

실습 4강 계층적 군집분석

실습 데이터

- ❖ 실습데이터와 실습과정은 Shmueli et al., Data Mining for Business Analytics, R Edition"에서 발췌
- ❖ 미국 전력회사 데이터 22개
- ❖ 9변수 (독립변수 8)

	Α	В	С	D	E	F	G	Н	I
1	Company	Fixed_char	RoR	Cost	Load_facto	Demand_g	Sales	Nuclear	Fuel_Cost
2	Arizona	1.06	9.2	151	54.4	1.6	9077	0	0.628
3	Boston	0.89	10.3	202	57.9	2.2	5088	25.3	1.555
4	Central	1.43	15.4	113	53	3.4	9212	0	1.058
5	Commonv	1.02	11.2	168	56	0.3	6423	34.3	0.7
6	NY	1.49	8.8	192	51.2	1	3300	15.6	2.044
7	Florida	1.32	13.5	111	60	-2.2	11127	22.5	1.241
8	Hawaiian	1.22	12.2	175	67.6	2.2	7642	0	1.652
9	Idaho	1.1	9.2	245	57	3.3	13082	0	0.309
10	Kentucky	1.34	13	168	60.4	7.2	8406	0	0.862
11	Madison	1.12	12.4	197	53	2.7	6455	39.2	0.623
12	Nevada	0.75	7.5	173	51.5	6.5	17441	0	0.768
13	New Engla	1.13	10.9	178	62	3.7	6154	0	1.897
14	Northern	1.15	12.7	199	53.7	6.4	7179	50.2	0.527
15	Oklahoma	1.09	12	96	49.8	1.4	9673	0	0.588
16	Pacific	0.96	7.6	164	62.2	-0.1	6468	0.9	1.4
17	Puget	1.16	9.9	252	56	9.2	15991	0	0.62
18	San Diego	0.76	6.4	136	61.9	9	5714	8.3	1.92
19	Southern	1.05	12.6	150	56.7	2.7	10140	0	1.108
20	Texas	1.16	11.7	104	54	-2.1	13507	0	0.636
21	Wisconsin	1.2	11.8	148	59.9	3.5	7287	41.1	0.702
22	United	1.04	8.6	204	61	3.5	6650	0	2.116
23	Virginia	1.07	9.3	174	54.3	5.9	10093	26.6	1.306

데이터 읽기 utilities.df <- read.csv("Utilities.csv") # Company 벡터 내용 복제하기 row.names(utilities.df) <- utilities.df[,1] # 기존의 Company 벡터 삭제 utilities.df <- utilities.df[,-1]

*	Company [‡]		•	Company	*	Fixed_charge [‡]
1	Arizona	-	Arizona	Arizona	Arizona	1.06
2	Boston		Boston	Boston	 Boston	0.89
3	Central		Central	Central	Central	1,43
4	Commonwealth		ommonwealth	Commonwealth	ommonwealth	1.02
5	NY		NY	NY	NY	1.49

compute Euclidean distance
d <- dist(utilities.df, method = "euclidean")</pre>

> d						
	Arizona	Boston	Central	Commonwealth	NY	Florida
Boston	3989.40808					
Central	140.40286	4125.04413				
Commonwealth	2654.27763	1335.46650	2789.75967			
NY	5777.16767	1788.06803	5912.55291	3123.15322		
Florida	2050.52944	6039.68908	1915.15515	4704.36310	7827.42921	
Hawaiian	1435.26502	2554.28716	1571.29540	1219.56001	4342.09380	3485.67156
Idaho	4006.10419	7994.15599	3872.25763	6659.53457	9782.15818	1959.73108
Kentucky	671.27635	3318.27656	807.92079	1983.31435	5106.09415	2721.70630
Madison	2622.69900	1367.09063	2758.55966	43.64889	3155.09559	4672.82929
Nevada	8364.03105	12353.06270	8229.22328	11018.05781	14141.02258	6314.35909
New England	2923.13610	1066.57943	3058.70743	271.45273	2854.09948	4973.50684
Northern	1899.27982	2091.16049	2035.44152	756.83195	3879.16746	3949.09232
Oklahoma	598.55663	4586.30256	461.34167	3250.98459	6373.74325	1454.29260
Pacific	2609.04536	1380.74996	2744.50285	56.64463	3168.17746	4659.35626
Puget	6914.74206	10903.14646	6780.43031	9568.43443	12691.15511	4866.11165
San Diego	3363.06163	629.76075	3498.11301	710.29296	2414.69876	5413.09300
Southern	1063.00907	5052.33167	928.74925	3717.20296	6840.15029	988.04456
Texas	4430.25159	8419.61054	4295.01469	7084.37284	10207.39263	2380.12497
Wisconsin	1790.48565	2199.72167	1925.77256	864.27315	3987.33596	3840.22794
United	2427.58887	1562.21081	2563.63736	232.47687	3350.07312	4478.02887
Virginia	1016.61769	5005.08126	883.53546	3670.01819	6793.03530	1035.98148

