

Northern Subregional Contest ACM ICPC 2014–2015, NEERC

Problem Analysis

Жюри соревнований

Георгий Корнеев

Андрей Станкевич

Андрей Лопатин

Дмитрий Штукенберг

Павел Маврин

Максим Буздалов

Сергей Поромов

Виталий Аксенов

Михаил Дворкин

Олег Давыдов

Юрий Петров

Дмитрий Гозман

Егор Куликов

Нияз Нигматуллин

Problem A

Alarm Clock

Авторы: Дмитрий Штукенберг

Михаил Дворкин

Условие: Георгий Корнеев

Тесты: Георгий Корнеев

Постановка задачи

- Дано число сегментов на часах
- Требуется найти время

Решение

Посчитать число сегментов

- Перебрать времена hh:mm
 - hh от 0 до 23
 - mm от 0 до 59

Problem B

Buffcraft

Автор: Георгий Корнеев

Условие: Георгий Корнеев

Тесты: Георгий Корнеев

Постановка задачи

- Даны улучшения
 - Непосредственные
 - Процентные

$$(b + d_1 + d_2 + \dots + d_n) \times$$

 $\times (100 + p_1 + p_2 + \dots + p_m)/100$

■ Требуется получить максимум при $n+m \le k$

Решение

- \blacksquare Пусть даны n и m
 - ullet Взять наибольшие d_i и p_i
- lacktriangle Отсортировать d_i и p_i по убыванию
 - Посчитать суммы на префиксах
- \blacksquare Перебрать n+m=k
 - Вывести максимум
- Время работы $O(n \log n)$

Problem C

Combinator Expression

Автор: Дмитрий Штукенберг

Условие: Дмитрий Штукенберг

Тесты: Георгий Корнеев

Постановка задачи

- Дана комбинаторная формула
 - $\bullet Bxyz \Rightarrow x(yz)$
 - $\bullet Cxyz \Rightarrow (xz)y$
 - $\bullet Kxy \Rightarrow x$
 - $\bullet Ix \Rightarrow x$
- Требуется посчитать за минимальное число редукций

Решение

- Без повторного вычисления
 - Ленивость
 - Подвыражения не копируются
- \blacksquare Не вычислять y в Kxy

Неэффективная реализация

- Построить дерево разбора
- Найти самый левый комбинатор
 - Имеющий все аргументы
 - Редуцировать

- Время работы $O(n^2)$
 - ullet O(n) раз по O(n) действий

Эффективная реализация

- Рекурсивно вычислять левую ветку
 - Есть аргументы ⇒ редуцировать
 - Нет аргументов ⇒ откат
- Рекурсивно вычислить аргументы

- Время работы O(n)
 - По одному разу в каждый узел

Problem D

Digits

Автор: Егор Куликов

Условие: Егор Куликов

Тесты: Егор Куликов

Постановка задачи

- Дано n
- Требуется
 - Найти n чисел с одинаковой суммой цифр
 - Сумма чисел должна быть минимальной

Решение

- Найти *п* минимальных чисел с одинаковой суммой цифр
- Перебор чисел по возрастанию
 - Подсчет суммы цифр
 - Какая первой встретиться n раз

 Достаточно рассмотреть числа до 10⁶

Problem E

Expression

Автор: Георгий Корнеев

Условие: Олег Давыдов

Юрий Петров

Тесты: Олег Давыдов

Юрий Петров

Постановка задачи

- Даны
 - Регулярное выражение Е
 - Подстрока S
- Требуется
 - Найти кратчайшую строку
 - Удовлетворяющую Е
 - Содержащую S

Неэффективное решение

- **■** Otbet .* *S*.*
- Построим НКА для E и .* S.*
 - ullet O(l) состояний и переходов
- Пересечем автоматы

- Время работы $O(n^2)$
- Объем памяти $O(n^2)$

Входящие и исходящие строки

- \blacksquare Построим НКА для E
 - ullet O(l) состояний и переходов
- Для каждого состояния Т найдем
 - Кратчайшую строку, приводящую в него in_T
 - Кратчайшую строку, выводящую из него $out_{\scriptscriptstyle T}$

Динамическое программирование

- Перебираем префиксы S
 - Для каждого состояния $in_{T,i}$ кратчайшая строка, заканчивающаяся на S[1...i]
- Переход
 - Переход из состояния по S[i]
 - Замыкание ε -переходов в порядке увеличения $|in_{T,i}|$

Результат

• Ответ: $\min_{T} \{ |in_{T,|S|}| + |out_{T}| \}$

- Время работы O(|S|l)
 - \bullet in_T , out_T обход в ширину, O(l)
 - $in_{T,i}$ |S| наращиваний и обходов в глубину, O(|S|l)
- Объем памяти O(l)

Problem F

Fragmentation

Автор: Георгий Корнеев

Условие: Павел Маврин

Тесты: Павел Маврин

- lacktriangle Дана последовательность $\{a_i\}$
- Требуется разрезать ее на минимальное число частей, переставив которые можно отсортировать $\{a_i\}$

Основные идеи

- Объединение равных соседей
- Экономия разреза $a_i + 1 = a_{i+1}$
 - Возможна не всегда

