Welcome back to my random tidbits file! When I come up with interesting problems, I will put them here.

1 Probability Distributions and Weight Loss

I was keeping track of my own weight when I realized that my scale was sufficiently inconsistent that my weight loss was dominated by the statistical noise. So then I was curious what the best way of mitigating this is, mean or median of multiple measurements. One would suspect it's the mean, or one would know simply by having taken any real statistics class, but I'm curious.

1.1 Mean-based averaging

This one is easy. Assume we have n iid variables X_i with mean μ and variance σ^2 , then the random variable corresponding to their average $\langle X_i \rangle$ has mean μ and variance $\frac{\sigma^2}{n}$, so standard deviation $\frac{\sigma}{\sqrt{n}}$. Thus, we have an unbiased estimator of the true mean and a variance that falls off like $\sim n^{-1/2}$.

1.2 Median-based averaging

This one is a bit more fun. Let's start with n=3, then defining f(x) the probability density function and $F_X(x)=f_X(X\leq x)$ the cumulative distribution function, the probability density of the median $f_\eta(y)$ is given

$$f_{\eta}(y) = 6f_X(y)F_X(y)(1 - F_X(y)) \tag{1}$$

the probability we choose one value greater than y the median and one less, multiplied by 6 because there 3 ways to choose which element is the median and $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ binomial coefficient for exactly one element on each side. This seems to be a bit difficult to verify to be normalized in the general case, or that

$$\int_{-\infty}^{\infty} f_{\eta}(y) \, \mathrm{d}y = \int_{-\infty}^{\infty} \left[6f_X(y) \int_{-\infty}^{y} f_X(\xi) \, \mathrm{d}\xi \int_{y}^{\infty} f_X(\zeta) \, \mathrm{d}\zeta \right] \mathrm{d}y = 1 \tag{2}$$

Let's just verify this in the uniform distribution case, and leave the general oase as an exercise to brighter colleagues. We consider the normalized uniform distribution $f_X(x) = 1, x \in [0, 1]$, or $F_X(x) = x, x \in [0, 1]$. We confirm that the expression for f_{η} is normalized:

$$\int_{0}^{1} 6y(1-y) \, \mathrm{d}y = 1 \tag{3}$$

We then wish to examine whether $f_{\eta}(y)$ is an unbiased estimator of μ . Again, we begin with examining a sub-case, where $f_X(x)$ is symmetric about its mean μ . This yields that $F_X(\mu) = 0.5$ and is odd about μ^1 and so that $F_X(y)$ (1 - $F_X(y)$) is also even/symmetric about μ . Finally, this implies that $f_{\eta}(y)$ as defined in Equation 1 is also symmetric about μ and we are done.

¹This is a slight abuse of terminology: we mean that $F_X(x-\mu) - 0.5 = -(F_X(-(x-\mu)) - 0.5)$.

1.3 Uniform Distribution Yubo Su — Tidbits

However, this analysis breaks down in the asymmetric case. We see that $F_X(y)$ $(1 - F_X(y))$ is always symmetric about the median η of f_X , since $F_X(\eta) = 0.5$. In general, the mean and median of a probability distribution are not equal, so there is no guarantee that $\langle f_{\eta}(y) \rangle = \langle f(y) \rangle$, and indeed we can verify for some contrived probability distribution such as

$$f_X(x) = \begin{cases} 2 & 0 \le x \le 0.25\\ 1 & 0.5 \le x \le 1\\ 0 & \text{else} \end{cases}$$
 (4)

that $\langle f_X(x) \rangle = 0.4375$ while

$$\langle f_{\eta}(y) \rangle = \int_{0}^{0.25} 24y^{2} (1 - 2y) \, dy + \int_{0.5}^{1} 6y^{2} (1 - y) \, dy$$

$$\approx 0.4218$$
(6)

This should not have surprised us: we're trying to use a median to estimate the mean of a distribution, and the two are equal when the PD is symmetric and unequal otherwise.

The above analyses probably generalizes to median-of-n trials, where with a symmetric PD we have the being a unbiased estimator of the mean and with an asymmetric an biased estimator, for any parity of n, but I'm too lazy to check this out and will take it on faith. For reference, we assert the generalization of Equation 1 below for odd N=2m+1 trials below

$$f_{\eta,2m+1}(y) = N \binom{2m}{m} f_X(y) (F_X(y))^m (1 - F_X(y))^m$$
 (7)

which is simply generalizing to the concept of "m elements on either side of y."

