

BF6958A SPEC V1.5

EEPROM、12bit-ADC 的触控 MCU

第 1 章 BF6958A MCU 整体介绍

1.1.特性简介

- 工作电压: 2.5~5.5V
- 工作温度: -40℃~+105℃
- 储存温度: -40℃~+125℃
- 储存器:
 - ✓ 15K FLASH + 1K 类 EEPROM
 - ✓ 16K FLASH + 2*512Bytes 类 EEPROM
- 256Bytes(data)+512(xdata)SRAM
- ▶ 内置 RC 振荡电路(1MHz)
- 高速 8051,基于标准 8051 指令流水线结构
- 工作频率(软件配置): 12M、8M、4M 系统时钟, 一个时钟/机器周期,速度比普通8051快9~12倍, $(T_A = 27 \degree C, \pm 1\%)$, 全温度范围 $(T_A = -40 \degree C \sim 105 \degree C,$ +3%)
- 内部低速时钟 LIRC: 33KHz, (T_A = 27℃, ±15%), 全温度范围(T_A = -40 ℃~105 ℃, ±35%)
- 电容按键,均可复用为 GPIO
- GPIO 支持内置上拉电阻
- 16 位 PWM 输出模块, 支持 IO 映射输出
- 3个16位定时器,具有溢出中断; Timer2时钟源为 各按键的灵敏度可独立设置,配置灵活 内部低速时钟 LIRC 或外部 32768Hz/4MHz 晶振可
- INT0~2 外部中断(上升沿、下降沿、双沿)
- 支持空闲模式唤醒,唤醒时间 0.1s~2.304s
- 12bit 高精度 ADC 检测

- IIC 硬件从机通信,支持标准模式 100/400KHz
- 2路独立 UART 通信,可配置波特率(2400、 4800、9600、19200、57600、115200), 支持 IO 映射
- 两级中断优先级可选
- 中断源
 - ——电容按键中断 ——ADC 中断 ——外部中断 ——Timer0, Timer1, Timer2 ——串口中断 ——IIC 通信中断 ——看门狗(WDT)中断 ——LVDT 中断
- 支持掉电复位,掉电电压 2.1V
- 低电压检测 2.4V/3.0V/3.6V/4.2V 可选
- 看门狗定时器,溢出时间 18ms 到 2.304s
- 深度休眠,功耗 26uA@5V 典型
- 带 JTAG 调试仿真接口
- 增强型工业级,符合 JESD 工业级可靠性认证 标准
- 封装型号: SOP8

1.2.整体概述

BF6958A 采用高速 8051 内核,1T 指令周期,相比于标准的 8051(12T)指令周期,具有更快的运行速度,同时兼容标准 8051 指令。

BF6958A 包含外设有看门狗、按键检测、IIC、UART、低电压检测、掉电复位、2 路 16bit PWM、Timer0、Timer1、Timer2、12bit 高精度逐次逼近 ADC、低功耗模式等。

BF6958A 集成的电容检测通道,它可以用来检测近距离感应或者触摸。其内置 MCU,可灵活配置;通过配置可实现按键、滚轮、滑条等多种应用。按键都能独立运行,并且每个按键都能通过对相应的功能寄存器来调节灵敏度。

1.3. 系统框图

系统框图

系统总线架构图

1.4.时钟框图

时钟方框图

1.5. 选型列表

型号	BF6958A
工作电压(V)	2. 5 [~] 5. 5
内核	1T 8051
工作频率	12M
FLASH	16K
SRAM	256+512
类 EEPROM	2*512Bytes
GPI0	6
KEY	6
ADC	6
Timer	3
PWM	2
INT	3
IIC	1
UART	1
封装	S0P8

选型列表

1.6. 引脚配置

BF6958A SOP8 封装引脚图

注: SNS24 和 SNS25 触摸通道与调试烧录引脚复用,一般不建议将其作为触摸通道使用。

1.7. 引脚说明

BF6958A	功能描述
1	默认功能: GPIO〈PAO〉 其它功能: SNSXX: 触摸按键通道 ADCXX: ADC 通道 TCK: JTAG 仿真测试时钟 RXDXX: 串口接收 SCLXX: IIC 的串行时钟线 PGC: 烧录口 PGC
2	默认功能: GPIO〈PD7〉 其它功能: SNSXX: 触摸按键通道 ADCXX: ADC 通道 INTXX: 外部中断 TDO: JTAG 仿真测试数据串行输出
3	默认功能: GPIO〈PD6〉 其它功能: SNSXX: 触摸按键通道 ADCXX: ADC 通道 INTXX: 外部中断 TMS: JTAG 仿真测试模式选择
4	默认功能: GPIO〈PDO〉 其它功能: SNSXX: 触摸按键通道 ADCXX: ADC 通道 INTXX: 外部中断 PWMXX: PWM 输出口
5	默认功能: 电源 〈VCC〉
6	默认功能: GPIO <pbo> 其它功能: SNSXX: 触摸按键通道 ADCXX: ADC 通道 PWMXX: PWM 输出口</pbo>
7	默认功能: 电源地〈VSS〉
8	默认功能: GPIO〈PAI〉 其它功能: SNSXX: 触摸按键通道 ADCXX: ADC 通道 TXDXX: 串口发送 SDAXX: IIC 的串行数据线 PGD: 烧录口 PGD TDI: JTAG 仿真测试数据串行输入

封装引脚对应关系表

第2章 电气特性

2.1.AC 特性

参数	符号	条件	OSC 时钟	单位
中压 DC1M		环境温度 27℃	$1\pm1\%$	
基频	RC1M	环境温度-40℃~105℃	$1\pm3\%$	MII.
石体叶钟 P 11	环境温度 27℃	$1\pm1\%$	MHz	
系统时钟	F_sys_clk	环境温度-40℃~105℃	$1\pm3\%$	
WDT はまた山	I TDC	环境温度 27℃	$33 \pm 15\%$	VII
WDT 时钟	LIRC	环境温度-40℃~105℃	$33 \pm 35\%$	KHz

AC 特性参数表

OSC 温度特性趋势曲线

2.2.DC 特性

除特殊说明外,典型值为在27℃条件下的测量值。

参数	符号	条件	最小值	典型值	最大值	单 位
工作电压	VCC		2.5	_	5. 5	V
		@5V, 系统时钟12M, 无负载, 关闭其它所有功能	-	2. 1	2. 7	mA
		@5V, 系统时钟6M, 无负载,关 闭其它所有功能	-	1. 7	2. 2	mA
	Active	@5V, 系统时钟4M, 无负载, 关闭其它所有功能	_	1. 5	2. 0	mA
	Active	@3.3V,系统时钟12M,无负载, 关闭其它所有功能	-	2. 0	2. 6	mA
		@3.3V,系统时钟6M,无负载, 关闭其它所有功能	-	1.6	2. 0	mA
		@3.3V,系统时钟4M,无负载, 关闭其它所有功能	-	1.4	1.8	mA
工作模式	Idle	@5V, WDT_CTRL=7, WDT唤 醒, 2ms工作时间, IO输出低, 关闭其它所有功能	-	29	38	μΑ
		@3.3V, WDT_CTRL=7, WDT唤醒, 2ms工作时间, IO输出低,关 闭其它所有功能	-	28	39	μΑ
		@5V, CSD并联模式, WDT断唤 醒, 2ms工作时间, IO输出低, 关闭其它所有功能	-	29	38	μΑ
		@3.3V, CSD并联模式, WDT中断 2S唤醒, 2ms工作时间, IO输 出低,关闭其它所有功能	I	28	39	μА
	Sleep	@5V PCON = 0x01, BOR关闭, IO 输出低,关闭其它所有功能	-	26	35	μΑ
	Sieep	@3.3V PCON = 0x01, BOR关闭, IO输出低,关闭其它所有功能	_	27	36	μΑ
输入低电压	$V_{\scriptscriptstyle \mathrm{IL}}$	VCC=3. 3~5. 5V	-	_	0. 3*VCC	V
输入高电压	V_{IH}	VCC=3. 3~5. 5V	0. 7*VCC	_	_	V
INT0/1/2输 入低电压	$ m V_{INTL}$	VCC=3. 3~5. 5V	-	_	0. 3*VCC	V
INT0/1/2输 入高电压	$ m V_{INTH}$	VCC=3. 3~5. 5V	0. 7*VCC	_	_	V
输出低电压	V_{oL}	$I_{OL}=4$ mA@VCC=3.3V,	_	_	0. 1*VCC	V

		I _{OL} =10mA@VCC=5V				
输出高电压	V	I _{OH} =4mA@VCC=3.3V,	0. 9VCC			V
捌山同圯丛	V_{OH}	$I_{OH}=10$ mA@VCC=5V	0.9000	_		v
I0灌电流	IOL	V _{OL} =0. 1VCC, @VCC=5V	_	60	_	mA
I0源电流	IOH	V _{OH} = 0. 9VCC, @VCC=5V	_	17	_	mA
输入漏电流	I 14&&I 1L	VCC=5V	_	1	5	μΑ
I0内部上拉	Pull_up Res	VCC=5V	_	4. 7	_	K

DC 特性参数表

2.3.ADC 特性

除特殊说明外,典型值为在27℃条件下的测量值。

参数名称	符号	测试条件	最小	典型	最大	单 位
工作电压	VDD	-	2.5		5. 5	V
ADC 输入电压范围	VADCIN	ı	0	ı	VDD	V
分辨率	ADCRESO	_		12		Bit
ADC 采样时间	TAD	-	0.5		-	us
输入通道	ı	ı	_	ı	6	Channel
精度	-	-	_	9	10	Bit
无丢码	ı	-	_	9	10	Bit
ADC 检测时间	TCON	ı	2.875	ı	ı	us
积分非线性误差	EINL		_	±2	±3	LSB
微分非线性误差	EDNL	-	_	±1	±2	LSB

ADC 特性参数表

2.4. 极限参数

参数	符号	最小值	典型值	最大值	单位
工作时供电电压	VCC	VSS+2.5	Ι	VSS+5.5	V
非工作状态储存温度	Tstg	-40	ı	125	${\mathbb C}$
工作温度	Totg	-40	ı	105	${\mathbb C}$
I/0 输入电压	Vin	VSS-0.5	ı	VCC+0.5	V
IOL 总电流	IOLA		130		mA
IOH 总电流	IOHA	-130			mA
端口静电放电电压	ESD (HBM)	-8		8	KV

极限特性参数表

注:超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

第3章 存储器和SFR

3.1. Flash 存储器

Flash 程序存储器地址分配结构图

说明:擦写次数至少 20000 次@25℃,数据保存:至少 100 Years@25℃,至少 20 Years@85℃。

- 1. 主程序空间的大小最大为 16KBytes, 擦写次数至少 20000 次, 可分为 16 页、16*16 行;
- 2. 类 EEPROM (0x3C00~3FFF) 一页 1024Bytes, NVR3 一页 512Bytes, NVR4 一页 512Bytes 擦写次数至少 20000 次, 1 页擦除, 字节写, 当 (0x3C00~3FFF) 用作 EEPROM 功能使用时, main block 存储用户程序空间为 15Kbytes (0x0000~3BFF)。擦除时间:基于稳定性,推荐>=5ms。
- 3. Information 的大小为 512Bytes,可分为 8 行,其中包含出厂信息,不可更改,保留不建议使用;
- 4. System 的大小为 512Bytes, 可分为 8 行, 保留不建议使用。

读取芯片唯一识别码(UID)步骤:

- 1. 关闭中断;
- 2. 读取的 CODE 绝对地址 0x43A8~0x43AF 对应产品 ID1~ID8。
- 3. 恢复中断设置。

3.2. RAM 存储器

内部共有 256 Bytes,地址为 00H~FFH,其中包括工作寄存器组、位寻址区、缓冲以及 SFR,其中缓冲区包含了堆栈区。

内部低 128 字节: 00H~7FH 共有 128 Bytes,可通过立即寻址方式或间接寻址方式来读取与写数据。

内部高 128 字节: 80H~FFH 共有 128 Bytes, 只能通过工作寄存器间接寻址方式来读取与写数据。

特殊功能寄存器 SFR: 地址为 80H~FFH, 只能通过直接寻址方式来读取与写数据。

xdata 共有 512 Bytes, 地址为 0000H~01FFH, 该区域用户可以完全使用。通过数据指针或者工作寄存器寻址方式来读取与写数据。

在编写程序时注意预留堆栈空间,避免堆栈溢出导致程序跑飞。在使用 C 语言编程时,堆栈首地址由程序自动分配,但是一定存放在 data 或者 idata 里。Keil 中可在 STARTUP. A51 中设置堆栈的首地址。

RAM 地址空间分配图:

下表中列出了 RAM 中三个模块的取值方式:

	MOV	A, direct
	MOV	direct, A
DATA	MOV	direct,#data
DATA	MOV	direct1, direct2
	MOV	Rn, direct
	MOV	direct, Rn
	MOV	A, @Ri
	MOV	@Ri, A
IDATA	MOV	direct, @Ri
	MOV	@Ri, direct
	MOV	@Ri,#data
VDATA	MOVX	@DPTR, A
XDATA	MOVX	A, @DPTR

RAM 取值指令表

上表中, n 取值 $0^{\sim}7$, i 取值 $0^{\sim}1$ 。

第4章 寄存器汇总

4.1. SFR 寄存器总表

地址	名称	读写	复位值	说明
0x80	DATAB	RW	0xFF	PB 数据寄存器
0x81	SP	RW	0x07	堆栈指针寄存器
0x82	DPL	RW	0x00	数据指针寄存器0低8位
0x83	DPH	RW	0x00	数据指针寄存器 0 高 8 位
0x84	SYS_CLK_CFG	RW	0x01	时钟控制寄存器
0x85	INT_PE_STAT	RW	0x00	WDT/Timer2 中断状态寄存器
0x86	INT_POBO_STAT	RW	0x00	LVDT 升压/LVDT 降压中断状态寄存器
0x87	PCON	RW	0x00	低功耗模式选择寄存器
0x88	TCON	RW	0x05	定时器控制寄存器
0x89	TMOD	RW	0x00	定时器模式寄存器
0x8A	TL0	RW	0x00	定时器0计时器低8位
0x8B	TL1	RW	0x00	定时器1计时器低8位
0x8C	THO	RW	0x00	定时器0计时器高8位
0x8D	TH1	RW	0x00	定时器1计时器高8位
0x8E	SOFT_RST	RW	0x00	软件复位寄存器
0x90	DATAC	RW	0xFF	PC 数据寄存器
0x91	WDT_CTRL	RW	0x00	看门狗溢出定时配置寄存器
0x92	WDT_EN	RW	0x00	看门狗定时使能配置寄存器
0x93	TIMER2_CFG	RW	0x00	TIMER2 配置寄存器
0x94	TIMER2_SET_H	RW	0x00	TIMER2 计数值配置寄存器,高8位
0x95	TIMER2_SET_L	RW	0x00	TIMER2 计数值配置寄存器,低8位
0x96	REG_ADDR	RW	0x00	二级总线地址配置寄存器
0x97	REG_DATA	RW	0x00	二级总线数据读写寄存器
0x98	DATAD	RW	0xFF	PD 数据寄存器
0x99	PWM1_L_L	RW	0x00	PWM1 低电平控制寄存器(低 8 位)
0x9A	PWM1_L_H	RW	0x00	PWM1 低电平控制寄存器(高 8 位)
0x9B	PWM1_H_L	RW	0x00	PWM1 高电平控制寄存器(低 8 位)
0x9C	PWM1_H_H	RW	0x00	PWM1 高电平控制寄存器(高 8 位)
0xA0	P2_XH	RW	0xFF	MOVX @Ri, A 操作 xdata 地址高 8 位
0xA2	PWM_EN	RW	0x00	PWM 控制寄存器
0xA3	PWMO_CH_CTRL	RW	0x00	PWMO 控制寄存器
0xA4	PWMO_CHO_CNT_L	RW	0x00	PWM0 通道 0 计数值配置寄存器低 8 位
0xA5	PWMO_CHO_CNT_H	RW	0x00	PWM0 通道 0 计数值配置寄存器高 8 位

0xA8	IENO	RW	0x00	中断使能寄存器
0xAD	PWMO MOD L	RW	0x00	PWMO 周期配置寄存器低 8 位
0xAE	PWMO MOD H	RW	0x00	PWMO 周期配置寄存器高 8 位
0xB4	ADC SPT	RW	0x00	ADC 采样时间配置寄存器
0xB5	ADC SCAN CFG	RW	6'0x00	ADC 扫描控制寄存器
0xB6	ADCCKC	RW	4'0x00	ADC 时钟控制寄存器
0xB8	IPL0	RW	0x00	中断优先级寄存器 0
0xB9	ADC RDATAH	R	4'0x00	ADC 扫描结果寄存器高 4 位
0xBA	ADC_RDATAL	R	0x00	ADC 扫描结果寄存器低 8 位
0xBB	ADC_CFG1	RW	0x00	ADC 采样时序控制寄存器 1
0xBC	ADC_CFG2	RW	6'0x02	ADC 采样时序控制寄存器 2
0xBD	UARTO_BDL	RW	0x00	UARTO 波特率控制寄存器
0xBE	UARTO_CON1	RW	0x00	UARTO 控制寄存器 1
0xBF	UARTO_CON2	RW	4'0x0C	UARTO 控制寄存器 2
0xC0	UARTO_STATE	RW	0x00	UARTO 状态标记寄存器
0xC1	UARTO_BUF	RW	0xFF	UARTO 数据寄存器
0xCA	CSD_START	RW	1'0x00	CSD 扫描开启寄存器
0xCB	SNS_SCAN_CFG1	RW	0x00	触摸按键扫描配置寄存器 1
0xCC	SNS_SCAN_CFG2	RW	0x40	触摸按键扫描配置寄存器 2
0xCD	SNS_SCAN_CFG3	RW	0x70	触摸按键扫描配置寄存器 3
0xCE	CSD_RAWDATAL	R	0x00	CSD 计数值低 8 位
0xCF	CSD_RAWDATAH	R	0x00	CSD 计数值高 8 位
0xD0	PSW	R/RW	0x00	程序状态字寄存器
0xD1	PULL_I_SELA_L	RW	0x00	CSD 上拉电流源选择寄存器
0xD2	SNS_ANA_CFG	RW	6'0x2F	CSD 扫描参数配置寄存器
0xD3	SNS_IO_SEL1	RW	0x00	SNS 通道选择寄存器 1
0xD4	SNS_IO_SEL2	RW	0x00	SNS 通道选择寄存器 2
0xD5	SNS_I0_SEL3	RW	0x00	SNS 通道选择寄存器 3
0xD6	SNS_IO_SEL4	RW	0x00	SNS 通道选择寄存器 4
0xD7	RST_STAT	RW	rst_state	复位标记寄存器
0xD9	ADC_IO_SEL1	RW	0x00	ADC 功能选择寄存器 1
0xDA	ADC_IO_SEL2	RW	0x00	ADC 功能选择寄存器 2
0xDB	ADC_IO_SEL3	RW	0x00	ADC 功能选择寄存器 3
0xDC	ADC_IO_SEL4	RW	0x00	ADC 功能选择寄存器 4
0xDD	PU_PA	RW	2'0x00	PA 口上拉电阻使能寄存器
0xDE	PU_PB	RW	0x00	PB 口上拉电阻使能寄存器
0xDF	PU_PC	RW	0x00	PC 口上拉电阻使能寄存器
0xE0	ACC	RW	0x00	累加器
0xE1	IRCON2	RW	0x00	中断标志寄存器 2

0xE2	PU_PD	RW	0x00	PD 口上拉电阻使能寄存器
0xE3	IICADD	RW	0x00	IIC 地址寄存器
0xE4	IICBUF	RW	0x00	IIC 发送接收数据寄存器
0xE5	IICCON	RW	0x10	IIC 配置寄存器
0xE6	IEN1	RW	0x00	中断使能寄存器 1
0xE7	IEN2	RW	0x00	中断使能寄存器 2
0xE8	IICSTAT	RO/RW	0x44	IIC 状态寄存器
0xE9	IICBUFFER	RW	0x00	IIC 发送数接收据缓存寄存器
0xEA	TRISA	RW	2'0x03	PA 方向寄存器
0xEB	TRISB	RW	0xFF	PB 方向寄存器
0xEC	TRISC	RW	0xFF	PC 方向寄存器
0xED	TRISD	RW	0xFF	PD 方向寄存器
0xEF	ODRAIN_EN	RW	2'0x00	PA 口开漏使能寄存器
0xF0	В	RW	0x00	B寄存器
0xF1	IRCON1	RW	0x00	中断标志寄存器 1
0xF2	PERIPH_IO_SEL	RW	7'0x40	IIC/UARTO/INT 功能控制寄存器
0xF4	IPL2	RW	0x00	中断优先级寄存器 2
0xF6	IPL1	RW	0x00	中断优先级寄存器 1
0xF7	EXT_INT_CON	RW	0x15	外部中断极性控制寄存器
0xF8	DATAA	RW	2'0x03	PA 数据寄存器
0xF9	SPROG_ADDR_H	RW	3'0x00	EEPROM 地址控制寄存器
0xFA	SPROG_ADDR_L	RW	0x00	EEPROM 地址控制寄存器
0xFB	SPROG_DATA	RW	0x00	EEPROM 数据寄存器
0xFC	SPROG_CMD	RW	0x00	EEPROM 命令寄存器
0xFD	SPROG_TIM	RW	0x1A	EEPROM 擦写时间控制寄存器
0xFE	PD_ANA	RW	5'0x1F	模块开关控制寄存器
0xFF	SEL_LVDT_VTH	RW	2'0x00	LVDT 阈值选择寄存器

SFR 寄存器总表

注: 1. 地址以8或0结尾的寄存器可以位操作,例0x80,0x88的寄存器地址。

2. 复位值:不同模式复位值;

上电复位: rst_state 为 0x02;

其它模式复位: rst_state 对应的复位标志位为 1, 其它复位标记保持原来状态。

3. RO/R: 只读; RW: 读写。

4.2. SFR 寄存器详细说明

DATAB(80H)PB 口数据寄存器

位编号	7	6	5	4	3	2	1	0
符号	PB. 7	PB. 6	PB. 5	PB. 4	PB. 3	PB. 2	PB. 1	PB. 0
读/写								
上电初始值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7 [~] 0		PB 数据寄存器,可配置 PB 组 IO 口作为 GPIO 口时的输出 电平,读取值为当前 IO 口(输入)的电平状态或配置输出 值(输出)

SP(81H)堆栈指针寄存器

位编号	7	6	5	4	3	2	1	0	
符号		SP[7:0]							
读/写		读/写							
上电初始值		7							

DPL(82H)数据指针寄存器 0 低 8 位

位编号	7	6	5	4	3	2	1	0	
符号		DPL[7:0]							
读/写		读/写							
上电初始值				()				

DPH(83H)数据指针寄存器 0 高 8 位

位编号	7	6	5	4	3	2	1	0	
符号		DPH[7:0]							
读/写		读/写							
上电初始值		0							

SYS_CLK_CFG(84H)时钟控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	-	-	_	PLL_CLK_	SEL[1:0]
读/写	_	_	_	_	_	_	读	/写
上电初始值	_	_	_		ı	_	0	1

位编号	位符号	说明
$7^{\sim}2$		保留
1~0	PLL_CLK_SEL	PLL 时钟分频选择寄存器 00: 12Mhz; 01: 6Mhz; 10: 4Mhz; 11: 保留

INT_PE_STAT(85H)WDT/Timer2 中断状态寄存器

位编号		7	6	5	4	3	2	1	0
符号		_	_	I	I	I	I	INT_WDT_STAT	INT_TIMER2_STAT
读/写		_	1	1	-	1	1	读/写	读/写
上电初始值	直	_	-	1	-	-	1	0	0

位编号	位符号	说明
		WDT 中断状态标记,该位写 0 清零,写 WDT_CTRL 操作也可
1	INT_WDT_STAT	清 0
		1: 中断有效; 0: 中断无效
		TIMER2 中断状态标记,该位写 0 清零,写 TIMER2_CFG 操
0	INT_TIMER2_STAT	作也可清零
		1:中断有效;0:中断无效

SYS_CLK_CFG(86H)时钟控制寄存器

	` /							
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	-	INT_PO_STAT	INT_BO_STAT
读/写	_	_	_	_	_	_	读/写	读/写
上电初始值	_	_	_	_	_	-	0	0

位编号	位符号	说明
1	INT_PO_STAT	1vdt 升压中断状态 1: 升压中断有效; 0: 升压中断无效
0	INT_BO_STAT	1vdt 降压中断状态 1:降压中断有效;0:降压中断无效

PCON(87H)低功耗模式选择寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	_	-	_	_	_		LPM
读/写	_	_	_	_	_	_	_	读/写
上电初始值	_	_	_	_	_	_	_	0

位编号	位符号	说明
0	LPM	低功耗模式控制 1: 低功耗模式; 0: 正常模式,唤醒后自动清零

TCON(88H)定时器控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	_
读/写	读/写	读/写	读/写	读/写	读/写	_	读/写	_
上电初始值	0	0	0	0	0	ı	0	_

位编号	位符号	说明				
7	TF1	定时器 1 溢出标志位, 当 Timer1 溢出时硬件置 1, 或者				
1	171	TimerO 的 THO 在模式三下溢出。				
6	TR1	Timer1 启动使能,设置为1 时启动Timer1 或启动TimeO				
O	17/1	模式三时 THO 计数。				
5	TF0	定时器 0 溢出标志位, 当 Timer 0 溢出时硬件置 1。				
4	TR0	TimerO 启动使能,设置为 1 时启动 TimerO 计数。				
3	IE1	外部中断 1 标志位,硬件置 1,可软件清 0。				
2		保留				
1	IE0	外部中断 0 标志位,硬件置 1,可软件清 0				
0		保留				

TMOD(89H) 定时器模式寄存器

11.102 (0)11) /	Chi HH DCP	4 · 3 13 HH							
位编号	7	6	5	4	3	2	1	0	
符号	_	_	M1[1:0]		-	_	IE0		
读/写	_	_	读/写		ı	_	读/写		
上电初始值	_	_	0	0	-	_	0	0	

位编号	位符号	说明
7 [~] 6		保留
5 [~] 4	M1[1:0]	M1-定时器1 模式选择Bit 1, M0-定时器1 模式选择Bit 0, M1M0: 00=模式 0 - 13位定时器/计数器 01=模式 1 - 16位定时器/计数器 10=模式 2 - 自动重载初值的8位计数器 11=模式 3 - 两个8位计数器
3 [~] 2		保留
1~0	MO[1:0]	M1-定时器0 模式选择Bit 1, M0-定时器1 模式选择Bit 0, M1M0: 00=模式 0 - 8 位定时器/计数器 01=模式 1 - 16 位定时器/计数器 10=模式 2 - 自动重载初值的8位计数器 11=模式 3 - 两个8位计数器

TL0(8AH)定时器 0 计时器低 8 位

位编号	7	6	5	4	3	2	1	0			
符号		TL0[7:0]									
读/写		读/写									
上电初始值	0										

TI.10	(RRH)	定时器 1	计时	器低	8	衍
111	ODII		ו אוע	700 IkV	O	1'/.

