UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATIONS, DECEMBER 2001

Third Year - Program 6 - Chemical

CHE332F - APPLIED REACTION KINETICS

Examiner - C. A. Mims

Instructions: There are 5 questions, 4 with multiple parts. Total marks = 100. Indicate prominently the number and part (a,b,c, etc.)) of each question by its solution in the exam booklet(s).

	DON'T PANIC!
17 total marks	1. Theories of reactions: The reaction of oxygen atoms with methane
	[1] $O \div CH_4 \rightarrow OH + CH_3$
	has a rate constant of 1.3 x 10 ⁶ L mol s ⁻¹ at 500K.
10marks	►(a)Estimate the rate constant for the reaction of O atoms with neo-pentane (tetramethylmethane, C(CH ₃) ₄ at 500K, i.e.
	$O + C(CH_3)_4 \rightarrow C(CH_3)_3(CH_2) + OH$
	Molecular diameters: neo-pentane = 600pm; methane = 400pm; O atom = 150pm Molar masses: neopentane = 0.072kg; methane = 0.016 kg; O atom = 0.016 kg. Energy needed (energy barrier) with neopentane is 6 kJ/mol lower than for methane (because of slightly weaker C-H bond in neopentane).
	State any assumptions you made in the calculation above and justify them.
2 marks	➤(b)➤Draw a qualitative structure for the transition state in reaction [1] above.
3 marks	➤(c)➤True or false? A smaller pre-exponential factor in the rate constant corresponds to a more positive entropy of activation in transition state theory. Explain in 25 words or less.
2 marks	➤(d)➤How are theories of elementary reactions useful to the applied chemist/engineer? (be brief).

50 total marks	2. Ideal reactors: The following data were obtained in a laboratory CSTR for the reforming of methanol.										
		mass of catalyst	FA。 CH₃OH (liquid, 25C)	Feed			Dry gas (no H₂O, CH₃OH) Outlet mole fraction				
	T (°C)	g	mol min ⁻¹	H₂O/ CH₃OH	N₂/ CH₃OH	CO ₂ / CH ₃ OH	H ₂	CO ₂	(CH ₃) ₂ O	co	N ₂
	256	35	0.46	1.1	0.4	0.1	0.565	0.188	0.00534	0.0006	0.241
7 marks	>(a)>Calculate the reaction rate (mol kg _{cal} min) for production of CO ₂ , H ₂ , CO, and dimethyl ether (CH ₃) ₂ O in this reactor. Use the N ₂ tracer.										
8 marks	►(b)>Calculate the methanol conversion and the carbon-based selectivities to CO, CO ₂ , and dimethyl ether. (Assume there are no unmeasured carbon-containing products).										
3 marks	➤(c)➤Why are CSTRs useful for laboratory investigations of reaction kinetics to determine rate laws? Make a comparison to PFRs in your answer.										
	The following reaction network is fit to data on this system. [1] $CH_3OH + H_2O \rightarrow CO_2 + 3H_2$ $r_1 = k_1 P_{CH3OH}^{1/2} P_{H2O}^{1/2}$ [2] $2 CH_3OH \rightarrow (CH_3)_2O + H_2O$ $r_2 = k_2 P_{CH3OH} P_{H2O}^{1/2}$ [3] $CO_2 + H_2 \rightarrow CO + H_2O$ $r_3 = k_3 P_{CO_2} P_{H2}^{1/2} P_{H2O}^{1/2}$ [4] $k_1 (300^{\circ}C) = 71 \text{ mol atm}^{-1} \text{ kg}_{cat}^{-1} \text{ min}^{-1}$ [5] $k_2 (300^{\circ}C) = 0.45 \text{ mol atm}^{-1/2} \text{ kg}_{cat}^{-1} \text{ min}^{-1}$ [6] $k_3 (300^{\circ}C) = 0.013 \text{ mol atm}^{-1} \text{ kg}_{cat}^{-1} \text{ min}^{-1}$										
	A 1:1 mixture of CH ₃ OH:H ₂ O (only) is fed at 300°C and at 1 atm pressure in the reactor. Answer the following, using these conditions and the rate laws above.										
6 marks	►(d)►What are the initial (at very low conversion) carbon-based selectivities to the three products: CO, CO ₂ , and dimethyl ether.										
6 marks	►(e)>Sketch (qualitatively) the dependence of the selectivities to CO, CO ₂ , and dimethyl ether as a function of the methanol conversion in a PFR.										
17marks	►(f)►Assume only reaction 1 is occurring. Calculate how much catalyst will be needed to react 0.100L/min of liquid methanol feed (density = 0.8 g cm ⁻³) to 98% conversion										
3 marks	_>(g)>	➤(g)➤Discuss the importance of selectivity in chemical process engineering. (be brief)						bric <u>f)</u>			

ſ								
15 total marks	3.Rate Laws: The following data were obtained for the oxidation of soot (solid carbon) by NO ₂ at 350°C on an active diesel exhaust catalytic filter.							
	$C(solid) \pm 2 NO_2 \rightarrow CO_2 + NO$							
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
	0.000800 0.317 0.002700 1.96							
6 marks	►(a)► Show that this reaction obeys a power law in P _{NO2} over the measured range. Calculate the best reaction order and value for the rate constant (with units).							
	At 390°C, the rate is 0.745 mol C (mol C present) ⁻¹ hour ⁻¹ in the presence of .000500 atm of NO ₂ . Assume the rate law is separable (temperature - composition) and Arrhenius temperature dependence is followed.							
6 marks	>(b)> Calculate the values (with units) of the activation energy and pre-exponential factor for this reaction.							
3 marks	\rightarrow (c)> What other parameters besides temperature and P_{NO2} could the rate of this reaction depend on?							
15 total marks	4. The mechanism of a simple reaction A - 2C involves the following steps							
	$A - 2B^*$; rate constant k_1 $2B^* - A$; rate constant k_2 $B^* - C$; rate constant k_3							
5 marks	►(a) ➤ Treat B* as a reactive intermediate and derive the rate law for the reaction applying the stationary state approximation							
5 marks	►(b)► What is the simplified rate law if k_1 , $k_2 >> k_3$? and what activation energy would be measured in this case if $E_{A1} = 95$ kJ/mol, $E_{A2} = 35$ kJ/mol and $E_{A3} = 112$ kJ/mol?							
5 marks	>(c)> Reaction 2 in question 2 is equilibrium limited (i.e. reversible). The equilibrium constant is 0.04 at 300°C. Write a general equation for the net rate of this reaction taking the equilibrium limit into account. Discuss the relevance to reactor design.							
3 marks	►4.➤ Compose a short quantitative question (about reaction kinetics) for next year's class. Base it on something I didn't ask about on this exam.							

Enjoy your vacation/holiday !

POSSIBLY USEFUL INTEGRALS:

$$\int (a+b\times)^n dx = \frac{(a+b\times)^{n+1}}{(n+1)b} n \neq -1$$

$$\int \frac{dx}{a+bx} = \frac{1}{b} \ln (a+bx)$$