Network I-low

How does one design an algorithm? · Identify a known paradigm, or

· Jake a fresh approach.

-> by considering small examples

-> learning by mistakes

-> building a theory /notation.

- What is a network?

Sg. network of pipes with some fluid,

network of roads or rails,

network of vires.

-What is a flow? 10 (25 > 20 Stown along an edge (20 Stown at every vertex should be conserved, 1.e. incoming & outgoing flows are the same.

Defn: Network is modelled as a graph G= (V, E, c) with source & & sink t. · How is modelled as an edge-weight oussignment f s.t. V(x,y) EE, f(x,y) < c(x,y) and Yve V\ {s,t}: $\Sigma f(u,v) = \Sigma f(v,w)$, $(u,v) \in E$ $(v,w) \in E$ · value(f) := flow out of $S = \sum_{(8,\nu) \in E} f(8,\nu)$. Max-flow problem is to compute the inevergram.

When the program. - Idea 0: Find an 8-t path. Send minimum capacity along it. Repeat the above on the remaining capacity. 5^{20} 10^{1 But maxiflow= 30:

- This construction suggests an interesting iterative algorithm: Find an St path in the current Gg. Update the flow & Gg. Repeat! $f \leftarrow 0$; $f \leftarrow 0$; fFord-Fulkerson (G=(V,E,c)) } augmenting-path Plean &-thath in Gf; c' min. capacity in P; For (x,y) EP if ((1,y) is forward) $f(x,y) \leftarrow f(x,y) + c';$ else $f(x,y) \leftarrow f(x,y) - c'$; zetwen f; - an: Does it ever stop?
Does it output max, flow?

- Jo analyze, we need a new concept· For ACV At. & A, t&A, consider
 the edges that go from A to A,

 cut(A) := E \(\Omega\) AXA.
 - · Capacity of a cut, $C(A) := \sum_{\substack{(u,v) \in \\ \text{cut}(A)}} C(u,v)$.
- Note that, in some sense: $S \in A$ means that A is a "source" L $t \in A$ means that A is a "sink".
- For a flow f we can define the flow amounts leaving f entering f: $faut (A) := \sum_{(x,y) \in aut(A)} f(x,y).$
 - $f_{in}(A) := \sum_{(x,y)} f(x,y) = \sum_{(x,y) \in cut(A)} f(y,x).$

9

Jemmal:
$$f_{out}(A) - f_{in}(A) = v_{olue}(f)$$
,

Pf:

• value $(f) = f_{out}(b) - f_{in}(b)$
 $= \sum_{\alpha \in A} (f_{out}(\alpha) - f_{in}(\alpha)) \quad \text{[: conservation]}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in E} f_{(\alpha, y)}) - \sum_{(\alpha, \alpha) \in E} f_{(\alpha, \alpha)}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in E} f_{(\alpha, y)}) - \sum_{(\alpha, \alpha) \in E} f_{(\alpha, \alpha)}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in E} f_{(\alpha, y)}) - \sum_{\alpha \in A} f_{(\alpha, \alpha) \in E}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in Cut}(A) - \sum_{\alpha \in A} f_{(\alpha, x) \in Cut}(A)$
 $= f_{out}(A) - f_{in}(A) \leq c(A)$.

 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A)$

Max-flow Min-aut Theorem

- Upon termination of Ford-Fulkerson & & t get disconnected in the current graph Gg, where f is the final flow.
- Let A be the set of vertices reachable from s. Let A be the rest (includes t).

Theorem: In G, value (f) = c(A). Thus, max. flow equals min.cut capacity in any graph.

- · We know that value (f) (c(A),
- · Suppose at the end of Ford-Fulkerson value(f) < c(A). $\Rightarrow \exists (x,y) \in cut(A)$ in $\Rightarrow t \in c(x,y) > 0$.

- · This contradicts y & A.
- \Rightarrow value (f) = c(A).
- · For any s-t cut B, c(A)=value(f) < c(B).

Claim! Ford-Fulkerson may not terminate on even 6 vertices if the weights are not positive rationals.

