

Chapter 5

Finite Fields

Roadmap To AES: Math Background

Abstract Algebra

- Groups, rings, and fields are fundamental structures of abstract algebra, or modern algebra.
- Example of Abstract Algebra: Boolean Algebra!
- Each structure in Abstract algebra consists of:
 - Sets of elements.
 - Operations:
 - Operations combine two elements of the set to obtain a third element of the set.
 - These operations are subject to specific rules, which define the nature of the set.
 - By convention, the notation for the two principal classes of operations on set elements is usually addition and multiplication.
 - In abstract algebra, we are not limited to ordinary arithmetical operations.

Figure 5.1 Groups, Rings, and Fields

Group, Ring and Field

 Rules for different structures in abstract algebra.

Every field is a group.

But, not every group is a field.

Figure 5.2 Properties of Groups, Rings, and Fields

Group: (set + operation+ axioms)

- A group (G) is a **set** of elements with a **binary operation** denoted by that associates to each ordered pair (a,b) of elements in G an element (a b) in G, such that the following **axioms** are obeyed:
 - (A1) Closure:
 - If a and b belong to G, then (a b) is also in G
 - (A2) Associative:
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$, for all a, b, c in G
 - (A₃) Identity element:
 - There is an element e in G such that: $a \cdot e = e \cdot a = a$, for all a in G
 - (A4) Inverse element:
 - For each a in G, there is an element a^1 in G such that $a \cdot a^1 = a^1 \cdot a = e^1$
 - (A5) Commutative:
 - a b = b a for all a, b in G

Cyclic Group

- Exponentiation is defined within a group as a repeated application of the group operator, so that $a^3 = a \cdot a \cdot a$
- We define $a^o = e$ as the identity element, and $a^{-n} = (a')^n$, where a' is the inverse element of a within the group
- A group G is cyclic if every element of G is a power a^k (k is an integer) of a fixed element a ∈ G
- The element a is said to generate the group G or to be a generator of G
- A cyclic group is always abelian and may be finite or infinite
- Recall:
 - In Number theory lecture: 3 is a primitive root for mod 7 multiplication.
 - This is because 3^k mod 7 generates numbers: 1..6
 - We say: the group $Z_n = \{1,2,3,4,5,6\}$ is cyclic group under mod 7 multiplication, and 3 is a generator

- A ring is a set in which we can do addition, subtraction [a b = a + (-b)], and multiplication without leaving the set.
- Formal definition: A **ring** R, sometimes denoted by $\{R, +, *\}$, is a **set** of elements **with two binary operations, called addition and multiplication**, such that for all a, b, c in R the following **axioms** are obeyed:

 $(A_{1}-A_{5})$

R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5. For the case of an additive group, we denote the identity element as 0 and the inverse of a as -a

(M1) Closure under multiplication:

If a and b belong to R, then ab is also in R

(M₂) Associativity of multiplication:

$$a(bc) = (ab)c$$
, for all a, b, c in R

(M₃) Distributive laws:

$$a(b+c) = ab + ac$$
, for all a, b, c in R
 $(a+b)c = ac + bc$, for all a, b, c in R

Rings (cont.)

 A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication:

ab = ba for all a, b in R

 An integral domain is a commutative ring that obeys the following axioms.

(M₅) Multiplicative identity:

There is an element 1 in R such that $a_1 = 1a = a$ for all a in R

(M6) No zero divisors:

If a, b in R and ab = o, then either a = o or b = o

- A field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined with the following rule: $a/b = a(b^{-1})$
- A field F, sometimes denoted by {F, +,* }, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in F the following axioms are obeyed:

(A1-M6)

F is an **integral domain**; that is, F satisfies axioms A1 through A5 and M1 through M6

(M7) Multiplicative inverse:

For each a in F, except 0, there is an element a^{-1} in F such that $aa^{-1} = (a^{-1})a = 1$

Familiar examples of fields are the rational numbers, the real numbers, and the complex numbers. Note that the set of all integers is not a field, because not every element of the set has a multiplicative inverse.

