Séquence 3 : Calculs et nombres rationnels I] Calculer avec des nombres relatifs

Définition

- Si deux nombres relatifs ont le même signe, alors leur somme a :
- le même signe que ces deux nombres ;
- pour distance à zéro, la somme de leurs distances à zéro.
- Si deux nombres relatifs sont de signes contraires, alors leur somme a :
- le signe du nombre qui a la plus grande distance à zéro ;
- pour distance à zéro, la différence de leurs distances à zéro.

Propriété

Pour soustraire un nombre relatif, on ajoute son opposé.

Exemples

On veut calculer -3,2 + (-5,9).

-3,2 et -5,9 sont deux nombres négatifs :

- leur somme est négative
- on ajoute leurs distances à zéro

$$-3,2 + (-5,9) = -(3,2 + 5,9) = -9,1$$

On veut calculer A = 5,6 - (-3,2). Pour soustraire -3,2, on ajoute son opposé 3,2. A = 5,6 - (-3,2)

A = 5,6 + 3,2

A = 8.8

Pour éviter que deux signes se suivent, on utilise des parenthèses.

XEntraine-toi avec Calculs avec des nombres relatifs (1 à 4) X

Définition Propriété

Pour calculer le produit (ou le quotient) de deux nombres relatifs, on détermine son signe, puis on multiplie (ou on divise) les distances à zéro.

- Le produit (ou le quotient) de deux nombres relatifs de même signe est positif.
- Le produit (ou le quotient) de deux nombres relatifs de signes contraires est négatif.

Propriétés

a et b désignent des nombres relatifs ($b \neq 0$).

• Le produit d'un nombre relatif par –1 est égal à son opposé : $a \times (-1) = -a$

•
$$\frac{-a}{-b} = \frac{a}{b}$$
 et $\frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}$

Exemples

- $-7.2 \times (-1) = -(-7.2) = 7.2$. L'opposé de -7.2 est 7.2.
- $\frac{-2}{13} = \frac{2}{-13} = -\frac{2}{13}$: les trois quotients sont négatifs.

Recopier les fractions suivantes puis encadrer en vert celles égales à $-\frac{3}{7}$ et en bleu celles égales à $\frac{3}{7}$. $\frac{-3}{7}$ $\frac{7}{3}$ $\frac{-3}{-7}$ $\frac{3}{-7}$

 $\begin{bmatrix} -3 \\ 7 \\ 3 \end{bmatrix} \quad \begin{bmatrix} -3 \\ -7 \\ \end{bmatrix} \quad \begin{bmatrix} 3 \\ -7 \\ \end{bmatrix}$

XEntraine-toi avec Calculs avec des nombres relatifs (à partir de 5)

DM

Climatologie : le mois de janvier dans le village le plus froid de France

France

€

Act. 1

II] Calculer avec des puissances

Définition

a désigne un nombre relatif et n désigne un nombre entier supérieur ou égal à 2. Le produit de n facteurs égaux à a se note a^n et se lit « a exposant n ».

On dit que ce produit est une **puissance de** *a*.

Le **nombre** a^{-n} désigne l'inverse du nombre a^n (avec $a \neq 0$).

 $a^{n} = \underbrace{a \times a \times \dots \times a}_{n \text{ facteurs}} \qquad a^{-n} = \frac{1}{a^{n}}$

Remarque

Cas particuliers: on convient que $a^1 = a$ et que, si $a \ne 0$, $a^0 = 1$.

Exemples

 $(-3)^{4} = \underbrace{(-3) \times (-3) \times (-3) \times (-3)}_{\text{4 facteurs}} = 81 \qquad 2^{-3} = \frac{1}{2^{3}} = \frac{1}{2 \times 2 \times 2} = \frac{1}{8} \qquad 4^{0} = 1$

Calculer: $A = -3^2 + 5 \times 2^{-3}$ $B = (-3)^2 + (5 \times 2)^3$ Solution $A = -3^2 + 5 \times 2^{-3}$ $A = -9 + 5 \times 0,125$ A = -9 + 0,625 A = -9,625 A = -8,375On commence par les puissances puis la multiplication et enfin l'addition. $B = (-3)^2 + (5 \times 2)^3$ $B = (-3)^2 + 10^3$ $B = (-3)^2 + 10^3$ B = 9 + 1000 B = 1009Les parenthèses modifient les priorités de calculs.

