Problem Set 7

Problem 1. Let $n \in \mathbb{N}$ and let $n \geq 2$. Consider the following proposition: **Proposition.** For all integers a and b, if $a + b \not\equiv 0 \pmod n$, then $a \not\equiv 0 \pmod n$ or $b \not\equiv 0 \pmod n$.

- (a) Write the contrapositive of the proposition.
 - (a) For all integers a and b, if $a \equiv 0 \pmod{n}$ and $b \equiv 0 \pmod{n}$, then $a + b \equiv 0 \pmod{n}$.
- (b) Construct a know-show table to outline the proof of the proposition (using the contrapositive). You do not need to write a formal proof.

Step	Know	Reason
P1	$a \equiv 0 \pmod{n}$ and $b \equiv 0 \pmod{n}$	Hypothesis
P2	For some integers k and l , $a=kn$ and $b=ln$	Definition of Congruence
P3	a+b=kn+ln=n(k+l)	Substitution
P4	$k+l \in \mathbb{Z}$	${\mathbb Z}$ is closed under multipli-
		cation
P5	$\exists m \in \mathbb{Z} \text{ such that } m = k + l \text{ and } a + b = m \cdot n$	Substitute $m = k + l$
Q1	$a+b \equiv 0 \pmod{n}$	Definition of Congruence

Problem 2. Is the following conjecture true or false? If the conjecture is true, write a formal proof. If the conjecture is false, write a formal counterexample argument. (Be sure to aim for "practitioner" on the writing rubrics).

Conjecture. For all integers a and b, $a+b\not\equiv 0\pmod n$ if and only if $a\not\equiv 0\pmod n$ or $b\not\equiv 0\pmod n$.

(a) The statement, "For all integers a and b, $a+b\not\equiv 0\pmod n$ if and only if $a\not\equiv 0\pmod n$ or $b\not\equiv 0\pmod n$," is false. One counterexample is when n=5, a=1, and b=4. In this case, we see the hypothesis is false because $a+b=1+4=5\equiv 0\pmod 5$. However, the conclusion is true because $a\not\equiv 0\pmod 5$ and $b\not\equiv 0\pmod 5$. Since the hypothesis is false and the conclusion is true, the statement is false.

Problem 3. Practice using previous results.

(a) Write the contrapositive of the lemma below:

Lemma. If n is an odd integer, then 4 does not divide n.

- (a) If 4 divides n, then n is an even integer.
- (b) Write a formal proof of the lemma.
 - (a) To prove the lemma by contrapositive, we assume that 4 divides n. By the definition of divisibility, there exists an integer k such that n=4k. Using algebra, we get n=2(2k). Since 2k is an integer, there exists an integer m such that m=2k. Then we can express n as:

$$n = 2 \times (2k) = 2m.$$

This shows that n is divisible by 2, which means n is an even integer.

(c) Consider the following proposition:

Proposition. For all integers a and b, if a is even and b is odd, then 4 does not divide $a^2 + b^2$.

Use previously proved results to construct a know-show table that outlines a proof of the proposition.

Step	Know	Reason
P1	a is even and b is odd	Hypothesis
P2	There exists $k \in \mathbb{Z}$ such that $a = 2k$	Definition of even
P3	There exists $m \in \mathbb{Z}$ such that $b = 2m + 1$	Definition of odd
P4	Compute $a^2 = (2k)^2 = 4k^2$	Algebra
P5	Compute $b^2 = (2m+1)^2 = 4m^2 + 4m + 1$	Algebra
P6	Sum $a^2 + b^2 = 4k^2 + 4m^2 + 4m + 1 = 4(k^2 + 4m^2)$	Substitution
	$m^2 + m) + 1$	
P7	Let $x = k^2 + m^2 + m$, which is an integer since	\mathbb{Z} is closed under multipli-
	$k, m \in \mathbb{Z}$	cation
P8	$a^2 + b^2 = 4x + 1$	Substitution
P9	$a^2 + b^2 \equiv 1 \pmod{4}$	Definition of congruence
P10	Since $a^2 + b^2 \equiv 1 \pmod{4}$, $a^2 + b^2$ is an odd	
	integer	
P11	Previously proven lemma: If n is odd, then 4	
	does not divide n	
P12	Since $a^2 + b^2$ is odd, 4 does not divide $a^2 + b^2$	By the lemma
Step	Show	Reason

Problem 4. Use the proposition and proof on the next page to do the following:

- (a) Clearly identify the assumptions in the proof.
 - (a) The assumptions of the proof are:
 - x is a rational number ($x \in \mathbb{Q}$)
 - $x \neq 0$
 - y is an irrational number $(y \notin \mathbb{Q})$
 - The product $x \cdot y$ is a rational number $(x \cdot y \in \mathbb{Q})$
- (b) Clearly identify the contradictory statement.
 - (a) The contradictory statement is that y is both rational and irrational. Specifically, the proof concludes that y must be rational based on the assumptions, which contradicts the initial assumption that y is irrational.
- (c) In 2 3 sentences, summarize the main idea of the proof in a way that makes sense to you.

(a) The main idea of the proof is to assume that multiplying a nonzero rational number x by an irrational number y yields a rational result. By manipulating this assumption, it deduces that y must be rational, contradicting the original assumption that y is irrational. This contradiction implies that the product $x \cdot y$ cannot be rational, thus proving it must be irrational.

Proposition and formal proof for Problem 4

Proposition: For all real numbers x and y, if x is rational and $x \neq 0$ and y is irrational, then $x \cdot y$ is irrational.

Proof. We will use a proof by contradiction. So we assume that there exist real numbers x and y such that x is rational, $x \neq 0$, y is irrational, and $x \cdot y$ is rational. Since $x \neq 0$, we can divide by x. Since the rational numbers are closed under division by nonzero rational numbers, we know that $\frac{1}{x} \in \mathbb{Q}$. We now know that $x \cdot y$ and $\frac{1}{x}$ are rational numbers, and since the rational numbers are closed under multiplication, we conclude that

$$\frac{1}{x} \cdot (x \cdot y) \in \mathbb{Q}.$$

However, $\frac{1}{x} \cdot (x \cdot y) = y$ and hence, y must be a rational number. Since a real number cannot be both rational and irrational, this is a contradiction to the assumption that y is irrational. We have therefore proved that for all real numbers x and y, if x is rational and $x \neq 0$ and y is irrational, then $x \cdot y$ is irrational.