1 Линейный МНК

Задача линейного МНК (метода наименьших квадратов) в терминах линейной алгебры записывается следующим образом: требуется найти вектор параметров \mathbf{x}_* , минимизирующий функцию $\Phi(\mathbf{x})$ для данной матрицы A и вектора \mathbf{y} :

$$\Phi(\mathbf{x}) = \frac{1}{2}||\mathbf{y} - A\mathbf{x}||^2,$$

где ||...|| обозначает норму, а двойка в знаменателе введена для удобства вычислений, как будет видно вскоре она пропадает при дифференцировании этого выражения.

В случае физического эксперимента, \mathbf{y} — это результаты измерений, а $A\mathbf{x}$ — это предсказание линейной модели для наших измерений. Обратите внимание, что здесь \mathbf{x} — это неизвестные параметры модели, которые мы хотим найти из эксперимента. С другой стороны матрица A известна и определяется параметрами эксперимента.

Прировняв производную от $\Phi(x)$ по компонентам \mathbf{x} к нулю мы получим систему линейных уравнений, решение которой даёт искомые значения \mathbf{x} :

$$0 = \frac{\partial \Phi(x)}{\partial \mathbf{x}_i} = A_{ji} A_{jk} x_k - A_{ji} y_j. \tag{1}$$

Решение этой системы:

$$\mathbf{x}_* = (A^T A)^{-1} A^T \mathbf{y}. \tag{2}$$

2 Нелинейный МНК

Задача нелинейного МНК ставится похожим образом, но в этот раз линейная комбинация $A\mathbf{x}$ заменяется на векторную функцию $\mathbf{f}(\mathbf{x})$:

$$\Phi(\mathbf{x}) = \frac{1}{2}||\mathbf{y} - \mathbf{f}(\mathbf{x})||^2$$
(3)

Снова найдём производную этого выражения:

$$\frac{\partial \Phi(x)}{\partial x_i} = \frac{\partial f_j}{\partial x_i} (f_j - \mathbf{y}_j),\tag{4}$$

$$\nabla \Phi(x) = J^T(\mathbf{f}(\mathbf{x}) - \mathbf{y}),\tag{5}$$

где якобиан $J_{ij}(\mathbf{x}) = \partial f_i/\partial x_j$ — известные значения производной функции \mathbf{f} в точке \mathbf{x} .

3 Градиентный спуск

Можно предположить, что направление, противоположное градиенту $\nabla \Phi(\mathbf{x})$, задаёт направление, в котором стоит искать минимум функции $\Phi(\mathbf{x})$. Это

даёт нам следующий способ поиска \mathbf{x}_* . Пусть начальное приближение решения — это $\mathbf{x}^{(0)}$, тогда каждое следующее приближение $\mathbf{x}^{(k)}$ может быть получено следующим образом:

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - \frac{\nabla \Phi(\mathbf{x}^{(k-1)})}{\|\nabla \Phi(\mathbf{x}^{(k-1)})\|} \times s^{(k)}, \tag{6}$$

где $s^{(k)}$ — размер шага, его выбор может зависеть как от k (обычно шаг уменьшают в процессе итераций), так и от длины $||\nabla \Phi(\mathbf{x}^{(k-1)})||$.

4 Метод Гаусса—Ньютона

В некотором смысле, скалярное произведение $(\nabla \Phi(\mathbf{x}), \mathbf{x})$ со значением градиента $\nabla \Phi(\mathbf{x})$, даваемым уравнением (5), является линейной аппроксимацией функции $\Phi(\mathbf{x})$ в точке \mathbf{x} . У такой линейной функции минимум не определён, поэтому распространенны методы оптимизации, в которых на каждом итерационном шаге k функция $\Phi(\mathbf{x}^{(k-1)})$ аппроксимируется квадратичной функцией, у которой можно найти минимум и использовать его в качестве следующего приближения решения $x^{(k)}$. Построим один из возможных вариантов такой квадратичной аппроксимации.