It seems difficult to compare these median-based results (many of which could probably be strengthened) to the mean based results in the case of an arbitrary PDF, so let's specialize to a few tractable cases.

1.3 Uniform Distribution

I'm tired of not obtaining usable results, so let's simplify the discussion considerably and assume that we have a uniform probability distribution, or that $X \in [\mu - a, \mu + a]$. In this case the median-of-three also provides for an unbiased estimator as shown above. What is the variance of this estimator then?

1.3.1 Mean-based

Let's first examine the results of a mean-based estimation of μ . Call $\hat{\mu}_N$ the estimator generated by averaging N samplings, then we know that $\langle \hat{\mu}_N \rangle = \mu$ by linearity of expectation and $\sigma_{\hat{\mu}_N}^2 = \frac{\sigma_X^2}{N}$ by linearity of

Uniform Distribution Yubo Su — Tidbits

variance, so it remains to compute σ_X^2 , which is given by

$$\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2 \tag{8}$$

$$= \int_{\mu-a}^{\mu+a} \frac{1}{2a} x^2 \, \mathrm{d}x - \mu^2 \tag{9}$$

$$= \frac{6\mu^2 a + 2a^3}{6a} - \mu^2$$

$$= \frac{a^2}{3}$$
(10)

$$=\frac{a^2}{3}\tag{11}$$

Thus,
$$\sigma_{\hat{\mu}_N}^2 = \frac{a^2}{3N}$$
.

1.3.2 Median-based, N=3

Now for the median-based approach. Denote $\tilde{\mu}_N$ the estimator generated by taking the median of N samplings, then we know that $\langle \tilde{\mu}_N \rangle = \mu$ nonetheless because the uniform PD is a symmetric probability distribution. It thus remains to compute $\langle \sigma_{\tilde{\mu}_N}^2 \rangle$. This seems nontrivial, so let's start with N=3:

$$\left\langle \tilde{\mu}_3^2 \right\rangle = \int_{-\infty}^{\infty} 6f_X(x) F_X(x) \left(1 - F_X(x) \right) x^2 \mathrm{d}x \tag{12}$$

$$= \int_{\mu-a}^{\mu+a} \frac{6}{2a} \frac{x - (\mu - a)}{2a} \frac{(\mu + a) - x}{2a} x^2 dx$$
 (13)

$$= \int_{-a}^{a} \frac{6}{2a} \frac{a+y}{2a} \frac{a-y}{2a} (y+\mu)^2 dy$$
 (14)

$$= \int_{-a}^{a} \left[\frac{6}{8a^3} \left(a^2 y^2 + a^2 2y\mu + a^2 \mu^2 - y^4 - 2\mu y^3 - y^2 \mu^2 \right) \right] dy$$
 (15)

$$=\frac{6}{8a^3} \left[\frac{(a^2 - \mu^2)y^3}{3} - \frac{y^5}{5} \right]_{-a}^a + \frac{3\mu^2}{2}$$
 (16)

$$=\frac{6}{8a^3}\left[\frac{\left(a^2-\mu^2\right)2a^3}{3}-\frac{2a^5}{5}\right]+\frac{3\mu^2}{2}\tag{17}$$

$$=\mu^2 + \frac{a^2}{5} \tag{18}$$

and so $\sigma_{\tilde{\mu}_3}^2 = \frac{a^2}{5}$. Compare this to $\sigma_{\hat{\mu}_3}^2 = \frac{a^2}{9}$ and we see that the mean-based estimation has lower

1.3 Uniform Distribution Yubo Su — Tidbits

1.3.3 Median-based, arbitrary N

Armed with this, let's also try to compute for arbitrary, odd N=2m+1, for which we have

$$\left\langle \tilde{\mu}_N^2 \right\rangle = N \binom{2m}{m} \int_{-a}^a \frac{1}{2a} \left(\frac{a^2 - y^2}{4a^2} \right)^m (y + \mu)^2 \, \mathrm{d}y \tag{19}$$

