Assignment 8 - 2021.11.18

Submission deadline: 2021.11.24

1. Suppose Bob has a key $k \in Z_p$ and Alice has an input $m \in M$. We can design a protocol that let Alice obtain $F(k,m) = H(m)^k$ (H is a hash function which can be modeled as random oracle model) in such a way that Bob does not learn anything about m, and Alice learns nothing about k other than F(k,m) and g^k . This kind of protocol is also called "Oblivious transfer protocol".

Hint: Alice chooses a random $\rho \leftarrow Z_q$ and sends Bob $\widehat{m} = H(m) \cdot g^{\rho}$. Explain how Bob responds and what Alice does with this response to obtain F(k, m).

- 2. Let G be a cyclic group of prime order q generated by $g \in G$. Consider a simple variant of the ElGamal encryption system $E_{MEG} = (G, E, D)$ that is defined over (G, G^2) . The key generation algorithm G is the same as in E_{EG} , but encryption and decryption work as follows:
 - a) For a given public key $pk=u\in G$ and message $m\in G$: $E(pk,m)=\beta\leftarrow Z_q, v\leftarrow g^\beta, e\leftarrow u^\beta\cdot m, output\ (v,e)$
 - b) For a given secret key $sk=\alpha\in Z_q$ and a ciphertext $(v,e)\in G^2$:

$$D(sk,(v,e)) = e/v^{\alpha}$$

- 1) Show that E_{MEG} is CPA semantically secure assuming the DDH assumption holds in G.
- 2) Show that E_{MEG} is not semantically secure if the DDH assumption does not hold in G.
- 3) Show that E_{MEG} has the following property: given a public key pk, and two ciphertexts $c_1 \leftarrow E(pk, m_1)$ and $c_2 \leftarrow E(pk, m_2)$, it is possible to create a new ciphertext c which is an encryption of $m_1 \cdot m_2$. This property is called a multiplicative homomorphism.
- 4) In many application scenarios, additive homomorphism is usually more useful than multiplicative homeomorphism. Can you make the Elgamal encryption additive homomorphic? Explain your solution and the drawbacks.