Лабораторная работа 3.2.4+3.2.5

Свободные и вынужденные колебания в электрическом контуре

Шерхалов Денис Б02-204

29 ноября 2023 г.

Цель работы: исследование свободных и вынужденных колебаний в колебательном контуре.

В работе используются: осциллограф АКТАКОМ ADS-6142H, генератор сигналов специальной формы АКИП-3409/4, магазин сопротивления МСР-60, магазин емкости Р5025, магазин индуктивности Р567 типа МИСП, соединительная коробка с шунтирующей емкостью, соединительные одножильные и коаксиальные провода.

1. Введение

Экспериментальная установка

Колебательный контур состоит из постоянной индуктивности L с активным сопротивлением RL, переменной емкости C и сопротивления R. Картина колебаний напряжения на емкости наблюдается на экране двухканального осциллографа. Для возбуждения затухающих колебаний используется генератор сигналов специальной формы. Сигнал с генератора поступает через конденсатор C1 на вход колебательного контура. Данная емкость необходима чтобы выходной импеданс генератора был много меньше импеданса колебательного контура и не влиял на процессы, проходящие в контуре.

Установка предназначена для исследования не только возбужденных, но и свободных колебаний в электрической цепи. При изучении свободно затухающих колебаний генератор специальных сигналов на вход колебательного контура подает периодические короткие импульсы, которые заряжают конденсатор С. За время между последовательными импульсами происходит разрядка конденсатора через резистор и катушку индуктивности.

Рис. 2: Схема установки для исследования АЧХ и ФЧХ

Рис. 1: Схема установки для исследования вынужденных колебаний

Теоретические сведения

Для RLC контура применим правило Кирхгофа:

$$RI + U_C + L\frac{dI}{dt} = 0.$$

Подставив в уравнение выражение для тока через 1-ое правило Кирхгофа, и разделив обе части уравнения на CL, получим:

$$\frac{d^2U_C}{dt^2} + \frac{R}{L}\frac{dU_C}{dt} + \frac{U_C}{CL} = 0$$

Произведём замены $\gamma=\frac{R}{2L}$ — коэффициент затухания, $\omega_0^2=\frac{1}{LC}$ — собственная круговая частота, $T_0=\frac{2\pi}{\omega_0}=2\pi\sqrt{LC}$ — период собственных колебаний. Тогда уравнение примет вид:

$$\ddot{U_C} + 2\gamma \dot{U_C} + \omega_0^2 U_C = 0,$$

где точкой обозначено дифференцирование по времени. Будем искать решение данного дифференциального уравнения в классе функций следующего вида:

$$U_C(t) = U(t)e^{-\gamma t}$$
.

Получим:

$$\ddot{U} + \omega_1^2 U = 0,$$

где

$$\omega_1^2 = \omega_0^2 - \gamma^2$$

Для случая $\gamma < \omega_0$ в силу того, что $\omega_1 > 0$, получим:

$$U_C(t) = U_0 \cdot e^{-\gamma t} \cos(\omega_1 t + \varphi_0).$$

Для получения фазовой траектории представим формулу в другом виде:

$$U_C(t) = e^{-\gamma t} (a\cos\omega_1 t + b\sin\omega_1 t),$$

где a и b получаются по формулам:

$$a = U_0 \cos \varphi_0, \qquad b = -U_0 \sin \varphi_0.$$

В более удобном виде запишем выражения для напряжения на конденсаторе и токе через катушку:

$$U_C(t) = U_{C0} \cdot e^{-\gamma t} (\cos \omega_1 t + \frac{\gamma}{\omega_1} \sin \omega_1 t),$$

$$I(t) = C\dot{U}_C = -\frac{U_{C0}}{\rho} \frac{\omega_0}{\omega_1} e^{-\gamma t} \sin \omega_1 t.$$

Введём некоторые характеристики колебательного движения:

$$\tau = \frac{1}{\gamma} = \frac{2L}{R},$$

где τ — время затухания (время, за которое амплитуда колебаний уменьшается в e раз).