Now, there's probably a cool combinatorial way to evaluate this, but let's just care about asymptotic behavior. Then

$$\lim_{N \to \infty} \left\langle \tilde{\mu}_N^2 \right\rangle \approx N \frac{2^{2m} \sqrt{2m}}{m} \int_{-a}^{a} \frac{1}{2a} \frac{1}{4^m} \left(1 - \frac{y^2}{a^2} \right)^m (y + \mu)^2 \, \mathrm{d}y \tag{20}$$

$$\approx \frac{1}{2a} \sqrt{8m} \int_{-a}^{a} \left(1 - \frac{y^2}{a^2}\right)^m (y + \mu)^2 dy$$
 (21)

where we approximate $N \approx 2m$. Now, we know that $\left(1 - \frac{y^2}{a^2}\right)^m$ is going to fall off sharply to 0 as y increases, so we can approximate (for some normalization factor A)

$$\int_{-a}^{a} \left(1 - \frac{y^2}{a^2} \right)^m \, \mathrm{d}y \sim A \int_{-a/\sqrt{m}}^{a/\sqrt{m}} 1 - \frac{my^2}{a^2} \, \mathrm{d}y \tag{22}$$

$$\lim_{N \to \infty} \left\langle \tilde{\mu}_N^2 \right\rangle \approx \frac{A}{2a} \sqrt{8m} \int_{-a/\sqrt{m}}^{a/\sqrt{m}} \left(1 - \frac{my^2}{a^2} \right) (y + \mu)^2 \, \mathrm{d}y \tag{23}$$

To compute A, we require that the coefficient of μ^2 be 1 so that the difference $\langle \tilde{\mu}_N^2 \rangle - \langle \tilde{\mu}_N \rangle^2$ does not depend in first order on μ . It's clear that since the integral is symmetric, we need only consider even powers of y, and so our integral becomes

$$\lim_{N \to \infty} \left\langle \tilde{\mu}_N^2 \right\rangle = \frac{A\sqrt{8m}}{2a} \int_{-a/\sqrt{m}}^{a/\sqrt{m}} \left(1 - \frac{my^2}{a^2} \right) \left(y^2 + \mu^2 \right) \, \mathrm{d}y \tag{24}$$

$$= \frac{A\sqrt{8m}}{2a} \int_{-a/\sqrt{m}}^{a/\sqrt{m}} \mu^2 + \left(1 - \frac{m\mu^2}{a^2}\right) y^2 - \frac{my^4}{a^2} dy$$
 (25)

$$=\frac{A\sqrt{8m}}{2a}\left[\frac{2\mu^2a}{\sqrt{m}} + \left(1 - \frac{m\mu^2}{a^2}\right)\left(\frac{2}{3}\frac{a^3}{m^{3/2}}\right) - \frac{2ma^5}{5a^3m^{5/2}}\right] \tag{26}$$

$$=A\frac{\sqrt{32}}{3}\mu^2 + A\frac{4\sqrt{2}}{15}\frac{a^2}{m} \tag{27}$$

1.3 Uniform Distribution Yubo Su — Tidbits

and so we find that $A = \frac{3}{\sqrt{32}}$ and finally

$$\sigma_{\tilde{\mu}_N^2}^2 = \frac{a^2}{5m} \tag{28}$$

The agreement for N=3, m=1 is a bit uncanny, but let's try to verify this computationally before jumping for joy.

This is a polynomial relationship on m, so we can sample m logarithmically to computationally verify our result. The obtained results are as follows in Figure 1.

The histogram is plotted merely out of curiosity, but seems to suggest a normal distribution per the Law of Large Numbers. Nonetheless, Equation 28 seems to be slightly off. It perfectly agrees in the N=3 case as can be verified by simulation, but eventually grows to be a factor of approximately 2 off.

So it turns out our uncanny success for N=3, m=1 was a pure stroke of luck, and our expression isn't precisely correct. Nonetheless, we can make a few plots to figure out numerically how well median vs. mean based averaging performs, and the degredation of our estimate over N. These plots are

1.3.4 Median-based, arbitrary N, reworked

Let's try to include the truncated terms in $\left(1-\frac{y^2}{a^2}\right)^m$, since they really are rather non-small compared to the leading term that we kept. Where we had before put $1-\frac{my^2}{a^2}$, we should instead put

$$\left(1 - \frac{y^2}{a^2}\right)^m = \sum_{k=0}^m \binom{m}{k} \left(-\frac{y^2}{a^2}\right)^k$$
(29)

$$\lim_{N \to \infty} \left\langle \tilde{\mu}_N^2 \right\rangle \approx \frac{A}{2a} \sqrt{8m} \int_{-a/\sqrt{m}}^{a/\sqrt{m}} \sum_{k=0}^m {m \choose k} \left(-\frac{y^2}{a^2} \right)^k (y+\mu)^2 \, \mathrm{d}y \tag{30}$$

