

- Ao longo dos anos, os ecossistemas marinhos vem sofrendo com diversas ameaças, como poluição, mudanças climáticas e sobrepesca.
- **Monitorar a biodiversidade** nesses ambientes pode contribuir para a conservação, mas muitas vezes isso é feito de maneira manual e ineficiente.

Atividade petrolífera offshore e sua relação com os impactos ambientais nos ecossistemas marinhos. [Nascimento et al., 2021]

Objetivo • O uso de câmeras subaquáticas e **técnicas de** processamento de imagens pode ajudar a automatizar a identificação e contagem de espécies, contribuindo para subsequente estudos de ecologia e conservação. • O objetivo desse trabalho era desenvolver um método para realizar a segmentação, identificação e contagem de animais marinhos em imagens de ecossistemas subaquáticos, de preferência imagens com baixa iluminação.

Trabalhos Relacionados

Trabalho 01

Tracking Fish Abundance by Underwater Image Recognition [Marini et at., 2018]

Trabalho 02

Underwater image enhancement: a comprehensive review, recent trends, challenges and applications [Raveendran et at., 2021]

Trabalho 03

Underwater image processing and analysis: A review [Jian et al., 2021]

Tracking Fish Abundance by Underwater Image Recognition [Marini et at., 2018]

- O objetivo era capturar a dinâmica temporal da abundância peixes. Foram processadas mais de 20.000 imagens que foram adquiridas em um cenário costeiro desafiador do mundo real no local de testes OBSEA-EMSO. As imagens foram coletadas de 30 em 30 minutos, continuamente durante dois anos. As condições ambientais altamente variáveis nos permitiram testar a eficácia de nossa abordagem sob mudanças na radiação luminosa, turbidez da água, confusão de fundo e crescimento de bioincrustação na caixa da câmera.
- Os resultados do reconhecimento automatizado foram altamente correlacionados com as contagens manuais e foram altamente confiáveis quando usados para rastrear variações do peixe em diferentes escalas de tempo horárias, diárias e mensais. Além disso, essa metodologia poderia ser facilmente transferida para outros vídeo-observatórios cabeados.

Método Proposto

New Notebook

Underwater Object Detection Dataset

Yolov5 PyTorch format underwater life dataset for object detection

Data Card Code (21) Discussion (0) Suggestions (1)

About Dataset

Info

The dataset contains 7 classes of underwater creatures with provided bboxes locations for every animal.

The dataset is already split into the train, validation, and test sets.

Data

r Object ...

r Object ...

uarium D...

e Events

It includes 638 images.

Creatures are annotated in YOLO v5 PyTorch format

Pre-Processing

The following pre-processing was applied to each image:

Usability ®

7.50

License

CC0: Public Domain

Expected update frequency

Not specified

Tags

Earth and Nature

Arts and Entertainment

Animals P

PyTorch

- A base de dados usada para validar o método proposto foi a "Underwater Object Detection Dataset" do usuário Slavko Prytula encontrada no site Kaggle.
- Ela inclui 638 imagens de diferentes animais marinhos, todas em formato JPG, com o conjunto de dados já dividido em conjuntos de treinamento, validação e teste (448, 127 e 63 imagens respectivamente).
- Ela também inclui arquivos contendo as localizações das bounding boxes de cada animal para todas as imagens.

- Conversão para Escala de Cinza
- Desfoque Gaussiano
- Melhoramento de CLAHE (Contrast Limited Adaptive Histogram Equalization)

Underwater Image Segmentation using CLAHE Enhancement and Thresholding [Rai et al., 2012]

• É um algoritmo de equalização de histograma que particiona a imagem em regiões contextuais e aplica a equalização do histograma a cada um. Isso equilibra a distribuição dos valores de cinza usados e, assim, faz características ocultas da imagem mais visíveis.


```
def apply_clahe(img, clahe):
    blured = cv.GaussianBlur(img,(3,3),0,borderType=cv.BORDER_REPLICATE)
    cl1 = clahe.apply(blured)
    return cl1
```


Segmentação

• Limiarização (Otsu)

Transformação Morfológica

Segunda Passagem

```
def gen_mask(img):
    blured1 = cv.GaussianBlur(img,(3,3),0,borderType=cv.BORDER_REPLICATE)
    ret,mask1 = cv.threshold(blured1,0,255,cv.THRESH_OTSU)
    kernel1 = cv.getStructuringElement(cv.MORPH_ELLIPSE,(50,50))
    closed = cv.morphologyEx(mask1, cv.MORPH_CLOSE, kernel1)
    combined = cv.bitwise_and(blured1,blured1,mask = closed)
    blured2 = cv.GaussianBlur(combined,(3,3),0,borderType=cv.BORDER_REPLICATE)
    ret,mask2 = cv.threshold(blured2,0,255,cv.THRESH_OTSU)
    kernel2 = cv.getStructuringElement(cv.MORPH_ELLIPSE,(20,5))
    kernel3 = cv.getStructuringElement(cv.MORPH_ELLIPSE,(25,25))
    mask3 = cv.morphologyEx(mask2, cv.MORPH_OPEN, kernel2)
    final_mask = cv.morphologyEx(mask3, cv.MORPH_OPEN, kernel3)
    return final_mask
```


