ELEKTRONIKA

Predavanje 9 ANALIZA ELEKTRONIČKIH SKLOPOVA U STATIČKIM I DINAMIČKIM UVJETIMA RADA

Nelinearnost elektroničkih komponenata

- Elektroničke komponente kao što su diode i tranzistori su nelinearne komponente.
- Dioda se uzima kao osnovni primjer nelinearne komponente čija je karakteristika opisana Shockleyjevom jednadžbom:

Statički uvjeti rada (1)

- Podrazumijevaju rad u istosmjernim uvjetima kada je u mreži aktivan jedino istosmjerni izvor.
- Pod pretpostavkom da su poznate veličine U_G i R_G , uz zadanu karakteristiku diode potrebno je odrediti istosmjerni napon na diodi U_D i struju kroz diodu I_D .

Za prikazani strujni krug vrijede sljedeće jednadžbe:

$$U_G = I_D R_G + U_D$$

$$I = I_S \left(\exp \left(\frac{U}{U_T} \right) - 1 \right)$$

Statički uvjeti rada (2)

 Rješavanjem prethodne dvije jednadžbe dobije se transcedentna jednadžba:

$$U_G = I_S R_G \left(\exp \left(\frac{U_D}{U_T} \right) - 1 \right) + U_D$$

- Prethodna jednadžba nije rješiva analitički pa se pristupa drugim načinima rješavanja (analize) kao što su:
 - 1. Grafo-analitički postupak
 - 2. Iteracijski postupak

Statički uvjeti rada (3)

Osnovni postupci analize elektroničkih sklopova

- 1. Grafo-analitički postupak:
 - U isti koordinatni sustav ucrta se pravac dan jednadžbom: $U_G = I_D R_G + U_D$ i karakteristika diode
 - Određivanje statičkog radnog pravca: $U_G = I_D R_G + U_D \Longrightarrow I_D = -\frac{1}{R_G} U_D + \frac{U_G}{R_G}$

$$\begin{array}{ccc}
R_G & R_G \\
\downarrow & \downarrow \\
y = kx + l
\end{array}$$

Kroz dvije točke:

• za
$$U_D = 0$$
 $\Longrightarrow I_D = \frac{U_G}{R_G}$

• za
$$I_D = 0$$
 \Longrightarrow $U_D = U_G$

Presjecište statičkog radnog pravca i karakteristike diode predstavlja statičku radnu točku!!!!

Statički uvjeti rada (4)

Osnovni postupci analize elektroničkih sklopova

- 2. Iteracijski postupak:
- 1. korak: napon na diodi se zanemari: $I_1 = \frac{U_G}{R}$

• 2.korak:
$$I_1 \rightarrow I = I_S \left(\exp \left(\frac{U_D}{U_T} \right) - 1 \right) \rightarrow U_{D1} = U_T \ln \left(\frac{I_1}{I_S} + 1 \right)$$

• 3. korak:
$$I_2 = \frac{U_G - U_{D1}}{R}$$

Kada je razlika između struja I_n i I_{n-1} dovoljno mala postupak se prekida!!!!!!

Režim malih signala (1)

• Što se događa kada na diodu osim istosmjernog napona priključimo i izmjenični sinusni napon elektromotorne sile u_a ?

 u_d – izmjenični napon U_D – istosmjerni napon u_D = u_d + U_D – ukupni napon i_d – izmjenična struja I_D – istosmjerna struja i_D = i_d + I_D – ukupna struja

- Uz pretpostavku da je frekvencija izmjeničnog napona u_g dovoljno niska, ne dolazi do kapacitivnih efekata koji su posljedica promjene akumuliranog naboja manjinskih nosilaca na p i n strani diode te se ponašanje diode može opisati statičkom I-U karakteristikom.
- Za strujni krug na slici vrijede relacije:

$$u_g + U_G = i_D R_G + u_D$$

$$I = I_{S} \left(\exp \left(\frac{U}{U_{T}} \right) - 1 \right)$$

Režim malih signala (2)

- Ako je napon u_g sinusni napon oblika $u_g = U_{gm} \sin \omega t$ odsječci radnog pravca na koordinatnim osima mijenjat će se s vremenom u ritmu ulaznog napona.
- Nagib radnog pravca ostaje isti jer ga određuje samo otpor R_G (tg α =-1/ R_G).
- U trenutku:
 - U_q =0 → pravac p
 - Statička radna točka Q
 - U_g = U_{gm} → pravac p_1
 - Statička radna točka Q₁
 - U_q =- U_{qm} → pravac p_2
 - Statička radna točka Q₂

• Ako je amplituda napona u_g dovoljno mala tada će i pomak statičke radne točke Q biti malen pa se karakteristika diode može aproksimirati pravcem odnosno tangentom na karakteristiku u radnoj točki Q \rightarrow linearizacija!!!

