

SEQUENCE LISTING

<110> MACK, DAVID GISH, KURT <120> NOVEL METHODS OF DIAGNOSING AND TREATING BREAST CANCER, COMPOSITIONS, AND METHODS OF SCREENING FOR BREAST CANCER MODULATORS <130> A-67860-3/DJB/JJD <140> US 09/525,361 <141> 2000-03-15 <150> US 09/268,865 <151> 1999-03-15 <150> US 09/450,810 <151> 1999-11-29 <150> US 09/453,137 <151> 1999-12-02 <150> US 09/439,878 <151> 1999-11-12

<150> US 09/440,370

<151> 1999-11-12

<150> US 09/440,493

<151> 1999-11-15

<150> US 09/520,478

<151> 2000-03-08

<150> US 09/440,676

<151> 1999-11-16

<150> US 09/440,677

<151> 1999-11-16

<160> 62

<170> PatentIn Ver. 2.1

<210> 1

<211> 3264

<212> DNA

<213> Homo sapiens

<400> 1

gggacagggc tgaggatgag gagaaccctg gggacccaga agaccgtgcc ttgcccggaa 60 gtcctgcctg taggcctgaa ggacttgccc taacagagcc tcaacaacta cctqqtgatt 120 cetacttcag ccccttggtg tgagcagctt ctcaacatga actacagcct ccacttggcc 180 ttegtgtgte tgagtetett eactgagagg atgtgeatee aggggagtea gtteaaegte 240 gaggteggea gaagtgacaa gettteeetg cetggetttg agaaceteae ageaggatat 300 aacaaatttc tcaggcccaa ttttggtgga gaacccgtac agatagcgct gactctggac 360 attgcaagta tctctagcat ttcagagagt aacatggact acacagccac catatacctc 420 cgacagcgct ggatggacca gcggctggtg tttgaaggca acaagagctt cactctggat 480 gcccgcctcg tggagttcct ctgggtgcca gatacttaca ttgtggagtc caagaagtcc 540

```
ttcctccatg aagtcactgt gggaaacagg ctcatccgcc tcttctccaa tggcacggtc 600
ctgtatgccc tcagaatcac gacaactgtt gcatgtaaca tggatctgtc taaatacccc 660
atggacacac agacatgcaa gttgcagctg gaaagctggg gctatgatgg aaatgatgtg 720
gagttcacct ggctgagagg gaacgactct gtgcgtggac tggaacacct gcggcttgct 780
cagtacacca tagageggta tttcacetta gtcaccagat egcageagga gacaggaaat 840
tacactagat tggtcttaca gtttgagctt cggaggaatg ttctgtattt cattttggaa 900
acctacgttc cttccacttt cctggtggtg ttgtcctggg tttcattttg gatctctctc 960
gattcagtcc ctgcaagaac ctgcattgga gtgacgaccg tgttatcaat gaccacactg 1020
atgategggt ecegeactte tetteceaac accaactget teateaagge categatgtg 1080
tacctgggga tctgctttag ctttgtgttt ggggccttgc tagaatatgc agttgctcac 1140
tacagttcct tacagcagat ggcagccaaa gataggggga caacaaagga agtagaagaa 1200
gtcagtatta ctaatatcat caacagctcc atctccagct ttaaacggaa gatcagcttt 1260
gccagcattg aaatttccag cgacaacgtt gactacagtg acttgacaat gaaaaccagc 1320
gacaagttca agtttgtctt ccgagaaaag atgggcagga ttgttgatta tttcacaatt 1380
caaaacccca gtaatgttga tcactattcc aaactactgt ttcctttgat ttttatgcta 1440
gccaatgtat tttactgggc atactacatg tatttttgag tcaatgttaa atttcttgca 1500
tgccataggt cttcaacagg acaagataat gatgtaaatg gtattttagg ccaagtgtgc 1560
acccacatec aatggtgeta caagtgaetg aaataatatt tgagtettte tgeteaaaga 1620
atgaagetee aaccattgtt ctaagetgtg tagaagteet ageattatag gatettgtaa 1680
tagaaacatc agtccattcc tctttcatct taatcaagga cattcccatg gagcccaaga 1740
ttacaaatgt actcagggct gtttattcgg tggctccctg gtttgcattt acctcatata 1800
aagaatggga aggagaccat tgggtaaccc tcaagtgtca gaagttgttt ctaaagtaac 1860
tatacatgtt ttttactaaa tctctgcagt gcttataaaa tacattgttg cctatttagg 1920
gagtaacatt ttctagtttt tgtttctggt taaaatgaaa tatgggctta tgtcaattca 1980
ttggaagtca atgcactaac tcaataccaa gatgagtttt taaataatga atattattta 2040
ataccacaac agaattatcc ccaatttcca ataagtccta tcattgaaaa ttcaaatata 2100
agtgaagaaa aaattagtag atcaacaatc taaacaaatc cctcqqttct aagatacaat 2160
ggattcccca tactggaagg actctgaggc tttattcccc cactatgcat atcttatcat 2220
tttattatta tacacacate cateetaaae tatactaaag eeetttteee atgeatggat 2280
ggaaatggaa gatttttttg taacttgttc tagaagtctt aatatgggct gttgccatga 2340
aggettgeag aattgagtee attttetage tgeetttatt cacatagtga tggggtaeta 2400
aaagtactgg gttgactcag agagtcgctg tcattctgtc attgctgcta ctctaacact 2460
gagcaacact ctcccagtgg cagatcccct gtatcattcc aagaggagca ttcatccctt 2520
tgctctaatg atcaggaatg atgcttatta gaaaacaaac tgcttgaccc aggaacaagt 2580
ggettagett aagtaaaett ggetttgete agateeetga teetteeage tggtetgete 2640
tgagtggctt atcccgcatg agcaggagcg tgctggccct gagtactgaa ctttctgagt 2700
aacaatgaga cacgttacag aacctatgtt caggttgcgg gtgagctgcc ctctccaaat 2760
ccagccagag atgcacattc ctcggccagt ctcagccaac agtaccaaaa gtgatttttg 2820
agtgtgccag ggtaaaggct tccagttcag cctcagttat tttagacaat ctcgccatct 2880
ttaatttett agetteetgt tetaataaat geaeggettt aeettteetg teagaaataa 2940
accaaggete taaaagatga ttteeettet gtaacteeet agageeacag gtteteatte 3000
cttttcccat tatacttctc acaattcagt ttctatgagt ttgatcacct gatttttta 3060
acaaaatatt totaacggga atgggtggga gtgctggtga aaagagatga aatgtggttg 3120
tatgagccaa tcatatttgt gattttttaa aaaaagttta aaaggaaata tctgttctga 3180
aaccccactt aagcattgtt tttatataaa aacaatgata aagatgtgaa ctgtgaaata 3240
aatataccat attagctacc cacc
                                                                  3264
```

```
<210> 2
<211> 1323
<212> DNA
<213> Homo sapiens
```

<400> 2

atgaactaca gcctccactt ggccttcgtg tgtctgagtc tcttcactga gaggatgtgc 60 atccagggga gtcagttcaa cgtcgaggtc ggcagaagtg acaagctttc cctgcctggc 120 tttgagaacc tcacagcagg atataacaaa tttctcaggc ccaattttgg tggagaaccc 180 gtacagatag cgctgactct ggacattgca agtatctcta gcatttcaga gagtaacatg 240 gactacacag ccaccatata cctccgacag cgctggatgg accagcggct ggtgtttgaa 300 ggcaacaaga gcttcactct ggatgcccgc ctcgtggagt tcctctgggt gccagatact 360

```
egeetettet eeaatggeae ggteetgtat geeeteagaa teaegaeaae tgttgeatgt 480
aacatggatc tgtctaaata ccccatggac acacagacat gcaagttgca gctggaaagc 540
tggggctatg atggaaatga tgtggagttc acctggctga gagggaacga ctctgtgcgt 600
ggactggaac acctgcggct tgctcagtac accatagagc ggtatttcac cttagtcacc 660
agatogoago aggagacagg aaattacact agattggtot tacagtttga gottoggagg 720
aatgttetgt attteatttt ggaaacetae gtteetteea ettteetggt ggtgttgtee 780
tgggtttcat tttggatctc tctcgattca gtccctgcaa gaacctgcat tggagtgacg 840
accgtgttat caatgaccac actgatgatc gggtcccgca cttctcttcc caacaccaac 900
tgetteatea aggeeatega tgtgtaeetg gggatetget ttagetttgt gtttggggee 960
ttgctagaat atgcagttgc tcactacagt tccttacagc agatggcagc caaagatagg 1020
gggacaacaa aggaagtaga agaagtcagt attactaata tcatcaacag ctccatctcc 1080
agetttaaac ggaagateag etttgeeage attgaaattt eeagegaeaa egttgaetae 1140
agtgacttga caatgaaaac cagcgacaag ttcaagtttg tcttccgaga aaagatgggc 1200
aggattgttg attatttcac aattcaaaac cccagtaatg ttgatcacta ttccaaacta 1260
ctgtttcctt tgatttttat gctagccaat gtattttact gggcatacta catgtatttt 1320
<210> 3
<211> 440
<212> PRT
<213> Homo sapiens
<400> 3
Met Asn Tyr Ser Leu His Leu Ala Phe Val Cys Leu Ser Leu Phe Thr
Glu Arg Met Cys Ile Gln Gly Ser Gln Phe Asn Val Glu Val Gly Arg
             20
Ser Asp Lys Leu Ser Leu Pro Gly Phe Glu Asn Leu Thr Ala Gly Tyr
Asn Lys Phe Leu Arg Pro Asn Phe Gly Gly Glu Pro Val Gln Ile Ala
     50
Leu Thr Leu Asp Ile Ala Ser Ile Ser Ser Ile Ser Glu Ser Asn Met
Asp Tyr Thr Ala Thr Ile Tyr Leu Arg Gln Arg Trp Met Asp Gln Arg
Leu Val Phe Glu Gly Asn Lys Ser Phe Thr Leu Asp Ala Arg Leu Val
Glu Phe Leu Trp Val Pro Asp Thr Tyr Ile Val Glu Ser Lys Lys Ser
                            120
                                                125
Phe Leu His Glu Val Thr Val Gly Asn Arg Leu Ile Arg Leu Phe Ser
Asn Gly Thr Val Leu Tyr Ala Leu Arg Ile Thr Thr Thr Val Ala Cys
145
                    150
                                        155
                                                             160
Asn Met Asp Leu Ser Lys Tyr Pro Met Asp Thr Gln Thr Cys Lys Leu
Gln Leu Glu Ser Trp Gly Tyr Asp Gly Asn Asp Val Glu Phe Thr Trp
                                185
                                                    190
```

tacattgtgg agtccaagaa gtccttcctc catgaagtca ctgtgggaaa caggctcatc 420

Leu Arg Gly Asn Asp Ser Val Arg Gly Leu Glu His Leu Arg Leu Ala 200 Gln Tyr Thr Ile Glu Arg Tyr Phe Thr Leu Val Thr Arg Ser Gln Gln 210 215 Glu Thr Gly Asn Tyr Thr Arg Leu Val Leu Gln Phe Glu Leu Arg Arg 235 Asn Val Leu Tyr Phe Ile Leu Glu Thr Tyr Val Pro Ser Thr Phe Leu 245 Val Val Leu Ser Trp Val Ser Phe Trp Ile Ser Leu Asp Ser Val Pro 265 Ala Arg Thr Cys Ile Gly Val Thr Thr Val Leu Ser Met Thr Thr Leu 280 Met Ile Gly Ser Arg Thr Ser Leu Pro Asn Thr Asn Cys Phe Ile Lys 295 Ala Ile Asp Val Tyr Leu Gly Ile Cys Phe Ser Phe Val Phe Gly Ala 305 310 315 Leu Leu Glu Tyr Ala Val Ala His Tyr Ser Ser Leu Gln Gln Met Ala 325 Ala Lys Asp Arg Gly Thr Thr Lys Glu Val Glu Val Ser Ile Thr 340 345 Asn Ile Ile Asn Ser Ser Ile Ser Ser Phe Lys Arg Lys Ile Ser Phe 360 Ala Ser Ile Glu Ile Ser Ser Asp Asn Val Asp Tyr Ser Asp Leu Thr 370 375 380 Met Lys Thr Ser Asp Lys Phe Lys Phe Val Phe Arg Glu Lys Met Gly 390 Arg Ile Val Asp Tyr Phe Thr Ile Gln Asn Pro Ser Asn Val Asp His 405 Tyr Ser Lys Leu Leu Phe Pro Leu Ile Phe Met Leu Ala Asn Val Phe 420 Tyr Trp Ala Tyr Tyr Met Tyr Phe 435 <210> 4

