Maschinenelemente 3 Entwurf Jade Hochschule Wilhelmshaven

2-stufiges schrägverzahntes koaxiales Getriebe

Abgabe Testat 2 Gruppe 4 – 18.01.2022

Prof. Dr. Lindner

Prinzipskizze:

Maschinenelemente 3 Entwurf Jade Hochschule Wilhelmshaven

Inhaltsverzeichnis

1. Anforderungsliste

2. Skizzen

- 2.1. Prinzip-Skizzen
- 2.2. Entwurf-Skizze
- 2.3. Isometrie-Ansichten

3. Berechnungen

- 3.1. Verzahnung
 - 3.1.1. Übersetzungsverhältnis
 - 3.1.2. Profilverschiebung
 - 3.1.3. Zusammenfassung der Parameter der Zahnräder
- 3.2. Welle-Nabe-Verbindung-Passfeder
- 3.3. Kräfte an den Zahnrädern
- 3.4. Lagerkräfte und Schnittgrößenverläufe
- 3.5. Lagerberechnung
- 3.6. Festigkeitsnachweis
- 3.7. Fliehkraftkupplung

Prinzip-Skizze

Bezeichnung	Name
Z1	Zahnrad 1
Z2	Zahnrad 2
Z3	Zahnrad 3
Z4	Zahnrad 4
WL1	Wälzlager 1
WL2	Wälzlager 2
WL3	Wälzlager 3
WL4	Wälzlager 4
WL5	Wälzlager 5
WL6	Wälzlager 6
D1	Radialwellendichtring
D2	Radialwellendichtring
K1	Fliehkraftkupplung
n _{an}	Antreibswelle
n _{ab}	Abtriebswelle

Jade Hochschule Wilhelmshaven

Entwurf-Skizze

2-stufiges schrägverzahntes koaxiales Getriebe

Alle im Folgenden auftretenden Angaben zu Seitenzahlen, Tabellen und Gleichungen beziehen sich auf "Roloff/Matek Maschinenelemente (24. Auflage)"

Konstanten per Vorgabe

			_	
Dreh	mom	ent ∆	ntrie	h

$$T_{an} \coloneqq 50 \ \boldsymbol{N \cdot m}$$

$$T_{ab} = 500 \, \mathbf{N} \cdot \mathbf{m}$$

$$n_{an} = 2000 \ min^{-1}$$

$$F_B = 3 \ kN$$

$$\beta = 20$$
°

$$\alpha_n \coloneqq 20$$

$$\tau_{tzul} = 50 \frac{N}{mm^2}$$

$$B_{zul} \coloneqq 4 \frac{N}{mm^2}$$

$$K_A \coloneqq 2$$

theoretisches Übersetzungsverhältnis

$$i_{ges} \coloneqq \frac{T_{ab}}{T_{an}} = 10$$

$$i_{12} = 3.4$$

$$i_{23} \coloneqq \frac{i_{ges}^{1}}{i_{ges}} = 2.941$$
 $i_{ges} \coloneqq i_{12} \cdot i_{23} = 10$

$$i_{ges} \coloneqq i_{12} \cdot i_{23} = 10$$

gewählt nach TB21-11

Ritzelzähnezahlen

$$z_1 \coloneqq 21$$

$$z_1 := 21$$
 $z_2 := z_1 \cdot i_{12} = 71.4$ $z_2 := 71$

$$z_2 := 71$$

$$z_0 := 28$$

$$z_3 \coloneqq 28 \hspace{1cm} z_4 \coloneqq z_3 \cdot i_{23} = 82 \hspace{1cm} z_4 \coloneqq 83$$

$$z_4 := 83$$

Da ggT>1 wurde die Ritzelzähnezahl um +1 erhöht

wirkliches Übersetzungsverhältnis

$$i_{12} = \frac{z_2}{z_1} = 3.381$$

$$i_{23} = \frac{z_4}{z} = 2.964$$

$$i_{12} \coloneqq \frac{z_2}{z_1} = 3.381 \qquad \qquad i_{23} \coloneqq \frac{z_4}{z_3} = 2.964 \qquad \qquad i_{ges} \coloneqq i_{12} \cdot i_{23} = 10.022$$

$$T_{ab}\!\coloneqq\!T_{an}\!\boldsymbol{\cdot}\!i_{ges}\!=\!501.105\;\boldsymbol{N}\!\boldsymbol{\cdot}\!\boldsymbol{m}$$

$$\frac{500 \cdot N \cdot m}{T_{ab}} = 0.998$$

$$\overline{T_{ab}} = 0.8$$

Claas Lübbers, Niklas Hollmann, Lars Stanislawski

Durchmesser Antriebswelle

$$d_{min1} \coloneqq \sqrt[3]{rac{16 \cdot T_{an} \cdot K_A}{\pi \cdot \tau_{trul}}} = 21.677 \, \, extbf{mm}$$
 $d_{W1} \coloneqq 30 \, \, extbf{mm}$

Formel nach Vereinbarung

Durchmesser Vorlegewelle

$$d_{min2} := \sqrt[3]{rac{16 \cdot T_{an} \cdot i_{12} \cdot K_A}{\pi \cdot au_{tzul}}} = 32.535 \; mm$$
 $d_{W2} := 40 \; mm$

$$d_{W2} \coloneqq 40$$
 mm

Formel nach Vereinbarung

Durchmesser Abtriebswelle

$$d_{min3} \coloneqq \sqrt[3]{\frac{16 \cdot T_{an} \cdot i_{ges} \cdot K_A}{\pi \cdot \tau_{tzul}}} = 46.736 \ \textit{mm} \qquad d_{W3} \coloneqq 55 \ \textit{mm}$$

$$d_{W3} = 55 \, \boldsymbol{mm}$$

Formel nach Vereinbarung

gewählt aufgrund von Passfededer-/ & Lagerabmaßen (TB12-2)

Modul 1;2

$$m_{n12} \coloneqq \frac{1.8 \cdot d_{W1} \cdot \cos{(\beta)}}{z_1 - 2.5} = 2.743 \; \textit{mm}$$
 $m_{n12} \coloneqq 3 \; \textit{mm}$

$$m_{n12} \coloneqq 3 \, \, \boldsymbol{mn}$$

Gl21.36

orientiert an TB21-1

Zahnradbreite

$$b_1 \coloneqq \frac{2 \cdot T_{an}}{d_{W_1}^2 \cdot B_{col}} = 27.778 \; \boldsymbol{mm}$$

$$b_1 = 30 \ mm$$

Formel nach Vereinbarung orientiert an TB21-13b

$$b_2 \coloneqq b_1$$

$$b_3 \coloneqq \frac{2 \cdot T_{an} \cdot i_{12}}{d_{W2}^2 \cdot B_{rad}} = 52.827 \ mm$$

$$b_3 = 55 \ mm$$

Formel nach Vereinbarung orientiert an TB21-13b

$$b_4 \coloneqq b_3$$

Teilkreis 1 & 2

$$d_{T1} = z_1 \cdot \frac{m_{n12}}{\cos(\beta)} = 67.043 \ mm$$

$$d_{T2} = z_2 \cdot \frac{m_{n12}}{\cos(\beta)} = 226.67 \ mm$$

Gl21.38

Achsabstand 1;2

$$a_{d12} := \frac{d_{T1} + d_{T2}}{2} = 146.857 \ mm$$

Gl21.42

Modul 3;4

$$m_{n34} \coloneqq \frac{2 \cdot a_{d12} \cdot \cos{(eta)}}{\left(1 + i_{23}\right) \cdot z_3} = 2.486 \,\, m{mm}$$

$$m_{n34} \coloneqq 2.5 \ \textit{mm}$$
 Gl21.64

orientiert an TB21-1

Teilkreis 3 & 4

$$d_{T3} = z_3 \cdot \frac{m_{n34}}{\cos(\beta)} = 74.492 \ mm$$

$$d_{T4} \coloneqq z_4 \cdot \frac{m_{n34}}{\cos(\beta)} = 220.817 \ \textit{mm}$$

Gl.21.38

Achsabstand 3;4

$$a_{d34} \coloneqq \frac{d_{T3} + d_{T4}}{2} = 147.655 \ \textit{mm}$$
 $a_{d12} \neq a_{ad34}$ $a_{d12} - a_{d34} = -0.798 \ \textit{mm}$

$$a_{d12} \neq a_{ad34}$$

$$a_{d12} - a_{d34} = -0.798$$
 mm

Gl.21.42

Fazit: Es ist eine Profilverschiebung notwendig, um die Differenz der Achsabstände auszugleichen! Es wird eine positive Profilverschiebung gewählt, um den Zahnfuß zu stärken und die Tragfähigkeit der Zähne zu erhöhen.

