

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.)

END Semester Examination

Programme: F.Y.B.Tech

Semester: I

Course Code: PH19001

acet of total

Course Name: OPTICS AND MODERN PHYSICS (O.M.P.)

Branch: F.Y.B.Tech ALL

Academic Year:2019-20

Duration:3 Hrs.

Max Marks: 60

Student PRN No.

j	1	1	9	0	5	O	١	5
---	---	---	---	---	---	---	---	---

Instructions:

1. Figures to the right indicate the full marks.

2. Mobile phones and programmable calculators are strictly prohibited.

3. Writing anything on question paper is not allowed.

4. Exchange/Sharing of stationery, calculator etc. not allowed.

5. Write your PRN Number on Question Paper.

		· ·	Marks	co	PO
Q 1	A	What are assumptions of Fresnel theory of optical rotation? Derive the expression for angle of rotation using Fresnel's theory.	5M	I	
	В	A slit of width 'a' is illuminated by white light. At what value of slit width 'a' , the first maxima of red light(λ =6500Å) is observed at 30° with respect to rays travelling straight?	3M	I	
Q 2	A	Explain how the refractive index of material and wavelength of light can be determined using Newton's Rings Experiment.	5M	II	
	В	Determine the state of polarization for a wave represented by $\vec{E} = \hat{j}E_0Sin(kx - wt) - \hat{k}E_0\cos(kx - wt - \frac{\pi}{2})$	3M	II	
Q 3	A	Explain the construction and working of Nd-YAG LASER with suitable diagrams	4M	Ш	
	(B)	With the neat diagrams explain the phenomenon absorption, spontaneous emission and stimulated emission.	3M	III	
4	С	Calculate the ratio of number of atoms in excited state to that of lower energy state in LASER that produces wavelength of 6328A.U. at temperature 27°C. (Given Planck's constant = 6.63x10 ⁻³⁴ JSec, Speed of light = 3x10 ⁸ m/s, Boltzmann Constant = 1.38x10 ⁻²³ J/K)	3M	Ш	
		* ·			

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

- 1					-
			Marks	СО	PC
24	A	Calculate the energy difference in electron volts between ground state and the first excited state for an electron in one dimensional infinite well of length 10^{-8} cm. Given that mass of electron = 9.1×10^{-31} Kg and Planck's constant $h = 6.63 \times 10^{-34}$ JSec.	5M	īv	
В	В	What is the physical significance of wave function of a particle? Explain what are conditions on acceptable wave function.	5M	IV	
		OR			
		Establish Schrodinger's time dependent wave equation from plane wave equation associated with particle.			
	С	The duration of a radar pulse is 10 ⁻⁶ sec. Calculate the uncertainty in it's energy	3M	IV	
		in electron volts. Given that Planck's constant $h = 6.63 \times 10^{-34} \text{ JSec.}$,		
Q5	A	Determine the expression for momentum operator, kinetic energy operator and total energy operator from the expression for wave function. Determine the eigenvalue of momentum operator for the eigenfunction $\Psi(x) = e^{ikx}$	5M	IV	
	В	Write Schrödinger's wave equation and expression for the energy eigen value for one dimensional harmonic oscillator. What is the ground state energy and sketch the energy level diagram.	5M	IV	
		OR			
		Explain what is expectation value of an operator. Normalise the wave function given by $\psi(x) = Ae^{\frac{-ax^2}{2}} \qquad \text{(Given : $-\infty$} \int^\infty e^{-\beta x^2} dx = \sqrt{\frac{\pi}{\beta}} \text{)}$			
	C	Determine the kinetic energy of neutron in electron volts if de-Broglie wavelength of neutron is 1 Å. (Given: The mass of neutron = 1.67x10 ⁻²⁷ Kg and Planck's constant = 6.63x10 ⁻³⁴ JSec)	3M	IV	
Q6	A	What is Piezo electric effect? Explain the working of Piezo electric generator	5M	V	+
	В	Explain the working of ultrasonic blood flow meter			