Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 01.10.2010

Arbeitszeit: 120 min

Name:								
Vorname(n):								NT /
Matrikelnummer:								Note:
	Aufgabe	1	2	3	4	\sum]	
	erreichbare Punkte	10	9	12	9	40		
	erreichte Punkte							
$\mathbf{Bitte}\$								
tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,								
rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,								
beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,								
geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an,								
begründen Sie Ihre Antworten ausführlich und								
kreuzen Sie hier an, an welchem der folgenden Termine Sie nicht zur mündlichen Prüfung antreten können:								

□ Fr., 08.10.2010

 \square Mo., 11.10.2010

1. Abbildung 1 zeigt die Operationsverstärkerschaltung eines Integrators mit Differenzbildung. Beachten Sie, dass die Kapazität C der Kondensatoren eine Funktion der Spannung ist, wobei gilt:

$$C(u_C) = C_0 + C_1 u_C^2, \quad C_0, C_1 > 0.$$

Der Operationsverstärker sei ideal (unendliche Verstärkung, keine Input-Bias Ströme, keine Offset Spannungen). Die Eingänge des Systems sind die Spannungen u_{e1} und u_{e2} , der Ausgang die Spannung u_a .

Abbildung 1: Integrator mit Differenzbildung.

a) Wählen Sie für die in Abbildung 1 dargestellte Schaltung geeignete Zustands- 4 P. größen \mathbf{x} und bestimmen Sie das zugehörige mathematische Modell der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

 $y = g(\mathbf{x}, \mathbf{u}).$

b) Bestimmen Sie alle Ruhelagen des Systems für $u_{e1} = u_{e2} = 0$. Linearisieren Sie 3 P.| das System um die Ruhelage $u_{e1} = u_{e2} = 0$ bei ungeladenen Kondensatoren und schreiben Sie es in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{u}$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x}$$

an.

c) Ist das linearisierte System vollständig erreichbar?

d) Berechnen Sie die Teilübertragungsfunktionen $\frac{\hat{u}_a(s)}{\hat{u}_{e1}(s)}$ und $\frac{\hat{u}_a(s)}{\hat{u}_{e2}(s)}$ des linearisierten 2 P.| Systems.

2. In Abbildung 3 ist die Impulsantwort eines zeitdiskreten Systems gegeben. Dieses setzt sich aus zwei aufeinanderfolgenden Teilsystemen G_1 und G_2 zusammen, wobei die Impulsantwort des Systems G_1 bekannt ist:

$$g_1[k] = \delta[k] + 4\delta[k-1] + 5\delta[k-2]$$

Abbildung 2: Teilsysteme G_1 und G_2 .

Abbildung 3: Impulsantwort des Gesamtsystems.

- a) Bestimmen Sie die z-Übertragungsfunktion des Gesamtsystems. Geben Sie weiters die Impulsantwort des unbekannten Teilsystems G_2 im Zeitbereich an.
- b) Ist das Gesamtsystem BIBO-stabil? Können Sie dies direkt anhand der Impulsantwort von Abbildung 3 feststellen? Begründen Sie Ihre Antwort ausführlich.
- c) Bestimmen sie mit Hilfe der z-Übertragungsfunktion die eingeschwungene Lö- $3\,\mathrm{P.}|$ sung zur Eingangsfolge

$$(u_k) = \frac{1}{2}\cos\left(\frac{\pi}{4}kT_a + \frac{\pi}{8}\right)$$

mit der Konstanten $T_a = 1$.

Hinweis: Falls Sie die Teilaufgabe (a) nicht lösen können, so verwenden Sie zur Berechnung der eingeschwungenen Lösung die z-Übertragungsfunktion

$$G(z) = \frac{(z^2 + 4z + 1)}{(z^3 - z^2)}.$$

- 3. Bearbeiten Sie folgende Teilaufgaben und begründen Sie Ihre Aussagen ausführlich. **Hinweis**: Alle Teilaufgaben (a,b,c,d,e) können unabhängig voneinander gelöst werden.
 - a) Überprüfen Sie mit Hilfe des PBH-Eigenvektortests, ob das folgende lineare, 3.5 P.| zeitinvariante Abtastsystem

$$\mathbf{x}_{k+1} = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{6} & \frac{1}{3} \\ 3 & 0 & \frac{1}{2} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \mathbf{x}_k$$

vollständig beobachtbar ist.

b) Entwerfen Sie für das System

 $3.5 \, P.$

$$\mathbf{x}_{k+1} = \begin{bmatrix} \frac{1}{4} & 1\\ 0 & \frac{1}{8} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 2\\ 1 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} \frac{1}{2} & 0 \end{bmatrix} \mathbf{x}_k$$

einen vollständigen Luenberger-Beobachter mit Hilfe der Formel von Ackermann und legen Sie die Eigenwerte der Fehlerdynamikmatrix auf $\lambda_1 = \frac{1}{2}$, $\lambda_2 = \frac{1}{2}$.

- c) Zeigen Sie, dass die Eigenschaft der vollständigen Beobachtbarkeit eines linearen zeitinvarianten Systems invariant gegenüber regulären Zustandstransformationen der Form $\mathbf{x} = \mathbf{V}\mathbf{z}$ ist.
- d) Welche Eigenschaften muss eine Übertragungsfunktion aufweisen, damit man 2P. sie phasenminimal nennt? Bestimmen Sie jenen Wertebereich der Parameter k und h, sodass die Strecke

$$G(s) = \frac{s+k-3}{s+h+1}$$

phasenminimal ist.

e) Überprüfen Sie die Strecke

1 P.|

$$G(s) = \frac{s(s-2)}{s^2 + 2s + 1}$$

auf Sprungfähigkeit und Realisierbarkeit.

- 4. Bearbeiten Sie folgende Teilaufgaben und begründen Sie Ihre Aussagen ausführlich. **Hinweis**: Alle Teilaufgaben (a,b,c) können unabhängig voneinander gelöst werden.
 - a) Gegeben ist die Strecke 3 P.|

$$G(s) = \frac{-s + \frac{1}{10}}{(s+1)(s-20)}.$$

Skizzieren Sie das Bode-Diagramm der Streckenübertragungsfunktion anhand der Asymptoten. Verwenden Sie dafür die beiliegende Vorlage.

Hinweis: $20 \log_{10}(20) \approx 26$

b) Der Regler

$$R(s) = \frac{s-2}{s}$$

und die Strecke

$$G(s) = \frac{s+2}{s^2 + 3s - 10}$$

werden in einem einfachen Regelkreis nach Abbildung 4 verwendet.

Abbildung 4: Regelkreis.

- i. Ist die Führungsübertragungsfunktion $T_{r,y}$ des geschlossenen Regelkreises 1.5 P.| BIBO-stabil?
- ii. Ist der geschlossene Regelkreis intern stabil?
- c) Berechnen Sie die Transitionsmatrix $\Phi(t)$ des Systems 3 P.

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix} \mathbf{x}(t)$$

mit Hilfe der Laplace-Transformation.