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

Ala Cys Asn Met Asp Leu Ser Lys Tyr Pro Met Asp Thr Gln Thr Page 4

<210> 5

```
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 5
Cys Lys Leu Gln Leu Glu Ser Trp Gly Tyr Asp Gly Asn Asp Val
<210> 6
<211> 3290
<212> DNA
<213> Homo sapiens
<400> 6
gtgaagagag gcgcggcgtg actgagctac ggttctggct gcgtcctaga ggcatccgqq 60
gcagtaaaac cgctgcgatc gcggaggcgg cggccaggcc gagagcaggc cgggcagggg 120
tgtcggacgc agggcgctgg gccgggtttc ggcttcggcc acagcttttt ttctcaaqqt 180
gcaatgaaag cettecacae tttetgtgtt gteettetgg tgtttgggag tgtetetgaa 240
gccaagtttg atgattttga ggatgaggag gacatagtag agtatgatga taatgacttc 300
gctgaatttg aggatgtcat ggaagactct gttactgaat ctcctcaacg ggtcataatc 360
actgaagatg atgaagatga gaccactgtg gagttggaag ggcaggatga aaaccaagaa 420
ggagattttg aagatgcaga tacccaggag ggagatactg agagtgaacc atatgatgat 480
gaagaatttg aaggttatga agacaaacca gatacttctt ctagcaaaaa taaagaccca 540
ataacgattg ttgatgttcc tgcacacctc cagaacagct gggagagtta ttatctagaa 600
attttgatgg tgactggtct gcttgcttat atcatgaatt acatcattgg gaagaataaa 660
aacagtegee ttgeacagge etggtttaae aeteataggg agettttgga gageaaettt 720
actttagtgg gggatgatgg aactaacaaa gaagccacaa gcacaggaaa gttgaaccag 780
gagaatgagc acatctataa cctgtggtgt tctggtcgag tgtgctgtga gggcatgctt 840
atccagctga ggttcctcaa gagacaagac ttactgaatg tcctggcccg gatgatgagg 900
ccagtgagtg atcaagtgca aataaaagta accatgaatg atgaagacat ggatacctac 960
gtatttgctg ttggcacacg gaaagccttg gtgcgactac agaaagagat gcaggatttg 1020
agtgagtttt gtagtgataa acctaagtct ggagcaaagt atggactgcc ggactctttg 1080
gccatcctgt cagagatggg agaagtcaca gacggaatga tggatacaaa gatggttcac 1140
ttcttacaca cctatgctga caagattgaa tctgttcatt tttcagacca gttctctggt 1200
ccaaaaatta tgcaagagga aggtcagcct ttaaagctac ctgacactaa gaggacactg 1260
ttgtttacat ttaatgtgcc tggctcaggt aacacttacc caaaggatat ggaggcactg 1320
ctacccctga tgaacatggt gatttattct attgataaag ccaaaaagtt ccgactcaac 1380
agagaaggca aacaaaaagc agataagaac cgtgcccgag tagaagagaa cttcttgaaa 1440
ctgacacatg tgcaaagaca ggaagcagca cagtctcggc gggaggagaa aaaaagagca 1500
gagaaggagc gaatcatgaa tgaggaagat cctgagaaac agcgcaggct ggaggaggct 1560
gcattgaggc gtgacgaaaa agaagttgga aaagaagcaa atgaaaatga aacaaatcaa 1620
agtgaaagcc atgtaaagcc atcccagaga tttgagttct gatgccacct gtaagctctg 1680
aattcacagg aaacatgaaa aacgccagtc catttctcaa ccttaaattt cagacagtct 1740
tgggcaactg agaaatcctt atttcatcat ctactctgtt tggggtttgg ggttttacag 1800
agattgaaga tacctggaaa gggctctgtt tcaagaattt ttttttccag ataatcaaat 1860
tattttgatt attttataaa aggaatgatc tatgaaatct gtgtaggttt taaatatttt 1920
aaaaattata atacaaatca tcagtgcttt tagtacttca gtgtttaaag aaataccatg 1980
aaatttatag gtagataacc agattgttgc tttttgttta aaccaagcag ttgaaatggc 2040
tataaagact gactctaaac caagattctg caaataatga ttggaattgc acaataaaca 2100
ttgcttgatg ttttcttgta tgtctacatt aaacttgaga aaaagtaaaa attagaacac 2160
tgtatgtagt aatgaaattt cagggaccca gaacataatg tagtatatgt ttttaggtgg 2220
gagatgctga taacaaaatt aataggaagt ctgtaggcat taggatactg acatgtacat 2280
```

```
ggaaaattct agggacagga gcatcatttt ttccttacct gataccacga accagtgaca 2340
acgtgaatgc tgtattttaa gtggttgtat gtttattttc ttgagtaaca aatgcatgaa 2400
aaattaatgc ttcacctagg taagatcatt ggtctgtgtg aaatcacaaa tgttttttcc 2460
ttcttggttg ctgcagcctg ggtggatgtt catggagaag ctctgttctc tatattatgg 2520
ctgtgtgccg ttgcttctcc ctctgctttt atcttttcca cagttgaggc tgggtatgtt 2580
ctttcaaaga aatggccatg aatatgtgta agtatacttt tgaaaatgag ctttcctaaa 2640
ctattgagag ttctttccac ctcttgcgga accaactctt ggaggagagg cccatgtatc 2700
tqcacqaqca cttaqcttqt tcaqatctct qcattttata aatqcttctt accaaqaaaq 2760
ttctggtggg agtggggtgg tgggtatttt ttgttgatgc tttagtgcag gcctgttctg 2880
aggcaataac aagttgctgt gaaaacagca tgtgctgctg cctttgtaac tgcatggaaa 2940
cttttcacat gggtttttct ccaagttaat acagaaatat gtaaactgag agatgcaaat 3000
qtaatatttt taacagttca tgaagttgtt attaaaataa ctaacataaa acttaattac 3060
tttaatatta tataattata gtagtggcct tgttttacaa acctttaaat tacattttag 3120
aaatcaaagt tgatagtett agttatettt tgagtaagaa aagettteet aaagteecat 3180
acatttggac catggcagct aattttgtaa cttaagcatt catatgaact acctatggac 3240
<210> 7
<211> 1479
<212> DNA
<213> Homo sapiens
<400> 7
atgaaageet teeacaettt etgtgttgte ettetggtgt ttgggagtgt etetgaagee 60
aagtttgatg attttgagga tgaggaggac atagtagagt atgatgataa tgacttcgct 120
gaatttgagg atgtcatgga agactctgtt actgaatctc ctcaacgggt cataatcact 180
gaagatgatg aagatgagac cactgtggag ttggaagggc aggatgaaaa ccaagaagga 240
gattttgaag atgcagatac ccaggaggga gatactgaga gtgaaccata tgatgatgaa 300
gaatttgaag gttatgaaga caaaccagat acttcttcta gcaaaaataa agacccaata 360
acgattgttg atgttcctgc acacctccag aacagctggg agagttatta tctagaaatt 420
ttgatggtga ctggtctgct tgcttatatc atgaattaca tcattgggaa gaataaaaac 480
agtogoottg cacaggootg gtttaacact catagggagc ttttggagag caactttact 540
ttagtggggg atgatggaac taacaaagaa gccacaagca caggaaagtt gaaccaggag 600
aatgagcaca totataacct gtggtgttct ggtcgagtgt gctgtgaggg catgcttatc 660
cagetgaggt teeteaagag acaagaetta etgaatgtee tggeeeggat gatgaggeea 720
gtgagtgatc aagtgcaaat aaaagtaacc atgaatgatg aagacatgga tacctacgta 780
tttgctgttg gcacacggaa agccttggtg cgactacaga aagagatgca ggatttgagt 840
gagttttgta gtgataaacc taagtctgga gcaaagtatg gactgccgga ctctttggcc 900
atcctgtcag agatgggaga agtcacagac ggaatgatgg atacaaagat ggttcacttc 960
ttacacacct atgctgacaa gattgaatct gttcattttt cagaccagtt ctctggtcca 1020
aaaattatgc aagaggaagg tcagccttta aagctacctg acactaagag gacactgttg 1080
tttacattta atgtgcctgg ctcaggtaac acttacccaa aggatatgga ggcactgcta 1140
cccctgatga acatggtgat ttattctatt gataaagcca aaaagttccg actcaacaga 1200
gaaggcaaac aaaaagcaga taagaaccgt gcccgagtag aagagaactt cttgaaactg 1260
acacatgtgc aaagacagga agcagcacag tctcggcggg aggagaaaaa aagagcagag 1320
aaggagcgaa tcatgaatga ggaagatcct gagaaacagc gcaggctgga ggaggctgca 1380
ttgaggcgtg acgaaaaaga agttggaaaa gaagcaaatg aaaatgaaac aaatcaaagt 1440
gaaagccatg taaagccatc ccagagattt gagttctga
                                                                1479
<210> 8
<211> 492
<212> PRT
<213> Homo sapiens
<400> 8
Met Lys Ala Phe His Thr Phe Cys Val Val Leu Leu Val Phe Gly Ser
                                   10
```

Val	Ser	Glu	Ala 20	Lys	Phe	Asp	Asp	Phe 25	Glu	Asp	Glu	Glu	Asp 30	Ile	Val
Glu	Tyr	Asp 35	Asp	Asn	Asp	Phe	Ala 40	Glu	Phe	Glu	Asp	Val 45	Met	Glu	Asp
Ser	Val 50	Thr	Glu	Ser	Pro	Gln 55	Arg	Val	Ile	Ile	Thr 60	Glu	Asp	Asp	Glu
Asp 65	Glu	Thr	Thr	Val	Glu 70	Leu	Glu	Gly	Gln	Asp 75	Glu	Asn	Gln	Glu	Gly 80
Asp	Phe	Glu	Asp	Ala 85	Asp	Thr	Gln	Glu	Gly 90	Asp	Thr	Glu	Ser	Glu 95	Pro
Tyr	Asp	Asp	Glu 100	Glu	Phe	Glu	Gly	Tyr 105	Glu	Asp	Lys.	Pro	Asp 110	Thr	Ser
Ser	Ser	Lys 115	Asn	Lys	Asp	Pro	Ile 120	Thr	Ile	Val	Asp	Val 125	Pro	Ala	His
Leu	Gln 130	Asn	Ser	Trp	Glu	Ser 135	Tyr	Tyr	Leu	Glu	Ile 140	Leu	Met	Val	Thr
Gly 145	Leu	Leu	Ala	Tyr	Ile 150	Met	Asn	Tyr	Ile	Ile 155	Gly	Lys	Asn	Lys	Asn 160
Ser	Arg	Leu	Ala	Gln 165	Ala	Trp	Phe	Asn	Thr 170	His	Arg	Glu	Leu	Leu 175	Glu
Ser	Asn	Phe	Thr 180	Leu	Val	Gly	Asp	Asp 185	Gly	Thr	Asn	Lys	Glu 190	Ala	Thr
Ser	Thr	Gly 195	Lys	Leu	Asn	Gln	Glu 200	Asn	Glu	His	Ile	Tyr 205	Asn	Leu	Trp
Cys	Ser 210	Gly	Arg	Val	Cys	Cys 215	Glu	Gly	Met	Leu	Ile 220	Gln	Leu	Arg	Phe
Leu 225	Lys	Arg	Gln	Asp	Leu 230	Leu	Asn	Val	Leu	Ala 235	Arg	Met	Met	Arg	Pro 240
Val	Ser	Asp	Gln	Val 245	Gln	Ile	Lys	Val	Thr 250	Met	Asn	Asp	Glu	Asp 255	Met
Asp	Thr	Tyr	Val 260	Phe	Ala	Val	Gly	Thr 265	Arg	Lys	Ala	Leu	Val 270	Arg	Leu
Gln	Lys	Glu 275	Met	Gln	Asp	Leu	Ser 280	Glu	Phe	Cys	Ser	Asp 285	Lys	Pro	Lys
Ser	Gly 290	Ala	Lys	Tyr	Ġly	Leu 295	Pro	Asp	Ser	Leu	Ala 300	Ile	Leu	Ser	Glu
Met 305	Gly	Glu	Val	Thr	Asp 310	Gly	Met	Met	Asp	Thr 315	Lys	Met	Val	His	Phe 320
Leu	His	Thr	Tyr	Ala 325	Asp	Lys	Ile	Glu	Ser 330	Val	His	Phe	Ser	Asp 335	Gln

Phe Ser Gly Pro Lys Ile Met Gln Glu Glu Gly Gln Pro Leu Lys Leu Pro Asp Thr Lys Arg Thr Leu Leu Phe Thr Phe Asn Val Pro Gly Ser Gly Asn Thr Tyr Pro Lys Asp Met Glu Ala Leu Leu Pro Leu Met Asn Met Val Ile Tyr Ser Ile Asp Lys Ala Lys Lys Phe Arg Leu Asn Arg 385 Glu Gly Lys Gln Lys Ala Asp Lys Asn Arg Ala Arg Val Glu Glu Asn Phe Leu Lys Leu Thr His Val Gln Arg Gln Glu Ala Ala Gln Ser Arg 420 425 Arg Glu Glu Lys Lys Arg Ala Glu Lys Glu Arg Ile Met Asn Glu Glu 440 Asp Pro Glu Lys Gln Arg Arg Leu Glu Glu Ala Ala Leu Arg Arg Asp 455 Glu Lys Glu Val Gly Lys Glu Ala Asn Glu Asn Glu Thr Asn Gln Ser Glu Ser His Val Lys Pro Ser Gln Arg Phe Glu Phe 485 <210> 9 <211> 15 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic Cys Lys Pro Asp Thr Ser Ser Ser Lys Asn Lys Asp Pro Ile Thr 15 <210> 10 <211> 15 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic <400> 10 Lys Phe Asp Asp Phe Glu Asp Glu Glu Asp Ile Val Glu Tyr Cys <210> 11 <211> 1958

