Um welt mikrobiologie

npikall

19.03.2025

Inhaltsverzeichnis

1	Eir	führung	3
	1.1	Mikroorganismen (MO)	. 3
		1.1.1 Definition und Hintergrund	. 3
		1.1.2 Evolution	. 4
	1.2	Vorkommen und Bedeutung	. 4
		1.2.1 Umwelt und Biospäre	. 4
		1.2.2 Gesundheitliche Aspekte	. 4
		1.2.3 Biotechnologie	. 5
		1.2.4 MO-freie Umgebungen	. 5
	1.3	Wissenschaftliche Pioniere	
		1.3.1 Leuwenhoek, Koch und Pasteur	6
		1.3.2 Beijerinck und Winogradsky	6
		1.3.3 Avery MacCarty, Mullis, Woese	6
2		sundheit	7
	2.1	Grundlagen der Interaktion	
		2.1.1 Symbiose	
		2.1.2 Pathogenität	
	2.2	Krankheitserreger	
		2.2.1 Definition	
		2.2.2 Herkunft und Übertragung	
	2.3	Bedeutung umweltassoziierter Infektionen am Bsp. Wasser	
		2.3.1 Relevanz	
		2.3.2 WHO Rahmen	
		2.3.3 Arten der Gefährdung	
		2.3.4 Analyse der mikrobiologisch hygienischen Qualität	
		2.3.5 Vorgabe der Qualitätsziele	
		Vergleich chemischer und mikrobiologischer Gefährdungen	
3			10
	3.1	Mikroskopie	
		3.1.1 Lichtmikroskop	
	3.2	Arbeiten im Labor	
		3.2.1 Gute Laborpraxis	
		3.2.2 Kultivierung von MO	
		3.2.3 Klassifizieren von MO	
4			12
		Abbau & Transformation	
	4 0	Wa abatum un d. Wa abatumalim atile	10

	4.3 Temperaturabhängigkeit biologischer Prozesse	. 12
	4.4 CSB und Redfield Stöchiometrie	. 12
	4.5 Zellertrag/Yield	. 12
5	Altfragen	13

1 Einführung

1.1 Mikroorganismen (MO)

1.1.1 Definition und Hintergrund

MO sind mit < 150μm definiert. Sie sind im Mikro-/Nanometer Bereich angesiedelt.

Mikrobiologie Analyse der dominanten Lebensform am Planeten

Mikroben dominante Biomassen und Prozesse

Prokaryoten Kein Zellkern, keine Membranen (Bakterien, Archaeen)

Eukaryoten Zellkern, Membranen (Pilze, Algen, Protozoen)

Biomoleküle RNA, DNA, Proteine, Lipide

Mikrokosmos:

- syntrophe Interaktionen (bedeutet "nähren")
- Zell-Zell Interaktionen
- Zell-Umwelt Interaktionen
- häufig Biofilmstrukturen
- großes Oberflächen-Volumen Verhältnis

Die Natur kultiviert "Mischkulturen" und nicht "Reinkulturen". Mikrobielle Gemeinschaften beeinflussen das tägliche Leben, bsp. das intestinale Mikrobiom ist für die Verdauung essentiell.

Reinkulturen werden im Labor erzeugt, und haben eine große Bedeutung für:

- experimentelle Arbeit
- Model Organismen
- Biotechnologie und Fermentation
- Diagnostische Arbeit

Es ist ein großer Aufwand reinkulturen zu erhalten.

Charakteristika des mikrobiellen Lebens:

- 1. Metabolismus
- 2. Wachstum
- 3. Evolution

Weitere Eigenschaften sind:

- Kommunikation
- Mobilität
- Differenzierung
- genetischer Austausch

Abiotische vs. biotische Kompartments:

Die 5 generellen Merkmale des Lebens:

- Form/Organistaion spezifische Organisation anhand von Biomolekülen und definierte Grenzen (Aussen/Innen)
- Metabolismus definierter Energie- and Massefluss
- Produktivität Wachstum- and Reproduktion
- Erregbarkeit Reaktion gegenüber Umweltreizen
- Evolution Veränderung in Raum und Zeit

Sind Viren Organismen? \rightarrow Nein

- Größe im Nanometerbereich
- kein Metabolismus
- benötigen Wirtszelle für Replikation

Effekte von Viren auf Wirtszelle:

