${f 2.1.3}$ Определение ${C_p\over C_v}$ по скорости звука в газе ${\it Erop\,\, Bepcehe 8}$

1 Цель работы

- 1. Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу.
- 2. Определение показателя адиабаты с помощью уравнения состояния идеального газа.

2 Оборудование

Звуковой генератор Γ З, электронный осциллограф, микрофон, телефон, раздвижная труба, теплоизолированная труба, термостат, баллон со сжатым углекислым газом, газгольдер.

3 Теоретическая часть

Скорость распространения звуковой волны в газах зависит от показателя адиабаты. На измерении скорости звука основан один из самых точных методово определения показателя адиабаты. Скорость звука в идеальном газе определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},\tag{1}$$

где R — газовая постоянная, T — температура газа, μ — молярная масса. Преобразуем:

$$\gamma = \frac{\mu}{RT}c^2\tag{2}$$

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения, при этом наступает резонанс — амплитуда резко возрастает. Скорость звука связана с его частотой f и длиной волны λ следующим соотношением:

$$c = \lambda f \tag{3}$$

Подберем условия для резонанса двумя способами:

- 1. При неизменной частоте звукового генератора $L_n = n \frac{\lambda}{2}$. $\frac{\lambda}{2}$ —угловой коэффициент L(k).
- 2. При постоянной длине трубы. $L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) \implies f_{k+1} = f_1 + \frac{c}{2L}k$

4 Ход работы

4.1 Измерения на неподвижной трубе

 $L_{ ext{tp}} = 740 \pm 1 \, \text{mm}$

Проведем измерения резонансных частот на неподвижной трубе при разных температурах.

T = 23.6		T = 30.1		T	' = 40		' = 50	T = 59		
n	f, Гц	n	f, Гц	n	f, Гц	n	f, Гц	n	f, Гц	
1	241.1	1	242	1	253	1	252	1	261	
2	447.7	2	471.3	2	482.6	2	490	2	506	
3	700.5	3	711.3	3	718.4	3	735	3	745	
4	930	4	941	4	953.1	4	974	4	981	
5	1162	5	1174	5	1194	5	1212	5	1226	
6	1391	6	1407	6	1431	6	1456	6	1147	

T, K	$\frac{c}{2L}$	$\sigma \frac{c}{2L}$	с, м/с	$ \gamma $	$\sigma \gamma \cdot 10^{-2}$
23.6	232.05	2.32	343.43	1.34	1.99
30.1	233.22	0.58	345.17	1.32	0.66
40	235.96	0.82	349.22	1.31	0.74
50	240.71	0.48	356.25	1.32	0.49
59	237.68	1.62	351.77	1.25	1.23

4.2 Измерения на подвижной трубе

Измерим скорость звука в углекислом газе.

$\mid f :$	f = 1468 Гц		$\mid f = 2355$ Гц \mid		f=2432 Гц		f = 3325 Гц		f = 3822 Гц		f = 4984 Гц	
n	L, mm	n	L, mm	n	L, mm	n	L, mm	n	L, mm	n	L, mm	
1	700	1	723	1	700	1	704	1	723	1	701	
2	715	2	716.6	2	706.7	2	708.2	2	719.7	2	704	
3	721	3	710.2	3	712.8	3	712.5	3	716	3	706.9	
		4	703.8	4	719.3	4	716.8	4	712.3	4	709.3	
						5	721.2	5	708.6	5	712.2	
								6	705	6	714.7	
								7	701.3	7	718.2	
										8	721	

f, Гц	$\frac{\lambda}{2} \cdot 10^{-3}$, M	$\sigma^{\lambda}_{2} \cdot 10^{-3}$	с, м/с	σc	γ	$\sigma\gamma$
2355	6.4	0.21	301.4	6	1.62	0.05
2432	6.4	0.21	311.3	6.22	1.72	0.05
3325	4.3	0.14	286	5.72	1.45	0.04
3822	3.6	0.12	275.1	5.5	1.34	0.04
4984	2.8	0.09	279.1	5.58	1.38	0.04

Измерим скорость звука в воздухе.

$ f = 1748 \ \Gamma$ ц $ f = 1845$		= 1845 Гц	f = 2200 Гц		f=2546 Гц		f = 2873 Гц		f = 2891 Гц		
n	L, mm	n	L, mm	n	L, mm	n	L, mm	n	L, mm	n	L, mm
1	700	1	723	1	700	1	723	1	700	1	723
2	709.6	2	715.8	2	708.1	2	716.6	2	706.5	2	717.6
3	719.4	3	704.6	3	715.8	3	709.6	3	712.5	3	711.6
						4	703	4	718.4	4	705.8
										5	700

f, Гц	$\frac{\lambda}{2} \cdot 10^{-3}$, M	$\sigma^{\lambda}_{2} \cdot 10^{-3}$	с, м/с	σc	γ	$\sigma\gamma$
1845	9.7	0.97	358	3.5	1.45	0.03
2200	9.2	0.92	404.8	4	1.85	0.04
2546	7.9	0.79	402.2	4	1.83	0.04
2873	6.7	0.67	385	3.8	1.68	0.04
2891	6.12	0.61	353.8	3.5	1.41	0.03

5 Вывод

По измерению скорости звука в газе можно определить $\frac{C_p}{C_v}$ данного газа. По результатам измерений наиболее соответствующий реальности результат получился в неподвижной трубе. В раздвижной трубе наблюдаются значительные отклонения. Это может быть связано с тем, что измерения проводятся при приоткрытом газовом кране, и поступления газа в трубу превышают его утечки через соединения.