

План

Одномерный анализ

Описательные статистики, их визуализации Первичные действия при анализе признака Визуализация отдельных признаков

Многомерный анализ

Визуализация пары признаков Визуализация «алгоритм» – «алгоритм/признак»

Визуализация описательных статистик: задача Biological Response

Чётко видны группы

Визуализация описательных статистик: задача Biological Response

Фантастика? Дугообразная зависимость у трёх групп признаков!

ВОПРОС: Какие это признаки?

ОТВЕТ: это были бинарные признаки!

У них std зависит от mean (поскольку $x_i^2 = x_i$)!

[0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0]

mean
$$(\{x_i\}_{i=1}^m) = \frac{1}{m} \sum_{l=1}^m x_i \equiv p$$

$$\operatorname{std}(\{x_{i}\}_{i=1}^{m}) = \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i} - \frac{1}{m} \sum_{i=1}^{m} x_{i}\right)^{2} = \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i} - p\right)^{2} =$$

$$= \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i}^{2} - 2px_{i} + p^{2}\right) = \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i} - 2px_{i} + p^{2}\right) =$$

$$= \sqrt{\frac{1 - 2p}{m}} \sum_{i=1}^{m} x_{i} + p^{2} = \sqrt{(1 - 2p)p + p^{2}} = \sqrt{p - p^{2}} = \sqrt{p(1 - p)}$$

Визуализация важностей признаков: задача Biological Response

Потом: целые группы признаков можно удалять без существенной потери качества

Визуализация важностей признаков: задача Biological Response

Есть подгруппы признаков!

Меняйте масштаб!

Аналогично – исследование сложности «классификации» объектов

Исследование частей выборки (фолдов)

Подозрительная унимодальная зависимость!

Что значит?

Как правильно показывать важности признаков

Сортировка, среднее значение, вертикальная ориентация

Правило столбцовых диаграмм

Правило:

- упорядочивать по убыванию/возрастанию показателя (а не по алфавиту)
- дать ориентир что хорошо / что плохо
- правильная ориентация делает визуализацию понятнее

Про важности в отдельной лекции

Важности признаков

Придумываем признаки и анализируем «AllState»

В начале решения задачи: смотрим на сами признаки

```
for name in data.columns:
    if data[name].nunique() <8:</pre>
       u = data[name].unique()
   else:
       u = data[name].unique()[:8]
   if type(data[name].tolist()[0]) is str:
       print ('%25s %10d %10s %10s %s' % (name, data2[name].nunique(), '', 'str', str(u)))
   elif type(data2[name].tolist()[0]) is pd.tslib.Timestamp:
       print ('%25s %10d %10s %10s %s' % (name, data2[name].nunique(), '', 'time', ''))
   else:
       print ('%25s %10d %10.2f %10.2f %s' % (name, data2[name].nunique(), data2[name].mean(),
data2[name].std(), str(u)))
                              4
                                       2.20 0.97 [1 2 3 4]
                 Класс
                          8404 7442.45 269.63 [5001 5002 ...]
                 Номер
                Bec, T
                           124
                                       38.27
                                                  7.30 [ 41.1 44.4 ...]
                          8404
                                                  time
                Начало
                               45
                                      63.78
                                                  5.13 [ 66. 61. ...]
        Количество, шт
```

Что надо сразу выяснить про признак

- распределение значений признака
 - распределение обучение / тест
- распределение целевой переменной (ех: класс 0 / 1)
 - такие же вопросы для пропусков, выбросов

Что надо сразу выяснить про признак

Визуализация отдельных признаков

Гистограммы предпочтительнее плотностей

Задачи «М-магазин» / «ТКС»

Распределение возраста покупателей

Так обычно выглядит распределение!

Почему два горба? / выступ?

