CS & IT

ENGINEERING

Digital Logic Minimization Lecture No. 2

By- CHANDAN SIR

TOPICS TO
BE
COVERED

01 QUESTION PRACTICE

04 DUAL & SELF DUAL

05 DISCUSSION

Pistribution Theorem

$$A+BCD = (A+B)(A+C)$$

$$A+BCD = (A+B)(A+C)(A+D)$$

Concensus Theorem

$$AB+Ac+Bc=AB+Ac$$

 $\overline{XY}+\overline{XZ}+\overline{YZ}=\overline{XZ}+\overline{YZ}$

of Transpose Theorem

$$(A+B)(\overline{A}+c) = Ac+\overline{AB}$$

$$\frac{1}{2}(A+B)(\overline{A}+\overline{B}) = A\overline{B}+\overline{A}B = A\overline{B}B$$

Ex.
$$(\overline{A}+\overline{B})(\overline{A}+\overline{B}) = \overline{A}\overline{B}+AB = AOB$$

Pw

De-Morgan's Law

$$\overline{ABC} = \overline{A} + \overline{B} + \overline{c}$$

Find the minimum number of the NAND gate required to implement the Boolean function given below:

$$f(A, B, C) = A + ABC + AB\overline{C}$$
$$= ACI+BC+B\overline{C}$$
$$= A$$

Minimize the expression:

$$f(A, B) = A + AB$$

$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + AB$$

$$= \overline{A} + \overline{A}$$

Minimize the expression.

$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + A\overline{B} + AB$$

$$A + \overline{A} =$$

Minimize the expression.

$$f(A, B) = \overline{A}B + A\overline{B} - A \oplus C$$

Already minimized

$$f(A_1B) = \overline{AB} + AB$$

Already minimized

$$Q = f(A_1B_1C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \sum m(1,2,4,7)$$

Already minimized

J(A,B,C) = ABC+ ABC+ ABC+ ABC+ ABC+ ABC+ ABC+ ABC

Minimize the expression.

$$f(A, B) = AB + \overline{AC} + BC$$

$$f(0,A) = \frac{01}{A} + \frac{10}{B} + \frac{11}{B} = \frac{2}{B} = \frac{2}{B} + \frac{11}{B} = \frac{2}{B} = \frac{2}{B}$$

Minimize the expression.

$$f(A, B, C) = \overline{A} \overline{B} + \overline{A}C + \overline{B} \overline{C}$$

Arg

Redundant term = AB

Minimize the expression.

$$f(A, B, C) = (A + B)(A + C)(\overline{B} + C)$$

SOP form

Write the function for truth table and minimize it.

TUPUT		OUTPUT
A	В	Y(0/p)
0	0	1
0	1	0
1	0	1 ~
1	1	1 '

$$Y = \overline{AB} + \overline{AB} +$$

Write the function for truth table and minimize it.

A	В	Y(O/p)
0	0	С
0	1	C
1	0	1
1	1	1

Two way switch is a example of which logic?

B OR

If we have '4' variable, then total different expression will be?

$$2^{2^{1}} = 2^{2} = 2^{16} = 2^{6} \cdot 2^{10} = 64k$$

$$= 64k$$

$$2^{20} = M$$

$A + BC + \bar{A}C$ is equal to

(a)
$$(A + B) \times$$

(b)
$$(A + B) (B + C)$$

(c)
$$(A + B)(\bar{A} + C) = A(+\bar{A}B)$$

(d)
$$C(\bar{A} + B)$$

C

$$\bar{A}B + AC + \bar{B}C$$
 is equivalent to

(a)
$$\bar{A}B + AC$$

(b)
$$\bar{A}B + C$$

(c)
$$AC + \bar{B}C$$

(d)
$$\bar{A}B + \bar{B}C$$

$$(\bar{A} + \bar{B})(\bar{B} + \bar{C})$$
 is equal to

(a)
$$\bar{B}(A+C)$$

(b)
$$A(B+C)$$

(c)
$$B(A+C)$$

(d)
$$C(A+B)$$

$$\bar{A}\bar{B} + AC + \bar{B}C$$
 is equivalent to

(a)
$$(A + \overline{B}) \cdot (\overline{A}\overline{B} + C)$$

(b)
$$\bar{A}\bar{B} + AC$$

(c)
$$AC + \bar{B}C$$

(d)
$$\bar{A}\bar{B} + \bar{B}C$$

 $(A + B) (A + C) (A + \overline{C})$ is equivalent to

- (a) A + BC
- (b) $A + B\overline{C}$
- (c) 0
- (d) A

A logical function is given as:

$$f(A, B, C) = B\bar{C}[A + B\bar{C}D + \bar{B}CD + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C}]$$

is equivalent to

- (a) $A\overline{B}CD$
- (b) BC
- (c) $A\overline{B} + B\overline{C} + CD$
- (d) ABCD

A logical function

$$f(A, B, C) = (A + B)(\overline{B} + C)(A + C)$$
, then will be equal to

(a)
$$AB + \overline{B}C$$

(b)
$$\overline{AB} + B\overline{C}$$

(c)
$$\overline{AB} + \overline{AC}$$

(d)
$$AB + AC$$

Which of the following is true?

(a)
$$\overline{\overline{A}B + A\overline{B}} = (\overline{A} + \overline{B})(A + B)$$

(b)
$$\overline{ABCD} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

(c)
$$\overline{\overline{AB}.C} = (A + \overline{C})(\overline{B} + \overline{C})$$

(d) None of these

A logical function

$$f(A, B, C) = (A + B)(\overline{B} + C)(A + C)$$
, then will be equal to

(a)
$$AB + \overline{B}C$$

(b)
$$\overline{AB} + B\overline{C}$$

(c)
$$\overline{AB} + \overline{AC}$$

(d)
$$AB + AC$$

Laws of Boolean Algebra

BOOLEAN ALGEBRA

Thank you

Seldiers!