Convention

Dans une expression sans parenthèses comportant des puissances, on effectue d'abord les puissances, puis les multiplications et les divisions, et enfin les additions et les soustractions.

Exemples

$$A = 1 + 3 \times 2^3 = 1 + 3 \times 8 = 1 + 24 = 25$$

$$B = 1 + (3 \times 2)^3 = 1 + 6^3 = 1 + 216 = 217$$

Propriété

n désigne un nombre entier strictement positif.

$$10^{n} = \underbrace{10 \times 10 \times ... \times 10}_{n \text{ facteurs}} = \underbrace{100...0}_{n \text{ zéros}}$$

$$10^{-n} = \frac{1}{10^n} = \underbrace{\frac{1}{10 \times 10 \times ... \times 10}}_{\text{n facteurs}} = \underbrace{\frac{0,0...01}{n \text{ zéros}}}_{\text{n zéros}}$$

Exemples

$$10^9 = 1 \underbrace{000000000}_{\text{9 zéros}}$$
 (1 milliard)

$$10^{-6} = \underbrace{0,000001}_{6 \text{ zéros}}$$
 (1 millionième)

Donner l'écriture décimale des nombres suivants.

b.
$$10^{-4}$$

Solution

a.
$$10^5 = 100000$$
 5 zéros

b.
$$10^{-4} = \underbrace{0,000}_{4 \text{ zéros}} 1$$

a. 10 000 000

Solution

a.
$$10000000 = 10^7$$

b.
$$\underbrace{0,000\,000}_{\text{7 zéros}} 1 = 10^{-7}$$

Définition

L'écriture scientifique d'un nombre décimal positif est l'écriture de la forme $a \times 10^n$ où :

- a est un nombre décimal tel que $1 \le a < 10$;
- n est un nombre entier relatif.

Exemples

L'écriture scientifique de 1 785 000 000 est 1,785 \times 10 9 (1 milliard 785 millions).

L'écriture scientifique de 0,000 028 est 2.8×10^{-5} .

Donner l'écriture décimale des nombres suivants.

$$A = 3.5 \times 10^3$$
 $B = 450 \times 10^{-5}$

Solution

$$A = 3.5 \times 10^3$$

$$A = 3.5 \times 10^{3}$$

 $A = 3.5 \times 1000$

$$A = 3.5 \times A = 3500$$

$$B = 450 \times 10^{-5}$$

$$B = \frac{450}{100000}$$

$$B = 0,0045$$

Donner l'écriture scientifique des nombres suivants.

 $A = 365\,000\,000$

$$B = 0,0000276$$

Solution

 $A = 365\,000\,000$

$$B = 0,0000276$$

 $A = 3,65 \times 100000000$ $A = 3,65 \times 10^8$

$$B = \frac{2,76}{100000}$$

$$B = 2,76 \times 10^{-5}$$

🟅 Evolution démographique, gestion des ressources et réchauffement climatique 🧩

III] Forme irréductible d'une fraction

Définition

Un nombre rationnel est un nombre qui peut s'écrire comme une fraction, c'est-à-dire sous la forme $\frac{p}{q}$ où p et q sont des entiers relatifs $(q \neq 0)$.

Remarques

- Les nombres entiers, les nombres décimaux et les fractions sont des nombres rationnels.
- Il existe des nombres qui ne sont pas rationnels, par exemple : π et $\sqrt{2}$, qui ne peuvent pas s'écrire sous forme de fraction.

Propriétés

• Un quotient ne change pas si l'on multiplie ou si l'on divise son numérateur et son dénominateur par un même nombre non nul.

a, b et k désignent trois nombres $(b \neq 0)$ et $k \neq 0$.

$$\frac{a}{b} = \frac{a \times k}{b \times k}$$
 et $\frac{a}{b} = \frac{a \div k}{b \div k}$

• a, b, c et d désignent des nombres relatifs ($b \neq 0$ et $d \neq 0$).

