

Basics

Martha Hoffmann Session I RLI, 16.09.2019

Aim of this session

Theoretical and practical introduction to using oemof

All workshop contents at: https://github.com/smartie2076/oemof workshop

Motivation for open source tools

Open source software is crucial to ...

- meet scientific standards in software based research
- foster bottom-up approaches by reducing barriers associated with high license cost of proprietary software tools
- improve research quality & completeness & knowledge pooling due to collaborative modelling

What is the main idea behind oemof?

- Collaborative, public development
- Recycling and expansion of existing models
- Modular structure with defined interfaces to correlate other approaches/packages
- Improved review process by the community

What is the main idea behind oemof?

Community-driven open-Source modelling framework initiated by:

- Python package/library specifically developed for energy system modelling
- Model individual requirements/aspects in research projects, dissertations, Bachelor/-Master thesis
- Official website: http://oemof.org

Oemof projects at RLI

- Research projects
 - Publicly funded by EU,
 - ▶ BMWI, BMWF
- Research studies
- Contract work
 - Model development
 - Workshops
 - Web-applications
- General oemof uses: https://oemof.org/projects/

des Deutschen Bundestages

Github reprositories of oemof

Oemof toolbox on github: https://github.com/oemof

Package structure

Package structure

13

Actual energy system to be simulated

Source/Caption:

Available oemof components

- Graph-based modelling:
 - Energy system build by Nodes, which are uni-laterally connected with Flows

► Main node classes / components:

Simplified, oemof-compatible system

Optimizing with oemof - Objective value

- Oemof generates a linear equation system describing the energy system model
- Solves for the minimal objective value (total costs)
- ► Target function:

$$\min \sum_{i} (Capex(i) * CRF(i) + Opex_{fix}(i)) * P_{inst}(i) + \sum_{i} \sum_{t} Opex_{var}(i) * E_{gen}(i,t)$$

$$i \in \{WEA, PV, BHKW, Speicher\}$$

 $t \in \{1...8760\}$

Capex	Capital expenditure	EUR/kW
CRF	Capital recovery factor	-
$Opex_{fix}$	Fixed operational expenditure	EUR/(kW*a)
$Opex_{var}$	Variable operational expenditure	EUR/kWh
P_{inst}	Capacity of component	kW
\mathbf{E}_{gen}	Generated electricity per timestep	kWh
i	Index of system components	-
t	Index of time steps	-

Installation of oemof

- Necessary to install:
 - Python programming environment (eg. pycharm)
 - Package manager (eg. miniconda)
 - Solver (eg. coinor-cbc)
 - Python library oemof
- More information:
 - Slides: Oemof_Workshop_02_Installation.pptx
 - Youtube tutorial for Windows: https://www.youtube.com/watch?v=eFvoM36_szM

Building an own oemof application

Data requirements of an oemof model

- Economic parameters:
 - Fix and variable cost of the system components
 - For internal processing of costs: WACC, project lifetime)
- ► Timeseries with values for each timestep:
 - Sources (non-dispatchable generation)
 - Sinks (non-dispatchable demands)
- ► Technical parameters:
 - ► Transformer (eg. generator) efficiencies
 - Technical storage parameters

Download coding examples

- Download git reprository of this workshop from git: https://github.com/smartie2076/oemof_workshop
- ► To execute jupyter notebooks:
 - Open terminal, move to folder "/oemof_workshop"
 - Create environment and install requirements

```
pip install -r requirements.txt
```

Execute

jupyter notebooks

Tutorials - Jupyter notebooks

- Dispatch optimization with fixed capacities: ./Day_1_Oemof_Basics/1a_tutorial_dispatch.ipynb
- Investment and dispatch optimization: ./Day_1_Oemof_Basics/2a_tutorial_investment_optimization.ipynb

Tasks - Jupyter notebooks

- Dispatch optimization with fixed capacities: \Day_1_Oemof_Basics\1b_task_dispatch.py
- Investment and dispatch optimization: \Day_1_Oemof_Basics\2b_task_investment_optimization.py

→ Solutions are provided

26

Working with oemof

- Download and use oemof
- Register on and post and discuss issues on:
 https://forum.openmod-initiative.org/tags/c/qa/oemof
- Indicate or post own projects/coding examples via mail or github
- Find documentation on:
 http://oemof.readthedocs.io/en/stable/
 - Register errors in documentation via mail or issue or pull request (github)
- Find oemof examples on:
 https://github.com/oemof/oemof_examples

Helping oemof develop

Documentation

- Register or correct spelling and grammar mistakes
- Re-write sections that are unclear
- Add missing explainations

Code

- Register or fix bugs
- Fix docstring or code layout
- Create and submit own components or constraints
- Add own features or implement requested features
- When developing: Fork/clone oemof reprository: http://github.com/oemof/oemof

Oemof user&developer meetings

- Yearly user&developer meetings
- ► Half-yearly developer meetings
 - Next meeting: 4. to 6.12.2019, Berlin
 - Register and develop agenda on: https://oemof.org/2019/09/11/oemof-turns-5- anniversary-developer-meeting-in-december-2019/

THANK YOU FOR YOUR ATTENTION!

How to follow Oemof's activities?

Website: https://oemof.org/

Github: https://github.com/oemof

Or join our mailing list!

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0)

See license text for further information.

Tel: +49 (0)30 1208 434 88

E-Mail: martha.hoffmann@rl-institut.de

Web: http://www.rl-institut.de

Twitter: @rl_institut

Please quote as: "PRESENTATION TITLE" @ Reiner Lemoine Institut | CC BY 4.0

