虹猫蓝兔 Round 2

Miracle

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	迷途	伞坊	刺客	归来
英文题目与子目录名	wandering	umbrella	assassin	revenant
可执行文件名	wandering	umbrella	assassin	revenant
输入文件名	wandering.in	umbrella.in	assassin.in	revenant.in
输出文件名	wandering.out	umbrella.out	assassin.out	revenant.out
每个测试点时限	1s	1s	1s	1s
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
附加样例文件	无	无	无	无
结果比较方式	全文比较(过滤行末空格和回车)			
题目类型	传统	传统	传统	传统
运行内存上限	512MB	512MB	512MB	512MB

二、提交源程序文件名

对于 C++语言	wandering.cpp	umbrella.cpp	assassin.cpp	revenant.cpp

三、编译命令

对于 C++语言	g++ -o	g++ -o	g++ -o	g++ -o
	wandering	umbrella	assassin	revenant
	wandering.cpp	umbrella.cpp	assassin.cp	revenant.cpp -
	-lm	-lm	p -lm	lm

温馨提示:

- 1.题目背景仅供渲染,粗略阅读即可。
- 2. 部分分充足,同学们尽量不要全题放弃。

1. 迷途

(wandering.cpp)

【题目背景】

火光似血,映红了无边的夜色。玉蟾宫的上方,浓烈的黑烟萦绕不散,仿佛是这金碧辉煌的红墙绿瓦最后的残喘。林深人静,喧嚣渐息。远处一条蜿蜒小路上,蓝兔驾着一辆马车在疾速行驶,车厢里,闭目危坐的一人正是虹猫。"明修栈道,暗度陈仓",紫兔这一计,正可谓一箭双雕,既帮助二人脱离包围,又为寻找第三剑留足了时间。可惜,今生今世,蓝兔只怕是没有机会给这位功臣言谢了……

一声轰鸣撕裂夜空,夹杂着魔教喽啰们的惨叫,从身后,闯入蓝兔耳畔。她像触电一般全身颤栗,下意识回眸凝望——依旧是那漫天火光,和玉蟾宫的断壁残垣。但她仿佛又分明看见,那个紫色的身影不顾横在脖颈上的弯刀,泰然自若地拉燃了引线,用那声炮火,与世间做最壮烈的诀别。

马儿还在奔驰着。半响过后,蓝兔紧咬下唇,恨恨地扭回头去,只留下两行清泪,在疾风中挥洒摇曳······

【题目描述】

玉蟾宫到金鞭溪客栈的路可以看作是 $2 \times n$ 的网格,玉蟾宫在(1,1)位置,金鞭溪客栈在(2,n)位置。

这条路上危机四伏。每个格子有伏兵,或者没有伏兵。在未来的 T 个时段中,每个时段 i 都有一个位置(*ri*, *ci*)上的"状态发生变化",即:如果原来有伏兵,则变为没有伏兵;如果 原来没有伏兵,则变为有伏兵。**第 0 时刻,每个位置都没有伏兵**。

蓝兔宫主早已得知了未来 T 个时段发生的变化。由于马车里的虹猫少侠重伤未愈,她不能和伏兵纠缠,必须绕开他们。她可以驾着马车**横着、竖着、斜着**走到相邻的位置(不能超出地图)。她想知道,对于每个时间段,她能否从(1,1)安全到达(2,n)。

数据保证, (1,1),(2,n)不会出现伏兵。

【输入格式】

第一行两个数 n, T, 意义如题目中所示。

接下来 T 行, 其中第 i 行有两个数ri,ci,表示第 i 时刻,(ri,ci)位置"状态发生变化"

【输出格式】

输出 T 行,每行一个字符串 YES 或者 NO,表示这个时刻,虹蓝二人能否从(1,1)安全到达(2,n)。<u>(注意大小写)</u>

【输入输出样例】

样例输入	样例输出
5 5	YES
1 3	YES
2 4	NO
2 3	YES
1 3	YES
1 2	

【数据规模与约定】

对于 100%的数据, $1 \le n, T \le 2 \times 10^5$

测试点编号	特殊性质
1,2,3	$1 \le n \le 300, T = 1$
4,5,6	$1 \le n, T \le 10^3$
7,8,9,10	无

2. 伞坊

(umbrella.cpp)

【题目背景】

烟雨连绵。青色穹顶之外,是青色的山,青色的湖光尽头,水天一线。良辰美景,奈何楚歌四面。虹蓝二人步步后退,业已退却到了悬崖边上。魔教黑武士高擎磁铁盾,严阵以待。而兀立在这黑色军团的前面,双手撑腰,挂一张猩红披风而狂妄大笑者,正是魔教少主黑小虎本人。

