GALOIS FIELDS II

1 Galois Fields II

Theorem 1.1. Let p be a prime, and let $q = p^n$ for some $n \in \mathbb{N}$. Then:

- (a) There exists a field \mathbb{F}_q of order q, and this field is unique up to isomorphism.
- (b) All elements of \mathbb{F}_q satisfy the equation $t^q = t$, and hence $\mathbb{F}_q : \mathbb{F}_p$ is a splitting field extension for $t^q t$.
- (c) There is a unique copy of \mathbb{F}_q inside any algebraically closed field containing \mathbb{F}_p .

Theorem 1.2. Let p be a prime, and suppose that $q = p^n$ for some $n \in \mathbb{N}$. Then:

- (a) $Gal(\mathbb{F}_q : \mathbb{F}_p) \cong \mathbb{Z}/n\mathbb{Z};$
- (b) The field \mathbb{F}_q contains a subfield of order p^d if and only if $d \mid n$. When $d \mid n$, moreover, there is a unique subfield of \mathbb{F}_q of order p^d .

Definition 1 (Norm, Trace). Let p be a prime and let $\alpha \in F_q$ where $q = p^n$ for some $n \in \mathbb{N}$. Then we define

$$Tr(\alpha) = \alpha + \alpha^{p} + \dots + \alpha^{p^{n-1}}$$
$$= \alpha + \varphi(\alpha) + \dots + \varphi^{n-1}(\alpha)$$

and

$$Norm(\alpha) = \alpha \cdot \alpha^{p} \cdots \alpha^{p^{n-1}} = \alpha^{\frac{p^{n}-1}{p-1}}$$
$$= \alpha \cdot \varphi(\alpha) \cdots \varphi^{n-1}(\alpha)$$

Lemma 1.3. Let p be a prime and let $\alpha \in F_q$ where $q = p^n$ for some $n \in \mathbb{N}$.

- 1. For all $\alpha \in \mathbb{F}_q$, one has $\text{Tr}(\alpha), \text{Norm}(\alpha) \in \mathbb{F}_p$;
- 2. If $p \neq 2$, then $\exists \alpha_1$ such that $\text{Tr}(\alpha_1) \neq 0$ and $\exists \alpha_2 (\neq 0)$ such that $\text{Norm}(\alpha_2) \neq 1$.