Amendments to the Claims:

1. (Currently amended) A product which is a compound of the formula:

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{3}$$

$$X^{4}$$

$$X^{4}$$

$$X^{5}$$

wherein

D is N or CH;

E is O, S or CH2;

 X^1 is a group of the formula $-CR^{20}R^{21}$ -CYCLE, where

 $R^{20} \ \text{and} \ R^{21}$ are the same or different and H, F or CH3;

CYCLE is of formula (II) or formula (III):

$$R^{5}$$
(II) (III)

where:

R⁵ is iodine, bromine, methyl or trifluoromethyl;

- 5 - Appl. of Robin Havard DAVIES (U.S. National Phase of PCT/GB2004/003283; Int'l Filing Date: July 30, 2004)

 R^7 is H, halogen, C_1 - C_{10} acyl, OR^{11} , CO_2R^{11} -or $CONR^{11}$ -where R^{11} is C_1 - C_{10} -hydrocarbyl optionally containing one or more in-chain and/or in-ring-O-linkages;

 R^{8} is $-NR^{9}R^{10}$ or $-COR^{9}$, where R^{9} and R^{10} are each independently methyl or ethyl; and

W is N or CH;

[[.]] X^2 is hydroxymethyl, (C₁-C₃)alkoxymethyl, (C₃-C₅)cycloalkoxy methyl, carboxy, (C₁-C₃)alkoxycarbonyl, (C₃-C₅)cycloalkoxy-carbonyl, 1,1-aminoiminomethyl, 1,1-(mono-N- or di-N,N-(C₁-C₄)alkylamino)iminomethyl, 1,1-(mono-N- or di-N,N-(C₃-C₅)cycloalkylamino)iminomethyl, carbamoyl, mono-N- or di-N,N-(C₁-C₄)alkylaminocarbonyl, mono-N- or di-N,N-(C₃-C₅)cycloalkyl-aminocarbonyl or N-(C₁-C₄)alkyl-N-(C₃-C₅)cycloalkylamino-carbonyl;

 X^3 and X^4 are each independently hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, OR^a or NR^aR^b , where R^a and R^b are independently hydrogen, alkyl, aralkyl, carbamoyl, alkyl carbamoyl, dialkylcarbamoyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, or, when X^3 and X^4 are both OR^a , the two R^a groups together may form

where R^c is hydrogen or alkyl,

where R^d and R^e are independently hydrogen, alkyl, or together with the carbon atom to which they are attached may form a 1,1-cycloalkyl group;

X⁵ is H, halogen, (C₁-C₁₀)alkyl, fluorinated (C₁-C₁₀) alkyl (e.g. trifluoromethyl), (C₁-C₁₀) alkoxyalkyl, (C₁-C₁₀)alkoxy, (C₁-C₁₀)alkylether, (C₁-C₁₀)thioalkoxy, (C₁-C₁₀)alkylthio, amino, (C₁-C₁₀)alkylamino, -COX⁶R²⁵ where X⁶ is O or NH and R²⁵ is (C₁-C₄)alkyl optionally terminally substituted by an aryl or a heteroaryl group and additionally or alternatively terminally substituted by hydroxy, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl, or is (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl in either case terminally substituted by an aryl or heteroaryl group and, when having a terminal methylic carbon atom, optionally further terminally substituted by hydroxy,

or a pharmaceutically acceptable salt or prodrug thereof or a pharmaceutically acceptable salt of such a prodrug[[.]], provided that the compound is not

2. (Original) A product of claim 1, wherein

D is N;

E is O;

X² is mono-N- or di-N,N(C₁-C₄)alkylaminocarbonyl, mono-N-

or di-, N-(C₃-C₅)cycloalkylaminocarbonyl or N-(C₁-C₄)alkyl-N- (C₃-C₅)cycloalkylaminocarbonyl;

 X^3 is OH or NH₂;

 X^4 is OH;

 $\rm X^5$ is H, halogen, (C₁-C₁₀)alkyl, trifluoromethyl, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl, or either of the latter two groups where terminally substituted as defined in claim 1.

