Petrucci • Harwood • Herring • Madura

Ninth GENERAL CHEMISTRY

Principles and Modern Applications

Slide 1 of 35

Chapter 9: The Periodic Table and Some Atomic Properties

Philip Dutton
University of Windsor, Canada
Prentice-Hall © 2007

Contents

- 9-1 Classifying the Elements: The Periodic Law and the Periodic Table
- 9-2 Metals and Nonmetals and Their Ions
- 9-3 The Sizes of Atoms and Ions
- 9-4 Ionization Energy
- 9-5 Electron Affinity
- 9-6 Magnetic Properties
- 9-7 Periodic Properties of the Elements
 - Focus On The Periodic Law and Mercury

9-1 Classifying the Elements: The Periodic Law and the Periodic Table

♦ 1869, Dimitri Mendeleev Lother Meyer

When the elements are arranged in order of increasing atomic mass, certain sets of properties recur periodically.

Periodic Law

Mendeleev's Periodic Table

1871

Reihen	Gruppe I. R ² O	Gruppe II. RO	Gruppe III. R ² O ³	Gruppe IV. RH ⁴ RO ²	Gruppe V. RH ³ R ² O ⁵	Gruppe VI. RH ² RO ³	Gruppe VII. RH R ² O ⁷	Gruppe VIII. RO ⁴
1 2	H = 1 Li = 7	Be = 9,4	B = 11	C = 12	N = 14	O = 16	F = 19	
3 4	Na = 23 K = 39	Mg = 24 $Ca = 40$	A1 = 27,3 — = 44		P = 31 $V = 51$		Cl = 35,5 Mn = 55	Fe = 56, Co = 59,
5	(Cu = 63)	Zn = 65		<u> </u>	As = 75	Se = 78	Br = 80	Ni = 59, Cu = 63.
6	$Rb = 85$ $(A\alpha = 108)$	Sr = 87 $Cd = 112$	Control of the second	Zr = 90 $Sn = 118$	7.	100000-100000	1000	Ru = 104, Rh = 104, Pd = 106, Ag = 108
7 8 9	Cs = 133	Ba = 137		?Ce = 140	- 50 - 122	-	- 127	
10	- (-)		?Er = 178	?La = 180	Ta = 182	W = 184		Os = 195, Ir = 197, Pt = 198, Au = 199
11 12	(Au = 199)	Hg = 200	T1 = 204	Pb = 207 Th = 231	Bi = 208	U = 240		11 - 170, Au - 199

TABLE 9.1 Properties of Germanium: Predicted and Observed					
Property	Predicted Eka-silicon (1871)	Observed Germanium (1886)			
Atomic mass	72	72.6			
Density, g/cm ³	5.5	5.47			
Color	dirty gray	grayish white			
Density of oxide, g/cm ³	EsO ₂ : 4.7	GeO ₂ : 4.703			
Boiling point of chloride	EsCl ₄ : below 100 °C	GeCl₄: 86 °C			
Density of chloride, g/cm ³	EsCl ₄ : 1.9	GeCl ₄ : 1.887			

X-Ray Spectra

♦ Moseley 1913

- X-ray emission is explained in terms of transitions in which e^- drop into orbits close to the atomic nucleus.
- Correlated frequencies to nuclear charges.

•
$$\nu = A (Z - b)^2$$

• Used to predict new elements (43, 61, 75) later discovered.

9-2 Metals and Nonmetals and Their Ions

Metals

- Good conductors of heat and electricity.
- Malleable and ductile.
- Moderate to high melting points.

♦ Nonmetals

- Nonconductors of heat and electricity.
- Brittle solids.
- Some are gases at room temperature.

Metals Tend to Lose Electrons

Nonmetals Tend to Gain Electrons

TABLE 9.2 Electron Configurations of Some Metal Ions^a

"Noble G	ias"	"Pseudo-Noble Gas" ^b	"18 + 2" ^c	Other
Na ⁺ M K ⁺ C Rb ⁺ S ₁ Cs ⁺ B ₂	Be ²⁺ Mg ²⁺ Ca ²⁺ Br ²⁺ Ba ²⁺ Ra ²⁺	Ga ³⁺ Tl ³⁺ Cu ⁺ Ag ⁺ , Au ⁺ Zn ²	In ⁺ Tl ⁺ Sn ²⁺ Pb ²⁺ Sb ³⁺ Bi ³⁺	Cr ²⁺ , Cr ³⁺ Mn ²⁺ , Fe ²⁺ Fe ³⁺ , Co ²⁺ Ni ²⁺ , Cu ²⁺

^aMain-group metal ions are printed in black and transition metal ions in blue.

^bIn the configuration labeled "pseudo-noble gas," all electrons of the outermost shell have been lost. The next-to-outermost electron shell of the atom becomes the outermost shell of the ion and contains 18 electrons, for example, Ga^{3+} : [Ne] $3s^23p^63d^{10}$.

^cIn the configuration labeled "18 + 2" all outer-shell electrons except the two s electrons are lost, producing an ion with 18 electrons in the next-to-outermost shell and 2 electrons in the outermost, for example, Sn^{2+} : [Ar] $3d^{10}4s^24p^64d^{10}5s^2$.