- lytische Infektion: Zerstörung der Wirtszelle
- persistierende Infektion: Wirtszelle bleibt erhalten

- latente Infektion: Virusgenom wird in Wirtszelle integriert
- Transformation: Wirtszelle wird durch Virusgenom verändert (Tumorzelle)

Baltimore Classification (virale Genome):

Grafik aus dem Skript

1.1.2 Evolution

Abb. 1: Mikroorganismen besiedeln die Erde seit fast 4 Mrd. Jahren

Mikrobiota in der Umwelt:

- Flüsse, Seen, Quellen
- Grundwasser, Boden, Sedimente
- Luft, Ozeane, ...

Metabolische Möglichkeiten der Energiekonservierung:

- anerobe
- mikroaerophil
- aerob

Energiequellen:

- Licht
- organische Stoffe
- anorganische Stoffe

1.2 Vorkommen und Bedeutung

1.2.1 Umwelt und Biospäre

Mikrobielle Zellzahlen in den Top 5 Habitaten:

- Tiefseeuntergrund $4 \cdot 10^{29}$
- Boden $3 \cdot 10^{29}$
- Tiefer continentaler Untergrund $3 \cdot 10^{29}$
- Ozeane $1 \cdot 10^{29}$
- Oberer Ozeanische Sedimente $5 \cdot 10^{28}$

Biofilm Vorkommen:

- an Grenzflächen im Meer
- in Eukaryoten
- in Grundwasserleitern und Abwasserreinigungsanlagen

1.2.2 Gesundheitliche Aspekte

Die Top 3 Todesursachen um 1900 waren noch Infektionskrankheiten. Heute sind es Herz-Kreislauf-Erkrankungen.

Hauptübertragungswege:

- Person zu Person (Tröpfcheninfektion)
- Vehikel basierend (Wasser, Nahrung)
- Vektor basierend (Insekten)

Umweltmikrobiologie 1 Einführung

Die Übertragungswege beim Vehikel Wasser können sowohl **zoonotisch** (vom Tier) als auch **anthroponotisch** (vom Mensch) sein. Die Infektionen können durch Wassersicherheits Management minimiert werden.

Endemisch ständig in eine Endemiegebiet vorhanden

Epidemisch zeitlich und räumlich begrenztes massenhaftes Auftreten

Pandemisch weltweit Auftetende Epidemie

Wichtge Infektionskrankheiten:

- verursacht durch Bakterien
- verursacht durch Viren
- verursacht durch Protisten
- verursacht durch Pilze

Humanes Mikrobiom (positive Effekte):

- unterstütz bei Verdauung
- Synthese von Vitaminen und anderen Nährstoffen
- Art des Darmmikrobioms \rightarrow direkte gesundheitliche Auswirkung

1.2.3 Biotechnologie

MO haben in fast allen Bereichen von Industrie und Gewerbe eine Bedeutung. Negativ:

• Wachstum in fast allen Kompartimenten mit Wasser (Korrosion, Fowling)

Positiv:

- relative low-cost Produktion mit MO (Enzyme, chemische Rohstoffe, ...)
- Biotechnologie (Medikamente, Insulin, ...)
- Umweltbiotechnologie \rightarrow Umweltschutz (Abwasserreinigung, ...)

Beispiel Ethanolerzeugung:

1.2.4 MO-freie Umgebungen

Sterile Kompartimente in der Umwelt sind die Ausnahme!

- sterile Körperkompartimente
- heiße Kompartimente
- künstlich sterile Kompartimente

Trinkwasser ist nicht steril. Wassereigene Mikrobiota gehören zum natureigenen Bestandteil.

In der Praxis ist eine ausreichende Sterilität gegeben, wenn die Kontaminationswahrcheinlichkeit ausreichend gering ist (unter 10^{-6} liegt).

 $Es \ gibt \ viele \ verschiedene \ Methoden \ zur \ Desinfektion \ bzw. \ Sterilisation \ von \ Oberflächen \ und \ Materialien.$

1.3 Wissenschaftliche Pioniere

1.3.1 Leuwenhoek, Koch und Pasteur

- Robert Hooke (1664) benutzte ein Mikroskop
- Van Leuwenhoek (1684) benutzte ein Mikroskop
- \rightarrow Optische Mikroskope nur bis zu einer Auflösung von $0.1\mu m$ oder 100~nm

Meilensteine in der Kultivierung und Reinkultur von MO.