Režim malih signala (3)

Grafički postupak određivanja valnih oblika napona na diodi.

• Sinusni napon u_g frekvencije ω generira sinusoidnu struju i_d i sinusoidni napon u_d iste frekvencije.

Režim malih signala (4)

Totalne trenutne vrijednosti mogu se pisati kao:

$$u_D = U_{DQ} + u_d = U_{DQ} + U_{dm} \sin \omega t$$
$$i_D = I_{DO} + i_d = I_{DO} + I_{dm} \sin \omega t$$

• gdje su U_{dm} i I_{dm} amplitude izmjeničnog napona i struje.

Režim malih signala (5)

• Kut β pod kojim tangenta u radnoj točki siječe apscisu određen je relacijom:

$$ctg\beta = \frac{2U_{dm}}{2I_{dm}} = \frac{U_{dm}}{I_{dm}} = \frac{u_d}{i_d}\bigg|_{Q} = \frac{du_d}{di_d} = r_d$$

Koristeći dinamički otpor diode prethodni izrazi mogu se pisati kao:

$$u_D = U_{DQ} + U_{dm} \sin \omega t$$

$$i_D = I_{DQ} + I_{dm} \sin \omega t = I_{DQ} + \frac{U_{dm}}{r_d} \sin \omega t = I_{DQ} + \frac{u_d}{r_d}$$

- Pitanje: u kojim uvjetima će se moći zanemariti nelinearnost karakteristike diode u okolini statičke radne točke, odnosno kada će sinusoidni napon na diodi generirati sinusoidnu struju kroz diodu?
- Polazište za odgovor Shockleyjeva jednadžba: $i_D = I_S \cdot \left[\exp \left(\frac{u_D}{mU_T} \right) 1 \right]$ gdje je m tzv. faktor injekcije (1 za nisku injekciju, 2 za visoku injekciju)

Režim malih signala (6)

• Ako se na diodu dovede ukupni napon u_D tada je struja i_D određena izrazom:

$$i_{D} = I_{S} \cdot \left[\exp \left(\frac{U_{DQ} + u_{d}}{mU_{T}} \right) - 1 \right] = I_{S} \cdot \left[\exp \left(\frac{U_{DQ}}{mU_{T}} \right) \exp \left(\frac{u_{d}}{mU_{T}} \right) - 1 \right]$$

Uz pretpostavku da je ispunjen uvjet:

$$\frac{u_d}{mU_T} << 1$$

• Rastavljanjem u Taylorov red i uzimanjem prva dva člana može se pisati:

$$\exp\left(\frac{u_d}{mU_T}\right) \approx 1 + \frac{u_d}{mU_T}$$

$$i_D = I_S \cdot \left[\exp \left(\frac{U_{DQ}}{mU_T} \right) \left(1 + \frac{u_d}{mU_T} \right) - 1 \right]$$

Režim malih signala (7)

Kombinacijom prethodna dva izraza dobije se:

$$i_D \approx I_{DQ} + \frac{u_d}{mU_T}$$

$$I_S + I_{DQ}$$

 Deriviranjem struje po naponu dobije se dinamička vodljivost diode u statičkoj radnoj točki:

$$\left|g_{d} = \frac{1}{r_{d}} = \frac{di_{d}}{du_{d}}\right|_{Q} = I_{S} \left(\exp\left(\frac{u_{d}}{mU_{T}}\right)\right) \frac{1}{mU_{T}}\bigg|_{Q} = \frac{i_{D} + I_{S}}{mU_{T}}\bigg|_{Q} = \frac{I_{DQ} + I_{S}}{mU_{T}}$$

iz čega slijedi:

$$i_D = I_{DQ} + \frac{u_d}{r_d}$$

- Dinamički otpor diode ovisi o istosmjernoj struji I_{DQ} u statičkoj radnoj točki, odnosno položaju statičke radne točke.
- S porastom struje I_{DQ} dinamički otpor r_d opada te kod zadanog napona u_d struja i_d raste.

