BÀI 2. HAI ĐƯỜNG THẮNG SONG SONG

- CHƯƠNG 4. QUAN HỆ SONG SONG
- | FanPage: Nguyễn Bảo Vương

PHẦN B. BÀI TẬP TỰ LUẬN (PHÂN DẠNG)

DANG 1. CHỨNG MINH HAI ĐƯỜNG THẮNG SONG SONG

1. Tính chất đường trung bình

M, N là trung điểm của AB, AC. Khi đó $MN//=\frac{1}{2}BC$.

2. Định lý Ta-lét

$$MN//BC \Rightarrow \frac{AM}{AB} = \frac{AN}{AC}$$
.

3. Tính chất cạnh đối của hình bình hành

Hai phương pháp để chứng minh tứ giác là hình bình hành:

- *) Chứng minh: $\begin{cases} AB//CD \\ AB = CD \end{cases}$
- *) Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Câu 1. (SGK-CTST 11- Tập 1) Mô tả vị trí giữa các cặp đường thẳng a và b,b và c,c và d có trong hình bên.

Lời giải

- 2 đường thẳng a và b nằm chéo nhau
- 2 đường thẳng b và c song song với nhau
- 2 đường thẳng c và d nằm chéo nhau

Câu 2. (SGK-CTST 11- Tập 1) Chỉ ra các đường thẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về các đường thẳng song song trong thực tế.

Lời giải

Hình a: Các dây điện song song với nhau

Hình b: Các mép của viên gạch lát song song với nhau

Hình c: Các mép của bậc thang song với nhau

Hình d: Các mép của phím đàn song song với nhau

Hình e: Các mép của từng ngăn kệ song song với nhau

Hình g: Các mép của viên gạch song song với nhau

Một số ví dụ khác về đường thẳng song song: Các gáy của quyền sách trong chồng sách, Các mép của chân bàn thẳng đứng,...

Câu 3. (SGK-CTST 11- Tập 1) Hãy chỉ ra các ví dụ về hai đường thẳng song song, cắt nhau và chéo nhau trong hình cầu sắt ở Hình 6.

Hình 6

Lời giải

Hai thanh sắt đối diện nhau qua hai bên cầu song song với nhau Thanh sắt nằm ở mái cầu và thanh sắt nằm ở thành cầu chéo nhau

Câu 4. (SGK-CTST 11- Tập 1) Cho hai đường thẳng song song a và b. Mệnh đề sau đây đúng hay sai?

- a) Một đường thẳng c cắt a thì cũng cắt b.
- b) Một đường thẳng c chéo với a thì cũng chéo với b.

Lời giải

2 mênh đề trên đều sai

Câu 5. (SGK-CTST 11- Tập 1) Cho hình chóp *S.ABCD* có đáy *ABCD* là hình bình hành. Xét vị trí tương đối của các cặp đường thẳng sau đây:

- a) AB và CD;
- b) SA và SC;
- c) SA và BC.

Lời giải

- a) Trong mặt phẳng (ABCD) ta có hình bình hành ABCD nên AB//CD
- b) Trong mặt phẳng (SAC), ta có SA cắt SC tại điểm S.
- c) Giả sử SA và BC cùng nằm trong một mặt phẳng (P). Suy ra đường thẳng AC nằm trong (P). Suy ra (P) chứa cả 4 điểm của tứ diện SABC. Điều này là vô lí.

Vậy SA và BC không nằm trong bất kì mặt phẳng nào, suy ra SA chéo với BC.

Câu 6. (SGK-CTST 11- Tập 1) Cho hình chóp S.ABCD. Vẽ hình thang ADMS có hai đáy là AD và MS. Gọi d là đường thẳng trong không gian đi qua S và song song với AD. Chứng minh đường thẳng d nằm trong mặt phẳng (SAD).

Ta có hình thang ADMS có đáy là AD và MS nên AD//MS

Trong không gian, chỉ có duy nhất 1 mặt phẳng đi qua S và song song với AD nên d phải trùng SM

Mà $SM \subset (ADMS)$ nên $d \subset (ADMS)$. Hay $d \subset (SAD)$

Câu 7. (**SGK-CTST 11- Tập 1**) Cho hình chóp $S \cdot ABCD$ có đáy là hình bình hành. Gọi I là trung điểm của SD. Hai mặt phẳng (IAC) và (SBC) cắt nhau theo giao tuyến Cx. Chứng minh rằng Cx//SB.

