I/1. Gyógyszerfejlesztés

Kulcsszavak: biológiai szűrés, biomarker, evidencia, excipiens, farmakogenetika, farmakogenomika, formuláció, generikum, gyógyszer, gyógyszerjelölt, hatóanyag, indikátor-változó, innovatív termék, intention-to-treat, kiegészítő végpont, kombinációs vegyészet, metabolizmus vizsgálat, originalitás, per protocol, POC, preklinikai fázis, proteomika, stabilitás-vizsgálat, tolerancia-vizsgálat, toxikológiai vizsgálat

1.1. Tartalom

1.1. Tartalom	1
1.2. Bevezetés	1
1.3. Definíciók	1
1.4. A gyógyszerré válás folyamata	4
1.4.1. A gyógyszerfejlesztés szemlélete és lépései	4
1.4.2. Preklinikai fázis	5
1.4.3. Humán fázis I	6
1.4.4. Humán fázis II	6
1.4.5. Késői (III-IV) humán fázisok	7
1.5. A gyógyszerfejlesztést befolyásoló tényezők, előrejelzések	7
1.6. A gyógyszerfejlesztés üzleti mutatói és üzenetük az új évezredre	8
1.7. A farmakogenomika-farmakogenetika szerepe a gyógyszerfejlesztésben	8
1.8. Összefoglalás	9
1.9. Irodalomjegyzék	9

1.2. Bevezetés

A gyógyszerfejlesztés koncentrált ipari kutatási-fejlesztési tevékenység, amelyben a végtermék, a gyógyszer bizalmi áruként szerepel. A technikai lehetőségek fejlődése az elmúlt évtizedek folyamán számos változást hozott a gyógyszerkutatás terén. Ennek legszembetűnőbb megnyilvánulása a gyógyszeripar nemzeti jellegének háttérbe szorulása, a multinacionális, globalizálódó gazdaság és az egyre szigorúbban ellenőrzött, nemzetközi elvárásoknak megfelelően minőségbiztosított nagyüzemi módszereket alkalmazó termelés.

A gyógyszerjelölt életciklusa a felfedezéstől a gyógyszertárak polcáig tekintélyes időt, emberi és anyagi erőforrásokat ölel fel, amely során a hatékonyság és a biztonság optimális arányát minden lépésnél biztosítani kell. A 10-15 éves folyamat eredményeként a *gyógyszerjelölt* a törzskönyvezés pillanatától immár *gyógyszerként* folytatja tovább életciklusát.

Könyvünk ennek az életciklusnak a bemutatását tűzte ki célul, ez a fejezet pedig áttekintést kíván nyújtani a gyógyszerfejlesztés általános kérdéseiről.

