

TECHNISCHE UNIVERSITÄT BERLIN LERNSKRIPT ZUR VORLESUNG UND ÜBUNG

Lineare Algebra II für Mathematiker

gelesen von Prof. Dr. Springborn im Sommersemester 2018

Abbildung 1: The Four Fundamental Subspaces aus: The Fundamental Theorem of Linear Algebra, Gilbert Strang, American Mathematical Monthly,1993.

Inhaltsverzeichnis

3 Determinanten - Fortsetzung							
	3.1	Die Determinante eines Endomorphismus 4					
	3.2	Orientierung					
	3.3	*I: Matrixzerlegung und Kettenbrüche					
4	Eige	Eigenwerte 13					
	4.1	Einführung - Eigenwerte, Diagonalisierbarkeit					
	4.2	Das charakteristische Polynom					
	4.3	Diagonalisierung					
	4.4	Die Jordanische Normalform					
	4.5	*II: Typische Klausuraufgaben zur JNF					
	4.6	Normalform nilpotenter Endomorphismen					
	4.7	*III: Die Jordanische Normalform					
	4.8	Der euklidische Algo und Bézout's Lemma					
	4.9	Das Minimalpolynom					
	4.10	*IV: Minimalpolynom und Goldener Schnitt					
	4.11	Beweis der Existenzaussage des JNF-Satzes					
	4.12	Beweis der Eindeutigkeit der JNF					
	4.13	Hauptraumzerlegung					
5	Euk	Euklidische und unitäre Vektorräume 46					
	5.1	Die kanonischen Skalarprodukte					
	5.2	Norm, Metrik, Winkel und Orthogonalität					
	5.3	Das Kreuz- bzw. Vektorprodukt					
	5.4	Bilinearformen					
	5.5	*VII: Koordinaten und darstellende Matrizen					
	5.6	Quadratische Formen					
	5.7	Polarisationsformel und Sesquilinearformen					
	5.8	Euklidische & unitäre Vektorräume					
	5.9	*VI: Induzierte Normen und das Skalarprodukt					
	5.10	Orthonormalbasen					
	5.11	Gram-Matrizen und -Vektoren					
	5.12	Orthogonale und unitäre Automorphismen					
	5.13	Orthogonale und unitäre Matrizen					
	5.14	*VIII: Volumen und Orthonormaliserung					
	5.15	Explizite Darstellung von O(n)					
	5.16	Normalform orthogonaler / unitärer Endomorphismen 82					
		Selbstadjungierte und normale Endomorphismen 84					
	5.18	Hauptachsentransformationen I: Kegelschnitte					
	5.19	Hauptachsentransformationen II: Quadratische Formen in euklidi-					
		schen Vektorräumen					
	5.20	Hauptachsentransformationen III:					
		Bilinearformen auf euklidischen und unitären Vektorräumen 95					
	5.21	*IX: Drehungen in der Ebene und im Raum 99					
	5.22	*X: Hauptachsentransformation & Kegelschnitte 102					

Inhaltsverzeichnis

	5.23	Signatur mit Hauptminoren berechnen	. 104
6	Dualität und Tensorprodukte		
	6.1	Einführung: Dualität	. 106
	6.2	Dualität und Skalarprodukte	. 111
	6.3	Etwas multilineare Algebra und Tensorprodukte	. 113
\mathbf{A}	bbild	lungsverzeichnis	116
In	dex		116

 $\label{eq:discrete_discrete_discrete} Die \ mit* markierten \ Kapitel \ sind \ die \ r\"omisch \ durchnummerierten \ großen \\ \ddot{U}bungen, \ gehalten \ von \ Andy \ Sageman-Furnas. \\ \ Mitschrift \ von \ Viktor \ Glombik.$

Letzte Änderung am 3. März 2019.

Determinanten - Fortsetzung

3.1 Die Determinante eines Endomorphismus

16.04.18 Determinante

Vorher erinnern wir an die definierenden Eigenschaften der Determinante

- Linear in jede Spalte, alternierend und normiert
- $\det(A) \neq 0 \iff A \text{ ist invertierbar} \iff \dim \operatorname{Ker} A = 0.$
- $\det(AB) = \det(A) \cdot \det(B)$ (*) sowie $\det(A) = \det(A^T)$.

und die Methoden zu ihrer Berechnung (LEIBNIZ, GAUSS, LAPLACE).

Seien im Folgenden V ein n-dimensionaler K-Vektorraum und $F \in \text{End}(V)$ ein Endomorphismus.

Definition 3.1.1 (darstellende Matrix eines Endomorphismus)

Bezüglich einer Basis $\mathcal{B} = (b_1, \dots, b_n)$ von V ist die darstellende Matrix $M_{\mathcal{B}}(F) = (a_{ij}) \in K^{n \times n}$ die Matrix, für welche für alle $j \in \{1, \dots, n\}$ gilt

$$F(b_j) = \sum_{k=1}^{n} a_{kj} b_k.$$

darstellende Matrix

Transformationsformel

Basistransformations-

matrix

DEFINITION 3.1.2 (Determinante eine Endomorphismus)

Sei \mathcal{B} eine beliebige Basis von V. Die Determinante von F ist definiert durch

$$\det(F) = \det(M_{\mathcal{B}}(F)).$$

Lemma 3.1.3

Der Wert von $det(M_{\mathcal{B}}(F))$ ist von der Wahl der Basis \mathcal{B} unabhängig.

Beweis. Sei $\mathcal{B}' = (b'_1, \dots, b'_n)$ eine weitere Basis von V, dann gilt die Transformationsformel

$$M_{\mathcal{B}'}(F) = T_{\mathcal{B}'}^{\mathcal{B}} \cdot M_{\mathcal{B}}(F) \cdot \left(T_{\mathcal{B}'}^{\mathcal{B}}\right)^{-1},$$

wobei $T_{B'}^{\mathcal{B}} = (t_{ij}) \in GL(n, K)$ die Basistransformationsmatrix ist.

Aus dem Determinantenmultiplikationssatz (*) folgt $det(A^{-1}) = det(A)^{-1}$ und somit gilt

$$\det(M_{\mathcal{B}'}(F)) = \det\left(T_{\mathcal{B}'}^{\mathcal{B}} \cdot M_{\mathcal{B}}(F) \cdot \left(T_{\mathcal{B}'}^{\mathcal{B}}\right)^{-1}\right)$$

$$= \det\left(T_{\mathcal{B}'}^{\mathcal{B}}\right) \cdot \det\left(M_{\mathcal{B}}(F)\right) \cdot \det\left(\left(T_{\mathcal{B}'}^{\mathcal{B}}\right)^{-1}\right)$$

$$= \underbrace{\det\left(T_{\mathcal{B}'}^{\mathcal{B}}\right) \cdot \left(\det\left(T_{\mathcal{B}'}^{\mathcal{B}}\right)\right)^{-1}}_{=1} \cdot \det\left(M_{\mathcal{B}}(F)\right) = \det\left(M_{\mathcal{B}}(F)\right).$$

$$F \text{ surjektiv} \iff \det(F) \neq 0$$

Bemerkung 3.1.4 Aus ((D10): $det(A) = 0 \iff rang(A) < n$) folgt

Abbildung 2: Basiswechsel [Quelle:Wikipedia (engl.)]

Bemerkung 3.1.5 Seien V und W verschiedene gleichdimensionale Vektorräume mit den Basen \mathcal{A} und \mathcal{B} und $F:V\to W$ einer lineare Abbildung.

Dann hängt $\det(M_{\mathcal{B}}^{\mathcal{A}})$ von der Wahl der Basen ab und eine 'Determinante von F' ist nicht wohldefiniert.

GEGENBEISPIELE FINDEN!

SATZ 3.1.1: $det(F \circ G) = det(F) \cdot det(G)$

Für zwei Endomorphismen $F, G \in \text{End}(V)$ gilt $\det(F \circ G) = \det(F) \cdot \det(G)$.

Beweis. Selbst.

Meine Idee: Seien $\mathcal{B} = (v_1, \dots, v_n)$ eine beliebige Basis von V. Dann gilt

$$\det(F \circ G) \stackrel{3.1.1}{=} \det(M_{\mathcal{B}}(F \circ G)) \stackrel{\ddagger}{=} \det(M_{\mathcal{B}}(F) \cdot M_{\mathcal{B}}(G))$$

$$\stackrel{(*)}{=} \det(M_{\mathcal{B}}(F)) \cdot \det(M_{\mathcal{B}}(G))$$

$$\stackrel{3.1.1}{=} \det(F) \cdot \det(G)$$

Nun bleibt ‡ zu zeigen.

Seien $(a_{ij}) := M_{\mathcal{B}}(F), (b_{ij}) := M_{\mathcal{B}}(G)$ und $(c_{ij}) := M_{\mathcal{B}}(F \circ G)$. Wir wollen zeigen, dass für alle $i, j, k \in \{1, ..., n\}$ gilt

$$c_{kj} = \sum_{i=1}^{n} b_{ki} a_{ij}$$
 bzw. $(c_{kj}) = (b_{ki}) \cdot (a_{ij})$.

Nach Definition 3.1.1 gilt für alle $j \in \{1, ..., n\}$

$$(F \circ G)(v_j) = \sum_{\ell=1}^n c_{\ell j} v_{\ell}. \tag{1}$$

und andererseits

$$(F \circ G)(v_j) = F(G(v_j)) \stackrel{3.1.1}{=} F\left(\sum_{k=1}^n b_{kj} v_k\right)$$

$$= \sum_{k=1}^n b_{kj} F(v_k) \stackrel{3.1.1}{=} \sum_{k=1}^n b_{kj} \left(\sum_{\ell=1}^n a_{\ell k} v_\ell\right) = \sum_{\ell=1}^n \left[\sum_{k=1}^n a_{\ell k} b_{kj}\right] v_\ell.$$

Mit Koeffizientenvergleich mit Gleichung (1) folgt die Aussage.

3.2 Orientierung

In diesem Kapitel betrachten wir nun reelle Matrizen und lineare Abbildungen zwischen endlichdimensionalen reellen Vektorräumen.

Der Betrag der Determinante hat folgende geometrische Interpretationen:

- 1 Für $v_1, \ldots v_n \in \mathbb{R}^n$ ist $\det(v_1 \ldots v_n)$ das *n*-dimensionale Volumen des Parallelotops, welche von diesen Vektoren aufgespannt wird.
- 2 Für $A \in K^{n \times n}$ ist $|\det(A)|$ der Volumenverzerrungsfaktor der lineare Abbildung $Z: K^n \to K^n, \ v \mapsto Av$. Es gilt

$$|\det(Av_1 \dots Av_n)| = |\det(A \cdot (v_1 \dots v_n))| \stackrel{(*)}{=} |\det(A)| \cdot |\det((v_1 \dots v_n))|.$$

Das Vorzeichen der Determinante hat auch eine geometrische Bedeutung, für die der Begriff der Orientierung zentral ist.

Orientierung 20.04.18

Beispiel 3.2.1 Seien die folgenden Matrizen gegeben:

$$A = \begin{pmatrix} -1 & -\frac{1}{4} \\ 1 & -\frac{1}{2} \end{pmatrix}, \qquad A' = \begin{pmatrix} \frac{1}{4} & 1 \\ 1 & \frac{1}{2} \end{pmatrix}.$$

Es gilt det(A) > 0 > det(A'). Das Bild unter A ist nach einer Drehung wieder als F zu erkennen, das Bild unter A' ist gespiegelt.

Abbildung 3: [Quelle: Fischer]

Beispiel 3.2.2 Ein Endomorphismus $G: \mathbb{R}^3 \to \mathbb{R}^3$ mit positiver bzw. negativer Determinante bildet eine rechte Hand auf eine verzerrter rechte bzw. linke Hand ab.

Definition 3.2.3 (orientierungstreu und -umkehrend)

Sei F ein Automorphismus über einem endlichdimensionalen reellen Vektorraum.

$$F \text{ heißt orientierungs-} \begin{cases} \text{treu}, & \text{falls } \det(F) > 0, \\ \text{umkehrend}, & \text{falls } \det(F) < 0. \end{cases}$$

Automorphismus

Definition 3.2.4 (Orientierungsgleichheit von Basen)

Seien $\mathcal{A} = (v_1, \dots, v_n)$ und $\mathcal{B} = (w_1, \dots, w_n)$ zwei Basen eines reellen Vektorraums V.

Dann existiert nach Satz 2.4.1 genau eine lineare Abbildung $F \in \text{End}(V)$ mit $F(v_i) = w_i$ für alle $i \in \{1, ..., n\}$.

Wir sagen \mathcal{A} und \mathcal{B} sind gleich orientiert und schreiben $\mathcal{A} \sim \mathcal{B}$, wenn $\det(F) > 0$. Ist $\det(F) < 0$, so sind \mathcal{A} und \mathcal{B} umgekehrt orientiert.

Korollar 3.2.5

Die Relation \sim der Orientierungsgleichheit ist eine Äquivalenzrelation auf der Menge der Basen von V. Es gibt zwei gleichberechtigte Äquivalenzklassen.

Beweis. Selbst.

<u>Meine Idee:</u> Um den ersten Teil zu zeigen, müssen wir zeigen, dass \sim reflexiv, symmetrisch und transitiv ist.

Es gilt $\mathcal{A} \sim \mathcal{A}$ für jede Basis \mathcal{A} von V, und der eindeutig bestimmte Endomorphismus ist die Identität auf V, $F := \mathrm{id}_V$ mit $\det(F) = 1$.

Die Symmetrie ist ebenfalls erfüllt, da die Inverse Abbildung zu F eindeutig bestimmt ist: Gilt $\mathcal{A} \sim \mathcal{B}$, so ist $F(v_i) = w_i$ für alle i, dann ist aber auch $F^{-1}(w_i) = v_i$ für alle i und somit $\mathcal{B} \sim \mathcal{A}$, weil $\det(F)$ und $\det(F^{-1}) = (\det(F))^{-1}$ das gleiche Vorzeichen haben.

Die Transitivität folgt aus Satz 3.1.1, sei dazu $\mathcal{C} = (u_1, \ldots, u_n)$ eine Basis von V. Wenn die beiden Endomorphismen F und G mit $F(v_i) = w_i$ und $G(w_i) = u_i$ und $\det(F), \det(G) > 0$ sind. Dann ist der gilt $\det(G \circ F) = \det(G) \circ \det(F) > 0$ mit $(G \circ F)(v_i) = u_i$.

Die Orientierungsverschiedenheit ist wegen der mangelnden Transitivität keine Äquivalenzrelation.

Für den zweiten Teil siehe Fischer.

Definition 3.2.6 (Äquivalenzklasse, Orientierung)

- 1 Die Äquivalenzklasse einer Basis \mathcal{B} bezeichnen wir mit $[\mathcal{B}]$.
- 2 Eine Orientierung von V ist eine Äquivalenzklasse $[\mathcal{B}]$ gleich orientierter Basen.
- 3 Ein orientierter Vektorraum ist ein Paar $(V, [\mathcal{B}])$ bestehend aus einem reellen Vektorraum V und einer Orientierung $[\mathcal{B}]$ von V.
- 4 In einem orientierten Vektorraum $(V, [\mathcal{B}])$ heißt die Basen in $[\mathcal{B}]$ positiv orientiert und die anderen negativ orientiert.

Bemerkung 3.2.7 Die Standardorientierung des \mathbb{R}^n ist $[(e_1,\ldots,e_n)]$.

Lemma 3.2.8

 (v_1, \ldots, v_n) ist eine Basis von $\mathbb{R}^n \iff (v_1 \ldots v_n) \in GL(n, \mathbb{R})$

Beweis. Selbst.

Meine Idee: " \Longrightarrow ": Weil (v_1, \ldots, v_n) eine Basis ist, sind die Basisvektoren v_1, \ldots, v_n linear unabhängig. Aus D10 folgt, dass wenn die Spalten (bzw. Zeilen) einer Matrix A linear unabhängig sind, die Matrix A invertierbar ist.

Orientierung

Standardorientierung

" \Leftarrow ": Ist (v_1, \ldots, v_n) invertierbar, so folgt aus D10, dass die Spalten (bzw. Zeilen) dieser Matrix linear unabhängig sind. Da n linear unabhängige Vektoren immer einen n-dimensionalen Raum erzeugen, sind die auch Erzeugendensystem und damit Basis des \mathbb{R}^n .

Lemma 3.2.9

Es gilt
$$GL(n, \mathbb{R}) := \{A \in \mathbb{R}^{n \times n} : \det(A) \neq 0\} = G_+ \cup G_- \text{ mit}$$

$$G_+ = \{A \in \mathbb{R}^{n \times n} : \det(A) > 0\} \quad \text{und} \quad G_- = \{A \in \mathbb{R}^{n \times n} : \det(A) < 0\},$$
wobei G_+ ein Untergruppe von $GL(n, \mathbb{R})$ ist, G_- jedoch nicht.

Untergruppe

Beweis. Selbst.

Meine Idee: Wir müssen die drei Axiome einer Untergruppe überprüfen.

- 1 Offensichtlich gilt $G_+ \neq \emptyset$, z.B. ist die $n \times n$ -Einheitsmatrix $E_n \in G_+$.
- Die innere Verknüpfung von $\operatorname{GL}(n,\mathbb{R})$ ist die Matrixmultiplikation. Seien nun $A,B\in G_+$, so folgt nach dem Determinantenmultiplikationssatz, dass $\det(A)>0$ und $\det(B)>0$ impliziert, dass $\det(AB)=\det(A)\cdot\det(B)>0$ gilt.

Deswegen ist G_{-} keine Untergruppe, da für zwei Matrizen $C, D \in G_{-}$ gilt $\det(C) < 0$ und $\det(D) < 0 \implies \det(CD) = \det(C) \cdot \det(D) > 0$.

3 Da jede Matrix $A \in G_+$ invertierbar ist, existiert auch das Inverse A^{-1} und ist in G_+ , weil $\det(A) > 0$ impliziert, dass $\det(A^{-1}) = \det(A)^{-1} > 0$ (vgl. Determinantenmultiplikationssatz).

Lemma 3.2.10

Eine Basis (v_1, \ldots, v_n) von \mathbb{R}^n ist genau dann positiv orientiert bezüglich der Standardorientierung, wenn $\det(v_1 \ldots v_n) > 0$ ist.

Standardorientierung

Beweis. Es gilt $(v_1, \ldots, v_n) = (A(e_1), \ldots, A(e_n))$ mit $A = (v_1 \ldots v_n)$ und deshalb gilt nach Definition 3.2.4 $(v_1, \ldots, v_n) \sim (e_1, \ldots, e_n)$ genau dann, wenn $\det(A) > 0$ ist.

Satz 3.2.1: Stetige Deformierbarkeit I

Eine Basis $\mathcal{B} = (v_1, \dots, v_n)$ von \mathbb{R}^n ist genau dann positiv orientiert, wenn sie sich stetig in die Standardbasis deformieren lässt, also wenn eine stetige Funktion $x_1, \dots, x_n : [0,1] \to \mathbb{R}^n$ existiert, sodass

$$(x_1(0),\ldots,x_n(0))=(v_1,\ldots,v_n), \qquad (x_1(1),\ldots,x_n(1))=(e_1,\ldots,e_n)$$

gilt und für alle $t \in [0,1]$ die Basis $(x_1(t), \ldots, x_n(t))$ eine Basis von \mathbb{R}^n ist.

SATZ 3.2.2: STETIGE DEFORMIERBARKEIT II

Für eine Matrix $A \in GL(n, \mathbb{R})$ sind folgende Aussagen äquivalent:

- $(1) \det(A) > 0.$
- 2 Es existiert eine stetige Abbildung $X : [0,1] \to \mathbb{R}^{n \times n}$, sodass X(0) = A, X(1) = E und $X(t) \in GL(n, \mathbb{R})$ für alle $t \in [0,1]$ gilt.

Beweis. "(i) \implies (ii)": siehe Fischer, Seite 214-219.

"(ii) \implies (i)": Die Determinante det : $\mathbb{R}^{n\times n} \to \mathbb{R}$ ist eine stetige Abbildung und deswegen ist auch $f:=\det\circ X:[0,1]\to\mathbb{R},\ t\mapsto\det(X(t))$ als Verknüpfung stetige Abbildungen stetig.

Weil X invertierbar ist, ist $\det(X(t)) \neq 0$ für alle $t \in (0,1)$. Mit dem Zwischenwertsatz folgt, dass das Vorzeichen von $\det(A) = \det(X(0))$ gleich dem Vorzeichen von $\det(E) = \det(X(1)) = 1 > 0$ ist.

Bemerkung Die beiden Sätze 3.2.1 und 3.2.2 sind äquivalent.

3.3 *I: Matrixzerlegung und Kettenbrüche

27.04.18 (hoffentlich) oder*II?

Zerlegung ganzzahliger 2x2-Matrizen mit HA I

SATZ 3.3.1: ZERLEGUNG VON GANZZAHLIGEN QUADRATISCHEN 2x2-Matrizen

Jede Matrix $T \in \mathbb{Z}^{2 \times 2}$ mit det(T) = 1 lässt sich mit

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 und $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

und $n_i \in K$ für $i \in \{1, \dots, k\}$ folgendermaßen darstellen

$$T = A^{n_1} \cdot B \cdot A^{n_2} \cdot B \cdot \ldots \cdot B \cdot A^{n_k}. \tag{2}$$

Beweis. Per Nebenrechnung erhalten wir $B^2 = -E_2$ und per Induktion $A^n =$ $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ für alle $n \in \mathbb{Z}$.

Wir zeigen die Behauptung über vollständige Induktion über c.

Sei dafür $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Falls c < 0, betrachte -T. Wir nehmen also $c \ge 0$ an.

IA:
$$(c=0): T = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \implies \det(T) = ad - 0 \stackrel{!}{=} 1 \iff a = d = \pm 1$$

IA:
$$(c=0): T = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \implies \det(T) = ad - 0 \stackrel{!}{=} 1 \iff a = d = \pm 1.$$

Also gilt $T = \begin{pmatrix} \pm 1 & b \\ 0 & \pm 1 \end{pmatrix} = \begin{cases} A^b \cdot B^2 \\ A^b \end{cases}$.

IV: Falls $\tilde{r} < c$ und $\tilde{T} := \begin{pmatrix} \tilde{a} & \tilde{b} \\ \tilde{c} & \tilde{d} \end{pmatrix}$ gilt, dann hat \tilde{T} eine Zerlegung wie in (1).

IS: Wir wollen c verkleinern nach einer Multiplikation von einem Produkt von Aund B. Trick: Division mit Rest bei d durch c. Genauer

$$\exists q, r \in \mathbb{Z} : d = c \cdot q + r \quad \text{sodass} \quad 0 \leqslant r < c \tag{3}$$

Untersuchen wir $T \cdot A^{-q} \cdot B = \begin{pmatrix} a & b-aq \\ c & d-qc \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} aq-b & a \\ qc-d & c \end{pmatrix} \stackrel{(3)}{=} \begin{pmatrix} aq-b & a \\ -r & c \end{pmatrix}$. Und somit gilt $B^2 \cdot T \cdot A^{-q} \cdot B = \begin{pmatrix} b-aq & -a \\ r & -c \end{pmatrix}$, also können wir die IV auf $B^2 \cdot T \cdot A^{-q} \cdot B$ anwenden.

Mit IV gilt für $n_1, \ldots n_k \in \mathbb{Z}$

$$B^2 \cdot T \cdot A^{-q} \cdot B = A^{n_1} \cdot B \cdot A^{n_2} \cdot B \cdot \dots \cdot B \cdot A^{n_k}$$
 und da $B^4 = E_2$

$$+T = A^{n_1} \cdot B \cdot A^{n_2} \cdot B \cdot \dots \cdot B \cdot A^{n_k}$$
 mit $n_k = q$

Somit existiert eine Zerlegung für T.

Beispiel 3.3.1 (Wie findet man die Zerlegung?) Sei $T = \begin{pmatrix} 3 & 10 \\ 5 & 17 \end{pmatrix}$

Es gilt
$$\underbrace{17}_{d} = \underbrace{5}_{c} \cdot \underbrace{3}_{q} + \underbrace{2}_{r}$$
 und $-5 = 2 \cdot \underbrace{(-3)}_{r} + 1$ und $-2 = 1 \cdot \underbrace{(-2)}_{r} + 0$.
Also gilt $T = -B \cdot A^{-2} \cdot B \cdot A^{-3} \cdot B \cdot A^{3}$. Die Restterme sind die linken unteren Einträge

während der Zerlegung, die Quotienten sind die Potenzen. Ohne Vorzeichenwechsel heißt diese Algorithmus Euklidischer Algorithmus.

Euklidischer Algorithmus

Endliche Kettenbrüche zur Darstellung reeller Zahlen

Sei $x \in \mathbb{R}$. Wir wollen x als einen "Aufrundungskettenbruch" darstellen, also in der Form

$$x = a_0 - \frac{1}{a_1 - \frac{1}{a_2 - \frac{1}{a_{n-1} - \frac{1}{a_n}}}}$$
 (4)

Wir beginnen mit $x = a_0 - r_0$ mit $a_0 := \lceil x \rceil \implies r_0 = \lceil x \rceil - x = a_0 - x$. Dann gilt $x = a_0 - r_0 = a_0 - \frac{1}{\frac{1}{r_0}}$.

Nun wenden wir rekursiv diese Zerlegung auf $\frac{1}{r_0}$ an und erhalten $a_1 = \left\lceil \frac{1}{r_0} \right\rceil$, $r_1 =$ $a_1 - \frac{1}{r_1} \implies x = a_0 - \frac{1}{a_1 - r_1}.$

Dieser Algorithmus terminiert offensichtlich, wenn $r_k = 0$, dann gilt $a_{k+1} :=$ $\left|\frac{1}{r_k}\right|,\ r_{k+1}\coloneqq a_{k+1}-\frac{1}{r_k}.$ DAS KANN JA NICHT SEIEN, WEIL MAN NICHT DURCH NULL

TEILEN KANN!

Die Approximanten von x sind (hierbei $n \in \mathbb{Z}$)

$$\frac{p_n}{q_n} = [a_0, a_1, \dots, a_n].$$

Approximanten

Beispiel 3.3.2 $-\frac{1}{3} = [0,3] = 0 - \frac{1}{3}$.

SATZ 3.3.2: APPROXIMANTEN

Definiere

$$\begin{split} P_{-1} &:= 1, \quad q_{-1} := 0, \quad p_0 := a_0, \quad q_0 := 1, \\ p_{n+1} &:= a_{n+1}p_n - p_{n+1}, \qquad q_{n+1} := a_{n+1}q_n - q_{n+1}. \end{split}$$

Dann sind $\frac{P_i}{q_i}$ die Approximanten für $x=\lceil a_0,a_1,\ldots,a_{n-1},a_n,a_{n+1},\ldots \rceil$ mit

$$T_0 = \left(\begin{smallmatrix} -P_0 & P_{-1} \\ -q_0 & q_{-1} \end{smallmatrix} \right), \quad T_{n+1} = T_n \left(\begin{smallmatrix} -P_{n+1} & P_n \\ -q_{n+1} & q_n \end{smallmatrix} \right), \quad T_n = (-1)^n \left(\begin{smallmatrix} -P_n & P_{n-1} \\ -q_n & q_{n-1} \end{smallmatrix} \right).$$

Beweis. Wir beweisen die Behauptung mit vollständiger Induktion über $n \in \mathbb{N}$. IA: nach Konstruktion

IS:
$$\frac{P_{n+1}}{q_{n+1}} = [a_1, \dots, a_{n-1}, a_n, \dots, a_{n+1}] = [a_1, \dots, a_{n-1}, a_n, a_n - \frac{1}{a_{n+1}}].$$

$$T_0 := \begin{pmatrix} -P_0 & P_{-1} \\ -q_0 & q_{-1} \end{pmatrix} = \begin{pmatrix} -a_0 & 1 \\ -1 & 0 \end{pmatrix} = A^{a_0} \cdot B$$

$$T_{n+1} = T_n \begin{pmatrix} -a_{n+1} & 1 \\ -1 & 0 \end{pmatrix} = A^{a_{n+1}} \cdot B.$$

Somit folgt $T = A^{a_k} B \cdot \ldots \cdot B \cdot A^{a_1} \cdot B \cdot A^{a_0} \cdot B$ für $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, wenn ad < bc ist. Es gilt

$$\frac{a}{c} = a_0 - \frac{1}{a_1 - \frac{1}{a_2 - \frac{1}{a_{k-1} - \frac{1}{a_k}}}}.$$

$$\begin{split} \frac{P_{n+1}}{q_{n+1}} &= \frac{\left(a_n - \frac{1}{a_{n+1}}\right) P_{n-1} - P_{n-2}}{\left(a_n - \frac{1}{a_{n+1}}\right) q_{n-1} - q_{n-2}} = \frac{a_n a_{n+1} P_{n-1} - P_{n-1} - a_{n+1} P_{n-2}}{a_n a_{n+1} q_{n-1} - q_{n-1} - a_{n+1} q_{n-2}} \\ &= \frac{a_{n+1} \left(a_n P_{n-1} - P_{n-2}\right) - P_{n-1}}{a_{n+1} \left(a_n q_{n-1} - q_{n-2}\right) - q_{n-1}}. \end{split}$$

Nun wenden wir den Induktionsschritt $P_n=a_nP_{n-1}-P_{n-2}$ bzw. $q_n=a_nq_{n-1}-q_{n-2}$ an und erhalten $\frac{P_{n+1}}{q_{n+1}}=\frac{a_{n+1}P_n-P_{n-1}}{a_{n+1}q_n-q_{n-1}}$.

Beispiel 3.3.3 (Finden der Koeffizienten a_i ?)

Mit $P_{n+1} = P_n a_{n+1} - P - n - 1$, das ist die Division mit Rest von davor.

Sei
$$T := \begin{pmatrix} 3 & 10 \\ 5 & 17 \end{pmatrix}$$
. Es gilt $10 \cdot 5 < 17 \cdot 3$.

$$10 = 17 \cdot \underline{(1)} - 7, \qquad 17 = 7 \cdot \underline{(3)} - 4$$
$$7 = 4 \cdot \underline{(2)} - 1, \qquad 4 = 1 \cdot \underline{(4)} - 0$$

Also gilt $T = A^1BA^3BA^2BA^4$. Die erste Methode liefert $T = -BA^{-2}BA^{-3}BA^3$. Diese Zerlegung ist also nicht eindeutig.

4 Eigenwerte

4.1 Einführung - Eigenwerte, Diagonalisierbarkeit

Seien im Folgenden V ein K-Vektorraum mit der Basis $\mathcal{B} = (v_1, \dots, v_n)$ und $F \in \operatorname{End}(V)$ ein Endomorphismus.

Definition 4.1.1 (Eigenwert und -vektor)

Ein $\lambda \in K$ heißt Eigenwert von F,wenn ein Vektor $v \in V \backslash \{0\}$ existiert, für den

$$F(v) = \lambda \cdot v$$
 (Eigenwertgleichung)

gilt. Jedes solches v heißt Eigenvektor von F zum Eigenwert λ .

Eigenvektor

Eigenwert

Beispiel 4.1.2 Seien $V = \mathbb{R}^2$ und $F(v) = A \cdot v$ mit $A := \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$. In dem e_1 - e_2 -Koordinatensystem werden die Standardbasisvektoren e_1 und e_2 durch

In dem e_1 - e_2 -Koordinatensystem werden die Standardbasisvektoren e_1 und e_2 durch Anwendung von F um Winkel α gedreht.

Abbildung 4: [Quelle: Forster]

Es gibt keine Eigenwerte, außer wenn $\alpha=0$ oder $\alpha=\pi$ (bis auf Vielfache von 2π). Für $\alpha=0$ ist $A=E_2$. Dann ist 1 Eigenwert und alle $v\in\mathbb{R}^2\setminus\{0\}$ sind Eigenvektoren. Für $\alpha=\pi$ ist $A=-E_2$. Dann ist -1 Eigenwert und alle $v\in\mathbb{R}^2\setminus\{0\}$ sind Eigenvektoren.

Das dies die einzigen (reellen (!)) Eigenwerte sind, kann man sich daran verdeutlichen, dass $F(v) = \lambda \cdot v$ bedeutet, dass ein Vektor v auf ein Vielfaches $\lambda \cdot v$ von sich selbst abgebildet, also "gestreckt" wird. Das ist nur möglich, wenn eine Drehung um 0 oder 180 Grad vorliegt.

Beispiel 4.1.3 Seien
$$V = \mathbb{R}^2$$
 und $F(v) = A' \cdot v$ mit $A' := \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$.

Abbildung 5: [Quelle: Forster]

Die Vektoren $v_1 = \begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) \end{pmatrix}$ und $v_2 = \begin{pmatrix} \cos\left(\frac{\alpha+\pi}{2}\right) \\ \sin\left(\frac{\alpha+\pi}{2}\right) \end{pmatrix}$ sind Eigenvektoren zu den Eigenwerten $\lambda_1 = 1$ bzw. $\lambda_2 = -1$.

Dies kann man erkennen, wenn man eine Gerade mit dem Winkel $\frac{\alpha}{2}$ einzeichnet. Man sieht, dass F eine Spiegelung an dieser Geraden ist.

Um zu verifizieren, dass die Eigenwerte- und Vektoren richtig bestimmt sind, muss für beide Eigenwerte die Eigenwertgleichung gelten. Für $\alpha = k \cdot \pi$ mit $k \in \mathbb{Z}$ (*1) und den Additionstheoremen (*2) gilt

$$F(v_1) = F\begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\alpha)\cos\left(\frac{\alpha}{2}\right) - \sin(\alpha)\sin\left(\frac{\alpha}{2}\right) \\ \sin(\alpha)\cos\left(\frac{\alpha}{2}\right) + \cos(\alpha)\sin\left(\frac{\alpha}{2}\right) \end{pmatrix} \stackrel{(*_2)}{=} \begin{pmatrix} \cos\left(\alpha + \frac{\alpha}{2}\right) \\ \sin\left(\alpha - \frac{\alpha}{2}\right) \end{pmatrix} \stackrel{(*_1)}{=} \begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) \end{pmatrix} = 1 \cdot v_1.$$

Analog gilt

$$F(v_2) = F\begin{pmatrix} \cos\left(\frac{\alpha+\pi}{2}\right) \\ \sin\left(\frac{\alpha+\pi}{2}\right) \end{pmatrix} = \begin{pmatrix} \cos(\alpha)\cos\left(\frac{\alpha+\pi}{2}\right) + \sin(\alpha)\sin\left(\frac{\alpha+\pi}{2}\right) \\ \sin(\alpha)\cos\left(\frac{\alpha+\pi}{2}\right) - \cos(\alpha)\sin\left(\frac{\alpha+\pi}{2}\right) \end{pmatrix}$$

$$\stackrel{(*_2)}{=} \begin{pmatrix} \cos\left(\alpha - \frac{\alpha+\pi}{2}\right) \\ \sin\left(\alpha + \frac{\alpha+\pi}{2}\right) \end{pmatrix} \stackrel{(*_1)}{=} \begin{pmatrix} -\cos\left(\frac{\alpha+\pi}{2}\right) \\ -\sin\left(\frac{\alpha+\pi}{2}\right) \end{pmatrix} = (-1) \cdot v_2.$$

Die Eigenvektoren bilden eine Basis $\mathcal{B} = (v_1, v_2)$ von \mathbb{R}^2 mit $M_{\mathcal{B}}(F) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Es ist kein Zufall, dass die Eigenwerte auf der Diagonale stehen!

Beispiel 4.1.4 Seien $V = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ und $F(\varphi) = \varphi'$ die Ableitungsabbildung. Jedes $\lambda \in \mathbb{R}$ ist eine Eigenwert mit Eigenvektor $\varphi_{\lambda}(x) = e^{\lambda x}$.

04.05.18

Definition 4.1.5 (diagonalisierbare Endomorphismen)

diagonalisierbar

Ein Endomorphismus $F \in \text{End}(V)$ heißt diagonalisierbar, wenn es eine Basis von V aus Eigenvektoren gibt.

Bemerkung 4.1.6 Wenn F diagonalisierbar ist, und $\mathcal{B} = (v_1, \ldots, v_n)$ eine Basis aus Eigenvektoren bzw. eine Eigenbasis von V zu den Eigenwerten $\lambda_1, \ldots, \lambda_n$ ist, dann gilt für alle Basisvektoren v_i die Eigenwertgleichung und somit ist die

darstellende Matrix gegeben durch

$$M_{\mathcal{B}}(F) = (F(v_1) \dots F(v_n)) = (\lambda_1 v_1 \dots \lambda_n v_n) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}.$$
 (5)

Definition 4.1.7 (diagonalisierbare Matrizen)

Eine Matrix $A \in K^{n \times n}$ heißt diagonalisierbar, wenn der Endomorphismus $F: K^n \to K^n, \ x \mapsto Ax$ diagonalisierbar ist. Das ist genau dann der Fall, wenn eine Matrix $S \in \mathrm{GL}(n,K)$ existiert, sodass gilt

$$S^{-1}AS = \begin{pmatrix} \lambda_1 & 0 \\ \ddots \\ 0 & \lambda_n \end{pmatrix}. \tag{6}$$

Lemma 4.1.8

Seien A und S so wie in der Definition gegeben, dann bilden die Spalten Se_1, \ldots, Se_n von S eine Basis aus Eigenvektoren.

Beweis. Aus der Gleichung (6) folgt durch Multiplikation von links mit der Matrix S

$$AS = S \begin{pmatrix} \lambda_1 & 0 \\ \ddots \\ 0 & \lambda_n \end{pmatrix} \quad \text{und} \quad A(Se_j) = S \begin{pmatrix} \lambda_1 & 0 \\ \ddots \\ 0 & \lambda_n \end{pmatrix} e_j = S\lambda_j e_j = \lambda_j (Se_j).$$

Lemma 4.1.9 (vgl. Definition 4.1.7)

Wenn (v_1, \ldots, v_n) eine Basis aus Eigenvektoren von A ist, dann gilt für $S = (v_1 \ldots v_n) \in GL(n, K)$ die Gleichung (6).

Beweis. Selbst.

Meine Idee: Wir wollen $AS = S \begin{pmatrix} \lambda_1 & 0 \\ \ddots & \\ 0 & \lambda_n \end{pmatrix}$ zeigen. Es gilt

$$AS = A(v_1 \dots v_n) = (\lambda_1 v_1 \dots \lambda_n v_n) = (v_1 \dots v_n)(\lambda_1 \dots \lambda_n) = S \begin{pmatrix} \lambda_1 & 0 \\ \ddots & \\ 0 & \lambda_n \end{pmatrix}.$$

Satz 4.1.1: Kriterium zur Diagonalisierbarkeit I

Sei V ein n-dimensionaler Vektorraum. Wenn $F \in \text{End}(V)$ n verschiedene Eigenwerte $\lambda_1, \ldots, \lambda_n$ hat, dann ist F diagonalisierbar.

Beweis. Der Satz sofort aus dem folgenden Lemma: Wenn die Eigenvektoren linear unabhängig sind, und ein Erzeugendensystem bilden, bilden sie eine Basis von V und somit ist F diagonalisierbar.

Da es zu jedem Eigenwert λ_i mindestens einen Eigenvektor $v_i \neq 0$ gibt, es also mindestens $n = \dim(V)$ Eigenvektoren gibt, bilden sie auch ein Erzeugendensystem und sind laut dem Lemma linear unabhängig.

Lemma 4.1.10 (Eigenwerte sind linear unabhängig)

Sei $F \in \text{End}(V)$ ein Endomorphismus und seien v_1, \ldots, v_m Eigenvektoren von F zu paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_m$. Dann sind die Eigenvektoren linear unabhängig und insbesondere ist $m \leq \dim(V)$.

Beweis. Wir beweisen das Lemma mit vollständiger Induktion über $m \in \mathbb{N}$.

Induktionsanfang: (m = 1) Dann ist die Behauptung klar, weil ein Eigenvektor nicht der Nullvektor ist und somit linear unabhängig ist.

