EX/SC/MATH/UG/MAJOR/TH/11/101/2024

BACHELOR OF SCIENCE EXAMINATION, 2024

(1st Year, 1st Semester)

MATHEMATICS

PAPER: MAJOR - 101

(Real Analysis)

Time: 2 Hours Full Marks: 40

Use a separate Answer-Script for each Part.

PART—I

(Marks: 20)

Answer any five questions:

 $(4 \times 5 = 20)$

1. Show that the set [0, 1] is uncountable.

- 4
- 2. Let F be an Archimedean ordered field. Show that if F satisfies least upper bound property then F has Cantor's nested interval property.
- 3. Show that interior of a set is the largest open set contained in the set. Find the derived set of \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{Q}^c . 2+2

[Turn Over]

- 4. Prove that in \mathbb{R} finite intersection of open sets is open. Give an example to show that arbitrary intersection of open sets may not be open. 2+2
- 5. Find the closure of the set $\{m + n\sqrt{2} : m, n \in \mathbb{Z}\}$.
- 6. Prove that every closed and bounded set in \mathbb{R} is compact.
- 7. Show that an element x_0 is a limit point of a set S if and only if there exists a sequence $\{x_n\}$ of elements from $S\setminus\{x_0\}$ converging to x_0 .
- 8. Prove that the set $S = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$ is both closed and open in \mathbb{Q} . Justify whether the set S is compact or not.

2+2

PART—II

(Marks: 20)

Answer any four questions:

- 1. (a) If the subsequences $\{x_{3n-2}\}$, $\{x_{3n-1}\}$ and $\{x_{3n}\}$ of a sequence $\{x_n\}$ converge to the same limit ℓ , then prove that $\{x_n\}$ converges to ℓ .
 - (b) Prove that $n^{1/n} \to 1$ as $n \to \infty$

3+2

- 2. Define nests of intervals. For any nest of closed intervals $\{[a_n, b_n]\}$, prove that there exists a unique real number x such that $x \in [a_n, b_n] \forall n$.
- 3. Prove that $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is convergent and

$$\frac{2 \leq \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n}{1 + \frac{1}{n} \leq 3.}$$

$$2 < \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n < 3,$$

- 4. (a) Prove that the sequence $\{u_n\}$ defined by $u_1 = \sqrt{7}$ and $u_{n+1} = \sqrt{7u_n} \, \forall n \ge 1$, converges to 7.
 - (b) If $\{x_n\}$ is a bounded sequence and $\{y_n\}$ converges to 0, then prove that $\{x_ny_n\}$ converges to 0. 3+2
- 5. (a) Let $\sum u_n$ and $\sum v_n$ be two series of positive real numbers and $\lim_{n\to\infty} \frac{u_n}{v_n} = \ell$. If $\ell \neq 0$, then prove that $\sum u_n$ and $\sum v_n$ converge or diverge together.
 - (b) If $\sum u_n$ is a convergent series of positive real numbers, then prove that $\sum \frac{u_n}{s+u_n}$ is convergent for any non-zero real number s > 0.

6. (a) Test the convergence of the following series:

$$\sum \frac{a^n}{n}, \ a > 0$$

(b) Test the convergence of the following series:

$$\frac{1+2}{2^3} + \frac{1+2+3}{3^3} + \frac{1+2+3+4}{4^3} + \cdots$$
 [3+2]

- 7. Let $\sum a_n$ be a convergent series of positive real numbers.
 - (i) Prove that the sequence of nth partial sum of the series is bounded above.
 - (ii) If $\{a_n\}$ is monotonically decreasing sequence, then prove that $na_n \to 0$ as $n \to \alpha$. [2+3]

