Chapter 8 Plane Electromagnetic Waves

VE230 Summer 2021 Sung-Liang Chen

8-1 Introduction

In Chap. 7, homogeneous vector wave equations

$$\nabla^2 \mathbf{E} - \frac{1}{u^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0.$$

where
$$u = 1/\sqrt{\mu\epsilon}$$
,

• In free space the source-free wave equation

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0,$$

where
$$c=\frac{1}{\sqrt{\mu_0\epsilon_0}}\cong 3\times 10^8\,\mathrm{(m/s)}=300\,\mathrm{(Mm/s)}$$

2

Plane Wave

- Waves with one-dimensional spatial dependence
- A uniform plane wave:
 - a particular solution of Maxwell's equations
 - E (or H) with the same direction, same magnitude, and same phase in infinite planes perpendicular to the direction of propagation.
- If we are far enough away from a source, the wavefront (surface of constant phase) becomes almost spherical; and a very small portion of the surface of a giant sphere is very nearly a plane.

8-2 Plane Waves in Lossless Media

• Wave equation for source free, in free space:

Homogeneous vector Helmholtz's equation

$$\nabla^2\mathbf{E}+k_0^2\mathbf{E}=0,$$

where k_0 : free-space wavenumber

$$k_0 = \omega \sqrt{\mu_0 \epsilon_0} = \frac{\omega}{c}$$
 (rad/m).

In Cartesian coordinates

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k_0^2\right) E_x = 0.$$

1D wave equation

Consider a uniform plane wave: uniform E, (uniform magnitude and constant phase) over plane surfaces $\perp z$

$$E_x$$
 uniform in x and y; $E_x(z) \rightarrow \partial^2 E_x/\partial x^2 = 0$

$$\partial^2 E_x/\partial x^2 = 0$$

and

$$\partial^2 E_x/\partial y^2 = 0.$$

$$\frac{d^2 E_x}{dz^2} + k_0^2 E_x = 0,$$

 E_x : a phasor $^{2^{nd}}$ -order ODE \rightarrow 2 integration constants

Solution

$$E_x(z) = E_x^+(z) + E_x^-(z) = E_0^+ e^{-jk_0z} + E_0^- e^{jk_0z}.$$

 E_0^+ , E_0^- : arbitrary complex constants, to be determined by boundary conditions

$$E_x(z) = \frac{E_x^+(z) + E_x^-(z)}{E_0^+ e^{-jk_0 z} + E_0^- e^{jk_0 z}},$$

Check time-dependent E_x (Phasor \rightarrow time domain)

$$\frac{E_x^+(z,t)}{= \Re e[E_x^+(z)e^{j\omega t}]} = \Re e[E_0^+e^{j(\omega t - k_0 z)}]$$
$$= E_0^+\cos(\omega t - k_0 z)$$

FIGURE 8-1 Wave traveling in positive z direction $E_x^+(z, t) = E_0^+ \cos(\omega t - k_0 z)$, for several values of t.

(V/m).

6

 Phase velocity: the velocity of propagation of a point of a particular phase on the wave

$$\cos (\omega t - k_0 z) = \text{a constant}$$

$$\omega t - k_0 z = \underline{\text{A constant phase,}}$$

$$u_p = \frac{dz}{dt} = \frac{\omega}{k_0} = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c.$$

FIGURE 8-1 Wave traveling in positive z direction $E_x^+(z,t) = E_0^+ \cos(\omega t - k_0 z)$, for several values of t.

7

$$u_p = \frac{dz}{dt} = \frac{\omega}{k_0} = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c.$$

Wavenumber: The number of wavelength in a complete cycle $k_0 = \frac{2\pi}{\lambda_0}$

$$k_0 = \frac{2\pi}{\lambda_0} \quad \text{(rad/m)},$$

Inverse relation
$$\lambda_0 = \frac{2\pi}{k_0}$$
 (m).

For lossless dielectrics:

$$k=2\pi/\lambda$$

$$\lambda$$
=2 π /k

$$E_0^+ e^{-jk_0z}$$
 A wave traveling in the +z direction $u_p = \frac{dz}{dt} = \frac{\omega}{k_0} > 0$

 $E_0^- e^{jk_0z}$. A wave traveling in the -z direction

The Associated Magnetic Fields H

Э

The only nonzero component H_{ν}^{+}

$$H_{y}^{+}=\frac{1}{-j\omega\mu_{0}}\frac{\partial E_{x}^{+}(z)}{\partial z},$$

$$E_x^+(z) = E_0^+ e^{-jk_0 z}$$

$$\frac{\partial E_x^+(z)}{\partial z} = \frac{\partial}{\partial z} (E_0^+ e^{-jk_0 z}) = -jk_0 E_x^+(z),$$

$$H_{y}^{+}(z) = \frac{k_{0}}{\omega \mu_{0}} E_{x}^{+}(z) = \frac{1}{\eta_{0}} E_{x}^{+}(z)$$
 (A/m).

where

$$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \cong 120\pi \cong 377 \qquad (\Omega),$$

intrinsic impedance of the free space

 η_0 is real \Rightarrow $H_y^+(z)$ is in phase with $E_x^+(z)$

Check time-domain **H**
$$\mathbf{H}(z,t) = \mathbf{a}_y H_y^+(z,t) = \mathbf{a}_y \mathcal{R}e[H_y^+(z)e^{i\omega t}]$$

$$= \mathbf{a}_y \frac{E_0^+}{\eta_0} \cos{(\omega t - k_0 z)} \qquad (A/m).$$

For a Uniform Plane Wave

- $|E|/|H|=\eta_0$
- H, E, and the direction of propagation are perpendicular to each other.

EXAMPLE 8-1 A uniform plane wave with $E = a_x E_x$ propagates in a lossless simple medium ($\epsilon_r = 4$, $\mu_r = 1$, $\sigma = 0$) in the +z-direction. Assume that E_x is sinusoidal with

- a frequency 100 (MHz) and has a maximum value of $+10^{-4}$ (V/m) at t=0 and
- $z = \frac{1}{8}$ (m).

c) Determine the locations where E_x is a positive maximum when $t = 10^{-8}$ (s).

b) Write the instantaneous expression for H.

- a) Write the instantaneous expression for E for any t and z.

$$\lambda = \frac{3}{2}(m)$$

$$H(z, 0) = \mathbf{a}_y E_X(z, 0)/\eta$$

 $E(z, 0) = a_x 10^{-4} \cos \frac{4\pi}{3} \left(z - \frac{1}{8}\right)$

FIGURE 8-2 E and H fields of a uniform plane wave at t = 0 (Example 8-1).

8-2.1 Doppler Effect (excluded)

8-2.2 Transverse Electromagnetic Waves

- For a uniform plane wave, we have seen
 - $\mathbf{E} = \mathbf{a}_{\mathbf{x}} E_{\mathbf{x}}$; $\mathbf{H} = \mathbf{a}_{\mathbf{v}} H_{\mathbf{v}}$; direction of propagation in z
 - E and H are transvers to the direction of propagation, so it is called transverse electromagnetic (TEM) wave
 - Phasors E and H are functions of z only
- General case: Consider a uniform plane wave along an arbitrary direction (not necessarily coincide with a coordinate axis)

For a uniform plane wave

$$\mathbf{E}(z) = \mathbf{E}_0 e^{-jkz},$$

Propagating in the +z direction

General case
$$\mathbf{E}(x, y, z) = \mathbf{E}_0 e^{-jk_x x - jk_y y - jk_z z}$$

Propagating in the +x, +y, +z direction

Substitution in Helmholtz's equation

$$\nabla^2 \mathbf{E} + k_0^2 \mathbf{E} = 0,$$

$$\nabla^2 \mathbf{E} + k_0^2 \mathbf{E} = 0,$$

$$k_x^2 + k_y^2 + k_z^2 = \omega^2 \mu \epsilon.$$

$$\mathbf{E}(\mathbf{R}) = \mathbf{E}_0 e^{-j\mathbf{k} \cdot \mathbf{R}} = \mathbf{E}_0 e^{-jk\mathbf{a}_n \cdot \mathbf{R}} \qquad (V/m),$$

 a_n : unit vector of k; direction of propagation (explained next)

FIGURE 8-4
Radius vector and wave normal to a phase front of a

FIGURE 8-4 Radius vector and wave normal to a phase front of a uniform plane wave.

 $\mathbf{a} \cdot \mathbf{R} = \text{Length } \overline{OP}$ (a constant)

$$\mathbf{E}(\mathbf{R}) = \mathbf{E}_0 e^{-j\mathbf{k} \cdot \mathbf{R}} = \mathbf{E}_0 e^{-j\mathbf{k}_{\mathbf{n}} \cdot \mathbf{R}}$$
(V/m),
= phase

For constant phase, $\mathbf{a}_n \cdot \mathbf{R} = \text{constant} = \overline{OP}$ $\mathbf{R} \text{ forms a constant-phase plane}$ $\mathbf{a}_n // \widehat{n} \text{ of constant-phase plane} // \text{direction of propagation}$

In a charge-free region, $\nabla \cdot \mathbf{E} = 0$

$$\begin{split} \mathbf{E}(\mathbf{R}) &= \mathbf{E}_0 e^{-j\mathbf{k} \cdot \mathbf{R}} = \mathbf{E}_0 e^{-jk\mathbf{a}_n \cdot \mathbf{R}} \\ \nabla \cdot (\mathbf{E}_0 \, e^{-jk \cdot \mathbf{R}}) &= e^{-jk \cdot \mathbf{R}} \nabla \cdot \mathbf{E}_0 + \mathbf{E}_0 \cdot \nabla (e^{-jk \cdot \mathbf{R}}) \\ \mathbf{E}_0 \cdot \nabla (e^{-jk\mathbf{a}_n \cdot \mathbf{R}}) &= 0. \\ \nabla (e^{-jk\mathbf{a}_n \cdot \mathbf{R}}) &= \left(\mathbf{a}_x \frac{\partial}{\partial x} + \mathbf{a}_y \frac{\partial}{\partial y} + \mathbf{a}_z \frac{\partial}{\partial z}\right) e^{-j(k_x x + k_y y + k_x z)} \\ &= -j(\mathbf{a}_x k_x + \mathbf{a}_y k_y + \mathbf{a}_z k_z) e^{-j(k_x x + k_y y + k_z z)} \\ &= -jk\mathbf{a}_n e^{-jk\mathbf{a}_n \cdot \mathbf{R}}, \\ -jk(\mathbf{E}_0 \cdot \mathbf{a}_n) e^{-jk\mathbf{a}_n \cdot \mathbf{R}} &= 0, \end{split}$$
 which requires $\mathbf{a}_n \cdot \mathbf{E}_0 = 0.$

Thus, for a plane-wave solution, $\mathbf{E_0} \perp \mathbf{a_n}$

The Associated Magnetic Fields H

$$\begin{split} \mathbf{\nabla} \times \mathbf{E} &= -j\omega\mu\mathbf{H}, \\ \mathbf{H}(\mathbf{R}) &= -\frac{1}{j\omega\mu} \mathbf{\nabla} \times \mathbf{E}(\mathbf{R}) \\ &\qquad \qquad \mathbf{\nabla} \times \mathbf{E} = ? \qquad \qquad \nabla \times (\psi\mathbf{A}) = \psi\nabla \times \mathbf{A} + \nabla\psi \times \mathbf{A} \\ \mathbf{E}(\mathbf{R}) &= \mathbf{E}_0 e^{-j\mathbf{k} \cdot \mathbf{R}} = \mathbf{E}_0 e^{-j\mathbf{k}\mathbf{a}_n \cdot \mathbf{R}} \end{split}$$

$$\mathbf{H}(\mathbf{R}) &= \frac{1}{\eta} \mathbf{a}_n \times \mathbf{E}(\mathbf{R}) \qquad (\mathbf{A}/\mathbf{m}), \end{split}$$
 where
$$\mathbf{\eta} = \frac{\omega\mu}{k} = \sqrt{\frac{\mu}{\epsilon}} \qquad (\Omega) \qquad \text{the intrinsic impedance of the medium}$$

$$\mathbf{H}(\mathbf{R}) = \frac{1}{\eta} \mathbf{a}_{n} \times \mathbf{E}(\mathbf{R})$$
 (A/m),

$$\mathbf{E}(\mathbf{R}) = \mathbf{E}_0 e^{-j\mathbf{k}\cdot\mathbf{R}} = \mathbf{E}_0 e^{-jk\mathbf{a}_n\cdot\mathbf{R}}$$

$$\mathbf{H}(\mathbf{R}) = \frac{1}{\eta} (\mathbf{a}_n \times \mathbf{E}_0) e^{-jk\mathbf{a}_n \cdot \mathbf{R}} \qquad (A/m).$$

A uniform plane wave propagating in an arbitrary direction, a_n:

- a TEM wave
- H⊥E; H⊥a_n; E⊥a_n

8-2.3 Polarization of Plane Waves

- Polarization of a uniform plane wave: time-varying behavior of E vector at a given point in space.
 - E.g., $\mathbf{E} = \mathbf{a}_{\mathbf{x}} \mathbf{E}_{\mathbf{x}}$, the wave is linearly polarized in x direction

- In some cases, direction of **E** of a plane wave may change with time
- Two linearly polarized waves in x and y direction

Phasor notation:
$$\mathbf{E}(z) = \mathbf{a}_x E_1(z) + \mathbf{a}_y E_2(z)$$

$$= \mathbf{a}_x E_{10} e^{-jkz} - \mathbf{a}_y j E_{20} e^{-jkz},$$

$$E_{10}, E_{20} : \text{real numbers, denoting amplitudes}$$

Time-domain expression:
$$\begin{split} \mathbf{E}(z,t) &= \mathscr{R}e\{\left[\mathbf{a}_x E_1(z) + \mathbf{a}_y E_2(z)\right] e^{j\omega t}\} \\ &= \mathbf{a}_x E_{10} \cos\left(\omega t - kz\right) + \mathbf{a}_y E_{20} \cos\left(\omega t - kz - \frac{\pi}{2}\right). \end{split}$$

- Examine the direction change of **E** at a given point as *t* changes (*z* = 0 for convenience)
 - E(0, t) = $\mathbf{a}_x E_1(0, t) + \mathbf{a}_y E_2(0, t)$ = $\mathbf{a}_x E_{10} \cos \omega t + \mathbf{a}_y E_{20} \sin \omega t$.