1.3. Definíciók

Magyar nyelvű kifejezés	Angol nyelvű kifejezés	Rövidítés	Magyarázat
9	blockbuster drug		olyan gyógyszerkészítmény, amelyik előállítójának teljes piaci életciklusa folyamán legalább 1 milliárd USD bevételt hoz. A "mega-blockbuster" készítmény már piaci bevezetésének első évében kitermeli az egy milliárd dolláros bevételt
	benchmarking		a folyamatoptimalizálás első lépése, amely a gyógyszer felfedezésétől a fejlesztés folyamatában egyedi lépések illetve lépéssorok-programok teljesítményének mérésével azonosítja a nem megfelelő folyamatelemeket.
	single nucleotide polymorphism	SNP	olyan bázispár a genom DNS-ben, amelynek különböző szekvencia-alternativái (alléljei) a normál népességben fellelhetőek és a legritkább allél előfordulási gyakorisága ≥ 1%; a pontmutáció és a SNP között tehát elvi különbség nincsen, pusztán a gyakoriságuk különböző
"árva" gyógyszer	orphan drug		olyan kórképek gyógyítására kifejlesztett vegyület, amelyek előfordulási gyakorisága meglehetősen alacsony (USA: < 200 000 beteg az össznépességben; EU: < 5 beteg / 10 000 lakos)
abszorpció, disztribúció, metabolizmus, exkréció	absorption, distribution, metabolism, excretion	ADME	a betűszó gyűjtőfogalom a gyógyszer sorsának farmakokinetikai elemeire; alkalmazható mind magára a folyamatsorra, mind pedig a humán farmakokinetikai vizsgálatokra (pl. fázis I vizsgálatok): ADME-study
bizonyító vizsgálat, igazoló vizsgálat	confirmatory study (trial), Proof Of Concept (Proof Of Principle) study	POC	A fejlesztési ciklus mindkét végpontján találkozhatunk bizonyító erejű vizsgálatokkal. Ü Az igen korai, preklinikai fázisban olyan perdöntő in vitro vagy állatkísérletek, amelyek meghatározzák a vegyület farmakológiai hatását Ü A humán vizsgálatok körében a szóban forgó vegyület preklinikai adatai vagy megel őző humán vizsgálatai alapján megjósolt farmakológiai vagy klinikai hatását mutatják ki. A feltáró vizsgálatok szemléltető koncepcióit robusztus klinikai és statisztikai tervezési-analitikai elemeik révén erősítik meg , így a Bizonyítékokon Alapuló Orvoslás (Evidence Based Medicine = EBM) eszköztárában "evidenciaként" szerepelhetnek.
farmakodinámia	pharmacodynamics	PD	A farmakodinámia a gyógyszer és a szervezet fiziológiai kölcsönhatásának, a gyógyszerválasz folyamatának meghatározásával foglalkozik. Farmakokinetikai paraméterek és molekuláris biológiai eszközök bevonásával jellemzi a koncentráció-válasz összefüggését.

Magyar nyelvű kifejezés	Angol nyelvű kifejezés	Rövidítés	Magyarázat
farmakogenetika	pharmacogenetics		A gyógyszermetabolizmus örökletes különbségeit (variációit) vizsgáló tudományág. Noha értelmezése alapvetően eltér a farmakogenomikától, a két fogalmat sokszor használják egymás szinonímájaként: míg a farmakogenetika történetileg inkább fenotipizáló megközelítéssel él, a farmakogenomika genotipikus szemléletű. A genetika és a genomika önálló definícióiban a genetika, mint egy-egy gén statikus, pillanatszerű vizsgálata szerepel míg a genomika a genom egészét dinamikus egységként tekinti.
farmakogenomika	pharmacogenomics		A gyógyszer szervezeten belüli sorsát meghatározó géneket vizsgáló tudományág. Noha értelmezése alapvetően eltér a farmakogenetikától, a két fogalmat sokszor használják egymás szinonímájaként.
farmakokinetika	pharmacokinetics	PK	A farmakokinetika a gyógyszerek szervezeten belüli sorsának (ld. ADME) mennyiségi jellemzésével foglalkozik. Vizsgálódásának fő tárgya a különböző biológiai mintákban (testnedvek, excretumok) a beadás óta eltelt idő függvényében meghatározott gyógyszer/metabolit-koncentráció illetve e paraméterek grafikus kifejezése, a kinetikai görbe.
feltáró vizsgálat	exploratory study (trial)		általában korai humán fázisú (I-II) vizsgálati típus, célja a későbbi (III-IV) fázisokban megerősítésre váró hipotézisek felvetése
kombinációs vegyészet	combinatorial chemistry		Molekulaszintézis többkomponensű építőelemekből többkomponensű reakció-végtermékké. Az ilyen módon létrehozott molekulakeverékek, molekulakönyvtárként, kiindulásul szolgálhatnak újabb szintézis-lépéshez vagy dekódolásuk (széválasztásuk) után vezérmolekula kiválasztásának.
kutatás-fejlesztés	research and development	K+F (magyar) R&D (angol)	Az OECD definíciója alapján: olyan szervezett, kreatív tevékenység, amely az emberi ismeretanyagot bővíti és ezt az ismeretanyagot új, eredeti felhasználási területként alkalmazza.
párhuzamos nagyteljesítményű tesztelés	parallel high throughput testing	HTS	kombinatorikus könyvtárból vagy más molekulaforrásból származó minták biológiai aktivitásának gyors, párhuzamos megállapítása; a technológia erőteljes informatikai és robotikai hátteret feltételez a minták hatékony automatizált mozgatásához/kezeléséhez
proteomika	proteomics		A fehérjék leíró tudománya, azonosításukon és mennyiségi meghatározásukon túl lokalizációjukat, kölcsönhatásokat és – végső célkitűzésként – funkciójukat hivatott feltárni. A vizsgálódásának tárgyául szolgáló proteom statikus definíciója szerint a genomban kódolt proteinek összessége – míg dinamikus értelmezésben a sejt aktuális proteinállománya, amely folyamatos változáson megy keresztül belső és külső környezeti hatásokra.
új hatóanyag törzskönyvezési kérelme	New Drug Application	NDA	törzskönyvi kérelem; a hatóanyag benyújtandó preklinikai és klinikai dokumentációjára vonatkozóan szigorú formai és tartalmi elemeket határoz meg az illetékes hatóság (az NDA rövidítés eredetileg az FDA terminológiája)

