Zadatak 1.

1.1. (1 bod) U kolu na slici trenutno se, u trenutku t=0, zatvara prekidač P. Diferencijalna jednačina koja opisuje promjenu struje $i_L(t)$ ima oblik:

$$L\frac{di_L(t)}{dt} + \frac{R_3R_2}{R_2 + R_3}i_L(t) = 0.$$

Potrebno je odrediti vremensku funkciju promjene napona $u_0(t)$ nakon komutacije. Poznato je: E=10 (V), $R_1=2$ (Ω), $R_2=3$ (Ω), $R_3=6$ (Ω), L=2 (H), $I_L(0)=-2$ (A).

Rješenje:

Karakteristična jednačina je: $2p + 2 = 0 \Rightarrow p = -1$

Opšte rješenje diferencijalne jednačine je: $i_L(t) = Ae^{-t}$ (A)

Konstanta A može se odrediti na osnovu nezavisnog početnog uslova: $i_L(0) = A = -2$ (A)

Vremenski izraz koji opisuje promjenu struje kroz zavojnicu je: $i_L(t) = -2e^{-t}$ (A)

Funkcija promjene napona $u_0(t)$ je: $u_0(t) = -L \frac{di_L(t)}{dt} = -4e^{-t}$ (V)

1.2. (1 bod) U kolu na slici, koje je bilo u stacionarnom stanju, trenutno se, u trenutku t=0, otvara prekidač. Odredite nezavisni početni uslov za struju kroz zavojnicu. Poznato je:

$$E = 40 (V), R_1 = 2 (\Omega), R_2 = 4 (\Omega), R_3 = 12 (\Omega), R_4 = 16 (\Omega), L = 2 (H).$$

Rješenje:

Za t<0 prekidač je zatvoren, zavojnica L predstavlja kratak spoj, odnosno otpornik R_4 je kratko spojen. Otpornici R_2 i R_3 su vezani paralelno:

$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = 3 \ (\Omega)$$

Ukupna struja u takvom ekvivalentnom kolu je: $i_1 = \frac{E}{R_1 + R_{23}} = 8 \ (A)$

Struju $i_L(0)$ možemo naći pomoću metoda grananja struja:

$$i_L(0) = \frac{R_3}{R_3 + R_2} i_1 = 6 (A)$$

1.3. (1 bod) Za kolo na slici poznato je: $X_L = 16 \, (\Omega)$, $X_C = 12 \, (\Omega)$, $U = 64 \, (V)$, $\omega = 1000 \, (s^{-1})$. Potrebno je odrediti otpornost otpornika R tako da kolo bude u faznoj rezonanciji.

Rješenje:

Ulazna impedansa je:
$$\mathcal{Z}_{ul} = \frac{R{X_L}^2}{R^2 + (X_L - X_C)^2} + j{X_L} \frac{2R^2 - (X_L - X_C)(2X_C - X_L)}{R^2 + (X_L - X_C)^2}$$

Iz uslova fazne rezonancije izračunavamo: $R = \sqrt{\frac{(X_L - X_C)(2X_C - X_L)}{2}} = 4 \, (\Omega)$

1.4. (2 boda) Odredite učestanost fazne rezonancije za kolo predstavljeno na slici.

Rješenje:

Ulazna impedansa kola je:
$$Z_{ul} = \frac{R}{1 + (\omega R \mathcal{C})^2} + j \left(\omega L - \frac{\omega R^2 \mathcal{C}}{1 + (\omega R \mathcal{C})^2} \right)$$

Da bi u kolu nastupila fazna rezonancija, potrebno je ispuniti uslov:

$$Im\{\mathcal{Z}_{ul}\} = X_{ul} = \omega L - \frac{\omega R^2 C}{1 + (\omega RC)^2} = 0$$

Učestanost fazne rezonancije je: $\omega = \sqrt{\frac{1}{LC} - \frac{1}{R^2C^2}}$

Zadatak 2.