位编号	7	6	5	4	3	2	1	0			
符号		TL1[7:0]									
读/写		读/写									
上电初始值		0									

TH0(8CH) 定时器 0 计时器高 8 位

	位编号	7	6	5	4	3	2	1	0			
	符号		THO[7:0]									
	读/写		读/写									
Ī	上电初始值		0									

TH1(8DH) 定时器1 计时器高8 位

位编号	7	6	5	4	3	2	1	0			
符号		TH1[7:0]									
读/写		读/写									
上电初始值		0									

SOFT_RST(8EH) 软件复位寄存器

位编号	7	6	5	4	3	2	1	0			
符号		_									
读/写		读/写									
上电初始值		0									

位编号	位符号	说明
7 [~] 0		软件复位寄存器,只有在寄存器值为 0x55 时,才产生软件复位

DATAC(90H) PC 数据寄存器

位编号	7	6	5	4	3	2	1	0			
符号	PC. 7	PC. 6	PC. 5	PC. 4	PC. 3	PC. 2	PC. 1	PC. 0			
读/写		读/写									
上电初始值	1	1	1	1	1	1	1	1			

位编号	位符号 说明					
		PC 数据寄存器,可配置 PC 组 IO 口作为 GPIO 口时的输出				
7~0		电平, 读取值为当前 IO 口(输入)的电平状态或配置输出				
		值(输出)				

WDT_CTAL(91H) 看门狗溢出定时配置寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	_	_	_	_	WDT_TIME_SEL		
读/写	_	_	_	_	_	读/写		
上电初始值	ı	_	_	_	_	0	0	0

位编号	位符号	说明						
7 [~] 0	WDT_TIME_SEL	看门狗溢出定时配置寄存器,定时长度如下: 0x00: 18ms; 0x01: 36ms; 0x02: 72ms; 0x03: 144ms; 0x04: 288ms; 0x05: 576ms; 0x06: 1152ms; 0x07: 2304ms;						

WDT_EN(92H) 看门狗定时使能配置寄存器

位编号	7	6	5	4	3	2	1	0	
符号		WDT_EN							
读/写		读/写							
上电初始值				()				

位编号	位符号	说明						
7~0	WDT_EN	看门狗定时使能配置寄存器, 狗被关闭	当配置值为 0x55 时,	看门				

TIMER2_CFG (93H) TIMER2 配置寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	1	-	-	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
读/写	_		_	_	读/写	读/写	读/写	读/写
上电初始值	-		_	_	0	0	0	0

位编号	位符号	说明					
3	TIMER2_CNT_MOD	Timer2 计数步进模式选择寄存器 1: 计数步进为 65536 个时钟 0: 计数步进为一个时钟					
2	TIMER2_CLK_SEL	Timer2 时钟选择寄存器 1: 选择 clk_xtal 0: 选择 clk_rc					
1	TIMER2 自动重载使能寄存器 1: 自动重载模式 0: 手动重载模式						
0	TIMER2_EN	TIMER2 计数使能寄存器 配置 1 开启定时,配置 0 停止定时;在手动重载模式下 会在计数完成后硬件自动清零该寄存器,停止计数,在 自动重载模式下会在计数完成后维持该使能寄存器,自 动重新从零计数,无论哪种模式,计数过程中配置该寄 存器为 1 均会开始从零计数。					

TIMERA SET H(94H) TIMERA N 级相目目目目	ΓIMER2 SET I	计数值配置寄存器,	高 8 位
-----------------------------------	--------------	-----------	-------

位编号	7	6	5	4	3	2	1	0	
符号		_							
读/写		读/写							
上电初始值				()				

位编号	位符号	说明						
7 [~] 0		TIMER2 计数值配置寄存器,高8位,扫描过程中配置该						
1 0		寄存器会重新计数						

TIMER2_SET_L(95H) TIMER2 计数值配置寄存器,低 8 位

位编号	7	6	5	4	3	2	1	0	
符号		_							
读/写		读/写							
上电初始值				()				

位编号	位符号	说明					
7 [~] 0		TIMER2 计数值配置寄存器,	低8位,	扫描过程中配置该			
1 0		寄存器会重新计数					

REG_ADDR (96H) 二级总线地址配置寄存器

112 0_112 2 11 ()	911) — 7//	0.434.0.E.L	10 TT : 4 14 HI	=						
位编号	7	6	5	4	3	2	1	0		
符号	-	_	REG_ADDR							
读/写	-	_			读/	/写				
上电初始值	-	-	0	0	0	0	0	0		

位编号	位符号	说明
5~0	REG_ADDR	二级总线地址配置寄存器 操作二级总线寄存器时,建议读写二级总线寄存器时, 先 EA = 0,操作完成后再 EA = 1,防止其它中断或操作 修改二级总线寄存器地址或数据

REG_DATA (97H) 二级总线数据读写寄存器

位编号	7	6	5	4	3	2	1	0		
符号		REG_DATA								
读/写		读/写								
上电初始值		0								

位编号	位符号	说明
7 [~] 0	REG_DATA	二级总线数据读写寄存器 建议读写二级总线寄存器时,先 EA = 0,操作完成后再 EA = 1,防止其它中断或操作修改二级总线寄存器地址或数

			据						
DATAD(98H) I	PD 数据寄	 存器							
位编号	7	6	5	4	3	2	1	0	
符号	PD. 7	PD. 6	PD. 5	PD. 4	PD. 3	PD. 2	PD. 1	PD. 0	
读/写				读/写					
上电初始值	1	1	1	1	1	1	1	1	
位编号	位符	:号			说	明			
			PD 数据等	序存器					
7 [~] 0		-	可配置 PI	D组 I0口	作为 GPI0	口时的输	出电平,	读取值为	
					り电平状态	或配置输	出值(输出	4)	
	(99H) PWM1 低电平控制寄存器(低 8 位)								
位编号	7	6	5	4	3	2	1	0	
符号				-	_				
读/写		读/写							
上电初始值					0				
PWM1_L_H (9	AH) PWM	低电平	控制寄存器	暑(高8位)			T		
位编号	7	6	5	4	3	2	1	0	
符号		-							
读/写		读/写							
上电初始值					0				
PWM1_H_L (9)									
位编号	7	6	5	4	3	2	1	0	
符号				-	_				
读/写					/写				
上电初始值					0				
PWM1_H_H (9									
位编号	7	6	5	4	3	2	1	0	
符号				-					
读/写					/写				
上电初始值			} 		0				
P2_XH (A0H)	二级总线数				0	0		0	
位编号	7	6	5	4	3	2	1	0	
符号				\+·	- / ' =				
读/写		1	-		/写 	1	1	1	
上电初始值	1	1	1	1	1	1	1	1	
产 /台口) 以 日 日 日				
位编号	位符号	徒田が	MONA &D.	∧ +K ∧ ⊓	説明 * 場件 =	1-4 [다다	DO VII 6	お田(主 ^	
7 [~] 0	P2_XH		MOVX @Ri	, A 指令的	」,	aata 区时	,P2_XH 🖥	ਜ਼安有 U	

PWM_EN (A2H) PWM 控制寄存器

位编号	7	6	5	4	3	2	1	0
符号				-		PWM1_EN	PWMO_EN	
读/写				-		读/写	读/写	
上电初始值		-				0	0	

位编号	位符号	说明
5 [~] 2		保留
1	PWM1 EN	PWM1 模块使能寄存器
1	T WMT_EN	1: 使能; 0: 不使能
0	PWMO_EN	PWMO 模块使能寄存器
0		1: 使能; 0: 不使能

PWM_EN (A3H) PWM 控制寄存器

位编号	7	6	5	4	3	2	1	0
符号			PWMO_CHO_EN					
读/写		-						读/写
上电初始值		-				0		

位编号	位符号	说明
$7^{\sim}1$		保留
0	PWMO_CHO_POLA_SEL	通道 0 使能 ch0_en 1: 使能; 0: 不使能

PWM0_CH0_CNT_L (A4H) PWM0 通道 0 计数值配置寄存器低 8 位

位编号	7	6	5	4	3	2	1	0			
符号		PWMO_CHO_CNT_L									
读/写		读/写									
上电初始值		0									

位编号	位符号	说明
7~0	PWMO_CHO_CNT_L	通道 0 计数值配置寄存器低 8 位 配置 PWM 输出占空比

PWM0_CH0_CNT_H (A5H) PWM0 通道 0 计数值配置寄存器高 8 位

位编号	7	6	5	4	3	2	1	0			
符号		PWMO_CHO_CNT_H									
读/写		读/写									
上电初始值	0										

位编号	位符号	说明					
7 [~] 0	Dunto CHO CATA H	通道0计数值配置寄存器高8位					
7 0	PWMO_CHO_CNT_H	配置 PWM 输出占空比					

IEN0(A8H) 中断使能寄存器

位编号	7	6	5	4	3	2	1	0
符号	EA		_		ET1	EX1	ET0	EX0
读/写	读/写		_		读/写	读/写	读/写	读/写
上电初始值	0		-		0	0	0	0

位编号	位符号	说明
7	EA	EA-中断允许位。 EA=0 屏蔽所有的中断(EA 优先于中断源各自的中断使能位)。EA=1,中断打开,每个中断源的中断请求是允许还是被禁止,还需由各自的允许位确定。
6~4		保留
3	ET1	ET1-定时器1 溢出中断允许位。ET1=0,禁止定时器 1(TF1)申请中断。 ET1=1,允许TF1 标志位申请中断。
2	EX1	EX1-INT_EXT1 允许位。 EX1=0,禁止INT_EXT1 申请中断。 EX1=1,允许INT_EXT1 申请中断。
1	ET0	ET0-定时器0 溢出中断允许位。ET0=0, 禁止定时器 0(TF0)申请中断。 ET0=1, 允许TF0 标志位申请中断。
0	EX0	EXO-INT_EXTO 允许位。 EXO=0,禁止INT_EXTO 申请中断。 EXO=1,允许INT_EXTO 申请中断。

PWM0_MOD_L (ADH) PWM0 周期配置寄存器低 8 位

位编号	7	6	5	4	3	2	1	0
符号		PWMO_MOD_L						
读/写				读/	/写			
上电初始值				()			

位编号	位符号	说明
$7^{\sim}0$	PWMO_MOD_L	PWMO 计数周期配置寄存器低 8 位: 配置 PWM 输出占空比

PWM0_MOD_H (AEH) PWM0 周期配置寄存器高 8 位

位编号	7	7 6 5 4 3 2 1 0						
符号		PWMO_MOD_H						
读/写				读/	/写			
上电初始值		0						

位编号	位符号		说明					
7 [~] 0	PWMO_MOD_H		PWMO 计数周期配置寄存器高 8位: 配置 PWM 输出占空比					
ADC_SPT (B4H	I) ADC 采	样时间配	置寄存器					
位编号	7	6	5	4	3	2	1	0
符号		ADC_SPT						
读/写								
上电初始值				()			

位编号	位符号	说明					
7 [~] 0	ADC_SPT	ADC 采样时间配置寄存器 采样时间: sample_Timer = (ADC_SPT+1)*4*Tadc_clk					

ADC_SCAN_CFG (B5H) ADC 扫描控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_		ADC_ADDR				ADC_START
读/写	_	_			读/写			读/写
上电初始值	_	_		0				0

位编号	位符号	说明
5~1	ADC_ADDR	ADC 通道地址选择寄存器,0~26 对应 ADC0~ADC26。
0	ADC_START	ADC 扫描开启寄存器 ADC_START=0→1(▲) 开启转换,扫描过程中不允许配置 ADC_START。 ADC_START 从 0 置 1,ADC 开始扫描,扫描一次结束后,ADC_START 硬件自动置 0,对应 ADC 中断标记位置 1,ADC中断标记位需要软件清 0。

ADCCKC (B6H) ADC 时钟控制寄存器

,	,							
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	ADC	CKV	ADO	CCK
读/写	_	_	_	_	读/	/写	读	/写
上电初始值	_	_	_	_	0	0	0	0

位编号	位符号	说明
3 [~] 2	ADCCKV	ADC 比较器失调消除模拟输入时钟
3 4	ADCCKV	0: 12MHz 1: 8MHz 2: 4MHz 3: 2MHz
1~0	ADCCV	ADC_CLK 分频选择
1 0	ADCCK	0: 8MHz 1: 6MHz 2: 4MHz 3: 3MHz

IPL0 (B8H) 中断优先级寄存器 0

位编号	7	6	5	4	3	2	1	0

符号	_	_	_	_	PT1	PX2	PT0	PX0
读/写	_	_	_	_	读/写	读/写	读/写	读/写
上电初始值	_	_	_	_	0	0	0	0

位编号	位符号	说明
$7^{\sim}4$		保留
3	PT1	PT1-TF1(Timer1 中断)优先级选择位。 PT1=0 时TF1(Timer1 中断)为低优先级, PT1=1 时TF1(Timer1 中断)为高优先级。
2	PX2	PX2- INT_EXT1 中断优先级选择位。PX2=0 时INT_EXT1 为低优先级, PX2=1 时INT_EXT1 为高优先级。
1	PT0	PTO-TFO(TimerO 中断)优先级选择位。 PTO=0 时TFO(TimerO 中断)为低优先级, PTO=1 时TFO(TimerO 中断)为高优先级。
0	PX0	PXO- INT_EXTO 中断优先级选择位。 PXO=0 时INT_EXTO 为低优先级, PXO=1 时INT_EXTO 为高优先级。

ADC_RDATAH (B9H) ADC 扫描结果寄存器高 4 位

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_		ADC_RAWD	ATA<11:82	>
读/写	_	_	_	_	读			
上电初始值	_	_	_	_			0	

位编号	位符号	说明	
$3^{\sim}0$	ADC RAWDATA<11:8>	ADC扫描结果寄存器	

ADC_RDATAL(BAH) ADC 扫描结果寄存器低 8 位

位编号	7	6	5	4	3	2	1	0
符号				ADC_RAWD	ATA<7:0>			
读/写		读						
上电初始值				()			

位编号	位符号	说明
7 [~] 0	ADC_RAWDATA<7:0>	ADC扫描结果寄存器

ADC_CFG1(BBH) ADC 采样时序控制寄存器 1

位编号	7	6	5	4	3	2	1	0
符号			ADCWNUM			SAMBG	SAM	MDEL
读/写		读/写					读	/写
上电初始值			0			0		0

位编号 位付号 况明

7 [~] 3	ADCWNUM	采样完毕后距离转换间隔时间选择 3+ADCWNUM(ADC_CLK)
2	SAMBG	采样时序与比较时序间隔选择: 0: 间隔 0; 1: 间隔 1 (ADC_CLK)
1~0	SAMDEL	采样延迟时间选择 0: 0; 1: 2; 2: 4; 3: 8(ADC_CLK)

ADC_CFG2 (BCH) ADC 采样时序控制寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	_	FILTER_R_SEL	VREF_IN_	_ADC_SEL	ADC_I_S	EL[1:0]	CTRL_S	EL[1:0]
读/写	_	读/写	读/写		读/	/写	读	/写
上电初始 值	_	0	()	()	1	.0

位编号	位符号	说明
6	FILTER_R_SEL	输入信号滤波选择,0为不加RC滤波,1为加RC滤波
5 [~] 4	VREF_IN_ADC_SEL	输入给芯片内部 ADC26 基准电压选择 01: 2.253V(不同芯片有偏差),使用时需要从芯片 Flash 读取校准电压值, VREF_IN_ADC_SEL 档电压= { CBYTE[0x43C6], CBYTE[0x43C7]} mV; 其它: 保留。
3~2	ADC_I_SEL[1:0]	ADC 偏置电流大小选择寄存器 ADC_I_SEL[0]: 0 为比较器偏置电流为 4uA; 1 为比较器偏置电流为 5uA; ADC_I_SEL[1]: 0 为运放偏置电流为 4uA; 1 为运放偏置电流为 5uA;
1~0	CTRL_SEL[1:0]	ADC 比较器失调消除选择信号,默认值为 10 CTRL_SEL[1:0]: 00/01:为先采样再失调消除; 10: 所有开关一起断开; 11: 开关依次断开;

UARTO_BDL (BDH) UARTO 波特率控制寄存器

位编号	7	6	5	4	3	2	1	0		
符号		_								
读/写		读/写								
上电初始值		0								

位编号	位符号	说明
7~0		波特率控制寄存器 波特率模数除数寄存器低 8 位, Baud_Mod={UART0_BDH[1:0], UART0_BDL}, Baud_Mod=0 时不生成波特率时钟,当Baud_Mod=1~1023
		时,波特率= BUSCLK/(16xBaud_Mod)

UART0_CON1 (BEH) UART0 控制寄存器 1

位编号	3	2	1	0
符号	stop_mode	data_mode	parity_en	parity_sel
读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0
位编号	7	6	5	4
符号	_	uart0_enable	receive_enable	multi_mode
读/写	_	读/写	读/写	读/写
上电初始值	上电初始值 -		0	0

位编号	位符号	说明
6	uart0_enable	模块使能,1: 模块使能,0: 模块关闭
5	receive_enable	接收器使能,1:接收器打开,0:接收器关闭
4	multi_mode	多处理器通信模式,1:模式使能,0:模式禁能
3	stop_mode	stop 位宽选择, 1: 2位, 0: 1位
2	data_mode	数据模式选择,1:9位模式,0:8位模式
1	parity_en	奇偶校验使能, 1: 奇偶效验使能, 0: 奇偶效验不使能
0	parity_sel	奇偶校验选择,1:奇校验,0:偶校验

UART0_CON2 (BFH) UART0 控制寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	Τ	ı	_	_	tx_empty_ie	rx_full_ie	UART0_BDH	
读/写	-	-	_	_	读/	′写	诗	芸/写
上电初始值	_		_	_	1	1	0	0

位编号	位符号	说明
3	tx_empty_ie	发送中断使能,1:中断使能,0:中断禁止(用于轮询模式)
2	rx_full_ie	接收中断使能,1:中断使能,0:中断禁止(用于轮询模式)
1~0	UART0_BDH	波特率模数除数寄存器高 2 位

UARTO_STATE (C0H) UARTO 状态标记寄存器

位编号	7	6	5	4
符号	ı	r8	t8	tx_empty_if
读/写	_	读	读	读/写

上电初始值	_	0	0	0
位编号	3	2	1	0
符号	frx_full_i	rx_overflow_if	frame_err_if	parity_err_if
读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0

位编号	位符号	说明				
6	r8	接收器的第9个数据,只读				
5	t8	发射器的第9个数据,奇偶校验使能时只读				
4	tx_empty_if	发送中断标记: 1: 发送缓存为空 0: 发送缓存为满,软件写 0 清零,写 1 无效				
3	frx_full_i	接收中断标记: 1:接收缓存为满 0:接收缓存为空,软件写 0 清零,写 1 无效				
2	rx_overflow_if	接收溢出标记: 1:接收溢出(新数据丢失) 0:没有溢出,软件写 0 清零,写 1 无效				
1	frame_err_if	帧错误标记: 1: 检测到帧错误 0: 未检测到帧错误,软件写 0 清零,写 1 无效				
0	parity_err_if	parity_err_if 奇偶校验错误标记: 1:接收器奇偶校验错误 0:奇偶校验正确,软件写 0 清零,写 1 无效				

UARTO_BUF (C1H) UARTO 数据寄存器

0									
位编号	7	6	5	4	3	2	1	0	
符号		_							
读/写		读/写							
上电初始值	1	1	1	1	1	1	1	1	

位编号	位符号	说明
7 [~] 0		数据寄存器 读返回只读接收数据缓冲器的内容,写进入只写发送数据缓冲器

CSD_START(CAH) CSD 扫描开启寄存器

_ \	,							
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_		_
读/写	-	_	_	_	-	_		读/写
上电初始值	_	_	_	_	_	_		0

SNS_SCAN_CFG1 (CBH) 触摸按键扫描配置寄存器 1

位编号	7	6	5	4	3	2	1	0
符号	ı	SW_PRE_OFF			PRS	_DIV		
读/写	I	读/写			读	/写		
上电初始值	_	0				0		

位编号	位符号	说明
C	CW DDE OEE	前端充放电时钟开关控制
6	SW_PRE_OFF	1:关闭 sw_clk; 0:打开 sw_clk
		前端充放电时钟频率选择寄存器:
5~0	DDC DIV	0~61: 为固定频率: F=F48m/2/(PRS_DIV+4) (6M~369K);
5 0	PRS_DIV	62: 最高频率 3M, 最低频率 1M, 中心频率 1.5M, 正态分布;
		63: 最高频率 3M, 最低频率 1M, 中心频率 1.5M, 均匀分布;

SNS_SCAN_CFG2 (CCH) 触摸按键扫描配置寄存器 2

位编号	7	6	5	4 3 2 1			0	
符号	_	PULL_I_SELA_H	PARALLEL_EN		CS	D_ADI	OR	
读/写	_	读/写	读/写	读/写				
上电初始值	-	1	0			0		

位编号	位符号	说明			
6	PULL_I_SELA_H	ULL_I_SELA_H CSD 上拉电流源配置最高位			
5	PARALLEL_EN	SNS 通道并联使能寄存器 1: 多通道并联; 0: 单通道			
4~0	CSD_ADDR	检测通道的地址,对应通道号 0~25			

SNS_SCAN_CFG3(CDH) 触摸按键扫描配置寄存器 3

位编号	7	6	6 5 4		3	2	1	0	
符号	_		RESO		CSD_DS		PRE_CHRG_SEL	INIT_DISCHRG_SEL	
读/写	_	读/写		读/写		读/写	读/写		
上电初 始值	_	1	1	1	0	0	0	0	

位编号	位符号	说明
6 [~] 4	RESO	计数器位数选择寄存器 000:9位;001:10位;010:11位;011:12位;100:13
0 4	RESU	位; 101: 14位; 110: 15位; 111: 16位。
3 [~] 2	CSD DS	计数时钟频率选择寄存器
3 4	ี	00: 24M; 01: 12M; 10: 6M; 11: 4M; 默认 0
1	PRE_CHRG_SEL	预充电时间选择: 0: 20us; 1: 40u
0	INIT_DISCHRG_SEL	预放电时间选择: 0: 2us; 1: 10us

CSD_RAWDATAL (CEH) CSD 计数值低 8 位

位编号	7	6	5	4	3	2	1	0
符号		RAWDATA<7:0>						
读/写		读						
上电初始值				()			

CSD_RAWDATAH (CFH) CSD 计数值高 8 位

位编号	7	6	5	4	3	2	1	0
符号		RAWDATA<15:8>						
读/写		读						
上电初始值				()			

PSW(D0H) 程序状态字寄存器

	位编号	7	6	5	4	3	2	1	0
	符号	CY	AC	F0	RS[1	:0]	OV	F1	Р
	读/写	读/写	读/写	读/写	读/	写	读/写	读/写	读/写
Ī	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明					
7	СҮ	进位标志位。 当加法生成进位或减法产生借位时设置,否则清除。当 CJNE 第 一个操作数小于第二个操作数时设置,由 MUL 和 DIV 指令清 除。也通过鼠标指令(RLC, RRC)和逐位指令影响。					
6	AC	辅助进位标志位 当加法从累加器第三位到第四位产生进位时设置,或者当减法 从第三位到第四位产生借位时,否则清零。					
5	F0	0 标志位。可供用户使用的通用标签。					
4 [~] 3	RS[1:0]	工作寄存器组选择: 选择有效的工作寄存器组: RS[1:0] Bank IRAM Area 00 0 0x00-0x07; 01 1 0x08-0x0F; 10 2 0x10-0x17; 11 3 0x18-0x1F					
2	OV	溢出标志位。 当加法产生累加器位6和7的不同进位时,或者减法产生累加器位6和7的借位。否则清除。0V标志位表示签名的8位数字的结果超出了限制(大于127或小于-128).当乘法结果大于255或试图除以0时,也会设置溢出标志。					
1	F1	1 标志位。可供用户使用的通用标签。					
0	Р	奇偶标志位。始终包含累加器中所有位的形式2的总和。					

PULL_I_SELA_L (D1H) CSD 上拉电流源选择寄存器

位编号

符号	PULL_I_SEL<7:0>
读/写	读/写
上电初始值	0

位编号	位符号	说明
$7^{\sim}0$	PULL_I_SEL<7:0>	CSD 上拉电流源大小选择开关,默认值 0

SNS_ANA_CFG (D2H) CSD 扫描参数配置寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	-	RB_SEL			VTH_SEL		
读/写	_	_	读/写				读/写	
上电初始值	-	-	1	0	1	1	1	1

位编号	位符号	说明				
5~4	RB_SEL	Rb 电阻大小选择 0: 10k; 1: 20k; 2: 30k; 3: 40k; 4: 60k; 5: 80k; 6: 150k; 7: 300k; 使用时需要从芯片 Flash 读取 Rb80K 校准值: CBYTE[0x43CD]K/80K, 进行比例计算归一化灵敏度。				
2 [~] 1	VTH_SEL	VTH 电压选择信号, 000 为 1.8V, 001 选择 2.1V, 010 选择 2.5V, 011 选择 2.8V, 100 选择 3.2V, 101 选择 3.5V, 110 选择 3.9V, 111 选择 4.1V				

SNS_IO_SEL1(D3H) SNS 通道选择寄存器 1

	,							
位编号	7	6	5	4	3	2	1	0
符号	SEL_SENSOR[7:0]							
读/写	读/写							
上电初始值	0							

位编号	位符号	说明				
7 [~] 0	CEL CENCOD[7.0]	SENSOR 口选择使能				
7 0	SEL_SENSOR[7:0]	1:选择 SENSOR; 0:不选择 SENSOR				

SNS_IO_SEL2 (D4H) SNS 通道选择寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	SEL_SENSOR[15:8]							
读/写	读/写							
上电初始值	0							

位编号	位符号	说明					
$7^{\sim}0$	SEL_SENSOR[15:8]	SENSOR 口选择使能: 1: 选择 SENSOR, 0: 不选择 SENSOR					

SNS	Ю	SEL ₃	(D5H)	SNS	通道选择寄存器	3
-----	---	------------------	-------	------------	---------	---

位编号	7	6	5	4	3	2	1	0
符号		SEL_SENSOR[23:16]						
读/写		读/写						
上电初始值		0						

位编号	位符号	说明
$7^{\sim}0$	SEL_SENSOR[23:16]	SENSOR 口选择使能: 1:选择 SENSOR, 0:不选择 SENSOR

SNS_IO_SEL4 (D6H) SNS 通道选择寄存器 4

位编号	7	6	5	4	3	2	1	0
符号	-	_	_	-	_	_	SEL_SENSOR[25:24]	
读/写	-	_	_	_	_	_	读/	/写
上电初始值	ı	_	_	ı	_	_	()

位编号	位符号	说明
1~0	SEL_SENSOR[25:24]	SENSOR 口选择使能: 1: 选择 SENSOR, 0: 不选择 SENSOR

RST_STAT (D7H) 复位标记寄存器

位编号	7	6	5	4	3	2	1	0
符号		_						
读/写		读/写						
上电初始值		rst_state						

位编号	位符号	说明
7 [~] 0		复位标志位寄存器: { ONELIE_F, DEBUG_F, SOFT_F, PROG_F, ADDROF_F, BO_F, PO_F, WDTRST_F }

ADC_IO_SEL1 (D9H)ADC 功能选择寄存器 1

	· · · · · · · · · · · · · · · · · · ·							
位编号	7	6	5	4	3	2	1	0
符号		SEL_ADC[7:0]						
读/写								
上电初始值		0						

