

Grundlagen der elektrischen Energietechnik Teil 3: Grundlagen der Leistungselektronik

Vorlesung (7)

Prof. Dr.-Ing. Regine Mallwitz Institut für Elektrischen Maschinen, Antriebe und Bahnen - IMAB

Was machen wir heute?

- 1. Einführung in die Leistungselektronik
 - 1.1. Aufgaben und Komponenten der Leistungselektronik
- 2. Leistungshalbleiter
 - 2.1. Bipolare Leistungshalbleiter: PN-Übergang, pn-Diode, Bipolartransistor, Thyristor, GTO
 - 2.2. Feldgesteuerte Leistungshalbleiter: MOSFET, IGBT
- 3. Netzgeführte Stromrichter (Stromrichterschaltungen mit Dioden und Thyristoren)
 - 3.1. Gleichrichter ungesteuert
 - 3.1.1 Mittelpunktschaltungen: M1U, M2U, M3U
 - 3.1.2. Brückenschaltungen: B2U, B6U
 - 3.2. Gleichrichter gesteuert
 - 3.2.1. M1C, M2C, M3C, B2C, B6C
- 4. Selbstgeführte Stromrichter (Stromrichterschaltungen mit MOSFET und IGBT)
 - 4.1. Gleichstromsteller
 - 4.1.1. Tiefsetzsteller
 - 4.1.2. Hochsetzsteller
 - 4.1.3. Zweiguadrantensteller
 - 4.1.4. Vierquadrantensteller (Vollbrücke)
 - 4.2. Umrichter
 - 4.2.1. Umrichter mit Gleichspannungs-Zwischenkreis (ein- und dreiphasig)

Vierquadrantensteller (4Q-Steller)

 Besteht die Forderung, sowohl die Spannung als auch den Strom in der Richtung umzukehren, kommen Vierquadrantensteller zum Einsatz.

4Q-Steller: Beispiel

a) Vorwärtsfahrt antreiben Stromrichter: Maschine: Quelle Gleichrichter Motor, Rechtslauf $U_d > U_A$ b) Vorwärtsfahrt bremsen P<0 -> Netz: Stromrichter: Maschine: Generator, Rechtslauf Senke Wechselrichter $U_d < U_A$ c) Rückwärtsfahrt antreiben P>0-Stromrichter: Maschine: Quelle Gleichrichter Motor, Linkslauf $U_a < U_A$ $|U_d| > |U_A|$ d) Rückwärtsfahrt P<0 -> bremsen Stromrichter: Maschine: Wechselrichter Senke Generator, Linkslauf $U_d > U_A$

Quelle: Probst

Vierquadrantensteller (4Q-Steller): Aufbau

T₁, T₂, T₃, T₄: Schalter (hier: IGBT)

D₁, D₂, D₃, D₄: Freilauf-Dioden

L, R: Last

Vierquadrantensteller (4Q-Steller): Aufbau

- Die Schaltung des Vierquadrantenstellers kann auch aufgefasst werden als die Antiparallelschaltung **zweier Zweiquadrantensteller**, die jeweils aus den in den Diagonalen angeordneten Leistungshalbleitern bestehen.
- Die Schaltung besteht aus 2 Halbbrücken mit jeweils 2 Schaltern und 2 antiparallen Dioden.
- Der Vierquadrantensteller wird auch als Vollbrücke bezeichnet.

Vierquadrantensteller (4Q-Steller): Funktionsweise

- Es kann ein kontinuierlicher Ausgangsstrom $i_L(t)$ eingestellt werden. Je nach Zustand der Schalter ist der Ausgangsstrom positiv oder negativ.
- Die Ausgangsspannung u₁ (t) ist durch den Zustand der Schalter bestimmt:
 - Eine *positive Spannung u_L* entsteht durch periodisches, gleichzeitiges Schalten von *T1, T4* (entsprechend der Funktion eines Zweiquadrantenstellers).
 - Eine *negative Spannung u_L* entsteht durch periodisches, gleichzeitiges Schalten von *T2, T3*.
 - Die Ausgangsspannung kann auch zu *Null* werden (*Freilauf*).

