$$L(\lbrace N_{\varpi}^{\rm SS,obs}\rbrace | \lbrace \xi(\eta, p_{\rm T})\rbrace) = \prod_{\varpi} \mathcal{P}\left(N_{\varpi}^{\rm SS,obs} | w_{\rm flip}(\xi(\eta_1, p_{\rm T,1}), \xi(\eta_2, p_{\rm T,2})) \times N_{\varpi}^{\rm OS+SS,obs}\right)$$

$$\tag{1}$$

$$\begin{pmatrix} n_{\rm T} \\ n_{\rm L} \end{pmatrix} = \begin{pmatrix} \varepsilon_r & \varepsilon_f \\ 1 - \varepsilon_r & 1 - \varepsilon_f \end{pmatrix} \begin{pmatrix} n_{\rm R} \\ n_{\rm F} \end{pmatrix}$$

$$\varepsilon_f = \frac{n_{\rm signal}^{\rm data} - n_{\rm signal}^{\rm MC}}{n_{\rm baseline}^{\rm data} - n_{\rm baseline}^{\rm MC}}$$

$$\varepsilon_r = \frac{n_{\rm signal}^{\rm data}}{n_{\rm baseline}^{\rm data} - n_{\rm baseline}^{\rm BKG}}$$

$$\varepsilon_r = \frac{n_{\rm baseline}^{\rm data} - n_{\rm baseline}^{\rm BKG}}{n_{\rm baseline}^{\rm data} - n_{\rm baseline}^{\rm BKG}}$$
(2)

$10 < p_{\rm T} < 12$	$12 < p_{\rm T} < 14$	$14 < p_{\rm T} < 17$	$17 < p_{\rm T} < 20$
$0.10 \pm 0.01 \pm 0.00$	$0.10 \pm 0.01 \pm 0.01$	$0.12 \pm 0.01 \pm 0.01$	$0.08 \pm 0.02 \pm 0.00$
$20 < p_{\rm T} < 25$	$25 < p_{\rm T} < 30$	$30 < p_{\rm T} < 40$	$40 > p_{\rm T}$
$0.07 \pm 0.02 \pm 0.01$	$0.11 \pm 0.03 \pm 0.01$	$0.20 \pm 0.07 \pm 0.03$	$0.25 \pm 0.10 \pm 0.05$

Table 1: Electron fake rate measured in data and the associated statistical uncertainty. The systematic uncertainty originating from the subtraction of "backgrounds" with only prompt leptons is also displayed.

$10 < p_{\rm T} < 12 \; {\rm GeV}$		$12 < p_{\rm T} < 14$	
$ \eta < 2.3$	$ \eta > 2.3$	$ \eta < 2.3$	$ \eta > 2.3$
$0.14 \pm 0.01 \pm 0.00$	$0.22 \pm 0.05 \pm 0.00$	$0.11 \pm 0.01 \pm 0.00$	$0.24 \pm 0.06 \pm 0.00$
$14 < p_{\rm T} < 17$		$17 < p_{\rm T} < 20 { m ~GeV}$	
$ \eta < 2.3$	$ \eta > 2.3$	$ \eta < 2.3$	$ \eta > 2.3$
$0.12 \pm 0.01 \pm 0.00$	$0.09 \pm 0.05 \pm 0.00$	$0.09 \pm 0.01 \pm 0.00$	$0.21 \pm 0.07 \pm 0.00$
$20 < p_{\rm T} < 30$	$30 < p_{\rm T} < 40$	$40 < p_{\rm T} < 60$	$p_{\rm T} > 60$
$0.07 \pm 0.02 \pm 0.00$	$0.12 \pm 0.05 \pm 0.01$	$0.16 \pm 0.09 \pm 0.04$	$0.49 \pm 0.10 \pm 0.07$

Table 2: Muon fake rate measured in data and the associated statistical uncertainty. The systematic uncertainty originating from the subtraction of "backgrounds" with only prompt leptons is also displayed.