

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZ-R12-2200083

FCC REPORT

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court Bells Yew Green

Equipment Under Test (EUT)

Product Name: Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor

Helium Hotspot ROCK Pi 4 Version

Model No.: NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-

HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-868-

3, NEBHNT-HHRK4-915-3

FCC ID: 2AZDM-HHRK4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 05 Jan., 2022

Date of Test: 06 Jan., to 27 Jan., 2022

Date of report issued: 28 Jan., 2022

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	28 Jan., 2022	Original

Tested by:		Date:	28 Jan., 2022
	st Engineer	Date:	28 Jan., 2022
	ect Engineer	<u></u>	20 0011., 2022

Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF E.U.T.	
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	6
5.5 MEASUREMENT UNCERTAINTY	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	
6 TEST RESULTS AND MEASUREMENT DATA	9
6.1 ANTENNA REQUIREMENT	
6.2 CONDUCTED EMISSION	
6.3 BAND EDGE	
6.3.1 Radiated Emission Method	
6.4 Spurious Emission	
6.4.1 Radiated Emission Method	
7 TEST SETUP PHOTO	33
8 EUT CONSTRUCTIONAL DETAILS	35

4 Test Summary

+ rest Gammary			
Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Please refer to FCC ID: 2A3PA-ROCKPI4 Report No.: BCTC2110851942-3E	Pass
Conducted Peak Output Power	15.247 (b)(3)	Please refer to FCC ID: 2A3PA-ROCKPI4 Report No.: BCTC2110851942-3E	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Please refer to FCC ID: 2A3PA-ROCKPI4 Report No.: BCTC2110851942-3E	Pass
Power Spectral Density	15.247 (e)	Please refer to FCC ID: 2A3PA-ROCKPI4 Report No.: BCTC2110851942-3E	Pass
Conducted Band Edge	15.247 (d)	Please refer to FCC ID: 2A3PA-ROCKPI4 Report No.: BCTC2110851942-3E	Pass
Radiated Band Edge		See Section 6.3.1	Pass
Conducted Spurious Emission	15.205 & 15.209	Please refer to FCC ID: 2A3PA-ROCKPI4 Report No.: BCTC2110851942-3E	Pass
Radiated Spurious Emission		See Section 6.4.1	Pass

Remark:

- Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. Pass*: Please refer to FCC ID: 2A3PA-ROCKPI4, and the report No.: BCTC2110851942-3E issue by Shenzhen BCTC Testing Co., Ltd.

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green
Manufacturer:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green

5.2 General Description of E.U.T.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version
Model No.:	NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3
Operation Frequency:	2412MHz~2462MHz: 802.11b/8 <mark>02.11g/802.11</mark> n(HT20)
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 75Mbps
Antenna Type:	External Antenna
Antenna gain:	1 dBi
AC adapter:	Model No.:R241-1202500I Input: AC100-240V, 50/60Hz 1.5 A Output: DC 12.0V, 2.5A
Remark:	Model No.: NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, The difference between the models is that the LoRa Radio module used inside is different for each variant. Along with a respective antenna for each region / frequency. The -2 and -3 flags at the end of the model number relates to the specific chip part number for the main LoRa chip.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		
Note:							

Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:	`				
Transmitting mode	Keep the EUT in continuous trai	n <mark>smitti</mark> ng	with modu	ulation	

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.								
Mode Data rate								
802.11b		1Mbps						
802.11g		6Mbps						
802.11n(HT20)		6.5Mbps						
802.11n(HT40)		13.5Mbps						

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	ЈҮТЗМ-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 1 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Conducted Emission

			-			
Test Requirement:	FCC Part 15 C Section 15.2	207				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Frequency range (MHz) Limit (dBuV)					
	, , , ,	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarit					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 					
Test setup:	LISN	st	er — AC power			
Test Instruments:	Refer to section 5.9 for deta	nils				
Test mode:	Refer to section 5.3 for deta	nils				
Test results:	Passed					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 10 of 35