<u>Induktionsschritt:</u> $m-1 \to m$ Sei $m \ge 2$ und die Aussage für m-1 bereits bewiesen. Angenommen, es gilt $\sum_{k=1}^{m} a_k v_k = 0$ mit $a_j \in K$ für alle $j \in \{1, \ldots, m\}$. Dann folgt

$$0 = A\left(\sum_{k=1}^{m} a_k v_k\right) = \sum_{k=1}^{m} a_k \lambda_k v_k \quad \text{und} \quad 0 = \lambda_1 \sum_{k=1}^{m} a_k v_k.$$

Durch Subtraktion erhält man

$$0 = a_2(\lambda_2 - \lambda_1)v_2 + \ldots + a_m(\lambda_m - \lambda_1)v_m.$$

Weil nach Induktionsvoraussetzung die Vektoren v_2, \ldots, v_m linear unabhängig sind, und die Differenzen der Eigenwerte ungleich Null sind, weil die Eigenwerte paarweise verschieden sind, gilt $a_2 = \ldots = a_m = 0$. Aus $v_1 \neq 0$ folgt auch $a_1 = 0$.

Definition 4.1.11 (Eigenraum eines Endomorphismus)

Für $F \in \text{End}(V)$ und $\lambda \in K$ ist der Eigenraum von F bezüglich λ definiert als

$$\operatorname{Eig}(F,\lambda) := \{ v \in V : F(v) = \lambda v \} = \operatorname{Ker}(F - \lambda \cdot \operatorname{id}_V).$$

Beweis. $F(v) = \lambda v \iff F(v) - \lambda v = 0 \iff (F - \lambda \cdot id_V) \circ v = 0.$

Korollar 4.1.12

 $\operatorname{Eig}(F,\lambda) \subset V$ ist ein Unterraum.

Beweis. Da immer $\{0\} \subset \text{Eig}(F, \lambda)$ gilt, ist der Eigenraum nie leer. Aufgrund der Linearität von F gilt für $v, w \in \text{Eig}(F, \lambda)$

$$F(v+w)F(v) + F(w) = \lambda v + \lambda w = \lambda(v+w)$$

und somit $v + w \in \text{Eig}(F, \lambda)$.

Eigenvektoren sind Vektoren, die unter F auf ein skalares Vielfaches von sich selbst abgebildet werden, und somit gilt dies auf für skalare Vielfache von ihnen.

Korollar 4.1.13

 $\operatorname{Eig}(F,\lambda) \neq \{0\} \iff \lambda \text{ ist ein Eigenwert von } F. \text{ Also ist } \operatorname{Eig}(F,\lambda) \setminus \{0\} \text{ ist die } Menge \text{ der Eigenvektoren von } F \text{ zu Eigenwert } \lambda.$

Korollar 4.1.14 (Eigenräume sind disjunkt)

Nach Lemma 4.1.10 folgt aus $\lambda_1 \neq \lambda_2 \operatorname{Eig}(F, \lambda_1) \cap \operatorname{Eig}(F, \lambda_2) = \{0\}.$

Eigenraum

Satz 4.1.2: Kriterium zur Diagonalisierbarkeit II

Sei $F \in \text{End}(V)$ und V ein endlicher n-dimensionaler Vektorraum. Dann gilt

$$F$$
 diagonalisierbar $\iff \sum_{i=1}^m \dim \operatorname{Eig}(F, \lambda_i) = n,$

wobei $\lambda_1, \ldots, \lambda_m$ die Eigenwerte von F sind.

In diesem Fall bilden die Basen der Eigenräume zusammen eine Eigenbasis von V

Eigenbasis

Beweis. Selbst.

Meine Idee:

" \Longrightarrow " Sei F diagonalisierbar. Dann existiert eine Basis $\mathcal{B}=(v_1,\ldots,v_n)$ aus Eigenvektoren, von denen nach Korollar 4.1.14 jeder genau in einem Eigenraum $\mathrm{Eig}(F,\lambda_j)$ für $j\in\{1,\ldots,n\}$ liegt.

Die Summe der Eigenräume ist stets direkt, da Eigenvektoren zu paarweise verschiedenen Eigenwerten nach Lemma 4.1.10 linear unabhängig sind. Somit kann in einer Summe $\sum_{i=1}^n v_i$ mit $v_i \in \text{Eig}(F, \lambda_i)$ nur dann verschwinden, wenn alle $v_i = 0$ sind. Also gilt $V = \bigoplus_{i=1}^n \text{Eig}(F, \lambda_i)$ und damit

$$n = \dim(V) = \dim\left(\bigoplus_{i=1}^{n} \operatorname{Eig}(F, \lambda_i)\right) = \sum_{i=1}^{n} \dim\operatorname{Eig}(F, \lambda_i).$$

" \Leftarrow ": Sei die Summe der Dimensionen der Eigenräume mindestens n.

Dann folgt aus der obigen Gleichung $V=\bigoplus_{i=1}^n \mathrm{Eig}(F,\lambda_i)$. Da die Eigenräume von Vektoren von F aufgespannt werden, gilt dies auch für V, also besitzt V ein Basis aus Eigenvektoren und ist daher nach Definition 4.1.5 diagonalisierbar.

4.2 Das charakteristische Polynom

Seien $F \in \text{End}(V)$ und V ein endlichdimensionaler K-Vektorraum sowie $\lambda \in K$.

Lemma 4.2.1

Die folgenden Aussagen sind äquivalent:

- 1 λ ist ein Eigenwert von F. 2 $\operatorname{Ker}(F \lambda \cdot \operatorname{id}_V) \neq 0$

Beweis. (aus dem Fischer) (i) \iff (iii): Für ein festes $\lambda \in K$ ist die Existenz eines $v \in V \setminus \{0\}$ mit $F(v) = \lambda v$ gleichbedeutend mit

$$(F - \lambda \operatorname{id}_V)(v) = 0$$
 (Linearität)

$$\iff \operatorname{Ker}(F - \lambda \operatorname{id}_V) \neq \{0\} \iff \operatorname{Im}(F - \lambda \operatorname{id}_V) \neq V$$
 (Dimensionsformel)

$$\iff$$
 rang $(F - \lambda i d_V) < \dim V \iff \det(F - \lambda i d_V) = 0$ (Bemerkung 3.1.4)

Dimensionsformel

charakteristische Funktion

Die Eigenwerte von $F \in \text{End}(V)$ sind die Nullstellen der charakteristische Funktion $K \to K, \ t \mapsto \det(F - t \cdot \mathrm{id}_V)$. Wenn $A \in K^{n \times n}$ eine Matrixdarstellung von F bezüglich einer Basis ist, dann ist für jedes $t \in K$ auch $A - t \cdot E$ eine Matrixdarstellung von $F - t \cdot id_V$.

Mit Hilfe der Leibniz-Formel erhält man ein Polynom

$$P_A(t) = \det(A - tE) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{k=1}^n (a_{k\sigma(k)} - t \cdot \delta_{k\sigma(k)}) = \prod_{k=1}^n (a_{kk} - t) + g(t),$$

wobei g(t) eine Summe von Produkten von Einträgen von A - tE ist, in denen höchstens n-2 Diagonaleinträge vorkommen.

Es stellt die charakteristische Funktion dar: Wenn man in den Ausdruck für $\det(A$ tE), welchen die Leibniz-Formel liefert, t als Unbestimmte auffasst, dann erhält man ein Polynom vom Grad $n, P_A(t) = \sum_{i=1}^n c_i t^i$ mit $c_n \in K \setminus \{0\}$. Somit gilt $\det(F - t^i)$ $t \cdot id_V$) = $P_A(t)$ für alle $t \in K$.

Einige Koeffizienten kann man leicht aufschreiben:

$$c_n = (-1)^n$$
, $c_{n-1} = (-1)^{n-1} \cdot \text{Tr}(A)$, $c_0 = \det(A)$.

Beispiel 4.2.2 (Beispiel 4.1.2 nochmal, mit mehr Theorie)

Sei $A = \begin{pmatrix} \cos(\alpha) - \sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ die schon bekannte Drehung um Winkel α in der Ebene. Dann gilt

$$P_A(t) = \begin{vmatrix} \cos(\alpha) - t & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) - t \end{vmatrix} = (\cos(\alpha) - t)^2 + \sin^2(\alpha) = t^2 - 2\cos(\alpha) \cdot t + 1$$

Also gilt

$$P_A(t) = 0 \iff t = \cos(\alpha) \pm \sqrt{\cos^2(\alpha) - 1} = \cos(\alpha) + i\sin(\alpha) = e^{\pm i\alpha}.$$

Deswegen hat $P_A(t)$ keine reellen Nullstellen, außer für $\alpha = 0$ oder $\alpha = \pi$ bis auf Vielfache von 2π , denn dann ist $i\sin(\alpha)=0$, jedoch hat $P_A(t)$ stets komplexe Nullstellen.

Die dazugehörigen Eigenvektoren sind $v_1 = (1, -i)^T$ und $v_2 = (1, i)^T$, welches man leicht nachrechnen kann.

Beispiel 4.2.3 (Beispiel 4.1.3 nochmal, mit mehr Theorie)

Sei
$$A' := \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$$
. Dann ist

$$P_{A'}(t) = \begin{vmatrix} \cos(\alpha) - t & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) - t \end{vmatrix} = -\cos^2(\alpha) + t^2 - \sin^2(\alpha) = t^2 - 1.$$

Somit sind die Eigenwerte 1 und -1.

Ist K unendlich, so ist ein Polynom durch eine Polynomfunktion¹ Deshalb ist in diesem Fall das charakteristisches Polynom P_A unabhängig von der Wahl der darstellenden Matrix A, deshalb kann man durch $P_F = P_A$ das charakteristisches Polynom von F definieren.

Wenn K endlich ist, ist ein Polynom nicht eindeutig durch die Polynomfunktion bestimmt. Man muss das charakteristische Polynom einer Matrix $A \in K^{n \times n}$ etwas anders definieren.

Trotzdem liefern verschiedene darstellende Matrizen A, \tilde{A} von F bezüglich verschiedener Basen das gleiche charakteristische Polynom, es gilt $P_A = P_{\tilde{A}}$. Das bedarf eines anderen Beweises (vgl. Lemma 4.2.5).

Jedenfalls kann man auch in diesem Fall das charakteristische Polynom von F durch $P_F(t) = P_A(t) = \det(A - t \cdot E)$ definieren, wobei $A = M_A(F)$ für eine beliebige Basis A ist. Betrachte A - tE nicht als matrixwertige Funktion $K \to K^{n \times n}$, $t \to A - tE$, sondern als Matrix, dessen Einträge Elemente des rationalen Funktionenkörpers K(t) sind, welche alle Polynome sind. Dann ist die Determinante eine Funktion mit

$$\det: (K(t))^{n \times n} \to K(t), \ P_A(t) := \det(A - tE),$$

also eine rationale Funktion und nach der Leibniz-Formel, und weil die Einträge von A-tE Polynome sind, sogar ein Polynom.

Zwischenspiel über Brüche

 $\mathbb{Q} := \{(p,q) \in \mathbb{Z}^2 : q \neq 0\} \setminus_{\sim}, \text{ wobei } (p,q) \sim (p',q') \iff pq' = p'q \text{ gilt. Die Äquivalenz-klasse von } (p,q) \in \mathbb{Q} \text{ bezeichnet man als } \frac{p}{q}. \text{ Analog ist } K(x) := \{(p,q) \in K[x] \times K[x] : q \neq 0\} \setminus_{\sim}.$

Definition 4.2.4 (ähnliche / kongruente Matrizen)

Gilt $\tilde{A}=SAS^{-1}$ für eine Basistransformationsmatrix $S\in \mathrm{GL}(n,K)$, so heißen A und \tilde{A} ähnliche Matrizen.

Lemma 4.2.5

Ähnliche Matrizen habe die gleichen Eigenwerte.

27.04.18 charakteristisches Polynom

¹Polynomfunktionen sind nun Funktionen, deren Auswertung an allen Stellen Werte liefert, die von der Auswertung eines (festen) Polynoms stammen. Diese Unterscheidung ist dadurch nötig, dass die Zuordnung Polynom- Polynomfunktion im Fall von endlichen Körpern nicht eindeutig (genauer: nicht injektiv) ist, und dies schon im Fall von Polynomen in einer Variable. Als Beispiel wählen wir die Polynome $x^2 + 2$ und $x^6 + 2$ über dem endlichen Körper \mathbb{F}_5 . Beide liefern die jeweils gleichen Funktionswerte für alle $x \in \mathbb{F}_5$ und definieren somit dieselbe Polynomfunktion f, weil $x^4 \equiv 1$ für alle von 0 verschiedenen $x \in \mathbb{F}_5$ eindeutig bestimmt. Quelle: http://www.oemg.ac.at/Mathe-Brief/mbrief86.pdf.

Beweis. Sei $\tilde{A} = SAS^{-1}$ für eine invertierbare Matrix $S \in GL(n, K)$. Dann sind die charakterisitischen Polynome von A und \tilde{A} gleich, denn es gilt

$$\begin{split} P_{\tilde{A}} &= \det(\tilde{A} - tE) = \det(SAS^{-1} - tSES^{-1}) = \det\left(S(A - tE)S^{-1}\right) \\ &\stackrel{(*)}{=} \det(S) \cdot \det(A - tE) \cdot \det(S)^{-1} = \det(A - tE) = P_A(t). \end{split}$$

(*) ist der Determinantenmultiplikationssatz für Matrizen in $K(t)^{n \times n}$.

Korollar 4.2.6

Für Vektorräume über beliebigen Körpern ist das charakteristische Polynom eines Endomorphismus F durch $P_F(t) = P_A(t)$ wohldefiniert, wobei A eine beliebige darstellende Matrix ist.

4.3 Diagonalisierung

Satz 4.3.1: F diagonalisierbar $\implies P_F$ zerfällt

Sei $F \in \text{End}(V)$ ein Endomorphismus und $\dim(V) := n < \infty$. Ist F diagonalisierbar, dann zerfällt das charakteristische Polynom in Line-

Ist F diagonalisierbar, dann zerfällt das charakteristische Polynom in Line arfaktoren:

$$P_F(t) = (-1)^n \prod_{k=1}^n (t - \lambda_k).$$

Beweis. Die Matrix von F bezüglich einer Basis aus Eigenvektoren ist eine Diagonalmatrix der Gestalt (6). Dann gilt

$$P_F(t) = \begin{vmatrix} \lambda_1 - t & 0 \\ & \ddots \\ 0 & \lambda_n - t \end{vmatrix} = (-1)^n \prod_{k=1}^n (t - \lambda_k).$$

Bemerkung 4.3.1 Wenn P_F nicht in Linearfaktoren zerfällt, kann man zu einem Erweiterungskörper oder Zerfällungskörper $\tilde{K} \supset K$ übergehen, in dem P_F in Linearfaktoren zerfällt.

Beispielsweise ist $\mathbb C$ ein algebraische abgeschlossener Erweiterungskörper, welcher $\mathbb R$ enthält. 2

Angenommen, das charakteristische Polynom zerfällt in Linearfaktoren, aber es hat mehrfache Nullstellen. Unter welchen Bedingungen ist F diagonalisierbar?³

Definition 4.3.2 (algebraische und geometrische Vielfachheit)

Die Vielfachheit $\mu(P_F, \lambda)$ eines Eigenwerts λ als Nullstelle von P_F heißt die algebraische Vielfachheit des Eigenwerts λ .

Die Dimension des Eigenraums dim Eig (F,λ) heißt die geometrische Vielfachheit des Eigenwerts $\lambda.$

Beispiel 4.3.3 Sei $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Dann ist $P_A(t) = \begin{vmatrix} 2-t & 1 \\ 0 & 2-t \end{vmatrix} = (t-2)^2$. Der einzige Eigenwert ist 2. Die algebraische Vielfachheit ist 2. Außerdem gilt

$$\dim \operatorname{Eig}(A,2) = \dim \operatorname{Ker}(A-2E) = \dim \operatorname{Ker}\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \dim \operatorname{span}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1.$$

Lemma 4.3.4

Für jeden Eigenwert λ von F gilt $1 \leq \dim \text{Eig}(F, \lambda) \leq \mu(P_F, \lambda)$.

Beweis. Sei $s := \dim \operatorname{Eig}(F, \lambda)$. Weil λ ein Eigenwert ist, existiert ein Eigenvektor und somit ist $s \ge 1$.

Zum Beweis der zweiten Ungleichung ergänzen wir eine Basis von $\text{Eig}(F, \lambda), (v_1, \ldots, v_s),$ zu einer Basis $\mathcal{A} = (v_1, \ldots, v_s, v_{s+1}, \ldots, v_n)$ von V.

Diagonalmatrix

Erweiterungskörper

algebraische Vielfachheit geometrische Vielfachheit

²Ein stärkeres Resultat der Algebra ist wahr: Zu jedem Körper existiert einen Erweiterungskörper, der algebraisch abgeschlossen ist, in welchem also jedes Polynom in Linearfaktoren zerfällt.

³[Fischer:] Wir fassen gleiche Linearfaktoren zusammen und schreiben also $P_F = \prod_{k=1}^m (t - \lambda_k)^{r_k}$, wobei die Eigenwerte $\lambda_1, \ldots, \lambda_k$ paarweise verschieden sind. Dann gilt $1 \leqslant r_k = \mu(P_F, \lambda_k) \leqslant n$ für alle $k \in \{1, \ldots, m\}$ und $\sum_{k=1}^m r_k = n$. **UND WEITER??**

Dann gilt

$$M_A(F) = \begin{pmatrix} L & * \\ \hline 0 & A' \end{pmatrix} \quad \text{mit } L = \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & & \lambda \end{pmatrix} \in K^{s \times s}.$$

Für $j \in \{1, ..., s\}$ ist $v_j \in \text{Eig}(F, \lambda)$, also gilt $F(v_j) = \lambda v_j$. Dann gilt nach den Rechenregeln für die Determinante

$$P_F(t) = P_A(t) = \det(A - tE) = \det(L - tE) \cdot \det(A' - tE) = (\lambda - t)^s \cdot P_{A'}(t),$$

und damit dim $\operatorname{Eig}(F,\lambda) = s \leq \mu(P_F,\lambda)$, weil $P_F(t)$ die Nullstelle mindestens s mal hat (wegen des Terms $(\lambda - t)^s$).

30.04.18

Satz 4.3.2: Äquivalente Bedingungen für Diagonalisierbarkeit

Sei V ein endlichdimensionaler K-Vektorraum und $F \in \text{End}(V)$. Dann sind die folgenden Bedingungen äquivalent:

- (i) F ist diagonalisierbar.
- (ii) 1 Das charakterliche Polynom P_F zerfällt in Linearfaktoren und
 - (2) dim Eig $(F, \lambda) = \mu(P_F, \lambda)$ für alle Eigenwerte λ von F.
- (iii) Sind $\lambda_1, \ldots, \lambda_k$ die paarweise verschiedenen Eigenwerte von F, so ist $V = \bigoplus_{j=1}^k \operatorname{Eig}(F, \lambda_j)$.

Beweis. (i) \implies (ii): Sei F diagonalisierbar. In Satz 4.3.1 haben wir (a) schon gezeigt.

Seien $\lambda_1, \ldots, \lambda_k$ die verschiedenen Eigenwerten von F. Nun ordnen wir die Basis aus Eigenvektoren nach den Eigenwerten:

$$(v_1^{(1)}, \dots, v_{s_1}^{(1)}, v_1^{(2)}, \dots, v_{s_2}^{(2)}, \dots, v_1^{(k)}, \dots, v_{s_k}^{(k)}),$$
 (7)

sodass für alle $j \in \{1, ..., k\}$ die Familie $(v_1^{(j)}, ..., v_{s_j}^{(j)})$ linear unabhängig im Eigenraum $\text{Eig}(F, \lambda_j)$ ist.

Also gilt nach Lemma 4.3.4 $s_j \leq \dim \operatorname{Eig}(F, \lambda_k) \leq \mu(P_F, \lambda_j)$ für alle $j \in \{1, \dots, k\}$. Mit Satz 4.1.2 gilt

$$n = \sum_{j=1}^k s_j \leqslant \sum_{j=1}^k \dim \operatorname{Eig}(F, \lambda_k) \leqslant \sum_{j=1}^k \mu(P_F, \lambda_j) = n.$$

folgt daraus dim $\text{Eig}(F, \lambda_j) = \mu(P_F, \lambda_j)$ für alle $j \in \{1, \dots, k\}$.

(ii) \Longrightarrow (iii): Sei $W := \sum_{j=1}^k \operatorname{Eig}(F, \lambda_j)$. Weil nach Lemma 4.1.10 (vgl. auch Korollar 4.1.14) Eigenvektoren zu verschiedenen Eigenwerten linear unabhängig sind, gilt $W = \bigoplus_{j=1}^k \operatorname{Eig}(F, \lambda_j)$.

Außerdem gilt dim $W = \sum_{j=1}^{k} \dim \operatorname{Eig}(F, \lambda_j) \stackrel{(ii)(b)}{=} \sum_{j=1}^{k} \mu(P_F, \lambda_j) \stackrel{(ii)(a)}{=} n.$

(iii) \Longrightarrow (i): Wenn $(v_1^{(j)}, \dots, v_{s_j}^{(j)})$ eine Basis von $\mathrm{Eig}(F, \lambda_j)$ für alle $j \in \{1, \dots, k\}$ ist und $V = \bigoplus_{j=1}^k \mathrm{Eig}(F, \lambda_j)$ gilt, dann ist (7) eine Basis von V aus Eigenvektoren von F.

Beispiel 4.3.5 Gegeben sei der Endomorphismus

$$F: \mathbb{R}^3 \to \mathbb{R}^3, \ (x, y, z) \mapsto \begin{pmatrix} z - y \\ 3z - 3x - 2y \\ 3z - 2x - 2y \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{pmatrix}}_{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Dann gilt

$$\det(A - tE) = t(2+t)(3-t) + 6 + 6 + 2(-2-t) - 6t - 3(3-t)$$
$$= -t^3 + t^2 + t - 1 = \underline{-(t-1)^2(t+1)},$$

also sind $\lambda_1=1$ und $\lambda_2=-1$ die Eigenwerte von F . Es gilt

$$\operatorname{Eig}(F,1) = \operatorname{Ker} \begin{pmatrix} -1 & -1 & 1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : -x - y + z = 0 \right\} = \operatorname{span} \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right),$$

$$\operatorname{Eig}(F,-1) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - y + z = 0 \land 2y = 3z \right\} = \operatorname{span} \left(\begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \end{pmatrix} \right)$$

Es gilt $\mu(P_F, \lambda_1) = 2 = \dim \operatorname{Eig}(F, \lambda_1)$ und $\mu(P_F, \lambda_2) = 1 = \dim \operatorname{Eig}(F, \lambda_2)$, also ist $\mathcal{B} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ eine Basis von \mathbb{R}^3 bestehend aus Eigenvektoren von F. Somit ist die diagonalisierende Matrix S und ihr Inverse gegeben durch

$$S = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 2 \end{pmatrix}, \quad S^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ -3 & -1 & 3 \\ 1 & 1 & -1 \end{pmatrix}, \text{ es gilt } \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = S^{-1}AS.$$

Anwendungsbeispiel (Differentialgleichung der gedämpften Schwingung) nicht wichtig, vgl. Seite 4.3.5 auf Seite 238f.

4.4 Die Jordanische Normalform

04.05.18

Das Beste, was man mit einem nicht diagonalisierbaren Endomorphismus machen kann!

Wir formulieren den Satz (und Beweis) erst für den Fall, das der Körper algebraisch vollständig ist.

Definition 4.4.1 (algebraisch vollständig/abgeschlossen)

Ein Körper K ist algebraisch vollständig, wenn jede Polynom in K[t] in Linearfaktoren zerfällt. Alternativ ist K algebraisch vollständig, wenn jedes nicht konstante Polynom mit Koeffizienten in K mindestens eine Nullstelle hat.

Beispiel 4.4.2 \mathbb{R} ist nicht algebraisch vollständig, aber \mathbb{C} schon (s. Fundamentalsatz der Algebra).

Beispiel 4.4.3 Ein endlicher Körper $K = \{0, 1, x_1, \dots, x_n\}$ ist nicht algebraisch vollständig z.B. hat das Polynom $t(t-1)(t-x_1) \cdot \dots \cdot (t-x_n) + 1$ keine Nullstellen.

SATZ 4.4.1: DER SATZ DER JORDAN-FORM, CAMILLE JORDAN

Sei V ein endlichdimensionaler Vektorraum über einem algebraisch vollständigen Körper K und sei $F \in \text{End}(V)$ ein Endomorphismus.

Dann existiert eine Basis \mathcal{B} von V bezüglich welcher der Endomorphismus F von einer Matrix der folgenden Form, der sogenannten Jordanischen Normalform (kurz: Jordan-Form) dargestellt wird

$$M_{\mathcal{B}}(F) = \begin{pmatrix} \boxed{J_{n_1}(\lambda_1)} & & & 0\\ & \boxed{J_{n_2}(\lambda_2)} & & \\ & & \ddots & \\ 0 & & \boxed{J_{n_\ell}(\lambda_\ell)} \end{pmatrix} \in K^{n \times n}, \quad (JNF)$$

wobei $\lambda_1, \ldots, \lambda_\ell$ die nicht notwendigerweise t paarweise verschiedenen Eigenwerte von F sind. Für die sogenannten Jordan-Blöcke $J_{n_i}(\lambda_i)$ gilt

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 & \\ & \ddots & \ddots & \\ 0 & & & \lambda \end{pmatrix}.$$

Diese Darstellung ist bis auf die Reihenfolge dieser Blöcke eindeutig.

DEFINITION 4.4.4 (Jordan-Basis)

Eine Basis \mathcal{B} , für die $M_{\mathcal{B}}(F)$ Jordan-Form hat, heißt Jordan-Basis.

Jordan-Basis

Beispiel 4.4.5 Eine diagonale Matrix $\begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_\ell \end{pmatrix}$ ist in Jordan-Form, wobei alle Jordanblöcke für alle $j \in \{1, \dots, \ell\}$ die Größe $n_j = 1$ haben.

Bemerkung 4.4.6 Aus der Gleichung (JNF) folgt

$$P_F(t) = \prod_{i=1}^{\ell} (\lambda_i - t)^{n_i}$$
 und $\sum_{j:\lambda_j = \lambda} n_j = \mu(P_F, \lambda).$

In Worten:

Die Summe der Größen der Jordanblöcke zu einem Eigenwert ist die algebraische Vielfachheit des Eigenwerts.

Verallgemeinerte Eigenvektoren bzw. Hauptvektoren

Sei $M_{\mathcal{B}}(F) = (JNF)$ und $\mathcal{B} = (v_{1,1}, \ldots, v_{1,n_1}, \ldots, v_{\ell,1}, \ldots, v_{\ell,n_\ell})$ eine Basis von V. Zum j-ten Jordanblock $J_{n_j}(\lambda_j)$ mit $j \in \{1, \ldots, \ell\}$ gehören also die Basisvektoren $v_{j,1}, \ldots, v_{j,n_j}$. Dann gilt $F(v_{j,1}) = \lambda_j v_{j,1}$, das heißt, zu jedem Jordanblock gehört genau ein Eigenvektor $v_{j,1}$ zum Eigenwert λ_j .

Wir werden sehen, dass es auch nicht mehr linear unabhängige Eigenvektoren zu einem Eigenwert gibt, also ist die Anzahl der Jordanblöcke zu einem Eigenwert λ genau die geometrische Vielfachheit von λ :

$$\#\{j \in \{1,\ldots,\ell\} \mid \lambda_j = \lambda\} = \dim \operatorname{Eig}(F,\lambda).$$

Die anderen Basisvektoren $v_{j,2},\ldots,v_{j,n_j}$, welche zu einem Jordan-Block gehören, sind Hauptvektoren, und zwar ist $v_{j,k}$ ein Hauptvektor der Stufe k zum Eigenwert λ_j .

DEFINITION 4.4.7 (Hauptvektor der Stufe k zum Eigenwert λ_i , V1.)

- 1 Ein Vektor $v \in V$ heißt Hauptvektor von $F \in \text{End}(V)$ zum Eigenwert λ von F, wenn v ein Hauptvektor der Stufe $k \in \mathbb{N}_{>0}$ von F zum Eigenwert λ ist.
- ② Die Hauptvektoren der Stufe 1 sind die Eigenvektoren. Für $k \in \mathbb{N}_{\geqslant 2}$ heißt v in Hauptvektor der Stufe k von F zum Eigenwert λ , wenn $F(v) = \lambda v + \tilde{v}$, wobei \tilde{v} ein Hauptvektor der Stufe k-1 von F zum Eigenwert λ ist.

Sei v ein Hauptvektor der Stufe 2 und es gilt $F(v) = \lambda v + \tilde{v}$, wobei \tilde{v} ein Eigenvektor zum Eigenwert λ ist.

Daraus folgt $(F - \lambda \operatorname{id}_V)(v) = F(v) - \lambda v = \tilde{v}$. Weil \tilde{v} Eigenvektor ist, gilt $(F - \lambda \cdot \operatorname{id}_V)^2(v) = 0$. Also ist v genau dann ein Hauptvektor der Stufe 2, wenn $(F - \lambda \cdot \operatorname{id}_V)^2(v) = 0 \neq (F - \lambda \cdot \operatorname{id}_V)^1(v)$ gilt.

Mittels Induktion über die Stufe k sieht man, dass die erste Version der Definition äquivalent ist zu folgender

DEFINITION 4.4.8 (Hauptvektor der Stufe k zum Eigenwert λ_i , V2.)

- 1 wie bei Version 1.
- 2 Für $k \in \mathbb{N}^*$ heißt v ein Hauptvektor der Stufe k von F zum Eigenwert λ wenn gilt:

$$(F - id_V)^k(v) = 0 \neq (F - \lambda id_V)^{k-1}(v).$$

Bemerkung 4.4.9 Für k=1 gilt $F(v)=\lambda v$ aber $\mathrm{id}_V\neq 0$, was genau die Eigenwert-Bedingung ist.

Zusammenfassung Ist ein Endomorphismus nicht diagonalisierbar, gibt es keine Basis aus Eigenvektoren, jedoch eine Basis aus Hauptvektoren.

4.5 *II: Typische Klausuraufgaben zur JNF

1 Ist A diagonalisierbar?

07.05.18 (hoffentlich)

 $A-t\cdot E$ ist eine obere Dreiecksmatrix, somit ist $\det(A-t\cdot E)$ das Produkt der Diagonaleinträge. Somit gilt $P_A(t) = (1-t)^2(2-t)$, also hat A die beiden Eigenwerte $\lambda_1 = 1$ und $\lambda_2 = 2$ mit $\mu(P_A, \lambda_1) = 2$ und $\mu(P_A, \lambda_2) = 1.$

(II (1) für λ_1 .) Wir berechnen $Ker(A - t \cdot E)$.

$$A - 1 \cdot E = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Also ist $Ker(A - t \cdot E)$ von dem LGS $x_2 = 0 = x_3$ gegeben, somit gilt

$$\operatorname{Ker}(A - t \cdot E) = \operatorname{span}(e_1) = \operatorname{span}\begin{pmatrix} 1\\0\\0 \end{pmatrix}.$$

Somit ist die geometrische Vielfachheit von λ_1 dim $\operatorname{Eig}(F, \lambda_1) = 1$. Für $\lambda_1 = 1$ gilt also $\mu(P_A, \lambda_2) = 2 > 1 = \dim \text{Eig}(F, \lambda_1)$ (*), somit ist A nicht diagonalisierbar.

(2) Wenn nicht, was ist die JNF von A?

Weil (*) gilt, müssen wir die Kernkette bilden. Dazu errechnen wir zunächst

$$\operatorname{Ker}(A-E)^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Die Basis von $Ker(A - E)^2$ ist die Lösung des LGS $x_3 = 0$, somit gilt

$$\operatorname{Ker}(A-E)^2 = \operatorname{span}(e_1, e_2) = \operatorname{span}\left(\begin{pmatrix} 1\\0\\0\end{pmatrix}, \begin{pmatrix} 0\\1\\0\end{pmatrix}\right).$$

Weiter gilt $\operatorname{Ker}(A-E)^3 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, somit gilt $\dim \operatorname{Ker}(A-E)^3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $(E)^2 = \dim \operatorname{Ker}(A-E)^3$, also ist die höchste Stufe d für λ_1 2.

(II (2):) Bestimmung der Aufteilung der Jordanblöcke in Stufen für $\lambda_1 =$ 1, d = 2.

$$s_d = \dim \text{Ker}(A - E)^2 - \dim \text{Ker}(A - E)^1 = 2 - 1 = 1$$

 $s_2 + s_1 = \dim \text{Ker}(A - E) = 1 \implies s_1 = 0.$

Somit besitzt λ_1 einen Jordanblock der Stufe 2 und keinen Jordanblock der Stufe 1. Somit gilt $JNF(A_{\lambda_1}) =: J_2(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

(II (3)) Für λ_1 die Basis bauen. Wir fangen mit s_d Hauptvektoren der Stufe d an. $v_1^{(2)} = e_2 \in \text{Ker}(A - E)^2$ aber $e_2 \notin \text{Ker}(A - E)^1$, also wenden wir (A - E) an. Es gilt $v_1^{(1)} = (A - E) \cdot v_1^{(2)} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Weil $v_1^{(1)}$ schon eine Basis für Ker(A-E) ist, müssen wir nicht ergänzen.

Somit gilt $\mathcal{B}_{\lambda_1} = (v_1^{(1)}, v_1^{(2)}) = (e_1, e_2).$ (II (1) für $\lambda_2 = 2$:) $\operatorname{Ker}(A - 2E) = \begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\operatorname{Gauss}} \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Also löst $\operatorname{Ker}(A - 2E)$ das LGS $I : -x_1 + 2x_3 = 0$, $II : -x_2 + x_3 = 0$. Somit gilt $x_1 = 2x_2 = 2x_3$ und dann $Ker(A - 2E) = span(\frac{2}{1})$

 $\dim \operatorname{Ker}(A-2E)=1,$ somit ist die geometrische Vielfachheit von λ_2 1, also ist der λ_2 -Teil diagonal, und die Eigenbasis ist $\mathcal{B}_{\lambda_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

3 Wie sieht die J-Basis von A aus?

Insgesamt gilt also $\mathcal{B} = (\mathcal{B}_{\lambda_1}, \mathcal{B}_{\lambda_2}) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ und $JNF(A) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

(2) Sei $A = \begin{pmatrix} 5 & -4 \\ 9 & -7 \end{pmatrix}$. Berechnen Sie A^{100} .

Nach dem Satz der JNF existiert eine Matrix $B \in \mathbb{C}^{2\times 2}$ mit $B^{-1}AB = \text{JNF}(A)$. Dann gilt B^{-1} JNF(A)B = A und somit $A^{100} = B(\text{JNF}(A))^{100}B^{-1}$. Es gilt $P_A(t) = (t+1)^2$, also hat A den Eigenwert $\lambda = -1$ mit der algebraischen Vielfachheit 2.

Ferner gilt

$$\dim \operatorname{Ker}(A+E) = \dim \operatorname{span}(\frac{2}{3}) = 1 < 2,$$

also ist A nicht diagonalisierbar. Es gilt $(A+E)^2=0 \implies \operatorname{Ker}(A+E)^2=\operatorname{span}(e_1,e_2)$, also hat λ einen Jordanblock der Stufe 2, also gilt

$$JNF(A) = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}.$$

Ferner gilt $s_2 = 1 = s_1 + s_2 \implies s_1 = 0$. $v_1^{(2)} = e_1 \in \text{Ker}(A+E)^2$ aber $e_2 \notin \text{Ker}(A+E)$, also gilt $v_1^{(1)} = (A+E) \cdot v_1^{(2)} = (\frac{6}{9})$. Also ist

$$B = \begin{pmatrix} 6 & 1 \\ 9 & 0 \end{pmatrix} \quad \text{und} \quad B^{-1} = \begin{pmatrix} 0 & \frac{1}{9} \\ 1 & -\frac{2}{3} \end{pmatrix}.$$

Zusammenfassend gilt $JNF(A)^{100} = \begin{pmatrix} 1 & -100 \\ 0 & 1 \end{pmatrix}$ und somit

$$A^{100} = \begin{pmatrix} 6 & 1 \\ 9 & 0 \end{pmatrix} \begin{pmatrix} 1 & -100 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{9} \\ 1 & -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} -599 & 400 \\ -900 & 601 \end{pmatrix}.$$

(3) Bestimmen Sie, ohne die Basen der Kerne zu berechnen, die JNF von

Selbst.

Meine Idee: Das charakteristische Polynom ist $P_A(t) = -t^5$. Weil $F_A(x) = Ax$ ein nilpotenter Endomorphismus mit Nilpotenzindex d=3 ist, ist das Minimalpolynom von A gegeben durch $M_A(t)=t^3$. Somit hat der größte Jordan-Block zum einzigen Eigenwert $\lambda=0$ die Dimension 3×3 .

Nun gilt $\operatorname{rang}(A) = 2$ und mit Hilfe der Dimensionsformel gilt als $\dim(\operatorname{Ker}(A)) = 3$, also existieren drei (linear unabhängige) Eigenvektoren zum Eigenwert Null, und somit gilt

Ferner kann man leicht sehen, dass $v_1 := \dot{e}_1$ und $v_2 := \dot{e}_4$ und $v_3 := (0, 0, 1, 0, -1)^T$ Eigenvektoren zum Eigenwert Null sind.

4.6 Normalform nilpotenter Endomorphismen

07.05.18

DEFINITION 4.6.1

Eine Endomorphismus $F \in \text{End}(V)$ heißt nilpontent, wenn ein $d \in \mathbb{N}_{>0}$ existiert, sodass $F^d = 0$ gilt.

Beobachtung Es gilt $J_1(0) = (0)$ und $J_n(0) \cdot \hat{e}_1 = 0$ sowie $J_n(0) \cdot \hat{e}_k = \hat{e}_{k-1}$ für $k \in \{2, \ldots, n\}$. Außerdem gilt

$$(J_n(0))^m \cdot e_k = \begin{cases} 0 & k \in \{1, \dots, m\} \\ e_{k-m} & k \in \{m+1, \dots, n\} \end{cases}$$
$$J_n(0)^m = \begin{cases} \left(\begin{array}{cc} HierfehlteineDarstellung(Folie72) \\ 0 & m = n \end{array} \right) \end{cases}$$

SATZ 4.6.1: NILPOTENTE ENDOMORPHISMEN SIND DIAGONALI-SIERBAR

Seien V ein endlichdimensionaler Vektorraum über einem beliebigen Körper K und $G \in \text{End}(V)$ nilpotent. Sei $d \in \mathbb{N}_{>0}$, sodass $G^d = 0 \neq G^{d-1}$ gilt. Dann existiert eine Basis \mathcal{B} von V, sodass gilt

$$M_{\mathcal{B}}(G) = \operatorname{diag}(J_d(0), \dots, J_d(0), J_{d-1}(0), \dots, J_{d-1}(0), \dots, \underbrace{J_1(0), \dots, J_1(0)}_{=0,\dots,0}).$$

Für $j \in \{1, ..., d\}$ ist die Anzahl $s_j \ge 0$ der Jordan-Blöcke J_j der Größe j eindeutig bestimmt, und es gilt $s_j > 0$.

Definition 4.6.2 (Komplementäre Unterräume)

Sei V ein endlichdimensionaler Vektorraum und $U \subset V$ ein Unterraum.

- \bullet Dann heißt der Unterraum Wkomplementär zu U,wenn $V=U\oplus W$ gilt.
- Gilt $U \subset W \subset V$, so heißt \widetilde{U} komplementär zu U in W, wenn $W = U \oplus \widetilde{U}$ gilt.

[zum zweiten Punkt gab es ein Bild...]

Lemma 4.6.3

Es gibt stets einen komplementären Unterraum.

Beweis. Jede Basis (v_1, \ldots, v_k) von U kann man zu einer Basis

$$(v_1,\ldots,v_k,v_{k+1},\ldots,v_n)$$

von V ergänzen, und dann ist (v_{k+1}, \ldots, v_n) eine Basis eine komplementären Unterraums.

