Data Mining Project

From Reservation to Check-In: Data-Driven Insights for Optimizing Hotel Bookings - Predicting Cancellations and Understanding Customer Preferences

Asif Mursalin - 60100148

Ashraf Salem - 60104564

Mehdi Bouktib - 60105112

pip install -r requirements.txt

```
In [1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import plotly.express as px
  import seaborn as sns
  import copy
```

In [2]: df = pd.read_csv("hotel_bookings_raw.csv")

First 5 rows

In [3]: df.head()

Out[3]:		hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number
	0	Resort Hotel	0	342	2015	July	27
	1	Resort Hotel	0	737	2015	July	27
	2	Resort Hotel	0	7	2015	July	27
	3	Resort Hotel	0	13	2015	July	27
	4	Resort Hotel	0	14	2015	July	27

5 rows × 43 columns

Last 10 rows

In [4]:	df.tail()							
Out[4]:		hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_num	
	119385	City Hotel	0	23	2017	August		
	119386	City Hotel	0	102	2017	August		
	119387	City Hotel	0	34	2017	August		
	119388	City Hotel	0	109	2017	August		
	119389	City Hotel	0	205	2017	August		
	5 rows ×	43 col	umns					
In [5]:	df.shape							
	(119390, 43)							

Hotel Booking Dataset Column Descriptions

1. Booking Status and Basic Information

- hotel : Type of hotel
- is_canceled: Whether the booking was canceled (binary: 0/1)
- reservation_status : Current status of the reservation
- reservation_status_date : Date of the last status update

2. Temporal Information

- lead_time: Number of days between booking and arrival date
- arrival_date_year: Year of arrival
- arrival_date_month : Month of arrival
- arrival_date_week_number : Week number of arrival
- arrival_date_day_of_month : Day of month of arrival
- MO_YR: Month and year combined

3. Stay Details

- stays_in_weekend_nights: Number of weekend nights booked
- stays_in_week_nights : Number of weekday nights booked
- adults: Number of adults
- children: Number of children
- babies : Number of babies

4. Room and Service Information

- meal: Type of meal plan
- reserved_room_type : Type of room reserved
- assigned_room_type : Type of room actually assigned
- required_car_parking_spaces : Number of parking spaces needed
- total_of_special_requests : Number of special requests made

5. Customer Information

- country: Country of origin
- is_repeated_guest : Whether the guest has stayed before
- previous_cancellations : Number of previous cancellations
- nrevious hookings not canceled Number of previous non-canceled hookings

3 of 73

```
Priestons_pooktings_not_confected . Italinoci of presions from confected bookings
```

customer_type : Type of customer

6. Business/Distribution Information

- market_segment : Market segment (e.g., direct, corporate)
- distribution_channel : Booking distribution channel
- agent : ID of the travel agency
- booking_changes: Number of changes made to the booking
- deposit_type : Type of deposit made
- adr : Average Daily Rate
- days_in_waiting_list : Days spent on waiting list

7. Economic Indicators

- CPI_AVG : Consumer Price Index average
- INFLATION: Inflation rate
- INFLATION_CHG: Change in inflation
- CSMR_SENT : Consumer sentiment
- UNRATE: Unemployment rate
- INTRSRT : Interest rate
- GDP: Gross Domestic Product
- FUEL_PRCS : Fuel prices
- CPI_HOTELS : CPI specific to hotels
- US_GINI : Gini coefficient (income inequality measure)
- DIS_INC : Disposable income

```
In [6]: df.columns
        Index(['hotel', 'is_canceled', 'lead_time', 'arrival_date_year',
                'arrival_date_month', 'arrival_date_week_number',
               'arrival_date_day_of_month', 'stays_in_weekend_nights',
               'stays_in_week_nights', 'adults', 'children', 'babies', 'meal',
               'country', 'market_segment', 'distribution_channel',
               'is_repeated_guest', 'previous_cancellations',
               'previous_bookings_not_canceled', 'reserved_room_type',
               'assigned_room_type', 'booking_changes', 'deposit_type', 'agent',
               'days_in_waiting_list', 'customer_type', 'adr',
               'required_car_parking_spaces', 'total_of_special_requests',
               'reservation_status', 'reservation_status_date', 'MO_YR', 'CPI_AVG',
               'INFLATION', 'INFLATION_CHG', 'CSMR_SENT', 'UNRATE', 'INTRSRT', 'GDP',
               'FUEL_PRCS', 'CPI_HOTELS', 'US_GINI', 'DIS_INC'],
              dtype='object')
In [7]: df.dtypes
```

```
hotel
                                             object
Out[7]:
        is_canceled
                                              int64
        lead_time
                                              int64
        arrival_date_year
                                              int64
        arrival_date_month
                                             object
        arrival_date_week_number
                                              int64
        arrival_date_day_of_month
                                              int64
        stays_in_weekend_nights
                                              int64
        stays in week nights
                                              int64
        adults
                                              int64
        children
                                            float64
        babies
                                              int64
        meal
                                             object
        country
                                             object
        market_segment
                                             object
        distribution_channel
                                             object
        is_repeated_guest
                                              int64
        previous_cancellations
                                              int64
        previous_bookings_not_canceled
                                              int64
        reserved_room_type
                                             object
        assigned_room_type
                                             object
        booking_changes
                                              int64
        deposit_type
                                             object
        agent
                                            float64
        days_in_waiting_list
                                              int64
        customer_type
                                             object
        adr
                                            float64
        required_car_parking_spaces
                                              int64
        total_of_special_requests
                                              int64
        reservation_status
                                             object
        reservation_status_date
                                             object
                                             object
        MO_YR
        CPI AVG
                                            float64
        INFLATION
                                            float64
        INFLATION_CHG
                                            float64
        CSMR_SENT
                                            float64
        UNRATE
                                            float64
        INTRSRT
                                            float64
                                            float64
        GDP
        FUEL_PRCS
                                            float64
        CPI HOTELS
                                            float64
        US_GINI
                                            float64
        DIS_INC
                                            float64
        dtype: object
        df['agent'] = df['agent'].astype('Int64')
```

```
In [9]:
        binary_columns = ['is_canceled', 'is_repeated_guest']
        # Date columns
        date_columns = [
             'reservation_status_date'
        ]
        # Numeric columns
        numeric_columns = [
             'lead_time',
             'arrival_date_year',
             'arrival_date_week_number',
             'arrival_date_day_of_month',
             'stays_in_weekend_nights',
             'stays_in_week_nights',
             'adults',
             'children',
             'babies',
             'is_repeated_guest',
             'previous_cancellations',
             'previous_bookings_not_canceled',
             'booking_changes',
             'days_in_waiting_list',
             'adr',
             'required_car_parking_spaces',
             'total_of_special_requests',
             'CPI_AVG',
             'INFLATION',
             'INFLATION_CHG',
             'CSMR_SENT',
             'UNRATE',
             'INTRSRT',
             'GDP',
             'FUEL_PRCS',
             'CPI_HOTELS',
             'US_GINI',
             'DIS_INC'
        ]
        # Categorical columns
         categorical_columns = [
             'hotel',
             'arrival_date_month',
             'meal',
             'country',
             'market_segment',
             'distribution_channel',
             'reserved_room_type',
             'assigned_room_type',
             'deposit_type',
             'customer_type',
             'reservation_status',
             'agent'
        ]
```

```
In [10]: def fix_datatypes(df):
             # Make a copy to avoid modifying the original dataframe
             df = copy.deepcopy(df)
             # Convert dates
             for col in date_columns:
                  df[col] = pd.to_datetime(df[col])
             # Convert numeric columns
             for col in numeric_columns:
                  df[col] = pd.to_numeric(df[col], errors='coerce')
             # Convert categorical columns
             for col in categorical_columns:
                  df[col] = df[col].astype('category')
             # Convert binary columns
             for col in binary_columns:
                  df[col] = df[col].astype('bool')
             # Handle 'MO_YR' as string
             df['MO_YR'] = df['MO_YR'].astype(str)
             return df
```

```
In [11]: df = fix_datatypes(df)
    df.dtypes
```

```
hotel
                                                    category
Out[11]:
          is_canceled
                                                        bool
          lead_time
                                                       int64
          arrival_date_year
                                                       int64
          arrival date month
                                                    category
          arrival_date_week_number
                                                       int64
          arrival_date_day_of_month
                                                       int64
          stays_in_weekend_nights
                                                       int64
          stays in week nights
                                                       int64
          adults
                                                       int64
          children
                                                     float64
          babies
                                                       int64
          meal
                                                    category
          country
                                                    category
          market_segment
                                                    category
          distribution_channel
                                                    category
          is repeated guest
                                                        bool
          previous cancellations
                                                       int64
          previous_bookings_not_canceled
                                                       int64
          reserved_room_type
                                                    category
          assigned_room_type
                                                    category
          booking changes
                                                       int64
          deposit_type
                                                    category
                                                    category
          agent
          days_in_waiting_list
                                                       int64
          customer_type
                                                    category
                                                     float64
          required_car_parking_spaces
                                                       int64
          total_of_special_requests
                                                       int64
          reservation_status
                                                    category
          reservation_status_date
                                             datetime64[ns]
         MO_YR
                                                      object
          CPI AVG
                                                     float64
          INFLATION
                                                     float64
          INFLATION_CHG
                                                     float64
          CSMR_SENT
                                                     float64
         UNRATE
                                                     float64
          INTRSRT
                                                     float64
                                                     float64
          GDP
         FUEL_PRCS
                                                     float64
          CPI HOTELS
                                                     float64
         US_GINI
                                                     float64
          DIS_INC
                                                     float64
          dtype: object
          booking by month = df.groupby(['arrival date month', 'hotel']).size()
In [12]:
          booking_by_month
```

```
C:\Users\salem\AppData\Local\Temp\ipykernel_32660\3460393484.py:1: FutureWarning: T he default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
```

```
booking_by_month = df.groupby(['arrival_date_month', 'hotel']).size()
```

