CS 240 - Data Structures and Data Management

Module 11: External Memory

A. Storjohann

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2018

References: Goodrich & Tamassia 14.1, Sedgewick 16.4

version 2018-11-27 10:33

- 1 External Memory
 - Motivation
 - External sorting
 - External Dictionaries
 - 2-3 Trees
 - (a, b)-Trees
 - B-Trees
 - Extendible Hashing

- 1 External Memory
 - Motivation
 - External sorting
 - External Dictionaries
 - 2-3 Trees
 - (a, b)-Trees
 - B-Trees
 - Extendible Hashing

Different levels of memory

Current architectures:

- registers (very fast, very small)
- cache L1, L2 (still fast, less small)
- main memory
- external memory: disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory hierarchy into account, avoiding transfers as much as possible?

Observation: Accessing a single location in *external memory* (e.g. hard disk) automatically loads a whole block (or "page").

New objective: revisit all ADTs/problems with the objective of minimizing page loads.

The External-Memory Model (EMM)

I/O-operations are also called page loads or block transfers.

- 1 External Memory
 - Motivation
 - External sorting
 - External Dictionaries
 - 2-3 Trees
 - (a, b)-Trees
 - B-Trees
 - Extendible Hashing

Sorting in external memory

Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

- Recall: Heapsort was optimal in time and space in RAM model
- But: Heapsort accesses A at indices that are far apart

 → typically one page loads per array access.
- Mergesort adapts well to an array stored in external memory.
- It can be made even more effective using d-way merge: Merge d sorted runs into one sorted run.

d-way merge

```
d-Way-Merge(S_1, \ldots, S_d)
S_1, \ldots, S_d are sorted sets (arrays/lists/stacks/queues)
1. P \leftarrow \text{empty min-priority queue}
2. S \leftarrow \text{empty set}
3. for i \leftarrow 1 to d do
            P.insert((first element of S_{i,i}))
4.
5. while P is not empty do
            (x, i) \leftarrow \text{deleteMin}(P)
6.
            remove x from S_i and append it to S
7.
   if S_i is not empty do
8.
                  P.insert((first element of S_i,i))
9.
```

- Standard mergesort uses d = 2
- d > 2 could be used in internal memory as well, but the extra time to find minimum in the priority queue means the overall run-time is no better.

Mergesort in external memory

External (B = 2):

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15 43 2 17 6 46 23 20 1 24 7 18 47 26 16 48 50

Internal (M = 8):

- ① Create n/M sorted runs of length M. $\Theta(n/B)$ **IO-operations**
- ② Merge the first $d \approx M/B 1$ sorted runs using d-Way-Merge
- ③ Keep merging the next runs to reduce # runs by factor of d \rightsquigarrow one round of merging. $\Theta(n/B)$ **10-operations**
- **4** $\log_d(n/M)$ **rounds** of merging create sorted array.

Mergesort with external memory

Total page loads: $O(\log_d(n) \cdot n/B)$.

Assuming the EMM, one can prove lower bounds!

- $\Omega(\frac{n}{B})$ I/Os required to **scan** *n* elements.
- $\Omega(\frac{n}{B}\log_{M/B}(\frac{n}{B}))$ I/Os required to **sort** n elements with comparisons.
 - ► We don't prove that here.
- d-way Mergesort with $d \approx M/B$ is optimal (up to constant factors)!

- 1 External Memory
 - Motivation
 - External sorting
 - External Dictionaries
 - 2-3 Trees
 - (a, b)-Trees
 - B-Trees
 - Extendible Hashing

Dictionaries in external memory

Tree-based dictionary implementations have poor *memory locality*: If an operation accesses m nodes, then it must access m spaced-out memory locations.

- In an AVL tree, $\Theta(\log n)$ pages are loaded in the worst case.
- Better solution: do more in single node → B-trees
- First consider special case of B-trees: 2-3 trees
 - ► 2-3-trees would also be interesting for implementing ADT Dictionaries in main memory (may be even faster than AVL-trees)
 - ► We first analyze their performance in main memory, and then (for B-trees) in external memory.