Gilt $0 < \dim U < \dim V$, existieren verschiedene komplementäre Unterräume.

Beispiel 4.6.4

Abbildung 6: [Quelle: Vorlesung]

Beweis. (von Satz 4.6.1) Die Kerne der Potenzen von G bilden eine wachsenden Kette von Unterräumen: Es gilt

$$\{0\} = \operatorname{Ker} G^0 \subset \operatorname{Ker} G \subset \ldots \subset \operatorname{Ker} G^{d-1} \subset \operatorname{Ker} G^d = V.$$

Dabei ist Ker $G^{d-1} \neq \text{Ker } G^d$, weil sonst $G^{d-1} = 0$ wäre, was im Widerspruch zu der Nilpotenz mit d von G steht.

- ① Sei $(v_1^{(d)}, \dots, v_{s_d}^{(d)})$ eine Basis eines zu Ker G^{d-1} komplementären Unterraum in Ker $G^d = V$.
- 2 Seien $v_j^{d-1} := G(v_j^{(d)}) \in \text{Ker } G^{d-1}$ für alle $j \in \{1, \dots, s_d\}$ definiert.

Lemma 4.6.5

Für jeden Vektor $w \in \text{Ker}\,G^{d-2}$ mit $w \neq 0$ ist die Familie $(w,v_1^{(d-1)},\ldots,v_{s_d}^{(d-1)})$ linear unabhängig.

Beweis. Wir führen einen Widerspruchsbeweis und nehmen an, es gilt

$$0 = a_0 w + \sum_{k=1}^{s_d} a_k v_k^{(d-1)}.$$

Weil $G^{d-2}(w) = 0$ ist, folgt

$$0 = G^{d-2} \left(\sum_{k=1}^{s_d} a_k v_k^{(d-1)} \right) = G^{d-1} \left(\sum_{k=1}^{s_d} a_k v_k^{(d)} \right).$$

Also gilt

$$\sum_{k=1}^{s_d} a_k v_k^{(d)} \in G^{d-1} \cap \operatorname{span}\left(\underbrace{v_1^{(d)}, \dots, v_{s_d}^{(d)}}_{=0}\right)$$

Weil G^{d-1} und span $\left(v_1^{(d)}, \dots, v_{s_d}^{(d)}\right)$ komplementär zueinander sind, gilt

$$G^{d-1} \cap \text{span}\left(v_1^{(d)}, \dots, v_{s_d}^{(d)}\right) = \{0\},\$$

und somit $a_1 = \ldots = a_{s_d} = 0$, weil die Familie $(v_j^{(d)})_{j \in \{1,\ldots,s_d\}}$ linear unabhängig ist. Weil $w \neq 0$ ist, ist auch $a_0 = 0$.

Also kann man die Familie $(v_1^{(d-1)},\ldots,v_{s_d}^{(d-1)})$ zu einer Basis eines zu Ker G^{d-2} komplementären Unterraums in Ker G^{d-1} ergänzen. Eine solche Basis sei

$$\left(\underbrace{v_1^{(d-1)}, \dots, v_{s_d}^{(d-1)}}_{s_d}, \underbrace{v_{s_d+1}^{(d-1)}, \dots, v_{s_d+s_{d-1}}^{(d-1)}}_{s_{d-1}}\right).$$

 $\begin{array}{l} \textbf{3)} \ \operatorname{Sei} \ v_j^{(d-2)} \coloneqq G(v_j^{d-1}) \in \operatorname{Ker}(G^{d-2}) \ \text{für alle} \ j \in \{1, \dots, s_d + s_{d-1}\}. \\ \ \ \operatorname{Analog} \ \operatorname{zu} \ \operatorname{Schritt} \ \textbf{2} \ \operatorname{kann} \ \operatorname{man} \ \operatorname{sehen}, \ \operatorname{dass} \ \operatorname{man} \ \left(v_1^{(d-2)}, \dots, v_{s_d+s_{d-1}}^{(d-2)}\right) \ \operatorname{zu} \\ \ \operatorname{einer} \ \operatorname{Basis} \left(v_1^{d-2}, \dots, v_{s_d+s_{d-1}+s_{d-2}}^{(d-2)}\right) \ \operatorname{eines} \ \operatorname{zu} \ \operatorname{Ker} G^{d-3} \ \operatorname{komplement\"{a}ren} \ \operatorname{Unterraums} \ \operatorname{in} \ \operatorname{Ker} G^{d-2} \ \operatorname{erg\"{a}nzen} \ \operatorname{kann}. \\ \end{array}$

Wiederholt man diese Schritte, ergänzt man schließlich eine Basis $\left(v_1^{(1)},\ldots,v_{s_d+\ldots+s_2}^{(1)}\right)$ zu einer Basis $\left(v_1^{(1)},\ldots,v_{s_d+\ldots+s_1}^{(1)}\right)$ von KerG. Insgesamt erhält man dann

$$\begin{array}{l} v_1^{(d)}, \dots, v_{s_d}^{(d)} \\ v_1^{(d-1)}, \dots, v_{s_d}^{(d-1)}, v_{s_d+1}^{(d-1)}, \dots, v_{s_d+s_{d-1}}^{(d-1)} \\ \vdots \\ v_1^{(2)}, \dots & \dots v_{s_d+\dots s_2}^{(2)} \\ v_1^{(1)}, \dots & \dots v_{s_d+\dots s_2}^{(1)}, \dots v_{s_d+\dots s_{2}+1}^{(1)}, \dots v_{s_d+\dots s_{1}}^{(1)} \end{array}$$

wobei die letzte Zeile eine Basis von KerG, die beiden letzten eine Basis von Ker G^2 und so weiter. In jeder Spalte ist ein Vektor das Bild des darüberstehenden Vektors unter G.

Für die Basis

$$\mathcal{B} = (v_1^{(1)}, \dots, v_1^{(d)}, \dots, v_{s_d}^{(1)}, \dots, v_{s_d}^{(d)},$$

$$v_{s_d+1}^{(1)}, \dots, v_{s_d+1}^{(d-1)}, \dots, v_{s_d+s_{d-1}}^{(1)}, \dots, v_{s_d+s_{d-1}}^{(d-1)},$$

$$\dots$$

$$v_{s_d+\dots+s_3+1}^{(1)}, \dots, v_{s_d+\dots+s_3+s_2}, v_{s_d+\dots+s_3+s_2}^{(2)},$$

$$v_{s_d+\dots+s_2+1}^{(1)}, \dots, v_{s_d+\dots+s_2+s_1}^{(1)})$$

hat $M_{\mathcal{B}}(F)$ die gewünschte Form.

Um die Eindeutigkeitsaussage zu beweisen, beachte

$$\begin{split} s_d &= \dim \operatorname{Ker} G^d - \dim \operatorname{Ker} G^{d-1} \\ s_d + s_{d-1} &= \dim \operatorname{Ker} G^{d-1} - \dim \operatorname{Ker} G^{d-2} \\ &\vdots &= &\vdots \\ s_d + \ldots + s_2 &= \dim \operatorname{Ker} G^2 - \dim \operatorname{Ker} G \\ s_d + \ldots + s_1 &= \dim \operatorname{Ker} G. \end{split}$$

Also sind die Zahlen s_1,\ldots,s_d durch die Zahlen dim $\operatorname{Ker} G,\ldots,\dim \operatorname{Ker} G^d=\dim V$ eindeutig bestimmt. \square

Bemerkung (Zusatz von mir, ähnlich im Fischer) Für $F \in \text{End}(V)$ mit $n := \dim(V)$ sind die folgenden Bedingungen äquivalent:

- $(1) F^k = 0 \text{ für ein } k \in \mathbb{N} \text{ mit } 1 \leqslant k \leqslant n.$
- 3 Es existiert eine Basis \mathcal{B} von V, sodass gilt $M_{\mathcal{B}}(F) = \begin{pmatrix} 0 & * \\ & \ddots & \\ & & 0 \end{pmatrix}$.

4.7 *III: Die Jordanische Normalform

FEHLT!!!

11.05.18

4.8 Der euklidische Algo und Bézout's Lemma

11.05.18

Definition 4.8.1 (größter gemeinsamer Teiler)

Seien $a,b\in\mathbb{Z}^*$. Eine Zahl $m\in\mathbb{N}_{>0}$ heißt ggT(a,b) (größter gemeinsamer Teiler von a und b), wenn gilt

- m|a und m|b,
- Für alle $\widetilde{m} \in \mathbb{Z}^*$ mit $\widetilde{m}|a$ und $\widetilde{m}|b$ gilt $\widetilde{m}|m$ und somit $|\widetilde{m}| \leq m$.

größter gemeinsamer Teiler

Definition 4.8.2 (teilerfremd)

Zwei ganze Zahlen a und b heißen teilerfremd, wenn ggT(a, b) = 1 gilt.

teilerfremd

Lemma 4.8.3

Ist m = ggT(a,b), so ist m die größte ganze Zahl, die a und b teilt. Existiert ggT(a,b), so ist er eindeutig bestimmt.

Beweis. Es reicht, die Existenz des ggT zu zeigen, um zu zeigen, dass die größte ganze Zahl, die a und b teilt, der ggT nach Definition ist.

Wir beschränken uns im Beweis auf a, b > 0, weil $m|a \iff m|-a$ für alle $m, a \in \mathbb{Z}^*$ gilt.

Wir setzten $r_0 := 1$ und $r_1 := b$. Dann gilt

$$r_{0} = r_{1} \cdot q_{1} + r_{2},$$

$$r_{1} = r_{2} \cdot q_{2} + r_{3},$$

$$\dots$$

$$r_{n-2} = r_{n-1} \cdot q_{n-1} + r_{n},$$

$$r_{n-1} = r_{n} \cdot q_{n} + 0$$

Die Reste r_i $(i \in \{0, ..., n\})$ bilden eine streng monoton fallende Nullfolge mit $r_{n+1} = 0$.

Wir wollen zeigen, dass $ggT(a, b) = r_n$ ist.

Ferner sehen wir, dass gilt $r_2 = r_0 - r_1 \cdot q_1$. Also gilt ggT $|a, b| \Longrightarrow ggT | r_2$. Wenden wir diese Idee nun rekursiv an, erhalten wir ggT $|r_1, r_2| \Longrightarrow ggT | r_2, r_3$ und so weiter.

Satz 4.8.1: Lemma von Bézout für ganze Zahlen

Seien $a, b \in \mathbb{Z}^*$. Dann ist $\operatorname{ggT}(a, b)$ eine ganzzahlige Linearkombination von a und b, also existieren ganze Zahlen $s, t \in \mathbb{Z}$, sodass $\operatorname{ggT}(a, b) = s \cdot a + t \cdot b$ gilt.

Beispiel 4.8.4 Man sieht leicht, dass ggT(240, 46) = 2 ist. Die dazugehörigen ganzen Zahlen s und t intuitiv zu finden, ist jedoch ziemlich schwierig: Die 'einfachste' Lösung ist $2 = (-9) \cdot 240 + 47 \cdot 46$.

Beweis.

$$r_0 := a = s_0 \cdot a + t_0 \cdot b,$$
 $s_0 = 1, t_0 = 0$
 $r_1 := b = s_1 \cdot a + t_1 \cdot b,$ $s_1 = 0, t_1 = 1.$

Verwendet man nun die Beobachtungen bzw. den Algorithmus aus dem vorangegangenen Beweis, erhält man

$$r_2 = r_0 - q_1 r_1 = s_0 \cdot a + t_0 \cdot b - q_1 (s_1 \cdot a + t_1 \cdot b) = a(s_0 - q_1 \cdot s_1) + b(t_0 - q_1 \cdot t_1)$$

Wir setzen also $s_2 := s_0 - q_1 \cdot s_1$ und $t_2 := t_0 - q_1 \cdot t_1$. Induktiv folgt

$$r_{k+1} = r_{k-1} - q_k \cdot r_k = s_{k-1} \cdot a + t_{k-1} \cdot b - q_k (s_k \cdot a + t_k \cdot b)$$
$$= a(s_{k-1} - q_k \cdot s_k) + b(t_k - q_k \cdot t_k) = s_{k+1} \cdot a + t_{k+1} \cdot b.$$

Also gilt
$$s_{k+1} = s_{k-1} - q_k \cdot q_k$$
 und $t_{k+1} = t_k - q_k \cdot q_k$ und somit $ggT(a, b) = r_n = s_n \cdot a + t_n \cdot b$.

Beispiel 4.8.5 Wir zeigen, wie wir mit diesem erweiterten euklidischen Algorithmus die Lösung zu dem vorangegangenen Beispiel finden können.

k	q_{k-1}	r_k	s_k	t_k
0		240	1	0
1		46	0	1
$\frac{2}{3}$	5	10	1	-5
3	4	6	-4	21
4	1	4	5	-26
5	1	2	-9	47
6	2	0		

Da $r_6 = 0$ ist, gilt $ggT = r_{6-1} = 2$, $s = s_{6-1} = 2$ und $t = t_{6-1} = 47$.

Nun verallgemeinern wir den Satz 4.8.1 auf Polynome.

Definition 4.8.6 (ggT von Polynomen)

Sei K ein Körper und seien $f, g \in K[x] \setminus \{0\} =: K[x]^*$. Ein Polynom $p \in K[x]^*$ heißt ein ggT von f und g, wenn gilt

 $\begin{array}{c|c}
\hline
1 & p \mid f, g,
\end{array}$

2 Sei $\widetilde{p} \in K[x]$. Dann gilt $\widetilde{p} \mid f, g \implies \widetilde{p} \mid p$. Insbesondere gilt dann $\deg(\widetilde{p}) \leqslant \deg(p)$.

Ein ggT hat von allen gemeinsamen Teilern den höchsten Grad.

Lemma 4.8.7

Der ggT von Polynomen ist bis auf einen konstanten Faktor (\iff Polynom mit Grad 0) eindeutig bestimmt.

Beweis. Seien $p, \widetilde{p} = \operatorname{ggT}(f, g)$. Dann gilt nach 2. aus der Definition $p \mid \widetilde{p}$ und $\widetilde{p} \mid p$. Es existieren also zwei Polynome $q, \widetilde{q} \in K[x]$ mit $p = \widetilde{q} \cdot \widetilde{p}$ und $\widetilde{p} = q \cdot p$. Daraus folgt jedoch

$$p = q \cdot \widetilde{q} \cdot p \implies 1 = q \cdot \widetilde{q} \implies \deg(q) = \deg(\widetilde{q}) = 0.$$

Also unterscheiden sich p und \tilde{p} nur um einen konstanten Faktor.

Definition 4.8.8 (teilerfremd)

Zwei Polynome $f,g \in K[x]^*$ heißen teilerfremd bzw. relativ prim, wenn $\deg(\gcd(f,g)) = 0$ gilt.

teilerfremd

Lemma 4.8.9

 $Sei\ K\ algebraisch\ vollständig.$

Dann gilt $f, g \in K[x]^*$ teilerfremd \iff es existiert kein x^* mit $f(x^*) = g(x^*) = 0$, f und g haben also keine gemeinsame Nullstelle x^* .

Beweis. Selbst.

Satz 4.8.2: Lemma von Bézout für Polynome

Sei K ein Körper und $p \in K[x]$ ein ggT von f und g mit $f, g \in K[x]^*$. Dann existieren zwei Polynome $s, t \in K[x]$, sodass $p = s \cdot f + t \cdot g$ gilt.

Beweis. Die Existenz eine ggT für Polynome und des Lemmas von Bézout für Polynome kann mit dem erweiterten euklidischen Algorithmus für Polynom beweisen. \Box

4.9 Das Minimalpolynom

14.05.18

Definition 4.9.1 (Einsetzungshomomorphismen)

Sei V ein K-Vektorraum und K ein beliebiger Körper. Für ein Polynom $p=\sum_{k=0}^n a_k t^k \in K[t]$ und für $F \in \text{End}(V)$ sowie $A \in K^{n \times n}$ seien

$$p(F) = a_0 \cdot id_V + a_1 \cdot F + a_2 \cdot F^2 + \dots + a_n F^n \in \text{End}(F) \quad \text{und}$$
 (8)

$$p(A) = a_0 \cdot E + a_1 \cdot A + a_2 \cdot A^2 + \dots + a_n A^n \in K^{n \times n}.$$
 (9)

Die sogenannten Einsetzungshomomorphismen sind definiert als

$$\operatorname{ev}_F: K[t] \to \operatorname{End}(V), \ p \mapsto p(F) \quad \text{und} \quad \operatorname{ev}_A: K[t] \to K^{n \times n}, \ p \mapsto p(A)$$

$$\tag{10}$$

Einsetzungshomomorphismen

Korollar 4.9.2

Die Einsetzungshomomorphismen sind lineare Abbildungen und Ringhomomorphismen.

Beweis. Für $\lambda \in K$ gilt

$$(p+q)(F) = p(F) + q(F), \quad (\lambda \cdot p)(F) = \lambda \cdot p(F), \quad (p \circ q)(F) = p(F) \circ q(F).$$

Details auf Seite 131 (Frage 312) in: Rolf Busam, Thomas Epp: Prüfungstrainer Lineare Algebra. 500 Fragen und Antworten, 2006.

Außerdem gilt (mit Satz 3.1.1)
$$M_{\mathcal{B}}(p(F)) = p(M_{\mathcal{B}}(F))$$
, Beweis ebd. (Frage 314, Seite 132).

Korollar 4.9.3

Die Bilder der Einsetzungshomomorphismen sind Unterringe von $\operatorname{End}(V)$ bzw. $K^{n\times n}$ und kommutative Ringe mit 1.

Beweis. Es gilt (analog für ev_A) $ev_F(1) = id_V$, welches das Einselement in End(V) ist, sowie

$$\operatorname{ev}_F(p) \cdot \operatorname{ev}_F(q) = \operatorname{ev}_F(p \cdot q) = \operatorname{ev}_F(q \cdot p) = \operatorname{ev}_F(q) \cdot \operatorname{ev}_F(p).$$

Sei nun dim $V = n < \infty$, sodass dim $\operatorname{End}(V) = \dim K^{n \times n} = n^2$ gilt. Da K[x] ein unendlichdimensionaler Vektorraum ist, muss der Vektorraumhomomorphismus $p(F): K[x] \to \operatorname{End}(V)$ einen nichttrivialen Kern haben.

Genauer gilt: Dann sind $\mathrm{id}_V, F, \ldots, F^{n^2}$ genau $n^2 + 1$ viele Endomorphismen, und somit linear abhängig, für geeignete $a_i \in K$ gilt also $\sum_{i=0}^{n^2} a_i F^i = 0$. Also existiert ein Polynom $p \in K[t] \setminus \{0\}$ mit $\deg(p) \leq n^2$ und p(F) = 0, weil dieses p die Gestalt $\sum_{i=0}^{n^2} a_i x^i$ hat.

Das Ideal von F ist $I_F := \{ p \in K[t] : p(F) = 0 \} = \text{Ker ev}_F$. Ideale sind quasi 'Unterringe' in der Weise, wie es für Gruppen Untergruppen gibt.

Ideal

DEFINITION 4.9.4 (Ideal)

Eine Teilmenge $I \neq \emptyset$ eines kommutativen Rings mit 1 heißt Ideal von R, wenn gilt

- $2 p \in I, q \in R \implies p \cdot q \in I.$ (multiplikative Abgeschlossenheit)

Korollar 4.9.5

- Jedes Ideal enthält $0 \in R$
- Das Nullideal $\{0\} \subset R$ und R selbst sind Ideal von R.
- Da $m \in R \implies \lambda \cdot m \in R$ für ein $\lambda \in ?$ gilt, gilt für $m \in \mathbb{R}$, dass auch $m \cdot R$ ein Ideal ist, und zwar das von m erzeugt Ideal von R.

SATZ 4.9.1: TODO: TITEL FEHLT

Ist I ein Ideal von \mathbb{Z} , dann ist $I = m \cdot \mathbb{Z}$, wobei m die kleinste positive Zahl in I ist, oder es gilt $I = \{0\} \implies m = 0$.

Beweis. Fall 1: $I = \{0\}$. klar.

Fall 2: $I \neq \{0\}$.

"c": Sei $n \in I$ beliebig. Dann existieren $q, r \in \mathbb{Z}$ mit $0 \le r < m$ und n = mq + r (Division mit Rest). Dann gilt $r = n - mq \in I$ weil $n, mq \in I$ sind. Gelte nun r > 0, hätten wir eine positive Zahl $r = a \in I$ mit a < m gefunden, welches im Widerspruch zur Wahl von m steht. Daraus folgt r = 0 und somit $qm = n \in m\mathbb{Z}$. "\(\times\)": Sei m die kleinste positive Zahl in I. Dann gilt $m\mathbb{Z} \subset I$, weil I bezüglich Multiplikation mit $z \in \mathbb{Z}$ abgeschlossen ist.

SATZ 4.9.2: TODO: TITEL FEHLT

Zu jedem Ideal $I \neq \{0\}$ (nicht-triviales Ideal) von K[t] existiert ein eindeutiges Polynom $m \in K[t]$ mit

- 1 m ist normiert $\iff m = \underline{1} \cdot t^d + a_{d-1}t^{d-1} + \ldots + a_1 \cdot t + a_0$.
- $2 p \in I \iff \exists q \in K[t] : [p = qm \iff I = m \cdot K[t]]$

Beweis. Sei $m \in K[t]$ ein normiertes Polynom in I mit kleinstem Grad $(\deg(g) \ge 0)$. Dann gilt $m \cdot K[t] \subset I$ wie im Beweis des vorherigen Satzes.

Für " \supset " zeige mit Polynomdivision, dass m jedes Polynom in I teilt.

ALTERNATIVE DEFINITION 4.9.6 (Minimalpolynom)

Das Minimalpolynom $m_F \in K[t]$ von $F \in \text{End}(V)$ ist das normierte Polynom, welches das Ideal I_F von F erzeugt. Das heißt, dass m_F das eindeutig bestimmte, normierte Polynom mit den folgenden Eigenschaften ist.

(1) $m_F(F) = 0.$

 $2) \exists p \in K[t]: \ p(F) = 0 \implies m \mid p.$

Das heißt, dass m_F unter allen Polynomen p, für die p(F)=0 gilt, das mit dem geringsten Grad ist.

Bemerkung 4.9.7 Wir werden sehen, dass gilt $deg(m_F) \leq n = dim(V)$ sowie $m_F \mid P_F$.

Polynom

Minimalpolynom

4.10 *IV: Minimalpolynom und Goldener Schnitt

18.05.18

Das Minimalpolynom

Definition 4.10.1 (Minimal polynom)

Das Minimalpolynom $m_F(t) \in K[t]$ des Endomorphismus $F \in \text{End}(V)$ ist das eindeutige normierte Polynom mit der Eigenschaften

- (1) $m_F(F) = 0$

SATZ 4.10.1: BEDEUTUNG DER EXPONENTEN IM MINIMALPOLY-NOM

Seien $A \in K^{n \times n}$ und das charakteristische Polynom von A $P_A(t)$, welche in Linearfaktoren zerfällt. Sei $m_F(t)$ das Minimalpolynom von A, und $\lambda_1, \ldots, \lambda_k$ paarweise verschieden, dann gilt

$$P_A(t) = \prod_{j=1}^n (\lambda_j - t)^{n_j},$$

wobei n_j die algebraische Vielfachheit von λ_j ist, und

$$m_F(t) = \prod_{j=1}^n (\lambda_j - t)^{m_j}.$$

wobei m_j die Größe des größten Jordanblocks zu Eigenwert λ_j ist.

Beispiel 4.10.2 Sei

$$A = \begin{pmatrix} 2 & 1 & 0 & & & \\ 2 & 0 & & & & \\ & 2 & 0 & & & \\ & & 3 & 1 & & \\ & & & 3 & 0 & & \\ & & & & 3 & 0 & \\ & & & & & 1 & 0 \\ & & & & & 1 & 0 \\ & & & & & & 1 & 0 \end{pmatrix} \in K^{9 \times 9}.$$

Dann gilt $P_A(t) = (t-2)^3 (t-4)^4 (t-1)^2$ und $P_A(A) = (A-2E)^3 (A-3E)^4 (A-E)^2 = 0$

 $\operatorname{Ker}(A-2E)^3$ ist ein Mitglied der Kernkette von $\lambda=2$, aber die Kernkette geht nur bis zur zweiten Stufe (= Größe des größten Jordanblocks $\implies d=2$), somit gilt $\operatorname{Ker}(A-2E)^3 = \operatorname{Ker}(A-2E)^2$, also kann $(t-2)^3$ auch auf $(t-2)^2$ reduziert werden, und trotzdem gilt $P_F(A)=0$.

Wiederholt man dies für alle Eigenwerte, erhält man $m_A(t) = (t-2)^2(t-4)^3(t-1)^1$. Allgemein gilt also

Korollar 4.10.3

Hat jeder Eigenwert nur einen Jordanblock, so ist das Minimalpolynom und das charakteristische Polynom gleich.

Explizite Fibonacci-Darstellung mit der JNF beweisen

SATZ 4.10.2: ALLE FIBONACCI-ZAHLEN SIND GANZEN ZAHLEN

Sei $\alpha(n) = \frac{1}{\sqrt{5}} \left[(\varphi^+)^n - (\varphi^-)^n \right]$ für $\varphi^{\pm} = \frac{1 \pm \sqrt{5}}{2}$. Dann gilt $\alpha(n) \in \mathbb{Z}$ für alle $n \in \mathbb{N}$.

Beweis. Wir erkennen durch Testeinsetzungen $\alpha(n) = \text{Fib}(n)$ mit den Startwerten $\alpha(0) = 0$, $\alpha(1) = 1$ und der Rekursionsgleichung $\alpha(n) = \alpha(n-1) + \alpha(n-2)$ für alle $n \in \mathbb{N}_{\geq 2}$.

Wir stellen die Rekursionsgleichung mit Matrizen dar:

$$\begin{pmatrix} f(n+1) \\ f(n) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} f(n) \\ f(n-1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} f(n-1) \\ f(n-2) \end{pmatrix}$$

$$= \dots = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \cdot \begin{pmatrix} f(n-(n-1)) \\ f(n-n) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \cdot \begin{pmatrix} f(1) \\ f(0) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \cdot \begin{pmatrix} 1$$

Wir wollen nun die JNF von A^n mit $A := \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ berechnen.

Das charakteristische Polynom von A ist gegeben durch $P_A(t) = t^2 - t - 1 = (t - \varphi^+)(t - \varphi^-)$, also sind $\lambda_{1,2} := \varphi^{\pm}$ die Eigenwerte von A. Ferner gilt

$$\operatorname{Ker}(A - \lambda_1 \cdot E) = \begin{pmatrix} 1 - \lambda_1 & 1 \\ 0 & -\lambda_1 - \frac{1}{1 - \lambda_1} \end{pmatrix}.$$

Nun gilt aber $P_A(\lambda_1) = -\lambda_1 - \frac{1}{1-\lambda_1} = 0$ nach Definition und $\lambda_1 - 1 = -\lambda_2$. Somit gilt

$$\operatorname{Ker}(A - \lambda_1 \cdot E) = \operatorname{span}\begin{pmatrix} 1 \\ -\lambda_2 \end{pmatrix}.$$

Komplett analog gilt

$$\operatorname{Ker}(A - \lambda_2 \cdot E) = \operatorname{span}\begin{pmatrix} 1 \\ -\lambda_1 \end{pmatrix},$$

und da in beiden Fällen die algebraische und geometrische Vielfachheit (= 1) übereinstimmen, ist die Basis $\mathcal{B} = \begin{pmatrix} 1 & 1 \\ -\lambda_2 & -\lambda_1 \end{pmatrix}$, und $\mathrm{JNF}(A) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. Somit gilt, weil $\lambda_1 \lambda_2 = -1$ gilt,

$$A^{n} = B \cdot \text{JNF}(A) \cdot B^{-1} = \begin{pmatrix} 1 & 1 \\ -\lambda_{2} & -\lambda_{1} \end{pmatrix} \cdot \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} \cdot \frac{1}{\lambda_{2} - \lambda_{1}} \begin{pmatrix} -\lambda_{1} & -1 \\ \lambda_{2} & +1 \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{1}^{n} & \lambda_{2}^{n} \\ \lambda_{1}^{n-1} & \lambda_{2}^{n-1} \end{pmatrix} \cdot \frac{1}{\lambda_{2} - \lambda_{1}} \begin{pmatrix} -\lambda_{1} & -1 \\ \lambda_{2} & +1 \end{pmatrix} = \frac{1}{\lambda_{2} - \lambda_{1}} \begin{pmatrix} \lambda_{2}^{n+1} - \lambda_{1}^{n+1} & \lambda_{2}^{n} - \lambda_{1}^{n} \\ \lambda_{2}^{n} - \lambda_{1}^{n} & \lambda_{2}^{n-1} - \lambda_{1}^{n-1} \end{pmatrix}.$$

Somit gilt

$$A^{n}(\frac{1}{0}) = ?????$$

$$f(n+1) = \frac{1}{\lambda_{2} - \lambda_{1}} (\lambda_{2}^{n+1} - \lambda_{1}^{n+1}) = \frac{-1}{\sqrt{5}} (\lambda_{2}^{n+1} - \lambda_{1}^{n+1}) = \alpha(n+1)$$

Für die ähnliche Funktion $\beta(n) := (\varphi^+)^n + (\varphi^-)^n$ gelten die Anfangswerte $\beta(0) = 2$ und $\beta(1) = 1$ und die selbe Rekursionsformel wie oben. Somit gilt $\beta(b) = B \cdot JNF \cdot B^{-1} \cdot \binom{2}{1}$.

Außerdem gilt

$$\varphi^{+} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}.$$

4.11 Beweis der Existenzaussage des JNF-Satzes

Sei V ein endlichdimensionaler K-Vektorraum und $F \in \text{End}(F)$.

Lemma 4.11.1

Sei $q \in K[t] \setminus \{0\} =: K[t]^*$. mit q(F) = 0. und $q = q_1 \cdot q_2$ wobei $q_1, q_2 \in K[t]$ teilerfremd sind. Dann gilt

- 1 (1) Ker $q_1(F) = \text{Im } q_2(F) =: V_1$.
- ② $\operatorname{Ker} q_2(F) = \operatorname{Im} q_1(F) =: V_2.$ ② $\operatorname{Die} \ Unterr\"{a}ume \ V_1 \ und \ V_2 \ sind \ invariante \ Unterr\"{a}ume \ von \ F, \ also \ gilt$ $F(V_j) \subseteq V_j \text{ für } j \in \{1, 2\}.$

Beweis. (1) " \subset ": Aus $0 = q(F) = q_1(F) \cdot q_2(F) = q_2(F) \cdot q_1(F)$ folgt Im $q_2(F) \subset$ $\operatorname{Ker} q_1(F)$ sowie $\operatorname{Im} q_1(F) \subset \operatorname{Ker} q_2(F)$.

'\[
\]": Nach dem Lemma von Bezout existieren zwei Polynome $p_1, p_2 \in K[t]$ $mit \ p_1q_1 + p_2q_2 = 1.$

Also gilt $p_1(F) \cdot q_1(F) + p_2(F) \cdot q_2(F) = id_V$.

Für $v \in \text{Ker } q_1(F)$ folgt somit $v = \text{id}_V = p_1(F) \cdot q_1(F)(v) + p_2(F) \cdot q_2(F)(v)$. Weil $v \in \operatorname{Ker} q_1(F)$ ist, gilt $q_1(F)(v) = 0$. Somit gilt $v = p_2(F) \cdot q_2(F)(v) = 0$ $q_2(F) \cdot p_2(F)(v)$. Somit gilt $v \in \Im q_2(F) \implies \operatorname{Ker} q_1(F) \subset \operatorname{Im} q_2(F)$. (ii) ist komplett analog.

- (2) Angenommen, es gilt $v \in \operatorname{Ker} q_i(F) = V_i$. Dann ist $q_i(F) \circ F(v) = F \circ$ $q_i(F)(v) = F \circ 0 = 0$, also gilt $F(v) \in V_i \implies F(V_i) \subseteq V_i$.
- (3) Zunächst zeigen wir $V_1 \cap V_2 = \{0\}$.

Angenommen, $v \in \operatorname{Ker} q_1(F) \cap \operatorname{Ker} q_2(F) = V_1 \cap V_2$. Dann gilt

$$v = id_V(v) = p_1(F) \cdot \underbrace{q_1(F)(v)}_{=0} + p_2(F) \cdot \underbrace{q_2(F)(v)}_{=0} = 0.$$

Nun zeigen wir $V = V_1 + V_2$. Es gilt aufgrund der Dimensionsformel

$$\dim V_1 + V_2 = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2) = \dim V_1 + \dim V_2$$

= $\dim \operatorname{Ker} q_1(F) + \dim \operatorname{Im} q_2(F) = \dim V.$

Somit ist das Lemma bewiesen.

Bemerkung 4.11.2 Es kann seien, dass gilt $V_1 = \{0\}$ oder $V_2 = \{0\}$.

Bemerkung 4.11.3 Weil V_1 und V_2 invariante Unterräume von F sind, kann man die Einschränkungen $F_j:V_j\to V_j,\ v\mapsto F(v)$ für $j\in\{1,2\}$ definieren. Für v=1 $v_1 + v_2$ mit $v_1 \in V_1$ und $v_2 \in V_2$, welche existieren und eindeutig sind aufgrund von (iii), gilt dann $F(v) = F_1(v_1) + F_2(v_2)$.

Außerdem gilt aufgrund von (i) $q_1(F_1) = q_2(F_2) = 0$. Wenn q_1 und q_2 wieder in teilerfremde Faktoren zerfallen, erhalten wir eine weitere Zerlegung von V_1 und V_2 in invariante Unterräume von F. Insgesamt erhält man durch die fortgesetzte Anwendung von Lemma 1 das

Lemma 4.11.4

Sei $q \in K[t]^*$ mit q(F) = 0 und $q = \prod_{i=1}^k q_i$, wobei alle q_i paarweise teilerfremd sind. Dann sind die Unterräume $V_j := \operatorname{Ker} q_j(F)$ invariant unter F und es gilt $V = \bigoplus_{i=1}^k V_i$.

Sei nun $q \in K[t]^*$ im Ideal von F. Dann ist q normiert und es gilt q(F) = 0. Weil K algebraisch vollständig ist, zerfällt q in Linearfaktoren, es gilt

$$q(t) = a_k \cdot \prod_{j=1}^k (t - \lambda_j)^{n_j}, \tag{11}$$

wobei die λ_j die verschiedenen Nullstellen von q sind.

Nach Lemma 2 sind de Unterräume $V_j:=\mathrm{Ker}(F-\lambda_j\cdot\mathrm{id}_V)^{n_j}$ invariant unter F und es gilt $V=\bigoplus_{i=1}^k V_i$.

Insbesondere ist $G_j := (F - \lambda_j \cdot \mathrm{id}_V)|_{v_j} \in \mathrm{End}(V_j)$ nilpotent, weil $G_j^{n_j} = 0$ ist. Nach dem Satz über die Normalform eines nilpontenten Endomorphismus existiert eine Basis \mathcal{B}_j von V_J , sodass für $n_i \in \mathbb{N}_{>0}$ und $\ell_j \in \mathbb{N}$ gilt

$$M_{\mathcal{B}_{j}}(G_{j}) = \begin{pmatrix} J_{n_{i}}(0) & & & 0 \\ & \ddots & & \\ 0 & & J_{n_{\ell_{j}}}(0) \end{pmatrix}$$

$$M_{\mathcal{B}_{j}}(F|_{V_{j}}) = \begin{pmatrix} J_{n_{i}}(\lambda_{j}) & & & 0 \\ & & \ddots & & \\ 0 & & & J_{n_{\ell_{j}}}(\lambda_{j}) \end{pmatrix}.$$

Bildet man aus den Basen $\mathcal{B}_1, \dots, \mathcal{B}_k$ eine Basis \mathcal{B} von V, ist $M_{\mathcal{B}}(F)$ in JNF.

4.12 Beweis der Eindeutigkeit der JNF

Es bleibt zu zeigen, dass die darstellende Matrix in Jordanischer Form eindeutig bis auf die Reihenfolge der Jordan-Blöcke bestimmt ist.

SATZ 4.12.1: CAYLEY-HAMILTON: $P_A(A) = 0$

Seien K ein beliebiger Körper, $A \in K^{n \times n}$ und $P_A(t) = \det(A - tE)$ das charakteristische Polynom von A. Dann gilt $P_A(A) = 0$.

Beispiel 4.12.1 Sei $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Dann ist $P_A(t) = t^2 - 5t - 2$. Man kann mit Hilfe von $A^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$ leicht nachrechnen, dass der Satz erfüllt ist.

Beweis. (Ein FALSCHER Beweis!) Es gilt

$$P_A(A) = \det(A - tA) = \det(A - A) = \det(0) = 0.$$

- Beweis. (Richtiger Beweis) 1 Wir können ohne Beschränkung der Allgemeinheit annehmen, dass der Körper K algebraisch vollständig ist, denn wenn K das nicht ist, können wir die Matrix $A \in K^{n \times n}$ als Matrix in $\widetilde{K}^{n \times n}$ auffassen, wobei \widetilde{K} ein algebraisch vollständiger Erweiterungskörper ist.
- 2 Wir beweisen den Satz zunächst für eine Matrix J in Jordanischer Form. Dann ist $P_J(t) = \prod_{k=1}^{\ell} (\lambda_k t)^{n_k}$. Es gilt

$$(\lambda E_n - J_n(\lambda))^n = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & 1 \\ 0 & \dots & \dots & 0 \end{pmatrix}^n = 0$$

und somit hat $(\lambda E_n - J)^n$ die Form

TODO: EIGENTLICH SIND DIE DIFFERENZEN ANDERSHER-UM?

$$\begin{pmatrix} (\lambda_{j}E_{n_{1}} - J_{n_{1}}(\lambda_{1}))^{n} & 0 \\ \vdots & \vdots & \vdots \\ 0 & \vdots \\$$

und somit gilt

42

(3) Sei nun $A \in K^{n \times n}$ beliebig. Weil wir annehmen können, dass K algebraisch vollständig ist, existiert eine Basistransformationsmatrix $S \in GL(n, K)$, sodass $J := SAS^{-1}$ in Jordanischer Form ist. Weil die Matrix J und A nach Definition 4.2.4 ähnlich sind, gilt nach Lemma 4.2.5 $P_J(t) = P_A(t)$. Daraus

Basistransformationsmatrix

$$P_A(A) = P_J(A) = P_J(S^{-1}JS) \stackrel{(*)}{=} S^{-1}P_J(J)S \stackrel{\textcircled{2}}{=} 0.$$

Nun bleibt (*) zu zeigen.

Für jedes Polynom $Q(t) = \sum_{k=0}^n a_k t^k$ und eine Matrix $S \in \mathrm{GL}(n,K)$ gilt

$$Q(S^{-1}JS)$$
= $a_0E + a_1S^{-1}JS + a_2S^{-1}J\underbrace{SS^{-1}}_{=E}JS + \dots + a_nS^{-1}JSS^{-1}JS \dots S^{-1}JS$
= $S^{-1}(a_0E + a_1J + \dots + a_nJ^n)S = S^{-1}Q(J)S$.

Mit Hilfe von Satz 4.12.1 von CAYLEY-HAMILTON kann man die Voraussetzungen des Satzes von der JNF (4.4.1) abschwächen:

SATZ 4.12.2: JNF, ALLGEMEINERE VERSION

Sei V ein endlichdimensionaler Vektorraum über einem beliebigen Körper K und sei $F \in \text{End}(V)$ ein Endomorphismus, dessen charakteristisches Polynom in Linearfaktoren zerfällt. Dann existiert eine Basis \mathcal{B} ... (wie in der anderen Version).

Beweis. Selbst.

Hinweis: Wie davor, man braucht nur ein Polynom, welches F annulliert und in Linearfaktoren zerfällt.

