Introduction to Econometrics

Lecture 5 : OLS inference (SW Cha 5 & 7)

Zhaopeng Qu

Business School, Nanjing University

Oct. 23th, 2017

Outlines

- Review: Hypothesis Test
 - Hypothesis Test:
 - Simple OLS in Normal Sampling Distribution
- OLS with One Regressor: Hypothesis Tests
 - ullet Hypothesis Test of of \bar{Y}
 - ullet the Normal distribution and Hypothesis Test of of $ar{Y}$
 - OLS with One Regressor: Hypothesis Tests
 - Gauss-Markov theorem and Heteroskedasticity
- 3 OLS with Multiple Regressors: Hypotheses tests
 - Hypothesis test and Confidence interval for single coefficient

Outlines

- Review: Hypothesis Test
 - Hypothesis Test:
 - Simple OLS in Normal Sampling Distribution
- 2 OLS with One Regressor: Hypothesis Tests
 - Hypothesis Test of of \bar{Y}
 - ullet the Normal distribution and Hypothesis Test of of $ar{Y}$
 - OLS with One Regressor: Hypothesis Tests
 - Gauss-Markov theorem and Heteroskedasticity
- 3 OLS with Multiple Regressors: Hypotheses tests
 - Hypothesis test and Confidence interval for single coefficient

2 / 50

Outlines

- Review: Hypothesis Test
 - Hypothesis Test:
 - Simple OLS in Normal Sampling Distribution
- OLS with One Regressor: Hypothesis Tests
 - ullet Hypothesis Test of of \bar{Y}
 - ullet the Normal distribution and Hypothesis Test of of $ar{Y}$
 - OLS with One Regressor: Hypothesis Tests
 - Gauss-Markov theorem and Heteroskedasticity
- 3 OLS with Multiple Regressors: Hypotheses tests
 - Hypothesis test and Confidence interval for single coefficient

Review: Hypothesis Test

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0: \theta = \mu_0$$

$$H_1:\theta\neq\mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we **reject** the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0:\theta=\mu_0$$

$$H_1:\theta\neq\mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we **reject** the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0: \theta = \mu_0$$

$$H_1:\theta\neq\mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we **reject** the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0: \theta = \mu_0$$

$$H_1: \theta \neq \mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we **reject** the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

• A Type I error is when we reject the null hypothesis H_0 when it is in fact true. ("left-wing"). The probability of Type I error is denoted by α and called **significance level** or size of a test.

$$P(Type\ I\ error) = P(reject\ H_0\ |\ H_0\ is\ true) = \alpha$$

$$P(Type\ II\ error) = P(accept\ H_0 \mid H_0 is\ false)$$

イロト (部)・(重)・(重)・ Oct. 23th, 2017 • A Type I error is when we *reject* the null hypothesis H_0 when it is in fact true. ("left-wing"). The probability of Type I error is denoted by α and called **significance level** or size of a test.

$$P(Type\ I\ error) = P(reject\ H_0\ |\ H_0\ is\ true) = \alpha$$

 A Type II error is when we fail to reject the null hypothesis when it is false.("right-wing")

$$P(Type\ II\ error) = P(accept\ H_0\ |\ H_0is\ false)$$

• Unfortunately, the probabilities of Type I and II errors are inversely related. By decreasing the probability of Type I error α , one makes the critical region smaller, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.

• A Type I error is when we *reject* the null hypothesis H_0 when it is in fact true. ("left-wing"). The probability of Type I error is denoted by α and called **significance level** or size of a test.

$$P(Type\ I\ error) = P(reject\ H_0\ |\ H_0\ is\ true) = \alpha$$

 A Type II error is when we fail to reject the null hypothesis when it is false.("right-wing")

$$P(Type\ II\ error) = P(accept\ H_0\ |\ H_0\ is\ false)$$

• Unfortunately, the probabilities of Type I and II errors are inversely related. By decreasing the probability of Type I error α , one makes the critical region smaller, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.

4 □ ▶ 4 ∰ ▶ 4

- ullet Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H₀ is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

6 / 50

- ullet Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H₀ is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

6 / 50

- Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● のQ@

- ullet Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

→□▶→□▶→□▶→□▶ □ 900

- ullet Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

- 4 ロ ト 4 週 ト 4 速 ト 4 連 ト - 連 - り 9 0

- The following are the steps of the hypothesis testing:
 - ① Specify H_0 and H_1 .
 - 2 Choose the significance level α .
 - Oefine a decision rule (critical region)
 - Given the data compute the test statistic and see if it falls into the critical region.

- The following are the steps of the hypothesis testing:
 - **1** Specify H_0 and H_1 .
 - 2 Choose the significance level α .
 - Oefine a decision rule (critical region)
 - Given the data compute the test statistic and see if it falls into the critical region.

