An example of medical treatment optimization under model uncertainty

Orlane Rossini ¹, Aymar Thierry d'Argenlieu ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹ and Régis Sabbadin ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France

²John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia

³Univ Toulouse, INRAE-MIAT, Toulouse, France

September 7, 2023

Contents

- **►** Introduction
- ► Mathematical Model Introduction
- ► A Framework for Partial Observability
- ► A Framework for Unknown Transitions
- Conclusion and Perspectives

A medical context

Figure: Patient Data^a

- Patients who have had cancer are regularly monitored;
- Clonal immunoglobulin concentration is monitored over time;
- The doctor has to make new decisions at each visit.

^aData from IUC Oncopole, Toulouse, and CRCT, Toulouse, France

A medical context

¹Data from IUC Oncopole, Toulouse, and CRCT, Toulouse, France

Contents

- ▶ Introduction
- ► Mathematical Model Introduction
- ► A Framework for Partial Observability
- ► A Framework for Unknown Transitions
- Conclusion and Perspectives

Markov Decision Process (MDP²)

- $s \in \mathcal{S}$ the state space
- $a \in \mathcal{A}$ the action space
- ullet $\mathcal P$ the transition matrix
- ullet $c(s_t,a_t)$ the cost function

Orlane Rossini AG Inca 6 / 2

²ML Puterman (1994). "Finite-horizon Markov decision processes". In:
Markov Decision Processes: Discrete Stochastic Dynamic Programming, New York: Wiley-Interscience, pp. 78–9.

Markov Decision Process (MDP²)

- $s \in \mathcal{S}$ the state space
- $a \in \mathcal{A}$ the action space
- ullet $\mathcal P$ the transition matrix
- ullet $c(s_t,a_t)$ the cost function

Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-Interscience, pp. 78–9.

Orlane Rossini AG Inca 6

²ML Puterman (1994). "Finite-horizon Markov decision processes". In:

Solving a MDP

Minimizing a cost

Policy π

Let $f:\mathcal{S} \to \mathcal{A}$ for all $s\in\mathcal{S}$ is a decision rule. A sequence of decision rules $\pi=(f_0,f_1,\ldots,f_{H-1})$ is a policy. Let Π be the set of all eligible policies.

Policy cost and value function

$$J_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{H-1} c(S_t, A_t) | \pi(S_t), S_0 = s_0\right]$$

Let π^* the optimal policy such that:

$$V(s_0) = J_{\pi^*}(s_0) = \min_{\pi \in \Pi} J_{\pi}(s_0)$$

Optimization criterion

$$V^{\star}(s_t) = \min_{a_t \in \mathcal{A}} [c(s_t, a_t) + \sum_{s_{t+1} \in \mathcal{S}} \mathcal{P}(s_{t+1}|s_t, a_t) V^{\star}(s_{t+1})]$$

A model-free method

Q-learning^{3,4} algorithm

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

⁴VP Vivek and Dr. Shalabh Bhatnagar (Aug. 2022). "Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids". In: arXiv:2110.15093v3. DOI: 10.48550/arXiv.2110.15093. eprint: 2110.15093v3.

A model-free method

Q-learning^{3,4} algorithm

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

⁴VP Vivek and Dr. Shalabh Bhatnagar (Aug. 2022). "Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids". In: arXiv:2110.15093v3. DOI: 10.48550/arXiv.2110.15093. eprint: 2110.15093v3.

A model-free method

Q-learning^{3,4} algorithm

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

⁴VP Vivek and Dr. Shalabh Bhatnagar (Aug. 2022). "Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids". In: arXiv:2110.15093v3. DOI: 10.48550/arXiv:2110.15093. eprint: 2110.15093v3.

Contents

- ▶ Introduction
- ► Mathematical Model Introduction
- ► A Framework for Partial Observability
- ► A Framework for Unknown Transitions
- Conclusion and Perspectives

Partially observable Markov Decision Process (POMDP)

- $s \in \mathcal{S}$ the state space
- ullet $o \in \mathcal{O}$ the observation space
- $a \in \mathcal{A}$ the action space
- ullet $\mathcal P$ the transition matrix
- \bullet f a mesurable function
- $c(s_t, a_t, s_{t+1})$ the cost function

Partially observable Markov Decision Process (POMDP)

- $s \in \mathcal{S}$ the state space
- * $o \in \mathcal{O}$ the observation space
- $a \in \mathcal{A}$ the action space
- ullet ${\cal P}$ the transition matrix
- \bullet f a mesurable function
- $c(s_t, a_t, s_{t+1})$ the cost function

Partially observable Markov Decision Process (POMDP)

- $s \in \mathcal{S}$ the state space
- $o \in \mathcal{O}$ the observation space
- $a \in \mathcal{A}$ the action space
- ullet ${\mathcal P}$ the transition matrix
- \bullet f a mesurable function
- $c(s_t, a_t, s_{t+1})$ the cost function

The *history* is defined as a sequence of actions and observations.

A history

$$h_t = \{o_0, a_0, o_1, a_1, \cdots, o_{t-1}, a_{t-1}, o_t\}$$

The *history* is defined as a sequence of actions and observations.

