Chapitre 2 - Nombres complexes

Manel TAYACHI (cours) - Mica MURPHY (note) - Antoine SAGET (note)

Lundi 1er Septembre 2018

- Forme algébrique : $z = a + ib, \ a, b \in \mathbb{R}$
- Conjugué : $\overline{z} = a ib$
- $\overline{z+z'} = \overline{z} + \overline{z'}$
- $\overline{zz'} = \overline{z}\overline{z'}$

$$\begin{split} |z| &= \sqrt{a^2 + b^2} = \sqrt{z\overline{z}} \\ arg(z) &= (\overrightarrow{u}; \overrightarrow{OM}) \ modulo \ 2\pi \end{split}$$

Propriété. Soit $z \in \mathbb{C} * \exists r > 0$ et $\theta \in \mathbb{R}$ tq

$$z = r\cos\theta + i*r*\sin\theta$$

avec r=|z| et $\theta=arg(z)$. Si z=a+ib alors $r=\sqrt{a^2+b^2},$ $\cos\theta=\frac{a}{r}=\frac{a}{\sqrt{a^2+b^2}},$ $\sin\theta=\frac{b}{\sqrt{a^2+b^2}}$

Définition.

$$\forall \theta \in \mathbb{R}, \ e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

$$\forall x \in \mathbb{R}, \ e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

$$\forall \theta \in \mathbb{R}, \ e^{i\theta} = \sum_{k=0}^{+\infty} \frac{(i\theta)^k}{k!} = \cos(\theta) + i\sin(\theta)$$

$$e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'}$$

$$(e^{i\theta})^n = e^{in\theta}$$

Définition. Tout complexe z non nul de module z et d'argument θ s'écrit $z=re^{i\theta}$

$$\begin{split} e^{i2\pi} &= 1 \\ e^{2ik\pi} &= 1, \ \forall k \in \mathbb{Z} \\ e^{ik\pi} &= (-1)^k \\ |e^{i\theta}| &= 1, \ \forall \theta \in \mathbb{R} \end{split}$$

Propriété. $\forall \theta \in \mathbb{R} \cos \theta = \frac{e^{i\theta} + e - i\theta}{2}$, $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ Application : soit $z \in \mathbb{C}*$, résoudre $Z^n = z$ $z = re^{i\theta}$

 $Z=Re^{i\alpha}$, les inconnues sont R et α .

$$R^n e^{in\alpha} = r e^{i\theta}$$

$$\Leftrightarrow R^n = r \Leftrightarrow R = r^{\frac{1}{n}}/n\alpha = \theta + 2k\pi \ k \in \mathbb{Z}$$

$$\Leftrightarrow R = r^{\frac{1}{n}} = \sqrt[n]{r}/\alpha = \frac{\theta + 2k\pi}{n} \ k \in \{0, 1, ..., n-1\}$$

Exemple. Résoudre $Z^3 = -1 = e^{i\pi}$

$$\Leftrightarrow Z^3 = R^3 e^{i3\alpha} = e^{i\pi}$$
$$\Leftrightarrow R = 1\alpha = \frac{\pi}{3}$$

ou

$$\Leftrightarrow Z^3 = (a+ib)^3 = -1$$
$$\Leftrightarrow a = -1$$

Donc $Z^3=-1$ avec $Z=e^{i\pi+2k\pi,\ k\in\mathbb{Z}}$ ou $Z=e^{i\frac{\pi}{3}+\frac{2k\pi}{3},\ k\in\mathbb{Z}}$

- Application 2, résoudre dans \mathbb{C} : $aZ^2 + bZ + c = 0$, $a, b, c \in \mathbb{C}$ et $\Delta = b^2 4ac \in \mathbb{C}$
- Il suffit de trouver $\delta \in \mathbb{C}$ $(\delta = a + ib)$ tq $\delta^2 = \Delta$

$$Z = \frac{-b \pm \delta}{2a}$$

(deux racines complexes)