Exploring the saturation of the MRI via weakly nonlinear analysis

Susan E. Clark | NSF Graduate Fellow, Columbia University

Jeffrey S. Oishi | SUNY Farmingdale, AMNH

Mordecai-Mark Mac Low | AMNH

stuff about the MRI?

set-up boundary conditions parameter range open questions, etc We solve the non-ideal MRI equations.

momentum

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P - \nabla \Phi + \frac{1}{\rho} \left(\mathbf{J} \times \mathbf{B} \right) - 2\Omega \times \mathbf{u} - \Omega \times (\Omega \times \mathbf{r}) + \nu \nabla^2 \mathbf{u}$$

induction

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

constraints

$$\nabla \cdot \mathbf{u} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

We solve the non-ideal MRI equations.

momentum

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P - \nabla \Phi + \frac{1}{\rho} \left(\mathbf{J} \times \mathbf{B} \right) - 2\Omega \times \mathbf{u} - \Omega \times (\Omega \times \mathbf{r}) + \nu \nabla^2 \mathbf{u}$$

magnetic

resistivity

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

We nondimensionalize and perturb the nonlinear MRI equations.

magnetic resistivity

microscopic viscosity

We work in terms of flux and stream functions.

momentum

$$\partial_t \nabla^2 \Psi = \frac{2}{\beta} B_0 \partial_z \nabla^2 A + 2 \partial_z u_y + \frac{2}{\beta} J \left(A, \nabla^2 A \right) - J \left(\Psi, \nabla^2 \Psi \right) + \frac{1}{Re} \nabla^4 \Psi$$

$$\partial_t u = \frac{2}{\beta} B_0 \partial_z B_y - (2 - q) \partial_z \Psi + \frac{2}{\beta} J(A, B_y) - J(\Psi, u_y) + \frac{1}{Re} \nabla^2 u_y$$

$$\partial_t A = B_0 \partial_z \Psi + J(A, \Psi) + \frac{1}{Rm} \nabla^2 A$$

$$\partial_t B_y = B_0 \partial_z u_y - q\Omega_0 \partial_z A + J(A, u_y) - J(\Psi, B_y) + \frac{1}{Rm} \nabla^2 B_y$$

We work in terms of flux and stream functions.

momentum

viscous

$$\partial_t \nabla^2 \Psi = \frac{2}{\beta} B_0 \partial_z \nabla^2 A + 2 \partial_z u_y + \frac{2}{\beta} J \left(A, \nabla^2 A \right) - J \left(\Psi, \nabla^2 \Psi \right) + \frac{1}{Re} \nabla^4 \Psi$$

$$\partial_t u = \frac{2}{\beta} B_0 \partial_z B_y - (2 - q) \partial_z \Psi + \frac{2}{\beta} J(A, B_y) - J(\Psi, u_y) + \frac{1}{Re} \nabla^2 u_y$$

$$\partial_t A = B_0 \partial_z \Psi + J\left(A, \Psi\right) + \frac{1}{Rm} \nabla^2 A$$
 resisting

$$\partial_t A = B_0 \partial_z \Psi + J\left(A, \Psi\right) + \boxed{\frac{1}{Rm} \nabla^2 A}$$
 resistive
$$\partial_t B_y = B_0 \partial_z u_y - q \Omega_0 \partial_z A + J\left(A, u_y\right) - J\left(\Psi, B_y\right) + \boxed{\frac{1}{Rm} \nabla^2 B_y}$$

We work in terms of flux and stream functions.

momentum

nonlinear

viscous

$$\partial_t \nabla^2 \Psi = \frac{2}{\beta} B_0 \partial_z \nabla^2 A + 2 \partial_z u_y + \frac{2}{\beta} J \left(A, \nabla^2 A \right) - J \left(\Psi, \nabla^2 \Psi \right) + \frac{1}{Re} \nabla^4 \Psi$$

$$\partial_t u = \frac{2}{\beta} B_0 \partial_z B_y - (2 - q) \partial_z \Psi + \frac{2}{\beta} J(A, B_y) - J(\Psi, u_y) + \frac{1}{Re} \nabla^2 u_y$$

$$\partial_t A = B_0 \partial_z \Psi + J \left(A, \Psi \right) + \frac{1}{Rm} \nabla^2 A$$
 resistive

$$\partial_t B_y = B_0 \partial_z u_y - q\Omega_0 \partial_z A + J(A, u_y) - J(\Psi, B_y) + \frac{1}{Rm} \nabla^2 B_y$$

Dedalus is a general-purpose spectral code.

We use experimentally relevant boundary conditions.

Tune the most unstable mode just over the threshold of instability.

$$\epsilon^2 = 1 - B_0$$

Identify the most unstable mode of the linear MRI.

Multiscale analysis tracks the evolution of fast and slow variables.

Equations are solved in a matrix formulation.

The fluid quantities are expanded in a perturbation series.

$$\mathbf{V} = \epsilon \mathbf{V_1} + \epsilon^2 \mathbf{V_2} + \epsilon^3 \mathbf{V_3} + \dots$$

something about boundary layers?

The removal of secular terms yields solvability criteria.

The removal of secular terms yields solvability criteria.

First order velocity perturbations

Second order velocity perturbations

First and second order velocity perturbations

First order magnetic field perturbations

Second order magnetic field perturbations

First and second order magnetic field perturbations ${\cal B}_y$

Future work:

non-thin gap approximation helical MRI explore parameter space comparison to experiment