搀扶身中箭伤的蓝兔坐下, 虹猫眉头紧锁, 环顾四周, 便瞥见那伞坊中凌乱散落的油纸伞, 心中顿生一计······

短暂介绍决斗规则后,黑少主自负一笑,欣然同意。随即劈出掌风阵阵,油纸伞化作利箭直冲虹猫而去,后者顺势双手一推,气浪一转,油纸伞便一一撑开,漂浮在半空。紧接着,虹猫一个鹞子翻身,率先站在了伞上。黑小虎自然不甘示弱,双脚连续蹬地,霎时间,人竟然已在空中。

定睛看,一个是潇洒俊朗的白衣少侠,踏雪寻梅功,太极连环掌,笑声爽朗,便是六分自信,三分坦荡,留下一分化作狡黠天光;一个是雄姿英发的黑袍少主,天魔乱舞功,黑心恶煞掌,怒目圆睁,便是六分急躁,三分孤高,留下一分酿成醋意满腔。

人影闪现,拳脚交错,电光火石之间,数招已过。围观众人看的是眼花缭乱,凝视半响,却捕捉不住哪怕一个回合。只见油纸伞高的高,低的低,近的近,远的远,花花绿绿,色彩迷乱,鹅黄墨绿绯红湛蓝靛青应有尽有。倘若又闭目体悟,运气声,呐喊声,格挡声,夹杂风声雨声声声入耳,火药味,山花味,青草味,混合腥味涩味五味俱全。只觉人世恍惚,光阴流转,便不再分得清梦里梦外,天上人间……

烟雨连绵, 浸染出一幅江湖画卷。

【题目描述】

- 1.其中**有一把伞高度是 m**, 设这把伞的位置是 $t(1 \le t \le n)$,对于所有的 $1 \le i < t$ 有 $h_i < h_{i+1}$ 。而对于所有的 $t \le i < n$,有 $h_i > h_{i+1}$
 - 2.所有的伞的高度是[1,m]之间的整数。

例如, n=5, m=5 时, 这些伞高度可能是 1,3,5,3,2, 或者可能是 2,4,5,3,2。但不可能是 2,2,5,4,3。

你,作为屏幕前的吃瓜群众,自然而然地想出来一个问题,一共会有多少种可能的高度序列呢?两种高度序列不同,当且仅当存在一个位置的伞的高度不同。由于结果很大,你只需要输出答案对 998244353 (一个质数)取模的结果。

【输入格式】

一行两个整数 n,m. 意义如题目所示。

【输出格式】

一行一个整数.表示序列种数对 998244353 取模的结果。

【输入输出样例】

输入样例 1	输出样例 1
3 3	4
输入样例 2	输出样例 2
100 150	974923873
输入样例 3	输出样例 3
200000 200000	895248717

【样例解释】

第一个样例: 一共有123,132,231,321这四种情况。

【数据规模与约定】

对于 100%的数据, $1 \le n, m \le 2 \times 10^5$

测试点编号	特殊性质
1,2	m≺n
3,4,5	n,m<=10
6,7	n,m<=1000
8,9,10	无

3.刺客

(assassin.cpp)

【题目背景】

大地仍未从夜幕中醒来。守卫关隘的哨兵打着呵欠,时不时和周围同伴插科打诨,没有人注意到,一介黑衣人已在几处山头峡谷中来回奔忙。他灵活如猴,疾走若风,于层层树林中穿梭自如。

在这个江湖,没有人生下来就愿做刺客,除了他——青光剑主跳跳。传闻麒麟已经出现,即将落入魔教手中。卧薪尝胆一秩年华,不想如今却到了功败垂成之际!刺杀,势在必行!这已经是他第三次勘察雷区地形,尽管对地图已经烂熟于心,但他还是要确保万无一失,毕竟机会,仅有一次。

魔头, 烧杀抢掠之大罪, 杀害父母之私仇, 就于此地, 一一清算了吧!

【题目描述】

由于雷区是野猪林中峡谷的一部分,可以通行的道路不多。具体来讲,整个雷区有 n 个谷口,每个谷口都连接着峡谷外部。谷口与谷口之间也由 n-1 条道路相连接。换句话说,雷区地图是 n 个点的树,每个点都是一个谷口。

跳跳掌握了黑心虎在未来 T 天里的行程:在第 i 天,黑心虎会从 a_i 进入雷区,从 b_i 走出雷区。但是由于之前贸然刺杀失败,黑心虎也对跳跳产生了疑心,为了稳妥起见,跳跳也制订了自己的行程:在第 i 天,跳跳会从 c_i 进入雷区,从 d_i 走出雷区。显然,黑心虎和跳跳的行程是树上的两条链。为了让刺杀计划顺利执行,跳跳想知道,对于每一天,他和黑心虎是**否有可能**在某一个**谷口**相遇。

