

Bahria University, Islamabad Campus

Department of Computer Science

Final Assessment

Class/Section: BSCS 4A,B MSCS 0A (Spring 2020 Semester)

Course:	Theory of Automata	Date/Time Assigned: 9-7-2020/ 10:00 AM
Course Code:	CSC-315	Submission Date/Time: 9-7-2020/ 6:00 PM
Faculty's Name:	Dr. Sabina Akhtar	Max Marks: 50
INSTRUCTIONS	<u>:</u>	
I. Your answers		n take the picture of your workings and paste them in
Student Name:		Enrollment No.
dentifies wheth ontains, the massessment" cor The alphabet Σ i	ner the given string concept achine outputs accept atains "sme" as a substruct s {a, b, c, z}. Provide	c Finite Automata for the machine that ontains "sme" as a substring or not. If it otherwise rejects. For example, the wording, therefore the machine should accept. e transition diagram along with the formal be used to show the transition function.
identifies wheth contains, the ma "assessment" cor The alphabet Σ i	ner the given string concept achine outputs accept atains "sme" as a substruct s {a, b, c, z}. Provide	ontains "sme" as a substring or not. If it otherwise rejects. For example, the wording, therefore the machine should accept.
identifies wheth contains, the ma "assessment" cor The alphabet Σ i	ner the given string concept achine outputs accept atains "sme" as a substruct s {a, b, c, z}. Provide	ontains "sme" as a substring or not. If it otherwise rejects. For example, the wording, therefore the machine should accept. e transition diagram along with the formal be used to show the transition function.
identifies wheth contains, the ma "assessment" cor The alphabet Σ i	ner the given string concept achine outputs accept atains "sme" as a substruct s {a, b, c, z}. Provide	ontains "sme" as a substring or not. If it otherwise rejects. For example, the wording, therefore the machine should accept. e transition diagram along with the formal be used to show the transition function.
identifies wheth contains, the ma "assessment" cor The alphabet Σ i	ner the given string concept achine outputs accept atains "sme" as a substruct s {a, b, c, z}. Provide	ontains "sme" as a substring or not. If it otherwise rejects. For example, the wording, therefore the machine should accept. e transition diagram along with the formal be used to show the transition function.
identifies wheth contains, the ma "assessment" cor The alphabet Σ i	ner the given string concept achine outputs accept atains "sme" as a substruct s {a, b, c, z}. Provide	ontains "sme" as a substring or not. If it otherwise rejects. For example, the wording, therefore the machine should accept. e transition diagram along with the formal be used to show the transition function.
identifies wheth contains, the ma "assessment" cor The alphabet Σ i	ner the given string concept achine outputs accept atains "sme" as a substruct s {a, b, c, z}. Provide	ontains "sme" as a substring or not. If it otherwise rejects. For example, the wording, therefore the machine should accept. e transition diagram along with the formal be used to show the transition function.

Question # 2

The if-then-else is a standard programming language construct that is used to check for different options. However, it's context free grammar can become ambiguous because of the dangling else problem.

Enrollment Number:
stmt \rightarrow if (expr) stmt if (expr) stmt else stmt S S \rightarrow i=0;
Start variable for the above grammar is stmt. The alphabet Σ is {if , else , (,) , i=0; , expr}.
Prove that the above grammar is ambiguous by finding out a string for which the grammar can generate at least two parse trees. Your solution must clearly show both the parse trees along with its two left-most derivations and two right-most derivations.
(marks: 4+4+4 = 12)

<u>Question # 3</u> Design <u>Non-deterministic Pushdown Automata</u> for the following language					
L = {w w is an odd length palindrome}					
Only show the transition diagram.					
(marks: 10					

Question # 4 Let's describe a Turing machine (TM) M that accepts the strings belonging to L = $\{0^{2^n} \mid n \ge 0\}$, the language consisting of all strings of 0s whose length is a power of 2.

(marks: 14+2 = 16)

$$M = (\{q_1,\,q_2,\,q_3,\,q_4,\,q_5,\,q_6,q_7\},\,\{0\},\,\{0,\,x,\,B\},\,\delta,\,q_1,\,B,\,\{q_7\})$$

	Symbol			
State	0	x	В	
-> q1	(q2, B, R)	(q7, x, R)	(q7, B, R)	
q ₂	(q3, x, R)	(q_2, x, R)	(q7, B, R)	
qз	(q4, 0, R)	(q3, x, R)	(q5, B, L)	
q ₄	(q3, x, R)	(q4, x, R)	(q7, B, R)	
q5	(q5, 0, L)	(q5, x, L)	(q_2, B, R)	
q ₆	-	-	-	
*q7	_	-	-	

Simulate the word 00000 starting from the first configuration q_100000 till the final configuration. Is the word accepted by the turing machine?

I .		
I .		
I .		