Assignment 03

Dep. Al Convergence Engineering

Student ID: 2023214019

Name: Md Habibur Rahman

1. Q1. Algebraically prove that if $P(A \subset \Omega) = 1$, then $P(\Omega \setminus A) = 0$. Consider discrete probability for simplicity.

Answer:

- Recall that for any event B, the probability of the complement of B (denoted as B^c) is P(B^c) = 1 P(B).
- Given that $P(A \subset \Omega) = 1$, it means that event A covers the entire sample space Ω . In other words, A is certain to occur whenever an outcome is observed.
- Now, consider the complement of A, denoted as A^c which represents all the outcomes not in A.
- Since A covers the entire sample space, A^c must be an empty set, and its probability is $P(A^c) = 0$
- So, $P(\Omega \setminus A) = P(\Omega \cap A^c) = P(A^c) = 0$, as required

Example:

Suppose we have a fair six-sided die, with outcomes $\Omega = \{1,2,3,4,5,6\}$.

Let A be the event that the outcome is an even number, i.e., $A=\{2,4,6\}$.

Now, let's calculate the probabilities:

- 1. P(A): Since there are 3 outcomes in event A and 6 possible outcomes in total, P(A) = 3/6 = 1/2.
- 2. $P(\Omega)$: Since the sample space contains all possible outcomes, $P(\Omega) = 1$.
- 3. $P(\Omega \setminus A)$: This represents the probability of outcomes not in A, i.e., the probability of rolling an odd number. There are 3 odd numbers in the sample space, so $P(\Omega \setminus A) = 3/6 = 1/2$.

As we can see, in this example, P(A) = 1 since event A covers the entire sample space (all outcomes are even numbers). Consequently, $P(\Omega \setminus A) = 0$, representing the probability of outcomes not in A (odd numbers).

2. Q2. Prove that if $A_1 \subseteq A_2 \dots \subseteq A_n \subseteq \Omega$ is a finite sequence such that $P(A_i) > P(A_{i+k>0})$ then P cannot be a discrete uniform probability.

Answer:

- Assume P is a discrete uniform probability. This means that each outcome in Ω is equally likely, so $P(A_i) = \frac{|A_i|}{|\Omega|}$ where $|A_i|$ denotes the number of elements in A_i and $|\Omega|$ denotes the total number of elements in Ω .
- Since $A_1 \subseteq A_2 \dots \subseteq A_n \subseteq \Omega$, we have $|A_1| < |A_2| < \dots |A_n| = |\Omega|$
- Now, according to the given condition, $P(A_i) > P(A_{i+k>0})$.
- Let's consider i=1 for simplicity. It implies $P(A_1) > P(A_{k+1>0})$
- Since P is a discrete uniform probability, $P(A_1) = \frac{|A_1|}{|\Omega|}$ and $P(A_{k+1}) = \frac{|A_{k+1}|}{|\Omega|}$
- But $|A_1| < |A_{k+1}|$ (as $A_1 \subseteq A_{k+1}$), which contradicts the assumption that $P(A_1) > P(A_{k+1})$). Hence, our initial assumption that P is a discrete uniform probability must be false.
- Therefore, if $A_1 \subset A_2 \ldots \subset A_n \subset \Omega$ is a finite sequence such that $P(A_i) > P(A_{i+k>0})$ for some k > 0, then P cannot be a discrete uniform probability.
- 3. Q3. Prove that if Ω is continuous and $A_1 \subset \Omega$, $A_2 \subset \Omega$ such that $P(A_1) > 0$, $P(A_2) > 0$ then $P(A_1 \cap A_2) \geq 0$ if $A_1 \cap A_2 \neq \emptyset$

Answer:

- Given that $P(A_1) > 0$, $P(A_2) > 0$ it means that both A_1 and A_2 have non-zero probabilities under the probability measure P.
- Since $A_1 \cap A_2$ is the intersection of two sets, if $A_1 \cap A_2 \neq \varphi$ it implies that there are elements that belong to both A_1 and A_2 .

By the properties of probability measures:

- 1. $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1 \cap A_2)$
 - Given that $P(A_1 \cup A_2) \le 1$ for any probability measure, and since both $P(A_1)$ and $P(A_2)$ are greater than zero, $P(A_1) + P(A_2) > 0$
- 2. $P(A_1 \cup A_2) \ge 0$

Combining these two inequalities:

- $P(A_1) + P(A_2) P(A_1 \cap A_2) \ge 0$
- Since both $P(A_1)$ and $P(A_2)$ are greater than zero, and $P(A_1) + P(A_2)$ is positive, we have $P(A_1) + P(A_2) \ge P(A_1 \cap A_2)$

Rearranging the terms, we get:

• $P(A_1 \cap A_2) \ge 0$

Therefore, if Ω is continuous and A1 \subset Ω , A2 \subset Ω such that P(A1) > 0, P(A2) > 0 then P(A1 \cap A2) \geq 0 if A1 \cap A2 \neq ϕ