

Unterlagen für die Lehrkraft

Zentrale Klausur am Ende der Einführungsphase 2024

Mathematik

1. Aufgabenart / Inhaltsbereich

Prüfungsteil A: Hilfsmittelfrei zu bearbeitende Aufgaben

Aufgabe 1: Inhaltsfeld Funktionen und Analysis

Aufgabe 2: Inhaltsfeld Analytische Geometrie und Lineare Algebra

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Aufgabe 3: Inhaltsfeld Funktionen und Analysis / Innermathematische Argumentationsaufgabe

Aufgabe 4: Inhaltsfeld Funktionen und Analysis / Aufgabe mit realitätsnahem Kontext

2. Aufgabenstellung 1

siehe Prüfungsaufgaben

3. Materialgrundlage

entfällt

¹ Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

4. Bezüge zum Kernlehrplan und zu den Vorgaben 2024

Die Aufgaben weisen vielfältige Bezüge zu Kompetenzbereichen und Inhaltsfeldern des Kernlehrplans bzw. zu den in den Vorgaben ausgewiesenen Fokussierungen auf. Im Folgenden wird auf Bezüge von zentraler Bedeutung hingewiesen.

Inhaltsfelder und inhaltliche Schwerpunkte

Funktionen und Analysis

- Funktionen: Potenzfunktionen mit ganzzahligen Exponenten, ganzrationale Funktionen
- Eigenschaften von Funktionen: Verlauf des Graphen, Definitionsbereich, Wertebereich, Nullstellen, Symmetrie, Verhalten für $x \to \pm \infty$
- Transformationen: Spiegelung an den Koordinatenachsen, Verschiebung, Streckung
- Grundverständnis des Ableitungsbegriffs: mittlere und lokale Änderungsrate, graphisches Ableiten, Sekante und Tangente
- Differentialrechnung: Ableitungsregeln (Potenz-, Summen- und Faktorregel), Monotonie, Extrempunkte, lokale und globale Extrema, Krümmungsverhalten, Wendepunkte

Analytische Geometrie und Lineare Algebra

- Koordinatisierungen des Raumes: Punkte, Ortsvektoren, Vektoren
- Vektoroperationen: Addition, Multiplikation mit einem Skalar
- Eigenschaften von Vektoren: Länge, Kollinearität

5. Zugelassene Hilfsmittel

Prüfungsteil A:

• Zeichengeräte sowie ein Wörterbuch zur deutschen Rechtschreibung sind zugelassen.

Prüfungsteil B:

- WTR (einfacher wissenschaftlicher Taschenrechner)
- Mathematische Formelsammlung (bis 2024 zugelassen) oder das "Dokument mit mathematischen Formeln" ² (ab 2025 verpflichtend)
- Wörterbuch zur deutschen Rechtschreibung

6. Vorgaben für die Bewertung der Schülerleistungen

Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Für die Leistungen werden entsprechend der konkreten Lösungsqualität Punkte im vorgegebenen Rahmen vergeben. Der gewählte Lösungsansatz und -weg der Schülerinnen und Schüler muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung"). Es dürfen nur ganzzahlige Punkte vergeben werden.

² https://www.standardsicherung.schulministerium.nrw.de/cms/zentralabitur-gost/faecher/getfile.php?file=5705

Aufgabe 1:

Modelllösung a)

$$f'(x) = 0 \Leftrightarrow x^2 + 4 \cdot x - 12 = 0$$
$$\Leftrightarrow x = -2 - \sqrt{2^2 + 12} \quad \forall x = -2 + \sqrt{2^2 + 12}$$
$$\Leftrightarrow x = -2 - \sqrt{16} = -6 \forall x = -2 + \sqrt{16} = 2.$$

Modelllösung b)

- (1) $f''(x) = 2 \cdot x + 4$.
- (2) x = -2 ist eine Wendestelle von f.

Modelllösung c)

Mögliche Begründung:

Wegen f''(2) = 8 > 0 kann an der Stelle x = 2 kein lokaler Hochpunkt des Graphen von f vorliegen.

Bei dem Graphen in der Abbildung kann es sich daher nicht um den Graphen von f handeln.

Aufgabe 2:

Modelllösung a)

(1)
$$\overrightarrow{QR} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$
.

(2) (i)
$$\overrightarrow{OQ} + \frac{1}{2} \cdot \overrightarrow{QR} = \begin{pmatrix} 7 \\ 2 \end{pmatrix} + 0.5 \cdot \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 6 \\ 4.5 \end{pmatrix}$$
.

(ii) Der berechnete Vektor ist der Ortsvektor des Mittelpunkts der Strecke \overline{QR} .

Modelllösung b)

(2)
$$\overrightarrow{OS} = \overrightarrow{OP} + \overrightarrow{QR} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$$
. Der Punkt *S* hat die Koordinaten $S(1 \mid 6)$.

Aufgabe 3:

Modelllösung a)

Bereich, in dem $f'(x) \ge 0$ gilt: [-6;0].

Modelllösung b)

$$f'(x) = -\frac{1}{6} \cdot x^2 - x$$
, $f''(x) = -\frac{1}{3} \cdot x - 1$, $f'''(x) = -\frac{1}{3}$.

Aus der notwendigen Bedingung f''(x) = 0 für Wendestellen ergibt sich:

$$-\frac{1}{3} \cdot x - 1 = 0 \Leftrightarrow x = -3.$$

Zusätzlich gilt: $f'''(-3) = -\frac{1}{3} \neq 0$.

Daher ist x = -3 die Wendestelle die Funktion f.

Modelllösung c)

(1) (i) Ansatz: $n: y = m \cdot x + b$.

$$m = -\frac{1}{f'(-3)} = -\frac{1}{\frac{3}{2}} = -\frac{2}{3}$$
.

$$f(-3) = -1$$
.

Einsetzen der Koordinaten des Punktes W in $y = m \cdot x + b$ liefert:

$$-1 = -\frac{2}{3} \cdot \left(-3\right) + b \Leftrightarrow b = -3.$$

Gleichung der Normale $n: y = -\frac{2}{3} \cdot x - 3$.

(1) (ii)

(2)

(3) $A = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} \cdot (3,5 - (-3)) \cdot 3 = 9,75$ [FE].

Modelllösung d)

- (1) $f_1(x) = f(x-6) + 4$.
- (2) $f_2(x) = f\left(\frac{1}{2} \cdot x\right)$.

Modelllösung e)

Die Funktion *F* besitzt eine lokale Minimalstelle und zwei lokale Maximalstellen.

Begründung:

Die Ableitungsfunktion f der Funktion F besitzt eine Nullstelle, an der ein Vorzeichenwechsel von negativen zu positiven Funktionswerten von f vorliegt, und zwei Nullstellen, an denen Vorzeichenwechsel von positiven zu negativen Funktionswerten von f vorliegen.

Aufgabe 4:

Modelllösung a)

(1)
$$f(2) = 305$$
, $f(4) = 435$.

Am 01.03.2022 betrug der Preis für eine Tonne Holzpellets 305 € und am 01.05.2022 betrug der Preis für eine Tonne Holzpellets 435 €.

(2)
$$\frac{435}{305} \approx 1,43 = 143\%$$
.

Der Preis ist in dem genannten Zeitraum um ca. 43 % gestiegen.

Modelllösung b)

(1) Eine passende Aufgabenstellung ist:

Ermitteln Sie die Zeitpunkte im Jahr 2022, zu denen die Preise für eine Tonne Holzpellets am höchsten bzw. am geringsten waren.

- (2) Die absoluten Extremstellen von f können nur die Nullstellen von f' oder die Randstellen sein. Der Vergleich der Funktionswerte von f an diesen Stellen liefert die absoluten Extremstellen von f.
- (3) Mitte Februar 2022 war der Preis für eine Tonne Holzpellets am niedrigsten, Anfang Oktober 2022 war der Preis am höchsten.

