NMAI060 Pravděpodobnostní metody - výpisky

Jan Michelfeit

<jan.michelfeit@seznam.cz>

ZS 2011/2012

Obsah

1	Úvod	2	
2	Vytvořující funkce		
3	Rekurentní jevy 3.1 Klasifikace rekurentních jevů	5	
4	Markovovy řetězce	9	
	4.1 Klasifikace stavů MŘ	9	
	4.2 Nerozložitelné řetězce	10	
	4.3 Stacionární rozdělení	10	
5		12	
	5.1 Příklady	14	
	5.2 Poissonův proces jako model zrodu a zániku	16	
	5.3 Systémy hromadné obsluhy	17	
6	Ostatní	19	

Poznámka k výpiskům

Toto jsou moje výpisky z přednášek, slidů od prof. Antocha, zápisků od tuetscheka a fóra. Důkazy obsahjí většinou pouze náznak myšlenky.

Tento text si v žádném případě nečiní nárok na bezchybnost. Mohou se vyskytnout překlepy a jsou psané, jak jsem výklad pochopil, bez záruky správnosti, což muže být samozřejmě úplně špatně. Pokud najdete nějakou chybu, dejte prosím vědět.

$\mathbf{\acute{U}vod}$ 1

Definice 1.1 (Rozptyl). Rozptyl náhodné veličiny X je var $X = E[(X - EX)^2] = EX^2 - EX^2$ $(EX)^2 = \sigma^2$.

Definice 1.2. Charakteristiky spojitých náhodných veličin:

- 1. Distribuční funkce $F(x) = \int_{-\infty}^{x} f(t) dt = P(X \le x)$ 2. Střední hodnota $EX = \int_{\mathbb{R}} x f(x) dx$; platí $Eg(x) = \int g(x) f(x) dx$
- 3. Rozptyl $\int_{\mathbb{R}} x^2 f(x) dx (\check{EX})^2$

Definice 1.3 (Rozdělení). Funkce, která každé hodnotě náhodné veličiny přiřazuje její pravděpodobnost.

- alternativní Alt(p)- P(X = 1) = p, P(X = 0) = 1 p, EX = p, var X = p(1 p)
- binomické Bi(n, p) n nezávislých alternativních pokusů; X nabývá $0, 1, \ldots, n$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
$$EX = np$$
$$\text{var } X = np(1 - p)$$

• rovnoměrné $R(x_1, \ldots, x_n) - X$ nabývá x_1, \ldots, x_n

$$P(X = x_i) = \frac{1}{n}$$
$$EX = \frac{1}{n} \sum x_i$$

• geometrické Ge(p) – pravděpodobnost prvního úspěchu právě v pokusu n

$$P(X = n) = (1 - p)^{n-1}p$$

• Poissonovo – X nabývá $0, 1, 2, \dots$

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$EX = \text{var } X = \lambda$$

Jsou-li $X \sim Po(\lambda_1), Y \sim Po(\lambda_2)$ nezávislé, potom $X + Y \sim Po(\lambda_1 + \lambda_2)$.

• Spojitá rozdělení:

	f(x)	F(x)	EX	$\operatorname{var}(X)$
U(a,b)	$\frac{1}{b-a}, x \in (a,b), \text{jinak } 0$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
$\exp(\lambda)$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	μ	σ^2

2 Vytvořující funkce

Náhodné veličiny se uvažují celočíselné.

Definice 2.1. Vytvořující funkce posloupnosti a_0, a_1, \ldots je $\mathcal{A}(x) = \sum_{j=0}^{\infty} a_j x^j$, pokud konverguje v okolí nuly.

Definice 2.2. Vytvořující funkce celočíselné náhodné veličiny X je vytvořující funkce $\mathcal{P}(x)$ poslouponosti $p_n = P(X = j), j = 0, 1, 2, \dots$

Poznámka. Taylorův rozvoj mocninné řady $\frac{1}{1-x} = 1 + x + x^2 + \dots$, konverguje na (-1,1) (\sim vytvořující funkce $(1,1,\dots)$). Pro e^x platí $e^x = \sum_{n=1}^{\infty} \frac{x^n}{n!}$. Součet geometrické řady je $\frac{a_1}{1-q}$ pro |q| < 1.

Definice 2.3 (Operace s mocninnými řadami). $a(x) = \sum_{n=1}^{\infty} a_i x^i$, $b(x) = \sum_{n=1}^{\infty} b_i x^i$.

- sčítání, násobení konstantou
- $x^n a(x)$ přidání n nul na začátek
- $\bullet\,$ vynechání prvních nčlenů
- $a(\alpha x)$ dosazení αx za x
- $a(x^n) (a_0, 0, \dots, 0, a_1, \dots)$
- derivování $(a_1, 2a_2, 3a_3, ...)$
- integrování $(0, a_0, \frac{1}{2}a_1, \ldots)$
- násobení konvoluce
- $\bullet \ a(1) = \sum_{i=0}^{\infty} a_i$
- $a(0) = a_0$

Poznámka. $\mathcal{P}(z) = E[z^X].$

Věta 2.1 (•). Pro $q_k = P(X > k)$ platí $\mathcal{Q}(x) = \frac{1 - \mathcal{P}(x)}{1 - x}$.

Důkaz. Konvoluce (1, 1, ...) a $(1 - p_0, -p_1, -p_2, ...)$.

Věta 2.2 (•). $EX = \mathcal{P}'(1)$

Věta 2.3. var $X = \mathcal{P}''(1) + \mathcal{P}'(1) - (\mathcal{P}'(1))^2$ pro celočíselnou náhodnou veličinu X s poloměrem konvergence větším než 1.

Důkaz.
$$\mathcal{P}''(1) + \mathcal{P}'(1) = \sum_{i=1}^{\infty} i^2 a_i = EX^2.$$

Poznámka (ullet). $p_j = \frac{\mathcal{P}^{(j)}(0)}{i!}$

Věta 2.4. Nechť $\mathcal{P}(x) = U(x)/V(x)$, U, V nemají společné kořeny, U má nižší stupeň a V má jednoduché kořeny. Potom pro kořeny x_1, \ldots, x_m polynomu V(x) platí:

$$p_n = \frac{\varrho_1}{x_1^{n+1}} + \ldots + \frac{\varrho_m}{x_m^{n+1}}$$

Poznámka. Pro $n \to \infty$ platí $p_n \approx \frac{\varrho_1}{x_1^{n+1}}$.

Příklad. Vytvořující funkce rozdělení:

- alternativní $\mathcal{P}(x) = q + px$,
- binomické $\mathcal{P}(x) = (q + px)^n$, Poissonovo $\mathcal{P}(x) = e^{-\lambda(1-x)}$,
- geometrické $\mathcal{P}(x) = \frac{p}{1-qx}$, resp. $\frac{px}{1-qx}$, rovnoměrné $\frac{x(1-x^n)}{n(1-x)}$.

Poznámka. Geometrické rozdělení je nejjednodušší model doby čekání.

