Package 'SIHR'

September 26, 2022

Type Pac	kage
Title Stat	istical Inference in High Dimensional Regression
Version 1	1.0
Author P	rabrisha Rakshit, Zhenyu Wang, Zijian Guo, Tony Cai
Maintain	er Zijian Guo <zijguo@stat.rutgers.edu></zijguo@stat.rutgers.edu>
(1) 1 sion (2) i (3) (Inference procedures in the high-dimensional setting for linear functionals in generalized linear regres- ('Cai et al.' (2019) <arxiv:1904.12891>, 'Guo et al.' (2020) <arxiv:2012.07133>, 'Cai et al.' (2021)), individual treatment effects in generalized linear regression, quadratic functionals in generalized linear regres- ('Guo et al.' (2019) <arxiv:1909.01503>).</arxiv:1909.01503></arxiv:2012.07133></arxiv:1904.12891>
License (GPL-3
Encoding	UTF-8
LazyData	true
Roxygen	Note 7.2.0
URL htt	ps://github.com/prabrishar1/SIHR
Imports glm stats	net,
R topic	es documented:
I	TE
Index	7
ITE	Inference for difference of linear combinations of the regression vectors in high dimensional generalized linear regressions

Description

Computes the bias-corrected estimator of the difference of linearcombinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

2 ITE

Usage

```
ITE(
  Х1,
  y1,
  Х2,
  y2,
  loading.mat,
  model = c("linear", "logistic", "logistic_alter"),
  intercept = TRUE,
  intercept.loading = FALSE,
  beta.init1 = NULL,
  beta.init2 = NULL,
  lambda = NULL,
  mu = NULL,
  prob.filter = 0.05,
  rescale = 1.1,
  alpha = 0.05,
  verbose = FALSE
)
```

Arguments

X1	Design matrix for the first sample, of dimension $n_1 \times p$
y1	Outcome vector for the first sample, of length n_1
X2	Design matrix for the second sample, of dimension $n_2 \ge p$
y2	Outcome vector for the second sample, of length n_1
loading.mat	Loading matrix, nrow= p , each column corresponds to a loading of interest
model	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"
intercept	Should intercept(s) be fitted for the initial estimators (default = $TRUE$)
intercept.load	
	Should intercept term be included for the loading (default = FALSE)
beta.init1	The initial estimator of the regression vector for the 1st data (default = NULL)
beta.init2	The initial estimator of the regression vector for the 2nd data (default = NULL)
lambda	The tuning parameter in fitting initial model. If $NULL$, it will be picked by cross-validation. (default = $NULL$)
mu	The dual tuning parameter used in the construction of the projection direction. If NULL it will be searched automatically. (default = NULL)
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
rescale	The factor to enlarge the standard error to account for the finite sample bias. $(default = 1.1)$
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = FALSE)

LF 3

Value

A list consists of plugin estimators, debiased estimators, and confidence intervals. For logistic regression, it also returns those items after probability transformation.

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat est.debias.vec The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat The vector of standard errors of the bias-corrected estimators, length of ncol (loading.mat); se.vec corresponding to different column in loading.mat The matrix of two.sided confidence interval for the linear combination, dimenci.mat sion of ncol(loading.mat) x 2; the row corresponding to different column in loading.mat prob.debias.vec The vector of bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat. prob.se.vec The vector of standard errors of the bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat. The matrix of two.sided confidence interval of the bias-corrected estimators afprob.ci.mat

ter probability transformation, dimension of ncol(loading.mat) x 2; the row

corresponding to different column in loading.mat.

Examples

```
X1 = matrix(rnorm(100*10), nrow=100, ncol=10)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*10), nrow=90, ncol=10)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading1 = c(1, 1, rep(0,8))
loading2 = c(-0.5, -1, rep(0,8))
loading.mat = cbind(loading1, loading2)
Est = ITE(X1, y1, X2, y2, loading.mat, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

LF

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Description

Inference for linear combination of the regression vector in high dimensional generalized linear regression

4 LF

Usage

```
LF(
    X,
    y,
    loading.mat,
    model = c("linear", "logistic", "logistic_alter"),
    intercept = TRUE,
    intercept.loading = FALSE,
    beta.init = NULL,
    lambda = NULL,
    mu = NULL,
    prob.filter = 0.05,
    rescale = 1.1,
    alpha = 0.05,
    verbose = FALSE
)
```

Arguments

X Design matrix, of dimension $n \times p$ y Outcome vector, of length n

loading.mat Loading matrix, nrow=p, each column corresponds to a loading of interest

model The high dimensional regression model, either "linear" or "logistic" or

"logistic_alter"

intercept Should intercept be fitted for the initial estimator (default = TRUE)

intercept.loading

Should intercept term be included for the loading (default = FALSE)

beta.init The initial estimator of the regression vector (default = NULL)

lambda The tuning parameter in fitting initial model. If NULL, it will be picked by cross-

validation. (default = NULL)

mu The dual tuning parameter used in the construction of the projection direction.

If NULL it will be searched automatically. (default = NULL)

prob.filter The threshold of estimated probabilities for filtering observations in logistic re-

gression. (default = 0.05)

rescale The factor to enlarge the standard error to account for the finite sample bias.

(default = 1.1)

alpha Level of significance to construct two-sided confidence interval (default = 0.05)

verbose Should intermediate message(s) be printed, the projection direction be returned.

(default = FALSE)

Value

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of

interest

 $\verb|est.debias.vec| The vector of bias-corrected estimators for the linear combination of regression$

coefficients, length of ncol(loading.mat); each corresponding to a loading of

interest

QF 5

se.vec	The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); each corresponding to a loading of interest
ci.mat	The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; each row corresponding to a loading of interest
proj.mat	The matrix of projection directions; each column corresponding to a loading of interest. It will be returned only if verbose set as TRUE

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading1 = c(1, 1, rep(0, 8))
loading2 = c(-0.5, -1, rep(0, 8))
loading.mat = cbind(loading1, loading2)
Est = LF(X, y, loading.mat, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

QF

Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions

Description

Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions

Usage

```
QF(
    X,
    y,
    G,
    A = NULL,
    model = c("linear", "logistic", "logistic_alter"),
    intercept = TRUE,
    beta.init = NULL,
    split = TRUE,
    lambda = NULL,
    mu = NULL,
    prob.filter = 0.05,
    rescale = 1.1,
    tau = c(0.25, 0.5),
    alpha = 0.05,
    verbose = FALSE
```

QF

Arguments

Χ	Design matrix, of dimension $n \times p$
У	Outcome vector, of length n
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
model	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"
intercept	Should intercept be fitted for the initial estimator (default = TRUE)
beta.init	The initial estimator of the regression vector (default = NULL)
split	Sampling splitting or not (default = TRUE)
lambda	The tuning parameter in fitting initial model. If NULL, it will be picked by cross-validation. (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction. If NULL it will be searched automatically. (default = NULL)
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
rescale	The factor to enlarge the standard error to account for the finite sample bias. $(default = 1.1)$
tau	The enlargement factor for asymptotic variance of the bias-corrected estimator to handle super-efficiency. It allows for a scalar or vector. (default = $c(0.25, 0.5)$)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed, the projection direction be returned. (default = $FALSE$)

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vector restricted to G
est.debias	The bias-corrected estimator of the quadratic form of the regression vector
se	Standard errors of the bias-corrected estimator, length of tau; corrsponding to different values of tau
ci.mat	The matrix of two sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau
proj	The projection direction. It will be returned only if verbose set as TRUE

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = QF(X, y, G, A, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

Index

ITE, 1

LF, 3

QF, 5