Measurement Data:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Fre	Read q Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MH	z dBuV	<u>a</u> B	₫B	dBu₹	−−dBuV	<u>dB</u>	
1 0.16 2 0.17 3 0.19 4 0.20 5 0.22 6 0.23 7 0.35 8 0.37 9 0.37 10 2.00 11 11.08 12 11.13	0 34.07 0 47.56 6 44.48 6 42.44 8 31.19 4 30.76 3 41.02 7 35.32 1 22.85 0 30.87	0. 04 0. 04 0. 04 0. 04 0. 04 0. 04 0. 04 0. 07 0. 22	0.01 0.01 0.03 0.04 0.02 0.02 0.02 0.03 0.03 0.21 0.11	50. 14 34. 12 47. 63 44. 56 42. 50 31. 25 30. 82 41. 09 35. 39 23. 13 31. 20 24. 02	54.94 64.02 63.36 62.61 52.17 48.87 58.43 48.34 46.00 60.00	-16.39 -18.80 -20.11 -20.92 -18.05 -17.34 -12.95 -22.87 -28.80	Average QP QP Average Average QP Average Average Average Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
1	MHz	dBu∇	dB	₫B	dBu₹	dBu∜	<u>dB</u>	
1 2 3 4 5 6 7 8 9 10 11 12	0. 162 0. 166 0. 190 0. 198 0. 230 0. 358 0. 358 0. 373 2. 167 2. 225 18. 920 19. 740	49.86 34.64 32.07 44.20 40.71 33.82 39.08 34.47 25.71 21.30 23.40 15.37	0. 05 0. 05 0. 04 0. 04 0. 04 0. 04 0. 04 0. 06 0. 07 0. 29 0. 30	0.01 0.01 0.03 0.04 0.02 0.02 0.02 0.03 0.18 0.17 0.15	49.92 34.70 32.14 44.28 40.77 33.88 39.14 34.54 25.95 21.54 23.84 15.82	55. 16 54. 02 63. 71 62. 44 48. 78 58. 78 48. 43 56. 00 46. 00 60. 00	-21.88 -19.43 -21.67 -14.90 -19.64 -13.89 -30.05 -24.46 -36.16	Average Average QP QP Average QP Average QP Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Band Edge

6.3.1 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ection 15 209	and 15 205					
Test Frequency Range:				2500 MHz				
Test Distance:	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz 3m							
					Remark			
Receiver setup:	Frequency	Peak	1MHz	3MHz	Peak Value			
	Above 1GHz	RMS	1MHz	3MHz	Average Value			
Limit:	Frequency	Lir	mit (dBuV/m @	-	Remark			
	Above 1GH	Above 1GHz 54.00 Average Value						
			74.00		Peak Value			
Test esture	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the and the rota maximum reasonable 5. The test-recesspecified Basing If the emission limit specified the EUT would hold be margin.	t a 3 meter case position of the position of the set 3 meters check was mount theight is varietermine the made vertical polinate. Spected emissional antenna was table was turnating, eiver system and width with on level of the case of	amber. The tall the highest rad to he highest rad is away from the top ed from one maximum value arizations of the tuned to heigh ned from 0 degras set to Peal Maximum Hold EUT in peak region of the top of the	ole was rotated in the interference of a variable-deter to four most the field size antenna are was arranged into from 1 meagrees to 360 do know the field size and t	height antenna neters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the etion and dB lower than the beak values of that did not have ak, quasi-peak or			
Test setup:	150cm	(Turntable)	Ground Reference Plane	n Anlanna Tow	Ner Control of the Co			
Test Instruments:	Refer to section 5	.9 for details						
Test mode:	Refer to section 5	5.3 for details						
Test results:	Passed							
		-	•	-				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 13 of 35

802.11b mode:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

S	uspe	ected Data	List∂						
K	1O.¢	Freq.√ [MHz]√	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊌ [dB]∂	Limit↵ [dBµV/m]↵	Margin↵ [dB]↵	Trace₽	Polarity₽
	1₽	2330.00	21.98₽	57.39₽	35.41₽	74.00₽	16.61₽	PK₽	Vertical₽
	2↩	2330.00	14.84₽	50.25₽	35.41₽	54.00₽	3.75₽	AV₽	Vertical₽
L	3₽	2360.00	15.21₽	50.84₽	35.63₽	54.00₽	3.16₽	AV₽	Vertical₽
	4₽	2360.00	22.85₽	58.48₽	35.63₽	74.00₽	15.52₽	PK₽	Vertical₽
	5₽	2390.00	23.71₽	59.55₽	35.84₽	74.00₽	14.45₽	PK₽	Vertical₽
	6₽	2390.00	15.77₽	51.61₽	35.84₽	54.00₽	2.39₽	AV₄⋾	Vertical₽