Magyar nyelvű kifejezés	Angol nyelvű kifejezés	Rövidítés	Magyarázat
vezérmolekula	lead		olyan molekula, amelyik újdonsága révén, hatás, szelektivitás, egyéb PD / PK paraméterei és atoxikus volta alapján sikerrel képezheti egy gyógyszerfejlesztési program alapvegyületét
vezérmolekula optimalizálás	lead optimization		egy, a szűrés során biológiailag aktívnak mutatkozó vegyület ("hit") molekulaszerkezetének módosítása a klinikai sikerhez szükséges fizikai-kémiai, sztereokémiai, PK, PD illetve toxikológiai tulajdonságok elérése érdekében

1.4. A gyógyszerré válás folyamata

1.4.1. A gyógyszerfejlesztés szemlélete és lépései

A gyógyszerek hagyományos módszerekkel történő felfedezésének forradalma lejárt: a századelőn Fleming egyszemélyes bravúrja a penicillin felfedezésével vagy Domagk szisztematikus, "kézi" próbálgatása ("trial and error") egy német vegyi gyár szertárának teljes listáján a Salvarsanért, a syphilis meggyógyítása érdekében – a mai világban már egy megismételhetetlen, letűnt aranykor üzenetei. A gyógyszeripar nagyüzemmé vált, népes kutatógárdával, számítógépek arzenáljával folyik a kutatás-fejlesztés, a betegeket, a humán értékeket körülbástyázva minőségi és biztonsági óvintézkedésekkel.

Ez az uniformizmus komoly etikai, szakmai és ipari érdekeket képvisel, másfelől nem csekély adminisztratív-bürokratikus keretek közé szorítja a kutatói szellemet, a kreativitást.

A klasszikus gyógyszerfejlesztés stádiumai, – ú.m. a synthesis, *in vitro* vizsgálatok, *in vivo* vizsgálatok hatástani illetve toxikológiai célzattal állatokban, majd pedig a humán preklinikai-klinikai vizsgálatok – jelenleg is a gyógyszerjelölt életciklusának alappillérei, de ezen belül módszerei jelentős átalakuláson mennek keresztül a kombinációs vegyészet, a nagyteljesítményű technológiák megjelenésével és a molekuláris biológia, a genetika vívmányai révén. A kiélezett piaci versenyhelyzet és a gazdaságosság kettős szorításában a gyógyszerjelöltek fejlesztésének üteme hallatlanul felgyorsult – egészen a korai humán kipróbálásig, amely viszont mindmáig a fejlesztés szűk keresztmetszetét képviseli.

A gyógyszerfejlesztés számos lépésen keresztül ("drug discovery pipeline") jut a végkifejlethez – noha egy hatóanyag életciklusa korántsem zárul le annak törzskönyvezése után:

- ü a molekula felfedezése, azonosítása
- **ü** preklinikai vizsgálatok (in vitro és in vivo toxikológiai és farmakológiai állatkísérletes illetve humán sejt/szövetkultúra modellek)
- ü humán fázis I-II-III vizsgálatok
- ü törzskönyvi benyújtás és elbírálás
- ü fázis IV és poszt-marketing (PMS) vizsgálatok

A humán vizsgálatok száma az 1970-es évektől világszerte töretlenül felfelé ívelő tendenciát mutat, ahogyan az FDA-hoz benyújtott gyógyszertörzskönyvezési kérelmek száma is hasonlóan változott. Az alábbi táblázat a vonatkozó hazai adatokat szemlélteti.

