Anton Zeitlin

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(\mathit{SL}(r+1),\,\hbar)$ -opers and Bethe equations

(0, 11)-opers

Applications

$\hbar\text{-}\text{opers}$ and the geometric approach to the Bethe ansatz

Anton M. Zeitlin

Louisiana State University, Department of Mathematics

Simons Center for Geometry and Physics

Stony Brook

May 31, 2022

R.P. Feynman: "I got really fascinated by these (1+1)-dimensional models that are solved by the Bethe ansatz and how mysteriously they jump out at you and work and you dont know why. I am trying to understand all this better."

Introduction

QQ-system:

Differential limit, Miura opers and Gaudin models

and Bethe equations

A 11 ...

via Algebraic Bethe ansatz:

Central for the QISM.

Developed in Leningrad: late 70s-80s

▶ via Frenkel-Reshetikhin (qKZ) equation:

I. Frenkel, N. Reshetikhin '92

Recently: geometrization through enumerative geometry of quiver varieties.

A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17

P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '1

▶ via QQ-systems:

appeared first in the context of qKdV equation and ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'19

In this talk: geometric interpretation of QQ-systems through the difference analogue of connections on the projective line, the so-called (G,\hbar) -opers.

Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18 – '22

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $SL(r+1),\,\hbar)$ -opers R

(G, 1t)-opers

▶ via Algebraic Bethe ansatz:

Central for the QISM.

Developed in Leningrad: late 70s-80s

▶ via Frenkel-Reshetikhin (qKZ) equation:

I. Frenkel, N. Reshetikhin '92

Recently: geometrization through enumerative geometry of quiver varieties.

A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;

P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

▶ via QQ-systems:

appeared first in the context of qKdV equation and ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'1!

In this talk: geometric interpretation of QQ-systems through the difference analogue of connections on the projective line, the so-called (G,\hbar) -opers.

Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18 - '22

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1),\,\hbar)$ -opers and Bethe equations

(G, n)-opers

▶ via Algebraic Bethe ansatz:

Central for the QISM.

Developed in Leningrad: late 70s-80s

▶ via Frenkel-Reshetikhin (qKZ) equation:

I. Frenkel, N. Reshetikhin '92

Recently: geometrization through enumerative geometry of quiver varieties.

A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;

P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

via QQ-systems:

appeared first in the context of qKdV equation and ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'19

In this talk: geometric interpretation of QQ-systems through the difference analogue of connections on the projective line, the so-called (G,\hbar) -opers.

Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18 - '22

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

via Algebraic Bethe ansatz:

Central for the QISM.

Developed in Leningrad: late 70s-80s

▶ via Frenkel-Reshetikhin (qKZ) equation:

I. Frenkel, N. Reshetikhin '92

Recently: geometrization through enumerative geometry of quiver varieties.

A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;

P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z .'17

via QQ-systems:

appeared first in the context of qKdV equation and ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'19

In this talk: geometric interpretation of QQ-systems through the difference analogue of connections on the projective line, the so-called (G,\hbar) -opers.

Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18 - '22

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1),\,\hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

Cartan matrix: $\{a_{ij}\}_{i,j=1,...,r}$, $a_{ij} = \langle \check{\alpha}_i, \alpha_j \rangle$.

QQ-system:

$$\widetilde{\xi}_{i}Q_{-}^{i}(u)Q_{+}^{i}(\hbar u) - \xi_{i}Q_{-}^{i}(\hbar u)Q_{+}^{i}(u) = \Lambda_{i}(u)\prod_{j\neq i}\left[\prod_{k=1}^{-a_{ij}}Q_{+}^{j}(\hbar^{b_{ij}^{k}}u)\right]$$

$$i = 1, \ldots, r, \quad b_{ii}^{k} \in \mathbb{Z}$$

 $\{\Lambda_i(u), Q^i_{\pm}(u)\}_{i=1,\dots,r}$ polynomials, ξ_i , $\widetilde{\xi}_i$, $\hbar \in \mathbb{C}^{\times}$; $\{\Lambda_i(z)\}_{i=1,\dots,r}$ -fixed.

Solving for $\{Q_+^i(z)\}_{i=1,\ldots,r}$; $\{Q_-^i(z)\}_{i=1,\ldots,r}$ -auxiliary.

If g is of ADE type:
$$\begin{cases} b_{ij} = 1, & i > j \\ b_{ij} = 0, & i < j \end{cases}$$

Example: $g = \mathfrak{sl}(2)$:

$$\widetilde{\xi}Q_{-}(u)Q_{+}(\hbar u) - \xi Q_{-}(\hbar u)Q_{+}(u) = \Lambda(u).$$

ntroduction

QQ-systems

Differential limit Miura opers and

 $SL(r+1),\,\hbar$)-oper nd Bethe equation

(=, ·-) -p---

Cartan matrix: $\{a_{ij}\}_{i,j=1,...,r}$, $a_{ij} = \langle \check{\alpha}_i, \alpha_j \rangle$.

QQ-system:

$$\widetilde{\xi}_{i}Q_{-}^{i}(u)Q_{+}^{i}(\hbar u) - \xi_{i}Q_{-}^{i}(\hbar u)Q_{+}^{i}(u) = \Lambda_{i}(u)\prod_{j\neq i}\left[\prod_{k=1}^{-a_{ij}}Q_{+}^{j}(\hbar^{b_{ij}^{k}}u)\right]$$

$$i = 1, \ldots, r, \quad b_{ii}^{k} \in \mathbb{Z}$$

 $\{\Lambda_i(u), Q^i_{\pm}(u)\}_{i=1,\dots,r}$ polynomials, ξ_i , $\widetilde{\xi}_i$, $\hbar \in \mathbb{C}^{\times}$; $\{\Lambda_i(z)\}_{i=1,\dots,r}$ -fixed.

Solving for $\{Q_+^i(z)\}_{i=1,\ldots,r}$; $\{Q_-^i(z)\}_{i=1,\ldots,r}$ -auxiliary.

If
$$\mathfrak{g}$$
 is of ADE type :
$$\begin{cases} b_{ij} = 1, \ i > j \\ b_{ij} = 0, \ i < j \end{cases}$$

Example: $g = \mathfrak{sl}(2)$:

$$\widetilde{\mathcal{E}}Q_{-}(u)Q_{+}(\hbar u) - \mathcal{E}Q_{-}(\hbar u)Q_{+}(u) = \Lambda(u).$$

4 D > 4 P > 4 B > 4 B > B = 400 P

Introduction

QQ-systems

Differential limit Miura opers and

SL(r+1), \hbar)-opers and Bethe equations

(G, n)-opers

Cartan matrix: $\{a_{ij}\}_{i,j=1,...,r}$, $a_{ij} = \langle \check{\alpha}_i, \alpha_j \rangle$.

QQ-system:

$$\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u) - \xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u) = \Lambda_{i}(u) \prod_{j \neq i} \left[\prod_{k=1}^{-a_{ij}} Q_{+}^{j}(\hbar^{b_{ij}^{k}} u) \right]$$

$$i = 1, \dots, r, \quad b_{ii}^{k} \in \mathbb{Z}$$

 $\{\Lambda_i(u), Q_{\pm}^i(u)\}_{i=1,\dots,r}$ polynomials, ξ_i , $\widetilde{\xi}_i$, $\hbar \in \mathbb{C}^{\times}$; $\{\Lambda_i(z)\}_{i=1,\dots,r}$ -fixed.

Solving for $\{Q_+^i(z)\}_{i=1,\ldots,r}$; $\{Q_-^i(z)\}_{i=1,\ldots,r}$ -auxiliary.

If
$$\mathfrak{g}$$
 is of ADE type :
$$\begin{cases} b_{ij} = 1, \ i > j \\ b_{ij} = 0, \ i < j \end{cases}$$

Example: $g = \mathfrak{sl}(2)$:

$$\widetilde{\xi}Q_{-}(u)Q_{+}(\hbar u) - \xi Q_{-}(\hbar u)Q_{+}(u) = \Lambda(u).$$

Introduction

QQ-systems

Differential limit Miura opers and

 $SL(r+1),\,\hbar$)-opers and Bethe equations

ο, π_j-ορεισ

nd Bethe equatio

(C, 75) Open

Applications

▶ Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19

 Bethe ansatz equations for XXX, XXZ models: Q'_± are eigenvalues of Baxter operators.

in case ξ_i , $\widetilde{\xi}_i = 1$: E. Mukhin, A. Varchenko,

Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\hat{Q}_{+}^{i}(u) = \sum_{m=0}^{n} u^{m} \Lambda^{m} V_{i}$.

P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

Spectral determinant relations in ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16

▶ \hbar -connections on the projective line: (G, \hbar) -opers

P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev, D. Sage, E. Frenkel, A.Z. '20;

(SL(r+1), h)-oper and Bethe equation

(-, .-, ----

Applications

▶ Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19

▶ Bethe ansatz equations for XXX, XXZ models: Q_{\pm}^{i} are eigenvalues of Baxter operators.

in case ξ_i , $\widetilde{\xi}_i=$ 1: E. Mukhin, A. Varchenko, . . .

Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u) = \sum_{m=0}^{n} u^{m} \Lambda^{m} V_{i}$.

P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

► Spectral determinant relations in ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16

▶ \hbar -connections on the projective line: (G, \hbar) -opers

P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev, D. Sage, E. Frenkel, A.Z. '20;

and Bethe equation

Applications

▶ Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19

▶ Bethe ansatz equations for XXX, XXZ models: Q'_{\pm} are eigenvalues of Baxter operators.

in case ξ_i , $\widetilde{\xi}_i=$ 1: E. Mukhin, A. Varchenko, . . .

► Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}^i_+(u) = \sum_{m=0}^n u^m \Lambda^m \mathcal{V}_i$.

P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

Spectral determinant relations in ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16

▶ \hbar -connections on the projective line: (G, \hbar) -opers

P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev, D. Sage, E. Frenkel, A.Z. '20;

nd Bethe equatio

Introduction

▶ Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19

▶ Bethe ansatz equations for XXX, XXZ models: Q_{\pm}^{i} are eigenvalues of Baxter operators.

in case ξ_i , $\widetilde{\xi}_i=1$: E. Mukhin, A. Varchenko, . . .

▶ Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u) = \sum_{m=0}^{n} u^{m} \Lambda^{m} \mathcal{V}_{i}$.

P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

Spectral determinant relations in ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16

 \blacktriangleright \hbar -connections on the projective line: (G, \hbar) -opers

P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev, D. Sage, E. Frenkel, A.Z. '20

Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.

V. Bazhanov, S. Lukvanov, A. Zamolodchikov '98: E. Frenkel, D. Hernandez '13,'19

▶ Bethe ansatz equations for XXX, XXZ models: Q'_+ are eigenvalues of Baxter operators.

in case ξ_i , $\widetilde{\xi}_i = 1$: E. Mukhin, A. Varchenko, ...