Modelllösung c)

(2)
$$m_s = \frac{f(9) - f(1,5)}{9 - 1,5} \approx \frac{825,63 - 298,28}{7,5} \approx 70,31.$$

Während der Preissteigerung vom niedrigsten auf den höchsten Preis des Jahres 2022 stieg der Preis für eine Tonne Holzpellets durchschnittlich um ungefähr 70 € pro Monat.

Modelllösung d)

$$f'(t) = -7.5 \cdot t^2 + 78.75 \cdot t - 101.25$$
, $f''(t) = -15 \cdot t + 78.75$.

Das absolute Maximum von f' kann nur an einer Nullstelle von f" oder an einer Randstelle auftreten.

$$f''(t) = 0 \Leftrightarrow -15 \cdot t + 78,75 = 0 \Leftrightarrow t = 5,25$$
.

Zusätzlich gilt:

$$f'(0) = -101,25$$
, $f'(5,25) \approx 105,47$, $f'(12) = -236,25$.

Zum Zeitpunkt t = 5,25 ist der Preis der Holzpellets am schnellsten gestiegen.

Modelllösung e)

$$p(t) = 3.5 \cdot f(t) + 90$$
.

7. Bewertungsbogen zur	Klausur
------------------------	---------

Name des Prüflings:	Kursbezeichnung:
	0
Schule:	

Aufgabe 1: Hilfsmittelfrei zu bearbeitende Aufgabe Funktionen und Analysis

Teilaufgabe a)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	berechnet die Nullstellen von f' .	2	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (2)		
	Summe Teilaufgabe a)	2	

Teilaufgabe b)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) gibt $f''(x)$ an.	1	
2	(2) gibt an, welche Bedeutung die Aussage " f " $(-2)=0$ und f " $(-2)\neq 0$ " für die Funktion f hat.	1	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (2)		
	Summe Teilaufgabe b)	2	

Teilaufgabe c)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	begründet, warum es sich bei dem Graphen in der $Abbildung$ nicht um den Graphen der Funktion f handeln kann.	2	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (2)		
•••••	Common Teilerafondo a	2	
	Summe Teilaufgabe c)		
	Summe Aufgabe 1	6	

Aufgabe 2: Hilfsmittelfrei zu bearbeitende Aufgabe Analytische Geometrie und Lineare Algebra

Teilaufgabe a)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) gibt die Koordinaten des Vektors \overrightarrow{QR} an.	1	
2	(2) (i) berechnet $\overrightarrow{OQ} + \frac{1}{2} \cdot \overrightarrow{QR}$.	1	
3	(2) (ii) gibt die geometrische Bedeutung des berechneten Vektors an.	1	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (3)		
	Summe Teilaufgabe a)	3	

Teilaufgabe b)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) zeichnet das Parallelogramm <i>PQRS</i> in die <i>Abbildung</i> ein.	1	
2	(2) berechnet die Koordinaten des Punktes <i>S</i> .	2	
Sachl	lich richtige Lösungsalternative zur Modelllösung: (3)		
	Summe Teilaufgabe b)	3	
	Summe Aufgabe 2	6	

Aufgabe 3: Aufgabe mit Hilfsmitteln

Funktionen und Analysis / Innermathematische Argumentationsaufgabe

Teilaufgabe a)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	gibt den Bereich an, in dem $f'(x) \ge 0$ gilt.	2	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (2)		
	Summe Teilaufgabe a)	2	

Teilaufgabe b)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	untersucht rechnerisch die Funktion f auf Wendestellen.	5	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (5)		
	Summe Teilaufgabe b)	5	

