PARTICLE PHYSICS EVENT CLASSIFICATION

By Chethan

CONTENTS

- o Introduction
- o Objective
- o Data Preprocessing
- o Challenges
- o Machine Learning Models
- o Conclusion

INTRODUCTION

Particle Physics

Particle Physics studies the smallest building blocks of the universe and their interactions

INTRODUCTION

Background

Accurate classification crucial in particle physics for understanding fundamental particles and interactions.

OBJECTIVE

Build a machine-learning model to classify events into Signal (s) and Background (b) categories.

DATASET

		DER_mass_				D.E.D.	DED			D.E.D.		DER_met_	DED 1	
	DER_mass_	transverse_	DER_mass_		DER_deltae	DER_mass_	DER_prode	DER_deltar		DER_sum_	DER_pt_rat	phi_central	DER_lep_et	
EventId	MMC	met_lep	vis	DER_pt_h	ta_jet_jet	jet_jet	ta_jet_jet	_tau_lep	DER_pt_tot		io_lep_tau			PRI_tau_pt
100000	138.47	51.655	97.827	27.98	0.91	124.711	2.666	3.064	41.928	197.76	1.582	1.396	5 0.2	32.638
100001	160.937	68.768	103.235	48.146	-999	-999	-999	3.473	2.078	125.157	0.879	1.414	-999	42.014
100002	-999	162.172	125.953	35.635	-999	-999	-999	3.148	9.336	197.814	3.776	1.414	-999	32.154
100003	143.905	81.417	80.943	0.414	-999	-999	-999	3.31	0.414	75.968	2.354	-1.285	-999	22.647
100004	175.864	16.915	134.805	16.405	-999	-999	-999	3.891	16.405	57.983	1.056	-1.385	-999	28.209
100005	89.744	13.55	59.149	116.344	2.636	284.584	-0.54	1.362	61.619	278.876	0.588	0.479	0.975	53.651

PRI_tau_eta	PRI tau phi	PRI lep pt	PRI lep eta	PRI lep phi				PRI_jet_nu m	_	-			PRI_jet_subl eading_eta	PRI_jet_subleading_ph		Weight Label
1.017	0.381					-0.277	258.733	2	67.435							
2.039	-3.011	36.918	0.501	0.103	44.704	-1.916	164.546	1	46.226	0.725	1.158	-999	-999	-999	46.226	2.233584b
-0.705	-2.093	121.409	-0.953	1.052	54.283	-2.186	260.414	1	44.251	2.053	-2.028	-999	-999	-999	44.251	2.347389 b
-1.655	0.01	53.321	-0.522	-3.1	31.082	0.06	86.062	0	-999	-999	-999	-999	-999	-999	C	5.446378b
-2.197	-2.231	29.774	0.798	1.569	2.723	-0.871	53.131	0	-999	-999	-999	-999	-999	-999	C	6.245333b

No. of columns – 33 No. of rows - 250000

CHALLENGES & DIFFICULTIES

Imbalanced data

- Target column Data was imbalanced with 70-30 ratio
- o Under-sampling method is used to balance the data

Outliers/Error

- o -999 value was found in the data set which was considered as missing value.
- o All features with more than 30% missing value was removed
- o Other Few of the outlier value was removed

Overfitting

- Almost all the models were overfitting
- L2 regularization and estimators were used to avoid the overfitting

Handling Missing Data

Identify and handle missing values in the dataset.

Data Cleaning

- Address any inconsistencies or errors in the dataset, -999 error found
- Correct or remove outliers that may negatively impact model performance.

Feature Engineering

- Removing irrelevant or redundant features that do not contribute meaningful information
- Features with more than 30% missing values are dropped and event id feature is dropped.

- 1. DER_deltaeta_jet_jet
- 2. DER_mass_jet_jet
- 3. DER_prodeta_jet_jet
- 4. DER_lep_eta_centrality
- 5. PRI_jet_leading_pt
- 6. PRI_jet_leading_eta
- 7. PRI_jet_leading_phi
- 8. PRI_jet_subleading_pt
- 9. PRI_jet_subleading_eta
- 10. PRI_jet_subleading_phi
- 11. Eventld

Dealing with Categorical Data

- Converting categorical variables into a format suitable for machine learning models. (Target feature)
- Since data is imbalanced, data is balanced first, using under-sampling method

Target Column - Label

Data is imbalanced

S =1

■ B =0

Data Splitting

- Divide the dataset into training, and testing sets to evaluate the model's performance on unseen data.
- 80%-20% splitting is done

Normalization/Standardization

- Scale numerical features to a standard range to prevent certain features from dominating others
- Standard scaler is used in this dataset

MACHINE LEARNING MODELS

MACHINE LEARNING MODELS

Model Accuracy

FINAL STACKING MODEL

Cross-Validation Scores (Accuracy): [0.981349 0.98116651 0.98222498 0.97992481 0.98160383]

Mean Cross-Validation Accuracy: 98.13%

Standard Deviation of Cross-Validation Accuracy: 0.08%

CONCLUSION

In this physics particle event classification project utilizing machine learning algorithms, we applied a range of models to predict and classify events into signal and background categories. The accuracy results obtained from different models provide valuable insights into the effectiveness of each algorithm.

ACKNOWLEDGEMENT

I would like to thank Learnbay for providing this dataset

THANK YOU

Chethan chethan.kmr07@gmail.com