数据结构与算法笔记

Χ

2017年10月31日

本文是作者关于数据结构与算法的读书笔记,侧重于记录和总结算法相关的数学方法,主要参考了Mark Allen Weiss的数据结构与算法分析(C语言描述)。本文的章节顺序,数学符号等都尽量与该书保持一致,同时也参考了网络资源或者其他书籍,均在对应章节或者习题序号下列出。由于水平所限,文中谬误在所难免,欢迎指正。

目录

	前言	2
	初等数论基础 1.1 基本概念	
2	算法分析	5
	2.1 算法复杂度的数学定义	5
	2.2 算法复杂度的性质	5
	2.3 复杂度方程的解法	5

1 初等数论基础 4

1 初等数论基础

[夜深人静写算法: 初等数论, http://www.cppblog.com/menjitianya/archive/2015/12/02/212395.html]

1.1 基本概念

1.1.1 整除性

若a,b为整数,a整除b是指b是a的倍数,a是b的约数,记做a|b。关于整除的性质有

- 1. 任意性: 若a|b,则对于任意非零整数m,都有am|bm。

- 4. 组合性: 若c|a且c|b,则对于任意整数m,n,都有c|ma+nb。

Exercise 1.1. 假设x,y,z均为整数,若11|(7x+2y-5z),求证11|(3x-7y+12z)。

Solution 1.1.

Proof. 令3x - 7y + 12z = m(7x + 2y - 5z) + 11(ax + by + cz),其中m, a, b, c均为整数。 如果等式要成立,则两边x, y, z的系数均要相等,得到

$$\begin{cases}
7m + 11a = 3 \\
2m + 11b = -7 \\
-5m + 11c = 12
\end{cases} \tag{1}$$

可知其中的一个解为m = 2, a = -1, b = -1, c = 2。

故可以得到3x - 7y + 12z = 2(7x + 2y - 5z) + 11(-1x - 1y + 2z)。即(3x - 7y + 12z)可以分解为11与(7x + 2y - 5z)的加权之和。

又因为11|(7x+2y-5z),以及11|11,故根据整除性的组合性质,11|(3x-7y+12z)。

2 算法分析 5

2 算法分析

[主定理的证明, http://blog.csdn.net/u014627430/article/details/53510696] [Mark Allen Weiss, 数据结构与算法分析, 第十章]

2.1 算法复杂度的数学定义

Definition 2.1. 关于算法的复杂度本文使用如下定义

- 1. 如果对于所有足够大的n, T(N)的上界由f(N)的常数倍决定,也就是说,如果存在正常数c和 n_0 ,使得当 $N \ge n_0$ 时,都有 $T(N) \le cf(N)$,则记为 $T(N) = \mathcal{O}(f(N))$ 。
- 2. 对于所有足够大的n, T(N)的下界由g(N)的常数倍决定, 也就是说, 如果存在正常数c和 n_0 , 使得 当 $N \ge n_0$ 时, 都有 $T(N) \ge cg(N)$, 则记为 $T(N) = \Omega(g(N))$ 。
- 3. 如果对于所有足够大的n, T(N)的上界和下界由h(N)的常数倍决定,也就是说,如果存在正常数 c_1, c_2 和 n_0 , 使得当 $N \ge n_0$ 时,都有 $c_1g(N) \le T(N) \le c_2g(N)$,则记为 $T(N) = \Theta(g(N))$ 。
- 4. 如果 $T(N) = \mathcal{O}(p(N))$ 且 $T(N) \neq \Theta(p(N))$, 则T(N) = o(p(N))。

2.2 算法复杂度的性质

Theorem 2.1. 如果 $T_1(N) = \mathcal{O}(f(N))$ 且 $T_2(N) = \mathcal{O}(g(N))$,那么

- $T_1(N) + T_2(N) = \max (\mathcal{O}(f(N)) + \mathcal{O}(g(N)))$.
- $T_1(N)T_2(N) = \mathcal{O}(f(N)g(N))$.

Proof.

Theorem 2.2.

对于任意常数k, $\log^k N = \mathcal{O}(N)$ 。该条定理说明对数增长非常缓慢。

2.3 复杂度方程的解法

Lemma 2.1. 假设定义在非负整数上的函数f(n), g(n)满足关系 $f(n) = af(\frac{n}{b}) + g(n)$, 其中实数 $a \ge 1$, 整数b > 1, n > 0, k > 0且 $n = b^k$, 则有

$$f(n) = a^{k} f(1) + \sum_{j=1}^{k-1} a^{j} g(\frac{n}{b^{j}})$$

Proof. 由f(n), g(n)的关系联立得到k个等式

$$f(n) = af(\frac{n}{b}) + g(n)$$

$$f(\frac{n}{b}) = af(\frac{n}{b^2}) + g(\frac{n}{b})$$
...
$$f(b) = af(1) + g(b)$$

2 算法分析 6

对这k个等式依次两边分别乘以 $1, a, a^1, ...a^{k-1}$,再求和,消去相等的项,得到

$$f(n) = a^k f(1) + \sum_{j=0}^{k-1} a^j g(\frac{n}{b^j})$$

Theorem 2.3 (Master Theorem).

T(N)是定义在非负整数的函数,满足

$$T(N) = aT(\frac{N}{b}) + cN^k$$

其中a,k为实数,b为整数,且 $a \ge 1,b > 1$,另外满足 $N = b^m,m$ 为整数,则

$$T(N) = \begin{cases} \mathcal{O}(N^{\log_b a}) & a > b^k \\ \mathcal{O}(N^k \log N) & a = b^k \\ \mathcal{O}(N^k) & a < b^k \end{cases}$$

Proof. 根据引理(2.1)可知

$$T(N) = a^{m}T(1) + c\sum_{j=0}^{m-1} a^{j} \left(\frac{N}{b^{j}}\right)^{k}$$

$$= a^{\log_{b} N}T(1) + cN^{k}\sum_{j=0}^{\log_{b} N-1} \left(\frac{a^{j}}{b^{jk}}\right)$$
(2)

当 $a = b^k$, 公式(2)等价于

$$b^{k \log_b N} T(1) + cN^k \sum_{j=0}^{\log_b N-1} \left(\frac{b^{jk}}{b^{jk}}\right)$$

$$= \left(b^{\log_b N}\right)^k T(1) + cN^k \log_b N$$

$$= N^k T(1) + cN^k \log_b N$$

根据定理(2.1)算法的复杂度由具有较大增长次数的部分决定,那么

$$T(N) = \mathcal{O}(N^k \log_b N) = \mathcal{O}(N^k \log N)$$