Propositional Logic Syntax and Semantics

Mario Alviano

University of Calabria, Italy

A.Y. 2018/2019

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

Assume basic statements (propositions) to be given

- Assume basic statements (propositions) to be given
- Make formulas out of them using a fixed set of connectives

- Assume basic statements (propositions) to be given
- Make formulas out of them using a fixed set of connectives
- Truth of propositions determines truth of formulas

- Assume basic statements (propositions) to be given
- Make formulas out of them using a fixed set of connectives
- Truth of propositions determines truth of formulas

Example

- 1 These are beans from the sack
- 2 These are green beans
- These are beans from the sack **and** these are green beans

Propositions: 1, 2

Formulas (not being propositions): 3

Knowing that 1 and 2 are true we can conclude that 3 is true!

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

Let *V* be a countable set of propositional variables

Countable means of the same cardinality of natural numbers, or smaller

Example.
$$V = \{A, B, C, D, A_0, A_1, \ldots\}$$

Let *V* be a countable set of propositional variables

Countable means of the same cardinality of natural numbers, or smaller

Example.
$$V = \{A, B, C, D, A_0, A_1, ...\}$$

Important!

- No fixed meaning is associated to propositional variables!
- They can mean anything
- Truth value of variables fixed by semantics lateron

Let *V* be a countable set of propositional variables

Countable means of the same cardinality of natural numbers, or smaller

Example.
$$V = \{A, B, C, D, A_0, A_1, ...\}$$

Important!

- No fixed meaning is associated to propositional variables!
- They can mean anything
- Truth value of variables fixed by semantics lateron

The set F_V of propositional formulas (or wff) for V can defined inductively (in the next slides)

Propositional variables are wff

- If $v \in V$ then $v \in F_V$
- Propositional variables are called atomic formulas, or (propositional) atoms

Propositional variables are wff

- If $v \in V$ then $v \in F_V$
- Propositional variables are called atomic formulas, or (propositional) atoms

⊤ is a wff

- \blacksquare $\top \in F_V$
- ⊤ is called **verum**
- It is always true

Propositional variables are wff

- If $v \in V$ then $v \in F_V$
- Propositional variables are called atomic formulas, or (propositional) atoms

⊤ is a wff

- \blacksquare $\top \in F_V$
- ⊤ is called verum
- It is always true

\perp is a wff

- $\bot \in F_V$
- ⊥ is called falsum
- It is always false

• If ϕ is a wff then $(\neg \phi)$ is a wff

- If ϕ is a wff then $(\neg \phi)$ is a wff
- If $\phi \in F_V$ then $(\neg \phi) \in F_V$

- If ϕ is a wff then $(\neg \phi)$ is a wff
- If $\phi \in F_V$ then $(\neg \phi) \in F_V$
- lacksquare $(\neg \phi)$ should always have the opposite truth value of ϕ

- If ϕ is a wff then $(\neg \phi)$ is a wff
- If $\phi \in F_V$ then $(\neg \phi) \in F_V$
- lacksquare $(\neg \phi)$ should always have the opposite truth value of ϕ

Warning! ϕ is a meta-symbol, a placeholder for a wff (not a wff itself)

■ If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff

- If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \land \psi) \in F_V$

- If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \land \psi) \in F_V$
- lacksquare $(\phi \wedge \psi)$ should be true if both ϕ and ψ are true

- If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \wedge \psi) \in F_V$
- \bullet ($\phi \wedge \psi$) should be true if both ϕ and ψ are true

The disjunction of two wffs is a wff

- If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \wedge \psi) \in F_V$
- \bullet ($\phi \wedge \psi$) should be true if both ϕ and ψ are true

The disjunction of two wffs is a wff

■ If ϕ and ψ are wffs then $(\phi \lor \psi)$ is a wff

- If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \wedge \psi) \in F_V$
- \bullet ($\phi \wedge \psi$) should be true if both ϕ and ψ are true

The disjunction of two wffs is a wff

- If ϕ and ψ are wffs then $(\phi \lor \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \lor \psi) \in F_V$

- If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \wedge \psi) \in F_V$
- \bullet ($\phi \wedge \psi$) should be true if both ϕ and ψ are true

The disjunction of two wffs is a wff

- If ϕ and ψ are wffs then $(\phi \lor \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \lor \psi) \in F_V$
- \bullet ($\phi \lor \psi$) should be true if ϕ , ψ or both ϕ and ψ are true

- If ϕ and ψ are wffs then $(\phi \wedge \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \wedge \psi) \in F_V$
- \bullet ($\phi \wedge \psi$) should be true if both ϕ and ψ are true

The disjunction of two wffs is a wff

- If ϕ and ψ are wffs then $(\phi \lor \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \lor \psi) \in F_V$
- \bullet ($\phi \lor \psi$) should be true if ϕ , ψ or both ϕ and ψ are true
- v is also referred to as inclusive or

If ϕ and ψ are wffs then $(\phi \rightarrow \psi)$ is a wff

- If ϕ and ψ are wffs then $(\phi \rightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \to \psi) \in F_V$

