Exercise For Convexity and Optimization in \mathbb{R}^n

Qiuyi Chen Qiuyi.Chen@liverpool.ac.uk

May, 2025

Contents	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{4}$

Dedicated to the knee scrapes, playdates, and heartaches.

Topics in Real Analysis

1.1Introduction

Exercise 1.1. For any vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , show that $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$. Interpret this relation as a statement about parallelograms in \mathbb{R}^2 and \mathbb{R}^3 .

Solution. To prove that $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$ for any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we use the definition of the Euclidean norm and properties of the dot product. Recall that $\|\mathbf{x}\|^2 = \mathbf{x} \cdot \mathbf{x}$.

First, expand $\|\mathbf{x} + \mathbf{y}\|^2$:

$$\|\mathbf{x} + \mathbf{y}\|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} = \|\mathbf{x}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2.$$

Next, expand $\|\mathbf{x} - \mathbf{y}\|^2$:

$$\|\mathbf{x} - \mathbf{y}\|^2 = (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} - 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} = \|\mathbf{x}\|^2 - 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2.$$

Add these two expressions:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = (\|\mathbf{x}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2) + (\|\mathbf{x}\|^2 - 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2) = \|\mathbf{x}\|^2 + \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) - 2(\mathbf{x} \cdot \mathbf{y}).$$

The cross terms $2(\mathbf{x} \cdot \mathbf{y})$ and $-2(\mathbf{x} \cdot \mathbf{y})$ cancel, yielding:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$$

Thus, the equality holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

In \mathbb{R}^2 and \mathbb{R}^3 , this equality has a geometric interpretation related to parallelograms. Consider vectors **x** and **y** emanating from the same initial point. These vectors form two adjacent sides of a parallelogram. The vector $\mathbf{x} + \mathbf{y}$ represents one diagonal of the parallelogram, and $\mathbf{x} - \mathbf{y}$ represents the other diagonal (assuming the parallelogram is completed appropriately).

The left side of the equality, $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2$, is the sum of the squares of the lengths of the two diagonals. The right side, $2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$, is twice the sum of the squares of the lengths of the two adjacent sides. Since a parallelogram has two pairs of equal sides, the sum of the squares of the lengths of all four sides is $2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$ (two sides of length $\|\mathbf{x}\|$ and two of length $\|\mathbf{y}\|$).

Therefore, the equality states that for any parallelogram in \mathbb{R}^2 or \mathbb{R}^3 , the sum of the squares of the lengths of the diagonals equals the sum of the squares of the lengths of all four sides. This is a fundamental property of parallelograms in Euclidean geometry, often called the parallelogram law.

1.3 Algebra of Sets

Lemma 3.1. Let $\{S_{\alpha}\}_{{\alpha}\in A}$ be a collection of subsets of a set X. Then

$$\bigcup_{\alpha \in A} S_{\alpha} = c \left[\bigcap_{\alpha \in A} (cS_{\alpha}) \right],$$
$$\bigcap_{\alpha \in A} S_{\alpha} = c \left[\bigcup_{\alpha \in A} (cS_{\alpha}) \right].$$

Proof. We establish both identities by showing mutual inclusion of the corresponding sets.

1.
$$\bigcup_{\alpha \in A} S_{\alpha} = c \Big[\bigcap_{\alpha \in A} (cS_{\alpha}) \Big]$$
.

1. $\bigcup_{\alpha \in A} S_{\alpha} = c \Big[\bigcap_{\alpha \in A} (cS_{\alpha}) \Big]$.

(i) Subset relation \subseteq . Let $x \in \bigcup_{\alpha \in A} S_{\alpha}$. Then there exists an index $\alpha_0 \in A$ such that $x \in S_{\alpha_0}$. If x were also (cS_{α}) it would belong to cS_{α} i.e. $x \notin S_{\alpha}$ a contradiction. Therefore $x \notin \bigcap_{\alpha \in A} (cS_{\alpha})$, which contained in $\bigcap_{\alpha \in A} (cS_{\alpha})$, it would belong to cS_{α_0} , i.e. $x \notin S_{\alpha_0}$, a contradiction. Therefore $x \notin \bigcap_{\alpha \in A} (cS_{\alpha})$, which means $x \in c[\bigcap_{\alpha \in A} (cS_{\alpha})].$

