Domáce úlohy 1

- **1.** Platí $n^{50} = O(1,2^n)$. Určte pre hodnoty konštánt C rovné po rade a) 10^{-50} , b) 10^{-30} , c) 10^{-10} , d) 1, e) 10^{10} , f) 10^{30} , g) 10^{50} presnú hodnotu n_0 pre ktorú platí naznačený vzťah.
 - **2.** $Dok\acute{a}\check{z}te$: a) $(\ln n)^2 = o(n^{0,01}), b)$ $(\ln \ln n)^2 = o((\ln n)^{0,1}).$
- **3.** Určte asymptotický rast: $\sum_{i=1}^{n} i^{\alpha}$, $\alpha \in \mathbb{R}$. Ako sa zmení výsledok, keď budeme počítať súčet od 1 po $\sqrt[3]{n}$? Odvoď te podrobne.
- **4.** Určte asymptotický rast: $\sum_{i=1}^{n} i^{\alpha} \ln i$, $\alpha \in \mathbb{R}$. Ako sa zmení výsledok, keď budeme počítať súčet od I po $\sqrt[4]{n}$? Odvoď te podrobne.
- **5.** Určte asymptotický rast: $\sum_{i=1}^{n} i^{\alpha} (\ln i)^2$, $\alpha \in \mathbb{R}$. Ako sa zmení výsledok, keď budeme počítať súčet od 1 po $\sqrt[5]{n}$? Odvoď te podrobne.
 - **6.** Určte asymptotický rast: $\sum_{i=1}^{n} i^{\alpha} (\ln i)^{\beta}$, $\alpha \in \mathbb{R}$, $\beta \in \mathbb{N}_0$. Odvoď te podrobne.
 - **7.** Porovnajte: $1,01^{\ln \ln n!}$, $n^{\sqrt{n}}$, $(\sqrt{n})^n$ a $\sqrt{n!}$.
 - **8.** Dokážte alebo nájdite príklad dokazujúci opak: ak $f \sim g$ a $f = \omega(h)$, tak $f \sim g + h$.
 - **9.** Dokážte alebo nájdite príklad dokazujúci opak: ak f = O(g) a $f \neq o(g)$, tak $f = \Theta(g)$.
 - **10.** Dokážte alebo nájdite príklad dokazujúci opak: ak f \sim g, tak $e^f \sim e^g$.
 - **11.** *Dokážte alebo nájdite príklad dokazujúci opak: ak* f = o(g), tak $e^f = o(e^g)$.
 - 12. Dokážte, že platí:

$$\sqrt[3]{\frac{16x^{19} + 17(\ln x)^{15} + 800\sin x}{4x^7 + 8(\ln x)^4 + 200\cos x}} = \Theta(x^4),$$

pomocou a) "C, n_0'' , b) inak. S akou funkciou je l'avá strana v relácii ~?