PROBLEMAS DE ESTADÍSTICA

GRADO DE INGENIERÍA INFORMÁTICA

CURSO 2024/2025 GRUPO TARDE

Estimación Puntual

1. Sea la variable aleatoria X, con función de densidad:

$$f(x) = \theta x^{\theta - 1}, \quad 0 < x < 1, \ \theta > 0$$

- (a) Hállese el estimador del parámetro θ , por el método de máxima verosimilitud.
- (b) ¿Es el estimador obtenido en el apartado a) insesgado?.
- 2. En un estudio de supervivencia se considera una variable aleatoria con función de densidad de Rayleigh:

$$f(x) = \frac{2}{a}xe^{-\frac{x^2}{a}}, \quad x \ge 0, \ a > 0$$

Se pide:

- (a) Hállese el estimador del parámetro a, por el método de máxima verosimilitud.
- (b) ¿Es el estimador del anterior apartado insesgado?.
- 3. Sea (X_1, \ldots, X_n) una muestra aleatoria simple con función de densidad:

$$f_{\theta}(x) = 2\theta^{-3}\sqrt{x}e^{\frac{-2\sqrt{x}}{\theta}}, \quad x > 0, \quad \theta > 0,$$

Se pide:

- (a) Encontrar el estimador de máxima verosimilitud para el parámetro θ .
- (b) ¿Es insesgado dicho estimador?.
- 4. Hallar, por el método de los momentos, estimadores para los parámetros siguientes:
 - (a) Media de una variable de Bernouilli.
 - (b) Media de una variable de Poisson.
 - (c) Parámetro p de una variable Geométrica.
 - (d) Parámetro p de una variable Binomial
- 5. Sea (X_1, X_2, \dots, X_n) una muestra aleatoria simple procedente de una distribución $\Gamma(a, p)$. Calcular un estimador por el método de los momentos para el parámetro $\theta = (a, p)$.