SCHOOL OF DIGITAL MEDIA AND INFOCOMM TECHNOLOGY (DMIT)

IOT CA2 Step-by-step Tutorial

DIPLOMA IN BUSINESS INFORMATION TECHNOLOGY DIPLOMA IN INFORMATION TECHNOLOGY DIPLOMA IN INFOCOMM SECURITY MANAGEMENT

ST0324 Internet of Things (IOT)

Date of Submission:

Prepared for: Ms Dora Chua

Class:

Submitted by: Leyond Lee

Student ID Name

Leyond Lee Titus Fung Daryl Loh

Table of Contents

Section 1	Overview of project	2
A.	Where we have uploaded our tutorial	2
В.	Why have we chosen to upload to this site	2
C.	What have we uploaded	2
D.	What is the application about?	2
E.	Summary of the steps that will be described	3
F.	How does the final RPI set-up looks like?	4
G.	How does the web or mobile application look like?	5
Section 2	Prerequisites	7
A.	Checklist	7
Section 3	AWS and certificates setup	10
A.	AWS IoT	10
В.	AWS Lambda	12
C.	AWS IAM	13
D.	Server and Client certificates	16
Section 4	Server setup	18
A.	MySQL Database	18
В.	Setup files	19
C.	Run servers	21
Section 5	RaspberryPi setup	22
A.	Camera client	22
В.	Sensor	23
C.	Doorbell	24
D.	LCD	25
Section 6	Additional information	26
A.	Server "manage.py"	26
R	Recommended Setup	26

Section 1 Overview of project

A. Where we have uploaded our tutorial B.Why have we chosen to upload to this site C. What have we uploaded

D. What is the application about?

Created by Leyond

E. Summary of the steps that will be described

	Section	Description		
1)	Overview	Provides overview of the application		
Sec	tions 2 to 5 provides the ste	p-by-step instructions to set up the application		
2)	Prerequisites	Provides overview of hardware and software requirements		
3)	3) AWS and certificates setup Provides instructions on how to setup AWS IoT, Lambda, IA			
		well as certificates		
4)	Server setup	Provides instructions on how to setup server		
5)	RaspberryPi setup	Provides instructions on how to setup the RaspberryPi based on		
		various configurations		
6)	Additional information	Provides additional information about the application		

F. How does the final RPI set-up looks like?

G. How does the web or mobile application look like?

Section 2 Prerequisites

A. Checklist

Main server				
Hardware	Any (AWS EC2, Virtual Machine, your laptop, Raspberry Pi, etc)			
Operating System	Any (Preferably Ubuntu Server)			
Applications	python python-pip			
	MySQL (optional if using other hosting solutions such as AWS RDS)			
Python Libraries	virtualenv			
	To be installed in virtual environment:			
	- gevent			
	- flask			
	- flask-sqlalchemy			
	- flask-wtf			
	- flask-login			
	- watson_developer_cloud			
	- MySQL-python			
	- AWSIoTPythonSDK			
	- boto3			
	- python-dateutil			
	- flask-socketio			

Camera server			
Hardware	Any (AWS EC2, Virtual Machine, your laptop, Raspberry Pi, etc)		
Operating System	Any (Preferably Ubuntu Server)		
Applications	python		
	python-pip		
Python Libraries	virtualenv		
	To be installed in virtual environment: - tornado - pillow - requests		

Camera client	Camera client		
Hardware	Raspberry Pi 3		
	Additional Hardware:		
	Quantity	Туре	
	1 PiCamera		
Operating System	Raspbian		
Applications	python		
	python-pip		
Python Libraries	Libraries picamera		

Sensor	Sensor			
Hardware	Raspberry Pi 3			
	Additional Hardware:			
	Quantity	Туре		
	1	Breadboard (with T-Cobbler)		
	1	MCP3008		
	1	Light Dependent Resistor (LDR) Sensor		
	1	DHT11 Sensor		
	1	1 PIR Motion Sensor		
	1 10kΩ Resistor			
	~2	220Ω Resistor		
	~ 30 Jumper cables/wires			
Operating System	Raspbian			
Applications	python			
	python-pip			
Python Libraries	AWSIoTPythonSDK			
	gpiozero			
	Adafruit_Python_DHT			

Doorbell	Doorbell			
Hardware	Raspberry Pi 3			
	Additional	Hardware:		
	Quantity	Туре		
	1	Breadboard (with T-Cobbler)		
	1	Buzzer		
	1	Button		
	1 220Ω Resistor			
	~20	Jumper cables/wires		
Operating System	Raspbian			
Applications	python			
	python-pip			
Python Libraries	AWSIoTPythonSDK			
	gpiozero			

