

Past Papers Advanced Higher Chemistry

2022 Marking Scheme

Grade	Mark Required		°/ condidates cabiavina anada	
Awarded	(/ ₁₃₀)	%	% candidates achieving grade	
Α	+	%	%	
В	+	%	%	
С	+	%	%	
D	+	%	%	
No award	<	، %	%	

Section:	Multiple Choice	Extended Answer	Project
Average Mark:	/25	/70	No Project in 2022

20	22 /	Adv	Higher	Chemis	stry Mo	rking	Scheme
M <i>C</i> Qu	Answer	% Pupils Correct		R	easonir	19	
1	В		☑B Heat energy ☑C Lines are for ☑D More electr	☑A Each element does have a characteristic spectrum ☑B Heat energy is used to promote electrons in emission spectroscopy ☑C Lines are formed by electrons releasing energy as they drop down energy levels ☑D More electrons dropping down levels leads to more intense lines formed			
2	D			ronic configur ronic configur			
3	D		 L⁻ is a bit M²⁺ pairs 	olex ion means M ² dentate ligand mo s up with 3 L ⁻ bide of complex ion =	iking 2 dative cov entate ligands		bonds with ligands. with M ²⁺
4	A		☑B Adsorption o ☑C A catalyst w	✓A homogeneous catalysts are in the same state as the reactants B Adsorption of reactive molecules must take place in heterogeneous catalysis C A catalyst will reduce the activation energy for a reaction pathway C C C C C C C C C C C C C C C C C C C			
5	D			\blacksquare A CI is reduced to CI $^-$ and I^- is oxidised to I_2 but are different substance \blacksquare B IO_3 is reduced to I_2 and I^- is oxidised to I_2 but are different substances \blacksquare C CI $_2$ is reduced to CI $^-$ and I_2 is oxidised to IO_3^- but are different substances \blacksquare D CI $_2$ is reduced to CI $^-$ and at the same time CI $_2$ is oxidised to CIO $^-$ Reaction Reduction reaction Oxidation Reaction Equation $CI_2 + 2e^- \rightarrow 2CI^ CI_2 + 2H_2O \rightarrow 2CIO^- + 4H^+ + 2e^-$			
6	С		☑B The ionic pro ☑C [H₃O⁺] = [Ob	I A pH = 7.00 is true at 25°C (298K) I B The ionic product $K_w = [H_3O^+][OH^-] = 1.01 \times 10^{-14}$ is only true at 25°C (298K) I C $[H_3O^+] = [OH^-]$ is true for any neutral solution at any temperature I D $[H_3O^+] = 1.00 \times 10^{-7}$ at 25°C (298K)			
7	A		 ☑A [SO₃] will increase with an increase in pressure but value of K is unchanged ☑B Changes to pressure do not change the value of the equilibrium constant K ☑C Increase in pressure will favour pressure-reducing forward reaction ∴ ↑ [SO₃] ☑D Increase in pressure will favour pressure-reducing forward reaction ∴ ↑ [SO₃] 				
8	D		enthalpy of formation is the energy change for the formation of 1mol of a substance from its elements in their natural state. A Reactants are ions and not elements in their natural state B Reactants are ions and not elements in their natural state C C (I(g) is not the natural state of chlorine C (I ₂ (g)				
9	В		 ∴ [B]¹ means B ☑A Doubling [A] ☑B Doubling [B] ☑C Doubling [B] 	Rate = k[A] ² [B] : [A] ² means A is 2nd order (caused by having two particles of A in rate determining step) : [B] ¹ means B is 1st order (caused by having one particles of B in rate determining step) EA Doubling [A] leads to a quadrupling of reaction rate as A is 2 nd order BD Doubling [B] leads to a doubling of reaction rate as B is 1 st order EC Doubling [B] leads to a doubling of reaction rate as B is 1 st order ED Doubling [A] and [B] would lead to a combined quadrupling of reaction rate.			
10	D		☑B The order on ☑C The speed on ☑D The individu		cided by the slow ermined by the sl ermined by expe	v rate deteri owest step - rimentally al	