Stirneingreifswinkel

$$\alpha_t = \operatorname{atan}\left(\frac{\operatorname{tan}\left(\alpha_n\right)}{\operatorname{cos}\left(\beta\right)}\right) = 21.173$$
°

Gl. 21.35

Betriebseingriffswinkel

$$\alpha_w \coloneqq \operatorname{acos}\left(\cos\left(\alpha_t\right) \cdot \frac{a_{d12}}{a_{d34}}\right) = 21.959$$
°

Gl. 21.31

Summe Profilverschiebungsfaktoren

$$inv\alpha_w := \tan\left(\alpha_w\right) - \alpha_w \cdot \frac{\pi}{180} = 0.01994$$

$$inv\alpha_t := \tan\left(\alpha_t\right) - \alpha_t \cdot \frac{\pi}{180^{\circ}} = 0.01779$$

$$\Sigma x \coloneqq \frac{inv\alpha_w - inv\alpha_t}{2 \cdot \tan{(\alpha_n)}} \cdot \left(z_1 + z_2\right) = 0.271$$

Gl. 21.56

Ersatzzähnezahlen

$$\beta_b = \operatorname{acos}\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right) = 18.747$$
°

Gl. 21.36

$$\cos\left(eta_b
ight)^2 = 0.897$$
 vgl. mit Additionstheorem $xyz \coloneqq \frac{1}{2}\left(1 + \cos\left(2 \cdot \beta_b\right)\right) = 0.897$

$$z_{n1} = \frac{z_1}{\cos\left(\beta_b\right)^2 \cdot \cos\left(\beta\right)} = 24.922$$

$$z_{n2} \coloneqq \frac{z_2}{\cos\left(eta_b\right)^2 \cdot \cos\left(eta\right)} = 84.26$$

Gl. 21.47

sinnvolle Wahl von x

$$x_{1} \coloneqq \frac{\Sigma x}{2} + \left(\frac{1}{2} - \frac{\Sigma x}{2}\right) \cdot \frac{\log\left(\frac{z_{2}}{z_{1}}\right)}{\log\left(\frac{z_{n1} \cdot z_{n2}}{100}\right)} = 0.28128$$

Gl. 21.33

$$x_2 := \Sigma x - x_1 = -0.0105$$

Beide Räder nach TB 21-3 ausführbar!

Gl. 21.56

Verschiebungen

$$V_1 \coloneqq x_1 \cdot m_{n12} = 0.844 \ mm$$

$$V_2 := x_2 \cdot m_{n12} = -0.031 \ mm$$

$$V_3 = 0 \ mm$$

$$V_4 \coloneqq 0 \ \boldsymbol{mm}$$

Gl. 21.49

Kontrolle Achsabstand

Betriebswälzkreisdurchmesser

$$d_{w1} \coloneqq d_{T1} \cdot \frac{\cos\left(\alpha_{t}\right)}{\cos\left(\alpha_{w}\right)} = 67.408 \ \boldsymbol{mm}$$

$$d_{w2} \coloneqq d_{T2} \cdot \frac{\cos\left(lpha_t
ight)}{\cos\left(lpha_w
ight)} = 227.902 \; m{mm}$$

Gl. 21.22a

$$a := \frac{d_{w1} + d_{w2}}{2} = 147.655$$
 mm

vgl.: $a_{d34} = 147.655 \ mm$

Kopfspiel Soll

$$c_{12Soll} = 0.25 \cdot m_{n12} = 0.75 \ mm$$

$$c_{34} = 0.25 \cdot m_{n34} = 0.625 \ mm$$

Kopfhöhenänderung:

$$k \coloneqq a - a_{d12} - m_{n12} \cdot (x_1 + x_2) = -0.014 \ mm$$

Gl.21-23

vgl. S. 794

Zahnräder		
Zahnrad Nr.1:		
$d_{T1} = 67.043 \; mm$		
Betriebswälzkreisdurchmesser	$d_{w1} \coloneqq \frac{2 \cdot z_1}{z_1 + z_2} \cdot a = 67.408 \; mm$	Gl.21-22a
Grundkreisdurchmesser	$d_{b1} \coloneqq z_1 \cdot \frac{m_{n12} \cdot \cos\left(lpha_t ight)}{\cos\left(eta ight)} = 62.517 extbf{mm}$	Gl.21-39
Kopfkreisdurchmesser	$d_{a1} := d_{T1} + 2 \cdot (m_{n12} + V_1 + k) = 74.702 \ mm$	Gl.21-24
Fußkreisdurchmesser	$d_{f1}\!\coloneqq\!d_{T1}\!-\!2ulletig(ig(m_{n12}\!+\!c_{12Soll}ig)\!-\!V_1ig)\!=\!61.231$ 7	<i>nm</i> Gl.21-25
Zahnrad Nr.2:		
$d_{T2} = 226.67 \; \pmb{mm}$		
$d_{w2} \coloneqq \frac{2 \cdot z_2}{z_1 + z_2} \cdot a = 227.902 \ \textit{mm}$		Gl.21-22b
$d_{b2} \coloneqq z_2 \cdot \frac{m_{n12} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 211.3$	369 <i>mm</i>	Gl.21-39
$d_{a2} \coloneqq d_{T2} + 2 \cdot \left(m_{n12} + V_2 + k \right) =$	232.578 <i>mm</i>	Gl.21-24
$d_{f2} \coloneqq d_{T2} - 2 \cdot \left(\left(m_{n12} + c_{12Soll} \right) - \right.$	$(V_2) = 219.107 \ mm$	Gl.21-25
Zahnrad Nr.3:		
$d_{T3} = 74.492 \; mm$		
$d_{w3} \coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \ mm$		Gl.21-22a
$\begin{aligned} d_{w3} &\coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \ \textit{mm} \\ d_{b3} &\coloneqq z_3 \cdot \frac{m_{n34} \cdot \cos{(\alpha_t)}}{\cos{(\beta)}} = 69.46 \end{aligned}$	34 <i>mm</i>	Gl.21-39
$d_{a3} := d_{T3} + 2 \cdot (m_{n34} + V_2 + k) =$		Gl.21-40
$d_{f3}\!\coloneqq\!d_{T3}\!-\!2.5\!\cdot\!m_{n34}\!=\!68.242$ 1	nm	Gl.21-41