LCD			
Hardware	Raspberry Pi 3		
	Additional	Hardware:	
	Quantity	Туре	
	1	Breadboard (with T-Cobbler)	
	1 IC2 LCD Screen		
	4 Jumper cables/wires		
Operating System	Raspbian		
Applications	python		
	python-pip		
Python Libraries	AWSIoTPythonSDK		
	rpi-lcd		

Section 3 AWS and certificates setup

A. AWS IoT

TASK

- 1. Login to AWS and navigate to AWS IoT console.
- 2. Register a device
 - a. On the navigation panel, click **Registry** to expand the choices, and then choose **Things**.
 - b. Click Register a thing or Create.
 - c. Enter a name and click Create thing.
- 3. Create certificates
 - a. On the navigation panel, click **Security**, and then click **Certificates**.
 - b. Click Create.
 - c. Click Create certificate for "One-click certificate creation (recommended)".
 - d. Once the certificate is created, **Download** them (including RootCA), then click **Activate**.
 - e. Click Attach a policy then Create new policy.
 - f. For name, enter "Webapp".
 - g. Under "Add statements" switch the mode to **Advanced mode** and enter the following:

```
{
    "Version": "2012-10-17",
    "Statement": [
      {
         "Effect": "Allow",
         "Action": "iot:*",
         "Resource": "*"
      }
    ]
    ]
}
```

- h. Go back to Certificates and attach the policy.
- i. Next, repeat the certification creation steps and create a new policy.
- j. For name, enter "RPi".
- k. Under "Add statements" switch the mode to **Advanced mode** and enter the following:

Note - Change < region > and < account ID >

```
{
    "Version": "2012-10-17",
    "Statement": [
```

```
"Effect": "Allow",
             "Action": "iot:Connect",
             "Resource": "*"
},
{
             "Effect": "Allow",
             "Action": "iot:Publish",
             "Resource": "arn:aws:iot:<region>:<account ID>:topic/room/*"
},
{
             "Effect": "Allow",
             "Action": "iot:Publish",
             "Resource": "arn:aws:iot: <region>:<account ID>:topic/doorbell"
},
{
             "Effect": "Allow",
             "Action": "iot:Subscribe",
             "Resource": "arn:aws:iot: <region>:<account
             ID>:topicfilter/room/*"
},
{
             "Effect": "Allow",
             "Action": "iot:Receive",
             "Resource": "arn:aws:iot: <region>:<account
             ID>:topic/room/*/controls/led/*"
},
             "Effect": "Allow",
             "Action": "iot:Receive",
             "Resource": "arn:aws:iot: <region>:<account
             ID>:topic/room/*/controls/process/*"
},
             "Effect": "Allow",
             "Action": "iot:Receive",
             "Resource": "arn:aws:iot: <region>:<account
             ID>:topic/room/*/sensors"
}
]
```

- I. Go back to Certificates and attach the policy.
- 4. Place the certificates in the correct folders.

Note – Configure settings.ini
Certificate with Webapp policy

server/aws

Certificate with RPi policy

- doorbell/aws
- Icd/aws
- sensor/aws

B. AWS Lambda

- 1. Login to AWS and navigate to AWS Lambda.
- 2. In AWS Lambda Dashboard page, click **Create function**.
- 3. For blueprint, click **Author from scratch**.
- 4. For trigger, click **Next**.
- 5. Under Basic information:
 - a. Name SensorData
 - b. Runtime Node.js 6.10
- 6. Under Lambda function code, enter the following:

```
var AWS = require('aws-sdk');
AWS.config.update({
  region: 'ap-southeast-1'
});
var docClient = new AWS.DynamoDB.DocumentClient();
exports.handler = (event, context, callback) => {
  var room = event.Room;
  var timestamp = event.Timestamp;
  var dht11 = event.DHT11;
  var ldr = event.LDR;
  var humidity = dht11.Humidity;
  var temperature = dht11.Temperature;
  var light = ldr.Value;
  docClient.get({
    TableName: 'Subscription',
    Key: {
      'Topic': room
```

```
}, function(err, data) {
  if (!err) {
    if ('Item' in data) {
       if (light) {
         light = Math.round((1024 / light) % 1024);
       }
       docClient.put({
         TableName: 'Sensor',
         Item: {
            'Room': room,
            'Timestamp': timestamp,
            'Humidity': humidity,
            'Temperature': temperature,
            'Light': light
       }, function(err, data) {});
    }
  }
});
```

- 7. Follow through till the end.
- 8. Navigate to AWS IoT console.
- 9. Click Rules, then click Create.
- 10. Enter the following:
 - a. Name SensorRule
 - b. Attribute topic(2) as Room, Timestamp, DHT11, LDR
 - c. Topic filter room/+/sensors
- 11. Then click Add action and select Invoke a Lambda function passing the message data.
- 12. Click Configure action and choose the function "SensorData".
- 13. Click Add action and then Create rule.

