Solution

Section 2.8 – Derivatives of Logarithmic & Exponential Functions

Exercise

Find the derivative of $y = \ln \sqrt{x+5}$

Solution

$$y = \ln(x+5)^{1/2}$$
$$= \frac{1}{2}\ln(x+5)$$
$$y' = \frac{1}{2(x+5)}$$

Exercise

Find the Derivatives of $y = (3x+7)\ln(2x-1)$

Solution

$$f = 3x + 7 f' = 3$$

$$g = \ln(2x - 1) g' = \frac{2}{2x - 1}$$

$$y' = 3\ln(2x - 1) + \frac{2(3x + 7)}{2x - 1}$$

Exercise

Find the Derivatives of $f(x) = \ln \sqrt[3]{x+1}$

$$f(x) = \ln(x+1)^{1/3}$$
$$= \frac{1}{3}\ln(x+1)$$

$$u = x + 1 \Rightarrow \frac{du}{dx} = 1$$
$$f'(x) = \frac{1}{3} \frac{1}{x+1}$$
$$= \frac{1}{3(x+1)}$$

Find the Derivatives of $f(x) = \ln\left(x^2 \sqrt{x^2 + 1}\right)$

Solution

$$f(x) = \ln\left(x^2\right) + \ln\sqrt{x^2 + 1}$$

Product Property

$$f(x) = \ln(x^2) + \ln(x^2 + 1)^{1/2}$$

$$f(x) = 2\ln x + \frac{1}{2}\ln(x^2 + 1)$$

Power Property

$$f'(x) = 2\frac{1}{x} + \frac{1}{2} \frac{2x}{x^2 + 1}$$
$$= \frac{2}{x} + \frac{x}{x^2 + 1}$$

Differentiate

Exercise

Find the Derivatives of $y = \ln \frac{x^2}{x^2 + 1}$

Solution

$$y = \ln x^2 - \ln x^2 + 1$$

$$y' = \frac{2x}{x^2} - \frac{2x}{x^2 + 1}$$
$$= \frac{2}{x} - \frac{2x}{x^2 + 1}$$

Exercise

Find the Derivatives of $y = \ln \left[\frac{x^2(x+1)^3}{(x+3)^{1/2}} \right]$

$$y = \ln \left[x^{2} (x+1)^{3} \right] - \ln (x+3)^{1/2}$$

$$= \ln x^{2} + \ln (x+1)^{3} - \ln (x+3)^{1/2}$$

$$= 2 \ln x + 3 \ln (x+1) - \frac{1}{2} \ln (x+3)$$
Power Rule

$$y' = \frac{2}{x} + \frac{3}{x+1} - \frac{1}{2(x+3)}$$

Find the Derivatives of $y = \ln(x^2 + 1)$

Solution

$$y' = \frac{2x}{x^2 + 1} \qquad \left(\ln U\right)' = \frac{U'}{U}$$

Exercise

Find the Derivatives of $f(x) = \ln(x^2 - 4)$

Solution

Let
$$u = x^2 - 4 \Rightarrow \frac{du}{dx} = 2x$$

$$f'(x) = \frac{1}{x^2 - 4}(2x)$$

$$=\frac{2x}{x^2-4}$$

Exercise

Find the derivative $f(x) = 2\ln(x^2 - 3x + 4)$

Solution

$$f'(x) = 2\frac{2x-3}{x^2 - 3x + 4}$$
$$= \frac{4x-6}{x^2 - 3x + 4}$$

Exercise

Find the derivative $f(x) = 3\ln(1+x^2)$

$$f'(x) = 3\frac{2x}{1+x^2}$$
$$= \frac{6x}{1+x^2}$$

Find the derivative $f(x) = (1 + \ln x)^3$

Solution

$$f'(x) = 3(1 + \ln x)^{2} (1 + \ln x)'$$

$$= 3(1 + \ln x)^{2} (\frac{1}{x})$$

$$= \frac{3}{x} (1 + \ln x)^{2}$$

Exercise

Find the derivative $f(x) = (x - 2 \ln x)^4$

Solution

$$f'(x) = 4(x - 2\ln x)^3 \left(x - 2\ln x\right)'$$

$$= 4(x - 2\ln x)^3 \left(1 - \frac{2}{x}\right)$$

$$= 4(x - 2\ln x)^3 \left(\frac{x - 2}{x}\right)$$

$$= \frac{4x - 8}{x} (x - 2\ln x)^3$$

Exercise

Find the Derivatives of $f(x) = x^2 \ln x$

$$f' = x^{2} \left(\frac{1}{x}\right) + 2x \ln x$$

$$= x + 2x \ln x$$

$$= x \left(1 + 2\ln x\right)$$

Find the Derivatives of $f(x) = -\frac{\ln x}{x^2}$

Solution

$$f' = -\frac{x^2 \frac{d}{dx} (\ln x) - \ln x \frac{d}{dx} (x^2)}{(x^2)^2}$$

$$= -\frac{x^2 \frac{1}{x} - 2x \ln x}{x^4}$$

$$= -\frac{x - 2x \ln x}{x^4}$$

$$= -\frac{x (1 - 2\ln x)}{x^4}$$

$$= -\frac{1 - 2\ln x}{3}$$

Exercise

Find the derivative of $y = \ln(t^2)$

Solution

$$y' = \frac{\left(t^2\right)'}{t^2}$$
$$= \frac{2t}{t^2}$$
$$= \frac{2}{t}$$

Exercise

Find the derivative of $y = \ln(2\theta + 2)$

$$y' = \frac{2}{2\theta + 2}$$
$$= \frac{1}{\theta + 1}$$

Find the derivative of $y = (\ln x)^3$

Solution

$$y' = 3(\ln x)^2 \frac{1}{x}$$

= $\frac{3(\ln x)^2}{x}$

Exercise

Find the derivative of $y = x(\ln x)^2$

Solution

$$y' = (\ln x)^2 + x \left(2(\ln x)\frac{1}{x}\right)$$
$$= (\ln x)^2 + 2\ln x$$

Exercise

Find the derivative of $y = \frac{x^4}{4} \ln x - \frac{x^4}{16}$

Solution

$$y' = \frac{4x^3}{4} \ln x + \frac{x^4}{4} \frac{1}{x} - \frac{4x^3}{16}$$
$$= x^3 \ln x + \frac{1}{4} x^3 - \frac{1}{4} x^3$$
$$= x^3 \ln x$$