E(0, t): the sum of two linearly polarized waves in both space quadrature (\mathbf{a}_x and \mathbf{a}_y) and time quadrature ($\cos \omega t$ and $\sin \omega t$)

As ωt increases, E(0, t) will traverse an elliptical locus in the counterclockwise direction

$$\begin{aligned} \mathbf{E}(0, t) &= \mathbf{a}_{x} E_{1}(0, t) + \mathbf{a}_{y} E_{2}(0, t) \\ &= \mathbf{a}_{x} E_{10} \cos \omega t + \mathbf{a}_{y} E_{20} \sin \omega t. \end{aligned}$$

If
$$E_{20} = E_{10}$$
, circular polarization

And the angle
$$\alpha=\tan^{-1}\frac{E_2(0,\,t)}{E_1(0,\,t)}=\omega t,$$

$$\cos \omega t = \frac{E_1(0, t)}{E_{10}}$$
$$\sin \omega t = \frac{E_2(0, t)}{E_{10}}$$

 $\mathbf{E}(0, t)$ rotates counterclockwise

Right-hand (positive) circularly polarized wave:

- finger: direction of rotation of E
- thumb: direction of propagation (+z)

For **a_v** lags 90°

Left-hand (negative) circularly polarized wave:

For **a**_v leads 90°

FIGURE 8-5 Polarization diagrams for sum of two linearly polarized waves in space quadrature at z=0: (a) circular polarization, $E(0, t) = E_{10}(\mathbf{a}_x \cos \omega t + \mathbf{a}_y \sin \omega t)$;

E(0,t): the sum of two linearly polarized waves in space quadrature (a_x) and a_y) but in time phase

$$\mathbf{E}(0,t) = (\mathbf{a}_x E_{10} + \mathbf{a}_y E_{20}) \cos \omega t.$$

tip at
$$P_1$$
 when $t = 0$;
tip at origin O when $\omega t = \pi/2$;
tip at P_2 when $\omega t = \pi$
Linear polarization

FIGURE 8-5

Polarization diagrams for sum of two linearly polarized waves in space quadrature at z = 0:

(b) linear polarization,

$$\mathbf{E}(0, t) = (\mathbf{a}_x E_{10} + \mathbf{a}_y E_{20}) \cos \omega t.$$

Polarizations

- AM broadcast station:
- Television signals: ←→
- FM broadcast stations:
- Receiving antennas should have similar orientation to get the best signals

8-3 Plane Waves in Lossy Media

• Wave equation for source free and in lossy media:

$$k \rightarrow k_c$$

$$\nabla^2 \mathbf{E} + k_c^2 \mathbf{E} = 0,$$

$$k_c = \omega \sqrt{\mu \epsilon_c} \quad \text{A complex number}$$

Conventional notation in transmission-line theory: propagation constant γ

$$\gamma = jk_c = j\omega\sqrt{\mu\epsilon_c} \qquad (\mathrm{m}^{-1}).$$
 γ is complex
$$k_c = \omega\sqrt{\mu\epsilon_c} \\ = \omega\sqrt{\mu(\epsilon'-j\epsilon'')}$$

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon'} \left(1 - j\frac{\epsilon''}{\epsilon'}\right)^{1/2},$$
 A special case:
$$\epsilon'' = \sigma/\omega \qquad \qquad \epsilon_c = \epsilon - j\frac{\sigma}{\omega}$$

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} \left(1 + \frac{\sigma}{j\omega\epsilon}\right)^{1/2},$$

• For a lossless medium, $\sigma=0$

:α=0,

• Wave equation in lossy media expressed by γ :

$$\nabla^2 \mathbf{E} + k_c^2 \mathbf{E} = 0,$$
 $\nabla^2 \mathbf{E} - \gamma^2 \mathbf{E} = 0.$ $\gamma = jk_c$

- Solution of a uniform plane wave
 - ❖ Propagating in +z❖ Linearly polarized in x

$$\mathbf{E} = \mathbf{a}_x E_x = \mathbf{a}_x E_0 e^{\frac{-\gamma z}{\tau}},$$

$$\gamma = \alpha + j\beta$$

$$E_x = E_0 e^{\frac{-\alpha z}{\tau}} e^{-j\beta z}.$$
 Attenuation along +z

- $\alpha > 0$, $\beta > 0$
 - $e^{-\alpha z}$ decreases as z increases, so it is called attenuation factor (α : attenuation constant)
 - $\bullet e^{-j\beta z}$ determines the phase, so it is called phase factor (β : phase constant)

8-3.1 Low-Loss Dielectrics

- Low-loss dielectrics = good but imperfect insulator
 - Low $\sigma \rightarrow$ small current \rightarrow low loss
 - $\varepsilon'' << \varepsilon'$ (or $\sigma/\omega\varepsilon <<1$)

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon'}\left(1 - j\frac{\epsilon''}{\epsilon'}\right)^{1/2},$$
Binomial expansion
$$\varepsilon''/\varepsilon' << 1 \implies \text{neglect H.O.}$$

$$\gamma = \alpha + j\beta \cong j\omega\sqrt{\mu\epsilon'} \left[1 - j\frac{\epsilon''}{2\epsilon'} + \frac{1}{8}\left(\frac{\epsilon''}{\epsilon'}\right)^2\right],$$

$$\gamma = \alpha + j\beta \cong \underline{j}\omega\sqrt{\mu\epsilon'} \left[1 - \underline{j}\frac{\epsilon''}{2\epsilon'} + \frac{1}{8} \left(\frac{\epsilon''}{\epsilon'}\right)^2 \right],$$
 Attenuation constant
$$\alpha \cong \frac{\omega\epsilon''}{2} \sqrt{\frac{\mu}{\epsilon'}} \qquad (\mathrm{Np/m})$$
 Phase constant
$$\beta \cong \omega\sqrt{\mu\epsilon'} \left[1 + \frac{1}{8} \left(\frac{\epsilon''}{\epsilon'}\right)^2 \right] \qquad (\mathrm{rad/m}).$$

- α >0, α is proportional to ω
- When $\varepsilon''/\varepsilon' \rightarrow 0$, β reduces to the case of lossless dielectrics

The intrinsic impedance $\eta_c = (\mu/\varepsilon)^{1/2} = (\mu/(\varepsilon'-j\varepsilon''))^{1/2}$

$$\begin{split} \eta_c &= \sqrt{\frac{\mu}{\epsilon'}} \left(1 - j \frac{\epsilon''}{\epsilon'} \right)^{-1/2} \\ &\cong \sqrt{\frac{\mu}{\epsilon'}} \left(1 + j \frac{\epsilon''}{2\epsilon'} \right) \end{split} \quad (\Omega). \end{split}$$
 For $\varepsilon'' << \varepsilon'$

For a uniform plane wave $\eta_c = E_x/H_v$

- In lossless case, η is real, E_x and H_y are in time phase
- In low-loss case, η_c is complex, E_x/H_y are out of phase

The phase velocity
$$u_p = \omega/\beta$$

$$u_p = \frac{\omega}{\beta} \cong \frac{1}{\sqrt{\mu \epsilon'}} \left[1 - \frac{1}{8} \left(\frac{\epsilon''}{\epsilon'} \right)^2 \right] \qquad \text{(m/s)}.$$

$$\beta \cong \omega \sqrt{\mu \epsilon'} \left[1 + \frac{1}{8} \left(\frac{\epsilon''}{\epsilon'} \right)^2 \right]$$

8-3.2 Good Conductors

- A good conductor
 - $\sigma/\omega\varepsilon >> 1$

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} \left(1 + \frac{\sigma}{j\omega\epsilon}\right)^{1/2},$$

$$\sigma/\omega\epsilon >> 1$$

$$\sqrt{j} = (e^{j\pi/2})^{1/2} = e^{j\pi/4} = (1+j)/\sqrt{2}$$

$$\gamma \cong j\omega\sqrt{\mu\epsilon} \sqrt{\frac{\sigma}{j\omega\epsilon}} = \sqrt{j}\sqrt{\omega\mu\sigma} = \frac{1+j}{\sqrt{2}}\sqrt{\omega\mu\sigma}$$

$$\omega = 2\pi f.$$

$$\gamma = \alpha + j\beta \cong (1+j)\sqrt{\pi f\mu\sigma},$$

$$\gamma=\alpha+j\beta\cong(1+j)\sqrt{\pi f\mu\sigma},$$

$$\alpha=\beta=\sqrt{\pi f\mu\sigma}.$$
 α and β are approximately equal
$$\alpha,\ \beta^\sim f^{1/2},\ \mu^{1/2},\ \sigma^{1/2}$$

The intrinsic impedance $\eta_c = (\mu/\varepsilon)^{1/2} = (\mu/\varepsilon_c)^{1/2}$

$$\eta_c = \sqrt{\frac{\mu}{\epsilon_c}} \cong \sqrt{\frac{j\omega\mu}{\sigma}} = (1+j)\sqrt{\frac{\pi f\mu}{\sigma}} = (1+j)\frac{\alpha}{\sigma} \qquad (\Omega)$$

 $\varepsilon_{\rm c} \cong -j\sigma/\omega$ for a good conductor $(\sigma/\omega >> \varepsilon')$

For a uniform plane wave $\eta_c = E_x/H_y$

• For a good conductor ($\angle \eta_c = 45^\circ$), H_v lags E_x by 45°

The phase velocity $u_p = \omega/\beta$

$$u_p = \frac{\omega}{\beta} \cong \sqrt{\frac{2\omega}{\mu\sigma}}$$
 (m/s),

The wavelength of a plane wave

$$\lambda = \frac{2\pi}{\beta} = \frac{u_p}{f} = 2\sqrt{\frac{\pi}{f\mu\sigma}} \qquad \text{(m)}$$

Example: copper, f = 3MHz

1.
$$u_p$$

$$\sigma = 5.80 \times 10^7$$
 (S/m),
 $\mu = 4\pi \times 10^{-7}$ (H/m),

$$u_p = \frac{\omega}{\beta} \cong \sqrt{\frac{2\omega}{\mu\sigma}}$$
 (m/s),

$$u_p = 720 \, (\text{m/s})$$
 at 3 (MHz),

Much slower than the velocity of light in air

2. λ

$$\lambda = u_p/f$$

$$\lambda = 0.24 \, (mm)$$
.

Much shorter than electromagnetic wave in air (λ = 100m)

 $3. \alpha$

$$\alpha = \beta = \sqrt{\pi f \mu \sigma}$$
.

$$\alpha = \sqrt{\pi (3 \times 10^6)(4\pi \times 10^{-7})(5.80 \times 10^7)} = 2.62 \times 10^4$$
 (Np/m).

Very large attenuation

Skin Depth (Depth of Penetration)

- Attenuation: $e^{-\alpha z}$.
- When $z = 1/\alpha$, the intensity reduces to e^{-1}
 - \rightarrow The amplitude of a wave will be attenuated by a factor of e^{-1} (=
 - 0.368) when it travels a distance $\delta = 1/\alpha$ (skin depth)

$$\delta = \frac{1}{\alpha} = \frac{1}{\sqrt{\pi f \mu \sigma}} \qquad (m).$$

- For copper, f = 3MHz: $\delta = 1/\alpha = 1/(2.62 \times 10^4)$ (m) = 0.038 (mm)
- For copper, f = 10GHz: $\delta = 0.66$ (μ m) (very small distance)

- Thus, a high-frequency electromagnetic wave is attenuated very rapidly as it propagates in a good conductor. $\delta^{\sim} \frac{1}{\sqrt{F}}$
- At microwave frequencies, the fields and currents can be considered confined in a very thin layer (i.e., in the skin) of the conductor surface.
- For a good conductor, $\alpha = \beta$, $\delta = 1/\beta$ $\delta = \frac{1}{\beta} = \frac{\lambda}{2\pi}$ (m).

$$\delta = \frac{1}{\beta} = \frac{\lambda}{2\pi} \qquad \text{(m)}.$$

TABLE 8-1 Skin Depths, δ in (mm), of Various Materials

Material	σ (S/m)	$f = 60 (\mathrm{Hz})$	1 (MHz)	1 (GHz)
Silver	6.17×10^{7}	8.27 (mm)	0.064 (mm)	0.0020 (mm)
Copper	5.80×10^{7}	8.53	0.066	0.0021
Gold	4.10×10^{7}	10.14	0.079	0.0025
Aluminum	3.54×10^{7}	10.92	0.084	0.0027
Iron $(\mu_r \cong 10^3)$	1.00×10^{7}	0.65	0.005	0.00016
Seawater	4	32 (m)	0.25 (m)	t

EXAMPLE 8-4 The electric field intensity of a linearly polarized uniform plane wave propagating in the +z-direction in seawater is $E = a_x 100 \cos(10^7 \pi t)$ (V/m) at z = 0.

The constitutive parameters of seawater are $\epsilon_r = 72$, $\mu_r = 1$, and $\sigma = 4$ (S/m). (a) De-

termine the attenuation constant, phase constant, intrinsic impedance, phase velocity.

wavelength, and skin depth. (b) Find the distance at which the amplitude of E is 1% of its value at z = 0. (c) Write the expressions for E(z, t) and H(z, t) at z = 0.8 (m)

as functions of t

8-3.3 Ionized Gases (excluded)

8-4 Group Velocity

- Phase velocity: velocity of propagation of an equiphase wavefront
 - For plane waves in lossless media: β is a linear function of ω $\underline{\beta} = \omega \sqrt{\mu \epsilon}$
 - $\rightarrow u_p = 1/\sqrt{\mu\epsilon}$ a constant, independent of ω

$$u_p = \frac{\omega}{\beta}$$
 (m/s).

In some cases (e.g., in lossy dielectrics):
 β is not a linear function of ω

 $\rightarrow u_n(\omega)$

- Dispersion: signal distortion due to $u_p(\omega)$
 - Waves of the component frequencies travel with different phase velocities
 → a distortion in the signal wave shape
 - A lossy dielectric is a dispersive medium

medium

Waveform is changing with time when they propagate (i.e.,

distortion)

Group Velocity

- An information bearing signal has a small spread of frequencies (Δf) around a high carrier frequency (f_c).
- Group velocity u_g : the velocity of propagation of the wave-packet envelope of a group of frequencies

FIGURE 8-6 Sum of two time-harmonic traveling waves of equal amplitude and slightly different frequencies at a given t.

