Statistical Estimation

Consider the constant return model (CER):

$$r_t \overset{i.i.d.}{\sim} N(\mu, \sigma^2), t = 1, \dots, T.$$

We have

Method of moments estimators

$$E[r_t] = \mu \ Var(r_t) = E[(r_t - \mu)^2] = \sigma^2$$

A natural estimator of μ is the sample mean

$$\hat{\mu} = rac{1}{T} \sum_{t=1}^T r_t.$$

An estimator of σ^2 is

$$\hat{\sigma}^2 = rac{1}{T-1} \sum_{t=1}^T (r_t - \hat{\mu})^2.$$

Maximum likelihood estimators

 $\hat{\mu}_{mle}$ and $\hat{\sigma}_{mle}$ are solutions to the log-likelihood estimation problem:

$$\max_{\mu,\sigma} \sum_{t=1}^T \log f(r_t;\mu,\sigma),$$

where $f(r_t;\mu,\sigma)=rac{1}{\sigma\sqrt{2\pi}}{
m exp}\Big(-rac{(r_t-\mu)^2}{2\sigma^2}\Big).$ We have

$$egin{align} \hat{\mu}_{mle} &= rac{1}{T} \sum_{t=1}^T r_t \ \hat{\sigma}_{mle}^2 &= rac{1}{T} \sum_{t=1}^T (r_t - \hat{\mu})^2. \end{align}$$

```
import numpy as np
# pip install pandas_datareader
import pandas_datareader as web

# import data
df = web.get_data_yahoo("MSFT", start = "2002-01-01", end = "2020-12-31", interv
```

```
df.reset_index(inplace = True) # convert index into a column

df['cc'] = np.log(df['Adj Close']/df['Adj Close'].shift(1))
df
```

	df											
Out[1]:		Date	High	Low	Open	Close	Volume	Adj Close				
	0	2002- 01-01	35.310001	30.665001	33.325001	31.855000	1.360116e+09	20.110750	1			
	1	2002- 02-01	32.250000	28.575001	32.075001	29.170000	1.131159e+09	18.415644	-0.0881			
	2	2002- 03-01	32.500000	29.155001	29.525000	30.155001	1.073244e+09	19.037500	0.033			
	3	2002- 04-01	30.200001	25.719999	29.915001	26.129999	1.417479e+09	16.496431	-0.143			
	4	2002- 05-01	28.219999	24.174999	26.080000	25.455000	1.420266e+09	16.070288	-0.026			
	•••	•••										
	224	2020- 09-01	232.860001	196.250000	225.509995	210.330002	7.681763e+08	208.036957	-0.067			
	225	2020- 10-01	225.210007	199.619995	213.490005	202.470001	6.316180e+08	200.262650	-0.0380			
	226	2020- 11-01	228.119995	200.119995	204.289993	214.070007	5.734430e+08	211.736176	0.055			
	227	2020- 12-01	227.179993	209.110001	214.509995	222.419998	5.947617e+08	220.571106	0.040			
	228	2021- 01-01	242.639999	211.940002	222.529999	231.960007	6.480764e+08	230.031799	0.041			
	229 rows × 8 columns											
In [2]:	<pre>cc = df['cc'].iloc[1:] print('The MM estimate of mu is ', np.mean(cc)) print('The MM estimate of sigma is ', np.std(cc, ddof = 1))</pre>											
	The MM estimate of mu is 0.010688434427337648											

```
In [3]:
    from scipy.stats import norm
    import scipy.optimize as optimize

# method 1
    print(norm.fit(cc)) # the maximum likelihood estimates of mu and sigma
    print(np.std(cc, ddof = 0)) # divided by T instead of (T-1)
    print('==========')
# method 2
    def log_likelihood(params, data):
        mu, sigma = params
        # If the standard deviation prameter is negative, return a large value:
        if sigma < 0:
            return(le8)</pre>
```

```
likelihood = norm.pdf(data, loc = mu, scale = sigma)
    return -np.sum(np.log(likelihood[likelihood > 0]))
res = optimize.minimize(fun = log_likelihood, x0 = [0.1, 0.5], # initial guess
                             args = cc)
print(res)
print('The maximum likelihood estimates are: ', res.x)
(0.010688434427337648, 0.0661209290855236)
0.06612092908552358
     fun: -295.79156408333745
hess inv: array([[1.91465206e-05, 2.60456943e-08],
       [2.60456943e-08, 9.55087404e-06]])
     jac: array([-7.62939453e-06, 0.00000000e+00])
 message: 'Optimization terminated successfully.'
    nfev: 60
     nit: 8
    njev: 20
```

The maximum likelihood estimates are: [0.01068843 0.06612092]

x: array([0.01068843, 0.06612092])

In what follows, we focus on MM estimators.

Properties of estimators

Unbiasedness

status: 0
success: True

The bias of an estimator $\hat{\theta}$ is $bias(\hat{\theta},\theta)=E[\hat{\theta}]-\theta$. $\hat{\theta}$ is unbiased if the bias is 0.

