Summary of Chapter 5: **Evolutionary Computation**

Yuhang Zhang

Beijing Institute of Technology(BIT)

November 3, 2019

- Overview
- Biological Inspiration to Search
- DNA Computing
- **Evolutionary Computation**
- 5 Evolutionary Algorithm
 - Genetic Algorithm
 - **Evolutionary Programming**
 - **Evolutionary Stratrgies**
- Review

000

Outline

- Overview

- - Genetic Algorithm
 - Evolutionary Programming
 - Evolutionary Strategies

A new thought of heuristic search

meta-heuristic

- meta-heuristic
- (stochastic) optimization algorithm

- meta-heuristic
- (stochastic) optimization algorithm
- population oriented

- meta-heuristic
- (stochastic) optimization algorithm
- population oriented
- nature based & global search

000

- Biological Inspiration to Search

- - Genetic Algorithm
 - Evolutionary Programming
 - Evolutionary Strategies

Question

The best problem solver?

The best problem solver?

lacksquare The human brain ightarrow Neural Computation

The best problem solver?

- \blacksquare The human brain \rightarrow Neural Computation
- lacktriangle The evolution mechanism o Evolutionary Computation

Darwinian Evolution

- population scale
- competition
- fitness

- selection
- diversity
- chance

Base Elements:

Base Elements:

DNA

Base Elements:

- DNA
- Genotype & Phenotype

Base Elements:

- DNA
- Genotype & Phenotype
- Mutation & Recombination

Base Elements:

- DNA
- Genotype & Phenotype
- Mutation & Recombination

Process:

Mutation & Recombination

- \Rightarrow Competition
- \Rightarrow Reproduction
- ⇒ Imporved Genes
- ⇒ Better Organisms

- 3 DNA Computing
- - Genetic Algorithm
 - Evolutionary Programming
 - Evolutionary Strategies

■ Four types of units : (A, T, C, G)

- Four types of units : (A, T, C, G)
- Complementary units : (A−T, C−G)

DNA Memory

- Four types of units: (A, T, C, G)
- Complementary units : (A-T, C-G)
- Double-stranded strings

Extremely dense information storage

- Extremely dense information storage
- Enormous parallelism

Uniqueness of DNA

- Extremely dense information storage
- Enormous parallelism
- Extraordinary energy efficiency

i Encode : vertex molecules & edge molecules

- Encode: vertex molecules & edge molecules
- Merge vertex molecules and edge molecules

- Encode: vertex molecules & edge molecules
- Merge vertex molecules and edge molecules
- Melting 111

- Encode: vertex molecules & edge molecules
- Merge vertex molecules and edge molecules
- Melting
- iv Annealing

Evolutionary Computation

- Encode: vertex molecules & edge molecules
- Merge vertex molecules and edge molecules
- Melting
- iv Annealing
- v Merging

- Encode: vertex molecules & edge molecules
- Merge vertex molecules and edge molecules
- Melting
- iv Annealing
- v Merging
- vi Amplification

- Encode: vertex molecules & edge molecules
- Merge vertex molecules and edge molecules
- Melting
- iv Annealing
- v Merging
- vi Amplification
- vii Selection

- **Evolutionary Computation**
- - Genetic Algorithm
 - Evolutionary Programming
 - Evolutionary Strategies

Evolution

Environment Individual

Fitness

VS.

Search

Problem Candidate Solution

Quality

Ingredients

- Ingredients
- Diversity \rightarrow increasing by genetic operators; decreasing by selection

- Ingredients
- Diversity \rightarrow increasing by genetic operators; decreasing by selection
- Evolution Cycle ⇒

Five factors

- ★ Representation
- ★ Fitness Evaluation
- ★ Genetic Operations
- ★ Selection Strategies
- Initialization/Termination Schemes

Five factors

- Representation
 - Genotypic
 - Phenotypic

- Genotypic : genotype ⇔ phenotype (one to one?)
- Phenotypic: problem-specific encodings

- ★ Fitness Evaluation

- quality function or objective function
- a single real-valued fitness for each phenotype

- ★ Genetic Operations
 - Mutation
 - Recombination

- generate new candidate solutions
- N_p = 1 : mutation
 - $N_p > 1$: recombination
 - $N_p = 2$: crossover

Five factors

- ★ Selection Strategies
 - Parent Selection
 - Survivor Selection

- Parent Selection : fitness based probability (stochastic nature) \Rightarrow escape from local optima
- Survivor Selection : Fitness based || Age based

- ★ Genetic Operations
- ★ Selection Strategies

Balance between selection and genetic operation

- Selection: exploitation ⇒ reduce scope of search
- Genetic Operation: $exploration \Rightarrow expand scope$ of search

- ★ Initialization/Termination Schemes

- Initialisation: random
- Termination : condition checked every generation

Application: 8 Queens Problem

Representation	Permutation		
Recombination	"Cut-and-crossfill" crossover		
Recombination probability	100%		
Mutation	Swap		
Mutation probability	80%		
Parent selection	Best 2 out of random 5		
Survival seletcion	Replace worst		
Population size	100		
Number of offspring	2		
Initialisation	Random		
Termination condition Solution or 10000 fitness eval			