We approximate $\binom{m}{k} \approx \frac{m^k}{k!}$ since higher terms in k are attenuated anyways. Using the same parity argument to kill the term odd in y, we rewrite

$$\lim_{N \to \infty} \left\langle \tilde{\mu}_N^2 \right\rangle \approx \frac{A}{2a} \sqrt{8m} \int_{-a/\sqrt{m}}^{a/\sqrt{m}} \sum_{k=0}^m \frac{m^k}{k!} \left(-\frac{y^2}{a^2} \right)^k (y^2 + \mu^2) \, \mathrm{d}y \tag{31}$$

1.4 Open Questions Yubo Su — Tidbits

Examine first the μ^2 coefficient

$$1 = \frac{A}{2a} \sqrt{8m} \sum_{k=0}^{m} \frac{m^k}{k!} \int_{-a/\sqrt{m}}^{a/\sqrt{m}} \left(-\frac{y^2}{a^2}\right)^k dy$$
 (32)

$$= \frac{A}{2a} \sqrt{8m} \sum_{k=0}^{m} \frac{m^k}{k!(2k+1)} 2\left(\frac{a}{m^{k+1/2}}\right) (-1)^k$$
(33)

$$=A\sqrt{8}\sum_{k=0}^{m}\frac{(-1)^{k}}{k!(2k+1)}$$
(34)

and the other term

$$\lim_{N \to \infty} \sigma_{\tilde{\mu}_N}^2 \approx \frac{A}{2a} \sqrt{8m} \int_{-a/\sqrt{m}}^{a/\sqrt{m}} \sum_{k=0}^m \frac{m^k}{k!} \left(-\frac{y^2}{a^2}\right)^k y^2 \, \mathrm{d}y \tag{35}$$

$$= \frac{A}{2a} \sqrt{8m} \sum_{k=0}^{m} \frac{m^k}{k!(2k+3)} 2\left(\frac{a^3}{m^{k+3/2}}\right) (-1)^k$$
 (36)

$$=\frac{A\sqrt{8}a^2}{m}\sum_{k=0}^{m}\frac{(-1)^k}{k!(2k+3)}$$
(37)

$$= \frac{a^2}{m} \frac{\sum_{k=0}^{m} \frac{(-1)^k}{k!(2k+3)}}{\sum_{k=0}^{m} \frac{(-1)^k}{k!(2k+1)}}$$
(38)

and we find that we reproduce our previous result for N=3. Crunching the numbers, we get something slightly better, though since factorials fall off so quickly the change is very slight. The results are shown in Figure 2.

1.3.5 Further ruminations (TBC)

The approximation where we took the integral over interval $[-a/\sqrt{m},a/\sqrt{m}]$ seems to be the last point of contention, as it bears noting that if we allow a degree of freedom in the choice of range $[-Ba/\sqrt{m},Ba/\sqrt{m}]$ that our choice of B propagates as a factor of B^{2k+3} to the summation in the numerator of Equation 38 and B^{2k+1} to the summation in the denominator. Thus, our choice of B has nontrivial implications on the exact prefactor we obtain.

1.4 Open Questions

- Is there any way to find the missing factor on median-based averaging for a uniform-distribution and arbitrary N?
- If we have discretized measurements, what are the statistics of mode-based averaging?
- Did I actually normalize the median-based averaging correctly, for a general probability distribution?

1.4 Open Questions Yubo Su — Tidbits

1000

500

0.35

0.40 0.45 0.50 0.55 0.60 0.65

(b) Histogram of 1000 medians at a single value of N

Figure 1: Computational results for our medians result. Used $\mu=0.5, a=0.5,$ or a uniform sampling [0,1]. Sampled over $n=3^{[1,9]}$ with 10000 samples at each value of n.

1.4 Open Questions Yubo Su — Tidbits

Figure 2: A couple ratios of interest. Same sampling as in Figure 1.

2 Feynman-style number theory

In case you have not yet seen http://www.lbatalha.com/blog/feynman-on-fermats-last-theorem yet, it's quite a fun read! Would recommend. That sort of thinking inspired this section.

2.1 Asymptotic behavior of primes

Call $\Pi(N)$ the prime number counting function, how many primes are below N. The Prime Number Theorem is a well known result that postulates two approximations to $\Pi(N)$:

$$\Pi(N) \approx \frac{N}{\log N} \approx \int_{2}^{N} \frac{1}{\log x} \, \mathrm{d}x$$
 (39)