Teilaufgabe c)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) (i) berechnet eine Gleichung der Normale n des Graphen von f im Punkt $W\left(-3 \mid f\left(-3\right)\right)$.	5	
2	(1) (ii) zeichnet die Normale n in die $Abbildung$ ein.	1	
3	(2) zeichnet die Tangente t an den Graphen von f im Punkt W in die $Abbildung$ ein.	1	
4	(3) berechnet den Flächeninhalt des Dreiecks, das die Normale n , die Tangente t und die y -Achse einschließen.	3	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (10)		
•••••			
	Summe Teilaufgabe c)	10	

Teilaufgabe d)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) gibt eine Gleichung von f_1 an.	2	
2	(2) gibt eine Gleichung von f_2 an.	2	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (4)		
	Summe Teilaufgabe d)	4	

Teilaufgabe e)

	Anforderungen	Lösungsqualitä	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	gibt an, wie viele lokale Minimal- und wie viele lokale Maximalstellen die Funktion ${\cal F}$ besitzt, und begründet seine Angaben.	3	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (3)		
	Summe Teilaufgabe e)	3	

	Summe Aufgabe 3	24		
--	-----------------	----	--	--

Aufgabe 4: Aufgabe mit Hilfsmitteln

Funktionen und Analysis / Aufgabe mit realitätsnahem Kontext

Teilaufgabe a)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) berechnet den Preis für eine Tonne Holzpellets am 01.03.2022 und am 01.05.2022.	2	
2	(2) berechnet, um wie viel Prozent der Preis in diesem Zeitraum gestiegen ist.	2	
Sachlich richtige Lösungsalternative zur Modelllösung: (4)			
	Summe Teilaufgabe a)	4	

Teilaufgabe b)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) gibt eine passende Aufgabenstellung im Sachzusammenhang zu den angegebenen Berechnungen an.	2	
2	(2) erläutert den dargestellten Lösungsweg.	3	
3	(3) formuliert einen Antwortsatz zu seiner Aufgabenstellung.		
Sachl	ich richtige Lösungsalternative zur Modelllösung: (6)		
	Summe Teilaufgabe b)	6	

Teilaufgabe c)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) zeichnet in die <i>Abbildung</i> die Sekante s durch den Tiefpunkt und den Hochpunkt des Graphen von f ein.	1	
2	2 (2) ermittelt die Steigung der Sekante <i>s</i> und interpretiert diese Steigung im Sachzusammenhang.		
Sachlich richtige Lösungsalternative zur Modelllösung: (5)			
	Summe Teilaufgabe c)	5	

Teilaufgabe d)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	untersucht rechnerisch, zu welchem Zeitpunkt der Preis der Holzpellets am schnellsten gestiegen ist.	6	
Sachlich richtige Lösungsalternative zur Modelllösung: (6)			
	Summe Teilaufgabe d)	6	

Teilaufgabe e)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	gibt eine Gleichung der Funktion p an, durch die der Gesamtpreis $p(t)$ (in $\mathfrak E$) für die Lieferung in Abhängigkeit vom Zeitpunkt t gegeben ist.	3	
Sachlich richtige Lösungsalternative zur Modelllösung: (3)			
	Summe Teilaufgabe e)	3	

	Summe Aufgabe 4	24	
--	-----------------	----	--

Festlegung der Gesamtnote

	Lösung	Lösungsqualität	
	maximal er- reichbare Punktzahl	erreichte Punktzahl	
Übertrag der Punktsumme aus der ersten Aufgabe	6		
Übertrag der Punktsumme aus der zweiten Aufgabe	6		
Übertrag der Punktsumme aus der dritten Aufgabe	24		
Übertrag der Punktsumme aus der vierten Aufgabe	24		
Gesamtpunktzahl	60		

Unterschrift, Datum

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Noten zu den Punktsummen ist folgende Tabelle zu verwenden:

Note	Erreichte Punktsummen
sehr gut	52 – 60
gut	43 – 51
befriedigend	34 – 42
ausreichend	25 – 33
mangelhaft	13 – 24
ungenügend	0 – 12