> 石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

種数2の超楕円曲線の 位数計算の高速実装

石黒 司 松尾 和人

2010 年度 日本応用数理学会 研究部会連合発表会 JANT セッション 2010 年 3 月 9 日

石黒 司松尾 和人

背景

超楕円曲線(位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

研究背景

■ 安全な代数曲線暗号の構成

曲線の位数によって安全性が変わる

- → 曲線の位数計算が必要
- 安全な種数2の超楕円曲線の構成

Gaudry-Schost の ℓ 進アルゴリズム (2004)

- 種数2の超楕円曲線一般に適用可能
- $lacksymbol{\blacksquare}$ 素体 \mathbb{F}_p によって計算量が異なる
- → 素体上の 160 ビット位数の曲線
 - 特殊な p を選ぶことにより高速化

改良 Gaudry-Schost のℓ進アルゴリズム (2008)

- 全ての曲線に適用できるわけではない
- → 素体上の 254 ビット位数の特殊な曲線
- → Gaudry-Schost アルゴリズムを高速化したい

石黒 司 松尾 和人

背景

超楕円曲線の位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

研究概要

位数計算中の ℓ等分多項式の解析

→ 既約因子の次数が多項式の次数に比べて低いことを示した

ℓ 等分多項式の因子分解の改良

- → 上記の性質を利用した因子分解アルゴリズム
- → 実装・評価

[石黒-松尾, SCIS2010]

高速な既約因子分解を利用した位数計算の高速実装

石黒 司 松尾 和人

肖景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

ℓ進アルゴリズム

 \mathcal{J} : 種数 2 の \mathbb{F}_p 上の超楕円曲線のヤコビアン $\chi \in \mathbb{Z}[X]$:フロベニウス写像の特性多項式

$$\chi = X^4 - s_1 X^3 + s_2 X^2 - s_1 p X + p^2, s_1, s_2 \in \mathbb{Z}$$

位数 # $\mathcal{J} = \chi(1)$

 ℓ :小さい素数、 $ilde{p}$, $ilde{s}_1$, $ilde{s}_2 \in \mathbb{F}_\ell$ 、

$$\tilde{\chi} = X^4 - \tilde{s}_1 X^3 + \tilde{s}_2 X^2 - \tilde{s}_1 \tilde{p} X + \tilde{p}^2 \in \mathbb{F}_{\ell}[X]$$

 $O(\log p)$ 個の $ilde{\chi}$ $ightarrow \chi$ $ightarrow \chi(1)$ を求める

$$ightarrow ar{ ilde{s}_1},\, ilde{s}_2\,$$
を求めたい

石黒 司 松尾 和人

肖景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

ℓ進アルゴリズム

$$D \in \mathcal{J}[\ell] = \{\mathcal{D} \in \mathcal{J} | [\ell]\mathcal{D} = 0\}$$

$$\phi(D)^4 - \tilde{s}_1\phi(D)^3 + \tilde{s}_2\phi(D)^2 - \tilde{s}_1\tilde{p}\phi(D) + \tilde{p}^2 = 0$$

を満たす $(\tilde{s}_1, \tilde{s}_2)$ を見つける

 $D\in \mathcal{J}[\ell]$ の発見

- 1 Cantor の Division Polynomial(4 変数、 $O(\ell^2)$ 次多項式 imes 4)
- 2 1 変数 $\frac{\ell^4-1}{2}$ 次多項式 (ℓ 等分多項式)[GS,2004] (楕円曲線の場合、 $\frac{\ell^2-1}{2}$ 次)
- 3 <u>ℓ</u>等分多項式の根 から *D* を計算 計算量大

石黒 司 松尾 和人

背

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

MUNICHIAN .

まとめ

ℓ等分多項式の既約因子分解

ℓ等分多項式の既約因子分解の計算量が支配的 等分多項式の既約因子分解実験 [GS,2004]

 $\ell = 19$

最短時間:約30分

最大時間:約100時間

平均時間:約 10 時間

→ 既約因子分解の最大計算量を削減したい

 ℓ 等分多項式の次数: $\frac{\ell^4-1}{2}$

既約因子の最大次数: $\frac{\ell^3-\ell}{2}$

→ 既約因子分解の高速化可能

石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

既約因子分解の高速化

 $rac{\ell^4-1}{2}$ 次の ℓ 等分多項式の因子の次数: $O(\ell^3)$

一般的な既約因子分解アルゴリズム:

$$x, x^p, \cdots, x^{p^{O(\ell^4)}}$$

もしくは、BabyStep-GiantStep アルゴリズム:

$$x, x^{p}, \cdots, x^{p^{\ell^{2}}}, \ x^{p^{\ell^{2}}}, x^{p^{2\ell^{2}}}, \cdots, x^{p^{\ell^{4}}}$$