11	С	 ☒A there are no changes of state in this graph (indicated by vertical sections) ☒B there are no changes of state in this graph (indicated by vertical sections) ☒C Evaporation (2nd vertical section) gives a bigger increase in entropy than melting ☒D Evaporation (2nd vertical section) gives a bigger increase in entropy than melting
12	С	 ☑A diagram shows sp³ hybridisation as one 2s and three 2p orbitals have hybridised ☑B diagram shows sp² hybridisation as one 2s and two 2p orbitals have hybridised ☑C diagram shows sp hybridisation as one 2s and one 2p orbitals have hybridised ☑D none of the three 2p orbitals have hybridised in this diagram
13	В	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
14	A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15	D	A phenyl group is a benzene ring attached as a side-group. Benzene has a formula of C_6H_6 side group has a formula of $-C_6H_5$
16		H H H H H H H H H H H H H H H H H H H
17	В	ethoxy- side group on C ₁ H H H H H H H H H H H H H H H H H H H
18	D	 ☑A H atom available on right side to rearrange C=O group to form -OH group ☑B H atom available on right side to rearrange C=O group to form -OH group ☑C H atom available on left side to rearrange C=O group to form -OH group ☑D no H atoms available on either side to rearrange C=O group to form -OH group

19	В	H CH3 O A chiral carbon is a carbon with four different groups attached. This leads to non-superimposable mirror images in three dimensions CH3 H2N-C-COOH				
20	С					
		ED Formula C_4H_{10} by smallest value) $= 1$ $= 2$ Empirical Formula CH_2				
21	В	 ★A C₃H₈O₂ has gfm= (3×12)+(8×1)+(2×16) = 36+8+32 = 76 ★B C₃H₆O₂ has gfm= (3×12)+(6×1)+(2×16) = 36+6+32 = 74 ★C C₃H₈O has gfm= (3×12)+(8×1)+(1×16) = 36+8+16 = 72 ★D C₃H₈O has gfm= (3×12)+(8×1)+(1×16) = 36+8+16 = 72 				
22	A	no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{6.7}{134}$ = 0.05mol sodium carbonate + malic acid \longrightarrow sodium malate + water + carbon dioxide Na ₂ CO ₃ + C ₄ H ₆ O ₅ \longrightarrow Na ₂ C ₄ H ₄ O ₅ + H ₂ O + CO ₂ 1mol 1mol 0.05mol 0.05mol				
23	В	$\begin{array}{c} \text{gfm } \textit{CaCl}_{2} \cdot 2\text{H}_{2}\textit{O} = (1\times40.1) + (2\times35.5) + (4\times1) + (2\times16) = 40.1 + 71 + 4 + 32 = 147.1g \\ \text{gfm } \textit{CaCl}_{2} = (1\times40.1) + (2\times35.5) & = 40.1 + 71 & = 111.1g \\ \\ \hline & \textbf{CaCl}_{2} \cdot 2\textbf{H}_{2}\textbf{O} \longrightarrow \textbf{CaCl}_{2} + 2\textbf{H}_{2}\textbf{O} \\ \text{1mol} & \text{1mol} \\ 147.1g & \text{111.1g} \\ 2.52g & \text{111.1g} \times {}^{2.52}/_{147.1} \\ & = 1.90g \end{array}$				
24	A	☑A Distillation will identify the boiling point of compound while purifying compound ☑B Recrystallisation will purify a compound but not help identify the compound ☑C Solvent Extraction will purify a compound but not help identify the compound ☑D Melting Point Determination will identify a compound but not purify compound				
25	В	 ☑ Melting Point Determination will identify a compound but not purify compound ☑ A Impurities could move same distance as spot ☑ B There is no reactant left (R) and only the product spot (S) is present ☑ C More than one chemical could be present in the spot at (S) ☑ D Some reactions at equilibrium neve reach completion 				

