(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-330401

(P2002-330401A) (43)公開日 平成14年11月15日(2002.11.15)

(51) Int. Cl. 7	識別記号	FΙ					テーマコー	· } *	(参考
HO4N 5/92		G11B	20/10			D	5C052		
G11B 20/10					301	Z	5C053 ·		
•	301	HO4N	5/85			Z	5D044		
HO4N 5/765			5/92			Н			
5/781			5/781	l	510	С			
	審査請	求 未請求	請求項	頁の数13	OL	(全18	頁) 最終	質に	続く
(21)出願番号	特願2001-130599(P2001-130599) (71)出	·····································	00000510)8	-		•	
				株式会社	日立製	作所			
(22)出願日	平成13年4月27日(2001.4.27)			東京都千	代田区	神田駿河	可台四丁目	6番	地
		(72) 発	明者	渡辺 克	:行				
				神奈川県	横浜市	戸塚区記	吉田町292番	地	株
				式会社日	立製作	所デジタ	タルメディ	ア開	発本
				部内					
		(72) 発	明者	岡本 宏	夫				
	•			神奈川県	横浜市	戸塚区書	吉田町292番	地	株
				式会社日	立製作	所デジタ	タルメディ	ア開	発本
		ŀ		部内					
		(74) (1	理人	10007509	6				
				弁理士	作田	康夫			•
							最終	質に	に続く
		1							

(54) 【発明の名称】ディスク記録再生装置

(57)【要約】

【課題】 記録密度の異なる標準的な光ディスクと高密度な光ディスクに対し、入力される信号の種類(アナログ/デジタル、TS/PS)とデジタル放送の画質(SD/HD)などに応じて、それぞれのディスクに最適なストリーム形式で記録再生する。

【解決手段】 高密度な光ディスクにTS及びPS双方の記録フォーマットを定め、入力判別結果とSD/HD判別結果を元に、PS/TS変換回路を制御し、最適な記録ストリームで記録を行う。

【特許請求の範囲】

٠. ن. .

【請求項1】記録密度仕様の異なる複数種類のディスク 記録媒体を判別する媒体判別手段と、

1

MPEG規格のトランスポートストリーム形式の信号を 入出力する入出力手段と、

入力信号をディスク記録媒体に記録する記録手段と、 ディスク記録媒体から信号を再生する再生手段と、 上記記録手段と再生手段とを制御する制御手段とを有

該制御手段は、高密度仕様の記録媒体には上記トランス 10 段と、 ポートストリーム形式のままで信号を記録し、髙密度仕 様の記録媒体から再生された信号を上記トランスポート ストリーム形式のまま出力し、

標準仕様の記録媒体には上記トランスポートストリーム 形式の信号の記録再生を停止することを特徴とするディ スク記録再生装置。

【請求項2】請求項1に記載のディスク記録再生装置に おいて、

さらに、再生信号の形式を判別する信号判別手段と、 MPEG規格のプログラムストリーム形式の信号をトラ 20 ンスポートストリーム形式の信号に変換する変換手段と を有し、

前記制御手段は、高密度仕様の記録媒体から再生した信 号がプログラムストリーム形式の信号である場合には、 該再生されたプログラムストリーム形式の信号をトラン スポートストリーム形式の信号に変換して出力すること を特徴とするディスク記録再生装置。

【請求項3】 記録密度仕様の異なる複数種類のディスク 記録媒体に複数種類の形式の信号を記録再生するディス ク記録再生装置において、

MPEG規格のトランスポートストリーム形式の信号を 入出力する入出力手段と、

上記複数種類のディスク記録媒体を判別する媒体判別手 段と、

入力信号をディスク記録媒体に記録する記録手段と、 ディスク記録媒体から信号を再生する再生手段と、 上記トランスポートストリーム形式の信号をプログラム ストリーム形式の信号に変換する変換手段と、 上記記録手段と再生手段とを制御する制御手段とを有

し、 該制御手段は、髙密度仕様の記録媒体には上記トランス

ポートストリーム形式のままで信号を記録し、

標準仕様の記録媒体には、上記トランスポートストリー ム形式の信号をプログラムストリーム形式の信号に変換 して記録することを特徴とするディスク記録再生装置。

【請求項4】請求項3に記載の記録再生装置において、 さらに、再生信号の形式を判別する信号判別手段と、 MPEG規格のプログラムストリーム形式の信号をトラ ンスポートストリーム形式の信号に変換する変換手段と を有し、

前記制御手段は、ディスク記録媒体から再生した信号が プログラムストリーム形式の信号である場合には、該再 生されたプログラムストリーム形式の信号をトランスポ ートストリーム形式の信号に変換して出力することを特 徴とするディスク記録再生装置。

【請求項5】 記録密度仕様の異なる複数種類のディスク 記録媒体に複数種類の形式の信号を記録再生するディス ク記録再生装置において、

上記複数種類のディスク記録媒体を判別する媒体判別手

MPEG規格のトランスポートストリーム形式の信号を 入力する第1の入力手段と、

アナログ信号を入力する第2の入力手段と、

該第2の入力手段に入力したアナログ信号から、MPE G規格のプログラムストリーム形式の信号を生成する信 号生成手段と、

上記第1または第2の入力手段への入力信号から記録再 生すべき信号を選択する選択手段と、

入力信号をディスク記録媒体に記録再生する記録再生手

該記録再生手段を制御する制御手段とを有し、

該制御手段は、上記第1の入力手段への入力信号が選択 された場合には、髙密度仕様の記録媒体にトランスポー トストリーム形式で信号を記録し、

上記第2の入力手段への入力信号が選択された場合に は、上記高密度仕様の記録媒体にプログラムストリーム 形式の信号で記録することを特徴とするディスク記録再

【請求項6】請求項5に記載のディスク記録再生装置に 30 おいて、

さらに、MPEG規格のトランスポートストリーム形式 の信号をプログラムストリーム形式の信号に変換する変 換手段を有し、

前記制御手段は、前記第1の入力手段への入力信号が選 択された場合には、標準仕様の記録媒体には、トランス ポートストリーム形式の信号をプログラムストリーム形 式の信号に変換した後記録し、

前記第2の入力手段への入力信号が選択された場合に は、上記標準仕様の記録媒体には、プログラムストリー 40 ム形式の信号のまま記録することを特徴とするディスク 記録再生装置。

【請求項7】 記録密度仕様の異なる複数種類のディスク 記録媒体に複数種類の形式の信号を記録再生するディス ク記録再生装置において、

上記複数種類のディスク記録媒体を判別する媒体判別手 段と、

髙密度仕様の記録媒体にトランスポートストリーム形式 の信号を記録再生する第1の記録再生手段と、

標準仕様の記録媒体にプログラムストリーム形式の信号 50 を記録再生する第2の記録再生手段とを有することを特

徴とするディスク記録再生装置。

٠. .

