Foundation of Cryptography, Lecture 3 Hardcore Predicates for Any One-way Function

Iftach Haitner, Tel Aviv University

Tel Aviv University.

April 9, 2013

Hardcore Predicates

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \mathsf{neg}(n)$$

for any PPT P.

Hardcore Predicates

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \mathsf{neg}(n)$$

for any PPT P.

 (precious class) an hardcore predicate for a permutation ⇒ PRG

Hardcore Predicates

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \mathsf{neg}(n)$$

for any PPT P.

- (precious class) an hardcore predicate for a permutation PRG
- Can there exist a "generic" hardcore predicate?

Weak hardcore predicate

Theorem 2 (Proven in HW)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ as g(x,i) = f(x), i and b(x,i) = x[i]. Then

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [A(f(x), i) = x[i]] \le 1 - 1/2n$$

for any PPT A.

Weak hardcore predicate

Theorem 2 (Proven in HW)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ as g(x,i) = f(x), i and b(x,i) = x[i]. Then

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [A(f(x), i) = x[i]] \le 1 - 1/2n$$

for any PPT A.

b is a "weak" hardcore predicate of g

Weak hardcore predicate

Theorem 2 (Proven in HW)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ as g(x,i) = f(x), i and b(x,i) = x[i]. Then

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [A(f(x), i) = x[i]] \le 1 - 1/2n$$

for any PPT A.

- b is a "weak" hardcore predicate of g
- b can be "amplified" to a (strong) hardcore predicate

The Goldreich-Levin Hadrcore predicate

Theorem 3 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$ is an hardcore predicate of g.

The Goldreich-Levin Hadrcore predicate

Theorem 3 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$ is an hardcore predicate of g.

• $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2$.

The Goldreich-Levin Hadrcore predicate

Theorem 3 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$ is an hardcore predicate of g.

- $\bullet \ \langle x,r\rangle_2 := \left(\sum_{i=1}^n x_i \cdot r_i\right) \bmod 2.$
- Note that if f is one-to-one, then so is g.

Section 1

Proving GL, The Information Theoretic Case

GL is hard for regular functions

Definition 4 (min-entropy)

The min entropy of a random variable X, is defined as

$$H_{\infty}(X) := \min_{y \in \text{Supp}(X)} \log \frac{1}{\Pr_X[y]}.$$

GL is hard for regular functions

Definition 4 (min-entropy)

The min entropy of a random variable X, is defined as

$$H_{\infty}(X) := \min_{y \in \text{Supp}(X)} \log \frac{1}{\Pr_X[y]}.$$

Examples:

• X is uniform over a set of size 2^k , then $H_{\infty}(X) = k$.

GL is hard for regular functions

Definition 4 (min-entropy)

The min entropy of a random variable X, is defined as

$$\mathsf{H}_{\infty}(X) := \min_{y \in \mathsf{Supp}(X)} \log \frac{1}{\mathsf{Pr}_X[y]}.$$

Examples:

- X is uniform over a set of size 2^k , then $H_{\infty}(X) = k$.
- $(X \mid f(X) = y)$, where $f: \{0,1\}^n \mapsto \{0,1\}^n$ is 2^k to 1 and X is uniform over $\{0,1\}^n$

Pairwise independent hashing

Definition 5 (pairwise independent hash functions)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is pairwise independent, if for every $x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Pairwise independent hashing

Definition 5 (pairwise independent hash functions)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is pairwise independent, if for every $x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Lemma 6 (leftover hash lemma)

Let X be a random variable over $\{0,1\}^n$ with $H_\infty(X) \ge k$ and let $\mathcal H$ be a family of pairwise independent hash functions from $\{0,1\}^n$ to $\{0,1\}^m$, then

$$SD((H, H(X)), (H, U_m)) \le 2^{(m-k-2))/2}$$

where H is uniformly distributed over \mathcal{H} , and U_m over $\{0,1\}^m$.

Efficient function families

Definition 7 (efficient function families)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0,1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Lemma 8

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as g(x,h) = (f(x),h),

then b(x, h) = h(x) is an hardcore predicate of g.

