 In a critical reactor, the effective multiplication factor is [a] slightly greater than unity [b] equal to unity [c] slightly less than unity [d] equal to zero
2. Doppler broadening is caused by [a] increase in temperature of the fuel [b] decrease in temperature of the fuel [c] is independent of temperature of the fuel [d]decrease in temperature of the moderator
 Resonance escape probability in a heterogeneous system is [a] equal to that of homogeneous system for the same fuel/moderator composition [b] greater than that of homogeneous system for the same fuel/moderator composition [c] less than that of homogeneous system for the same fuel/moderator composition [d] independent of fuel/moderator composition
 4. The amount of total energy released in a nuclear fission is about 200 MeV, out of which most of the energy is carried by [a] Prompt neutrons [b] Fission products [c] prompt gammas [d] Neutrinos
 In a nuclear fission, most of the prompt neutrons are emitted with kinetic energy approximately equal to [a] 0.0625 eV [b] 1 eV [c] 1 keV [d] 1 MeV
 6. If 'Σ_a' is the macroscopic absorption cross section and 'Φ' is the flux, then reaction rate is [a] Φ Σ_a [b] 1/(Φ Σ_a)² [c] 1/Φ Σ_a [d] (Φ Σ_a)²
7. Main source of thermal neutrons in a reactor core is:
[a] Fissile material [b] Moderator
[c] Fertile material [d] Absorber
8. By integrating which of the following variables in neutron transport equation, one obtains the diffusion equation:
[a] Angular, Ω [b] Energy, E
[c] time, t [d] Space, r
 In a chain reaction system, if infinite multiplication factor, k_∞, is 1.005, the neutron density increases 10 times in approximately
[a] 46 generations [b] 6 generations
[c] 462 generations [d] 1460 generations

10. With the decrease in	the size of the reactor system, the non-leakage probability:
[a] decreases	[b] increases
[c] remains constant	[d] depends on k-eff
11. The amount of total ene is carried by	rgy released in a nuclear fission is about 200 MeV, out of which most of the energy
[a] Prompt neutrons	[b] Fission products
[c] prompt gammas	[d] Neutrinos
12. Which of the following	moderator material has largest migration area/length:
[a] D ₂ O [b] H ₂ O	[c] Beryllium [d] Graphite
	f the prompt neutrons are emitted with kinetic energy approximately equal to [c] 1 keV [d] 1 MeV
	c absorption cross section and ' Φ ' is the flux, then reaction rate is $_{\rm a}$) ² [c] $1/\Phi \Sigma_{\rm a}$ [d] $(\Phi \Sigma_{\rm a})^2$
15. Main source of thermal	neutrons in a reactor core is:
[a] Fissile material	[b] Moderator
[c] Fertile material	[d] Absorber
16. By integrating which of equation:	the following variables in neutron transport equation, one obtains the diffusion
[a] Angular, Ω	[b] Energy, E
[c] time, t	[d] Space, r
17. In a chain reaction system, in approximately	if infinite multiplication factor, k_{∞} , is 1.005, the neutron density increases 10 times
[a] 46 generations	[b] 6 generations
[c] 462 generations	[d] 1460 generations
18. With the decrease in the siz	e of the reactor system, the non-leakage probability:
[a] decreases	[b] increases
[c] remains constant	[d] depends on k-eff
	d 'v'. If the macroscopic absorption and fission cross section are defines as Σ_a and the relation between ' η ' and 'v'.
20. Various mechanisms by transport formulation.	y which neutrons can be gained or lost from an arbitrary volume, in the neutron
21. The migration length is(a) a thermal neutron befor	a measure of the net vector distance travelled by e getting absorbed

- (b) a fission neutron before getting absorbed
- (c) a fission neutron before leaking out
- (d) a thermal neutron before leaking out
- 22. Fick's law is not valid
- (i) far away from the boundaries
- (ii) when the neutron flux strongly varies with distance
- (iii) for a uniform medium
- (iv) near strong absorbers
- 23. The flux at a distance r from a point source of neutrons in an infinite medium is given by