Zahnrad Nr.4:	
$d_{T4} = 220.817 \; \pmb{mm}$	
$d_{w3} \coloneqq \frac{2 \cdot z_4}{z_3 + z_4} \cdot a = 220.817 \ \textit{mm}$	Gl.21-22b
$d_{b4} \coloneqq z_4 \cdot \frac{m_{n34} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 205.911 \ \boldsymbol{mm}$	Gl.21-39
$d_{a4} := d_{T4} + 2 \cdot (m_{n34} + V_2 + k) = 225.725 \ mm$	Gl.21-40
$d_{f4}\!\coloneqq\!d_{T4}\!-\!2.5\!\cdot\!m_{n34}\!=\!214.567$ mm	Gl.21-41
Kopfspiel nach Profilverschiebung	
$c_{12Ist} \coloneqq a - 0.5 \cdot \left(d_{a1} + d_{f2}\right) = 0.75 $ mm $c_{12Soll} - c_{12Ist} = -6.505 \cdot 10^{-16} $ mm	
Keine relevante Abweichung! Stirnmodul	vgl. S. 794
$m_{t12}\!\coloneqq\!rac{m_{n12}}{\cos\left(eta ight)}\!=\!3.193$ mm $m_{t34}\!\coloneqq\!rac{m_{n34}}{\cos\left(eta ight)}\!=\!2.66$ mm	Gl.21-23
Profilüberdeckung	
$c_{\alpha12} := \frac{0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \frac{z_2}{ z_2 } \cdot \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a \cdot \sin\left(\alpha_w\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)} = 1.47$	Gl.21-57
Laut S.787 ist der Wert für ε_{lpha} gut.	GI.21-57
$\varepsilon_{\beta 12} \coloneqq \frac{b_1 \cdot \sin(\beta)}{\pi \cdot m_{n12}} = 1.089$	Gl.21-44
$\text{Gesamt:} \varepsilon_{\gamma 12} \coloneqq \varepsilon_{\alpha 12} + \varepsilon_{\beta 12} = 2.559$	
$0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_4}{ z } \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2}\right) - a \cdot \sin\left(lpha_w ight)$	
$\varepsilon_{\alpha 3 4} \coloneqq \frac{0.5 \cdot \left(\sqrt{d_{a 3}^{2} - d_{b 3}^{2}} + \frac{z_{4}}{\left z_{4}\right } \cdot \sqrt{d_{a 4}^{2} - d_{b 4}^{2}}\right) - a \cdot \sin\left(\alpha_{w}\right)}{\pi \cdot m_{t 3 4} \cdot \cos\left(\alpha_{t}\right)} = 1.316$	Gl.21-57
Laut S.787 ist der Wert für $arepsilon_{lpha}$ gut.	
$\varepsilon_{\beta 34} \coloneqq \frac{b_3 \cdot \sin(\beta)}{\pi \cdot m_{n34}} = 2.395$	Gl.21-44
$\text{Gesamt:} \varepsilon_{\gamma34} \coloneqq \varepsilon_{\alpha34} + \varepsilon_{\beta34} = 3.711$	

Zusammen	ıassung								
Nr.	d	d_b	d_a	d_f	d_w	b	m	V	z
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
$Zahnrad_1$	67.04	62.52	74.78	61.196	67.41	30	3	0.844	21
$Zahnrad_2$	226.67	211.37	232.61	219.032	227.66	30	3	-0.031	71
$Zahnrad_3$	74.49	69.46	79.49	68.24	74.49	55	2.5	0	28
$Zahnrad_4$	220.82	205.92	225.82	214.57	220.82	55	2.5	0	83
Passfederv	erbindu	ngen	TB 12-	2					
Material der	Passfede	er: E295							
$R_e \coloneqq 295 \cdot $	$\frac{N}{m^2}$	$S_F \coloneqq 1.1$	η_{zul} := $-\frac{1}{2}$	$\frac{R_e}{S_F} = 268.3$	$182 \frac{N}{mm}$	<u> </u>):=1	$n \coloneqq 1$	
$d_{tr1} \coloneqq rac{}{d_{W1} \cdot 3}$	$2 \cdot T_{an}$ $mm \cdot \eta_{zn}$	$\frac{1}{ul \cdot \varphi \cdot n}$		b:					
$d_{tr2} \coloneqq \frac{2}{d_{W2} \cdot 3}$	$rac{2 ullet T_{an} ullet i_1}{mm ullet \eta_{zr}}$	$\frac{2}{ul \cdot \varphi \cdot n} =$	= 10.506 1	mm b:	=12 <i>mm</i>	$oldsymbol{l}{l_{tr2}}$ -	+ b = 22.	506 <i>mm</i>	
			Vorle	gewelle:	Passfede	r DIN 68	385 - A1	2x8x25	
$d_{tr3} \coloneqq rac{2 ullet}{d_{W3} ullet 4}$	$rac{T_{an}\!\cdot\! i_{12}\!\cdot\!}{m{mm}\!\cdot\! \eta_{zi}}$	$\frac{i_{23}}{ul \cdot \varphi \cdot n} =$	= 16.987 1	mm b:	=16 <i>mm</i>	$oldsymbol{l}_{tr3}$ -	+ b = 32.9	987 mm	
			Abtrie	bswelle:	Passfede	er DIN 6	885 - A1	16x10x36	
								G	612.1

Jade Hochschule Wilhelmshaven

Zahnrad 1:		
Umfangskraft:	$F_{t1}\!\coloneqq\!2\!ullet\!rac{T_{an}}{d_{T1}}\!=\!1.492$ kN	Gl.21.70
Radialkraft:	$F_{R1}\!\coloneqq\!rac{F_{t1}\!\cdot\! an\left(lpha_n ight)}{\cos\left(eta ight)}\!=\!0.578\;m{kN}$	Gl.21.71
Axialkraft:	$F_{a1} \coloneqq F_{t1} \cdot \tan(\beta) = 0.543 \ \mathbf{kN}$	Gl.21.72
Zahnrad 2:		
Umfangskraft:	$F_{t2} \coloneqq \left F_{t1} \right = 1.492 kN$	
Radialkraft:	$F_{R2} \coloneqq \left F_{R1} \right = 0.578 \ $ kN	
Axialkraft:	$F_{a2} := F_{a1} = 0.543 \ kN$	
Zahnrad 3:		
Umfangskraft:	$F_{t3}\!\coloneqq\!2ullet\!rac{T_{an}\!\cdot\!i_{12}}{d_{T3}}\!=\!4.539\;m{kN}$	
Radialkraft:	$F_{R3} \coloneqq rac{F_{t3} \cdot an\left(lpha_n ight)}{\cos\left(eta ight)} = 1.758 \; m{kN}$	
Axialkraft:	$F_{a3} \coloneqq F_{t3} \cdot \tan(\beta) = 1.652 \ \mathbf{kN}$	
Zahnrad 4:		
Umfangskraft:	$F_{t4} \coloneqq F_{t3} = 4.539 \text{ kN}$	
Radialkraft:	$F_{R4} := \left F_{R3} \right = 1.758 \; kN$	
Axialkraft:	$F_{a4} \coloneqq \left F_{a3} \right = 1.652 \ \textit{kN}$	

Es werden hier nur die Beträge der Kräfte aufgeführt, die Orientierungen der Kräfte werden in den Berechnungen der Lagerkräfte passend (d.h entgegengesetzt) angenommen (siehe Freischnitte & Schnittverläufe der drei Wellen).