Režim malih signala (8)

• Izrazi "mali signal" i "linearni režim" odnose se samo na izmjenične komponente napona i struje jer između tih komponenata postoji linearni odnos određen relacijom: u

 $i_d = \frac{u_d}{r_d}$

 Rad diode u režimu malih signala može se pretpostaviti kada je zadovoljen uvjet:

$$U_{dm} \ll mU_T$$

• Budući da je kod silicijske diode $1 \le m \le 2$ i da je na sobnoj temperaturi U_{τ} =25mV rad diode u linearnom režimu rada može se numerički izraziti:

$$U_{dm} << (25-50)mV$$

• Opisani režim rada zove se režim malih signala ili linearni režim rada!!!

Režim malih signala (9)

- Dinamički otpor diode ovisi o položaju statičke radne točke.
- Uz konstantan napon na diodi struja kroz diodu se razlikuje ovisno o položaju statičke radne točke.

Zaključak: statički uvjeti određuju ponašanje diode u dinamičkim

uvjetima!!

Režim malih signala (10)

- Statički i dinamički uvjeti rada (signali) su međusobno povezani i prisutni u istom vremenskom trenutku t.
- Zbog jednostavnije analize primjenjuje se metoda superpozicije (aktivan samo jedan izvor u mreži):

Ukupno ponašanje sklopa= Statički uvjeti rada + Dinamički uvjeti rada

Režim velikih signala (1)

Ako nije ispunjen uvjet koji definira rad diode u režimu malih signala:

$$U_{dm} \ll mU_T$$

napon i struja na diodi bit će dani izrazima:

$$u_D = U_{DQ} + u_d$$
 $i_D = I_S \cdot \left[\exp\left(\frac{U_{DQ}}{mU_T}\right) \exp\left(\frac{u_d}{mU_T}\right) - 1 \right]$

Razvojem drugog eksponencijalnog člana u Maclaurinov red dobije se:

$$i_D = I_{DQ} + (I_{DQ} + I_S)(a_1u_d + a_2u_d^2 + a_3u_d^3 + a_4u_d^4 +)$$

• gdje je I_{DQ} struja diode u statičkoj radnoj točki prije dolaska izmjeničnog signala određena relacijom:

$$I_{DQ} = I_{S} \cdot \left[\exp \left(\frac{U_{DQ}}{mU_{T}} \right) - 1 \right]$$

Režim velikih signala (2)

 $a_1 \dots a_4$ su koeficijenti određeni relacijama:

$$a_{1} = \frac{1}{mU_{T}}, a_{2} = \frac{1}{2m^{2}U_{T}^{2}} = \frac{1}{2!}a_{1}^{2}, a_{3} = \frac{1}{6m^{3}U_{T}^{3}} = \frac{1}{3!}a_{1}^{3}, a_{4} = \frac{1}{24m^{4}U_{T}^{4}} = \frac{1}{4!}a_{1}^{4},$$

Ako se u izraz dobiven razvojem u Maclaurinov red uvrsti:

$$u_d = U_{dm} \sin \omega t$$

Dobije se izraz:

$$i_{D} = I_{DQ} + (I_{DQ} + I_{S})(a_{1}U_{dm}\sin\omega t + a_{2}U_{dm}^{2}\sin^{2}\omega t + a_{3}U_{dm}^{3}\sin^{3}\omega t + a_{4}U_{dm}^{4}\sin^{4}\omega t + ...)$$

Korištenjem trigonometrijskih izraza za potencije sinusnih funkcija:

za
$$n$$
 neparan
$$\sin^n \theta = \frac{2}{2^n} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\left(\frac{n-1}{2}-k\right)} \binom{n}{k} \sin((n-2k)\theta)$$

Režim velikih signala (3)

za *n* paran
$$\sin^n \theta = \frac{1}{2^n} \binom{n}{n} + \frac{2}{2^n} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\left(\frac{n}{2}-k\right)} \binom{n}{k} \cos((n-2k)\theta)$$

Dobije se:

$$\begin{split} i_D &= I_{DQ} + \left(I_{DQ} + I_S\right) \left(\frac{1}{2} a_2 U_{dm}^2 + \frac{3}{8} a_4 U_{dm}^4 +\right) + \\ & \left(I_{DQ} + I_S\right) \left(a_1 U_{dm} + \frac{3}{4} a_3 U_{dm}^3 +\right) \sin \omega t + \\ & \left(I_{DQ} + I_S\right) \left(-\frac{1}{2} a_2 U_{dm}^2 - \frac{1}{2} a_4 U_{dm}^4\right) \cos 2\omega t + \\ & \left(I_{DQ} + I_S\right) \left(\frac{1}{3} a_3 U_{dm}^3 -\right) \sin 3\omega t + \\ & \left(I_{DQ} + I_S\right) \left(\frac{1}{8} a_4 U_{dm}^4 +\right) \cos 2\omega t + \end{split}$$

Režim velikih signala (4)

Uvođenjem oznaka

$$\Delta I_{DQ} = I_{DQ} + (I_{DQ} + I_S) \left(\frac{1}{2} a_2 U_{dm}^2 + \frac{3}{8} a_4 U_{dm}^4 + \dots \right),$$

$$I_{dm1} = (I_{DQ} + I_S) \left(a_1 U_{dm} + \frac{3}{4} a_3 U_{dm}^3 + \dots \right),$$

$$I_{dm2} = (I_{DQ} + I_S) \left(-\frac{1}{2} a_2 U_{dm}^2 - \frac{1}{2} a_4 U_{dm}^4 + \dots \right),$$

$$I_{dm3} = (I_{DQ} + I_S) \left(\frac{1}{3} a_3 U_{dm}^3 - \dots \right),$$

$$I_{dm4} = (I_{DQ} + I_S) \left(\frac{1}{8} a_4 U_{dm}^4 + \dots \right).$$

Dobije se izraz:

$$i_{D} = I_{DQ} + \Delta I_{DQ} + I_{dm1} \sin \omega t - I_{dm2} \cos 2\omega t - I_{dm3} \sin 3\omega t + I_{dm4} \sin 4\omega t +$$

Režim velikih signala (5)

- Prethodni izraz vrijedi neovisno o iznosu amplitude U_{dm} , što je amplituda veća veće su i amplitude struja I_{dm1} , I_{dm2} , I_{dm3} , I_{dm4} te dolazi do nelinearnih efekata:
- 1. Napon $u_d = U_{dm} \sin \omega t$ doveden na diodu u statičkoj radnoj točki (U_{DQ}, I_{DQ}) izaziva promjenu istosmjerne struje tako da ona raste te dolazi do pomaka radne točke:

$$I_{DQ1} = I_{DQ} + \Delta I_{DQ}$$

- Radna točka u dinamičkim uvjetima razlikuje se od radne točke u statičkim uvjetima!!!!!
- Prirast ΔI_{DQ} ovisi o parnim potencijama u redu potencija kojim je opisana karakteristika diode.
- Pomak radne točke ovisi o amplitudi U_{dm} , što je veća amplituda veći je i pomak radne točke ΔI_{DO} .
- Tada dioda radi u nelinearnim režimu odnosno režimu velikih signala.

Režim velikih signala (6)

Režim velikih signala (7)

- 2. Struja i_D sadrži izmjenične komponente kružne frekvencije ω , 2ω , 3ω , 4ω ...
- Pored komponente osnovne frekvencije ω koja pripada signalu u_d javljaju se i komponente kojima su frekvencije cjelobrojni višekratnici osnovne frekvencije poznatiji kao viši harmonici:
 - I_{dm1} i ω su amplituda i kružna frekvencija osnovnog harmonika,
 - $-I_{dm2}$, I_{dm3} , I_{dm4} , 2ω, 3ω, 4ω su amplitude i kružne frekvencije viših harmonika.
- Većoj amplitudi U_{dm} odgovara i veći prirast struje ΔI_{DQ} .
- Pri radu diode u režimu velikih signala dolazi do pomaka radne točke te se u izrazu za struju pojavljuju komponente s frekvencijama koje nisu sadržane u priključenom naponskom signalu pa u režimu velikih signala nisu ispunjeni uvjeti linearnog rada te ne vrijedi princip superpozicije u analizi sklopova.

Nelinearna izobličenja (1)

- U režimu velikih signala sinusoidni napon izaziva nesinusoidnu struju što je posljedica nelinearnosti i-u karakteristike diode pa se smatra da je struja izobličena.
- Ovakva izobličenja nazivaju se nelinearna izobličenja, a budući se javljaju i viši harmonici radi se o nelinearnom harmoničkom izobličenju.
- Iako su razmatrana samo na primjeru diode ova izobličenja se pojavljuju u svim odzivnim veličinama elektroničkih sklopova uz sinusnu pobudu.
- Za kvantitativnu ocjenu stupnja izobličenja polazište je izraz za struju i_D koji se može prikazati pomoću spektra pobudne i odzivne veličine.

Nelinearna izobličenja (2)

 Za kvantitativnu ocjenu stupnja nelinearnih harmoničkih izobličenja definiraju se sljedeći faktori izobličenja:

1. Dioni faktor izobličenja *n*-te harmoničke komponente

 Definira se kao omjer amplitude n-te harmoničke komponente i amplitude osnovne komponente:

$$D_n = \frac{I_{dmn}}{I_{dm1}}$$
 $n = 2,3,4....$

2. Faktor izobličenja (Total harmonic distortion - *THD*)

Definira se kao drugi korijen sume kvadrata dionih faktora izobličenja:

$$D = \sqrt{D_2^2 + D_3^2 + D_4^2 + \dots}$$

Nelinearna izobličenja (3)

- Ako se uz pretpostavku dovoljne točnosti izvrši aproksimacija karakteristike diode s prva četiri člana reda za slučaj kada vrijede sljedeći podaci:
 - m=1,
 - U_T =25mV (sobna temperatura)
 - $U_{dm} = 50 \text{mV}$
- Dobiju se sljedeće vrijednosti faktora izobličenja:

$$D_2 = \frac{I_{dm2}}{I_{dm1}} = \frac{4}{9} = 44,5\%$$

$$D_3 = \frac{I_{dm3}}{I_{dm1}} = \frac{1}{9} = 11,1\%$$

$$D_4 = \frac{I_{dm4}}{I_{dm1}} = \frac{1}{36} = 2,78\% \qquad D = \sqrt{D_2^2 + D_3^2 + D_4^2} = 46\%$$

$$D = \sqrt{D_2^2 + D_3^2 + D_4^2} = 46\%$$

Nelinearna izobličenja (4)

• Što se događa ukoliko se u statičku radnu točku diode dovede signal sastavljen od dvije komponente različitih frekvencija ω_1 i ω_2 i različitih amplituda U_{dm1} i U_{dm2} ?

$$u_d = U_{dm1} \sin \omega_1 t + U_{dm2} \sin \omega_2 t$$

• Uz aproksimaciju i-u karakteristike diode s prva dva člana struja i_D se može izraziti kao:

$$\begin{split} i_{D} &= I_{DQ} + \left(I_{DQ} + I_{S}\right) \left(a_{1}u_{d} + a_{2}u_{d}^{2}\right) = \\ &= I_{DQ} + \left(I_{DQ} + I_{S}\right) \left[a_{1}\left(U_{dm1}\sin\omega_{1}t + U_{dm2}\sin\omega_{2}t\right) + a_{2}\left(U_{dm1}\sin\omega_{1}t + U_{dm2}\sin\omega_{2}t\right)^{2}\right] \end{split}$$

 Korištenjem adicijskih teorema i izraza dvostrukog kuta prethodni izraz glasi:

Nelinearna izobličenja (5)

$$\begin{split} i_{D} &= I_{DQ} + \frac{a_{2}}{2} \left(I_{DQ} + I_{S} \right) \left(U_{dm1}^{2} + U_{dm2}^{2} \right) + a_{1} \left(I_{DQ} + I_{S} \right) U_{dm1} \sin \omega_{1} t + \\ &+ a_{1} \left(I_{DQ} + I_{S} \right) U_{dm2} \sin \omega_{2} t + \frac{a_{2}}{2} \left(I_{DQ} + I_{S} \right) U_{dm1}^{2} \cos 2\omega_{1} t - \\ &- \frac{a_{2}}{2} \left(I_{DQ} + I_{S} \right) U_{dm1}^{2} \cos 2\omega_{2} t + a_{2} \left(I_{DQ} + I_{S} \right) U_{dm1} U_{dm2} \cos (\omega_{1} - \omega_{2}) t - \\ &- a_{2} \left(I_{DQ} + I_{S} \right) U_{dm1} U_{dm2} \cos (\omega_{1} + \omega_{2}) t \end{split}$$

- Svi nelinearni efekti opisani kod nelinearnih harmoničkih izobličenja javljaju se i u ovom slučaju (prirast istosmjerne komponente, pojava viših harmonika uz osnovnu komponentu)
- Osim navedenih, uočava se novi efekt: pojava komponenata s kružnim frekvencijama ω_1 - ω_2 i ω_1 + ω_2 , dakle s frekvencijama jednakima razlici i zbroju osnovnih frekvencija.