Mặt phẳng (SBC) và (SAD) giao nhau tại đường thẳng d đi qua S và song song với BC Trong mặt phẳng (SAD), kéo dài AI cắt d tại K.

 $AI \subset (AIC)$ nên $K \in (ACI)$

Ta có C và K là 2 điểm chung của hai mặt phẳng (SBC) và (CIA) nên CK là giao tuyến của hai mặt phẳng (SBC) và (CIA)

Trong mặt phẳng (SADK) ta có AD//SK, I là trung điểm của SD nên AD = SK. Mà AB = BD. Suy ra SK = BC.

Ta có SK / BC, SK = BC nên SBCK là hình bình hành.

Suy ra CK / /SB. Hay Cx / /SB

Câu 8. (SGK-CTST 11- Tập 1) Cho hình chóp S.ABCD có đáy là hình bình hành, AC và BD cắt nhau tại O. Gọi I là trung điểm của SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N.

- a) Hãy nói cách xác định hai điểm M và N. Cho AB = a. Tính MN theo a.
- b) Trong mặt phẳng (CDMN), gọi K là giao điểm của CN và DM. Chứng minh SK//BC//AD.

Lời giải:

a) Trong mặt phẳng (SAC), gọi M là giao của CI và SA, $CI \subset (ICD)$ nên $M \in (ICD)$ Trong mặt phẳng (SBD), gọi N là giao của DI và SB, $DI \subset (ICD)$ nên $N \in (ICD)$

Ta có $M\!N$ là giao của của ($I\!C\!D$) và ($S\!A\!B$). Mà $A\!B//C\!D$ nên $M\!N//C\!D$

Theo định lý Menelaus, trong tam giác SOA, ta có: $\frac{SM}{MA} \cdot \frac{AC}{CO} \cdot \frac{OI}{IS} = 1$

Hay
$$\frac{SM}{MA} \cdot 2 \cdot 1 = 1$$
. Suy ra: $\frac{SM}{MA} = \frac{1}{2}$
Nên $\frac{SM}{SA} = \frac{1}{3}$. Ta có $\frac{MN}{AB}$ nên $\frac{SM}{SA} = \frac{MN}{AB}$.
Vậy $\frac{SM}{SA} = \frac{1}{3}a$

b) $K \in CN$; $CN \subset (SBC)$ nên $K \in (SBC)$

 $K \in DM$; $DM \subset (SAD)$ nên $K \in (SAD)$

Ta có S và K là hai điểm chung của hai mặt phẳng (SAD) và (SBC) nên SK là giao tuyến của hai mặt phẳng (SAD) và (SBC).

Mà AD//BC nên SK//BC//AD

Câu 9. Cho hình lập phương ABCD.A'B'C'D', $AC \cap BD = O.M$, N là trung điểm của A'B', BC. Chứng minh MN//A'O.

- *) $\triangle ABC$: ON là đường trung bình \Rightarrow ON//AB, $ON = \frac{1}{2}AB$ (1).
- *) Tính chất hình lập phương: AB//A'B', $AB=A'B' \Rightarrow A'M//AB$, $A'M = \frac{1}{2}AB$ (2).
- *) Từ (1) và (2) \Rightarrow ON//A'M, $ON = A'M \Rightarrow$ Tứ giác AMNO là hình bình hành. \Rightarrow A'O//MN. (đpcm)

Câu 10. Lăng trụ ABC.A'B'C'.M,P,Q là trung điểm A'B',B'C',AC. Chứng minh AM//PQ.

- *) $\Delta A'B'C'$ có MP là đường trung bình $\Rightarrow MP//A'C'$, $MP = \frac{1}{2}A'C'$ (1).
- *) Ta có A'C' / AC, $A'C' = AC \Rightarrow AQ / A'C'$; $AQ = \frac{1}{2}A'C'(2)$.

*) Từ (1) và (2) \Rightarrow *MP*//QA;MP=QA \Rightarrow *MNPD* là hình bình hành. \Rightarrow *AM* //*PQ* .