Lagerkräfte Antriebswelle

Freischnitt der Antriebswelle:

Wirkabstände: $X_1 = 33 \text{ mm}$ $X_2 = 26.5 \text{ mm}$

$$B_{Y1} \coloneqq rac{F_{R1} \cdot X_1 + F_{a1} \cdot rac{d_{T1}}{2}}{\left(X_1 + X_2
ight)} = 0.626 \; extbf{kN} \hspace{1cm} B_{Z1} \coloneqq rac{F_{t1} \cdot X_1}{\left(X_1 + X_2
ight)} = 0.827 \; extbf{kN}$$

$$A_{Y1} := F_{R1} - B_{Y1} = -0.049 \text{ kN}$$
 $A_{Z1} := F_{t1} - B_{Z1} = 0.664 \text{ kN}$

$$A_{R1} := \sqrt[2]{A_{Y1}^2 + A_{Z1}^2} = 0.666 \ \mathbf{kN}$$

$$B_{R1} := \sqrt[2]{B_{Y1}^2 + B_{Z1}^2} = 1.038 \text{ kN}$$

 $A_{R1} < B_{R1}$ A ist das Festlager aufgrund der kleineren radialen Belastung

$$A_{X1} := -F_{a1} = -0.543 \text{ kN}$$
 $B_{X1} := 0 \text{ kN}$

Schnittgrößenverläufe Antriebswelle

Berechnung für XY-Ebene:

$$s_{1max} \coloneqq X_1 = 33 \ mm \quad s_{1min} \coloneqq 0 \ mm$$

$$s_{2max} \coloneqq X_2 = 26.5 \ \boldsymbol{mm}$$

$$s_{2min} \coloneqq 0 \ \boldsymbol{mm}$$

positives Schnittufer

$$F_N = -A_{X1} = 0.543 \text{ kN}$$

$$F_{QY} := A_{Y1} = -0.049 \ kN$$

$$M_{BZ}(x)\!\coloneqq\! A_{Y1}\!\cdot\! s_1$$

$$M_{BZmin}(x) \coloneqq A_{Y1} \cdot s_{1min} = 0 \ \textit{N} \cdot \textit{m}$$

 $M_{BZmax}(x) \coloneqq A_{Y1} \cdot s_{1max} = -1.602 \ \textit{N} \cdot \textit{m}$

negatives Schnittufer

$$F_N = 0$$

$$F_{OY} := -B_{Y1} = -0.626 \ kN$$

$$M_{BZ}(x) \coloneqq B_{V1} \cdot s_2$$

$$M_{BZmin}(x) \coloneqq B_{Y1} \cdot s_{2min} = 0 \ N \cdot m$$

$$M_{BZmax}(x) \coloneqq B_{Y1} \cdot s_{2max} = 16.596 \ \textit{N} \cdot \textit{m}$$

Berechnung für XZ-Ebene:

positives Schnittufer

$$F_{OZ} := A_{Z1} = 0.664 \ kN$$

$$M_{BY}(x) \coloneqq A_{Z1} \cdot s_1 \qquad \qquad M_{BYmin}(x) \coloneqq A_{Z1} \cdot s_{1min} = 0 \ \textbf{N} \cdot \textbf{m}$$

$$M_{BYmax}(x) \coloneqq A_{Z1} \cdot s_{1max} = 21.922 \ \textbf{N} \cdot \textbf{m}$$

negatives Schnittufer

$$F_{QZ} = -B_{Z1} = -0.827 \text{ kN}$$

$$M_{BY}(x) \coloneqq B_{Z1} \cdot s_1$$
 $M_{BYmin}(x) \coloneqq B_{Z1} \cdot s_{2min} = 0 \ \textbf{N} \cdot \textbf{m}$ $M_{BYmax}(x) \coloneqq B_{Z1} \cdot s_{2max} = 21.922 \ \textbf{N} \cdot \textbf{m}$

$$M_{Bmax1} = \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 27.496 \ N \cdot m$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Lagerkräfte Vorgelegewelle

Freischnitt Vorgelegewelle

Wirkabstände

$$X_3 := 36.5 \ mm$$
 $X_4 := 33 \ mm$ $X_5 := 44 \ mm$

$$X_{\Lambda} := 33 \, \mathbf{mn}$$

$$X_5 \coloneqq 44 \ mm$$

$$A_{Y2} := -F_{R2} - B_{Y2} - F_{R3} = 1.127 \text{ kN}$$

$$B_{Z2} := \frac{F_{t2} \cdot X_3 - F_{t3} \cdot (X_4 + X_5)}{X_4} = -8.94 \text{ kN}$$

$$A_{Z2} := -F_{t2} - B_{Z2} - F_{t3} = 2.91 \text{ kN}$$

$$A_{R2} := \sqrt[2]{A_{Y2}^2 + A_{Z2}^2} = 3.121 \text{ kN}$$

$$B_{R2} = \sqrt[2]{B_{Y2}^2 + B_{Z2}^2} = 9.588 \text{ kN}$$

 $A_{R2} < B_{R2}$ A ist das Festlager aufgrund der kleineren radialen Belastung

$$A_{X2} := F_{a3} - F_{a2} = 1.109 \text{ kN}$$
 $B_{X2} := 0 \text{ kN}$

$$B_{X2} \coloneqq 0 \ kN$$

Schnittgrößenverläufe Vorgelegewelle

$$s_{3max} \coloneqq X_3 = 36.5 \ \textit{mm} \qquad s_{3min} \coloneqq 0 \cdot \textit{mm}$$

$$s_{2min} \coloneqq 0 \cdot mm$$

$$s_{4max} := X_4 = 33$$
 mm $s_{4min} := 0$ mm

$$s_{4min} \coloneqq 0 \, \, \boldsymbol{mm}$$

$$s_{5max} \coloneqq X_5 = 44 \ \boldsymbol{mm}$$

$$s_{5min} = 0$$
 mm

Berechnung für XZ-Ebene:

1. positives Schnittufer

$$F_N = F_{a2} = 0.543 \ kN$$

$$F_{QY}\!\coloneqq\!-F_{R2}\!=\!-0.578~{\it kN}$$

$$M_{BZ}(x) \coloneqq -F_{R2} \cdot s_3 - F_{a2} \cdot \frac{d_{T2}}{2}$$

$$M_{BZmin}(x) \coloneqq -F_{R2} \cdot s_{3min} - F_{a2} \cdot \frac{d_{T2}}{2} = -61.528 \ N \cdot m$$

$$\begin{split} M_{BZmin}(x) &\coloneqq -F_{R2} \cdot s_{3min} - F_{a2} \cdot \frac{d_{T2}}{2} = -61.528 \ \textbf{\textit{N}} \cdot \textbf{\textit{m}} \\ M_{BZmax}(x) &\coloneqq -F_{R2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -82.615 \ \textbf{\textit{N}} \cdot \textbf{\textit{m}} \end{split}$$

2. positives Schnittufer

$$F_N := F_{a2} - A_{X2} = -0.566 \ kN$$

$$F_{QY} \coloneqq -F_{R2} - A_{Y2} = -1.705 \text{ kN}$$

$$M_{BZ}(x) := F_{R2} \cdot (s_3 + s_4) - A_{Y2} \cdot s_3 - F_{a2} \cdot \frac{d_{T2}}{2}$$

$$\begin{split} M_{BZmin}(x) &\coloneqq F_{R2} \cdot \left(s_{3max} + s_{4min}\right) - A_{Y2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -81.584 \ \textbf{\textit{N}} \cdot \textbf{\textit{m}} \\ M_{BZmax}(x) &\coloneqq F_{R2} \cdot \left(s_{3max} + s_{4max}\right) - A_{Y2} \cdot s_{3max} - F_{a2} \cdot \frac{d_{T2}}{2} = -62.519 \ \textbf{\textit{N}} \cdot \textbf{\textit{m}} \end{split}$$

1. negatives Schnittufer

$$F_N := F_{a3} = 1.652 \ kN$$

$$F_{OY} := F_{R3} = 1.758 \ kN$$

$$M_{BZ}(x) \coloneqq -F_{R3} \cdot s_5 - F_{a3} \cdot \frac{d_{T3}}{2} = -61.528 \ N \cdot m$$

$$M_{BZmin}(x) := -F_{R3} \cdot s_{5min} - F_{a3} \cdot \frac{d_{T3}}{2} = -61.528 \ N \cdot m$$

$$M_{BZmax}(x) := -F_{R3} \cdot s_{5max} - F_{a3} \cdot \frac{d_{T3}}{2} = -138.878 \ N \cdot m$$

Berechnung der XZ-Ebene:

1. positives Schnittufer

$$F_{QZ} = -F_{t2} = -1.492 \text{ kN}$$

$$M_{BY}(x) \coloneqq -F_{t2} \cdot s_3$$

$$M_{BYmin}(x) \coloneqq -F_{t2} \cdot s_{3min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

$$M_{BYmax}(x) := -F_{t2} \cdot s_{3max} = -54.443 \ N \cdot m$$

2. positives Schnittufer

$$F_{OZ} := A_{Z2} - F_{t2} = 1.419 \ kN$$

$$M_{BY}(x) \coloneqq -F_{t2} \cdot (s_3 + s_4) + A_{Z2} \cdot s_4$$

$$M_{BYmin}(x) := -F_{t2} \cdot (s_{3max} + s_{4min}) + A_{Z2} \cdot s_{4min} = -54.443 \ \textbf{N} \cdot \textbf{m}$$

$$M_{BYmax}(x) := -F_{t2} \cdot (s_{3max} + s_{4max}) + A_{Z2} \cdot s_{4max} = -7.628 \ \textbf{N} \cdot \textbf{m}$$

1. negatives Schnittufer

$$F_{QZ} = -F_{t3} = -4.539 \text{ kN}$$

$$M_{BY}(x) \coloneqq -F_{t3} \cdot s_5$$

$$M_{BYmin}(x) := -F_{t3} \cdot s_{5min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

$$M_{BYmin}(x) := -F_{t3} \cdot s_{5max} = -199.701 \ N \cdot m$$

$$M_{Bmax2} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 243.244 \ N \cdot m$$

mit
$$M_{BYmax} = -199.701 \ \textit{N} \cdot \textit{m}$$
 und $M_{BZmax} = -138.878 \ \textit{N} \cdot \textit{m}$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Lagerkräfte Abtriebswelle

Freischnitt Abtriebswelle:

Wirkabstände

$$X_6 \coloneqq 41.5 \ \textit{mm}$$
 $X_7 \coloneqq 52 \ \textit{mm}$

$$X_7 \coloneqq 52 \ mm$$

$$B_{Y3} \coloneqq rac{F_{R4} \cdot X_6 - F_{a4} \cdot rac{d_{T4}}{2}}{\left(X_6 + X_7
ight)} = -1.17 \; extbf{kN}$$

$$B_{Z3} \coloneqq \frac{F_{t4} \cdot X_6}{\left(X_6 + X_7\right)} = 2.014 \text{ kN}$$

$$A_{Y3} := F_{R4} - B_{Y3} = 2.928 \text{ kN}$$

$$A_{Z3} = F_{t4} - B_{Z3} = 2.524 \text{ kN}$$

$$A_{R3} := \sqrt[2]{A_{Y3}^2 + A_{Z3}^2} = 3.866 \text{ kN}$$

$$B_{R3} := \sqrt[2]{B_{Y3}^2 + B_{Z3}^2} = 2.33 \text{ kN}$$

$$A_{R3} > B_{R3}$$

B ist das Festlager aufgrund der kleineren radialen Belastung

$$B_{X3} := F_{a4} + F_B = 4.652 \text{ kN}$$
 $A_{X3} := 0 \text{ kN}$

$$A_{X3} = 0 \, \mathbf{kN}$$

Schnittgrößenverläufe Abtriebswelle

Berechnung der XY-Ebene:

$$s_{6max} = X_6 = 41.5$$
 mm

$$s_{6min} = 0$$
 mm $s_{7max} = X_7 = 52$ mm

$$s_{7min} = 0 \ \boldsymbol{mm}$$

positives Schnittufer:

$$F_N = 0$$

$$F_{OY} := A_{Y3} = 2.928 \ kN$$

$$M_{BZ}(x) \coloneqq A_{Y3} \cdot s_6$$

$$M_{BZmin}(x) \coloneqq A_{Y3} \cdot s_{6min} = 0 \ \textit{N} \cdot \textit{m}$$

 $M_{BZmax}(x) \coloneqq A_{Y3} \cdot s_{6max} = 121.527 \ \textit{N} \cdot \textit{m}$

negatives Schnittufer:

$$F_N := B_{X3} - F_B = 1.652 \ kN$$

$$F_{QY} = -B_{Y3} = 1.17 \ kN$$

$$M_{BZ}(x)\!\coloneqq\!B_{Y3}\!\cdot\!s_7$$

$$\begin{split} &M_{BZmin}(x) \coloneqq &B_{Y3} \bullet s_{7min} = 0 \ \textbf{N} \bullet \textbf{m} \\ &M_{BZmax}(x) \coloneqq &B_{Y3} \bullet s_{7max} = -60.861 \ \textbf{N} \bullet \textbf{m} \end{split}$$

Berechnung der XZ-Ebene:

positives Schnittufer

$$F_{OZ} := A_{Z3} = 2.524 \ kN$$

$$M_{BY}(x) \coloneqq A_{Z3} \cdot s_6$$

$$M_{BYmin}(x) \coloneqq A_{Z3} \cdot s_{6min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

 $M_{BYmax}(x) \coloneqq A_{Z3} \cdot s_{6max} = 104.753 \ \boldsymbol{N} \cdot \boldsymbol{m}$

negatives Schnittufer

$$F_{QZ} = -B_{Z3} = -2.014 \ kN$$

$$M_{BY}(x) \coloneqq B_{Z3} \cdot s_7$$

$$M_{BYmin}(x) \coloneqq B_{Z3} \cdot s_{7min} = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$

 $M_{BYmax}(x) \coloneqq B_{Z3} \cdot s_{7max} = 104.753 \ \boldsymbol{N} \cdot \boldsymbol{m}$

$$M_{Bmax3} := \sqrt[2]{(M_{BYmax})^2 + (M_{BZmax})^2} = 121.15 \ N \cdot m$$

$$\label{eq:mit_max} \text{mit} \quad M_{BYmax} \!=\! 104.753 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}} \quad \text{und} \quad M_{BZmax} \!=\! -60.861 \; \textbf{\textit{N}} \cdot \textbf{\textit{m}}$$

Der Maximalwert wurde hier entsprechend der Schwachstelle der Welle (mit einem pinken "X" in der Isometrie-Ansicht markiert) für die folgende Festigkeitsberechnung ermittelt

Jade Hochschule Wilhelmshaven

 $\nu_1 = 3$ aufgrund von Rillenkugellager

Antriebswelle
$$n_1 = 2000 \cdot \frac{1}{min}$$
 $d_{W1} = 30 \ mm$

$$P_{1L} := |B_{R1}| = 1.038 \text{ kN}$$
 $P_{1F} := 1.5 \text{ kN}$

$$c_{erf} \coloneqq P_{1L} \sqrt[\nu_1]{\frac{n_1 \cdot 10000 \cdot hr}{10^6}} = 11.026 \text{ kN} \qquad c_{erf} \coloneqq P_{1F} \sqrt[\nu_1]{\frac{n_1 \cdot 10000 \cdot hr}{10^6}} = 15.94 \text{ kN}$$

Berechnung Lagerlebensdauer Antriebswelle

$$c_{6006}\coloneqq 13.8$$
 kN $c_{0.6206}\coloneqq 20.3$ kN $c_{0.6206}\coloneqq 11.2$ kN

$$l_{10h;6006} \coloneqq \frac{10^6}{n_1} \cdot \left(\frac{c_{6006}}{P_{1L}}\right)^{\nu_1} = 19606 \ \textit{hr} \qquad \qquad \frac{\left|A_{X1}\right|}{A_{R1}} = 0.815 \qquad \frac{\left|A_{X1}\right|}{c_{0.6206}} = 0.048$$

$$0.794 > e$$
 d.h. $X_{1F} = 0.56$

$$Y_{1F} = 1.8$$

$$P_{6206} := X_{1F} \cdot A_{R1} + Y_{1F} \cdot |A_{X1}| = 1.35 \ \textit{kN}$$

$$l_{10h;6206}\!\coloneqq\!rac{10^6}{n_1}\!\cdot\!\left(\!rac{c_{6206}}{P_{6206}}\!
ight)^{\!
u_1}\!=\!28321$$
 hr

