Math 451 HW #21

Maxwell Levin

November 14, 2018

Question 1.

You roll three fair dice. Let X be the minimum and let Y be the median.

(a) Use a two-way table to show the joint pmf of X and Y.

We construct the following table:

	X = 1	X = 2	X = 3	X = 4	X = 5	X = 6
Y = 1	$16/6^{3}$	0	0	0	0	0
Y=2	$27/6^{3}$	$13/6^{3}$	0	0	0	0
Y = 3	$21/6^{3}$	$21/6^{3}$	$10/6^{3}$	0	0	0
Y=4	$15/6^{3}$	$15/6^{3}$	$15/6^{3}$	$7/6^{3}$	0	0
Y=5	$9/6^{3}$	$9/6^{3}$	$9/6^{3}$	$9/6^{3}$	$4/6^{3}$	0
Y=6	$3/6^{3}$	$3/6^{3}$	$3/6^{3}$	$3/6^{3}$	$3/6^{3}$	$1/6^{3}$

(b) Find $Pr\{X + Y \leq 4\}$.

To find this probability we can take $\sum f_{X,Y}(x,y)$ over all (x,y) such that $x+y\leq 4$. Doing so we see that

$$Pr\{X+Y \le 4\} = \frac{16}{6^3} + \frac{27}{6^3} + \frac{13}{6^3} + \frac{21}{6^3} = \frac{77}{216} \approx 0.356.$$

(c) Find the marginal pmf of X, E[X], and Var[X].

We can calculate the marginal pmf of X by taking the sum of all the values in the columns for $X=1, X=2, \ldots, X=6$. Doing so we see that

$$f_X(x) = \begin{cases} 91/6^3, & \text{if } x = 1; \\ 61/6^3, & \text{if } x = 2; \\ 37/6^3, & \text{if } x = 3; \\ 19/6^3, & \text{if } x = 4; \\ 7/6^3, & \text{if } x = 5; \\ 1/6^3, & \text{if } x = 6; \\ 0, & \text{otherwise.} \end{cases}$$

We can calculate E[X] by taking the sum $\sum_{1}^{6} x f_{X}(x)$. Doing so we see that

$$E[X] = 1\left(\frac{91}{6^3}\right) + 2\left(\frac{61}{6^3}\right) + 3\left(\frac{37}{6^3}\right) + 4\left(\frac{19}{6^3}\right) + 5\left(\frac{7}{6^3}\right) + 6\left(\frac{1}{6^3}\right),$$

$$E[X] = \frac{441}{216} = \frac{49}{24} \approx 2.042.$$

We now calculate $Var[X] = E[X^2] + E[X]^2$ by first taking

$$E[X^{2}] = 1^{2} \left(\frac{91}{6^{3}}\right) + 2^{2} \left(\frac{61}{6^{3}}\right) + 3^{2} \left(\frac{37}{6^{3}}\right) + 4^{3} \left(\frac{19}{6^{3}}\right) + 5^{3} \left(\frac{7}{6^{3}}\right) + 6^{3} \left(\frac{1}{6^{3}}\right),$$

$$E[X^{2}] = \frac{1183}{216} \approx 5.477.$$

We can now calculate Var[X] by

$$Var[X] = \frac{1183}{216} - \left(\frac{49}{24}\right)^2 \approx 1.308.$$

(d) Find the marginal pmf of Y, E[Y], and Var[Y].

