Linear Regression with Ordinary Least Squares

Univariate Normal (Gaussian) Distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- The normal density is completely specified by the mean (μ) and the variance (σ^2) . These two are its sufficient statistics.
- Short-hand notation: $p(x) \sim \mathcal{N}(\mu, \sigma^2)$

• Error Histogram

- Linear Regression is widely used in statistics and supervised machine learning
- Response is a linear function of the inputs: $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \boldsymbol{\varepsilon}$
- ε is the residual error between model prediction and true response
 - $\varepsilon_i = y_i \mathbf{w}^T \mathbf{x}_i \rightarrow \text{commonly assumed to be normally distributed with mean } \mu \text{ and variance } \sigma^2$
- Therefore, the density function $p(y|\mathbf{x}, \boldsymbol{\theta})$ is also Gaussian
 - μ is a linear function of $x \rightarrow \mu = \mathbf{w}^T \mathbf{x}$
 - It is reasonable to assume the noise is fixed, i.e., $\sigma^2(\mathbf{x}) = \sigma^2$
 - Model parameters: $\boldsymbol{\theta} = (\boldsymbol{\mu}, \sigma^2) = (\mathbf{w}, \sigma^2)$ $p(y|\mathbf{x}, \boldsymbol{\theta}) \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2) = \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$

- Residual Sum of Squares (RSS)
 - Obtained from log likelihood
 - $RSS = \sum_{i=1}^{N} (y_i \mathbf{w}^T \mathbf{x}_i)^2$
 - Also known as Sum of Squared Error (SSE)
 - Mean Squared Error (MSE) = SSE/N
- MLE minimizes RSS → Least Squares method
- Using MLE, the optimal weight vector can be computed.

$$\mathbf{w}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- This is called the normal equation.
- This method is known as Ordinary Least Squares (OLS)

