Homework 6.1 Homework due Aug 24, 2022 23:59 +06 Completed Bookmark this page HW 6.1.1 5.0/5.0 points (graded) V_{DD} i_D i

Submit You have used 1 of 4 attempts

Find the drain current i_D in mA

Find the ouput voltage v_O in V.

4.882

HW 6.1.2

5.0/5.0 points (graded)

If the input voltage $v_I=1V$.

0.2441

Find the drain current i_D in mA

Submit You have used 2 of 5 attempts

HW 6.1.3

5.0/5.0 points (graded)

If the transition input voltage is $v_I=2V$, find out the value of R_D in $k\Omega$?

400

Submit You have used 1 of 5 attempts

HW 6.1.4 5.0/5.0 points (

5.0/5.0 points (graded)

In the above NMOS NOR gate circuit $R_D=1k\Omega$ and for both n-channel MOSFETs conduction parameter $K_n=2mA/V$, threshold voltage $V_{TN}=0.5V$.

Find the maximum power dissipation in mW.

Remember that voltage swing for both inputs V_1, V_2 are in between 0V to 2.5V.

5.8686675 5.8686675

In this case, find the output voltage V_O in V.

Submit You have used 1 of 5 attempts

Homework 6.2 Homework due Aug 24, 2022 23:59 +06 Completed □ Bookmark this page

HW 6.2.1

5.0/5.0 points (graded)

In the above circuit $V_{DD}=5V$.

The aspect ratio for the n-channel depletion type MOSFET M_L is $(W/L)_L=1$.

The process conduction parameter for all three MOSFETs is $k_n^\prime=2mA/V^2$.

The threshold voltage for the n-channel depletion type MOSFET M_L is $V_{TNL}=-0.6V_{\odot}$

The aspect ratio for the n-channel enhancement type MOSFET M_{D1} is $(W/L)_{D1}=4$.

The aspect ratio for the n-channel enhancement type MOSFET M_{D2} is $(W/L)_{D2}=2$.

The threshold voltage of the both n-channel enhancement type MOSFET M_{D1} and M_{D12} is $V_{TND}=0.4V$.

The threshold voltage of the both is channel enhancement type most example and m_{D12} is $v_{TND} = 0.4v$.

Find the output voltage v_O in mV.

9.7930

0.72

0.72

0.72

Let $V_1=5V$ and $V_2=0V$.

9.7930

Find the current i_{DL} in mA.

Find the current i_{D1} in mA.

Find the current i_{D2} in mA.

0

Find the power dissipation in mW.

3.6

Submit You have used 1 of 5 attempts

5.0/5.0 points (graded)

HW 6.2.2

3.6

Let $V_1=0V$ and $V_2=5V$. Find the output voltage v_O in mV.

19.607

19.607

0.72

Find the current i_{DL} in mA.

0.72 Find the current i_{D1} in mA.

0

Find the current i_{D2} in mA.

0.72

Find the power dissipation in mW.

HW 6.2.3

You have used 3 of 5 attempts

Let $V_1=5V$ and $V_2=5V$.

0.72

5.0/5.0 points (graded)

Submit

3.6

6.5263688

6.5263688

Find the output voltage v_O in mV.

Find the current i_{DL} in mA.

0.72

Find the current i_{D1} in mA.

0.4799

0.4799 Find the current i_{D2} in mA.

0.2399

0.2399

Find the power dissipation in mW.

3.6

3.6

Submit

You have used 1 of 5 attempts

Homework 6.3

Homework due Aug 24, 2022 23:59 +06 Completed

☐ Bookmark this page

HW 6.3.1

8.0/8.0 points (graded)

In the circuit above CMOS inverter is biased at $V_{DD}=1.8V$. The transistor parameters are $V_{TN}=-V_{TP}=0.4V$ and $K_n/K_p=5/2$.

Find the value of V_{IH} in V.

Find the value of V_{OLU} in V_{\cdot}

Find the value of V_{IL} in V_{\cdot}

Find the value of V_{OHU} in V.

Find the value of NM_L in \emph{V} .

Find the value of NM_H in V.

Find the value of Noise Margin in $oldsymbol{V}$.

You have used 6 of 14 attempts

Submit

HW 6.3.2 6.0/6.0 points (graded)

In this transfer characteristics curve V_{OPt} represents the transition output voltage for PMOS and V_{ONt} represents the transition output voltage for NMOS and V_{It} represents the transition input voltage.

Find the value of V_{It} for the circuit in V. Hint: remember that $V_{DS} = V_{GS} - V_{TN}$ for NMOS is at the transition point or $V_{SD} = V_{SG} + V_{TP}$ for NMOS is at the transition point. Moreover, in the picture while the transistors are in between transition points input voltage is equal to V_{It} .

Find the value of V_{OPt} for the circuit in V.

Find the value of V_{ONt} for the circuit in V_{\cdot}

Save

Homework 6.4 Homework due Aug 24, 2022 23:59 +06 Completed ☐ Bookmark this page HW 6.4.1 6.0/6.0 points (graded) Bps And Ans This is the CMOS logic implementation of logic equation $Y = \overline{A(B+C)D}$. Some of the connections are already given and you need to provide the rest of the correct connection for this circuit. Select all the terminal(s) that must be connected to the node Bnd. Dnd Dns Cnd Cns Ans Cpd Cps Select all the terminal(s) that must be connected to the node Bns. Dnd Dns Cnd ✓ Cns Ans Cpd Cps Select all the terminal(s) that must be connected to the node Ans. ✓ Dnd Dns Cnd Cns Bnd Cpd Cps Select all the terminal(s) that must be connected to the node And. ✓ Dpd Dps ✓ Cpd Cps Bps Bpd ✓ Apd Aps Select all the terminal(s) that must be connected to the node Bpd. Dpd Dps Cpd ✓ Cps Bps Bpd Apd Aps Select all the terminal(s) that must be connected to the node Bps. Dpd Dps Cpd Cps Bps Bpd Apd Aps Save Submit You have used 2 of 8 attempts HW 6.4.2 4.0/4.0 points (graded) Clock D Q_a Q_c

 Q_a is the output of a positive level D-latch and Q_b is the output of a positive edge-triggered D-flip flop.

 Q_a is the output of a negative level D-latch and Q_b is the output of a positive edge-triggered D-flip flop.

 Q_a is the output of a positive level D-latch and Q_b is the output of a negative edge-triggered D-flip flop.

Select the correct answer(s) by examining the timing diagram displayed above.

 Q_a,Q_b and Q_c are the outputs of three differenct sequential circuits with D as data input and Clock as ϕ signal.

- Q_b is the output of a positive edge-triggered D-flip flop and Q_c is the output of a positive edge-triggered D-flip flop. Q_b is the output of a positive edge-triggered D-flip flop and Q_c is the output of a negative edge-triggered D-flip flop.
- Q_b is the output of a negative edge-triggered D-flip flop and Q_c is the output of a positive edge-triggered D-flip flop.

 Q_a is the output of a negative level D-latch and Q_c is the output of a positive edge-triggered D-flip flop.

- - Q_a is the output of a positive level D-latch and Q_c is the output of a positive edge-triggered D-flip flop.
- arphi Q_a is the output of a positive level D-latch and Q_c is the output of a negative edge-triggered D-flip flop.

Save