❖ 데이터 전처리

```
# normalize input variables (정규화)
utilities.df.norm <- sapply(utilities.df, scale)

# add row names: utilities (정규화 시킨 벡터에 추가)
row.names(utilities.df.norm) <- row.names(utilities.df)
```

- apply (input : array, output : array)
- lapply (input: list or vector, output: list)
- · sapply (input: list or vector, output: vector or array)
- · vapply (input: list or vector, output: vector or array)
- tapply (input: list or vector and factor, output: vector or array)
- mapply (input: list or vector, output: vector or array)

https://3months.tistory.com/389

compute normalized distance based on variables Sales and FuelCost
d.norm <- dist(utilities.df.norm[,c(6,8)], method = "euclidean")</pre>

```
> d.norm
                                                               NY Florida Hawaiian
              Arizona
                                  Central Commonwealth
                         Boston
                                                                                           Idaho
             2.0103293
Boston
Central
             0.7741795 1.4657027
Commonwealth 0.7587375 1.5828208 1.0157104
             3.0219066 1.0133700 2.4325285
                                              2.5719693
NY
Florida
             1.2444219 1.7923968 0.6318918
                                              1.6438566 2.6355728
Hawaiian
             1.8852481 0.7402833 1.1560922
                                              1.7460268 1.4116954 1.2288047
Idaho
             1.2656380 3.1766540 1.7327770
                                              2.0032300 4.1625615 1.7641233 2.8601888
Kentucky
             0.4612918 1.5577377 0.4192538
                                              0.6299937 2.5664387 1.0256629 1.4368218 1.6504169
Madison
             0.7386496 1.7196319 1.1022872
                                              0.1387579 2.7054453 1.7225099 1.8803606 1.9502960
Nevada
             2.3694792 3.7565131 2.3759746
                                              3.1060838 4.5970059 1.9715184 3.1853105 1.4795256
New England
            2.4259752 0.6843933 1.7373219
                                              2.1538314 0.8462906 1.8313804 0.6081070 3.4587708
Northern
             0.5646572 1.9401658 1.1134329
                                              0.3770043 2.9386369 1.6986240 2.0272242 1.7084093
             0.1826480 2.1660781 0.8550928
Oklahoma
                                              0.9373890 3.1745882 1.2436342 1.9970362 1.0834492
Pacific
             1.5707796 0.4783340 0.9877719
                                              1.2588346 1.4620188 1.3431847 0.5609973 2.7055789
Puget
             1.9476675 3.5013904 2.0656431
                                              2.6990600 4.3974331 1.7675811 2.9958483 0.9920924
San Diego
             2.5090434 0.6796342 1.8367621
                                              2.2029297 0.7156293 1.9534230 0.7260955 3.5637271
Southern
             0.9136210 1.6344254 0.2764402
                                              1.2785143 2.5584087 0.3667437 1.2050342 1.6586708
             1.2479759 2.8905601 1.4281594
                                              1.9988179 3.8311318 1.2779197 2.4632271 0.6000891
Texas
Wisconsin
             0.5214913 1.6542554 0.8389668
                                              0.2434079 2.6617861 1.4524174 1.7112561 1.7788126
United
             2.7617447 1.1005949 2.0348238
                                              2.5471162 0.9525069 2.0164926 0.8799342 3.7204215
Virginia
             1.2523502 1.4792607 0.5103653
                                              1.5020926 2.3286909 0.3138469 0.9294143 1.9807148
```


