Optimisation stochastique - 1

Le recuit simulé

Optimisation stochastique

La malédiction de la dimension

Malédiction de la dimension

Cours science des données de Stéphane Mallat

L'apprentissage face à la malédiction de la grande dimension

Typologie de problèmes

- Optimisation difficile (problèmes NP-difficiles);
- Problème de minimisation / maximisation ;
- Problèmes mono-objectif, multi-objectifs, "many"-objectifs;
- Problèmes à variables discrètes / continues / mixtes ;
- Problèmes sous contraintes ;
- Problèmes à grande dimension ;
- Problèmes dynamiques.

Typologie de problèmes à variables discrètes

- Voyageur de commerce
- Tournée de véhicules
- Coloration de graphe
- Sac à dos
- Planification...

Typologie de problèmes à variables continues

- Fonction analytique (benchmarks);
- Expression non analytique (code de calcul, problème inverse);

• Autres problèmes variés (géométrie, chimie, physique)...

Métaheuristiques

Ce sont des méthodes:

- globales;
- stochastiques;
- génériques même si dépendantes du contexte continu/discret;
- qui ne garantissent pas l'optimalité;
- basées sur des analogies avec la biologie, la physique, l'éthologie...

Éléments constitutifs et stratégies

Elles sont généralement composées de :

- Un ou plusieurs (population(s)) candidats faisables initiaux;
- Une stratégie de génération de nouveau candidat basée sur l'aléatoire;
- Un critère d'acceptation d'un nouveau candidat ;
- Des coefficients de contrôle de comportement de l'algorithme;
- Le partage d'information, l'utilisation d'une mémoire de candidats explorés;
- Un critère de convergence.

Initialisation

- Aléatoirement
- Manière intelligente
 - sampling
 - hypercubes latins
 - o séquence de Halton
 - 0 ...

Dilemme

Exploration

www.ethos3.com

lycee-delacroix-maisons-alfort.fr

VS

Exploitation

Voisinage

- Définition :
 - Cas des variables discrètes : décalage de composantes de la donnée,
 - Cas des variables continues : hyper(sphère | cube) centré autour de la donnée.
- Stratégies :
 - Voisinage géographique,
 - Voisinage social,
 - Voisinage aléatoire.
- Méthodes du gradient, Newton-Raphson, dichotomie, polytope de Nelder-Mead...
- Hybridation avec des méthodes de recherche locale.

Le recuit simulé

Pour l'histoire... un peu de physique!

Le recuit est une technique qui permet d'améliorer la qualité d'un matériau selon la méthode suivante :

- On le porte à très haute température pour le liquéfier
- On abaisse progressivement la température pour stabiliser la structure du matériau

Le recuit simulé (simulated annealing)

- Métaheuristique variante de l'algorithme de Metropolis-Hastings (voir exemple <u>ici</u>);
- Proposée en 83 par Kirkpatrick, Gelatt et Vecchi et en 85 par Cerny ;
- Première métaheuristique proposée ;
- Adaptée aux problèmes discrets (originellement au placement de composants électroniques sur un circuit imprimé).

Le recuit simulé - l'analogie

- La fonction f à minimiser est l'énergie du système ;
- Un candidat faisable X représente un état du matériau ;
- L'équilibre thermodynamique est atteint lors d'un palier de température ;
- À température *T*, une perturbation du candidat courant est acceptée avec probabilité basée sur le critère de Metropolis.

Critère de

```
critereMetropolis (\Delta f, T) : 

//minimisation
Si \Delta f \leq 0 alors 

retourner VRAI 

sinon 

retourner aléa(0,1) < e^{(-\Delta f/T)}
```

- ∆f ≤ 0, le voisin est accepté;
- Une petite variation vers un voisin moins bon a plus de chance d'être acceptée qu'une importante;
- Cette fonction est **stochastique**.

Critère de

Algorithme du recuit simulé (minimisation)

```
X, un candidat, f_v = f(X) énergie du système, T Température initiale
X_{min} < - X
f_{min} \leftarrow f(X)
Tant que T > T_{min} et non critèreConvergence()
      Tant que non équilibreThermodynamique()
                                                                  // palier de température
             X<sub>vois</sub> <- perturbation(X)</pre>
             \Delta f = f(X_{yois}) - f_{y}
             Si critèreMetropolis (Δf, T) alors
                    X \leftarrow X_{\text{vois}}
                    f_{x} \leftarrow f(X_{yois})
                    Si \Delta f < 0 et f(X_{vois}) < f_{min} alors
                          f_{min} \leftarrow f(X_{vois})
                          X_{\min} < - X_{\text{vois}}
                    Fin si
             Fin si
       Fin tant que
       T <- refroidissement(T)
Fin tant que
```

Recuit simulé : critères de convergence

Permet de terminer l'algorithme selon plusieurs conditions :

- La température atteint une valeur minimale;
- Le nombre d'évaluations atteint une limite;
- Le temps d'exécution atteint une limite;
- Il n'y a pas eu d'amélioration depuis un certain nombre d'itérations.

Recuit simulé : équilibre thermodynamique

Permet de "fouiller" autour d'un bon candidat en cours :

- Le nombre d'évaluations atteint une limite;
- Il n'y a pas eu d'amélioration depuis un certain nombre d'itérations.

Recuit simulé : refroidissement

À haute température, la valeur du critère de Metropolis est proche de 1, la plupart des candidats dégradants sont acceptés :

À faible température, la valeur du critère de Metropolis tend vers 0, la plupart des candidats dégradants sont rejetés :

28

Recuit simulé : refroidissement

Permet de diminuer la probabilité d'acceptation d'un candidat non améliorant selon le critère de Metropolis :

- Une forte décroissance empêche une exploration convenable, l'algorithme converge rapidement vers un minimum local;
- Une faible décroissance permet une forte exploration lors des premières itérations de l'algorithme et rend peu probable la sélection d'un candidat dégradant;
- À $T=\infty$, tout candidat dégradant est accepté ; à T=0, aucun candidat dégradant n'est accepté.

Recuit simulé : refroidissement

Différents schémas de réduction de la température :

- Géométrique (si l'on ne considère pas les paliers...) : $T_{k+1} = \alpha . T_{k'}$ le plus couramment utilisé ;
- Logarithmique : $T_k = \mu / log(1+k)$, où k : nb de paliers et μ une constante. Très coûteux en temps de calcul, peu utilisée ;
- Exponentiel : $T_k = T_0 \cdot exp(-k/\tau)$, où k : nb de paliers et τ une constante ;
- Ésotérique : on peut remonter la température selon un critère particulier.

Recuit simulé : perturbation

- Génère un nouveau candidat au voisinage de celui en cours ;
- Influence de la distance entre ces deux candidats (hypervolume du voisinage);
- Spécifique au problème à résoudre (discret/continu).

No free lunch theorem [Wolpert and Macready]

Des restaurants (méthodes de résolution) possèdent un menu proposant des plats (problèmes) à différents prix (performance de résolution). Chaque restaurant propose les même plats mais à des prix différents.

Il n'existe pas de menu parfait pour un omnivore.

Un exemple d'application...

Optimisation sans cervelle...

Richard Buckland: simulated annealing

part 1: part 2:

That's all folks!