B.01.01 – Ciclos de Potência Padrão a Ar Hipóteses do Padrão a Ar

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-12-14 23h53m58s UTC

- Ciclos Motores
 - Visão Geral
 - Complexidade dos Ciclos Motores

Visão Geral dos Ciclos Motores

https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/J85_ge_17a_turbojet_engine.jpg/1024px-J85_ge_17a_turbojet_engine.jpg

https://upload.wikimedia.org/wikipedia/commons/8/8b/GE_H_series_Gas_Turbine.jpg

Visão Geral dos Ciclos Motores

Hipóteses do Padrão a Ar (Quente):

• Fluido de trabalho como gás ideal (geralmente mas não necessariamente ar);

- Fluido de trabalho como gás ideal (geralmente mas não necessariamente ar);
- Processos modelados como internamente reversíveis;

- Fluido de trabalho como gás ideal (geralmente mas não necessariamente ar);
- Processos modelados como internamente reversíveis;
- Entrada de calor modela a combustão;

- Fluido de trabalho como gás ideal (geralmente mas não necessariamente ar);
- Processos modelados como internamente reversíveis;
- Entrada de calor modela a combustão:
- Saída de calor modela a exaustão;

- Fluido de trabalho como gás ideal (geralmente mas não necessariamente ar);
- Processos modelados como internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão:
- Modelo em ciclo fechado;

- Fluido de trabalho como gás ideal (geralmente mas não necessariamente ar);
- Processos modelados como internamente reversíveis;
- Entrada de calor modela a combustão:
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado:
- Calores específicos variáveis (da substância como gás ideal).

Hipóteses do Padrão a Ar (Quente):

- Fluido de trabalho como gás ideal (geralmente mas não necessariamente ar);
- Processos modelados como internamente reversíveis;
- Entrada de calor modela a combustão:
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos variáveis (da substância como gás ideal).

Hipóteses do Padrão a ar frio:

• Calores específicos constantes (geralmente avaliados em baixa temperatura).

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7^a *Edição*. Seções 9-1 a 9-3. AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