位编号	位符号	说明						
$7^{\sim}0$	SEL_ADC[7:0]	ADC 功能选择: 1:选择 ADC 功能, 0:不选择 ADC 功能						

ADC_IO_SEL2(DAH)ADC 功能选择寄存器 2

位编号	7	6	5	4	3	2	1	0
符号		SEL_ADC[15:8]						
读/写		读/写						
上电初始值	0							

位编号	位名	符号			设	色明		
$7^{\sim}0$	SEL_AD	L_ADC[15:8] ADC 功能选择: 1: 选择 ADC 功能, 0: 不选择 ADC 功能				DC 功能		
ADC_IO_SEL3	(DBH)AD	C 功能选	择寄存器	3				
位编号	7	6	5	4	3	2	1	0
符号				SEL_AD	C[23:16]			
读/写				读	:/写			
上电初始值					0			
位编号	位名	符号			设	的明		
7~0	SEL_ADO	[23:16]	ADC 功能	选择: 1:	选择 ADC	功能,(): 不选择 Al	DC 功能
ADC_IO_SEL4	C_IO_SEL4(DCH)ADC 功能选择寄存器 4							
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	-	_	SEL_ADC[25:24]
读/写	_	_	- - 读/写			写		
上电初始值		_	-	-	-	_	0	
			T					
位编号	位名	符号			访	的明		
1~0	SEL_ADO	[25:24]	ADC 功能	选择: 1:	选择 ADC	功能,(): 不选择 Al	DC 功能
PU_PA (DDH)	PA 口上拉	电阻使能	寄存器					
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_	_	
读/写	_	_	_	_	-	_	读/	写
上电初始值	_	_	_	_	_	_	0	
			ı					
位编号	位名	符号			访	色明		
			PA 口上扌	立电阻使能	卷寄存器			
1~0	PU_PA 置 1 对应的引脚上拉电阻使能,清零对应的引脚					立的引脚		
	不使能上拉电阻,上拉电阻 4.7K。							
PU_PB(DEH)PI	B 口上拉F		存器					
位编号		6	5	4	3	2	1	0
符号		_						
读/写				读	:/写			
上电初始值	0							

位编号	位符号	说明
7 [~] 0		PB 口上拉电阻使能寄存器 PU_PB 置 1 对应的引脚上拉电阻使能,清零对应的引脚 不使能上拉电阻,上拉电阻 4.7K。

PU_PC(DFH)PC 口上拉电阻使能寄存器

位编号	7	6	5	4	3	2	1	0		
符号		_								
读/写		读/写								
上电初始值				()					

位编号	位符号	说明
7~0		PC 口上拉电阻使能寄存器 PU_PC 置 1 对应的引脚上拉电阻使能,清零对应的引脚 不使能上拉电阻,上拉电阻 4.7K。

ACC(E0H) 累加器

位编号	7	6	5	4	3	2	1	0		
符号		ACC								
读/写		读/写								
上电初始值				()					

位编号	位符号	说明
$7^{\sim}0$	ACC	累加器:目标寄存器适用于所有算术和逻辑运算。

IRCON2 (E1H) 中断标志寄存器 2

	1 ->114	3 14 HH =						
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	IE10	IE9	IE8
读/写	_	_	_	_	ı	读/写	读/写	读/写
上电初始值	_	_	_	_	-	0	0	0

位编号	位符号	说明
7~3		保留
2		保留
1	IE9	UARTO 中断标志
0	IE8	LVDT 中断标志

PU_PD (E2H)PD 口上拉电阻使能寄存器

位编号	7	6	5	4	3	2	1	0			
符号		-									
读/写		读/写									
上电初始值		0									

位编号	位符号	说明
7 [~] 0		PD 口上拉电阻使能寄存器 PU_PD 置 1 对应的引脚上拉电阻使能,清零对应的引脚 不使能上拉电阻,上拉电阻 4.7K。

IICADD (E3H) IIC 地址寄存器

位编号	7	6	5	4	3	2	1	0		
符号		IICADD[7:1]								
读/写		读/写								
上电初始值				0				-		

IICBUF (E4H) IIC 发送接收数据寄存器

位编号	7	6	5	4	3	2	1	0			
符号		IICBUF									
读/写		读/写									
上电初始值				()						

位编号	位符号	说明
7 [~] 0	IICBUF	IIC 发送接收数据缓冲器

IICCON (E5H) IIC 配置寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	ı	IIC_RST	RD_SCL_EN	WR_SCL_EN	SCLEN	SR	IIC_EN
读/写	_	_	读/写	读/写	读/写	读/写	读/写	读/写
上电初始 值	-	-	0	1	0	0	0	0

位编号	位符号	说明
7 [~] 6		保留
5	IIC_RST	IIC 模块复位信号 1: IIC 模块发生复位操作, 0: IIC 模块正常工作
4	RD_SCL_EN	主机读拉低时钟线控制位 1:使能主机读拉低时钟线功能,0:不使能主机读拉低时钟线 功能
3	WR_SCL_EN	主机写拉低时钟线控制位, 1: 使能写拉低时钟线的功能, 0: 不使能写拉低时钟线的功能
2	SCLEN	IIC 时钟使能位: 1=时钟正常工作, 0=拉低时钟线
1	SR	IIC 转换率控制位 1: 转换率控制被关闭以适应标准速度模式(100K); 0: 转换率控制被使能以适应快速速度模式(400K)
0	IIC_EN	IIC 工作使能位: 1: IIC 正常工作, 0: IIC 不工作

IEN1 (E6H) 中断使能寄存器 1

位编号	7	6	5	4	3	2	1	0
符号	EX7	EX6	EX5	EX4	EX3	EX2	ı	ı
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EX7	WDT/Timer2 中断使能
6		保留
5	EX5	CSD 中断使能
4	EX4	ADC 中断使能
3	EX3	IIC 中断使能
2	EX2	外部中断2 中断使能
1~0		保留

IEN2(E7H) 中断使能寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	EX10	EX9	EX8
读/写	_	_	_	_	_	读/写	读/写	读/写
上电初始值	_	_	_	_	_	0	0	0

位编号	位符号	说明
7~3		保留
2		保留
1	EX9	UARTO 中断使能
0	EX8	LVDT 中断使能

IICSTAT (E8H) IIC 状态寄存器

位编号	7	6	5	4
符号	IIC_START	IIC_STOP	IIC_RW	IIC_AD
读/写	读	读	读	读
上电初始值	0	1	0	0
位编号	3	2	1	0
符号	IIC_BF	IIC_ACK	IIC_ACK	IIC_RECOV
读/写	读	读	读/写	读/写
上电初始值	0	1	0	0

位编号	位符号	说明
7	IIC_START	开始信号标志位: 1:表示检测到了启动位;0:表示未检测到启动位
6	IIC_STOP	停止信号标志位: 1:表示处于停止状态;0:表示未检测到停止位
5	IIC_RW	读写标志位:记录最近一次地址匹配后,从地址字节中获得的读/写信息,1:表示读操作;0:表示写操作
4	IIC_AD	地址数据标志位: 1:表示最近接收或者发送的字节是数据;

	ı	
		0:表示最近接收或者发送的字节是地址
		IICBUF 满标志位:在 IIC 总线方式下接收时:
		1:表示接收成功,缓冲器已经满;
		0:表示接收未完成,缓冲器还为空
3	IIC_BF	在 IIC 总线方式下发送时:
		1:表示数据发送正在进行(不包括应答位和停止位),缓冲器还是满
		的;
		0:表示数据发送已经完成(不包括应答位和停止位),缓冲器已空
2	IIC_ACK	应答标志位: 1: 表示无效的应答信号; 0: 表示有效的应答信号
		写冲突标志位:
	TTG WG01	1: 表示 IIC 正在发送当前的数据的时候,新的数据试图写入发送缓
1	IIC_WCOL	冲器;新的数据是不能被写入缓冲器的;
		0: 未发生写冲突
		接收溢出标志位:
	TTO PROOF	1:表示 IIC 接收的前一个数据还没有取走时,又接收到了新的数据,
0	IIC_RECOV	新的数据是不能被缓冲器接收的;
		0: 表示未发生接收溢出
	•	·

IICBUFFER (E9H) IIC 发送数接收据缓存寄存器

	, - // •		#H 2414 41	•							
位编号	7	6	5	4	3	2	1	0			
符号		IICBUFFER									
读/写		读/写									
上电初始值				()						

TRISA (EAH) PA 方向寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	-	_	_	_	_	_	
读/写	_	ı	_	_	_	_	读/写	
上电初始值	_	_	_	_	_	_	1	1

位编号	位符号	说明					
1~0		PA 方向寄存器, 0: 输出, 1: 输入					

TRISB(EBH) PB 方向寄存器

位编号	7	6	5	4	3	2	1	0		
符号		_								
读/写		读/写								
上电初始值	1	1	1	1	1	1	1	1		

位编号	位符号	说明
7 [~] 0		PB 方向寄存器, 0: 输出, 1: 输入

TRISC(ECH) PC 方向寄存器

位编号	7	6	5	4	3	2	1	0
符号		_						
读/写		读/写						
上电初始值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7 [~] 0		PC 方向寄存器, 0: 输出, 1: 输入

TRISD(EDH) PD 方向寄存器

位编号	7	6	5	4	3	2	1	0
符号		_						
读/写		读/写						
上电初始值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7 [~] 0		PD 方向寄存器, 0: 输出, 1: 输入

ODRAIN_EN (EFH) PA 口开漏使能寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	-	_	_	_		_
读/写	_	_	ı	_	_	_	读	/写
上电初始值	_	_	_	_	_	_	0	0

位编号	位符号	说明			
1~0		PA0/1 开漏输出使能寄存器 1: 开漏输出, 0: CMOS 输出			

B (F0H) B 寄存器

位编号	7	6	5	4	3	2	1	0
符号		В						
读/写		读/写						
上电初始值		0						

位编号	位符号	说明
7 [~] 0	В	B 寄存器: 乘法和除法运算的源和目标寄存器。

IRCON1 (F1H) 中断标志寄存器 1

位编号	7	6	5	4	3	2	1	0
符号	IE7	IE6	IE5	IE4	IE3	IE2	ı	_
读/写	读/写	读/写	读/写	读/写	读/写	读/写	ı	_
上电初始值	0	0	0	0	0	0	ı	-

位编号 位符号	说明
---------	----

7	IE7	WDT/Timer2 中断标志
6		保留
5	IE5	CSD 中断标志
4	IE4	ADC 中断标志
3	IE3	IIC 中断标志
2	IE2	外部中断2中断标志
1~0		保留

PERIPH_IO_SEL (F2H) IIC/UART0/INT 功能控制寄存器

位编号	7	6	5	4	3	
符号	_	IIC_AFIL_SEL	IIC_DFIL_SEL	UART0_	IO_SEL	
读/写		读/写	读/写	读/写	读/写	
上电初始值	_	- 1		0	0	
位编号	2	1	0	/		
符号	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL			
读/写	读/写	读/写	读/写	/		
上电初始值	0	0	0			

位编号	位符号	说明
6	HC AEH CEI	IIC 口模拟滤波选择使能
0	IIC_AFIL_SEL	1: 选择模拟滤波功能, 0: 不选择模拟滤波功能
_	HC DEIL CEI	IIC 口数字滤波选择使能
5	IIC_DFIL_SEL	1: 选择数字滤波功能, 0: 不选择数字滤波功能
4 [~] 3	LIADTO IO GEL	UARTO 口选择使能
4 3	UART0_IO_SEL	00:选择 UARTO(RXDO_A/TXDO_A)功能
2	INTO IO CEI	INT2 口选择使能
۷	INT2_IO_SEL	1: 选择 INT2 功能, 0: 不选择 INT2 功能
1	INT1 IO CEI	INT1 口选择使能
1	INT1_IO_SEL	1: 选择 INT1 功能, 0: 不选择 INT1 功能
	INTO IO CEI	INTO 口选择使能
0	INT0_IO_SEL	1: 选择 INTO 功能, 0: 不选择 INTO 功能

IPL2 (F4H) 中断优先级寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	ı	_	IPL2. 2	IPL2. 1	IPL2.0
读/写	_	-	_	1	-	读/写	读/写	读/写
上电初始值	_	_	_	-	_	0	0	0

位编号	位符号	说明
7~3		保留
2		保留

1	IPL2.1	UARTO 中断优先级: 1: 为高, 0: 为低
0	IPL2.0	LVDT 中断优先级: 1: 为高, 0: 为低

IPL1 (F6H) 中断优先级寄存器 1

位编号	7	6	5	4	3	2	1	0
符号	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	_	_
读/写	读/写	读/写	读/写	读/写	读/写	读/写	-	-
上电初始值	0	0	0	0	0	0	_	_

位编号	位符号	说明
7	IPL1. 7	WDT/Timer 2 中断优先级: 1: 为高, 0: 为低
6		保留
5	IPL1.5	CSD 中断优先级: 1: 为高,0: 为低
4	IPL1.4	ADC 中断优先级: 1: 为高,0: 为低
3	IPL1.3	IIC 中断优先级: 1: 为高,0: 为低
2	IPL1. 2	外部中断优先级: 1: 为高, 0: 为低
1~0		保留

EXT_INT_CON (F7H) 外部中断极性控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	I	I	INT2_PC	LARITY	INT1_PC	LARITY	INTO_PO	DLARITY
读/写	_	_	_	_	_	_		读/写
上电初始值	_	_	0	1	0	1	0	1

位编号	位符号	说明
		外部中断 2 触发极性选择:
5 [~] 4	INT2_POLARITY	INT2_POLARITY=01: 下降沿(低功耗模式下低电平唤醒)
0 4	INTZ_POLARITT	INT2_POLARITY=10: 上升沿(低功耗模式下高电平唤醒)
		INT2_POLARITY=00/11:双沿(低功耗模式下低电平唤醒)
		外部中断1触发极性选择:
3~2	INT1_POLARITY	INT1_POLARITY=01: 下降沿(低功耗模式下低电平唤醒)
3 4		INT1_POLARITY=10: 上升沿(低功耗模式下高电平唤醒)
		INT1_POLARITY=00/11:双沿(低功耗模式下低电平唤醒)
		外部中断 0 触发极性选择:
1~0	INTO POLARITY	INT0_POLARITY=01: 下降沿(低功耗模式下低电平唤醒)
1 0	INTU_POLARITY	INT0_POLARITY=10: 上升沿(低功耗模式下高电平唤醒)
		INT0_POLARITY=00/11: 双沿(低功耗模式下低电平唤醒)

DATAA (F8H) PA 数据寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	-	-	_	_	-	PA. 1	PA. 0
读/写	_	ı	I	_	_	I	读	/写

上电初始值	_	_	_	_	_	_	1	1	1
-------	---	---	---	---	---	---	---	---	---

位编号	位符号	说明
1~0		PA 数据寄存器,可配置 PA 组 IO 口作为 GPIO 口时的输出
		电平,读取值为当前 I0 口(输入)的电平状态或配置输出
		值(输出)

SPROG_ADDR_H (F9H) EEPROM 地址控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	-	_	_	_		_	
读/写	ı	ı	_	_	_		读/写	
上电初始值	I	ı	_	_	_	0	0	0

位编号	位符号	说明
2~0		REG_ADDR = 0x20; REG_DATA = 0x00 时, Bit[2]: 选择EEPROM块(可进行页擦除和字节烧写), 0: 表示选择block0; 1: 保留。block大小1024Bytes。 Bit[1:0]: 表示EEPROM块地址的高2 位,SPROG_ADDR[9:8]。 REG_ADDR = 0x20; REG_DATA = 0x01时, SPROG_ADDR_H[2] = 0, 选择NVR3(512Bytes); SPROG_ADDR_H[2] = 1, 选择NVR4(512Bytes) SPROG_ADDR_H[1] 保留, {SPROG_ADDR_H[0],SPROG_ADDR_L[7:0]}表示页内字节 地址

SPROG_ADDR_L(FAH) EEPROM 地址控制寄存器

位编号	7	6	5	4	3	2	1	0
符号		-						
读/写		读/写						
上电初始值		0						

位编号	位符号	说明
7 [~] 0		Bit[7:0]:表示 EEPROM 块地址的低 8 位,SPROG_ADDR[7:0]

SPROG_DATA(FBH) EEPROM 数据寄存器

位编号	7	6	5	4	3	2	1	0	
符号		_							
读/写		读/写							
上电初始值		0							

位编号 位 位符号 位符号 説明

	$7^{\sim}0$	_	_	EEPROM 烧写: 待写入的数据						
S	SPROG_CMD(FCH) EEPROM 命令寄存器									
	位编号	7	6	5	4	3	2	1	0	
	符号		_							
	读/写		读/写							
ſ	上电初始值			•	()	•	•		

位编号	位符号	说明			
7 [~] 0		写入 0x96: EEPROM 页擦除;			
1 0		写入 0x69: EEPROM 字节烧写			

SPROG_TIM(FDH) EEPROM 擦写时间控制寄存器

位编号	7	6	5	4	3	2	1	0	
符号		-							
读/写		读/写							
上电初始值				5	a				

位编号	位符号	说明
7~0		字节写时间固定为 23.5us, REG_ADDR = 0x20; REG_DATA = 0x00 时, bit[7:5]: 保留; bit[4:0]: 0~9 对应擦除时间(1~10ms)+0.13ms(步进 1ms),>9 时为 10.13ms。 REG_ADDR = 0x20; REG_DATA = 0x01 时, bit[7:5]: 保留; bit[4:0]: 0~9 对应擦除时间(0.5~5ms)+0.065ms(步进 0.5ms),>9 时为 5.065ms。

PD_ANA (FEH) 模块开关控制寄存器

	,	*/ / /						
位编号	7	6	5	4	3	2	1	0
符号	-	ı	ı	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
读/写	_	Ī	ı	读/写	读/写	读/写	读/写	读/写
上电初始值	-	-	_	1	1	1	1	1

位编号	位符号	说明
4	PD_LVDT	LVDT 控制寄存器, 1: 关闭, 0: 打开, 默认关闭
3	PD_BOR	BOR 控制寄存器, 1: 关闭, 0: 打开, VBOR=2. 1V, 默认关闭
2	PD_XTAL_32K	RTC 晶振电路 (32768Hz/4MHz) 控制寄存器 1:关闭,0:打开,默认关闭
1	PD_CSD	CSD 工作控制寄存器:

		PD_CSD=0 CSD 模块正常工作; PD_CSD=1 CSD 模块不工作
0	PD_ADC	模拟 ADC 关断控制寄存器: PD_ADC=0 ADC 模块正常工作; PD_ADC=1 ADC 模块不工作

SEL_LVDT_VTH (FFH) LVDT 阈值选择寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	-	_	
读/写	-	_	_	_	_	_	读/写	
上电初始值	-	_	_	_	_	_	0	0

位编号	位符号	说明				
1~0		LVDT 阈值选择: 00=2.4V; 01=3.0V; 10=3.6V; 11=4.2V				

SFR 寄存器详细说明表

注: 1. 复位值: 不同模式复位的值;

上电复位: rst_state 为 0x02;

其它模式复位: rst_state 对应的复位标志位为 1, 其它复位标记保持原来状态。

2. 保留的寄存器和寄存器保留的位,禁止写操作,否则可能引起芯片异常。

第5章 时钟、复位、工作模式及看门狗

5.1. 时钟定义

时钟方框图

5.2.系统时钟选择寄存器详细说明

SYS_CLK_CFG(84H)时钟控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	ı	_	_	_	_	_	PLL_CLK_SEL[1:0]	
读/写	ı	_	_	_	_	_	读/写	
上电初始值	_	_	_	_	_	_	0	1

位编号	位符号	说明			
7 [~] 2		保留			
1~0	PLL_CLK_SEL	PLL 时钟分频选择寄存器			
1 0		00: 12Mhz; 01: 6Mhz; 10: 4Mhz; 11: 保留			

BF6958A 系列时钟定义如下:

XTAL32. 768KHz: 外部 32. 768KHz 精准时钟,可作为 Timer2 时钟。

RC1MHz:内置RC振荡器,频率为1MHz,及PLL时钟。

LIRC: 内部低速时钟 LIRC, 该时钟作为看门狗时钟、Timer2 时钟。

PLL_48MHz: 锁相环产生的 48MHz 时钟,直接用于 CSD、ADC、Flash 控制,及分频后得到系统时钟。

SCL: IIC 主机时钟,由 IIC Master 主机发出,作为 IIC 通信时钟。

PGC: 编程时钟,编程烧录程序时的下载时钟。

TCK: 调试时钟。

5.3. 复位系统

BF6958A中有7种复位模式:看门狗定时器溢出复位(WDTRST_F)、上电复位(P0_F)、掉电复位(B0_F)、编程复位(PROG_F)、修调配置复位(DEBUG_F)、PC指针溢出复位(ADDROF_F)、软件复位(SOFT_F)。只要其中任意一种复位发生,系统的全局复位信号就会让整个芯片复位。可由复位标志寄存器来确定芯片进行了何种复位,复位标志位需要软件清零。

RST STAT (D7H) 复位标记寄存器

位编号	7	6	5	4	3	2	1	0
符号		-						
读/写		读/写						
上电初始值		rst_state						

位编号	位符号	说明
7 [~] 0		复位标志位寄存器: { ONELIE_F, DEBUG_F, SOFT_F, PROG_F, ADDROF_F, BO_F, PO_F, WDTRST_F }

复位方框图

上电复位,系统发生上电后模拟模块产生低电平的信号并持续 93ms。上电复位为低时整个芯片处于复位状态,变高后全局复位信号继续有效 20ms 后,系统退出复位模式。

上/掉电时序:

上电复位示意图

上/掉电复位参数:

符号	参数	测试条件(VDD)	最小	典型	最大	单位
VSPOR	上电复位起始电压				300	mV
KPRO	上电复位电压速率		0.01			V/ms
VPOR	上电复位电压		1.1	1.5	2. 2	V
VBOR	掉电复位电压(±10%), 迟滞 0.2V			VBOR	I	V
VDD_min	最小工作电压		2. 5	I	I	V
T1	VDD 保持 VSPOR 时间		0. 1			ms
T2	VPOR 到 VDD_min 时间		I	I	0. 6*T3	ms
Т3	复位 POR_BOR_N 持续时间	_	55	93	131	ms
T4	全局复位有效时间	_		20		ms

上电复位特性参数表

掉电复位,系统发生掉电复位后模拟模块产生低电平的信号。掉电复位信号为低时整个芯片处于复位状态,变高后全局复位信号继续有效 20ms 后,系统退出复位模式。

软件复位,通过写 SFR 使软复位信号有效,使全局复位信号有效 20ms, 20ms 后,系统退出复位模式。

看门狗定时器溢出复位,看门狗定时器溢出后使全局复位 20ms, 20ms 后,系统退出复位模式。

PC 指针溢出复位,若 MCU 寻址程序存储器时 PC 指针超出了 flash 有效的地址范围, addr_overflow 信号变高, sys_clk 时钟上升沿检测到 addr_overflow 高电平(需要 1 个时钟周期)后使全局复位 20ms, 复位信号会将 addr_overflow 信号清零, 20ms 后, 系统退出复位模式。

修调配置复位,为核修调模块输出复位信号,低表示复位有效,芯片全局复位,但不会有 20ms 的初始化过程,仅延迟 1 个系统时钟的复位低电平。

复位相关寄存器

SOFT_RST(8EH) 软件复位寄存器

位编号	7	6	5	4	3	2	1	0
符号		_						
读/写		读/写						
上电初始值	0							

位编号	位符号	说明
7 [~] 0		软件复位寄存器,只有在寄存器值为 0x55 时,才产生软件复位

5.4. 工作模式

BF6958A 系列有 2 种工作模式,可以根据不同的情况进行选择。

正常模式(Active):即正常工作模式,模块保持正常工作,各模块功能由软件配置控制。 低功耗模式(Low_power):配置 PCON=1,此时 RC1M 和 PLL 关闭,LIRC 可配,WDT/TIMER2 可配置工作,CPU 和其余数字模块不工作。

工作模式转换图

此外,所有模块均可以单独配置关闭门控,以此降低功耗。如在正常模式下,可配置关闭 CPU 和系统模块时钟,只使能 CSD/ADC 等模块工作;在低功耗模式下,还可配置关闭 LIRC 时钟,这样停止了所有时钟源,实现最低功耗,这时仅能通过外部中断低电平唤醒系统。

退出 Low power 模式的方式:

使能 IIC、External Interrupt0、External Interrupt1、External Interrupt2、WDT、Timer2,其中任意一种中断产生都可唤醒芯片,退出 low_power 模式,中断响应产生后,CPU 执行中断向量相关的中断服务程序,并在 RETI 返回指令执行后回到使 CPU 进入 low_power 模式的指令的下一条指令继续运行程序。

注: PCON = 0x01, BOR 关闭可获得更低功耗, 但芯片需确保在正常工作电压范围 $(2.5V^{\sim}5.5V)$, 若芯片供电不稳导致低于 2.5V, 强烈建议 BOR 开启。

模式	进入该模式的条件	对时钟的影响结果		
		LIRC	取决于软件配置	
Active	PCON=0;	RC1M	工作	
		PLL	工作	
		LIRC	取决于软件配置	
Low Power	PCON=1;	RC1M	关闭	
		PLL	关闭	

时钟源在各模式下的工作状态表

NO	M 1 1 N	n. i. k. j. , , , , , , , , , , , , , , , , , ,		工作状态
NO	Module Name	时钟源	Active	Low Power
1	s8051	clk_sys12M(包含 RC1M, PLL)	√	×
2	UARTO	clk_sys12M(包含 RC1M, PLL)	根据程序配置	×
3	PWMO~1	clk_sys12m(包含 RC1M, PLL)	根据程序配置	×
4	内部 Timer0	clk_sys12M(包含 RC1M, PLL)	根据程序配置	×
5	内部 Timer1	clk_sys12M(包含 RC1M, PLL)	根据程序配置	×
6	外部 Timer2	LIRC	根据程序配置	根据程序配置
7	外部中断	clk_sys12M(包含 RC1M, PLL)	根据程序配置	根据程序配置
10	WDT	LIRC	根据程序配置	根据程序配置
11	Adc_ctrl	clk_sys48M(包含 RC1M, PLL)	根据程序配置	×
12	CSD_Timing	clk_sys48M(包含 RC1M, PLL)	根据程序配置	×
13	IIC(S)	clk_sys12M(包含 RC1M, PLL)	根据程序配置	根据程序配置

不同模式下各数字模块的状态表

5. 5. WDT 看门狗

看门狗定时计数电路使用内部低速时钟 LIRC,可配置定时时间为 2^n*18ms (n=0, 1, 2, 3, 4, 5, 6, 7), -----此处 n 为定时配置寄存器的配置值。

由于系统应用的特殊性,对看门狗定时溢出信号分类:

在正常工作模式下,若发生看门狗定时溢出,则此时溢出信号为看门狗溢出复位信号,看门狗溢出复位影响全局复位,此时系统实现全局复位动作,并重新加载配置信息;

在 IDLE 模式下,若发生看门狗定时溢出,则此时溢出信号为看门狗中断信号,中断唤醒芯片退出 IDLE 模式并执行看门狗中断服务函数。

看门狗模块为定时计数模块,其计数时钟为内部低速时钟 LIRC,其定时清零信号由全局复位及配置清零构成,该信号在复位模块中由看门狗定时时钟进行同步释放处理;对于清零动作,每次 CPU 配置看门狗定时配置寄存器 (WDT_CTRL) 时产生,看门狗重新开始定时;同时,看门狗计数器存在看门狗计数使能控制,在计数使能有效的情况下,看门狗产生定时溢出(复位或中断)后,只要没有关闭看门狗计数使能,看门狗计数器将重新开始计数。