Lemma 8

```
Let f: \{0,1\}^n \mapsto \{0,1\}^n be a d(n) \in 2^{\omega(\log n)} regular function and let \mathcal{H} = \{\mathcal{H}_n\} be an efficient family of Boolean pairwise independent hash functions over \{0,1\}^n. Define g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n as g(x,h) = (f(x),h),
```

How does it relate to Goldreich-Levin?

then b(x, h) = h(x) is an hardcore predicate of g.

Lemma 8

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as g(x,h) = (f(x),h),

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin? b(x,r) is (almost) a family of pairwise independent hash functions.

Lemma 8

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as g(x,h) = (f(x),h),

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin? b(x,r) is (almost) a family of pairwise independent hash functions.

We prove Lemma 8 by showing that

Claim 9

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = \text{neg}(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Lemma 8

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as g(x,h) = (f(x),h),

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin? b(x, r) is (almost) a family of pairwise independent hash functions.

We prove Lemma 8 by showing that

Claim 9

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = \text{neg}(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Does this conclude the proof?

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((f(U_n), H, H(U_n) \mid f(U_n) = y))$$

$$, (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((f(U_n), H, H(U_n) \mid f(U_n) = y))$$

$$, (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((y, H, H(X_y)), (y, H, U_1))$$

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((f(U_n), H, H(U_n) \mid f(U_n) = y))$$

$$\cdot (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((y, H, H(X_y)), (y, H, U_1))$$

$$\leq \max_{y \in f(\{0,1\}^n)} SD((y, H, H(X_y)), (y, H, U_1))$$

$$\begin{split} & \text{SD}((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) \\ &= \sum_{y \in f(\{0,1\}^n)} \Pr[f(U_n) = y] \cdot \text{SD}((f(U_n), H, H(U_n) \mid f(U_n) = y)) \\ &\qquad \qquad , (f(U_n), H, U_1 \mid f(U_n) = y)) \\ &= \sum_{y \in f(\{0,1\}^n)} \Pr[f(U_n) = y] \cdot \text{SD}((y, H, H(X_y)), (y, H, U_1)) \\ &\leq \max_{y \in f(\{0,1\}^n)} \text{SD}((y, H, H(X_y)), (y, H, U_1)) \\ &= \max_{y \in f(\{0,1\}^n)} \text{SD}((H, H(X_y)), (H, U_1)) \end{split}$$

Since $H_{\infty}(X_y) = \log(d(n))$ for any $y \in f(\{0,1\}^n)$,

Since $H_{\infty}(X_y) = \log(d(n))$ for any $y \in f(\{0,1\}^n)$, The leftover hash lemma (Lemma 6) yields that

$$SD((H, H(X_y)), (H, U_1)) \leq 2^{(1-H_{\infty}(X_y)-2))/2}$$

$$= 2^{(1-\log(d(n)))/2} = \text{neg}(n). \quad \Box$$

Further remarks

Remark 10

• Can output $\Theta(\log d(n))$ bits

Further remarks

Remark 10

- Can output $\Theta(\log d(n))$ bits
- g and b have partial domains.

Section 2

Proving GL, The Computational Case

Recall

Theorem 11 (Goldreich-Levin)

```
Let f: \{0,1\}^n \mapsto \{0,1\}^n be a OWF, and define g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n as g(x,r) = f(x), r. Then b(x,r) = \langle x,r \rangle_2 is an hardcore predicate of g.
```

Recall

Theorem 11 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)},$$
(1)

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0,1\}^n$.

Recall

Theorem 11 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)}, \tag{1}$$

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0,1\}^n$.

We show \exists PPT B and $q \in$ poly with

$$\Pr_{y \leftarrow f(U_n)} [\mathsf{B}(y) \in f^{-1}(y)] \ge \frac{1}{q(n)},\tag{2}$$

for every $n \in \mathcal{I}$.

Recall

Theorem 11 (Goldreich-Levin)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)}, \tag{1}$$

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0,1\}^n$.

We show \exists PPT B and $q \in$ poly with

$$\Pr_{y \leftarrow f(U_n)} [\mathsf{B}(y) \in f^{-1}(y)] \ge \frac{1}{q(n)},\tag{2}$$

for every $n \in \mathcal{I}$. In the following fix $n \in \mathcal{I}$.

