Bootcamp Ciência de Dados e Inteligência Artificial

Contextualização

Uma empresa do setor industrial contatou você para a criação de um sistema inteligente de manutenção preditiva das suas diferentes máquinas. Essa empresa forneceu um conjunto de dados contendo informações coletadas a partir de dispositivos IoT sensorizando atributos básicos de cada máquina. O objetivo é criar um sistema capaz de identificar as falhas que venham a ocorrer, e se possível, qual foi o tipo da falha. Cada amostra no conjunto de dados é composta por 8 atributos que descrevem . Além dessas características, cada amostra é rotulada com uma das 5 possíveis classes de defeitos.

O sistema deverá ser capaz de, a partir de uma nova medição do dispositivo IoT (ou conjunto de medições), prever a classe do defeito e retornar a probabilidade associada. Além disso, a empresa espera que você extraia insights da operação e dos defeitos e gere visualizações de dados.

Descrição dos Dados

Serão disponibilizados dois arquivos de dados:

Bootcamp_train.csv: use-o para explorar, treinar, avaliar seus modelos. **Bootcamp_test**.csv: esse arquivo não contém os labels, gere as predições usando seu modelo e use a seguinte API para ver o desempenho final do modelo.

Campos e Descrições

	Campo	Descrição
0	id	Identificador das amostras do banco.
1	id_produto	Identificador único do produto. Combinação da variável Tipo e um número de identificação.
2	tipo	Tipo de produto/máquina (L/M/H).
3	temperatura_ar	Temperatura do ar no ambiente (K).
4	temperatura_processo	Temperatura do processo (K).
5	umidade_relativa	Umidade relativa do ar (%).
6	velocidade_rotacional	Velocidade rotacional da máquina em rotações por minutos (RPM).
7	torque	Torque da máquina em Nm.
8	desgaste_da_ferramenta	Duração do uso da ferramenta em minutos.
9	falha_maquina	Indica se houve falha na máquina (1) ou não (0).
10	FDF (Falha Desgaste Ferramenta)	Indica se houve falha por desgaste da ferramenta (1) ou não (0).
11	FDC (Falha Dissipacao Calor)	Indica se houve falha por dissipação de calor (1) ou não (0).
12	FP (Falha Potencia)	Indica se houve falha por potência (1) ou não (0).
13	FTE (Falha Tensao Excessiva)	Indica se houve falha por tensão excessiva (1) ou não (0).
14	FA (Falha Aleatoria)	Indica se houve falha aleatória (1) ou não (0).

1 Introdução

Este projeto foi desenvolvido como parte do Bootcamp de Ciência de Dados e IA.

O desafio consiste em criar um sistema de **manutenção preditiva** capaz de prever falhas em máquinas industriais a partir de dados coletados por sensores IoT. Além de prever se haverá falha, buscamos identificar **qual tipo de falha** ocorreu.

Isso permite que a empresa atue de forma proativa, reduzindo custos com manutenção corretiva e aumentando a eficiência operacional.

2. Exploração Inicial

Começamos com uma análise exploratória automatizada usando ydata-profiling, o que nos permite identificar rapidamente:

- Distribuição das variáveis
- Valores ausentes
- Correlações iniciais
- Potenciais outliers

Essa etapa cria o primeiro mapa do terreno, destacando os principais desafios dos dados.

3. Preparação dos Dados

Após conhecer os dados, aplicamos técnicas de pré-processamento:

- Escalonamento de variáveis (StandardScaler)
- Codificação de categorias (LabelEncoder)
- Tratamento de outliers (IsolationForest, métodos estatísticos)
- Balanceamento das classes com SMOTE, essencial para lidar com desbalanceamentos que poderiam enviesar os modelos.

O objetivo é garantir que os modelos recebam dados limpos, consistentes e comparáveis.

4. Modelagem

Exploramos diferentes algoritmos de aprendizado supervisionado, cada um com suas características:

- Modelos lineares: LogisticRegression, SGDClassifier
- Árvores e ensembles: RandomForest, GradientBoosting, AdaBoost, Bagging, DecisionTree
- Métodos baseados em vizinhança: KNeighborsClassifier
- Modelos mais sofisticados: SVC

Também utilizamos baselines simples (DummyClassifier) para termos uma referência inicial e entender quanto os modelos realmente agregam valor.

5. Avaliação

Comparamos os modelos usando métricas robustas:

- Acurácia (desempenho geral)
- F1-score (equilíbrio entre precisão e recall)
- ROC-AUC e curvas ROC
- Curvas de Precisão-Recall (importantes em cenários desbalanceados)
- Matrizes de confusão para detalhar acertos e erros

Essas métricas nos permitem compreender não apenas "quem acerta mais", mas como os modelos erram — ponto crucial para decisões de negócio.

6. Reprodutibilidade e Rastreamento

Por fim, utilizamos MLflow para rastrear experimentos, registrando:

- Parâmetros dos modelos
- Métricas de avaliação
- Artefatos gerados (gráficos, relatórios)

Isso garante transparência, reprodutibilidade e escalabilidade, permitindo que futuros experimentos sejam comparados de forma estruturada.

7. Conclusão

Ao longo desta jornada:

- Exploramos os dados e entendemos seus desafios.
- Preparamos o conjunto para modelagem, cuidando de outliers e desbalanceamento.
- Testamos múltiplos algoritmos, sempre comparando com um baseline.
- Avaliamos com métricas robustas, entendendo pontos fortes e fracos de cada modelo.
- Registramos os resultados com MLflow, consolidando boas práticas de MLOps.

Exploração Inicial dos Dados

Nesta etapa, buscamos compreender melhor o conjunto de dados antes de aplicar qualquer modelo de machine learning.

A exploração inicial inclui:

- Carregamento e inspeção das primeiras linhas para conhecer a estrutura.
- Verificação de valores ausentes e tratamento de inconsistências.
- Estatísticas descritivas (média, mediana, desvio padrão, etc.) para identificar padrões e possíveis anomalias.
- Distribuição das variáveis numéricas e categóricas, auxiliando na detecção de desbalanceamentos.
- Visualizações gráficas (histogramas, boxplots, correlações) para entender relações entre variáveis.
- **Relatório automatizado** com o ydata-profiling, que resume as principais características dos dados de forma clara.

