LECTURE-2

Optimination Problem (OP) (or Mathematical Programming Problem)

OP: Miniming f(x)Subject to $x \in F$. $f \Rightarrow \text{Subjective function (or cost function)}$ $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n \Rightarrow \text{decision variables}$ $F \subseteq \mathbb{R}^n \Rightarrow \text{constraint set or feasible set}$ or feasible region or feasible space

Minimize f(x)subject to $g_i(x) \ge 0$, i=1,2,...,p $h_j(x) = 0$, j=1,2,...,pHere, $F = \{x \in \mathbb{R}^n \mid g(x) \ge 0, h(x) = 0\}$ $x \in F \Rightarrow feasible solution or feasible point$ Defin: A feasible point $x \ne F$ is an optimal, or a global optimal solution if $f(x) \ge f(x \ne 0)$ $f(x) \ge f(x \ne 0)$ Pefr: A point $x^{\circ} \in F$ is called a local or relative minimum of f over F if $\exists \delta > 0$ such that $f(x) \geq f(x^{\circ})$ if $f \in F \cap N_{\delta}(x^{\circ})$. Where $N_{\delta}(x^{\circ})$ is the neighbour hood of x° and has a radius δ .

OP-1: Minimize $g = -x_1 - 2x_2$ Subject to $x_1 + x_2 \le 4$ $-2x_1 + x_2 \le 3$ $x_1 \ge 0$, $x_2 \ge 0$ Linear Programming Poddlem (LPP)

OP-2
Minimize
$$g = (x_1 - 1)^2 + (x_2 - \frac{1}{2})^2$$

Subject to $x_2^2 - x_1 - 1 \le 0$
 $x_1 + x_2 \le 2$
 $x_1 \ge 0, x_2 \ge 0$.

OP-3
Maximize
$$3 = (x_1-1)^2 + (x_2-\frac{1}{2})^2$$

Subject to $x_1 + x_2 \le 2$
 $x_1 \ge 0, x_2 \ge 0$.