Page 8

<212> DNA

<212> PRT

<213> Homo sapiens

<400> 13

Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro 1 5 10 15

Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly
20 25 30

Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln Thr Ser Ser Leu Trp 35 40 45

Trp Lys Cys Ser Gln Glu Gly Gly Gly Ser Gly Ser Tyr Glu Glu Gly
50 60

Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Ala Met 65 70 75 80

Leu Phe Cys Gly Phe Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe 85 90 95

Phe Ala Leu Cys Gly Pro Gln Met Leu Val Phe Leu Arg Val Ile Gly
100 105 110

Gly Leu Leu Ala Leu Ala Ala Val Phe Gln Ile Leu Ser Leu Val Ile 115 120 125

Tyr Pro Val Lys Tyr Thr Gln Thr Phe Thr Leu His Ala Asn Pro Ala 130 135 140

Val Thr Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr 145 150 155 160

Ile Ile Leu Ile Gly Cys Ala Phe Phe Phe Cys Cys Leu Pro Asn Tyr 165 170 175

Glu Asp Asp Leu Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser 180 185 190

Ala

<210> 14

<211> 193

<212> PRT

<213> Mouse

<400> 14

Met Leu Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro
1 10 15

Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly
20 25 30

Arg Gly Trp Leu Gln Ser Ser Asn His Ile Gln Thr Ser Ser Leu Trp
35 40 45

Trp Arg Cys Phe Asp Glu Gly Gly Gly Ser Gly Ser Tyr Asp Asp Gly 50 55 60

Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Thr Leu Phe Cys Gly Phe Ile Ile Leu Cys Ile Cys Phe Ile Leu Ser Phe Phe Ala Leu Cys Gly Pro Met Gln Leu Val Phe Leu Arg Val Ile Gly 105 Gly Leu Leu Ala Leu Ala Ala Ile Phe Gln Ile Leu Ser Leu Val Ile 115 120 125 Tyr Pro Val Lys Tyr Thr Gln Thr Phe Arg Leu His Asp Asn Pro Ala 135 Val Asn Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr 145 150 Ile Ile Leu Ile Gly Cys Ser Phe Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp Leu Leu Gly Ala Ala Lys Pro Arg Tyr Phe Tyr Pro Pro Ala <210> 15 <211> 124 <212> PRT <213> Rat <400> 15 Glu Tyr Ala Trp Gly Arg Ala Ala Ala Ala Thr Leu Phe Cys Gly Phe Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe Phe Ala Leu Cys Gly Pro Gln Met Leu Val Phe Leu Arg Val Ile Gly Gly Leu Leu Ala Leu Ala Ala Val Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Val Lys Tyr Thr Gln Thr Phe Arg Leu His Asp Asn Pro Ala Val Asn Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Ile Ile Leu Ile Gly Cys Ser Phe Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp Leu Leu 100 105 Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser Ala 120

```
<210> 16
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 16
Cys Ser Tyr Ser Ala Pro Ser Pro Ser Thr Ser Ser Arg Trp Pro
                                      10
<210> 17
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 17
Cys Leu Pro Asn Tyr Glu Asp Asp Leu Leu Gly Asn Ala Lys Pro
                                                          15
<210> 18
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 18
Cys Gly Gly Asn Ala Pro Lys Arg Gly Gly Gly Arg Gly Ser Tyr
<210> 19
<211> 1970
<212> DNA
<213> Mouse
<400> 19
gtcaccggaa tcaaggtgtg gctggagcgc cgctcccccg ccgycagccc gkkggccgcg 60
tetteggggg ageegeetet teettwatte ggekeygaea gegetegeag gaeeaetett 120
ggccgctgct cctgcccggc gttcctccgc tccgcgcccg ccgccaccga cgacatgctg 180
egetgeggee tggeetgega gegetgeagg tggateetge eeetgetget geteagegee 240
ategeetteg acateatege getggeegge egeggetgge tgeagtetag caaceacate 300
cagacategt egetttggtg gaggtgttte gaegagggeg geggeagegg etectaegae 360
gatggctgcc agagcctcat ggagtacgca tggggacgag cagctgcagc cacgcttttc 420
tgtggcttta tcatcctgtg catctgcttc attctctcgt tcttcgccct gtgtggaccc 480
cagatgettg tttteetgag agteattgga ggeeteeteg caetggetge catatteeag 540
atcatctccc tggtaatcta ccccgtgaag tacacacaga ccttcaggct tcacgataac 600
cctgctgtta attacatcta taactgggcc tatggcttcg gatgggcggc caccatcatc 660
ttgattggtt gttccttctt cttctgctgc ctccccaact acgaggatga ccttttgggg 720
gccgccaagc ccaggtactt ctatcccca gcctaatgtg ggaggaagag cctgagaaaa 780
gcctgctgca agatggatct gaggaggaaa ctgttctcca aggcacaagg aacctacgtt 840
tgggcaatgt tcatatgatc agaaatgtta gaataaatgc taaagaaaat tcttcataat 900
```

Page 12

```
tagtgttaag tttcatgtat gtcgtgtgga gttaaaaaga cttgaattct gtttgctaag 960
tatatgetaa ttttteetta tgteaattet ataceattta agetteattt gttaaagaat 1020
atgcctgtga aacttgataa ggtagaaatg gagcagcctc tcatttaata atctgatggg 1080
gettetgttt ttecacatag aatgggttgt ttetgetaag ggetacagag gaggaaagte 1140
actggcaaaa cttccatgac caaatatcct gaaattagtt tgtttttttt taaaagacct 1200
tattttgagt tttcagttac ataaagaagc agaagcagat tggtttccta agtgagcatc 1260
atttgtgaga atttttagtc agtgttttga acaattattg tttttctaag cttcatgttg 1320
actttctctg atgcgtagaa aagtgttcta acgtggctga ggttaagccg ctgtcattac 1380
tgaaatgcta agaattttcc tcttttcccg tagtgtagag gggtagggtg tgggcagaag 1440
ccgtgttagc acatctgtag tattgtgtgt gtatgcttag aaccagcgta gaccggatgg 1500
gaggatggac taggcctaat ccctcccaac tggtggatgt gaagaggtca ggtaggaagg 1560
cacaggaggg tcaccactgt cacagcagtg ccatgcagac atcctaggag aagacatggc 1620
agtgtttctt ctcagtgctt cttcccttaa ctgagctctg ctcacagaca gctagaatag 1680
attttaactg aaacagaaac ctaaatgtaa ttaaaaacct ggtcttcctt ggtaagcaga 1740
cttaaaatat ctgtatagta catgcaagtg gaaaatttgg gaatgcgtgt ctctgaatac 1800
ataccggaag ggctactatt acctttttct taccatttat acttacctaa tggaaacgag 1860
cttgttttaa ctatcagaac actattttgt aaggtgctgc aaagacagtt gaagttttca 1920
ttaccaattt ccccaataaa ccaggtgttc aaatcctgaa aaaaaaaggc
                                                                 1970
<210> 20
<211> 582
<212> DNA
<213> Mouse
<400> 20
atgctgcgct gcggcctggc ctgcgagcgc tgcaggtgga tcctgcccct gctgctgctc 60
agegecateg cettegacat categegetg geeggeegeg getggetgea gtetageaac 120
cacatccaga categeeget ttggtggagg tgtttegaeg agggeggegg eageggetee 180
tacgacgatg gctgccagag cctcatggag tacgcatggg gacgagcagc tgcagccacg 240
cttttctgtg gctttatcat cctgtgcatc tgcttcattc tctcgttctt cgccctgtgt 300
ggaccccaga tgcttgtttt cctgagagtc attggaggcc tcctcgcact ggctgccata 360
ttccagatca tetecetggt aatetacece gtgaagtaca cacagacett caggetteae 420
gataaccetg ctgttaatta catctataac tgggcctatg gcttcggatg ggcqqccacc 480
atcatcttga ttggttgttc cttcttcttc tgctgcctcc ccaactacga ggatgacctt 540
ttgggggccg ccaagcccag gtacttctat cccccagcct aa
                                                                 582
<210> 21
<211> 536
<212> DNA
<213> Rat
<400> 21
gaatacgeet ggggeegage agetgetgee actetettet gtggatteat cateetggte 60
atctgcttca tcctctcgtt cttcgccctg tgtggacccc agatgcttgt tttcctgaga 120
gtgattggag gccttctcgc actggctgct gtattccaga tcatctccct ggttatctat 180
cccgtgaagt acacacaaac cttcaggctt catgataatc ccgctgttaa ttacatctac 240
aactgggcct atggcttcgg atgggcagcc acgatcatct tgattggttg ctctttcttc 300
ttctgctgcc tccccaacta cgaggatgac cttctgggca atgcaaagcc caggtacttc 360
tatacatctg cctaatgtgg agggagatcc tgagaaaagc ctgctqcaag atgcatgtga 420
ggaggaaagt gttctccaag gagcaaagaa cctatgtttg ggcagtgttc atatgagtgg 480
<210> 22
<211> 375
<212> DNA
<213> Rat
```

```
<400> 22
gaatacgcct ggggccgagc agctgctgcc actctcttct gtggattcat catcctggtc 60
atctgcttca tcctctcgtt cttcgccctg tgtggacccc agatgcttgt tttcctgaga 120
gtgattggag gccttctcgc actggctgct gtattccaga tcatctccct ggttatctat 180
cccgtgaagt acacacaaac cttcaggctt catgataatc ccgctgttaa ttacatctac 240
aactgggcct atggcttcgg atgggcagcc acgatcatct tgattggttg ctctttcttc 300
ttctgctgcc tccccaacta cgaggatgac cttctgggca atgcaaagcc caggtacttc 360
tatacatctg cctaa
<210> 23
<211> 471
<212> DNA
<213> Homo sapiens
<400> 23
ctttgaagca tttttgtctg tgctccctga tcttcaggtc accaccatga agttcttagc 60
agteetggta etettgggag titeeatett tetggtetet geecagaate egacaacage 120
tgetecaget gacaegtate cagetactgg teetgetgat gatgaageee etgatgetga 180
aaccactget getgeaacaa etgegaecae tgetgeteet accaetgeaa ecaeegetge 240
ttctaccact gctcgtaaag acattccagt tttacccaaa tgggttgggg atctcccqaa 300
tggtagagtg tgtccctgag atggaatcag cttgagtctt ctgcaattgg gtcacaacta 360
ttcatgcttc ctgtgatttc atccaactac ttaccttgcc tacgatatcc cctttatctc 420
taatcagttt attttctttc aaataaaaaa taactatgag cgagctaaca t
<210> 24
<211> 273
<212> DNA
<213> Homo sapiens
<400> 24
atgaagttot tagcagtoot ggtactottg ggagtttoca totttotggt ototgcocag 60
aateegaeaa eagetgetee agetgaeaeg tateeageta etggteetge tgatgatgaa 120
gcccctgatg ctgaaaccac tgctgctgca accactgcga ccactgctgc tcctaccact 180
gcaaccaccg ctgcttctac cactgctcgt aaagacattc cagttttacc caaatgggtt 240
ggggatctcc cgaatggtag agtgtgtccc tga
<210> 25
<211> 90
<212> PRT
<213> Homo sapiens
<400> 25
Met Lys Phe Leu Ala Val Leu Val Leu Gly Val Ser Ile Phe Leu
Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr Tyr Pro
Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu Thr Thr Ala
Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr Ala Thr Thr Ala
Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val Leu Pro Lys Trp Val
 65
                     70
```

```
8.5
<210> 26
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 26
Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr Tyr Pro Ala Cys
<210> 27
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 27
Leu Pro Lys Trp Val Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
<210> 28
<211> 1555
<212> DNA
<213> Homo sapiens
<400> 28
ggagttttct ggagctgttg caatgtgtat gctggtgaaa tctacttgag cattaagcag 60
tatctcccag cattgttagc tactgagtgg cacatcttca gtacgcatga ttcgtggggg 120
actcaggcag aggtaaaagt gtgaaacttt tcagcattac ctaagaagca aaggctcaat 180
tttggctgct tcattcttat ctcttctgcc acagttctaa cgtgcctgat ctactgagac 240
caaggatgac caatgactca gaagggaaaa tgggatttaa acacccaaag atcatgggga 300
atttcagagg tcatgccctc cctggaacct tcttttttat tattggtctt tggtggtgta 360
caaagagtat totgaagtat atotgcaaaa agcaaaagcg aacotgotat ottggttoca 420
aaacattatt ctatcgattg gaaattttgg agggaattac aatagttggc atggctttaa 480
ctggcatggc tggggagcag tttattcctg gagggcccca tctgatgtta tatgactata 540
aacaaggtca ctggaatcaa ctcctgggct ggcatcattt caccatgtat ttcttctttg 600
ggctgttggg tgtggcagat atcttatgtt tcaccatcag ttcacttcct gtgtccttaa 660
ccaagttaat gttgtcaaat gccttatttg tggaggcctt tatcttctac aaccacactc 720
atggccggga aatgctggac atctttgtgc accagctgct ggttttggtc gtctttctga 780
caggeetegt tgeetteeta gagtteettg tteggaacaa tgtaettetg gagetattge 840
ggtcaagtct cattctgctt caggggagct ggttctttca gattggattt gtcctgtatc 900
cccccagtgg aggtcctgca tgggatctga tggatcatga aaatattttg tttctcacca 960
tatgcttttg ttggcattat gcagtaacca ttgtcatcgt tggaatgaat tatgctttca 1020
ttacctggtt ggttaaatct agacttaaga ggctctgctc ctcagaagtt ggacttctga 1080
aaaatgctga acgagaacaa gaatcagaag aagaaatgtg actttgatga gcttccagtt 1140
tttctagata aaccttttct tttttacatt gttcttggtt ttgtttctcg atcttttgtt 1200
tggagaacag ctggctaagg atgactctaa gtgtactgtt tgcatttcca atttggttaa 1260
agtatttgaa tttaaatatt ttctttttag ctttgaaaat attttgggtg atactttcat 1320
tttgcacatc atgcacatca tggtattcag gggctagagt gatttttttc cagattatct 1380
aaagttggat gcccacacta tgaaagaaat atttgtttta tttgccttat agatatgctc 1440
```