	- For positive integer weights can we do
	Jor positive integer weights can we do better than exp. time? Select the paths cleverly?
	Select the baths clovesty?
	Jenes polyto court
Idea	1: Select a path with max, cabacity.
	1: Select a path with max. capacity. This raises the hope of faster. Convergence to max. flow.
_	Convergence to max. flow,
_	- The carefully chosen bath to anement the
	- The carefully chosen path (to augment the flow) is called an augmenting path.
	J ' — J — J — J — — — — — — — — — — — —
	Algo1 (G=(V,E,c), s,t) {
	f←o; k← max. capacity(E);
	111 (1 1)
can be a greated appropriate	Jound - while (Fs-t path Pin Gg with cap >k) {
y a gre	ch in c'4 capacity of P;
O(m) to	me for land ED
O(W)	
	if (x,y) is a forward-edge
	$f(x,y) \leftarrow f(x,y) + c';$
	else f(y,x)~f(y,x)-c';}
	k←k/2; 3 3

D The first while-loop runs O(Games) time's
D The first while-loop runs O(GCmax) times, where Cmax is the max. capacity on E.
The second while-loop runs for O(m) times
· Note that There is a bath Paf cabor
but not 32k, in Gg.
but not 32k, in Gg. Let A be the set of vertices in Gg that are reachable from b by a
reachable from b by a
bath of cab. > 2k.
=> each cut-edge(A to A) has cap. <2k. => value(f) > fmax - mx2k.
· Note that each iteration of the inner
· Note that each iteration of the inner while-loop increases the flow by $7k$. \implies # iterations < $2m$.
For an integral network G, Agol finds max

flow in mxlg gmax x O(m) time.

_	We can give a different analysis/aleo.
	We can give a different analysis/algo., that does not use the capacities.
	Whole the most was a superior
Idea 2	: Let Ss(s,v) be the shortest-distance
	in Gy considering only the # hops & not
·	the edge-capacities from & to v.
	Pick a shortest-path P as an
-	augmenting-path (to augment f to f').
	The intuition is that since in the new
	Gj' an edge in P disappears (Say 2->y),
-	$S_{\xi'}(\delta,y) > S_{\xi}(\delta,y).$
	In a later iteration (in Gg")
-	if the edge (x,y) reappears then what
	can we deduce?
=	> B lool of (1) 1
	there in the picked my
	there in the picked with P.
	> $S_{\xi^{11}}(8,x) = S_{\xi^{11}}(8,y) + 1 \ge S_{\xi^{1}}(8,y) + 1 \ge S_{\xi^{1}}(8,y) + 1$
	$= \delta_{\varsigma}(s,x) + 2.$
A	7

Lemma	: Whenever (x,y) reappears in a residual graph, $S(s,z)$ increases by $\gg 2$. Thus, (x,y) can disappear/reappear
	graph, $\delta(s,z)$ increases by \$2.
<u>.</u>	Thus, (x,y) can disappear/reappea
	$\leq \frac{n-1}{2}$ times.
7	> #augmentations < M(n-1)
71	(a. 1. 1. 1. 1. a.) 14 a. a.
Sheore	n (Edmonds, Karp 1972): Max. flow in a real
-	n (Edmonds, Karp 1972): Max. flow in a real weighted graph is computable in O(min) tin
	-Later imbravements:
	[Malhotra, Kumar, Maheshwari 78] O(n3)
	-Later improvements: [Malhotra, Kumar, Maheshwari 78] O(n3) [Orlin 2013] O(mn).
_	
Zxeqcis	e: Show that after every augmentation,
	e: Show that after every augmentation, $\forall v \in V$, $\delta_{\xi}(z,v) \leq \delta_{\xi'}(z,v)$.
1/02'0	to 1) Multiple man l'aibe ne
Vivian	ts: 1) Multiple sources L sinks, or
	2) Nodes have capacities, or
	3) Flow with lower bound.

Application 2: Edge disjoint s-t paths

- Let G=(V,E) be the graph in which we are interested in edge disjoint st paths. Let G' be the related flow network with edge-weights Oor 1.

Theorem: G'has an st flow=k iff G has k edge-disjoint st paths.

·[=] This is clear.
·(=>)

Note that in Ford- & Julkerson any augmenting-path

P has capacity=1 (in G'). 9:

disjoint.

=> We get k edge-disjoint s-t paths.