Floorplanning

- Inputs to the floorplanning problem:
 - A set of blocks, fixed or flexible.
 - Pin locations of fixed blocks.
 - A netlist.
- Objectives: Minimize area, reduce wirelength for (critical) nets, maximize routability, determine shapes of flexible blocks

7	5		4
6		2	
1			3

An optimal floorplan, in terms of area

A non-optimal floorplan

Floorplan Design

- *Area: A*=*xy*
- Aspect ratio: $r \le y/x \le s$
- Rotation:
- Module connectivity

Floorplanning: Terminology

- Rectangular dissection: Subdivision of a given rectangle by a finite #
 of horizontal and vertical line segments into a finite # of non-overlapping
 rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

Floorplan Design by Simulated Annealing

- Related work
 - Wong & Liu, "A new algorithm for floorplan design," DAC'86.
 - * Consider slicing floorplans.
 - Wong & Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
 - * Also consider L-shaped modules.
 - Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31–71,
 Kluwer academic Publishers, 1988.
- Ingredients: solution space, neighborhood structure, cost function, annealing schedule?

Solution Representation

- An expression $E = e_1 e_2 \dots e_{2n-1}$, where $e_i \in \{1, 2, \dots, n, H, V\}, 1 \le i \le 2n-1$, is a **Polish expression** of length 2n-1 iff
 - 1. every operand j, $1 \le j \le n$, appears exactly once in E;
 - 2. (the balloting property) for every subexpression $E_i = e_1 \dots e_i, 1 \le i \le 2n-1$, #operands > #operators.

- Polish expression ←→ Postorder traversal.
- ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.

Postorder traversal of a tree!

Solution Representation (cont'd)

• Question: How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression $E = e_1 e_2 \dots e_{2n-1}$ is called **normalized** iff E has no consecutive operators of the same type (H or V).
- Given a **normalized** Polish expression, we can construct a **unique** rectangular slicing structure.

E = 16H2V75VH34HV

A normalized Polish expression

Neighborhood Structure

• Chain: HVHVH... or VHVHV...

- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands;
 5 and V are adjacent operand and operator.
- 3 types of moves:
 - M1 (Operand Swap): Swap two adjacent operands.
 - M2 (Chain Invert): Complement some chain $(\overline{V} = H, \overline{H} = V)$.
 - M3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation

- Question: The balloting property holds during the moves?
 - -M1 and M2 moves are OK.
 - Check the M3 moves! Reject "illegal" M3 moves.
- Check M3 moves: Assume that the M_3 move swaps the operand e_i with the operator e_{i+1} , $1 \le i \le k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} < i$.
 - N_k : # of operators in the Polish expression $E = e_1 e_2 \dots e_k, 1 \le k \le 2n-1$.

Cost Function

- $\bullet \quad \Phi = A + \lambda W.$
 - A: area of the smallest rectangle
 - W: overall wiring length
 - $-\lambda$: user-specified parameter

- $W = \sum_{ij} c_{ij} d_{ij}$.
 - c_{ij} : # of connections between blocks i and j.
 - d_{ij} : center-to-center distance between basic rectangles i and j.

Cost Evaluation: Shape Curves

• Shape curves correspond to different kinds of constraints where the shaded areas are feasible regions.

Area Computation

• Wiring cost?

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most **two paths** of the slicing tree need to be updated for each move.

E = 12H34V56VHV

E = 12H35V46VHV

Incremental Computation of Cost Function (cont'd)

E = 123H4V56VHV

Annealing Schedule

• Initial solution: $12V3V...\underline{nV}$.

- $T_i = r^i T_0, i = 1, 2, 3, ...; r = 0.85.$
- At each temperature, try kn moves (k = 5-10).
- Terminate the annealing process if
 - # of accepted moves < 5%,
 - temperature is low enough, or
 - run out of time.

```
Algorithm: Simulated_Annealing_Floorplanning(P, \epsilon, r, k)
1 begin
2 E \leftarrow 12V3V4V...nV; /* initial solution */
3 Best \leftarrow E; T_0 \leftarrow \frac{\Delta_{avg}}{ln(P)}; M \leftarrow MT \leftarrow uphill \leftarrow 0; N = kn;
4 repeat
5 MT \leftarrow uphill \leftarrow reject \leftarrow 0;
  repeat
7
       SelectMove(M);
       Case M of
       M_1: Select two adjacent operands e_i and e_i; NE \leftarrow Swap(E, e_i, e_i);
       M_2: Select a nonzero length chain C; NE \leftarrow Complement(E, C);
       M_3: done \leftarrow FALSE;
11
12
           while not (done) do
13
               Select two adjacent operand e_i and operator e_{i+1};
               if (e_{i-1} \neq e_{i+1}) and (2N_{i+1} < i) then done \leftarrow TRUE;
14
           NE \leftarrow Swap(E, e_i, e_{i+1});
15
       MT \leftarrow MT + 1; \Delta cost \leftarrow cost(NE) - cost(E);
16
       if (\Delta cost < 0) or (Random < e^{\frac{-\Delta cost}{T}})
17
       then
18
           if (\Delta cost > 0) then uphill \leftarrow uphill + 1;
19
20
           E \leftarrow NE;
           if cost(E) < cost(best) then best \leftarrow E;
21
       else reject \leftarrow reject + 1;
23 until (uphill > N) or (MT > 2N);
24 T = rT; /* reduce temperature */
25 until (\frac{reject}{MT} > 0.95) or (T < \epsilon) or OutOfTime;
26 end
```