- Consider the simplest case of a wave packet
 - Two travelling waves with equal amplitude and slightly different angular frequencies $\omega_0 + \Delta \omega$ $\omega_0 - \Delta \omega$ $(\Delta\omega\ll\omega_0)$
 - → the corresponding phase constants

$$\beta_0 + \Delta \beta$$
 $\beta_0 - \Delta \beta$.

$$E(z, t) = E_0 \cos \left[(\omega_0 + \Delta \omega)t - (\beta_0 + \Delta \beta)z \right]$$

+ $E_0 \cos \left[(\omega_0 - \Delta \omega)t - (\beta_0 - \Delta \beta)z \right]$
= $2E_0 \cos \left(t \Delta \omega - z \Delta \beta \right) \cos \left(\omega_0 t - \beta_0 z \right).$

$$E(z,t) = E_0 \cos \left[(\omega_0 + \Delta \omega) t - (\beta_0 + \Delta \beta) z \right] \\ + E_0 \cos \left[(\omega_0 - \Delta \omega) t - (\beta_0 - \Delta \beta) z \right] \\ = 2E_0 \cos \left(t \Delta \omega - z \Delta \beta \right) \cos \left(\omega_0 t - \beta_0 z \right).$$
 A rapidly oscillating wave (ω_0) are group velocity
$$u_g = \frac{dz}{dt} = \frac{\Delta \omega}{\Delta \beta} = \frac{1}{\Delta \beta / \Delta \omega}.$$
 Velocity of the envelope
$$u_g = \frac{dz}{dt} = \frac{\omega_0}{\beta_0}.$$
 Velocity of the carrier
$$u_p = \frac{dz}{dt} = \frac{\omega_0}{\beta_0}.$$
 Velocity of the carrier of a point on the envelope of the wave packet

FIGURE 8-6 Sum of two time-harmonic traveling waves of equal amplitude and slightly different frequencies at a given t.

$$u_g = \frac{dz}{dt} = \frac{\Delta\omega}{\Delta\beta} = \frac{1}{\Delta\beta/\Delta\omega}.$$
 In the limit $\Delta\omega \to 0$ (narrow-band signal)

$$u_g = \frac{1}{d\beta/d\omega}$$
 (m/s).

 u_p : the slope drawn from the origin to a point u_q : local slope

FIGURE 8-7 ω - β graph for ionized gas.

• In an ionized medium:

8-3.3
$$\gamma = j\omega\sqrt{\mu\epsilon_0}\sqrt{1 - \left(\frac{f_p}{f}\right)^2},$$

$$\beta = \omega\sqrt{\mu\epsilon_0}\sqrt{1 - \left(\frac{f_p}{f}\right)^2}$$

$$= \frac{\omega}{c}\sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}.$$

- At $\omega = \omega_n$, $\beta = 0$.
- At $\omega > \omega_n$, wave propagation is possible

$$u_p = \frac{\omega}{\beta} = \frac{c}{\sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}}.$$

$$u_g = c\sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}.$$

$$u_g = c\sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}.$$

$$u_g = c\sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}.$$

• A general relation between u_a and u_p :

$$u_{p} = \frac{\omega}{\beta}$$

$$u_{g} = \frac{1}{d\beta/d\omega}$$

$$\frac{d\beta}{d\omega} = \frac{d}{d\omega} \left(\frac{\omega}{u_{p}}\right) = \frac{1}{u_{p}} - \frac{\omega}{u_{p}^{2}} \frac{du_{p}}{d\omega}$$

$$u_{g} = \frac{1}{d\beta/d\omega}$$

$$u_{g} = \frac{1}{d\beta/d\omega}$$

$$u_{g} = \frac{1}{d\beta/d\omega}$$

a) No dispersion:
$$\frac{du_p}{dc} = 0$$

$$u_{n}$$
 independent of ω

b) Normal dispersion:
$$\frac{du_p}{d\omega} < 0$$
 $u_g < 0$

$$u_p$$
 decreasing with ω

c) Anomalous dispersion:
$$\frac{du_p}{d\omega} > 0$$
 $u_g > u_p$. u_ρ increasing with ω

No dispersion:
$$\dfrac{du_p}{d\omega}=0$$
 $u_g=u_p.$ u_ρ independent of ω

Normal dispersion: $\frac{du_p}{d\omega} < 0$ $u_g < u_p$. u_ρ decreasing with ω

EXAMPLE 8-6 A narrow-band signal propagates in a lossy dielectric medium which

has a loss tangent 0.2 at 550 (kHz), the carrier frequency of the signal. The dielectric constant of the medium is 2.5. (a) Determine α and β . (b) Determine u_p and u_a . Is the

medium dispersive?

8-5 Flow of Electromagnetic Power and the Poynting Vector

- Electromagnetic waves carry with them electromagnetic power.
- Energy is transported through space to distant receiving points by electromagnetic waves.

Vector identity

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = \mathbf{H} \cdot (\nabla \times \mathbf{E}) - \mathbf{E} \cdot (\nabla \times \mathbf{H}).$$

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = -\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} - \mathbf{E} \cdot \mathbf{J}.$$

In a simple medium, whose ε , μ , and σ do not change with time

Product rule

$$\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} = \mathbf{H} \cdot \frac{\partial(\mu \mathbf{H})}{\partial t} = \frac{1}{2} \frac{\partial(\mu \mathbf{H} \cdot \mathbf{H})}{\partial t} = \frac{\partial}{\partial t} \left(\frac{1}{2} \mu H^2\right),$$

$$\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} = \mathbf{E} \cdot \frac{\partial(\epsilon \mathbf{E})}{\partial t} = \frac{1}{2} \frac{\partial(\epsilon \mathbf{E} \cdot \mathbf{E})}{\partial t} = \frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon E^2\right),$$

$$\mathbf{E} \cdot \mathbf{J} = \mathbf{E} \cdot (\sigma \mathbf{E}) = \sigma E^2.$$

$$\mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{H}) = -\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon E^2 + \frac{1}{2} \mu H^2 \right) - \sigma E^2,$$

$$\mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{H}) = -\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon E^2 + \frac{1}{2} \mu H^2 \right) - \sigma E^2,$$

Integration over the volume of concern & Divergence theorem

An integral form

$$\oint_{\mathcal{S}} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \int_{V} \left(\frac{1}{2} \epsilon E^{2} + \frac{1}{2} \mu H^{2} \right) dv - \int_{V} \sigma E^{2} dv,$$

The time-rate of change of the energy stored in the electric and magnetic fields, respectively

Ohmic power dissipation (due to conduction current)

Law of conservation of energy

- Right side: the rate of decrease of the electric and magnetic energies stored, subtracted by the ohmic power dissipated as heat in the volume V
- Left side: power (rate of energy) leaving the volume through its surface

Known as Poynting vector, a power density vector associated with electromagnetic field

Power flow per unit area

 $\mathcal{P} = \mathbf{E} \times \mathbf{H}$

 (W/m^2) .

 Poynting theorem: the surface integral of P (=E×H) over a closed surface = power leaving the enclosed volume

$$\oint_{S} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \int_{V} \left(\frac{1}{2} \epsilon E^{2} + \frac{1}{2} \mu H^{2} \right) dv - \int_{V} \sigma E^{2} dv,$$

Another form

$$-\oint_{S} \mathscr{P} \cdot d\mathbf{s} = \frac{\partial}{\partial t} \int_{V} (w_{e} + w_{m}) dv + \int_{V} p_{\sigma} dv,$$

$$w_e = \frac{1}{2} \epsilon E^2 = \frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E}^* = \text{Electric energy density},$$
 where $w_m = \frac{1}{2} \mu \mathbf{H}^2 = \frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H}^* = \mathbf{M}$ agnetic energy density, $p_\sigma = \sigma E^2 = J^2/\sigma = \sigma \mathbf{E} \cdot \mathbf{E}^* = \mathbf{J} \cdot \mathbf{J}^*/\sigma = \text{Ohmic power density}.$

The total power flowing into a closed surface at any instant
 the sum of rates of increase of the stored electric and magnetic energies and the ohmic power dissipated within the enclosed volume

$$-\oint_{S} \mathscr{P} \cdot d\mathbf{s} = \frac{\partial}{\partial t} \int_{V} (w_{e} + w_{m}) dv + \int_{V} p_{\sigma} dv,$$

- P (=E×H)
 - P⊥E, P⊥H
- Lossless case: $\sigma=0$
 - Right side: only the rate of increase of the stored electric and magnetic energies
- Static case: $\partial/\partial t = 0$
 - Right side: only the ohmic power dissipated in the enclosed volume

8-5.1 Instantaneous and Average Power Densities

• Phasor: $\mathbf{E}(z) = \mathbf{a}_x E_x(z) = \mathbf{a}_x E_0 e^{-(\alpha + j\beta)z}$,

 For a uniform plane wave propagating in a lossy medium in the +z direction, the H field:

Phasor
$$\mathbf{H}(z) = \mathbf{a}_y H_y(z) = \mathbf{a}_y \frac{E_0}{|\eta|} e^{-\alpha z} e^{-\frac{j(\beta z}{\theta_\eta} + \theta_\eta)},$$
 Due to lossy media, $\exp(-j\vartheta_\eta)$ The intrinsic impedance of the medium $\eta = |\eta| e^{j\theta_\eta}$ $+z$ propagation Instantaneous expression $\mathbf{H}(z,t) = \mathscr{R}e[\mathbf{H}(z)e^{j\omega t}] = \mathbf{a}_y \frac{E_0}{|\eta|} e^{-\alpha z} \cos{(\omega t - \beta z - \theta_\eta)}.$

$$\mathcal{R}_{e}[\mathbf{E}(z)e^{j\omega t}] \times \mathcal{R}_{e}[\mathbf{H}(z)e^{j\omega t}] \neq \mathcal{R}_{e}[\mathbf{E}(z) \times \mathbf{H}(z)e^{j\omega t}].$$

Or a·cos $\omega t \times b$ ·cos $\omega t \neq ab$ cos ωt

To get time-domain Poynting vector $\mathcal{P}(z, t)$, one cannot do the simple cross product of **E** and **H** in phasor domain and then change it to time-domain expression!

Method 1: check in time domain directly

Thus, for the instantaneous expression for Poynting vector:

$$\mathbf{E}(z,t) = \mathbf{a}_{x} E_{0} e^{-az} \cos(\omega t - \beta z).$$

$$\mathbf{H}(z,t) = \mathbf{a}_{y} \frac{E_{0}}{|\eta|} e^{-az} \cos(\omega t - \beta z - \theta_{\eta}).$$

$$\begin{split} \mathscr{P}(z,t) &= \mathbf{E}(z,t) \times \mathbf{H}(z,t) = \underbrace{\mathscr{R}e[\mathbf{E}(z)e^{j\omega t}] \times \mathscr{R}e[\mathbf{H}(z)e^{j\omega t}]}_{\text{E},\text{ H in phasors}} \\ &= \mathbf{a}_z \frac{E_0^2}{|\eta|} \, e^{-2\alpha z} \cos{(\omega t - \beta z)} \cos{(\omega t - \beta z - \theta_\eta)} \\ &= \mathbf{a}_z \frac{E_0^2}{2|\eta|} \, e^{-2\alpha z} [\cos{\theta_\eta} + \cos{(2\omega t - 2\beta z - \theta_\eta)}]. \quad \text{Correct expression for instantaneous } \mathcal{P} \end{split}$$

Obviously, not equal to
$$\mathscr{R}_{e}[\mathbf{E}(z)\times\mathbf{H}(z)e^{j\omega t}] = \mathbf{a}_{z}\,\frac{E_{0}^{2}}{|\eta|}\,e^{-2\alpha z}\cos{(\omega t-2\beta z-\theta_{\eta})},$$

Time-average Poynting vector, $P_{av}(z)$:

As far as the power transmitted by an electromagnetic wave is concerned, its average value is a more significant quantity than its instantaneous value.

Method 2: check in time domain with phasor expression

Consider two general complex vectors **A** and **B**:

*: complex conjugate of

$$\mathcal{R}_{e}(\mathbf{A}) = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{*}) \quad \text{and} \quad \mathcal{R}_{e}(\mathbf{B}) = \frac{1}{2}(\mathbf{B} + \mathbf{B}^{*}),$$

$$\mathcal{R}_{e}(\mathbf{A}) \times \mathcal{R}_{e}(\mathbf{B}) = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{*}) \times \frac{1}{2}(\mathbf{B} + \mathbf{B}^{*})$$

$$= \frac{1}{4}[(\mathbf{A} \times \mathbf{B}^{*} + \mathbf{A}^{*} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{B} + \mathbf{A}^{*} \times \mathbf{B}^{*})]$$

$$= \frac{1}{2}\mathcal{R}_{e}(\mathbf{A} \times \mathbf{B}^{*} + \mathbf{A} \times \mathbf{B}).$$

$$(C+C^{*})=2Re[C$$

Express the instantaneous Poynting vector (in phasors):

$$\mathcal{P}(z,t) = \mathcal{R}_{e}[\mathbf{E}(z)e^{j\omega t}] \times \mathcal{R}_{e}[\mathbf{H}(z)e^{j\omega t}]$$

$$= \frac{1}{2}\mathcal{R}_{e}[\mathbf{E}(z) \times \mathbf{H}^{*}(z) + \mathbf{E}(z) \times \mathbf{H}(z)e^{j2\omega t}].$$
Integrating $\mathcal{P}(z,t)$ over a fundamental period T
Average of the last term $(e^{j2\omega t})$ vanishes

Time-average Poynting vector, $\mathbf{P}_{av}(z)$:

$$\mathcal{P}_{av}(z) = \frac{1}{2} \Re e [E(z) \times H^*(z)].$$

The general formula for computing the average power density in a propagating wave \mathcal{P}_{av} :

$$\mathcal{P}_{av}(z) = \frac{1}{2} \mathcal{R} e [\mathbf{E}(z) \times \mathbf{H}^*(z)].$$

Not necessarily propagating in z direction

General expression

$$\mathcal{P}_{av} = \frac{1}{2} \mathcal{R} e(\mathbf{E} \times \mathbf{H}^*)$$

 (W/m^2) ,

Recall in circuits: P_{av} = ½ Re(VI*)

Point form:

: power density vector

P: Power

Analogy between electromagnetics and circuits:

	Electromagnetics	Circuits	
	E	V	
	н	1	
Impedance	η = E/H	Z = V/I	

- Power density vector, **₽**:
 - W/m²
 - vector (energy propagation direction)
 - a point value
- Power, P:
 - Watt
 - scalar
 - a value for a certain volume

EXAMPLE 8-7 Find the Poynting vector on the surface of a long, straight conducting wire (of radius b and conductivity σ) that carries a direct current I. Verify Poynting's theorem.

