Sparse and Stable Optimal Portfolios Presented as Part of MATH8550

Daniel Mckenzie

December 6, 2017

What is a portfolio?

- Suppose there are *N* stocks available to an investor.
- Let $p_i(t)$ be the price of the *i*-th stock at time t (in, say, USD).
- A Portfolio is a vector of weights $\mathbf{w} = (w_1, \dots, w_N)^T$, where w_i is the amount of capital to be invested in asset i.
- If w is total available capital, then require that $\sum_{i=1}^{N} w_i = \mathbf{w} \cdot \mathbf{1} = w$
- **Assumption 1:** An investor can make a purchase of any size in any stock (eg. can buy \$57.6543 worth of AAPL shares).

The return on a portfolio

Definition 1

- **1** simple return: $x_i := \frac{p_i(t) p_i(t-1)}{p_i(t-1)}$.
- **2** continuous return: $x_i := \ln(p_i(t)/p_i(t-1))$.

We will only use simple return, and refer to it just as 'return'.

Definition 2

- **1** The **return** on a portfolio **w** at time t is $r(t) := \mathbf{x} \cdot \mathbf{w} = \sum_{i=1}^{N} w_i x_i(t)$
- **2** The **value** of a portfolio **w** at time t is w(1 + r(t)) (recall $w = \sum_{i=1}^{N} w_i$)

Henceforth will normalize and set w = 1.

Markowitz, 1952: '... the investor should consider expected return a desirable thing and variance of return an undesirable thing'.¹.

¹Markowitz 1952.

- Markowitz, 1952: '... the investor should consider expected return a desirable thing and variance of return an undesirable thing'.¹.
- **Assumption 2:** Fixed time window. Create portfolio at t = 0. Cash out at t = T. Cannot change portfolio for 0 < t < T.

¹Markowitz 1952.

- Markowitz, 1952: '... the investor should consider expected return a desirable thing and variance of return an undesirable thing'.¹.
- **Assumption 2:** Fixed time window. Create portfolio at t = 0. Cash out at t = T. Cannot change portfolio for 0 < t < T.
- 3 Expected return:

$$\mathbb{E}[r(T)] = \mathbb{E}\left[\sum_{i=1}^{N} w_i x_i(T)\right] = \sum_{i=1}^{N} w_i \mathbb{E}\left[x_i(T)\right] = \sum_{i=1}^{N} w_i \mu_i = \mathbf{w}^{\top} \boldsymbol{\mu}$$

where $\mu_i := \mathbb{E}[x_i(T)]$ and $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$.

¹Markowitz 1952.

Variance of return
$$(Let \ \overline{r} := \mathbb{E}[r(T)] = \mathbf{w}^T \boldsymbol{\mu})$$
:
$$\mathbb{E}\left[(r(T) - \overline{r})^2\right] = \mathbb{E}\left[(\mathbf{w}^\top \mathbf{x}(T) - \mathbf{w}^\top \boldsymbol{\mu})^2\right]$$

$$= \mathbb{E}\left[(\mathbf{w}^\top (\mathbf{x}(T) - \boldsymbol{\mu}))^2\right]$$

$$= \mathbb{E}\left[(\mathbf{w}^T (\mathbf{x}(T) - \boldsymbol{\mu})) \left(\mathbf{w}^T (\mathbf{x} - \boldsymbol{\mu})\right)\right]$$

$$= \mathbb{E}\left[\mathbf{w}^T (\mathbf{x}(T) - \boldsymbol{\mu}) (\mathbf{x}(T) - \boldsymbol{\mu})^T \mathbf{w}\right]$$

$$= \mathbf{w}^T \mathbb{E}\left[(\mathbf{x}(T) - \boldsymbol{\mu}) (\mathbf{x}(T) - \boldsymbol{\mu})^T\right] \mathbf{w}$$

$$= : \mathbf{w}^T S \mathbf{w}$$

S is called the Covariance Matrix

Definition 3

$$S := \mathbb{E}\left[(\mathbf{x}(T) - \boldsymbol{\mu})(\mathbf{x}(T) - \boldsymbol{\mu})^T \right]$$
 is the covariance matrix.

$$S_{ij} = \mathbb{E}\left[(x_i(T) - \mu_i)(x_j(T) - \mu_j)\right]$$

Definition 3

$$S := \mathbb{E}\left[(\mathbf{x}(T) - \boldsymbol{\mu})(\mathbf{x}(T) - \boldsymbol{\mu})^T \right]$$
 is the covariance matrix. $S_{ij} = \mathbb{E}\left[(x_i(T) - \mu_i)(x_j(T) - \mu_j) \right]$

Recall we want to maximize return while minimizing risk. (At least) three problem formulations:

- **3** $\mathbf{w}_{opt} := \operatorname{argmin} \left\{ \mathbf{w}^T S \mathbf{w} \lambda \mathbf{w}^\top \boldsymbol{\mu} : \mathbf{w} \in \mathbb{R}^N \text{ and } \mathbf{w}^\top \mathbf{1} = 1 \right\} \text{ for some } \lambda > 0$

Will focus on problem formulation 1:

$$\mathbf{w}_{opt} := \operatorname{argmin} \left\{ \mathbf{w}^T S \mathbf{w} : \ \mathbf{w} \in \mathbb{R}^N, \mathbf{w}^\top \mathbf{1} = 1 \ \operatorname{and} \ \mathbf{w}^\top \boldsymbol{\mu} = r^*
ight\}$$

²And see Brodie et al. 2009.