Louis Pasteur:

- Bedeutung der Sterilisation
- Fermentation
- pasteurisieren
- Impfstoffentwicklung

Pasteur wiederlegt 1868 Theorie der spontanen Erzeugung, wonach Leben aus unbelebter Materie entstehen kann, mit seinem Schwanenhalsflaschen Experiment.

Moderne Impfstoffplattformen:

- whole Pathogen (attentuated, inactivated)
- viral vectors (replicating, non-replicating)
- Subunit (protein subunit; polysaccharide/conjugate; toxoid; virus-like particles)
- Nucleic Acids (RNA, DNA)

Keimtheorie von Infektionskrankheiten:

- 1847 Ignaz Semmelweis (Hygiene, Händewaschen, Prävention von Infektionen)
- 1867 Lister und Pasteur (aseptische Techniken, Hinweis MO könnten Infektionen verursachen)
- 1878 Robert Koch (beweist MO verursachen Infektionen)

Koch's Postulate:

- 1. Pathogen präsent in jedem Krankheitsfall
- 2. Pathogen muss in Reinkultur wachsen
- 3. Zellen der Reinkultur lösen Krankheit in gesundem Tier aus
- 4. Pathogen muss isoliert werden und gezeigt werden, dass gleich mit ursprünglichen Pathogen ist.

1.3.2 Beijerinck und Winogradsky

Martinus Beijerinck (1851-1931) wendete erstmals die Anreicherungskultur an.

- \rightarrow hoch selektive Wachstumsmedien
- \rightarrow hoch selektive Bebrütung

Sergeij Winograd
radsky (1856-1953) isolierte erfolgreich Bakterien die $\rm N_{2^-}$ und S-Kreislauf beteiligt sind.

1.3.3 Avery MacCarty, Mullis, Woese

DNA als Basis der Vererbung. Avery McCarty \rightarrow S_{DNA} kann auch Transformation durchführen und tötet ebenfalls Mäuse (siehe Folien).

Kary Mullis und Michale Smith gelten als Entwickler der PCR (Polymerasekettenreaktion) zur Amplifikation diagnostischer DNA-Fragmente zum Nachweis und Analyse von MO aus der Umwelt und Klinik.

2 Gesundheit

2.1 Grundlagen der Interaktion

2.1.1 Symbiose

Eine Symbiose kann sowohl positiv, negativ sowie eine unmessbare Wirkung auf Symbionten haben. Zudem können die Auswirkungen zeitlich und räumlich variieren.

- Mutualism (wechselseitige Beziehung, trennung kaum möglich)
- Cooperation (wechselseitige Beziehung, jedoch nicht zwingend)
- Commensalism (nur einer hat einen Nutzen, anderer wird nicht geschädigt)
- Predation (Raubtier greift Beute als Nahrungsquelle an.)
- Parasitism (Parasit profitiert von Wirt und Wirt wird geschädigt)
- Amensalism (Unidirektionale Beeinträchtigung)
- Competition (Kampf um selbe Resource)

2.1.2 Pathogenität

Es gibt verschiedene Auffassungen der Pathogenität.

- MO speziell um Mensch zu Schaden
- MO versuchen Gleichgewicht herzustellen. Bei Ungleichgewicht kommt es zur Krankheit
- Mensch ist ein zufälliger Wirt des MO

Wahrscheinlich sind situationsbedingt alle richtig. Schließlich ist der Ausgang der Infektion abhängig von der Virulenz des MO, von den Abwehrkräften des Wirts und von der Anzahl der krankmachenden MO.

2.2 Krankheitserreger

2.2.1 Definition

Obligater pathogene Krankheitserreger verursachen immer Krankheit in Menschen

Fakulative pathogene Krankheitserreger verursachen nur bei geschwächtem Immunsystem Krankheit (Opportunisten)

Apathogene MO verursachen normal keine Krankheit außer bei stark geschwächtem Immunsystem Infektion Eindringen des MO in den Wirt, Vermehrung und Reaktion des Wirtes

Inkubationszeit Zeit zwischen Infektion und Ausbruch der Krankheit

Infektionskrankheit Infektion mit klinischer Symptomatik (Zell- Gewebeschädigende Aktivität und Abwehrreaktion)