(ii) Subset relation \supseteq . Conversely, take $x \in c[\bigcap_{\alpha \in A} (cS_{\alpha})]$. Then $x \notin \bigcap_{\alpha \in A} (cS_{\alpha})$, so there exists an index $\alpha_1 \in A$ with $x \notin cS_{\alpha_1}$. Equivalently, $x \in S_{\alpha_1}$, hence $x \in \bigcup_{\alpha \in A} S_{\alpha}$. Combining (i) and (ii) yields the desired equality.

$$\textbf{2.} \bigcap_{\alpha \in A} S_{\alpha} \ = \ c \Big[\bigcup_{\alpha \in A} (cS_{\alpha}) \Big] \textbf{.}$$
 The argument is analogous.

(i) Subset relation \subseteq . Let $x \in \bigcap_{\alpha \in A} S_{\alpha}$. Then $x \in S_{\alpha}$ for every α . Consequently, $x \notin cS_{\alpha}$ for any α , which implies $x \notin \bigcup_{\alpha \in A} (cS_{\alpha})$. Hence $x \in c[\bigcup_{\alpha \in A} (cS_{\alpha})]$.

(ii) Subset relation \supseteq . Let $x \in c[\bigcup_{\alpha \in A} (cS_{\alpha})]$. Then $x \notin \bigcup_{\alpha \in A} (cS_{\alpha})$, so for every $\alpha \in A$ we have $x \notin cS_{\alpha}$; equivalently $x \in S_{\alpha}$. Therefore $x \in \bigcap_{\alpha \in A} S_{\alpha}$.

Since both inclusions hold, the second identity follows.

Metric Topology of \mathbb{R}^n

Exercise 4.1. Use the properties of the norm to show that the function d defined by

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

is a metric, or distance function, on \mathbb{R}^n .

Proof. To verify that $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$ is a metric on \mathbb{R}^n , we must show that it satisfies the following three properties for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$: (i) non-negativity with the identity of indiscernibles, (ii) symmetry, and (iii) the triangle inequality.

1. Non-negativity and identity of indiscernibles. The Euclidean norm is always non-negative, so

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| \ge 0.$$

Moreover, $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\|\mathbf{x} - \mathbf{y}\| = 0$, which occurs precisely when $\mathbf{x} - \mathbf{y} = \mathbf{0}$, i.e. when $\mathbf{x} = \mathbf{y}$.

2. Symmetry. Because $\|\mathbf{v}\| = \|-\mathbf{v}\|$ for any vector \mathbf{v} ,

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \|-(\mathbf{x} - \mathbf{y})\| = \|\mathbf{y} - \mathbf{x}\| = d(\mathbf{y}, \mathbf{x}).$$

3. Triangle inequality. The Euclidean norm satisfies the triangle inequality $\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$. Choosing $\mathbf{u} = \mathbf{x} - \mathbf{y}$ and $\mathbf{v} = \mathbf{y} - \mathbf{z}$ gives

$$d(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\| = \|(\mathbf{x} - \mathbf{y}) + (\mathbf{y} - \mathbf{z})\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\| = d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}).$$

Since all three axioms hold, the function d is indeed a metric on \mathbb{R}^n .

Exercise 4.2. (a) Sketch the graph of $y = \sin(1/x)$ for x > 0.

(b) Consider the graph as a set in \mathbb{R}^2 and find the limit points of this set.

Solution. (a) Sketch of the curve. Set t = 1/x for x > 0. Then the graph of $y = \sin(1/x)$ for x > 0 corresponds to the standard sine curve $y = \sin t$ for t > 0, but viewed through the change of variables x = 1/t. As $x \to 0^+$ we have $t\to +\infty$, so the curve oscillates infinitely often between -1 and 1 while its x-coordinate approaches 0. For moderate values of x the graph resembles the usual sine curve stretched horizontally, whereas near the y-axis the oscillations become increasingly rapid, creating a "comb-like" fringe that accumulates on the interval $\{0\} \times [-1,1]$.

