의료비예측 프로젝트 프레멘테이션

목까

D1 주제 선정 동기

05 머신러닝 모델 분석

02 분석 주제 및 목표

06 딥러닝 모델 분석

03 데이터 탐색 및 소개

D7 분석 결론 및 요약

04 데이터 전처리

08 추후 보완점

01 꾸메 선정 통기

경제적 부담 감소

예상치 못한 의료 비용은 부담이 될 수 있습니다. 따라서 더 효과적으로 재정을 계획하고 관리하고자 해당 프로젝트를 진행하게 되었습니다.

02 분석 꾸께 및 목표

꾸메

의료비 예측 모델링

목표

의료비 예측을 위해 머신러닝, 딥러닝, 하이퍼파라미터 최적화, 스태킹 기법을 적용

03 데이터 탐쌕및 오개

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

- 나이: 주요 수혜자의 나이
- 성별: 보험 계약자의 성별 (여성, 남성).
- bmi: 신체 질량 지수 (체중/키^2).
- 자녀: 건강보험 적용 자녀 수 / 부양가족 수
- 흡연자: 흡연 여부.
- 지역: 미국 내 수혜자의 거주 지역 (북동부, 남동부, 남서부, 북서부).
- 요금: 건강 보험에서 청구하는 개인 의료비

03 데이터 탐색 및 고개

- 수치형 데이터 분포 시각화
- 구간으로 나눠 막대 그래프로 표현

03 데이터 탐쌕및 오개

50

southwest

southeast

northwest

Region

northeast

04 데이터 전체리

04 데이터 쩐케리

- Train-test split 적용
- 데이터 전처리 파이프라인 구성
- -> 수치형 변수 : MinMaxScaler 적용
- -> 범주형 변수: OnehotEncoder 적용
- 각 컬럼명 재구성

```
# Pipeline 89
# 수치령 변수의 전치리
numeric_transformer = Pipeline(steps=[
  ('scaler', MinMaxScaler())
# 범주령 변수의 전치리
categorical_transformer = Pipeline(steps=[
   # 만약 확습할 때는 있지만 테스트 데이터에서 새로운 범주기 발생할 경우
   # handle_unknown='ignore' 옵션을 통해 이를 무시하고 변환 작업을 진행
   # 이 옵션을 사용함으로써 모델이 학습할 때의 테스트할 때의 일관성을 유지하면서 처리할 수 있음.
   ('onehot', OneHotEncoder(handle_unknown='ignore'))
# 전체 전체리 파이프라인 경약
preprocessor = ColumnTransformer(
      ('num', numeric_transformer, ['age', 'bmi', 'children']), # 수치용 변수
       ('cat', categorical_transformer, ['sex', 'smoker', 'region']) # 변주경 변수
# 최종 Pipeline 경의 (전치리 + 모델)
pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
# Train 데이터에 대해서만 fit을 격용
pipeline.fit(X_train)
# Train 데이터의 Test 데이터 각각에 대해 transform 수행
X_train = pipeline.transform(X_train)
X_test = pipeline.transform(X_test)
# 컬럼영 제구성
# 수치령 변수의 범주령 변수의 컬럼병을 디시 기정오기
numeric_features = preprocessor.transformers_[0][2]
categorical_features = preprocessor.transformers_[1][1]['onehot'].get_feature_names(['sex', 'smoker', 'region'])
# 전체 특성의 칼럼병 제구성
feature_names = list(numeric_features) + list(categorical_features)
X_train = pd.DataFrame(X_train, columns=feature_names)
X_test = pd.DataFrame(X_test, columns=feature_names)
```

04 데이터 전체리

age	bmi	children	sex_female	sex_male	smoker_no	smoker_yes	region_northeast	region_northwest	region_southeast	region_southwest
0.608696	0.107345	0.4	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
0.630435	0.224913	0.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0
0.739130	0.239440	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0
0.456522	0.493947	1.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0
0.782609	0.148238	0.6	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0

