(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Februar 2002 (21.02.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/15118 A1

(51) Internationale Patentklassifikation7: G06K 7/10, 7/14

(21) Internationales Aktenzeichen:

PCT/DE01/02993

(22) Internationales Anmeldedatum:

13. August 2001 (13.08.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 40 614.9 16. August 2000 (16.08.2000)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): GAVITEC GMBH [DE/DE]; Schumanstrasse 18, 52146 Würselen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): MÜLLER, Frank [DE/DE]; Charlottenstrasse 11, 52070 Aachen (DE).
- (74) Anwälte: CASTELL, Klaus usw.; Patentanwaltskanzlei Liermann-Castell, Gutenbergstr. 12, 52349 Düren (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA; CH, CN, CO, CR,

CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR AUTOMATICALLY IDENTIFYING A DIRECTED STRUCTURE

(54) Bezeichnung: VERFAHREN ZUR AUTOMATISCHEN ERKENNUNG EINER GERICHTETEN STRUKTUR

(57) Abstract: In order to be able to automatically identify the location and orientation of a directed structure in a digital image, the invention provides a method in which the digital image is subdivided into preferably interconnected blocks. For each block, at least one texture characteristic is determined, which represents a measure for the structuring of the blocks along predetermined predominant directions, and parameters are determined from these texture characteristics. Said parameters indicate the location and the orientation of a directed structure in the digital image.

(57) Zusammenfassung: Um den Ort un die Orientierung einer gerichteten Struktur in einem digitalen Bild automatisch erkennen zu können, schlägt die Erfindung ein Verfahren vor, bei dem das digitale Bild in vorzugsweise zusammenhängende Blöcke unterteilt wird und für jeden Block mindestens ein Texturmerkmal bestimmt wird, welches ein Mass für die Strukturierung der Blöcke entlang vorgegebener Vorzugsrichtungen darstellt und aus den Texturmerkmalen Parameter ermittelt werden, die den Ort und die Orientierung einer gerichteten Struktur in dem digitalen Bild angeben.

Verfahren zur automatischen Erkennung einer gerichteten Struktur

Die Erfindung betrifft ein Verfahren zur automatischen Erkennung eines Ortes und einer Orientierung einer gerichteten Struktur in einem digitalen Bild, insbesondere zur Bestimmung des Ortes und der Orientierung eines in dem digitalen Bild enthaltenen Barcodes.

Es sind verschiedene Verfahren zur Erkennung und Lokalisierung gerichteter Strukturen in Bildern bekannt. Beispielsweise gibt es Verfahren, bei denen aus einem Bild durch Anwendung eines Operators (z. B. eines Laplacian-of-Gaussian-Operators, kurz LoG-Operator) ein zweites Bild berechnet wird, dessen Pixelwerte nicht die Helligkeit, sondern den lokalen Kontrast am Ort der jeweiligen Pixel darstellen. In einem zweiten Schritt wird dann dieses zweite Bild daraufhin untersucht, ob es entlang im wesentlichen gerader und im wesentlichen paralleler Linien Pixel enthält, die hohe Werte aufweisen.

Ein Nachteil solcher Methoden besteht in dem hohen Rechenaufwand, der aufwendige Recheneinheiten oder lange Auswertezeiten erfordert. Schon die Verwendung eines Operators kann für viele Anwendungen zu aufwendig sein. Nochmehr gilt dies für die sich anschließende Auswertung des zweiten Bildes.

Andere Verfahren bestimmen innerhalb lokaler Bildbereiche die zweidimensionale Autokorrelationsfunktion (AKF) oder das zweidimensionale Fourierspektrum. Die Werte der AKF oder des Fourierspektrums werden daraufhin weiterverarbeitet, um diese Informationen über die Strukturierung der zugehörigen Bereiche zu erhalten. Auch bei diesen Methoden ist der Rechenaufwand sehr hoch.

Die angesprochenen gerichteten Strukturen in Bildern können auch Barcodes sein. Diese Barcodes sind spezielle optische Codes, die beispielsweise aus parallelen Strichen (Bars) unterschiedlicher Dicke bestehen, die durch Lücken (Spaces) unterschiedlicher Dicken voneinander getrennt sind. Die Abfolge der Dicken der Bars und Spaces stellen die im Barcode gespeicherte Information dar. Barcodes können auf Warenverpackungen und Etiketten aufgedruckt werden, oder zur direkten Markierung verschiedenster Produkte verwendet werden. Ein wesentliches Merkmal ist dabei die Maschinenlesbarkeit von Barcodes. Das heißt, dass es mit einer speziellen Apparatur (Barcodeleser) möglich ist, die in einem Barcode gespeicherte Information zurückzugewinnen.

Zur Lesung von Barcodes bestehen zur Zeit zwei grundsätzlich verschiedene Verfahrensklassen.

20 Bei der einen Klasse wird durch Abtasten der Vorlage mit einem Laserstrahl ein Zeitsignal gebildet, das von einer nachfolgenden Recheneinheit ausgewertet wird. Hierbei spricht man von einem sogenannten 1D-

15

20

Verfahren. Bei Lesegeräten, die nach dem 1D-Verfahren arbeiten, kann eine Lesung des Barcodes nur dann erfolgen, wenn der Laserstrahl den Barcode quer zu den Bars und Spaces schneidet. Wenn die relative Lage von Barcode und Lesegerät nicht von vornherein festliegt, eine Lesung des Codes aber dennoch ermöglicht werden soll (lageunabhängig), ist es erforderlich, die Vorlage entlang verschiedener Richtungen mehrfach abzutasten (omnidirektionale Lesung). Vorrichtungsgemäß wird dies üblicherweise mit bewegten Spiegeln erreicht, die den Laserstrahl so lenken, dass die Vorlage an verschiedenen Orten und entlang verschiedener Richtungen abgetastet wird. Nachteilig ist hierbei die Notwendigkeit bewegte Teile einzusetzen, wodurch sich unter anderem Einschränkungen bei der minimalen Baugröße und der Standzeit ergeben.

Bei der anderen Klasse wird die Szene von einer mit einem elektronischen Sensor ausgestatteten Kamera aufgenommen und das auf den Sensor projizierte Bild digitalisiert. Das digitale Bild wird dann zur Auswertung an eine Dekodiereinheit übertragen (2D-Verfahren). Ein Vorteil von 2D-Verfahren besteht darin, dass man bei diesem Barcodeleser auf bewegte Teile verzichten kann. Ein weiterer Vorteil besteht darin, das in der Dekodiereinheit ein digitales Bild vorliegt, welches ein Abbild des Barcodes enthält.

Die Dekodiereinheit kann dabei wahlfrei auf die einzelnen Pixel des Bildes zugreifen, wodurch die Klasse möglicher Dekodiermethoden wesentlich erweitert wird. Insbesondere kann das gesamte Repertoire der Me-

15

20

thoden der digitalen Bildverarbeitung im Sinne einer Vorverarbeitung des Bildes verwendet werden. Es lassen sich dadurch Fehler oder Störungen des Codes, die beispielsweise beim Druckprozess entstehen können, in gewissen Grenzen ausgleichen.

Bei den 2D-Verfahren zur Codedekodierung kann man unterscheiden, ob eine Bestimmung des Ortes und der Orientierung des Barcodes im Bild vorgenommen wird (lokalisierende Verfahren) oder nicht.

Lokalisierende Verfahren sind insbesondere dann vorteilhaft, wenn die Lage und/oder die Orientierung des Barcodes innerhalb des Sichtfeldes der Kamera nicht sicher vorausgesagt werden kann und der Barcode zudem gelesen werden soll (omnidirektionale Lesung).

Bei nicht lokalisierenden Verfahren erzielt man die Fähigkeit zur omnidirektionalen Lesung durch Auswertung des Bildes entlang einer Vielzahl von virtuellen Scanlinien. Es wird also aus dem Bild ein 1D-Signal gebildet, indem die Grauwerte des Bildes an verschiedenen Orten entlang verschiedener Richtungen ausgelesen werden. Das so gebildete 1D-Signal wird daraufhin mit grundsätzlich ähnlichen Verfahren ausgewertet, wie ein von einem Laserscanner generiertes Zeitsignal. Unvorteilhaft ist dabei, dass die Grauwerte des Bildes entlang einer Vielzahl von Linien ausgewertet werden und sich somit einerseits der Rechenaufwand vervielfacht und andererseits die Gefahr von Fehllesungen erhöht wird.

Bei einem bekannten Verfahren, das diese Nachteile durch eine Orts- und Lagebestimmung des Barcodes vermeidet, werden in der direkten Umgebung des Barcodes zusätzliche Markierungen angebracht. Diese Markierungen werden in einem ersten Schritt von einem entsprechend modifizierten Lesegerät erkannt. Da sich die Markierungen in einem vorbestimmten Abstand zum Barcode befinden, ist mit der Lokalisierung der Markierungen auch der Barcode lokalisiert. Bei diesem Verfahren ist es nachteilig, dass es bedruckte Markierungen erfordert. Da diese Markierungen nicht Bestandteil eines allgemein verbindlichen Standards sind, werden diese nicht durchgängig verwendet.

Außerdem benötigen die zusätzlichen Markierungen auch eine zusätzliche bedruckte Fläche. Gerade bei der Markierung von Waren (EAN/UPC) ist die bedruckbare Fläche als Werbemedium kostbar, weshalb sich die Verwendung zusätzlicher Markierungen bisher nicht durchsetzen konnte.

Da Barcodes aus parallelen Strichen aufgebaut sind, stellen sie im Sinne der digitalen Bildverarbeitung gerichtete Strukturen dar und es ist prinzipiell möglich, die aus der digitalen Bildverarbeitung stammenden Verfahren zur Lokalisierung gerichteter Strukturen (Texturanalyse) auch zur Lokalisierung von Barcodes einzusetzen. Diese Verfahren erfordern jedoch die Anwendung von speziellen Operatoren (z. B. LoG-Operator), die Bestimmung zweidimensionaler Korrelationsfunktionen oder die Bestimmung des zweidimensionalen Fourierspektrums, also die Anwendung

15

rechenaufwendiger Algorithmen und sind deshalb zur Lokalisation von Barcodes nicht wirtschaftlich einsetzbar.

Es ist somit Aufgabe vorliegender Erfindung, ein Verfahren bereitzustellen, welches sich zur automatischen Erkennung eines Ortes und einer Orientierung einer gerichteten Struktur in einem digitalen Bild, insbesondere zur Erkennung eines in einem digitalen Bild enthaltenen Barcodes, sowie zur zumindest näherungsweise Bestimmung des Ortes und der Orientierung dieses Barcodes wirtschaftlich einsetzten lässt.

Erfindungsgemäß ist die obige Aufgabe dadurch gelöst, dass in einem Verfahren zur automatischen Erkennung eines Ortes und einer Orientierung einer gerichteten Struktur in einem digitalen Bild, insbesondere zur Bestimmung des Ortes und der Orientierung eines in dem digitalen Bild enthaltenen Barcodes, das digitale Bild in vorzugsweise zusammenhängende Blöcke unterteilt wird und für jeden Block mindestens ein Texturmerkmal bestimmt wird, welches ein Maß für die Strukturierung der Blöcke entlang vorgegebener Vorzugsrichtungen darstellt, und aus den Texturmerkmalen Parameter ermittelt werden, die den Ort und die Orientierung einer gerichteten Struktur in dem digitalen Bild angeben.