Out[12]:	arrival_date_month	hotel			
out[12].	April	City Hotel	7480		
		Resort Hotel	3609		
	August	City Hotel	8983		
		Resort Hotel	4894		
	December	City Hotel	4132		
		Resort Hotel	2648		
	February	City Hotel	4965		
		Resort Hotel	3103		
	January	City Hotel	3736		
		Resort Hotel	2193		
	July	City Hotel	8808		
		Resort Hotel	4573		
	June	City Hotel	7894		
		Resort Hotel	3045		
	March	City Hotel	6458		
		Resort Hotel	3336		
	May	City Hotel	8232		
		Resort Hotel	3559		
	November	City Hotel	4357		
		Resort Hotel			
	October	City Hotel	7605		
		Resort Hotel	3555		
	September	City Hotel	7400		
		Resort Hotel	3108		
	dtype: int64				

```
In [13]:
         import plotly.express as px
          import plotly.graph objects as go
          from plotly.subplots import make_subplots
         fig = go.Figure()
         # Add traces, one for each hotel
         for hotel_type in df['hotel'].unique():
             hotel_data = df[df['hotel'] == hotel_type]
             monthly_counts = hotel_data['arrival_date_month'].value_counts().reset_index()
             monthly_counts.columns = ['Month', 'Bookings']
              # Define month order
             month_order = ['January', 'February', 'March', 'April', 'May', 'June',
                             'July', 'August', 'September', 'October', 'November', 'December'
             monthly_counts['Month'] = pd.Categorical(monthly_counts['Month'],
                                                      categories=month order,
                                                      ordered=True)
             monthly_counts = monthly_counts.sort_values('Month')
             fig.add_trace(
                  go.Bar(
                      name=hotel_type,
                      x=monthly_counts['Month'],
                      y=monthly_counts['Bookings'],
                      visible=True
                  )
             )
         # Add buttons for hotel selection
         fig.update_layout(
             updatemenus=[
                  dict(
                      type="buttons",
                      direction="right",
                      x=0.7,
                      y=1.2,
                      showactive=True,
                      buttons=list([
                          dict(
                              label="All Hotels",
                              method="update",
                              args=[{"visible": [True, True]},
                                    {"title": "All Hotels Booking Distribution"}]),
                          dict(
                              label="Resort Hotel",
                              method="update",
                              args=[{"visible": [True, False]},
                                    {"title": "Resort Hotel Booking Distribution"}]),
                          dict(
                              label="City Hotel",
                              method="update",
                              args=[{"visible": [False, True]},
                                    {"title": "City Hotel Booking Distribution"}])
                      ]),
                  )
             ]
         )
```

```
# Update Layout
fig.update_layout(
    title="Hotel Bookings Distribution",
    xaxis_title="Month",
    yaxis_title="Number of Bookings",
    barmode='group',
    height=600,
    width=1000,
    showlegend=True
)
```

Dealing with missing values

```
missing_values_count = df.isnull().sum()[df.isnull().sum()>0]
total_missing = df.isnull().sum().sum()
print("Missing values per column:\n", missing_values_count)
print("Total missing values:", total_missing)
Missing values per column:
children
                   488
country
agent
                16340
CPI_AVG
                   181
                   181
INFLATION
INFLATION_CHG
                   181
CSMR_SENT
                   181
UNRATE
                   181
INTRSRT
                   181
GDP
                   181
FUEL_PRCS
                   181
CPI_HOTELS
                   181
US_GINI
                   181
DIS_INC
                   181
dtype: int64
Total missing values: 18823
```

Visualizing missing values in a column

```
In [15]:
         # Create figure with specified size
          plt.figure(figsize=(12, 6))
         # Create bar plot
         sns.barplot(x=missing_values_count.index,
                      y=missing_values_count.values,
                      hue=missing_values_count.index,
                      palette='viridis')
         # Customize the plot
         plt.xticks(rotation=45, ha='right')
         plt.title('Missing Values by Column')
         plt.xlabel('Columns')
         plt.ylabel('Number of Missing Values')
         # Adjust layout to prevent label cutoff
         plt.tight_layout()
         # Show the plot
         plt.show()
```


- The children column contains the number of children the guest will bring
- We will asssume the null value means the guest has no children

Children Missing

```
In [16]: # Fill children column missing values
# df['children'].fillna(0, inplace=True)
df['children'] = df['children'].fillna(0)
```

Country missing

```
In [17]: # Replace missing values with the mode of the column country
    mode_country = df['country'].mode()[0]
    print(mode_country)
    df['country'] = df['country'].fillna(mode_country)
```

Agent Missing

PRT

```
In [18]: df['agent'] = df['agent'].astype('object') # temporarily convert to object
    df['agent'] = df['agent'].fillna(0)

df['agent'] = df['agent'].astype('category')
```

C:\Users\salem\AppData\Local\Temp\ipykernel_32660\2899670480.py:2: FutureWarning:

Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will c hange in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`

```
In [19]: df[['agent']].head()
```

```
Out[19]: agent

0 0

1 0

2 0

3 304

4 240
```

Replacing missing values with '0' of the column Agent as it states that no agent was involved in the booking

```
In [20]: missing_values_count = df.isnull().sum()[df.isnull().sum()>0]
    total_missing = df.isnull().sum().sum()

print("Missing values per column:\n", missing_values_count)
    print("Total missing values:", total_missing)
```

```
Missing values per column:
 CPI_AVG
                  181
                 181
INFLATION
INFLATION_CHG
                 181
CSMR_SENT
                 181
UNRATE
                 181
INTRSRT
                 181
GDP
                 181
FUEL_PRCS
                 181
CPI_HOTELS
                 181
                 181
US_GINI
DIS_INC
                 181
dtype: int64
Total missing values: 1991
```

In [21]: # Create figure with specified size

Customize the plot

plt.xticks(rotation=45, ha='right')
plt.title('Missing Values by Column')
plt.xlabel('Columns')
plt.ylabel('Number of Missing Values')

Adjust Layout to prevent Label cutoff
plt.tight_layout()

Show the plot
plt.show()

CPI_AVG

 replacing the null values in the CPI_AVG columns that indicates consumer price index average with mean as it maintains the dataset's overall balance and avoids skewing results

```
In [22]: mean_CPI = df['CPI_AVG'].mean()
    print(mean_CPI)
    df['CPI_AVG'] = df['CPI_AVG'].fillna(mean_CPI)
```

240.78065240879465

Inflation

 replacing null values in the Inflation column with Interpolation as it Estimates missing values based on surrounding data points, preserving the column's natural trends over time

```
In [23]: df['INFLATION'] = df['INFLATION'].interpolate(method='linear')
print(df['INFLATION'].isnull().sum())
```

CSMR_SENT (costumer sentiment)

```
In [24]: # Replace missing values with the mode of the column CSMR_SENT
mode_csmr = df['CSMR_SENT'].mode()[0]
print(mode_csmr)
df['CSMR_SENT'] = df['CSMR_SENT'].fillna(mode_csmr)
90.0
```

UNRATE (Unemployment rate)

 replacing the null values in the UNRATE column that indicates Unemployment rate with mean as it maintains the dataset's overall balance and avoids skewing results

```
In [25]: Unrate_Mean = df['UNRATE'].mean()
    print(Unrate_Mean)
    df['UNRATE'] = df['UNRATE'].fillna(Unrate_Mean)
```

