2025 秋高等数学 D 第三次习题课讲义

数学科学学院 冯宣瑞 2401110009

2025年10月14日

1 第三次作业选讲

1.1 x*型极限:对数法与重要极限法

在极限的计算题中, 一种非常常见的形式是 x^x 型极限, 也就是所要求极限的函数的表达式中, 底数和指数同时含有未知数. 由于形式非常接近第二个重要极限

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e, \quad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e,$$

一个最自然的思路是使用适当的变形,将其凑成对应的形式.

问题 1 (习题一第 19 题 (19) 问). $\lim_{n\to\infty} \left(1+\frac{4}{n}\right)^n$.

问题 2 (习题一第 19 题 (20) 问). $\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^x$.

问题 3 (习题一第 19 题 (21) 问). $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+m}$.

重要极限法.

$$\lim_{n\to\infty} \left(1+\frac{4}{n}\right)^n = \lim_{n\to\infty} \left[\left(1+\frac{1}{n/4}\right)^{n/4}\right]^4 = e^4.$$

$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \lim_{x \to \infty} \left[\left(1 + \frac{1}{-x} \right)^{-x} \right]^{-1} = e^{-1}.$$

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+m} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \cdot \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^m = e \cdot 1 = e.$$

注 1. 在求极限的过程中,一定要留意哪些字母是变量,哪些字母是给定的常量. 对于写在 lim 下面的极限变量,一定不能出现在极限符号的外面. 如第三题部分同学会写成

$$= \left[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right]^{1 + \frac{m}{n}} = e^{1 + \frac{m}{n}}.$$

这实际上就把极限变量 n 给带到极限符号外面来了, 是绝对不可以的. 答案里无论如何也不可能带着 n.

以上所用的重要极限法虽然自然, 但较为依赖于所要求极限的函数的底数中具有明显的 $1 + \frac{1}{*}$ 的形式, 而且涉及到指数的运算, 很多时候不方便运用. 下面我们介绍一种几乎是万金油的方法, 也就是取对

1 第三次作业选讲 2

数法,不但应用范围更广,而且可以一劳永逸消除指数的运算,而转化为我们熟悉的乘除运算,从而可以自由叠加无穷小量替换.

取对数法.

$$\lim_{n \to \infty} n \ln \left(1 + \frac{4}{n} \right) = \lim_{n \to \infty} n \cdot \frac{4}{n} = 4.$$

$$\lim_{x \to \infty} x \ln \left(1 - \frac{4}{x} \right) = \lim_{x \to \infty} x \cdot \left(-\frac{4}{x} \right) = -4.$$

$$\lim_{n \to \infty} (n+m) \ln \left(1 + \frac{1}{n}\right) = \lim_{n \to \infty} \frac{n+m}{n} = 1.$$

根据上节课提到的不定式的五种形式, 我们知道对于 x^x 型极限, 只有底数极限为 1 的情况才需要特殊处理, 所以取完对数后 \ln 后面的表达式极限一定是 1, 必然可以通过无穷小量替换 $\ln x \sim x - 1$ 把对数去掉. 对数法可以帮助我们解决形式更加一般的函数极限问题.

问题 4 (2023 期中). $\lim_{x \to \frac{\pi}{2} - 0} (\sin x)^{\tan x}$.

问题 5 (补充题). 设函数 f(x) 在 x = a 处可导, 且 f(a) > 0, 求 $\lim_{n \to \infty} \left(\frac{f(a + \frac{1}{n})}{f(a)} \right)^n$.

1.2 间断点: 习题一第 20 题

定义 1. 连续点, 间断点, 第一类间断点, 第二类间断点, 可去间断点, 跳跃间断点, 无穷间断点.

根据定义,要判断一个点是连续点还是间断点,必须充分考虑它在定义域里的位置.特别地,如果定义域是分段区间,而要考虑的点只是一个区间的端点,只需要看单侧连续性,这时不可能是跳跃间断点.

问题 6 (习题一第 20 题第 (7) 问). 指出函数 $y = x \sin \frac{1}{x}$ 的连续区间和间断点类型.

问题 7 (习题一第 20 题第 (8) 问). 指出函数 $y = \frac{x^2 - 1}{x^2 - 3x + 2}$ 的连续区间和间断点类型.

1.3 最值定理与中间值定理在证明题中的运用: 习题一第 22 题

定理 1 (最值定理). 连续函数 f(x) 在有界闭区间 [a,b] 上可以取到它的最大值和最小值.

