

Introducción al procesamiento digital de imágenes

M. En C. Daniel Flores Guerrero

11 de agosto del 2025 Cuernavaca Mor.

Contenido

1. Procesamiento de imágenes

El Procesamiento Digital de Imágenes (PDI) implica la manipulación de imágenes digitales utilizando computadoras para transformarlas o extraer información de utilidad de ellas a través de operaciones y algoritmos.

Procesos de bajo nivel:

Tareas primitivas como reducción de ruido, mejora de contraste o nitidez. Tanto entradas como salidas son imágenes.

Procesos de nivel medio:

Segmentación, descripción de objetos y clasificación de regiones. La entrada suele ser una imagen y la salida atributos.

Procesos de alto nivel:

Interpretación de objetos reconocidos, tareas de visión por computadora.

2. Aplicaciones

Image after segmentation

Image after segmentation and morphological processing

3. Historia y evolución

Se envían imágenes digitales a través del atlántico desde Londres hasta Nueva York a través de un cable submarino (Bartlane) para la industria periodística pasando de una

semana a 3 hrs.

La NASA utiliza procesamiento digital para mejorar imágenes lunares captadas por la sonda Ranger 7, marcando la primera aplicación espacial y automatizada de este tipo de procesamiento.

Con el abaratamiento del cómputo, el procesamiento digital de imágenes se expande a nuevas áreas como geografía, astronomía

y arqueología.

Se integra el procesamiento digital de imágenes en IA y visión por computadora, aplicándose en reconocimiento facial, vehículos autónomos, salud, industria y más.

5

4. Fundamentos y representación de imágenes digitales

columnas

4. Fundamentos y representación de imágenes digitales

Pixel: Unidad más pequeña de una imagen digital

Imagen digital: Matriz de valores que representan la intensidad luminosa o la intensidad de color de un píxel.

Matriz de Valores

[4, 5, 6]

Píxel

4. Fundamentos y representación de imágenes digitales

Tensor: es básicamente una **caja de datos con varias dimensiones** que se utiliza para representar imágenes. Es como un contenedor que guarda números, pero la forma en que los organiza depende de cuántas dimensiones tenga:

- OD → Escalar: Un solo número. Ejemplo: 7.
 1D → Vector: Una fila de números. Ejemplo: [3, 5, 8].
- 1D → Vector: Una fila de números. Ejemplo: [3, 5, 8].
 2D → Matriz: Una tabla de números. Ej.: [[1, 2, 3],
- o dimensiones superiores.

76

Idea clave: un tensor es la versión "pro" de la idea de vector y matriz, extendida a tantas

Imagen digital en RGB

Valores del píxel en RGB

dimensiones como quieras.

5. Muestreo y cuantización

Para crear una imagen digital se requiere convertir datos continuos a un formato digital, esto implica un proceso de muestreo y cuantización.

El muestreo viene determinado por la disposición y cantidad de sensores utilizados para generarla imagen.

-> Número de pixeles (resolución).

La digitalización de los valores de amplitud se denomina cuantización.

-> Número de colores o niveles de brillo por pixel.

La calidad de la imagen está determinada en parte por el número de muestras y los niveles discretos de intensidad utilizados en el muestreo y la cuantización.

Resolución

La resolución depende de: El sensor

Profundidad de bits

Compresión

Interpolación y reescalado

250 px de ancho

350px de ancho

6. Tipos de imágenes

Escala de grises: Imágenes sin información de color, los píxeles varían en el rango del negro al blanco pasando por tonos de grises intermedios. Ejemplo: <u>Radiografías</u>.

A color: Imágenes con información de color, usualmente representadas en los modelos RGB, CMY o HSI.

Binarias: Imágenes con únicamente dos valores posibles por píxel, blanco y negro. Ejemplo. máscaras, texto.

7. Escalas de color

Escala de grises

Modelo en el que cada píxel de una imagen tiene un único valor de intensidad que varía entre el negro y el blanco. Este valor suele expresarse en un rango de <u>0 (negro)</u> a <u>255 (blanco)</u> en imágenes de 8 bits. Las imágenes en escala de grises no contienen información de color, lo que las hace más simples y menos costosas computacionalmente.