Definice 2.4 (Konvoluce). Mějme posloupnosti $\{a_j\}, \{b_j\}, c_n = a_0b_n + \ldots + a_nb_0$ pro $n = 0, 1, \dots$ Potom $\{c_j\}$ nazýváme konvoluce, $\{c_j\} = \{a_j\} \star \{b_j\}$.

Věta 2.5. Pro $\{c_j\} = \{a_j\} \star \{b_j\}$ a jejich odpovídající vytvořující funkce platí

$$C(x) = A(x)B(x)$$
.

Věta 2.6. Součet $\sum_{i=1}^{n} X_i$ pro X_i i.i.d. s vytvořující funkcí $\mathcal{P}(x)$ má rozdělení dané n-tou konvoluční mocninou $\{p_j\}^{n\star}$ s vytvořující funkcí $\mathcal{P}^n(x)$.

Věta 2.7 (•). Nechť X_i jsou i.i.d. s rozdělením $\{a_i\}$ a vytvořující funkcí $\mathcal{A}(x)$, N s rozdělením $\{b_j\}$ a vytvořující funkcí $\mathcal{B}(x)$. Potom $S_N = X_1 + \ldots + X_N$ má rozdělení $\{c_j\}$:

$$c_j = P(S_N = j) = \sum_{n=0}^{\infty} b_n \cdot \{a_j\}^{n\star}$$

a platí

$$C(x) = \mathcal{B}(\mathcal{A}(x))$$

a $ES_N = EX_1 \cdot EN$. Rozptyl se spočte z věty 2.3.

Důkaz. $c_j = \sum P(S_N = j \mid N = n)P(N = n)$ dle věty o úplné pravděpodobnosti. Odtud

$$C(x) = \sum_{j} c_j x^j = \sum_{j} x^j \sum_{n} g_n f_j^{n\star} = \sum_{n} g_n (\mathcal{A}(x))^n = \mathcal{B}(\mathcal{A}(x))$$

 $ES_N = EX_1 \cdot EN$ plyne z věty 2.2.

Příklad. N vajíček, $N \sim Po(\lambda)$, indikátor vylíhnutí $X_i \sim Alt(p)$. Potom $S_N \sim Po(\lambda p)$.

Důkaz.

$$P(N = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Vytvořující funkce pro Poissona $\mathcal{P}(x) = e^{-\lambda(1-x)} + \text{věta } 2.7.$ Vytvořující funkci Poissona lze odvodit pomocí

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

 \Diamond

 \Diamond

Příklad (Šíření virů). V první generaci je $X^{(0)} = 1$ jedinec, ten má $X^{(1)} = X$ potomků s rozdělením daným vytvořující funkcí A(x). Ve druhé generaci je $X^{(2)} = X_1 + X_2 + \ldots + X_X = X^2$ jedinců \rightarrow vytvořující funkce A(A(x)). Střední hodnotu vypočteme z věty 2.2, přičemž využijeme $A(1) = \sum_{i=0}^{\infty} a_i = 1$ (a_i je pravděpodobnostní rozdělení).

$$EX^{(i)} = \underbrace{[A(\dots(A(x))\dots)]'_{x=1}}_{i} = A'(\underbrace{A(\dots A(x))}_{i-1})A'(\underbrace{A(\dots A(x))}_{i-2})\cdots A'(x)_{|x=1}$$
$$= A'(1)A'(1)\cdots A'(1) = (EX)^{i}$$

3 Rekurentní jevy

Definice 3.1 (\bullet Rekurentní jev). Mějme posloupnost opakovaných (ne nutně nezávislých) pokusů, všechny mají tutéž nejvýše spočetnou množinu možných výsledků E_1, E_2, \ldots Nechť $\{E_{j_1}, \ldots, E_{j_n}\}$ značí jev, že pokus $i \in [n]$ skončil E_{j_i} .

Nechť pro všechny takové konečné posloupnosti platí

$$P(E_{j_1}, \dots, E_{j_{n-1}}) = \sum_{j_n=1}^{\infty} P(E_{j_1}, \dots, E_{j_{n-1}}, E_{j_n}), \quad 1 < n < \infty$$

a o posloupnosti lze jednoznačně rozhodnout, zda má vlastnost ξ . ξ nastává na n-tém místě posloupnosti E_{j_1}, E_{j_2}, \ldots pokud posloupnost E_{j_1}, \ldots, E_{j_n} má vlastnost ξ .

Vlastnost ξ je **rekurentní jev**, pokud

- 1. ξ nastal na n-tém a (n+m)-tém místě posloupnosti $E_{j_1}, \ldots, E_{j_{n+m}}$ právě když nastane na posledním místě posloupnosti E_{j_1}, \ldots, E_{j_n} a posloupnosti $E_{j_{n+1}}, \ldots, E_{j_{n+m}}$.
- 2. V takovém případě platí

$$P(E_{j_1}, \dots, E_{j_{n+m}}) = P(E_{j_1}, \dots, E_{j_n}) \cdot P(E_{j_{n+1}}, \dots, E_{j_{n+m}})$$

Definice 3.2. Pro rekurentní jev ξ , $1 \le n < \infty$ definujeme

- $u_n = P(\xi \text{ nastane v } n\text{-t\'em pokusu}), u_0 = 1$
- $f_n = P(\xi \text{ nastane v } n\text{-t\'em pokusu poprv\'e}), f_0 = 0$

Věta 3.1 (\bullet). Pro u_n, f_n platí

$$u_n = f_0 u_n + f_1 u_{n-1} + \ldots + f_n u_0, \quad n \ge 1$$

a pro odpovídající vytvořující funkce

$$U(X) - 1 = F(X)U(x).$$

Důkaz. Rekurentní vzorec z věty o úplné pravděpodobnosti podle toho, kdy jev nastal poprvé.

$$U(X)F(X) \sim (f_0 u_0, f_0 u_1 + f_1 u_0, f_0 u_2 + f_1 u_1 + f_2 u_0, \ldots) = (0, f_1, f_1 u_1 + f_2, \ldots)$$
$$U(X) - 1 \sim (u_0 - 1, u_1, \ldots) = (1 - 1, u_1, \ldots)$$

Příklad. Nechť q_n je pravděpodobnost toho, že v posloupnosti n hodů mincí nepadne ani jednou trojice líců za sebou. Odvoďte vytvořující funkci

$$Q(x) = \frac{8 + 4x + 2x^2}{8 - 4x - 2x^2 - x^3}.$$

Důkaz. Označme

- p pravděpodobnost hodu líce (L),
- ξ jev, že padnou tři líce za sebou,
- \bullet q_n pravděpodobnost, že první trojice líců padne až po n-tém kroku,
- f_n pravděpodobnost, že první trojice líců padne právě v n-tém kroku,
- u_n pravděpodobnost, že některá trojice líců padne v n-tém kroku; na tento případ se aplikuje zapomínání, tedy v posloupnosti RRLLLL jev ξ nastává na pozici 5, ale na pozici 6 už ne.

