- Digvijay

Maharashtra State Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

\sim	<i>iestion</i>	1
()1	IPSTION	- 1

State which of the following sentences are statements. Justify your answer. In case of the statement, write down the truth value:

(i) 5 + 4 = 13.

Solution:

It is a statement which is false, hence its truth value is 'F'.

(ii) x - 3 = 14.

Solution:

It is an open sentence, hence it is not a statement.

(iii) Close the door.

Solution:

It is an imperative sentence, hence it is not a statement.

(iv) Zero is a complex number.

Solution:

It is a statement which is true, hence its truth value is 'T'.

(v) Please get me breakfast.

Solution:

It is an imperative sentence, hence it is not a statement.

(vi) Congruent triangles are also similar.

Solution:

It is a statement which is true, hence its truth value is 'T'.

(vii) x2 = x.

Solution:

It is an open sentence, hence it is not a statement,

(viii) A quadratic equation cannot have more than two roots.

Solution

It is a statement which is true, hence its truth value is 'T'.

(ix) Do you like Mathematics?

Solution:

It is an interrogative sentence, hence it is not a statement.

(x) The sun sets in the west.

Solution:

It is a statement which is true, hence its truth value is 'T'.

(xi) All real numbers are whole numbers.

Solution:

It is a statement which is false, hence its truth value is 'F'.

(xii) Can you speak in Marathi?

Solution:

It is an interrogative sentence, hence it is not a statement.

(xiii) $x_2 - 6x - 7 = 0$, when x = 7.

Solution:

It is a statement which is true, hence its truth value is 'T'.

(xiv) The sum of cuberoots of unity is zero.

Solution:

It is a statement which is true, hence its truth value is 'T'.

(xv) It rains heavily.

Solution:

It is an open sentence, hence it is not a statement.

Allguidesite -- Arjun - Digvijay Question 2. Write the following compound statements symbolically: (i) Nagpur is in Maharashtra and Chennai is in Tamil Nadu. Solution: Let p : Nagpur is in Maharashtra. q : Chennai is in Tamil Nadu. Then the symbolic form of the given statement is $P \wedge q$. (ii) Triangle is equilateral or isosceles, Solution: Let p : Triangle is equilateral. q: Triangle is isosceles. Then the symbolic form of the given statement is PVq. (iii) The angle is right angle if and only if it is of measure 90°. Solution: Let p: The angle is right angle. q: It is of measure 90°. Then the symbolic form of the given statement is p↔q

(iv) Angle is neither acute nor obtuse.

Solution:

Let p : Angle is acute.

q: Angle is obtuse.

Then the symbolic form of the given statement is

~p ∧ ~q.

(v) If \triangle ABC is right angled at B, then $m\angle A + m\angle C = 90^{\circ}$.

Solution:

Let $p : \Delta$ ABC is right angled at B.

 $q: m\angle A + m\angle C = 90^{\circ}$.

Then the symbolic form of the given statement is $p \rightarrow q$

(vi) Hima Das wins gold medal if and only if she runs fast.

Solution:

Let p: Hima Das wins gold medal

q: She runs fast.

Then the symbolic form of the given statement is $p \leftrightarrow q$.

(vii) x is not irrational number but it is a square of an integer.

Solution:

Let p : x is not irrational number

q: It is a square of an integer

Then the symbolic form of the given statement is $p \land q$

Note: If p:x is irrational number, then the symbolic form of the given statement is $\sim p \land q$.

Question 3.

Write the truth values of the following:

(i) 4 is odd or 1 is prime.

Solution:

Let p: 4 is odd.

q:1 is prime.

Then the symbolic form of the given statement is p V q.

The truth values of both p and q are F.

 \therefore the truth value of p v q is F. ... [F V F = F]

(ii) 64 is a perfect square and 46 is a prime number.

Solution:

Let p: 64 is a perfect square.

q: 46 is a prime number.

Then the symbolic form of the given statement is $p \land q$.

The truth values of p and q are T and F respectively.

 \therefore the truth value of p \land q is F. ... [T \land F \equiv F]

(iii) 5 is a prime number and 7 divides 94.

Solution:

Let p: 5 is a prime number.

q: 7 divides 94.

Then the symbolic form of the given statement is $p \land q$.

- Arjun
- Digvijay

The truth values of p and q are T and F respectively.

- \therefore the truth value of p \land q is F. ... [T \land F \equiv F]
- (iv) It is not true that 5 3i is a real number.

Solution:

Let p: 5 - 3i is a real number.

Then the symbolic form of the given statement is \sim p.

The truth values of p is F.

- \therefore the truth values of \sim p is T. ... [\sim F \equiv T]
- (v) If $3 \times 5 = 8$, then 3 + 5 = 15.

Solution:

Let p : $3 \times 5 = 8$.

q:3+5=15.

Then the symbolic form of the given statement is $p \rightarrow q$.

The truth values of both p and q are F.

- \therefore the truth value of p \rightarrow q is T. ... [F \rightarrow F \equiv T]
- (vi) Milk is white if and only if sky is blue.

Solution:

Let p: Milk is white.

q: Sky is blue

Then the symbolic form of the given statement is $p \leftrightarrow q$.

The truth values of both p and q are T.

- \therefore the truth value of p \leftrightarrow q is T. ... [T \leftrightarrow T \equiv T]
- (vii) 24 is a composite number or 17 is a prime number.

Solution:

Let p: 24 is a composite number.

q: 17 is a prime number.

Then the symbolic form of the given statement is p V q.

The truth values of both p and q are T.

 \therefore the truth value of p V q is T. ... [T V T \equiv T]

Question 4.

If the statements p, q are true statements and r, s are false statements, then determine the truth values of the following:

(i) p V (q Λ r)

Solution:

Truth values of p and q are T and truth values of r and s are F.

$$p \lor (q \land r) \equiv T \lor (T \land F)$$

 $\equiv T \land F \equiv T$

Hence the truth value of the given statement is true.

(ii)
$$(p \rightarrow q) \ V \ (r \rightarrow s)$$

Solution:

$$(p \rightarrow q) \ V \ (r \rightarrow s) \equiv (T \rightarrow T) \ V \ (F \rightarrow F)$$

 \equiv T \vee T \equiv T

Hence the truth value of the given statement is true.

(iii) (q
$$\wedge$$
 r) \vee (\sim p \wedge s)

Solution:

$$(q \land r) \lor (\sim p \land s) \equiv (T \land F) \lor (\sim T \land F)$$

 $\equiv F \lor (F \land F)$

 $\equiv F \vee F \equiv F$

Hence the truth value of the given statement is false.

(iv)
$$(p \rightarrow q) \land (\sim r)$$

Solution:

$$(p \rightarrow q) \land (\sim r) \equiv (T \rightarrow T) \land (\sim F)$$

 $\equiv T \land T \equiv T$

Hence the truth value of the given statement is true.

(v)
$$(\sim r \leftrightarrow p) \rightarrow (\sim q)$$

Solution:

$$(\sim\!r\leftrightarrow p)\to (\sim\!q)\equiv (\sim\!F\leftrightarrow T)\to (\sim\!T)$$

 $\equiv (T \leftrightarrow T) \rightarrow F$

- Arjun
- Digvijay
- $\equiv \mathsf{T} \to \mathsf{F} \equiv \mathsf{F}$

Hence the truth value of the given statement is false.

(vi) [\sim p \wedge (\sim q \wedge r) \vee (q \wedge r) \vee (p \wedge r)]

Solution:

 $[\sim p \land (\sim q \land r) \lor (q \land r) \lor (p \land r)]$

- $\equiv [\sim T \land (\sim T \land F)] \lor [(T \land F) \lor (T \land F)]$
- $\equiv [F \land (F \land F)] \lor [F \lor F]$
- \equiv (F \land F) \lor F
- $\equiv F \lor F \equiv F$

Hence the truth value of the given statement is false.

(vii) [(~ p \land q) \land (~ r)] \lor [(q \rightarrow p) \rightarrow (~ s \lor r)]

Solution:

 $[(\sim p \ \land \ q) \ \land \ (\sim r)] \ \lor \ [(q \rightarrow p) \rightarrow (\sim s \ \lor \ r)]$

- $\equiv [(\sim T \ \land \ T) \ \land \ (\sim F)] \ \lor \ [(T \rightarrow T) \rightarrow (\sim F \ \lor \ F)]$
- $\equiv [(F \land T) \land T] \lor [T \rightarrow (T \lor F)]$
- $\equiv (F \land T) \lor (T \rightarrow T)$
- $\equiv F \lor T \equiv T$

Hence the truth value of the given statement is true.

(viii) ~ $[(\sim p \land r) \lor (s \rightarrow \sim q)] \leftrightarrow (p \land r)$

Solution:

- $\sim [(\sim\!p\ \land\ r)\ \lor\ (s\ \to\ \sim\!q)]\ \leftrightarrow\ (p\ \land\ r)$
- $\equiv \, \sim \, [(\sim T \ \land \ F) \ \lor \ (F \ \rightarrow \ \sim T)] \ \leftrightarrow \ (T \ \land \ F)$
- $\equiv \sim [(F \land F) \lor (F \rightarrow F)] \leftrightarrow F$
- $\equiv \sim (F \ \lor \ T) \leftrightarrow F$
- $\equiv \sim T \leftrightarrow F$
- $\equiv \mathsf{F} \leftrightarrow \mathsf{F} \equiv \mathsf{T}$

Hence the truth value of the given statement is true.

Question 5.

Write the negations of the following:

- (i) Tirupati is in Andhra Pradesh.
- Solution:

The negations of the given statements are :

Tirupati is not in Andhra Pradesh.

(ii) 3 is not a root of the equation $x_2 + 3x - 18 = 0$.

Solution:

3 is a root of the equation $x_2 + 3x - 18 = 0$.

(iii) $2-\sqrt{1}$ is a rational number.

Solution:

- $2-\sqrt{1}$ is not a rational number.
- (iv) Polygon ABCDE is a pentagon.

Polygon ABCDE is not a pentagon.

(v) 7 + 3 > 5.

Solution:

7 + 3 > 5

- Arjun - Digvijay

Maharashtra State Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.2

Question 1.