- If ϕ and ψ are wffs then $(\phi \rightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \to \psi) \in F_V$
- lacksquare $(\phi o \psi)$ should be true if ψ is true whenever ϕ is true

- If ϕ and ψ are wffs then $(\phi \rightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \to \psi) \in F_V$
- lacksquare $(\phi o \psi)$ should be true if ψ is true whenever ϕ is true
- $lue{}$ ightarrow is sometimes written as \supset

- If ϕ and ψ are wffs then $(\phi \rightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \to \psi) \in F_V$
- \bullet $(\phi \to \psi)$ should be true if ψ is true whenever ϕ is true
- $lue{}$ ightarrow is sometimes written as \supset

Equivalence

- If ϕ and ψ are wffs then $(\phi \to \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \to \psi) \in F_V$
- \bullet $(\phi \rightarrow \psi)$ should be true if ψ is true whenever ϕ is true
- $lue{}$ ightarrow is sometimes written as \supset

Equivalence

 \blacksquare If ϕ and ψ are wffs then $(\phi \leftrightarrow \psi)$ is a wff

- If ϕ and ψ are wffs then $(\phi \rightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \to \psi) \in F_V$
- \bullet $(\phi \rightarrow \psi)$ should be true if ψ is true whenever ϕ is true
- $lue{}$ \rightarrow is sometimes written as \supset

Equivalence

- If ϕ and ψ are wffs then $(\phi \leftrightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \leftrightarrow \psi) \in F_V$

- If ϕ and ψ are wffs then $(\phi \rightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \to \psi) \in F_V$
- \bullet $(\phi \to \psi)$ should be true if ψ is true whenever ϕ is true
- $lue{}$ \rightarrow is sometimes written as \supset

Equivalence

- If ϕ and ψ are wffs then $(\phi \leftrightarrow \psi)$ is a wff
- If $\phi, \psi \in F_V$ then $(\phi \leftrightarrow \psi) \in F_V$
- \bullet $(\phi \leftrightarrow \psi)$ should be true if ψ and ϕ have the same truth value

Well-formed formulas: Summary

 $\phi \in F_V$ if and only if

```
\phi \in V or
                                                                                  (atoms)
\bullet \phi = \top or
                                                                                  (verum)
\phi = \bot or
                                                                                 (falsum)
lacktriangledown \phi = (\neg \psi) where \psi \in \mathcal{F}_V or
                                                                              (negation)
\phi = (\psi \wedge \psi') where \psi, \psi' \in F_V or
                                                                          (conjunction)
\phi = (\psi \vee \psi') where \psi, \psi' \in F_V or
                                                                           (disjunction)
\phi = (\psi \rightarrow \psi') where \psi, \psi' \in F_V or
                                                                           (implication)
\phi = (\psi \leftrightarrow \psi') where \psi, \psi' \in F_V
                                                                         (equivalence)
```

 $\phi \in F_V$ if and only if

$\phi \in V$ or	(atoms)
$lack \phi = op$ or	(verum)

$$lack \phi = (\psi \to \psi') \text{ where } \psi, \psi' \in F_V \text{ or }$$
 (implication)

Warning! ϕ , ψ and ψ' are meta-symbols, and they can also be equal!

Some wffs of $V = \{A, B, C\}$

 \blacksquare A

 $\phi \in F_V$ if and only if

$$lacktriangledown \phi \in V ext{ or } ext{(atoms)}$$

$$lacktriangledown \phi = (\neg \psi) \text{ where } \psi \in F_V \text{ or }$$
 (negation)

$$lack \phi = (\psi \wedge \psi')$$
 where $\psi, \psi' \in F_V$ or (conjunction)

$$\phi = (\psi \lor \psi') \text{ where } \psi, \psi' \in F_V \text{ or } (\text{disjunction})$$

Warning! ϕ , ψ and ψ' are meta-symbols, and they can also be equal!

- \blacksquare A
- \blacksquare $(A \rightarrow \bot)$

 $\phi \in F_V$ if and only if

- $lacktriangledown \phi \in V$ or (atoms)
- - $lack \phi = (\neg \psi) \text{ where } \psi \in F_V \text{ or }$ (negation)

- $\phi = (\psi \to \psi')$ where $\psi, \psi' \in F_V$ or (implication)
- $\phi = (\psi \leftrightarrow \psi') \text{ where } \psi, \psi' \in F_V$ (equivalence)

Warning! ϕ , ψ and ψ' are meta-symbols, and they can also be equal!

- \blacksquare A
- **■** (*A* → ⊥)
- $\blacksquare (A \to A)$

 $\phi \in F_V$ if and only if

$$lacktriangledown \phi \in V$$
 or (atoms)

$$lacktriangledown$$
 $\phi = (\neg \psi)$ where $\psi \in F_V$ or (negation)

$$lacktriangledown$$
 $\phi = (\psi \wedge \psi')$ where $\psi, \psi' \in F_V$ or (conjunction)

$$lack \phi = (\psi \to \psi')$$
 where $\psi, \psi' \in F_V$ or (implication)

Warning! ϕ , ψ and ψ' are meta-symbols, and they can also be equal!

$$\blacksquare$$
 $(A \rightarrow A)$

 $\phi \in F_V$ if and only if

$$lacktriangledown \phi \in V ext{ or }$$
 (atoms)

$$\phi = (\neg \psi)$$
 where $\psi \in F_V$ or (negation)

$$\phi = (\psi \lor \psi') \text{ where } \psi, \psi' \in F_V \text{ or } (\text{disjunction})$$

$$\phi = (\psi \lor \psi') \text{ where } \psi, \psi' \in F_V \text{ or } (\text{disjunction})$$

Warning! ϕ , ψ and ψ' are meta-symbols, and they can also be equal!

$$\blacksquare A \qquad \blacksquare ((A \lor B) \leftrightarrow (B \lor A))$$

$$\blacksquare (A \to \bot) \qquad \blacksquare ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$$

$$\blacksquare$$
 $(A \rightarrow A)$

 $\phi \in F_V$ if and only if

$$\phi \in V$$
 or (atoms)

$$lack \phi = (\neg \psi)$$
 where $\psi \in F_V$ or (negation)

$$lacktriangledown$$
 $\phi = (\psi \wedge \psi')$ where $\psi, \psi' \in F_V$ or (conjunction)

$$\phi = (\psi \lor \psi') \text{ where } \psi, \psi' \in F_V \text{ or } (\text{disjunction})$$

$$\phi = (\psi \to \psi')$$
 where $\psi, \psi' \in F_V$ or (implication)

Warning! ϕ , ψ and ψ' are meta-symbols, and they can also be equal!

$$\blacksquare ((A \lor B) \leftrightarrow (B \lor A))$$

$$\blacksquare ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$$

$$\blacksquare ((\neg (A \to B)) \to ((\neg A) \land C))$$

 $\phi \in F_V$ if and only if

```
\phi \in V or
                                                            (atoms)
```

$$lacktriangledown$$
 $\phi = (\neg \psi)$ where $\psi \in \mathcal{F}_V$ or

$$\phi = (\psi \wedge \psi')$$
 where $\psi, \psi' \in F_V$ or

$$\phi = (\psi \lor \psi')$$
 where $\psi, \psi' \in F_V$ or

$$\phi = (\psi \rightarrow \psi')$$
 where $\psi, \psi' \in F_V$ or

$$lacktriangledown$$
 $\phi = (\psi \leftrightarrow \psi')$ where $\psi, \psi' \in \mathcal{F}_V$

(negation) (conjunction)

(disjunction)

(implication)

(equivalence)

No wffs of $V = \{A, B, C\}$

 $\blacksquare A \perp$

 $\phi \in F_V$ if and only if

- $\bullet \phi \in V$ or
- $\bullet \phi = \top$ or
- $lacktriangledown \phi = \bot$ or
- lacktriangledown $\phi = (\neg \psi)$ where $\psi \in \mathcal{F}_V$ or
- $\phi = (\psi \wedge \psi')$ where $\psi, \psi' \in F_V$ or
- $\phi = (\psi \lor \psi')$ where $\psi, \psi' \in F_V$ or
- lacktriangledown $\phi = (\psi o \psi')$ where $\psi, \psi' \in F_V$ or
- $lack \phi = (\psi \leftrightarrow \psi')$ where $\psi, \psi' \in F_V$

(atoms)

(verum)

(falsum)

(negation)

(conjunction)

(disjunction)

(implication)

(equivalence)

- $\blacksquare A \bot$
- **■** *A* → ⊥)

 $\phi \in F_V$ if and only if

- $\phi \in V$ or
- $\bullet \phi = \top$ or
- $lacktriangledown \phi = \bot$ or
- $lack \phi = (\neg \psi)$ where $\psi \in F_V$ or
- $\phi = (\psi \wedge \psi')$ where $\psi, \psi' \in F_V$ or
- $\phi = (\psi \lor \psi')$ where $\psi, \psi' \in F_V$ or
- lacktriangledown $\phi = (\psi o \psi')$ where $\psi, \psi' \in F_V$ or
- $lack \phi = (\psi \leftrightarrow \psi')$ where $\psi, \psi' \in F_V$

(atoms)

(verum)

(falsum)

(negation)

(conjunction) (disjunction)

(implication)

(equivalence)

- $\blacksquare A \bot$
- **■** *A* → ⊥)
- \blacksquare $A \rightarrow \neg$

 $\phi \in F_V$ if and only if

- $\phi \in V$ or
- $\phi = \top$ or
- $\quad \blacksquare \ \phi = \bot \ \text{or} \quad$
- $lack \phi = (\neg \psi)$ where $\psi \in F_V$ or
- $\phi = (\psi \wedge \psi')$ where $\psi, \psi' \in F_V$ or
- $\phi = (\psi \vee \psi')$ where $\psi, \psi' \in F_V$ or
- $\phi = (\psi \rightarrow \psi')$ where $\psi, \psi' \in F_V$ or
- $lacktriangledown \phi = (\psi \leftrightarrow \psi') \text{ where } \psi, \psi' \in \mathcal{F}_V$

(atoms)

(verum)

(falsum)

(negation)

(conjunction)

(disjunction) (implication)

(equivalence)

- \blacksquare $A\bot$
- \blacksquare $A \rightarrow \bot)$
- \blacksquare $A \rightarrow \neg$
- \blacksquare (\rightarrow)

 $\phi \in F_V$ if and only if

$$\phi \in V$$
 or

$$\phi = \top$$
 or

$$lacktriangledown \phi = \bot$$
 or

$$lack \phi = (\neg \psi)$$
 where $\psi \in F_V$ or

$$\phi = (\psi \wedge \psi')$$
 where $\psi, \psi' \in F_V$ or

$$\phi = (\psi \lor \psi')$$
 where $\psi, \psi' \in F_V$ or

$$\phi = (\psi \rightarrow \psi')$$
 where $\psi, \psi' \in F_V$ or

$$\phi = (\psi \leftrightarrow \psi')$$
 where $\psi, \psi' \in F_V$

$$\blacksquare A \bot$$

$$\blacksquare ((AB) \leftrightarrow B)$$

$$\blacksquare A \rightarrow \bot)$$

$$\blacksquare$$
 $A \rightarrow \neg$

$$\blacksquare$$
 (\rightarrow)

 $\phi \in F_V$ if and only if

$$\phi \in V$$
 or

$$\bullet \phi = \top$$
 or

$$lacktriangledown \phi = \bot$$
 or

$$lacktriangledown \phi = (\neg \psi)$$
 where $\psi \in F_V$ or

$$\phi = (\psi \wedge \psi')$$
 where $\psi, \psi' \in F_V$ or

$$\phi = (\psi \lor \psi')$$
 where $\psi, \psi' \in F_V$ or

$$lack \phi = (\psi o \psi')$$
 where $\psi, \psi' \in F_V$ or

$$lack \phi = (\psi \leftrightarrow \psi')$$
 where $\psi, \psi' \in \mathcal{F}_V$

(atoms)

(verum)

(falsum)

(negation)

(conjunction)

(disjunction)

(implication)

(equivalence)

No wffs of $V = \{A, B, C\}$

 $\blacksquare A \bot$

 $\blacksquare ((AB) \leftrightarrow B)$

 $\blacksquare A \rightarrow \bot)$

 \blacksquare $((A \lor \land) \leftrightarrow \neg(\top)$

- \blacksquare $A \rightarrow \neg$
- \blacksquare (\rightarrow)

 $\phi \in F_V$ if and only if

- lacktriangledown $\phi = (\neg \psi)$ where $\psi \in F_V$ or (negation)
- $\phi = (\psi \lor \psi') \text{ where } \psi, \psi' \in F_V \text{ or } (\text{disjunction})$ $\bullet \phi = (\psi \lor \psi') \text{ where } \psi, \psi' \in F_V \text{ or } (\text{disjunction})$

No wffs of $V = \{A, B, C\}$

- $\blacksquare A \bot$
- \blacksquare $A \rightarrow \bot$)
- \blacksquare $A \rightarrow \neg$

- **■** ((*AB*) ↔ *B*)
- $\blacksquare ((A \lor \land) \leftrightarrow \neg(\top)$
- $\blacksquare \ (\neg A \to B \to (\neg A \land C \lor B))$

 \blacksquare (\rightarrow)

 $\phi \in F_V$ if and only if

- $\phi = (\neg \psi)$ where $\psi \in F_V$ or (negation)
- $lack \phi = (\psi \wedge \psi')$ where $\psi, \psi' \in F_V$ or (conjunction)
- $\phi = (\psi \lor \psi') \text{ where } \psi, \psi' \in F_V \text{ or } (\text{disjunction})$
- lacktriangledown $\phi = (\psi \to \psi')$ where $\psi, \psi' \in F_V$ or (implication)

No wffs of $V = \{A, B, C\}$

- $\blacksquare A \bot$
- **■** *A* → ⊥)
- \blacksquare $A \rightarrow \neg$

- **■** ((*AB*) ↔ *B*)
- $\blacksquare ((A \lor \land) \leftrightarrow \neg(\top)$
- $\blacksquare (\neg A \to B \to (\neg A \land C \lor B))?$

 \blacksquare (\rightarrow)

Equivalent definitions

Formal grammar

Terminals:
$$V \cup \{\top, \bot\} \cup \{\neg, \land, \lor, \rightarrow, \leftrightarrow\} \cup \{(,)\}$$

Nonterminals: F_V

Start symbol: F_V

Production rules:

- $\blacksquare F_V \longrightarrow v \in V \mid \top \mid \bot$
- $\blacksquare F_V \longrightarrow (\neg F_V)$
- $\blacksquare F_V \longrightarrow (F_V \wedge F_V)$
- $\blacksquare F_V \longrightarrow (F_V \vee F_V)$
- $\blacksquare F_V \longrightarrow (F_V \rightarrow F_V)$
- $\blacksquare F_V \longrightarrow (F_V \leftrightarrow F_V)$

Equivalent definitions

Formal grammar

Terminals:
$$V \cup \{\top, \bot\} \cup \{\neg, \land, \lor, \rightarrow, \leftrightarrow\} \cup \{(,)\}$$

Nonterminals: F_V

Start symbol: F_V

Production rules:

$$\blacksquare F_V \longrightarrow v \in V \mid \top \mid \bot$$

$$\blacksquare F_V \longrightarrow (\neg F_V)$$

$$\blacksquare F_V \longrightarrow (F_V \wedge F_V)$$

$$\blacksquare F_V \longrightarrow (F_V \vee F_V)$$

$$ightharpoonup F_V \longrightarrow (F_V \rightarrow F_V)$$

$$\blacksquare F_V \longrightarrow (F_V \leftrightarrow F_V)$$

Language elements

- V: propositions
- $\top, \bot, \neg, \wedge, \vee, \rightarrow, \leftrightarrow :$ logical connectives
- (,): auxiliary symbols (parentheses, not comma)

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- ∧ is stronger than
- ∀ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- \neg is stronger than
- ∧ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- ∧ is stronger than
- ∀ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- \wedge is stronger than
- ∀ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $\mathbf{2} \ \mathbf{A} \rightarrow \mathbf{A}$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- \wedge is stronger than
- ∀ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- \neg is stronger than
- ∧ is stronger than
- ∀ is stronger than
- \rightarrow is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $2 (A \rightarrow A)$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- \neg is stronger than
- \wedge is stronger than
- ∀ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- $2 (A \rightarrow A)$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- \wedge is stronger than
- ∀ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- $((A \lor B) \leftrightarrow (B \lor A))$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- \wedge is stronger than
- ∀ is stronger than
- \rightarrow is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $((A \lor B) \leftrightarrow (B \lor A))$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- ¬ is stronger than
- ∧ is stronger than
- \rightarrow is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $((A \lor B) \leftrightarrow (B \lor A))$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- \neg is stronger than
- ∧ is stronger than
- ∨ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $((A \lor B) \leftrightarrow (B \lor A))$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- ∧ is stronger than
- ∨ is stronger than
- $\,
 ightarrow\,$ is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $((A \lor B) \leftrightarrow (B \lor A))$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- eg is stronger than
- \wedge is stronger than
- ∨ is stronger than
- $\,\rightarrow\,$ is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $2 \ (A \rightarrow A)$
- $((A \lor B) \leftrightarrow (B \lor A))$
- $\neg A \lor B \to \neg A \land C$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- \neg is stronger than
- ∧ is stronger than
- \lor is stronger than
- \rightarrow is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $2 (A \rightarrow A)$
- $((A \lor B) \leftrightarrow (B \lor A))$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- \neg is stronger than
- ∧ is stronger than
- \lor is stronger than
- $\rightarrow \ \text{is stronger than}$

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $2 (A \rightarrow A)$
- $((A \lor B) \leftrightarrow (B \lor A))$

- Too many parentheses!!!
- Can we omit a few of them?
- Let us agree on a precedence of connectives (also known as binding strength)

Usual assumption

- \neg is stronger than
- ∧ is stronger than
- \lor is stronger than
- \rightarrow is stronger than

 \leftrightarrow

- 1 $(A \rightarrow \bot)$
- $2 (A \rightarrow A)$
- $((A \lor B) \leftrightarrow (B \lor A))$
- $(((\neg A) \lor B) \to ((\neg A) \land C))$

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

Formulas as trees

Every wff can be written as a formula tree

Formulas as trees

Every wff can be written as a formula tree

Example

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

or equivalently

$$(((\neg A) \lor B) \to ((\neg A) \land C))$$

Every wff can be written as a formula tree

Example

 \rightarrow

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

$$(((\neg A) \lor B) \to ((\neg A) \land C))$$

Every wff can be written as a formula tree

Example

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

$$(((\neg A) \lor B) \to ((\neg A) \land C))$$

Every wff can be written as a formula tree

Example

Consider

$$\neg A \lor B \to \neg A \land C$$

$$(((\neg A) \lor B) \to ((\neg A) \land C))$$

Every wff can be written as a formula tree

Example

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

$$(((\neg A) \lor B) \to ((\neg A) \land C))$$

Every wff can be written as a formula tree

Example

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

$$(((\neg A) \vee B) \to ((\neg A) \wedge C))$$

Immediate subformulas of a wff ϕ , denoted $isf(\phi)$

- If $\phi \in V \cup \{\top, \bot\}$ then $isf(\phi) = \emptyset$
- If $\phi = \neg \psi$ then $isf(\phi) = \{\psi\}$
- If $\phi = \psi \circ \psi'$ for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ then $isf(\phi) = \{\psi, \psi'\}$

Immediate subformulas of a wff ϕ , denoted $isf(\phi)$

- If $\phi \in V \cup \{\top, \bot\}$ then $isf(\phi) = \emptyset$
- If $\phi = \neg \psi$ then $isf(\phi) = \{\psi\}$
- If $\phi = \psi \circ \psi'$ for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ then $isf(\phi) = \{\psi, \psi'\}$

Subformulas of a wff ϕ , denoted $sf(\phi)$

Inductive definition

- ϕ itself belong to $sf(\phi)$
- **2** If $\psi \in sf(\phi)$ then $isf(\psi) \subseteq sf(\phi)$
- $sf(\phi)$ is the minimal set satisfying conditions 11 and 2

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

$$\neg A \lor B \rightarrow \neg A \land C$$

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

$$\neg A \lor B \to \neg A \land C$$

$$\neg A \lor B \qquad \neg A \land C$$

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

Associate a meaning to wffs in a formal way

We could associate "sentences" to variables (e.g. "It is raining.")

