The engsymbols package*

Fábio Fortkamp fabio@fabiofortkamp.com

December 4, 2014

1 Introduction

This document describes the engsymbols package, a collection of macros to facilitate the writing of common engineering symbols.

The following packages are prerequisites:

siunitx

This package follows the conventions specified by ISO standards of typesetting mathematics [1].

engsymbols is actually just a collection of commands I, as a Ph.D. student in Mechanical Engineering, find useful, and I hope other can find it to. There isn't any special design principles.

2 Implementation

2.1 Basic operations

These macros by [1] typesets the argument in math roman font, to indicate a object. Italic subscripts should be used only to refer to another variables, for example, c_P is the specific heat obtained by mantaining the pressure, a physical parameter, fixes. By contrast, h_L (produced by h\ped{L}) is the liquid enthalpy; liquid is not a variable. The command $\ap{(index)}$ does the same to superscripts, like T^I for the interface temperature.

- $1 \ensuremath{-{\mathbb{1}}}$
- 2 \newcommand{\ap}[1]{\ensuremath{^{\mathrm{#1}}}}

\nvector \nmatrix We define vector and matrix commands according to ISO standards: bold italic for vectors (x) and matrices (A). The "n" in names stands for "notation". This requires the bm package.

- 4 \newcommand{\nmatrix}[1]{\bm{#1}}

^{*}This document corresponds to engsymbols v0.1, dated 2014/12/02.

2.2 Special individual symbols

\volume This macro produces a calligraphic V to indicate volume, as V. This is usually done to avoid confusion with velocity.

5 \newcommand{\volume}{\mathcal{V}}

\diffd This macro produces the differential d operator, as in dx. The definition is fairly complex beacuse it tries to do an optimal spacing, and is described by [1].

```
6 \newcommand{\diffd}{\@ifnextchar^{\DIfF}{\DIfF^{}}}
7 \left[ \frac{7 \right]}{1}
    \mathop{\mathrm{\mathstrut d}}%
         \nolimits^{#1}\gobblespace}
10 \def\gobblespace{%
    \futurelet\diffarg\opspace}
11
12 \def\opspace{%
    \let\DiffSpace\!%
14
    \ifx\diffarg(%
15
         \let\DiffSpace\relax
16
    \else
17
         \ifx\diffarg[%
             \let\DiffSpace\relax
18
        \else
19
20
             \ifx\diffarg\{%
                 \let\DiffSpace\relax
21
             \fi\fi\DiffSpace}
```

\hheat \hmass

These macros produces a "crossed" h as in \hbar . This is done in some texts to denote the convection heat transfer coefficient and differentiate it from enthalpy h. This is actually just an alias to the existing command \h to give a more meaningful name. There is also \h to produce \hbar_m , used to indicate a mass transfer coefficient.

```
23 \newcommand{\hheat}{\hbar}
24 \newcommand{\hmass}{\hbar\ped{m}}
```

\universalgasconstant

A simple command to produce $R_{\rm u}$

25 \newcommand{\universalgasconstant}{R $\neq u$ }

\diffusivitybinary

This is a shorthand for the diffusivity of a binary mixture, \mathcal{D}_{12} . 26 \newcommand{\diffusivitybinary}{\mathcal{D}_{12}}

2.3 Common operations

\average

This command puts a line above the argument (like \overline{x}), a notation widely used to indicate some type of average.

 $27 \end{average} [1] {\tt (overline \{\#1\})}$

\rate This macro denotes the rate of something, like \dot{m} for a mass flow rate.

 $28 \mbox{ } \mbox{newcommand{\rate}[1]{\dot{#1}}}$

```
\flux Produces q''.
                 29 \newcommand{\flux}[1]{{#1}''}
                These two macros produce the diverget of a vector \nabla \cdot \boldsymbol{q}. The par variant auto-
   \divergent
                matically adds parentheses, useful for multiple arguments like \nabla \cdot (\rho V) (produced
\divergentpar
   divergentn
                with \divergentpar{\rho \nvector}). The \divergentv command automati-
                 cally converts the argument to a vector
                 30 \newcommand{\divergent}[1]{\nabla \cdot #1}
                 31 \newcommand{\divergentv}[1]{\divergent{\nvector{#1}}}
                 32 \newcommand{\divergentpar}[1]{\divergent{\left( #1 \right)}}
                Gradient of a scalar \nabla T. The par variant introduces parentheses (e.g. \nabla \left(\frac{\rho_1}{\rho}\right).
    \gradient
 \gradientpar
                 33 \newcommand{\gradient}[1]{\nabla \{#1\}}
                 34 \newcommand{\gradientpar}[1]{\gradient{\left( {#1} \right)}}
   \lambda The laplacian of a scalar x is defined as \nabla^2 x = \nabla \cdot \nabla x. One could also use
\laplacianpar \nabla^2 (\rho c_p T).
                 35 \newcommand{\laplacian}[1]{\nabla^2 #1}
                 36 \newcommand{\laplacianpar}[1]{\laplacian{\left( #1 \right)}}
```

References

[1] Claudio Beccari. Typesetting mathematics for science and technology according to iso 31/xi. *TUGboat*, 18(1):39–48, 1997.