Problem formulation and efficient numerical methods of real-time estimation based on DAE process models

Ihno Schrot

Outline: 1. Introduction | 2. Problem formulation 2.1 Moving Horizon approach | 3. Numerical solution 3.1 Multiple Shooting as framework for MHE 3.2 Solution of the NLP 3.3 real-time iteration | 4. Discussion

Output and state noise MHE

$$\min_{\boldsymbol{x}_{j},\ \boldsymbol{z}_{j},\ \boldsymbol{p},\ \boldsymbol{w}_{j}} \quad \left(\left| \left| \begin{array}{c} \boldsymbol{x}_{L} - \bar{\boldsymbol{x}}_{L} \\ \boldsymbol{p}_{L} - \bar{\boldsymbol{p}}_{L} \end{array} \right| \right|_{P_{L}}^{2} + \sum_{j=L}^{k} ||\boldsymbol{y}_{j} - \boldsymbol{h}(\boldsymbol{x}(\tau_{j}) \quad , \boldsymbol{z}(\tau_{j}), \boldsymbol{p})||_{V_{j}}^{2} + \sum_{j=L}^{k-1} ||\boldsymbol{w}_{j}||_{W}^{2} \right)$$
s.t.
$$\boldsymbol{x}_{j+1} = \boldsymbol{F}(\boldsymbol{x}_{j}, \boldsymbol{z}_{j}, \boldsymbol{u}_{j}, \boldsymbol{p}) + \boldsymbol{w}_{j}, \qquad j = L, \dots, k-1,$$

$$\boldsymbol{0} = \boldsymbol{g}(\boldsymbol{x}_{j}, \boldsymbol{z}_{j}, \boldsymbol{u}_{j}, \boldsymbol{p}), \qquad j = L, \dots, k,$$

$$\boldsymbol{x}_{j,\min} \leq \boldsymbol{x}_{j} \leq \boldsymbol{x}_{j,\max}, \qquad j = L, \dots, k,$$

$$\boldsymbol{z}_{j,\min} \leq \boldsymbol{z}_{j} \leq \boldsymbol{z}_{j,\max}, \qquad j = L, \dots, k,$$

$$\boldsymbol{w}_{j,\min} \leq \boldsymbol{w}_{j} \leq \boldsymbol{w}_{j,\max}, \qquad j = L, \dots, k,$$

$$\boldsymbol{p}_{\min} \leq \boldsymbol{p} \leq \boldsymbol{p}_{\max}.$$
[MHE]

Optimal arrival cost

$$C_{L+1}^* = \min_{\boldsymbol{x}_L, \ \boldsymbol{p}_L} \quad \left(\left\| \begin{array}{c} \boldsymbol{x}_L - \bar{\boldsymbol{x}}_L \\ \boldsymbol{p}_L - \bar{\boldsymbol{p}}_L \end{array} \right\|_{P_L}^2 + \left\| \boldsymbol{y}_L - \boldsymbol{h}(\boldsymbol{x}(\tau_L), \boldsymbol{p}_L) \right\|_{V_L}^2 + \left\| \begin{array}{c} \boldsymbol{w}_L \\ \boldsymbol{w}_L^p \end{array} \right\|_{\bar{W}_L}^2 \right)$$
s.t.
$$\boldsymbol{w}_L = \boldsymbol{x}_{L+1} - \boldsymbol{F}(\boldsymbol{x}_L, \boldsymbol{u}_L, \boldsymbol{p}_L),$$
$$\boldsymbol{w}_L^p = \boldsymbol{p}_{L+1} - \boldsymbol{p}_L.$$
 [ACP]

QR decomposition

$$M_{\mathrm{QR}} = \begin{pmatrix} P_L & 0 \\ -(V_L H_X \mid V_L H_p) & 0 \\ -\bar{W}_L \begin{pmatrix} X_X & X_p \\ 0 & \mathbb{I} \end{pmatrix} & \bar{W}_L \end{pmatrix} = Q \begin{pmatrix} \mathcal{R}_1 & \mathcal{R}_{12} \\ 0 & \mathcal{R}_2 \\ 0 & 0 \end{pmatrix}$$
(1)

$$\begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix} := Q^T \begin{pmatrix} -P_L \begin{pmatrix} \bar{\boldsymbol{x}}_L \\ \bar{\boldsymbol{p}}_L \end{pmatrix} \\ V_L(\boldsymbol{y}_L - \tilde{\boldsymbol{h}}) \\ \bar{W}_L \begin{pmatrix} \tilde{\boldsymbol{x}} \\ 0 \end{pmatrix} \end{pmatrix}. \tag{2}$$

$$P_{L+1} := \mathcal{R}_2, \quad \begin{pmatrix} \bar{\boldsymbol{x}}_{L+1} \\ \bar{\boldsymbol{p}}_{L+1} \end{pmatrix} = -\mathcal{R}_2^{-1} \rho_2. \tag{3}$$