A history

$$h_t = \{o_0, a_0, o_1, a_1, \cdots, o_{t-1}, a_{t-1}, o_t\}$$

Optimization criterion

$$V^{\star}(h) = \min_{a_{t} \in \mathcal{A}} [c(s_{t}, a_{t}) + \sum_{o_{t+1} \in \mathcal{O}} \mathcal{P}(o_{t+1}|h_{t+1}, a_{t})V^{\star}(h_{t+1})]$$

Partially Observable Monte-Carlo Planning (POMCP⁵)

⁵David Silver and Joel Veness (2010). "Monte-Carlo Planning in Large POMDPs". In: Advances in Neural Information Processing Systems 23. URL:

https://papers.nips.cc/paper_files/paper/2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html

Partially Observable Monte-Carlo Planning (POMCP⁵)

⁵David Silver and Joel Veness (2010). "Monte-Carlo Planning in Large POMDPs". In: Advances in Neural Information Processing Systems 23. URL:

https://papers.nips.cc/paper_files/paper/2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html

Partially Observable Monte-Carlo Planning (POMCP⁵)

⁵David Silver and Joel Veness (2010). "Monte-Carlo Planning in Large POMDPs". In: Advances in Neural Information Processing Systems 23. URL:

https://papers.nips.cc/paper_files/paper/2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html

Contents

- ▶ Introduction
- ► Mathematical Model Introduction
- ► A Framework for Partial Observability
- ► A Framework for Unknown Transitions
- Conclusion and Perspectives

A bayesian approach

Remark:

•
$$P(.|s=(0,0,0),a=\emptyset) \sim \mathcal{M}(p_{(\mathbf{0},\mathbf{0},0)}^\emptyset,p_{(\mathbf{1},\mathbf{0},1)}^\emptyset,p_{(\mathbf{1},\mathbf{0},2)}^\emptyset)$$

• Conjugate distribution : $f(p^{\emptyset}|\Theta^{\emptyset}) \sim \mathcal{D}(\theta^{\emptyset}_{(\mathbf{0},\mathbf{0},0)},\theta^{\emptyset}_{(\mathbf{1},\mathbf{0},1)},\theta^{\emptyset}_{(\mathbf{1},\mathbf{0},2)})$

Bayes-Adaptive Markov Decision Process (BAMDP⁶)

- $s^+ \in \mathcal{S}^+$ the hyper-state space
- \mathcal{P}^+ the transition matrix
- $\Theta_{t+1} = \Theta_t + \Delta^{a_t}_{s_{t+1}}$, with

$$\Delta_{s_{t+1}}^{a_t} = \begin{cases} 1 & \text{if } (s = (0, 0, 0), a_t, s_{t+1}), \\ 0 & \text{else.} \end{cases}$$

Orlane Rossini AG Inca 15 / 21

⁶Michael O'Gordon Duff (2002). "Optimal learning: Computational procedures for Bayes -adaptive Markov decision processes". PhD thesis. University of Massachusetts Amherst.

Bayes-Adaptive Markov Decision Process (BAMDP⁶)

- $s^+ \in \mathcal{S}^+$ the hyper-state space
- \mathcal{P}^+ the transition matrix
- $\Theta_{t+1} = \Theta_t + \Delta^{a_t}_{s_{t+1}}$, with

$$\Delta_{s_{t+1}}^{a_t} = \begin{cases} 1 & \text{if } (s = (0, 0, 0), a_t, s_{t+1}), \\ 0 & \text{else.} \end{cases}$$

Optimization criterion

$$V^{\star}(s_t, \Theta_t) = \min_{a_t \in \mathcal{A}} [c(s_t, a_t) + \sum_{s_{t+1}^+ \in \mathcal{S}^+} \mathcal{P}^+(s_{t+1}^+ | s_t^+, a_t) V^{\star}(s_{t+1}, \Theta_{t+1})]$$

⁶Michael O'Gordon Duff (2002). "Optimal learning: Computational procedures for Bayes -adaptive Markov decision processes". PhD thesis, University of Massachusetts Amherst.

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁷)

⁷Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates. Inc.

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁷)

⁷Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates. Inc.

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁷)

⁷Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.

Contents

- ▶ Introduction
- ► Mathematical Model Introduction
- ► A Framework for Partial Observability
- ► A Framework for Unknown Transitions
- ► Conclusion and Perspectives

Conclusion

Unlike model-free methods and deep reinforcement learning, **model-based approaches** do not require as much interaction with the environment.

Conclusion

Unlike model-free methods and deep reinforcement learning, **model-based approaches** do not require as much interaction with the environment.

Perspectives

A real-life problem

Modelling

Controled PDMP

Gymnasium

× partially observable × partially unkown model × semi-Markov

POMDP

BAMDP × partially observable × partially unkown model × partially unkown model

BAPOMDP

× partially observable

MDP

× large state space × continuous state space

Exact resolution by DP is no longer possible. Resolution by **simulations** must be applied.

Orlane Rossini AG Inca 19 / 21

Resolution

Perspectives

