Logic Optimization

Mano & Ciletti Ch.3 /Brown & Vranesic Ch.4

Outline

- . Truth tables, minterms, and canonical form
- . Karnaugh map method
- . From a cover to a network of gate
- . Incompletely specified functions
- . Product-of-sums implementation
- . Verilog of Combinational Logic

Review

- . The world is digital
 - Analog at the edges, hardware for demanding problems
- . Digital signals
 - Encode discrete states in a continuous signal
 - Tolerate noise
- . Boolean Algebra (0, 1, ∧, V)
 - Axioms, properties, duality
 - Logic equations express binary functions
- . Combinational logic
 - Output is a function only of current input
- . Verilog
 - Defines hardware modules, assign, case

Boolean Algebra and Combinational Logic

- . How to implement combinational logic by hand
 - Given a description of a logic function
 - Generate a gate-level circuit that realizes that function
- . Knowing the basics
 - To understand how they are done
 - Demystifies what the synthesis tools do
 - Better understanding of what synthesis tools can and cannot do
- . However, the general practice in modern days is:
 - Design using Verilog
 - Simulate with test cases
 - Generate gates with synthesis tools

Example of a Combinational Logic Circuit

- . Prime detector
 - Specification:
 A circuit that outputs a 1 when its four-bit input represents a prime number in binary
 - Or f(d, c, b, a) = 1 if (d, c, b, a) is a prime
- . Truth table
 - For an n-input function, a truth table has 2ⁿ rows
 - 2ⁿ input combinations

Truth Table

f(d, c, b, a) = 1 if (d, c, b, a) is a prime

No	dcba	f
0	0000	0
1	0001	1
2	0010	1
3	0011	1
4	0100	0
5	0101	1
6	0110	0
7	0111	1
8	1000	0
9	1001	0
10	1010	0
11	1011	1
12	1100	0
13	1101	1
14	1110	0
15	1111	0

Canonical Form: Sum of Minterms

No	d	С	b	а	f
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
5	0	1		1	1
7	0	1	1	1	1
11	1	0	1	1	1
13	1	1	0	1	1
Otherwise			0		

$$f = \sum_{(d,c,b,a)} m(1,2,3,5,7,11,13)$$

Schematic Logic Diagram

Gate-Level Minimization

- . Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit
- . The complexity of the digital logic gates required
 - the complexity of the algebraic expression

Two-Level Logic

. SOP/POS form corresponds to a two-level logic circuit (if each variable is provided in both their complemented and uncomplemented forms).

Fig. 2-5 Sum-of-Products Implementation

Fig. 2-7 Product-of-Sums Implementation

Minimization of Two-Level Logic

- . Boolean function simplification
 - Sum of products (or product of sum) in the simplest form
 - minimum number of terms
 - minimum number of literals
 - The simplified expression may not be unique
- . To find the best solution
 - Compare the minimum SOP and minimum POS forms

The Map Method

- . Logic minimization methods
 - Algebraic approaches: lack specific rules
 - Karnaugh map approach
 - a simple straight forward procedure
 - a pictorial form of a truth table
 - applicable if the # of variables < 7
- . Karnaugh map
 - a diagram made up of squares
 - each square represents one minterm

Two-Variable K-Map

• 2 variables => 4 minterms

Two-Variable Map Simplification

(a) Map for F = XY. (b) Map for G = X'Y + XY' + XY.

- Minterms in adjacent cells can be combined into a single product term since they differ in only one variable.
- In (b), XY'+XY can be combined into X, and XY+X'Y can be combined into Y. Hence G=X+Y.

Three-Variable K-Map

• 3 variables => 8 minterms

Fig. 2-10 Three-Variable Map

- Columns are identified by the sequence 00, 01, 11, 10 to ensure that adjacent cells only differ in the value of one variable.
- The first and the last columns are also considered as adjacent.

3-Variable Map Simplification Examples

• In a 3-variable map it is possible to combine cells to produce product terms that correspond to a single cell, two adjacent cells, or a group of four adjacent cells.

