

FIG. 2 (PRIOR ART)

FIG. 3 (PRIOR ART)

F1G. 4

F1G. 5

FIG. 6A

F1G. 7

FIG. 12

	Time-Domain Down-Scale using Truncation & Toggle Simulation							
	Offset 0.25 <= the bias of offset value							
	Input Size 1024 <= the input size to be Down-Scale							
	Output Size 800 <= the output size to display							
•	Factor(I/O) 32/25 Conclusion: Bias I/4 Offset 1/2 toggle, Round to 0.5							
	Output	Offset0	Trunc0	Offsetl	Truncl	Effect	Interpolation	
	0	1/4	0	3/4	0	0	0	. 0
	1	1 1/2	1	2	2	1.5	1.23	1.5
	2	2 4/5	2	3 1/3	3	2. 5	2. 56	2. 5
	3	4	4	4 3/5	4	4	3. 8.1	4
	4	5 3/8	5	5 7/8	5	5	5. 12	5
	5	6 2/3	6	7 1/7	7	6. 5	6. 4	6. 5
	6	8	7	8 3/7	8	7. 5	7. 68	7. 5
,	7_	9 1/5	9	9 5/7	9	9	8. 9ti	9
	8	10 1/2	10	11	10	10	10.24	10
	9	11 7/9	11	12 1/4	12	11.5	11. 52	11.5
	10	13	13	13 5/9	13	13	12. 8	13
	11	14 1/3	14	14 5/6	14	14	. 14. (8	14
	12	15 3/5	15	16 1/9	16	15. 5	15, 26	15. 5
. :	13	16 8/9	16	17 2/5	17	16.5	16. 64	16. 5
	14	18 1/6	18	18 2/3	18	18	17. 92	18
	15	19 4/9	19	20	19	19	19. 2	19
	16	20 3/4	20	21 2/9	21	20.5	20. 48	20.5
	17	22	22	22 1/2	22	22	21. 76	22
	18	23 2/7	23	23 4/5	23	23	23. 04	23
	19	24 4/7	24	25	25	24. 5	24. 32	24.5
	20	25 6/7	25	26 1/3	26	25. 5	25. 6	25. 5
	21	27 1/8	27	27 5/8	27	27	26.83	27
	22	28 2/5	28	29	28	28	28. 16	28
	23	29 2/3	29	30 1/5	30	29.5	29. 4.1	29. 5
	24	31	30	31 1/2	31	30. 5	30. 7:2	30. 5
	25	32 1/4	32	32 3/4	32	32	32	32
	Note: the last output of the period should be restricted within the last input of the period, and should not exceed the input of next period							
	FIG. 13							