S⁴L: Self-Supervised Semi-Supervised Learning

Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, Lucas Beyer Google Research, Brain Team

Contribution

• Propose a general technique to merge semi-supervised learning with self-supervised representation learning (S⁴L)

• Demonstrates that this S⁴L method is competitive in image-based classification.

• Demonstrates state-of-the-art performance (image classification on) by leveraging both S⁴L and traditional semi-supervised learning.

Motivation

• Deep Neural Networks are commonly used for image-based tasks (e.g. classification).

 Generating adequate labeled data for training is often impractical, especially for highly specific tasks.

Better performance from unsupervised training methods is desired.

Self-supervised vs Semi-supervised Learning

- Both forms of unsupervised learning (no explicit training labels).
- Self-supervised: Training network with a pretext task for which data labels can easily be generated
 - Training on this task teaches network features that are important to the primary task.
 - Ex) Train network to determine relative location of two non-overlapping image patches

Semi-supervised Learning cont.

- Network learning that involves training with both labelled and unlabeled data
- Ex) Pseudo-Labeling
 - Train the network with labeled data first
 - Make network predictions on unlabeled data
 - Assign predicted labels to samples with high-confidence predictions
 - Retrain with labeled data
- Evaluation Standard: 10/90 labelled/unlabeled data split

General Method of S⁴L

- Self-Supervised Semi-Supervised Learning
 - Essentially including a self-supervised learning objective in a semi-supervised objective/framework
- Objective function for test batch:

$$\min_{\theta} \mathcal{L}_l(D_l, \theta) + w \mathcal{L}_u(D_u, \theta), \tag{1}$$

- \mathcal{L}_{l} : Standard cross-entropy classification loss for labeled data
- \mathcal{L}_u : Loss function for unsupervised images
- w : scalar weighting factor

S⁴L Example

• Figure 1. A schematic illustration of one of the proposed selfsupervised semi-supervised techniques: S⁴L-Rotation. Our model makes use of both labeled and unlabeled images. The first step is to create four input images for any image by rotating it by 0°, 90°, 180° and 270° (inspired by [10]). Then, we train a single network that predicts which rotation was applied to all these images and, additionally, predicts semantic labels of annotated images. This conceptually simple technique is competitive with existing semi-supervised learning methods.

Self-supervised approaches tested with S⁴L

- S⁴L-Rotation
 - Unlabeled and labeled images are rotated in 1 of 4 cardinal directions.
 - Part of label is the degree of rotation.

$$\mathcal{L}_{rot} = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \sum_{x \in D_u} \mathcal{L}(f_{\theta}(x^r), r)$$

- r: degree of rotation
- R: set of all four rotations

Self-supervised approaches tested with S⁴L

- S⁴L-Exemplar
 - Unlabeled images undergo a range of image transformations
 - Different transformations of the same image share the same label.
 - This paper used 8 different transformations total.

Figure 2: Several random transformations applied to one of the patches extracted from the STL unlabeled dataset. The original ('seed') patch is in the top left corner.

Experimental Objectives

• Test S⁴L with image classification and compare performance to supervised, unsupervised, and self-supervised methods.

• Investigate if combining S⁴L with other semi-supervised methods produces even greater performance.

General Experiment Parameters

- Database used: ILSVRC-2012
 - Over 1 million images!
 - Different experiments done with labeled/unlabeled data splits of 10/90 and 1/99.
- Network Architecture: ResNet50v2

• Training 'dry runs' first done to optimize hyperparameters

Methods Tested

- Supervised only Baseline:
 - For 1% data case, random color data augmentation used
- Semi-Supervised Baselines:
 - Pseudo-Label
 - Virtual Adversarial Training (VAT)
 - VAT+ Entropy Minimization (VAT+EntMin)
- Self-Supervised Baselines:
 - Rotation
 - Exemplar
 - After pre-training, either "linear" or "fine-tune" supervised learning was used

Methods Tested (cont.)