Associate a meaning to wffs in a formal way

- We could associate "sentences" to variables (e.g. "It is raining.")
- But we are interested only in the truth or falsity of these sentences

Associate a meaning to wffs in a formal way

- We could associate "sentences" to variables (e.g. "It is raining.")
- But we are interested only in the truth or falsity of these sentences
- Sentences are informal, truth values can be formalized!

Associate a meaning to wffs in a formal way

- We could associate "sentences" to variables (e.g. "It is raining.")
- But we are interested only in the truth or falsity of these sentences
- Sentences are informal, truth values can be formalized!

Associate truth values to atoms, truth values for formulas follow

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

- Truth values are 1 (true) and 0 (false)
- \blacksquare A (truth) valuation ν is a function

$$\nu$$
: $V \mapsto \{0,1\}$

■ So for each $A \in V$, either $\nu(A) = 1$ or $\nu(A) = 0$, not both

- Truth values are 1 (true) and 0 (false)
- \blacksquare A (truth) valuation ν is a function

$$\nu: V \mapsto \{0, 1\}$$

■ So for each $A \in V$, either $\nu(A) = 1$ or $\nu(A) = 0$, not both

We can extend ν (for atoms) to ν^* (for wffs)

- Truth values are 1 (true) and 0 (false)
- \blacksquare A (truth) valuation ν is a function

$$\nu: V \mapsto \{0, 1\}$$

■ So for each $A \in V$, either $\nu(A) = 1$ or $\nu(A) = 0$, not both

We can extend ν (for atoms) to ν^* (for wffs)

Simple formulas

- $\nu^*(\top) = 1$
- $\nu^*(\bot) = 0$
- If $A \in V$ then $\nu^*(A) = \nu(A)$

ϕ	ψ	$\neg \phi$
0	0	1
1	0	0
0	1	1
1	1	0

Negation: $\neg \phi$

Should always have the opposite truth value of ϕ

$$u^*(\neg \phi) = 1$$
 if and only if $u^*(\phi) = 0$

ϕ	ψ	$\neg \phi$	$\phi \wedge \psi$
0	0	1	0
1	0	0	0
0	1	1	0
1	1	0	1

Negation: $\neg \phi$

Should always have the opposite truth value of ϕ

$$u^*(\neg \phi) = 1$$
 if and only if $u^*(\phi) = 0$

Conjunction: $\phi \wedge \psi$

Should be true if both ϕ and ψ are true

$$u^*(\phi \wedge \psi) = 1 \text{ iff}$$
 $u^*(\phi) = 1 \text{ and}$
 $u^*(\psi) = 1$

ϕ	ψ	$\neg \phi$	$\phi \wedge \psi$	$\phi \vee \psi$
0	0	1	0	0
1	0	0	0	1
0	1	1	0	1
1	1	0	1	1

Negation: $\neg \phi$

Should always have the opposite truth value of ϕ

$$u^*(\neg \phi) = 1 \text{ if and only}$$
if $u^*(\phi) = 0$

Conjunction: $\phi \wedge \psi$

Should be true if both ϕ and ψ are true

$$u^*(\phi \wedge \psi) = 1 \text{ iff}$$
 $u^*(\phi) = 1 \text{ and}$
 $u^*(\psi) = 1$

Disjunction: $\phi \lor \psi$

Should be true if ϕ or ψ are true

$$\nu^*(\phi \lor \psi) = 1 \text{ iff}$$

$$\nu^*(\phi) = 1 \text{ or}$$

$$\nu^*(\psi) = 1$$

Truth valuations

ϕ	ψ	$\neg \phi$	$\phi \wedge \psi$	$\phi \lor \psi$	$\phi \to \psi$
0	0	1	0	0	1
1	0	0	0	1	0
0	1	1	0	1	1
1	1	0	1	1	1

Negation: $\neg \phi$

Should always have the opposite truth value of ϕ

$$\nu^*(\neg \phi) = 1$$
 if and only if $\nu^*(\phi) = 0$

Conjunction: $\phi \wedge \psi$

Should be true if both ϕ and ψ are true

$$\nu^*(\phi \wedge \psi) = 1 \text{ iff}$$

$$\nu^*(\phi) = 1 \text{ and}$$

$$\nu^*(\psi) = 1$$

Disjunction: $\phi \lor \psi$

Should be true if ϕ or ψ are true

$$u^*(\phi \lor \psi) = 1 \text{ iff}$$
 $u^*(\phi) = 1 \text{ or}$
 $u^*(\psi) = 1$

