ECON 703 - ANSWER KEY TO HOMEWORK 6

1. The statement is correct: Let h(x) = f(x) - g(x), then h(x) > 0 and is continuous in [0,1]. And [0,1] is compact. Then according to the Weierstrass Theorem, there exists $x_0 \in [0,1]$ such that $h(x) \ge h(x_0) > 0$ for all $x \in [0,1]$, i.e., $f(x) \ge g(x) + h(x_0)$. Let $\triangle = h(x_0)$.

It would not be true if f, g were only left continuous. Let g(x) = 0 for all $x \in [0,1]$. Let f(x) = x if $x \in (0,1]$ and $f(x) = \frac{1}{2}$ if x = 0. So f and g are both left continuous. There exists no such $\Delta > 0$ since $\inf_{x \in [0,1]} h(x) = 0$.

Note: We know from the condition that f(x) - g(x) > 0. We are asked to show there is a $\Delta s.t.f(x) - g(x) > \Delta$ for all $x \in [0,1]$. So we only need to prove that the minimum of the distance between f(x) and g(x) exists, and then let it be δ . Think about the Weierstrass theorem for the existence of minimum.

2. Let g(x) = f(x) - x, then g is continuous on [0,1]. $g(0) = f(0) - 0 \ge 0$ (because $f(0) \in [0,1]$). $g(1) = f(1) - 1 \le 0$ (because $f(1) \in [0,1]$).

If g(0) = 0, then 0 is a fixed point of f.

If g(1) = 1, then 1 is a fixed point of f.

Now consider that g(1) < 0 < g(0). We know that [0,1] is connected, and here g(x) is continuous, then by the Intermediate Value Theorem there exists $x_0 \in (0,1)$ s.t. g(x) = 0. Thus x_0 is a fixed point of f.

3. Way1: Yes, f'(0) exists. By the mean value theorem, we have f(z) - f(0) = f'(w(z))z for some $w(z) \in (0, z)$. Hence $\frac{f(z) - f(0)}{z} = f'(w(z))$. Since $w(z) \to 0$ as $z \to 0$ and $\lim_{x \to 0} f'(x) = 3$, we see that $\lim_{z \to 0} \frac{f(z) - f(0)}{z} = 3$. Hence f'(0) exists and is equal to 3.

Way2: $\lim_{x\to 0} \frac{f(x)}{h} = \lim_{x\to 0} \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \lim_{x\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \frac{\lim_{x\to 0} f(x+h)-f(x)}{h} = \lim_{x\to 0} \frac{\lim_{x\to 0} f(x+h)-f(x)}{h} = \lim_$

4. Since g(x)=f(x)=0, we have the following equalities:

$$\frac{f(t)}{g(t)} = \frac{f(t) - f(x)}{g(t) - g(x)} = \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}}.$$

Take the limits as $t \to x$,

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}} = \frac{f'(x)}{g'(x)}$$

(The reason we can take limit in the second equation is because that the limits of denominator and numerator both exist.) \Box

5. f'(x) exists at all points $x \in \mathbb{R}$: At points $x \neq 0$, f(x) is the product of two differentiable functions so f'(x) exists and is equal to $2x \sin \frac{1}{x} - \cos \frac{1}{x}$.

At x = 0, we have

$$\frac{x^2 \sin \frac{1}{x} - 0}{x - 0} = x \sin \frac{1}{x} = x \sin \frac{1}{x} \le x \to 0 \text{ as } x \to 0$$

. So f'(0) exists and is equal to 0.

f'(x) is not continuous at x = 0: Since $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$, we have

$$f'(x) - f'(0) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}.$$

We have shown above that $2x \sin \frac{1}{x} \to 0$ as $x \to 0$. But $\cos \frac{1}{x}$ does not converge. So f'(x) - f'(0) does not converge to 0 as $x \to 0$, and f'(x) is not continuous at x = 0.