	200)()•——		
orgelegewelle	n_2 :=	$\frac{00 \cdot \frac{1}{min}}{i_{12}} = 591.549$	$\frac{1}{min}$	d_{W2} = 40 mm
Loslager			Festlager	
$P_{2L} = 11.269 \ kN$			$P_{2F} \coloneqq 10 \ \textit{kN}$	
$c_{erf} \coloneqq P_{2L} \sqrt[u_1]{n_2 \cdot 1}$	$\frac{10000 \cdot hr}{10^6}$	=79.787 kN	c_{erf} := $P_{2F} \stackrel{ u_1}{ extstyle \sqrt{-}}$	$\frac{n_2 \cdot 10000 \cdot hr}{10^6} = 70.802 \ kN$
gewählt: NU 308			gewählt: NUP	308
Berechnung Lag	gerlebens	dauer Vorgelege	welle	
$ u_2 \coloneqq \frac{10}{3}$ aufgru	ınd von Ro	lenlager		
<i>c_{NU308}≔93 kN</i>			$c_{NUP308}\!\coloneqq\!93$)	εN
$l_{10h;NU308} \coloneqq \frac{10^6}{n_2} \bullet$	$\left(rac{c_{NU308}}{P_{2L}} ight)^{ u_2}$ =	= 32002 hr	$\frac{A_{X2}}{A_{R2}} = 0.355$	
Gl. 14.5a			nach TB 14-3/	Α
			0.079 < e d.	h. $X_{NUP308}\!\coloneqq\!1$
				$Y_{NUP308} \coloneqq 0$
			$P_{NUP308} \coloneqq X_{N0}$	$_{UP308} \cdot A_{R2} + Y_{NUP308} \cdot A_{X2} = 3.1$
			$l_{10h1F}\coloneqqrac{10^6}{n_1}$.	$\left(rac{c_{6206}}{P_{6206}} ight)^{ u_2} = 69899 \; m{hr}$

Vorauswahl Lage				
<u>Abtriebswelle</u>	2000•	$\frac{1}{min} = 199.5$	1	d -55 mm
Abtriebswelle	$i_g = \frac{1}{i_g}$	======================================	min	$d_{W3}\!=\!55$ mm
Loslager			Festlager	
$P_{3L} := A_{R3} = 3.866$ k	eN .		$P_{3F} \coloneqq 10$ k	eN
c_{erf} := P_{3L} $\sqrt[\nu_1]{rac{n_3\cdot 10}{1}}$	$\frac{0000 \cdot hr}{0^6} = 1$	9.055 kN	c_{erf} := P_{3F}	$\sqrt[\nu_1]{rac{n_3 \cdot 10000 \cdot hr}{10^6}} = 49.288 \ kN$
gewählt: 6011			gewählt: 6	5311
Berechnung Lage	erlebensda	uer Abtriebs	welle	
$c_{6011} \coloneqq 29.6 \ \textit{kN}$			$c_{6311} = 74.$	1 kN $c_{0;6311} \coloneqq 45$ kN
$l_{10h;6011} \coloneqq \frac{10^6}{n_3} \cdot \left(\frac{c_{60}}{P_1}\right)$	$\left(\frac{011}{3L}\right)^{ u_1} = 3748$	3 hr	$\frac{B_{X3}}{B_{R3}} = 1.99$	$97 \qquad \frac{B_{X3}}{c_{0,6311}} = 0.103$
Gl. 14.5a			nach TB 1	4-3A
			1.879 > e	d.h. $X_{6311} = 0.56$
				$Y_{6311} \coloneqq 1.4$
			P_{6311} := X_6	$B_{R3} + Y_{6311} \cdot B_{X3} = 7.817$ kN
			$l_{10h1F} \coloneqq \frac{10}{n}$	$\left(\frac{c_{6311}}{P_{6311}}\right)^{\nu_1} = 71129 \ \textit{hr}$
Übersicht der gev	wählten La	ger		
Welle			Festlager 1	Lebensdauer
		(hr)		(hr)
Antriebs welle	6006	19606	6206	28321
Vorgelege welle	NU308	32002	NUP308	69899

Jade Hochschule Wilhelmshaven

Festigkeitsnachweise

Material der Wellen: 42CrMo4

$$R_m = 1100 \frac{N}{mm^2}$$

$$R_m \coloneqq 1100 \ \frac{N}{mm^2} \qquad R_{p0.2} \coloneqq 900 \ \frac{N}{mm^2} \qquad R_z \coloneqq 6 \ \mu m$$

$$R_z = 6 \ \mu m$$

$$\sigma_{bWN} = 550 \; rac{N}{mm^2} \qquad au_{tWN} = 330 \; rac{N}{mm^2}$$

$$\tau_{tWN} = 330 \frac{N}{mm^2}$$

Einflussfaktoren (gelten für alle drei Wellen gleich):

Oberflächenverfestigung

$$K_V = 1.2$$

$$K_{O\sigma} \coloneqq 1 - 0.22 \log \left(\frac{R_z}{1 \ \mu m} \right) \cdot \left(\log \left(\frac{R_m}{20 \ \frac{N}{mm^2}} \right) - 1 \right) = 0.873$$

$$K_{O\tau} = 0.575 \cdot K_{O\sigma} + 0.425 = 0.927$$

Antriebswelle

$$d_{W1} = 30 \ mm$$

Aufgrund der Passfederverbindung wird der Querschnitt der Antriebswelle aufgrund der Kerbwirkung geschwächt

$$t_{1:W1} \coloneqq 4 \ \boldsymbol{mm}$$

 $d_1 \coloneqq d_{W1} - t_{1:W1} = 26 \ mm$

Schwachstelle der Antriebswelle befindet sich beim Zahnrad_1 (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsna	achweis .	nach Bild 3.30	
vorhandene Spannunge	en:		
$W_{B1} \coloneqq 0.012 \cdot \left(d_{W1} + d_{A}\right)$	$)^3 = (2.107 \cdot 10^3) \ mm^3$	$W_{T1}\!\coloneqq\!0.2\!ullet\!d_1{}^3\!=\!\left(3.515\!ullet\!10^3 ight)$,	$m{nm}^3$
$M_{Bmax1} = 27.496 \ N \cdot m$		$M_{tmax1} \coloneqq 50 \; extbf{N} \cdot extbf{m}$	
$\sigma_{bmax1} \coloneqq \frac{M_{Bmax1}}{W_{B1}} = 13.$	$047 \frac{N}{mm^2}$	$ au_{tmax1}$:= $\frac{M_{tmax1}}{W_{T1}}$ = 14.224 $\frac{N}{mm}$	2
Technologischer Größe	neinflussfaktor $K_{t1}\!\coloneqq\!1$ –	$0.26 \log \left(\frac{d_1}{16 \ mm} \right) = 0.945$	
Bauteilfestigkeit		TB 3-11a	
$\sigma_{bF1} \coloneqq 1.2 ullet R_{p0.2} ullet K_{t1} =$	$1020.792 \frac{N}{mm^2}$		
$ au_{TF1} \coloneqq 1.2 \cdot R_{p0.2} \cdot \frac{K_{t1}}{\sqrt[2]{3}}$	$=589.355 \frac{N}{mm^2}$		
Gesamtsicherheit:	$S_{F1}\!\coloneqq\!rac{1}{\sqrt{\left(rac{\sigma_{bmax1}}{\sigma_{bF1}} ight)^2+\left(rac{\sigma_{bmax1}}{\sigma_{bF1}} ight)^2}}$	$\frac{1}{\tau_{TF1}} = 36.616$	
	$S_{F1}{>}S_{Fmin}$ Die Ar	triebswelle ist statisch fest	
	$mit S_{Fmin} \coloneqq 2 nach^{ T}$	⁻B3-14b	