2022 Adv Higher Chemistry Marking Scl			
Long Qu	Answer	Reasoning	
1a(i)	∞ figure of 8 shape	Subshell Type s p d Angular Momentum Quantum number (l) l = 0 l = 1 l = 2 Shape(s)	
1 a(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n 2p subshell is in 2 nd shell and has a value for Principal quantum number (n) of n=2 l p subshells have an angular momentum quantum number (l) of l =1 m _l p subshells have a magnetic quantum number (m _l) of -l to +l : -1, 0, +1 m _s All electrons either have a spin magnetic quantum number of either +½ or -½	
1b	Removing electron from oxygen creates a half-filled 2p orbital requires less energy as a half-filled p subshell is more stable. Or Removing an electron from nitrogen breaks a more stable half-filled 2p orbital which required more energy to break	Element Nitrogen N Oxygen O Electronic configuration before electron removal Electronic configuration after electron removal Reasoning Reasoning Nitrogen atom has a half-filled 2p orbital and this is more stable electrons in the 2p orbital. More energy required to remove an electron from a half-filled subshell. More energy required to remove an electron from a half-filled subshell. Nitrogen atom has 4 electrons in 2p orbitals and losing an electron to become O' ion creates the more stable half-filled subshell. Less energy is required to create a half-filled subshell by removing an electron.	
1c	1.05 × 10 ⁻¹⁶	$E = R \times Z^{2} \times (1 - \frac{1}{n^{2}})$ $= 2.18 \times 10^{-18} \times (8)^{2} \times (1 - \frac{1}{2^{2}})$ $= 2.18 \times 10^{-18} \times 64 \times (1 - 0.25)$ $= 2.18 \times 10^{-18} \times 64 \times (0.75)$ $= 1.0464 \times 10^{-16} J$	
2a	Reaction not feasible at 298K as ∆G>0	$\Delta H^{\circ} = \Sigma \Delta H_{f}^{\circ}(products) - \Sigma \Delta H_{f}^{\circ}(reactants)$ $= (1x90.3) - (\frac{1}{2}x0) + (\frac{1}{2}x0)$ $= 90.3 - 0$ $= 90.3 \text{ kJ mol}^{-1}$ $\Delta S^{\circ} = \Sigma S^{\circ}(products) - \Sigma S^{\circ}(reactants)$ $= (1x211) - (\frac{1}{2}x192) + (\frac{1}{2}x205)$ $= 211 - (96 + 102.5)$ $= 211 - 198.5$ $= 12.5 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = 90.3 - (298x \frac{12.5}{1000}) = 90.3 - (3.725) = +86.6 \text{ kJ mol}^{-1}$	
2b	600	5 litres per minute = 300 litres per hour 2ppm = 2mg per litre 1litre = 2mg 300 litres = 2mg x ³⁰⁰ / ₁ = 600 mg	
2c	+2 +4 +3	NO total oxidation state from $O = 1 \times -2 = -2$.: Oxidation state of $N = +2$ NO ₂ total oxidation state from $O = 2 \times -2 = -4$.: Oxidation state of $N = +4$ N ₂ O ₃ total oxidation state from $O = 3 \times -2 = -6$.: Oxidation State of $N = +6/2 = +3$	

