Rozebereme teda všechny různé funkce v lDES. Nechť $p_1, p_2, k, k_1, k_2 \in \mathbb{Z}_2^{64}$, operace $+ \iff \oplus$.

IP: je obyčejný výběr bitů (zbavení se parity bits) a jejich permutace. Vybeme-li tedy bity z p_1, p_2 a poté je sečteme je to samé jako jejich sečtení a poté výběr jejich součtů. Vždy se vyberou bity na stejných pozicích. Tedy $IP(p_1 + p_2) = IP(p_1) + IP(p_2)$. To samé pro její inverz.

Nyní budeme používat pro vstupy funkcí stejné značení jako u funkce IP. Samozřejmě do následujících funkcí není na vstupu přímo plaintext, ale jeho modifikovaná forma předcházejícími funkcemi. Stejně tak pro klíč.

Split (rozdělení na levou polovinu a pravou): Tato funkce je zřejmě také lineární, jelikož jednoduše rozděluje vstup na 2 poloviny. Je stejné jestli je nejdříve sečteme a rozdělíme nebo rozdělíme a poté půlky sečteme. Tedy $Split(p_1 + p_2) = Split(p_1) + Split(p_2)$.

Expand (expanze 32-bit vstupu na 48-bit): Zřejmě také lineární, jestliže bity sečteme a poté expandujeme bude mít stejný výsledek jako expanze p_1, p_2 a poté jejich následný součet (bity z p_1, p_2 jdou na stejnou pozici). $Expand(p_1 + p_2) = Expand(p_1) + Expand(p_2)$.

PC1: Stejný případ jako **IP**, akorát je tato funkce aplikována na k_1, k_2 . $PC(k_1 + k_2) = PC(k_1) + PC(k_2)$.

Shift: Bitová rotace je také lineární. Jestliže posuneme bity k_1 a k_2 o n bitů doleva/doprava a sečteme je, tak dostaneme stejný výsledek jako, když je sečteme a posuneme. $Shift(k_1 + k_2, n) = Shift(k_1, n) + Shift(k_2, n)$.

PC2: Stejné jako IP, PC1.

Add (přičtení klíče): Tato funkce zřejmě není přímo z definice lineární (v plaintextu ani klíči), jelikož $Add(p_1+p_2,k)=(p_1+p_2)+k\neq (p_1+k)+(p_2+k)=Add(p_1,k)+Add(p_2,k)$ a $Add(p,k_1+k_2)=p+(k_1+k_2)\neq (p+k_1)+(p+k_2)=Add(p,k_1)+Add(p,k_2)$. Použijeme-li fakt, že funkce je lineární, pokud každý výstupní bit je lineární kombinací vstupních bitů, tak funkce Add je lineární. Výstupy p_1+p_2+k a p_1+p_2+2k (koeficienty jsou (1,1,1) a (1,1,2)) jsou lineární kombinace vstupních bitů p_1,p_2,k . Výstupy $p+k_1+k_2$ a $2p+k_1+k_2$ (koeficienty jsou ((1,1,1) a (2,1,1)) jsou lineární kombinace vstupních bitů p,k_1,k_2 .

Sbox: Z předpokladů je lineární.

P (permutace výstupu z Sbox): Stejné jako IP, PC1, PC2

RoundKey: Odvození klíče je složení lineárních funkcí PC1, Shift, PC2 a složení lineárních funkcí je lineární.

F: Feistelova funkce je složení lineárních funkcí **Expand**, **Add**, **Sbox** a **P**. Takže je také lineární.

Round: Runda je složena z lineárních funkcí F, RoundKey a přičtení

výstupu z \mathbf{F} k jedné polovině (v podstatě stejné jako v \mathbf{Add}). Takže je také lineární.

Celkově je teda IDES lineární v klíči i plaintextu.

2

Invert viz python kód.

Inverz 0xF3 v tělese $\mathbb{Z}_2[x]/(x^8+x^7+x^2+x+1)$ je 0x85. Pokud tento prvek vynásobíme (jako vektor) maticí z AES dostaneme 0xEC a po přičtení vektoru dostaneme výsledek 0x8F.

3

Ze schématu šifrování plyne $DES_b(c) = DES_a(p)$, kde p je daný plaintext a c daný ciphertext. Provedeme meet-in-the-middle útok. Počet různých klíču a je díky jeho vlastnostem $(\frac{256}{2})^3 = 128^3 \approx 2 \cdot 10^6$ (počet k_i s lichou paritou je pouze polovina), což není tolik. Vygenerujeme všechny různé ciphertexty, které je možné získat šifrováním plaintextu p klíčem a. Celkem nagenerujeme ≈ 2 milionu ciphertextů, které si někam uložíme společně s příslušným klíčem a.

Poté provedeme druhou část útoku, která bude zase naopak šifrovat ciphertext c různými klíči b, kterých je také zhruba 2 miliony. Ty si však nemusíme ukládat (ani pravděpodobně nevygenerujeme všechny 2 miliony). Pokaždé stačí zkontrolovat, jesliže příslušný zašifrovaný ciphertext již máme v tabulce. Pokud najdeme shodu, tak víme, jaké jsou oba klíče a, b. Tedy známe klíč k.

```
Výsledný klíč a = 07:07:07:01:01:01:01:01

b = 0B:0B:0B:01:01:01:01:01

Celkem tedy k = 07:07:07:0B:0B:0B

Zbytek viz Java kód main.java
```

4

Pro k musí platit $k <= 255 = {\rm FF_{16}}$. To je maximální hodnota, která jde uložit do jednoho bajtu. Tedy pro šifry s blokem délky > 255 bajtů tento padding nelze použít.

5

Nechť x,y jsou nějaké zprávy, nechť |x| je délka zprávy x (pro y stejně). Buď $x \neq y$ a |x| = |y|, poté padding p je stejný pro obě zprávy. Výsledné zprávy jsou tedy x||p (zpráva x, ke které je přidán padding) a y||p. Ale $x \neq y$ z předpokladů, tedy nemůže platit, že se výsledné zprávy budou rovnat (tedy $x||p \neq y||p$).

Nebo $x \neq y$ a $|x| \neq |y|$. Poté každá zpráva má jiný padding $p_x \neq p_y$. Tedy zase nemůže platit, že $x||p_x \neq y||p_y$ (již poslední bajt zprávy je různý, protože padding má různou délku).

6

Blok je tedy 8 bajtový, padding má délku tedy maximálně 8 bajtů. Zpráva má 16 bajtů. Tedy buď padding je délky $8 \Rightarrow 8$ z 16 bajtů zprávy je určeno. Celkový počet různých zpráv je 256^{16} a v tomto případě nám zbývá 256^8 možností, jak vybrat prvních 8 bajtů zprávy. Pravděpodobnost toho, že náhodná zpráva bude mít správný padding délky 8 je $\frac{256^8}{256^{16}} = 256^{-8}$.

Padding může mít délku 1...8 bajtů. Výsledná pravděpodobnost je tedy:

$$\sum_{i=1}^{8} 256^{-i} \approx 0.4 \%$$

Pokud náhodná zpráva má dobrý padding, tak nejpravdědpobněji bude mít padding délku 1 bajt, protože takových zpráv je nejvíce (256 15 z 256 16). Pravděpodobnost takové zprávy je $\frac{1}{256}$.