Assignment Projectes Exam Help

https://prowcoders.com
Australian National University

Add Weschatapowcoder

Alan Turing (1912–1954)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Turing's Scientific contributions

1936

Assignment Project Exam Help

introduces the *Turing test* that turns AI into a concrete research problematically. Dowcoder.com
 current today: Mitsuku, a computer programme has convinced judges

current today: Mitsuku, a computer programme has convinced judges (for the last 5 competitions – from 2013 to 2019) that it was a 18-year-old female from Leeds, England.

Add Wellat powcoder

1952.

Pioneering work on computation in nature;

Also. Key figure in the invention of the earliest modern computers.

Turing at War

Germany

• Germans used enigma machines - most sophisticated crypto

Assignment Project Exam Help

The U.K.

- code breaking effort assembled at Bletchley park
 Turing the Sentific penus COGET. COM

Achievements

- cracket setred Environment Environment Production
 estimated to have shortened world warll by 2 years

Fallout

 may ideas and technologies discovered in Bletchley park fed directly into modern computers

Death and Legacy

1952

less than 10 years after heroic war efforts for the UK

Assignment correspondent San Help

https://powcoder.com

Legacy Now

- widel Accept sed Wte ath nator powcoder
- Turing award equivalent of Nobel prize
- UK government apologised for persecution in 2009
- 2012 officially named the Turing year
- Royal Pardon in 2013

Turing Machines – Introduction

Computability – 1936 paper
ASS1 gnanember Projectica ionxtant Intellelp

- solved long standing open problem posed by Hilbert
- · charactip grid/powaroderpeem
- simple mathematical device that is able to simulate any computer
- this device instrumental in solving Hilbert's problem

Modern Add WeChat powcoder

- didn't exist in 1936?
- ENIAC in 1946 generally considered to be the first

Computing as a profession

Photo c/o Early Office Museum Archives

A model for 'computers'

Computing in 1936

• computers not machines, it was a profession.

SSIGNMENT Project Exam Help

- justification: references to 'state of mind' or similar
- see original paper, Section 9.1 (quite readable!) http: //ww<mark>n.tt.ps:</mark>riabeuVVvicsOtate.iae11936.pdf

Turing's model today

- no computer has been built that is *more* powerful than Turing's model
 Turing has discovered the essential of the powerful than Turing's model

Mathematical Models vs Reality

- no formal proof that the model is the "right" one
- but widely accepted
- new paradigms emerge, e.g. quantum computing

Push Down Automata, reloaded

 A PDA with its auxiliary store is almost a whole computer, except we can only directly access the symbol on the top of the stack.

Turing Machines

Generalisation from PDA to Turing machine

- replace stack memory by tape memory
- can access arbitrary symbols on tape by moving tape head

Single tape Turing Machines

• have the same tape both for input and for storage

- tape is assumed to be infinite in both directions
- analogy: "get more paper if you run out"

Turing Machines as language recognisers

Assignime la Computation de Cast Examposition per la Cast Examposition

- If there is no action that is legal, the TM halts
- If a TM halts in a final state, it has accepted the original input. The set of strips scepted to VMGs to Green the common of t
- If it halts in a non-final state, this is an 'error', i.e. the input is rejected.
- A TAnde Weethat powcoder

Definition. If a language is recognised by a Turing machine, then it is called *recursively enumerable*.

Output

Assignment Project Exam Help

- TMs can calculate any computable function.
- input: a string written onto the tape before the machine starts
- outph: Whose /s/mow open ere ach malts

Infinite Tapes aren't a problem

- computation alty to with a ty to wooder
- only finitely many tape cells will be written to

Turing Machine – formal definition

A Turing Machine has the form $(S, s_0, F, \Gamma, \Sigma, \Lambda, \delta)$, where $Assignment_s Project strums Help$ final States:

- Γ is the set of tape symbols, $\Sigma \subseteq \Gamma$ is the set of input symbols, and δ is a (partial) transition function

(state the symbol per fection)
$$\delta: S \times \Gamma \rightarrow S \times \Gamma \times \{L, R, S\}$$

The direction tells the read/write head which way to go next: Left, Right, or Stay.

Running a TM

Initialisation.

ssignment Project Exam: Help

- every other tape cell is a blank Λ ;
- \bullet the read/write head sits over the some cell of the input (or over any Λ is th https://powcoder.com
- the state is the start state so.

- in a cycle read symbol and execute appropriate dependent): move/write/change state
- until a final state is reached (or the machine gets stuck)

Graphical Representation of the Transition Function

Assignment Project Exam Help

https://powcoder.com

(Like FSA, annotate transition edges with commands for accessing tape.)

• Numerated dmbWee Chat powcoder

- Λ means the tape is blank at that position.
- Denominator: symbol written / direction of head movement.
 - direction one of L, R, S for Left, Right, Stay.

What does it do?

Assignment Project Exam Help

https://powcoder.com

- First phase scans left.
- Second phase writes two extra 1s.