Si
$$\frac{a}{b} = \frac{c}{d}$$
, alors $ad = bc$. Si $ad = bc$, alors $\frac{a}{b} = \frac{c}{d}$.

$$\frac{3,1}{7} = \frac{3,1 \times 10}{7 \times 10} = \frac{31}{70}$$

• $\frac{3,1}{7} = \frac{3,1 \times 10}{7 \times 10} = \frac{31}{70}$ • On veut savoir si les fractions $\frac{20}{37}$ et $\frac{220}{407}$ sont égales. • $\frac{18}{30} = \frac{18 \div 6}{30 \div 6} = \frac{3}{5}$ On calcule les « produits en croix » : $20 \times 407 = 8140$ et $220 \times 37 = 8140$.

$$20 \times 407 = 8140$$
 et $220 \times 37 = 8140$.

Les produits en croix sont égaux, donc les fractions sont égales :

$$\frac{20}{37} = \frac{220}{407}$$

Les fractions suivantes sont-elles égales ?

a. $\frac{48}{42}$ et $\frac{8}{7}$ b. $\frac{4}{3}$ et $\frac{32}{21}$ c. $\frac{168}{42}$ et $\frac{60}{15}$

a.
$$\frac{48}{42}$$
 et $\frac{8}{7}$

b.
$$\frac{4}{3}$$
 et $\frac{32}{21}$

c.
$$\frac{168}{42}$$
 et $\frac{60}{15}$

d.
$$\frac{48}{5}$$
 et $\frac{31}{3}$

Act. 3

a.
$$\frac{48}{42} = \frac{48 \div 6}{42 \div 6} = \frac{8}{7}$$
 donc $\frac{48}{42} = \frac{8}{7}$.

b. $\frac{4}{3} = \frac{4 \times 7}{3 \times 7} = \frac{28}{21}$; $28 \ne 32$ donc $\frac{4}{3} \ne \frac{32}{21}$.

c. $168 \times 15 = 2520$ et $60 \times 42 = 2520$ donc $\frac{168}{42} = \frac{60}{15}$. d. $48 \times 3 = 144$ et $5 \times 31 = 153$ donc $\frac{48}{5} \neq \frac{31}{3}$.

d.
$$48 \times 3 = 144$$
 et $5 \times 31 = 153$ donc $\frac{48}{5} \neq \frac{31}{3}$.

On peut également calculer les « produits en croix » et regarder si'ls sont égaux ou non.

Définition

a et b désignent deux entiers relatifs ($b \neq 0$).

On dit que la fraction $\frac{a}{b}$ est **irréductible** si le seul diviseur positif commun à a et b est égal à 1.

 $\frac{5}{6}$ est une fraction irréductible car le seul diviseur positif commun à 5 et 8 est 1.

Méthode

a et b désignent deux entiers relatifs ($b \neq 0$). Pour rendre la fraction $\frac{a}{b}$ irréductible, on peut, au choix :

- simplifier la fraction $\frac{a}{b}$ en plusieurs étapes, jusqu'à ce qu'on ne puisse plus la simplifier ;
- décomposer le numérateur et le dénominateur en produits de facteurs premiers puis simplifier.

Exemple

On cherche la forme irréductible de $\frac{24}{36}$.

$$\frac{24}{36} = \frac{24 \div 2}{36 \div 2} = \frac{12}{18} = \frac{12 \div 2}{18 \div 2} = \frac{6}{9} = \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \qquad \text{ou} \qquad \frac{24}{36} = \frac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3} = \frac{2}{3}$$

a.
$$\frac{-615}{45}$$
 b. $\frac{126}{72}$

b.
$$\frac{126}{72}$$

c.
$$-\frac{525}{405}$$

d.
$$\frac{-720}{-3\ 150}$$

Solution

a.
$$\frac{-615}{45} = -\frac{615 \div 3}{45 \div 3} = -\frac{205}{15} = -\frac{205 \div 5}{15 \div 5} = -\frac{41}{3}$$

b.
$$\frac{126}{72} = \frac{126 \div 2}{72 \div 2} = \frac{63}{36} = \frac{63 \div 9}{36 \div 9} = \frac{7}{4}$$

$$\textbf{c.} - \frac{525}{405} = -\,\frac{3\times5\times5\times7}{3\times3\times3\times5} = -\,\frac{5\times7}{3\times3\times3} = -\,\frac{35}{27}$$

d.
$$\frac{-720}{-3150} = \frac{2^4 \times 3^2 \times 5}{2 \times 3^2 \times 5^2 \times 7} = \frac{2^3}{5 \times 7} = \frac{8}{35}$$