Gly Asp Leu Pro Asn Gly Arg Val Cys Pro

<400> 29 Met Thr Asn Asp Ser Glu Gly Lys Met Gly Phe Lys His Pro Lys Ile

Met Gly Asn Phe Arg Gly His Ala Leu Pro Gly Thr Phe Phe Ile

Ile Gly Leu Trp Trp Cys Thr Lys Ser Ile Leu Lys Tyr Ile Cys Lys
35 40 45

Lys Gln Lys Arg Thr Cys Tyr Leu Gly Ser Lys Thr Leu Phe Tyr Arg 50 55 60

Leu Glu Ile Leu Glu Gly Ile Thr Ile Val Gly Met Ala Leu Thr Gly 65 70 75 80

Met Ala Gly Glu Gln Phe Ile Pro Gly Gly Pro His Leu Met Leu Tyr 85 90 95

Asp Tyr Lys Gln Gly His Trp Asn Gln Leu Leu Gly Trp His His Phe 100 105 110

Thr Met Tyr Phe Phe Phe Gly Leu Leu Gly Val Ala Asp Ile Leu Cys 115 120 125

Phe Thr Ile Ser Ser Leu Pro Val Ser Leu Thr Lys Leu Met Leu Ser 130 140

Arg Glu Met Leu Asp Ile Phe Val His Gln Leu Leu Val Leu Val Val 165 170 175

Phe Leu Thr Gly Leu Val Ala Phe Leu Glu Phe Leu Val Arg Asn Asn 180 185 190

Val Leu Leu Glu Leu Leu Arg Ser Ser Leu Ile Leu Leu Gln Gly Ser 195 200 205

Trp Phe Phe Gln Ile Gly Phe Val Leu Tyr Pro Pro Ser Gly Gly Pro 210 215 220

Ala Trp Asp Leu Met Asp His Glu Asn Ile Leu Phe Leu Thr Ile Cys 225 230 235 240

Phe Cys Trp His Tyr Ala Val Thr Ile Val Ile Val Gly Met Asn Tyr 245 250 255

Ala Phe Ile Thr Trp Leu Val Lys Ser Arg Leu Lys Arg Leu Cys Ser 260 265 270

```
Ser Glu Val Gly Leu Leu Lys Asn Ala Glu Arg Glu Gln Glu Ser Glu
                            280
Glu Glu Met
    290
<210> 30
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
Tyr Pro Pro Ser Gly Gly Pro Ala Trp Asp Leu Met Asp His Cys
<210> 31
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 31
Cys Leu Lys Asn Ala Glu Arg Glu Gln Glu Ser Glu Glu Met
<210> 32
<211> 10320
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (10123)..(10185)
<223> "n" at positions 10123 and 10185 can be any base.
<400> 32
tteeteegeg aaggeteett tgatattaat agtgttggtg tettgaaaet gaegtaatge 60
geggagaetg aggteetgae aagegataae atttetgata aagaeeegat ettaetgeaa 120
tetetagegt cetettttt ggtgetgetg gttteteeag acetegegte etetegattg 180
ctctctcgcc ttcctatttc ttttttttt ttttaaacaa aaaacaacac ccctcccct 240
ctcccacccg gcaccgggca catccttgct ctatttcctt tctctttctc tctctctctc 300
tctctctctc ttttttaata agggtggggg agggaaaggg gggggatgca ggaaagacct 360
ttttctctcc cccccgcaat aatccaagat caactctgca aacaacagaa gacggttcat 420
ggctttggcc gccgcgccac catctttcgg gctgccgagg gtgttcttga cgattaatca 480
acagatgtac agatcagctc tcaaaatgtc ttctgtgtct tctgagcgtc ttctaagaca 540
attgcattag cctcctgcta gttgactaat agaattaata attgtaaaaa gcactctaaa 600
gccacatgcc ttatgaagtc aatgctgggt atgattttac aaatatggtc cggaaaaaga 660
acccccctct gagaaacgtt gcaagtgaag gcgagggcca gatcctggag cctataggta 720
cagaaagcaa ggtatctgga aagaacaaag aattttctgc agatcagatg tcagaaaata 780
cggatcagag tgatgctgca gaactaaatc ataaggagga acatagcttg catqttcaag 840
atccatcttc tagcagtaag aaggacttga aaagcgcagt tctgagtgag aaggctggct 900
```

tcaattatga aagccccagt aagggaggaa actttccctc ctttccgcat gatgaggtga 960 cagacagaaa tatgttggct ttctcatctc cagctgctgg gggagtctgt gagcccttga 1020 agtotocgca aagagcagag gcagatgacc ctcaagatat ggcctgcacc ccctcagggg 1080 actcactgga gacaaaggaa gatcagaaga tgtcaccaaa ggctacagag gaaacagggc 1140 aagcacagag tggtcaagcc aattgtcaag gtttgagccc agtttcagtg gcctcaaaaa 1200 acccacaagt gccttcagat gggggtgtaa gactgaataa atccaaaact gacttactgg 1260 tgaatgacaa cccagacccg gcacctctgt ctccagagct tcaggacttt aaatgcaata 1320 tctgtggata tggttactac ggcaacgacc ccacagatct gattaagcac ttccgaaagt 1380 atcacttagg actgcataac cgcaccaggc aagatgctga gctggacagc aaaatcttgg 1440 cccttcataa catggtgcag ttcagccatt ccaaagactt ccagaaggtc aaccgttctg 1500 tgttttctgg tgtgctgcag gacatcaatt cttcaaggcc tgttttacta aatgggacct 1560 atgatgtgca ggtgacttca ggtggaacat tcattggcat tggacggaaa acaccagatt 1620 gccaagggaa caccaagtat ttccgctgta aattctgcaa tttcacttat atgggcaact 1680 catccaccga attagaacaa cattttcttc agactcaccc aaacaaaata aaagcttctc 1740 teceeteete tgaggttgea aaacetteag agaaaaaete taacaagtee ateeetgeae 1800 ttcaatccag tgattctqqa qacttqqqaa aatqqcaqqa caaqataaca qtcaaaqcaq 1860 gagatgacac teetgttggg taeteagtge ecataaagee eetegattee tetagacaaa 1920 atggtacaga ggccaccagt tactactggt gtaaattttg tagtttcagc tgtgagtcat 1980 ctagctcact taaactgcta gaacattatg gcaagcagca cggagcagtg cagtcaggcg 2040 gccttaatcc agagttaaat gataagcttt ccaggggctc tgtcattaat cagaatgatc 2100 tagccaaaag ttcagaagga gagacaatga ccaagacaga caagagctcg agtggggcta 2160 aaaagaagga cttctccagc aagggagccg aggataatat ggtaacgagc tataattgtc 2220 agttctgtga cttccgatat tccaaaagcc atggccctga tgtaattgta gtggggccac 2280 ttctccgtca ttatcaacag ctccataaca ttcacaagtg taccattaaa cactgtccat 2340 tetgteecag aggaetttge ageecagaaa ageaeettgg agaaattaet tateegtttg 2400cttgtagaaa aagtaattgt tcccactgtg cactcttgct tctgcacttg tctcctgggg 2460 cggctggaag ctcgcgagtc aaacatcagt gccatcagtg ttcattcacc acccctgacg 2520 tagatgtact cctctttcac tatgaaagtg tgcatgagtc ccaagcatcg gatgtcaaac 2580 aagaagcaaa tcacctgcaa ggatcggatg ggcagcagtc tgtcaaggaa agcaaagaac 2640 actcatgtac caaatgtgat tttattaccc aagtggaaga agagatttcc cgacactaca 2700 ggagagcaca cagctgctac aaatgccgtc agtgcagttt tacagctgcc gatactcagt 2760 cactactgga gcacttcaac actgttcact gccaggaaca ggacatcact acagccaacg 2820 gcgaagagga cggtcatgcc atatccacca tcaaagagga gcccaaaatt gacttcaggg 2880 tetacaatet getaacteca gaetetaaaa tgggagagee agtttetgag agtgtggtga 2940 agagagagaa gctggaagag aaggacgggc tcaaagagaa agtttggacc gagagttcca 3000 gtgatgacct tcgcaatgtg acttggagag gggcagacat cctgcggggg agtccgtcat 3060 acacccaage aageetgggg etgetgaege etgtgtetgg cacccaagag cagacaaaga 3120 ctctaaggga tagtcccaat gtggaggccg cccatctggc gcgacctatt tatggcttgg 3180 ctgtggaaac caagggattc ctgcaggggg cgccagctgg cggagagaag tctggggccc 3240 tcccccagca gtatcctgca tcgggagaaa acaagtccaa ggatgaatcc cagtccctgt 3300 tacggaggcg tagaggctcc ggtgtttttt gtgccaattg cctgaccaca aagacctctc 3360 tetggegaaa gaatgeaaat ggeggatatg tatgeaaege gtgtggeete taceagaage 3420 ttcactcgac tcccaggcct ttaaacatca ttaaacaaaa caacggtgag cagattatta 3480 ggaggagaac aagaaagcgc cttaacccag aggcacttca ggctgagcag ctcaacaaac 3540 agcagagggg cagcaatgag gagcaagtca atggaagccc gttagagagg aggtcagaag 3600 atcatctaac tgaaagtcac cagagagaaa ttccactccc cagcctaagt aaatacgaag 3660 cccagggttc attgactaaa agccattctg ctcagcagcc agtcctggtc agccaaactt 3720 tggatattca caaaaggatg caacetttge acatteagat aaaaagteet eaggaaagta 3780 ctggagatcc aggaaatagt tcatccgtat ctgaagggaa aggaagttct gagagaggca 3840 gtcctataga aaagtacatg agacctgcga aacacccaaa ttattcacca ccaggcagcc 3900 ctattgaaaa gtaccagtac ccactttttg gacttccctt tgtacataat gacttccaga 3960 gtgaagetga ttggetgegg ttetggagta aatataaget eteegtteet gggaateege 4020 actacttgag tcacgtgcct ggcctaccaa atccttgcca aaactatgtg ccttatccca 4080 cetteaatet geeteeteat titteagetg tiggateaga caatgacatt eetetagatt 4140 tggcgatcaa gcattccaga cctgggccaa ctgcaaacgg tgcctccaag gagaaaacga 4200 aggcaccacc aaatgtaaaa aatgaaggtc ccttgaatgt agtaaaaaca gagaaagttg 4260 atagaagtac tcaagatgaa ctttcaacaa aatgtgtgca ctgtggcatt gtctttctgg 4320 atgaagtgat gtatgetttg catatgagtt gecatggtga cagtggaeet ttecagtgea 4380 gcatatgcca gcatctttgc acggacaaat atgacttcac aacacatatc cagaggggcc 4440 tgcataggaa caatgcacaa gtggaaaaaa atggaaaacc taaagagtaa aaccttagca 4500

