

Powerful Raman-Lidar for water vapor in the free troposphere and lower stratosphere as well as temperature in the upper stratosphere and mesosphere

Hannes Vogelmann, Thomas Trickl, Lisa Klanner, Katharina Höveler

The Motivation

- Radiative forcing of water vapor in the climate system is most sensitive in the upper troposphere and lower stratosphere.
- **Ground based Differential Absorption Lidar (DIAL) is limited to** the troposhere.
- Microwave radiometers are limited to altitudes > 30km.
- Water vapor Raman lidars are bound to nocturnal darkness and usually need long integration times (several hours) for stratospheric profiling.
- Pure Raman backscatter is too weak for temperature profiling up to the mesopause (≈90km).

Solomon et al. 2010

Simulated performance of a powerful Raman lidar at a high altitude site

Implementation

Pump chamber coupler XeCl energy

- Scaling up a Raman lidar with
 - a very powerful laser (180W)
 - a large receiver telescope (1.5m)
- Setup the lidar on a high mountain
 - **Zugspitze observatory (2675m asl)**
 - Far from light pollution
 - more clear sky nights

Laser emission spectrum before and after the implementation of an etalon in the resonator of the powerful (180W) XeCl Excimer laser. The narrowband operation allows for a more efficient suppression of background photons by narrow interference filters.

- Higher backscatter signals and shorter integration times
- Less background photons and less noise

Implementation

Near-field telescope, primary mirror: diameter 0.35 m

Polychromator boxes

Far-field telescope, primary mirror: diameter 1.5 m

Principal optical design of the Raman lidar reciever. The signals from the PMTs are split into analogue and counting recording devices (LICEL and FastComTec).

Comparison and calibration with the side-by-side operated differential absorption lidar (DIAL).

Results / Validation Water Vapor

- Water vapor profiles up to 25km with 1h inetegration time
- Almost perfect validation with CFH sonde (launched by FZ Jülich at Garmisch)
- Very high variability in upper troposphere during validation by stratospheric intrusion

Results / Validation Temperature

Stratospheric aerosol lidar in operation beside the dome of the Raman lidar

- Reference point at 87km from GRIPS (DLR) at Zugspitze
- Aerosol correction by information from the side-by-side stratospheric aerosol lidar

More details in:

[Klanner et al., Atmos. Meas. Tech., 14, 531–555, 2021, https://doi.org/10.5194/amt-14-531-2021]