

Table of Contents

1 BACKGROUND

DIFFERENT TECHNIQUES

03 EXAMPLES

04

05

IMPLEMENTATION

CONCLUSION

Background

- Images display important information
- Useful for identifying various things
 - · Especially in the medical field
- Noise → Unwanted

$$\xrightarrow{x(t)} h(t) \xrightarrow{y(t)}$$

Can use different filtering techniqes to remove noise

What is Sparse Representation?

- Atoms → Entries in the dictionary
- Dictionaries → A collection of atoms
- Helps solve systems of linear equations
- Can be paired with other methods to improve denoising

How It Works

- Finds patterns in the images that are 'regular' and 'uniform'
 - Areas with no noise present

- Problem → Will be hard to use for geometric shapes
 - Reason for the dictionaries

Denoising Methods

- Will be discussing:
 - Block Matching
 - Segmentation
 - Redundant Representation
 - Learning/Adaptive Dictionaries

The Problem with existing denoising method

- Written by Hamid and Seyede
- 1st Disadvantage → Elad and Aharon created a dictionary to denoise images using the K-SVD algorithm
 - Includes redundancy in a global Bayesian objective and sparsity
 - Takes form of a random function
 - Causes biases based on one's belief of what the function should be
- 2nd Disadvantage → Overfitting occurs
 - The model "memorized" the data that was given
 - Neglects to learn the relationship of the function.

Block-Matching and Sparse Representations

- Proposed Method → Incorporates the Bandelet Transform with CS and Block Matching
 - Bandelet Transform beneficial tool for identifying edges and texture in an image
 - Identify the geometric flow of vectors using the grey levels in a local area

Block Matching and Sparse Representations

- Denoising techniques that finds similar grey level blocks around an image
 - Helps with edge identification and preservation

- Once these groups are identified they are grouped
 - Variety of methods for grouping:
 - Vector quantization
 - k-means clustering
 - Fuzzy clustering
 - Self-Organizing maps

Proposed Method

- 1st Step: Use block matching technique to determine where similarities are in the image
- 2nd Step: Group using k-means to find indices for each group patch
- 3rd Step: Use overcomplete Discrete Cosine Transform (DCT) dictionary
 - Greatly used in data compression and converting data like pixels and waveforms into frequency components
 - Using the TwIST (two-step iterative shrinkage/thresholding) algorithm
- Benefit using TwIST algorithm is that it is ideal for optimizing images as it uses values of u that are from the previous and current iterations as oppose to IST (Iterative shrinkage/thresholding) algorithm that takes inputs only from the current iteration process

Denoising Cardiac Diffusion Tensor Magnetic Resonance Images (DT-MRI)

- Denoising medical images is very important
- The DT-MRI is very noise sensitive and can cause numerous systemic errors in subsequent parameter calculations
- Unwanted noise caused by pumping of the heart or movement of the patient
- Proposes to use segmentation and sparse representation to remove noise from the image

Segmentation with Sparse Representation

- Segmentation is used to make atoms more adaptive in the dictionary
- Various segmentation methods but the one used in the paper was edge detection by thresholding
- Able to detect edges and regions in an image
- NSD = Non-stationarity detection
 - Used to make independent components

Denoising with Segmentation and Sparse Representation

- Atoms are gradually cycled until denoising is achieved
- Current techniques used is partial differential equation (PDE) and wavelet filter
- · PDE:
 - Good → Edge preservation
 - Bad → Degrades image with high noise levels
- Wavelet filter:
 - Good → Overall good image quality in terms of denoising
 - Bad → Elements and noise are convolved resulting in blurriness
 - → Estimating threshold

Pre-built Dictionary vs. Adaptive Learning Dictionary

Denoise images with Gaussian additive noise

$$y = x + v$$

- Typically DCT dictionary would be used for all images, but discrepancies would be seen
- Roth and Black, wanted to create a method that implemented dictionary learning.

Comparison

- Using DCT dictionary → 'Generic' Method
- Using Adaptive Learning Dictionary → 'Global' Method

Original Image

Additive Noise

SNR: 28.8528 dB Adaptive Dictionary

SNR: 30.8295 dB Pre-defined dictionary

Implementation

- Block Matching with sparse representation implementation by Tampere University of Technology
- Recap of Block Matching and Sparse:

PSNR

Dictionary Example

Conclusion

- Sparse coding is better when paired with other methods
- Images are sensitive to noise and can appear grainy
- Thus, constantly need to adapt our current methods of denoising to better suit every image

THANK YOU

Any Questions?