Will focus on problem formulation 1:

$$\mathbf{w}_{opt} := \operatorname{argmin} \left\{ \mathbf{w}^T S \mathbf{w} : \ \mathbf{w} \in \mathbb{R}^N, \mathbf{w}^\top \mathbf{1} = 1 \ \text{and} \ \mathbf{w}^\top \boldsymbol{\mu} = r^* \right\}$$

skipping some steps², can show that the above is equivalent to:

$$\mathbf{w}_{opt} := \operatorname{argmin} \left\{ \mathbb{E} \left[\left(\mathbf{x}(T)^{\top} \mathbf{w} - r^* \right)^2 \right] : \mathbf{w} \in \mathbb{R}^N, \mathbf{w}^{\top} \mathbf{1} = 1 \text{ and } \mathbf{w}^{\top} \boldsymbol{\mu} = r^* \right\}$$

²And see Brodie et al. 2009.

Will focus on problem formulation 1:

$$\mathbf{w}_{opt} := \operatorname{argmin} \left\{ \mathbf{w}^T S \mathbf{w} : \ \mathbf{w} \in \mathbb{R}^N, \mathbf{w}^\top \mathbf{1} = 1 \text{ and } \mathbf{w}^\top \boldsymbol{\mu} = r^* \right\}$$

skipping some steps², can show that the above is equivalent to:

$$\mathbf{w}_{opt} := \operatorname{argmin} \left\{ \mathbb{E} \left[\left(\mathbf{x}(T)^{\top} \mathbf{w} - r^* \right)^2 \right] : \mathbf{w} \in \mathbb{R}^N, \mathbf{w}^{\top} \mathbf{1} = 1 \text{ and } \mathbf{w}^{\top} \boldsymbol{\mu} = r^* \right\}$$

Assumption 3: Returns are stationary. Thus can use historic data $\{x_i(-\tilde{T}), \dots, x_i(-1)\}$ to approximate $\mu_i = \mathbb{E}[x_i(T)]$:

$$\mu_i pprox \hat{\mu}_i := \tilde{\mathcal{T}}^{-1} \sum_{t=-\tilde{\mathcal{T}}}^1 x_i(t)$$

$$\mathbb{E}\left[\left(\mathbf{x}(T)^{\top}\mathbf{w}-r^{*}\right)^{2}\right]\approx\tilde{T}^{-1}\sum_{t=1}^{T}\left(\mathbf{x}(t)^{\top}\mathbf{w}-r^{*}\right)^{2}=\tilde{T}^{-1}\|X\mathbf{w}-r^{*}\mathbf{1}_{\mathbb{R}^{\tilde{T}}}\|_{2}^{2}$$

²And see Brodie et al. 2009.

Assumption 4: We don't allow short positions, thus $w_i \ge 0$ for all i Thus problem becomes:

$$\mathbf{w}_{opt} = \operatorname{argmin}\{\|X\mathbf{w} - r^*\mathbf{1}\|_2^2 : \mathbf{w} \in \mathbb{R}_{\geq 0}^N, \mathbf{w}^\top\mathbf{1} = 1 \text{ and } \mathbf{w}^\top\hat{\boldsymbol{\mu}} = r^*\}$$
 (1)

Where:

$$X = \begin{bmatrix} x_1(-\tilde{T}) & \cdots & x_N(-\tilde{T}) \\ \vdots & \ddots & \vdots \\ x_1(-1) & \cdots & x_N(-1) \end{bmatrix}$$

Problem: Columns of X are highly correlated. Hence X is (approximately) rank deficient, so this minimization problem is unstable.