Claim 12

There exists a set $S \subseteq \{0,1\}^n$ with

$$lacktriangledown$$
 $\frac{|\mathcal{S}|}{2^n} \geq \frac{1}{2p(n)}$, and

2
$$\alpha(x) := \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$$

Claim 12

There exists a set $S \subseteq \{0,1\}^n$ with

- lacktriangledown $\frac{|\mathcal{S}|}{2^n} \geq \frac{1}{2p(n)}$, and
- $\alpha(x) := \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \alpha(x) \ge \frac{1}{2} + \frac{1}{2p(n)}\}$. It follows that

$$\Pr[\mathsf{A}(g(U_n,R_n)) = b(U_n,R_n)] \leq \Pr[U_n \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}]$$

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

- lacktriangledown $\frac{|\mathcal{S}|}{2^n} \geq \frac{1}{2p(n)}$, and
- $\alpha(x) := \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0,1\}^n : \alpha(x) \ge \frac{1}{2} + \frac{1}{2p(n)}\}$. It follows that

$$\Pr[\mathsf{A}(g(U_n,R_n)) = b(U_n,R_n)] \leq \Pr[U_n \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}]$$
$$\leq \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}] \square$$

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

- \bullet $\frac{|\mathcal{S}|}{2^n} \geq \frac{1}{2p(n)}$, and
- $2 \ \alpha(x) := \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \alpha(x) \ge \frac{1}{2} + \frac{1}{2p(n)}\}$. It follows that

$$\Pr[\mathsf{A}(g(U_n,R_n)) = b(U_n,R_n)] \leq \Pr[U_n \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}]$$
$$\leq \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}] \square$$

We will present $q \in \text{poly}$ and a PPT B such that

$$\Pr[\mathsf{B}(y = f(x)) \in f^{-1}(y) \ge \frac{1}{q(n)},$$
 (3)

for every $x \in S$.

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

- \bullet $\frac{|\mathcal{S}|}{2^n} \geq \frac{1}{2p(n)}$, and
- $2 \ \alpha(x) := \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0,1\}^n : \alpha(x) \ge \frac{1}{2} + \frac{1}{2p(n)}\}$. It follows that

$$\Pr[\mathsf{A}(g(U_n,R_n)) = b(U_n,R_n)] \leq \Pr[U_n \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}]$$
$$\leq \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}] \square$$

We will present $q \in \text{poly}$ and a PPT B such that

$$\Pr[\mathsf{B}(y = f(x)) \in f^{-1}(y) \ge \frac{1}{q(n)},$$
 (3)

for every $x \in S$. In the following we fix $x \in S$.

The perfect case $\alpha(x) = 1$

• For every $i \in [n]$ it holds that

$$\mathsf{A}(f(x),e^i)=b(x,e^i),$$

where
$$e^{i} = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}).$$

The perfect case $\alpha(x) = 1$

• For every $i \in [n]$ it holds that

$$A(f(x),e^i)=b(x,e^i),$$

where
$$e^{i} = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}).$$

• Hence, $x_i = \langle x, e^i \rangle_2 = \mathsf{A}(f(x), e^i)$

The perfect case $\alpha(x) = 1$

• For every $i \in [n]$ it holds that

$$A(f(x),e^i)=b(x,e^i),$$

where
$$e^{i} = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}).$$

- Hence, $x_i = \langle x, e^i \rangle_2 = \mathsf{A}(f(x), e^i)$
- Let $B(f(x)) = (A(f(x), e^1), ..., A(f(x), e^n))$

Fact 13

- ② $\forall r \in \{0,1\}^n$, the $rv(r \oplus R_n)$ is uniformly distributed over $\{0,1\}^n$ (where R_n is uniformly distributed over $\{0,1\}^n$).

Fact 13

- ② $\forall r \in \{0,1\}^n$, the $rv(r \oplus R_n)$ is uniformly distributed over $\{0,1\}^n$ (where R_n is uniformly distributed over $\{0,1\}^n$).

Hence, $\forall i \in [n]$:

Fact 13

- ② $\forall r \in \{0,1\}^n$, the $rv(r \oplus R_n)$ is uniformly distributed over $\{0,1\}^n$ (where R_n is uniformly distributed over $\{0,1\}^n$).