(a)
$$\phi(r) = \frac{S}{4\pi D} \frac{e^{-r}}{r}$$

(b)
$$\phi(r) = \frac{4S}{\pi D} e^{-r/L}$$

(c)
$$\phi(r) = \frac{1}{4\pi D} \frac{e^{-r}}{L}$$

$$\phi(r) = \frac{D}{4\pi S} \frac{e^{-L}}{r}$$

- 24. Linear extrapolation distance is the distance over which
- (a) thermal absorption goes to zero
- (b) neutron diffusion coefficient becomes zero
- (c) neutron flux goes to zero
- (d) derivative of neutron flux becomes zero
- 25. In a certain critical reactor having a geometrical buckling B², if M² is doubled, then k_∞ should be
- (a) $k_{\infty} = k_{\infty}$
- (b) $k_{\infty}=2k_{\infty}$
- (c) $k_{\infty} = 2k_{\infty} + 1$
- (d) $k_{\infty} = 2 k_{\infty} 1$
- 26. As the neutron loses energy while slowing down
- (a) the average logarithmic decrement increases
- (b) the average logarithmic decrement decreases
- (c) the neutron lethargy increases
- (d) the neutron lethargy decreases
- 27. The diffusion area termed as L² for thermal neutrons
- (a) is inversely proportional to the diffusion coefficient
- (b) directly proportional to the macroscopic absorption cross section
- (c) inversely proportional to the absorption mean free path
- (d) directly proportional to the absorption mean free path
- 28. The average logrithmic energy decrement ξ for isotropic scattering
- (a) independent of initial energy
- (b) dependent on initial energy
- (c) dependent on scattering angle
- (d) independent of the scattering angle

29. Identify the critical relation for diffusion of two group of neutrons in a multiplying medium for a bare reactor

(a)
$$k_{\infty} = 1 + L^2 B_g^2 + \tau$$
 (b) $k_{\text{eff}} = \frac{k_{\infty}}{(1 + L^2 B_g^2)(1 + \tau B_g^2)}$

(c)
$$k_{eff} = \frac{k_{\infty}}{(1 + L^2 B_g^2)\tau}$$
 (d) $k_{eff} = \frac{\tau B_g^2}{(1 + L^2 B_g^2)}$

- 30. The unit of fermi age τ is
 (a) sec
 (b) sec⁻¹
 (c) cm²
 (d) cm⁻²
- 51. A nuclide is said to be fertile if
 - a) It can be fissioned.
 - b) It can be fissioned with fast neutrons.
 - c) It can be converted to fissile species.
 - d) It can be fissioned by neutrons of any energy.
- 52. Resonance escape probability is the probability
 - a) that a neutron is captured in the resonance.
 - b) that a neutron escapes the resonance.
 - c) that a neutron undergoes fission.
 - d) that a neutron leaks out while slowing down.
- 53. Delayed neutrons are the ones
 - a) which are produced by fission products.
 - b) which are produced due to (n,γ) reaction with fission products.
 - c) which are produced during fission.
 - d) which are produced neutron sources in the reactor.
- 54. The unit of J, current density are
 - a) neutrons/m.
 - b) neutrons/sec.
 - c) neutrons/sq. m/sec.
 - d) neutrons/m/sec.
- 55. Fast reactor is one where
 - a) the fission occur at a fast rate.
 - b) most of the fissions are caused by fast neutrons.
 - c) the heat is transferred to the coolant at a fast rate.
 - d) the fission neutrons are born with fast energies.
- 56. If a U²³⁵ nucleus is split into its constituent neutrons and protons
 - a) then 2500 MeV energy is released.
 - b) then 2500 MeV has to be supplied.
 - c) then 200 MeV is released.
 - d) then 200 MeV has to be supplied.