05 머낀러닝 모델 분석

모델의 설명력을 평가하고, 그 성능을 비교하기 위한 목적에서 # 좀 더 직관적이고 일반적으로 사용되는 지표를 활용하기 위해서 R2 지표도 확인해보기. top_3_models = compare_models(sort='RMSE', n_select = 3)

> 상위 3개 모델 GradientBoostingRegressor LightGBMRegressor RandomForestRegressor

05 머낀러닝 모델 분꺽

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
	Wiodel	IVIAL	IVISE	KWISE	NZ	KIVISEE	IVIALE	11 (300)
gbr	Gradient Boosting Regressor	2609.8744	21714023.9797	4624.2374	0.8444	0.4325	0.3031	0.0620
lightgbm	Light Gradient Boosting Machine	2943.6636	24416570.6599	4910.8092	0.8248	0.5236	0.3583	97.3950
rf	Random Forest Regressor	2825.1307	24838293.4569	4959.9233	0.8230	0.4640	0.3314	0.1140
ada	AdaBoost Regressor	3981.0569	26747817.8312	5156.3222	0.8104	0.5917	0.6510	0.0340
et	Extra Trees Regressor	2768.2531	27165447.1879	5192.9926	0.8057	0.4720	0.3153	0.0970
xgboost	Extreme Gradient Boosting	3250.5256	30095093.6000	5467.6827	0.7873	0.6067	0.4278	0.0480
knn	K Neighbors Regressor	3649.9163	35550660.4000	5934.6120	0.7469	0.4883	0.3600	0.0310
lasso	Lasso Regression	4242.3928	37881920.2778	6132.7752	0.7298	0.5870	0.4237	0.0250
llar	Lasso Least Angle Regression	4242.3837	37882017.1413	6132.7813	0.7298	0.5870	0.4237	0.0250
lar	Least Angle Regression	4243.9235	37885866.4059	6133.0840	0.7297	0.5877	0.4241	0.0260
br	Bayesian Ridge	4240.6531	37885980.6834	6133.2662	0.7298	0.5897	0.4228	0.0250
ridge	Ridge Regression	4235.7688	37890233.7232	6133.9223	0.7299	0.5909	0.4209	0.0260
Ir	Linear Regression	4247.5849	37953589.9000	6138.7322	0.7293	0.6280	0.4250	0.4640
dt	Decision Tree Regressor	3120.2748	43348469.6871	6568.9552	0.6941	0.5226	0.3527	0.0260
huber	Huber Regressor	3496.3265	49075381.3739	6961.7764	0.6476	0.4698	0.2222	0.0280
par	Passive Aggressive Regressor	3797.4028	51936051.9205	7173.6631	0.6283	0.4637	0.2107	0.0300
omp	Orthogonal Matching Pursuit	5712.8153	56825791.8833	7527.8548	0.5968	0.7195	0.8627	0.0240
en	Elastic Net	7405.0171	102227257.7758	10087.2033	0.2882	0.8715	1.2324	0.0250
dummy	Dummy Regressor	9004.8338	144530836.0000	11994.8297	-0.0067	0.9877	1.4919	0.0240

05 메겐러닝 모델 분석

```
models = {
    'GradientBoostingRegressor': GradientBoostingRegressor(random_state=0),
    'LightGBMRegressor': LGBMRegressor(),
    'RandomForestRegressor': RandomForestRegressor(random_state=0),
}

for model_name, model in models.items():
    model.fit(X_train, y_train)

pred = model.predict(X_test)

# RMSE 为公
    rmse = np.sqrt(mean_squared_error(y_test, pred))
    print(f'{model_name} RMSE: {rmse:.4f}') # RMSE 香灣
    print(f"R2 Score on Test set for {model_name}: {model.score(X_test, y_test):.6f}") # 紹本E 州 E R2 Score
```