1 External Memory

- Motivation
- External sorting
- External Dictionaries
- 2-3 Trees
- (a, b)-Trees
- B-Trees
- Extendible Hashing

2-3 Trees

A 2-3 Tree is a balanced search tree that is not necessarily binary.

Structural properties:

Every internal node is either

► 1-node: one KVP and two children, or ► 2-node: two KVPs and three children.

- The external nodes are NIL (do not store keys)
- All external nodes are at the same level.

Height-balance strictly enforced, but allow 2 types of nodes!

Order property: The keys at a node are between the keys in the subtrees.

2-3 Tree operations

Search: The order-property determines the subtree to search in.

```
23TreeSearch(k, v \leftarrow \text{root})

1. Let c_0, k_1, \ldots, k_d, c_d be keys and children at v, in order

2. if k \ge k_1

3. i \leftarrow \text{maximal index such that } k_i \le k

4. if k_i = k return k_i

5. else i \leftarrow 0

6. 23TreeSearch(k, c_i)
```

Insert: Nodes may grow from bottom to top.

- Search to find leaf ℓ where the new key k belongs.
- Add k and a NIL-child to ℓ . If ℓ now as 3 keys (**overflow**):
 - ▶ Split ℓ into two nodes ℓ, ℓ' with min and max key of ℓ
 - ▶ Move median key of ℓ into parent p of ℓ . Also make ℓ' child of p.
 - ▶ Recurse in *p* if it now has overflow.

Example: Insertion in a 2-3 tree

Deletion from a 2-3 Tree

- As with BSTs and AVL trees, we first swap the KVP k with its successor, so that it is now at a leaf ℓ .
- Delete k and one NIL-child from ℓ .
- If ℓ now has 0 keys (underflow)
 - ▶ If ℓ is the root, simply delete it. Else let p be the parent of ℓ .
 - ▶ If some *immediate* sibling u is a 2-node, perform a *transfer*:
 - ★ Find the key k_p in p that is between keys of ℓ and u.
 - * "Rotate:" move k_p into ℓ , move adjacent KVP from u into p, and re-arrange children suitably.
 - ▶ Otherwise, we merge ℓ and a 1-node sibling u:
 - ★ Find the key k_p in parent p between keys of ℓ and u.
 - ★ Combine ℓ and u into one node and move k_p into it.
 - \star Recurse in p if it now has underflow.

2-3 Tree Deletion

Example:

- 1 External Memory
 - Motivation
 - External sorting
 - External Dictionaries
 - 2-3 Trees
 - (*a*, *b*)-Trees
 - B-Trees
 - Extendible Hashing

(a, b)-Trees

The 2-3 Tree is a specific type of (a, b)-tree:

An (a, b)-tree satisfies:

- Each internal node has at least a children, unless it is the root.
 The root has at least 2 children.
- Each internal node has at most b children.
- If a node has k children, then it stores k-1 key-value pairs (KVPs).
- External nodes store no keys and are at the same level.
- The keys in the node are between the keys in the corresponding children.

If $a \ge b/2$, then search, insert, delete work just like for 2-3 trees, after re-defining underflow/overflow to consider the above constraints.

(a, b)-tree example

A (3,5)-tree (it is also a valid (3,6)-tree):

Height of an (a, b)-tree

What is the least number of KVPs in an (a, b)-tree of height-h? (Height = # levels **not** counting the NIL-level -1)

Level	Nodes ≥	Links/node ≥	KVP/node ≥	KVPs on level \geq
0	1	2	1	1
1	2	а	a-1	2(a-1)
2	2 <i>a</i>	а	a-1	2a(a-1)
3	$2a^{2}$	а	a-1	$2a^2(a-1)$
• • •	• • •	• • •	• • •	• • •
h	$2a^{h-1}$	а	a − 1	$2a^{h-1}(a-1)$

Total:
$$n \ge 1 + 2(a-1) \sum_{i=0}^{h-1} a^i = 2a^h - 1$$

Therefore height of tree with n KVPs is $\Theta(\log_a(n)) = \Theta(\log n / \log a)$.

- 1 External Memory
 - Motivation
 - External sorting
 - External Dictionaries
 - 2-3 Trees
 - (a, b)-Trees
 - B-Trees
 - Extendible Hashing

B-trees

A B-tree of order m is a $(\lceil m/2 \rceil, m)$ -tree.