C. AWS IAM

TASK

Lambda Role

- 1. Login to AWS and navigate to AWS IAM console.
- 2. On the navigation panel on the left, click on Policies.
- 3. Then Create policy.
- 4. Click **Select**, for "Create Your Own Policy" and enter the following:
 - a. Policy Name Sensor Lambda
 - b. Policy Document

Note - Change < region > and < account ID >

```
"Version": "2012-10-17",
"Statement": [
    "Sid": "Stmt1503053280000",
    "Effect": "Allow",
    "Action": [
      "dynamodb:PutItem"
    ],
    "Resource": [
      "arn:aws:dynamodb:<region>:<account ID>:table/Sensor"
    1
  },
    "Sid": "Stmt1503053309000",
    "Effect": "Allow",
    "Action": [
      "dynamodb:GetItem"
    ],
    "Resource": [
      "arn:aws:dynamodb:<region>:<account ID>:table/Subscription"
  }
]
```

- 5. Click Create policy.
- 6. Next, on the navigation panel on the left, click on **Roles**.
- 7. Click on the role associated to the "SensorData" Lambda function.
- 8. Click Attach Policy and select "Sensor Lambda".

Webapp user

1. On the navigation panel on the left, click on **Users**.

- 2. Click Add user.
- 3. Enter the following:
 - a. Name DynamoDB_Webapp
 - b. Access type Programmatic access
- 4. Click Next: Permissions.
- 5. Select Attach existing policies directly, then click Create policy.
- 6. Click **Select**, for "Create Your Own Policy" and enter the following:
 - a. Policy Name Webapp policy
 - b. Policy Document

Note - Change < region > and < account ID >

```
"Version": "2012-10-17",
"Statement": [
   "Sid": "Stmt1502635912000",
   "Effect": "Allow",
   "Action": [
      "dynamodb:CreateTable",
      "dynamodb:DeleteItem",
      "dynamodb:DeleteTable",
      "dynamodb:Query"
   ],
   "Resource": [
      "arn:aws:dynamodb:<region>:<account ID>:table/Sensor"
   ]
 },
   "Sid": "Stmt1502636185000",
   "Effect": "Allow",
   "Action": [
      "dynamodb:CreateTable",
      "dynamodb:DeleteItem",
      "dynamodb:DeleteTable",
      "dynamodb:PutItem",
      "dynamodb:Query",
      "dynamodb:Scan",
      "dynamodb:UpdateItem"
   ],
   "Resource": [
      "arn:aws:dynamodb:<region>:<account ID>:table/Subscription"
 }
```

}

- 7. Click Create policy, then click Next: Review.
- 8. Click Create user.
- 9. Note down the "Access key ID" and "Secret access key" as it is needed in the server setup later.

D. Server and Client certificates

TASK

- 1. Download KeyStore Explorer (http://keystore-explorer.org/downloads.html)
- 2. Open KeyStore Explorer
- 3. Click Create a new KeyStore.
 - a. Type PKCS #12
- 4. Click **Tools** -> **Generate Key Pair**.
 - a. Use the default values until "Name".
 - b. For "Name", specify your details.
 - c. Click OK.
 - d. For alias, use "rootca".
- 5. In the main keystore page, right click on "rootca". Sign -> Sign New Key Pair.
 - a. Follow the same steps as when creating "rootca". **Note: Do not use same common name**
 - b. For alias, use "server".
- 6. Repeat step 5 to create a certificate for "server".
 - a. For alias, use "client".
- 7. Export all certificates and private keys (excluding rootca).
 - a. Right click -> Export -> Export Certificate Chain.
 - i. Use the default values
 - b. Right click -> Export -> Export Private Key.
 - i. Private Key Type OpenSSL
 - ii. Encrypt
 - iii. Encryption Algorithm PBE with 256 bit AES CBC
 - c. (Recommended) Renamed the certificate and private key accordingly:
 - i. <type>_certificate.cer
 - ii. <type> private.key

8. Place the certificates in the correct folders.

Note - Configure settings.ini

server/certs

- rootca (certificate)
- server (certificate and private key)
- client (certificate and private key)

camera_server/certs

- rootca (certificate)
- server (certificate and private key)

camera client/certs

- rootca (certificate)
- client (certificate and private key)