cttagcacaa ttaaatagaa ataggttttc ttgatgggaa ttcaatagct tgtaatgtct 4560 tatgaagacc tattaaaaaa atacttcata gagcctgcct tatccaacat gaaattccct 4620 tettttgtta ttetttettt tgatgagtag gttaccaaga ttaaaaagtg agataaatgg 4680 tcaatgagaa agaatggaag atggtaaaca atcacttttt aaaacctgtt aagtcaaaac 4740 catcttggct aatatgtact ggggaaataa tccataagag atatcaccag actagaatta 4800 atatatttat aaagaaagag accaaaactg tctagaattt gaaagggttt acatattatt 4860 atactaaagc agtactggac tggccattgg accatttgtt ccaaaaccca taaattgttg 4920 cctaaattta taatgatcat gaaaccctag gcagaggagg agaaattgaa ggtccagggc 4980 aatgaaagaa aaatggcgcc ctctcaattt agtcttctct cattggccat gtttcagatt 5040 ttgacctaga aatgcgagct gtggttaggc ttggttagag tgcagcaagc aacatgacag 5100 atggtggcac gctgttttta cccagccctg cctgtacata cacatgcaca ccctctctga 5160 tatttttgtc ctttagatgt tcaaatactc agtagtcctt ttgtttgcgg tttagattca 5220 ttttgtccac acatgtaccc attttaaaaa acaatgtcct cgatgcttct gtagtgattt 5280 cattltagcc aggtatttct ttcttgtgtg tgatgaacca gtatggattt gcttttctaa 5340 gcctcctgtt ggttactaat ctcacttggc acattataac taaaggaatc ccctcaattc 5400 aaaagcatag atggatacaa atgtcagacc gtgggtttaa tttgtttaga acacatggca 5460 tttcttcaca aggtaacctg ctgtatttat ttattttctt ttggttaaat ataatttcca 5520 aactttgtgg tcaggcagcg tctaaggtta cgttaccaca gactgacagt tggtatatgt 5580 accagecaat ecetteatta aatgtataca gatttagtta agtageatta aataggatte 5640 ttagaagtat gtcctcatag aacttttaat acttaaggct ttgtaaaaac tatccatgaa 5700 gggaaagctc ctcagcataa ctgctcaggg aaatagggct aaataactga acattaaata 5760 attggttaaa ggtgctgtta gtcgagcctc aatgcttgct acaaggatgt atgtacaagg 5820 actgacttta ataatttgca ttatattgtc ccaaccagta gtttattttt tgccacggag 5880 atgtagaaga tattacaagc tactggatgc actgtcagat taacttattt cattaaagaa 5940 gttgggagaa caaataggaa aaaaaaaact tatttttcta gtaaatatta atgtattaca 6000 tttcaaataa tggtgcctga catattgaat aattattttc tacagtgtac gtatgcaaca 6060 aagatattcc atcatgcatt agagtcagtt ctggctctgc ctagctgttt acatttgcaa 6120 atgtagcaaa caaggtaatg aagcaactat ttctattgca gtagatatcc ttttgtgtgt 6180 gtgtgtgtgc attaaagttg taaacggtaa catgaaacaa atgaaagttc ttgctataat 6240 ggtatggaaa acaagaagga aatgaaaata tttttatgcc tacttaggaa aaaaagggta 6300 geacttatte attecaagta ettittitit titaattiti aagetettaa eteacatigt 6360 tatgcttaag atgataaaca tatatcctct ttttattgct ttgtctatgt ttcatatgaa 6420 acatttcaga aattattttg ataagtgttg ctggaatctg caacgctgat ttttttttgc 6480 attctgtagt cgcatttgca ctccattttt acattaattc gcagttgctt tgtatcattg 6540 ttttgtttgg gttttgtttc tttttcacag tgccgggtct tcgtttctta aagttggatg 6600 gcaggtagag ttcaaccagt tcgtgactgt tgtagcgaat gaagttaaaa aaatgtcttt 6660 ctgatgttgt gttgtcattt tcatttttgc attttttgt ttgcatatta aaaaaagaga 6720 aaagagaaag caagagacag aaatcaggac taagtcctct gcttcagttt cattgttaac 6780 gggccttatt ctgatctcac ctgtcgcgta gctctaatat tcacataaac tgaaataaag 6840 aagtggaatg aggagctttg acattcaaat tatgtgatgt aatttatctt ccttaggaat 6900 tttgatggat gcatctcaaa atgtatagcc agacttgaga ggtgacaatt aaagatctaa 6960 aaaagagagg agattccccc aaacaacaat atttaatttt cttagtaaaa agaataacag 7020 aatgcatcgt ggcaatcctt aagcaacatt atctatgtgg actgcttaaa tcaqcaaaac 7080 accagaagtt tggttaactt gggcaatatg acaagtatta ctttttgggc aaaactactc 7140 attaagcaat ttctctagtg tgtcggacac aaataggttc tttatttttg gcatgtatgc 7200 ctttttattt tcattcaatt ttttttttt ctcagacaga catagtagta tcaactagca 7260 ttggaaaata catatcacta ttcttggaat atttatggtc agtctacttt ttagtaaaat 7320 atttttggat agcgttgaca cgatagatct tattccatac ttctttatta ttgataattt 7380 tattttcatt tittgctttc attattatac atattttggt ggagaagagg ttgggctttt 7440 ttgaaagaga caaaaattta ttataacact aaacactcct tttttgacat attaaagcct 7500 ttattccatc tctcaagata tattataaaa tttatttttt taatttaaga tttctgaatt 7560 attttatett aaattgtgat tttaaacgag etattatggt aeggaaettt ttttaatgag 7620 gaatttcatg atgatttagg aattttctct cttggaaaag gcttcccctg tgatgaaaat 7680 gatgtgccag ctaaaattgt gtgccattta aaaactgaaa atattttaaa attatttgtc 7740 tatattctaa attgagcttt ggatcaaact ttaggccagg accagctcat gcgttctcat 7800 tetteetttt eteaetettt eteteateae teaeetetgt atteattetg ttgtttggga 7860 tagaaaaatc ataaagagcc aacccatctc agaacgttgt ggattgagag agacactaca 7920 tgactccaag tatatgagaa aaggacagag ctctaattga taactctgta gttcaaaagg 7980 aaaagagtat gcccaattct ctctacatga catattgaga ttttttttaa tcaactttta 8040 agatagtgat gttctgttct aaactgttct gttttagtga aggtagattt ttataaaaca 8100

```
attageetee tgttgtgtgg etgeaaaaca teacaaagtg aceggtettg agaeetgtga 8400
actgctgccc tgtttagtaa ataaaattaa tgcatttcta gagggggaat atctgccatc 8460
cagtggtgga aatgtggagt aaagaagctg gtggtctgct tctgtgctgt atgccagcct 8520
tttgccttaa gttgagagga ggtcaacttt agctactgtc tttggtttga gagccatggc 8580
aaaaaaaaaa aaagaaaaaa agatcaagtc gtctttggtg agccagtaag gtgaaagctt 8640
gctgactgtc caaggcacaa gagaaaattg aggaattgaa atgcaacctg agtatcaaac 8700
taaatattet aateaaaggt aggtaetgtt aggtggaatt etateageag geaactgeaa 8760
atgagaagaa gatagaagga cgcccgtcgg gactttggag ggcattgtta ttttcccaaa 8820
gaaagacggc caagggcaga ggcatggatt ctttgcagag cacttccttt tggtttttca 8880
gtactgtttc atagacagtg ggctcacatg ttcctgatag tgctgcagtt gcttagaaag 8940
catcccagtt aattgcagta attagaactt ctggaatatg ctagggcaga agtatgtcaa 9000
gtatgtcaca tgaagaaaat gtgaaattca agagtaatcc acacgtgaga aactagacaa 9060
tgtacattca tgtgttctct tgaaaggaaa gggagagctg taagcttcac tctgtcctac 9120
accggagaaa agcaggaata actttaccgt ggaaataatg tttagctttt atcagagaaa 9180
attgtccttc tagagcatag agtcccaaaa ctcaattctg gttttcccct gtttttttt 9240
tttttttttt tcccaacata tgaactgcag catatcactt tttctttttg tgcctcaggt 9300
tcctcasctg taaaattgaa aaatatatgt attaataata ttattaataa taataatggt 9360
aatgtagtac ttgtttgtaa agcactttga gatccttggt tgaaaggcac cataggagtg 9420
ccaagtatta ttatgtggcc aagggggtta tttaaactgt cagttcccaa aggccaggaa 9480
aggttggggt catttttctt aaagacgagc tgtaaatatc aactaggcag ccaatagtgt 9540
tgactatgaa gatgcaaaac tattactagg ctgataaaat catagtttct taatggctac 9600
caataaggca aatatcacaa taataaacgc caaattcctt agggcggact atttgacaac 9660
cacatggaaa actttggggg aggcatgagg ggggaacatc tcaaaatgcc aatgtaaaat 9720
ttaacttaca gcaatattca ccagcagaaa atgtctttca tatggaatga tttcatgttg 9780
ctaagaaaaa gaattcaatt tgtagtcctg atttgaatac tagaatgttg gctataatag 9840
ttctgttctt acaacacatg aaattttttc gttttatttt attttgtttt catagtgcat 9900
gttcatttct actcacaaac atgttcttgg tgtatttctt atgcaaacaa tcttcaggca 9960
gcaaagatgt ctgttacatc taaacttgaa taataaagtt ttaccaccag ttacacataa 10020
cggcgttggt atggtttata tggattcact ttcatccttc taggcaatag ggaaatacag 10080
atcattgtaa tatatata tatatataca ggctctgctg aantgaaatg gtgaaatcaa 10140
atcaccattc taaaaaatta ttacttatat tgataaagcc tggantctct caacttgttt 10200
tgctttgctt tttttcttta accaatcaat ctcttactga tagattttgt gtaaaaagat 10260
atatactagt ttcttcagaa agattaacaa taaaaattgt gtttatttca aaaaaaaaa 10320
<210> 33
<211> 1281
<212> PRT
<213> Homo sapiens
<400> 33
Met Val Arg Lys Lys Asn Pro Pro Leu Arg Asn Val Ala Ser Glu Gly
Glu Gly Gln Ile Leu Glu Pro Ile Gly Thr Glu Ser Lys Val Ser Gly
Lys Asn Lys Glu Phe Ser Ala Asp Gln Met Ser Glu Asn Thr Asp Gln
Ser Asp Ala Ala Glu Leu Asn His Lys Glu Glu His Ser Leu His Val
Gln Asp Pro Ser Ser Ser Lys Lys Asp Leu Lys Ser Ala Val Leu
 65
```

agcatgggga ttcttttcta aggtaatatt aatgagaagg gaaaaaagta tctttaacag 8160 ctctttgttg aagcctgtgg tagcacatta tgtttataat tgcacatgtg cacataatct 8220 attatgatcc aatgcaaata cagctccaaa aatattaaat gtatatatat tttaaaatgc 8280 ctgaggaaat acatttttct taataaactg aagagtctca gtatggctat taaaaataatt 8340

Ser	Glu	Lys	Ala	Gly 85	Phe	Asn	Tyr	Glu	Ser 90	Pro	Ser	Lys	Gly	Gly 95	Asn
Phe	Pro	Ser	Phe 100	Pro	His	Asp	Glu	Val 105	Thr	Asp	Arg	Asn	Met 110	Leu	Ala
Phe	Ser	Ser 115	Pro	Ala	Ala	Gly	Gly 120	Val	Cys	Glu	Pro	Leu 125	Lys	Ser	Pro
Gln	Arg 130	Ala	Glu	Ala	Asp	Asp 135	Pro	Gln	Asp	Met	Ala 140	Cys	Thr	Pro	Ser
Gly 145	Asp	Ser	Leu	Glu	Thr 150	Lys	Glu	Asp	Gln	Lys 155	Met	Ser	Pro	Lys	Ala 160
Thr	Glu	Glu	Thr	Gly 165	Gln	Ala	Gln	Ser	Gly 170	Gln	Ala	Asn	Cys	Gln 175	Gly
Leu	Ser	Pro	Val 180	Ser	Val	Ala	Ser	Lys 185	Asn	Pro	Gln	Val	Pro 190	Ser	Asp
Gly	Gly	Val 195	Arg	Leu	Asn	Lys	Ser 200	Lys	Thr.	Asp	Leu	Leu 205	Val	Asn	Asp
Asn	Pro 210	Asp	Pro	Ala	Pro	Leu 215	Ser	Pro	Glu	Leu	Gln 220	Asp	Phe	Lys	Cys
Asn 225	Ile	Cys	Gly	Tyr	Gly 230	Tyr	Tyr	Gly	Asn	Asp 235	Pro	Thr	Asp	Leu	Ile 240
Lys	His	Phe	Arg	Lys 245	Tyr	His	Leu	Gly	Leu 250	His	Asn	Arg	Thr	Arg 255	Gln
Asp	Ala	Glu	Leu 260	Asp	Ser	Lys	Ile	Leu 265	Ala	Leu	His	Asn	Met 270	Val	Gln
Phe	Ser	His 275	Ser	Lys	Asp	Phe	Gln 280	Lys	Val	Asņ	Arg	Ser 285	Val	Phe	Ser
Gly	Val 290	Leu	Gln	Asp	Ile	Asn 295	Ser	Ser	Arg	Pro	Val 300	Leu	Leu	Asn	Gly
Thr 305	Tyr	Asp	Val	Gln	Val 310	Thr	Ser	Gly	Gly	Thr 315	Phe	Ile	Gly	Ile	Gly 320
Arg	Lys	Thr	Pro	Asp 325	Cys	Gln	Gly	Asn	Thr 330	Lys	Tyr	Phe	Arg	Cys 335	Lys
Phe	Cys	Asn	Phe 340	Thr	Tyr	Met	Gly	Asn 345	Ser	Ser	Thr	Glu	Leu 350	Glu	Gln
His	Phe	Leu 355	Gln	Thr	His	Pro	Asn 360	Lys	Ile	Lys	Ala	Ser 365	Leu	Pro	Ser
Ser	Glu 370	Val	Ala	Lys	Pro	Ser 375	Glu	Lys	Asn	Ser	Asn 380	Lys	Ser	Ile	Pro
Ala 385	Leu	Gln	Ser	Ser	Asp 390	Ser	Gly	Asp	Leu	Gly 395	Lys	Trp	Gln	Asp	Lys 400