Solving this problem

- I Ignore all data. Choose equally weighted portfolio $\mathbf{w}_{ew} = \frac{1}{N}\mathbf{1}$.
- **2** Solve (1) using constrained least squares anyway, *eg* using CVX³.
- 3 Add an ℓ_1 term (See Brodie et al. 2009) while allowing short positions (*i.e.* dropping assumption that all $w_i \ge 0$). Turns problem into a LASSO problem:

$$\operatorname{argmin}\{\|X\mathbf{w}-r^*\mathbf{1}\|_2^2+\lambda\|\mathbf{w}\|_1:\ \mathbf{w}^{\top}\mathbf{1}=1\ \text{and}\ \mathbf{w}^{\top}\hat{\boldsymbol{\mu}}=r^*\}$$

- In DeMiguel, Garlappi, and Uppal 2007 many (10+) other approaches are tested. None consistently outperform w_{ew}.
- **Sparse**-Convex approach. Find a k-sparse portfolio \mathbf{w}_k that replicates performance of the (very non-sparse) equally weighted portfolio \mathbf{w}_{ew} . Amounts to solving:

$$\operatorname{argmin}\{\|X\mathbf{w} - X\mathbf{w}_{ew}\|_2^2 : \mathbf{w} \in \Delta \cap \Sigma_k\}$$

Where Σ_k is k-sparse vectors and $\Delta = \{ \mathbf{w} \in \mathbb{R}^N_{>0}, \ \mathbf{w}^\top \mathbf{1} = 1 \}$.

³CVX Research 2012.

Sparse-Convex approach continued

Theorem 1

Let Σ_k be k-sparse vectors and $\Delta = \{ \mathbf{w} \in \mathbb{R}^N_{\geq 0}, \ \mathbf{w}^\top \mathbf{1} = 1 \}$. In (Kyrillidis et al. 2013) an exact expression for $\mathcal{P}_{\Delta \cap \Sigma_k}$ is given.

Conclusion: Can exactly solve the Sparse-Convex problem via Projected Gradient descent.

Algorithm 1 Sparse-Convex

Input Historic data
$$X \in \mathbb{R}^{\tilde{T} \times N}$$

Initialize $\mathbf{w}^{(0)} = (1,0,\dots,0)^{\top} \in \mathbb{R}^{N}$
while True do
Determine step size $\alpha^{(n)}$
 $\mathbf{w}^{(n+1)} = \mathcal{P}_{\Delta \cap \Sigma_{k}} \left(\mathbf{w}^{(n)} - \alpha^{(n)} X^{\top} X (\mathbf{w}^{(n)} - \mathbf{w}_{ew}) \right)$
if Stopping Criterion Met then
Return
Output Sparse portfolio \mathbf{w}^{*}

Experiment 1: Comparing Stability - Set up

- Use a common data set, the Fama-French 48 industry data set (FF48).
- Every US stock is classified into one of 48 industries ('Agriculture', 'Tobacco', 'Chemicals' etc.).
- Monthly returns for each industry are calculated from July 1926 to October 2017 4.
- Chose a five year period between July 1971 and June 2016 at random as our training data X
- Considered two additional data sets $X_i = X + \epsilon E_i$, for i = 1, 2 where $E_{ij} \sim_{i.i.d} \mathcal{N}(0, 1)$ and $\epsilon = 0.005$.
- **6** Ran CVX to solve problem (1) and used Sparse-Convex to solve problem (2) for X, X_1 and X_2

⁴available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french

Experiment 1: Comparing Stability - Results

Figure: Constrained Least Squares Approach.

Figure: Sparse-Convex approach.

Experiment 2: Comparing Returns - Set Up

- We use the same setup as (Brodie et al. 2009).
- 2 Used same FF48 data set.
- 3 Starting from July 1976, used previous five years of data as training data for four different methods: Equally Weighted, Constrained Least Squares (using CVX), Sparse-Convex with k=5 and Sparse-Convex with k=10.
- Calculated returns on this portfolio over year July 1976 June 1977.
- 5 'Re-adjust' portfolios: Use previous five years of data (from June 1977 backwards) to build 4 new portfolios using the same methods.
- 6 Repeat up until June 2016.

Experiment 2: Comparing Returns - Results 1

Figure: Portfolio value vs. time, for four different methods of selecting an optimal portfolio (using FF48 data set)

Experiment 2: Comparing Returns - Results 2

Method	μ	σ	S
Equally weighted	1.19%	4.50%	26.52
CVX	0.93%	3.48%	26.64
Sparse Convex, $k=5$	1.27%	4.66%	27.25
Sparse Convex, $k=10$	1.20%	4.56%	26.28

Table: Comparing mean monthly return (μ) , standard deviation of monthly return (σ) and Sharpe ratio $(S := \mu/\sigma)$ for different methods

Code

Code available at https://github.com/DanielMckenzie/SparseOptimalPortfolios. Use at own risk!

References

- Joshua Brodie et al. "Sparse and stable Markowitz portfolios". In: Proceedings of the National Academy of Sciences 106.30 (2009), pp. 12267–12272.
- Inc CVX Research. CVX: Matlab Software for Disciplined Convex Programming, version 2.0. http://cvxr.com/cvx. 2012.
- Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal. "Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?" In: *The review of Financial studies* 22.5 (2007), pp. 1915–1953.
- Anastasios Kyrillidis et al. "Sparse projections onto the simplex". In: *Proceedings of The 30th International Conference on Machine Learning*. 2013, pp. 235–243.
- Harry Markowitz. "Portfolio selection". In: *The journal of finance* 7.1 (1952), pp. 77–91.