2. Let S be as in the previous problem, and let $B = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ Let S be as in the previous problem, and let $B = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ be the standard basis of \mathbb{R}^4 . Extend your basis from the first problem to a basis of \mathbb{R}^4 by adding vectors from B. $\searrow S = \{(1,2,3,4),(2,3,4,5),(3,4,5,6)\}.$ Compute dan span(S) and find a basis for span(S). 1) Which vector is not vecessary in S? (previous problem) $(1.5,3,4) + (+3) \cdot (5,3,4,2) + (-3,4,5,6) = 0$ $V_3 = -V_1 + 2V_2 = V_3$ is "dependent upon" $V_1 & V_2$. ?V1, V29: 2m. Tudep? V2 +C.V1 for any cell => Yes it is. 2) Which rector in B is "new" for S? Check if your choice of vectors in B well iv, UT. Je, V, V27: 2Th. Tudep? Yes, it is. ?e, e2, V1, V2 ?: Lin. Tudep?

-.

Poils to exist the conditions For wEV, we have a,,-, and F st

~= a, Vi+ --+ an Un. then, T'(v) = T'(a, 4 + + 4, 4) = a, T'(u) + - + on T'(u) 2 (Trearly

= a, w, + - · - + en wh

- of V with #S > n. Then there exists a subset $B \subseteq S$ which is a basis for V. (c) T F If $V = U \oplus W$, and S is a basis of V such that some subset $S_V \subseteq S$ is a basis of U, then $S \setminus S_U$ is a basis of W.
- (d) T F Let V be a vector space of dimension n > 1, and let S be a subset of V with #S < n. Then S is linearly dependent.
- Suppose that $V = U \oplus U'$, and let $T: V \to W$ be a linear transformation. Then $\operatorname{Im}(V) = \operatorname{Im}(U) \oplus \operatorname{Im}(U').$

(a)
$$F = \mathbb{F}_2$$
 (or \mathbb{F}_3 ,...) (b) V

$$F(F,F)$$

$$f: \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} a \\ b \end{pmatrix} \qquad 2^2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

5) False

$$S = \{(1), (2), (3)\}$$

 $\{(3), (3), (3)\}$
 $\{(3), (3), (3)\}$

4(R,R):100K

1 Sink STUZK, ..., "

 $f(x) = x^2 - x$

inf. divil