【請求項8】記録密度仕様の異なる複数種類のディスク 記録媒体を判別する媒体判別手段と、

MPEG規格のトランスポートストリーム形式の信号を 入出力する入出力手段と、

該入出力手段へ入出力する信号をトランスポートストリ ーム形式のまま記憶する一時記憶手段と、

該一時記憶手段から読み出された信号をディスク記録媒 体に記録する記録手段と、

ディスク記録媒体から信号を再生し上記一時記憶手段に 10 転送する再生手段と、

上記記録手段と再生手段とを制御する制御手段とを有 し、

該制御手段は、髙密度仕様の記録媒体には上記トランス ポートストリーム形式のままで信号を記録し、髙密度仕 様の記録媒体から再生された信号を上記トランスポート ストリーム形式のまま転送し、

標準仕様の記録媒体には上記トランスポートストリーム 形式の信号の記録再生を停止することを特徴とするディ スク記録再生装置。

【請求項9】請求項8に記載のディスク記録再生装置に おいて、

さらに、再生信号の形式を判別する信号判別手段と、 MPEG規格のプログラムストリーム形式の信号をトラ ンスポートストリーム形式の信号に変換する変換手段と を有し、

前記制御手段は、髙密度仕様の記録媒体から再生した信 号がプログラムストリーム形式の信号である場合には、 該再生されたプログラムストリーム形式の信号をトラン スポートストリーム形式の信号に変換して出力すること 30 を特徴とするディスク記録再生装置。

【請求項10】記録密度仕様の異なる複数種類のディス ク記録媒体に複数種類の形式の信号を記録再生するディ スク記録再生装置において、

上記複数種類のディスク記録媒体を判別する媒体判別手 段と、

MPEG規格のトランスポートストリーム形式の信号を 入出力する入出力手段と、

該入出力手段へ入出力する信号をトランスポートストリ ーム形式のまま記憶する一時記憶手段と、

該一時記憶手段から読み出された信号をディスク記録媒 体に記録する記録手段と、

ディスク記録媒体から信号を再生し上記一時記憶手段に 転送する再生手段と、

MPEG規格のトランスポートストリーム形式の信号を プログラムストリーム形式の信号に変換する変換手段

上記記録手段と再生手段とを制御する制御手段とを有

記憶手段から読み出されたトランスポートストリーム形 式の信号を記録し、

標準仕様の記録媒体には、上記一時記憶手段から読み出 されたトランスポートストリーム形式の信号をプログラ ムストリーム形式の信号に変換して記録することを特徴 とするディスク記録再生装置。

【請求項11】請求項10に記載の記録再生装置におい て、

さらに、再生信号の形式を判別する信号判別手段と、 MPEG規格のプログラムストリーム形式の信号をトラ ンスポートストリーム形式の信号に変換する変換手段と

前記制御手段は、ディスク記録媒体から再生した信号が プログラムストリーム形式の信号である場合には、該再 生されたプログラムストリーム形式の信号をトランスポ ートストリーム形式の信号に変換して前記一時記憶手段 に転送することを特徴とするディスク記録再生装置。

【請求項12】複数種類のディスク記録媒体を判別する 媒体判別手段と、

第1の形式の信号を入出力する入出力手段と、 入力信号をディスク記録媒体に記録する記録手段と、 ディスク記録媒体から信号を再生する再生手段と、 上記記録手段と再生手段とを制御する制御手段とを有 し、

該制御手段は、第1の記録媒体には上記第1の形式のま まで信号を記録し、第1の記録媒体から再生された信号 を上記第1の形式のままで出力し、

第2の記録媒体には上記第1の形式の信号の記録再生を 停止することを特徴とするディスク記録再生装置。

【請求項13】複数種類のディスク記録媒体に複数種類 の形式の信号を記録再生するディスク記録再生装置にお いて、

第1の形式の信号を入出力する入出力手段と、

上記複数種類のディスク記録媒体を判別する媒体判別手 段と、

入力信号をディスク記録媒体に記録する記録手段と、 ディスク記録媒体から信号を再生する再生手段と、 上記第1の形式の信号を第2の形式の信号に変換する変 換手段と、

40 上記記録手段と再生手段とを制御する制御手段とを有

該制御手段は、第1の記録媒体には上記第1の形式のま まで信号を記録し、

標準仕様の記録媒体には、上記第1の形式の信号を第2 の形式の信号に変換して記録することを特徴とするディ スク記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、デジタル信号等を 前記制御手段は、髙密度仕様の記録媒体には、上記一時 50 ディスク記録媒体に記録再生可能なディスク記録再生装

置に係り、特に高密度記録可能な光ディスク記録媒体に MPEGストリーム形式の信号を好適に記録再生を行う ディスク記録再生装置に関する。

[0002]

【従来の技術】数年前からCSデジタル放送が開始さ れ、デジタル放送をストリーム記録可能なデジタルVT Rが市場に投入されている。2000年末からはBSデ ジタル放送が開始され、新たにハイビジョン映像も配信 されている。一般に、複数の映像や音声などのデジタル コンテンツを一つのビットストリームに多重する方式と 10 しては、ビット多重とパケット多重がある。MPEGシ ステムでは、後者のパケット多重が採用されている。パ ケット多重の中にはトランスポートストリーム(TS) とプログラムストリーム (PS) の2つがあり、MPE G方式ではTSとPSの2種類のストリーム構造を持 つ。デジタル放送はTSを採用しており、デジタルチュ ーナーは、そのサービスや伝送される番組を問題なく受 信機側で受け取るために、TS形式のストリームをその まま処理しており、デジタルインターフェース出力もT Sのまま出力している。これに対し、現在製品化されて 20 いる記録可能な光ディスクはPS記録が規定されてお り、ドライブ装置やAV用の記録再生装置においても、 PS形式で記録するようになっている。

【0003】さらにデジタル放送信号の詳細を説明すると、CSデジタル放送で送られてくる標準的な画質のMPEGストリーム(以下SD (Standard Definition)と呼ぶ)に対し、BSデジタル放送で送られてくる高画質なMPEGストリーム(以下HD (High Definition)と呼ぶ)が実用化されている。

【0004】図20は、上記のSD信号を記録する標準 30

的な光ディスクと記録方式、HD信号を記録する高密度な光ディスクと記録方式を示す。例えば、6Mbps (bitper sec)程度の平均転送レートを有するSD放送に対しては、4.7GB程度の標準の光ディスクに赤色レーザーを用いて記録を行い、約100分の記録を実現している。HD放送は平均転送レートが約20Mbps程度であり、2時間程度の記録時間を確保するには更に高密度な光ディスクが必要となり、20GB程度の高密度な光ディスクに例えば青色レーザーを用いて情報を記録するものが提案されている。

【0005】上述したPS及びTSストリームとの関連については、特開平10-154373号公報において触れられている。その中で、PSを扱う光ディスク再生装置からTSを扱う他の装置に信号を送信する際に、PSからTSに変換することで、再生信号をストリーム形式の異なる装置(例えばテレビ受像機)へ出力することが提案されている。

【0006】さらには、特開平11-345459号公 て、記録するストリームを従来の標準光ディスクと同じ報において、HDDなどの大容量な記憶メディアを一時 PS形式のストリームとして記録することは必ずしも得記憶手段として光ディスク装置に組み込み、これを介し 50 策とは言えない。さらに、HD信号は情報量が多いため

て光ディスクに記録または光ディスクから再生する装置 も紹介されている。

[0007]

【発明が解決しようとする課題】上述した従来のSD信号を記録する標準的な光ディスク及び記録再生装置に対して、HD信号を記録する高密度な光ディスク及び記録再生装置が考案されつつあるが、記録ストリーム形式を含めた記録再生装置の製品形態等に関する詳細は報告されていない。さらに高密度な光ディスクと従来の標準的な光ディスクとの関係などに関しても報告はされていない。

【0008】前述したように、これまでの光ディスク記録再生装置においては、PS形式のストリーム構造でデータが定義されている。これに対して、デジタル放送で送られてくるSD並びにHD信号はTS形式であり、デジタル放送のストリームを記録するには、TSからPSへの変換が必要であった。

【0009】また、図20に記載した赤色レーザーと青色レーザーでは波長が異なり、例えば青色レーザーで記録した光ディスクは記録密度が高すぎてスポット径の大きな赤色レーザーでは隣接パターンまで読んでしまい性能確保ができないため、基本的に互換は取れないのが実情である。