4.827967687003499

Booking Cancellation Distribution


```
In [27]: import pandas as pd
         import numpy as np
         from sklearn.model_selection import train_test_split
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.preprocessing import LabelEncoder
         from sklearn.metrics import classification report, confusion matrix
         import matplotlib.pyplot as plt
         import seaborn as sns
         def prepare_data(df):
             # Create a copy to avoid modifying the original dataframe
             df_{model} = df.copy()
             # Drop columns that shouldn't be used for prediction
             columns_to_drop = ['reservation_status', 'reservation_status_date', 'MO_YR']
             df_model = df_model.drop(columns=columns_to_drop, errors='ignore')
             # Encode categorical variables
             le = LabelEncoder()
             for column in categorical_columns:
                  if column in df_model.columns:
                      df_model[column] = le.fit_transform(df_model[column].astype(str))
             return df model
         def train_random_forest(X, y):
             # Split the data
             X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random
             # Create and train the model
             rf = RandomForestClassifier(n_estimators=100, random_state=42)
             rf.fit(X_train, y_train)
             # Make predictions
             y_pred = rf.predict(X_test)
             return rf, X_train, X_test, y_train, y_test, y_pred
         def plot_feature_importance(rf, feature_names):
             # Get feature importance
             importances = rf.feature_importances_
             indices = np.argsort(importances)[::-1]
             # Plot the feature importances
             plt.figure(figsize=(12, 6))
             plt.title("Feature Importances for Hotel Booking Cancellation Prediction")
             plt.bar(range(20), importances[indices][:20])
             plt.xticks(range(20), [feature names[i] for i in indices][:20], rotation=45, ha
             plt.tight_layout()
             plt.show()
             # Print numerical values
             print("\nTop 20 Most Important Features:")
             for i in range(20):
                  print(f"{feature_names[indices[i]]}: {importances[indices[i]]:.4f}")
         def analyze_cancellations():
```

```
# rrepare tne aata
    df_model = prepare_data(df)
    # Separate features and target
    X = df_model.drop('is_canceled', axis=1)
    y = df_model['is_canceled']
    # Train the model and get predictions
    rf, X_train, X_test, y_train, y_test, y_pred = train_random_forest(X, y)
    # Print model performance
    print("Classification Report:")
    print(classification_report(y_test, y_pred))
    # Plot confusion matrix
    plt.figure(figsize=(8, 6))
    sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues'
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()
    # Plot feature importance
    plot_feature_importance(rf, X.columns)
    return rf, X, y
# Run the analysis
rf_model, X, y = analyze_cancellations()
Classification Report:
```

	precision	recall	f1-score	support
False	0.94	0.99	0.96	14907
True	0.98	0.90	0.93	8971
accuracy			0.95	23878
macro avg	0.96	0.94	0.95	23878
weighted avg	0.95	0.95	0.95	23878


```
Top 20 Most Important Features:
deposit_type: 0.1149
lead_time: 0.0934
arrival_date_week_number: 0.0837
country: 0.0817
adr: 0.0498
total_of_special_requests: 0.0485
arrival_date_month: 0.0446
agent: 0.0398
market_segment: 0.0360
arrival_date_day_of_month: 0.0340
previous_cancellations: 0.0299
DIS_INC: 0.0263
stays_in_week_nights: 0.0221
CPI_AVG: 0.0208
FUEL_PRCS: 0.0201
assigned_room_type: 0.0200
GDP: 0.0194
arrival_date_year: 0.0188
customer_type: 0.0183
required_car_parking_spaces: 0.0182
```

Customer Segmentation

Country of origin (top booking countries)

```
In [28]: def country_analysis(dataframe):
    # Count bookings by country
    country_counts = dataframe['country'].value_counts().head(10)

    plt.figure(figsize=(12,6))
    country_counts.plot(kind='bar')
    plt.title('Top 10 Booking Countries')
    plt.xlabel('Country')
    plt.ylabel('Number of Bookings')
    plt.show()

    return country_counts
    country_analysis(df)
```



```
country
Out[28]:
          PRT
                  49078
                  12129
          GBR
          FRA
                  10415
          ESP
                   8568
                   7287
          DEU
                   3766
          ITA
                   3375
          IRL
          BEL
                   2342
          BRA
                   2224
          NLD
                   2104
          Name: count, dtype: int64
```

Customer type

• There are 4 types of Customer: 1) Transient: Individual or small group travelers booking short stays that its mostly for business. 2) Transient Party: Similar to Transient but refers to a smaller group travelling together 3) Contract: Guests whos stays depending on a pre-negotiated agreements for example airline crews 4) Group: Larger groups of people booking for an event that its often multiple rooms and services

Customer Type Distribution

Out[29]: customer_type

Transient 89613
Transient-Party 25124
Contract 4076
Group 577
Name: count, dtype: int64

Repeat vs. new customers

C:\Users\salem\AppData\Local\Temp\ipykernel_32660\2356061341.py:4: FutureWarning:

The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

C:\Users\salem\AppData\Local\Temp\ipykernel_32660\4095704785.py:4: FutureWarning:

The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.


```
In [32]: df_family = df.copy()
df_family
```

Out[32]:		hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_nun
	0	Resort Hotel	False	342	2015	July	
	1	Resort Hotel	False	737	2015	July	
	2	Resort Hotel	False	7	2015	July	
	3	Resort Hotel	False	13	2015	July	
	4	Resort Hotel	False	14	2015	July	
	•••						
	119385	City Hotel	False	23	2017	August	
	119386	City Hotel	False	102	2017	August	
	119387	City Hotel	False	34	2017	August	
	119388	City Hotel	False	109	2017	August	
	119389	City Hotel	False	205	2017	August	

119390 rows × 43 columns

Family Composition Analysis

```
In [33]: def family_Composition(df_family):
    df_family["Total_Guests"] = df_family["adults"] + df_family["children"] + df_fa
    family_count = pd.cut(df_family['Total_Guests'],bins=[0,1,2,4],labels=['Single'
    family_distrbution = family_count.value_counts()
    plt.figure(figsize=(10,7))
    plt.pie(family_distrbution.values, labels= family_distrbution.index,autopct='%1
    plt.title('Family Composition Segments')
    plt.ylabel('')
    plt.tight_layout()
    plt.show()

    return family_distrbution

family_Composition(df_family)
```

Family Composition Segments

Out[33]: Total_Guests

Couple 82051 Single 22581 Family 14424

Name: count, dtype: int64

Market Segment distribution

```
In [34]: def market_segment_analysis(df):
    market_segment_dist = df['market_segment'].value_counts()
    market_segment_dist = market_segment_dist.drop("Undefined")

    plt.figure(figsize=(10,7))
    plt.pie(market_segment_dist.values, labels= market_segment_dist.index,autopct='
    plt.title('Market Segment Distribution')
    plt.ylabel('')
    plt.tight_layout()
    plt.show()
    return market_segment_dist

market_segment_analysis(df_family)
```

Market Segment Distribution


```
market_segment
Out[34]:
         Online TA
                          56477
         Offline TA/TO
                         24219
         Groups
                         19811
         Direct
                          12606
         Corporate
                           5295
         Complementary
                           743
                            237
         Aviation
         Name: count, dtype: int64
```

```
In [35]:
    def city_travelers_market_analysis(df_family):
        city_hotel = df_family[df_family['hotel']=='City Hotel']
        group_market_dist = city_hotel.groupby('market_segment')['Total_Guests'].sum().
        plt.figure(figsize=(8, 5))
        plt.bar(group_market_dist['market_segment'], group_market_dist['Total_Guests'],
        plt.title('Total Guests by Market Segment For City Hotels')
        plt.xlabel('Market Segment')
        plt.ylabel('Total Guests')
        plt.sticks(rotation=45)
        plt.tight_layout()
        plt.show()
        return group_market_dist
        city_travelers_market_analysis(df_family)
```

C:\Users\salem\AppData\Local\Temp\ipykernel_32660\3674355011.py:3: FutureWarning:

The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

market_segment	Total_Guests
Aviation	238.0
Complementary	851.0
Corporate	3689.0
Direct	12414.0
Groups	25110.0
Offline TA/TO	30117.0
Online TA	82054.0
Undefined	5.0
	Aviation Complementary Corporate Direct Groups Offline TA/TO Online TA

```
In [36]:
    def resort_travelers_market_analysis(df_family):
        Resort_hotel = df_family[df_family['hotel']=='Resort Hotel']
        group_market_dist = Resort_hotel.groupby('market_segment')['Total_Guests'].sum(

        plt.figure(figsize=(8, 5))
        plt.bar(group_market_dist['market_segment'], group_market_dist['Total_Guests'],
        plt.title('Total Guests by Market Segment For Resort Hotels')
        plt.xlabel('Market Segment')
        plt.ylabel('Total Guests')
        plt.ylabel('Total Guests')
        plt.sticks(rotation=45)
        plt.tight_layout()
        plt.show()
        return group_market_dist
        resort_travelers_market_analysis(df_family)
```

C:\Users\salem\AppData\Local\Temp\ipykernel 32660\1798386414.py:3: FutureWarning:

The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

Out[36]:		market_segment	Total_Guests
	0	Aviation	0.0
	1	Complementary	336.0
	2	Corporate	2925.0
	3	Direct	13768.0
	4	Groups	10559.0
	5	Offline TA/TO	14774.0
	6	Online TA	38148.0
	7	Undefined	0.0