Engedélyezett	<i>ο</i> νόονς	ervizsgálat	ok Magyar	országon (OGYI adatai	(alanián)
Ling cuciy caci	~ 10~ 104	,ciril,b, aimi	on many yar	or state on t	OOII uuuuu	" umpjun,

Év à Vizsgálati típus â	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
I. fázis	3	3	0	5	1	2	5	6	4	7
II. fázis	1	6	14	18	16	26	25	24	27	37
III. fázis	57	69	83	65	84	101	148	141	164	129
Bioekv.	4	3	4	65	8	24	17	12	12	14
IV. fázis	2	31	24	65	63	71	74	72	50	39
PMS	1	1	_	_	ı	ı	I	22	33	72
Összesen	67	112	125	144	172	224	269	177	290	298

A gyógyszerfejlesztési versenyben a fejlesztés gyorsítása alapvető érdeke a gyógyszeripar minden szereplőjének, csakúgy, mint a fogyasztóknak – a betegeknek –, a mihamarabbi optimális kezeléshez jutás reményében. Az akcelerációs paradoxon a minőség megőrzése mellett csak gondos odafigyelés révén oldható meg, példaképpen a következő eszközökkel:

- ü a klinikai fejlesztési fázisok átfedése, illetve átfedő megnyújtása "teleszkópolása"
- ü többes célkitűzésű vizsgálati elrendezések
- ü a klinikai vizsgálati tervek egyszerűsítése és a határidők racionalizálása
- ü egyes vizsgálatok kihagyása illetve késleltetése.

1.4.2. Preklinikai fázis

A preklinikai fázis (fázis "0") magában foglalja a vegyület felfedezését: a molekulák szintézis vagy kinyerés (extrakció) útján kerülhetnek a fejlesztési rendszerbe. Az extrakció természetes forrásokból - pl. növényi, állati, ásványi alkotórészekből - történik, míg a szintézis mesterséges molekulalétrehozási forma. A kombinációs vegyészet megdöntötte azt a hagyományos vegyészeti szemléletet, amely az A + B = C reakcióútnál 'A' és 'B' egykomponensű voltát tekintette előnyösnek. Manapság 'A' lehet akár tíz vegyületből álló keverék, B akár ötelemű kompozit. A 'C' végtermék ebben az esetben egy ötven tagból álló keverék. A fenti bemutató példa azonban távol áll a jelenlegi technológiai korlátoktól: a hi-tech biotechnológiai cégeknél egyáltalán nem elképzelhetetlen egy több millió komponensű keverék előállítása és sikeres dekódolása, azaz szétválasztása sem! A kombinatorikus vegyészet létrehozza tehát azokat a molekulakönyvtárakat, kémiai adatbázisokat, amelyek a szinte hihetetlen léptékű szintézis építőkockáiként szolgálnak. Ezeknek az adatbázisoknak a célzott kivonatolása (vezérmolekula felfedezés = lead discovery) és az esélyes molekulák szerkezetének módosítása (lead optimization) révén a korábbi szöveti/receptoriális hatáselemzési hatékonyság lényegében két nagyságrenddel emelkedett (75000 molekula/kutató/év értékről 75000/kutató/1.5 nap értékre): a kis strukturális eltéréssel szűrésre kerülő molekulák száma, egy évre vetítve a korábbi tízezres nagyságrendről milliós nagyságrendre szökellt.

