

ETI MAYER

- Junior Data Scientist Certified DS from Bar Ilan
- DS Skills: ML Models, R, Python (DS packages), SQL Server
- Financial back office in an activist hedge fund ABROSH CAPITAL

Experience:

- She Code Final Project Global Activism
- Israeli Security Agency Hackathon 2021 DS Team Lead
- Final project in the DS course NoShow dataset

GLOBAL ACTIVISM

- Domain Field: Global Capital Market
- Main Project Purpose: Predict Activists' Campaign Succession for an Activism Follower Fund
- Data Source: Purchased Database.
 - + Edgar SEC database

WHAT IS AN ACTIVIST CAMPAIGN?

- An activist investor buys a significant stake in a public company
- Strategy: Influence on how the company is run, e.g.:
 - 1. Obtaining seats on BOD.
 - 2. Taking private
 - 3. Etc.
- Objective: Creating value to share holders:
 - >50% net IRR over ref index, S&P500

PHOW TO FIND ACTIVISTS' CAMPAIGNS?

Activist acquires more than 5% of voting class

Disclose purchase on a 13D form

Becomes a beneficial owner

Schedule 13D must be filed
with the U.S. SEC to
disclosed relevant
information

• GLOBAL SUCCESS

Aims

Strategic Change Forced Sale

ROI

Assets Sale / Reconciliation of Investments

Impact on Merging

Strategic Change

Replacing Management / Corporate Governance

tw)telecom...

jda.

ASHLAND


```
1 con <- dbConnect(odbc(),</pre>
                         Driver = "SQL Server",
                         Server = "DESKTOP-AAGNMGA\\SQLEXPRESS",
                        Database = "Activism",
                         Trusted Connection = "True")
1 df <- dbReadTable(con, "activist holdings v SC")</pre>
 2 head(df)
A data.frame: 6 × 189
   Investor.ID
                  Activist ActivistHQ ActivistRegion Founded FirstDateInvestedByActivisit CurrentHolding StatusCurrent StatusExisted DateExited ... Seat
        <int>
                   <chr>
                               <chr>>
                                             <chr>>
                                                       <int>
                                                                                                 <dbl>
                                                                                                               <int>
                                                                                                                             <int>
                                                                                                                                       <chr>> ...
                 Aberdeen
           2 Management
                                        WestEurope
                                                        1983
                                                                             2017-01-03
                                                                                                                                         NA ...
                                        WestEurope
                                                        1983
                                                                             2010-09-10
                                                                                                                                         NA ...
           2 Management
                                                                                                   NA
           2 Management
                                        WestEurope
                                                        1983
                                                                             2015-09-17
                                                                                                                                1 2016-10-10 ...
                 Aberdeen
```

A Data.Frame: 9299x189; Target=Succession (Categorial 1/0)

Target: CASE WHEN (a.[Follower Return Annualised (%)]/ a.[S&P Change Annualised (%)]-1>0.5)

THEN (1) ELSE (0) END AS Succession

■DA — Data Visualization

Using Pandas-Profiling package for statistical and visualized insights.
 Full Report

EDA - Correlation

Correlation matrix between continues variables

```
1 res <- NULL
 3 for(i in names(Activism continuousV)) {
        rw <- NULL
        for(j in names(Activism continuousV)) {
            rw <- cbind(rw,cor.test(x=df[[i]],y=df[[j]],method="spearman")$estimate)</pre>
        res <- rbind(res,rw)
 8
 9 }
10 row.names(res) <- names(Activism_continuousV)</pre>
11 colnames(res) <- names(Activism_continuousV)</pre>
 1 corrplot(res, method = "shade", type = "upper", is.corr = TRUE, tl.cex=1.5, tl.col = "Blue", tl.srt = 90, na.rm = TRUE)
 2 options(repr.plot.width = 10, repr.plot.height = 10)
```


EDA - Correlation

Correlation between target 'Succession' to categorial variables

```
def conditional entropy(x,y):
2
       # entropy of x given y
 3
       y counter = Counter(y)
       xy counter = Counter(list(zip(x,y)))
       total occurrences = sum(y counter.values())
 6
       entropy = 0
       for xy in xy counter.keys():
 8
           p_xy = xy_counter[xy] / total_occurrences
9
           p y = y counter[xy[1]] / total occurrences
           entropy += p xy * math.log(p y/p xy)
10
11
       return entropy
12
13
    def theil u(x,y):
14
        s xy = conditional entropy(x,y)
       x counter = Counter(x)
15
16
       total occurrences = sum(x counter.values())
       p x = list(map(lambda n: n/total occurrences, x counter.values()))
17
18
       s x = ss.entropy(p x)
19
       if s x == 0:
20
           return 1
21
       else:
22
           return (s_x - s_xy) / s_x
```

```
theilu = pd.DataFrame(index=['Succession'],columns=df.columns)
columns = df.columns
for j in range(0,len(columns)):
    u = theil_u(df['Succession'].tolist(),df[columns[j]].tolist())
    theilu.loc[:,columns[j]] = u
theilu.fillna(value=np.nan,inplace=True)
plt.figure(figsize=(20,5))
sns.heatmap(theilu,annot=True,fmt='.2f')
plt.show()
```


