Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Sumário

- * Autômatos Finitos Determinísticos
 - Definição
 - * Equivalência
 - * Minimização

Autômatos Finitos Determinísticos

* Autômatos Finitos Determinísticos

Autômatos Finitos Determinísticos

- * Os exemplos apresentados anteriormente introduziram informalmente a noção de autômato finito na sua modalidade determinística
- * Veremos agora uma definição precisa de autômato finito determinístico, um método para determinar um autômato mínimo equivalente a outro dado e algumas propriedades importantes de autômatos finitos determinísticos

Autômatos Finitos Determinísticos

- * O que é autômato finito determinístico?
 - * Um autômato finito determinístico é uma estrutura matemática constituída por três tipos de entidades: um conjunto de estados, um alfabeto e um conjunto de transições.
- * A definição, a seguir, apresenta de forma precisa a caracterização de um AFD

Definição de AFD's

Definição de AFD's

Definição de AFD's

- * Um AFD é uma quíntupla: $(E, \Sigma, \delta, i, F)$ em que:
 - * E é um conjunto finito de um ou mais estados;
 - * Σ é um alfabeto;
 - * $\delta : E \times \Sigma \longrightarrow E$ é a função de transição, uma função total;
 - * i, um estado de E, \acute{e} o estado inicial
 - * F, um subconjunto de E, é o conjunto dos estados finais.
 - * Como δ é uma função total, deve haver uma aresta, e apenas uma, sob cada símbolo de Σ , saindo de cada estado de E e levando a outro estado de E.

Definição de AFD's

- * A definição modela as transições de um AFD como uma função que mapeia cada par (estado, símbolo) para <u>um</u> estado.
- * Esse fato, que cada par (estado, símbolo) leva a <u>um único estado</u>, é que caracteriza o determinismo do AFD: a partir do estado inicial, só é possível atingir um único estado para uma dada palavra de entrada.
- * E o fato de a função ser total garante que, para toda palavra de entrada, atinge-se um estado consumindo-se toda a palavra.

Homem, Leão, Coelho e Repolho

- * No diagrama de estados deste problema, não se representou os estados que levaram a uma tragédia
 - * O AFD foi simplificado para ser desenhado
 - * Trata-se de um "diagrama de estados simplificado"
- * Assume-se que existe um estado de erro (e') não mostrado no diagrama de estados para todo símbolo a não especificado no estado e, tal que:
 - * Existe uma transição de e para e' sob a;
 - * e' não é um estado final;
 - * Existe uma transição de e' para e' sob cada símbolo do alfabeto.

Homem, Leão, Coelho e Repolho

* Para conciliar o exemplo do "Homem, Leão, Coelho e Repolho", com a definição de AFD, basta inserir mais um estado, digamos t (de "tragédia").

$$M = (E, \{s, l, c, r\}, \delta, \{h, l, c, r\}, \{\{\}\})$$

* Em que E é o conjunto $\{\{h,l,c,r\},\{l,r\},\{h,l,r\},\{l\},\{r\},\{h,l,c\},\{h,c,r\},\{c\},\{h,c\},\{\},t\}$

* Colinha: $M = (E, \Sigma, \delta, i, F)$

Homem, Leão, Coelho e Repolho

* e δ é dada por:

δ	S	1	c	r
$\{h,l,c,r\}$	t	t	$\{l,r\}$	t
$\{l,r\}$	$\{h,l,r\}$	t	$\{h,l,c,r\}$	t
$\{h,l,r\}$	$\{l,r\}$	$\{r\}$	t	$\{l\}$
{ <i>I</i> }	t	t	$\{h,l,c\}$	$\{h, l, r\}$
$\{r\}$	t	$\{h,l,r\}$	$\{h,c,r\}$	t
$\{h,l,c\}$	t	$\{c\}$	$\{l\}$	t
$\{h,c,r\}$	t	t	$\{r\}$	$\{c\}$
$\{c\}$	$\{h,c\}$	$\{h,l,c\}$	t	$\{h,c,r\}$
$\{h,c\}$	$\{c\}$	t	{}	t
{}	t	t	$\{h,c\}$	t
t	t	t	t	t

Nesse formato tabular, uma função f é representada na forma que f(i,j) seja exibido no cruzamento da linha i com a coluna j.