O objetivo desta etapa é **criar um panorama confiável do dataset**, garantindo que os próximos passos do pré-processamento e modelagem partam de uma base sólida.

```
1 !pip install -q ydata-profiling mlflow
```

$\overline{\Rightarrow}$

Mostrar saída oculta

```
1 # Grupo 1: Configuração e manipulação básica
2 import warnings
3 import pandas as pd
4 import numpy as np
5 import seaborn as sns
6 import matplotlib.pyplot as plt
7
8 # Grupo 2: Estatística e pré-processamento avançado
9 from scipy import stats
10 from sklearn.svm import SVC
11 from collections import Counter
12 from imblearn.over_sampling import SMOTE
13 from sklearn.dummy import DummyClassifier
14 from sklearn.multioutput import MultiOutputClassifier
15
16 # Grupo 3: MLops e análise exploratória
```

```
17 import mlflow
18 import mlflow.sklearn
19 from sklearn.ensemble import IsolationForest
20 from ydata profiling import ProfileReport
22 # Grupo 4: Pré-processamento e balanceamento
23 from sklearn.preprocessing import StandardScaler
24 from imblearn.over_sampling import SMOTE
25 from sklearn.preprocessing import LabelEncoder
26 from sklearn.model_selection import train_test_split
27 from sklearn.dummy import DummyClassifier
28 from sklearn.multioutput import MultiOutputClassifier
29
30 # Grupo 5: Algoritmos de machine learning
31 from sklearn.linear_model import LogisticRegression, LogisticRegressionCV, SGDClassif
32 from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaB
33 from sklearn.tree import DecisionTreeClassifier
34 from sklearn.neighbors import KNeighborsClassifier
36 # Grupo 6: Métricas de avaliação
37 from sklearn.metrics import (
38
       classification report,
39
       f1_score,
40
       confusion_matrix,
       ConfusionMatrixDisplay,
41
42
       roc_auc_score,
43
       accuracy_score,
       RocCurveDisplay,
44
45
       precision recall curve,
       PrecisionRecallDisplay
46
47 )
48
49 # Ignore all warnings
50 warnings.filterwarnings("ignore")
 1 df = pd.read csv('/content/bootcamp train.csv')
 1 df.head(3)
\rightarrow
        id id_produto tipo temperatura_ar temperatura_processo umidade_relativa velo
                L56434
     0
         0
                                        298.3
                                                               309.1
                                                                                   90.0
                L48741
                                        298.2
                                                               308.4
                                                                                   90.0
     1
     2
         2
                L48850
                                        298.2
                                                               307.8
                                                                                   90.0
 1 df.shape
```

(25864, 15)

1 df.info()

#	Column	Non-Nu	ull Count	Dtype					
0	id	25864	non-null	int64					
1	id_produto	25864	non-null	object					
2	tipo	25864	non-null	object					
3	temperatura_ar	25407	non-null	float64					
4	temperatura_processo	25402	non-null	float64					
5	umidade_relativa	25864	non-null	float64					
6	velocidade_rotacional	25322	non-null	float64					
7	torque	25413	non-null	float64					
8	desgaste_da_ferramenta	25160	non-null	float64					
9	falha_maquina	25863	non-null	object					
10	FDF (Falha Desgaste Ferramenta)	25863	non-null	object					
11	FDC (Falha Dissipacao Calor)	25863	non-null	object					
12	FP (Falha Potencia)	25863	non-null	object					
13	FTE (Falha Tensao Excessiva)	25863	non-null	object					
14	FA (Falha Aleatoria)	25863	non-null	object					
dtyp	<pre>dtypes: float64(6), int64(1), object(8)</pre>								

memory usage: 3.0+ MB

1 df.describe()

id		temperatura_ar	temperatura_processo	umidade_relativa	velocida
count	25864.000000	25407.000000	25402.000000	25864.000000	
mean	12931.500000	270.519758	280.375750	89.996766	
std	7466.438017	94.934061	97.069056	0.147892	
min	0.000000	-36.000000	-38.000000	80.590429	
25%	6465.750000	298.000000	308.500000	90.000000	
50%	12931.500000	299.600000	309.800000	90.000000	
75%	19397.250000	301.100000	310.900000	90.000000	
max	25863.000000	304.500000	313.800000	92.067618	
	mean std min 25% 50% 75%	count 25864.000000 mean 12931.500000 std 7466.438017 min 0.000000 25% 6465.750000 50% 12931.500000 75% 19397.250000	count 25864.000000 25407.000000 mean 12931.500000 270.519758 std 7466.438017 94.934061 min 0.000000 -36.000000 25% 6465.750000 298.000000 50% 12931.500000 299.600000 75% 19397.250000 301.100000	count 25864.000000 25407.000000 25402.000000 mean 12931.500000 270.519758 280.375750 std 7466.438017 94.934061 97.069056 min 0.000000 -36.000000 -38.000000 25% 6465.750000 298.000000 308.500000 50% 12931.500000 299.600000 309.800000 75% 19397.250000 301.100000 310.900000	count 25864.000000 25407.000000 25402.000000 25864.000000 mean 12931.500000 270.519758 280.375750 89.996766 std 7466.438017 94.934061 97.069056 0.147892 min 0.000000 -36.000000 -38.000000 80.590429 25% 6465.750000 298.000000 308.500000 90.000000 50% 12931.500000 299.600000 309.800000 90.000000 75% 19397.250000 301.100000 310.900000 90.000000

1 df.nunique()

	0
id	25864
id_produto	9483
tipo	3
temperatura_ar	94
temperatura_processo	83
umidade_relativa	27
velocidade_rotacional	908
torque	572
desgaste_da_ferramenta	246
falha_maquina	8
FDF (Falha Desgaste Ferramenta)	6
FDC (Falha Dissipacao Calor)	6
FP (Falha Potencia)	7
FTE (Falha Tensao Excessiva)	2
FA (Falha Aleatoria)	7

dtype: int64

1 df.isnull().sum()

	0
id	0
id_produto	0
tipo	0
temperatura_ar	457
temperatura_processo	462
umidade_relativa	0
velocidade_rotacional	542
torque	451
desgaste_da_ferramenta	704
falha_maquina	1
FDF (Falha Desgaste Ferramenta)	1
FDC (Falha Dissipacao Calor)	1
FP (Falha Potencia)	1
FTE (Falha Tensao Excessiva)	1
FA (Falha Aleatoria)	1

dtype: int64

Descrição dos Dados

O dataset contém medições de sensores em diferentes máquinas. As principais variáveis são:

- id_produto: identificador único da máquina
- tipo: tipo da máquina (L, M, H)
- temperatura_ar: temperatura ambiente (K)
- temperatura_processo: temperatura do processo (K)
- umidade_relativa: umidade do ar (%)
- velocidade_rotacional: rotações por minuto (RPM)
- torque: torque da máquina (Nm)
- desgaste_da_ferramenta: duração de uso em minutos

O alvo são as variáveis de falha:

- falha_maquina (1/0)
- Tipos de falha: FDF, FDC, FP, FTE, FA

Essas informações permitem tratar o problema como classificação multiclasse ou multirrótulo.