Câu 11. Cho tứ diện ABCD có I; J lần lượt là trọng tâm của tam giác ABC, ABD. Chứng minh rằng: LI//CD.

Lời giải

Gọi M là trung điểm của AB

Xét tam giác ABC có: $\frac{MI}{MC} = \frac{1}{3}$ (do I là trọng tam của tam giác ABC)

Xét tam giác ABD có: $\frac{MJ}{MD} = \frac{1}{3}$ (do J là trọng tam của tam giác ABD)

Do
$$\frac{MI}{MC} = \frac{MJ}{MD} = \frac{1}{3} \Rightarrow IJ//CD$$
 (Định lí Ta-let)

Câu 12. Cho tứ diện ABCD. Trên SA, BC lấy điểm M, N sao cho: $\frac{SM}{SA} = \frac{BN}{BC} = \frac{3}{4}$. Qua N kẻ NP song song với CA (P thuộc AB). Chứng minh rằng MP // SB

Vif
$$MN / AC \Rightarrow \frac{AM}{AB} = \frac{CN}{CB} = \frac{1}{4}$$

Ta có:
$$\frac{AM}{AB} = \frac{AP}{AS} = \frac{1}{4}$$

Vậy MP//SB

Câu 13. Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi M, N, P, Q là các điểm lần lượt trên BC, SC, SD, AD sao cho MN//BS, NP//CD, MQ//CD.

- a) Chứng minh: PQ//SA.
- b) Gọi K là giao điểm của MN và PQ. Chứng minh SK // AD // BC.

Lời giải

a) Chứng minh: PO//SA.

Xét tam giác
$$SCD$$
. Ta có: $NP//CD \Rightarrow \frac{NP}{DS} = \frac{CN}{CS}$ (1)

Turong tu:
$$MN / /SB \Rightarrow \frac{CN}{CS} = \frac{CM}{CB}$$
 (2)

Turong tự:
$$MQ / /CD \Rightarrow \frac{CM}{CB} = \frac{DQ}{DA}$$
 (3)

Từ
$$(1),(2),(3)$$
 suy ra $\frac{DP}{DS} = \frac{DQ}{DA}$

Vậy: PQ//SA.

b) Chứng minh SK // AD // BC.

Ta có:
$$\begin{cases} BC//AD \\ BC \subset (SBC) \\ AD \subset (SAD) \end{cases} \Rightarrow \text{giao tuyến là đường thẳng } St \text{ qua } S \text{ song song } BC \text{ và } AD \\ S \in (SBC) \cap (SAD) \end{cases}$$

Mà
$$K \in (SBC) \cap (SAD) \Rightarrow K \in St \Rightarrow SK //AD //BC$$

Câu 14. Cho hình chóp S.ABCD có đáy là tứ giác lồi. Gọi M,N là trọng tâm tam giác SAB và SAD. E là trung điểm CB.

- a) Chứng minh rằng MN // BD
- b) Gọi L,H là giao điểm của (MNE) với SD và SB. Chứng minh rằng $LH/\!\!/BD$.

a) Gọi Q là trung điểm SA

Xét
$$\triangle QBD$$
 có $\frac{QN}{QD} = \frac{QM}{QB} = \frac{1}{3}$ (tính chất của trong tâm tam giác)

Vậy MN//BD

b) Dung $EK / /MN \Rightarrow (MNE) \equiv (MNKE)$

Tim
$$L = (MNE) \cap SD$$
, $SB \subset (SAD)$, goi $F = AD \cap KE$, $(MNKE) \cap (SAD) = MP$
 $\Rightarrow H = MP \cap SB$

Ta có:
$$MN \subset (MNE)$$
; $BD \subset (SBD)$ và $MN / / BD$ mà $(MNE) \cap (SBD) = LH \Rightarrow LH / / BD / / MN$

Câu 15. Cho hình chóp S.ABC, $I \in SA$ sao cho IA = 2IS. M, N là trung điểm SB, SC. H là điểm đối xứng với I qua M, K là điểm đối xứng với I qua N.

- a) Chứng minh HK / /BC.
- b) Chứng minh BH / /SA.