Vorteilhafterweise ist das Bild dabei ein von einem kamerabasierten Co20 delesegerät aufgenommenes Abbild einer realen Szene, die unter anderem
einen Barcode enthält. Unter einem elektronisch vorliegenden oder digitalen Bild wird hierbei ein aus einer Matrix von Bildelementen (Pixeln) zu-

sammengesetztes Objekt verstanden, wobei jedem Pixel ein Ort (üblicherweise in Form eines Zeilenindex und des Spaltenindex) sowie ein die Helligkeit am Ort des Pixels kennzeichnender Wert (Wert des Pixels) zugeordnet ist. Es können aber auch auf andere Weise erzeugte, in elektronischer Form vorliegender Bilder mit dem vorgestellten Verfahren automatisch analysiert werden.

5

10

15

Besonders vorteilhaft bei dem erfindungsgemäßen Verfahren ist es, dass sich der Rechenaufwand gegenüber bekannten Verfahren zur Lokalisierung gerichteter Strukturen, um ein vielfaches reduziert. Die Anwendung dieses Verfahrens zur Lokalisierung von Barcodes wird durch diesen verringerten Rechenaufwand wirtschaftlich sehr interessant.

Einen weiteren Vorteil, den das erfindungsgemäße Verfahren mit sich bringt, ist, dass keine zusätzlichen Markierungen hinsichtlich der Barcode aufweisenden Fläche erforderlich sind, welche bei herkömmlichen Verfahren zur Lokalisierung und Orientierungsbestimmung für den Barcode benötigt wurden. Somit wird auch keine zusätzliche Fläche für die Markierungen benötigt, wodurch diese Fläche als eventuelle Werbefläche zur Verfügung steht. Dies ist beispielsweise besonders interessant, wenn die Verpackung einer Ware relativ klein ist.

Vorteilhaft bei dem Verfahren ist ebenfalls, dass nach der Lokalisierung nur noch eine einzige Linie ausgewertet werden muss.

Außerdem verringert die Konzentration auf diejenigen Bildbereiche, die mit hoher Wahrscheinlichkeit Barcodes enthalten, die Gefahr von Fehllesungen.

Zur vorteilhaften Lokalisierung einer gerichteten Struktur wird das digitale Bild in Bereiche eingeteilt, die sogenannten Blöcke. Hierbei sind die
Blöcke vorzugsweise zusammenhängend angeordnet. Um das Verfahren
weiter zu vereinfachen ist es vorteilhaft, wenn die Blöcke eine rechteckige
Form, vorzugsweise eine quadratische Form, aufweisen.

Eine Ausführungsvariante des Verfahrens sieht vor, dass für jeden dieser Blöcke, wird vorzugsweise eine vorgegebene Anzahl von ersten richtungsempfindlichen Merkmalen, den sogenannten "Merkmalen erster Ordnung" berechnet. Diese "Merkmale erster Ordnung" werden im folgenden auch als "erste Texturmerkmale" bezeichnet.

Die Berechnungsvorschrift für diese "Merkmale erster Ordnung" wird dabei durch sogenannte Merkmalsfunktionen beschrieben. Eine Merkmalsfunktion ist eine Zuordnungsvorschrift, die einem Block in eindeutiger Weise eine Zahl zuordnet. Alle Merkmalsfunktionen sind dabei so gestaltet, dass einem Block um so höhere Werte zugeordnet werden, je größer die Grauwertunterschiede des Blocks entlang einer vorbestimmten Vorzugsrichtung sind. Es wird also ein Satz von Merkmalsfunktionen festgelegt, wobei jeder der Merkmalsfunktionen aus diesem Satz eine Vorzugsrichtung zugeordnet werden kann, entlang der ein Bildblock aus-

gewertet wird. Dabei sind die Merkmalsfunktionen vorzugsweise so gestaltet, dass die zugehörigen Vorzugsrichtungen die Gesamtheit aller Richtungen möglichst gleichmäßig abdecken.

Insbesondere werden die Merkmalsfunktion so gewählt, dass je zwei beliebig ausgewählte verschiedene Merkmalsfunktionen auch verschiedene Vorzugsrichtungen besitzen. Dabei wird ein "Merkmal erster Ordnung" durch Anwendung einer Merkmalsfunktion auf einem Block bestimmt. Man erhält also für jeden Block und für jede Merkmalsfunktion einen Wert.

- Es ist vorteilhaft, wenn das Verhältnis der Anzahl Pixel pro Block zu der Anzahl der Merkmalfunktionen deutlich größer als 1 ist, weil dann die Anzahl der Merkmale pro Bild deutlich geringer ist als die Anzahl der Pixel des Bildes, wodurch sich die Komplexität der nachfolgenden Berechnung wesentlich verringert.
- 15 Um nun zusätzlich Einsparungen an Rechenzeit und Speicherzugriffzeit zu gewinnen, ist es vorteilhaft, jeweils nur einen Teil der Pixel eines Blocks auszuwerten.

Man kann sich dabei die Merkmalsfunktion auch als eine "Messeinrichtung" vorstellen, die die "Aktivität" eines Bildes oder eines Bildausschnittes entlang der Vorzugsrichtung misst. Das Texturmerkmal entspricht dann dem "Ausschlag" des richtungssensitiven Messgerätes "Merkmalsfunktion". Beinhaltet ein Block eine gerichtete Struktur, so wird ein Tex-

10

15

20

turmerkmal, das im wesentlichen parallel zu der Struktur verläuft, einen relativ geringen Wert aufweisen. Ein Merkmal, das im wesentlichen senkrecht zu der Struktur verläuft, wird hingegen einen relativ hohen Wert aufweisen. Eine gerichtete Struktur innerhalb eines Blockes wird also auf zwei verschiedene Weisen detektiert.

