Utmaningar för bioinformatiken inom industri och akademi

Per Kraulis Biovitrum AB

Industriakademin, 27 okt 2005

Landskapet 1

- Homo sapiens genomet klart (nåja)
- Flera mammalie-genom, i användbart skick
- 1000 bakterie-genom (snart)
- Genidentifiering, annotering
 - Proteinkodande gener identifierade
 - Sköts av stora centra: inget för mindre grupper
 - RNA-gener och reglering: mycket att göra

Landskapet 2

- Expressions analys
 - Mognande teknik och analysmetoder
 - Nya applikationer/analyser?
- Proteomik
 - Stora dataset, nya typer av data
 - Ex: HPR www.proteinatlas.org
 - Mycket att göra

Landskapet 3

- Nätverksanalys
 - Signalering
 - Metabola nätverk
 - Databaser, litteratur (text mining)
- Systembiologi
 - Modeller av mekanismer, simulering
 - Förklaring av förlopp
 - Men: Prediktion! Varför så skralt?

Förändring av fokus

Struktur

- genom
- gener
- proteinsekvenser
- proteindomäner

Processer

- förlopp
- nätverk
- signallering
- metabolism

Bioinformatics Integrated Pharmacology, Biovitrum

Tes 1: Sekvensorienterad bioinformatik är rutin

- Annotering finns i publika DB
- Verktyg finns tillgängliga
- Få uppenbara möjligheter till "lyft"
- Undantag
 - -RNA
 - Fylogenetiska jämförelser

Tes 2: Vissa behov ej uppfyllda

- Saknas: Annoteringssystem för små grupper med intresse för specifika gener/system
- Existerande produkter är "imperialistiska"
- Idéer:
 - Modell: Dossier eller 'best current view'
 - Editera: web eller specialverktyg
 - Läs: web eller PDF

Tes 3: Nya 'drug targets' från biologi, funktion (inte sekvens)

- 'Drug target hunting' är passerat kapitel
- Tillbaka till cellbiologi, farmakologi, mm
- Hur kan bioinfo hjälpa experimentalisten?
 - Ordna, systematisera litteraturen
 - Designa experiment
 - Välja 'read-outs'
 - Handskas med data (DB motsv)

Tes 4: (Bio)informatik krävs för systembiologi

- Mekanistiska modeller standard (nåja)
 - SBML, Reactome, KEGG, etc
- Men förloppen som ska simuleras?
 - Datamodeller/databaser saknas!
 - Initialvärden, randvillkor
 - Kontext
 - Dynamiska förändringar

Tes 5: Bioinformatiken måste ta sig an biologiska förlopp

- Förlopp (processer) är biologins hjärta
- Den temporala aspekten är central
 - Ex: Vad händer när en cell stimuleras?
 - Ex: Cell-cykeln: vilka komponenter, processer?
- Få databaser/datamodeller!
- Jmf: Geographical Information Systems (GIS), temporala aspekter forskas kring sedan 15 år

Proto-Systems biology?

If sufficient regularity can be found between molecular entities and logical and informational outcomes to allow **appropriate databases** to be built, then genomic and post-genomic data could be interrogated more effectively.

. . .

If successful, this approach **would not require detailed kinetic analyses** of all processes within cells, but rather rely on more cursory calculations to study phenomena of interest.

Paul Nurse, "Understanding cells", Nature (424) 2003, 883.

Computable information

Multiple levels and types in biology

Millán & Ridley (2005)

- Objects
 - Molecules
 - Complexes
 - Compartments
 - Cells
- Events
 - Reactions
 - Transport
 - Signals
 - Processes

(Computable) information

The predictions...

- Roles of uncharacterized components
- Behavior after perturbation
- Suggest points of intervention; drug targets

Part 1: Molecular data

- Molecular components
 - Genomics, transcriptomics, proteomics, etc
- Molecular events
 - Interactions
 - Modifications
 - Localisation
- Explicit data model required for DB!

Part 2: Macroscopic processes

- Describe macroscopic processes
 - Simulations must be compared with something
 - Goal-oriented description?
 - What is required to achieve a specific state?
- Life processes as projects
 - Goals, milestones
 - Resource usage; scheduling
 - Subprojects, tasks

GeneCV concepts

Entities

- Genes
- Proteins
- Molecules
- Complexes

• States

- Complexes, member of
- Modifications
- Location

Transitions

- Creation
- Destruction
- Interactions
- Regulation
- Transport

Statecharts

- David Harel, 1987
- Describe reactive computer systems
 - Event-driven
 - Responding to external and internal stimuli
- State-transition diagrams extended with:
 - Hierarchy
 - Orthogonality
 - Communication
- Now part of UML

Statecharts: states and events

Statecharts: state hierarchy

Statecharts: state orthogonality

Statecharts: conditions

Modeling T-cell transformations Kam, Cohen, Harel 2001

Example: Lysine post-transl mod's

www.reactome.org

- CSHL, EBI, GO collaboration
- Entities
 - Generic/concrete
 - No explicit state; no hierarchy of states
- Events
 - Hierarchy
 - Molecular as well as macroscopic (processes)

www.signaling-gateway.org

- Alliance for Cell Signaling, AfCS
- Molecules
 - Proteins
- States
 - No hierarchy
 - Molecular only; complexes are states
 - Location is <u>not</u> state
- Transitions
 - Conditions?

CLN3 gene abundant nutrients starvation CLN3 pre-mRNA rapamycin Tor1.2 CLN3 mRNA Ubc4.5 In3 protein Cln3-Cdc28 Cln3·Cdc28·P (active) ubi-Cln3 (P)-Cln3-Cdc28-(P) ubi-P-Cln3-Cdc28-P degraded CIn3

GeneCV

- The life of a biomolecule
- Molecular data only!
- Creation
- Maturation
- Transport
- Interactions
- Destruction

Mendenhall & Hodge 1998