주요 함수 문법

```
# compute normalized distance based on all 8 variables d.norm <- dist(utilities.df.norm, method = "euclidean")

# hcluster를 이용하여 덴드로그램 설정
hc1 <- hclust(d.norm, method = "single")
plot(hc1, hang = -1, ann = FALSE)
hc2 <- hclust(d.norm, method = "average")
plot(hc2, hang = -1, ann = FALSE)
```

※ hclust 의 거리 계산 기준

• single : 단일연결법

• complete : 완전연결법

• average : 평균연결법

• median : 중심연결법

모형 구축

- > plot(hc1, hang = -1, ann = FALSE)
- > plot(hc2, hang = -1, ann = FALSE)

hc1

hc2

모형 구축

❖ 덴드로그램을 절단하여 멤버쉽으로 할당

memb <- cutree(hc1, k = 6)
memb</pre>

```
> memb

Arizona Boston Central Commonwealth NY Florida Hawaiian

1 1 2 1 3 1 1

Idaho Kentucky Madison Nevada New England Northern Oklahoma

4 1 1 5 1 1

Pacific Puget San Diego Southern Texas Wisconsin United

1 4 6 1 1 1 1

Virginia

1
```

memb <- cutree(hc2, k = 6) memb</pre>

```
> memb

Arizona Boston Central Commonwealth NY Florida Hawaiian

1 2 1 2 3 1 4

Idaho Kentucky Madison Nevada New England Northern Oklahoma

5 1 2 5 4 2 1

Pacific Puget San Diego Southern Texas Wisconsin United

4 5 6 1 1 2 4

Virginia

2
```

분석 결과 확인

❖ Heatmap을 그리기 위한 레이블 부여

^	Fixed_charge	RoR [‡]	Cost [‡]	Load_factor
Arizona	1.06	9.2	151	54.4
Boston	0.89	10.3	202	57.9
Central	1.43	15.4	113	53.0
Commonwealth	1.02	11.2	168	56.0
NY	1.49	8.8	192	51.2
Florida	1.32	13.5	111	60.0

^	Fixed_charge	RoR [‡]	Cost
1: Arizona	-0.29315791	-0.68463896	-0.417122002
2: Boston	-1.21451134	-0.19445367	0.821002037
1: Central	1.71214073	2.07822360	-1.339645796
2: Commonwealth	-0.50994695	0.20660702	-0.004413989
3: NY	2.03732429	-0.86288816	0.578232617
1: Florida	1.11597086	1.23153991	-1.388199680

<u>분석 결과 확인</u>

Heatmap

rdocumentation.org/packages/stats/versions/3.6.2/topics/heatmap

Usage

Arguments

Colv

x numeric matrix of the values to be plotted.
 Rowv determines if and how the row dendrogram should be computed and reordered. Either a dendrogram or a vector of values used to reorder the row

dendrogram or Mit to suppress any row dendrogram (and reordering) or by default, MLL, see 'Details' below.

determines if and how the column dendrogram should be reordered. Has the same options as the Rowv argument above and additionally when x is a square matrix, [Colv = "Rowv"] means that columns should be treated identically to the rows (and so if there is to be no row dendrogram there will not be a column one either).

distfun function used to compute the distance (dissimilarity) between both rows and columns. Defaults to dist

hclustfun function used to compute the hierarchical clustering when Row or Colv are not dendrograms. Defaults to holust . Should take as argument a result of

distfun and return an object to which as.dendrogram can be applied.

reorderfun function(d, w) of dendrogram and weights for reordering the row and column dendrograms. The default uses reorder.dendrogram

add.expr expression that will be evaluated after the call to image. Can be used to add components to the plot.

symm logical indicating if x should be treated symmetrically; can only be true when x is a square matrix.

revC logical indicating if the column order should be rev ersed for plotting, such that e.g., for the symmetric case, the symmetry axis is as usual.

scale character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. The default is "row" if symm

false, and "none" otherwise.

na.rm logical indicating whether NA 's should be removed.

margins numeric vector of length 2 containing the margins (see par(mar = *)) for column and row names, respectively.

ColSideColors (optional) character vector of length noi(x) containing the color names for a horizontal side bar that may be used to annotate the columns of x.

분석 결과 확인

❖ Heatmap 설정

heatmap(as.matrix(utilities.df.norm), Colv = NA, hclustfun=hclust,

5:Idaho

4:Hawaiian

6:San Diego 2:Madison

2:Commonwealth

col=rev(paste("gray",1:99,sep="")))