Zum einen äußert sich eine gerichtete Struktur durch hohe Werte einer Merkmalsfunktion, deren Vorzugsrichtung im wesentlichen senkrecht zur Struktur steht. Zum anderen äußert sich eine gerichtete Struktur durch niedrige Werte einer Merkmalsfunktion, deren Vorzugsrichtung im wesentlichen parallel zur Struktur verläuft.

Dadurch ergeben sich bereits wenigstens zwei Möglichkeiten, eine gerichtete Struktur in einem Block zu erkennen. Einerseits kann man besonders niedrige Werte eines Texturmerkmals als Hinweis auf das Vorliegen einer gerichteten Struktur entlang der zum Texturmerkmal gehörigen Vorzugsrichtung verwenden, andererseits kann man besonders hohe Werte eines Texturmerkmals als Hinweis auf das Vorliegen einer gerichteten Struktur senkrecht zur Vorzugsrichtung verwenden.

Um den Einfluss ungerichteter Strukturen zu eliminieren, kann bei dem erfindungsgemäßen Verfahren aus je zwei "Merkmalen erster Ordnung", deren Merkmalsfunktionen sich durch im wesentlichen zueinander senkrecht stehende Vorzugsrichtungen auszeichnen, ein neues "zweites Texturmerkmal" bestimmt werden. Die Verknüpfung je zweier "Merkmale

20

erster Ordnung" wird dann vorzugsweise so gestaltet, dass das resultierende "zweite Texturmerkmal" hohe Werte annimmt, wenn der Wert des einen "Merkmals erster Ordnung" hoch und gleichzeitig der Wert des anderen "Merkmals erster Ordnung" niedrig ist. Ein solchermaßen durch Verrechnung zweier "Merkmale erster Ordnung" bestimmtes "zweites Texturmerkmal" wird im folgenden auch "Merkmal zweiter Ordnung" genannt.

Ein "Merkmal zweiter Ordnung" nimmt also einen hohen Wert an, wenn beispielsweise der Block entlang der Vorzugsrichtung eine hohe Aktivität und gleichzeitig senkrecht zur Vorzugsrichtung eine niedrige Aktivität aufweist. Man erreicht auf diese Weise unter anderem, dass weder strukturarme Bereiche noch ungerichtete strukturierte Bereiche zu einem hohen Wert eines "Merkmals zweiter Ordnung" und damit zu einer Fehlinterpretation (vermeintliche Erkennung einer nicht vorhandenen gerichteten Struktur) führen können.

Unter einem "Merkmal zweiter Ordnung" versteht man hierbei ein Merkmal, dessen Wert ein Maß für die Wahrscheinlichkeit des Vorliegens einer gerichteten Struktur senkrecht zu einer Vorzugsrichtung darstellt, unabhängig davon, ob es durch Verrechnung zweier "Merkmale erster Ordnung" oder in einem einzigen Schritt berechnet wurde.

Die jeweils zur gleichen Richtung gehörigen "zweiten Texturmerkmale" werden beispielsweise in sogenannten Merkmalskarten eingetragen, und

zwar vorzugsweise jeweils an der Stelle, an der sich der zugehörige Block des Eingangsbildes befindet. Die Merkmalskarte ist hierbei beispielsweise ein verkleinertes Bild, deren Pixel vorzugsweise nicht mehr die Helligkeit des Ursprungsbildes, sondern die Wahrscheinlichkeit für das Vorliegen einer gerichteten Struktur einer bestimmten Richtung angeben.

5

Vorteilhaft ist es dabei, dass vorzugsweise nicht jedem Pixel des Originalbildes ein eigener Merkmalswert zugeordnet ist, sondern die verschiedenen Merkmalswerte zu den Blöcken gehören und somit die Merkmalskarte beispielsweise entsprechend kleiner ist, als das Originalbild.

Vorteilhaft ist es weiter, dass sich die Auswertung vorzugsweise nur auf die vorher bestimmten Merkmale, nicht aber auf die Grauwerte des Bildes stützt. Damit lässt sich ein deutlich geringerer Rechenaufwand erreichen, als beispielsweise ein mit einem LoG-Operator erzeugtes Bild. Dies liegt einerseits an der Datenreduktion (die Anzahl der Merkmale ist geringer als die Anzahl der Pixel im Eingangsbild), andererseits liegt dies aber auch daran, dass die Merkmalsfunktionen so konstruiert sind, dass sie Rückschlüsse auf die lokale Orientierung der einzelnen Bildbereiche zulassen.

Durch diese Vorteile lassen sich Auswertungsergebnisse effizienter und damit wirtschaftlicher erreichen. Als Ergebnis dieses Verfahrens stehen unter anderem Parameter zur Verfügung, die eine Aussage über den Ort und die Orientierung bzw. eine Winkellage einer gerichteten Struktur in

15

einem digitalen Bild angeben. Weiterhin kann durch die Parameter eine Wahrscheinlichkeit für die Existenz einer gerichteten Struktur ermittelt werden.

Eine Ausführungsform sieht vor, zunächst diejenigen "Merkmale zweiter Ordnung" in vorzugsweise jeder Merkmalskarte zu Null zu setzen, deren Merkmalswerte beispielsweise unterhalb einer geeignet gewählten Schwelle liegen, und zur weiteren Auswertung beispielsweise nur noch diejenigen Merkmale heranzuziehen, deren Wert echt positiv ist. Die Höhe der Schwelle hat im wesentlichen Einfluss auf die Detektionsempfindlichkeit.