▶ Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(\mathbf{u}) = \sum_{m=0}^{n} \mathbf{u}^{m} \Lambda^{m} \mathcal{V}_{i}$.

P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

Spectral determinant relations in ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16

• \hbar -connections on the projective line: (G, \hbar) -opers

P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev, D. Sage, E. Frenkel, A.Z. '20;

• $\{V_{\omega_i}\}_{i=1,\dots,r}$ – fundamental representations of \mathfrak{g} . Homomorphisms m_i :

$$m_i: \Lambda^2 V_{\omega_i} \rightarrow \otimes_{j \neq i} V_{\omega_i}^{\otimes^{-a_{ji}}}$$

This is how QQ-system appears in ODE/IM correspondence (D. Masoero, A. Raimondo, D. Valeri '16)

▶ Relations between generalized minors:

Lewis Carroll identity

$$det(M_1^1)det(M_k^k) - det(M_1^k)det(M_k^1) = det(M) \ det(M_{1,k}^{1,k})$$

More generally (S. Fomin, A. Zelevinsky '98)

$$\begin{split} \Delta_{u \cdot \omega_i, v \cdot \omega_i}(g) \Delta_{u w_i \cdot \omega_i, v w_i \cdot \omega_i}(g) & - & \Delta_{u w_i \cdot \omega_i, v \cdot \omega_i}(g) \Delta_{u \cdot \omega_i, v w_i \cdot \omega_i}(g) = \\ & & \prod_{j \neq i} \left[\Delta_{u \cdot \omega_j, v \cdot \omega_j}(g) \right]^{-a_{ji}}. \end{split}$$

This is the context of (G, \hbar) -opers

Introduction

QQ-systems

Differential limit Miura opers and

 $(SL(r+1), \hbar)$ -opers and Bethe equations

Ο, π)-**ορ**ειε

• $\{V_{\omega_i}\}_{i=1,\ldots,r}$ – fundamental representations of g. Homomorphisms m_i :

$$m_i: \quad \Lambda^2 V_{\omega_i} \quad o \quad \otimes_{j \neq i} V_{\omega_j}^{\otimes^{-a_{ji}}}$$

This is how QQ-system appears in ODE/IM correspondence (D. Masoero, A. Raimondo, D. Valeri '16)

Relations between generalized minors:

Lewis Carroll identity:

$$det(M_1^1)det(M_k^k) - det(M_1^k)det(M_k^1) = det(M) \ det(M_{1,k}^{1,k})$$

$$\begin{array}{lcl} \Delta_{u \cdot \omega_i, v \cdot \omega_i}(g) \Delta_{u w_i \cdot \omega_i, v w_i \cdot \omega_i}(g) & - & \Delta_{u w_j \cdot \omega_i, v \cdot \omega_i}(g) \Delta_{u \cdot \omega_i, v w_i \cdot \omega_i}(g) = \\ & & \prod_{j \neq i} \left[\Delta_{u \cdot \omega_j, v \cdot \omega_j}(g) \right]^{-a_{ji}}. \end{array}$$

(P. Koroteev, D. Sage, A.Z. '18; P. Koroteev, A.Z. '22)

QQ-systems

$$m_i: \Lambda^2 V_{\omega_i} \rightarrow \otimes_{j \neq i} V_{\omega_j}^{\otimes^{-a_{ji}}}$$

This is how QQ-system appears in ODE/IM correspondence (D. Masoero, A. Raimondo, D. Valeri '16)

Relations between generalized minors:

Lewis Carroll identity:

$$det(M_1^1)det(M_k^k) - det(M_1^k)det(M_k^1) = det(M) \ det(M_{1,k}^{1,k})$$

More generally (S. Fomin, A. Zelevinsky '98):

$$egin{array}{lll} \Delta_{u \cdot \omega_i, v \cdot \omega_i}(g) \Delta_{u w_i \cdot \omega_i, v w_i \cdot \omega_i}(g) & - & \Delta_{u w_i \cdot \omega_i, v \cdot \omega_i}(g) \Delta_{u \cdot \omega_i, v w_i \cdot \omega_i}(g) = \ & \prod_{j
eq i} \left[\Delta_{u \cdot \omega_j, v \cdot \omega_j}(g)
ight]^{-a_{ji}}. \end{array}$$

This is the context of (G, \hbar) -opers

$$(SL(r+1), \hbar)$$
-opers

$$G, h$$
)-opers

roduction

Differential limit,

Miura opers and Gaudin models $(SL(r+1), \hbar)$ -opers

(0, 11)-opers

 $i = 1, \ldots, r$

Applications

 $\left[q_{+}^{i}(v)\partial_{v}q_{-}^{i}(v) - q_{-}^{i}(v)\partial_{v}q_{+}^{i}(v)\right] + \zeta_{i}q_{i}^{+}(v)q_{i}^{-}(v) = \Lambda_{i}(v)\prod_{j\neq i}\left[q_{+}^{j}(v)\right]^{-a_{ji}}$

for g with Cartan matrix $\{a_{ji}\}_{i,j=1,...,r}$.

We will retell a version of a classic story between oper connections on the projective line and Gaudin models:

- E. Frenkel'03; B. Feigin, E. Frenkel, V. Toledano-Laredo '06,
- B. Feigin, E. Frenkel, L. Rybnikov '07

One-to-one correspondence (with some nondegeneracy conditions):

Polynomial solutions to the qq-system

1

Miura G-oper connections on \mathbb{P}^1 with regular singularities, trivial monodromy and the double pole at infinity

troduction

QQ-syste

 $i = 1, \ldots, r$

Differential limit, Miura opers and Gaudin models

 (G, \hbar) -opers

Applications

 $\left[q_+^i(v)\partial_v q_-^i(v) - q_-^i(v)\partial_v q_+^i(v)\right] + \zeta_i q_i^+(v)q_i^-(v) = \Lambda_i(v) \prod_{j \neq i} \left[q_+^j(v)\right]^{-a_{ji}}$

for g with Cartan matrix $\{a_{ii}\}_{i,i=1,...,r}$.

We will retell a version of a classic story between oper connections on the projective line and Gaudin models:

E. Frenkel'03; B. Feigin, E. Frenkel, V. Toledano-Laredo '06,

B. Feigin, E. Frenkel, L. Rybnikov '07

One-to-one correspondence (with some nondegeneracy conditions):

Polynomial solutions to the qq-system

1

Miura G-oper connections on \mathbb{P}^1 with regular singularities, trivial monodromy and the double pole at infinity

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

Applications

 $i = 1, \ldots, r$

for $\mathfrak g$ with Cartan matrix $\{a_{ji}\}_{i,j=1,\ldots,r}$.

We will retell a version of a classic story between oper connections on the projective line and Gaudin models:

- E. Frenkel'03; B. Feigin, E. Frenkel, V. Toledano-Laredo '06,
- B. Feigin, E. Frenkel, L. Rybnikov '07

One-to-one correspondence (with some nondegeneracy conditions):

Polynomial solutions to the qq-system

1

Miura G-oper connections on \mathbb{P}^1 with regular singularities, trivial monodromy and the double pole at infinity

Miura oper connections on \mathbb{P}^1 as a differential operator:

$$\nabla_{v} = \partial_{v} + \sum_{i=1}^{r} \zeta_{i} \check{\omega}_{i} - \sum_{i=1}^{r} \partial_{v} \log[q_{i}^{+}(v)] \check{\alpha}_{i} + \sum_{i=1}^{r} \Lambda_{i}(v) e_{i}.$$

Here

$$\Lambda_i(v) = \prod_{k=1}^N (v - v_k)^{\langle \alpha_i, \check{\lambda}_k \rangle},$$

 v_k -are known as regular singularities;

$$q_+^i(\mathbf{v}) = \prod_k (\mathbf{v} - \mathbf{w}_k^i).$$

2-twisted condition:

$$\nabla_{\mathbf{v}} = U(\mathbf{v})(\partial_{\mathbf{v}} + \mathcal{Z})U(\mathbf{v})^{-1}, \quad \mathcal{Z} = \sum_{i=1}^{r} \zeta_{i} \check{\omega}_{i}$$

$$U(\mathbf{v}) = \prod_{i=1}^{r} [q_{+}^{i}(\mathbf{v})]^{\check{\alpha}_{i}} \prod_{j=1}^{r} \exp \left[-\frac{q_{-}^{i}(\mathbf{v})}{q_{+}^{i}(\mathbf{v})} e_{i} \right]..$$

Introduction

QQ-syste

Differential limit, Miura opers and Gaudin models

 $\mathit{SL}(r+1),\,\hbar)$ -opers and Bethe equations

. . . .

Miura oper connections on \mathbb{P}^1 as a differential operator:

$$\nabla_{v} = \partial_{v} + \sum_{i=1}^{r} \zeta_{i} \check{\omega}_{i} - \sum_{i=1}^{r} \partial_{v} \log[q_{i}^{+}(v)] \check{\alpha}_{i} + \sum_{i=1}^{r} \Lambda_{i}(v) e_{i}.$$

Here

$$\Lambda_i(v) = \prod_{k=1}^N (v - v_k)^{\langle \alpha_i, \check{\lambda}_k \rangle},$$

 v_k -are known as regular singularities;

$$q_+^i(v) = \prod_k (v - w_k^i).$$

Z-twisted condition:

$$\nabla_{\mathbf{v}} = U(\mathbf{v})(\partial_{\mathbf{v}} + \mathbf{Z})U(\mathbf{v})^{-1}, \quad \mathbf{Z} = \sum_{i=1}^{r} \zeta_{i} \check{\omega}_{i}$$

$$U(\mathbf{v}) = \prod_{i=1}^{r} [q_{+}^{i}(\mathbf{v})]^{\check{\alpha}_{i}} \prod_{j=1}^{r} \exp \left[-\frac{q_{-}^{i}(\mathbf{v})}{q_{+}^{i}(\mathbf{v})} e_{i} \right] \dots$$

Introduction

QQ-syst

Differential limit, Miura opers and Gaudin models

 $\mathit{SL}(r+1),\,\hbar$)-opers nd Bethe equations

ntroduction

QQ-syst

Differential limit, Miura opers and Gaudin models

nd Bethe equat

A

qq-system for $\mathfrak{g} \ \leftrightarrow \ ^{L}\mathfrak{g}$ – Gaudin model Bethe equations

Bethe equations for the Gaudin model:

$$\sum_{i=1}^{N} \frac{\langle \check{\lambda}_i, \alpha_{k_j} \rangle}{w_j - v_i} - \sum_{s \neq j} \frac{\langle \check{\alpha}_{i_s}, \alpha_{k_j} \rangle}{w_j - w_s} = \zeta_{k_j}, \quad j = 1, \dots, m.$$

Commuting Gaudin Hamiltonians:

B. Feigin, E. Frenkel, V. Toledano-Laredo '06, E. Frenkel, L. Rybnikov '07

$$H_i = \sum_{k \neq i} \sum_{a=1}^{\dim^L \mathfrak{g}} \frac{x_a^{(i)} x_a^{(k)}}{v_i - v_k} + \sum_{a=1}^{\dim^L \mathfrak{g}} \mu(x_a) x_a^{(i)}$$

acting on

$$V_{\check{\lambda}_1} \otimes V_{\check{\lambda}_2} \otimes \cdots \otimes V_{\check{\lambda}_N}.$$

Here $\mu \in (^L\mathfrak{g})^*$ is regular semisimple.