Hence, $\forall i \in [n]$:

- $Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)]$ $\ge 1 neg(n)$

Fact 13

- ② $\forall r \in \{0,1\}^n$, the $rv(r \oplus R_n)$ is uniformly distributed over $\{0,1\}^n$ (where R_n is uniformly distributed over $\{0,1\}^n$).

Hence, $\forall i \in [n]$:

- $Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)]$ $\ge 1 neg(n)$

Fact 13

- ② $\forall r \in \{0,1\}^n$, the $rv(r \oplus R_n)$ is uniformly distributed over $\{0,1\}^n$ (where R_n is uniformly distributed over $\{0,1\}^n$).

Hence, $\forall i \in [n]$:

- Pr[A(f(x), R_n) = $b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)$] $\geq 1 - \text{neg}(n)$

We let
$$B(f(x)) = (A(f(x), R_n) \oplus A(f(x), R_n \oplus e^1)), \dots, A(f(x), R_n) \oplus A(f(x), R_n \oplus e^n)).$$

For any $i \in [n]$

$$\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i]$$

$$\geq \Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)]$$
(4)

For any $i \in [n]$

$$\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i]$$

$$\geq \Pr[A(f(x), R_n) = b(x, R_n) \wedge A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)]$$

$$\geq \frac{1}{2} + \frac{2}{g(n)}$$

$$(4)$$

For any $i \in [n]$

$$\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i]$$

$$\geq \Pr[A(f(x), R_n) = b(x, R_n) \wedge A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)]$$

$$\geq \frac{1}{2} + \frac{2}{g(n)}$$

$$(4)$$

Algorithm 14 (B)

Input: $f(x) \in \{0, 1\}^n$

- For every $i \in [n]$
 - Sample $r^1, \dots, r^v \in \{0, 1\}^n$ uniformly at random
 - 2 Let $m_i = \text{maj}_{i \in [v]} \{ (A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) \}$
- Output (m_1, \ldots, m_n)

The following holds for "large enough" v = v(n).

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

The following holds for "large enough" v = v(n).

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator $v W^j$ be 1, iif $A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i$.

The following holds for "large enough" v = v(n).

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator rv W^j be 1, iif

$$A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i.$$

We want to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^j > \frac{\nu}{2}\right]$.

The following holds for "large enough" v = v(n).

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator $v W^j$ be 1, iif

$$A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i.$$

We want to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^j > \frac{\nu}{2}\right]$.

• The W^j are iids and $E[W^j] \ge \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]$

The following holds for "large enough" v = v(n).

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator rv W^j be 1, iif

$$A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i.$$

We want to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^j > \frac{\nu}{2}\right]$.

• The W^j are iids and $E[W^j] \ge \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]$

Lemma 16 (Hoeffding's inequality)

Let X^1, \ldots, X^v be iids over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{\nu} X^j}{\nu} - \mu| \ge \varepsilon] \le 2 \cdot \exp(-2\varepsilon^2 \nu)$$
 for every $\varepsilon > 0$.

The following holds for "large enough" v = v(n).

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator $v W^j$ be 1, iif

$$A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i.$$

We want to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^j > \frac{\nu}{2}\right]$.

• The W^j are iids and $E[W^j] \ge \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]$

Lemma 16 (Hoeffding's inequality)

Let X^1, \ldots, X^v be iids over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{\nu} X^j}{\nu} - \mu| \ge \varepsilon] \le 2 \cdot \exp(-2\varepsilon^2 \nu)$$
 for every $\varepsilon > 0$.

We complete the proof taking $X^j = W^j$, $\varepsilon = 1/4q(n)$ and $v \in \omega(\log(n) \cdot q(n)^2)$.

• What goes wrong?

- What goes wrong?
- Idea: guess the values of $\{b(x, r^1), \dots, b(x, r^v)\}$ (instead of calling $\{A(f(x), r^1), \dots, A(f(x), r^v)\}$)

- What goes wrong?
- Idea: guess the values of $\{b(x, r^1), \dots, b(x, r^v)\}$ (instead of calling $\{A(f(x), r^1), \dots, A(f(x), r^v)\}$)

 Problem: negligible success probability

- What goes wrong?
- Idea: guess the values of $\{b(x, r^1), \dots, b(x, r^v)\}$ (instead of calling $\{A(f(x), r^1), \dots, A(f(x), r^v)\}$)

Problem: negligible success probability

Solution: choose the samples in a correlated manner

• Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} - 1$.

• Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} - 1$.

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $\nu = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice, and

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $\nu = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice, and

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice, and

Algorithm 17 (B)

```
Input: f(x) \in \{0, 1\}^n
```

- **3** Sample uniformly (and independently) $t_1, \ldots, t_\ell \in \{0, 1\}^n$
- To rall $\mathcal{L} \subseteq [\ell]$:
 Compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$, where $r^{\mathcal{L}} := \bigoplus_{i \in \mathcal{L}} t^i$
- For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subset [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice, and

Algorithm 17 (B)

```
Input: f(x) \in \{0, 1\}^n
```

- **①** Sample uniformly (and independently) $t_1, \ldots, t_\ell \in \{0, 1\}^n$
- **③** For all $\mathcal{L} \subseteq [\ell]$:
 Compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$, where $r^{\mathcal{L}} := \bigoplus_{i \in \mathcal{L}} t^i$
- For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subset [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- - Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice, and

Algorithm 17 (B)

Input: $f(x) \in \{0, 1\}^n$

- **3** Sample uniformly (and independently) $t_1, \ldots, t_\ell \in \{0, 1\}^n$
- To rall $\mathcal{L} \subseteq [\ell]$:
 Compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$, where $r^{\mathcal{L}} := \bigoplus_{i \in \mathcal{L}} t^i$
- For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subset [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- - Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.
 - ullet We want to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq [\ell]} \mathbf{W}^{\mathcal{L}} > rac{\mathbf{v}}{2}
 ight]$

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- \bullet In the following $\mathcal{L}\subseteq [\ell]$ stands for a non empty choice, and

Algorithm 17 (B)

```
Input: f(x) \in \{0, 1\}^n
```

- **①** Sample uniformly (and independently) $t_1, \ldots, t_\ell \in \{0, 1\}^n$
- The second section of the second section is for all $\mathcal{L} \subseteq [\ell]$:

 Compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$, where $r^{\mathcal{L}} := \bigoplus_{i \in \mathcal{L}} t^i$
- For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- - Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.
 - ullet We want to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq [\ell]} \mathbf{\textit{W}}^{\mathcal{L}} > rac{\textit{v}}{2}
 ight]$
 - Problem: the W^L's are dependent!

Analyzing B's success probability

- Let T^1, \ldots, T^ℓ be iid over $\{0, 1\}^n$.
- ② For every $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Analyzing B's success probability

- Let T^1, \ldots, T^ℓ be iid over $\{0, 1\}^n$.
- ② For every $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **①** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$
- ② $\forall w, w' \in \{0, 1\}^n$ and $\forall \mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w']$

Analyzing B's success probability

- Let T^1, \ldots, T^ℓ be iid over $\{0, 1\}^n$.
- ② For every $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **①** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$
- ② $\forall w, w' \in \{0,1\}^n$ and $\forall \mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w']$
 - Proof?

$$\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] \\
= \sum_{(t^2, ..., t^{\ell}) \in \{0, 1\}^{(\ell-1)n}} \Pr[(T^2, ..., T^{\ell}) = (t^2, ..., t^{\ell})] \cdot \\
\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^2, ..., T^{\ell}) = (t^2, ..., t^{\ell})]$$

$$\begin{aligned} & \mathsf{Pr}[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] \\ &= \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} & \mathsf{Pr}[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \\ & \qquad \qquad \mathsf{Pr}[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} & \qquad \qquad \qquad \mathsf{Pr}[R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \end{aligned}$$

$$\begin{split} \Pr[R^{\mathcal{L}} &= w \land R^{\mathcal{L}'} = w'] \\ &= \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \\ &\quad \Pr[R^{\mathcal{L}} &= w \land R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &\quad \cdot \Pr[R^{\mathcal{L}'} &= w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot 2^{-n} \\ &\quad (t^2, \dots, t^\ell) : \ (\bigoplus_{i \in \mathcal{L}} t^i) = w \end{split}$$

$$\begin{split} \Pr[R^{\mathcal{L}} &= w \land R^{\mathcal{L}'} = w'] \\ &= \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \\ &= \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot 2^{-n} \\ &= 2^{-n} \cdot 2^{-n} \\ &= \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] \end{split}$$

Definition 19 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$$

Definition 19 (pairwise independent random variables)

A sequence of random variables X^1, \dots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$$

• By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.