RMSE와 R2 스코어를 확인

05 메겐러닝 모델 분석

GradientBoostingRegressor

RMSE: 4329.2109

R2 Score: 0,879277

LightGBMRegressor

RMSE: 4571.5871

R2 Score: 0.865381

Random Forest Regressor

RMSE: 4652.8020

R2 Score: 0,860556

05 머낀러닝 모델 분석

```
models = {
   'GradientBoostingRegressor': (GradientBoostingRegressor(random state=0), {
       'n estimators': Integer(100, 500), # 巨哥 개주
       'max depth': Integer(3, 12), # ±\1\1\2\0/
       'learning rate': Categorical([0.01, 0.1, 0.2, 0.3, 0.4]), # ♀ ♣ #
       'subsample': Categorical([0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) # # # # #
   }),
   'LightGBMRegressor': (LGBMRegressor(random state=0), {
       'n estimators': Integer(100, 500), # 트리 개수
       'learning rate': Categorical([0.01, 0.1, 0.2, 0.3, 0.4]), # ♀ ♣ #
       'subsample': Categorical([0.5, 0.6, 0.7, 0.8, 0.9, 1.0]), # 營量 비量
       'num leaves': Integer(20, 100) # 라프 노드의 수
   }),
   'RandomForestRegressor': (RandomForestRegressor(random state=0), {
       'n estimators': Integer(100, 500), # 트리 개수
       'max depth': Integer(3, 20), # ±\( \alpha \) \( \alpha \)
       'min samples split': Integer(2, 20), # 최소 샘플 분할 수
       'min samples leaf': Integer(1, 20) # 최소 리프 노드 샘플 수
   })
```

Bayesian HPO 적용을 위한 하이퍼파라미터 범위 설정

05 머낀러닝 모델 분꺽

```
# 각 모델에 대해 베이지만 최적화를 수행하고 결과를 출력합니다.
for model_name, (estimator, param) in models.items():
   print(f"Optimizing {model_name}...") # 최적화 모델 이름 출력
   # BayesSearchCV 객체를 생성할니다.
   hpo = BayesSearchCV(
      random_state=θ,
       estimator=estimator,
       search_spaces=param, # 하이퍼피리미터
       refit=True, # 최적 페리미터로 디시 확률
      n_jobs=-1, # 모든 CPU 코어 사용
      n_iter=72, # 최적회 반복 횟수
       cv=5 # 교치 검증 folds 수
   # 최적회 수행
   hpo.fit(X_train, y_train)
   # 최적 파라이터 출력
   print('The best parameters are ', hpo.best_params_, '\n')
   # 모텔 인스턴스 생성
   best_params = hpo.best_params_
   if model_name == 'GradientBoostingRegressor':
       model_instance = GradientBoostingRegressor(
          random_state=0,
          n_estimators=best_params['n_estimators'],
          max_depth=best_params['max_depth'],
           learning_rate=best_params['learning_rate'],
           subsample=best_params['subsample']
   elif model_name == 'LightGBMRegressor':
       model_instance = LGBMRegressor(
           n_estimators=best_params['n_estimators'],
           learning_rate=best_params['learning_rate'],
          subsample=best_params['subsample'],
          num_leaves=best_params['num_leaves']
   elif model_name == 'RandomForestRegressor':
       model_instance = RandomForestRegressor(
          random_state=0,
          n_estimators=best_params['n_estimators'],
          max_depth=best_params['max_depth'],
          min_samples_split=best_params['min_samples_split'],
           min_samples_leaf=best_params['min_samples_leaf']
```