We will attempt to derive the latter approximation. Consider P(N) the probability density that N is a prime, roughly the statement "if I randomly choose a number near N, what is the probability it is a prime?" The relationship between P(N) and $\Pi(N)$ is then

$$P(N) = \frac{\mathrm{d}\Pi}{\mathrm{d}N} \tag{40}$$

To attempt to derive P(N), consider that a number N is prime iff it is not divisible by any primes less than it. Thus, we have that

$$P(N) \approx \prod_{p \in primes}^{N} \left(1 - \frac{1}{p}\right) \tag{41}$$

Taking a leap of faith, we recognize that two consecutive contributions to the product above differ roughly by $\frac{1}{P(p)}$, the local inverse probability density that p is prime. Thus, we can rewrite each con-

tribution as $\frac{1}{P(p)}$ contributions of $\left(1-\frac{1}{p}\right)^{P(p)}$, and then allow p to run over all integers. We thus propose the approximation

$$P(N) \approx \prod_{k=2}^{N} \left(1 - \frac{1}{k}\right)^{P(k)} \tag{42}$$

Taking the logarithm of both sides, we obtain

$$\log P(N) = \sum_{k=2}^{N} P(k) \log \left(1 - \frac{1}{k}\right) \tag{43}$$

Approximating the right hand side with an integral, we obtain

$$\log P(N) = \int_{2}^{N} P(k) \log \left(1 - \frac{1}{k}\right) dk \tag{44}$$

2.2 Scratch work Yubo Su — Tidbits

Differentiating both sides now, we obtain

$$\frac{P'(N)}{P(N)} = P(N)\log\left(1 - \frac{1}{N}\right) \tag{45}$$

$$\frac{\mathrm{d}P}{\mathrm{d}N} = P^2 \log \left(1 - \frac{1}{N}\right) \tag{46}$$

$$\frac{\mathrm{d}P}{P^2} = \mathrm{d}N\log\left(1 - \frac{1}{N}\right) \tag{47}$$

$$-\frac{1}{P} = N\log\left(1 - \frac{1}{N}\right) - \log(N - 1) \tag{48}$$

$$P(N) = \frac{1}{\log(N-1) + O(1)}$$
(49)

$$\approx \frac{1}{\log N} \tag{50}$$

This recovers the expression
$$\Pi(N) = \int\limits_2^N P(N) \ \mathrm{d}N = \int\limits_2^N \frac{1}{\log N} \ \mathrm{d}N.$$

2.2 Scratch work

What follows is me working out loud, which is a lot less interesting.

It's a well-known result (Prime Number Theorem) that the number of primes below N is approximated by $\Pi(N) = N/\log(N)$. Can we try to get a handle on this behavior via application of continuum analysis?

One way of thinking of the problem is to instead look at it from a probabilistic standpoint, that arbitrarily choosing a number n, it has some probability of being prime. Can we estimate this probability and recover the prime number theorem? We should be able to obtain

$$\frac{\mathrm{d}\Pi}{\mathrm{d}N} \approx \frac{\log N - 1}{\log^2(N)} \tag{51}$$

2.2.1 First attempt

Let's consider the probability that some large number N is divisible by some divisor d; this is just $\frac{1}{d}$. We might think that the probability that N is prime then just the product of probabilities it is not divisible by any number smaller than it

$$P(N) = \prod_{k=2}^{N} \left(1 - \frac{1}{k} \right)$$
 (52)

2.2 Scratch work Yubo Su — Tidbits

To try to evaluate this product, we take the logarithm of both sides

$$\log P(N) = \sum_{k=2}^{N} \log \left(1 - \frac{1}{k} \right) \tag{53}$$

$$\approx \int_{k-2}^{N} \log\left(1 - \frac{1}{k}\right) \, \mathrm{d}k \tag{54}$$

(55)

To compute this antiderivative, it's easiest to separate the integrand

$$\int \log\left(\frac{k-1}{k}\right) dk = \int \log(k-1) dk - \int \log k dk$$
 (56)

$$= (k-1)\log(k-1) - k - k\log(k) + k + C$$
(57)

$$= k \log \left(1 - \frac{1}{k}\right) - \log(k - 1) + C \tag{58}$$

with C some undetermined constant that becomes irrelevant when we consider the definite integral. Thus, we return to our primary expression

$$\log P(N) \sim N \log \left(1 - \frac{1}{N}\right) - \log(N - 1) \tag{59}$$

where we drop the evaluation of the antiderivative at k=2 since it's a constant in the scaling. Then, we find

$$P(N) \sim \frac{\left(1 - \frac{1}{N}\right)^N}{N - 1} = \frac{1/e}{N - 1} \tag{60}$$

In fact, a quick google search shows that Equation 52 evaluates to $\frac{1}{N}$, and so our result is pretty reasonable; we're off by a constant factor since our integral approximation Equation 54 misestimates by a constant factor, no surprise there. So where did we go wrong?