A *molekulaszűrés* ezen mennyiségi változásai azonban mit sem érnének, ha biológiai hatásukban hasznavehetetlen vegyületek lepnék el a kutató laboratóriumok polcait: az egyik legnagyobb problémát éppen a farmakokinetikailag, farmakodinámiásan ígéretes molekulák kiválasztása jelenti. Az előrelátásnak már ekkortájt ki kell terjednie a humán fázis I vizsgálatokra is – így csökkentve a PK szempontból elégtelen vegyületek humán fázis I visszautasítását. A *biológiai szűrés* ("screening")

állatokon, izolált humán sejtvonalakon vagy klónozott receptorhelyeken történik, nagy teljesítményű technológiákkal és a nyert eredményeket matematikai modellekkel erősítik meg. Mindezen törekvések ellenére számos módszer érdemben csak kvalitatív eredményeket szolgáltat, ezért prediktív értékük is korlátozottabb.

A gyógyszerészeti formuláció és stabilitás-vizsgálat a molekula életciklusának következő lépése. A készítmény az aktív hatóanyagon kívül különféle excipienseket, hordozóanyagokat tartalmaz, amelyek pl. per os készítmény esetén javítják az ízhatást, biztosítják a fiziko-kémiai stabilitást, módosítják (elnyújtják) a felszívódási viszonyokat, helyi készítményekben meggátolják a baktériumok szaporodását.

A *toxikológiai vizsgálatok* célja annak megállapítása, hogy a készítmény milyen kockázatot képvisel az emberre éa környezetére nézve. Ezek a vizsgálatok állatokon, szövetkultúrákon zajlanak a dózisszint, adagolási gyakoriság, expozíció időtartama és az élőlények rövid- vagy hosszútávú túlélésének összefüggését elemezendő.

1.4.3. Humán fázis I

A preklinikai PK-PD adatokra támaszkodó **humán fázis I vizsgálatok** kialakításánál érdemes két alfázist – Ia és Ib – elkülöníteni. A *fázis Ia vizsgálatok* tájékozódó jellegű PK / metabolizmus vizsgálatok, amelyek alacsony, farmakológiai vagy klinikai hatást nem okozó dózistartományban történnek, egyedi vagy több molekulát felölelő, szinkron adagolással . A *fázis Ib vizsgálat* már klasszikus akut tolerancia-vizsgálat, amelyben a vegyület biofarmakológiai sajátosságai tovább pontosíthatóak.

Az Ia/Ib szétválasztásnak etikai és tudományos-gyakorlati haszna is van:

- **ü** minimalizálja annak a lehetőségét, hogy az egészséges önkéntesek egy kedvezőtlen PK tulajdonsággal rendelkező, továbbfejlesztés szempontjából kevéssé esélyes vegyületből magas dózisokban részesüljenek
- ü tovább csökkenthető a preklinikai szűrésben felhasznált állatok száma
- **ü** tovább csökkenthető a szintetizálandó készítmény-mennyiség, ha a vegyület már egy fázis Ia vizsgálatban elbukik
- **ü** tovább finomíthatóak a megfeleltetések a fiziko-kémiai sajátosságok, az *in vitro* és a humán PK adatok között, amely lehetőséget teremt *in situ* számítógépes modellek kialakítására

1.4.4. Humán fázis II

A fázis II vizsgálatok a POC (Proof Of Concept), azaz igazoló vizsgálatok körében meghatározó szerepet töltenek be. Az V. EUFEPS konferencia definíciója a fázis II POC vizsgálatokról így szól: "Olyan humán vizsgálat, amely tudományosan megalapozott bizonyítékot szolgáltat az új terápiás készítmény felvetett hatására vonatkozóan, ahol a 'hatás' számottevő farmakológiai hatást vagy kórjelző biomarkerek változását, kiegészítő végpontok vagy klinikai kimenetelek teljesülését jelenti és természetében kedvező vagy toxikus lehet." Mivel a fázis II POC vizsgálat a vegyület továbbfejlesztéséről dönt, azaz "go/no-go" jellegű befektetési döntés, ezért egyik legkritikusabb része a fejlesztési programnak. Nehezen mérhető, vagy lassan kialakuló klinikai hatásprofil esetén jó szolgálatot tehetnek a *kiegészítő végpontok* ("surrogate endpoint"), *biomarkerek* meghatározása. Megfelelő laboratóriumi panelek segítségével az elhúzódó toxicitás is pontosabban megjósolható. A biomarkerek új generációját sikerült azonosítani a genomika és proteomika friss felfedezései révén, amelyek jól alkalmazhatók a biztonságosság megítélésében, ú.m. sérülés-specifikusan indukálható géneket, a sejthalál biomarkereit, sejtbeszűrődést jelző chemokineket és felszíni narkereket, a sejtintegritás szövetspecifikus markereit, funkcionális markerként szolgáló szignálmolekulákat és további kórfolyamat-progressziót jellemző markereket.