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

nd Bethe equati

Applications

qq-system for $\mathfrak{g} \ \leftrightarrow \ ^{L}\mathfrak{g}$ – Gaudin model Bethe equations

Bethe equations for the Gaudin model:

$$\sum_{i=1}^{N} \frac{\langle \check{\lambda}_i, \alpha_{k_j} \rangle}{w_j - v_i} - \sum_{s \neq j} \frac{\langle \check{\alpha}_{i_s}, \alpha_{k_j} \rangle}{w_j - w_s} = \zeta_{k_j}, \quad j = 1, \dots, m.$$

Commuting Gaudin Hamiltonians:

B. Feigin, E. Frenkel, V. Toledano-Laredo '06, E. Frenkel, L. Rybnikov '07

$$H_i = \sum_{k \neq i} \sum_{a=1}^{\dim^L \mathfrak{g}} \frac{x_a^{(i)} x_a^{(k)}}{v_i - v_k} + \sum_{a=1}^{\dim^L \mathfrak{g}} \mu(x_a) x_a^{(i)}$$

acting on

$$V_{\check{\lambda}_1}\otimes V_{\check{\lambda}_2}\otimes\cdots\otimes V_{\check{\lambda}_N}.$$

Here $\mu \in ({}^{L}\mathfrak{g})^*$ is regular semisimple.

- ▶ Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^1 : E-vector bundle, rank(E)=2, \mathcal{L} -line subbundle, ∇ -connection.
- ▶ Oper condition: induced map $\bar{\nabla} : \mathcal{L} \to E/\mathcal{L} \otimes K$ is an isomorphism.

It is an SL(2)-oper if GL(2) can be reduced to SL(2).

Locally, second condition: $s(v) \wedge \nabla_v s(v) \neq 0$ where s(v) is a section of \mathcal{L} .

D. Gaiotto, E. Witten '1

SL(2)-oper with regular singularities: $s(v) \wedge \nabla_v s(v) \sim (v - v_i)^{k_i}$ near v_i .

 \mathbb{Z} -twisted condition: $\nabla_{\mathbf{v}}$ is gauge equivalent to $\partial_{\mathbf{v}} + \mathbb{Z}$, where

$$\mathcal{Z} = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}.$$

ntroduction

QQ-syste

Differential limit, Miura opers and Gaudin models

 $SL(r+1),\,\hbar)$ -opers and Bethe equations

. .. .

- ▶ Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^1 : E-vector bundle, rank(E)=2, \mathcal{L} -line subbundle, ∇ -connection.
- ▶ Oper condition: induced map $\bar{\nabla} : \mathcal{L} \to E/\mathcal{L} \otimes K$ is an isomorphism.

It is an SL(2)-oper if GL(2) can be reduced to SL(2).

Locally, second condition: $s(v) \wedge \nabla_v s(v) \neq 0$ where s(v) is a section of \mathcal{L} .

D. Gaiotto, E. Witten '1

SL(2)-oper with regular singularities: $s(v) \wedge \nabla_v s(v) \sim (v - v_i)^{k_i}$ near v_i .

 \mathbb{Z} -twisted condition: $\nabla_{\mathbf{v}}$ is gauge equivalent to $\partial_{\mathbf{v}} + \mathbb{Z}$, where

$$\mathcal{Z} = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}.$$

ntroduction

QQ-system

Differential limit, Miura opers and Gaudin models

 $(SL(r+1),\,\hbar)$ -opers and Bethe equations

GL(2)-oper:

- ▶ Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^1 : E-vector bundle, rank(E)=2, \mathcal{L} -line subbundle, ∇ -connection.
- ▶ Oper condition: induced map $\bar{\nabla}: \mathcal{L} \to E/\mathcal{L} \otimes K$ is an isomorphism.

It is an SL(2)-oper if GL(2) can be reduced to SL(2).

Locally, second condition: $s(v) \wedge \nabla_v s(v) \neq 0$, where s(v) is a section of \mathcal{L} .

D. Gaiotto, E. Witten '11

SL(2)-oper with regular singularities: $s(v) \wedge \nabla_v s(v) \sim (v - v_i)^{k_i}$ near v_i .

Z-twisted condition: $\nabla_{\mathbf{v}}$ is gauge equivalent to $\partial_{\mathbf{v}} + \mathbb{Z}$, where

$$\mathcal{Z} = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}.$$

ntroduction

QQ-sys

Differential limit, Miura opers and Gaudin models

 $(SL(r+1),\,\hbar)$ -opers and Bethe equations

. . . .

4D > 4B > 4B > 4B > 900

GL(2)-oper:

- ▶ Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^1 : E-vector bundle, rank(E)=2, \mathcal{L} -line subbundle, ∇ -connection.
- ▶ Oper condition: induced map $\bar{\nabla} : \mathcal{L} \to E/\mathcal{L} \otimes K$ is an isomorphism.

It is an SL(2)-oper if GL(2) can be reduced to SL(2).

Locally, second condition: $s(v) \wedge \nabla_v s(v) \neq 0$, where s(v) is a section of \mathcal{L} .

D. Gaiotto, E. Witten '11

SL(2)-oper with regular singularities: $s(v) \wedge \nabla_v s(v) \sim (v - v_i)^{k_i}$ near v_i .

Z-twisted condition: $\nabla_{\mathbf{v}}$ is gauge equivalent to $\partial_{\mathbf{v}} + \mathbb{Z}$, where

$$\mathcal{Z} = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}.$$

ntroduction

QQ-sys

Differential limit, Miura opers and Gaudin models

 $SL(r+1),\,\hbar)$ -opers and Bethe equations

(-, ·-) -p-··

GL(2)-oper:

- ▶ Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^1 : E-vector bundle, rank(E)=2, \mathcal{L} -line subbundle, ∇ -connection.
- ▶ Oper condition: induced map $\bar{\nabla}: \mathcal{L} \to E/\mathcal{L} \otimes K$ is an isomorphism.

It is an SL(2)-oper if GL(2) can be reduced to SL(2).

Locally, second condition: $s(v) \wedge \nabla_v s(v) \neq 0$, where s(v) is a section of \mathcal{L} .

D. Gaiotto, E. Witten '11

SL(2)-oper with regular singularities: $s(v) \wedge \nabla_v s(v) \sim (v - v_i)^{k_i}$ near v_i .

 \mathbb{Z} -twisted condition: $\nabla_{\mathbf{v}}$ is gauge equivalent to $\partial_{\mathbf{v}} + \mathbb{Z}$, where

$$\mathcal{Z} = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}.$$

ntroduction

QQ-syst

Differential limit, Miura opers and Gaudin models

 $SL(r+1),\,\hbar)$ -opers and Bethe equations

. .. .

4 D > 4 D > 4 D > 4 D > D 9 Q Q

Thus the oper condition is:

$$s(v) \wedge (\partial_v + \mathbb{Z}) s(v) = \Lambda(v),$$

where
$$\Lambda(\mathbf{v}) \sim \prod_i (\mathbf{v} - \mathbf{v}_i)^{k_i}, \quad \mathcal{Z} = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}.$$

Explicitly:
$$s(v) = \begin{pmatrix} q_-(v) \\ q_+(v) \end{pmatrix}$$
, we have:

$$q_{+}(v)\partial_{v}q_{-}(v)-q_{-}(v)\partial_{v}q_{+}(v)+\zeta q_{+}(v)q_{-}(v)=\Lambda(v)$$

Rewriting

$$\partial_{\mathbf{v}} \left[-e^{-\zeta \mathbf{v}} \frac{q_{-}(\mathbf{v})}{q_{+}(\mathbf{v})} \right] = \frac{e^{-\zeta \mathbf{v}} \Lambda(\mathbf{v})}{q_{+}(\mathbf{v})^{2}}$$

and computing residues, obtain sl(2) Gaudin Bethe ansatz equations:

$$-\zeta + \sum_{n=1}^{N} \frac{k_n}{v_n - w_i} = \sum_{i \neq i} \frac{2}{w_i - w_i}.$$

troduction

ΩΩ-system

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

Thus the oper condition is:

$$s(v) \wedge (\partial_v + \mathbb{Z}) s(v) = \Lambda(v),$$

where
$$\Lambda(v) \sim \prod_i (v - v_i)^{k_i}$$
, $Z = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}$.

Explicitly:
$$s(v) = \begin{pmatrix} q_-(v) \\ q_+(v) \end{pmatrix}$$
, we have:

$$q_+(v)\partial_v q_-(v) - q_-(v)\partial_v q_+(v) + \zeta q_+(v)q_-(v) = \Lambda(v).$$

Rewriting

$$\partial_{\mathbf{v}} \left[-e^{-\zeta \mathbf{v}} \frac{q_{-}(\mathbf{v})}{q_{+}(\mathbf{v})} \right] = \frac{e^{-\zeta \mathbf{v}} \Lambda(\mathbf{v})}{q_{+}(\mathbf{v})^{2}}$$

and computing residues, obtain $\mathfrak{sl}(2)$ Gaudin Bethe ansatz equations:

$$-\zeta + \sum_{n=1}^{N} \frac{k_n}{v_n - w_i} = \sum_{j \neq i} \frac{2}{w_j - w_i}$$

ntroduction

QQ-syst

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

G, n)-opers

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

Thus the oper condition is:

$$s(v) \wedge (\partial_v + \mathbb{Z}) s(v) = \Lambda(v),$$

where
$$\Lambda(\mathbf{v}) \sim \prod_i (\mathbf{v} - \mathbf{v}_i)^{k_i}, \quad \mathcal{Z} = \begin{pmatrix} \zeta/2 & 0 \\ 0 & -\zeta/2 \end{pmatrix}.$$

Explicitly:
$$s(v) = \begin{pmatrix} q_-(v) \\ q_+(v) \end{pmatrix}$$
, we have:

$$q_+(v)\partial_v q_-(v) - q_-(v)\partial_v q_+(v) + \zeta q_+(v)q_-(v) = \Lambda(v).$$

Rewriting:

$$\partial_{\nu} \left[-e^{-\zeta_{\nu}} rac{q_{-}(
u)}{q_{+}(
u)}
ight] = rac{e^{-\zeta_{\nu}} \Lambda(
u)}{q_{+}(
u)^{2}}$$

and computing residues, obtain $\mathfrak{sl}(2)$ Gaudin Bethe ansatz equations:

$$-\zeta + \sum_{n=1}^{N} \frac{k_n}{v_n - w_i} = \sum_{i \neq i} \frac{2}{w_i - w_i}.$$

Introduction

Differential limit,

Miura opers and Gaudin models

nd Bethe equation:

Introduce line bundle $\hat{\mathcal{L}}$ preserved by ∇ .