The Convention for Errors

TMs getting Stuck
suppole the input of the i

- TM would halt in state S_0 , as there is no arc telling us what to do if we meet such a token (this is the job of the rightwards scan).
- this is not an accepting state! hierard powcoder

Language

• TM accepts precisely $\{1^n \mid n \in \mathbb{N}\}$.

Alternative Formulation (not used here)

- could add an error state that the machine transitions to
- error state not accepting

What does this one do?

Questions.

- Do you see two phases?
- What does each phase accomplish?

What does this one do?

Assignment Project Exam Help

https://powcoder.com

Answer

Add WeChat powcoder

- Phase 1: initialisation.
- Phase 2: computation, in this case, complement a binary number.

Harder Problems?

Assignment Project Exam Help

https://powcoder.com

Adding numbers - need terminators

Converted Q writer the sull able that we code the converted Q writer the sull able that we code the converted Q writer the sull able that we code the converted Q writer the converted

Multiplication - and so on!

Incrementing a binary number

Assignment Project Exam Help

Solution: https://powcoder.com

Decrement

Assignment Project Exam Help

Failure (or non-acceptance): If given number is 0 it fails (at state S_1),

How to add two numbers?

Assignment Project Exam Help

Operation https://powcoder.com

- Go back and forth between *m* and *n*, decrementing one (until this fails) and incrementing the other.
- decrement nand cement n & tau a n We Gan lef Wards.
- m gets changed to 00...0, n is replaced by the sum.
- Finally, delete the $\#00\cdots 0$ on the right.

How to add two numbers? ctd.

Assignment Project Exam Help

How to multiply two numbers?

Input. as for addition

Assignment Project Exam Help

- Repeatedly decrement m (until this fails) and add n to p (p is initially blank)
- Must not if the addition with the added.

Modification of addition routine

- Two new tape symbols, 0′ and 1′.
 Before addidition segment 1 those Coder
- When decrementing n, swap 0s and 1s as usual, but keep the primes.
- When finished adding n to p, go back and use the primes to restore n.

Observation.

- this is very tedious but the model is simple and easy to analyse
- tricks that you see here are typical

Programming Issues - Data

Data Types and Gadgets

Assignmente Project Exam Help

Numbers.

· Usulttps://powicoder.com

Vocabulary.

• Can be arbitrary and $\{0,1\}$ suffice. Characters are represented as strings odic WeChat powcoder

Variables, Arrays, Files

Use markers on the tape to separate values.

Programming Issues - Control

Common Idioms.

Assignment Project Exam Help

- Use control states to remember information
 In particular, we often need to "remember" a symbol, to write it
 elsewheter this typically equipse of clares control asymbol
- Composition

 If you have a TM to multiply by 3 and one to multiply by 5, put them together to multiply by 15.
- Decisions (conditional computation) powcoder

 As we have seen, we can branch on 0 or 1 (or T or F).
- Loops of course.

Using States to Remember a Tape Symbol

Universal Turing Machines and Turing Completeness

• We can construct a TM to simulate any conventional computer.

Sispeffictive interest the Prilippiect Exam Help From this point, just think of a M as like a computer program (with

- We tanken struct a TM that first reads a description of some other TM and then simulates it. This is a universal TM. (Think of a Haskell program whose purpose is to read any other Haskell program and run that)
- Turing ration es W septlat hertsel OWCOder
- Turing machines can compute properties of themselves.
- Any computing device which can simulate a universal Turing Machine is also called *universal* or *Turing Complete*.

Church-Turing Thesis

Church-Turing Thesis.

If a function is computable, then it can be calculated by a Assignment Project Exam Help

Equivalent Formulation.

 if a problem can be solved by an algorithm, then it can be solved by a Turilattps://powcoder.com

This is a Thesis.

- more a definition than a theorem
- can pare the total control of the control of the

Evidence.

- all other definitions of the term computable give the same class of computable functions
- there are many: λ -calculus, register machines, while programs, etc.

Church and λ -calculus

Assignment the function of the control of the contr

- in 1932, even before Turing's paper
- Rosser showed that both notions are equivalent nttps://powcoder.com
 Equivalence. (Rosser, 1939)
 - if a function is computable by a Turing machine, then it is computable in the case flush at powcoder
 - . . . and vice versa
 - simulation of the respective formalism in the other approach.

Can real computers simulate Turing Machines?

Differences between computers and Turing machines

• A Turing Machine has an *infinite tape*.

Assignment i Project Examulatelp

- physical devices necessarily have finite memory. They're more like finite automata.
- ... but the pubber of pats WrGOG Cery. Cgom
 How big is 24294967290?
- physical computers are an approximation of TMs.

Intuitive Understanding We Chat powcoder

- Turing machine model feels closer to what we can program
- e.g. we *can* recognise the language $\{a^nb^n \mid n \ge 0\}$
- if the real machines runs out of memory ... we can always buy more
- this is about computation in principle

Church-Turing Thesis: Argument 1

Turing Machines emulate humans.

