Série 4 du mardi 11 octobre 2016

Exercice 1.

- 1.) Montrer que la suite $(x_n)_{n=0}^{\infty}$ donnée par $x_0=0, x_n=\frac{(-1)^n}{n}, n>0$ est de Cauchy.
- 2.) Montrer que la suite $(x_n)_{n=0}^{\infty}$ donnée par $x_n = (-1)^n$, $n \ge 0$ n'est pas de Cauchy.
- 3.) Montrer que la suite $(x_n)_{n=0}^{\infty}$ donnée récursivement par $x_{n+1} = \frac{x_n+1}{x_n+2}$, $n \ge 0$, $x_0 = 1$ est de Cauchy et calculer sa limite.
- 4.) On considère la suite donnée par 8, 8.8, 8.88, 8.888, Est-ce que cette suite converge et, si oui, quelle est sa limite? Justifier votre réponse.

Exercice 2.

On considère la suite $(x_n)_{n=0}^{\infty}$ définie par

$$x_n = \sin\left(n\frac{\pi}{4}\right)\cos\left(n\frac{\pi}{4}\right), n = 0, 1, 2, \dots$$

Calculer $\limsup_{n\to\infty} x_n$ et $\liminf_{n\to\infty} x_n$.

Exercice 3.

On considère la suite $(x_n)_{n=1}^{\infty}$ définie par

$$x_n = \sin\left(\frac{1}{n}\right)$$
, si n est pair, $n > 0$, $x_n = \cos\left(\frac{1}{n}\right)$, si n est impair.

Calculer $\limsup_{n\to\infty} x_n$ et $\liminf_{n\to\infty} x_n$.

Exercice 4 (* A rendre).

Soit $x_n = \sqrt[n]{n}, n = 1, 2, \dots$, et $x_0 = 0$. Démontrer que $\lim_{n \to \infty} x_n = 1$.

 $\underline{\text{Indication:}} \ \text{D\'emontrer que} \ \forall \delta>0, \ \text{on a} \ \lim_{n\to\infty}\frac{n}{(1+\delta)^n}=0 \ \text{et conclure}.$