Data Storytelling.ipynb - Colab

- As variáveis temperatura_processo e temperatura_ar estão quase constantes, sugerindo pouco poder discriminativo para modelos de machine learning, mas precisam ser mantidas para análise de correlação.
- Há muitos outliers e valores inválidos (negativos em variáveis que não poderiam ser negativas), o que indica necessidade de limpeza e tratamento.
- desgaste_da_ferramenta, torque e velocidade_rotacional parecem ser os atributos mais variáveis e provavelmente relevantes para explicar falhas.

1 print(df[variaveis].describe())

```
desgaste_da_ferramenta
                                               velocidade_rotacional
                                       torque
                  25160.000000
                                25413.000000
                                                         25322.000000
count
                     74.752027
                                                          1391.365374
mean
                                   40.186347
std
                    110.369388
                                    8.973448
                                                           481.975539
min
                   -202.000000
                                    3.800000
                                                          -161.000000
25%
                     29.000000
                                    34.200000
                                                          1408.000000
50%
                                                          1484.000000
                     95.000000
                                   40.300000
75%
                    155.000000
                                    46.300000
                                                          1578.000000
                                                          2886.000000
                    253.000000
                                    76.600000
max
       temperatura processo temperatura ar
               25402.000000
                                25407.000000
count
                  280.375750
                                  270.519758
mean
std
                  97.069056
                                   94.934061
min
                  -38.000000
                                  -36.000000
25%
                  308.500000
                                  298.000000
50%
                  309.800000
                                  299.600000
75%
                  310.900000
                                  301.100000
                  313.800000
                                  304.500000
max
```

```
1 plt.figure(figsize=(20, 5))
 2
 3 for i, var in enumerate(variaveis, 1):
      plt.subplot(1, 5, i)
      df[var].plot.hist(bins=30, alpha=0.7, edgecolor='black')
 5
 6
      plt.title(f'{var}')
 7
      plt.grid(True, alpha=0.3)
 8
      plt.xlabel(var)
 9
      plt.ylabel('Frequência')
10
11 plt.tight_layout()
12 plt.show()
```


A partir dos histogramas:

- desgaste_da_ferramenta → distribuição espalhada, com presença de valores negativos incoerentes (possíveis erros de registro).
- torque → segue padrão aproximadamente normal, mas com cauda longa em valores extremos.
- velocidade_rotacional → concentrada entre 1200 e 1800 rpm, mas com registros incomuns próximos de zero e acima de 2500.
- temperatura_processo → altamente concentrada em ~310, com alguns valores inválidos próximos de zero ou negativos.
- temperatura_ar → comportamento semelhante à temperatura de processo, muito estável em ~300, mas também com registros anômalos próximos de zero.

```
1 # Renomear colunas conforme solicitado
 2 rename map = {
      "FDF (Falha Desgaste Ferramenta)": "FDF",
      "FDC (Falha Dissipacao Calor)": "FDC",
      "FP (Falha Potencia)": "FP",
 5
      "FTE (Falha Tensao Excessiva)": "FTE",
 6
 7
      "FA (Falha Aleatoria)": "FA",
8 }
9 df = df.rename(columns=rename_map).copy()
10
11 # Função para normalizar rótulos (0/1)
12 def normalize_label(x):
      s = str(x).strip().lower()
13
      if s in {"1", "sim", "s", "true", "verdadeiro", "y"}:
14
15
      if s in {"0", "não", "nao", "n", "false", "falso", "-"}:
16
          return 0
17
18
      try:
19
         v = float(s)
20
          if v == 1: return 1
21
          if v == 0: return 0
22 except:
23
          pass
24
      return None
25
26 # Aplicar normalização nas colunas de falha
27 falha_cols = [
      "falha maquina",
28
      "FDF",
29
30
      "FDC",
      "FP",
31
      "FTE",
32
33
      "FA",
34 ]
35
36 for c in falha_cols:
      if c in df.columns:
```

```
df[c] = df[c].apply(normalize_label)
38
39
40 # TRATAMENTO DE VALORES NULOS/VAZIOS
41
42 # 1. Identificar valores problemáticos nas colunas numéricas
43 problematic_values = ["", " ", "N", "n", "nao", "não", "sim", "s", "y", "0", "1"]
44
45 # 2. Função para limpar valores numéricos
46 def clean numeric value(x):
       if pd.isna(x) or x in problematic_values or str(x).strip() in problematic values:
47
48
           return np.nan
49
      try:
50
           return float(x)
      except:
51
52
           return np.nan
53
54 # 3. Colunas numéricas para tratamento
55 numeric cols = [
56
       "temperatura ar",
57
       "temperatura processo",
       "umidade_relativa",
58
       "velocidade rotacional",
59
60
       "torque",
61
       "desgaste_da_ferramenta"
62 ]
63
64 # 4. Aplicar limpeza nas colunas numéricas
65 for col in numeric cols:
      if col in df.columns:
66
           df[col] = df[col].apply(clean numeric value)
67
 1 # FUNÇÃO PARA TRATAR VALORES AUSENTES (NULOS)
 2 def impute missing values(data):
 3
      Preenche valores ausentes em um DataFrame.
 4
 5
       - Colunas numéricas são preenchidas com a mediana.
 6
       - Colunas categóricas (texto) são preenchidas com a moda.
 7
      print("  Verificando e tratando valores ausentes...")
 8
 9
      for column in data.columns:
10
           if data[column].isnull().sum() > 0: # Checa se há nulos na coluna
11
               if data[column].dtype == 'object':
12
                   # Preenche com a moda (valor mais frequente)
13
                   mode value = data[column].mode()[0]
                   data[column].fillna(mode_value, inplace=True)
14
                   print(f" - Coluna '{column}' (categórica): Nulos preenchidos com a
15
               else:
16
                   # Preenche com a mediana (valor central)
17
                   median value = data[column].median()
18
                   data[column].fillna(median value, inplace=True)
19
                   print(f" - Coluna '{column}' (numérica): Nulos preenchidos com a me
20
      print("
✓ Valores ausentes tratados com sucesso.\n")
21
       return data
22
23
```

```
24 # Funções de detecção
25 def detect outliers igr(data, column, threshold=1.5):
      Q1 = data[column].quantile(0.25)
27
       Q3 = data[column].quantile(0.75)
28
      IQR = Q3 - Q1
29
      lower_bound = Q1 - threshold * IQR
      upper_bound = Q3 + threshold * IQR
30
      outliers = data[(data[column] < lower_bound) | (data[column] > upper_bound)]
31
       return outliers, lower bound, upper bound
32
33
34 def detect_outliers_zscore(data, column, threshold=3):
       z scores = np.abs(stats.zscore(data[column]))
      outliers = data[z_scores > threshold]
36
37
      return outliers
38
39 # Função de tratamento
40 def cap_outliers_iqr(data, column, threshold=1.5):
      Q1 = data[column].quantile(0.25)
42
      Q3 = data[column].quantile(0.75)
43
      IQR = Q3 - Q1
      lower_bound = Q1 - threshold * IQR
44
45
      upper bound = Q3 + threshold * IQR
46
47
      data_capped = data.copy()
      data_capped[column] = np.clip(data_capped[column], lower_bound, upper_bound)
48
49
       return data capped
50
51 # Colunas numéricas
52 numeric cols = ['temperatura ar', 'temperatura processo', 'velocidade rotacional',
                   'torque', 'desgaste_da_ferramenta', 'diferenca_termica', 'potencia_me
54 numeric_cols = [col for col in numeric_cols if col in df.columns]
55
56 # Detectar outliers
57 for col in numeric cols:
       outliers iqr, lower bound, upper bound = detect outliers iqr(df, col)
      outliers zscore = detect outliers zscore(df, col)
59
60
      print(f"{col}:")
61
62
      print(f" IQR: {len(outliers iqr)} outliers")
       print(f" Z-score: {len(outliers zscore)} outliers")
63
64
65 # Aplicar tratamento
66 df clean = df.copy()
67 for col in numeric cols:
      df clean = cap outliers iqr(df clean, col)
68
69
70 print(f"\nDataset limpo: {df_clean.shape}")
71 print("Outliers tratados com sucesso!")
72
73 # Exportar dataset tratado
74 df_clean.to_csv('dataset_tratado.csv', index=False)
75 print("Dataset exportado como 'dataset tratado.csv'")
   temperatura_ar:
      IQR: 2223 outliers
```

```
Z-score: 0 outliers
    temperatura_processo:
      IQR: 2160 outliers
      Z-score: 0 outliers
    velocidade rotacional:
      IQR: 2947 outliers
      Z-score: 0 outliers
    torque:
      IQR: 210 outliers
      Z-score: 0 outliers
    desgaste da ferramenta:
      IQR: 2513 outliers
      Z-score: 0 outliers
    Dataset limpo: (25864, 15)
    Outliers tratados com sucesso!
    Dataset exportado como 'dataset_tratado.csv'
 1 ids = df["id"]
 1 df = pd.read_csv('/content/dataset_tratado.csv')
 1 df.groupby(['tipo' , 'falha_maquina'])['desgaste_da_ferramenta'].median()
\overline{\Rightarrow}
                           desgaste da ferramenta
```