Nelinearna izobličenja (6)

- Ako se karakteristika diode aproksimira s više od dva člana reda, tada se u izrazu za struju i_D uz prethodno prisutne komponente javljaju i komponente s kružnim frekvencijama $3\omega_1$, $3\omega_2$, $2\omega_1$ + ω_2 , $2\omega_1$ ω_2 , $2\omega_2$ + ω_1 , $2\omega_2$ ω_1 .
- Općenito, može se očekivati pojava komponenata kojima su frekvencije jednake zbrojevima i razlikama ne samo osnovnih frekvencija nego i zbrojevima i razlikama različitih kombinacija njihovih viših harmonika frekvencija.
- Izobličenja izazvana pojavom komponenata s frekvencijama $\omega_1+\omega_2$, $\omega_1-\omega_2$, $2\omega_1+\omega_2$, $2\omega_1-\omega_2$, $2\omega_2+\omega_1$, $2\omega_2-\omega_1$ nazivaju se nelinearna neharmonička izobličenja.

Nelinearna izobličenja (7)

• Primjene nelinearnih izobličenja:

- U većini se elektroničkih primjena prijenos i obrada signala želi izvršiti bez promjene valnog oblika npr. linearna elektronička pojačala (uz propisani dozvoljeni stupanj nelinearnih izobličenja).
- Zbog nelinearnosti elektroničkih komponenata i konačnog iznosa ulaznog signala nelinearna izobličenja nije moguće izbjeći.
- U određenom broju primjena nelinearna izobličenja se ne izbjegavaju nego se namjerno izazivaju za obavljanje određenih elektroničkih funkcija kao što su:
 - ispravljanje izmjeničnih signala,
 - multipliciranje frekvencija,
 - miješanje ili transponiranje frekvencija,
 - moduliranje signala (amplitudna modulacija).

Nelinearna izobličenja (8)

• <u>Ispravljanje izmjeničnih signala:</u>

- Osnovna karakteristika nelinearnih izobličenja je prirast istosmjerne komponente ΔI_{DO} kako je prethodno pokazano.
- Ako je istosmjerna struja u statičkoj radnoj točki prije dolaska signala jednaka nuli, dolaskom izmjeničnog signala pojavit će se (zbog nelinearnosti karakteristike diode) istosmjerna komponenta ΔI_{DO} .
- Upravo ova činjenica je temelj koji se koristi za pretvorbu izmjeničnih veličina u istosmjerne u uređajima koji se nazivaju ispravljači.

Nelinearna izobličenja (9)

Multipliciranje frekvencija:

- Pojava viših harmonika nastalih dovođenjem izmjeničnog signala na nelinearnu komponentu otvara mogućnost multipliciranja određene frekvencije.
- Ako se izobličeni signal s pripadajućim višim harmonicima propusti kroz selektivni filter podešen na željenu harmoničku frekvenciju na izlazu filtera pojavit će se ta frekvencija dok će ostale frekvencije biti prigušene.

Miješanje ili transponiranje frekvencija:

• Dovođenjem dvaju sinusnih signala različitih frekvencija na nelinearni elektronički element dolazi do pojave nelinearnih neharmoničkih izobličenja uz pojavu neharmoničke komponente ω_1 - ω_2 , (uz pojavu i ostalih frekvencija ω_1 + ω_2 , $2\omega_1$ + ω_2 , $2\omega_1$ - ω_2 , $2\omega_2$ + ω_1 , $2\omega_2$ - ω_1)

Nelinearna izobličenja (10)

Miješanje ili transponiranje frekvencija:

- Na ulaz sklopa za miješanje frekvencija dovodi se sinusni signal kružne frekvencije ω_1 preko titrajnog kruga 1, a iz lokalnog oscilatora se istodobno dovodi sinusni signal kružne frekvencije ω_2 .
- Podešavanjem titrajnog kruga 2 na frekvenciju ω_1 - ω_2 na izlazu diodnog sklopa za miješanje pojavit će se sinusni signal frekvencije ω_1 - ω_2 .
- Ako se frekvencija signala iz lokalnog oscilatora ω_2 mijenja u ovisnosti o frekvenciji ω_1 tada je frekvencija izlaznog signala ω_1 - ω_2 konstantna.

