1. (i) it is not a convex set.

counterexample: given two points $\vec{x} = (\cos \theta, \sin \theta) \in C_1$, $\vec{y} = (1, 0) \in C_1$ when n = 2, then $||\vec{x} + \vec{y}|| = ||(\frac{\cos \theta + 1}{2}, \frac{\sin \theta}{2})||$

$$= \sqrt{\frac{100^{10} + \sin^{2}(0) + 1}{4}}$$

$$= \sqrt{\frac{1}{2}} < 1$$
thut is $\frac{\cancel{X} + \cancel{y}}{\cancel{2}} \notin C_{1}$

tit) it is a lonuex set.

proof. let $f(\vec{x}) = \max_{i=1,2,n} x_i, \vec{x} \in \mathbb{R}^n$, then

∀x, y ∈ R, λ ∈ [0,1]. we have

$$f(\lambda \vec{x} + (l-\lambda)\vec{y}) = \max_{\hat{j}=1,2,"n} \lambda x_i + (l-\lambda)\vec{y}_i$$

=
$$\lambda \max_{i=1,2,m} x_i + (1-\lambda) \max_{i=1,2,m} y_i$$

Thus fix) is a convex function.

on the other hand $C_z = lev(f, 1)$, thus C_z is convex

(îii) it is not a convex set.

counterexample: give two points $\vec{x} = (1, 2) \in C_3$, $\vec{y} = (2, 1) \in C_3$ when n=2. then $\frac{\vec{x} + \vec{y}}{2} = (\frac{3}{2}, \frac{3}{2}) \notin C_3$

proof: $\vec{\chi} \in C_4 \iff \log(\vec{\prod}_i X_i) \ge \log(1) \iff \vec{\sum}_{i=1}^n \log(X_i) \ge 0$ $\iff - \sum_{i=1}^n \log(X_i) \le 0 \quad \text{since } -\log(X_i) \quad \text{is convex } \forall X_i, \text{ thus.}$ $f(x) = - \sum_{i=1}^n \log(X_i) \quad \text{is a convex } f \text{ unition.} \quad \text{thus.} \quad C_4 = \text{lev}(f(x), 0) \text{ is convex}$ convex

(V) it is not a convex set. wunterexample: Given $C_5 = [0 \ 1]$ and $C_6 = [3, 4]$. then. x = 1 & C5 UC6, y = 3 & C5 UC6. but. x+y = 2 \$ C5 VG 2. First, we have $A = \begin{bmatrix} 0 & -4 & 1 & 0 \\ 2 & -2 & 0 & 1 \end{bmatrix}$ $\vec{b} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ it is obvious that column one and column two are linearly independent; (case!) column one and column three are linearly independent; (case 2) column two and column three are linearly independent; (case 3) column two and column four are linearly independent; (case 4) column three and column four are linearly independent; (case 5) Let us consider each case and find the corresponding solution to $A\vec{x} = \vec{b}$. $\begin{bmatrix} 0 & -4 & 1 & 0 & | & 6 \\ 2 & -2 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\text{row1}} \begin{bmatrix} 2 & \text{row2} \\ 0 & -4 & 1 & 0 & | & 6 \end{bmatrix}$ Thus we have the basic solution of $A\vec{x} = \vec{b}$ for case 1: $\vec{x} = \begin{bmatrix} -1 \\ -\frac{3}{2} \end{bmatrix}$ Case 2: $\begin{bmatrix} 0 & -4 & 1 & 0 & 1 & 6 \\ 2 & -2 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2} \cdot \text{row 2}} \begin{bmatrix} 0 & -4 & 1 & 0 & 1 & 6 \\ 1 & -1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix}$ Thus we have the basic solution of $A\vec{x} = \vec{b}$ for case 2: $\vec{x} = \vec{l} \neq 0$ 6 0] (ase 3: $\begin{bmatrix} 0 & -4 & 1 & 0 & 1 & 6 \\ 2 & -2 & 0 & 1 & 1 & 1 \end{bmatrix}$ $\xrightarrow{row1-2 \cdot row2} \begin{bmatrix} 0 & 0 & 1 & -2 & 1 & 4 \\ 2 & 2 & 0 & 1 & 1 & 1 \end{bmatrix}$ $\frac{-\frac{1}{2} \text{ row2}}{-\frac{1}{2} \text{ row2}} \begin{bmatrix} 0 & 0 & 1 & -2 & 1 & 4 \\ -1 & 1 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$ Thus we have the basic solution of $A\vec{x} = \vec{b}$ for case 3: $\vec{x} = [0, -\frac{1}{2}, 4, 0]^T$

Case 4:
$$\begin{bmatrix} 0 & -4 & 1 & 0 & | & 6 \\ 2 & -2 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\text{Yow2}} \begin{bmatrix} 0 & -4 & 1 & 0 & | & 6 \\ 0 & 0 & \frac{1}{2} & 1 & | & -2 \end{bmatrix}$$

$$\frac{-\frac{1}{4} \text{ Yow1}}{0} \begin{bmatrix} 0 & 1 & -\frac{1}{4} & 0 & | & -\frac{3}{2} \\ 0 & 0 & \frac{1}{2} & 1 & | & -2 \end{bmatrix}$$

Thus we have the basic solution of $A\vec{x} = \vec{b}$ for case $4 : \vec{x} = [0, -\frac{3}{2}, 0, -2]^T$

Case 5:
$$\begin{bmatrix} 0 & -4 & 1 & 0 & 1 & 6 \\ 2 & -2 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Thus we have the basic solution of $A\vec{x} = \vec{b}$ for case $5: \vec{x} = [0, 0, 6, 1]^T$

Therefore, the basic feasible solutions to the system are

$$\vec{\chi} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \end{bmatrix}$$
 and $\vec{\chi} = \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}$

3. proof: let $g(\vec{x}) = f(\vec{x}) - f(\vec{o})$, if we can show that $g(\vec{x})$ is linear then we can conclude that $f(\vec{x}) = g(\vec{x}) + f(\vec{o})$ is affine.

Let us first claim that $g(\vec{x})$ is linear provided that $f(\vec{x})$ is both convex and concave.

To show g(x) is linear, it is equivalent to show that.

(b)
$$g(\vec{x}+\vec{y}) = g(\vec{x}) + g(\vec{y})$$
, $\forall \vec{x}, \vec{y} \in \mathbb{R}^n$ (contains First, note that $g(\vec{x})$ is both convex and concave provided that $f(\vec{x})$ is both convex and $g(\vec{x})$

(i) $d \in [0,1]$, then $g(d\vec{x}) = g(d\vec{x} + (1-d)\vec{o}) = dg(\vec{x}) + (1-d)g(\vec{o})$

$$= dg(\vec{x}) + 0 = dg(\vec{x})$$

(ii)
$$d > 1$$
, then $g(\vec{x}) = g(\vec{a} \ d \ \vec{x}) = g(\vec{a} \ d \ \vec{x}) + (1 - \vec{a}) \vec{o}) = \vec{a} \ g(d \vec{x})$
i.e. $g(d \vec{x}) = dg(\vec{x})$

Note that combine (i), and (ii) and we conclude that
$$g(\vec{x} + \vec{y}) = g(2\frac{\vec{x} + \vec{y}}{2}) = 2g(2\vec{x} + 2\vec{y}) = 2g(2\vec{x}) + 2g(2\vec{y}) = g(2\vec{x}) + g(2\vec{y})$$

Scanned with CamScanner

Thus we further have $0 = g(\vec{x}) = g(\vec{x} - \vec{x}) = g(\vec{x}) + g(-\vec{x})$, that is, $g(-\vec{x}) = -g(\vec{x})$. (iii) d < 0. We (an get $g(d\vec{x}) = -g(-d\vec{x}) = dg(\vec{x})$ Therefore, we have $g(\vec{x})$ is linear i.e. $g(\vec{x}) = \vec{a}^T \vec{x}$, $\vec{a} \in \mathbb{R}^n$, then Let $\vec{b} = f(\vec{o})$, we now get $f(\vec{x}) = \vec{a}^T \vec{x} + \vec{b}$ is an affine function. Proof: argue by contradiction. Suppose that there exists $\vec{z} \in \{\vec{x} \in \mathbb{R}^2 : ||\vec{x}||_2 = 1\}$, but & \ ext(s) Then we can find $\vec{x}, \vec{y} \in S$, $\vec{x} \neq \vec{y}$ sit $\vec{z} = \lambda \vec{x} + (1-\lambda) \vec{y} \in \lambda \in (0,1)$ Without loss of generality, we can assume $\vec{x} = (r_1, 0), o < r_1 < 1, \vec{y} = (r_1 \cos \rho, r_2 \sin \rho)$ 0≤ 1, 0 ∈ [0, 2TL] (Note: if \$\foint is not on the X-axis, we can always shift and rotate the coordinate such that & locates at the x-axis) Since 112112 = 11 x x + (1- x) y 112 = 11 (2x, + (1-2) /2 1050, (1-2) /2 5m 0 1/2 $= \sqrt{(\lambda r_1 + (1-\lambda) r_2 \log \theta)^2 + ((1-\lambda) r_2 \sin \theta)^2}$ $= \sqrt{\lambda^2 r_1^2 + (1-\lambda)^2 r_2^2 + 2\lambda(1-\lambda) r_1 r_2 \cos \theta}$ 650 = 1, $11\frac{1}{2} = \lambda r_1 + (1-\lambda) r_2 < 1$ (since $\vec{x} \neq \vec{y}$) 650 < 1, $11\frac{1}{2} |_2 < \lambda r_1 + (1-\lambda) r_2 < 1$ thus Z G int (S) which contradicts with Z G bdry (S).

Thorefore, we get that ext(s) = { x - 1x2: (1x1)2=13

5. (a) proof one: first note that
$$f(\vec{x})$$
 is twice continuous differentiable, then we can use the second-order characterization to show the convexity of $f(\vec{x})$.

Since $\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}^T$ and $\frac{\partial f}{\partial x_2} = \frac{e^{x_2}}{\frac{\partial f}{\partial x_n}} = \frac{e^{x_n}}{\frac{\partial f}{\partial x_n}}$

then we have
$$\frac{\partial f}{\partial x_i \partial x_j} = \begin{cases}
-\frac{e^{x_i + x_j}}{\left(\sum_{k=1}^{n} e^{x_k}\right)^2}, & j \neq i \\
\frac{e^{x_i} \left(\sum_{k=1}^{n} e^{x_k}\right) - e^{2x_i}}{\left(\sum_{k=1}^{n} e^{x_k}\right)^2}, & j = i
\end{cases}$$

i.e.
$$\nabla^2 f(\vec{x}) = diag(\vec{z}) - \vec{z} \vec{z}^T$$

then & VGIR", we have

let u = [e x1/2 e x2/2 ··· e xn/2] $\vec{v} = [v_1 e^{x_1/2} v_2 e^{x_2/2} \cdots e^{x_n/2}]^T$ Then from cauchy schwaz, we have $\vec{\lambda}^{T}\vec{\lambda}' \leq ||\vec{\lambda}|| ||\vec{\lambda}'||$ that is $\sum_{i=1}^{n} v_i e^{x_i} \leqslant \sqrt{\sum_{i=1}^{n} e^{x_i}} \sqrt{\sum_{i=1}^{n} v_i^2 e^{x_i}}$ thus (= Viexi) < (= viexi) < (= viexi) Therefore. $\vec{\nabla}^T \vec{\nabla}^2 f(\vec{x}) \vec{\nabla} \geq 0$, i.e. $\vec{\nabla}^2 f(\vec{x})$ is positive semi-definite. Thus fix) is indeed a convex function. proof two: hint: you can also use the definition to verify that f(入文+(1-入)対) < 入f(対) + (1-入) f(ず), サスモし、リ Try to construct $f(\vec{x})$ and $f(\vec{y})$ from $f(\lambda \vec{x} + (1-\lambda)\vec{y})$ a useful tool is Hölder inequality. (we didn't provide this in our besture, but the problem will be simple if you know this inequality). Anyway, the Cauchy-schwarz inequality is enough for this problem.

Anyway, the Cauchy-schwarz inequality is enough for this 'problem.

