4.md 2024-04-24

Problem Set 4

Problem 1

```
1 = [(0, 1), (0, 3), (4, 5), (2, 5)]
```

These intervals are already sorted by finish time.

- 1. Initially, there are no classrooms allocated, so \$I_0\$ is placed in \$C_0\$.
- 2. Next, \$I_1\$ is incompatible with \$I_0\$, so it is placed in a newly allocated \$C_1\$.
- 3. \$I_2\$ is compatible with \$C_0\$ and \$C_1\$, so it is placed in \$C_0\$.
- 4. \$I_3\$ isn't compatible with \$C_0\$ or \$C_1\$ (because of \$I_2\$ and \$I_1\$ respectively), so it is placed in a newly allocated \$C_2\$

So we have...

- \$C_0 = { I_0, I_2 }\$
- \$C_1 = { I_1 }\$
- $C_2 = \{ I_3 \}$

As you can see below, the maximum depth is 2, so this algorithm allocated more than max-depth classrooms.

Problem 2

Algorithm

- Let \$S\$ be the (initially empty) set of pairs
- Sort \$A = a_1, a_2, \ldots, a_n\$ in increasing order to get \$B = b_1, b_2, \ldots, b_n\$.
- While there are elements remaining, pick the smallest and largest element (the first and last \$b_i, b_j\$), and remove them from \$B\$.
- Add \${b_i, b_j}\$ to \$S\$
- Once \$B\$ is empty, return \$S\$.

```
# 0(nlog(n))
def min_max_pairs(A):
    A.sort()

l, r = 0, len(A) - 1
```

4.md 2024-04-24

```
res = -infinity
while l < r:
    res = max(res, A[l] + A[r])
    l += 1
    r -= 1
return res</pre>
```

Correctness: Greedy Stays Ahead

For notational convenience, let a_1 , a_2 , dots, a_n be sorted. Let G be my algorithm, and X be the optimum, and for the sake of contradiction, suppose X chooses pairs differently from G, e.g. not of the form a_i , a_i , a_i , a_i

Let $g(a_i)$ be a function that outputs the "choice" of partner for any a_i by G, so $g(a_i) = a_{n - i}$, and let $x(a_i)$ mean the same for X.

Define \$P(n)\$ as...

Given $n\$ sorted numbers (with $n\$ being even) a_1 , \ldots $a_n\$, $G_{max}\$ \le $X_{max}\$, where $G_{max}\$ and $X_{max}\$ are defined as follows:

```
G_{max} = max(\{ g(a_i) + a_i : 1 \le i \le n \})
```

Base Case:

P(2): we have a_1 , a_2 , with $a_1 < a_2$. There is only one possible pair, so $G_{\max} \le X_{\max}$, and P(2) holds.

IH: Suppose \$P(2) \land P(4) \land \ldots \land P(k - 2)\$ holds.

IS:

Let $A = a_1$, a_2 , $A = a_1$, a_k be sorted numbers. Remove a_1 and a_k to get $A' = a_2$, $A = a_1$, $A = a_1$, $A = a_2$, $A = a_1$, $A = a_1$, $A = a_2$, $A = a_1$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_2$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_1$, $A = a_2$, $A = a_1$, $A = a_2$

Therefore, we have \$G'{max} | Ie X'{max}\$ for \$A'\$.

Consider an arbitrary pair chosen by \$G\$ on \$A'\$, \$(a_i, a_j)\$, with \$a_i \le a_j\$. By our sort order, we have \$a_1 \le a_i \le a_j \le a_k\$. Now, consider the ways we could swap elements between these two pairs

Case 1: $a_1 + a_k > a_i + a_j$

\$(a_1, a_j), (a_i, a_k)\$
\$a_i + a_k \ge a_1 + a_k\$, since \$a_i \ge a_1\$
\$(a_1, a_i), (a_k, a_j)\$
\$a_k + a_j \ge a_1 + a_k\$, since \$a_j \ge a_i\$

Case 2: \$a_1 + a_k \le a_i + a_j\$

• \$(a_1, a_j), (a_i, a_k)\$

4.md 2024-04-24

\$a_i + a_k \ge a_i + a_j\$, since \$a_k \ge a_j\$
\$(a_1, a_i), (a_k, a_j)\$
\$a_k + a_j \ge a_i + a_j\$, since \$a_k \ge a_i\$

In either of the above cases, we are increasing the max of the two sums by swapping elements, and this holds for an arbitrary a_i , a_j chosen by G', which is at least as good as the optimum. Since we know $X'\{max\} \mid ge\ G'\{max\}\}$, and also that any pairing other than the one picked by G' (a_1 , a_k) leads to an increased sum, it must be the case that $G_{max} < X_{max}$.

Problem 3

Let T_1 and T_2 be edge disjoint spanning trees over \$G\$. Consider an arbitrary edge \$e = (u, v) \in T_1 \$.

Let $T_1' = T_1 - e$. Since T_1 was a tree, this splits T_1' into two connected components C_1 , C_2 , both of which are also trees (**justify**). We have $x \in C_1$ and $x \in C_2$.

Now, consider the vertices of \$C_1\$ and \$C_2\$.

Since T_2 is also a tree, and is therefore connected, there must exist an edge $f = (x, y) \in T_2$, such that $x \in C_1$ and $y \in C_2$, and so that the two components formed by this cut K_1 and K_2 contain u and v respectively. We can choose such an edge f by virtue of T_2 being a tree. For any two vertices in a tree, there is exactly one path between them. We know u notin T_2 , so letting u, v, v be the path between u and v in T_2 , choose f = (u, v).

Cutting T_2 on f to get T_2 , we have two connected components K_1 , K_2 , both of which are trees. Now, we can add f to T_2 , and we get a tree, since K_1 and K_2 are both trees, with h in K_1 and V in K_2 .