CISC 6525

Assignment Project Exam Help

here 1/1000 potter com

(Computer Prision)

Chapter 24

VM For Class

Download the virtual machine for Oracle virtualbox

http://erdos.dsm.fordham.edu/~lyons/ROSIndigo64Bits.ova ASSIGNMENT Project Exam Help

Google team drive: CISC 6525 Fall 2018

File: RosIndigo64Bits.ova/powcoder.com

This is an Ubuntu 14.04 Month some aposial software installed.

This has the ROS (Robot operating System), OpenCV (Computer Vision) and FF (a high performance symbolic planner) installed.

Outline

- Perception generally
- Image formation Assignment Project Exam Help
- Early vision https://powcoder.com
- 2D → 3D
- Add WeChat powcoder
 Object recognition

The Problem

Stimulus (percept) S, World WS = g(W)E.g., g = Argeign mente Project Examples p $W = g^{-1}(S)$ Problem: massive ambiguity! powcoder.com Add WeChat powcoder

Image Formation

P is a point in the <u>scene</u>, with coordinates (X, Y, Z)
P' is its image on the <u>image plane</u>, with coordinates (x, y z)

$$x = \frac{-fX}{Z} \qquad y = \frac{-fY}{Z}$$

by similar triangles. Scale/distance is indeterminate!

Images

Images

Images & Video

• I(x, y, t) is the intensity at (x, y) at time t

Assignment Project Exam Help

- CCD camera 4,000,000 pixels, 4Mpixel; https://powcoder.com/https://pow
- i.e., ~5 terabits/sec at 20hz = 20fps

What is color

Color is related to the wavelength of light

 The shorter wavelengths are perceived as blue and longer as red with green in between.

What is daylight

The intensity of light of each frequency that falls on the earth during day can be represented stignthers becomes Help

From a subjective viewpoint

The Retina

Color sensitivity of the 3 cones

The closer the wavelength to the target wavelength active the cone cell becomes

How do we see all those colors!

The Tristimulus Theory

 This is the theory that any color can be specified by giving just three values.

Assignment Project Exam Help

 We call Red, Green and Blue, the additive primary https://powcoder.com

Add WeChat powcoder

 We can define a given color by saying how much red, green and blue light we need to add to get that color

Color - Summary

- Intensity varies with frequency infinite dimensional signal
- Human eye has three types of color-sensitive cells;
 each integrates the signal => 3-element vector intensity

HSV

- Alternative way of specifing color
- •Hue (roughly, dominant wavelength)
 Assignment Project Exam Help
- •Saturation (purity)
 https://powcoder.com
- Value (brightness)
- •Model HSV as a 'cylinder': H angle, S distance from axis, V distance along axis
- Basis of popular style of color picker

HSV Color Cone

Why is it not a cylinder?

YUV

• However, Y not simply related to R, G and B because events the some colors

• Digital TV uses Y'C_BC_R not YUV (different weights).

YUV Color Cube two perspectives

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Pixel Group Processing

- Compute new value for pixel from its old value and the values of surrounding pixels
- -Filtering operations/powcoder.com
- Compute weighted average of pixel values Add WeChat powcoder
 Array of weights known -- convolution mask
- -Pixels used in convolution -- convolution kernel
- Computationally intensive process

Pixel processing

Convolution kernel

Image

Kernel applied left to right, top to bottom

$$E_{\theta}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\theta}(u,v) I(x+u,y+v) \, du \, dv$$

Blurring

- Classic simple blur
- Convolution mask with jeguel weightsp
 - Unnatural effect https://powcoder.com
- Gaussian blundd WeChat powcoder
 - Convolution mask with coefficients falling off gradually (Gaussian bell curve)
 - –More gentle, can set amount and radius

Gaussian Blur Filter

No blur Assignment Project Exam Help radius

Sharpening

- Low frequency filter
- -3x3 convolution mask coefficients all equal to -1, Assignment Project Exam Help except centre = 9
- -Produces harshbettpgespowcoder.com
- Unsharp masking WeChat powcoder
- Copy image, apply Gaussian blur to copy, subtract it from original
- Enhances image features

Sharpening Filter

Edge Detection

https://powcoder.com
$$E_{\theta}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\theta}(u,v) I(x+u,y+v) du dv$$

Add WeChat powcoder

Label above-threshold pixels with edge orientation

Infer "clean" line segments by combining edge pixels with same orientation

Edge Detection

Edges in image comedical Edges in image comedi

These can be due to:

- 1) depth
- 2) surface orientation
- 3) reflectance (surface markings)
- 4) illumination (shadows, etc.)