FIGURE 8-8 Illustrating Poynting's theorem (Example 8-7).

8-6 Normal Incidence at a Plane Conducting Boundary

- When an electromagnetic wave traveling in one medium impinges on another medium with a different intrinsic impedance, it experiences a reflection.
 - A plane conducting boundaries (8-6, 8-7)
 - An interface between two dielectric media (8-8, 8-9, 8-10)

Normal Incidence

- Assume
 - The incident wave (E_i, H_i) travels in a lossless medium $(\sigma_1 = 0)$
 - The boundary is an interface with a perfect conductor ($\sigma_2 = \infty$)

The Analogy between EM Waves and Transmission Lines

- EM waves:
 - Incoming wave with a certain frequency
 - Terminated by a perfect conductor ($\eta = 0$)
 - Waves are totally reflected.

- Transmission lines:
 - Voltage applied with a certain frequency
 - Terminated by a short circuit (Z = 0)
 - Voltage signals are totally reflected.

Medium 1 (lossless medium)

Incident waves

 $\mathbf{E}_{i}(z) = \mathbf{a}_{x} E_{i0} e^{-j\beta_{1}z},$

 $\mathbf{E}_{i}(z) = \mathbf{a}_{x}\mathbf{E}_{i}$

 $\mathbf{I}_{i}(z) = \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z},$

Travels in the +z direction

 E_{i0} : magnitude of \mathbf{E}_{i} eta_{1} : phase constant of medium 1 η_{1} : intrinsic impedance of medium 1

Poynting vector:

 $\mathscr{P}_i(z) = \mathbf{E}_i(z) \times \mathbf{H}_i(z),$

In $\mathbf{a}_{\mathbf{z}}$ direction (direction of energy propagation)

FIGURE 8-9
Plane wave incident normally on a plane conducting boundary.

Medium 2 (perfect conductor) $E_2 = 0$, $H_2 = 0$ → No wave is transmitted Incident wave is reflected (E,, H,) $\mathbf{E}_{\mathbf{r}}(\mathbf{z}) = \mathbf{a}_{\mathbf{x}} E_{\mathbf{r}0} e^{\frac{+j\beta_1 \mathbf{z}}{2}},$ Travels in the -z direction To be determined by B.C. $X \blacktriangle$ Reflected Perfect conductor Incident Medium 1 Medium 2 $(\sigma_1 = 0)$ FIGURE 8-9 $(\sigma_2 = \infty)$ Plane wave incident normally on a plane conducting

boundary.

z = 0

Boundary Total field in medium $1 = E_i + E_p$ $\mathbf{E}_{1}(z) = \mathbf{E}_{i}(z) + \mathbf{E}_{r}(z) = \mathbf{a}_{x}(E_{i0}e^{-j\beta_{1}z} + E_{r0}e^{+j\beta_{1}z}).$ B.C.: $E_{1t} = E_{2t} at z = 0$ $\mathbf{E}_1(0) = \mathbf{a}_x(E_{i0} + E_{r0}) = \mathbf{E}_2(0) = 0,$ Perfect conductor of medium 2 $E_{r0} = -E_{i0}$ Reflected Thus, if \mathbf{E}_i is along \mathbf{a}_v , \mathbf{E}_r should Perfect conductor be along -a, as shown in the figure. Incident Medium 1 Medium 2 $(\sigma_1 = 0)$ FIGURE 8-9 $(\sigma_2 = \infty)$ Plane wave incident normally on a plane conducting

boundary.

z = 0

$$\mathbf{E}_{1}(z) = \mathbf{E}_{i}(z) + \mathbf{E}_{r}(z) = \mathbf{a}_{x}(E_{i0}e^{-j\beta_{1}z} + E_{r0}e^{+j\beta_{1}z}).$$

$$\mathbf{E}_{r0} = -E_{i0}.$$

$$\mathbf{E}_{1}(z) = \mathbf{a}_{x}E_{i0}(e^{-j\beta_{1}z} - e^{+j\beta_{1}z})$$

$$= -\mathbf{a}_{x}j2E_{i0}\sin\beta_{1}z.$$

 H_1

$$\mathbf{E}_{r}(\mathbf{z}) = \mathbf{a}_{\mathbf{x}} E_{r0} e^{+j\beta_{1}\mathbf{z}},$$

$$\mathbf{H}(\mathbf{R}) = \frac{1}{\eta} \mathbf{a}_{n} \times \mathbf{E}(\mathbf{R}) \quad (8-29)$$

$$\mathbf{H}_{r}(z) = \frac{1}{\eta_{1}} \mathbf{a}_{nr} \times \mathbf{E}_{r}(z) = \frac{1}{\eta_{1}} (-\mathbf{a}_{z}) \times \mathbf{E}_{r}(z)$$
$$= -\mathbf{a}_{y} \frac{1}{n} E_{r0} e^{+j\beta_{1}z} = \mathbf{a}_{y} \frac{E_{i0}}{n} e^{+j\beta_{1}z}.$$

$$\mathbf{H}_{i}(z) = \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z},$$

 $\mathbf{H}_{i}(z) = \mathbf{H}_{i}(z) + \mathbf{H}_{r}(z)$ $\mathbf{H}_{i}(z) = \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z},$ $\mathbf{H}_{r} \text{ and } \mathbf{H}_{i} \text{ are both along } \mathbf{a}_{y}, \text{ as shown in the figure}$

$$\mathbf{H}_{1}(z) = \mathbf{H}_{i}(z) + \mathbf{H}_{r}(z) = \mathbf{a}_{r} 2 \frac{E_{i0}}{n_{r}} \cos \beta_{1} z.$$

$$\mathbf{E}_{1}(z) = \mathbf{a}_{x} E_{i0} (e^{-j\beta_{1}z} - e^{+j\beta_{1}z})$$

$$= -\mathbf{a}_{x} j 2 E_{i0} \sin \beta_{1} z.$$

$$\mathbf{H}_{1}(z) = \mathbf{H}_{i}(z) + \mathbf{H}_{r}(z) = \mathbf{a}_{y} 2 \frac{E_{i0}}{\eta_{1}} \cos \beta_{1} z.$$

$$\mathbf{\mathscr{P}_{av}} = \frac{1}{2} \mathcal{R}_{e} (\mathbf{E} \times \mathbf{H}^{*})$$
(8-96)

- E₁ and H₁ are in phase quadrature (i.e., in time quadrature)
- No average power is associated with the total electromagnetic wave in medium 1

Time-domain behavior

$$\begin{aligned} \mathbf{E}_{1}(z) &= \mathbf{a}_{x} E_{i0} (e^{-j\beta_{1}z} - e^{+j\beta_{1}z}) \\ &= -\mathbf{a}_{x} j 2 E_{i0} \sin \beta_{1} z. \end{aligned}$$

$$\mathbf{H}_{1}(z) &= \mathbf{H}_{i}(z) + \mathbf{H}_{r}(z) = \mathbf{a}_{y} 2 \frac{E_{i0}}{\eta_{1}} \cos \beta_{1} z.$$

Total field in time domain

$$\mathbf{E}_{1}(z,t) = \mathscr{R}e[\mathbf{E}_{1}(z)e^{j\omega t}] = \mathbf{a}_{x}2E_{i0}\sin\beta_{1}z\sin\omega t,$$

$$= \cos(\omega t - \pi/2)$$

$$\mathbf{H}_{1}(z,t) = \mathscr{R}e[\mathbf{H}_{1}(z)e^{j\omega t}] = \mathbf{a}_{y}2\frac{E_{i0}}{\eta_{1}}\cos\beta_{1}z\cos\omega t.$$

Zeros and maxima along z for all t

Zeros of
$$\mathbf{E}_1(z,t)$$
 occur at $\beta_1 z = -n\pi$, or $z = -n\frac{\lambda}{2}$, $n = 0, 1, 2, ...$

Maxima of $\mathbf{H}_1(z,t)$ occur at $\beta_1 z = -(2n+1)\frac{\pi}{2}$, or $z = -(2n+1)\frac{\lambda}{4}$, $n = 0, 1, 2, ...$

FIGURE 8-10 Standing waves of $\mathbf{E}_1 = \mathbf{a}_x E_1$ and $\mathbf{H}_1 = \mathbf{a}_y H_1$ for several values of ωt .

The total wave in medium 1 is a standing wave (not a traveling wave).

Space-time behavior:

- 1) E_1 vanishes on the conducting boundary $(E_{r0} = -E_{i0})$ and at $-n\lambda/2$
- 2) H_1 is a maximum on the conducting boundary $(H_{r0} = H_{i0} = E_{i0}/\eta_1)$ and at $-n\lambda/2$
- 3) E_1 and H_1 are in time quadrature ($\pi/2$) and are shifted in space by $\lambda/4$

Recall: **E**_i: **a**_x and **E**_r: -**a**_x **H**_i: **a**_v and **H**_r: **a**_v

For a given t, both $\mathbf{E_1}$ and $\mathbf{H_1}$ vary sinusoidally with z

$$\mathbf{E}_1(z,t) = \mathbf{a}_x 2E_{i0} \sin \beta_1 z \sin \omega t,$$

$$\mathbf{H}_{1}(z,t) = \mathbf{a}_{y} 2 \frac{E_{i0}}{\eta_{1}} \cos \beta_{1} z \cos \omega t.$$

FIGURE 8-10 Standing waves of $E_1 = \mathbf{a}_x E_1$ and $\mathbf{H}_1 = \mathbf{a}_y H_1$ for several values of ωt . EXAMPLE 8-8 The far field of a short vertical current element I del located at the

and

 $\mathbf{E}(R,\,\theta) = \mathbf{a}_{\theta} E_{\theta}(R,\,\theta) = \mathbf{a}_{\theta} \left(j \, \frac{60\pi I \, d\ell}{\lambda R} \sin \, \theta \right) e^{-j\beta R}$

where $\lambda = 2\pi/B$ is the wavelength.

origin of a spherical coordinate system in free space is

 $\mathbf{H}(R,\theta) = \mathbf{a}_{\phi} \frac{E_{\theta}(R,\theta)}{n_{0}} = \mathbf{a}_{\phi} \left(j \frac{I \, d\ell}{2 \lambda R} \sin \theta \right) e^{-j \beta R}$

a) Write the expression for instantaneous Poynting vector. b) Find the total average power radiated by the current element.

(V/m)

EXAMPLE 8-9 A y-polarized uniform plane wave $(\mathbf{E}_i, \mathbf{H}_i)$ with a frequency 100 (MHz) propagates in air in the +x direction and impinges normally on a perfectly conducting plane at x = 0. Assuming the amplitude of \mathbf{E}_i to be 6 (mV/m), write the

phasor and instantaneous expressions for (a) E_i and H_i of the incident wave; (b) E_r and H_r of the reflected wave; and (c) E_1 and H_1 of the total wave in air. (d) Determine

the location nearest to the conducting plane where E_1 is zero.

8-7 Oblique Incidence at a Plane Conducting Boundary

- The behavior of the reflected wave depends on the polarization of the incident wave in oblique incidence.
- Plane of incidence: the plane containing the direction of propagation (of the incident wave) and the normal of the boundary surface.
- Consider the two cases separately
 - $\mathbf{E}_i \perp$ plane of incidence
 - **E**_i // plane of incidence

8-7.1 Perpendicular Polarization

z = 0

$$\mathbf{a}_{ni} = \mathbf{a}_{x} \sin \theta_{i} + \mathbf{a}_{z} \cos \theta_{i},$$

$$\mathbf{k} = \beta_{1} \mathbf{a}_{ni}$$

$$\mathbf{R} = \mathbf{a}_{x} \mathbf{x} + \mathbf{a}_{y} \mathbf{y} + \mathbf{a}_{z} \mathbf{z}$$

$$\mathbf{H}(\mathbf{R}) = \frac{1}{n} \mathbf{a}_{n} \times \mathbf{E}(\mathbf{R})$$

Perpendicular polarization: also called horizontal polarization. E-polarization. s-polarization

FIGURE 8-11 Plane wave incident obliquely on a plane conducting boundary (perpendicular polarization).

The reflected wave

$$\mathbf{E}_{i}(x, z) = \mathbf{a}_{x} E_{i0} e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}.$$

 $\mathbf{k} = \beta_1 \mathbf{a}_{nr}$ $\mathbf{R} = \mathbf{a}_x x + \mathbf{a}_y y + \mathbf{a}_z z$

Assuming polarization in \mathbf{a}_y (\mathbf{a}_y or $-\mathbf{a}_y$ can be confirmed later)

$$\mathbf{E}_{r}(x, z) = \mathbf{a}_{v} E_{r0} e^{-j\beta_{1}(x \sin \theta_{r} - z \cos \theta_{r})}.$$

 $(\sigma_1 = 0)$

z = 0

B.C.:
$$E_{1t} = E_{2t} = 0$$
 at $z = 0$
For perpendicular polarization, only E tangential component
Total E at boundary = 0

$$\mathbf{E}_{1}(x,0) = \mathbf{E}_{i}(x,0) + \mathbf{E}_{r}(x,0)$$

$$= \mathbf{a}_{y}(E_{i0}e^{-j\beta_{1}x\sin\theta_{i}} + E_{r0}e^{-j\beta_{1}x\sin\theta_{r}}) = 0.$$

$$E_{r0} = -E_{i0} \quad \theta_{r} = \theta_{i} \text{ Snell's law of reflection}$$

Thus, if E_i is in a_y , E_r should be along $-a_y$, which is different from the figure.