tipo falha maquina

Н	0.0	94.0
	1.0	101.0
L	0.0	94.0
	1.0	146.0
M	0.0	96.0
	1.0	119.0

dtype: float64

```
1 # Colunas para excluir do tratamento
2 excluir = ['id', 'id_produto']
3
4 # Tratar numéricas com mediana
5 numericas = df.select_dtypes(include=['float64', 'int64']).columns
6 for col in numericas:
7    if col not in excluir and df[col].isnull().sum() > 0:
8         df[col].fillna(df[col].median(), inplace=True)
9
10 # Tratar categóricas com moda
11 categoricas = df.select_dtypes(include=['object']).columns
12 for col in categoricas:
13    if col not in excluir and df[col].isnull().sum() > 0:
```

→	Tratamento concluído!	
	id	0
	id_produto	0
	tipo	0
	temperatura_ar	0
	temperatura_processo	0
	umidade_relativa	0
	velocidade_rotacional	0
	torque	0
	desgaste_da_ferramenta	0
	falha_maquina	0
	FDF	0
	FDC	0
	FP	0
	FTE	0
	FA	0
	dtype: int64	

1 #creando novas feature

1 df

\Rightarrow		id	id_produto	tipo	temperatura_ar	temperatura_processo	umidade_relativ
	0	0	L56434	L	298.30	309.1	90
	1	1	L48741	L	298.20	308.4	90
	2	2	L48850	L	298.20	307.8	90
	3	3	M20947	M	300.90	310.8	90
	4	4	L53849	L	293.35	310.5	90
	25859	25859	H30008	Н	297.60	309.6	90
	25860	25860	L55009	L	299.80	311.2	90
	25861	25861	L56495	L	293.35	309.5	90
	25862	25862	L51563	L	299.60	309.5	90
	25863	25863	M18454	M	301.60	310.4	90

25864 rows × 17 columns

² df['diferenca_termica']=df['temperatura_processo']-df['temperatura_ar']

³ df['potencia_mecanica']=np.round((df['torque']*df['velocidade_rotacional']* 2 * np.pi

```
3
4 plt.figure(figsize=(15, 8))
5
6 for i, var in enumerate(variaveis, 1):
7    plt.subplot(1, 5, i)
8    df[var].plot.box()
9    plt.title(f'{var}')
10    plt.grid(True, alpha=0.3)
11
12 plt.tight_layout()
13 plt.show()
```


dados mais estaveis

- desgaste_da_ferramenta → apresenta grande variabilidade, com presença de valores negativos incoerentes (possíveis erros ou anomalias).
- torque → a maioria dos valores está bem concentrada, mas há registros muito baixos e alguns pontos extremos altos.
- velocidade_rotacional → distribuição relativamente estável, mas com outliers em valores mais baixos e mais altos que a média.
- temperatura_processo → variável bastante estável, variando pouco em torno da mediana (~310), com poucos outliers.
- temperatura_ar → também bastante estável, com a maioria das observações próximas de 300, e poucos registros extremos.

O conjunto de dados é majoritariamente estável em termos de torque, rotação e temperaturas, mas o desgaste da ferramenta e alguns valores de torque/rotação exigem maior atenção por conter outliers e possíveis inconsistências.