- The following are the steps of the hypothesis testing:
 - Specify H_0 and H_1 .
 - **2** Choose the significance level α .
 - Opening a decision rule (critical region)
 - Given the data compute the test statistic and see if it falls into the critical region.

7 / 50

- The following are the steps of the hypothesis testing:
 - **1** Specify H_0 and H_1 .
 - **2** Choose the significance level α .
 - Oefine a decision rule (critical region).
 - Given the data compute the test statistic and see if it falls into the critical region.

- The following are the steps of the hypothesis testing:
 - **①** Specify H_0 and H_1 .
 - **2** Choose the significance level α .
 - Oefine a decision rule (critical region).
 - Given the data compute the test statistic and see if it falls into the critical region.

P-Value

- To provide additional information, we could ask the question: What is
 the largest significance level at which we could carry out the test and
 still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the p-value of a test
- Calculate the t-statistic t
 - The largest significance leve
 - significance level associated with
 - $p-value = 1 \Phi(t)$
 - where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

P-Value

- To provide additional information, we could ask the question: What is the largest significance level at which we could carry out the test and still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the p-value of a test
 - The largest significance level at
 - $n-mlne=1-\Phi(t)$
 - p 00000 = 1 = 2
 - where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

8 / 50

- To provide additional information, we could ask the question: What is the largest significance level at which we could carry out the test and still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the **p-value** of a test
 - Calculate the t-statistic t
 - ② The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value

$$p - value = 1 - \Phi(t)$$

where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

8 / 50

- To provide additional information, we could ask the question: What is
 the largest significance level at which we could carry out the test and
 still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the **p-value** of a test
 - Calculate the t-statistic t
 - ② The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value

$$p - value = 1 - \Phi(t)$$

where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

→□ → →□ → → □ → ○○○

- To provide additional information, we could ask the question: What is
 the largest significance level at which we could carry out the test and
 still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the p-value of a test
 - Calculate the t-statistic t
 - 2 The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value

$$p - value = 1 - \Phi(t)$$

where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

P-Value: Case

• Suppose that t=1.52, then we can find the largest significance level at which we would fail to reject ${\it H}_0$

$$p - value = P(T > 1.52 \mid H_0) = 1 - \Phi(1.52) = 0.065$$

Three Basic Assumption

- Assumption :
- Assumption 2
- Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• So the sample distribution of β_1 in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T), thus

$$\hat{\beta_1} \sim N(\beta_1, \sigma_{\hat{\beta_1}}^2)$$

In last lecture We just showed you that

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

but did not prove that

Now we are going to derive it.

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• So the sample distribution of β_1 in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T), thus

$$\hat{eta_1} \sim N(\beta_1, \sigma^2_{\hat{eta_1}})$$

In last lecture We just showed you that

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

but did not prove that

Now we are going to derive it.

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• So the sample distribution of β_1 in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T), thus

$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2)$$

In last lecture We just showed you that

$$\sigma_{\hat{\beta_1}}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

but did not prove that.

Now we are going to derive it.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• So the sample distribution of β_1 in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T), thus

$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2)$$

In last lecture We just showed you that

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

but did not prove that.

• Now we are going to derive it.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

• First consider the numerator of this term, thus $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(u_i - \overline{u})$

12 / 50

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(u_i \overline{u})$
 - Because \bar{X} is consistent, thus $X \stackrel{p}{\rightarrow} \mu_x$.
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and we let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})(u_i-\overline{u}) \xrightarrow{p} \frac{1}{n}\sum_{i=1}^{n}(X_i-\mu_x)u_i = \frac{1}{n}\sum_{i=1}^{n}v_i = \overline{v}$$

• for Assumption 1, $E(v_i)=0$, and Assumption 2, $\sigma_v^2=Var[(X_i-\mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v}-0}{\sigma_{\bar{v}}} \xrightarrow{d} N(0.1) \text{ or } \bar{v} \xrightarrow{d} N(0, \frac{\sigma_{v}^{2}}{\sigma_{v}^{2}})$$

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(u_i \overline{u})$
 - Because \bar{X} is consistent, thus $X \xrightarrow{p} \mu_x$.
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and we let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})(u_i-\overline{u}) \xrightarrow{p} \frac{1}{n}\sum_{i=1}^{n}(X_i-\mu_x)u_i = \frac{1}{n}\sum_{i=1}^{n}v_i = \overline{v}$$

• for Assumption 1, $E(v_i)=0$, and Assumption 2, $\sigma_v^2=Var[(X_i-\mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v}-0}{\sigma_{\bar{v}}} \xrightarrow{d} N(0.1) \ or \ \bar{v} \xrightarrow{d} N(0,\frac{\sigma_v^2}{\sigma_{\bar{v}}})$$

Zhaopeng Qu (Nanjing University)

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(u_i \overline{u})$
 - Because \bar{X} is consistent, thus $X \xrightarrow{p} \mu_x$.
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and we let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(u_i - \overline{u}) \xrightarrow{p} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_x)u_i = \frac{1}{n} \sum_{i=1}^{n} v_i = \overline{v}$$

• for Assumption 1, $E(v_i)=0$, and Assumption 2, $\sigma_v^2=Var[(X_i-\mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v} - 0}{\sigma_{\bar{v}}} \xrightarrow{d} N(0.1) \text{ or } \bar{v} \xrightarrow{d} N(0, \frac{\sigma_{v}^{2}}{2})$$

Zhaopeng Qu (Nanjing University)

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(u_i \overline{u})$
 - Because \bar{X} is consistent, thus $X \xrightarrow{p} \mu_x$.
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and we let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(u_i - \overline{u}) \xrightarrow{p} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_x)u_i = \frac{1}{n} \sum_{i=1}^{n} v_i = \overline{v}$$

• for Assumption 1, $E(v_i)=0$, and Assumption 2, $\sigma_v^2=Var[(X_i-\mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v}-0}{\sigma_{\bar{v}}} \xrightarrow{d} N(0.1) \text{ or } \bar{v} \xrightarrow{d} N(0, \frac{\sigma_{v}^{2}}{\sigma_{\bar{v}}})$$

Zhaopeng Qu (Nanjing University)

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of X(except dividing by n rather than n-1 which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\to} N(\beta_1, \sigma^2_{\hat{\beta_1}})$ where $\sigma^2_{\hat{\beta_1}} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of $X(\mathsf{except}\ \mathsf{dividing}\ \mathsf{by}\ n$ rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\to} N(\beta_1, \sigma^2_{\hat{\beta_1}})$ where $\sigma^2_{\hat{\beta_1}} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

◆ロト ◆母ト ◆差ト ◆差ト 差 めなべ

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of X(except dividing by n rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\overline{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\to} N(\beta_1, \sigma^2_{\hat{\beta_1}})$ where $\sigma^2_{\hat{\beta_1}} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ り へ ②

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of X(except dividing by n rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\to} N(\beta_1, \sigma_{\hat{\beta_1}}^2)$ where $\sigma_{\hat{\beta_1}}^2 = \frac{\sigma_{v_i}^2}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of $X(\mathsf{except}\ \mathsf{dividing}\ \mathsf{by}\ n$ rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\to} N(\beta_1, \sigma^2_{\hat{\beta_1}})$ where $\sigma^2_{\hat{\beta_1}} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

- 4日ト4回ト4ミト4ミト ミ かくの

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of X(except dividing by n rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \xrightarrow{d} N(\beta_1, \sigma^2_{\hat{\beta_1}})$ where $\sigma^2_{\hat{\beta_1}} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ りへぐ

OLS with One Regressor: Hypothesis Tests

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p value < significance level

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the standard error of Y

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{Y - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

 $\bullet \mid t^{aci} \mid > critical\ value$

or if p − value < significance level

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{Y - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

4 D > 4 D > 4 E > 4 E > E = 990

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE\left(\bar{Y}\right)}$$

Step4: Reject the null hypothesis is

- 4 ロ ト 4 御 ト 4 差 ト 4 差 ト - 差 - 夕 Q C

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p-value < significance level

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p value < significance level

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - ullet Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p-value < significance level

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久で

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis is

 $\bullet \mid t^{act} \mid > critical \ value$

or if p − value < significance level
</p>

◆□▶ ◆□▶ ◆■▶ ◆■ ◆ のQ○

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - Step2: Compute the standard error of Y

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{Y - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis is

 $\bullet \mid t^{uv} \mid > critical \ value$

or if p − value < significance level</p>

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{Y - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

4 D > 4 D > 4 E > 4 E > E = 990

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

(4日) (個) (目) (目) (目) (900

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p-value < significance level

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p-value < significance level

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - ullet Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p-value < significance level