Exercise

Find the derivative of $y = \frac{1 + \ln t}{t}$

$$y' = \frac{\frac{1}{t}t - (1 + \ln t)}{t^2}$$
$$= \frac{1 - 1 - \ln t}{t^2}$$
$$= -\frac{\ln t}{t^2}$$

Find the derivative $f(x) = \frac{\ln x}{1+x}$

Solution

$$f'(x) = \frac{\left(\frac{1}{x}\right)(1+x) - \ln x}{(1+x)^2}$$
$$= \frac{\frac{1}{x}\frac{1+x-x\ln x}{(1+x)^2}}{\frac{1+x-x\ln x}{(1+x)^2}}$$

 $u = \ln x \quad v = 1 + x$ $u' = \frac{1}{x} \quad v' = 1$

Exercise

Find the derivative $f(x) = \frac{2x}{1 + \ln x}$

Solution

$$f'(x) = \frac{2(1+\ln x) - (2x)\frac{1}{x}}{(1+\ln x)^2}$$
$$= \frac{2+2\ln x - 2}{(1+\ln x)^2}$$
$$= \frac{2\ln x}{(1+\ln x)^2}$$

 $u = 2x \quad v = 1 + \ln x$

 $u' = 2 \qquad v' = \frac{1}{x}$

Exercise

Find the derivative $f(x) = x^3 \ln x$

$$u = x^3$$
 $v = \ln x$

$$u' = 3x^2 \qquad v' = \frac{1}{x}$$

$$f'(x) = 3x^{2} \ln x + x^{3} \frac{1}{x}$$
$$= 3x^{2} \ln x + x^{2}$$
$$= (3\ln x + 1)x^{2}$$

Find the derivative $f(x) = 6x^4 \ln x$

Solution

$$u = 6x^{4} v = \ln x$$

$$u' = 24x^{3} v' = \frac{1}{x}$$

$$f'(x) = 24x^{3} \ln x + 6x^{4} \frac{1}{x}$$

$$= 24x^{3} \ln x + 6x^{3}$$

$$= 6x^{3} (4 \ln x + 1)$$

Exercise

Find the derivative $f(x) = \ln x^8$

Solution

$$f(x) = \ln x^{8} = 8 \ln x$$

$$f'(x) = \frac{8}{x}$$

$$(\ln x)' = \frac{1}{x}$$

Exercise

Find the derivative $f(x) = 5x - \ln x^5$

Solution

$$f(x) = 5x - \ln x^{5}$$

$$= 5x - 5\ln x$$
Power Rule
$$f'(x) = 5 - \frac{5}{x}$$

$$(\ln x)' = \frac{1}{x}$$

Exercise

Find the derivative $f(x) = \ln x^{10} + 2\ln x$

$$f(x) = 10 \ln x + 2 \ln x$$
 Power Rule

$$=12 \ln x$$

$$f'(x) = \frac{12}{x}$$

$$\left(\ln x\right)' = \frac{1}{x}$$

Find the derivative $f(x) = \frac{\ln x}{2x+5}$

Solution

$$u = \ln x \quad v = 2x + 5$$

$$u' = \frac{1}{x} \qquad v' = 2$$

$$f'(x) = \frac{\frac{1}{x}(2x+5) - (2)\ln x}{(2x+5)^2} \cdot \frac{x}{x}$$
$$= \frac{2x+5-2x\ln x}{x(2x+5)^2}$$

Exercise

Find the derivative $f(x) = -2 \ln x + x^2 - 4$

Solution

$$f'(x) = -\frac{2}{x} + 2x$$

Exercise

Find the derivative of $y = \ln\left(\frac{1}{x\sqrt{x+1}}\right)$

$$y = \ln(1) - \ln(x\sqrt{x+1})$$

$$= -\ln x - \ln(x+1)^{1/2}$$

$$= -\ln x - \frac{1}{2}\ln(x+1)$$

$$y' = -\frac{1}{x} - \frac{1}{2}\frac{1}{x+1}$$

$$= -\frac{3x+2}{2x(x+1)}$$

Find the derivative of $y = \ln(\ln(\ln x))$

Solution

$$y' = \frac{1}{\ln(\ln x)} \cdot (\ln(\ln x))'$$

$$= \frac{1}{\ln(\ln x)} \cdot \frac{1}{\ln x} \cdot (\ln x)'$$

$$= \frac{1}{\ln(\ln x)} \cdot \frac{1}{\ln x} \cdot \frac{1}{x}$$

$$= \frac{1}{x(\ln x)(\ln(\ln x))}$$

Exercise

Find the derivative of $y = \ln(\sec(\ln x))$

Solution

$$y' = \frac{1}{\sec(\ln x)} \cdot (\sec(\ln x))'$$

$$= \frac{1}{\sec(\ln x)} \cdot (\sec(\ln x)\tan(\ln x)) \cdot (\ln x)'$$

$$= \frac{\sec(\ln x)}{\sec(\ln x)} \tan(\ln x) \cdot \frac{1}{x}$$

$$= \frac{\tan(\ln x)}{x}$$

Exercise

Find the derivative of $y = \ln \left(\frac{\left(x^2 + 1\right)^5}{\sqrt{1 - x}} \right)$

$$y = \ln(x^{2} + 1)^{5} - \ln(1 - x)^{1/2}$$
$$= 5\ln(x^{2} + 1) - \frac{1}{2}\ln(1 - x)$$
$$y' = 5\frac{2x}{x^{2} + 1} - \frac{1}{2}\frac{-1}{1 - x}$$

