Indian Premier League Cricket

Matthew Stuart^{1,2}, Hassan Raffique³, Leigha DeRango¹ Gregory J. Matthews^{1,2}

Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL,
 Center for Data Science and Consulting, Loyola University Chicago, Chicago, IL, U

³ University of Iowa, Iowa City, IA

+ Corresponding: mstuart1@luc.edu

Abstract

Wicked Googly

Keywords: Cricket

1 Introduction

openWAR and cricWAR.

In the game of cricket, the number of runs scored on a particular pitch typically ranges between 0 and 6 (though theoretically values larger than 6 are possible, they are rare and do not occur at all in our particular data set).

2 Data

season	n_teams
2015	8
2016	8
2017	8
2018	8
2019	8
2021	8
2022	10

We have data from the Indian Premier Leauge (IPL) consisting of 102490 pitches from the 2015 - 2022 seasons. From 2015 - 2021, the league had 8 teams followed by 10 teams in the 2022 season.

season	n_pitches
2015	13641
2016	14096
2017	13849
2018	14286
2019	14293
2021	14413
2022	17912

Runs in cricket are either scored by running back and forth between the wickets once the ball is put into play (generally resulting in 1 or 2 runs, but theoretically any value is possible). In addition, a ball that is hit in the air over the boundary (termed a "boundary") is worth 6 runs and if the ball rolls to the boundary or bounces in the field of play and then clears the boundary this is worth 4 runs (termed a "boundary 4"). As a result the distribution of runs

Figure 1: Bar Plot of the number of runs scored of a particular ball

scored on a a particular pitch has large peaks are 0 and 1 with a big drop off from 1 to 2. Values of 3 and 5 are extremely rare accounting for only 0.27% and 0.02% of values across all pitches in our data set. Values of 4 and 6 spike because of boundaries and boundary fours and together account for 16.75% of all values.

striker	xbar	n
AD Russell	1.725162	1077
SP Narine	1.633270	529
AB de Villiers	1.580799	1677
RR Pant	1.491333	1673
GJ Maxwell	1.459386	1108
JC Buttler	1.455233	1720
JM Bairstow	1.453149	651
PP Shaw	1.452991	936
MM Ali	1.411950	636
DA Warner	1.407686	2394

striker	xbar	n
BB McCullum	1.404546	880
RA Tripathi	1.392540	1126
CA Lynn	1.387061	912
KD Karthik	1.382182	1549
KL Rahul	1.366216	2220
KA Pollard	1.360360	1332
HH Pandya	1.359741	1237
CH Gayle	1.358868	1449
KH Pandya	1.335895	911
AJ Finch	1.331909	702
SV Samson	1.328237	1962
SA Yadav	1.328021	1506
DR Smith	1.326897	725
SR Watson	1.321398	1173
V Kohli	1.317146	2677
Q de Kock	1.316218	1597
RV Uthappa	1.310302	1621
PA Patel	1.299277	1106
RD Gaikwad	1.299223	772
N Rana	1.290755	1417
RG Sharma	1.276062	2072
MP Stoinis	1.275311	563
MA Agarwal	1.268727	1068
YK Pathan	1.268182	880
DJ Hooda	1.266741	896
MC Henriques	1.263415	615
AT Rayudu	1.261749	1681
Mandeep Singh	1.255924	633
F du Plessis	1.253756	1797
SK Raina	1.253129	1758
Ishan Kishan	1.250231	1083
DA Miller	1.247285	1197
MS Dhoni	1.245250	1737
AR Patel	1.244792	768
Shubman Gill	1.244672	1173
S Dhawan	1.232499	2757
KK Nair	1.228202	929

striker	xbar	n
V Shankar	1.226306	517
SPD Smith	1.225386	1229
AM Rahane	1.221398	1888
KS Williamson	1.219412	1463
MK Pandey	1.214101	1546
SS Iyer	1.213441	1860
Yuvraj Singh	1.209960	743
JP Duminy	1.209434	530
D Padikkal	1.194234	659
KM Jadhav	1.191936	620
WP Saha	1.188027	1186
LMP Simmons	1.183074	579
G Gambhir	1.168046	1208
RA Jadeja	1.152715	884
M Vijay	1.150443	678

3 Models

Figure 1 displays a histogram of the number of runs scored per ball in IPL matches from 2015-2022, consisting of n = 102,490 balls thrown. It is likely that a distribution used for modelling counts, such as the Poisson distribution, will violate the necessary assumptions. For this reason, we treat this as a classification problem and fit the number of runs scored per ball, Y_i , by a multinomial distribution. In addition, we exclude any balls that scored three or five runs because of their prementioned rarity of occurring.

We utilize a mixed effects model, incorporating fixed effects for the general in-match situations as well as random effects for the variability of the bowler, batter, and runner. Denote Y_i as the number of runs scored on ball i = 1, ..., n and X_i as the vector of covariates for the fixed effects of ball i. Table ?? provides a description of the covariates for the fixed effects of our model. The model is specified with four logit transformations relative to the event $Y_i = 0$, or, written explicitly

$$\log \left(\frac{P(Y_i = y | \boldsymbol{X}_i)}{P(Y_i = 0 | \boldsymbol{X}_i)} \right) = \boldsymbol{X}_i \boldsymbol{\beta}_y + u_{bowl_i, y} + b_{bat_i, y} + r_{run_i, y}$$
(1)

for $y \in \{1, 2, 4, 6\}$ where β_y is the fixed effect for scoring y runs and $u_{bowl_i,y}$, $b_{bat_i,y}$, and $r_{run_i,y}$, are the random effects for the bowler, batter, and runner for ball i, respectively. For

the random effects, we set

$$u_{j,y} \sim \mathcal{N}(0, \tau_u)$$

$$b_{k,y} \sim \mathcal{N}(0, \tau_b)$$

$$r_{l,y} \sim \mathcal{N}(0, \tau_r)$$
(2)

for $j = 1, ..., n_{bowl}$, $k = 1, ..., n_{bat}$, $l = 1, ..., n_{run}$ where n_{bowl} , n_{bat} , and n_{run} are the number of unique bowlers, batters, and runners, respectively. In our dataset, $n_{bowl} = 278$, $n_{bat} = 347$, and $n_{run} = 338$.

Given the size of the random effects and that we have 39 fixed effects in our dataset, the size of our unknown parameter vector $\boldsymbol{\Theta} = \{\boldsymbol{\beta}_y, \boldsymbol{u}_y, \boldsymbol{b}_y, \boldsymbol{r}_y, \tau_u, \tau_b, \tau_r : y \in \{1, 2, 4, 6\}\}$ is 4011. To handle such a large parameter vector as well as the complicated structure of our model, we perform a Bayesian analysis on the data with prior distributions and sampling procedure outlined in the supplemental file.

Table 4: Description of covariates for fixed effects of model

Variable	Variable.Description
First Innings	Indicator for the 1st innings of the match
Balls Remaining	Number of balls remaining in the innings
Runs to Win	Number of runs remaining to score to win the match (2nd innings)
Runs Scored	Number of runs scored in the innings up to current ball
Wickets Lost	Number of wickets lost in the innings up to current ball
Venue	Grounds in which the match is played

4 Results

5 Discussion, Future work and conclusions

Acknowledgements

Supplementary Material

All code for reproducing the analyses in this paper is publicly available at https://github.com/gjm112/cricketIPL

5.1 Bayesian priors and posterior sampling

In the data analysis outlined in Section 3 of the main manuscript, we set the following prior distributions for the fixed effects β_y for $y \in \{1, 2, 4, 6\}$ as well as the variance components of the random effects: τ_u , τ_b , and τ_r :

$$\beta_{j,y} \stackrel{iid}{\sim} \mathcal{N}(0,10), \log \tau_u \stackrel{iid}{\sim} \mathcal{N}(0,10), \log \tau_b \stackrel{iid}{\sim} \mathcal{N}(0,10), \log \tau_r \stackrel{iid}{\sim} \mathcal{N}(0,10),$$
 (3)

for j = 1, ..., 39. We place a prior on the log-transformation of the τ 's instead of the untransformed τ 's because we sample from the posterior distribution of $\Theta = \{\beta_y, \mathbf{u}_y, \mathbf{b}_y, \mathbf{r}_y, \tau_u, \tau_b, \tau_r : y \in \{1, 2, 4, 6\}\}$ using a Metropolis-adjusted Langevin algorithm (MALA). MALA is a version of a Metropolis Hastings algorithm where the new states are proposed using overdamped Langevin dynamics. More specifically, at step t of the algorithm, we sample a proposal

$$\boldsymbol{\Theta}^* \sim \mathcal{N}\left(\boldsymbol{\Theta}_t + a\nabla \log \pi(\boldsymbol{\Theta}_t|\boldsymbol{y}, \boldsymbol{X}), \sqrt{2a}\right)$$

where π is the functional form of the posterior distribution for Θ and a is a tuning parameter for the proposal distribution. The tuning parameter a is chosen via an adaptation of the primal-dual algorithm from Nesterov (2009), which was also utilized in Homan and Gelman (2014).

References

Homan, Matthew D., and Andrew Gelman. 2014. "The No-u-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo." *J. Mach. Learn. Res.* 15 (1): 1593–623.

Nesterov, Yurii. 2009. "Primal-Dual Subgradient Methods for Convex Problems." *Mathematical Programming* 120: 221–59. https://doi.org/10.1007/s10107-007-0149-x.