Notion de système séquentiel

- Un circuit séquentiel est un circuit qui possède une mémoire interne
- Eléments principaux d'un circuit séquentiel:
 - état interne : Le circuit peut changer d'état ; il a donc une faculté de mémorisation.
 - un événement est une action qui permet le changement de l'état interne d'un système. Un événement a une valeur.
 - un événement pur : c 'est un événement sans action ; pour nous, il correspondra au top d'horloge. Il permet de prendre en considération la séquentialité des événements.

Notion de système séquentiel

Exemple :

- une personne a trois états (pauvre, modeste, riche)
- deux événements (argent, facture).

En fonction de l'événement, la personne va changer d'état.

```
top top top

état pauvre → modeste → riche → modeste → pauvre

évént argent argent facture facture

sortie décept° plaisir plaisir décept° décept°
```

définitions :

- variables en entrée (évènements) : v ∈ V
- entrée de l'horloge (événement pur) : H
- état interne : e ∈ E (ensemble des états du système)
- sortie: $s \in S$ (ensemble des sorties)
- fonction de transition : ft : E×V→E
 permet le calcul du nouvel état en fonction des entrées et de l'état interne du système.
- fonction de sortie : fs : E×V→S
 permet le calcul de l'ensemble des sorties.

Remarques

- La sortie du système dépend de ce qu'on met en entrée et de l'état interne ; c'est ce qui définit la faculté de mémorisation des circuits séquentiels, par opposition aux circuits combinatoires.
- La valeur de l'horloge en elle-même ne rentre pas dans les calculs.
- On peut trouver une certaine analogie avec les machines à états finis, ou automates finis. On pourra représenter le système par un graphe.

notations:

- $-e_{t+1} = (\text{\'etat au temps } t+1) = f_T(e_t, v_t).$
 - Le nouvel état à l'instant (t+1) se calcule avec l'état au temps t, et la valeur de l'entrée au temps t.
- Le (temps de) cycle est le temps qui s'écoule entre deux tops d'horloge, soit entre le top t et le top (t+1).
- En sortie, on a une fonction de l'état interne, et de l'entrée. $s_t = f_s(e_t, v_t)$

- Représentations
 - Table des états

V	Е	$f_T(e_t, v_t)$.	$f_{s}\left(e_{t},v_{t}\right)$
facture	pauvre	pauvre	flegme
facture	modeste	pauvre	déception
facture	riche	modeste	déception
argent	pauvre	modeste	plaisir
argent	modeste	riche	plaisir
argent	riche	riche	flegme

Diagrammes des états

- Il y a deux types de systèmes séquentiels :
 - la machine de Mealy : la sortie est fonction de l'état interne et des entrées (exemple précédent avec la personne).
 - la machine de Moore : la sortie est fonction uniquement de l'état interne mais pas des entrées. On a donc s=f_s(e).

Exemple: la pelouse

elle a deux états (verte et sèche) et deux événements (pluie, soleil)

Circuits synchrones

- Un circuit synchrone est un circuit séquentiel aligné sur une horloge qui provoque les changements d'états du circuit.
- Plusieurs circuits séquentiels peuvent être alignés sur la même horloge dans le cas d'un assemblage.

Circuits synchrones

1- Conventions d'usage

Une horloge est un signal qui peut prendre la valeur 1 ou 0.
 On la représente par H ou (Ck comme clock).

```
H 0
```

- La prise en compte du top se fait pendant les transitions de l'horloge. Deux transitions possibles:
 - front montant: $0 \rightarrow 1$
 - front descendant: $1 \rightarrow 0$
- Une horloge est un signal périodique.
 - T : la période est exprimée en secondes
 - f=1/T est la fréquence exprimée en hertz (Hz).

Circuits synchrones

2- Contraintes temporelles

- tcy = temps de cycle (temps entre deux tops).
- Il faut présenter les valeurs avant un certain temps pour qu'elles soient prises en compte = temps de prépositionnement = tsu.
- Le changement d'état se produit au moment du top

1- Bascules (ou bistables ou flip flop)

- Ce sont des circuits qui ont deux états codés 0 et 1.
- L'état du circuit est directement visible en sortie.
- L'état du circuit est mémorisé pendant un temps de cycle.
- Ils ont une sortie notée Q et éventuellement une sortie inverse de la sortie normale notée \overline{Q} .
- Le nombre d'états donne la capacité de mémorisation (1 bit).

- a- la bascule R-S
 - elle a deux entrées : R et S
 - les entrées sont mutuellement exclusives (jamais à 1 en même temps)

- R : Reset (mise à 0)
- S : Set (mise à 1)

la bascule R-S

Table de vérité

/	R	S	Q_{t}	Q_{t+1}
/	0	0	0	0
/	0	0		
,	0	1	0	
1	1	0	0	0
/	1	0	1	0

Table de vérité résumée

R	S	$\mathbf{Q}_{t\!+\!1}$
	0 1 0	0 1 Qt

- b- la bascule D
 - Elle a une seule entrée notée : D
 - La valeur en entrée est visible en sortie

Table de vérité

/	D	Q
\	0	

la bascule J-K

 Même principe que la bascule R-S mais les entrées J et K ne sont plus exclusives

Table de vérité

/	J	K	\mathbf{Q}_{t+1}
/ / /	0 1 0	0 0 1	Q _t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2- Les compteurs

- Un compteur est un circuit dont l'état est interprété comme un nombre.
- Il peut être :
 - · incrémenté,
 - · décrémenté,
 - chargé (i.e. on peut lui imposer une valeur au départ). Le chargement normal est l'initialisation à 0.