orhandene Spannungen	1:			
$K_A \cdot M_{Bmax1}$	N	K	$I_A \cdot M_{tmax1}$	N
$ \sigma_{ba1} \coloneqq \frac{K_A \cdot M_{Bmax1}}{W_{B1}} = 26. $	mm^2	$ au_{ta1}$:=-	$\frac{X_A \cdot M_{tmax1}}{W_{T1}} = 28$	mm^2
N			N	
$r_{bm1} = 0 \frac{N}{mm^2}$		$ au_{tm1} \coloneqq 0$	$rac{N}{mm^2}$	
		vereinfa	chte Berechnu	ng siehe S.73
Einflussfaktoren				
			$\begin{pmatrix} d_1 \end{pmatrix}$	
Technologischer Größ	eneinflussfaktor	$K_{T1} = 1 - 0.26 \text{ lo}$	$\log \left \frac{1}{16 \ mm} \right = 0$	0.945
Kerbwirkungszahl		$eta_{KB1}\coloneqq 2.5$	TB 3-09	b
		$\beta_{KT1} \coloneqq 2.3$		
		7 11 1		
Geometrische Größen	einflussfaktor	lo	$g\left(\begin{array}{c}d_1\end{array}\right)$	
		$K_{G1} = 1 - 0.2$ log	$\frac{(7.5 \ mm)}{(2.0)} =$	0.917
			` '	3 3-11c
Gesamteinflussfaktor/) J-11C
Konstruktionsfaktor				
$K_{DT1} := \left(\frac{\beta_{KT1}}{K_{G1}} + \frac{1}{K_{O\tau}} - 1\right)$	$\frac{1}{2} = 2.156$	$K_{\text{DBI}} \coloneqq \left(\frac{\beta_{KB1}}{1 + 1} + \frac{1}{2} \right)$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	= 2.393
$egin{pmatrix} K_{G1} & K_{O au} \end{bmatrix}$	K_V	$ig(K_{G1}ig)$	$K_{O\sigma}$ K_V	
			CI	. 3.16
			Gi	. 5.10
iestaltwechselfestigkeit				
$\sigma_{bGW1} \coloneqq K_{T1} \cdot \frac{\sigma_{bWN}}{K_{DB1}} = 21$	7.251 N	$ au_{tCW1}\coloneqq K_{T1}$ •	$\frac{VN}{}$ = 144.694 -	N
K_{DB1}	mm^2	K_{L}	p_{T1}	mm^2
Gesamtsicherheit:	C	1	-121	
desamesterier.	$S_{D1} = \frac{1}{2}$	$\left(\frac{ au_{ba1}}{ au_{bGW1}}\right)^2 + \left(\frac{ au_{ta1}}{ au_{tGW1}}\right)^2$	-4.04	
	$\sqrt{\sigma}$	$\left(\frac{1}{t_{tGW1}}\right)^{-1} \left(\frac{1}{t_{tGW1}}\right)^{-1}$		
S_Z := 1.2 S_{Dmin} :=	$=1.5$ $S_{\rm D}$ s	$:=S_{D}$ $\cdot \cdot S_{C}=1.8$		
$\mathcal{Z}_{Z} = 1.2$ $\mathcal{Z}_{Dmin} =$	_ 1			
	$S_{D1}>$	S_{D_erf} Die Anti	riebswelle ist da	auerfest

Jade Hochschule Wilhelmshaven

Vorgelegewelle

$$d_{W2} = 40 \ \boldsymbol{mm}$$

$$t_{1:W2} = 2.5 \, \boldsymbol{mm}$$

$$d_2 = d_{W2} - t_{1:W2} = 37.5 \ mm$$

Schwachstelle der Vorgelegewelle befindet sich beim Loslager (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsnachweis

nach Bild 3.30

vorhandene Spannungen:

$$W_{B2} := \frac{\pi}{32} \cdot d_{W2}^3 = (6.283 \cdot 10^3) \ \textit{mm}^3$$

$$W_{T2} = \frac{\pi}{16} \cdot d_{W2}^{3} = (1.257 \cdot 10^{4}) \ \textit{mm}^{3}$$

$$M_{Bmax2} = 243.244 \ N \cdot m$$

$$M_{tmax2} = 50 \ N \cdot m \cdot i_{12} = 169.048 \ N \cdot m$$

$$\sigma_{bmax2} \coloneqq \frac{M_{Bmax2}}{W_{B2}} = 38.713 \ \frac{\textit{N}}{\textit{mm}^2}$$

$$\tau_{tmax2} := \frac{M_{tmax2}}{W_{T2}} = 13.452 \frac{N}{mm^2}$$

Technologischer Größeneinflussfaktor
$$K_{t2} \coloneqq 1 - 0.26 \, \log \left(\frac{d_2}{16 \, \textit{mm}} \right) = 0.904$$

TB 3-11a

Bauteilfestigkeit

$$\sigma_{bF2} \coloneqq 1.2 \cdot R_{p0.2} \cdot K_{t2} = 976.129 \frac{N}{mm^2}$$

$$au_{TF2} \coloneqq 1.2 \cdot R_{p0.2} \cdot \frac{K_{t2}}{\sqrt[2]{3}} = 563.568 \cdot \frac{N}{mm^2}$$

$$S_{F2} := \frac{1}{\sqrt[2]{\left(\frac{\sigma_{bmax2}}{\sigma_{bF2}}\right)^2 + \left(\frac{\tau_{tmax2}}{\tau_{TF2}}\right)^2}} = 21.603$$

$$S_{F2}{>}S_{Fmin}$$

Die Antriebswelle ist statisch fest

$$\mathsf{mit} \quad S_{Fmin} \coloneqq 2 \quad \mathsf{nach} \; \mathsf{TB3-14b}$$

orhandene Spannunge	en:			
$K_A {m \cdot} M_{Bmax2}$	N	K_A ·	M_{tmax2}	N
$\sigma_{ba2} \coloneqq \frac{K_A \cdot M_{Bmax2}}{W_{B2}} = 77$	$7.427 \phantom{00000000000000000000000000000000000$	$ au_{ta2}$:= $\overline{\hspace{1cm}}_{V}$	$rac{M_{tmax2}}{W_{T2}}$ = 26	mm^2
N			N	
$\sigma_{bm2} = 0 \frac{N}{mm^2}$		$ au_{tm2} \coloneqq 0 - \frac{1}{m}$	m^2	
		vereinfacht	te Berechnur	ng siehe S.73
Einflussfaktoren				
			4	
Technologischer Grö	ßeneinflussfaktor	$K_{T2} = 1 - 0.26 \log \left(\right)$	$\left(\frac{a_2}{16 \ mm}\right) = 0$	0.904
Kerbwirkungszahl		β_{KB2} := 2.9		
		$\beta_{KT2} \coloneqq 1.9$		
			ТВ	3-09b
Coornetviceles Cui Os				
Geometrische Größeneinflussfaktor		log (-	d_2	
		$K_{G2} = 1 - 0.2 \frac{\log\left(\frac{1}{2}\right)}{\log\left(\frac{1}{2}\right)}$	$\frac{7.5 \ mm}{g(20)} = 0$	0.893
Gesamteinflussfaktor Konstruktionsfaktor	r/	10		3-11c
	1	(8	\ 1	
$K_{DT2} \coloneqq \left(\frac{\beta_{KT2}}{K_{G2}} + \frac{1}{K_{O\tau}}\right)$	$\begin{bmatrix} -1 \end{bmatrix} \cdot \frac{1}{K_V} = 1.839$	$K_{DB2} \coloneqq \left(\frac{\beta_{KB2}}{K_{G2}} + \frac{1}{K_C}\right)$	$\begin{bmatrix} -1 \\ 0\sigma \end{bmatrix} \cdot \frac{1}{K_V} =$	= 2.829
Gestaltwechselfestigkei	+		Gl.	3.16
		Turn		N
$\sigma_{bGW2} \coloneqq K_{T2} \cdot \frac{\sigma_{bWN}}{K_{DB2}} = 1$	$75.745 \frac{1}{mm^2}$	$\tau_{tGW2} \coloneqq K_{T2} \cdot \frac{\tau_{tWN}}{K_{DT2}}$	=162.147 — n	$\frac{1}{nm^2}$
Gesamtsicherheit:	$S_{D2} := {2 \sqrt{\sigma}}$	$\left(\frac{1}{t_{ba2}}\right)^2 + \left(\frac{\tau_{ta2}}{\tau_{tGW2}}\right)^2 = 2$	2.124	
	$\sqrt{\sigma_b}$	$\left(\overline{ au_{tGW2}} ight)$		
$S_Z \coloneqq 1.4$ S_{Dmin}	$\coloneqq 1.5$ S_{D_erf} :	$=S_{Dmin}$ \bullet S_Z $=$ 2.1		
	$S_{D2} > S$. Die Vorgele	egewelle ist (dauerfest