2.2.2 Second attempt

The iusse, as some people smarter than me may have noticed, is that our expression Equation 52 is faulty: we should only be multiplying *over primes*! While this is correct, primes are not divisible by any primes smaller than them, it's a bit difficult to handle under our present formalism, where we only attach a probability to a number's being prime or not.

Let's think carefully about how to integrate this into our formalism. If a number k is not prime, it should contribute 1 to our product, and if it is prime then it should contribute $\left(1 - \frac{1}{k}\right)$. Since we're doing products, the natural way to "average" is via geometric mean, so we modify expression Equation 52 to

$$P(N) = \prod_{k=2}^{N} \left(1 - \frac{1}{k}\right)^{P(k)} \tag{61}$$

2.2 Scratch work Yubo Su — Tidbits

where we average each k-th contribution as $\left(1-\frac{1}{k}\right)^{P(k)}(1)^{1-P(k)}$ geometric mean². Doing the usual trick,

$$\log P(N) = \int_{2}^{N} P(k) \log \left(1 - \frac{1}{k}\right) dk \tag{62}$$

Differentiating both sides,

$$\frac{P'(N)}{P(N)} = P(N)\log\left(1 - \frac{1}{N}\right) \tag{63}$$

$$\frac{\mathrm{d}P}{\mathrm{d}N} = P^2(N)\log\left(1 - \frac{1}{N}\right) \tag{64}$$

$$\frac{\mathrm{d}P}{P^2} = \log\left(1 - \frac{1}{N}\right) \mathrm{d}N\tag{65}$$

$$-\frac{1}{P} = N\log\left(1 - \frac{1}{N}\right) - \log\left(N - 1\right) \tag{66}$$

$$P(N) \approx \frac{1}{\log N} \tag{67}$$

Interestingly, this expression is a better approximation to $\Pi(N)$ than the aforementioned $\Pi(N) \approx \frac{N}{\log(N)}$, so it looks like this is a satisfactory conclusion, namely that

$$\Pi(N) \approx \int_{0}^{N} \frac{1}{\log(m)} \, \mathrm{d}m \tag{68}$$

However, we pursue one last direction of thought out of curiosity.

2.2.3 Third attempt

In Equation 61, maybe we only need to check up until \sqrt{N} in the product. Continuing our thought above, we obtain

$$\frac{P'(N)}{P(N)} = P(\sqrt{N})\log\left(1 - \frac{1}{\sqrt{N}}\right) \tag{69}$$

$$\approx -\frac{P(\sqrt{N})}{\sqrt{N}}\tag{70}$$

At this point, our expression doesn't seem particularly amenable to solution, but we can at least check

 $[\]frac{1}{P(k)}$ of these factors before getting a single one that contributes, i.e. the distance between primes.

2.2 Scratch work Yubo Su — Tidbits

how well $P(N) \sim \frac{1}{\log N}$ works:

$$\frac{-\frac{1}{N\log^2 N}}{\frac{1}{\log N}} = -\frac{2}{\sqrt{N}\log N}$$

$$-\frac{1}{N\log N} = \frac{2}{\sqrt{N}\log N}$$
(71)

$$-\frac{1}{N\log N} = \frac{2}{\sqrt{N}\log N} \tag{72}$$

which doesn't seem to work too well. How about the original estimate $P(N) \sim \frac{\log N - 1}{\log^2 N}$?

$$\frac{\frac{2-\log N}{N\log^3 N}}{\frac{\log N-1}{\log^2 N}} = -\frac{\frac{\log \sqrt{N}-1}{\log^2 \sqrt{N}}}{\sqrt{N}}$$

$$(73)$$

$$\frac{\frac{2 - \log N}{N \log^3 N}}{\frac{\log N - 1}{\log^2 N}} = -\frac{\frac{\log \sqrt{N} - 1}{\log^2 \sqrt{N}}}{\sqrt{N}}$$

$$\frac{2 - \log N}{N \log N (\log N - 1)} = \frac{2(2 - \log N)}{\sqrt{N} \log^2 N}$$
(73)

which is even worse. The obvious problem is that the \sqrt{N} has nowhere the go since the probability density P depends only on the logarithm of N. So interesting, considering the further optimization of only going up to \sqrt{N} ruins the accuracy of our prediction!

3 Ellipsoidal surface areas

We all know that ellipses do not have a closed form for their arclength, but their enclosed area is well defined, namely $A = \pi ab$. This can be seen by defining an ellipse as a projection of a circle by unevenly scaling the axes, and noting that an area element dxdy scales linearly with the projection factors.

