3_Entropy Production in Chemical Reaction_Irreversible Thermodynamics

Link: https://www.youtube.com/watch?
v=7kT6LZ1ea0c&list=PLdBDmcnzLC_ZMUWMdy7SmcTgnnzyiRpql&index=2

Cosidering a chemical reaction @ constant Temperature and pressure.

Considering the surrounding absorbs a very small quantity of heat dH. (at T)

$$deS = \frac{dP}{T} = \frac{dH}{T}$$
 (From Note 2,
$$dS = deS + diS$$

$$= \frac{dH}{T} + diS$$

$$= \frac{dH}{T} + diS$$

$$U$$

$$-TdiS = dH - TdS = dG$$
 ($dG = dH - TdS$)
$$diS = -\frac{dG}{T}$$

Rate of Entropy $G = \frac{diS}{dt} = -\frac{1}{T}(\frac{dG}{dt})$ Production:

Assuming the reaction is in open system.

Component: C LY: 1,2, ..., c)

Since $dG = -SdT + VdP + \sum_{r} \mu_{r} dn_{r}$ LIf the system is a closed syltem μ_{r}

Since in the beginning, we have the assumption of constant
$$T$$
 & P , \Rightarrow $dI=0$, $dP=0$ W (dG) $_{T,P} = \sum_{s} M_{r} dn_{s}$

Thus, $G = \frac{diS}{dt} = -\frac{1}{T} \sum_{s} M_{r} dn_{s}$

Thus is chemical Reaction. This V_{r} is the striction equal to V_{r} and V_{r} and V_{r} is the product of V_{r} and V_{r} and V_{r} is the striction of a chemical V_{r} and V_{r} is the striction of a chemical V_{r} and V_{r} is the striction of a chemical V_{r} and V_{r} is the striction of a chemical V_{r} and V_{r} is the striction of a chemical V_{r} and V_{r} is the striction of a chemical V_{r} is the striction V_{r} in V_{r} is the striction V_{r} is the striction V_{r} is the striction V_{r} is the striction V_{r} is the striction

Source: https://www.researchgate.net/publication/ 230883323_Entropy_generation_in_a_chemical_reaction

Paper: Entropy generation in a chemical reaction

The affinity of a chemical reaction is:

$$\mathcal{A} = -\sum_{i} v_{i} \mu_{i}. \tag{5}$$

It is zero in equilibrium because the chemical potentials of reactants and products are equal. A positive value of the affinity means that the chemical potentials of the reactants are greater that those of the products, and the reaction still goes forward.

Thus
$$6 = \frac{diS}{dt} = \frac{1}{T}A\frac{ds}{dt} > 0$$

This term

Or the conficul reaction rate per unit time can be written as 0)

Thus, 6 = 1/A 2 => 6T = AV >0

If ARD >0, then

the Forward Recution $A+B \rightarrow C+D$ will take place.

If A ke v <0, then

the backward Reaction A+B <- C+D

will take place.

> This expression can be extended to multiple components reactions or several

reactions which are taking place at the same time

Accuming there are Y amount of reactions which are taking place simultaneously $\frac{dis}{dt} = 6 = \frac{1}{T} \sum_{i} A_{i} V_{i} = 0$ At Equilibrium, $A_{i} = A_{2} = ...$ $A_{i} = 0$ The following case is possible: $A_{i} V_{i} = 0$, $A_{2} V_{2} > 0$ but $|A_{1} V_{1}| = |A_{2} V_{2}|$, \Longrightarrow $A_{1} V_{1} + A_{2} V_{2} > 0$

referred as coupled reactions