Kolonisation Anwesenheit von MO auf Haut oder Schleimhaut

Kontamination Verunreinigung von Gegenständen, der Umwelt oder von Proben mit unerwünschten MO

Wichtige Elemente des Immunsystems:

- Hauptelemente
 - physische / chemische Barrieren
 - ightharpoonup gelöste Faktoren
 - zelluläre Faktoren
- unspezifische Immunität
 - Haut und Schleimhäute
 - Mikrobiom
 - ► Komplement System
 - Monozyten, Makrophagen, natürliche Killerzellen
- spezifische Immunität
 - Antikörper
 - ► Lymphozyten (B, T)

2.2.2 Herkunft und Übertragung

Mikrobielle Krankheitserreger können verschiedene Ursprünge haben.

- Human (Anthroponosen) \rightarrow Cholera, Hepatitis, Meningitis, ...
- Tiere (Zoonosen) \rightarrow Enteric fever, Leptospirosis, ...
- Umwelt \rightarrow Legionellose, Wound infections, ...

Anthroponosen sind besonders relevant. Ca. $\frac{2}{3}$ der Tierinfektionen sind für den Menschen relevant.

Für die Übertragung von Krankheitserregern siehe Abschnitt 1.2.2

2.3 Bedeutung umweltassoziierter Infektionen am Bsp. Wasser

2.3.1 Relevanz

Die WHO beschreibt 9 Vorrausetzungen für einen intakte Gesundheit. Darunter fällt auch sicheres sauberes Wasser zum Waschen und zur Hygiene. Eine gesündere Umwelt könnte fast 23% der jährlichen weltweiten Todesfälle verhindern.

einige wichtige WHO Definitionen für Wasser assoziierte Erkrankungen:

- Water borne Infektion durch verunreinigtes Wasser
- Water washed Krankheiten aufgrund mangelnder Sanitärerversorgung und Hygiene
- Water based Infektion durch wirbelloses Wasserlebewesen
- Water-related vector-borne Infektion durch Insekten die auf Wasser angewiesen sind (Malaria)

2.3.2 WHO Rahmen

Hazard biologische, chemische, physikalische oder radiologische Agenzien, die das Potenzial haben Schaden zu verursachen.

Das Stockholm Proposal 1999 stellt ein vereinheitlichtes Konzept für alle Arten von Wassernutzung vor. Es beinhaltet Trinkwasser, Badewasser und Wiederverwendung von Wasser.

Gesundheitsziele basieren auf tolerierbaren Risiken. Diese Risiken werden durch Risikomanagement Maßnahmen geregelt. Danach wird eine Risikorückwirkung durchgeführt.

Die WHO schlägt ein tolerierbares Gesundheitsrisiko von 10^{-6} DALYs pro Person und Jahr vor. Kann übersetzt werden in eine Infektion pro 1.000 bis 10.000 Personen pro Jahr.

2.3.3 Arten der Gefährdung

- fäkal-bürtige Pathogene
- wassereigene Pathogene

Wichtige Faktoren wasserübertragbarer intestinaler Pathogener:

- Vorkommen
- Konzentration
- Größe und Mobilität

- Umweltresistenz
- Umweltpersistenz
- Infektionsdosis
- Gesundheitsbelastung

Pathogene Legionellen:

- natürliches Vorkommen nur in niedrigen Konzentrationen
- Vermehrung bei Stagnation
- Infektion der Atemwege (durch Aerosole)

2.3.4 Analyse der mikrobiologisch hygienischen Qualität

Ein universeller Pathogen Nachweis ist nicht sinnvoll oder möglich.

- viele Arten von Darmpathogenen
- häufig un geringer aber signifikanter Konzentration
- quantitative Informationen notwendig

Umweltmikrobiologie 2 Gesundheit

• infektiös? lebensfähig? tot?

Mikrobielle Indikatoren hingegen sind einfach zu analysieren.

Mikrobielle Indikatoren:

- Verschmutzungsinidkatoren
 - ▶ Mikrobielle fäkale Verschmutzung
 - ► Indexindikatoren
 - ► Indikatoren für Infektionsrisiken
- Behandlungsindikatoren
 - ► Reduktion
 - ► Desinfektion

Der wohl bekannteste Fäkalindikator ist der E. coli.