Implication: $\phi \to \psi$

Should be true if ψ is true whenever ϕ is true

$$u^*(\phi \to \psi) = 1 \text{ iff}$$
 $u^*(\phi) = 1 \text{ and } u^*(\psi) = 1, \text{ or if}$
 $u^*(\phi) = 0$

Truth valuations

ϕ	ψ	$\neg \phi$	$\phi \wedge \psi$	$\phi \vee \psi$	$\phi \to \psi$	$\phi \leftrightarrow \psi$
		1	0	0	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
1	1	0	1	1	1	1

Negation: $\neg \phi$

Should always have the opposite truth value of ϕ

$$\nu^*(\neg \phi) = 1$$
 if and only if $\nu^*(\phi) = 0$

Conjunction: $\phi \wedge \psi$

Should be true if both ϕ and ψ are true

$$\nu^*(\phi \wedge \psi) = 1 \text{ iff}$$

$$\nu^*(\phi) = 1 \text{ and}$$

$$\nu^*(\psi) = 1$$

Disjunction: $\phi \lor \psi$

Should be true if ϕ or ψ are true

$$\nu^*(\phi \lor \psi) = 1 \text{ iff}$$

$$\nu^*(\phi) = 1 \text{ or}$$

$$\nu^*(\psi) = 1$$

Implication: $\phi \to \psi$

Should be true if ψ is true whenever ϕ is true

$$u^*(\phi o \psi) = 1 \text{ iff}$$
 $u^*(\phi) = 1 \text{ and } u^*(\psi) = 1, \text{ or if}$
 $u^*(\phi) = 0$

Equivalence: $\phi \leftrightarrow \psi$

Should be true if ϕ has the same truth value as ψ

$$\nu^*(\phi \leftrightarrow \psi) = 1 \text{ iff } \nu^*(\phi) = \nu^*(\psi)$$

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

An interpretation I consists exactly of a truth valuation ν

An interpretation I consists exactly of a truth valuation ν

Given a wff ϕ and an interpretation \emph{I} consisting of valuation ν , let

$$I(\phi) = \nu^*(\phi)$$

An interpretation I consists exactly of a truth valuation ν

Given a wff ϕ and an interpretation \emph{I} consisting of valuation ν , let

$$I(\phi) = \nu^*(\phi)$$

- I associates a unique truth value to every formula
- The truth value is the meaning of the formula

An interpretation I consists exactly of a truth valuation ν

Given a wff ϕ and an interpretation I consisting of valuation $\nu,$ let

$$I(\phi) = \nu^*(\phi)$$

- I associates a unique truth value to every formula
- The truth value is the meaning of the formula

I is usually represented as the set of variables interpreted as true:

$$I = \{A \in V \mid I(A) = 1\}$$

Given a formula ϕ and interpretation I, **how** to determine $I(\phi)$?

Given a formula ϕ and interpretation I, **how** to determine $I(\phi)$?

- 1 Look at the subformulas of ϕ
- Work bottom-up

Given a formula ϕ and interpretation I, **how** to determine $I(\phi)$?

- 1 Look at the subformulas of ϕ
- Work bottom-up

Example (For interpretation $I = \{C, A\}$)

Consider

$$\neg A \lor B \to \neg A \land C$$

Its subformulas are the following:

Given a formula ϕ and interpretation I, **how** to determine $I(\phi)$?

- 1 Look at the subformulas of ϕ
- Work bottom-up

Example (For interpretation $I = \{C, A\}$)

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Its subformulas are the following:

$$\neg A \lor B \to \neg A \land C$$

$$\neg A \lor B \qquad \neg A \land C$$

$$\neg A \qquad I(B) = 0 \qquad \neg A \qquad I(C) = 1$$

$$I(A) = 1 \qquad I(A) = 1$$

28/37

Given a formula ϕ and interpretation I, **how** to determine $I(\phi)$?

- 1 Look at the subformulas of ϕ
- Work bottom-up

Example (For interpretation $I = \{C, A\}$)

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Its subformulas are the following:

$$\neg A \lor B \rightarrow \neg A \land C$$

$$\neg A \lor B \qquad \neg A \land C$$

$$I(\neg A) = 0 \qquad I(B) = 0 \qquad I(\neg A) = 0 \qquad I(C) = 1$$

$$I(A) = 1 \qquad \qquad I(A) = 1$$

28/37

28/37

Calculating truth values of formulas

Given a formula ϕ and interpretation I, **how** to determine $I(\phi)$?

- 1 Look at the subformulas of ϕ
- Work bottom-up

Example (For interpretation $I = \{C, A\}$)

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Its subformulas are the following:

Given a formula ϕ and interpretation I, **how** to determine $I(\phi)$?

