Fusklapp Algorithms

Adam Sandberg Eriksson (910717–3099, saadam@student)

October 26, 2014

Graphs

If graph problem and there is some constraint on the graph, it might be easier to first remove offending edges/nodes.

Cut

Partition of vertices into two disjoint subsets.

Cut-set

Any cut defines a cut-set: all edges that cross the cut.

Min-cut

A cut is min if size of cut is \leq any other cut.

Max-cut

A cut is max if size \geq any other cut.

MST

Cycle property

For any cycle C in the graph, if the weight of an edge e is larger than all other edges in C, then e does not belong to a MST.

Cut property

For any cut C, if the weight of edge e in C is strictly smaller than all other edges of C then this edge belongs to all MSTs of the graph.

For any cut C, of graph G, the edge e included in MST of G is strictly smaller than all other edges in C.

Minimum-cost edge

If edge e with minimum cost is unique it is included in all MST.

Kruskal's algorithm

Consider edges in non-decreasing order. Add edge, e, to T if e does not introduce a cycle in T. Stop when all nodes are connected in T.

(Sort edges $O(E \log E)$, disjoint-set data structure to keep track of vertices are in wich components. $O(E \log V)$, $O(V \log V)$)

Prim's algorithm

Add arb. node to T. Consider all edges out of T, grow T by the minimum-weight edge of these. Repeat until all nodes are in T.

(Adj matrix: $O(V^2)$. Bin. heap & adj list: $O(E \log V)$)

BFS

Start with node, visit all connected nodes, repeat for each visisted node. Can be done in O(E). Can be used to find stuff in graph.

DFS

Start with node, explore as far as possible along each branch before backtracking. O(E) for graphs traversed w/o repetition.

Greedy algs

Think about: what ordering would change the total running time of algorithm. If some step takes constant time regardless of ordering do not consider this parameter in your greedy ordering.

Exchange argument

Have your solution S, according to some greedy criterion, an arbitrary solution O. If $S \neq O$ then there must be inversion (show what inversion is). Show that you can swap the inversion in O and not make O a worse solution.

Argument: if we swap all such inversions in O we will have S and thus S is no worse than an arbitrary solution and is therefore optimal.

Stays ahead argument

Have your solution S, according to greedy

Dynamic programming

Solve Opt backwards in recurrence. Iterate forwards in algorithm.

Divide and conquer

Useful

Network flow

To show that solutions are eqviv copy argument on page 412 solved exercise 2.

Computing max flow from a min cut

Min cut: minimal weight cut, don't count incoming edges. All is well.

Max/minimizing sums using NF

We have n patients, probability p_i of patient i having cancer, some measure of similarity between patients $0 \le S(i, j) \le 1$. We want to find labelling $l_i \in \{0, 1\}$ of patients to maximize

$$q = \sum_{i:l_i=1} p_i + \sum_{i:l_i=0} (1 - p_i) - \sum_{(i,j):l_i \neq l_j} S(i,j)$$

We instead minimize

$$q' = n - q = \sum_{i=1}^{n} (p_i + (1 - p_i)) - q$$
$$= \sum_{i:l_i=0} p_i + \sum_{i:l_i=1} (1 - p_i) + \sum_{(i,j):l_i \neq l_k} S(i,j)$$

Construct graph G = (V, E). $V = \{s, t\} \cup P$, P set of patients. For all $v_i \in P$ we have edge (s, v_i) with capacity p_i and edge (v_i, t) with capacity $1 - p_i$. For each $v_i, v_j \in P$ we have edge (v_i, v_j) with capacity S(i, j).

NP

To prove that a problem Q is NP-complete you have to:

- 1. Show that you can verify a solution to Q in polynomial time.
- 2. Reduce some NP-complete problem R to Q.
- 3. Show that a solution to R is a solution to Q and vice versa.

Page 498 has a list of NP-complete problems.

Math

If a > 1, b > 1 then $a^{\log b} = b^{\log a}$.

Geometric sum: $\sum_{k=0}^{n-1} r^k = \frac{r^{n}-1}{r-1}$

Sum sum: $\sum_{i=m}^{n} 1 = n + 1 - m$

Summelisummm: $\sum_{i=m}^{n} i = \frac{(n+1-m)(n+m)}{2}$