- 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 0 0

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- β₀ & β₁ have an approximate normal distribution in large samples.
 and the standardized regression coefficients have approximate N(0, 1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- β_0 & β_1 have an approximate normal distribution in large samples. • and the standardized regression coefficients have approximate N(0,1)
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - $\hat{\beta}_0$ & $\hat{\beta}_1$ have an approximate normal distribution in large samples
 - and the standardized regression coefficients have approximate N(0,1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - $\hat{\beta_0}$ & $\hat{\beta_1}$ have an approximate normal distribution in large samples.
 - and the standardized regression coefficients have approximate $N\!\left(0,1\right)$ distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - $\hat{\beta_0}$ & $\hat{\beta_1}$ have an approximate normal distribution in large samples.
 - \bullet and the standardized regression coefficients have approximate N(0,1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - $\hat{\beta_0}$ & $\hat{\beta_1}$ have an approximate normal distribution in large samples.
 - and the standardized regression coefficients have approximate ${\it N}(0,1)$ distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta_0}$ & $\hat{\beta_1}$ under the Least Squares assumptions holding!

the Normal distribution and Hypothesis Test of of \bar{Y}

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - ullet Step2: Compute the **standard error** of $ar{Y}$

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p-value < significance level

→ □ → → □ → → □ → → ○ へ○

the Normal distribution and Hypothesis Test of of \bar{Y}

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - ullet Step2: Compute the **standard error** of Y

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

• Step4: Reject the null hypothesis if

• or if v = value < significance level

- 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 0 0

the Normal distribution and Hypothesis Test of of \bar{Y}

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$\mathit{SE}(\overline{\mathit{Y}}) = \frac{s_{\mathit{Y}}}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

or if p − value < significance level

the Normal distribution and Hypothesis Test of of \bar{Y}

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$\mathit{SE}(\overline{\mathit{Y}}) = \frac{s_{\mathit{Y}}}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

or if p − value < significance level

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q Q

the Normal distribution and Hypothesis Test of of \bar{Y}

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

• Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p value < significance level

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ - り Q (^

the Normal distribution and Hypothesis Test of of \bar{Y}

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - ullet Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

• Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p value < significance level

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

the Normal distribution and Hypothesis Test of of \bar{Y}

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average \bar{Y}
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

• Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p-value < significance level

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ - り Q (^

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i=eta_0+eta_1X_i+u_i$ by OLS to obtain \hat{eta}_i
 - Step2: Compute the **standard error** of $\hat{\beta}$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

• Step4: Reject the null hypothesis if

 $\bullet \mid t^{act} \mid > critical \ value$

 \bullet or if v-value < significance level

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of β_1
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)}$$

Step4: Reject the null hypothesis if

 $||t^{act}|| > critical\ value$

or if v = value < significance level

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - ullet Step2: Compute the **standard error** of \hat{eta}_1
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

Step4: Reject the null hypothesis if

 $||t^{act}|| > critical\ value{}$

• or if p - value < significance level

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

Step4: Reject the null hypothesis if

or if n = value < significance level

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p value < significance level

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p value < significance level

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p-value < significance level

- The **standard error** of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{1-2} \sum (X_i X)^2 u_i^2$ to estimate population covariance $Var\{(X_i \mu_X)u_i\}$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE\left(\hat{\beta}_{l}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{l}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{l} - \bar{X})^{2} \hat{u}_{\hat{l}}^{2}}{\left[\frac{1}{n} \sum (X_{l} - \bar{X})^{2}\right]^{2}}}$$

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i \bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i \mu_X)u_i]$
- We also use $\frac{1}{n}\sum_{i}(X_{i}-\hat{X})^{2}$ to replace population covariance $Var(X_{i})$
- Then it can be shown that

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i \bar{X})^2 \hat{u}_i^2$ to estimate population covariance $Var[(X_i \mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

| ロ ト 4回 ト 4 重 ト 4 重 ト ・ 重 ・ 夕 Q ()・

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i-\bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i-\bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

- The simple OLS regression : $TestScore_i = \beta_0 + \beta_1 ClassSize_i + u_i$
- We run it in Stata
- . regress test score class size, robust

Linear regression

F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

Number of obs =

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.300945	-1.258671
_cons	698.933	10.36436	67.44	0.000	678.5602	719.3057

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

420

- The simple OLS regression : $TestScore_i = \beta_0 + \beta_1 ClassSize_i + u_i$
- We run it in Stata

. regress test score class size, robust

Linear regression

Muliber or obs	_	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39		-3.3009 4 5	-1.258671
_cons	698.933	10.36436	67.44		678.5602	719.3057

◆ロト ◆個 ト ◆ 種 ト ◆ 種 ト ● ● の Q (*)

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

• Step4: Reject the null hypothesis if

 $|t^{act}| = |-4.39| > critical value. 1.96$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 夕久○

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - | t^{act} |= | -4.39 |> critical value.1.96
 p − value = 0.00 < significance level = 0.05significance level = 0.05signifi

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

• Step4: Reject the null hypothesis if

| t^{acc} |= | −4.39 |> critical value.1.96
 p − value = 0.00 < significance level = 0.

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{eta_1}) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

• Step4: Reject the null hypothesis if

|v| = |v| = |v| = |v| = |v| |v| = |v| = |v| |v| = |v| = |v| |v| = |v|

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-4.39| > critical\ value.1.96$
 - $p value = 0.00 < significance\ level = 0.05$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めらぐ

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-4.39| > critical\ value.1.96$
 - p value = 0.00 < significance level = 0.05

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-4.39| > critical\ value.1.96$
 - $p-value = 0.00 < significance\ level = 0.05$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト · 恵 · • りへで

Critical value of the t-statistic

The critical value of t-statistic depends on significance level α

ト (個) (重) (重) (重) の(で)

- Step 4: We reject the null hypothesis at a 10% significance level because
 - \bullet | t^{act} |=| -4.39 |> $critical\ value.1.64$
 - p value = 0.00 < significance level = 0.1
- Step 4: We reject the null hypothesis at a 1% significance level because

$$\mid t^{act} \mid = \mid -4.39 \mid > critical \ value.2.58$$

 \bullet p - value = 0.00 < significance level = 0.01

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - $p-value = 0.00 < significance\ level = 0.1$
- Step 4: We reject the null hypothesis at a 1% significance level because

$$\mid t^{act} \mid = \mid -4.39 \mid > critical \ value.2.58$$

 \bullet p - value = 0.00 < significance level = 0.01

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - $p-value = 0.00 < significance\ level = 0.1$
- Step 4: We reject the null hypothesis at a 1% significance level because

$$|t^{act}| = |-4.39| > critical\ value.2.58$$

p - value = 0.00 < significance level = 0.01

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - p value = 0.00 < significance level = 0.1
- Step 4: We reject the null hypothesis at a 1% significance level because

$$\mid t^{act} \mid = \mid -4.39 \mid > critical \ value. 2.58$$

• $p-value = 0.00 < significance\ level = 0.01$

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - p value = 0.00 < significance level = 0.1
- Step 4: We reject the null hypothesis at a 1% significance level because

$$|t^{act}| = |-4.39| > critical\ value.2.58$$

• p - value = 0.00 < significance level = 0.01

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{eta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

 \bullet | t^{act} |=| -0.54 | < critical value.1.96

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{eta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

 \bullet | t^{act} |=| -0.54 |< critical value.1.96

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

 \bullet | t^{act} |=| -0.54 |< critical value.1.96

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - $| t^{act} | = | -0.54 | < critical value. 1.96$

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

• Step4: we can't reject the null hypothesis at 5% significant level because

•
$$|t^{act}| = |-0.54| < critical value.1.96$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - \bullet | t^{act} |=| -0.54 |< $critical\ value.1.96$

- 4 ロ ト 4 回 ト 4 直 ト 4 直 ト 9 Q G

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{eta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

 $e^{tact} = -0.54 > critical value - 1.96$

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- ullet Step2: Compute the standard error: $SE(\hat{eta}_1)=0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level hecause

 $t^{act} = -0.54 > critical value = 1.96$

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level hecause
 - $t^{act} = -0.54 > critical\ value. -1.96$

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - $t^{act} = -0.54 > critical\ value. -1.96$

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - $t^{act} = -0.54 > critical\ value. -1.96$

- ◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 夕 Q @

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - $t^{act} = -0.54 > critical\ value. -1.96$

4□▶ 4□▶ 4□▶ 4□▶ 4□▶ □ 900

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $\mid t^{act} \mid \leq critical \ value. 1.96$
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $|t^{act}| \le critical\ value. 1.96$
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $\mid t^{act} \mid \leq critical \ value.1.96$.
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $|t^{act}| \le critical\ value.1.96$.
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

Confidence interval for $\beta_{ClassSize}$

• Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE(\hat{\beta}_1) = -2.28 \pm (1.96 \times 0.52) = [-3.3, -1.26]$$

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.3009 4 5	-1.258671
_cons	698.933	10.36436	67.44	0.000	678.5602	719.3057

- ullet Recall we discussed the properties of \bar{Y} in Chapter 2. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_{Y}
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption

$$Var(u_i \mid X_i) = \sigma_u^2$$

Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of Y_1, Y_2, \dots, Y_n

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:

$$Var(u_i \mid X_i) = \sigma_n^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of Y_1, Y_2, \dots, Y_m

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:
 - Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of Y_1, Y_2, \dots, Y_n .

4□ > 4□ > 4□ > 4 = > 4 = > = 90

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:
 - Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of Y_1, Y_2, \dots, Y_n .

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:
 - Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

• The error term u_i is **homoskedastic** if the variance of the conditional distribution of u_i given X_i is constant for i = 1, ...n, in particular does not depend on X_i . Otherwise, the error term is **heteroskedastic**.

