

配置跨交换机的 VLAN

【实验名称】

配置跨交换机的 VLAN

【实验目的】

理解跨交换机之间 VLAN 的特点

【背景描述】

假设某企业有两个主要部门:销售部和技术部,其中销售部门的个人计算机系统分散连接,他们之间需要相互进行通信,但为了数据安全起见,销售部和技术部需要进行相互隔离,现要在交换机上做适当配置来实现这一目标。

【需求分析】

使在同一VLAN 里的计算机系统能跨交换机进行相互通信,而在不同 VLAN 里的计算机系统不能进行相互通信。

【实验拓扑】

【实验设备】

交换机2台PC 机3台直连线4条

【预备知识】

交换机转发原理、交换机基本配置、VLAN 工作原理、VLAN 的配置

【实验原理】

VLAN 是一种用于隔离广播域的技术,配置了 VLAN 的交换机内,相同 VLAN 内主机之间可以直接访问,同时对于不同 VLAN 的主机进行隔离。VLAN 遵循了 IEEE802.1q 协议的标准。在利用配置了 VLAN 的接口进行数据传输时,需要在数据帧内添加 4 个字节的 802.1q 标签信息,用于标识该数据帧属于哪个 VLAN,以便于对端

交换机接收到数据帧后进行准确的过滤。

【实验步骤】

第一步: 在交换机 SwitchA 上创建 Vlan 10,并将 0/5 端口划分到 Vlan 10 中 SwitchA#configure terminal

SwitchA(config)# vlan 10

SwitchA(config-vlan)# name sales

SwitchA(config-vlan)#exit

SwitchA(config)#interface fastethernet0/5

SwitchA(config-if)#switchport access vlan 10

SwitchA#show vlan id 10

!查看某一个 VLAN 的信息

VLAN Name

Status Ports

10 sales

active Fa0/5

第二步: 在交换机 switchA 上创建 Vian 20,并将 0/15 端口划分到 Vian 20 中

SwitchA(config)# vlan 20

SwitchA(config-vlan)# name technical

SwitchA(config-vlan)#exit

SwitchA(config)#interface fastethernet0/15

SwitchA(config-if)#switchport access vlan 20

SwitchA#show vlan id 20

VLAN Name

Status

Ports

20 technical

active

Fa0/15

第三步:把交换机 SwitchA 与交换机 SwitchB 相连的 F0/24 端口定义为 Trunk 模式

SwitchA(config)#interface fastethernet0/24

SwitchA(config-if)#switchport mode trunk

!将 fastethernet 0/24 端口设为 Trunk 模式

SwitchA#show interfaces fastEthernet0/24 switchport

Interface Switchport Mode

Access Native

Protected VLAN lists

Fa0/24

Enabled

Trunk

Disabled

All

第四步: 在交换机 SwitchB 上创建 Vian 10,并将 0/5 端口划分到 Vian 10 中

SwitchB # configure terminal

SwitchB(config)# vlan 10

SwitchB(config-vlan)# name sales

SwitchB(config-vlan)#exit

SwitchB(config)#interface fastethernet0/\$ 9
SwitchB(config-if)#switchport access vlan 10

SwitchB#show vlan id 10

VLAN Name

Status

Ports

10 sales

active

Fa0/5

第五步: 把交换机 SwitchB 与交换机 SwitchA 相连的 F0/24 端口定义为 Trunk 模式

SwitchB(config)#interface fastethernet0/24

SwitchB(config-if)#switchport mode trunk

SwitchB#show interfaces fastEthernet 0/24 switchport

Interface Switchport Mode

Access Native

Protected VLAN lists

Fa0/24

Enabled

Trunk

1

Disabled All

第六步:验证测试

验证 PC1 与 PC3 能互相通信,但 PC2 与 PC3 不能互相通信。

C:\>ping 192.168.10.30

! 在 PC1 的命令行方式下验证能 Ping 通

PC3

Pinging 192.168.10.30 with 32 bytes of data:

Reply from 192.168.10.30: bytes=32 time<10ms TTL=128

Ping statistics for 192.168.10.30:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>ping 192.168.10.30

! 在 PC2 的命令行方式下验证不能 Ping

通 PC3

Pinging 192.168.10.30 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 192.168.10.30:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

【注意事项】

● 两台交换机之间相连的端口应该设置为 tag vlan 模式。

配置 SVI 实现 VLAN 间路由

【实验名称】

配置 SVI 实现 VLAN 问路由

【实验目的】

使用三层交换机实现 VLAN 间路由

【背景描述】

为减小广播包对网络的影响,网络管理员在公司内部网络中进行了 VLAN 的划分。完成 VLAN 的划分后,发现不同 VLAN 之间无法互相访问。

【需求分析】

可以通过配置三层交换机的 SVI 接口实现 VLAN 间的路由。

【实验拓扑】

【实验设备】

三层交换机 1台

PC 机

2台

【预备知识】

交换机转发原理、交换机基本配置、三层交换机路山功能

【实验原理】

VLAN 间的主机通信为不同网段间的通信,需要通过三层设备对数据进行路由转发才可以实现。通过在三层交换机上为各 VLAN 配置 SVI 接口,利用三层交换机的路由功能可以实现 VLAN 间的路由。

【实验步骤】

第一步: 在三层交换机上创建 VLAN

Switch#configure terminal

Switch(config)#vlan 10

Switch(config-vlan)#vlan 20

Switch(config-vlan)#exit

第二步: 在三层交换机上将端口划分到相应 VLAN

Switch(config)#interface fastEthernet 0/1

Switch(config-if)#switchport access vlan 10

Switch(config-if)#exit

Switch(config)#interface fastEthernet 0/2

Switch(config-if)#switchport access vlan 20

Switch(config-if)#exit

第三步: 在三层交换机上给 VLAN 配置 IP 地址

Switch(config)#interface vlan 10

Switch(config-if)#ip address 192.168.10.1 255.255.255.0

Switch(config-if)#no shutdown

Switch(config-if)#exit

Switch(config)#interface vlan 20

Switch(config-if)#ip address 192.168.20.1 255.255.255.0

Switch(config-if)#no shutdown

Switch(config-if)#exit

第四步:验证测试

按拓扑中所示配置 PC 并连线,从 VLAN10 中的 PC1 ping VLAN20 中的 PC2,结果如下所示:

C:\Documents and Settings\shil>ping 192.168.20.2

Pinging 192.168.20.2 with 32 bytes of data:

Reply from 192.168.20.2: bytes=32 time<1ms TTL=64

Ping statistics for 192.168.20.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

从上述测试结果可以看到通过在三层交换机上配置 SVI 接口实现了不同 VLAN 之间的主机通信。

【注意事项】