A 2-3 tree is a B-tree of order 3.

Sedgewick uses M rather than m, but this is confusing since we set M to be the space in main memory.

Analysis (if entire B-tree is stored in main memory):

- Assume each node stores its KVPs and child-pointers in a dictionary that supports $O(\log m)$ search, insert, and delete.
- search, insert, and delete each require $\Theta(height)$ node operations.
- Height is $O(\log n / \log m)$.
- Each node operation can be done in $O(\log m)$ time.

Total cost is
$$O\left(\frac{\log n}{\log m} \cdot (\log m)\right) = O(\log n)$$
.

This is no better than 2-3-trees or AVL-trees.

Dictionaries in external memory

Main applications of B-trees: Store dictionaries in external memory.

Recall: In an AVL tree or 2-3 tree, $\Theta(\log n)$ pages are loaded in the worst case.

Instead, use a B-tree of order m, where m is chosen so that an m-node fits into a single page.

Each operation can be done with $\Theta(\text{height})$ page loads.

The height of a B-tree is $\Theta(\log n/\log m)$.

This results in *huge* savings of page loads.

B-tree variations

Can reduce page loads even further with two strategies:

- insert and delete with pre-emptive splitting/merging:
 While searching for key k, split/join two nodes that are close to overflow/underflow.
 - Then inserting/deleting k will not lead to overflow/underflow. \rightsquigarrow no need to recurse back up in the tree, saving those page loads.
- B⁺-trees: Only leaves have KVPs, interior nodes have only keys.
 This means twice as many keys, but we can use a larger m since interior nodes do not hold values.
 We also link the leaves sequentially.

Also of note: **Red-black trees**. These are (2,4)-trees where 2-nodes and 3-nodes are replaced by 2 or 3 binary nodes, and colours are used to indicate the types of nodes. These are balanced binary search trees that are faster than AVL-trees in practice.

- 1 External Memory
 - Motivation
 - External sorting
 - External Dictionaries
 - 2-3 Trees
 - (a, b)-Trees
 - B-Trees
 - Extendible Hashing

Hashing in External Memory

As before, if we have a *very large* dictionary that must be stored externally, how can we hash and minimize disk transfers?

Most hash strategies access many pages (data is scattered).

Exception: Linear Probing.

- All hash table accesses will usually be in the same page.
- \bullet But α must be kept small to avoid clustering, so there is a lot of wasted space.
- And re-hashing must load all pages.

New Idea: **Extendible Hashing**. Key idea: store trie of hash-values to link to correct page.

External hashing with tries - Overview

Assumption: Hash-function has values in $\{0, 1, \dots, 2^L - 1\}$.

Interpret all hash-values as bitstrings of length L.

Build trie D (the *directory*) of hash-values in internal memory.

Stop splitting in trie whenever at most m items are left, where m is the maximum number of items that fit in one page.

Each leaf of *D* refers to *page* in external memory that stores the items.

External hashing with tries - Details

Search(x): Compute h(x). Search for h(x) in D until we reach leaf ℓ . Load page at ℓ and search in it. **1 page load**.

Insert(x): Search for x and load page, then insert x. If this exceeds page-capacity, split at trie-node and split pages (possibly repeatedly).

Typically 1-2 page loads.

Delete(x): Search for x and load page, then mark deleted (lazy deletion). Optional: combine underfull pages.

1 page load.

Insert(10110)

Extendible hashing: saving space

We can save links (hence space) in main memory with two tricks:

- Expand the trie so that all leaves have the same depth (order d).
 Multiple leaves may point to same page.
- Store *only* the leaves, and in an array *D*.

Storjohann (SCS, UW)

Summary of extendible hashing

- Directory is much smaller than total number of stored keys
 → should fit in main memory.
 (If it does not, then one could use a B-tree for the dictionary.)
- Only 1 or 2 page transfers for any operation.
- To make more space, we only add one block.
 Rarely change the size of the directory.
 Never have to move all items. (in contrast to re-hashing!)
- Space usage is not too inefficient: one can show that under uniform hashing each block is expected to be 69% full.