因子の最大次数が $O(\ell^3)$ の場合

- $ightarrow x^{p^{O(\ell^3)}}$ まで必要
- → 既約因子分解アルゴリズムの計算量を削減できる

等分多項式の 既約因子分解

まとめ

既約因子分解の計算量

- Cantor-Zassenhaus p 乗計算 $imes O(\ell^3) o O(\ell^3 M(\ell^4) \log p) = O(\ell^{8+o(1)})$
- Gathen-Shoup : BabyStep-GiantStep multipoint evaluation を利用 $ightarrow O(\ell^4 M(\ell^4) \log \ell) = O(\ell^{8+o(1)})$
- Kaltofen-Shoup : BabyStep-GiantStep modular composition による p 乗計算 $o O(\ell^{7.797+o(1)})$
- Shoup (NTL) : BabyStep-GiantStep 行列を用いない modular composition による p 乗 $o O(\ell^{1.5}(\ell^4)^2) = O(\ell^{9.5})$

石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

計算量の比較

Algorithm	$s \in O(\ell^4)$	$s \in O(\ell^3)$
Algoritiiii		
Cantor-Zassenhaus	$O(\ell^{9+o(1)})$	$O(\ell^{8+o(1)})$
Gathen-Shoup	$O(\ell^{8+o(1)})$	$O(\ell^{8+o(1)})$
Shoup (NTL)	$O(\ell^{10})$	$O(\ell^{9.5})$
KS $(\omega=3)$	$O(\ell^{8.5+o(1)})$	$O(\ell^{8+o(1)})$
$KS\ (\omega = \log_2 7)$	$O(\ell^{8.272+o(1)})$	$O(\ell^{7.797+o(1)})$
KS $(\omega=2.375477)$	$O(\ell^{7.667+o(1)})$	$O(\ell^{7.260+o(1)})$

→ 漸近的には Kaltofen-Shoup が高速

行列の乗算の計算量: $O(n^{\omega})$

KS: Kaltofen-Shoup

石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

既約因子分解の実装結果

 $f \in \mathbb{F}_p[X]$ の既約因子分解 $(O(l^3)$ 次の因子)

p:80 ビット

CPU: Opteron 2384 2.7GHz

石里 司 松尾 和人

超楕円曲線の

への適用

等分多項式の 既約因子分解

まとめ

ℓ等分多項式の既約因子分解

位数計算では根が全部必要なわけではない → 小さい次数の根から一つずつ求める

- ワーストケース: $O(\ell^3)$ の次数の根
- 160 ビットの位数計算 → ℓ は 19 まで必要
- 80 ビット素体 \mathbb{F}_n , $\ell=19$

> 石黒 司 松尾 和人

への適用

等分多項式の 既約因子分解

まとめ

ℓ等分多項式の既約因子分解:実装結果

p:80 ビット (固定)、

次数: $\frac{\ell^4-1}{2}=65160$ 次

ランダム曲線 40 本

	平均時間 [s]	最大計算時間 [s]
Cantor-Zassenhaus	28647.5	158965.2
Shoup	35144.2	40102
Kaltofen-Shoup	19934.8	36873

- 1 最大、平均時間ともに Kaltofen-Shoup が最も高速
- 2 ℓ を大きくすると、更に Kaltofen-Shoup が効率的

CPU: Opteron 2384 2.7GHz

Memory: 16GB

OS: SUSE Linux

gcc4.3.2, gmp4.2.3, NTL 5.5.2

石黒 司 松尾 和人

背景

超楕円曲線の位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

位数計算実装

- Gaudry の NTLJac2 を修正
- 多項式の既約因子分解: Kaltofen-Shoup
 - 行列乗算:Adaptive Winograd アルゴリズム $(w = \log_2 7 = 2.8)$ [D'Alberto,Nicolau,2009]
 - Brent-Kung アルゴリズムによる p 乗計算 [Brent,Kung,1978]
 - 位数計算とインタラクティブ
- 2¹⁰ ねじれ点計算 [小崎, 松尾, 2007]
- MCT アルゴリズム [松尾,趙,辻井,2004]