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 14 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	ected Data	List						
NO.	Freq.⊬ [MHz]∂	Reading [dBµWm]∂	Level⊬ [dBµV/m]√	Factor⊬ [dB]∉	Limit⊬ [dBμV/m]∂	Margin⊬ [dB]∉	Trace∂	Polarity
1₽	2330.00	22.24₽	57.65₽	35.41₽	74.00₽	16.35₽	PK₽	Horizontal₽
24□	2330.00	14.68₽	50.09₽	35,41₽	54.00₽	3.91₽	AV₽	Horizontal₽
3₽	2360.00	13.87₽	49.50₽	35.63₽	54.00₽	4.50₽	AV₽	Horizontal₽
4₽	2360.00	21.93₽	57.56₽	35.63₽	74.00₽	16.44₽	PK₽	Horizontal₽
5₽	2390.00	21.98₽	57.82₽	35.84₽	74.00₽	16.18₽	PK₽	Horizontal₽
6₽	2390.00	14.16₽	50.00₽	35.84₽	54.00₽	4.00₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 15 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List			
NO. Freq. → Reading → Level → Factor → Limit → [dBµV/m] → [dBµ	Margin⊷]⊌ [dB]⊌	Trace∂	Polarity₽
1₽ 2483.50 23.06₽ 58.78₽ 35.72₽ 74.00₽	15.22₽	PK₽	Vertical₽
2\$\varphi\$ 2483.50 15.60\$\varphi\$ 51.32\$\varphi\$ 35.72\$\varphi\$ 54.00\$\varphi\$	2.68₽	AV₽	Vertical₽
3₽ 2489.00 15.37₽ 51.08₽ 35.71₽ 54.00₽	2.92₽	AV₽	Vertical₽
4è 2489.00 22.52 <i>è</i> 58.23 <i>è</i> 35.71 <i>è</i> 74.00 <i>è</i>	15.77₽	PK₽	Vertical₽
5€ 2495.00 22.37€ 58.06€ 35.69€ 74.00€	15.94₽	PK₽	Vertical₽
6← 2495.00 15.96₽ 51.65₽ 35.69₽ 54.00₽	2.35₽	AV₽	Vertical₽

Romark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Suspe	ected Data	List						
	NO.₽	Freq.∉ [MHz]∂	Reading⊷ [dBµV/m]∂	Level⊬ [dBµV/m]∉	Factor⊬ [dB]⊲	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽
	1₽	2483.50	22.93₽	58.65₽	35.72₽	74.00₽	15.35₽	PK₽	Horizontal₽
	2₽	2483.50	14.12₽	49.84₽	35.72₽	54.00₽	4.16₽	AV₽	Horizontal₽
L	3₽	2489.00	14.54₽	50.25₽	35.71₽	54.00₽	3.75₽	AV₽	Horizontal₽
L	4₽	2489.00	22.76₽	58.47₽	35.71₽	74.00₽	15.53₽	PK₽	Horizontal₽
	5₽	2495.00	22.32₽	58.01₽	35.69₽	74.00₽	15.99₽	PK₽	Horizontal₽
	6↔	2495.00	14.62₽	50.31₽	35.69₽	54.00₽	3.69₽	AV₽	Horizontal₽