Posloupnost . . .LLL má pravděpodobnost p^3 . Pomocí u_n se zapomínáním ji můžeme vyjádřit jako

$$p^3 = u_n + pu_{n-1} + p^2 u_{n-2}$$

 $(\xi$ může nastat přímo na pozici n, nebo na pozici n-1 a na pozici n je L, nebo na pozici n-2 a na pozicích n-1 a n je L). Pomocí pravidel pro počítání s vytvořujícími funkcemi z rekurentní rovnice odvodíme

$$\frac{p^3}{1-x} = \frac{U(x)-1}{x^3} + \frac{p(U(x)-1)}{x^2} + \frac{p^2(U(x)-1)}{x}$$
$$U(x) = 1 + \frac{p^3x^3}{(1-x)(1+px+p^2x^2)}$$

Podle vět 2.1 a 3.1 platí

$$Q(x) = \frac{1 - F(x)}{1 - x} = \frac{1 - \frac{U(x) - 1}{U(x)}}{1 - x} = \frac{1}{(1 - x)U(x)}.$$

 \Diamond

Dosazením p = 1/2 dostaneme výsledek.

Poznámka. $\{f_n\}$ udává rozdělení náhodné veličiny T_1 popisující čekání na první výskyt rekurentního jevu. Je-li $f = \sum_{n=1}^{\infty} f_n < 1$, potom je T_1 nevlastní a 1 - f je pravděpodobnost, že jev nenastal.

Definice 3.3. Nechť T_i jsou veličiny s tímtéž rozdělením f_n , potom je interpretujeme jako dobu návratu. $T^{(r)} = T_1 + \ldots + T_r$.

 $f_n^{(r)} = P(\xi \text{ nastane po } r\text{-t\'e v } n\text{-t\'em pokusu}).$

Věta 3.2.

$$\left\{ f_n^{(r)} \right\} = \left\{ f_n \right\}^{r \star}$$

Důkaz.
$$\{a_n\} := \{f_n\}^{r\star}, \ a_n = \sum_{i=1}^r T_i.$$

Věta 3.3. Pravděpodobnost, že rekurentní jev nastane v nekonečné posloupnosti alespoň r-krát, je f^r , kde $f = \sum_{n=0}^{\infty} f_n$.

3.1 Klasifikace rekurentních jevů

Definice 3.4. $f = \sum_{n=0}^{\infty} f_n$

Definice 3.5 (\bullet Trvalý jev). Jev ξ je **trvalý**, pokud f = 1. Pokud f < 1, je ξ **přechodný**.

Poznámka. Pravděpodobnost, že jev ξ nastane v nekonečné posloupnosti pokusů nekonečněkrát je jedna pro trvalý jev a nula pro přechodný jev.

Definice 3.6. Je-li f=1, budeme označovat $\mu=ET_1=\sum_{n=0}^{\infty}nf_n$ střední doba návratu.

Definice 3.7 (\bullet Nulový jev). *Trvalý* jev ξ je **nulový**, jestliže $\mu = \infty$; pokud $\mu < \infty$, je **nenulový**.

Definice 3.8 (• Periodický jev). Rekurentní jev ξ je periodický, pokud existuje $\lambda \in \mathbb{N}$, $\lambda > 1$, t.ž. $u_n = 0$ pro všechna n, která nejsou dělitelná λ .

Největší takové λ je perioda ξ .

Věta 3.4. Rekurentní jev ξ je přechodný, právě když $u=\sum_{n=0}^\infty u_n<\infty.$ V takovém případě je $f=\frac{u-1}{u}.$

Definice 3.9 (• Náhodná procházka). Mějme posloupnost i.i.d. náhodných veličin $X_1, X_2, ...$, které mají výsledek +1 s pravděpodobností p a výsledek -1 s pravděpodobností 1-p. Jednoduchá náhodná procházka s pravděpodobností zdaru p je potom posloupnost $\{S_n\}_{n=0}^{\infty}$, kde $S_n = \sum_{i=1}^n X_i$.

Obecně je náhodná procházka model pohybu. Lze je zobecnit do více rozměrů (např. úloha opilý námořník na Manhattanu).

Příklad. Mějme jednoduchou náhodnou procházku s pravděpodobností zdaru p. Návrat do počátku označíme jako jev ξ (vyrovnání úspěchů a neúspěchů). Ukažte, že ξ je periodický jev trvalý pro p = 1/2 a přechodný jinak. Odvoďte vytvořující funkce U(x), F(x).

Důkaz. $u_{2n+1} = 0$, tedy ξ je periodický. $u_{2n} = \binom{2n}{n} p^n q^n$.

(i) p = 1/2

$$\sum_{i} u_{i} = \sum_{n} {2n \choose n} \frac{1}{2^{2n}} = \sum_{n} \frac{(2n)!}{n!n!} \frac{1}{2^{2n}}$$

Využijeme aproximaci $n! \approx \sqrt{2\pi n} \frac{n^n}{e^{2n}}$:

$$\sum_{i} u_{i} = 2^{2n} \frac{1}{\sqrt{\pi n}} \frac{1}{2^{2n}} = \sum_{n} \frac{1}{\sqrt{\pi n}} = \infty$$

Podle věty 3.4 je tedy ξ trvalý jev.

U(x) odvodíme pomocí vytvořující funkce $\sum_{n=0}^{\infty} {2n \choose n} x^n = \frac{1}{\sqrt{1-4x}}$ (plyne ze zobecněné binomické věty):

$$U(x) = \sum_{n=0}^{\infty} {2n \choose n} (pqx^2)^n = \frac{1}{\sqrt{1 - 4pqx^2}}$$

Odtud plyne $F(x) = 1 - \sqrt{1 - 4pqx^2}$ a střední hodnota doby návratu

$$\mu = F'(1) = \frac{8pqx}{\sqrt{1 - 4pqx^2}}_{|x=1, p=q=1/2} = \infty$$

a tedy ξ je nulový.

(ii)
$$p \neq q$$

$$f = F(1) = 1 - \sqrt{1 - 4pq} < 1$$

 \Diamond

Jev není trvalý.

Poznámka:
$$f_{2n} = \frac{2}{n} {2n-2 \choose n-2} p^n q^n$$

Příklad. Náhodná procházka ve dvou rozměrech (se stejně pravděpodobnými směry):

$$u_{2n} = \sum_{i=0}^{n} \frac{(2n)!}{i!i!(n-i)!(n-i)!} \frac{1}{4^{2n}} \approx \frac{1}{\pi n} \implies \sum u_n = \infty$$

Jev je trvalý.

Náhodná procházka ve třech rozměrech: $u_{2n} \leq k n^{-\frac{3}{2}}$. Jev je přechodný.