Miura oper is a quadruple:

$$(E,\nabla,\mathcal{L},\hat{\mathcal{L}}).$$

Choose trivialization of E so that:

$$\hat{s}(v) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad s(v) = \begin{pmatrix} q_-(v) \\ q_+(v) \end{pmatrix}$$

These are sections, generating $\hat{\mathcal{L}}$ and \mathcal{L} correspondingly.

Notice that $\mathcal{L}, \hat{\mathcal{L}}$ span E except for points corresponding to Bethe roots.

C +)

Annlications

Choosing upper-triangular g(v), such that $g(v)s(v)=\begin{pmatrix} 0\\1 \end{pmatrix}$,

$$g(v) = \begin{pmatrix} q_+(v) & -q_-(v) \\ 0 & q_+(v)^{-1} \end{pmatrix}$$

we obtain Miura oper connection in the standard form:

$$\nabla_{v} = \partial_{v} + g(v)\partial_{v}g(v)^{-1} + g(v)\mathbb{Z}g(v)^{-1} =$$

$$\partial_{v} + \begin{pmatrix} \zeta/2 - \partial_{v}\log[q_{+}(v)] & \Lambda(v) \\ 0 & -\zeta/2 + \partial_{v}\log[q_{+}(v)] \end{pmatrix}$$

Or, in other words, we obtained the standard for of Miura oper connection, we have seen before:

$$\partial_{\mathbf{v}} + \mathbf{Z} - \partial_{\mathbf{v}} \log[q_{+}(\mathbf{v})] \check{\alpha} + \Lambda(\mathbf{v}) e$$

GL(r+1)-opers:

Triple: $(E, \nabla, \mathcal{L}_{\bullet})$, rank(E)=r+1, ∇ -connection,

 \mathcal{L}_{\bullet} – flag of subbundles:

- ▶ $\nabla : \mathcal{L}_i \to \mathcal{L}_{i+1} \otimes K$
- ▶ induced map $\overline{\nabla}_i : \mathcal{L}_i/\mathcal{L}_{i-1} \to \mathcal{L}_{i+1}/\mathcal{L}_i \otimes K$ is an isomorphism.

If structure group reduces to SL(r+1), the above triple gives SL(r+1)-opers.

Locally, oper condition can be reformulated as:

$$0 \neq W_i(s)(\mathbf{v}) = (s(\mathbf{v}) \wedge \nabla_{\mathbf{v}} s(\mathbf{v}) \wedge \cdots \wedge \nabla_{\mathbf{v}}^{i-1} s(\mathbf{v}))|_{\Lambda^i \mathcal{L}},$$

where s(v) is a section of \mathcal{L}_1 .

Regular singularities: relaxing these conditions, by adding zeroes for $W_i(s)$.

iiti oddctioii

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

GL(r+1)-opers:

Triple: $(E, \nabla, \mathcal{L}_{\bullet})$, rank(E)=r+1, ∇ -connection,

 \mathcal{L}_{\bullet} – flag of subbundles:

- $\nabla: \mathcal{L}_i \to \mathcal{L}_{i+1} \otimes K$
- ▶ induced map $\overline{\nabla}_i : \mathcal{L}_i/\mathcal{L}_{i-1} \to \mathcal{L}_{i+1}/\mathcal{L}_i \otimes K$ is an isomorphism.

If structure group reduces to SL(r+1), the above triple gives SL(r+1)-opers.

Locally, oper condition can be reformulated as:

$$0 \neq W_i(s)(\mathbf{v}) = (s(\mathbf{v}) \wedge \nabla_{\mathbf{v}} s(\mathbf{v}) \wedge \cdots \wedge \nabla_{\mathbf{v}}^{i-1} s(\mathbf{v}))|_{\Lambda^i \mathcal{L}},$$

where s(v) is a section of \mathcal{L}_1 .

Regular singularities: relaxing these conditions, by adding zeroes for $W_i(s)$.

ntroduction

QQ-syste

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

ο, *π*η-**ορ**εισ

Oper connection with regular singularities as a matrix:

$$abla_{
u} = \partial_{
u} + egin{pmatrix} * & \Lambda_{1}(
u) & 0 & \dots & 0 \ * & * & \Lambda_{2}(
u) & 0 \dots & 0 \ dots & dots & \ddots & dots \ * & * & \dots & * & \Lambda_{r}(
u) \ * & * & * & * & * \end{pmatrix}$$

Miura oper: quadrupe $(E, \nabla, \mathcal{L}_{\bullet}, \hat{\mathcal{L}}_{\bullet})$.

Here ∇ preserves another flag of subbundles: $\hat{\mathcal{L}}_{\bullet}$:

$$abla_u = \partial_u + egin{pmatrix} * & \Lambda_1(\mathbf{v}) & 0 & \dots & 0 \\ 0 & * & \Lambda_2(\mathbf{v}) & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & * & \Lambda_r(\mathbf{v}) \\ 0 & 0 & \dots & 0 & * \end{pmatrix}$$

qq-system: relations between various normalized minors in the (r+1) imes (r+1) Wronskian matrix.

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

(-, .., ----

Oper connection with regular singularities as a matrix:

$$abla_{
u} = \partial_{
u} + egin{pmatrix} * & \Lambda_{1}(
u) & 0 & \dots & 0 \ * & * & \Lambda_{2}(
u) & 0 \dots & 0 \ dots & dots & \ddots & dots \ * & * & \dots & * & \Lambda_{r}(
u) \ * & * & * & * & * \end{pmatrix}$$

Miura oper: quadrupe $(E, \nabla, \mathcal{L}_{\bullet}, \hat{\mathcal{L}}_{\bullet})$.

Here ∇ preserves another flag of subbundles: $\hat{\mathcal{L}}_{ullet}$:

$$\nabla_{u} = \partial_{u} + \begin{pmatrix} * & \Lambda_{1}(v) & 0 & \dots & 0 \\ 0 & * & \Lambda_{2}(v) & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & * & \Lambda_{r}(v) \\ 0 & 0 & \dots & 0 & * \end{pmatrix}$$

qq-system: relations between various normalized minors in the (r+1) imes (r+1) Wronskian matrix.

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

.

Oper connection with regular singularities as a matrix:

$$abla_{
u} = \partial_{
u} + egin{pmatrix} * & \Lambda_{1}(
u) & 0 & \dots & 0 \ * & * & \Lambda_{2}(
u) & 0 \dots & 0 \ dots & dots & \ddots & dots \ * & * & \dots & * & \Lambda_{r}(
u) \ * & * & * & * & * \end{pmatrix}$$

Miura oper: quadrupe $(E, \nabla, \mathcal{L}_{\bullet}, \hat{\mathcal{L}}_{\bullet})$.

Here ∇ preserves another flag of subbundles: $\hat{\mathcal{L}}_{ullet}$:

$$abla_u = \partial_u + egin{pmatrix} * & \Lambda_1(v) & 0 & \dots & 0 \\ 0 & * & \Lambda_2(v) & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & * & \Lambda_r(v) \\ 0 & 0 & \dots & 0 & * \end{pmatrix}$$

qq-system: relations between various normalized minors in the (r+1) imes (r+1) Wronskian matrix.

Introduction

QQ-syst

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

. . .

 $(SL(r+1), \hbar)$ -opers and Bethe equations

 $M_{\hbar}: \mathbb{P}^1 \to \mathbb{P}^1$, such that $u \to \hbar u$.

Bundle $E \to \mathbb{P}^1$, rank(E)=2, $E^{\hbar} \to \mathbb{P}^1$ is a pull-back bundle.

 $(SL(2), \hbar)$ -connection: A is a meromorphic section of

$$Hom_{\mathcal{O}_{\mathbb{P}^1}}(E,E^{\hbar}),$$

so that $A(u) \in SL(2, \mathbb{C}(u))$.

 \hbar -gauge transformations:

$$A(\mathbf{u}) \to g(\hbar \mathbf{u}) A(\mathbf{u}) g^{-1}(\mathbf{u})$$

- ▶ (E, A) is a $(SL(2), \hbar)$ -connection
- $\mathcal L$ is a line subbundle so that $\bar A:\mathcal L\to (E/\mathcal L)^\hbar$ is an isomorphism

Locally

$$s(\hbar \mathbf{u}) \wedge A(\mathbf{u})s(\mathbf{u}) \neq 0$$
,

where s(u) is a section of \mathcal{L}

Miura $(SL(2), \hbar)$ -oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- \blacktriangleright (E, A, \mathcal{L}) is $(SL(2), \hbar)$ -oper
- ▶ Line subbundle $\hat{\mathcal{L}}$ is preserved by A.

Regular singularities: $\Lambda(u) = \prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}} (u - \hbar^{-j} u_m)$, so that

$$s(\hbar \mathbf{u}) \wedge A(\mathbf{u})s(\mathbf{u}) = \Lambda(\mathbf{u})s(\mathbf{u})$$

A Z-twisted (SL(2), \hbar)-oper: A is \hbar -gauge equivalent to $Z = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$

ntroduction

QQ-syste

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

(0,70) open

- ▶ (E, A) is a $(SL(2), \hbar)$ -connection
- lacksquare \mathcal{L} is a line subbundle so that $ar{A}:\mathcal{L} o (E/\mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$s(\hbar u) \wedge A(u)s(u) \neq 0$$
,

where s(u) is a section of \mathcal{L} .

Miura (SL(2), \hbar)-oper: qudruple (E, A, \mathcal{L} , $\hat{\mathcal{L}}$):

- \blacktriangleright (E, A, \mathcal{L}) is $(SL(2), \hbar)$ -oper
- ▶ Line subbundle $\hat{\mathcal{L}}$ is preserved by A.