> 石黒 司 松尾 和人

背景

超楕円曲線の位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

$(ilde{s}_1, ilde{s}_2)$ の決定

- 1 Cantor の Division Polynomial を計算
- 2 2 変数, $O(l^2)$ 次連立方程式 $E_1(x_1,x_2)=E_2(x_1,x_2)=E_3(x_1,x_2)=0$ を得る
- 3 Resultant 計算によって ℓ 等分多項式を生成
- 4 ℓ等分多項式の根を一つ求める
- 5 根を用いて \mathbb{F}_p を拡大し、拡大体上の根 X_1 を得る
- $6~X_1$ を E_1,E_2 に代入し、 X_2 を得る
- $7 X_1, X_2$ から Y_1, Y_2 を得る
- $8 P_1 = (X_1, Y_1), P_2 = (X_2, Y_2)$
- $9 D = P_1 + P_2 2P_{\infty} \ge 0$

$$\phi(D)^4 - \tilde{s}_1 \phi(D)^3 + \tilde{s}_2 \phi(D)^2 - \tilde{s}_1 \tilde{p} \phi(D) + \tilde{p}^2 = 0$$

を満たす $(\tilde{s}_1, \tilde{s}_2)$ を求める

10 $(ilde{s}_1, ilde{s}_2)$ が一意に決まるまで $4 \sim 9$ まで繰り返す

石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ


```
種数 2 の超楕
 円曲線の
位数計算の高
  速実装
  石黒 司
 松尾 和人
への適用
等分多項式の
既約因子分解
まとめ
```

p = 717907120764137564783227:80 ビット F(X)

320683748210147980892362 560320003960304168676108X $337553632677137575675137X^2$ $462700990939751235538893X^3 + X^5$

位数計算実験 1: $\ell=19$ worst

= 515390634044594811904759575893203445672304630267

 $\#\mathcal{J}(\mathbb{F}_p)$

 $= 3^3 \cdot 11 \cdot 31 \cdot 10447747 \cdot 15517088599248073$ ·345291185343666600551

16 / 20

> 石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

位数計算実験1

$\ell:3\sim13$ ℓ 等分多項式	3372
$\ell:3\sim13$ Factoring	1896
$\ell=17$ ℓ 等分多項式	15191
$\ell=17$ Factoring	12092
$\ell=19~\ell$ 等分多項式	26054
$\ell=19$ Factoring	34476
Total $\ell:3\sim19$	94081 = 約 25h
$\mathbf{2^{10}}$ torsion	7622
MCT	30134
Total	134934 = 約 36h

CPU: Opteron 2.7GHz

Memory: 16GB OS: SUSE Linux

gcc4.3.2, gmp4.2.3, NTL 5.5.2

```
位数計算の高
         p = 1065814821632375881633117:80 ビット
 速実装
 石黒 司
 松尾 和人
           F(X)
                     504605734739235070104263
                      334733432602815775135640X
                      750955683007074303040594 X^2
                      1035250537939189069615600X^3 + X^5
への適用
等分多項式の
既約因子分解
まとめ
```

位数計算実験 2

1135961234010851883416337124656122155

 $3 \cdot 3786537446702839611387790415520407$

種数 2 の超楕

円曲線の

 $\#\mathcal{J}(\mathbb{F}_p)$

18564471000657

693413001971

18 / 20

> 石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

位数計算実験1

ℓ : $3\sim 13$ ℓ 等分多項式	3276
$\ell:3\sim13$ Factoring	2018
$\ell=17$ ℓ 等分多項式	13974
$\ell=17$ Factoring	13128
$\ell=19~\ell$ 等分多項式	27338
$\ell=19$ Factoring	16264
Total $\ell:3\sim19$	75998 = 約 21h
$\mathbf{2^{10}}$ torsion	8358
MCT	22338
Total	106694 = 約 30h

石黒 司 松尾 和人

背景

超楕円曲線の 位数計算

既約因子分解 アルゴリズム への適用

等分多項式の 既約因子分解

まとめ

まとめ

- ℓ 等分多項式の因子次数が $O(l^3)$ であることを利用した 既約因子分解アルゴリズムを位数計算に適用した
- 位数計算のワースト計算時間が短縮されることを示した
- 特殊性のない安全な超楕円曲線が構成可能となった