SATZ 4.12.3: CHARAKTERISTISCHES POLYNOM UND MINIMALPO-LYNOM

Sei $A \in K^{n \times n}$ eine Matrix, deren charakteristisches Polynom $P_A(t)$ in Linearfaktoren zerfällt und sei $M_A(t)$ ihr Minimalpolynom. Dann gilt

$$P_A(t) = \prod_{j=1}^k (\lambda_j - t)^{n_j}$$
 und $M_A(t) = \prod_{j=1}^k (\lambda_j - t)^{m_j}$,

wobei $\lambda_1, \ldots, \lambda_k$ die verschiedenen Eigenwerte von A sind und für alle $j \in$ $\{1,\ldots,k\}$ $n_j=\mu(P_A,\lambda_j)$ die Summe der Größen aller Jordan-Blöcke zum Eigenwert λ_i in JNF(A) und m_i die Größe des größten Jordan-Blocks zum Eigenwert λ_j in JNF(A) bezeichnet.

Beweis. Selbst.

4.13 Hauptraumzerlegung

Definition 4.13.1 (Hauptraum / verallgemeinerter Eigenraum)

Sei V ein K-Vektorraum und $F \in \text{End}(V)$ eine Endomorphismus mit dem charakteristischen Polynom $P_F(t) = \prod_{j=1}^k (\lambda_j - t)^{r_j}$, wobei $\lambda_1, \ldots, \lambda_k$ paarweise verschieden sind.

Für alle $j \in \{1, ..., k\}$ ist der Hauptraum zum Eigenwert λ_j definiert als

$$\operatorname{Hau}(F, \lambda_j) := \operatorname{Ker}(F - \lambda_j \operatorname{id}_V)^{r_j}.$$

SATZ 4.13.1: HAUPTRAUMZERLEGUNG

Unter den gleichen Bedingungen wie in der vorangegangen Definition besteht der Hauptraum zum Eigenwert λ_j aus den Hauptvektoren zu diesem Eigenwert und dem Nullvektor. Ferner gilt

- $(1) \dim \operatorname{Hau}(F, \lambda_i) = r_i$
- (2) Hau (F, λ_j) ist ein invarianter Unterraum von F.
- $3 V = \bigoplus_{j=1}^k \operatorname{Hau}(F, \lambda_1).$

Beweis. Sie \mathcal{B} die Jordan-Basis zu F. Für alle $j \in \{1, \ldots, k\}$ existieren genau r_j Basisvektoren in \mathcal{B} , die zu den Jordan-Blöcken zum Eigenwert λ_j gehören, sie spannen $\operatorname{Hau}(F,\lambda_j)$ auf. (Das kann man sehen, wenn man sich die Matrix von $(F-\lambda_j\operatorname{id}_V)^{r_j}$ anschaut **TODO!**). Also ist $\operatorname{Hau}(F,\lambda_j)$ ein r_j dimensionaler F-invarianter Unterraum, und V ist die direkte Summe der Haupträume.

Beweis. (Eindeutigkeit der Jordanischen Normalform) Seien $\lambda_1, \ldots, \lambda_k$ die verschiedenen Eigenwerte von F und sei \mathcal{B} eine Jordan-Basis von F.

Die Anzahl der Jordan-Blöcke $J_m(\lambda_j)$ der Größe m zum Eigenwert λ_j , die in $M_{\mathcal{B}}(F)$ vorkommen, seien $s_m(\lambda_j)$.

Dann gilt

$$\begin{split} \dim \mathrm{Ker}(F-\lambda\cdot\mathrm{id}_V) &= \sum_{\ell=1}^{r_j} s_\ell(\lambda_j),\\ \dim \mathrm{Ker}(F-\lambda\cdot\mathrm{id}_V)^2 - \dim \mathrm{Ker}(F-\lambda\cdot\mathrm{id}_V) &= \sum_{\ell=2}^{r_j} s_\ell(\lambda_j),\\ \dim \mathrm{Ker}(F-\lambda\cdot\mathrm{id}_V)^3 - \dim \mathrm{Ker}(F-\lambda\cdot\mathrm{id}_V)^2 &= \sum_{\ell=3}^{r_j} s_\ell(\lambda_j), \quad \dots \quad ,\\ \dim \mathrm{Ker}(F-\lambda\cdot\mathrm{id}_V)^{r_j} - \dim \mathrm{Ker}(F-\lambda\cdot\mathrm{id}_V)^{r_j-1} &= s_{r_j}(\lambda_j). \end{split}$$

Also sind die Zahlen $s_m(\lambda_i)$ durch F eindeutig bestimmt.

Korollar 4.13.2

Seien $A, B \in K^{n \times n}$ Matrizen, deren charakteristische Polynom in Linearfaktoren zerfallen.

Dann $sind\ A$ und B genau dann ähnlich ,wenn die charakteristischen Polynome gleich sind, es gilt

$$P_A(t) = P_B(t) = \prod_{j=1}^{k} (\lambda_j - t)^{r_j},$$

Hauptraum

wobei die Eigenwerte $\lambda_1, \ldots, \lambda_k$ paarweise verscheiden seien sollen und für alle $j \in \{1, \ldots, k\}$ und $d \in \{1, \ldots, r_k\}$ gilt

$$\dim \operatorname{Ker}(A - \lambda_j E)^d = \dim \operatorname{Ker}(B - \lambda_j E)^d.$$

Nicht mehr geschafft: die reelle Jordanische Normalform.

Euklidische und unitäre 5 Vektorräume

5.1 Die kanonischen Skalarprodukte

25.05.18

Definition 5.1.1 (kanonisches reelles Skalarprodukt)

Das kanonische Skalarprodukt im \mathbb{R}^n ist die Abbildung

Skalarprodukt $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto \sum_{j=1}^n x_j y_j = x^T y.$

Korollar 5.1.2 (Eigenschaften des Skalarprodukts)

1) Für alle $x, \tilde{x}, y, \tilde{y} \in \mathbb{R}^n, \lambda \in \mathbb{R}$ gilt

$$\langle x + \tilde{x}, y \rangle = \langle x, y \rangle + \langle \tilde{x}, y \rangle, \qquad \langle x, y + \tilde{y} \rangle = \langle x, y \rangle + \langle x, \tilde{y} \rangle$$

$$\langle \lambda x, y \rangle = \langle x, \lambda y \rangle = \lambda \langle x, y \rangle.$$
 (Bilinearität)

(Symmetrie) (positive Definitheit)

DEFINITION 5.1.3 (Das kanonische Skalarprodukt im \mathbb{C}^n)

Das kanonische Skalarprodukt im \mathbb{C}^n ist die Abbildung

$$\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}, (z, w) \mapsto \sum_{j=1}^n z_j \bar{w}_j.$$

Korollar 5.1.4 (Eigenschaften des komplexen Skalarprodukts)

(1) Sesquilinearität: Für alle $z, z', w, w' \in \mathbb{C}^n, \lambda \in \mathbb{C}$ gilt

$$\langle z + z', w \rangle = \langle z, w \rangle + \langle z', w \rangle, \qquad \langle \lambda z, w \rangle = \lambda \langle z, w \rangle,$$

$$\langle z, w + w' \rangle = \langle z, w \rangle + \langle z, w' \rangle, \qquad \langle z, \lambda w \rangle = \bar{\lambda} \langle z, w \rangle.$$

(4) Man erhält auch auf \mathbb{C}^n eine Norm

$$||z|| := \sqrt{\langle z, z \rangle} = \sqrt{\sum_{j=1}^{n} |z_j|^2} = \sqrt{\sum_{j=1}^{n} x_j^2 + y_j^2}.$$

Bemerkung Für
$$z, z' \in \mathbb{C}^n$$
, $x = \operatorname{Re}(z) = \begin{pmatrix} \operatorname{Re}(z_1) \\ \vdots \\ \operatorname{Re}(z_n) \end{pmatrix}$, $y = \operatorname{Im}(z) = \begin{pmatrix} \operatorname{Im}(z_1) \\ \vdots \\ \operatorname{Im}(z_n) \end{pmatrix}$ und

analog für x^\prime,y^\prime gilt

$$\langle z, z' \rangle = \sum_{j=1}^{n} z_{j} \bar{z}'_{j} = \sum_{j=1}^{n} (x_{j} + iy_{j})(x'_{j} - iy'_{j}) = \sum_{j=1}^{n} \left[(x_{j}x'_{j} + y_{j}y'_{j}) - i(x_{j}y'_{j} - y_{j}x'_{j}) \right]$$
$$= \langle x, x' \rangle + \langle y, y' \rangle - i \sum_{j=1}^{n} \begin{vmatrix} x_{j} & x'_{j} \\ y_{j} & y'_{j} \end{vmatrix}.$$

5.2 Norm, Metrik, Winkel und Orthogonalität

Definition 5.2.1 (euklidische Norm)

Die euklidische oder 2-Norm im \mathbb{R}^n ist die Abbildung

$$\|\cdot\|: \mathbb{R}^n \to \mathbb{R}, \ x \mapsto \|x\| := \sqrt{\langle x, x \rangle}$$

Korollar 5.2.2 (Eigenschaften der Norm)

(1) $||x|| \ge 0$ und ||x|| = 0 nur für x = 0.

(positive Definitheit)

(absolute Homogenität)

(Dreiecksungleichung)

Lemma 5.2.3 (CAUCHY-SCHWARZschen Ungleichung)

 $F\ddot{u}r \ alle \ x, y \in \mathbb{R}^n \ gilt$

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

und Gleichheit genau dann, wenn x und y linear abhängig sind.

Beweis. (3) Die Dreiecksungleichung der Norm folgt aus dem obigen Lemma:

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$$

$$\leq ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2$$

$$= (||x|| + ||y||)^2$$

Damit folgt $||x + y|| \le ||x|| + ||y||$, da $\sqrt{\cdot}$ monoton wachsend ist.

Definition 5.2.4 (euklidischer Abstand)

Der euklidische Abstand bzw. die euklidische Metrik ist die Abbildung

$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \ (x, y) \mapsto ||x - y||$$

Korollar 5.2.5 (Eigenschaften der Metrik)

1 $d(x,y) \ge 0$ und $d(x,y) = 0 \iff x = y$.

(positive Definitheit)

(Symmetrie)

② d(x,y) = d(y,x)③ $d(x,z) \le d(x,y) + d(y,z)$

(Dreiecksungleichung)

Mithilfe des Skalarprodukts kann man auch die Winkelmessung analytisch erklären. Nach der Cauchy-Schwarzschen Ungleichung gilt für $x, y \in \mathbb{R}^n \setminus \{0\}$

$$-1\leqslant \frac{\left\langle x,y\right\rangle}{\|x\|\cdot\|y\|}=\left\langle \frac{x}{\|x\|},\frac{y}{\|y\|}\right\rangle\leqslant 1.$$

Es gibt also genau ein $\varphi \in [0, \pi]$ für welches gilt:

$$\cos \varphi = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}.$$

Definition 5.2.6 (Winkel zwischen zwei Vektoren)

Diese Zahl φ ist der Winkel zwischen x und y. Wir schreiben

$$\sphericalangle(x,y) \coloneqq \arccos \frac{\langle x,y \rangle}{\|x\| \cdot \|y\|}.$$

Winkel

Wieso entspricht das der anschaulich geometrischen Vorstellung des (unorientierten) Winkels zwischen x und y?

Betrachte den Fall n=2, also die Ebene. Dann sind $\frac{x}{\|x\|}$ und $\frac{y}{\|y\|}$ Einheitsvektoren in \mathbb{R}^2 , d.h. es gibt $\alpha, \beta \in \mathbb{R}$, sodass gilt

$$\frac{x}{\|x\|} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} \qquad \text{ und } \qquad \frac{y}{\|y\|} = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}.$$

Nach dem Additionstheorem für den Kosinus gilt also

$$\frac{\langle x,y\rangle}{\|x\|\cdot\|y\|} = \langle \frac{x}{\|x\|}, \frac{y}{\|y\|} \rangle = \cos\alpha\cos\beta + \sin\alpha\sin\beta = \cos(\alpha-\beta).$$

Das Skalarprodukt gibt also genau den Winkel zwischen x und y an, den wir φ nennen.

Lemma 5.2.7

Diese Zahl φ ist eindeutig bestimmt und liegt zwischen 0 und π . Bis auf ein Vielfaches von 2π gilt

$$\varphi = \alpha - \beta$$
 oder $\varphi = \beta - \alpha$.

Beweis. Selbst.

Bemerkung 5.2.8 Es gilt $\langle (x,y) = \frac{\pi}{2} \iff \langle x,y \rangle = 0$.

Definition 5.2.9 (Orthogonalität)

Zwei Vektoren $x, y \in \mathbb{R}^n$ heißen senkrecht oder orthogonal, wenn $\langle x, y \rangle = 0$ gilt, auch wenn x = 0 oder y = 0 sind.

orthogonal

Lemma 5.2.10 (Kosinussatz)

Es gilt

Das Skalarprodukt ist geometrisch die orthogonale Projektion des Vektors y auf x. Der Vektor x gibt hierbei die Richtung der Projektion an.

Abbildung 7: [Quelle: 'Essence of linear Algebra: IX: Dot products and duality' von 3Blue1Brown auf YouTube]

Beweis. Die Formel folgt direkt aus Definition 5.2.6.

5.3 Das Kreuz- bzw. Vektorprodukt

Seien $x, y \in \mathbb{R}^3$. Betrachte die Abbildung $\mathbb{R}^3 \to \mathbb{R}$, $u \mapsto \det(x, y, u)$. Diese Abbildung ist linear, also gibt es eindeutig bestimmte $a_1, a_2, a_3 \in \mathbb{R}$, sodass für alle $u \in \mathbb{R}^3$ gilt

$$\det(x, y, u) = a_1 u_1 + a_2 u_2 + a_3 u_3 = \langle a, u \rangle.$$

Definition 5.3.1 (Kreuz- oder Vektorprodukt)

Die Abbildung

$$\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3, (x, y) \mapsto a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} =: x \times y$$

heißt das Kreuzprodukt oder Vektorprodukt auf \mathbb{R}^3 .

Kreuzprodukt

Korollar 5.3.2 (explizite Formel für das Kreuzprodukt)

Es gilt

$$\det(x, y, u) = \det\begin{pmatrix} x_1 & y_1 & u_1 \\ x_2 & y_2 & u_2 \\ x_3 & y_3 & u_3 \end{pmatrix}$$
$$= (x_2y_3 - x_3y_2)u_1 + (x_3y_1 - x_1y_3)u_2 + (x_1y_2 - x_2y_1)u_3$$

und somit

$$x \times y = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}.$$

Korollar 5.3.3 (weitere Eigenschaften des Kreuzprodukts)

- 1) Das Kreuzprodukt ist bilinear.
- $2) x \times y = -y \times x.$
- $3 x \times y = 0 \iff x, y \text{ linear abhängig.}$
- $\boxed{4} ||x \times y|| = ||x|| \cdot ||y|| \sin \triangleleft (x, y)$
- 5 $x \times y$ ist senkrecht zu x, y.
- 6 Wenn x und y linear unabhängig sind, dann ist $(x, y, x \times y)$ eine positiv orientierte Basis des \mathbb{R}^3 .

Beweis. (1 - 3 Selbst, Rest: VL) 1 Für $x, y, z \in \mathbb{R}^3$ gilt

$$(x+z) \times y = \begin{pmatrix} (x_2+z_2)y_3 - (x_3+z_2)y_2 \\ (x_3+z_3)y_1 - (x_1+z_1)y_3 \\ (x_1+z_1)y_2 - (x_2+z_2)y_1 \end{pmatrix}$$
$$= \begin{pmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_2 - x_2y_1 \end{pmatrix} + \begin{pmatrix} z_2y_3 - z_3y_2 \\ z_3y_1 - z_1y_3 \\ z_1y_2 - z_2y_1 \end{pmatrix} = x \times y + z \times y$$

die anderen Fälle gehen analog.

2 Es gilt

$$x \times y = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix} = - \begin{pmatrix} y_2 x_3 - y_3 x_2 \\ y_3 x_1 - y_1 x_3 \\ y_1 x_2 - y_2 x_1 \end{pmatrix} = -y \times x.$$

- 3 Aus $\det(x, y, u) = \langle u, x \times y \rangle$ (obiges Korollar) folgt die Behauptung.
- 4 Aus $||x \times y||^2 = ||x||^2 ||y||^2 \langle x, y \rangle^2$. folgt

$$\begin{split} ||x\times y||^2 &= ||x||^2||y||^2 - ||x||^2||y||^2\cos^2 \sphericalangle(x,y) \\ &= ||x||^2||y||^2(1-\cos^2 \sphericalangle(x,y)) = ||x||^2||y||^2\sin^2 \sphericalangle(x,y). \end{split}$$

5.4 Bilinearformen

28.05.18

Definition 5.4.1 (Bilinearform)

Seien K ein beliebiger Körper und V ein K-Vektorraum. Eine Abbildung

$$s: V \times V \to K$$

heißt eine Bilinearform, wenn für alle $v, v', w, w' \in V, \lambda \in K$ gilt

$$\begin{split} s(v+v',w) &= s(v,w) + s(v',w), \quad s(\lambda v,w) = \lambda s(v,w). \\ s(v,w+w') &= s(v,w) + s(v,w'), \quad s(v,\lambda w) = \lambda s(v,w). \\ \text{Die Abbildung heißt} & \begin{cases} \text{symmetrisch}, & \text{wenn } s(v,w) = s(w,v), \\ \text{alternierend}, & \text{wenn } s(v,v) = 0, \\ \text{schiefsymmetrisch}, & \text{wenn } s(v,w) = -s(w,v). \end{cases} \end{split}$$

symmetrisch alternierend schiefsymmetrisch

Lemma 5.4.2

Eine alternierende Bilinearform ist schiefsymmetrisch.

Beweis.

$$0 = s(v + w, v + w) = s(v, v + w) + s(w, v + w) = \underbrace{s(v, v)}_{=0} + s(v, w) + s(w, v) + \underbrace{s(w, w)}_{=0}.$$

Umgestellt ergibt dies
$$-s(v, w) = s(w, v)$$
.

Lemma 5.4.3

Ist $char(K) \neq 2$, so ist jede schiefsymmetrische Bilinearform alternierend.

Beweis. Es gilt
$$s(v,v) = -s(v,v) \implies \underbrace{2}_{\neq 0} s(v,v) = 0 \implies s(v,v) = 0$$
.

Bemerkung 5.4.4 Ist char(K) = 2, dann gilt -1 = 1 und Schiefsymmetrie ist zu Symmetrie äquivalent, impliziert also im Allgemeinen nicht, dass die Bilinearform alternierend ist.

Beispiel 5.4.5 Seien $K := \mathbb{R}$, I := [a, b] und $V := \mathcal{C}^0([a, b], \mathbb{R})$. Dann ist

$$s(f,g) = \int_a^b f(x) + g(x) \, \mathrm{d}x$$

eine symmetrische Bilinearform.

Beispiel 5.4.6 $V = \mathbb{R}^2$. Für alle $A \in \mathbb{R}^{2 \times 2}$ ist

$$s\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = a_{11}x_1y_1 + a_{12}x_1y_2 + a_{21}x_2y_1 + a_{22}x_2y_2$$
$$= (x_1, x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = x^T \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} y$$

eine Bilinearform, die genau dann symmetrisch ist, wenn $a_{12} = a_{21}$.

SATZ 5.4.1: DARSTELLENDE MATRIX VON BLF

Ist s eine Bilinearform auf V, dann gilt

$$M_{\mathcal{B}}(s) = \left(s(v_i, v_j)\right) = \begin{pmatrix} s(v_1, v_1) & \dots & s(v_1, v_n) \\ \vdots & & \vdots \\ s(v_n, v_1) & \dots & s(v_n, v_n) \end{pmatrix} \in K^{n \times n}.$$

Beweis. Existenz: Sei $M_{\mathcal{B}}(s) = A = (a_{ij})$. Betrachte Vektoren v, w mit den Koordinaten $v = \sum_{i=1}^{n} x_i v_i$ und $w = \sum_{i=1}^{n} y_i v_i$. Es gilt

$$s\left(\sum_{j=1}^{n} x_{i} v_{i}, \sum_{j=1}^{n} y_{i} v_{i}\right) = \sum_{j=1}^{n} \sum_{i=1}^{n} x_{i} y_{j} \underbrace{s(v_{i}, v_{j})}_{=a_{i,i}} = \sum_{i,j=1}^{n} a_{ij} x_{i} y_{j} = x^{T} A y.$$

Eindeutigkeit: Seien $A, B \in K^{n \times n}$ quadratische Matrizen, sodass $x^T A y = x^T B y$ für alle $x, y \in K^n$ gilt.

Dann gilt

$$e_i^T A e_j = (0, \dots, 0, 1, 0, \dots, 0) \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{nj} \end{pmatrix} = a_{ij}.$$

Ebenso $e_i^T B e_j = b_{ij}$. Also gilt $a_{ij} = b_{ij}$ und somit A = B.

Lemma 5.4.7

- 1 Die Menge der Bilinearformen auf einem n-dimensionalen K-Vektorraum V bildet mit den offensichtlichen Verknüpfungen einen K-Vektorraum der Dimension n²
- 2 Die Abbildung $s \mapsto M_{\mathcal{B}}(s)$ ist ein Vektorraumisomorphismus auf $K^{n \times n}$.

Beweis. Selbst.

Meine Idee: Sei B_n die Menge der Bilinearformen auf V. Um zu zeigen, dass (B, \oplus, \odot) ein n^2 -dimensionaler K-Vektorraum ist, müssen wir die Vektorraumaxiome überprüfen.

TODO \square

Lemma 5.4.8

Die Bilinearform s ist genau dann symmetrisch, wenn die darstellende Matrix $M_{\mathcal{B}}(s)$ bezüglich einer (und daher jeder) Basis symmetrisch ist.

Beweis. Selbst.

Meine Idee: Sei $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis des K-Vektorraums und $s: V \times V \to K$ eine Bilinearform.

" \Longrightarrow ": Ist s symmetrisch, so gilt s(v, w) = s(w, v) für alle $v, w \in V$ und somit insbesondere für die Basisvektoren $v_1, \ldots, v_n \in V$.

" \Leftarrow ": Ist die Darstellungsmatrix symmetrisch, so gilt $s(v_j, v_k) = s(v_k, v_j)$ für alle Basisvektoren $v_1, \ldots, v_n \in V$. Jedes $v \in V$ lässt sich als Linearkombination der

Basisvektoren darstellen und somit gilt für beliebige $v, w \in V$

$$s(v, w) = s\left(\sum_{k=1}^{n} \lambda_k v_k, \sum_{j=1}^{n} \mu_j v_j\right) = \sum_{j,k=1}^{n} \lambda_k \mu_j s(v_k, v_j)$$
$$= \sum_{j,k=1}^{n} \lambda_k \mu_j s(v_j, v_k) = s\left(\sum_{j=1}^{n} \mu_j v_j, \sum_{k=1}^{n} \lambda_k v_k\right) = s(w, v).$$

Satz 5.4.2: Transformationsformel für Bilinearformen

Sei V ein n-dimensionaler K-Vektorraum mit den Basen

$$\mathcal{A} := (v_1, \dots, v_n), \quad \text{und} \quad \mathcal{B} := (w_1, \dots, w_n),$$

und sei $T_{\mathcal{A}}^{\mathcal{B}} \in K^{n \times n}$ eine Transformationsmatrix, sodass gilt

$$\sum_{i=1}^{n} x_i v_i = \sum_{i=1}^{n} y_i w_i \iff x = T_{\mathcal{A}}^{\mathcal{B}} y^{a}$$

Für jede Bilinearform s auf V gilt dann

$$M_{\mathcal{B}}(s) = (T_{\mathcal{A}}^{\mathcal{B}})^{T} \cdot M_{\mathcal{A}}(s) \cdot T_{\mathcal{A}}^{\mathcal{B}}.$$

Zum Vergleich: für $F \in End(V)$ gilt, dass $M_{\mathcal{B}}(F) = (T_{\mathcal{A}}^{\mathcal{B}})^{-1} \cdot M_{\mathcal{A}}(F) \cdot T_{\mathcal{A}}^{\mathcal{B}}$.

Beweis. Seien $A := (a_{ij}) := M_{\mathcal{A}}(s)$, $B := (b_{ij}) := M_{\mathcal{B}}(s)$, und $T_{\mathcal{A}}^{\mathcal{B}} := (t_{ij})$. Sowie für den Basisvektor w_j der Basis \mathcal{B} : $w_j = \sum_{k=1}^n t_{k,j} v_k$. Also gilt

$$b_{ij} = s(w_i, w_j)$$
 (Definition der darstellenden Matrix)
$$= s\left(\sum_{k=1}^n t_{ki}v_k, \sum_{l=1}^n t_{lj}v_l\right)$$
 (Bilinearität)
$$= \sum_{k,l=1}^n t_{ki}t_{lj} \underbrace{s(v_k, v_l)}_{=a_{k,l}} = \sum_{k=1}^n t_{ki} \cdot \sum_{l=1}^n a_{kl}t_{lj} = e_i^T (T_{\mathcal{A}}^{\mathcal{B}})^T \cdot A \cdot T_{\mathcal{A}}^{\mathcal{B}}e_j.$$

 $[^]a$ Die j-te Spalte von $T^{\mathcal{B}}_{\mathcal{A}}$ ist der Koordinatenvektor von w_j bezüglich der Basis $\mathcal{A}.$

5.5 *VII: Koordinaten und darstellende Matrizen

01.06.18

Koordinaten

Sei $V = \mathbb{R}$ mit der kanonischen Basis span $(e_1, e_2) = V$.

Wir definieren $\mathcal{A} := (v_1, v_2)$ mit $v_1 := e_1 + e_2$ und $v_2 := e_1 - e_2$ sowie $\mathcal{B} := (w_1, w_2)$ mit $w_1 := 3e_1$ und $w_2 := e_1 + 2e_2$ als zwei weitere Basen von V.

Beispiel: Sei $[x]_{\text{Kan}} := 2e_1 + 3e_2 \in V$ mit der kanonischen Basis.

Wie findet man (a_1, a_2) , die sog. Koordinaten der Basis \mathcal{A} , sodass $[x]_{Kan} = a_1v_1 + a_2v_2 = [x]_{\mathcal{A}}$ gilt?

Es gilt

$$[x]_{\text{Kan}} = 2e_1 + 3e_1 + 3e_2 = \underbrace{a_1v_1 + a_2v_2}_{=[x]_A} = a_1(e_1 + e_2) + a_2(e_1 - e_2) = e_1(a_1 + a_2) + e_2(a_1 - a_2).$$

Wir müssen also $A(\frac{a_1}{a_2})_{\rm Kan}=(\frac{2}{3})_{\rm Kan}$ lösen und erhalten $A=\left(\frac{1}{1}\frac{1}{-1}\right)_{\rm Kan}$. Somit gilt

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = A^{-1} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

Die Koordinaten von V bzgl. der Basis \mathcal{A} sind definiert durch

$$\Phi_{\mathrm{Kan}}: K^n \to V \text{ mit } \Phi_{\mathcal{A}}(e_i) = v_i.$$

Also ordnet Φ_A jedem v_i einen Koeffizienten zu.

Die darstellende Matrix von $\Phi_{\mathcal{A}}$ ist $(\Phi_{\mathcal{A}}(e_1), \dots, \Phi_{\mathcal{A}}(e_n))$.

In dem Beispiel ist

$$[\Phi_{\mathcal{A}}]_{\mathrm{Kan}}^{\mathrm{Kan}} = (\Phi_{\mathcal{A}}(e_1), \Phi_{\mathcal{A}}(e_2)) = (v_1, v_2) = ((1, 1), (1, -1)) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = A$$

Insgesamt gilt also

$$\underbrace{\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}}_{\Phi_{\mathcal{A}}} \underbrace{\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}}_{[x]_{\mathcal{A}}} = \begin{pmatrix} a_1 + a_2 \\ a_1 - a_2 \end{pmatrix} \stackrel{!}{=} \underbrace{\begin{pmatrix} 2 \\ 3 \end{pmatrix}}_{[x]_{\mathrm{Kan}}}.$$

Und somit

$$[x]_{\mathcal{A}} = \Phi_{\mathcal{A}}^{-1}[x]_{\text{Kan}}$$
 bzw. $[x]_{\mathcal{A}} = A^{-1}[x]_{\text{Kan}}$ (12)

Analog gilt für $\mathcal{B} = (w_1, w_2)$

$$[x]_{\mathcal{B}} = b_1 w_1 + b_2 w_2 = b_1 (3e_1) + b_2 (e_1 + 2e_2) = e_1 (3b_1 + b_2) + e_2 (2b_2) \stackrel{!}{=} 2e_1 + 3e_2$$

Und deswegen

$$\underbrace{\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}}_{B = \llbracket \Phi_{\mathcal{B}} \rrbracket_{\mathrm{Kan}}^{\mathrm{Kan}}} \underbrace{\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}}_{\llbracket x \rrbracket_{\mathcal{B}}} = \underbrace{\begin{pmatrix} 2 \\ 3 \end{pmatrix}}_{\llbracket x \rrbracket_{\mathrm{Kan}}}$$

Somit gilt

$$[x]_{\mathcal{B}} = \Phi_{\mathcal{B}}^{-1} [x]_{\text{Kan}}$$
(13)

Wie transferiert man $[x]_A$ nach $[x]_B$?

Aus (1) folgt $[x]_{Kan} = \Phi_{\mathcal{A}}[x]_{\mathcal{A}}$. Setzt man dies in (2) ein, erhält man

$$[x]_{\mathcal{B}} = \Phi_{\mathcal{B}}^{-1} \circ \Phi_{\mathcal{A}}[x]_{\mathcal{A}}. \tag{14}$$

$$K^{n} \xrightarrow{\Phi_{\mathcal{A}}} V$$

$$T_{\mathcal{B}}^{\mathcal{A}} = \Phi_{\mathcal{B}}^{-1} \circ \Phi_{\mathcal{A}} \xrightarrow{\Phi_{\mathcal{B}}} K^{n}$$

Im oberen K^n stehen die Koeffizienten von Vektoren in Basis \mathcal{A} (Koordinaten) in unteren K^n für die Basis \mathcal{B} .

Matrizen von linearen Abbildung

Seien $F: V \to V$, $V = \operatorname{span}(e_1, e_2)$ sowie $F(e_1) = -e_1$ und $F(e_2) = e_2 - 4e_1$. Also ist die darstellende Matrix in der kanonischen Basis (e_1, e_2) auf V

$$M_{\text{Kan}}(F) = [F]_{\text{Kan}}^{\text{Kan}} = (F(e_1), F(e_2)) = \begin{pmatrix} -1 & -4 \\ 0 & 1 \end{pmatrix}.$$

Wir definieren auf V eine neue Basis $\mathcal{A} = (v_1, v_2)$, die durch $v_1 := e_1 + e_2$ und $v_2 := e_1 - e_2$ definiert ist.

Wie sieht die darstellenden Matrix von F in der neuen Basis A aus?

Wir verwenden zunächst $T_{\text{Kan}}^{\mathcal{A}}$, sodass wir M_{Kan} in der kanonischen Form verwenden können und wenden dann $(T_{\text{Kan}}^{\mathcal{A}})^{-1}$ darauf an, um die Koordinaten bzgl. \mathcal{A} zu erhalten. Es gilt also

$$M_{\mathcal{A}}(F) = (T_{\text{Kan}}^{\mathcal{A}})^{-1} \cdot M_{\text{Kan}}(F) \cdot T_{\text{Kan}}^{\mathcal{A}}.$$
 (15)

$$K^{n} \xrightarrow{\Phi_{\mathcal{B}}} V \xleftarrow{\Phi_{\mathcal{A}}} K^{n}$$

$$\downarrow^{M_{\mathcal{B}}(F)} \downarrow^{F} \qquad \downarrow^{M_{\mathcal{A}}(F)}$$

$$K^{n} \xleftarrow{\Phi_{\mathcal{B}}} V \xleftarrow{\Phi_{\mathcal{A}}} K^{n}$$

Auf der linken Seite stehen die Koordinaten bzgl. \mathcal{B} , auf der rechten die bzgl. \mathcal{A} .

$$M_{\mathcal{B}}(F) = \Phi_{\mathcal{B}}^{-1} \circ \Phi_{\mathcal{A}} \circ M_{\mathcal{A}}(F) \circ \Phi_{\mathcal{A}}^{-1} \circ \Phi_{\mathcal{B}} = T_{\mathcal{A}}^{\mathcal{B}} \circ M_{\mathcal{A}}(F) \circ T_{\mathcal{A}}^{\mathcal{B}}$$
(16)

Bilinearformen (BLF)

Sei $s: V \times V \to K$ bilinear, also linear in jeder Komponente, aber nicht (!) linear. Zu jeder BLF existiert eine darstellende Matrix, nachdem wir eine Basis für V gewählt haben.

Beispiel: Seien $F: V \times V \to K$, $V = \operatorname{span}(e_1, e_2)$ und $S(x, y) := x_1y_1 - x_1y_2 + 2x_2y_2$ mit $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ und $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Um zu erkennen, dass S bilinear ist, kann man eine Variable 'festhalten', um zu sehen, dass die Funktion in der anderen Variablen linear ist, da nur Potenzen ≥ 1 der Variablen auftreten.

Die darstellende Matrix ist durch $M_{\text{Kan}}(S) = (S(e_i, e_j))_{ij}$ mit $i, j \in \{1, 2\}$ gegeben also gilt für das Beispiel

$$M_{\mathrm{Kan}}(S) = \begin{pmatrix} S(e_1,e_1) & S(e_1,e_2) \\ S(e_2,e_1) & S(e_2,e_2) \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}.$$

Um das Ergebnis zu überprüfen, berechnen wir

$$S(x,y) = x^T \cdot M_{\text{Kan}}(S) \cdot y = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = x_1 y_1 + x_1 y_2 + 2x_2 y_2.$$

Was passiert, wenn wir die Basis von V von (e_1, e_2) auf $(v_1, v_2) = (e_1 + e_2, e_1 - e_2)$ wechseln?

Es gilt

$$S([x]_{\mathrm{Kan}}, [y]_{\mathrm{Kan}}) = [x]_{\mathrm{Kan}}^T \cdot M_{\mathrm{Kan}}(S) \cdot [y]_{\mathrm{Kan}}.$$

Wir wissen, dass $[x]_{\mathcal{A}} = \Phi_{\mathcal{A}}^{-1}[x]_{\text{Kan}}$ und analog $[y]_{\mathcal{A}} = \Phi_{\mathcal{A}}^{-1}[y]_{\text{Kan}}$ gelten. Deswegen gilt

$$[x]_{\mathcal{A}}^T \cdot M_{\mathcal{A}}(S) \cdot [y]_{\mathcal{A}} = [x]_{\mathrm{Kan}}^T \cdot M_{\mathrm{Kan}}(S) \cdot [y]_{\mathrm{Kan}}$$

Daher gilt

$$\begin{split} &(\Phi_{\mathcal{A}}^{-1}[x]_{\mathrm{Kan}})^T \cdot M_{\mathcal{A}}(S) \cdot \Phi_{A}^{-1}[y]_{\mathrm{Kan}} = [x]_{\mathrm{Kan}}^T \cdot M_{\mathrm{Kan}}(S) \cdot [y]_{\mathrm{Kan}} \\ \Longrightarrow & [x]_{\mathrm{Kan}}^T \left(\Phi_{\mathcal{A}}^{-1}^T \cdot M_{\mathcal{A}}(S) \cdot \Phi_{\mathcal{A}}^{-1}\right) \cdot [y]_{\mathrm{Kan}} = [x]_{\mathrm{Kan}}^T \cdot M_{\mathrm{Kan}}(S) \cdot [y]_{\mathrm{Kan}}, \end{split}$$

und somit folgt

$$M_{\mathrm{Kan}} = (\Phi_{\mathcal{A}}^{-1})^T \cdot M_{\mathcal{A}}(S) \cdot \Phi_{\mathcal{A}}^{-1} \implies M_{\mathcal{A}}(S) = \Phi_{A}^T \cdot M_{\mathrm{Kan}} \cdot \Phi_{\mathcal{A}} = (T_{\mathrm{Kan}}^{\mathcal{A}})^T \cdot M_{\mathrm{Kan}} \cdot T_{\mathrm{Kan}}^{\mathcal{A}}$$

$$(17)$$

5.6 Quadratische Formen

Im Folgenden Sei V ein K-Vektorraum mit einer Basis $\mathcal{B} = (v_1, \dots, v_n)$.

Alternativer Beweis. (von Satz 5.4.2)

$$\begin{split} x^T \cdot M_{\mathcal{B}}(s) \cdot y &= s(\Phi_{\mathcal{B}}(x), \Phi_{\mathcal{B}}(y)) \\ &= s(\Phi_{\mathcal{A}} \circ \underbrace{\Phi_{\mathcal{A}}^{-1} \circ \Phi_{\mathcal{B}}(x)}_{T_{\mathcal{A}}^{\mathcal{B}}x}, \Phi_{\mathcal{A}} \circ \underbrace{\Phi_{\mathcal{A}}^{-1} \circ \Phi_{\mathcal{B}}(y)}_{T_{\mathcal{A}}^{\mathcal{B}}y}) \\ &= (T_{\mathcal{A}}^{\mathcal{B}}x)^T \cdot M_{\mathcal{A}}(s) \cdot T_{\mathcal{A}}^{\mathcal{B}}y = x^T \cdot (T_{\mathcal{A}}^{\mathcal{B}})^T M_{\mathcal{A}}(s) T_{\mathcal{A}}^{\mathcal{B}} \cdot y \end{split}$$

Also gelten die Transformationsformeln

$$M_{\mathcal{B}}(s) = (T_{\mathcal{A}}^{\mathcal{B}})^{\mathsf{T}} M_{\mathcal{A}}(s) T_{\mathcal{A}}^{\mathcal{B}}$$
 und $M_{\mathcal{B}}(F) = (T_{\mathcal{A}}^{\mathcal{B}})^{\mathsf{-1}} M_{\mathcal{A}}(s) T_{\mathcal{A}}^{\mathcal{B}}$.

DEFINITION 5.6.1 (quadratische Form)

Eine Funktion $q:V\to K$ heißt eine quadratische Form, wenn es eine Bilinearform $s:V\times V\to K$ gibt, sodass für alle $v\in V$ gilt q(v)=s(v,v).

Bemerkung 5.6.2 Für $A=(a_{ij})=M_{\mathcal{B}}(s)\in K^{n\times n}$ und $x=\Phi_{\mathcal{B}}^{-1}(v)\in K^n$ gilt

$$q(v) = s(v, v) = x^T A x = \sum_{i,j=1}^n a_{ij} x_i x_j = \sum_{i=1}^n a_{ii} x_i^2 + \sum_{1 \le i < j \le n} 2a_{ij} x_i x_j.$$

Die quadratischen Formen auf V sind genau die Funktionen, die sich durch homogene quadratische Polynome an den Koordinaten x_1, \ldots, x_n darstellen lassen.

Bemerkung 5.6.3 Ist s eine Bilinearform auf V und gilt $\operatorname{char}(K) \neq 2$, dann definiert

$$\tilde{s}(v,w) \coloneqq \frac{1}{2}(s(v,w) + s(w,v))$$

eine symmetrische Bilinearform auf V und für alle $v \in V$ gilt $\tilde{s}(v,v) = s(v,v)$. Dann kann man quadratische Formen auch äquivalent so definieren:

ALTERNATIVE DEFINITION 5.6.4 (quadratische Form mit char $(K) \neq 2$) Sei V ein K-Vektorraum und char $(K) \neq 2$. Eine Funktion $q: V \to K$ heißt eine quadratische Form, wenn es eine symmetrische Bilinearform $s: V \times V \to K$ gibt, sodass für alle $v \in V$ q(v) = s(v, v). gilt

quadratische Form

5.7 Polarisationsformel und Sesquilinearformen

SATZ 5.7.1: POLARISATION

Wenn $\operatorname{char}(K) \neq 2$ gilt, dann ist die symmetrische Bilinearform zu einer quadratischen Form eindeutig bestimmt.