Construct the truth table for each of the following statement patterns:

(i) $[(p \rightarrow q) \land q] \rightarrow p$

Solution:

Here are two statements and three connectives.

 \therefore there are 2 × 2 = 4 rows and 2 + 3 = 5 columns in the truth table.

p	q	$p \rightarrow q$	$(p \rightarrow q) \land q$	$[(p \to q) \land q] \to p$
т	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	T

(ii)
$$(p \land \sim q) \leftrightarrow (p \rightarrow q)$$

Solution:

p	g	~9	p∧~q	$p \rightarrow q$	$(p \land \sim q) \leftrightarrow (p \rightarrow q)$
T	Т	F	F	Т	F
T	F	T	Т	F	F
F	T	F	F	T	F
F	F	T	F	T	F

(iii) (p
$$\land$$
 q) \leftrightarrow (q \lor r)

р	а	r	$p \wedge q$	qvr	$(p \land q) \leftrightarrow (q \lor r)$
r	9		PAG	7.	(4 17)
T	T	T	T	T	T
T	T	F	T	T	T
T	F	Т	F	T	F
T	F	F	F	F	T
F	T	T	F	T	F
F	T	F	F	T	F
F	F	T	F	T	F
F	F	F	F	F	T

Allguidesite -- Arjun - Digvijay

(iv) p \rightarrow [\sim (q \land r)]

Solution:

p	9	r	qAr	$\sim (q \wedge r)$	$p\to [\sim (q\wedge r)]$
T	T	T	T	F	F
T	T	F	F	T	T
T	F	T	F	T	T
T	F	F	F	T	T
F	T	T	T	F	T
F	T	F	F	T	T
F	F	T	F	T	T
F	F	F	F	- T	T

(v) \sim p \wedge [(p \vee \sim q) \wedge q]

Solution:

p	9	~ p	~ 9	$p \lor \sim q$	$(p \lor \sim q) \land q$	$\sim p \wedge [(p \vee \sim q) \wedge q]$
T	Т	F	F	Т	Т	F
T	F	F	T	T	F	F
F	T	T	F	F	F	F
F	F	Т	T	T	F	F

(vi) $(\sim p \rightarrow \sim q) \land (\sim q \rightarrow \sim p)$

Solution:

p	q	~ p	~9	$\sim p \rightarrow \sim q$	~ q → ~ p	$(\sim p \rightarrow \sim q) \wedge (\sim q \rightarrow \sim p)$
T	Т	F	F	T	T	T
Т	F	F	Т	T	F	F
F	T	T	F	F	Т	F
F	F	Т	T	Т	Т	T

(vii) $(q \rightarrow p) \ V \ (\sim p \leftrightarrow q)$

p	9	~p	$q \rightarrow p$	~p↔q	$(q \to p) \lor (\sim p \leftrightarrow q)$
T	Т	F	Т	F	Т
T	F	F	Т	Т	T
F	T	T	F	Т	T
F	F	T	T	F	T

Allguidesite -- Arjun - Digvijay

(viii) $[p \rightarrow (q \rightarrow r)] \leftrightarrow [(p \land q) \rightarrow r]$

Solution:

p	9	1	q → r	$p \rightarrow (q \rightarrow r)$	p∧q	$(p \land q) \rightarrow r$	$[p \to (q \to r)] \leftrightarrow [(p \land q) \to r]$
Т	T	T	T	T	T	T	Т
T	T	F	F	F	T	F	T
T	F	Т	T	T	F	Т	T
T	F	F	T	Т	F	T	T
F	T	T	T	T	F	T	T
F	T	F	F	T	F	Т	T
F	F	T	T	T	F	T	T
F	F	F	T	T	F	T	T

(ix) p \rightarrow [\sim (q \land r)]

Solution:

p	9	r	qnr	$\sim (q \wedge r)$	$p\to [\sim (q\wedge r)]$
T	T	T	T	F	F
T	T	F	F	T	T
T	F	T	F	T	T
T	F	F	F	T	T
F	T	Т	T	F	T
F	Т	F	F	T	T
F	F	T	F	T	T
F	F	F	F	T	T

(x) (p $\vee \sim q$) \rightarrow (r \wedge p)

Solution:

p	9	r	~9	p∨∼q	$r \wedge p$	$(p \lor \sim q) \to (r \land p)$
Т	Т	T	F	T	T	T
T	T	F	F	T	F	F
Т	F	Т	T	T	T	T
T	F	F	T	T	F	F
F	Т	T	F	F	F	T
F	Т	F	F	F	F	т
F	F	T	T	T	F	F
F	F	F	T	T	F	F

Question 2. Using truth tables prove the following logical equivalences. (i) $\sim p \land q \equiv (p \lor q) \land \sim p$ Solution:

1	2	3	4	5	6
р	9	~ p	$\sim p \wedge q$	p∨q	$(p \lor q) \land \sim p$
Т	Т	F	F	Т	F
T	F	F	F	T	F
F	T	T	T	T	T
F	F	T	F	F	F

- Arjun
- Digvijay

The entries in the columns 4 and 6 are identical.

$$\therefore \sim p \land q \equiv (p \lor q) \land \sim p.$$

(ii)
$$\sim$$
(p \vee q) \vee (\sim p \wedge q) \equiv \sim p

Solution:

1	2	3	4	5	6	7
p	9	~ p	p∨q	$\sim (p \lor q)$	~p^q	$\sim (p \lor q) \lor (\sim p \land q)$
T	Т	F	Т	F	F	F
T	F	F	T	F	F	F
F	T	T	T	F	T	T
F	F	T	F	Т	F	T

The entries in the columns 3 and 7 are identical.

$$\therefore \sim (p \lor q) \land (\sim p \land q) = \sim p.$$

(iii)
$$p \leftrightarrow q \equiv \sim [(p \ \lor \ q) \ \land \ \sim (p \ \land \ q)]$$

Solution:

1	2	3	4	5	6	7	8
p	q	p↔q	p∨q	p∧q	~(p∧q)	(p∨q)∧ ~(p∧q)	$\sim [(p \lor q) \land \sim (p \land q)]$
Т	T	Т	Т	Т	F	F	Т
T	F	F	T	F	T	T	F
F	T	F	T	F	T	T	F
F	F	T	F	F	T	F	T

The entries in the columns 3 and 8 are identical.

$$\therefore \ p \leftrightarrow q \equiv \sim [(p \ \lor \ q) \ \land \ \sim (p \ \land \ q)].$$

(iv)
$$p \rightarrow (q \rightarrow p) \equiv \sim p \rightarrow (p \rightarrow q)$$

Solution:

1	2	3	4	5	6	7
p	9	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$	~ p	$p \rightarrow q$	$\sim p \rightarrow (p \rightarrow q)$
Т	T	Т	Т	F	Т	Т
T	F	T	Т	F	F	T
F	T	F	T	T	T	T
F	F	T	Т	Т	T	T

The entries in the columns 4 and 7 are identical.

$$\therefore p \to (q \to p) \equiv \sim p \to (p \to q).$$

(v) (p
$$\vee$$
 q) \rightarrow r \equiv (p \rightarrow r) \wedge (q \rightarrow r)

- Arjun
- Digvijay

1	2	3	4	5	6	7	8
p	9	r	pvq	$(p \lor q) \to r$	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \land (q \to r)$
T	T	T	Т	Т	Т	T	T
T	T	F	T	F	F	F	F
T	F	T	T	T	T	T	T
T	F	F	T	F	F	T	F
F	T	T	T	T	T	T	T
F	T	F	T	F	T	F	F
F	F	T	F	T	T	T	T
F	F	F	F	T	T	T	Τ.

The entries in the columns 5 and 8 are identical.

 $\therefore (p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r).$

(vi) $p \rightarrow (q \land r) \equiv (p \rightarrow q) \land (p \rightarrow r)$

Solution:

1	2	3	4	5	6	7	8
p	9	r	q∧r	$p \rightarrow (q \wedge r)$	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \land (p \to r)$
T	T	T	T	T	Т	Т	T
Т	T	F	F	F	Т	F	F
T	F	T	F	F	F	T	F
T	F	F	F	F	F	F	F
F	T	T	T	T	Т	T	T
F	T	F	F	T	T	Т	T
F	F	T	F	T	T	T	T
F	F	F	F	T	Т	T	T

The entries in the columns 5 and 8 are identical.

 $\therefore p \to (q \land r) \equiv (p \to q) \land (p \to r).$

(vii) p \land (q \lor r) \equiv (p \land q) \lor (p \land r) Solution:

	_	1		THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO			
1	2	3	4	5	6	7	8
p	q	r	qvr	p∧(q∨r)	p∧q	p∧r	$(p \wedge q) \vee (p \wedge r)$
T	T	T	T	Т	T	T	T
T	T	F	T	T	T	F	T
T	F	T	T	T	F	Т	T
T	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

The entries in the columns 5 and 8 are identical.

 $\therefore \mathsf{p} \, \wedge \, (\mathsf{q} \, \vee \, \mathsf{r}) \equiv (\mathsf{p} \, \wedge \, \mathsf{q}) \, \vee \, (\mathsf{p} \, \wedge \, \mathsf{r}).$

(viii) [~(p \vee q) \vee (p \vee q)] \wedge r \equiv r

1	2	3	4	5	6	7
р	9	r	p∨q	$\sim (p \lor q)$	$\sim (p \lor q) \lor (p \lor q)$	$[\sim (p\vee q)\vee (p\vee q)]\wedge r$
Т	Т	Т	T	F	T	T
Т	Т	F	T	F	Т	F
r	F	Т	T	F	. T	T
Г	F	F	T	F	T	F
F	Т	Т	T	F	T	T
F	Т	F	Т	F	T	F
F	F	T	F	T	T	T
F	F	F	F	T	T	F

The entries in the columns 3 and 7 are identical.

 $\therefore \left[\sim (p \ \lor \ q) \ \lor \ (p \ \lor \ q) \right] \ \land \ r \equiv r.$

(ix)
$$\sim$$
(p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)

Solution:

1	2	3	4	5	`6	7	8	9
p	q	~ p	~9	p↔q	$\sim (p \leftrightarrow q)$	p∧~q	<i>q</i> ∧~ <i>p</i>	$(p \land \sim q) \lor (q \land \sim p)$
Т	T	F	F	Т	F	F	F	F
Т	F	F	T	F	T	Т	F	T
F	T	T	F	F	T	F	T	T -
F	F	T	T	Т	F	F	F	F

The entries in the columns 6 and 9 are identical.

