EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM ESTATÍSTICA PROVA DE INFERÊNCIA

07 de janeiro de 2019

INSTRUÇÕES

5. Tranquilidade e Boa Sorte.

1.	A duração da prova é de 4 horas.
2.	Não é permitido consulta.
3.	Inicie cada questão em uma nova folha. Escreva de maneira clara e organizada. Numere e identifique cada folha utilizada.
4.	Escolha 4 das 5 questões, indicando-as claramente. Responda, mostrando seu argumento de forma clara e concisa. Respostas sem justificativa não serão consideradas

- 1. Seja X_1, \ldots, X_n uma a.a. de $X|\theta \sim N(\theta, b\sigma^2 + a\theta^2)$, com a e b conhecidos e positivas.
 - (a) [0.8] Suponha que n é grande e σ^2 conhecido. Encontre um teste para testar $H_0: \theta = \theta_0$ vs $H_1: \theta > \theta_0$;
 - (b) [0.8] Para n=20 e b=0, obtenha um IC para θ (positivo) com coeficiente de confinaça γ ;
 - (c) [0.9] Considere o modelo particular $X|\theta \sim N(\theta,1)$, com $\theta \sim N(0,1)$. Para uma amostra de tamanho 1, sabe-se que $\theta|x \sim N(x/2,1/2)$. Para função de perda

$$L(\theta, d) = e^{3\theta^2/4}(\theta - d)^2.$$

Mostre que o estiamdor de Bayes é dado por $d^{\pi}(X) = 2X$ e compare com EMV usando o EQM.

2. Sejam X_1, \ldots, X_n uma a.a. de uma distribuição geométrica com função de probabilidade

$$f(x|\theta) = (1-\theta)^x \theta I_{\{0,1,2,\dots\}}(x), \ 0 < \theta < 1.$$

Suponha que θ tenha distribuição priori $Beta(\alpha, \beta)$

- (a) [0.8] Encontre a distribuição posteriori de θ dado X_1, \ldots, X_n .
- (b) [0.8] Encontre o estimador de Bayes de θ sob a perda quadrática.
- (c) [0.9] Encontre o estimador de Bayes de $(1-\theta)/\theta^2$ sob a perda quadrática.
- 3. Seja X_1, \dots, X_n uma a. a. de $X \sim U(\alpha \beta, \alpha + \beta)$ com $\alpha \in \Re$ e $\beta > 0$.
 - (a) [0.8] Obtenha os estimadores obtido pelo método dos momentos de α e β ;
 - (b) [0.8] Se $\alpha = \beta$ encontre um ENVUMV de β^2 ;
 - (c) [0.9] Para $\alpha = \beta$ e considerando uma amostra de tamanho 1, encontre o estimador de Bayes com respeito a perda $L(\beta, d) = \beta(d \beta)^2$ quando $\beta \sim U(0, 1)$.

- 4. Seja X_1,\dots,X_n a.a. de uma $N(\mu,\sigma^2)$
 - (a) [0.5] Para μ conhecido, encontre um ENVUMV para $\tau(\sigma^2) = \mu \sigma^4$;
 - (b) [1.0]Qual é o EMV para o terceiro quartil?;
 - (c) [1.0] Existe ENVUMV para $P(X_1 > 0)$? Se sim, encontre-o.

Obs.: $X_1 - \bar{X}$ é independente de \bar{X} , e \bar{X} é independente de S^2

5. Considere o modelo de regressão linear definido por

$$Y_i = \mu + \beta x_i + e_i, \quad i = 1, ..., n,$$

onde $e_i \sim N(0, \sigma^2), \quad i=1,...,n$ são independentes, e as variáves
i $x_1,...,x_n$ conhecidas.

- (a) [0.5] Para σ^2 conhecida, determine as estatística suficientes;
- (b) [1.0] Encontre um ENVUMV para β quando $\mu = 2$;
- (c) [1.0] Para $\beta=0$, obtenha a estatistica de Wald, para testar $H_0: \mu=\mu_0$ contra $H_1: \mu \neq \mu_0$. Mostre que converge em distribuição para uma qui-quadrado sob H_0 .