

Content

- Sentiments for Grab Applications
- Introducing Greg and our Problem Statement
- Reddit Data & Initial Findings
- Modelling & Evaluation
- App Demo
- Conclusion & Recommendations

Sentiments of Grab applications

4.1★

1.61M reviews

4.1*

38K reviews

Same Ratings

4.1★ 1.61M reviews

4.1★ 38K reviews

Same Ratings

Sentiment Analysis shows otherwise

4.1★ 1.61M reviews

4.1★ 38K reviews

App Ratings do not show the full picture.

Use app store reviews to gain insights on our users' sentiments.

Introducing Greg

Greg

Profile: 30-year-old, Product Manager

- Oversees the product feature pipeline.
- Need to prioritize features between ride hailing and delivery due to limited tech resources.
- Aim to extract actionable insights via reviewing customer feedback on app store.

Multiple services on the same app

Reviews...

Ride Hailing

Delivery

Greg

Role: Product Manager

4.8★

12.9M reviews

Challenge:

Overwhelmed by vast user reviews; struggles to classify reviews between delivery and ride hailing.

Problem Statement

How can we distinguish between customer feedback related to Grab's ride-hailing and delivery fast and accurately?

Research

Research

Reddit

Easy to use **Public** API

Easy to use **Public** API

Service Types Specific Threads (Subreddit)

Easy to use **Public** API

Service Types Specific Threads (Subreddit)

Substantial Data Volume

Easy to use **Public** API

Service Types Specific Threads (Subreddit)

Substantial Data Volume

Negative Sentiment

Our Data.....

Ride-Hailing

Uber

Grab equivalent

Subreddit with 53k members

Our Data.....

Ride-Hailing

Uber

Grab equivalent

Subreddit with 53k members

Delivery

UberEats

Grabfood equivalent

Subreddit with 143k members

Initial Findings

Key Term Differences

Delivery

Ride Hailing

Order

Ride

Customer

Passenger

Frequency analysis

Frequency analysis

As expected, we see service type specific words rank high in our frequency analysis:

Delivery: Order, Food, Delivery

Ride Hailing: Ride, Car, Drive

Frequency analysis

Word that rank high in frequency for both.

Example: Driver

Large difference in absolute frequencies

Example: Driver appears much more in ride hailing than in delivery.

Problem Statement

How can we distinguish between customer feedback related to Grab's ride-hailing and delivery fast and accurately?

Modelling Process

Modelling Process

Model Selection

Maximizing Accuracy Score

- Select model with highest accuracy score
- Accuracy score measures the proportion of posts correctly predicted to the total number of posts

Why?

- Predicting a ride-hailing post as delivery has the same negative impact as predicting a delivery post as ride-hailing.

Subject training data to different models...

Subject training data to different models...

Subject training data to different models...

Comparing computational intensity...

Model	Time taken to classify test set
Naive Bayes	1.2 seconds (fastest)
Logistic Regression	1.5 seconds
K Nearest Neighbour	53 seconds

Efficiency: Naive Bayes classifiers are incredibly fast compared to more sophisticated methods.

Classification Algorithms: KNN, Naive Bayes, and Logistic Regression by Brandon Wohlwend

Comparing computational intensity...

Model	Time taken to classify test set
Naive Bayes	1.2 seconds (fastest)
Logistic Regression	1.5 seconds
K Nearest Neighbour	53 seconds

Efficiency: Naive Bayes classifiers are incredibly fast compared to more sophisticated methods.

Classification Algorithms: KNN, Naive Bayes, and Logistic Regression by Brandon Wohlwend

Model Selected - Naives Bayes Model due to:

- 1. Higher Accuracy
- 2. Least computational Intensive Fastest

Model Evaluation

Confusion Matrix

Confusion Matrix

Correctly Predicted 73% of delivery comments

81% of ride hailing comments

Confusion Matrix

Wrong

Predicted: Delivery Actual: Ride Hailing

Among those that was wrongly classified.... delivery ride hailing delivery Predicted 45

Comments classified with low level of confidence

Comments classified with low level of confidence

Model is unsure of which classification comment belongs to.

Comments classified with low level of confidence

Model is unsure of which classification comment belongs to.

Due to:

General comments

E.g. "glad you could get that off your chest"

Comments wrongly classified with high level of confidence

Comments wrongly classified with high level of confidence

Model is very sure, but prediction differs from the actual.

Test: 414 Grab App Reviews

Test: 414 Grab App Reviews

Model

Test: 414 Grab App Reviews

Model

Accuracy: 82.37%

Conclusion and Recommendation

Problem Statement:

How can we distinguish between customer feedback related to Grab's ride-hailing and delivery fast and accurately?

Problem Statement:

How can we distinguish between customer feedback related to Grab's ride-hailing and delivery fast and accurately?

Accurate

- 77.7% on sub-reddit test data set
- 82.37% on Grab app reviews

Problem Statement:

How can we distinguish between customer feedback related to Grab's ride-hailing and delivery fast and accurately?

Accurate

- 77.7% on sub-reddit test data set
- 82.37% on Grab app reviews

Fast

Naive Bayes → computationally inexpensive

"I saved 2 hours just by using the classifier. I can now focus on more value-adding tasks!"

Recommendation

- 1. Extend training data to include Southeast Asia languages like those from hardware zone forums to address linguistic nuances (e.g., Grab use "rider" vs. Uber use "driver").
- Consider a multi-class classifier instead of binary to cover more categories (e.g., GrabPay, app performance).

Thank you

Sensitivity → **True Positive Rate**

1 - Specificity → False Positive Rate

We can see that our model has a moderate performance.

A probability distribution graph will show it better.

Subject training data to different model

Sentiment Analysis (Consumer)*

The comments on consumer app is generally negative on all competitors

Grab is the only company that more neutral vs negative.

Grab has the best sentiment score when compared to local competitors

Sentiment Analysis (Driver)*

Driver reviews have a negative sentiment across all apps.

D'roo has the best sentiment score when compared to local competitors for driver app.

There is room for improvement on driver experience in order to better sentiment for Grab

Backup

Correctly Categorized Comments vs Confidence of Estimate

Confidence of prediction

Backup