 $\therefore \sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p).$

Question 3.

Examine whether each of the following statement patterns is a tautology or a contradiction or a contingency. (i) $(p \land q) \rightarrow (q \lor p)$

Solution:

p	9	$p \wedge q$	q∨p	$(p \land q) \rightarrow (q \lor p)$
T	T	Т	T	T
T	F	F	T	T
F	T	F	T	Т
F	F	F	F	T

All the entries in the last column of the above truth table are T.

 \therefore (p \land q) \rightarrow (q \lor p) is a tautology.

(ii)
$$(p \rightarrow q) \leftrightarrow (\sim p \ \lor \ q)$$

Solution:

p	q	~ p	$p \rightarrow q$	~p∨q	$(p \to q) \leftrightarrow (\sim p \lor q)$
T	T	F	T	Т	Т
Т	F	F	F	F	Т
F	T	Т	T	T	T
F	F	T	T	Т	T

All the entries in the last column of the above truth table are T.

 \therefore (p \rightarrow q) \leftrightarrow (\sim p V q) p is a tautology.

(iii) [
$$\sim$$
(\sim p \wedge \sim q)] \vee q

- Arjun

- Digvijay

p	9	~ p	~ q	~p^~q	$\sim (\sim p \land \sim q)$	$[\sim (\sim p \land \sim q)] \lor q$
T	T	F	F	F	T	T
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	T	F	F

The entries in the last column of the above truth table are neither all T nor all F. \therefore [~(~p \land ~q)] V q is a contingency.

(iv)
$$[(p \rightarrow q) \land q)] \rightarrow p$$

Solution:

р	q	$p \rightarrow q$	$(p \rightarrow q) \land q$	$[(p \to q) \land q] \to p$
T	T	Т	T	Т
T	F	F	F	T
F	Т	T	T	F
F	F	T	F	T
	T T F F	T T F	T T T T	T T T T T T T F

The entries in the last column of the above truth table are neither all T nor all F. $\therefore [(p \rightarrow q) \land q)] \rightarrow p$ is a contingency

(v)
$$[(p \rightarrow q) \land \sim q] \rightarrow \sim p$$

Solution:

-	p	q	~ p	~ 9	$p \rightarrow q$	$(p \rightarrow q) \land \sim q$	$[(p \to q) \land \sim q] \to \sim p$
	Т	Т	F	F	Т	F	Т
-	T	F	F	T	F	F	T
	F	T	T	F	Т	F	T
-	F	F	T	T	T	T	T

All the entries in the last column of the above truth table are T.

 \therefore [(p \rightarrow q) \land \sim q] \rightarrow \sim p is a tautology.

(vi)
$$(p \leftrightarrow q) \land (p \rightarrow \sim q)$$

Solution:

A STATE OF THE PARTY OF THE PAR	р	9	~ q	p↔q	$p \rightarrow \sim q$	$(p \leftrightarrow q) \land (p \rightarrow \sim q)$
	Т	Т	F	T	F	F
	T	F	Т	F	T	F
	F	T	F	F	Т	F
	F	F	Т	T	T	T

The entries in the last column of the above truth table are neither all T nor all F.

$$\therefore$$
 (p \leftrightarrow q) \land (p \rightarrow \sim q) is a contingency.

(vii)
$$\sim$$
(\sim q \wedge p) \wedge q

p	9	~ q	$\sim q \wedge p$	$\sim (\sim q \wedge p)$	$\sim (\sim q \wedge p) \wedge q$
Т	T	F	F	T	T
Т	F	Т	T	F	F
F	T	F	F	Т	T
F	F	T	F	T	F

- Arjun
- Digvijay

The entries in the last column of the above truth table are neither all T nor all F.

 $\therefore \sim (\sim q \land p) \land q$ is a contingency.

(viii) (p $\land \sim q$) \leftrightarrow (p $\rightarrow q$)

Solution:

p	9	~ q	$p \wedge \sim q$	$p \rightarrow q$	$(p \land \sim q) \leftrightarrow (p \rightarrow q)$
T	Т	F	F	Т	F
T	F	T	T	F	F
F	Т	F	F	T	F
F	F	T	F	T	F

All the entries in the last column of the above truth table are F.

 \therefore (p \land ~q) \leftrightarrow (p \rightarrow q) is a contradiction.

(ix) $(\sim p \rightarrow q) \land (p \land r)$

Solution:

p	q	r	~ p	$\sim p \rightarrow q$	$p \wedge r$	$(\sim p \rightarrow q) \wedge (p \wedge r)$
T	T	T	F	T	T	T
T	T	F	F	T	F	F
T	F	T	F	T	T	T
T	F	F	F	T	F	F
F	T	T	T	T	F	F
F	T	F	T	T	F	F
F	F	T	T	F	F	F
F	F	F	T	F	F	F

The entries in the last column of the above truth table are neither all T nor all F.

 \therefore (~p \rightarrow q) \land (p \land r) is a contingency.

$$(x) \ [p \rightarrow (\sim q \ \lor \ r)] \ \leftrightarrow \ \sim [p \rightarrow (q \rightarrow r)]$$

Solution:

p	9	r	~ 9	~ q \ r	$p \rightarrow (\sim q \lor r)$	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	$\sim [p \to (q \to r)]$	$[p \to (\sim q \lor r)] \leftrightarrow \sim [p \to (q \to r)]$
Т	Т	T	F	T	Т	Т	T	F	F
T	T	F	F	F	F	F	F	T	F
T	F	T	T	T	T	T	T	F	F
T	F	F	T	T	T	T	T	F	F
F	T	T	F	T	T	T	T	F	F
F	Т	F	F	F	T	F	T	F.	F
F	F	T	T	T	T	T	T	F	F
F	F	F	Т	T	T	Т	T	F	F

All the entries in the last column of the above truth table are F.

 $\therefore [p \to (\sim q \ \lor \ r)] \leftrightarrow \sim [p \to (q \to r)] \text{ is a contradiction}$

 \sim p V (\sim q V (p \wedge q) V \sim r)

Maharashtra State Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.3

Question 1. If $A = \{3, 5, 7, 9, 11, 12\}$, determine the truth value of each of the following. (i) $\exists x \in A$ such that x - 8 = 1Clearly $x = 9 \in A$ satisfies x - 8 = 1. So the given statement is true, hence its truth value is T. (ii) $\forall x \in A$, $x_2 + x$ is an even number Solution: For each $x \in A$, $x_2 + x$ is an even number. So the given statement is true, hence its truth value is T. (iii) $\exists x \in A$ such that $x_2 < 0$ There is no $x \in A$ which satisfies $x_2 < 0$. So the given statement is false, hence its truth value is F. (iv) $\forall x \in A$, x is an even number $x = 3 \in A$, $x = 5 \in A$, $x = 7 \in A$, $x = 9 \in A$, $x = 11 \in A$ do not satisfy x is an even number. So the given statement is false, hence its truth (v) $\exists x \in A$ such that 3x + 8 > 40Solution: Clearly $x = 11 \in A$ and $x = 12 \in A$ satisfies 3x + 8 > 40. So the given statement is true, hence its truth value is T. (vi) $\forall x \in A, 2x + 9 > 14$ For each $x \in A$, 2x + 9 > 14. So the given statement is true, hence its truth value is T. Question 2. Write the duals of each of the following. (i) p V (q Λ r) Solution: The duals of the given statement patterns are: $p \land (q \lor r)$ (ii) $p \land (q \land r)$ Solution: p V (q V r)(iii) (p V q) Λ (r V s) Solution: $(p \land q) \lor (r \land s)$ (iv) $p \land \sim q$ Solution: p V ~q (v) (\sim p V q) \wedge (\sim r \wedge s) Solution: $(\sim p \land q) \lor (\sim r \lor s)$ (vi) $\sim p \land (\sim q \land (p \lor q) \land \sim r)$ Solution:

```
Allguidesite -
- Arjun
- Digvijay
(vii) [\sim(p V q)] \wedge [p V \sim(q \wedge \sims)]
Solution:
[\sim (p \land q)] \lor [p \land \sim (q \lor \sim s)]
(viii) c \vee {p \wedge (q \vee r)}
Solution:
t \land \{p \land (q \land r)\}
(ix) \sim p \ V \ (q \ \Lambda \ r) \ \Lambda \ t
Solution:
\simp \wedge (q \vee r) \vee c
(x) (p V q) V c
Solution:
(p \land q) \land t
Question 3.
Write the negations of the following.
(i) x + 8 > 11 or y - 3 = 6
Solution:
Let p: x + 8 > 11, q: y - 3 = 6.
Then the symbolic form of the given statement is p V q.
Since \sim (p V q) \equiv \simp \wedge \simq, the negation of given statement is :
'x + 8 > 11 \text{ and } y - 3 \neq 6' \text{ OR}
'x + 8 \le 11 \text{ and } y - 3 \ne 6'
(ii) 11 < 15 and 25 > 20
Solution:
Let p: 11 < 15, q: 25 > 20.
Then the symbolic form of the given statement is p \land q.
Since \sim (p \land q) \equiv \simp \lor \simq, the negation of given statement is :
'11 \leq 15 or 25 > 20.' OR
'11 \Rightarrow 15 or 25 \leq 20.'
(iii) Qudrilateral is a square if and only if it is a rhombus.
Solution:
Let p : Quadrilateral is a square.
q: It is a rhombus.
Then the symbolic form of the given statement is p \leftrightarrow q.
Since \sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p), the negation of given statement is :
' Quadrilateral is a square but it is not a rhombus or quadrilateral is a rhombus but it is not a square.'
(iv) It is cold and raining.
Solution:
Let p: It is cold.
q: It is raining.
Then the symbolic form of the given statement is p \land q.
Since \sim (p \land q) \equiv \sim p \lor \sim q, the negation of the given statement is :
'It is not cold or not raining.'
(v) If it is raining then we will go and play football.
Solution:
Let p: It is raining.
q: We will go.
r: We play football.
Then the symbolic form of the given statement is p \rightarrow (q \land r).
Since \sim [p \rightarrow (q \land r)] \equiv p \land \sim (q \land r) \equiv p \land (q \lor \sim r), the negation of the given statement is :
'It is raining and we will not go or not play football.'
(vi) 2-\sqrt{1} is a rational number.
Solution:
```

Let p : $2-\sqrt{1}$ is a rational number.