Outro exemplo Reconhecendo número par de símbolos

* Seja o AFD M tal que: $L(M) = \{ w \in \{0,1\}^* \mid w \text{ tem um número par de símbolos } \}$

- * Em linguagem matemática, o autômato seria uma quíntupla $M = (\{par, impar\}, \{0,1\}, \delta, par, \{par\})$
- * Em que δ é dada por:

δ	0	1
par	ímpar	Impar
ímpar	par	par

Outro exemplo Reconhecendo número par de símbolos

Função de Transição Estendida

- * A função de transição δ recebe somente um símbolo de Σ e computa o próximo estado
 - * Pode-se definir recursivamente uma função de transição estendida, $\hat{\delta}$, que computa o estado alcançado para qualquer palavra w.

Função de Transição Estendida

- * Seja um AFD $M = (E, \Sigma, \delta, i, F)$.
- * A função de transição estendida para M, $\hat{\delta}: E \times \Sigma^* \to E$ é definida recursivamente como:

$$\hat{\delta}(e,\lambda) = e;$$

$$\hat{\delta}(e,ay) = \hat{\delta}(\delta(e,a),y), \forall a \in \Sigma \text{ e } y \in \Sigma^*.$$

Função de Transição Estendida

- * Utilizando-se $\hat{\delta}$, pode-se definir a linguagem reconhecida por um AFD
- * A linguagem reconhecida por um AFD $M=(E,\Sigma,\delta,i,F)$ é o conjunto $L(\mathbf{M})=\{\,w\in\Sigma^*\mid \hat{\delta}(i,w)\in F\,\}$
- * Uma determinada palavra $w \in \Sigma^*$ é dita ser reconhecida, ou aceita por M se, e somente se, $\hat{\delta}(i, w) \in F$

Exemplo 1 Reconhecendo {0}{0,1}*

* Seja um AFD M que reconheça a linguagem $\{0\}\{0,1\}^*$

$$L(M) = \{ 0w \mid w \in \{0,1\}^* \}$$

- * c0 = estado das palavra que começam com 0 (Estado final)
- * c1 = estado das palavra que começam com 1 (Estado de erro)

δ	0	1
λ	c O	c1
cO	cO	c O
cO c1	c1	c1

Exemplo 1 Reconhecendo $\{0\}\{0,1\}^*$

Exemplo 1 Reconhecendo {0}{0,1}*

 Processar a palavra 001 a partir do estado inicial para a tabela da função de transição do autômato.

$$\begin{array}{c|c} \widehat{\mathcal{S}}\left(\lambda,001\right) = & \widehat{\mathcal{S}}\left(\mathcal{S}\left(\lambda,0\right),01\right) \\ \hline & \widehat{\mathcal{S}}\left(F,01\right) \\ \hline & \widehat{\mathcal{S}}\left(\mathcal{S}\left(F,0\right),1\right) \\ \hline & \widehat{\mathcal{S}}\left(\mathcal{S}\left(F,1\right),\lambda\right) \\ \hline & \widehat{\mathcal{S}}\left(F,\lambda\right) = F \end{array}$$

- * F é estado final, portanto o autômato reconhece/aceita a palavra 001
- * Obs: Para facilitar a visualização, o estado c0 foi apelidado de F

Exemplo 2 Reconhecendo Números Reais

- * Uma das aplicações de AFD's é a análise léxica de compiladores de linguagens de programação, como Pascal, C e Java. Nessa fase, são reconhecidas determinadas entidades sintáticas, como identificadores, constantes inteiras, constantes reais, palavras-chave etc.
 - Desenvolver um autômato que reconheça constantes reais.

```
* E = \{e0, e1, e2, e3, e4, e5, e6, e6, e6, e6\}

* \Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}

* F = \{e3, e7\}
```

