

ASSIGNMENT COVER SHEET

This coversheet must be attached to the front of your assessment

ANU College of Engineering and **Computer Science**

> Australian National University Canberra ACT 0200 Australia www.anu.edu.au

The assessment is due on 28 specified in the course outling		n 28/08/2023, 9:05 AM unless otherwise tline. +61 2 6125 5254
St	tudent ID	U7540836
St	tudent Name	Nanthawat Anancharoenpakorn
C	ourse Code	COMP6261
C	ourse Name	Information Theory
Assignment Item		Assignment 2
Due Date		25/09/2023,
Date Submitted		23/09/2023
Ιd	eclare that this work:	
	upholds the principles Academic Integrity;	of academic integrity, as defined in the ANU Policy: Code of Practice for Student
	is original, except where collaboration (for example group work) has been authorized in writing by the cours convener in the course outline and/or Wattle site;	
	is produced for the purposes of this assessment task and has not been submitted for assessment in any othe context, except where authorized in writing by the course convener.	
	gives appropriate acknowledgment of the ideas, scholarship, and intellectual property of others insofar a these have been used.	
	in no part involves copying, cheating, collusion, fabrication, plagiarism, or recycling.	
Signature Nanth		anthawat Anancharoenpakorn

Bounds and Exact Probabilities for N/4 or More Heads

Question 1

Question 1(a)

1) p(x > a) \$ E[x] given E[x] = 2000, a = 2400

$$p(x) = \frac{2400}{1000} < \frac{2000}{2400} \text{ or } \frac{5}{6}$$

2) $P(|x-u| > k \times 6) \le \frac{1}{k^2}$ given M = 2000, 6 = 100 Hence, $k = \frac{400 - 2000}{2000} = 2$ $P(1600 \le x \le 2400) > 1 - \frac{1}{2^2} \text{ or } \frac{3}{4} = \frac{3}{4}$ Question 1(b)

1) $p(X = head) < \frac{1}{8}$, coin flipped N time, NEN $p(X^{N} \ge N) \le E[X^{N}] = \frac{1}{2} \times \frac{1}{N/4}$

2) promoted p < 1 , coin flipped N times $M = \frac{N}{8}, 6^{\frac{2}{3}} = \frac{7N}{64} \quad k = \frac{N}{4} - \frac{N}{8} = \frac{N}{4N}$ $P(X^{\frac{1}{3}} > \frac{N}{4}) \leq \frac{7}{N}$

3) plot

Question 9: Markov Chain

Question 2 (a)

1) yes it's possible, for example set X be a condom Variable where $x \in \{0,1\}$ with $P(X=0) = P(X=1) = \frac{1}{2}$ then set Y=X and Z=X. Hence I(X,Y) = 2(X,Z) = H(X) since Y and Z are complety determined by X

1) yes. Let x be random y. that $P(x=0)=P(x=1)=\frac{1}{2}$ and y=X. z is a variable that independent to y. Hence, I(X;Y)=H(X)=H(Y) and I(X;Z)=0, then I(X;Y)> I(X;Z)

3) according to chain rule for mutal information:

1(x; Y) 71(x; Z)

 $I(X;Y_{g}Z) = I(X;Y)+I(X;Z|Y) = I(X;Z)+I(X;Y|Z)$ Hence I(X;Y)+I(X;Z|Y) = I(X;Z)+I(X;Y|Z) according to mallow chain assumption where I(X;Z|Y)=0 Proof: I(X;Z|Y)=H(Z|Y)-H(Z) $= E\left[\log_{2}\frac{P(X_{g}Z|Y)}{P(X;Y)}\right] = E\left[\log_{2}1\right] = 0$

 $\overline{I}_{\text{Nen}} = I(X; Z) + I(X; Y|Z) \quad \text{Hence}$

4) according to the chain we an grevious question, we get I(X;Y) + I(X;Z|Y) = I(X;Z) + I(X;Y|Z) I(X;Y|Z) = I(X;Y) - I(X;Z) the since I(X;Z)must be equal or more than a Henre I(X;Y) \(Z \) I(X;Y|Z)

this becouse when we know \(Z \), the uncertainty can

only decrease or stay the same. In other word, the dependence
between X and Y can't be increased by the shrevition
of a downstream variable.

Question 2(b)

The know-that I(X;Y,Z) = H(X) - H(X|Y,Z) and I(X;T) = H(X) - H(X|T) since P(t|y,Z,X) = P(t|y,Z), according Markov, this means $H(X|Y,Z) \leq H(X|T)$, then we substitute and g(t|I(X;Y,Z) = H(X) - H(X|Y,Z)Z, H(X) - H(X|T) = I(X;T)

2) In order for I(X;Y,Z) = I(X;T) knowing T must give some amout of information with Y,Z or H(X|Y,Z) = H(X|Y,Z) = H(X|Y,Z). Hence, T must be a function of Y,Z & that p(t|y,Z) = p(t|y,Z,X)

Quertion 2 (c)

1) By definition of mutual information, we get $I(X_1; X_2, ..., X_h) = H(X_1) - H(X_2; X_2, ..., X_h)$ where $H(X_2 | X_2, ..., X_h) = H(X_1 | X_2, ..., X_{n-1}) + H(X_2 | X_2, ..., X_{n-2}, X_h) + ... + H(X_3 | X_2, X_n) + H(X_2 | X_h)$ and we plug H back, we get: $I(X_1; X_2, ..., X_n) = H(X_1) - H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_{n-2}, X_n) - ... + H(X_2 | X_2, ..., X_n) - ... + H(X_2 | X_n) - ... + H(X_2$

