Experiment No: 03

Experiment Name: (a) Layout design and verification of NAND gate.

(b) Layout design and verification of NOR gate.

(a) Layout design and verification of NAND gate.

State of the Problem:

In this experiment work we are going to design the layout of NAND gate. Also we will verify the gates with true table and timing diagram.

Hypothesis:

The truth-table and schematic diagram of NAND gate is given below:

A	В	OUT
0	0	1
0	1	1
1	0	1
1	1	0

True Table

Schematic diagram of NAND

We will design the layout of NAND gate in 'MICROWIND2' software following this diagram.

Materials:

➤ MICROWIND2

Procedure:

Here is the working procedure with illustration:

At first, we open the 'MICROWIND2' software and select exact foundry which we needed. Here we use CMOS025.RUL as our foundry. Figure are given below:

 \triangleright Create V_{dd} and V_{ss} metal rails as 90*10 lamda. Top rail as V_{dd} and bottom as V_{ss} . Figure is given below:

➤ Generate the nMOS ans pMOS with layout generator. Figures are given bellow:

nMOS pMOS

Now, Place the nMOS and pMOS transistor in our design. Then, connect input, output, metal, poly, V_{dd}, v_{ss} and other necessary connection according our design. Final figure is given below:

> By simulating the simulation of our design the timing diagram is generated which is given below:

Conclusion:

The NAND gate is implemented using two pMOS and two nMMOS and the truth table is successfully verified. The required waveforms were obtained, observed and noted down using MICROWIND2.

(b) Layout design and verification of NOR gate.

State of the Problem:

In this experiment work we are going to design the layout of NOR gate. Also we will verify the gates with true table and timing diagram.

Hypothesis:

The truth-table and schematic diagram of NOR gate is given below:

A	В	OUT
0	0	1
0	1	0
1	0	0
1	1	0

True Table

Schematic diagram of NOR

We will design the layout of NOR gate in 'MICROWIND2' software following this diagram.

Materials:

➤ MICROWIND2

Procedure:

Here is the working procedure with illustration:

At first, we open the 'MICROWIND2' software and select exact foundry which we needed. Here we use CMOS025.RUL as our foundry. Figure are given below:

 \triangleright Create V_{dd} and V_{ss} metal rails as 90*10 lamda. Top rail as V_{dd} and bottom as V_{ss} . Figure is given below:

➤ Generate the nMOS ans pMOS with layout generator. Figures are given bellow:

nMOS pMOS

Now, place the nMOS and pMOS transistor in our design. Then, connect input, output, metal, poly, V_{dd}, v_{ss} and other necessary connection according our design. Final figure is given below:

> By simulating the simulation of our design the timing diagram is generated which is given below:

Conclusion:

The NOR gate is implemented using two pMOS and two nMMOS and the truth table is successfully verified. The required waveforms were obtained, observed and noted down using MICROWIND2.