31 / 50

An Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_i .
- Variation in (log) wages is higher at higher levels of education.
- This implies that $Var(u_i \mid X_i) \neq \sigma_u^2$

An Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_i .
- Variation in (log) wages is higher at higher levels of education.
- This implies that $Var(u_i \mid X_i) \neq \sigma_u^2$.

ロ ト ◆ 個 ト ◆ 直 ト ◆ 直 ・ 夕 Q (~)

An Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_i .
- Variation in (log) wages is higher at higher levels of education.
- This implies that $Var(u_i \mid X_i) \neq \sigma_u^2$.

• If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

• In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 Q (*)

• If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

• In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.

◆ロト ◆個ト ◆意ト ◆意ト · 意 · かへで

• If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large

• If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large samples)

• If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption.If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large samples).

• If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large samples)

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

Regress y x , robust

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

Regress y x, robust

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

 $Regress\ y\ x\ ,\ robust$

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

 $Regress \ y \ x \ , \ robust$

. regress test_score class_size

Source	SS	df	MS	Number of obs	=	420
Model	7794.11004	1	7794.11004	F(1, 418) Prob > F	=	22.58 0.0000
Residual	144315.484	44315.484 418 345.2523	345.252353	R-squared Adi R-squared	=	0.0512
Total	152109.594	419	363.030056	Root MSE	=	18.581

test_score	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size _cons	-2.279808 698.933	.4798256 9.467491				-1.336637 717.5428

. regress test_score class_size, robust

- - -

Number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
class size	-2.279808	.5194892	-4.39	0.000	-3.3009 4 5	-1.258671
_cons	698.933	10.36436	67.44	0.000	678.5602	719.3057

Linear regression

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
- The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
- The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are consistent
 - The ULS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

OLS with Multiple Regressors: Hypotheses tests

Fourth Basic Assumption

- Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
- Assumption 2: i.i.d sample
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

→□ → →□ → → □ → ○○○

Fourth Basic Assumption

- Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
- Assumption 2: i.i.d sample
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2 : i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

4 11 1 4 4 12 1 4 12 1 1 2 1 9 9 9

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2 : i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2 : i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2 : i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - り Q @

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2: i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- 4 ロ b 4 個 b 4 恵 b 4 恵 b 9 Qで

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_j X_{ji} + ... + \beta_k X_{ki} + u_i$ by OLS to obtain $\hat{\beta}_i$
 - ullet Step2: Compute the **standard error** of \hat{eta}_j (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

• Step4: Reject the null hypothesis if

 $\bullet \mid t^{act} \mid > critical \ value$

or if n = nalne < significance level

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_i$
 - ullet Step2: Compute the **standard error** of eta_j (requires matrix algebra
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

• Step4: Reject the null hypothesis if

• | t^{act} |> critical value

or if n = value < significance level

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_j X_{ji} + ... + \beta_k X_{ki} + u_i$ by OLS to obtain $\hat{\beta}_i$
 - Step2: Compute the **standard error** of \hat{eta}_j (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

• Step4: Reject the null hypothesis if

 $\bullet \mid t^{act} \mid > critical \ value$

or if n = value < significance level

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

• Step4: Reject the null hypothesis if

• | t | > craticut vatue

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p value < significance level

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p-value < significance level

→ロト → □ ト → 三 ト → 三 ・ り Q (*)

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p value < significance level

→ロト → □ ト → 三 ト → 三 ・ り Q (*)

. regress test_score class_size el_pct, robust

Linear regression Number of obs = 420
F(2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class size	-1.101296	.4328472	-2.54	0.011	-1.95213	2504616
el_pct	6497768	.0310318	-20.94	0.000	710775	5887786
_cons	686.0322	8.728224	78.60	0.000	668.8754	703.189

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\beta_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q @

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{eta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\beta_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\beta_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト . 差 . か Q (C)

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-2.54| > critical\ value.1.96$
 - p value = 0.011 < significance level = 0.05

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-2.54| > critical \ value. 1.96$
 - p value = 0.011 < significance level = 0.05

- (ロ) (個) (重) (重) (重) のQで

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-2.54| > critical\ value.1.96$
 - $p-value = 0.011 < significance\ level = 0.05$

- Suppose we want to test hypothesis that both the coefficient on \% eligible for a free lunch and the coefficient on % eligible for calworks are zero?

$$Pr(t_{meal \, pct} > 1.96 \, and / or \, t_{calw \, pct} > 1.96) = 1 - Pr(t_{meal \, pct} > 1.96)$$

