Palettisation – Stabilité ★

C2-03

Une boucle de position est représentée ci-dessous. On admet que :

►
$$H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{30}{1 + 5 \times 10^{-3}p};$$

► $K_r = 4 \,\mathrm{V \, rad}^{-1}$: gain du capteur de position;

- ► K_a : gain de l'adaptateur du signal de consigne $\alpha_e(t)$;
- ► N = 200: rapport de transmission du réducteur (la réduction est donc de 1/N).
- ▶ le signal de consigne $\alpha_e(t)$ est exprimé en degré;
- ▶ le correcteur C(p) est à action proportionnelle de gain réglable K_c .

On montre que la fonction de transfert du réducteur est $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)} = \frac{1}{Np}$, que $k_a = \frac{\pi}{180} k_r$ et que la FTBO est donnée par $T(p) = \frac{k_{BO}}{p (1 + \tau_m p)} (k_{BO} = \frac{k_c k_m k_r}{N})$.

On souhaite une marge de phase de 45°.

Question 1 Déterminer la valeur de *K*_{BO} permettant de satisfaire cette condition.

Question 2 En déduire la valeur du gain K_c du correcteur.

Question 3 Déterminer l'écart de position.

Éléments de corrigé :
$$1. \quad k_{BO} = \frac{\sqrt{2}}{\tau_m}.$$

$$2. \quad k_c = \frac{\sqrt{2}N}{\tau_m k_m k_r} = 471, 1.$$

$$3. \quad \varepsilon_s = 0.$$

Corrigé voir .

