Medical Image Processing for Interventional Applications Ultrasound

Online Course – Unit 37 Andreas Maier, Joachim Hornegger, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Ultrasound

Historical Remarks Facts on Ultrasound

Summary

Take Home Messages Further Readings

Historical Remarks

1942: Discovery of medical ultrasound by Theodore Dussik

1984: First 3-D ultrasound system reported by Kazunori Baba

Figure 1: First applications of sound (echometry due to Aristoteles)

Generation of Ultrasound Waves

Figure 2: Pressure waves generated by periodic motion

Properties of Waves

- Reflection: At the boundary of two media waves are not transmitted, but reflected.
- **Refraction:** At the boundary of two media waves are bended.
- **Absorption:** Conversion of acoustic energy to heat causes attenuation of waves.

Figure 3: Siemens-ACUSON Aspen Echo System (left), Siemens-ACUSON US CV 70 (right)

2-D Ultrasound Images

Figure 4: Portable ultrasound system (Siemens Healthcare)

2-D Ultrasound Images

Figure 5: 2-D ultrasound showing a fetal spine and heart (images courtesy of Siemens Healthcare)

3-D Ultrasound Images

Figure 6: 3-D ultrasound images of a fetus (images courtesy of Siemens Healthcare)

Carotid Artery

Figure 7: Carotid artery and 3-D ultrasound image of vessels (images courtesy of Siemens Healthcare)

- Physical medium can vibrate and produce sound.
- Sound waves are due to tissue vibrations.
- Sine waves: peak represents the maximum, nadir represents the minimum pressure.
- Characteristics of sound waves: period, frequency, speed, amplitude, power, intensity, wavelength
- Propagation speed in human tissue: ~1500 m s⁻¹
- Hearable sound: 20–20000 Hz
- Clinical ultrasound: 1–10 MHz

Biological Media

medium	c [ms $^{-1}$]	$Z[gcm^{-2}s^{-1}]$	$ ho$ [g cm $^{-3}$]
air	331	430	0.013
grease	1470	1.42×10^{5}	0.97
water	1492	1.48×10^{5}	0.9982
brain tissue	1530	1.56×10^{5}	1.02
muscles	1568	1.63×10^{5}	1.04
bones	3600	6.12×10^{5}	1.7

Table 1: Data of different biological media (speed of sound in the medium, acoustic impedance, density)

Important observations:

- Medium determines the speed of sound.
- Sound of different frequencies propagates at the same speed in the same medium.

Important observations:

- Medium determines the speed of sound.
- Sound of different frequencies propagates at the same speed in the same medium.

Definition

The *acoustic impedance* Z is:

$$Z = \rho \cdot c$$

where ρ is the density of the medium, and c the speed of sound waves in the medium.

Reflection at the boundary of two different tissue classes can be described by:

$$I_R = I_I \frac{1 - \frac{Z_2}{Z_1}}{1 + \frac{Z_2}{Z_1}},$$

where

- *I_I*: intensity of incoming wave,
- *I_R*: intensity of reflected wave,
- Z_1 : impedance of tissue class 1,
- Z_2 : impedance of tissue class 2.

The relationship of speed c, frequency f and wavelength λ is:

$$c = f \cdot \lambda$$
.

- The denser a medium, the higher the speed of sound through the medium.
 - → Sound propagates faster through bones than liquids.
- The higher the frequency, the lower the wavelength.
 - → Echocardiographic imaging: Higher image resolution due to smaller wavelength; deeper penetration results from larger wavelength.

The distance between ultrasound source and boundary can be computed as

$$d=\frac{1}{2}ct,$$

where

• *d*: distance between source and tissue boundary,

• *t*: runtime of signal,

• c: speed of sound.

Note: Factor 0.5 results from the fact that the signal moves from the source to the tissue boundary and back.

Topics

Ultrasound

Historical Remarks Facts on Ultrasound

Summary

Take Home Messages Further Readings

Take Home Messages

- Ultrasound is using sound waves to generate images. This is possible due to different acoustic characteristics of the tissue materials.
- There are various medical applications and, in contrast to X-ray imaging, US does not depend on possibly harmful radiation.

Further Readings

- Carlo Tomasi and Takeo Kanade. "Shape and Motion from Image Streams Under Orthography: A Factorization Method". In: *International Journal of Computer Vision* 9.2 (Nov. 1992), pp. 137–154. DOI: 10.1007/BF00129684
- C. J. Poelman and T. Kanade. "A Paraperspective Factorization Method for Shape and Motion Recovery". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 19.3 (Mar. 1997), pp. 206–218. DOI: 10.1109/34.584098
- Mei Han and Takeo Kanade. "A Perspective Factorization Method for Euclidean Reconstruction with Uncalibrated Cameras". In: *The Journal of Visualization and Computer Animation* 13.4 (2002), pp. 211–223. DOI: 10.1002/vis.290
- Peter Sturm and Bill Triggs. "A Factorization Based Algorithm for Multi-Image Projective Structure and Motion". In: Computer Vision — ECCV '96: 4th European Conference on Computer Vision Cambridge, UK, April 15–18, 1996 Proceedings Volume II. ed. by Bernard Buxton and Roberto Cipolla. Vol. 1065. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 709–720. DOI: 10.1007/3-540-61123-1_183