Beweis. Seien s eine symmetrische Bilinearform auf V und q(v) = s(v, v) die dazugehörige quadratische Form. Dann gilt für alle $v, w \in V$:

$$q(v+w) = s(v+w, v+w) = s(v, v+w) + s(w, v+w)$$

$$= s(v, v) + s(v, w) + \underbrace{s(w, v)}_{=s(v,w)} + s(w, w) = q(v) + 2s(v, w) + q(w)$$

Wegen $char(K) \neq 2$ gilt nach Umstellen die Polarisationsformel⁴

Polarisationsformel

$$s(v, w) = \frac{1}{2} (q(v + w) - q(v) - q(w)).$$

Abbildung 8: FEHLT!

Definition 5.7.1 (Sesquilinearform)

Ist V ein \mathbb{C} -Vektorraum, so heißt eine Abbildung $s:V\times V\to \mathbb{C}$ eine Sesquilinearform, wenn für alle $v,v',w,w'\in V$ und $\lambda\in \mathbb{C}$ gilt

(B1)
$$s(v+v',w) = s(v,w) + s(v',w)$$
 und $s(\lambda v,w) = \lambda s(v,w)$

$$(\overline{B2})$$
 $s(v, w + w') = s(v, w) + s(v, w')$ und $s(v, \lambda w) = \overline{\lambda}s(v, w)$

Eine Sesquilinearform heißt hermitesch, wenn s(v, w) = s(w, v) gilt.

Bemerkung 5.7.2 Sei s eine Sesquilinearform auf V und $\mathcal{A} = (v_1, \ldots, v_n)$ eine Basis von V. Die darstellende Matrix für s bezüglich \mathcal{A} ist die Matrix

$$A := (a_{ij}) := M_{\mathcal{A}}(s) \text{ mit } (a_{ij}) = s(v_i, v_j).$$

Also gilt

$$M_{\mathcal{A}}(s) = \begin{pmatrix} s(v_1, v_1) & \dots & s(v_1, v_n) \\ \vdots & \ddots & \vdots \\ s(v_n, v_1) & \dots & s(v_n, v_n) \end{pmatrix} \in \mathbb{C}^{n \times n}.$$

 $^{^4}$ Der Name kommt von Hilbert und dem "Aronhold Prozess" als Spezialfall des "Polarenprozess", vielleicht kommt es auch aus der projektiven Geometrie

Für
$$u = \Phi_{\mathcal{A}}(z) = \sum_{k=1}^{n} z_k v_k$$
 und $v = \Phi_{\mathcal{A}}(w) = \sum_{k=1}^{n} w_n v_n$ ist

$$s(u,v) = s\left(\sum_{k=1}^{n} z_k v_k, \sum_{k=1}^{n} w_n v_n\right)$$
$$= \sum_{i,j=1}^{n} a_{ij} z_i \overline{w_j} = z^T A \overline{w}.$$

Lemma 5.7.3

Ist \mathcal{B} eine weitere Basis und $T := T_{\mathcal{A}}^{\mathcal{B}}$, so gilt die Transformationsformel

$$M_{\mathcal{B}}(s) = T^T M_{\mathcal{A}}(s) \overline{T}.$$

Definition 5.7.4 (hermitesche Sesquilinearformen)

Die Sesquilinearform ist genau dann hermitesch, wenn $a_{ji}=s(v_j,v_i)=\overline{s(v_i,v_j)}=\overline{a}_{ij}$. Also wenn $A^T=\overline{A}$.

Definition 5.7.5 (hermitesche Matrix)

Eine Matrix heißt hermitesch, wenn $A^T = \overline{A}$.

Korollar 5.7.6

Die Diagonaleinträge einer hermiteschen Matrix sind reell.

Definition 5.7.7 (hermitesche quadratische Form)

Eine Funktion $q:V\to\mathbb{C}$ heißt eine hermitesche, quadratische Form, wenn es eine hermitesche Sesquilinearform $s:V\times V\to\mathbb{C}$ gibt, sodass q(v)=s(v,v) für alle $v\in V$.

Bemerkung 5.7.8 \wedge Beachte: Dann ist $\overline{q(v)} = \overline{s(v,v)} = s(v,v) = q(v)$.

SATZ 5.7.2: POLARISATION II

Eine hermitesche, quadratische Form bestimmt die dazugehörige Sesquilinearform eindeutig.

$$s(v, w) = \frac{1}{4} (q(v+w) - q(v-w) + iq(v+iw) - iq(v-iw)).$$

Beweis.

$$q(v+w) = s(v+w, v+w) = s(v, v) + 2s(v, w) + s(w, w) = q(v) + 2\operatorname{Re} s(v, w) + q(w)$$

Also gilt $\operatorname{Re} s(v, w) = \frac{1}{2} (q(v+w) - q(v) - q(w)).$ Weiter gilt

$$\begin{split} q(v+iw) &= s(v+iw,v+iw) = s(v,v) + s(v,iw) + s(iw,v) + s(iw,iw) \\ &= s(v,v) - is(v,w) + i\overline{s(v,w)} + i(-i)s(w,w) \\ &= q(v) - i(s(v,w) - \overline{s(v,w)} + q(w) \\ &= q(v) - i \cdot 2i\Im s(v,w) + q(w). \end{split}$$

Somit gilt $\operatorname{Im} s(v, w) = \frac{1}{2} \left(q(v + iw)_q(v) - q(w) \right)$

Also ergibt sich folgenden die Polarisationsformel für die hermitesche Form

$$s(v, w) = \frac{1}{2} (q(v + w) - q(/v) - q(w) + i (q(v + iw)q(v) - q(w)))$$

Mit
$$s(v, w) = \frac{1}{2} (s(v, w) - s(v, -w))$$
 erhält man das Gewünschte.

04.06.18

Definition 5.7.9 (positiv Definite Bilinearform / Matrix)

Eine symmetrische bzw. hermitesche Bilinearform $s: V \times V \to \mathbb{K}$ auf einem \mathbb{K} -Vektorraum V heißt positiv definit, wenn s(v,v)>0 für alle $v\in V\setminus\{0\}$ ist. Eine symmetrische bzw. hermitesche Matrix $A\in K^{n\times n}$ heißt positiv definit, wenn $x^TA\overline{x}>0$ für alle $x\in\mathbb{K}^n$ ist.

positiv definit positiv definit

Bemerkung 5.7.10 Achtung: Es kann sein, dass $s(v_j, v_j) > 0$ für alle Vektoren einer Basis gilt, ohne, dass s positiv definit ist.

Beispiel 5.7.11 Sei $s : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x^T (\frac{1}{2} \frac{2}{1}) y = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + x_2 y_2$ gegeben.

Dann gilt
$$s(e_1, e_1) = s(e_2, e_2) = 1 > 0$$
 aber $s\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right) = 1 - 2 - 2 + 1 = -2 < 0$.

5.8 Euklidische & unitäre Vektorräume

Definition 5.8.1 (euklidisches Skalarprodukt / Vektorraum)

Ein (euklidischer) Skalarprodukt auf einem reellen Vektorraum V ist eine positiv definite, symmetrische Bilinearform auf V. Ein euklidischer Vektorraum ist ein reeller Vektorraum V zusammen mit einem Skalarprodukt auf V.

Definition 5.8.2 (unitäres Skalarprodukt / Vektorraum)

Ein (unitäres) Skalarprodukt auf einem komplexen Vektorraum V ist eine positiv definite, hermitesche Sesquilinearform auf V. Ein unitärer Vektorraum! ist ein komplexer Vektorraum V zusammen mit einem Skalarprodukt auf V.

Beispiel 5.8.3 $V = C^0([a,b],\mathbb{R})$ mit $\langle f,g \rangle = \int_a^b f(t)g(t)dt$.

Beispiel 5.8.4 $V = C^0([a,b],\mathbb{C})$ mit $\langle f,g \rangle = \int_a^b f(t)\overline{g(t)}\mathrm{d}t$.

Beispiel 5.8.5 \mathbb{R}^n und \mathbb{C}^n mit den Standardskalarprodukten.

Satz 5.8.1: Cauchy-Schwartzsche Ungleichung

Sei V ein euklidischer oder unitärer Vektorraum mit Skalarprodukt $\langle\cdot,\cdot\rangle$ und sei $||v||:=\sqrt{\langle v,v\rangle}$. Dann gilt für alle $v,w\in V$

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||$$

und Gleichheit gilt genau dann, wenn v und w linear abhängig sind.

Beweis. Weil das Skalarprodukt per Definition positiv definit ist, gilt für alle $v, w \in V$ und alle $\lambda, \mu \in \mathbb{K}$:

$$0 \leqslant \langle \lambda v + \mu w, \lambda v + \mu w \rangle$$

= $\lambda \bar{\lambda} \langle v, v \rangle + \lambda \bar{\mu} \langle v, w \rangle + \mu \bar{\lambda} \langle w, v \rangle + \mu \bar{\mu} \langle w, w \rangle.$

Wenn $w \neq 0$, also $\langle w, w \rangle > 0$, so kann man für $\lambda := \langle w, w \rangle \in \mathbb{R}$ einsetzen. Nach Division mit dem reellen Skalar $\langle w, w \rangle$ erhält man

$$0 \leqslant \langle w, w \rangle \langle v, v \rangle + \bar{\mu} \langle v, w \rangle + \mu \langle w, v \rangle + \mu \bar{\mu}.$$

Mit $\mu := -\langle v, w \rangle$ erhält man

$$0 \leqslant \langle w, w \rangle \langle v, v \rangle - |\langle v, w \rangle|^2 - |\langle v, w \rangle|^2 + |\langle v, w \rangle|^2 = ||w||^2 \cdot ||v||^2 - |\langle v, w \rangle|^2.$$

Also gilt $|\langle v, w \rangle|^2 \le ||v||^2 \cdot ||w||^2$ und, weil $\sqrt{\cdot}$ monoton wachsend ist,

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||.$$

Wenn w=0, dann ist $0=|\langle v,w\rangle|=||v||\cdot||w||=0$ und v,w sind linear abhängig. Angenommen es gilt $|\langle v,w\rangle|=||u||\cdot||w||$ und $w\neq 0$. Erhält man für die gleichen Werte von λ und μ wie oben nun

$$0 = \langle \lambda v + \mu w, \lambda v + \mu w \rangle,$$

so muss $\lambda v + \mu w = 0$ sein und wegen $\lambda \neq 0$ sind v und w linear abhängig. Wenn umgekehrt v und w linear abhängig sind und $w \neq 0$ ist, dann ist $v = \lambda w$ fü

Wenn umgekehrt v und w linear abhängig sind und $w \neq 0$ ist, dann ist $v = \lambda w$ für ein $\lambda \in \mathbb{K}$ und deshalb gilt

$$|\langle v, w \rangle| = |\langle \lambda w, w \rangle| = |\lambda| |\langle w, w \rangle| = |\lambda| \cdot ||w||^2$$

und somit gilt $||v|| \cdot ||w|| = ||\lambda w|| \cdot ||w|| = |\lambda| \cdot ||w||^2$. Die Gleichheit ist erfüllt. \square

SATZ 5.8.2: VOM SKALARPRODUKT INDUZIERTE NORM UND METRIK

Sei V ein euklidischer oder unitärer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und seien $||\cdot||: V \to \mathbb{R}, ||v|| \coloneqq \sqrt{\langle v, v \rangle}$ und $d: V \times V \to \mathbb{R}, d(v, w) = ||v - w||$. Dann ist $||\cdot||$ eine Norm auf V und d eine Metrik auf V.

Beweis. Das ist alles einfach zu sehen außer die Dreiecksungleichung für $||\cdot||$. Das haben wir schon in 42 bewiesen.

Ebenso zeigt man dies für die Metrik.

Lemma 5.8.6 (Satz von Jordan-Neumann)

Jedes Skalarprodukt induziert also eine Norm. Andererseits kommt nicht jede Norm von einem Skalarprodukt. Folgendes ist wahr: Eine Norm auf einem reellen Vektorraum kommt genau dann von einem Skalarprodukt, wenn sie eine Parallelogrammgleichung

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$$

erfüllt.

Beweis. Siehe Große Übung.

Definition 5.8.7 (Orthogonalität, Orthonormalität)

Sei V ein euklidischer oder unitärer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$.

- 1 zwei Vektoren $v, w \in V$ heißen orthogonal, wenn $\langle v, w \rangle = 0$ gilt. Man schreibt $v \perp w$.
- 2 Zwei Unterräume $U, W \subset V$ heißen orthogonal, wenn $u \perp w$ für alle $u \in U$ und $w \in W$. Man schreibt $U \perp W$.
- 3 Das orthogonale Komplement eines Unterraums $U \subset V$ ist

$$U^{\perp} := \{ v \in V \mid \forall u \in U : u \perp v \}.$$

 U^{\perp} ist ein Unterraum von V.

- 4 Eine Familie (v_1, \ldots, v_n) in V heißt orthogonal, wenn $v_i \perp v_j$ für alle $i \neq j$. Sie heißt orthonormal, wenn zusätzlich $||v_j|| = 1$ für alle j gilt. Eine Familie heißt Orthonormalbasis, wenn sie orthonormal und eine Basis ist.
- 5 Eine direkte Summe $V = V_1 \oplus \ldots \oplus V_k$ heißt orthogonal, wenn $V_i \perp V_j$ für alle $i \neq j$. Man schreibt dann

$$V = V_1 \oplus \ldots \oplus V_k$$
.

Parallelogrammgleichung

orthogonal

orthogonal

orthonormal Orthonormal basis

Lemma 5.8.8

Ist (v_1, \ldots, v_n) eine orthogonale Familie und wenn $v_j \neq 0$ für alle j ist, dann ist die Familie linear unabhängig und $(\frac{1}{||v_1||}v_1, \ldots, \frac{1}{||v_n||}v_n)$ ist eine orthonormale Familie.

Beweis. Aus $0 = \lambda_1 v_1 + \ldots + \lambda_j v_j + \ldots + \lambda_n v_n$ folgt für alle $j \in \{1, \ldots, n\}$ durch Skalarmultiplikation mit $\langle v_j, \cdot \rangle$, dass

$$0 = \langle \sum_{i=1}^{n} \lambda_i v_i, v_j \rangle = \sum_{i=1}^{n} \lambda_i \langle v_i, v_j \rangle$$

Da $\langle\,v_i,v_j\,\rangle=0$ für alle $i\neq j$ gilt, weil die Vektoren orthogonal sind, folgt

$$0 = \lambda_j \underbrace{\langle v_j, v_j \rangle}_{>0},$$

und damit $\lambda_j=0$. Das macht man für alle $j=1,\ldots,n$ und es folgt also $\lambda_1=\ldots=\lambda_n=0$, also ist die Familie linear abhängig.

Außerdem gilt

$$\big\langle \frac{1}{\|v_i\|} v_i, \frac{1}{\|v_j\|} v_j \big\rangle = \frac{1}{\|v_i\| \|v_j\|} \big\langle v_i, v_j \big\rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} = \delta_{i,j},$$

also ist die Familie $\left(\frac{1}{\|v_1\|}, \dots, \frac{1}{\|v_n\|}v_n\right)$ orthonormal.

5.9 *VI: Induzierte Normen und das Skalarprodukt

08.06.18

Lemma 5.9.1

Sei V ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und induzierter Norm $\| \cdot \|$. Dann gilt für alle $x, y \in V$ die Parallelogrammgleichung

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$
(18)

Beweis.

Lemma 5.9.2

Es existiert eine Norm auf \mathbb{R}^n , die nicht von einem Skalarprodukt induziert wird.

Beweis. Definieren die Norm $||x||_{max} := \max_{i=1}^n |x_i|$ für $x = (x_1, \dots, x_n)^T$. Wir überprüfen nun die Normeigenschaften.

$$\begin{split} \|x\|_{\max} &= 0 \iff \max_{i=1}^n |x_i| = 0 \iff |x_i| = 0 \ \, \forall i \in \{1, \dots, n\} \iff x = 0. \\ \|\lambda \cdot x\|_{\max} &= \max_{i=1}^n |\lambda \cdot x_i| = \max_{i=1}^n |\lambda| \cdot |x_i| = \lambda \cdot \max_{i=1}^n |x_i| = \lambda \cdot \|x\|_{\max}. \\ \|x + y\|_{\max} &= \max_{i=1}^n |x_i + y_i| \leqslant \max_{i=1}^n |x_i| + |y_i| \leqslant \max_{i=1}^n |x_i| + \max_{i=1}^n |y_i| = \|x\|_{\max} + \|y\|_{\max}. \end{split}$$

Wir wissen also $\|\cdot\|_{\max}$ eine Norm auf \mathbb{R}^n ist.

Wenn diese Norm induziert wäre, müsste die Parallelogrammgleichung für alle $x,y\in\mathbb{R}^n$ gelten. Wir zeigen mit einem Gegenbeispiel, dass dies nicht immer der Fall ist. Seien $x=(1,1,0,\dots,0)^T$ und $y=(1,-1,0\dots,0)^T$ zwei n-dimensionale Vektoren. Dann gilt

$$\|x+y\|_{\max}^2 + \|x-y\|_{\max}^2 = 2^2 + 2^2 = 8 \neq 4 = 2 \cdot 1^2 + 2 \cdot 1^2 = 2\|x\|_{\max}^2 + 2\|y\|_{\max}^2.$$

Wir wollen einen geometrischen Beweis für Satz 5.9.1 finden, also erklären, warum die Parallelogrammgleichung notwendig und hinreichend ist.

Zunächst erinnern wir an den Kosinussatz. Sei dafür ABC ein Dreieck in der Ebene mit den folgenden Längen und Winkeln:

Dann gilt
$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$
 (*).

Erweitern wir das Bild zu einem Parallelogramm:

Dann gilt $d^2 = b^2 + c^2 - 2bc\cos(\beta + \gamma)$. Da aber ABCD eine Parallelogramm ist, gilt $\alpha + \beta + \gamma = \pi$ und somit $d^2 = b^2 + c^2 - 2bc\cos(\pi - \alpha) = d^2 = b^2 + c^2 + 2bc\cos(\alpha)$.

Zusammen mit (*) gilt also

$$d^2 + a^2 = b^2 + c^2 + 2bc\cos(\alpha) + b^2 + c^2 - l2bc\cos(\alpha) = 2b^2 + 2c^2$$

welches genau die Parallelogrammgleichung ist! Noch interessanter ist jedoch

$$d^2 - a^2 = 4bc\cos(\alpha)$$

also ist $d^2 - a^2 = bc \cos(\alpha)$ (??).

Nochmal ein Bild

Dann gilt ||x + y|| = d und ||x - y|| = a.

Wenn die Parallelogrammgleichung gilt, dann sollte $\frac{\|x+y\|^2 - \|x-y\|^2}{4}$ genau das Skalarprodukt $\langle x,y \rangle = \|x\|^2 + \|y\|^2 - 2xy \cos \triangleleft (x,y)$ seien. Wir haben also einen Ansatz gefunden.

SATZ 5.9.1: TODO: TITEL FEHLT

Sei V eine \mathbb{R} -Vektorraum mit einer Norm $\|\cdot\|$, welche die Parallelogrammgleichung erfüllt. Dann ist $\langle x,y \rangle = \frac{\|x+y\|^2 - \|x-y\|^2}{4}$ eine Skalarprodukt auf V, welches die Norm induziert.

Beweis. Dafür überprüfen wir zunächst die Eigenschaften des Skalarprodukts.

(SP1) Die Symmetrie ist erfüllt, weil ||x - y|| = ||y - x|| ist.

(SP3) Es gilt

$$\langle x, x \rangle = \frac{\|x + x\|^2 - \|x - x\|^2}{4} = \frac{\|x + x\|^2 + \|x - x\|^2}{4} \stackrel{\text{PG}}{=} \frac{2\|x\|^2 + 2\|x\|^2}{4} = \frac{4}{4}x^2 \geqslant 0$$

und $||x|| = 0 \iff x = 0$, weil $||\cdot||$ eine Norm und somit positiv definit ist.

(SP2) beweisen wir eine zwei Teilen

$$(1) \langle x+y,z \rangle - \langle x,z \rangle + \langle y,z \rangle \quad \forall x,y,z \in V$$

(2)
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \forall x, y \in V \text{ mit } \lambda \in \mathbb{R}$$

Zu (1). Aus der Parallelogrammgleichung erhalten wir

$$||x + y + z||^2 + ||x - y + z||^2 = 2||x + z||^2 + 2||y||^2.$$

Vertauschen wir x und y, erhalten wir

$$||x + y||^2 + ||y - x + z||^2 = 2||y + z||^2 + 2||x||^2$$

daraus folgt

$$\begin{split} \|x+y+z\|^2 &= 2\|x+z\|^2 + 2\|y\|^2 - \|x-y+z\\ ^2 &=: A\\ \|x+y+z\|^2 &= 2\|y+z\|^2 + 2\|x\|^2 - \|y-x+z\|^2 =: B \end{split}$$

Wir können also schreiben

$$\|x+y+z\|^2 = \frac{1}{2}(A+B) = \|x\|^2 + \|y\| + \|x+z\|^2 + \|y+z\|^2 - \frac{1}{2}\|x-y+z\|^2 - \frac{1}{2}\|y-x+z^2\|^2 + \|y-z\|^2 + \|y-$$

Jetzt ersetzen wir z mit -z und erhalten

$$\|x+y-z\|^2 = \|x\|^2 + \|y\|^2 + \|x-z\|^2 + \|y-z\|^2 - \frac{1}{2}\|x-y-z\|^2 - \frac{1}{?}\|y-x-z\|^2$$

$$\begin{split} \left\langle \, x + y, z \, \right\rangle &\coloneqq \frac{1}{4} \left(\| x + y + z \|^2 - \| x + y - z \|^2 \right) \\ &= \frac{1}{4} \left(\| x + z \|^2 - \| x - z \|^2 + \| y + z \|^2 - \| y - z \|^2 \right) = \left\langle \, x, z \, \right\rangle + \left\langle \, y, z \, \right\rangle. \end{split}$$

SP2 (2) zeigt man in diesen Schritten

- 1 Zeige für $\lambda \in \{0, 1\}$.
- 2 Zeige per Induktion für $\lambda \in \mathbb{N}$.
- 3 Zeige mit SP1, 2.1.3 für $\lambda \in \mathbb{Z}$
- 4 Zeige für $\lambda \in \mathbb{Q}$
- 5 Zeige mit Stetigkeit der Abbildung $t \mapsto t \langle \frac{1}{t}x, y \rangle$ bzgl $\| \cdot \|$, dass es für $\lambda \in \mathbb{R}$ gilt.

5.10 Orthonormalbasen

08.06.18

Lemma 5.10.1

Wenn $(v_1, ..., v_n)$ eine Orthonormalbasis von V ist, dann sind die Koordinaten für einen Vektor $v = \sum_{k=1}^{n} x_k v_k$ gerade $x_k = \langle v, v_j \rangle$.

Beweis. Es gilt

$$\langle v, v_j \rangle = \langle \sum_{k=1}^n x_k v_k, v_j \rangle = \sum_{k=1}^n x_k \rangle v_k, v_j \langle .$$

Die Behauptung folgt aus $\langle v_i, v_j \rangle = 0$ für $i \neq j$ und $\langle v_j, v_j \rangle = 1$.

Korollar 5.10.2

Für eine Orthonormalbasis $\mathcal{B} = (v_1, \dots, v_n)$ ist die Inverse der Abbildung $\Phi_{\mathcal{B}}$:

$$\mathbb{K}^n \to V, \ x \mapsto \sum_{k=1}^n x_k v_k \ also \ \Phi_{\mathcal{B}}^{-1}(v) = \begin{pmatrix} \langle v, v_1 \rangle \\ \vdots \\ \langle v, v_n \rangle \end{pmatrix}.$$

Beweis. Selbst.

SATZ 5.10.1: ORTHONORMALISIERUNGSSATZ VON GRAM-SCHMIDT

Sei V ein euklidischer oder utilitärer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und $F = (v_1, v_2, \ldots)$ eine endliche oder unendliche linear unabhängige Familie in V.

Dann gibt es zu F eine orthonormale Familie $(w_1, w_2, ...)$, sodass für alle $k \in \mathbb{N}$ gilt

$$\mathrm{span}(w_1,\ldots,w_k)=\mathrm{span}(v_1,\ldots,v_k).$$

Korollar 5.10.3

 $Jeder\ euklidischer\ oder\ utilitärer\ endlichdimensionaler\ Vektorraum\ V\ hat\ eine\ Orthonormalbasis.$

Bemerkung 5.10.4 Angenommen, $\mathcal{B} = (v_1, \dots, v_n)$ ist eine Orthonormalbasis von V (ex. nach Korollar) und es gilt

$$x = \Phi_{\mathcal{B}}^{-1}(v) = \begin{pmatrix} \langle v, v_1 \rangle \\ \vdots \\ \langle v, v_n \rangle \end{pmatrix} \in \mathbb{K}^n \quad \text{und} \quad y = \Phi_{\mathcal{B}}^{-1}(v) = \begin{pmatrix} \langle v, v_1 \rangle \\ \vdots \\ \langle v, v_n \rangle \end{pmatrix} \in \mathbb{K}^n.$$

Dann gilt

$$\langle v, w \rangle_V = \langle \sum_{i=1}^n x_i v_i, \sum_{i=1}^n y_i w_i \rangle_V = \sum_{i,j=1}^n x_i \overline{y_j} \underbrace{\langle v_i, v_j \rangle_V}_{\delta_{i,i}} = \sum_{i=1}^n x_i \overline{y_i} = \langle v, w \rangle_{\mathbb{K}^n}$$

Korollar 5.10.5

Ist W ein endlichdimensionaler Unterraum eines euklidischen oder utilitären Vektorraums V mit dim $V \leq \infty$, dann gilt $V = W \oplus W^{\perp}$.

Also kann jeder Vektor $v \in V$ eindeutig als Summe der von Vektoren $w \in W$ und $\tilde{w} \in W^{\perp}$ dargestellt werden.

Beweis. Sei (w_1, \ldots, w_n) eine Orthonormalbasis von W, die aufgrund von Korollar 1 existiert. Sei

$$P_W: V \to W, \ v \mapsto \sum_{i=1}^m \langle w, v_i \rangle w_i.$$

Aus der Linearität des Skalarprodukts in seinem ersten Argument folgt die Linearität von P_W .

Die Abbildung P_W heißt orthogonale Projektion von V auf W.

Für alle $v \in V$ gilt $v - P_W(v) \perp W$, denn für jeden Basisvektor w_i von W gilt

orthogonale Projektion

$$\begin{split} \langle \, v - P_W(v), w_j \, \rangle &= \langle \, v, w_j \, \rangle - \langle \, P_W(v), w_j \, \rangle \\ &= \langle \, v, w_j \, \rangle - \langle \, \sum_{k=1}^n \langle \, v, w_k \, \rangle w_k, w_j \, \rangle \ \text{(Einsetzen der Def. von } P_W) \\ &= \langle \, v, w_j \, \rangle - \sum_{k=1}^n \langle \, v, w_k \, \rangle \underbrace{\langle \, w_k, w_j \, \rangle}_{\delta_{k,j}} \\ &= \langle \, v, w_j \, \rangle - \langle \, v, w_j \, \rangle \cdot 1 = 0 \end{split}$$

Somit folgt für alle $w \in W \langle v - P_W(v), w_j \rangle = 0$. Also ist $v = P_W(v) \in W^T$. Weil $v = \underbrace{P_W(v)}_{\in W} + \underbrace{v - P_W(v)}_{\in W^{\perp}}$, ist $V = W + W^T$. Außerdem ist $W \cap W^{\perp} = \{0\}$. Da für alle Elemente für alle $x \in W \cap W^{\perp}$ gelten

Außerdem ist $W \cap W^{\perp} = \{0\}$. Da für alle Elemente für alle $x \in W \cap W^{\perp}$ gelten muss, dass x senkrecht zu sich selber ist, also gelten muss $\langle x, x \rangle = 0$. Aufgrund der positiven Definitheit des Skalarprodukts gilt für alle $x \in V \langle x, x \rangle = 0 \implies x = 0$. Somit ist die Summe direkt, und die Unterräume sind orthogonal.

Nun können wir den Satz 5.10 beweisen.

Beweis. Weil die Familie (v_1, \ldots) nach Voraussetzung linear unabhängig ist, gilt insbesondere $v_1 \neq 0$. Wir setzen $w_1 = \frac{1}{\|v_1\|} v_1$. Dann ist w_1 normiert und ein ONS und es gilt $\operatorname{span}(w_1) = \operatorname{span}(v_1)$.

Angenommen wir haben schon ein ONS (w_1, \ldots, w_k) konstruiert, sodass span (w_1, \ldots, w_k) = span (v_1, \ldots, v_k) gilt.

Sei zunächst $\widetilde{w}_{k+1} := v_{k+1} - \sum_{j=1}^{k} \langle v_{k+1}, w_j \rangle w_j$. Dann gilt für alle $\ell \in \{1, \dots, k\}$

$$\begin{split} \left\langle \widetilde{w}_{k+1}, w_{\ell} \right\rangle &= \left\langle v_{k+1}, w_{\ell} \right\rangle - \left\langle \sum_{j=1}^{k} \left\langle v_{k+1}, w_{j} \right\rangle w_{j}, w_{\ell} \right\rangle \\ &= \left\langle v_{k+1}, w_{\ell} \right\rangle - \sum_{j=1}^{k} \left\langle v_{k+1}, w_{j} \right\rangle \underbrace{\left\langle w_{j}, w_{\ell} \right\rangle}_{\delta_{j,\ell}} \\ &= \left\langle v_{k+1}, w_{\ell} \right\rangle - \left\langle v_{k+1}, w_{\ell} \right\rangle = 0. \end{split}$$

Außerdem gilt $\widetilde{w}_{k+1} \neq 0$, denn sonst gälte $v_{k+1} = \sum_{j=1}^{n} \langle v_{k+1}, w_j \rangle w_j \in \text{span}(w_1, \dots, w_k) = \text{span}(v_1, \dots, v_k)$, welches einen Widerspruch zu der linearen Unabhängigkeit von (v_1, \dots) darstellt.

Wir setzen $w_{k+1} := \frac{1}{\|\tilde{w}_{k+1}\|} \tilde{w}_{k+1}$. Dann ist (w_1, \dots, w_{k+1}) ein ONS.

Wir zeigen als Letztes span $(w_1, \ldots, w_{k+1}) = \operatorname{span}(v_1, \ldots, v_{k+1}).$

Es gilt $\operatorname{span}(w_1, \dots, w_k) = \operatorname{span}(v_1, \dots, v_k)$, und

$$w_{k+1} \in \operatorname{span}(w_1, \dots, w_k, v_{k+1}) \implies w_{k+1} \in \operatorname{span}(v_1, \dots, v_{k+1}),$$

somit gilt $\operatorname{span}(w_1, \dots, w_{k+1}) \subset \operatorname{span}(v_1, \dots, v_{k+1}).$

Weil $\operatorname{span}(v_1,\dots,v_{k+1})$ als ONS linear unabhängig ist, gilt

$$\dim \operatorname{span}(w_1,\ldots,w_{k+1})=k+1=\dim \operatorname{span}(v_1,\ldots,v_{k+1}),$$

also gilt statt der Inklusion sogar die Gleichheit.

5.11 Gram-Matrizen und -Vektoren

Seien $x_1, \ldots, x_n \in \mathbb{R}^n$ und $x = (x_1, \ldots, x_n) \in \mathbb{R}^{n \times n}$ sowie P das Parallelotop, welches von den Vektoren x_1, \ldots, x_n aufgespannt wird. Das Volumen ist

$$Vol(P) = |\det(X)| = \sqrt{\det(X)^2}.$$

Wir nutzen nun den Determinantenmultiplikationssatz sowie den Fakt, dass X und X^T ähnlich sind, und somit die gleiche Determinante. Es gilt

$$\operatorname{Vol}(P) = \sqrt{\det(X^T \cdot X)} = \sqrt{\det\begin{pmatrix}\begin{pmatrix}x_1^T \\ \vdots \\ x_n^T\end{pmatrix} \cdot (x_1, \dots, x_n)\end{pmatrix}} = \sqrt{\det\begin{pmatrix}\begin{pmatrix}x_1^T x_1 & \dots & x_1^T x_n \\ \vdots & \ddots & \vdots \\ x_n^T x_1 & \dots & x_n^T x_n\end{pmatrix}}$$

$$= \sqrt{\det\begin{pmatrix}\langle x_1, x_1 \rangle & \dots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, x_1 \rangle & \dots & \langle x_n, x_n \rangle\end{pmatrix}} = \sqrt{\det(\langle x_i, x_j \rangle)}$$
Gram-Matrix der Vektoren x_1, \dots, x_n

Sie nun V ein beliebiger Vektorraum mit dim V=:n, z.B. ein n-dimensionaler Unterraum von \mathbb{R}^m . Ist \mathcal{B} eine Orthonormalbasis von V ist, so erhält die Koordinatenabbildung $\Phi_B:\mathbb{R}^n\to V$ die Skalarprodukte:

$$\langle x, y \rangle_{\mathbb{R}^n} = \langle \Phi_{\mathcal{B}}(x), \Phi_{\mathcal{B}}(y) \rangle_V.$$

Winkel und Längenmessungen in V mit $\langle \cdot, \cdot \rangle_V$ entsprechen also Winkel und Längenmessungen in Koordinaten in \mathbb{R}^n mit $\langle \cdot, \cdot \rangle_{\mathbb{R}^n}$.

Das heißt, dass das Volumen des von den Vektoren x_1, \ldots, x_n aufgespannten Parallelotops $\tilde{P} \subset V$ gleich $\operatorname{Vol}(\tilde{P}) = \sqrt{\det(\langle x_i, x_j \rangle)}$ ist.

Anwendungsbeispiel Spannen zwei dreidimensionale Vektoren v_1, v_2 eine Ebene E in \mathbb{R}^3 auf, so können wir das zweidimensionale Volumen (\rightarrow Flächeninhalt) von E mit Hilfe der Determinante der korrespondierenden (quadratischen (!)) Gram-Matrix berechnen, obwohl die Matrix bestehen aus v_1 und v_2 nicht quadratisch ist.

5.12 Orthogonale und unitäre Automorphismen

11.06.18

Automorphismus

Definition 5.12.1

Korollar 5.12.2

Sei V ein euklidischer oder unitärer Vektorraum. Ein Endomorphismus $F \in \text{End}(V)$ heißt orthogonal bzw. unitär , wenn

- \bigcirc F invertierbar ist (also F ein Automorphismus ist) und
- (2) $\langle F(v), F(w) \rangle = \langle v, w \rangle$ für alle $v, w \in V$ gilt.

Für endlichdimensionale Vektorräume folgt (ii) aus (i)

Beweis. Aus (ii) folgt insbesondere ||F(v)|| = ||v|| für alle $v \in V$. Daraus folgt, dass der Endomorphismus F injektiv ist, da sein Kern nur den Nullvektor enthält; aus F(v) = 0 folgt ||v|| = ||F(v)|| = ||0|| = 0 also v = 0.

Nach . . . ist eine lineare Abbildung zwischen endlichdimensionalen Vektorräumen gleicher Dimension genau dann injektiv, wenn sie surjektiv ist.

Beispiel 5.12.3 (Gegenbeispiel für unendlichdimensionale Vektorräume)

Der Shift-Operator aus dem auf dem Folgenraum ℓ^2 der quadratsummierbaren Folgen (vgl. Analysis II) mit dem Skalarprodukt $\langle a,b \rangle = \sum_{k=0}^{\infty} a_k \overline{b_k}$

$$(x_0, x_1, x_2, \dots,) \mapsto (0, x_0, x_1, x_2, \dots)$$

erfüllt (ii), ist aber nicht surjektiv.

Für $v := (v_0, v_1, \ldots) \in \ell^2$ und $w := (w_0, w_1, \ldots) \in \ell^2$ gilt

$$\big\langle F(v), F(w) \big\rangle = \sum_{k=0}^{\infty} (F(v))_k \overline{(F(w))}_k = 0 \cdot \overline{0} + \sum_{k=0}^{\infty} v_k \overline{w}_k = \sum_{k=0}^{\infty} v_k \overline{w}_k = \big\langle v, w \big\rangle.$$

Die Abbildung ist jedoch nicht surjektiv, da F auf keine Folge in ℓ^2 abbildet, welche als erstes Folgenglied keine Null besitzt, z.B. $(1,0,0,\ldots) \in \ell^2$.

Korollar 5.12.4 (Weitere Eigenschaften)

- 1 Für alle $v, w \in W$ gilt $v \perp w \iff F(v) \perp F(w)$, F erhält also die Orthogonalität von Vektoren.
- 2 Alle Eigenwerte von F haben Betrag 1.

Beweis. 1 Selbst.

2 Ist
$$\lambda$$
 ein Eigenwert von F zum Eigenvektor v , so gilt $0 \neq ||v|| = ||F(v)|| = \lambda ||v|| = |\lambda||v||$.

Bemerkung 5.12.5 Nicht jeder Automorphismus, der die Orthogonalität von Vektoren erhält, ist orthogonal. Deshalb ist die Bezeichnung "orthogonaler Automorphismusëtwas irreführend.

Wahr ist

Lemma 5.12.6

Jeder Automorphismus, der die Orthogonalität von Vektoren erhält, ist ein Vielfaches eines orthogonalen Automorphismus.

Beweis. Siehe Hausaufgabe.

Definition 5.12.7 (Metrischer Raum)

Ein Paar (X, d) bestehend aus einer Menge X und einer Metrik $d: X \times X \to \mathbb{R}$ heißt metrischer Raum.

metrischer Raum

DEFINITION 5.12.8 (Isometrie)

Eine Abbildung $f:X\to Y$ zwischen zwei metrischen Räumen (X,d) und (Y,\widetilde{d}) heißt isometrisch, wenn für alle $x_1,x_2\in X$ gilt

$$\widetilde{d}(f(x_1), f(x_2)) = d(x_1, x_2).$$

SATZ 5.12.1: TODO: TITEL FEHLT

Sei V ein euklidischer Vektorraum mit Skalarprodukt $\langle\,\cdot\,,\cdot\,\rangle$ und seien $\|v\|\coloneqq\sqrt{\langle\,v,v\,\rangle}$ und $d(v,w)\coloneqq\|v-w\|$ die von dem Skalarprodukt induzierte Norm und Metrik.

Dann sind für eine beliebige Funktion $g:V\to V$ folgende Aussagen äquivalent:

- (i) g ist isometrisch
- (ii) Es existiert eine orthogonale Abbildung $F \in \text{End}(V)$ und ein $b \in V$, sodass g(v) = F(v) + b für alle $v \in V$ ist.

Beweis. (ii) \implies (i): Wenn F orthogonal ist und g(v) = F(v) + b gilt, dann ist g isometrisch, denn es gilt

$$d(g(v), g(w)) = d(F(v) + v, F(w) + b) = ||F(v) + b - F(w) - b|| = ||F(v) - F(w)||$$
$$= ||F(v - w)|| \stackrel{(*)}{=} ||v - w|| = d(v, w),$$

wobei bei (*) die Orthogonalität von F ausgenutzt wird.

(i) \Longrightarrow (ii): Angenommen, $g: V \to V$ ist eine Isometrie, dann gilt für alle $v, w \in V$

$$||g(v) - g(w)|| = d(g(v) - g(w)) = d(v, w) = ||v - w||.$$

Seien b := g(0) und $g_0 : V \to V$, $v \mapsto g(v) - b$. Dann gilt $g_0(0) = 0$. Außerdem ist die Abbildung g_0 normerhaltend, denn für alle $v \in V$ gilt

$$||v|| = ||v - 0|| = d(v, 0) = d(g(v), g(0)) = ||g(v) - b|| = ||g_0(v)||.$$

Nach der Polarisationsformel gilt für alle $v, w \in V$

$$\langle v, w \rangle = \frac{1}{2} (\|v\|^2 + \|w\|^2 - \|v - w\|^2) = \frac{1}{2} (\|v\|^2 + \|w\|^2 - d(v, w)^2)$$
$$= \frac{1}{2} (\|g_0(v)\|^2 + \|g_0(w)\|^2 - d(g_0(v), g_0(w))) = \langle g_0(v), g_0(w) \rangle.$$

Die Abbildung g_0 erhält somit sogar das Skalarprodukt. Es bleibt noch zu zeigen, dass sie linear ist, denn dann ist g_0 orthogonal und es gilt $g(v) = g_0(v) + b = F(v) + b$ mit $F = g_0$.

