Steven Maharaj 695281 Assignment 2, Question 2

Due: Friday 20 September 2019

There are places in this assignment where R code will be required. Therefore set the random seed so assignment is reproducible.

```
set.seed(695281) #Please change random seed to your student id number.
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.5.2

##

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

## filter, lag

## The following objects are masked from 'package:base':

##

## intersect, setdiff, setequal, union
```

Question Two (20 marks)

In lecture 3, we discussed how a Bayesian framework readily lends itself to combining information from sequential experiments. To demonstrate, consider the following data extracted from the *HealthIron* study.

Serum ferritin levels were measured for two samples of women, one of C282Y homozygotes (n = 88) and the other of women with neither of the key mutations (C282Y and H63D) in the HFE gene, so-called HFE 'wildtypes' (n = 242). The information available is

- idnum: Participant id.
- homc282y: Indicator whether individual is Homozygote (1) or Wildtype (0).
- time: Time since onset of menopause, measured in years.
- logsf: The natural logarithm of the serum ferritin in $\mu g/L$.

The data required to answer this question are Hiron.csv, which can be downloaded from LMS.

a) Fit a standard linear regression,

$$E(logsf) = \beta_0 + \beta_1 time$$

with responses restricted to those who are homozygote (homc282y = 1). This can be done using the 1m function in R. Report the estimated coefficients $\hat{\beta}$, estimated error variance, $\hat{\sigma}_e^2$ and $(\mathbf{X}'\mathbf{X})^{-1}$.

```
# Read the Data
Hiron <- read.csv("Hiron.csv")
HironHomo <- Hiron %>%filter(homc282y==1) %>% select(-idnum)
Hiron <- read.csv("Hiron.csv")
HironWild <- Hiron %>%filter(homc282y==0) %>% select(-idnum)
```

```
#fit linear regression using lm
model <- lm(logsf ~ time,data = HironHomo)</pre>
model $ coefficients
## (Intercept)
  4.23987253 0.07126085
intercept <-matrix(1,length(HironHomo$time),1)</pre>
X <- cbind(intercept, HironHomo$time)</pre>
XTX <- crossprod(X)</pre>
XTXinv <-solve(XTX)
# (XTX) ^-1
XTXinv
                 [,1]
##
                                 [,2]
## [1,] 0.033734956 -0.0015415009
## [2,] -0.001541501 0.0001062175
#Estimated error variance
sigma(model)^2
```

[1] 1.715042

- b) Fit a Bayesian regression using a Gibbs sampler to **only the wildtype (homc282y=0) data**. Use the output from your answer in a) to define proper priors for β, τ . For help, refer to lecture 13. For the Gibbs sampler, run two chains for 10,000 iterations. Discard the first 1000 iterations as burn-in and then remove every second remaining iteration to reduce auto-correlation. When storing results, convert τ back to σ^2 . When running the Gibbs sampler, incorporate posterior predictive checking, using the test statistic $T(y,\beta) = \sum_{i=1}^{n} e_i^2$ and $T(y^{\text{rep}},\beta) = \sum_{i=1}^{n} (e_i^{\text{rep}})^2$, where e_i is the predicted residual for observation i at simulation j and e_i^{rep} is the replicate residual for observation i at simulation j. Report posterior means, standard deviations and 95 % central credible intervals for $\beta_0, \beta_1, \sigma^2$ combining results for the two chains.
- c) Perform convergence checks for the chain obtained in b). Report both graphical summaries and Gelman-Rubin diagnostic results. For the calculation of Gelman-Rubin diagnostics, you will need to install the R package coda. An example of processing chains for calculating Gelman-Rubin diagnostics is given below.

Processing chains for calculation of Gelman-Rubin diagnostics. Imagine you have 4 chains of a multi-parameter problem, and thinning already completed, called par1,par2,par3,par4

```
Step one: Converting the chains into mcmc lists. library(coda)
par1<-as.mcmc.list(as.mcmc((par1)))
par2<-as.mcmc.list(as.mcmc((par2)))
par3<-as.mcmc.list(as.mcmc((par3)))
par4<-as.mcmc.list(as.mcmc((par4)))

Step two: Calculating diagnostics
par.all<-c(par1,par2,par3,par4)
gelman.diag(par.all)
```

d) Fit a standard linear regression,

$$E(logsf) = \beta_0 + \beta_1 time$$

to all the data using the 1m function in R. Report $\hat{\beta}$, and associated 95 % confidence intervals. Comparing

these results to the results from b), do you believe that sequential analysis gave the same results as fitting the regression on the full data.

e) Report the results of posterior predictive checking requested in b). Do you believe the postulated model was plausible. If not, what do you think is a potential flaw in the postulated model.