Exemplo 2 <u>Reconhecedor de Constantes Reais</u>

Algoritmo para Simular AFDs

- * Veja a seguir o algoritmo para simulação de um AFD
- * A função AFD-RECONHECE
 - * retorna "sim" caso o AFD reconheça a palavra
 - * retorna "não" caso o AFD não reconheça a palavra
- * Ao terminar de consumir a palavra, o algoritmo verificará se o estado onde foi consumido o último símbolo da palavra, pertence ou não ao conjunto de estados finais do AFD

```
função AFD-RECONHECE (i, F) retorna sim ou não
 entradas: i, Estado inicial do AFD
            F, Conjunto de estados finais
  saídas: sim ou não
 usa: PRÓXIMO(), retorna o próximo símbolo de entrada (fs se atingiu o fim)
       FUNÇÃO-TRANSIÇÃO (estado, símbolo), retorna o estado atingido a
                                           partir de estado sob símbolo
  estado ← i
  s ← PRÓXIMO()
 enquanto s \neq fs faça
      estado ← FUNÇÃO-TRANSIÇÃO (estado, s)
      s ← PRÓXIMO()
  fim enquanto
  se estado ∈ F então
     retorne sim
  senão
     retorne não
  fim se
```

Autômatos Equivalentes

- * Dois AFD's M_1 e M_2 , são ditos equivalentes se, e somente se, $L(M_1) = L(M_2)$.
- * Se mais de um AFD pode reconhecer uma mesma linguagem, como se obter o AFD mínimo que reconhece uma linguagem?
 - * O que é um AFD mínimo?

Definição

- * Um AFD M é dito ser um AFD mínimo para a linguagem L(M) se nenhum AFD para L(M) contém um número menor de estados que M.
 - * Como a função de transição é total e, considerando um alfabeto mínimo (sem símbolos inúteis), o número de transições é função, somente, do número de estados.

Minimização de AFDs

- * Passo 1: Eliminar estados não alcançáveis a partir do estado inicial
 - * Qualquer AFD que possua estados não alcançáveis a partir do estado inicial não pode ser mínimo

Minimização de AFDs

* Passo 2: Substituir estados equivalentes por um único estado

Estados Equivalentes

- * Seja um AFD $M = (E, \Sigma, \delta, i, F)$. Dois estados $e, e' \in E$ são equivalentes, $e \approx e'$, se, e somente se:
 - * Para todo $y \in \Sigma^*$, $\hat{\delta}(e,y) \in F$, se e somente se, $\hat{\delta}(e',y) \in F$.
- * Ou seja, qualquer palavra y que for reconhecida passandose por um estado e até chegar a um estado final, também passará por e' até chegar a um estado final.

Relação "≈"

- * A relação "≈" é uma relação de equivalência (reflexiva, transitiva, simétrica)
 - * Pode induzir classes de equivalência
 - * Também chamadas de partições
 - * $[e] = \{e_1, e_2, ..., e_n\}$
 - * Todos os estados da partição podem ser substituídos por um único estado

Autômato Reduzido

* Seja o AFD $M=(E, \Sigma, \delta, i, F)$. Um autômato reduzido correspondente a M é o AFD $M'=(E', \Sigma', \delta', i', F')$, em que:

```
* E' = \{[e] \mid e \in E\};

* \delta'([e], a) = [\delta(e, a)] \text{ para todo } e \in E \text{ e } a \in \Sigma

* i' = [i];

* F' = \{[e] \mid e \in F\}.
```

* São Equivalentes?

- * [P] = { PP, II }
 - * Qualquer palavra com tamanho <u>ímpar</u> leva a um estado final
 - * Exemplos: 0, 1, 000, 001, ... (Reconhece)
- * [I] = { PI, IP }
 - * Qualquer palavra com tamanho <u>par</u> leva a um estado que **não** é final
 - * Exemplos: 00, 11, 0001, 1110, ... (Não reconhece)
- Sim, são equivalentes. Ambos os autômatos reconhecem número ímpar de símbolos.

Minimizando

* Como fazer isto automaticamente?

* Voltando ao exemplo 1

* Encontre o AFD mínimo equivalente ao AFD acima

* Resolução

- * Elimine estados não alcançáveis a partir do inicial
 - * Todos os estados são alcançáveis

* Resolução

- * Encontre as classes de equivalência por refinamentos
 - Inicialmente duas classes de equivalência
 - * Estados finais
 - * Estados não finais

* Resolução

- * Encontre as classes de equivalência por refinamentos
 - * Inicialmente duas classes de equivalência
 - * Estados finais
 - * Estados não finais

- Refine as Classes de equivalência
 - st Cada estado dentro de uma classe deve ter arestas sob o símbolo a somente para uma mesma classe de equivalência
 - * Sempre que esta regra não for obedecida, crie novas classes de equivalência para satisfazê-la

- Refine as Classes de equivalência
 - * Sob a = 1, tanto I quanto c1, vão para a classe de equivalência azul
 - * Sob a = 0, I vai para a classe vermelha e c1 vai para a classe azul
 - * A regra não foi satisfeita!