Jade Hochschule Wilhelmshaven

Abtriebswelle

 $d_{W3} = 55 \ mm$

Aufgrund der Passfederverbindung wird der Querschnitt der Antriebswelle aufgrund der

 $t_{1:W3} = 6 \ \boldsymbol{mm}$

Kerbwirkung geschwächt

$$d_3 = d_{W3} - t_{1:W3} = 49 \ mm$$

Schwachstelle der Abtriebswelle befindet sich beim Zahnrad_4 (mit "Pinker"-Farbe in der Isometrie-Darstellung markiert)

Statischer Festigkeitsnachweis

nach Bild 3.30

vorhandene Spannungen:

$$W_{B3} = 0.012 \cdot \left(d_{W3} + d_3\right)^3 = \left(1.35 \cdot 10^4\right) \ m{mm}^3$$

$$W_{T3} = 0.2 \cdot d_3^3 = (2.353 \cdot 10^4) \ mm^3$$

$$M_{Bmax3} = 121.15 \ N \cdot m$$

$$M_{tmax3} = 50 \, N \cdot m \cdot i_{ges} = 501.105 \, N \cdot m$$

$$\sigma_{bmax3} \coloneqq \frac{M_{Bmax3}}{W_{B3}} = 8.975 \; \frac{N}{\textit{mm}^2}$$

$$\boldsymbol{\tau_{tmax3}} \coloneqq \frac{\boldsymbol{M_{tmax3}}}{\boldsymbol{W_{T3}}} = 21.297 \ \frac{\boldsymbol{N}}{\boldsymbol{mm}^2}$$

Technologischer Größeneinflussfaktor $K_{t3} = 1 - 0.26 \log \left(\frac{d_3}{16 \ mm}\right) = 0.874$

TB 3-11a

Bauteilfestigkeit

$$\sigma_{bF3} := 1.2 \cdot R_{p0.2} \cdot K_{t3} = 943.51 \frac{N}{mm^2}$$

$$au_{TF3} \coloneqq 1.2 \cdot R_{p0.2} \cdot \frac{K_{t3}}{\sqrt[2]{3}} = 544.736 \frac{N}{mm^2}$$

$$S_{F3} \coloneqq \frac{1}{\sqrt[2]{\left(\frac{\sigma_{bmax3}}{\sigma_{bF3}}\right)^2 + \left(\frac{\tau_{tmax3}}{\tau_{TF3}}\right)^2}} = 24.853$$

$$S_{F3} > S_{Fmin}$$

Die Antriebswelle ist statisch fest

$$mit S_{Fmin} = 2$$
 nach TB3-14b

vorhandene Spannunge	n:			
$K_A {m \cdot} M_{Bmax3}$	oz N		$K_A {ullet} M_{tmax3}$	N
$\sigma_{ba3} \coloneqq \frac{K_A \cdot M_{Bmax3}}{W_{B3}} = 17$	mm^2	$ au_{ta3}$:=-	$\frac{K_A \cdot M_{tmax3}}{W_{T3}} = 42$	$\frac{1.593}{mm^2}$
$\sigma_{bm3} = 0 \frac{N}{mm^2}$		$ au_{tm3}$:=	$0 rac{N}{mm^2}$	
TILITI			HUHL	
		vereinf	achte Berechnu	ng siehe S.73
Einflussfaktoren				
Technologischer Größ	Beneinflussfaktor	$K_{T3} := 1 - 0.26 \text{ l}$	$\log\left(\frac{d_3}{16 \ mm}\right) = 0$	0.874
Kerbwirkungszahl		β_{KB3} := 2.5	TB 3-09	b
		$eta_{KT3}\!\coloneqq\!2.3$		
Geometrische Größer	neinflussfaktor		/ 7	
Geometrisene Großer	iemitussitaktoi	$K_{G3} \coloneqq 1 - 0.2$	$\log\left(\frac{a_3}{7.5}\right)$	
		$K_{G3} = 1 - 0.2$	$\frac{(7.5 \text{ mm})}{\log(20)} =$	0.875
			, ,	3 3-11c
Gesamteinflussfaktor, Konstruktionsfaktor	/			, 5 110
$egin{pmatrix} eta_{KT3} & 1 & 1 \end{pmatrix}$	1 227	β_{KB3}	1 1 1	0.500
$K_{DT3} := \left(\frac{\beta_{KT3}}{K_{G3}} + \frac{1}{K_{O\tau}} - 1\right)$	$\frac{1}{K_V} = 2.257$	$K_{DB3} \coloneqq \left(\frac{1}{K_{G3}} \right)^{+}$	$\overline{K_{O\sigma}}^{-1}$	= 2.503
			Gl	. 3.16
Gestaltwechselfestigkeit				
		au	11/2	N
$\sigma_{bGW3} \coloneqq K_{T3} \cdot \frac{\sigma_{bWN}}{K_{DB3}} = 19$	$01.986 \frac{1}{mm^2}$	$ au_{tGW3} \coloneqq K_{T3} \cdot \frac{r_t}{K}$	=127.748	$\frac{1}{m^2}$
11DB3	116116		DI3	16116
Gesamtsicherheit:	$S_{D3} \coloneqq {\sqrt[2]{\left(\frac{c}{\sqrt{c}} \right)^2}}$	$\frac{1}{\tau_{ba3}} + \left(\frac{\tau_{ta3}}{\tau_{tGW3}}\right)^2$	===2.888	
	$\bigvee (\sigma_l)$	$\left(au_{tGW3} ight)$		
$S_Z \coloneqq 1.4$ $S_{Dmin} \colon$	$=1.5$ $S_{D,conf}$	$=S_{Dmin} \cdot S_Z = 2.1$		
Z Dillitti				
	$S_{D3}>S$	S_{D_erf} Die Ab †	triebswelle ist da	auerfest

Fliehkraftkupplung	
Anzahl der Fliehkörper	N_{FK} := 2
Schaltdrehzahl	$n_S \coloneqq 1400 \cdot \frac{1}{min}$
Fliehkörpermasse	m_{FK} := $0.5~$ $m{kg}$
Reibdurchmesser	$D_R \coloneqq 140 \; m{mm}$
Haftreibwert	$\mu_{0;FK}$:= 0.9
Fliehkörperschwerpunktradius	r_{FK} := 50 mm
Gesamtfederkraft	$F_F \coloneqq 25~N$
Winkelgeschwindigkeit: $\omega_{FK} \coloneqq 2 \ \pi \cdot n_S = 146.608 \ \frac{1}{s}$ Fliehkraft: $F_{Flieh} \coloneqq m_{FK} \cdot r_{FK} \cdot \omega_{FK}^2 = 537.345 \ N$ Kontaktkraft: $F_{N;FK} \coloneqq F_{Flieh} - F_F = 512.345 \ N$ Reibkraft an einem Fliehkörper: $F_{R;FK} \coloneqq \mu_{0;FK} \cdot F_{N;FK} = 461.111 \ N$ Reibmoment: $M_{R;FK} \coloneqq N_{FK} \cdot F_{R;FK} \cdot \frac{D_R}{2} = 64.555 \ N$	