Ile	Thr	Val	Lys	Ala 405	Gly	Asp	Asp	Thr	Pro 410	Val	Gly	Tyr	Ser	Val 415	Pro
Ile	Lys	Pro	Leu 420	Asp	Ser	Ser	Arg	Gln 425	Asn	Gly	Thr	Glu	Ala 430	Thr	Ser
Tyr	Tyr	Trp 435	Cys	Lys	Phe	Cys	Ser 440	Phe	Ser	Cys	Glu	Ser 445	Ser	Ser	Ser
Leu	Lys 450	Leu	Leu	Glu	His	Tyr 455	Gly	Lys	Gln	His	Gly 460	Ala	Val	Gln	Ser
Gly 465	Gly	Leu	Asn	Pro	Glu 470	Leu	Asn	Asp	Lys	Leu 475	Ser	Arg	Gly	Ser	Val 480
Ile	Asn	Gln	Asn	Asp 485	Leu	Ala	Lys	Ser	Ser 490	Glu	Gly	Glu	Thr	Met 495	Thr
Lys	Thr	Asp	Lys 500	Ser	Ser	Ser	Gly	Ala 505	Lys	Lys	Lys	Asp	Phe 510	Ser	Ser
Lys	Gly	Ala 515	Glu	Asp	Asn	Met	Val 520	Thr	Ser	Tyr	Asn	Cys 525	Gln	Phe	Cys
Asp	Phe 530	Arg	Tyr	Ser	Lys	Ser 535	His	Gly	Pro	Asp	Val 540	Ile	Val	Val	Gly
Pro 545	Leu	Leu	Arg	His	Tyr 550	Gln	Gln	Leu	His	Asn 555	Ile	His	Lys	Суѕ	Thr 560
Ile	Lys	His	Cys	Pro 565	Phe	Cys	Pro	Arg	Gly 570	Leu	Cys	Ser	Pro	Glu 575	Lys
His	Leu	Gly	Glu 580	Ile	Thr	Tyr	Pro		Ala	Cys	Arg	Lys	Ser 590	Asn	Cys
Ser								585					550		
•	His	Cys 595	Ala	Leu	Leu	Leu	Leu 600		Leu	Ser	Pro	Gly 605		Ala	Gly
Ser		595	Ala Val				600	His				605	Ala		_
	Ser 610	595 Arg		Lys	His	Gln 615	600 Cys	His His	Gln	Cys	Ser 620	605 Phe	Ala Thr	Thr	Pro
Asp 625	Ser 610 Val	Arg Asp	Val	Lys Leu	His Leu 630	Gln 615 Phe	600 Cys His	His His Tyr	Gln Glu	Cys Ser 635	Ser 620 Val	605 Phe His	Ala Thr Glu	Thr Ser	Pro Gln 640
Asp 625 Ala	Ser 610 Val Ser	Arg Asp Asp	Val Val	Lys Leu Lys 645	His Leu 630 Gln	Gln 615 Phe Glu	600 Cys His	His His Tyr Asn	Gln Glu His 650	Cys Ser 635 Leu	Ser 620 Val Gln	605 Phe His	Ala Thr Glu Ser	Thr Ser Asp 655	Pro Gln 640 Gly
Asp 625 Ala Gln	Ser 610 Val Ser	Asp Asp Ser	Val Val Val	Lys Leu Lys 645 Lys	His Leu 630 Gln Glu	Gln 615 Phe Glu Ser	600 Cys His Ala	His His Tyr Asn Glu 665	Gln Glu His 650 His	Cys Ser 635 Leu Ser	Ser 620 Val Gln Cys	605 Phe His Gly	Ala Thr Glu Ser Lys 670	Thr Ser Asp 655 Cys	Pro Gln 640 Gly Asp
Asp 625 Ala Gln Phe	Ser 610 Val Ser Gln	Asp Asp Ser Thr	Val Val Val Val 660	Lys Leu Lys 645 Lys Val	His Leu 630 Gln Glu	Gln 615 Phe Glu Ser	600 Cys His Ala Lys Glu 680	His His Tyr Asn Glu 665 Ile	Gln Glu His 650 His	Cys Ser 635 Leu Ser	Ser 620 Val Gln Cys	605 Phe His Gly Thr Tyr 685	Ala Thr Glu Ser Lys 670 Arg	Thr Ser Asp 655 Cys	Pro Gln 640 Gly Asp

Ile	Thr	Thr	Ala	Asn 725	Gly	Glu	Glu	Asp	Gly 730	His	Ala	Ile	Ser	Thr 735	Ile
Lys	Glu	Glu	Pro 740	Lys	Ile	Asp	Phe	Arg 745	Val	Tyr	Asn	Leu	Leu 750	Thr	Pro
Asp	Ser	Lys 755	Met	Gly	Glu	Pro	Val 760	Ser	Glu	Ser	Val	Val 765	Lys	Arg	Glu
Lys	Leu 770	Glu	Glu	Lys	Asp	Gly 775	Leu	Lys	Glu	Lys	Val 780	Trp	Thr	Glu	Ser
Ser 785	Ser	Asp	Asp	Leu	Arg 790	Asn	Val	Thr	Trp	Arg 795	Gly	Ala	Asp	Ile	Leu 800
Arg	Gly	Ser	Pro	Ser 805	Tyr	Thr	Gln	Ala	Ser 810	Leu	Gly	Leu	Leu	Thr 815	Pro
Val	Ser	Gly	Thr 820	Gln	Glu	Gln	Thr	Lys 825	Thr	Leu	Arg	Asp	Ser 830	Pro	Asn
Val	Glu	Ala 835	Ala	His	Leu	Ala	Arg 840	Pro	Ile	Tyr	Gly	Leu 845	Ala	Val	Glu
Thr	Lys 850	Gly	Phe	Leu	Gln	Gly 855	Ala	Pro	Ala	Gly	Gly 860	Glu	Lys	Ser	Gly
Ala 865	Leu	Pro	Gln	Gln	Tyr 870	Pro	Ala	Ser	Gly	Glu 875	Asn	Lys	Ser	Lys	Asp 880
Glu	Ser	Gln	Ser	Leu 885	Leu	Arg	Arg	Arg	Arg 890	Gly	Ser	Gly	Val	Phe 895	Cys
Ala	Asn	Cys	Leu 900	Thr	Thr	Lys	Thr	Ser 905	Leu	Trp	Arg	Lys	Asn 910	Ala	Asn
Gly	Gly	Tyr 915	Val	Cys	Asn	Ala	Cys 920	Gly	Leu	Tyr	Gln	Lys 925	Leu	His	Ser
Thr	Pro 930	Arg	Pro	Leu	Asn	Ile 935	Ile	Lys.	Gln	Asn	Asn 940	Gly	Glu	Gln	Ile
Ile 945	Arg	Arg	Arg	Thr	Arg 950	Lys	Arg	Leu	Asn	Pro 955	Glu	Ala	Leu	Gln	Ala 960
Glu	Gln	Leu	Asn	Lys 965	Gln	Gln	Arg	Gly	Ser 970	Asn	Glu	Glu	Gln '	Val 975	Asn
Gly	Ser	Pro	Leu 980	Glu	Arg	Arg	Ser	Glu 985	Asp	His	Leu	Thr	Glu 990	Ser	His
Gln	Arg	Glu 995	Ile	Pro	Leu		Ser L000	Leu	Ser	Lys		Glu 1005	Ala	Gln	Gly
	Leu .010	Thr	Lys	Ser		Ser .015	Ala	Gln	Gln		Val 1020	Leu	Val	Ser	Gln
Thr 1025	Leu	Asp	Ile		Lys .030	Arg	Met	Gln		Leu 035	His	Ile	Gln		Lys

Ser Pro Gln Glu Ser Thr Gly Asp Pro Gly Asn Ser Ser Ser Val Ser

Glu Gly Lys Gly Ser Ser Glu Arg Gly Ser Pro Ile Glu Lys Tyr Met 1060 1065 1070

Arg Pro Ala Lys His Pro Asn Tyr Ser Pro Pro Gly Ser Pro Ile Glu 1075 1080 1085

Lys Tyr Gln Tyr Pro Leu Phe Gly Leu Pro Phe Val His Asn Asp Phe 1090 1095 1100

Gln Ser Glu Ala Asp Trp Leu Arg Phe Trp Ser Lys Tyr Lys Leu Ser 1105 1110 1115 1120

Val Pro Gly Asn Pro His Tyr Leu Ser His Val Pro Gly Leu Pro Asn 1125 1130 1135

Pro Cys Gln Asn Tyr Val Pro Tyr Pro Thr Phe Asn Leu Pro Pro His 1140 1145 1150

Phe Ser Ala Val Gly Ser Asp Asn Asp Ile Pro Leu Asp Leu Ala Ile 1155 1160 1165

Lys His Ser Arg Pro Gly Pro Thr Ala Asn Gly Ala Ser Lys Glu Lys 1170 1175 1180

Lys Thr Glu Lys Val Asp Arg Ser Thr Gln Asp Glu Leu Ser Thr Lys 1205 1210 1215

Cys Val His Cys Gly Ile Val Phe Leu Asp Glu Val Met Tyr Ala Leu 1220 1225 1230

His Met Ser Cys His Gly Asp Ser Gly Pro Phe Gln Cys Ser Ile Cys 1235 1240 1245

Gln His Leu Cys Thr Asp Lys Tyr Asp Phe Thr Thr His Ile Gln Arg 1250 . 1255 1260

Gly Leu His Arg Asn Asn Ala Gln Val Glu Lys Asn Gly Lys Pro Lys 1265 1270 1275 1280

Glu

<210> 34

<211> 5277

<212> DNA

<213> Homo sapiens

<400> 34

actcactata gggctcgagc ggccgccgg gcaggtggcc acccaccatc atctaaagaa 60 gataaacttg gcaaatgaca tgcaggttct tcaaggcaga ataattgcag aaaatcttca 120 aaggacccta tctgcagatg ttctgaatac ctctgagaat agagattgat tattcaacca 180 ggatacctaa ttcaagaact ccagaaatca ggagacggag acattttgtc agttttgcaa 240 cattggacca aatacaatga agtattcttg ctgtgctctg gttttggctg tcctgggcac 300