Quantitative molekulare Diagnostik:(DNA/RNA Analyse)

- 1. Probennahme
- 2. Anreicherung
- 3. Extraktion
- 4. Lagerung
- 5. Quantifizierung
- fast jedes DNA/RNA Target ist quantifizierbar
- Probenlagerung (-80°C) notwendig
- Hybridsysteme existieren
- meist keine Info zu infektiös, lebend oder tot

2.3.5 Vorgabe der Qualitätsziele

Indirekter Dosis-Wirkungs Zusammenhang

QMRA MISSING

2.4 Vergleich chemischer und mikrobiologischer Gefährdungen

Intoxikation Schädigung durch chemische Substanz

Infektion Schädigung durch infektiösen Erreger

Krankheit Krankheitssymptome bei Wirt

Vergleich:

- chemisch
 - Moleküle, $> 10^{10} 10^{12}$ Moleküle, chronisch, biotransformation
- · mikrobiologisch
 - ightharpoonup Zellen, akut und Einzelevent, Immunreaktion

3 Methoden in der Umweltmikrobiologie

3.1 Mikroskopie

"Das Sichtbar machen des Kleinen - Die Mikroskopie"

Das Auge sieht Sachen bis 20-50 μ m. Bakterien sind meist viel kleiner (0.03 - 1 μ m).

3.1.1 Lichtmikroskop

Vergrößerung gemäß den Gesetzen der Optik unter Ausnutzung von Lichtbrechung an Glaslinsen.

- Einfache Mikroskopie: nur einzelnes optisches System (Wie eine Lupe).
- Zusammengesetzte Mikroskope: zwei oder mehr optische Systeme. Objektiv erzeugt vergrößertes Bild, welches von Okular nochmals vergrößert wird.

Gebräulichste Mikroskopieverfahren:

- Hellfeldmikroskopie:
 - ▶ Licht fällt durch Objekt
 - Objekt benötigt oft vorherige Einfärbung.
- Dunkelfeldmikroskopie
 - ${\scriptstyle \blacktriangleright}$ zentraler Lichtbereich wird abgedeckt
 - · Randstrahlen gelangen ins Objektiv
 - durch Streuung erscheint Objekt hell vor dunklem Hintergrund
- Phasenkontrastmikroskopie
 - ▶ Licht wird gespalten
 - Hintergrundlicht kommt direkt in Objektiv während Objektlicht durch Objekt muss
- Fluoreszenzmikroskopie
 - Fluoreszenzlicht muss vorhanden sein oder Farbstoff hinzugefügt werden
 - Sperrfilter blockiert das Anrege Licht und lässt nur Fluoreszenzlicht ins Objektiv
- Konfokale Mikroskopie
 - ▶ fokusiertes Laserlicht beleuchtet Objekt
 - Objektiv erfasst nur Licht aus dem Fokus
 - ▶ 3D-Bilder durch Schichtaufnahme
- Elektronenmikroskopie (1 Mio Vergrößerung)
 - ${\color{red} \bullet} \ \, {\rm Transmissionselektronenmikroskopie}$
 - Elektronenstrahl durch Objekt
 - zeigt das innere des Objektes
 - Rasterelektronenmikroskopie
 - Elektronenstrahl reflektiert an mit Mteall bedampfter Oberfläche
 - Oberflächen erkennbar

3.2 Arbeiten im Labor

3.2.1 Gute Laborpraxis

Laborsicherheit wird in der Verordnung für biologische Arbeitsstoffe 1998 geregelt.

- Laborklasse (L1-L4)
- Hygiene, Expositionsvermeidung
- Arbeitsschutz
- Mitarbeiter Schulung

Laborsicherheitsstufen:

- S1 greinges Risiko für Beschäftigte, geringes Risiko für Bevölkerung
 - Händewaschen

- · Arbeitsflächen desinfizieren
- S2 mäßiges Risiko für Beschäftigte, geringes Risiko für Bevölkerung
 - Nur befugtes Personal
 - Arbeit an Sicherheitswerkbänken
- S3 hohes Risiko für Beschäftigte, geringes Risiko für Bevölkerung
 - Schleuseneingang
 - ▶ Müll und Abwasser sterilisation
 - ► Schutzausrüstung
 - ▶ Gefilterte Luft und Notstrom
- S4 hohes Risiko für Beschäftigte, unvorhersehbares Risiko für Bevölkerung
 - Überdruckanzug
 - ▶ Unterdruck im Labor
 - fest installierte Handschuhe
 - ▶ Gasdichte Sicherheitswerkbänken

Sterilisation: Verfahren um Gegenstände von MO (einschließlich ihrer Ruhestadien) zu befreien. Meist nur eine Reduktion um einige 10-er Potenzen möglich.