- 3. (Currently amended) A product of claim 1 or claim 2 wherein X^5 is halogen.
- 4. (Currently amended) A product of claim [[3]] $\underline{2}$ wherein X^5 is bromine or chlorine.
- 5. (Currently amended) A product of any preceding claim $\underline{1}$ wherein R^{20} and R^{21} are both H.
- 6. (Currently amended) A product of claim 1 wherein the compound is of formula (V):

H CR²⁰R²¹-CYCLE

N
$$R^1$$
 N
 R^2
 X^{3a}
 OH

where:

-CR²⁰R²¹-CYCLE[[,]] and D and \mathbb{R}^2 are as defined in claim 1;

 R^2 is H, halogen, (C_1-C_{10}) alkyl, fluorinated (C_1-C_{10}) alkyl (e.g. trifluoromethyl), (C_1-C_{10}) alkoxyalkyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) alkylether, (C_1-C_{10}) thioalkoxy, (C_1-C_{10}) alkylethio, amino, (C_1-C_{10}) alkylamino, (C_1-C_1) alk

substituted by an aryl or heteroaryl group and, when having a terminal methylic carbon atom, optionally further terminally substituted by hydroxy;

E is O, S or CH₂ (e.g. E is O and optionally D is N and R² is Cl or other halogen);

 R^1 is $C_1\text{-}C_4$ alkyl; and

 X^{3a} is -OH or -NH₂.

- 7. (Original) A product of claim 6 wherein E is O.
- 8. (Canceled)
- 9. (Currently amended) A product of claim [[8]] 1 wherein W is N.
- 10. (Currently amended) A product of claim 8-or claim 9 $\underline{1}$ wherein R^8 is dimethylamino or diethylamino.
- 11. (Currently amended) A product of claim [[8]] $\underline{1}$ wherein CYCLE is selected from the group consisting of the following moieties:

- 9 - Appl. of Robin Havard DAVIES (U.S. National Phase of PCT/GB2004/003283; Int'l Filing Date: July 30, 2004)

- 12. (Original) A product of claim 11 wherein CYCLE is of formula 1, 2, 3 or 4; or of formula 12, 13, 14 or 15.
- 13. (Currently amended) A product of any of claims 8, 11 and 12 claim 1 wherein the compound is of formula (VI):

where CYCLE is a group of formula (II).

14. (Currently amended) A product of any of claims 8, 11 and 12 claim 1 wherein the compound is of formula (VII):

- 11 - Appl. of Robin Havard DAVIES (U.S. National Phase of PCT/GB2004/003283; Int'l Filing Date: July 30, 2004)

where CYCLE is a group of formula (II).

15-19. (Canceled)

20. (Currently amended) A compound product which is a compound of formula (VIII):

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{1}$$

$$Y^{1}$$

$$Y^{1}$$

$$Y^{2}$$

$$Y^{3}$$

$$X^{3}$$

$$X^{4}$$

$$Y^{1}$$

$$Y^{1}$$

$$Y^{2}$$

$$Y^{3}$$

$$Y^{4}$$

$$Y^{3}$$

$$Y^{3}$$

$$Y^{4}$$

$$Y^{4}$$

$$Y^{5}$$

$$Y^{5$$

wherein

D is N or CH;

E is O, S or CH₂;

 X^1 is of the formula -CR²⁰R²¹-CYCLE where R²⁰ and R²¹ are the same or different and H, F or CH₃; and CYCLE is a bicyclic (fused) heteroaromatic ring of the formula

wherein

ring A is a 5- or 6- membered ring characterised by the following features (in which ring positions are numbered relative to the linkage to $-CR^{20}R^{21}$ -):

- i. a carbon atom at the 1-position;
- ii. carbon atom as CH or a nitrogen atom at position 2;
- iii. it is 3, 4 fused to ring B;
- iv. the 5-position ring atom is substituted by a moiety R⁵ which is H, halogen, or an organic moiety having from 1 to 6 plurally valent atoms in addition to monovalent atoms selected from hydrogen and halogen.
- v. if a 6-membered ring, it has at the 6-position a nitrogen, or -CM- where M is H, CH₃ or F;

ring B is a 5 or 6 membered ring characterised by the following features:

- (a) an in-ring heteroatom including O, N or S joined to the 4-position of ring A;
- (b) said in-ring heteroatom is joined within the ring secondly to a carbon which is substituted by a moiety R^8 which is $-N(C_2H_5)_2$;
- (c) an in-ring atom joined to the 3-position of ring A which is N,O, S or C, said C being in the form of a CH or CO group;
- (d) in the case of a 6-membered ring, the remaining ring member is nitrogen or carbon in the form of CH;
- X^2 (the 4' substituent) is hydroxymethyl, (C_1-C_3) alkoxymethyl, (C_3-C_5) cycloalkoxymethyl, carboxy, (C_1-C_3) alkoxycarbonyl, (C_3-C_5) cycloalkoxycarbonyl, (C_3-C_5) cycloalkoxycarbonyl, (C_3-C_5) cycloalkoxycarbonyl, (C_3-C_5) cycloalkoxymethyl, (C_3-C_5) cy

(mono-N- or di-N,N-(C_3 - C_5)cycloalkyl-amino)iminomethyl, carbamoyl, mono-N- or di-N,N-(C_1 - C_4)alkylaminocarbonyl, mono-N- or di-N,N-(C_3 - C_5)cycloalkylaminocarbonyl or N-(C_1 - C_4)alkyl-N-(C_3 - C_5)cycloalkylaminocarbonyl;

X³ and X⁴ are each independently hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, OR^a NR^aR^b, where R^a and R^b are independently hydrogen (most preferably X³ and X⁴ are OH), alkyl, aralkyl, carbamoyl, alkyl carbamoyl, dialkylcarbamoyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, or, when X³ and X⁴ are both OR^a, the two R^a groups together may form

where R^d and R^e are independently hydrogen, alkyl, or together with the carbon atom to which they are attached may form a 1,1-cycloalkyl group;

X⁵ is H, halogen, (C₁-C₁₀)alkyl, fluorinated (C₁-C₁₀) alkyl (e.g. trifluoromethyl), (C₁-C₁₀) alkoxyalkyl, (C₁-C₁₀)alkoxy, (C₁-C₁₀)alkylether, (C₁-C₁₀)thioalkoxy, (C₁-C₁₀)alkylthio, amino, (C₁-C₁₀)alkylamino, -COX⁶R²⁵ where X⁶ is O or NH and R²⁵ is (C₁-C₄)alkyl optionally terminally substituted by an aryl or a heteroaryl group [for example phenyl or a 5 or 6 membered heteroaryl group] and additionally or alternatively terminally substituted by hydroxy, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl, or is (C₂-C₁₀)alkenyl or (C₂-C₁₀)alkynyl in either case terminally substituted by an aryl or heteroaryl group [for example phenyl or a 5 or 6-membered heteroaryl group] and, when having a terminal methylic carbon atom, optionally further terminally substituted by

hydroxy[[.]], or a pharmaceutically acceptable salt or prodrug thereof, or a pharmaceutically acceptable salt of such a prodrug.

- 21. (Currently amended) A compound product of claim 20 wherein R⁵ has from 1 to 4 plurally valent atoms.
- 22. (Currently amended) A compound product of claim 21 wherein the plurally valent atoms are selected from carbon, oxygen, sulfur and nitrogen.
- 23. (Currently amended) A compound product of claim 22 wherein R⁵ is CH₃, CF₃, OH or NH₂.
- 24. (Currently amended) A compound product of claim 20 wherein R⁵ is H, I, Br or Cl.
- 25. (Currently amended) A compound product of any of claim[[s]] 20 to 24 wherein CYCLE is of formula (IX):