2. (10 bodova) U kolu na slici, koje je bilo u stacionarnom stanju, trenutno se otvara prekidač u trenutku t=0. Koristeći klasičnu metodu odredite vremensku promjenu $u_c(t)$ za napon na krajevima kondenzatora poslije komutacije. Poznato je:

$$E = 14 (V), R = 5 (\Omega), L = 10 (H), C = 0.1 (F).$$

Rješenje:

Nezavisni početni uslovi su:

$$i_L(0) = \frac{4E}{7R} = 1,6 (A)$$
 $u_c(0) = \frac{2R \cdot R}{R + 3R} i_L(0) = 4 (V)$

Nakon komutacije vrijedi:

$$2R\left(i_L(t) + C\frac{du_c(t)}{dt}\right) + u_c(t) = E \tag{1}$$

$$2Ri_L(t) + L\frac{di_L(t)}{dt} = u_c(t)$$
 (2)

Iz relacije (1) slijedi:
$$i_L(t) = \frac{E - u_c(t)}{2R} - C \frac{du_c(t)}{dt}$$
 (3)

Iz relacije (3) je:
$$L\frac{di_L(t)}{dt} = -\frac{L}{2R}\frac{du_c(t)}{dt} - LC\frac{d^2u_c(t)}{dt^2}$$
 (4)

Uvrštavanjem relacija (3) i (4) u relaciju (2), dobija se:

$$LC\frac{d^2u_c(t)}{dt^2} + \left(2RC + \frac{L}{2R}\right)\frac{du_c(t)}{dt} + 2u_c(t) = E$$

Za date parametre korijeni karakteristične jednačine su: $p_{1,2} = -1 \pm j \; (1/s)$

Zavisni početni uslov je:
$$\frac{du_c(0)}{dt} = \frac{E - u_c(0)}{2RC} - \frac{i_L(0)}{C} = -6 \ (V/s)$$

Opšte rješenje ima oblik: $u_c(t) = 7 + (A \cdot cost + B \cdot sint)e^{-t}(V)$

Integracione konstante su: A = -3 (V), B = -9 (V)

Traženo rješenje je: $u_c(t) = 7 - (3cost + 9sint)e^{-t}$ (V), $t \ge 0$

Zadatak 3.

3.1. (1 bod) Prekidač P u kolu sa slike bio je u položaju (1) dovoljno dugo da se može smatrati da je uspostavljen stacionarni režim. U trenutku t=0, prekidač P trenutno se prebacuje u položaj (2). Odredite zavisni početni uslov za promjenu napona na kondenzatoru u trenutku komutacije. Poznato je: $E=100~(V), C=0,5~(\mu F), R_1=10~(k\Omega), R_2=32~(k\Omega), R_3=240~(k\Omega), R_4=60~(k\Omega).$

a)
$$\frac{du_c(0)}{dt} = 2500 \left(\frac{V}{s}\right)$$
 b) $\frac{du_c(0)}{dt} = -2500 \left(\frac{V}{s}\right)$ c) $\frac{du_c(0)}{dt} = -2500 \left(\frac{kV}{s}\right)$ d) $\frac{du_c(0)}{dt} = 2500 \left(\frac{kV}{s}\right)$

Rješenje:

Kako je prekidač u kolu bio zatvoren dovoljno dugo da se može smatrati da je u kolu uspostavljeno stacionarno stanje, možemo zaključiti da je za t < 0 napon na kondenzatoru $u_c(0) = 100 \ (V)$.

Ekvivalentiranjem paralelne veze otpora R_3 i R_4 koja je serijski vezana sa otporom R_2 , dobija se:

$$R_e = R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4} = 80 \ (k\Omega)$$

Diferencijalna jednačina koja opisuje vremensku promjenu napona na kondenzatoru za $t \geq 0$ je:

$$R_e C \frac{du_c(t)}{dt} + u_c(t) = 0$$

Zavisni početni uslov za promjenu napona na kondenzatoru u trenutku komutacije je:

$$\frac{du_c(0)}{dt} = -\frac{u_c(0)}{R_c C} = -2500 \ (V/s)$$

3.2. (1 bod) Potrebno je odrediti vremensku konstantu serijskog RL kola, ako je R=2 (Ω) i L=4 (H).

a)
$$\tau = 0.5$$
 (s) b) $\tau = 2$ (s) c) $\tau = 4$ (s) d) $\tau = 0.25$ (s)

Rješenje:

Vremenska konstanta serijskog RL kola je: $\tau = \frac{L}{R} = 2 (s)$

3.3. (1 bod) Posmatra se kolo prema slici. Odredite kružnu učestanost prave antirezonancije. $R = 5(\Omega), X_L = 8(\Omega), X_M = 2(\Omega), X_C = 10(\Omega),$ $\omega = 5000 \, (rad/s).$

Rješenje:

Kružna učestanost prave antirezonancije određuje se na osnovu slobodnog radnog režima kola čiji su ulazni krajevi otvoreni. Ovako dobijeno kolo odgovara rezonantnom RLC kolu sa ekvivalentnom induktivnom reaktansom:

$$X_e = 2(X_L + X_M) = 20 (\Omega)$$

Iz jednačina kola napisanih preko KZ nije teško zaključiti da je sopstveni odziv kola opisan diferencijalnom jednačinom:

$$L_e C \frac{d^2 u_c(t)}{dt^2} + RC \frac{du_c(t)}{dt} + u_c(t) = 0$$

Rješenja karakteristične jednačine su:
$$p_{1,2} = -\frac{R}{2L_e} \pm j\omega \sqrt{\frac{X_C}{X_e} - \left(\frac{R}{2X_e}\right)^2}$$

Kružna učestanost prave antirezonancije je:

$$\omega_{pa} = \omega \sqrt{\frac{X_c}{X_e} - \left(\frac{R}{2X_e}\right)^2} = 3479,85 \ (rad/s)$$

3.4. (2 boda) Koji odnosi trebaju biti između reaktansi zavojnice i kondenzatora pa da je u kolu moguće ostvariti faznu rezonanciju samo promjenom koeficijenta induktivne sprege k. Poznato je:

$$b = \frac{R}{X_C} = \sqrt{\frac{5}{8}}, \qquad k = \frac{2R^2 + (X_L - X_C)(X_L - 2X_C)}{X_L(X_L - X_C)}$$

$$a)\frac{X_L}{X_C} \ge \frac{13}{8}$$
 $b)\frac{X_L}{X_C} \ge \frac{12}{5}$ $c)\frac{X_L}{X_C} \le \frac{13}{8}$

$$b) \frac{X_L}{X_C} \ge \frac{12}{5}$$

$$c) \frac{X_L}{X_c} \le \frac{13}{8}$$

$$d) \frac{X_L}{X_C} \le \frac{12}{5}$$

Rješenje:

Uvodeći smjenu: $a = \frac{X_L}{X_C}$

Uz dati odnos u zadatku, dobija se: $k = \frac{8a^2 - 24a + 26}{8a(a-1)}$

Imajući u vidu da je $0 < k \le 1$, granice promjena vrijednosti uvedenog parametra a određujemo kao rješenje sistema nejednačina:

$$0 < \frac{8a^2 - 24a + 26}{8a(a-1)} \le 1$$

Brojnik gornje nejednačine je pozitivan za svako a, pa je lijeva strana nejednačine zadovoljena za a>1. Imajući u vidu uslov koji određuje lijeva strana, desna strana nejednačine je zadovoljena za:

$$8a^2 - 24a + 26 < 8a^2 - 8a$$

Ovo je ujedno i traženo rješenje sistema nejednačina.