Algebra I, lista 2 (ćwiczenia 7.03.2024, deklaracje do godz. 11:00).

Teoria: Współrzędne wektora w bazie, suma prosta podprzestrzeni $V = V_1 \oplus \ldots \oplus V_n$, produkt przestrzeni liniowych. Izomorfizm liniowy przestrzeni liniowych. Tw. o izomorfizmie liniowym: $dim(V) = n \Rightarrow V \cong \mathbb{R}^n$. Przestrzenie liniowe tego samego wymiaru są izomorficzne. Przekształcenia liniowe: definicja, własności, przykłady. Przekształcenie liniowe $F_A : \mathbb{R}^n \to \mathbb{R}^m$ wyznaczone przez macierz $A \in M_{m \times n}(\mathbb{R})$. Każde liniowe $F : \mathbb{R}^n \to \mathbb{R}^m$ jest postaci F_A . Działania na macierzach (mnożenie, dodawanie, mnożenie przez skalary). Związek mnożenia macierzy ze składaniem funkcji F_A . Łączność mnożenia macierzy. Macierz przekształcenia liniowego $F : V \to W$ w bazach (ponumerowanych) $\mathcal{B} \subseteq V$, $\mathcal{C} \subseteq W$: $m_{\mathcal{B},\mathcal{C}}(F)$. Macierz złożenia przekształceń liniowych.

V oznacza przestrzeń liniową nad $\mathbb{R}, V_1, \dots V_n, W, U < V$.

- 1. (a) Załóżmy, że $V = V_1 + V_2$. Udowodnić, że $V = V_1 \oplus V_2 \iff V_1 \cap V_2 = \{0\}$. (b)* Sformułować i udowodnić odpowiedni warunek równoważny temu, że $V = V_1 \oplus \ldots \oplus V_n$, gdy $V = V_1 + \ldots + V_n$.
 - (c) Załóżmy, że $V=V_1+\ldots+V_n$ oraz $dim(V)=\sum_{i=1}^n dim(V_i)<\infty$. Udowodnić, że $V=V_1\oplus\ldots\oplus V_n$.
- 2. Znaleźć współrzędne wielomianu W(X) jako wektora w przestrzeni $R_3[X]$ w bazie $\{1, 1 + X, 1 + X + X^2, 1 + X + X^2 + X^3\}$.

 (a) $W(X) = X^3 X^2 + 5$, (b)- $W(X) = 1 + X^3$, (c)- $W(X) = 1 X^3$.
- 3. * Wyznaczyć $dim(\mathbb{R}^{\mathbb{N}})$, tj. wymiar przestrzeni liniowej wszystkich ciągów o wyrazach rzeczywistych.
- 4. (i) Wyliczyć macierz obrotu $R_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2$ wokół zera (przeciwnie do ruchu wskazówek zegara, w bazie standardowej).
 - (ii) Korzystając z mnożenia macierzy wyprowadzić wzór na sinus i cosinus sumy kątów.
- 5. * Załóżmy, że A_1, \ldots, A_k jest układem niepustych podzbiorów zbioru $\{1, \ldots, n\}$ oraz k > n. Udowodnić, że istnieją rozłączne, niepuste zbiory indeksów $I, J \subseteq \{1, \ldots, n\}$ takie, że $\bigcup_{i \in I} A_i = \bigcup_{j \in J} A_j$.
- 6. Załóżmy, że $b_1, \ldots, b_n \in V$ tworzą bazę V, zaś w_1, \ldots, w_n są dowolnymi wektorami pewnej przestrzeni liniowej V'.
 - (a) Dowieść, że istnieje dokładnie jedno przekształcenie liniowe $F: V \to V'$ takie, że $F(b_i) = w_i$ dla $i = 1, \ldots, n$.
 - (b)– Załóżmy, że $F, G: V \to V'$ są liniowe oraz $F(b_i) = G(b_i)$ dla $i = 1, \ldots, n$. Udowodnić, że F = G.
- 7. Rozstrzygnąć, czy istnieje przekształcenie liniowe $T: \mathbb{R}^4 \to \mathbb{R}^4$ takie, że $T(A) = E_1, \ T(B) = E_2$ i $T(C) = E_3$, gdzie:
 - (i) A = (1, 0, 1, 0), B = (0, 1, 0, 1), C = (2, 2, 2, 2),
 - (ii) A = (1, 1, 0, 0), B = (0, 1, 1, 0), C = (1, 0, 1, 0). (wsk: czy wektory A, B, C są liniowo niezależne? Rozstrzygnąć to w miarę możności bez rachunków.)

- 8. Załóżmy, że macierze A, B, C sa odpowiednich wymiarów, tak że w poniższej równości wszyskie działania są wykonalne.
 - (i) Udowodnić, że $F_{B+C} = F_B + F_C$.
 - (ii) Udowodnić, że A(B+C)=AB+AC, bez rachunków. W dowodzie odwoływać się do odpowiedniości miedzy macierzami A a odwzorowaniami liniowymi F_A .
- 9. Załóżmy, że $V=V_1\oplus V_2$. Definiujemy funkcję $F:V\to V_1$ wzorem $F(v)=v_1$, gdzie $v=v_1+v_2,\ v_1\in V_1,\ v_2\in V_2$. Udowodnić, że F jest liniowe. F nazywamy rzutem na V_1 wzdłuż V_2 .
- 10. * Załóżmy, że $F:\mathbb{R}^2\to\mathbb{R}^2$ jest bijekcją przekształcającą proste na proste oraz 0 na 0. Udowodnić, że F jest liniowe.