MAT168 HW4

Andrew Jowe

November 27, 2022

(1)

Iteration 1

Draw out original problem

l				0		0		
	u			6		8		
		ζ	=	$-x_1$	+	x_2	=	0
$-\infty$	5	w_1	=	$-x_1$	+	x_2	=	0
$-\infty$	9	$ w_2 $	=	x_1	_	$2x_2$		0

Determine entering variable

 x_2 has positive coefficient and is at lower bound, x_2 enters.

Determine leaving variable

As
$$x_2 \to 8$$
:
 $w_1 \to -\infty \le x_2 \le 5 \to x_2 = 5$
 $w_2 \to -\infty \le -2x_2 \le 9 \to x_2 = \infty$

 w_1 leaves.

Iteration 2

Rewriting equation

Optimal

This is optimal since w_1 has positive coefficient and upper bound is chosen, and x_2 has coefficient of 0.

(2)

Dual

The piecewise linear formation of the dual is:

minimize
$$5y_1^+ + 9y_2^+ + 0z_1^+ + 0z_2^+$$

 $\infty y_1^- + \infty y_2^- + 6z_1^- + 8z_2^-$
subject to $-y_1 + y_2 - z_1 = 0$
 $y_1 - 2y_2 - z_2 = 0$

Complimentary Slackness

$$w_1 = 5 \rightarrow y_1 = 0$$
$$x_2 = 8 \rightarrow z_2 = 0$$

Using complimentary slackness:

minimize
$$y_2^+ + 0z_1^+$$

 $\infty y_2^- + 6z_1^-$
subject to $y_2 - z_1 = 0$
 $-2y_2 = 0$

Solve

$$-2y_2 = 0 \to y_2 = 0 y_2 z_1 = 0$$

Collaboration

Academic Integrity

On my personal integrity as a student and member of the UCD community, I have not given, nor received any unauthorized assistance on this assignment.

Andrew