Vierquadrantensteller (4Q-Steller): Funktionsweise

Ausgangsspannung: $u_L(t) = u_{AN}(t) - u_{BN}(t)$

Vierquadrantensteller: Schaltzustände und Ausgangsspannung

	T1	T2	Т3	T4	u _{AN}	u _{BN}	$u_L = u_{AN}(t) - u_{BN}(t)$
(1)	Ein	Aus	Ein	Aus	+ E1	+ E1	0
(2)	Ein	Aus	Aus	Ein	+E1	0	+ E1
(3)	Aus	Ein	Ein	Aus	0	+ E1	- E1
(4)	Aus	Ein	Aus	Ein	0	0	0

- \triangleright Die Ausgangsspannung u_L kann drei Werte annehmen: + E1 / E1 / 0
- ➤ Die Spannungen u_{AN} und u_{BN} und damit auch u_L sind <u>nur abhängig</u> vom Schaltzustand der Schalter und <u>nicht abhängig</u> von der Stromrichtung.

Vierquadrantensteller: Mögliche Leitzustände

$$i_{L} > 0 / u_{L} = + E1$$
 (1)
 $i_{L} < 0 / u_{L} = + E1$

$$T_{1} \downarrow_{i_{D1}} \downarrow_{i_{D3}} \downarrow_{i_{T3}} \downarrow_{i_{T3}} \downarrow_{i_{T4}} \downarrow_{i_{T4}}$$

Vierquadrantensteller (4Q-Steller): Steuerung

- Beim Vierquadrantensteller kann die Polarität der Ausgangsspannung umgekehrt werden.
- Die Steuerung erfolgt über
 Pulsweitenmodulation (PWM).
- Es wird ein Dreieckssignal (u_{ref}) mit <u>einer</u> oder auch <u>zwei</u> Steuerspannungen (u_{st}) verglichen.

Vierquadrantensteller (4Q-Steller): Steuerung mit Pulsweitenmodulation

- Pulsweitenmodulation (PWM) mit <u>einer</u> Steuerspannung
 - Die Schalter in den Schalterpaaren T1, T4 und T2, T3 werden gleichzeitig ein- und ausgeschaltet.

- Es ist immer jeweils ein Paar eingeschaltet.
- Das Schaltsignal für die Transistoren wird durch Vergleich einer Dreieckspannung u_{Dr} mit einer Steuerspannung u_{st} erzeugt.
- Es gilt:
 - für $u_{st} > u_{Dr}$: sind T1, T4 eingeschaltet (und T2,T3 ausgeschaltet)
 - für $u_{st} \le u_{Dr}$: sind T2, T3 eingeschaltet (und T1,T4 ausgeschaltet).
- ➤ Der Momentanwert der Ausgangsspannung kann zwei Spannungsniveaus einnehmen: + E1 und – E1.

Pulsweitenmodulation mit einer Steuerspannung

Pulsweitenmodulation mit einer Steuerspannung

Mittelwert der Ausgangsspannung:

$$U_L = U_{AN} - U_{BN} = E_1 \cdot v_{T_{-}T1} - E_1 \cdot v_{T_{-}T3}$$

$$v_{T_T1} = \frac{1}{2} \cdot \left(1 + \frac{u_{st}}{\widehat{U}_{Dr}} \right)$$

$$v_{T T3} = 1 - v_{T T1}$$

$$U_L = E_1 \cdot \frac{u_{st}}{\widehat{U}_{Dr}}$$

Pulsweitenmodulation mit einer Steuerspannung

Vierquadrantensteller (4Q-Steller): Steuerung mit Pulsweitenmodulation

- Pulsweitenmodulation (PWM) mit <u>zwei</u> Steuerspannungen
 - Prinzipiell kann die Ausgangsspannung mit diesem Steuerverfahren 3
 Spannungsniveaus einnehmen: + E1 / E1 / 0.
 - Die Schalter können auch unabhängig voneinander ein- und ausgeschaltet werden.
 - Die Schaltsignale für die Transistoren werden durch Vergleich einer Dreieckspannung u_{Dr} mit zwei Steuerspannungen erzeugt.