Věta 3.5 (Limitní věta). Nechť rekurentní jev ξ je trvalý neperiodický. Potom

$$\lim_{n \to \infty} u_n = \frac{1}{\mu}.$$

Nechť rekurentní jev ξ je trvalý periodický s periodou λ . Potom

$$\lim_{n \to \infty} u_{n\lambda} = \frac{\lambda}{\mu}.$$

Věta 3.6 (Asymptotické rozdělení). Nechť rekurentní jev ξ je trvalý. Nechť N_n je počet výskytů jevu do času n a $T^{(r)}$ doba čekání na r-tý výskyt. Potom jevy $[N_n \geq r]$ a $[T^{(r)} \leq n]$ jsou ekvivalentní. Nechť rozdělení dob prvních návratů má konečnou střední hodnotu μ (jev je nenulový) a rozptyl σ^2 . Potom $N_n \sim \mathcal{N}(\frac{n}{\mu}, \frac{n\sigma^2}{\mu^3})$ a

$$\lim_{r \to \infty} P\left(\frac{T^{(r)} - r\mu}{\sigma\sqrt{r}} \le y\right) = \Phi(y).$$

Věta 3.7. Pro trvalý nenulový rekurentní jev, $n \to \infty$ platí $EN_n \approx \frac{n}{\mu}$.

Věta 3.8 (Rovnice obnovy). Nechť a_n a b_n jsou dvě posloupnosti, $a_0 = 0$, $a_n \in [0, 1]$, $b_n \ge 0$, $\sum_{n=0}^{\infty} b_n < \infty$. Mějme $u_n = b_n + a_0 u_n + a_1 u_{n-1} + \ldots + a_n u_0$, tj.

$${u_n} = {b_n} + {a_n} {u_n}.$$

Tento vztah se nazývá rovnice obnovy.

Pro vytvořující funkce posloupností platí

$$\mathcal{U}(x) = \frac{\mathcal{B}(x)}{1 - \mathcal{A}(x)}.$$

Nechť a_n je neperiodická, $a = \sum_{n=1}^{\infty} a_n$, $u = \sum_{n=1}^{\infty} u_n$. Pro a < 1 platí $u < \infty$. Pro a = 1 je a_n rozdělení doby návratu trvalého neperiodického rekurentního jevu a

$$\lim_{n \to \infty} u_n = \sum_{n=0}^{\infty} \frac{b_n}{\sum_{n=1}^{\infty} n a_n}.$$

Poznámka. Odpovídá vztahu U(x) a F(x) rekurentních jevů pro $\mathcal{B}(x) = 1$.

Markovovy řetězce 4

Definice 4.1 (• Markovovy řetězce). Posloupnost pokusů se stejnou nejvýše spočetnou množinou možných výsledků E_1, E_2, \ldots nazveme MŘ, jestliže pro každou konečnou posloupnost výsledků platí

$$P(E_{j_0}, E_{j_1}, \dots, E_{j_n}) = a_{j_0} p_{j_0 j_1} \cdots p_{j_{n-1} j_n},$$

kde a_k jsou pravděpodobnosti výsledků nultého pokusu a p_{jk} pravděpodobnosti výsledku E_k za podmínky výsledků E_j v předchozím pokusu.

 $\{a_k\}$ se nazývá počíteční rozdělení, p_{jk} pravděpodobnosti přechodu.

Poznámka. Platí $\sum_{i} p_{ij} = 1$ (někam se přejít musí).

Definice 4.2. Pravděpodobnost přechodu ze stavu E_j do stavu E_k po n krocích budeme značit $p_{jk}^{(n)}$. Nepodmíněné pravěpodobnost $a_k^{(n)}$ je pravděpodobnost jevu, že systém je v čase n ve stavu E_k

Věta 4.1. Hodnoty p_{ik}^n jsou prvky matice P^n .

Značení. Označme $f_{ij}^{(n)}$ pravděpodobnost prvního průchodu stavem E_j , začínáme-li v E_i a $p_{ij}^{(n)}$ pravděpodobnost toho, že systém je ve stavu E_j , začíname-li v E_i .

Věta 4.2. Platí

$$\left\{ p_{jj}^{(n)} \right\} = \left\{ f_{jj}^{(n)} \right\} \star \left\{ p_{jj}^{(n)} \right\}$$

$$\left\{ p_{ij}^{(n)} \right\} = \left\{ f_{ij}^{(n)} \right\} + \left\{ f_{jj}^{(n)} \right\} \star \left\{ p_{ij}^{(n)} \right\}$$

Příklad. Příklady MŘ:

- náhodné procházky po přímce (s odrážejícími stěnami, s pohlcujícími stěnami),
- \bullet Ehrenfestův myšlený pokus a rozlišitelných molekul rozděleních do nádob A a B, v každém kroku se zvolí jedna molekula (s pravděpodobností 1/a) a přemístí do opačné nádoby,
- posloupnost nezávislých opakovaných pokusů.

Klasifikace stavů MŘ 4.1

Věta 4.3 (\bullet). Mějme E_j stav v Markovově řetězci. Je-li systém ve stavu E_j , každý průchod stavem E_j je rekurentní jev. Je-li na počátku ve stavu E_i , je to rekurentní jev se zpožděním.

Věta 4.4. V MŘ je stav E_i

- přechodný, právě když $\sum_{n=1}^{\infty} p_{jj}^{(n)} < \infty$, trvalý nulový, právě když $\sum_{n=1}^{\infty} p_{jj}^{(n)} = \infty$ a $\lim_{n \to \infty} p_{jj}^{(n)} = 0$.

Věta 4.5. Je-li v Markovově řetězci stav E_i

- trvalý nenulový neperiodický, potom $\lim_{n\to\infty} p_{jj}^{(n)} = \frac{1}{\mu_i}$, $\lim_{n\to\infty} p_{ij}^{(n)} = \frac{f_{ij}}{\mu_i}$,
- \bullet obdobně pro periodický $\lim_{n\to\infty}p_{jj}^{(n\lambda)}=\frac{\lambda}{\mu_i}.$

4.2 Nerozložitelné řetězce

Definice 4.3. Stav E_k je dosažitelný z E_j , jestliže $\exists n \geq 0$ t.ž. $p_{jk}^{(n)} > 0$.

Definice 4.4. Neprázdná množina stavů C je **uzavřená**, jestliže žádný stav vně C není dosažitelný ze stavů v C. Taková množina je opět MŘ (podřetězec).

Definice 4.5. Absorbční stav je prvek jednobodové uzavřené množiny $(p_{jj} = 1)$.

Věta 4.6. Množina stavů C je uzavřená, právě když $\forall E_i \in C, E_k \notin C: p_{ik} = 0.$

Definice 4.6. MŘ je **nerozložitelný**, pokud jediná jeho uzavřená množina je množina všech stavů.

Věta 4.7. Řetězec je nerozložitelný, právě když každý stav je dosažitelný z každého.

Definice 4.7. Stavy E_j a E_k jsou stejného typu, pokud jsou oba přechodné, resp. oba trvale nulové, resp. oba trvale nenulové a současně mají stejnou periodicitu.