= $1 - Pr(t_{meal \, pct} > 1.96)$
= $1 - 0.95 \times 0.95$
= $0.0975 > 0.05$

Oct. 23th, 2017 42 / 50

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$

$$Pr(t_{meal \, pct} > 1.96 \, and / or \, t_{calw \, pct} > 1.96) = 1 - Pr(t_{meal \, pct} > 1.96)$$

= $1 - Pr(t_{meal \, pct} > 1.96)$
= $1 - 0.95 \times 0.95$
= $0.0975 > 0.05$

42 / 50

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- If either $t_{meal\ pct}$ or $t_{calw\ pct}$ exceeds 1.96, we should reject?
- We assume that $t_{meal\ nct}$ and $t_{calw\ nct}$ are uncorrelated:

$$Pr(t_{meal \, pct} > 1.96 \, and / or \, t_{calw \, pct} > 1.96) = 1 - Pr(t_{meal \, pct} > 1.96)$$

= $1 - Pr(t_{meal \, pct} > 1.96)$
= $1 - 0.95 \times 0.95$
= $0.0975 > 0.05$

ullet if $t_{meal\,pct}$ and $t_{calw\,pct}$ are correlated, then it is more complicated.

Oct. 23th, 2017 42 / 50

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- If either $t_{meal\ pct}$ or $t_{calw\ pct}$ exceeds 1.96, we should reject?
- We assume that $t_{meal\ pct}$ and $t_{calw\ pct}$ are uncorrelated:

$$Pr(t_{meal \, pct} > 1.96 \, and / or \, t_{calw \, pct} > 1.96) = 1 - Pr(t_{meal \, pct} > 1.96)$$

= 1 - Pr(t_{meal \, pct} > 1.96)
= 1 - 0.95 × 0.95
= 0.0975 > 0.05

ullet if $t_{meal\ pct}$ and $t_{calw\ pct}$ are correlated, then it is more complicated.

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- If either $t_{meal\ pct}$ or $t_{calw\ pct}$ exceeds 1.96, we should reject?
- We assume that $t_{meal\ pct}$ and $t_{calw\ pct}$ are uncorrelated:

$$Pr(t_{meal \, pct} > 1.96 \, and / or \, t_{calw \, pct} > 1.96) = 1 - Pr(t_{meal \, pct} > 1.96 \, e$$

= 1 - Pr(t_{meal \, pct} > 1.96)
= 1 - 0.95 × 0.95
= 0.0975 > 0.05

ullet if $t_{meal\ pct}$ and $t_{calw\ pct}$ are correlated, then it is more complicated.

Oct. 23th, 2017 42 / 50

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \& \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \text{ and/or } \beta_2 \neq 0$$

the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{
ho}_{t_1t_2}$ is an estimator of the correlation between the two

4□ > 4問 > 4 = > 4 = > = 900

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \& \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \text{ and/or } \beta_2 \neq 0$$

the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{
ho}_{t_1t_2}$ is an estimator of the correlation between the two t_2 -statistics

4□ > 4問 > 4 = > 4 = > = 900

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \& \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \ and/or \beta_2 \neq 0$$

the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{\rho}_{t_1t_2}$ is an estimator of the correlation between the two t-statistics.

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**への

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
 - The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

- 4 ロ ト 4 間 ト 4 ヨ ト 4 ヨ - り Q G

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 夕 Q O

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

4 D > 4 D > 4 E > 4 E > E 9 Q C

F-Test

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- ullet H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_j X_{ji} + ... + \beta_k X_{ki} + u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

(ロ) (部) (注) (注) (注) の(○)

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_j X_{ji} + ... + \beta_k X_{ki} + u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

(ロ) (部) (注) (注) (注) の(○)

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

◆ロト ◆個ト ◆差ト ◆差ト = 900

1 . regress test score class size el pct meal pct calw pct, robust

Linear regression Number of obs 420 F(4, 415) 361.68 Prob > F 0.0000 R-squared 0.7749 Root MSE 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class size el pct meal pct calw pct _cons	-1.014353 1298219 5286191 0478537 700.3918	.2688613 .0362579 .0381167 .0586541 5.537418	-3.77 -3.58 -13.87 -0.82 126.48	0.000 0.000 0.000 0.415 0.000	-1.542853 201094 6035449 1631498 689.507	4858534 0585498 4536932 .0674424 711.2767

- 2 . test el pct meal pct calw pct
 - (1) el pct = 0
 - (2) meal pct = 0
 - (3) calw pct = 0

$$F(3, 415) = 481.06$$

 $Prob > F = 0.0000$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - \bullet Step2: F-Statistic=481.06
 - Step3: We reject the null hypothesis at a 5% significance level because
 - $F-Statistic > F_{3,\infty} = 2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - 2 Step2: F Statistic = 481.06
 - ③ Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic>F_{3,\infty}=2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - 2 Step2: F Statistic = 481.06
 - ③ Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic>F_{3,\infty}=2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - 2 Step2: F Statistic = 481.06
 - ③ Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic>F_{3,\infty}=2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - 2 Step2: F Statistic = 481.06
 - § Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic>F_{3,\infty}=2.6$

