.767155 0.339049 0.530251 0.411860 2.138918
Inverted AR Roots Inverted MA Roots	.73 .23+1.26i Estimated MA	.23-1.26i A process is no	78 ninvertible	

Figure 4: ARMA(1,3) model

3 Model Validation

Checking the residuals with Portmanteau test we can not be absolutely sure that they resemble an independent process. The test of independence on the residuals (Portmanteau test) is saying that we can reject the null hypothesis of independence between residuals. To be sure it could be useful to make another test. [Figure 5]

Considering the fact that is always preferable the "parsimonious modelling" it seems that the ARMA(1, 3) is overparametrized. The estimated parameters are equally non-sensical (on the non-invertibility region) so we should ignore the options with more than one MA term with these data. Taking a look to the forecast made with ARMA(1, 3) we can easily see that values of inflation explode up to an absurd 500% (below in the graph).

So we can try to make some restriction on our model, selecting an ARMA(1,1). Just take in mind that still Portmanteau test from the 4th lag seems not to validate our model. I continue with my ARMA(1, 1). Here the more reasonable forecast made with ARMA(1, 1) and the realized values:

Date: 12/02/20 Time: 16:17 Sample (adjusted): 2000Q1 2012Q2 Q-statistic probabilities adjusted for 4 ARMA terms

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	1 -0.09 2 -0.00 3 -0.10	94 -0.094 92 -0.011 94 -0.106 43 -0.371 16 -0.119 952 0.008 24 -0.067 824 -0.081 91 -0.131 91 -0.131 91 -0.049 93 -0.111 93 -0.033 98 -0.300	0.4652 0.4656 1.0610 7.7176 7.7332 7.8949 7.9303 8.3504 8.3504 8.3724 10.646 13.135	0.009 0.019 0.049 0.080 0.130 0.212 0.300 0.159
		15 0.00 16 -0.10 17 0.20 18 -0.20 19 0.00 20 0.00 21 -0.00 22 0.10 23 -0.00	80 0.108 61 -0.198 29 0.051 45 -0.246 03 -0.007 40 -0.005 25 -0.113 30 0.010	14.570 16.551 20.680 25.538 25.539 25.678 25.734 27.298 27.301 27.825	0.200 0.16 0.080 0.030 0.040 0.050 0.070 0.070 0.090

Figure 5: Portmanteau test for model validation

Figure 6: Forecast of inflation with ARMA(1,3) model

Dependent Variable: REALISED
Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)
Date: 12/03/20 Time: 16:04
Sample (adjusted): 2000Q1 2012Q2
Included observations: 50 after adjustments
Failure to improve likelihood (non-zero gradients) after 8 iterations
Coefficient covariance computed using outer product of gradients
MA Backcast: 1999Q4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1)	2.182847 0.622279 0.383739	0.247881 0.139521 0.166146	8.806026 4.460105 2.309642	0.0000 0.0001 0.0253
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.625103 0.609150 0.479610 10.81120 -32.66092 39.18391 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2.162000 0.767155 1.426437 1.541158 1.470123 1.950766
Inverted AR Roots Inverted MA Roots	.62 38			
inverted IVIA HOORS	50			

Figure 7: ARMA(1,1) model

Date: 12/03/20 Time: 16:05 Sample (adjusted): 2000Q1 2012Q2 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
: <u>L</u> :	1 ! L!	1	0.023	0.023 0.156	0.0277 1.3579	
		3	0.083	0.078	1.7389	0.18
		5	-0.448 -0.108	-0.490 -0.147	13.103 13.773	0.00
		6	-0.142 -0.092	0.047 0.064	14.964 15.472	0.00
1		8	-0.089 0.034	-0.359 -0.102	15.960 16.032	0.01
1 (1)		10	-0.037	0.005	16.120	0.04

Figure 8: Portmanteau test on ARMA(1,1)

Figure 9: Forecast with **ARMA(1,1)** model

4 Forecast Comparison

Now let's compare the forecast requested:

- 1. f_0 : The one with the model selected, ARMA(1, 1);
- 2. f_1 : Professionals' forecast (ECB forecast);
- 3. f_2 : Naive forecast made by taking the last observed value.

Below I report the plot of the forecast f_1 , f_2 and f_3 .