Regular singularities: $\Lambda(u) = \prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}} (u - \hbar^{-j} u_m)$, so that

$$s(\hbar u) \wedge A(u)s(u) = \Lambda(u).$$

A Z-twisted $(SL(2), \hbar)$ -oper: A is \hbar -gauge equivalent to $Z = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$

ntroduction

QQ-syste

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

(0,70) **opers**

- (E, A) is a $(SL(2), \hbar)$ -connection
- lacksquare \mathcal{L} is a line subbundle so that $ar{A}:\mathcal{L} o (E/\mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$s(\hbar u) \wedge A(u)s(u) \neq 0$$
,

where s(u) is a section of \mathcal{L} .

Miura $(SL(2), \hbar)$ -oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- \blacktriangleright (E, A, \mathcal{L}) is $(SL(2), \hbar)$ -oper
- ▶ Line subbundle $\hat{\mathcal{L}}$ is preserved by A.

Regular singularities: $\Lambda(u) = \prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}} (u - \hbar^{-j} u_m)$, so that

$$s(\hbar u) \wedge A(u)s(u) = \Lambda(u).$$

A Z-twisted ($SL(2), \hbar$)-oper: A is \hbar -gauge equivalent to $Z = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$

ntroduction

QQ-syste

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \, \hbar)$ -opers and Bethe equations

(G, n)-opers

- (E, A) is a $(SL(2), \hbar)$ -connection
- \mathcal{L} is a line subbundle so that $\bar{A}:\mathcal{L}\to (E/\mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$s(\hbar u) \wedge A(u)s(u) \neq 0$$
,

where s(u) is a section of \mathcal{L} .

Miura $(SL(2), \hbar)$ -oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- ▶ (E, A, \mathcal{L}) is $(SL(2), \hbar)$ -oper
- ▶ Line subbundle $\hat{\mathcal{L}}$ is preserved by A.

Regular singularities: $\Lambda(u) = \prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}} (u - \hbar^{-j} u_m)$, so that:

$$s(\hbar u) \wedge A(u)s(u) = \Lambda(u).$$

A Z-twisted ($SL(2), \hbar$)-oper: A is \hbar -gauge equivalent to $Z = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$

ntroduction

QQ-syst

Differential limit Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

 G, \hbar)-opers

- (E, A) is a $(SL(2), \hbar)$ -connection
- \mathcal{L} is a line subbundle so that $\bar{A}:\mathcal{L}\to (E/\mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$s(\hbar u) \wedge A(u)s(u) \neq 0$$
,

where s(u) is a section of \mathcal{L} .

Miura $(SL(2), \hbar)$ -oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- ▶ (E, A, \mathcal{L}) is $(SL(2), \hbar)$ -oper
- ▶ Line subbundle $\hat{\mathcal{L}}$ is preserved by A.

Regular singularities: $\Lambda(u) = \prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}} (u - \hbar^{-j} u_m)$, so that:

$$s(\hbar u) \wedge A(u)s(u) = \Lambda(u).$$

A Z-twisted (SL(2), \hbar)-oper: A is \hbar -gauge equivalent to $Z = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$

ntroduction

QQ-systems

Differential limit Miura opers and Saudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

(0,70) **opers**

Introduction

QQ-syst

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

Applications

Given that $s(u) = \begin{pmatrix} Q_-(u) \\ Q_+(u) \end{pmatrix}$, the condition $s(\hbar u) \wedge Zs(u) = \Lambda(u)$ is equivalent to:

$$zQ_{+}(\hbar u)Q_{-}(u) - z^{-1}Q_{-}(\hbar u)Q_{+}(u) = \Lambda(u)$$

Bethe equations for XXZ model:

$$\frac{\Lambda(w_i)}{\Lambda(\hbar^{-1}w_i)} = -z^2 \frac{Q_+(\hbar w_i)}{Q_+(\hbar^{-1}w_i)}$$

$$Q_+(u) = \prod_j (u - w_j)$$

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

.

Applications

Considering $U(u)s(u) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, so that $\hat{\mathcal{L}}$ is preserved, gives:

$$U(u) = \begin{pmatrix} Q_{+}(u) & -Q_{-}(u) \\ 0 & Q_{+}(u)^{-1} \end{pmatrix}$$

which leads to:

$$A(u) = U(\hbar u)ZU(u)^{-1} = \begin{pmatrix} z\frac{Q_+(\hbar u)}{Q_+(u)} & \Lambda(u) \\ 0 & z^{-1}\frac{Q_+(u)}{Q_+(\hbar u)} \end{pmatrix}.$$

In universal terms:

$$A(u) = g^{\check{\alpha}}(u)e^{\frac{\Lambda(u)}{g(u)}e}, \quad g(u) = z\frac{Q_{+}(\hbar u)}{Q_{+}(u)}.$$

Compare to the Miura SL(2)-oper connection:

$$\nabla_{\mathbf{v}} = \partial_{\mathbf{v}} + \mathbf{Z} - \partial_{\mathbf{v}} \log[q_{+}(\mathbf{v})] \check{\alpha} + \Lambda(\mathbf{v}) \mathbf{e}$$

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

Applications

Considering $U(u)s(u)=\begin{pmatrix} 0\\1 \end{pmatrix}$, so that $\hat{\mathcal{L}}$ is preserved, gives:

$$U(u) = \begin{pmatrix} Q_{+}(u) & -Q_{-}(u) \\ 0 & Q_{+}(u)^{-1} \end{pmatrix}$$

which leads to:

$$A(u) = U(\hbar u)ZU(u)^{-1} = \begin{pmatrix} z\frac{Q_{+}(\hbar u)}{Q_{+}(u)} & \Lambda(u) \\ 0 & z^{-1}\frac{Q_{+}(u)}{Q_{+}(\hbar u)} \end{pmatrix}.$$

In universal terms:

$$A(u) = g^{\check{\alpha}}(u)e^{\frac{\Lambda(u)}{g(u)}e}, \quad g(u) = z\frac{Q_{+}(\hbar u)}{Q_{+}(u)}.$$

Compare to the Miura SL(2)-oper connection:

$$\nabla_{v} = \partial_{v} + \mathcal{Z} - \partial_{v} \log[q_{+}(v)] \check{\alpha} + \Lambda(v)e.$$

Quantum group

$$U_{\hbar}(\hat{\mathfrak{g}})$$

is a deformation of $U(\hat{\mathfrak{g}})$, with a nontrivial intertwiner $R_{V_1,V_2}(a_1/a_2)$:

$$V_1(a_1) \otimes V_2(a_2)$$

$$V_2(a_2) \otimes V_1(a_1)$$

which is a rational function of a_1 , a_2 , satisfying Yang-Baxter equation:

The generators of $U_{\hbar}(\hat{\mathfrak{g}})$ emerge as matrix elements of R-matrices (the so-called FRT construction).

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

. . . .

 $(SL(r+1), \hbar)$ -opers and Bethe equations

Applications

Source of integrability: commuting *transfer matrices*, generating *Baxter algebra* which are weighted traces of

$$\tilde{R}_{W(u),\mathcal{H}_{phys}}:W(u)\otimes\mathcal{H}_{phys} o W(u)\otimes\mathcal{H}_{phys}$$

over auxiliary W(u) space:

$$T_{W(u)} = \operatorname{Tr}_{W(u)} \Big(M(u) \Big) = \operatorname{Tr}_{W(u)} \Big((Z \otimes 1) \ \tilde{R}_{W(u), \mathcal{H}_{phys}} \Big)$$

Here $Z \in e^{\mathfrak{h}}$, where $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra.

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

Applications

Integrability condition:

$$[T_{W'(u')},\,T_{W(u)}]=0$$

There are special transfer matrices is called *Baxter Q-operators*. Such operators generate all *Bethe algebra*.

Primary goal for physicists is to diagonalize $\{T_{W(u)}\}$ simultaneously.

▶ Principal *G*-bundle \mathcal{F}_G over \mathbb{P}^1

 $ightharpoonup M_{\hbar}: \mathbb{P}^1 o \mathbb{P}^1$, such that $u \mapsto \hbar u$.

 $\mathcal{F}_{\mathcal{G}}^{\hbar}$ stands for the pullback under the map M_{\hbar} .

A meromorphic (G, \hbar) -connection on a principal G-bundle \mathcal{F}_G on \mathbb{P}^1 is a section A of $Hom_{\mathcal{O}_U}(\mathcal{F}_G, \mathcal{F}_G^{\hbar})$, where U is a Zariski open dense subset of \mathbb{P}^1 .

Choose U so that the restriction $\mathcal{F}_G|_U$ of \mathcal{F}_G to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{\hbar}^{-1}(U)$ is an element A(u) of $G(u) \equiv G(\mathbb{C}(u))$.

Changing the trivialization is given by \hbar -gauge transformation:

$$A(\mathbf{u}) \mapsto g(\hbar \mathbf{u}) A(\mathbf{u}) g(\mathbf{u})^{-1}$$

ntroduction

QQ-systems

Differential limit, Miura opers and

 $(SL(r+1),\,\hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

▶ Principal *G*-bundle \mathcal{F}_G over \mathbb{P}^1

 $ightharpoonup M_{\hbar}: \mathbb{P}^1 \to \mathbb{P}^1$, such that $u \mapsto \hbar u$.

 ${\mathcal F}_{\mathcal G}^\hbar$ stands for the pullback under the map $M_\hbar.$

A meromorphic (G, \hbar) -connection on a principal G-bundle \mathcal{F}_G on \mathbb{P}^1 is a section A of $Hom_{\mathcal{O}_U}(\mathcal{F}_G, \mathcal{F}_G^{\hbar})$, where U is a Zariski open dense subset of \mathbb{P}^1 .

Choose U so that the restriction $\mathcal{F}_G|_U$ of \mathcal{F}_G to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{\hbar}^{-1}(U)$ is an element A(u) of $G(u) \equiv G(\mathbb{C}(u))$.

Changing the trivialization is given by \hbar -gauge transformation:

$$A(\mathbf{u}) \mapsto g(\hbar \mathbf{u}) A(\mathbf{u}) g(\mathbf{u})^{-1}$$

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $(SL(r+1), \hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

 (G, \hbar) -opers

- ▶ Principal G-bundle \mathcal{F}_G over \mathbb{P}^1
- $M_{\hbar}: \mathbb{P}^1 \to \mathbb{P}^1$, such that $u \mapsto \hbar u$.

 $\mathcal{F}_{\mathcal{C}}^{\hbar}$ stands for the pullback under the map M_{\hbar} .

A meromorphic (G, \hbar) -connection on a principal G-bundle \mathcal{F}_G on \mathbb{P}^1 is a section A of $Hom_{\mathcal{O}_U}(\mathfrak{F}_G,\mathfrak{F}_G^h)$, where U is a Zariski open dense subset of \mathbb{P}^1 .