FIGURE 8-11

Plane wave incident obliquely on a plane conducting boundary (perpendicular polarization).

$$\mathbf{E}_{r}(x, z) = \mathbf{a}_{y} E_{r0} e^{-j\beta_{1}(x \sin \theta_{r} - z \cos \theta_{r})}.$$

$$E_{r0} = -E_{i0} \quad \theta_r = \theta_i$$

 $\mathbf{E}_{\mathbf{r}}(x,z) = -\mathbf{a}_{\mathbf{v}} E_{i0} e^{-j\beta_1(x\sin\theta_i - z\cos\theta_i)}.$

$$\mathbf{H}(\mathbf{R}) = \frac{1}{n} \mathbf{a}_n \times \mathbf{E}(\mathbf{R})$$

$$\mathbf{H_r}(\mathbf{x}, z) = \frac{1}{\eta_1} [\mathbf{a}_{nr} \times \mathbf{E}_r(\mathbf{x}, z)]$$

$$= \frac{E_{i0}}{\eta_1} (-\mathbf{a}_x \cos \theta_i - \mathbf{a}_z \sin \theta_i) e^{-j\beta_1(x \sin \theta_i - z \cos \theta_i)}.$$

E,

The total field

$$\begin{aligned} \mathbf{E}_{i}(x,z) &= \mathbf{a}_{y} E_{i0} e^{-j\beta_{1}(x\sin\theta_{i}+z\cos\theta_{i})}, \\ \mathbf{E}_{r}(x,z) &= -\mathbf{a}_{y} E_{i0} e^{-j\beta_{1}(x\sin\theta_{i}-z\cos\theta_{i})}. \end{aligned}$$

$$\mathbf{E}_{1} = \mathbf{E}_{i} + \mathbf{E}_{r}$$

$$\mathbf{E}_{1}(x,z) &= \mathbf{E}_{i}(x,z) + \mathbf{E}_{r}(x,z)$$

$$&= \mathbf{a}_{y} E_{i0} (e^{-j\beta_{1}z\cos\theta_{i}} - e^{j\beta_{1}z\cos\theta_{i}}) e^{-j\beta_{1}x\sin\theta_{i}}.$$

$$= -\mathbf{a}_{y} j 2 E_{i0} \sin(\beta_{1}z\cos\theta_{i}) e^{-j\beta_{1}x\sin\theta_{i}}.$$

$$\begin{aligned} \mathbf{H}_{i}(x,z) &= \frac{E_{i0}}{\eta_{1}} \left(-\mathbf{a}_{x} \cos \theta_{i} + \mathbf{a}_{z} \sin \theta_{i} \right) e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}. \\ \mathbf{H}_{r}(x,z) &= \frac{E_{i0}}{\eta_{1}} \left(-\mathbf{a}_{x} \cos \theta_{i} - \mathbf{a}_{z} \sin \theta_{i} \right) e^{-j\beta_{1}(x \sin \theta_{i} - z \cos \theta_{i})}. \\ \mathbf{H}_{1} &= \mathbf{H}_{i} + \mathbf{H}_{r} \\ \mathbf{H}_{1}(x,z) &= -2 \frac{E_{i0}}{\eta_{1}} \left[\mathbf{a}_{x} \cos \theta_{i} \cos (\beta_{1}z \cos \theta_{i}) e^{-j\beta_{1}x \sin \theta_{i}} + \mathbf{a}_{z}j \sin \theta_{i} \sin (\beta_{1}z \cos \theta_{i}) e^{-j\beta_{1}x \sin \theta_{i}} \right]. \end{aligned}$$

The total field

$$\begin{split} \mathbf{E}_{1}(x,z) &= -\mathbf{a}_{y} j 2 E_{i0} \sin{(\beta_{1}z\cos{\theta_{i}})} e^{-j\beta_{1}x\sin{\theta_{i}}}. \\ \mathbf{H}_{1}(x,z) &= -2 \frac{E_{i0}}{\eta_{1}} \left[\mathbf{a}_{x}\cos{\theta_{i}}\cos{(\beta_{1}z\cos{\theta_{i}})} e^{-j\beta_{1}x\sin{\theta_{i}}} \\ &+ \mathbf{a}_{x} j \sin{\theta_{i}}\sin{(\beta_{1}z\cos{\theta_{i}})} e^{-j\beta_{1}x\sin{\theta_{i}}} \right]. \end{split}$$

 E_{1y}

 H_{1x} H_{1z}

- 1. Power along the z direction (\perp to boundary)
 - E_{1y}, H_{1x}
 - $E_{1\nu}$, H_{1x} maintain standing-wave patterns:

$$\clubsuit$$
E_{1y} ~ sin(β_{1z} z), H_{1x} ~ cos(β_{1z} z), where β_{1z} = β_1 cos θ_i

No average power in +z direction

- 2. Power along the x direction (// to boundary)
 - E_{1y}, H_{1z}
 - Propagation in x direction

�
$$P_x$$
 = 1/2Re[E_{1v}×H_{1z}*] ≠ 0

♦ E_{1y} and H_{1z} are in phase for both time and space (time: -j and -j ($\theta = -90$ degree); space: $\sin(\beta_1 z)$)

$$\begin{split} \mathbf{E}_{1}(x,z) &= -\mathbf{a}_{y} j 2 E_{i0} \sin{(\beta_{1} z \cos{\theta_{i}})} e^{-j\beta_{1} x \sin{\theta_{i}}}. \\ \mathbf{H}_{1}(x,z) &= -2 \frac{E_{i0}}{\eta_{1}} \left[\mathbf{a}_{x} \cos{\theta_{i}} \cos{(\beta_{1} z \cos{\theta_{i}})} e^{-j\beta_{1} x \sin{\theta_{i}}} \right. \\ &+ \mathbf{a}_{z} j \sin{\theta_{i}} \sin{(\beta_{1} z \cos{\theta_{i}})} e^{-j\beta_{1} x \sin{\theta_{i}}} \right]. \end{split}$$

$$\mathsf{H}_{1y}$$
 $\mathsf{H}_{1x} \; \mathsf{H}_{1z}$

■ Phase velocity in x direction $u_p = \omega/\beta_{1x}$ (faster than u_1)

$$u_{1x} = \frac{\omega}{\beta_{1x}} = \frac{\omega}{\beta_1 \sin \theta_i} = \frac{u_1}{\sin \theta_i}.$$

■ Wavelength in x direction $\lambda = 2\pi/\beta_{1x}$ (longer than λ_1) $\lambda_{1x} = \frac{2\pi}{\beta_1} = \frac{\lambda_1}{\sin \theta_1}.$

- 3. A nonuniform plane wave for the propagating wave in x direction
 - E_{1y} (or H_{1z}) ~ $sin(\beta_{1z}z)$ → Amplitude varies with z

$$\begin{split} \mathbf{E}_{1}(x,z) &= -\mathbf{a}_{y} j 2 E_{i0} \underbrace{\sin \left(\beta_{1} z \cos \theta_{i}\right)} e^{-j\beta_{1} x \sin \theta_{i}}. \\ \mathbf{H}_{1}(x,z) &= -2 \frac{E_{i0}}{\eta_{1}} \left[\mathbf{a}_{x} \cos \theta_{i} \cos \left(\beta_{1} z \cos \theta_{i}\right) e^{-j\beta_{1} x \sin \theta_{i}} \right. \\ &+ \mathbf{a}_{z} j \sin \theta_{i} \sin \left(\beta_{1} z \cos \theta_{i}\right) e^{-j\beta_{1} x \sin \theta_{i}} \right]. \end{split}$$

• 4. $E_1 = 0$ for all x when $\sin(\beta_{1z}z)=0$

$$\beta_1 z \cos \theta_i = \frac{2\pi}{\lambda_1} z \cos \theta_i = -m\pi, \qquad m = 1, 2, 3, \ldots,$$

That is, a conducting plate could be inserted at

$$z=-\frac{m\lambda_1}{2\cos\theta}, \qquad m=1,2,3,\ldots,$$

without changing **E**₁ between the conducting plate and the conducting boundary

→ A transverse electric (TE) wave (E transverse to plan of propagation (xz plane) → only $E_{1y} \neq 0$) would bounce back and forth (i.e., a waveguide).

Long (thick) dashed line: plane wave crests (peaks) Short (thin) dashed line: plane wave troughs (valleys)

- Conducting surfaces: E, and E, are 180° out of phase → E(z = 0) = 0, such as O, A, and A"
- Intersections of two crests: E = max, along a_y (e.g., B)
 Intersections of two troughs: E = min, along -a_y (e.g., B')
- OA': reflected wave from a crest (red) to a trough (blue), = $\lambda_1/2 \Rightarrow \overline{OA'} = \frac{\lambda_1}{2} = \frac{\pi}{\beta_1}$,

OA: length from the inserted plate to the boundary, b
$$\Rightarrow$$
 $\overline{OA} = b = \frac{\lambda_1}{2 \cos \theta}$.

Also recall
$$z = -\frac{m\lambda_1}{2\cos\theta_i}$$
, $m = 1, 2, 3, \dots$,

Wavelength in x direction (traveling wave in the parallel-plate waveguide), λ : $OA'' = \lambda_g/2 \qquad \lambda_g = 2\overline{OA''} = 2\frac{\overline{OA'}}{\sin \theta}$

of oblique incidence at a plane conducting boundary

(perpendicular polarization).

$$= \frac{\lambda_1}{\sin \theta_i} > \lambda_1. \qquad \text{(longer)}$$

At θ_i = 0 (normal incidence) → no propagating wave in x direction FIGURE 8-12
 Illustrating bouncing waves and interference patterns

8-7.2 Parallel Polarization

z = 0

boundary (parallel polarization).

The reflected wave

$$\mathbf{E}_{i}(x,z) = E_{i0}(\mathbf{a}_{x}\cos\theta_{i} - \mathbf{a}_{z}\sin\theta_{i})e^{-j\beta_{1}(x\sin\theta_{i} + z\cos\theta_{i})},$$

$$\mathbf{H}_{i}(x,z) = \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}.$$

Propagation direction in phase term Denote polarization

$$\mathbf{E}_r(x, z) = E_{r0}(\mathbf{a}_r \cos \theta_r + \mathbf{a}_z \sin \theta_r) e^{-j\beta_1(x \sin \theta_r - z \cos \theta_r)}$$

$$\mathbf{H}_{\mathbf{r}}(x,z) = -\mathbf{a}_{\mathbf{y}} \frac{E_{\mathbf{r}0}}{\mathbf{a}} e^{-j\beta_1(x\sin\theta_{\mathbf{r}}-z\cos\theta_{\mathbf{r}})}.$$

Propagation (same direction) Polarization

B.C.: $E_{1t} = E_{2t} = 0$ \rightarrow Total E_{1x} at boundary = 0

$$E_{ix}(x, 0) + E_{rx}(x, 0) = 0.$$

$$(E_{:0} \cos \theta_i)e^{-j\beta_1 x \sin \theta_i} + (E_{:0} \cos \theta_i)e^{-j\beta_1 x \sin \theta_r} = 0.$$

Should be satisfied for all x

$$a = -E_{10}$$
 $\theta = \theta_{1}$

 $E_{r0} = -E_{i0}$ $\theta_r = \theta_i$ Snell's law of reflection

FIGURE 8-13

Plane wave incident obliquely on a plane conducting boundary (parallel polarization).

The total field
$$\mathbf{E}_i(x,z) = E_{i0}(\mathbf{a}_x \cos \theta_i - \mathbf{a}_z \sin \theta_i) e^{-j\beta_1(x \sin \theta_i + z \cos \theta_i)},$$
$$\mathbf{E}_r(x,z) = E_{r0}(\mathbf{a}_x \cos \theta_r + \mathbf{a}_z \sin \theta_r) e^{-j\beta_1(x \sin \theta_r - z \cos \theta_r)},$$

 $E_{r0} = -E_{i0} \quad \theta_r = \theta_i.$

$$\mathsf{E_1} = \mathsf{E}_i + \mathsf{E}_r$$

$$\mathbf{E}_1(x, z) = \mathbf{E}_i(x, z) + \mathbf{E}_r(x, z)$$

$$= \mathbf{a}_x E_{i0} \cos \theta_i (e^{-j\beta_1 z \cos \theta_i} - e^{j\beta_1 z \cos \theta_i}) e^{-j\beta_1 x \sin \theta_i}$$

$$- \mathbf{a}_x E_{i0} \sin \theta_i (e^{-j\beta_1 z \cos \theta_i} + e^{j\beta_1 z \cos \theta_i}) e^{-j\beta_1 x \sin \theta_i}$$

or
$$\mathbf{E}_{1}(x, z) = -2E_{i0}[\mathbf{a}_{x}j\cos\theta_{i}\sin(\beta_{1}z\cos\theta_{i}) + \mathbf{a}_{x}\sin\theta_{i}\cos(\beta_{1}z\cos\theta_{i})]e^{-j\beta_{1}x\sin\theta_{i}}$$

$$\mathbf{H}_{i}(x, z) = \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}.$$

$$\mathbf{H}_{r}(x, z) = -\mathbf{a}_{y} \frac{E_{r0}}{\eta_{1}} e^{-j\beta_{1}(x \sin \theta_{r} - z \cos \theta_{r})}.$$

$$\mathbf{H}_{1} = \mathbf{H}_{i} + \mathbf{H}_{r}$$

$$\mathbf{H}_{1}(x, z) = \mathbf{H}_{i}(x, z) + \mathbf{H}_{r}(x, z)$$

$$= \mathbf{a}_{y} 2 \frac{E_{i0}}{\eta_{1}} \cos (\beta_{1} z \cos \theta_{i}) e^{-j\beta_{1} x \sin \theta_{i}}.$$

Similar notes as in perpendicular polarization

$$\begin{split} \mathbf{E}_{1}(x,z) &= -2E_{i0}[\mathbf{a}_{x}j\cos\theta_{i}\sin(\beta_{1}z\cos\theta_{i})\\ &+ \mathbf{a}_{z}\sin\theta_{i}\cos(\beta_{1}z\cos\theta_{i})]e^{-j\beta_{1}x\sin\theta_{i}}.\\ \mathbf{H}_{1}(x,z) &= \mathbf{a}_{y}2\frac{E_{i0}}{\eta_{1}}\cos(\beta_{1}z\cos\theta_{i})e^{-j\beta_{1}x\sin\theta_{i}}. \end{split}$$

$$E_{1x} E_{1z}$$
 H_{1y}

- 1. Power along the z direction (\perp to boundary)
 - E_{1x}, H_{1y}
 - E_{1x}, H_{1v} maintain standing-wave patterns:

$$\clubsuit$$
E_{1x} ~ sin(β _{1z}z), H_{1y} ~ cos(β _{1z}z), where β _{1z} = β ₁cos θ _i

