

6th Open Scientific EIP Symposium on Immunogenicity of Biopharmaceuticals

Challenges for the determination of cutpoints

Sabine Bader, Nicole Justies, Thomas Emrich, Kay-Gunnar Stubenrauch, Julia Heinrich

Roche

ADA screening assay cutpoint *Introduction*

Anti-drug antibody (ADA) assays

Aim

 Find a cutpoint that allows to distinguish between ADA positive and negative samples

Common proceeding

- Define cutpoint by characterization of a *negative* sample population with a 95 % quantile:
 - ➤ 5 % of negative cases will be false positive;
 - few positive cases shall be missed.

ADA screening assay cutpoint *Ideal case*

- 1. Data show a **normal distribution**
- Plate normalization leads to equal means and variances

Determination of parametric cutpoint based on mean and standard deviation

Roche ADA assays Assay format

Bridging assay

Sandwich immunoassay

- Diagnostic assay
 - → small background aspired
- Highly specific capturing surface

 (e.g. streptavidin biotin interaction)

 & high-quality assay components
 - extremely low levels of unspecific binding of biological matrix components

Roche ADA assays

Assay data

Aspired low matrix effect leads to new challenges in data analysis

- → Small ODs close to instrument level
 - Measuring samples that are negative by definition with very low technical noise
- → Standard reader settings can lead to binned data due to number of decimals
 - Data not continuous
- → Data show no normal distribution
 - Mostly neither normal nor log normal distribution – even after outlier exclusion
 - Rules out standard parametric and 'robust' methods for cutpoint determination

Roche ADA assays Cutpoint determination

- Nonparametric cutpoint calculation
 - Due to skewed distribution of data close to instrument level
 - Screening cutpoint empirical 95 % quantile
 - Confirmatory cutpoint empirical 99 % quantile (or even 99.9 %)

Roche ADA assays Cutpoint determination

- Nonparametric cutpoint calculation
 - Due to skewed distribution of data close to instrument level
 - Screening cutpoint empirical 95 % quantile
 - Confirmatory cutpoint empirical 99 % quantile (or even 99.9 %)
- Challenges with nonparametric cutpoints
 - Limited sample size leads to strong influence of maximum value
 - Sample size between 3x15 (preclinical) and 3x100 (clinical)
 - Cutpoint can correspond to the maximum of all observed values potentially compromising robustness as based on only one sample
 - This can result in a deviation of the aspired percentage of false positive samples
 - ➤ **Report "actual" quantile** (e.g. 98 % quantile) otherwise claiming to be more strict than actually the case
 - Resulting cutpoint depends on applied software as algorithms vary

Case study - mAb XY

Unexpected high amount of positives in study data

Pre-dose data of 120 healthy volunteers (phase I study)

Screening cutpoint was statistically evaluated to lead to **5% false positives** in validation data.

Study data: 12.5 % screening positive samples (15/120)

(10.8 % without two borderline cases with only one out of two replicates above cutpoint but mean below)

→ Percentage of positives unexpectedly high in set of pre-dose samples of healthy volunteers!

Case study – mAb XY Re-evaluation of validation data

1. Original approach (CP1)

12 outliers (x) were identified in the validation study data and **excluded** for screening cutpoint calculation.

Validation study data

- 50 samples (25 disease, 25 healthy)
- measured on triplicate plates

Case study – mAb XY Re-evaluation of validation data

1. Original approach (CP1)

12 outliers (x) were identified in the validation study data and **excluded** for screening cutpoint calculation.

- However: biological not technical outliers!
- They reflect part of the negative population that we aim to characterize, and are therefore not to be excluded from screening cutpoint calculation (unless samples assumed to be positive).

Validation study data

- 50 samples (25 disease, 25 healthy)
- measured on triplicate plates

Case study – mAb XY Re-evaluation of validation data

1. Original approach (CP1)

12 outliers (x) were identified in the validation study data and **excluded** for screening cutpoint calculation.

- However: biological not technical outliers!
- They reflect part of the negative population that we aim to characterize, and are therefore not to be excluded from screening cutpoint calculation (unless samples assumed to be positive).

2. Re-evaluated approach (CP2)

No (biological) outlier exclusion

Validation study data

- 50 samples (25 disease, 25 healthy)
- measured on triplicate plates

Case study – mAb XY Re-evaluated screening cutpoint

Back to study data

Original approach (CP1)

12.5 % screening positive samples (15/120)

Percentage of positives unexpectedly high in pre-dose samples of healthy volunteers!