255

7. Escalas de color

Modelo RGB

El modelo RGB (Red, Green, Blue) es un sistema de representación del color basado en la combinación de tres colores primarios: rojo, verde y azul. Cada color en una imagen RGB se

forma mediante la mezcla de distintas intensidades de estos tres

componentes, típicamente en un rango de 0 a 255.

Este modelo es aditivito, lo que significa que al combinar los tres colores a máxima intensidad se obtiene el blanco.

Es el modelo mas común en dispositivos digitales como monitores, cámaras y sensores.

oscuro.

7. Escalas de color

Modelo CMY

El modelo CMY (*Cyan, Magenta, Yellow*) está basado en los colores secundarios del modelo de luz (RGB) y primarios

para pigmentos, es un modelo de color sustractivo utilizado principalmente en la impresión.

En este modelo, los colores se crean restando luz de un fondo blanco.

CMYK: Incorpora el componente negro (K), ya que en la práctica la mezcla de colores en CMY resulta en un gris

14

términos de Tono, Saturación e Intensidad (brillo).

7. Escalas de color

Modelo HSI

El modelo HSI (*Hue, Saturation, Intensity*) está basado en como los humanos observamos y describimos el color, en

Tono: Describe un color puro. Saturación: Mide que tanto se diluye el color puro con luz

Intensidad: Representa la cantidad de luz percibida.

El modelo separa la información de color (tono y saturación) de la de intensidad.

Tipos de formato de imagen

Para crear una imagen digital se requiere convertir datos continuos a un formato digital, esto implica un proceso de muestreo y cuantización.

	Formato		Extensión		Compresión		1	Transparencia			Uso típico				
	JPEG		.jpeg/.jpg		Con pérdida			No			Tamaño reducido en espacio, pero con degradación de calidad de				
											imagen (Fotografías, imágenes complejas)				
	PNG		.png		Sí			Sí			Gráficos, logos, transparencias				
	TIFF		.tiff		S	í		Sí	ί	Iı	mpresió	n profes	sional, a	rchivos	
	GIF BMP		.gif		Sí			Sí		A	Animaciones, gráficos simples				
			.bmp		Sí			Sí			Archivos no comprimidos, pero				
											son apropiados para transferencia en internet.				

8. Librerías para procesamiento de imágenes

resultar poco intuitiva.

scikit-image image processing in python

Librería científica para el análisis y procesamiento de imágenes.

Utiliza *NumPy arrays* como estructura de datos fundamentales para representar imágenes como matrices y es compatible con NumPy, SciPy, matplotlib y scikit-learn.

Ofrece herramientas para segmentación, morfología, detección de bordes, transformaciones geométricas y extracción de características, entre otras funciones.

Librería orientada al manejo básico y procesamiento de imágenes. Permite abrir, guardar, redimensionar, rotar, recortar y aplicar efectos simples a imágenes con una sintaxis clara y directa. Rápido acceso a pixeles y visualización de imágenes.

Son aquellas manipulaciones fundamentales que permiten **analizar**, **mejorar o extraer información visual**. Son la base para tareas más avanzadas como detección de objetos, reconocimiento facial o clasificación de imágenes

1. Lectura y visualización

- Leer una imagen desde un archivo.
- Mostrarla en pantalla.
- Librerías: OpenCV, PIL, Matplotlib.

Python

import cv2
img = cv2.imread('imagen.jpg')
cv2.imshow('Imagen', img)
cv2.waitKey(0)

2. Conversión de color

- Convertir entre espacios de color:
 - RGB ↔ Grayscale
 - RGB \leftrightarrow HSV
 - RGB \leftrightarrow LAB

Útil para simplificar la información o extraer características específicas.

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

3. Transformaciones geométricas

- **Escalado** (resizing): cambiar el tamaño.
- Rotación: girar la imagen.
- Traslación: moverla en el plano.
- **Reflexión** (flip): espejar horizontal o vertical.
- Interpolación bilineal/bicúbica en procesos como zoom.

Python

img_resized = cv2.resize(img, (200, 200))
img_flipped = cv2.flip(img, 1) # Horizontal

4. Operaciones aritméticas y lógicas

Suma o resta de imágenes (por ejemplo, para

- detectar cambios).
- AND, OR, XOR entre imágenes binarias.
- Escalado de brillo o contraste.