(b) Limit points of the graph. Let

$$S := \{ (x, \sin(1/x)) : x > 0 \} \subset \mathbb{R}^2.$$

We claim that the set of limit points of S is

$$S' = S \cup \{(0,y) : -1 \le y \le 1\}.$$

The verification proceeds in two steps.

Step 1: Every point of S is a limit point. Fix $(x_0, \sin(1/x_0)) \in S$ with $x_0 > 0$ and let $\varepsilon > 0$ be given. Recall the elementary inequality $|\sin u - \sin v| \le |u - v|$ valid for all real numbers u, v. Set

$$\delta := \min \left\{ \frac{\varepsilon}{2}, \, \frac{\varepsilon x_0^2}{4}, \, \frac{x_0}{2} \right\}.$$

Pick any $x_{\varepsilon} \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$ and define $P_{\varepsilon} := (x_{\varepsilon}, \sin(1/x_{\varepsilon}))$. Then $P_{\varepsilon} \in S$ and

$$|x_{\varepsilon} - x_0| < \frac{\varepsilon}{2}, \qquad |\sin(1/x_{\varepsilon}) - \sin(1/x_0)| \le |1/x_{\varepsilon} - 1/x_0| = \frac{|x_{\varepsilon} - x_0|}{|x_{\varepsilon}|x_0} \le \frac{2\delta}{x_0^2} \le \frac{\varepsilon}{2}.$$

Consequently

Consequently
$$||P_{\varepsilon} - (x_0, \sin(1/x_0))|| \leq \sqrt{(|x_{\varepsilon} - x_0|)^2 + (|\sin(1/x_{\varepsilon}) - \sin(1/x_0)|)^2} < \varepsilon,$$
 proving that $(x_0, \sin(1/x_0))$ is indeed a limit point of S .

Step 2: Points of the form (0,y) with $|y| \le 1$ are limit points. Fix $y \in [-1,1]$ and $\varepsilon > 0$. Because the sine function attains every value in [-1,1] infinitely often, we can pick $t_{\varepsilon} > \max\{1/\varepsilon,0\}$ such that $|\sin t_{\varepsilon} - y| < \varepsilon$. Setting $x_{\varepsilon} = 1/t_{\varepsilon}$ we obtain $0 < x_{\varepsilon} < \varepsilon$ and

$$\|(x_{\varepsilon}, \sin(1/x_{\varepsilon})) - (0, y)\| < \sqrt{\varepsilon^2 + \varepsilon^2} < \sqrt{2} \varepsilon$$

 $\left\|(x_{\varepsilon},\sin(1/x_{\varepsilon}))-(0,y)\right\|<\sqrt{\varepsilon^2+\varepsilon^2}<\sqrt{2}\,\varepsilon.$ Thus (0,y) is approached by points of S distinct from itself, so it is a limit point.

Step 3: No other points are limit points. If x < 0, every open ball centred at (x,y) contains points whose first coordinate is negative, whereas S lies entirely in x > 0; thus such points cannot be limit points. If x = 0 but |y| > 1, the vertical separation |y|-1 already exceeds the range of sin, so no sequence in S can approach (0,y).

Finally, consider a point (x, y) with x > 0 that does

emphant belong to S. Write $y_0 := \sin(1/x)$ and set $d := |y - y_0| > 0$. Choose

$$r := \min \left\{ \frac{d}{2}, \, \frac{x}{2} \right\}.$$

For any $(x', \sin(1/x')) \in S$ satisfying |x' - x| < r we have $x' \ge x/2$ and hence, using $|\sin u - \sin v| \le |u - v|$ again,

$$|\sin(1/x') - y_0| \le \frac{|x' - x|}{x'x} \le \frac{2r}{x^2} \le \frac{d}{2}.$$

Therefore

$$|\sin(1/x') - y| \ge |y - y_0| - |\sin(1/x') - y_0| > \frac{d}{2},$$

so the Euclidean distance between $(x', \sin(1/x'))$ and (x, y) exceeds d/2. Hence the ball B((x, y), d/2) contains no point of S, proving that (x, y) is not a limit point. Collecting the cases established in Steps 1–3 completes the description of S'.