Stay Duration Analysis

```
In [ ]: def calculate total stay nights(df):
            """Calculate total nights stayed per booking by adding a new column"""
            df['total_nights'] = df['stays_in_weekend_nights'] + df['stays_in_week_nights']
            return df
        def analyze stay duration(df):
            """Analyze various aspects of stay duration"""
            stats = {
                 'Average total nights': df['total_nights'].mean(),
                 'Median total nights': df['total_nights'].median(),
                 'Most common duration': df['total_nights'].mode().iloc[0],
                 'Max stay duration': df['total_nights'].max(),
                 'Min stay duration': df['total_nights'].min()
            print("\nStay Duration Statistics:")
            for metric, value in stats.items():
                print(f"{metric}: {value:.2f} days")
        def analyze_weekend_vs_weekday(df):
            """Analyze weekend vs weekday stay patterns"""
            # Calculate averages by hotel type
            hotel_stays = df.groupby('hotel').agg({
                 'stays_in_weekend_nights': 'mean',
                 'stays_in_week_nights': 'mean',
                'total nights': 'mean'
            }).round(2)
            print("\nAverage Stays by Hotel Type:")
            print(hotel stays)
            # Calculate weekend vs weekday ratio
            df['weekend ratio'] = df['stays in weekend nights'] / df['total nights']
            avg weekend ratio = df['weekend ratio'].mean()
            print(f"\nAverage proportion of weekend nights for both hotels: {avg_weekend_ra
        def analyze seasonal patterns(df):
            """Analyze stay duration patterns by season/month for each hotel type"""
            # Create month order for consistent sorting
            month_order = ['January', 'February', 'March', 'April', 'May', 'June',
                            'July', 'August', 'September', 'October', 'November', 'December'
            # Calculate average stay duration by month and hotel type
            monthly stays = df.groupby(['arrival date month', 'hotel'])['total nights'].mea
            monthly_stays = monthly_stays.reindex(month_order)
            # Calculate total nights stayed by month and hotel type
            monthly_total_stays = df.groupby(['arrival_date_month', 'hotel'])['total_nights']
            monthly_total_stays = monthly_total_stays.reindex(month_order)
            print("\nAverage Stay Duration by Month and Hotel Type (nights per booking):")
            print(monthly stays.round(2))
            print("\nTotal Nights Stayed by Month and Hotel Type:")
            print(monthly total stays.round(2))
```

```
total_nights_by_hotel = df.groupby('hotel')['total_nights'].sum()
            print("\nTotal Nights Stayed at Each Hotel:")
            print(total_nights_by_hotel)
            # Analyze patterns for City Hotel
            city_peak_month = monthly_stays['City Hotel'].idxmax()
            city low month = monthly stays['City Hotel'].idxmin()
            city_peak_value = monthly_stays['City Hotel'].max()
            city_low_value = monthly_stays['City Hotel'].min()
            # Analyze patterns for Resort Hotel
            resort_peak_month = monthly_stays['Resort Hotel'].idxmax()
            resort_low_month = monthly_stays['Resort Hotel'].idxmin()
            resort peak value = monthly stays['Resort Hotel'].max()
            resort_low_value = monthly_stays['Resort Hotel'].min()
            print("\nCity Hotel Seasonal Patterns:")
            print(f"Peak month: {city_peak_month}")
            print(f"- Average stay: {city_peak_value:.2f} nights per booking")
            print(f"- Total nights: {monthly_total_stays.loc[city_peak_month, 'City Hotel']
            print(f"Low month: {city_low_month}")
            print(f"- Average stay: {city low value:.2f} nights per booking")
            print(f"- Total nights: {monthly_total_stays.loc[city_low_month, 'City Hotel']:
            print("\nResort Hotel Seasonal Patterns:")
            print(f"Peak month: {resort peak month}")
            print(f"- Average stay: {resort peak value:.2f} nights per booking")
            print(f"- Total nights: {monthly_total_stays.loc[resort_peak_month, 'Resort Hot
            print(f"Low month: {resort_low_month}")
            print(f"- Average stay: {resort low value:.2f} nights per booking")
            print(f"- Total nights: {monthly_total_stays.loc[resort_low_month, 'Resort Hotel
            # Calculate and display year-round statistics
            hotel stats = df.groupby('hotel').agg({
                'total nights': ['mean', 'sum', 'count']
            hotel_stats.columns = ['Average Stay', 'Total Nights', 'Number of Bookings']
            print("\nYear-round Statistics by Hotel Type:")
            print(hotel_stats.round(2))
            # Calculate monthly share of total nights for each hotel
            print("\nMonthly Share of Total Nights (%):")
            monthly_share = monthly_total_stays.div(monthly_total_stays.sum()) * 100
            print(monthly_share.round(2))
In [ ]: # Calculate total nights for each booking
        df_copy = df.copy()
        df_copy = calculate_total_stay_nights(df_copy)
```

calculate total nights for each notel type

```
In []: # Calculate total nights for each booking
    df_copy = df.copy()
    df_copy = calculate_total_stay_nights(df_copy)
    # Run all analyses
    print("=== Hotel Stay Duration Analysis ===")
    analyze_stay_duration(df_copy)
    analyze_weekend_vs_weekday(df_copy)
    analyze_seasonal_patterns(df_copy)
# analyze_stay_distribution(df)
```

=== Hotel Stay Duration Analysis ===

Stay Duration Statistics:

Average total nights: 3.43 days Median total nights: 3.00 days Most common duration: 2.00 days Max stay duration: 69.00 days Min stay duration: 0.00 days

Average Stays by Hotel Type:

stays_in_weekend_nights stays_in_week_nights total_nights

hotel City Hotel 0.80 2.18 2.98 Resort Hotel 1.19 3.13 4.32

Average proportion of weekend nights for both hotels: 25.47%

Average Stay Duration by Month and Hotel Type (nights per booking):

City Hotel Resort Hotel arrival_date_month 3.01 2.91 January February 2.99 3.10 March 3.05 4.13 April 3.05 4.03 May 2.84 4.29 5.37 June 2.89 July 3.14 5.31 3.16 5.25 August September 2.80 5.06 October 0 2.75 3.94 November 2.97 3.58 December 3.20 3.25

Total Nights Stayed by Month and Hotel Type: City Hotel Resort Hotel arrival_date_month January 11233 6385 February 14825 9630 March 19719 13770 April 22789 14546 May 23367 15267 22778 June 16338 July 25400 24305 August 28391 25686 September 20692 15733 October 0 20885 14002 November 12940 8727 December 13237 8612

Total Nights Stayed at Each Hotel:

hotel

City Hotel 236256 173001 Resort Hotel

Name: total nights, dtype: int64

City Hotel Seasonal Patterns:

Peak month: December

- Average stay: 3.20 nights per booking

- Total nights: 13237 nights

```
Low month: October
        - Average stay: 2.75 nights per booking
        - Total nights: 20885 nights
        Resort Hotel Seasonal Patterns:
        Peak month: June
        - Average stay: 5.37 nights per booking
        - Total nights: 16338 nights
        Low month: January
        - Average stay: 2.91 nights per booking
        - Total nights: 6385 nights
        Year-round Statistics by Hotel Type:
                      Average Stay Total Nights Number of Bookings
        hotel
        City Hotel
                               2.98
                                           236256
                                                                79330
                                                                40060
        Resort Hotel
                               4.32
                                           173001
        Monthly Share of Total Nights (%):
        hotel
                            City Hotel Resort Hotel
        arrival_date_month
        January
                                   4.75
                                                 3.69
        February
                                   6.27
                                                 5.57
        March
                                   8.35
                                                 7.96
        April
                                  9.65
                                                 8.41
                                  9.89
                                                 8.82
        May
        June
                                  9.64
                                                 9.44
        July
                                  10.75
                                                14.05
        August
                                  12.02
                                                14.85
        September
                                  8.76
                                                 9.09
        October 0
                                  8.84
                                                 8.09
        November
                                   5.48
                                                 5.04
        December
                                                 4.98
                                   5.60
In [ ]: plt.figure(figsize=(15, 10))
        plt.subplot(2, 2, 1)
        weekend_weekday = df.groupby('hotel')[['stays_in_weekend_nights', 'stays_in_week_ni
        weekend_weekday.plot(kind='bar', ax=plt.gca())
        plt.title('Average Weekend vs Weekday Nights by Hotel Type')
        plt.xticks(rotation=45)
        plt.show()
```

Average Weekend vs Weekday Nights by Hotel Type

Distribution of stay durations by hotel type

```
In [ ]:
        def plot_stay_duration_distribution(df):
            """Plot the distribution of stay durations by hotel type"""
            plt.figure(figsize=(12, 6))
            sns.histplot(data=df,
                        x='total_nights',
                        hue='hotel',
                        multiple="stack",
                        bins=20, # Light salmon for Resort, Light blue for City
                         hue_order=['Resort Hotel', 'City Hotel'])
        def plot_stay_duration_boxplot(df):
            """Plot box plot of stay durations by hotel type"""
            plt.figure(figsize=(10, 6))
            sns.boxplot(data=df, x='hotel', y='total_nights')
            plt.title('Stay Duration Distribution by Hotel Type')
            plt.xlabel('Hotel Type')
            plt.ylabel('Number of Nights')
            plt.show()
        plot_stay_duration_distribution(df_copy)
        plot_stay_duration_boxplot(df_copy)
```


Analysis

Distribution Shape

The data reveals a highly right-skewed (positively skewed) distribution, with a strong concentration of short stays ranging from 0-3 nights. The distribution shows a long tail extending to approximately 20 nights, though there are very few stays that extend beyond this duration.

Pattern Recognition

Analysis shows a clear dominance of short-duration stays across the dataset. The data follows an exponential decay pattern in stay duration, with notable differences emerging between City and Resort hotels when examining the stacked color distributions.