Bayesian HPO

05 머겐러닝 모델 분석

GradientBoostingRegressor

RMSE: 4311.7676

R2 Score: 0.880248

LightGBMRegressor

RMSE: 4387.5083

R2 Score: 0.876004

Random Forest Regressor

RMSE: 4408.5625

R2 Score: 0,874811

05 머낀러닝 모델 분석

```
# StackingTransformer # ₽ 문다.
stack = StackingTransformer(estimators,
                          regression=True, # 회귀 문제를 위해 True로 설정
                         n_folds=4, stratified=False, shuffle=True,
                         random_state=0, verbose=2)
# StackingTransformer어 X_train, y_train을 이용해 작습한다.
# transform() 괄수를 이용하여 변환한다.
stack = stack.fit(X_train, y_train)
S_train = stack.transform(X_train)
S_test = stack.transform(X_test)
# 2단계 모델을 GradientBoostingRegressor로 설정
model = GradientBoostingRegressor(random_state=0, n_estimators=100)
# 2단계 모델을 작습.
model = model.fit(S_train, y_train)
# 학습된 2단계 모델을 가지고 예측한다.
y_pred = model.predict(S_test)
# RMSE AL
rmse = np.sqrt(mean_squared_error(y_test, y_pred)) # RMSE 月か
print('Final RMSE: %.4f' % rmse) # RMSE #학
print('Final R2 Score: %.4f' % r2_score(y_test, y_pred))
# 예측 결과와 실제 값을 비교하는 산점도 그리기
plt.figure()
plt.scatter(y_test, y_pred, color='darkorange', alpha=0.7)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='navy', lw=2, linestyle='--')
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.title('Stacking Regressor Predictions vs. True Values')
plt.show()
```

StackingTransformer로 예측을 통합한 후 GradientBoostingRegressor로 최종 예측을 수행

05 머센러닝 모델 분색

GradientBoostingRegressor

RMSE: 4329.2109 -> 4311.7676

R2 Score: 0,879277 -> 0,880248

Stacking

RMSE: 4570.3875

R2 Score: 0.8655

LightGBMRegressor

RMSE: 4571.5871 -> 4387.5083

R2 Score: 0.865381 -> 0.876004

Random Forest Regressor

RMSE: 4652,8020 -> 4408,5625

R2 Score: 0.860556 -> 0.874811

```
1 # 20일 시도 설명
 2 random.seed(42) # 원원 시드
  np.random.seed(42) # NumPy 괜형 시드
 4 tf.random.set_seed(42) # TensorFlow 避暑 ベニ
 6 # 데이터 타일 변환
 7 X_train = X_train.astype('float32')
 X_test = X_test.astype('float32')
10 # Sequential 모델 초기회
11 model = Sequential()
13 # 입력층: 입력 데이터의 차원(input_dim)을 지경하고 첫 번째 Dense 레이어 추기
14 # units=32: 출력 치원, activation='relu': ReLU 활성회 할수 사용
15 model.add(layers.Dense(units=32, input_dim=X_train.shape[1], activation='relu'))
17 # 두 번째 Dense 레이어 추기
18 # units=32: 출력 치원, activation='relu': ReLU 활성회 함수 사용
19 model.add(layers.Dense(units=32, activation='relu'))
21 # 세 번째 Dense 레이어 추기
22 # units=480: 출력 치원, activation='relu': ReLU 활성화 함수 사용
23 model.add(layers.Dense(units=480, activation='relu'))
25 # 출력층: 최종 예측값을 하나의 스칼리 값으로 출력
26 # units=1: 출력 치원, activation='linear': 출력 값을 연속적인 값으로 반황
27 model.add(layers.Dense(units=1, activation='linear'))
29 # 모델 구조 요약 출력
30 model.summary()
Model: "sequential"
Layer (type)
                      Output Shape
                                           Param #
                                           384
dense (Dense)
                      (None, 32)
dense_1 (Dense)
                      (None, 32)
                                           1056
dense_2 (Dense)
                      (None, 480)
                                           15840
dense_3 (Dense)
                                           481
Total params: 17,761
Trainable params: 17,761
Non-trainable params: 0
```

```
1 # 모델 캠페일
   model.compile(optimizer=optimizers.Adam(learning_rate=0.01), # Adam 含色的//形,學含量 0.01
                loss='mean_squared_error', # 손실 필수: MSE
                metrics=['mean squared error']) # 嬰가 지표: MSE
6 # 모델 약습
   model.fit(X train, y train, epochs=100, validation split=0.2, verbose=0)
9 # 모델 평가
10 mse_result = model.evaluate(X_test, y_test) # MSE 思기
12 # 여축 결과
13 y_pred = model.predict(X_test)
15 # MSE와 RMSE 계산
16 mse = mse_result[0]
17 rmse = np.sqrt(mse)
19 # R<sup>2</sup> 계상
20 r2 = r2_score(y_test, y_pred)
22 # 결과 출력
23 print(f'MSE: {mse:.4f}')
24 print(f'RMSE: {rmse:.4f}')
25 print(f'R2: {r2:.4f}')
```