- Les différents types de compteurs :
 - les compteurs permanents : ce sont des compteurs sans entrée, toujours incrémentés modulo une certaine valeur, à chaque top d'horloge.
 - les compteurs-décompteurs : ils possèdent au minimum deux entrées (et éventuellement une troisième entrée s'ils sont chargeables) :
 - Inc: pour incrémenter,
 - Dec : pour décrémenter.
 - Raz : pour la remise à zéro.

Exemple:

- un compteur-décompteur chargeable à 8 états.
- Les états sont codés sur 3 bits.

3- les registres

- Un registre est un regroupement de n bascules qui permet la mémorisation de n bits.
- les différents types de registres :
 - registre à décalage sortie série
 - registre à décalage sorties parallèles (voir dessin)
 - registre entrées parallèles et sorties parallèles

Assemblage de circuits synchrones

- Dans un assemblage de circuits synchrones, on a plusieurs circuits séquentiels qui sont synchronisés sur la même horloge et éventuellement des circuits combinatoires.
- Quand on fait un assemblage de circuits synchrones, il faut absolument éviter les boucles combinatoires : on ne peut pas prendre une sortie d'un circuit combinatoire pour en faire une de ses entrées, ni une entrée d'un autre circuit combinatoire;
- Cependant, il est tout à fait licite de faire la même chose à partir d'un circuit séquentiel.

Assemblage de circuits synchrones

Exemple:

Quelques méthodes de réalisation de circuits synchrones simples Principes généraux

- Un circuit est simple s'il a un nombre d'états inférieur à 15.
- Processus :
 - 1- définir les entrées
 - 2- définir les états et choisir le codage de ces états.
 - pour n bits, le nombre d'états est compris entre 2ⁿ⁻¹ et 2ⁿ
 - 3- définir la fonction de transition ft (diagramme des états).
 - 4- définir la fonction de sortie fs(e, v) (diagramme des états).
 - 5- transformation des fonctions de transition et de sortie
 - » $ft(e, v) \rightarrow Ft(q_1, q_2, ... q_n, v)$
 - » $fs(e, v) \rightarrow Fs(q_1, q_2, ..., q_n, v)$
 - » Définition des équations logiques des qi et des Si.
 - 6-Réalisation du circuit.

1. Utilisation des bascules D

- Si le codage des états est sur n bits alors chaque bit représente une bascule.
- $-q_1, ..., q_n = Ft (q_1, q_2, ..., q_n, v)$
- La valeur en entrée est celle voulue en sortie

Exemple: compteur modulo 4 avec une commande Inc

- 1- Définition des entrées: Une seule entrée Inc
- 2- Définition des états: Le système a 4 états notés A, B, C, D donc le codage est sur 2 bits.
- 3- Définition de la fonction de transition, on fait le diagramme des états

Réalisation avec les bascules D

compteur modulo 4

(1b) Utilisation des bascules D

4- codage des états:

A:00

B:01

C:11

D:10

5- fonction de transition: Ft

In	0	1
q1q0		
00	0 0	0 1
01	0(1)	(1) (1)
11		1/0
10	1) 0	0 0

$$q1 = q1\overline{INC} + q0INC$$

$$q0 = q0\overline{INC} + \overline{q1}INC$$

(1c) Utilisation des bascules D

5b-Fonction de sortie

q1 q0	S1 S0
0 0	0 0
0 1	0 (1)
1 1	1 0
1 0	1 (1)

$$S_1 = q_1$$

$$S_0 = q_1 \oplus q_0 = \overline{q_1}q_0 + q_1\overline{q_0}$$

(1c) Utilisation des bascules D

Quelques méthodes de réalisation de circuits synchrones simples 2- Utilisation des bascules J-K

Le processus est le même que celui utilisé avec les bascules D.

