# Sirius Speech-to-Text

Реализация DNN модели для распознавания русской речи

Сириус, 25 марта 2021

#### Наша команда



Екатерина Чуйкова

Ментор











Максим Находнов

Полина Таранцова

Оля Коломытцева

Саша Николаев

#### Задача

#stt #russian #speech #text #nlp #deeplearning #ai #state-of-the-art #commonvoice #openstt

Speech-to-Text распознавание русской речи



#### Тип задачи

#supervised\_learning #end-to-end #sequence-to-sequence



#### Метрика качества

#wer #word #error #rate #swap #delete #insert #nwords

Основная метрика speech2text - WER

$$WER = \frac{S + D + I}{N}$$

D -количество удалений

I -количество вставок

S -количество замен

N - количество слов

Привет олег закажи мне новую карту

\_\_\_\_ олег закажи не мне новую парту

$$WER = \frac{1+1+1}{6} = 0.5$$

### Датасет

#data #datascience #speech&texts\_makethebest

- Наборы данных:
  - Common Voice (4 GB)
  - Russian LibriSpeech (9 GB)
  - OpenSTT (40 GB radio + 40 GB audiobooks)

- Итоговая выборка:
  - Train: 1.3kk аудиозаписей длиной 1730 часов
  - o Test: 23k аудиозаписей длиной 33 часа

### Анализ и обработка исходных данных

#### #log #mel #spectro #sample\_rate

- Единая частота звука 8000 Hz
- Максимальная длина аудио 10 s
- Модель обучается на мел-спектрограммах



### Модель - DeepSpeech2

#### #model #deepspeech2 #loss #train

#### Катя подготовила рыбу с такой архитектурой

- ✓ Оптимальна по времени обучения и качеству распознавания
- 🔽 Достаточно проста в понимании и реализации



- Data augmentation
  - additive Gaussian noise
  - time stretch (resampling)
- Windowing 20-25 ms, stride 10 ms
- FFT, log
- Normalization



- 2-3 convolutional layers
  - ch=32, ks=[11, 41], s=[2, 2]
  - ch=32, ks=[11, 21], s=[1, 2]
  - ch=64, ks=[11, 21], s=[1, 2]
- 3-7 bi-/uni- directional GRUs/LSTMs
- 1 row conv layer (for unidirectional)
- 1-2 fully connected layers
- BN/dropout for regularization

inference Decoder

- greedy (argmax)
- beam search
- beam search with language model (width=2000-8000)

### Модель - DeepSpeech2

#model #deepspeech2 #loss #train

#### Параметры модели:

- 64 мел-фильтра
- 2 слоя сверток с BatchNorm
- Bidirectional LSTM с 4 слоями
- Размерность входа LSTM 512



## Spectrogram Augmentations

#model #augmentations #spectrogram



# **Audio Augmentations**

#### #model #augmentations #audio



# Модель: Beam Search

#model #beam\_search



### Модель: Beam Search + LM

#model #beam\_search #LM



| Example                | Probability |
|------------------------|-------------|
| The cat sat on the mat | 0.95        |
| The cat sad on the mat | 0.20        |
| High wind tonight      | 0.97        |
| Large wind tonight     | 0.31        |
|                        |             |

### Стратегия обучения

- Learning rate = 2e-4
- Optimizer = Adam
- Scheduler = Exponential (decay=0.9)
- Аугментации спектрограм в частотной и временной областях
- Аугментации аудио:
  - нелинейный шум, временная задержка, dcshift

#### Inference

- BeamSearch
  - 200 наиболее вероятных гипотез
- KenLM
  - Статистическая n-gram модель
  - Обучена на Common Crawl (20 GB)
- Shallow fusion:
  - Топ-20 гипотез из BeamSearch ранжируются с помощью предобученной трансформер модели (Facebook-FAIR's WMT'19)

# Результаты

|               | Common Voice | OpenSTT | LibriSpeech |
|---------------|--------------|---------|-------------|
| Baseline      | 34%          |         |             |
| Baseline + LM | 29%          | 82%     | 80%         |
| Our model     | 29%          | 39%     | 69%         |

### **MVP**

#telegram #bot #stt #can\_test\_on\_my\_phone



### Демонстрация

#telegram #bot #stt #can\_test\_on\_my\_phone





### Код

#code #ipynb #dataset #tensorboard #decode



#### Реализованы модули —> <u>Model</u>:

- datasets реализация датасета аудиофайлов
- audio\_utils аугментация аудио и спектрограмм
- decoding beam search и greedy decoding
- deepspeech реализация модели
- logging логгер процесса обучения
- optimization train loop и метрики
- inference арі для инференса модели

#### Что дальше

#more\_data #augmentations #model

#### Для улучшения качества модели можно:

- Добавить больше обучающих данных
- Лучше подобрать стратегию обучения
- Использовать больше аугментаций
- Усложнить архитектуру модели

#### Полезные продукты:

- Замена голосового сообщения на текстового
- Делать субтитры к видео
- Делать караоке
- Добавить модель перевода с русского языка на английский, чтобы общаться с иностранцами, не зная английский



#### Выводы

#### #conclusion #amazon #speech2text

- Кататься на амазоновских тачках круто!
- Каждый член команды реализовал архитектуру Deepspeech
- Обучили классную модель на большом количестве данных и научились решать задачу speech2text, изучили основные подходы
- Научились работать с аудио: предобрабатывать, считать спектрограммы, аугментировать аудио
- Освоили работу с докером
- Провели эксперименты с аугментацией, языковой моделью, beamsearch, разными датасетами



### Обзор работ в этой области

#scientific\_staff #feel\_smart #i\_read\_books #scientist

- Deep Speech 2: End-to-End Speech Recognition in English and Mandarin [1]
- First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs [2]
- SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition [3]
- On Using Monolingual Corpora in Neural Machine Translation [4]
- Facebook FAIR's WMT19 News Translation Task Submission [5]
- LONG SHORT-TERM MEMORY [6]

Спасибо за внимание!

Вопросы?