

UNIVERSITY OF ALBERTA

A Parameterized Family of Equilibrium Profiles for Three-Player Kuhn Poker

Duane Szafron, Richard Gibson, and Nathan Sturtevant

Poster available online at http://cs.ualberta.ca/~rggibson/

1. SUMMARY

- 2-player Kuhn Poker solutions led to advances in: [Kuhn 1953]
- * strategy representations
- [Koller and Pfeffer, 1997]
- → opponent modelling [Hoehn et al., AAAI 2005]
- → equilibrium algorithms

[Ganzfried and Sandholm, AAMAS 2010]

We present the first set of analytical solutions to 3-player Kuhn Poker

2. MOTIVATION

Chess

- → Deterministic
- → Binary outcomes
- → Perfect Information
- → "Easy"

Poker

Checkers

→ Stochastic elements

→ Varying outcomes

→ Imperfect information

→ Poker research is applicable to other areas:

Adaptive Airport Security **Treatment** [Pita et al., Al Mag. 2009] **Strategies** [Chen and Bowling, NIPS 2012]

Sequential **Auctions**

RESEARCH SUPPORTED BY:

3. 3P KUHN POKER

[Abou Risk and Szafron, AAMAS 2010]

Each player:

→ antes one chip

→ dealt 1 private card

3. Call.

One betting round:

→ no raises allowed

→ bets worth 1 chip

Lose. -1

P2: T

-2,1,1

0, 0, 0

P3: T = Tails

- → Players can bluff, slow play → strategic properties of Texas Hold'em
- → Small enough to analyze by hand

University of Alberta Computer Poker Research Group

4. NASH EQUILIBRIUM

Example: 3-player Matching Pennies

	P2: H	P2: T		P2: H
P1: H	0, 0, 0	1,-2,1	P1: H	1,1,-2
P1: T	-2,1,1	1,1,-2	P1: T	1,-2,1
		•	_	

P3: H = Heads

Nash equilibria:

- → All players play Heads with probability 1
- → All players play Tails with probability 1
- → All players play **Heads** and **Tails** with probability 0.5

Definition of Nash equilibrium:

- → "No player can change their strategy and do better" → assuming all other players' strategies are fixed
- → Every game (matrix, sequential, ...) has at least one equilibrium [Nash 1950]

5. 3P KUHN EQUILIBRIUM HIGHLIGHTS

if P3 folds

Player 2 (after Player 1 Checks):

Player 3 (after Players 1 and 2 Check):

Complicated

Utilities:

6. ROBUST EQUILIBRIA

Which equilibrium should we play?

→ Pick one with best worst-case performance, assuming opponents play some equilibrium strategies

Player 1:

Fixed strategy