Definition 19 (pairwise independent random variables)

A sequence of random variables X^1, \dots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$$

- By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ why?. (Recall, $W^{\mathcal{L}}$ is 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i)$

Definition 19 (pairwise independent random variables)

A sequence of random variables X^1, \dots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$$

- By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ why?. (Recall, $W^{\mathcal{L}}$ is 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i)$

Definition 19 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$$

- By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ why?. (Recall, $W^{\mathcal{L}}$ is 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i)$

Lemma 20 (Chebyshev's inequality)

Let X^1, \ldots, X^{ν} be pairwise-independent random variables with expectation μ and variance σ^2 . Then, for every $\varepsilon > 0$,

$$\Pr\left[\left|\frac{\sum_{j=1}^{\mathit{V}} X^j}{\mathit{V}} - \mu\right| \geq \varepsilon\right] \leq \frac{\sigma^2}{\varepsilon^2 \mathit{V}}$$

• Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L}\subseteq [\ell]$

- Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$

- Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
 - $Var(W^{\mathcal{L}}) := E[W^{\mathcal{L}}]^2 E[(W^{\mathcal{L}})^2] \le 1$

- Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
 - $Var(W^{\mathcal{L}}) := E[W^{\mathcal{L}}]^2 E[(W^{\mathcal{L}})^2] \le 1$

- Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
 - $Var(W^{\mathcal{L}}) := E[W^{\mathcal{L}}]^2 E[(W^{\mathcal{L}})^2] \le 1$
- Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
 (5)

- Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$
 - ightharpoonup $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
 - $Var(W^{\mathcal{L}}) := E[W^{\mathcal{L}}]^2 E[(W^{\mathcal{L}})^2] \le 1$
- Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
 (5)

- Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L}\subseteq [\ell]$
 - $\blacktriangleright \ \mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
 - $Var(W^{\mathcal{L}}) := E[W^{\mathcal{L}}]^2 E[(W^{\mathcal{L}})^2] \le 1$
- Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
 (5)

• Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

- Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L}\subseteq [\ell]$
 - $\blacktriangleright \ \mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
 - $Var(W^{\mathcal{L}}) := E[W^{\mathcal{L}}]^2 E[(W^{\mathcal{L}})^2] \le 1$
- Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
 (5)

• Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

- Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L}\subseteq [\ell]$
 - ► $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
- Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
 (5)

- Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.
- Taking the guessing into account, yields that B outputs x with probability at least $2^{-\ell}/2 \in \Omega(n/q(n)^2)$.

Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the LHL: Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the LHL: Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the LHL: Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.
 - Exists (a possibly inefficient) algorithm D that distinguishes $(R_n, \langle R_n, X \rangle_2)$ from (R_n, U_1) with advantage α

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the LHL: Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.
 - \implies Exists (a possibly inefficient) algorithm D that distinguishes $(R_n, \langle R_n, X \rangle_2)$ from (R_n, U_1) with advantage α
 - \implies Exists algorithm A that predicts $\langle R_n, X \rangle_2$ given R_n with prob $\frac{1}{2} + \alpha$

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the LHL: Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.
 - Exists (a possibly inefficient) algorithm D that distinguishes $(R_n, \langle R_n, X \rangle_2)$ from (R_n, U_1) with advantage α
 - \implies Exists algorithm A that predicts $\langle R_n, X \rangle_2$ given R_n with prob $\frac{1}{2} + \alpha$
 - \implies (by GL) Exists algorithm B that guesses X from nothing, with prob $\alpha^{O(1)} > 2^{-t}$

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x): $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x

- List decoding:
 - An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} \delta$ from C(x): $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x
 - The code we used here is known as the Hadamard code
- LPN learning parity with noise: Find x given polynomially many samples of $\langle x, R_n \rangle_2 + N$, where $\Pr[N=1] \leq \frac{1}{2} - \delta$.

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x): $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x

The code we used here is known as the Hadamard code

• LPN - learning parity with noise: Find x given polynomially many samples of $\langle x, R_n \rangle_2 + N$, where $\Pr[N=1] \leq \frac{1}{2} - \delta$.

The difference comparing to Goldreich-Levin – no control over the R_n 's.