(b) proof: In our lecture, we show that $g(f(\vec{x}))$ is convex if g(t) is a non-descreasing convex function and $f(\vec{x})$ is a convex function. Similarly, we can show that $g(f(\vec{x}))$ is concave if g(t) is a non-descreasing concave function and $f(\vec{x})$ is a concave function. See the proof here: let $h(\vec{x}) = g(f(\vec{x}))$, then $f(\vec{x}) = g(f(\vec{x}))$, then $f(\vec{x}) = g(f(\vec{x})) = g($

Thus. h(文) is concave.

Now, back to our problem, we have

gilà) is concave, In (t) is a nondescreasing concave function. Thus Ingilà) is a concave function, then -ulngilà) is a convex function. Combine with the fact that f(x) is a

Convex function and summation preserves the convexity, Then

 $\beta(\vec{x}) = f(\vec{x}) - \mu \sum_{i=1}^{m} \ln g_i(\vec{x})$ is convex.

obviously, $S = \{\vec{x} : g_1(\vec{x}) > 0, j=1,...,m\}$ is convex since.

∀ x, y c-s, λ∈ [o,1]. we have

i.e. xx + (1-x) y es

6. (a) proof by mathematic induction.

O[k=1], the result is trivial since $f(\lambda_1\vec{x_1}) = f(\vec{x_1}) = \lambda_1f(\vec{x_1})[\lambda_1=1]$

(2) suppose k=n, we have $f(\frac{k}{2i}\lambda_i\vec{x}_i) \leq \frac{k}{2i}\lambda_i f(\vec{x}_i)$

then.

$$f(\underbrace{\Xi}_{i}^{n}\lambda_{i}\overrightarrow{x}_{i}) = f(\underbrace{\Xi}_{i}^{n}\lambda_{i}\overrightarrow{x}_{i} + \lambda_{m}\overrightarrow{x}_{m+1})$$

$$= f((I-\lambda_{m+1})\underbrace{\Xi}_{i-\lambda_{m+1}}^{n}\overrightarrow{x}_{i} + \lambda_{m+1}^{n}\cancel{x}_{m+1}), \lambda_{m+1} \neq 1$$

$$\leq (I-\lambda_{m+1})f(\underbrace{\Xi}_{i}^{n}\frac{\lambda_{i}}{1-\lambda_{m+1}}\overrightarrow{x}_{i}) + \lambda_{m+1}f(\overrightarrow{x}_{m+1})$$

$$\leq (I-\lambda_{m+1})\underbrace{\Xi}_{i-1}^{n}\frac{\lambda_{i}}{1-\lambda_{m+1}}f(\overrightarrow{x}_{i}) + \lambda_{m+1}f(\overrightarrow{x}_{m+1})$$

$$= \underbrace{\Xi}_{i=1}^{m+1}f(\overrightarrow{x}_{i})$$

if $\lambda_{n+1}=1$, then the result is trivial.

(b) let
$$f(\vec{\chi}) = \ln(\vec{\chi})$$
, $\vec{\chi} > 0$.

Since $\ln (\vec{x})$ is a non-decreasing function over $\vec{x} > 0$, then

To show $\frac{1}{n} \sum_{i=1}^{n} \chi_i \ge \left(\frac{n}{1!} \chi_i\right)^{n}$ for $\chi_i > 0$, is equivalent to

Show
$$\left(\ln\left(\frac{1}{n}\sum_{i=1}^{n}\chi_{i}\right) \geq \left|\ln\left(\left(\frac{n}{i-1}\chi_{i}\right)^{n}\right)\right| = \frac{1}{n}\left|\ln\left(\frac{n}{i-1}\chi_{i}\right)\right| = \frac{1}{n}\sum_{i=1}^{n}\ln\chi_{i}$$

it it equivalent to show

Since $-\ln 1\vec{x}$) is a convex function over $\vec{x} > 0$, then from (a), we we indeed have (*) valid with $\lambda i = \frac{1}{n}$.

If there exist some Xi=0, then the inequality is trivial since.

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geq\left(\frac{1}{i-1}x_{i}\right)^{1/n}=0$$