Consequently, the set of all limit points of the graph is precisely $S \cup (\{0\} \times [-1,1])$, as asserted.

Exercise 4.3. Show that for $x \in \mathbb{R}^n$ and r > 0 the set B(x, r) is open; that is, show that an open ball is open.

Proof. Let $y \in B(x, r)$, so by definition ||y - x|| < r. Define

$$\varepsilon \ := \ r - \|y - x\| \ > \ 0.$$

We claim that the entire ball $B(y,\varepsilon)$ is contained in B(x,r). Indeed, if $z \in B(y,\varepsilon)$ then $||z-y|| < \varepsilon$, and by the triangle inequality,

$$||z - x|| \le ||z - y|| + ||y - x|| < \varepsilon + ||y - x|| = r.$$

 $||z-x|| \le ||z-y|| + ||y-x|| < \varepsilon + ||y-x|| = r$. Hence $z \in B(x,r)$. Since every point y of B(x,r) is an interior point, the set B(x,r) is open.

Remark. Idea of the proof. To show that the open ball B(x,r) is an open set we verify that every point it contains is an interior point. Fix $y \in B(x,r)$ and measure how much "room" is left before reaching the boundary: the gap is $\varepsilon := r - \|y - x\| > 0$. Any point z that sits within this gap around y (that is, $\|z - y\| < \varepsilon$) cannot escape the larger ball, because the triangle inequality guarantees $||z-x|| < ||z-y|| + ||y-x|| < \varepsilon + (r-\varepsilon) = r$. Thus the smaller ball $B(y,\varepsilon)$ lies completely inside B(x,r), making y an interior point. Since y was arbitrary, B(x,r) is open.

Exercise 4.4. Show that for $x \in \mathbb{R}^n$ and r > 0 the closed ball $\overline{B(x,r)}$ is closed.

Proof. Set $C := \overline{B(x,r)} = \{y \in \mathbb{R}^n : ||y-x|| \le r\}$. We show that its complement C^c is open. Let $y \in C^c$, so ||y-x|| > r. Define

$$\varepsilon := \frac{\|y - x\| - r}{2} > 0.$$

 $\varepsilon \ := \ \frac{\|y-x\|-r}{2} \ > \ 0.$ If $z\in B(y,\varepsilon)$ then $\|z-y\|<\varepsilon,$ and by the triangle inequality,

$$||z-x|| \ge ||y-x|| - ||z-y|| > (r+2\varepsilon) - \varepsilon = r+\varepsilon > r.$$

Hence $z \notin C$. Therefore $B(y, \varepsilon) \subset C^c$, proving that every point of C^c is interior. The complement of C is open, so Cis closed.

Remark. Idea of the proof. For a point y lying outside the closed ball we measure how far it is from the boundary: the surplus distance is $\delta := ||y - x|| - r > 0$. Choosing half of this surplus as a radius, $\varepsilon = \delta/2$, guarantees that the entire ball $B(y,\varepsilon)$ stays outside, because any point inside that small ball remains at least $r+\varepsilon>r$ away from x. Since such a neighbourhood exists around each exterior point, the complement of the closed ball is open, which is exactly the definition of the original set being closed.

Exercise 4.5. Show that any finite set of points x_1, \ldots, x_k in \mathbb{R}^n is closed.

Proof. Denote the finite set by $F := \{x_1, \dots, x_k\}$. We show that its complement F^c is open. Let $y \in F^c$; then $y \neq x_i$ for every i. Define the positive distances

$$d_i := ||y - x_i|| > 0,$$
 $i = 1, ..., k,$ and set $\varepsilon := \frac{1}{2} \min_{1 \le i \le k} d_i > 0.$

For any $z \in B(y, \varepsilon)$ we have $||z - y|| < \varepsilon \le d_i/2$, hence by the triangle inequality

$$||z - x_i|| \ge ||y - x_i|| - ||z - y|| > d_i - \varepsilon \ge \frac{1}{2}d_i > 0 \quad (1 \le i \le k).$$

Consequently $z \neq x_i$ for every i, i.e. $z \in F^c$. Thus $B(y, \varepsilon) \subset F^c$, so every exterior point is interior to the complement; F^c is open and F is closed.

