2.5 Exercise.

/1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100/

All of the primes are less than 100 because this set of numbers $\mathbb{S} = \{n \mid 1 \leq n \in \mathbb{N} \leq 100\}$. Thus, any number, prime or composite, not within those boundaries are outside of the set. This leads to prime numbers being a subset of natural numbers.