EXPERIMENT 5 FIRST-ORDER CIRCUITS

5.1 Objective:

In this experiment, you will learn the square wave response of RC circuits.

- i. Experimental observation of the first-order circuit characteristics for capacitive circuits.
- ii. Evaluation and observation of time constant experimentally.

5.2 Equipment List:

- DSO, CADET,
- Function Generator,
- Capacitors (10nF, 4.7 nF, 47 nF),
- Resistors (33 k Ω , 100 k Ω).

5.3 Preliminary Work:

- 1. Consider the circuit in Figure 1b and the input voltage waveform $V_{in}(t)$ given in Figure 1c and take $V_1=1V$, $V_2=3V$, $T=100\mu s$ (or f=10kHz), $R=500\Omega$, L=4.0mH, and $R_L=0\Omega$.
 - i. Obtain the differential equation and, for the given values, determine and sketch $V_R(t)$ and $V_L(t)$.
 - ii. Calculate the time constant τ .
- **2.** Consider the circuit in Figure 1b and the input voltage waveform $V_{in}(t)$ given in Figure 1c and take $V_1=1V$, and $V_2=3V$.

i. Obtain the differential equation and, for the given values of "f, R, and C" in Table 1, determine and sketch $V_{\text{R}}(t)$ and $V_{\text{C}}(t).$

	f (kHz)	R (kΩ)	C (nF)
Case 1	2	3.3	4.7
Case 2	2	3.3	10
Case 3	2	68	10

Table 1

ii. Calculate the time constant τ in each case.

5.4 Experimental Work:

Important: Show a sample of the measurement in each work to the conducting research assistant for RA signature.

- **1.** Adjust the square wave output of the function generator (use TTL oscillator towards left and bottom of CADET and the ground connection in the symmetric 5V) where f=100Hz.
 - i. Adjust the square wave output of the function generator where f=100Hz.
 - ii. Set up the circuit of Figure 1a for the values of f, R, and C given in the Report Sheet.
- **iii.** Observe the voltage waveforms $V_{in}(t)$, and $V_{C}(t)$ by making necessary probe connections. Set the relevant oscilloscope configurations to show the one cycle of the voltage waveforms $V_{in}(t)$ and $V_{R}(t)$, and $V_{C}(t)$ and plot the waveforms separately. You need to use MATH mode in the oscilloscope to get $V_{R}(t)$ by subtracting the channel for $V_{in}(t)$ from the channel for $V_{C}(t)$.
- iv. Considering that the function generator is grounded output at the given frequencies, determine the time constants τ of the circuits experimentally. Show how you find the value in the $V_C(t)$ plot.
 - v. Compare your results with your calculations.
- 2. Explain how the time constant changes with the passive circuit elements.

EXPERIMENT 5 REPORT SHEET

Name & Surname:

Date :

Experimental Work:

1.

$f = 100 \text{ Hz}, R = 33 \text{ k}\Omega, C = 4.7 \text{ nF}$	$f = 100 \text{ Hz}, R = 33 \text{ k}\Omega, C = 10 \text{ nF}$		
V _{in} (t)	V _{in} (t)		
$V_{ m R}(t)$	$V_R(t)$		

$f = 100 \text{ Hz}, R = 33 \text{ k}\Omega, C = 4.7 \text{ nF}$	$f = 100 \text{ Hz}, R = 33 \text{ k}\Omega, C = 10 \text{ nF}$		
$V_{\rm C}(t)$	$V_{C}(t)$		
Time Constant τ:	Time Constant τ:		
DSO Settings	DSO Settings		
VOLTS/DIV: TIME/DIV:	VOLTS/DIV: TIME/DIV:		

$f = 100 \text{ Hz}, R = 33 \text{ k}\Omega, C = 47 \text{ nF}$	$f = 100 \text{ Hz}, R = 100 \text{ k}\Omega, C = 47 \text{ nF}$	
$V_{c}(t)$	$V_{\rm C}(t)$	
Time Constant τ:	Time Constant τ:	
DSO Settings	DSO Settings	
VOLTS/DIV: TIME/DIV:	VOLTS/DIV: TIME/DIV:	

RA Signature:

2. Explain how the time constant changes with the passive circuit elements.

3. Conclusion: