# BÀI TẬP SỐ 2

# MÔN: AN TOÀN VÀ BẢO MẬT THÔNG TIN

Sinh viên: Vũ Bảo Khánh – MSSV: K225480106028

Lóp: K58KTPM

**Nội dung:** Tệp PDF này dùng để thử nghiệm quy trình tạo chữ ký số (8 bước) theo yêu cầu của đề bài môn An toàn và Bảo mật thông tin. Báo cáo mô tả cấu trúc PDF liên quan chữ ký, cách lưu thời gian ký, và các rủi ro bảo mật, dựa trên ISO 32000-1 và PAdES. Minh họa qua file original.pdf (gốc), signed.pdf (đã ký), tampered.pdf (bị chỉnh sửa).

1) Cấu trúc PDF liên quan chữ ký (Nghiên cứu)

Chữ ký số trong PDF được lưu dưới dạng các object trong cấu trúc PDF và liên kết chặt chẽ thông qua Catalog → AcroForm → Signature Field → Signature Dictionary.

PDF cho phép ký theo dạng "incremental update": mỗi lần ký, file không bị ghi đè mà thêm một lớp cập nhật mới, đảm bảo toàn vẹn và truy xuất được lịch sử ký.

# Các thành phần chính:

| Thành phần        | Vai trò                       | Object refs / từ khóa     |
|-------------------|-------------------------------|---------------------------|
| Catalog           | Gốc của tài liệu, tham chiếu  | /Root trong trailer       |
|                   | đến tất cả cấu trúc như Pages |                           |
|                   | và AcroForm.                  |                           |
| Pages Tree        | Cây phân cấp quản lý tất cả   | /Pages, /Kids, /Count     |
|                   | các trang của PDF.            |                           |
| Page Object       | Đại diện cho từng trang, liên | /Contents, /Resources     |
|                   | kết tới nội dung hiển thị.    |                           |
| Resources         | Danh sách tài nguyên (phông,  | /Resources                |
|                   | hình, XObject) dùng trong     |                           |
|                   | trang.                        |                           |
| Content Streams   | Chuỗi lệnh vẽ nội dung trang  | /Contents → stream        |
|                   | (văn bản, hình ảnh).          |                           |
| XObject           | Các đối tượng đồ họa hoặc     | /Xobject trong            |
|                   | hình ảnh tái sử dụng.         | /Resources                |
| AcroForm          | Biểu mẫu tương tác, chứa      | /AcroForm                 |
|                   | danh sách các trường (fields) |                           |
|                   | — bao gồm trường chữ ký.      |                           |
| Signature Field   | Trường biểu mẫu chứa chữ ký   | /FT /Sig, /V trỏ đến /Sig |
| (Widget           | số (vị trí ký hiển thị).      |                           |
| Annotation)       |                               |                           |
| Signature         | Nơi lưu dữ liệu chữ ký (hash, | /Type /Sig, /Filter,      |
| Dictionary (/Sig) | người ký, thời gian).         | /SubFilter, /ByteRange,   |
|                   |                               | /Contents, /M             |

| /ByteRange       | Chỉ định các đoạn byte trong | [start1 length1 start2            |
|------------------|------------------------------|-----------------------------------|
|                  | file được bao phủ bởi chữ ký | length2]                          |
|                  | (phần đã ký và chưa ký).     |                                   |
| /Contents        | Chứa dữ liệu chữ ký số       | /Contents                         |
|                  | (thường là PKCS#7/CMS        |                                   |
|                  | dạng hex).                   |                                   |
| Incremental      | Cơ chế thêm phần ký mới mà   | Mỗi lần ký thêm một <b>xref</b> , |
| Updates          | không làm mất tính toàn vẹn  | trailer, và /Sig mới              |
|                  | các phần trước đó.           |                                   |
| DSS (Document    | Theo chuẩn PAdES, lưu        | /DSS trong Catalog hoặc           |
| Security Store – | metadata bảo mật: chứng thư, | SigDict                           |
| PAdES)           | OCSP, CRL, timestamp         |                                   |
|                  | phục vụ xác minh lâu dài     |                                   |
|                  | (LTV).                       |                                   |

# Sơ đồ liên kết:



# 2) Thời gian ký được lưu ở đâu?Các vị trí có thể lưu thông tin thời gian:

| Vị trí                | Mô tả                           | Đặc điểm                    |
|-----------------------|---------------------------------|-----------------------------|
| 1. /M trong Signature | Là chuỗi text lưu thời gian ký  | - Chỉ mang tính             |
| Dictionary (/Sig)     | mà phần mềm ký ghi vào. Ví      | thông tin hiển thị          |
|                       | dụ: /M                          | Không được bảo vệ           |
|                       | (D:20251030T103000+07'00').     | bởi chữ ký Có thể bị        |
|                       |                                 | chỉnh sửa mà không          |
|                       |                                 | làm sai chữ ký (nên         |
|                       |                                 | không có giá trị pháp       |
|                       |                                 | lý).                        |
| 2. Timestamp Token    | Là thuộc tính (attribute) trong | - Được ký số bởi TSA        |
| (RFC 3161) trong chữ  | cấu trúc CMS/PKCS#7 – cụ        | nên có giá trị pháp lý      |
| ký PKCS#7             | thể là timeStampToken. Được     | Dùng để chứng minh          |
|                       | cấp bởi Time Stamping           | chữ ký được tạo tại         |
|                       | Authority (TSA).                | hoặc trước <b>thời điểm</b> |
|                       |                                 | timestamp.                  |
| 3. Document           | Là một loại chữ ký đặc biệt,    | - Bảo vệ toàn bộ file       |
| Timestamp (PAdES)     | không gắn với người ký mà       | tại một thời điểm           |
|                       | với toàn bộ tài liệu.           | nhất định Dùng              |
|                       |                                 | trong PAdES-LTV để          |
|                       |                                 | đảm bảo tính tồn tại        |
|                       |                                 | lâu dài của chữ ký.         |
| 4. DSS (Document      | Theo chuẩn PAdES – lưu trữ      | - Có thể chứa               |
| Security Store)       | các thông tin phục vụ xác       | timestamp bổ sung           |
|                       |                                 | (cho chữ ký hoặc            |