Figure 5.2 Properties of Groups, Rings, and Fields

Figure 5.3 Types of Fields

Finite Fields of the Form $GF(p^n)$

- Finite fields play a crucial role in many cryptographic algorithms.
- GF stands for Galois field, in honor of the mathematician Galois (pronounced GALWA) who first studied finite fields
- The order of a finite field is the number of elements in the field.
 - The order must be of a power of prime (p^n) , where n is a positive integer, p is a prime number.
 - The finite field of order p^n is generally written $GF(p^n)$

Special Cases of GF(pⁿ)

- We are interested in special cases of $GF(p^n)$:
 - GF(p): n=1, and p is a prime
 - Finite filed of order p
 - GF(2): n=1, and p=2
 - represents 1-bit binary operations
 - $GF(2^n)$: n>1, p=2
 - represents n-bit binary operations

GF(p): Finite field of order p, where p is prime

- GF(p) is defined with the following properties
 - 1. p is a prime
 - 2. GF(p) consists of p elements= $\{0, 1, ..., p-1\}$
 - 3. The binary operations + and * are defined over the set.
 - operations are addition and multiplication mod p
 - Addition, subtraction, multiplication, and division can be performed without leaving the set.
 - Each element of the set other than o has a multiplicative inverse.
 - In the next slides, will demonstrate that:
 - Example of: mod (non-prime number) is not a field.
 - Example of : mod (p) is a field

Modulu 8: Not a field

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

W	-w	w^{-1}
0	0	-
1	7	1
2	6	
3	5	3
4	4	
5	3	5
6	2	
7	1	7

Modulus 7: Finite Field

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

3	5	6	٥	1	2	33	4
6	6	0	1	2	3	4	5
×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

w	-w	w^{-1}
0	0	
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

16

GF(7): Operations are based on (mod 7)

$$2 \times 4 \pmod{7} \equiv 1$$
 Hence:

•
$$\frac{1}{2} = 2^{-1} \pmod{7} \equiv 4$$

•
$$\frac{1}{4} = 4^{-1} \pmod{7} \equiv 2$$

Compute
$$\frac{5}{2}$$
 (mod 7)?

$$= \frac{5}{2} \pmod{7}$$

$$\equiv 5 \times 2^{-1} \pmod{7}$$

$$\equiv$$
 5 × 4 (mod 7)

Compute
$$2 \times \frac{5}{2} \pmod{7}$$
?

$$=2\times\frac{5}{2} \pmod{7}$$

$$\equiv 2 \times 6 \pmod{7}$$

Polynomial Arithmetic

- We are interested with polynomials in a single variable x, where x is treated as indeterminate. This means we are interested in the coefficients and power of variable x.
- We can distinguish three classes of polynomial arithmetic.
- Ordinary polynomial arithmetic, using the basic rules of algebra.
- Polynomial arithmetic in which the arithmetic on the coefficients is performed (mod p); that is, the coefficients are in GF(p).
- Polynomial arithmetic in which:
 - the coefficients are in GF(p)
 - the polynomials are in GF(pⁿ): polynomial is defined modulo a polynomial m (x) whose highest power is some integer n .

GF(p) and $GF(p^n)$

- GF(p) means that polynomial coefficients are mod(p).
 - GF (2) means that polynomial coefficients are mod (2): 0 or 1
- GP (p^n) means that polynomials have maximum power of x^n . If polynomial has x^n or higher terms, then power is reduced by applying modulus operation using prime polynomial.
 - GP (2ⁿ) means that polynomials have maximum power of xⁿ⁻¹, and polynomial maps to n-bit binary number. If polynomial has 2ⁿ or higher terms, then width is reduced by applying modulus operation using prime polynomial.

$$x^{3} + x^{2} + 2$$

$$+ (x^{2} - x + 1)$$

$$x^{3} + 2x^{2} - x + 3$$

(a) Addition

$$x^{3} + x^{2} + 2$$

$$- (x^{2} - x + 1)$$

$$x^{3} + x + 1$$

(b) Subtraction

$$\begin{array}{r} x^3 + x^2 + 2 \\ \times (x^2 - x + 1) \\ \hline x^3 + x^2 + 2 \\ -x^4 - x^3 - 2x \\ \hline x^5 + x^4 + 2x^2 \\ \hline x^5 + 3x^2 - 2x + 2 \\ \hline \end{array}$$

(c) Multiplication

$$\begin{array}{r}
 x + 2 \\
 x^{2} - x + 1 \overline{\smash)x^{3} + x^{2}} + 2 \\
 \underline{x^{3} - x^{2} + x} \\
 \underline{x^{2} - x + 2} \\
 \underline{2x^{2} - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Figure 5.5 Examples of Polynomial Arithmetic

Polynomial Arithmetic With Coefficient Set in Z_p

- If each distinct polynomial is considered to be an element of the set, then that set is a ring
- When polynomial arithmetic is performed on polynomials over a field, then division is possible
 - Note: this does not mean that exact division is possible
- If we attempt to perform polynomial division over a coefficient set that is not a field, we find that division is not always defined
 - Even if the coefficient set is a field, polynomial division is not necessarily exact
 - With the understanding that remainders are allowed, we can say that polynomial division is possible if the coefficient set is a field

Polynomial Division

We can write any polynomial in the form:

$$f(x) = q(x) g(x) + r(x)$$

- r(x) can be interpreted as being a remainder
- \rightarrow $r(x) = f(x) \mod g(x)$
- If there is no remainder we can say g(x) divides f(x)
 - Written as g(x) | f(x)
 - We can say that g(x) is a **factor** of f(x)
 - Or g(x) is a **divisor** of f(x)
- A prime polynomial (or irreducible polynomial) is a polynomial f(x) over a field F which cannot be expressed as a product of two polynomials.

Example of Polynomial Arithmetic Over GF(2)

- Addition of variable coefficients is bitwise XOR
- Multiplication of variable coefficients is bitwise AND
- Addition Example:

$$X + 1$$

 $X^{2} + X$
 $X^{2} + X$

Multiplication Example:

$$X^2 + X + 1$$
$$X + 1$$

$$X^{2} + X + 1$$
 $X^{3} + X^{2} + X$
 $X^{3} + 1$

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1$$

$$+ (x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(a) Addition

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1$$

$$-(x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(b) Subtraction

(c) Multiplication

(d) Division

Polynomial GCD

- Polynomial GCD is the same as integer GCD.
 - We replace integers with polynomials
- The polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if the following are true:
 - c(x) divides both a(x) and b(x)
 - Any divisor of a(x) and b(x) is a divisor of c(x)
- An equivalent definition is:
 - $c(x)=\gcd[a(x),b(x)]$ is the polynomial of maximum degree that divides both a(x) and b(x)
- The Euclidean algorithm can be extended to find the greatest common divisor of two polynomials whose coefficients are elements of a field

Euclidean algorithm to compute the greatest common divisor of two polynomials

 Recall computing GCD for integers using mod operation. Will use same approach for polynomial

GCD (710, 310)=10

a	b	r= a mod b
710	310	90
310 🖊	90	40
90 🖊	40	10
40 🚣	10	0

Euclidean Algorithm for Polynomials							
Calculate	Which satisfies						
$r_1(x) = a(x) \bmod b(x)$	$a(x) = q_1(x)b(x) + r_1(x)$						
$r_2(x) = b(x) \bmod r_1(x)$	$b(x) = q_2(x)r_1(x) + r_2(x)$						
$r_3(x) = r_1(x) \bmod r_2(x)$	$r_1(x) = q_3(x)r_2(x) + r_3(x)$						
•	•						
•	•						
•	•						
$r_n(x) = r_{n-2}(x) \bmod r_{n-1}(x)$	$r_{n-2}(x) = q_n(x)r_{n-1}(x) + r_n(x)$						
$r_{n+1}(x) = r_{n-1}(x) \bmod r_n(x) = 0$	$r_{n-1}(x) = q_{n+1}(x)r_n(x) + 0$ $d(x) = \gcd(a(x), b(x)) = r_n(x)$						

Euclidean algorithm to compute the greatest common divisor of two polynomials using GP(2)

GCD (710, 310)=10

GCD $(x^6+x^5+x^4+x^3+x^2+x+1, x^4+x^2+x+1) = x^3+x^2+1$

а	b	r= a mod b
710	310	90
310 🖊	90	40
90 🖊	40	10
40 🖊	10	0

Find gcd[a(x), b(x)] for $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and $b(x) = x^4 + x^2 + x + 1$. First, we divide a(x) by b(x):

This yields $r_1(x) = x^3 + x^2 + 1$ and $q_1(x) = x^2 + x$.

Then, we divide b(x) by $r_1(x)$.

$$\begin{array}{r}
 x^3 + x^2 + 1 \\
 x^4 + x^3 + x^2 + x + 1 \\
 \underline{x^4 + x^3 + x^2 + x} \\
 \underline{x^3 + x^2 + 1}
 \end{array}$$

This yields $r_2(x) = 0$ and $q_2(x) = x + 1$.

Therefore, $gcd[a(x), b(x)] = r_1(x) = x^3 + x^2 + 1$.

GF(28) For AES

GF(2⁸) operations maps to unsigned 8-bit XOR and AND operations.

In the following example, we demonstrate computation in:

- GF(2⁸) and
- Binary operations.

In the example, the functions maps to the following values:

$$m(x)=100011011$$

$$f(x) = 01010111$$

$$g(x) = 10000011$$

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2^8), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1$$

= $x^7 + x^6 + x^4 + x^2$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1 = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 \overline{\smash{\big)}\xspace{0.05cm}} x^{5} + x^{3} \\ \underline{x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1} \\ \underline{x^{13} + x^{9} + x^{8} + x^{6} + x^{5}} \\ \underline{x^{11} + x^{7} + x^{6} + x^{4} + x^{3}} \\ \underline{x^{11} + x^{7} + x^{6} + x^{4} + x^{3}} \\ \underline{x^{7} + x^{6} + x^{1} + x^{1}}$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

GF(28) For AES

Addition:

GF(2⁸) maps to unsigned 8-bit XOR and AND operations:

$$m(x)=100011011$$

$$f(x) = 0101 0111$$

$$g(x) = 1000 0011$$

$$f+g = 11010100$$

The binary result maps to: $x^7 + x^6 + x^4 + x^2$

The largest power in the result is x^7 which less than x^8 . So, no further action is required.

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2⁸), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1$$

= $x^7 + x^6 + x^4 + x^2$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1 = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

GF(28) For AES

Multiplicatrion:

$$f(x) = 0101 0111$$

 $g(x) = 1000 0011$

01010111

0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2⁸), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1$$

= $x^7 + x^6 + x^4 + x^2$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1 = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1\sqrt{x^{13} + x^{11} + x^{9} + x^{8}} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$\underline{x^{13} + x^{9} + x^{8} + x^{6} + x^{5}}_{x^{11} + x^{7} + x^{6} + x^{4} + x^{3}}$$

$$\underline{x^{11} + x^{7} + x^{6} + x^{4} + x^{3}}_{x^{7} + x^{6} + x^{4} + x^{3}}$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

 $f \times g \text{ maps to: } x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$

The power of $f \times g$ is larger than n=8.

Hence, we should compute $f \times g \mod m(x)$

 $m(x) = x^8 + x^4 + x^3 + x + 1$

m(x) maps to: 1 0001 1011

GF(2⁸) For AES

Below, we compute f(x)xg(x) mod (x) using binary math. The result = x^7+x^6+1 The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2^8), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1$$

= $x^7 + x^6 + x^4 + x^2$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1 = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 / x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$\underline{x^{13} + x^{9} + x^{8} + x^{6} + x^{5}}_{1} + x^{4} + x^{3} + 1$$

$$\underline{x^{11} + x^{7} + x^{6} + x^{4} + x^{3}}_{1} + x^{7} + x^{6} + x^{4} + x^{3} + 1$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

Arithmetic in GF(23): Addition

GF(2³) field is constructed using prime polynomial: (X³ + X+ 1) Prime polynomial maps to binary number: 1011

		000	001	010	011	100	101	110	111	
	+	0	1	2	3	4	5	6	7	
000	0	0	1	2	3	4	5	6	7	
001	1	1	0	3	2	5	4	7	6	
010	2	2	3	0	1	6	7	4	5	
011	3	3	2	1	0	7	6	5	4	
100	4	4	5	6	7	0	1	2	3	
101	5	5	4	7	6	1	0	3	2	
110	6	6	7	4	5	2	3	0	1	
111	7	7	6	5	4	3	2	1	0	

$$X$$
 (010)
 X^2+X+1 (111)

 X^2++1 (101)