Quadratic subproblem

$$\min_{\Delta \boldsymbol{r}_{k}^{i}} \quad \left\| J(\boldsymbol{r}_{k}^{i}; \boldsymbol{D}_{k}) + \nabla_{\boldsymbol{r}} J(\boldsymbol{r}_{k}^{i}; \boldsymbol{D}_{k})^{T} \Delta \boldsymbol{r}_{k}^{i} \right\|_{2}^{2}$$
s.t.
$$\mathbf{0} = \boldsymbol{G}(\boldsymbol{r}_{k}^{i}; \boldsymbol{D}_{k}) + \nabla_{\boldsymbol{r}} \boldsymbol{G}(\boldsymbol{r}_{k}^{i}; \boldsymbol{D}_{k})^{T} \Delta \boldsymbol{r}_{k}^{i},$$

$$\mathbf{0} \leq \boldsymbol{H}(\boldsymbol{r}_{k}; \boldsymbol{D}_{k}) + \nabla_{\boldsymbol{r}} \boldsymbol{H}(\boldsymbol{r}_{k}; \boldsymbol{D}_{k})^{T} \Delta \boldsymbol{r}_{k}^{i}$$
[QP]

```
Algorithm 1: MHE real-time iteration
```

```
Input: multiple shooting data vector:  \boldsymbol{r}_{k-1} = (\boldsymbol{x}_{L-1}, \boldsymbol{z}_{L-1}, \dots, \boldsymbol{x}_{k-1}, \boldsymbol{z}_{k-1}, \boldsymbol{w}_{L-1}, \dots, \boldsymbol{w}_{k-2}, \boldsymbol{p})  online data set from previous intervals:  \boldsymbol{D}_{k-1} = (\bar{\boldsymbol{x}}_{L-1}, \bar{\boldsymbol{p}}_{L-1}, P_{L-1}, \boldsymbol{y}_{L-1}, V_{L-1}, \boldsymbol{u}_{L-1}, \dots, \boldsymbol{y}_{k-1}, V_{k-1}, \boldsymbol{u}_{k-1},)  online data which becomes known during the iteration:  \boldsymbol{y}_k, \, V_k, \, \boldsymbol{u}_k
```

Output: current estimates $\hat{\boldsymbol{x}}_k$, $\hat{\boldsymbol{z}}_k$, $\hat{\boldsymbol{p}}_k$, updated \boldsymbol{r}_k and updated $\bar{\boldsymbol{x}}_L$, $\bar{\boldsymbol{p}}_k$ for \boldsymbol{D}_k

```
1 At initial sample k=0 provide initial guess \boldsymbol{w}_0,\ \boldsymbol{D}_0
```

2 for samples k = 1, 2, ... do

```
Preparation phase for horizon [\tau_L, \tau_k] before \tau_k:
```

3 Update arrival cost data $(\bar{\boldsymbol{x}}_L, \bar{\boldsymbol{p}}_L)$ and P_L with eq. (3)

Shift data vectors:

4

5

6

7

8

9

$$oldsymbol{r}_k^- = (oldsymbol{x}_L, oldsymbol{z}_L, oldsymbol{z}_L, oldsymbol{x}_k^-, oldsymbol{z}_k^-, oldsymbol{w}_L, \dots, oldsymbol{w}_{k-1}^-, oldsymbol{p})$$

$$\boldsymbol{D}_k = (\bar{\boldsymbol{x}}_L, \bar{\boldsymbol{p}}_L, P_L, \boldsymbol{y}_L, V_L, \boldsymbol{u}_L, \dots, *, V_k, \boldsymbol{u}_k)$$

where * is a wildcard for the not yet known output \boldsymbol{y}_k

Solve DAE system on interval $[\tau_{k-1}, \tau_k]$ and set

$$\boldsymbol{x}_k^- := \boldsymbol{x}(\tau_k; \boldsymbol{x}_{k-1}, \boldsymbol{z}_{k-1})$$

$$\boldsymbol{w}_{k-1}^- = 0$$

$$m{z}_k^- := m{z}(au_k; m{x}_{k-1}, m{z}_{k-1})$$

Compute all but one vector component of problem [QP]

except for
$$V_k(\boldsymbol{y}_k - \boldsymbol{h}(\boldsymbol{x}_k, \boldsymbol{z}_k, \boldsymbol{p}))$$

Compute all matrix components of problem [QP]

end of preparation phase

Estimation phase for horizon $[\tau_{L+1}, \tau_k]$ at τ_k :

Complete vector D_k as y_k becomes known

Solve [QP] for Δr_k

10 Update:

$$\boldsymbol{r}_k = \boldsymbol{r}_k^- + \Delta \boldsymbol{r}_k$$

$$\hat{m{x}}_k = m{x}_k$$

$$\hat{oldsymbol{z}}_k = oldsymbol{z}_k$$

$$\hat{m{p}}_k = m{p}$$

end of estimation phase

end

List of Symbols

Symbol	Description	Element of/size
C_L	Arrival cost of time window $[\tau_L, \tau_k]$; the superscripts "*" and "'" denote variants	\mathbb{R}
$egin{aligned} oldsymbol{D}_k\ \Delta oldsymbol{r}_k^i \end{aligned}$	Online data in the MHE at time $ au_k$ i -th increment for r_k in the Gauß-Newton method for the MHE	No actual mathematical dimension see \boldsymbol{r}_k
$oldsymbol{F}$	Iteration function for x_j usually obtained from numerical integration	$\mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_p} \to \mathbb{R}^{n_x}$
f	Function in the DAE system	$\mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_p} \to \mathbb{R}^{n_x}$
$oldsymbol{G}$	Collected equality constraints in terms of r_k and D_k in the MHE	$(M-1)n_x + Mn_z$ equations
$oldsymbol{g}$	Function in the DAE system	$\mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_p} \to \mathbb{R}^{n_z}$
H	Collected inequality constraints in terms of r_k and D_k in the MHE	$2M(2n_x + n_z) + 2n_p$ inequalities
h	Ideal measurement function (collecting all devices in one vector)	$\mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_p} \to \mathbb{R}^{n_h}$
H_p	Sensitivity matrix of the ideal measurement function with states at time τ_{L+1}	$\mathbb{R}^{n_h imes n_p}$
H_x	with respect to the parameters p Sensitivity matrix of the ideal measurement function with states at time τ_{L+1} with respect to the initial values $x(\tau_L)$	$\mathbb{R}^{n_h imes n_x}$
J	General cost function for the optimal control problem	$\mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_p} \to \mathbb{R}$
k	Index of last measurement in time window of MHE	\mathbb{R}
L	:= k - M + 1; Index of first measurement in time window of MHE	\mathbb{R}
M	Number of measurements in time window of MHE	\mathbb{R}
$M_{ m QR}$	Matrix which is decomposed with a QR-decomposition. See equation (1)	$\mathbb{R}^{(2n_x+2n_p+n_h)\times(2n_x+2n_p)}$
$m{p} P_L$	System parameters Weighting matrix for the arrival cost C_L	$\mathbb{R}^{n_p} \\ \mathbb{R}^{(n_x+n_p)\times(n_x+n_p)}$
$egin{array}{c} ar{oldsymbol{p}}_L \ \hat{oldsymbol{p}} \end{array}$	Parameter for the arrival cost C_L Estimation of the parameters	\mathbb{R}^{n_p} \mathbb{R}^{n_p}
Q	Orthogonal matrix of QR-decomposition of $M_{\rm QR}$	$\mathbb{R}^{(2n_x+2n_p+n_h)\times(2n_x+2n_p+n_h)}$
q	Optimization variables for the discretised controls in the multiple shooting method	\mathbb{R}^{n_u}
$\mathcal{R}_1,\;\mathcal{R}_{12},\;\mathcal{R}_2$	Matrices occurring in the QR-decomposition of $M_{\rm QR}$ (see equation (1))	$\mathbb{R}^{(n_x+n_p)\times(n_x+n_p)}$
$\rho_1, \ \rho_2, \ \rho_3$	Needed in the computation of the arrival cost; see equation (2) for definition	$\mathbb{R}^{(n_x+n_p)}$ for $\rho_1, \ \rho_2, \mathbb{R}^{n_h}$ for ρ_3
$oldsymbol{r}_k$	Collected optimization variables in the MHE at time τ_k	$\mathbb{R}^{(M)*(n_x+n_z)+(M-1)*n_x+n_p}$
$m{r}_k^i$	i -th iterate for r_k in the Gauß-Newton method for the MHE	see $m{r}_k$
$oldsymbol{s}^x,\ oldsymbol{s}^z$	Initial states at the shooting nodes in the multiple shooting method	$\mathbb{R}^{n_x}, \ \mathbb{R}^{n_z}$
$T \ t$	End time (in the offline case) Time	\mathbb{R}

