Handling Categorical Data

July 7, 2019

Steps for Handling Categorical Data

- 1. Import Libraries
- 2. Load Data
- 3. Seprate Input and Output attributes
- 4. Convert the categorical data into numerical data

```
In [1]: # Step 1: Import Libraries

import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder,OneHotEncoder

# Step 2: Load Data

datasets = pd.read_csv('Data_for_Categorical_Values.csv')
print("\nData :\n",datasets)
print("\nData statistics\n",datasets.describe())
```

Data:

	-				
	Country	Age	Salary	Purchased	
0	France	44	72000	No	
1	Spain	27	48000	Yes	
2	Germany	30	54000	No	
3	Spain	38	61000	No	
4	Germany	40	68000	Yes	
5	France	35	58000	Yes	
6	Spain	39	52000	No	
7	France	48	79000	Yes	
8	Germany	50	83000	No	
9	France	37	67000	Yes	
10	Spain	45	55000	No	

Data statistics

Age Salary count 11.000000 11.000000 mean 39.363636 63363.636364

```
7.131237 11386.594989
std
      27.000000 48000.000000
min
      36.000000 54500.000000
25%
50%
      39.000000 61000.000000
      44.500000 70000.000000
75%
      50.000000 83000.000000
max
In [2]: # Step 3: Seprate Input and Output attributes
        # All rows, all columns except last
       X = datasets.iloc[:, :-1].values
        # Only last column
       Y = datasets.iloc[:, -1].values
       print("\n\nInput : \n", X)
       print("\n\nOutput: \n", Y)
Input:
 [['France' 44 72000]
 ['Spain' 27 48000]
 ['Germany' 30 54000]
 ['Spain' 38 61000]
 ['Germany' 40 68000]
 ['France' 35 58000]
 ['Spain' 39 52000]
 ['France' 48 79000]
 ['Germany' 50 83000]
 ['France' 37 67000]
 ['Spain' 45 55000]]
Output:
 ['No' 'Yes' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes' 'No']
In [3]: # Step 4a: Apply LabelEncoder on the data
                   to convert country names into numeric values
        le = LabelEncoder()
       X[:,0] = le.fit_transform(X[:,0])
       print("\n\nInput : \n", X)
```

Input:

```
[[0 44 72000]
 [2 27 48000]
 [1 30 54000]
 [2 38 61000]
 [1 40 68000]
 [0 35 58000]
 [2 39 52000]
 [0 48 79000]
 [1 50 83000]
 [0 37 67000]
 [2 45 55000]]
In [4]: # Step 4b: Apply OneHotEncoder on the data to split
                   country values into multiple columns
        ohe = OneHotEncoder(categorical_features=[0])
        X = ohe.fit_transform(X)
        print("\n\nInput : \n", X.toarray())
Input:
 [[1.0e+00 0.0e+00 0.0e+00 4.4e+01 7.2e+04]
 [0.0e+00 0.0e+00 1.0e+00 2.7e+01 4.8e+04]
 [0.0e+00 1.0e+00 0.0e+00 3.0e+01 5.4e+04]
 [0.0e+00 0.0e+00 1.0e+00 3.8e+01 6.1e+04]
 [0.0e+00 1.0e+00 0.0e+00 4.0e+01 6.8e+04]
 [1.0e+00 0.0e+00 0.0e+00 3.5e+01 5.8e+04]
 [0.0e+00 0.0e+00 1.0e+00 3.9e+01 5.2e+04]
 [1.0e+00 0.0e+00 0.0e+00 4.8e+01 7.9e+04]
 [0.0e+00 1.0e+00 0.0e+00 5.0e+01 8.3e+04]
 [1.0e+00 0.0e+00 0.0e+00 3.7e+01 6.7e+04]
 [0.0e+00 0.0e+00 1.0e+00 4.5e+01 5.5e+04]]
```

/home/siddharth/PyVenv/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py:415: Fut: If you want the future behaviour and silence this warning, you can specify "categories='auto'" In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integer; warnings.warn(msg, FutureWarning)

/home/siddharth/PyVenv/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py:451: Depressing the ColumnTransformer instead.", DepressionWarning)

```
print("\n\nDummy :\n",dummy)
datasets = datasets.drop(['Country','Purchased'],axis=1)
datasets = pd.concat([dummy,datasets],axis=1)
print("\n\nFinal Data :\n",datasets)
```

Dummy :

	France	Germany	Spain
0	1	0	0
1	0	0	1
2	0	1	0
3	0	0	1
4	0	1	0
5	1	0	0
6	0	0	1
7	1	0	0
8	0	1	0
9	1	0	0
10	0	0	1

Final Data :

	France	Germany	Spain	Age	Salary
0	1	0	0	44	72000
1	0	0	1	27	48000
2	0	1	0	30	54000
3	0	0	1	38	61000
4	0	1	0	40	68000
5	1	0	0	35	58000
6	0	0	1	39	52000
7	1	0	0	48	79000
8	0	1	0	50	83000
9	1	0	0	37	67000
10	0	0	1	45	55000