Lecture 12

EECS 483: COMPILER CONSTRUCTION

Announcements

- Midterm: Tuesday, March 12th
 - 7-9pm, DOW 1013 and 1014 (seat assignments will be announced later)
 - One-page, letter-sized, double-sided "cheat sheet" of notes permitted
 - Coverage: interpreters / program transformers / x86 / calling conventions / IRs / LLVM / Lexing / Parsing
 - See examples of previous exams on the web pages
 - March 11 class: review/office hours, no lecture
- HW4: Compiling Oat v.1
 - Lexing + Parsing + translate to LLVMlite
 - released after Spring Break
 - due March 26th

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC

Searching for derivations.

LL & LR PARSING

The Parsing Problem

- The Parsing Problem:
 - Input: a context-free grammar G
 - Output: a parser that takes in a string and outputs a parse tree of that string in G or raises an exception if there is no parse tree.
 - Notice that an ambiguous grammar may be parsed in multiple ways
- In practice: fuse the generation of the parse tree with *semantic actions* that construct the abstract syntax tree
 - The parse tree is usually never "materialized" in memory
- Another "mini-compiler" for a DSL
- Bad news: best algorithms are O(n^3)
 - CYK, Earley, GLR algorithms
- Compromise: find restrictions on CFGs that allow for O(n) parsing
 - Intuition: parsing is a **search problem**, find restrictions that limit the amount of backtracking needed.
 - Cost: more burden on the programmer (i.e., you) to adapt their grammar to fit the restriction

Classification of Grammars

Top-down vs. Bottom up

 Consider the leftrecursive grammar:

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

- (1 + 2 + (3 + 4)) + 5
- We want to parse by doing a linear scan, left-to-right
- Top-down: construct a partial tree from the root
- Bottom-up: construct partial tree from the leaves

LL(1) GRAMMARS AND TOP-DOWN PREDICTIVE PARSING

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of nonterminals (e.g., S and other syntactic variables)
 - A designated nonterminal called the start symbol
 - A set of productions: LHS \mapsto RHS
 - LHS is a nonterminal
 - RHS is a string of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

$$S \mapsto \varepsilon$$

Consider finding left-most derivations

• Look at only one input symbol at a time.

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1+2+(3+4))+5
$\mapsto \underline{\mathbf{E}} + \mathbf{S}$	((1+2+(3+4))+5
$\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$	1	(1+2+(3+4))+5
$\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$	1	(1+2+(3+4))+5
$\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$	2	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + \underline{\mathbf{E}} + S) + S$	2	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
\mapsto (1 + 2 + $\underline{\mathbf{E}}$) + S	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})) + S$	3	(1+2+(3+4))+5
\mapsto (1 + 2 + ($\underline{\mathbf{E}}$ + S)) +	S 3	(1+2+(3+4))+5
→		

There is a problem

 We want to decide which production to apply based on the look-ahead symbol.

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

• But, there is a choice:

$$(1) S \mapsto E \mapsto (S) \mapsto (E) \mapsto (1)$$

VS. $(1) + 2 \quad S \mapsto E + S \mapsto (S) + S \mapsto (E) + S \mapsto (1) + S \mapsto (1) + E$ $\mapsto (1) + 2$

• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- Top-down: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
 - <u>L</u>eft-to-right scanning
 - <u>L</u>eft-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

What can we do?

Making a grammar LL(1)

- *Problem:* We can't decide which S production to apply until we see the symbol after the first expression.
- Solution: "Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S' at the decision point:

- Also need to eliminate left-recursion somehow. Why?
- Consider:

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

LL(1) Parse of the input string

• Look at only one input symbol at a time.

$$S \mapsto ES'$$

 $S' \mapsto \varepsilon$
 $S' \mapsto + S$
 $E \mapsto \text{number} \mid (S)$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
$\mapsto \underline{\mathbf{E}} S'$	((1 + 2 + (3 + 4)) + 5
$\mapsto (\underline{\mathbf{S}}) \ S'$	1	(1+2+(3+4))+5
$\mapsto (\underline{\mathbf{E}} S') S'$	1	(1+2+(3+4))+5
\mapsto (1 S') S'	+	(1 + 2 + (3 + 4)) + 5
\mapsto (1 + $\underline{\mathbf{S}}$) S'	2	(1 + 2 + (3 + 4)) + 5
\mapsto (1 + $\underline{\mathbf{E}}$ S') S'	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 \mathbf{\underline{S'}}) S'$	+	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{S}}) S'$	((1 + 2 + (3 + 4)) + 5
\mapsto (1 + 2 + $\underline{\mathbf{E}}$ S') S'	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})S') S'$	3	(1 + 2 + (3 + 4)) + 5

Predictive Parsing

- Given an LL(1) grammar:
 - For a given nonterminal, the lookahead symbol uniquely determines the production to apply.
 - Top-down parsing = predictive parsing
 - Driven by a predictive parsing table:
 nonterminal * input token → production

$T \mapsto S$ \$
$S \mapsto ES'$
$S' \mapsto \varepsilon$
$S' \mapsto + S$
$E \mapsto number \mid (S)$

	number	+	()	\$ (EOF)
Т	→ S\$		⇒S\$		
S	$\mapsto E \; S'$		\mapsto E S'		
S'		\mapsto + S		\mapsto ϵ	$\mapsto \epsilon$
Е	→ num.		\mapsto (S)		

 Note: it is convenient to add a special end-of-file token \$ and a start symbol T (top-level) that requires \$.

How do we construct the parse table?

- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ
 - Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ϵ (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 - Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the grammar is not LL(1)

Example

- First(T) = First(S)
- First(S) = First(E)
- $First(S') = \{ + \}$
- First(E) = { number, '(' }
- Follow(S') = Follow(S)
- Follow(S) = { \$, ')' } U Follow(S')

 $T \mapsto S\$$ $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto \text{number} \mid (S)$

Note: we want the *least* solution to this system of set equations... a *fixpoint* computation. More on these later in the course.

	number	+	()	\$ (EOF)
Т	→ S\$		⇒S\$		
S	$\mapsto E S'$		\mapsto E S'		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
Е	→ num.		\mapsto (S)		

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g. S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's.
 (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

	number	+	()	\$ (EOF)
T	→ S\$		⇒S\$		
S	\mapsto E S'		\mapsto E S'		
S'		\mapsto + S		$\mapsto \epsilon$	\mapsto ϵ
Е	→ num.		\mapsto (S)		

Hand-generated LL(1) code for the table above.

DEMO: PARSER.ML

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursivedescent parser
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)
- Advantage:
 - Relatively easy to understand, write by hand.

Is there a better way?

LR GRAMMARS

Bottom-up Parsing (LR Parsers)

- LR(k) parser:
 - <u>L</u>eft-to-right scanning
 - Rightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
 - Better error detection/recovery