1.4.5. Késői (III-IV) humán fázisok

A különböző klinikai fázisok vizsgálatainak célkitűzése eltérő: a korai fázisokban (I, II) feltáró jellegű (exploratory) a vizsgálati tervezés, míg a **későbbi fázisok (III, IV**) a Bizonyítékokon Alapuló Orvoslás magasrendű bizonyítékaiként ("evidencia") szolgáló, bizonyító erejű vizsgálati elrendezések. Az "*intention-to-treat*" elemzéstől, amikor az összes randomizált beteg – függetlenül attól, hogy kapott-e kezelést vagy sem – részt vesz a végső statisztikai feldolgozásban, a terápiás választ az idő függvényében aggregáló-integráló *fix dózisú* vagy *dózistitrációs elrendezéseken* keresztül a protokoll-szerinti populáció ("*per protocol population*") elemzésen keresztül – amikor a statisztikai elemzésből a kezelést nem kapott betegeket kizárják, csakúgy, mint a hiányos-tisztázatlan adatú betegeket.

A vizsgálati tervezés "öntanuló" voltát erősítik például

- **ü** a módosított "intention-to-treat" elrendezés, amely lehetővé bizonyos kiindulási paraméterekkel rendelkező betegek kizárását az elemzésből
- **ü** az indikátor-változók elemzése (instrumental variable analysis), amely egy vagy több, a kezelési változók variabilitását biztosító, ám a fő kimeneteli változókra közvetlen hatást nem okozó változó jelenlétén alapul
- **ü** adaptív stratégiák, amelyek az eredmények alapján visszacsatolásos elemzési változtatásokat eszközölnek
- **ü** dózis/koncentráció-válasz vizsgálatok, amelyek adott dózistartományokat vagy specifikus gyógyszer cél-koncentrációkat határoznak meg a dózis-hatás összefüggések kimutatására.

1.5. A gyógyszerfejlesztést befolyásoló tényezők, előrejelzések

Felmérések adatai rámutatnak arra, hogy az életkor előrehaladtával a gyógyszerrendelés – azaz a felírt vények száma – emelkedik, és a teljes élethosszra vetített össz-vénymennyiség 70%-át a 60. életév utáni gyógyszerfogyasztás teszi ki. Mindez egybecseng a civilizált világ korfájának alakulásával is. A XXI. század derekára nemzetközi előrejelzések a következő általános változásokat vetítik előre:

- ü az átlagéletkor emelkedésével kitolódik a nyugdíjas korhatár (70 év az előrevetített érték)
- ü összetételét és a szerepvállalást illetően női dominanciájú társadalomra számítanak az elemzők
- ü világszerte javul az emberek életminősége
- **ü** a molekuláris genetika és a sejtbiológia forradalmasítja a gyógyítást és a betegségek korai megelőzését.

A gyógyszerpiac is mindezekhez az előrejelzésekhez idomul:

- ü a demográfiai változások miatt megnő a társadalmi igény a minőségi gyógyszerekre
- ü az idült betegségek gyógyszeres kezelése dominánssá válik az acut-subacut kórállapotokkal szemben
- ü új kezelési eljárások növelik a várható élettartamot és javítják az életminőséget
- ü a gyógyszeres kezelés költségét gazdasági és orvos-szakmai érvek alapján szükséges kialakítani.

A minőség igénye igen korai keletű, s a több évszázados német tisztasági törvény – amely eredetileg a sörfőzdék, tehát élelmiszeripari termelőegységek tevékenységét szabályozta – akár a GMP (Good Manufacturing Practice, Helyes Gyártási Gyakorlat) előfutárának is tekinthető. A GxP (Good ... Practice) ajánláscsokor klinikai (GCP; ... Clinical ...) és laboratóriumi tevékenységekre (GLP; ... Laboratory ...) vonatkozó elemeinek fejlődése a legújabb kori minőségbiztosítási rendszerekkel (TQM, ISO) haladt párhuzamosan.