- Sterilisation ein Keim bei 10^6 desinfizierten Einheiten
- Desinfizieren reduktion, sodass keine Infektion zu erwarten wäre (5 Zehnerpotenzen)
- Antiseptik: Antimikrobielle Präparate an Eintrittstellen

Log-Reduktionsstufen

$$-\log_{10}\left(\frac{\text{nach Desinf.}}{\text{vor Desinf.}}\right)$$

Sterilisationsverfahren:

- Physikalisch
 - ► Dampsterilisation (Denaturierung von Proteinen)
 - Heißluftsterilisation (weniger effizient wegen geringerer Wärmeleitfähigkeit)
 - Strahlensterilisation (ionisierende Strahlung)
- Chemisch
 - ► Nassantiseptik (mit Fluiden)
 - ► Trockenantiseptik (mit Gasen wie Ozon, Wasserstoffperoxid, Formaldehyd)

3.2.2 Kultivierung von MO

Nährmedien und Kultivierung:

MISSING

3.2.3 Klassifizieren von MO

4 Kometabolismus, Abbau und Transformation

4.1 Abbau & Transformation

Abbau ist ein Prozess bei dem org. Chemikalien biologisch und deren Enzyme zersetzt werden. Im Idealfall Abbau bis zur Mineralisierung (anorg. Stoffe). Abbau kann auch in stabilen Transformationsprodukten stehen bleiben. Es gibt drei Stufen:

- Umwandlung in ATP (Adenosintriphosphat)
- Citratzyklus zur Bildung zentraler Intermediate unter ATP Verbrauch
- Ausscheidung Stoffwechselprodukte

Weiters unterscheidet man zwischen folgenden Abbaubarkeiten:

- Bio. leicht abbaubar
- Bio. schwer abbaubar
- Persistente Stoffe / refraktäre Stoffe

Ein Metabolit ist zwischen Substrat (Ausgang) und Produkt (Ende), also ein Intermediat. Diese müssen in Folgereaktionen eintreten können und haben eine begrenzte Halbwertszeit. Ein Sekundärmetabolit ist meistens nicht essentiell für Organismen und wird oft als Stoffwechselprodukt ausgeschieden. Transformationsprodukte

Durch Synergismus, also dem Teilabbau von Stoffen durch viele MO, werden gemeinschaftlich Kontaminenten mieralisiert. Bei der Kometabolisierung wird der Abbau von Kontaminenten durch zugabe von Nährstoffen oder Substrate ermöglicht. Der Kontaminent reagiert dann sozusagen mit.

4.2 Wachstum und Wachstumskinetik

4.3 Temperaturabhängigkeit biologischer Prozesse

4.4 CSB und Redfield Stöchiometrie

4.5 Zellertrag/Yield

Yield bezeichnet die Biomasseausbeute bezogen auf das verbrauchte Substrat. missing

5 Altfragen

Frage 1

Was ist die Bedeutung von Phosphor in der Umweltmikrobiologie?

Phosphor ist wichtigstes wachstumslimitierendes Substrat. Es spielt eine zentrale Rolle beim Energiestoffwechsel (ATP) und ist Bestandteil der DNA und der Zellmembran. Phosphat (PO_4^{3-}) ist dabei die relevanteste Form.

? Frage 2

Beschreiben Sie den aeroben Abbau von aromatischen Kohlenwasserstoffen.

Metabolisierung in 3 Stufen, wobei das Grundmuster des aeroben abbaus bei monocyklischen Aromaten, Phenolen und Carbonsäuren und des letzten Ringes beim Abbau von PAK gleich ist.

- 1. Benzolring, unter Verbrauch von Sauerstoff in Brenzkatechin, umgewandelt, das zwei benachbarte Hydroxylgruppen enthält.
- 2. Ring des Brenzkatechins wird unter Verbrauch von Sauerstoff zwischen den beiden Hydroxylgruppen oder zwischen einer OH-Gruppe und einem C-Atom gespalten.
- 3. Die offenkettigen Verbindungen werden weiter in Säuren und Aldehyde gespalten, die in den Stoffwechsel eingeschleust werden.