Věta 4.8. Pokud jsou dva stavy vzájemně dosažitelné, jsou stejného typu. V nerozložitelném MŘ jsou všechny stavy téhož typu.

Věta 4.9. V MŘ s konečně stavy neexistují nulové stavy a není možné, aby všechny stavy byly přechodné.

4.3 Stacionární rozdělení

Definice 4.8 (• Stacionární rozdělení). Mějme nerozložitelný MŘ s maticí pravděpodobností přechodů P. Rozdělení $\{v_j\}$ se nazývá stacionární rozdělení řetězce, pokud

$$\forall j: \quad v_j = \sum_i v_i p_{ij}, \text{ tj. } \mathbf{v} = P^T \mathbf{v}$$

(tj. zachovává pro jednotku času "rozložení částic").

Poznámka. Stacionární rozdělení zřejmě udává pravděpodobnosti stavů po ustálení systému (pokud stacionární rozdělení existuje).

Věta 4.10 (•). V nerozložitelném MŘ existuje stacionární rozdělení, právě když všechny stavy jsou trvalé nenulové. Toto rozdělení v je jediné a $\forall i, j$ platí:

$$v_j=\lim_{n o\infty}p_{ij}^{(n)}>0$$
v neperiodickém případě
$$v_j=\lim_{n o\infty}\frac{1}{n}\sum_{k=1}^np_{ij}^{(k)}>0$$
v periodickém případě

Důsledek (•). V nerozložitelném MŘ s konečně mnoha stavy existuje stacionární rozdělení.

Definice 4.9. Matice s nezápornými prvky t.ž. všechny řádkové i sloupcové součty jsou jedna se nazývá **dvojně stochastická**.

Věta 4.11. Pro nerozložitelný MŘ s dvojně stochastickou maticí a nekonečným počtem stavů stacionární rozdělení neexistuje, pro konečný počet stavů n je stacionární rozdělení rovnoměrné $(v_i = 1/n)$.

Definice 4.10 (•• Isingův model). Máme graf G = (V, E), každý vrchol i má stav $\sigma_i \in \{-1, +1\}$ (obecně $\{1, \dots, K\}$, např. barvy). Vektor σ popisuje stav systému. Prostor stavů S je $\{-1, +1\}^{|V|}$.

Isingův model je pravděpodobnostní rozdělení $\pi(\beta)$ na prostoru stavů S, kde

$$\pi(\beta) = C_{\beta}^{-1} e^{-\beta H(\sigma)}$$

$$H(\sigma) = \sum_{(i,j)\in E} I[\sigma_i \neq \sigma_j] \quad \text{(Hamiltonián - "energie stavů")}$$

$$C_{\beta} = \sum_{\sigma^* \in S} e^{-\beta H(\sigma^*)}$$

Pro $\beta > 0$ jsou v daném modelu nejpravděpodobnější konfigurace stavů, pro něž je Hamiltonián malý (malá energie, informace).

Aplikace v analýze obrazu - pixely jsou vrcholy, hrany spojují sousední pixely, stavy odpovídají barvám. Obrázek je reprezentován vektorem $\sigma \in S,$ pozorujeme zašuměný obraz $Y = \sigma + \varepsilon$, kde $\varepsilon_i \sim N(0, \delta^2)$. Chtěli bychom odhadnou skutečný obraz, pozorujeme-li Y a předpokládáme, že σ má rozdělení $C_{\beta}^{-1}e^{-\beta H(\sigma)}$. Řešíme Bayesovskou statistikou a MŘ (náhodná procházka grafem, hledáme stacionární rozdělení – zřejmě to, co se učí v UI II jako MCMC). Možnosti jsou generovat z aposteriorního rozdělení $\mathcal{L}(\sigma|Y)$ konfigurace jako možné reprezentace obrazu, nebo hledat $\hat{\sigma}$ maximalizující $P(\hat{\sigma}|Y)$.

Varianty pro $S = \{1, \dots, K\}^{|V|}$:

- Potův model $H(\sigma) = \sum_{(i,j) \in E} I[\sigma_i \neq \sigma_j]$ model pro černobílé obrázky $H(\sigma) = \sum_{(i,j) \in E} f(\sigma_i, \sigma_j)$ pro nějakou metriku f

Poznámka. C_{β}^{-1} je normalizační konstanta, která z $\pi(\beta)$ dělá rozdělení (součet přes všechna σ musí být 1).

Příklad. Nalezněte stacionární rozdělení pro náhodnou procházku s dvěma odrážejícími stěnami.

Pro p = 1/2 vyjde rovnoměrné (dvojně stochastická matice).

Příklad. Mějme náhodnou procházku s jednou odrážející stěnou. Její matice P je

$$P = \begin{pmatrix} q & p & 0 & \dots \\ q & 0 & p & \dots \\ 0 & q & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Je nerozložitelný, stacionární rozdělení najdu ze vztahu $\mathbf{v}_j = q\mathbf{v}_{j-1} + p\mathbf{v}_{j+1}$. Pokud $\sum_{j=1}^{\infty} \mathbf{v}_j$ konverguje, stacionární rozdělení existuje. Z nerozložitelnosti by potom stavy byly nenulové a trvalé.

Příklad. Nalezněte stacionární rozdělení pro Ehrenfestův myšlený pokus s N částicemi. Sestavíme matici P a hledáme \mathbf{v} t.ž. $\mathbf{v}^T = \mathbf{v}^T P$. Pro stav E_n dostaneme rovnici

$$\mathbf{v}_n = (1 - \frac{n-1}{N})\mathbf{v}_{n-1} + \frac{n+1}{N}\mathbf{v}_{n+1}, \quad \mathbf{v}_0 = \frac{1}{N}\mathbf{v}_1.$$

Pomocí "kouzel s násobením" by mělo vyjít $\mathbf{v}_n = \binom{N}{n} \mathbf{v}_0$. \mathbf{v}_0 potom zjistíme takto:

$$\sum_{n=0}^{N} \binom{N}{n} \mathbf{v}_0 = 1$$
$$2^N \mathbf{v}_0 = 1 \implies \mathbf{v}_0 = 2^{-N}$$

5 Lineární proces zrodu a zániku

Definice 5.1. Náhodná veličina X má exponenciální rozdělení $Exp(\lambda)$, pokud má hustotu

$$f(x,\lambda) = \begin{cases} \lambda e^{-\lambda x} & x > 0, \lambda > 0, \\ 0 & \text{jinak.} \end{cases}$$

$$EX = \frac{1}{\lambda}$$
, var $X = \frac{1}{\lambda^2}$, $F(x) = 1 - e^{-\lambda x}$.

Věta 5.1 (•). Exponenciální rozdělení je jediné spojité rozdělení, pro které platí

$$P(X > x + y | X > x) = P(X > y).$$

Mezi diskrétními rozdeleními má tuto vlastnost pouze geometrické. X můžeme interpretovat jako dobu života procesu, potom pravděpodobnost přežití časového období nezávisí na tom, jakou dobu proces doposud přežil.

