4. რაციონალური გამოსახულებები

რიცხვითი გამოსახულება:

რიცხვთა და იმ ნიშანთა ერთობლიობას, რომლებიც გვიჩვენებენ, თუ რა მოქმედებები და რა მიმდევრობით უნდა იქნას შესრულებული ამ რიცხვებზე, რიცხვითი გამოსახულება ეწოდება. მაგალითად, რიცხვითი გამოსახულებებია:

$$(125-11,5)\cdot 2; \ \frac{0,17+4^2}{3\cdot 4-12} \ \text{Qs. s. 3.}$$

ცვლადიანი გამოსახულება:

გამოსახულებას, რომელიც ცვლადს შეიცავს, ცვლადის შემცველი გამოსახულება
ეწოდება. ცვლადის შემცველი გამოსახულების მნიშვნელობა დამოკიდებულია მასში
შემავალი ცვლადების რიცხვით მნიშვნელობებზე.

$$\frac{x+3y}{x-2y}$$

ორ გამოსახულებას **იგივურად ტოლი** ეწოდება რაიმე სიმრავლეზე, თუ ამ სიმრავლეზე ორივეს აზრი აქვს და მათი შესაბამისი მნიშვნელობები ტოლია. მაგალითად, a^2-b^2 და (a-b)(a+b) იგივურად ტოლი გამოსახულებებია, რადგან მათი შესაბამისი მნიშვნელობები ტოლია. ორ იგივურად ტოლ გამოსახულებას, შეერთებულს ტოლობის ნიშნით, **იგივეობა** ეწოდება. ამრიგად, $a^2-b^2=(a-b)(a+b)$ იგივეობას წარმოადგენს. იგივეობას წარმოადგენს აგრეთვე ყოველი ჭეშმარიტი რიცხვითი ტოლობა. გამოსახულების შეცვლას მისი იგივურად ტოლი გამოსახულებით იგივური გარდაქმნა ეწოდება.

ერთწევრი და მრავალწევრი

რამდენიმე თანამამრავლის ნამრავლს, რომელთაგან თითოეული არის რიცხვი, ან ცვლადის ხარისხი ნატურალური მაჩვენებლით, ერთწევრი ეწოდება.

$$6b^2c$$
, $5x^37y$, $-\frac{3}{8}aa^2c^4$.

ერთწევრს, რომლის პირველი მამრავლი წარმოადგენს რიცხვს, ხოლო ყველა სხვა თანამამრავლი განსხვავებული ცვლადების ხარისხებია, **სტანდარტული სახის ერთწევრი** ეწოდება. ზემოთ მოყვანილი ერთწევრებიდან პირველი ჩაწერილია სტანდარტული სახით, ხოლო მეორისა და მესამის სტანდარტული სახე იქნება შესაბამისად $35x^3y$ და $-3/8a^3c^4$ 4. სტანდარტული სახის ერთწევრის რიცხვით მამრავლს ერთწევრის კოეფიციენტი ეწოდება. ერთწევრებს ეწოდება **მსგავსი**, თუ ისინი ერთიდაიგივეა ან მხოლოდ კოეფიციენტებით განსხვავდებიან. მაგალითად, x^2y , $0.8 \ x^2y$ და $-5 \ x^2y$ — მსგავსი ერთწევრებია. მსგავსი ერთწევრების ჯამი არის მოცემულ ერთწევრთა მსგავსი ერთწევრი, რომლის კოეფიციენტი უდრის შესაკრებ ერთწევრთა კოეფიციენტების ჯამს. ერთწევრის ხარისხი ეწოდება მასში შემავალი ცვლადების ხარისხის მაჩვენებელთა ჯამს. მაგალითად, $9ab^2x^3$ ერთწევრის ხარისხი

რამდენიმე ერთწევრის ჯამს **მრავალწევრი** ეწოდება.

$$7xy^3 + 0.1ab$$
 go $5a^2b - 3ac + a^2b - 2aab$

მრავალწევრს, რომლის თითოეული წევრი ჩაწერილია სტანდარტული სახით და მსგავსი წევრები შეკრებილია, **სტანდარტული სახის მრავალწევრი** ეწოდება.

ხარისხის თვისებები

$$\bullet \ \mathbf{a}^m \mathbf{a}^n = \mathbf{a}^{m+n}$$

$$\bullet \ \frac{\mathbf{a}^m}{\mathbf{a}^n} = \mathbf{a}^{m-n}$$

$$\bullet \ (\mathbf{a}\mathbf{b})^m = \mathbf{a}^m \mathbf{b}^m$$

$$\bullet \ \left(\frac{\mathbf{a}}{b}\right)^m = \frac{\mathbf{a}^m}{b^m}$$

$$\bullet \ (\mathbf{a}^m)^n = \mathbf{a}^{mn}$$

$$\bullet \ a^0=1, a\neq 0$$

$$\bullet \ \mathbf{a}^1 = \mathbf{1}$$

$$\bullet$$
 $\mathbf{a}^{-m} = \frac{1}{\mathbf{a}^m}$

•
$$\mathbf{a}^{\frac{m}{n}} = \sqrt[n]{a^m}$$

შემოკლებული გამრავლების ფორმულები:

(a + b) ²	$= a^2 + 2ab + b^2$
(a - b) ²	$= a^2 - 2ab + b^2$
a ² - b ²	= (a + b)(a - b)
(a + b) ³	$= a^3 + 3a^2b + 3ab^2 + b^3$
(a - b) ³	$= a^3 - 3a^2b + 3ab^2 - b^3$
$a^3 + b^3$	= $(a + b)(a^2 - ab + b^2)$
a ³ - b ³	= $(a - b)(a^2 + ab + b^2)$
(a+b+c) ²	$= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$