- 57. Migration length is a measure of
 - a) the distance travelled by a thermal neutron before getting absorbed.
 - b) distance travelled by a fission neutron before getting absorbed.
 - c) distance travelled by a fission neutron before leaking out.
 - d) the distance travelled by a thermal neutron before leaking out.
- 58. A good moderator is one
 - a) which has a small scattering cross section.
 - b) which has a small diffusion length.
 - c) which has a high absorption cross section.
 - d) which has a small ξ value.
- 59. As a size of the reactor increases the leakage
 - a) increases.
 - b) decreases.
 - c) does not change.
 - d) can not be predicted.
- 60. The number of collisions required to a neutron for a hydrogen atom to slow down to thermal energy (0.025 ev) from 2 Mev is
 - a) 18.
 - b) 55.
 - c) 200.
 - d) 150.
- 61. If $B_g^2 >> B_m^2$ then
 - a) the system is over sized.
 - b) the system is critical.
 - c) the system is supercritical.
 - d) the system is subcritical.
- 62. If the enrichment of the fuel is increased, then one can say that
 - a) f decreases.
 - b) n increases.
 - c) p increases.
 - d) non leakage probability increases.
- 63. The diffusion theory is not valid for a
 - a) homogeneous medium.
 - b) far away from the boundaries.
 - c) heterogeneous medium.
 - d) near strong absorber.
- (I). Write short note on following-
- (II). Microscopic and macroscopic cross section
- (III). Delayed neutrons in fission and their significance.
- (IV). Average logarithmic energy decrement.
- (V). Four factor formula.
- 69. Answer the following:
- (i) Calculate η and α for thermal neutron fission of U^{233} and P^{239} from the following quantities;

	U^{233}	Pu ²³⁹
σa	580 b	1010 b
$\sigma_{\mathbf{f}}$	530 b	740 b

70. Diffusion theory is not valid

	(a) for a homogeneous system(b) far away from the boundaries(c) when there are no neutron sour(d) near strong absorbers	rces		
	71. If ξ of Oxygen is 0.158, the 0.025 eV upon scattering is aro		ns required for a neutron to slow dy	won from 2 MeV to
	(a) 18 (b) 115	(c) 151	(d) 221	
	72. The average logrithmic energy (a) independent of initial energy		ropic scattering pendent on initial energy	
	(c) dependent on scattering angle	(d) inc	dependent of the scattering angle	
73.	The unit of fermi age τ is (a) sec (b) \sec^{-1}	(c) cm ⁻²	(d) cm ²	
74.	. A thermal reactor is one in which			
	(a) fission neutrons are generate	ed with thermal ener	gies	
	(b) most of fissions are caused	by thermal neutrons		
	(c) fission reactions take place a	at a slow rate		
	(d) neutrons are slowed down to	thermal energies		
75.	In an critical reactor, the multip	lication factor		
	(a) slightly greater than unity			
	(b) equal to unity			
	(c) slightly less than unity			
	(d) equal to zero			
76.	The average energy of fission neutron	ns is		
	(a) 0.025 ev			
	(b) 2 Kev			
	(c) 2 Mev			
	(d) 200 Mev			
77.	Pu-239 is produced by			
	(a)□ □-decay of U239			

(b) capture of neutron in U-238
(c) □ □-decay of Pu-238
(d) □ □-decay of Np-239
79. If U ²³⁵ nucleus is split into 92 protons and 143 neutrons then (assuming the Binding Energy per nucleon in this nucleus to be 7.6 MeV) about
a) 200 MeV energy will be released.
b) 1800 MeV energy will be released.
c) 200 MeV energy will be required.
d) 1800 MeV energy will be required.
80. The neutron capture cross section below the resonance energy is proportional to
a) 1/E b) 1/√E c) √E d) E
81. Most of the fission energy is taken away by
a) fast fission neutrons b) γ -rays c) fission fragments d) neutrinos
82. U ²³⁵ is fissile nucleus because
a) it releases about 200 MeV of energy after fission.
b) it undergoes fission by neutrons of any energy.
c) it is present only about 0.71% in natural uranium. d) its binding energy is very small.\
d) its binding energy is very small.\
83. If temperature of the moderating medium is increased three times from 20 to 60 °C, the speed of the thermal neutrons in this medium will increase by a factor of
a) 3 b) 1.3 c) $\sqrt{3}$ d) 1.14
84. An average lethargy gain of a neutron per scattering collision
a) is same for collisions with any nucleus.
b) does not depend upon the initial energy of the neutron.
c) is higher for collisions with light mass nuclei.
d) increases with neutron energy.
85. Average number of collisions required to slow down a neutron from 2 MeV to 1 eV energy is a) higher for heavy water medium than light water medium.
b) higher for light water medium than heavy water medium.
c) independent of the medium.
c) independent of the mediani.
86. In a single elastic collision with a stationary nucleus, the kinetic energy of a neutron (in lab. System) can
become zero if mass of the nucleus as compared to neutron mass is
a) infinitely large b) infinitely small c) same d) anything
87. In a thermal reactor the fission neutrons loose energy mainly by
a) inelastic scattering with light nuclei.
b) elastic scattering with light nuclei.
c) inelastic scattering with heavy nuclei.
d) elastic scattering with heavy nuclei.
the state of the s
88. Unit of neutron current density and neutron flux are
a) neutrons/cm ³ /sec
b) neutrons/cm ² /sec
c) neutrons.cm ² /sec
d) neutrons.cm ³ /sec