Allguidesite -- Arjun

- Digvijay

The negation of the given statement is

' \sim p: $2-\sqrt{1}$ is not a rational number.'

(vii) All natural numbers are whole numers.

Solution:

The negation of the given statement is:

'Some natural numbers are not whole numbers.'

(viii) \forall n \in N, n₂ + n + 2 is divisible by 4.

Solution:

The negation of the given statement is:

' \exists n \in N, such that n₂ + n + 2 is not divisible by 4.'

(ix) $\exists x \in \mathbb{N}$ such that x - 17 < 20

Solution:

The negation of the given statement is:

'∀ x ∈ N, x – 17 \Rightarrow 20.'

Question 4.

Write converse, inverse and contrapositive of the following statements.

(i) If x < y then $x_2 < y_2$ ($x, y \in R$)

Solution:

Let $p : x < y, q : x^2 < y^2$.

Then the symbolic form of the given statement is $p \rightarrow q$.

Converse : $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If $x_2 < y_2$, then x < y.

Inverse: $\sim p \rightarrow \sim q$ is the inverse of $p \rightarrow q$.

i.e. If $x \gg y$, then $x_2 \gg y_2$. OR

If $x \le y$, then $x_2 \le y_2$.

Contrapositive : $\sim q \rightarrow p$ is the contrapositive of

 $p \rightarrow q$ i.e. If $x_2 \gg y_2$, then $x \gg y$. OR

If $x_2 \leqslant y_2$, then $x \leqslant y$.

(ii) A family becomes literate if the woman in it is literate.

Solution:

Let p: The woman in the family is literate.

q: A family become literate.

Then the symbolic form of the given statement is $p \rightarrow q$

Converse : $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If a family become literate, then the woman in it is literate.

Inverse : $\sim p \rightarrow \sim q$ is the inverse of $p \rightarrow q$.

i.e. If the woman in the family is not literate, then the family does not become literate.

Contrapositive: $\sim q \rightarrow \sim p$ is the contrapositive of $p \rightarrow q$. i.e. If a family does not become literate, then the woman in it is not literate.

(iii) If surface area decreases then pressure increases.

Solution:

Let p: The surface area decreases.

q: The pressure increases.

Then the symbolic form of the given statement is $p \rightarrow q$.

Converse : $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If the pressure increases, then the surface area decreases.

Inverse : $\sim p \rightarrow \sim q$ is the inverse of $p \rightarrow q$.

i.e. If the surface area does not decrease, then the pressure does not increase.

Contrapositive : $\sim q \rightarrow \sim p$ is the contrapositive of $p \rightarrow q$.

i.e. If the pressure does not increase, then the surface area does not decrease.

(iv) If voltage increases then current decreases.

Solution:

Let p : Voltage increases.

q : Current decreases.

Then the symbolic form of the given statement is $p \rightarrow q$.

Converse : $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If current decreases, then voltage increases.

Inverse: $\sim p \rightarrow \sim q$ is the inverse of $p \rightarrow q$.

i.e. If voltage does not increase, then current does not decrease.

Contrapositive : $\sim q \rightarrow \sim p$, is the contrapositive of $p \rightarrow q$.

i.e. If current does not decrease, then voltage doesnot increase.

Maharashtra State Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.4

```
Question 1.
Using rules of negation write the negations of the following with justification.
(i) \sim q \rightarrow p
Solution:
The negation of \sim q \rightarrow p is
\sim (\sim q \rightarrow p) \equiv \sim q \land \sim p.... (Negation of implication)
(ii) p ∧ ~q
Solution:
The negation of p \land \neg q is
\sim(p \land \simq) \equiv \simp \lor \sim (\simq) ... (Negation of conjunction)
\equiv \sim p \ V \ q \dots (Negation of negation)
(iii) p V ~q
Solution:
The negation of p \ V \sim p is
~ (p V ~(q) \equiv ~p \land ~(~(q) ... (Negation of disjunction)
\equiv \sim p \land q \dots (Negation of negation)
(iv) (p \vee \sim q) \wedge r
Solution:
The negation of (p \vee \sim q) \wedge r is
\sim[(p V \simq) \land r] \equiv \sim(p V \simq) V \simr ... (Negation of conjunction)
\equiv [ \simp \land \sim(\simq)] \lor \sim r... (Negation of disjunction)
\equiv (~ p \land q) \land ~ r ... (Negation of negation)
(v) p \rightarrow (p \lor \sim q)
Solution:
The negation of p \rightarrow (p \ \lor \sim q) is
~ [p \rightarrow (p \lor \sim q)] \equiv p \land \sim (p \land \sim p) \dots (Negation of implication)
\equiv p \land [\sim p \land \sim (\sim(q)] \dots (Negation of disjunction)
\equiv p \land (\sim p \land q) (Negation of negation)
(vi) \sim (p \land q) \lor (p \lor \simq)
Solution:
The negation of \sim(p \land q) \lor (p \lor \simq) is
\sim [\sim (p \land q) \lor (p \lor \sim q)] \equiv \sim [\sim (p \land q)] \land \sim (p \lor \sim q) \dots (Negation of disjunction)
\equiv \sim [\sim (p \land q)] \land [p \land \sim (\sim q)] \dots (Negation of disjunction)
\equiv (p \land q) \land (~ p \land q) ... (Negation of negation)
(vii) (p \vee \neg q) \rightarrow (p \wedge \neg q)
Solution:
The negation of (p \lor \neg q) \rightarrow (p \land \neg q) is
\sim [(p \lor \sim q) \rightarrow (p \land \sim q)]
\equiv (p V ~q) \land ~(p \land ~q) ... (Negation of implication)
\equiv (p V ~q) \land [ ~p V ~(~q)] ... (Negation of conjunction)
\equiv (p V ~q) \land (~p V q) ... (Negation of negation)
(viii) (\sim p \ \lor \ \sim q) \lor \ (p \ \land \ \sim q)
Solution:
The negation of (\sim p \ V \sim q) \ V \ (p \ \land \sim q) is
\sim [(\sim p \ \lor \sim q) \ \lor \ (p \ \land \sim q)]
\equiv ~(~p V ~q) \land ~(p \land ~q) ... (Negation of disjunction)
\equiv [\sim (\sim p) \land \sim (\sim q)] \land [\sim p \lor \sim (\sim q)] \dots (Negation of disjunction and conjunction)
\equiv (p \land q) \land (~p \lor q) ... (Negation of negation)
```

Question 2.

Rewrite the following statements without using if .. then.

```
Allguidesite -
```

- Arjun
- Digvijay
- (i) If a man is a judge then he is honest.

Solution:

Since $p \rightarrow \equiv \sim p \ V \ q$, the given statements can be written as :

A man is not a judge or he is honest.

(ii) It 2 is a rational number then $2-\sqrt{1}$ is irrational number.

Solution:

2 is not a rational number or $2-\sqrt{1}$ is irrational number.

(iii) It f(2) = 0 then f(x) is divisible by (x - 2).

Solution:

 $f(2) \neq 0$ or f(x) is divisible by (x - 2).

Question 3.

Without using truth table prove that:

(i)
$$p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$$

Solution:

 $LHS = p \leftrightarrow q$

 \equiv (p \leftrightarrow q) \land (q \leftrightarrow p) ... (Biconditional Law)

 \equiv (~p V q) \land (~q V p) ... (Conditional Law)

 \equiv [~p \land (~q \lor p)] \lor [q \land (~q \lor p)] ... (Distributive Law)

 \equiv [(\sim p $\land \sim$ q) \lor (\sim p \land p)] \lor [(q $\land \sim$ q) \lor (q \land p)] ... (Distributive Law)

 \equiv [(\sim p $\land \sim$ q) \lor F] \lor [F \lor (q \land p)] ... (ComplementLaw)

 \equiv (~ p \land ~ q) \lor (q \land p) ... (Identity Law)

 \equiv (~ p \land ~ q) \lor (p \land q) ... (Commutative Law)

 \equiv (p \land q) \lor (\sim p \land \sim q) ... (Commutative Law)

≡ RHS.

(ii) (p
$$\vee$$
 q) \wedge (p \vee ~q) \equiv p

Solution:

LHS = $(p \lor q) \land (p \lor \sim q)$

 \equiv p V (q $\land \sim$ q) ... (Distributive Law)

 \equiv p V F ... (Complement Law)

≡ p ... (Identity Law)

≡ RHS.

(iii) (p
$$\land$$
 q) \lor (\sim p \land q) \lor (p \land \sim q) \equiv p \lor q

Solution:

LHS = $(p \land q) \lor (\sim p \land q) \lor (p \land \sim q)$

 \equiv [(p V ~p) \land q] V (p \land ~q) ... (Distributive Law)

 \equiv (T \land q) V (p \land ~q) ... (Complement Law)

 \equiv q \vee (p \wedge ~q) ... (Identity Law)

 \equiv (q V p) \land (q V ~q) ... (Distributive Law)

 \equiv (q \vee p) \wedge T .. (Complement Law)

 \equiv q V p ... (Identity Law)

 \equiv p V q ... (Commutative Law)

≡ RHS.

(iv)
$$\sim$$
 [(p $\vee \sim$ q) \rightarrow (p $\wedge \sim$ q)] \equiv (p $\vee \sim$ q) \wedge (\sim p \vee q)

Solution:

LHS = \sim [(p \vee \sim q) \rightarrow (p \wedge \sim q)]

 \equiv (p V ~q) \land ~(p \land ~q) ... (Negation of implication)

 \equiv (p V ~q) \land [~p V ~(~q)] ... (Negation of conjunction)

 \equiv (p V ~ q) \land (~p V q)... (Negation of negation)

≡ RHS.

- Arjun
- Digvijay

Maharashtra State Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.5

Question 1.

Express the following circuits in the symbolic form of logic and write the input-output table.