Note that

$$E[\hat{\mu}] = E\left[rac{1}{T}\sum_{t=1}^T r_t
ight] = rac{1}{T}\sum_{t=1}^T E\left[r_t
ight] = rac{1}{T}\sum_{t=1}^T \mu = \mu.$$

Besides,

$$egin{aligned} E[(r_t - \hat{\mu})^2] &= E\{[(r_t - \mu) - (\hat{\mu} - \mu)]^2\} \ &= E[(r_t - \mu)^2] - 2E\left[(r_t - \mu) rac{\sum_{s=1}^T (r_s - \mu)}{T}
ight] + E[(\hat{\mu} - \mu)^2] \ &= Var(r_t) - rac{2}{T}Var(r_t) + Var(\hat{\mu}) \ &= \sigma^2 - rac{2}{T}\sigma^2 + rac{1}{T}\sigma^2 \ &= rac{T-1}{T}\sigma^2. \end{aligned}$$

and

$$E[\hat{\sigma}^2] = rac{1}{T-1} \sum_{t=1}^T E[(r_t - \hat{\mu})^2] = rac{T}{T-1} \cdot rac{T-1}{T} \sigma^2 = \sigma^2.$$

```
In [4]: # An illustration
    from scipy.stats import norm
    import matplotlib.pyplot as plt

def gen_sample(n, mu = 0.05, sigma = 0.1):
        sample = norm.rvs(loc = mu, scale = sigma, size = n)
        return np.mean(sample), np.std(sample, ddof = 1)

# generate 500 samples, each of which has sample size 1000
    np.random.seed(123)
    nsim = 500
    n = 1000
    mu_hat = np.zeros(nsim)
    sigma_hat = np.zeros(nsim)

for i in range(nsim):
    mu_hat[i], sigma_hat[i] = gen_sample(n)
```

```
In [5]:
    plt.scatter(np.linspace(1, nsim, nsim), mu_hat)
    plt.hlines(y = 0.05, xmin = 1, xmax = nsim, color = 'red')
    plt.show()

    print(np.mean(mu_hat))
    # the mean of simulated mu_hat can be approximately viewed as expected mu_hat (M # close to the true mu 0.05, which illustrates the unbiasedness of mu hat

    plt.scatter(np.linspace(1, nsim, nsim), sigma_hat)
    plt.hlines(y = 0.1, xmin = 1, xmax = nsim, color = 'red')
    plt.show()
    print(np.mean(sigma_hat))
    # the mean of simulated sigma_hat can be approximately viewed as expected sigma_# close to the true sigma 0.1, which illustrates the unbiasedness of sigma hat
```


Consistency

An estimator $\hat{\theta}$ is consistent for θ if for any $\epsilon > 0$,

$$\lim_{T o\infty}P(|\hat{ heta}- heta|>\epsilon)=0$$

```
In [6]:
    import pandas as pd

    df = pd.DataFrame(columns=['Size', 'mu_hat', 'sigma_hat']) # record simulation r

    df['Size'] = np.repeat(np.linspace(500, 5000, 10), nsim) # repeat each element n
    df['Size'] = df['Size'].astype(int)
    for i in range(df.shape[0]):
        df.iloc[i,1:3] = gen_sample(df['Size'].iloc[i])
    df
```

Out[6]:		Size	mu_hat	sigma_hat
	0	500	0.047696	0.101427
	1	500	0.040671	0.100474
	2	500	0.052619	0.105311
	3	500	0.047387	0.095438
	4	500	0.062366	0.099572
	•••	•••		
	4995	5000	0.052206	0.099992
	4996	5000	0.049375	0.100458
	4997	5000	0.050028	0.099948
	4998	5000	0.050189	0.100037
	4999	5000	0.049952	0.099341

5000 rows × 3 columns

```
In [7]:
    df.plot.scatter(x="Size",y="mu_hat")
    plt.hlines(y = 0.05, xmin = 500, xmax = 5000, color = 'red')
    plt.show()

    df.plot.scatter(x="Size",y="sigma_hat")
    plt.hlines(y = 0.1, xmin = 500, xmax = 5000, color = 'red')
    plt.show()
```


Asymptotic normality

By the CLT,

$$rac{\hat{ heta}- heta}{SE(\hat{ heta})}
ightarrow_d N(0,1).$$

Note that

$$SE(\hat{\mu}) = rac{\hat{\sigma}}{\sqrt{T}} \ SE(\hat{\sigma}^2) pprox rac{\sqrt{2}\hat{\sigma}^2}{\sqrt{T}}.$$

Loosely speaking,

$$rac{\hat{\mu}-\mu}{\hat{\sigma}/\sqrt{T}} = rac{1}{\sqrt{T}} \sum_{t=1}^T (r_t - \mu)/\hat{\sigma}$$

is approximately N(0,1) for large T.

```
In [8]:
    n, bins, patches = plt.hist(np.sqrt(1000)*(mu_hat - 0.05)/ sigma_hat, bins = 20,
    plt.plot(bins, norm.pdf(bins))
    plt.show()

    n, bins, patches = plt.hist(np.sqrt(1000/2)*(sigma_hat ** 2 - 0.01)/ (sigma_hat
    plt.plot(bins, norm.pdf(bins))
    plt.show()
```