Advantages & Disadvantages

Advantages:

- Widely applicable
- No priori assumption
- Insensitive to noise
- Easy to parallelize

Advantages & Disadvantages

Advantages:

- Widely applicable
- No priori assumption
- Insensitive to noise
- Easy to parallelize

Disadvantages:

- No guarantee for optimal solution within finite time
- Weak theoretical basis
- Parameter tuning needed

Outline

- 5 Evolutionary Algorithm
 - Genetic Algorithm
 - **Evolutionary Programming**
 - **Evolutionary Stratrgies**

Genetic Algorithm

- Representation: genome
 - Fixed length Bitstring || Real-valued genome

Genetic Algorithm

- Representation: genome
 - Fixed length Bitstring | Real-valued genome
- Operation

mutation : mutation rate p_m

crossover : p_c

Genetic Algorithm

- Representation: genome
 - Fixed length Bitstring | Real-valued genome
- Operation
 - mutation : mutation rate p_m
 - crossover : p_c
- Selection
 - Greedy
 - ▶ Probabilistic ⇒ roulette wheel technique

$$Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{p} Fitness(h_j)}$$

Evolutionary Programming

- Representation
 - Object variable & Mutation step size :

$$\langle x_1,\ldots,x_n,\sigma_1,\ldots,\sigma_n\rangle$$

Evolutionary Programming

- Representation
 - Object variable & Mutation step size :

$$< x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n >$$

Operation

$$\qquad \text{mutation}: \left\{ \begin{array}{ll} x_i^{'} = & x_i + \sqrt{\sigma_i} \cdot N_i(0,1) \\ \sigma_i^{'} = & \sigma_i + \sqrt{\eta \cdot \sigma_i} \cdot N_i(0,1) \end{array} \right.$$

recombination : none \Leftarrow one species for each point

Evolutionary Programming

- Representation
 - Object variable & Mutation step size :

$$\langle x_1,\ldots,x_n,\sigma_1,\ldots,\sigma_n\rangle$$

- Operation
 - $\qquad \text{mutation}: \left\{ \begin{array}{ll} x_i^{'} = & x_i + \sqrt{\sigma_i} \cdot N_i(0,1) \\ \sigma_i^{'} = & \sigma_i + \sqrt{\eta \cdot \sigma_i} \cdot N_i(0,1) \end{array} \right.$
 - ▶ recombination : none ← one species for each point
- Selection
 - Parent: one child for each individual
 - Survivor: pairwise competitions in round-robin format

Evolutionary Stratrgies

- Representation
 - Object variable & Mutation step size & Rotation angle :

$$< x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n, \alpha_1, \ldots, \alpha_k >$$

Evolutionary Strategies

- Representation
 - Object variable & Mutation step size & Rotation angle :

$$< x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n, \alpha_1, \ldots, \alpha_k >$$

- Operation
 - mutation : adding random noise

$$\left\{ \begin{array}{ll} \sigma_{i}^{'} = & \sigma_{i} \cdot \exp(\tau^{'} \cdot \textit{N}(0,1) + \tau \cdot \textit{N}_{i}(0,1)) \\ \alpha_{ij}^{'} = & \alpha_{ij} + \beta \cdot \textit{N}_{j}(0,1) \\ x_{i}^{'} = & x_{i} + z_{i} \end{array} \right.$$

recombination: ...

Evolutionary Strategies

- Representation
 - Object variable & Mutation step size & Rotation angle :

$$< x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n, \alpha_1, \ldots, \alpha_k >$$

- Operation
 - mutation : adding random noise

$$\left\{ \begin{array}{ll} \sigma_{j}^{'} = & \sigma_{i} \cdot exp(\tau^{'} \cdot \textit{N}(0,1) + \tau \cdot \textit{N}_{i}(0,1)) \\ \alpha_{ij}^{'} = & \alpha_{ij} + \beta \cdot \textit{N}_{j}(0,1) \\ x_{i}^{'} = & x_{i} + z_{i} \end{array} \right.$$

- recombination : ...
- Selection
 - Parent : uniform random distribution
 - ト Survivor: (μ, λ) selection $|| (\mu + \lambda)$ selection () 北京理工大学

Evolutionary Stratrgies

Summary

	GA	EP	ES	GP
Representation	Genotype	Phenotype	Phenotype	Genotype
Mutation	✓	✓	✓	√
Recombination	✓	×	✓	√
Parent	Probabilistic	Deterministic	Probabilistic	Probabilistic
Selection				
Survivor	Extinctive,	Combined,	Combined,	Extinctive,
Selection	Determinis-	Probabilis-	Determinis-	Determinis-
	tic	tic	tic	tic

Beijing Institute of Technology/BIT

- - Genetic Algorithm
 - Evolutionary Programming
 - Evolutionary Stratrgies
- Review

INFO

- Slides Production
 - ▶ LATEX+ Beamer Class
- Slides Show
 - ▶ GitHub Pages + PDF.js
- LICENSE
 - ► CC BY-SA 4.0 Unported ©

Thank you

Thank you for listening!

