计算机组成习题参考答案

---流水线处理器设计

	IF	ID	EX	MEM	WB
a.	300ps	400ps	350ps	500ps	100ps
b.	200ps	150ps	120ps	190ps	140ps

- ▶1) 流水线处理器与非流水线处理器的时钟周期分别是什么?
- ▶2) lw 指令在流水线处理器和非流水线处理器中的总延迟分别是多少?
- ▶3) 如果可以将原流水线数据通路的一级划分为两级,每级的延迟是原级的一半,会选择哪一级进行划分? 划分后处理器的时钟周期为多少?

	IF	ID	EX	MEM	WB
a.	300ps	400ps	350ps	500ps	100ps
b.	200ps	150ps	120ps	190ps	140ps

▶1) 流水线处理器与非流水线处理器的时钟周期分别是什么?

- ■a.流水线处理器: 500ps(MEM), 非流水线处理器: 300 + 400 + 350 + 500 + 100 = 1650ps
- ■b.流水线处理器: 200ps(IF),非流水线处理器: 200 + 150 + 120 + 190 + 140 = 800ps
- ■解析:流水线处理器的时钟周期受限于处理速度最慢的一级,非流水线处理器的时钟周期受限于处理时间最长的指令(一般为lw指令)。

	IF	ID	EX	MEM	WB
a.	300ps	400ps	350ps	500ps	100ps
b.	200ps	150ps	120ps	190ps	140ps

▶2) lw 指令在流水线处理器和非流水线处理器中的总延迟分别是多少?

■a.流水线处理器: 500 × 5 = 2500ps, 非流水线处理器: 300 + 400 + 350 + 500

+ 100 = 1650ps

•b.流水线处理器: 200 × 5 = 1000ps, 非流水线处理器: 200 + 150 + 120 + 190

+ 140 = 800ps

■解析:lw指令需要完整执行IF、ID、EX、MEM、WB五级。

	IF	ID	EX	MEM	WB
a.	300ps	400ps	350ps	500ps	100ps
b.	200ps	150ps	120ps	190ps	140ps

- ▶3) 如果可以将原流水线数据通路的一级划分为两级,每级的延迟是原级的一半,会选择哪一级进行划分?划分后处理器的时钟周期为多少?
 - •a.选择MEM级,划分后得到MEM1和MEM2级的延迟分别为250ps,处理器的时钟周期为400ps(ID)
 - •b.选择IF级,划分后得到IF1和IF2级的延迟分别为100ps,处理器的时钟周期为190ps(MEM)
 - ■解析:应当选择原来处理速度最慢的一级进行划分,得到新的具有六级流水线的处理器,此时处理器的时钟周期仍然受限于处理速度最慢的一级。

1

❖假设处理器执行的指令比例下表两种情况所示, 试根据每种情况分别回答下列问题。

	ALU	beq	lw	SW
a.	50%	25%	15%	10%
b.	30%	25%	30%	15%

- ▶4) 假设没有阻塞和冒险,数据存储器的利用率是多少(占总周期数的百分比)?
- ▶5) 假设没有阻塞和冒险,寄存器堆的写寄存器端口的利用率是多少?

❖假设处理器执行的指令比例下表两种情况所示, 试根据每种情况分别回答下列问题。

	ALU	beq	lw	SW
a.	50%	25%	15%	10%
b.	30%	25%	30%	15%

▶4) 假设没有阻塞和冒险,数据存储器的利用率是多少(占总周期数的百分比)?

$$a. 15\% + 10\% = 25\%$$

b.
$$30\% + 15\% = 45\%$$

■解析:需要用到数据存储器的指令为lw和sw。

❖假设处理器执行的指令比例下表两种情况所示, 试根据每种情况分别回答下列问题。

	ALU	beq	lw	SW
a.	50%	25%	15%	10%
b.	30%	25%	30%	15%

▶5) 假设没有阻塞和冒险,寄存器堆的写寄存器端口的利用率是多少?

$$a. 50\% + 15\% = 65\%$$

b.
$$30\% + 30\% = 60\%$$

■解析:需要用到寄存器堆的写寄存器端口的指令为ALU和lw。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		sw \$5, -16(\$5)
	sw \$6, 50(\$1)		add \$5, \$5, \$5

- ▶1) 指出指令序列中存在的相关及其类型。
- ▶2)假设该流水线处理器没有转发,指出指令序列中存在的冒险并加入 nop指令以消除冒险。
- ▶3)假设该流水线处理器中有充分的转发。指出指令序列中存在的冒险并加入nop指令以消除冒险。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		sw \$5, -16(\$5)
	sw \$6, 50(\$1)		add \$5, \$5, \$5