Bei diesem Verfahren ist es vorteilhaft, eine niedrige Schwelle zu wählen, wenn man beispielsweise auch gerichtete Strukturen mit geringem Kontrast detektieren möchte. Umgekehrt ist es vorteilhaft, eine hohe Schwelle zu wählen, wenn die zu erkennende Struktur beispielsweise einen hohen Kontrast hat (z. B. bei einem einwandfrei aufgedruckten Barcode), man aber gleichzeitig mit kontraststarken texturierten Störungen in der Umgebung der gesuchten gerichteten Struktur rechnet.

Dabei wird vorzugsweise zunächst von allen Merkmalskarten eine Merkmalskarte ausgewählt, die mit hoher Wahrscheinlichkeit die Existenz einer gerichteten Struktur im Bild anzeigt. Es ist auch vorteilhaft, diejenigen Merkmalskarten auszuwählen, deren Werte beispielsweise den größten Mittelwert aufweisen. Die so ausgewählte "beste" Merkmalskarte

wird weiter untersucht, um die Existenz einer gerichteten Struktur zu bestätigen oder zu verwerfen. Der Ort einer im Bild vorhandenen gerichteten Struktur kann durch die Bestimmung eines Lageparameters (z. B. Mittelwert, gewichteter Mittelwert, Median) der Merkmalskarte geschätzt werden. Die Winkellage der gerichteten Struktur ergibt sich grob bereits aus der der ausgewählten Merkmalskarte zugeordneten Vorzugsrichtung. Eine genauere Schätzung der Orientierung der Struktur wird durch vorzugsweise die Anwendung eines Regressionsverfahrens aus der Merkmalskarte ermittelt.

Vorteilhaft für die Bestimmung der Merkmalskarte erster Ordnung ist unter anderem eine blockweise Auswertung von Grauwertdifferenzen von Bildpunktpaaren entlang der gewählten Vorzugsrichtung, weil diese Methode beispielsweise gegenüber der Bildung der zweidimensionalen Autokorrelationsfunktion oder der des zweidimensionalen Fourierspektrums mit deutlich geringerem Rechenaufwand implementierbar ist.

Um den Rechen- sowie den Zeitaufwand weiter zu minimieren, ist es vorteilhaft, bei der Auswertung der Texturmerkmale zunächst diejenigen Vorzugsrichtungen auszuwählen, deren zugehörige Texturmerkmale sich am besten mit der Existenz der gerichteten Struktur im Bild erklären lassen. Durch dieses Verfahren lässt sich der Datenaufwand weiterhin reduzieren.

Weitere Vorteile, Ziele und Eigenschaften vorliegender Erfindung werden anhand nachfolgender Erläuterungen anliegender Zeichnung dargestellt, in welcher beispielhaft das Erkennungsverfahren dargestellt ist.

Es zeigt,

10

15

5 die Figur eine schematische Darstellung des Erkennungsverfahrens anhand eines Ausführungsbeispieles.

In dem Ausführungsbeispiel, welches in der Figur dargestellt ist, ist eine Bildaufnahmeeinheit mit einer Recheneinheit verbunden. Die Bildaufnahmeeinheit liefert dabei ein digitalisiertes Bild der Größe 640 x 480 Bildpunkte mit typischerweise 256 Graustufen an die Recheneinheit.

Das Bild wird danach zuerst in 20 x 15 nicht überlappende Blöcke der Größe 32 x 32 Bildpunkte eingeteilt. Weiter werden für jeden dieser Blöcke vier "Merkmale erster Ordnung" bestimmt. Dabei wird die Berechnungsvorschrift jeden "Merkmal erster Ordnung" durch jeweils eine Merkmalsfunktion beschrieben.

Jede Merkmalsfunktion weist dabei jedem Bildblock in eindeutiger Weise eine Zahl zu, und ist jeweils durch zwei Parameter festgelegt, und zwar durch

- 1. einen sogenannten Cliquenvektor (Delta x, Delta y)
- 20 2. ein Inkrement DSAMPLE.

20

Die Komponenten des Cliquenvektors sind dabei ganzzahlig (positiv oder negativ), und das Inkrement DSAMPLE ist eine natürliche Zahl.

Zur Bestimmung eines Merkmals erster Ordnung werden alle Bildpunktpaare ((x_1,y_1) , (x_2,y_2)) gebildet, die die folgenden Bedingungen gleichzeitig erfüllen:

- 1. sie liegen vollständig innerhalb des betrachteten Blocks,
- 2. es gilt $x_1 x_2 = Delta_x$ und $y_1 y_2 = Delta_y$,
- 3. x_1 und y_1 sind durch DSAMPLE teilbar.

Dabei besagt die Bedingung 2, dass sich die Bildpunktpaare dadurch auszeichnen, dass zum einen die Verbindungslinie zwischen den Bildpunkten
des Paares entlang der durch den Cliquenvektor gegebenen Vorzugsrichtung läuft und dass zum anderen der Abstand von je zwei Punkten eines
Punktpaares konstant ist.

Bedingung 3 erlaubt es, nur einen Teil der nach Bedingung 2 innerhalb 15 eines Blocks möglichen Punktpaare auszuwählen und ermöglicht damit eine Reduktion des Rechenaufwandes zur Bestimmung des jeweiligen Texturmerkmals.

