Homework 5, DATA 556: Due Tuesday, 10/31/2018

Alexander Van Roijen

October 30, 2018

Please complete the following:

1. Problem 1 Let $U \sim \text{Unif}(a, b)$.

17519

(a) Use simulations in R (the statistical programming language) to numerically estimate the median and the mode of U for a = 0 and b = 2.

```
> binUnif= function(n,a,b)
+ {
    resultsog = runif(n,a,b)
    results = floor(resultsog*10)
    data = data.frame(results)
    vals = seq(a,b,.1)
   p<-ggplot(data=data, aes(x=factor(data[,1]))) +geom_bar(stat="count") + scale_x</pre>
    p
    #barplot(results,main="whatev",width=0.5)
    print(median(resultsog))
+
    getmode = table(resultsog)
    print(which.max(getmode))
    #print(forMode[c(1:10),])
+ }
> #this is 1a
> set.seed(123)
> n=1000000
> binUnif(n,0,2)
[1] 0.9983065
0.0349205480888486
```

Figure 1: Mode roughly equivalent across all values of x

(b) Find the Median and Mode of $U \sim \text{Unif}(a,b)$

$$f(X|X>a) = F'(X|X>a) = \frac{dF(X|X>a)}{dx} = \frac{F'(x) - F'(a)}{1 - F(a)} \text{ with } \frac{dF(a)}{dx} = 0$$
 (2)

$$=> f(X|X>a) = \frac{f(x)}{1 - F(a)}$$
 (3)

2. Let $X \sim \text{Expo}(\lambda)$

(a) Use R to simulate median and mode of Expo(2)

expoMedMode = function(n,rate)

```
+ {
    resultsog = rexp(n,rate=rate)
    results = floor(resultsog*10)
    data = data.frame(results)
    data = data.frame(data[data[,1]<25,])</pre>
    vals = seq(0, 2.5, .1)
   p<-ggplot(data=data, aes(x=factor(data[,1]))) +geom_bar(stat="count") + scale_x</pre>
    print(p)
    #barplot(results,main="whatev",width=0.5)
   print(median(resultsog))
    getmode = table(resultsog)
    print(which.max(getmode))
+ }
> #this is 2a
> set.seed(123)
> n=1000000
> expoMedMode(n,2)
[1] 0.3467215
0.00334986066445708
6662
```


Figure 2: Mode of an exponential with rate of 2 around 0 and median around .3467

This overall makes sense, as we will show below, 0 is the mode of the exponential distribution. This is confirmed as well by the barplot shown above.

- (b) Find the Median and Mode of $X \sim \text{Expo}(\lambda)$
- 3. Let X be Discrete Uniform on 1,2,3,4,5...n.
 - (a) Use simulations in R to numerically estimate all medians and all modes of X for n=1,2,3...10.
 - > #this is 3a
 - > set.seed(433)
 - > counter = 1
 - > n=10

```
> size = 1000
> while(counter <= n)</pre>
+ binUnif(size,1,counter,1,1)
+ counter = counter + 1
+ }
[1] "From 1 to 1"
[1] 1
1
[1] "From 1 to 2"
[1] 1.505739
1.0011387350969
1
[1] "From 1 to 3"
[1] 2.025223
1.00209179287776
[1] "From 1 to 4"
[1] 2.502714
1.00117637915537
[1] "From 1 to 5"
[1] 2.957827
1.00255306344479
1
[1] "From 1 to 6"
[1] 3.368198
1.00341863720678
1
[1] "From 1 to 7"
```

```
[1] 4.004081
1.0143808578141
1
[1] "From 1 to 8"
[1] 4.470458
1.00075664301403
1
[1] "From 1 to 9"
[1] 5.058819
1.0038467105478
1
[1] "From 1 to 10"
[1] 5.422321
1.01815693522803
1
```

Figure 3: Mode across X demonstrated from Unif(1,1)

Figure 4: Mode across X demonstrated from $\mathrm{Unif}(1,2)$

Figure 5: Mode across X demonstrated from Unif(1,3)

Figure 6: Mode across X demonstrated from $\mathrm{Unif}(1,4)$

Figure 7: Mode across X demonstrated from Unif(1,5)

Figure 8: Mode across X demonstrated from Unif(1,6)

Figure 9: Mode across X demonstrated from Unif(1,7)

Figure 10: Mode across X demonstrated from Unif(1,8)

Figure 11: Mode across X demonstrated from Unif(1,9)

Again, we expect some variability here, but with large enough N we can understand that the mode of a discrete uniform distribution is over all discrete support of the RV

(b) Find All medians and modes of X

Note the mode is trivial, as it is a similar case to 1.