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

- 26. (Currently amended) A compound product of any of claim[[s]] 20 to 25 wherein where R^{20} and R^{21} are both hydrogen.
- 27. (Currently amended) An adenosine analogue-type A3 receptor agonist having an N6 nitrogen substituted by a group of the formula - $CR^{20}R^{21}$ -CYCLE where

R²⁰ and R²¹ are the same or different and H, F or CH₃; and CYCLE is of formula (III) or formula (III):

$$R^{5}$$
 (III) R^{7} (III)

where:

R⁵ is iodine, bromine, methyl or trifluoromethyl;

 R^7 is H, halogen, C_1 - C_{10} acyl, OR^{11} , CO_2R^{11} or $CONR^{11}$ where R^{11} is C_1 - C_{10} hydrocarbyl optionally containing one or more in chain and/or in ring O-linkages;

 R^8 is $-NR^9R^{10}$ or $-COR^9$, where R^9 and R^{10} are each independently methyl or ethyl; and

W is N or CH.

28. (Original) An adenosine analogue-type A3 receptor agonist having an N6 nitrogen substituted by a group of the formula -CR²⁰R²¹-CYCLE where R²⁰ and R²¹ are the same or different and H, F or CH₃; and CYCLE is a bicyclic (fused) heteroaromatic ring of the formula

wherein

ring A is a 5- or 6- membered ring characterised by the following features (in which ring positions are numbered relative to the linkage to $-CR^{20}R^{21}$ -):

- i. a carbon atom at the 1-position;
- carbon atom as CH or a nitrogen atom at position 2;
- iii. it is 3, 4 fused to ring B;
- iv. the 5-position ring atom is substituted by a moiety R⁵ which is H, halogen or an organic moiety having from 1 to 6 plurally valent atoms in addition to monovalent atoms selected from hydrogen and halogen;
- v. if a 6-membered ring, it has at the 6-position a nitrogen, or -CM- where M is H, CH₃ or F;

ring B is a 5 or 6 membered ring characterised by the following features:

- (a) an in-ring heteroatom including O, N or S joined to the 4-position of ring A;
- (b) said in-ring heteroatom is joined within the ring secondly to a carbon which is substituted by a moiety R^8 which is $-N(C_2H_5)_2$;
- (c) an in-ring atom joined to the 3-position of ring A which is N,O, S or C, said C being in the form of a CH or CO group;
- (d) in the case of a 6-membered ring, the remaining ring member is nitrogen or carbon in the form of CH.

29. (Canceled)

30. (Currently amended) A product of any one of claims 1 to 26 or an agonist of claim 27 or claim 28 for use in a method for selectively activating A₃ adenosine receptors in a mammal[[.]], comprising administering to the mammal an effective amount of a product of claim 1 or an agonist of claim 27.

31-32. (Canceled)

33. (Currently amended) The use of a product of any one of claims 1 to 26 or an agonist of claim 27 or claim 28 for the manufacture of a medicament for use A method for preconditioning the heart of a subject to protect it from ischaemic damage[[.]].

comprising administering to the subject an effective amount of a product of claim 1 or an agonist of claim 27.

34-35. (Canceled)

- 36. (Currently amended) A pharmaceutical composition comprising a product of any one of claim[[s]] 1 to 26 or an agonist of claim 27 or claim 28.
- 37. (Original) A pharmaceutical composition of claim 36 which is an intravenous formulation.
 - 38. (Canceled)
- 39. (Currently amended) A method of stimulating adenosine A₃ receptors, comprising administering to a mammal in need of such treatment a therapeutically effective amount of a product of any one of claim[[s]] 1 to 26 or an agonist of claim 27 or claim 28.
- 40. (Currently amended) A method of reducing tissue or organ damage (e.g., substantially preventing tissue or organ damage, inducing tissue or organ protection) resulting from ischaemia or hypoxia, comprising administering to a mammal in need of such treatment a therapeutically effective amount of an agent selected from a product of any one of claim[[s]] 1 to 26 and or an agonist of claim 27 or claim 28.
- 41. (New) The method of claim 39 wherein another cardiovascular drug is additionally administered to the mammal.