Definice 5.2 (\bullet Funkce intenzity). Nechť náhodná veličina X má hustotu f(x) a distribuční funkci F(x). Funkce intenzity je

$$\Lambda(x) = \frac{f(x)}{1 - F(x)}.$$

Poznámka. Mějme náhodnou veličinu X (doba života procesu) s hustotou f, distribuční funkci F. Pravděpodobnost okamžitého selhání je $\Delta\Lambda(x)$:

$$P(x < X \le x + \Delta | X > x) = \frac{F(x + \Delta) - F(x)}{1 - F(x)} \frac{\Delta}{\Delta} \stackrel{\Delta \to 0}{\approx} \Delta \Lambda(x)$$

Poznámka. Funkce intenzity jednoznačne charakterizuje rozdělení.

Poznámka (\bullet). Exponenciální rozdělení je jediné spojité rozdělení s konstantní funkcí intenzity (λ).

Definice 5.3 (• Lineární proces zrodu a zániku). Mějme systém s nejvýše spočetně stavy, pravděpodobnosti přechodů v časovém intervalu (t, t + h) jsou:

$$P(E_n \to E_{n+1}) = \lambda_n h + o(h)$$

$$P(E_n \to E_{n-1}) = \mu_n h + o(h)$$

$$P(E_n \to E_{n\pm j}, j > 1) = o(h)$$

(Markovský proces se spojitým časem a diskrétními stavy.)

Značení. Pravděpodobnost toho, že systém je v čase t ve stavu E_n budeme značit $P_n(t)$. Limitu označíme $p_n = \lim_{t\to\infty} P_n(t)$.

Poznámka. Zajímá nás $P_n(t+h)$ a p_n .

Věta 5.2 ($\bullet \bullet$). Pravděpodobnosti p_n existují, nezávisí na počítečních podmínkách a vyhovují systému linerárních rovnic:

$$0 = -\lambda_0 p_0 + \mu_1 p_1$$

$$0 = -(\lambda_n + \mu_n) p_n + \mu_{n+1} p_{n+1} + \lambda_{n-1} p_{n-1}, \quad n \ge 1$$

Pravděpodobnosti $P_n(t)$ splňují následující systém diferenciálních rovnic:

$$P'_0(t) = -\lambda_0 P_0(t) + \mu_1 P_1(t)$$

$$P'_n(t) = -(\lambda_n + \mu_n) P_n(t) + \mu_{n+1} P_{n+1}(t) + \lambda_{n-1} P_{n-1}(t), \quad n \ge 1$$

Důkaz. Odvození: Hledáme $P_n(t+h)$ pro nějaké malé h.

$$P_n(t+h) = (1 - \lambda_n h - \mu_n h + o(h)) P_n(t)$$

$$+ (\mu_{n+1} h + o(h)) P_{n+1}(t)$$

$$+ (\lambda_{n-1} h + o(h)) P_{n-1}(t)$$

$$+ o(h) P_{n \pm k}(t)$$

(Součet pravděpodobností setrvání v P_n , přechodu z P_{n+1} , přechodu z P_{n-1} a přechodu ze vzdálenějšího stavu.) Vydělíme rovnice $h \to 0$ a zanedbáme členy $\frac{o(h)}{h}$:

$$\frac{P_n(t+h) - P_n(t)}{h} = P'_n(t) = (-\lambda_n - \mu_n)P_n(t) + (\mu_{n+1})P_{n+1}(t) + (\lambda_{n-1})P_{n-1}(t)$$
$$P'_0(t) = -\lambda_0 P_0(t) + \mu_1 P_1(t)$$

Je-li systém v čase 0 ve stavu E_i , pak jsou splněny počáteční podmínky $P_i(0) = 1$ a $P_n(0) = 0$ pro $n \neq i$. Limity v nekonečnu p_n dostaneme z diferenciálních rovnic položením $P'_n(t) = 0$.

5.1 Příklady

Příklad. Mějme systém z prvků, kde se za čas h rozdělí jeden prvek s pravděpodobností $\lambda h + o(h)$ a zanikne s pravděpobností $\mu h + o(h)$. Je-li chování prvků nezávislé, jde o model zrodu a zániku s $\lambda_n = n\lambda$, $\mu_n = n\mu$.

Příklad (Model ústředny s nekonečně linkami). Mějme ústřednu, hovor skončí v intervalu (t,t+h) s pravděpodobností $\mu h + o(h)$, nová linka se obsadí s pravděpodobností $\lambda h + o(h)$, hovory jsou nezávislé. Ukažte, že limitní pravděpodobnosti p_n se řídí Poissonovým rozdělením s parametrem $\frac{\lambda}{\mu}$.

Důkaz. Jde o model zrodu a zániku s $\lambda_n = \lambda$, $\mu_n = n\mu$. Z rovnic z věty 5.2 plyne:

$$0 = -\lambda p_0 + \mu p_1$$

$$0 = -(\lambda + n\mu)p_n + (n+1)\mu p_{n+1} + \lambda p_{n-1}$$

$$p_1 = \frac{\lambda}{\mu} p_0$$

$$p_2 = \frac{\lambda^2}{2\mu^2} p_0$$
...
$$p_n = \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n p_0$$

Z existence stacionárního rozdělení plyne $\sum p_n = 1$ (?).

$$p_0 \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n = p_0 e^{\frac{\lambda}{\mu}}$$

Odtud
$$p_0 = e^{-\frac{\lambda}{\mu}}$$
 a

$$p_n = \frac{e^{-\frac{\lambda}{\mu}}}{n!} \left(\frac{\lambda}{\mu}\right)^n \sim Po\left(\frac{\lambda}{\mu}\right).$$

 \Diamond

Poznámka. Pokud bychom předchozí příklad simulovali, dostali bychom prý střední hodnotu a rozptyl $\frac{\lambda}{\mu}$, ale nebylo by zřejmé, že mají pravděpodobnosti Poissonovo rozdělení.

Příklad (Dvojbudka s jednou neomezenou frontou).

$$\lambda_n = \lambda$$

$$\mu_n = \begin{cases} 0 & n = 0 \\ \mu & n = 1 \\ 2\mu & n \ge 2 \end{cases}$$

$$p_n = p_0 \left(\frac{\lambda}{\mu}\right)^n \frac{1}{2^{n-1}}$$

 p_0 spočteme pomocí součtu geometrické řady $p_0+\frac{\lambda}{\mu}p_0+\frac{\lambda^2}{2\mu^2}p_0+\ldots=1.$

$$p_0 = \frac{2\mu - \lambda}{2\mu + \lambda}, \qquad p_n = \frac{2\mu - \lambda}{2\mu + \lambda} \left(\frac{\lambda}{\mu}\right)^n \frac{1}{2^{n-1}}$$

14

Příklad (Parkoviště MFF kapacity N bez fronty).

$$\lambda_n = \lambda$$

$$\mu_n = n\mu, \quad 0 \le n \le N$$

Jako ústředna

$$p_n = \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n p_0.$$

 p_0 dostaneme z rovnice

$$p_0 \sum_{n=0}^{N} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n = 1$$

(useknuté Poissonovo rozdělení).