- a) *) $\triangle IHK$ có MN là đường trung bình $\Rightarrow MN//BC$, (1).
- *) $\triangle SBC$ có MN là đường trung bình $\Rightarrow MN//BC$ (2).
- *) Từ (1) và (2) $\Rightarrow HK //BC$ (đpcm).
- b) Tứ giác SIBH có hai đường chéo SB, IH cắt nhau tại M là trung điểm của mỗi đường $\Rightarrow SIBH$ là hình bình hành. $\Rightarrow SI / /BH \Rightarrow SA / /BH$ (đpcm).

Câu 16. Tứ diện ABCD. M, N, P, Q, R, S là trung điểm AB, CD, BC, AD, AC, BD. Chứng minh MN, PQ, RS đồng quy tại $\frac{1}{2}$ mỗi đường.

Lời giải

- *) $\triangle ABC: MP$ là đường trung bình $\Rightarrow MP//AC, MN = \frac{1}{2}AC$ (1).
- *) $\triangle ACD$: NQ là đường trung bình $\Rightarrow NQ//AC$, $NQ = \frac{1}{2}AC$ (2).
- *) Từ (1) và (2) \Rightarrow $MP//=NQ \Rightarrow MPNQ$ là hình bình hành.
- \Rightarrow MN, PQ cắt nhau tại trung điểm của mỗi đường (3).
- *) $\triangle ABC$: PR là đường trung bình $\Rightarrow PR//AB$, $PR = \frac{1}{2}AB$ (4).
- *) $\triangle ABD : QS$ là đường trung bình $\Rightarrow QS//AB$, $QS = \frac{1}{2}AB$ (5).
- *) Từ (4) và (5) \Rightarrow $PR//=QS \Rightarrow PRQS$ là hình bình hành.
- \Rightarrow RS, PQ cắt nhau tại trung điểm của mỗi đường (6).

Từ (5) và (6) suy ra MN, PQ, RS đồng quy tại $\frac{1}{2}$ mỗi đường.

DẠNG 2. TÌM GIAO TUYẾN CỦA HAI MẶT PHẮNG

Có 2 phương pháp tìm giao tuyến (P) và (Q).

+ Tìm 2 điểm chung.

+ Tìm bằng định lý giao tuyến

Bài toán tổng quát: Dựng (P) qua M và //a,b.

- + Qua M dựng a'//a <Đúng + Đủ>
- + Qua M dựng b'//b <Đúng + Đủ>
- $\Rightarrow (P) \equiv (a',b').$

Câu 17. (SGK-CTST 11- Tập 1) Một chiếc lều (Hình 16a) được minh họa như Hình 16b.

- a) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến song song.
- b) Tìm ba mặt phẳng cắt nhau từng đôi một theo ba giao tuyến đồng quy.

Lời giải

- a) Ba mặt phẳng cắt nhau từng đôi một theo giao tuyến song song là: (P), (Q), (R)
- b) Ba mặt phẳng cắt nhau từng đôi một theo giao tuyến đồng quy là: (P), (R), (S)

Câu 18. (SGK-CTST 11- Tập 1) Cho hình chóp S.ABC và điểm M thuộc miền trong tam giác ABC (Hình 17).

Qua M, vẽ đường thẳng d song song với SA, cắt (SBC) tại N. Trên hình vẽ, hãy chỉ rõ vị trí của điểm N và xác định giao tuyến của hai mặt phẳng (SAC) và (CMN).

Lời giải

Gọi I là giao điểm của AM và BC. Trong mặt phẳng (SAI), kẻ đường thẳng d song sóng SA cắt SI tại N

Giao tuyến của hai mặt phẳng (SAC) và (CMN) là đường thẳng đi qua C và song song với SA và MN

Câu 19. Chóp SABCD, đáy ABCD là hình bình hành. Tìm giao tuyến của:

a) (SAB) và (SCD).

b) (SAD) và (SBC).

Lời giải

- a) $S \in (SAB), S \in (SCD)$ và AB//CD suy ra $(SAB) \cap (SCD) = d//AB//CD$.
- b) $S \in (SAD), S \in (SCB)$ và AD//BC suy ra $(SAD) \cap (SCB) = d'//AD//BC$.

Câu 20. Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm E và F lần lượt là trung điểm của AB và BC.