Eine Steuerspannung ist positiv (+ u_{st}) und die andere negativ (- u_{st}).

Für positive Ausgangsspannung gilt:

- für $+u_{st} \ge u_{Dr}$: ist T1 eingeschaltet
- für $+u_{st} < u_{Dr}$: ist T2 eingeschaltet
- für $-u_{st} \ge u_{Dr}$: ist T3 eingeschaltet
- für -u_{st} < u_{Dr}: ist T4 eingeschaltet.

Pulsweitenmodulation (PWM) mit zwei Steuerspannungen

Pulsweitenmodulation (PWM) mit zwei Steuerspannungen

Mit der Steuerung - wie im Bild gezeigt – wird die Ausgangsspannung positiv.

Durch Verstellen der Steuerspannungen sind auch negative Ausgangsspannungen möglich.

Mittelwert der Ausgangsspannung:

$$U_{L} = \frac{U_{AN}}{U_{BN}} - U_{BN} = E_{1} \cdot v_{T_{L}T1} - E_{1} \cdot v_{T_{L}T3}$$

$$U_L = E_1 \cdot \frac{u_{st}}{\widehat{U}_{Dr}}$$

Treiben -E1 T₁,T₄ T₁,T₃ T₁,T₄ T₄,D₂

4Q-Steller: Betriebszustände

Antreiben, vorwärts (UL pos., IL pos.):

• T1, T4 sind leitend, $u_L = + E1$.

Freilauf (UL pos., IL pos.):

T1,D3 oder T4, D2 sind leitend, u_L = 0.

Antreiben, rückwärts (UL neg. , IL neg.):

■ T2, T3 sind leitend, u_L = - E1.

Freilauf (UL neg., IL neg.):

■ T2, D4 oder T3, D1 sind leitend, uL = 0.

Rückspeisen u_L +E1(C) - E1 i L D_1, D_2 T_{2}, D_{4} T_3,D_1 D_1, D_4

4Q-Steller: Betriebszustände

Rückspeisen (UL pos., IL neg.):

D1, D4 sind leitend, u₁ = + E1.

Freilauf (UL pos, IL neg.):

T3, D1 oder T2, D4 sind leitend, u_L = 0

Rückspeisen, rückwärts (UL neg., IL pos.):

■ D2, D3 leitend, u_L = - E1,

Freilauf (UL neg, IL pos.):

T1, D3 oder T4, D2 leitend, u_L = 0.

4Q-Steller: Steuerverfahren

- Zur Verstellung der Spannung können die bereits beschriebenen Verfahren:
 - Pulsbreitensteuerung
 - Pulsfolgesteuerung
 - Zweipunktregelung

eingesetzt werden.

4Q-Steller: Steuerung in der Praxis

- Pro Halbbrücke ist immer ein Schalter geöffnet und der andere Schalter geschlossen.
- Gleichzeitiges Schließen muss vermieden werden, da dies zum Kurzschluß der Eingangsspannungsquelle.
- Die entstehenden (Kurzschluß-) Strömen durch die Halbleiter sind sehr hoch.
- Dadurch entstehen hohe Verluste in den Halbleitern, die bis zur Zerstörung führen können.
- In der Praxis wird daher beim Umschalten immer eine gewisse Zeit abgewartet, in der beide Schalter gleichzeitig ausgeschaltet sind.

Diese Zeit wird Verriegelungszeit oder Totzeit genannt.

4Q-Steller: Anwendungen

Speisung von Gleichstrommaschinen mit unterschiedlicher Drehrichtung

- Die Schaltung stellt auch das Grundkonzept eines (einphasigen) selbstgeführten
 Wechselrichters in Brückenschaltung dar.
- Durch entsprechende Steuerung kann ein Verbraucher mit Wechselspannung und Wechselstrom beliebiger Frequenz und Phasenlage gespeist werden.