EDA — Data Cleaning - Outliers

Detecting Outliers using outliers' matrix

Checking the distribution with(blue) / without outliers(red)

Correlation matrix -Y + X(with outliers) & X(without outliers)

Result DF

■DA — Data Cleaning - Outliers

Detecting Outliers using outliers' matrix

Avg SPReturnByAct -0.20973284

Checking the distribution with(blue) / without outliers(red)

Drop

Correlation matrix -Y + X(with outliers) & X(without outliers)

1.891091e-66 -0.195151021

6.636532e-56

Result DF

EDA — Data Cleaning — Missing Values

Summarizing missing values after outliers' treatment

getMissingness(df_noout)

\$missingness

A data frame: 116 × 3

var	na_count	rate
<fct></fct>	<dbl></dbl>	<dbl></dbl>
AH_PruchaseValueMnLocal	8385	90.2
AvgAnnualisedReturnByMC	8329	89.6
AH_PricePerShareLocal	8220	88.4
Buyer	7866	84.6
ThirteenD	6845	73.6
SeatsProposed	6751	72.6
SeatsGained	6725	72.3
CurrentHolding	6151	66.1

DelayShareholderivieeting	1	U. I
CloseFund	7	0.1
ClosedAGM	7	0.1
ActivistIssuesPublicLetter	7	0.1
ActivistLetterToRegulatoryBodies	7	0.1
LitigationInitiated	7	0.1
ConsentSolicitationInitiated	7	0.1
SECFiling	7	0.1
AvgSPReturnByIND	2	0.0

\$message

'This dataset has 0 (0%) complete rows. Original data has 9299 rows.'

\$rows

NULL

■ EDA — Data Cleaning — Missing Values

Heatmap for missing values

EDA — Data Cleaning — Missing Values

Determinate the Missingness Generation Mechanism

By the distribution and the t-test I assume that the missing mechanism is MNAR

[1] "SPChangeSinceExitByCamp by NA PositiveReturnByIND"

Welch Two Sample t-test

data: b1[[i]] and b2[[i]] t = -0.4457, df = 1153.3, p-value = 0.6559

■ DA — Data Cleaning — Missing Values

- Treatment:
 - 1. Quantile numeric variable and adding 'miss' category

```
# quantile numeric variable
for (i in intVar){
    df.na[[i]] <- as.factor(ifelse (is.na(df.na[[i]]), 'miss', quantile(df.na[[i]], probs = seq(0, 1, 0.25), na.rm = TRUE,
}
getMissingness(df.na)</pre>
```

2. For categorical vars with >10% missing - add 'miss'

```
var na_count rate

<fct> <dbl> <dbl>

$message

'This dataset has 9299 (100%) complete rows. Original data has 9299 rows.

$IOWS

NULL
```

Re-Check for Outliers and missing values

■EDA — Notes and challenges

• A wrong 'ifelse' transcript converted big part of the data to NA.

Outliers' treatment

ELUSTER ANALYSIS

- Adding 2 type of clusters to the data, Threshold 3 and 4:
 - 1. Hierarchical clustering hclust.

2. Gaussian mixture models - mclust.

```
1 library(mclust)
2
3 ### McLust: implementation of gaussian mixture model
4
5 mcl_model3 <- Mclust(df, 3)
6
7 summary(mcl_model3)
8
9 mcl_model4 <- Mclust(df, 4)
10
11 summary(mcl_model4)</pre>
```


FEATURE SELECTION STRATEGY

- 2 methods for feature selection:
 - 1. Univariable Analysis Selecting features with p_value≤0.05
 - 2. Multivariable Analysis Using Lasso, Ridge, Naïve Bayse, Random forest, etc.
- Summarization and Selection of Variables Threshold=1

	,										
	Variable	Univariable	Lasso	Ridge	ComplementNB	RandomForest	CART	GradientBoost	ADAboost	SVM	Sum
0	ActivistHQ_1	0	0	0	0	1	1	0	0	\ 0	2
1	ActivistHQ_2	1	0	0	0	1	1	1	0	Q	4
2	ActivistHQ_3	1	0	0	0	1	0	0	0	0	2
3	ActivistHQ_4	0	0	1	0	0	0	0	0	0	1
4	ActivistHQ_5	1	0	0	0	1	0	0	0	0	2
3280	Unresolved_2	1	0	0	0	1	1	0	0	0	3
3281	hclust3	1	0	0	0	1	1	0	0	0	3
3282	hclust4	1	0	0	0	1	1	0	0	1	4
3283	Mclust3	1	0	0	0	1	1	1	0	0	4
3284	Mclust4	1	0	0	0	1	1	1	0	1	5

3285 rows × 11 columns

FEATURE SELECTION — Notes and challenges

Memory error due to high cardinality on 'one hot encoding'.

