Examenul național de bacalaureat 2025 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(3+3\sqrt{2})\cdot\sqrt{2}-3\sqrt{2}+4=3\sqrt{2}+3\sqrt{2}\cdot\sqrt{2}-3\sqrt{2}+4=$	2p
	= 6 + 4 = 10	3p
2.	f(0)=6, f(2)=12	2p
	f(4) = 18, deci $f(0) + f(2) = f(4)$	3p
3.	$\sqrt{2x-1} = 3$, deci $2x-1=9$	3 p
	x = 5, care convine	2p
4.	$\frac{25}{100} \cdot 400 = 100$ de lei	2p
	Prețul obiectului după ieftinire este $400-100=300$ de lei	3 p
5.	$AC = \sqrt{4^2 + 1^2} = \sqrt{17}$	2p
	$BC = \sqrt{1^2 + 4^2} = \sqrt{17}$, deci $AC = BC$, de unde obținem că triunghiul ABC este isoscel	3p
6.	$\cos C = \frac{1}{2} \Rightarrow \frac{AC}{BC} = \frac{1}{2}$	3p
	$\frac{4}{BC} = \frac{1}{2}$, de unde obținem $BC = 8$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(3) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \det(A(3)) = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1 \cdot 3 - 1 \cdot 2 =$	3p
	=3-2=1	2p
b)	$A(2) + A(6) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 2 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 4 & 8 \end{pmatrix} =$	3р
	$=2\begin{pmatrix}1&1\\2&4\end{pmatrix}=2A(4)$	2p
c)	$A(x) \cdot A(x) = \begin{pmatrix} 3 & 1+x \\ 2+2x & 2+x^2 \end{pmatrix}$, pentru orice număr real x	3p
	$\begin{pmatrix} 3 & 1+x \\ 2+2x & 2+x^2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \text{ de unde obținem } x = -1$	2p
2.a)	$1 \circ (-3) = 1 - 3 + 6 =$	3p
	= 4	2p
b)	$x \circ 2 = x + 2 + 6 = x + 8$, pentru orice număr real x	3р
	x+8=3x, de unde obținem $x=4$	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

c)	$(x^2+2)\circ(1-6x)=x^2-6x+9$, pentru orice număr real x	2p	
	$x^2 - 6x + 9 = (x - 3)^2 \ge 0$, pentru orice număr real x	3 p	

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$f'(x) = \frac{(5x-2)'(x-1) - (5x-2)(x-1)'}{(x-1)^2} =$	3p
	$=\frac{5(x-1)-(5x-2)}{(x-1)^2}=-\frac{3}{(x-1)^2}, x \in (1,+\infty)$	2p
b)	f(2)=8, f'(2)=-3	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = -3x + 14$	3p
c)	$f''(x) = \frac{6}{(x-1)^3}$, pentru orice $x \in (1, +\infty)$	3p
	$f''(x) \ge 0$, pentru orice $x \in (1,+\infty)$, deci funcția f este convexă	2p
2.a)	$\int_{0}^{1} (f(x) - 3) dx = \int_{0}^{1} 2x dx = x^{2} \Big _{0}^{1} =$	3p
	=1-0=1	2p
b)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} e^{x} (2x+3) dx = e^{x} (2x+3) \Big _{0}^{1} - \int_{0}^{1} 2e^{x} dx = 5e - 3 - 2e^{x} \Big _{0}^{1} =$	3p
	=5e-3-2e+2=3e-1	2p
c)	$\int_{1}^{2} \frac{f(x)}{x(x+3)} dx = \int_{1}^{2} \frac{2x+3}{x^2+3x} dx = \int_{1}^{2} \frac{\left(x^2+3x\right)^{2}}{x^2+3x} dx = \ln\left(x^2+3x\right)\Big _{1}^{2} = \ln\frac{5}{2}$	3p
	$ ln \frac{5}{2} = ln \frac{a}{2} $, de unde obținem $a = 5$, care convine	2p