- 1) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).
- 2) Xác định giao tuyến của hai mặt phẳng (MBC) và (SAD).
- 3) Xác định giao tuyến của hai mặt phẳng (MEF) và (SAC).

1) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD)

Ta có:
$$\begin{cases} S \in (SAB) \cap (SCD) \\ AB \subset (SAB); CD \subset (SCD) \Rightarrow Sx = (SAB) \cap (SCD) \text{ với } Sx//AB//CD \\ AB//CD \end{cases}$$

2) Xác định giao tuyến của hai mặt phẳng (MBC) và (SAD)

Lại có:
$$\begin{cases} M \in SA \subset (SAD) \\ M \in (MBC) \end{cases} \Rightarrow M \in (MBC) \cap (SAD)$$

Lại có :
$$\begin{cases} M \in SA \subset (SAD) \\ M \in (MBC) \end{cases} \Rightarrow M \in (MBC) \cap (SAD)$$
 Ta có :
$$\begin{cases} M \in (MBC) \cap (SAD) \\ BC \subset (SBC); AD \subset (SAD) \Rightarrow My = (MBC) \cap (SAD) \text{ với } My//BC//AD \\ BC//AD \end{cases}$$

3) Xác định giao tuyến của hai mặt phẳng (MEF) và (SAC).

Ta có:
$$\begin{cases} M \in SA \subset (SAC) \\ M \in (MEF) \end{cases} \Rightarrow M \in (MEF) \cap (SAC)$$

Xét tam giác ABC có: EF là đường trung bình của tam giác \Rightarrow EF//AC

$$\mathsf{Do} \begin{cases} M \in (MEF) \cap (SAC) \\ EF \subset (MEF) \; ; \; AC \subset (SAC) \; \Rightarrow Mt = (MEF) \cap (SAC) \; \text{v\'oi} \; EF //AC //Mt \; . \end{cases}$$

- Câu 21. Cho hình chóp S.ABCD. Mặt đáy là hình thang có cạnh đáy lớn AD, AB cắt CD tại K, điểm M thuộc cạnh SD.
 - 1) Xác định giao tuyến (d) của (SAD) và (SBC). Tìm giao điểm N của KM và (SBC).
 - 2) Chứng minh rằng: AM, BN, (d) đồng quy.

1) Xác định giao tuyến (d) của (SAD) và (SBC). Tìm giao điểm N của KM và (SBC)

1) Xác định giao tuyến
$$(d)$$
 của (SAD) và (SBC) . Tìm giao điểm N của KM
$$S \in (SAD) \cap (SBC)$$
 Ta có:
$$\begin{cases} S \in (SAD) \cap (SBC) \\ AD \subset (SAD) \; ; \; BC \subset (SBC) \; \Rightarrow Sx = (SAD) \cap (SBC) \; \text{với} \; Sx//AD//BC \\ AD//BC \end{cases}$$

$$\Rightarrow (d) \equiv Sx$$

Trong (SCD) gọi
$$N = KM \cap SC \Rightarrow \begin{cases} N \in KM \\ N \in SC \subset (SBC) \end{cases} \Rightarrow N = KM \cap (SBC)$$

2) Chứng minh rằng: AM, BN, (d) đồng quy

Ta có:
$$(d) = (SAD) \cap (SBC)$$

Trong (AMK) gọi O là giao điểm của AM và BN

$$\Rightarrow \begin{cases} O \in AM \subset (SAD) \\ O \in BN \subset (SBC) \end{cases} \Rightarrow O \in (d)$$

Vậy ba đường thẳng (d); BN; AM đồng quy tại O.

DANG 3. THIẾT DIÊN CHỨA ĐƯỜNG THẮNG SONG SONG VỚI ĐƯỜNG THẮNG KHÁC

Thiết diện của mặt phẳng (P) với chóp

+ Thiết diện là một đa giác phẳng khép kín Tìm thiết diện bằng cách tìm giao tuyến với mặt bên, mặt đáy

Câu 22. (SGK-CTST 11- Tập 1) Cho tứ diện ABCD có I và J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng đi qua I,J và cắt hai cạnh AC và AD lần lượt tại M và N.

- a) Chứng minh IJNM là một hình thang.
- b) Tìm vị trí của điểm M để LJNM là hình bình hành.