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 17 of 35

802.11g mode:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Suspected Data List									
	NO.∂	Freq.√ [MHz]∂	Reading√ [dBµV/m]∂	Level⊬ [dBµV/m]∂	Factor⊌ [dB]⊌	Limit⊬ [dBµV/m]₽	Margin⊬ [dB]∉	Trace₽	Polarity₽
1	1₽	2328.43	15.96₽	51.36₽	35.40≠	54.00₽	2.64₽	AV₽	Vertical₽
	2₽	2329.22	24.19₽	59.60₽	35.41₽	74.00₽	14.40₽	PK₽	Vertical₽
l	3₽	2347.38	16.24₽	51.78₽	35.54₽	54.00₽	2.22₽	AV₽	Vertical₽
	4₽	2366.61	25.01₽	60.68₽	35.67₽	74.00₽	13.32₽	PK₽	Vertical₽
	5₽	2390.01	22.93₽	58.77₽	35.84₽	74.00₽	15.23₽	PK₽	Vertical₽
	6₽	2390.01	15.44₽	51.28₽	35.84₽	54.00₽	2.72₽	AV₽	Vertical₽

Romark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Suspected Data List											
	NO a	Freq.⊌	Reading		Level⊎	Factor⊎	Limit⊬	Margin⊎	T	Delegitus	
	NO.₽	[MHz]∂	[dBµV/m]∂]	dBµV/m]∂	[dB]₽	[dBµV/m]∂	[dB]∂	Trace₽	Polarity₽	
	1₽	2335.97	24.43₽		59.89₽	35.46₽	74.00₽	14.11₽	PK₽	Horizontal₽	
	2₽	2340.84	15.08₽		50.57₽	35.49₽	54.00₽	3.43₽	AV₽	Horizontal₽	
Ľ	3₽	2353.16	14.65₽		50.23₽	35.58₽	54.00₽	3.77₽	AV₽	Horizontal₽	
	4₽	2355.52	25.33₽		60.92₽	35.59₽	74.00₽	13.08₽	PK₽	Horizontal₽	
	5₽	2390.01	22.20₽		58.04₽	35.84₽	74.00₽	15.96₽	PK₽	Horizontal₽	
L	6₽	2390.01	14.40₽		50.24₽	35.84₽	54.00₽	3.76₽	AV₄⋾	Horizontal₽	

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:			
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

Sus	pected Data	List						
NO	Freq.	Reading	Level⊬	Factor⊎	Limit⊬	Margin⊎	Т	Delegitera
NO.	[MHz]₽	[dBµ∭m]∂	[dBµV/m]₽	[dB]	[dBμV/m]∂	[dB] <i>⊍</i>	Trace₽	Polarity∂
1₽	2483.50	15.31₽	51.03₽	35.72₽	54.00₽	2.97₽	AV₽	Vertical₽
2↔	2483.50	22.03₽	57.75₽	35.72₽	74.00₽	16.25₽	PK₽	Vertical₽
3₽	2485.28	23.12₽	58.83₽	35.71₽	74.00₽	15.17₽	PK₽	Vertical₽
4₽	2486.09	15.19₽	50.90₽	35.71₽	54.00₽	3.10₽	AV₽	Vertical₽
5₽	2488.64	23.15₽	58.86₽	35.71₽	74.00₽	15.14₽	PK₽	Vertical₽
6↔	2496.94	14.72₽	50.41₽	35.69₽	54.00₽	3.59₽	AV₽	Vertical₽

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915	
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

	Suspe	ected Data	List ∈							
	NO.	Freq.⊬	Reading		Level⊬	Factor	Limit⊬	Margin⊎	T	Delember
1	NO.₽	[MHz]∂	[dBµV/m]↔	[dBμV/m]∂	[dB]₽	[dBµV/m]∂	[dB]∂	Trace₽	Polarity∉
I	1₽	2483.50	20.85₽		56.57₽	35.72₽	74.00₽	17.43₽	PK₽	Horizontal₽
l	2₽	2483.50	14.35₽		50.07 <i>₽</i>	35.72₽	54.00₽	3.93₽	AV₽	Horizontal₽
	3₽	2485.55	15.56₽		51.27₽	35.71₽	54.00₽	2.73₽	AV₽	Horizontal₽
	4₽	2487.43	24.88₽		60.59₽	35.71₽	74.00₽	13.41₽	PK₽	Horizontal@
	5₽	2491.86	24.48₽		60.18₽	35.70₽	74.00₽	13.82₽	PK₽	Horizontal₽
L	6↩	2492.43	15.69₽		51.39₽	35.70₽	54.00₽	2.61₽	AVℯℷ	Horizontal₽