Section 4 Server setup

A. MySQL Database

TASK

METHOD 1: Host locally on server

Install MySQL-Server
 sudo apt-get update
 sudo apt-get install mysql-server
 sudo mysql secure installation

2. Move on to Configure Database.

METHOD 2: AWS RDS

- 1. Sign in to the AWS Management Console and open the Amazon RDS console at https://console.aws.amazon.com/rds/.
- 2. In the top right corner of the Amazon RDS console, choose the region in which you want to create the DB instance.
- 3. In the navigation pane, choose **Instances**.
- 4. Choose **Launch DB Instance**. The Launch DB Instance Wizard opens on the Select Engine page.
- 5. Choose MySQL and click Select.
- 6. Configure the instance and follow through till the end.
- 7. Move on to **Configure Database**.

Configure Database

- Connect to MySQL-Server
 mysql -h <endpoint> -P <port> -u root -p
- Create database mysql> CREATE DATABASE assignment;
- 3. Create user for database

mysql> USE assignment; mysql> CREATE USER 'assignmentuser'@'localhost' IDENTIFIED by '<NEW PASSWORD>';

mysql> GRANT ALL PRIVILEGES ON assignment.* TO 'assignmentuser'@'localhost';

mysql> FLUSH PRIVILEGES;

4. Exit MySQL console mysql> quit

B. Setup files

TASK

METHOD 1: RaspberryPi

- 1. Access the RaspberryPi.
- 2. Move on to Configure Files.

METHOD 2: AWS EC2

- 1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
- 2. From the console dashboard, click Launch Instance.
- 3. Choose your desired image (preferably "Ubuntu Server").
- 4. Follow through till the end.
- 5. Access the instance through SSH.
- 6. Move on to **Configure Files**.

Configure files

- On the server, create a folder named "LTD_SmartHome". mkdir -p ~/LTD_SmartHome
- 2. From the zip file, copy the folders "server" and "camera_server" (located within "source") into the "LTD SmartHome" folder.
- 3. Configure settings.ini for servers

server

Class	Setting	Туре	Description
Main	debug	BOOLEAN	Debug mode
	server_port	INTEGER	Flask server port
	rootcapath	STRING	RootCA certificate path
Server	certificatepath	STRING	Server certificate path
	privatekeypath	STRING	Server private key path
	privatekeypassword	STRING	Server private key
			password
	db_host	STRING	Database address
	db_port	INTEGER	Database port
Database	db_user	STRING	Database user
	db_password	STRING	Database password
	db_database	STRING	Database to use

	aws_iot_endpoint	STRING	AWS IoT endpoint
			address
	aws_iot_rootcapath	STRING	AWS IoT RootCA path
	aws_iot_certificatepath	STRING	AWS IoT certificate path
	aws_iot_privatekeypath	STRING	AWS IoT private key
AWS			path
	aws_dynamodb_access_key_id	STRING	AWS IAM access key (for
			dynamodb)
	aws_dynamodb_secret_access_key	STRING	AWS IAM secret access
			key (for dynamodb)
	aws_dynamodb_region_name	STRING	AWS Region
	ibm_visualrecognition_apikey	STRING	IBM API key (For Visual
IBM			Recognition)
	ibm_texttospeech_username	STRING	IBM TextToSpeech
			username
	ibm_texttospeech_password	STRING	IBM TextToSpeech
			password
	stream_host	STRING	Camera server address
	stream_rootcapath	STRING	RootCA certificate path
Camera	stream_certificatepath	STRING	Client certificate path
	stream_privatekeypath	STRING	Client private key path
	stream_privatekeypassword	STRING	Client private key
			password

camera server

Class	Setting	Туре	Description
	server_port	INTEGER	Tornado server port
	main_host	STRING	Main server address
Server	rootcapath	STRING	RootCA certificate path
	certificatepath	STRING	Server certificate path
	privatekeypath	STRING	Server private key path
	privatekeypassword	STRING	Server private key password
	stream_port	INTEGER	Stream server port
	stream_rootcapath	STRING	RootCA certificate path
Camera	stream_certificatepath	STRING	Server certificate path
	stream_privatekeypath	STRING	Server private key path
	stream_privatekeypassword	STRING	Server private key password

C. Run servers

TASK

- 1. Create virtual environments
 - a. server

```
cd ~/LTD_SmartHome/server
virtualenv env
env/bin/pip install -r requirements.txt
```

b. camera_server

cd ~/LTD_SmartHome/camera_server virtualenv env env/bin/pip install -r requirements.txt

