Introduction to HPC Resources and Linux

Burak Himmetoglu

Enterprise Technology Services & Center for Scientific Computing e-mail: bhimmetoglu@ucsb.edu

Paul Weakliem

California Nanosystems Institute & Center for Scientific Computing e-mail: weakliem@cnsi.ucsb.edu

Fuzzy Rogers

Materials Research Laboratory & Center for Scientific Computing e-mail: fuz@mrl.ucsb.edu

http://www.ets.ucsb.edu/services/supercomputing

http://csc.cnsi.ucsb.edu

University of California Santa Barbara

Overview

• What is High Performance Computing (HPC)?

High Performance Computing (HPC) allows scientists and engineers to solve complex science, engineering, and business problems using applications that require high bandwidth, enhanced networking, and very high compute capabilities.

From: https://aws.amazon.com/hpc/

- Multiple computer nodes connected by a very fast interconnect
- Each node contains many CPU cores (around 12-32)
- Allows many users to run calculations simultaneously on nodes
- Allows a single user to use many CPU cores incorporating multiple nodes
- UCSB provide access and support for multiple HPC resources and educational/training/research support.

Which resources do we have?

- UCSB Center for Scientific Computing (CSC) clusters
 - Access to all UCSB staff, free and condo clusters
- Extreme Science and Engineering Discovery Environment (XSEDE)
 - Project funded by NSF. Access to national resources. Free*
- Triton Shared Computing Cluster (TSCC) at San Diego Supercomputing Center (SDSC)
 - Mostly used for education/training and class support

http://csc.cnsi.ucsb.edu/resources

HPC systems at CSC

Campus available cluster Knot:

- 110 node, \sim 1400 core system
- 4 'fat nodes' (256/512 GB RAM)
- GPU nodes (12)
- Published papers should acknowledge CNSI and MRL

Request access: http://csc.cnsi.ucsb.edu/acct

Condo clusters:

- Lattice (62 nodes)
- Guild (60 nodes)
- Braid (60 nodes, also has GPUs)

PIs buy nodes in the clusters, CSC handles infrastructure

Extreme Science and Engineering Discovery Environment

XSEDE is an NSF sponsored service organization that provides access to computing resources.

https://portal.xsede.org

www.xsede.org

Currently XSEDE supports more than a dozen supercomputers and high-end visualization and data analysis resources.

Summary of XSEDE systems

	XSEDE Compute Resources			ılıl Detail View	
	Name	Status	Load	Jobs	
Top 500	Stampede UT Austin 🗐	Healthy	67%	R: 677 Q: 624 O: 186	
General purpose Big data	Comet SDSC #	Healthy	87%	R: 2327 Q: 217 O: 297	
GPU	XStream Stanford U 🗐	Healthy	71%	R: 50 Q: 286 O: 947	
Small, general purpose	SuperMIC LSU CCT	Healthy			
General purpose Big Data	Bridges Regular Memory PSC 🔊	Healthy			
	Bridges Large Memory PSC 🛢	Healthy			
Cloud (on demand)	Jetstream UT Austin 🚇	Healthy			
General purpose Big data	Gordon Compute Cluster SDSC 🗐	Healthy	58%	R: 179 Q: 0 O: 6	
High I/O data intensive	Wrangler UT Austin 🗐	Healthy			

XSEDE Campus Champions Program

Campus Champion: Represents XSEDE on the campus

As a campus champion, I will help you:

- Understand the capabilities of HPC and get to include it as a part of your research and educational work.
- Get access to local, regional and national resources.
- Maintenance of accounts, allocations of computing time and technical expertise.
- · Connect with the broader community of HPC users in your field

How to get access?

https://portal.xsede.org/allocations-overview

XSEDE Portal

Get access:

- Get a username from the portal
- Send me your username
- You will get limited trial time from any resource!

On the portal you will find:

- Documentation
- Help desk
- Training sessions broadcasted from the web
- Forums

Using HPC Clusters and Basic Linux (examples on Knot)

http://csc.cnsi.ucsb.edu/docs/getting-started

Access

For Linux and Mac, open a terminal:

\$ ssh username@knot.cnsi.ucsb.edu

For Windows, you will need a client (e.g. Putty, <u>www.putty.org</u>)

? X PuTTY Configuration Category: Basic options for your PuTTY session ···· Logging Specify the destination you want to connect to Host Name (or IP address) Keyboard yourhostname.accountservergroup.com 22 Features Connection type: Raw Telnet Rlogin SSH Serial Load, save or delete a stored session Saved Sessions Default Settings Load Save Proxy Telnet Delete Rlogin . SSH Serial Close window on exit: Always
Never Only on clean exit About Help Open Cancel

knot.cnsi.ucsb.org

Remote (non UCSB) login via VPN client:

http://www.ets.ucsb.edu/services/campus-vpn/get-connected

File Transfer

For Linux and Mac, open a terminal, use scp or rsync commands:

E.g. Copy file.txt from your computer to your home directory on Knot

scp file.txt user@knot.cnsi.ucsb.edu:file_copy.txt

Windows users: Need a client to copy files. Usage is similar to Putty.

https://filezilla-project.org/

https://winscp.net/eng/download.php

Globus is another option (all operating systems). Preferred for large files transfers.

http://csc.cnsi.ucsb.edu/docs/globus-online

Some useful commands

Is [-option] : list files

mkdir: make directory

cd : change directory

man: display manual for a command

mv: mv file/folder

rm [-**r**] : remove file. -r to remove folders

pwd: present working directory

cat [file] : view file

less /more: view file, one screen at a time

grep [pattern] [file]: Find matching patterns in a file

Pipes and redirection

command > file: Redirect output of command to file

command >> **file** : Append output of command to file

command < file1 > file2: Get input from file1, write output to file2

command1 | command2 : Join command1 & command2

Common shortcuts

*: Wildcard

~: Home directory

.: Current directory

.. :One directory up

TAB key: Finish commands, good for typing fast

Running Jobs

- When you login to Knot (or any other cluster), you are on the login node
- This node is NOT for running calculations!
- All jobs must be submitted to the queue
- Submission to the queue requires a script to be written

Example job submission script (submit.job):

```
#!/bin/bash
#PBS -1 nodes=2:ppn=12
#PBS -1 walltime=2:00:00
#PBS -N test

cd $PBS_O_WORKDIR

mpirun -machninefile $PBS_NODEFILE -np 24 ./run.x
```

\$ qsub submit.job

http://csc.cnsi.ucsb.edu/docs/example-scripts-running-jobs

Running Jobs

Check status of the running jobs:

\$ showq -u \$USER \$ qstat -u \$USER

Delete a running job: \$ qdel job_id

More options for PBS:

https://www.olcf.ornl.gov/kb articles/common-batch-options-to-pbs/

Available queues:

- Short queue: \$ qsub -q short submit.job
- Large memory queues: \$ qsub -q (x)largemem submit.job
- GPU queue: \$ qsub -q gpuq submit.job

Creating/Extracting Archives

Suppose you have an archive: package.tar.gz

Extract:

\$ tar -xzvf package.tar.gz

Suppose you have files you want to collect together: file1, ..., file10

\$ tar czf file1 file2 .. file10 package.tar.gz