Ministerul Educației, Tineretului și Sportului al Republicii Moldova

Universitatea Tehnică a Moldovei

Facultatea Calculatoare, Informatică și Microelectronică

Departamentul Informatica si Ingineriia Sistemelor

RAPORT

Lucrare de laborator nr.2

la Analiza și Sinteza Dispozitivelor Numerice

A efectuat: A verificat: A. Ursu

st. gr.

Chișinău 2020

Lucrare de laborator nr.2

Tema: Sinteza convertoarelor de cod

- 1. Alcătuiți tabela de adevăr pentru funcțiile logice $y_1 si y_2$.
- 2. Minimizați funcțiile $y_1 si y_2$.
- Determinati elementele commune,
- Inlocuiti elementele commune,
- 3. Creati circuitul convertorului de cod in LogicWorks.
- 4. Determinati costul(C) si reinerea de timp(rT).

Codul binar-zecimal intrare: 4 3 2 (-1)

Codul binar-zecimal ieşire: 8 4 3 (-6)

1. Convertorul binar-zecimal:

	4	3	2	(-1)	8	4	3	(-6)	
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	y_1	<i>y</i> ₂	y_3	y_4	
0	0	0	0	0	0	0	0	0	
1	0	0	1	1	0	1	1	1	
2	0	0	1	0	1	0	0	1	6 0
3	0	1	0	0	0	0	1	0	122 011
4	1	0	0	0	0	1	0	0	
5	1	0	1	1	1	0	1	1	10)
6	1	0	1	0	1	1	0	1	
7	1	1	0	0	0	1	1	0	
8	1	1	1	1	1	0	0	0	
9	1	1	1	0	1	1	1	1	
	0	0 (0	1	*	*	*	*	
	0	1	0	1	*	*	*	*	
	0	1	1	0	*	*	*	*	
	0	1	1	1	*	*	*	*	
	1	0	0	1	*	*	*	*	
	1	1	0	0	*	*	*	*	

2. Minimizarea functiilor y_1 , y_2 , y_3 , y_4 :

$\begin{bmatrix} x_1 x_2 \\ x_3 x_4 \end{bmatrix}$	0	0	1	1 0			
00			*				
01	*	*		*			
11		*	1	1	1		
10	1	*	T.				
$y_1 = x_1 x_3 + x_3 x_4$							

$$y_2$$

$$y_2 = x_1 \dot{x}_4 + \dot{x}_3 x_4 + \dot{x}_1 x_4$$

 y_3

$$y_{4}$$

<i>y</i> 4					
$\begin{array}{c} x_1 x_2 \\ x_3 x_4 \end{array}$	0	0	1	1	
<i>X</i> ₃ <i>X</i> ₄	0	1	1	0	
00			*		
01	*	*		*	
11	1-	,		1	
10	1	*	1	1	
$y_{4} = x$	$\frac{\dot{\chi}_{4} + \dot{\chi}_{4}}{\dot{\chi}_{4} + \dot{\chi}_{4}}$	X_2X_4			

$$y_1 = x_1 x_3 + x_3 x_4$$

$$y_2 = x_1 x_4 + x_3 x_4 + x_1 x_4$$

$$y_3 = x_2 x_4 + x_2 x_4 + x_3 x_4$$

$$y_4 = x_3 x_4 + x_2 x_4$$

- Determinam x care se repeat:

$$a = \dot{x}_3 x_4$$

$$b = \dot{x}_2 x_4$$

$$c = x_3 \dot{x}_4$$

- Inlocuim combinatiile repetate

$$y_1 = x_1 x_3 + c$$

$$y_2 = x_1 x_4 + a + x_1 x_4$$

$$y_3 = b + x_2 x_4 + a$$

$$y_4 = c + b$$

3. Circuitul convertorului de co

D. de timp:

$$4. C = 2$$

$$5. rT = 24$$

Concluzie:

Efectuind lucrarea data am facut cunostinta cu sinteza convertoarelor de cod.

Am aflat ca acestea sunt niste circuite logice combinationale cu n intrari si m iesiri,am mai aflat ca m si n pot fi atit egale cit si diferite in dependenta de tipul de coduri la intrarea si respectiv de la iesirea convertorului de cod.