We can calculate the marginal pmf of Y by taking the sum of all the values in the rows for Y = 1, Y = 2, ..., Y = 6. Doing so we see that

$$f_Y(y) = \begin{cases} 16/6^3, & \text{if } y = 1; \\ 40/6^3, & \text{if } y = 2; \\ 52/6^3, & \text{if } y = 3; \\ 52/6^3, & \text{if } y = 4; \\ 40/6^3, & \text{if } y = 5; \\ 16/6^3, & \text{if } y = 6; \\ 0, & \text{otherwise.} \end{cases}$$

We can calculate E[Y] by taking the sum $\sum_{1}^{6} y f_{Y}(y)$. Doing so we see that

$$E[Y] = 1\left(\frac{16}{6^3}\right) + 2\left(\frac{40}{6^3}\right) + 3\left(\frac{52}{6^3}\right) + 4\left(\frac{52}{6^3}\right) + 5\left(\frac{40}{6^3}\right) + 6\left(\frac{16}{6^3}\right),$$
$$E[Y] = \frac{756}{216} = \frac{7}{2} = 3.5.$$

We now calculate $E[Y^2]$ by first taking

$$E[Y^2] = 1^2 \left(\frac{16}{6^3}\right) + 2^2 \left(\frac{40}{6^3}\right) + 3^2 \left(\frac{52}{6^3}\right) + 4^3 \left(\frac{52}{6^3}\right) + 5^3 \left(\frac{40}{6^3}\right) + 6^3 \left(\frac{16}{6^3}\right),$$

$$E[Y^2] = \frac{3052}{216} = \frac{763}{54} \approx 5.477.$$

We can now calculate Var[Y] by

$$Var[Y] = E[Y^2] - E[Y]^2 = \frac{763}{54} - 3.5^2 \approx 1.879.$$

(e) Find the conditional pmf of Y given X = x, x = 1, 2, 3, 4, 5, 6.

Note that the conditional pmf of Y given X = x is given by the following expression

$$f_{y|X}(y|X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

So then we would have

$$f_{y|X}(y|X = 1) = \frac{f_{X,Y}(1,y)}{f_X(1)},$$

$$f_{y|X}(y|X = 2) = \frac{f_{X,Y}(2,y)}{f_X(2)},$$

$$\vdots$$

$$f_{y|X}(y|X = 6) = \frac{f_{X,Y}(6,y)}{f_X(6)},$$

as our pmf's of Y given X. This would take up a lot of space to write out by hand, so what we can instead do is write up our results in a matrix, where each column represents the distribution of Y given X = x for x = 1, 2, ..., 6. We do this below:

	$f_{y X}(y X=1)$	$f_{y X}(y X=2)$	$f_{y X}(y X=3)$	$f_{y X}(y X=4)$	$f_{y X}(y X=5)$	$f_{y X}(y X=6)$
Y=1	16/91	0	0	0	0	0
Y=2	27/91	13/61	0	0	0	0
Y=3	21/91	21/61	10/37	0	0	0
Y=4	15/91	15/61	15/37	7/19	0	0
Y=5	9/91	9/61	9/37	9/19	4/7	0
Y=6	3/91	3/61	3/37	3/19	3/7	1

(f) Are X and Y independent? Justify your answer.

No. There are plenty of cases where $f_{x,Y}(x,y) \neq f_X(x) f_Y(y)$. Consider one such example where X = 2, Y = 1. In this case we have

$$f_{X,Y}(2,1) = 0,$$

 $f_X(2)f_Y(1) = \left(\frac{61}{6^3}\right) \left(\frac{16}{6^3}\right),$

which are clearly not equal. Thus x and Y are not independent.

(g) Find the correlation coefficient, $\rho(X, Y)$.

Recall that we calculate $\rho(X,Y)$ by

$$\rho(x,Y) = \frac{Cov(X,Y)}{\sigma_x \sigma_y},$$

and that

$$Cov(X,Y) = E[XY] - \mu_x \mu_y.$$

To calculate E[XY] we can calculate

$$E[XY] = \sum_{x=1}^{6} \sum_{y=1}^{6} xy f_{X,Y}(x,y),$$

which we can calculate by using our table in part (a). Doing so we find that

$$E[XY] = \frac{1756}{216} = \frac{439}{54} \approx 8.130,$$

$$Cov(X,Y) = \frac{439}{54} - \left(\frac{49}{24}\right)\left(\frac{7}{2}\right) \approx 0.984,$$

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}} \approx 0.627.$$