WDT 相关寄存器

	SFR 寄存器										
地址	址 名称 读写 复位值 说明										
0x91	WDT_CTRL	RW	0x00	看门狗溢出定时配置寄存器							
0x92	WDT_EN	RW	0x00	看门狗定时使能配置寄存器							

WDT SFR 寄存器列表

看门狗时钟寄存器:

看门狗用 32K 时钟完成定时功能可以实现从 18ms 到 2.3s 的定时。定时长度由 SFR(WDT CTRL)控制,如下表所示:

看门狗时钟寄存器 WDT CTRL - 0x91h

WDT_CTRL<2:0>	间隔
000	18ms
001	36ms
010	72ms
011	144ms
100	288ms
101	576ms
110	1152ms
111	2304ms

看门狗使能寄存器 WDT EN - 0x92h

SFR	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
WDT_EN		WDT_EN<7:0>								
SFR				0x	00					

写 0x55 时关闭看门狗,写其他值开启看门狗,看门狗定时器在复位结束后一直工作。看门狗定时器清零是通过写 WDT_CTRL 寄存器完成的,无论向此寄存器中写入何值都会使看门狗定时器清零。

第6章 GPIO端口

GPIO 端口的一些引脚和器件外设功能复用,同一时间不能同时配置成多种功能,否则会引起功能错乱。IIC 通信口,开漏输出,需要接上拉电阻。

普通 I0 结构图

SNS IO 结构图

TRISX 寄存器(方向寄存器): TRISX 置 1 将对应的引脚配置为输入,清零将对应的引脚配置为输出。

DATAX 寄存器(数据寄存器): DATAX 置 1 将对应的引脚配置输出高,清零将对应的引脚配置输出低。

PU_PX 寄存器(上拉电阻使能寄存器): PU_PX 置 1 对应的引脚上拉电阻使能,清零对应的引脚不使能上拉电阻,上拉电阻 4.7K。

ODRAIN_EN 寄存器: ODRAIN_EN 置 1 对应的引脚使能开漏输出,清零则不使能开漏输出功能。IIC 功能后自动开启开漏输出,IIC/UART 建议使用外部上拉电阻。

6.1. GPIO 相关寄存器

			SFR 寄存器	
地址	名称	读写	复位值	说明
0xF8	DATAA	RW	2'0x03	PA 数据寄存器
0x80	DATAB	RW	0xFF	PB 数据寄存器
0x90	DATAC	RW	0xFF	PC 数据寄存器
0x98	DATAD	RW	0xFF	PD 数据寄存器
0xDD	PU_PA	RW	2'0x00	PA 口上拉电阻使能寄存器
0xDE	PU_PB	RW	0x00	PB 口上拉电阻使能寄存器
0xDF	PU_PC	RW	0x00	PC 口上拉电阻使能寄存器
0xE2	PU_PD	RW	0x00	PD 口上拉电阻使能寄存器
0xEA	TRISA	RW	2'0x03	PA 方向寄存器
0xEB	TRISB	RW	0xFF	PB 方向寄存器
0xEC	TRISC	RW	0xFF	PC 方向寄存器
0xED	TRISD	RW	0xFF	PD 方向寄存器
0xEF	ODRAIN_EN	RW	2'0x00	PA 口开漏使能寄存器

端口配置 SFR 寄存器列表

6.2.GPIO 寄存器详细说明

6.2.1.数据寄存器

DATAA (F8H) PA 数据寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_	PA. 1	PA. 0
读/写	_	-	_	_	_	_	读	/写
上电初始值	_	_	_	_	_	_	1	1

位编号	位符号	说明
1~0		PA 数据寄存器,可配置 PA 组 IO 口作为 GPIO 口时的输出 电平,读取值为当前 IO 口(输入)的电平状态或配置输出 值(输出)

DATAB(80H)PB 口数据寄存器

位编号	7	6	5	4	3	2	1	0
符号	PB. 7	PB. 6	PB. 5	PB. 4	PB. 3	PB. 2	PB. 1	PB. 0
读/写								
上电初始值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7 [~] 0		PB 数据寄存器,可配置 PB 组 I0 口作为 GPI0 口时的输出 电平,读取值为当前 I0 口(输入)的电平状态或配置输出
		值(输出)

DATAC(90H) PC 数据寄存器

位编号	7	6	5	4	3	2	1	0
符号	PC. 7	PC. 6	PC. 5	PC. 4	PC. 3	PC. 2	PC. 1	PC. 0
读/写				读	/写			
上电初始值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7 [~] 0		PC 数据寄存器,可配置 PC 组 IO 口作为 GPIO 口时的输出 电平,读取值为当前 IO 口(输入)的电平状态或配置输出 值(输出)

DATAD(98H) PD 数据寄存器

位编号	7	6	5	4	3	2	1	0
符号	PD. 7	PD. 6	PD. 5	PD. 4	PD. 3	PD. 2	PD. 1	PD. 0

读/写		读/写								
上电初始值	1	1	1	1	1	1	1	1		

位编号	位符号	说明
7 [~] 0		PD 数据寄存器 可配置 PD 组 IO 口作为 GPIO 口时的输出电平,读取值为 当前 IO 口(输入)的电平状态或配置输出值(输出)

6.2.2.上拉电阻使能寄存器

PU_PA (DDH) PA 口上拉电阻使能寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	ı	_	_	-	_	
读/写	_	_	-	_	_	_	读/写	
上电初始值	_	_	_	_	_	_	0	

位编号	位符号	说明
1~0		PA 口上拉电阻使能寄存器 PU_PA 置 1 对应的引脚上拉电阻使能,清零对应的引脚 不使能上拉电阻,上拉电阻 4.7K。

PU_PB(DEH)PB 口上拉电阻使能寄存器

位编号	7	6	5	4	3	2	1	0			
符号		_									
读/写		读/写									
上电初始值				()						

位编号	位符号	说明						
7~0		PB 口上拉电阻使能寄存器 PU_PB 置 1 对应的引脚上拉电阻使能,清零对应的引脚 不使能上拉电阻,上拉电阻 4.7K。						

PU_PC(DFH)PC 口上拉电阻使能寄存器

位编号	7	6	5	4	3	2	1	0
符号				-	-			
读/写				读/	/写			
上电初始值				()			

位编号	位符号	说明
7 [~] 0		PC 口上拉电阻使能寄存器

	PU_PC 置 1 对应的引脚上拉电阻使能,清零对应的引脚										
		不使能上拉电阻,上拉电阻 4.7K。									
PU_PD (E2H)PD 口上拉电阻使能寄存器											
位编号	7	6	5	4	3	2	1	0			
符号				-	_						
读/写	读/写										
上电初始值	0										

位编号	位符号	说明
7 [~] 0		PD 口上拉电阻使能寄存器 PU_PD 置 1 对应的引脚上拉电阻使能,清零对应的引脚 不使能上拉电阻,上拉电阻 4.7K。

6.2.3.方向寄存器

TRISA (EAH) PA 方向寄存器

	7 7 7 7	, ,						
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_	_	
读/写	_	_	_	_	_	_	读/写	
上电初始值	_	_	_	_	_	_	1	1

位编号	位符号	说明
1~0		PA 方向寄存器, 0: 输出, 1: 输入

TRISB(EBH) PB 方向寄存器

_	\ /											
	位编号	7	6	5	4	3	2	1	0			
	符号		_									
	读/写		读/写									
上	亡电初始值	1	1	1	1	1	1	1	1			

位编号	位符号	说明
7 [~] 0		PB 方向寄存器, 0: 输出, 1: 输入

TRISC(ECH) PC 方向寄存器

位编号	7	6	5	4	3	2	1	0	
符号		_							
读/写				读	:/写				
上电初始值	1	1	1	1	1	1	1	1	

位编号	位符号	说明				
7 [~] 0		PC 方向寄存器, 0: 输出, 1: 输入				

TRISD(EDH) PD 方向寄存器

位编号	7	6	5	4	3	2	1	0		
符号		_								
读/写		读/写								
		供/与 1 1 1 1 1 1								

位编号	位符号	说明				
7 [~] 0		PD 方向寄存器, 0: 输出, 1: 输入				

6.2.4. 开漏使能寄存器

ODRAIN_EN (EFH) PA 口开漏使能寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_		
读/写	_	_	_	_	_	_	读	/写
上电初始值	_	_	_	_	_	_	0	0

位编	号	位符号	说明
1~0)		PA0/1 开漏输出使能寄存器 1: 开漏输出, 0: CMOS 输出

6.3. GPIO 配置流程

将端口设置为 GPI0 时, 需要对以下 3 组寄存器都进行相应的设置。

I0 配置流程图

第7章 中断

7.1. 中断源及入口地址

中断源	发生条件	标志	使能控制	优先级 控制	中断	优先级	中断号	标志清除方式	能否唤醒 低功耗 SLEEP
INTO	外部中断 0 条 件符合	IE0	IENO[0]	IPLO[0]	0x0003	1	0	必须用 户清除	能
Timer0	Timer0溢出	TF0	IENO[1]	IPLO[1]	0x000B	2	1	必须用 户清除	不能
INT1	外部中断 1 条件符合	IE1	IENO[2]	IPLO[2]	0x0013	3	2	必须用 户清除	能
Timer1	Timer1溢出	TF1	IENO[3]	IPLO[3]	0x001B	4	3	必须用 户清除	不能
INT2	外部中断 2 条 件符合	IE2	IEN1[2]	IPL1[2]	0x004B	5	9	必须用 户清除	能
IIC	接受或发送完成	IE3	IEN1[3]	IPL1[3]	0x0053	6	10	必须用 户清除	能
ADC	ADC 转换完成	IE4	IEN1[4]	IPL1[4]	0x005B	7	11	必须用 户清除	不能
CSD	计数器溢出	IE5	IEN1[5]	IPL1[5]	0x0063	8	12	必须用 户清除	不能
WDT/Tim er2	WDT/Timer2溢 出	IE7	IEN1[7]	IPL1[7]	0x0073	10	14	必须用 户清除	能
LVDT	电压条件符合	IE8	IEN2[0]	IPL2[0]	0x007B	11	15	必须用 户清除	不能
UART0	接受或发送完成	IE9	IEN2[1]	IPL2[1]	0x0083	12	16	必须用 户清除	不能

中断信息列表

当芯片发生复位信号时,程序从 0x0000 地址开始执行。当发生一个中断信号时,程序将 跳转到中断向量程序地址执行中断服务程序。

7.2. 中断功能

7.2.1.中断响应

当发生中断申请时,CPU根据中断服务程序(ISR)来确定中断的种类。CPU完整的执行ISR,除非有优先级高的中断源申请中断。每个ISR后有RETI(中断返回)指令。执行RETI指令后,CPU继续执行在中断没有发生之前的程序。

ISR 只能被优先级更高的中断申请中断。也就是,低优先级的 ISR 能被高优先级的中断申请中断。高优先级的中断 ISR 能被掉电中断中断。

BF6958A 执行完当前指令后才响应中断请求。如果正在执行的指令是 RETI 指令,或者访问 IP、IE、EIP、EIE 寄存器时,需要执行一条其他指令后才会响应中断请求。

7.2.2.中断优先级

BF6958A 有两个中断优先级:中断级和默认优先级。中断级(最高级、高级和低级)优先于默认优先级。如果允许,掉电中断是唯一一个最高级的中断源。其他的中断源可以设置为高优先级或者低优先级。

每个中断源既可以分配优先级(高或者低),还有默认的优先级。同一级别中的中断源(例如都为高优先级)的优先级由默认的优先级决定。正在进行的中断服务程序只能被优先级高的中断请求中断。

7.2.3.中断采样

内部定时器和串口等内部模块是通过各自的 SFR 中的中断标志位来发生中断请求。当每 1 个指令周期的第 1 个时钟周期(C1)结束时,在时钟的上升沿对外部中断进行采样。

端口外部中断是低电平有效,并且可以通过 TCON SFR 中的 ITO 位来设置选择边缘触发或者电平触发。例如,当 ITO=0 时,INT_EXT 为边缘触发,在采集到 INT_EXT 脚出现由高到低的电平变化时,外部中断标志位置 1。

为了确保边缘触发型的中断被检测到,相应的端口要首先保持 2 个时钟的高电平,然后保持 2 个时钟的低电平。

中断采样时序图

7.2.4.中断等待

中断的响应时间由系统当前状态决定。最快的响应时间是 5 个指令周期: 1 个周期用来检测中断请求,其他 4 个用来执行长调用(LCALL)至 ISR。

当系统在执行 RETI 指令,并且后面为 MUL 或者 DIV 指令时,中断等待的时间最长(13 个指令周期)。这 13 个指令周期分别为: 1 个周期用来检测中断请求,3 个用来完成 RETI 指令,5 个用来执行 DIV 或者 MUL 指令,4 个用来执行长调用(LCALL)至 ISR。在这种情况下,响应时间为 13 个时钟周期。

7.3. 中断相关寄存器

			SFR 寄存器	
地址	名称	读写	复位值	说明
0x85	INT_PE_STAT	RW	0x00	WDT/Timer2 中断状态标记
0x86	INT_POBO_STAT	RW	0x00	LVDT 中断状态标记
0xA8	IENO	RW	0x00	中断使能寄存器
0xB8	IPL0	RW	0x00	中断优先级寄存器 0
0xC0	UART_STATE	RW	0x00	串口0中断状态标记
0xE1	IRCON2	RW	0x00	中断标志寄存器 2
0xE6	IEN1	RW	0x00	中断使能寄存器 1
0xE7	IEN2	RW	0x00	中断使能寄存器 2
0xE8	IICSTAT	RO/RW	0x44	IIC 状态寄存器
0xF1	IRCON1	RW	0x00	中断标志寄存器 1
0xF2	PERIPH_IO_SEL	RW	7'0x40	IIC/UARTO/INT 功能控制寄存器
0xF4	IPL2	RW	0x00	中断优先级寄存器 2
0xF6	IPL1	RW	0x00	中断优先级寄存器 1
0xF7	EXT_INT_CON	RW	0x15	外部中断触发极性选择寄存器

中断 SFR 寄存器列表

7.4.中断 SFR 寄存器详细说明

INT_PE_STAT(85H)WDT/Timer2 中断状态寄存器

位编号	7	6	5	4	3	2	1	0
符号	Ī	Ī	Ī	_	_	_	INT_WDT_STAT	INT_TIMER2_STAT
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	ı	ı	ı	_	_	-	0	0

位编号	位符号	说明
1	INT_WDT_STAT	WDT 中断状态标记,该位写 0 清零,写 WDT_CTRL 操作也可清 0 1:中断有效;0:中断无效
0	INT_TIMER2_STAT	TIMER2 中断状态标记,该位写 0 清零,写 TIMER2_CFG 操作也可清零 1:中断有效; 0:中断无效

SYS_CLK_CFG(86H)时钟控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_	INT_PO_STAT	INT_BO_STAT

读/写	_	_	_	_	_	ı	读/写	读/写
上电初始值	_	_	-	_	_	-	0	0

位编号	位符号	说明
1	INT_PO_STAT	1vdt 升压中断状态 1: 升压中断有效; 0: 升压中断无效
0	INT_BO_STAT	1vdt 降压中断状态 1:降压中断有效;0:降压中断无效

IEN0(A8H) 中断使能寄存器

位编号	7	6	5	4	3	2	1	0
符号	EA		_		ET1	EX1	ET0	EX0
读/写	读/写	_			读/写	读/写	读/写	读/写
上电初始值	0	_			0	0	0	0

位编号	位符号	说明
7	EA	EA-中断允许位。 EA=0 屏蔽所有的中断(EA 优先于中断源各自的中断使能位)。EA=1,中断打开,每个中断源的中断请求是允许还是被禁止,还需由各自的允许位确定。
6~4		保留
3	ET1	ET1-定时器1 溢出中断允许位。ET1=0,禁止定时器 1(TF1)申请中断。 ET1=1,允许TF1 标志位申请中断。
2	EX1	EX1-INT_EXT1 允许位。 EX1=0,禁止INT_EXT1 申请中断。 EX1=1,允许INT_EXT1 申请中断。
1	ET0	ETO-定时器0 溢出中断允许位。ETO=0, 禁止定时器 0(TFO)申请中断。 ETO=1, 允许TFO 标志位申请中断。
0	EX0	EXO-INT_EXTO 允许位。 EXO=0,禁止INT_EXTO 申请中断。 EXO=1,允许INT_EXTO 申请中断。

IPL0 (B8H) 中断优先级寄存器 0

位编号	7	6	5	4	3	2	1	0
符号	ı	ı	ı	_	PT1	PX2	PT0	PX0
读/写	-	-	-	_	读/写	读/写	读/写	读/写
上电初始值	ı	ı	ı	_	0	0	0	0

位编号	位符号	说明
$7^{\sim}4$		保留

		PT1-TF1(Timer1 中断)优先级选择位。
3	PT1	PT1=0 时TF1(Timer1 中断)为低优先级,
		PT1=1 时TF1(Timer1 中断)为高优先级。
0	DVO	PX2- INT_EXT1 中断优先级选择位。PX2=0 时INT_EXT1
2	PX2	为低优先级, PX2=1 时 INT_EXT1 为高优先级。
	PT0	PTO-TFO(TimerO 中断)优先级选择位。
1		PTO=0 时TFO(TimerO 中断)为低优先级,
		PTO=1 时TFO(TimerO 中断)为高优先级。
	PX0	PXO- INT_EXTO 中断优先级选择位。
0		PXO=0 时INT_EXTO 为低优先级,
		PXO=1 时INT_EXTO 为高优先级。

UARTO_STATE (C0H) UARTO 状态标记寄存器

OTHER DESIGNATION	mtio_biiii2 (coii) cintio (td.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
位编号	7	6	5	4			
符号	_	r8	t8	tx_empty_if			
读/写	_	读	读	读/写			
上电初始值	_	0	0	0			
位编号	3	2	1	0			
符号	frx_full_i	rx_overflow_if	frame_err_if	parity_err_if			
读/写	读/写	读/写	读/写	读/写			
上电初始值	0	0	0	0			

位编号	位符号	说明		
6	r8	8 接收器的第9个数据,只读		
5	t8 发射器的第 9 个数据, 奇偶校验使能时只读			
4	发送中断标记: tx_empty_if			
3	frx_full_i	接收中断标记: 1:接收缓存为满 0:接收缓存为空,软件写 0 清零,写 1 无效		
2	rx_overflow_if	接收溢出标记: 1:接收溢出(新数据丢失) 0:没有溢出,软件写 0 清零,写 1 无效		
1	frame_err_if	帧错误标记: 1: 检测到帧错误 0: 未检测到帧错误,软件写 0 清零,写 1 无效		
0	parity_err_if	parity_err_if 奇偶校验错误标记: 1:接收器奇偶校验错误 0:奇偶校验正确,软件写 0 清零,写 1 无效		

IRCON2 (E1H) 中断标志寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	ı	ı	ı	_	_	IE10	IE9	IE8
读/写	ı	ı	ı	_	_	读/写	读/写	读/写
上电初始值	_	_	_	_	_	0	0	0

位编号	位符号	说明
7 [~] 3	-	保留
2		保留
1	IE9	UARTO 中断标志
0	IE8	LVDT 中断标志

IEN1 (E6H) 中断使能寄存器 1

位编号	7	6	5	4	3	2	1	0
符号	EX7	EX6	EX5	EX4	EX3	EX2	1	-
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EX7	WDT/Timer2 中断使能
6		保留
5	EX5	CSD 中断使能
4	EX4	ADC 中断使能
3	EX3	IIC 中断使能
2	EX2	外部中断2 中断使能
1~0		保留

IEN2(E7H) 中断使能寄存器 2

	() / // 24/1- 4 /4 ///							
位编号	7	6	5	4	3	2	1	0
符号	-	-	-	_	_	EX10	EX9	EX8
读/写	ı	ı	ı	_	_	读/写	读/写	读/写
上电初始值	_	-	_	_	_	0	0	0

位编号	位符号	说明
7 [~] 3		保留
2		保留
1	EX9	UARTO 中断使能
0	EX8	LVDT 中断使能

IICSTAT (E8H) IIC 状态寄存器

位编号	7	6	5	4	
符号	IIC START	IIC STOP	IIC RW	IIC AD	

读/写	读	读	读	读
上电初始值	0	1	0	0
位编号	3	2	1	0
符号	IIC_BF	IIC_ACK	IIC_ACK	IIC_RECOV
读/写	读	读	读/写	读/写
上电初始值	0	1	0	0

英得的读/
中器还是满
冲器已空
並答信号
写入发送缓
新的数据,
1

IRCON1 (F1H) 中断标志寄存器 1

位编号	7	6	5	4	3	2	1	0
符号	IE7	IE6	IE5	IE4	IE3	IE2	I	ı
读/写	读/写	读/写	读/写	读/写	读/写	读/写	1	-
上电初始值	0	0	0	0	0	0	-	-

位编号	位符号	说明				
7	IE7	WDT/Timer2 中断标志				
6		保留				
5	IE5	CSD 中断标志				
4	IE4	ADC 中断标志				
3	IE3	IIC 中断标志				
2	IE2	外部中断2中断标志				
1~0		保留				

PERIPH_IO_SEL (F2H) IIC/UART0/INT 功能控制寄存器

位编号	7	6	5	4	3
符号		IIC_AFIL_SEL	IIC_DFIL_SEL	UART0_IO_SEL	
读/写	_	读/写	读/写	读/写	读/写
上电初始值	_	1	0	0 0	
位编号	2	1	0	/	
符号	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
读/写	读/写	读/写	读/写	/	
上电初始值	0	0	0		

位编号	位符号	说明
6	IIC_AFIL_SEL	IIC 口模拟滤波选择使能 1: 选择模拟滤波功能, 0: 不选择模拟滤波功能
5	IIC_DFIL_SEL	IIC 口数字滤波选择使能 1: 选择数字滤波功能, 0: 不选择数字滤波功能
4~3	UARTO_IO_SEL	UARTO 口选择使能 00:选择 UARTO (RXDO_A/TXDO_A) 功能
2	INT2_IO_SEL	INT2 口选择使能 1: 选择 INT2 功能, 0: 不选择 INT2 功能
1	INT1_IO_SEL	INT1 口选择使能 1: 选择 INT1 功能, 0: 不选择 INT1 功能
0	INTO_IO_SEL	INTO 口选择使能 1: 选择 INTO 功能, 0: 不选择 INTO 功能

IPL2 (F4H) 中断优先级寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	_	_	Ī	_	_	IPL2. 2	IPL2. 1	IPL2.0
读/写	_	_	-	_	_	读/写	读/写	读/写
上电初始值	-	-	-	-	-	0	0	0

位编号	位符号	说明
7 [~] 3		保留
2		保留
1	IPL2. 1	UARTO 中断优先级: 1: 为高, 0: 为低
0	IPL2.0	LVDT 中断优先级: 1: 为高, 0: 为低

IPL1 (F6H) 中断优先级寄存器 1

位编号	7	6	5	4	3	2	1	0
符号	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	1
读/写	读/写	读/写	读/写	读/写	读/写	读/写	-	1
上电初始值	0	0	0	0	0	0	-	1

位编号	位符号	说明
7	IPL1.7	WDT/Timer 2 中断优先级: 1: 为高, 0: 为低
6		保留
5	IPL1.5	CSD 中断优先级: 1: 为高, 0: 为低
4	IPL1.4	ADC 中断优先级: 1: 为高,0: 为低
3	IPL1.3	IIC 中断优先级: 1: 为高,0: 为低
2	IPL1.2	外部中断优先级: 1: 为高, 0: 为低
1~0		保留

EXT_INT_CON (F7H) 外部中断极性控制寄存器

 	() 11 11 1 7 7 W 11 1 1 1 1 1 1 1 1 1 1 1							
位编号	7	6	5	4	3	2	1	0
符号	-	-	INT2_POLARITY		INT1_POLARITY		INTO_P	OLARITY
读/写	ı	ı	_	ı	ı	ı		读/写
上电初始值	-	-	0	1	0	1	0	1

位编号	位符号	说明
5~4	INT2_POLARITY	外部中断 2 触发极性选择: INT2_POLARITY=01: 下降沿(低功耗模式下低电平唤醒) INT2_POLARITY=10: 上升沿(低功耗模式下高电平唤醒) INT2_POLARITY=00/11: 双沿(低功耗模式下低电平唤醒)
3 [~] 2	INT1_POLARITY	外部中断 1 触发极性选择: INT1_POLARITY=01: 下降沿(低功耗模式下低电平唤醒) INT1_POLARITY=10: 上升沿(低功耗模式下高电平唤醒)

		INT1_POLARITY=00/11: 双沿(低功耗模式下低电平唤醒)
		外部中断 0 触发极性选择:
1~0	INTO_POLARITY	INTO_POLARITY=01: 下降沿(低功耗模式下低电平唤醒)
1~0		INTO_POLARITY=10: 上升沿(低功耗模式下高电平唤醒)
		INTO_POLARITY=00/11: 双沿(低功耗模式下低电平唤醒)

7.5.外部中断配置流程

INT0/1/2 配置流程图

第8章 定时器 Timer

BF6958A 系列包含核内部的 3 个定时器(Timer0、Timer1、Timer2)。每个 Timer 包含一个 16 位的寄存器。在被访问时以两个字节的形式出现:一个低字节(TL0 或 TL1)和一个高字节(TH0 或 TH1)。Timer2 的寄存器为低字节 TIMER2_SET_L,高字节 TIMER2_SET_H。Timer 的功能特点如下:

- Timer0 连接系统时钟,系统时钟 sys clk/12;
- Timer1 连接系统时钟,系统时钟 sys clk/12
- Timer2 可选内部 RC 或外部晶振时钟, 频率 32768Hz/4MHz。
- Timer0 支持 8bits 自动重载定时/计数, 16bits 手动重载定时/计数功能。
- Timer1 支持 8bits 自动重载定时/计数, 16bits 手动重载定时/计数功能。
- Timer2 支持 32bits 自动重载定时和手动重载定时,支持中断唤醒功能。

8.1. TimerO 和 Timer1

定时器 0/1 有四种运行模式,由 TMOD SFR 和 TCON SFR 控制。 定时器 0/1 四种模式如下:

- ●13 位定时器/计数器(模式 0)
- ●16 位定时器/计数器(模式1)
- ●自动重载初值的8位计数器(模式2)
- ●两个8位计数器(模式3,只用于定时器/计数器0)

模式 0:13 位定时器/计数器

模式0逻辑逻辑结构图

在模式 0 下定时器 0 和定时器 1 的工作过程相同,如图所示。在模式 0 中,定时器为 13 位的计数器,其 0–4 位为 TL0 (或者 TL1),另外 8 位为 TH0 (或者 TH1)。TCON 寄存器中的使能位 (TR0/TR1)来控制定时器的开启和关闭。

定时器对选定的系统时钟源($sys_c1k/12$)进行计数,当 13 位计数器计数累积到全 1 时,计数器清 0(20),并且 TF0(或者 TF1)置位。在模式 0 中, TL0(或者 TL1)的高 3 位是不确定