- ▶1) 指出指令序列中存在的相关及其类型。
 - ■a. I1和I3: RAW \$1, I1和I2: WAR \$6, I2和I3: RAW \$6
 - •b. I1和I2、I3:RAW \$5, I1、I2和I3:WAR \$5, I1和I3:WAW \$5
 - ■解析:三种数据相关类型为: RAW (Read After Write,写后读), WAR (Write After Read,读后写)和WAW (Write After Write,写后写)。
 - ■a中存在的读写关系: I1写\$1, I3读\$1; I1读\$6, I2写\$6; I2写\$6, I3读\$6。
 - •b中存在的读写关系: I1写\$5, I2读\$5, I3读\$5; I1读\$5, I2读\$5, I3写\$5; I1写\$5, I3写\$5。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		sw \$5, -16(\$5)
	sw \$6, 50(\$1)		add \$5, \$5, \$5

▶2)假设该流水线处理器没有转发,指出指令序列中存在的冒险并加入 nop指令以消除冒险。

■解析: WAR和WAW不会引起冒险,只有RAW会引起冒险,因而加入nop指令时只需要考虑RAW。lw指令写RF是在WB,sw指令读RF是在ID,add指令读RF是在ID,写RF是在WB,因此至少需要将sw相对于lw推迟两级,将sw相对于add推迟两级,加入nop后的指令序列如下表。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		nop
	nop		nop
	nop		sw \$5, -16(\$5)
	sw \$6, 50(\$1)		add \$5, \$5, \$5

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		sw \$5, -16(\$5)
	sw \$6, 50(\$1)		add \$5, \$5, \$5

▶3)假设该流水线处理器中有充分的转发。指出指令序列中存在的冒险并加入nop指令以消除冒险。

■解析:具有了转发之后,ALU可以将计算结果转发至下一条指令的EX,lw可以将MEM结果转发至再下一条指令的EX,这样一来,只需要将sw相对于lw推迟一级即可,而sw通过转发机制可以直接跟在add之后,加入nop后的指令序列如下表。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		nop
	sw \$6, 50(\$1)		sw \$5, -16(\$5)
			add \$5, \$5, \$5

	无转发	充分的转发	仅ALU至ALU的转发
a.	300ps	400ps	360ps
b.	200ps	250ps	220ps

- ▶4) 该指令序列在无转发和充分的转发时总执行时间分别是多少? 后者相对于前者的加速比是多少。
- ▶5) 如果仅有ALU至ALU的转发(没有从MEM到EX的转发),如何加入nop指令以消除可能的冒险?
- ▶6)该指令序列在仅有ALU至ALU的转发时总执行时间分别是多少?与 无转发的情况相比,加速比是多少?

	无转发	充分的转发	仅ALU至ALU的转发
a.	300ps	400ps	360ps
b.	200ps	250ps	220ps

▶4) 该指令序列在无转发和充分的转发时总执行时间分别是多少? 后者相对于前者的加速比是多少。

■a.无转发: (7+2) × 300 = 2700ps, 充分的转发: 7 × 400ps = 2800ps, 加速比: 2700/2800 = 0.96

•b.无转发: $(7+2) \times 200 = 1800 \text{ps}$,充分的转发: $(7+1) \times 250 = 2000 \text{ps}$,加速比: 1800/2000 = 0.90

■解析:无转发时,a中的指令序列需要插入2个nop,b中的指令序列需要插入2个nop(详见2)问);有充分的转发时,a中的指令序列不需要再插入nop,b中的指令序列需要插入1个nop(详见3)问)。

	原始指令序列					
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)			
	add \$6, \$2, \$2		sw \$5, -16(\$5)			
	sw \$6, 50(\$1)		add \$5, \$5, \$5			

	无转发					
	a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)		
ı	add \$6, \$2, \$2			nop		
	nop			nop		
		nop		sw \$5, -16(\$5)		
		sw \$6, 50(\$1)		add \$5, \$5, \$5		

	充分的转发				
a.	1w \$1, 40(\$6) add \$6, \$2, \$2 sw \$6, 50(\$1)	b.	lw \$5, -16(\$5)		
	add \$6, \$2, \$2		nop		
	sw \$6, 50(\$1)		sw \$5, -16(\$5) add \$5, \$5, \$5		
			add \$5, \$5, \$5		

	无转发	充分的转发	仅ALU至ALU的转发
a.	300ps	400ps	360ps
b.	200ps	250ps	220ps

▶5) 如果仅有ALU至ALU的转发(没有从MEM到EX的转发),如何加入nop指令以消除可能的冒险?