$$= \frac{10x}{x^2 + 1} + \frac{1}{2(1 - x)}$$

Find the derivative of $y = \ln \sqrt{\frac{(x+1)^5}{(x+2)^{20}}}$

Solution

$$y = \frac{1}{2} \ln \left(\frac{(x+1)^5}{(x+2)^{20}} \right)$$

$$= \frac{1}{2} \left[\ln (x+1)^5 - \ln (x+2)^{20} \right]$$

$$= \frac{1}{2} \left(5 \ln (x+1) - 20 \ln (x+2) \right)$$

$$y' = \frac{1}{2} \left(5 \frac{1}{x+1} - 20 \frac{1}{x+2} \right)$$

$$= \frac{5}{2} \left(\frac{1}{x+1} - \frac{4}{x+2} \right)$$

$$= \frac{5}{2} \left(\frac{x+2-4x-4}{(x+1)(x+2)} \right)$$

$$= \frac{5}{2} \frac{-3x-2}{(x+1)(x+2)}$$

$$= -\frac{5}{2} \frac{3x+2}{(x+1)(x+2)}$$

Exercise

Find the derivative of $f(x) = e^{3x}$

Solution

$$f'(x) = 3e^{3x}$$

Exercise

Find the derivative of $f(x) = e^{-2x^3}$

$$f'(x) = e^{-2x^3} \left(-6x^2\right)$$

$$=-\frac{6x^2}{e^{2x^3}}$$

Find the derivative of $f(x) = 4e^{x^2}$

Solution

$$f'(x) = 4e^{x^2} \left(\frac{2x}{2x}\right)$$
$$= 8xe^{x^2}$$

Exercise

Find the derivative of $f(x) = x^2 e^x$

Solution

$$f'(x) = e^x \frac{d}{dx} [x^2] + x^2 \frac{d}{dx} [e^x]$$
$$= e^x (2x) + x^2 e^x$$
$$= xe^x (2+x)$$

Exercise

Find the derivative $f(x) = 2x^3 e^x$

Solution

$$f'(x) = 6x^{2}e^{x} + 2x^{3}e^{x}$$

$$u = 2x^{3} \quad v = e^{x}$$

$$u' = 6x^{2} \quad v' = e^{x}$$

$$= 2x^{2}e^{x}(3+x)$$

Exercise

Find the derivative $f(x) = \frac{3e^x}{1+e^x}$

$$f'(x) = \frac{3e^{x}(1+e^{x}) - 3e^{x}e^{x}}{(1+e^{x})^{2}} \qquad u = 3e^{x} \quad v = 1+e^{x}$$
$$u' = 3e^{x} \quad v' = e^{x}$$

$$= \frac{3e^{x} + 3e^{2x} - 3e^{2x}}{\left(1 + e^{x}\right)^{2}}$$
$$= \frac{3e^{x}}{\left(1 + e^{x}\right)^{2}}$$

Find the derivative $f(x) = 5e^x + 3x + 1$

Solution

$$f'(x) = 5e^x + 3$$

Exercise

Find the derivative of $f(x) = \frac{e^x + e^{-x}}{2}$

Solution

$$f(x) = \frac{1}{2}(e^x + e^{-x})$$

$$f'(x) = \frac{1}{2} \left(\frac{d}{dx} \left[e^x \right] + \frac{d}{dx} \left[e^{-x} \right] \right)$$

$$= \frac{1}{2} \left(e^x - e^{-x} \right)$$

Exercise

Find the derivative of $f(x) = \frac{e^x}{x^2}$

$$f'(x) = \frac{x^2 e^x - e^x(2x)}{x^4}$$
$$= \frac{x^2 e^x - 2x e^x}{x^4}$$
$$= \frac{x e^x(x-2)}{x^4}$$
$$= \frac{e^x(x-2)}{x^3}$$

Find the derivative of $f(x) = x^2 e^x - e^x$

Solution

$$f'(x) = e^x \frac{d}{dx} \left(x^2\right) + x^2 \frac{d}{dx} \left(e^x\right) - \frac{d}{dx} \left(e^x\right)$$
$$= e^x (2x) + x^2 e^x - e^x$$
$$= e^x \left(x^2 + 2x - 1\right)$$

Exercise

Find the derivative of $f(x) = (1 + 2x)e^{4x}$

Solution

$$f'(x) = (2)e^{4x} + (1+2x)(4e^{4x})$$

$$= 2e^{4x} + (1+2x)(4e^{4x})$$

$$= 2e^{4x}(1+2(1+2x))$$

$$= 2e^{4x}(1+2+4x)$$

$$= 2e^{4x}(3+4x)$$

Exercise

Find the derivative of $y = x^2 e^{5x}$

Solution

$$y' = x^{2} \left(5e^{5x} \right) + 2x \left(e^{5x} \right)$$
$$= xe^{5x} \left(5x + 2 \right)$$

Exercise

Find the derivative of $y = x^2 e^{-2x}$

$$y' = 2xe^{-2x} - 2x^{2}e^{-2x}$$
$$= 2xe^{-2x}(1-x)$$

Find the derivative $f(x) = \frac{e^x}{x^2 + 1}$

Solution

$$f'(x) = \frac{e^x (x^2 + 1) - 2xe^x}{(x^2 + 1)^2}$$

$$= \frac{(x^2 + 1 - 2x)e^x}{(x^2 + 1)^2}$$

$$u = e^x \quad v = x^2 + 1$$

$$u' = e^x \quad v' = 2x$$

Exercise

Find the derivative $f(x) = \frac{1 - e^x}{1 + e^x}$

Solution

$$f'(x) = \frac{-e^{x} (1 + e^{x}) - e^{x} (1 - e^{x})}{(1 + e^{x})^{2}}$$

$$= \frac{-e^{x} - e^{2x} - e^{x} + e^{2x}}{(1 + e^{x})^{2}}$$

$$= -\frac{2e^{x}}{(1 + e^{x})^{2}}$$

$u = 1 - e^{x}$ $v = 1 + e^{x}$ $u' = -e^{x}$ $v' = e^{x}$

Exercise

Find the derivative of $y = \frac{e^x + e^{-x}}{x}$

$$y = \frac{\left(e^{x} - e^{-x}\right)x - \left(e^{x} + e^{-x}\right)}{x^{2}}$$

$$= \frac{xe^{x} - xe^{-x} - e^{x} - e^{-x}}{x^{2}}$$

$$= \frac{(x-1)e^{x} - (x+1)e^{-x}}{x^{2}}$$

$$f = e^{x} + e^{-x} \qquad g = x$$
$$f' = e^{x} - e^{-x} \qquad g' = 1$$

Find the derivative of $y = \sqrt{e^{2x^2} + e^{-2x^2}}$

Solution

$$y = \sqrt{e^{2x^2} + e^{-2x^2}} = \left(e^{2x^2} + e^{-2x^2}\right)^{1/2} = U^{1/2}$$