Sei $\mathcal{B} = (v_1, \dots, v_n)$ eine Orthonormalbasis von V und sei $w_j := g_0(v_j)$ für alle $j \in \{1, \dots, n\}$. Weil g_0 das Skalarprodukt erhält, ist $\tilde{\mathcal{B}} = (w_1, \dots, w_n)$ auch eine Orthonormalbasis von V.

Sei nun $v \in V$ ein beliebiger Vektor, und $v = \sum_{k=1}^{n} x_k v_k$ seine Darstellung in der Basis \mathcal{B} , sowie $g_0(v) = \sum_{\ell=1}^{n} y_\ell w_\ell$ die Darstellung seines Bildes in der Basis $\tilde{\mathcal{B}}$. Dann gilt für alle $j \in \{1, \ldots, n\}$, weil $\tilde{\mathcal{B}}$ eine ONB ist,

$$x_j = \langle v, v_j \rangle = \langle g_0(v), g_0(v_j) \rangle = \langle g_0(v), w_j \rangle = y_j.$$

In der Tat ist g_0 die Abbildung mit $M_{\widetilde{R}}^{\mathcal{B}}(g_0) = E_n$.

Lemma 5.12.9 (F orthogonal $\iff A^{-1} = A^T$)

Ein Endomorphismus F ist genau dann orthogonal, wenn $A^TA = E$ gilt, also wenn A invertierbar ist und $A^{-1} = A^T$ ist.

Beweis. Betrachte \mathbb{R}^n mit den Standardskalarprodukt $\langle x,y \rangle = x^T y$ und definiere F(x) := Ax, wobei $A \in \mathbb{R}^{n \times n}$ beliebig ist. Dann gilt

$$x^T E y = x^T y = \langle x, y \rangle = \langle F(x), F(y) \rangle = \langle Ax, Ay \rangle = x^T A^T A y.$$

Lemma 5.12.10 (F unitär $\iff A^{-1} = \overline{A^T}$)

Ein Endomorphismus F ist genau dann unitär, wenn $A^T\overline{A} = E$ bzw. $\overline{A^T}A = E$ gilt, also wenn A invertierbar ist und $A^{-1} = \overline{A^T}$ ist.

Beweis. Analog zu dem Beweis des vorangegangen Lemmas.

Betrachte \mathbb{C}^n mit den Standardskalarprodukt $\langle z, w \rangle = \overline{z^T}\overline{w}$ und definiere F(z) := Az, wobei $A \in \mathbb{C}^{n \times n}$ beliebig ist.

Dann gilt

$$= z^{T} A^{T} \overline{A} \overline{w} = \langle F(z), F(w) \rangle = \langle z, w \rangle = z^{T} \overline{w} = x^{T} E \overline{w}.$$

5.13 Orthogonale und unitäre Matrizen

Definition 5.13.1 (orthogonale bzw. unitäre Matrizen)

Eine invertierbare Matrix $A \in \mathrm{GL}(n,\mathbb{R})$ heißt orthogonal, wenn $A^{-1} = A^T$ ist. Eine invertierbare Matrix $A \in \mathrm{GL}(n,\mathbb{C})$ heißt unitär, wenn $A^{-1} = \overline{A^T}$ ist.

Lemma 5.13.2

Für eine Matrix $A \in \mathbb{K}^{n \times n}$ sind folgenden Bedingungen äquivalent:

- (i) A ist orthogonal bzw. unitär
- (ii) Die Spalten von A bilden ein Orthonormalbasis von \mathbb{K}^n
- (iii) Die Zeilen von A bilden eine Orthonormalbasis von \mathbb{K}^n .

Beweis. (ii) ist gleichbedeutend mit $A^T \overline{A} = E_n$ und (iii) mit $A \overline{A^T} = E_n$.

Lemma 5.13.3

Die Determinante einer orthogonale Matrix hat Betrag 1.

Beweis.
$$1 = \det(A^T A) = \det(A)^2$$
.

Korollar 5.13.4

Das heißt, dass auch das Volumen erhalten wird, es höchstens seine Orientierung ändert.

Lemma 5.13.5

Die Determinante einer unitären Matrix hat Betrag 1.

Beweis.
$$1 = \det(\overline{A^T}A) = \det(\overline{A})\det(A) = \overline{\det(A)}\det(A) = |\det(A)|^2$$
.

15.06.18

Definition 5.13.6 (spezielle orthogonale bzw. unitäre Matrizen)

Eine orthogonale oder unitäre Matrix A mit $\det(A) = +1$ nennt man speziell. Wir definieren

$$O(n) := O(n, \mathbb{R}) := \{ A \in GL(n, \mathbb{R}) : A^{-1} = A^T \}$$
 (orthogonale Gruppe)

$$SO(n) := SO(n, \mathbb{R}) := \{A \in O(n) : \det(A) = 1\}$$
 (sp. orthogonale Gruppe)

$$\mathrm{U}(n) \coloneqq \mathrm{U}(n,\mathbb{C}) \coloneqq \{A \in \mathrm{GL}(n,\mathbb{C}) : A^{-1} = \overline{A^T}\}$$
 (unitäre Gruppe)

$$SU(n) := SU(n, \mathbb{C}) := \{A \in U(n) : \det(A) = 1\}$$
 (spezielle unitäre Gruppe!)

Lemma 5.13.7

Die Gruppen (n), SO(n) sind Untergruppen von $GL(n, \mathbb{R})$ und U(n), SU(n) von $GL(n, \mathbb{C})$

Beweis. 1 Selbst.

2 Selbst.

 $(3) (1) E \in U(n)$

(2) Wenn $A, B \in U(n)$ sind, dann ist

$$(\overline{AB})^T = (\overline{A} \cdot \overline{B})^T \overline{B^T} \cdot \overline{A^T} = B^{-1} \cdot A^{-1} = (A \cdot B)^{-1}.$$

Alternativ: Wenn A und B das Skalarprodukt erhalten, dann auch $A\cdot B$ und $A^{-1}.$

Satz 5.13.1: F orthogonal/unitär $\Leftrightarrow M_{\mathcal{B}}(F)$ orthogonal/unitär

Seien V ein euklidischer oder unitärer Vektorraum, \mathcal{B} ein Orthonormalbasis vom V und $F \in \text{End}(V)$ und $A := M_{\mathcal{B}}(F)$. Dann gilt F orthogonal/unitär $\iff A$ orthogonal/unitär.

Beweis. Weil \mathcal{B} eine Orthonormalbasis ist, gilt für alle $v,w\in V$ mit den Koordinatenvektoren $x,y\in\mathbb{K}^n$ die Gleichheit $\langle\,v,w\,\rangle_V=\langle\,x,y\,\rangle_{\mathbb{K}^n}$.

Also ist $\langle F(v), F(w) \rangle_V = \langle v, w \rangle_V$ genau dann, wenn für alle $x, y \in \mathbb{K}^n$ gilt $\langle Ax, Ay \rangle_{\mathbb{K}^n} = \langle x, y \rangle_{\mathbb{K}^n}$. Das gilt genau dann, wenn A orthogonal ist.

5.14 *VIII: Volumen und Orthonormaliserung

15.06.18

Volumen

Definition 5.14.1 (n-te Dimensionsvolumen eines Parallelopipeds)

Seien (v_1, \ldots, v_n) Vektoren aus einem \mathbb{K} -Vektorraum V. Wir definieren das n-te Dimensionsvolumen des Parallelopipeds P, welches von den Vektoren v_1, \ldots, v_n aufgespannt wird, als

Parallelopipeds

$$\operatorname{Vol}(P) = \sqrt{\det(\langle v_i, v_j \rangle)_{i,j}} = \sqrt{\det\begin{pmatrix}\langle v_1, v_1 \rangle & \dots & \langle v_1, v_n \rangle \\ \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & \dots & \langle v_n, v_n \rangle\end{pmatrix}}$$
(19)

Gram-Matrix

Bemerkung 5.14.2 Die Dimension von V ist $\geq n$, dabei ist n die Anzahl der Vektoren, die P aufspannen.

SATZ 5.14.1: TODO: TITEL FEHLT

Seien $v, w \in \mathbb{R}^3$ zwei Vektoren mit $v \neq w$ und $v, w \neq 0$ und P ein Parallelogramm, welches von v und w aufgespannt wird. Dann ist $\operatorname{Vol}_2(P) = |v \times w|$.

Parallelogramm

Beweis. Per Definition erfüllt das Kreuzprodukt für alle $z \in R^3$ die Gleichung $\langle v \times w, z \rangle = \det \begin{pmatrix} v & w & z \end{pmatrix}$. Wir wählen also z mit ||z|| = 1, und so, dass z orthogonal zu span(v, w), also parallel zu $v \times w$ liegt. Dann bilden v, w und z eine Basis des \mathbb{R}^3 .

Kreuzprodukt

Wir haben schon gesehen, dass det (v w z) das Volumen des Würfels von v, w und z ergibt. Weil z orthogonal zu $\mathrm{span}(v, w)$ liegt, und Länge 1 hat, ist das Volumen des Würfels gleich dem Flächeninhalt von P.

Flächeninhalt

Andererseits gilt

$$\det \begin{pmatrix} v & w & z \end{pmatrix} = \langle v \times w, z \rangle = \|v \times w\| ||z|| \cos \langle (v \times w, z) = \|v \times w\| \cdot 1 \cdot \cos(0) = \|v \times w\|$$

Alternativer Beweis. Nach Definition gilt

$$\begin{aligned} \operatorname{Vol}_2(P) &= \sqrt{\det \begin{pmatrix} \left\langle v, v \right\rangle & \left\langle v, w \right\rangle \\ \left\langle w, v \right\rangle & \left\langle w, w \right\rangle \end{pmatrix}} \\ &= \sqrt{\left\langle v, v, \right\rangle \left\langle w, w \right\rangle - \left\langle v, w \right\rangle^2} \\ &= \sqrt{\|v\|^2 \|w\|^2 - \left\langle v, w \right\rangle^2} \qquad \text{(Definition der induzierten Norm)} \\ &= \sqrt{\|v\|^2 \|w\|^2 - \|v\|^2 \|w\|^2 \cos^2 \sphericalangle(v, w)} \qquad \text{(per Winkel-Definition)} \\ &= \|v\| \|w\| \sin \sphericalangle(v, w) \end{aligned}$$

Es gilt $\operatorname{Vol}_2(P) = \operatorname{Vol}_3$ von dem von v,w,z aufgespannten Würfel mit $z \perp \operatorname{span}(v, w), \|z\| = 1$.

$$= \sqrt{\det \begin{pmatrix} \left\langle v,v \right\rangle & \left\langle v,w \right\rangle & \left\langle v,z \right\rangle \\ \left\langle w,v \right\rangle & \left\langle w,w \right\rangle & \left\langle w,z \right\rangle \\ \left\langle z,v \right\rangle & \left\langle w,z \right\rangle & \left\langle z,z \right\rangle \end{pmatrix}} = \sqrt{1 \cdot \det \begin{pmatrix} \left\langle v,v \right\rangle & \left\langle v,w \right\rangle \\ \left\langle w,v \right\rangle & \left\langle w,w \right\rangle \end{pmatrix}} = \|v\| \|w\| \sin \sphericalangle(v,w)$$

und $\operatorname{Vol}_3((v, w, z)) = ||v \times w||$. Flächeninhalt von P ist $|v||w| \sin \triangleleft (v, w)$.

Gram-Schmidt-Orthonormalisierung

In der Vorlesung haben wir den Satz induktiv bewiesen, den dabei genutzten Algorithmus werden wir nun anwenden.

Weil insbesondere $v_1 \neq 0$ gilt, definieren wir $w_1 := \frac{1}{\|v_1\|} v_1$.

Wie finden wir w_2 ? w_2 muss die folgenden Bedingungen erfüllen

Wir definieren also

$$\tilde{w}_2 := \underbrace{v_2 - \underbrace{\langle v_2, w_1 \rangle w_1}_{\in \operatorname{span}(w_1)}}^{\in \operatorname{span}(w_1)^{\perp}}.$$

Der Vektor \tilde{w}_2 liegt also orthogonal zu w_1 .

Wir definieren $w_2 := \frac{1}{\|\tilde{w}_2\|} \tilde{w}_2$, dann hat der Vektor w_2 auch Norm 1.

Wie sieht w_3 aus? Wir definieren analog

$$\tilde{w}_3 \coloneqq v_3 - \underbrace{\left\langle v_3, w_2 \right\rangle w_2 - \left\langle v_3, w_1 \right\rangle w_1}_{\in \operatorname{span}(w_1, w_2)} \quad \operatorname{und} w_3 \coloneqq \frac{1}{\|\tilde{w}_3\|} \tilde{w}_3.$$

Somit wählen wir induktiv die w_i nach der folgenden Weise

$$\tilde{w}_k := v_k - \sum_{i=0}^{k-1} \langle v_k, w_i \rangle w_i \quad \text{und} \quad w_k := \frac{1}{\|\tilde{w}_k\|} \tilde{w}_k$$
 (20)

Aufgabe: Sie $V = \operatorname{span}\left(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\1\\-2 \end{pmatrix}\right) \subset \mathbb{R}^4$ mit dem kanonischen Skalarprodukt in \mathbb{R}^4 .

1 Was ist die Orthonormalbasis, welche zu (v_1, v_2, v_3) gehört?

Wir wenden das Gram-Schmidt-Verfahren an und erhalten

$$\begin{split} w_1 &\coloneqq \frac{1}{\|v_1\|} v_1 = \frac{1}{\sqrt{1^2 + 1^2 + 1^2 + 1^2}} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}. \\ \tilde{w}_2 &= v_2 - \langle v_2, w_1 \rangle w_1 = \begin{pmatrix} \frac{1}{0} \\ 0 \\ 1 \end{pmatrix} - \langle \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}, \frac{1}{2} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} \rangle \frac{1}{2} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{0} \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} + 0 + 0 + \frac{1}{2} \end{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{1}{-1} \\ -1 \\ 1 \end{pmatrix}. \end{split}$$

Dann gilt
$$\langle \tilde{w}_2, \tilde{w}_2 \rangle = 1 \implies w_2 = \tilde{w}_2 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$
. Ferner gilt

$$\tilde{w_3} = v_3 - \langle v_3, w_2 \rangle v_2 - \langle v_3, w_1 \rangle w_1$$

Nebenrechnungen:

$$\langle v_3, w_2 \rangle = \langle \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \rangle = 0 - 1 - \frac{1}{2} - 1 = -2.5$$

$$\langle v_3, w_1 \rangle = \langle \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rangle = \frac{1}{2}.$$

Dann gilt

$$\tilde{w}_3 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ -2 \end{pmatrix} + \frac{5}{2} \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} - \frac{1}{2} \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 1 \\ -1 \\ -2 \end{pmatrix}$$

und

$$\langle \tilde{w}_3, \tilde{w}_3 \rangle = \frac{5}{2} \implies \|\tilde{w}_3\| = \sqrt{\frac{5}{2}} \implies w_3 = \frac{2}{5} \frac{1}{2} \begin{pmatrix} \frac{2}{1} \\ -\frac{1}{2} \end{pmatrix}.$$

2 Finde das Volumen von P, welches von v_1, v_2, v_3 aufgespannt wird.

Was passiert, wenn wir das Gram-Schmidt-Verfahren auf eine Familie von Vektoren anwenden. die nicht unbedingt linear unabhängig sind?

Beispiel 5.14.3 Betrachten die Familie (v_1, \ldots, v_5) mit $v_1 \neq 0 \neq v_2$ und $v_3 \in \text{span}(v_1, v_2)$. Wir wenden das Gram-Schmidt-Verfahren auf eine Familie von Vektoren an.

$$\begin{split} w_1 &\coloneqq \frac{1}{\|v_1\|} v_1 \\ \tilde{w}_2 &= v_2 - \left\langle \left. v_2, w_1 \right\rangle w_1, \quad w_2 \coloneqq \frac{1}{\|v_2\|} v_2 \\ \tilde{w_3} &= v_1 - \underbrace{\left\langle \left. v_3, w_2 \right\rangle w_2 - \left\langle \left. v_3, w_1 \right\rangle w_1}_{\text{orthogonale Projektion auf span}} \end{split}$$

Aber Achtung! $v_3 \in \text{span}(v_1, v_2) \implies v_3 \in \text{span}(w_1, w_2) \implies \text{orthogonale Projektion von } v_3 \text{ auf span}(w_1, w_2) \text{ ist } v_3 \text{ selbst, und somit ist } \tilde{w}_3 = 0.$

Das heißt, \tilde{w}_3 vergrößert die Basis nicht. In dem Verfahren überspringen wir solche Fälle und somit können wir das Gram-Schmidt-Verfahren insbesondere dazu verwenden, lineare Abhängigkeit von Familien von Vektoren zu überprüfen.

Beispiel 5.14.4 Sei $V=\{p\in\mathbb{R}[t]\mid \deg(p)\leqslant 2\}$ über \mathbb{R} mit dem Skalarprodukt

$$\langle p, q \rangle := \int_0^1 p(t)q(t)dt.$$
 (21)

Wir wollen eine Orthonormalbasis von V finden.

Idee: Wir wählen eine Basis von V und wenden das Gram-Schmidt-Verfahren an. Wir wählen die Basis $(1, t, t^2)$. Nun gilt

$$w_1 := \frac{1}{\sqrt{\langle v_1, v_1 \rangle}}, \quad v_1 = \frac{1}{\|v_1\|} v_1.$$

Ferner gilt

$$\langle v_1, v_1 \rangle = \int_0^1 1 \cdot 1 dt = 1 \implies w_1 = 1$$

$$\tilde{w_2} = v_2 - \langle v_2, w_1 \rangle w_1 = v_2 - \int_0^1 v_2(t) \cdot w_1(t) dt = v_2 - \int_0^1 t \cdot 1 dt = t - \frac{1}{2} \cdot 1 = t - \frac{1}{2}$$

Wir wollen $w_2 = \frac{1}{\|\tilde{w}_2\|} \tilde{w}_2$ berechnen, dazu errechnen wir

$$\|\tilde{w}_2\| = \sqrt{\langle \tilde{w}_2, \tilde{w}_2 \rangle} = \sqrt{\int_0^1 \left(t - \frac{1}{2}\right)^2 dt} = \sqrt{\frac{(t - \frac{1}{2})^3}{3}} \Big|_0^1 = \sqrt{\frac{1}{12}} = \frac{1}{2\sqrt{3}},$$

und erhalten $w_2 = 2\sqrt{3} \left(t - \frac{1}{2}\right)$.

5.15 Explizite Darstellung von O(n)

Für n = 1 ist $O(1) = \{1, -1\}$.

Für n = 2 gilt $A \in (2) \iff A = \begin{pmatrix} \cos(\alpha) - \sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ oder $A' = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$ für ein $\alpha \in \mathbb{R}$. (Beweis siehe Fischer)

Die Matrix A ist die altbekannte Drehung um den Winkel α und die andere eine Spiegelung an der Geraden $\mathbb{R} \cdot \begin{pmatrix} \cos(\frac{\alpha}{2}) \\ \sin(\frac{\alpha}{2}) \end{pmatrix}$. Es gilt $\det(A) = 1$ und $\det(A') = -1$.

Wir betrachten nun den komplizierteren Fall n = 3.

Sei also $A \in O(3)$ und $F : \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto Ax$.

Das charakteristische Polynom $P_A(t)$ hat Grad drei, also besitzt es mindestens eine reelle Nullstelle λ_1 . Als Eigenwert eine orthogonalen Matrix ist nur $\lambda_1 = \pm 1$ möglich.

Sei w_1 ein normierter Eigenvektor zum Eigenwert λ_1 mit $||w_1|| = 1$. Man ergänze w_1 zu einer Orthonormalbasis (w_1, w_2, w_3) von \mathbb{R}^3 . Sei $W := \operatorname{span}(w_2, w_3) = \operatorname{span}(w_1)^{\perp}$.

Lemma 5.15.1

Dann ist W ein F-invarianter Unterraum.

Beweis. Weil F orthogonal ist $(*_1)$ und $F(w_1) = \pm w_1$ ist $(*_2)$, gilt

$$w \in W \iff w \perp w_1 \iff F(w) \perp F(w_1) \iff F(w) \perp w_1 \iff F(w) \in W.$$

Also gilt [BESSERE DARSTELLUNG NOTWENDIG!]

$$M_{\mathcal{B}}(F) = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \widetilde{A} \end{pmatrix},$$

und \tilde{A} ist die Matrix von $F|_W$ bezüglich der Orthonormalbasis (w_2, w_3) von W. Weil $F|_W$ auch orthogonal ist, ist auch \tilde{A} orthogonal, also existiert ein $\alpha \in \mathbb{R}$, sodass eine der folgenden Fälle Auftritt

Dann gilt

$$\begin{array}{l}
\textbf{1} \quad M_{\mathcal{B}}(F) = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}. \\
\text{Für } \alpha = 0 \text{ ist } M_{\mathcal{B}}(F) = E_n \text{ oder } M_{\mathcal{B}}(F) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\
\text{Für } \alpha = \pi \text{ ist } M_{\mathcal{B}}(F) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ oder } M_{\mathcal{B}}(F) = -E_n .$$

2) \widetilde{A} hat die Eigenwerte 1 und -1 mit den Eigenvektoren $v_2 = \begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) \end{pmatrix}$ und $v_3 = \begin{pmatrix} -\sin\left(\frac{\alpha}{2}\right) \\ \cos\left(\frac{\alpha}{2}\right) \end{pmatrix}$.

Dann ist F diagonalisierbar und bezüglich der Orthonormalbasis

$$\widetilde{B} = \left(w_1, \cos\left(\frac{\alpha}{2}\right)w_2 + \sin\left(\frac{\alpha}{2}\right)w_3, -\sin\left(\frac{\alpha}{2}\right)w_2 + \cos\left(\frac{\alpha}{2}\right)w_3\right)$$

gilt

$$M_{\widetilde{\mathcal{B}}}(F) = \left(\begin{smallmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{smallmatrix}\right) \qquad \text{oder} \qquad M_{\widetilde{\mathcal{B}}}(F) = \left(\begin{smallmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{smallmatrix}\right).$$

Durch um
ordnen der Basisvektoren erhält man die Orthonormalbasi
s $\overline{\mathcal{B}}$ und $\hat{\mathcal{B}},$ sodass gilt

$$M_{\overline{\mathcal{B}}}(F) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{oder} \quad M_{\hat{\mathcal{B}}}(F) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Diese Matrizen kamen schon in Fall (1) vor.

Wir fassen die wichtigsten Ergebnisse des Falles n=3 in zwei Sätzen zusammen.

SATZ 5.15.1: ÜBER O(3)

Zu einem orthogonalen Endomorphismus $F \in \text{End}(\mathbb{R}^3 \text{ existient eine Orthonormalbasis } \mathcal{B}, \text{ sodass gilt } M_{\mathcal{B}}(F) =$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\alpha) & -\sin(\alpha) \\
0 & \sin(\alpha) & \cos(\alpha)
\end{pmatrix} \text{ oder }
\begin{pmatrix}
-1 & 0 & 0 \\
0 & \cos(\alpha) & -\sin(\alpha) \\
0 & \sin(\alpha) & \cos(\alpha)
\end{pmatrix}$$

Im Fall \bigcirc ist $\det(F) = 1$ und F stellt eine Drehung dar. Im Fall \bigcirc ist $\det(F) = 1$ — und F stellt eine Drehspiegelung dar.

SATZ 5.15.2: ÜBER O(3)

Für jede Matrix $A \in \mathcal{O}(3)$ existiert eine Matrix $T \in \mathcal{O}(3)$, sodass gilt $M_{\mathcal{B}}(F) = TAT^{-1}$ mit

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \quad \text{oder} \quad A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Bemerkung 5.15.2 Sind $\mathcal{A} = (v_1, \dots, v_n)$ und $\mathcal{B} = (w_1, \dots, w_n)$ Orthonormalbasen, dann ist die Basiswechselmatrix $T_{\mathcal{B}}^{\mathcal{A}} \in O(n)$. Zu guter Letzt (und aus aktuellem Anlass)

SATZ 5.15.3: VOM FUSSBALI

Bei jedem Fußballspiel, in dem nur ein Ball benutzt wird, existieren zwei Punkte auf der Oberfläche des Balls, die sich zu Beginn der ersten und zweiten Halbzeit, wenn der Ball genau auf dem Anstoßpunkt liegt, an der gleichen Stelle im Raum befinden.

Beweis. vgl. Fischer.

5.16 Normalform orthogonaler / unitärer Endomorphismen

18.06.18

Lemma 5.16.1 (Normalform von SU(2))

Es gilt
$$A \in SU(2) \iff A = \begin{pmatrix} a - \overline{b} \\ b \overline{a} \end{pmatrix}$$
 für $a, b \in \mathbb{C}$ mit $|a|^2 + |b|^2 = 1$. Also gilt

$$A \in \mathrm{SU}(2) \iff A = \begin{pmatrix} \cos(\nu)e^{i\varphi} & -\sin(\nu)e^{-i\varphi} \\ \sin(\nu)e^{i\varphi} & \cos(\nu)e^{-i\varphi} \end{pmatrix}.$$

Beweis. HA.

Satz 5.16.1: Normalform unitärer Endomorphismen

Zu jedem unitären Endomorphismen F eines endlichdimensionalen unitären Vektorraums existiert eine Orthonormalbasis aus Eigenvektoren.

Korollar 5.16.2

Zu jedem $A \in U(n)$ existiert ein $T \in U(n)$, sodass gilt

$$A = T \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} T^{-1},$$

wobei $\lambda_i \in \mathbb{C}$ und $|\lambda_i| = 1$ für alle $i \in \{1, ..., n\}$ gilt.

Beweis. (von Satz 5.16.1) Sei $F \in \text{End}(V)$ unitär und $n := \dim(V)$. Wir beweisen den Satz mit Induktion über die Dimension $n \in \mathbb{N}$.

IA: (n = 1) Es ist nichts zu zeigen.

IV: Für ein beliebiges festes $n \in N$ gilt der Satz und dim V = n.

IS: $n-1 \rightarrow n$.

Weil jedes komplexe Polynom über \mathbb{C} zerfällt, hat F einen Eigenvektor v_1 zum Eigenwert λ_1 . Seien v_1 ein normierter Eigenvektor von F und $W = \operatorname{span}(v_1)^{\perp}$. Der Unterraum $W \subset V$ hat die Dimension n-1.

Wie im reellen Fall sieht man, dass W invariant unter F ist (vgl. Lemma 5.15.1). Es gilt

$$w \in W \iff \langle v_1, w \rangle = 0$$

$$\iff \langle F(v_1), F(w) \rangle = 0$$

$$\iff \langle \lambda_1 v_1, F(w) \rangle = 0$$

$$\iff \langle v_1, F(w) \rangle = 0$$

$$\iff \langle \lambda_1 v_1, F(w) \rangle = 0$$

$$\iff \langle h_1 v_1, F(w) \rangle = 0$$

$$\iff F(w) \in W$$

Deshalb kann man die Einschränkung $F|_W$ als Abbildung nach W auffassen und somit als unitären Endomorphismus auf W, weil das Skalarprodukt durch die Einschränkung erhalten bleibt, es gilt dim W = n - 1.

Nach IV existiert eine Orthonormalbasis (v_2, \ldots, v_n) von W aus Eigenvektoren von $F|_W$. Dann ist (v_1, \ldots, v_n) eine Orthonormalbasis von V aus Eigenvektoren von V.

SATZ 5.16.2: NORMALFORM ORTHOGONALER ENDOMORPHISMEN

Zu jedem orthogonalen Endomorphismus F eines endlichdimensionalen euklidischen Vektorraums V existiert eine Orthonormalbasis \mathcal{B} , sodass gilt

wobei
$$A_j = \begin{pmatrix} \cos(\alpha_j) & -\sin(\alpha_j) \\ \sin(\alpha_j) & \cos(\alpha_j) \end{pmatrix} \in SO(2) \text{ mit } \alpha_j \in \mathbb{R} \setminus \{\pi \cdot \mathbb{R}\}.$$

Beweis. (Skizze) Es reicht, den Fall $V = \mathbb{R}^n$, $F(v) = A \cdot v$ für $A \in \mathrm{O}(n)$ zu betrachten. Sei nun $F_{\mathbb{C}} : \mathbb{C}^n \to \mathbb{C}^n$, $v \mapsto A \cdot v$. Dann ist $F_{\mathbb{C}}$ unitär und nach den vorigen Satz existiert eine Orthonormalbasis von \mathbb{C}^n aus Eigenvektoren von $F_{\mathbb{C}}$. Die reellen Eigenwerte von $F_{\mathbb{C}}$ sind ± 1 . Die nicht reellen Eigenwerte kommen in komplex konjugierten Paaren $(\lambda, \overline{\lambda})$ vor.

Wir benötigen folgendes Hilfs-

Lemma 5.16.3

Unter den bisherigen Voraussetzungen gilt: Ist $v = (v_1 \dots v_n)^T$ ein Eigenvektor zum Eigenwert λ , dann ist $\overline{v} = (\overline{v_1} \dots \overline{v_n})^T$ ein Eigenvektor zum Eigenwert $\overline{\lambda}$.

Beweis. (des Hilfslemmas) Weil die Matrix A reell ist, folgt aus $Av = \lambda v$

$$A\overline{v} = \overline{A}\overline{v} = \overline{Av} = \overline{\lambda}\overline{v} = \overline{\lambda}\overline{v}.$$

Man überlege sich, dass man deshalb eine Orthonormalbasis \mathcal{B} von \mathbb{C}^n der Form

$$(u_1, u_\ell, v_1, \ldots, v_m, w_1, \overline{w}_1, w_2, \overline{w}_2, \ldots, w_n, \overline{w}_n)$$

zu den Eigenwerten

$$(1,\ldots,1,-1,\ldots,-1,\lambda_1,\overline{\lambda}_1,\lambda_2,\overline{\lambda}_2,\ldots,\lambda_k,\overline{\lambda}_k)$$

finden kann, wobei die u_i und v_j reelle Vektoren sind und $\lambda_j = \cos(\alpha_j) + i\sin(\alpha_j)$ mit $\alpha_j \in \mathbb{R} \setminus \{\pi \cdot \mathbb{R}\}$ ist.

Dann ist

$$\mathcal{B}_{\mathbb{R}} = \left(u_1, u_{\ell}, v_1, \dots, v_m, \frac{\Re(w_1)}{\|\Re(w_1)\|}, \frac{\operatorname{Im}(w_1)}{\|\operatorname{Im}(w_1)\|}, \frac{\Re(w_2)}{\|\Re(w_2)\|}, \frac{\operatorname{Im}(w_2)}{\|\operatorname{Im}(w_2)\|}, \dots, \frac{\Re(w_n)}{\|\Re(w_n)\|}, \frac{\operatorname{Im}(w_n)}{\|\operatorname{Im}(w_n)\|}\right)$$

eine Orthonormalbasis von \mathbb{R}^n und $M_{\mathcal{B}}(F)$ hat die gewünschte Form.

5.17 Selbstadjungierte und normale Endomorphismen

In diesem Abschnitt sei V immer ein endlichdimensionaler unitärer oder euklidischer Vektorraum.

DEFINITION 5.17.1 (zu F adjungierte Endomorphismus)

Der Endomorphismus $F^* \in \text{End}(V)$ heißt der zu $F \in \text{End}(V)$ adjungierte Endomorphismus, wenn für alle $v, w \in V$ gilt

$$\langle F(v), w \rangle = \langle v, F^*(w) \rangle.$$
 (ad)

Definition 5.17.2 (Selbstadjungierter Endomorphismus)

Ein Endomorphismus F heißt selbstadjungiert, wenn $F^* = F$ gilt.

SATZ 5.17.1: ADJUNGIERTER ENDOMORPHISMUS

Zu jeden Endomorphismus existiert ein eindeutig bestimmter adjungierter Endomorphismus.

Beweis. Sei $\mathcal{B} = (v_1, \dots, v_n)$ eine Orthonormalbasis von V und sei $M_{\mathcal{B}}(F) := A := (a_{ij}).$

Dann gilt nach Definition 3.1.1 $a_{ij} = \langle F(v_j), v_i \rangle$.

Eindeutigkeit: Angenommen, F^* erfüllt die Gleichung (ad) und $\widetilde{A} = (\widetilde{a}_{ij}) = M_{\mathcal{B}}(F^*)$. Dann gilt

$$\widetilde{a}_{ij} = \langle F^*(v_j), v_i \rangle = \overline{\langle v_i, F^*(v_j) \rangle} \stackrel{\text{(ad)}}{=} \overline{\langle F(v_i), v_j \rangle} = \overline{a_{ji}}.$$

Also gilt $\widetilde{A} = \overline{A}^T =: A^*$.

Existenz: Der Endomorphismus ist mit Matrix A^* bezüglich der Basis \mathcal{B} erfüllt (ad).

TODO: Nachrechnen!

Korollar 5.17.3 (zum Satz)

Es gilt $F^{**} = F$.

Korollar 5.17.4 (zum Beweis)

Ist \mathcal{B} ein ONB, $A = M_{\mathcal{B}}(F)$, dann ist $M_{\mathcal{B}}(F^*) = A^*$, insbesondere gilt F selbstadjungiert $\iff A = A^*$.

ALTERNATIVE DEFINITION 5.17.5 (adjungierter Endomorphismus)

Anstatt der Gleichung (ad) kann man auch $\langle w, F(v) \rangle = \langle F^*(w), v \rangle$ verwenden.

Korollar 5.17.6 (zum Beweis)

Ein Endomorphismus $F \in \text{End}(V)$ ist genau dann selbstadjungiert, wenn die darstellende Matrix $M_{\mathcal{B}}(F)$ bezüglich einer (und daher jeder) Orthonormalbasis von V symmetrisch bzw. hermitesch ist.

Lemma 5.17.7

Ist der Endomorphismus $F \in \text{End}(V)$ selbstadjungiert, so sind (auch im komplexen Fall) alle seine Eigenwerte reell.

Beweis. Sei λ ein Eigenwert von F zum Eigenvektor v. Dann gilt

$$\overline{\lambda} \underbrace{\left\langle v, v \right\rangle}_{>0} = \left\langle v, \lambda v \right\rangle = \left\langle v, F(v) \right\rangle = \left\langle F(v), v \right\rangle = \left\langle \lambda v, v \right\rangle = \lambda \underbrace{\left\langle v, v \right\rangle}_{>0}.$$

Daraus folgt $\bar{\lambda} = \lambda$.

Korollar 5.17.8

Die Eigenwerte einer hermiteschen Matrix sind reell. (Folgt direkt aus 5.17.6)

Korollar 5.17.9

Das charakteristische Polynom einer reellen symmetrischen Matrix zerfällt in Linearfaktoren.

Beweis. Man kann jede reelle symmetrische Matrix auch im komplexen auffassen, wo nach dem vorherigen Korollar die Eigenwerte reell sind, und das charakteristische Polynom somit zerfällt.

Korollar 5.17.10

Das charakteristische Polynom eines selbstadjungierten Endomorphismus zerfällt auch im reellen Fall in reelle Linearfaktoren.

TODO: Kurze Begründung

Lemma 5.17.11

Ist $W \subset V$ ein F-invarianter Unterraum, so ist W^{\perp} ein F*-invarianter Unterraum.

Beweis. Es gilt

$$\begin{split} v \in W^\perp &\iff \left\langle \, v, w \, \right\rangle = 0 \quad \text{für alle } w \in W \\ &\iff \left\langle \, w, v \, \right\rangle = 0 \quad \text{für alle } w \in W \\ &\iff \left\langle \, F(w), v \, \right\rangle = 0 \quad \text{für alle } w \in W \\ &\iff \left\langle \, w, F^*(v) \, \right\rangle = 0 \quad \text{für alle } w \in W \\ &\iff F^*(v) \in W^\perp. \end{split}$$

Korollar 5.17.12

Sei $F \in \operatorname{End}(V)$ ein selbstadjungierter Endomorphismus. Ist $W \subset V$ ein F-invarianter Unterraum, so ist auch W^{\perp} ein F-invarianter Unterraum.

SATZ 5.17.2: SPEKTRALSATZ

Ist $F \in \text{End}(V)$ ein selbstadjungierter Endomorphismus, gibt es eine Orthonormalbasis von V aus Eigenvektoren von F.

Korollar 5.17.13

Ist $A \in \mathbb{K}^{n \times n}$ eine symmetrische bzw. hermitesche Matrix, so existiert eine orthogonale bzw. unitäre Matrix T, sodass gilt

$$A = T \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} T^{-1}, \qquad \lambda_j \in \mathbb{R} \, \forall j \in \{1, \dots, n\}.$$

Beweis. Wir beweisen den Satz mit vollständiger Induktion über $n := \dim(V) \in \mathbb{N}$. IA: Für n = 1 ist nicht zu beweisen.

IS: $n \rightarrow n + 1$.

Sei V ein (n+1)-dimensionaler Vektorraum. Wir müssen zeigen 'dass die Behauptung auch für V wahr ist. Weil das charakteristische Polynom auch im reellen Fall zerfällt (Korollar 5.17.9), hat F mindestens einen Eigenwert und somit auch mindestens einen Eigenvektor.

Sei $v_1 \in V$ ein normierter Eigenvektor von F. Dann ist $W = \operatorname{span}(v_1)$ ein F-invarianter Unterraum. **WARUM?** Weil F selbstadjungiert ist, ist nach Korollar 5.17.12 auch W^{\perp} F-invariant.

Außerdem ist dim $W^{\perp} = n + 1 - 1 = n$ und $F|_{W^{\perp}}$ ist ein selbstadjungierter Endomorphismus von W^{\perp} . Nach Induktionsvoraussetzung existiert eine ONB (v_2, \ldots, v_n) von W^{\perp} aus Eigenvektoren von $F|_{W^{\perp}}$. Dann ist (v_1, \ldots, v_n) eine ONB von V aus Eigenvektoren von F.

Korollar 5.17.14

Sind $\lambda_1, \ldots, \lambda_m$ die verschiedenen Eigenwerte eines selbstadjungierten Endomorphismus $F \in \text{End}(V)$, so ist V die direkte Summe der Eigenräume:

$$V = \bigoplus_{j=1}^{m} \operatorname{Eig}(F, \lambda_j).$$

Sei nun V ein endlichdimensionaler unitärer Vektorraum.

DEFINITION 5.17.15 (normaler Endomorphismus)

Ein Endomorphismus $F \in \text{End}(V)$ heißt normal, wenn gilt

$$F \circ F^* = F^* \circ F$$
.

Korollar 5.17.16

Selbstadjungierte Endomorphismen sind normal und ihre Eigenwerte sind reell. Hermitesche $(F^* = F)$, schiefhermitesche $(F^* = -F)$ und unitäre $(F^* = F^{-1})$ Endomorphismen sind normal.

Beweis. (Skizze) Für unitäre Endomorphismen gilt

$$F^*F = F^{-1}F = id = FF^{-1} = FF^*,$$

ihre Eigenwerte haben Betrag 1.

Die Eigenwerte schiefsymmetrischer (oder antiselbstadjungiert) Endomorphismen sind rein imaginär, denn aus $F(v) = \lambda v$ mit $v \neq 0$ folgt

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle F(v), v \rangle = \langle v, F^*(v) \rangle = \langle v, -F(v) \rangle = -\overline{\lambda} \langle v, v \rangle.$$

antiselbstadjungiert

Satz 5.17.3

Ist $F \in \text{End}(V)$ ein normaler Endomorphismus, dann existiert eine ONB aus Eigenvektoren von V.

Beweis. Für unitäre und selbstadjungierte Endomorphismen haben wir die Behauptung schon gezeigt.

