Exercise Solutions for Math 20

Functions, Graphs, Symmetry

Nile Jocson <novoseiversia@gmail.com>

November 20, 2024

1

- 1.1 Transform each of the following real-valued functions to a functional notation f(x); find its domain and range; and compute f(1).
- 1.1.a f assigns the number 10 to any one-digit integer.

 $\Rightarrow f(x) = 10$ Final answer. $\Rightarrow \text{dom}(f) = [-9, 9]$ The domain is the set of one digit integers. $\Rightarrow \text{ran}(f) = 10$ The function can only equate to 10. $\Rightarrow f(1) = 10$

1.1.b f maps a given real number to the real number that is 4 more than its square root.

 $\Rightarrow f(x) = \sqrt{x} + 4$ Final answer. Assuming that only the principal root is needed. $\Rightarrow \text{dom}(f) = [0, +\infty)$ The square root of a negative number cannot be real. $\Rightarrow ran(f) = [4, +\infty]$ $\Rightarrow f(1) = 5$

1.1.c $\{(x,y) \mid y = \frac{1}{6-x}\}$

 $\Rightarrow f(x) = \frac{1}{6-x}$ Final answer. $\Rightarrow \text{dom}(f) = \mathbb{R} \setminus \{6\}$ x = 6 is an undefined point. $\Rightarrow \text{ran}(f) = \mathbb{R}$ $\Rightarrow f(1) = \frac{1}{5}$

1.1.d $\{(x,y) \mid y = \sqrt{x^2 - 5x + 6}\}$

 $\Rightarrow (x-2)(x-3) \ge 0$ Find the domain by solving $x^2 - 5x + 6 \ge 0$; factor by grouping.

Create a table of signs.

 $\Rightarrow x \in (-\infty,2] \cup [3,+\infty)$

 $\Rightarrow f(x) = \sqrt{x^2 - 5x + 6}$ Final answer.

Continued on next page

$$\Rightarrow \operatorname{dom}(f) = (-\infty, 2] \cup [3, +\infty)$$
$$\Rightarrow \operatorname{ran}(f) = [0, +\infty)$$
$$\Rightarrow f(1) = \sqrt{2}$$

1.1.e $\{(x,y) \mid y = \frac{1}{\sqrt[3]{x^2 - 1}}\}$

$\Rightarrow (x-1)(x+1) = 0$	Find undefined points by solving $x^2 - 1 = 0$; factor using difference of two squares.
$\Rightarrow x \in \{-1, 1\}$	
$\Rightarrow x = \frac{1}{\sqrt[3]{y^2 - 1}}$	Find the inverse function.
$\Rightarrow \frac{1}{x} = \sqrt[3]{y^2 - 1}$	
$\Rightarrow \frac{1}{x^3} = y^2 - 1$	
$\Rightarrow y^2 = \frac{1}{x^3} + 1$	
$\Rightarrow y^2 = \frac{1}{x^3} + \frac{x^3}{x^3}$	
$\Rightarrow y^2 = \frac{1+x^3}{x^3}$	
$\Rightarrow f'(x) = \pm \sqrt{\frac{1+x^3}{x^3}}$	
$\Rightarrow \sqrt{\frac{1+x^3}{x^3}} > 0$	Solve for the domain. Note that $x = 0$ is an undefined point.

Create a table of signs.

	_	-1 ()
$1 + x^3$	_	+	+
x^3	_	_	+
$\sqrt{\frac{1+x^3}{x^3}}$	+	_	+

$$\Rightarrow \operatorname{dom}(f') = (-\infty, -1] \cup (0, +\infty)$$
$$\Rightarrow f(x) = \frac{1}{\sqrt[3]{x^2 - 1}}$$

$$\Rightarrow f(x) = \frac{1}{\sqrt[3]{x^2 - 1}}$$

Final answer.

$$\Rightarrow \operatorname{dom}(f) = \mathbb{R} \setminus \{-1, 1\}$$

$$\Rightarrow \operatorname{ran}(f) = (-\infty, -1] \cup (0, +\infty)$$

 $\Rightarrow f(1)$ is undefined.

Given $f(x) = \frac{4-x^2}{x-2}$ 1.2

1.2.a Find dom(f) and solve for its zeroes.

$\Rightarrow \frac{(2-x)(2+x)}{x-2} = 0$	Factor using difference of two squares.
$\Rightarrow \frac{-(x-2)(2+x)}{x-2} = 0$	
$\Rightarrow -(2+x) = 0$	x=2 is an undefined point.

Continued on next page

$$\Rightarrow -2 - x = 0$$

$$\Rightarrow x = -2$$

$$\Rightarrow \text{dom}(f) = \mathbb{R} \setminus \{2\}$$

$$\Rightarrow x = -2$$
Final answer.

1.2.b Is the function odd or even? Justify your answer algebraically.

$\Rightarrow f(x) = -2 - x, f(-x) = -2 + x$	Check if the function is even. Note the simplified function, $f(x) = -2 - x. \label{eq:force}$
$\Rightarrow f(-x) \neq f(x)$	
\Rightarrow Not even.	
$\Rightarrow -f(x) = -(-2 - x)$	Find $-f(x)$.
$\Rightarrow -f(x) = 2 + x$	
$\Rightarrow f(-x) \neq -f(x)$	
\Rightarrow Not odd.	
\Rightarrow Neither even nor odd.	Final answer.

1.2.c Determine its x- and y- intercepts.

$\Rightarrow x_i = -2$	The zeroes of a function are its x-intercepts.
$\Rightarrow y = -2 - 0$	Find the y-intercepts. Use the simplified function.
$\Rightarrow y_i = -2$	
$\Rightarrow x_i = -2, y_i = -2$	Final answer.