 Using data batches for the encoder gave me different features which I couldn't join back to DF

DATA PRE-PROCCING — Preparing the data

Splitting data to train-dev-test

You got a perfectly balanced training and test datasets

Using cross validation for Train-Dev

CLASSIFICATION MODELS — Metric Selection

• I chose 'Sensitivity' score with FPR – The Gain driven approach

The false positive rate is $FPR = \frac{FP}{FP + TN} = 1 - Specificity$

Because I wanted to make sure I won't miss any campaign that

might be successful.

Sensitivity vs. Specificity

CLASSIFICATION MODELS - CV strategy Selection

StratifiedKFold and StratifiedShuffleSplit for imbalance data

Category	#
0	6,979
1	2,320

Imbalance Ratio: 1/4

CLASSIFICATION MODELS - Results

Model with the highest sensitivity score and the lowest FPR

	Name	Model	AUC- train	AUC- test	AUC_diff	F1-train	F1-test	F1_diff	Sensitivity- train	Sensitivity- test	sens_diff	fpr-train	fpr-test	fpr_diff
2	SVC	mod3	0.847208	0.818621	0.028588	0.857845	0.857757	0.000087	1.000000	1.000000	0.000000	1.000000	1.000000	0.000000
0	svc	mod3	0.841789	0.812042	0.029747	0.857801	0.857845	0.000044	1.000000	1.000000	0.000000	1.000000	1.000000	0.000000
1	SVC	mod3	0.845187	0.824536	0.020651	0.857801	0.857845	0.000044	1.000000	1.000000	0.000000	1.000000	1.000000	0.000000
1	Gradient Boosting Classifier	mod8	0.897174	0.849202	0.047971	0.894374	0.879195	0.015180	0.953455	0.937724	0.015731	0.538877	0.589633	0.050756
2	Gradient Boosting Classifier	mod8	0.895010	0.851578	0.043432	0.891282	0.876722	0.014561	0.947745	0.934814	0.012931	0.539957	0.596112	0.056156
2	Logistic Regression	mod1	0.897094	0.848336	0.048758	0.898873	0.874362	0.024511	0.941661	0.919771	0.021890	0.463283	0.555076	0.091793
1	Logistic Regression	mod1	0.897233	0.844349	0.052885	0.896694	0.877349	0.019345	0.936985	0.919112	0.017873	0.461123	0.531317	0.070194
0	Gradient Boosting Classifier	mod8	0.898423	0.846752	0.051671	0.891411	0.869654	0.021757	0.941998	0.916965	0.025033	0.517279	0.578834	0.061555
0	Logistic Regression	mod1	0.898274	0.841868	0.056406	0.899092	0.873326	0.025766	0.939492	0.910523	0.028969	0.453564	0.526996	0.073434
1	ADAboost	mod6	0.871375	0.841471	0.029905	0.879447	0.867238	0.012209	0.911565	0.904796	0.006769	0.487041	0.548596	0.061555
2	Random Forest Classifier	mod5	0.999095	0.760225	0.238869	0.992342	0.852991	0.139351	0.997137	0.904011	0.093125	0.037797	0.650108	0.612311
1	XGboost	mod7	0.981824	0.833186	0.148637	0.956293	0.864902	0.091391	0.975295	0.900501	0.074794	0.194384	0.548596	0.354212
0	ADAboost	mod6	0.870145	0.826714	0.043431	0.880318	0.864436	0.015882	0.911207	0.896922	0.014285	0.479482	0.537797	0.058315
0	XGboost	mod7	0.985828	0.833010	0.152818	0.963237	0.868330	0.094907	0.980308	0.896922	0.083386	0.166307	0.509719	0.343413
2	ADAboost	mod6	0.871031	0.836379	0.034652	0.879227	0.866136	0.013091	0.911954	0.896848	0.015106	0.490281	0.524838	0.034557
1	Random Forest Classifier	mod5	0.999260	0.752747	0.246513	0.993022	0.849437	0.143585	0.993555	0.890480	0.103076	0.022678	0.622030	0.599352
0	Random Forest Classifier	mod5	0.999175	0.773250	0.225925	0.992123	0.849551	0.142572	0.992123	0.881174	0.110949	0.023758	0.583153	0.559395
2	XGboost	mod7	0.982256	0.834246	0.148009	0.960434	0.856745	0.103690	0.981747	0.880372	0.101374	0.188985	0.526998	0.338013
2	Decision Tree Classifier	mod4	0.999988	0.693839	0.306149	0.998566	0.853901	0.144666	0.997137	0.862464	0.134673	0.000000	0.475162	0.475162
0	Decision Tree Classifier	mod4	0.999984	0.678691	0.321294	0.998386	0.842781	0.155605	0.996778	0.846099	0.150679	0.000000	0.488121	0.488121
1	Decision Tree Classifier	mod4	0.999993	0.662455	0.337537	0.998925	0.832200	0.166725	0.998210	0.832498	0.165712	0.001080	0.507559	0.506479
1	ComplementNB	mod2	0.757936	0.681560	0.076376	0.789504	0.760886	0.028618	0.732546	0.712956	0.019589	0.371490	0.485961	0.114471
2	ComplementNB	mod2	0.759515	0.717470	0.042045	0.794563	0.766847	0.027715	0.742663	0.709169	0.033494	0.382289	0.423326	0.041037
0	ComplementNB	mod2	0.761277	0.695748	0.065529	0.796791	0.765163	0.031628	0.746867	0.704366	0.042501	0.385529	0.412527	0.026998