1.6. A gyógyszerfejlesztés üzleti mutatói és üzenetük az új évezredre

A gyógyszerfejlesztés meglehetősen kedvezőtlen hatásfokú kutatási ágazat – az ígéretes molekulák sorra tizedelődnek meg a virtuális kémcsövektől kezdve (a kombinációs vegyészet molekula-adatbázisainak lekérdezése, "screening"-je alapján fennakadt vegyületek) a preklinikai és klinikai vizsgálatok forgószínpadán. Egy USA-ból származó adatsor tükrében 25000-50000 szűrt molekulából mindössze 1250 kerül preklinikai (toxikológiai) vizsgálatra, 25 gyógyszerjelölt vesz részt klinikai kipróbálásban, 5 készítmény kerül törzskönyvezésre és közülük csupán egy lesz profittermelő. Mindezek a számadatok, kiegészítve a szabadalmi védettség 20 éves időhatárával, azt mutatják, hogy egy újonnan felfedezett, szabadalmi védettség alatt álló készítmény – *originalitás* avagy *innovatív termék* – önálló, más gyártóktól-*generikumoktól* mentes piaci, azaz törzskönyvezett életciklusa 8-10 évre is lerövidülhet.

Egy USA gyógyszercég a következőképpen jellemezte a gyógyszerfejlesztés pénzügyi buktatóit:

ü 10 törzskönyvezett készítményből 1 "nullszaldós"

ü 10 törzskönyvezett készítményből 2 hoz profitot

ü 10 törzskönyvezett készítményből 7 nem termeli ki saját fejlesztési költségeit Ezáltal minden tíz vegyületből mindössze kettőnek lehet esélye lehet arra, hogy ú.n. "blockbuster" gyógyszerré váljék – azaz a forgalmazó számára a piaci bevezetésétől számítva legalább egymilliárd USD bevételt hozzon. A "mega-blockbuster"-ek piaci sikerét pedig az jellemzi, hogy már törzskönyvezésük első évében kitermelik az egymilliárd dolláros álomhatár-bevételt. Ezek a hatalmas piaci sikerű készítmények "finanszírozzák" a gyógyszerfejlesztés minden 10 készítményére jutó további hét üzletileg sikertelen ágát, beleértve a különleges helyzetű "árva" gyógyszereket (orphan drug).

A fentiek alapján nem meglepő, hogy a nemzetközi gyógyszeripar századunkra a következő célkitűzéseket nevesíti meg: 3000 nap , 800 millió USD. Azaz az első lépésektől számítva 3000 naptári napon belül történhessen meg a törzskönyvezés és az adott molekulára szóló kutatási költség ne haladja meg a 800 millió USA dollárt. A jelenlegi állapot már előrelépést jelent az 1995-ig tartó időszakhoz képest: ideális esetben egy NDA (New Drug Application; törzskönyvi kérelem az FDA-terminológiában) 7 éves klinikai fejlesztési periódust ölel fel, legfeljebb 60 vizsgálattal és 3000 résztvevő egészséges/beteg önkéntessel. A korai fejlesztési szakasz intenzifikálásának eredményeként a fázis I vizsgálatoknál 2-24 hét, a fázis II-III vizsgálatoknál 4-72 hét időnyereség érhető el.

1.7. A farmakogenomika-farmakogenetika szerepe a gyógyszerfejlesztésben

A század orvostudományának "mágikus lövedéke" a **genetika.** A betegségek hátterének felderítése során 100 000 humán génből előreláthatóan 10 000 kódol funkcionális fehérjét, azaz legalább ennyi potenciális terápiás célpont tesztelhető. A hagyományos folyamatközpontú gyógyszerkutatási szemléletet a genomikai alapokon nyugvó váltja fel: a paradigmaváltás a betegségek és gyógymódok modern, genetikai szemléletét tükrözi.