		no. of mol in slow step		Effect on Reactant	Rate Equation	
2d(i)A	Rate = $k [NO]^2 [H_2]$	2mol NO	2 nd order 1 st order	[NO] ²	Rate = k [NO] ² [H ₂]	
		1mol H ₂		[H ₂]		
2d(i)B	9.94×10 ⁻³	[NO]] ² =	$\frac{0.0040}{(\times 10^3 \times 0.015)} = 9.$.87×10 ⁻⁵	
2u(1)D	7.7 1210	[NO] = 9.94×10 ⁻³ mol l ⁻¹				
	acid	Strong acids are acid				
3a		Weak acids are acids with partially dissociate into ions.				
	par many dissociates			11		
			•	- ½log₀c		
21	4.000			$\frac{1}{2}\log_{10}(3.7)$	•	
3b(i)	1.298			$-\frac{1}{2}(0.574)$	+)	
				0.287		
			pH = 1.298			
		gfm HF = (1×1)+(1×19)				
3b(ii)	7.5%	3.75mol of HF in 1litr			_	
JD(II)	7.070		HF solution ox. mass of 1000g	/5g	– × 100 = 7.5%	
		would have appro	4 4	4 5	5 6 6	
		electron pairs electron pairs elect	ron pairs electron pairs elec	tron pairs electron pairs elect	ron pairs electron pairs electron pairs bonding 6 bonding 4 bonding	
					lone pairs + 0 lone pairs + 2 lone pairs	
		CI — Be — CI B B	Cump H Numb		-CI F F F F F F F	
	tetrahedral	F F H	H H	H CI Trigonal -	F F Square	
3b(iii)		Linear Planar	Pyramidal A	Bipyramidal 1-8	Shaped Octahedral Planar	
		Electron	pairs = <u>No of outer elect</u>	rons on central atom + no. of bo	onds - charge_	
			=	2 + 4	- 0	
			=	8 2		
				ons (4 bonding pairs)		
		Heating under reflux allows heating of a chemical reaction mixture over				
4a(i)A	Heating under	 an extended period of time without volatile substances escaping a round-bottomed flask is used containing anti-bumping granules 				
	reflux			ants in the flask	iri-bumping granules	
					densation of reaction	
4 D	Anti-bumping granules			s escape of volat		
4a(i)B		 flask is hea 	ted using an app	ropriate heat sou	ırce e.g. heating	
		mantle it th	ere are flammat	ole reactant/proc	ducts involved.	
		H H		(
		c/n/c/c	_o-+ H ⁺ -		C N C OH	
		∬ O H			∬ O H	
		few ions			mainly molecules	
		H⁺ ions and nega	tive ions from	n weak acids in	oin up and form	
		molecules of wea		, wear acids je	om up and form	
40(::)	Answer to include:			tha malacula a	ida companad to	
4a(ii)	, mover to include.	•			ide compared to	
			ide of the equ		ء جا النسمة	
			•	oluble and the		
		_		f weak acid ior		
			•	juilibrium of th		
		 reassocia 	tion of H ⁺ ions	s and weak acid	d negative ions to	
		form mole	ecules of weak	k acid		

4a(iii)A	Buchner funnel with vacuum filtration	Vacuum filtration: filtration under reduced pressure • faster means of separating a precipitate from a filtrate Büchner, Hirsch or sintered glass funnel can be used.			
4a(iii)B	To purify the hippuric acid	Recrystallisation: purify an impure solid with: • dissolving an impure solid gently in a minimum volume of a hot solvent • hot filtration of resulting mixture to remove any insoluble impurities • cooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impurities dissolved in the solvent • filtering, washing and drying the pure crystals solvent for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures.			
4b(i)	Different atoms types in bonds and different strengths of bonds decides which wavelengths/wavenumb ers of infrared are absorbed.	 When infrared radiation is absorbed by organic compounds, bonds within the molecule vibrate/stretch/bend wavelengths of infrared radiation absorbed depend on the type of atoms that make up the bond and the strength of the bond infrared radiation is passed through a sample of the organic compound and their into a detector that measures the intensity of the transmitted radiation at different wavelengths. The absorbance of infrared radiation is measured in wavenumbers, measured in cm⁻¹ 			
4b(ii)	3500 - 3300	Information found in data booklet.			
4c(i)	4?	1H Grouping 1 ArH (9.0-6.9) 2 Amide link (9.4-5.0) 3 -CH2- (2) 4 R-CH2-COOH (2.7-2.0)			
4c(ii)	doublet	Singlet Doublet Triplet quartet quintet no adjacent 1 adjacent 2 adjacent 3 adjacent 4 adjacent hydrogens hydrogens hydrogens hydrogens			
4c(iii)		 ¹H nuclei behave like tiny magnets and in a strong magnetic field some align with the field (low energy), whilst the rest align against it (higher energy). Absorption of radiation in the radio frequency region of the electromagnetic spect causes the 1H nuclei to 'flip' from the lower to the higher energy alignment. As they fall back from the higher to the lower energy alignment the emitted radiat is detected and plotted on a spectrum. In a 1H NMR spectrum the chemical shift, δ, (peak position) is related to the environment of the 1H atom and is measured in parts per million (ppm). The area under the peak is related to the number of 1H atoms in that environment and is oftegiven by an integration curve on a spectrum. The height of an integration curve is proportional the number of 1H atoms in that environment, and so a ratio of ¹H atoms in each environment obe determined. 			
4d	Open Question to include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			

