1 First Exponential to Die

Let X and Y be Exponential(λ_1) and Exponential(λ_2) respectively, independent. What is

$$\mathbb{P}\big(\min(X,Y)=X\big),$$

the probability that the first of the two to die is X?

Solution:

Recall that the CDF of an exponential is $\mathbb{P}[X \le x] = 1 - \exp(-\lambda x)$ for $x \ge 0$.

$$\mathbb{P}\left(\min(X,Y) = X\right) = \mathbb{P}(Y > X) = \int_0^\infty \mathbb{P}(Y > X \mid X = x) f_X(x) \, \mathrm{d}x = \int_0^\infty \mathrm{e}^{-\lambda_2 x} \cdot \lambda_1 \, \mathrm{e}^{-\lambda_1 x} \, \mathrm{d}x$$
$$= -\frac{\lambda_1}{\lambda_1 + \lambda_2} \, \mathrm{e}^{-(\lambda_1 + \lambda_2)x} \Big|_{x=0}^\infty = \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

2 Chebyshev's Inequality vs. Central Limit Theorem

Let n be a positive integer. Let X_1, X_2, \dots, X_n be i.i.d. random variables with the following distribution:

$$\mathbb{P}[X_i = -1] = \frac{1}{12}; \qquad \mathbb{P}[X_i = 1] = \frac{9}{12}; \qquad \mathbb{P}[X_i = 2] = \frac{2}{12}.$$

(a) Calculate the expectations and variances of X_1 , $\sum_{i=1}^n X_i$, $\sum_{i=1}^n (X_i - \mathbb{E}[X_i])$, and

$$Z_n = \frac{\sum_{i=1}^n (X_i - \mathbb{E}[X_i])}{\sqrt{n/2}}.$$

- (b) Use Chebyshev's Inequality to find an upper bound b for $\mathbb{P}[|Z_n| \geq 2]$.
- (c) Can you use b to bound $\mathbb{P}[Z_n \geq 2]$ and $\mathbb{P}[Z_n \leq -2]$?
- (d) As $n \to \infty$, what is the distribution of Z_n ?
- (e) We know that if $Z \sim \mathcal{N}(0,1)$, then $\mathbb{P}[|Z| \leq 2] = \Phi(2) \Phi(-2) \approx 0.9545$. As $n \to \infty$, can you provide approximations for $\mathbb{P}[Z_n \geq 2]$ and $\mathbb{P}[Z_n \leq -2]$?

Solution:

(a) $\mathbb{E}[X_1] = -1/12 + 9/12 + 4/12 = 1$, and

$$Var X_1 = \frac{1}{12} \cdot 2^2 + \frac{9}{12} \cdot 0^2 + \frac{2}{12} \cdot 1^2 = \frac{1}{2}.$$

Using linearity of expectation and variance (since $X_1, ..., X_n$ are independent), we find that $\mathbb{E}[\sum_{i=1}^n X_i] = n$ and $\text{var}(\sum_{i=1}^n X_i) = n/2$.

Again, by linearity of expectation, $\mathbb{E}[\sum_{i=1}^{n} X_i - n] = n - n = 0$. Subtracting a constant does not change the variance, so $\text{var}(\sum_{i=1}^{n} X_i - n) = n/2$, as before.

Using the scaling properties of the expectation and variance, $\mathbb{E}[Z_n] = 0/\sqrt{n/2} = 0$ and $\text{Var} Z_n = (n/2)/(n/2) = 1$.

(b)

$$\mathbb{P}[|Z_n| \ge 2] \le \frac{\operatorname{Var} Z_n}{2^2} = \frac{1}{4}$$

- (c) 1/4 for both, since $\mathbb{P}[Z_n \ge 2] \le \mathbb{P}[|Z_n| \ge 2]$ and $\mathbb{P}[Z_n \le -2] \le \mathbb{P}[|Z_n| \ge 2]$.
- (d) By the Central Limit Theorem, we know that $Z_n \to \mathcal{N}(0,1)$, the standard normal distribution.
- (e) Since $Z_n \to \mathcal{N}(0,1)$, we can approximate $\mathbb{P}[|Z_n| \ge 2] \approx 1 0.9545 = 0.0455$. By the symmetry of the normal distribution, $\mathbb{P}[Z_n \ge 2] = \mathbb{P}[Z_n \le -2] \approx 0.0455/2 = 0.02275$.

It is interesting to note that the CLT provides a much smaller answer than Chebyshev. This is due to the fact that the CLT is applied to a particular kind of random variable, namely the (scaled) sum of a bunch of random variables. Chebyshev's inequality, however, holds for any random variable, and is therefore weaker.

3 Why Is It Gaussian?

Let X be a normally distributed random variable with mean μ and variance σ^2 . Let Y = aX + b, where a > 0 and b are non-zero real numbers. Show explicitly that Y is normally distributed with mean $a\mu + b$ and variance $a^2\sigma^2$. The PDF for the Gaussian Distribution is $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. One approach is to start with the cumulative distribution function of Y and use it to derive the probability density function of Y.

[1.You can use without proof that the pdf for any gaussian with mean and sd is given by the formula $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ where μ is the mean value for X and σ^2 is the variance. 2. The drivative of CDF gives PDF.]

Solution:

Problem and solution taken from A First Course in Probability by Sheldon Ross, 8th edition.

Let a > 0.

We start with the cumulative distribution function (CDF) of Y, F_Y .

$$F_Y(x) = \mathbb{P}[Y \le x]$$
 By definition of CDF
 $= \mathbb{P}[aX + b \le x]$ Plug in $Y = aX + b$
 $= \mathbb{P}\Big[X \le \frac{x - b}{a}\Big]$ Because $a > 0$ (1)
 $= F_X\Big(\frac{x - b}{a}\Big)$ By definition of CDF. F_X denotes the CDF of X .

Let f_Y denote the probability density function (PDF) of Y.

$$f_Y(x) = \frac{d}{dx} F_Y(x)$$
The PDF is the derivative of the CDF.
$$= \frac{d}{dx} F_X\left(\frac{x-b}{a}\right)$$
Plug in the result from (1)
$$= \frac{1}{a} \cdot f_X\left(\frac{x-b}{a}\right)$$
PDF is the derivative of CDF.
Apply chain rule, $\frac{d}{dx}\left(\frac{x-b}{a}\right) = \frac{1}{a}$.
$$= \frac{1}{a} \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-((x-b)/a-\mu)^2/(2\sigma^2)}$$

$$X \sim \mathcal{N}(\mu, \sigma^2).$$

$$= \frac{1}{a\sigma\sqrt{2\pi}} \cdot e^{-(x-b-a\mu)^2/(2\sigma^2a^2)}$$

$$\frac{x-b}{a} - \mu = \frac{1}{a}(x-b-a\mu)$$

We have shown that f_Y equals the probability density function of a normal random variable with mean $b + a\mu$ and variance $\sigma^2 a^2$. So, Y is normally distributed with mean $b + a\mu$ and variance $\sigma^2 a^2$. The proof is done for a > 0. The proof for a < 0 is similar.

CS 70, Fall 2020, DIS 14A 3