A jelenlegi gyógyszerfejlesztés statisztikai alapokon nyugszik, azaz a lehető legszélesebb közönség részére, nagyipari mennyiségben változatlan formában előállítható olyan készítményeket céloz meg, amelyek statisztikai elemzés alapján megjósolhatóan hatnak. Kérdéses, hogy a továbbiakban fenntartható-e az "egy gyógyszert mindenkinek" ("one drug fits all") fejlesztési filozófia: az egyéni gyógyszer-variabilitás, amely akár a klasszikus farmakokinetikai ADME-fázisok (abszorpció, disztribúció, metabolizmus, exkréció) bármelyikében, akár a farmakodinamikai lépéseknél is megnyilvánulhat, az egyedi gyógyszerelés szükségességét helyezi előtérbe.

Az egyénekben legalább egy százalékos gyakorisággal előforduló egynukleotidos variációk, az *SNP*-k (single nucleotide polymorphism) feltárása alapvető diagnosztikus eszköz a gyógyszer szervezeten belüli sorsának megjóslásában. A DNS micrarray avagy DNS chip technika révén egy mikrolemezen szinkron akár 100 000 SNP is vizsgálható. A folyamat – mint minden új technológia – egyelőre igen költséges, 1 SNP kb. 1 USD költséggel azonosítható, mindazonáltal a jövendő években elérhető az 1 SNP /1 cent költséghatékonyság, amely valóban forradalmasíthatja a mindennapos gyógyszerelési szokásokat.

Az SNP-kutatás közvetlen hatását a klinikai kutatásban is éreztetni fogja: a humán vizsgálatok résztvevőinek genom-szűrése révén már a bevonási periódusban kiszűrhetőek azok a személyek, akikben a vizsgálati készítmény farmakogenetikai okokból, megjósolhatóan hatástalan vagy kifejezetten káros mellékhatásokat eredeményez.

A gyógyszerek felfedezéséhez a genetikai úton a következő technológiák vezethetnek:

- ü pozicionális klónozás, amely a családokon belüli betegség-fenotípusok előfordulásán alapul
- ü szekvencia-alapú megközelítés nagyteljesítményű cDNA szekvenálás, az SNP-k szűrése
- **ü** gén microarray technika a korábban megismert szekvencia információk segítségével határozza meg a mutációs gyakoriságot és a génexpressziós profilokat.
- A farmakogenetikai kutatás jelenti a jövő gyógyszerfejlesztésének másik kulcsát:
- ü melyik hatóanyagot érinti legkevésbé a genetikai variabilitás?
- **ü** melyek a *responder*, azaz a gyógyszerre megfelelő módon és mértékben reagáló betegpopuláció tagjai?
- ü miképpen adagoljuk testreszabott dózisban a készítményeket?

1.8. Összefoglalás

A közeljövőben a hagyományos gyógyszerfejlesztési lépések közé paradigmaváltással felérő molekuláris biológiai technológiák ékelődnek. A bioinformatika és robotika a révén egyre nagyobb párhuzamossággal végezhetőek a feldolgozási lépések, a gyógyszerjelölt molekulák kiválasztásától akár a humán vizsgálatok önkénteseinek farmakogenomikai szűréséig. Új távlatok nyílnak a lehetséges gyógyszer-célpontok azonosításakor a funkcionális képalkotás révén (szemben a hagyományos radiológiai módszerek strukturális-anatómiai voltával) : sejtek, sejtorganellumok szintjén kereshető a megfeleltetés struktúra és funkció között. A funkcionális szemléletet testesítik meg az olyan tudományágak, mint pl. a proteomika, amely a statikus genom funkcionális manifesztációit, a fehérjéket vizsgálja, azok teljességében – sejtszinten.

1.9. Irodalomjegyzék

- [1] Lesko L J, Rowland M, Peck C C, Blaschke T F: Optimizing the Science of Drug Development: Opportunities for Better Candidate Selection and Accelerated Evaluation in Humans; *Pharmaceutical Research*, Vol. 17, No. 11 2000
- [2] Genomics Glossaries & Taxonomies; Cambridge Healthtech Institute