Als nächster Schritt wird das "Merkmal erster Ordnung" bestimmt. Dabei wird für jedes Bildpunktpaar, das die obigen Bedingungen erfüllt, der Absolutbetrag der Differenz oder das Quadrat der Differenz zwischen den

Grauwerten der beiden Punkte ermittelt. Anschließend werden die so erhaltenen Werte summiert.

Beim Implementierungsbeispiel werden vier Cliquenvektoren verwendet, nämlich

- 5 $c_1 = (3,0)$ (dies ist die waagerechte Vorzugsrichtung),
 - $c_2 = (0,3)$ (dies ist die senkrechte Vorzugsrichtung),
 - $c_3 = (2,2)$ (dies ist die diagonale Vorzugsrichtung),
 - $c_4 = (-2,2)$ (dies ist die antidiagonale Vorzugsrichtung).

Dabei wird DSAMPLE zu 4 gesetzt, wodurch sich eine Einsparung an Rechenzeit von ungefähr 16 gegenüber einem DSAMPLE-Wert von 1 ergibt.

In einem nächsten Schritt werden die "Merkmale erster Ordnung" in sogenannte Merkmalskarten eingetragen.

Bei dem Implementierungsbeispiel werden die so erhaltenen "Merkmale 15 erster Ordnung" also in vier (Anzahl Cliquenvektoren) Merkmalskarten eingetragen, die jeweils die Größe 20 x 15 (Anzahl Blöcke = Anzahl Merkmale pro Cliquenvektor) besitzen.

Im folgenden werden die "Merkmalskarten erster Ordnung" mit T_n(x,y) bezeichnet, wobei n die Werte 1 bis 4, x die Werte 1 bis 20 und y die 20 Werte 1 bis 15 annehmen. So bezeichnet beispielsweise T_2(3,4) das "Merkmal erster Ordnung", für den dritten Block von links in der vierten

Zeile für den Cliquenvektor c₂. Das Merkmal T_2(3,4) gibt in diesem Beispiel die Aktivität des Blocks an der Position (3,4) entlang einer senkrechten Richtung an.

In einem weiteren Schritt werden aus den "Merkmalskarten erster Ordnung" die "Merkmalskarten der zweiten Ordnung" bestimmt.

Zur Bestimmung einer "Merkmalskarte zweiter Ordnung" M_i wird jeweils eine "Merkmalskarte erster Ordnung" T_i mit einer weiteren "Merkmalskarte erster Ordnung" T_j verrechnet. Die Verrechnung wird dabei mit einer Merkmalskarte T_j vorgenommen, deren Cliquenvektor c_j senkrecht zum Cliquenvektor c_i der "Merkmalskarte erster Ordnung" steht.

Im Beispiel stehen jeweils c₁ und c₂ bzw. c₃ und c₄ senkrecht aufeinander. Die Art der Verrechnung wird durch zwei Parameter FAKTOR und SCHWELLE festgelegt und erfolgt blockweise wie nachstehend beschrieben. Zuerst werden die "Merkmalskarten zweiter Ordnung" folgendermaßen bestimmt:

$$M_1(x,y) = T_1(x,y) - FAKTOR * T_2(x,y),$$
 $M_2(x,y) = T_2(x,y) - FAKTOR * T_1(x,y),$
 $M_3(x,y) = T_3(x,y) - FAKTOR * T_4(x,y),$
 $M_4(x,y) = T_4(x,y) - FAKTOR * T_3(x,y).$

15

20

In einem nächsten Schritt wird der Schwellenwert festgelegt, der von der jeweiligen Anwendung abhängt. Dabei ist der Schwellenwert im wesentlichen von der gewählten Blockgröße und der Grauwertauflösung des Originalbildes beeinflusst. In diesem Schritt werden alle Einträge in allen Merkmalskarten zu Null gesetzt, falls sie kleiner als eben dieser Schwellenwert sind.

Typische Werte für den Faktor liegen dabei im Bereich 1,5 ...2,5. Danach werden die Merkmalskarten sortiert. Dies geschieht derart, dass für jede Merkmalskarte die Anzahl der von Null verschiedenen Einträge gezählt wird und die Merkmalskarten nach dieser Anzahl in absteigender Reihenfolge sortiert werden. Somit erhält die erste der Merkmalskarten in der Liste die meisten von Null verschiedenen Einträge und wird daher als erster Kandidat berücksichtigt.

Danach wird der Schwerpunkt der zu betrachtenden Merkmalskarten (das erste Moment in x- und y-Richtung) bestimmt. Der Schwerpunkt (x_s, y_s) besitzt dabei reellwertige Koordinaten im Bereich $x_s = 1 \dots 20$, $y_s = 1 \dots 15$ und wird auf ganzzahlige Werte round (x_s, y_s) gerundet.

Wenn die betrachtete Merkmalskarte an der Stelle round (x_s, y_s) einem von Null verschiedenen Wert enthält, wird mit dieser Merkmalskarte als aktueller Karte fortgefahren.

Wenn die betrachtete Merkmalskarte anstelle round (x_s, y_s) hingegen eine Null enthält, wird der Schwerpunkt der nächsten Merkmalskarte von der

Liste ermittelt. Es wird dann überprüft, ob diese Karte an der Stelle des Schwerpunktes einen von Null verschiedenen Wert enthält.

Auf diese Weise werden alle Kandidaten der Liste abgearbeitet, bis entweder eine Karte gefunden wurde, die an der Stelle des Schwerpunktes einen von Null verschiedenen Wert enthält oder bis die Liste ohne Erfolg abgearbeitet wurde.

Im letzteren Fall wird das Verfahren beendet, da keine gerichtete Struktur gefunden wurde.