Nelinearna izobličenja (11)

Moduliranje signala:

- Nelinearna neharmonička izobličenja primjenjuju se u postupku amplitudne modulacije koji podrazumijeva utiskivanje signala informacije (niska frekvencija) u amplitudu signala nosioca (visoka frekvencija).
- Korištenjem diodnog sklopa za miješanje uz odabir frekvencija $\omega_1 >> \omega_2$ te podešavanjem titrajnog kruga 2 na frekvenciju ω_1 dobije se izlazni signal napon proporcionalan članovima s frekvencijama ω_1 , ω_1 - ω_2 , ω_1 + ω_2 .

$$u_{izl} \cong a_1 I_S U_{dm1} \sin \omega_1 t + a_2 I_S U_{dm1} U_{dm2} \left[\cos(\omega_1 - \omega_2) t - \cos(\omega_1 + \omega_2) t \right]$$

Primjenom trigonometrijske relacije:

$$\cos(\omega_1 - \omega_2)t - \cos(\omega_1 + \omega_2)t = 2\sin\omega_1t \cdot \sin\omega_2t$$

Nelinearna izobličenja (12)

Moduliranje signala:

• Izlazni signal može se prikazati u obliku:

$$u_{izl} \cong a_1 I_S U_{dm1} \left[1 + 2 \frac{a_2}{a_1} U_{dm2} \sin \omega_2 t \right] \sin \omega_1 t$$

- Posljednji izraz opisuje signal visoke frekvencije ω_1 kojem se amplituda mijenja u ritmu niske frekvencije ω_2 .
- Signal niske frekvencije je modulirao amplitudu signala visoke frekvencije pa se ova pojava naziva amplitudna modulacija.

Analiza elektroničkih sklopova (1)

• Uz nelinearne elektroničke komponente u elektroničkim sklopovima se koriste i pasivne disipativne te reaktivne komponente.

- Pitanje: kako se ponašaju reaktivne komponente (kondenzator) u strujnom krugu?
- Reaktancija kondenzatora definirana je izrazom:

$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi \cdot f \cdot C}$$

Analiza elektroničkih sklopova (2)

- U statičkim (istosmjernim) uvjetima f=0 Hz reaktancija kondenzatora $X_c=\infty$ i kondenzator predstavlja prekid (otvoreni krug).
- U dinamičkim (izmjeničim) uvjetima f>0 Hz uz dovoljno veliki iznos kapaciteta kondenzatora C reaktancija kondenzatora $X_C=0$ i kondenzator predstavlja kratki spoj.
- Korištenjem metode superpozicije prethodni elektronički sklop se može rastaviti:

• Elektronički sklop je različit pa je potrebno napraviti analizu rada posebno za statičke i posebno za dinamičke uvjete rada.

Analiza elektroničkih sklopova (3)

Statički uvjeti rada:

• Vrijedi jednadžba radnog pravca: $U_G = I_D (R_G + R) + U_D$

Analiza elektroničkih sklopova (4)

• <u>Dinamički uvjeti rada:</u>

- Jednadžba strujnog kruga glasi: $u_g = i_d R_G + u_d$
- Uvrštavanjem izmjeničnih veličina prethodni se izraz može zapisati kao:

$$u_g = (i_D - I_{DQ})R_G + (u_D + U_{DQ})$$

• Odnosno, ako se izrazi struja dobije se jednadžba dinamičkog radnog pravca: $i_D-I_{DQ}=-\frac{1}{R_G}(u_D+U_{DQ})+\frac{1}{R_G}u_g$

gdje je nagib definiran s:
$$tg\alpha_1 = -\frac{1}{R_C}$$

Analiza elektroničkih sklopova (5)

- Dinamički uvjeti rada:
- Ako je u_g =0 tada vrijedi i_D = I_{DQ} i U_D = U_{DQ} , odnosno dioda radi u statičkim uvjetima rada što znači da dinamički radni pravac također mora prolaziti kroz statičku radnu točku.
- Struja i napon mogu se analitički izraziti na sljedeći način:

$$i_d = \frac{u_g}{R_G + r_d} = \frac{U_{gm}}{R_G + r_d} \sin \omega t$$

$$u_d = i_d r_d = U_{gm} \frac{r_d}{R_G + r_d} \sin \omega t$$

Analiza elektroničkih sklopova (6)

- <u>Dinamički uvjeti rada:</u>
- Konstrukcija valnih oblika struje i napona:

