

Report 2366

MATERIALS COMPATIBILITY STUDIES WITH FUEL/ALCOHOL MIXTURES

by
Paul Touchet
Basil Zanedis
Mari-Catherine Fischer
and
Paul E. Gatza

July 1982

Approved for public release; distribution unlimited.

U.S. ARMY MOBILITY EQUIPMENT
RESEARCH AND DEVELOPMENT COMMAND
FORT BELVOIR, VIRGINIA

Destroy this report when it is no longer needed. Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

1.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	N NO. 3. RECIPIENT'S CATALOG NUMBER
2366 AD-A124	
A. TITLE (and Subtitio)	May 79 to Nov 81
MATERIALS COMPATIBILITY STUDIES WITH FUEL/ ALCOHOL MIXTURES	Technical Report
ALCOHOL MIXTURES	6. PERFORMING ONG. REPORT HUMBER
7. AUTHOR(a)	S. CONTRACT OR GRANT NUMBER(P)
Paul Touchet, Basil Zanedis, Mari-Catherine Fischer, and	
Paul E. Gatza	· · · · · · · · · · · · · · · · · · ·
S. DERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Rubber and Coated Fabrics Research Group	
U.S. Army Mobility Equipment Research & Development	1L26344D150
Command, ATTN: DRDME-VU; Fort Belvoir, VA 22060	12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS	July 1982
	13. NUMBER OF PAGES
18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Of	fice) 18. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(I Glizerati from Confronting Cit	Unclassified
	134. DECLASSIFICATION/COWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ	ent from Report)
18, SUPPLEMENTARY NOTES	
IS SUPPLEMENTANT NOTES	
1	
19. KEY WORDS (Continue on reverse side if necessary and identity by block n Elastomers Test Fuel	umþer},
3	Compatibility
Plastics Methanol Materials C Metals Ethanol	Compationity
Gasohol Fuel Exposure	
Gasolines Fuel Resistance	
26. ANTRACT (Continue on reverse sith if recovering and identity by block in Representative fuel-resistant clustomers, plastics, and in	umber)
with commercial gasolines, diesel fuel, ASTM test fuels, and	
at several concentration levels. The test program was design	ned to ascertain the effects of the fuels on
the materials as well as the effects, if any, of the materials of	on the fuels. Results were analyzed and
interpreted in terms of significant changes in the performan	ice characteristics of the materials and the
fuels which would be indicative of potential incompatibiliti	es for use in end items of military equip-
I mank	

DD 1 JAN 73 1473 EDITION OF ! NOV SE IS OBSOLETE

UNCLASSIFIED

PREFACE

The Material Technology Laboratory's technical and laboratory staff performed the work and preparation of this report. Kenneth W. Knutson, Donovan Harris, Thomas Rowe, David Reynolds, Eric Vasey, and Janelle D. Beckstrom performed most of the laboratory testing and sample preparations.

Accertion) NTIS GRA& DIG TAB Unmanument J.,tificat	1	1	7
Dietribut	ion/	14/ 4 F	=
A		DTIG COPY IBPECTED 3	

CONTENTS

Section	Title .	Page
	PREFACE	iii
	ILLUSTRATIONS	٧
	TABLES	vi '
I	INTRODUCTION	
	 Subject Background 	1 1
II	INVESTIGATION	
	3. Scope4. Tests Conducted5. Results	2 7 13
III	DISCUSSION	
	6. Phase I7. Phase II8. Phase III	13 67 71
IV	CONCLUSIONS	
	9. Phase	124
•	10. Phase II	125
	11. Phuse III	125
	APPENDICES	-
	A. COMPOUNDING INGREDIENTS AND SUPPLIERS LIST	127
	B. ANALYSIS OF AROMATIC CONTENT OF LEADED AND UNLEADED GASOLINES	129
	C CONVERSION TARI F	130

ILLUSTRATIONS

Figure	Title	Page
1	Tensile Strength Properties of Rubber Materials After Fuel Exposure	57
2	Modulus Properties of Rubber Materials After Fuel Exposure	60
3	Effect of Fuel Exposure on the Hardness and Volume of Rubber Materials	62
4	Effect of Alcohol Concentration on the Tensile Strength of Rubber Materials	64
5	Effect of Alcohol Concentration on the Modulus of Rubber Materials	65
6	Effect of Alcohol Concentration on the Volume Swell and Hardness of Rubber Materials	66
7	Fuel Resistance of Rubber Materials to Gasohol (Fuel No. 13)	68
8	Effect of Diesel/Alcohol Mixtures on Tensile Properties of Rubber Materials	69
9-16	Specific Gravity of Test Fuels Conditioned with Elastomers	72-79
17-20	Specific Gravity of Test Fuels Conditioned with Plastics	81-84
21-24	Specific Gravity of Test Fuels Conditioned with Metals	85-88
25-32	Unwashed Gum Content of Test Fuels Conditioned with Elastomers	90-97
33-40	Washed Gum Content of Test Fuels Conditioned with Elastomers	98-105
41-44	Unwashed Gum Content of Test Fuels Conditioned with Plastics	107-110
45-48	Washed Gum Content of Test Fuels Condtioned with Plastics	111-114
49-52	Unwashed Gum Content of Test Fuels Conditioned with Metals	115-118
53.56	Wushed Gum Content of Test Finals Conditioned with Metals	110 122

TABLES

l'able	Title	Page
1	Rubber Types Used in Fuel Compatibility Study	3
2	Formulations for Elastomeric Compounds Prepared In-House	4
3	Fuels Used in Elastomer Compatibility Study	5
4	Uses for Plastics in Fuel Service	8
5	Identification of Plastic Materials Used in Fuel Compatibility Study	9
6	Metals Used in Fuel/Alcohol Studies	10
7	Test Fluids Used in the Metals and Plastics Compatibility Study	11
8	Physical Properties of Rubber Materials Originally and After Immersion in Test Fluids	14
9	Original Properties of Plastic Materials	21
10	Change in Volume of Plastic Materials Exposed to Test Fluids	22
11	Tensile Strength Properties of Plastic Materials Exposed to Test Fluids	23
12	Rupture Strength of Plastic Materials Exposed to Test Fluids	24
13	Change in Weight of Magnesium Metal Exposed to Test Fluids	25
14	Visual Inspection of Epoxy Coated Metals Exposed to Test Fluids	26
15	Oxidation Stability of Test Fuels Exposed to Elastomers	27
16	Specific Gravity of Test Fuels Exposed to Metals	28
17	Specific Gravity of Test Fuels Exposed to Plastics	29
18	Specific Gravity of Test Fuels Exposed to Elastomers	30
19	Unwashed Gum Content of Test Fuels Exposed to Elastomers	31

TABLES (CONTINUED)

Table	Title	Page
20	Unwashed Gum Content of Test Fuels Exposed to Plastics	32
21	Unwashed Gum Content of Test Fuels Exposed to Metals	33
2.2	Washed Gum Content of Test Fuels Exposed to Elastomers	34
23	Washed Gum Content of Test Fuels Exposed to Plastics	35
24	Washed Gum Content of Test Fuels Exposed to Metals	36
25	Reid Vapor Pressure of Test Fuels Exposed to Elastomers	37
26	Reid Vapor Pressure of Test Fuels Exposed to Plastics	38
27	Reid Vapor Pressure of Test Fuels Exposed to Metals	39
28	Residual Distillation Results of Test Fuels Exposed to Elastomers	40
29	Residual Distillation Results of Test Fuels Exposed to Plastics	41
30	Residual Distillation Results of Test Fuels Exposed to Metals	42
31	Distillation of Test Fuels Exposed to Elastomers	43
32	Distillation of Test Fuels Exposed to Metals and Plastics	50

MATERIALS COMPATIBILITY STUDIES WITH FUEL/ALCOHOL MIXTURES

I. INTRODUCTION

- 1. Subject. This report details investigations conducted and results obtained in efforts to evaluate the compatibility of materials with petroleum fuel/alcohol mixtures and to determine the effects of these materials on fuels and fuel/alcohol mixtures.
- 2. Background. Deterioration of elastomeric or plastic end items such as gaskets, diaphragms, "O" rings, hose, tubing, and coated fabrics used in fuel storage tanks is essentially proportional to the aromatic content of petroleum fuel to which the material is periodically or continually exposed. The technology of producing fuels and their ultimate composition is constantly changing. Ecological factors, such as pollution consciousness, and the uncertainties associated with immediate and future availability of military fuel supplies prompted by recent shortages of hydrocarbon fuels have revived an interest in the use of methyl alcohol (methanol) and ethyl alcohol (ethanol) as supplementary automotive fuels. Gasohol, a 90/10 blend of unleaded gasoline/ethanol originally marketed only in the midwest, is now being sold in virtually all states. Gasoline/ethanol blends are currently being used in Brazil, and methanol blends will soon be available in Europe. Alcohol has one overwhelmingly attractive attribute -seemingly an endless supply. Ethanol can be distilled from fermented vegetable and fruit matter, while methanol can be obtained as a by-product from plants, lumbering, manure, and garbage, as well as from coal. Alcohol as a fuel has advantages; i.e., it is clean, energy efficient, and can be made from replaceable materials, but its deleterious effects on metallic and nonmetallic materials needed further investigation. Much has been written on the corrosive action of fuel blends, their water tolerance, their fuel characteristics, and the composition of their emission gases. Concern has been expressed by automotive engineers and fuels-handling parts suppliers about the swelling actions of alcohols on materials (especially rubber parts) causing possible malfunctioning of the fuel-handling system. Recent attention to mixing ethanol and methanol with gasoline to augment fuel supplies has prompted these studies. The objectives of this program were, therefore:
 - a. To conduct material compatibility studies with fuel/alcohol mixtures.
 - b. To determine the effects of materials on fuel/alcohol mixtures.

II. INVESTIGATION

- 3. Scope. Work under this project was divided into three phases. The first phase encompassed the compatibility of rubber materials with various fuels and fuel/alcohol mixtures. The determination of the extent of deterioration in physical properties of rubber materials exposed to gasolines, diesel, standard test fluids to simulate fuels, methanol, ethanol, gasoline/alcohol mixtures, standard test fluid/alcohol mixtures, and diesel/alcohol mixtures was investigated. The second phase concerned similar compatibility studies employing plastic and metallic materials. The third phase investigated the effects of exposure to the various materials on the fuels. Materials, test fluids, and methods used in each phase are detailed as follows:
- a. Phase I. Fourteen rubber types (Table 1) which have been used or have potential for use in military vehicle components such as gaskets, seals, hoses, tubing, and diaphragms or in coated fabrics for fuel storage tanks and other components of fuel-handling and distribution systems were used in this investigation. Ten elastomeric compounds representative of rubber types commonly used in fuel resistance applications were selected, mixed, and vulcanised into 6-in. by 6-in. test sheets having a thickness of about 0.080 in. Formulations and curing conditions for these componds are shown in Table 2. Since it was desired to evaluate only the inherent fuel-resistant properties of these rubbers, no effort was made to optimize this characteristic. The other four elastomeric materials were obtained as cured sheets from end item fabricators and the formulations were not revealed. A total of 33 test media were selected. They consisted of standard test fluids representing gasolines of various aromatic content, leaded and unleaded gasolines, diesel, methanol, ethanol, standard test fluid/alcohol mixtures, gasoline/alcohol mixtures, sour gasoline, sour gasoline/alcohol mixtures, and diesel/alcohol mixtures. Both methanol and ethanol were used in mixtures of 5, 10, 20, 50, and 100 percent alcohol by volume. These test fluids, their code identification, and their compositions are shown in Table 3 for further reference. The ethanol used in this study was denatured ethanol; the methanol was Fisher certified ACS grade containing no more than 0.1 percent water. All the test fluids were stored in 5-gal stainless steel safety cans and transferred to brown glass bottles prior to testing and were shaken before each test portion was removed, thus assuring homogeneity.
- b. Phase II. This study comprised an evaluation of the effects of 12 fuels on 10 plastic and 7 metallic materials. Most of the selected plastics—both thermosets and thermoplastics—have been described as being resistant to both aliphatic hydrocarbons and alcohols. With the exception of polypropylene, all the plastics tested were rated as exhibiting excellent chemical resistance (showing no discernible attack) or fair chemical resistance (showing mild attack under limited use). The types of plastics chosen for this study were materials being used extensively for corrosion protection in the form of paints, potting compounds, adhesives, coatings, and linings. These organic compounds have versatile formulations which

Harper, Charles A., "Handbook of Plastics and Elastomers," (75).

² American Society of Metals—Metals Handbook, Vol. 10, 8th Ed. "Failure Analysis and Prevention."

Table I. Rabber Types Used in Fac! Compatibility Souty

Material Code	ASTM-D1418 Designation	Elastomer Type	Trade Name	i i
15-53	FVMQ	Flasmeilieure Rubber	15:33	Des Carning
PNT-34	7.4	Pacaphonicite Plannetanemer	PNF-200	Faratane
VTR-10	FKM	Planeczabon, high fluid resistance	Vitan VTR-4590	7
M908-B	ı	Mend of mirrie and polyvinyl chloride used in fabrication of control fabric feet tents	Preprietary	1
5897-04	NBBCM	Blend of sabrile and chlorizated polyelythe rubbers used in the fabrication of firel bosts	Preprietary	ı
J-232	EOT	Polyoulfale	Thiskal ST	Thinks
11CF-1	5	Polychlangerne	Nesponse WKT	1
B-910	FKM	Placecaha	View B-910	1
11CSM-2	CSM	Chlowestfenated Polychylene	Hypothes 48	1
11NBR-L-2	NBR	Ninite, Low Acrylandrife-Patrafene rubber	Parent 1950	Uningal
11NBR-H-1	NBR	Nistile, High Acrylanistic-Bata-Sens rabber	Hyar 1631	R. F. Gastrick
11560-1	ECO	Epichlarubydia Capalysaer	Hydrin 200	B. F. Goodsich
Ether	ដឹ	Polycher methone conting compound used in fabricating control fabric fuel tanks	Proprietary	ı
Ester	Αn	Polycier authore conting compound and ir. fabricating cooked fabric fuel trads	Proprietary	1

Table 2. Formulations for Elastomeric Compounds Prepared In-House

Ingredients	Paris by Weight									
	1.8-53	PNT-84	VTR-10	J-282	11CR-1	B-910	11C8M-2	11NBR-L-2	11NbR-H-1	HECO-
Silartic LS-53	100.	_			-	-			_	
PNF-200	_	100.	-	_	-	~	-	-	_	_
Viton VTR-4590		_	100.	-		-	-			_
Thiokol ST	-	_	_	100.	_	_	-	-	-	-
Neoprene WRT	-	_	-		100.	-	_	-	-	-
Viton B-910	_	-	_	_	-	100.	-	_		_
Hypaton 48	_	-	-	_	_	-	100.		_	_
Paracril 18-80	_	_	-	_	_	-	-	100.	_	-
Hyem 1031	-	_	_	_	_	-	***		100.	-
Hydrin 200		_	-	-	_	-	_	-	-	100.
Zine Oxkie	_	_	_	_	5.		450	ď.	5.	
Steurie Acid	-	-	_	1.	.5			.5	.5	_
Agerite Resin D	_	-	-	_		_	_	2.	2.	
Zine Steurate	_	-	_	_	_	_		_		1.
NBC Antioxidant	_	_	_	_			_	244	_	1.
Maglite I)	_	-	_	_	4.	3.	-	_	_	_
Agerite Stulite S		_	_		1.	-	_	_	-	
Calcium Hydroxide		_	a.			6.			_	-
Elustomag	_	6.	_	_			_	_		_
Lithurge	_		_	_	-	_	25.	_	_	-
SRF, N-765, Black	_	_	-	60.	_	-	25.		_	_
MT, N-990, Black	_	_	25.	_	_	30.		_	•••	-
FEF. N-550, Black	-	33.	_		•		_	_		30.
SRF-LM, N-762, Bluck	_		_	_	50.	_		_	_	-
HAF, N-330, Black	_	-	_			-	_	45.	45.	_
ERD-90	_	_	_	_	_	_				5.6
Warecure C	_	-	-	_	.6	_	_	= 1	-	1.2
Kenrich BLE	_		_	_	2.7	_	-		_	
Suntocure NS	_	_	_	_	-	_		1,	1.	_
Sulfur	_	_	_	_	_	_	_	2.	2.	_
Methyl Tunds	_	_	_	_	_	_	_	2.	2.	_
Tetrone A	_	_	_	_	_	_	2.			_
MBTS	_	_	_	_	_	_		_	_	_
Lime	-	_	_	_		_		_	-	_
Zine Peroxide	_	_	_	5.	_	_	_	_	-	_
Luperco CST	1.4	_	-		_	_	_	_	_	_
Disk #7		_	2.	_	_	_		_	_	_
		_	2. 1.5	_			_	-	_	_
Laperco 101XL	***	2.	1.0	_	-	-			-	_
Vulcup 40KE TP-95, Planticizer					_				-	_
Cure Conditions	_	-	-	10.	-	-		_	-	***
	10	4 13	ta.	40	10		""	10	145	10
Press Cure, Minutes	15	60	10	40	10	8	30	10	10	10
Temp. (* F)	240	320	350	300	340	350	310	340	340	340
Oven Post Cure, h	24		24	_	-	24	-	-	-	4
Temp. (* F)	300	_	450	_		450	_	_	-	340

Table 3. Fuels Used in Elastomer Compatibility Study

Code Number	Fuel Identification
1	ASTM Reference Fuel B; 70% Iso-Octane/30% Toluene, ASTM D-471
2	ASTM Reference Fuel D; 60% Iso-Octane/40% Toluene
3	ASTM Reference Fuel C; 50% Iso-Octane/50% Toluene
4	Methanol
5	Ethanol
6	90% Reference Fuel D/10% Methanol
7	90% Reference Fuel D/10% Ethanol
8	80% Reference Fuel D/20% Methanol
9	80% Reference Fuel D/20% Ethanol
10	Regular Leaded Gasoline, Texaco (Aromatic content 29.7%)
11	Unleaded Gasoline, Texaco (Aromatic content 32.8%)
12	90% Leaded Gasoline/10% Ethanol
13	90% Unleaded Gasoline/10% Ethanol
14	90% Leaded Gasoline/10% Methanol
15	90% Unleaded Gasoline/10% Methanol
16	80% Leaded Gasoline/20% Ethanol
17	80% Unleaded Gasoline/20% Ethanol
18	80% Leaded Gasoline/20% Methanol
19	80% Unleaded Gasoline/20% Methanol

Table 3. Fuels Used in Elastomer Compatibility Study (Cont'd)

Code Number	Fuel Identification
20	Sour Test Fuel - ASTM Reference Fuel D with t-Butyl Hydroperoxide
21	90% Sour Test Fuel/10% Ethanol
22	80% Reference Fuel D/10% Ethanol/10% Methanol
23	80% Unleaded Gasoline/10% Ethanol/10% Methanol
24	Sour Gasoline - Unleaded gasoline with t-Butyl Hydroperoxide
25	90% Sour Gasoline/10% Ethanol
26	50% Reference Fuel D/50% Ethanol
27	50% Reference Fuel D/50% Methanol
28	50% Unleaded Gasoline/50% Ethanol
29	50% Unleaded Gasoline/50% Methanol
30	Diesel DF-2
31	95% Diesel/5% Ethanol
32	90% Diesel/10% Ethanol
33	80% Diesel/20% Ethanol

THE RESERVE WAS COME TO SERVE WITH THE PROPERTY OF THE PROPERT

facilitate use in protection of metal structures. Tables 4 and 5 describe the plastics and their uses and suppliers. A variety of industrial manufacturing companies supplied samples of injection molded materials from which specimens were machined. The metallic materials selected, with the exception of magnesium in methanol, are known to be resistant to hydrocarbons and anhydrous alcohols and were based on a Union Oil Company report. Those used in the fuel/alcohol immersion tests are given in Table 6. A total of 12 fuels were used to evaluate the plastic and metallic materials. These fuels, along with their code numbers, are presented in Table 7.

c. Phase III. This portion of the study was performed in two sections. The first section investigated effects on 12 of the fuels selected from Table 3 when exposed to the 14 elastomers given in Table 1. In the second section, 12 fuels from Table 7 were exposed to 6 plastics and 4 metallic materials from Tables 5 and 6. Exposure materials used in the testing were selected by the Rubber and Coated Fabrics Group and the Plastics, Ceramics, and Metallurgy Group. Fuels were prepared by Rubber and Coated Fabrics Group for the elastomeric exposures and by the Chemistry Research Group for the plastic and metal exposures.

4. Tests Conducted. Tests were conducted as follows:

- a. Phase I. Initial properties of the rubber-tensile strength, elongation, 100 percent and 200 percent modulus, and Shore A hardness were determined according to procedures detailed in ASTM D-412 and ASTM D-2240. Volume change of the rubber materials after immersion for three days at room temperature in the various test fluids was determined according to ASTM D-471. Retention of tensile strength, modulus, and elongation after the 3-day immersion period was ascertained according to FTMS-601, with values obtained based on the swollen cross sectional area per Paragraph 4.8.1 of method 6111.
- b. Phase II. Initial properties of plastic materials (tensile, rupture, and yield strengths) and specimen configuration were determined according to ASTM D-1708. The crosshead speed for the brittle materials was reduced to facilitate the plotting of a legible load-deflection curve. The fucl-immersion tests on the plastic materials were run for a 28-day period during which three specimens were suspended in sealed test tubes at ambient temperature. The percent change in ultimate tensile strength and rupture strength was calculated and tabulated. The dimensions of the reduced section were measured before and after immersion to allow for the above calculations. The test procedure for determining the volume swell was the same as that employed in Phase I testing of rubber compounds.

Babian, Robert J., "Materials in Design Engineering," No. 202, (Jan 63).

⁴ Nakaguchi, G. M. and Keller, J. L., "Ethanol Fuel Modification for Highway Vehicle Use," Union Oil Company of CA (Jul 80).

Table 4. Uses For Plastics in Fuel Service

Plastics	Fuel System Component
Nylon 6/12	Fuel feed lines, brake lines,
glass-filled	fuel injection system
Acetal	Fan, gas cap, filler neck, roll-over
	valve, accelerator pump piston
Nylon 6/6	Tubing, reservoirs, emission canister,
•	gas tank bushing, fuel filter
Nylon 6/6	Radiator end tank
glass-filled	
HDPE	Fuel filler neck, gas tank
Phenolic	Automatic transmission reactors
PBT	Сав сарв

Table 5. Identification of Plastic Materials Used in Fuel Compatibility Study

Supplier Plastics		Trade Name	Form	
Dupont	Acetal	Delrin 500	Injection Molded	
Dupont	Nylon 6/6	Zytel 101L	Injection Molded	
Dupont	Nylon 6/6 glass-filled	Minlon 70G33L	Injection Molded	
Dupont Polyethylene terephthalate (PET)		Rynite 545	Injection Molded	
Dupont Nylon 6/12 glass-filled		Zytel 77G43	Injection Molded	
Amoco High-density polyethylene (HDPE)		Amoco 240B2	Injection Molded	
Amoco Polypropylene		Amoco 6014	Injection Molded	
Celenese Polybutylene terephthalate (PBT)		Celenex 3300	Injection Molded	
GE Phenolic		Genal 12983E	Injection Molded	
Shell	Ероху	Epon 820	Liquid resin (14% tetraethylene tetramine)	

Table 6. Metals Used in Fuel/Alcohol Studies

Metal	Form	
Aluminum	Type 6061-Sheet	······
Brass	Sheet	
Magnesium	Ingot	
Steel, Carbon	Sheet	
Eteel, Long Terne Coated	Sheet	
Zine	Ingot	
Zine	Cast Sheet	

Table 7. Test Fluids Used in the Metals and Plastics Compatibility Study

Fuel Code No.	Fuel Descriptions
1	ASTM Reference Fuel B, 70% Iso-octane/30% Toluene
2	ASTM Reference Fuel D, 60% Iso-octane/40% Toluene
3	ASTM Reference Fuel C, 50% Iso-octane/50% Toluene
10	Texaco Leaded Regular Gasoline (Aromatic content 29.7%)
12	Texaco Leaded with 10% Ethanol
14	Texaco Leaded with 10% Methanol
16	Texaco Leaded with 20% Ethanol
18	Texaco Leaded with 20% Methanol
30	DF2 Diesel
31	95% Diesel/5% Ethanol
32	90% Diesel/10% Ethanol
33	80% Diesel/20% Ethanol

The metallic specimens were cut to a size about 1 in. by 3 in., soaked in methylene chloride, and dried to remove any residue from the surface. The specimens were placed in 100-ml beakers and the 12 various fuels were added to cover the metal. An aluminum foil-covered rubber stopper was placed in each beaker to prevent fuel evaporation during the 28-day test period. Visual examination was performed to detect any corrosive effects on the metal surface. The magnesium samples were weighed before and after testing to determine the weight loss due to exposure. This was based on previous knowledge of possible drastic changes in magnesium metal.³

The metals which were dip-coated in Epon 820 epoxy (curing agent: 14 percent tetraethylene tetramine) included magnesium ingot, aluminum ingot, zinc ingot, carbon steel sheet, and brass sheet. These specimens were treated similarly to the metal samples with respect to immersion testing and inspection.

³ Fabian, Robert J., "Materials in Design Engineering," No. 202, (Jan 63).

- c. Phase III. All material samples were prepared for maximum surface area exposure, thereby producing an accelerated (worst-case) test condition.
- (1) Elastomer Sample Preparation. All samples were reduced to a 200-mesh powder by using a Spex Freezer Mill. Initially, all of the samples were diced into 1/8-in. cubes. The coarsely diced samples (3 to 6 g) were loaded into impacting vials, cooled for 30 min in liquid nitrogen, ground for 2 min, cooled for 5 min, and then ground for a final 2 min. This method, besides being too time intensive, allowed only a 3-g sample per grinding vial and, consequently, made the powdering process inefficient. With the fourth series of exposures, an analytic Wiley Mill, with a 20 mesh screen, was used to prepare the coarse sample. With the exception of the fluorosilicone rubber, this method was used for all elastomer samples.
- (2) Plastic Sample Preparation. All of the plastic samples were ground using the analytic Wiley Mill with the 20 mesh screen.
- (3) Metal Sample Preparation. The metal samples were turned into ribbons on a lathe. The turnings were used as the most practical method for exposing the maximum surface area of sample per unit of weight.
- (4) Fuel Sample Preparation. All of the test fuels used for the elastomers testing phase were provided by the Rubber and Coated Fabrics Group. The first several fuels were stored in 1-gal glass containers. The last six fuels were supplied in 5-gal stainless steel safety cans. The Chemistry Research Group prepared the fuels for the metal and plastics exposures. These were prepared in 5-gal stainless steel safety cans. The material sample-to-fuel weight/volume ratio of 1 percent constituted a single exposure. Each exposure was run in duplicate, using two 16-oz wide-mouthed amber jars. Four grams of sample/400 ml of fuel, were used for each exposure and all test series were performed on the basis of the fuel as opposed to the exposure material.

Each series was exposed for 28 days at room temperture, $77^{\circ}F \pm 3^{\circ}$. Each jar was agitated for 15 seconds once a week. This method reduced agglomeration of the samples reduced any two-phase alcohol/fuel layers, thus presenting a more uniform test exposure condition. However, it was found that the two layers would reform in a few minutes in the 20 percent methanol sample; the elastomers would also settle out quite rapidly to the bottom of the test containers. A uniform test condition was not achieved in the higher test alcohol/fuel samples; a definite alcohol/fuel interface was noticeable.

At the end of the 4-wk test period, the exposure test container was agitated for 30 seconds and the fuel filtered, using Reeve Agnel 802 50-cm folded circles, into an amber narrow-neck storage bottle. These filtered samples were then refrigerated at approximately 40°F until they could be tested according to the following test methods:

- (a) Specific gravity as per ASTM D-1298.
- (b) Copper Strip Corrosion as per ASTM D-130.
- (c) Gum Content as per ASTM D-381.
- (d) Oxidation Stability as per ASTM D-525.
- (e) Reid Vapor Pressure as per ASTM D-323.
- (f) Distillation as per ASTM D-86.

のでは、これでは、10mmのでは、10m

5. Results. Physical properties of all the rubber materials—original and after fluid immersions—are shown in Table 8. The properties for the plastic materials are depicted in Tables 9 through 12. Changes in the weight of the magnesium metal due to exposure to the test fluids are presented in Table 13. Observations from the visual inspection of the epoxy coated metals after exposure are provided in Table 14.

The oxidation stability for all but eight of the exposures met the minimum acceptable 240-min time period. The results from the other eight exposures are given in Table 15. Copper strip corrosion for all exposures fell within the normal acceptable range. Specific gravity, gum content, Reid vapor pressure, and distillation test results are provided in Tables 16 through 32.

III. DISCUSSION

6. Phase I. Data for the fluid compatibility of the 14 different rubbers underscore the wide variation that can be expected. The type of fuel and the additional presence of alcohol in the mixtures are obviously significant factors. Again, it should be emphasized that these data are not necessarily representative of any ultimate or optimum properties attainable, because no attempt was made to impart improved fuel resistance to the compounds.

The two fluorocarbon compounds (VTR-10 and B-910) exhibited the highest overall retention of tensile strength followed by the polysulfide and ECO rubbers (Figure 1). The NBR and urethane compounds and CSM formulation displayed the greatest loss in strength after exposure to Reference Fuel D, methanol, ethanol, leaded and unleaded gasolines, and fuel/alcohol mixtures. With the exceptions of chloroprene (11CR-11), NBR-L, and ether urethane, methanol generally had a more adverse effect on tensile strength than did ethanol. The fuel/alcohol mixtures (codes 6, 7, 13, and 15) generally effected greater tensile losses than did corresponding base fuels or alcohols tested separately. Losses in ultimate elongation usually parallel those for tensile strength, when non-alcohol containing test fluids are employed. Inclusion of the fuel/alcohol mixtures in this study produced data for this property which was in some cases anomalous and, for the most part, difficult to analyze and interpret. Also, compounds such at the NBR-L, since they had low initial elongation (150 percent), did not retain a sufficient percentage after exposure to produce 100 percent or 200 percent modulus values (Table 8).

13

late & Proceed Properties of Robbert Materials (Princelly and Mar Immersion in Tax Shield

					1		.]							
ı										IINE	II NAME	HEOD		
Properties	23	TY.	VTE-Le	1	30-2495	7:2:5	HCE	2310	I KSW-2	3	Ξ	-	į	3
(Priping)													 	
Tradit. Min.	176	1001	21%	1923	1678	#		3	2166	1775	3162	2	7	
Elempization. T	9	2	3	9	*	182	Ħ	215	200	3	77	17	14	17
100% Manhados, Brin.	243	Ž	1212	737	1947	Ž,	3	£		9	2	315	V	\$
2007 Nachabay, Brim.	\$	Ž	5	378	155	19	92	5	3122	5	2567	X		8
Harders, Share A	Ħ	ħ	¥	2	#	18	1	R		#	ħ	4	¥	K
Mer lumrains for 3 Days at 1	12	i angera	a Tex Fa	C 7	6							ì	}	ł
Trails Brained, 9	92	#	B	3	ñ	13	#	ì	Ħ	=	23	讲	7	Ŗ
Elempation Retained, 9	<u>8</u>	11	*	9	R	Ħ	R	ß	3	M	:7	R	*	g
108% Madellan, 9	3	5	딿	3	19	2	R	#	3	7	3	Ħ	2	2
2007 Mariata &	† 2	5	5	F	>	*	X	5	3	7	5	8	2	*
Harders Change, Point	‡	4	ņ	Ŧ	뚜	φ	21-	7	-21	•	ıφ	7	•	2
Unbaner Champy. Th	30	225	4	17.1	Z	5.7	CR. 7	<u>~</u>	3	112	77	¥	92	4.7
After bearings for 3 Days at 1	1	Talen	Tox Fee	1 2 E										i
Traville Retained, 9	71	#	Ħ	H	#	3	R	36	2	17	2	3	9	3
Elempation Retained, 9	\$	ħ	3	Š	牌	8	#	3	*	Ħ	8	lā	2	•
100% Mediates Retained, %	3	¥.	5	Я	Ħ	3	K	8	2	×.	5	2	7	3
200% Madalas Retained, %	15	Z	5	3	N.	£5	¥,	5	7	7	7		7	7
Hardness Change, Paints	-13	-12	ņ	14	#	φ	1	ņ	Ŋ	17	17	4	•	7
Value Change, 9	20.2	0.72	*	20.6	35.4	8.8	13	76	7	2	38.9	335	18.2	171
After boorsing for 3 Days at 1	1	- Aller	Ta Fir	N. 30	(T)									<u>;</u>
Tracile Retained, 9	2	ş	8	#	*	23	芯	\$	21	=	=	#	Ĭ	ā
Elempation Retained, 97	5	13	*	2	\$	15	7	8	#	Ħ	Ħ	\$	Ξ	
100% Madales Brinned, &	29	×	Ŧ	14	R	Ħ.	11	¥	#	×	*	12	ħ	3
2007 Madales Renierd, 9	IJ	×	Ź	M	Ž	5	M	Ž	Ş	5	7	*	ħ	\$
Harbers Change, Points	-12	÷	Ņ	-11	Ŗ	4	<u>\$</u>	7	Ŗ	1-	φ	77	•	-12
Value (Dany, 9	Ž,	28.5	8	303	412	611	109.5	3.2	76.4	7	વ	73	#	18.2
After laurersion for 3 Bays at 3	T2	-	13 F	2+1	ETHANK									
Trasile Retained, 9	ኧ	77	72	\$	*	=	*	M	7	Ħ	æ	*	Ą	P
Elementrica Retained, 97	29	\$	8	25	2	Ħ	2	#	8	4	Ħ	3	2	2
100% Madains Retained, 4	ļ,	Z	*	æ	*	.	3	3	#	5	R	2	‡	91
200% Madales Retained, 4.	3	5	Ş	24	8	\$	*	Ž	8	5	¥.	2	2	21
Hardness (hange, Points	-12	7	ş	ņ	+	ığ	7	77	•	ņ	-	•	7	Ŗ
Volume Change. 3	113	108.4	5	*	23	23	77	20.9	3	2	3	31.5	7	24.9

Table 8. Presical Properties of Bubber Materials Originally and After Immersion in Text Plaids (Continued).

Properties	15-53	AC TOWN												
		10.10.1	VTR-10	100 M	3897-04	1222	1105	2	HCSN-2	22	=	-		3
After Impersion for 3 Born at	1		in Tos Par		(EYHANOL	_								
Ton its Relationed 5.	F	7	8	12	¥		12	g	8	ឍ	#	18	•	#
Processing September 9	101	13	ま	9	*	8		ZQ	2	1.4	3	74	112	8
	S	Š	R	5	\$	16	ίij	8:	B	Y.	£	ä	2#	11
2005 Water Printed S	•	Ž	¥N.	2	*	8	#	N.	ß	X	>	ğ	#	21
	7	9	ψ	7	ψ	7	7	•	•	ņ	7	2	-1	-27
Volume Change, 9	ij	161	4	-1.48	9	Ħ	ដ	R,	6	13.9	¥.	23.8	47.3	22.8
After francism for 3 Days at	To To	- Maria	in Test Fee	1 No. 6 C	01.00 X46	10% ME	THANOL,							
Tousile Retained. 9	¥	. 22	12	æ	8	14	Ri	13	2	2	8.7	Ri	ñ	•
Florestine Betriebel 9	8	13	8	8	178	3	#	B	Ą	Ħ	ĸ	9	2	\$
_	功	F.	28	#	15	P.	п	77	18	N.	5	F	27	12
2007 Votates Resided 9	i	Y.	X	\$	Y.	Ž	N.	N.	MA	FN.	Ş	Ŕ	Ħ	11
Harden Chang. Paint	91-	-14	#	ń	-19	OT-	8	9	Ŋ	₽,	4	Ŗ	Ŗ	ņ
Volume Change, St	27.1	67.3	214	\$5	38.3	15.3	28	10.8	67.1	13.4	57.A	22.7	117.1	H
After Immercion for 3 Days at	Exam Te	The same	is Test For	17.4% b	SEE CATE	10% ETE	[ANOL]							
Tomik Retained, %	\$	12	8	Ħ	Ą	15	21	ы	z	22	13	Ħ	2	1
Elengation Retained, T	18	8	6	6	3	11	#	8	‡	Ħ	23	ħ	9	\$
160% Modules Retained, %	18	V.	×	ጽ	R	72	22	2	ĸ	Ž	1	F	#	2
2008 Nathan Bridged, 9	8	N.	N.	4	Y.	MA	Y.	W	Ž	Y.	Š	2	X	E
Hardness Change, Points	9	-13	4	ij	8	-12	9 1-	φ	\$ 7	Ŧ	4	4	÷.	Ņ
Volume Champe. 9	24.1	#3	173	36.2	36.5	14.0	88.2	4.9	53	76.4	47.8	797	6701	40.2
After basersine for 3 Days at	7	- Caller	in Test Fin	18 18 12	97.85 X38	製造	HANOL,							
Tende Retained, 9	ħ	2	8	Ŋ	4	冼	H	8	2	2	\$ 72	Ħ	13	•
Elemention Retained, %	50	ន	8	2	3	15	#	2	4	17	R	將	2	5
100% Madales Berained, 9	17	WA	* 2	*	8	R	z	29	Rì	MA	Ž	#	R	7
200% Madada, Berained, 9.	ð	WA	M	\$	N.	N.	V.	Ş	Y.	Y.	Ž	1	8	**
Hardness Change, Points	Ŗ	-11	ιþ	*	Ŗ	7	91-	Ŧ	Ŗ	?	•	Ļ	ĸ	8
Volume Change, 9	29.2	90.2	2.73	44	34.7	177	72.5	15.2	3	3	13	978	134.8	ig ig
After Immersion for 3 Days at	1	The same of	in Test Fre	IS TO P	CE-10		TANOL							
Tensile Retained, 9	51	ដ	2	Ħ	#	3	R	F	*	₽	10.5	21	±	•
Elengation Retained, %	18	3	*	*	8	F	\$	8	\$	R	Ħ	\$	5	\$
100% Modules Retained, 9	lā	Ž	¥	Ħ	Z,	12	Ħ	¥	Ri	5	Ž	3	Ri	*
2007 Modules Retained, 9	3	KN	N.	ij	Y.	M	V N	MA	MA	WA	Š	L 3	24	2
Hardness Change, Points	61-	-13	ŋ	Ŗ	÷	£	9	17	17	7	Ŧ	\$	Ŗ	Ħ
Volume Change, St	210		1.18	27.2	31.4	14.4	76.0	95	61.3	46.0	48.2	972	114.4	17.5

ble 8. Physical Properties of Bubber Materials Originally and Alber Immersion in Test Phisis (Continued

										1				
	2						!			J.				
i repetition	2	<u> </u>	A LEFTO		10/165		HCEFT	916-31	110511-2	[2	=	1	Ether	Estra
After lamenium for 3 Days at	Presentation To		in Test Pari		Ne. 10 (LEADER (CAS'N INE	ĕ							
Transfe Betriand 9	8	13	8		7	¥	1	1	ţ	9	1	,	;	1
Elemention Returns 9	8		*	? y	3 6	2 8	i \$		P F	2 2	3 !	8 ;	ğ į	K 7
100% Marketon Belinard S.	8	N.	* *	2 \$	5 3	2 5	1 1	į į	= =	1	2 8	= }	<u> </u>	? !
200% Modules Returned &	ı K	5	X X	ŧ ş	3 5	2 2	8 5		į	77.	2 5	R Ş	3 ;	i i
Harden Chart. Print	4	•	ļ ¬	4	; 7	4	7	1	9		4	} '	5	β.
Value Charge, %	15.0	16.4	Ą	7.8	171	, M	3	: 1	? ;	, y	7 5	7 -	> ;	* :
After bancries for 3 Days at	To		in Tot Fer		UNIEADE	D CASO	E GNE	1	})	2	211	į	•
Track Leaded 9	22	#	18	\$	3	B	*	\$	*	4	\$	2	E.	¥
Elempation Retained, 9	5	2	*	101	11	8	: #	*	R	#	8	1	8	3 8
100% Mediches Retained, %	6	V.	*	Ħ	3	2	22	2	Ħ	Ş	2		2	3
200% Madales Zetzierel, 9.	*	×	Z	2	3	110	NA.	YN	N	3	N/A		k	8
Handaris Change, Points	4	*	ņ	4	7	φ	-	4	Ŗ	7	Ŋ	*	4	3 "?
Valence Change, 9	99	78	-1	11.7	17	22	619	1.1	2.5	21.1	13.3	225	63	73
After lamersion for 3 Days at 1	To To		in Tota Fee	1 % 12 F	OF LEAD	ED CAS	DEPLEMENT	E ETHAN	100					!
Truetic Retained, 9	29	ħ	R	15	3	2	X	12	R	2	£	\$	1	±
Elemention Retained, S.	8	Ľ	*	₹	Ħ	*	8	*	iß.	Ħ	4	8	2	4
100% Medales Retained, %	8	Y.	:	2	18	₹	F	2	R	Ž	V.	12	#	7
2007 Mudules Retained, 9.	Ë	V.	W	7	3	₹	VA	MA	V.	Ž	2	2	4	Ħ
Hardness Change, Points	Ė	φ	+	7	÷	7-	Ŧ	4	ដុ	*	•	7	9	7
Volume Chappe. 9	18.9	32.6	2	7	200	5.2	20.5	2	37.1	28.8	Ħ	2	73.2	24.7
After Immersion for 3 Days at 1	T T2	merater i	n Test Find	18.130	DOS UNLE	ADED C	ASOLINE		(NONY)					
Tonsile Retained, 9	\$	Rì	12	ኧ	8	13	#	2	Ħ	*	2	\$	12	2
Elempation Retained, 9.	2	诺	*	₹	R	8	ば	₹	CA	Ħ	*	CA	\$	*
100% Medales Retained, 9	ß	¥.	8	3	15	8	1	8	R	M	×	F	*	2
2007 Madadas Retained, 9	Ľ	Y.	Y.	3	3	×	MA	S	MA	N.	VA.	2	*	R
Harders Change, Points	*	φ	+	?	9	4	43	φ	7	•	₩.	*	F	ķ
Value Ciler A	6.6	38.6	17	21.6	23.	3	9712	3.4	#1	77	34.6	\$	18.2	77.4
After hameroise for 3 Days at 1	12	erake i	a Test Fast	271	OK LEADY	ED CASE	ALENETION.	METHA	MOE					
Travile Retained, F	15	R	3	\$	Ħ	2	37	3	N	11	11	*	2	•
Elempation Retained, 9	2	8	*	ş	11	16	2	8	ĸ	Ħ		4	¥	2
100% Modules Estimat, 9	\$	Ş	ts	ĸ	牌	12	3	Z	R	Y.	MA	2	R	2
2007 Madadas Retained, 9	25	×	WA	ĸ	3	5	N	Y _N	N.	M	V.	1	ĸ	2
Hardness Change. Points	.	7	ιģ	-13	-11	•	<u>.</u>	*	ņ	7	7	7	ş	Ń
Volume Change. 9	ŭ	77.5	323	28.7	23.8	97	66.5	\$5	1 S	66.7	43.0	3	E 3	4
														Ì

14. C. Pring Property of Balton Marialy Chinada and After Bancoins in Tox Plain Continued

										N.	H.V.	11800		
Properties	15.53	NT31	PNT-34 VTR-10		10-1685	1225	11011	8-910	1103/8-2	L-2	1	1	Eiler	Eden
Mar baser is for 3 lbs: at		Table 1	- Tail 1	12	OFF UNEADED) dzdv:	CASOLINEIOG METHANOL	Nez ME	THANOL	:				
Transle Retained 9	15	R		\$	牌	H	TE.	1	77	=	12	Ħ	*	М
Changains Brisised, 7	76	3	2	\$	F	8	8	8	R	ñ	*	#	#	3
	17	5	13	23	3	16	3	þ	ĸ	Ň	¥.	R	2	•
2007 Madades Retained, 7	牌	5	5	15	3	¥	5	5	5	ş	Š	2	#	*
Harders Change, Point	ij	9	†	-19	-11	0 [-	Ħ	1-	Ŗ	÷	ιņ	=	:	ņ
Volume Change, 3	12.1	74.1	7	28.9	946	9.2	67.5	2	47.9	78.8	13.3	2	ICELE	4
After lamersing for 3 Days at	1	mprisine.	E Ly	91 15 17	PA LEAL	HED GAS	NINEZ	ETHS.	KK!					
Tranile Betained, 9	ŝ	Ħ	2	13	5	R	#	18	Ħ	15	24	¥	#	2
Elemention Brisined, 9	ŝ	\$	£	ē	22	£	79	*	3	Ŗ	ኧ	R	\$	
1007 Variable British 5	19	5	25	\$	3	<u> </u>	\$	*	Ħ	5	H	2	#	2
	3	5	5	13	5	Ē	5	>	Ş	Ž	7		#	Ŋ
Harden Change, Points	1.	‡	ņ	-12	7	1-	7	φ	ģ	4	1-	7	7	¥.
Volume (hange, %	19.2	6.64	=	1.61	19.2	23	2175	2	37.5	613	¥12.4	41.4	Ħ	×
Mer lumeraine for 3 Bass at	1	The state of the s	ir Tee Fi	11 17	TINE TANK	SADED (ASM IN	F3 582	HANNA					
Travile Retained 9	3	R	2	N	3	ĸ	3	8	17	2	9	ij	Ħ	±
Elegation Retained, 9	7	3	*	ij	72	3	Ĭŝ.	*	ĸ	R	#	3		H
	3	5	Ħ	Ħ	3	Ī	3	•	Ħ	ž	Ž	#	8	77
2007 Verdale Ertzierd, 7	\$	5	5	3	7	Ī	ž	Š.	X	Ž	Ž	8	Ø	*
Harders Change, Points	ij	4	7	‡	ń	4	÷	†	ij	•	4	Ŧ	우	Ķ
Volume Champs, 9	21.7	31	7	22	21.7	17	3	25	47.9	13	9	46.6	*	787
After laseresion for 3 Bays at	1	Tape 128 Mer	in Text Fin) H 1/T	DET LEAD	HD CAS	OLINEZE	HLIN &	ANN.					
Truste Between 9	ī	7	3	*	Ħ	Ħ	Ħ	3	R	<u> </u>	2	×	\$	M
Elengation Betained, 7		访	製	¥	ħ	£	Ħ	8	8	17	×	ð	8	3
1007 Madain Britished, 7	19	5	#	3	3	I	R	8	R	Ş	ž	H	X	•
2017 Vodada- Krisiard. 7	3	5	5	3	7	*	¥.	Y.N.	S.	ž	Ž	*	33	8
Hardney Change, Point-	<u>-</u>	7	7	*	-11	9	÷	•	Ŗ	4	Ŧ	7	ij	Ŗ
Volume (Lange, S	25.0	9'901	77	31.4	23.8	6.9	809	11.7	41.4	£	43.3	3	10.4	41.0
Vier lasersins for 3 Bays at	1		To Fe	E 1	TIND SOM	ADED (HAMINE	THE ME	THANKL					
Travile Retained, 9	13	K	3	#	Ħ	12	Ħ	3	A	1	<u>~</u>	8	22	w
Eleagation Retained, 9	¥	iħ	Ħ	<u>=</u>	*	K	15		ĸ	Ŋ	Ħ	ţ	22	3
- 4	3	5	8	访	3	¥	19	k	Ħ	YN.	W.	P2	*	1
2017 Vordesla- Britainerd, 7	3	5	5	ß	Ž	*	Y.	V.	¥Ž.	Ž	Z	12	*	R
Harders Change, Points	21-	-13	ιģ	-11	-11	9	7	7	ij	₹	•	#	Ŗ	F
Volume Change, 9	9	100.1	77	31.2	24.1	9	5	111	11.1	113	45.4	67.1	165.6	41.0

Table 8. Physical Properties of Rubber Materials Originally and Mee Immersion in Test Pluids (Continued)

										11NEE	INE	HECO		
Properties	17.33	PVT-34	VTR-10	MODE	107.66	123	HCF	616-2	11CSM-2	27	Œ	-	Eller	Ester
Mer Immersion for 3 Pays at	Free T	mpriofuse.	is Tex Fiel	見ず	8	<u>1</u>	Fich							
Trails Retained 7	S	無	*	*	ដ	ĸ	ĸ	Ħ	12	13	15	61	Ħ	7
Florgation Relained, S.	Ī	8	2	101	ĸ	ř	8	8	4	Ri	â	5	R	ž
1997; Vadaha Retained, G	æ	7	2	3	×	ħ	P	8	31	X	Œ	72	B	ıa
2007 Varhelm Betsined, &	껉	17	Ź	3	7	10	Ž	Y.	N.	Y.Y	N.	Ħ	F	8
Hardre - Change, Points	eņ	2-	ņ	Ŗ	Ŗ	2	7	ņ	19 3	-12	φ	83	7	•
Volume (hange, G	21.6	28.8	Ş	29.8	53.3	13.5	1122	2.4	673	962	40.9	2	52.1	21.0
Mer lumersion for 3 bays at	Roman Tr	mpredun	# 17 E	1.V. 21	S 206	Test Fact	10% ETH	LYOL						
Tra-ile Betained G	3	*	æ	#	17	3	31	ħ	99	4	7	8	8	•
Ebagation Retained G	¥	†	8	3	3	\$ 2	满	2	*	Z	R	*	8	3
HW. Wehnle- Retained, G	? :	7	2	13	3	*	19	#	3	MA	M	3	*	2
28F7 Verbile Relation, 9	3	7	7	1%	ž	5	N.	EN.	YN.	Ž	VA.	\$	\$	7
Hardne Change, Point-	=	-12	ů	-15	**	φ	Ţ	7	Ş	4	ф	Ŗ	-12	Ŕ
Ledume Change. Q	¥ 44	1 6.9	=	21.5	7.67	11.7	699	F *	7.73	3	42.4	55.0	79.2	34.3
Mer Immersion for 3 Days at	Room To	mperature	To F	77.77	01/09 2/08	Fat 10	F ETHAN	A. 10% 3	IETHANO	3				
Ten-ile Ketainel, G	12	Ħ	po Po	71	13	ī	Ri	3	2	12	80	24	13	9
Lharston Retained, G	7	3	*	9	3	3	8	8	Ħ	12	8	×	ts	3
1087's Norbeiter Betained. C.	3	7	1:	#	ホ	*	#	2	Ħ	Y.	X	*	×	#
2387; Machaday Retained, G	ß	IX.	5	2	5	KN	X	N	Y.	V.	W	X	33	8
Hardrey Change, Points	-13	=	7	Ŗ	Ŗ	*	4	ņ	ž.	7	4	7	61-	ដ
Volume Change. 7	26.3	743	<u>:</u>	5	11.2	621	200	7	72.8	92.4	809	92.3	124.5	7
Mer immersion for 3 Days at	Kenne T-	mportalure i	Ta Fr	1.4 23	BOY UNL	ADED 6	SKHENE	10% ET	IANOL 10	FETH	TON			
Tersile Retained, 9	ŝ	*	Z	*	8	R	#	19	ĸ	7	14	*	2	17
Elemention Retained &	16	ĸ	<u>\$</u>	90	li	8 2	33	#	83	31	Ħ	3	2	\$
lors Madelle Retained, S.	88	17	*	13	3	B	92	2	M	X	WA	2	37	**
2007 Verbains Retained, S.	3	47	*	8	×	102	N	T.	V.	Y.	X	£	2	77
Harden Change, Point,	-13	=	ņ	ij	#-	ıφ	7	ιģ	Ţ	e	4	9 [-	÷	ģ
Volume Change, G	22.6	13.3	9	1	23.1	8,9	39.4	ij	41.8	70.3	40.7	34.6	928	32.2
Mer limerium for 3 flays at 1	Rene Tr	mperature i	Tax Fe	1. 24	Sar UNI	SADED 6	ASOLINE	_						
Tra-ile Retained, G	3	幸	9	9	8	#	Ħ	ä	13	7	#	Ħ	R	13
Floogstive Retainent G	Æ	\$	<u>5</u>	102	Ŀ	\$	R	8	13	3	3	#	*	22
100% Muchains Retained &	3	17	16	2	3	707	ts	8	*	5	2	\$	22	8
MWG Marketon Retained G	æ	5	7	Ħ	5	2	5	Y/Y	Y.	Z	NA	#	74	Ħ
Hardar (hange, Point-	φ	=	7	9	ξ	ነዋ	7	ij	ţ,	17	ιģ	6 †	ŵ	ι'n
Volume Change, 5	16.1	21.9	17	11.1	24.7	17	72.7	67	43.6	51.9	15.0	26.8	41.7	10.0

Table R. Producting Programs of Robber Materials Originally and After Immersion in Test runs of the contract o

15-53 PVT-34 VTR-10 W908B 5897-04 35 36 36 36 36 36 36 36															
1.5.33 PVT-34 VTR-10 M908 3997-04 1.222 11/21 B910 11/5M2 1.2 B41 1.5.31 PVT-34 VTR-10 M908 3997-04 1.222 11/21 B910 11/5M2 1.2 B41 1.5.32 PVT-34 VTR-10 M90 1.5 1											INDE.	- MAN	11500	i	i
### Round Transportations in Test Farel Na. 25 (Same UNLEADED GAS-VLNEINOR ETHANOL) ### Bit	Properties	1833	PVT-34	VTR-10	NoneB	5897-04	1235	1102-1	B-910	11CSM-2	L2	=	-	1	ž.
39 38 83 31 60 82 55 65 36<	Mer Immerium for 3 lbar at	Russ To			12	Same UNE		AS LINE	710% ET	HANOL					
96 75 96 104 77 98 53 9 9 9 9 9 9 78 78 78 78 78 78 78 78 78 78 78 78 78	Trails Resigned 62	ŧ,				3		XI	3	*	R	ĸ	Ħ	2	**
1,	Flantain Relained G	*	13	8	50	F	g	17	5	ß	\$	25	8	g	11
Main	1987 Madulus Brigined, 9	<u> </u>	7	惫	13	178	8	15	2	R	1	82	\$	\$	91
## 5	Mary Markelle, Ertsing C.	8	7	5	7	3	26	FX.	5	N.	×.	Y.	51	41	21
Paris Pari	Hanthey (hansy, Points	4	10	Ņ	91-	ij	9	-15	ĸ	ij	9	φ	9 -	9	87
Second Transportation Track Fuel No. 26 (500) 600 Transportation Track Fuel No. 26 (500) 600 Transportation Track Fuel No. 26 (500) 600 Transportation Track Fuel No. 27 (500) 600 Transportation Track Fuel No. 27 (500) 600	Volume (hanes, %	707	12.1	£.	21.3	5 40	23	72.4	3.1	48.7	66.4	36.9	49.2	92.3	33.8
56 28 91 48 66 70 33 76 31 13 13 71 VA 88 60 65 88 89 63 35 38 71 VA 88 60 65 88 89 84 89 80 89 80 <td>Mirr Imperious for 3 Days at</td> <td>Renns To</td> <td>morraduse</td> <td>in Test Fire</td> <td>利が大</td> <td>150% 60VM</td> <td>30% ET</td> <td>HANNL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Mirr Imperious for 3 Days at	Renns To	morraduse	in Test Fire	利が大	150% 60VM	30% ET	HANNL							
90 65 163 96 77 81 62 99 65 55 38 98 90 67 29 84 84 84 84 84 84 84 84 84 84 84 84 84	Trueile Retained, G	18	\$	3	\$	3	92	Ħ	92	31	13	13	31	9	ın
11 VA 83 60 65 88 59 87 29 NA NA NA NA NA NA NA N	Elementism Retained 9	3	3	<u> </u>	*	F	₩	3	£	3	X	Ħ	18	8	22
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	HWY Marhalas Retained 9	ī	7	2	3	13	2	8	22	R	Y.	Y.	8	\$	16
Herman Transportations in Test Field Nia, 27 (5074 60140 5077 NETHIANOL) 12.7 (889) 1.66 (260 60 5077 NETHIANOL) 12. 22. 7 (84) 4.67 (5074 60140 5077 NETHIANOL) 12. 22. 7 (44) 4.7 (47) 4.7 (5074 60140 5077 NETHIANOL) 13. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	287% W. Inde. Retained, 9.	. 13	5	7	3	2	86	N	5	¥.	Y.A.	YN.	13	\$	8
Name Transportation 151 260 151 9.1 123 3.3 36.1 60.3 40.4 5.1 5.2 1	Hardrew (Junet, Point)	*	17	ņ	Ŧ	-17	ιĢ	01-	7	Ė	φ	4	9	‡	ģ
H. Roman Transportation in Tree First Nat. 27 (5074 6004) 5074 METHIANOLA) 1.2	Volume China	177	6	19 1	26.0	15.7	9.4	12.3	53	36.7	60.3	40.4	54.7	606	36.8
12	Mer lumersing for 3 Days at	Room Tr	mpredur	TA E	12 47	1507 60/10	30% ME	THANOL							
13 50 94 97 77 88 55 55 55 55 56 14 14 14 53 66 88 66 61 27 34 34 15 5	Tensile Retained 9	7.1	1 1	72	#	3	3	R	Ħ	R	13	12	Ħ	13	ιΛ
NA	Llandshine Retzined, 9	P.	17.	\$	4	E	Ē	13	22	25	Ħ	*	Ş,	z	\$
VA VA VA XA S5 64 86 VA VA VA VA VA VA VA V	10877 Australys Relained &	Ē	7	12	Ħ	3	æ	3	19	12	Y.	Ş	8	Ħ	91
12 5 4 11.1 3.40 34.3 22.4 11.4 58.1 18.0 39.9 65.5 68.2 7 18.0 34.3 22.4 11.4 58.1 18.0 39.9 65.5 68.2 7 18.0 34.3 22.4 11.4 58.1 18.0 39.9 65.5 68.2 7 18.0 38. 39. 46. 51.0 18.1 18.0 39.9 65.5 68.2 7 18.0 39. 40. 21.1 18.0 39.9 65.5 68.2 7 18.0 39. 40. 21.1 18.0 39.9 65.5 68.2 7 18.0 39. 40. 40. 18.1 18.0 18.1 18.0 39. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40	2877 Madulas Retained, 9	7	7	17	13	3	Ê	>	5	17	*	47	7.	*	2
29.7 114.1 3.40 34.3 22.4 11.4 58.1 18.0 39.9 65.5 48.2 7 7 8.8	Harders (haner, Points	21-	17	7	11-	7	4	-12	9	÷	φ	•	‡	#	Ŗ
## Ramon Transportator in Track First Va. 28 5057 UNIEADED GASMANESO7 ETHANNA, 101	Volume Change, 9	79.7	171	3.40	31.3	177	11.4	38.1	18.0	39.9	65.5	18	76.9	1113	4:4
101 38 94 98 90 91 65 86 66 35 46 18 21 101 38 94 98 90 91 65 86 66 35 46 102 34 34 37 37 37 37 103 34 37 37 37 37 37 104 35 37 37 37 37 37 105 37 37 37 37 37 37 105 37 37 37 37 37 37 105 37 37 37 37 37 37 105 37 37 37 37 37 37 105 37 37 37 37 37 37 105 37 37 37 37 37 105 37 37 37 37 37 105 37 37 37 37 105 37 37 37 37 105 37 37 37 37 105 37 37 37 37 105 37 37 37 37 105 37 37 37 105 37 37 37 37 105 37 37 37 105 37 37 37 105 37 37 105 37 37 105 37 37 105 37 37 105 37 37 105 37 37 105 37 37 105 37 37 105 37 37 105 37 37 105 37	for laurities for 3 bay at	Rount Tr	mperature	E Lorente	料ジエ	IND FOS	EADED (SYNTHE	150% ET	HAWKI					
101 38 94 98 90 91 65 86 66 35 46 46 47 47 47 47 47 47	Tensile Retained &	3	2	#	ī	3	2	8	92	\$	22	21	Ħ	12	•
6.5 V/A 91 61 67 91 66 86 39 V/A 73 6.3 V/A V/A 62 70 93 V/A	Ebergation Betained, G	9	æ	ま	8	8	6	18	æ	3	×	\$	3	2	2
13	1007 Walnie Retained, G	13	7	5	79	29	6	8	8	8	×	ß	11		11
13 49 2 -10 -11 7 -10 3 -17 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	288F Veshiles Retained, G	5	7	5	29	R	æ	5	5	5	K	¥.	2	4	2
20,2 82,0 135 21,4 139 73 43,1 27,2 56,9 36,8 5, 36,8 4,8 18,8 18,8 18,8 18,8 18,8 18,8 18,	Harling Change, Points	÷	4	ņ	91-	7	17	o-	ņ	-11	ŗ	-1	7	-14	Ŋ
18 Room Traperature in Test Fuel No. 29 (50% UNLEADED GASOMINESON METHANOL) 51 22 75 45 62 71 32 57 40 17 14 92 50 94 97 78 80 54 88 72 38 39 5 64 NA 74 54 64 88 64 63 27 NA NA NA 5 59 NA NA 57 66 92 NA NA NA NA NA NA -13 8 5 -16 -13 6 -12 -11 -23 4 9 5 540 416 6	Volume Change, G	20.2	82.0	135	1.15	13.9	13	121	3.1	27.2	56.9	98	52.1	7.66	310
51 22 75 45 62 71 32 57 40 17 14 14 14 15 15 30 94 97 78 80 54 88 72 30 39 39 15 15 15 15 15 15 15 15 15 15 15 15 15	Mer Immersion for 3 Days at	Room Tr	mperature	3 Z Z	€5. 4v. 1.	JVU FOE	EADED (A SOLINE	150% ME	THANOL					
92 50 94 97 76 80 54 88 72 38 39 99 1	Tensile Retained G	ī	#	ħ	14	3	П	Ħ	25		11	14	31	±	Ŋ
5 64 N.A 74 54 64 88 64 63 27 N.A N.A N.A S.	thorain Betaind 9	35	9	ま	7.6	15	2	艿	#	22	Ħ	8	#	\$	8
- 59 NA NA 57 66 92 NA 13 - 13 - 6 - 12 - 11 - 23 - 4 - 9 - 9 - 11 - 23 - 4 - 9 - 9 - 11 - 23 - 4 - 9 - 9 - 11 - 23 - 4 - 9 - 9 - 11 - 23 - 4 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	1007 Madulte Retained, G	す	1	7.	ii	3	#	3	3	11	×	N.	=	31	n'
13 48 5 16 13 6 12 11 23 48 49 49 11 12 12 11 23 48 49 41 610 153 353 640 416	28FG Majuhr Brigged, 9	7	7	7	in	8	3	Ź	7	5	5	¥.	멅	83	2
27.1 114.1 295 29.0 22.4 9.4 61.0 15.3 35.3 64.0 41.6 ·	Hardness Change, Paints	=	æ	10	9	1 3	¢	ij	Ŧ	ដ	4	ዋ	÷	42	ģ
	Volume Chaner, %	27.4	11	295	29.0	777	f.,6	0°19	15.3	35.3	979	91 1	5.79	104.7	37.3

ا ما	PVT-34 VTR-10 N9UBB	10-2685	723	163-1	8-910	HCSW2	11.NBM. 1	11.NEE 1	- E	Eder Eder
Room Tresperature in '	in Tal First No. 3	SO CHESEL.	19F-25 108	ä	8	Æ	ā	2	Ę	15
			2	3 1	#	#	R	i izi i		2
 	\$ \$			N 5	ē \$	i 5	5 5	5 <u>5</u>	k 3	2) =
; =	01- 1-	9-	יףי	9	7	יף ;	4	•	, 17	, 7º
	LE 6.	821		51.8	16.	3.2	21.8	97	10.5	SOS.
6.		65 65 88		25 32	æ	£	R	<i>TX</i>	ia	R
9	101 86	86	ß	は	8	6	17	3	2	5
	44 62	62	16	la i	2	£	5	ij	ã	ţ
4 5	74	\$ 7	5 4	ž 9	5 *	1	5	7 "	i	in 5
		Z.		39.3		2	504	17.9	35.5	38.2
. <u>s</u>	in Tar Find No.	2 (907 DHESEL/109 69 90		ETHANK	4	Ä	<u>-</u>	2	¥	1
	_	, ts	8	ıa	8 8	1 16	; 	; ;	i ia	: A
		3	8	29	8		5	ħ	2	Ħ
	NA 61	8	2	Ş	¥	*	Y.	5	2	8
	219	-14	rù é	7-	÷ 5	ф 2	٠٠ * ت	<u>ئ</u> ئ	Ŧ ;	÷ ÷
	Ţ	SING FORD E		ETHANOL	•		7	***	į	3
22		R		#	,	¥	ĸ	ĸ	\$	12
	100 103	22	8	15	£	28	\$	3	講	ĸ
		le i	*	3	8	X	× .	2	2	9 :
		济 =	8 . 1	3 °	5 1		Ž,	5 4	9 =	# 2
	126 239	26.21	26.27 66.5	513	2 48	2	280	24.9	17.2	23.8

Table 9. Original Properties of Plastic Materials

Resin	Tensile Strength (lb/in)	Rupture Strength (lb/in.*)	Yield Strength (lb/in.²)
Acetal	10,250	10,250	_
PP	_	3,489	4,527
HDPE	-	29,185	37,897
PBT	8,673	_	444
Nylon 6/12 glass-filled	14,217	11,435	***
PET	12,189	_	_
Nylon 6/6 glass-filled	14,721	13,863	
Nylon 6/6	9,295	7,397	_
Phenolic	3,778	_	_

Table 10. Change in Volume of Plastic Materials Exposed to Test Fluids

				Chur	ige in Volume	(%)			
Fuel Code No.	Acetal	Nylon 6/6	Nylon 6/6 Glass Filled	PET	Nylon 6/12 Glass Filled	HDPE	Polypropylene	PBT	Phenolic
1	+ 4.4	+ 9.4	+11.2	+5.2	- 20.3	+ 13.2	+ 14.6	- 1.6	+1.0
2	+ 11.2	+ 10.9	+11.8	+0.8	+9.6	+ 13.1	+ 18.1	- 2.9	-0.6
3	+ 12.2	+ 11.0	+10.8	+ 1.3	+11.0	+ 12.1	+ 18.7	- 2.2	+ 4.5
10	+ 12.9	+ 10.7	+10.3	+ 1.3	+ 10,5	+8.1	+ 19.2	- 1.9	+ 1.9
12	+ 12.6	+ 12.9	+ 12.4	+ 4.5	+13.3	+ 14.4	+ 17.7	- 2.6	+0.7
14	+ 15.8	+ 14.9	+21.6	1.9	+20.4	+ 12.0	+ 18.0	-1.6	+ 3.5
16	+ 12.1	+ 28.3	+12.3	+1.6	+14.3	+ 11.8	+ 16.1	- 1.6	+ 2.9
18	+ 15,5	+ 27.1	+ 22.7	+0.9	+21.3	+ 12.3	+ 20.1	- 2,2	+ 2.6
30	+ 11,0	+ 15.5	+12.3	+ 4.6	+11.2	+ 9.1	+ 4.5	-2.2	+ 2.9
31	+ 12.3	+ 3.6	+ 2.5	+0.8	+15.5	+ 9.3	+ 4.8	-1.9	+ 3.3
32	+0.4	+ 15.5	+ 15.0	+0.9	+ 1.3	+8.6	+ 4.7	-3.2	+ 2.0
33	+ 12.2	+ 14.3	+14.4	+ 0.8	+ 15.8	+8.8	+ 4.5	- 2.4	+3,2

anches appress consince arress and antices this are

Table 11. Tensile Strength Properties of Plastic Materials Exposed to Test Fluids

			Ulti	mate T	ensile Strengt	h (% Cha	nge)		
Fuel Code No.	Acetal	Nylon 6/6	Nylon 6/6 Glass Filled	PET	Nylon 6/12 Glass Filled	HDPE*	Polypropylene*	PBT	Phenolic
1	+4	+7	+ 12	+5	-5	+ 22	-31	-11	- 13
2	-1	+6	+ 13	+8	-3	+ 20	- 35	- 14	+ 23
3	+1	+6	+ 13	+4	+5	+ 23	- 35	-14	+ 42
10	+2	+9	+7	+3	+5	+ 19	- 32	-4	+46
12	-5		+ 10	+ B	-6	+17	- 33	-14	- 18
14	-4	- 48	- 37	**	- 21	+ 18	- 37	+12	+ 17
16	-1	- 2	+ 13	**	+8	+ 20	- 35	+10	+ 24
18	-6	-47	- 36	+6	3	+ 19	- 36	-12	+.12
30	+2	+1	-17	+7	+ 2	+ 13	- 16	+10	+1
31	-2	- 13	-11	+5	0	+ 15	-17	+ 5	+ 15
32	-2	-14	+ 5	+1	-11	+ 13	- 17	+9	+ 28
33	-9	-7	- 12	+6	+ 5	+ 15	-17	+ 32	+5

^{*}Actual yield strength.

Table 12. Rupture Strength of Plastic Materials Exposed to Test Fluids

	Rupture Strength (% Change)								
Fuel Code No.	Acetal	Nylon 6/6	Nylon 6/6 Glass Filled	PET	Nylon 6/12 Glass Filled	HDPE	Polypropylene*	PBT*	Phenolic*
1	+4	+ 12	+20	+ 5	- 2	-8	+ 19	-11	-13
2	-1	+2	+ 19	+8	+ 12	+5	+ 12	+14	+ 28
3	-1	+5	+10	+ 5	+11	-8	+ 14	-14	+ 42
10	+1	+3	+9	+8	+ 12	+3	+ 25	-4	+46
12	-6	+1	+18	••	+4	+9	+ 21	-14	-18
14	-4	- 25	-23		-1	+12	+ 22	+12	+17
16	-1	+5	+15	-	+ 14	-8	+ 23	+10	+ 24
18	-6	- 27	-31		+21	-11	+15	- 12	+ 12
30	+2	-2	+23	+5	+9	+4	+7	+10	+1
31	-2	-3	- 15	+3	+ 18	+20	+4	+5	+ 15
32	-4	-1	+3	-4	7	+5	+ 23	+9	+ 28
83	- 13		-6	+4	+ 16	+3	+11	+ 32	+5

^{*}Also, ultimate tensile strength.

Table 13. Change in Weight of Magnesium Metal Exposed to Test Fluids

Fuel Code No.	Change (%)
1	0
2	0
3	0
10	0
12	.0
14	- 9.6
16	- 5.1
18	-20.0
30	0
31	0
32	0
33	0

Table 14. Visual 'nspection of Epoxy Coated Metals Exposed to Test Fluids

Fuel Code No.	Zinc	Magnesium	Aluminum Brass	Brass	Carbon Seel
1	0	0	0	0	0
61	•	0	0	•	0
m	0	•	•	•	•
10	0	•	0	0	0
12	0	•	0	84	0
14	1,2	1.2,3	1,2	15*	64
16	0	•	0	87	0
18	1.2	1,2,3	2,3	1,2*	2
30	.	1		•	•
31	-	I		•	•
32	P	1		1,2	
33	0	1	0	1.2	-

No visible change.

¹ Epoxy absorbed the color of the sample fuel.

² Epoxy separated from the metal.3 Metal corroded.

Table 15. Oxidation Stability of Test Fuels Exposed to Elastomers

	Oxid	Oxidation Stability, Min	ty, Min			
	LS53 Flaorosilicone	Viton VTR-10 Ether		J-232 Polysulfide 111EC0-1	HECO-1	Nitrile-PVC M-908
Unleaded and 10% Ethanol	061	210	210	222	177	1
Unleaded C 10% Ethanol and 10% Methanol	32 2	1	1	I	1	I
Unleaded C 10% Methanol	1	I	I	l	195	215

Table 16. Specific Gravity of Test Fuels Exposed to Metals

		Specific Gra	vity		•
Fuel	6061 Al	Brass	C. Steel	Zinc	Control
Leaded	.733	.733	.784	.789	.793
Unleaded	.740	.747	.741	.741	.789
Methanol	.793	.792	.798	.798	.798
Leaded 10% Methanol	.741	.740	.741	.789	.747
Unleuded 10% Methunol	.747	.748	.746	.744	.744
Leaded 20% Methanol	.737	.787	.787	.787	.736
Unleaded 20%Methanol	.748	.748	.748	.749	.747
Ethanol	.798	.794	.794	.794	.794
Leaded 10% Ethanol	.738	.739	.787	.787	.738
Unleaded 10% Ethanol	.744	.742	.743	.748	.741
Leaded 20% Ethanol	.745	.745	.746	.745	.755
Unleaded 20% Ethanol	.750	.749	.750	.748	.747
Unicaded 10% Methanol 10% Ethanol	.752	.752	.751	.752	.748

Table 17. Specific Gravity of Test Fuels Exposed to Plastics

			Specific Gra	vity	<u>-</u>		
Fuel	Nylon 6/6	Nylon 6/12	HDPE	Polypropolene	PBT	Phenolic	Control
Leaded	.733	.735	.733	.734	.733	.734	.733
UnLeaded	.743	.741	.742	.754	.741	.740	.739
Methanol	.785	.794	.794	.794	.793	.798	.793
Leaded 10% Methanol	.742	.739	.740	.755	.737	.772	.747
Unleaded 10%Methanol	.748	.748	.746	.747	.745	.747	.744
Leaded 20% Methanol	.741	.741	.746	.756	.737	.763	.736
Unleaded 20% Methanol	.747	.749	.746	.751	.748	.748	.747
Ethanol	.794	.794	.794	.794	.795	.793	.794
Leaded 10% Ethanol	.740	.738	.738	.738	.738	.787	.738
Unleaded 10% Ethanol	.745	.745	.746	.749	.742	.746	.741
Leuded 20% Ethanol	.763	.756	.756	.777	.743	.755	.755
Unleaded 20% Ethanol	.753	.762	.751	.752	.756	.749	.747
Unleaded 10% Methanol 10% Ethanol	.752	.752	.763	.753	.752	.750	.748

Table 18. Specific Gravity of Test Fuels Exposed to Elastomers

							Speci	fic Gra	vity						
Fuel	Control	LS53 Plantusilietae	PNT-34 Phosphanene	VTR-10 Vitor	M-908 Nierik-PVC	5897-04 Nitrile-CPE	Elec	Ester	11CE-1	IINBR-H-I Heck NBR	1232 Polymelide	11800-1	11CS#-2	HINBE-L-2 Low NER	B-910 Viens
Leaded	.7376	.7413	.7400	.7390	.7413	.7383	.7402	.7374	.7395	.7378	.7398	.7388	.7888	.7376	.7402
Unleaded	.7423	.7421	.7458	-	.7454	.7438	.7445	.7428	.7416	.7458	.7447	.7448	.7446	.7428	.7485
Methanol	.7950	.7948	.7954	.7938	.7966	,7948	.7946	.7956	.7942	.7966	.7946	.7958	.7948	.7954	.7945
Leaded 10% Methanol	.7444	.7428	.7426	.7414	.7439	.7427	.7427	.7426	.7436	.7436	.7445	.7481	.7444	.7435	.7429
Unleaded 10% Methanol	.7467	.7467	.7475	.7475	.7480	.7461	,7485	.7461	.7485	.7467	.7482	.7462	.7491	.7462	.7472
Leaded 20% Methanol	.7507	.7526	.7537	.7523	.7523	.7533	.7557	.7614	.7552	.7617	.7624	.7562	.7517	.7535	.7495
Unleaded 20% Methanol	.7435	.7445	.7494	-	.7435	.7429	.7489	.7439	.7425	.7424	.7410	.7464	.7440	.7419	.7429
Ethunol	.7938	.7957	.7946	.7956	.7940	.7960	,7950	.7956	.7940	.7966	7954	.7964	.7950	.7960	.7942
Leaded 10% Ethanol	.7418	.7555	.7555	.7565	.7565	.7555	.7555	.7536	.7545	.7555	.7555	.7555	.7565	.7555	.7545
Unleaded 10% Ethanol	.7449	.7468	.7458	.7468	.7477	.7462	.7462	.7467	.7462	.7472	.7462	.7462	.7467	.7472	.7615
Leaded 20% Ethanol	.7479	.7515	.7508	.7514	.7502	.7511	.7490	.7502	.7496	.7521	.7504	.7505	.7496	.7514	.7545
Unleaded 20% Ethanol	.7454	.7484	.7484	-	.7474	.7484	.7450	.7437	.7456	.7474	.7469	.7454	.7464	.7484	.7504
Unleaded 10% Methanol 10% Ethanol	.7533	.7512	.7543	.7549	.7549	.7516	.7504	,7508	.7547	.7560	.7549	.7555	.7546	.7564	.7554

Table 19. Unwashed Gum Content of Test Fuels Exposed to Elastomers

	***					Unwasi	ned Gu	m Conte	nt, Mg/	100ml		· · · · · · · · · · · · · · · · · · ·			
Fuel	Countrol	LS-53 Flaurosilicone	PNT-34 Phespharme	VTR-10	M-908 Nimic-PVC	S897-04 Nitrile-CPE	Ether	Eder	11CR-1 Neoprene	IINBB-H-I High NBR	1232 Polysulfide	11500-1	11CSIF2	IINBR-L-2 Low NBR	B-910 Viton
Leaded	7.5	36.3	14.6	5.6	19.9	51.3	13.1	30.7	49,4	31.4	65.0	18.9	16.0	35.5	34.1
`Unleaded	14.1	17.3	17.2	_	22.0	61.3	14.8	38.2	40.4	40.7	42.9	19.0	18.8	42.4	5.2
Methanol	0.9	3.0	35.9	2.7	14.2	34.8	10.9	[™] 40.6	26.2	21.2	14.8	28.6	3.5	18.8	8.8
Leaded 10% Methanol	18.4	15.4	23.9	7.8	32.0	50.1	12.8	32. 0	44.1	47.3	51.8	25.6	22.7	48.1	5.4
Unleaded 10% Methanol	13.8	16.1	26.5	6.7	29.4	52.9	10.2	34.1	52.2	46.7	47.1	27.1	26.1	43.5	7.4
Leuded 20% Methunol	3.8	42.6	56.3	13.6	66.9	55.9	30.6	72.9	57. 6	54,3	56.6	31.8	27.0	48.7	12.1
Unleaded 20% Methanol	6.8	19.5	54.9	-	46.9	27.9	29.4	56. 0	55.9	49.7	51.7	40.1	30.3	57.8	10.9
Ethanol	4.2	5.2	31.6	2.7	52.6	17.8	17.3	39.6	17.4	30,4	41.9	18.1	6.8	5.4	6.3
Leaded 10% Ethanol	13.7	22.6	18.8	4.6	11.1	57.0	18.4	44.6	45.3	36.2	40.6	7.5	25.0	51.3	5.7
Unleaded 10% Ethanol	6.9	16.8	25.7	7.9	28.2	40.3	16.1	43.0	45.7	38,4	43.9	28.1	28.1	48.4	11.3
Leaded 20% Ethanol	5,1	15.0	56.6	9.3	50.7	43.5	23.0	44.4	51.0	35.7	57.7	24.8	30.6	40,3	7.1
Unleaded 20% Ethanol	6.8	22.3	39.8	-	75.2	50.8	27.9	67.4	51.7	50.3	60.4	23.7	26.0	50.6	9,8
Unleaded 10% Methanol 10% Ethanol	14.3	21.4	55.0	19.2	27.6	47.5	22.6	53.1	69,9	56,9	72.3	46.2	35.6	59.6	18.2

Table 20. Unwashed Gum Content of Test Fuels Exposed to Plastics

		Unwashed	Gum Conte	nt, Mg/100ml			
Fuel	Nylon 6/6	Nylon 6/12	HDPE	Polypropolene	PBT	Phenolic	Control
Leaded	5.7	3.1	3.2	9.6	4.6	0.8	1.1
Unleaded	5.6	4.0	4.3	17.3	6.4	1.3	1.4
Methanol	6.4	10.1	4.1	4.6	2.6	14.7	2.1
Leaded 10% Methanol	6.7	17.4	5.2	19.6	7.7	13.1	2.2
Unleaded 10%Methanol	6.2	6.2	9.7	14.4	5.5	10.5	4.2
Leaded 20% Methanol	11.2	8.8	5.2	18.5	8,6	11.1	5.0
Unleaded 20% Methanol	7.8	9.6	4.6	10.1	8.0	11.8	••••
Ethanol	7.2	2.4	3.0	3.7	1.7	1.3	1.7
Leaded 10% Ethanol	6.7	11.0	4.9	8.9	11.1	7.0	6.0
Unleaded 10% Ethanol	0.9	4.8	3.4	12.7	1.3	6.4	1.9
Leaded 20% Ethanol	8.7	14.0	7.3	10.8	10.3	12.1	7.2
Unleaded 20% Ethanol	5.6	8.4	5.6	11.5	3.3	6.0	2.4
Unleaded 10% Methanol 10% Ethunol	9.6	8.6	4.0	9,4	4.7	9.5	3.2

Table 21. Unwashed Gum Content of Test Fuels Exposed to Metals

	Un	washed Gum Conte	ent, Mg/100ml		
Fuel	6061 Al	Brass	C. Steel	Zinc	Control
I.eaded	4.8	9.5	6.0	5.6	1.1
Unleaded	2.2	9.3	2.8	2.9	1.4
Methanol	2.7	1.9	2.1	2.9	2.1
Leaded 10% Methanol	6.3	15.4	4.4	6.0	2.2
Unleaded 10% Methanol	4.5	14.6	8.0	11.9	4.2
Leaded 20% Methanol	7.2	6.8	6.8	5.8	5.0
Unleaded 20%Methanol	3.7	4.8	4.5	4.4	_
Ethenol	1.0	წ. 6	6.2	1.6	1.7
Leaded 10% Ethanol	5.8	7.9	4.5	5.3	6.0
Unleaded 10% Ethanol	5.6	19.0	3.7	4.8	1.9
Leaded 20% Ethanol	6.5	6.0	60	4.5	7.2
Unleaded 20% Ethanol	4.1	7.7	3.4	3.6	2.4
Unleaded 10% Methanol 16% Ethanol	6.0	10.6	4.0	7.1	3.2

では、100mmの

Table 22. Washed Gum Content of Test Fuels Exposed to Elastomers.

						Washe	d Gum	Conter	it, Mg/1	00ml					
Fuel	Control	LS-53 Fluorosilicone	PNT-34 Phosphasene	VTR-10 Viton	M.908 Nitrile-PVC	S897-04 Nitrile-CPE	Ether	Ester	11CB-1 Neoprene	11NBR-H-1 fligh NBR	1232 Polysulfide	11500-1	11CSM-2	11NBR-L-2 Low NBR	B-910
Leaded	2.2	4.1	1.9	0.9	1.9	49.5	12.2	29.5	48. 0	4.1	4.2	2.5	7.9	6,9	4.5
Unleaded	2.5	7.6	2.9	-	5.0	33.3	4.5	28,5	18.9	22.1	14.0	11.5	16.3	21.9	2.5
Methanol	5.2	1.4	35.2	1.8	7.6	3.9	7.2	38.9	3.4	5.9	9.6	25.0	0.1	8.6	5.3
Leaded 10% Methanol	18.4	15.4	23.9	7.8	32.0	50.1	12.8	32.0	44.1	47.8	51.8	25.6	22.7	48.1	5,4
Unleaded 10% Methanol	9.0	10.1	21.2	4.6	6.7	22.2	3.2	27.1	21.1	11.7	19.5	17.3	19.5	18.6	3.1
Leaded 20% Methanol	3.1	2.7	29.2	2.0	13.5	20.3	20.5	61.8	39.3	20.5	41.3	31.3	26.3	28.1	2.3
Unleaded 20% Methanol	1.6	7.0	23.1	-	8.5	14.2	20.9	51.6	28.6	20.0	26.8	21.9	21.0	26.0	5.9
Ethanol	3.1	3.3	29.2	1.4	2.0	4.5	12.5	34.4	3.2	10.1	8.9	16.4	5.8	2.7	1.8
Leaded 16% Ethanol	4.0	4.3	11.3	1.7	0.6	33.3	12.2	39.3	16.8	15,0	5.3	4.4	23.5	16.2	1.6
Unleaded 10% Ethanol	4.0	9.0	17.8	6.3	30.6	39.5	15.7	36.8	22.8	10.2	8.9	18.9	21.9	33.0	8.0
Leaded 20% Ethanol	2.2	9.7	34.4	4.8	10.6	22.4	15.4	35.0	20.5	15.9	21.0	12.4	24.3	28.7	3.4
Unleaded 20% Ethanol	3.8	5,0	31.5	-	4.7	17.8	14.9	47.2	15.7	12.3	2,0	9.7	21.0	9.2	1.5
Unlead#d 16% Methanol 10% Ethanol	13.2	10.3	52.8	16,4	20.3	27.3	20,2	47.3	51.8	27.0	35.9	38.0	30.2	39.8	10.5

Table 23. Washed Gum Content of Test Fuels Exposed to Plastics

	,	Washed	Gum Conter	it, Mg/100ml			
Fuel	Nylon 6/6	Nylon 6/12	HDPE	Polypropolene	PBT	Phenolic	Control
Leaded	3.3	1.6	2.0	5.9	3.4	0.2	0.2
Unleaded	1.7	2.4	2.6	8.0	2.3	0.4	0.6
Methanol	4.8	7.8	2.2	3.0	2.5	11.0	0.9
Leaded 10% Methanol	6.7	17.4	5.2	19.6	7.7	13.1	2.2
Unleaded 10%Methanol	2.8	4.7	4.4	7.9	3.8	8.0	2.5
Leaded 20% Methanol	7.5	2.8	2.2	9.5	5.1	7.1	2.1
Unleaded 20% Methanol	3.4	4.8	0.7	1.8	5.5	5.8	_
Ethanol	6.4	1.2	1.7	2.2	1.1	1.1	0.5
Loaded 10% Ethanol	2.9	7.3	4.4	2.8	9.4	6.0	4.5
Unleaded 10% Ethanol	0.1	2.4	3,3	3.2	1.1	0.4	1.3
Leaded 20% Ethanol	6.0	10.1	4.8	5.7	5.2	7.1	4.3
Unleaded 20% Ethanol	5.6	8.4	5,6	11.5	3.3	6.0	2.4
Unleaded 10% Methanol 10% Ethanol	2.8	4.9	3.1	4.5	1.6	6.2	2.4

Table 24. Washed Gum Content of Test Fuels Exposed to Metals

***************************************	W	nshed Gum Conten	t, Mg/100 ml		
Fuel	6061 Al	Brass	C. Steel	Zine	Control
Leaded	3.4	7,8	4.1	1.8	0.2
Unleaded	1.3	7.7	1.3	8.0	0.6
Methanol	0.9	1.4	1.2	1.5	0.9
Leaded 10% Methanol	6.3	15.4	4.4	6 ,0	2.2
Unleaded 10% Methanol	9,2	12.9	4.0	7.2	2.5
Leaded 20% Methanol	3.9	5.1	3.4	3.8	2.1
Unleaded 20%Methanol	2,3	8.0	4.1	3.7	-
Ethanol		2.0	3.9	1.3	0.5
Leuded 10% Ethanol	2.1	5.1	3.3	4.0	4.5
Unleaded 10% Ethanol	4.4	14.2	3.5	3.2	1.3
Leaded 20% Ethanol	2,8	3.7	3.5	0.8	4.3
Unleaded 20% Ethanol	4.1	7.7	3.4	3.6	2.4
Unleaded 10% Methanol 10% Ethanol	3.5	4.5	1.3	1.4	2.4

Table 25. Reid Vapor Pressure of Test Fuels Exposed to Elastomers.

				· ·		Rei	l Vapo	r Pressu	re, lb/ii	n,ª					
Fue!	Constrol	LS-53 Fluorosilicone	PNT-34 Phosphanene	VIE.10	M-908 Nitrile-PVC	5897-04 Nitrile-CPE	Eiler	Ester	11CA-1 Neoprese	IINER-H-I	Polyselfide	11600-1	11CS#2	IINBE-L-2 Low NBS	P.910
Leaded	9.47	7.67	8.77	7.8	7.5	8,6	8.87	8.77	8.17	9.47	8.57	8.57	9.58	9.18	8.38
Unleaded	10.42	7.32	9.12	_	10.17	6.92	9.37	9.87	8.87	7.77	8.82	8.16	9.60	8.80	9.70.
Metharel	3.79	3.78	4.56	4.06	4.06	1.71	1.16	0.96	4.61	4.06	3.81	1.41	0.91	1.31	4.61
Leaded 10% Methanol	12.37	11.67	12.82	12.02	12.42	12.07	11.87	12.17	11.97	11.52	12.02	12.25	11.85	12.55	12.01
Unleaded 10% Methanol	12.71	13.01	12.61	12.41	12.71	13.22	12.22	12.42	12.62	12.42	11.42	12.22	11.42	12.32	11.62
Leaded 20% Methanol	10.02	9.42	9.37	8.57	7.57	10,42	10.02	9.52	9.22	8.32	6.82	10.27	9.67	9.57	9.99
Unleaded 20% Methanol	12.37	10.37	11.37	-	12.51	11.91	12.71	9.61	9.21	9.81	12.55	9.85	11.55	12.01	11.71
Ethunol	2.11	2.11	0.87	1.62	1.47	2.52	2.12	2.17	2.57	0.42	2.17	1.27	0.82	1.02	2.17
Leaded 10% Ethanol	11.47	6.91	6.36	7.11	8.04	7.36	7.54	7.94	7.27	6.77	7.26	7.26	7.17	7.26	7.11
Unleaded 10% Ethanol	10,87	10,81	10.81	11.21	10,82	10.47	9.92	10.45	10.65	10.95	9.37	9.72	10.87	10.37	9,97
Leaded 20% Ethanol	10.20	10.60	10.10	9,80	10.70	10.00	9.80	10.32	10.72	10.16	9,96	10.41	9.81	9.01	9,52
Unleaded 20% Ethanol	9.72	8.62	10.07	-	9.17	9.87	9.17	10.17	9.67	10.31	9.81	10.00	10.62	9.52	9.22
Unleaded 10% Methanol 10% Ethanol	11.31	11.55	10.85	11.31	10.31	12.11	12.07	11.77	11.47	10.63	9.83	10.28	10,23	9.53	10,73

property of the contract of the property of the contract of the party of the contract of the c

Table 26. Reid Vapor Pressure of Test Fuels Exposed to Plastics

		Reid	Vapor Pres	oure, lb/in.*			
Fuel	Nylon 6/6	Nylon 6/12	HDPE	Polypropolene	PBT	Phenolic	Contro
Leaded	9.60	8.75	4.90	7.95	8.45	5.95	8.95
Unleaded	8.30	8.50	9.85	8.70	9.10	7.65	7.90
Methanol	3.64	4.35	4.00	3.90	1.60	2.50	2.75
Leaded 10% Methanol	19.80	10.40	8.30	8,10	10.95	9.50	7.95
Unleaded 10%Methanol	7.50	10.60	8.30	11.40	12.60	6.65	12.60
Leaded 20% Methanol	10.80	8.60	9.10	8.50	9.50	10.10	11.35
Unleaded 20% Methanol	10.05	9.85	10.05	10.55	11.25	10.85	11.35
Ethanol	2.20	1.75	1.85	1.20	1.20	1.90	1.65
Leaded 10% Ethanol	10.00	9.25	9.15	9.85	9.85	9.65	7.85
Unleaded 10% Ethanol	7.95	6.65	7.80	8.30	8.25	8.60	10.40
Leaded 20% Ethanol	4.80	5.05	6.05	3.00	7.50	3.75	6.10
Unleaded 20% Ethanol	9.20	5.90	3.55	9.40	5.85	4.45	7.05
Unleaded 10% Methanol 10% Ethanol	10.95	8.15	9.25	7.95	10.30	9.05	10.00

Table 27. Reid Vapor Pressure of Test Fuels Exposed to Metals

		Reid Vapor Press	ure, lb/in.ª		
Fuel	6061 Al	Brass	C. Steel	Zine	Control
Leaded	9,55	9.35	6.70	7.60	8.95
Unleaded	8.55	8.85	7.70	8,80	7.90
Methanol	1.50	4.30	1.10	3.65	2.75
Leaded 10% Methanol	8.15	8,95	11.05	8.15	7.95
Unleaded 10% Methanol	9.10	10.50	7.50	8.90	12.60
Leaded 20% Methanol	10.50	11.10	9,40	10.50	11.35
Unleaded 20%Methanol	10.00	10.80	11.50	9.15	11.35
Ethanol	1.75	1.90	1.90	2.30	1.65
Leaded 10% Ethanol	7.50	8.60	9.50	9.10	7.85
Unleaded 10% Ethanol	8.85	7.50	8.90	9.40	10.40
Leaded 20% Ethanol	B.20	9.10	6.05	7.95	6.10
Unleaded 20% Ethanol	10.40	9.80	9.70	9.05	7.05
Unleaded 10% Methanol 10% Ethanol	10.40	8.30	9.20	10.10	10.00

Table 28. Residual Distillation Results of Test Fuels Exposed to Elastomers.

	Residual Distillation, %														
Fuel	Company Company	LS-53 Paradica	PNT-34 Phosphane	VTR-10	M-908 Nitrik-PVC	5897-04 Nitril-CPE	Estr	E de	IICA-1	IINBR-II-I Ilieh NBR	1232 Polysaifide	HECH	11CSM-2	IINBE-L-2 Low NBR	F-910
Leaded	1.0	1.5	1.8	1.2	1.3	1.5	:2	1.5	1.0	1.5	1.0	2.0	1.6	1.0	1.2
Unleaded	1.2	1.7	1.2	_	1.0	1.7	1.0	1.0	1.4	2.8	1.5	1.1	1.1	2.0	1.0
Methanol	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Leaded 10% Methanol	3.3	1.3	2.5	2.3	1.9	1.5	1.0	2.2	1.2	1.4	1.1	1.2	1.2	1.5	1.9
Unleaded 10% Methanol	1.7	1.1	1.0	1.3	1.7	1.2	1.0	1.0	1.0	1.4	1.4	1.0	2.3	1.4	1.0
Leaded 20% Methanol	2.3	2.7	2.5	3.6	3.1	3.7	1.6	1.1	1.8	1.2	1.0	2.9	1.7	2.4	1.2
Unleaded 20% Methanol	2.2	1.9	1.8	-	2.1	1.3	1.3	1.3	1.0	1.6	1.6	1.3	1.2	1.1	1.4
Ethanol	1.0	0.0	0.5	-	0.3	0.5	0.0	0	0	0.5	0.5	0.5	0.5	0.5	0.5
Leaded 10% Ethanol	2.0	1.0	2.8	2.6	2.4	2.4	2.6	2.2	3.2	2.5	2.0	1.1	3.3	2.1	3,3
Unleaded 10% Ethanol	3.0	1.8	2.1	2.1	2.7	1.1	1.0	0.4	1.5	8.0	1.6	3.5	4.1	1.2	1.5
Leaded 20% Ethanol	1.8	1.6	2.0	1.5	1.3	1.4	1.0	1.6	2.0	1.9	1.9	1.8	1.5	1.4	1.2
Unleaded 20% Ethanol	3.9	2.0	1.2	-	1.6	1,2	1.4	3.0	1.6	2.4	1.2	2.3	2.3	1.7	2.1
Unleaded 10% Methanol 10% Ethanol	1.6	1.2	0.6	1.1	2.0	1.7	2.1	2.0	1.8	2.1	2.4	2.7	2.5	1.5	1.4

Table 29. Residual Distillation Results of Tests Fuels Exposed to Plastics

Fuel Nylon 6/6 Nylon 6/12 HDPE Polypropolene PET Phenolic Leaded 1.8 1.4 1.7 2.0 1.9 1.9 Unleaded 1.6 1.1 — — 1.0 1.3 Methanol 0 0 0 0 0 0 Leaded 1.6 2.8 1.7 2.2 2.5 1.8 10% Methanol 3.0 2.5 1.4 3.0 1.4 2.8 Unleaded 10% Methanol 2.1 3.1 2.6 1.8 1.6 2.2 Unleaded 20% Methanol 2.3 2.1 3.2 1.8 1.6 2.1 Ethanol 0.1 — — — 0.5 0.5 Leaded 2.0 2.4 2.6 2.2 1.5 — Unleaded 10% Ethanol 2.0 2.4 1.8 1.8 1.9 1.8 Leaded 2.0% Ethanol 2.4 3.0 1.8 1.9 1.8 <t< th=""><th></th></t<>							
	7	Nylon 6/12	HDPE	Polypropolene	PBT	Phenolic	Control
Leaded	1.8	1.4	1.7	2.0	1.9	1.9	2.4
Unleaded	1.6	1.1	-	_	1.0	1.3	2.0
Methanol	0	0	0	0	0	0	0
	1.6	2.8	1.7	2.2	2.5	1.8	2.5
	3.0	2.5	1.4	3.0	1.4	2.8	1.6
	2.1	3.1	2.6	1.8	1.6	2.2	2.9
	2.8	2.1	3.2	1.8	1.6	2.1	1.9
Ethanol	0.1	_	-	_	0.5	0.5	1.0
	2.0	2.4	2.6	2.2	1.5	-	2.6
	2.4	1.9	3.1	1.8	1.9	1.8	2.4
	2.0	2.4	1.8	1.8	1.9	3.2	2.2
	2.4	3.0	1.8	1.9	1.8	2.2	1.8
Unleaded 10% Methanol 10% Ethanol	3.0	2.1	3.1	2.8	1.8	2.2	2.3

Table 30. Residual Distillation Results of Test Fuels Exposed to Metals

, <u></u>		Residual Distill	ation, %		
Fuel	6061 Al	Brass	C. Steel	Zinc	Control
Leaded	1.6	1.6	2.0	2.1	2.4
Unleaded	1.3	1.7	1.4	1.1	2.0
Methanol	0	0	0	0	0
Leaded 10% Methanol	1.4	1.4	2.0	1.8	2.5
Unleaded 10% Methanoï	2.1	1.2	1.1	1.4	1.6
Leaded 20% Methanol	1.7	2.6	1.1	1.5	2.9
Unleaded 20%Methanol	1.8	۷.0	2.0	2.1	1.9
Ethanol	ana.		_	0.5	1.0
Leaded 10% Ethanol	2.6	1.8	1.9	1.3	2.6
Unleaded 10% Ethanol	1.6	2.3	1.5	1.4	2.4
Leaded 20% Ethanol	2.3	1.1	1.1	1.5	2.2
Unleaded 20% Ethanol	1.8	2.4	2.1	2.8	1.8
Unleaded 10% Methanol 10% Ethanol	2.4	2.0	2.3	2.6	2.3

Table 31. Distillation of Test Fuels Exposed to Elastomers

		Eth	anol					
	% Loss	% Residue	IBP ° F	10% °F	20% °F	50% °F	90% °, F	EP °F
Control	2,0	1.0	173	174	175	175	176	178
Fluorosilicone, LS-53	2.0	0	172	172	173	173	174	179
Phosphasene, PNT-34	1.5	0.5	171	174	175	176	176	178
Viton, VTR-10	1.0	1.0	173	175	175	176	. 176	179
Nitrile-PVC, M-908	1.5	0.5	171	175	176	176	175	179
Nitrile-CPE, 5897-04	2.0	0.5	173	175	176	176	176	179
Ether	1.5	0	171	175	175	176	176	179
Ester	1.5	0	173	174	175	176	176	179
Neoprene, 11CR-1	3.0	0	173	174	175	175	176	179
High NBR, 11NBR-H-1	1.5	0.5	173	174	175	175	175	179
J-232, Polysulfide	1.5	0.5	174	174	175	175	176	179
11ECO-1	5.5	0.5	174	1.75	175	176	176	179
11CSM-2	3.0	0.5	173	174	174	174	175	177
Low NBR, 11NBR-L-2	1.0	0.5	172	173	174	174	175	178
Viton, B-910	2.5	0.5	173	174	174	175	176	178

Table 31. Distillation of Yest Fuels Exposed to Elastomers (Cont'd)

		Meti	hanol					
	% Lona	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	0,5	0	149	151	151	151	151	151
Fluorosilicone, LS-53	0	0	150	150	151	151	151	151
Phosphazene, PNT-34	1.0	0	151	151	151	151	151	151
Viton, VTR-10	0	0	151	151	151	151	151	152
Nitrile-PVC, M-908	0,5	0	151	151	151	151	151	152
Nitrile-CPE, 5897-04	1.5	0	150	150	150	150	151	154
Ether	0.5	0	150	150	150	150	150	159
Enter	1.5	0	150	150	150	150	150	151
Neoprene, 11CR-1	1.5	0	151	151	151	151	151	153
High NBR, 11NBR-H-1	2.0	0	150	151	151	151	151	155
J-232, Polyaulfide	1.5	0	150	150	151	151	151	152
11ECO-1	1.5	0	150	151	151	151	151	153
11CSM-2	1.5	0	151	151	151	151	151	153
Low NBR, 11NBR-L-2	1.0	0	151	151	151	151	151	155
Viton, B-910	1.5	0	151	151	151	151	151	153

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

· ·	_ _	Lea	ded					
	% Loss	% Residue	IBP °F	10% • F	20% °F	50% °F	90% °F	EP °F
Control	7.5	1.0	109	141	162	284	398	422
Fluorosilicone, LS-53	4.5	1.5	105	139	160	234	378	418
Phosphagene, PNT-34	3.2	1.8	108	132	152	225	368	402
Viton, VTR-10	6.8	1.2	96	132	157	232	390	415
Nitrile-PVC, M-908	4.2	1.3	104	136	160	285	377	413
Nitrile-CPE, 5897-04	5.0	1.5	99	125	144	215	376	398
Ether	2.8	2.2	104	144	163	233	363	397
Ester	6.5	1.5	110	149	161	235	890	418
Neoprene, 11CR-1	4.0	1.0	105	127	146	220	370	402
High NBR, 11NBR-H-1	4.0	1.5	104	139	160	232	375	412
J-232, Polysulfide	4.5	1.0	10 6	140	161	282	372	407
11ECO-1	3,0	2.0	95	134	155	231	3 68	407
11CSM-2	4.4	1.6	105	130	157	231	374	408
Low NBR, 11NBR-L-2	5.0	1.0	112	142	164	236	382	428
Viton, B-910	5,3	1.2	102	134	155	228	383	408

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

THE THE PARTY OF T

		Leaded C 1	0% Eth	anol				
	% Loss	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	7.0	2.0	105	135	148	237	410	419
Fluorosilicone, LS-53	1.0	1.0	106	140	150	225	350	425
Phosphagene, PNT-34	1.7	2.3	118	138	148	228	360	391
Viton, V'TR-10	1.4	2.6	120	142	148	231	36 1	396
Nitrile-PVC, M-908	1.1	2.9	122	141	149	230	358	390
Nitrile-CPE, 5897-04	2.6	2.4	118	140	15 0	233	367	398
Ether	1.9	2.6	113	138	148	224	36 0	379
Enter	1.8	2.2	118	141	15 0	234	364	396
Neoprene, 11CR-1	1.3	3.2	118	140	148	226	358	382
High NBR, 11NBR-H-1	2.5	2.5	111	140	150	232	365	388
J-232, Polysulfide	2.5	2.0	119	141	149	229	360	391
11ECO-1	0.4	1.1	110	136	152	221	349	413
11CSM-2	0.2	3.3	123	141	150	230	355	394
Low NBR, 11NBR-L-2	2.4	2.1	114	141	150	234	369	399
Viton, B-910	0.7	3.3	117	138	148	224	356	384

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

		Leaded ¢ 2	20% Eth	anol				
	% Loss	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	2.2	1.8	97	126	142	168	842	380
Fluorosilicone, LS-53	2.9	1.6	114	128	148	168	344	381
Phosphasene, PNT-34	2.5	2.0	107	130	144	168	346	877
Viton, VTR-10	3.5	1.5	108	132	145	168	850	379
Nitrile-PVC, M-908	4.7	1.3	112	135	148	169	359	389
Nitrile-CPE, 5897-04	3.6	1.4	105	132	146	168	350	379
Ether	5.0	1.0	111	136	150	171	368	404
Ester	3.4	1.6	97	127	143	167	346	874
Neoprene, 11CR-1	3.0	2.0	107	127	142	167	344	378
High NBR, 11NBR-H-1	1.6	1.9	101	125	141	166	343	382
J-232, Polysulfide	2.1	1.9	107	129	143	167	345	382
11ECO-1	3.2	1.8	105	125	140	166	345	370
11CSM-2	3.0	1.5	107	131	144	168	342	386
Low NBR, 11NBR-L-2	4.6	1.4	114	135	148	169	363	405
Viton, B-910	4.8	1.2	114	134	148	169	358	389

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

	1	Leaded C 1	0% Metl	nanol				
The second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the sect	% Lons	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	1.2	3.3	97	118	126	212	352	378
Fluorosilicone, LS-53	4.2	1.3	109	121	130	228	372	413
Phosphazene, PNT-34	1.5	2.5	103	116	128	224	36 0	393
Viton, VTR-10	2.7	2.3	102	126	144	229	366	399
Nitrile-PVC, M-908	3.6	1.9	104	120	129	225	365	393
Nitrile-CPE, 5897-04	5.5	1.5	99	125	128	224	38 0	400
Ether	6.0	1.0	106	126	130	234	391	412
Ester	2.8	2.2	98	113	122	190	345	370
Neoprene, 11CR-1	4.8	1.2	100	117	125	225	378	403
High NBR, 11NBR-H-1	4.1	1.4	101	120	120	204	362	383
J-232, Polysulfide	7.9	1.1	105	124	129	233	404	405
11ECO-1	4.8	1.2	103	123	129	232	377	410
11CSM-2	5.3	1.2	106	121	129	225	376	399
Low NBR, 11NBR-L-2	3.5	1.5	106	121	124	223	368	391
Viton, B-910	3.1	1.9	102	120	128	223	364	400

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

		Leaded ¢ 20	0% Metl	nanol				,
	% Loss	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	2.7	2.3	109	126	131	216	357	381
Fluorosilicone, LS-53	1.8	2.7	112	125	132	225	359	389
Phosphasene, PNT-34	2.0	2.5	113	126	132	204	353	383
Viton, VTR-10	0.9	3.6	104	125	131	218	350	376
Nitrile-PVC, M-908	1.4	3.1	114	125	132	220	355	382
Nitrile-CPE, 5897-04	1.3	3.7	114	125	181	216	350	375
Ether	3.9	1.6	114	125	131	218	364	394
Ester	4.9	1.1	114	127	135	145*	358	394
Neoprene, 11CR-1	1.7	1.8	104	123	131	211	358	382
High NBR, 11NBR-H-1	4.8	1.2	115	129	136	146*	358	389
J-232, Polysulfide	5.5	1.0	116	129	137	146*	365	392
11ECO-1	0.1	2.9	112	125	133	144*	347	382
11CSM-2	1.8	2.7	111	125	131	222	358	386
Low NBR, 11NBR-L-2	1.6	2.4	109	123	130	207	355	378
Viton, B-910	5.3	1.2	114	129	136	146*	376	397

Note: *Phase separation.

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

		Unle	aded					
ويو وينين ويستويده المقدم منياه والوائدين ويهووالله ويستوسف المالها	% Loss	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	4.3	1.2	105	138	163	239	369	406
Fluorosilicone, LS-53	2.8	1.7	116	146	168	238	359	393
Phosphazene, PNT-34	3.8	1.2	108	143	165	239	365	397
Viton, VTR-10				NOT	RUN			
Nitrile-PVC, M-908	7.0	1.0	110	146	170	247	391	422
Nitrile-CPE, 5897-04	3.3	1.7	110	153	176	246	358	403
Ether	4.5	1.0	105	139	164	240	370	406
Ester	6.0	1.0	106	139	165	241	380	411
Neoprene, 11CR-1	3.6	1.4	103	126	146	226	358	398
High NBR, 11NBR-H-1	0.7	2.8	111	143	166	234	348	383
J-232, Polysulfide	4.0	1.5	105	135	158	234	362	397
11ECO-1	4.9	1.1	101	131	153	232	366	399
11CSM-2	3.9	1.1	108	138	161	237	363	403
Low NBR, 11NBR-L-2	6.0	2.0	109	142	166	242	388	408
Viton, B-910	4.5	1.0	97	135	160	239	364	413

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

	Ţ	Jnleaded ¢	10% Et	hanol			<u></u>	
	%	%	IBP	10%	20%	50%	90%	EP
	Loss	Residue	°F	°F	°F	°F	°F	٥F
Control	3.0	3.0	98	124	136	213	855	376
Fluorosilicone, LS-53	3.2	1.8	105	129	143	226	358	396
Phosphagene, PNT-34	5.9	2.1	101	132	145	234	385	414
Viton, VTR-10	3.4	2.1	108	128	140	204	353	386
Nitrile-PVC, M-908	2.8	2.7	108	135	146	218	854	889
Nitrile-CPE, 5897-04	5.4	1.1	192	131	144	228	368	411
Ether	6.0	1.0	107	132	146	225	378	415
Ester	5.6	0.4	103	134	146	236	389	402
Neoprene, 11CR-1	5.5	1.5	107	131	146	223	369	394
High NBR, 11NBR-H-1	8,2	8,0	1.03	134	145	232	394	394
J-232, Polysulfide	5.4	1.6	106	131	143	231	371	883
11ECO-1	2.5	3.5	103	131	143	224	348	372
11CSM-2	6.1	4.1	100	128	141	225	561	361
Low NBR, 11NBR-L-2	6.3	1.2	100	127	138	224	368	386
Viton, B-910	4.5	1.5	124	149	157	251	37 3	404

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

のでは、1900年には、「1900年には、「1900年に対象し、1900年には、1900

	Į	Jnleaded ¢	20% Et	hanol				
سند در اینی چین باید در پیش پر کند در پیش به این با در پیش به این با در پیش به در پیش به در پیش به در پیش به در	% Loss	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	0.1	3.9	111	131	158	169	350	380
Fluorosilicone, LS-53	2.5	2.0	107	131	146	166	356	378
Phosphagene, PNT-34	3.8	1.2	111	134	148	167	363	398
Viton, VTR-10				NOT	RUN			
Nitrile-PVC, M-908	3.4	1.6	113	137	149	168	364	401
Nitrile-CPE, 5897-04	4.8	1.2	109	137	149	168	371	409
Ether	3.1	1.4	106	130	142	165	350	380
Ester	1.0	3.0	101	130	144	166	347	382
Neoprene, 11CR-1	2.9	3.6	109	129	142	165	354	394
High NBR, 11NBR-H-1	2.1	2.4	108	132	145	166	353	378
J-232, Polysulfide	5.8	1.2	109	134	148	166	380	401
11ECO-1	2.2	2.3	103	125	139	166	350	378
11CSM-2	2.2	2.3	112	132	145	166	353	384
Low NBR, 11NBR-L-2	2.3	1.7	102	132	146	166	350	396
Viton, B-910	1.9	2.1	115	137	149	168	357	396

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

	U	Inleaded C	10% Me	thanol				
	% Loss	% Residue	IBP °F	10% °F	20% °F	50% °F	90% °F	EP °F
Control	4.3	1.7	101	117	126	214	544	868
Fluorosilicone, LS-53	4.9	1.1	102	121	180	232	360	894
Phosphasene, PNT-34	5.0	1.0	108	119	1.29	224	364	384
Viton, VTR-10	4.7	1.3	102	118	128	228	357	892
Nitrile-PVC, M-908	3.3	1.7	104	117	125	224	355	381
Nitrile-CPE, 5897-04	6.3	1.2	105	122	131	232	375	396
Ether	£.0	1.0	102	119	129	227	362	390
Ester	7.0	1.1	101	119	129	228 .	370	388
Neoprene, 11CR-1	7.5	1.0	103	122	131	233	380	399
High NBR, 11NBR-H-1	4.6	1.4	102	119	128	225	354	379
J-232, Polysulfide	4.6	1.4	108	122	131	235	366	404
11ECO-1	6.0	1.0	104	116	127	219	366	387
11CSM-2	2.2	2.3	99	119	128	223	346	374
Low NBR, 11NBR-L-2	4.6	1.4	103	120	129	229	360	390
Viton, B-910	5.5	1.0	108	121	130	231	366	378

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

	96	%	IBP	10%	20%	50%	90%	EP
	Loss	Residue	°F	°F	°F	°F	°F	°F
Control	1.8	2.2	97	116	128	142	350	387
Fluorosilicone, LS-53	1.1	1.9	106	120	130	144	349	388
Phosphasene, PNT-34	2.2	1.8	104	119	129	143	348	376
Viton, VTR-10				NCT	RUN			
Nitrile-PVC, M-908	2.9	2.1	103	118	127	144	350	381
Nitrile-CPE, 5897-04	3.7	1.3	100	118	129	144	349	38 0
Ether	4.2	1.3	106	121	130	144	355	385
Ester	4.7	1.3	108	117	126	144	364	395
Neoprene, 11CR-1	6.5	1.0	104	122	132	152	388	416
High NRR, 11NBR-H-1	1.9	1.6	96	117	127	144	347	394
J-232, Polysulfide	3.4	1.6	103	117	127	150	361	391
11ECO-1	4.7	1.3	109	124	132	222	374	396
11CSM-2	3.8	1.2	101	121	130	144	366	407
Low NBR, 11NBR-L-2	4.4	1.1	105	120	128	142	362	391
Viton, B-910	3.6	1.4	104	119	128	156	363	394

Table 31. Distillation of Test Fuels Exposed to Elastomers (Cont'd)

	%	%	IBP	10%	20%	50%	90%	EP
	Loss	Residue	°F	°F	°F	°F	°F	°F
Control	8.4	1.6	100	125	136	160	342	872
Fluorosilicone, LS-58	2.3	1.2	107	127	138	162	355	400
Phosphazene, PNT-34	1.9	0.6	96	121	136	160	332	402
Viton, VTR-10	4.4	1.1	110	126	138	163	352	889
Nitrile-PVC, M-908	3.0	2.0	110	127	138	168	350	380
Nitrile-CPE, 5897-04	3.3	1.7	104	123	136	168	346	38!
Ether	2.9	2.1	100	121	134	159	344	371
Ester	4.0	2.0	98	124	186	162	357	889
Neoprene, 11CR-1	3.2	1.8	105	127	138	163	351	378
High NBR, 11NBR-H-1	2.9	2.1	106	128	139	164	352	387
J-232, Polysulfide	2.1	2.4	101	123	135	161	344	370
11ECO-1	1.3	2.7	106	123	185	160	337	368
11CSM-2	1.5	2.5	102	125	137	162	340	372
Low NBR, 11NBR-L-2	3.5	1.5	101	124	136	160	344	378
Viton, B-910	3.1	1.4	110	129	140	164	355	397

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics

			Ethan	ol		ĵ.	. Lefte	
 	Loss	Residue	IBP	10%	20%	50%	90%	EP
Control	0.5	1.0	168	174	175	175	176	177
Nylon, 6/6	3.0	0.0	183	190	191	192	192	194
Nylon, 6/12	2.0	0	172	174	175	175	176	177
HDPE	3.0	i O	168	175	175	175	176	178
Polypropolene	2.0	0	173	174	175	175	176	178
PBT	1.5	0.5	173	174	174	175	176	178
Phenolic	1.0	0.5	172	173	174	174	175	177
6061 A1	1.5	0	172	172	172	174	174	176
Brass	2.0	0	170	174	174	175	176	178
C. Steel	2.0	0	170	174	174	175	175	178
Zine	1.0	0.5	171	174	175	175	176	177

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

			Metha	nol		Methanol												
	Loss	Residue	IBP	10%	20%	50%	90%	EP										
Control	0,	0	150	150	150	150	150	152										
Nylon, 6/6	2.0	0	150	167	167	167	168	174										
Nylon, 6/12	2.5	0	149	149	150	150	150	151										
HDPE	0.5	0	150	150	150	150	150	153										
Polypropolene	0.	0	150	150	150	150	151	155										
PBT	1.0	0	151	151	151	151	151	152										
Phenolic	0.	0	150	150	150	150	150	151										
6061 Al	0.	0	150	150	150	150	150	152										
Brass	1.0	0	150	150	150	150	150	151										
C. Steel	1.0	0	150	150	150	150	150	151										
Zine	1.0	0	150	150	150	150	150	151										

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

		I	eaded G	asoline				
	Loss	Residue	IBP	10%	20%	50%	90%	EP
Control	1.6	2.4	100	129	149	217	858	899
Nylon, 6/6	0.2	1.8	108	136	156	218	35 6	414
Nylon, 6/12	3.6	1.4	94	188	158	215	873	408
HDPE	2.8	1.7	95	133	152	217	369	409
Polypropolene	3.5	2.0	98	115	141	215	369	408
PBT	2.6	1.9	98	127	145	218	369	401
Phenolic	2.6	1.9	99	129	150	216	367	406
6061 Al	3.4	1.6	98	130	150	218	373	413
Brass	2.4	1.6	103	135	153	215	366	405
C. Steel	5.0	2.0	91	131	155	225	393	414
Zinc	1.4	2.1	87	130	147	223	355	396

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Leaded 10% Ethanol												
	Loss	Residue	IBP	10%	20%	50%	90%	EP				
Control	0.4	2.6	97	128	139	198	339	380				
Nylon, 6/6	3.0	2.0	112	140	152	214	380	407				
Nylon, 6/12	2.6	2.4	102	128	138	202	355	382				
HDPE	0.9	2.6	120	142	152	204	350	375				
Polypropolene	3.8	2.2	128	146	157	228	374	402				
PBT	3.5	1.5	101	124	135	198	364	396				
Phenolic				NOT	RUN							
6061 Al	2.4	2.6	102	125	134	193	35 0	385				
Brass	3.2	1.8	98	124	137	199	359	391				
C. Steel	2.1	1.9	102	128	137	198	349	384				
Zinc	1.7	1.3	107	127	136	199	355	406				

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

		Let	ded 20%	Ethanol				
	Loss	Residue	IBP	10%	20%	50%	90%	EP
Control	2.3	2.2	120	152	168	182	869	398
Nylon, 6/6	0	2.0	124	158	166	181	350	408
Nylon, 6/12	1.6	2.4	121	154	162	180	350	404
HDPE	1.7	1.8	121	151	162	180	358	899
Polypropolene	0.7	1.8	120	152	163	180	350	404
PBT	1.1	1.9	110	141	152	180	360	408
Phenolic	0.8	3.2	116	154	168	180	348	871
6061 Al	1.2	2.3	114	143	155	180	355	897
Brass	8.9	1.1	116	149	161	182	376	426
C. Steel	3.9	1.1	121	152	163	183	383	429
Zinc	5.0	1.5	125	150	161	183	397	482

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Leaded 10% Methanol											
	Loss	Residue	IBP	10%	20%	50%	90%	EP			
Control	0	2.5	116	125	128	218	346	396			
Nylon, 6/6	1.4	1.6	120	136	143	210	358	412			
Nylon, 6/12	1.2	2.8	112	134	142	218	357	382			
HDPE	1.8	1.7	112	134	142	217	371	417			
Polypropolene	2.3	2.2	131	146	148	236	373	400			
PBT	0.5	2.5	105	119	124	203	353	391			
Phenolic	4.2	1.8	125	144	175	250	394	424			
6061 Al	2.6	1.4	96	114	121	195	363	396			
Brass	3.1	1.4	99	116	126	200	361	401			
C. Steel	3.5	2.0	105	110	120	200	368	391			
Zinc	2.7	1.8	98	118	126	213	362	393			

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Leaded 20% Methanol											
	Loss	Residue	IBP	10%	20%	50%	90%	EP			
Control	0.6	2.9	115	136	145	162	348	894			
Nylon, 6/6	2.9	2.1	110	131	138	216	380	410			
Nylon, 6/12	1.4	8.1	116	181	187	202	358.	891			
HDPE	0.9	2.6	118	182	138	218	350	882			
Polypropolene	0.7	1.8	122	138	147	163	374	891			
PBT	2.4	1.6	119	138	146	202	378	414			
Phenolic	8.0	2.2	120	138	148	164	338	878			
6061 Al	2.3	1.7	118	134	141	288	377	422			
Brass	1.9	2.6	121	135	142	230	377	416			
C. Steel	8.9	1.1	116	135	143	280	391	424			
Zinc	3.0	1.5	116	131	139	220	375	408			

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Unleaded Gasoline												
	Loss	Residue	IBP	10%	20%	50%	90%	EP				
Control	2.5	2.0	96	133	155	231	361	395				
Nylon, 6/6	2.4	1.6	108	141	168	242	373	418				
Nylon, 6/12	1.9	1.1	98	128	154	231	349	415				
HDPE		NOT RUN										
Polypropolene				NOT	RUN							
PBT	2.0	1.0	100	133	157	231	351	413				
Phenolic	2.7	1.3	95	135	157	230	360	406				
6061 Al	4.2	1.3	95	132	156	234	366	407				
Brass	4.8	1.7	99	135	158	235	370	392				
C. Steel	0.6	1.4	95	128	153	227	338	402				
Zine	5.4	1.1	97	133	156	234	373	398				

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

		Unk	eaded 109	& Ethano	1			
	Loss	Residue	IBP	10%	20%	50%	90%	EP
Control	0.6	2.4	101	124	135	203	345	369
Nylon, 6/6	3.6	2.4	116	143	157	224	378	411
Nylon, 6/12	2.1	1.9	124	146	159	230	361	886
HDPE	0.9	3.1	116	142	154	215	350	380
Polypropolene	2.7	1.8	122	150	162	236	370	396
PBT	2.1	1.9	102	128	140	213	344	39 0
Phenolic	1.7	1.8	111	143	156	216	347	370
6061 Al	1.9	1.6	96	125	139	216	348	389
Brass	0.7	2.3	103	128	141	211	341	384
C. Steel	3.0	1.5	105	1 29	141	220	357	392
Zinc	4.6	1.4	105	128	142	221	371	398

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Unleaded 20% Ethanol									
•	Loss	Residue	IBP	10%	20%	50%	90%	EP	
Control	3.2	1.8	120	147	159	184	368	405	
Nylon, 6/6	2.6	2.4	101	143	158	180	351	375	
Nylon, 6/12	0.0	3.0	120	152	165	183	349	382	
HDPE	1.7	1.8	112	142	156	180	348	390	
Polypropolene	1.6	1.9	93	142	156	180	336	391	
PBT	1.2	1.8	126	156	166	188	362	402	
Phenolic	1.3	2.2	105	143	157	181	346	394	
6061 Al	3.2	1.8	123	149	162	186	372	415	
Brass	1.6	2.4	113	144	157	182	360	390	
C. Steel	0.9	2.1	116	149	161	183	353	396	
Zinc	3.2	2.8	111	148	16 0	187	389	406	

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Unleaded 10% Methanol									
	Loss	Residue	IBP	10%	20%	50%	90%	EP	
Control	4.4	1,6	1,00	116	128	216	356	388	
Nylon, 6/6	1.5	3.0	106	130	141	222	350	378	
Nylon, 6/12	1.5	2.5	116	128	139	212	345	385	
HDPE	0.6	1.4	122	142	148	232	350	398	
Polypropolene	1.0	3.0	100	121	142	228	345	3 19	
PBT	0.4	4.1	90	114	124	216	336	361	
Phenolic	0.2	2.8	110	130	140	22 0	345	872	
6061 Al	1.9	2.1	100	118	127	213	345	375	
Brass	5.3	1.2	120	144	153	252	383	416	
C. Steel	1.9	1.1	102	112	122	232	360	391	
Zinc	2.6	1.4	115	133	144	234	370	408	

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Unleaded 20% Methanol									
	Loss	Residue	IBP	10%	20%	50%	90%	EP	
Control	2.1	1.9	112	139	150	163	350	376	
Nylon, 6/6	1.7	2.3	113	135	144	213	350	374	
Nylon, 6/12	1.9	2.1	112	133	143	223	352	383	
HDPE	0.8	3.2	123	136	144	232	356	380	
Polypropolene	2.2	1.8	119	138	146	161	350	391	
PBT	3.4	1.6	112	140	149	162	365	389	
Phenolic	2.4	2.1	118	136	145	160	350	386	
6061 Al	4.2	1.8	116	141	150	208	398	410	
Brass	3.5	2.0	118	140	149	164	364	394	
C. Steel	2.0	2.0	114	131	144	161	349	388	
Zinc	0.9	2.1	114	135	144	160	340	380	

Table 32. Distillation of Test Fuels Exposed to Metals and Plastics (Cont'd)

Unleaded 10% Ethanol and 10% Methanol									
	Loss	Residue	IBP	10%	20%	50%	90%	EP	
Control	1.7	2.3	116	139	150	175	358	396	
Nylon, 6/6	1.0	3.0	126	138	149	172	346	369	
Nylon, 6/12	1.9	2.1	121	140	150	183	351	882	
HDPE	0.9	3.1	121	142	152	174	342	- 365	
Polypropolene	0.2	2.8	116	141	152	174	34 6	378	
PBT	2.2	1.8	119	140	151	176	369	890	
Phenolic	2.8	2.2	121	142	158	176	364	408	
6061 Al	2.6	2.4	121	142	153	175	372	402	
Brass	4.0	2.0	114	143	153	178	376	403	
C. Steel	1.7	2.3	118	144	154	177	36 0	398	
Zinc	1.9	2.6	123	144	154	177	356	386	

CONTROL OF THE PROPERTY OF THE

mee 1. Tensile streamsh properties of rubber materials.

TERRITOR AREAS

THE REPORT OF THE PARTY OF THE

Tensile strength properties of rubber materials after 3nd exposure (confinenci).

Highest retention of modulus after fluid exposure was demonstrated by the VTR-10 compound, followed closely by B-910, J-232, and ECO (see Figure 2). Lowest modulus retention values were displayed by the two NBR's, CSM, and the two polyurethane compounds. Modulus of the NBR-H compound when exposed to alcohols only remained relatively unaffected, but exposure to the fuel/alcohol mixtures produced the greatest loss in modulus of all compounds. Retention of this property was significantly lower for the urethane coating compounds after immersion in either of the alcohols or any of the fuel/alcohol mixtures. As would be expected, those compounds demonstrating highest tensile and modulus retention displayed the least amount of swelling and change in hardness after exposure. The fluorocarbons, fluorosilicone (LS-53), and J-232 were obviously superior in resistance to deterioration than were the other materials, as is shown in Figure 3. Alcohol had little effect on the volume change and hardness properties of the fluorocarbons, chloroprene, polysuifide, 5897-04, M-90-B, and CSM compounds. In most cases, fuel/alcohol mixtures effected more significant changes than fuels or alcohols considered separately.

In Figures 4 through 6, the effects of alcohol content in blended fuels on physical properties of the rubber compounds is depicted. Losses in tensile strength and 100 percent modulus, volume change, and hardness change observed for mixtures containing 10, 20, and 50 percent ethanol or methanol are compared graphically with similar results obtained using a pure unleaded gasoline. The most consistent pattern evolving from examination of Figures 4 through 6 was the obviously greater deleterious effect of substituting methanol rather than ethanol in the resulting mixture. Only the fluorocarbon compound (B-910) evidenced a continual, proportionate degradation in properties as the alcohol content was increased. With the exception of the hose compound (5897-04), the remaining compounds displayed more significant property changes upon the addition of only 10 percent ethanol or methanol. Further fuel dilution with alcohol produced less significant effects. In this respect, the NBR-H and ester urethane were most severely effected. Although not shown, the other fluorocarbon compound (VTR-10) also exhibited excellent resistance to the effects of alcohol blends, and like B-910 and J-232, it had also shown superior performance in the pure unleaded fuel. Other compounds tested but not shown—PNT-34, NBR-L, and ether urethane—performed poorly in the base fuel and in the alcohol blends. Gasohol resistance of the ECO, M90-B, and 5897-04 compounds can be categorized as intermediate with the likelihood that proper compound modifications could effect improvement.

An additional alcohol blend used in this study—Fuel No. 23 of Table 8—contained both methanol and ethanol, each at the 10 percent level in 80 percent unleaded gasoline. Changes in properties of compounds exposed in this medium closely paralleled those observed for Fuel No. 19 which was a blend of 20 percent methanol and 80 percent unleaded gasoline.

re 2. Modulus properties of mither materials and met expen

がある。 「ないなった」 ではないは、 ではないない。 ではない。 ではないない。 ではない。 ではないない。 ではないない。 ではないない。 ではないない。 ではないない。 ではないない。 ではない。 ではないない。 ではない。 ではないない。 ではないない。 ではないない。 ではないない。 ではないない。 ではないない。 ではない。 ではない。

Figure 3. Effect of fuel exposure on the hardness and volume of rubber materials (continued).

ASSESS TOTALD THERETO SEPTEM

AND THE PROPERTY OF THE PROPER

pre 6. Effect of alcohol concentration of the volume swell and hardness proporties or reserve

Fuel No. 13, consisting of 90 percent unleaded gasoline blended with 10 percent ethanol, most closely represents Gasohol as currently supplied commercially for military and civilian use. The bar graph of Figure 7 depicts changes in properties of various rubbers conditioned in this medium. Materials demonstrating the best inherent resistance to Gasohol (high tensile strength retention and low volume swell) include the two fluorocarbons, the polysulfide, and the fluorsilicone compounds. Poorest resistance to Gasohol was observed for the two NBR, the PNT, and the two polyurethane compounds. These data also indicate that chloroprene and CSM rubber can provide better resistance to Gasohol than can the high acrylonitrile rubber; however, these two elastomers are not normally used in applications requiring high resistance to fuels. The low NBR compound, known to display poorer performance in pure gasoline, exhibited properties equivalent to the high NBR materials after exposure to Gasohol. Ether urethane demonstrated better tensile retention but swelled much more severely than did the ester compound. In all cases, degradation of tensile strength was greater than that of elongation, while volume swell of each compound displayed a pattern paralleling that observed for immersion in normal gasolines.

In Figure 8, the relative effects of diesel fuel and diesel fuel containing 5, 10, and 20 percent ethanol on the tensile strength of various elastomers are presented. The best overall resistance to the diesel/alcohol mixture was provided by the fluorocarbons, polysulfide, fluorosilicone, and CSM elastomers, while the least resistance was exhibited by the polyurethanes, nitriles, chloroprene, and PNT-34 (not shown) elastomers. CSM rubber was not significantly affected by the addition of ethanol. CSM, therefore, would be a better choice for use in diesel/alcohol mixtures than any of the rubbers such as urethanes, ECO, and nitriles, now commonly employed in diesel service. For some materials such as M908-B, ECO, the NBR's and urethanes, the substitution of 5 percent alcohol reduced the tensile strength significantly. However, increasing the alcohol content to 20 percent had little additional effect on the tensile strength.

7. Phase II. Only small volume changes were observed in most of the plastic materials exposed to the 12 test fluids, as summerized in Table 10. The highest swell values were exhibited by nylon 6/6 in the fuel mixtures containing leaded gasoline with 20 percent methanol or 20 percent ethanol (27 percent and 28 percent volume increase, respectively).

The specimen dimensions were measured to the nearest ± 0.001 in, to facilitate mechanical property determinations. Four plastic materials (acetal, PET, nylon 6/12, and high-density polyethylene) from Tables 11 and 12 showed only minimal changes in both ultimate tensile strength and rupture strength. HDPE exhibited the greatest change reflected as an increase in ultimate tensile strength of about 15 to 20 percent in all fuels. Nylon 6/6 lost a significant amount of strength due to immersion in leaded gasoline mixtures containing 10 percent and 20 percent methanol; a 47 to 48 percent decrease in ultimate tensile and 25 to 27 percent decrease in rupture strength was observed for this material. Glass-filled (Nylon 6/6) showed similar results but to a lesser extent; possibly due to the glass filler content. This indicates that plasticization occurred in these materials. Nylon 6/6 has excellent resistance to gasoline but has been previously observed to decrease in yield stress and increase in clongation as moisture is absorbed. The moisture content of the alcohols may have contributed slightly to this plasticization.

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

30 - Diesel Fuel 31 - 951 Diesel/5% Ethamol 32 - 901 Diesel/10% Ethamol 33 - 802 Diesel/20% Ethamol

100

THE THE PARTICULAR SERVICE STREET, THE PARTICULAR PROPERTY OF THE PARTICULAR PROPERTY OF THE PARTICULAR PROPERTY.

Figure 8. Effect of diesel/alcobol mixtures on tensile properties of rubber materials (continued

Polypropylene demonstrated a significant loss of yield strength in all fuels but showed an increase in rupture strength. This type of mechanical alteration is also indicative of material plasticization due to the hydrocarbons in fuel/alcohol blends; aromatic hydrocarbons are known for their ability to swell and soften polypropylene. The PBT and phenolic resin samples both exhibited rather inconclusive and incongruous results. In both cases, the ultimate tensile strength and rupture strength were coincident. The PBT specimen immersed in the diesel fuel mixture containing 20 percent ethanol showed a significant increase, but this was not predictable from the other results in the three diesel fuel mixtures. The phenolic resin behaved in a manner similar to HDPE, revealing substantial increases in strength after exposure to all fuels except Reference Fuel B and a 90/10 mixture of leaded gasoline and ethanol.

All the visual results obtained from metal sample inspections with the exception of magnesium were acceptable. No corrosive effects were detected after 28 days of exposure to the various fuels at ambient temperature. Table 13 shows the corrosive results for magnesium samples expressing the change in weight observed after the test period. Methanol had significant effects on magnesium corrosion; 9.6 percent weight loss in leaded gasoline with 10 percent methanol and 20 percent weight loss in leaded gasoline with 20 percent methanol. Magnesium was more resistant to ethanol, exhibiting only 5 percent loss of weight in leaded gasoline with 20 percent ethanol. The lack of visual changes in the pure metals, other than magnesium, probably is due to the short immersion period and room temperature conditions selected in this program.

The epoxy-coated metal results were consistent with what can be expected for epoxy resistance to moisture (Table 14). The major effects of immersion were seen in leaded gasoline/methanol mixtures. The changes observed in these fuels ranged from color absorption to metal corrosion. The epoxy coating on the metals was difficult to maintain at a uniform thickness. Consideration must also be given to possible pinhole porosity in the coating which might aid in the absorption of fuel by the epoxy and subsequent corrosion of the metal.

8. Phase III. Results for test fuel/material compatibility are shown in graphical and tabular format and include determinations of specific gravity, unwashed and washed gums, and percent residue distillation. Distillation data for all ranges are in Tables 31 and 32.

a. Specific Gravity.

(1) Elastomers. The base specific gravity of ethanol and methanol is approximately 0.05 greater than that of fuels used in this study. Pure unleaded fuel displayed a value of 0.005 higher than leaded fuel. The substitution of 10 percent or 20 percent ethanol or methanol in the leaded fuel resulted in similar noticeable proportionate increases in specific gravity. However, substitution of the alcohols in the unleaded fuel produced different results—a lesser increase in specific gravity at the 10 percent level for both additives, and a slight decrease when methanol content was raised to 20 percent. Substitution of 10 percent of both methanol and ethanol in the unleaded fuel resulted in a specific gravity significantly higher than that of any of the other blends. The specific gravities of the various test fuels in which the clastomers had been conditioned are depicted in Figures 9 through 16.

SPECIFIC DRAVITY

73

Figure 10. Specific gravity of test faels can

MAN STANDARM - PROPERTY

SERCIEIC CHYAILA

SPECIFIC GRAVITY

311AVNO 0141048

Market 1500000 market

SERVINE OBVAILE

In all cases where an elastomer was exposed in a leaded blend, a distinct pattern in specific gravity changes was observed. Values for all 10 percent ethanol blends increased noticeably but then dropped at the 20 percent ethanol level, and in some cases being again equal to or lower than that of the control. Exposure of the elastomers in the leaded fuel/methanol blends always resulted in higher values at the 20 percent methanol level as opposed to the 10 percent level, but the specific gravity in the latter case was sometimes lower than that of the control.

No clear pattern evolved relative to changes in specific gravity when the various elastomers were exposed in unleaded fuel/alcohol blends. Changes were generally less pronounced. Except for the significant rise noted for the Viton B-910 compound/10 percent ethanol exposure, translation of these data into a meaningful analysis of unleaded gasohol/rubber compatibility is virtually impossible.

Earlier work by this laboratory has established that unleaded gasolines, by virtue of their higher aromatic content, have a more deleterious effect on conventional fuel resistant elastomers. The more pronounced changes in specific gravity noted for the leaded blends could be interpreted as an indication that these fuels might instead be more deleterious; i.e., equating the changes to leaching out of the rubber compound's constituents and/or replacement with components of the fuel. Obviously, exact interpretation of elastomer/fuel compatibility cannot be discerned from specific gravity data alone.

- (2) Plastics. Significant changes in specific gravities were observed for polypropylene and to a lesser extent nylon 6/12 in leaded 20 percent ethanol fuels (see Figures 17 through 20). The leaded PBT series, as a whole, was the least affected. The unleaded series was more consistent than the leaded series, and the two plastics which contributed significant changes were HDPE and nylon 6/12. The phenolic plastic, when exposed to leaded/10 percent methanol, effected greater increase than its 10 percent ethanol counterpart. With the exception of HDPE, the combination fuel (80/10/10) did not effect any major changes. Pure ethanol and methanol gravities did not change with the exception of the nylon 6/6 in methanol.
- (3) Metals. The specific gravities for the various metal-fuel/alcohol combinations do not show any significant changes in the fuel properties (see Figures 21 through 24). The controls of leaded/20 percent ethanol and leaded/10 percent methanol displayed higher values than the metal series counterparts. However, these values are considered within the experimental range and not significant.

THE POST OF THE PROPERTY OF TH

Figure 18. Specific gravity of test fucts conditioned with plantics.

ă

SPECIFIC ORAVITY

Figure 21. Specific gravity of

TOTAL CONTROL CONTROL OF THE CONTROL

SPECIFIC GRAVITY

Figure 23. Specific gravity of test facts cond

A Commence

AATAVRO OTATOARS

ALIAVID DISTORAL

b. Unwashed and Washed Cums.

(1) Elastomers. Optimization of fuel performance is contingent upon minimizing the so-called unwashed (existent) and washed-gum content; i.e., insoluble residues which can accumulate and foul engine performance. Generally accepted maximum values for unwashed gum vary from a low 3 mg/100 ml for aviation gasoline to 10 mg/100 ml for automobile gasoline, and no current limit for gasohol blends. Washed gum limits are primarily set at the 3 mg to 5 mg/100 ml level for most fuels with the latter value currently under consideration for Gasohol. Control values for the leaded fuel and its alcohol blends fell within these limits, while corresponding unwashed gum values for the unleaded fuel and its blend with 10/10 methanol/ethanol were significantly higher as was the washed gum value for that blend.

As is vividly demonstrated in the data tables and graphs (see Figures 25 through 40) exposure of typical fuel-resistant elastomers in leaded and unleaded fuels and their alcohol blends almost always results in significant increases in unwashed and washed gum content. However, these data must be viewed properly as a worst case situation, in that rubber compound samples were powdered in a mill prior to exposure, resulting in maximum exposed surface area. Thus, gum content values would be considerably higher than those normally obtained from diced compound samples as is usually required in end item specifications.

Comparison of gum content data for leaded vs. unleaded fuels and their alcohol blends does not reveal any distinct trend or pattern. In fact, several anomalies, such as reduced or abnormally higher gum content increase when the alcohol portion of a blend was increased, insignificant changes or values lower than those of the controls were observed. Nevertheless, some obvious conclusions can be derived.

Viton and fluorosilicone compounds contribute the least in terms of fuel gum contamination and are to be preferred for usage where this factor is critical. High nitrile-content NBR rubber, known to be superior in fuel resistance to its low nitrile counterpart, displays both washed and unwashed gum values essentially equivalent to those of the latter. The consistently higher values for ester urethane vs. the ether type, emphasize preference for the ethers. Phosphazene rubber values were high considering the material's known good resistance to fuel deterioration. However, it must be considered that the urethanes and especially phosphazene have demonstrated poor retention of properties when exposed to alcohol blends. Neoprene, used extensively in applications such as fuel hose and gaskets, along with polysulfide and the nitrile blends, evidenced the highest level of unwashed gum contamination. This tendency persists when a comparison among the washed gum values is made. Hypalon and ECO, which display intermediate unwashed gum values, tend to show proportionately higher washed gum values than would be expected.

1818年11月1日 1818年11月1日 1818年11日 1818年11月年11日 1818年11日 1818年11日 1818年11日 1818年11日 1818年11日 1818年11日 181

Figure 34. Washed gum content of text fuels condition

igure 40. Warhed gum content of test finds conditioned with electoriers

Since the nitrile/CPE and nitrile/PVC materials were obtained off-the-shelf, their exact formulations are not known. Otherwise, compounds used in this work were purposely prepared with no plasticizer content to preclude introduction of factors which could complicate data analysis. Current elastomeric end item specifications, covering for example, coated fabric tanks or hose, dictate limits such as 20 mg/100 ml for unwashed gum and 6 mg/100 ml for washed gum. These values are more realistic in that surface area contact would not be as great in end-item applications as was encountered with the powdered samples in this work. It is obvious that blended fuels can significantly alter fuel gum content contributions by elastomers. Therefore, fuel/elastomer compatibility must be closely monitored as must proper compound selection and specification, to achieve optimum system performance.

(2) Plastics. Since no definite criteria exist for establishing plastic/fuel compatibility, a level of 10 mg/100 ml was arbitrarily chosen as the point delineating negligible or significant effects of plastics on unwashed and washed gum content. In the case of unwashed gums, (see Figures 41 through 44) the following combinations produced values exceeding that limit: polyproylene-in all cases except the base leaded fuel, pure alcohols, leaded/10 percent ethanol and the unleaded 10/10 blend; nylon 6/6 in leaded/20 percent methanol; nylon 6/12 in methanol, leaded/10 percent methanol and both leaded/ethanols; phenolic in methanol and all methanol blends and leaded/20 percent ethanol; PBT in the leaded/ethanols. The most significant increase was noted for nylon 6/12, polypropylene and phenolic in leaded/10 percent methanol. The only fuel/plastic combinations which displayed significantly high washed gum values (see Figures 45 through 48) were; nylon 6/12 in leaded/10 percent methanol and 20 percent ethanol; polypropylene in leaded/10 percent methanol and unleaded/20 percent ethanol; and phenolic in pure methanol and leaded/10 percent methanol. Again, these three plastics were mostly affected by exposures to the leaded/10 percent methanol blend. These results demonstrate that plastics generally have a much less significant effect on fuel contamination, but isolated severe cases can occur and compatibility should be verified before using.

(3) Metals. Assuming the same guidelines for metals as were used for plastics, metal/fuel combinations displaying most significant unwashed gum changes (see Figure 49 through 52) were brass in unleaded/10 percent methanol, ethanol and the 10/10 mixture, brass in leaded/10 percent methanol and sinc in unleaded/10 percent methanol. When the washed gum determination (see Figures 53 through 56) was conducted, values for the zinc in unleaded/10 percent methanol and the brass in unleaded/10/10 mixture were reduced substantially, while the other noted brass/fuel values remained high. While the other metals—6061 aluminum and carbon steel—did effect some specific instances of increased gum content for blends as opposed to the pure fuels, none was considered of sufficient magnitude to influence end-item performance.

THE REPORT OF THE PROPERTY OF

Figure 51. Unwashed gum content of test fuels conditioned with metals.

c. Distillation. Distillation tests were performed on the samples to determine boiling point ranges and residue. ASTM Method D-86 was employed, utilizing a Precision Scientific automatic distillation apparatus. Complete temperature/volume recovery curves were recorded. Data points—from initial boiling point to end point, including losses and residue—were tabulated.

An attempt was made to correlate the distillation ranges of the fuels with the various test materials. An evaluation of the data to ascertain deleterious effects was inconclusive. The percent residue distillation data were tabulated and reviewed in an effort to correlate general trends of material incompatibility with the test fuels. Again, the analysis was inconclusive. It was evident that, although determination of temperature/volume recovery curves has relevance for fuel characterization, the data derived are not applicable to a material/fuel compatibility study. Distillation data are given in Tables 28 through 32.

d. Reid Vapor Pressure. Reid Vapor Pressure tests were performed on material samples to ascertain changes in volatility. The testing procedure as outlined in ASTM Method D323, Paragraph 6.4, and Modification Paragraph 6.2—cooling of an air chamber in a refrigerator at 4°C—was employed.

The lids used on the containers for the materials compatibility study did not provide airtight seals in all cases, consequently a random loss in volatility could arise. The preparation of fuel/alcohol blends for each 5-gal batch process also contributed to small losses in fuel volatility. A review of this test data when referenced to the control samples could not pinpoint small incremental changes with sufficient reliability. It was further evidenced that precise relationships of RVP with reference to materials could not be established from this study. However, the results are tabulated in Tables 25 through 27.

IV. CONCLUSIONS

9. Phase I.

- a. Generally, fuel/alchohol blends have a greater degradative effect on the physical properties and serviceability potential of typical fuel-resistant elastomers than do unleaded or leaded gasolines, methanol or ethanol, individually.
- b. Urethane elastomers should not be used for applications involving contact with alcohol or fuel/alcohol blends.
- c. Methanol, either singly or as a component of a gasohol, effects greater deterioration of elastomers than does ethanol.
- d. Methanol and ethanol, as constituents of fuel blends, cause the most pronounced acceleration of elastomer deterioration when at the 10 percent to 20 percent concentration level. Increased alcohol content produces proportionately lesser enhancement of swelling and tensile strength loss.
- e. Elastomers, such as the fluorocarbons, fluorosilicones, polysulfides and NBR/PVC blends display the best resistance to the deleterious effects of reference fuels and leaded and unleaded gasolines. Substitution of alcohols in these fuels imparts a slightly greater deterioration of tensile strength and increased swelling, but not to a sufficient degree that would disqualify these materials for military usage.
- f. The moderate fuel resistance of polychloroprene compounds is not adversely affected by substitution of alcohols in gasolines or reference fuels.
- g. ECO and NBR compounds, also moderately fuel resistant, display slight to significant deterioration of properties when exposed to fuel/alcohol blends. Endorsement for use where gasohol is involved should be monitored closely.
- h. PNT and CSM compounds inherently poorer in fuel and gasoline resistance should not be endorsed for use in gasohol blends.
- i. Fluorocarbon, fluorosilicone, polysulfide, and CSM compounds display adequate resistance to both diesel fuel and diesel/alcohol blends.
- j. NBR and polyurethane compounds display significant increased property degradation upon exposure to diesel/alcohol blends.
- k. Acceptability for use in diesel/alcohol blends of ECO, NBR/PVC, NBR/CPE, and chloroprene is marginal and contigent upon evaluation of all performance factors.

10. Phase II.

- a. The addition of alcohols to fuels has various effects on commonly used plastics in fuel systems. Due to the hygroscopic nature of methanol, plastics such as nylon 6/6 and nylon 6/6 glass-filled must be avoided. The plasticisation effects on polypropylene by most fuel mixtures with subsequent swell and loss of strength make it a poor choice for several components in these systems.
- b. More tests are necessary to obtain conclusive results regarding compatibility of PBT and phenolic resin with the various fuels used in this investigation.
- c. The corrosive action of alcohol blends on metallic materials could not be established within the scope of this study. Longer immersion periods at a higher temperature would be required to effect discernible visual changes on the surface of the metals studied.
- d. Coating of metals with a resinous plastic material is known to aid in the prevention of corrosion. When alcohol, especially methanol, is mixed with gasoline, its inherent deleterious effect along with its moisture content tend to nullify the intended corrosion prevention mechanism of the coating.

11. Phase III.

the analysis consider application and the second se

- a. The use of specific gravity measurements as a tool to determine fuel/elastomer compatibility is limited. Changes are usually minimal. However, extreme fuel effects, such as leaching of plasticizer and/or replacement with fuels can be isolated with the assistance of such information.
- b. Plastics and metals effect even less significant changes in fuel specific gravity, and any increases or decreases noted cannot be correlated with ultimate performance.
- c. Washed and unwashed gum determinations effectively delineate and substantiate elastomer/fuel compatibilities as derived from physical testing and volume swell measurements. The superiority of the fluorocarbon and fluorosilicone elastomers and the preference for polyether over polyester urethanes, particularly where contact with fuel/alcohol blends is involved, is evident. However, the ultimate significance of gum content is contingent upon specific end-item applications; i.e., the extent of fuel-elastomer contact.
- d. Polypropylene, nylon 6/12, and phenolic plastics contribute the highest washed and unwashed gum content to fuels. However, actual values, when compared to those for rubber, are lower. The extent of plastic/fuel contact of such end items is minimal. Thus, few isolated cases of contamination would be encountered.

- e. Certain metals such as brass and zinc can induce higher than normal washed and unwashed gum content in fuel/alcohol blends. Carbon steel and aluminum effects were not deemed significant.
- f. Reid vapor pressure and distillation data do not provide discriminating criteria from which fuel/material compatibilities can be derived.
- g. All of the fuels tested except for those exposed to fluorosilicone, Viton VTR-10, ether urethane, J-232 Polysulfide, 11ECO-1, and the Nitrile-PVC M-908 tank coating exhibited satisfactory oxidation stability performance.
- h. The fuels did not display any corrosive characteristics after exposure to the test materials.

and an experience of the second of the secon

APPENDIX A

COMPOUNDING INGREDIENTS AND SUPPLIERS LIST

	• •	
1-Agerite Resin D	Polymerised 1,2-dihydro-2, 2, 4 Trimethyl-Quinoline Antioxidant	R. T. Vanderbilt
2-Agerite Stalite S	Mixture of Octylated Diphenylamines, Antioxidant	R. T. Vanderbilt
3-Diak No. 7	Triallylicocyanurate	E. I. DuPont
4-Elastomag	Magnesium Oxide	Morton Chem.
5-ERD-90	Red Lead Dispersion	Wyrough & Loser
6-Hycar 1031	Acrylonitrile Butadiene Copolymer, Nitrile, (NBR) Rubber having high Acrylonitrile content	Goodrich Chem.
7-Hydrin 200	Epichlorohydrin Ethylene Oxide Polymer, ECO Rubber	Goodrich Chem.
8-Hypalon 48	Chlorosulfonated Polyethylene Rubber containing 48% Chlorine.	Dupont
9-Kenrich BLE	75% active powder of the reaction product of Diphenylamine and Acetone	Kenrich
10-Lithurge	Lead Monoxide	Eagle-Picher
11-Luperco lo1XL	2,5-Dimethyl - 2,5-Bis (t-Butylperoxy) Hexane, Organic Peroxide	Lucidol Div of Pennwalt
12-Luperco CST	2,4-Dichlorobenzoyi Peroxide in Silicone oil	Pennwalt
13-Muglite D	Magnesium Oxide, high activity	Merck & Co
14-MBTS	2,2' Di-Benzothianyl Disulfide	Uniroyal
15-Methyl Tuads	Tetramethylthiuram Disulfide	R. T. Vanderbilt
16-NBC	Nickel Dibutyldithiocarbamate	DuPont
17-Neoprene WRT	Polychloroprene Rubber with Crystallization resistance	DuPont

18-Paracril 18-80	Acrylonitrile Butadiene Copolymer, Nitrile Rubber (NBR), having low Acrylonitrile content	Uniroyal
19-PNF-200	Fluorophosphasene Rubber	Firestone
20-Santocure	N-t-Butyl-2-Benso-Thiasolesulfenamide	Monsanto
21-Silastic LS-53	Fluorosilicone Rubber	Dow Corning
22-Tetrone A	Dipentamethylene Thiuram Hexasulfide	DuPont
23-Thiokol ST	Polysulfide Rubber	Thikol Chem.
24-TP-95	Di(Butoxy-Ethoxy-Ethyl) Adipate Plasticiner	Thikol Chem.
25-Viton B-910	Fluorocarbon Elastomer, Viton B Rubber containing Accelerator and Curative	DuPont
26-Viton VT-	•	
R-4590	Improved fluids-resistant Fluorocarbon Elastomer	Dupont
27-Vulcup 40 KE	2-2' -Bis (t-Butyl Peroxy) Diisopropylbensene on Burgess KE clay	Hercules
· 28-Warecure C	Ethylene Thiorurea active ingredient coated with oil	Ware Chem.

APPENDIX B

ANALYSIS OF AROMATIC CONTENT OF LEADED AND UNLEADED GASOLINES

Sample No.	Туре	Aromatics	Olefins	Saturates
10	Leaded	29.7	3.3	67.0
11	Unleaded	32.8	2.8	64.4
11A	Unleaded	36.8	2.3	59.1

Method: ASTM D1319

Performed by: US Army Fuels & Lubricants Research Laboratories

Southwest Research Institute

San Antonio, Texas

APPENDIX C

CONVERSION TABLE

U.S.	TO	SI
1 lb/in.*		6.894757 kPA
ounce (fluid)	-	29.5735 cm ⁸
sq. in. (in. ^a)	.=	6.4516 cm ²
lb (avoir)	=	0.4536 kg
°C	=	5/9 (°F - 32)

DISTRIBUTION FOR MERADCOM REPORT 2366

No. Copies	Addressee	No. Copies	Addressee
	Department of Defense	1	Director Army Materials and Mechanics Research
1	Director, Technical Information Defense Advanced Research Projects Agency		Center ATTN: DRXMR-PL, Technical Library Watertown, MA 02172
	1400 Wilson Blvd Arlington, VA 22209	1	Technical Library
	Armigton, VA 22209	•	Chemical Systems Laboratory
1	Director		Aberdeen Proving Ground, MD 21010
	Defense Nuclear Agency		
	ATTN: TITL	1	Commander
	Washington, DC 20305		US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch)
12	Defense Technical Information Center Cameron Station	•	Aberdeen Proving Ground, MD 21005
	Alexandria, VA 22314	1	Director US Army Materiel Systems Analysis Agency
	Department of the Army		ATTN: DRXSY-CM Aberdeen Proving Ground, MD 21005
1	Commander, HQ TRADOC		
_	ATTN: ATEN-ME	1	Director
	Fort Monroe, VA 23651		US Army Materiel Systems Analysis Agency ATTN: DRXSY-MP
1	HQDA (DAMA-AOA-M)		Aberdeen Proving Ground, MD 21005
	Washington, DC 20310		•
	_	1	Director
1	HQDA (DALO-TSM)		US Army Ballistic Research Laboratory
	Washington, DC 20310		ATTN: DRDAR-TSD-S (STINFO) Aberdeen Proving Ground, MD 21005
1	HQDA (DAEN-RDL)		
	Washington, DC 20314	1	Director US Army Engineer Waterways Experiment
1	HQDA (DAEN-MPE-T)		Station
	Washington, DC 20314		ATTN: Chief, Library Branch Technical Information Center
1	Commander		Vicksburg, MS 39180
	US Army Missile Research &		-
	Development Command	1	Commander
	ATTN: DRSMI-RR		US Army Armament Research & Dev
	Redstone Arsenal, AL 35809		Command
			ATTN: DRDAR-TSS #59
			Dover, NJ 07801

No. Copies	Addressee	No. Copies	Addressee
1	Commander US Army Troop Support & Aviation Materiel Readiness Command ATTN: DRSTS-MES (1) 4300 Goodfellow Blvd	1	HQDA ODCSLOG DALO-TSE Room 1 E588 Pentagon, Washington, DC 20310
!'. :	St. Louis, MO 63120	1	Plastics Technical Evaluation Center
2	Director Petrol & Fld Svc Dept US Army Quartermaster School	• ·	ARRADCOM, Bidg 3401 ATTN: A.M. Anzalone Dover, NJ 07801
.	Fort Lee, VA 23801	1	Commander
1	Commander US Army Electronics Research & Development Command Technical Library Division	1	Frankford Arsenal ATTN: Library, K2400, B151-2 Philadelphia, PA 19137
	ATTN: DELSD-L Fort Monmouth, NJ 07703	1	Commandant US Army Engineer School ATTN: ATZA-CDD
1	President US Army Aviation Test Board ATTN: STEBG-PO	1	Fort Belvoir, VA 22060 President
1	Fort Rucker, AL 36360 US Army Aviation School Library P.O. Drawer O		US Army Airborne, Communications & Electronics ATTN: STEBF-ABTD Fort Bragg, NC 28307
	Fort Rucker, AL 36360	1	Commander
2	HQ, 193D Infantry Brigade (Pan) ATTN: AFZU-FE APO Miami 34004	ı	Headquarters, 39th Engineer Battalion (Cbt) Fort Devens, MA 01433
2	Special Forces Detachment, Europe ATTN: PBO APO New York 09050	1	President US Army Armor and Engineer Board ATTN: ATZK-AE-PD-E Fort Knox, KY 40121
2	Engineer Representative USA Research & Standardization Grou (Europe) Box 65 FPO 09510	ıp 1	Commander and Director USA FESA ATTN: FESA-TS Fort Belvoir, VA 22060
1	Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 61201	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL (Tech Library) White Sands Missile Range, NM 88002

PRINCIPAL MANAGEMENT PRINCIPAL PROPERTY OF THE PROPERTY OF THE

No. Copies	Addressee !	No. Copies	Addressee
1	HQ, USAEUR & Seventh Army * Deputy Chief of Staff, Engineer ATTN: ALAEN-MT-P APO New York 09403	2	Commander, Naval Facilities Engineering Command Department of the Navy ATTN: Code 032-B
1	HQ, USAEUR & Seventh Army Deputy Chief of Staff, Operations ATTN: AEAGC-FMD		062 200 Stovall St Alexandria, VA 22332
	APO New York 09403	1	US Naval Oceanographic Office Navy Library/NSTL Station
	MERADCOM		Bay St. Louis, MS 39522
i	Commander, DRDME-Z Technical Director, DRDME-ZT Assoc Tech Dir/R&D, DRDME-ZN Assoc Tech Dir/Engrg & Acq, DRDME-Spec Asst/Matl Asmt, DRDME-ZG	1 ZE	Library (Code LOSA) Civil Engineering Laboratory Naval Construction Battalion Center Port Hueneme, CA 93043
	Spec Asst/Scs & Tech, DRDME-ZK CIRCULATE	1	Director Earth Physics Program Code 464
1	Chief, Ctrmine Lab, DRDME-N Chief, Engy & Wtr Res Lab, DRDME-G Chief, Elec Pwr Lab, DRDME-E		Office of Naval Research Arlington, VA 22217
	Chief, Mar & Br Lab, DRDME-M Chief, Mech & Constr Eqpt Lab, DRDM Chief, Ctr Surv & Ctr Intrus Lab, DRDME-X	1 IE-H	Navai Training Equipment Center ATTN: Technical Library Orlando, FL 32813
	Director, Product A&T Directorate, DRDME-T		Department of the Air Force
	CIRCULATE	1	HQ USAF/RDPT ATTN: Mr. Allan Eaffy
10 30	Matl Tech Lab, DRDME-V Rub & Ctg Res Gp, DRDME-VU		Washington, DC 20330
3	Tech Reports Ofc, DRDME-WP	1	HQ USAF/LEEEU
3	Security Ofc (for liaison officers), DRDME-S		Chief, Utilities Branch Washington, DC 20330
2	Tech Library, DRDME-WC		
1	Programs & Anal Dir, DRDME-U	1	US Air Force
1	Pub Affairs Ofc, DRDME-I		HQ Air Force Engineering & Services Ctr
1	Ofc of Chief Counsel, DRDME-L		Technical Library FL 7050 Tyndall AFB, FL 32403
	Department of the Navy	1	Chief, Lubrication Br
1	Director, Physics Program (421) Office of Naval Research Arlington, VA 22217	-	Fuels & Lubrication Div ATTN: AFWAL/POSL Wright-Patterson AFB, OH 45433

である。 「大きない」とは、「大きない」というできない。 「大きない」というできない。 「大きない。 「たない。 「たない。

No. Copies Addressee

ANTERIOR CONTRACT STATES STATES STATES STATES STATES

ACCOUNT TO THE PARTY OF THE PAR

No. Copies Addressee

Department of Transportation Library, FOB 10A, M494-6 800 Independence Ave, SW Washington, DC 20591

Others

- 1 Professor Raymond R. Fox
 School of Engineering and Applied
 Science
 George Washington University
 Washington, DC 20052
- 1 Reliability Analysis Center
 Rome Air Development Center
 RADC/RBRAC (I.L. Krulac)
 Griffiss AFB, NY 13441