5a		Ligands may be negative ions or molecules with non-bonding pairs of electrons that they donate to the central metal atom or ion, forming dative covalent bonds. Electrons in approaching ligands cause the splitting of d orbitals into higher and lower energies as the electrons along the axes to be repelled. • ligands that cause a large difference in energy between subsets of d orbitals are strong field ligands. • weak field ligands cause a small energy difference. • spectrochemical series is a list of ligands placed in order of their ability to split d orbitals			
5b(i)	Orbitals fill up in order of increasing energy	Aufbau Principle: Electrons fill up in order of increasing energy: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s			
5b(ii) <i>A</i>	Both conclusions required:	Conclusion 1 Higher charge of Cobalt in complex gives higher energy required to pair two electrons with opposite spin (P) Conclusion 2: Higher spin state has lower difference in energy between subsets of d orbitals (Δ) Complex Ion $[Co(OH_2)_8]^{2^-}$ $[Co$			
5b(ii)B	Hexafluoridocobaltate (III)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
5b(ii) <i>C</i>		Electronic Configuration Low Spin state of Co ³⁺ High Spin State of Co ³⁺ Element Cobalt Configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ² Cobalt Co ³⁺ Ion Configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶			
6a(i)	Circled region of alternating C=C double bonds and C-C single bond.	NH HN OH			
6a(ii)	Antibonding molecular orbitals are higher in energy	Electrons fill bonding molecular orbitals, leaving higher energy antibonding molecular orbitals unfilled.			
6b(i)	Answer to include:	C=C double bonds to not rotate around their axis to geometric isomers exist depending on the position of side groups in relation to C=C double bond. -CH3 methyl groups are on opposite sides of the C=C double bond H3C CH3 H3C CH3 CH3 CH3 Cis-but-2-ene			

6b(ii)	Dotted lines on diagram showing:	Dotted lines must be between: H of an N-H or O-H bond and O of a O-H bond or N of N-H bond			
6c(i)	Blue light provides enough energy to break bonds in bilirubin	Blue light has shorter wavelength than red light and has more energy.			
6c(ii)	257.5	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{465 \times 10^{-9} \text{m}}$ $= 257501 \text{ J mol}^{-1}$ $= 257.5 \text{ kJ mol}^{-1}$			
7a(i)		Place empty weighing bottle or weighing boat on balance. Record the mass of the empty item on balance. Add substance to boat/bottle on balance (careful not to spill any onto the top of balance). Record mass and subtract the empty mass to get mass of substance.			
7a(ii)		Absorbance = 0.42 \therefore [MnO ₄ ⁻] = 2.1×10^{-4} mol l ⁻¹ no. of mol = volume × concentration = 0.1 litres × 2.1×10^{-4} mol l ⁻¹ = 0.000021 mol gfm = 54.9 g mass = no. of mol × gfm = 0.000021 mol × 54.9 g mol = 0.00115 g % mass = $\frac{0.00115}{5.66}$ × 100 = 0.0204 %			
7b(i)	one from:	high state of purity be stable when solid and in solution be soluble reasonably high GFM			
7b(ii)	0.358	no. of mol $Cr_2O_7^{2^-}$ = volume × concentration = 0.0214 tres × 0.005mol ^4 = 0.000107mol 6Fe ²⁺ + $Cr_2O_7^{2^-}$ + 14H ⁺ \longrightarrow 6Fe ³⁺ + 2 Cr^{3^+} + 7H ₂ O 6mol 1mol 0.000642mol 0.000107mol 25cm ³ Fe ²⁺ solution = 0.000642mol 250cm ³ Fe ²⁺ solution = 0.00642mol gfm Fe = 55.8g mass = no. of mol × gfm = 0.00642mol × 55.8g mol ⁻¹ = 0.358g			
7b(iii)	Answer to contain:	1 mark 1mark Green wavelengths absorbed turning HOMO into LUMO ∴ red + blue wavelengths transmitted and purple light emitted			
8a	H3PO3 (any order of elements)	3CH ₃ COOH + PCl ₃ → 3CH ₃ COCl + H ₃ PO ₃			
8b(i)	Species attracted to centre of positive charge	Nucleophiles are negatively charged ions or neutral molecules which are electron rich • attracted towards atoms bearing a partial 8+ or full positive charge • capable of donating an electron pair to form a new covalent bond Examples: Cl⁻, Br⁻, OH⁻, CN⁻, NH₃ and H₂O Electrophiles are positively charged ions or neutral molecules that are electron deficient • attracted towards atoms bearing a partial 8− or full negative charge • capable of accepting an electron pair to form a new covalent bond Examples: H⁺, NO₂⁺ and SO₃			
8b(ii)	Curly arrow from O on alcohol going to C of acid chloride group	H H H H H H H H H H H H H H H H H H H			
8b(iii)	Diagram showing:	H H O H CH ₃ H H H H O H CH ₃ H H H H C H CH ₃ H H H H C H ₃ H H H			