- 89. In elastic scattering collisions the kinetic energy of the neutron can be changed by a very small amount if a) the target nucleus is a proton b) the target nucleus is deuterium c) the target nucleus is uranium d) carbon 90. Homogenization of fuel and moderator thoroughly leads to
 - a) an increase in fast fission factor
 - b) an increase in the number of neutrons produced per neutron absorbed in the fuel
 - c) an increased thermal utilization factor
 - d) an increase in the resonance escape probability
 - 80. In the following materials, diffusion length is the highest in
 - a) Light water
 - b) Heavy water
 - c) Graphite
 - d)Beryllium
- 91. Heavy water is a better moderator than H₂O because of its
 - a) large α
 - b) large \sum_{s}
 - c) Higher moderating ratio
 - d)Higher slowing down power
- 92. Lethargy is the highest for
 - a) Fission neutrons
 - b) Delayed neutrons
 - c) Thermal neutrons
 - d) Can't say

Choose the correct answer

 $[10 \times 2 = 20]$

- (i) Actual mass of element is
 - (a) always greater than the sum of mass of constituent nucleons
 - (b) always equal to the sum of mass of constituent nucleons
 - (c) always less than the sum of mass of constituent nucleons
 - (d) independent of mass of constituent nucleons
- (ii) As the size of a reactor increases, the neutron leakage
 - (e) increases
 - (f) decreases
 - (g) does not change
 - (h) cannot be predicted
- (iii) A good moderator is one
 - (a) which has a small scattering cross section

(b) which has a small diffusion length	
(c) which has a high absorption cross s	ection
(d) which has a high moderating ratio	双5年 61
the state of the s	
(iv) The average logarithmic energy decrem	nent ξ for isotropic scattering
(a) independent of initial energy	
(b) dependent on initial energy	
(b) dependent on initial energy	
(c) dependent on scattering angle	
(d) independent of the scattering angle	
(v) In an critical reactor, the multiplication fa	actor
	"HAY so bloom secrets some
(a) slightly greater than unity	
(b) equal to unity	Burting out to collect out as extra leaving a set in
(c) slightly less than unity	apple and red out the species
(c) slightly less than unity	A SECTION OF THE SECT
(d) equal to zero	
	mercy at the parties
(vi) The average energy of fission neutrons	is
(a) 0.025 ev	
4124	
(b) 2 Kev	Indicators in stationary and selection of early in
(c) 2 Mev	
(d) 200 Mev	
(u) 200 MeV	
(vii) U ²³⁵ is fissile nucleus beca	
(a) it releases about 200 MeV of energy	
(b) it undergoes fission by neutrons of a(c) it is present only about 0.71% in nat	
(d) its binding energy is very small.	man manifelli