Re-evaluated approach (CP2):

4.2 % screening positive samples (5/120)

Percentage of positive samples now in expected range

Case study – mAb XY Re-evaluated screening cutpoint

Change of validation parameters after re-evaluation

Validation parameter	Validation result CP1	Validation result CP2
Mean NC signal (OD) during validation runs	0.0374	0.0374
Normalization value (additive normalization)	0.006	0.0339
Assay sensitivity	0.288 ng/mL	1.64 ng/mL
Drug tolerance factor	80	13
= ratio of drug concentration and lowest positive control concentration giving a signal above the cutpoint	→ 250 ng/mL ADA can still be found with 20 µg/mL drug	→ 250 ng/mL ADA can still be found with 3.25 µg/mL drug

Case study – mAb XY Comparable issue for confirmatory cutpoint

Validation data of **25** healthy samples

1. Original approach (cCP1)

12 outliers (x) were identified in the validation study data and **excluded** for confirmatory cutpoint calculation.

2. Re-evaluated approach (cCP2)
No outlier exclusion

Case study – mAb XY

Comparable issue for confirmatory cutpoint

Validation data of **25** healthy samples

1. Original approach (cCP1)

12 outliers (x) were identified in the validation study data and **excluded** for confirmatory cutpoint calculation.

2. Re-evaluated approach (cCP2)
No outlier exclusion

Pre-dose data of 120 healthy volunteers

% confirmed positive samples

		Screening (OD)	
		sCP1 0.043	sCP2 0.071
		12.5 % (15/120) screening positives	4.2 % (5/120) screening positives
	cCP1 25 %	9.2 % (11/120) confirmed positives	4.2 % (5/120) confirmed positives
Confir (% inhi	cCP2 78 %	4.2 % (5/120) confirmed positives	4.2 % (5/120) confirmed positives

Case study – mAb XY

Comparable issue for confirmatory cutpoint

Validation data of **25** healthy samples

1. Original approach (cCP1)

12 outliers (x) were identified in the validation study data and **excluded** for confirmatory cutpoint calculation.

2. Re-evaluated approach (cCP2)
No outlier exclusion

Pre-dose data of 120 healthy volunteers

% confirmed positive samples

		Screening (OD)	
For sCl	,	sCP1 0.043	sCP2 0.071
all screening positives are confirmed with both cCPs.		12.5 % (15/120) screening positives	4.2 % (5/120) screening positives
Confirmation (% inhibition)	cCP1 25 %	9.2 % (11/120) confirmed positives	4.2 % (5/120) confirmed positives
	cCP2 78 %	4.2 % (5/120) confirmed positives	4.2 % (5/120) confirmed positives

Case study – mAb XY

Comparable issue for confirmatory cutpoint

Validation data of **25** healthy samples

1. Original approach (cCP1)

12 outliers (x) were identified in the validation study data and **excluded** for confirmatory cutpoint calculation.

2. Re-evaluated approach (cCP2)
No outlier exclusion

Pre-dose data of 120 healthy volunteers

% confirmed positive samples

		Screening (OD)	
For sCl	1	sCP1 0.043	sCP2 0.071
all screening positives are confirmed with both cCPs.		12.5 % (15/120) screening positives	4.2 % (5/120) screening positives
Confirmation (% inhibition)	cCP1 25 %	9.2 % (11/120) confirmed positives	4.2 % (5/120) confirmed positives
	cCP2 78 %	4.2 % (5/120) confirmed positives	4.2 % (5/120) confirmed positives

'Conservative' approach (cCP1) chosen to mitigate risk of false negatives

Roche

Case study – mAb XY 'Real' positive samples

Patient 1: Expected PK profile

Patient 2: PK decrease & ADA increase

(patients from same dose group)

Clinical on-treatment study data of patients

➤ "Real" positive samples → ADA signal in different range

Challenges for the determination of cutpoints Summary

Typical challenges

- Lack of normal distribution which hinders usage of "standard" methods
- Imprecise determination of empirical quantile depending on sample size
- Strong influence of outlier treatment/interpretation on result

Statistics can offer only limited support

- Mainly for 'ideal' cases
 - But even then seemingly in irrelevant OD range

Solution more on biological / experimental level ?

- Looking for and assessing different new approaches
 - Increased background, ...
- Potentially go via positive controls
 - As actual positives seem to lie in completely different range anyways

Challenges for the determination of cutpoints Acknowledgements

Bioanalytics

- Penzberg
 Roland Staack
 Martin Schäfer
 Apollon Papadimitriou
- Basel
 Corinne Petit-Frère
 Eginhard Schick
 Herbert Birnboeck

Biostatistics

PenzbergAnton BelousovFlorian Lipsmeier

THANK YOU FOR YOUR ATTENTION!
ANY QUESTIONS?

Doing now what patients need next