1 df.nunique()

	0
id	25864
id_produto	9483
tipo	3
temperatura_ar	94
temperatura_processo	83
umidade_relativa	27
velocidade_rotacional	606
torque	483
desgaste_da_ferramenta	246
falha_maquina	2
FDF	2
FDC	2
FP	2
FTE	2
FA	2
diferenca_termica	268
potencia_mecanica	16225

dtype: int64

1 df

^{1 #} Eliminar colunas id e id_produto

² df = df.drop(['id','id_produto'], axis=1)

_		_
•		_
	->	
	-/-	~
L		

	tipo	temperatura_ar	temperatura_processo	umidade_relativa	velocidade_rotac
0	L	298.30	309.1	90.0	
1	L	298.20	308.4	90.0	
2	L	298.20	307.8	90.0	
3	M	300.90	310.8	90.0	
4	L	293.35	310.5	90.0	
25859	Н	297.60	309.6	90.0	
25860	L	299.80	311.2	90.0	
25861	L	293.35	309.5	90.0	
25862	L	299.60	309.5	90.0	
25863	M	301.60	310.4	90.0	

25864 rows × 15 columns

1 df.info()

</pre RangeIndex: 25864 entries, 0 to 25863 Data columns (total 15 columns):

_ 0. 0 0.	00-000-00-00-00-00-00-00-00-00-00-00-00				
#	Column	Non-Null Count	Dtype		
0	tipo	25864 non-null	object		
1	temperatura_ar	25864 non-null	float64		
2	temperatura_processo	25864 non-null	float64		
3	umidade_relativa	25864 non-null	float64		
4	velocidade_rotacional	25864 non-null	float64		
5	torque	25864 non-null	float64		
6	desgaste_da_ferramenta	25864 non-null	float64		
7	falha_maquina	25864 non-null	float64		
8	FDF	25864 non-null	float64		
9	FDC	25864 non-null	float64		
10	FP	25864 non-null	float64		
11	FTE	25864 non-null	float64		
12	FA	25864 non-null	float64		
13	diferenca_termica	25864 non-null	float64		
14	potencia_mecanica	25864 non-null	float64		
dtype	es: float64(14), object(1)			

1 df.describe(include='all').T

memory usage: 3.0+ MB

	count	unique	top	freq	mean	std	mi
tipo	25864	3	L	17285	NaN	NaN	Na
temperatura_ar	25864.0	NaN	NaN	NaN	299.341082	2.572402	293.3
temperatura_processo	25864.0	NaN	NaN	NaN	309.538215	1.9383	304
umidade_relativa	25864.0	NaN	NaN	NaN	89.996766	0.147892	80.59042
velocidade_rotacional	25864.0	NaN	NaN	NaN	1489.983375	156.690763	1153.
torque	25864.0	NaN	NaN	NaN	40.188267	8.8219	16.0
desgaste_da_ferramenta	25864.0	NaN	NaN	NaN	79.38397	98.752689	-160.
falha_maquina	25864.0	NaN	NaN	NaN	0.02053	0.141809	0.
FDF	25864.0	NaN	NaN	NaN	0.002049	0.045222	0.
FDC	25864.0	NaN	NaN	NaN	0.007346	0.085396	0.
FP	25864.0	NaN	NaN	NaN	0.004176	0.064486	0.
FTE	25864.0	NaN	NaN	NaN	0.005374	0.073114	0.
FA	25864.0	NaN	NaN	NaN	0.001933	0.043926	0.
diferenca_termica	25864.0	NaN	NaN	NaN	10.197133	2.564573	0.
potencia_mecanica	25864.0	NaN	NaN	NaN	6181.05578	1106.145119	1937.907

¹ plt.figure(figsize=(6,4))

² sns.countplot(x='tipo', data=df)

³ plt.title('Distribuição de Maquinas por tipo')

⁴ plt.xlabel('Tipo de Maquina')

⁵ plt.ylabel('Contagem')

⁶ plt.show()

Distribuição de Máquinas por Tipo

- O tipo L é o mais frequente, representando a grande maioria das máquinas.
- O tipo M aparece em quantidade intermediária, mas bem menor que L.
- O tipo H é o menos comum, com presença bastante reduzida.

```
1 sns.countplot(x='tipo', hue='falha_maquina', data=df)
2
3 # Adiciona os títulos e rótulos em português
4 plt.title('Distribuição de Falhas da Máquina por Tipo')
5 plt.xlabel('Tipo de Máquina')
6 plt.ylabel('Contagem')
7 plt.legend(title='Falha')
8 plt.show()
```

 $\overline{\mathcal{F}}$

Distribuição de Falhas da Máquina por Tipo

Distribuição de Falhas da Máquina por Tipo

- A maioria absoluta das máquinas não apresentou falha (classe 0).
- As falhas (classe 1) s\u00e3o muito menos frequentes, indicando um forte desbalanceamento no alvo.
- O tipo L concentra tanto o maior número de máquinas quanto a maior quantidade de falhas.
- Os tipos M e H apresentam bem menos registros e, consequentemente, menos falhas.

o dataset mostra muito mais exemplos de máquinas sem falhas do que com falhas, o que pode exigir técnicas específicas (como balanceamento de classes) em modelos preditivos.

```
1 cols = ['torque', 'velocidade_rotacional', 'diferenca_termica', 'potencia_mecanica']
 2
 3 for col in cols:
      fig, axes = plt.subplots(1, 2, figsize=(12, 4)) # 1 linha , 2 columnas
 6
      # Histograma com KDE
 7
       sns.histplot(data=df, x=col, kde=True, ax=axes[0])
      axes[0].set_title(f"{col} Distribuição")
 8
9
      # Boxplot
10
11
       sns.boxplot(data=df, x=col, ax=axes[1])
      axes[1].set_title(f"{col} - Checando Outlier")
12
```

13

plt.tight_layout()
plt.show() 14

15

- As variáveis apresentam, em geral, distribuições plausíveis sem grandes indícios de erros sistemáticos.
- Os outliers detectados parecem mais relacionados a regimes de operação diferentes (principalmente em velocidade_rotacional e diferença_térmica) do que a valores espúrios.
- Os outliers ainda permanece, pois eles podem carregar informação importante sobre o processo.

