ATOMIZATION FURNACE FOR ATOMIC ABSORPTION ANALYTICAL APPARATUS

Publication number: JP6050886 Publication date: 1994-02-25

Inventor: YOSH

YOSHIMOTO EIJI; KITAMURA TERUO

Applicant:

SHOWA ALUMINUM CORP

Classification:
- international:

G01N21/31; G01N21/74; G01N21/74; G01N21/31;

G01N21/71; G01N21/71; (IPC1-7): G01N21/74;

G01N21/31

- European:

Application number: JP19920203697 19920730 Priority number(s): JP19920203697 19920730

Report a data error here

Abstract of JP6050886

PURPOSE:To make the position with reference to a through hole of a sample always definite by a method wherein the through hole which is used to inject the sample and to discharge a vapor is made in the upper part of the circumferential wall of a tubular body whose cross section is circular and a recessed part which is used to hold the sample is formed in a part corresponding to the through hole at the lower part of the circumferential wall. CONSTITUTION:An atomization furnace 1 is composed of a graphite tubular body 2 whose cross section is wholly circular, and a through hole 3 which is used to inject a sample and to discharge a vapor is made in the upper part of the circumferential wall. A recessed part 4 used to hold the sample is formed in a position corresponding to the through hole 3 at the lower part of the circumferential wall. In an atomic absorption analysis, a sample S is dropped into the furnace 1 through the through hole 3. The sample S is put into the recessed part 4 and held here. After that, the furnace 1 is arranged in an atomization part for an atomic absorption analytical apparatus, an electric current is supplied, the sample S is heated and vaporized, and an absorption analysis is performed. Thereby, the position with reference to the through hole 3 of the sample S becomes always definite, the time during which a vaporized atomic vapor exists inside the furnace 1 becomes definite, and the analytical sensitivity of the analytical apparatus is enhanced.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平6-50886

(43)公開日 平成6年(1994)2月25日

(51) Int.Cl.5

識別記号 庁内整理番号

FΙ

技術表示箇所

G01N 21/31 # G01N 21/74 A 7370-2J 9115-2J

審査請求 未請求 請求項の数1(全 3 頁)

(21)出願番号

特願平4-203697

(71)出願人 000186843

昭和アルミニウム株式会社

(22)出願日

平成4年(1992) 7月30日

大阪府堺市海山町6丁224番地 (72)発明者 吉本 栄治

堺市海山町6丁224番地 昭和アルミニウ

ム株式会社内

(72)発明者 北村 照夫

堺市海山町6丁224番地 昭和アルミニウ

ム株式会社内

(74)代理人 弁理士 岸本 瑛之助 (外3名)

(54) 【発明の名称】 原子吸光分析装置用原子化炉

(57)【要約】

【目的】 試料を蒸気化させて得られた原子蒸気が貫通 孔から排出されるまでに炉内に存在する時間を常に一定 とし、分析の感度を向上させる。

【構成】 全体が横断面円形の管状体2からなる原子吸 光分析装置用原子化炉である。管状体2の周壁の上部に 試料投入兼原子蒸気排出用貫通孔3を形成する。周壁下 部における貫通孔3と対応する部分に試料保持用凹所4 を形成する。

1

【特許請求の範囲】

. 1

【請求項1】 全体が横断面円形の管状体からなり、そ の周壁の上部に試料投入兼原子蒸気排出用貫通孔が形成 され、周壁下部における貫通孔と対応する部分に試料保 持用凹所が形成されている原子吸光分析装置用原子化

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、原子吸光分析装置に おいて、電気加熱により固体または液体の試料を原子化 10 り、その周壁の上部に試料投入兼原子蒸気排出用貫通孔 させるのに用いられる原子化炉に関する。

[0002]

【従来の技術】従来、この種原子化炉として、全体が横 断面円形の黒鉛製管状体からなり、その周壁の上部に試 料投入兼原子蒸気排出用貫通孔が形成されたものが用い られていた。この原子化炉において、固体または液体の 試料は貫通孔を通して炉内に落下させられることにより 炉内に導入されるようになっている。

[0003]

【発明が解決しようとする課題】しかしながら、従来の 20 そして、原子吸光分析を行なう。 原子化炉は、全体が横断面円形の管状体からなるので、 試料を貧通孔を通して炉内に落下させたさいに、常に一 定の位置に来るとは限らず、炉内に導入された試料の位 置が、貫通孔に対してばらつくことがある。そして、こ のようなばらつきが生じると、試料から発生した蒸気 が、貫通孔から排出されるまでに原子化炉内に存在して いる時間が、試料が存在した位置により異なることにな り、分析の感度が低下するという問題があった。

【0004】この発明の目的は、上記問題を解決した原 子吸光分析装置用原子化炉を提供することにある。

[0005]

【課題を解決するための手段】この発明による原子吸光 分析装置用原子化炉は、全体が横断面円形の管状体から なり、その周壁の上部に試料投入兼原子蒸気排出用貫通 孔が形成され、周壁下部における貫通孔と対応する部分 に試料保持用凹所が形成されているものである。

【0006】上記において、炉本体は、黒鉛で形成され る。炉本体の内周面には、パイロ化処理や、金属炭化物 処理を施しておいてもよい。

【0007】また、試料としては、固体試料および溶液 40 試料のいずれも使用可能である。

[0008]

【作用】上記構成の原子化炉によれば、試料投入兼原子 蒸気排出用貫通孔から炉内に落下させられた試料は、凹 所内に入り、ここで保持される。したがって、試料の貫 通孔に対する位置は常に一定となる。

[0009]

【実施例】以下、この発明の実施例を、図面を参照して 説明する。

【0010】この発明による原子吸光分析装置用原子化 炉(1) は、全体が横断面円形の黒鉛製管状体(2) からな (3)が形成され、周壁の下部における貫通孔(3) と対応 する位置に、試料保持用凹所(4) が形成されたものであ

【0011】このような構成において、原子吸光分析を 行なう場合、貫通孔(3) を通して炉(1) 内に試料(S) を 落下させる。すると、試料(S) は凹所(4) 内に入ってこ こに保持される。その後、原子化炉(1) を原子吸光分析 装置の原子化部に配置し、原子化炉(1) に通電すること によって炉(1) 内を加熱し、試料(S) を蒸気化させる。

【0012】上記において、原子化炉(1)内に導入され た試料(S) の貫通孔(3) に対する位置は常に一定とな る。したがって、これを蒸気化させた場合、原子蒸気が 質通孔(3) から排出されるまでに炉(1) 内に存在してい る時間は常に一定となり、分析の感度が向上する。

[0013]

【発明の効果】この発明の原子吸光分析装置用原子化炉 によれば、上述のように、試料投入兼原子蒸気排出用質 通孔から炉内に落下させられた試料は、凹所内に入り、 30 ここで保持されるので、試料の貫通孔に対する位置は常 に一定となる。したがって、試料を蒸気化させて得られ た原子蒸気が貫通孔から排出されるまでに炉内に存在す る時間は常に一定となり、分析の感度が向上する。

【図面の簡単な説明】

【図1】この発明による原子吸光分析装置用原子化炉を 示す一部切欠き正面図である。

【図2】図1のII-II線断面図である。

【符号の説明】

1 原子吸光分析装置用原子化炉

2 管状体

3 試料投入兼原子蒸気排出用貫通孔

試料保持用凹所

【図2】