On simplifie la fraction par étapes, par divisions successives du numérateur et du dénominateur, en s'aidant par

On décompose le numérateur et le dénominateur en produits de facteurs (1991)

IV] Calculer avec des fractions

Propriété

Pour additionner (ou soustraire) deux fractions :

si elles n'ont pas le même dénominateur, on doit d'abord les écrire avec le même dénominateur.

- on additionne (ou on soustrait) les numérateurs ;
- on garde le dénominateur commun.
- a, b et c désignent trois nombres relatifs ($c \neq 0$).

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$

$$\frac{5}{2} + \frac{3}{7} = \frac{5 \times 7}{2 \times 7} + \frac{3 \times 2}{7 \times 2} = \frac{35}{14} + \frac{6}{14} = \frac{41}{14}$$

$$\frac{3}{4} - \frac{11}{6} = \frac{3 \times 3}{4 \times 3} - \frac{11 \times 2}{6 \times 2} = \frac{9}{12} - \frac{22}{12} = \frac{-13}{12}$$

Exemple 2

$$\frac{3}{4} - \frac{11}{6} = \frac{3 \times 3}{4 \times 3} - \frac{11 \times 2}{6 \times 2} = \frac{9}{12} - \frac{22}{12} = \frac{-13}{12}$$

Propriété

Pour multiplier deux fractions:

- on multiplie les numérateurs entre eux ;
- on multiplie les dénominateurs entre eux.

a, b, c et d désignent quatre nombres $(b \neq 0)$ et $d \neq 0$.

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Exemple 1

$$\frac{3}{8} \times \frac{-1}{4} = \frac{3 \times (-1)}{8 \times 4} = \frac{-3}{32}$$

$$\frac{24}{28} \times \frac{56}{18} = \frac{24 \times 56}{28 \times 18} = \frac{6 \times 4 \times 8 \times 7}{4 \times 7 \times 3 \times 6} = \frac{8}{3}$$

puis on décompose en produit

Calculer et donner le résultat sous forme d'une fraction irréductible.
$$A = \frac{7}{10} - \frac{3}{5} + \frac{-2}{25} \qquad B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$$
On cherche le signe du résultat, utilité de la contraction de la contraction

A =
$$\frac{7 \times 5}{10 \times 5} - \frac{3 \times 10}{5 \times 10} + \frac{-2 \times 2}{25 \times 2}$$

A = $\frac{35}{50} - \frac{30}{50} + \frac{-4}{50}$
A = $\frac{35 - 30 - 4}{50}$

multiple commun à 10, 5 et 25, par

 $B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$ de facteurs premiers pour simplifier avant de calculer. $B = -\frac{3 \times 5 \times 3 \times 3 \times 2 \times 2 \times 2 \times 3}{3 \times 3 \times 3 \times 2 \times 2 \times 2 \times 3}$ $B = -\frac{2 \times 3 \times 3 \times 2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 3 \times 7}$ $B = -\frac{3 \times 2}{7 \times 7}$

Définition

Propriété

a et b désignent des nombres relatifs non nuls.

- Deux nombres relatifs non nuls sont inverses l'un de l'autre si leur produit est égal à 1.
- L'inverse du nombre $\frac{1}{a}$; l'inverse du nombre $\frac{a}{b}$ est le nombre $\frac{b}{a}$.

Exemple

L'inverse de -3 est
$$\frac{1}{-3}$$
, c'est-à-dire $\frac{-1}{3}$ ou $-\frac{1}{3}$.