$$U = e^{2x^2} + e^{-2x^2} \qquad \left(e^{2x^2}\right)' = \left(2x^2\right)' e^{2x^2} = 4xe^{2x^2}$$

$$U' = 4xe^{2x^2} - 4xe^{-2x^2}$$

$$y' = \frac{1}{2} \left(4xe^{2x^2} - 4xe^{-2x^2}\right) \left(e^{2x^2} + e^{-2x^2}\right)^{-1/2}$$

$$= \frac{4x \left(e^{2x^2} - e^{-2x^2}\right)}{\left(e^{2x^2} + e^{-2x^2}\right)^{1/2}}$$

$$= \frac{2x \left(e^{2x^2} - e^{-2x^2}\right)}{\sqrt{e^{2x^2} + e^{-2x^2}}}$$

$$= \frac{2x \left(e^{2x^2} - e^{-2x^2}\right)}{\sqrt{e^{2x^2} + e^{-2x^2}}}$$

Exercise

Find the derivative of $y = \frac{x}{e^{2x}}$

$$y' = \frac{1(e^{2x}) - x(2e^{2x})}{(e^{2x})^2}$$

$$f = x \quad g = e^{2x}$$

$$f' = 1 \quad g' = 2e^2$$

$$= \frac{e^{2x}(1 - 2x)}{(e^{2x})^2}$$

$$= \frac{1 - 2x}{e^{2x}}$$

Find the derivative of $y = 3e^{5x^3 + 1}$

Solution

$$y' = 3(15x^{2})e^{5x^{3}+1}$$

$$y' = 45x^{2}e^{5x^{3}+1}$$

$$f = x^{2} \qquad g = e^{5x^{3}+1}$$

$$f' = 2x \qquad g' = 15x^{2}e^{5x^{3}+1}$$

$$y'' = 45\left(2xe^{5x^{3}+1} + \left(x^{2}\right)15x^{2}e^{5x^{3}+1}\right)$$

$$= 45e^{5x^{3}+1}\left(2x+15x^{4}\right)$$

$$= 45xe^{5x^{3}+1}\left(2+15x^{3}\right)$$

Exercise

Find the derivative of $(x^2 - 2x + 2)e^x$

Solution

$$y = (x^{2} - 2x + 2)e^{x}$$

$$y' = (2x - 2)e^{x} + (x^{2} - 2x + 2)e^{x}$$

$$= (2x - 2 + x^{2} - 2x + 2)e^{x}$$

$$= x^{2}e^{x}$$

Exercise

Find the derivative of $e^{\theta} (\sin \theta + \cos \theta)$

$$\frac{d}{d\theta}e^{\theta}(\sin\theta + \cos\theta) = e^{\theta}(\sin\theta + \cos\theta) + e^{\theta}(\cos\theta - \sin\theta)$$
$$= e^{\theta}(\sin\theta + \cos\theta + \cos\theta - \sin\theta)$$
$$= 2e^{\theta}\cos\theta$$

Find the derivative of $\ln(3\theta e^{-\theta})$

Solution

$$\frac{d}{d\theta} \ln(3\theta e^{-\theta}) = \frac{\left(3\theta e^{-\theta}\right)'}{3\theta e^{-\theta}}
= 3\frac{e^{-\theta} - \theta e^{-\theta}}{3\theta e^{-\theta}}
= \frac{e^{-\theta}(1-\theta)}{\theta e^{-\theta}}
= \frac{1-\theta}{\theta}$$

$$\ln(3\theta e^{-\theta}) = \ln(3) + \ln(\theta) + \ln(e^{-\theta})
= \ln 3 + \ln \theta - \theta$$

$$\frac{d}{d\theta} \ln(3\theta e^{-\theta}) = \frac{1}{\theta} - 1$$

Exercise

Find the derivative of $\theta^3 e^{-2\theta} \cos 5\theta$

Solution

$$\frac{dy}{d\theta} = (\theta^3)' e^{-2\theta} \cos 5\theta + \theta^3 (e^{-2\theta})' \cos 5\theta + \theta^3 e^{-2\theta} (\cos 5\theta)'$$

$$= 3\theta^2 e^{-2\theta} \cos 5\theta - 2\theta^3 e^{-2\theta} \cos 5\theta - 5\theta^3 e^{-2\theta} \sin 5\theta$$

$$= \theta^3 e^{-2\theta} (3\cos 5\theta - 2\theta \cos 5\theta - 5\theta \sin \theta)$$

Exercise

Find the derivative of $\ln\left(\frac{\sqrt{\theta}}{1+\sqrt{\theta}}\right)$

$$\frac{d}{d\theta} \ln \left(\frac{\sqrt{\theta}}{1 + \sqrt{\theta}} \right) = \frac{d}{d\theta} \left[\ln \theta^{1/2} - \ln \left(1 + \sqrt{\theta} \right) \right]$$

$$= \frac{d}{d\theta} \left[\frac{1}{2} \ln \theta - \ln \left(1 + \sqrt{\theta} \right) \right]$$

$$= \frac{1}{2} \frac{1}{\theta} - \frac{\frac{1}{2} \theta^{-1/2}}{1 + \sqrt{\theta}}$$

$$= \frac{1}{2\theta} - \frac{1}{2} \frac{1}{\sqrt{\theta} \left(1 + \sqrt{\theta} \right)}$$

$$\begin{split} &=\frac{1}{2}\left(\frac{1}{\theta}-\frac{1}{\sqrt{\theta}\left(1+\sqrt{\theta}\right)}\right)\\ &=\frac{1}{2}\frac{\sqrt{\theta}\left(1+\sqrt{\theta}\right)-\theta}{\theta\sqrt{\theta}\left(1+\sqrt{\theta}\right)}\\ &=\frac{1}{2}\frac{\sqrt{\theta}+\theta-\theta}{\theta\sqrt{\theta}\left(1+\sqrt{\theta}\right)}\\ &=\frac{1}{2}\frac{\sqrt{\theta}}{\theta\sqrt{\theta}\left(1+\sqrt{\theta}\right)}\\ &=\frac{1}{2}\frac{\sqrt{\theta}}{\theta\sqrt{\theta}\left(1+\sqrt{\theta}\right)}\\ &=\frac{1}{2\theta\left(1+\sqrt{\theta}\right)} \ \end{split}$$