- 2. Start servers
 - a. server

cd ~/LTD_SmartHome/server nohup env/bin/python run.py &

- camera_server
 cd ~/LTD_SmartHome/camera_server
 nohup env/bin/python run.py &
- 3. Additional information
 - a. Check processesps aux | grep python
 - b. Kill process kill -9 <pid>
- 4. Access servers
 - a. server
 https://<server ip>:<server port in "server">
 - b. camera_server
 https://<server ip>:<server_port in "camera_server">

Section 5 RaspberryPi setup

A. Camera client

TASK

- Create a folder named "LTD_SmartHome". mkdir ~/LTD_SmartHome
- 2. Copy the folder "camera_client" (located within "source") into "LTD_SmartHome" folder.
- Install python packages
 cd ~/LTD_SmartHome/camera_client
 pip install -r requirements.txt

4. Configure settings.ini

Class	Setting	Туре	Description
	stream_host	STRING	Stream server address
	stream_port	INTEGER	Stream server port
Camera	stream_rootcapath	STRING	RootCA certificate path
	stream_certificatepath	STRING	Client certificate path
	stream_privatekeypath	STRING	Client private key path
	stream_privatekeypassword	STRING	Client private key password

 Start camera client script cd ~/LTD_SmartHome /camera_client python run.py

B. Sensor

TASK

1. Complete the Fritzing Diagram.

fritzing

- Create a folder named "LTD_SmartHome". mkdir ~/LTD_SmartHome
- 3. Copy the folder "sensor" (located within "source") into "LTD_SmartHome" folder.
- Install python packages cd ~/LTD_SmartHome/sensor pip install -r requirements.txt

5. Configure settings.ini

Class	Setting	Туре	Description
Main	topic	STRING	MQTT Topic
	dht11_pin	INTEGER	DHT11 Sensor pin
	motionsensor_pin	INTEGER	PIR Motion Sensor pin
	ldr_channel	INTEGER	LDR channel on ADC
	led_pins	STRING	LED pins (Seperated by ,)
AWS	aws _endpoint	STRING	AWS IoT endpoint address
	aws _rootcapath	STRING	AWS IoT RootCA path
	aws _certificatepath	STRING	AWS IoT certificate path
	aws _privatekeypath	STRING	AWS IoT private key path

 Start sensor script cd ~/LTD_SmartHome/sensor python run.py

C. Doorbell

TASK

1. Complete the Fritzing Diagram.

fritzing

- Create a folder named "LTD_SmartHome". mkdir ~/LTD_SmartHome
- 3. Copy the folder "doorbell" (located within "source") into "LTD_SmartHome" folder.
- Install python packages
 cd ~/LTD_SmartHome/doorbell
 pip install -r requirements.txt
- 5. Configure settings.ini

Class	Setting	Type	Description
Main	buzzer_pin	INTEGER	Buzzer pin
	button_pin	INTEGER	Button pin
	aws _endpoint	STRING	AWS IoT endpoint address
AWS	aws _rootcapath	STRING	AWS IoT RootCA path
	aws _certificatepath	STRING	AWS IoT certificate path
	aws _privatekeypath	STRING	AWS IoT private key path

 Start doorbell script cd ~/LTD_SmartHome/doorbell python run.py

D. LCD

TASK

1. Complete the Fritzing Diagram.

- 2. Create a folder named "LTD_SmartHome". $mkdir ~ \mbox{\sc /LTD_SmartHome}$
- 3. Copy the folder "lcd" (located within "source") into "LTD_SmartHome" folder.
- Install python packages
 cd ~/LTD_SmartHome /lcd
 pip install -r requirements.txt
- 5. Configure settings.ini

Class	Setting	Туре	Description
Main	topic	STRING	MQTT Topic
	aws _endpoint	STRING	AWS IoT endpoint address
AWS	aws _rootcapath	STRING	AWS IoT RootCA path
	aws _certificatepath	STRING	AWS IoT certificate path
	aws _privatekeypath	STRING	AWS IoT private key path

 Start doorbell script cd ~/LTD_SmartHome/lcd python run.py

Section 6 Additional information

A. Server "manage.py"

TASK

- 1. Access the main server
- 2. cd ~/LTD SmartHome/server
- 3. env/bin/python manage.py
 - a. Options:
 - i. (1) Create User
 - ii. (2) Delete User
 - iii. (3) List Users
 - iv. (4) Delete Sensor Table
 - v. (5) Delete Subscription Table
 - vi. (q) Exit

B. Recommended Setup

Host	Туре	
Ubuntu Server	Main server	
	Camera server	
RaspberryPi – Sensor (at least 1)	Sensor	
	Camera client (only 1 required)	
	fritzing	

-- End of CA2 Step-by-step tutorial --