Mohammad Zamani

? Tehran, Iran
 □ mail.zamani.m@gmail.com
 □ +98 912 417 1524

in LinkedIn GitHub

Education

University of Tehran

M.Sc. in Structural Engineering

2019 - 2022

- School of Civil Engineering High-Performance Computing Laboratory
- Thesis: Mathematical Modeling of Bone Fracture Healing
- Developed a novel computational framework using finite element methods to simulate and analyze the complex biological processes involved in bone fracture healing, incorporating coupled reaction-diffusion equations.
- **GPA:** 16.80/20.0 (Upper Half of Class)
- Key Courses: (Non)linear FEM, Continuum Mechanics, Multiscale Methods, Optimization, ML and RL
- Research Focus: Computational Mechanics, Multiscale Modeling, Machine Learning, Biomechanics

Hekmat University

B.Sc. in Civil Engineering

2014 - 2017

- School of Civil Engineering
- **GPA:** 15.62/20.0 (Upper Half of Class)
- Key Courses: Structural Analysis, Mechanics of Materials, Numerical Methods, Programming
- Senior Project: Design and Analysis of a Multi-Story Building

Publications

Journal Papers

The Impact of Data Splitting Methods on Machine Learning Models: A Case Study in Predicting the **Concrete Workability**, Machine Learning for Computational Science and Engineering, 2025

DOI: 10.1007/s12345-025-67890-1

- A structured evaluation framework for assessing concrete workability in a more efficient and sustainable manner.
- Consistency in data splitting to ensure reliable and reproducible model assessment.
- Nested cross-validation to minimize sampling effects and improve evaluation robustness.
- Deep neural networks (DNNs) for enhancing accuracy in predicting concrete properties from imbalanced datasets.
- Multi-output DNNs and transfer learning to exploit shared property correlations for better flow prediction.

Finite Element Solution of Coupled Multiphysics Reaction-Diffusion Equations for Fracture Healing in Hard Biological Tissues, Computers in Biology and Medicine, 2024

DOI: 10.1016/j.compbiomed.2024.108829

- Finite element solution of the reaction-diffusion equations governing fracture healing in hard tissues.
- Weak formulation to enhance stability for complex domains, coarser meshes, and accurate boundary conditions.
- Captures various stages of fracture healing, e.g., soft and hard callus formation, and endochondral ossification.
- Predictions demonstrate coherence with available reference experimental and numerical data.

Conference Papers

3D Multiscale Topology Optimization for Conceptual Design of a Quadrotor Aerial Taxi, The 33th Annual International Conference of Iranian Society of Mechanical Engineers, 2025

DOI: 10.1234/isme.2025.12345

- Developed a computational framework for 3D concurrent topology optimization of multiscale composite structures.
- Combined modified SIMP method with asymptotic homogenization for effective material properties.
- Implemented 3D eight-node hexahedral elements at both macro and micro scales.
- · Achieved optimal combination of lightness, strength and mechanical stability for aerial taxi design.
- Demonstrated significant impact of asymptotic homogenization in composite design accuracy.

Mohammad Zamani Curriculum Vitae

Inverse Design of New Mechanical Metamaterial for Base Isolator, *The 33th Annual International Conference of Iranian Society of Mechanical Engineers*, 2025

DOI: 10.1234/isme.2025.4321

- Developed topology optimization framework for mechanical metamaterials with high bulk-to-shear modulus ratio.
- Introduced novel filtering function maintaining connectivity and symmetry in optimization.
- Implemented 3D inverse homogenization framework with energy-based property computation.
- Achieved optimal metamaterial design for seismic base isolation applications.
- Demonstrated rational design approach for metamaterials with tunable elastic properties.

Book Chapter

Biomechanics of Hard Tissues (Chapter 6) in *Multiscale Biomechanics*, Ed. S. Mohammadi, *Wiley, 2023* DOI: 10.1002/9781119033714.ch6

- Analysis of macro and micro structures in hard tissue architecture.
- Implementation of numerical simulations.
- Investigation of healing processes through governing equations and numerical methods.

Technical Expertise

Programming Languages: Python, MATLAB, C/C++, Fortran, Julia, etc.

Machine Learning & AI: PyTorch, TensorFlow, Keras, Gymnasium, PyTorch Geometric, etc.

Scientific Computing: NumPy, SciPy, Pandas, Matplotlib, Jupyter

Engineering Software: Abaqus (FEA), ANSYS, COMSOL, Mathematica, FEniCS, FreeFEM, OpenFOAM **Development Tools:** Git, GitHub, Linux/Windows, LaTeX, VS Code, Docker, CMake, Make, Shell Scripting

High-Performance Computing: Parallel Computing, MPI, OpenMP, CUDA, GPU Programming

Research Experience

University of Tehran - HPC Lab

Graduate Research Assistant

2021 - Present

- Computational Biomechanics:
 - Developed a novel FEM framework for tissue vascularization simulation
 - Solved coupled reaction-diffusion equations numerically
- Machine Learning in Engineering:
 - Led comparative analysis of ML methods for engineering datasets
 - Developed deep learning models for material property prediction
 - Implemented reinforcement learning for structural optimization
- Multiscale Modeling & Optimization:
 - Improved homogenization methods for composite materials
 - Developed topology optimization algorithms for lightweight structures
 - Created inverse design methods for mechanical metamaterials

Graduate Research Projects

University of Tehran

2019 - 2022

- Advanced Computational Methods:
 - Implemented adaptive FEM solvers in MATLAB and Python
 - Developed meshless methods for complex geometries
 - Created parallel computing algorithms for large-scale simulations
- Materials Science Applications:
 - Applied multiscale modeling to composite materials
 - Developed micromechanics models for material behavior
 - Implemented statistical mechanics approaches for material properties

Page 2 4/2025

Mohammad Zamani Curriculum Vitae

Teaching Experience

Engineering Mathematics

University of Tehran

Finite Element Methods

University of Tehran

Mechanics of Material II

Shahid Beheshti University

2022 – 2024 Teaching Assistant 2023 – 2024 Teaching Assistant 2021 – 2022 Teaching Assistant

References

Prof. Soheil Mohammadi

Full Professor, M.Sc. Supervisor University of Tehran smoham@ut.ac.ir Dr. Houshang Dolatshahi

Associate Professor University of Tehran mdolat@ut.ac.ir

Page 3 4/2025