Ansonsten wird aus dem Schwerpunkt (x_s, y_s) der aktuellen Merkmalskarte durch Skalierung mit der Blockgröße der Mittelpunkt des Barcodes
(bezogen auf die Größe des Originalbildes) ermittelt. Für die Merkmalskarte wird durch lineare Regression eine durch den Schwerpunkt (x_s, y_s)
laufende Ausgleichsgerade bestimmt.

Diese Ausgleichsgerade verläuft im wesentlichen senkrecht durch die gerichtete Struktur. Wenn die gerichtete Struktur nun ein Barcode ist, der
decodiert werden soll, kann diese Gerade als virtuelle Scanlinie verwendet werden, da sie mit hoher Wahrscheinlichkeit den Barcode vollständig
schneidet.

Das hier beschriebene Verfahren zur automatischen Erkennung eines Ortes und einer Orientierung einer gerichteten Struktur in einem digitalen
Bild zeichnet sich durch die Datenreduktion der im Ursprungsbild enthal-

10

tenen Daten aus, sodass ein wesentlich geringerer Rechenaufwand betrieben werden muss, um eine gerichtete Struktur lokalisieren zu können. Dabei ist es vorteilhaft, dass das digitale Bild in aneinanderliegenden Blöcken aufgeteilt wird und diese Blöcke durch Merkmalsfunktionen beschrieben werden, sodass nicht jedes einzelne Pixel im Eingangsbild in die Berechnung eingeht, sondern nur die Anzahl der Texturmerkmale.

Weiterhin ist vorteilhaft, dass die Möglichkeit von Fehllesungen dadurch verringert wird, dass das Verfahren es beispielsweise ermöglicht, sich auf diejenigen Bildbereiche zu konzentrieren, die mit hoher Wahrscheinlichkeit einen Barcode enthalten.

Patentansprüche:

5

10

- 1. Verfahren zur automatischen Erkennung eines Ortes und einer Orientierung einer gerichteten Struktur in einem digitalen Bild, insbesondere zur Bestimmung des Ortes und der Orientierung eines in dem digitalen Bild enthaltenen Barcodes, dadurch gekennzeichnet, dass das digitale Bild in vorzugsweise zusammenhängende Blöcke unterteilt wird, und für jeden Block mindestens ein Texturmerkmal bestimmt wird, welches ein Maß für die Strukturierung der Blöcke entlang vorgegebener Vorzugsrichtungen darstellt, und aus den Texturmerkmalen Parameter ermittelt werden, die den Ort und die Orientierung einer gerichteten Struktur in dem digitalen Bild angeben.
- Erkennungsverfahren nach Anspruch 1, dadurch gekennzeichnet,
 dass die Blöcke eine rechteckige, vorzugsweise quadratische Form
 aufweisen.
- 3. Erkennungsverfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass für jeden Bildblock mehrere "erste Texturmerkmale" bestimmt werden, die einen um so höheren Wert annehmen, je größer die Summe der absoluten Beträge der Grauwertdifferenz von Bildpunktpaaren ausfällt, wobei die Bildpunktpaare für jedes "erste Texturmerkmal" aus Bildpunkten gebildet werden, die innerhalb des betrachteten Blocks liegen, deren Verbindungsli-

nie entlang der dem betrachtetem "ersten Texturmerkmal" zugeordneten Vorzugsrichtung liegen, und deren Abstand einem festgelegten Wert oder einen Wert aus einer festgelegten Menge von Werten entspricht.

- 5 4. Erkennungsverfahren nach Anspruch 3, dadurch gekennzeichnet,
 dass nur ein Anteil der Bildpunkte innerhalb des betrachteten
 Blocks, deren Verbindungslinie entlang der zugeordneten Vorzugsrichtung liegen und deren Bildpunktabstand einem festgelegten
 Wert oder einem Wert aus einer festgelegten Menge von Werten
 entsprechen, ausgewertet werden.
 - 5. Erkennungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Bestimmung des Wertes eines "zweiten Texturmerkmals" eines Blocks die Werte von zwei "ersten Texturmerkmalen" des gleichen Blocks herangezogen werden, die ein Maß für die Strukturierung des Blockes entlang zweier im wesentlichen senkrecht zueinander stehenden Vorzugsrichtungen angeben.
 - 6. Erkennungsverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die berechneten "ersten Texturmerkmale" ausgewertet werden.
- 20 7. Erkennungsverfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bei der Auswertung der Texturmerkmale zunächst diejenige Vorzugsrichtung ausgewählt wird, deren zugehöri-

10

ge Texturmerkmale sich am besten mit der Existenz einer gerichteten Struktur im Bild erkennen lässt und bei dem daraufhin nur diejenigen Texturmerkmale, die zu der ausgewählten Vorzugsrichtung gehören, zur Bestimmung der Parameter, die die Wahrscheinlichkeit für die Existenz einer gerichteten Struktur und/oder den Ort einer gerichteten Struktur und/oder die Lage einer gerichteten Struktur im Digitalbild angeben, herangezogen werden.

- 8. Erkennungsverfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Bild in überlappende Bereiche eingeteilt wird.
 - Erkennungsverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zur Einstellung der Detektionsempfindlichkeit ein Schwellenwert bei der Auswertung der Texturmerkmale festgelegt wird.
- 15 10. Erkennungsverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Parameter eine Wahrscheinlichkeit für die Existenz einer gerichteten Struktur in dem digitalen Bild angeben.

