transportors. PCB Sitian Chip strum chip

- FET = Field effect Transistor
- CMOS Technology keeps on reducing t_{ox} and L_{eff} (Moore's Law).
- Substrate (Body) of NMOS is generally connected to ground.
- See Chapter 17 for the introduction of CMOS fabrication technology.

Latest: TSMC 5 nm FinFET Technology

NMOS and PMOS can share one p-Sub.

- CMOS = Complementary MOS (afabrication technology)
- Substrate (Body) of NMOS is generally connected to ground.
- N-well (Body) of PMOS is generally connected to V_{DD}.

Layout

PMOS

Threshold Voltage (V_{TH}) for NMOS

depletren togran.

No current flow

- 0-1V=VG (1) -1V
- As V_G increases from zero, holes in psubstrate are repelled, leaving negative ions (ionized boron dopants) behind to form a <u>depletion region</u>.
- Positive charges are mirrored at the gate.
- No charge carriers (electrons or holes) in the channel, so no current flow.

Threshold Voltage (V_{TH}) for NMOS

 Higher V_G further increases the width of the <u>depletion region</u>.

Threshold Voltage (V_{TH}) for NMOS

- When V_G reaches a sufficiently positive value, a channel of electrons (<u>inversion</u> <u>layer</u>) is formed beneath the gate oxide.
- Electrons flow from "source" to "drain".
 Equivalently, current flows from "drain" to "source".
- The value of V_G at which the inversion layer forms is the <u>threshold voltage (V_{TH})</u>.
- If V_G rises further, the charges in the depletion region remain relatively constant, whereas the charges in the inversion layer increase rapidly.

Area = A & thickness = tox (sitticon) 60: 8.85×10 8/m Gr: 3.9

I-V Characteristics for NMOS (Triode)

$$Q = -WL_{eff}C_{ox}(V_{GS} - V_{TH}) \text{ (unit: coulomb)}$$

$$Q_d = -WC_{ox}(V_{GS} - V_{TH})$$
 (unit: coulomb·m⁻¹)

```
C_{ox} (gate oxide capacitance per unit area)
= \epsilon_{silicon \, oxide} / t_{ox}
= [8.85 \times 10^{-12} \, (F/m) \times 3.9] / t_{ox}
```