Want
$$P(X=c) \ge P(X=x) \forall x \in 1, 2, ...n$$
 (4)

$$=>\frac{1}{n-1+1}\geq \frac{1}{n-1+1}$$
 by def of discrete Uniform (5)

$$=>c=x \forall x \in 1,2,3,...n$$
 which is almost the same as 1 (6)

Notable difference is that in the discrete case, c can only take discrete values (7)

Want
$$P(X \le x) \ge \frac{1}{2} \& P(X \ge x) \ge \frac{1}{2}$$
 (9)

$$P(X \le x) = \sum_{i=1}^{x} \frac{1}{n} = \frac{x}{n} \ge \frac{1}{2} \Longrightarrow x \ge \frac{n}{2}$$
 (10)

However, we can observe the patterns noted in the graphs below (11)

If n is odd, the previous conclusion is the only solution as (12)

if you go above or below
$$\frac{n}{2}$$
 you lose the probability @ $x = \frac{n}{2}$ (13)

This is true as we have a jump exactly at
$$\frac{n}{2}$$
 (14)

In the case n is even, you have some wiggle room (15)

There is no jump at
$$\frac{n}{2}$$
 (16)

In fact, the next jump is at
$$\frac{n}{2} + 1$$
 (17)

This means we have medians from
$$\left[\frac{n}{2}, \frac{n}{2} + 1\right]$$
 (18)

One last important factor to note, is that this result relies heavily on (19)

$$Median(X) = \begin{cases} \frac{n}{2} & n = \text{odd} \\ \left[\frac{n}{2}, \frac{n}{2} + 1\right] & n = \text{even} \end{cases}$$
 (22)

4. A distribution is called symmetric unimodal if it is symmetric (about some point) and has a unique mode. For example, any Normal distribution is symmetric unimodal. Let X have a continuous symmetric unimodal distribution for which the mean exists. Show that the

mean, median, and mode of X are all equal.

2:
$$f(x) = f(2\mu - x) \forall x \& P(X \ge X + \mu) = P(X \le X - \mu)$$
 (25)

Where
$$\mu$$
 is the mean of our distribution, or central point (26)

All that is left to show is that the mode is equivalent to either our median or mean

(27)

$$\int_{-\infty}^{\mu-x} f(x)dx = \int_{\mu+x}^{\infty} f(x)dx = \int_{-\infty}^{\mu-x} f(2\mu - x)dx = \int_{\mu+x}^{\infty} f(2\mu - x)dx$$
 (28)

$$\int_{-\infty}^{\mu} f(x)dx = \frac{1}{2} = \int_{\mu}^{\infty} f(x)dx$$
 (29)

By the defintion of the mode, we have some
$$c \ s.t. \ f(c) \ge f(x) \forall x$$
 (30)

Lets proove via contradiction. If
$$c \neq \mu => c > \mu$$
 or $c < \mu$ (31)

$$=> f(c) = f(2\mu - c)$$
 with $c \neq 2\mu - c$ by our previous statement (32)

$$=> \exists c_1 \ s.t. f(c_1) \ge f(x) \forall x \& c_2 \ s.t. f(c_2) \ge f(x) \forall x \ \text{with} \ c_1 \ne c_2$$
 (33)

which violates the property of a unimodal distribution
$$\square$$
 (35)

5. Let $W=X^2+Y^2$, with X, Y i.i.d. N(0, 1). You can assume you know that the MGF of X^2 is $(1-2t)^{\frac{-1}{2}}$ for $t<\frac{1}{2}$. Find the MGF of W.