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZR2201011

802.11n(HT20):

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List										
NO	Freq.	Reading	Level⊬	Factor⊍	Limit₽	Margin⊎	Trace₽	Polarity₽			
	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]	[dBµV/m]∂	[dB]∂	Hace	, ordinay			
1₽	2319.54	16.90₽	52.24₽	35.34₽	54.00₽	1.76₽	AV₽	Vertical₽			
2₽	2330.42	16.50₽	51.92₽	35.42₽	54.00₽	2.08₽	AV₽	Vertical₽			
3₽	2371.50	27.63₽	63.34₽	35.71₽	74.00₽	10.66₽	PK₽	Vertical₽			
4₽	2385.54	30.48₽	66.29₽	35.81₽	74.00₽	7.71₽	PK₽	Vertical₽			
5₽	2390.01	25.73₽	61.57₽	35.84₽	74.00₽	12.43₽	PK₽	Vertical₽			
6↩	2390.01	15.74₽	51.58₽	35.84₽	54.00₽	2.42₽	AV₽	Vertical₽			

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 22 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

l	Suspe	ected Data	List∂						
	NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level⊹ [dBµV/m		Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity∂
1	1₽	2352.63	16.46₽	52.03	35.57≠	54.00₽	1.97₽	AV₽	Horizontal₽
	2₽	2357.53	24.38₽	59.994	35.61₽	74.00₽	14.01₽	PK₽	Horizontal₽
l	3₽	2375.01	24.49₽	60.22	35.73₽	74.00₽	13.78₽	PK₽	Horizontal₽
	4₽	2376.08	15.55₽	51.29	35.74₽	54.00₽	2.71₽	AV₽	Horizontal₽
	5₽	2390.01	14.15₽	4 9.99∉	35.84₽	54.00₽	4.01₽	AV₽	Horizontal₽
	6₽	2390.01	21.31₽	<u>57.15</u>	35.84₽	74.00₽	16.85₽	PK₽	Horizontal₽

Romark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZR2201011

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	ected Data	Liste							
NO.	Freq.⊌ [MHz]₽	Reading [dBµV/m]∂]	Level⊬ dBµV/m]∂	Factor [dB]∂	Limit⊬ [dBμV/m]∂	Margin⊬ [dB]∉	Trace∂	Polarity∉
1₽	2483.50	22.97₽		58.69₽	35.72₽	74.00₽	15.31₽	PK₽	Vertical₽
2₽	2483.50	15.38₽		51.10₽	35.72₽	54.00₽	2.90₽	AV₽	Vertical∉
3₽	2485.04	17.03₽		<mark>5</mark> 2.74₽	35.71₽	54.00₽	1.26₽	AV₽	Vertical₽
4↔	2486,16	28.00₽		63.71₽	35.71₽	74.00₽	10.29₽	PK₽	Vertical₽
5⇔	2492.90	16.68₽		52.38₽	35.70₽	54.00₽	1.62₽	AV₽	Vertical₽
6↩	2492.91	25.61₽		61.31₽	35.70₽	74.00₽	12.69₽	PK₽	Vertical₽

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	ected Data	Liste						-
NO.	Freq.↵ [MHz]↵	Reading√ [dBµV/m]∂	Level⊬ [dBµV/m]⊬	Factor⊌ [dB]⊌	Limit↵ [dBµV/m]↵	Margin↵ [dB]↵	Trace₽	Polarity₽
1₽	2483.50	21.92₽	57.64₽	35.72₽	74.00₽	16.36₽	PK₽	Horizontal₽
2₽	2483.50	14.60₽	50.32₽	35.72₽	54.00₽	3.68₽	AV₽	Horizontal₽
3₽	2486.48	15.74₽	51.45₽	35.71₽	54.00₽	2.55₽	AV₽	Horizontal₽
4₽	2490.01	23.83₽	59.53₽	35.70₽	74.00₽	14.47₽	PK₽	Horizontal₽
5₽	2492.69	24.41₽	60.11₽	35.70₽	74.00₽	13.89₽	PK₽	Horizontal₽
64□	2494.32	15.70₽	51.39₽	35.69₽	54.00₽	2.61₽	AV₄⋾	Horizontal₽