Příklad (Jedna telefonní budka s frontou omezenou N).

$$\lambda_n = \lambda$$

$$\mu_n = \mu, \quad 0 \le n \le N$$

$$p_n = \left(\frac{\lambda}{\mu}\right)^n p_0$$

$$1 = p_0 \frac{\left(\frac{\lambda}{\mu}\right)^{N+2} - 1}{\frac{\lambda}{\mu} - 1}$$

 $(N+2 \text{ sčítanců}, \text{ protože může být fronta dlouhá 1 až } N \text{ lidí}, nebo fronta prázdná a budka obsazená, nebo fronta prázdná i budka prázdná).}$

Příklad (1 opravář na M strojů).

 $\lambda_n = \lambda(M-n)$ (pokud se porouchalo n strojů, může se ještě porouchat M-n) $\mu_n = \mu$ (konstantní intenzita práce opraváře)

$$p_n = \frac{M!}{(M-n)!} \left(\frac{\lambda}{\mu}\right)^n p_0, \quad p_{M-n} = M! \left(\frac{\lambda}{\mu}\right)^M \frac{1}{n!} \left(\frac{\mu}{\lambda}\right)^n p_0$$
$$1 = p_0 M! \left(\frac{\lambda}{\mu}\right)^M \sum_{n=0}^M \frac{1}{n!} \left(\frac{\mu}{\lambda}\right)^n$$

(Inverze parkoviště, useknuté Poissinovo rozdělení s převráceným parametrem $\frac{\mu}{\lambda}$ a $M! \left(\frac{\lambda}{\mu}\right)^M$ slouží jako normalizační konstanta.)

Příklad. Mějme systém, který může být ve dvou stavech – fungující, rozbitý. Intenzita poruchy je λ (střední doba poruchy $\frac{1}{\lambda}$), střední doba opravy $\frac{1}{\mu}$.

$$p_0 = \frac{\mu}{\lambda + \mu}, \quad p_1 = \frac{\lambda}{\lambda + \mu}$$

Příklad (Oficína se dvěma židlemi v pipelině). Mějme model oficíny se dvěma židlemi bez fronty. Stavy budou (0,0), (1,0), (0,1), (1,1), (W,1), kde 1 indikuje obsazenost a W čekání. Příchody zákazníků mají intenzitu λ , doba na 1. židli μ_1 , doba na 2. židli μ_2 .

5.2 Poissonův proces jako model zrodu a zániku

Definice 5.4 (•). Označme $P_n(t)$ pravděpodobnost jevu, že za dobu t nastalo n změn (např. rozpad atomů). Předpokládejme, že proces je stacionární (nezávisí na poloze a délce intervalu) a bez ohledu na historii pravděpodobnost jedné změny za čas h je $\lambda h + o(h)$, více změn o(h).

Definice 5.5 (Poissonův proces). Poissonův proces s intenzitou $\lambda > 0$ je čítací proces $\{N(t), t \geq 0\}$ (počty událostí v intervalu [0, t]) takový, že

- (i) N(0) = 0,
- (ii) přírůstky jsou nezávislé a stacionární (každé dva disjunktní časové intervaly mají stejnou distribuci),
- (iii) $P(N(h) = 1) = \lambda h + o(h)$ pro $h \to 0$,
- (iv) $P(N(h) \ge 2) = o(h)$ pro $h \to 0$;

nebo ekvivalentně

- (i) N(0) = 0,
- (ii) přírůstky jsou nezávislé,
- (iii) počet událostí v libovolném intervalu délky h > 0 má rozdělení $Po(\lambda h)$.

Věta 5.3. Platí $P(N(t) = 0) = e^{-\lambda t}$.

Důkaz. Označme $P_0(t) = P(N(t) = 0)$. Platí

$$P_0(t+h) = P_0(t)(1 - \lambda h + o(h))$$

$$\frac{P_0(t+h) - P_0(t)}{h} = -P_0(t)\lambda + \frac{o(h)}{h}$$

$$P'_0(t) = -P_0(t)\lambda$$

Pro počáteční podmínku $P_0(0) = 1$ řešení diferenciální rovnice odpovídá.

Věta 5.4. Doba mezi událostmi v homogenním Poissonově proces má rozdělení $Exp(\lambda)$.

Důkaz. Pro dobu čekání na první událost T_1 platí $P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t}$, takže $P(T_1 \le t) = 1 - e^{-\lambda t}$, což je distribuční funkce exponenciálního rozdělení. Díky nezávislosti vychází $P(T_2 > s + t \mid T_1 = s)$ stejně a indukcí pro všechna T_i .

 \Diamond

Věta 5.5. Doba čekání na *n*-tou událost se řídí rozdělením $\Gamma(n, \lambda)$.

Důkaz. Označme T_i doby čekání na události, $S_n = T_1 + \ldots + T_n$. Z konvoluce plyne indukcí hustota S_n jako

$$\Gamma(n,\lambda) = \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{\Gamma(n)} = \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!}$$

Pro velké n konverguje k normálnímu rozdělení (viz Věta 3.6).

Věta 5.6. Obě definice z Definice 5.5 jsou ekvivalentní, tj. počet událostí v intervalu délky t má rozdělení $Po(\lambda t)$.

Důkaz. Plyne z
$$P(N(t) = n) = P(S_n \ge t) - P(S_{n+1} \le t) = I_n - I_{n+1}$$
, kde $I_k = \int_0^t \frac{\lambda^k}{\Gamma(k)} e^{-\lambda x} x^{k-1} dt$.

Příklad. Mějme server, na který chodí málo časté požadavky s intenzitou $\lambda = 1/\text{den.}$ Určete (a) střední dobu do příchodu 10 požadavků a (b) pravděpodobnost, že mezi 10. a 11. požadavkem jsou dva dny.

- (a) Doby čekání na požadavky T_i mají exponenciální rozdělení, a tedy střední hodnotu $^1/_{\lambda}=1$. Odtud $E[S_{10}]=\sum_{i=1}^{10} E[T_i]=10\cdot 1=10$
- (b) Z Věty 5.4:

$$P(T_{11} - T_{10} > 2) = P(T_i > 2) = e^{-\lambda t} = e^{-2}$$

Příklad. Mějme server, na který chodí požadavky s intenzitou $\lambda = 10/\text{hodina}$, s pravděpodobností p = 1/12 jsou šifrované, s pravděpodobností 11/12 nešifrované. Určete pravděpodobnost, že za 1 den nepříjde žádný šifrovaný požadavek.

