Rockchip RK3588 Vsync 调整说明

文件标识: RK-KF-YF-470

发布版本: V1.2.0

日期: 2024-06-12

文件密级: □绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2024 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: <u>fae@rock-chips.com</u>

前言

概述

本文描述 RK3588 Vsync 调整的说明。

产品版本

芯片名称	内核版本
RK3588	LINUX KERNEL 5.10

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	张玉炳	2022-06-28	初始版本
V1.1.0	张玉炳	2024-05-29	添加 DSI AUTO 模式下说明
V1.2.0	张玉炳/黄国椿	2024-06-12	添加 DSI/eDP VRR 更多说明

目录

Rockchip RK3588 Vsync 调整说明

- 1. 扫描时序说明
- 2. 显示通路说明
- 3. VOP 调整说明
- 4. DSC 模块调整说明
- 5. DSI 接口调整说明
 - 5.1 VFP 调整说明
 - 5.2 HFP 调整说明
 - 5.3 dclk rate 调整说明5.3.1 dclk rate 调整的变帧细节
 - 5.3.2 120帧转60帧
 - 5.3.3 60帧转120帧
- 6. eDP/DP 接口调整说明
 - 6.1 DPCD VRR 支持说明
 - 6.2 EDID VRR 支持说明
 - 6.3 eDP 接口 VRR 调整说明

1. 扫描时序说明

要输出一帧图像到屏幕时,一般有扫描时序如下图:

每一行包括 hsync, hback porch, hactive, hfront porch, 每一帧包括 vsync, vback porch, vactive, vfront porch。

定义 htotal 如下:

htotal = hsync + hbackporch + hactive + hfrontporch

定义 vtotal 如下:

vtotal = vsync + vbackporch + vactive + vfrontporch

对于一个 pixel clock 为 pixel_clk, 刷新率为 fps 的扫描时序输出,要满足如下公式:

$$pixel_clk = htotal * vtotal * fps$$

从扫描时序图看,一个 Vysnc 周期即为 1/fps,要调整 Vysnc 周期,即调整 fps,可以通过修改 pixel clock ,htotal ,vtotal 来实现。对一个固定的分辨率,

hactive 和 vactive 是不变,htotal 中只能调整 hbank(hsync + hback porch + hfront porch), vtotal 中 只能调整 vbank(vsync + vback porck + vfront porch),

在调整 hbank 的方案中,目前遇到的屏基本都是调整 HFP(hfront porch), 在调整 vbank 的方案中,目前遇到的屏基本都是调整 VFP(vfront porch)。pixel clock 的调整,在 RK3588 中对应 dclk rate 的调整。

后续讨论调整 Vsync 周期,只讨论调整 VFP, HFP 或 dclk rate 这几种方案。

2. 显示通路说明

RK3588 的显示通路如下图:

支持 HDMI, DSI, DP, eDP 等接口输出,其中,HDMI,DSI 接口输出时,可能使用 DSC,在评估 DSI 和HDMI 接口调整 Vsync 周期时,需要分别考虑使能 DSC 和不使能 DSC 的两种场景。

3. VOP 调整说明

在 RK3588 的 VOP 中, 通过寄存器配置可以调整 VFP, HFP 或 dclk rate,其中调整 VFP 可以配置成立即生效或者帧生效,调整 HFP 只能是帧生效, 调整 dclk rate 只能是帧生效。

通过调整 dclk rate 改变 Vysnc 周期,有如下限制:

- 1. 只有 VP0 和 VP2 支持切换 dclk 源来改变 Vsync 周期;
- 2. VP0 可以在 dclk0 和 dclk1 之间切换 dclk 源, VP2 可以在 dclk2 和 dclk1 之前切换 dclk 源。

以 DSI 挂 VP2 通路实现 120/60fps 动态变频为例,其分辨率信息如下:

```
console:/ # cat /sys/kernel/debug/dri/0/summary
Video Port0: DISABLED
Video Port1: DISABLED
Video Port2: ACTIVE
    Connector: DSI-1
        bus_format[1018]: RGB101010_1X30
        overlay_mode[0] output_mode[f] color_space[0], eotf:0
    Display mode: 3024x2016p120
        clk[1187744] real_clk[1187744] type[48] flag[a]
        H: 3024 4416 4432 4532
        V: 2016 2042 2044 2184
    Variable refresh rate info:
        Min refresh rate: 60
        Max refresh rate: 120
        Current refresh rate: 60
        Type: DCLK
        Current pixel clock:593872
    Cluster1-win0: ACTIVE
        win_id: 2
        format: AB24 little-endian (0x34324241)[AFBC] SDR[0] color_space[0]
glb_alpha[0xff]
        rotate: xmirror: 0 ymirror: 0 rotate_90: 0 rotate_270: 0
        csc: y2r[0] r2y[0] csc mode[0]
        zpos: 0
        src: pos[0, 0] rect[3024 x 2016]
        dst: pos[0, 0] rect[3024 x 2016]
        buf[0]: addr: 0x00000000ef7b9000 pitch: 12096 offset: 0
Video Port3: DISABLED
```

