

				Sub	ject	Coc	le: F	(EC	<u> 2056</u>
Roll No:									

B. TECH (SEM-V) THEORY EXAMINATION 2020-21 ADVANCE SEMICONDUCTOR DEVICE

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 3

Qno.	Question	Marks	СО
a.	A diode has reverse saturation current Is= 10^{-10} A and non ideality factor $n = 2$. If diode voltage is 0.9 V, Calculate the diode current.	2	
b.	Explain MESFETs in brief.	2	
c.	Determine the region of operation for the transistor shown in circuit.	2	
d.	Discuss Thyristors in brief.	2	
e.	What are Charge-Coupled Devices?	2	
f.	Six volts is applied across a 2 cm long semiconductor bar. The average drift velocity is 10^4 cm/s. Calculate the electron mobility.	2	
g.	What are Nonvolatile Memory Devices?	2	
h.	Explain MODFETs in brief.	2	
i.	What is the difference between Schottky Diode and conventional P-N junction diode?	2	
j.	List two properties of Magnetic Sensors.	2	

SECTION B

2. Attempt any *three* of the following:

Qno.	Question	Marks	СО
a.	Derive an expression for thermal equilibrium concentration of holes in	10	
	the valence band of semiconductor.		
b.	Consider a silicon p-n junction with a uniform acceptor doping concentration of 10^{17} cm ⁻³ on the p-side and a uniform donor doping concentration of 10^{16} cm ⁻³ on the n-side. No external voltage is applied to the diode. Given: $kT/q = 26$ mV, ni = 1.5×10^{10} cm ⁻³ , $\varepsilon_{si} = 12\varepsilon_o$, $\varepsilon_o = 8.85 \times 10^{-14}$ F/m, and q = 1.6×10^{-19} C. Calculate the charge per unit junction area (nC cm-2) in the depletion region on the p-side		
c.	Explain IMPATT Diodes with Static Characteristics and Dynamic Characteristics. In case IMPATT Diode having carrier drift velocity V _d =4X10 ⁵ m/s, drift region length, L=12um, breakdown voltage is 90v, maximum operating voltage is 100v, maximum operating current is 100mA, efficiency	10	

				Sub	ject	Coc	le: F	ŒC	C 056
Roll No:									

Printed Page: 2 of 3

	n=10%. Determine the resonant frequency and maximum CW Output		
	power.		
d.	What are transferred Electron devices? Explain the working of any one	10	
	of them.		
e.	What is responsivity? A p-i-n photo diode of responsivity 0.8A/W is	10	
	connected to the inverting input of an ideal op-amp as shown in the		
	figure, $+Vcc = 15V$, $-Vcc = -15V$, load resistor $R_L = 10$ kohm. If $10\mu W$		
	of power is incident on the photodiode, then Calculate the value of the		
	photocurrent (in μ A) through the load.		
	$1 M\Omega$		
	+17		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	$1M\Omega \leq V_{aa} \leq 10k\Omega$		
	₩ VCC		
	+Vcc		

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	A silicon abrupt junction has dopant concentration Na=2X10 ¹⁵ cm ⁻³ and	10	
	N_d =2X10 ¹⁵ cm ⁻³ . The applied reverse bias voltage is V_R = 8 V.		
	(i) Calculate the maximum electric field $IE_{MAX}I$ in depletion		
	region is		
	(ii) Calculate the space charge region		
b.	What do you mean by Rectifying contact? State the condition for which	10	
	the junction between a metal and n-type semiconductor will work as a		
	rectifying contact. Draw the energy band diagram of rectifying contact		
	formed between a metal and n-type semiconductor at equilibrium		
	condition.		

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	The current gain of the transistor shown in the circuit is $\beta = 100$.	10	
	Calculate the values of Q-point (I_{CQ} , V_{CEQ}).		

				Sub	ject	Coc	le: k	(EC	<u> 056</u>
Roll No:									

Printed Page: 3 of 3

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Explain the operation of Tunnel diode. Draw the I-V characteristics of diode. List applications of Tunnel diode.	10	
b.	Describe the working of BARITT Diode with diagram & mathematical	10	
	expressions.		

6. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	List some Applications of Light Emitting Diode. A GaAs PN junction LED has following parameters Dn=25 cm ² /s, Dp=12 cm ² /s, Nd=5X10 ¹⁷ cm ⁻³ , Na=10 ¹⁶ cm ⁻³ , τ_{no} =10 ns, τ_{po} =10 ns. Calculate the injection efficiency of the LED.	10	
b.	Write short notes on (i) Light Emitting Diode (ii) P-N Junction Solar Cell (iii) Double Hetero-structure LASER diode.	10	

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Explain the working of photo-diode with I-V Characteristics.	10	
b.	What is Sensor? Distinguish between Thermal Sensors and Mechanical	10	
	Sensors.		