Assignment on Propositional Logic

Dr. Avipsita Chatterjee

Section A: Multiple Choice Questions (MCQs) (2 Marks each)

(Choose the correct answer)

- 1. Which of the following is a tautology?
 - a) P∧¬P
 - b) PV¬P
 - c) PAQ
 - $d) \neg (PVQ)$
- 2. What is the negation of $P \wedge Q$?
 - a) ¬PV¬Q
 - b) $\neg P \land \neg Q$
 - c) ¬P∨Q
 - d) PV¬O
- 3. Which of the following is not a well-formed formula?
 - a) $P\Lambda(QVR)$
 - b) ¬(P∨Q)
 - c) VPAQ
 - d) $(PVQ)\Lambda R$
- 4. If $P \rightarrow Q$ and $\neg Q$ are true, which of the following must also be true?
 - a) ¬P
 - b) PAQ
 - c) $\neg Q \rightarrow \neg P$
 - d) PVQ

[Total for Section A: 8 Marks]

Section B: Short Answer Questions (4 Marks each)

- 5. Write the truth table for the following expression: $(PVQ) \land (\neg PVQ)$.
- 6. Determine whether the following statement is a tautology, contradiction, or contingency:
 - $(P \rightarrow Q) \leftrightarrow (\neg Q \rightarrow \neg P).$
- 7. Rewrite the following formula in its equivalent conjunctive normal form (CNF): $\neg (P \rightarrow Q)$.

[Total for Section B: 12 Marks]

Section C: Long Answer Question (10 Marks)

8	Prove that the following proposition is a tautology by logically analyzing its components: $[(P \rightarrow Q) \land (\neg Q \rightarrow R)] \rightarrow (P \rightarrow R)$. [Total for Section C: 10 Marks]

Γ