Anneaux	d'entiers m	ıonogènes	et ramific	eation

0.1 Prérequis

Quelques prérequis nécessaire à l'étude : si \mathcal{O}_K est de Dedekind, quand est-ce que

- 1. $\tilde{\mathcal{O}}_K$ est de Dedekind.
- 2. $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K .

Pour la première question :

- 1. Si \mathcal{O}_K est semi-local ca se fait bien parce que $\tilde{\mathcal{O}}_K$ est noethérien sur \mathcal{O}_K ssi $\tilde{\mathcal{O}}_K \otimes \mathcal{O}_K(\mathcal{O}_K)_{\mathfrak{m}_i}$ est noethérien pour tout les premiers (faut en avoir un nb fini).
- 2. Plus généralement si L/K est finie par Krull-Akizuki.

Pour la deuxième : dès que $\sum e_i f_i = [L:K]$ d'où si

- 1. K est complet, par densité de $\sum_{i,j} e_j \pi_L^i \mathcal{O}_K$ dans $\tilde{\mathcal{O}}_K$.
- 2. L/K est séparable via le disriminant non nul et la trace non dégénérée.
- 3. Évidemment si $\tilde{\mathcal{O}}_K = \mathcal{O}_K[\alpha]$ est monogène.

Chapitre 1

Cadre

1.1 Objets

On se place **toujours** dans le cadre où on a \mathcal{O}_K de valuation **discrète**. Le cadre en gros c'est

$$\mathcal{O}_K \longrightarrow \tilde{\mathcal{O}}_K \subseteq (\tilde{\mathcal{O}}_K)_{\mathfrak{m}_i} = ? = (\mathcal{O}_L)$$

$$\downarrow \qquad \qquad \downarrow$$

$$k_K \longrightarrow k_L$$

C'est à dire qu'on prends la clôture intégrale, on regarde ses idéaux maximaux et on obtient des extensions de d.v.r. Quand K est complet ou quand on fixe une valuation (un premier \mathfrak{m}_i) sur L, \mathcal{O}_L fait sens.

1.2 Pourquoi on cherche des extensions monogènes

Pour calculer en fait une marche à suivre c'est

On sait le faire dans
$$\mathcal{O}_K[\alpha]$$
.

Si c'est le cas alors :

- 1. La factorisation de P dans $k_K[X]$ donne la ramification et les idéaux maximaux de $\tilde{\mathcal{O}}_K$!
- 2. Plus précisément, si

$$\bar{P} = \prod_{i} p_i^{r_i} \in k_K[X]$$

alors $\mathfrak{m}_i = (\mathfrak{m}_K, p_i(\alpha)).$

Le point important c'est la ramification, on relève

$$P(\alpha) = \prod_{i} P_i^{r_i}(\alpha) + \epsilon(\alpha)$$

ce qui donne par le deuxième point

$$\prod_{i} \mathfrak{m}_{i}^{r_{i}} = \prod_{i} (\mathfrak{m}_{K}, P_{i}(\alpha))^{r_{i}} \subset \mathfrak{m}_{K} \tilde{\mathcal{O}}_{K} = \prod_{i} \mathfrak{m}_{i}^{e_{i}}$$

On en déduit $r_i \geq e_i$ pour tout i et on conclut directement avec

$$\sum r_i f_i = \deg \bar{P} = \deg P = [L:K] = \sum e_i f_i$$

On a utilisé que $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K pour l'égalité $\deg \bar{P} = \deg P$ et la dimension $[L:K] = \sum e_i f_i$.

Chapitre 2

Des cas où on sait que c'est monogène

D'abord un cadre intéressant.

2.1 Le cas canonique

Étant donné une extension $\mathcal{O}_K - (\tilde{\mathcal{O}}_K)_{\mathfrak{m}} = \mathcal{O}_L$, y'a une inclusion à regarder, si $k_K - k_L$ contient une famille libre et génératrice $(e_i)_i$:

$$\mathcal{O}_L \subset \sum e_i \mathcal{O}_K + \pi_L \mathcal{O}_L$$

puis en itérant

$$\mathcal{O}_L \subset \sum e_i \pi_L^j \mathcal{O}_K + \pi_K \mathcal{O}_L$$

et même pour tout $n \ge 1$

$$\mathcal{O}_L \subset \sum_i \sum_{j=0,\dots,e-1} e_i \pi_L^j \mathcal{O}_K + \pi_K^n \mathcal{O}_L$$

car $\pi_L^e \in \mathcal{O}_K$. Donc une densité de M dans \mathcal{O}_L . Je note

$$M = \sum_{i=1,\dots,f} \sum_{j=0,\dots,e-1} e_i \pi_L^j \mathcal{O}_K.$$

En gros, dès que $L=K[\alpha]$, par exemple : Il suffit de l'extension résiduel soit séparable, i.e.

 \bar{P} est séparable.

Remarque 1. Là on a juste utilisé que k_L est de dimension finie sur k_K .