Average stay duration by month and hotel type

```
def plot_monthly_average_stays(df):
In [ ]:
            """Plot average stay duration by month and hotel type"""
            plt.figure(figsize=(12, 6))
            month_order = ['January', 'February', 'March', 'April', 'May', 'June',
                            'July', 'August', 'September', 'October', 'November', 'December'
            monthly_avg = df.groupby(['arrival_date_month', 'hotel'])['total_nights'].mean(
            monthly_avg = monthly_avg.reindex(month_order)
            monthly_avg.plot(kind='bar')
            plt.title('Average Stay Duration by Month and Hotel Type')
            plt.xlabel('Month')
            plt.ylabel('Average Nights')
            plt.xticks(rotation=45)
            plt.legend(title='Hotel Type')
            plt.tight_layout()
            plt.show()
        plot_monthly_average_stays(df_copy)
```

<Figure size 1200x600 with 0 Axes>


```
In [ ]:
       def plot total nights by month(df):
            """Plot total nights stayed by month and hotel type"""
           plt.figure(figsize=(15, 10))
           month_order = ['January', 'February', 'March', 'April', 'May', 'June',
                          'July', 'August', 'September', 'October', 'November', 'December'
           total_nights_by_hotel = df.groupby(['arrival_date_month', 'hotel'])['total_nigh
           total_nights_by_hotel = total_nights_by_hotel.reindex(month_order)
           total_nights_by_hotel.plot(kind='line', marker='o')
           plt.title('Total Nights Stayed by Month and Hotel Type')
           plt.xlabel('Month')
           plt.ylabel('Total Nights')
           plt.xticks(rotation=45)
           plt.legend(title='Hotel Type')
           plt.grid(True)
           plt.tight layout()
           plt.show()
        def plot_monthly_average_stays(df):
           """Plot average stay duration by month and hotel type"""
           plt.figure(figsize=(12, 6))
           monthly_avg = df.groupby(['arrival_date_month', 'hotel'])['total_nights'].mean(
           monthly_avg = monthly_avg.reindex(month_order)
           monthly avg.plot(kind='bar')
           plt.title('Average Stay Duration by Month and Hotel Type')
           plt.xlabel('Month')
           plt.ylabel('Average Nights')
           plt.xticks(rotation=45)
           plt.legend(title='Hotel Type')
           plt.tight_layout()
           plt.show()
        plot_monthly_average_stays(df_copy)
        plot_total_nights_by_month(df_copy)
```

<Figure size 1200x600 with 0 Axes>

<Figure size 1500x1000 with 0 Axes>

Seasonal Patterns

Peak Season (June-August)

City Hotels

- Highest total nights (~28,000 nights in August)
- Consistent average stay duration (~3 nights)
- Strong business performance despite shorter stays

Resort Hotels

- Peak total nights (~25,000 in July)
- Longest average stays (~5.3 nights)
- Clear summer vacation pattern

Off-Peak Season (November-January)

City Hotels

- Lowest total nights (~13,000)
- Stable average duration (~3 nights)
- Maintains business consistency

Resort Hotels

- Minimum total nights (~7,000)
- Shorter average stays (~3 nights)
- Converges with city hotel patterns

Key Trends

Total Nights Pattern

1. Seasonal Variation

- Both types show strong seasonality
- · City hotels consistently higher volume
- Resort hotels show more dramatic fluctuation

2. Volume Leadership

- City hotels maintain higher total nights year-round
- Gap narrows significantly in summer months
- Maximum difference in winter months

Stay Duration Insights

1. City Hotels

- Remarkably stable duration (~2.8-3.2 nights)
- Minimal seasonal impact on stay length
- Suggests consistent business travel base

2. Resort Hotels

- High seasonal variation in duration
- Summer stays almost double winter stays
- Clear leisure travel pattern

Business Implications

Revenue Optimization

1. City Hotels

- Focus on volume in peak seasons
- Maintain consistent pricing strategy
- Target business travelers year-round

2. Resort Hotels

- Aggressive summer premium pricing
- Winter package deals to increase stays
- Focus on extending shoulder season stays

Strategic Recommendations

- 1. Target shoulder seasons for growth
- 2. Develop season-specific pricing strategies
- 3. Optimize operational efficiency based on stay patterns
- 4. Create targeted marketing campaigns by season

Comparison of weekend vs weekday stays

```
In [ ]:
        def plot_cancellation_rates_by_hotel(df):
            Create a single plot showing cancellation rates by hotel type and stay type
            Parameters:
            df (pandas.DataFrame): DataFrame containing hotel booking data
            # Initialize figure
            plt.figure(figsize=(12, 6))
            # Calculate cancellation rates for each hotel type
            hotel_cancellation_rates = {}
            for hotel_type in df['hotel'].unique():
                hotel_data = df[df['hotel'] == hotel_type]
                weekend_stays = hotel_data[hotel_data['stays_in_weekend_nights'] > 0]
                weekday_stays = hotel_data[hotel_data['stays_in_week_nights'] > 0]
                hotel_cancellation_rates[hotel_type] = {
                     'Weekend': (weekend_stays['is_canceled'].mean() * 100),
                     'Weekday': (weekday_stays['is_canceled'].mean() * 100)
                }
            # Set up bar positions
            x = np.arange(2)
            width = 0.35
            # Create bars
            plt.bar(x - width/2,
                     [hotel_cancellation_rates['City Hotel']['Weekend'],
                     hotel_cancellation_rates['City Hotel']['Weekday']],
                    label='City Hotel',
                    color='skyblue')
            plt.bar(x + width/2,
                     [hotel_cancellation_rates['Resort Hotel']['Weekend'],
                     hotel_cancellation_rates['Resort Hotel']['Weekday']],
                    width,
                    label='Resort Hotel',
                    color='orange')
            # Customize plot
            plt.ylabel('Cancellation Rate (%)')
            plt.title('Cancellation Rates by Hotel and Stay Type')
            plt.xticks(x, ['Weekend Stays', 'Weekday Stays'])
            plt.legend()
            # Add percentage labels on bars
            for i, hotel_type in enumerate(['City Hotel', 'Resort Hotel']):
                for j, stay_type in enumerate(['Weekend', 'Weekday']):
                    value = hotel_cancellation_rates[hotel_type][stay_type]
                    plt.text(j + (width if i else -width)/2, value + 1,
                             f'{value:.1f}%',
                             ha='center')
            plt.tight_layout()
```

```
# Return statistics
    stats = {
        'Cancellation Rates': hotel_cancellation_rates,
        'Total Bookings': {
            'City Hotel': {
                'Weekend': len(df[(df['hotel'] == 'City Hotel') &
                                 (df['stays_in_weekend_nights'] > 0)]),
                'Weekday': len(df[(df['hotel'] == 'City Hotel') &
                                  (df['stays_in_week_nights'] > 0)])
            },
            'Resort Hotel': {
                'Weekend': len(df[(df['hotel'] == 'Resort Hotel') &
                                 (df['stays_in_weekend_nights'] > 0)]),
                'Weekday': len(df[(df['hotel'] == 'Resort Hotel') &
                                  (df['stays_in_week_nights'] > 0)])
            }
        }
    }
    return stats
# Example usage:
stats = plot_cancellation_rates_by_hotel(df)
plt.show()
# Print summary
for hotel in ['City Hotel', 'Resort Hotel']:
    print(f"\n{hotel}:")
    print(f"Weekend Cancellation Rate: {stats['Cancellation Rates'][hotel]['Weekend
    print(f"Weekday Cancellation Rate: {stats['Cancellation Rates'][hotel]['Weekday
    print(f"Total Weekend Bookings: {stats['Total Bookings'][hotel]['Weekend']}")
    print(f"Total Weekday Bookings: {stats['Total Bookings'][hotel]['Weekday']}")
                               Cancellation Rates by Hotel and Stay Type
```


City Hotel:

Weekend Cancellation Rate: 40.6% Weekday Cancellation Rate: 42.5% Total Weekend Bookings: 41513 Total Weekday Bookings: 74367

Resort Hotel:

Weekend Cancellation Rate: 30.4% Weekday Cancellation Rate: 28.6% Total Weekend Bookings: 25879 Total Weekday Bookings: 37378

```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        def plot_simple_cancellation_rates(df):
            Create a simple bar plot showing cancellation rates by stay type
            Parameters:
            df (pandas.DataFrame): DataFrame containing hotel booking data
            # Calculate cancellation rates
            weekend_stays = df[df['stays_in_weekend_nights'] > 0]
            weekday_stays = df[df['stays_in_week_nights'] > 0]
            cancellation rates = {
                 'Weekend': (weekend_stays['is_canceled'].mean() * 100),
                 'Weekday': (weekday_stays['is_canceled'].mean() * 100)
            }
            # Create plot
            plt.figure(figsize=(10, 6))
            bars = plt.bar(['Weekend Stays', 'Weekday Stays'],
                           [cancellation_rates['Weekend'], cancellation_rates['Weekday']],
                           color=['lightblue', 'orange'])
            # Customize plot
            plt.ylabel('Cancellation Rate (%)')
            plt.title('Cancellation Rates by Stay Type')
            # Add percentage labels on top of bars
            for bar in bars:
                height = bar.get_height()
                plt.text(bar.get_x() + bar.get_width()/2, height + 0.5,
                        f'{height:.1f}%',
                        ha='center', va='bottom')
            # Clean up layout
            plt.tight_layout()
            return cancellation_rates
        def analyze_cancellations_by_hotel_and_day(df):
            Analyze and visualize booking cancellations by hotel type for weekend vs weekda
            Parameters:
            df (pandas.DataFrame): DataFrame containing hotel booking data
            Returns:
            tuple: (figure, cancellation_stats)
            # Calculate total nights for each booking
            df['total_nights'] = df['stays_in_weekend_nights'] + df['stays_in_week_nights']
            # Create statistics dictionary for each hotel type
            stats = {}
```

```
tor note1_type in at[ note1 ].unique():
    hotel_data = df[df['hotel'] == hotel_type]
    cancelled = hotel data[hotel data['is canceled'] == True]
    not_cancelled = hotel_data[hotel_data['is_canceled'] == False]
    stats[hotel type] = {
        'Cancelled': {
            'Weekend': cancelled['stays_in_weekend_nights'].mean(),
            'Weekday': cancelled['stays_in_week_nights'].mean(),
            'Total': len(cancelled)
        },
        'Not Cancelled': {
            'Weekend': not_cancelled['stays_in_weekend_nights'].mean(),
            'Weekday': not cancelled['stays in week nights'].mean(),
            'Total': len(not_cancelled)
        }
    }
# Create visualization with subplots
fig = plt.figure(figsize=(20, 10))
gs = fig.add_gridspec(2, 2)
# Plot 1: Average nights comparison for City Hotel
ax1 = fig.add_subplot(gs[0, 0])
width = 0.35
x = np.arange(2)
ax1.bar(x - width/2,
        [stats['City Hotel']['Cancelled']['Weekend'],
         stats['City Hotel']['Cancelled']['Weekday']],
        width, label='Cancelled', color='red', alpha=0.6)
ax1.bar(x + width/2,
        [stats['City Hotel']['Not Cancelled']['Weekend'],
         stats['City Hotel']['Not Cancelled']['Weekday']],
        width, label='Not Cancelled', color='green', alpha=0.6)
ax1.set_xticks(x)
ax1.set_xticklabels(['Weekend Nights', 'Weekday Nights'])
ax1.set ylabel('Average Nights')
ax1.set title('City Hotel: Average Stay Duration')
ax1.legend()
# Plot 2: Average nights comparison for Resort Hotel
ax2 = fig.add_subplot(gs[0, 1])
ax2.bar(x - width/2,
        [stats['Resort Hotel']['Cancelled']['Weekend'],
         stats['Resort Hotel']['Cancelled']['Weekday']],
        width, label='Cancelled', color='red', alpha=0.6)
ax2.bar(x + width/2,
        [stats['Resort Hotel']['Not Cancelled']['Weekend'],
         stats['Resort Hotel']['Not Cancelled']['Weekday']],
        width, label='Not Cancelled', color='green', alpha=0.6)
ax2.set_xticks(x)
ax2.set_xticklabels(['Weekend Nights', 'Weekday Nights'])
ax2.set_ylabel('Average Nights')
ax2.set title('Resort Hotel: Average Stay Duration')
27. 124244/)
```

```
axz. regenu()
# Plot 3: Cancellation rates comparison
ax3 = fig.add subplot(gs[1, :])
cancellation_rates = {}
for hotel_type in ['City Hotel', 'Resort Hotel']:
    hotel_data = df[df['hotel'] == hotel_type]
    weekend stays = hotel data[hotel data['stays in weekend nights'] > 0]
    weekday_stays = hotel_data[hotel_data['stays_in_week_nights'] > 0]
    cancellation_rates[hotel_type] = {
        'Weekend': (weekend_stays['is_canceled'].mean() * 100),
        'Weekday': (weekday_stays['is_canceled'].mean() * 100)
    }
# Create grouped bar chart for cancellation rates
x = np.arange(2)
width = 0.35
ax3.bar(x - width/2,
        [cancellation_rates['City Hotel']['Weekend'],
         cancellation_rates['City Hotel']['Weekday']],
        width, label='City Hotel', color='skyblue')
ax3.bar(x + width/2)
        [cancellation_rates['Resort Hotel']['Weekend'],
         cancellation_rates['Resort Hotel']['Weekday']],
        width, label='Resort Hotel', color='orange')
ax3.set_xticks(x)
ax3.set_xticklabels(['Weekend Stays', 'Weekday Stays'])
ax3.set ylabel('Cancellation Rate (%)')
ax3.set_title('Cancellation Rates by Hotel Type and Stay Type')
ax3.legend()
# Add percentage labels
for i, hotel_type in enumerate(['City Hotel', 'Resort Hotel']):
    for j, stay_type in enumerate(['Weekend', 'Weekday']):
        value = cancellation_rates[hotel_type][stay_type]
        ax3.text(j + (width if i else -width)/2, value + 1,
                f'{value:.1f}%', ha='center')
plt.tight_layout()
# Compile detailed statistics
detailed_stats = {
    'Average Nights': stats,
    'Cancellation Rates': cancellation_rates,
    'Total Bookings': {
        'City Hotel': len(df[df['hotel'] == 'City Hotel']),
        'Resort Hotel': len(df[df['hotel'] == 'Resort Hotel'])
    }
return fig, detailed_stats
```

```
In [ ]: def plot_weekend_weekday_comparison(df):
    """Plot comparison of weekend vs weekday stays"""
    plt.figure(figsize=(10, 6))
```

```
weekend_weekday = df.groupby('hotel').agg({
        'stays_in_weekend_nights': 'mean',
        'stays_in_week_nights': 'mean'
    })
    weekend_weekday.plot(kind='bar')
    plt.title('Average Weekend vs Weekday Nights by Hotel Type')
    plt.xlabel('Hotel Type')
    plt.ylabel('Average Nights')
    plt.legend(['Weekend Nights', 'Weekday Nights'])
    plt.tight_layout()
    plt.show()
plot_weekend_weekday_comparison(df_copy)
fig, stats = plot_simple_cancellation_rates(df_copy)
plt.show()
fig, stats = analyze_cancellations_by_hotel_and_day(df_copy)
plt.show()
print("\nCancellation Statistics by Hotel Type:")
for hotel_type in ['City Hotel', 'Resort Hotel']:
    print(f"\n{hotel_type}:")
    print(f"Weekend Stays Cancellation Rate: {stats['Cancellation Rates'][hotel_typ
    print(f"Weekday Stays Cancellation Rate: {stats['Cancellation Rates'][hotel_typ
    print(f"Total Bookings: {stats['Total Bookings'][hotel_type]}")
                                                               Resort
```

Hotel Type

Cancellation Statistics by Hotel Type:

City Hotel:

Weekend Stays Cancellation Rate: 40.6% Weekday Stays Cancellation Rate: 42.5%

Total Bookings: 79330

Resort Hotel:

Weekend Stays Cancellation Rate: 30.4% Weekday Stays Cancellation Rate: 28.6%

Total Bookings: 40060

Hotel stay analysis for weekdays vs weekends

City Hotels

- Lower average stay duration overall
- Weekend nights: ~0.8 nights average
- Weekday nights: ~2.2 nights average
- Clear preference for weekday stays (2.75x higher than weekends)

Resort Hotels

- Higher average stay duration compared to city hotels
- Weekend nights: ~1.2 nights average
- Weekday nights: ~3.1 nights average
- Strongest weekday preference (2.6x higher than weekends)

Cancellation Analysis

Overall Patterns

- Weekday stays show slightly higher cancellation rates (37.9%) compared to weekend stays (36.7%)
- Minimal difference (~1.2%) between weekend and weekday cancellation rates
- Both types show significant cancellation rates >35%

Hotel-Specific Cancellation Patterns

1. City Hotels

- Weekend cancellation rate: 40.6%
- Weekday cancellation rate: 42.5%
- Consistently higher cancellation rates than resort hotels
- · Higher volatility between cancelled and non-cancelled bookings

2. Resort Hotels

- Weekend cancellation rate: 30.4%
- Weekday cancellation rate: 28.6%
- More stable cancellation pattern
- Generally lower cancellation rates (~12% lower than city hotels)

Key Business Insights

1. Booking Stability

- Resort hotels demonstrate more stable booking patterns
- City hotels face higher cancellation risk

· Weekend bookings slightly more reliable overall

2. Duration Strategy

- · Both hotel types should focus on extending weekend stays
- Resort hotels have better success with longer stays
- Weekday stays dominate in terms of duration

3. Risk Management

- City hotels should implement stronger cancellation policies
- Focus on converting weekend bookings to longer stays
- Consider different deposit requirements based on hotel type and stay duration

Recommendations

1. For City Hotels

- Implement stricter cancellation policies for weekday bookings
- Develop weekend packages to increase duration
- Consider loyalty programs to reduce cancellation rates

2. For Resort Hotels

- Focus on maintaining lower cancellation rates
- Develop extended stay promotions
- Leverage successful weekday booking patterns

3. General Strategies

- Differentiated pricing for weekend vs weekday stays
- Length-of-stay incentives
- targeted marketing based on stay patterns