Der Beweis ist ganz ähnlich wieder der Beweis von Satz 5.17.2. Wir wissen bereits, dass wenn $F, G \in \operatorname{End}(V)$ kommutieren, ihre Eigenräume F-invariante Unterräume von G sind. (HA III Aufg 2). Nutzen wir nun auch noch Korollar 5.17.12, erhalten wir das folgende

Lemma 5.17.17

Ist $F \in \operatorname{End}(V)$ normal, so ist $\operatorname{Eig}(F,\lambda)^{\perp}$ ein F-invarianter Unterraum für jeden Eigenwert λ von F.

Beweis. Weil F und F^* kommutieren, ist $\text{Eig}(F, \lambda)$ ein F^* -invarianter Unterraum und somit ist $\text{Eig}(F, \lambda)^{\perp}$ ein $F^{**} = F$ -invarianter Unterraum.

5.18 Hauptachsentransformationen I: Kegelschnitte

Gegeben sei die Gleichung

25.06.18

$$a_{11}x_1^2 - 2a_{12}x_1x_2 + a_{22}x_2^2 + b_1x_1 + b_2x_2 + c = 0 (22)$$

Wir wollen die Lösungsmenge $Q := \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : x$ erfüllt ?? $\right\}$ dieses quadratischen Polynoms in zwei Variablen finden.

Wir können die Gleichung ?? folgendermaßen umschreiben:

??
$$\iff x^T A x + b^T x + c = 0$$
 mit $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $a_{12} = a_{21}$, $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$.

Mit Hilfe des Skalarprodukts können wir die Gleichung also so schreiben

??
$$\iff \langle x, Ax \rangle_{\mathbb{R}^2} + \langle b, x \rangle + c = 0$$
 (23)

Weil die Matrix A symmetrisch ist, besitzt sie nach Satz ???? eine ONB au Eigenvektoren und ist somit diagonalisierbar, für ein $\alpha \in \mathbb{R}$ gilt

$$S^{-1}AS = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \quad \text{mit } \lambda_1, \lambda_2 \in \mathbb{R} \text{ und } S = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \in \text{SO}(2).$$

O.B.d.A gilt det(S) = 1. Istdet(S) = -1, so ändern wir die Ausrichtung der ONB oder multiplizieren den letzten Eigenvektor mit -1.

Nach ???? sind die Spalten von S eine positiv orientiere ONB von \mathbb{R}^2 .

Wir wollen nun die Gleichung ?? in Koordinaten bezüglich dieser Basis schreiben. Setzen wir x = Sy in ?? ein, so erhalten wir

$$(Sy)^T A S y + b^T S y + c = 0 \iff y^T S^T A S y + (S^T b)^T + c = 0.$$

Weil ... gilt $S^T = S^{-1}$ und somit $S^T A S = S^{-1} A S = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \widetilde{b}_1 y_1 + \widetilde{b}_2 y_2 + c = 0, \tag{24}$$

und es gilt $x \in \mathbb{R}^2$ erfüllt ?? $\iff y = S^{-1}x$ erfüllt ??.

Wir unterscheiden nun in zwei Fälle:

Fall 1: $\lambda_1 \neq 0 \neq \lambda_2$.

Wir können nun durch quadratische Ergänzung die linearen Terme eliminieren. Die Gleichung ?? ist äquivalent zu

$$\lambda_1 \left(y_1^2 + 2 \frac{\widetilde{b}_1}{2\lambda_1} y_1 + \left(\frac{\widetilde{b}_1}{2\lambda_1} \right)^2 \right) + \lambda_2 \left(y_2^2 + 2 \frac{\widetilde{b}_2}{2\lambda_2} y_2 + \left(\frac{\widetilde{b}_2}{2\lambda_2} \right)^2 \right) + c - \frac{\widetilde{b}_1}{4\lambda_1} - \frac{\widetilde{b}_2}{4\lambda_2} = 0$$

$$\iff \lambda_1 \left(y_1 + \frac{\widetilde{b}_1}{2\lambda_1} \right)^2 + \lambda_2 \left(y_2 + \frac{\widetilde{b}_2}{2\lambda_2} \right)^2 + c - \frac{\widetilde{b}_1}{4\lambda_1} - \frac{\widetilde{b}_2}{4\lambda_2} = 0.$$

Definieren wir nun

$$u_1 = \left(y_1 + \frac{\widetilde{b}_1}{2\lambda_1}\right)^2$$
, $u_2 = \left(y_2 + \frac{\widetilde{b}_2}{2\lambda_2}\right)^2$, $\operatorname{und}\widetilde{c} = c - \frac{\widetilde{b}_1}{4\lambda_1} - \frac{\widetilde{b}_2}{4\lambda_2}$,

erhalten wir

$$?? \iff \lambda_1 u_1^2 + \lambda_2 u_2^2 + \widetilde{c} = 0 \tag{25}$$

Für $i \in \{1, 2\}$ folgt aus der Definition von $u_i \ y_i = u_i - \frac{\tilde{b}_i}{2\lambda_i}$.

Aus
$$x = Sy$$
 folgt damit $x = Su - S\begin{pmatrix} \frac{\tilde{b}_1}{2\lambda_1} \\ \frac{\tilde{b}_2}{2\lambda_2} \end{pmatrix}$. $m = -S\begin{pmatrix} \frac{\tilde{b}_1}{2\lambda_1} \\ \frac{\tilde{b}_2}{2\lambda_2} \end{pmatrix}$ ist die Translation und Su die Potetion des u au Koordinatoregesteme beginnich des x

lation und Su die Rotation des u_1 - u_2 -Koordinatensystems bezüglich des x_1 - x_2 -Koordinatensystems.

[Bild!! mit um Winkel α und um m translatiertes u_1 - u_2 -Koordinatensystem] Fall 1.1: λ_1 und λ_2 haben das gleiche Vorzeichen. O.B.d.A können wir annehmen, dass $\lambda_1, \lambda_2 > 0$ sind, andernfalls betrachte die Gleichung (-1)??.

<u>Fall 1.1.1:</u> Ist $\tilde{c} > 0$, so gilt $Q = \{\emptyset\}$, da auch $\lambda_1 u_1^2 + \lambda_2 u_2^2 > 0$ ist.

Fall 1.1.2: Ist
$$\tilde{c} > 0$$
, so ist die einzige Lösung $u_1 = u_2 = 0$, also gilt $y_1 = -\frac{\tilde{b}_1}{2\lambda_1}$ und $y_2 = -\frac{\tilde{b}_2}{2\lambda_2}$ so gilt $x = S\left(-\frac{\tilde{b}_1}{2\lambda_1}\right)$ also $Q = \{m\}$

Fall 1.1.3: Ist $\tilde{c} < 0$, so gilt

$$\lambda_1 u_1^2 + \lambda_2 u_2^2 = -\widetilde{c} \iff \frac{u_1^2}{\left(\frac{-\widetilde{c}}{\lambda_1}\right)} + \frac{u_2^2}{\left(\frac{-\widetilde{c}}{\lambda_2}\right)} = 1.$$

Mit
$$A_j = \sqrt{\frac{-\tilde{c}}{\lambda_j}} > 0$$
 für $j \in \{1,2\}$ gilt also

$$\left(\frac{u_1}{A_1}\right)^2 + \left(\frac{u_2}{A_2}\right)^2 = 1.$$

Dann ist Q die Ellipse mit Mittelpunkt m, Halbmessern A_1 und A_2 , deren Hauptachsen gegen die Koordinatenachsen von dem Winkel α gedreht wird.

Halpsnesser

[Bild!!]

Fall 1.2: Die beiden Eigenwerte habe verschiedene Vorzeichen.

Fall 1.1.1: $\widetilde{c} \neq 0$. O.B.d.A hat \widetilde{c} das gleiche Vorzeichen wie λ_2 . Andernfalls verwenden wir $\widetilde{S} = S \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ anstatt S. Außerdem nehmen wir o.B.d.A $\widetilde{c}, \lambda_2 < 0$ an, sonst betrachten wir (-1)· ??, also ist $\lambda_1 > 0$. Dann gilt

$$\lambda_1 u_1^2 + \lambda_2 u_2^2 = -\tilde{c} \iff \frac{u_1^2}{\left(\frac{-\tilde{c}}{\lambda_1}\right)} - \frac{u_2^2}{\left(\frac{+\tilde{c}}{\lambda_2}\right)} = 1.$$

Mit
$$A_1 = \sqrt{\frac{-\tilde{c}}{\lambda_1}} > 0$$
 und $A_2 = \sqrt{\frac{+\tilde{c}}{\lambda_2}} > 0$ gilt also

$$\boxed{\left(\frac{u_1}{A_1}\right)^2 - \left(\frac{u_2}{A_2}\right)^2 = 1.}$$

Die Lösungsmenge Q ist eine Hyperbel mit Mittelpunkt m und Hauptachsen, die gegen die Koordinatenachsen um den Winkel α gedreht sind.

Hyperbel Hauptachse

[Bild!!]

Fall 1.1.2: $\tilde{c} = 0$. Wir nehmen o.B.d.A $\lambda_1 > 0 > \lambda_2$ an. Dann gilt mit $A_1 := \sqrt{\lambda_1}$ und $A_2 := \sqrt{-\lambda_2}$

$$\lambda_1 u_1^2 + \lambda_2 u_2^2 = 0 \iff A_1^2 u_1^2 - A_2^2 u_2^2 = 0 \iff (A_1 u_1 + A_2 u_2)(A_1 u_1 - A_2 u_2) = 0.$$

Die Lösungsmenge Q ist als die Vereinigung zweier Geraden, die sich im Punkt m schneiden. MEHR BEGRÜNDUNG!

Fall 2: Einer der Eigenwerte ist Null, der andere nicht. Wir nehmen o.B.d.A an, es gelte $\lambda_1 \neq 0 = \lambda_2$.

Dann gilt

$$\lambda_1 2y_1^2 + \tilde{b}_1 y_1 + \tilde{b}_2 y_2 + c = 0.$$

Wir eliminieren den linearen Term in y_1 durch quadratische Ergänzung: Wir definieren $u_1 := y_2 + \frac{\tilde{b}_1}{2\lambda_1}$ und erhalten

$$\lambda_1 u_1^2 + \widetilde{b}_2 y_2 + c - \frac{\widetilde{b}_1^2}{4\lambda_1} = 0.$$

 $\begin{array}{ll} \underline{\text{Fall 2.1:}} \ \ \widetilde{b}_2 \neq 0 \\ \text{Mit } u_2 \coloneqq (y_2 + \frac{4\lambda_1\widetilde{c} - \widetilde{b}_1^2}{4\lambda_2\widetilde{b}_2} \ \text{gilt } \lambda_1 u_1 + \widetilde{b}_2 u_2 = 0. \ \text{Mit } A \coloneqq -\frac{\lambda_1}{\widetilde{b}_2} \ \text{gilt also} \end{array}$

$$u_2 = Au_1^2.$$

Die Lösungsmenge Q ist also eine Parabel.

[BILD!!!]

Fall 2.2: $\tilde{b}_2 = 0$.

Mit $\hat{c} := \tilde{c} - \frac{\tilde{b}_1^2}{4\lambda_1}$ gilt dann

$$\lambda_1 u_1^2 + \hat{c} = 0.$$

Fall 2.2.1: $\hat{c} > 0$. Dann gilt $Q = \{\emptyset\}$.

<u>Fall 2.2.2:</u> $\hat{c} > 0$. Dann gilt $u_1^2 = -\frac{\hat{c}}{\lambda_1} \implies u_{12} = \pm \sqrt{-\frac{\hat{c}}{\lambda_1}}$ und die Lösungsmenge Q ist die Vereinigung zwei paralleler Geraden. [BILD!!!]

<u>Fall 2.2.3:</u> $\hat{c} = 0$. Dann gilt $u_1 = 0$ und Q ist eine Gerade.

<u>Fall 3:</u> $\lambda_1 = \lambda_2 = 0$. Dann ist A = (0) und man erhält die *lineare* Gleichung $\langle b, x \rangle =$

5.19 Hauptachsentransformationen II:Quadratische Formen in euklidisch

29.06.18

Lemma 5.19.1

Sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Für jeden Endomorphismus F ist die Abbildung

$$b_F: V \times V \to \mathbb{R}, \ (v, w) \mapsto \langle v, Fw \rangle.$$

eine Bilinearform und es gilt

 b_F symmetrisch \iff F selbstadjungiert.

Beweis. Weil das Skalarprodukt bilinear ist und F linear ist, ist b_F bilinear.

" \Longrightarrow ": Ist b_F symmetrisch, gilt für alle $v, w \in V$

$$\langle v, F(w) \rangle = b_F(v, w) = b_F(w, v) = \langle w, F(v) \rangle = \langle F(v), w \rangle,$$

also ist F selbstadjungiert.

" \Rightarrow ": Ist F selbstadjungiert, so gilt für alle $v, w \in V$

$$b_F(v,w) = \langle v, F(w) \rangle = \langle F(v), w \rangle = \langle w, F(v) \rangle = b_F(w,v),$$

also ist die Bilinearform b_F symmetrisch.

Lemma 5.19.2

Sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Für jede Bilinearform b auf V existiert genau ein Endomorphismus $F \in \operatorname{End}(V)$, sodass für alle $v, w \in V$ gilt

$$b_F(v,w) = \langle v, F(w) \rangle.$$

Beweis. Eindeutigkeit:

Angenommen, es gilt $b_F(v, w) = \langle v, F(w) \rangle$ für alle $v, w \in V$.

Insbesondere für die Vektoren einer Orthonormalbasis (v_1, \ldots, v_n) von V gilt dann $b(v_i, v_i) = \langle v_i, F(v_i) \rangle$.

Die Bilinearform b und der Endomorphismus F haben also die gleiche darstellenden Matrix $B = (b(v_i, v_j))$ bezüglich der Orthonormalbasis. Dadurch ist F eindeutig bestimmt.

Existenz: Sei $B := (b_{ij})$ mit $b_{ij} := b(v_i, v_j)$. Der Endomorphismus F mit darstellender Matrix B liefert das Gewünschte

$$F: V \to V, \ v \mapsto \sum_{i,j=1}^{n} b_{ij} \langle v_j, v \rangle v_i$$

Denn dann gilt für alle $k, \ell \in \{1, \dots, n\}$

$$\langle v_k, F(v_\ell) \rangle = \langle v_k, \sum_{i,j=1}^n b_{ij} \langle v_j, v_\ell \rangle v_i \rangle = \langle v_k, \sum_{i,j=1}^n b_{ij} \delta_{i,j} v_i \rangle = \langle v_k, \sum_{i=1}^n b_{i\ell} v_i \rangle$$
$$= \sum_{i=1}^n b_{i\ell} \langle v_k, v_i \rangle = \sum_{i=1}^n b_{i\ell} \delta_{ki} = b_{k\ell} = b(v_k, v_\ell).$$

Dann gilt für alle
$$x = \sum_{i=1}^{n} x_i v_i$$
 und $w = \sum_{j=1}^{n} y_j v_j \langle v, F(w) \rangle = b(v, w)$.

Bemerkung 5.19.3 Für $V = \mathbb{R}^n$ mit dem Standardskalarprodukt kann man das ganz direkt sehen: Ist B die Matrix von b bezüglich der kanonischen Basis gilt

$$b(x,y) = x^T B y = \langle x, B y \rangle.$$

SATZ 5.19.1

Zu einer symmetrischen Bilinearform b auf einem endlichdimensionalen euklidischen Vektorraum existieren eine ONB (v_1, \ldots, v_n) von V und die Zahlen $\lambda_1, \ldots, \lambda_n \in R$, sodass für alle $v, w \in V$ mit $v = \sum_{i=1}^n x_i v_i$ und $w = \sum_{j=1}^n y_j v_j$ gilt

$$b(v,w) = \sum_{k=1}^{n} \lambda_k x_k y_k. \iff M_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & & \lambda_n \end{pmatrix}.$$

Das n-Tupel $(\lambda_1, \dots \lambda_n)$ ist bis auf Permutationen eindeutig bestimmt, hängt also nur von b und der ONB ab.

Beweis. Existenz:

Sei $F \in \text{End}(V)$ der eindeutig bestimmte Endomorphismus mit $b(v, w) = \langle v, F(w) \rangle$ aus Lemma 5.19.2. Weil b symmetrisch ist, ist F nach Lemma 5.19.1 selbstadjungiert.

Nach Satz 5.17.2 existiert also eine Orthonormalbasis (v_1, \ldots, v_n) von V aus Eigenvektoren von F. Seien $\lambda_1, \ldots, \lambda_n$ die dazugehörigen Eigenwerte.

Dann gilt für die Vektoren $v = \sum_{i=1}^n x_i v_i$ und $w = \sum_{j=1}^n y_j v_j$

$$b(v,w) = \langle v, F(w) \rangle = \langle v, F\left(\sum_{j=1}^{n} y_{j} v_{j}\right) \rangle = \langle v, \sum_{j=1}^{n} y_{j} F(v_{j}) \rangle$$

$$= \langle \sum_{i=1}^{n} x_{i} v_{i}, \sum_{j=1}^{n} y_{j} \lambda_{j} v_{j} \rangle = \sum_{i,j=1}^{n} x_{i} \lambda_{j} y_{j} \langle v_{i}, v_{j} \rangle = \sum_{i,j=1}^{n} x_{i} \lambda_{j} y_{j} \delta i j = \sum_{i=1}^{n} \lambda_{i} x_{i} y_{i}.$$

Eindeutigkeit:

Wie nehmen an, dass $\mathcal{B} = (v_1, \dots, v_n)$ eine Orthonormalbasis von V ist, sodass $b(v, w) = \sum_{i=1}^n \lambda_i x_i y_i$ für die schon deklarierten $v, w \in V$ gilt, und dass F der eindeutig bestimmte Endomorphismus mit $b(v, w) = \langle v, F(w) \rangle$ ist.

Für alle $i, j \in \{1, ..., n\}$ folgt

$$\langle v_i, F(v_j) \rangle = b(v_i, v_j) = \lambda_i \delta_{ij} = \begin{cases} \lambda_i & i = j \\ 0 & i \neq j \end{cases}$$

und somit

$$F(v_j) = \sum_{i=1}^{n} \langle v_i, F(v_j) v_i \lambda_j v_j. \quad \text{oder} \quad F(v_j) = \lambda_j v_j \quad ?????$$

Somit ist \mathcal{B} eine Orthonormalbasis aus Eigenvektoren von F und $(\lambda_1, \ldots, \lambda_n)$ die Eigenwerte von F und deshalb ist F durch b eindeutig bestimmt.

Wo gehört das Folgende hin??

SATZ 5.19.2

Sie V ein endlich dimensionaler euklidischer Vektorraum mit dem Skalarprodukt $\langle \cdot, \cdot \rangle$ und $q: V \to \mathbb{R}$ eine quadratische Form auf V. Dann existiert eine Orthonormalbasis $\mathcal{B} = (v_1, \dots, v_n)$ von V, sodass für alle $v = \sum_{k=1}^n x_i v_i$ gilt

$$q(v) = \sum_{j=1}^{n} \lambda_j x_j^2.$$

Beweis. Per Definition existiert zu jeder quadratischen Form eine eindeutig gestimmte symmetrische Bilinearform $b: V \times V \to \mathbb{R}$, sodass q(v) = b(v, v) für alle $v \in V$ gilt. Zu b existiert ein eindeutig bestimmter selbstadjungierter Endomorphismus $A \in \text{End}(V)$, sodass $b(v, w) = \langle v, Aw \rangle$ für alle $v, w \in V$ gilt. Eine Orthonormalbasis aus Eigenvektoren von A liefert das Gewünschte.

Definition 5.19.4 (positiv / negativ (semi)definite Bilinearform)

Eine symmetrische Bilinearform b auf einem \mathbb{R} -Vektorraum V heißt positiv definit, wenn b(v, v) > 0 für alle $v \in V \setminus \{0\}$ gilt.

Sie heißt positiv semidefinit, wenn $b(v, v) \ge 0$ für alle $v \in V$ gilt.

Die Begriffe negativ (semi)definit sind entsprechend definiert.

Die Bilinearform heißt indefinit, wenn zwei Vektoren $v, w \in V$ mit b(v, v) > 0 > b(w, w) existieren.

indefinit

Definition 5.19.5 (positiv / negativ (semi)definite Matrix)

Eine symmetrische Matrix $B \in \mathbb{R}^{n \times n}$ heißt positiv definit, wenn $x^T B x > 0$ für alle $x \in \mathbb{R}^n \setminus \{0\}$ gilt und positiv semidefinit, wenn $^T B x \ge 0$ für alle $x \in \mathbb{R}^n$ gilt.

Die Begriffe negativ definit und negativ semidefinit sind entsprechend definiert. Die Matrix heißt indefinit, wenn zwei Vektoren $x,y\in\mathbb{R}^n$ mit $x^TBx>0>y^TBy$ existieren.

negativ definit

positiv definit

positiv semidefinit

SATZ 5.19.3

Eine symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann positiv definit (semi-definit), wenn alle Eigenwerte von A positiv (nichtnegativ) sind.

Beweis. HA.

SATZ 5.19.4

Eine symmetrische Bilinearform b auf einem endlichdimensionalen \mathbb{R} -Vektorraum V ist genau dann positiv definit (semidefinit), wenn ihre Matrix bezüglich einer beliebigen Basis von V positiv definit (semidefinit) ist.

Beweis. Wenn B die Matrix von b bezüglich einer Basis $(v_1, \dots v_n)$ von V ist, dann gilt für alle $v = \sum_{k=1}^n x_i v_i \in V$

$$b(v,v) = x^T B x.$$

Ganz entsprechend beweist man die analogen Sätze für unitäre Vektorräume:

02.07.18

SATZ 5.19.5

Zu einer hermiteschen Sesquilinearform b auf einem endlichdimensionalen Vektorraum V existiert eine Orthonormalbasis (v_1, \ldots, v_n) von V und Zahlen $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, sodass für alle $v, w \in V$ mit $v = \sum_{i=1}^n x_i v_i$ und $w = \sum_{j=1}^n y_j v_j$ gilt

$$\langle v, w \rangle = \sum_{k=1}^{n} \lambda_k x_k \overline{y_k}.$$

Das n-Tupel $(\lambda_1, \dots \lambda_n)$ ist bis auf Permutationen eindeutig bestimmt.

SATZ 5.19.6

Eine hermitesche Matrix $A \in \mathbb{C}^{n \times n}$ ist genau dann positiv definit (semidefinit), wenn alle Eigenwerte von A positiv (nichtnegativ) sind.

SATZ 5.19.7

Eine hermitesche Sesquilinearform b auf einem endlichdimensionalen unitären Vektorraum V ist genau dann positiv definit (semidefinit), wenn ihre Matrix bezüglich einer beliebigen Basis von V positiv definit (semidefinit) ist.

Beweis. Eine hermetische Matrix A ist genau dann positiv definit, wenn $z^T A \overline{z} > 0$ für alle $z \in \mathbb{C}^n$ gilt. Die anderen Begriffe laufen analog.

Äquivalent ist eine hermetische Matrix A ist genau dann positiv definit, wenn $z^T \overline{A} z > 0$ für alle $z \in \mathbb{C}^n$ gilt, denn es gilt

$$z^T A \overline{z} > 0 \ \forall z \neq 0 \iff \overline{z}^T A z > 0 \ \forall z \neq 0$$

und

$$\overline{z}^T A z = \left(\overline{z}^T A z\right)^T = z^T A^T \overline{z} = z^T \overline{A} z.$$

Bemerkung 5.19.6 Entsprechend gilt auch die Definition von positiv definit etc. für hermitesche Matrizen und Sesquilinearformen.

5.20 Hauptachsentransformationen III: Bilinear
formen auf euklidischen \updelta

SATZ 5.20.1

Sei b eine symmetrische Bilinearform auf einem endlichdimensionalen \mathbb{R} Vektorraum V. Dann existiert eine Basis $\mathcal{B} = (v_1, \dots, v_n)$ von V, sodass für alle $i, j \in \{1, \dots, n\}$ gilt

$$b(v_i, v_j) \begin{cases} = 0 & i \neq j \\ \in \{\pm 1, 0\} & i = j. \end{cases}$$

Definition 5.20.1 (Signatur einer Bilinearform)

Die Signatur (oder der Trägheitsindex) einer symmetrischen Bilinearform auf einem endlichdimensionalen \mathbb{R} -Vektorraum ist das Tupel $(k,\ell,m)\in\mathbb{N}^3$ definiert durch

$$k = \#\{i \in \{1, \dots, n\} : b(v_i, v_i) = 1\},$$

$$\ell = \#\{i \in \{1, \dots, n\} : b(v_i, v_i) = -1\}$$

$$m = \#\{i \in \{1, \dots, n\} : b(v_i, v_i) = 0\}.$$

Signatur

Lemma 5.20.2 (Trägheitssatz von SILVESTER)

Die Signatur einer symmetrischen Bilinearform b auf einem endlichdimensionalen \mathbb{R} -Vektorraum hängt nur von b und nicht von der Wahl der Basis ab.

Korollar 5.20.3 (Matrix-Version)

Für jede symmetrische Matrix $B \in \mathbb{R}^{n \times n}$ existiert eine Matrix $S \in \mathrm{GL}(n, \mathbb{R})$, sodass gilt

$$S^T B S = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \quad mit \ \lambda_j \in \{\pm 1, 0\} \ \forall j \in \{1, \dots, n\}.$$

Das Tupel $(k, \ell, m) \in \mathbb{N}^3$ definiert durch

$$k = \#\{j \in \{1, \dots, n\} : \lambda_j = 1\},$$

$$\ell = \#\{j \in \{1, \dots, n\} : \lambda_j = -1\}$$

$$m = \#\{j \in \{1, \dots, n\} : \lambda_j = 0\}.$$

hängt nur von B ab und nicht von der Wahl einer passenden Matrix S.

Beispiel 5.20.4 Sei b die symmetrische Bilinearform auf \mathbb{R}^3 mit

$$b(x,x) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_3x_1 = x^TBx \text{ mit } B = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Seien $y_1 := x_1 - x_2, y_2 := x_3 - x_2 - x_1$ und $y_3 := x_1 + x_2$, dann gilt

$$b(x,x) = y_1^2 + y_2^2 - y_3^2 = y^T \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} y$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_3 - x_2 - x_1 \\ x_1 + x_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & -1 & +1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Mit
$$S=\begin{pmatrix}1&-1&0\\-1&-1&+1\\-1&-1&0\end{pmatrix}$$
 gilt also

$$b(x,x) = x^T S^T \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} Sx.$$

Die Spalten von $S^{-1}=\frac{1}{2}\begin{pmatrix}1&0&-1\\-1&0&1\\0&2&-2\end{pmatrix}$ sind die gesuchte Basis (v_1,v_2,v_3) bezüg-

lich der y-Koordinaten.

Probe: Es muss gelten

$$(b(v_i, v_j))_{ij} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} B \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} = S^{-1}{}^T B S^{-1}.$$

Und tatsächlich, es gilt

$$S^{-1}{}^{T}BS^{-1} = \frac{1}{4} \begin{pmatrix} 1 & -1 & 0 \\ -1 & -1 & +1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \\ 0 & 2 & -2 \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} 1 & -1 & 0 \\ -1 & -1 & +1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -2 & 2 \\ -2 & -2 & 2 \\ 0 & 2 & 0 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Definition 5.20.5 (Ausartungsraum eine Bilinearform)

Der Kern oder Ausartungsraum einer symmetrischen Bilinearform b auf einem Vektorraum V ist definiert als

$$Ker(b) := \{ v \in V : b(v, w) = 0 \ \forall w \in V \}.$$

Korollar 5.20.6

Der Ausartungsraum ist ein linearer Unterraum von V.

Beweis. Selbst.

Korollar 5.20.7

Ist $B \in K^{n \times n}$ die Matrix von b bezüglich einer Basis (v_1, \ldots, v_n) , dann gilt

$$v = \sum_{j=1}^{n} x_j v_j \in \text{Ker}(b) \iff x \in \text{Ker}(B)$$

Beweis. Selbst.

Definition 5.20.8 (ausgeartete / degenerierter Bilinearform)

Eine symmetrische Bilinearform b heißt ausgeartet oder degeneriert, wenn Ker $(b) \neq \{0\}$ und nicht ausgeartet oder nicht degeneriert, wenn Ker $(b) = \{0\}$, d.h., wenn es zu jeden Vektor $v \in V \setminus \{0\}$ ein $w \in V$ gibt, sodass $b(v, w) \neq 0$ gilt.

Ausartungsraum

ausgeartet

Definition 5.20.9 (Skalarprodukt)

Ein Skalarprodukt auf einem \mathbb{R} -Vektorraum V ist eine nicht ausgeartete symmetrische Bilinearform auf V.

Definition 5.20.10 (nichteuklidisches Skalarprodukt)

Ist ein Skalarprodukt auf einem \mathbb{R} -Vektorraum V nicht positiv definit, so heißt es nichteuklidisch.

nichteuklidisch

Definition 5.20.11 (Lorentz- oder Minkowski-Skalarprodukt)

Eine indefinites Skalarprodukt mit Signatur (3,1) oder allgemeiner (n-1,1) heißt Lorentz- oder Minkowski-Skalarprodukt.

Lemma 5.20.12

Ist $V_1 \subset V$ ein zu Ker(b) komplementärer Unterrraum, sodass $V = \text{Ker}(b) \oplus V_1$ gilt, dann ist die Einschränkung $b|_{V_1}$ eine nichtdegeneriertes symmetrische Bilinearform auf V_1 .

Beweis. Selbst.

Beweis. (von Satz 5.20.1) Ist b ausgeartet, so erhält man eine geeignete Basis aus einer geeigneten Basis von V_1 und einer Basis von Ker(b) aus dem vorangegangenen Lemma.

Sei also b eine nichtausgeartete symmetrische Bilinearform auf einem endlichdimensionalen \mathbb{R} -Vektorraum V. Wir beweisen die Behauptung über vollständige Induktion über $n := \dim(V)$.

IA: Für n = 0 ist nichts zu zeigen.

IS: Sei n > 0. Weil b nicht ausgeartet ist, existiert ein $\widetilde{v}_1 \in V$ mit $b(\widetilde{v}_1, \widetilde{v}_1) \neq 0$. Sonst nach der Polarisationsformel [hier LINK!] wäre b die Nullform! Für $v_1 := \frac{1}{\sqrt{|b(\widetilde{v}_1,\widetilde{v}_1)|}} \cdot \widetilde{v}_1$ gilt dann

$$b(v_1, v_1) = \frac{b(\widetilde{v}_1, \widetilde{v}_1)}{|b(\widetilde{v}_1, \widetilde{v}_1)|} = \pm 1.$$

Sei nun $U \subset V$ das orthogonale Komplement von span (v_1) bezüglich b, dann gilt

$$U = \{ v \in V : b(v_1, v) = 0 \}$$

und dim U = n - 1, da die lineare Abbildung $V \to \mathbb{R}$, $v \mapsto b(v_1, v)$ hat \mathbb{R} als Bild, weil $db(v_1, v_1) \neq 0$ gilt, und als U als Kern. Nach der Dimensionsformel gilt

$$n = \dim V = \dim U + \dim \mathbb{R} = \dim U + 1.$$

Nach Induktionsvoraussetzung existiert eine Basis (v_2, \ldots, v_n) von U, sodass für alle $i, j \in \{2, \ldots, n\}$ gilt

$$b(v_i, v_j) \begin{cases} = 0 & i \neq j \\ \in \{\pm 1\} & i = j. \end{cases}$$

Dann ist (v_1, \ldots, v_n) eine Basis V sodass für alle $i, j \in \{1, \ldots, n\}$ gilt

$$b(v_i, v_j) \begin{cases} = 0 & i \neq j \\ \in \{\pm 1\} & i = j. \end{cases}$$

Beweis. (Idee für Eindeutigkeit der Signatur (5.20.2)) Es gilt

 $k = \max\{\dim U : U \subseteq V \text{ ist ein linearer Unterraum und } b|_V \text{ ist positiv definit.}\}$ $\ell = \max\{\dim U : U \subseteq V \text{ ist ein linearer Unterraum und } b|_V \text{ ist negativ definit.}\}$ $m = \dim \operatorname{Ker} b.$

Ein andere Beweis findet sich im Fischer.

5.21 *IX: Drehungen in der Ebene und im Raum

22.06.18

Intuitive Eigenschaften von Drehungen mathematisieren

Intuitive Eigenschaften von Drehungen:

- ist invertierbar
- erhält Längen, Winkel und Orientierung

Definition 5.21.1 (Orthogonalität)

Sei V ein \mathbb{R} -Vektorraum mit Standardskalarprodukt $\langle \cdot, \cdot \rangle$. Ein Endomorphismus $F \in \operatorname{End}(V)$ heißt orthogonal, wenn gilt

- \bullet F ist invertierbar
- $\langle F(v), F(w) \rangle = \langle v, w \rangle$ für alle $v, w \in V$.

Ist jede orthogonale Abbildung eine Drehung? Nein, da auch Spiegelungen orthogonale Abbildungen sind.

Eine Drehung muss det $F = \pm 1$ erfüllen, d.h., (vgl. VL) dass die Matrix einer orthogonalen Abbildung bezüglich einer Orthonormalbasis eine orthogonale Matrix ist, d.h. $M_{\mathcal{B}}(F)^T M_{\mathcal{B}}(F) = E$.

Es gilt $det(F) = 1 \implies M_{\mathcal{B}}(F) \in SO(n)$.

Drehungen im \mathbb{R}^2

Sei R_{α} eine Drehung in \mathbb{R}^2 um den Ursprung mit Winkel $\alpha \in [0, 2\pi)$.

Was sind die Koordinaten von $R_{\alpha}(e_1)$ und $R_{\alpha}(e_2)$?

$$R_{\alpha}(e_1) = \cos(\alpha) \cdot e_1 + \sin(\alpha) \cdot e_2 \quad \text{und} \quad R_{\alpha}(e_2) = -\sin(\alpha) \cdot e_1 + \cos(\alpha) \cdot e_2$$

$$\implies M_{\mathcal{B}}(R_{\alpha}) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \in SO(2).$$

Ist SO(2) abelsch? Ja!

Beweis. Sie $\mathcal{B} = (e_1, e_2)$ eine Orthonormalbasis, dann gilt

$$M_{\mathcal{B}}(R_{\alpha})M_{\mathcal{B}}(R_{\beta}) = \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} = M_{\mathcal{B}}(R_{\beta})M_{\mathcal{B}}(R_{\alpha}).$$

Drehungen im Raum

Intuition:

Eine Drehung im \mathbb{R}^3 hat eine Drehachse und einen Winkel α . Diese Drehachse ist

Drehachse

eine Gerade durch den Ursprung und parallel zu n, wobei gilt ||n|| = 1, d.h. die Ebene n^{\perp} wird um den Winkel α gedreht.

Algebra:

Die darstellende Matrix bezüglich einer Orthonormalbasis ist in SO(3), d.h., es existiert eine ausgezeichnete Orthonormalbasis, \mathcal{B} , sodass gilt

$$M_{\mathcal{B}}(F) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}. \tag{26}$$

Sei $\mathcal{B} = (w_1, w_2, w_3)$ die ausgezeichnete Orthonormalbasis, sodass die darstellende Matrix die obige Form hat. In der Basis \mathcal{B} gilt

$$R(w_1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = w_1.$$

Also muss w_1 die Drehachse sein, da w_1 unter der Drehung R erhalten bleibt. Die Drehung R hat also den Eigenvektor w_1 mit Eigenwert 1. Die Gerade span (w_1) ist ein invarianter Unterraum, und da er eindimensional ist, ist er erhaltend.

Nun wissen wir, dass die Vektoren w_2 und w_3 eine Ebene aufspannen, in welcher die Drehung R mit Drehachse w_1 , R^{w_1} eine Drehung um Winkel α ist. $R^{w_1}|_{\text{span}(w_1,w_2)}$ ist eine Drehung um Winkel α in der Ebene span (w_2, w_3) , also existiert nach 5.21.2 eine ausgezeichnete Orthonormalbasis \widetilde{B} von V, sodass gilt

$$M_{\widetilde{\mathcal{B}}}(R^{w_1})|_{\operatorname{span}(w_2, w_3)} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}. \tag{27}$$

R^n_{α} in der kanonischen Basis - Rodriguez' Drehformel

Seien $v \in \mathbb{R}^3$ und R^n_α eine Drehung im \mathbb{R}^3 . Wir wollen R^n_α errechnen, indem wir nur die Komponenten von v verwenden, welche orthogonal zu n mit ||n|| = 1 drehen.

 $v = v_{||} + v_{\perp}$ wobei $R_{\alpha}^{n}(v_{||}) = v_{||}$.

$$R_{\alpha}^{n}(v) = R_{\alpha}^{n}(v_{\parallel} + v_{\perp}) = R_{\alpha}^{n}(v_{\parallel}) + R_{\alpha}^{n}(v_{\perp}) = v_{\parallel} + R_{\alpha}^{n}(v_{\perp})$$

Was ist v_{\perp} ? Es gilt

$$\begin{split} v_\perp &= v - v_\parallel = v - \left< \, n, v \, \right> n \quad \text{und andererseits} \\ &- n \times (n \times v) = -[n \left< \, n, v \, \right> - v \left< \, n, n \, \right>] = v \left< \, n, n \, \right> - n \left< \, n, v \, \right> \stackrel{\|n\| = 1}{=} v - n \left< \, n, v \, \right> \end{split}$$

Wir haben also $v_{\perp} = -n \times (n \times v)$ gezeigt. Insgesamt gilt also

$$R_{\alpha}^{n}(v) = v_{\parallel} + R_{\alpha}^{n}(v_{\perp}) = v - v_{\perp} + R_{\alpha}^{n}(v_{\perp})$$

$$= v - v_{\perp} + \cos(\alpha)v_{\perp} + \sin(\alpha)(n \times v_{\perp})$$

$$= v + (\cos(\alpha) - 1)v_{\perp} + \sin(\alpha)(n \times (v - v_{\perp}))$$

Nun gilt $n \times v_{\perp} = 0$ weil gilt $v_{\parallel} || n$, somit gilt

$$R_{\alpha}^{n}(v) = v + \sin(\alpha(n \times v)) + (1 - \cos(\alpha))(n \times (n \times v)).$$

Sei N die darstellende Matrix der linearen Abbildung $N(v)=n\times v$. Dann ist R^n_α die lineare Abbildung

$$R_{\alpha}^{n} = \mathrm{id} + \sin(\alpha)N + (1 - \cos(\alpha))N^{2}.$$
 (RODRIGUEZ' Drehformel)

Wann kommutieren zwei Drehungen im Raum?

Seien R^n_{α} und R^m_{β} zwei Drehungen in \mathbb{R}^3 . Eine Teilfrage davon ist: Sind $R^n_{\alpha}R^m_{\beta}$ und $R^m_{\beta}R^n_{\alpha}$ überhaupt Drehungen?

Ja, weil für eine gemeinsame Orthonormalbasis, die weder für R_{α}^{n} noch R_{β}^{m} ausgezeichnet ist, ist das Produkt zweier Matrizen aus SO(3) wieder in SO(3).

Leider ist es schwierig, die verknüpfenden Drehachse und Winkel geometrisch herauszufinden.

Der folgende Satz bestätigt die intuitive Vermutung, dass Drehungen kommutieren, wenn sie die selbe Drehachse besitzen.

SATZ 5.21.1: TODO: TITEL FEHLT

Seien R^n_{α} und R^m_{β} zwei Drehungen in \mathbb{R}^3 mit $\alpha \neq 0 \neq \beta$. Dann gilt

 R_{α}^{n} und R_{β}^{m} kommutieren \iff n und m sind linear abhängig.

Beweis. " \Rightarrow ": Seien R^n_{α} und R^m_{β} zwei kommutierende Drehungen in \mathbb{R}^3 .

Aus HA III Aufg. 2 wissen wir, dass die Eigenräume von R^n_{α} invariante Unterräume von R^m_{β} sind. In diesem Fall ist die Drehachse $\mathrm{span}(n)$ ein Eigenraum von R^n_{α} , also ein invariante Unterraum von R^m_{β} . Weil R^m_{β} dreidimensionale ist, hat es einen zweidimensionalen Unterraum und einen eindimensionalen Unterraum. Also hat R^m_{β} nur einen eindimensionalen Unterraum, nämlich $\mathrm{span}(m)$. Somit muss $\mathrm{span}(n) = \mathrm{span}(m)$ gelten, also sind n und m linear abhängig.