2.2 Cas primitif, $L = K[\alpha]$

On suppose $L = K(\alpha)$. Un premier critère de monogénéité :

Si
$$\bar{P}$$
 est séparable, alors $\tilde{\mathcal{O}}_K = \mathcal{O}_K[\alpha]$

Une preuve rapide c'est que

$$\mathcal{O}_K[\alpha]_{\pi_K} = K[\alpha] = L$$

est intégralement clos et

$$\mathcal{O}_K[\alpha]/(\pi_K) = k[\alpha]$$

est réduit. D'où

$$\mathcal{O}_K[\alpha]$$

est intégralement clos et dans $\tilde{\mathcal{O}}_K$.

Remarque 2. On peut étudier les nilpotents du quotient quand c'est pas réduit.

Ce cas arrive dans les cas où

- On est en caractéristique 0, car séparable donc primitif.
- Dans le cas non ramifié complet.
- Dans le cas modérément ramifié complet.

Si on veut on peut aussi utiliser le cas canonique pour le prouver en montrant que $\pi_L = P(\alpha).u$ pour un P bien choisi, je le montre en section sur la ramification modérée.

2.3 Cas non ramifié complet

On a une équivalence entre :

- 1. L'extension L/K est non ramifiée (par déf non ramifiée et $k_{K(\alpha)}/k_K$ est séparable).
- 2. Il existe $\alpha: L = K(\alpha)$ et P le pol min de α sur K est séparable sur k_K .

L'idée c'est juste que la formule ef = [L:K] est vraie. Et on peut relever une base de l'extension résiduelle! En gros ça donne une réciproque à la section d'avant. I.e. si L/K est non ramifiée alors

$$L=K[\alpha],\,\bar{P}$$
est séparable d'où $\mathcal{O}_K[\alpha]=\tilde{\mathcal{O}}_K$

En caractéristique 0, L/K finie implique séparable implique L est monogène sur K.

Des cas où on sait que c'est monogène

2.4 Cas p-adique

Dans le cas p-adique, les corps finis sont parfaits et on a toujours des extensions séparables (c'est immédiat de la déf)! En particulier, si \bar{P} est inséparable c'est qu'il est scindé. Ça se voit bien par Hensel :

1. On a toujours $\bar{P} = F^d$ et en réécrivant $d \deg F = \deg P = e.f$ sachant que $\deg F \mid f$ (à vérifier mais ça se voit) on obtient $e \mid d$. (l'égalité c'est qu'on suppose P unitaire)

En fait on a beaucoup mieux mais j'en parlerai dans une autre note.

2.5 Cas où k_L séparable sur k_K

On regarde L/K finie. Si

1. les $\mathcal{O}_L/\mathfrak{m}_L = k_L/k_K$ est séparable

alors

$$(Or_L)_{\mathfrak{m}_L}/\mathfrak{m}_K\mathcal{O}_L$$

est monogène sur k_K . On peut réécrire M, via $e_i \in \mathcal{O}_K[\alpha]$, d'où

$$M \subset \sum \mathcal{O}_K[\alpha] \pi_L^j$$

alors y suffit de montrer que $\pi_L \in \mathcal{O}_K[\alpha]$. Si

$$k_L = k_K(\bar{\alpha})$$

et \bar{P} le pol min de $\bar{\alpha}$ alors $(P(\alpha)) = \mathfrak{m}_L$ ou $(P(\alpha + \pi_L)) = \mathfrak{m}_L$. Via \bar{P} est séparable d'où $\bar{P}' \neq 0$:

$$P(\alpha + \pi_L) - P(\alpha) = \pi_L(P'(\alpha) + \pi_L\beta)$$

d'où

$$k(\bar{\alpha}) = (\tilde{\mathcal{O}}_K)_{\mathfrak{m}_i}/\mathfrak{m}_K(\tilde{\mathcal{O}}_K)_{\mathfrak{m}_i}.$$

Remarque 3. On obtient un début preuve du cas primitif.

Remarque 4. On a pas supposé que c'est non ramifié ni que $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K .

2.6 Cas modérément ramifié

Dans le cas $\mathcal{O}_K - \tilde{\mathcal{O}}_K$, si on prends l'hypothèse

1. $\prod k_i = \prod \tilde{\mathcal{O}}_K/\mathfrak{m}_i \tilde{\mathcal{O}}_K$ est monogène sur k. (c'est immédiat dans plusieurs cas pour les k_i , notamment si k est infini)

Alors on peut utiliser le fait que

Un produit d'algèbres monogènes finies est monogène fini ssi sa version réduite l'est d'où

$$\tilde{\mathcal{O}}_K/\mathfrak{m}_K \tilde{\mathcal{O}}_K$$

est monogène sur k (CRT). Maintenant si

3. $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K

alors il est monogène via Nakayama et $\tilde{\mathcal{O}}_K \subset M + \mathfrak{m}_K \tilde{\mathcal{O}}_K$.

Maintenant si on suppose que L/K est modérément ramifiée, si K est complet alors $\tilde{\mathcal{O}}_K = \mathcal{O}_L$ est local et on a l'hypothèse, si k_K est infini alors $\prod k_i$ est monogène et on a l'hypothèse.