Stay duration by Market segment, Customer types and room Types

```
In [ ]: def plot_stay_duration_by_market_segment(df):
            """Plot stay duration by market segment"""
            plt.figure(figsize=(12, 6))
            sns.boxplot(data=df, x='market_segment', y='total_nights', hue='hotel')
            plt.title('Stay Duration by Market Segment')
            plt.xlabel('Market Segment')
            plt.ylabel('Number of Nights')
            plt.xticks(rotation=45)
            plt.tight_layout()
            plt.show()
        def plot_stay_duration_by_customer_type(df):
            """Plot stay duration by customer type"""
            plt.figure(figsize=(10, 6))
            sns.boxplot(data=df, x='customer_type', y='total_nights', hue='hotel')
            plt.title('Stay Duration by Customer Type')
            plt.xlabel('Customer Type')
            plt.ylabel('Number of Nights')
            plt.tight layout()
            plt.show()
        def plot_stay_duration_by_room_type(df):
            """Plot stay duration by room type"""
            plt.figure(figsize=(12, 6))
            sns.boxplot(data=df, x='assigned_room_type', y='total_nights', hue='hotel')
            plt.title('Stay Duration by Room Type')
            plt.xlabel('Room Type')
            plt.ylabel('Number of Nights')
            plt.tight_layout()
            plt.show()
In [ ]: plot_stay_duration_by_market_segment(df_copy)
        plot_stay_duration_by_customer_type(df_copy)
        plot_stay_duration_by_room_type(df_copy)
```


Customer Type

Comprehensive Hotel Stay Pattern Analysis

Market Segment Analysis

Online and Offline Travel Agencies (TA)

- Highest median stay duration for both hotel types
- Resort hotels show greater variance in stay length
- Online TA bookings typically longer than offline
- More outliers indicating extended stays (up to 60 nights)

Corporate and Direct Bookings

- More consistent stay durations
- City hotels show tighter distribution
- Direct bookings slightly longer than corporate
- · Fewer extreme outliers

Aviation and Complementary

- Shortest average stays
- · Limited variance in duration
- Minimal difference between hotel types
- Few outliers

Customer Type Analysis

Contract Customers

- Resort hotels show significantly longer stays
- Highest median duration among all customer types
- · Large variance in stay length
- Median stay ~8 nights for resort hotels

Transient Customers

- Most common customer type
- Similar patterns between city and resort hotels
- More outliers in resort hotels
- Median stay 2-3 nights

Group and Transient-Party

- Moderate stay durations
- Resort hotels show slightly longer stays
- More consistent natterns than contract customers

56 of 73

- more consistent patterns than contract castomers
- Less variance in stay duration

Room Type Patterns

Type A and D Rooms

- Most popular room types
- Highest number of bookings
- Greater variance in stay duration
- More outliers in both hotel types

Premium Rooms (B, C, F)

- Shorter average stays
- More consistent duration patterns
- · Fewer extreme outliers
- Similar patterns across hotel types

Specialized Rooms (H, I, K)

- · Limited availability in city hotels
- Resort-specific room types show unique patterns
- More variable stay durations
- Higher proportion of extended stays

Business Implications

Marketing Strategy

1. Target Segmentation

- Focus on Online TA for longer stays
- Develop corporate packages for consistent occupancy
- Special rates for contract customers in resort hotels

2. Room Allocation

- Optimize Type A and D room inventory
- Consider converting less popular room types
- Balance premium room availability with demand

Operational Planning

1. Resource Management

- Plan staffing based on customer type mix
- Adjust housekeeping schedules for varying durations
- Ontimize room turnover processes

57 of 73

- Optimize room turnover processes

2. Revenue Optimization

- Dynamic pricing by market segment
- Length-of-stay incentives for preferred segments
- Premium pricing for high-demand room types

Cancelation Analysis

1) Cancelation by Hotel type

```
# Calculate the total counts for each hotel type
hotel_counts = df.groupby(['hotel', 'is_canceled']).size().unstack(fill_value=0)
hotel_totals = hotel_counts.sum(axis=1)
# Create two pie charts for Resort Hotel and City Hotel
fig, axes = plt.subplots(1, 2, figsize=(18, 8))
# Pie chart for Resort Hotel
resort data = hotel counts.loc['Resort Hotel']
axes[0].pie(
    resort_data,
    labels=[f"Not Canceled ({resort_data[0]})", f"Canceled ({resort_data[1]})"],
    autopct=lambda p: f"{p:.1f}%",
    startangle=90,
    colors=sns.color_palette("pastel"))
axes[0].set_title(f"Cancelation rates in Resort Hotel (Total: {hotel_totals['Resort
# Pie chart for City Hotel
city_data = hotel_counts.loc['City Hotel']
axes[1].pie(
    city_data,
    labels=[f"Not Canceled ({city_data[0]})", f"Canceled ({city_data[1]})"],
    autopct=lambda p: f"{p:.1f}%",
    startangle=90,
    colors=sns.color_palette("pastel"))
axes[1].set_title(f"Cancelation rates in City Hotel (Total: {hotel_totals['City Hot
plt.tight_layout()
plt.show()
```


2) Cancelation by Month

```
In [ ]:
        # Order months
        months_order = ["January", "February", "March", "April", "May", "June",
                        "July", "August", "September", "October", "November", "December"]
        # Group data by month and cancellation status
        monthly_data = df.groupby(['arrival_date_month', 'is_canceled']).size().unstack(fil
        # Normalize data to percentages
        monthly_percent = monthly_data.div(monthly_data.sum(axis=1), axis=0) * 100
        # Plot a stacked bar chart
        plt.figure(figsize=(14, 8))
        monthly_data.plot(kind='bar', stacked=True, width=0.8, color=['#6baed6', '#fd8d3c']
        # Adding labels and title
        plt.title("Total Reservations Categorized by Cancellation Status through months", f
        plt.xlabel("Month", fontsize=14)
        plt.ylabel("Number of Reservations", fontsize=14)
        plt.xticks(rotation=45, fontsize=12)
        plt.legend(["Not Canceled", "Canceled"], title="Booking Status", fontsize=12)
        # Add percentage labels on the bars
        for i, (index, row) in enumerate(monthly_percent.iterrows()):
            for j, value in enumerate(row):
                if value > 0: # Avoid plotting percentages for 0
                    plt.text(
                        i,
                        monthly_data.iloc[i].cumsum()[j] - (monthly_data.iloc[i, j] / 2),
                        f"{value:.1f}%",
                        ha="center",
                        va="center"
                        color="white",
                        fontsize=10
                    )
        plt.grid(axis='y', linestyle='--', alpha=0.7)
        plt.tight_layout()
        plt.show()
```

<Figure size 1400x800 with 0 Axes>

3) Cancelation by Lead Time

```
In [ ]: # Define the bins for lead time
        bins = 24
        bin_edges = np.histogram_bin_edges(df['lead_time'], bins=bins)
        # Calculate the histogram counts for each category
        hist_data = pd.DataFrame({
             'Not Canceled': np.histogram(df[df['is_canceled'] == 0]['lead_time'], bins=bin_
            'Canceled': np.histogram(df[df['is_canceled'] == 1]['lead_time'], bins=bin_edge
        }, index=pd.IntervalIndex.from_breaks(bin_edges, closed='left'))
        # Normalize to percentages
        hist_percent = hist_data.div(hist_data.sum(axis=1), axis=0) * 100
        # Filter out bins with fewer than 1000 total data points
        valid bins = hist data.sum(axis=1) >= 1000
        filtered_hist_data = hist_data[valid_bins]
        filtered hist percent = hist percent[valid bins]
        # Plot the histogram
        plt.figure(figsize=(12, 6))
        ax = filtered_hist_data.plot(kind='bar', stacked=True, color=['#6baed6', '#fd8d3c']
        # Add percentage labels for bins with sufficient data
        for i, (index, row) in enumerate(filtered_hist_percent.iterrows()):
            for j, value in enumerate(row):
                if value > 0: # Avoid plotting percentages for 0
                    plt.text(
                        i,
                        filtered hist data.iloc[i].cumsum()[j] - (filtered hist data.iloc[i
                        f"{value:.1f}%",
                        ha="center",
                        va="center"
                        color="white",
                        fontsize=8 # Smaller font size
                     )
        # Customize plot
        plt.title("Cancellation and non-Cancelation rates by Lead Time", fontsize=14)
        plt.xlabel("Lead Time (Days)", fontsize=12)
        plt.ylabel("Frequency", fontsize=12)
        plt.legend(["Not Canceled", "Canceled"], title="Booking Status", fontsize=12)
        plt.xticks(
            ticks=range(len(filtered hist data)),
            labels=[f"{int(interval.left)}-{int(interval.right)}" for interval in filtered_
            rotation=45
        plt.grid(axis='y', linestyle='--', alpha=0.7)
        plt.tight_layout()
        plt.show()
```