120/60fps 变频场景下,将dclk1 和 dclk2 同时挂在 v0pll(dclk1和dclk2为2倍频关系,可以满足精准分频同时保证父pll稳定不发生变化), 时钟关系如下关系如下:

4. DSC 模块调整说明

DSC 模块支持调整 VFP 和 HFP,并且都只能配置成立即生效。DSC 模式也支持 VOP 通过调整 dclk 后送进来的 timing。

5. DSI 接口调整说明

DSI 的寄存器其配置都是立即生效的,无论配置 VFP,HFP 都是立即生效。DSI 有两种工作模式,Manual 和 Auto-Calculation。在 Auto-Calculation 模式下,DSI 控制器会被配置为从 IPI 和 PPI 接口提取所有必要的信息和时序参数,以满足视频模式中的帧时序要求,允许 IPI 帧动态变化,同时控制器适应输出帧的变化,所以 DSI 在 Auto-Calculattion 模式下可以根据收到的 VOP timing 自动调整 phy 上的输出,不需要配置 DSI 的寄存器。在不同模式下,对调整方式的支持存在差异。

5.1 VFP 调整说明

DSI 接口可以通过调整 VFP 来改变 Vsync 的周期。

在 Manual 模式下, Vsync 中断到来时,同时改变 VOP、DSC(如果有使能 DSC)、 DSI 的 VFP 寄存器,并立即起效,就可以改变当前帧的 VFP。由于 DSI 寄存器的限制, VFP 最大只能设置到 1023。

如果为了获取更大的 VFP ,可以只调整VOP、DSC(如果有用到 DSC 压缩)的 VFP 寄存器,不过不改动 DSI 的 VFP 寄存器会影响 VFP 的发包配置,会出现下图情形:

即缺少同步包,如果屏端不接受这种波形,则可能出现显示异常,不建议不配置 DSI 的 VFP。

在 Auto-Calculation 模式下,只需在 Vsync 中断到来时,同时改变 VOP、DSC(如果有使能 DSC),并立即起效。DSI 的 VFP 同样只能到 1023。

5.2 HFP 调整说明

通过配置 DSC HFP 寄存器实现动态帧率存在的风险:

DSC 时序相关寄存器是立即生效,与 VOP 按帧生效机制不同,在帧尾改变 DSC 的配置寄存器,会破坏当前帧的时序,帧时间上带来误差,而 DSC video mode 模式需要保证 VOP 和 DSC 的扫描时序尽可能一致,否则 DSC 内部的 Buffer 会溢出。

如下是当 DSC 出错后,在 MIPI DPHY 上异常波形体现(无数据下发):

在 Manual 模式下,RK3588 的 DSI 接口目前不支持通过调整 HFP 改变 Vsync。本地测试 DSC 模式下调整 HFP 会显示异常,如下:

在 Auto-Calculation 模式下,不 使能DSC 时,调整 HFP 时只需要调整 VOP 的 HFP,DSI 可以支持这种 调整方式。使能 DSC 时,由于需要同时调整 VOP 和 DSC 的寄存器,无法保证 HFP 的调整会在同一行起效,不支持调整 HFP。

5.3 dclk rate 调整说明

在 Manual 模式下,不支持 VOP 调整 dclk rate 来改变 Vsync 周期。

在 Auto-Calculation 模式下,无论是否使能 DSC,都支持使用 dclk rate 调整 Vsync 周期, DSI 控制器 自动调整输出。 以如下红框 A/B 两组 120/60 帧 timing 作为变帧说明:

点屏参数		10 bit 3x		10 bit 3.75x	
		120(FPP)+60(Finger)		120(FPP)+60(Finger)	
Timing table		Α	В	Α	В
Frame-Rate	Hz	120	60	120	60
VSA	Line	2	2	2	2
VBP	Line	140	140	140	140
Vadr	Line	2016	2016	2016	2016
VFP	Line	26	26	26	26
HAS	Pixel	10	10	10	10
HBP	Pixel	20	306	38	332
Hadr	Pixel	3024	3024	3024	3024
HFP	Pixel	30	308	38	334
MIPI speed	Mbps	1108	1108	928	928
Interface	MIPI	Dphy 2port 8lane+DSC			

5.3.1 dclk rate 调整的变帧细节

如下图,红色信号表示屏端 IC 内部解析到 HSYNC 资讯,dclk 变帧调整为帧生效,在变帧瞬间,屏端统计上一帧的26行 VFP后,预计收到 VSYNC,并且预期 VSYNC 到 DATA 会有 140+2 个 VBP+VSA,屏端 IC 会取 VSYNC 后的头4 line 平均宽度跟变帧时间作为变帧切换判断。

5.3.2 120帧转60帧

5.3.3 60帧转120帧

6. eDP/DP 接口调整说明

eDP 和 DP 接口对 VRR 的支持,除了控制器本身需要支持,还需要 DPCD/EDID 相关描述支持,eDP/DP 对 VRR 的支持,也称之为 Adpative-Sync。