9/9 [============] - 0s 3ms/step - loss: 23122986.0000 - mean_squared_error: 23122986.0000

MSE: 23122986.0000 RMSE: 4808.6366

R2: 0.8511

4개의 Dense 레이어를 가진 신경망 모델 정의

MSE: 23122986,0000

RMSE: 4808.6366

R²: 0.8511

```
# 하이퍼파리미터 튜닝을 위한 모델과 튜너를 설정
def build_hyper_model(hp):
   # Sequential 모델 초기회
   model = models.Sequential()
   # 일찍축 추기
   model.add(layers.Dense(
      units=hp.Int('units input', min value=32, max value=512, step=32),
       activation=hp.Choice('activation_input', values=['relu', 'elu']),
       input_dim=X_train.shape[1] # 일찍 데이터의 특성 수
   # 음식층 추가
   for i in range(hp.Int('num_layers', min_value=1, max_value=3)):
      model.add(layers.Dense(
          units=hp.Int(f'units_{i}', min_value=32, max_value=512, step=32),
           activation=hp.Choice(f'activation {i}', values=['relu', 'elu'])
      ))
   # 출력층 추가
   model.add(layers.Dense(1, activation='linear'))
   learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
   # 昼日时이저 선택
   optimizer_choice = hp.Choice('optimizer', values=['adam', 'sgd', 'rmsprop'])
   if optimizer_choice == 'adam':
      optimizer = optimizers.Adam(learning_rate=learning_rate)
   elif optimizer choice == 'sgd':
      optimizer = optimizers.SGD(learning_rate=learning_rate, momentum=0.9)
       optimizer = optimizers.RMSprop(learning_rate=learning_rate)
   # 모델 캠피일
   model.compile(
       optimizer=optimizer,
       loss=losses.MeanSquaredError(),
       metrics=['MeanSquaredError']
return model
```

```
45 # 하이퍼피라미터 튜너 설정
46 tuner = kt.BayesianOptimization(
       build hyper model, # 모듈 생성 활수
       objective='mean squared error', # 최소화활 목표: MSE
       max trials=10, # 시도할 하이퍼피리미터 조절의 수
50
       directory='test prac dir', # 결과를 저장할 다렉토리
       project name='Medical hyper 1' # 프로젝트 이름
52 )
53
54 # 활색 공간 요약 출력
55 tuner.search space summary()
Default search space size: 10
units input (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step': 32, 'sampling': None}
activation input (Choice)
{'default': 'relu', 'conditions': [], 'values': ['relu', 'elu'], 'ordered': False}
num layers (Int)
{'default': None, 'conditions': [], 'min_value': 1, 'max_value': 3, 'step': 1, 'sampling': None}
units_0 (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step': 32, 'sampling': None}
activation 0 (Choice)
{'default': 'relu', 'conditions': [], 'values': ['relu', 'elu'], 'ordered': False}
learning rate (Choice)
{'default': 0.01, 'conditions': [], 'values': [0.01, 0.001, 0.0001], 'ordered': True}
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step': 32, 'sampling': None}
activation_1 (Choice)
{'default': 'relu', 'conditions': [], 'values': ['relu', 'elu'], 'ordered': False}
units_2 (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step': 32, 'sampling': None}
activation_2 (Choice)
{'default': 'relu', 'conditions': [], 'values': ['relu', 'elu'], 'ordered': False}
```