<Figure size 1200x600 with 0 Axes>


```
In [ ]: # Define the bins for lead time
        bins = 24
        bin_edges = np.histogram_bin_edges(df['lead_time'], bins=bins)
        # Calculate the histogram counts for each category
        hist data = pd.DataFrame({
             'Not Canceled': np.histogram(df[df['is canceled'] == 0]['lead time'], bins=bin
            'Canceled': np.histogram(df[df['is_canceled'] == 1]['lead_time'], bins=bin_edge
        }, index=pd.IntervalIndex.from_breaks(bin_edges, closed='left'))
        # Normalize to percentages
        hist_percent = hist_data.div(hist_data.sum(axis=1), axis=0) * 100
        # Filter out bins with fewer than 1000 total data points
        valid bins = hist data.sum(axis=1) >= 1000
        filtered_hist_percent = hist_percent[valid_bins]
        # Round the bin edges to remove unnecessary decimals
        rounded_bins = [f"{int(bin.left)}-{int(bin.right)}" for bin in filtered_hist_percen
        # Plot the line chart
        plt.figure(figsize=(12, 6))
        # Plot each category as a line
        plt.plot(rounded bins, filtered hist percent['Not Canceled'], label="Not Canceled",
        plt.plot(rounded_bins, filtered_hist_percent['Canceled'], label="Canceled", color='
        # Add percentage labels on the lines
        for i, (index, row) in enumerate(filtered hist percent.iterrows()):
            plt.text(i, row['Not Canceled'] + 2, f"{row['Not Canceled']:.1f}%", ha="center"
            plt.text(i, row['Canceled'] + 2, f"{row['Canceled']:.1f}%", ha="center", va="bo
        # Customize plot
        plt.title("Cancellation and non-Cancelation percentages by Lead Time", fontsize=14)
        plt.xlabel("Lead Time (Days)", fontsize=12)
        plt.ylabel("Percentage (%)", fontsize=12)
        plt.xticks(rotation=45)
        plt.legend(title="Booking Status", fontsize=12)
        plt.grid(axis='y', linestyle='--', alpha=0.7)
        plt.tight_layout()
        plt.show()
```


4) Cancelation by Market Segment

Cancellation Rates by Market Segment


```
# Group by market segment and cancellation status, then calculate the counts
market segment cancellation = df.groupby(['market segment', 'is canceled']).size().
# Exclude the 'undefined' market segment if it exists
market_segment_cancellation = market_segment_cancellation[market_segment_cancellati
# Prepare the figure for a 2x4 grid of pie charts
fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(20, 10))
# Flatten axes to make indexing easier
axes = axes.flatten()
# Loop through each market segment and plot a pie chart
for i, (segment, row) in enumerate(market_segment_cancellation.iterrows()):
    total = row.sum() # Total number of reservations in this market segment
    canceled_count = row[1] # Number of canceled reservations
    not canceled count = row[0] # Number of non-canceled reservations
    # Create the pie chart for each market segment
    axes[i].pie([not_canceled_count, canceled_count],
                labels=["Not Canceled", "Canceled"],
                autopct='%1.1f%%',
                startangle=90,
                colors=['#6baed6', '#fd8d3c'],
                wedgeprops={'edgecolor': 'black'})
    # Set title for each pie chart
    axes[i].set_title(f"{segment} (Total: {total})", fontsize=14)
# Remove empty subplots (if any)
for j in range(i + 1, len(axes)):
    axes[j].axis('off')
# Set the title for the entire grid
fig.suptitle("Cancellation Distribution by Market Segment", fontsize=16)
# Adjust layout to avoid overlap
plt.tight layout()
plt.subplots_adjust(top=0.9) # Adjust the top to make space for the figure title
plt.show()
```


5) Cancelation by Distribution channel

```
# Group by distribution channel and cancellation status, then calculate the counts
distribution channel cancellation = df.groupby(['distribution channel', 'is cancele
# Exclude the 'Undefined' distribution channel if it exists
distribution_channel_cancellation = distribution_channel_cancellation[distribution_
# Prepare the figure for a 1x4 grid of pie charts
fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(20, 6))
# Flatten axes to make indexing easier
axes = axes.flatten()
# Loop through each distribution channel and plot a pie chart
for i, (channel, row) in enumerate(distribution_channel_cancellation.iterrows()):
    total = row.sum() # Total number of reservations in this distribution channel
    canceled_count = row[1] # Number of canceled reservations
    not canceled count = row[0] # Number of non-canceled reservations
    # Create the pie chart for each distribution channel
    axes[i].pie([not_canceled_count, canceled_count],
                labels=["Not Canceled", "Canceled"],
                autopct='%1.1f%%',
                startangle=90,
                colors=['#6baed6', '#fd8d3c'],
                wedgeprops={'edgecolor': 'black'})
    # Set title for each pie chart
    axes[i].set_title(f"{channel} (Total: {total})", fontsize=14)
# Remove empty subplots (if any)
for j in range(i + 1, len(axes)):
    axes[j].axis('off')
# Set the title for the entire grid
fig.suptitle("Cancellation Distribution by Distribution Channel", fontsize=16)
# Adjust layout to avoid overlap
plt.tight layout()
plt.subplots_adjust(top=0.9) # Adjust the top to make space for the figure title
plt.show()
```


6) Cancelation by Customer type

```
# Group by customer type and cancellation status, then calculate the counts
customer_type_cancellation = df.groupby(['customer_type', 'is_canceled']).size().un
# Prepare the figure for a 1x4 grid of pie charts
fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(20, 6))
# Flatten axes to make indexing easier
axes = axes.flatten()
# Loop through each customer type and plot a pie chart
for i, (customer, row) in enumerate(customer_type_cancellation.iterrows()):
    total = row.sum() # Total number of reservations for this customer type
    canceled_count = row[1] # Number of canceled reservations
    not_canceled_count = row[0] # Number of non-canceled reservations
    # Create the pie chart for each customer type
    axes[i].pie([not_canceled_count, canceled_count],
                labels=["Not Canceled", "Canceled"],
                autopct='%1.1f%%',
                startangle=90,
                colors=['#6baed6', '#fd8d3c'],
                wedgeprops={'edgecolor': 'black'})
    # Set title for each pie chart
    axes[i].set title(f"{customer} (Total: {total})", fontsize=14)
# Remove empty subplots (if any)
for j in range(i + 1, len(axes)):
    axes[j].axis('off')
# Set the title for the entire grid
fig.suptitle("Cancellation Distribution by Customer Type", fontsize=16)
# Adjust layout to avoid overlap
plt.tight_layout()
plt.subplots_adjust(top=0.9) # Adjust the top to make space for the figure title
plt.show()
```


7) Cancelation by Room type

```
# Group by reserved room type and cancellation status, then calculate the counts
reserved room type cancellation = df.groupby(['reserved room type', 'is canceled'])
# Prepare the figure for a 2x5 grid of pie charts
fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(20, 12))
# Flatten axes to make indexing easier
axes = axes.flatten()
# Loop through each reserved room type and plot a pie chart
for i, (room_type, row) in enumerate(reserved_room_type_cancellation.iterrows()):
    total = row.sum() # Total number of reservations for this room type
    canceled_count = row[1] # Number of canceled reservations
    not_canceled_count = row[0] # Number of non-canceled reservations
    # Create the pie chart for each reserved room type
    axes[i].pie([not_canceled_count, canceled_count],
                labels=["Not Canceled", "Canceled"],
                autopct='%1.1f%%',
                startangle=90,
                colors=['#6baed6', '#fd8d3c'],
                wedgeprops={'edgecolor': 'black'})
    # Set title for each pie chart
    axes[i].set_title(f"{room_type} (Total: {total})", fontsize=12)
# Remove empty subplots (if any)
for j in range(i + 1, len(axes)):
    axes[j].axis('off')
# Set the title for the entire grid
fig.suptitle("Cancellation Distribution by Reserved Room Type", fontsize=16)
# Adjust layout to avoid overlap
plt.tight_layout()
plt.subplots_adjust(top=1) # Adjust the top to make space for the figure title
plt.show()
```

Cancellation Distribution by Reserved Room Type

8) Cancelation by Deposit type

Distribution of Deposit Types


```
# Group by deposit type and cancellation status, then calculate the counts
deposit type cancellation = df.groupby(['deposit type', 'is canceled']).size().unst
# Prepare the figure for a 1x3 grid of pie charts
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))
# Flatten axes to make indexing easier
axes = axes.flatten()
# Loop through each deposit type and plot a pie chart
for i, (deposit, row) in enumerate(deposit_type_cancellation.iterrows()):
    total = row.sum() # Total number of reservations for this deposit type
    canceled_count = row[1] # Number of canceled reservations
    not_canceled_count = row[0] # Number of non-canceled reservations
    # Create the pie chart for each deposit type
    axes[i].pie([not_canceled_count, canceled_count],
                labels=["Not Canceled", "Canceled"],
                autopct='%1.1f%%',
                startangle=90,
                colors=['#6baed6', '#fd8d3c'],
                wedgeprops={'edgecolor': 'black'})
    # Set title for each pie chart
    axes[i].set title(f"{deposit} (Total: {total})", fontsize=12)
# Remove empty subplots (if any)
for j in range(i + 1, len(axes)):
    axes[j].axis('off')
# Set the title for the entire grid
fig.suptitle("Cancellation Distribution by Deposit Type", fontsize=16)
# Adjust layout to avoid overlap
plt.tight_layout()
plt.subplots_adjust(top=0.9) # Adjust the top to make space for the figure title
plt.show()
```

