He удается связаться с сервисом reCAPTCHA. Проверьте подключение к Интернету и перезагрузите страницу.

```
import pandas as pd
import numpy as np

import seaborn as sns
import matplotlib.pyplot as plt

%matplotlib inline

df = pd.read_csv('heart.csv')

columns_names = {'trtbps': 'blood_pressure', 'fbs': 'blood_sugar', 'thalachh': 'max

df = df.rename(columns=columns_names)

df.head()
```

	age	sex	ср	blood_pressure	chol	blood_sugar	restecg	max_hr	exng	oldp
0	63	1	3	145	233	1	0	150	0	
1	37	1	2	130	250	0	1	187	0	
2	41	0	1	130	204	0	0	172	0	
3	56	1	1	120	236	0	1	178	0	
4	57	0	0	120	354	0	1	163	1	

Количество измерений в каждом классе примерно одинаковое

```
df.describe()
```

	age	sex	ср	blood_pressure	chol	blood_sugar
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000

df.groupby(['caa']).count()['output']

Name: output, dtype: int64

```
# sns.kdeplot(data=df, x='age', hue='sex')
sns.countplot(data=df, x='sex', hue='output')
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f51349c7fa0>

На этой гистограмме видно, что принадлежность к полу 0(в датасете не описано, что это за пол) несет большие риски сердечного приступа

```
sns.countplot(data=df, x='blood sugar', hue='output')
```

 ${\tt <matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0x7f51344eaca0>}$

При этом количество сахара в крови не очень принципиально как отдельный признак

<matplotlib.axes. subplots.AxesSubplot at 0x7f5134a55dc0>

Также видно, что риск сердечного приступа выше у тех, у кого часто стенакордия вызвана не физическими нагрузками

```
fig, ax = plt.subplots(1, 2, figsize=(16, 8))
sns.histplot(data=df, x='age', hue='sex', kde=True, ax=ax[0])
sns.histplot(data=df, x='age', hue='output', kde=True, ax=ax[1])
```


По этим распределениям можно видеть, возрастная группа преимущественно состоит из людей за 50(в общем то не удивительно). Также стоит отметить дизбаланст классов по полу. Людей пола 0 гораздо меньше, чем пола 1. В правом распределении видно различия в пиках, которое показывает, что довольно большая группа риска это медианная возрастная группа, хотя интуитивно казалось, если человек старее, то и риск больше, соответственно.

```
sns.histplot(data=df, x='max hr', hue='output', kde=True)
```


Здесь видно, что чем выше максимальный пульс тем риск сердечного приступа выше, что опять же контринтуитивно. Интересно посмотреть, какое распределение у "старших" и у "младших"

```
fig, ax = plt.subplots(1, 2, figsize=(16, 8))
sns.histplot(data=df[df['age'] >= 50], x='max_hr', hue='output', kde=True, ax=ax[0]
sns.histplot(data=df[df['age'] < 50], x='max_hr', hue='output', kde=True, ax=ax[1])
ax[0].set_title('>50')
ax[1].set_title('<50')
plt.show()</pre>
```


Интересно, что в двух возрастных категориях максимальный пульс должен быть не особо высоким, чтобы минимизировать риски сердечного приступа

sns.histplot(data=df, x='blood pressure', hue='output', kde=True)

sns.histplot(data=df, x='chol', hue='output', kde=True)

<matplotlib.axes. subplots.AxesSubplot at 0x7f5134317a90>

sns.scatterplot(x=df['blood pressure'], y=df['max hr'], hue=df['output'])

Посмотрим теперь на категориальные признаки

```
colors = sns.color_palette('bright')
filtered_1 = df[(df['sex'] == 0)].groupby(['cp']).count()['age']
filtered_2 = df[(df['sex'] == 1)].groupby(['cp']).count()['age']

filtered_3 = df[(df['sex'] == 0) & (df['output'] == 1)].groupby(['cp']).count()['age']

filtered_4 = df[(df['sex'] == 1) & (df['output'] == 1)].groupby(['cp']).count()['age']

labels = ['typical angina', 'atypical angina', 'non-anginal pain', 'asymptomatic']

fig, ax = plt.subplots(2, 2, figsize=(8, 8))

ax[0][0].pie(filtered_1.values, labels=labels, colors=colors, autopct = '%0.0f%%')

ax[0][1].pie(filtered_2.values, labels=labels, colors=colors, autopct = '%0.0f%%')

ax[0][1].pie(filtered_3.values, labels=labels, colors=colors, autopct = '%0.0f%%')

ax[1][0].pie(filtered_3.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[1][0].set_title('positive for 0')
```

plt.show()

```
ax[1][1].pie(filtered_4.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[1][1].set_title('positive for 1')
```


На этих круговых диаграмах показаны доли типов болей в грудной клетке у разных полов. Можно видеть, что у тех людей, у которых высокий риск сердечного приступа преобладает неангинальная боль, в то время как типичная стенокардия уменьшает свое влияние.