(i)

Solution:

Let p: the switch S1 is closed

q: the switch S2 is closed

r: the switch S3 is closed

~p: the switch S1' is closed or the switch S1 is open

 \sim q: the switch S2' is closed or the switch S2 is open

 \sim r: the switch S3' is closed or the switch S3 is open

I: the lamp L is on

(i) The symbolic form of the given circuit is : p V (q Λ r) = I

I is generally dropped and it can be expressed as : p V (q Λ r).

Input-Output Table

p	9	r	$q \wedge r$	$p\vee (q\wedge r)$
1	1	1	1	1
1	1	0	0	1
1	0	1	0	1
1	0	0	0	1
0	1	1	1	1
0	1	0	0	0
0	0	1	0	. 0
0	0	0	0	0

Allguidesite -- Arjun - Digvijay

The symbolic form of the given circuit is : (~ p \land q) \lor (p \land ~ q).

Input-Output Table

p	q	~ p	~ q	~p \ q	$p \wedge \sim q$	$(\sim p \land q) \lor (p \land \sim q)$
1	1	0	0	0	0	0
1	0	0	1	0	1	1
0	1	1	0	1	0	1
0	0	1	1	0	0	0

The symbolic form of the given circuit is : [p \land (~q \lor r)] \lor (~q \land ~ r). **Input-Output Table**

p	9	r	~ 9	~r	~q∨r	<i>p</i> ∧(~ <i>q</i> ∨ <i>r</i>)	~q^~r	$[p \land (\sim q \lor r)]$ $\lor (\sim q \land \sim r)$
1	1	1	0	0	1	1	0	1
1	1	0	0	1	0	0	0	0
1	0	1	1	0	1	1	0	1
1	0	0	1	1	1	1	1	1
0	1	1	0	0	1	0	0	0
0	1	0	0	1	0	0	0	0
0	0	1	1	0	1	0	0	0
0	0	0	1	1	1	0	1	1

The symbolic form of the given circuit is : (p \vee q) \wedge q \wedge (r \vee ~p).

Input-Output Table

p	q	r	~ p	p∨q	$r \lor \sim p$	$(p \lor q) \land q \land (r \lor \sim p)$
1	1	1	0	1	1	1
1	1	0	0	1	0	0
1	0	1	0	1	1	0
1	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	0	1	1	1	1
0	0	1	1	0	1	0
0	0	0	1	0	1	0

Fig. 1.21

Solution:

The symbolic form of the given circuit is : [p V (~p \land ~q)] V (p \land q).

Input-Output Table

p	q	~ p	~ q	~p^~q	$p\lor(\sim p\land\sim q)$	p∧q	$[p\lor(\sim p\land\sim q)]\lor(p\land q)$
1	1	0	0	0	1	1	1
1	0	0	1	0	1	0	. 1
0	1	1	0	0	0	0	0
0	0	1	1	1	1	0	1

Fig. 1.22

- Arjun
- Digvijay

The symbolic form of the given circuit is : (p V q) Λ (q V r) Λ (r V p)

Input-Output Table

p	q	r	p∨q	q∨r	r∨p	$(p \lor q) \land (q \lor r) \land (r \lor p)$
1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	0	1	1	1	1	1
1	0	0	1	0	1	0
0	1	1	1	1	1	1
0	1	0	1	1	0	0
0	0	1	0	1	1	0
0	0	0	0	0	0	0

Question 2.

Construct the switching circuit of the following:

(i) $(\sim p \land q) \lor (p \land \sim r)$

Solution:

Let p: the switch S1 is closed

q: the switch S2 is closed

r: the switch S3 is closed

 \sim p: the switch S1' is closed or the switch S1 is open

 $\sim q$: the switch S2' is closed or the switch S2 is open

 $\sim r$: the switch S3' is closed or the switch S3 is open.

Then the switching circuits corresponding to the given statement patterns are :

(ii) (p \land q) \lor [~p \land (~q \lor p \lor r)]

Solution:

(iii) [(p \wedge r) \vee (~q \wedge ~r)] \wedge (~p \wedge ~r)

- Arjun
- Digvijay

(iv) (p \land ~q \land r) \lor [p \land (~q \lor ~r)]

Solution:

(v) p \vee (~p) \vee (~q) \vee (p \wedge q)

Solution:

(vi) (p \land q) \lor (\sim p) \lor (p \land \sim q)

Solution:

Question 3.

Give an alternative equivalent simple circuits for the following circuits :

Fig. 1.23

Solution:

- (i) Let p: the switch S1 is closed
- q: the switch S2 is closed
- $\sim p$: the switch S1' is closed or the switch Si is open Then the symbolic form of the given circuit is :
- $p \land (\sim p \lor q).$

Using the laws of logic, we have,

- $p \land (\sim p \lor q)$
- = $(p \land \sim p) \lor (p \land q) \dots (By Distributive Law)$
- = F V (p \wedge q) ... (By Complement Law)
- = $p \land q...$ (By Identity Law)

Hence, the alternative equivalent simple circuit is :

- Arjun
- Digvijay

Let p: the switch S1 is closed q: the switch S2 is closed

r: the switch S_3 is closed $\sim q$: the switch S_2 ' is closed or the switch S_2 is open

 \sim r: the switch S3' is closed or the switch S3 is open.

Then the symbolic form of the given circuit is:

 $[p \land (q \lor r)] \lor (\sim r \land \sim q \land p).$

Using the laws of logic, we have

 $[p \ \land \ (q \ \lor \ r)] \ \lor \ (\sim r \ \land \ \sim q \ \land \ p)$

 \equiv [p \land (q \lor r)] \lor [\sim (r \lor q) \land p] (By De Morgan's Law)

 \equiv [p \land (q \lor r)] \lor [p \land ~(q \lor r)] ... (By Commutative Law)

 \equiv p \land [(q \lor r) \lor \sim (q \lor r)) ... (By Distributive Law)

 \equiv p \land T ... (By Complement Law)

≡ p ... (By Identity Law)

Hence, the alternative equivalent simple circuit is :

Question 4.

Write the symbolic form of the following switching circuits construct its switching table and interpret it.

Fig. 1.25

Solution:

Let p: the switch S1 is closed

q: the switch S2 is closed

~p: the switch S1' is closed or the switch S1 is open

 $\sim q$: the switch S2' is closed or the switch S2 is open.

Then the symbolic form of the given circuit is:

 $(p \lor \sim q) \lor (\sim p \land q)$

Switching rabie

р	q	~ p	~ q	$p \lor \sim q$	$\sim p \wedge q$	$(p \lor \sim q) \lor (\sim p \land q)$
1	1	0	0	1	0	1
1	0	0	1	1	0	1
0	1	1	0	0	1	1
0	0	1	1	1	0	1

Since the final column contains all' 1', the lamp will always glow irrespective of the status of switches.

- Arjun
- Digvijay

Fig. 1.26

Solution:

Let p: the switch S1 is closed

q: the switch S2 is closed

~p: the switch S1 is closed or the switch S1 is open.

 $\sim\!q$: the switch $S_2{}'$ is closed or the switch S_2 is open.

Then the symbolic form of the given circuit is : p V (~p \land ~q) V (p \land q)

Switching Table

p	q	~ p	~ 9	$\sim p \wedge \sim q$	$p \wedge q$	$p\lor(\sim p\land\sim q)\lor(p\land q)$
1	1	0	0	0	1	1
1	0	0	1	0	0	1
0	1	1	0	0	0	0
0	0	1	1	1	0	1

Since the final column contains '0' when p is 0 and q is '1', otherwise it contains '1'. Hence, the lamp will not glow when S1 is OFF and S2 is ON, otherwise the lamp will glow.

Fig. 1.27

Solution:

Let p: the switch S1 is closed q: the switch S2 is closed r: the switch S3 is closed

 $\sim\!q$: the switch $S_2{}'$ is closed or the switch S_2 is open

 $\sim\!r\!:$ the switch S3' is closed or the switch S3 is open.

Then the symbolic form of the given circuit is : [p $V (\sim q) V r$] \land [p $V (q \land r)$]

Switching Table

-	_	_				•	St. 50 (c)					
p	9	r	~ q	~r	$p\lor (\sim q)\lor (\sim r)$ (I)	$q \wedge r$	$p \lor (q \land r)$ (II)	Final column				
1	1	1	0	0	1	1	1	1				
1	1	0	0	1	1	0	1	1				
1	0	1	1	0	1	0	1	1				
1	0	0	1	1	1	0	1	1				
0	1	1	0	0	0	1	1	. 0				
0	1	0	0	-1	1	0	0	0				
0	0	1	1	0	1	0	0	0				
0	0	0	1	1	1	0	0	0				

From the switching table, the 'final column' and the column of p are identical. Hence, the lamp will glow which S1 is 'ON'.

Question 5.

Obtain the simple logical expression of the following. Draw the corresponding switching circuit.

(i) p \vee (q \wedge ~ q)

Solution:

Using the laws of logic, we have, p V (q $\land \sim$ q)

 \equiv p \vee F ... (By Complement Law)

≡ p ... (By Identity Law)

Hence, the simple logical expression of the given expression is p.

Let p: the switch S1 is closed

Then the corresponding switching circuit is:

(ii) $(\sim p \land q) \lor (\sim p \land \sim q) \lor (p \land \sim q)$]

Solution:

Using the laws of logic, we have,

 $(\sim p \land q) \lor (\sim p \lor \sim q) \lor (p \land \sim q)$

 \equiv [~p \land (q \lor ~q)] \lor (p \land ~ q)... (By Distributive Law)

 \equiv (~p \land T) \lor (p \land ~q) ... (By Complement Law)

 $\equiv \sim p \ \lor (p \ \land \sim q) \dots (By Identity Law)$

 \equiv (~p V p) \land (~p \land ~q) ... (By Distributive Law)

 \equiv T \land (~p \land ~q) ... (By Complement Law)

 $\equiv \sim p \ \lor \sim q \dots (By \ Identity \ Law)$

Hence, the simple logical expression of the given expression is $\sim p \ V \ \sim q$.

