Algebra - Lista 1

Zadanie 1. Rozważmy zbiór funkcji \mathcal{F} postaci $f(x) = \frac{p(x)}{q(x)}$, gdzie p,q są wielomianami o współczynnikach z \mathbb{R} . Zdefiniujmy relację \sim na takich funkcjach: $f \sim h$ jeśli f(x) = h(x) nie zachodzi dla jedynie skończonej ilości $x \in \mathbb{R}$ (równość ta w szczególności nie zachodzi, gdy jedna z wartości f(x), g(x) nie jest określona, a druga jest). Pokaż, że jest to relacja równoważności. Pokaż, że $\mathcal{F}/_{\sim}$ jest ciałem, gdzie dodawanie i mnożenie jest "punktowe": $([f]_{\sim} + [g]_{\sim})(x) = f(x) + g(x)$ oraz $([f]_{\sim} \cdot [g]_{\sim})(x) = f(x) \cdot g(x)$.

Zadanie 2. Pokaż, że zbiór liczb $\{a+b\sqrt{2}: a,b\in\mathbb{Q}\}$ jest ciałem (ze zwykłym dodawanie i mnożeniem).

Zadanie 3. Pokaż, że zbiór $\mathbb R$ ze zwykłym dodawaniem oraz mnożeniem $a \cdot b := ab\sqrt{2}$ jest ciałem. Jak wygląda "jedynka" w tym ciele?

Zadanie 4. Przedstaw wektor w jako kombinację podanych wektorów a_1, a_2, \ldots, a_k (lub uzasadnij, że to niemożliwe), nad ciałem \mathbb{R} :

- (1) $w = (1,5), a_1 = (1,1), a_2 = (2,0).$
- (2) $w = (5, 10, 11), a_1 = (1, 2, 3), a_2 = (0, 3, 2), a_3 = (1, 1, 1).$
- (3) $w = (5, 10, 11), a_1 = (1, 2, 3), a_2 = (0, 3, 2), a_3 = (1, 8, 7).$
- (4) $w = (4, 17, 18), a_1 = (1, 2, 3), a_2 = (0, 3, 2), a_3 = (3, 9, 11).$

Zadanie 5. Niech S,T będą podprzestrzeniami przestrzeniV. Pokaż, że $S\cap T$ oraz S+T zdefiniowane jako

$$S + T = \{s + t : s \in S, t \in T\}$$

są odpowiednio: największą przestrzenią zawartą w $S,\,T$ oraz najmniejszą zawierającą S i T.

Zadanie 6. Rozważmy przestrzeń \mathbb{Z}_3^3 (zbiór trzyelementowych ciągów elementów z \mathbb{Z}_3 , nad ciałem \mathbb{Z}_3). Ile wektorów należy do LIN((1,2,1),(2,1,1))? A ile do LIN((1,2,1),(2,1,2))?

Zadanie 7. Niech V, przestrzeń liniowa nad ciałem \mathbb{K} , $A = \{v_1, v_2, \dots, v_k\} \subseteq V$ zbiór wektorów, zaś $\alpha_1, \dots, \alpha_k \in \mathbb{K}$ ciąg skalarów, gdzie $\alpha_1 \neq 0$. Pokaż, że

(1)
$$\operatorname{LIN}\left(\left\{\sum_{i=1}^{k} \alpha_{i} v_{i}, v_{2} \dots, v_{k}\right\}\right) = \operatorname{LIN}\left(\left\{v_{1}, v_{2} \dots, v_{k}\right\}\right).$$

Wywnioskuj stąd, że $\{v_1, v_2, \dots, v_k\}$ jest bazą V wtedy i tylko wtedy, gdy bazą jest

$$\left\{ \sum_{i=1}^{1} \alpha_i v_i, \sum_{i=1}^{2} \alpha_i v_i, \dots, \sum_{i=1}^{k} \alpha_i v_i \right\},\,$$

gdzie wszystkie skalary $\alpha_1, \alpha_2, \dots, \alpha_k$ są niezerowe.

Kryterium (1) jest podstawą metody eliminacji i jest bardzo wygodne przy sprawdzaniu liniowej niezależności. Możesz go używać, nawet jeśli nie potrafisz go udowodnić.

Zadanie 8. Pokaż, że U jest liniowo niezależny wtedy i tylko wtedy, gdy dla każdego $u \in U$ zachodzi LIN $(U) \neq$ LIN $(U \setminus \{u\})$.

Jw.: kryterium z Zadania 8 jest bardzo przydatne i możesz go używać nawet jeśli nie potrafisz go uzasadnić.

Zadanie 9. Czy następujące układy wektorów są liniowo niezależne (nad \mathbb{R})?

- (1) (1,1,0),(0,1,1),(1,1,1),(1,0,1)
- (2) (0,1,2),(1,1,1),(1,1,1)
- (3) (1,0,1,0), (1,2,0,1), (0,2,1,1), (0,0,1,1)
- (4) (1,2,0,0), (2,2,0,1), (1,0,1,1), (2,1,0,1)
- (5) (1,0,1,0), (0,2,0,2), (1,1,0,0), (0,0,2,2)
- (6) (1,0,1,0), (0,2,0,2), (1,1,0,0), (0,0,2,1)

Zadanie 10. Sprawdź, czy następujące podzbiory \mathbb{R}^n są podprzestrzeniami liniowymi:

- (1) $\{(a, b, c) \in \mathbb{R}^3 : 5a + 2b = 0\}$
- (2) $\{(a, b, c) \in \mathbb{R}^3 : 2a c = 0\}$
- (3) $\{(a,b,c) \in \mathbb{R}^3 : 5a + 2b = 2a c = 0\}$
- (4) $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 0\}$
- (5) $\{(a,b) \in \mathbb{R}^2 : |ab| = 1\}$
- (6) $\{(a,b) \in \mathbb{R}^2 : ab = a\}$