【0010】図21は従来の光ディスクに記録する1セクタ単位のデータ構造を示すものである。メインデータは2048バイト(1バイトは8ビット)であり、その前段にID270と、IED(ID用のエラー検出フラグ)271と、RSV(リザーブ領域)272が付加され、後段にメインデータに対するエラー検出フラグが付加される。

【0011】図22は、高密度光ディスクに対応したエラー訂正符号を付加した訂正プロックの一例を示すものである。セクタ276を16個単位で内パリティ277 (279)と外パリティ276 (278)を付加し、それらを2組結合した、トータル32セクタブロックでのエラー訂正を行う。従来は左半分の16セクタブロックで実施してきたが、高密度なディスクであるために、同じサイズの傷に対して標準的なディスクに対し影響が大きくなる。このようなことを考慮して、セクタ数を倍にしてエラー訂正の可能な領域を増加する工夫をしている。以上のように、物理的な部分でこのような工夫がなされ、従来の標準光ディスクとは全く互換性がないのが実情である。

【0012】したがって、HD記録を行う高密度な光ディスクに関しては、必ずしも標準光ディスクに対する互換性を考慮する必要はなく、使い勝手の良くなるアプリケーションを考えるほうが得策である。その一例として、記録するストリームを従来の標準光ディスクと同じPS形式のストリームとして記録することは必ずしも得策とは言えない。さらに、HD信号は情報量が多いため

10

8

TS/PS変換時の処理に関してもバッファメモリ等の増加に繋がる。また、TSからPSに変換する過程で100%の情報を保持するためには、変換に要する回路規模の増加も生じ、コストアップに繋がる問題もある。

【0013】また、その他の課題として以下の点が指摘できる。デジタル放送で扱われるHD信号は高精細であり、HD信号のデコードには極めて膨大な回路規模を有する。したがって、低価格な記録再生装置を提供するには、これを搭載したデジタルBSチューナーの機能を活用すべきである。

【0014】前記特開平10-154373号公報では 再生時のPS/TS変換について報告されているが、記 録メディアの種類は考慮されていない。前記特開平11 -345459号公報には、デジタルチューナーが扱う TS形式の多重ストリームをどのようにHDDに記録す るかなど詳細に関して述べられていない。

【0015】更に、光ディスク記録再生装置とHDDを用いた記録再生装置を組み合わせた場合に、それぞれの機器間の多重ストリームの受け渡しを実現する手段については記載されていない。また、HDDなどのノンリム 20一パブルな記録メディアを内蔵した光ディスク記録再生装置などにおいて、光ディスクとHDD間の多重ストリームの受け渡しの実現手段に関して述べられていない。【0016】本発明の目的は、上記した従来技術の課題を解決し、記録密度の異なるディスク媒体に対し、入力信号の種類(アナログ/デジタル、TS/PS)やデジタル放送の画質(SD/HD)などに応じて、それぞれのディスクに最適なストリーム形式で記録再生可能とし

たディスク記録再生装置を提供することにある。

[0017]

【課題を解決するための手段】上記目的を達成するために、本発明のディスク記録再生装置は、記録密度仕様の異なる複数種類のディスク記録媒体を判別する媒体判別手段と、MPEG規格のトランスポートストリーム形式の信号を入出力する入出力手段と、入力信号をディスク記録媒体に記録する記録手段と、ディスク記録媒体から信号を再生する再生手段と、記録手段と再生手段とを制御する制御手段とを有する。この制御手段は、高密度仕様の記録媒体にはトランスポートストリーム形式のままで信号を記録し、高密度仕様の記録媒体から再生された40信号はトランスポートストリーム形式のまま出力し、一方、標準仕様の記録媒体にはトランスポートストリーム形式の信号の記録媒体にはトランスポートストリーム形式の信号の記録其生を停止する構成とした。

【0018】また本発明のディスク記録再生装置は、記録密度仕様の異なる複数種類のディスク記録媒体に複数種類の形式の信号を記録再生するものであって、さらに、トランスポートストリーム形式の信号をプログラムストリーム形式の信号に変換する変換手段を有し、制御手段は、標準仕様の記録媒体には、トランスポートストリーム形式の信号をプログラムストリーム形式の信号に

変換して記録する構成とした。

【0019】また本発明のディスク記録再生装置は、さらに、トランスポートストリーム形式の信号を入力する第1の入力手段と、アナログ信号を入力する第2の入力手段と、第2の入力手段に入力したアナログ信号からMPEG規格のプログラムストリーム形式の信号を生成する信号生成手段と、第1または第2の入力手段への入力信号から記録再生すべき信号を選択する選択手段とを有する。制御手段は、第1の入力信号が選択された場合には高密度仕様の記録媒体にトランスポートストリーム形式で信号を記録し、第2の入力信号が選択された場合には高密度仕様の記録媒体にプログラムストリーム形式の信号で記録する構成とした。

【0020】また本発明のディスク記録再生装置は、トランスポートストリーム形式の信号を入出力する入出力手段と、入出力手段へ入出力する信号をトランスポートストリーム形式のまま記憶する一時記憶手段と、一時記憶手段から読み出された信号をディスク記録媒体に記録する記録手段と、ディスク記録媒体から信号を再生し一時記憶手段に転送する再生手段と、記録手段と再生手段とを制御する制御手段とを有する。この制御手段は、高密度仕様の記録媒体にはトランスポートストリーム形式のまま転送し、一方、標準仕様の記録媒体にはトランスポートストリーム形式の信号の記録媒体にはトランスポートストリーム形式の信号の記録其件を停止する構成とした。

【0021】また本発明のディスク記録再生装置は、さらに、トランスポートストリーム形式の信号をプログラムストリーム形式の信号に変換する変換手段を有し、制30 御手段は、標準仕様の記録媒体には、一時記憶手段から読み出されたトランスポートストリーム形式の信号をプログラムストリーム形式の信号に変換して記録する構成とした。

[0022]

【発明の実施の形態】以下、本発明の実施形態を説明する。図1は、本発明の実施形態にかかる記録再生装置のプロック図である。本記録再生装置は、HDDと例えば光ディスクのようなリムーパブルなメディアをドライブするディスクドライブ装置(以下ディスクドライブと称す)を有している。ここで、1は記録再生装置、2はデジタルインターフェース、3はHDDインターフェース、4はHDD、5はディスクドライブ、6はディスクドライブインターフェース、7はTS/PS変換回路、8はインターフェースプロック、9はメモリ、10はマイクロコンピュータ(以下マイコンと略記)、11はデータバス、17はデジタル信号入出力端子、22はデジタルBSチューナーである。

ストリーム形式の信号に変換する変換手段を有し、制御 【0023】まず、デジタルチューナー22からHDD 手段は、標準仕様の記録媒体には、トランスポートスト への記録に関して説明する。デジタルチューナー22か リーム形式の信号をプログラムストリーム形式の信号に 50 らのMPEGストリームは、TS形式の多重ストリーム である。端子17から入力された信号は、デジタルイン ターフェース2を介してHDDインターフェース3に送 られる。そして、その出力がデータバス11を介してH DD4に送られ、記録される。このとき、HDDへの記 録はマイコン10によって制御される。以上のようにB SデジタルチューナーからのTSは、一旦そのままの形 式でHDD4に記録されることになる。HDDは大容量 であり、転送レートが高いため、TSに含まれる情報全 てを高速にかつ長時間の情報を記録することができる。