Choose U so that the restriction $\mathcal{F}_G|_U$ of \mathcal{F}_G to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{\hbar}^{-1}(U)$ is an element $A(\underline{u})$ of $G(\underline{u}) \equiv G(\mathbb{C}(\underline{u}))$.

$$A(\mathbf{u}) \mapsto g(\hbar \mathbf{u}) A(\mathbf{u}) g(\mathbf{u})^{-1}$$

 $ightharpoonup M_{\hbar}: \mathbb{P}^1 \to \mathbb{P}^1$, such that $u \mapsto \hbar u$.

 \mathfrak{F}_G^{\hbar} stands for the pullback under the map M_{\hbar} .

A meromorphic (G, \hbar) -connection on a principal G-bundle \mathcal{F}_G on \mathbb{P}^1 is a section A of $Hom_{\mathcal{O}_U}(\mathcal{F}_G, \mathcal{F}_G^{\hbar})$, where U is a Zariski open dense subset of \mathbb{P}^1 .

Choose U so that the restriction $\mathcal{F}_G|_U$ of \mathcal{F}_G to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{\hbar}^{-1}(U)$ is an element A(u) of $G(u) \equiv G(\mathbb{C}(u))$.

Changing the trivialization is given by \hbar -gauge transformation:

$$A(\mathbf{u}) \mapsto g(\hbar \mathbf{u}) A(\mathbf{u}) g(\mathbf{u})^{-1}$$

Introduction

QQ-systems

Differential limit, Miura opers and

 $(SL(r+1),\,\hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

. .

Differential limit, Miura opers and Gaudin models

and Bethe equation

 (G, \hbar) -opers

Applications

A (G, \hbar) -oper on \mathbb{P}^1 is a triple $(\mathcal{F}_G, A, \mathcal{F}_{B_-})$:

- $ightharpoonup \mathcal{F}_G$ is a G-bundle
- ▶ A is a meromorphic (G, \hbar) -connection on \mathcal{F}_G over \mathbb{P}^1
- ▶ $\mathcal{F}_{B_{-}}$ is the reduction of \mathcal{F}_{G} to B_{-}

 (G, \hbar) -oper condition: restriction of the connection $A: \mathcal{F}_G \to \mathcal{F}_G^{\hbar}$ to $U \cap M_{\hbar}^{-1}(U)$ takes values in the Bruhat cell

$$B_{-}(\mathbb{C}[U\cap M_{\hbar}^{-1}(U)]) \subset B_{-}(\mathbb{C}[U\cap M_{\hbar}^{-1}(U)]),$$

where *c* is Coxeter element: $c = \prod_i s_i$

Locally:

$$A(u) = n'(u) \prod_{i} \left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i} \right] n(u), \ \phi_{i}(u) \in \mathbb{C}(u), \ n(u), n'(u) \in N(u)$$

Here N = B/H, H = B/[B, B].

ħ-Drinfeld-Sokolov reduction: Semenov-Tian-Shansky, Sevostyanov '98

and developed

QQ-systems

Differential limit, Miura opers and Gaudin models

and Bethe equation (G, \hbar) -opers

Applications

A (G, \hbar) -oper on \mathbb{P}^1 is a triple $(\mathcal{F}_G, A, \mathcal{F}_{B_-})$:

- \blacktriangleright \mathcal{F}_G is a G-bundle
- ▶ A is a meromorphic (G, \hbar) -connection on \mathcal{F}_G over \mathbb{P}^1
- ▶ $\mathcal{F}_{B_{-}}$ is the reduction of \mathcal{F}_{G} to B_{-}

 (G,\hbar) -oper condition: restriction of the connection $A:\mathcal{F}_G\to\mathcal{F}_G^{\hbar}$ to $U\cap M_{\hbar}^{-1}(U)$ takes values in the Bruhat cell

$$B_{-}(\mathbb{C}[U\cap M_{\hbar}^{-1}(U)]) \subset B_{-}(\mathbb{C}[U\cap M_{\hbar}^{-1}(U)]),$$

where c is Coxeter element: $c = \prod_i s_i$.

Locally:

$$A(u) = n'(u) \prod_{i} \left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i} \right] n(u), \ \phi_{i}(u) \in \mathbb{C}(u), \ n(u), n'(u) \in N(u)$$

Here N = B/H, H = B/[B, B].

ħ-Drinfeld-Sokolov reduction: Semenov-Tian-Shansky, Sevostyanov '98

...........

QQ-systems

Differential limit, Miura opers and Gaudin models

 $SL(r+1), \hbar$)-oper and Bethe equations

(G, ħ)-opers

Applications

A (G, \hbar) -oper on \mathbb{P}^1 is a triple $(\mathcal{F}_G, A, \mathcal{F}_{B_-})$:

- \blacktriangleright \mathcal{F}_G is a G-bundle
- lacktriangle A is a meromorphic (G,\hbar) -connection on \mathfrak{F}_G over \mathbb{P}^1
- ▶ $\mathcal{F}_{B_{-}}$ is the reduction of \mathcal{F}_{G} to B_{-}

 (G,\hbar) -oper condition: restriction of the connection $A:\mathcal{F}_G\to\mathcal{F}_G^{\hbar}$ to $U\cap M_{\hbar}^{-1}(U)$ takes values in the Bruhat cell

$$B_{-}(\mathbb{C}[U\cap M_{\hbar}^{-1}(U)]) \subset B_{-}(\mathbb{C}[U\cap M_{\hbar}^{-1}(U)]),$$

where c is Coxeter element: $c = \prod_i s_i$.

Locally:

$$A(u) = n'(u) \prod_{i} \left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i} \right] n(u), \ \phi_{i}(u) \in \mathbb{C}(u), \ n(u), n'(u) \in N(u)$$

Here N = B/H, H = B/[B, B].

ħ-Drinfeld-Sokolov reduction: Semenov-Tian-Shansky, Sevostyanov '98

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

and Bethe equati (G, \hbar) -opers

A 17 -- 1.7 - ...

A Miura (G, \hbar) -oper on \mathbb{P}^1 is a quadruple $(\mathcal{F}_G, A, \mathcal{F}_{B_-}, \mathcal{F}_{B_+})$:

- $(\mathfrak{F}_G, A, \mathfrak{F}_{B_-})$ is a meromorphic (G, \hbar) -oper on \mathbb{P}^1 .
- ▶ \mathcal{F}_{B_+} is a reduction of the *G*-bundle \mathcal{F}_G to B_+ that is preserved by the (G, \hbar) -connection A.

The fiber $\mathcal{F}_{G,x}$ of \mathcal{F}_G at x is a G-torsor with reductions $\mathcal{F}_{B_-,x}$ and $\mathcal{F}_{B_+,x}$ to B_- and B_+ , respectively. Choose any trivialization of $\mathcal{F}_{G,x}$, i.e. an isomorphism of G-torsors $\mathcal{F}_{G,x} \simeq G$. Under this isomorphism, $\mathcal{F}_{B_-,x}$ gets identified with $aB_- \subset G$ and $\mathcal{F}_{B_+,x}$ with bB_+ .

Then $a^{-1}b$ is a well-defined element of the double quotient $B_- \setminus G/B_+$, which is in bijection with W_G .

We will say that \mathcal{F}_{B_-} and \mathcal{F}_{B_+} have a generic relative position at $x \in X$ if the element of W_G assigned to them at x is equal to 1 (this means that the corresponding element $a^{-1}b$ belongs to the open dense Bruhat cell $B_- \cdot B_+ \subset G$).

and Bethe equat (G, \hbar) -opers

A I' -- + ' - ...

Theorem.

i) For any Miura (G,\hbar) -oper on \mathbb{P}^1 , there exists a trivialization of the underlying G-bundle \mathcal{F}_G on an open dense subset of \mathbb{P}^1 for which the oper \hbar -connection has the form:

$$A(u) \in N_{-}(u) \prod_{i} (\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}) N_{-}(u) \cap B_{+}(u).$$

ii) Any element from $N_-(u)\prod_i(\phi_i(u)^{\alpha_i}s_i)N_-(u)\cap B_+(z)$ can be written as:

$$\prod g_i^{\check{\alpha}_i}(u)e^{\frac{\phi_i(u)t_i(u)}{g_i(u)}e_i}$$

where each $t_i \in \mathbb{C}(u)$ is determined by the lifting of s_i .

In the following we set $t_i \equiv 1$.

E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

Theorem.

i) For any Miura (G, \hbar) -oper on \mathbb{P}^1 , there exists a trivialization of the underlying G-bundle \mathcal{F}_G on an open dense subset of \mathbb{P}^1 for which the oper \hbar -connection has the form:

$$A(u) \in N_{-}(u) \prod_{i} (\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}) N_{-}(u) \cap B_{+}(u).$$

ii) Any element from $N_{-}(u)\prod_{i}(\phi_{i}(u)^{\check{\alpha}_{i}}s_{i})N_{-}(u)\cap B_{+}(z)$ can be written as:

$$\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\phi_{i}(u)t_{i}(u)}{g_{i}(u)}e_{i}}$$

where each $t_i \in \mathbb{C}(u)$ is determined by the lifting of s_i .

In the following we set $t_i \equiv 1$.

E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $SL(r+1), \hbar$)-oper and Bethe equations

(G, ħ)-opers

Applications

• (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^1 :

$$A(u) = n'(u) \prod_{i} \left[\Lambda_{i}^{\check{\alpha}_{i}}(u) s_{i} \right] n(u), \ \Lambda_{i}(u) \in \mathbb{C}[u].$$

For any Miura (G, \hbar) -oper with regular singularities:

$$A(u) = \prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\bigwedge_{i}(u)}{g_{i}}e_{i}}.$$

▶ (G, \hbar) -oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$A(u) = v(\hbar u)Zv^{-1}(u)$$
, where $Z = \prod_i z_i^{\check{\alpha}_i}, \ v(u) \in G(u)$.

We assume Z is regular semisimple. In that case there are W_G Miura opers for a given oper.

In the extreme case Z = 1 we have G/B Miura opers for a given oper.

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $SL(r+1), \hbar$)-oper and Bethe equations

(G, ħ)-opers

Applications

• (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^1 :

$$A(u) = n'(u) \prod_{i} \left[\Lambda_{i}^{\check{\alpha}_{i}}(u) s_{i} \right] n(u), \ \Lambda_{i}(u) \in \mathbb{C}[u].$$

For any Miura (G, \hbar) -oper with regular singularities:

$$A(u) = \prod_{i} g_{i}^{\alpha_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)}e_{i}}.$$

▶ (G, \hbar) -oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$A(u) = v(\hbar u)Zv^{-1}(u)$$
, where $Z = \prod_i z_i^{\check{\alpha}_i}$, $v(u) \in G(u)$.

We assume Z is regular semisimple. In that case there are W_G Miura opers for a given oper.

In the extreme case Z = 1 we have G/B Miura opers for a given oper.

