The letter k denotes a field.

Exercise 1. Let Y and Z be two closed subschemes of X. Show that $(Y \times_X Z)_{top} = Y_{top} \cap Z_{top}$ as subspaces of X_{top} .

Exercise 2. Let X a scheme of finite type over Spec k. Assume that X is integral with function field K (the residue field $\kappa(\eta)$ at the generic point η). Show that dim X coincides with the transcendence degree of K over k.

Exercise 3. Let K/k be a field extension, and A a finitely generated k-algebra. Show that $\dim(A \otimes_k K) = \dim A$.

Exercise 4. Let A, B two finitely generated k-algebras. Show that $\dim(A \otimes_k B) = \dim A + \dim B$.

Exercise 5. Let Z be a closed subscheme of \mathbb{A}^2_k . Consider the two projections $p, q \colon \mathbb{A}^2_k = \mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k \to \mathbb{A}^1_k$. If dim Z = 1, show that $p|_Z$ or $q|_Z$ is dominant (i.e. has dense image).

Exercise 6. Let S be a commutative N-graded ring, and $f \in S_0$. Describe the open subscheme $D_h(f) \subset \text{Proj}(S)$, and give an example where it is not affine.

Exercise 7 (Optional). Assume that k is algebraically closed. Let X be an integral scheme of finite type over k. Denote by X_{Var} the set of closed points in X, with its induced topology. Show that $X \mapsto X_{Var}$ induces an equivalence of categories between:

- integral, quasi-projective schemes over Spec k and morphisms of schemes over Spec k,
- and quasi-projective k-varieties and their morphisms.