【0024】HDD4からの再生に関して説明する。デ 10 ータバス11を介してHDD4から読み出されたTS は、HDDインターフェース3を介してデジタルインタ ーフェース2に送られる。そして、端子17から出力さ れTSは、デジタルチューナー22側でTS形式のMP EG信号がデコードされ、ビデオ信号に変換されて、テ レビなどに出力される。TSで記録されたことにより、 データ放送などの情報も全て再生可能であり、現放送と 何ら変わりない放送をタイムシフトして再生することが 容易に実現できる。

【0025】次に、HDD4から光ディスクへのダビン 20 グ記録に関して説明する。データバス11、ディスクド ライブインターフェース 6を介してHDD 4 から読み出 されたTSは、TS/PS変換回路7でPSに変換され る。その後、再度ディスクドライブインターフェース 6、データバス11を介してディスクドライブ5に送ら れ光ディスクに書き込まれる。メモリ9は、TS/PS 変換の際にデータを一時的に格納するのに用いる。こう することで、光ディスクへの記録速度や、TS/PS変 換時間などにとらわれることなく、光ディスクにダビン グ記録でき、必要な情報を保存することができる。ま た、光ディスク側の処理速度の問題やコスト低減を考慮 した際のパフォーマンスの低下などにより、TS/PS 変換時に100%の情報を保持できなかった場合(例え ば、データ放送など)にも、HDDには100%の情報 を一時記録しているため、HDDの容量が満杯にならな い限り放送と同等の画質、機能を保つことが可能であ る。

【0026】また、MPEGの場合、髙画質モードにな ればなるほど圧縮比が低くなり、転送レートが増加す る。このため、光ディスクへの書き込みなどに時間がか かり、配信されてきた信号を記録できなくなるという問 題も生じる。本実施例のように、一度HDDを経由する ことで、放送のようにリアルタイムに連続して送られて いる信号を損なうことなく記録することができる。

【0027】光ディスクからの再生に関して説明する。 ここで、光ディスクから読み出された信号が直接出力さ れるモードと、一度HDDを経由した上で出力されるモ ードがある。前者の場合、ディスクドライブ5から再生 された P S は、データバス 1 1 とディスクドライブイン

Sに変換される。そして、再度ディスクドライブインタ ーフェース 6 とデータバス 1 1 を介して、HDDインタ ーフェース3を介してデジタルインターフェース2に送 られる。また、後者の場合には、TS/PS変換回路7 でTSストリームに変換された後、再度ディスクドライ ブインターフェース 6 とデータバス 1 1 を介して、HD D4によってTSの状態で記録される。そして、同時に HDD4から読み出しが行われる。読み出されたTS は、データバス11とHDDインターフェース3を介し てデジタルインターフェース2に送られ、その出力は端 子17を経由してデジタルBSチューナー22に送られ てTSがデコードされる。記録と同様に、高画質モード など転送レートが増加した場合、光ディスクからの読み 出しなどに時間がかかり、瞬時に読み出しができない場 合も生じるが、一度HDDを経由することで連続して映 像・音声を再生できる。

10

【0028】次に、図2を用いてTS/PS変換につい て説明する。同図(a)で示すTS30はいくつかのT Sパケットで構成される。(b)に示すようにTSパケ ット31はTSヘッダ32とTSペイロード34で構成 され、そのサイズは188バイトの固定長である。

(c) に示すこのTSペイロードのみを繋ぎ合わせてで きたストリーム35はPES (Packetized Elementary Stream)と呼ばれるものであり、特に先頭部分にPES ヘッダ36が含まれる。(d)で示すストリーム38は パックと呼ばれ、いくつかのPES35で構成され、そ の先頭にはパックヘッダ39が繋がる。(e)に示すこ うしたパックの連続したストリーム41がPSである。 以上のような、ストリームの繋ぎ変えを行うことでTS /PS変換が実現できる。また、変換に際しては各ヘッ ダの内容を認識した上でペイロード部分やPESをつな ぎ合わせる作業が伴うため、ある程度の変換回路や変換 時間などを要する。

【0029】次に、図3は、図1に示した記録再生装置 に、さらに外部からのビデオ入力信号に対しMPEGエ ンコードしたデジタル信号を記録再生する機能を追加し た実施形態である。ここでは、図1の実施形態と異なる 点を中心に説明し、同一箇所は説明を省略する。

【0030】まず、外部入力信号の記録に関して説明す る。外部入力端子18から入力された映像及び音声信号 はAD/DA変換回路15でデジタル信号に変換され、 ビデオエンコーダ/デコーダブロック14でデコードさ れる。その後MPEGコーデック13(エンコーダおよ びデコーダを持つものをコーデックと称す)で圧縮(エ ンコード) され、データパス11を介してインターフェ ースプロック8に入力される。ここで、一般にMPEG エンコードされた信号はPS形式の多重ストリームとし て出力される。したがって、このインターフェースプロ ックに入力される信号はPSストリーム形式の信号であ ターフェース 6 を介した後、TS/PS変換回路 7 でT 50 り、光ディスクへの記録に対しては次の 2 通りのモード

12

がある。第1のモードは、HDDをバッファとして利用するものである。即ち、一時的にHDDに記録し、特に保存する価値の無い番組に関してはHDDから再生した後消去し、保存したい番組に関しては光ディスク等にダビング記録するモードである。第2のモードは、直接光ディスクに記録するモードである。

【0031】第1のモードでは、データバス11から入 力されたPSストリームをTS/PS変換回路7でTS に変換する。そして、ディスクドライブインターフェー ス6とデータバス11を介してHDD4に送られ、記録 10 される。一時的にHDD4に記録された信号は読み出さ れ、データバス11とディスクドライブインターフェー ス6を介し、TS/PS変換回路7でPSに再度変換さ れる。その後、ディスクドライブインターフェース6と データバス11を介してディスクドライブ5に送られ、 光ディスクに記録される。このようにすることで、保存 したい番組のみ、光ディスクに記録できる。また、外部 入力信号を圧縮率の低い高画質モード、即ち高レートで 記録を希望する場合、直接光ディスクなどに記録すると 速度的に間に合わない場合にも、高速記録が可能なHD 20 Dに一時的に記録することで問題を解決できる。尚、本 実施形態では、データバス11から入力されたPSスト リームをTSに変換後にHDD4に記録したが、アナロ グ信号入出力に対応しデジタルチューナーとのインター フェースがないようなセットの場合には、PS形式のま まHDDに記録するようにしても良い。この方法によれ ば、HDD4に記録された信号を光ディスクに記録する 際にも変換を要さず、記録時間を短縮することができ る。

【0032】第2のモードでは、データバス11から入 30 カされたPSを変換せずに直接ディスクドライブインターフェース6に送り、データバス11を介して光ディスクに直接記録するものである。これは、記録時点で100%保存したい番組を直接記録するモードであり、ダビング操作を回避し簡単に録画できるメリットがある。

【0033】図4は、TS/PS変換回路の詳細ブロック図を示したものである。まず、点線58で示されるパスについて説明する。これは、HDDから光ディスクへのダビング時のパスである。端子56からのTSストリームがTS→PS変換回路54でPSストリームに変換40された後、スイッチ53を介して端子57に出力され、ディスクドライブインターフェース6にPS形式のストリームが送られる。

【0034】次に、一点鎖線59で示されるパスについ は、本発明の実施形態にかかる記録再生装置のブロック て説明する。再生時、光ディスクからの再生信号はPS 図で、図5における記録再生装置250を具体的に示し である。端子56から入力されたPSは、PS→TS変 換回路51でTSに変換後、スイッチ52,53を経由 リムーパブルなメディアをドライブするディスクドライ ブ装置 (以下ディスクドライブするディスクドライブなる。 ここで、200は記録再生装置(図5の250に対場合、MPEGエンコーダで変換されたPSは、端子550 応)、2はデジタルインターフェース、206はタイム