的,在读计数值时应屏蔽掉或忽略这 3 位。t0/t1、C/T0/CT1 均为 0, $t0_int0_n/t1_int1_n$ 均为 1,计数使能仅由 TR0/1 决定。

模式1:16位定时器/计数器

模式1逻辑逻辑结构图

定时器 0 和定时器 1 的模式 1 是相同的,如图所示。在模式 1 中,定时器为 16 位的计数器。LSB 寄存器 (TL0 或者 TL1) 的所有 8 位都被使用。当计数器计数累计至 0xFFFF 时,计数器清为全 0。除此之外,模式 1 和模式 0 是相同的。t0/t1、C/T0/CT1 均为 0,t0 int 0 n/t1 int 1 n 均为 1,计数使能仅由 TR0/1 决定。

模式 2: 自动重载初值的 8 位计数器

模式2逻辑逻辑结构图

定时器 0 和定时器 1 的模式 2 是相同的。在模式 2 中,定时器为一个带有自动重载初值的 8 位计数器。这个计数器就是 LSB 寄存器 (TL0 或者 TL1),需要重载的初值保存在 MSB 寄存器 (TH0 或者 TH1)中。

如图所示,模式 2 的计数器控制和模式 0、模式 1 是一样的。但是,在模式 2 中,当 TLn 累计至 FFh,保存在 THn 中的值重载至 TLn。t0/t1、C/T0/CT1 均为 0, $t0_int0_n/t1_int1_n$ 均为 1,计数使能仅由 TR0/1 决定。

模式 3:两个 8 位计数器

模式3逻辑逻辑结构图

在模式 3 中,定时器 0 为两个 8 位的计数器,此时定时器 1 停止计数并且保存它的值。如图 5 所示,TL0 是由定时器 0 的控制位来控制的 8 位寄存器。计数器用 GATE 作为使能端来控制 INT EXT 信号接收。

THO 的是一个单独的 8 位计数器。THO 只能用来计算时钟周期(12 分频)。定时器 1 的控制位和标志位(TR1 和 TF1)用来作为 THO 的控制位和标志位。

当定时器 0 工作在模式 3 时,定时器 1 的使用受到限制,因为定时器 0 用到了定时器 1 的控制位 (TR1) 和中断标志位 (TF1)。定时器 1 仍然能用来产生波特率,并且定时器 1 在 TL1 和 TH1 寄存器中的值依然有效。

当定时器 0 工作在模式 3 时,通过定时器 1 的模式位来控制定时器 1。要开启定时器 1,需要将定时器 1 设置为模式 0、1 或者 2。要关闭定时器 1,将定时器 1 的模式设置为 3。定时器 1 可以作为定时器 (时钟为 c1k/12),但是由于 TR1 和 TF1 被借用,不能产生溢出中断。当定时器 0 工作在模式 3 时,定时器 1 的 GATE 有效。t0/t1、C/T0/CT1 均为 0,t0 int0 n/t1 int1 n 均为 1,计数使能仅由 TR0/1 决定。

8.1.1. Timer0/1 相关寄存器

	SFR 寄存器									
地址	名称	读写	复位值	说明						
0x88	TCON	RW	0x05	定时器控制寄存器						
0x89	TMOD	RW	0x00	定时器模式寄存器						
0x8A	TL0	RW	0x00	定时器0计时器低8位						
0x8B	TL1	RW	0x00	定时器1计时器低8位						
0x8C	THO	RW	0x00	定时器0计时器高8位						
0x8D	TH1	RW	0x00	定时器1计时器高8位						

Timer0/1 SFR 寄存器列表

8.1.2. Timer0/1 寄存器详细说明

TCON(88H)定时器控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	ı	IE0	ı
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	-	0	-

位编号	位符号	说明
7	TF1	定时器 1 溢出标志位, 当 Timer1 溢出时硬件置 1, 或者
1	171	TimerO 的 THO 在模式三下溢出。
6	TD1	Timer1 启动使能,设置为 1 时启动 Timer1 或启动
0	TR1	TimeO 模式三时 THO 计数。
5	TF0	定时器 0 溢出标志位,当 Timer 0 溢出时硬件置 1。
4	TR0	TimerO 启动使能,设置为 1 时启动 TimerO 计数。
3	IE1	外部中断1标志位,硬件置1,可软件清0。
2		保留
1	IE0	外部中断 0 标志位,硬件置 1,可软件清 0
0		保留

TMOD(89H) 定时器模式寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	_	M1[1:0]		_	-	IEO	
读/写	_	_	读/写		_	_	读/	/写
上电初始值	ı	ı	0	0	_	ı	0	0

位编号	位符号	说明
7 [~] 6		保留
5~4	M1[1:0]	M1-定时器1 模式选择Bit 1, M0-定时器1 模式选择Bit 0, M1M0: 00=模式 0 - 13位定时器/计数器 01=模式 1 - 16位定时器/计数器 10=模式 2 - 自动重载初值的8位计数器 11=模式 3 - 两个8位计数器
3 [~] 2		保留
1~0	MO[1:0]	M1-定时器0 模式选择Bit 1, M0-定时器1 模式选择Bit 0, M1M0: 00=模式 0 - 8 位定时器/计数器 01=模式 1 - 16 位定时器/计数器 10=模式 2 - 自动重载初值的8位计数器

			11=模式	3 - 两个	8位计数	器		
TL0(8AH)定时	器0计时器	器低8位						
位编号	7	6	5	4	3	2	1	0
符号				TL0[7:0]			
读/写				读/	/写			
上电初始值				()			
位编号	7	6	5	4	3	2	1	0
符号				TL1[7:0]			
读/写				读/	/写			
上电初始值				()			
TH0(8CH) 定时	才器 0 计时	付器高8位	江					,
位编号	7	6	5	4	3	2	1	0
符号				TH0[7:0]			
读/写				读/	/写			
上电初始值				()			
TH1(8DH) 定时	付器 1 计时	付器高8 位	<u> </u>					
位编号	7	6	5	4	3	2	1	0
符号				TH1[7:0]			
读/写				读/	/写			
上电初始值				()			

8.1.3. **Timer0/1** 配置流程

Timer0/1 配置流程图

8. 2. Timer2

TIMER2 模块起定时作用,其内部主要结构为一个 32 位的计数器,通过对输入时钟的计数达到定时的功能,TIMER2 的计数原则为累加计数,当计数器计数到设定值时产生中断;TIMER2 的计数时钟可选择外部 XTAL 时钟和内部 RC 时钟;TIMER2 有两种工作模式:单次定时模式和自动重装载模式,无论哪种模式,计时完成均会产生中断。

通过寄存器 TIMER2_EN 配置 Timer2 的功能使能, TIMER2_RLD 配置自动重载模式或手动重载模式, 定时时间由寄存器 TIMER2_SET_L 和 TIMER2_SET_H 决定。计时时钟可选内部 RC 或外部晶振时钟, 频率 32.768KHz, 由时钟选择寄存器决定。Timer2 支持中断唤醒低功耗模式功能, 在中断处理函数中需要软件清除中断标记。

Timer2 定时时长公式:

TIMER2 CNT MOD=0:

 $T_{\text{TIMER2}} = T_{\text{TIMER2_CLK}} * (\{\text{TIMER2_SET_H}, \text{TIMER2_SET_L}\} + 1)$

TIMER2_CNT_MOD=1:

 $T_{\text{TIMER2}} = 65536 * T_{\text{TIMER2 CLK}} * (\{TIMER2_SET_H, TIMER2_SET_L\} + 1)$

注: $T_{\text{TIMER2 CLK}} = 1/32768$ (s)

外部晶振电路参考

注意: 1、任意配置 TIMER2 SET H、TIMER2 SET L、TIMER2 CFG 均可清零计数器;

2、外部晶振电路仅供参考,实际参数参考晶振规格:

8. 2. 1. Timer2 相关寄存器

	SFR 寄存器								
地址	名称	读写	说明						
0x93	TIMER2_CFG	RW	0x00	TIMER2 配置寄存器					
0x94	TIMER2_SET_H	RW	0x00	TIMER2 计数值配置寄存器,高8位					
0x95	TIMER2_SET_L	RW	0x00	TIMER2 计数值配置寄存器,低8位					

Timer2 SFR 寄存器列表

8. 2. 2. Timer2 寄存器详细说明

TIMER2 CFG (93H) TIMER2 配置寄存器

					HOTT:4 14 HH			
位编号	7	6	5	4	3	2	1	0
符号	_	-	-	-	TIMER2_CNT_MOD	T IMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
读/写	_	_	_	_	读/写	读/写	读/写	读/写
上电初 始值	_	_	_	_	0	0	0	0

位编号	位符号	说明
3	TIMER2 CNT MOD	Timer2 计数步进模式选择寄存器
J	TIMERZ_CRT_MOD	1: 计数步进为 65536 个时钟; 0: 计数步进为一个时钟
2	TIMEDO CLE CEL	Timer2 时钟选择寄存器
4	TIMER2_CLK_SEL	1:选择 clk_xtal; 0:选择 clk_rc
1	TIMEDO DID	TIMER2 自动重载使能寄存器
1	TIMER2_RLD	1: 自动重载模式; 0: 手动重载模式
		TIMER2 计数使能寄存器
		配置1开启定时,配置0停止定时;在手动重载模式下
0	TIMER2 EN	会在计数完成后硬件自动清零该寄存器,停止计数,在
U	TIMENZ_EN	自动重载模式下会在计数完成后维持该使能寄存器,自
		动重新从零计数,无论哪种模式,计数过程中配置该寄
		存器为1均会开始从零计数。

TIMER2_SET_H(94H) TIMER2 计数值配置寄存器, 高 8 位

	_ \ /							
位编号	7	6	5	4	3	2	1	0
符号				-	_			
读/写				读/	/写			
上电初始值				()			

位编号	位符号	说明					
7^{\sim} 0		TIMER2 计数值配置寄存器,高8位,扫描过程中配置该					
7 0		寄存器会重新计数					

TIMER2_SET_L(95H) TIMER2 计数值配置寄存器,低 8 位

位编号	7	6	5	4	3	2	1	0
符号				_				
读/写				读/写				
上电初始值				0				

位编号	位符号) ं	5明	
7 [~] 0		TIMER2 计数值配置寄存器,	低8位,	扫描过程中配置该
1 0		寄存器会重新计数		

REG_ADDR (96H) 二级总线地址配置寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	_			REG_	ADDR		
读/写	-	_	5 4 3 2 1 REG_ADDR 读/写 0 0 0 0					
上电初始值	-	_	0	0	0	0	0	0

位编号	位符号	说明
5~0		Timer2 二级总线地址配置寄存器

REG_DATA (97H) 二级总线数据读写寄存器

位编号	7	6	5	4	3	2	1	0
符号				REG_	DATA			
读/写				读	/写			
上电初始值				()			

位编号	位符号	说明					
7 [~] 0	REG DATA	Timer2 二级总线地址数据读写寄存器, 1、REG_ADDR = 0x1f; REG_DATA = 0x01; REG_ADDR = 0x00; 为选择外部晶振 4MHz 起振;					
	_	2、REG_ADDR = 0x1f; REG_DATA = 0x00; REG_ADDR = 0x00; 为选择外部晶振 32768Hz 起振;					

8.2.3. Timer2 配置流程

Timer2 配置流程图

在配置流程中:

- 1. 首先配置定时设定值寄存器 TIMER2_SET_H/TIMER2_SET_L 和步进配置 TIMER2_CNT_MOD;
- 2. 然后根据需要配置自动重装载使能寄存器 TIMER2_RLD, 若需自动循环计数则设为 1, 否则配置为 0;
- 3. 最后在配置定时使能寄存器 TIMER2_EN, 开启定时配置 TIMER2_EN=1;
- 4. 停止计时: TIMER2_EN=0。
- 注: 1. TIMER2_EN=0x1 操作要放在所有配置的最后。
 - 2. 在 TIMER2 计时期间,严禁改变相关配置,若要修改,则需先停止计时。
 - 3. 如需精确计时,在自动重载模式下,中断处理中不允许配置 TIMER2 的三个寄存器。

第9章 IIC

BF6958A 支持标准 IIC 通信和快速 IIC 通信,具有以下特点:

- 两条串行接口:串行数据线 SDA 和串行时钟线 SCL;
- 符合 philips 的标准通信协议:
- 传输速率: 100Kbps、400Kbps;
- 支持7位地址寻址;
- 具有延长时钟低电平的功能;
- 在 low power 模式下可以通过 IIC 中断唤醒核;
- 检测写冲突和缓存 BUF 溢出异常的情况。

IIC 主从机连接图

主机和从机之间由 SCL(串行时钟)线、SDA(串行数据)线连接,IIC 通信模式时,PAO/1 为 开漏,SCL、SDA 必须接上拉电阻(建议 4. $7K^{\sim}10K$)。当 TS 设备有触摸相关的动作,比如触摸、滑动、手指离开等姿势发生时,主机可通过 IIC 通信来读取从机的触摸状态。

9.1. IIC 相关寄存器

	SFR 寄存器									
地址	名称	读写	复位值	说明						
0xE3	IICADD	RW	0x00	IIC 地址寄存器						
0xE4	IICBUF	RW	0x00	IIC 发送接收数据寄存器						
0xE5	IICCON	RW	0x10	IIC 配置寄存器						
0xE8	IICSTAT	RO/RW	0x44	IIC 状态寄存器						
0xE9	IICBUFFER	RW	0x00	IIC 发送数接收据缓存寄存器						
0xF2	PERIPH_IO_SEL<6:5>	RW	7'0x40	IIC 滤波选择使能						

IIC SFR 寄存器列表

9.2. 通信时序

BF6958A 采用硬件从机。当主机读/写数据时,从机接收到地址后,如果地址匹配,则产生中断,发送有效应答信号。并在主机写数据的第八个时钟后产生中断,主机发送停止信号时将不会产生中断信号。下面是 IIC 通信的简单时序图:

IIC 主机写时序描述

主机写不拉低时钟线图

如上图所示是主机写操作时不拉低时钟线的示意图,从中可以看到 IIC 总线的变化情况以及一些内部信号的变化。

首先,主机发送启动信号 IIC_START,从机检测到 IIC_START 信号之后置位 IIC_START 状态位,如图中虚线 a 所示。

然后,主机发送地址字节和读写标志位,从机在接收到地址字节后硬件自动与自身地址比较,如果匹配则在第8个时钟的下降沿之后置位 IIC_BF,如虚线 b 所示。在第9个时钟的下降沿之后会产生中断信号 INT_IIC,如虚线 c 所示,MCU 执行中断子程序期间需要读取 IICBUF,即使此数据没有用,读取 IICBUF 的操作会使 STAT_BF 间接的清零。主机继续发送数据,在第2个字节的第8个时钟的下降沿之后 IIC_BF 同样被置位,同时 IIC_AD 标志位也会置位,标志当前接收到的字节是数据,如虚线 d 所示,停止信号对 IIC_AD 标志位没有影响,即检测到停止信号 IIC_STOP,IIC_AD 标志位不会被清零;第9个时钟的下降沿之后同样会产生中断,中断子程序需要作同样的操作。如果主机要发送多个字节,则可以继续发送,上图中仅仅示意主机发送一个数据的情况。

最后,主机在发送完毕所有的数据之后发送一个停止信号 IIC_STOP,标志着通信的结束,释放 IIC 总线,总线进入空闲状态。

IIC 主机写拉低时序描述

主机写拉低时钟线图

如上图所示是主机写操作时拉低时钟线的示意图,从中可以看到 IIC 总线的变化情况以及一些内部信号的变化。

首先,主机发送启动信号 IIC_START,从机检测到 IIC_START 信号之后置位 IIC_START 状态位,如图中虚线 a 所示。

然后,主机发送地址字节和读写标志位,从机在接收到地址字节后硬件自动与自身地址比较,如果匹配则在第8个时钟的下降沿之后置位 IIC_BF,如虚线 b 所示。在第9个时钟的下降沿之后会产生中断信号 INT_IIC,如虚线 c 所示。第9个时钟的下降沿之后 SCLEN 会被硬件自动清零,此期间用于从机处理或者读取数据,即使此数据没有用,读取 IICBUF 的操作会使 IIC_BF 间接的清零,如虚线 d 所示。再软件置位 SCLEN,释放时钟线,如虚线 e 所示。主机在检测到从机释放 SCL 之后,会继续发送同步时钟,在第2个字节的第8个时钟的下降沿之后 IIC_BF 同样被置位,同时 IIC_AD 标志位也会置位,标志当前接收到的字节是数据,如虚线 f 所示,停止信号对 IIC_AD 标志位没有影响即检测到停止信号 IIC_STOP,IIC_AD 标志位不会被清零;第9个时钟的下降沿之后同样会产生中断。如果主机要发送多个字节,则可以继续发送,如上图中仅仅示意主机发送一个数据的情况。需要注意的情况是在主机发送最后一笔数据时,不使能拉低时钟线的功能。

最后,主机在发送完毕所有的数据之后发送一个停止信号 IIC_STOP,标志着通信的结束,释放 IIC 总线,总线进入空闲状态。

IIC 主机读时序描述

IIC 主机读不拉低时钟线图

如上图所示,是主机读取从机时钟线拉低的时序示意图。由图可知道总线的变化情况, 以及一些电路内部信号的变化情况。

首先,主机发送 IIC_START 信号,标志通信的开始,如虚线 a 所示,内部电路检测到 IIC START 信号时序后置位状态标志位 IIC START。

然后,IIC_START 信号之后主机发送地址字节,并且 IIC_RW=1,表示主机读取从机。地址匹配的情况下在第八个时钟的下降沿之后,状态位 IIC_RW 置位,如虚线 b 所示,如果地址不匹配则 IIC_RW 不会置位。在第九个时钟的下降沿之后会产生中断信号,如虚线 c 所示。并将 IICBUFFER 中的数据压载到 IICBUF 中,IIC_BF 被置位,如虚线 d 所示,并将最高位送到总线上。在 8 个时钟的之后,一个字节数据发送完毕,IIC_BF 标志位被清零;同时地址数据标志位也会置位,表示当前发送的字节数据。如虚线 e 所示。第 9 个时钟的下降沿之后会产生中断,如果主机需要继续读取从机,则主机回复有效应答位 ACK,继续通信;如果主机需要的数据已经读取完毕,则主机回复无效应答 NACK,然后发送停止信号 IIC_STOP,终止通信。示意图中主机仅仅读取了一个数据后,回复 NACK,然后发送 IIC_STOP 信号,终止了通信。在检测到 NACK 的时候读写标志位 IIC_RW 被硬件清零了,如虚线 f 所示。如果主机发送 NACK 的时候,从机 SCLEN 是不会被自动拉低的,这点在应用中要注意。

最后,主机在读完所有的数据之后发送一个停止信号 IIC_STOP,标志着通信的结束,检测到 IIC_STOP 信号的时候,状态位 IIC_STOP 置位,IIC_START 清零,释放 IIC 总线,如虚线 q 所示,总线进入空闲状态。

IIC 主机读拉低时序描述

IIC 主机读拉低时钟线图

如上图所示,是主机读取从机时钟线拉低的时序示意图。由图可知道总线的变化情况, 以及一些电路内部信号的变化情况。

首先,主机发送 IIC_START 信号,标志通信的开始,如虚线 a 所示,内部电路检测到 IIC START 信号时序后置位状态标志位 IIC START。

然后,IIC_START 信号之后主机发送地址字节,并且 IIC_RW=1,表示主机读取从机。地址匹配的情况下在第八个时钟的下降沿之后,状态位 IIC_RW 置位,如虚线 b 所示,如果地址不匹配则 IIC_RW 不会置位。在第九个时钟的下降沿之后会产生中断信号,如虚线 c 所示。第 9 个时钟的下降沿之后 SCLEN 也会被硬件自动拉低,此期间用于从机处理或者准备数据,然后把准备好的数据写入 IICBUF,再软件置位 SCLEN,释放时钟线。如虚线 d 所示,在把数据写入 IICBUF 中后,IIC_BF 会置位,标志这 IICBUF 是满的。如虚线 e 所示,软件置位 SCLEN,释放时钟线。主机在检测到从机释放 SCL 之后,会继续发送同步时钟,读取从机的数据,第 8 个时钟的下降沿之后,一个字节数据发送完毕,IIC_BF 标志位被清零;同时地址数据标志位也会置位,表示当前发送的字节数据。如虚线 f 所示。第 9 个时钟的下降沿之后会产生中断,如果主机需要继续读取从机,则回复有效应答位 ACK,继续通信;如果主机需要的数据已经读取完毕,则回复无效应答 NACK,然后发送停止信号 IIC_STOP,终止通信。示意图中主机仅仅读取了一个数据后,回复 NACK,然后发送 IIC_STOP 信号,终止了通信。在检测到 NACK 的时候读写标志位 IIC_RW 被硬件清零了,如虚线 g 所示。

最后,主机在读完所有的数据之后发送一个停止信号 IIC_STOP,标志着通信的结束,检测到 IIC_STOP 信号的时候,状态位 IIC_STOP 置位,IIC_START 清零,释放 IIC 总线,如虚线 h 所示,总线进入空闲状态。

IIC 主机写数据示意图

PS:T_delay: 预留从机中断处理时间,一般60us~300us,如果从机IC中断服务处理时间在100us左右,建议T_delay>200us。

IIC 主机读数据示意图

PS:T_delay: 预留从机中断处理时间,一般60us~300us,如果从机IC中断服务处理时间在100us左右,建议T_delay>200us。

从机在第八个时钟的下降沿给出 ACK 信号,第九个时钟的下降沿产生 IIC 中断,建议主机在发完第九个时钟下降沿的时候延时 60us~300us 预留从机 IIC 中断服务数据准备时间,然后再发时钟信号。

注: IIC 通信>=100K 时,建议系统时钟>=6MHz。

9.3.IIC 寄存器详细说明

IICADD (E3H) IIC 地址寄存器

位编号	7	6	5	4	3	2	1	0	
符号		IICADD[7:1]							
读/写		读/写							
上电初始值				0				_	

IICBUF (E4H) IIC 发送接收数据寄存器

位编号	7	6	5	4	3	2	1	0	
符号		IICBUF							
读/写		读/写							
上电初始值		0							

位编号	位符号	说明
7 [~] 0	IICBUF	IIC 发送接收数据缓冲器

IICCON (E5H) IIC 配置寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	IIC_RST	RD_SCL_EN	WR_SCL_EN	SCLEN	SR	IIC_EN
读/写	_	_	读/写	读/写	读/写	读/写	读/写	读/写
上电初始 值	_	-	0	1	0	0	0	0

位编号	位符号	说明
7 [~] 6		保留
5	IIC_RST	IIC 模块复位信号 1: IIC 模块发生复位操作, 0: IIC 模块正常工作
4	RD_SCL_EN	主机读拉低时钟线控制位 1:使能主机读拉低时钟线功能,0:不使能主机读拉低时钟线 功能
3	WR_SCL_EN	主机写拉低时钟线控制位, 1: 使能写拉低时钟线的功能, 0: 不使能写拉低时钟线的功能
2	SCLEN	IIC 时钟使能位: 1=时钟正常工作, 0=拉低时钟线
1	SR	IIC 转换率控制位 1: 转换率控制被关闭以适应标准速度模式(100K); 0: 转换率控制被使能以适应快速速度模式(400K)
0	IIC_EN	IIC 工作使能位: 1: IIC 正常工作, 0: IIC 不工作

IICSTAT (E8H) IIC 状态寄存器

位编号	7	6	5	4	3	2	1	0
佐口 かり	IIC_	IIC_	IIC_	IIC_	IIC_	IIC_	IIC_	IIC_
符号	START	STOP	RW	AD	BF	ACK	ACK	RECOV
读/写	读	读	读	读	读	读	读/写	读/写
上电初始值	0	1	0	0	0	1	0	0

位编号	位符号	说明
7	IIC_START	开始信号标志位: 1:表示检测到了启动位;0:表示未检测到启动位
6	IIC_STOP	停止信号标志位: 1:表示处于停止状态;0:表示未检测到停止位
5	IIC_RW	读写标志位:记录最近一次地址匹配后,从地址字节中获得的读/写信息,1:表示读操作;0:表示写操作
4	IIC_AD	地址数据标志位: 1:表示最近接收或者发送的字节是数据; 0:表示最近接收或者发送的字节是地址
3	IIC_BF	IICBUF 满标志位:在 IIC 总线方式下接收时: 1:表示接收成功,缓冲器已经满; 0:表示接收未完成,缓冲器还为空在 IIC 总线方式下发送时: 1:表示数据发送正在进行(不包括应答位和停止位),缓冲器还是满的; 0:表示数据发送已经完成(不包括应答位和停止位),缓冲器已空
2	IIC_ACK	应答标志位: 1: 表示无效的应答信号; 0: 表示有效的应答信号
1	IIC_WCOL	写冲突标志位: 1:表示 IIC 正在发送当前的数据的时候,新的数据试图写入发送缓冲器;新的数据是不能被写入缓冲器的; 0:未发生写冲突
0	IIC_RECOV	接收溢出标志位: 1:表示 IIC 接收的前一个数据还没有取走时,又接收到了新的数据, 新的数据是不能被缓冲器接收的; 0:表示未发生接收溢出

IICBUFFER (E9H) IIC 发送数接收据缓存寄存器

位编号	7	6	5	4	3	2	1	0	
符号		IICBUFFER							
读/写		读/写							
上电初始值		0							

位编号	位符号	说明
7 [~] 0	IICBUFFER	IIC 发送数接收据缓存寄存器;在 RD_SCL_EN 为 0 的情况下,主机读取数据时,在产生中断后 2 个时钟之后将IICBUFFER 中为的数据发送到从机发送缓存寄存器中,作为从机发送的数据。故在中断产生之前准备 IICBUFFER中断数据。

PERIPH IO SEL (F2H) IIC/UARTO/INT 功能控制寄存器

位编号	7	6	5	4	3
符号	_	IIC_AFIL_SEL	IIC_DFIL_SEL	UARTO_IO_SEL	
读/写	_	读/写	读/写	读/写	读/写
上电初始值	_	1	0	0	0
位编号	2	1	0	/	/
符号	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
读/写	读/写	读/写	读/写	/	
上电初始值	0	0	0		

位编号	位符号	说明
6	IIC_AFIL_SEL	IIC 口模拟滤波选择使能 1: 选择模拟滤波功能, 0: 不选择模拟滤波功能
5	IIC_DFIL_SEL	IIC 口数字滤波选择使能 1:选择数字滤波功能,0:不选择数字滤波功能

IIC_START: 起始信号状态位。当检测到起始信号之后 **IIC_START** 就会置位,表示总线处于忙的状态。

IIC_STOP: 停止信号状态位。当芯片处于停止状态时 **IIC_STOP** 就会置位,表示总线处于空闲状态,当检测到开始信号时被硬件清零,表示通信开始。

IIC_AD: 地址数据标志位。它标志当前接收或者发送的字节是地址或者是数据。IIC_AD=0 标志接收或者发送的字节是地址; IIC_AD=1 标志接收或者发送的字节是数据。开始信号、停止信号、非应答信号对此状态位没有任何影响。此状态位的改变发生在第8个时钟的下降沿。

IIC_RW:读写标志位。此标志位记录地址匹配后,从地址字节中获取的读写信息位。IIC_RW=1表示主机读取从机的操作,IIC_RW=0表示主机写从机的操作。起始信号、停止信号、非应答信号(NACK)都会清零 IIC_RW。此状态位的改变发生在第九个时钟的下降沿。

