Supporto a Meccanismi di Comunicazione per Architetture Many-Core

Laurea Triennale in Informatica

Candidato: Relatore:

Federico Mariti prof. Marco Vanneschi

Tirocinio presso il Laboratorio di Architetture Parallele del Dipartimento di Informatica

21 giugno 2013

Contesto del lavoro

- Progettazione di supporti alla programmazione parallela in architetture Chip MultiProcessor (CMP)
- L'approccio tradizionale consiste nell'uso della memoria condivisa
- Problemi significativi con architetture CMP altamente parallele
 - latenza per l'accesso esclusivo a strutture dati condivise usate per realizzare il supporto
 - ▶ latenza per garantire la *coerenza* del sottosistema di cache
 - congestione dei moduli di memoria e/o di cache all'aumentare della banda di richieste, con conseguente aumento del tempo medio di accesso alla memoria

Obiettivi del lavoro

- Studio di implementazioni di un supporto alle comunicazioni tra processi che minimizzi le degradazioni dovute all'uso della memoria condivisa
- Utilizzo di un nuovo approccio: sfruttare la rete di interconnessione messa a disposizione dall'architettura per la realizzazione del supporto
 - ▶ tale struttura è indipendente dalla memoria condivisa
- Realizzazioni anche con la memoria condivisa, utilizzando al meglio gli strumenti messi a disposizione dalla macchina

Per confrontare questi due approcci sono stati realizzati due esperimenti.

Esempi di macchine Chip MultiProcessor

- Nuove macchine CMP con elevato numero di core realizzano reti di interconnessione:
 - scalabili con il numero di core,
 - replicate e dedicate a scopi disgiunti,
 - una rete viene resa disponibile all'utente per comunicazioni inter-core.

Tilera TII FPro64

Netlogic XLP832

Esempi di forme di comunicazione

Computazioni Data Stream Processing

Reti di interconnessione del Tilera TILE Pro 64

I due approcci realizzativi del supporto alle comunicazioni

Utilizzo della Rete di Interconnessione \overline{UDN}

Utilizzo della Memoria Condivisa

Misura della latenza di comunicazione

- ► La latenza di comunicazione è misurata per mezzo di una applicazione "ping-pong":
 - composta da due processi collegati da due canali,
 - viene svolto lo scambio di m messaggi tra i due processi;
- La latenza di comunicazione è stimata con $L_{com} = T_C/(2 \cdot m)$.

Misura della latenza del canale simmetrico

Misura della latenza del canale asimmetrico

uso della Rete di Interconnessione
uso della memoria condivisa, allocati tutti i mittenti
uso della memoria condivisa, allocato un unico mittente

Benchmark: Prodotto matrice-vettore

calcolo sequenziale:

$$\mathbf{A} \in \mathbb{Z}^{ ext{MxM}} \,,\, \mathbf{b}, \mathbf{c} \in \mathbb{Z}^{ ext{M}} \ orall \, i \in \{1, \dots, ext{M}\} \,: \ c_i = \mathbf{a}_i \cdot \mathbf{b} = \sum_{i=1}^{ ext{M}} a_{ij} \cdot b_j$$

- vettore b costante, stream di matrici A
- partizionamento per righe
- computazione multicast-compute-gather

Confronto: tempo di servizio del sottosistema parallelo

Dimensione delle matrici 280x280

Differenza tra i migliori tempi di servizio

56×56	$2.558~\mu sec$
168×168	$2.718 \mu \text{sec}$
280×280	$0.951 \mu \text{sec}$

Confronto: tempo di servizio Multicast

Misurazione con il sottosistema parallelo non collo di bottiglia

 il tempo di servizio della multicast implementata con un albero binario è in media la latenza di due comunicazioni sul canale simmetrico

Conclusioni

Si è quindi realizzato un supporto alle comunicazioni con due diversi approcci:

- uso della rete di interconnessione tra core
- uso della memoria condivisa

Dagli esperimenti effettuati si è concluso:

- riduzione della latenza di comunicazione con la rete di interconnessione rispetto al caso ottimale con la memoria condivisa
- miglioramento del tempo di servizio in un'applicazione reale (prodotto matrice-vettore)

Grazie per l'attenzione.