| minh lâu dài như OCSP, | toàn tài liệu) Dùng |
|------------------------|---------------------|
| CRL, timestamp.        | để xác minh về sau  |
|                        | ngay cả khi TSA/CA  |
|                        | gốc đã hết hạn.     |

Sự khác biệt giữa /M và Timestamp (RFC 3161):

|                   |                                                 | Timestamp (RFC                                                 |
|-------------------|-------------------------------------------------|----------------------------------------------------------------|
| Tiêu chí          | /M (Signature Dictionary)                       | 3161 trong                                                     |
|                   |                                                 | PKCS#7)                                                        |
| Nguồn gốc         | Do phần mềm ký (signing application) tự ghi.    | Do TSA (Time<br>Stamping Authority)<br>phát hành và ký.        |
| Định dạng         | Chuỗi text PDF kiểu /M<br>(D:YYYYMMDDHHmmss+TZ) | Câu trúc nhị phân ASN.1 trong gói PKCS#7 (timeStampToken)      |
| Được bảo vệ       | Không (nằm ngoài vùng băm                       | Có (nằm trong vùng                                             |
| bởi chữ ký?       | /ByteRange)                                     | được ký bởi TSA)                                               |
| Giá trị pháp lý   | Tham khảo (chỉ mô tả lúc phần mềm tạo chữ ký)   | Có giá trị chứng thực<br>thời gian ký (theo<br>chuẩn RFC 3161) |
| Mục đích<br>chính | Hiển thị trong giao diện xem chữ ký             | Chứng minh thời<br>điểm ký số là có thực<br>và hợp lệ          |

#### 3) Rủi ro bảo mật

## Rủi ro chính (tóm tắt):

#### 1. Tamper nội dung (/Contents hoặc /ByteRange)

- Mô tả: sửa text/hình trên trang sau khi ký (hoặc sửa trực tiếp
   /Contents/objects), khiến nội dung hiển thị khác so với vùng được băm.
- Hậu quả: chữ ký báo *invalid* (mất integrity) nhưng nếu tấn công tinh
   vi (object injection / incremental abuse) có thể che dấu.
- Phát hiện: verify kiểm tra ByteRange vs file bytes → thất bại nếu băm khác.
- o Tham khảo: chuẩn kiểm tra incremental / ByteRange theo PAdES/ETSI.

## 2. Replay attack (ký lại SigDict với timestamp cũ bằng incremental updates)

- Mô tả: dùng incremental update để thêm một SigDict mới hoặc sửa metadata thời gian, dùng timestamp cũ để chứng minh "ký trước" khi thực tế không phải vậy.
- Hậu quả: chối bỏ thời gian, giả tạo lịch sử ký.
- Giảm rủi ro: bắt buộc RFC3161 timestamp token từ TSA và lưu token/validation data vào DSS (PAdES-LTV). RFC3161 mô tả token & cách verif.

## 3. Cert revocation không được kiểm tra (CRL/OCSP)

- Mô tả: chứng thư signer đã bị thu hồi/expire nhưng verifier không kiểm
   tra OCSP/CRL hoặc không có dữ liệu validate offline.
- → Hậu quả: chữ ký "hợp lệ" về mặt cryptography nhưng thực tế signer đã
   bị thu hồi → rủi ro pháp lý.
- Giảm rủi ro: nhúng CRL/OCSP responses vào DSS để cho phép xác minh offline/LTV.

## 4. Lộ private key / side-channel

- o Mô tả: private key (file .pem/.pfx) bị leak hoặc tấn công side-channel.
- o Hậu quả: forge chữ ký (ký giả mạo).
- Giảm rủi ro: HSM / smartcard, khóa truy cập chặt, offline key usage policy.

## 5. Incremental updates lam dung / object injection

- Mô tả: thêm nhiều lớp update, lớp sau che lớp trước (content overlay, form filling) viewer yếu/kém có thể hiển thị lớp cuối mà không cảnh báo thay đổi lớp trước.
- Hậu quả: thay đổi hiển thị mà chữ ký trên lớp cũ vẫn được coi là "valid" nếu verifier không kiểm tra modification level.
- Phát hiện & giảm rủi ro: dùng công cụ kiểm tra modification\_level / incremental diff (ví dụ pyHanko có phân tích incremental updates, cho biết modification level).