- S⁴L
 - Rotation
 - Exemplar
 - Set self-supervised loss weight (w) to 1
 - Self-supervised loss applied to labeled and unlabeled examples
 - Supervised loss not applied to 'copies' of images
- Hyperparameters fine-tuned optimally for each model
 - Weight decay
 - Learning Rate
 - Number of Training Epochs

Results

Table 1. Top-5 accuracy [%] obtained by individual methods when training them on ILSVRC-2012 with a subset of labels. All methods use the same standard width ResNet50v2 architecture.

ous use the same standard width Restretion 2 architecture.					
ILSVRC-2012 labels:	10%	1%			
(i.e. images per class)	(128)	(13)			
Supervised Baseline (Section 4.1)	80.43	48.43			
Pseudolabels [20]	82.41	51.56			
VAT [24]	82.78	44.05			
VAT + Entropy Minimization [11]	83.39	46.96			
Self-sup. Rotation [17] + Linear	39.75	25.98			
Self-sup. Exemplar [17] + Linear	32.32	21.33			
Self-sup. Rotation [17] + Fine-tune	78.53	45.11			
Self-sup. Exemplar [17] + Fine-tune	81.01	44.90			
S^4L -Rotation	83.82	53.37			
S^4L -Exemplar	83.72	47.02			

Testing combined S⁴L and semi-supervised model

- Mix of All Models (MOAM)
- Step 1: Combine S⁴L-Rotation with VAT+EntMin with 4x wider ResNet50v2
- Step 2: Retrain model using Pseudo-labels
- Step 3: Fine-tune model with 10% of labeled data

Results

	labels	Top-5	Top-1
MOAM full (proposed)	10%	91.23	73.21
MOAM + pseudo label (proposed)	10%	89.96	71.56
MOAM (proposed)	10%	88.80	69.73
ResNet50v2 (4×wider)	10%	81.29	58.15
VAE + Bayesian SVM [32]	10%	64.76	48.41
Mean Teacher [41]	10%	90.89	-
†UDA [43]	10%	88.52^{\dagger}	68.66^{\dagger}
†CPCv2 [13]	10%	84.88†	64.03 [†]

Table 2. Comparing our MOAM to previous methods in the literature on ILSVRC-2012 with 10% of the labels. Note that different models use different architectures, larger than those in Table 1.

Training with all labels:

ResNet50v2 (4×wider)	100%	94.10	78.57
MOAM (proposed)	100%	94.97	80.17
†UDA [43]	100%	94.45†	79.04^{\dagger}
†CPCv2 [13]	100%	93.35 [†]	-

[†] marks concurrent work.

Transfer of Learned Representations

- Objective is to investigate how generally useful the learned feature representation for S⁴L is.
- Method: Take trained model as fixed feature extractor, then train linear logistic regression model on top of extractor.
 - Train on entirely different dataset (Places 205) and measure accuracy/convergence of regression model.

Results of Logistic Regression

Figure 2. Places 205 learning curves of logistic regression on top of the features learned by pre-training a self-supervised versus S⁴LRotation model on ILSVRC-2012. The significantly faster convergence ("long" training schedule vs. "short" one) suggests that more easily separable features are learned.

Is Tiny Validation Set Enough

- Problem with many unsupervised methods is that they are still validated on large labelled datasets.
 - Validation feedback is used to fine-tune model.
- Major issue: methods still rely on big labelled data for validation.
- Can accurate feedback still be achieved with a smaller validation set?

Validation Results Mostly Independent of Set Size

Figure 3. Correlation between validation score on a (custom) validation set of 1000, 5000, and 50046 images on ILSVRC-2012. Each point corresponds to a *trained model* during a sweep for plain supervised baseline for the 1% labeled case. The best model according to the validation set of 1000 is marked in red. As can be seen, evaluating our models even with only a single validation image per class is robust, and in particular selecting an optimal model with this validation set works as well as with the full validation set.

Conclusion

- S⁴L method can merge self-supervised and supervised training methods into one semi-supervised training model.
- Training from S⁴L is somewhat complementary to other semisupervised training methods.
- Features learned with S⁴L appear to be generally useful when compared to self-supervised feature learning.
- Small validation sets are enough to provide S⁴L model feedback.