M4 – Parallelism

Directory based Cache Coherence Protocol

Outline

- Parallelism
- Flynn's classification
- Vector Processing
 - Subword Parallelism
- Symmetric Multiprocessors, Distributed Memory Machines
 - Shared Memory Multiprocessing, Message Passing
- Synchronization Primitives
 - Locks, LL-SC
- Cache coherence

Shared Memory vs. Distributed Memory

A: Read X

A: Read X

A: Read X

B: Read X

>c hindx 1. cache miss X findx: C -> A JA: MIK AC La write back X -> A Dx: X: 15: A 6. Dx: sounds X > C DA: 18: 451 DA: with inv > A 8. A: X> Imalid 9. Dr. M.C 10. With 6 p.

- Broadcast based snooping protocols do not scale well to large multiprocessors
- Distributed Memory Machines
 - Physical memory is distributed among all processors
- Directory tracks sharing status of a block of memory
 - Each node has a directory
- Physical address determines data location
- Coherence messages between sent over the ICN
 - Point-to-point messages (no broadcast)

Slides Contents

Rajeev Balasubramonian, CS6810, University of Utah.

•

Extra

Shared Memory vs. Message Passing

- Shared Memory Machine: processors share the same physical address space
 - Implicit Communication, Hardware controlled cache coherence
- Message Passing Machine
 - Explicit communication programmed
 - No cache coherence (simpler hardware)
 - Message passing libraries: MPI

Cache Coherence

- Consistency
 - When should a written value be available to read
 - Memory Consistency Models
- Coherence
 - Which value to return on a read
- A memory system is coherent if:
 - Write Propagation
 - A write is visible after a sufficient time lapse
 - Write Serialization
 - All writes to a location are seen by every processor in the same order

Multiprocessor Cache Coherence

- A read by a processor P to a location X that follows a
 write by P to X, with no writes of X by another
 processor occurring between the write and the read
 by P, always returns the value written by P.
- A read by a processor to location X that follows a
 write by another processor to X returns the written
 value if the read and write are sufficiently
 separated in time and no other writes to X occur
 between the two accesses.
- Writes to the same location are serialized; that is, two writes to the same location by any two processors are seen in the same order by all processors.

Write Invalidate Coherence Protocol

Processor activity	Bus activity	Contents of CPU B's cache	Contents of memory location X
			0

Writeback / Writethrough Enforcing write serialization

Bus Arbitration

Tag Contention, Duplication

SMP Cache Coherence

- MSI Protocol
- MESI Protocol
 - Exclusive state: No invalidate messages on writes.
 - Intel i7 uses MESIF
- MOESI Protocol
 - Owned state: Only valid copy in the system. Main memory copy is stale.
 - Owner supplies data on a miss.

SMP Example