Lời giải

a) Mặt phẳng (P) đi qua IJ, mặt phẳng (ACD) đi qua CD

Mà I, J lần lượt là trung điểm của BC và BD nên IJ//BD

Nên (P) giao với (ACD) tại MN//IJ//CD

Vậy IJMN là hình thang có đáy là MN và IJ

b) Để IJMN là hình bình hành thì IJ = MN

Mà
$$IJ = \frac{1}{2}CD$$
 nên $MN = \frac{1}{2}CD$

Vậy M là trung điểm của AC

Câu 23. (SGK-CTST 11- Tập 1) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.

- a) Tìm giao tuyến của hai mặt phẳng (SCD) và (SAB).
- b) Lấy một điểm M trên đoạn SA(M khác S và A), mặt phẳng (BCM) cắt SD tại N. Tứ giác CBMN là hình gì?

- a) Giao tuyến của hai mặt phẳng (SCD) và (SAB) là đường thẳng đi qua S và song song với AB và CD
- b) Giao tuyến của (BCM) với (SAD) là đường thẳng MN song song với BC Do đó CBMN là hình thang
- **Câu 24.** Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, tâm O. Mặt bên SAB là tam giác đều. Góc $\widehat{SAD} = 90^{\circ}$. Gọi Dx là đường thẳng qua D và song song với SC.
 - a) Tìm giao điểm $I = Dx \cap (SAB)$. CMR AI / /SB.
 - b) Xác thiết diện của (IAC) với hình chóp. Tính diện tích thiết diện.

Lời giải

a)
$$Dx \in (SDC)$$
, $S \in (SAB) \cap (SDC)$ $AB \in (SAB)$
 $DC \in (SDC)$ $\Rightarrow (SAB) \cap (SDC) = Sy / AB / DC$

$$I = Dx \cap Sy \Rightarrow I = (SAB) \cap Dx$$

Rõ ràng SI/AB/DC và $SI = AB = DC \Rightarrow ABSI$ là hình bình hành nên $\Rightarrow AI/SB$.

b) $E = IC \cap SD$ nên thiết diện của (IAC) với hình chóp là ΔAEC

Câu 25. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi I, J, lần lượt là trọng tâm của ΔSAB , ΔSAD . M là trung điểm của CD. Xác định thiết diện (IJM) với hình chóp S.ABCD.

Vì I , J , lần lượt là trọng tâm của ΔSAB , ΔSAD nên IJ//BD .

$$\left.\begin{array}{l}
IJ//BD\\ \text{Ta c\'o }IJ\subset \left(IJM\right)\\ BD\subset \left(ABCD\right)\end{array}\right\} \Rightarrow \left(IJM\right)\cap \left(ABCD\right)=KM,KM//IJ//BD.$$

Gọi F và P là giao điểm của KM với AB và AD $IFIF = (IJM) \cap (SAB)$ và $JP = (IJM) \cap (SAD)$, $N = IF \cap JP$ thiết diện là NQKMH.

Câu 26. Chóp S.ABCD có SA = 2a, ABCD là hình vuông cạnh AB = a, $SA \perp CD$, $M \in AD$ đề $AM = x \ (0 < x < a)$. Mặt phẳng (P) qua M và //SA,CD. Dựng (P). Tìm thiệt diện. Tính S_{TD} theo a,x.

- *) Dụng (P).
- +) Qua M dựng MN//CD.
- +) Qua M dựng MQ//SA.
- \Rightarrow $(P) \equiv (QMN)$.

- *) Tìm thiết diện; Trái, phải, trước, sau, đáy.
- *) Ta có $\begin{cases} (QMN) \cap (Day) = MN \\ (QMN) \cap (Trai) = MQ \end{cases}$

*) Định lý:
$$\begin{cases} Q \in (QMN), Q \in (Truoc) \Rightarrow (QMN) \cap (Truoc) = QP \\ MN / / CD \Rightarrow (QMN) \cap (Phai) = PN \end{cases}$$

- *) Thiết diện là tứ giác MNPQ
- *) Tính S_{TD} .

Ta có
$$\begin{cases} MN //CD \\ CD \perp SA \end{cases} \Rightarrow MQ \perp MN .$$

+) Tinh
$$QM: QM / SA \Rightarrow \frac{QM}{SA} = \frac{DM}{DA} \Rightarrow QM = \frac{2a(a-x)}{a} = 2a-2x$$
.