Keras Tuner의 Bayesian
Optimization을 사용하여
모델 하이퍼파라미터를
효율적으로 탐색

```
1 # 하이퍼피리미터 튜닝 및 상위 N개의 트리이얼 출력
3 # 훈련 데이터의 검증 데이터로 분할 (검증 데이터는 모델 튜닝에 사용)
4 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
6 # 하이퍼피라미터 튜닝 시작
 tuner.search(X_train, y_train, epochs=10, validation_data=(X_val, y_val))
9 # 상위 N개의 트라이얼 가져오기
10 top_trials = tuner.oracle.get_best_trials(num_trials=3)
12 # 각 트리이얼의 하이퍼피리미터 및 성능 출력
13 for i, trial in enumerate(top trials):
    mse = trial.score
     rmse = np.sqrt(mse)
      print(f"Trial {i + 1}:")
      print(f" 하이퍼파라미터: {trial.hyperparameters.values}")
      print(f" Score (RMSE): {rmse:.4f}")
      print(f" 디렉토리 (폴더 번호): {trial.trial_id}")
      print("-" * 40)
23 # 최적 하이퍼피라미터 선택
24 best_hps = tuner.get_best_hyperparameters(num_trials=3)[0]
INFO:tensorflow:Oracle triggered exit
 하이퍼마라마터: {'units_input': 224, 'activation_input': 'relu', 'num_layers': 2, 'units_0': 96, 'activation_0': 'elu', 'learning_rate': 0.01, 'units
_1': 224, 'activation_1': 'elu'}
 Score (RMSE): 5483.6017
 디렉토리 (플더 번호): 274307a55f05b51df7516039e82a9a94
 하이퍼마라마터: {'units_input': 160, 'activation_input': 'elu', 'num_layers': 3, 'units_0': 256, 'activation_0': 'relu', 'learning_rate': 0.01, 'unit
s_1': 160, 'activation_1': 'relu', 'units_2': 32, 'activation_2': 'relu'}
 Score (RMSE): 5625.7542
 디렉토리 (플더 번호): 29dc6aaa7ad37888e12b5d6c71855431
 하이머파라마터: {'units_input': 32, 'activation_input': 'elu', 'num_layers': 3, 'units_0': 192, 'activation_0': 'relu', 'learning_rate': 0.01, 'units
_1': 320, 'activation_1': 'elu', 'units_2': 32, 'activation_2': 'relu'}
 Score (RMSE): 5671.3184
 디렉토리 (플더 번호): d6f8608dda62c8f0efd50dce2dd0185b
```

최적 하이퍼파라미터 저장

'units_input': 224, 'activation_input': 'relu',

'num_layers': 2, 'units_0': 96, 'activation_0': 'elu',

'learning_rate': 0.01, 'units_1': 224, 'activation_1': 'elu'

Score (RMSE): 5483.6017

```
# 모델 필드, 훈련, 체크포인트 저장
# 최적 하이퍼파라마터로 모델 필드
model = tuner.hypermodel.build(best_hps)
# 체크모인트 플백 객체 생성
checkpoint_path = 'best_medical_charge_model.h5'
callback_checkpoint = tf.keras.callbacks.ModelCheckpoint(
   filepath=checkpoint_path,
   monitor='val_loss',
   save_best_only=True,
   verbose=0
# 모델 훈련
# 훈련 과정에서 기장 좋은 성능을 기진 모델이 checkpoint path에 저장된
history = model.fit(
   X_train,
   y_train,
   batch_size=16,
   epochs=200,
   validation_data=(X_val, y_val),
   verbose=0,
   callbacks=[callback_checkpoint]
```

```
# 모텔 로드, 평가, 결과 출력

# 체크포인트에서 모텔 로드

model = models.load_model(checkpoint_path)

# 모텔 평가

results = model.evaluate(X_test, y_test, verbose=0)

y_pred = model.predict(X_test).flatten()

# 설등 지표 계산

mse = results[1] # 손실과 MSE는 결과의 소서에 따라 다를 수 있음

rmse = np.sqrt(mse)

r2 = r2 score(y test, y pred)
```