(b) U-233
(c) U-235
(d) U-238
(ix)For a super-critical reactor which of the following is correct?
(a) $B_{\rm m}^2 > B_{\rm g}^2$
(a) $B_{m}^{2} > B_{g}^{2}$ (b) $B_{m}^{2} < B_{g}^{2}$
(c) $B_{\rm m}^{2} = B_{\rm g}^{2}$
(d) None of the above
(x) When U-235 enrichment in the fuel is increased, the factor that is primarily affected is
(a) η
(b) ε
(c) p
(d) f
2. State whether 'TRUE' or 'FALSE' [15 x 1 = 15]
(a) For a given lattice as the radius of the fuel rod pitch increases, f increases.
(b) U-233 is a fertile isotope.
(c) Light water has a larger Moderating Ratio than heavy water.
(e) The resonance escape probability of a homogenous system is less than that of a
heterogeneous system.
neterogeneous system.
(f) Nuclear Forces are long range repulsive force.
(1) Nuclear Forces are long range repulsive force.
(a) Energy release in the fiscien reaction is around 200 MeV
(g) Energy release in the fission reaction is around 200 MeV.
(h) Activity of the radioactive nuclide increases exponentially with time.
(i) In a nuclear fission maximum energy is carried away by neutrons.
(j) The unit of macroscopic cross section is barn.

(k) When geometric buckling is less than material buckling, the reactor is supercritical.

(viii) The fuel material that contributes to a major part in resonance capture of neutrons that are

being slowed down is

(a) Th-232

- (I) The smaller the mass number of scattering nucleus, the smaller is the average logarithmic energy decrement.
- (m) Heat production in a nuclear reactor stops immediately as soon as reactor is shutdown.
- (n) Infinite multiplication factor increases as the size of the system increases.
- (o) A reactor is CRITICAL if K-eff = 1.
- (p) Presence of neutron reflector decreases the size of active core.

BARC Training School -PHYSICS OCES-2012 (56TH Batch) REACTOR PHYSICS

Time-2hrs

Total Marks - 60

[10X2] = 20 marks

- 31. In a critical reactor, the effective multiplication factor is
 - [a] slightly greater than unity
 - [b] equal to unity
 - [c] slightly less than unity
 - [d] equal to zero
- 32. Doppler broadening is caused by
 - [a] increase in temperature of the fuel
 - [b] decrease in temperature of the fuel
 - [c] is independent of temperature of the fuel
 - [d]decrease in temperature of the moderator
- 33. Resonance escape probability in a heterogeneous system is
 - [a] equal to that of homogeneous system for the same fuel/moderator composition
 - [b] greater than that of homogeneous system for the same fuel/moderator composition
 - [c] less than that of homogeneous system for the same fuel/moderator composition
 - [d] independent of fuel/moderator composition
- 34. The amount of total energy released in a nuclear fission is about 200 MeV, out of which most of the energy is carried by
 - [a] Prompt neutrons
- [b] Fission products
- [c] prompt gammas
- [d] Neutrinos
- 35. In a nuclear fission, most of the prompt neutrons are emitted with kinetic energy approximately equal to

	[a] 0.0625 eV [b]	1 eV [c] 1 keV [d] 1 MeV
36.	If Σ_a is the macrosc is	opic absorption cross section and ' Φ ' is the flux, then reaction rate
	[a] $\Phi \Sigma_a$ [b] 1	$(\Phi \Sigma_a)^2$ [c] $1/\Phi \Sigma_a$ [d] $(\Phi \Sigma_a)^2$
37.	Main source of therm	nal neutrons in a reactor core is:
	[a] Fissile material	[b] Moderator
	[c] Fertile material	[d] Absorber
38.	By integrating which the diffusion equation	of the following variables in neutron transport equation, one obtains n:
	[a] Angular, Ω	[b] Energy, E
1	[c] time, t	[d] Space, r
39.		stem, if infinite multiplication factor, k _∞ , is 1.005, the neutron times in approximately
-	[a] 46 generations	[b] 6 generations
1	[c] 462 generations	[d] 1460 generations
10.	With the decrease in	the size of the reactor system, the non-leakage probability:
[3	a] decreases	[b] increases
[c] remains constant	[d] depends on k-eff
1.	Derive the semi empi	rical mass formula
2.	Explain the neutron l	ife cycle.
3.	Calculate the BE/A fe	or U-235, U-238
	Given: mass of proto Mev	on -1.007825 amu, mass of neutron -1.008665 amu, $1 \text{amu} = 931$
4.	Nat U is a homogene	ous mixture of 99.28 wt% of U-238 (σ_b =2.7 b) and 0.72 wt% U-235
	$(\sigma_b=681 \text{ b})$. The den	sity of nat. U is 19.0x10E03 kg/m ³ . Determine the total macro-
	scopic and micro-sco	pic absorption cross section of this material