2) we can simplify expression above and get: $I(X_1; X_2; ..., X_n) = H(X_2) - H(X_2 | X_n)$ Question 3: AEP

H(X1 X2, Xn) - H(X1 Xn)

- a) H(x) = 0.1 x loge (1) + 0.2 x loge (1) = 0. 7219 bits
- b) since there are two outcome and $N \in \{0,1,2,...,N\}$ the size of $A \times N = 2^N$
- c) since | Ax4 | = 16, than Ho (X4) = 1092 | Ax4 | = 4
- d) H(x") = N & p(x) log P(x) = NH(x)

e) As we increase N from small to large, the slope of the line become more flat meaning that it become the less souther to change in error. When n get large, such sequence occupy most Question 5: AEP of the probabilty majorand are equally likely.

Caledian Alina (7)
Beyonce (12)
Cacilla \$(19)
Derek (14)

(4)

1) alog = (4) = 2 bHs , {00,01,10,11}

- b. \[|09e(7) = 5 bils , \[000, 001, 010, 011, 100, 101, 110 \]
- c. [1092 (48) = 6 bits
- 2) and March Holx) = [lige (4)] = 6 bits

Significantle A = (x, Ax, Px) where $Ax = \{$ Aline, Beyonce, Cecilia, Dorohy and $Px = \{$ 7/48, 9.12/48, 9.15/48, 9.148) such that the flist element of Px is Alina and so on.

- b. loge (256) = \$ 8 bH
- c. smalled is o
- d. largest is 0.3958

4) a. H(A) = - (+ 1092 + + 12 1092 12 + 15 1092 15 + 14 100 14)

 $b \cdot |T_N^b| \approx 2^{\frac{100(1.97+0.1)}{2}} \approx 2^{\frac{100\times2.08}{2}}$

6. no, it's not possible became the minimum of bit of uniterm code with zero loss is 1.95 which is the minimum for uniterm code and 1.5 bit is less than 1.95

```
# Function for toss coin
library(ggplot2)
coinTossOutcomes <- function(N, p) {
 # Define the sample space and probabilities
 sample_space <- c("H", "T")</pre>
 probabilities <- c(p, 1 - p)
 # Generate all possible outcomes for N coin tosses
 all outcomes <- expand.grid(replicate(N, sample space, simplify = FALSE))
 # Initialize a vector to store the probabilities of each outcome
 outcome probabilities <- numeric(nrow(all outcomes))
 # Calculate the probability of each outcome
 for (i in 1:nrow(all outcomes)) {
  outcome <- as.character(unlist(all outcomes[i, ]))</pre>
  prob <- prod(ifelse(outcome == "H", probabilities[1], probabilities[2]))</pre>
  outcome probabilities[i] <- prob
 }
 # Add the probabilities to the data frame
 all outcomes$Probability <- outcome probabilities
 # Combine the toss outcomes into a single string for easier viewing
 all outcomes$X <- do.call(paste0, all outcomes[, 1:N])
 # Create the final table
 final table <- all outcomes[, c("X", "Probability")]
 # Normalize table
 return(final table)
}
# 1. N = 5
N <- 5
p < -0.8
result <- coinTossOutcomes(N, p)
x = seq(0,1,0.001); print(x axis)
y = c()
for (x in x axis) {
 events = sum(result$Probability > x) # >= (1-x)
 y axis = log2(events)
```

```
y = c(y,y_axis)
}
final result = data.frame(y,x axis)
final result$normal = final result$y/N
a = final result$normal
# 2. N = 10
rm(final_table)
rm(result)
N <- 10
p < -0.8
result <- coinTossOutcomes(N, p)
x axis = seq(0,1,0.001); print(x axis)
y = c()
for (x in x_axis) {
 events = sum(result$Probability > x) # >= (1-x)
y_axis = log2(events)
y = c(y,y_axis)
}
final result = data.frame(y,x axis)
final result$normal = final result$y/N
b = final_result$normal
# 3. N = 15
rm(final table)
rm(result)
N <- 15
p < -0.8
result <- coinTossOutcomes(N, p)
x axis = seq(0,1,0.001); print(x axis)
y = c()
for (x in x axis) {
 events = sum(result$Probability > x) # >= (1-x)
y axis = log2(events)
y = c(y,y_axis)
final_result = data.frame(y,x_axis)
final_result$normal = final_result$y/N
c = final result$normal
```

```
# 4. N = 20
rm(final_table)
rm(result)
N <- 20
p < -0.8
result <- coinTossOutcomes(N, p)
x axis = seq(0,1,0.001); print(x axis)
y = c()
for (x in x axis) {
 events = sum(result$Probability > x) # >= (1-x)
y_axis = log2(events)
y = c(y,y_axis)
}
final result = data.frame(y,x axis)
final result$normal = final result$y/N
d = final_result$normal
#3. Combine all
df <- data.frame(x_axis = final_result$x_axis, "5" = a, "10" = b, "15" = c, "20" = d)
# Reshape the data to long format
df_long <- tidyr::gather(df, variable, value, -x_axis)</pre>
# Generate the plot
ggplot(df_long, aes(x = x_axis, y = value, color = variable)) +
 geom_line() +
labs(title = "Q3.e) Essential Bits given delta",
    x = "delta",
    y = "Normalised Essential Bit Content") +
 scale color discrete(name = "N")
```