Fig. 2-13 Product Terms Using Four Minterms

More Simplification Examples

(a)
$$F_1(X, Y, Z) = \sum m(3, 4, 6, 7)$$

= $YZ + X\overline{Z}$

(b)
$$F_2(X, Y, Z) = \sum m(0, 2, 4, 5, 6)$$

= $\overline{Z} + X\overline{Y}$

Fig. 2-14 Maps for Example 2-4

More Examples

Fig. 2-15 $F(X, Y, Z) = \Sigma m(1, 3, 4, 5, \epsilon)$

Two simplified solutions:

$$F = X'Z + XZ' + XY'$$

$$F = X'Z + XZ' + Y'Z$$

Q. Are they identical?

Q. Are they equivalent?

Fig. 2-16 $F(X, Y, Z) = \Sigma m (1, 2, 3, 5, 7)$

$$F = Z + X'Y$$

Four-Variable K Map

- The left and right edges of the map are adjacent in terms of assignment of variables, so are the top and bottom edges.
- The 4 corners of the map are adjacent to each other

4-Variable Map Simplification Example

Simplify $F(W,X,Y,Z) = \sum m(0,1,2,4,5,6,8,9,12,13,14)$.

Fig. 2-19 Map for Example 2-5: $F = \overline{Y} + \overline{WZ} + \overline{XZ}$

More Example

Simplify F = A'B'C' + B'CD' + AB'C' + A'BCD'.

Fig. 2-20 Map for Example 2-6: $F = \overline{BD} + \overline{BC} + \overline{ACD}$

Example: K-Map for Prime Detector

. The prime number detector

No	dcba	f
0	0000	0
	0001	1
2	0010	1
3	0011	1
4	0100	0
1 2 3 4 5 6 7 8 9	0101	1 0 1
6	0110	0
7	0111	1
8	1000	0
9	1001	0
10	1010	0
11	1011	1
12	1100	0 0 1 0 1
13	1101	1
14	1110	0
15	1111	0

d a	00	01	11	10
c O	8	1	1	1
0	9	1	1	0
_	9	1	0	0
_	8	0	1	0

K-Map for Prime Detector (cont)

. Obtain implicants as large as possible

From Optimized Sum-of-Products Function to Gates

$$f = (b \wedge \overline{c} \wedge \overline{d}) \vee (a \wedge \overline{b} \wedge c) \vee (a \wedge b \wedge \overline{c}) \vee (a \wedge \overline{d})$$

In practice, CMOS gates are always inverting, so the real circuit might use NAND-NAND design instead of AND-OR.

Summary of Some Definitions

- . Minterm: a product term that includes every input variable or its complement.
- Implicant: a product term that if true implies the function is true.
- . Prime Implicant: an implicant that cannot be made any larger and still be an implicant.
- Essential Prime Implicant: the only prime implicant that contains a particular minterm of the function.

Covering A Function

- . A simple cost function of implicants:
 - # of its variables (literals)
- . Procedure to select an inexpensive set of implicants
 - Start with an empty cover
 - Add all essential prime implicants to the cover
 - For each remaining uncovered minterm, add the largest implicant to cover it
- . Good cover: no guarantee it is the *lowest-cost* cover

Covering A Function (cont)

. Simplify $F(A,B,C,D) = \Sigma m(0,1,2,4,5,10,11,13,15)$.

Essential prime implicant(s):

A'C'

Prime implicant(s) selected using the selection rule:

ABD (1), AB'C(2), A'B'D' (3)

Finally, is selected to form a complete cover.

$$F =$$

Incompletely Specified Functions

- The value of some function is not specified for certain combinations of variables
 - E.g. For binary-coded decimal, 1010-1111 are don't cares
- The don't care conditions can be utilized in logic minimization
 - _ can be implemented as 0 or 1

Simplification with Don't Cares

Simplify $F(A,B,C,D) = \Sigma m(1,3,7,11,15) + \Sigma d(0,2,5)$.

Q. Are CD+A'B' and CD+A'D algebraically equivalent?

Incompletely Specified Functions

. Decimal prime detector, with don't cares

Incompletely Specified Functions (cont)

. Decimal prime detector, with don't cares

Finding Minimum POS Form

- . Approach
 - Simplify F' in sum of products form
- . Apply DeMorgan's theorem F = (F')'
- . F': sum of products => F: product of sums

Finding Minimum POS Form Example

Simplify $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$.