6から入力されPS→TS変換回路51でTSに変換される。その後、スイッチ52,53を介して出力端子57に出力され、ディスクドライブインターフェース6に信号が送られる。

【0035】最後に、二点鎖線60で示されるパスについて説明する。直接光ディスクに記録する場合には、MPEGエンコーダで変換されたPSが端子56から入力され、スイッチ52,53を介して直接出力端子57に出力される。すなわち、PS→TS変換回路51を介さずに、ディスクドライブインターフェース6に信号が送られる。

【0036】図5と図6は、デジタルBSチューナー内 蔵の表示装置と光ディスク記録再生装置との構成と接続 を示したものである。 BSチューナー内蔵の表示装置 3 50は表示装置351、デジタルBSチューナー352 とからなり、デジタルBSチューナー352はデジタル チューナー353、SD/HDデコーダ354、デジタ ルインターフェース355とから構成される。図5で示 す光ディスク記録再生装置250は、デジタルインター フェース251とディスク記録再生装置252とからな り、自分自身ではSD/HDデコーダを持たずにストリ ームを記録再生し、デジタルインターフェースを介しB Sチューナー内蔵の表示装置350との間でデータのや り取りを行うものである。現時点ではSD/HDデコー ダは極めて回路規模が大きく、コストパフォーマンスの 点ではデジタルインターフェースからの信号のみを記録 再生する装置がより好ましい。したがって、こうした記 録再生装置においては、TSのまま記録することでTS /PS変換などの処理が省けより低価格の製品を提供で きることになる。

【0037】図6で示す光ディスク記録再生装置260 は、図5で示した光ディスク記録再生装置250に対し SD/HDコーデック(エンコーダおよびデコーダを持 つものをコーデックと称す)263を有したものであ り、図5の装置とは逆に、当分の間需要の見込める地上 波放送や別の機器からのダビングニーズに対して必要と なる記録再生装置であり、高級機としての位置付けにな る。将来的には、HDエンコーダの実現もありうるた め、SD/HDコーデックを搭載した装置を前提とす る。こうした髙級機では対応する光ディスクとして、標 準ディスクと高密度ディスク双方に対応する必要があ り、ディスク記録再生装置としては双方のディスクがか かるディスクドライブ装置を搭載することになる。図7 は、本発明の実施形態にかかる記録再生装置のプロック 図で、図5における記録再生装置250を具体的に示し たものである。本記録再生装置は、光ディスクのような リムーバブルなメディアをドライブするディスクドライ ブ装置 (以下ディスクドライブと称す)を有している。 ここで、200は記録再生装置(図5の250に対

スタンプ処理回路、204はディスクドライブ、6はデ ィスクドライブインターフェース、205はインターフ ェースプロック、9はメモリ、10はマイクロコンピュ ータ(以下マイコンと略記)、11はデータバス、17 はデジタル信号入出力端子、400はデジタルBSチュ ーナー内蔵の表示装置であり、デジタルチューナー40 1、SD/HDデコーダ402、デジタルインターフェ ース403、表示装置404からなる。

【0038】まず、デジタルチューナー401で受信し た信号の光ディスクへの記録に関して説明する。デジタ 10 ルチューナー401で受信・復調された信号は、TS形 式のMPEG多重ストリームである。この信号は、記録 再生装置200の端子17から入力され、デジタルイン ターフェース2を介してタイムスタンプ処理回路206 に送られ、多重ストリームに時刻管理をするためのタイ ムスタンプを付加する。その後ディスクドライブインタ ーフェース6、データバス11を介してディスクドライ ブ204に信号を送り記録を行う。このとき、ディスク ドライプ204への記録はマイコン10によって制御さ れる。一般にディスクドライブ204からの信号はディ 20 スクドライブ側のタイミングで出力され、必ずしもMP EGデコーダ側がデータを要求するタイミングとは一致 しない。上記のタイムスタンプは、記録時にタイムスタ ンプなる時間情報を付加し、再生時にそのタイムスタン プに基づきデータをMPEGデコーダ側に一定間隔で送 り出すものであり、このときタイムスタンプは取り除か れる。メモリ9は、タイムスタンプ処理やディスクドラ イブインターフェースにおいて、データを格納するバッ ファの役割を果たす。

【0039】図8にタイムスタンプを付加した記録スト リームの構成について、簡単に説明する。(a)がPS のパック構造を示すものであり、図2(d)と同じ構造 である。ただし、光ディスクに記録するデータの単位は 2048パイトに規定されており、これを1パックと呼 びこれがペースとなる。(b) がデジタルチューナーか ら出力されるTSストリームであり、188バイトのパ ケットが連続する。光ディスクにTSで記録する場合 は、188バイトのTSパケット146にタイムスタン プ147を付加してそれらをつなぎ合わせ2048バイ トの単位にまとめる。例えば、タイムスタンプを4バイ 40 トとすると、1単位が192パイトとなり10個つない で残り128バイトできれるが、この残り分64バイト は次のパックに引き継がれるものとする。以上のよう に、TSのまま記録する場合には比較的簡単な変換で実 現できるが、PSへ変換する場合には図2で前述したよ うに非常に複雑な変換が必要となる。

【0040】図7に戻り、光ディスクからの再生に関し て説明する。データバス11を介してディスクドライブ 204から読み出されたTSは、ディスクドライブイン ターフェース6を介して、タイムスタンプ処理回路20 50 EGストリーム)はATAPI処理回路92で処理され

6でデータ間隔を一定に保つような処理を行い、かつタ イムスタンプを削除した後、デジタルインターフェース 2に送られる。そして、端子17から出力されたTS は、デジタルBSチューナー内蔵の表示装置400側の デジタルインターフェース403を介してSD/HDデ コーダ402でTS形式のMPEG信号がデコードさ れ、ビデオ信号に変換されて、表示装置404に出力さ

【0041】以上のようにデジタルBSチューナーから のTSは、タイムスタンプは付加されるものの、ほぼそ のままの形式で光ディスクに記録される。こうすること で、複雑なストリーム変換などが不要となり、自ら高価 なデコード機能を持たずにデジタルインターフェースを 介してのみストリームを記録再生する機器として低コス トで実現できる。また、TSで記録されることにより、 データ放送などの情報が変換処理などにより欠落するこ ともなく全て再生可能であり、現放送と何ら変わりない 放送をタイムシフトして再生することが容易に実現でき る。

【0042】次に、図9は、図7におけるディスクドラ イプ204が髙密度ディスクに対してのみ記録再生可能 なものであるとした場合の、ディスクドライブ204の 内部構造を示す。ここで、81が光ディスク、82がモ ータ軸、83がスピンドルモータ、210が光学レン ズ、211が光ヘッド、212がリードスクリュー、2 13がステッピングモータ、90が記録再生アンプ、9 1がディスク信号処理回路、92がATAPⅠ処理回 路、93がピックアップ制御回路、94がマイコン、9 5が入出力端子、226が制御信号出力端子を示す。2 11は背色レーザーを搭載した光ヘッドであり、210 ~213で構成されるピックアップは高密度光ディスク に対するものである。赤色レーザーは有しておらず、標 準ディスクの記録再生は基本的にできない構成である。

【0043】まず、サーボ制御について簡単に説明す る。光ディスク81はスピンドルモータ83によって回 転制御される一方、スッテピングモータ213の制御に よりそれに接続されたリードスクリュー212が移動し リードスクリュー212に固定された光ヘッド211が 移動することで光ディスク上の書き込みもしくは読み出 し位置がほぼ決定する。さらに、光ヘッド内部の制御機 構により細かな制御がなされる。記録時及び再生時には 光ディスク81からの反射光が光学レンズ210、光へ ッド211を介し読み出され、記録再生アンプ90で増 幅された後ピックアップ制御回路93に送られ、その情 報をもとに、ステッピングモータ213に対して制御信 号(D1)によってフィードバック制御をかけるもので