agaattgotg ggaagootot gttogaotgt cagatooocg aggttoagag gaoggataca 360 gcaggaacga aaaaacatcc gacccaacat tattcttgtg cttaccgatg atcaagatgt 420 ggagctgggg tccctgcaag tcatgaacaa aacgagaaag attatggaac atgggggggc 480 caccttcatc aatgcctttg tgactacacc catgtgctgc ccgtcacggt cctccatgct 540 caccgggaag tatgtgcaca atcacaatgt ctacaccaac aacgagaact gctcttcccc 600 ctcgtggcag gccatgcatg agcctcggac ttttgctgta tatcttaaca acactggcta 660 cagaacagcc ttttttggaa aatacctcaa tgaatataat ggcagctaca tccccctgg 720 gtggcgagaa tggcttggat taatcaagaa ttctcgcttc tataattaca ctgtttgtcg 780 caatggcatc aaagaaaagc atggatttga ttatgcaaag gactacttca cagacttaat 840 cactaacgag agcattaatt acttcaaaat gtctaagaga atgtatcccc ataggcccgt 900 tatgatggtg atcagccacg ctgcgcccca cggccccgag gactcagccc cacagttttc 960 taaactgtac cccaatgctt cccaacacat aactcctagt tataactatg caccaaatat 1020 ggataaacac tggattatgc agtacacagg accaatgctg cccatccaca tggaatttac 1080 aaacattcta cagcgcaaaa ggctccagac tttgatgtca gtggatgatt ctgtggagag 1140 gctgtataac atgctcgtgg agacggggga gctggagaat acttacatca tttacaccgc 1200 cgaccatggt taccatattg ggcagtttgg actggtcaag gggaaatcca tgccatatga 1260 ctttgatatt cgtgtgcctt tttttattcg tggtccaagt gtagaaccag gatcaatagt 1320 cccacagatc gttctcaaca ttgacttggc ccccacgatc ctggatattg ctgggctcga 1380 cacacctcct gatgtggacg gcaagtctgt cctcaaactt ctggacccag aaaagccagg 1440 taacaggttt cgaacaaaca agaaggccaa aatttggcgt gatacattcc tagtggaaag 1500 aggcaaattt ctacgtaaga aggaagaatc cagcaagaat atccaacagt caaatcactt 1560 gcccaaatat gaacgggtca aagaactatg ccagcaggcc aggtaccaga cagcctgtga 1620 acaaccgggg cagaagtggc aatgcattga ggatacatct ggcaagcttc gaattcacaa 1680 gtgtaaagga cccagtgacc tgctcacagt ccggcagagc acgcggaacc tctacgctcg 1740 cggcttccat gacaaagaca aagagtgcag ttgtagggag tctggttacc gtgccagcag 1800 aagccaaaga aagagtcaac ggcaattett gagaaaccag gggaetecaa agtacaaqee 1860 cagatttgtc catactcggc agacacgttc cttgtccgtc gaatttgaag gtgaaatata 1920 tgacataaat ctggaagaag aagaagaatt gcaagtgttg caaccaagaa acattgctaa 1980 gcgtcatgat gaaggccaca aggggccaag agatctccag gcttccagtg gtggcaacag 2040 gggcaggatg ctggcagata gcagcaacgc cgtgggccca cctaccactg tccgagtgac 2100 acacaagtgt tttattcttc ccaatgactc tatccattgt gagagagaac tgtaccaatc 2160 ggccagagcg tggaaggacc ataaggcata cattgacaaa gagattgaag ctctgcaaga 2220 taaaattaag aatttaagag aagtgagagg acatctgaag agaaggaagc ctgaggaatg 2280 tagctgcagt aaacaaagct attacaataa agagaaaggt gtaaaaaagc aagagaaatt 2340 aaagagccat cttcacccat tcaaggaggc tgctcaggaa gtagatagca aactgcaact 2400 tttcaaggag aacaaccgta ggaggaagaa ggagaggaag gagaagagac ggcagaggaa 2460 gggggaagag tgcagcctgc ctggcctcac ttgcttcacg catgacaaca accactggca 2520 gacageeeeg ttetggaace tgggatettt etgtgettge acqagtteta acaataacae 2580 ctactggtgt ttgcgtacag ttaatgagac gcataatttt cttttctgtg agtttgctac 2640 tggctttttg gagtattttg atatgaatac agatccttat cagctcacaa atacagtgca 2700 cacggtagaa cgaggcattt tgaatcagct acacgtacaa ctaatggagc tcagaagctg 2760 tcaaggatat aagcagtgca acccaagacc taagaatctt gatgttggaa ataaagatgg 2820 aggaagctat gacctacaca gaggacagtt atgggatgga tgggaaggtt aatcagcccc 2880 gtctcactgc agacatcaac tggcaaggcc tagaggagct acacagtgtg aatgaaaca 2940 tctatgagta cagacaaaac tacagactta gtctggtgga ctggactaat tacttgaagg 3000 atttagatag agtatttgca ctgctgaaga gtcactatga gcaaaataaa acaaataaga 3060 ctcaaactgc tcaaagtgac gggttcttgg ttgtctctgc tgagcacgct gtgtcaatgg 3120 agatggcctc tgctgactca gatgaagacc caaggcataa ggttgggaaa acacctcatt 3180 tgaccttgcc agctgacctt caaaccctgc atttgaaccg accaacatta agtccagaga 3240 gtaaacttga atggaataac gacattccag aagttaatca tttgaattct gaacactgga 3300 gaaaaaccga aaaatggacg gggcatgaag agactaatca tctggaaacc gatttcagtg 3360 gcgatggcat gacagagcta gagctcgggc ccagccccag gctgcagccc attcgcaggc 3420 acccgaaaga acttccccag tatggtggtc ctggaaagga catttttgaa gatcaactat 3480 atetteetgt geatteegat ggaattteag tteateagat gtteaceatg geeacegeag 3540 aacaccgaag taattccagc atagcgggga agatgttgac caaggtggag aagaatcacg 3600 aaaaggagaa gtcacagcac ctagaaggca gcgcctcctc ttcactctcc tctgattaga 3660 tgaaactgtt accttaccct aaacacagta titcttttta actttttat ttgtaaacta 3720 ataaaggtaa tcacagccac caacattcca agctaccctg ggtacctttg tgcagtagaa 3780 gctagtgagc atgtgagcaa gcggtgtgca cacggagact catcgttata atttactatc 3840 tgccaagagt agaaagaaag gctggggata tttgggttgg cttggttttg atttttgct 3900

```
tgtttgtttg ttttgtacta aaacagtatt atcttttgaa tatcgtaggg acataagtat 3960
atacatgtta tccaatcaag atggctagaa tggtgccttt ctgagtgtct aaaacttgac 4020
acccctggta aatctttcaa cacacttcca ctgcctgcgt aatgaagttt tgattcattt 4080
ttaaccactg gaatttttca atgccgtcat tttcagttag atgattttgc actttgagat 4140
taaaatgcca tgtctatttg attagtctta tttttttatt tttacaggct tatcagtctc 4200
actgttggct gtcattgtga caaagtcaaa taaaccccca aggacgacac acagtatgga 4260
tcacatattg tttgacatta agcttttgcc agaaaatgtt gcatgtgttt tacctcgact 4320
tgctaaaatc gattagcaga aaggcatggc taataatgtt ggtggtgaaa ataaataaat 4380
aagtaaacaa aawraaraww geetgetete tetgtgeeta geeteaaage gtteateata 4440
catcatacct ttaagattgc tatattttgg gttattttct tgacaggaga aaaagatcta 4500
aagatetttt atttteatet tttttggttt tettggeatg actaagaage ttaaatgttg 4560
ataaaatatg actagttttg aatttacacc aagaacttct caataaaaga aaatcatgaa 4620
tgctccacaa tttcaacata ccacaagaga agttaatttc ttaacattgt gttctatgat 4680
tatttgtaag accttcacca agttctgata tcttttaaag acatagttca aaattgcttt 4740
tgaaaatctg tattcttgaa aatatccttg ttgtgtatta ggtttttaaa taccagctaa 4800
aggattacct cactgagtca tcagtaccct cctattcagc tccccaagat gatgtgtttt 4860
tgcttaccct aagagaggtt ttcttcttat ttttagataa ttcaagtgct tagataaatt 4920
atgttttctt taagtgttta tggtaaactc ttttaaagaa aatttaatat gttatagctg 4980
aatctttttg gtaactttaa atctttatca tagactctgt acatatgttc aaattaqctg 5040
cttgcctgat gtgtgtatca tcggtgggat gacagaacaa acatatttat gatcatgaat 5100
aatgtgcttt gtaaaaagat ttcaagttat taggaagcat actctgtttt ttaatcatgt 5160
ataatattoo atgatacttt tatagaacaa ttotggotto aggaaagtot agaagcaata 5220
<210> 35
<211> 871
<212> PRT
<213> Homo sapiens
<400> 35
Met Lys Tyr Ser Cys Cys Ala Leu Val Leu Ala Val Leu Gly Thr Glu
Leu Leu Gly Ser Leu Cys Ser Thr Val Arg Ser Pro Arg Phe Arg Gly
             20
                                25
Arg Ile Gln Glu Arg Lys Asn Ile Arg Pro Asn Ile Ile Leu Val
Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser Leu Gln Val Met Asn
Lys Thr Arg Lys Ile Met Glu His Gly Gly Ala Thr Phe Ile Asn Ala
Phe Val Thr Thr Pro Met Cys Cys Pro Ser Arg Ser Ser Met Leu Thr
                85
Gly Lys Tyr Val His Asn His Asn Val Tyr Thr Asn Asn Glu Asn Cys
            100
Ser Ser Pro Ser Trp Gln Ala Met His Glu Pro Arg Thr Phe Ala Val
Tyr Leu Asn Asn Thr Gly Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu
Asn Glu Tyr Asn Gly Ser Tyr Ile Pro Pro Gly Trp Arg Glu Trp Leu
                   150
                                       155
```

Page 26

Gly	Leu	Ile	Lys	Asn 165	Ser	Arg	Phe	Tyr	Asn 170	Tyr	Thr	Val	Cys	Arg 175	Asn
Gly	Ile	Lys	Glu 180	Lys	His	Gly	Phe	Asp 185	Tyr	Ala	Lys	Asp	Tyr 190	Phe	Thr
Asp	Leu	Ile 195	Thr	Asn	Glu	Ser	Ile 200	Asn	Tyr	Phe	Lys	Met 205	Ser	Lys	Arg
Met	Tyr 210	Pro	His	Arg	Pro	Val 215	Met	Met	Val	Ile	Ser 220	His	Ala	Ala	Pro
His 225	Gly	Pro	Glu	Asp	Ser 230	Ala	Pro	Gln	Phe	Ser 235	Lys	Leu	Tyr	Pro	Asn 240
Ala	Ser	Gln	His	Ile 245	Thr	Pro	Ser	Tyr	Asn 250	Tyr	Ala	Pro	Asn	Met 255	Asp
Lys	His	Trp	Ile 260	Met	Gln	Tyr	Thr	Gly 265	Pro	Met	Leu	Pro	Ile 270	His	Met
Glu	Phe	Thr 275	Asn	Ile	Leu	Gln	Arg 280	Lys	Arg	Leu	Gln	Thr 285	Leu	Met	Ser
Val	Asp 290	Asp	Ser	Val	Glu	Arg 295	Leu	Tyr	Asn	Met	Leu 300	Val	Glu	Thr	Gly
Glu 305	Leu	Glu	Asn	Thr	Tyr 310	Ile	Ile	Tyr	Thr	Ala 315	Asp	His	Gly	Tyr	His 320
Ile	Gly	Gln	Phe	Gly 325	Leu	Val	Lys	Gly	Lys 330	Ser	Met	Pro	Tyr	Asp 335	Phe
Asp	Ile	Arg	Val 340	Pro	Phe	Phe	Ile	Arg 345	Gly	Pro	Ser	Val	Glu 350	Pro	Gly
Ser	Ile	Val 355	Pro	Gln	Ile	Val	Leu 360	Asn	Ile	Asp	Leu	Ala 365	Pro	Thr	Ile
Leu	Asp 370	Ile	Ala	Gly	Leu	Asp 375	Thr	Pro	Pro	Asp	Val 380	Asp	Gly	Lys	Ser
Val 385	Leu	Lys	Leu	Leu	Asp 390	Pro	Glu	Lys	Pro	Gly 395	Asn	Arg	Phe	Arg	Thr 400
Asn	Lys	Lys	Ala	Lys 405	Ile	Trp	Arg	Asp	Thr 410	Phe	Leu	Val	Glu	Arg 415	Gly
Lys	Phe	Leu	Arg 420	Lys	Lys	Glu	Glu	Ser 425	Ser	Lys	Asn	Ile	Gln 430	Gln	Ser
Asn	His	Leu 435	Pro	Lys	Tyr	Glu	Arg 440	Val	Lys	Glu	Leu	Cys 445	Gln	Gln	Ala
Arg	Tyr 450	Gln	Thr	Ala	Cys	Glu 455	Gln	Pro	Gly	Gln	Lys 460	Trp	Gln	Cys	Ile
Glu 465	Asp	Thr	Ser	Gly	Lys 470	Leu	Arg	Ile		475		Lys	Gly	Pro	Ser 480
									Р	age	27				