An alternative argument is to note that each singleton $\{x_i\}$ is closed (apply the previous step with k=1) and that a finite union of closed sets remains closed:

$$F = \bigcup_{i=1}^{k} \{x_i\}.$$

Remark. Idea of the proof. For a point y not in the finite set we compute its distances to each listed point. The smallest of these distances is still positive; taking half of it as the radius gives a neighbourhood around y that misses the entire finite set, showing the complement is open. Equivalently, observe that singletons are closed and a finite union of closed sets is closed.

Exercise 4.6. Show that in \mathbb{R}^n no point x with ||x|| = 1 is an interior point of the closed unit ball $\overline{B(0,1)}$.

Proof. Let $x \in \mathbb{R}^n$ satisfy ||x|| = 1. To show that x is not an interior point of $\overline{B(0,1)}$ we must prove that every open ball centred at x contains points that lie *outside* B(0,1).

Fix an arbitrary radius r > 0 and define

$$y := (1 + \frac{r}{2}) x$$
.

Then

$$||y - x|| = \left|1 + \frac{r}{2} - 1\right| ||x|| = \frac{r}{2} < r,$$
 but $||y|| = 1 + \frac{r}{2} > 1.$

Hence y lies within the ball B(x,r) yet satisfies ||y|| > 1, so $y \notin \overline{B(0,1)}$. Consequently B(x,r) is not contained in B(0,1). Because r>0 was arbitrary, no open neighbourhood of x sits inside the closed unit ball, and thus x is not an interior point.

Remark. Idea of the proof. Any boundary point x with ||x|| = 1 can be pushed slightly outward along its own direction: scaling by $1+\varepsilon$ moves the point a distance roughly ε while immediately leaving the unit ball. No matter how small a radius we choose, such an outward perturbation fits inside the radius yet escapes the ball, so the original point cannot be interior.

Exercise 4.7. Show that for any set S in \mathbb{R}^n the set \bar{S} (the closure of S) is closed.

Proof. Recall that the closure of S is defined by

$$\bar{S} := \{ x \in \mathbb{R}^n : \forall r > 0, \ B(x,r) \cap S \neq \emptyset \}.$$

We shall prove that its complement \bar{S}^c is open.

Let $y \in \bar{S}^c$. By definition of the complement, there exists a radius $r_0 > 0$ such that the open ball $B(y, r_0)$ does not meet S; otherwise y would belong to the closure. In particular, for this same r_0 we have

$$B(y, r_0) \cap S = \emptyset \implies B(y, r_0) \cap \bar{S} = \emptyset,$$

because \bar{S} contains S. Hence $B(y, r_0)$ lies entirely inside \bar{S}^c , showing that y is an interior point of the complement. Since every point of \bar{S}^c is interior, the complement is open; equivalently, \bar{S} is closed.

Remark. Idea of the proof. A point fails to belong to the closure precisely when some open ball around it avoids S. But that same ball automatically avoids \bar{S} as well, so it sits inside the complement. Thus every exterior point has a protective open neighbourhood—the hallmark of an open set—so the complement is open and the closure is closed.

Exercise 4.8. Show that for any set S the closure \bar{S} is equal to the intersection of all closed sets containing S.

Proof. Denote by

$$\mathcal{F} \; := \; \big\{ \, F \subset \mathbb{R}^n : F \text{ is closed and } S \subset F \, \big\}, \qquad K \; := \; \bigcap_{F \subset \mathcal{F}} F.$$

 $\mathcal{F} := \big\{ F \subset \mathbb{R}^n : \text{F is closed and $S \subset F$} \big\}, \qquad K := \bigcap_{F \in \mathcal{F}} F.$ The intersection of any family of closed sets is closed, hence \$K\$ is closed. Because \$S \subset F\$ for every \$F \in \mathcal{F}\$, we also have $S \subset K$.

- 1. $\bar{S} \subset K$. Let $F \in \mathcal{F}$. Since F is closed and contains S, the closure property of \bar{S} implies $\bar{S} \subset F$. This holds for every $F \in \mathcal{F}$, therefore $\bar{S} \subset K$.
- **2.** $K \subset \bar{S}$. The closure \bar{S} itself is closed and contains S, so $\bar{S} \in \mathcal{F}$. Intersecting over \mathcal{F} cannot yield a set larger than one of its members, hence $K \subset S$.

