Algebra I

BLATT 8

Thorben Kastenholz Jendrik Stelzner

19. Juni 2014

Aufgabe 1

Lemma 1. Es sei R ein Ring und M ein R-Modul. Dann sind äquivalent:

i) M ist noethersch, d.h. jede aufsteigende Kette von Untermoduln von M

$$M_0 \subseteq M_1 \subseteq M_2 \subseteq \dots$$

stabilisiert.

ii) Jeder Untermodul von M ist endlich erzeugt über R.

Beweis. Angenommen, M ist noethersch. Es sei $M'\subseteq M$ ein Untermodul. Dann definieren wir eine eine aufsteigende Folge von Untermoduln von M' wie folgt: Wir beginnen mit $M_0:=0$. Ist M_i definiert und $M_i\neq M'$, so gibt es $m_{i+1}\in M'\setminus M_i$, und wir setzen $M_{i+1}:=M_i+Rm_{i+1}$; ansonsten setzen wir $M_{i+1}:=M_i=M'$. Da M noethersch ist, stabilisert die aufsteigende Kette

$$0 = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq M_3 \subsetneq \dots$$

von Untermodul
n von M. Nach Konstruktion der M_i gibt es dahe
r $n\in\mathbb{N}$ mit

$$M' = M_n = Rm_1 + \ldots + Rm_n = (m_1, \ldots, m_n).$$

Das zeigt, dass M' ein endlich erzeugter R-Modul ist.

Sei andererseits jeder Untermodul von M endlich erzeugt über R. Für eine aufsteigende Kette

$$M_0 \subseteq M_1 \subseteq M_2 \subseteq \dots$$

von Untermodul
n von ${\cal M}$ setzen wir

$$M' := \bigcup_{k \in \mathbb{N}} M_k.$$

M' ist ein Untermodul von M und somit endlich erzeugt. Nach Annahme gibt es daher $m_1,\ldots,m_n\in M'$ mit

$$M'=(m_1,\ldots,m_n).$$

Nach Definition von M' gibt es ein $N \in \mathbb{N}$ mit $m_1, \ldots, m_n \in M_N$. Es ist daher $M_N = M$ und somit auch $M_k = M$ für alle $k \geq N$. Also stabilisert die Kette. \square