

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

SIGUD

Proceso: Autoevaluación v Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:		Tecnológica							
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:			
			I. IDENTIF	ICACIÓN DEL ESPACIO A	CADÉMICO				
NOMBRE DEL E	SPACIO ACA	DÉMICO: MINERÍA DE DA	TOS						
Código del espacio académico:			1207	Número de créditos académicos:			2		
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2	
Tipo de espacio académico:			Asignatura	х	Cátedra				
			NATURA	ALEZA DEL ESPACIO ACA	DÉMICO:				
		atorio mentario		Electivo Intrínseco	х	Electivo Extrínseco			
			CARÁ	CTER DEL ESPACIO ACAD	ÉMICO:				
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:	
			MODALIDAD	DE OFERTA DEL ESPACIO	ACADÉMICO:				
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:	
			II. SUGERENCIA	S DE SABERES Y CONOCIN	/IENTOS PREVIOS				

Se sugiere que el estudiante tenga fundamentos en estadística, álgebra lineal, bases de datos, programación en Python o R, y conocimiento básico en redes de sensores o sistemas de adquisición de datos. Se valoran competencias previas en herramientas como Pandas, Scikit-learn, SQL y visualización de datos.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

En el ecosistema de la Industria 4.0, los datos generados por sensores, redes de telecomunicaciones, sistemas embebidos y plataformas de monitoreo requieren procesamiento, análisis y uso inteligente para la optimización de procesos. La minería de datos permite extraer patrones ocultos, tendencias, anomalías y conocimiento útil a partir de grandes volúmenes de datos industriales. Este curso prepara al estudiante para diseñar y aplicar técnicas de exploración y aprendizaje automático en sistemas de producción, redes inteligentes, servicios de mantenimiento predictivo, y automatización basada en datos.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Aplicar técnicas y herramientas de minería de datos para la exploración, procesamiento, modelado, evaluación y visualización de información proveniente de sistemas de telecomunicaciones, sensores e infraestructura industrial inteligente.

Objetivos Específicos:

Comprender los fundamentos, tipos de problemas y metodologías de la minería de datos.

Preprocesar, transformar y limpiar datos provenientes de fuentes industriales y distribuidas.

Implementar modelos de clasificación, regresión, agrupamiento y asociación.

Evaluar el desempeño de los modelos y generar reportes con visualizaciones claras y útiles.

Aplicar algoritmos de minería de datos a problemas reales de telecomunicaciones e Industria 4.0.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Potenciar habilidades de análisis, modelamiento y pensamiento computacional aplicado a datos industriales.

Promover el aprendizaje automático como herramienta de soporte a la toma de decisiones inteligentes.

Formar ingenieros capaces de transformar datos crudos en conocimiento accionable.

Promover el uso ético y responsable de la información.

Resultados de Aprendizaje:

Identifica tipos de problemas y técnicas de minería de datos adecuadas para cada caso.

 $\label{process} \mbox{{\bf Preprocesa}} \mbox{{\bf y}} \mbox{{\bf transforma}} \mbox{{\bf datos}} \mbox{{\bf estructurados}} \mbox{{\bf y}} \mbox{{\bf no}} \mbox{{\bf estructurados}}.$

Implementa modelos de aprendizaje supervisado y no supervisado.

Evalúa el desempeño y utilidad de los modelos en aplicaciones de telecomunicaciones e industria.

Comunica resultados de forma efectiva utilizando herramientas de visualización y reporte técnico.

VI. CONTENIDOS TEMÁTICOS

1. Introducción y fundamentos (Semanas 1-3)

Minería de datos vs ciencia de datos vs big data.

Tipos de problemas: clasificación, regresión, clustering, asociación.

Pipeline de minería de datos: extracción, preprocesamiento, modelado, evaluación, visualización.

2. Preprocesamiento y calidad de datos (Semanas 4-6)

Limpieza, tratamiento de valores perdidos y outliers.

Análisis exploratorio, normalización, escalamiento y reducción de dimensionalidad (PCA).

Extracción de características y selección de variables relevantes.

3. Técnicas de aprendizaje supervisado y no supervisado (Semanas 7-9)

Regresión lineal y logística.

Árboles de decisión, KNN, SVM, redes neuronales básicas.

Clustering: K-means, DBSCAN, jerárquico.

Reglas de asociación (Apriori, FP-Growth).

4. Aplicaciones a la Industria 4.0 y telecomunicaciones (Semanas 10-12)

Análisis de datos de sensores, logs de red, señales industriales.

Casos de uso: mantenimiento predictivo, detección de fallas, optimización de redes.

Uso de bases de datos industriales, brokers MQTT y plataformas de monitoreo.

5. Proyecto final: sistema de minería de datos aplicado (Semanas 13-16)

Desarrollo de un sistema de análisis de datos en telecomunicaciones, energía, producción o monitoreo remoto.

Presentación de resultados con dashboard (Dash, Power BI, Streamlit).

Validación de modelos, interpretación de resultados, artículo técnico.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La asignatura se desarrollará mediante aprendizaje basado en proyectos, retos prácticos, análisis de casos reales, desarrollo guiado de modelos y actividades en laboratorio con Python o R. Se integrará la discusión crítica de papers actuales y el trabajo en entornos colaborativos.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorios de cómputo, Jupyter Notebooks, Python (Pandas, Scikit-learn, Seaborn, TensorFlow), R, Power BI, plataformas de datos abiertos (Kaggle, UCI, IoT datasets), herramientas colaborativas (GitHub, Google Colab).

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se incentivará la vinculación con empresas o grupos de investigación que trabajen con datos industriales, sensores, redes de telecomunicaciones o monitoreo de procesos. También se fomentará la participación en retos de ciencia de datos, hackatones, ferias de innovación o seminarios.

XI. BIBLIOGRAFÍA

Witten, I. H., Frank, E., Hall, M. A. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning. Springer.

Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly.

Han, J., Kamber, M., Pei, J. Data Mining: Concepts and Techniques. Morgan Kaufmann.

Lantz, B. Machine Learning with R. Packt Publishing.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:		
Fecha aprobación por Consejo Curricular:	Número de acta:	