Combining the two inclusions gives $K = \bar{S}$. That is, the closure of S coincides with the intersection of all closed sets that contain S.

Remark. Idea of the proof. The family of all closed supersets of S has a natural "smallest" member given by their intersection K. Because K is itself closed and contains S, the closure \bar{S} —which is the minimal closed set containing S—must sit inside K. On the other hand, \bar{S} belongs to the family, so the intersection K cannot fall outside \bar{S} . The two sets therefore match exactly.

1.5 Limits and Continuity

Exercise 5.1. (i) The limit of a convergent sequence is unique.

- (ii) Let $\lim_{k\to\infty} x_k = x_0$, let $\lim_{k\to\infty} y_k = y_0$, and let $\lim_{k\to\infty} \alpha_k = \alpha$, where $\{\alpha_k\}$ is a sequence of scalars. Then $\lim_{k\to\infty} (x_k+y_k)$ exists and equals x_0+y_0 , and $\lim_{k\to\infty} \alpha_k x_k$ exists and equals αx_0 .
- (iii) A convergent sequence is bounded.

Proof. We work in \mathbb{R}^n and use the standard $\|\cdot\|$ norm; limits are taken with respect to this norm.

(i) Uniqueness of the limit. Suppose a sequence $\{x_k\}$ converges to both ℓ_1 and ℓ_2 . Fix $\varepsilon > 0$ and choose

 $N_1, N_2 \in \mathbb{N}$ such that

$$k \ge N_1 \implies ||x_k - \ell_1|| < \varepsilon/2, \qquad k \ge N_2 \implies ||x_k - \ell_2|| < \varepsilon/2.$$

For $k \geq \max\{N_1, N_2\}$ we then have

$$\|\ell_1 - \ell_2\| \le \|\ell_1 - x_k\| + \|x_k - \ell_2\| < \varepsilon.$$

Because ε was arbitrary, $\|\ell_1 - \ell_2\| = 0$, whence $\ell_1 = \ell_2$. The limit is therefore unique.

(ii) Limits of sums and scalar multiples.

1. Let $\varepsilon > 0$. Choose N_1, N_2 such that $k \ge N_1$ implies $||x_k - x_0|| < \varepsilon/2$ and $k \ge N_2$ implies $||y_k - y_0|| < \varepsilon/2$. For $k \ge N := \max\{N_1, N_2\}$ we have

$$\|(x_k + y_k) - (x_0 + y_0)\| \le \|x_k - x_0\| + \|y_k - y_0\| < \varepsilon.$$

Hence $x_k + y_k \rightarrow x_0 + y_0$

2. Given $\varepsilon > 0$, convergence of α_k means there exists N_1 with $|\alpha_k - \alpha| < \varepsilon/(2(1 + ||x_0||))$ for $k \ge N_1$. Convergence of x_k gives N_2 with $||x_k - x_0|| < \varepsilon/(2(1 + |\alpha|))$ for $k \ge N_2$. For $k \ge N := \max\{N_1, N_2\}$ we estimate

$$\|\alpha_k x_k - \alpha x_0\| \le \|\alpha_k - \alpha\| \|x_k\| + \|\alpha\| \|x_k - x_0\|.$$

The triangle inequality together with $||x_k|| \le ||x_k - x_0|| + ||x_0||$ yields

$$\|\alpha_k x_k - \alpha x_0\| < \frac{\varepsilon}{2} \frac{\|x_k - x_0\| + \|x_0\|}{1 + \|x_0\|} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus $\alpha_k x_k \to \alpha x_0$.

(iii) A convergent sequence is bounded. Let $x_k \to x_0$. Take $\varepsilon := 1$ and choose N so that $||x_k - x_0|| < 1$ for all $k \ge N$. Then

$$||x_k|| \le ||x_k - x_0|| + ||x_0|| < 1 + ||x_0|| \quad (k \ge N).$$

Define

$$M := \max\{\|x_1\|, \dots, \|x_{N-1}\|, 1 + \|x_0\|\}.$$

Every term of the sequence satisfies $||x_k|| \leq M$, so the sequence is bounded.

Remark. *Idea of the proof.* Uniqueness comes from squeezing two putative limits together via the triangle inequality. The limit laws follow by splitting the error of a sum or product into individually controllable parts. Boundedness is immediate once the tail of the sequence lies in a fixed ball around its limit, while the finitely many initial terms can be absorbed into a single bound.

Exercise 5.2. Show that if $\lim_{x\to s} f(x) = L$, then L is unique.

Proof. Assume that f approaches two limits L_1 and L_2 at the point s. We show that they must coincide. Suppose, for contradiction, that $L_1 \neq L_2$. Set

$$\varepsilon := \frac{|L_1 - L_2|}{3} > 0.$$

Because $\lim_{x\to s} f(x) = L_1$, there exists $\delta_1 > 0$ such that

$$0 < |x - s| < \delta_1 \implies |f(x) - L_1| < \varepsilon.$$

Likewise, convergence to L_2 furnishes $\delta_2 > 0$ with

$$0 < |x - s| < \delta_2 \implies |f(x) - L_2| < \varepsilon.$$

Now choose any x satisfying

$$0 < |x - s| < \delta := \min\{\delta_1, \delta_2\}.$$

Then both inequalities hold simultaneously, and the triangle inequality gives

$$|L_1 - L_2| \le |L_1 - f(x)| + |f(x) - L_2| < \varepsilon + \varepsilon = \frac{2}{3}|L_1 - L_2|,$$

which is impossible. Hence our assumption $L_1 \neq L_2$ must be false; therefore $L_1 = L_2$. The limit value is unique.

Remark. Idea of the proof. If two distinct numbers both pretend to be the limit, pick an ε slightly smaller than their separation. Close enough to s, the function has to lie within that ε -tube around each candidate limit, but those two tubes do not overlap—contradiction. The triangle inequality formalises this intuition and forces the two limits to coincide.

Exercise 5.3. Prove the following theorem.

Let $\lim_{x\to s} f(x) = L$ and let $\lim_{x\to s} g(x) = M$. Then

$$\lim \left[f(x) + g(x) \right]$$

exists and equals L + M. Also $\lim_{x\to s} [\alpha f(x)]$ exists and equals αL . A useful sequential criterion for the existence of a limit is now given.

Proof. We verify the two limit laws using the ε - δ definition.

1. Sum rule. Fix $\varepsilon > 0$ and set $\varepsilon_0 := \varepsilon/2$. Because $\lim_{x \to s} f(x) = L$, there is $\delta_1 > 0$ such that

$$0 < |x - s| < \delta_1 \implies |f(x) - L| < \varepsilon_0.$$

Likewise, $\lim_{x\to s} g(x) = M$ yields $\delta_2 > 0$ with

$$0 < |x - s| < \delta_2 \implies |g(x) - M| < \varepsilon_0.$$

Let $\delta := \min\{\delta_1, \delta_2\}$. Then for $0 < |x - s| < \delta$ we have

$$|[f(x) + g(x)] - (L+M)| \le |f(x) - L| + |g(x) - M| < \varepsilon_0 + \varepsilon_0 = \varepsilon.$$

Hence $\lim_{x\to s} [f(x) + g(x)] = L + M$.

2. Scalar–multiple rule. Let $\alpha \in \mathbb{R}$ and fix $\varepsilon > 0$. Because $f(x) \to L$, there exists $\delta > 0$ such that $0 < |x - s| < \delta$ implies $|f(x) - L| < \varepsilon/|\alpha|$ if $\alpha \neq 0$; when $\alpha = 0$ the conclusion is immediate. Then

$$|\alpha f(x) - \alpha L| = |\alpha| |f(x) - L| < \varepsilon,$$

establishing $\lim_{x\to s} [\alpha f(x)] = \alpha L$.

3. Sequential criterion. We claim that a limit $\lim_{x\to s} h(x) = H$ exists exactly when for every sequence $\{x_n\}$ with $x_n \neq s$ and $x_n \to s$, the sequence $h(x_n)$ converges to H.