【0044】また、記録再生の過程は以下のとおりであ る。記録時は、端子95から入力された記録情報(MP

30

16

【0045】次にディスク判別に関して簡単に説明する。挿入されたディスク81が標準ディスクか高密度ディスクかをディスク信号処理回路91もしくはピックアップ制御回路93からの情報によりマイコン94で判別する。上記マイコン94からの判別信号を(C1)として、ディスクドライブの外に端子226を経由して出力する。もしくは、ATAPIコマンド情報として端子95にその情報を載せることも可能である。この判別信号20(C1)は、下記のように標準ディスクへの記録を停止する場合に用いる。

【0046】図10は記録ストリームの切替えを示すものであり、詳細は以下の通りである。

- (1) 標準ディスクに記録する場合は、記録を停止す ス
- (2) 高密度ディスクにデジタルインターフェースからのSDを記録する場合は、入力/出力スルーでTSのまま記録する。図4において、スイッチ52は白側、スイッチ53は黒側に接続する。
- (3) 高密度ディスクにデジタルインターフェースからのHDを記録する場合は、入力/出力スルーでTSのまま記録する。図4において、スイッチ52は白側、スイッチ53は黒側に接続する。

【0047】図11は再生ストリームの切替えを示すものであり、詳細は以下の通りである。

- (1) 標準ディスクを再生する場合は、再生を停止する。
- (2) 高密度ディスクに記録されたTSストリームは入力/出力スルーでTSのままデジタルインターフェース 40出力端子に出力する一方、TSをPSに変換してアナログ変換処理後出力する。

【0048】以上のように、高密度光ディスクにデジタル放送をTSのまま記録することで、変換による情報の欠落や、HD信号に対するPS/TS変換処理を省略でき、回路的にシンプルな構成となる他、ディスクドライブも背色レーザーのみに対応したものを用いることで、更なるコスト低減が見込め、低価格な記録再生装置を提供できることになる。

【0049】次に、図12は、図5における記録再生装 50 デジタルインターフェース入力のみであり、入力信号は

置250の別の実施形態を示したもので、先の図7の実施例に対しディスクドライブが標準ディスクと高密度ディスク双方に対して記録再生が可能なものであり、同一ブロックには同一符号を付し説明は省略する。本実施形態の場合、標準ディスクと高密度ディスク双方に対して記録再生が可能なことから、それぞれのディスクに対してどのようなストリームを記録するかの切替えが発生する。ストリーム判別回路201、PS/TS判別回路203は、上記切替えに必要な制御信号を生成する回路である。

【0050】図13は、ディスクドライブ202の内部構造を示す。標準ディスクに対するピックアップが追加され、220が光学レンズ、221が光ヘッド、222がリードスクリュー、223がステッピングモータであり、他は図9のディスクドライブと同様であり説明は省略する。ここで、221は赤色レーザーを搭載した光ヘッドである。

【0051】次に、ディスク判別とピックアップの切替えに関して簡単に説明する。挿入されたディスク81が標準ディスクか高密度ディスクかをディスク信号処理回路91もしくはピックアップ制御回路93からの情報によりマイコン94で判別し、標準ディスクであればスイッチ225を白側に接続し、高密度ディスクであればスイッチ225を黒側に接続する。同様に、各ピックアップを制御する制御信号(D1)(D2)に関してもマイコンの判別結果を元に制御される。ただし、メカ的な切替えについては、省略する。上記マイコン94からの判別信号を(C1)として、ディスクドライブの外に端子226を経由して出力する。もしくは、ATAPIコマンド情報として端子95にその情報を載せることも可能である。

【0052】次に、再度図12に戻って説明する。スト リーム判別回路201は、デジタルインターフェース2 で受けたデジタルBSチューナー内蔵の表示装置400 からの放送信号がSD信号かHD信号かを判別するもの であり、その判別信号を(C2)とする。PS/TS判 別回路203は、光ディスクから再生された信号のMP EGストリームがPSかTSかを判別するものであり、 判別信号を(C3)とする。上記(C1)(C2)(C 3) の3つの判別信号を受けて、マイコン10はTS/ PS変換回路7にSEL1、SEL2を送って変換のル ートを切り替えるように制御し、光ディスクに記録する 際のストリームを決定する。また、再生時のストリーム 変換の制御も行う。先に説明したように、TS/PS変 換回路7は図4に示す構成であり、制御信号SEL1、 SEL2は端子61、端子62にそれぞれ入力される。 【0053】次に、図14、図15、及び図4を用いて ストリームの切替えについて説明する。 図14は記録ス トリームについて説明したものである。図7の実施例は (10)

18

常時TS形式のMPEGストリームである。

- (1) 標準ディスクにSDを記録する場合は、TS→PS変換しPSで記録する。スイッチ 5 2 は指定なしで、スイッチ 5 3 は白側に接続する。
- (2) 標準ディスクにHDを記録する場合も(1) 同様。ただし、標準ディスクでは記録時間が確保できないため、記録停止にすることも可能。
- (3) 高密度ディスクにSDを記録する場合は、入力/ 出力スルーでTSのまま記録する。スイッチ52は白 側、スイッチ53は黒側に接続する。
- (4) 高密度ディスクにHDを記録する場合は、入力/ 出力スルーでTSのまま記録する。スイッチ52は白 側、スイッチ53は黒側に接続する。
- 【0054】図15は再生ストリームの切替えを示すものであり、詳細は以下の通りである。
- (1) 標準ディスクに記録されているストリームはPSであり、デジタルインターフェース出力端子にはPSをTSに変換して出力する。
- (2) 高密度ディスクに記録されたPSストリームはTSに変換してデジタルインターフェース出力端子に出力 20 する。
- (3) 高密度ディスクに記録されたTSストリームは入 カ/出力スルーでTSのままデジタルインターフェース 出力端子に出力する。

【0055】次に図16は、図12の実施形態に対し、HDD4が内蔵されたものであり、3はHDDインターフェース2からのストリームは、HDDインターフェース3に転送され、タイムスタンプ処理回路206でタイムスタンプが付加され、TSのままHDD4に格納される。次に、H30DDから光ディスクへのダピングに関して説明する。HDD4に格納されたTSは再生されHDDインターフェース3を介し再生された後、データバス11からデータをディスクドライブインターフェース6で吸い上げTS/PS変換回路7を介してディスクドライブ202にデータを送り光ディスクに記録するものである。

【0056】光ディスクへの記録過程において、ディスク判別信号(C1)、PS/TS判別信号(C3)に対するストリームの変換過程は図12の実施例と同様である。しかしながら、デジタルBSチューナー内蔵の表示 40 装置400へ信号を送り返すために、デジタルインターフェース2の部分では常時TSとなっている。そのため、ストリーム判別信号(C2)に関しては、図12と同様にデジタルインターフェース2からの信号を元に判別するわけにはいかない。したがってHDD4から再生された信号がデータバス11上に吸い上げられた時点でストリーム判別回路201に送り判別する必要がある。光ディスクからの再生に関しては、ディスクドライブ202から再生された信号がデータバス11を介してディスクドライブインターフェース6に送られタイムスタン 50

プ処理回路206でタイムスタンプがはずされTS/PS変換回路7を経由してデジタルインターフェース2に戻され、端子17を経由してデジタルBSチューナー内蔵の表示装置400へ送られる。

