```
In [1]: import pandas as pd
         import warnings
         warnings.filterwarnings("ignore")
In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
In [3]: data.head()
Out[3]:
            ID model engine_power age_in_days
                                                 km previous_owners
                                                                                  lon price
                                                                          lat
            1 lounge
                                          882
                                               25000
                               51
                                                                 1 44.907242
                                                                              8.611560
                                                                                      8900
                                         1186
                                               32500
                                                                 1 45.666359 12.241890
                                51
                                                                                      8800
                  pop
                                              142228
             3
                               74
                                         4658
                                                                 1 45.503300 11.417840
                                                                                      4200
                 sport
               lounge
                                              160000
                                                                 1 40.633171 17.634609
                               51
                                         2739
                                                                                      6000
                               73
                                         3074 106880
             5
                  pop
                                                                 1 41.903221 12.495650 5700
In [4]: datal=data.loc[(data.previous_owners==1)]
```

In [5]: data1

Out[5]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1389 rows × 9 columns

```
In [6]: datal=data.drop(['lat','lon','lon'],axis=1)
```

In [7]: data1=pd.get_dummies(data1)

In [8]: data1

Out[8]:

	ID	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	8900	1	0	0
1	2	51	1186	32500	1	8800	0	1	0
2	3	74	4658	142228	1	4200	0	0	1
3	4	51	2739	160000	1	6000	1	0	0
4	5	73	3074	106880	1	5700	0	1	0
1533	1534	51	3712	115280	1	5200	0	0	1
1534	1535	74	3835	112000	1	4600	1	0	0
1535	1536	51	2223	60457	1	7500	0	1	0
1536	1537	51	2557	80750	1	5990	1	0	0
1537	1538	51	1766	54276	1	7900	0	1	0

1538 rows × 9 columns

```
In [9]: y=datal['price']
x=datal.drop('price',axis=1)

In [10]: from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In []:
In []:
```

```
In [11]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic = ElasticNet()
         parameters = {'alpha':[1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(X train, y train)
         NameError
                                                   Traceback (most recent call last)
         Cell In[11], line 10
               6 parameters = {'alpha':[1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
               8 elastic regressor = GridSearchCV(elastic, parameters)
         ---> 10 elastic regressor.fit(X train, y train)
         NameError: name 'y train' is not defined
In [ ]: elastic regressor.best params
 In [ ]: elastic=ElasticNet(alpha=.01)
         elastic.fit(X train,Y train)
         y pred elastic=elastic.predict(X test)
 In [ ]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
 In [ ]: from sklearn.metrics import mean squared error
         Elastic Error=mean squared error(y pred elastic,y test)
         Elastic Error
```

localhost:8888/notebooks/elastic22.ipynb

```
In [ ]: Results=pd.DataFrame(columns=['price', 'predicted'])
    Results['price']=y_test
    Results['predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results

In [ ]: import seaborn as sns
    import matplotlib.pyplot as plt
    sns.lineplot(x='ID', y='price', data=Results.head(50))
    sns.lineplot(x='ID', y='predicted', data=Results.head(50))
    plt.plot()

In [ ]:
```