Let p: the switch S1 is closed

q: the switch S2 is closed

 $\sim p$: the switch S1' is closed or the switch S1 is open

 $\sim q$: the switch S2' is closed or the switch S2 is open,

Then the corresponding switching circuit is:

(iii) [p (V (~q) V ~r)] \land (p V (q \land r)

Solution:

Using the laws of logic, we have,

 $[p\ \lor\ (\sim\ (q)\ \lor\ (\sim\ r)]\ \land\ [p\ \lor\ (q\ \land\ r)]$

= $[p \ V \ \{ \sim (q \ \Lambda \ r)\}] \ \Lambda \ [p \ V \ (q \ \Lambda \ r)] \dots (By De Morgan's Law)$

= p $V [\sim (q \land r) \land (q \land r)] ... (By Distributive Law)$

= p V F ... (By Complement Law)

- Arjun
- Digvijay
- = p ... (By Identity Law)

Hence, the simple logical expression of the given expression is p.

Let p: the switch S₁ is closed

Then the corresponding switching circuit is:

(iv) (p \land q \land ~p) \lor (~p \land q \land r) \lor (p \land ~q \land r) \lor (p \land q \land r)

Question is Modified

 $(p \land q \land \sim p) \lor (\sim p \land q \land r) \lor (p \land q \land r)$

Solution:

Using the laws of logic, we have,

 $(p \land q \land \sim p) \lor (\sim p \land q \land r) \lor (p \land q \land r)$

= $(p \land \sim p \land q) \lor (\sim p \land q \land r) \lor (p \land q \land r) ... (By Commutative Law)$

= (F \wedge q) \vee (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r) ... (By Complement Law)

= F V (\sim p \wedge q \wedge r) V (p \wedge q \wedge r) ... (By Identity Law)

= $(\sim p \land q \land r) \lor (p \land q \land r) ... (By Identity Law)$

= $(\sim p \ V \ p) \ \land \ (q \ \land \ r) \dots (By Distributive Law)$

= T \wedge (q \wedge r) ... (By Complement Law)

 $= q \wedge r \dots$ (By Identity Law)

Hence, the simple logical expression of the given expression is q Λ r.

Let q: the switch S_2 is closed

r: the switch S3 is closed.

Then the corresponding switching circuit is:

Maharashtra State Board 12th Maths Solutions Chapter 1 Mathematical Logic **Miscellaneous Exercise 1**

```
Question 1.
Select and write the correct answer from the given alternatives in each of the following questions:
i) If p \land q is false and p \lor q is true, the _____ is not true.
(A) p V q
(B) p \leftrightarrow q
(C) \simp \vee \simq
(D) q V \sim p
Solution:
(b) p \leftrightarrow q.
(ii) (p \land q) \rightarrow r is logically equivalent to _____.
(A) p \rightarrow (q \rightarrow r)
(B) (p \land q) \rightarrow \sim r
(C) (\sim p \lor \sim q) \rightarrow \sim r
(D) (p \ V \ q) \rightarrow r
Solution:
(a) p \rightarrow (q \rightarrow r) [Hint: Use truth table.]
(iii) Inverse of statement pattern (p \vee q) \rightarrow (p \wedge q) is _____.
(A) (p \land q) \rightarrow (p \lor q)
(B) \sim (p \vee q) \rightarrow (p \wedge q)
(C) (\sim p \land \sim q) \rightarrow (\sim p \lor \sim q)
(D) (\sim p \ \lor \ \sim q) \rightarrow (\sim p \ \land \ \sim q)
Solution:
(c) (\sim p \land \sim q) \rightarrow (\sim p \lor \sim q)
(iv) If p \land q is F, p \rightarrow q is F then the truth values of p and q are _____.
(A) T, T
(B) T, F
(C) F, T
(D) F, F
Solution:
(b) T, F
(v) The negation of inverse of \sim p \rightarrow q is _____.
(A) q \wedge p
(B) ~p ∧ ~q
(C) p \wedge q
(D) \sim q \rightarrow \sim p
Solution:
(a) q \wedge p
(vi) The negation of p \Lambda (q \rightarrow r) is _____.
(A) \sim p \land (\sim q \rightarrow \sim r)
(B) p V (\sim q V r)
(C) \sim p \land (\sim q \rightarrow \sim r)
(D) \sim p \ V \ (\sim q \ \wedge \ \sim r)
Solution:
(d) \simp V (q \wedge \simr)
(vii) If A = \{1, 2, 3, 4, 5\} then which of the following is not true?
(A) \exists x \in A \text{ such that } x + 3 = 8
(B) \exists x \in A \text{ such that } x + 2 < 9
(C) \forall x \in A, x + 6 \ge 9
(D) \exists x \in A \text{ such that } x + 6 < 10
Solution:
(c) \exists x \in A, x + 6 \ge 9.
```

Question 2.

Which of the following sentences are statements in logic? Justify. Write down the truth value of the statements:

(i) 4! = 24.

Allguidesite -- Arjun - Digvijay Solution: It is a statement which is true, hence its truth value is 'T'. (ii) π is an irrational number. Solution: It is a statement which is true, hence its truth value is 'T'. (iii) India is a country and Himalayas is a river. Solution: It is a statement which is false, hence its truth value is 'F'.[T \land F \equiv F] (iv) Please get me a glass of water. Solution: It is an imperative sentence, hence it is not a statement. (v) $\cos 2\theta - \sin 2\theta = \cos 2\theta$ for all $\theta \in \mathbb{R}$. Solution: It is a statement which is true, hence its truth value is 'T'. (vi) If x is a whole number the x + 6 = 0. Solution: It is a statement which is false, hence its truth value is 'F'. Question 3. Write the truth values of the following statements: (i) $5-\sqrt{1}$ is an irrational but $35-\sqrt{1}$ is a complex number. Solution: Let p : $5 - \sqrt{1}$ is an irrational. q: $35-\sqrt{}$ is a complex number. Then the symbolic form of the given statement is $p \land q$. The truth values of p and q are T and F respectively. \therefore the truth value of p \land q is F. ... [T \land F \equiv F] (ii) \forall n \in N, n₂ + n is even number while n₂ – n is an odd number. Solution: Let $p : \forall n \in \mathbb{N}$, $n_2 + n$ is an even number. $q: \forall n \in N, n_2 - n \text{ is an odd number.}$ Then the symbolic form of the given statement is $p \land q$. The truth values of p and q are T and F respectively. \therefore the truth value of p \land q is F. ... [T \land F \equiv F]. (iii) \exists n \in N such that n + 5 > 10. Solution: \exists n \in N, such that n + 5 > 10 is a true statement, hence its truth value is T. (All $n \ge 6$, where $n \in \mathbb{N}$, satisfy n + 5 > 10). Solution: Let p: The square of any even number is odd. q: The cube of any odd number is odd. Then the symbolic form of the given statement is p V q.

(iv) The square of any even number is odd or the cube of any odd number is odd.

The truth values of p and q are F and T respectively.

 \therefore the truth value of p V q is T. ... [F V T \equiv T].

(v) In \triangle ABC if all sides are equal then its all angles are equal. Solution:

Let p : ABC is a triangle and all its sides are equal.

q: Its all angles are equal.

Then the symbolic form of the given statement is $p \rightarrow q$

If the truth value of p is T, then the truth value of g is T.

 \therefore the truth value of p \rightarrow q is T. ... [T \rightarrow T \equiv T].

(vi) \forall n \in N, n + 6 > 8.

- Arjun

- Digvijay

 \forall n \in N, 11 + 6 > 8 is a false statement, hence its truth value is F.

 $\{n = 1 \in \mathbb{N}, n = 2 \in \mathbb{N} \text{ do not satisfy } n + 6 > 8\}.$

Question 4.

If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, determine the truth value of each of the following statement:

(i) $\exists x \in A$ such that x + 8 = 15.

Solution:

True

(ii) $\forall x \in A, x + 5 < 12$.

Solution:

False

(iii) $\exists x \in A$, such that $x + 7 \ge 11$.

Solution:

True

(iv) $\forall x \in A$, $3x \le 25$.

Solution:

False

Question 5.

Write the negations of the following:

(i) $\forall n \in A, n + 7 > 6$.

Solution:

The negation of the given statements are:

 \exists n \in A, such that n + 7 \leq 6.

OR \exists n \in A, such that n + 7 \Rightarrow 6.

(ii) $\exists x \in A$, such that $x + 9 \le 15$.

Solution:

 $\forall \ x \in A, \ x+9>15.$

(iii) Some triangles are equilateral triangle.

Solution:

All triangles are not equilateral triangles.

Question 6.

Construct the truth table for each of the following:

(i) $p \rightarrow (q \rightarrow p)$

Solution:

p	q	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$
Т	T	T	Т
T	F	T	T
F	T	F	T
F	F	. T	T

(ii) $(\sim p \ \lor \ \sim q) \leftrightarrow [\sim (p \ \land \ q)]$

p	q	~p	~q	$\sim p \lor \sim q$	p∧q	$\sim (p \land q)$	$(\sim p \lor \sim q) \leftrightarrow \\ [\sim (p \land q)]$
T	Т	F	F	F	T	F	T
T	F	F	T	T	F	T	T
F	T	T	F	T	F	T	T
F	F	T	T	T	F	T	T

- Arjun

- Digvijay

(iii) ~(~p ∧ ~q) V q

Solution:

p	q	~ p	~ 9	$\sim p \land \sim q$	$\sim (\sim p \land \sim q)$	$\sim (\sim p \land \sim q) \lor q$
Т	Т	F	F	F	Т	T
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	Т	Т	F	F

(iv) [(p \land q) \lor r] \land [\sim r \lor (p \land q)]

Solution:

p	9	r	$p \wedge q$	(p∧q)∨r	~ r	$\sim r \lor (p \land q)$	$[(p \land q) \lor r] \land \\ [\sim r \lor (p \land q)]$
Т	T	Т	T	T	F	Т	T
T	T	F	T	T	T	T	T
T	F	T	F	T	F	F	F
T	F	F	F	F	T	T	F
F	T	T	F	T	F	F	F
F	T	F	F	F	T	T	F
F	F	T	F	T	F	F	F
F	F	F	F	F	T	T	F

(v)
$$[(\sim p \ \lor \ q) \ \land \ (q \rightarrow r)] \rightarrow (p \rightarrow r)$$

Solution:

p	9	r	~p	~p\q	$q \rightarrow r$	$(\sim p \lor q) \land (q \to r)$	$p \rightarrow r$	$[(\sim p \lor q) \land (q \to r)]$ $\to (p \to r)$
T	T	Т	F	Т	Т	Т	T	Т
T	T	F	F	T	F	F	F	T
T	F	T	F	F	T	F	T	T
T	F	F	F	F	T	F	F	Т
F	T	T	T	T	T	T	T	T
F	T	F	T	T	F	F	T	T
F	F	T	T	T	T	T	T	T
F	F	F	T	T	T	T	T	T

Question 7.

