

Exact formulas for partial sums of the Möbius function expressed by partial sums of

weighted Liouville functions by: Maxie Schmidt Georgia Tech

Virtually: See e-mail for link

Abstract

The Mertens function, $M(x) := \sum_{n \leq x} \mu(n)$, is defined as the summatory function of the classical Möbius function for $x \geq 1$. The Dirichlet inverse function $g(n) := (\omega + 1)^{-1}(n)$ is defined in terms of the shifted strongly additive function $\omega(n)$ that counts the number of distinct prime factors of n without multiplicity. Discrete convolutions of the partial sums of g(n) with the prime counting function provide new exact formulas for M(x) that are weighted sums of the Liouville function involving |g(n)| for $n \leq x$. We study the distribution of the unsigned function |g(n)| through the auxiliary unsigned sequence $C_{\Omega}(n)$ whose Dirichlet generating function is given by $(1 - P(s))^{-1}$ for $\Re(s) > 1$ where $P(s) = \sum_{p} p^{-s}$ is the prime zeta function. An application of the Selberg-Delange method yields asymptotics for the restricted sums of $C_{\Omega}(n)$ over all $n \leq x$ such that $\Omega(n) = k$ uniformly for $1 \leq k \leq \frac{3}{2} \log \log x$. We use these formulas to prove precise formulas for the average order of both $C_{\Omega}(n)$ and |g(n)|. Higher-order moments of these functions are predicted numerically by the conjecture that there is a limiting probability measure on \mathbb{R} whose cumulative density function gives the distribution of the distinct values of each function over $n \leq x$ as $x \to \infty$.