CLASSIFICATION MODELS — Model selected

Decision Tree Classifier is the best considering both parameters

	Name	Model	AUC- train	AUC- test	AUC_diff	F1-train	F1-test	F1_diff	Sensitivity- train	Sensitivity- test	sens_diff	fpr-train	fpr-test	fpr_diff
2	Decision Tree Classifier	mod4	0.999988	0.693839	0.306149	0.998566	0.853901	0.144666	0.997137	0.862464	0.134673	0.000000	0.475162	0.475162
0	Decision Tree Classifier	mod4	0.999984	0.678691	0.321294	0.998386	0.842781	0.155605	0.996778	0.846099	0.150679	0.000000	0.488121	0.488121
1	Decision Tree Classifier	mod4	0.999993	0.662455	0.337537	0.998925	0.832200	0.166725	0.998210	0.832498	0.165712	0.001080	0.507559	0.506479

CLASSIFICATION MODELS — Fine Tuning

Random search and Grid Search for hyperparameter optimization

Random search

f': [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]}

```
1 # The function to measure the quality of a split
 2 criterion = ['gini', 'entropy']
 3 # The strategy used to choose the split at each node.
 4 # Supported strategies are "best" to choose the best split and "random" to choose the best random split
 5 | splitter = ['best', 'random']
 6 # The minimum number of samples required to split an internal node
 7 min samples split = [2,4,8,16,32,40]
 8 # The minimum number of samples required to be at a leaf node
 9 min samples leaf = [2,4,6,8,10,12,14,16,18,20]
11 random grid = {'criterion': criterion,
                   'splitter': splitter,
                  'min samples split': min samples split,
13
                  'min samples leaf': min samples leaf}
14
16 print(random grid)
```

{'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'min samples split': [2, 4, 8, 16, 32, 40], 'min samples lea

```
1 DTC_random.best_params_

{'splitter': 'best',
    'min_samples_split': 40,
    'min_samples_leaf': 18,
    'criterion': 'gini'}
```


CLASSIFICATION MODELS — Fine Tuning

Grid search - We decide which parameters and how (not randomly)

```
1 grid_search.best_params_

{'criterion': 'gini',
    'min_samples_leaf': 18,
    'min_samples_split': 40,
    'splitter': 'best'}
```

	Base Score	Random Score	Grid Score
0	0.847222	0.891762	0.966696
1	0.875000	0.902778	0.961368
2	0.863027	0.867816	0.962256

We can see the improvement between base, random and grid fine tuning

PREDICTIONS

```
# make a prediction
y_pred = best_grid.predict(X_test)
```

pd.crosstab(y_test,y_pred)

C:\Users\Mayer\Anaconda3\lib\site-packag
tegorical object instead of an ndarray :
 vec = libmissing.isnaobj_old(values.ra

col_0 0 1

Succession

0	754	635
1	322	3868

```
1  yprob = best_grid.predict_proba(X_test)
2  yprob = pd.DataFrame(yprob)
3  yprob
```

```
0 0.289474 0.710526
     0.090909 0.909091
  2 0.000000 1.000000
  3 0.000000 1.000000
  4 0.000000 1.000000
             1.000000
    0.217391 0.782609
5576 0.000000 1.000000
5577 0.916667 0.083333
```

FUTURE DEVELOPMENT

- Training day0 set (features from 13D)
- Selecting model by a conservative approach (Specificity)
- Production