Проблемы визуализаторов – параметры по умолчанию

увеличили число бинов

Проблемы визуализаторов – выбросы

Что будет если не устранять выбросы...

```
def make_clips(data, name):
    return (data[name].clip(lower=data[name].quantile(0.01),
upper=data[name].quantile(0.99)).values)
```

Ещё раз о параметрах по умолчанию: «Liberty»

Что интересного в распределении целевого признака?

a transformed count of hazards or pre-existing damages

Ещё раз о параметрах по умолчанию: «Liberty»

Из-за правильной визуализации

немонотонная зависимость паттерны – «тройки»

Выбирать:

число бинов ширина столбцов

Построение гистограммы

Подбирайте число корзинок (бинов). Совет: можно совмещать!

Выводы о признаках Распределения дат рождения пациентов (по полу)

Когда смотрим частые значения

1980-01-01	4850
1970-01-01	3013
1977-07-07	1321
2000-06-07	447
2017-04-01	155
2000-01-01	127
2009-04-01	109

Выводы о признаках

значения по умолчанию ⇒ точная дата неизвестна при этом пол «Ж» ⇒ тоже неверно Стоит ли доверять другой информации?

Выводы о признаках

Использование визуализации для выбора трансформации

https://www.kaggle.com/thykhuely/mercari-interactive-eda-topic-modelling

«AllState»

Анализ распределения

Q-Q (quantile-quantile) plot

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

Визуализация отдельных признаков

Приёмы

- взять подвыборку
- менять число бинов!
- самому выбирать бины!

Зачем

- логичность признака
- типичные значения
- области типичных значений
 - преобразования признака

Сравнение:

- при разных значениях целевого
 - на обучении и контроле

Визуализация категориальных признаков

не видно мелкие категории категорий может быть много

Как быть?

Визуализация категориальных признаков

Визуализация категориальных признаков

Не использовать 3D-эффекты Мелкие категории → «остальное» Площадь всех категорий = 100% Диаграмма-пирог – не рекомендуется

Когда информации для визуализации мало – таблицы!

Образование	%
Высшее	65.1
Среднее спец	25.5
Неполное высшее	4.8
Среднее	3.6
Высшее х2	0.8
кфмн	0.2

Можно ещё логарифмировать...

Распределения на признаках – природа признаков

Задача «Liberty»: целочисленный признак – вещественный или категориальный?

barplot(table(train[,21]))

Распределение значений признака

Среднее цели на значениях признака

Категориальные признаки «AllState»

	mean	count		cat107				
	cat101		A	3259.510800	75			
A	2454.139844	106721	В	19845.900000	2			
В	1292.020000	3	С	2076.430704	213			
С	2778.283638	$1697\overline{1}$	D	2636.230164	3225			
D	2812.990306	17171	E	2871.429175	12521			
E	4458.574286	7	F	3072.621189	47310			
F	3560.151861	10139	G	3149.791915	28560			
G	3450.680947	10944	H	3124.043153	23461			
Н	1320.720000	1	I	2913.988215	20066			
I	4590.935254	669 <mark>0</mark>	J	3084.531566	22405			
J	4603.863790	7259	K	2946.549609	20236			
K	3240.165000	2	L	3003.206170	6976			
L	5321.419556	3173	M	3074.337929	2067			
M	5540.292766	3669	N	3053.982033	797			
N	2192.720000	1	0	2950.613520	125			
0	6870.387172	2493	P	3138.672300	100			
Q	7057.470264	2762	Q	2985.114143	140			
R	8564.376594	138	R	3063.068000	5			
S	8993.138439	173	S	5553.495000	2			
U	15972.490000	1	U	3546.898438	32			

Как распределение меняется при переходе к контролю

смотреть как меняются распределения обучение – контроль

История про о-трэвел и волшебный признак.

Визуализация пары признаков

Самый распространённый способ – диаграмма рассеивания («скатерплот»)

А что на диаграмме рассеивания 2х признаков можно увидеть?