8b(iv)	HCI	join. Water is the most likely	Condensation reactions join two molecules together and remove a small molecule as they join. Water is the most likely small molecule removed but hydrogen chloride HCl is removed in the condensation of alcohols and acid chloride to form esters.			
8b(v)	Great yield of ester	•	As the equilibrium lies more to the product side in this reaction then more ester is produced at equilibrium			
		Primary Amine	Secondar	y Amine	Tertiary Amine	
8c(i)	Secondary	H—N—C ₃ H ₇ H ₃ C—N—H 1 Carbon attached to the Nitrogen 2 Carbons attached to			H ₃ C—N—CH ₃ CH ₃ 3 Carbons attached to the Nitrogen	
8c(ii)	amide	Amide links have a carbonyl group attached to a nitrogen which can have one or two carbon groups attached to the nitrogen.		0 H - C - N -	O CH ₃ - C - N -	
8d(i)	Condensation	the benzene and join them removed as they join toge	together to f	orm Benzophe	d one of the H atoms from enone. Hydrogen chloride is	
8d(ii)	65.2%	Benzoyl chloride no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{21.8}{140.5}$ = 0.155mol benzoyl chloride + benzene benzophenone + hydrogen cl 1mol 0.155mol (theoretical) % Yield = $\frac{\text{Actual}}{\text{Theoretical}} \times 100$ = $\frac{0.101\text{mol}}{0.155\text{mol}} \times 100$ = 65.2%			ne + hydrogen chloride	
9	Open Question to include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark an Demonstrates a reas understanding of the involved, making some statement(s) which a to the situation, show problem is understood these to respond to the problem.		easonable the chemistry ome h are relevant howing that the	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	
10a	Mimics the natural compound that binds to the receptor and produced the biological response in the cell				compound.	
10b(i)	5cm³	A one in one hundred dilution 500cm ³ standard/volumetric				
10b(ii)	0.0598					
10b(iii)	6					

11 a(i)	C ₈ H ₁₀ O ₂ N ₄	Skeletal Structure H H H C N C N H H H H H H H H H H H H			
11a (ii)	cimilar chang to hind to	Pharmacologically active molecules must have a similar shape to fit the same receptor molecule. This common shape is called the pharmacophore. Agonists fit the receptor and produce the same biological response as the natural substrate. Antagonist fit the receptor but do not cause the biological response inside the cell.			
11b(i)A		The steps of recrystallisation to purify an impure solid include: • dissolving an impure solid gently in a minimum volume of a hot solvent • hot filtration of the resulting mixture to remove any insoluble impurities • cooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impurities dissolved in the solvent • filtering, washing and drying the pure crystals The solvent used for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures. The solvent used should be: • immiscible with the liquid mixture or solution (usually water) • one in which the solute is more soluble in than the liquid mixture or solution (usually water) • volatile to allow the solute to be obtained by evaporation of the solvent • unreactive with the solute			
11b(i)B	4.61	$K = \frac{\text{[caffeine]}_{\text{dichloromethane}}}{\text{[caffeine]}_{\text{water}}} = \frac{\frac{23.5}{60}}{8.5/100} = \frac{0.392}{0.085} = 4.61$			
11b(ii)	Do extraction in three separate volumes of 20cm ³	The quantity of caffeine extracted is greater if a number of extractions using			
11c	Diagram completed as shown:	large volume of solvent.			