Measurement of jets produced in top quark events using the $e\mu$ final state with 2 b-tagged jets in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

by

Jacquelyn Kay Brosamer

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy

in

Physics

in the

GRADUATE DIVISION $\qquad \qquad \text{of the} \\ \text{UNIVERSITY OF CALIFORNIA, BERKELEY}$

Committee in charge:
Professor Marjorie Shapiro, Chair
Professor Joshua Bloom
Professor Barbara Jacak
Professor Lawrence Hall

Fall 2015

The dissertation of Jacquelyn Kay Brosamer is approved:	
Chair	Date
	Date
	Date
	Date

University of California, Berkeley

Fall 2015

Measurement of jets produced in top quark events using the $e\mu$ final state with 2 b-tagged jets in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

 $\begin{array}{c} \text{Copyright 2015} \\ \text{by} \\ \text{Jacquelyn Kay Brosamer} \end{array}$

Abstract

Measurement of jets produced in top quark events using the $e\mu$ final state with 2 b-tagged jets in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

bv

Jacquelyn Kay Brosamer Doctor of Philosophy in Physics University of California, Berkeley Professor Marjorie Shapiro, Chair

The transverse momentum $(p_{\rm T})$ and multiplicity of jets produced in top quark events are measured using 20.3 fb⁻¹ of pp collision data at a center-of-mass energy of \sqrt{s} =8 TeV. Jets are selected from top events requiring an opposite-charge $e\mu$ pair and two b-tagged jets in the final state. The data are corrected to obtain the particle-level fiducial cross section $\frac{1}{\sigma_{e\mu+2}}\frac{d\sigma_{\rm jet}}{dp_T}$ for additional jets with rank 1-4, where rank=1 is the leading additional jet. These distributions are used to obtain the extra jet multiplicity as a function of minimum jet $p_{\rm T}$ threshold.

Contents

Lis	st of Figures	ii
List of Tables		iii
1	Introduction	2
2	The top quark	3
3	Analysis strategy	4
4	The ATLAS detector	5
5	Object definitions	6
6	Event selection	7
7	Extra jets	8
8	Correction to particle-level	9
9	Sources of uncertainty	10
10	Results	11
11	Conclusions	12
\mathbf{A}	Appendix 1	13
Bi	bliography	14

List of Figures

List of Tables

Acknowledgments

To do

LIST OF TABLES

stuff[1]

Introduction

The top quark

Analysis strategy

The ATLAS detector

Chapter 5
Object definitions

Event selection

Extra jets

Correction to particle-level

Chapter 9
Sources of uncertainty

Results

Conclusions

Appendix A Appendix 1

stuff

Bibliography

[1] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The Catchment Area of Jets. *JHEP*, 0804:005, 2008.