Fig. 2-24 Map for Example 2-10: $F = (\overline{A} + \overline{B}) (\overline{C} + \overline{D}) (\overline{B} + D)$

$$F' = AB + CD + BD'$$

=> $F = (A'+B')(C'+D')(B'+D)$

Functionally Complete Set of Logic Gates

- . A set of logic operations is said to be functionally complete if any Boolean function can be expressed in terms of these operations.
- . The set AND, OR, and NOT is functionally complete as any Boolean function can be expressed in SOP and POS forms.
- Hence, any set of logic gates which can realize AND, OR, and NOT is also functionally complete.
 e.g. AND and NOT form a functionally complete set.
 - e.g. OR and NOT form a functionally complete set.

NAND and **NOR** Gates

- . Note that NAND gate forms a functionally complete set by itself. (Why?)
- . So NAND gate is said to be a universal gate.
- . Is NOR gate a universal gate?

NAND Circuit

- A Boolean function in terms of AND, OR, and NOT can be readily converted into NAND logic.
- . We can use alternative gate symbols to facilitate the conversion:

Fig. 2-28 Alternative Graphics Symbols for NAND and NOT Gates

Conversion into NAND Circuit: Example 1

Conversion into NAND Circuit: Example 2

Conversion into NAND Circuit: Example 3

Designing with NAND Gates

NOR Circuit

- . A Boolean function in terms of AND, OR, and NOT can be readily converted into NOR logic
- . We can use alternative gate symbols to facilitate the conversion:

Fig. 2-34 Two Graphic Symbols for NOR Gate

Conversion into NOR Circuit: Example 1

Direct conversion from a product of sums into a NOR circuit:

Fig. 2-35 Implementing F = (A + B) (C + D) E with NOR Gates

Conversion into NOR Circuit: Example 2

Fig. 2-36 Implementing $F = (A\overline{B} + \overline{A}B) E (C + \overline{D})$ with NOR Gates

Fig. 2-32 implementing F = (AB + AB)E(C + D)

Exclusive-OR Gates

- . XOR: $X \oplus Y = XY' + X'Y$
- . It can be verified that

associative

 $- (A \oplus B) \oplus C = A \oplus (B \oplus C)$

commutative

 $-A \oplus B = B \oplus A$

Odd Function

- . The output of an odd function is 1 iff there is an odd no. of input variables equal to 1.
- . It can be built using XOR gates.
 - e.g. $F = A \oplus B \oplus C \oplus D$ gives a 4-input odd function.

Parity Generation & Checking

e.g. Even parity generator

■ TABLE 2-9 Truth Table for an Even Parity Generator

Three-Bit Message			Parity Bit
X	Υ	z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Table 2-9 Truth Table for an Even Parity Generator

Sender generates

$$P = X \oplus Y \oplus Z$$
.

Receiver checks parity by

$$C = X \oplus Y \oplus Z \oplus P$$
.

Multi-Output Circuit

. Sharing common gates between multiple functions may reduce cost.

E.g.

(c) Combined circuit f_1 and f_2 for

Multi-Output Circuit Optimization

. Sometimes non-prime implicants may be shared advantageously.

E.g. Let
$$f_3 = x_1' x_4 + x_2 x_4 + x_1' x_2 x_3$$

 $f_4 = x_1 x_4 + x_2' x_4 + x_1' x_2 x_3 x_4'$
If optimized independently:

Multi-Output Circuit Optimization (cont)

If f₃ and f₄ optimized together by sharing some implicants:

Combined circuit for f₃ and f₄.