+) Tính
$$PQ: PQ//CD \Rightarrow \frac{PQ}{CD} = \frac{SQ}{SD} = \frac{AM}{AD} \Rightarrow PQ = \frac{a.x}{a} = x$$
.

$$\Rightarrow S_{TD} = \frac{(MN + PQ).QM}{2} = \frac{(a+x).2.(a-x)}{2} = a^2 - x^2.$$

Câu 27. Chóp S.ABC, $SA \perp BC$, SA = 3a, ΔABC đều, AB = a. $M \in AB$ để AM = x(0 < x < a). (P) qua M và song song SA, BC. Dựng (P). Tìm thiết diện. Tìm x để diện tích thiết diện lớn nhất.

Lời giải

Dựng (P):

- Qua M dựng MN//BC.
- Qua M dựng MQ//A

$$\Rightarrow$$
 $(P) \equiv (MNQ)$.

Tìm thiết diện:

$$\begin{cases} (MNQ) \cap (ABCD) = MN \\ (MNQ) \cap (SAB) = MQ \end{cases}$$
Ta có:

 \Rightarrow thiết diện là tứ giác MNPQ .

Tính diện tích thiết diện: $SA \perp BC \Rightarrow MN \perp MQ \Rightarrow MNPQ$ là hình chữ nhật.

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

$$MN//BC \Rightarrow \frac{MN}{BC} = \frac{AM}{AB} \Rightarrow MN = \frac{ax}{a} = x.$$

$$MQ / / SA \Rightarrow \frac{MQ}{SA} = \frac{BM}{BA} \Rightarrow MQ = \frac{3a(a-x)}{a} = 3(a-x).$$

$$S_{TD} = MN.MQ = x3(a-x) = 3(-x^2 + ax), (0 < x < a).$$

$$S_{TD}max \Leftrightarrow x = -\frac{b}{2a} = -\frac{a}{2(-1)} = \frac{a}{2}.$$

Câu 28. Chóp S.ABCD, $SA \perp CD$, SA = 2a. ABCD là hình thang vuông ở A và D.

 $AD = DC = \frac{AB}{2} = a$, $M \in AD$ để AM = x, (0 < x < a). (P) qua M và song song SA, CD. Dựng (P). Tìm thiết diện. Tính diện tích thiết diện S_{TD} .

Lời giải

$$(P) \equiv (QMN) \Rightarrow$$
 thiết diện là tứ giác $MNPQ$.

Tính MN:

$$IN / /AB \Rightarrow \frac{IN}{AB} = \frac{CI}{CA} = \frac{DM}{DA} \Rightarrow IN = \frac{2a(a-x)}{a} = 2a - 2x$$

$$IM / /CD \Rightarrow \frac{IM}{CD} = \frac{AM}{DA} \Rightarrow IM = \frac{ax}{a} = x$$

$$\Rightarrow MN = IM + IN = x + 2a - 2x = 2a - x$$

$$\frac{MQ}{SA} = \frac{MD}{AD} \Rightarrow MQ = \frac{2a(a-x)}{a} = 2a - 2x$$

$$\frac{PQ}{CD} = \frac{SQ}{SD} = \frac{AM}{AD} \Rightarrow QP = \frac{ax}{a} = x$$

$$S_{TD} = \frac{(PQ + MN)MQ}{2} = 2a(a-x)$$

Câu 29. Chóp S.ABCD, $SA \perp BD$, SA = a, ABCD là hình vuông cạnh a, tâm O. $M \in AO$ để

$$AM = x \left(0 < x < \frac{a\sqrt{2}}{2} \right)$$
. (P) qua M và song song với SA , BD . Dựng (P) . Tìm thiết diện. Tính S_{TD}

Qua M dung EF song song BD.

Qua M dung MN song song SA.

Qua E dung EG song song SA.

Qua F dung FH song song SA.

Vậy thiết diện là *EFHNG*.

