Math 143 Sample Midterm 2

Midterm 2 topics include: Euler's formula and multiplication, parametric equations (derivatives, second derivatives, arclength), polar (derivatives, areas, arclength), \mathbb{R}^3 , vectors, the dot and cross products.

The exam is closed notes/resources but these identities will be given:

$$\cos^2 t = \frac{1 + \cos 2t}{2}$$
 $\sin^2 t = \frac{1 - \cos 2t}{2}$ $\sin^2 t + \cos^2 t = 1$.

These practice problems are similar to those found on the midterm. They will not be collected.

1. Find the arclength of the parametric equations $\begin{cases} x = \cos(2t), \\ y = 2t - \sin(2t) \end{cases}$ for $t \in [0, \pi]$.

- **3.** Find the arclength and the area enclosed by the polar curve $r = \theta^2$ for $\theta \in [0, 2\pi]$.
- **4.** Find the arclength of the curve described by the parametric equations $\begin{cases} x = 3 + e^{-2t} \\ y = 2 e^{-2t} \end{cases}$ for $t \in [0,1]$.
- **5.** Graph the parametric equations $\begin{cases} x = 2 + 3\sin t \\ y = 1 + 2\cos t \end{cases}$ for $t \in [0, 3\pi/2]$.
- **6.** Find two vectors of length 2 which are orthogonal to $\langle 2, 2, 3 \rangle$ and $\langle -1, 0, 2 \rangle$.
- **7.** Find the values of t for which the parametric curve $\begin{cases} x = 2t^2, \\ y = -t^3 + t^2/2 \end{cases}$ for $t \in \mathbb{R}$ is concave down.
- **8.** Sketch the points in \mathbb{R}^3 that satisfy $4x^2 + z^2 = 1$ and $x^2 + 2y^2 + z^2 = 1$.
- **9.** Fix a vector $\mathbf{v} \in \mathbb{R}^3$. Which unit vector \mathbf{w} maximizes the dot product $\mathbf{w} \cdot \mathbf{v}$?