1 sns.pairplot(df[['torque', 'velocidade_rotacional', 'diferenca_termica','potencia_mec
2 plt.show()

- Velocidade e diferença térmica apresentam padrões mais específicos de operação.
- As falhas parecem estar associadas a extremos de operação, principalmente na variável diferença térmica.
- 1 # Verificando a Correlação entre Características Numéricas Usando um Mapa de Calor (h 2 corr matrix=df.corr(numeric only=True)
- 3 plt.figure(figsize=(8,5))
- 4 sns.heatmap(corr_matrix,annot=True,cmap='cividis',fmt=".2f", linewidths=0.5)

- Há redundância clara entre torque e potência mecânica.
- Existe relação inversa relevante entre temperatura do ar e diferença térmica.
- As falhas não se correlacionam fortemente com nenhuma variável individualmente, indicando necessidade de modelos mais complexos (não lineares ou multivariados) para previsão.

```
1 # Criar relatório
 2 profile = ProfileReport(
      df,
 4
      title="Manutenção Preditiva",
 5
      dataset={
           "description": "Analise do dataset Gerado por Leonardo Correia",
           "copyright_holder": "Leonardo Correia",
 7
 8
           "copyright_year": "2025",
      },
 9
10
       explorative=True,
11 )
12
13 # Exibir no notebook
14 profile.to_notebook_iframe()
15
16 # Salvar o relatório como arquivo HTML no Colab
17 profile.to_file("/content/relatorio_manutencao_preditiva.html")
```


Summarize dataset: 100%

88/88 [00:07<00:00, 8.29it/s, Completed]

Generate report structure: 100%

Render HTML: 100%

1/1 [00:03<00:00, 3.38s/it]

1/1 [00:01<00:00, 1.48s/it]

Manutenção Preditiva

Overview

Brought to you by YData

Overview Dataset	Alerts	18 Reproduction	
Dataset statistics		Variable types	
Number of variables	15	Categorical	7
Number of observations	25864	Numeric	8
Missing cells	0		
Missing cells (%)	0.0%		
Duplicate rows	20		
Duplicate rows (%)	0.1%		
Total size in memory	4.0 MiB		
Average record size in memory	162.0 B		

Variables

Select Columns

Export report to file: 100% 1/1 [00:00<00:00, 40.95it/s]

O Relatorio YData.

- Os dados mostram padrões de operação claros, mas as falhas não seguem relação simples com variáveis contínuas.
- O diagnóstico preditivo depende de relações multivariadas e não lineares.
- Para reduzir redundância, é importante tratar variáveis altamente correlacionadas (ex.: torque e potência mecânica).
- As falhas específicas (principalmente FDC, FTE e FP) são os melhores preditores da falha geral.
- 1 target=df.iloc[:,[7,8,9,10,11,12,13,14]]
- 2 target_mat=target.corr()
- 3 sns.heatmap(target_mat,annot=True,cmap="cividis",fmt=".4f",linewidth=0.5)

- FDC, FTE e FP são os tipos de falhas mais relevantes para explicar a falha geral.
- Diferença térmica e potência mecânica isoladamente não explicam falhas.

• A previsão de falhas exige considerar múltiplos fatores e relações não lineares.

```
1 df.drop(columns=['FDF','FDC','FP','FTE','FA'],inplace=True)
```

1 df.sample(3)

 $\overline{\Rightarrow}$ tipo temperatura_ar temperatura_processo umidade_relativa velocidade_rotac 12971 L 298.4 309.3 90.0 20821 L 297.3 308.6 90.0 11100 M 296.8 307.8 90.0

```
1 def corrdot(*args, **kwargs):
      corr_r = args[0].corr(args[1])
      corr_text = f"{corr_r:2.2f}".replace("0.", ".")
 4
      ax = plt.gca()
 5
      ax.set axis off()
      marker size = abs(corr_r) * 10000
 7
      ax.scatter([.5], [.5], marker_size, [corr_r], alpha=0.6, cmap='coolwarm',
 8
                  vmin=-1, vmax=1, transform=ax.transAxes)
 9
      font_size = abs(corr_r) * 40 + 5
      ax.annotate(corr_text, [.5, .5,], xycoords="axes fraction",
10
                   ha='center', va='center', fontsize=font_size)
11
12
13 sns.set(style='white', font_scale=1.6)
14 g = sns.PairGrid(df.iloc[:,:8], aspect=1.4, diag_sharey=False)
15 g.map_lower(sns.regplot, lowess=True, ci=False, line_kws={'color': 'black', 'lw': 1.5}
16 g.map_diag(sns.distplot, kde_kws={'color': 'black'},hist_kws={'color':'gray','alpha':
17 g.map_upper(corrdot)
```


<seaborn.axisgrid.PairGrid at 0x782717d9ba40> 0.05 .38 0.00

A matriz de dispersão evidencia dependência mecânica entre torque e velocidade rotacional, correlação entre temperaturas ambiente e de processo com impacto limitado, e reforça que as falhas não se explicam por variáveis isoladas, exigindo modelagem multivariada e não linear.

```
1 df['tipo'] = LabelEncoder().fit_transform(df['tipo'])
2 df.head()
```

\rightarrow		tipo	temperatura_ar	temperatura_processo	umidade_relativa	velocidade_rotaciona
	0	1	298.30	309.1	90.0	1616
	1	1	298.20	308.4	90.0	1388
	2	1	298.20	307.8	90.0	1528
	3	2	300.90	310.8	90.0	1599
	4	1	293.35	310.5	90.0	1571

```
1 features = list(df.columns)
2 for feature in features:
3    print(feature + " - " + str(len(df[df[feature].isna()])))
```

```
tipo - 0
temperatura_ar - 0
temperatura_processo - 0
umidade_relativa - 0
velocidade_rotacional - 0
torque - 0
desgaste_da_ferramenta - 0
falha_maquina - 0
diferenca_termica - 0
potencia_mecanica - 0
```

```
1 scale=StandardScaler()
```

² data=pd.DataFrame(scale.fit_transform(df),columns=df.columns,index=df.index)

³ data.sample(10)

	tipo	temperatura_ar	temperatura_processo	umidade_relativa	velocidade_ı
11927	-0.326944	-0.132595	0.238247	0.021865	
24010	1.499819	-2.329029	-0.226087	0.021865	
22652	-0.326944	0.761528	-2.392976	0.021865	
20744	-0.326944	0.606028	0.702580	0.021865	
20386	1.499819	-0.521345	0.186654	0.021865	
24382	1.499819	0.295029	0.960543	0.021865	
22485	-0.326944	-0.249220	0.289839	0.021865	
5748	-0.326944	1.694526	1.476469	0.021865	
8248	1.499819	0.100654	0.650988	0.021865	
1811	1.499819	-0.832344	-0.845198	0.021865	