Symbol	Bescription	Ziemene 61/5120
t_0	Starting time (in the offline case)	IR IR
$t_{ m M}$	Length of time window of MHE	
$ au_j$	<i>j</i> -th sampling time/shooting node of the multiple shooting method	\mathbb{R}
$oldsymbol{u}$	Controls	\mathbb{R}^{n_u}
V	Weighting matrix of the measurement noise. Usually square root of the inverse of the covariance matrix of v	$\mathbb{R}^{n_h \times n_h}$
$oldsymbol{v}$	Measurement noise	\mathbb{R}^{n_h}
$oldsymbol{w}$	State noise	\mathbb{R}^{n_x}
$oldsymbol{w}^p$	Parameter noise	\mathbb{R}^{n_p}
W	Weighting matrix of the state noise. Usually square root of the inverse of the covariance matrix of the state noise \boldsymbol{w}	$\mathbb{R}^{n_x imes n_x}$
$ar{W}$	Weighting matrix of the combined state and parameter noise. Usually square root of the inverse of the combined covariance matrix of \boldsymbol{w} and \boldsymbol{w}^p	$\mathbb{R}^{(n_x+n_p)\times(n_x+n_p)}$
$oldsymbol{x}$	Differential states	\mathbb{R}^{n_x}
$oldsymbol{x}_0$	Initial values for differential states	\mathbb{R}^{n_x}
X_p	Sensitivity matrix of the states at time τ_{L+1} with respect to the parameters p	$\mathbb{R}^{n_x imes n_p}$
X_x	Sensitivity matrix of the states at time τ_{L+1} with respect to the initial values $x(\tau_L)$	$\mathbb{R}^{n_x imes n_x}$
$ar{m{x}}_L$	Parameter for the arrival cost C_L	\mathbb{R}^{n_x}
$\hat{m{x}}_L$	Estimation of the differential states	\mathbb{R}^{n_x}
ξ	Collected optimization variables in the	bla
\$	multiple shooting method	ou.
$oldsymbol{y}_j$	Output of measurement devices	\mathbb{R}^{n_h}
\boldsymbol{z}	Algebraic states	\mathbb{R}^{n_z}
$\hat{oldsymbol{z}}$	Estimation of the algebraic states	\mathbb{R}^{n_z}

Element of/size

Note: A subscript either indicates the interval index for which the variable holds or that the variables was taken at time τ_j unless specified otherwise.

References

Symbol

Description

Hans Georg Bock. Numerical treatment of inverse problems in chemical reaction kinetics. In *Modelling of chemical reaction systems*, pages 102–125. Springer, 1981.

Hans Georg Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Number 183. Der Math.-Naturwiss. Fakultät der Universität Bonn, 1987.

Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solution of optimal control problems. $IFAC\ Proceedings\ Volumes,\ 17(2):1603-1608,\ 1984.$

Fred Daum. Nonlinear filters: beyond the kalman filter. IEEE Aerospace and Electronic Systems Magazine, 20(8):57–69, 2005.

Arthur Gelb. Applied optimal estimation. MIT press, 1974.

Peter Kühl, Moritz Diehl, Tom Kraus, Johannes P. Schlöder, and Hans Georg Bock. A real-time algorithm for moving horizon state and parameter estimation. Computers & Chemical Engineering, 35(1):71 – 83, 2011.

James B. Rawlings and Bhavik R. Bakshi. Particle filtering and moving horizon estimation. Computers & Chemical Engineering, 30(10):1529 – 1541, 2006.

Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-68):7, 1999.