- 1 Look at the subformulas of ϕ
- Work bottom-up

Example (For interpretation $I = \{C, A\}$)

Consider

$$\neg A \lor B \rightarrow \neg A \land C$$

Its subformulas are the following:

$$I(\neg A \lor B \to \neg A \land C) = 1$$

$$I(\neg A \lor B) = 0 \qquad I(\neg A \land C) = 0$$

$$I(\neg A) = 0 \qquad I(B) = 0 \qquad I(\neg A) = 0 \qquad I(C) = 1$$

$$| \qquad \qquad | \qquad \qquad |$$

$$I(A) = 1 \qquad \qquad I(A) = 1$$

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \rightarrow \neg A \land C$$

$$A \quad B \quad C \mid \neg A \quad \neg A \lor B \quad \neg A \land C \quad \neg A \lor B \rightarrow \neg A \land C$$

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \to \neg A \land C$$

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \rightarrow \neg A \land C$$

Α	В	С	¬ A	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
				1		1

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \rightarrow \neg A \land C$$

Α	В	С	¬ A	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \rightarrow \neg A \land C$$

Α	В	С	¬ A	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \rightarrow \neg A \land C$$

Α	В	С	¬ A	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \rightarrow \neg A \land C$$

Α	В	С	¬ A	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \rightarrow \neg A \land C$$

Α	В	С	$\neg A$	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	0

A truth table may be useful for calculating truth values for more than one interpretation

Example

$$\neg A \lor B \to \neg A \land C$$

Α	В	С	$\neg A$	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	0
1	1	1	0	1	0	0

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

- **1** An interpretation *I* is a model of a wff ϕ if $I(\phi) = 1$
- 2 If $I(\phi) = 1$ then I satisifies ϕ
- **3** If *I* satisfies ϕ then we write $I \models \phi$

- 1 An interpretation I is a model of a wff ϕ if $I(\phi) = 1$
- 2 If $I(\phi) = 1$ then I satisifies ϕ
- **3** If *I* satisfies ϕ then we write $I \models \phi$
- 1, 2 and 3 are equivalent, i.e.,

$$I(\phi) = 1 \Leftrightarrow I$$
 is a model of $\phi \Leftrightarrow I$ satisfies $\phi \Leftrightarrow I \models \phi$

- 1 An interpretation I is a model of a wff ϕ if $I(\phi) = 1$
- 2 If $I(\phi) = 1$ then I satisifies ϕ
- **3** If *I* satisfies ϕ then we write $I \models \phi$
- 1, 2 and 3 are equivalent, i.e.,

$$I(\phi) = 1 \Leftrightarrow I$$
 is a model of $\phi \Leftrightarrow I$ satisfies $\phi \Leftrightarrow I \models \phi$

- An interpretation I is not a model of a wff ϕ if $I(\phi) = 0$
- If $I(\phi) = 0$ then I does not satisfy ϕ
- If I does not satisfy ϕ then we write $I \not\models \phi$

- 1 An interpretation I is a model of a wff ϕ if $I(\phi) = 1$
- 2 If $I(\phi) = 1$ then I satisifies ϕ
- **3** If *I* satisfies ϕ then we write $I \models \phi$
- 1, 2 and 3 are equivalent, i.e.,

$$I(\phi) = 1 \Leftrightarrow I$$
 is a model of $\phi \Leftrightarrow I$ satisfies $\phi \Leftrightarrow I \models \phi$

- An interpretation I is not a model of a wff ϕ if $I(\phi) = 0$
- If $I(\phi) = 0$ then I does not satisfy ϕ
- If *I* does not satisfy ϕ then we write $I \not\models \phi$

 $I(\phi) = 0 \Leftrightarrow I$ is not a model of $\phi \Leftrightarrow I$ does not satisfy $\phi \Leftrightarrow I \not\models \phi$

Outline

- 1 Syntax
 - Intuition
 - Definition
 - Convenient notation
 - Formula structure
- 2 Semantics
 - Meaning of a formula
 - Truth valuations
 - Interpretations
 - Models
- 3 Exercises

Let $V = \{x, y, z\}$ be a set of propositional variables. Show whether the following are well-formed formulas (*not* considering operator preferences) in F_V or not:

- $(\neg(z \land x))$
- $((x \leftarrow y) \land z)$
- $((x \leftrightarrow (\neg y)))$
- $5 ((x \leftrightarrow y) \land (\neg \neg x))$
- 6 $((y \land x) \leftrightarrow (w \land (\neg z)))$

Let $V = \{x, y, z\}$ be a set of propositional variables. Draw the parse tree and simplify (according to the standard preferences) as much as possible each of the following formulas:

Let $V = \{x, y, z\}$ be a set of propositional variables. Find the full version (according to the standard preferences) and draw the parse trees of the following formulas:

- 1 $x \lor \neg y \land \neg z$
- $2 \neg x \lor z \leftrightarrow y \land \neg z$
- $4 \quad X \leftrightarrow \neg y \to \neg z \land \neg x \lor y$

- 1 List all subformulas of formulas
 - $X \lor \neg y \land \neg z$
 - $\blacksquare \neg x \lor z \leftrightarrow y \land \neg z$
- 2 Given the interpretation $I = \{x, z\}$, decide whether I is a model of

$$X \vee \neg y \wedge \neg z$$

3 Work out the truth table of formula

$$((\neg x) \land ((\neg y) \rightarrow (\neg (z \lor (\neg y)))))$$

END OF THE LECTURE