■ No average power in +z direction

- 2. Power along the x direction (// to boundary)
 - E_{1z}, H_{1v}
 - Propagation in x direction (E_{1z}, H_{1v})

♦
$$P_x$$
 = 1/2Re[E_{1z} × H_{1y}^*] ≠ 0

*E_{1z} and H_{1y} are in phase in both time and space (time: $\theta = 0$; space: cos(β_1 ,z))

$$\begin{split} \mathbf{E}_{1}(x,z) &= -2E_{i0}[\mathbf{a}_{x}j\cos\theta_{i}\sin\left(\beta_{1}z\cos\theta_{i}\right) \\ &+ \mathbf{a}_{z}\sin\theta_{i}\cos\left(\beta_{1}z\cos\theta_{i}\right)]e^{-j\beta_{1}x\sin\theta_{i}}. \end{split}$$

$$\mathbf{H}_{1}(x,z) &= \mathbf{a}_{y}2\frac{E_{i0}}{\eta_{1}}\cos\left(\beta_{1}z\cos\theta_{i}\right)e^{-j\beta_{1}x\sin\theta_{i}}. \end{split}$$

$$\mathbf{H}_{1}(x,z) = \mathbf{a}_{y}2\frac{E_{i0}}{\eta_{1}}\cos\left(\beta_{1}z\cos\theta_{i}\right)e^{-j\beta_{1}x\sin\theta_{i}}. \end{split}$$

- Phase velocity in x direction $u_p = \omega/\beta_{1x}$ (faster than u_1) $u_{1x} = u_1/\sin\theta_1$
- Wavelength in x direction $\lambda = 2\pi/\beta_{1x}$ (longer than λ_1)

$$\lambda_{1x} = \frac{2\pi}{\beta_{1x}} = \frac{\lambda_1}{\sin \theta_i}.$$
 Same as perpendicular polarization

- 3. A nonuniform plane wave for the propagating wave in *x* direction
 - H_{1y} (or E_{1z}) $\sim \cos(\beta_{1z}z)$ \rightarrow Amplitude varies with z

Same as perpendicular polarization

wavefront

$$\begin{split} \mathbf{E}_{1}(x,z) &= -2E_{i0}[\mathbf{a}_{x}j\cos\theta_{i}\sin(\beta_{1}z\cos\theta_{i})\\ &+ \mathbf{a}_{z}\sin\theta_{i}\cos(\beta_{1}z\cos\theta_{i})]e^{-j\beta_{1}x\sin\theta_{i}}. \end{split}$$

$$\mathbf{H}_{1}(x,z) &= \mathbf{a}_{y}2\frac{E_{i0}}{\eta_{1}}\cos(\beta_{1}z\cos\theta_{i})e^{-j\beta_{1}x\sin\theta_{i}}. \end{split}$$

$$\mathbf{H}_{1y}$$

• 4. $\mathbf{E}_{1x} = 0$ for all x when $\sin(\beta_{1x}z) = 0$

$$\beta_1 z \cos \theta_i = \frac{2\pi}{\lambda_1} z \cos \theta_i = -m\pi, \qquad m = 1, 2, 3, \ldots,$$

That is, a conducting plate could be inserted at

$$z=-\frac{m\lambda_1}{2\cos\theta_i}, \qquad m=1,2,3,\ldots,$$

without changing \mathbf{E}_{1x} (tangential component) between the conducting plate and the conducting boundary

→ A transverse magnetic (TM) wave (H transverse to plan of propagation (xz plane) → only $H_{1y} \neq 0$) would bounce back and forth (i.e., a waveguide).

A Summary of Oblique Incidence

Perpendicular polarization

$$\begin{split} \mathbf{E}_{1}(x,z) &= -\mathbf{a}_{y}j2E_{i0}\sin\left(\beta_{1}z\cos\theta_{i}\right)e^{-j\beta_{1}x\sin\theta_{i}}.\\ \mathbf{H}_{1}(x,z) &= -2\frac{E_{i0}}{\eta_{1}}\left[\mathbf{a}_{x}\cos\theta_{i}\cos\left(\beta_{1}z\cos\theta_{i}\right)e^{-j\beta_{1}x\sin\theta_{i}}\right.\\ &+ \mathbf{a}_{z}j\sin\theta_{i}\sin\left(\beta_{1}z\cos\theta_{i}\right)e^{-j\beta_{1}x\sin\theta_{i}}\right]. \end{split}$$

Parallel polarization

$$\begin{aligned} \mathbf{E}_{1}(x,z) &= -2E_{i0}[\mathbf{a}_{x}j\cos\theta_{i}\sin\left(\beta_{1}z\cos\theta_{i}\right) \\ &+ \mathbf{a}_{z}\sin\theta_{i}\cos\left(\beta_{1}z\cos\theta_{i}\right)]e^{-j\beta_{1}x\sin\theta_{i}}. \end{aligned} \qquad \mathbf{E}_{1x}\,\mathbf{E}_{1z} \\ \mathbf{H}_{1}(x,z) &= \mathbf{a}_{y}2\,\frac{E_{i0}}{\eta_{1}}\cos\left(\beta_{1}z\cos\theta_{i}\right)e^{-j\beta_{1}x\sin\theta_{i}}. \qquad \mathbf{H}_{1y} \end{aligned}$$

 $E_{1\nu}$

H₁, H₁,

8-8 Normal Incidence at a Plane Dielectric Boundary

- When an electromagnetic wave is incident on the surface of a dielectric medium that has an intrinsic impedance different from that of the medium in which the wave is originated, part of incident power is reflected and part is transmitted.
- For a normal plane wave incident on a plane dielectric medium:
 - Dissipationless media ($\sigma_1 = \sigma_2 = 0$)
 - Normal incidence (8-8); Oblique incidence (8-10)

The incident wave

$$\mathbf{E}_{i}(z) = \mathbf{a}_{x} E_{i0} e^{-j\beta_{1}z},$$

$$\mathbf{H}_{i}(z) = \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z}.$$

 $E_{i0} = \frac{E_{i0}}{e^{-j\beta_1 z}}$ Propagating in +z

FIGURE 8-14 Plane wave incident normally on a plane dielectric boundary.

The reflected wave

$$\mathbf{E}_{r}(z) = \mathbf{a}_{x} E_{r0} e^{j\beta_{1}z},$$

$$\mathbf{H}_{r}(z) = (-\mathbf{a}_{z}) \times \frac{1}{\eta_{1}} \mathbf{E}_{r}(z) = -\mathbf{a}_{y} \frac{E_{r0}}{\eta_{1}} e^{j\beta_{1}z}$$

Propagating in -z

Propagating in +z

The transmitted wave $\mathbf{H}_{t}(z) = \mathbf{a}_{z} \times \frac{1}{n_{2}} \mathbf{E}_{t}(z) = \mathbf{a}_{y} \frac{E_{t0}}{n_{2}} e^{-j\beta_{2}z},$ Reflected wave Incident wave Medium 1 Medium 2 (ϵ_1, μ_1) (E2, µ2) z = 0

$$\mathbf{E}_{\mathbf{f}}(z) = \mathbf{a}_{\mathbf{x}} E_{\mathbf{f}0} e^{-j\beta_2 z},$$

Transmitted

 E_{t0} : magnitude of \mathbf{E}_{t} β_2 : phase constant of medium 2 η_2 : intrinsic impedance of medium 2

E, and E, are drawn arbitrarily

 $(E_{r0}$ and E_{t0} may be positive or negative, depending on the relative magnitudes of the constitutive parameters of the two media.)

FIGURE 8-14 Plane wave incident normally on a plane dielectric boundary.

$$\begin{split} \mathbf{E}_{i}(z) &= \mathbf{a}_{x} E_{i0} e^{-j\beta_{1}z}, \\ \mathbf{H}_{i}(z) &= \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z}. \\ \mathbf{E}_{r}(z) &= \mathbf{a}_{x} E_{r0} e^{j\beta_{1}z}, \\ \mathbf{H}_{r}(z) &= (-\mathbf{a}_{z}) \times \frac{1}{\eta_{1}} \mathbf{E}_{r}(z) = -\mathbf{a}_{y} \frac{E_{r0}}{\eta_{1}} e^{j\beta_{1}z}. \\ \mathbf{E}_{t}(z) &= \mathbf{a}_{x} E_{t0} e^{-j\beta_{2}z}, \\ \mathbf{H}_{t}(z) &= \mathbf{a}_{z} \times \frac{1}{\eta_{2}} \mathbf{E}_{t}(z) = \mathbf{a}_{y} \frac{E_{t0}}{\eta_{2}} e^{-j\beta_{2}z}, \end{split}$$

Two unknowns: E_{r0} and E_{t0} Two B.C. equations: $E_{1t} = E_{2t}$; $H_{1t} = H_{2t}$ ($J_s = 0$)

$$\mathbf{E}_{i}(0) + \mathbf{E}_{r}(0) = \mathbf{E}_{t}(0) \quad \text{or} \quad E_{i0} + E_{r0} = E_{t0}$$

$$\mathbf{H}_{i}(0) + \mathbf{H}_{r}(0) = \mathbf{H}_{t}(0) \quad \text{or} \quad \frac{1}{\eta_{1}} (E_{i0} - E_{r0}) = \frac{E_{t0}}{\eta_{2}}.$$

$$E_{r0} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} E_{i0},$$

$$E_{i0} = \frac{2\eta_2}{\eta_2 + \eta_1} E_{i0}.$$

$$E_{t0} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} E_{i0},$$

$$E_{t0} = \frac{2\eta_2}{\eta_2 + \eta_1} E_{i0}.$$

Reflection coefficient = E_{r0}/E_{i0}

$$\Gamma = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 (Dimensionless)

Transmission coefficient = E_{to}/E_{i0}

$$\tau = \frac{E_{t0}}{E_{t0}} = \frac{2\eta_2}{\eta_2 + \eta_1}$$
 (Dimensionless).

 Γ can be positive or negative τ is always positive

$$1 + \Gamma = \tau$$
 (Dimensionless).

For dissipative media (η_1 and η_2 are complex), Γ and τ equations still apply*.

- $\rightarrow \Gamma$ and τ are complex in the general case
- → a phase shift is introduced at the interface upon reflection (or transmission)

^{*:} the previous equations can be derived by considering complex η_c for lossy media, and complex k_c for wave with attenuation (they are all connected).

$$\Gamma = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 (Dimensionless)
$$\tau = \frac{E_{t0}}{E_{t0}} = \frac{2\eta_2}{\eta_2 + \eta_1}$$
 (Dimensionless).

If medium 2 is a perfect conductor (η_2 = 0)

- $\rightarrow \Gamma = -1$, $\tau = 0$
- $\rightarrow E_{r0} = -E_{i0}, E_{t0} = 0$
- → The incident wave is totally reflected (as discussed in Section 8-6)

If medium 2 is NOT a perfect conductor

- → Partial reflection, partial transmission
- → Total field in medium 1

$$E_{1}(z) = E_{i}(z) + E_{r}(z) = \mathbf{a}_{x} \underline{E_{i0}} (e^{-j\beta_{1}z} + \Gamma e^{j\beta_{1}z}) \quad \text{Propagation } -z$$

$$= \mathbf{a}_{x} E_{i0} [(1 + \Gamma)e^{-j\beta_{1}z} + \Gamma(e^{j\beta_{1}z} - e^{-j\beta_{1}z})]$$

$$= \mathbf{a}_{x} E_{i0} [(1 + \Gamma)e^{-j\beta_{1}z} + \Gamma(j2 \sin \beta_{1}z)]$$

$$1 + \Gamma = \tau$$

$$\mathbf{E}_1(z) = \mathbf{a}_x E_{i0} [\tau e^{-j\beta_1 z} + \Gamma(j2 \sin \beta_1 z)].$$

$$\mathbf{E}_1(z) = \mathbf{a}_x E_{i0} [\tau e^{-j\beta_1 z} + \Gamma(j2 \sin \beta_1 z)].$$

1st term: a traveling wave with an amplitude τE_{i0} 2nd term: a standing wave with an amplitude $2\Gamma E_{i0}$

How to know?

Check in time domain:

traveling wave: $\cos(\omega t - \beta_1 z)$

standing wave: $\sin(\beta_1 z)$ (- $\sin(\omega t)$) \Longrightarrow | E_1 | has locations of max. and min. values?

$$\mathbf{E}_{1}(z) = \mathbf{a}_{x} E_{i0} (e^{-j\beta_{1}z} + \Gamma e^{j\beta_{1}z})$$

$$\frac{E_{r0}}{E_{i0}} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

$$\mathbf{E}_{1}(z) = \mathbf{a}_{x} E_{i0} e^{-j\beta_{1}z} (1 + \Gamma e^{j2\beta_{1}z}).$$

$$\tau = \frac{E_{t0}}{E_{t0}} = \frac{2\eta_2}{\eta_2 + \eta_1}$$

For dissipationless media, η_1 and η_2 are real

 $\rightarrow \Gamma$ and τ are real; Γ can be positive or negative

Check amplitude $|\mathbf{E}_1(z)|$

(1)
$$\Gamma > 0$$
 ($\eta_2 > \eta_1$)
max. of $|\mathbf{E}_1(z)| : E_{i0}(1+1\Gamma)$, when $2\beta_1 z_{\text{max}} = -2n\pi$ ($n = 0, 1, 2, ...$),
or $z_{\text{max}} = -\frac{n\pi}{8} = -\frac{n\lambda_1}{2}$, $n = 0, 1, 2, ...$

min. of $|E_1(z)|$: $E_{i0}(1-1\Gamma)$, when $2\beta_1 z_{\min} = -(2n+1)\pi$

or
$$z_{\min} = -\frac{(2n+1)\pi}{2\beta_1} = -\frac{(2n+1)\lambda_1}{4}, \quad n = 0, 1, 2, \dots$$

(2)
$$\Gamma$$
 < 0 (η_2 < η_1)
max. of $|\mathbf{E}_1(z)|$: $E_{i0}(1-\mathbf{1}\Gamma)$,
min. of $|\mathbf{E}_1(z)|$: $E_{i0}(1+\mathbf{1}\Gamma)$,

In other words, the location for $|E_1(z)|_{max}$ and $|E_1(z)|_{min}$ when $\Gamma > 0$ are interchanged when $\Gamma > 0$. Standing-wave ratio (SWR): ratio of maximum value to the minimum value of |E| of a standing wave

$$S = \frac{|E|_{\text{max}}}{|E|_{\text{min}}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$
 (Dimensionless).