Динамическое программирование

- lacktriangle По возрастанию a_i
 - Экономия после *j*
 - Существует один кусок $a_i = j$ $E_{j,i+1} = E_{j-1,i} + 1$
 - Существует несколько кусков

$$E_{j,i+1} = \max_{k \neq i} \{E_{j-1,k}\} + 1$$

• Храним два лучших результата

Время работы

- $\mathbf{O}(n \log n)$
 - Сортировка $a_i O(n \log n)$
 - Динамическое программирование
 - -0(n) в сумме

Problem G

Grave

Автор: Виталий Аксенов

Условие: Сергей Поромов

Тесты: Сергей Поромов

- Дан прямоугольник с прямоугольной дырой
- Требуется разместить прямоугольник $w \times h$

Максимальные прямоугольники

Решение

 Новый прямоугольник должен помещаться в одном из максимальных

Время работы 0(1)

Problem H

Hiking in the Hills

Автор: Георгий Корнеев

Условие: Михаил Дворкин

Тесты: Михаил Дворкин

- Дан ландшафт из треугольников
- Требуется найти путь от старта до финиша с минимальной максимальной высотой

Старт и финиш

- Найдем стартовый треугольник
 - Минимальная по высоте вершина
 - Соединим ребром со стартом
- Аналогично для финиша

Основная идея

- Достаточно ходить по ребрам
 - Вход в треугольник на ребре
 - Выход на ребре
 - Существует путь от входа до выхода с $h \le \max(h_{\text{входа}}, h_{\text{выхода}})$

Основная идея

Решение

- Модифицированный алгоритм Прима
 - Вес максимальная высота

- Время работы $O(n \log n)$
 - $\bullet E = O(n)$
 - Допустимо $O(n^2)$

Problem I Instruction

Автор: Дмитрий Гозман

Условие: Дмитрий Гозман

Тесты: Дмитрий Гозман

- Даны
 - Схема станции
 - Расписание поездов
- Требуется составить расписание переключения стрелок

Решение

- Схема станции дерево
 - Поезда въезжают в разно время ⇒ проезжают стрелку в разное время
 - Переключаем стрелку перед поездом

■ Время работы — 0(nm)

Problem J

Joy of Flight

Автор: Георгий Корнеев

Условие: Нияз Нигматуллин

Тесты: Нияз Нигматуллин

- Даны
 - Самолет со скоростью v_{max}
 - Изменяющийся ветер (w_{x_i}, w_{y_i})
- Требуется долететь из S в T за время k

$$\sqrt{w_{x_i}^2 + w_{y_i}^2} \le v_{max}$$

Можем стоять на месте

Основная идея

- Подсчитаем, куда снесет из S за все время
- lacktriangle Построим круг радиуса kv_{max}
- Если F в круге то можно
 - Летим по прямой

Основная идея

Решение

- С какой точностью можно определить, можно ли долететь?
 - С абсолютной сравнивать квадраты величин
- Как лететь
 - Равномерно по прямой

Время работы O(n)

Problem K

Kebab House

Автор: Виталий Аксенов

Условие: Виталий Аксенов

Тесты: Виталий Аксенов

- Даны
 - Задания (q_i, x_i) размер, качество
 - Можно пропускать ингредиенты не чаще одного в t секунд
- Требуется посчитать число сценариев, удовлетворяющих ограничениям на качество

Динамическое программирование

- $C_{i,j,k}$ число способов положить j из первых i ингредиентов так, что бы с последнего пропуска прошло k
 - $C_{i,j,k} = C_{i-1,j-1,k+1}$, при $k \neq 0$
 - $C_{i,j,0} = C_{i-1,j-1,0} + C_{i-1,j,t}$, при k=0
- Время работы $O(nq^2t)$

Оптимизация (вариант 1)

- Замена координат
 - j' = j i, k' = k + i
 - $C_{i,j',k'} = C_{i-1,j',k'}$, при $k' \neq i$
 - $C_{i,j',i} = C_{i-1,j',i} + C_{i-1,j'-1,i+t}$, при k' = i
 - При $k' \neq i$ можно ничего не делать

■ Время работы -0(nqt)

Оптимизация (вариант 2)

- Нельзя пропустить больше чем $\left[\frac{q_i}{t+1}\right]$ ингредиентов
- Заменим j' = i j
 - Достаточно считать для $j' \leq \left| \frac{q_i}{t+1} \right|$

Время работы $O(nq^2) = O\left(nq\left\lceil\frac{q}{t+1}\right\rceil t\right)$

Альтернативное решение (1)

- Предподсчитаем $C_{i,j,k}$ для $i \leq q_{max}$, при условии, что в начале можно сразу пропустить ингредиент
- $S_{i,j,k} = \sum_{x=j}^{i} C_{i,x,k}$ не менее j ингредиентов

Альтернативное решение (2)

 $\mathbf{A}_{p,k}$ — выполнен p-й заказ и прошло k секунд с предыдущего пропуска

$$A_{p,k} = \sum_{j=0}^{t} A_{p-1,j} S_{q_p-(t-j),x_p,k}$$

• Ответ – $\sum_{k=0}^{t} A_{n,k}$

■ Время работы $-0(nt^2 + q^2t)$

Вопросы

Георгий Корнеев 69