【输入格式】

第一行两个整数 n, T, 表示谷口数量, 和需要考虑的天数。

接下来 n-1 行, 每行两个整数 x,y,表示第 x 个谷口和第 y 个谷口之间有道路连接。

接下来 T 行,每行四个数 a_i, b_i, c_i, d_i 表示题目中描述的行程路线。

【输出格式】

输出 T 行,每行一个字符串 YES 或者 NO,表示这一天,跳跳是否有可能在某个谷口遇到黑心虎。(注意大小写)

【输入输出样例】

样例输入1	样例输出 1
5 5	YES
2 5	NO
4 2	YES
1 3	YES
1 4	YES
5 1 5 1	
2 2 1 4	
4 1 3 4	
3 1 1 5	
3 5 1 4	

【数据规模与约定】

对于 100%的数据, $1 \le n, T \le 2 \times 10^5$

测试点编号	特殊性质
1,2	$1 \le n, T \le 10^2$
3,4	$1 \le n, T \le 10^3$
5,6	$1 \le n, T \le 10^4$
7,8,9,10	无

4. 归来

(revenant.cpp)

【题目背景】

"自那次合璧之后,他们又经历了许多,却终究不见了人影。"

清早。海风徐徐。

像往常一样,他独自走到海边,找了片空地坐下,从衣服里摸出一支排箫,吹了起来。吹完一曲,他便抬起头来凝望。地平线的尽头,水天一线,偌大的视野里,看不见一艘船只, 甚至连海鸥的鸣叫,也是凤毛麟角。

这是第十个年头了。

凤凰岛上的人们都称他为"古怪的音乐家",只因他日复一日,年复一年守在岸边。他行为古怪,却从不蓬头垢面,头发打理整齐,脸也永远洗得干净,有时还着一身正装。他只用那支排箫吹奏两首曲子。一首慷慨激昂,似立地宣誓;一首婉转哀怨,似苦思佳人。

人们不知道他吹的是什么曲子,正如人们不知道他要等待的"七侠",是何许人也。只听说那"七位侠客",于"辛卯年秋",从他每日站立的岸边登上一艘画舫,便再也没有回来。大人们大多觉得他太偏执,孩子们也远远躲着他——那些孩子大多手里抱着玩具,要么是一只羊,脖颈上带着蓝色项圈,项圈上系一个铃铛;要么是一头熊,毛发是深棕色,又或者是黄褐色。

他曾尝试给一个孩子讲"七侠"的故事。孩子放下手中的玩具,听的津津有味。但那孩子的父亲见状,吓得神魂颠倒,手忙脚乱地把孩子一把拽走,还赶紧嘱咐"心肝宝贝""绝不要和这种疯子往来"。

他只愿意吹奏那支排箫——只吹奏两首曲子,一首慷慨激昂,似立地宣誓;一首婉转哀怨,似苦思佳人。有好心人劝他说,"十年杳无音信,你不如忘却了这心结罢。"他一笑,答道:

"没关系,我还有很多个十年。"

【题目描述】

"音乐家"的排箫与众不同,有 n 个音管,从左到右长度分别是 $a_1, a_2, \dots a_n$."音乐家"发现,当任意的相邻的两个音管长度 $a_i = a_{i+1}$ 时,可以把这两个音管去掉,在**原来位置**替换成为一个长度为 $a_i + 1$ (或者说是 $a_{i+1} + 1$)的音管。他可以做**任意次数**这样的替换,每进行这样一次替换,音管数目都会**减**一。为了节约材料,他希望最后剩余的音管个数**尽可能少**。

【输入格式】

第一行一个整数 n。表示初始音管的总个数。

第二行 n 个整数 $a_1, a_2, \dots a_n$,表示初始的从左到右音管的长度。

【输出格式】

一个整数,表示最优替换方案下,最后剩余的音管个数。

【输入输出样例】

输入数据1	输出数据 1
5	2
4 3 2 2 3	
输入数据 2	输出数据 2
7	2
3 3 4 4 4 3 3	

输入数据 3	输出数据 3
3	3
1 3 5	
输入数据 4	输出数据 4
1	1
1000	

【样例解释】

对于第一个样例: 4 3 2 2 3 -> 4 3 3 3 -> 4 4 3 -> 5 3

【数据规模与约定】

对于 100%的数据, $1 \le n \le 200$, $1 \le a_i \le 1000$

测试点编号	特殊性质
1,2	$1 \le n \le 5$
3,4,5	$a_i \le a_{i+1}$
6,7	$1 \le n \le 50$
8,9,10	无

十年之后, 已不见那个江湖。