Find the derivative of $e^{(\cos t + \ln t)}$

Solution

$$e^{(\cos t + \ln t)} = e^{\cos t} e^{\ln t}$$

$$= t e^{\cos t}$$

$$\frac{d}{dt} e^{(\cos t + \ln t)} = \frac{d}{dt} (t e^{\cos t})$$

$$= e^{\cos t} + t e^{\cos t} (-\sin t)$$

$$= (1 - t \sin t) e^{\cos t}$$

Exercise

Find the derivative of $e^{\sin t} \left(\ln t^2 + 1 \right)$

$$\frac{d}{dt}e^{\sin t}\left(\ln t^2 + 1\right) = e^{\sin t}\cos t\left(\ln t^2 + 1\right) + \frac{2}{t}e^{\sin t}$$
$$= e^{\sin t}\left[\left(\ln t^2 + 1\right)\cos t + \frac{2}{t}\right]$$

Find the Derivatives of $y = e^{x^2} \ln x$

Solution

$$y' = 2xe^{x^2} \ln x + \frac{e^{x^2}}{x}$$

$$f = e^{x^2} \qquad g = \ln x$$
$$f' = 2xe^{x^2} \qquad g' = \frac{1}{x}$$

Exercise

Find the derivative $f(x) = e^x + x - \ln x$

Solution

$$f'(x) = e^x + 1 - \frac{1}{x}$$

Exercise

Find the derivative $f(x) = \ln x + 2e^x - 3x^2$

Solution

$$f'(x) = \frac{1}{x} + 2e^x - 6x$$

Exercise

Find the derivative $f(x) = \ln x^2 + 4e^x$

Solution

$$f(x) = 2\ln x + 4e^x$$

Power Rule

$$f'(x) = \frac{2}{x} + 4e^x$$

 $\left(\ln x\right)' = \frac{1}{x}$

Exercise

Find the Derivatives of $y = \ln \frac{1 + e^x}{1 - e^x}$

$$y = \ln\left(1 + e^{x}\right) - \ln\left(1 - e^{x}\right)$$

$$y' = \frac{e^X}{1 + e^X} - \frac{-e^X}{1 - e^X}$$

$$= \frac{e^{x}}{1 + e^{x}} + \frac{e^{x}}{1 - e^{x}}$$

$$= \frac{e^{x} - e^{2x} + e^{x} + e^{2x}}{\left(1 + e^{x}\right)\left(1 - e^{x}\right)}$$

$$= \frac{2e^{x}}{\left(1 + e^{x}\right)\left(1 - e^{x}\right)}$$

Find the Derivatives of $y = \frac{\ln x}{e^{2x}}$

Solution

$$y' = \frac{e^{2x}(1/x) - \ln x(2e^{2x})}{e^{4x}}$$
$$= \frac{e^{2x} - 2x \ln x(e^{2x})}{e^{4x}}$$
$$= \frac{e^{2x}(1 - 2x \ln x)}{e^{4x}}$$

Exercise

Find the Derivatives of $f(x) = e^{2x} \ln(xe^x + 1)$

$$f = e^{2x} U = 2x \to U' = 2 f' = 2e^{2x}$$

$$g = \ln(xe^{x} + 1) U = xe^{x} + 1 \to U' = e^{x} + xe^{x} g' = \frac{e^{x} + xe^{x}}{xe^{x} + 1}$$

$$f'(x) = 2e^{2x} \ln(xe^{x} + 1) + e^{2x} \frac{e^{x} + xe^{x}}{xe^{x} + 1}$$

$$= e^{2x} \left[2\ln(xe^{x} + 1) + \frac{e^{x}(1 + x)}{xe^{x} + 1} \right]$$

Find the Derivatives of
$$f(x) = \frac{xe^x}{\ln(x^2 + 1)}$$

Solution

$$u = xe^{x} \qquad u' = e^{x} + xe^{x}$$

$$v = \ln\left(x^{2} + 1\right) \qquad v' = \frac{2x}{x^{2} + 1}$$

$$f'(x) = \frac{e^{x} \left(1 + x\right) \ln\left(x^{2} + 1\right) - \frac{2x}{x^{2} + 1} xe^{x}}{\left[\ln\left(x^{2} + 1\right)\right]^{2}}$$

$$= \frac{e^{x} \left[\left(1 + x\right) \ln\left(x^{2} + 1\right) - \frac{2x^{2}}{x^{2} + 1}\right]}{\left[\ln\left(x^{2} + 1\right)\right]^{2}}$$

$$= \frac{e^{x} \left[\frac{\left(x^{2} + 1\right)(1 + x) \ln\left(x^{2} + 1\right) - 2x^{2}}{x^{2} + 1}\right]}{\left[\ln\left(x^{2} + 1\right)\right]^{2}}$$

$$= \frac{e^{x} \left[\left(x^{2} + 1\right)(1 + x) \ln\left(x^{2} + 1\right) - 2x^{2}\right]}{\left(x^{2} + 1\right) \left[\ln\left(x^{2} + 1\right)\right]^{2}}$$