- Refine as Classes de equivalência
 - st Todos os estados cujas arestas levam às mesmas classes de equivalência de I vão para a nova classe
 - * Os demais permanecem na classe antiga

- * Continue o refinamento até a regra não ser mais violada
 - * Neste caso, existe uma classe para cada estado
 - * O autômato já era <u>mínimo</u>

- * Faça o estado inicial igual à classe de equivalência que contenha o estado inicial
- * Faça os estados finais iguais às classes de equivalência cujos estados são finais

- * Outro exemplo
 - * Reconhecendo: {0,1}*{1}

* Encontre o AFD mínimo equivalente ao AFD acima

- * Classes de Equivalência
 - * A classe vermelha só tem um estado
 - * Sob a = 0
 - st I e $c extit{0}$ vão para a classe azul
 - * Sob a = 1
 - st I e c0 vão para a classe vermelha

- * Autômato mínimo
 - * Os estados passam a ser classes de equivalência
 - * As transições, as arestas entre as classes
 - * Todas as transições sob um mesmo símbolo vão para uma mesma classe de equivalência

Vejamos mais um exemplo

- * Seja o problema de projetar uma máquina que, dada uma sequencia de 0s e 1s, determine se o número **decimal** representado por ela na base 2 é divisível por 6.
- * Para esse caso, não vamos focar no projeto do autômato, mas sim em sua minimização.
- * Inicialmente, pode-se imaginar uma máquina com seis estados, um para cada resto de 0 a 5.

* Encontre o AFD mínimo equivalente ao AFD acima.

* Inicialmente duas classes de equivalência, estados finais e estados não finais

* O estado 3 tem uma transição para uma classe diferente que todos os outros

* O estado 3 tem uma transição para uma classe diferente que todos os outros

* O estado 1 e 4 transitam para a classe verde sob a = 1 e permanecem na azul caso contrário

* Não existem mais violações

 Diagrama de estados para binário módulo 6 minimizado

* {0} é o estado inicial e final

Algoritmo de minimização de AFDs

- * Veja a seguir o algoritmo para minimização de um AFD
- * A função AFD-MINIMIZA
 - Tem como entrada um AFD P
 - retorna um AFD mínimo equivalente a P

```
função AFD-MINIMIZA(P) retorna um AFD mínimo equivalente a P
  entradas: P, um AFD P = (E, \Sigma, \delta, i, F)
  saídas: um AFD mínimo equivalente a P
  Elimine de P todo estado na alcançável a partir de i
  Se F = \emptyset então
     retorne (\{i\}, \Sigma, \delta', i, \emptyset), sendo \delta'(i,a) = i para todo a \in \Sigma
  Senão E - F = Ø então
     retorne (\{i\}, \Sigma, \delta', i, \{i\}), sendo \delta'(i,a) = i para todo a \in \Sigma
  Fim se
  S0 \leftarrow \{E - F, F\}; n \leftarrow 0;
  repita
     n \leftarrow n + 1; Sn \leftarrow \emptyset;
     para cada X \in S(n-1) faça
        repita
           Selecione um estado e ∈ X;
          para cada a \in \Sigma:
              seja [\delta(e,a)] o conjunto que contém \delta(e,a) em S(n-1);
           seja Y = \{e' \in X \mid \delta(e', a) \in [\delta(e, a)] \text{ para todo } a \in \Sigma\};
           X \leftarrow X - Y
           Sn \leftarrow Sn \cup \{Y\}
        até X = \emptyset
     fim para;
  até Sn = S(n-1)
  i' ← conjunto em Sn que contém i;
  F' \leftarrow \{X \in Sn | X \subseteq F\}
  para cada X \in Sn-1 e a \in \Sigma:
     \delta'(X_ia) = \text{conjunto em } Sn \text{ que contém } \delta(e, a), \text{ para qualquer } e \in X;
  retorne (Sn, \Sigma, \delta', i', F')
```

Atenção!

- * Para fazer a minimização do autômato, deve-se considerar todos os seus estados
 - * No caso de autômatos simplificados, onde o estado de erro é omitido no desenho, este estado <u>DEVE</u> ser considerado na minimização!

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

