305 Lecture 4.7 - Rules for If

Brian Weatherson

This lecture introduces the two rules for \rightarrow .

Associated Reading

forall x, section 16.4.

Reasoning from If sentences

Here is the most basic kind of logical reasoning there is.

- 1. If it is snowing in Ann Arbor, then Brian is cold.
- 2. It is snowing in Ann Arbor.
- 3. So, Brian is cold.

If-Elimination

- If-elimination, or →E, is the formal version of the idea behind the last slide.
- It takes a pair of lines as input.
- One of those lines says $X \to Y$.
- The other says X.
- · And you infer Y.

If-Elimination

$$\begin{array}{c|cccc}
m & \mathcal{A} & \to \mathcal{B} \\
n & \mathcal{A} & & \\
\mathcal{B} & & \to \to m, n
\end{array}$$

If-Elimination

Reasoning To an If-Sentence

- Here's one way to convince someone that If A, B is true.
- Ask them to suppose, or imagine, or assume, that A is true.
- Show that, given that supposition/imagination/assumption, we can infer that B is also true.
- From the possibility of that kind of inference, infer If A, B is true.

If-Introduction

- If-introduction, or →I, is the formal version of the idea behind the last slide.
- It says that if you make an assumption A, and infer B from that assumption, you can conclude $A\to B$

Assumptions

- So to do this we need to have a technique for making assumptions.
- The idea is that we indent the proof by a few spaces (to make clear that everything we do is suppositional), and put a line under the new assumption (to make clear what we're assuming).

Assumptions

An example of an assumption

- In this proof, R is the only premise.
- Then L is an assumption.
- If we can get from L to X, we can infer L → X

Discharging Assumptions

A proof using $\rightarrow I$

- Note that the last line is not indented.
- And there is a dash, not a comma, between the line numbers.
- We are back in the main proof, reasoning from the 'sub-proof'.

If-Introduction

If-Introduction

For Next Time

 Next week we will start by looking in more detail at these subproofs, how they work, and what restrictions we have to put on them.