VERILOG DESCRIPTIONS OF COMBINATIONAL LOGIC

4-bit Prime Detector in Verilog Using case

```
module prime(in, isprime);
  input [3:0] in; // 4-bit input
             isprime; // true if input is prime
  output
              isprime;
  reg
  always @(in) begin
   case(in)
   1,2,3,5,7,11,13: isprime = 1'b1;
      default: isprime = 1'b0;
   endcase
  end
endmodule
```

4-bit Prime Detector in Verilog Using casex

```
module prime(in, isprime);
  input [3:0] in; // 4-bit input
  output isprime; // true if input is prime
          isprime;
  reg
  always @(in) begin
    casex(in)
     4'b0xx1: isprime = 1;
     4'b001x: isprime = 1;
     4'bx011: isprime = 1;
     4'bx101: isprime = 1;
     default: isprime = 0;
   endcase
  end
endmodule
```

4-bit Prime Detector in Verilog Using assign

Assign can be combined with wire statement.

```
module prime(in, isprime);
  input [3:0] in; // 4-bit input
        isprime; // true if input is prime
  output
  wire isprime = (in[0] \& \sim in[3])
                 (in[1] & ~in[2] & ~in[3]) |
                 (in[0] & ~in[1] & in[2]) |
                 (in[0] \& in[1] \& \sim in[2]);
endmodule
```

Structural Gate-Level Description

```
module prime3(in, isprime);
  input [3:0] in; // 4-bit input
             isprime; // true if input is prime
  output
 wire
           a1, a2, a3, a4;
  and and1(a1, in[0], ~in[3]);
  and and2(a2, in[1], ~in[2], ~in[3]);
  and and3(a3, in[0], ~in[1], in[2]);
  and and4(a4, in[0], in[1], ~in[2]);
  or or1(isprime, a1, a2, a3, a4);
endmodule
```

Test Stimulus (Testbench)

```
module test_prime;
  reg [3:0] in;
  wire isprime;
  // instantiate module to test
  prime p0(in, isprime);
  initial begin
    in = 0;
    repeat (16) begin
      #100
      $display("in = %2d isprime = %1b", in, isprime);
      in = in + 1;
    end
  end
endmodule
```

Style of Testbench

- . Different style from describing the synthesizable modules
 - initial statements
 - _ \$display task
 - _ #delay

Simulation Result

```
# in = 0 isprime = 0
# in = 1 isprime = 1
\# in = 2 isprime = 1
# in = 3 isprime = 1
# in = 4 isprime = 0
# in = 5 isprime = 1
# in = 6 isprime = 0
# in = 7 isprime = 1
# in = 8 isprime = 0
# in = 9 isprime = 0
\# in = 10 isprime = 0
\# in = 11 isprime = 1
\# in = 12 isprime = 0
\# in = 13 isprime = 1
\# in = 14 isprime = 0
# in = 15 isprime = 0
```

Synthesis Result (Gate-Level Structure)

```
module prime ( in, isprime );
input [3:0] in;
output isprime;
  wire n1, n2, n3, n4;
  OAI13 U1 ( .A1(n2), .B1(n1), .B2(in[2]), .B3(in[3]), .Y(isprime) );
  INV  U2 ( .A(in[1]), .Y(n1) );
  INV  U3 ( .A(in[3]), .Y(n3) );
  XOR2  U4 ( .A(in[2]), .B(in[1]), .Y(n4) );
  OAI12 U5 ( .A1(in[0]), .B1(n3), .B2(n4), .Y(n2) );
endmodule
```


Decimal Prime Detector

```
module prime_dec(in, isprime);
 input [3:0] in; // 4-bit input
 output isprime; // true if input is prime
 reg isprime;
 always @(in) begin
   case(in)
     0,4,6,8,9: isprime = 1'b0;
     1,2,3,5,7: isprime = 1,51;
     default: isprime = 1'bx; // Is 'default' effective?
   endcase
 end
endmodule
```

Summary

- . To minimize logic
 - Using K-map to find all prime implicants
 - Pick a minimal set of prime implicants that covers the function
- Hazards (or glitches) can be eliminated by covering transitions
- . Verilog
 - Can describe logic using high-level statements such as case, casex, assign, etc., or logic gates structurally
 - Use the representation readable and maintainable
 - E.g., case for truth tables; assign for equations
 - Avoid doing the logic design yourself
 - Synthesis tool will do the optimization
 - Test benches check that the implementation meets its specification
 - Test benches use a different style of Verilog