? Frage 3

Was ist die Definition für *Hazard* laut WHO?

Biologische, chemische, physikalische oder radiologische Agenzien, die das Potenzial haben Schaden zu verursachen. (WHO 2006)

? Frage 4

Beschreiben Sie die Mechanismen der mikrobiellen Korrosion von Stahl.

MISSING

? Frage 5

Welche sind die drei Hauptübertragungswege von Infektionserkrankungen?

- Person zu Person (direkt, indirekt, airborne)
- Vehikel basierend (waterborne, foodborne, airborne, soilborne)
- Vektor basierend (anthropods/insects)

? Frage 6

Was ist μ_{\max} und K_s in der Wachstumskinetik?

 K_s ist die Sättigungskonstante, Nährstoffkonzentration bei $\mu=0.5\cdot\mu_{\rm max} \quad [{\rm mg\ /l}]$ $\mu_{\rm max}$ ist die maximale Wachstumsrate (Zunahme der Zellzahl/-masse pro Zeiteinheit)

$$\mu = \mu_{\max} \frac{S}{S + K_{S_{max}}}$$

? Frage 7

Beschreiben Sie die Unterschiede zwischen kontinuierlicher Fermentation und Belebungsbecken?

Kontinuierliche Fermentation: Ein vollständig durchmischtes Becken, dem kontinuierlich Abwasser (Nährlösung) zufließt. Dort wachsen MO die das zugeführte Substrat verbrauchen und das System wieder verlassen. Gleichgewichtszustand, d.h. Konzentration im Ablauf bleibt gleich. Ist qR (Wachstumsrate der MO) größer als μ_{max} dann werden MO ausgewaschen. Bei $0 < qR < \mu_{max}$ ist das System selbstregulierend.

Belebungsbecken: Beim Belebungsbecken wird qR und μ_{max} entkoppelt, damit das Volumen des Beckens und die erforderliche Verweilzeit klein gehalten werden. Dies geschieht durch eine Rückführung der MO aus dem Ablauf einer kont. Fermentation in den belüfteten Reaktor. In der Praxis erfolgt das durch Abtrennung der Biomasse im Nachklärbecken oder auch Membranfiltration.

? Frage 8

Charakterisieren Sie die Grün Alge.

Grünalge: (450 Gattungen, >7500 Arten)

- größte Gruppe innerhalb der Algen
- Einzellig, auch koloniebildende Formen
- Lebensweise autotroph (z.T. parasitär auf Landpflanzen)
- Reservestoffe: Stärke gespeichert in Pyrenoiden
- Beweglichkeit: manche Arten 1-2 Flagellen
- Zellwand: innere Lage Zellulose, äußere Lage Pektin
- Habitat: Süßwasser, einige marin, terrestrisch in feuchter Umgebung
- Fortpflanzug: asexuell und sexuell

? Frage 9

Beschreiben Sie die Unterschiede zwichen Katabolismus und Anabolismus.

Katabolismus: Abbau von Stoffwechselprodukten von komplexen zu einfachen Molekülen. Energiefreisetzende (exergone) Stoffumsetzungen. Dient zur Energiegewinnung, Lieferung von Baustoffen und der Entgiftung.

Anabolismus: Ist die Gesamtheit der energieverbrauchenden (endergonen) Stoffumsetzungen und gleichzeitg der aufbauenden Stoffwechselreaktionen.

? Frage 10

Erklären Sie Viroid, defekte Viren und Prionen.

Viroide: kurzer, zu einem Ring geschlossener RNA Einzelstrang (250-400 Basen). Freie DNA, keine Proteine oder Lipide. Replikation in Pflanzenzellen.

defekte Viren: Nicht im Besitz aller Gene für einen vollständigen Infektionszyklus. Benötigen Helfervirus. Konkurenz um Replikationsapparat, Hüllproteine und Capsidproteine.

Prionen: Infektiöse Proteine (falsch gefaltet). Verursachen spongiforme Enzephalopathien. Beispiel:

Umweltmikrobiologie 5 Altfragen

Creutzfeld-Jakob, BSE, Scarpie. Unempfindlich gegenüber UV- und Gammastrahlen, Hitze und Desinfektionsmittel.