```
colors = sns.color_palette('bright')
filtered_1 = df[(df['sex'] == 0)].groupby(['exng']).count()['age']
filtered_2 = df[(df['sex'] == 1)].groupby(['exng']).count()['age']
filtered_3 = df[(df['sex'] == 0) & (df['output'] == 1)].groupby(['exng']).count()[
filtered_4 = df[(df['sex'] == 1) & (df['output'] == 1)].groupby(['exng']).count()[
labels = ['no', 'yes']
labels_for_last = labels[:-1]
fig, ax = plt.subplots(2, 2, figsize=(8, 8))
ax[0][0].pie(filtered_1.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[0][0].set_title('for 0')
```

```
ax[0][1].pie(filtered_2.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[0][1].set_title('for 1')

ax[1][0].pie(filtered_3.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[1][0].set_title('positive for 0')

ax[1][1].pie(filtered_4.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[1][1].set_title('positive for 1')

plt.show()
```



```
colors = sns.color_palette('bright')
filtered_1 = df[(df['sex'] == 0)].groupby(['caa']).count()['age']
filtered_2 = df[(df['sex'] == 1)].groupby(['caa']).count()['age']
filtered_3 = df[(df['sex'] == 0) & (df['output'] == 1)].groupby(['caa']).count()['& filtered_4 = df[(df['sex'] == 1) & (df['output'] == 1)].groupby(['caa']).count()['& labels = ['0', '1', '2', '3', '4']
labels_1 = ['0', '1', '2', '3']
labels_3 = ['0', '1', '2']
fig, ax = plt.subplots(2, 2, figsize=(8, 8))
```

```
ax[0][0].pie(filtered_1.values, labels=labels_1, colors=colors, autopct = '%0.0f%%
ax[0][0].set title('for 0')
```

```
ax[0][1].pie(filtered_2.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[0][1].set title('for 1')
```

ax[1][0].pie(filtered_3.values, labels=labels_3, colors=colors, autopct = '%0.0f%%
ax[1][0].set title('positive for 0')

ax[1][1].pie(filtered_4.values, labels=labels, colors=colors, autopct = '%0.0f%%')
ax[1][1].set title('positive for 1')

plt.show()

Посмотрим еще на непрерывные признаки

from sklearn.preprocessing import RobustScaler

/usr/local/lib/python3.8/dist-packages/seaborn/categorical.py:1296: UserWarni: warnings.warn(msg, UserWarning)

/usr/local/lib/python3.8/dist-packages/seaborn/categorical.py:1296: UserWarni: warnings.warn(msg, UserWarning)

/usr/local/lib/python3.8/dist-packages/seaborn/categorical.py:1296: UserWarni: warnings.warn(msg, UserWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f512c110130>

sns.boxplot(data=melt df, x='features', y='values', hue='sex')

В принципе можно видеть, что зависимости от пола в явновыраженном виде нет. Можно сделать вывод из всего вышеперечисленного, что датасет просто несбалансированный по полу.

sns.boxplot(data=melt df, x='features', y='values', hue='output')

<matplotlib.axes. subplots.AxesSubplot at 0x7f512be177f0>

При этом можно видеть, что хорошо разделяют такие признаки как максимальный пульс и oldpeak.

Посмотрим попарно на непрерывные признаки

```
max_hr blood_pressure oldpeak chol

fig, ax = plt.subplots(1, 2, figsize=(16, 8))
sns.scatterplot(x=df['age'], y=df['max_hr'], hue=df['output'], ax=ax[0])
sns.scatterplot(x=df['age'], y=df['max_hr'], hue=df['sex'], ax=ax[1])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f513415de50>


```
fig, ax = plt.subplots(1, 2, figsize=(16, 8))
sns.scatterplot(x=df['age'], y=df['blood_pressure'], hue=df['output'], ax=ax[0])
sns.scatterplot(x=df['age'], y=df['blood_pressure'], hue=df['sex'], ax=ax[1])
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f512ee813a0>

Возраст довольно сильно перемешан с другими непрерывными признаками

```
fig, ax = plt.subplots(1, 2, figsize=(16, 8))
sns.scatterplot(x=df['chol'], y=df['blood_pressure'], hue=df['output'], ax=ax[0])
sns.scatterplot(x=df['chol'], y=df['blood_pressure'], hue=df['sex'], ax=ax[1])
```


В принципе количество холестерина и максимальный пульс можно разделить прямой

Попробуем теперь обучить модельки по выбранным признакам

```
cat_features = ['sex', 'slp', 'restecg', 'caa', 'exng', 'cp', 'thall']
cont_features = ['age', 'blood_pressure', 'chol', 'max_hr', 'oldpeak']
target = 'output'

from sklearn.utils import shuffle
df = shuffle(df)

filtered_df = df[cont_features + cat_features + [target]]

oh df = pd.get dummies(filtered df, columns=cat features, drop first = True)
```

```
oh df[cont features] = scaler.fit transform(oh df[cont features])
X data = oh df.drop(columns='output').values
y data = df['output']
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score, roc auc score, roc curve, f1 score, pre
X train, X test, y train, y test = train test split(X data, y data, train size=0.8,
# !pip install catboost
from catboost import CatBoostClassifier
catboost model = CatBoostClassifier(iterations=1000,
                           depth=5,
                           learning rate=1e-4,
                           eval metric='AUC',
                           loss function='Logloss',
                           verbose=False)
catboost model.fit(X train, y train)
    <catboost.core.CatBoostClassifier at 0x7f5128e34d30>
preds = catboost model.predict(X test)
accuracy score (y test, preds)
    0.8360655737704918
from sklearn.svm import SVC
from sklearn.model selection import GridSearchCV
# ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed']
grid = {'C': np.linspace(0.0001, 10, 10), 'kernel': ['rbf', 'linear'],
        'gamma': np.linspace(1e-5, 10, 10)}
svm = SVC(random state=42)
search = GridSearchCV(svm, grid, cv=3, scoring='accuracy', refit=True, n jobs=2)
search.fit(X train, y train)
    GridSearchCV(cv=3, estimator=SVC(random state=42), n jobs=2,
                  param grid={'C': array([1.0000e-04, 1.1112e+00, 2.2223e+00,
```

✓ 0 сек. выполнено в 15:22

He удается связаться с сервисом reCAPTCHA. Проверьте подключение к Интернету и перезагрузите страницу.