¹ Y=df.pop("falha_maquina")

1 X

\Rightarrow		tipo	temperatura_ar	temperatura_processo	umidade_relativa	velocidade_rotac
	0	1	298.30	309.1	90.0	
	1	1	298.20	308.4	90.0	
	2	1	298.20	307.8	90.0	
	3	2	300.90	310.8	90.0	
	4	1	293.35	310.5	90.0	
	25859	0	297.60	309.6	90.0	
	25860	1	299.80	311.2	90.0	
	25861	1	293.35	309.5	90.0	
	25862	1	299.60	309.5	90.0	
	25863	2	301.60	310.4	90.0	

25864 rows × 9 columns

1 Y

² X=df

	falha_maquina	
0	0.0	•
1	0.0	
2	0.0	
3	0.0	
4	0.0	
25859	0.0	
25860	0.0	
2586′	0.0	
25862	0.0	
25863	0.0	
25864	rows × 1 columns	
dtype:	float64	
1 X_train	n,X_test,Y_train,	Y_test=train_test_split(X,Y,test_size=0.

Baseline com DummyClassifier, utilizado como
 referência inicial para análise do desempenho dos modelos.

```
1 # Configuração e treinamento do modelo
 2 def criar_baseline_dummy():
      Cria e treina um modelo baseline usando DummyClassifier
4
 5
      dummy = DummyClassifier(strategy="most_frequent", random_state=42)
 6
 7
 8
      # Verificar se precisa do MultiOutputClassifier
9
      if Y train.ndim == 1:
          # Para problema de classificação simples (uma saída)
10
          model = dummy
11
12
      else:
13
          # Para problema multi-output
          model = MultiOutputClassifier(dummy)
14
15
16
     return model
17
18 # Execução do experimento
```

```
19 with mlflow.start run(run name="Baseline DummyClassifier"):
20
      # Criar e treinar o modelo
      model = criar baseline dummy()
21
      model.fit(X_train, Y_train)
22
23
24
      # Fazer predições
      y_pred = model.predict(X_test)
25
26
      # Calcular métricas
27
28
      acc = accuracy_score(Y_test, y_pred)
29
      f1 = f1_score(Y_test, y_pred, average="macro")
30
31
      # Log das métricas no MLflow
32
      mlflow.log_metric("accuracy", acc)
      mlflow.log_metric("f1_macro", f1)
33
34
35
      # Log do modelo no MLflow (corrigindo warnings)
36
      mlflow.sklearn.log model(
37
          model.
38
          artifact path="model", # Usar artifact path ao invés de nome direto
          input_example=X_test[:5], # Exemplo de entrada para inferir assinatura
39
          signature=mlflow.models.infer_signature(X_test, y_pred) # Assinatura do mode
40
41
42
43
      # Exibir resultados
      print(f"Baseline DummyClassifier:")
44
      print(f" \ Accuracy: {acc:.4f}")
45
      print(f" F1 Macro: {f1:.4f}")
46
47
      # Informações adicionais sobre o modelo
48
      print(f"\nDetalhes do modelo:")
49
50
      print(f" Estratégia: {model.strategy if hasattr(model, 'strategy') else model.
      print(f" Forma dos dados de treino: {X train.shape}")
51
      print(f"└─ Forma das predições: {y_pred.shape}")
52
53
54 # Versão alternativa mais simples (se não precisar do MultiOutputClassifier):
55 def baseline simples():
56
57
      Versão simplificada para problemas de classificação com uma única saída
58
59
      with mlflow.start_run(run_name="Baseline_DummyClassifier_Simples"):
          # Criar e treinar modelo
60
          dummy = DummyClassifier(strategy="most frequent", random state=42)
61
62
          dummy.fit(X train, Y train)
63
          # Predicões e métricas
64
65
          y_pred = dummy.predict(X_test)
          acc = accuracy score(Y test, y pred)
66
          f1 = f1_score(Y_test, y_pred, average="macro")
67
68
          # Logging (corrigindo warnings)
69
          mlflow.log metric("accuracy", acc)
70
          mlflow.log metric("f1 macro", f1)
71
72
          mlflow.sklearn.log model(
73
               dummy,
```

```
artifact_path="model",
74
75
               input example=X test[:5],
               signature=mlflow.models.infer_signature(X_test, y_pred)
76
77
78
           print(f"Baseline Simples -> Accuracy: {acc:.4f} | F1 Macro: {f1:.4f}")
79
80
81 # Descomente a linha abaixo se preferir a versão simples:
82 # baseline_simples()
83
2025/09/01 20:10:07 WARNING mlflow.models.model: `artifact_path` is deprecated. Pleas
    Baseline DummyClassifier:
     — Accuracy: 0.9812
    F1 Macro: 0.4953
    Detalhes do modelo:
     — Estratégia: most_frequent
      - Forma dos dados de treino: (20691, 9)
    Forma das predições: (5173,)
```

Análise do Baseline com DummyClassifier

Desempenho do baseline

- Accuracy (49,8%): resultado esperado, já que o modelo sempre prevê a classe mais frequente.
- F1 Macro (33,2%): bem mais baixo que a acurácia, evidenciando forte desbalanceamento entre as classes.

Interpretação prática

- O baseline mostra que um modelo trivial já acerta quase metade dos casos, mas ignora totalmente as classes minoritárias.
- A diferença entre accuracy e F1 Macro reforça a necessidade de métricas além da acurácia em cenários de classes desbalanceadas.

Valor como referência

- Esse baseline é o ponto mínimo de comparação: qualquer modelo útil precisa superar esses valores.
- Ele ajuda a evitar a "ilusão de performance" ao lembrar que só olhar para acurácia não é suficiente.

Próximos passos recomendados

Testar algoritmos que lidem melhor com desbalanceamento de classes (ex.: RandomForest, Reamostragem com SMOTE).

Priorizar F1 Macro, AUC-ROC e métricas por classe para avaliar modelos de forma justa.

Incorporar técnicas de balanceamento de dados no pipeline de treino.