- 5. The micro-scopic cross sections for the capture of (slow neutrons) at 0.025 eV by hydrogen is 0.33 barns and for oxygen is 2x10e-04 barns. Calculate the macro-scopic x sec of H₂O molecule for thermal neutrons.
- 6. Explain the terms involved four factor formulas. How does the expression change if leakage on neutrons is considered? Explain the following terms: critical, super critical and sub critical state.
- 7. How four factor changes by fuel lumping?
- 8. Explain the terms: neutron flux, neutron current, reaction rate, diffusion length, logarithmic energy decrement
- 9. Write down the steady state neutron diffusion equation in multiplying medium and explain the various terms. What are the assumptions used in the derivation of diffusion theory. State Fick's law of diffusion.
- 10. a) Derive the relationship between the kinetic energy of an elastically scattered neutron and its initial kinetic energy.
- b) Explain the conditions for maximum and minimum energy loss of neutron in an elastic collision.
 - c) Calculate the average number of collisions needed to reduce the fission neutron energy from 2MeV to 0.025 ev in the Be moderator. ξ for Be =0.209.
 - 11. Explain various mechanisms by which neutrons can be gained or lost from an arbitrary volume, in the neutron transport formulation.

(a) Describe the total binding energy of a nucleus using Liquid Drop Model. Explain the nuclear fission on the basis of Liquid Drop Model. Determine the binding per nucleon in a) Sn_{50}^{120} for which M=119.9022 amu b) U_{92}^{235} for which M=235.0439 amu, m_p =1.007825 amu, m_n =1.008665 amu.

(b) Explain macro scopic and micro scopic cross sections. Natural Uranium contains 99.28 wt% of U-238 (σ_{ab} = 2.8 barns) and 0.72 wt% of U-235 (σ_{ab} = 700 barns). The density of Natural U metal is 19.0 x 10³ kg/m³. Determine the total microscopic and macroscopic cross section of this material.

(c) What is four factor formula? Define the Neutron Cycle based on four factors. Explain the behavior of each component of four factors for the increasing pitch in a heterogeneous system.

- (d) Describe various mechanisms by which neutrons can be gained or lost from an arbitrary volume, in the neutron transport formulation. Define material bucking and geometrical buckling.
- (e) Explain the desirable properties of fuel, clad, moderator and coolant. Define slowing down power and moderating ratio. Calculate the number of collisions required for a neutron colliding with oxygen to slow down from 2 MeV to 0.025 eV. ξ of Oxygen is 0.158.

3. Choose the correct answer

 $[10 \times 2 = 20]$

- (v) Actual mass of element is
 - (a) always greater than the sum of mass of constituent nucleons
 - (b) always equal to the sum of mass of constituent nucleons
 - (c) always less than the sum of mass of constituent nucleons
 - (d) independent of mass of constituent nucleons
- (vi) As the size of a reactor increases, the neutron leakage
 - (i) increases
 - (j) decreases
 - (k) does not change
 - (I) cannot be predicted
- (vii) A good moderator is one

(b) dependent on initial energy	
(c) dependent on scattering angle	
(d) independent of the scattering angle	
(v) In an critical reactor, the multiplication factor	
(a) slightly greater than unity	and the state of t
(b) equal to unity	
(c) slightly less than unity	
(d) equal to zero	
(vi) The average energy of fission neutrons is	
(a) 0.025 ev	
(b) 2 Kev	
(c) 2 Mev	
(d) 200 Mev	
	to the space of reality and beautiful of the
 (xi)U²³⁵ is fissile nucleus because (a) it releases about 200 MeV of energy after fission (b) it undergoes fission by neutrons of any energy. (c) it is present only about 0.71% in natural uranium (d) its binding energy is very small. 	