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \gamma T_1 = \frac{1}{N_{\tau}} = \frac{1}{n} \ln \frac{U_k}{U_{k+n}},$$

где Θ – логарифмический декремент затухания, U_k и U_{k+1} – два последовательных максимальных отклонения величины в одну сторону, N_{τ} – число полных колебаний за время затухания τ .

Теперь рассмотрим случай *вынужсденных колебаний* под действием внешней внешнего синусоидального источника. Для этого воспользуемся методом *комплексных амплитуд* для схемы на рисунке (рис. 1):

$$\ddot{I} + 2\gamma \dot{I} + \omega^2 I = -\varepsilon \frac{\Omega}{L} e^{i\Omega t}.$$

Решая данное дифференциальное уравнение получим решение:

$$I = B \cdot e^{-\gamma t} \sin(\omega t - \Theta) + \frac{\varepsilon_0 \Omega}{L \phi_0} \sin(\Omega t - \varphi).$$

Нетрудно видеть, что частота резонанса будет определяться формулой:

$$\omega_0 = \frac{1}{2\pi\sqrt{LC}}.$$

Способы измерения добротности $Q = \frac{W_0}{W_{loss,\,\tau}} = \frac{\pi}{\Theta}$:

1. с помощью потери амплитуды свободных колебаний:

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}},$$

- 2. с помощью амплитуды резонанса можно получить добротность (в координатах U_C/U_0 , где U_0 амплитуда колебаний напряжения источника, от частоты генератора). Отсюда нетрудно определить декремент затухания $\gamma = \frac{\omega_0}{2Q}$,
- 3. с помощью среза АЧХ на уровне 0.7 от максимальной амплитуды, тогда «дисперсия» ($\Delta\Omega$) будет численно равна коэффициенту γ , то есть $Q = \frac{\nu_0}{2\Delta\Omega}$.
- 4. с помощью нарастания амплитуд в вынужденных колебаниях:

$$\Theta = \frac{\omega_0 n}{2 \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}}.$$

5. с помощью формулы

$$\Theta = \frac{1}{R} \sqrt{\frac{L}{C}}$$

2. Ход работы

2.1. Измерение периодов свободных колебаний

Соберем установку с рисунка 1, выставим R = 0 Ом, L = 100 мГн, C = 0 нФ, однако контур сам по себе обладает некоторым C_0 , благодаря которому в контуре реализуются свободные колебания

Измерим с помощью осцилографа период затухающих колебаний 10T=656 мкс, по периоду колебаний вычисляем значение емкости C_0 , по формуле

$$C_0 = rac{T^2}{4\pi^2 L} = 1{,}09\,$$
нф

Изменяя емкость С проведем измерения 10 периодов

С, нф	1.09	2.09	4.09	6.09	8.09	10.09
T, MKC	65.6	90.8	127.0	155.1	178.8	199.7
T_{theor} , MKC	65.6	90.8	127.1	155.1	178.7	199.6

2.2. Критическое сопротивление и декремент затухания

Рассчитаем C, при котором собственная частота колебаний $\nu=1/(2\pi\sqrt{LC})=6500\,\Gamma$ ц, $C=6\,\mathrm{h}$ ф. Для выбранных L и C расчитаем критическое сопротивление контура $R_{cr}=8168\,\mathrm{Om}$ по формуле $R_{cr}=2\sqrt{L/C}$

Установим на магазине емкость, близкую к расчитанной увеличивая сопротивление до критической, пронаблюдаем картину затухающих колебаний. При сопротивлении $R=6\,\mathrm{kOm}$ колебательный режим переходит в апериодический.

Измения сопротивление запишем зависимость логарифмического декремента от сопротивления

R,Ом	410	600	800	1000	1200	1600
U_1	588	660	470	610	360	550
U_2	400	370	250	250	150	140
U_3	284	220	140	100	70	40
U_4	192	130	_	40	_	_
θ	0.35	0.54	0.61	0.91	0.82	1.31

2.3. Свободное колебание на фазовой плоскости

Проведем аналогичные измерение, но уже на фазовой плоскости и запишем результату в таблицу.