Что можно увидеть в данных («признак» – «признак»)

Что можно увидеть в данных («признак» – «признак») корреляцию

при правильном масштабе и небольшом шуме

зависимость признаков

при малом шуме и «достаточно равномерном» распределении

независимость признаков

часто это «ложное видение»

типичные значения

сложно при большом объёме данных

выбросы

при правильном масштабе

кластеры

при правильном масштабе

Диаграмма рассеивания – лучший выбор

Задача о сердечно-сосудистых заболеваниях

где видны выбросы? как сделать, чтобы и плотность анализировать?

Смотрим на пары признаков

- если есть время / признаков немного
- есть потенциально интересные сочетания

Смотрим на пары признаков

разница между случайными и хорошими признаками

Зачем нужен Jitter

Что видно?

Зачем нужен Jitter

Что видно?

«Треугольная зависимость» (т.е. взаимная нумерация имеет смысл)

Сводная таблица

pd.crosstab(x1, x2)

Часто не нужно рисунков! По таблице всё видно

Справа – после удаления маленьких кластеров!

Что здесь видно?

Один признак – уточнение другого!

Как это использовать?

«Liberty»

Пара «вещественный признак – категориальный»

Пара «вещественный признак – категориальный»

Распределение респондентов по возрасту и полу

Распределение возрастов жертв преступлений и остальных респондентов

Пара «бинарный признак – категориальный»

Здесь наоборот – по категориям средние значения бинарного

показан даже 3й признак - вид преступления

что видно из рисунка? какие выводы можно сделать?

Задача «Ozon Travel»

Всегда ставьте под сомнение свои выводы!

Визуализация ответов двух алгоритмов: как найти ошибку используя бенчмарк

Совет: создавайте бенчмарк!

Корреляция между признаками

$$cov(X,Y) = \frac{\sum_{i=1}^{m} (x_i - mean(X))(y_i - mean(X))}{m-1}$$

$$cov(X,X) = var(X) = std^2(X)$$

$$cor(X,Y) = \frac{cov(X,Y)}{std(X)std(Y)}$$

Корреляция между признаками

Такие матрицы сложно анализировать – требуется упорядочить

Корреляция между признаками

Корреляция – линейная зависимость...

Можно

- нелинейные (как?)
- характеристические векторы пропусков
 - ранговые корреляции

Как сгенерировать картинки с разными коэффициентами корреляции?

см. https://en.wikipedia.org/wiki/Correlation_and_dependence

Информация по всем парам – как правило, сильно перегружена

https://www.kaggle.com/thebrownviking20/passnyc-eda-and-unsupervised-learning

Что можно визуализировать

Что можно визуализировать

«Всё вертикальное»

- признаки (как исходно заданные, так и сгенерированные)
 - целевой признак
 - ответы алгоритмов (train ООВ-ответы, test ответы)
- служебные признаки («нелогичные»: номер строки, случайный столбец, категория данных: обучение, валидация или тест и т.п.)

«Всё горизонтальное» (реже)

- объекты или измерения
 - статистики признаков
- служебная информация (номера признаков, их категории и т.п.)

Итог

Гистограммы очень хороши

- **быстро оценить форму распределения**
 - придумать деформацию

но надо настраивать вручную (впрочем, любую визуализацию)

Смотреть по признакам

распределения, распределения обучение / тест, распределения целевой переменной, аномальности в распределении, пропуски, естественность порядка значений

Приёмы:

деформация признака (чаще логарифмирование) масштабирование

• не используйте сложных средств визуализации

Досконально понимать, как происходит сама визуализация!

Итог

- не используйте параметров по умолчанию при визуализации
- «Посмотреть на данные» это тоже процедура, которая нуждается в обучении, т.е.
 - настройке параметров
 - м.б. очистка данных от выбросов
 - м.б. изменение шкалы (например, логарифмирование)

визуализируйте всё вертикальное и горизонтальное

ищите объяснение всему, что видите на картинке

+ придумывайте, как это использовать для ML

понимайте достоинства и недостатки (что скрывает) конкретного типа визуализации!

данные важнее картинки!

храните данные визуализация не должна быть лучше данных...