9-3 Sizes of Atoms and Ions

Covalent radius:

Metallic radius:

Ionic radius:

Atomic Radius

Slide 14 of 35 General Chemistry: Chapter 9 Prentice-Hall © 2007

Screening and Penetration

Screen of electron charge from core electrons

$$E_{n} = -R_{H} \frac{Z_{eff}^{2}}{n^{2}}$$

Cationic Radii

Anionic Radii

99 pm

181 pm

Atomic and Ionic Radii

9-4 Ionization Energy

$$Mg(g) \rightarrow Mg^+(g) + e^-$$

$$I_1 = 738 \text{ kJ}$$

$$Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$$

$$I_2 = 1451 \text{ kJ}$$

$$I = R_H \frac{Z_{\text{eff}}^2}{n^2}$$

First Ionization Energy

Ionization Energies of the Third-Period Elements (in kJ/mol) **TABLE 9.4** Na Mg Al Si Ar 786.5 495.8 1012 999.6 I_1 1251.1 1520.5 737.7 577.6 I_2 4562 1817 1577 1903 2251 2297 2666 1451 I_3 7733 2745 3232 2912 3361 3822 3931 11,580 4356 4957 5158 5771 I_4 4564 I_5 16,090 6274 7013 6542 7238 21,270 8496 9362 8781 I_6 I_7 11,020 27,110 12,000

Copyright © 2007 Pearson Prentice Hall, Inc.

$$I_2$$
 (Mg) vs. I_3 (Mg) I_1 (Mg) vs. I_1 (Al) I_1 (P) vs. I_1 (S)

9-5 Electron Affinity

$$F(g) + e^{-} \rightarrow F^{-}(g)$$
 $EA = -328 \text{ kJ}$
 $F(1s^{2}2s^{2}2p^{5}) + e^{-} \rightarrow F^{-}(1s^{2}2s^{2}2p^{6})$

$$Li(g) + e^{-} \rightarrow Li^{-}(g)$$

$$EA = -59.6 \text{ kJ}$$

First Electron Affinities

1							18
H							He >0
−72.8	2	13	14	15	16	17	<i>></i> 0
Li	Be	В	С	N	O	F	Ne
-59.6	>0	-26.7	-121.8	+7	-141.0	-328.0	>0
Na	Mg	Al	Si	P	S	Cl	Ar
-52.9	>0	-42.5	-133.6	−72	-200.4	-349.0	>0
K	Ca	Ga	Ge	As	Se	Br	Kr
-48.4	-2.37	-28.9	-119.0	-78	-195.0	-324.6	>0
Rb	Sr	In	Sn	Sb	Te	I	Xe
-46.9	-5.03	-28.9	-107.3	-103.2	-190.2	-295.2	>0
Cs	Ba	T1	Pb	Bi	Po	At	Rn
-45.5	-13.95	-19.2	-35.1	-91.2	-186	-270	>0

Second Electron Affinities

$$O(g) + e^- \rightarrow O^-(g)$$

$$EA = -141 \text{ kJ}$$

$$O^-(g) + e^- \rightarrow O^{2-}(g)$$

$$EA = +744 \text{ kJ}$$

9-6 Magnetic Properties

- Diamagnetic atoms or ions:
 - All e^- are paired.
 - Weakly repelled by a magnetic field.
- ◆ Paramagnetic atoms or ions:
 - Unpaired e⁻.
 - Attracted to an external magnetic field.

Paramagnetism

9-7 Periodic Properties of the Elements

Boiling Point

Some Properties of Three Halogen (Group 17) Elements **TABLE 9.5** Molecular Boiling **Atomic** Atomic Melting Number Point, K Point, K Mass, u Form Cl 17 35.45 Cl_2 172 239 ? 79.90 Br_2 ? Br 35 126.90 387 53 I_2 458

Copyright © 2007 Pearson Prentice Hall, Inc.

General Chemistry: Chapter 9 Prentice-Hall © 2007

Melting Points of Elements

TABLE 9.6 Melting Points of Two Series of Compounds

Molecular Melting Mass, u Point, °C

CF ₄	88.0	-183.7
CCl_4	153.8	-22.9
CBr ₄	331.6	90.1
CI_4	519.6	171
HF	20.0	-83.6
HCl	36.5	-114.2
HBr	80.9	-86.8
HI	127.9	-50.8

Reducing Ability of Group 1 and 2 Metals

$$2 \text{ K(s)} + 2 \text{ H}_2\text{O(1)} \rightarrow 2 \text{ K}^+ + 2 \text{ OH}^- + \text{H}_2(g)$$

$$I_1 = 419 \text{ kJ}$$

$$I_1 = 590 \text{ kJ}$$

$$I_2 = 1145 \text{ kJ}$$

$$Ca(s) + 2 H_2O(1) \rightarrow Ca^{2+} + 2 OH^- + H_2(g)$$

Oxidizing Abilities of the Halogens

$$2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ NaCl}$$

$$Cl_2 + 2 I^- \rightarrow 2 Cl^- + I_2$$

Copyright © 2007 Pearson Prentice Hall, Inc.

Acid Base Nature of Element Oxides

Basic oxides or base anhydrides:

$$\text{Li}_2\text{O}(s) + \text{H}_2\text{O}(l) \rightarrow 2 \text{ Li}^+(aq) + 2 \text{ OH}^-(aq)$$

Acidic oxides or acid anhyhydrides:

$$SO_2(g) + H_2O(1) \rightarrow H_2SO_3(aq)$$

- ◆ Na₂O and MgO yield basic solutions
- ◆ Cl₂O, SO₂ and P₄O₁₀ yield acidic solutions
- ◆ SiO₂ dissolves in strong base, acidic oxide.

Focus on The Periodic Law and Mercury

• Should be a solid.

• Relativistic shrinking of s-orbitals affects all heavy metals but is maximum with Hg.

End of Chapter Questions

- Think of a problem like a root system:
 - Each branching is a decision.
 - The answer is at the tip of one of the rootlets.

Slide 35 of 35 General Chemistry: Chapter 9 Prentice-Hall © 2007