Exercise

Find the Derivatives of $f(x) = xe^{-10x}$

Solution

$$f'(x) = e^{-10x} - 10xe^{-10x}$$

Exercise

Find the Derivatives of $f(x) = x \ln^2 x$

$$f'(x) = \ln^2 x + x \left(2\frac{1}{x}\ln x\right)$$
$$= \ln^2 x + 2\ln x$$

Find the Derivatives of $f(x) = e^{-x} \ln x$

Solution

$$f'(x) = -e^{-x} \ln x + \frac{e^{-x}}{x}$$

Exercise

Use logarithmic differentiation to find the derivative of $y = \sqrt{x(x+1)}$

Solution

$$\ln y = \ln \left(x(x+1) \right)^{1/2} = -\ln x - \frac{1}{2} \ln \left(x+1 \right)$$

$$\frac{y'}{y} = \frac{1}{2} \left(\frac{1}{x} + \frac{1}{x+1} \right)$$

$$\frac{y'}{y} = \frac{1}{2} \left(\frac{2x+1}{x(x+1)} \right)$$

$$y' = \frac{1}{2} \left(\frac{2x+1}{x(x+1)} \right) \cdot y$$

$$= \frac{1}{2} \left(\frac{2x+1}{x(x+1)} \right) \sqrt{x(x+1)}$$

Exercise

Use logarithmic differentiation to find the derivative of $y = \sqrt{(x^2 + 1)(x - 1)^2}$

$$\ln y = \ln \left(\left(x^2 + 1 \right) (x - 1)^2 \right)^{1/2}$$

$$= \frac{1}{2} \ln \left(\left(x^2 + 1 \right) (x - 1)^2 \right)$$

$$= \frac{1}{2} \left[\ln \left(x^2 + 1 \right) + \ln \left(x - 1 \right)^2 \right]$$

$$= \frac{1}{2} \left[\ln \left(x^2 + 1 \right) + 2 \ln \left(x - 1 \right) \right]$$

$$= \frac{1}{2} \ln \left(x^2 + 1 \right) + \ln \left(x - 1 \right)$$

$$\frac{y'}{y} = \frac{1}{2} \frac{2x}{x^2 + 1} + \frac{1}{x - 1}$$

$$= \frac{x}{x^2 + 1} + \frac{1}{x - 1}$$

$$= \frac{x(x - 1) + (x^2 + 1)}{(x^2 + 1)(x - 1)}$$

$$= \frac{x^2 - x + x^2 + 1}{(x^2 + 1)(x - 1)}$$

$$= \frac{2x^2 - x + 1}{(x^2 + 1)(x - 1)} \cdot y$$

$$= \frac{2x^2 - x + 1}{(x^2 + 1)(x - 1)} \sqrt{(x^2 + 1)(x - 1)^2}$$

$$= \frac{2x^2 - x + 1}{(x^2 + 1)(x - 1)} \sqrt{(x^2 + 1)(x - 1)^2}$$

$$= \frac{2x^2 - x + 1}{(x^2 + 1)(x - 1)} |x - 1| \sqrt{(x^2 + 1)}$$

$$= \frac{(2x^2 - x + 1)|x - 1|}{(x^2 + 1)(x - 1)} (x^2 + 1)^{1/2}$$

$$= \frac{(2x^2 - x + 1)|x - 1|}{\sqrt{x^2 + 1}(x - 1)}$$

Use logarithmic differentiation to find the derivative of $y = \sqrt{\frac{1}{t(t+1)}}$

$$y = \left(\frac{1}{t(t+1)}\right)^{1/2}$$

$$\ln y = \ln \left(\frac{1}{t(t+1)}\right)^{1/2}$$

$$\ln y = \frac{1}{2}\ln \left(\frac{1}{t(t+1)}\right)$$

$$= -\frac{1}{2}\ln \left(t(t+1)\right)$$

$$= -\frac{1}{2}\left[\ln t + \ln(t+1)\right]$$

$$\frac{y'}{y} = -\frac{1}{2} \left(\frac{1}{t} + \frac{1}{t+1} \right)$$

$$y' = -\frac{1}{2} \left(\frac{1}{t} + \frac{1}{t+1} \right) y$$

$$= -\frac{1}{2} \left(\frac{t+1+t}{t(t+1)} \right) \frac{1}{\left(t(t+1) \right)^{1/2}}$$

$$= -\frac{1}{2} \frac{2t+1}{\left(t(t+1) \right)^{3/2}}$$

$$= -\frac{2t+1}{2\left(t^2 + t \right)^{3/2}}$$

Use logarithmic differentiation to find the derivative of $y = \frac{\theta + 5}{\theta \cos \theta}$

Solution

$$\ln y = \ln\left(\frac{\theta + 5}{\theta \cos \theta}\right)$$

$$\ln y = \ln(\theta + 5) - \ln(\theta \cos \theta)$$

$$\ln y = \ln(\theta + 5) - \ln\theta - \ln(\cos\theta)$$

$$\frac{y'}{y} = \frac{1}{\theta + 5} - \frac{1}{\theta} + \frac{\sin\theta}{\cos\theta}$$

$$y' = \left(\frac{1}{\theta + 5} - \frac{1}{\theta} + \frac{\sin\theta}{\cos\theta}\right)y$$

$$y' = \left(\frac{\theta + 5}{\theta \cos\theta}\right)\left(\frac{1}{\theta + 5} - \frac{1}{\theta} + \tan\theta\right)$$

Exercise

Use logarithmic differentiation to find the derivative of $y = 3\sqrt{\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}}$

$$\ln y = \ln \left(\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)} \right)^{1/3}$$

$$= \frac{1}{3} \left[\ln x + \ln(x+1) + \ln(x-2) - \ln(x^2+1) - \ln(2x+3) \right]$$

$$\frac{y'}{y} = \frac{1}{3} \left(\frac{1}{x} + \frac{1}{x+1} + \frac{1}{x-2} - \frac{2x}{x^2+1} - \frac{2}{2x+3} \right)$$

$$y' = \frac{1}{3} \cdot \sqrt[3]{\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}} \cdot \left(\frac{1}{x} + \frac{1}{x+1} + \frac{1}{x-2} - \frac{2x}{x^2+1} - \frac{2}{2x+3}\right)$$