Inverse relation of Γ and S

$$|\Gamma| = \frac{S-1}{S+1}$$
 (Dimensionless).

Range of Γ : -1 to 1 Range of S: 1 to ∞

The magnetic field in medium 1:

$$\begin{aligned} \mathbf{H}_{i}(z) &= \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z}. \\ \mathbf{H}_{r}(z) &= -\mathbf{a}_{y} \frac{E_{r0}}{\eta_{1}} e^{j\beta_{1}z}. \\ \end{aligned}$$

$$\mathbf{H}_{1}(z) &= \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} (e^{-j\beta_{1}z} - \Gamma e^{j\beta_{1}z}) \\ &= \mathbf{a}_{y} \frac{E_{i0}}{\eta_{1}} e^{-j\beta_{1}z} (1 - \Gamma e^{j2\beta_{1}z}). \end{aligned}$$

$$\mathbf{Compared with}$$

$$\mathbf{E}_{1}(z) &= \mathbf{a}_{x} E_{i0} e^{-j\beta_{1}z} (1 + \Gamma e^{j2\beta_{1}z}).$$

Compared with $\mathbf{E}_1(z)$: In a dissipationless medium, Γ is real.

 $|\mathbf{H}_1(z)|$ is max. at locations where $|\mathbf{E}_1(z)|$ is min. $|\mathbf{H}_1(z)|$ is min. at locations where $|\mathbf{E}_1(z)|$ is max.

The magnetic field in medium 2 (expressed in terms of E_{i0} and τ):

$$\mathbf{H}_{t}(z) = \mathbf{a}_{y} \frac{E_{t0}}{\eta_{2}} e^{-j\beta_{2}z},$$

$$\mathbf{H}_{t}(z) = \mathbf{a}_{y} \frac{\tau}{\eta_{2}} E_{i0} e^{-j\beta_{2}z}.$$

$$\tau = \frac{E_{t0}}{E_{i0}}$$

 $\mathbf{E}_{t}(z) = \mathbf{a}_{x} E_{t0} e^{-j\beta_{2}z},$ $\mathbf{E}_{t}(z) = \mathbf{a}_{x} \tau E_{i0} e^{-j\beta_{2}z}.$

Compared with

densities in both media.

EXAMPLE 8-11 A uniform plane wave in a lossless medium with intrinsic impedance η_1 is incident normally onto another lossless medium with intrinsic impedance η_2 through a plane boundary. Obtain the expressions for the time-average power

8-9 Normal Incidence at Multiple Dielectric Interfaces (excluded)

8-10 Oblique Incidence at a Plane Dielectric Boundary

- Oblique incidence on a plane interface between two dielectric media.
 - Lossless media assumed

Intersection of wavefronts (surfaces of constant) with the plane of incidence

AO: incident waves O'A': reflected waves O'B: refracted waves

Reflected Refracted anr Incident wave Medium 1 Medium 2 (ϵ_1, μ_1)

z = 0

In medium 1, incident and reflected waves propagate with the same u_{n1}

FIGURE 8-16 Uniform plane wave incident obliquely on a plane dielectric boundary.

In medium 1, incident waves propagate with $u_{\rm p1}$ In medium 2, refracted waves propagate with $u_{\rm p2}$ The same time is taken for OB and AO'

z = 0

n: the index of refraction By definition, *n* is the ratio of the speed of light in free space to that in the medium $\frac{1}{2}$ $n = c/u_n$

FIGURE 8-16

Uniform plane wave incident obliquely on a plane dielectric boundary.

Snell's law of refraction: at an interface between two dielectric media, the ratio of the sine of the angle of refraction (transmission) in medium 2 to the sine of the angle of incidence in medium 1 is equal to the inverse ratio of indices of refraction n_1/n_2

$$\frac{\sin\,\theta_i}{\sin\,\theta_i} = \frac{n_1}{n_2}$$

For nonmagnetic material, $\mu_1 = \mu_2 = \mu_0$

$$\frac{\sin \theta_t}{\sin \theta_i} = \sqrt{\frac{\epsilon_1}{\epsilon_2}} = \sqrt{\frac{\epsilon_{r1}}{\epsilon_{r2}}} = \frac{n_1}{n_2} = \frac{\eta_2}{\eta_1},$$

$$\frac{\sin \theta_t}{\sin \theta_i} = \frac{u_{p2}}{u_{p1}} \qquad u_{\rho} = \frac{1}{\sqrt{\epsilon \mu}}$$

$$\eta = \sqrt{\frac{\mu}{\epsilon}}$$

•
$$n, \sqrt{\epsilon}, \beta$$

• $\sin \theta, u_p, \eta$

For nonmagnetic material, $\mu_1 = \mu_2 = \mu_0$ And if medium 1 is free space: $\varepsilon_{c1} = 1$, $n_1 = 1$, $n_1 = 120\pi$

$$\frac{\sin \theta_t}{\sin \theta_i} = \frac{1}{\sqrt{\epsilon_{r2}}} = \frac{1}{n_2} = \frac{\eta_2}{120\pi}.$$

$$n_2 > 1 \rightarrow \theta_t < \theta_i$$

 \rightarrow Wave will be bent toward normal (for oblique incidence to a denser medium)

• In these derivation, no indications of the wave polarizations have been made.

• Snell's law of reflection and Snell's law of refraction are independent of wave polarization.

8-10.1 Total Reflection

- For $\varepsilon_1 > \varepsilon_2$:
 - wave in medium 1 is incident on a less dense medium 2
 - $\theta_t > \theta_i$
 - θ_t increases with θ_i ; When θ_t = $\pi/2$, the refracted wave will glaze along the interface.
 - A further increase in θ_i → no refracted wave, and the incident wave is totally reflected.
 - Critical angle θ_c : the angle of θ_i corresponds to $\theta_t = \pi/2$ (threshold of total reflection)

Unit vectors for propagation direction **a**_{ni}: direction of incident waves a_{nr}: direction of reflected waves a_{nt}: direction of transmitted waves

What happens mathematically if $\theta_i > \theta_c$?

12

Reflected wave
$$\frac{\mathbf{a}_{nr}}{\mathbf{a}_{c}}$$
 Surface $\frac{\mathbf{a}_{nr}}{\mathbf{a}_{c}}$ Surface $\frac{\mathbf{a}_{nr}}{\mathbf{a}_{c}}$ Incident wave $\frac{\mathbf{a}_{nr}}{\mathbf{a}_{c}}$ Medium $\frac{\mathbf{a}_{c}}{\mathbf{a}_{c}}$ $\frac{\mathbf{a}_{nr}}{\mathbf{a}_{c}}$ $\frac{\mathbf{a}_{nr}}{\mathbf{a}_$

$$\mathbf{a}_{nt} = \mathbf{a}_x \sin \theta_t + \mathbf{a}_z \cos \theta_t.$$

$$\mathbf{E}_{t}, \mathbf{H}_t \sim \exp(-j \beta_2 \mathbf{a}_{nt} \cdot \mathbf{R})$$

$$e^{-j\beta_2 \mathbf{a}_{nt} \cdot \mathbf{R}} = e^{-j\beta_2 (x \sin \theta_t + z \cos \theta_t)},$$

$$\sin \theta_t = \sqrt{\frac{\epsilon_1}{\epsilon_2}} \sin \theta_i \qquad \text{real}$$

$$\cos \theta_t = \pm j \sqrt{\frac{\epsilon_1}{\epsilon_2}} \sin^2 \theta_i - 1. \qquad \text{imaginary}$$

$$(-j) \times (-j) = -1$$

$$e^{-\alpha_2 z} e^{-j\beta_2 x},$$
where $\alpha_2 = \beta_2 \sqrt{(\epsilon_1/\epsilon_2) \sin^2 \theta_i - 1}$

$$\beta_{2x} = \beta_2 \sqrt{\epsilon_1/\epsilon_2} \sin \theta_i.$$

FIGURE 8-17 Plane wave incident at critical angle, $\epsilon_1 > \epsilon_2$.

Evanescent wave exists along the interface (in the *x* direction)

e^{-α2z} The evanescent wave attenuated exponentially (rapidly) in medium 2 in the normal direction (z direction);

No power is transmitted into medium 2

 $e^{-j\beta_{2x}x}$ The wave is tightly bound to the interface and is called a surface wave (Not a uniform plane wave due to $\exp(-\alpha_2 z)$)

Evanescent wave:
Attenuation in z direction
Propagation along x direction

 $\rho - \alpha_2 z_\rho - j\beta_{2x} x$

FIGURE 8-17

124

8-10.2 Perpendicular Polarization

- **E** \perp the plane of incidence
- Also called s-polarization (German origin: s = senkrecht = perpendicular)
- TE

The incident fields

$$\mathbf{E}_{i}(x, z) = \frac{\mathbf{a}_{y} E_{i0} e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}}{\mathbf{H}_{i}(x, z) = \frac{E_{i0}}{\eta_{1}} \frac{(-\mathbf{a}_{x} \cos \theta_{i} + \mathbf{a}_{z} \sin \theta_{i}) e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}}{\text{propagation}}$$

$$\mathbf{H}(\mathbf{R}) = \frac{1}{\eta} \mathbf{a}_{n} \times \mathbf{E}(\mathbf{R})$$

FIGURE 8-20 Plane wave incident on a plane dielectric boundary (perpendicular polarization).

$$\mathbf{E}_{r}(x,z) = \frac{\mathbf{a}_{y}E_{r0}e^{-j\beta_{1}(x\sin\theta_{r}-z\cos\theta_{r})}}{\eta_{1}}$$

$$\mathbf{H}_{r}(x,z) = \frac{E_{r0}}{\eta_{1}} \frac{(\mathbf{a}_{x}\cos\theta_{r} + \mathbf{a}_{z}\sin\theta_{r})e^{-j\beta_{1}(x\sin\theta_{r}-z\cos\theta_{r})}}{\text{polarization}}.$$

FIGURE 8-20 Plane wave incident on a plane dielectric boundary (perpendicular polarization).

 $\mathbf{H}(\mathbf{R}) = \frac{1}{n} \, \mathbf{a}_n \times \mathbf{E}(\mathbf{R})$

The transmitted fields

$$\mathbf{E}_{t}(x, z) = \mathbf{a}_{y} E_{t0} e^{-j\beta_{2}(x \sin \theta_{t} + z \cos \theta_{t})}$$

$$\mathbf{H}_{t}(x, z) = \frac{E_{t0}}{\eta_{2}} \frac{(-\mathbf{a}_{x} \cos \theta_{t} + \mathbf{a}_{z} \sin \theta_{t}) e^{-j\beta_{2}(x \sin \theta_{t} + z \cos \theta_{t})}}{\text{propagation}}$$

$$\mathbf{H}(\mathbf{R}) = \frac{1}{\eta} \mathbf{a}_{n} \times \mathbf{E}(\mathbf{R})$$

FIGURE 8-20 Plane wave incident on a plane dielectric boundary (perpendicular polarization).

4 unknowns: E_{r0} , E_{t0} , θ_r , θ_t

B.C.: tangential E and H should be continuous

FIGURE 8-20 Plane wave incident on a plane dielectric boundary (perpendicular polarization).

$$\begin{split} \mathbf{E}_{\mathbf{f}}(x,z) &= \mathbf{a}_{\mathbf{y}} E_{i0} e^{-j\beta_{1}(x\sin\theta_{i}+z\cos\theta_{i})} \\ \mathbf{H}_{\mathbf{f}}(x,z) &= \frac{E_{i0}}{\eta_{1}} \left(-\mathbf{a}_{x}\cos\theta_{i} + \mathbf{a}_{z}\sin\theta_{i} \right) e^{-j\beta_{1}(x\sin\theta_{i}+z\cos\theta_{i})} \\ \mathbf{E}_{r}(x,z) &= \mathbf{a}_{y} E_{r0} e^{-j\beta_{1}(x\sin\theta_{r}-z\cos\theta_{r})} \\ \mathbf{H}_{r}(x,z) &= \frac{E_{r0}}{\eta_{1}} \left(\mathbf{a}_{x}\cos\theta_{r} + \mathbf{a}_{z}\sin\theta_{r} \right) e^{-j\beta_{1}(x\sin\theta_{r}-z\cos\theta_{r})} \\ \mathbf{E}_{t}(x,z) &= \mathbf{a}_{y} E_{t0} e^{-j\beta_{2}(x\sin\theta_{t}+z\cos\theta_{t})} \\ \mathbf{H}_{t}(x,z) &= \frac{E_{t0}}{\eta_{2}} \left(-\mathbf{a}_{x}\cos\theta_{t} + \mathbf{a}_{z}\sin\theta_{t} \right) e^{-j\beta_{2}(x\sin\theta_{t}+z\cos\theta_{t})} \end{split}$$

 H_{1x}

Tangential E and H should be continuous

$$E_{iy}(x,0) + E_{ry}(x,0) = E_{ty}(x,0)$$

$$E_{i0}e^{-j\beta_{1}x\sin\theta_{i}} + E_{r0}e^{-j\beta_{1}x\sin\theta_{r}} = E_{t0}e^{-j\beta_{2}x\sin\theta_{t}}.$$

$$H_{ix}(x,0) + H_{rx}(x,0) = H_{tx}(x,0)$$

$$\frac{1}{\eta_1} \left(-E_{i0} \cos \theta_i e^{-j\beta_1 x \sin \theta_i} + E_{r0} \cos \theta_r e^{-j\beta_1 x \sin \theta_r} \right) = -\frac{E_{t0}}{\eta_2} \cos \theta_t e^{-j\beta_2 x \sin \theta_t}.$$

$$E_{i0}e^{-j\beta_1x\sin\theta_i} + E_{r0}e^{-j\beta_1x\sin\theta_r} = E_{t0}e^{-j\beta_2x\sin\theta_t}.$$
 (8-202)

$$\frac{1}{\eta_1}(-E_{i0}\cos\theta_i e^{-j\beta_1 x \sin\theta_i} + E_{r0}\cos\theta_r e^{-j\beta_1 x \sin\theta_r}) = -\frac{E_{t0}}{\eta_2}\cos\theta_t e^{-j\beta_2 x \sin\theta_t}.$$
 (8-203)