Determine whether the following statement patterns are tautologies contradictions or contingencies :

(i) $[(p \rightarrow q) \land \sim q)] \rightarrow \sim p$

Solution:

					A STATE OF THE PARTY OF THE PAR	
р	q	~ p	~ q	$p \rightarrow q$	$(p \rightarrow q) \land \sim q$	$[(p \to q) \land \sim q] \to (\sim p)$
T	Т	F	F	Т	F	T
Т	F	F	Т	F	F	T
F	T	T	F	T	F	T
F	F	T	T	T	T	T
	1			1		

All the entries in the last column of the above truth table are T.

 $\therefore \ [(p \to q) \ \land \ \sim q)] \to \sim p \ is \ a \ tautology.$

(ii) [(p \vee q) \wedge ~p] \wedge ~q

p	q	~ p	~ 9	p∨q	$(p \lor q) \land \sim p$	$[(p \lor q) \land \sim p] \land (\sim q)$
T	Т	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	Т	T	F
F	F	T	T	F	F	F

All the entries in the last column of the above truth table are F.

 \therefore [(p V q) \land ~p] \land ~q is a contradiction.

(iii)
$$(p \rightarrow q) \land (p \land \sim q)$$

Solution:

p	9	~ q	$p \rightarrow q$	p∧~q	$(p \to q) \wedge (p \wedge \sim q)$
Т	Т	F	Т	F	F
T	F	T	F	Т	F
F	T	F	T	F	F
F	F	T	T	F	F

All the entries in the last column of the above truth table are F.

 \therefore (p \rightarrow q) \land (p \land \sim q) is a contradiction.

(iv)
$$[p \rightarrow (q \rightarrow r)] \leftrightarrow [(p \land q) \rightarrow r]$$

Solution:

p	9	r	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	p∧q	$(p \land q) \rightarrow r$	$[p \to (q \to r)] \leftrightarrow [(p \land q) \to r]$
Т	Т	Т	Т	T	Т	T	Т
T	T	F	F	F	T	F	T
T	F	T	T	T	F	T	T
T	F	F	T	T	F	T	T
F	T	T	T	T	F	T	T
F	T	F	F	T	F	T	T
F	F	T	T	T	F	T	T
F	F	F	T	T	F	T	T

All the entries in the last column of the above truth table are T.

 $\therefore [p \to (q \to r)] \leftrightarrow [(p \land q) \to r] \text{ is a tautology}.$

(v) [(p
$$\land$$
 (p \rightarrow q)] \rightarrow q

Solution:

p	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$[p \land (p \to q)] \to q$
Т	Т	Т	Т	T
T	F	F	F	T
F	Т	T	F	Т
F	F	T	F	T

All the entries in the last column of the above truth table are T.

 $\therefore \ [(p \ \land \ (p \rightarrow q)] \rightarrow q \ is \ a \ tautology.$

(vi) (p
$$\Lambda$$
 q) V (~p Λ q) V (p V ~q) V (~p Λ ~q)

- Digvijay

p	9	~ p	~q	<i>p</i> ∧ <i>q</i> (I)	~ p ∧ q (II)	$p \lor \sim q$ (III)	$\sim p \land \sim q$ (IV)	(I) ∨ (II) ∨ (III) ∨ (IV)
Т	Т	F	F	Т	F	Т	F	Т
Т	F	F	T	F	F	T	F	T
F	Т	T	F	, F	Т	F	F	Т
F	F	T	T	F	F	T	Т	T

All the entries in the last column of the above truth table are T.

∴ (p \land q) \lor (~p \land q) \lor (p \lor ~q) \lor (~p \land ~q) is a tautology.

(vii) [(p \vee ~q) \vee (~p \wedge q)] \wedge r

Solution:

p	9	r	~ p	~ q	$p \lor \sim q$	$\sim p \wedge q$	$(p \lor \sim q) \lor (\sim p \land q)$ (I)	(I) ∧ r
Т	Т	Т	F	F	Т	F	Т	Т
T	T	F	F	F	T	F	T	F
Т	F	T	F	T	T	F	T	T
T	F	F	F	T	T	F	T	F
F	T	T	T	F	F	T	T	T
F	T	F	T	F	F	T	T	F
F	F	T	T	T	T	F	T	T
F	F	F	T	T	T	F	T	F

The entries in the last column are neither T nor all F.

∴ [(p \vee ~q) \vee (~p \wedge q)] \wedge r is a contingency.

(viii) $(p \rightarrow q) \ V \ (q \rightarrow p)$

Solution:

p	9	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \lor (q \rightarrow p)$
Т	Т	Т	Т	Т
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

All the entries in the last column of the above truth table are T.

 \therefore (p \rightarrow q) V (q \rightarrow p) is a tautology.

Question 8.

Determine the truth values ofp and q in the following cases :

(i) (p \vee q) is T and (p \wedge q) is T

Solution:

	-	-	
p	9	p∨q	$p \wedge q$
T	T	T	T
T	F	T	F
F	T	T	F
F	F	F	F

Since p V q and p Λ q both are T, from the table the truth values of both p and q are T.

(ii) (p V q) is T and (p V q) \rightarrow q is F

- Arjun
- Digvijay

p	9	$p \vee q$	$(p \lor q) \to q$
Т	Т	Т	Т
T	F	Т	F
F	T	T	T
F	F	F	T

Since the truth values of (p $V \neq q$) is T and (p $V \neq q$) $\rightarrow q$ is F, from the table, the truth values of p and q are T and F respectively.

(iii) (p \land q) is F and (p \land q) \rightarrow q is T Solution:

p	q	$p \wedge q$	$(p \land q) \rightarrow q$
T	T	Т	Т
T	F	F	T
F	T	F	T
F	F	F	T

Since the truth values of (p \land q) is F and (p \land q) \rightarrow q is T, from the table, the truth values of p and q are either T and F respectively or F and T respectively or both F.

Question 9.

Using truth tables prove the following logical equivalences :

(i) $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$

Solution:

							N. C.
1	2	3	4	5	6	7	8
p	q	$p \leftrightarrow q$	~ p	~ 9	p∧q	~p^~q	$(p \wedge q) \vee (\sim p \wedge \sim q)$
Т	Т	Т	F	F	Т	F	T
T	F	F	F	T	F	F	F
F	T	F	T	F	F	F	F
F	F	T	Т	T	F	T	Т

The entries in the columns 3 and 8 are identical.

$$\therefore p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q).$$

(ii)
$$(p \land q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$$

Solution:

1	2	3	4	5	6	7
p	9	r	$p \wedge q$	$(p \land q) \rightarrow r$	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$
T	T	T	Т	Т	T	Т
T	T	F	T	F	F	F
T	F	T	F	T	T	T
T	F	F	F	T	T	T
F	T	Т	F	T	T	T
F	T	F	F	Т	F	T
F	F	T	F	T	T	T
F	F	F	F	Т	T	T

The entries in the columns 5 and 7 are identical.

$$\therefore \ (p \ \land \ q) \rightarrow r \equiv p \rightarrow (q \rightarrow r).$$

```
Allguidesite -
- Arjun
- Digvijay
Question 10.
Using rules in logic, prove the following:
(i) p \leftrightarrow q \equiv \sim (p \land \sim q) \land \sim (q \land \sim p)
Solution:
By the rules of negation of biconditional,
\sim(p \leftrightarrow q) \equiv (p \land \simq) \lor (q \land \simp)
\therefore \sim [(p \land \sim q) \lor (q \land \sim p)] \equiv p \leftrightarrow q
\therefore \sim (p \land \sim q) \land \sim (q \land \sim p) \equiv p \leftrightarrow q \dots (Negation of disjunction)
\equiv p \leftrightarrow q \equiv \sim (p \land \sim q) \land \sim (q \land \sim p).
(ii) \sim p \land q \equiv (p \lor q) \land \sim p
Solution:
(p \lor q) \land \sim p
\equiv (p \land \simp) \lor (q \land \simp) ... (Distributive Law)
\equiv F V (q \land \simp) ... (Complement Law)
\equiv q \land ~ p ... (Identity Law)
\equiv \sim p \land q \dots (Commutative Law)
\therefore \sim p \land q \equiv (p \lor q) \land \sim p.
(iii) \sim(p \vee q) \vee (\simp \wedge q) \equiv \simp
Solution:
\sim (p V q) V (\simp \wedge q)
\equiv (~p \land ~q) \lor (~p \land q) ... (Negation of disjunction)
\equiv \sim p \land (\sim q \lor q) \dots (Distributive Law)
\equiv \sim p \wedge T \dots (Complement Law)
≡ ~ p ... (Identity Law)
\therefore \sim (p \lor q) \lor (\sim p \land q) \equiv \sim p.
Question 11.
Using the rules in logic, write the negations of the following:
(i) (p \vee q) \wedge (q \vee ~r)
Solution:
The negation of (p \vee q) \wedge (q \vee ~ r) is
\sim [(p V q) \wedge (q V \simr)]
\equiv \sim (p \ V \ q) \ V \sim (q \ V \sim r) \dots (Negation of conjunction)
\equiv (\simp \land \simq) \lor [\simq \land \sim(\simr)] ... (Negation of disjunction)
\equiv \{ \sim p \land \sim q \} \lor (\sim q \land r) \dots (Negation of negation) \}
\equiv (\simq \wedge \simp) \vee (\simq \wedge r) ... (Commutative law)
\equiv (~ q) \land (~ p \lor r) ... (Distributive Law)
(ii) p \land (q \lor r)
Solution:
The negation of p \land (q \lor r) is
\sim [p \land (q \lor r)]
\equiv ~ p V ~(q V r) ... (Negation of conjunction)
\equiv \sim p \ V \ (\sim q \ \land \sim r) \dots (Negation of disjunction)
(iii) (p \rightarrow q) \land r
Solution:
The negation of (p \rightarrow q) \land r is
\sim [(p \rightarrow q) \land r]
\equiv \sim (p \rightarrow q) \ V (\sim r) \dots (Negation of conjunction)
\equiv (p \land \simq) \lor (\sim r) ... (Negation of implication)
(iv) (\sim p \land q) \lor (p \land \sim q)
Solution:
The negation of (\sim p \land q) \lor (p \land \sim q) is
\sim [(\sim p \land q) \lor (p \land \sim q)]
\equiv \sim (\sim p \land q) \land \sim (p \land \sim q) \dots (Negation of disjunction)
\equiv [~(~p) V ~q] \land [~p V ~(q)] ... (Negation of conjunction)
\equiv (p V ~ q) \land (~ p V q) ... (Negation of negation)
```

Question 12.