Find the derivative of $y = t^{1-e}$

Solution

$$y' = (1-e)t^{1-e-1}$$

= $(1-e)t^{-e}$

Exercise

Find the derivative of $y = 2^{\sin 3t}$

Solution

$$y = a^{u} \implies y' = a^{u} \ln a \cdot (u')$$
$$y' = \left(2^{\sin 3t} \ln 2\right) (\cos 3t)(3)$$
$$= 3(\ln 2)\cos 3t \left(2^{\sin 3t}\right)$$

Exercise

Find the derivative of $y = \log_3 (1 + \theta \ln 3)$

Solution

$$y = \frac{\ln(1 + \theta \ln 3)}{\ln 3}$$

$$y' = \frac{1}{\ln 3} \cdot \frac{\ln 3}{1 + \theta \ln 3}$$

$$y = \ln u \implies y' = \frac{u'}{u}$$

$$y = \ln u \implies y' = \frac{u'}{u}$$

Exercise

Find the derivative of $y = \log_{25} e^x - \log_5 \sqrt{x}$

$$y = \frac{\ln e^{x}}{\ln 25} - \frac{\ln x^{1/2}}{\ln 5}$$

$$= \frac{x}{2\ln 5} - \frac{1}{2\ln 5} \frac{\ln x}{\ln 5}$$

$$= \frac{1}{2\ln 5} (x - \ln x)$$

$$y' = \frac{1}{2\ln 5} \left(1 - \frac{1}{x}\right)$$

$$= \frac{x - 1}{2x\ln 5}$$

Find the derivative of $y = \log_3 r \cdot \log_9 r$

Solution

$$y = \frac{\ln r}{\ln 3} \cdot \frac{\ln r}{\ln 9}$$

$$= \frac{1}{\ln 3 \cdot \ln 9} \cdot \ln^2 r$$

$$y' = \frac{1}{\ln 3 \cdot \ln 9} \cdot (2 \ln r) \left(\frac{1}{r}\right)$$

$$= \frac{2 \ln r}{r \cdot \ln 3 \cdot \ln 9}$$

Exercise

Find the derivative of $y = \log_7 \left(\frac{\sin \theta \cos \theta}{e^{\theta} 2^{\theta}} \right)$

$$y = \frac{\ln(\sin\theta) + \ln(\cos\theta) - \ln(e^{\theta}) - \ln(2^{\theta})}{\ln 7}$$

$$= \frac{1}{\ln 7} \left[\ln(\sin\theta) + \ln(\cos\theta) - \theta - \theta \ln(2) \right]$$

$$y' = \frac{1}{\ln 7} \left[\frac{\cos\theta}{\sin\theta} - \frac{\sin\theta}{\cos\theta} - 1 - \ln(2) \right]$$

$$= \frac{1}{\ln 7} \left(\cot\theta - \tan\theta - 1 - \ln 2 \right)$$

Find the derivative of $y = 3\log_{8} \left(\log_{2} t\right)$

Solution

$$y = 3 \frac{\ln(\log_2 t)}{\ln 8} = \frac{3}{\ln 8} \ln(\frac{\ln t}{\ln 2})$$

$$y' = \frac{3}{\ln 2^3} \left(\frac{1}{\frac{\ln t}{\ln 2}}\right) \left(\frac{1}{\ln 2} \cdot \frac{1}{t}\right)$$

$$= \frac{3}{2 \ln 2} \left(\frac{\ln 2}{\ln t}\right) \left(\frac{1}{t \ln 2}\right)$$

$$= \frac{1}{t(\ln t)(\ln 2)}$$

Exercise

Find the derivative of $y = t \log_3 \left(e^{(\sin t)(\ln 3)} \right)$

Solution

$$y = t \frac{\ln e^{(\sin t)(\ln 3)}}{\ln 3}$$
$$= \frac{1}{\ln 3} t(\sin t)(\ln 3)$$
$$= t \frac{\sin t}{\ln 3}$$
$$= t \frac{\sin t}{\ln 3}$$

Exercise

Find the derivative of $f(x) = \log_3(x+8)$

Solution

$$f'(x) = \frac{1}{\ln 3} \left(\frac{1}{x+8} \right) \qquad \frac{d}{dx} \left[\log_a u \right] = \left(\frac{1}{\ln a} \right) \left(\frac{1}{u} \right) \frac{du}{dx}$$

Exercise

Find the derivative of $f(x) = 2^{x^2 - x}$

$$\underline{f'(x) = (2x-1)(\ln 2)2^{x^2-x}} \qquad \qquad \underline{\frac{d}{dx}}[a^u] = a^u \ln(a) \frac{du}{dx}$$

