18.404/6.840 Lecture 19

shrink me →

Last time:

- Review $LADDER_{DFA} \in PSPACE$
- Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- TQBF is PSPACE-complete

Today:

- Games and Quantifiers
- The Formula Game
- Generalized Geography is PSPACE-complete
- Logspace: Land NL

Games and Complexity

Generalized Geography Game

Played on any directed graph.
Players take turns picking nodes that form a simple path.
The first player stuck loses.

Defn: $GG = \{\langle G, a \rangle | \text{ Player I has a } \underline{\text{forced win}} \text{ in } Generalized Geography on graph } G \text{ starting at node } a \}.$

"forced win" also called a "winning strategy" means that the player will win if both players play optimally.

Theorem: *GG* is PSPACE-complete

Oregon

Check-in 19.1

Games and Quantifiers

The Formula Game

There are two Players " \exists " and " \forall ".

Given QBF $\phi = \exists x_1 \ \forall x_2 \ \exists x_3 \ \cdots (\exists / \forall) x_k \ [\ (\cdots) \land \cdots \land (\cdots) \]$

Player \exists assigns values to the \exists -quantified variables.

Player \forall assigns values to the \forall -quantified variables.

The players choose the values according to the order of the quantifiers in ϕ .

After all variables have been assigned values, we determine the winner: Player \exists wins if the assignment satisfies ψ .

Player ∀ wins if not.

Claim: Player \exists has a forced win in the formula game on ϕ iff ϕ is TRUE. Therefore $\{\langle \phi \rangle | \text{ Player } \exists \text{ has a forced win on } \phi\} = TQBF$.

Next: show $TQBF \leq_P GG$.

Check-in 19.2

Which player has a winning strategy in the formula game on

$$\phi = \exists x \, \forall y \, [(x \vee y) \wedge (\overline{x} \vee \overline{y})]$$

- (a) ∃-player
- ∀-player
- Neither player

GG is PSPACE-complete

Theorem: GG is PSPACE-complete

Proof: 1) $GG \in PSPACE$ (recursive algorithm, exercise)

2) $TQBF \leq_{\mathbf{P}} GG$

Give reduction f from TQBF to GG. $f(\langle \phi \rangle) = \langle G, a \rangle$

Construct G to mimic the formula game on ϕ .

G has Players I and II

Player I plays role of \exists -Player in ϕ . Ditto for Player II and the \forall -Player.

$$\phi = \exists x_1 \ \forall x_2 \ \exists x_3 \ \cdots (\exists / \forall) x_k \ [\ (\cdots) \land \cdots \land (\cdots) \]$$

$$\downarrow f$$

$$G =$$
assume in cnf

Constructing the GG graph G

Illustrate construction by example

Endgame

∃ should win if assignment satisfied all clauses ∀ should win if some unsatisfied clause

Implementation

∀ picks clause node claimed unsatisfied ∃ picks literal node claimed to satisfy the clause liar will be stuck

Log space

To define sublinear space computation, do not count input as part of space used. Use 2-tape TM model with read-only input tape.

Defn: L = SPACE(
$$\log n$$
)
NL = NSPACE($\log n$)

Log space can represent a constant number of pointers into the input.

Examples

- $\{ww^{\mathcal{R}} \mid w \in \Sigma^*\} \in \mathsf{L}$
- $PATH \in NL$

Nondeterministically select the nodes of a path connecting s to t.

L = NL? Unsolved

NL

Log space properties

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state,

 p_1 and p_2 are the tape head positions, and t is the tape contents.

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Therefore M runs in polynomial time.

Conclusion: $A \in P$

Theorem: $NL \subseteq SPACE(\log^2 n)$

Proof: Savitch's theorem works for log space

NL properties

Theorem: NL ⊆ P

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for *M* on *w*

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from $c_{\rm start}$ to $c_{\rm accept}$

Polynomial time algorithm *T* for *A*:

T = "On input w

- 1. Construct the $G_{M,w}$.
- 2. Accept if there is a path from $c_{\rm start}$ to $c_{\rm accept}$. Reject if not."

Quick review of today

- 1. The Formula Game
- 2. Generalized Geography is PSPACE-complete
- 3. Log space: L and NL
- 4. Configuration graph
- 5. NL ⊆ P