Express the following circuits in the symbolic form. Prepare the switching table :

(i)

Fig. 1.30

Solution:

Let p: the switch S1 is closed

q: the switch S2 is closed

 $\sim p$: the switch S1' is closed or the switch S1 is open

 $\sim q:$ the switch $S_2{}^{\prime}$ is closed or the switch S_2 is open.

Then the symbolic form of the given circuit is :

 $(p \land q) \lor (\sim p) \lor (p \land \sim q).$

Switching Table

p	q	~ p	~ q	$p \wedge q$	$p \wedge \sim q$	$(p \land q) \lor (\sim p) \lor (p \land \sim q)$
1	1	0	0	1	0	1
1	0	0	1	0	1	1
0	1	1	0	0	0	1
0	0	1	1	0	0	1

Fig. 1.31

Solution:

Let p: the switch S1 is closed q: the switch S2 is closed r: the switch S3 is closed.

- Arjun
- Digvijay

Then the symbolic form of the given statement is : (p V q) Λ (p V r).

Switching Table

p	q	r	p∨q	$p \lor r$.	$(p \vee q) \wedge (p \vee r)$
1	1	1	1	1	1
1	1	0	1	1	1
1	0	1	1	1	1
1	0	0	_ 1	1	1
0	1	1	1	1	1
0	1	0	1	0 .	0
0	0	1	0	1	0
0	0	0	0	0	0

Question 13.

Simplify the following so that the new circuit has minimum number of switches. Also, draw the simplified circuit.

Fig. 1.32

Solution:

Let p: the switch S1 is closed

- q: the switch S2 is closed
- \sim p: the switch S1' is closed or the switch S1 is open
- \sim q: the switch S2' is closed or the switch S2 is open.

Then the given circuit in symbolic form is:

 $(p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

Using the laws of logic, we have,

- $(p \land \sim q) \lor (\sim p \land q) \lor (\sim p \land \sim q)$
- = $(p \land \sim q) \lor [(\sim p \land q) \lor (\sim p \land \sim q) ...(By Complement Law)$
- = $(p \land \sim q) \lor [\sim p \land (q \lor \sim q)]$ (By Distributive Law)
- = $(p \land \sim q) \lor (\sim p \land T) \dots (By Complement Law)$
- = $(p \land \sim q) \lor \sim p \dots (By Identity Law)$
- = $(p \lor \sim p) \land (\sim q \lor \sim p) \dots (By Distributive Law)$
- = ~q V ~p ...(By Identity Law)
- = ~p V ~p ...(By Commutative Law)

Hence, the simplified circuit for the given circuit is:

- Arjun
- Digvijay

(ii)

Fig. 1.33

Solution:

- (ii) Let p: the switch S1 is closed
- q: the switch S2 is closed
- r: the switch S3 is closed
- s: the switch S4 is closed
- t: the switch S5 is closed
- \sim p : the switch S1' is closed or the switch S1 is open
- $\sim q$: the switch S2' is closed or the switch S2 is open
- ~ r: the switch S3' is closed or the switch S3 is open
- \sim s : the switch S4' is closed or the switch S4 is open
- ~ t: the switch S5' is closed or the switch S5 is open.

Then the given circuit in symbolic form is

 $[(p \land q) \lor \neg r \lor \neg s \lor \neg t] \land [(p \land q) \lor (r \land s \land t)]$

Using the laws of logic, we have,

[(p \land q) \lor ~r \lor ~s \lor ~t] \land [(p \land q) \lor (r \land s \land t)]

- = $[(p \land q) \lor \sim (r \land s \land t)] \land [(p \land q) \lor (r \land s \land t)] \dots (By De Morgan's Law)$
- = $(p \land q) \lor [\sim (r \land s \land t) \land (r \land s \land t)] ... (By Distributive Law)$
- = $(p \land q) \lor F ... (By Complement Law)$
- = $p \land q \dots$ (By Identity Law)

Hence, the alternative simplified circuit is :

Question 14.

Check whether the following switching circuits are logically equivalent – Justify.

Solution:

Let p: the switch S1 is closed

- q: the switch S2 is closed
- r: the switch S3 is closed
- (A) The symbolic form of the given switching circuits are
- p \wedge (q \vee r) and (p \wedge q) \vee (p \wedge r) respectively.
- By Distributive Law, p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)

Hence, the given switching circuits are logically equivalent.

Solution:

The symbolic form of the given switching circuits are

- Arjun
- Digvijay

(p V q) Λ (p V r) and p V (q Λ r)

By Distributive Law,

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Hence, the given switching circuits are logically equivalent.

Question 15.

Give alternative arrangement of the switching following circuit, has minimum switches.

Solution:

Let p: the switch S1 is closed

q: the switch S2 is closed

r: the switch S3 is closed

~p: the switch S1' is closed, or the switch S1 is open

 \sim q: the switch S2' is closed or the switch S2 is open.

Then the symbolic form Of the given circuit is:

 $(p \land q \land \sim p) \lor (\sim p \land q \land r) \lor (p \land q \land r) \lor (p \land \sim q \land r)$

Using the laws of logic, we have,

 $(p \ \land \ q \ \land \ \ \sim p) \ \lor \ (\sim p \ \land \ q \ \land \ r) \ \lor \ (p \ \land \ q \ \land \ r) \ \lor \ (p \ \land \ \sim q \ \land \ r)$

 \equiv (p \land ~p \land q) \lor (~p \land q \land r) \lor (p \land q \land r) y (p \land ~q \land r) ...(By Commutative Law)

 \equiv (F \land q) \lor (\sim p \land q \land r) \lor (p \land q \land r) \lor (p \land \sim q \land r) ... (By Complement Law)

 \equiv F V (\sim p \wedge q \wedge r) V (p \wedge q \wedge r) V (p \wedge \sim q \wedge r) ... (By Identity Law)

 \equiv (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r) \vee (p \wedge \sim q \wedge r) ... (By Identity Law)

 \equiv [(~p V p) \land (q \land r)] V (p \land ~q \land r) ... (By Distributive Law)

 $\equiv [\mathsf{T} \ \land \ (\mathsf{q} \ \land \ \mathsf{r})] \ \lor \ (\mathsf{p} \ \land \ \mathsf{\sim} \mathsf{q} \ \land \ \mathsf{r}) = (\mathsf{q} \ \land \ \mathsf{r}) \ \lor \ (\mathsf{p} \ \land \ \mathsf{\sim} \mathsf{q} \ \land \ \mathsf{r}) \ ...(\mathsf{By} \ \mathsf{Complement} \ \mathsf{Law})$

 \equiv (q \land r) \lor (p \land ~q \land r) ... (By Identity Law)

 \equiv [q V (p \land ~q)] \land r ... (By Distributive Law)

 $\equiv [q \lor p) \land ((q \lor \sim q)] \land r \dots (By Distributive Law)$

 \equiv [(q V p) \wedge T] \wedge r ...(By Complement Law)

 \equiv (q V p) \land r ... (By Identity Law)

 \equiv (p V q) \land r ...(By Commutative Law)

: the alternative arrangement of the new circuit with minimum switches is :

Question 16.

Simplify the following so that the new circuit circuit.

- Arjun
- Digvijay

Solution:

Let p: the switch S1 is closed

q: the switch S2 is closed

- \sim p: the switch S1' is closed or the switch S1 is open
- ~ q: the switch S2' is closed or the switch S2 is open.

Then the symbolic form of the given switching circuit is:

 $(\sim p \ V \ q) \ V \ (p \ V \ \sim q) \ V \ (p \ V \ q)$

Using the laws of logic, we have,

 $(\sim p \ V \ q) \ V \ (p \ V \ \sim q) \ V \ (p \ V \ q)$

- \equiv (~p V q V p V ~q) V (p V q)
- \equiv [(~p V p) V (q V ~q)] V (p V q) ... (By Commutative Law)
- \equiv (T V T) V (p V q) ... (By Complement Law)
- \equiv T V (p V q) ... (By Identity Law)
- ≡ T ... (By Identity Law)
- : the current always flows whether the switches are open or closed. So, it is not necessary to use any switch in the circuit.
- : the simplified form of given circuit is :

Question 17.

Represent the following switching circuit in symbolic form and construct its switching table. Write your conclusion from the switching table.

Solution:

Let p: the switch S1 is closed

- q: the switch S2 is closed
- r: the switch S₃ is closed
- $\sim q$: the switch S2' is closed or the switch S2 is open
- \sim r: the switch S3' is closed or the switch S3 is open.

Then, the symbolic form of the given switching circuit is : [p $V (\sim q) V (\sim r)$] Λ [p $V (q \Lambda r)$]

Allguidesite -- Arjun - Digvijay

Switching Table

p	q	•	~ q	~r	$p\lor (\sim q)\lor (\sim r)$ (I)	q∧r	<i>p</i> ∨(<i>q</i> ∧ <i>r</i>) (II)	Final column
1	1	1	0	0	1	1	1	1
1	1	0	0	1	1	0	1	1
1	0	1	1	0	1	0	1	1
1	0	0	1	1	1	0	1	1
0	1	1	0	0	0	1	1	0
0	1	0	0	1	1	0	0	0
0	0	1	1	0	1	0	0	0
0	0	0	1	1	1	0	0	0

From the table, the' final column' and the column of p are identical. Hence, the given circuit is equivalent to the simple circuit with only one switch S1.

the simplified form of the given circuit is :