Python

brighter = cv2.convertScaleAbs(img, alpha=1.2, beta=30)

5. Filtrado (convoluciones)

- Suavizado (blur): reduce ruido.
 - Filtros: media, gaussiano, mediana.
- Realce de bordes: resalta contornos.
 - Filtros: Sobel, Laplaciano, Canny.
- Se aplican mediante kernels.

- 6. Segmentación básica
- Umbralización (*thresholding*): separar fondo y objeto.
- Binarización de la imagen.
- Segmentación por color o intensidad.

7. Operaciones morfológicas

- Se aplican a imágenes binarias para limpiar o refinar formas.
- Erosión: elimina ruido pequeño.
- Dilatación: agranda objetos blancos.
- Apertura y cierre.

8. Detección de bordes

- Identifica cambios abruptos de intensidad.
- Operadores: Sobel, Prewitt, Laplaciano, Canny.

10. Histograma

El histograma de una imagen es una representación gráfica de la frecuencia de aparición de los diferentes niveles de intensidad (en escala de grises) o valores de color (en imágenes RGB).

- Ver la distribución de intensidades.
- Equalización del histograma: mejora el contraste

Sobreexposición Exposición correcta Subexposición

Grav Levels Shades

11. Técnicas básicas de manipulación

Umbralización y Binarización

La umbralización una técnica de segmentación que convierte una imagen en escala de grises a una imagen binaria, comparando cada píxel con

valor umbral.

Para cada píxel
$$f(x,y)$$

Para cada píxel f(x,y)

 $g(x,y) = egin{cases} 1 & ext{si } f(x,y) \geq T \ 0 & ext{si } f(x,y) < T \end{cases}$

Gray Levels Shades

git clone git@github.com:iscwarrior/ProcesamientoDeImagenes2025.git

¿Por qué son importantes estas operaciones?

Estas operaciones permiten:

- Preparar la imagen para análisis posterior.
- Reducir ruido.
- Aumentar la calidad visual.
- Extraer características útiles para algoritmos de clasificación, detección, etc.

Referencias

- Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.). Pearson.Zhang, Y., Liu, S., & Wang, S. (2022). A novel medical image fusion method based on structure-preserving filter and deep features. Information Fusion, 86, 40–52. https://doi.org/10.1016/j.inffus.2022.05.005
- Wang, G., Zhang, J., & Chen, Y. (2021). Deep learning for tomographic image reconstruction. Nature Machine Intelligence, 3(10), 943–952. https://doi.org/10.1038/s42256-021-00407-z
 Li, X., He, R., & Sun, Z. (2021). Learning discriminative deep face representation with visualization. IEEE Transactions on Image
- Processing, 30, 3697–3709. https://doi.org/10.1109/TIP.2021.3071703

 Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review.
- Neurocomputing, 187, 27–48. https://doi.org/10.1016/j.neucom.2015.09.116
 Zhang, K., Zuo, W., & Zhang, L. (2017). FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions
- on Image Processing, 27(9), 4608–4622. https://doi.org/10.1109/TIP.2018.2839891
 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Medical Image
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
- Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Referencias

- Szegedy, C., Liu, W., Jia, Y., et al. (2015). Going deeper with convolutions. CVPR 2015, 1–9. https://doi.org/10.1109/CVPR.2015.7298594 Liu, Y., Zhang, D., Zhang, Y., & Wang, Y. (2023). Lightweight deep learning for real-time image super-resolution. IEEE Transactions on
- Multimedia, 25, 1896–1907. https://doi.org/10.1109/TMM.2022.3147112
- Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. CVPR 2009,
- 248–255. https://doi.org/10.1109/CVPR.2009.5206848 Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., & Chang, E. I. (2014). Deep learning of feature representation with multiple instance learning for medical image analysis. IEEE Transactions on Neural Networks and Learning 25(5)1019–1031. Systems,
- https://doi.org/10.1109/TNNLS.2013.2297683
- Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations (ICLR). https://arxiv.org/abs/1409.1556 Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. CVPR 2005, 60–65.
- https://doi.org/10.1109/CVPR.2005.38
- Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307. https://doi.org/10.1109/TPAMI.2015.2439281 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. CVPR 2016, 779–788.
- https://doi.org/10.1109/CVPR.2016.91 Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. CVPR 2017, 5967–
- 5976. https://doi.org/10.1109/CVPR.2017.632 Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2672–2680.

Gracias