Figure 10: Comparison of forecasts

To better see how they are performing we have to take into account the error that each forecast makes. So, I generate series for the errors of each forecast and then I put it to the power of 2 (squared). Then we can see in a graph the comparison between the absolute errors of the forecast e_0 , e_1 and e_2 :

- e0: is the absolute error made by the forecast of ARMA(1, 1);
- e1: is the absolute error made by the professional forecasters;
- \bullet e2: is the absolute error made by the naïve forecast.

In order to see which one of the 4 forecasts is performing better we can compare the mean of the squared errors and pick up the one with the lowest value for it.

Figure 11: Comparison of the forecast errors

Figure 12: Comparison of the squared forecast errors

Date: 12/03/20 Time: 16:21 Sample: 2012Q3 2020Q1

	E0SQ	E1SQ	E2SQ
	LUSQ	LISQ	L23Q
Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis	0.256073 0.149779 1.057302 0.001033 0.281786 1.473578 4.185582	0.595806 0.360000 2.250000 0.000000 0.600049 0.894674 3.045011	0.131935 0.090000 0.490000 0.000000 0.143861 1.168613 3.353860
Jarque-Bera Probability	13.03463 0.001478	4.138230 0.126297	7.217632 0.027084
Sum	7.938253	18.47000	4.090000

Figure 13: Comparison of the mean squared forecast errors

So the forecast that is performing best in terms of least mean squared error is the naïve forecast (0.131935). One last comparison between forecast can be done with Diebold and Mariano test, regressing the difference between the errors squared with a constant.

- Diff0 = difference between the errors squared of f_0 with f_1 (ARMA(1, 1) against professionals' forecast [namely e0sq-e1sq]);
- Diff1 = difference between the errors squared of f_0 with f_2 (ARMA(1, 1) against naive forecast [namely e0sq-e2sq]);
- Diff2 = difference between the errors squared of f_1 with f_2 (professional forecasters against naive forecast [namely e1sq-e2sq]).

From these regressions we can see whether the difference between the errors squared (comparison between 2 models) is statistically different from 0 or not. If you fail to reject the null hypothesis (p-value; 0.05) you can say that there is not statistically significative difference between the forecasts in comparison. Then the output of each single regression between differences of squared errors and a constant c.

Professionals' forecasters forecast are statistically superior to the one made by ARMA(1, 1).

Arma(1, 1) forecast are statistically superior to the naïve forecast ones.

Professional's forecasters forecasts are statistically superior to the naive ones. Even though we could have understand it by transitivity from the 2 previous regressions.

Dependent Variable: DIFF0 Method: Least Squares Date: 12/03/20 Time: 16:35 Sample: 2012Q3 2020Q1 Included observations: 31

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.339734	0.087302	-3.891457	0.0005
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.486080 7.088200 -21.11598 0.593884	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	-0.339734 0.486080 1.426837 1.473095 1.441916

Figure 14: Diebold and Mariano test

Dependent Variable: DIFF1 Method: Least Squares Date: 12/03/20 Time: 16:35 Sample: 2012Q3 2020Q1 Included observations: 31

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.124137	0.050366	2.464711	0.0197
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.280425 2.359147 -4.063942 1.735905	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.124137 0.280425 0.326706 0.372964 0.341785

Figure 15: Diebold and Mariano test

Dependent Variable: DIFF2 Method: Least Squares Date: 12/03/20 Time: 16:36 Sample: 2012Q3 2020Q1 Included observations: 31

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.463871	0.114683	4.044810	0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.638528 12.23154 -29.57256 0.663318	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quir	ent var riterion erion	0.463871 0.638528 1.972423 2.018681 1.987502

Figure 16: Diebold and Mariano test

References

List of Figures

1	Realised values of inflation
2	Augmented Dickey and Fuller Test
3	Information criterion
4	ARMA(1,3) model
5	Portmanteau test for model validation
6	Forecast of inflation with ARMA(1,3) model 4
7	ARMA(1,1) model
8	Portmanteau test on $ARMA(1,1)$
9	Forecast with $ARMA(1,1)$ model 5
10	Comparison of forecasts
11	Comparison of the forecast errors
12	Comparison of the squared forecast errors
13	Comparison of the mean squared forecast errors
14	Diebold and Mariano test
15	Diebold and Mariano test
16	Diebold and Mariano test