Use logarithmic differentiation to find the derivative of $y = (x+1)^x$

Solution

$$\ln y = \ln(x+1)^x = x \cdot \ln(x+1)$$

$$\frac{y'}{y} = \ln(x+1) + x \cdot \frac{1}{x+1}$$

$$y' = (x+1)^x \left(\ln(x+1) + \frac{x}{x+1}\right)$$

Exercise

Use logarithmic differentiation to find the derivative of $y = x^2 + x^{2x}$

Solution

$$y - x^{2} = x^{2x}$$

$$\ln\left(y - x^{2}\right) = \ln x^{2x} = 2x \ln x$$

$$\frac{1}{y - x^{2}} (y' - 2x) = 2\ln x + 2x \frac{1}{x}$$

$$y' - 2x = \left(y - x^{2}\right) (2\ln x + 2)$$

$$y' - 2x = \left(x^{2} + x^{2x} - x^{2}\right) (2\ln x + 2)$$

$$y' = 2x^{2x} (\ln x + 1) + 2x$$

$$= 2\left(x^{2x} \ln x + x^{2x} + x\right)$$

Exercise

Use logarithmic differentiation to find the derivative of $y = (\sin x)^x$

$$\ln y = \ln(\sin x)^{x}$$

$$u = x \quad v = \ln(\sin x)$$

$$u' = 1 \quad v' = \frac{\cos x}{\sin x}$$

$$\frac{y'}{y} = \ln(\sin x) + x \frac{\cos x}{\sin x}$$

$$y' = y(\ln(\sin x) + x \cot x)$$

$$= (\sin x)^{x} \left[\ln(\sin x) + x \cot x\right]$$

Use logarithmic differentiation to find the derivative of $y = x^{\sin x}$

Solution

$$\ln y = \ln x^{\sin x}$$

$$\ln y = \sin x \ln x$$

$$\frac{y'}{y} = \cos x \ln x + \frac{\sin x}{x}$$

$$\frac{y'}{y} = \frac{x \cos x \ln x + \sin x}{x}$$

$$y' = y \frac{x \cos x \ln x + \sin x}{x}$$

$$= x^{\sin x} \frac{\sin x + x(\ln x)(\cos x)}{x}$$

Exercise

Use logarithmic differentiation to find the derivative of $y = (\ln x)^{\ln x}$

Solution

$$\ln y = \ln(\ln x)^{\ln x}$$

$$\ln y = (\ln x) \ln(\ln x)$$

$$\frac{y'}{y} = \frac{1}{x} \ln(\ln x) + \ln x \frac{\frac{1}{x}}{\ln x}$$

$$y' = \left(\frac{1}{x} \ln(\ln x) + \frac{1}{x}\right) y$$

$$= \left(\frac{\ln(\ln x) + 1}{x}\right) (\ln x)^{\ln x}$$

Exercise

Find the second derivative of $y = 3e^{5x^3 + 1}$

$$y' = 45x^{2} e^{5x^{3} + 1}$$
$$y'' = \left(90x + 675x^{5}\right) e^{5x^{3} + 1}$$

Find the equations of the tangent lines to $f(x) = e^x$ at the points (0, 1)

Solution

$$f'(x) = e^{x}$$

$$(0, 1) \Rightarrow m = f'(x = 0)$$

$$= e^{0}$$

$$= 1$$

$$y - 1 = 1(x - 0) + 1$$

$$y = m(x - x_1) + y_1$$

$$y = x + 1$$

Exercise

Find the equations of the tangent lines to $f(x) = e^x$ at the points (1, e)

Solution

$$f'(x) = e^{x}$$

$$(1, e) \Rightarrow m = f'(x = 1) = e^{1} = e$$

$$y = e(x - 1) + e$$

$$y = m(x - x_1) + y_1$$

$$y = ex$$

Exercise

Find the equations of the tangent lines to $y = 4xe^{-x} + 5$ at x = 1

$$y' = 4e^{-x} - 4xe^{-x} = 4e^{-x}(1-x)$$

$$= 4e^{-x}(1-x)$$

$$m = y'(x = 1)$$

$$= 4e^{-1}(1-1) = 0$$

$$\Rightarrow x = 1 \to y = 4e^{-1} + 5$$

$$y = 0(x-1) + 4e^{-1} + 5$$

$$y = m(x-x_1) + y_1$$

$$y = 4e^{-1} + 5$$

Find the equation of the tangent lines to $f(x) = 4e^{-8x}$ at the points (0, 4)

Solution

$$f'(x) = -32e^{-8x}$$

$$m = f'(0) = -32e^{-8(0)} = -32$$

$$y = -32(x-0) + 4$$

$$y = m(x-x_1) + y_1$$

$$y = -32x + 4$$

Exercise

The following formula accurately models the relationship between the size of a certain type of tumor and the amount of time that it has been growing:

$$V(t) = 450(1 - e - 0.0022t)^3$$

where t is in months and V(t) is measured in cubic centimeters. Calculate the rate of change of tumor volume at 80 months.

Solution

$$U = 1 - e - 0.0022t \qquad V = 450U^{3}$$

$$U' = -.0022 \qquad V' = 450(3)U^{2}U'$$

$$V'(t) = 450(3)(1 - e - 0.0022t)^{2}(-.0022)$$

$$= 2.97(1 - e - 0.0022t)^{2}$$

$$V'(t = 80) = 2.97(1 - e - 0.0022(80))^{2}$$

$$\approx 10.66$$

Exercise

A yeast culture at room temperature (68° F) is placed in a refrigerator set at a constant temperature of 38° F. After t hours, the temperature T of the culture is given approximately by

$$T = 30e^{-0.58t} + 38 \quad t \ge 0$$

What is the rate of change of temperature of the culture at the end of 1 hour? At the end of 4 hours?

$$T' = 30(-0.58)e^{-0.58t} = -17.4e^{-0.58t}$$

$$T'(1) = -17.4e^{-0.58(1)} \approx -9.74^{\circ} F / hr$$

$$T'(4) = -17.4e^{-0.58(4)} \approx -1.71^{\circ} F / hr$$

A mathematical model for the average age of a group of people learning to type is given by

$$N(t) = 10 + 6\ln t \quad t \ge 1$$

Where N(t) is the number of words per minute typed after t hours of instruction and practice (2 hours per day, 5 days per week). What is the rate of learning after 10 hours of instruction and practice? After 100 hours?

Solution

$$N'(t) = \frac{6}{t}$$

$$N'(10) = \frac{6}{10} = 0.6$$

After 10 *hours* of instruction and practice, the rate of learning is 0.6 words/minute per hour of instruction and practice.

$$N'(100) = \frac{6}{100} = 0.06$$

After 100 *hours* of instruction and practice, the rate of learning is 0.06 words/minute per hour of instruction and practice.

Exercise

The population of coyotes in the northwestern portion of Alabama is given by the formula $P(t) = (t^2 + 100) \ln(t + 2)$, where t represents the time in years since 2000 (the year 2000 corresponds to (t = 0)) Find the rate of change of the coyote population in 2013 (t = 13).

$$P'(t) = 2t \ln(t+2) + \frac{1}{t+2} (t^2 + 100)$$

$$P' = f'g + g'f$$

$$f = t^2 + 100 \quad g = \ln(t+2)$$

$$f' = 2t \quad g' = \frac{1}{t+2}$$

$$= 2t \ln(t+2) + \frac{t^2 + 100}{t+2}$$

$$P'(t=13) = 2(13) \ln(13+2) + \frac{13^2 + 100}{13+2}$$

$$\approx 88.34$$