University Of Nevada Las Vegas. Department Of Electrical And Computer Engineering Laboratories.

Class:	СРІ	E-300L	Semester:	Spring 2020					
Points		Document author: Brysen Kokubun							
		Author's email:	Brysenkokub	kokubun96@gmail.com					
Instructor's	com	ments:							

Introduction / Theory of operation

- For this lab experiment we will be using the GDP that was created in lab experiment 6, to implement the algorithm that calculates the greatest common divisor of 2 natural numbers. We will also be learning how to set up timing constraints and how to obtain timing information with the TimeQuest analyzer.

Prelab main content

1. Screenshots of the timing report.

Co	ommand Info Summary of Paths								
	Slack	From Node	To Node	Launch Clock	Latch Clock	Relationship	Clock Skew	Data Delay	
1	-1.997	reg_A[1]	reg_sum[7]	dock	clock	1.000	-0.065	2.927	
2	-1.992	reg_A[1]	reg_sum[7]	clock	clock	1.000	-0.065	2.922	
3	-1.992	reg_B[1]	reg_sum[7]	clock	clock	1.000	-0.065	2.922	
4	-1.991	reg_A[1]	reg_sum[7]	clock	clock	1.000	-0.065	2.921	
5	-1.987	reg_B[1]	reg_sum[7]	clock	clock	1.000	-0.065	2.917	
6	-1.986	red B[1]	rea_sum[7]	clock	clock	1.000	-0.065	2.916	

Co	mmand Info	Summary of	Paths					
	Slack	From Node	To Node	Launch Clock	Latch Clock	Relationship	Clock Skew	Data Delay
1	0.691	reg_B[1]	reg_sum[9]~reg0	dock	dock	4.000	0.324	3.630
2	0.697	reg_B[1]	reg_sum[9]~reg0	dock	dock	4.000	0.324	3.624
3	0.698	reg_B[2]	reg_sum[8]~reg0	dock	dodk	4.000	0.324	3.623
4	0.698	reg_B[1]	reg_sum[9]~reg0	dock	dock	4.000	0.324	3.623
5	0.698	reg_B[2]	reg_sum[8]~reg0	dock	dock	4.000	0.324	3.623
6	0.701	reg_A[1]	reg_sum[9]~reg0	dock	dock	4.000	0.324	3.620
7	0.707	reg_A[1]	reg_sum[9]~reg0	dock	dock	4.000	0.324	3.614
8	0.708	rea A[1]	rea sum[9]~rea0	clock	dock	4.000	0.324	3.613

2. Flowchart, state graph and control words for the algorithm

state	ΙE	WE	WA(10)	RAE	RAA(10)	RBE	RBA(10)	ALU(210)	SH(10)	0E	
s0	0	1	00	1	00	1	00	101	XX	0	//Wait for start
s1	1	1	01	0	XX	0	XX	000	XX	0	//Input A
s2	1	1	10	0	XX	0	XX	XXX	XX	0	//Input B
s3	0	0	XX	1	01	1	10	101	00	0	//A—B no write to Reg
s4	0	1	01	1	01	1	10	101	00	0	//A = A-B
s5	0	1	10	1	10	1	01	101	00	0	//B = B-A
s6	X	0	XX	1	01	0	XX	000	00	1	//Output A