IIC_BF:缓冲器满标志位。它标志收发缓冲器当前是满的或者是空的。IIC_BF=0表示缓冲器没有接收数据,缓冲器为空;IIC_BF=1表示缓冲器接收到数据,缓冲器已满。此状态位只能间接的置位和清零,不能直接的操作。

地址匹配并且 IIC_RW=0 的情况下,在第 8 个时钟的下降沿之后 IIC_BF 就会置位,标志着 IICBUF 接收到数据。在执行中断程序期间应该读取 IICBUF,读取 IICBUF 的操作会间接的清零 BF 标志位。如果不读取 IICBUF,主机继续发送数据,则会发生接收溢出,虽然从机仍然接收主机发送数据并压载到 IICBUF,但仍会发送 NACK 信号,给出无效应答。

地址匹配并且 IIC_RW=1 的情况下,从机接收到地址字节后 IIC_BF 标志位不会置位;IIC_RW=1 表示主机读取从机的操作,从机需要把数据写入 IICBUF,从机写 IICBUF 的操作会置位 IIC_BF,然后软件置位 SCLEN,释放时钟线;主机就会发送同步时钟,第 8 个时钟过后,IICBUF 里的数据发送出去之后,IIC BF 被硬件清零。

IIC_ACK: 应答状态位。不管主机是读操作还是写操作,从机都会在第9个时钟的上升沿采样数据线,记录应答信息。应答位分为有效应答位 ACK 和非有效应答位 NACK。也就是说第9个时钟的上升沿采样到数据为"0",表示有效应答 ACK,同时 IIC_ACK 被清零,如果采样到数据"1"则 IIC_ACK 被置位,表示非应答。非应答信号之后,主机就会发送停止信号宣告通信结束。启动信号会清零此状态位。

IIC_WCOL: 写冲突标志位。IICBUF 只有在 IIC_RW=1,并且 RD_SCL_EN=1,SCLEN=0 的情况下才可以被 CPU 写入。其它任何情况下试图写 IICBUF 是被禁止的,如果不满足上面的条件下发生了写 IICBUF 的操作,则数据不会被写入 IICBUF,同时写冲突标志位 IIC_WCOL被置位,表示发生了写冲突,此标志位需要软件清零。

IIC_RECOV:接收溢出标志位。在 IICBUF 满的情况下,也就是 IICBUF 里存在数据的情况下,IIC 有接收到新的数据,则会发生接收溢出,IIC_RECOV 会置位,同时 IICBUF 里的数据不会被更新,新接收的数据会丢失。此状态位也需要软件清零,否则的话会应影响后面的通信过程。此种情况只会出现在 IIC_RW=0,BF=1,且 CPU 不读取 IICBUF 时会出现。

9.4.IICCON 寄存器

IIC 控制寄存器,用于控制通信工作情况。

位	名称	R/W	复位值	描述
7: 6		R	0	保留
				IIC 模块复位控制使能位
5	IIC_RST	RW	0	1: 使能 IIC 模块复位的功能;
				0: 不使能 IIC 模块复位的功能
				主机读拉低时钟线控制位
4	RD_SCL_EN	RW	1	1: 使能主机读拉低时钟线功能;
				0: 不使能主机读拉低时钟线功能
				主机写拉低时钟线控制位,
3	WR_SCL_EN	RW	0	1: 使能写拉低时钟线的功能;
				0: 不使能写拉低时钟线的功能
				IIC 时钟使能位
2	SCLEN	RW	0	1: 时钟正常工作;
				0: 拉低时钟线(IIC_EN=1 有效)
				IIC 转换率控制位
1	SR	RW	0	1: 转换率控制被关闭以适应标准速度模式(100K);
				0:转换率控制被关闭以适应快速速度模式(400K)
0	IICEN	R	0	IIC 模块使能信号
U	TICEN	IX	U	1: IIC 模块工作;

下面详细介绍各位的作用:

IICEN 是 IIC 模块的使能信号,只有 IICEN=1 时,电路才工作。

SR 是转换速率控制位, SR=1 转换速率控制关闭,端口适应于 100Kbps 的通信。

SCLEN 是时钟使能控制位,虽然从机不能产生通信时钟,但是根据协议从机可以延长时钟的低电平时间。SCLEN=0 时钟线被锁定在低电平,SCLEN=1 释放时钟线。延长时钟低电平的前提是 IICEN=1,否则内部电路不会对 IIC 总线产生任何影响。SCLEN 常用来延长低电平的时间,使主机进入等待状态,这样从机就有足够的时间来处理数据。

WR_SCL_EN 是写拉低线控制位,为 1 时使能中断拉低时钟线的功能,为 0 时不使能中断拉低时钟线的功能。

在 IIC_RW=0 的情况下,可根据主机的通信速率和处理中断的时间来决定是否拉低时钟线,即配置 WR_SCL_EN 位。

当 CPU 能在 8 个 IIC 时钟内能处理完中断并退出中断时,WR_SCL_EN=0 不使能拉低时钟线的功能,此时在中断到来时不会硬件自动拉低时钟线。当 CPU 不能在 8 个 IIC 时钟内处理完中断并退出时,WR_SCL_EN=1 使能拉低时钟线的功能,此时在中断到来时硬件自动

拉低时钟线,迫使主机进入等待状态,当写入 IICBUF 中的数据被 CPU 读出后,软件置位 SCLEN。

RD_SCL_EN 是读拉低线控制位,为 1 时使能中断拉低时钟线的功能,为 0 时不使能中断拉低时钟线的功能。

当 RD_SCL_EN=1 时从机在接收到地址字节或者发送完一个字节并且主机发送 ACK 的时候,SCLEN 会被硬件自动拉低,迫使主机进入等待状态。从机要释放 IIC 时钟,需要下面两个操作:先将把要发送的数据写入 IICBUF 中,再软件置位 SCLEN。这样设计的目的是确保拉高 SCL 之前,IICBUF 中已经写入将要发送的数据。

当 RD_SCL_EN=0 时从机在接收到地址字节或者发送完一个字节并且主机发送 ACK 的时候,从机会将 IICBUFFER 寄存器中准备好的数据立即压载到发送缓存寄存器中,然后送到数据线上。故为保证每次传送的数据正确,在中断服务程序中 IICBUFFER 准备好下一个要发送的数据,主机接收的数据都为上一次中断处理好的数据,第一次接收数据为初始化中准备。

注意: 当需要拉低时钟线,即 WR_SCL_EN/RD_SCL_EN=1,在发送和接受最后一个 Byte 数据之前,软件应该关闭拉低时钟线的功能,即 WR_SCL_EN/RD_SCL_EN=0,在完成 发送和接受最后一个 Byte 数据之后,软件应该打开写拉低时钟线的功能。此种操作可根据主机是软件硬件,中断处理处理时间自行调控。

IIC_RST 是 IIC 模块控制使能位,为 1 时使能 IIC 模块复位的功能;为 0 时不使能 IIC 模块复位的功能。应用时注意配置 1 复位 IIC 模块所有 DFF 触发器,IIC_RST 的复位端为全局复位,其他的复位端为 iic_rst_n,所有先将 iic_rst 位写 0 后,再操作其他寄存器配置。

9.5.IICBUF 寄存器

IIC 读写缓存寄存器,用于控制通信工作情况。

位	名称	R/W	复位值	描述
7: 0	IICBUF	RW	0	IIC 数据接收发送的缓冲器

具体应用过程如下:

在发送状态下,把数据压载到 IICBUF 中后,在主机的同步时钟作用下,数据依次移位发送出去,高位在前。8个时钟过后,一个字节发送完毕。

在接收状态下,在主机的 8 个时钟过后,数据被写入 BUF 中去,第 9 个时钟过后会产生中断,告诉 CPU 读取 IICBUF 中的数据。

把数据写入 IICBUF 此操作是有条件的,在 RD_SCL_EN=1 时只有 IIC_RW=1,并且 SCLEN=0 的情况下才可以把数据写入 IICBUF 中,否则写 IICBUF 的操作是被禁止的。也就是说条件不满足的情况下,写 IICBUF 的操作不能成功的,数据写不进去,IICBUF 的数据不会改变,同时也会造成写冲突。

例如: IICBUF 已经有数据 55h, 在写 IICBUF 的条件不满足的情况下, 欲把数据 00h 写入 IICBUF。结果是 IICBUF 里的数据仍然是 55h, 同时写冲突标志位 IIC_WCOL 置位, 用于告诉用户, 操作异常。

在 RD_SCL_EN=0 时,从机需发送的数据为中断信号产生时压载 IICBUFFER 寄存器值得到。

9.6.IICBUFFER 寄存器

IIC 数据发送缓存器

位	名称	R/W	复位值	描述
7: 0	IICBUFFER	RW	0	IIC 数据发送的缓冲器

具体应用过程如下:

在 RD_SCL_EN 为 0 的情况下,主机读取数据时,在产生中断后 2 个 clk 之后将 IICBUFFER 中的数据送到从机发送缓存寄存器中,作为从机发送的数据。故在中断产生之前, IICBUFFER 中的数据要准备好,一般情况下是在上一个中断服务程序中准备好,设备地址产生中断发送数据为初始化中准备。

9.7.IIC 配置流程

IIC 配置流程图

注: 1、IIC 总线上拉电阻 4.7K~10K, 对地滤波电容建议 10pf~100pF 靠近引脚芯片。

第 10 章 UART

BF6958A 系列中有1个UART 模块,UART 模块接口特点:

- 支持全双工,半双工串口通信
- 具有独立的双缓冲接收器,单缓冲发射器
- 可编程波特率(10 位模数分频器)
- 中断驱动型或轮询操作:
 - 一 发送完成
 - 一 接收满
 - 一 接收溢出、奇偶效验错误、帧错误
- 支持硬件奇偶效验生成和检查
- 可编程8位或9位字符长度
- 可选择 STOP 位 1 位或 2 位
- 支持多处理器模式

10.1.UART0 功能说明

10.1.1.波特率生成

波特率生成模数 Baud Mod={UARTO BDH[1:0], UARTO BDL}。

波特率计算公式: Baud_Mod=0 时,不生成波特率时钟,当 Baud_Mod=1~1023 时,UART0 波特率= BUSCLK/(16xBaud_Mod)。

BUSCLK 使用系统时钟源的分频时钟,固定为 24M, 每次配置波特率寄存器均会清零内部 counter 重新生成波特率信号。通信要求发射器和接收器使用相同的波特率,通信允许的波特率偏差范围: 8/(11*16)=4.5%

10.1.2.发射器功能

发送数据流程:由写入UARTO_BUF数值开启发送,发送停止位后置位发送中断,软件清除中断标记,等待下一次写入。发射器输出管脚(TXD)闲置状态,默认为逻辑高态。整个发送过程必须在模块使能时进行。通过把数据写入数据寄存器(UARTO_BUF),会将数据直接保存到发送数据缓冲器并开启发送过程,在后续完整的发送过程中,不允许写入数据寄存器UARTO_BUF和T8,直到发送完毕停止位后,发送中断标志置位,才可以再次写入UARTO_BUF,重新开启新的发送。

串口发射器的中心元件是长度为 10/11/12 位(取决于 data_mode 控制位中的设置)的发送移位寄存器。假设 data_mode=0,选择正常的 8 位数据模式,在 8 位数据模式中,移位寄存器中有 1 个起始位、8 个数据位和 1 个/2 个停止位,发送接收均是小端模式(LSB 先发)。

10.1.3.接收器功能

通过设置 UARTO_CON1 中的接收使能位,接收器被使能。当然,整个接收过程必须在模块使能时进行。

接收数据流程:在接收使能有效的情况下,随时接收数据,接收停止位后置位接收中断,软件清除中断标记。

当前接收的数据会有检测机制,可检测接收溢出、帧出错、奇偶校验出错3种错误,均需要软件清除标记。建议检测到接收中断后,读出状态标记,读数据 buf,最后将接收数据状态标记均清除(UARTO STATE[3:0])。

数据字符由逻辑 0 的起始位、8 个(或 9 个)数据位(LSB 先发)和逻辑 1 的停止位(1bit)组成。在把停止位接收到接收移位器后,如果接收数据寄存器还未满(rx_full_if=0),数据字符就被传输到接收数据寄存器,设置接收数据寄存器已满(rx_full_if=1)状态标记。如果此时已经设置了接收数据寄存器已满的 rx_full_if,就设置溢出(rx_overflow_if)状态标记,新数据会丢失。因为接收器是双缓冲的,程序在设置 rx_full_if 后、读取接收数据缓冲器的数据前,有一个全字符时间来供读取,以避免接收器溢出。

当程序检测到接收数据寄存器已满(rx_full_if=1)时,它通过读 UARTO_BUF 从接收数据寄存器中获取数据。

10.1.4. 接收器采样方法

接收器使用 16 倍波特率时钟进行采样。接收器通过以 16 倍波特率提取逻辑电平样本,以搜索 RXD 串行数据输入管脚上的下降边沿。下降边沿的定义是 3 个连续逻辑 1 采样后的逻辑 0 样本。16 倍波特率时钟用来把位时间划分为 16 个段,分别标记为 RT1 到 RT16。

接收器然后在 RT8, RT9 和 RT10 的每个位时间上进行采样,包括起始位和停止位,以决定该位的逻辑电平。逻辑电平是位时间期间提取的绝大多数样本的逻辑电平。当定位了下降边沿时,通过逻辑电平为 0 确保这是真正的起始位,而不是噪音,如果这三个样本至少有两个样本为 0,接收器假设它与接收器字符同步,开始移位接收下面数据,如果不满足以上条件则退出状态机回到等待下降边沿状态。下降边沿检测逻辑不断寻找下降边沿,如果检测到边沿,样本时钟重新同步位时间。

10.1.5.多处理器模式

多处理器模式,仅工作在9位模式下,接收到的R8位=1时,接收中断置位,否则不置位, 此机制的作用是利用硬件检测消除了处理不重要信息字符的软件开销。允许接收器忽略用于 不同接收器的信息中的字符。

在这种应用系统中,所有接收器都估计每条信息的地址字符(第9位=1),一旦确定该信息旨在用于不同接收器,后续数据字符(第9位=0)不接收。

配置流程:配置接收使能,配置多处理器模式,接收到地址数据(第9位=1),接收并产生中断,应用确认地址是否匹配,匹配则配置关闭多处理器模式,后续所有数据(第9位=0)均能被接收并产生中断,直到下一次接收到地址数据,地址不匹配,则打开多处理器模式,则后续所有数据均不被接收,直到下一个地址数据,依次循环应用。

10.2. UARTO 相关寄存器

	SFR 寄存器					
地址	名称	读写	复位值	说明		
0xBD	UARTO_BDL	RW	0x00	UARTO 波特率控制寄存器		
0xBE	UARTO_CON1	RW	0x00	UARTO 模式控制寄存器 1		
0xBF	UARTO_CON2	RW	0x0C	UARTO 模式控制寄存器 2		
0xC0	UARTO_STATE	RW	0x00	UARTO 状态标记寄存器		
0xC1	UARTO_BUF	RW	0xFF	UARTO 数据寄存器		
0xF2	PERIPH_IO_SEL	RW	7'0x40	UARTO 选择使能寄存器		

UARTO SFR 寄存器列表

10.3. UARTO 寄存器详细说明

UARTO_BDL (BDH) UARTO 波特率控制寄存器

位编号	7	6	5	4	3	2	1	0
符号		_						
读/写		读/写						
上电初始值		0						

位编号	位符号	说明
7 [~] 0		波特率控制寄存器 波特率模数除数寄存器低 8 位, Baud_Mod={UART0_BDH[1:0], UART0_BDL}, Baud_Mod=0 时不生成波特率时钟,当Baud_Mod=1~1023 时,波特率= BUSCLK/(16xBaud_Mod)

UART0_CON1 (BEH) UART0 控制寄存器 1

位编号	3	2	1	0
符号	stop_mode	data_mode	parity_en	parity_sel
读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0
位编号	7	6	5	4
符号	_	uart0_enable	receive_enable	multi_mode
读/写	_	读/写	读/写	读/写
上电初始值	_	0	0	0

位编号	位符号	说明
6	uart0_enable	模块使能,1: 模块使能,0: 模块关闭
5	receive_enable	接收器使能,1:接收器打开,0:接收器关闭
4	multi_mode	多处理器通信模式,1:模式使能,0:模式禁能
3	stop_mode	stop 位宽选择, 1: 2位, 0: 1位
2	data_mode	数据模式选择,1:9位模式,0:8位模式
1	parity_en	奇偶校验使能,1: 奇偶效验使能,0: 奇偶效验不使能
0	parity_sel	奇偶校验选择,1:奇校验,0:偶校验

UART0_CON2 (BFH) UART0 控制寄存器 2

位编号	7	6	5	4	3	2	1	0
符号	I	I	I	_	tx_empty_ie	rx_full_ie	UAR	T0_BDH
读/写	I	I	I	_	读/写		ì	卖/写
上电初始值	-	_	_	_	1	1	0	0

位编号	位符号	说明
-----	-----	----

3	tx_empty_ie	发送中断使能,1:中断使能,0:中断禁止(用于轮询模式)			
2	rx_full_ie	接收中断使能,1:中断使能,0:中断禁止(用于轮询模式)			
1~0	UART0_BDH	波特率模数除数寄存器高 2 位			

UARTO_STATE (C0H) UARTO 状态标记寄存器

位编号	7	6	5	4
符号	-	r8	t8	tx_empty_if
读/写	_	读	读	读/写
上电初始值	-	0	0	0
位编号	3	2	1	0
符号	frx_full_i	rx_overflow_if	frame_err_if	parity_err_if
读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0

位编号	位符号	说明		
6	r8	接收器的第9个数据,只读		
5	t8	发射器的第9个数据,奇偶校验使能时只读		
4	tx_empty_if	发送中断标记: 1: 发送缓存为空 0: 发送缓存为满,软件写 0 清零,写 1 无效		
3	frx_full_i	接收中断标记: 1:接收缓存为满 0:接收缓存为空,软件写 0 清零,写 1 无效		
2	rx_overflow_if	接收溢出标记: 1:接收溢出(新数据丢失) 0:没有溢出,软件写 0 清零,写 1 无效		
1	frame_err_if	帧错误标记: 1: 检测到帧错误 0: 未检测到帧错误,软件写 0 清零,写 1 无效		
0	parity_err_if	奇偶校验错误标记: 1:接收器奇偶校验错误 0:奇偶校验正确,软件写0清零,写1无效		

UART0_BUF (C1H) UART0 数据寄存器

- 4	_ \								
	位编号	7	6	5	4	3	2	1	0
	符号				-	-			
	读/写	读/写							
	上电初始值	1	1	1	1	1	1	1	1

位	立编号	位符号	说明
---	-----	-----	----

7 [~] 0	数据寄存器	
1 0	 读返回只读接收数据缓冲器的内容,	写进入只写发送数据缓冲器

PERIPH_IO_SEL (F2H) IIC/UARTO/INT 功能控制寄存器

位编号	7	6	5	4	3
符号	_	IIC_AFIL_SEL	IIC_DFIL_SEL	UART0_	IO_SEL
读/写	_	读/写	读/写	读/写	读/写
上电初始值	_	1	0	0	0
位编号	2	1	0	/	/
符号	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
读/写	读/写	读/写	读/写	/	/
上电初始值	0	0	0		

位编号	位符号	说明
4~3	UARTO_IO_SEL	UARTO 口选择使能 00:选择 UARTO (RXDO_A/TXDO_A) 功能

10.4. UARTO 配置流程

UARTO 初始化配置流程图

建议应用流程:

- 1. 配置模块使能、接收使能、模式选择: UARTO CON1;
- 2. 配置波特率, 打开中断使能: UARTO BDL、UARTO CON2;
- 3. 写入 UARTO BF 开始发送数据,检测到发送中断后,清除中断标记 tx empty if;
- 4. 检测到接收中断,首先读取接收状态 UARTO_STATE,然后读取 R8 和 UARTO_BUF,最后清除接收状态标记(UARTO_STAT[3:0] = B0000),一次接收流程完毕,等待下一个接收中断。
- 5. 如果配置中断不使能,程序执行 UART 功能,同样要首先读取状态标记,然后读取 R8和 UARTO BUF,最后清除状态标记。
- 6. 中断标志位清除操作,在全双工工作时,清除标志位操作需要将有效中断位写 0,其它中断位写 1 (写 1 为无效操作),否则容易误操作。例:发送中断有效时,需要写 UARTO_STATE = 0x0F; (即配置 UARTO_STATE[0:3] = 0x0F, R8 写无效,t8 在 9 位模式且不奇偶校验时需要配置有效发送数据)。
 - 7. 8位模式: 奇偶校验使能无效。
- 9 位模式: 奇偶校验位使能时,第九位计算得到的奇偶校验位不使能时,第九位为写进去的 T8。仅有发送中断和接收中断,错误标记仅标记当前数据的错误检测,且仅对应位写 0 清除,不出错误中断,发送中断在发送完毕停止位后置 1,软件清 0,接收中断在接收完毕停止位后置 1,软件清 0。

多处理器模式: 仅工作在 9 位模式下,接收到的 R8 位 = 1 时,接收中断置位,否则不置位。使用多处理器模式时,配置接收使能,配置多处理器模式,接收地址数据(第 9 位 = 1)接收并产生中断,应用确认地址是否匹配,匹配则配置关闭多处理器模式,后续所有数据(第 9 位 = 0)均能被接收中断产生中断,直到下一次接收到地址数据,地址不匹配,则打开多处理器模式,则后续所有数据不被接收,直到下一个地址数据依次循环应用。

硬件响应:发送数据,由写入UARTO_BUF数值开启,发送停止位后置位发送中断标记,软件清除中断标记,等待下一次写入。接收数据在接收使能有效的情况下,随时接收数据,接收停止位后置位接收中断,软件清除中断标记。当前接收的数据会有检测机制,可检测接收溢出、帧出错、奇偶检验出错3种错误,均需要软件清除标记。建议检测到接收中断后,读出状态标记,将接收状态标记均清除UARTO_STATE[0:3]。

注: 不支持映射同步输出功能。

第11章 PWM

11.1.PWM0 功能说明

PWM0 功能特点:

- 1. 16 位计数器;
- 2. 计数周期可配置,每个通道占空比可调;

PWM0 脉宽调制模块为周期和脉宽都可以通过寄存器进行配置,但是寄存器的配置必须在 PWM0 使能有效(高有效)的情况下,而且每组寄存器 PWM0_MOD_L/H 必须按照从低到高的顺序配置,为了保证 PWM0 模块内部计数器正确计数,避免产生错误波形。这些配置值在等到计数器从(PWM0_MOD)变为(PWM0_MOD+1)时更新寄存器值,就是在一个完整的周期之后再更新周期和占空比。

PWM0 模块 16 位的计数时钟是 24MHz 和系统时钟是同步的 PWM0 信号的周期由周期配置寄存器 (PWM0_MOD) 的值确定,占空比由通道寄存器 (PWM0_CHn_CNT) 中的设置确定,0%和 100%的占空比可配。

脉冲宽度 = (PWM0 CHn CNT)

周期 = (PWM0_MOD+1)

占空比=脉冲宽度/周期

PWM0 计数器从 0x0000 开始向上计数,当计到 PWM0_CHn_CNT 时输出翻转,这段时间为脉冲宽度,继续计数直到计到 PWM0 MOD+1 时计数溢出。如果

当通道计数寄存器(PWM0_CHn_CNT)被设为 0x0000 时,占空比为 0%;当通道计数寄存器 (PWM0_CHn_CNT) 设置为大于周期配置寄存器 (PWM0_MOD) 设置的值可实现 100%的占空比。计数器是自动重载的,不会自行停止,直到寄存器 PWM0 使能关闭才会停止,计数器清零。

(PWMO_CHO_CNT=5, PWMO_MOD=10, duty_cycle=5/11)

11.2. PWM1 功能说明

PWM1 的功能特点如下:

- ◆ 时钟来源时钟 CLK 24MHz;
- ◆ PWM1 的高电平控制寄存器与低电平控制寄存器均为 16 位寄存器;
- ◆ 输出周期: TPWM1 data = (PWM1 H + PWM1 L)* T_{CLK 24MHz}(us);
- ◆ 输出占空比: DPWM1 data = PWM1 H/(PWM1 L + PWM1 H);

PWM1 波形意图

PWM1 脉宽调制模块为高低电平时间都可以通过寄存器进行配置,但是寄存器的配置必须在 PWM1 使能有效(高有效)的情况下,而且高电平控制寄存器和低电平控制寄存器必须按照从低到高的顺序配置,为了保证 PWM1 模块内部计数器正确计数,避免产生错误波形。这些配置值在一个完整的周期之后再更新周期和占空比。

PWM1 时序示意图

11.3. PWM0/1 寄存器详细说明

11. 3. 1. **PWM0/1** 寄存器

读/写 上电初始值

PWM1 L	L (99H)	PWM1	低电平控制寄存器(低8位
1 44 1411 17		1 1 4 4 1 4 1 1	1kG +F, 14.101 F1 1

Г	W WII_L_L (95	ЭП) P W W I	以出江	:则可什价	(成 6 型)						
	位编号	7	6	5	4	3	2	1	0		
	符号		_								
	读/写		读/写								
	上电初始值		0								
PWM1_L_H (9AH) PWM1 低电平控制寄存器 (高 8 位)											
	位编号	7	6	5	4	3	2	1	0		
	符号		_								

读/写

0

PWM1_H_L (9BH) PWM1 高电平控制寄存器(低 8 位)

位编号	7	6	5	4	3	2	1	0			
符号		-									
读/写		读/写									
上电初始值		0									

PWM1_H_H (9CH) PWM1 高电平控制寄存器(高 8 位)

位编号	7	6	5	4	3	2	1	0			
符号		-									
读/写		读/写									
上电初始值		0									

P2_XH (A0H) 二级总线数据读写寄存器

位编号	7	6	5	4	3	2	1	0		
符号		_								
读/写		读/写								
上电初始值	1	1	1	1	1	1	1	1		

位编号	位符号		说明
$7^{\sim}0$	P2_XH	使用到MOVX @Ri, A指令时,	操作 pdata 区时,P2_XH 需要清 0

PWM_EN (A2H) PWM 控制寄存器

位编号	7	6	5	4	3	2	1	0
符号				_			PWM1_EN	PWMO_EN
读/写				_		读/写	读/写	
上电初始值		-					0	0

位编号	位符号	说明					
5 [~] 2		保留					
1	DWM1 FM	PWM1 模块使能寄存器					
1	PWM1_EN	1: 使能; 0: 不使能					
0	DWWO EM	PWMO 模块使能寄存器					
0	PWMO_EN	1: 使能; 0: 不使能					

PWM_EN (A3H) PWM 控制寄存器

位编号	7	6	5	4	3	2	1	0	
符号				PWMO_CHO_EN					
读/写		_							
上电初始值		-							

位编号	位符号	说明
$7^{\sim}1$		保留
0	PWMO_CHO_POLA_SEL	通道 0 使能 ch0_en 1: 使能; 0: 不使能

PWM0_MOD_L (ADH) PWM0 周期配置寄存器低 8 位

位编号	7	6	5	4	3	2	1	0			
符号		PWMO_MOD_L									
读/写		读/写									
上电初始值		0									

	位编号	位名		说明							
	$7^{\sim}0$	PWMO_1	MOD_L	PWMO 计数周期配置寄存器低 8 位: 配置 PWM 输出占空							
	PWM0_MOD_H (AEH) PWM0 周期配置寄存器高 8 位										
I	冷炉 巴	7	G	г	4	n	O	1	0		