Arithmetic in GF(23): Multiplication

$GF(2^3)$ field is constructed using prime polynomial: $(X^3 + X + 1)$

		000	001	010	011	100	101	110	111
	×	0	- 1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

$$X$$
 (010)
 $X^2+ X + 1$ (111)
 $X^3 + X^2 + X$ (1110)

Since the result has power equal or greater than n=3, then we should compute remainder using the prime polynomial.

$$(X^3 + X^2 + X) \mod (X^3 + X + 1)$$

= $(X^2 + 1) \pmod (101)$

Arithmetic in $GF(2^3)$ Using prime polynomial: $(X^3 + X + 1)$

Summary

w	-w	w^{-1}
0	0	_
1	1	1
2	2	5
3	3	6
4	4	7
5	5	2
6	6	3
7	7	4

32 (c) Additive and multiplicative inverses

Polynomial Arithmetic Modulo $(x^3 + x + 1)$

GF(23) field is constructed using prime polynomial: (X3 + X+ 1)

	+	000	001 1	010 x	$011 \\ x + 1$	$\frac{100}{x^2}$	$ \begin{array}{c} 101 \\ x^2 + 1 \end{array} $	$ 110 $ $ x^2 + x $	$ 111 $ $ x^2 + x + 1 $
000	0	0	1	x	<i>x</i> + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	<i>x</i> + 1	х
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	X	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	x	1	0

(a) Addition

	×	000	001	010 x	$011 \\ x + 1$	$ \begin{array}{c} 100 \\ x^2 \end{array} $	$ \begin{array}{c} 101 \\ x^2 + 1 \end{array} $	$ 110 $ $ x^2 + x $	$ 111 $ $ x^2 + x + 1 $
000	0	0	0	0	0	0	0	$\frac{x + x}{0}$	0
001	1	0	1	х	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x^2	$x^2 + x$	<i>x</i> + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	х
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	X	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	X	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	X	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	х	1	$x^2 + x$	x^2	x + 1

Extended Euclid (read)

- Just as the Euclidean algorithm is used to find the greatest common divisor of two polynomials, the extended Euclidean algorithm is used to find the multiplicative inverse of a polynomial.
- Algorithm computes multiplicative inverse of b(x) modulo a(x)

if:

- degree of b(x) is less than the degree of a(x) and
- gcd[a(x), b(x)] = 1

Extended Euclid $[(x^8 + x^4 + x^3 + x + 1), (x^7 + x + 1)]$

Initialization	$a(x) = x^8 + x^4 + x^3 + x + 1; v_{-1}(x) = 1; w_{-1}(x) = 0$
	$b(x) = x^7 + x + 1; v_0(x) = 0; w_0(x) = 1$
Iteration 1	$q_1(x) = x$; $r_1(x) = x^4 + x^3 + x^2 + 1$
	$v_1(x) = 1; w_1(x) = x$
Iteration 2	$q_2(x) = x^3 + x^2 + 1; r_2(x) = x$
	$v_2(x) = x^3 + x^2 + 1; w_2(x) = x^4 + x^3 + x + 1$
Iteration 3	$q_3(x) = x^3 + x^2 + x; r_3(x) = 1$
	$v_3(x) = x^6 + x^2 + x + 1; w_3(x) = x^7$
Iteration 4	$q_4(x) = x; r_4(x) = 0$
	$v_4(x) = x^7 + x + 1; w_4(x) = x^8 + x^4 + x^3 + x + 1$
Result	$d(x) = r_3(x) = \gcd(a(x), b(x)) = 1$
	$w(x) = w_3(x) = (x^7 + x + 1)^{-1} \bmod (x^8 + x^4 + x^3 + x + 1) = x^7$

Computational Considerations

- Since coefficients are o or 1, they can represent any such polynomial as a bit string
- Addition becomes XOR of these bit strings
- Multiplication is shift and XOR
 - cf long-hand multiplication
- Modulo reduction is done by repeatedly substituting highest power with remainder of irreducible polynomial (also shift and XOR)

Defining GF(2ⁿ) using a Generator

- Generator is another way of defining GF(2ⁿ).
- A generator g of a finite field F of order q (contains q elements) is:
 - an element whose first *q*-1 powers generate all the nonzero elements of F.
 - The elements of F consist of: $\{0, g^0, g^1, \ldots, g^{q-2}\}$; where: $g^0 = g^{q-1} = 1$
- Consider a field F defined by a polynomial f(x): an element b
 contained in F is called a root of the polynomial if f(b) = 0
- Finally, it can be shown that a root g of an irreducible polynomial is a generator of the finite field defined on that polynomial