One series approximation to the arclength can be computed by noting the following: if S is the arclength of an ellipse, then S dn for some small dn estimates the change in area by enlarging the ellipse.

Systematically, exhibit an ellipse with axis lengths a,b, such that its area is πab . Then, say that we extend both axes by some $\mathrm{d}\epsilon$, then its area becomes $\pi ab + \pi (a+b)\mathrm{d}\epsilon + \mathcal{O}(\mathrm{d}\epsilon^2)$, and the change in area is $\pi (a+b)\mathrm{d}\epsilon + \mathcal{O}(\mathrm{d}\epsilon^2)$. This implies that the arclength of an ellipse to first order is $\pi (a+b)$, which seems to make sense for a=b.

This isn't particularly radical, and neither is this entire section, but we can verify it to be reasonable for three dimensions as well:

$$V = \frac{4}{3}\pi abc + \frac{4}{3}\pi(ac + bc + ab)d\epsilon + \mathcal{O}(d\epsilon^2)$$
(75)

$$S = \frac{4}{3}\pi \left(ac + bc + ab\right) + \mathcal{O}(d\epsilon) \tag{76}$$

which again agrees with intuition for a=b=c

4 12/04/16—Musings on Hamiltonian Chaos

We learned in our chaos readings that given an integrable Hamiltonian (can be written in terms of actionangle variables, has N constants of motion for 2N dimensional phase space), a small perturbation generally breaks the toroidal phase space trajectory into chaotic motion. Let's see how much of this we can actually understand.

4.1 Action-Angle variables

I don't have my 106 notes handy, so let's rederive some action-angle stuff. The archetypal Hamiltonian to use is the SHO $H=(p^2+q^2)/2$. While we may have suspicions for the choice of action-angle, we look up that

$$I = \frac{1}{2\pi} \oint d(pq) \tag{77}$$

the integral over one period. For us, let's note that $E=H=\frac{p^2+q^2}{2}$ is a constant of motion, thus we can write

$$p = \sqrt{2E - q^2} \tag{78}$$

$$I = \frac{1}{2\pi} \left[2 \int_{-\sqrt{2E}}^{\sqrt{2E}} \sqrt{2E - q^2} \, \mathrm{d}q \right]$$
 (79)

$$=E \tag{80}$$

where we recognize the integral to just be the integral of the circle. This makes sense, as we recognize that the action integral I is just the area of phase space enclosed within a full period, which for us is just $2\pi E$ since we enclose a circle in phase space with radius $r^2 = 2E$.

The angle θ must be such that the above expression also holds, i.e.

$$\oint d(pq) = \oint d(I\theta) \tag{81}$$

so that the phase space volume enclosed in one rotation is the same for both variables. We can then differentiate both sides by I to obtain

$$\theta = \frac{\partial}{\partial I} \oint \mathrm{d}pq. \tag{82}$$

Since the \oint depends only on the bounds of integration, we see that θ is simply the limit on the integral, which further algebra shows to be $\arctan \frac{q}{n}$. We can verify that this is canonical by computing the PB

$$\frac{\partial I}{\partial p}\frac{\partial \theta}{\partial q} - \frac{\partial I}{\partial q}\frac{\partial \theta}{\partial p} = p\frac{1}{p}\frac{1}{1 + \left(\frac{q}{p}\right)^2} - q\left(-\frac{q}{p^2}\right)\frac{1}{1 + \left(\frac{q}{p}\right)^2}$$
(83)

$$=1 (84)$$

so we're in good shape.

4.2 Multi-dimensional SHOs

In more generality, if we have a multidimensional SHO, we see that the Hamiltonian is just their sum, and so H in terms of action angle variables is still the sum of the actions, while their angles evolve separately.

What is the rate at which the angle evolves? For our above single-dimensional oscillator, it's easy to simply solve the EOM and find that $\frac{q}{p}=\tan t$, and so that the angle evolves with unit frequency. More generally, if the Hamiltonian is of form $H=p^2+Cq^2$, it is easy to associate $C=\omega^2$ thanks to Hamilton's canonical equations $\dot{p}=H_q$, $\dot{q}=-H_p$ or something like that up to a sign. Thus, in general our Hamiltonian takes on form

$$H = \frac{\sum_{j} p_{j}^{2} + \omega_{j}^{2} q_{j}^{2}}{2} = \sum_{j} \omega_{j} I_{j}$$
 (85)

with each of the I_j having a corresponding angle θ_j that evolves at ω_j .