"\(\infty\)": Seien R^n_{α} und R^m_{β} zwei Drehungen in \mathbb{R}^3 mit der selben Drehachse. Wähle nun eine simultan ausgezeichnete Orthonormalbasis \mathcal{B} von \mathbb{R}^3 , dann gilt

$$M_{\mathcal{B}}(R_{\alpha}^{n})M_{\mathcal{B}}(R_{\beta}^{m}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\beta) & -\sin(\beta) \\ 0 & \sin(\beta) & \cos(\beta) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ 0 & \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{pmatrix} = M_{\mathcal{B}}(R_{\alpha+\beta}^{n}).$$

5.22 *X: Hauptachsentransformation & Kegelschnitte

Man betrachte die Gleichung

29.06.18

$$-\frac{11}{16}x_1^2 - \frac{5\sqrt{3}}{8}x_1x_2 - \frac{x_2^2}{16} + \frac{1}{8}(15\sqrt{3} - 11)x_1 + (3 - 5\sqrt{3})x_2 + \frac{1}{8}(15\sqrt{3} - 18) = 0$$
 (28)

- Formen Sie die Gleichung ?? zu einer Gleichung der Form $\langle x, Ax \rangle + \langle v, x \rangle + c = 0$ mit $A \in \mathbb{R}^{2 \times 2}$, $b, c \in \mathbb{R}$ um. A, b und c kann man ablesen. Es gilt $A = \begin{pmatrix} 11 & 5\sqrt{3} \\ 5\sqrt{3} & 1 \end{pmatrix}$, $b = \begin{pmatrix} \frac{1}{8}(15\sqrt{3} 11) \\ 3 5\sqrt{3} \end{pmatrix}$ und $c = \frac{1}{9}(15\sqrt{3} 18)$.
- 2 Bestimmen Sie die Hauptachsentransformation, d.h., finden Sie eine Matrix $S \in SO(2)$, sodass $S^{-1}AS$ diagonalisierbar ist.

Aus dem Satz über die JNF folgt, dass eine Jordanbasis \mathcal{B} existiert, sodass $B^{-1}AB$ diagonalisierbar ist. Weil A reellwertig und symmetrisch ist, besitzt A eine Basis aus Eigenvektoren v_1, v_2 , die orthogonal zueinander liegen. Sie die Eigenwerte λ_1 und λ_2 von A verschieden, so müssen wir die Eigenvektoren normieren und ggf. die Reihenfolge ändern, bis wir eine positive Orientierung haben.

Die gilt in unserem Fall, weil A eine 2×2 Matrix ist. Im allgemeinen Fall gilt: Für jeden Eigenvektor erhalten wir einen Eigenraum. Die Eigenräume liegen orthogonal zueinander, also wendet man das Gram-Schmidt-Verfahren für jeden Eigenraum an.

Wir bestimmen nun die JNF. Es gilt

$$\det(A - t \cdot E) = \begin{vmatrix} -\frac{11}{16} - t & -\frac{5}{16}\sqrt{3} \\ -\frac{5}{16}\sqrt{3} & -\frac{1}{16} - t \end{vmatrix} = \frac{1}{16^2} \left(16^2 t^2 + (11+1)16t + 11 - 75 \right)$$
$$= \frac{1}{16^2} \left(16^2 t^2 + 12 \cdot 16t - 64 \right) = t^2 + \frac{3}{4}t - \frac{1}{4} = \underline{(t+1)(4t-1)},$$

und somit sind die Eigenwerte von A $\lambda_1=-1$ und $\lambda_2=\frac{1}{4}$ und es gilt $B^{-1}AB=\left(\begin{smallmatrix}\lambda_1&0\\0&\lambda_2\end{smallmatrix}\right)$.

Wir bestimmen nun die Eigenvektoren. Es gilt

$$\operatorname{Ker}(A+t) = \operatorname{Ker} \frac{5}{16} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 3 \end{pmatrix} \stackrel{\operatorname{GEV}}{\to} \operatorname{span} \left(\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \right),$$

$$\operatorname{Ker} \left(A - \frac{t}{4} \right) = \operatorname{Ker} - \frac{5}{16} \begin{pmatrix} 3 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \stackrel{\operatorname{GEV}}{\to} \operatorname{span} \left(\begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} \right).$$

Die Basisvektoren v_1,v_2 sind orthogonal, da gilt $\left\langle \left(\begin{smallmatrix} 1 \\ -\sqrt{3} \end{smallmatrix} \right) \left(\begin{smallmatrix} \sqrt{3} \\ 1 \end{smallmatrix} \right) \right\rangle = \sqrt{3} - \sqrt{3} = 0.$

Nun müssen wir die orthogonalen Eigenvektoren normieren. Seien also

$$s_1 := \frac{1}{\|v_1\|} v_1 = \frac{1}{\sqrt{\sqrt{3}^2 + 1^2}} \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$$
$$s_2 := \frac{1}{\|v_2\|} v_2 = \frac{1}{\sqrt{\sqrt{3}^2 + 1^2}} \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix},$$

und somit ist $S := (s_1, s_2)$ eine Orthonormalbasis.

Gilt auch $S \in SO(2)$? Nein, denn es gilt $det(S) = -\frac{3}{4} - \frac{1}{4} = -1 + 1$.

Wir wollen aber nicht Reihenfolge der Vektoren verändern, sondern ersetzen einfach s_2 durch $-s_2$ und dann gilt $\tilde{S} := (s_1, -s_2) \in SO(2)$ und man kann $\alpha = \frac{\pi}{6}$ als den Drehwinkel ablesen.

3 Bestimmen Sie den Kegelschnitt der Lösungsmenge und fertigen Sie einen Skizze mit den wichtigsten Merkmalen an.

Der Typ des Kegelschnitts wir durch die Vorzeichen der Eigenvektoren bestimmt. Hier gilt $\lambda_1 < 0 < \lambda_2$, also ist die Lösungsmenge eine Hyperbel, welche in den $x_1 - x_2$ -Koordinaten um den Winkel α gedreht wird.

Abbildung 9: [Quelle: WolframAlpha]

5.23 Signatur mit Hauptminoren berechnen

09.07.18

SATZ 5.23.1

Seien b eine symmetrische Bilinearform auf einem \mathbb{R} -Vektorraum V und $\mathcal{B} = (v_1, \ldots, v_n)$ eine Basis und $M_{\mathcal{B}}(b) := A := (a_{ij})$, das heißt $a_{ij} = b(v_i, v_j)$. Dann gilt

- 1 b ist ausgeartet $\iff \det(A) = 0$.
- 2 Sind alle Hauptunterdeterminanten (bzw. Hauptminoren)

$$d_k = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{vmatrix}$$
 (29)

für alle $k\in\{1,\ldots,n\}$ ungleich Null, dann ist die Signatur von b $(n-\ell,\ell,0)$, wobei ℓ die Anzahl der Vorzeichenwechsel in der Folge $1,d_1,\ldots,d_n$ ist.

Beispiel 5.23.1 Sei $b(x,y) = x^T B y$ mit $B = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$ eine Bilinearform auf \mathbb{R}^3 . Nach Satz 5.23.1 ist b nicht ausgeartet, über die Signatur sagt er jedoch nichts aus, da $d_2 = 0$ ist. Die Folge der Hauptminoren ist 1, 1, 0, -4.

Für die Basis $\mathcal{A} = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right)$ erhält man $B \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$ und somit

$$A := M_{\mathcal{A}}(b) = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Die Folge von A ist 1, 1, 2, -4 und besitzt einen Vorzeichenwechsel. Nach dem Satz ist die Signatur also (2, 1, 0), welches wir schon in Beispiel 5.20.4 ausgerechnet haben.

Lemma 5.23.2 (Determinaten äquivalenter Matrizen haben selbes Vorzeichen) $F\ddot{u}r A \in \mathbb{R}^{n \times n}, S \in GL(n, \mathbb{R}) \ und \ B = S^T A S \ gilt$

$$\operatorname{sgn}(\det(A)) = \operatorname{sgn}(\det(B)).$$

Beweis. Es gilt

$$\det(B) = \det(S^T A S) = \underbrace{(\det(S))^2}_{>0} A.$$

Beweis. (von Satz 5.23.1) ① Für $v = \sum_{i=1}^{n} x_i v_i$ gilt nach Korollar 5.20.7 $v \in \text{Ker}(b) \iff x \in \text{Ker}(A)$. Also ist b genau dann ausgeartet, wenn A singulär (= nicht invertierbar) ist.

② Seien $U_1 := \operatorname{span}\{v_1\}, U_2 := \operatorname{span}\{v_1, v_2\}, \dots, U_n := \operatorname{span}\{v_1, \dots, v_n\} = V$ und sei (k_k, ℓ_j) die Signatur von $b|_{U_j}$. Nach ① sind alle Einschränkungen nicht ausgeartet.

Aus dem Lemma 5.23.2 folgt $\operatorname{sgn}(d_j) = (-1)^{\ell_j}$. Zusammen mit

 $\ell = \max\{\dim U : U \subseteq V \text{ ist linearer Unterraum, } b|_V \text{ ist negativ definit.}\}$

folgt die Behauptung, da bei jedem Schritt entweder die Anzahl der positiv definiten oder negativ definiten Unterräume zusammenkommen. \Box

Korollar 5.23.3

b ist positiv definit \iff Alle Hauptminoren von A sind positiv.

Genauso gelten die folgenden analogen Sätze für \mathbb{C} -Vektorräume, deren Beweise keine neuen Ideen erfordern:

SATZ 5.23.2: KOMPLEXE ANALOG ZU 5.20.1

Sei b eine symmetrische Bilinearform auf einem endlichdimensionalen CVektorraum V. Dann existiert eine Basis $\mathcal{B} = (v_1, \ldots, v_n)$ von V, sodass gilt

$$b(v_i, v_j) \begin{cases} = 0 & i \neq j \\ \in \{1, 0\} & i = j. \end{cases}$$

Dabei gilt

$$\#\{i \in \{1,\ldots,n\} : b(v_i,v_i)=0\} = \dim \mathrm{Ker}(b).$$

SATZ 5.23.3

Sei b eine hermitesche Sesquilinearform auf einem endlichdimensionalen C-Vektorraum V. Dann existiert eine Basis $\mathcal{B} = (v_1, \ldots, v_n)$ von V, sodass gilt

$$b(v_i, v_j) \begin{cases} = 0 & i \neq j \\ \in \{\pm 1, 0\} & i = j. \end{cases}$$

Die (genau wie im reellen Fall definierte) Signatur hängt nur von b ab.

Bemerkung (Wohin damit?) Der Kern ist die einzige Invariante für eine symmetrische Bilinearform auf einem C-Vektorraum.

6 Dualität und Tensorprodukte

6.1 Einführung: Dualität

DEFINITION 6.1.1 (Linearform)

Eine Linearform auf einem K-Vektorraum V ist eine lineare Abbildung $V \to K$.

Linearform

Dualraum

DEFINITION 6.1.2 (Dualraum)

Der K-Vektorraum der Linearformen auf V heißt der Dualraum von V und wir mit V^* bezeichnet:

$$V^* = \operatorname{Hom}(V, K) = \{ \varphi : V \to K : \varphi \text{ ist linear.} \}.$$

Beispiel 6.1.3 $(\mathbb{K}^n)^*$ enthält genau die Funktion $\varphi : \mathbb{K}^n \to \mathbb{K}$ der Form $\varphi(x) = \sum_{k=1}^n a_k x_k$ mit $a_1, \ldots, a_n \in \mathbb{K}$.

Beispiel 6.1.4 Auf dem Raum $C^0([a,b])$ der stetigen Funktionen $[a,b] \to \mathbb{R}$ sind für ein $x \in [a,b]$ die Abbildungen

$$\operatorname{ev}_x: f \mapsto f(x)$$
 und $\int_a^b dx: f \mapsto \int_a^b f(x)dx$

Linearformen.

Bemerkung Im Gegensatz zur Funktionalanalysis werden in der Linearen Algebra nur Linearformen auf endlichdimensionalen Vektorräumen behandelt. Sei also V ein endlichdimensionaler K-Vektorraum.

Lemma 6.1.5 (duale Basis)

Ist $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis von V, so existiert zu jedem $i \in \{1, \dots, n\}$ genau eine Linearform $\varphi_i : V \to K$, $v_j \mapsto \delta_{ij}$.

Beweis. Seien $\varphi \in V^*$ und $a_i := \varphi(v_i)$ für alle $i \in \{1, \dots, n\}$. Dann gilt $\varphi = \sum_{j=1}^n a_j \varphi_j$, denn für jeden Basisvektor v_i gilt

$$\varphi(v_i) = a_i = \sum_{k=1}^n a_j \varphi_j(v_i) = \sum_{k=1}^n a_j \delta_{ij},$$

also ist die Familie \mathcal{B}^* ein Erzeugendensystem von V^* .

Ist $\varphi = \sum_{k=1}^n a_k \varphi_k = 0$, d.h. $\varphi(v) = 0$ für alle $v \in V$, dann folgt insbesondere für alle $i \in \{1, \ldots, n\}$

$$0 = \varphi(v_i) = \left(\sum_{k=1}^n a_j \varphi_j\right)(v_i) = \sum_{k=1}^n a_j \varphi_j(v_i) = a_i,$$

also folgt $a_1 = \ldots = a_n = 0$ und somit ist die Familie \mathcal{B} auch linear unabhängig also eine Basis.

Korollar 6.1.6

Es gilt stets $\dim(V) = \dim(V^*)$, weil die Basen die gleiche Anzahl von Elementen haben.

DEFINITION 6.1.7 (duale Basis)

Diese Linearformen bilden eine Basis $\mathcal{B}^* = (\varphi_1, \dots, \varphi_n)$ des Dualraums V^* , die zu V duale Basis.

duale Basis

Korollar 6.1.8

Zu jedem $v \in V \setminus \{0\}$ existiert ein $\varphi \in V^*$ mit $\varphi(v) \neq 0$.

Beweis. Mit dem Basisergänzungssatz??

Beispiel 6.1.9 Die zur kanonische Basis (e_1, \ldots, e_n) von K^n duale Basis ist

$$(\varphi_1, \dots, \varphi_n) \text{ mit } \varphi_j \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_j.$$

Beispiel 6.1.10 Betrachte die Basis $\mathcal{B} = (\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix})$ des \mathbb{R}^2 .

Was ist die duale Basis (ψ_1, ψ_2) ?

Es gilt

$$\psi_1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = a_{11}x_1 + a_{12}x_2$$
 und $\psi_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = a_{21}x_1 + a_{22}x_2$.

Aus

$$1 = \psi_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = a_{11}, \quad 0 = \psi_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = a_{11} + a_{12}$$
$$0 = \psi_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = a_{21}, \quad 1 = \psi_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = a_{21} + a_{22}$$

folgt $a_1 1 = 1$, $a_{12} = a_{22} = 1$ und $a_{12} = -1$ und somit

$$\psi_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = x_1 - x_2 \quad \text{und} \quad \psi_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_2.$$

Man kann sehen, dass jeder Vektor der dualen Basis von jedem Vektor der primären Basis abhängt.

13.07.18

Annulator

DEFINITION 6.1.11 (Annihilator)

Ist $U \subseteq V$ ein Unterraum, so ist der Annulator von V definiert als

$$U^{\circ} := \{ \varphi \in V^* \mid \varphi(u) = 0 \ \forall u \in U \}.$$

Diese Notation ist basisunabhängig!

Lemma 6.1.12

Der Annihilator U° ist ein linearer Unterraum⁵ von V^* .

Beweis. Selbst.

Satz 6.1.1: Dimensionsformel für den Annulator

Für ... gilt

$$\dim(U) + \dim(U^{\circ}) = \dim V.$$

Beweis. Seien (u_1, \ldots, u_k) eine Basis von U und $(u_1, \ldots, u_k, v_1, \ldots, v_m)$ eine Basis von V. Sei $(\varphi_1, \ldots, \varphi_k, \psi_1, \ldots, \psi_m)$ die duale Basis (von V?). Dann ist (ψ_1, \ldots, ψ_m) eine Basis von U° und daraus folgt die Behauptung, denn es gilt

$$\dim(V) = k + m = \dim(U) + \dim(U^{\circ}).$$

Das sieht man so: die Familie (ψ_1, \ldots, ψ_m) ist als Teil einer Basis von V^* linear unabhängig, es genügt also zu zeigen, dass sie ein Erzeugendensystem von U° bilden, also dass span $(\psi_1, \ldots, \psi_m) = U^{\circ}$ gilt.

"⊆": Für $\psi = \sum_{j=1}^m \alpha_j \psi_j$ und $u = \sum_{i=1}^k a_i u_i \in U^\circ$ gilt

$$\psi(u) = \sum_{j=1}^{m} \alpha_j \psi_j \left(\sum_{i=1}^{k} a_i u_i \right) = \sum_{j=1}^{m} \sum_{i=1}^{k} \alpha_j a_i \underbrace{\psi_j(u_i)}_{=0} = 0.$$

"\\equiv ": F\" ir $\psi = \sum_{j=1}^k \beta_j \varphi_j + \sum_{j=1}^m \alpha_j \psi_j \in U^\circ$ gilt f\" alle $\ell \in \{1, \dots, k\}$

$$0 = \psi(u_{\ell}) = \sum_{j=1}^{k} \beta_j \underbrace{\varphi_j(u_{\ell})}_{=\delta_{j\ell}} + \sum_{j=1}^{m} \alpha_j \underbrace{\psi_j(u_{\ell})}_{=0} = \beta_j.$$

Also folgt $\psi \in \text{span}(\psi_1, \dots, \psi_m)$.

Definition 6.1.13 (Duale Abbildung)

Sei $F:V\to W$ eine lineare Abbildung. Die duale Abbildung zu F ist die Abbildung F^* definiert durch

$$F^*: W^* \to V^*, \ \psi \mapsto \psi \circ F.$$

Satz 6.1.2: $M_{\mathcal{A}*}^{\mathcal{B}*}(F^*) = M_{\mathcal{B}}^{\mathcal{A}}(F)^T$

Seien V und W K-Vektorräume mit den Basen $\mathcal{A}=(v_1,\ldots,v_n)$ und $\mathcal{B}=(w_1,\ldots,w_n)$ und $\mathcal{A}^*=(\varphi_1,\ldots,\varphi_m)$ und $\mathcal{B}^*=(\psi_1,\ldots,\psi_n)$ die dualen Basen. Für $F\in \operatorname{Hom}(V,W)$ gilt

$$M_{\mathcal{A}^*}^{\mathcal{B}^*}(F^*) = M_{\mathcal{B}}^{\mathcal{A}}(F)^T.$$

Beweis. Für $M_{\mathcal{B}}^{\mathcal{A}}(F) := (a_{ij})$ und $M_{\mathcal{A}^*}^{\mathcal{B}^*}(F^*) := (b_{ij})$ gilt nach Definition 3.1.1

$$F(v_j) = \sum_{i=1}^{n} a_{ij} w_i$$
 und $F^*(\psi_j) = \sum_{i=1}^{m} b_{ij} \varphi_i$.

Somit folgt

$$(F^*(\psi_j))(v_i) = b_{ij} \stackrel{\text{Def}}{=} \psi_j(F(v_i)) = a_{ji}.$$

duale Abbildung

SATZ 6.1.3: $Ker(F^*) = (Im(F))^*, Im(F^*) = (Ker(F))^\circ)$

Für eine lineare Abbildung $F:V\to W$ gilt

$$\operatorname{Ker}(F^*) = (\operatorname{Im}(F))^{\circ}$$
 und $\operatorname{Im}(F^*) = (\operatorname{Ker}(F))^{\circ}$.

Korollar 6.1.14

$$rang(F) = rang(F^*).$$

Beweis. Mit Hilfe der Dimensionsformel (*) gilt

$$\operatorname{rang}(F^*) = \dim\left(\operatorname{Im}(F^*)\right) = \dim\left(\left(\operatorname{Ker}(F)\right)^{\circ}\right)$$

$$\stackrel{6 \stackrel{\cdot}{=} 1}{=} \dim(V) - \dim\left(\operatorname{Ker}(F)\right) \stackrel{(*)}{=} \dim\left(\operatorname{Im}(F)\right) = \operatorname{rang}(F)$$

Korollar 6.1.15

Für eine Matrix $A \in K^{n \times m}$ gilt Zeilenrang(A) = Spaltenrang(A).

Beweis. (des Satzes) 1 Es gilt

$$\psi \in \operatorname{Ker}(F^*) \iff F^*(\psi) = 0 \iff (F^*(\psi))(v) = 0 \quad \forall v \in V$$

$$\stackrel{6.1.13}{\iff} \psi(F(v)) = 0 \quad \forall v \in V \iff \psi \in (\operatorname{Im}(F))^*.$$

2 " \subseteq ": Für $\varphi = F^*(\psi) \in \operatorname{Im}(F^*)$ und $v \in \operatorname{Ker}(F)$ gilt

$$\varphi(v) = (F^*(\psi))(v) = \psi(F(v)) = \psi(0) = 0.$$

" \supseteq ": Für $\varphi \in (\text{Ker}(F))^{\circ} \iff \varphi \in V^* : \varphi(v) = 0 \ \forall v \in \text{Ker}(F)$ muss man eine Linearform ψ in W^* finden, sodass $\varphi = F^*(\psi)$ gilt.

Sei $\mathcal{A} = (u_1, \dots, u_k, v_1, \dots, v_r)$ eine basis von V, sodass $\operatorname{Ker}(F) = \operatorname{span}(u_1, \dots, u_k)$ gilt. Sei $\mathcal{B} = (w_1, \dots, w_r, w_{r+1}, \dots, w_n)$ eine Basis von W mit $w_i = F(v_i)$ für alle $i \in \{1, \dots, r\}$ und $\mathcal{B}^* = (\psi_1, \dots, \psi_r, \psi_{r+1}, \dots, \psi_n)$ die duale Basis von W^* .

Für $\psi=\sum_{j=1}^r \varphi(v_j)\psi_j=\sum_{j=1}^r \psi\left(F(v_j)\right)\psi_j$ gilt $F^*(\psi)=\varphi$, denn für $i\in\{1,\ldots,k\}$ gilt

$$(F^*(\psi))(u_i) = \psi(F(u_i)) = \psi(0) = 0 = \varphi(u_i).$$

Alternative Begründung für " \subseteq ": Für $i \in \{1, ..., r\}$ gilt

$$(F^*(\psi))(v_i) = \psi(F(v_i)) = \psi(w_i) = \varphi(v_i).$$

DEFINITION 6.1.16 (Bidualraum)

Der Dualraum des Dualraums von $V,\,V^{**}=\operatorname{Hom}(V^*,K),$ heißt Bidualraum.

Bidualraum

SATZ 6.1.4

Die kanonische Abbildung

$$\xi: V \to V^*, \ v \mapsto (V^* \to K, \ \varphi \mapsto \varphi(v)).$$

ist ein Isomorphismus.

Beweis. Weil dim $V = \dim V^* = \dim V^{**}$ ist, reicht es zu zeigen, dass $Ker(\xi) = \{0\}$ ist.

Aus $v \in \text{Ker}(\xi)$ folgt $\xi(v) = 0$, also gilt für alle $\varphi \in V^*$

$$0 = (\xi(v))(\varphi) = \varphi(v),$$

also gilt
$$v = 0$$
.

Bemerkung 6.1.17 Der kanonische Isomorphismus erlaubt es, V und V^{**} zu identifizieren: Man fasst einen Vektor $v \in V$ gleichzeitig als Linearform auf V^* auf, indem man definiert $v(\varphi) = \varphi(v)$.

Lemma 6.1.18

Es gilt $F^{**} = F$ und $U^{\circ \circ} = U$.

Korollar 6.1.19 (mit Beweis.)

Mit diesen Identifikationen erhält man aus der Gleichung $\operatorname{Ker}(F^*) = (\operatorname{Im}(F))^{\circ}$ (Satz 6.1.3), indem man F durch F^* ersetzt

$$\operatorname{Ker}(F) = (\operatorname{Im}(F^*))^{\circ} \stackrel{6.1.18}{\Longrightarrow} (\operatorname{Ker} F)^{\circ} = \operatorname{Im}(F^*).$$

6.2 Dualität und Skalarprodukte

16.07.18

Satz 6.2.1: $v \mapsto \langle v, \cdot \rangle$ ist isomorph

Sei $\langle \cdot, \cdot \rangle : V \times V \to K$ eine nicht ausgeartete symmetrische Bilinearform. Dann ist die Abbildung $\Psi : V \to V^*, \ v \mapsto \langle v, \cdot \rangle$ ein Isomorphismus.

Beweis. Da $\dim(V) = \dim(V^*)$ ist, reicht es zu zeigen, dass Ψ injektiv ist. Die Injektivität folgt daraus, das Skalarprodukt nicht ausgeartet ist.

SATZ 6.2.2

- 1 Die adjungierte Abbildung $\Phi^*: V^{**} = V \to V^*$ erfüllt $\Phi^* = \Phi$.
- 2 Ist umgekehrt $\Phi: V \to V^*$ ein beliebiger Isomorphismus mit $\Phi^* = \Phi$, dann definiert

$$\langle \cdot, \cdot \rangle_{\Phi} : V \times V \to K, \ (v, w) \mapsto \Phi(v)(w)$$

eine nicht ausgeartete symmetrische Bilinearform.

Beweis. (1) Für $v, w \in V$ gilt

$$\Phi^*(v)(w) = v\left(\Phi(w)\right) = v\left(\langle w, \cdot \rangle\right) = \langle w, v \rangle = \langle v, w \rangle = \Phi(v)(w).$$

② Selbst.

Bemerkung 6.2.1 Seien V ein euklidischer Vektorraum und (v_1, \ldots, v_n) eine Orthonormalbasis von V. Dann ist die zu V duale Basis $(\langle v_1, \cdot \rangle, /ldots, \langle v_n, \cdot \rangle)$.

Definition 6.2.2 (adjungierte Abbildung)

Seien V und W euklidische Vektorräume und $F \in \text{Hom}(V,W)$ eine lineare Abbildung. Die Abbildung F^{ad} , für die für alle $v \in V$ und $w \in W$ gilt

$$\langle F(v), w \rangle_W = \langle v, F^{\mathrm{ad}}(w) \rangle_V$$

heißt die zu F adjungierte Abbildung.

Lemma 6.2.3

Die Bezeichnung ergibt sich aus folgenden Diagramm

$$V \xleftarrow{f} W \\ \downarrow_{\Phi_{V}} \qquad \downarrow_{\Phi_{W}} \implies F^{\mathrm{ad}} = \Phi_{V}^{-1} \circ F^{*} \circ \Phi_{W}.$$

$$V^{*} \xleftarrow{F^{*}} W^{*}$$

Beweis. Aus den beiden Gleichungen

$$\langle F(v), w \rangle_W = \Phi_V(w) F(v) = F^* \left(\Phi_W(w) \right) (v) = F^* \left(\Phi_W(w) \right) (v)$$
$$\langle v, F^{\text{ad}}(w) \rangle_V = \Phi_V \left(F^{ad}(w) \right) (v)$$

 folgt

$$F^*(\Phi_W(w)) = \Phi_V(F^{\mathrm{ad}}(w)) \implies F^* \circ \Phi_W = \Phi_V \circ F^{\mathrm{ad}}.$$

Satz 6.2.3: Es gibt genau eine adjungierte Abbildung

Seien V und W euklidische Vektorräume und $F\in {\rm Hom}(V,W)$ eine lineare Abbildung. Dann existiert genau eine zu F adjungierte Abbildung

Beweis. TODO: Existenz und Eindeutigkeit beweist man wie für Endomorphismen mit Hilfe von Orthonormalbasen von V und W.

6.3 Etwas multilineare Algebra und Tensorprodukte

Bemerkung Nach wie vor wir stillschweigend vorausgesetzt, dass alle Vektorräume endlichdimensional sind.

DEFINITION 6.3.1 (multilineare / p-lineare Abbildung)

Seien V_1, \ldots, V_p, W K-Vektorräume. Eine Abbildung

$$F: V_1 \times \ldots \times V_p \to W$$

heißt multilinear oder p-linear, wenn für jedes $k \in \{1, \ldots, p\}$ und jede Wahl von $v_1 \in V_1, \ldots, v_{k-1} \in V_{k-1}, v_{k+1} \in V_{k+1}, \ldots, v_p \in V_p$ die Abbildung

multilinear

$$\varphi: V_k \to W, \ v \mapsto F(v_1, \dots, v_{k-1}, v, v_{k+1}, \dots, v_n)$$

linear ist.

Die Menge der multilinearen Abbildungen $V_1 \times \ldots \times V_p \to W$ bildet zusammen mit den offensichtlichen Verknüpfungen einen K-Vektorraum, den wir mit $\operatorname{Hom}_p(V_1,\ldots,V_p,W)$ bezeichnen.

Definition 6.3.2 (Darstellungsmatrix eine multilinearen Abbildung)

Seien $F: V_1, \ldots, V_p \to W$ eine multilineare Abbildung, sowie $\mathcal{A}_k = (v_1^{(k)}, \ldots, v_{d_k}^{(k)})$ und $\mathcal{B} = (w_1, \ldots, w_{\tilde{d}})$ Basen der Vektorräume V_k und W. Dann ist $M_{\mathcal{B}}^{\mathcal{A}_1, \ldots, \mathcal{A}_p}(F) \in K^{d_1 \times \ldots \times d_p \times \tilde{d}}$ definiert durch

$$F\left(v_{i_1}^{(1)}, v_{i_2}^{(2)}, \dots, v_{i_k}^{(p)}\right) = \sum_{j=1}^{\tilde{d}} a_{i_1, \dots, i_p, j} w_k.$$

Satz 6.3.1: $M_{\mathcal{B}}^{\mathcal{A}_1,...,\mathcal{A}_p}$ ist ein Isomorphismus

Die Abbildung

$$M_{\mathcal{B}}^{\mathcal{A}_1,\ldots,\mathcal{A}_p}: \operatorname{Hom}_p(V_1,\ldots,V_p,W) \to K^{d_1 \times \ldots \times d_p \times \tilde{d}}$$

ist ein Isomorphismus von K-Vektorräumen.

Korollar 6.3.3 (Dimension des Raums der p-linearen Abbildungen)

Für alle $p \in \mathbb{N}$ gilt

$$\dim (\operatorname{Hom}_p(V_1,\ldots,V_p,W)) = \prod_{k=1}^p \dim(V_k) \cdot \dim(W).$$

Definition 6.3.4 (Multilinearform)

Eine Multilinearform ist eine multilineare Abbildung in den Grundkörper der Form $\times_{k=1}^p V_k \to K$.

Multilinearform

SATZ 6.3.2: TITEL FEHLT TODO

Die kanonische Abbildung

$$\eta: \operatorname{Hom}_{p}(V_{1}, \dots, V_{p}, W) \to \operatorname{Hom}_{p+1}(V_{1}, \dots, V_{p}, W^{*}, K),$$

$$(F: \underset{k=1}{\overset{p}{\times}} V_{k} \to W) \mapsto \left(\eta(F): \underset{k=1}{\overset{p}{\times}} V_{k} \times W^{*} \to K, \left(\begin{array}{c} v_{1} \\ \vdots \\ v_{p} \\ \varphi \end{array} \right)^{T} \mapsto \varphi \left(F \left(\begin{array}{c} v_{1} \\ \vdots \\ v_{p} \end{array} \right)^{T} \right) \right)$$

ist ein Isomorphismus.

Beweis. Selbst. П

Man kann alle multilinearen Abbildungen mit Multilinearformen identifizieren.

Korollar 6.3.5

 $\operatorname{Hom}(V, W) \cong \operatorname{Hom}(V, W^*, K).$

Definition 6.3.6 (Tensorprodukt von K-Vektorräumen)

Ein Tensorprodukt von K-Vektorräumen V_1 und V_2 ist ein K-Vektorraum $V_1 \otimes V_2$ zusammen mit einer bilinearen Abbildung

$$\xi: V_1 \times V_2 \to V_1 \otimes V_2, \ (v_1, v_2) \mapsto v_1 \otimes v_2$$

mit der folgenden universeller Eigenschaft:

Für jede bilineare Abbildung $F:V_1\times V_2\to W$ existiert genau eine lineare Abbildung $\tilde{F}: V_1 \otimes V_2 \to W$, sodass $F = \tilde{F} \circ \xi$ gilt.

$$V_1 \times V_2 \xrightarrow{f} W \qquad (v_1, v_2) \xrightarrow{F} F(v_1, v_2) = \tilde{F}(v_1 \otimes v_2)$$

$$\downarrow^{\xi} \qquad \qquad \downarrow^{\tilde{F}} \qquad \qquad \downarrow^{\tilde$$

20.07.18

Lemma 6.3.7 (Inverse Irgentwas??)

Ist $\xi': V_1 \times V_2 \to V_1 \otimes' V_2$ auch ein Tensorprodukt, so existiert jeweils genau $eine\ lineare\ Abbildung$

$$\tilde{F}: V_1 \otimes V_2 \to V_1 \otimes' V_2, \qquad \tilde{F}': V_1 \otimes' V_2 \to V_1 \otimes' V_2$$

$$\begin{split} \tilde{F}: V_1 \otimes V_2 \to V_1 \otimes' V_2, \qquad \tilde{F}': V_1 \otimes' V_2 \to V_1 \otimes' V_2 \\ mit \; xi' &= \tilde{F} \circ \xi \; und \; \xi = \tilde{F}' \circ \xi'. \\ Aus \; \xi &= \tilde{F}' \circ \tilde{F} \circ \xi \; folgt \; \tilde{F}' = \tilde{F}^{-1}. \end{split}$$

Beweis.

Mit anderen Worten

Lemma 6.3.8

Für zwei Tensorprodukte $\xi: V_1 \times V_2 \to V_1 \otimes V_2$ und $\xi': V_1 \times V_2 \to V_1 \otimes' V_2$ existiert genau ein Isomorphismus

$$\tilde{F}: V_1 \otimes V_2 \to V_1 \otimes' V_2,$$

sodass $\xi' = \tilde{F} \circ \xi$ gilt.

In diesem Sinne existiert im Wesentlichen für zwei K-Vektorräume V_1 und V_2 (höchstens) ein Tensorprodukt $\xi: V_1 \times V_2, V_1 \otimes V_2$.

SATZ 6.3.3

Sei $\zeta:V_1\times V_2\to V_1\otimes V_2$ ein Tensorprodukt, und seien (e_1,\dots,e_m) und (f_1,\dots,f_n) Basen von V_1 bzw. V_2 .

Dann bilden die Vektoren $e_i \otimes f_j = \zeta(e_i, f_j)$ eine Basis von $V_1 \otimes V_2$.

Beweis. Wir zeigen

 $(2) \dim(V_1 \otimes V_2) = \dim(V_1) \cdot \dim(V_2).$

Zu (1): Für $v_1 = \sum_{i=1}^m \alpha_i e_i \in V_1$ und $v_2 = \sum_{i=1}^m \beta_i g_i \in V_2$ gilt

$$\zeta(v_1, v_2) = \sum_{i,j=1}^{m} \alpha_i \beta_j e_i \otimes f_j \in \operatorname{span}(e_i \otimes f_j)_{i,j}.$$

Wäre span $(e_i \otimes f_j)_{i,j} \neq V_1 \otimes V_2$, so wäre die Abbildung $\tilde{F}: V_1 \otimes V_2 \to W$ nicht eindeutig durch $F: V_1 \otimes V_2 \to W$ bestimmt. Denn dann existierten lineare Abbildungen $G: V_1 \otimes V_2 \to W$ mit span $(e_i \otimes f_j)_{i,j} \subset \text{Ker}(G)$, aber $G \neq 0$. Für jede solche Abbildung G wäre $(\tilde{F} + G) \circ \zeta = \tilde{F} \circ \zeta$.

Zu 2: Ist W ein K-Vektorraum, lieft die universelle Eigenschaft des Tensorprodukte einen Isomorphismus

$$\operatorname{Hom}_2(V_1, V_2, W) \to \operatorname{Hom}(V_1 \otimes V_2, W), \ F \mapsto \tilde{F}.$$

Aus

$$\dim(\operatorname{Hom}_2(V_1, V_2, W)) = \dim(V_1) \cdot \dim(V_2) \cdot \dim(W),$$

$$\operatorname{Hom}(V_1 \otimes V_2, W) = \dim(V_1 \otimes V_2) \cdot \dim(W)$$

folgt die Behauptung 2

Abbildungsverzeichnis

1	The Four Fundamental Subspaces aus: The Fundamental Theorem
	of Linear Algebra, Gilbert Strang, American Mathematical Month-
	ly,1993
2	Basiswechsel [Quelle:Wikipedia (engl.)]
3	[Quelle: Fischer]
4	[Quelle: Forster]
5	[Quelle: Forster]
6	[Quelle: Vorlesung]
7	[Quelle: 'Essence of linear Algebra: IX: Dot products and duality"
	von 3Blue1Brown auf YouTube]
8	FEHLT!
9	[Quelle: WolframAlpha]

Index

Α	Dualraum106
A ähnliche Matrizen 19 Äquivalenzklasse .7 Äquivalenzrelation .7 algebraische Abgeschlossenheit .21 algebraische Vielfachheit .21 alternierend .52 Annulator .107 antiselbstadjungiert .86 Approximanten .11 Ausartungsraum .96 ausgeartet .96 Automorphismus .6, 72	Eigenbasis 17 Eigenraum 16 Eigenvektor 13 Eigenwert 13 Eigenwertgleichung 13 Einsetzungshomomorphismen 36 Ellipse 89 Endomorphismus nilpotenter 29 normal 86
В	orientierungstreu θ orientierungsumkehrend θ orthogonal
Basis Äquivalenzklasse	unitär
umgekehrt orientiert	Flächeninhalt 77
С	
Cauchy-Schwartzsche Ungleichung 48 charakteristische Funktion 18 charakteristisches Polynom 19	geometrische Vielfachheit
D	
darstellende Matrix	Halbmesser 89 Hauptachse 89 Hauptraum 44 -zerlegung 44 Hauptvektor der Stufe k 25 Hyperbel 89
diagonalisierbar14Diagonalmatrix21Dimensionsformel18Drehachse99duale Abbildung108duale Basis107	Ideal 36 Null- 37 von m erzeugt Ideal von R 37 indefinit 93

J	Polynom
Jordan-Basis	normiert
Jordan-Block 24 Jordan-Form 24	positiv definit
Jordan-Form24	positiv semidefinit93
K	Q
Kreuzprodukt	quadratische Form58
L	R
Linearform	rationaler Funktionenkörper $K(t)$. 19
M	Ring Homomorphismen 26
Matrix	-Homomorphismen36 kommutativ, mit 136
singulär	Unter
metrischer Raum	Rodriguez' Drehformel 101
Minimalpolynom 37	
multilinear	S
$Multilinear form \dots \dots 113$	schiefsymmetrisch 52
N	Signatur95
IN	Skalarprodukt
negativ definit93	euklidisch
nichteuklidisch 97	unitär
	Standardorientierung
O	symmetrisch
Orientierung 6, 7	-
orthogonal49, 63	Т
Endomorphismus 72	teilerfremd33, 35
Familie 63	Transformationsformel4
Komplement	
Matrix75	U
Projektion	unitär
Summe	Endomorphismus
orthogonale Gruppe	Matrix
speziell	unitäre Gruppe
orthonormal	speziell
Familie	Untergruppe8
Orthonormalbasis	Unterraum
	komplementär 29
Р	
Parallelogramm	
Parallelogrammgleichung 63	Vektorprodukt 50
Parallelopipeds	Vektorraum
Parallelotop	euklidisch62 orientiert 7
roiausationsiormei 59	опеныен

118 INDEX

unitär	n-dimensional
Vielfachheit	
algebraische	W
geometrische	
Volumen	Winkel

INDEX 119