최적 하이퍼파라미터로 모델 훈련

최적의 은닉층 수: 2

최적의 학습률: 0.01

층 1 - 유닛 수: 96

층 1 - 활성화 함수: elu

층 2 - 유닛 수: 224

층 2 - 활성화 함수: elu

MSE: 22013308,0000

RMSE: 4691.8342

R²: 0.8582


```
# TabNet 모델 정의
model = TabNetRegressor(verbose=0, seed=42, optimizer_fn=torch.optim.Adam)
# 모델 학습
model.fit(
  X_train=X_train.values,
  y_train=y_train,
   eval_set=[(X_test.values, y_test)], # 평가 세트
   # 조기 종료를 위한 patience 설정.
   # 이 값만큼의 에포크 동안 성능 개선이 없으면 학습을 조기 종료합니다.
   patience=100.
   max_epochs=1000.
   eval_metric=['rmse']
v pred = model.predict(X test.values)
# 평가
r2 = r2_score(y_test, y_pred)
print(f'R2 Score: {r2:.4f}')
# 모델 학습이 max_epochs 설정값인 1000에 도달했지만, 가장 좋은 성능을 보인 에포크는 981임.
# TabNetRegressor는 학습 도중 최적의 성능을 보인 에포크(여기서는 981)의 가중치를 자동으로 사용하여 모델을 저장.
```

TabNetRegressor

RMSE: 6321.46994

R² Score: 0.7426

07 분석 결론 및 요약

ML Part

GradientBoostingRegressor

RMSE: 4329.2109 -> 4311.7676

R2 Score: 0.879277 -> 0.880248

LightGBMRegressor

RMSE: 4571.5871 -> 4387.5083

R2 Score: 0.865381 -> 0.876004

RandomForestRegressor

RMSE: 4652.8020 -> 4408.5625

R2 Score: 0.860556 -> 0.874811

Stacking

RMSE: 4570.3875

R2 Score: 0.8655

DL Part

Deep Neural Network

RMSE: 4808.6366

R²: 0.8511

Keras-Tuner를 이용한

딥러닝 하이퍼파라미터 회쩍화

RMSE: 4691.8342

R²: 0.8582

TabNetRegressor

RMSE: 6321.46994

R²: 0.7426

07 분석 결론 및 요약

- GradientBoostingRegressor: 하이퍼파라미터 최적화 후 RMSE가 4329.21에서 4311.77로, R² Score가 0.8793에서 0.8802로 향상되며, 최종적으로 가장 높은 성능을 기록함.
- LightGBMRegressor, RandomForestRegressor, Stacking: GradientBoostingRegressor와 비교했을 때 상대적으로 낮은 성능을 보임.
- Keras-Tuner를 이용한 딥러닝 하이퍼파라미터 최적화: 여전히 GradientBoostingRegressor와 같은 머신 러닝 모델에 비해 성능이 미치지 못함. 이는 정형 데이터에서 딥러닝 모델의 성능이 제한적일 수 있음.
- TabNetRegressor: RMSE가 6321.47로 가장 높고, R² Score는 0.7426으로 가장 낮음. 이는 정형 데이터에서 딥러닝 기반 모델의 성능이 기대 이하였으며, 데이터 수가 부족해 딥러닝 모델이 최적의 성능을 발휘하지 못했을 가능성이 있음.

08 후후 보완 및 개선점

데이터 수의 부족

의료 관련 feature의 수가 적고 단순함

미국 의료기반 시스템 으로 측정한 의료비

Data 보완점

08 후후 보완 및 개선점

배로운 특성 후가, 피해 간의 상호작용 고려

Feature Importance 분석을 통해 모델이 어떤 피처에 의존하는지 파악

더 다양한 하이퍼마라미터 검색 기법을 ///용

한국 실정에 맞게 소득분위 및 보험료에 대한 분석을 할 경우 더욱 가계 재정에 효과적인 분석이 가능

ZHARELLIE