We know for independent X, Y random variables that $M_{X+Y}(t) = M_X(t) * M_Y(t)$ (36)

We know that
$$M_{X^2}(t) = M_{Y^2}(t)$$
 and lets rewrite $X' = X^2 and Y' = Y^2$ (37)

since
$$X'\&Y'$$
 independet $=> M_{X'+Y'} = M_{X'}*M_{Y'} = M_{X^2}*M_{Y^2} = ((1-2t)^{\frac{-1}{2}})^2 = \frac{1}{1-2t}$

(38)

6. Let $X \sim Expo(\lambda)$. You can assume you know that $\lambda X \sim Expo(1)$, and that the nth

moment of an Expo(1) random variable is n!. Find the skewness of X.

Def of Skewness(X):
$$E[(\frac{X-\mu}{\sigma})^3]$$
 (39)

$$= E\left[\left(\frac{X - E[X]}{\sqrt{\text{Var}(X)}}\right)^{3}\right] = E\left[\left(\frac{X - \frac{1}{\lambda}}{\sqrt{\frac{1}{\lambda^{2}}}}\right)^{3}\right] = E\left[\left(\lambda(X - \frac{1}{\lambda})\right)^{3}\right] = E\left[(\lambda X - 1)^{3}\right]$$
(40)

$$= E[(\lambda X)^3 - 3(\lambda X)^2 + 3(\lambda X) - 1] = E[(\lambda X)^3] - 3E[(\lambda X)^2] + 3E[(\lambda X)] - 1$$
 (41)

With
$$E[(\lambda X)^3] = 3!, E[(\lambda X)^2] = 2!, E[(\lambda X)] = 1!$$
 from problem statement (42)

$$= E\left[\left(\frac{X - E[X]}{\sqrt{\text{Var}(X)}}\right)^3\right] = 3! - 3 * 2 + 3 * 1 - 1 = 2$$
(43)

7. Let $X_1,...X_n$ be i.i.d. with mean μ , variance σ^2 , and MGF M. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $Z_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$

(a) Show that
$$Z_n$$
 has mean 0 and variance 1

$$E[\bar{X}_n] = E[\frac{1}{n} \sum_{i=1}^n X_i] = \frac{1}{n} \sum_{i=1}^n E[X_i] = \frac{1}{n} * n\mu = \mu$$
 (44)

$$=> E[Z_n] = E[\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma}] = \sqrt{n}\frac{E[\bar{X}_n] - \mu}{\sigma} = 0$$

$$(45)$$

$$\operatorname{Var}(\bar{X}_n) = \operatorname{Var}(\frac{1}{n} \sum_{i=1}^n X_i) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$$
 (46)

$$=> \operatorname{Var}[Z_n] = \operatorname{Var}(\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma}) = \frac{n}{\sigma^2} \operatorname{Var}(\bar{X}_n - \mu) = \frac{n}{\sigma^2} \operatorname{Var}(\bar{X}_n) = \frac{n}{\sigma^2} \frac{\sigma^2}{n} = 1$$
 (47)

(b) Find the MGF of Z_n in terms of M, the MGF of each X_i

$$MGF_{Z_n}(t) = e^{Z_n t} = e^{\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} t} = e^{t\sqrt{n} \frac{\bar{X}_n}{\sigma} - t\sqrt{n} \frac{\mu}{\sigma}} = e^{\frac{t\sqrt{n}}{n\sigma} \sum_{i=1}^n X_i} e^{-t\sqrt{n} \frac{\mu}{\sigma}}$$
(48)

Note
$$MGF(X_i) = M = e^t X$$
 where t is any real (49)

Now let
$$\frac{t\sqrt{n}}{n\sigma} = t'$$
 (50)

$$=> MGF_{Z_n} = e^{t'\sum_{i=1}^n X_i} e^{-t\sqrt{n}\frac{\mu}{\sigma}} = e^{t'X_1 + t'X_2 \dots t'X_n} e^{-t\sqrt{n}\frac{\mu}{\sigma}} = \prod_{i=1}^n Me^{-t\sqrt{n}\frac{\mu}{\sigma}} = M^n e^{-t\sqrt{n}\frac{\mu}{\sigma}}$$
(51)