■解析:若只有ALU至ALU的转发,一条ALU指令可以向下一条指令的EX转发ALU计算结果,但不能向再下一条指令转发,因此实际上此时无法转发lw中MEM的数据,sw相对于lw仍然至少需要推迟两级,但是sw此时通过ALU至ALU的转发机制可以直接跟在add之后,加入nop后的指令序列如下表。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)
	add \$6, \$2, \$2		nop
	nop		nop
	sw \$6, 50(\$1)		sw \$5, -16(\$5)
			add \$5, \$5, \$5

	无转发	充分的转发	仅ALU至ALU的转发
a.	300ps	400ps	360ps
b.	200ps	250ps	220ps

▶6)该指令序列在仅有ALU至ALU的转发时总执行时间分别是多少?与 无转发的情况相比,加速比是多少?

•a.无转发: (7+2) × 300 = 2700ps, 仅有ALU至ALU的转发: (7+1) × 360ps = 2880ps, 加速比: 2700/2880 = 0.94

■b.无转发: (7+2) × 200 = 1800ps, 仅有ALU至ALU的转发: (7+2) × 220 = 1980ps, 加速比: 1800/1980 = 0.91

■解析:无转发时,a中的指令序列需要插入2个nop,b中的指令序列需要插入2个nop(详见2)问);仅有ALU至ALU的转发时,a中的指令序列需要插入1个nop,b中的指令序列需要插入2个nop(详见5)问)。

原始指令序列						
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)			
	add \$6, \$2, \$2		sw \$5, -16(\$5)			
	sw \$6, 50(\$1)		add \$5, \$5, \$5			

		无转发					
	a. lw \$1, 40(\$6) b.			lw \$5, -16(\$5)			
ı	add \$6, \$2, \$2			nop			
		nop		nop			
		nop		sw \$5, -16(\$5)			
	sw \$6, 50(\$1)			add \$5, \$5, \$5			

	仅有ALU至ALU的转发				
a.	lw \$1, 40(\$6)	b.	lw \$5, -16(\$5)		
	add \$6, \$2, \$2		nop		
	nop		nop		
	sw \$6, 50(\$1)		sw \$5, -16(\$5)		
			add \$5, \$5, \$5		

a.	bezi (Rs), Label	if $Mem[Rs] = 0$ then $PC = PC + Offs$
b.	swi Rd, Rs(Rt)	Mem[Rs+Rt] = Rd

- ▶1) 为了将这条新指令增加到MIPS指令集,必须对流水线数据通路做什么改动?
- ▶2) 需要在第1)问的数据通路上增加哪些控制信号?
- ▶3) 对新指令的支持是否会引入新的冒险?已有冒险导致的阻塞是否会更加严重?

a.	bezi (Rs), Label	if $Mem[Rs] = 0$ then $PC = PC + Offs$
b.	swi Rd, Rs(Rt)	Mem[Rs+Rt] = Rd

▶1) 为了将这条新指令增加到MIPS指令集,必须对流水线数据通路做什么改动?

■a.需要在ALU前的MUX增加一个输入端0;需要在WB中增加一个比较数据存储器值与0的比较器(或者专门为比较这个过程增加新的一级流水,but this is not recommended);需要在PC前的MUX控制信号中加入比较器的结果,并且此时MUX的控制信号必须一直阻塞到WB之后才能进行选择。

■b.需要为寄存器堆加入一个新的读寄存器地址写入端和读出端;需要在EX中ALU之后加入一个MUX来选择要写入数据存储器的值是Rd(对于swi指令)还是Rt(对于swif)。

a.	bezi (Rs), Label	if $Mem[Rs] = 0$ then $PC = PC + Offs$
b.	swi Rd, Rs(Rt)	Mem[Rs+Rt] = Rd

- ▶2) 需要在第1)问的数据通路上增加哪些控制信号?
 - ■a.需要为ALU前的MUX增加1位控制信号位,使其可以选择出新添加的输入端0;需要为PC前的MUX控制信号加入比较器的结果,来决定是否需要修改PC。
 - ●b.需要为新加入的MUX增加控制信号。

a.	bezi (Rs), Label	if $Mem[Rs] = 0$ then $PC = PC + Offs$
b.	swi Rd, Rs(Rt)	Mem[Rs+Rt] = Rd

▶3) 对新指令的支持是否会引入新的冒险?已有冒险导致的阻塞是否会更加严重?