 (G, \hbar) -opers

• (G, \hbar) -oper with regular singularities at finitely many points on \mathbb{P}^1 :

$$A(u) = n'(u) \prod_i \left[\Lambda_i^{\check{\alpha}_i}(u) s_i \right] n(u), \ \Lambda_i(u) \in \mathbb{C}[u].$$

For any Miura (G, \hbar) -oper with regular singularities:

$$A(u) = \prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\bigwedge_{i}(u)}{g_{i}}e_{i}}.$$

▶ (G, \hbar) -oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$A(u) = v(\hbar u)Zv^{-1}(u)$$
, where $Z = \prod_i z_i^{\check{\alpha}_i}$, $v(u) \in G(u)$.

We assume Z is regular semisimple. In that case there are W_G Miura opers for a given oper.

In the extreme case Z = 1 we have G/B Miura opers for a given oper.

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

and Bethe equations SL(r+1), R(r+1), R(r+1), and R(r+1), R(r+1),

 (G, \hbar) -opers

Applications

Nondegeneracy conditions (see detailed discussion in our paper):

$$A(u) = \prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)}e_{i}}, \quad g_{i}(u) = \frac{y_{i}(\hbar u)}{y_{i}(u)}$$

Each $y_i(u)$ is a polynomial, and for all i, j, k with $i \neq j$ and $a_{ik} \neq 0, a_{jk} \neq 0$, the zeros of $y_i(u)$ and $y_j(u)$ are \hbar -distinct from each other and from the zeros of $\Lambda_k(u)$.

Explicit formula for v(u), such that

$$A(\mathbf{u}) = v(\mathbf{u}\hbar)Zv(\mathbf{u})^{-1}$$

is:

$$V(\mathbf{u}) = \prod_{i=1}^{r} y_i(\mathbf{u})^{\alpha_i} \prod_{i=1}^{r} e^{-\frac{Q_{-}^{j}(\mathbf{u})}{Q_{+}^{j}(\mathbf{u})} e_i} \dots,$$

where the dots stand for the exponentials of higher commutator terms.

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

SL(r+1), h)-oper and Bethe equations

 (G, \hbar) -opers

Applications

Nondegeneracy conditions (see detailed discussion in our paper):

$$A(u) = \prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)}e_{i}}, \quad g_{i}(u) = \frac{y_{i}(\hbar u)}{y_{i}(u)}$$

Each $y_i(u)$ is a polynomial, and for all i, j, k with $i \neq j$ and $a_{ik} \neq 0$, $a_{jk} \neq 0$, the zeros of $y_i(u)$ and $y_j(u)$ are \hbar -distinct from each other and from the zeros of $\Lambda_k(u)$.

Explicit formula for v(u), such that

$$A(\mathbf{u}) = v(\mathbf{u}\hbar)Zv(\mathbf{u})^{-1}$$

is:

$$v(u) = \prod_{i=1}^r y_i(u)^{\alpha_i} \prod_{i=1}^r e^{-\frac{Q_+^j(u)}{Q_+^j(u)}e_i} \dots,$$

where the dots stand for the exponentials of higher commutator terms.

That leads to the expression of Miura (G, \hbar)-oper connection:

$$A(u) = \prod_i g_i^{\check{\alpha}_i}(u) e^{\frac{\Lambda_i(u)}{g_i^*(u)}e_i}, \quad g_i(u) = z_i \frac{Q_+^i(\hbar u)}{Q_+^i(u)}.$$

Theorem. There is a one-to-one correspondence between the set of nondegenerate Z-twisted Miura (G,\hbar) -opers and the set of nondegenerate polynomial solutions of the QQ-system:

$$\begin{split} \widetilde{\xi_i} Q_-^i(u) Q_+^i(\hbar u) - \xi_i Q_-^i(\hbar u) Q_+^i(u) = \\ \Lambda_i(u) \prod_{j>i} \left[Q_+^j(\hbar u) \right]^{-a_{jj}} \prod_{j< i} \left[Q_+^j(u) \right]^{-a_{jj}}, \qquad i = 1, \dots, r, \end{split}$$

where
$$\widetilde{\xi}_i = z_i \prod_{j>i} z_j^{a_{ji}}$$
 , $\xi_i = z_i^{-1} \prod_{j< i} z_j^{-a_{ji}}$.

E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

In ADE case this QQ-system correspond to the Bethe ansatz equations. Beyond simply-laced case: "folded integrable models".

00

Differential limit, Miura opers and

 $SL(r+1),\,\hbar)$ -opers and Bethe equations

(G, ħ)-opers

Originally operators

$$A(u) = \prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)}e_{i}}, \quad g_{i}(u) = z_{i} \frac{Q_{+}^{i}(\hbar u)}{Q_{+}^{i}(u)},$$

where $Q_{\pm}(u)$ are the solution of QQ-systems, were introduced by Mukhin, Varchenko'05 in the additive case with Z=1.

They also introduced the following \hbar -gauge transformation of the \hbar -connection A:

$$A\mapsto A^{(i)}=e^{\mu_i(\hbar u)f_i}A(u)e^{-\mu_i(u)f_i}, \quad \text{where} \quad \mu_i(u)=rac{\prod\limits_{j
eq i}\left\lfloor Q_+^J(u)
ight
floor}{Q_+^i(u)Q_-^i(u)}$$

Then $A^{(i)}(u)$ can be obtained from A(u) by substituting in formula for A(u):

$$Q^{j}_{+}(\mathbf{u}) \mapsto Q^{j}_{+}(\mathbf{u}), \qquad j \neq i,$$

 $Q^{i}_{+}(\mathbf{u}) \mapsto Q^{i}_{-}(\mathbf{u}), \qquad Z \mapsto s_{i}(Z).$

4 D > 4 P > 4 E > 4 E > 9 Q P

Altogether these transformation generate the "full" QQ-system

Differential in

Miura opers and Gaudin models

(SL(r+1), h)-opers and Bethe equations

 (G, \hbar) -opers

Originally operators

$$A(u) = \prod_i g_i^{\check{\alpha}_i}(u) e^{\frac{\Lambda_i(u)}{g_i^*(u)}e_i}, \quad g_i(u) = z_i \frac{Q_+^i(\hbar u)}{Q_+^i(u)},$$

where $Q_{\pm}(u)$ are the solution of QQ-systems, were introduced by Mukhin, Varchenko'05 in the additive case with Z=1.

They also introduced the following \hbar -gauge transformation of the \hbar -connection A:

$$A \mapsto A^{(i)} = e^{\mu_i(\hbar u)f_i} A(u) e^{-\mu_i(u)f_i}, \quad \text{where} \quad \mu_i(u) = rac{\prod\limits_{j \neq i} \left[Q_+^j(u)\right]^{-a_{ji}}}{Q_+^i(u)Q_-^i(u)}.$$

Then $A^{(i)}(u)$ can be obtained from A(u) by substituting in formula for A(u):

$$Q^{j}_{+}(u) \mapsto Q^{j}_{+}(u), \qquad j \neq i,$$
 $Q^{j}_{+}(u) \mapsto Q^{j}_{-}(u), \qquad Z \mapsto s_{i}(Z).$

Altogether these transformation generate the "full" QQ-system.

ntroduction

OO-systems

Differential limit, Miura opers and Gaudin models

 $SL(r+1),\,\hbar)$ -opers nd Bethe equations

 (G, \hbar) -opers

QQ-system:

$$\xi_{i+1} Q_i^+(\hbar u) Q_i^-(u) - \xi_i Q_i^+(u) Q_i^-(\hbar u) = \Lambda_i(u) Q_{i-1}^+(u) Q_{i+1}^+(\hbar u) \,, i = 1, \dots, r$$

$$\xi_1 = \frac{1}{z_1}, \quad \xi_2 = \frac{z_1}{z_2}, \quad \dots \quad \xi_r = \frac{z_{r-1}}{z_r}, \quad \xi_{r+1} = \frac{1}{z_r},$$

For Z-twisted oper:

$$A(\mathbf{u}) = V^{-1}(\hbar \mathbf{u}) \mathbf{Z} V(\mathbf{u})$$

$$V(u) = \begin{pmatrix} \frac{1}{Q_1^+(u)} & \frac{Q_1^-(u)}{Q_2^+(u)} & \frac{Q_{12}^-(u)}{Q_3^+(u)} & \cdots & \frac{Q_{1,\dots,r-1}^-(u)}{Q_r^+(u)} & Q_{1,\dots,r}^-(u) \\ 0 & \frac{Q_1^+(u)}{Q_2^+(u)} & \frac{Q_2^-(u)}{Q_3^+(u)} & \cdots & \frac{Q_{2,\dots,r-1}^-(u)}{Q_r^+(u)} & Q_{2,\dots,r}^-(u) \\ 0 & 0 & \frac{Q_2^+(u)}{Q_3^+(u)} & \cdots & \frac{Q_{3,\dots,r-1}^-(u)}{Q_r^+(u)} & Q_{3,\dots,r}^-(u) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \frac{Q_{r-1}^+(u)}{Q_r^+(u)} & Q_r^-(u) \\ 0 & \cdots & \cdots & \cdots & 0 & Q_r^+(u) \end{pmatrix}.$$

ntroduction

QQ-syst

Differential limit, Miura opers and Gaudin models

 $(SL(r+1),\,\hbar)$ -opers and Bethe equations

 (G, \hbar) -opers

40 + 40 + 45 + 45 + 5 40 P

 (G, \hbar) -opers

A $(GL(r+1), \hbar)$ -oper on \mathbb{P}^1 is a triple $(A, E, \mathcal{L}_{\bullet})$, where E is a vector bundle of rank r+1 and \mathcal{L}_{\bullet} is the corresponding complete flag of the vector bundles.

$$\mathcal{L}_{r+1} \subset ... \subset \mathcal{L}_{i+1} \subset \mathcal{L}_i \subset \mathcal{L}_{i-1} \subset ... \subset E = \mathcal{L}_1$$
,

where \mathcal{L}_{r+1} is a line bundle, so that $A \in Hom_{\mathcal{O}_{n}}(E, E^{\hbar})$ satisfies the following conditions:

- \triangleright $A \cdot \mathcal{L}_i \subset \mathcal{L}_{i-1}$.
- ▶ $\bar{A}_i : \mathcal{L}_i / \mathcal{L}_{i+1} \to \mathcal{L}_{i-1} / \mathcal{L}_i$ is an isomorphism.

An $(SL(r+1), \hbar)$ -oper is a $(GL(r+1), \hbar)$ -oper with the condition that det(A) = 1.

Regular singularities: \bar{A}_i allowed to have zeroes at zeroes of $\Lambda_i(u)$.