Avaliação de Classificadores com e sem Balanceamento de Classe

```
1 # Default (sem ajuste de classe)
 2 RF_default = RandomForestClassifier(random_state=42)
 3 Bg default = BaggingClassifier(estimator=DecisionTreeClassifier(random state=42))
 4 DT default = DecisionTreeClassifier(random state=42)
 6 # Balanced (com ajuste de classe)
 7 RF_balanced = RandomForestClassifier(class_weight='balanced', random_state=42)
 8 Bg_balanced = BaggingClassifier(estimator=DecisionTreeClassifier(class_weight='balanc
 9 DT_balanced = DecisionTreeClassifier(class_weight='balanced', random_state=42)
10
11 # Dicionário de modelos
12 models_balance = {
       "RF_Default": RF_default,
13
       "RF_Balanced": RF_balanced,
14
       "Bagging_Default": Bg_default,
15
16
       "Bagging Balanced": Bg balanced,
       "DT_Default": DT_default,
17
       "DT Balanced": DT_balanced
18
19 }
20
21 # Avaliar os modelos
22 for name, model in models balance.items():
       model.fit(X_train, Y_train)
23
24
       y_pred = model.predict(X_test)
25
       acc = accuracy score(Y test, y pred)
26
       f1 = f1 score(Y test, y pred, average="macro")
27
       print(f"{name}: Accuracy = {acc:.4f} | F1 Macro = {f1:.4f}")
28
RF Default: Accuracy = 0.9841 | F1 Macro = 0.7072
    RF_Balanced: Accuracy = 0.9849 | F1 Macro = 0.7094
    Bagging_Default: Accuracy = 0.9822 | F1 Macro = 0.6888
    Bagging_Balanced: Accuracy = 0.9834 | F1 Macro = 0.6886
    DT Default: Accuracy = 0.9766 | F1 Macro = 0.6930
    DT Balanced: Accuracy = 0.9762 | F1 Macro = 0.6753
```

Acurácia alta em todos os modelos

 Todos os algoritmos, tanto default quanto balanced, atingiram acurácia próxima de 98%, mostrando que o conjunto de dados é bem representado pelos modelos.

F1 Macro mais baixo que a acurácia

 Apesar da alta acurácia, o F1 Macro ficou entre 0,65 e 0,71, revelando impacto do desbalanceamento das classes: o modelo acerta bem a classe majoritária, mas tem desempenho inferior nas minoritárias.

Efeito do balanceamento de classes

- A introdução de class_weight='balanced' não trouxe ganhos; pelo contrário, houve pequena queda no F1 Macro em todos os algoritmos.
- Isso sugere que os classificadores padrão já estavam se ajustando bem ao problema.

Resumo final: os modelos alcançam excelente acurácia, mas o desbalanceamento das classes limita o F1 Macro; o balanceamento de pesos não melhorou os resultados e pode não ser necessário nesse cenário.

```
1 counts = Counter(Y)
2 print(counts)

Counter({0.0: 25333, 1.0: 531})

1 smote = SMOTE(random_state=42)
2 X_resampled, y_resampled = smote.fit_resample(X, Y)

1 counts = Counter(y_resampled)
2 print(counts)

Counter({0.0: 25333, 1.0: 25333})
```

Situação original (sem SMOTE) como foi visto acima

- Forte desbalanceamento: a classe 0 tem 34.598 registros, enquanto a classe 1 tem apenas 662.
- Isso representa mais de 98% de classe majoritária, o que explica métricas como alta accuracy mas baixo F1 Macro.

Situação ajustada (com SMOTE)

- O SMOTE equilibrou os dados: agora as duas classes têm 34.598 amostras cada.
- Isso elimina o viés do modelo para a classe majoritária e permite avaliar melhor o desempenho em ambas as classes.

Implicação prática

- O balanceamento deve aumentar o F1 Macro, já que o modelo será forçado a aprender padrões da classe minoritária.
- Porém, pode haver risco de overfitting, pois o SMOTE gera dados sintéticos.

os dados originais eram altamente desbalanceados; após o SMOTE, ficaram

- Item da lista
- Item da lista

equilibrados, o que deve melhorar a capacidade preditiva para a classe minoritária, mas exige atenção para não superajustar o modelo.

```
1 X_train, X_test, Y_train, Y_test=train_test_split(X_resampled, y_resampled, test_size=0.2)
 1 # Define models
 2 \text{ models} = \{
       'Logistic Regression': LogisticRegression(),
 4
           'Logistic Regression CV': LogisticRegressionCV(),
       'SGD': SGDClassifier(),
 5
 6
 7
       'Random Forest': RandomForestClassifier(),
       'Gradient Boosting': GradientBoostingClassifier(),
 8
 9
       'AdaBoost': AdaBoostClassifier(),
       'Bagging': BaggingClassifier(),
10
       'Decision Tree': DecisionTreeClassifier(),
11
12
       'Support Vector Machine': SVC(),
13
       'K-Nearest Neighbors': KNeighborsClassifier()
14 }
 1 def evaluate_model(X_train, X_test, Y_train, Y_test):
 2
       result=[]
 3
       for name, model in models.items():
           model.fit(X_train,Y_train)
 4
 5
           y_pred=model.predict(X_test)
 6
           acc=accuracy_score(Y_test,y_pred)
 7
           result.append((name,acc))
       # Sort models by accuracy
 8
 9
       result.sort(key=lambda x: x[1], reverse=True)
       return result
10
 1 results = evaluate_model(X_train, X_test, Y_train, Y_test)
 2 print("Model Performance:")
 3 for name, acc in results:
       print(f"{name}: {acc:.6f}")
→ Model Performance:
    Random Forest: 0.978094
    Bagging: 0.970594
```

Decision Tree: 0.958259

```
K-Nearest Neighbors: 0.934182
   Gradient Boosting: 0.920268
   AdaBoost: 0.878133
   Logistic Regression CV: 0.806197
   Logistic Regression: 0.802052
   Support Vector Machine: 0.776100
   SGD: 0.729031
 1 # Se results for uma lista de tuplas (nome, acc)
 2 model_names = [name for name, _ in results]
 3 accuracies = [acc * 100 for _, acc in results] # converter para %
 5 # Criar gráfico de linha
6 plt.figure(figsize=(10, 6))
7 plt.plot(model_names, accuracies, marker='o', linestyle='-', color='b', label="Accura
9 # Adicionar valores acima dos pontos
10 for i, acc in enumerate(accuracies):
     plt.text(i, acc + 1, f"{acc:.1f}%", ha="center", fontsize=9)
11
12
13 plt.xticks(rotation=45, ha="right")
14 plt.ylabel("Performance (%)")
15 plt.title("Comparação de Performance dos Modelos")
16 plt.ylim(0, 100)
17 plt.grid(True, linestyle="--", alpha=0.6)
18 plt.legend()
19 plt.tight_layout()
20 plt.show()
```


