Guan-Wei Wu^{1*}, Guan-Ting Lin^{1*}, Shang-Wen Li², Hung-yi Lee¹

¹National Taiwan University ²Meta AI (*Equal contribution)

INTERSPEECH 2023

{b08901019, f10942104}@ntu.edu.tw

Meta Al

Introduction

Background

- End-to-end SLU aims to predict semantic labels directly from speech features.
- Previous studies rely on using a *pre-trained ASR model as initialization* or *jointly training ASR/NLU and SLU* with paired transcripts guidance.

☐ Goal

To alleviate the reliance on paired transcripts, the goal of **Textless SLU** is to extract the semantic information without paired transcripts.

■ Main Contribution

Leverage self-supervised discovered speech units as the intermediate target to improve the performance of end-to-end textless SLU.

<u>Tasks</u>

Data

- Speech Name Entity RecognitionSLUE-SNER
- Intent Classification & Slot Filling
 ATIS, SLURP, SNIPS
- Speech Semantic ParsingSTOP

*If the task requires to predict entity names, such as slot filing, the entity names are still utilized for training, while all other parts of transcripts are discarded.

- **Transcript**: we cannot influence tariff reductions that would benefit the people of the united kingdom
- SNER: united B-PLACE kingdom I-PLACE
- Transcript: i want to fly from baltimore to dallas round trip
 ICSF: atis_flight baltimore B-fromloc.city_name dallas B-toloc.city_name round B-round_trip trip I-round_trip atis_flight
- Transcript : stop the work timer
- Parse Tree : [IN:PAUSE_TIMER stop the work [SL:METHOD_TIMER timer]]
- SSP : [IN:PAUSE_TIMER [SL:METHOD_TIMER]]

Proposed Method

Motivation: Discrete units mainly contain **content-related** information -> serve as the regularization target for SLU.

□ Training Objective

$$\mathcal{L} = (1 - \lambda) \times \mathcal{L}_{slu} + \lambda \times \mathcal{L}_{aux}$$

 \mathcal{L}_{slu} : cross-entropy loss for sequence generation \mathcal{L}_{aux} : cross-entropy loss for unit sequence prediction

□ Different methods

- Baseline: only the main task (i.e., $\lambda = 0$).
- Unit (Prosposed): use discrete units as the target of the auxiliary task with $\lambda = 0.5$.
- Text (Upper bound): use transcripts as the target instead of units.

Results

Dataset	et ATIS			SLUE-SNER			SLU	J RP		STOP		
Metric	F1↑	ST-F1↑	INT-Acc↑	F1↑	ST-F1↑	SV-CER↓	SLU-F1↑	INT-Acc↑	ST-F1↑	SV-CER↓	INT-Acc↑	EM-Tree↑
Previous Baseline Unit	76.6 79.1 82.4	N/A 84.3 86.0	93.2 96.5 96.8	70.3* 64.8 68.6	N/A 74.1 78.1	N/A 35.2 29.4	71.9* 63.2 67.9	77.0 78.7 80.9	89.8* 77.6 82.7	21.8* 42.9 31.9	N/A 96.7 97.0	82.9* 80.0 84.4
Text	84.5	87.7	97.4	69.2	78.2	29.0	69.9	82.5	83.2	30.7	97.0	84.5

On all five SLU corpora, leveraging "unit as intermediate target" significantly outperforms the baseline method, even reaching similar performance as using ground truth text transcripts.

Discussions

☐ Few-shot Capability

Dataset			SLU	J RP			SNIPS							
Metric SLU-					NT-Acc1		ST-F1↑			SV-CER↓				
Portion	100%	10%	δ	100%	10%	δ	100%	10%	δ	100%	10%	δ		
Baseline Unit	63.2 67.9	45.2 53.7	18.0 14.2	78.7 80.9	54.7 69.5	24.0 11.4	77.6 82.7	64.2 78.0	13.4 4.7	42.9 31.9	62.2 40.3	19.3 8.4		

% means the portion of original training data δ is performance drop from 100% to 10% training data.

The proposed method "Unit" has less performance drop compared to the Baseline method, achieving even better performance than Baseline (full data) with just 10% training data on SNIPS.

☐ Noise Robustness (Performance Drop compared to clean input)

G: Gaussian noise with the followed amplitude value. M: MUSAN background noise. dB: signal-to-noise ratio. Reverb: reverberation effect.

Metric	ST-F1↑							SV-CER↓						
Noise	w/o	G-0.005	G-0.01	M-20dB	M-10dB	Reverb	w/o	G-0.005	G-0.01	M-20dB	M-10dB	Reverb		
Baseline Unit	77.6 82.7	-6.9 -2.9	-15.4 - 9.4	-3.1 -1.9	-13.4 -11.2			+9.1 +4.9		+4.1 + 2.8	+16.2 + 15.5	-3.3 -3.1		

Unit prediction improves the noise robustness for all types of noises compared to Baseline method, especially on Gaussian noise.