- The "overall"F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions
 - H_1 : at least one of q=k restrictions under H_0 does not hold.
- . regress test score class size el pct meal pct calw pct, robust

Linear regression Number of obs = 420 F(4, 415) = 361.68 Prob > F = 0.0000 Probes = 0.7749 Prob = 0.0000 Prob = 0.0000 Prob = 0.0000 Prob = 0.0000 Prob = 0.0000

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
class_size	-1.014353 1298219	.2688613	-3.77 -3.58	0.000	-1.542853 201094	4858534 0585498
el_pct meal pct	5286191	.0382379	-13.87	0.000	6035449	4536932
calw pct cons	0478537 700.3918	.0586541 5.537418	-0.82 126.48	0.415 0.000	1631498 689.507	.0674424 711.2767

• The overall F-Statistics=361.68

- (□) (□) (Ē) (Ē) (Ē) (Ē (9)()

- The "overall"F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
 - H_1 : at least one of q=k restrictions under H_0 does not hold
- . regress test_score class_size el_pct meal_pct calw_pct, robust

Linear regression Number of obs = 420
F(4, 415) = 361.68
Prob > F = 0.0000
R-squared = 0.7749
Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size el_pct meal pct calw pct cons	-1.014353	.2688613	-3.77	0.000	-1.542853	4858534
	1298219	.0362579	-3.58	0.000	201094	0585498
	5286191	.0381167	-13.87	0.000	6035449	4536932
	0478537	.0586541	-0.82	0.415	1631498	.0674424
	700.3918	5.537418	126.48	0.000	689.507	711.2767

• The overall F-Statistics=361.68

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q ()

- The "overall"F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
 - H_1 : at least one of q=k restrictions under H_0 does not hold.

```
. regress test_score class_size el_pct meal_pct calw_pct, robust
```

Linear regression Number of obs = 420
F (4, 415) = 361.68
Prob > F = 0.0000
R-squared = 0.7749
Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
class_size el_pct meal pct calw pct	-1.014353 1298219 5286191 0478537	.2688613 .0362579 .0381167	-3.77 -3.58 -13.87 -0.82	0.000 0.000 0.000 0.415	-1.542853 201094 6035449 1631498	4858534 0585498 4536932
_cons	700.3918	5.537418	126.48	0.000	689.507	711.2767

• The overall F-Statistics=361.68

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

- The "overall"F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
 - H_1 : at least one of q=k restrictions under H_0 does not hold.

```
. regress test_score class_size el_pct meal_pct calw_pct, robust
```

Linear regression Number of obs = 420
F(4, 415) = 361.68
Prob > F = 0.0000
R-squared = 0.7749
Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
class_size el_pct meal pct	-1.014353 1298219 5286191	.2688613 .0362579	-3.77 -3.58 -13.87	0.000 0.000 0.000	-1.542853 201094 6035449	4858534 0585498 4536932
calw pct _cons	0478537 700.3918	.0586541 5.537418	-0.82 126.48	0.415 0.000	1631498 689.507	.0674424 711.2767

• The overall F-Statistics=361.68

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

Dependent variable: average test score in the district.

The "Star War" and Regression Table

Regressor (1) (2) (3)					
	Regressor	(1)	(2)	(3)	(4

Student–teacher ratio (X_1)	-2.28** (0.52)	-1.10* (0.43)	-1.00** (0.27)	-1.31* (0.34)	-1.01* (0.27)
Percent English learners (X_2)		-0.650** (0.031)	-0.122** (0.033)	-0.488** (0.030)	-0.130** (0.036)
Percent eligible for subsidized lunch (X_3)			-0.547* (0.024)		-0.529* (0.038)
Percent on public income assistance (X_4)				-0.790** (0.068)	0.048 (0.059)
Intercept	698.9** (10.4)	686.0** (8.7)	700.2** (5.6)	698.0** (6.9)	700.4** (5.5)
Summary Statistics					
SER	18.58	14.46	9.08	11.65	9.08
\overline{R}^2	0.049	0.424	0.773	0.626	0.773
n	420	420	420	420	420

These regressions were estimated using the data on K-8 school districts in California, described in Appendix (4.1). Heteroskedasticityrobust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5% level or **1\% significance level using a two-sided test.

4 D F 4 D F 4 D F 5 0 0 0

(5)