P. Maurer ENS Rennes

Leçon 107. Représentations et caractères d'un groupe fini sur un C-espace vectoriel. Exemples.

Devs:

- Table de caractères de S⁴
- Théorème de structure des groupes abéliens finis

Références:

- 1. Colmez, Elements d'analyse et d'algèbre
- 2. Ulmer, Théorie des groupes
- 3. Peyre, L'algèbre discrète de la transformée de Fourier
- 4. Dos Santos, Groupes finis et leurs représentations (il s'agit d'un polycopié pour le M1 de Paris VI)
- 5. Caldero, H2G2

Dans tout ce qui suit, on se donne un groupe G.

1 Représentations linéaires et leurs sous-représentations

1.1 Définitions et premiers exemples

Définition 1. On appelle représentation linéaire du groupe G la donnée d'un \mathbb{C} -espace vectoriel V et d'un morphisme de groupe $\rho_V: G \to \mathrm{GL}(V)$.

Convention 2. On parle indifféramment de la représentation V de G ou de la représentation ρ_V de G, suivant qu'on veut mettre l'accent sur l'espace vectoriel V ou le morphisme de G sur $\mathrm{GL}(V)$.

Exemple 3. Si $d \ge 1$ est un entier, l'espace vectoriel \mathbb{R}^d est une représentation du groupe $O_d(\mathbb{R})$ via le morphisme d'inclusion $O_d(\mathbb{R}) \to \operatorname{GL}_d(\mathbb{R})$.

Exemple 4. (représentations de \mathbb{Z})

Si V est un \mathbb{C} -espace vectoriel, et si $u:V\to V$ un isomorphisme linéaire, l'application $n\mapsto u^n$ est un morphisme de groupes de \mathbb{Z} dans $\mathrm{GL}(V)$, ce qui fait de V une représentation linéaire de \mathbb{Z} .

Réciproquement, si V est une représentation de \mathbb{Z} , alors $u = \rho_V(1) \in GL(V)$ et pour tout $n \in \mathbb{Z}$, on a $\rho_V(n) = u^n$ pour tout $n \in \mathbb{Z}$.

Ainsi, une représentation de $\mathbb Z$ n'est autre que la donnée d'un espace vectoriel V et d'un élément $u \in \mathrm{GL}(V)$.

Dans tout ce qui suit, on supposera que l'espace vectoriel V associé aux représentations linéaires de G est toujours de dimension finie.

Définition 5.

On appelle dimension d'une représentation (V, ρ_V) la dimension de l'espace vectoriel V. Si $\dim(V) = d$ et si (e_1, \ldots, e_d) est une base de V, on note $R_V(g)$ la matrice de $\rho_V(g)$ dans la base (e_1, \ldots, e_d) .

Proposition 6. Si G est fini, alors pour tout $g \in G$, $\rho_V(g)$ est diagonalisable et ses valeurs propres sont des racines de l'unité.

Définition 7. (représentation de permutation, représentation régulière)

Si X est un ensemble fini muni d'une action de G, on définit la représentation de permutation V_X associée à X, comme l'espace vectoriel V_X de dimension |X| et de base $(e_x)_{x\in X}$, muni de l'action linéaire de G donnée par $g\cdot e_x=e_g\cdot x$ pour tout $g\in G$ et $x\in X$.

Dans le cas où G est fini, on peut poser X=G et considérer l'action par multiplication à gauche de G sur lui-même. La représentation $V_{\rm reg} := V_G$ de permutation ainsi obtenue est appelée représentation réqulière de G.

Remarque 8. Dans la base $(e_x)_{x\in X}$, la matrice d'un élément $g\in G$ est une matrice de permutation, et le terme diagonal $a_{x,x}$ est égal à 1 si et seulement si $g\cdot x=x$, sinon il vaut zéro.

Définition 9. (représentation $Hom(V_1, V_2)$)

Soit V_1 , V_2 deux représentations de G, et soit $u: V_1 \to V_2$ une application linéaire. Si $g \in G$, on définit $g \cdot u: V_1 \to V_2$ par la formule $(g \cdot u)(v) = g \cdot u(g^{-1} \cdot v)$ pour tout $v \in V_1$.

Ceci définit une action de G sur $\operatorname{Hom}(V_1, V_2)$, et donc $\operatorname{Hom}(V_1, V_2)$ est une représentation de G munie du morphisme $\rho_{\operatorname{Hom}(V_1, V_2)}(g)(u) = \rho_{V_2}(g) \circ u \circ \rho_{V_1}(g)^{-1}$.

Définition 10. (représentation duale)

Si $V_1 = V$ et si V_2 est la représentation triviale \mathbb{C} , la représentation $\operatorname{Hom}(V_1, V_2) = \operatorname{Hom}(V, \mathbb{C})$ est appelée la représentation duale V^* de V.

Définition 11. (morphisme de représentation)

Soit V_1 et V_2 deux représentations de G. On appelle morphisme de représentation, ou G-morphisme, une application linéaire $\varphi\colon V_1\to V_2$ commutant avec l'action de G, i.e tel me

$$\forall g \in G \quad u \circ \rho_{V_1}(g) = \rho_{V_2}(g) \circ u.$$

On note $\operatorname{Hom}_G(V_1, V_2)$ l'ensemble des G-morphismes entre V_1 et V_2 , et on dit que V_1 et V_2 sont isomorphes s'il existe un G-morphisme bijectif $\varphi: V_1 \to V_2$. On note alors $V_1 \simeq V_2$.

1.2 Décomposition en somme directe de sous-représentations irréductibles

On se donne une représentation (V, ρ_V) de G

Section 2

Définition 12. On appelle sous-représentation de V un sous-espace vectoriel de V stable par G.

Exemple 13. Si $v \in V \setminus \{0\}$, Vect $(g \cdot v : g \in G)$ est la sous-représentation de V engendrée par v.

Définition 14. On dit que V est irréductible si ses seules sous-représentations sont $\{0\}$ et V, ce qui équivaut à dire que pour tout $v \in V \setminus \{0\}$, la sous-représentation engendrée par v est V. On note $\operatorname{Irr}(G)$ l'ensemble des représentations irréductibles de G.

Exemple 15. Toute représentation de dimension 1 est irréductible.

Exemple 16. Soit $n \ge 3$. On considère la représentation $\sigma: \mathcal{D}_n \to \mathrm{GL}_2(\mathbb{R})$, où \mathcal{D}_n est le groupe dérivé d'ordre n est σ est l'inclusion $\mathcal{D}_{2n} \subseteq \mathrm{GL}_2(\mathbb{R})$. Alors σ est irréductible.

Définition 17. Si V_1 et V_2 sont deux représentations de G, on peut munir $V_1 \oplus V_2$ (que l'on identifie à $V_1 \times V_2$) via le morphisme

$$\rho_{V_1 \oplus V_2}(g)(v_1, v_2) = (\rho_{V_1}(g)(v_1), \rho_{V_2}(g)(v_2)).$$

La représentation ainsi définie est appelée représentation somme directe de V₁ et V₂.

On définit de même la représentation $\bigoplus_{i=1}^{m} V_i$ pour $V_1,...,V_m$ des représentations de G.

On suppose dorénavant que G est un groupe fini.

Théorème 18. L'application $\langle \cdot, \cdot \rangle_V$ suivante définit un produit scalaire sur V, invariant par l'action de G:

$$\forall (v_1, v_2) \in V \quad \langle v_1, v_2 \rangle := \frac{1}{|G|} \sum_{g \in G} \langle g \cdot v_1, g \cdot v_2 \rangle.$$

Corollaire 19. (Maschke, 1899)

Toute représentation de G est somme directe de représentations irréductibles.

1.3 Lemme de Schur et opérateur de la moyenne

On se donne une représentation (V, ρ_V) de G de dimension finie.

Théorème 20. (Lemme de Schur, 1905)

Soit V₁, V₂ deux représentations irréductibles de G.

- i. Si V_1 et V_2 ne sont pas isomorphes, alors $\operatorname{Hom}_G(V_1, V_2) = \{0\}$.
- ii. Si $V_1 \simeq V_2$, alors tous les éléments de $\operatorname{Hom}_G(V_1, V_2)$ sont des homothéties.

Définition 21. On définit l'ensemble V^G des éléments de V fixes sous l'action de G. C'est une représentation de G.

Exemple 22. Soit V_1 et V_2 deux représentations de G, et $H = \text{Hom}(V_1, V_2)$.

Alors $H^G = \operatorname{Hom}_G(V_1, V_2)$.

Définition 23. Si G est fini, on définit l'opérateur de la moyenne $M: V \to V$ par

$$M(v) := \frac{1}{|G|} \sum_{g \in G} g \cdot v.$$

Proposition 24. L'opérateur de la moyenne est à valeurs dans V^G , vérifie M(v) = v pour tout $v \in V^G$. C'est un G-morphisme de V.

Proposition 25. On suppose que G est fini et on se donne deux représentations V_1 et V_2 de G.

- 1. Si V_1 et V_2 sont irréductibles, non isomorphes, et si $u \in \text{Hom}(V_1, V_2)$, alors M(u) = 0.
- 2. Si V est irréductible, et si $u \in \text{Hom}(V, V)$, alors $M(u)(v) = \frac{1}{\dim(V)} \text{Tr}(u) \cdot v$ pour tout $v \in V$.

2 Théorie des caractères

Dans tout ce qui suit, on suppose que G est fini et on se donne une représentation (V, ρ_V) de dimension finie de G.

2.1 Caractères de Frobenius et caractères linéaires

Définition 26.

On appelle caractère (de Frobenius) de V l'application $\chi_V: G \to \mathbb{C}$ définie par $\chi_V(g) := \operatorname{Tr}(\rho(g))$.

Si V est de dimension 1, $\operatorname{GL}(V)$ est isomorphe à \mathbb{C}^* , donc la représentation V s'identifie à un morphisme de groupes $\chi\colon G\to\mathbb{C}^*$. On appelle caractère linéaire de G un tel morphisme, et on note \hat{G} l'ensemble des caractères linéaires de G.

Proposition 27. Si V est une représentation de dimension 1 de G et χ le caractère linéaire associé, on a $\chi_V = \chi$: le caractère du caractère linéaire est le caractère linéaire lui-même.

Muni du produit $(\chi_1 \chi_2)(g) := \chi_1(g) \chi_2(g)$, l'ensemble \hat{G} des caractères linéaires de G est un groupe commutatif. On l'appelle le groupe dual de G.

Proposition 28. Soit V_1 et V_2 des représentations de G. Alors

- 1. $\forall g \in G \quad \chi_V(g^{-1}) = \overline{\chi_V(g)},$
- 2. $\chi_{V_1 \oplus V_2} = \chi_{V_1} + \chi_{V_2}$,
- 3. $\chi_{\text{Hom}(V_1,V_2)} = \overline{\chi_{V_1}} \cdot \chi_{V_2}$

Applications et utilisations des représentations

4.
$$\chi_{V^*} = \overline{\chi_{V^*}}$$

Proposition 29. Si V_X est la représentation de permutation de G associée à un ensemble fini X, alors $\chi_{V_X}(g) = \operatorname{Card}(\{x \in X : g \cdot x = x\})$ pour tout $g \in G$.

En particulier, le caractère de la représentation régulière est donné par

$$\chi_{\text{reg}}(1) = |G|$$
 et $\chi_{\text{reg}}(g) = 0$ pour $g \in G \setminus \{1\}$.

2.2 Orthogonalité des caractères

Définition 30. On appelle fonction centrale sur G une application $\phi: G \to \mathbb{C}$ qui est constante sur les classes de conjugaison de G, i.e telle que $\phi(ghg^{-1}) = \phi(h)$ pour tout g, $h \in G$. On munit l'espace des fonctions centrales sur G du produit scalaire $\langle \cdot, \cdot \rangle$ défini par

$$\langle \phi, \varphi \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\phi(g)} \, \varphi(g).$$

Exemple 31. Les caractères sont des fonctions centrales sur G.

Proposition 32. Soit V une représentation irréductible de G, et ϕ une fonction centrale sur G.

Alors pour tout $v \in V$, on a

$$\sum_{g \in G} \phi(g) \rho_V(g)(v) = \frac{1}{\dim(V)} \sum_{g \in G} \phi(g) \chi(g) \cdot v.$$

Théorème 33. (orthogonalité des caractères)

Les caractères irréductibles forment une base orthonormale de l'espace des fonctions centrales.

Corollaire 34. Le nombre de représentations irréductibles de G est égal au nombre $|\operatorname{Conj}(G)|$ des classes de conjugaison de G. En particulier, il est fini.

Corollaire 35. On considère une décomposition de V en sous-représentations irréductibles $V = W_1 \oplus \cdots \oplus W_k$. Si $W \in \operatorname{Irr}(G)$, alors le nombre m_W de W_i qui sont isomorphes à W est égal à $\langle \chi_W, \chi_V \rangle$. En particulier, $V \simeq \bigoplus_{W \in V(G)} \langle \chi_W, \chi_V \rangle W$.

Corollaire 36. Deux représentations ayant le même caractère sont isomorphes, et on a $V \in Irr(G) \iff ||\chi_V|| = 1$.

Proposition 37. (Formule de Burnside)

Si W est une représentation irréductible de G, alors W apparaît dans la représentation réqulière avec la multiplicité $\dim W$, et on a

$$\sum_{W \in \operatorname{Irr}(G)} (\dim W)^2 = |G|.$$

2.3 Table des caractères

Définition 38. Soit $c = |\operatorname{Conj}(G)|$. La table des caractères de G est un tableau $c \times c$ dont les coefficients sont les valeurs des caractères irréductibles sur les classes de conjugaison de G, le coefficient à l'intersection de la colonne correspondant au caractère χ et de la ligne correspondant à la classe de conjugaison C, étant $\chi(C)$.

3

Remarque 39. On peut obtenir toute la table des caractères de G en n'en connaissant qu'une partie grâce aux relation d'orthogonalité des caractères.

Exemple 40. Table des caractères de $\mathbb{Z}/n\mathbb{Z}$. (Annexe, fig. 1)

Remarque 41. Deux groupes non isomorphes peuvent avoir la même table des caractères.

Exemple 42. Table des caractères de \mathcal{D}_4 et de H_8 (Annexe, fig. 2)

Théorème 43. Les groupes d'isométrie du cube sont $\text{Isom}(C_6) = S_4 \times (\mathbb{Z}/2\mathbb{Z})$ et $\text{Isom}^+(C_6) = S_4$.

Développement 1 :

Application 44. Table des caractères de S_4 . (Annexe, fig. 3)

3 Applications et utilisations des représentations

3.1 Caractères et sous-groupes distingués

Lemme 45. Soit G un groupe fini et (V, ρ_V) une représentation de G, de caractère χ . Alors pour tout $g \in G$, on a

- 1. $|\chi(g)| \leq \chi(e)$,
- 2. $\chi(g) = \chi(e) \iff g \in \text{Ker}(\rho_V)$.

Définition 46. Soit G un groupe et χ un caractère de G. On appelle noyau du caractère χ , et on note $\text{Ker}(\chi)$, l'ensemble $\{g \in G : \chi(g) = \chi(e)\}$.

Proposition 47. Soit G un groupe fini ayant m classes de conjugaison, et χ_1, \ldots, χ_m les caractères irréductibles de G. Tout sous-groupe distinqué H de G est de la forme

$$H = \bigcap_{j \in J} \operatorname{Ker}(\chi_j)$$
 avec $J \subset \{1, \dots, m\}$.

Exemple 48. Le seul groupe distingué non trivial de A_4 est le groupe de Klein V_4 .

Corollaire 49. Un groupe fini G est simple si et seulement si tout caractère irréductible non trivial de G a un noyau trivial.

Section 4

3.2 Cas des groupes abéliens

Lemme 50. Soit G un groupe abélien et (V, ρ) une représentation irréductible de G. Alors $\dim(V) = 1$.

Remarque 51. Pour un groupe abélien G, Irr(G) coïncide avec le groupe dual \hat{G} .

Proposition 52. Si G est abélien, toute fonction $\phi: G \to \mathbb{C}$ est centrale, et l'ensemble des caractères linéaires \hat{G} forme une base orthonormale des fonctions de G sur \mathbb{C} .

Proposition 53. Soit G un groupe abélien fini.