INTERNATIONAL SEARCH REPORT

Inte mal Application No PCT/DE 01/02993

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G06K7/10 G06K G06K7/14 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 G06K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, EPO-Internal, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to daim No Category 9 Citation of document, with indication, where appropriate, of the relevant passages 1,2,6,9 US 5 373 147 A (NODA MASASHI) 13 December 1994 (1994-12-13) column 4, line 56 -column 5, line 60 X 1-3.6.9EP 0 917 080 A (DATALOGIC SPA) 19 May 1999 (1999-05-19) paragraphs '0007!,'0008! paragraphs '0019!-'0039!; figure 3 1 A EP 0 984 390 A (XEROX CORP) 8 March 2000 (2000-03-08) paragraphs '0011!-'0017!; figures 1,2 Α EP 0 996 079 A (DATALOGIC SPA) 1 26 April 2000 (2000-04-26) paragraphs '0005!-'0022!; figure 3 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 24 January 2002 01/02/2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rljswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Schauler, M

INTERNATIONAL SEARCH REPORT

formation on patent family members

Inte nal Application No PCT/DE 01/02993

Patent document cited in search report			Publication . date	Patent family member(s)		Publication date
US	5373147	A	13-12-1994	JP JP JP	1958849 C 6087270 B 6119481 A	10-08-1995 02-11-1994 28-04-1994
EP	0917080	Α .	19-05-1999	EP AT DE	0917080 A 203342 T 69705725 D	15-08-2001
EP	0984390	A	08-03-2000	US EP JP	6327395 B 0984390 A 2000099257 A	12 08-03-2000
EP	0996079	A	26-04-2000	EP AT DE	0996079 <i>F</i> 203343 T 69801161 T	Γ 15-08-2001

INTERNATIONALER RECHERCHENBERICHT

Inte males Aktenzelchen
PCT/DE 01/02993

A. KLASSIFI IPK 7	ZIERUNG DES ANMELDUNGSGEGENSTANDES G06K7/10 G06K7/14		
B. RECHER	ernationalen Patentklassifikation (IPK) oder nach der nationalen Klassifika CHIERTE GEBIETE er Mindestorüfstoff (Klassifikationssystem und Klassifikationssymbole)	ation und der IPK	
IPK 7	G06K		
	e aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowelt		
	r internationalen Recherche konsultierie elektronische Datenbank (Name ta, EPO-Internal, PAJ	e der Datenbank und evtl. verwendete Su	chbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe de	er in Betracht kommenden Telle	Betr. Anspruch Nr.
X	US 5 373 147 A (NODA MASASHI) 13. Dezember 1994 (1994-12-13) Spalte 4, Zeile 56 -Spalte 5, Zeile	e 60	1,2,6,9
X	EP 0 917 080 A (DATALOGIC SPA) 19. Mai 1999 (1999-05-19) Absātze '0007!,'0008! Absātze '0019!-'0039!; Abbildung	3	1-3,6,9
A	EP 0 984 390 A (XEROX CORP) 8. März 2000 (2000-03-08) Absätze '0011!-'0017!; Abbildunge	n 1,2	1
A .	EP 0 996 079 A (DATALOGIC SPA) 26. April 2000 (2000-04-26) Absätze '0005!-'0022!; Abbildung	3	1
	eitere Veröffentlichungen sind der Fortsetzung von Feld C zu Inehmen	X Siehe Anhang Patentfamilie	
* Besonde *A* Veröff aber *E* ältere	re Kategorien von angegebenen Veröffentlichungen : fentlichung, die den allgemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist s Dokument, das jedoch erst am oder nach dem internationalen	T* Spätere Veröffentlichung, die nach den oder dem Prioritätsdatum veröffentlich Anmeldung nicht kollidiert, sondern nu Erfindung zugrundeliegenden Prinzips Theorie angegeben ist	t worden ist und mit der ir zum Verständnis des der oder der ihr zugrundellegenden
"L" Veröff sche ande soil d ausg	fentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- einen zu lassen, oder durch die das Veröffentlichungsdatum einer einer im Becherchenbericht genannten Veröffentlichung belegt werden oder die aus einem anderen besonderen Grund angegeben ist (wie geführt)	X* Veröffentlichung von besonderer Bede kann allein aufgrund dieser Veröffentli erfinderischer Tätigkeit beruhend beir Y* Veröffentlichung von besonderer Bede kann nicht als auf erinderischer Tätig werden, wenn die Veröffentlichung mit	ichung nicht als neu oder auf achtet werden utung; die beanspruchte Erfindung kelt beruhend betrachtet
eine 'P' Veröf	ffentlichung, die sich auf elne mündliche Offenbarung, Benutzung, elne Ausstellung oder andere Maßnahmen bezieht Fentlichung, die vor dem Internationalen Anmeldedaturn, aber nach beanspruchten Prioritätsdaturn veröffentlicht worden ist	Veröffentlichungen dieser Kategorie in diese Verbindung für elnen Fachmani "&" Veröffentlichung, die Mitglied derselbe	n naheliegend ist
	s Abschlusses der internationalen Recherche 24. Januar 2002	Absendedatum des internationalen R . 01/02/2002	echerchenberichts
-	d Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter	
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tet. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schauler, M	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlich:

, die zur selben Patentfamilie gehören

Inte lales Aktenzeichen
PCT/DE 01/02993

lm Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US	5373147	A	13-12-1994	JP JP JP	1958849 C 6087270 B 6119481 A	10-08-1995 02-11-1994 28-04-1994
EP	0917080	A	19-05-1999	EP AT DE	0917080 A1 203342 T 69705725 D1	19-05-1999 15-08-2001 23-08-2001
EP	0984390	A	08-03-2000	US EP JP	6327395 B1 0984390 A2 2000099257 A	04-12-2001 08-03-2000 07-04-2000
EP	0996079	Α	26-04-2000	EP AT DE	0996079 A1 203343 T 69801161 D1	26-04-2000 15-08-2001 23-08-2001