

Lecture 21: Introduction to Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

> 14. Review Exercises

14. Review Exercises

Transformations of Random Variables

2/2 points (graded)

Consider a random variable Y with distribution $p_{\theta}(y)$ for some θ , coming from a canonical exponential family.

Let Z=Y+a, where a is a constant. Denote by $q_{ heta}\left(z
ight)$ the density of Z, which is parametrized by heta.

Is $q_{ heta}$ also a member of some canonical exponential family?

● Yes ✔			

O No

Now instead suppose $Z=\lambda Y$, where $\lambda
eq 0$ is constant. This again determines some density $ilde{q}_{\, heta}\left(z
ight)$ of Z.

Is $ilde{q}_{ heta}$ also a member of some canonical exponential family?

● Yes ✔

O No

Solution:

For the first part: we have $q_{ heta}\left(z
ight)=p_{ heta}\left(z-a
ight)$. In particular,

$$q_{ heta}\left(z
ight)=\exp\left(rac{\left(z-a
ight) heta-b\left(heta
ight)}{\phi}+c\left(z-a,\phi
ight)
ight)=\exp\left(rac{z-\left(b\left(heta
ight)+a heta
ight)}{\phi}+c\left(z-a,\phi
ight)
ight)$$

Let $ilde{b}(heta)=b(heta)+a heta$ and $ilde{c}(z,\phi)=c(z-a,\phi)$ which demonstrates that this is indeed contained in a canonical exponential family.

A similar argument shows the same answer for the second part, where we instead use $q_{ heta}\left(z
ight)=p_{ heta}\left(z/\lambda
ight)$.

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

(Ungraded) Re-parametrization

0 points possible (ungraded)

Ungrading note: The third part of this problem is unclear and need to be reworked. For now, we have ungraded this problem.

Let $\mathbf{x}=(X_1,X_2)$ where X_1,X_2 are positive random variables, and suppose $\mu\left(x_1,x_2
ight)=\mathbb{E}\left[Y|X=(x_1,x_2)
ight]$ is given by

$$\mathbb{E}\left[Y|X=\left(x_{1},x_{2}
ight)
ight]=1000\exp\left(x_{1}^{2}-x_{2}^{2}
ight).$$

nswer the following questions.	
$ullet$ True or False: ${f ln}\mu({f x})$ is linear in ${f x}$.	
True	
● False ✔	
$ullet$ True or False: There is an invertible reparametrization $oldsymbol{\widetilde{x}}$ of $oldsymbol{x}$ for which $Y oldsymbol{\widetilde{x}}$ is a generalized linear model.	
● True ✔	
False	
• If there were a reparametrization $\widetilde{\mathbf{x}}$, would Jeffreys prior change? That is, would Jeffreys prior be computed using	a different formula?
● Yes 🗙	
○ No ✔	
olution:	
• No. Note that $\ln \mu\left(\mathbf{x} ight) = \ln \delta + lpha x_1^2 - eta x_2^2$. In particular, it is quadratic in \mathbf{x} .	
• Yes. Since x_1,x_2 are positive, so we can equivalently use <mark>a reparametrization, $\widetilde{f x}=(x_1^2,x_2^2)$. From here, $\ln\mu(f x)$</mark>	ː) is linear.
No. This is a consequence of the fact that Jeffreys prior is parametrization-invariant.	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Discussion	Show Discussion
opic: Unit 7 Generalized Linear Models:Lecture 21: Introduction to Generalized Linear Models; exponential Families / 14. Review Exercises	SHOW DISCUSSION
	© All Rights Reserve