位编号	7	6	5	4	3	2	1	0		
符号		PWMO_MOD_H								
读/写				读	/写					
上电初始值				()					

位编号	位符号	说明
$7^{\sim}0$	PWMO_MOD_H	PWMO 计数周期配置寄存器高 8 位: 配置 PWM 输出占空比

11.4 PWM 配置流程

PWM 配置流程示意图

注:

频率范围: 推荐 370Hz~369KHz。

第12章 触摸按键

CSD 的功能特点:

- CSD 充放电时钟三种模式可选;
 - ➤ 系统时钟的固定分频 6M²369K
 - ▶ PRS 1.5M 正态分布
 - ➤ PRS 1.5M 均匀分布
- CSD 计数时钟 24M、12M、6M、4M 可选;
- 计数位宽 9[~]16 位可选;
- 仅支持非同步扫描模式。

BF6958A 通过一系列的寄存器来实现多种功能的应用。电容检测相关量与 SFR 值的关系 如下:

计数值大小与 RESO、Rb 电阻、PULL_I_SELA_H 成正比,与 VTH_SEL 成反比。在保证充放电完全的情况下,与通过 PRS DIV 设定的充放电频率成正比。

通道触摸变化量与 RESO、Rb 成正比,与 VTH_SEL 成反比。在保证充放电完全的情况下,与通过 PRS DIV 设定的充放电频率与触摸变化量成正比。

触摸检测的信噪比与 VTH_SEL 成正比, PULL_I_SELA_L, 与 CSD_DS 成反比。在充放电不完全时,与通过 PRS DIV 设定的充放电频率与信噪比成反比。

单个按键检测的时间与 RESO、CSD DS 有关。

注: 配置参数时应保证按键充放电完全。

CSD 模块结构示意图

CSD 结构框图

12.1. 触摸按键相关寄存器

			SFR 寄存器	<u> </u>
地址	名称	读写	复位值	说明
0xCA	CSD_START	RW	1`0x00	CSD 扫描开启寄存器
0xCB	SNS_SCAN_CFG1	RW	0x00	触摸按键扫描配置寄存器 1
0xCC	SNS_SCAN_CFG2	RW	0x40	触摸按键扫描配置寄存器 2
0xCD	SNS_SCAN_CFG3	RW	0x70	触摸按键扫描配置寄存器 3
0xCE	CSD_RAWDATAL	R	0x00	CSD 计数值低 8 位
0xCF	CSD_RAWDATAH	R	0x00	CSD 计数值高 8 位
0xD0	PSW	R/RW	0x00	程序状态字寄存器
0xD1	PULL_I_SELA_L	RW	0x00	CSD 上拉电流源选择寄存器
0xD2	SNS_ANA_CFG	RW	6`0x2F	CSD 扫描参数配置寄存器
0xD3	SNS_IO_SEL1	RW	0x00	SNS 通道选择寄存器 1
0xD4	SNS_I0_SEL2	RW	0x00	SNS 通道选择寄存器 2
0xD5	SNS_I0_SEL3	RW	0x00	SNS 通道选择寄存器 3
0xD6	SNS_I0_SEL4	RW	0x00	SNS 通道选择寄存器 4

CSD SFR 寄存器列表

12.2. 触摸按键寄存器详细说明

CSD_START(CAH) CSD 扫描开启寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	_	_	_	_	_		1
读/写	ı	_	_	_	_	_		读/写
上电初始值	-	_	_	_	_	_		0

SNS_SCAN_CFG1 (CBH) 触摸按键扫描配置寄存器 1

位编号	7	6	5	4	3	2	1	0	
符号	I	SW_PRE_OFF			PRS	_DIV			
读/写	-	读/写	读/写						
上电初始值	-	0	0						

位编号	位符号	说明
C	SW DDE OEE	前端充放电时钟开关控制
6	SW_PRE_OFF	1:关闭 sw_clk;0:打开 sw_clk
	PRS_DIV	前端充放电时钟频率选择寄存器:
5 [~] 0		0~61: 为固定频率: F=F48m/2/(PRS_DIV+4) (6M~369K);
5 0		62: 最高频率 3M, 最低频率 1M, 中心频率 1.5M, 正态分布;
		63: 最高频率 3M, 最低频率 1M, 中心频率 1.5M, 均匀分布;

SNS SCAN CFG2 (CCH) 触摸按键扫描配置寄存器 2

		- / /42/42/30/1907	· • • • • · · · · · · · · · · · · · ·					
位编号	7	6	5	4	3	2	1	0
符号	_	PULL_I_SELA_H	PARALLEL_EN		CS	SD_AD	DDR	
读/写	1	读/写	读/写	读/写			î Î	
上电初始值	_	1	0			0		

位编号	位符号	说明
6	PULL_I_SELA_H	CSD上拉电流源配置最高位
5	PARALLEL_EN	SNS 通道并联使能寄存器 1: 多通道并联; 0: 单通道
4~0	CSD_ADDR	检测通道的地址,对应通道号 $0^{\sim}25$

SNS_SCAN_CFG3(CDH) 触摸按键扫描配置寄存器 3

位编号	7	6	5	4	3 2		1	0	
符号	_		RES0		CSD_DS		PRE_CHRG_SEL	INIT_DISCHRG_SEL	
读/写	_		读/写		读/写		读/写	读/写	
上电初始值	_	1	1	1	0	0	0	0	

位编号	位符号	说明
$6^{\sim}4$	RES0	计数器位数选择寄存器

		000: 9位; 001: 10位; 010: 11位; 011: 12位; 100: 13位; 101: 14位; 110: 15位; 111: 16位。
3 [~] 2	CSD_DS	计数时钟频率选择寄存器 00: 24M; 01: 12M; 10: 6M; 11: 4M; 默认 0
1	PRE_CHRG_SEL	预充电时间选择: 0: 20us; 1: 40u
0	INIT_DISCHRG_SEL	预放电时间选择: 0: 2us; 1: 10us

CSD_RAWDATAL (CEH) CSD 计数值低 8 位

位编号	7	6	5	4	3	2	1	0		
符号		RAWDATA<7:0>								
读/写										
上电初始值				()					

CSD_RAWDATAH (CFH) CSD 计数值高 8 位

_		<i>/</i>) -					
位编号	7	6	5	4	3	2	1	0
符号				RAWDAT <i>i</i>	A<15:8>			
读/写				į	卖			
上电初始值				()			

PSW(D0H) 程序状态字寄存器

位编号	7	6	5	4	3	2	1	0
符号	CY	AC	F0	RS[1	:0]	OV	F1	Р
读/写	读/写	读/写	读/写	读/	写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	СҮ	进位标志位。 当加法生成进位或减法产生借位时设置,否则清除。当 CJNE 第 一个操作数小于第二个操作数时设置,由 MUL 和 DIV 指令清 除。也通过鼠标指令(RLC, RRC)和逐位指令影响。
6	AC	辅助进位标志位 当加法从累加器第三位到第四位产生进位时设置,或者当减法 从第三位到第四位产生借位时,否则清零。
5	F0	0 标志位。可供用户使用的通用标签。
4~3	RS[1:0]	工作寄存器组选择: 选择有效的工作寄存器组: RS[1:0] Bank IRAM Area 00 0 0x00-0x07; 01 1 0x08-0x0F; 10 2 0x10-0x17; 11 3 0x18-0x1F。
2	OV	溢出标志位。

		当加法产生累加器位6和7的不同进位时,或者减法产生累加
		器位6和7的借位。否则清除。OV标志位表示签名的8位数
		字的结果超出了限制(大于 127 或小于-128). 当乘法结果大
		于 255 或试图除以 0 时,也会设置溢出标志。
1	F1	1标志位。可供用户使用的通用标签。
0	Р	奇偶标志位。始终包含累加器中所有位的形式2的总和。

PULL_I_SELA_L (D1H) CSD 上拉电流源选择寄存器

位编号	7	6	5	4	3	2	1	0
符号		PULL_I_SEL<7:0>						
读/写		读/写						
上电初始值				()			

位编号	位符号	说明
$7^{\sim}0$	PULL_I_SEL<7:0>	CSD 上拉电流源大小选择开关,默认值 0

SNS_ANA_CFG (D2H) CSD 扫描参数配置寄存器

	位编号	7	6	5	4	3	2	1	0		
	符号	-	-		RB_SEL			VTH_SEL			
	读/写	_	_		读/写			读/写			
F	上电初始值	-	-	1	0	1	1	1	1		

位编号	位符号	说明
5~4	RB_SEL	Rb 电阻大小选择 0: 10k; 1: 20k; 2: 30k; 3: 40k; 4: 60k; 5: 80k; 6: 150k; 7: 300k; 使用时需要从芯片 Flash 读取 Rb80K 校准值: CBYTE[0x43CD]K/80K, 进行比例计算归一化灵敏度。
2 [~] 1	VTH_SEL	VTH 电压选择信号, 000 为 1.8V,001 选择 2.1V,010 选择 2.5V, 011 选择 2.8V,100 选择 3.2V,101 选择 3.5V, 110 选择 3.9V,111 选择 4.1V

SNS_IO_SEL1(D3H) SNS 通道选择寄存器 1

	,							
位编号	7	6	5	4	3	2	1	0
符号		SEL_SENSOR[7:0]						
读/写				读/	/写			
上电初始值				()			

位编号	位符号	说明
$7^{\sim}0$	SEL_SENSOR[7:0]	SENSOR 口选择使能

		1: 选择 SENSOR; 0: 不选择 SENSOR							
SNS_IO_SEL2 (D4H) SNS 通道选择寄存器 2									
位编号	7	6	5	4	3	2	1	0	
符号				SEL_SENS	OR[15:8]				
读/写									
上电初始值				()				

位编号	位符	号		说明						
7 [~] 0	SEL_SENSO	R[15:8]	:8] SENSOR 口选择使能: 1: 选择 SENSOR, 0: 不起					译 SENSOR		
SNS_IO_SEL3 (D5H) SNS 通道选择寄存器 3										
位编号	7	6	5	4	3	2	1	0		
符号				SEL_SENSO	OR[23:16]					
读/写		读/写								
上电初始值				()					

	位编号	位符	号		说明							
	$7^{\sim}0$	SEL_SENSO	R[23:16]	SENSOR	口选择使	能:	1: 选	择 SENSOI	R, 0: 不选	译 SENSOR		
SNS_IO_SEL4 (D6H) SNS 通道选择				择寄存器	4							
	位编号	7	6	5	4		3	2	1	0		

位编号	7	6	5	4	3	2	1	0
符号	_	-	_	_	_	_	SEL_SENSO	OR[25:24]
读/写	-	I	-	_	_	_	读/	/写
上电初始值	_	_	_	_	_	_	()

位编号	位符号	说明
1~0	SEL_SENSOR[25:24]	SENSOR 口选择使能: 1: 选择 SENSOR, 0: 不选择 SENSOR

12.3. 触摸按键配置流程

触摸按键扫描为查询或中断方式,首先,配置触摸按键参数;然后,开启触摸按键扫描;最后,在触摸按键中断获取并保存触摸按键数据,软件算法进行数据的处理及按键的输出判断。

触摸按键扫描配置流程图

通过灵敏度参数配置得到较好信噪比的一组参数,从而提高按键判断的准确性。

- 1、RESO: 0~7 触摸按键电容扫描分辨率,计数器位数: (RESO + 9) 位,触摸按键电容扫描分辨率越大, Rawdata 向下变化量越大,同时引入的噪声也会随之增大,反之相反。
- 2、**VTH_SEL**: $0^{\sim}7$,参考电压越小,Rawdata的变化量越大,同时引入的噪声也会随之增大,反之相反。
- 3、 CSD_DS: 检测速度 0:24M, 1:12M, 2:6M, 3:4M, 检测速度越小,采样 Rawdata 的时间越慢,反之相反。建议默认 24M 最快,检测速度至少为 2 倍的 PRS 时钟。
- 4、 **RB_SEL**: Rb 电阻选择: 0:10K, 1:20K, 2:30K, 3:40K, 4:60K, 5:80K, 6:150K, 7:300K; 电阻越大, Rawdata 的变化量越大,同时引入的噪声也会随之增大,反之相反。
- 5、PRS DIV: 前端充放电时钟频率选择寄存器:
 - 0~61: 为固定频率: F=48MHz/2/(PRS_DIV+4)(6M~369K);
 - 62: 最高频率 3M, 最低频率 1M, 中心频率 1.5M, 正态分布;
 - 63: 最高频率 3M, 最低频率 1M, 中心频率 1.5M, 均匀分布;
 - PRS 时钟越大, Rawdata 的变化量越大, 同时引入的噪声也会增大, 反之相反。
- 6、PULL_I_SELA_L: 上拉电流源低8位。
- 7、 电流电流源大小=255.5-0.5*{PULL_I_SELA_H, PULL_I_SELA}, 电流源越小, 计数值越小。默认值: 0x00。
- 8、PULL_I_SELA_H: 上拉电流源高位。默认值: 0x01。

注:

- 1. Rawdata 为触摸按键电容计数器的实时原始计数值。
- 2. 实际应用中需要通过烧录调试软件查看数据并进行参数对比得到信噪比较好的一组参数。
 - 3. 芯片供电电压与参考电压关系: VCC-VTH>0.5V。

第13章 ADC

BF6958A 芯片包含一个单端、12 位线性逐次逼近的模数转换器 (ADC), ADC 的基准电压与芯片的 VCC 相连。ADC 通道都可以输入独立的模拟信号,ADC 模块每次转换 1 个通道,ADC_START=0→1(▲) 开启转换,转换完成后更新 ADC 结果寄存器并产生一个中断。BF6958A 芯片的 ADC 模块具有以下特性:

- 12 位分辨率高精度的线性逐次逼近 ADC;
- 单次转换模式;
- 采样时间和转换速度可配置

Page 125 / 153

ADC 结构框图

13.1. ADC 相关寄存器

			SFR 寄存器	
地址	名称	读写	复位值	说明
0xB4	ADC_SPT	RW	0x00	ADC 采样时间配置寄存器
0xB5	ADC_SCAN_CFG	RW	6'0x00	ADC 扫描控制寄存器
0xB6	ADCCKC	RW	4'0x00	ADC 时钟控制寄存器
0xB9	ADC_RDATAH	R	4'0x00	ADC 扫描结果寄存器,高 4 位
0xBA	ADC_RDATAL	R	0x00	ADC 扫描结果寄存器,低 8 位
0xBB	ADC_CFG1	RW	0x00	ADC 采样时序控制寄存器 1
0xBC	ADC_CFG2	RW	6'0x02	ADC 采样时序控制寄存器 2
0xD9	ADC_IO_SEL1	RW	0x00	ADC 功能选择寄存器 1
0xDA	ADC_IO_SEL2	RW	0x00	ADC 功能选择寄存器 2
0xDB	ADC_IO_SEL3	RW	0x00	ADC 功能选择寄存器 3
0xDC	ADC_IO_SEL4	RW	0x00	ADC 功能选择寄存器 4

ADC SFR 寄存器列表

13. 2. ADC 寄存器详细说明

ADC_SPT (B4H) ADC 采样时间配置寄存器

位编号	7	6	5	4	3	2	1	0					
符号		ADC_SPT											
读/写		读/写											
上电初始值				()	0							

位编号	位符号	说明
7 [~] 0	ADC SPT	ADC 采样时间配置寄存器
1 0	ADC_SF1	采样时间: sample_Timer = (ADC_SPT+1)*4*Tadc_clk

ADC_SCAN_CFG (B5H) ADC 扫描控制寄存器

位编号	7	6	5	4	3	2	1	0		
符号	ı	ı		ADC_ADDR						
读/写	-	-		读/写						
上电初始值	_	-		0						

位编号	位符号	说明
5~1	ADC_ADDR	ADC 通道地址选择寄存器,0~26 对应 ADCO~ADC26。
0	ADC_START	ADC 扫描开启寄存器 ADC_START=0→1(♠) 开启转换,扫描过程中不允许配置 ADC_START。 ADC_START 从 0 置 1,ADC 开始扫描,扫描一次结束后, ADC_START 硬件自动置 0,对应 ADC 中断标记位置 1,ADC 中断标记位需要软件清 0。

ADCCKC (B6H) ADC 时钟控制寄存器

12 0 0 11 0 (2 0 1	2) 1 12 0 7 3	1 1 1 1 1 1 1 1 1	11 44					
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	ADC	CKV	ADO	CCK
读/写	-	_	_	_	读/	/写	读/	/写
上电初始值	-	_	_	_	0	0	0	0

位编号	位符号	说明						
3 [~] 2	ADCCKV	ADC 比较器失调消除模拟输入时钟						
3 4	ADCCKV	0: 12MHz 1: 8MHz 2: 4MHz 3: 2MHz						
1~0	ADCCV	ADC_CLK 分频选择						
1 0	ADCCK	0: 8MHz 1: 6MHz 2: 4MHz 3: 3MHz						

ADC_RDATAH (B9H) ADC 扫描结果寄存器高 4 位

位编号	7	6	5	4	3	2	1	0
符号	_	ı	ı	ı		ADC_RAWD	OATA<11:82	>

读/写	_	_	_	_	读
上电初始值	_	_	_	_	0

位编号	位符号	说明
3~0	ADC_RAWDATA<11:8>	ADC扫描结果寄存器

ADC_RDATAL(BAH) ADC 扫描结果寄存器低 8 位

位编号	7	6	5	4	3	2	1	0	
符号		ADC_RAWDATA<7:0>							
读/写		读							
上电初始值				()				

位编号	位符号	说明
$7^{\sim}0$	ADC_RAWDATA<7:0>	ADC扫描结果寄存器

ADC CFG1(BBH) ADC 采样时序控制寄存器 1

	== == (====) === = >)(4)(1 + 4)(4 + 4)(4 + 14 + 14 + 14 + 14 + 14 + 14 + 14 +							
位编号	7	6	5	4	3	2	1	0
符号			ADCWNUM	SAMBG	SAMDEL			
读/写		读/写					读/写	
上电初始值		0						0

位编号	位符号	说明
7 [~] 3	ADCWNUM	采样完毕后距离转换间隔时间选择
1 3	ADCWNUM	3+ADCWNUM (ADC_CLK)
2	SAMBG	采样时序与比较时序间隔选择:
۷		0: 间隔 0; 1: 间隔 1 (ADC_CLK)
1~0	SAMDEL	采样延迟时间选择
1 0		0: 0; 1: 2; 2: 4; 3: 8(ADC_CLK)

ADC_CFG2 (BCH) ADC 采样时序控制寄存器 2

-				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
	位编号	7	6	5	4	3	2	1	0
	符号	-	FILTER_R_SEL	VREF_IN_	_ADC_SEL	ADC_I_S	EL[1:0]	CTRL_S	EL[1:0]
	读/写	ı	读/写	读/写		读/写		读	/写
	上电初始值	-	0	()	()	1	.0

位编号	位符号	说明
6	FILTER_R_SEL	输入信号滤波选择,0为不加RC滤波,1为加RC滤波
		输入给芯片内部 ADC26 基准电压选择
		01: 2.253V(不同芯片有偏差),使用时需要从芯片 Flash
5 [~] 4	VREF_IN_ADC_SEL	读取校准电压值,VREF_IN_ADC_SEL 档电压=
		{ CBYTE[0x43C6], CBYTE[0x43C7]} mV;
		其它:保留。

		ADC 偏置电流大小选择寄存器						
		ADC_I_SEL[0]:						
3 [~] 2	ADC_I_SEL[1:0]	0 为比较器偏置电流为 4uA; 1 为比较器偏置电流为 5uA;						
		ADC_I_SEL[1]:						
		0 为运放偏置电流为 4uA; 1 为运放偏置电流为 5uA;						
		ADC 比较器失调消除选择信号,默认值为10						
		CTRL_SEL[1:0]:						
1~0	CTRL_SEL[1:0]	00/01:为先采样再失调消除;						
		10: 所有开关一起断开;						
		11: 开关依次断开;						
ADC_IO_SEL1	ADC_IO_SEL1 (D9H)ADC 功能选择寄存器 1							

位编号	7	6	5	4	3	2	1	0
符号		SEL_ADC[7:0]						
读/写		读/写						
上电初始值				()			

位编号	位符号	说明			
7 [~] 0	SEL_ADC[7:0]	ADC 功能选择: 1:选择 ADC 功能, 0:不选择 ADC 功能			

ADC_IO_SEL2(DAH)ADC 功能选择寄存器 2

位编号	7	6	5	4	3	2	1	0	
符号		SEL_ADC[15:8]							
读/写		读/写							
上电初始值		0							

位编号	位符号	说明
$7^{\sim}0$	SEL_ADC[15:8]	ADC 功能选择: 1:选择 ADC 功能, 0:不选择 ADC 功能

ADC_IO_SEL3(DBH)ADC 功能选择寄存器 3

位编号	7	6	5	4	3	2	1	0
符号	SEL_ADC[23:16]							
读/写		读/写						
上电初始值		0						

位编号	位符号	说明						
$7^{\sim}0$	SEL_ADC[23:16]	ADC 功能选择: 1: 选择 ADC 功能, 0: 不选择 ADC 功能						

ADC_IO_SEL4(DCH)ADC 功能选择寄存器 4

位编号	7	6	5	4	3	2	1	0
符号	-		_	_	_	I	SEL_ADC	[25:24]
读/写	-	-	-	_	_	ı	读/	/写
上电初始值	_	_	_	_	_	_	()

位编号	位符号	说明						
$1^{\sim}0$	SEL_ADC[25:24]	ADC 功能选择: 1:选择 ADC 功能, 0:不选择 ADC 功能						

注意:

1. 时序要求: (3+ADCWNUM)/F ADCK >4 /F ADCKV

F ADCK: ADC分频时钟;

F ADCKV: ADC比较器失调消除模拟输入时钟;

2. ADC转换时间: T= sample_time + time2 + time3;

sample_time= (ADC_SPT+1)*4*Tadc_clk;

 $time2 = (ADCWNUM + 3 + SAMDEL) * Tadc_clk(SAMDEL = 0: 0: 1: 2: 2: 4: 3: 8);$

time3= (2*1+12) *Tadc_clk;

ADC外入信号加RC滤波后的电压建立时间>= 2*(ADC采样转换出数时间);

3. 当电源电压波动较大或下降时,可通过公式ADCINNER_Data/ VREF_IN_ADC_SEL = 4096/VCC 可以反算VCC电压值,可通过公式Vin_Data/Vin=4096/VCC可以反算Vin电压值。ADCINNER Data: ADC内部部通道数据:

Vin Data: ADC 输入通道数据;

Vin: 输入电压:

VREF IN ADC SEL: 需要读取芯片校准值,

Vin = (Vin_Data/ADCINNER_Data)*VREF_IN_ADC_SEL, VREF_IN_ADC_SEL需要读取 芯片校准值, 先获取内部部通道数据, 再获取输入电压Vin_Data数据, 两次获取数数间隔时间尽量短:

- 4. ADC进中断条件:配置顺序为ADC_IO_SEL使能->ADC中断使能->ADC_ADDR(地址与ADC_IO_SEL必须对应)-> ADC_START,应用时初始化配置时序注意。如果有ADC与IO口功能复用的应用,需要注意切换时序,若ADC_IO_SEL使能关闭或地址与ADC_IO_SEL不对应都不能开启ADC扫描,必须按照配置顺序: ADC_IO_SEL使能->ADC中断使能->ADC_ADDR(地址与ADC_IO_SEL必须对应)-> ADC_START顺序才能开启ADC扫描。
- 5. 引脚配置成ADC功能时,该引脚需要配置成IO输入模式,其它复用功能关闭,如上拉电阻等。

ADC 检测时间:

公式	说明
$T_{AD} = T_{ADC_SPT} + T_{W1} + T_{W2}$	ADC 检测时间
$T_{\text{WI}} = (ADCWNUM+3) *T_{adc_clk}$	采样完毕转后距离转换间隔时间
$T_{w2} = (SAMDEL + 2 \times 1 + 12) \times T_{adc_c1k}$	采样延迟时间
$T_{ADC_SPT(us)} = 4*(ADC_SPT+1)/F_{adc_clk(MHz)}$	ADC 采样时间
$F_{\rm adc_clk(MHz)}$	ADC 分频时钟

13.3. ADC 配置流程

ADC 配置流程图

第 14 章 LVDT

BF6958A 系列支持低压报警功能,有效监控电压动态变化情况。支持 4 个档位电压,分别为: 2.4V/3.0V/3.6V/4.2V (预设点降压中断,迟滞 0.1V 产生对应升压中断)。

当电压监控配置上述阈值时,电压下降至此阈值会触发低压中断,系统可根据应用需要,在低压中断中做适当的处理。

14.1. LVDT 相关寄存器

	SFR 寄存器								
地址	名称	读写	复位值	说明					
0x86	INT_POBO_STAT	RW	2'0x00	升压/降压中断状态寄存器					
0xFE	PD_ANA	RW	5'0x1F	模块开关控制寄存器					
0xFF	SEL_LVDT_VTH	RW	2'0x00	LVDT 阈值选择寄存器					

LVDT SFR 寄存器列表

14. 2. LVDT 寄存器详细说明

SYS_CLK_CFG(86H)时钟控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	ı	ı	_	ı	ı	INT_PO_STAT	INT_BO_STAT
读/写	_	ı	ı	_	ı	ı	读/写	读/写
上电初始值	_	_	_	_	_	_	0	0

位编号	位符号	说明
1	INT_PO_STAT	1vdt 升压中断状态 1: 升压中断有效; 0: 升压中断无效
0	INT_BO_STAT	1vdt 降压中断状态 1:降压中断有效;0:降压中断无效

PD_ANA (FEH) 模块开关控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	Ī	-	-	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
读/写	-	_	-	读/写	读/写	读/写	读/写	读/写
上电初始值	1	ı	ı	1	1	1	1	1

位编号	位符号	说明					
4	PD_LVDT	LVDT 控制寄存器, 1: 关闭, 0: 打开, 默认关闭					
3	PD_BOR	BOR 控制寄存器, 1: 关闭, 0: 打开, VBOR=2.1V, 默认闭					
2	PD_XTAL_32K	RTC 晶振电路 (32768Hz/4MHz) 控制寄存器 1: 关闭, 0: 打开, 默认关闭					
1	PD_CSD	CSD 工作控制寄存器: PD_CSD=0 CSD 模块正常工作; PD_CSD=1 CSD 模块不工作					
0	PD_ADC	模拟 ADC 关断控制寄存器: PD_ADC=0 ADC 模块正常工作; PD_ADC=1 ADC 模块不工作					

SEL_LVDT_VTH (FFH) LVDT 阈值选择寄存器

	\ /							
位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_	_	
读/写	ı	_	_	_	ı	ı	读/	'写
上电初始值	-	_	_	_	-	-	0	0

位编号	位符号	说明				
1~0		LVDT 阈值选择: 00=2.4V; 01=3.0V; 10=3.6V; 11=4.2V				

注意:建议 LVDT 配置 3V, LVDT 电压检测点低档位对电源纹波抑制更好,若高电压检测电压档受到干扰时需求软件作干去抖处理降低误判机率。

14.3. LVDT 配置流程

LVDT 配置流程图

第15章 类 EEPROM

类 EEPROM 大小为 1024 Bytes 为一页,地址为 $(0x3C00^{\sim}0x3FFF)$,使用时需要进行页擦除,然后进行字节写操作,擦除后仅能被写入一次。