Einphasiger (selbstgeführter) Wechselrichter mit eingeprägter Spannung

- Die aus R, L bestehende Last bildet einen Wechselstromverbraucher.
- Für die Steuerung der Transistoren gibt es verschiedene Verfahren.
- Im folgenden wird ein für das Verständnis grundlegendes Verfahren, die sogenannte **Grundfrequenzsteuerung** oder **Blocksteuerung** betrachtet:

Einphasiger Wechselrichter mit eingeprägter Spannung: Grundfrequenzsteuerung oder Blocksteuerung

- Die Transistoren werden paarweise (T1,T4), (T2,T3) synchron und im Wechsel ein- und ausgeschaltet wie bei PWM2.
- Ein rechteckige Ausgangsspannung u_L mit der Amplitude E₁ entsteht.
- Die Einschaltzeit t₁₄ des Schalterpaares (T1,T4) ist gleich der Einschaltzeit t₂₃ des Schalterpaares (T2,T3).
- Durch Änderung der Leitdauer kann die Frequenz von u_L gestellt werden.
- Zur Vermeidung eines Kurzschlusses ist zwischen t₁₄ und t₂₃ eine kurze Sicherheitszeit t_S einzufügen.
- Die Ausgangsspannung u_{Last}(t) stellt eine Folge von rechteckförmigen Pulsen der Amplitude E1 und der Periode T₁=2π/ ω (bzw. der Frequenz f₁=1/T₁) dar und enthält eine sinusförmige Grundschwingung mit der Frequenz f₁=1/T₁ sowie Oberschwingungen mit höher Frequenz, die ein ganzzahliges Vielfaches von f₁ bilden.
- Die Freilaufdioden D1 bis D4 sind erforderlich, um bei angenommener induktiven Last einen Strom mit einem zur momentanen Spannung unterschiedlichen Vorzeichen zu ermöglichen.

Fourierreihe

 Ein periodisches Funktion f(t) mit der Periodendauer T kann durch eine Fourier-Reihe dargestellt werden.

■ Es gilt:
$$f(t) = \sum_{n=0}^{\infty} (a_n \cdot \cos n\omega_1 t + b_n \cdot \sin n\omega_1 \cdot t)$$
.

Dabei ist
$$\omega_1 = 2 \cdot \pi \cdot f_1 = \frac{2 \cdot \pi}{T}$$
 mit f_1 ... Grundfrequenz.

Die Koeffizienten werden bestimmt durch:

$$a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot dt \qquad a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot \cos n\omega_1 t \cdot dt \qquad b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot \sin n\omega_1 t \cdot dt$$

Die Integration erfolgt über eine ganze Periodendauer T. (Dabei ist es unerheblich, ob die Integration von 0 bis T oder –T/2 bis +T/2 erfolgt.)

Die gezeigt Rechteckfunktion lässt sich darstellen als:

$$f(t) = A \cdot \frac{4}{\pi} \cdot \left(\sin(\omega t) + \frac{1}{3} \cdot \sin(3\omega t) + \frac{1}{5} \cdot \sin(5\omega t) + \cdots \right)$$

Was haben wir heute gemacht?

- Selbstgeführte Stromrichter
 - Vierquadrantensteller (4Q-Steller)

Was kommt in der nächsten Vorlesung?

- Selbstgeführte Stromrichter
 - Umrichter

Leistungselektronik @ Institut für Elektrische Maschinen, Antriebe und Bahnen

Prof. Dr.-Ing. Regine Mallwitz (Leistungselektronik)

M: r.mallwitz@tu-braunschweig.de

T.: +49 (0)531 3913901

M.Sc. Robert Keilmann

M: r.keilmann@tu-braunschweig.de

T.: +49 (0)531 3917910

www.imab.de