Mean Squared Error

The MSE of an estimator $\hat{\theta}$ is bias squared plus variance of the estimator.

$$egin{aligned} MSE(\hat{ heta}) &= E[(\hat{ heta} - heta)^2] \ &= E[(\hat{ heta} - E[\hat{ heta}] + E[\hat{ heta}] - heta)^2] \ &= E[(\hat{ heta} - E[\hat{ heta}])^2] + (E[\hat{ heta}] - heta)^2 + 2E[(\hat{ heta} - E[\hat{ heta}])(E[\hat{ heta}] - heta)] \ &= Var(\hat{ heta}) + bias(\hat{ heta})^2, \end{aligned}$$

where
$$E[(\hat{ heta}-E[\hat{ heta}])=E[\hat{ heta}]-E[\hat{ heta}]=0.$$

For two estimators of θ , we prefer the one with samller MSE.

Statistical Inference

Confidence interval

Take $\hat{\sigma}^2=rac{1}{T-1}\sum_{t=1}^T(r_t-\hat{\mu})^2$ as an example. By the central limit theorem,

$$rac{\hat{\sigma}^2 - \sigma^2}{SE(\hat{\sigma}^2)}
ightarrow_d N(0,1),$$

where the asymptotic standard error $SE(\hat{\sigma}^2)=\frac{\sqrt{2}\sigma^2}{\sqrt{T}}.$ Then, the **90\%** asymptotic confidence interval is

$$[\hat{\sigma}^2 - q_{0.95}^Z SE(\hat{\sigma}^2), \hat{\sigma}^2 + q_{0.95}^Z SE(\hat{\sigma}^2)],$$

where $q^Z_{0.95}$ is the 95\%-quantile of the standard normal distribution, i.e., $\ \, \text{norm.ppf}(\, \textbf{0.95}) \,$.

Hypothesis testing

Given a rample sample, consider the two-sided test:

$$H_0:\sigma^2=\sigma_0^2 ext{ vs } H_1:\sigma^2
eq\sigma_0^2.$$

We once again rely on the asymptotic distribution

$$rac{\hat{\sigma}^2-\sigma^2}{SE(\hat{\sigma}^2)}
ightarrow_d N(0,1),$$

Under H_0 , it becomes

$$rac{\hat{\sigma}^2-\sigma_0^2}{SE(\hat{\sigma}^2)}
ightarrow_d N(0,1),$$

Given the significance level α , if the test-statistic is greater than $q_{1-\frac{\alpha}{2}}^Z$ in absolute value, we accept H_1 ; otherwise, we cannot reject H_0 .

Testing for normal distribution

$$H_0: r_t \overset{i.i.d.}{\sim} N(\mu, \sigma^2) \text{ vs } H_1: r_t \sim \text{ not normal}$$

Test statistic (Jarque-Bera statistic)

$$JB = rac{T}{6} \Biggl(\widehat{ ext{skew}}^2 + rac{(\widehat{ ext{kurt}} - 3)^2}{4} \Biggr) \, ,$$

where

$$egin{aligned} \widehat{ ext{skew}} &= rac{rac{1}{T} \sum_{t=1}^{T} (r_t - \hat{\mu})^3}{(\hat{\sigma}^2)^{3/2}} \ \widehat{ ext{kurt}} &= rac{rac{1}{T} \sum_{t=1}^{T} (r_t - \hat{\mu})^4}{(\hat{\sigma}^2)^2} \end{aligned}$$

Under H_0 ,

$$JB\sim\chi^2(2),$$

a chi-square distribution with 2 degrees of freedom.

```
In [9]:
          from scipy.stats import chi2, jarque_bera
          mu_hat = np.mean(cc) # mu_mle
          sigma hat = np.std(cc, ddof = 0) # sigma mle
          skew_hat = np.mean( (cc - mu_hat) ** 3 ) / sigma_hat ** 3
          kurt_hat = np.mean( (cc - mu_hat) ** 4 ) / sigma_hat ** 4
          print('The estimates are {:.4f}, {:.4f}, and {:.4f}'.format(mu_hat, sigm
          JB = len(cc)/6 * (skew_hat ** 2 + (kurt_hat - 3) ** 2/4)
          print('The test statistic is %.4f' % JB)
          print('The p-value is %.4f' % (1-chi2.cdf(JB, df = 2)))
         The estimates are 0.0107, 0.0661, -0.1551, and 3.6091
         The test statistic is 4.4386
         The p-value is 0.1087
In [10]:
          jarque_bera(cc)
```

Out[10]: Jarque_beraResult(statistic=4.438576660932907, pvalue=0.10868643012911916)