 (\Rightarrow) If the limit exists, then given $\varepsilon > 0$ the $\varepsilon - \delta$ condition furnishes $\delta > 0$. Eventually $|x_n - s| < \delta$, forcing $|h(x_n) - H| < \varepsilon$, so $h(x_n) \to H$.

 (\Leftarrow) Conversely, suppose h does not converge to H. Then there exists $\varepsilon_0 > 0$ such that for every $\delta > 0$ we can pick x with $0 < |x - s| < \delta$ and $|h(x) - H| \ge \varepsilon_0$. Construct x_n inductively with $|x_n - s| < 1/n$ and $|h(x_n) - H| \ge \varepsilon_0$. Then $x_n \to s$ yet $h(x_n)$ stays ε_0 away from H, contradicting the sequential hypothesis. Hence the ε - δ definition must hold.

Remark. Idea of the proof. The sum rule splits the error of f+g into the errors of f and g, each made arbitrarily small; the scalar rule simply factors out α . The sequential criterion states that functions inherit their limits along every path approaching s, and conversely any failure of the ε - δ condition can be translated into a "bad" sequence that prevents convergence.

Exercise 5.4. Let f be a real-valued function defined on a set S in \mathbb{R}^n . Show that if f is continuous at a point x_0 in S and if $f(x_0) < 0$, then there exists a $\delta > 0$ such that f(x) < 0 for all x in $B(x_0, \delta) \cap S$.

Proof. Because f is continuous at $x_0 \in S$ and $f(x_0) < 0$, let us set

$$\varepsilon := \frac{-f(x_0)}{2} > 0.$$

By continuity, there exists $\delta > 0$ such that for every $x \in S$ with $||x - x_0|| < \delta$ we have

$$|f(x) - f(x_0)| < \varepsilon.$$

For such x we estimate

$$f(x) = f(x_0) + (f(x) - f(x_0)) < f(x_0) + \varepsilon = f(x_0) - \frac{1}{2}f(x_0) = \frac{1}{2}f(x_0) < 0.$$

Hence f(x) < 0 for all $x \in B(x_0, \delta) \cap S$, as required.

Remark. Idea of the proof. Continuity lets us control f(x) by forcing it to stay within an ε -band around $f(x_0)$. Choosing ε to be less than half the magnitude of the negative value $f(x_0)$ guarantees that f(x) remains negative throughout a small ball centred at x_0 .

Exercise 5.5. Show that the real-valued function $f: \mathbb{R}^n \to \mathbb{R}^1$ defined by f(x) = ||x|| is continuous on \mathbb{R}^n (i.e., show that the norm is a continuous function). Hint: Use the triangle inequality to show that, for any pair of vectors x and $y, ||x|| - ||y||| \leq ||x - y||$.

Proof. We first observe the following key inequality, valid for all $x, y \in \mathbb{R}^n$:

$$||x|| - ||y||| \le ||x - y||. \tag{*}$$

Indeed, the triangle inequality gives $||x|| = ||(x-y) + y|| \le ||x-y|| + ||y||$, hence $||x|| - ||y|| \le ||x-y||$. Interchanging x and y yields $||y|| - ||x|| \le ||x-y||$. Combining the two estimates proves (*).

Fix an arbitrary point $x_0 \in \mathbb{R}^n$ and let $\varepsilon > 0$ be given. Choose

$$\delta := \varepsilon.$$

Then, whenever $||x - x_0|| < \delta$, inequality (*) implies

$$|||x|| - ||x_0||| \le ||x - x_0|| < \delta = \varepsilon.$$

Therefore, for every $x_0 \in \mathbb{R}^n$ and every $\varepsilon > 0$, there exists $\delta = \varepsilon$ such that the $\varepsilon - \delta$ criterion for continuity is satisfied. Hence the norm function f(x) = ||x|| is continuous at every point of \mathbb{R}^n ; in other words, it is continuous on \mathbb{R}^n . \square **Remark.** Idea of the proof. The norm is in fact Lipschitz with constant 1: the distance between its values never exceeds the distance between the inputs. This strong inequality not only establishes pointwise continuity via the standard ε - δ argument (take $\delta = \varepsilon$), but also shows that the norm is uniformly continuous on the whole space.