IPRJ - Laboratório de Física 1 Experimento 1

Nome do Experimento:

Equação de Movimento em 1D (Movimento Uniforme, MU, e Movimento Uniformemente Variado, MUV)

Nome do aluno: Gustavo Dias de Oliveira

Matrícula: 2020-1-00785-11

Nome do aluno: Thiago Bastos da Silva

Matrícula: 2020-1-00760-11

Objetivos do Experimento

Esta tarefa tem como objetivo, demonstrar experimentalmente como obter os valores da aceleração, velocidade e posição inicial da Equação de Movimento em 1D. Para isso é necessário fazer a filmagem, retirar os dados desta e analisa-los, depois fazer o gráfico que mais se ajusta com o conjunto de dados utilizando o método dos mínimos quadrados (método responsável por encontrar à reta, ou a curva, que melhor descreve os dados experimentais), a equação é a seguinte:

$$S = S_0 + vt + \frac{1}{2}at^2$$

No primeiro caso, não teremos a aceleração na fórmula, por se tratar de um movimento uniforme, pois a velocidade é constante, e sabemos que com v = constante, a = 0. Temos que, a = aceleração, v = velocidade e $s_0 = posição$ inicial.

1. Introdução e Desenvolvimento Teórico

O movimento retilíneo uniforme (MRU) é caracterizado pela uniformidade de espaços em intervalos de tempos iguais, o que implica uma velocidade constante, ou seja, sem aceleração. Ocorre ao longo de uma linha reta e podemos caracterizá-lo pela equação 1 conforme a seguir:

$$s = s_0 + vt$$

Onde s é o espaço/posição do objeto no instante t, s_0 é a posição em t=0 e v é a velocidade. Graficamente, a equação pode ser disposta em um gráfico como na Figura 1 abaixo.

Figura 1 - A função que descreve o MRU: o espaço 's' em termos do tempo 't'.

Como nosso experimento foi desenvolvido gravando um vídeo da trajetória da bolinha de gude sobre uma régua (temos então tempo e espaço), podemos associar a equação 1 a uma equação de primeiro grau, ou seja,

$$y = a + bx$$

Onde $y \to s$, $x \to t$, $s_0 \to a$ é o coeficiente linear e $v \to b$ é o coeficiente angular. Assim, usaremos a equação z nas análises dos dados para verificar o comportamento do objeto no movimento e encontrar os valores de s_0 e v.

Na segunda parte do experimento, teremos presente a aceleração, e por se tratar disso, usaremos a fórmula completa dada anteriormente, esta que pode ser comparada com uma função de segundo grau, pois apresenta um comportamento similar.

Logo, usaremos a função como:

$$y = a + bx + cx^2$$

Sendo, $s_0 \to a$, $v \to b$ e $c \to a$, logo usaremos a equação 2 para analisar os dados encontrados no vídeo do segundo experimento.

2. Materiais Utilizados e Roteiro Experimental

Os matérias usados para o experimento foram:

Uma régua para podermos ter noção do espaço, uma régua de apoio para o movimento da bolinha de gude, a própria bolinha de gude e o celular, para gravar o vídeo de seu movimento e nos dizer o tempo da trajetória em questão, e para a segunda parte, foi usado um pano por baixo dos matérias para que haja um atrito entre a bolinha e a superfície, logo, tornando o movimento não uniforme.

Matérias usados para primeira parte do experimento.

Matérias usados para segunda parte do experimento.

Após isso, usamos o software Tracker para, pelo vídeo, encontrarmos os pontos do espaço (eixo y) e do tempo (eixo x) de cada experimento, depois usando o software SciDAVIs pegamos esses pontos encontrados no Tracker para plotar um gráfico e realizar o MMQ para encontrar a melhor reta e curva, respectivamente, que se encaixam nas equações.

3. Apresentação e Análise dos Dados Experimentais

Os dados retirados do Tracker para a primeira parte do experimento foram os seguintes:

Tabela 1 - Dados experimentais.

t	S
0,000	0,000
0,033	0,257
0,067	0,481
0,100	0,725
0,133	0,949

0,166	1,185
0,200	1,373
0,233	1,611
0,266	1,870
0,300	2,035
0,333	2,229
0,366	2,474
0,399	2,683
0,433	2,892
0,466	3,136
0,499	3,308
0,533	3,575
0,566	3,812
0,599	4,021
0,633	4,222
0,666	4,475
0,699	4,676
0,732	4,892
0,766	5,122
0,799	5,367
0,832	5,591
0,866	5,849
0,899	6,102
0,932	6,382
0,965	6,584
0,999	6,901
1,032	7,125
1,065	7,377
1,099	7,593
1,132	7,832
1,165	8,163
1,198	8,429
1,232	8,667
1,265	8,949
1,298	9,223
1,332	9,467
1,365	9,705
1,398	9,943
1,431	10,17
L	

Figura 2 - Dados experimentais e ajuste linear

Tabela 2 - Dados experimentais.

t	S
0,000	0,000
0,033	1,12
0,067	2,184
0,100	3,140
0,133	4,142
0,167	4,992
0,200	5,873
0,233	6,632
0,267	7,285
0,300	7,999
0,333	8,652
0,367	9,290
0,400	9,913
0,433	10,43
0,467	10,93
0,500	11,45
0,533	11,93
0,567	12,42
0,600	12,87
0,633	13,33
0,667	13,75
0,700	14,12
0,733	14,47
0,767	14,74
0,800	15,00
0,833	15,29

0,867	15,44
0,900	15,55
0,933	15,59
0,967	15,66

Figura 4 - Dados experimentais e ajuste linear

Logo, obtemos os valores de s_0 e v, para a primeira parte do experimento, a partir das informações da primeira tabela e do segundo gráfico:

$$s_0 = (7,07 \pm 0,42) m$$

 $v = (-0,116 \pm 0,035) m/s$

depois, obtemos os valores de s_0 e v, para a segunda parte do experimento, a partir das informações da tabela 2 e do segundo gráfico:

$$s_0 = (0.284 \pm 0.060) m$$

 $v = (29.7 \pm 0.291) m/s$
 $a = (-14.2 \pm 0.291) m/s^2$

4. Resultados e Conclusões

O resultado encontrado pela analise no SciDAVIs para a primeira equação foi:

$$S = -0.116 + 7.07t$$

e para o segundo caso, encontramos a seguinte formula:

$$S = 0.284 + 29.7t + \frac{1}{2}(-14.2t^2)$$

Podemos concluir então que, com a variedade de programas que existem a nossa disposição atualmente, podemos obter as características de uma equação, como ela se comporta, e os valores de suas raízes, por exemplo, a tecnologia vem ajudado cada vez mais todas as áreas de conhecimento, e a física é uma dessas beneficiadas, na sociedade hodierna podemos fazer experimentos e simulações que a não muito tempo atras não eram possíveis.

5. Bibliografia

Fundamentos de Física – Volume 1; D. Halliday, R, Resnick, J. Walker; LTC Editora (2006).