【0057】次に図17の実施形態は、図6の構成にお いて記録再生装置260を具体的に示したものである。 図12の実施形態との違いは、アナログ信号入力モード およびアナログ出力モードを持つ点であり、端子18か らの外部入力信号に対しては、AD/DA15、ビデオ 10 エンコーダ14、SD/HDコーデック13を介してデ ィスクドライブインターフェース6に送られる。記録に 際しては、ディスクドライブインターフェース6におい てデジタルインターフェース2からのストリームとの切 替えが発生する。また、デジタルインターフェース2か らのストリームがTSなのに対して、SD/HDコーデ ック13からの信号は一般にPSであり、記録再生に関 して変換等が必要になる。マイコン16から出力される 制御信号(C4)は、例えばアナログ入力端子18から 信号が入力された場合と、デジタル入力端子17から入 力された場合とを判別した信号であり、また、双方に信 号が入力された場合には、ユーザーボタンによる切替え に対応した信号である。この制御信号(C4)が、(C 1) (C2) (C3) とともにマイコン10に入力さ れ、ストリームの切替えを行うことになる。

【0058】図18は記録ストリームの切替えを示すものであり、詳細は以下の通りである。

- (1) 標準ディスクに外部からのアナログ信号を記録する場合は、入力/出力スルーでPSのまま記録する。図4において、スイッチ52は白側、スイッチ53は黒側に接続する。
- (2) 標準ディスクにデジタルインターフェースからの SDを記録する場合は、 $TS \rightarrow PS$ 変換しPSで記録する。スイッチ52は指定なしで、スイッチ53は白側に接続する。
- (3) 標準ディスクにデジタルインターフェースからの HDを記録する場合も(2)と同様。
- (4) 高密度ディスクに外部からのアナログ信号を記録する場合は、入力/出力スルーでPSのまま記録する。 スイッチ52は白側、スイッチ53は黒側に接続する。
- (5) 高密度ディスクにデジタルインターフェースから のSDを記録する場合は、入力/出力スルーでTSのまま記録する。スイッチ52は白側、スイッチ53は黒側に接続する。
- (6) 高密度ディスクにデジタルインターフェースからのHDを記録する場合は、入力/出力スルーでTSのまま記録する。スイッチ52は白側、スイッチ53は黒側に接続する。

【0059】図19は再生ストリームの切替えを示すものであり、詳細は以下の通りである。

(1) 標準ディスクに記録されているストリームはPS

40 イッチ52は白側、スイッチ53は黒側に接続する。

- であり、デジタルインターフェース出力端子にはPSをTSに変換して出力する一方、アナログ信号出力端子には入力/出力スルーでPSのままアナログ処理して出力する。
- (2) 高密度ディスクに記録されたPSストリームはTSに変換してデジタルインターフェース出力端子に出力する一方、アナログ信号出力端子には入力/出力スルーでPSのままアナログ処理して出力する。
- (3) 高密度ディスクに記録されたTSストリームは入 カ/出力スルーでTSのままデジタルインターフェース 10 出力端子に出力する一方、アナログ信号出力端子にはT SをPSに変換後アナログ処理して出力する。
- 【0060】以上のように、髙密度光ディスクにおい て、デジタル放送はTSのまま記録でき、HD信号に対 するPS/TS変換処理による情報の欠落を回避できる 一方、外部からのアナログ信号入力に関してはPSのま ま記録することで、高速で記録するHD信号に対し信号 変換などの時間ロスを減らし、ディスクドライブ側への 負担を軽減できるメリットがある。また、PSで記録で きるモードを持つことで、再生専用の高密度光ディスク 20 に対してもソフトを作成する上でのオーサリング処理な どが簡単になるというメリットも生まれる。また、再生 時デジタルチューナーに出力する経路にはPS/TS変 換が必要になるが、この変換する回路は、膨大な回路規 模を有するSD/HDコーデックと同時にLSI化(例 えば241のようなくくりで集積化) する場合極めて微 小な回路規模でありコストアップにはほとんど影響しな い。一方、標準光ディスクに対しても互換性を保つこと ができ、コストパフォーマンスの良い記録再生装置を提 供できることになる。
- 【0061】さらに別の実施形態としては、次のようなものがある。上記高密度光ディスクにTS、PS双方の記録フォーマットを規定することで、再生専用光ディスクとの互換を重視するか、高画質なデジタルインターフェース経由でBSデジタルチューナーとの接続を重視するのかをユーザー側が選択できる装置も提供できる。
- 【0062】これを、再度図18、図19を用いて説明する。本実施形態は、高密度光ディスクにおいて、デジタルBSチューナーからのTSストリームに対しては、TSのまま記録し、外部入力のアナログ信号に対しては 40 SD/HDエンコード信号をPSからTSに変換して記録するものである。標準光ディスクに対しては、これまでの実施例同様にPSのまま記録するものとする。図17の記録再生装置において、ディスクドライブは標準光ディスク及び高密度光ディスク双方に対し記録再生が可能なものとして考える。
- 【0063】図18は記録ストリームの切替えを示すものであり、詳細は以下の通りである。
- (1) 標準ディスクに外部からのアナログ信号を記録す SD/HDコーデックをLSI化(例えば241のようる場合は、入力/出力スルーでPSのまま記録する。ス 50 なくくりで集積化)する場合極めて微小な回路規模であ

- (2) 標準ディスクにデジタルインターフェースからの SDを記録する場合は、 $TS \rightarrow PS$ 変換しPSで記録する。スイッチ 5 2 は指定なしで、スイッチ 5 3 は白側に接続する。
- (3) 標準ディスクにデジタルインターフェースからの HDを記録する場合も(2) と同様。
- (4) 高密度ディスクに外部からのアナログ信号を記録する場合は、 $PS \rightarrow TS$ 変換しTSで記録する。スイッチ52は黒側、スイッチ53は黒側に接続する。
- (5) 高密度ディスクにデジタルインターフェースからのSDを記録する場合は、入力/出力スルーでTSのまま記録する。スイッチ52は白側、スイッチ53は黒側に接続する。
- (6) 高密度ディスクにデジタルインターフェースからのHDを記録する場合も(5) と同様。
- 【0064】図19は再生ストリームの切替えを示すものであり、詳細は以下の通りである。
- (1) 標準ディスクに記録されているストリームはPSであり、デジタルインターフェース出力端子にはPSをTSに変換して出力する一方、アナログ信号出力端子には入力/出力スルーでPSのまま出力する。
- (2) 高密度ディスクに記録されたPSストリームはPSをTSに変換してTSでデジタルインターフェース出力端子に出力する一方、アナログ信号出力端子には入力/出力スルーでPSのまま出力する。本実施例での装置で記録した高密度光ディスクにはPSでの記録はないが、他の装置で記録された高密度光ディスクにはPSで記録されている場合もありうるため、ここではPS記録のディスクに対する再生を記述した。
 - (3) 高密度のディスクに記録されたTSストリームは 入力/出力スルーでTSのままデジタルインターフェー ス出力端子に出力する一方、アナログ信号出力端子には TSをPSに変換してPSで出力する。
 - 【0065】以上のように、高密度光ディスクにはデジタル放送をTSのまま記録でき、変換による情報の欠落や、HD信号に対するPS/TS変換処理を省略でき、回路的にシンプルな構成となる一方、標準光ディスクに対して互換性を保つことができ、コストパフォーマンスの良い記録再生装置を提供できることになる。また、高密度光ディスクに対し、アナログ入力をSD/HDエンコード後TSに変換してディスク上に記録することで、再生時に変換なしでTS出力ができ、外部のSD/HDデコーダに対しても有効に働く。すなわち、このようにTSで記録することで、図6の実施例のように、外部のSD/HDデコーダを流用する廉価な装置においても、再生互換を保てるメリットもある。また、記録時に変換する回路は、膨大な回路規模を有るSD/HDコーデックをLSI化(例えば241のようなくとりで使われ、する場合では大きによってでは、サストで使われて表していています。