Generator Example for $GF(2^3)$ using: $f(x)=x^3+x+1$

- Assume F is defined by the prime (irreducible) polynomial = $x^3 + x + 1$
- g= 010; which represents: x
- g is a root and computed by plugging g in $f(x)=x^3+x+1$
- Order of the field = number of elements = q=7

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation
0	0	000	0
$g^0 (= g^7)$	1	001	1
g ¹	g	010	2
g^2	g^2	100	4
g^3	g + 1	011	3
g^4	$g^2 + g$	110	6
g ⁵	$g^2 + g + 1$	111	7
g ⁶	$g^2 + 1$	101	5

When exponent is 3 or more, them we determine answer by taking:

mod (
$$g^3 + g + 1$$
)
For example:
 $g^3 = g^3 \mod (g^3 + g + 1)$
= $g + 1$

Generator Example for $GF(2^3)$ using: $f(x)=x^3+x+1$

- $g^{\circ} = 1$, which maps to 001
- g1 = g, which maps to 010
- g²= g.g, which maps to 100
- g³:

Note: addition and subtraction are the same.

• $g^4=g.g^3=g(g+1)=g^2+g$, which maps to 110

	$g^0 (= g^7)$	1	001	1
 If g is a generator, then it must 	g^1	g	010	2
	g^2	g^2	100	4
satisfy:	g^3	g + 1	011	3
$f(\alpha) - \alpha^3 + \alpha + 1 = 0$	g^4	$g^2 + g$	110	6
$f(g)=g^3+g+1=0$	g^5	$g^2 + g + 1$	111	7
$g^3 = -g - 1 = g + 1$	g^6	$g^2 + 1$	101	5
$g^{2} = -g - 1 = g + 1$				

Polynomial

Representation

0

Binary

Representation

000

Decimal (Hex)

Representation

0

Power

Representation

0

• • • •

Power representation Makes Math easy

Example: compute $g^4 \times g^6$:

- Easy way:
 - Power representation: $g^4 \times g^6 = g^{10 \mod q} = g^{10 \mod 7} = g^3 = g+1$
- Harder way:

•
$$g^4 = g^2 + g$$

- $g^6 = g^2 + 1$
- $g^4 \times g^6 = g^4 + g^3 + g^2 + 1$
- $(g^4+g^3+g^2+1) \mod (g^3+g+1)$ = g+1

$$g^{3} + g + 1 / g^{4} + g^{3} + g^{2} + g$$

$$g^{4} + g^{2} + g$$

$$g^{3}$$

$$g^{3}$$

$$g^{3} + g + 1$$

$$g + 1$$

Polynomial

Representation

g+1

 $g^{2} + g$

 $g^2 + g + 1$

Representation

 $g^0 (= g^7)$

 g^4

Binary

Representation

011

110

111

Decimal (Hex)

Representation

4

3

GF(23) Arithmetic Using Generator for the Polynomial $(x^3 + x + 1)$

power representation

polynomial representation

		000	001	010	100	011	110		101
		000	001	010	100	011	110	111	101
	+	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
001	1	1	0	g + 1	$g^2 + 1$	g	$g^2 + g + 1$	$g^2 + g$	g^2
010	g	g	g + 1	0	$g^2 + g$	1	g^2	$g^2 + 1$	$g^2 + g + 1$
100	g^2	g^2	$g^2 + 1$	$g^2 + g$	0	$g^2 + g + 1$	g	g + 1	1
011	g^3	g + 1	g	1	$g^2 + g + 1$	0	$g^2 + 1$	g^2	$g^2 + g$
110	g^4	$g^2 + g$	$g^2 + g + 1$	g^2	g	$g^2 + 1$	0	1	g + 1
111	g^5	$g^2 + g + 1$	$g^2 + g$	$g^2 + 1$	g + 1	g^2	1	0	g
101	g^6	$g^2 + 1$	g^2	$g^2 + g + 1$	1	$g^2 + g$	g + 1	g	0

(a) Addition

		000	001	010	100	011	110	111	101
	×	0	1	G	g^2	g^3	g^4	g^{5}	g^6
000	0	0	0	0	0	0	0	0	0
001	1	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
010	g	0	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1
100	g^2	0	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g
011	g^3	0	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2
110	g^4	0	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1
111	g^5	0	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$
101	g^6	0	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$

Multiplicative Inverse in GF(2ⁿ)

- Consider the last example of GF(2³) Arithmetic
- g⁵ is the multiplicative inverse of g²
 - g^5 corresponds to 111 (i.e. x^2+x+1)
 - g² corresponds to 100 (i.e. x²)
 - This implies:
 - $(x^2+x+1).(x^2) \mod (x^3+x+1) \equiv 1$
 - (111).(100) mod $(x^3 + x + 1) \equiv 1$

		000 001		010 100		011 110		111	101
	×	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	0	0	0	0	0	0	0
001	1	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
010	g	0	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1
100	g^2	0	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g
011	g^3	0	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2
110	g^4	0	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1
111	g^5	0	g + g + i	g^+i	1	g	g^2	g + 1	$g^2 + g$
101	g^6	0	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$

Multiplicative Inverse in GF(28)

Multiplicative inverse table in GF(28) for bytes xy used within the
 AES S-Box

• Prime polynomial = $x^8 + x^4 + x^3 + x + 1$

		Y															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
	0	00	01	8D	F6	СВ	52	7в	D1	E8	4F	29	C0	В0	E1	E5	C7
	1	74	В4	AA	4 B	99	2B	60	5F	58	3F	FD	CC	FF	40	EE	B2
	2	3A	бE	5A	F1	55	4D	Α8	C9	C1	0A	98	15	30	44	A2	C2
	3	2C	45	92	6C	F3	39	66	42	F2	35	20	бF	77	ВВ	59	19
	4	1D	FE	37	67	2D	31	F5	69	Α7	64	AΒ	13	54	25	E9	09
	5	ED	5C	05	CA	4C	24	87	BF	18	3E	22	F0	51	EC	61	17
	6	16	5E	AF	D3	49	Α6	36	43	F4	47	91	DF	33	93	21	3B
	7	79	В7	97	85	10	В5	ВА	3C	Вб	70	D0	06	Α1	FΑ	81	82
X	8	83	7E	7F	80	96	73	BE	56	9В	9E	95	D9	F7	02	В9	A4
	9	DE	6Α	32	6D	D8	8A	84	72	2A	14	9F	88	F9	DC	89	9A
	Α	FΒ	7C	2E	C3	8F	В8	65	48	26	C8	12	4A	CE	E7	D2	62
	В	0C	E0	1F	\mathbf{EF}	11	75	78	71	Α5	8E	76	3D	BD	BC	86	57
	С	0В	28	2F	A3	DA	D4	E4	0F	Α9	27	53	04	1B	FC	AC	E6
	D	7A	07	ΑE	63	C5	DB	E2	EΑ	94	8B	C4	D5	9D	F8	90	6B
	E	В1	0D	D6	EΒ	C6	0E	CF	ΑD	80	4E	D7	E3	5D	50	1E	B3
	F	5B	23	38	34	68	46	03	8C	DD	9C	7D	A0	CD	1A	41	1C

Multiplicative Inverse in GF(28)

Example . From Table , the inverse of

$$x^7 + x^6 + x = (11000010)_2 = (C2)_{hex} = (xy)$$

is given by the element in row C, column 2:

$$(2F)_{hex} = (00101111)_2 = x^5 + x^3 + x^2 + x + 1.$$

 $(x^7 + x^6 + x) \cdot (x^5 + x^3 + x^2 + x + 1) \equiv 1 \mod P(x)$

This can be verified by multiplication:

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62 B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57 C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6 D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3 F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C

Summary

- Groups
 - Abelian group
 - Cyclic group
- Finite fields of the form GF(p)
 - Finite fields of Order p
 - Finding the multiplicative inverse in GF(p)
- Polynomial arithmetic
 - Ordinary polynomial arithmetic
 - Polynomial arithmetic with coefficients in Z_p
 - Finding the greatest common divisor

- Rings
- fields
- Finite fields of the form $GF(2^n)$
 - Motivation
 - Modular polynomial arithmetic
 - Finding the multiplicative inverse
 - Computational considerations
 - Using a generator