Remark:

- 1. Final Level = Receiver Read Jevel + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.4 Spurious Emission

6.4.1 Radiated Emission Method

6.4.1 Radiated Emission	Metriou				
Test Requirement:	FCC Part 15 C Se	ction 15.209 a	nd 15.205		
Test Frequency Range:	9kHz to 25GHz				
Test Distance:	3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value
Limit:	Frequency		it (dBuV/m @3		Remark
	30MHz-88MH		40.0		luasi-peak Value
	88MHz-216MH		43.5		luasi-peak Value
	216MHz-960M		46.0		luasi-peak Value
	960MHz-1GH	Z	54.0 54.0		uasi-peak Value Average Value
	Above 1GHz	:	74.0		Peak Value
Test Procedure:	1. The EUT was	placed on the		ing table 0.8	
rest Flocedule.		above 1GHz) a			
		s rotated 360 d			
	highest radia				
		s set 3 meters a			
	tower.	ch was mounte	d on the top o	of a variable	height antenna
		height is varie	from one me	eter to four n	neters above the
		ermine the max			
					e set to make the
	meas <mark>ureme</mark> n				
					to its worst case
					eter to 4 meters
	maximum rea		a nom o degi	ees 10 360 (degrees to find the
		iver system wa	s set to Peak	Detect Fun	ction and
		dwidth with Ma			
					dB lower than the
					peak values of
					that did not have
		would be re-test nod as specified			ak, quasi-peak or
Test action		iou as specified	a and then rep	ported in a c	ata sneet.
Test setup:	Below 1GHz				
				=	
				- An	tenna Tower
		> 3m ∢	.]		Search
	EUT _	, , , , , , , , , , , , , , , , , , ,		A	Antenna
	\	4m	/		
	ľ	^	*	RF Tes Receive	
			ثلــــــــــــــــــــــــــــــــــــ		\
	Turn Table	, 0.8m		_ /	—
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	7777777	Million I	111111111111111111111111111111111111111	1111111	
	Canar 11	Plane —			
	Ground I	Tane —			
	Above 1GHz				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data (worst case):

Below 1GHz:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915			
Test By:	Mike	Test mode:	Wi-Fi Tx mode			
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%			

NO.	Freq. [MHz]	Reading [dBµV/m]	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	42.8525	32.26	17.47	-14.79	40.00	22.53	PK	Vertical
2	54.4925	30.68	16.06	-14.62	40.00	23.94	PK	Vertical
3	109.418	31.90	16.04	-15.86	43.50	27.46	PK	Vertical
4	307.783	30.92	18.43	-12.49	46.00	27.57	PK	Vertical
5	539.735	31.97	2 5.17	-6.80	46.00	20.83	PK	Vertical
6	981.812	31.89	31.01	-0.88	54.00	22.99	PK	Vertical

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915			
Test By:	Mike	Test mode:	Wi-Fi Tx mode			
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%			

	NO.	Freq. [MHz]	Reading [dBµV/m]	Ī	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	1	37.1538	31.03		16.26	-14.77	40.00	23.74	PK	Horizontal
l	2	55.9475	31.15		16.46	-14.69	40.00	23.54	PK	Horizontal
l	3	116.330	30.76		15.14	-15.62	43.50	28.36	PK	Horizontal
	4	302.812	32.27		19.64	-12.63	46.00	26.36	PK	Horizontal
l	5	534.278	31.83		2 4.99	-6.84	46.00	21.01	PK	Horizontal
	6	959.502	32.28		31.40	-0.88	46.00	14.60	PK	Horizontal

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

Above 1GHz										
			802.11b							
		Test ch	annel: Lowest cl	nannel						
		De	tector: Peak Valu	ıe						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		nit Line BuV/m)	Margin (dB)	Polarization			
4824.00	54.25	-9.46	44.79	7	4.00	29.21	Vertical			
4824.00	55.48	-9.46	46.02	7	4.00	27.98	Horizontal			
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		nit Line BuV/m)	Margin (dB)	Polarization			
4824.00	47.09	-9.46	37.63	5	54.00	16.37	Vertical			
4824.00	48.11	-9.46	38.65	5	54.00	15.35	Horizontal			
		Test ch	annel: Middle ch	nannel						
		De	tector: Peak Val	ue 🗾						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)		Margin (dB)	Polarization			
4874.00	54.45	-9.11	45.34	74.00		28.66	Vertical			
4874.00	55.60	-9.11	46.49	74.00		27.51	Horizontal			
		Dete	ctor: A <mark>ver</mark> age Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	L <mark>evel</mark> (dBuV/m)		nit Line BuV/m)	Margin (dB)	Polarization			
4874.00	47.45	-9.11	38.34	5	4.00	15.66	Vertical			
4874.00	47.87	-9.11	38.76	5	<mark>4.0</mark> 0	15.24	Horizontal			
		Test ch	annel: Highest c	hannel						
		De	tector: Peak Value	ıe						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		nit Line BuV/m)	Margin (dB)	Polarization			
4924.00	54.62	-8.74	45.88	7	4.00	28.12	Vertical			
4924.00	55.60	-8.74	46.86	7	4.00	27.14	Horizontal			
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		nit Line BuV/m)	Margin (dB)	Polarization			
4924.00	47.19	-8.74	38.45	5	4.00	15.55	Vertical			
4924.00	47.81	-8.74	39.07	5	4.00	14.93	Horizontal			
Remark:										

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11g						
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	54.09	-9.46	44.63	74.00	29.37	Vertical			
4824.00	55.31	-9.46	45.85	74.00	28.15	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	47.44	-9.46	37.98	54.00	16.02	Vertical			
4824.00	48.20	-9.46	38.74	54.00	15.26	Horizontal			
Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	54.00	-9.11	44.89	74.00	29.11	Vertical			
4874.00	55.42	-9.11	46.31	74.00	27.69	Horizontal			
Detector: Av <mark>er</mark> age Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	47.53	-9.11	38.42	54.00	15.58	Vertical			
4874.00	47.97	-9.11	38.86	54.00	15.14	Horizontal			
Test channel: Highest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	54.16	-8.74	45.42	74.00	28.58	Vertical			
4924.00	55.04	-8.74	46.30	74.00	27.70	Horizontal			
Detector: Average Value									
Frequency	Read Level	Factor(dB)	Level	Limit Line	Margin	Polarization			

(dBuV/m)

38.75

39.62

(dBuV/m)

54.00

54.00

Remark:

(MHz)

4924.00

4924.00

(dBuV)

47.49

48.36

Factor(dB)

-8.74

-8.74

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZR2201011

Vertical

Horizontal

(dB)

15.25

14.38

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT20)							
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	54.38	-9.46	44.92	74.00	29.08	Vertical				
4824.00	55.33	-9.46	45.87	74.00	28.13	Horizontal				
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	47.44	-9.46	37.98	54.00	16.02	Vertical				
4824.00	48.61	-9.46	39.15	54.00	14.85	Horizontal				
Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4874.00	54.21	-9.11	45.10	74.00	28.90	Vertical				
4874.00	54.98	-9.11	45.87	74.00	28.13	Horizontal				
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4874.00	47.92	-9.11	38.81	54.00	15.19	Vertical				
4874.00	49.08	-9.11	39.97	54.00	14.03	Horizontal				
		Test cha	annel: Highest c	hannel						
		Det	tector: Peak Valu	ie		1				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	54.34	-8.74	45.60	74.00	28.40	Vertical				
4924.00	55.36	-8.74	46.62	74.00	27.38	Horizontal				
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	48.07	-8.74	39.33	54.00	14.67	Vertical				
4924.00	48.67	-8.74	39.93	54.00	14.07	Horizontal				
Remark: 1. Final Level = Receiver Read level + Factor.										

^{1.} Final Level = Receiver Read level + Factor.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: JYTSZ-R12-2200086.