The 2 equations are to be satisfied for all x (boundary)

 \rightarrow Exponential terms that are functions of x (phase terms) must be equal (phase matching)

$$\beta_1 x \sin \theta_i = \beta_1 x \sin \theta_r = \beta_2 x \sin \theta_t$$

$$\theta_r = \theta_i$$

$$\theta_r = \theta_i$$
 Snell's law of reflection Snell's law of refraction

Substitute in Eqs. (8-202) and (8-203)

$$E_{i0} + E_{r0} = E_{t0}$$

$$\frac{1}{\eta_1}(E_{i0} - E_{r0})\cos\theta_i = \frac{E_{t0}}{\eta_2}\cos\theta_t,$$

$$E_{i0} + E_{r0} = E_{t0}$$

$$\frac{1}{\eta_1}(E_{i0}-E_{r0})\cos\theta_i = \frac{E_{t0}}{\eta_2}\cos\theta_t,$$

Derivation Express E_{r0} and E_{t0}

$$\Gamma_{\perp} = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$
$$= \frac{(\eta_2/\cos \theta_t) - (\eta_1/\cos \theta_i)}{(\eta_2/\cos \theta_t) + (\eta_1/\cos \theta_i)}$$

Fresnel's equations

$$\begin{aligned} \tau_{\perp} &= \frac{E_{t0}}{E_{t0}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t} \\ &= \frac{2(\eta_2/\cos \theta_t)}{(\eta_2/\cos \theta_t) + (\eta_1/\cos \theta_i)} \end{aligned}$$

Normal incidence

$$\Gamma = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad \eta_1 \rightarrow (\eta_1/\cos\theta_i)$$

$$\eta_2 \rightarrow (\eta_2/\cos\theta_i)$$

$$\tau = \frac{E_{r0}}{E_{i0}} = \frac{2\eta_2}{\eta_2 + \eta_1}$$

$$1 + \Gamma = \tau$$

Oblique incidence

$$\begin{split} \Gamma_{\perp} &= \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t} \\ &= \frac{(\eta_2/\cos \theta_t) - (\eta_1/\cos \theta_t)}{(\eta_2/\cos \theta_t) + (\eta_1/\cos \theta_t)} \\ \tau_{\perp} &= \frac{E_{r0}}{E_{i0}} = \frac{2\eta_2 \cos \theta_t}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_t} \\ &= \frac{2(\eta_2/\cos \theta_t)}{(\eta_2/\cos \theta_t) + (\eta_1/\cos \theta_t)} \\ \hline 1 + \Gamma_{\perp} &= \tau_{\perp}, \end{split}$$

When
$$\theta_i = 0$$
, $\theta_r = \theta_t = 0$

reduce to normal incidence

If medium 2 is a perfect conductor, η_2 =0

$$\begin{split} \Gamma_{\perp} &= \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t} \\ &= \frac{(\eta_2/\cos \theta_t) - (\eta_1/\cos \theta_i)}{(\eta_2/\cos \theta_t) + (\eta_1/\cos \theta_i)} \end{split}$$

$$\tau_{\perp} = \frac{E_{t0}}{E_{t0}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_i}$$
$$= \frac{2(\eta_2/\cos \theta_i)}{(\eta_2/\cos \theta_i) + (\eta_1/\cos \theta_i)}$$

$$\Gamma_{\perp} = -1 (E_{r0} = -E_{i0})$$

$$\tau_{\perp}=0\ (E_{t0}=0)$$

E tangential on the surface of conductor = 0. No energy is transmitted across a perfectly conducting boundary (as was noted).

When reflection = 0?
$$\Gamma_{\perp} = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$

$$= \frac{(\eta_2/\cos \theta_i) - (\eta_1/\cos \theta_i)}{(\eta_2/\cos \theta_i) + (\eta_1/\cos \theta_i)}$$

$$\Gamma_{\perp} = 0$$
 Denote the θ_i = $\theta_{B\perp}$ for no reflection
$$\eta_2 \cos \theta_{B\perp} = \eta_1 \cos \theta_t.$$
 Derivation
$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t} = \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_i}$$
 By Snell's law of refraction
$$\sin^2 \theta_{B\perp} = \frac{1 - \mu_1 \epsilon_2/\mu_2 \epsilon_1}{1 - (\mu_1/\mu_2)^2}.$$

 $\theta_{\rm R}$: Brewster angle of no reflection of s-polarization

For nonmagnetic material, $\mu_1 = \mu_2 = \mu_0$, $\theta_{B\perp}$ does not exist. For materials $\varepsilon_1 = \varepsilon_2$ and $\mu_1 \neq \mu_2$ (very rare situation), $\theta_{B\perp}$ exists: $\sin \theta_{B\perp} = \frac{1}{\sqrt{1 + (\mu_1/\mu_2)}}$,

8-10.3 Parallel Polarization

- E // the plane of incidence
- p-polarization
- TM

The incident fields

$$\begin{split} \mathbf{E}_{i}(x,z) &= E_{i0}(\mathbf{a}_{x}\cos\theta_{i} - \mathbf{a}_{z}\sin\theta_{i})e^{-j\beta_{1}(x\sin\theta_{i} + z\cos\theta_{i})} \\ \mathbf{H}_{i}(x,z) &= \underline{\mathbf{a}_{y}}\frac{E_{i0}}{\eta_{1}}e^{-j\beta_{1}(x\sin\theta_{i} + z\cos\theta_{i})} \\ & \text{polarization} \end{split}$$

FIGURE 8-21 Plane wave incident obliquely on a plane dielectric boundary (parallel polarization).

$$\begin{aligned} \mathbf{E}_{r}(x,z) &= E_{r0}(\mathbf{a}_{x}\cos\theta_{r} + \mathbf{a}_{z}\sin\theta_{r})e^{-\frac{j\beta_{1}(x\sin\theta_{r} - z\cos\theta_{r})}{2}}, \\ \mathbf{H}_{r}(x,z) &= -\mathbf{a}_{y}\frac{E_{r0}}{\eta_{1}}e^{-\frac{j\beta_{1}(x\sin\theta_{r} - z\cos\theta_{r})}{2}}. \end{aligned}$$

FIGURE 8-21 Plane wave incident obliquely on a plane dielectric boundary (parallel polarization).

The transmitted fields

$$\begin{split} \mathbf{E}_{t}(x,z) &= E_{t0}(\mathbf{a}_{x}\cos\theta_{t} - \mathbf{a}_{z}\sin\theta_{t})e^{-j\beta_{2}(x\sin\theta_{t} + z\cos\theta_{t})}, \\ \mathbf{H}_{t}(x,z) &= \mathbf{a}_{y}\frac{E_{t0}}{\eta_{2}}\,e^{-j\beta_{2}(x\sin\theta_{t} + z\cos\theta_{t})}. \\ &\text{polarization} \end{split}$$

FIGURE 8-21 Plane wave incident obliquely on a plane dielectric boundary (parallel polarization).

$$\begin{split} \mathbf{E}_{i}(x,z) &= E_{i0}(\mathbf{a}_{x}\cos\theta_{i} - \mathbf{a}_{z}\sin\theta_{i})e^{-j\beta_{1}(x\sin\theta_{i} + z\cos\theta_{i})} \\ \mathbf{H}_{i}(x,z) &= \mathbf{a}_{y}\frac{E_{i0}}{\eta_{1}}e^{-j\beta_{1}(x\sin\theta_{i} + z\cos\theta_{i})} \\ \mathbf{E}_{r}(x,z) &= E_{r0}(\mathbf{a}_{x}\cos\theta_{r} + \mathbf{a}_{z}\sin\theta_{r})e^{-j\beta_{1}(x\sin\theta_{r} - z\cos\theta_{r})} \\ \mathbf{H}_{r}(x,z) &= -\mathbf{a}_{y}\frac{E_{r0}}{\eta_{1}}e^{-j\beta_{1}(x\sin\theta_{r} - z\cos\theta_{r})} \\ \mathbf{E}_{t}(x,z) &= E_{t0}(\mathbf{a}_{x}\cos\theta_{t} - \mathbf{a}_{z}\sin\theta_{t})e^{-j\beta_{2}(x\sin\theta_{t} + z\cos\theta_{t})} \\ \mathbf{H}_{t}(x,z) &= \mathbf{a}_{y}\frac{E_{t0}}{\theta_{r}}e^{-j\beta_{2}(x\sin\theta_{t} + z\cos\theta_{t})} \end{split}$$

Tangential **E** and **H** should be continuous at z = 0

$$(E_{i0} + E_{r0})\cos\theta_i = E_{t0}\cos\theta_t,$$

$$\frac{1}{\eta_1}(E_{i0}-E_{r0})=\frac{1}{\eta_2}E_{t0}.$$

Express E_{r0} and E_{t0}

$$\Gamma_{||} = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$

$$\tau_{||} = \frac{E_{t0}}{E_{t0}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}.$$

$$1 + \Gamma_{||} = \tau_{||} \left(\frac{\cos \theta_t}{\cos \theta_i} \right).$$

Fresnel's equations

Different from the case in s-polarization

$$1 + \Gamma_{\perp} = \tau_{\perp},$$

When
$$\theta_i$$
 = 0, θ_r = θ_t =0

→ reduce to normal incidence

If medium 2 is a perfect conductor, η_2 =0

$$\Gamma_{||} = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$

$$\tau_{||} = \frac{E_{to}}{E_{io}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$

$$\Gamma_{||} = -1$$

$$\tau_{||} = 0$$

E tangential on the surface of conductor = 0. No energy is transmitted across a perfectly conducting boundary (as was noted).

When is reflection = 0?

$$\Gamma_{||} = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$

$$\Gamma_{||} = 0$$
Denote the θ_i = $\theta_{B||}$ for no reflection
$$\eta_2 \cos \theta_t = \eta_1 \cos \theta_{B||},$$
Derivation
$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t} = \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_t}$$
By Snell's law of refraction
$$\sin^2 \theta_{B||} = \frac{1 - \mu_2 \epsilon_1 / \mu_1 \epsilon_2}{1 - (\epsilon_1 / \epsilon_2)^2}.$$

 θ_{BII} : Brewster angle of no reflection of p-polarization

Directions of ${\bf E_r}$, ${\bf H_r}$ in figures 8-11, 8-13, 8-20, and 8-21 are chosen arbitrarily. The actual directions depend on the sign of the expression.

- In Figs. 8-11 and 8-13, actual directions of E_r H_r are opposite to those chosen because $E_{r0} = -E_{10}$
- In Figs. 8-20 and 8-21, actual directions of **E**, **H**, depends on the sign of Γ_{\perp} and Γ_{Π} , respectively

$$\begin{split} \mathbf{E}_{r}(x,z) &= E_{r0}(\mathbf{a}_{x}\cos\theta_{r} + \mathbf{a}_{z}\sin\theta_{r})e^{-j\beta_{1}(x\sin\theta_{r} - z\cos\theta_{r})}, \\ \mathbf{H}_{r}(x,z) &= -\mathbf{a}_{y}\frac{E_{r0}}{\eta_{1}}e^{-j\beta_{1}(x\sin\theta_{r} - z\cos\theta_{r})}. \\ \Gamma_{||} &= \frac{E_{r0}}{E_{t0}} = \frac{\eta_{2}\cos\theta_{t} - \eta_{1}\cos\theta_{i}}{\eta_{2}\cos\theta_{t} + \eta_{1}\cos\theta_{i}}. \end{split}$$

• If $\Gamma_{||} > 0$, \mathbf{H}_r is in $-\mathbf{a}_y$ direction (same as shown in figure) • If $\Gamma_{||} < 0$, \mathbf{H}_r is in $+\mathbf{a}_y$ direction (opposite to that shown in figure)

FIGURE 8-21

Plane wave incident obliquely on a plane dielectric boundary (parallel polarization).

$$\Gamma_{\perp} = \frac{E_{r0}}{E_{i0}} = \frac{(\eta_2/\cos\theta_t) - (\eta_1/\cos\theta_i)}{(\eta_2/\cos\theta_t) + (\eta_1/\cos\theta_i)}$$

$$\Gamma_{||} = \frac{E_{r0}}{E_{i0}} = \frac{\eta_2\cos\theta_t - \eta_1\cos\theta_i}{\eta_2\cos\theta_t + \eta_1\cos\theta_i}$$

 $|\Gamma_{\perp}|^2$ is always larger than $|\;\Gamma_{||}|^2$

→ When an unpolarized light strikes a plane dielectric interface, the reflected wave will contain more power in s-polarization than p-polarization.

Power reflectivity of the interface for s and p polarization, if a beam is incident from air onto a medium with refractive index 1.45 (e.g., silica at 1064 nm).

Polaroid Sunglasses

The light reaching the eye is predominately s-polarization (i,e, ${\bf E}\perp$ plane of reflection, or ${\bf E}$ field is parallel to the earth surface)

Polaroid sunglasses (a polarizer) are designed to filter out this component \mathbf{E}_{\perp} As a result, a dim light of \mathbf{E}_{II} will penetrate into the sunglasses.

For materials
$$\mu_1=\mu_2,\; \theta_{B||}:$$

$$\sin\,\theta_{B||}=\frac{1}{\sqrt{1+(\epsilon_1/\epsilon_2)}}\cdot\qquad (\mu_1=\mu_2)$$
 or
$$\theta_{B||}=\tan^{-1}\sqrt{\frac{\epsilon_2}{\epsilon_1}}=\tan^{-1}\left(\frac{n_2}{n_1}\right). \qquad (\mu_1=\mu_2)$$

Because of different formulas for Brewster angles for s- and p-polarization, it is possible to separate these 2 types of polarizations from an unpolarized light.

EXAMPLE 8-15 The dielectric constant of pure water is 80. (a) Determine the Brewster angle for parallel polarization, θ_{BII} , and the corresponding angle of trans-

mission. (b) A plane wave with perpendicular polarization is incident from air on water surface at $\theta_i = \theta_{Bii}$. Find the reflection and transmission coefficients.