DFA DEFINITION

- A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q, F)$
 - Q Set of states
 - Σ Alphabet
 - $\delta:(Q\times\Sigma)\to Q$ is a Transition function
 - $q \in Q$ Initial state
 - $F \subseteq Q$ Set of final states

DFA DEFINITION

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- $\delta = \{((q_0, a), q_1), ((q_0, b), q_0), ((q_1, a), q_2), ((q_1, b), q_1), ((q_2, a), q_3), ((q_2, b), q_2), ((q_3, a), q_3), ((q_3, b), q_3)\}$
- \bullet $q = q_0$
- $\bullet F = \{q_2\}$

WHY DFA

- Why are these machines called "Deterministic Finite Automata"
 - Deterministic Each transition is completely determined by the current state and next input symbol. That is, for each state / symbol pair, there is exactly *one* state that is transitioned to

Every DFA has a finite number of states

Create a DFA for:

All strings over {0, 1} that contain the substring
 1001

Create a DFA for:

• All strings over {0, 1} that end with 111

Create a DFA for:

All strings over {0, 1} that begin with 111

Create a DFA for:

• All strings over {0, 1} that begin or end with 111

Create a DFA for:

All strings over {a, b} that begin and end with the same letter

Construct a minima DFA which interpreted as binary number is divisible by '3' over $\sum \{0, 1\}$.

Construct a DFA which accepts strings of even number of a's and even number of b's over $\sum \{a, b\}$.

NONDETERMINISM

- A nondeterministic finite automaton has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.
- > Start in one start state.
- Accept if any sequence of choices leads to a final state.

NFA DEFINITION

```
NFA is a 5-tuple M = (Q, \Sigma, \delta, q, F)
Q Set of states
\Sigma Alphabet
\delta: (Q \times \Sigma) \to P(Q) is a Transition function
q \in Q Initial state
F \subseteq Q Set of final states
```

EXAMPLE NFA

Set of all strings with two consecutive a's or two consecutive b's:

