

Lezione 08 - Cicli termodinamici a vapore

Corso di Fisica Tecnica a.a. 2019-2020

*Prof. Gaël R. Guédon*Dipartimento di Energia, Politecnico di Milano

L08: Introduzione

Obiettivi della lezione

- > Definire le caratteristiche di un buon fluido di lavoro
- > Analizzare il ciclo Rankine
- Analizzare il ciclo frigorifero a vapore

I cicli termodinamici a vapore

Ciclo di Carnot

Ciclo Rankine

Ciclo frigorifero a vapore

Ciclo di Carnot a vapore

Vantaggi:

- trasformazione isobara nel bifase è anche isoterma (riduzione irreversibilità)
- transizione di fase aumenta notevolmente la quantità di energia specifica scambiata lungo le isoterme (compattezza impianto)

Svantaggi:

- compressione (1-2) di un bifase è difficile da realizzare e soggetto a molte irreversibilità
- > espansione (3-4) conveniente se $x_4 > 0.9$

Caratteristiche fluido di lavoro in cicli a vapore

- > Elevata massa volumica
- > Elevata entalpia di transizione di fase
- Ridurre, a parità di potenza, la portata di fluido e quindi le dimensioni (e costo) dell'impianto
- Elevata temperatura critica Al punto critico l'entalpia di evaporazione è nulla
- ➤ Temperatura del punto triplo inferiore alla temperatura minima del ciclo
 ► Evitare la presenza di una fase solida
- > Fluido non corrosivo --- Ridurre costi materiali e allungare ciclo di vita
- Fluido non tossico Ridurre rischi ambientali

Caratteristiche fluido di lavoro in cicli a vapore

- > Fluido chimicamente stabile --- Aumentare sicurezza impianto
- Facilmente reperibile e di basso costo
- ightharpoonup Elevata pendenza nel piano T-s della curva limite superiore \longrightarrow Vapore in uscita turbina con elevato titolo
- Pressione di condensazione superiore alla pressione atmosferica

Evitare infiltrazioni di gas incondensabili e conseguente necessità di apparecchiature atte al mantenimento dell'opportuno grado di vuoto (la temperatura al condensatore deve essere vicina a quella del serbatoi di calore inferiore per avere una limitazione delle irreversibilità)

Caratteristiche fluido di lavoro in cicli a vapore

Nessun fluido possiede tutte le proprietà citate.

- > Ciclo motore: l'acqua possiede le principali proprietà
- Ciclo inverso (frigorifero): funzione delle temperatura delle sorgenti
 - Ammoniaca NH₃ → Tossico
 - Clorofluorocarburi (CFC o freon) → Dannosi per l'ozono (R11, R12)
 - Clorofluoroidrocarburi (HCFC)
 - Fluoroidrocarburi (HFC)

Meno dannosi per l'ozono, conosciuti principalmente dal loro nome commerciale (R22, R123, **R134a**, etc.)

L08: Cicli Termodinamici a Vapore

Caratteristica	Acqua	r134a
Elevata massa volumica Elevata entalpia di transizione di fase	$ ho_l = \sim 1000 \ kg/m^3$ $ ho_v = \sim 0.6 \ kg/m^3$ $h_{lvt} = \sim 2500 \ kJ/kg$	$\rho_l = \sim 1300 \ kg/m^3$ $\rho_v = \sim 14 \ kg/m^3$ $h_{lvt} = \sim 200 \ kJ/kg$
Elevata temperatura critica	$T_{cr} = 373.946 ^{\circ}C$	$T_{cr} = 101.06 ^{\circ}C$
Temperatura del punto triplo inferiore alla temperatura minima del ciclo	$T_{triplo} = 0.01 ^{\circ}C$	$T_{triplo} = -103.30 ^{\circ}C$
Fluido non corrosivo	OK	ОК
Fluido non tossico	OK	Asfissiante
Fluido chimicamente stabile	SI	Non infiammabile in condizioni normali
Facilmente reperibile e di basso costo	SI	Prodotto sintetico
Elevata pendenza nel piano $T-s$ della curva limite superiore	NO	SI
Pressione di condensazione superiore alla pressione atmosferica	NO	SI

Diagramma T-s del fluido organico r134a

Ciclo Rankine semplice (a vapore saturo)

Ciclo Rankine semplice (a vapore saturo)

Fascio tubiero alettato

Corpo cilindrico superiore

Corpo cilindrico inferiore

Source: Nooter Eriksen Inc.

Source: Nooter Eriksen Inc.

Source: Nooter Eriksen Inc.

Ciclo Rankine

Per contrastare il problema del **titolo in uscita turbina**, ed aumentare il rendimento, si effettua il **surriscaldamento** del vapore (4-5)

$$\eta=1-rac{\dot{Q}_F}{\dot{Q}_C}$$

$$\eta = 1 - \frac{h_6 - h_1}{h_5 - h_2}$$

Ciclo Rankine

Soluzioni per migliorare il rendimento del ciclo Rankine

- > Riduzione della pressione di condensazione
- > Aumento della temperatura finale di surriscaldamento
- > Aumento della pressione di vaporizzazione
- Surriscaldamenti ripetuti
- Rigenerazione

Riduzione della pressione di condensazione

Aumento della temperatura finale di surriscaldamento

Aumento della pressione di vaporizzazione

Surriscaldamenti ripetuti

Ciclo di Carnot inverso a vapore

Ciclo frigorifero a vapore teorico

- compressione (3-4) di un vapore saturo/surriscaldato preferibile
- espansione (1-2) con una turbina non è conveniente (lavoro prodotto trascurabile) e difficile da realizzare

S

Ciclo frigorifero a vapore

 espansione (1-2) isoentropica sostituita da un espansione adiabatica isoentalpica (valvola di laminazione)

▲ P

Ciclo frigorifero a vapore