■a.会。bezi指令会引入一个新的控制冒险,它的PC直到WB才能确定是否需要修改,而且无法通过缩短分支延迟的方法提前判断出分支是否执行,因而会使已有冒险导致的阻塞更加严重。

■b.不会。swi指令不改变任何寄存器的值,不会引起数据冒险,同时它也不是分支指令,不会引起控制冒险。

4

❖本习题讨论转发、冒险检测和指令集设计之间的关系。分别根据下表的两个指令序列回答下列问题。假设其在一个五级流水线上执行。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	add \$1, \$5, \$3
	add \$2, \$3, \$1		sw \$1, 0(\$2)
	add \$1, \$6, \$4		lw \$1, 4(\$2)
	sw \$2, 20(\$4)		add \$5, \$5, \$1
	and \$1, \$1, \$4		sw \$1, 0(\$2)

- ▶1) 如果没有转发或冒险检测电路,请插入nop指令以保证正确执行。
- ▶2) 重做第1)问,这次仅当通过改变或重排序指令都也不能避免冒险时才插入nop指令。假设可以使用寄存器R7作为临时寄存器。
- ▶3) 如果处理器中存在转发,但忘了实现冒险检测单元(以为实现了), 代码执行时会发生什么情况?
- ▶4) 如果没有转发,对图中的冒险检测单元来说还需要哪些新的输入输出信号?以该指令序列为例,说明为什么需要这些信号。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	add \$1, \$5, \$3
	add \$2, \$3, \$1		sw \$1, 0(\$2)
	add \$1, \$6, \$4		lw \$1, 4(\$2)
	sw \$2, 20(\$4)		add \$5, \$5, \$1
	and \$1, \$1, \$4		sw \$1, 0(\$2)

▶1) 如果没有转发或冒险检测电路,请插入nop指令以保证正确执行。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	add \$1, \$5, \$3
	nop		nop
	nop		nop
	add \$2, \$3, \$1		sw \$1, 0(\$2)
	add \$1, \$6, \$4		lw \$1, 4(\$2)
	nop		nop
	sw \$2, 20(\$4)		nop
	and \$1, \$1, \$4		add \$5, \$5, \$1
			sw \$1, 0(\$2)

	指令序列		指令序列
a.	I1: lw \$1, 40(\$6)	b.	I1: add \$1, \$5, \$3
	I2: add \$2, \$3, \$1		I2: sw \$1, 0(\$2)
	I3: add \$1, \$6, \$4		I3: lw \$1, 4(\$2)
	I4: sw \$2, 20(\$4)		I4: add \$5, \$5, \$1
	I5: and \$1, \$1, \$4		I5: sw \$1, 0(\$2)

▶2) 重做第1)问,这次仅当通过改变或重排序指令都也不能避免冒险时 才插入nop指令。假设可以使用寄存器R7作为临时寄存器。

	指令序列		指令序列
a.	I1: lw \$7, 40(\$6)	b.	I1: add \$7, \$5, \$3
	I3: add \$1, \$6, \$4		I3: lw \$1, 4(\$2)
	nop		nop
	I2: add \$2, \$3, \$7		I2: sw \$7, 0(\$2)
	I5: and \$1, \$1, \$4		I4: add \$5, \$5, \$ 1
	nop		I5: sw \$1, 0(\$2)
	I4: sw \$2, 20(\$4)		

	指令序列		指令序列
a.	I1: lw \$1, 40(\$6)	b.	I1: add \$1, \$5, \$3
	I2: add \$2, \$3, \$1		I2: sw \$1, 0(\$2)
	I3: add \$1, \$6, \$4		I3: lw \$1, 4(\$2)
	I4: sw \$2, 20(\$4)		I4: add \$5, \$5, \$1
	I5: and \$1, \$1, \$4		I5: sw \$1, 0(\$2)

- ▶3) 如果处理器中存在转发,但忘了实现冒险检测单元(以为实现了), 代码执行时会发生什么情况?
 - ■a.I2获得的\$1的值是I1前面的那一条指令中\$1的值,此时\$1的值还没有被lw指令更新。
 - ■b.I4获得的\$1的值是I3前面的那一条指令(即I2)中\$1的值,此时\$1的值还没有被lw指令更新。

转发单元可以解决EX冒险和MEM冒险,但是无法解决load-use型数据冒险;冒险检测单元用来检测load-use型数据冒险,在load指令与紧随其后利用他的结果的指令间插入阻塞。

	指令序列		指令序列
a.	lw \$1, 40(\$6)	b.	add \$1, \$5, \$3
	add \$2, \$3, \$1		sw \$1, 0(\$2)
	add \$1, \$6, \$4		lw \$1, 4(\$2)
	sw \$2, 20(\$4)		add \$5, \$5, \$1
	and \$1, \$1, \$4		sw \$1, 0(\$2)

- ▶4) 如果没有转发,对图中的冒险检测单元来说还需要哪些新的输入输出信号?以该指令序列为例,说明为什么需要这些信号。
 - ■输入信号:冒险检测单元需要在EX中检查R型指令和lw指令的Rd寄存器,在MEM中检查目标寄存器号,因此需要添加ID/EX流水线寄存器的Rd和EX/MEM的输出寄存器作为输入信号,图4-60中已经有ID/EX的Rt这个输入信号了,不需要再次添加。
 - •输出信号:不需要额外的输出信号。