PH 354: hw 3, problem 15

Alankar Dutta

February 18, 2019

$$\Gamma(a) = \int_0^\infty x^{a-1} \exp(-x) dx$$

So the Integrand $I = x^{a-1} \exp(-x)$

$$\frac{dI}{dx} = I\left(\frac{a-1}{x} - 1\right)$$

and

$$\frac{d^2I}{dx^2} = \frac{dI}{dx} \left(\frac{a-1}{x} - 1 \right) - \frac{I}{x^2} (a-1)$$

The turning point of I is at $\frac{dI}{dx}(x=x_0)=0 \implies x_0=a-1$ So at $x_0=a-1$, $\frac{d^2I}{dx^2}(x=x_0)=-(a-1)^{a-2}\exp\left[-(a-1)\right]<0$ So the turning point is a maxima. Changing variables to $z=\frac{x}{c+x}$, the limits of integration change from 0 and ∞ to 0 and 1 respectively.

If the peak of the integrand is desired to be placed in the midway $(z=\frac{1}{2})$ in the new variable z, then $z = \frac{1}{2}$ should correspond to x = a - 1

$$\therefore \frac{a-1}{c+a-1} = \frac{1}{2} \implies c = a-1$$

In the new variable, dx and dz are related as $dx = \frac{c}{(1-z)^2}dz$

Also x^{a-1} and $\exp(-x)$ can cause overflow and underflow respectively in the integration domain. Therefore a better alternative but equivalent expression of the integral is $I(x) = \exp[(a-1)\ln(x) - x]$

The expression $(a-1)\ln(x)-x$ is well behaved and doesn't involve any term that quickly becomes very large or very small and can cause overflow or underflow issues respectively.