Laplacian Edges

It calculates the Laplacian of the image given by the relation, $\Delta src = \frac{\partial^2 src}{\partial x^2} + \frac{\partial^2 src}{\partial y^2}$ where each derivative is found using Sobel derivatives. If ksize = 1, then following kernel is used for filtering:

Assignment Project Exam Help $kernel = \begin{bmatrix} 1 & -4 & 1 \end{bmatrix}$ https://powcoder.com

Reconstructing based on edges

Solid polygons with trihedral edges

Trihedral Edges

Vertex/Edge Labeling Example

Cues from Prior Knowledge ("Shape from X")

Shape from Signature	Anseht Project Exam Help
motion	rigid bodies, continuous motion
stereo	ttps://powcoder.com-repeating bodies
texture	Addifwectance Addiform reflectance
shading	uniform reflectance
contour	minimum curvature

Shape from Motion

Stereo

Stereo Depth Calculation

Example Stereo Disparity

Shape from Texture

Add WeChat powcoder

Idea: assume actual texture is uniform, compute surface shape that would produce this distortion

Similar idea works for shading – assume uniform reflectance, etc.

But inter-reflections give nonlocal computation of perceived intensity+> hollows seem shallower than they really are

Shape from Optical Flow

Optical flow describes the direction and speed of motion of features in the image.

Segmentation of Images

- Add WeCimilar color coder
 - similar texture
 - not separated by contour
 - form a suggestive shape when assembled

Object Recognition

Simple idea:

- extract 3-D shapes from image
- match against "shape library"

• Problems:

Assignment Project Exam Help

- extracting curved surfaces from image
- representing shape of extracted pojewcoder.com
- representing shape and variability of library object classes
- improper segmentation, deluvie Chat powcoder
- unknown illumination, shadows, markings, noise, complexity, etc.

Approaches:

- index into library by measuring invariant properties of objects
- alignment of image feature with projected library object feature
- match image against multiple stored views (aspects) of library object
- machine learning methods based on image statistics

ImageNet

2012, 1.3 million hand labelled images

• 1000 classes (e.g., 120 dog classes)

Deep Learning for Image Classification

Regular NN don't scale up to image size well

AlexNet 2012, 50% red. in ImageNet error rate.

ResNet 2015, performs exceeds human

Deep Issues

Supervised vs. Unsupervised

Supervised learning

- Transfer training
 Assignment Project Exam Help
- Computational requirements, GPUs
- Adversarial images:

Add WeChat powcoder

Unsupervised learning

Matching templates

- Some objects are 2D patterns
 - e.g. faces
- Find faces signment Project Exam Help
 - finding eyes, ក្រុទ្ធទុ្ធនុក្សាក្នុង្គ្រាស់ wooder.com
 - finding assembly of the three that has the "right" relations
- Build an explicit pattern matcher
 - discount changes in illumination by using a parametric model
 - changes in background are hard
 - changes in pose are hard

Computer Vision - A Modern Approach

http://www.ri.cmu.edu/projects/project_320.html

People

- Skin is characteristic; clothing hard to segment
- hence, people wearing little clothing
 Assignment Project Exam Help
 Finding body segments:
- - finding skin-like color, texture regions that have nearly straight nearly parallel boundaries
- Grouping process constructed by hand, tuned by hand using small dataset.
- When a sufficiently large group is found, assert a person is present

Action recognition from still images

- Description of the human pose
 - Silhouette description [Sullivan & Carlsson, 2002]
 - Histogram of gradients (HBE9 in State & Arriggs 2005)

Human body part layout

[Felzenszwalb & Huttenlocher, 2000]

Tracking

- Extract a set of features from the image
- Use a model to predict next position and refine Assignment Project Exam Help using next image
- Model: https://powcoder.com
 - simple dynamidation of the simple dynamics simple dynamics simple dynamics simple dynamics
 - kinematic models
 - etc.
- Face tracking and eye tracking now work rather well

SIFT Features (Lowe 1999)

• Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Assignment Project Exam Help oder.co

2022/11/24

Lowe's Scale-space Interest Points

- **Laplacian of Gaussian** kernel
 - Scale normalised (x by scale²)
- Proposed by Lindeberg Assignment Project Exam Help
 Scale-space detection
- - Find local maxihtalasiospowiesgescom
 - A good "blob" detector.
 Add WeChat powcoder

$$G(x,y,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{x^2+y^2}{\sigma^2}}$$

$$\nabla^2 G(x, y, \sigma) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

Lowe's Pyramid Scheme

The parameter **s** determines the number of images per octave.

2022/11/24

54

Using SIFT for Matching "Objects"

2022/11/24

SIFT for Navigation

 Homing in Scale Space (HiSS) [Churchill & Vardy 2008]

Uses SIFT Feature matching

 Add scale information to improve homingppehformandee.com

Current image

Semantic Navigation (Hulbert 2018)

ROS/Gazebo 3D simulation of a large Suburban scene Exam 1

https://powcoder.com

Yolo: Extremely fast (155 fps) object recognition using special CNN

Action recognition in videos

Motion history image

[Bobick & Davis, A0011] WeChat powcoder

Spatial motion descriptor

[Efros et al. ICCV 2003]

Learning dynamic prior [Blake et al. 1998]

Sign language recognition [Zisserman et al. 2009]

Action Recognition: Action = Space Time Object

CNNs & Activity Recognition

Karen Simonyan & Andrew Zisserman, NIPS 2014