Propriété

Diviser par un nombre relatif non nul revient à multiplier par son inverse.

a, b, c et d désignent des nombres relatifs $(b \neq 0, c \neq 0 \text{ et } d \neq 0)$:

$$a \div b = a \times \frac{1}{b}$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

$$a \div b = a \times \frac{1}{b}$$
 $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$ $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$

Exemples

•
$$\frac{2}{9} \div \frac{-3}{7} = \frac{2}{9} \times \frac{7}{-3} = \frac{2 \times 7}{9 \times (-3)} = \frac{14}{-27} = -\frac{14}{27}$$

•
$$\frac{2}{9} \div \frac{-3}{7} = \frac{2}{9} \times \frac{7}{-3} = \frac{2 \times 7}{9 \times (-3)} = \frac{14}{-27} = -\frac{14}{27}$$
 • $\frac{\frac{7}{3}}{\frac{-4}{5}} = \frac{7}{3} \div \frac{-4}{5} = \frac{7}{3} \times \frac{5}{-4} = -\frac{35}{12}$

a. 0,1 **b.**
$$\frac{1}{4}$$

2. Calculer et donner le résultat sous forme d'une fraction irréductible.
$$-\frac{-5}{7}$$
 $A = \frac{-11}{9} \div \frac{-8}{5}$ $A = \frac{-11}{8}$ $A = \frac{-11}{9} \div \frac{-8}{5}$ $A = \frac{-5}{8}$ $A = \frac{-5}{7}$ $A = \frac{-14}{25}$ $A = \frac$

Solution

1. a. 0,1 × 10 = 1 donc l'inverse de 0,1 est 10.
b.
$$\frac{1}{4}$$
 × 4 = 1 donc l'inverse de $\frac{1}{4}$ est 4. c. $\frac{-3}{8}$ × $\frac{8}{-3}$ = 1 donc l'inverse de $\frac{-3}{8}$ est $\frac{8}{-3}$ ou $\frac{-3}{8}$.

2.
$$A = \frac{-11}{9} \div \frac{-8}{5}$$

$$B = \frac{\frac{-5}{7}}{8}$$

$$C = \frac{-5}{\frac{7}{8}}$$

$$D = \frac{\frac{-14}{25}}{\frac{-21}{15}}$$

2. $A = \frac{-11}{9} \div \frac{-8}{5}$ $B = \frac{-5}{7}$ $B = \frac{-5}{8}$ $C = \frac{-5}{\frac{7}{8}}$ $D = \frac{-14}{\frac{25}{25}}$ On transforme la division en une multiplication en remplaçant la deuxième fraction par son inverse. On peut remplacer le trait principal de fraction par une division. $A = \frac{-11}{9} \times \frac{5}{-8}$ $B = \frac{-5}{7} \times \frac{1}{8}$ $C = -5 \times \frac{8}{7}$ $D = \frac{-14}{25} \times \frac{-21}{15}$ On peut remplaçant la deuxième fraction par son inverse. On peut remplacer le trait principal de fraction par une division. $A = \frac{55}{72}$ $B = \frac{-5 \times 1}{7 \times 8}$ $C = \frac{-5 \times 8}{7}$ $D = \frac{2 \times 7 \times 3 \times 5}{5 \times 5 \times 3 \times 7}$ $D = \frac{2}{5}$

$$A = \frac{-11}{9} \times \frac{5}{-8}$$

$$B = \frac{-5}{7} \div 8$$

$$-5 \quad 1$$

$$C = -5 \div \frac{7}{8}$$

$$C = -5 \times \frac{8}{8}$$

$$D = \frac{-14}{25} \div \frac{-21}{15}$$

$$D = \frac{-14}{25} \times \frac{15}{15}$$

$$A = \frac{11}{9 \times (-8)}$$

$$A = \frac{55}{72}$$

$$B = \frac{-5}{7} \times \frac{1}{8}$$
$$B = \frac{-5 \times 1}{7 \times 8}$$

$$C = \frac{-5 \times 8}{7}$$

$$D = \frac{2 \times 7 \times 3 \times 5}{5 \times 5 \times 3 \times 7}$$

XEntraine-toi avec Opérations avec des fractions

¥ Gaspillage alimentaire**¥**