R,Ом	410	600	800	1000	1200	1600
U_1	21	20	20	19	18	17
U_2	14	12	10	8	6	4
U_3	10	7	5	3	2	1
θ	0.37	0.52	0.69	0.92	1.10	1.42

2.4. Исследование резонансных кривых

Выставим значение емкости C=6 нф и сопротивление R=410 Ом (на этом моменте мы вспомнили, что забыли про C_0 и не учитывали его в течение всей лабораторной работы, поэтому нужно пересчитать частоту, $\nu_{res}=6015\,\Gamma$ ц, критическое сопротивление $R_{cr}=7511\,\mathrm{Om}$)

Изменяя частоту генератора вблизи резонансной частоты, находим резонансную частоту $\nu=6010$ Γ ц и ее амплитуду $2U_{res}=16.7\,\mathrm{B}.$

Снимем АЧХ вблизи резонанса

u, Гц	5300	5390	5480	5570	5660	5750	5840
2U, B	7	7.8	8.9	10.2	11.7	13.7	15.2
u, Гц	5930	6020	6110	6200	6290	6380	6470
2U, B	16.4	16.6	16.2	15	13.8	12.6	11
u, Гц	6560	6650	6740	6830	6920	7010	7100
2U, B	10.2	9.4	8.5	8.1	7.7	7.1	6.7

Обработка результатов 2.5.

1. Из секции 3.1 построим график $T_{exp} = f(T_{theor})$

Из графика видно, что результаты совпали, погрешность < 1% 2. Построим график $1/\theta^2=f[1/R^2]$

Коэффициент наклона $K=1320000\pm70000~{
m Om^2}$

Зная коэффициент наклона, найдем R_{cr} , по формуле $R_{cr}=2\pi\sqrt{K}=7200\pm200\,{\rm Om}$, что близко с теоретическим значением $R_{cr}=7511\,{\rm Om}$

- 3. Расчитаем добротность для максимального и минимального значения θ и теоретическое с теми же параметрами.
 - Вычисление добротности контура по секции 3.2:

$$Q(\theta_{min}) = 8.97 Q(\theta_{max}) = 2.40$$

• Вычисление добротности контура по секции 3.3:

$$Q(\theta_{min}) = 8.49 \qquad Q(\theta_{max}) = 2.21$$

• Вычисление добротности контура теоретически:

$$Q(\theta_{min}) = 9.16 \qquad \qquad Q(\theta_{max}) = 2.34$$

4. По секции 3.4 построим АЧХ в масштабе $U/U_{res} = f(\nu/\nu_{res})$

5. Рассчитаем добротность по формуле $Q = \nu_{res}/2\Delta\Omega, \, Q=7.91$

3. Вывод

- 1. С учетом емкости системы, значения периодов эксперимента идеально совпали с теоретическими значениями периодов.
- 2. Удалось снять зависимость логарифмического декремента затухания от активного сопротивления цепи (погрешность составила порядка 5%)
- 3. Определили критическое сопротивление, при котором характер колебаний меняется на апериодический, тремя способами: теоретическим $R=7.5\,\mathrm{kOm}$, по наклону графика зависимости логарифмического декремента затухания от сопротивления цепи $R_{\mathrm{kp}}=7.2\pm0.2\,\mathrm{kOm}$, с помощью наблюдением за картиной колебаний $R_{\mathrm{kp}}=6\,\mathrm{kOm}$.
- 4. Результаты расчетов добротности сведены в таблицу:

	Свободные колебания			Вынужденные колебания			
R, Om	$f(LCR)$ $f(\nu)$ Спираль		АЧХ	ФЧХ	Нарастание	Затухание	
410	9.16	8.97	8.49	7.91	-	-	-
1600	2.34	2.4	2.21	-	-	-	-

Как видим, все добротности хорошо совпали.