Advanced Topics in Communication Networks

Internet Routing and Forwarding

Laurent Vanbever

nsg.ee.ethz.ch

6 October 2020

Lecture starts at 14:15

Materials inspired and/or coming from Olivier Bonaventure, Mike Freedman, Nick Feamster, Alex Snoeren, Jennifer Rexford, and p4.org

Thanks for your 3/2/1 input on padlet! Let me answer your lecture-related questions

https://padlet.com/romainjacob42/qxhdeqy7cd6nm05t

- How should we compare a software-programmable (P4) switch with more traditional L2/L3 switches or L3 routers?
- 2 Can I also do NAT using P4?
- 3 How can I make a P4 program modular?
- 4 Are there libraries of classical P4 programs?

- 5 How does the ternary match work?
- 6 Which operations may slow down the program and hence slow down switching?

- 7 What is the point of penultimate popping?
- 8 How do MPLS routers deal with MTU to fit extra MPLS headers?

Ternary match in P4

	action	
earch_word	d	priority
0*	a1	1
1*	a2	2
10*	a3	3
111*	a4	4
101*	a5	5
	0* 1* 10* 111*	0* a1 1* a2 10* a3 111* a4

```
table ternary_table {
    key = {
        hdr.ipv4.dstAddr: ternary;
    }
    actions = {
        ipv4_forward;
        drop;
        NoAction;
    }
    size = 1024;
    default_action = NoAction();
}
```

```
table_set_default ternary_table drop

table_add ternary_table ipv4_forward 0x00000000&&0x800000000 => 00:00:00:00:00:00:01 2 5

table_add ternary_table ipv4_forward 0x80000000&&0x800000000 => 00:00:00:00:00:00:02 2 4

table_add ternary_table ipv4_forward 0x80000000&&0xc00000000 => 00:00:00:00:00:00:03 2 3

table_add ternary_table ipv4_forward 0xe0000000&&0xe00000000 => 00:00:00:00:00:00:02 2 4

table_add ternary_table ipv4_forward 0xe0000000&&0xe00000000 => 00:00:00:00:00:00:00:02 2 1
```

Last week on Advanced Topics in Communication Networks

We *finished* to dive in the P4 ecosystem and *continued* to look at Multiprotocol Label Switching

P4 environment

P4 language label switching

What is needed to program in P4?

Deeper-dive into the language constructs

the basics

P4 environment

P4 language label switching

What is needed to program in P4?

Deeper-dive into the language constructs

Stateful objects in P4

- Table managed by the control plane
- Register store arbitrary data
- Counter count events
- Meter rate-limiting
- ...

externs in v1model

Summary

	Data plane interface		
Object	read	modify/write	
Table	apply()	_	
Register	read()	write()	
Counter	_	count()	
Meter	execute()		

Control plane interface

read	modify/write	
yes	yes	
yes	yes	
yes	reset	
configuration only		

P4 environment

P4 language label switching

the basics

Multiprotocol Label Switching

"IP meets virtual circuits"

Label Distribution Protocol

Label Distribution Protocol

We'll see two label distribution protocols: LDP and RSVP-TE

LDP RSVP-TE

Who initiates LSP creation?

What types of LSP are signaled?

Can LSPs follow arbitrary paths?

How easy is it to manage?

Does it scale?

	LDP	RSVP-TE
Who initiates LSP creation?	egress	ingress
What types of LSP are signaled?	unidirectional & multi-point-to-point "many heads, one tail"	unidirectional & point-to-point "one head, one tail"
Can LSPs follow arbitrary paths?	nope only shortest-paths	yes
How easy is it to manage?	simple, "automatic"	hard, manual
Does it scale?	yep	not-so-much

LDP RSVP-TE

Can LSPs follow arbitrary paths?

nope only shortest-paths LDP RSVP-TE

Can LSPs follow arbitrary paths?

What's the main usage?

nope

only shortest-paths

virtual private network

yes

traffic engineering

fast convergence

This week on

Advanced Topics in Communication Networks

label switching

traffic engineering

the basics

(the end)

IP-, MPLS-based

(the beginning)

label switching

traffic engineering

the basics (the end)

Switch to slides 94/117 from 22 Sep 2020

How does ingress LSR determine the label to be used to forward a received packet?

- Principle
 - 1. Divide the set of all possible packets into several Forwarding Equivalence Classes (FEC)
 - A FEC is a group of IP packets that are forwarded in the same manner (e.g. over the same path, with the same forwarding treatment)
 - Examples
 - All packets sent to the same destination prefix
 - All packets sent to the same BGP next hop
 - 2. Associate the same label to all the packets that belong to the same FEC

label switching

traffic engineering

IP-, MPLS-based (the beginning)

Switch to slides 51/83 from 29 Sep 2020

Addendum to slides of 29 Sep 2020

Let's look at an example in which ECMP underperforms because of collisions

Hedera: Dynamic Flow Scheduling for Data Center Networks, USENIX NSDI 2010

If each host transfers an equal amount of data to all remote hosts one at a time, hash collisions reduce the network's bisection bandwidth by an average of 60.8%

Hedera: Dynamic Flow Scheduling for Data Center Networks, USENIX NSDI 2010

across 1000 simulatenous flows

If each host transfers an equal amount of data to all remote hosts one at a time, hash collisions reduce the network's bisection bandwidth by an average of 60.8% only 2.5%

across 1000 simulatenous flows

If each host transfers an equal amount of data to all remote hosts one at a time, hash collisions reduce the network's bisection bandwidth by an average of 60.8% only 2.5%

Intuition The cost of a collision decreases with the number of flows

Here, each link has 1000 slots to fill

Performance only degrades if substantially more than 1000 flows hash to the same link

Advanced Topics in Communication Networks

Internet Routing and Forwarding

Laurent Vanbever

nsg.ee.ethz.ch

ETH Zürich (D-ITET)

6 October 2020