りコストアップにはほとんど影響しない。

【0066】以上、各実施形態では記録メディアとして、光ディスクを前提に説明してきたが、光磁気ディスクなどのメディアをも包含するものであると同時に、メモリカードなどの半導体メモリや磁気テープに関しても発明の範疇である。また、一時記憶装置としてHDDを前提に説明してきたが、取り外しの不可能な他の記録メディア、例えば半導体メモリなどであっても良い。

【0067】また、各実施形態では、外部から入来する デジタル信号をデジタルチューナーからの信号として説 10 明してきたが、モデムを経由して入力された信号や、他 のデジタルインターフェースを介して入力された信号に 対しても有効であり、特に限定するものではない。

[0068]

【発明の効果】本発明によれば、高密度な光ディスクに TS及びPS双方の記録フォーマットを定め、入力判別 結果とSD/HD判別結果を元に、PS/TS変換回路 を制御し記録ストリームを決定することで、互換性を考慮した上でPS/TS変換処理などの簡略化が可能でコ ストパフォーマンスの良い装置を提供できる。また、高 20 密度光ディスクにTS記録することで、高価なBSデジ タルチューナーのHDデコーダ機能を十分に活用でき、 低コストの光ディスク記録再生装置を提供できる。

【0069】また、入力の信号に関係なく、高密度光ディスクに対し常時TS形式のストリームを記録することで、高密度光ディスクに対し、アナログ入力をSD/HDエンコーダでエンコード後TSに変換してディスク上に記録することで、再生時に変換なしでTS出力ができ、外部のSD/HDデコーダに対しても有効に働く。すなわち、このようにTSで記録することで、外部のSD/HDデコーダを流用する廉価な装置においても、再生互換を保てるメリットもある。

【図面の簡単な説明】

【図1】本発明のディスク記録再生装置の一実施形態を 示すプロック図である。

【図2】TS→PS変換の原理を示す図である。

【図3】本発明のアナログ信号入出力端子付きディスク 記録再生装置のプロック図である。

【図4】本発明におけるTS/PS変換回路の一実施形態を示すプロック図である。

【図5】デジタルBSチューナー内蔵の表示装置と本発明の光ディスク記録再生装置との接続を示す図である。

【図6】デジタルBSチューナー内蔵の表示装置と本発明の光ディスク記録再生装置との接続を示す図である。

【図7】本発明のディスク記録再生装置の他の実施形態 を示すプロック図である。 【図8】 TS形式のストリーム構造を示す図。

【図9】本発明におけるディスクドライブ装置の一実施 形態を示す図である。

【図10】標準光ディスクと髙密度光ディスクに対する 記録ストリームの関係を示す図。

【図11】標準光ディスクと高密度光ディスクに対する 再生ストリームの関係を示す図。

【図12】本発明のディスク記録再生装置の他の実施形態を示すプロック図である。

【図13】本発明におけるディスクドライブ装置の他の 実施形態を示す図である。

【図14】標準光ディスクと高密度光ディスクに対する 記録ストリームの関係を示す図。

【図15】標準光ディスクと髙密度光ディスクに対する 再生ストリームの関係を示す図。

【図16】本発明のディスク記録再生装置の他の実施形態を示すプロック図である。

【図17】本発明のディスク記録再生装置の他の実施形態を示すプロック図である。

20 【図18】標準光ディスクと高密度光ディスクに対する 記録ストリームの関係を示す図。

【図19】標準光ディスクと高密度光ディスクに対する 再生ストリームの関係を示す図。

【図20】標準光ディスクと高密度光ディスクの比較を示す図。

【図21】セクタの構成を示す図。

【図22】各セクタに対するエラー訂正符号の割り当て 方を示す図。

【符号の説明】

1、25…記録再生装置

4 ... H D D

5、202、204…ディスクドライブ

7…TS/PS変換回路

11…データバス

13…SD/HDコーデック

22…デジタルBSチューナー

51…PS→TS変換回路

5 4 ··· T S → P S 変換回路

81…光ディスク

91…ディスク信号処理回路

93…ピックアップ制御回路

201…ストリーム判別回路

203…PS/TS判別回路

206…タイムスタンプ処理回路

200、210、230、240、250、260…光ディスク記録再生装置

【図1】

図 1

【図15】

図15

Diek判別 (C1)	記録ストリーム判別 (C3)	デジ外IF出力端子
標準	PS	PS→TS変換
高密度	PS	PS→TS交換
	TS	入力/出力スルー

【図2】

図2

【図4】

図 4

【図11】

図11

Diak判別 (C1)	記録ストリーム判別 (C3)	デジタMIP出力端子	7为9°出力增子
福神	PS PS	再生停止	再生停止
高杏皮	TS	入力/出力スル-	TS→PS変換

【図10】

図10

Disk判別 (C1)	ストリ-ム判別 (C2)	記録 ストリーム	ストリーム変換
標準	*	PS	記錄停止
高密度	SD	TS	入力/出力スルー
	HD	TS	入力/出力スルー

【図3】

図3

図 8

142 Pask Hoador PES PES PES (a) 2048B T&A* 971 150' 57} 124, 421 TSA" Pol-てるの タット 145 15 100 M (c) 4ct "AZT 15A' 77} TSA" #7h 14B - 20488 -

図14

Disk判別	ストリーム判別	記録	ストリーム変検
(C1)	(C2)	ストリーム	
包埠	SD	PS	TS→PS交換
	HD	PS	TS→PS变换
			配保停止もあり
高密度	530	TS	入力/出力スル・
	HD	TS	入力/出力ススー

[図7]

图 7

[図9]

図 9

【図19】

図19

Diak判別	記録ストリーム科別	デジがJF出力端子	アナロダ出力強子
(C1) 想車	(C3)	PS→TS茶機	入力/出力スルー
高密度	PS	PS→TS変換	人力/出力スルー
	TS	入力/出力スルー	TS→PS変換

図20

【図20】

፣	対象コンテンク	伝送レー)	h-9° -	容量	記錄時間
特準	SD放送 (パックージリフト)	6Mbpa	赤色	4.7GB	10457
高密度	HD放送	20Mbpe	青色	20GB	133分

【図12】

図12

【図13】

213

【図16】

図16

【図17】

図17

【図18】

【図21】

図18

Disk#181	入力切替	ストリーム判別	12.59	ストリーム変換
(C1)	(C4)	(C2)	A-0-1	
模準	Tto5°	*	PS	入力/出力スル-
	f's' daif	SD	PS	TS→PS変換
	デジ タメエF	HD	PS	TS→PS変換
高密度	"לם לד	*	PS	入力/出力ススー
			(TS)	(PS→TS変換)
	テジ AMIF	SD	TS	入力/出力ススー
	7' 9' 1 NIF	HD	T9	入力/出力スストー

	_	172B
71	272	
5	- 5	

図21

【図22】

图22

フロントページの続き

H 0 4 N 5/85

(51) Int. Cl.7

識別記号

FΙ

H 0 4 N 5/781

5/91

テーマコード(参考)

5 1 0 Z L

Fターム(参考) 5C052 AA02 AB03 CC06 CC11 CC12

DD04 DD07

5C053 FA20 FA23 GA11 GA14 GB06

GB15 GB37 HA32 JA22 KA05

KA08 KA24 LA06 LA07

5D044 AB05 AB07 BC06 CC04 DE04

DE49 DE75 GK08 HL11 JJ01

JJ02