6.1 DPCD VRR 支持说明

MSA 数据包中包含 timing 信息用于 Sink 端重建视频流的时序。MSA 数据包中的这些 timing 是为静态时序的视频流设计的。如果视频流的时序是动态变化的,Sink 端不能使用 MSA 中的 timing 信息。Source 端通过读取**DOWN_STREAM_PORT_COUNT** 寄存器中的 **MSA_TIMING_PAR_IGNORED** 位 (DPCD Address 00006h, bit6) 来确认 Sink 端是否支持是否无缝切换 timing (即 VRR)。如果支持并且

Source 端需要使用此功能,Source 端需要向**DOWNSPREAD_CTRL** 寄存器的

MSA_TIMING_PAR_IGNORE_EN位(DPCD Address 00107h, bit7), Sink 端忽略如下的 MSA 参数。

Table 3-17: Set of MSA Timing Parameters That May Be Ignored

HTotal[15:0]	HStart[15:0]	HSyncPolarity (HSP)	HSyncWidth[14:0] (HSW)
VTotal[15:0]	VStart[15:0]	VSyncPolariy (VSP)	VSyncWidth[14:0] (VSW)

6.2 EDID VRR 支持说明

在 EDID 有定义一个 Descriptor 描述对 VRR 的支持, 即 Display Range Limit Descriptor,如下:

Table 3.26 - Display Range Limits & Timing Descriptor Block Definition

Byte #	Value	Display Range Limits Definitions
0, 1	(00 00)h	Indicates that this 18 byte descriptor is a Display Descriptor.
2	00h	Reserved: Set to 00h when 18 byte descriptor is used as a Display Descriptor
3	FDh	Tag Number for Display Range Limits Descriptor
	7 6 5 4 3 2 1 0	Display Range Limits Offsets: FLAGs
	0 0 0 0 0 0	Vertical Rate Offsets are zero.
	0 0 0 0 1 0	Max. Vertical Rate + 255 Hz Offset; Min. Vertical Rate is not offset
	0 0 0 0 1 1	Max. Vertical Rate + 255 Hz Offset; Min. Vertical Rate + 255 Hz Offset
4	0 0 0 0 0 0	Horizontal Rate Offsets are zero.
4	0 0 0 0 1 0	Max. Horizontal Rate + 255 kHz Offset; Min. Horizontal Rate is not offset
	0 0 0 0 1 1	Max. Horizontal Rate + 255 kHz Offset; Min. Horizontal Rate + 255 kHz
	0 0 0 0 1 1	Offset
	$01h, 04h \rightarrow 07h, 09h,$	Reserved: Do not use.
	$0Dh\ 10h \rightarrow FFh$	
	$01h \rightarrow FFh$	Minimum Vertical Rate: (for interlace this refers to the field rate)
5	[Byte 4, Bits 1, 0] \neq 11	Binary coded rate in Hz, integer only (range is 1 Hz to 255 Hz)
3	[Byte 4, Bits $1, 0$] = 11	Binary coded rate in Hz, integer only (range is 256 Hz to 510 Hz)
	00h	Reserved: Do Not Use.
	$01h \rightarrow FFh$	Maximum Vertical Rate: (for interlace this refers to the field rate)
	[Byte 4, Bit 1] \neq 1	Binary coded rate in Hz, integer only (range is 1 Hz to 255 Hz)
6	[Byte 4, Bit 1] = 1	Binary coded rate in Hz, integer only (range is 256 Hz to 510 Hz)
		Note: Minimum rate value shall be less than or equal to maximum rate value
	00h	Reserved: Do Not Use.
	$01h \rightarrow FFh$	Minimum Horizontal Rate:
7	[Byte 4, Bits 3, 2] \neq 11	Binary coded rate in kHz, integer only (range is 1 kHz to 255 kHz)
	[Byte 4, Bits 3, 2] = 11	Binary coded rate in kHz, integer only (range is 256 kHz to 510 kHz)
	00h	Reserved: Do Not Use.
	$01h \rightarrow FFh$	Maximum Horizontal Rate:
8	[Byte 4, Bit 3] \neq 1	Binary coded rate in kHz, integer only (range is 1 kHz to 255 kHz)
	[Byte 4, Bit 3] = 1	Binary coded rate in kHz, integer only (range is 256 kHz to 510 kHz)
		Note: Minimum rate value shall be less than or equal to maximum rate value
	00h	Reserved: Do Not Use.

这个 Descriptor 描述了 VRR 支持的范围。

需要注意的是, EDID 中定义的 timing 都是 vblank 和 hblank 最小的。比如从 EDID 获取 VRR 支持范围为 30~100 Hz, 那么,对于一个帧率为 60Hz 的 timing,

支持的 VRR 访问为 $30\sim60$ Hz, 对于一个 24 Hz 的 timing, 则不支持 VRR。为了获取 VRR 规定范围内 的更低的帧率,需要拓展 vbank。

6.3 eDP 接口 VRR 调整说明

eDP 接口支持通过调整 VFP 调整 Vsync。调整 VFP 时,只需要调整 VOP 的 VFP即可,eDP 需要再 dts中配置属性 analogix, force-stream-valid,即可以自动根据 VOP 送出的 timing 进行调整。

eDP 接的屏有可能不支持 EDID, 这种情况 VRR 的支持范围需要从 dts 中定义。