Minors in \hbar -Wronskian matrix:

$$\mathcal{D}_{k}(s) = e_{1} \wedge \cdots \wedge e_{r+1-k} \wedge s(u) \wedge Z^{-1}s(\hbar u) \wedge \cdots \wedge Z^{1-k}s(\hbar^{k-1}u) = \alpha_{k}W_{k}(u)\mathcal{V}_{k}(u),$$

where

$$\mathcal{V}_k(\mathbf{u}) = \prod_{a=1}^{r_k} (\mathbf{u} - \mathbf{w}_{k,a}),$$

and

$$W_k(s) = P_1 \cdot P_2^{(1)} \cdot P_3^{(2)} \cdots P_{k-1}^{(k-2)}, \quad P_i = \Lambda_r \Lambda_{r-1} \cdots \Lambda_{r-i+1}$$

We used the notation $f^{(j)}(\mathbf{u}) = f(\hbar^j \mathbf{u})$ above.

One can identify: $V_k(\mathbf{u}) \equiv Q_k^+(\mathbf{u})$ and $Q_{i,...,j}^-(\mathbf{u})$ with other minors

The bilinear relations for the extended QQ-system are nothing but Plücker relations for minors in the \hbar -Wronskian matrix.

stroduction

QQ-syst

Differential limit, Miura opers and Gaudin models

 $SL(r+1), \hbar$)-opers nd Bethe equations

(G, ħ)-opers

Minors in \hbar -Wronskian matrix:

$$\mathcal{D}_{k}(s) = e_{1} \wedge \cdots \wedge e_{r+1-k} \wedge s(u) \wedge Z^{-1}s(\hbar u) \wedge \cdots \wedge Z^{1-k}s(\hbar^{k-1}u) = \alpha_{k}W_{k}(u)V_{k}(u),$$

where

$$\mathcal{V}_k(\mathbf{u}) = \prod_{a=1}^{r_k} (\mathbf{u} - \mathbf{w}_{k,a}),$$

and

$$W_k(s) = P_1 \cdot P_2^{(1)} \cdot P_3^{(2)} \cdots P_{k-1}^{(k-2)}, \quad P_i = \Lambda_r \Lambda_{r-1} \cdots \Lambda_{r-i+1}$$

We used the notation $f^{(j)}(\mathbf{u}) = f(\hbar^j \mathbf{u})$ above.

One can identify: $\mathcal{V}_k(u) \equiv Q_k^+(u)$ and $Q_{i,...,i}^-(u)$ with other minors.

The bilinear relations for the extended QQ-system are nothing but Plücker relations for minors in the \hbar -Wronskian matrix.

OO systems

Differential limit, Miura opers and

 $(SL(r+1), \hbar)$ -opers

 (G, \hbar) -opers

troduction

QQ-systems

Differential limit, Miura opers and

 $SL(r+1), \hbar$)-operand Bethe equations

 (G, \hbar) -opers

One can construct an analogue of the \hbar -Wronskian matrix as a solution of a difference equation, so that the full QQ-system emerge as relations for generalized minors.

P. Koroteev, A.Z.'21

ntroduction

QQ-systems

Differential limit, Miura opers and Gaudin models

 $SL(r+1), \hbar$)-oper and Bethe equations

Applications

Take section of the line bundle \mathcal{L}_{r+1} in complete flag \mathcal{L}_{\bullet} :

$$s(u) = \begin{pmatrix} s_1(u) \\ s_2(u) \\ s_3(u) \\ \vdots \\ s_r(u) \\ s_{r+1}(u) \end{pmatrix} = \begin{pmatrix} Q_{1,\dots,r}^{-}(u) \\ Q_{2,\dots,r}^{-}(u) \\ Q_{3,\dots,r}^{-}(u) \\ \vdots \\ Q_r^{-}(u) \\ Q_r^{+}(u) \end{pmatrix}.$$

Interesting case (XXZ chain corresponding to defining representations):

- Polynomials are of degree 1
- Only $\Lambda_1(u) = \prod_i (u a_i)$ is nontrival

Identification:

- roots of $s_i(u)$ with momenta p_i
- $\blacktriangleright \xi_i = z_i/z_{i-1}$ with coordinates

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

and Bethe equation

Applications

Applications

Space of functions on Z-twisted Miura ($SL(r+1,\hbar)$ -opers

Space of functions on the intersection of two Lagrangian subvarieties in trigonometric Ruijsenaars-Schneider (tRS) phase space.

Bethe equations
$$\leftrightarrow \{H_k = f_k(\{a_i\})\}$$

Here H_k are tRS Hamiltonians

$$H_{k} = \sum_{\substack{J \subset \{1, \dots, r+1\} \\ |J| = k}} \prod_{\substack{i \in J \\ j \notin J}} \frac{\xi_{i} - \hbar \xi_{j}}{\xi_{i} - \xi_{j}} \prod_{m \in J} \rho_{m}$$

and f_k are elementary symmetric functions of a_i .

P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17

E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

$\hbar ext{-Opers for }\widehat{\widehat{\mathfrak{gl}}}(1)$ and Bethe ansatz

Let us "complete" Miura $(SL(r+1), \hbar)$ -opers:

$$(\overline{GL}(\infty), \hbar)$$
:

$$A(u) = \prod_{i=+\infty}^{-\infty} g_i^{\check{\alpha}_i}(\underline{u}) e^{\frac{\Lambda_i(u)}{g_i(u)}e_i}, \quad g_i(u) = z_i \frac{Q_+^i(\hbar u)}{Q_+^i(u)}.$$

Infinite-dimensional QQ-system:

$$\xi_{i+1}Q_{i}^{+}(\hbar u)Q_{i}^{-}(u)-\xi_{i}Q_{i}^{+}(u)Q_{i}^{-}(\hbar u)=\Lambda_{i}(u)Q_{i-1}^{+}(u)Q_{i+1}^{+}(\hbar u), i=1,\ldots,r,$$

where
$$\xi_i = z_i/z_{i-1}$$
.

Impose periodic condition: $VA(u)V^{-1} = \xi A(pu)$, where V corresponds to automorphism of Dynkin diagram $i \to i+1$.

V can be actually relized as an "infinite" Coxeter element of standard order.

That corresponds to $Q_i^{\pm}(\mathbf{u}) = Q^{\pm}(\mathbf{p}^j\mathbf{u}), \ \Lambda_j(\mathbf{u}) = \xi^j \Lambda(\mathbf{u}), \ \xi_j = \xi^j$:

$$\xi Q^{+}(\hbar u)Q^{-}(u) - Q^{+}(u)Q^{-}(\hbar u) = \Lambda(u)Q^{+}(up^{-1})Q^{+}(\hbar pu)$$

Introduction

QQ-systen

Differential limit, Miura opers and

 $L(r+1), \hbar$)-opers d Bethe equations

\hbar -Opers for $\widehat{\widehat{\mathfrak{gl}}}(1)$ and Bethe ansatz

Let us "complete" Miura ($\mathit{SL}(r+1),\hbar$)-opers:

 $(\overline{GL}(\infty), \hbar)$:

$$A(u) = \prod_{i=+\infty}^{-\infty} g_i^{\check{\alpha}_i}(u) e^{\frac{\Lambda_i(u)}{g_i(u)}e_i}, \quad g_i(u) = z_i \frac{Q_+^i(\hbar u)}{Q_+^i(u)}.$$

Infinite-dimensional QQ-system:

$$\xi_{i+1}Q_{i}^{+}(\hbar u)Q_{i}^{-}(u)-\xi_{i}Q_{i}^{+}(u)Q_{i}^{-}(\hbar u)=\Lambda_{i}(u)Q_{i+1}^{+}(u)Q_{i+1}^{+}(\hbar u), i=1,\ldots,r,$$

where $\xi_i = z_i/z_{i-1}$.

Impose periodic condition: $VA(u)V^{-1} = \xi A(pu)$, where V corresponds to automorphism of Dynkin diagram $i \to i + 1$.

 ${\it V}$ can be actually relized as an "infinite" Coxeter element of standard order.

That corresponds to $Q_i^{\pm}(\mathbf{u}) = Q^{\pm}(\mathbf{p}^j \mathbf{u}), \ \Lambda_j(\mathbf{u}) = \xi^j \Lambda(\mathbf{u}), \ \xi_j = \xi^j$:

$$\xi Q^{+}(\hbar u)Q^{-}(u) - Q^{+}(u)Q^{-}(\hbar u) = \Lambda(u)Q^{+}(up^{-1})Q^{+}(\hbar pu)$$

Introduction

QQ-systems

Differential limit, Miura opers and

 $(\mathit{SL}(r+1),\,\hbar)$ -opers and Bethe equations

Differential limit, Miura opers and Gaudin models

(SL(r+1), h)-opers and Bethe equations

Applications

Quantum/classical duality: duality between Bethe equations and multiparticle systems

P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys., 381 (2021) 641-672, arXiv:1811.09937

 Quantum equivariant K-theory of Nakajima quiver varieties and 3D mirror symmetry

P. Koroteev, A.Z., Toroidal q-Opers, to appear in Journal of the Institute of Mathematics of Jussieu, in press arXiv:2007.11786

P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588

Applications to ODE/IM correspondence: affine G-opers and (G, \hbar) -opers

E. Frenkel, P. Koroteev, A.Z., in progres

Differential limit, Miura opers and Gaudin models

and Bethe equation

_ _ _

Applications

 Quantum/classical duality: duality between Bethe equations and multiparticle systems

P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys., 381 (2021) 641-672, arXiv:1811.09937

 Quantum equivariant K-theory of Nakajima quiver varieties and 3D mirror symmetry

P. Koroteev, A.Z., Toroidal q-Opers, to appear in Journal of the Institute of Mathematics of Jussieu, in press, arXiv:2007.11786

P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588

▶ Applications to ODE/IM correspondence: affine G-opers and (G, ħ)-opers

E. Frenkel, P. Koroteev, A.Z., in progres

itroduction

Differential limit, Miura opers and

(SL(r+1), h)-oper and Bethe equation

_ _ _

Applications

 Quantum/classical duality: duality between Bethe equations and multiparticle systems

P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys., 381 (2021) 641-672, arXiv:1811.09937

Quantum equivariant K-theory of Nakajima quiver varieties and 3D mirror symmetry

P. Koroteev, A.Z., Toroidal q-Opers, to appear in Journal of the Institute of Mathematics of Jussieu, in press, arXiv:2007.11786

P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588

▶ Applications to ODE/IM correspondence: affine G-opers and (G, ħ)-opers

E. Frenkel, P. Koroteev, A.Z., in progress

Anton Zeitlin

Introduction

QQ-syst

Differential limit, Miura opers and Gaudin models

and Bethe equation (SL(r+1), h)-ope

Applications

Happy Birthday, Igor!