REG_ADDR = 0x20; REG_DATA = 0x00 时:

REG_ADDR = 0x20; REG_DATA = 0x01 时:

类EEPROM	0x4400	NVR3	0x45FF
CLLIKOW		NVR4	
	0x4600		0x47FF

类 EEPROM 地址

15.1. 类 **EEPROM** 相关寄存器

	SFR 寄存器										
地址	名称	读写	复位值	说明							
0xF9	SPROG_ADDR_H	RW	3 0x00	EEPROM 地址控制寄存器							
0xFA	SPROG_ADDR_L	RW	0x00	EEPROM 地址控制寄存器							
0xFB	SPROG_DATA	RW	0x00	EEPROM 数据寄存器							
0xFC	SPROG_CMD	RW	0x00	EEPROM 命令寄存器							
0xFD	SPROG_TIM	RW	0x1A	EEPROM 擦写时间控制寄存器							
0x96	REG_ADDR	RW	0x00	EEPROM 二级总线地址控制寄存器							
0x97	REG_DATA	RW	0x00	EEPROM 二级总线数据寄存器							

15.2. 类 EEPROM 寄存器详细说明

SPROG_ADDR_H (F9H) EEPROM 地址控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	_	_	_	_	_	_		
读/写	_	_	_	_	_	读/写		
上电初始值	_	_	_	-	_	0 0		0

位编号	位符号	说明
2 [~] 0		REG_ADDR = 0x20; REG_DATA = 0x00 时, Bit[2]:选择EEPROM块(可进行页擦除和字节烧写), 0:表示选择block0; 1:保留。block大小1024Bytes。 Bit[1:0]:表示EEPROM块地址的高2 位,SPROG_ADDR[9:8]。 REG_ADDR = 0x20; REG_DATA = 0x01时, SPROG_ADDR_H[2] = 0,选择NVR3(512Bytes); SPROG_ADDR_H[2] = 1,选择NVR4(512Bytes) SPROG_ADDR_H[1]保留, {SPROG_ADDR_H[0],SPROG_ADDR_L[7:0]}表示页内字节地址

SPROG_ADDR_L(FAH) EEPROM 地址控制寄存器

位编号	7	6	5	4	3	2	1	0			
符号		_									
读/写		读/写									
上电初始值				()						

位编号	位符号	说明
$7^{\sim}0$		Bit[7:0]:表示 EEPROM 块地址的低 8 位,SPROG_ADDR[7:0]

SPROG_DATA(FBH) EEPROM 数据寄存器

	()		/H - 4 14 HH							
位编号	7	6	5	4	3	2	1	0		
符号		_								
读/写		读/写								
上电初始值				()					

位编号	位符号	说明					
7 [~] 0		EEPROM 烧写: 待写入的数据					

SPROG_CMD(FCH) EEPROM 命令寄存器

位编号	7	6	5	4	3	2	1	0		
符号		-								
读/写		读/写								

上电初始值	0
-------	---

位编号	位符号	说明
7~0		写入 0x96: EEPROM 页擦除; 写入 0x69: EEPROM 字节烧写

SPROG_TIM(FDH) EEPROM 擦写时间控制寄存器

位编号	7	6	5	4	3	2	1	0		
符号		-								
读/写		读/写								
上电初始值				5	a					

位编号	位符号	说明						
		字节写时间固定为 23.5us, REG_ADDR = 0x20; REG_DATA = 0x00 时, bit[7:5]: 保留:						
bit[7:5]: 保留; bit[4:0]: 0~9 对应擦除时间(1~10ms)+0.13ms(步进 7~0 ————————————————————————————————————								
		REG_ADDR = 0x20; REG_DATA = 0x01 时, bit[7:5]: 保留;						
bit[4:0]: 0~9 对应擦除时间(0.5~5ms)+0.065ms(z 0.5ms),>9 时为 5.065ms。								

REG_ADDR (96H) 二级总线地址配置寄存器

_ \	,									
位编号	7	6	5	4	3	2	1	0		
符号	-	_	REG_ADDR							
读/写	-	_								
上电初始值	-	_	0	0	0	0	0	0		

REG_DATA (97H) 二级总线数据读写寄存器

位编号	7	6	5	4	3	2	1	0			
符号		REG_DATA									
读/写		读/写									
上电初始值	0										

位编号	位符号	说明
5 [~] 0	REG_ADDR	REG_ADDR = 0x20; REG_DATA = 0x00 时,选择 mainblock 最后 1K 作为 eeprom 功能;
7 [~] 0	REG_DATA	REG_ADDR = 0x20; REG_DATA = 0x01 时,选择 NVR3 和 NVR4 作为 eeprom 功能,每块 512Bytes。

15.3. 页擦除步骤

REG_ADDR = 0x20; REG_DATA = 0x00 时选择操作 mainblock EEP (0x3C00~0x3FFF)1*1024 字节。

REG_ADDR = 0x20; REG_DATA = 0x01 时选择操作 NVR3/NVR4 2*512 字节。此时用户存储空间为 15Kbytes $(0x0000^{\circ}3BFF)$ 。

- 1. SPROG_TIM[4:0] = 0~9(建议 5ms), 字节写时间固定为 23. 5us, 在主程序 main()函数初始 化只配置一次;
 - 2. 关闭中断;
 - 3. 配置 SPROG ADDR L = 0x00;
 - 4. 配置 SPROG ADDR H = 0x00;选择擦除该页;
 - 5. 配置 $SPROG_CMD = 0x96$;
 - 6. 写入 4 个 NOP 指令:
 - 7. 开始擦除, CPU 进入 IDLE 模式,擦除完成后自动退出 IDLE 模式;
 - 8. 需要继续擦除数据,跳转至第2步;
 - 9. 配置 SPROG ADDR L=0x00, SPROG ADDR H=0x00, 恢复中断设置;

15.4. 字节写步骤

REG_ADDR = 0x20; REG_DATA = 0x00 时选择操作 mainblock EEP (0x3C00~0x3FFF)1*1024 字节。

REG_ADDR = 0x20; REG_DATA = 0x01 时选择操作 NVR3/NVR4 2*512 字节。

- 1. SPROG_TIM[4:0] = 0~9(建议 5ms), 字节写时间固定为 23. 5us, 在主程序 main()函数初始 化只配置一次;
 - 2. 关闭中断;
 - 3. 配置 SPROG ADDR H 、SPROG ADDR L,字节写地址;
 - 4. 配置 SPROG DATA;
 - 5. 配置 SPROG CMD = 0x69;
 - 6. 写入 4 个 NOP 指令;
 - 7. 开始写入, CPU 进入 IDLE 模式, 完成后自动退出 IDLE 模式;
 - 8. 需要继续写数据,跳转至第2步;
 - 9. 配置 SPROG ADDR L=0x00, SPROG ADDR H=0x00, 恢复中断设置;

第16章 烧录调试

16.1. JTAG 电路连接

在进行仿真调试时,需要接 TDI、TCK、TMS、TDO、VCC、VSS 六根线,JTAG 调试模式下,JTAG 口的 IO 功能被屏蔽,建议不要操作配置 JTAG 调试 I/O 口的其它功能,以免影响 JTAG 调试功能。烧录时仅接 TDI、TCK、VCC、VSS 四根线。

JTAG 电路连接参考图

16.2. TouchKey 数据辅助烧录调试

连接芯片 PGC、PGD、VCC、VSS 四根线,进入烧录界面时,选择对应型号的芯片,打开编译好的 HEX 文件,点击一键写 flash 等待烧录完成。

进入调试界面时,先烧录带调试数据发送模式的 HEX 文件,点击开始调试可以查看按键数据。

示例:

注: 具体操作说明参照 TK 烧录调试指南。

第17章 CPU 指令系统

17.1.指令编码

BF6958A 的指令分为单字节指令、双字节指令和三字节指令。

单字节指令:单字节指令由8位二进制编码构成。指令中只有指令操作码,没有指令操作数或者至指令操作数隐含于指令操作码。该类指令共有49条。

双字节指令:双字节指令由两个字节构成,一个为操作码,另一个为操作数(或操作数的地址),在程序存储器中按顺序存放。该类指令共有46条。

三字节指令:三字节指令由一个字节的指令操作码和两个字节的操作数(或操作数的地址)构成。该类指令共有 16 条。

17.2.指令集

为了描述指令方便,在指令中使用了一些符号,这些符号的含义说明如下:

Addr 11	低 11 位地址
addr 16	16 位地址
direct	直接寻址,8位内部数据及地址(包括特殊功能寄存器)
bit	位地址
#data	8 位立即数
#data16	16 位立即数
rel	带符号的8位相对位移量
n	数字 0~7
Rn	当前寄存器组的 R0~R7 工作寄存器
i	数字 0、1
Ri	工作寄存器 RO、R1
@	寄存器间接寻址
←	数据传送方向
\wedge	逻辑"与"
\vee	逻辑"或"
\oplus	逻辑"异或"
\checkmark	对标志位有影响
X	对标志位无影响

CPU 指令符号含义表

提供使用的汇编指令、各指令的功能、占用的字节数、指令执行周期以及对相应标志位的影响如下表所示:

	8 位数据传送类指令										
助记符		功能	K	付标志	位影	响	字节数	周期数			
		切肥	P	OV	AC	CY	ナリ剱				
	Rn	A ← (Rn)	√	×	X	×	1	1			
MOV A	direct	A←(direct)	√	×	×	×	2	1			
MOV A	@Ri	A←((Ri))	√	×	×	×	1	1			
	#data	A←data	√	×	×	×	2	1			
	A	Rn ← (A)	×	×	X	×	1	1			
MOV Rn	direct	Rn←(direct)	×	×	×	×	2	2			
	#data	Rn←data	×	×	×	×	2	1			
MOV	A	direct1←(A)	×	×	X	×	2	1			
MOV	Rn	direct1←(Rn)	×	×	×	×	2	2			
direct1,	direct2	direct1←(direct2)	×	×	×	×	3	2			

	@Ri	direct←((Ri))	X	X	×	×	2	2
MOV direct,	#data	direct←data	×	×	×	×	3	2
	A	(Ri) ← (A)	×	×	×	×	1	1
MOV @Ri	direct	(Ri) ← (direct)	×	×	×	×	2	2
MO V ORT	#data	(Ri) ←data	×	×	×	×	2	1
16 位数据传		(III) data					<u> </u>	<u> </u>
	~ 7,111 4		対标	志位	影响			
助记符		功能	P			字节数	周期数	
MOV DPTR, #c	lata16	DPTR←data16	\times \times \times			×	3	2
外部数据传述	送与查表类指	令						
ロ エ ヽコ <i>た</i> ケ			对标	志位	影响		产业业	田 和 朴
助记符		功能	Р	OV	AC	CY	字节数	周期数
MOVX @DPTF	R, A	(DPTR) ← (A)	×	×	×	×	1	2
MONO A	@A+DPTR	$A \leftarrow ((A) + (DPTR))$	√	×	X	×	1	2
MOVC A,	@A+PC	$A \leftarrow ((A) + (PC))$	√	×	×	×	1	2
MOVX A,	@DPTR	A←(DPTR)	√	×	X	×	1	2
注: MOVX 指	令的周期数以	以及字节数可通过寄存器	器 CKC	ON<2:	0>配:	置.		1
交换类指令								
ロよりコケケ		功能	对标	志位	影响		<i>→</i> ++ ¥ <i>L</i>	国地粉
助记符			Р	OV	AC	CY	字节数	周期数
	Rn	(Rn) ← (A)	√	×	×	×	1	2
XCH A,	direct	(A) ← (direct)	√	×	×	×	2	1
	@Ri	(A) ← ((Ri))	X	×	×	×	1	1
XCHD A, @Ri		(A) 3~0~((Ri)) 3~0	√	×	×	×	1	1
SWAP A		$(A) 7-4^{\sim} (A) 3-0$	√	×	×	×	1	1
算术运算类技	指令							
ロ上 ヽコ <i>た</i> ケ		T. 4K	对标	志位	影响		产业业	田 和 朴
助记符		功能	Р	OV	AC	CY	字节数	周期数
	Rn	A ← (A) + (Rn)	√	√	√	√	1	1
ADD 4	direct	A ← (A) + (direct)	√	√	√	√	2	1
ADD A,	@Ri	A ← (A) + ((Ri))	√	√	√	√	1	1
	#data	A←(A)+data	√	√	√	√	2	1
	Rn	$A \leftarrow (A) + (Rn) + (C)$	√	√	√	√	1	1
ADDC A,	direct	A ← (A) + (direct) + (C)	√	√	√	√	2	1
11100 11,	@Ri	A ← (A) + ((Ri)) + (C)	√	√	√	√	1	1
			1	Ī	,	,	0	1
	#data	$A \leftarrow (A) + data + (C)$	\checkmark	\checkmark	\checkmark	\checkmark	2	1
INC	#data A	$A \leftarrow (A) + data + (C)$ $A \leftarrow (A) + 1$	√ √	√ ×	√ ×	√×	1	1

	direct	direct←(direct)+1	×	×	×	×	2	1
	@Ri	(Ri) ← ((Ri))+1	×	×	×	×	1	1
	DPTR	DPTR←((DPTR))+1	×	×	×	×	1	2
DA A		BCD 码调整	√	×	√	√	1	1
	Rn	$A \leftarrow (A) - (Rn) - (C)$	√	×	×	×	1	1
SUBB A	direct	A ← (A) - (direct) - (C)	√	√	√	√	2	1
	@Ri	(A) ← (A) - ((Ri)) - (C)	√	√	√	√	1	1
	#data	A ← (A) -data-(C)	√	√	√	√	2	1
	A	A ← (A) −1	√	×	×	×	1	1
DEC	Rn	Rn ← (Rn) -1	×	×	×	×	1	1
DEC	direct	direct←(direct)-1	×	×	×	×	2	1
	@Ri	(Ri) ← ((Ri))-1	×	×	×	×	1	1
MUL AB		BA←(A)*(B),执行乘 法运算后,结果低字 节存于 A,高字节存 于 B	√	√	×	0	1	4
DIV AB		A←(A)/(B) B←余数	√	√	X	0	1	4

注: DA 指令使用时,,调整规则如下: 若累加器 A 低 4 位大于 9 或者 AC=1,则 A←A+06H; 若累加器 A 高 4 位大于 9 或者 CY=1,则 A←A+60H

逻辑运算类指令

D4.27 55		T-1-4L	对标	志位	影响		 	田地粉
助记符		功能	Р	OV	AC	CY	字节数	周期数
CLR A		A ← 00H	√	×	×	×	1	1
CPL A		$A \leftarrow (\overline{A})$	√	×	×	×	1	1
	Rn	$A \leftarrow (A) \wedge (Rn)$	√	×	×	×	1	1
ANL A,	direct	$A \leftarrow (A) \wedge (direct)$	√	×	×	×	2	1
	@Ri	$A \leftarrow (A) \wedge ((Ri))$	√	×	×	×	1	1
	#data	A←(A) ∧data	√	×	×	×	2	1
ANL direct,	A	direct←(A) ∧ (direct)	×	×	×	×	2	1
	#data	direct ← (direct) ∧ data	×	×	×	×	3	2
	Rn	$A \leftarrow (A) \lor (Rn)$	√	×	×	×	1	1
ODI A	direct	$A \leftarrow (A) \lor (direct)$	√	×	×	×	2	1
ORL A,	@Ri	$A \leftarrow (A) \lor ((Ri))$	√	×	×	×	1	1
	#data	A←(A)∨data	√	×	×	×	2	1
ORL	A	direct←(direct)∨	×	×	×	×	2	1

direct,		(A)							
	#data	direct←(direct)∨ data	×	×	×	×	3	2	
	Rn	A ← (A) ⊕ (Rn)	√	×	×	×	1	1	
WDI 4	direct	$A \leftarrow (A) \oplus (direct)$	√	×	X	×	2	1	
XRL A,	@Ri	A ← (A) ⊕ ((Ri))	√	×	×	×	1	1	
	#data	A←(A) ⊕data	√	×	×	×	2	1	
XRL	A	direct←(direct)⊕ (A)	×	×	×	×	2	1	
direct,	#data	direct←(direct)⊕ data	×	×	×	×	3	2	
循环、移位	类指令								
助记符		 功能	对杨	志位	影响		 字节数	国细粉	
助此刊		切配	Р	OV	AC	CY	于中数	周期数	
RL A		A 中内容循环左移一 位	×	×	×	×	1	1	
RLC A		A 中内容带进位循环 左移一位	√	×	×	√	1	1	
RR A		A 中内容循环右移一 位	×	×	×	×	1	1	
RRC A		A 中内容带进位循环 右移一位	√	×	×	√	1	1	
调用、返回	类指令								
ロエ ン コ <i>た</i> ケ		-1 Ak	对标志位影响				学	田田米	
助记符		功能	Р	OV			字节数	周期数	
LCALL add	lr16	(PC) ← (PC) +3, (SP) ← (PC), (PC) ←addr16	×	×	×	×	3	2	
ACALL addr	11	$(PC) \leftarrow (PC) + 2$, $(SP) \leftarrow (PC)$, $(PC10^{\circ}0) \leftarrow addr11$	×	×	×	×	2	2	
RET		(PC) ← ((SP))	×	×	X	×	1	2	
RETI		(PC)←((SP))从中断 返回	×	×	×	×	1	2	
转移类指令									
助记符		功能	对标 P	志位 OV	影响AC	СҮ	字节数	周期数	
LJMP add	lr16	PC←addr15~0	X	×	×	X	3	2	
	r11	PC10 [~] 0←addr10 [~] 0	×	×	×	×	2	2	

SJMP	rel	PC←(PC)+rel	X	X	X	X	2	2
JMP	@A+DPTR	$PC \leftarrow (A) + (DPTR)$	×	×	×	×	1	2
		PC← (PC) +2,						
JZ	rel	若	×	×	×	×	2	2
		(A)=0, PC←(PC)+rel						
		PC ← (PC) +2,						
JNZ	rel	若	×	×	×	×	2	2
JINZ	rer	$(A) \neq 0$, $PC \leftarrow (PC) + re$					2	<u> </u>
		1						
		PC← (PC) +2,						
JС	rel	若	×	×	×	×	2	2
J 0		(CY)=1, PC← (PC)+re						
		1						
		PC ← (PC) +2,						
JNC rel		若	×	×	×	×	2	2
3110 101		(CY)=0, PC← (PC)+re						
		1						
		PC← (PC) +3,						
ЈВ	bit, rel	若	×	×	×	×	3	2
	,	(bit)=1, PC← (PC)+r						
		el						
		PC ← (PC) +3,						
JNB bit	,rel	若	×	×	×	×	3	2
		$(bit)=0, PC \leftarrow (PC)+r$						
		el PG (PG) + 9						
		PC ← (PC) +3,						
JBC bit	,rel	若(bit)=1,则	×	×	×	×	3	2
		bit ← 0,						
	1	PC ← (PC) +re1						
		PC←(PC)+3, ≠(A) ≠direct III						
	A,	若(A) ≠direct 则					3	9
	direct, rel	PC(PC)+rel 类(A)/(direct) 即	×	×	×	×	3	2
		若(A)<(direct),则 CY←1						
CINE		PC ← (PC) +3,						
CJNE		若(A) ≠data 则						
	A #data rol	PC(PC)+rel	×	\ \ \	\ \ \	\ \ \	3	2
	A, #data, rel	若(A)<(data),则			× ×	×	3	<u> </u>
		(A) \ (uata), M						
	Rn, #data, rel	PC ← (PC) +3,	X	X	X	X	3	2
	mi, mada, i e i	10, 0,			_ / \	/\		

			若(Rn) ≠data						
			则 PC←(PC)+rel						
			若(Rn)<(data),则						
			CY ← 1						
			PC←(PC)+3, 若						
	@Ri, #data, re		((Ri)) ≠data则						
	1		PC← (PC) +re1	×	×	×	×	3	2
			若((Ri))<(data),则 CY←1						
			$PC \leftarrow (PC) + 2, Rn \leftarrow (Rn$						
)-1,						
	Rn, rel		/ i, 若(Rn) ≠0,则	×	×	×	×	2	2
			PC←(PC)+rel						
DJNZ			PC← (PC) +3,			××			
			(direct) ← (direct)						
	direct,	, rel	-1,	×	×		×	3	2
			若(direct) ≠0,						
			则 PC←(PC)+rel						
堆栈、空	区操作类技	指令	T					T	T
助记符			功能		志位		ı	字节数	周期数
277.1211				Р	OV	AC	CY	V , >>V	
PUSH	direct		$SP \leftarrow (SP) + 1, (SP) \leftarrow ($	×	×	×	×	2	2
			direct)						
POP dire	ect		direct ← (SP), SP ← (×	×	×	×	2	2
NOP			SP)-1 空操作	×	×	×	×	1	1
位操作类			11000					_	_
			TI-AK	对标	志位	影响		产业业	国 #0 */*
助记符			功能	Р	OV	AC	CY	字节数	周期数
MOV	С,	bit	CY←bit	×	×	×	√	2	1
MOV	bi	it,C	bit←CY	×	×	×	×	2	1
CLR	С		CY←0	×	×	×	√	1	1
CLK	bi	it	bit←0	×	×	×	×	2	1
SETB	С		CY ← 1	X	×	×	√	1	1
SEID	bi	it	bit←1	X	×	×	×	2	1
CPL	С		$CY \leftarrow (\overline{CY})$	X	×	×	√	1	1
	bi		bit←(bit)	X	×	×	×	1	1
	C, bit C , /bit		$C \leftarrow (C) \land (bit)$	X	X	X	√	2	2
ANL			$C \leftarrow (C) \wedge (\overline{bit})$	X	X			2	2

ORL	C, bit	$C \leftarrow (C) \lor (bit)$	×	×	×	√	2	2	
	C,/bit	$C \leftarrow (C) \lor (\overline{bit})$	×	×	X	√	2	2	
伪指令	伪指令								
助记符	指令格式		功能说明						
ORG	【标号: 】ORG addr16			规定标号的起始地址					
EQU	标号 EQU 数值或标号			为标号赋值					
DB	【标号: 】 DB 项或项表		用于定义内存一个单元或一批单元的字						
			节内容						
DW	【标号:】 DW 项或项表		用于定义内存某两单元或多个两个单元						
			构成的 16 位字内容						
DS	【标号:	DS 表达式	规定从标号开始留下若干个存储单元				储单元		
BIT	标号 BIT 位地址			把位地址赋给标号					
END	END 放在汇编语言程序的最后,用以告诉汇编程序,源程序到此为止。没								
	有 END 结束的源程序将进入死循环								

CPU 指令集表

CPU 相关寄存器

0.0 相关的打册					
SFR 寄存器					
地址	名称	读写	复位值	说明	
0x81	SP	RW	0x07	堆栈指针寄存器	
0x82	DPL	RW	0x00	数据指针寄存器 0 低 8 位	
0x83	DPH	RW	0x00	数据指针寄存器 0 高 8 位	
0x87	PCON	RW	0x00	低功耗模式选择寄存器	
0xE0	ACC	RW	0x00	累加器	
0xF0	В	RW	0x00	B寄存器	

CPU SFR 寄存器列表

第18章 参考应用电路

注:

- 1、 以上原理图仅供参考, RSX 通道电阻建议 1K~8.2K, 常规 4.7K。
- 2、 PS: JTAG调试外围电路仅JTAG调试用,若仿真器或转接板上已有上拉电阻,则无需接JTAG上拉电阻。
- 3、 电源、地并行的0欧电阻替换为磁珠, EMI测试项(RE)可增加测试裕量, 建议参数600 欧@100MHz。

第19章 封装信息

订货信息

封装形式	工作温度		包装形式	保留后续用	
S:SOP		A: −40°C~+150°C	B:编带	_	
T:TSSOP	汽车级	B: −40°C~+125°C	L:料管	_	
M:MSSOP		C: −40°C~+105°C	T:托盘	_	
L:LQFP		D: -40°C~+85°C	_	_	
Q:QFN	工业级	K: −40°C~+85°C	_	_	
B:BGA		J: −40°C~+105°C	_	_	
D:DIP		L: −40°C~+125°C	_	_	
_	消费级	P: −25°C~+70°C	_	_	
_		Q: 0°C~+70°C	_	_	

示例:

改版记录

改版日期	改版内容	改版人	备注
2020-06-10	初版	JX	V1. 0
2020-06-12	1. 更新 DC 特性	JX	V1. 1
2020-06-19	1. 更新 DC 特性	JX	V1. 2
2020-07-06	1. 更新 DC 特性	JX	V1.3
2020-07-13	1. 更新特性简介	TV	771 4
	2. 更新 ADC 描述	JX	V1. 4
	1. 更新 ADC 特性		
	2. 增加寄存器 0xA0 描述		V1. 5
	3. 更新 0xF1 描述		
	4. 增加 UID 读取描述		
	5. 更新寄存器复位值宽度描述		
	6. 更新 ADC 配置流程		
	7. 修正读取芯片唯一识别码(UID)步骤		
	8. 增加上拉电阻选择寄存器表格描述		
	9. 更新 ADC 特性参数表		
	10. GPIO 章节增加 0xEF 寄存器描述	JX	
	11. 更新 2.1 AC 特性		
2020-11-12	12. 更新 2.4 极限参数		
2020 11 12	13. 更新寄存器 0xB5、0xD7 描述		
	14. 第 13 章更新 ADC 注意点		
	15. 更新 ADCCKV 寄存器描述		
	16. PWM 章节增加注意点		
	17. 更新寄存器 0xFE 描述		
	18. IIC 章节增加描述		
	19. 更新 RSX 通道电阻建议		
	20. 删除中断触发类型		
	21. IICEN 更正为 IIC_EN		
	22. 更新 PU_PX 寄存器、ODRAIN_EN 寄存器描		
	述		
	23. UARTO 章节增加寄存器 0xF2 描述		

免责声明

- 1、此文档中的信息可以在不通知用户进行不定期勘误修改及版本更新,详细见改版记录,最新版本请联系 FAE 或代理商索取。
- 2、比亚迪半导体有限公司将竭尽最大的努力保证本公司产品的高质量与高稳定性。尽管如此,由于一般半导体器件的电气敏感性及易受到外部物理伤害等固有特点,本公司产品有可能在这些情况下出现故障或失效。当使用本公司产品时,使用者有责任遵从安全规则来设计一个安全及稳定的系统环境。使用者可通过去除多余器件、故障预防及火灾预防等措施来避免可能发生的意外、火灾及公共伤害。在用户使用该产品时,请遵从本公司最新说明书上规定的操作步骤来使用该产品。
- 3、在此文档中的比亚迪半导体有限公司的产品是为一般电气应用(电脑、个人工具、办公司工具、测量工具、工业机械器件、家用电器等)所设计的。本公司该产品不能及禁止应用在一些需要极高稳定性及质量的特殊设备上,以免导致人员伤亡等意外发生。产品不能应用范围包括原子能控制设备、飞机及航空器件、运输设备、交通信号设备、燃烧控制设备、医药设备以及所有安全性设备等等。使用者在以上列举的非产品应用范围内使用时造成的损失与伤害,本公司概不负责。