Označme T_i dobu čekání mezi šifrovanými požadavky. Šifrované požadavky mají intenzitu $\lambda_{\check{s}}=\frac{10}{12}$ za hodinu a jeden den má 24 hodin. Z Věty 5.4:

$$P(T_1 > 24) = e^{-24\lambda_{\check{s}}} = e^{-20}$$

5.3 Systémy hromadné obsluhy

Definice 5.6 (Systém hromadné obsluhy). Mějme systém, kde je

- alespoň jedna paralelní stanice obsluhy,
- zákazníci, kteří nemohou být obslouženi se řadí do jediné fronty,
- \bullet doby mezi příchody zákazníků jsou i.i.d. veličiny s rozdělením A,
- \bullet doby obsluhy jsou i.i.d. veličiny s rozdělením B.

Rozdělení A je typicky exponenciální (Markovian), deterministické (Deterministic), obecné (General), Erlangovo (Erlang).

Definice 5.7 (M/M/x). Systém M/M/x je systém hromadné obsluhy s příchody zákazníků řídícími se homogenním Poissonovým procesem a dobami obsluhy s exponenciálním rozdělením.

x odpovídá počtu obslužných stanic:

- M/M/1: $\lambda_n = \lambda$, $\mu_n = \mu$
- M/M/c:

$$\lambda_n = \lambda, \quad \mu_n = \begin{cases} n\mu & 0 \le n \le c \\ c\mu & c \le n \end{cases}$$

• $M/M/\infty$: $\lambda_n = \lambda$, $\mu_n = n\mu$

Věta 5.7. Systémy M/M/x lze popsat obecným procesem zrodu a zániku (x obslužných stanic, nekonečná fronta).

Věta 5.8 (•). Pro systém M/M/c platí, že odchody ze stabilizovaného systému (s neomezenou frontou) s parametry λ, μ jsou opět popsány homogenním Poissonovým procesem s parametrem λ .

Důsledek. Systémy M/M/c se dají dobře kombinovat a za předpokladu stabilizovatelnosti popsat vhodným Markovským procesem.

Poznámka. Pro systém M/M/1 platí, že

- Střední počet zákazníků v systému je $\frac{\lambda}{\mu}/(1-\frac{\lambda}{\mu})=\frac{\lambda}{\mu-\lambda}.$
- Rozptyl počtu zákazníků je $\frac{\lambda}{\mu}/(1-\frac{\lambda}{\mu})^2$. Střední délka fronty je $\left(\frac{\lambda}{\mu}\right)^2/(1-\frac{\lambda}{\mu})$.

Důkaz. (Pro střední počet zákazníků)

Sestavíme rovnice podle Věty 5.2 pro $\lambda_n = \lambda$, $\mu_n = \mu$, za předpokladu $\mu > \lambda$.

$$0 = -\lambda p_0 + \mu p_1$$

$$0 = -(\lambda + \mu)p_n + \mu p_{n+1} + \lambda p_{n-1}, \quad n \ge 1$$

Odtud:

$$p_n = \left(\frac{\lambda}{\mu}\right)^n p_0$$

$$p_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1$$

$$p_n = \left(\frac{\mu - \lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n$$

Vytvořující funkce pro p_n je

$$P(x) = \frac{\mu - \lambda}{\mu} \frac{1}{1 - \frac{\lambda}{\mu} x}.$$

Střední hodnotu počtu zákazníků v systému dostaneme z Věty 2.2:

$$P'(1) = \frac{(\mu - \lambda)\lambda}{(\mu - \lambda \cdot 1)^2} = \frac{\lambda}{\mu - \lambda}$$

 \Diamond

Poznámka. Doba T_n strávená zákazníkem, který se v systému M/M/1 zažadil jako n-tý řídí gamma rozdělením $\Gamma(n+1,\mu)$. Je to součet dob jeho obsluhy a obsluh zákazníků před ním $T_i \sim Exp(\mu), \sum_{i=0}^n T_i \sim \Gamma(n+1,\mu).$

Definice 5.8 (Tandemové uspořádání). Sériové propojení dvou systémů M/M/1 se nazývá tandemové uspořádání.

Příklad. Mějme dva systémy M/M/1 zapojené za sebou, intenzita příchodů je λ , intenzita odchodů z prvního systému μ_1 , z druhého μ_2 . Stavy budou (i,j), kde $i,j \geq 0$ jsou počty zákazníků v systému. Pro limitní rozdělení dostanem soustavu rovnic:

$$\begin{split} 0 &= -\lambda p_{0,0} + \mu_2 p_{0,1} \\ 0 &= -(\lambda + \mu_1) p_{m,0} + \mu_2 p_{m,1} + \lambda p_{m-1,0} \\ 0 &= -(\lambda + \mu_2) p_{0,n} + \mu_2 p_{0,n+1} + \mu_1 p_{1,n-1} \\ 0 &= -(\lambda + \mu_1 + \mu_2) p_{m,n} + \mu_2 p_{m,n+1} + \mu_1 p_{m+1,n-1} + \lambda p_{m-1,n} \end{split}$$

Jako řešení rovnic by zřejmě mělo vyjít

$$p_{m,n} = \underbrace{\left(\frac{\lambda}{\mu_1}\right)^m \left(1 - \frac{\lambda}{\mu_1}\right)}_{M/M/1} \underbrace{\left(\frac{\lambda}{\mu_2}\right)^n \left(1 - \frac{\lambda}{\mu_2}\right)}_{M/M/1}$$

za předpokladu, že vstup do druhé linky má intenzitu λ , což se dá ukázat, že platí. Pro praktické použití je nutný předpoklad $\lambda \ll \mu_1 + \mu_2$.

6 Ostatní

Poznámka (Střední doba do poruchy). Platí

$$R(t) = P(Y > t) = e^{-\int_0^t \lambda_H(u) du}$$

kde $\lambda_H(t)$ je intenzita poruch (definice 5.2).

Střední doba mezi chybami (MTTE) je obecně

$$\int_0^\infty R(t) dt = \int_0^\infty e^{-\int_0^t \lambda_H(u) du} dt.$$

Nejčastěji se používají rozdělení exponenciální, Weibullovo, gamma, lognormální.

Poznámka. Weibullovo rozdělení:

$$f(x,\alpha,\beta) = \alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$$
$$F(x,\alpha,\beta) = 1 - e^{-\beta x^{\alpha}}$$

Používá se v nějakých normách.

Lognormální rozdělení $X \sim LN(\mu, \sigma^2) \Leftrightarrow Y = \ln X \sim N(\mu, \sigma^2).$

Poznámka. Hledání hodnot parametrů – napozorujeme data, vybereme model, zjistíme, pro jaké hodnoty parametrů je naše pozorování nejpravděpodobnější. Lze hledat i pouze z dat bez modelu – empiricka distribuční funkce $\hat{F}_n(x) = \frac{1}{n} \sum I[x_i \leq x]$.

Pokud máme naměřené hodnoty x_1, \ldots, x_n veličin s exponenciálním rozdělením a hledám parametr λ , vezmeme $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n x_i$. Z $EX = \frac{1}{\lambda}$ a Čebyševovy nerovnosti dostaneme $\lambda \approx \frac{1}{\overline{X}_n}$.