(e) which has a small scattering cross section

(g) which has a high absorption cross section

(f) which has a small diffusion length

(h) which has a high moderating ratio

- (e) Th-232 (f) U-233 (g) U-235 (h) U-238
- (xiii) For a super-critical reactor which of the following is correct?
 - (e) $B_m^2 > B_g^2$ (f) $B_m^2 < B_g^2$ (g) $B_m^2 = B_g^2$

 - (h) None of the above
- (xiv) When U-235 enrichment in the fuel is increased, the factor that is primarily affected is
 - (e) n
 - (f) E
 - (g) p
 - (h) f

4. State whether 'TRUE' or 'FALSE'

 $[15 \times 1 = 15]$

- (a) For a given lattice as the radius of the fuel rod pitch increases, f increases.
- (b) U-233 is a fertile isotope.
- (c) Light water has a larger Moderating Ratio than heavy water.
- (e) The resonance escape probability of a homogenous system is less than that of a heterogeneous system.
- (f) Nuclear Forces are long range repulsive force.
- (g) Energy release in the fission reaction is around 200 MeV.
- (q) Activity of the radioactive nuclide increases exponentially with time.
- (r) In a nuclear fission maximum energy is carried away by neutrons.
- (s) The unit of macroscopic cross section is barn.
- (t) When geometric buckling is less than material buckling, the reactor is supercritical.
- (u) The smaller the mass number of scattering nucleus, the smaller is the average logarithmic energy decrement.
- (v) Heat production in a nuclear reactor stops immediately as soon as reactor is shutdown.

- (w) Infinite multiplication factor increases as the size of the system increases.
- (x) A reactor is CRITICAL if K-eff = 1.
- (y) Presence of neutron reflector decreases the size of active core.
- 5. Answer any FOUR of the following questions.

 $[4 \times 10 = 40]$

- (a) Describe the total binding energy of a nucleus using Liquid Drop Model. Explain the nuclear fission on the basis of Liquid Drop Model. Determine the binding per nucleon in a) Sn_{50}^{120} for which M=119.9022 amu b) U_{92}^{235} for which M=235.0439 amu, m_p =1.007825 amu, m_n =1.008665 amu.
- (b) Explain macro scopic and micro scopic cross sections. Natural Uranium contains 99.28 wt% of U-238 (σ_{ab} = 2.8 barns) and 0.72 wt% of U-235 (σ_{ab} = 700 barns). The density of Natural U metal is 19.0 x 10³ kg/m³. Determine the total microscopic and macroscopic cross section of this material.
- (f) What is four factor formula? Define the Neutron Cycle based on four factors. Explain the behavior of each component of four factors for the increasing pitch in a heterogeneous system.
- (g) Describe various mechanisms by which neutrons can be gained or lost from an arbitrary volume, in the neutron transport formulation. Define material bucking and geometrical buckling.
- (h) Explain the desirable properties of fuel, clad, moderator and coolant. Define slowing down power and moderating ratio. Calculate the number of collisions required for a neutron colliding with oxygen to slow down from 2 MeV to 0.025 eV. ξ of Oxygen is 0.158.

- Define fissile, fissionable and fertile materials with examples.
- 2. What are the different ways of neutron interaction with matter?
- 3. Define the term moderating ratio.
- 4. What are the desirable properties of the fuel?
- 5. What are the desirable properties of the moderator?
- 6. Explain Neutron Cycle.
- 7. Explain the Binding Energy Curve.
- 8. Define the infinite multiplication factor and the effective multiplication factor of the medium.
- 9. Define Critical, Sub critical and super critical state of the reactor.
- 10. Explain critical energy with respect to the nuclear fission.
- 11. Explain the term Migration Length.

50 Explain the following

- (i) Diffusion length
- (ii) Geometrical buckling
- 64. Explain how the four factors η, ε, p and f change for homogenous and heterogeneous reactors?
- 65. Define the terms fissile, fertile and fissionable materials giving examples. Write the nuclear reactions leading to the production of fissile plutonium and uranium.
- 66. Write a note on two types of neutron sources with their possible role in the reactor operation.
- Explain the terms involved four factor formula. How does the expression change if leakage on neutrons is considered.
- 68. What is the basic purpose of reflector?