(les étapes 1 à 3 sont exactement les mêmes que pour les bascules D)

 La différence est sur la définition de la fonction de transition car les bascules ont deux entrées : il faut définir les équations logiques des entrées (Ji et Ki) en considérant les différentes transitions possibles:

on a 4 transitions possibles.

	qį	qi_{t+1}	Ji	Ki
	0	0	0	X
S	0		1	X
`	1	0	X	1
	1	1	X	0

X vaut soit 0 soit 1 (valeur quelconque)

(2b) Utilisation des bascules J-K

Exemple du compteur modulo 4

(étapes 1 à 3 idem bascules D)

On a deux bascules. Il faut donc définir les équations

logiques des entrées:

J1 et K1 pour la première bascule

• J0 et K0 pour la deuxième bascule

qi	01 +1)	Ji	Ki
0	0	0	X
0	1	1	X
1	0	X	1
	1	X	0

4. équation logique de J1

_			
	Inc	0	1
\	q1q0		
	00	0	2
	01	0	
	11	X	X
	10	X	X

(2c) Utilisation des bascules J-K

4b. équation logique de K1

		Inc	0	1
qlq0				
	ω		X	X
	01		X	X
	11		0	A.
	10		0	$\langle 1 \rangle$

/	qi	qi ₊₁₎	Ji	Ki
\	0	0	0	X
/	0	1	1	X
/		0	X	1
\	1	1	X	0

$$K_1 = \overline{q_0} INC$$

- On trouve ensuite les équation logique de J2 et K2
- puis on détermine la fonction de sortie (étape 5 idem bascules D)
- puis on fait la réalisation à partir des équations logiques (étape 6)

3- Machines à jetons

- Principe:
 - le nombre de bits pour le codage des états est égal au nombre d'états
 - à chaque état on fait correspondre un bit « baladeur »
- Exemple: Compteur modulo 3

3 états donc le codage est avec 3 bits:

- (3b) Machines à jetons
 - Règles de réalisation:

• 1- A chaque flèche sortant d'un état, on va faire correspondre un "Et" avec la sortie de la bascule.

• 2- Aux flèches "entrant" dans un état, correspond un "Ou" avec l'entrée de la bascule.

(3c) Machines à jetons

- 3- Si on a une initialisation, deux conditions sont à respecter :
 - La commande est envoyée sur le "OU" de la bascule de l'état initial
 - Le Non de la commande est envoyé sur le "ET" à l'entrée des autres bascules.

A. DIPANDA- Circuits séguentiels

Changements d'états asynchrones

Les changements d'états ne sont donc plus synchronisés sur une horloge.

1- Les verrous

- Un verrou a un comportement analogue à une bascule. Il possède de même un bit de mémorisation.
- Les changements d'états sont commandés par une commande de verrouillage (ou de déverrouillage).

Changements d'états asynchrones

Exemple de bascule D avec commande de verrouillage.

Principe: Quand la commande de verrouillage est à 1, la sortie Q est verrouillée (convention à imposer).

Exemples de verrous

a- le verrou RS

Il a deux entrées R et S et une sortie Q

- Quand S est actif, (i.e. vaut 1), l'état est à 1
- Quand R est actif, (i.e. vaut 1), l'état est à 0
- Il y a verrouillage lorsque R et S sont à 0 (Q garde sa valeur précédente).
- Il n'est pas permis d'avoir simultanément R et S à 1.

Exemples de verrous

b- le verrou D

Il est équivalent à une bascule D, mais au lieu d'avoir une horloge, on a une commande de verrouillage.

- Déverrouiller →Q=D
- Quand Ch vaut 1 (ou 0 selon la convention choisie), Q reste inchangé, c'est-à-dire que le système est verrouillé.

Exemples de verrous

c- verrou de Muller ou verrou de rendez-vous

- comprend deux entrées A et B et une sortie Q.
- Comportement :
 - Q est à 1 quand A et B sont actives
 - Q est à 0 lorsque A et B sont à 0.
 - quand A et B sont à 1 alors Q est à 1 et Q revient à 0 lorsque A et B passent à 0;
 entre temps, on peut très bien avoir A=1, B=0 et Q=1 ou A=0, B=1 et Q=1.
 - Notion de rendez-vous :

Q=1 quand tout le monde est présent

Q=0 quand tout le monde est parti.

Exemple: Inverseur

Verrouillage si CH=0

1- Enregistrement maître esclave

 On utilise deux verrous et deux horloges H1 et H2 mutuellement exclusives.

(1b) Enregistrement maître esclave

Exemple de simulation du fonctionnement d'une bascule Dessin précédent avec Ft vide

2- Synchronisation des entrées asynchrones

- Problème: Comment prendre en compte d'une séquence de valeurs fournies de manière asynchrone.
- Solution: Utilisation du protocole d'interaction séquentielle (Hand-shake).
 - l'entrée valid (request) indique l'arrivée d'une nouvelle valeur.
 - la sortie d'acquittement Ack, indique la prise en compte de la valeur.
- Un dialogue entre l'utilisateur et le système va s'instaurer.

Description du protocole d'interaction séquentielle

- Au départ, attente d'une valeur : Ack et Valid sont à 0.
 - 1- Arrivée d'une nouvelle valeur, l'utilisateur le signale au système: valid passe à 1
 - 2- Attente de l'acquittement de la valeur par le système ;Ack passe à 1
 - 3- confirmation de l'acquittement par l'utilisateur : valid passe à 0
 - 4- Ack retombe à 0 : le système fait savoir à l'utilisateur qu'il est prêt à recevoir une nouvelle valeur.
- Le dialogue recommence jusqu'à épuisement de la séquence des valeurs de l'utilisateur.

Description du protocole d'interaction séquentielle