Vì $SA \perp BD \Rightarrow MNHF, MNGE$ là hình thang vuông bằng nhau.

$$\begin{split} \frac{MQ}{SA} &= \frac{CM}{CA} = \frac{MN}{SA} \Rightarrow MN = \frac{SA.CM}{CA} = \frac{3a}{4} \,. \\ \frac{AF}{AB} &= \frac{AM}{AO} = \frac{AE}{AD} = \frac{FM}{BO} \Rightarrow AF = \frac{AM.AB}{AO} = x\sqrt{2} \,, FM = AM = x \,. \\ \frac{BF}{BA} &= \frac{FH}{SA} \Rightarrow FH = \frac{SA(BA - AF)}{BA} = a - x\sqrt{2} \,. \\ S_{DT} &= 2.\frac{1}{2} \,. \big(MN + HF\big) FM = x \Big(\frac{7a}{4} - x\sqrt{2}\,\Big) \,. \end{split}$$

Câu 30. Chóp S.ABCD, SA = a, ABCD là hình vuông cạnh a. $AD \perp SB$. $M \in AB$ để AM = x(0 < x < a). (P) qua M và song song với SB, AD. Dựng (P). Tìm thiết diện. Tính S_{TD} .

Qua M dựng MN song song SB.

Qua M dựng MQ song song AD.

Vậy thiết diện là MNPQ.

Vì $AD \perp SB \Rightarrow MNPQ$ là hình thang vuông.

Ta có:
$$\frac{AM}{AB} = \frac{AM}{AS} = \frac{MN}{SB} \Rightarrow AN = x, MN = \frac{AM.SB}{AB} = x\sqrt{2}$$
.
$$\frac{SN}{SA} = \frac{NP}{AD} \Rightarrow NP = \frac{SN.AD}{SA} = a - x$$
.
$$S_{TD} = \frac{1}{2}.MN.(NP + MQ) = \frac{x\sqrt{2}}{2}(2a - x)$$
.

Câu 31. Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, tâm O. Mặt bên SAB là tam giác đều. $SC = SD = a\sqrt{3}$. Gọi H, K lần lượt là trung điểm của SA và SB. Gọi M là trung điểm $DA(HKM) \cap BC = N$.

- a) Chứng minh rằng HKMN là hình thang cân.
- b) Đặt $AM = x(0 \le x \le a)$ tính diện tích HKMN theo a và x. Tìm x để diện tích này nhỏ nhất.

Lời giải

a) Tim $N = BC \cap (HKM)$,

$$BC \subset (ABCD)$$

$$M \in (HKM) \cap (ABCD)$$

$$\left. \begin{array}{l}
 HK //AB \\
 HK \subset (HKM)
 \end{array} \right\} \Rightarrow (HKM) \cap (ABCD) = Mx //AB; Mx \cap BC = N \\
 AB \subset (ABCD)$$

Vì MN / /HK nên HKMN là hình thang.

 $\Delta AHM = \Delta BKN \Rightarrow HM = KN$ hay HKMN là hình thang cân.

b) Dựng đường cao AO của là hình thang HKMN.

Diện tích hình thang
$$S = \frac{(KH + MN)HO}{2}$$

$$HK = \frac{AD}{2} = \frac{a}{2}$$
; $MN = AD = a$; $HO = \sqrt{MH^2 - MO^2}$, $MO = \frac{a}{4}$

Tính HM

Xét ΔSAD:
$$Cos\widehat{SAD} = \frac{AD^2 + SA^2 - SD^2}{2AD.SA.} = \frac{-1}{2} \Rightarrow \widehat{SAD} = 120^\circ$$

$$.MH = \sqrt{AH^2 + AM^2 - 2AH.AM.\cos\widehat{HAM}} = \sqrt{\frac{a^2}{4} + x^2 + \frac{ax}{4}},$$

$$HO = \sqrt{MH^2 - MO^2} = \sqrt{\frac{3a^2}{16} + x^2 + \frac{ax}{4}}$$

$$S = \frac{(KH + MN)HO}{2} = \frac{3a}{4} \sqrt{x^2 + \frac{xa}{2} + \frac{3a^2}{16}}; S_{\min} \text{ khi } x^2 + \frac{xa}{2} + \frac{3a^2}{16} \text{ min khi } x = 0 \text{ hay } M \equiv A$$

Theo dõi Fanpage: Nguyễn Bảo Vương 🖝 https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIÊU TOÁN) 🖝 https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/