Floorplanning by Mathematical Programming

- Sutanthavibul, Shragowitz, and Rosen, "An analytical approach to floorplan design and optimization," 27th DAC, 1990.
- Notation:
 - w_i, h_i : width and height of module M_i .
 - (x_i, y_i) : coordinate of the lower left corner of module M_i .
 - $-a_i \le w_i/h_i \le b_i$: aspect ratio w_i/h_i of module M_i . (Note: We defined aspect ratio as h_i/w_i before.)
- Goal: Find a mixed **integer linear programming (ILP)** formulation for the floorplan design.
 - Linear constraints? Objective function?

Nonoverlap Constraints

• Two modules M_i and M_j are nonoverlap, if at least one of the following linear constraints is satisfied (cases encoded by p_{ij} and q_{ij}):

$$M_i$$
 to the left of M_j : $x_i + w_i \leq x_j$ 0 0 M_i below M_j : $y_i + h_i \leq y_j$ 0 1 M_i to the right of M_j : $x_i - w_j \geq x_j$ 1 0 M_i above M_j : $y_i - h_j \geq y_j$ 1 1

- Let W, H be upper bounds on the floorplan width and height, respectively.
- Introduce two 0,1 variables p_{ij} and q_{ij} to denote that one of the above inequalities is enforced; e.g., $p_{ij} = 0, q_{ij} = 1 \Rightarrow y_i + h_i \leq y_i$ is satisfied.

Cost Function & Constraints

- Minimize Area = xy, **nonlinear!** (x, y): width and height of the resulting floorplan)
- How to fix?
 - Fix the width W and minimize the height y!
- Four types of constraints:
 - 1. no two modules overlap $(\forall i, j : 1 \le i < j \le n)$;
 - 2. each module is enclosed within a rectangle of width W and height H $(x_i + w_i \le W, y_i + h_i \le H, 1 \le i \le n)$;
 - 3. $x_i \ge 0$, $y_i \ge 0$, $1 \le i \le n$;
 - 4. $p_{ij}, q_{ij} \in \{0, 1\}.$
- w_i, h_i are known.

Mixed ILP for Floorplanning

Mixed ILP for the floorplanning problem with rigid, fixed modules.

- Size of the mixed ILP: for n modules,
 - # continuous variables: O(n); # integer variables: $O(n^2)$; # linear constraints: $O(n^2)$.
 - Unacceptably huge program for a large n! (How to cope with it?)
- Popular LP software: LINDO, lp_solve, etc.

Mixed ILP for Floorplanning (cont'd)

Mixed ILP for the floorplanning problem: rigid, freely oriented modules.

- For each module i with free orientation, associate a 0-1 variable r_i :
 - $-r_i = 0$: 0° rotation for module i.
 - $-r_i = 1$: 90° rotation for module i.
- $M = \max\{W, H\}$.

Flexible Modules

- Assumptions: w_i , h_i are unknown; area lower bound: A_i .
- Module size constraints: $w_i h_i \geq A_i$; $a_i \leq \frac{w_i}{h_i} \leq b_i$.
- Hence, $w_{min} = \sqrt{A_i a_i}$, $w_{max} = \sqrt{A_i b_i}$, $h_{min} = \sqrt{\frac{A_i}{b_i}}$, $h_{max} = \sqrt{\frac{A_i}{a_i}}$.
- $w_i h_i \ge A_i$ nonlinear! How to fix?
 - Can apply a first-order approximation of the equation: a line passing through (w_{min}, h_{max}) and (w_{max}, h_{min}) .

$$h_i = \Delta_i w_i + c_i \qquad /* \quad y = mx + c \quad * /$$

$$\Delta_i = \frac{h_{max} - h_{min}}{w_{min} - w_{max}} \qquad /* \quad slope \quad * /$$

$$c_i = h_{max} - \Delta_i w_{min} \qquad /* \quad c = y_0 - mx_0 \quad * /$$

- Substitute $\Delta_i w_i + c_i$ for h_i to form linear constraints (x_i, y_i, w_i) are unknown; Δ_i , Δ_j , c_i , c_j can be computed as above).

Reducing the Size of the Mixed ILP

- Time complexity of a mixed ILP: exponential!
- Recall the large size of the mixed ILP: # variables, # constraints: $O(n^2)$.
 - How to fix it?
- Key: Solve a partial problem at each step (successive augmentation)
- Questions:
 - How to select next subgroup of modules? ⇒ linear ordering based on connectivity.
 - How to minimize the # of required variables?

Reducing the Size of the Mixed ILP (cont'd)

- Size of each successive mixed ILP depends on (1) # of modules in the next group; (2) "size" of the partially constructed floorplan.
- Keys to deal with (2)
 - Minimize the problem size of the partial floorplan.
 - Replace the already placed modules by a set of covering rectangles.
 - # rectangles is usually much smaller than # placed modules.

(c)

(d)