Extração de Regiões

Bounding Boxes

Expansão

```
def get_bb_lists(img, mask, path, expand):
    h, w, _ = img.shape
    box list right = []
    box_list_found = []
    with open(path, "r") as file1:
        for line in file1.readlines():
            class_id, x_center, y_center, width, height = map(float, line.split())
            x min = int((x center - width / 2) * w)
            y_min = int((y_center - height / 2) * h)
            x max = int((x center + width / 2) * w)
            y_max = int((y_center + height / 2) * h)
            box = (x min, y min, x max, y max)
            box list right.append(box)
    lbl_0 = label(mask)
    props = regionprops(lbl_0)
    box_list found = []
    for prop in props:
        box = (prop.bbox[1], prop.bbox[0], prop.bbox[3], prop.bbox[2])
        box = aumentar_bounding_box(mask, box, expand)
        box list found.append(box)
    return box list found, box list right
```


altura_imagem, largura_imagem = imagem.shape
x1, y1, x2, y2 = bbox
cx, cy = (x1 + x2) / 2, (y1 + y2) / 2
largura = x2 - x1
altura = y2 - y1
nova_largura = largura * fator_aumento
nova_altura = altura * fator_aumento
novo_x1 = int(max(0, cx - nova_largura / 2))
novo_y1 = int(max(0, cy - nova_altura / 2))
novo_x2 = int(min(largura_imagem, cx + nova_largura / 2))
novo_y2 = int(min(altura_imagem, cy + nova_altura / 2))
return novo_x1, novo_y1, novo_x2, novo_y2

fator_aumento = 1.2

Avaliação de Desempenho

• Intersection over Union (IoU)

 Para cada imagem, calculamos o IoU das caixas delimitadoras similares entre as obtidas pelo método e as verdadeiras (Usando KNN).

- Fizemos então a média dos valores de IoU calculados a partir de todas as caixas encontradas pelo método.
- E por fim, multiplicamos essa média por um modificador que começa em 1 e diminui a medida que o número de caixas obtida se afasta do número de caixas real.

```
total = 0
def get iou(bb1, bb2):
    assert bb1[0] <= bb1[2]
    assert bb1[1] <= bb1[3]
                                                          else:
    assert bb2[0] <= bb2[2]
                                                              total = 1
    assert bb2[1] <= bb2[3]
    x_{eft} = max(bb1[0], bb2[0])
                                                          total *= mod
    y_{top} = max(bb1[1], bb2[1])
   x right = min(bb1[2], bb2[2])
                                                          return total
    y bottom = min(bb1[3], bb2[3])
    if x_right < x_left or y_bottom < y_top: return 0.0
    intersection_area = (x_right - x_left + 1) * (y_bottom - y_top + 1)
    bb1 area = (bb1[2] - bb1[0] + 1) * (bb1[3] - bb1[1] + 1)
    bb2 area = (bb2[2] - bb2[0] + 1) * (bb2[3] - bb2[1] + 1)
    iou = intersection area / float(bb1 area + bb2 area - intersection area)
    assert iou >= 0.0
    assert iou <= 1.0
    return iou
```

```
def measure_accuracy(box_list_found, box_list_right):
    box list found = np.array(box list found)
    box list right = np.array(box list right)
    lf_size, lr_size = len(box_list_found), len(box_list_right)
    if len(box list_right) > 0:
        classes = np.arange(len(box_list_right))
        knn = KNeighborsClassifier(n neighbors=1)
        knn.fit(box list right, y=classes)
        matches = knn.predict(box_list_found)
        for i in range(lf_size):
           j = matches[i]
           current = get iou(box list found[i], box list right[j])
            total += current/lf size
    mod = 1-abs(lr size-lf size)*0.01
    print("Acurácia para essa imagem foi de: {:.2f}%".format(total*100))
```


Acurácia para essa imagem foi de: 41.57%


```
def main(folder, expand):
   if folder == 'train': image_dir, label_dir = TRAIN_IMAGES, TRAIN_LABELS
   elif folder == 'valid': image dir, label dir = VAL IMAGES, VAL LABELS
   elif folder == 'test': image_dir, label_dir = TEST_IMAGES, TEST_LABELS
    elif folder == 'new': image dir, label dir = NEW IMAGES, NEW LABELS
    image files = sorted(os.listdir(image dir))
   number img = len(image files)
   total_accuracy = 0
    for image file in image files:
        img path = os.path.join(image dir, image file)
        label_path = os.path.join(label_dir, image_file[:-4] + '.txt')
        img = cv.imread(img_path)
        img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
        gray = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
        enhanced = apply clahe(gray, clahe)
        mask = gen_mask(enhanced)
        box_list_found, box_list_right = get_bb_lists(img, mask, label_path, expand)
        accuracy = measure_accuracy(box_list_found, box_list_right)
        total accuracy += accuracy/number_img
    print("Acurácia para o conjunto de imagens {} foi de: {:.2f}%".format(folder, total_accuracy*100))
```

Resultados

Tabela de Acurácia				
expand	train	valid	test	new
1	7,00%	6,10%	8,99%	12,21%
1.2	7,53%	6,53%	9,39%	12,99%
1.5	7,37%	6,42%	8,95%	12,30%
2	6,78%	6,04%	8,02%	10,60%

Resultados

Validation Performance	Accuracy (std)	92% (0.02)
	True Positive Rate (std)	95% (0.03)
	False Positive Rate (std)	12% (0.04)

Table 1. Summary of the data acquired in the year 2012 that was used to train and validate the binary image classifier.

Tracking Fish Abundance by Underwater Image Recognition [Marini et at., 2018]

Conclusão

• Subestimamos o problema.

• CLAHE é um algoritmo bom para melhora de contraste.

• A variância da base de imagens atrapalhou o resultado.

• Apesar de tudo, o resultado foi aceitável.

