

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Campus Taguatinga Ciência da Computação – Teoria da Computação – Prova I – 2°/2019 – Conceitos Preliminares, Máquinas de Turing, Decidibilidade Prof. Daniel Saad Nogueira Nunes

| Aluno:                       |  |
|------------------------------|--|
| Matrícula:                   |  |
| Data: 13 de setembro de 2022 |  |
|                              |  |

Tabela de notas (uso exclusivo do professor)

Duração da prova: 120 minutos

| Questão | Pontos | Nota |  |
|---------|--------|------|--|
| 1       | 2      |      |  |
| 2       | 3      |      |  |
| 3       | 3      |      |  |
| 4       | 2      |      |  |
| Total   | 10     |      |  |

# Observações

- Esta prova tem o total de 2 páginas (incluindo a capa) e 4 questões.
- O número total de pontos é 10.
- Certifique-se de assinar todas as folhas de resposta bem como a capa da prova.
- Leia atentamente todas as questões da prova. A interpretação do problema é crucial para o desenvolvimento correto da resposta.
- Resoluções sem justificativa não serão consideradas.
- É vedado o uso de equipamentos eletrônicos, como celulares, notebooks entre outros.
- A prova será anulada e medidas disciplinares serão tomadas para os alunos que "colarem" durante a avaliação.
- ★ Certifique-se de assinar todas as folhas de resposta.

#### Questão 1 (2 pontos)

De acordo com os conceitos envolvendo Máquinas de Turing e Decidibilidade:

- (a) (1 ponto) Suponha que você queira resolver um problema, isto é, verificar que uma linguagem é decidível. No entanto, não houve sucesso em sua tentativa. Isso significa que o problema não é Turing-decidível? Justifique a sua resposta.
- (b) (1 ponto) Defina linguagens decidíveis e reconhecíveis.

#### Questão 2 (3 pontos)

Tome a seguinte descrição de Máquina de Turing:

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\};$
- $q_0$  é o estado inicial;
- q<sub>5</sub> é o estado de aceitação;
- q<sub>6</sub> é o estado de rejeição;
- O alfabeto de entrada é  $\Sigma = \{0, 1\}$ ;
- O alfabeto da fita é  $\Gamma = \Sigma \cup \{\sqcup, x\};$
- $\bullet\,$  A função de transição  $\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R\}$  tem a seguinte forma:

| Símbolo/Estado | $q_0$              | $q_1$         | $q_2$         | $q_3$              | $q_4$              | $q_5$ | $q_6$ |
|----------------|--------------------|---------------|---------------|--------------------|--------------------|-------|-------|
| 0              | $(q_1, \sqcup, R)$ | $(q_1,0,R)$   | $(q_3, x, L)$ | $(q_3, 0, L)$      | $(q_1,\sqcup,R)$   |       |       |
| 1              | $(q_2, \sqcup, R)$ | $(q_3, x, L)$ | $(q_2, 1, R)$ | $(q_3, 1, L)$      | $(q_2, \sqcup, R)$ |       |       |
| Ш              | $(q_5, \sqcup, R)$ |               |               | $(q_4, \sqcup, R)$ | $(q_5,\sqcup,R)$   |       |       |
| x              |                    | $(q_1, x, R)$ | $(q_2, x, R)$ | $(q_3, x, L)$      | $(q_4, \sqcup, R)$ |       |       |

• Todas as transições não dispostas vão para o estado de rejeição.

Explique a lógica de cada estado e diga qual a linguagem reconhecida por ela.

### Questão 3 (3 pontos)

Verifique que a linguagem abaixo é decidível ao construir uma Máquina de Turing que a decida.

$$L=\{0^i1^j|i,j\in\mathbb{N}\cup\{0\}\land 0\leq i\leq j\}$$

## Questão 4 (2 pontos)

Demonstre que se uma linguagem L é Turing-reconhecível, mas não Turing-decidível, então  $\bar{L}$  não pode ser Turing-decidível. Use o fato de que se uma linguagem L é decidível, então  $\bar{L}$  também é.

\* Certifique-se de assinar todas as folhas de resposta.