定理 2 (中间值定理). 连续函数 f(x) 在有界闭区间 [a,b] 上可以取到 f(a) 与 f(b) 之间的一切值.

推论 1 (零点存在性). 连续函数 f(x) 在有界闭区间 [a,b] 上满足 f(a) 与 f(b) 异号,则 f(x) 在 [a,b] 上有零点.

推论 2 (值域连续性). 连续函数 f(x) 在有界闭区间 [a,b] 上可以取到最大值与最小值之间的一切值,因而其值域必为一个连续区间.

问题 8 (习题一第 22 题第 (2) 问). 如果 f(x) 在 [a,b] 上连续, 且无零点, 则 f(x) > 0 或 f(x) < 0.

正确写法 1. 反证法. 假设结论不成立,则存在 $c,d \in [a,b]$ 使得 f(c) > 0, f(d) < 0. 不妨设 c < d,由中间值定理,存在 $\xi \in [c,d]$ 使得 $f(\xi) = 0$,与 f 无零点矛盾. 故原结论成立.

2 第四次作业选讲 3

正确写法 2. 由最值定理, f(x) 在 [a,b] 上取到最大值 M 和最小值 m. 且由中间值定理的推论, f(x) 在 [a,b] 上可以取到 [m,M] 中的一切值. 由于 f 无零点, 故 $0 \notin [m,M]$, 即 m>0 或 M<0, 即 f(x)>0 或 f(x)<0.

错误写法 1: 这也要证. 因为 f(x) 没有零点, 所以 $f(x) \neq 0$, 所以 f(x) > 0 或者 f(x) < 0.

错误写法 2: 记号重复. 假设结论不成立,则存在 a,b 使得 f(a) > 0, f(b) < 0.

错误写法 3: 依据不足. 由最值定理, f(x) 在 [a,b] 上取到最大值 M 和最小值 m. 由于 f 无零点, 所以 m>0 或 M<0. (一定要写出能取到 [m,M] 中一切值)

2 第四次作业选讲

2.1 可导的定义: 习题二第 3 题

问题 9 (习题二第 3 题). 若下面的极限都存在, 判别下式是否正确.

(1)
$$\lim_{\Delta x \to 0} \frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x} = f'(x_0);$$

(2) $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x} = f'(x_0).$

注 2. 本题考查的实际上是判断函数在一点处是否可导的等价方式,即左边的极限存在是否能判断 f 在 x_0 处可导,且导数等于该极限值.因此作答时不能事先假定 $f'(x_0)$ 存在.

错误解答.

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$$

$$= \frac{1}{2} \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \frac{1}{2} \lim_{\Delta x \to 0} \frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x}$$

$$= \frac{1}{2} f'(x_0) + \frac{1}{2} f'(x_0)$$

$$= f'(x_0).$$

注 3. 运用极限的四则运算法则时, 必须时刻注意, 经过转化之后的表达式是否还存在极限.

不严谨的解答. 分类讨论: 当 f 在 x_0 处可导时正确, 理由如下:

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$$

$$= \frac{1}{2} \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \frac{1}{2} \lim_{\Delta x \to 0} \frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x}$$

$$= \frac{1}{2} f'(x_0) + \frac{1}{2} f'(x_0)$$

$$= f'(x_0).$$

当 f 在 x_0 处不可导时错误.

2 第四次作业选讲 4

注 4. 这里有一定的逻辑问题: 必须要说明左边的极限存在能推出 f 在 x_0 处可导, 或者存在一个反例使得左边的极限存在但是 f 在 x_0 处不可导, 否则实际上并没有解决这道题.

正确解答. (2) 的结论是错误的. 取 $f(x) = |x|, x_0 = 0$, 则左边的极限存在:

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{|\Delta x| - |\Delta x|}{2\Delta x} = 0.$$

但是 f(x) 在 $x_0 = 0$ 处不可导, 原式不正确.

注 5. 一个本质的问题在于, 函数在某一点处的可导性与该点处的取值密切相关, 而函数在某一点处的极限与该点处的取值无关. 所以事实上我们可以任取一个可导函数, 修改其在一个点处的取值, 得到的新的函数就不满足 (2), 因为修改这个取值后左边极限不变, 但右边导数就不存在了 (在该点处甚至不连续).

2.2 判断分段函数可导性: 习题二第 10 题

问题 10 (习题二第 10 题). 判断函数
$$f(x) = \begin{cases} x^2 + 1 & x \le 1 \\ 2x + 3 & x > 1 \end{cases}$$
 在 $x = 1$ 是否可导.

错误写法 1: 分不清左右极限和左右导数. $\lim_{x\to 1^-} f(x) = 1 + 1 = 2$, $\lim_{x\to 1^+} f(x) = 2 + 3 = 5$, 故 f 在 x=1 处左右导数不相等,所以不可导.

错误写法 2: 还是分不清左右极限和左右导数. $f'_{-}(1) = \lim_{x \to 1^{-}} f(x) = 1 + 1 = 2$, $f'_{+}(1) = \lim_{x \to 1^{+}} f(x) = 2 + 3 = 5$, 故 f 在 x = 1 处左右导数不相等,所以不可导.

注 6. 以上两种错误都是意识到了函数在 1 处不连续, 所以不可导, 但是写法有问题.

正确解答 1. $\lim_{x\to 1^-} f(x) = 1+1=2$, $\lim_{x\to 1^+} f(x) = 2+3=5$, 故 f 在 x=1 处左右极限不相等,不连续,所以不可导.

错误写法
$$3$$
: 左右导数求法不对. $f'_{-}(1) = \lim_{\Delta x \to 0^{-}} \frac{f(1+\Delta x)-f(1)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{(1+\Delta x)^{2}+1-2}{\Delta x} = 2$, $f'_{+}(1) = \lim_{\Delta x \to 0^{+}} \frac{f(1+\Delta x)-f(1)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{2(1+\Delta x)+3-5}{\Delta x} = 2$, 故 f 在 $x=1$ 处左右导数相等,所以可导.

注 7. 这里看起来出现了矛盾:一方面根据前面的讨论 f 不连续,所以不可导;另一方面直接计算左右导数似乎又是相等的,符合导数存在的定义. 这里的问题出在计算左右导数时代入的 f(1) 函数值有问题,算左导数代入了 f(1) 3.

2.3 隐函数求导

问题 11 (习题二第 13 题). 求以下方程所确定的隐函数的导数:

(1)
$$(x-2)^2 + (y-3)^2 = 25$$
, (2) $\cos(xy) = x$,

(3)
$$y = 1 + xe^y$$
, (4) $x^y = y^x$.

错误解答. (2)
$$y = \frac{1}{x} \arccos x$$
, $y' = -\frac{1}{x^2} \arccos x - \frac{1}{x\sqrt{1-x^2}}$.

2 第四次作业选讲 5

正确解答.
$$(2) - \sin(xy)(y + xy') = 1, y' = \frac{1}{x} \left(-\frac{1}{\sin(xy)} - y \right).$$

注 8. 不要将方程决定的隐函数求出来然后直接求导,首先大部分情况这是解不出来的,其次隐函数的唯一性并不是一件显然甚至正确的事情,比如 (1)(2) 中的隐函数都不唯一,所以解出来的结果并不严谨,我们应该掌握直接对隐函数求导的办法.

注 9. 一般来说隐函数求导的结果会带有自变量 x 和隐函数 y 本身, 而 y 本质上又是 x 的函数, 所以经过不同的化简方式会得到形式上不同的表达式. 这是非常自然的, 只要求导过程正确, 一定可以证明这些表达式是等价的, 因此不需要刻意追求形式的简化, 求出来之后直接下结论即可.

问题 12 (习题二第 18 题). 若 $x + 2y - \cos y = 0$, 求 $\frac{d^2y}{dx^2}$.

错误解答. 对 x 求一阶导: $1 + 2y' + \sin y \cdot y' = 0$, 故 $y' = -\frac{1}{2 + \sin y}$. 两边再对 x 求导得: $y'' = \frac{\cos y}{(2 + \sin y)^2}$.

注 10. 必须时刻牢记 y 是关于 x 的函数,很多同学上一题可以做对,这题求一阶导也都求对,但是求第二次导数的时候就忘记再乘一个 y',实际上第二次变成了对 y 求导. 一个可能有帮助的办法是在计算的过程中不写 y,而是写 f(x),可以提醒自己这一项也是关于 x 的函数. 但是卷子上最后的结果必须写成带有 y 的形式.

问题 13 (补充题). 设 u, v 关于 x 二阶可导, 令 $y = \arctan \frac{u}{v}$, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.