4.3 With perturbation

How can we handle the perturbation? I have no idea, but I'll give it a shot. Let's adopt a phase space where each (q_j, p_j) are components of a complex number. Then the I_j are the magnitudes of each component, the θ_j the phases, and the Hamiltonian acts simply to rotate each component. It's easy to write down a system of equations that reproduces this behavior, but can we express it in terms of the Hamiltonian? Put another way, is there a way we can cast the 2N-dimensional real Hamiltonian system above into an N-dimensional complex system with similar rules?

The defining property of a Hamiltonian system is Hamilton's canonical equations $\dot{p}=\frac{\partial H}{\partial q}, \dot{q}=-\frac{\partial H}{\partial p}$. If each dynamical variable is instead $z_j=p_j+iq_j$, we instead want a property that looks something like $\dot{z}_j=i\frac{\partial H}{\partial z_j}^3$.

Specializing to the SHO, given an ω in the SHO, we should make the correspondence $z_j=p_j+i\omega_jq_j$. Then we can write $H=\sum_j\omega_jz_j^2/2$ which gives us results something like $\dot{p}_j=-\omega_jq_j,\omega_j\dot{q}_j=p_j$ which is in accordance with what we expect. Thus, for an SHO we have

$$\dot{z_j} = i\frac{\partial H}{\partial z_j} = i\omega_j z_j \tag{86}$$

In other words, the evolution of the system is fully diagonal with eigenvalues ω_j . This is awfully reminescent of quantum mechanics! However, in QM, first order perturbation theory always gives us a result for a new orthogonal basis; why would any tori in classical mechanics break down? What does it even mean for a torus to break down? Why am I so stupid? These are not rhetorical questions but rather live musings as I type this up.

Consider if we then perturb the above EOM to something like

$$\dot{z}_{j} = i\omega_{j}z_{j} + i\epsilon \frac{\partial \delta H\left(\vec{z}\right)}{\partial z_{j}} \tag{87}$$

 $^{^{3}}$ We have made a choice of convention in putting the i with the partial derivative rather than in the Hamiltonian, motivated by keeping the Hamiltonian clean and most in analog with the real-variable Hamiltonian

Let's do the sensible thing and linearize δH so that $\delta H(\vec{z}) = \delta \mathbf{H} \vec{z}$. We seek a new set of z_j such that the EOM is again diagonal. If we treat the z_j coordinates as vectors in a vector space, we can do this via perturbation theory analogous to QM. Let's write down ansatz for new eigenbasis

$$\vec{z}_j = \vec{z}_j + \sum_k A_{jk} \vec{z}_k \tag{88}$$

We then seek that $\frac{\partial (\mathbf{H} + \delta \mathbf{H})(\vec{z}_j')}{\partial z_j'} = \omega_j' \vec{z}_j'$, and so (goodness the algebra below is so so wrong, but suck it up)

$$\frac{\partial \mathbf{H} \vec{z}_{j}}{\partial z_{j}} + \frac{\partial \delta \mathbf{H} \vec{z}_{j}}{\partial z_{j}} + \frac{\partial}{\partial z_{j}} \mathbf{H} \sum_{k} A_{jk} \vec{z}_{k} = \omega_{j} z_{j} \hat{j} + \delta \omega_{j} \vec{z}_{j} + \omega_{j} \sum_{k} A_{jk} \vec{z}_{k}$$
(89)

$$\sum_{k} (\delta H)_{kj} \hat{k} + \sum_{k} A_{jk} \omega_k \vec{z}_k = \delta \omega_j z_j \hat{j} + \omega_j \sum_{k} A_{jk} \vec{z}_k$$
(90)

$$A_{jk} = \frac{(\delta H)_{jk}}{\omega_j - \omega_k} \tag{91}$$

which is in line with the result from QM. I don't trust the algebra but I think the result is reasonable.

Not really sure where to go from here, but I found old lecture notes on the topic so I'll just consult them. Oops. It's been fun!

The correct approach (which we may or may not work through) attacks this from the generating function perspective, computing the Hamilton-Jacobi generating function for the canonical transformation in terms of the small perturbation, then showing that for purely rational ω_j , the perturbation theory fails to converge. It would appear then that the transformation of coordinates we propose above in general is not canonical for a rational winding number or something like that, if H_1 has a sufficiently high frequency component.

The moral of the story is that in classical mechanics, to change coordinates we must approach from a generating function to show that the transformation is canonical. Duly noted.

I continue this discussion in a separate section in my chaos notes, and conclude this discussion to pursue more interesting musings about the classical-quantum correspondence we began to uncover above.