A Single Submanifold: $B = A \times \{q\}$ See itoh2001lipschitz for potential exposition.

We now consider the variational problem dealing with minimizing geodesics connecting a submanifold to a single a point. To this end, let (M,g) be a complete Riemannian manifold. Suppose $A\subset M$ is an immersed submanifold. Then (A, g) can be treated as a Riemannian submanifold of (M, g), where we denote the induced metric on A identically, as it's the pullback of g via the inclusion, that is, $i:A\hookrightarrow M$ and $g=i^*g$ (and i is an isometric immersion). Let $q \in M \setminus A$, and let

$$B = A \times \{q\} \subset M \times M,$$

be our boundary condition in this setting. Then C(B) is the space of all piecewise regular curves $\gamma:[a,b]\to$ M with $\gamma(a) \in A$ and $\gamma(b) = q$. Moreover, any variation field $V \in T_{\gamma}(B)$ satisfies $V(a) \in T_{\gamma(a)}A$ and V(b) = 0. In this setting, our B-geodesics are the geodesics γ which are normal to A, that is,

$$\gamma'(a) \in T_{\gamma(a)}A^{\perp}$$
.

Our variation formulas then simplify as follows.

thm[First Variation of Energy] Let $\gamma \in C(B)$ and $V \in T_{\gamma}C(B)$ with associated variation $\Gamma : I_{\epsilon} \times [a,b] \to I_{\epsilon}$ M. If $\{t_j: 0 \leq j \leq k\}$ is an admissible partition for Γ , then align* $\hat{E}'(s) = -\int_a^b g(\partial_s \Gamma, D_t \partial_t \Gamma) dt +$ $\sum_{j=1}^{k-1} g(\partial_s \Gamma(s,t_j), \Delta \partial_t \Gamma(s,t_j))$

In particular, when s=0, align* $dE_{\gamma}(V)=-\int_{a}^{b}g(V(t),D_{t}\gamma'(t))dt+\sum_{j=1}^{k-1}g(V(t_{j}),\Delta\gamma'(t_{j}))$ thm[Second Variation of Energy] Let $\gamma\in C(B)$ be a B-geodesic and $V,W\in T_{\gamma}C(B)$ with associated two-parameter variation $\Gamma:I_{\epsilon}\times I_{\epsilon}\times [a,b]\to M$. If $\{t_{j}:0\leq j\leq k\}$ is an admissible partition for Γ , then align* (E)_{\gamma}(V, W) = $\int_a^b (g(D_t V, D_t W) - g(R_{V\gamma'} \gamma', W)) dt$

Let (M,g) be an n-dimensional, complete Riemannian manifold with k-dimensional, Riemannian submanifold $A \subset M$ with shape operator S, and boundary condition $B = A \times \{q\}$. Suppose $\gamma \in C(B)$ is a B-geodesic. Then a Jacobi field $J \in \gamma$ is called an A-Jacobi field if J satisfies the initial conditions

$$J(a) \in T_{\gamma(a)}A$$
, $D_tJ(a) - S_{\gamma'(a)}(J(a)) \in T_{\gamma(a)}A^{\perp}$.

Notice that since the first initial condition is a restriction that (n-k) equations be 0, and the second initial condition is a restriction that k equations be zero, the space of all A-Jacobi equations along γ , denoted by $J^A(\gamma)$ is n-dimensional.

Let NA denote the normal bundle of A in TM_A . That is,

$$TM_A = TA \oplus NA$$

as a Whitney sum, and let $\exp^{\perp}: D \subset NA \to M$ denote the restriction of the exponential map $\exp: TM \to M$ M.

thm Let $(x,\xi) \in NA$ and $\gamma = \gamma_{x,\xi} : [0,b] \to M$ be a geodesic segment normal to A, and let $J \in \gamma$. Then J is an A-Jacobi field if and only if J is the variation field for a smooth variation $\Gamma: I_{\epsilon} \times [0,b] \to M$ such that each curve $\Gamma(s,\cdot)$ is a geodesic normal to A at t=0.