Assignment of the Exam Help Turing's 'computers' only perform TM operations: writing, reading,

refocussing (state change)

TMs are https://powcoder.com

- can't do infinite operations, e.g. work with infinitely many symbols

• can't read the whole infinite tape Add WeChat powcoder Taken together

- convincing (in the 1930s) that Turing's model is correct
- but no mathematical evidence (yet)

Church-Turing Thesis: Argument 2

Stability of the TM Model.

adding 'features' doesn't make more functions computable

signment Project Exam Help

- easier to program, but no extra "power"
- - have more than one head, heads can move independently

 - heads can access multiple symbols at once again, access multiple symbols at once power echat powcoder

Non-determinism. (as for nfa's)

- tm can make one of several possible next moves
- tm can "guess" the right next move
- may make it faster, but cannot compute more functions.

Church-Turing Thesis: Argument 3

Many Models of Computation

- plenty of different definitions of what computable may mean
- Assignment Project Exam Help
 - any (reasonable) model of computation can compute precisely the
 - same functions as the TM model.

 "reachtle" is the san Of Work Order Charles C

Examples.

- Lambda-Calculus (Church 1932)
 Post School (Port 1930) nat powcoder
- Register Machines
- . . .

Doesn't include

- models based on physical phenomena
- ... or biology, or ...

Argument 3B: Grammars

Theorem. Any language that is generated by a grammar can be recognised Assignment Project Exam Help Proof (Sketch)

- write the start symbol S onto the tape (say, right of our input)
 search thousall/possible with the start symbol S. COM
- each time we reach a sentence, check whether it matches the input

Acceptance Add We Chat powcoder • if the grammar finds the input, we will find a derivation

- if the grammar does not generate the input, we may loop forever (and not accept)

Argument 3B – grammars ctd

Unrestricted Grammars. Have productions of the form

Assignment Project Exam Help

Theorem. For any TM, there exists a grammar that generates precisely the words that the TM accepts. Proof (Sketch) Powcoder.com

non-terminals (of the grammar) are states of the TM

• run TA "Hackways" (we are interested in inputs not alterest)

TM Transition

$$T$$
 $\frac{U}{1,R}$ U

Grammar Production. $1U \rightarrow T0$.

(Detail missing, e.g. how to handle blanks)

Argument 3C – Computers & Programming Languages

Observation.

As po computer ever invent provided things hat a TM Help

back-and-forth translation TM ↔ PL

Common https://powcoder.com

A programming language that can compute every function that can be computed by a Turing machine is called *Turing complete*.

Examples Add We Chat powcoder

- The languages that you know: Haskell, Java, Python, ...
- even the simple while language that we used for Hoare logic
- implement TM simulator in your favourite programming language

Argument 3D - John Conway's Game of Life

Game of Life.

• infinite 2d grid

Assignment Project Exam Help

Rules of the Game. iterate through generations

- live tells with fewer than two live neighbours die (under-population)
- live cells with more than three live neighbours die (over-population);
- dead cells with exactly three live neighbours come alive (reproduction);
- · all other clostay as the Chat powcoder

Emergent Behaviour.

- visualised by GoL, many interesting forms
- analogy of complex behaviour emerging from simple rules

Argument 3D – John Conway's Game of Life ctd.

Assignment Project Exam Help

- can implement Game of Life on a Turing machine
- lots of coding, in particular 2d grid onto 1d tape

 https://powcoder.com

 From Conway's Game to Ms (Paul Rendell, 2011)
 - showed that GoL can simulate Turing machines
 - comes down to clever the lice of injutal configuration see er http://rendell-attic.org/gol/thring_js_r.gif

Metaprograms

Metaprograms are programs to have other programs as input it jutplit. ASSIGNMENT Project Exam Help

- Lexical analysers and parser generators SPARK Examiner, which automatically proves correctness properlies of programs written in SPARKAD S.// POWCOUEL.COIN
- Code generation which automatically produces codes from e.g. a Z specification or a formal proof

Add WeChat powcoder

Next Goal. Scrutinise TMs that take TMs as input.

main goal: halting problem

Coding a TM onto tape

Coding of a TM as binary strings

• can be written onto a tape

Assignment Project Exam Help

States are ordered S_1, S_2, \ldots, S_k , where S_1 is the start state and S_2 the unique final state

Tape Symbols are ordered $P_1, X_2, X_3, \dots, X_r$ where X_1 is 1, and X_3 is Λ .

Directions $A(S_i, X_i) = (S_k, X_i, D_m)$ mapped to

 $0^{i} 1 0^{j} 1 0^{k} 1 0^{l} 1 0^{m}$

(the 0s carry information, the 1s act as separators.)

Coding a TM onto tape ctd.

Assignment Projects Exam Help

 $C_1 \ 11 \ C_2 \ 11 \ \cdots \ 11 \ C_n$

(11 is used as a separator por transitions) der.com

Additional Input.

- · code Add, We Char powcoder
- use 111 to separate TM and string input

Coding a TM onto tape – example

