Homework 5

Due date: Apr. 28th, 2021, Wednesday

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

- 1. Find the following results (using phasors if necessary)
 - $(1) \; \frac{(50-j60)(20\angle70^{\circ}+150\angle-30^{\circ})}{(70-j120)90\angle210^{\circ}};$
 - (2) Solve the equation: $\frac{dv(t)}{dt} + 4v(t) + 3\int v(t)dt = 20\sin(10t + 20^\circ)$

2. Phasor Diagrams

Find $u_s(t)$ in the circuit below, assuming that $u_c(t) = \sqrt{2}cos2t$ V. Sketch Phasors of u_s , u_R , u_L , i_L , i_C , u_C , i_R in one single phasor diagram.

3. Given that the voltage and current of a two-terminal element adopt the passive sign convention, its instantaneous value is expressed as:

$$(1)u(t) = 15\cos(400t + 30^\circ) V$$
, $i(t) = 3\sin(400t + 30^\circ) A$;

$$(2)u(t) = 8\sin(500t + 50^{\circ}) V, i(t) = 2\sin(500t + 140^{\circ}) A;$$

$$(3)u(t) = 8\cos(250t + 60^\circ) V$$
, $i(t) = 5\sin(250t + 150^\circ) A$;

Try to determine whether the element is a resistor, inductor or capacitor, and determine its value (R=?,C=?, L=?).

4. nodal analysis & mesh analysis

Find \dot{U}_2 and \dot{I}_2 for the circuit below, assuming that $\dot{U}_s=10 \angle 0^\circ$ V, $\mu=0.5$.

- (1) Use nodal analysis;
- (2) Use mesh analysis.

5. Find the equivalent impedance.

(1) Find \mathbf{Z}_{ab} when the system is operating at the angular frequency ω , assuming that $n \neq 0$.

(2) Find Z_{ab} .

6. Thevenin equivalent.

Given that the circuit below is in steady state, use phasor method to find $u_k(t)$ in the circuit below by using Thevenin's theorem, assuming that $i_s(t) = 30\sqrt{2}cos20t$ A.(Hint: find the Thevenin equivalent circuit of the left hand side part seen from the terminals a-b)

7. Source Transformation

The two sources are with the same angular frequency. Use source transformation to find \mathbf{I}_x .

8. Superposition Theorem

Using superposition to find $i_L(t)$, assuming that $i_S(t)=10\sqrt{2}cos100t$ A, $u_S(t)=100\sqrt{2}cos1000t$ V.