Разложим функцию $\mathbf{f}(\mathbf{x}^k)$ в ряд Тейлора вокруг точки $\mathbf{x}^{(k-1)}$:

$$\mathbf{f}(\mathbf{x}^{(k)}) = \mathbf{f}(\mathbf{x}^{(k-1)}) - J(\mathbf{x}^{(k-1)})(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) + o(|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}|).$$
(7)

Введём обозначение $\Delta \mathbf{x} \equiv \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$ и подставим полученное выражение в определение $\Phi(\mathbf{x})$ (3), пренебрегая $o(|\Delta \mathbf{x}|)$:

$$\Phi(\mathbf{x}^{(k)}) \simeq \frac{1}{2} ||\mathbf{y} - \mathbf{f}(\mathbf{x}^{(k-1)}) + J(\mathbf{x}^{(k-1)}) \Delta \mathbf{x}||^2
= \frac{1}{2} ||\mathbf{y} - \mathbf{f}||^2 + (J^T(\mathbf{y} - \mathbf{f}), \Delta \mathbf{x}) + \frac{1}{2} (J^T J \Delta \mathbf{x}, \Delta \mathbf{x}).$$
(8)

Перед нами квадратичная форма относительно вектора $\Delta \mathbf{x}$. Так как $J^T J$ положительно определена (докажите сами), то эта квадратичная форма имеет минимум. Этот минимум может быть найден по следующей формуле:

$$J^T J \Delta \mathbf{x}_* = J^T (\mathbf{y} - \mathbf{f}). \tag{9}$$

На практике, значение $\Delta \mathbf{x}_*$ часто умножают на константу $K: 0 < K \le 1$:

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + K\Delta\mathbf{x}_*. \tag{10}$$

Обратим внимание, что формула (8) похожа на разложение $\Phi(\mathbf{x})$ в ряд Тейлора до второго порядка. Однако, в ряд Тейлора входит дополнительное слагаемое, пропорциональное вторым производным функции $\mathbf{f}(\mathbf{x})$. Если функция $\mathbf{f}(\mathbf{x})$ сильно нелинейна, то при полном разложении в ряд Тейлора $\Phi(\mathbf{x})$ до второго порядка малости может быть нарушено условие положительной определенности квадратичной формы.

5 Метод Левенберга—Марквардта

Квадратичное представление метода Гаусса—Ньютона (8) формально справедливо лишь в малой области вокруг точки разложения $x^{(k-1)}$. Это значит, что предсказываемое квадратичной формой значение $\Phi(x^{(k)})$ может сильно отличаться от реального значения при больших $\Delta \mathbf{x}$. Таким образом, сложное поведение функции, например седловина или резкое изменение производных, может оказаться серьёзным препятствием к сходимости. Одним из вариантов решения проблемы является модификация уравнения (9) следующим образом:

$$J^{T}J\Delta\mathbf{x}_{*} + \lambda^{(k)}I\Delta\mathbf{x}_{*} = J^{T}(\mathbf{y} - \mathbf{f}), \tag{11}$$

где I — единичная матрица, а $\lambda^{(k)}$ — безразмерный положительный коэффициент, который изменяется согласно определённому алгоритму. Видно, что величина Δ монотонно убывает с λ , что позволяет регулировать шаг правильно подбирая этот коэффициент. Отметим, что это уравнение совпадает с уравнением для поиска условного экстремума в области $||\Delta \mathbf{x}_*|| < \Delta(\lambda)$.

В начале итераций выбирается начальное значение $\lambda^{(0)}>0$, обычно берётся значение меньше единицы. Затем, на каждом итерационном шаге k рассчитывается два значения $\Phi-$ для $\Delta \mathbf{x}$, получаемого при $\lambda=\lambda^{(k-1)}$ и $\lambda=\lambda^{(k-1)}/\nu$, где $\nu>1$ — постоянный безразмерный коэффициент. Обозначим соотвествующие значения Φ как $\Phi(\lambda^{(k-1)})$ и $\Phi(\lambda^{(k-1)}/\nu)$, а значение Φ на предыдущем итерационном шаге k-1 как $\Phi^{(k-1)}$. Тогда значение $\mathbf{x}^{(k)}=x^{(k-1)}+\Delta \mathbf{x}$ ищется из решения (11), причём коэффициент $\lambda^{(k)}$ выбирается согласно следующему алгоритму:

- 1. Если $\Phi(\lambda^{(k-1)}/\nu) \leq \Phi$ значит бо́льший шаг улучшил приближение, и $\lambda^{(k)} = \lambda^{(k-1)}/\nu$
- 2. Если $\Phi(\lambda^{(k-1)}/\nu) > \Phi$ и $\Phi(\lambda^{(k-1)}) \leq \Phi$, то старый шаг дал лучший результат, и $\lambda^{(k)} = \lambda^{(k-1)}$
- 3. Если $\Phi(\lambda^{(k-1)}/\nu) > \Phi$ и $\Phi(\lambda^{(k-1)}) > \Phi$, то результат ухудшился при обоих размерах шага и следует увеличивать λ в $\hat{\nu}$ (это число не обязательно равно ν) столько w раз, сколько нужно чтоб $\Phi(\lambda^{(k-1)}\hat{\nu}^w) \leq \Phi$. После этого $\lambda^{(k)} = \lambda^{(k-1)}\hat{\nu}^w$.

Предложенный метод называется методом Левенберга—Марквардта и является эвристическим. Это значит, что можно придумать много правил по которым модифицируется λ , например, её увеличение в шаге 3 может производиться аддитивно, а не мультипликативно.

6 Метод сопряженных градиентов

Метод Левенберга—Марквардта, как и подобные ему методы, требует нахождения минимума квадратичной функции на каждом итерационном шаге. Если размерность решаемой задачи велика ($n \gtrsim 20-30$), то нахождение минимума

квадратичной формы типа (8) с помощью обращения матрицы является вычислительно сложной задачей и требует использования $O(n^2)$ памяти для хранения различных матриц. Метод сопряженных градиентов позволяет решить эту задачу эффективнее.

Пусть дана квадратичная функция Q:

$$Q(\mathbf{x}) = \frac{1}{2}(\mathbf{x}, H\mathbf{x}) + (\mathbf{c}, \mathbf{x}), \tag{12}$$

где H и ${f c}$ — заданная положительно определенная матрица и заданный вектор.

Для нахождения минимума этой функции можно воспользоваться итерационным алгоритмом, состоящим из количества шагов n равного размерности \mathbf{x} . На первом шаге выбирается произвольное значение $\mathbf{x}^{(0)}$, а также задаются значения векторов $\mathbf{g}^{(0)} = H\mathbf{x}^{(0)} + c$ и $\mathbf{p}^{(0)} = -\mathbf{g}^{(0)}$. Затем для всех i от 0 до n-1 выполняется:

$$\alpha^{(i)} = \frac{||\mathbf{g}^{(i)}||^2}{(p^{(i)}, Hp^{(i)})},$$

$$\mathbf{x}^{(i+1)} = x^{(i)} + \alpha^{(i)}\mathbf{p}^{(i)},$$

$$\mathbf{g}^{(i+1)} = \mathbf{g}^{(i)} + \alpha^{(i)}H\mathbf{p}^{(i)},$$

$$\beta^{(i)} = \frac{||\mathbf{g}^{(i+1)}||^2}{||\mathbf{g}^{(i)}||^2},$$

$$\mathbf{p}^{(i+1)} = -\mathbf{g}^{(i+1)} + \beta^{(i)}\mathbf{p}^{(i)}.$$
(13)

Обратим внимание на особенности этого метода:

- Этот метод основан на построении крыловских подпространств и является самым быстрым известным методом нахождения минимума $Q(\mathbf{x})$.
- Прост в реализации.
- Метод сходится к точному решению.
- Каждая последовательная итерация метода улучшает приближение находимое решение, поэтому выполнение метода можно прервать на шаге i < n-1 для получение приближенного решения.
- \bullet С другой стороны, из-за ошибок округления на практике принято использовать 2n шагов алгоритма для достижения точного решения.
- Если значения H заданы программно, то требуется всего O(n) памяти для реализации алгоритма. Например, в случае решения задачи оптимизации, H может быть матрицей Гессе или $J^T J$ и значения компонент матрицы могут быть вычислены программно.
- Этот алгоритм возможно видоизменить для работы с не положительно определенными H.

Отметим, что метод сопряженных градиентов используется и для решения задачи линейного МНК, если её размерность велика.