- 1. $Si \ x \in G$ est d'ordre a et $si \ y \in G$ est d'ordre b, et $si \ a \land b = 1$, alors xy est d'ordre ab.
- Si a, b∈ N* et si G contient des éléments d'ordre a et b, alors il contient un élément d'ordre ppcm(a, b).
- 3. Soit N le maximum des ordres des éléments de G. Alors on a $x^N=1$ pour tout $x\in G$. On dit que N est l'exposant du groupe G.

Développement 2 :

Lemme 54. Soit G un groupe abélien fini. Alors G est isomorphe à Ĝ.

Lemme 55. Soit G un groupe abélien fini. Alors G et Ĝ ont le même exposant.

Théorème 56. (Théorème de structure des groupes abéliens finis, existence)

Soit G un groupe abélien fini. Alors il existe $r \in \mathbb{N}$ et des entiers N_1, \ldots, N_r , où N_1 est l'exposant de G et qui vérifient $N_{i+1}|N_i$ pour tout $i \le r-1$, et qui sont tels que

$$G \simeq \prod_{i=1}^r \mathbb{Z}/N_i\mathbb{Z}.$$

3.3 Transformée de Fourier sur un groupe fini

On se donne un groupe abélien fini G, et on note $\mathbb{C}[G]$ l'espace des fonctions de G sur \mathbb{C} .

Définition 57. Pour $f \in \mathbb{C}[G]$, on définit pour $\chi \in \hat{G}$, le coefficient de Fourier $c_f(\chi)$ par

$$\forall \chi \in \hat{G} \quad c_f(\chi) := \langle f, \chi \rangle.$$

Définition 58. L'application transformée de Fourier, notée F, est définie par

$$\mathcal{F}: \left\{ \begin{array}{ll} \mathbb{C}[G] & \to & \mathbb{C}[\hat{G}] \\ f & \mapsto & \hat{f} \end{array} \right.,$$

où f est définie par

$$\forall \chi \in \hat{G} \quad \hat{f}(\chi) := |G| \cdot c_f(\overline{\chi})$$
$$= \sum_{\chi \in G} f(x) \chi(x).$$

Théorème 59. (formule d'inversion de Fourier) Pour $f \in \mathbb{C}[G]$, on a la formule d'inversion

$$f = \frac{1}{|G|} \sum_{\chi \in \hat{G}} \hat{f}(\chi) \chi^{-1}.$$

Proposition 60. Les applications c et \mathcal{F} sont des isomorphismes d'espaces vectoriels entre $\mathbb{C}[G]$ et $\mathbb{C}[\hat{G}]$.

Théorème 61. (formule de Plancherel)

Pour $f, g \in \mathbb{C}[G]$, on a

$$\sum_{s \in G} f(s)\overline{g(s)} = \frac{1}{|G|} \sum_{\chi \in G} \hat{f}(\chi)\overline{\hat{g}(\chi)}.$$

Remarque 62. Cette formule est semblable, à une constante près, à celle que l'on obtient pour la transformée de Fourier dans $L^2(\mathbb{R})$. Elle traduit en effet la conservation du produit scalaire par la transformée de Fourier : $\langle f,g\rangle=\frac{1}{|G|}\langle \hat{f},\hat{g}\rangle$.

4 Annexe

Fig 1 : Table de $\mathbb{Z}/n\mathbb{Z}$

	$\bar{0}$	$\overline{1}$	 $\overline{n-1}$
$\chi_{_1}$	1	1	 1
χ_2	1	ω	 ω^{n-1}
:	:	:	:
χ_n	1	ω^{n-1}	 ω

Fig 2 : Table de \mathcal{D}_4 et \mathbb{H}_8

	{1}	$\{-1\}$	$\{\pm i\}$	$\{\pm j\}$	$\{\pm k\}$
χ_1	1	1	1	1	1
χ_2	1	1	-1	1	-1
χз	1	1	1	-1	-1
χ_4	1	1	-1	-1	1
χ_5	2	-2	0	0	0

Fig 3 : Table de S_4

	[1]	[2]	[2, 2]	[3]	[4]
χ_1	1	1	1	1	1
χ_{ε}	1	-1	1	1	-1
χ_s	3	1	-1	0	-1
χ_W	2	0	2	-1	0
χ_C	3	-1	-1	0	1