Asp	Leu	Leu	Thr	Val 485	Arg	Gln	Ser	Thr	Arg 490	Asn	Leu	Tyr	Ala	Arg 495	Gly
Phe	His	Asp	Lys 500	Asp	Lys	Glu	Cys	Ser 505	Cys	Arg	Glu	Ser	Gly 510	Tyr	Arg
Ala	Ser	Arg 515	Ser	Ģln	Arg	Lys	Ser 520	Gln	Arg	Gln	Phe	Leu 525	Arg	Asn	Gln
Gly	Thr 530	Pro	Lys	Tyr	Lys	Pro 535	Arg	Phe	Val	His	Thr 540	Arg	Gln	Thr	Arg
Ser 545	Leu	Ser	Val	Glu	Phe 550	Glu	Gly	Glu	Ile	Tyr 555	Asp	Ile	Asn	Leu	Glu 560
Glu	Glu	Glu	Glu	Leu 565	Gln	Val	Leu	Gln	Pro 570	Arg	Asn	Ile	Ala	Lys 575	Arg
His	Asp	Glu	Gly 580	His	Lys	Gly	Pro	Arg 585	Asp	Leu	Gln	Ala	Ser 590	Ser	Gly
Gly	Asn	Arg 595	Gly	Arg	Met	Leu	Ala 600	Asp	Ser	Ser	Asn	Ala 605	Val	Gly	Pro
Pro	Thr 610	Thr	Val	Arg	Val	Thr 615	His	Lys	Cys	Phe	Ile 620	Leu	Pro	Asn	Asp
Ser 625	Ile	His	Cys	Glu	Arg 630	Glu	Leu	Tyr	Gln	Ser 635	Ala	Arg	Ala	Trp	Lys 640
Asp	His	Lys	Ala	Tyr 645	Ile	Asp	Lys	Glu	Ile 650	Glu	Ala	Leu	Gln	Asp 655	Lys
Ile	Lys	Asn	Leu 660	Arg	Glu	Val	Arg	Gly 665	His	Leu	Lys	Arg	Arg 670	Lys	Pro
Glu	Glu	Cys 675	Ser	Cys	Ser	Lys	Gln 680	Ser	Tyr	Tyr	Asn	Lys 685	Glu	Lys	Gly
Val	Lys 690	Lys	Gln	Glu	Lys	Leu 695	Lys	Ser	His	Leu	His 700	Pro	Phe	Lys	Glu
Ala 705	Ala	Gln	Glu	Val	Asp 710	Ser	Lys	Leu	Gln	Leu 715	Phe	Lys	Glu	Asn	Asn 720
Arg	Arg	Arg	Lys	Lys 725	Glu	Arg	Lys	Glu	Lys 730	Arg	Arg	Gln	Arg	Lys 735	Gly
Glu	Glu	Cys	Ser 740	Leu	Pro	Gly	Leu	Thr 745	Cys	Phe	Thr	His	Asp 750	Asn	Asn
His	Trp	Gln 755	Thr	Ala	Pro	Phe	Trp 760	Asn	Leu	Gly	Ser	Phe 765	Cys	Ala	Cys
Thr	Ser 770	Ser	Asn	Asn	Asn	Thr 775	Tyr	Trp	Cys	Leu	Arg 780	Thr	Val	Asn	Glu
Thr 785	His	Asn	Phe	Leu	Phe 790	Cys	Glu	Phe		795		Phe	Leu	Glu	Tyr 800
									Ρ.	age :	2 8				

```
Phe Asp Met Asn Thr Asp Pro Tyr Gln Leu Thr Asn Thr Val His Thr
Val Glu Arg Gly Ile Leu Asn Gln Leu His Val Gln Leu Met Glu Leu
Arg Ser Cys Gln Gly Tyr Lys Gln Cys Asn Pro Arg Pro Lys Asn Leu
Asp Val Gly Asn Lys Asp Gly Gly Ser Tyr Asp Leu His Arg Gly Gln
                        855
Leu Trp Asp Gly Trp Glu Gly
865
<210> 36
<211> 1922
<212> DNA
<213> Homo sapiens
<400> 36
aaccgagaag cgctccgtaa agccatccgc acgctcagaa aggccgtcca cagggagcag 60
tttcacctcc agctctcagg catgaacctc gacgtggcta aaaagcctcc cagaacatct 120
gaacgccagg cagagtcctg tggagtgggc cagggtcatg cagaaaacca atgtgtcagt 180
tgcagggctg ggacctatta tgatggagca cgagaacgct gcattttatg tccaaatgga 240
accttccaaa atgaggaagg acaaatgact tgtgaaccat gcccaagacc aggaaattct 300
ggggccctga agaccccaga agcttggaat atgtctgaat gtggaggkct gtgtcaacct 360
actgaatatt ctgcagatgg ctttgcacct tgccagctct gtgccctggg casgttccag 420
cctgaagctg gtcgaacttc ctgcttcccc tgtggaggag gccttgccac caaacatcag 480
ggagctactt cctttcagga ctgtgaaacc agagttcaat gttcacctgg acatttctac 540
aacaccacca ctcaccgatg tattcgttgc ccagtgggaa cataccagcc tgaatttgga 600
aaaaataatt gtgtttcttg cccaggaaat actacgactg actttgatgg ctccacaaac 660
ataacccagt gtaaaaacag aagatgtgga ggggagctgg gagatttcac tgggtacatt 720
gaatccccaa actacccagg caattaccca gccaacaccg agtgtacgtg gaccatcaac 780
ccaccccca agegeegeat cetgategtg gteeetgaga tetteetgee catagaggae 840
gactgtgggg actatctggt gatgcggaaa acctcttcat ccaattctgt gacaacatat 900
gaaacctgcc agacctacga acgccccatc gccttcacct ccaggtcaaa gaagctgtgg 960
attcagttca agtccaatga agggaacagc gctagagggt tccaggtccc atacgtgaca 1020
tatgatgagg actaccagga actcattgaa gacatagttc gagatggcag gctctatgca 1080
tctgagaacc atcaggaaat acttaaggat aagaaactta tcaaggctct gtttgatgtc 1140
ctggcccatc cccagaacta tttcaagtac acagcccagg agtcccgaga gatgtttcca 1200
agatcgttca tccgattgct acgttccaaa gtgtccaggt ttttgagacc ttacaaatga 1260
ctcagcccac gtgccactca atacaaatgt tctgctatag ggttggtggg acagagctgt 1320
cttccttctg catgtcagca cagtcgggta ttgctgcctc ccgtatcagt gactcattag 1380
agttcaattt ttatagataa tacagatatt ttggtaaatt gaacttggtt tttctttccc 1440
agcatcgtgg atgtagactg agaatggctt tgagtggcat cagcttctca ctgctgtggg 1500
cggatgtctt ggatagatca agggctggct gagctggact ttggtcagcc taggtgagac 1560
tcacctgtcc ttctggggtc ttactcctcc tcaaggagtc tgtagtggaa aggaggccac 1620
agaataagct gcttattctg aaacttcagc ttcctctagc ccggccctct ctaagggagc 1680
cctctgcact cgtgtgcagg ctctgaccag gcagaacagg caagagggga gggaaggaga 1740
cccctgcagg ctccctccac ccaccttgag acctgggagg actcagtttc tccacagcct 1800
tctccagcct gtgtgataca agtttgatcc caggaacttg agttctaagc agtgctcgtg 1860
aaaaaaaaaa gcagaaagaa ttagaaataa ataaaaacta agcacttctg gagacataaa 1920
```

```
<400> 37
atgaaceteg aegtggetaa aaageeteee agaacatetg aaegeeagge agagteetgt 60
ggagtgggcc agggtcatgc agaaaaccaa tgtgtcagtt gcagggctgg gacctattat 120
gatggagcac gagaacgctg cattttatgt ccaaatggaa ccttccaaaa tgaggaagga 180
caaatgactt gtgaaccatg cccaagacca ggaaattctg gggccctgaa gaccccagaa 240
gcttggaata tgtctgaatg tggaggkctg tgtcaaccta ctgaatattc tgcagatggc 300
tttgcacctt gccagctctg tgccctgggc asgttccagc ctgaagctgg tcgaacttcc 360
tgcttcccct gtggaggagg ccttgccacc aaacatcagg gagctacttc ctttcaggac 420
tgtgaaacca gagttcaatg ttcacctgga catttctaca acaccaccac tcaccgatgt 480
attegttgee cagtgggaac ataccageet gaatttggaa aaaataattg tgtttettge 540
ccaggaaata ctacgactga ctttgatggc tccacaaaca taacccagtg taaaaacaga 600
agatgtggag gggagctggg agatttcact gggtacattg aatccccaaa ctacccaggc 660
aattacccag ccaacaccga gtgtacgtgg accatcaacc cacccccaa gcgccgcatc 720
ctgatcgtgg tccctgagat cttcctgccc atagaggacg actgtgggga ctatctggtg 780
atgeggaaaa eetetteate caattetgtg acaacatatg aaacetgeea gacetaegaa 840
cgccccatcg ccttcacctc caggtcaaag aagctgtgga ttcagttcaa gtccaatgaa 900
gggaacagcg ctagagggtt ccaggtccca tacgtgacat atgatgagga ctaccaggaa 960
ctcattgaag acatagttcg agatggcagg ctctatgcat ctgagaacca tcaggaaata 1020
cttaaggata agaaacttat caaggctctg tttgatgtcc tggcccatcc ccagaactat 1080
ttcaagtaca cagcccagga gtcccgagag atgtttccaa gatcgttcat ccgattgcta 1140
cgttccaaag tgtccaggtt tttgagacct tacaaatga
<210> 38
<211> 392
<212> PRT
<213> Homo sapiens
<220>
<221> UNSURE
<222> (111)
<223> "Xaa" at position 111 can be any amino acid.
Met Asn Leu Asp Val Ala Lys Lys Pro Pro Arg Thr Ser Glu Arg Gln
Ala Glu Ser Cys Gly Val Gly Gln Gly His Ala Glu Asn Gln Cys Val
Ser Cys Arg Ala Gly Thr Tyr Tyr Asp Gly Ala Arg Glu Arg Cys Ile
Leu Cys Pro Asn Gly Thr Phe Gln Asn Glu Glu Gly Gln Met Thr Cys
Glu Pro Cys Pro Arg Pro Gly Asn Ser Gly Ala Leu Lys Thr Pro Glu
Ala Trp Asn Met Ser Glu Cys Gly Gly Leu Cys Gln Pro Thr Glu Tyr
Ser Ala Asp Gly Phe Ala Pro Cys Gln Leu Cys Ala Leu Gly Xaa Phe
Gln Pro Glu Ala Gly Arg Thr Ser Cys Phe Pro Cys Gly Gly Leu
                            120
                                       Page 30
```

<212> DNA

<213> Homo sapiens

Ala Thr Lys His Gln Gly Ala Thr Ser Phe Gln Asp Cys Glu Thr Arg Val Gln Cys Ser Pro Gly His Phe Tyr Asn Thr Thr His Arg Cys Ile Arg Cys Pro Val Gly Thr Tyr Gln Pro Glu Phe Gly Lys Asn Asn Cys Val Ser Cys Pro Gly Asn Thr Thr Thr Asp Phe Asp Gly Ser Thr Asn Ile Thr Gln Cys Lys Asn Arg Arg Cys Gly Gly Glu Leu Gly Asp Phe Thr Gly Tyr Ile Glu Ser Pro Asn Tyr Pro Gly Asn Tyr Pro Ala Asn Thr Glu Cys Thr Trp Thr Ile Asn Pro Pro Pro Lys Arg Arg Ile 230 Leu Ile Val Val Pro Glu Ile Phe Leu Pro Ile Glu Asp Asp Cys Gly 245 250 Asp Tyr Leu Val Met Arg Lys Thr Ser Ser Ser Asn Ser Val Thr Thr 265 Tyr Glu Thr Cys Gln Thr Tyr Glu Arg Pro Ile Ala Phe Thr Ser Arg 280 Ser Lys Lys Leu Trp Ile Gln Phe Lys Ser Asn Glu Gly Asn Ser Ala 295 Arg Gly Phe Gln Val Pro Tyr Val Thr Tyr Asp Glu Asp Tyr Gln Glu 305 310 315 Leu Ile Glu Asp Ile Val Arg Asp Gly Arg Leu Tyr Ala Ser Glu Asn 325 330 His Gln Glu Ile Leu Lys Asp Lys Leu Ile Lys Ala Leu Phe Asp 340 345 Val Leu Ala His Pro Gln Asn Tyr Phe Lys Tyr Thr Ala Gln Glu Ser 360 Arg Glu Met Phe Pro Arg Ser Phe Ile Arg Leu Leu Arg Ser Lys Val 370 375 Ser Arg Phe Leu Arg Pro Tyr Lys 385 390 <210> 39 <211> 392 <212> PRT <213> Homo sapiens

<220>

<221> UNSURE

<222> (111) <223> "Xaa" at position 111 can be any amino acid. <400> 39 Met Asn Leu Asp Val Ala Lys Lys Pro Pro Arg Thr Ser Glu Arg Gln Ala Glu Ser Cys Gly Val Gly Gln Gly His Ala Glu Asn Gln Cys Val Ser Cys Arg Ala Gly Thr Tyr Tyr Asp Gly Ala Arg Glu Arg Cys Ile Leu Cys Pro Asn Gly Thr Phe Gln Asn Glu Glu Gly Gln Met Thr Cys Glu Pro Cys Pro Arg Pro Gly Asn Ser Gly Ala Leu Lys Thr Pro Glu Ala Trp Asn Met Ser Glu Cys Gly Gly Leu Cys Gln Pro Thr Glu Tyr

Ser Ala Asp Gly Phe Ala Pro Cys Gln Leu Cys Ala Leu Gly Xaa Phe 100

Gln Pro Glu Ala Gly Arg Thr Ser Cys Phe Pro Cys Gly Gly Gly Leu

Ala Thr Lys His Gln Gly Ala Thr Ser Phe Gln Asp Cys Glu Thr Arg 130

Val Gln Cys Ser Pro Gly His Phe Tyr Asn Thr Thr Thr His Arg Cys

Ile Arg Cys Pro Val Gly Thr Tyr Gln Pro Glu Phe Gly Lys Asn Asn

Cys Val Ser Cys Pro Gly Asn Thr Thr Thr Asp Phe Asp Gly Ser Thr

Asn Ile Thr Gln Cys Lys Asn Arg Arg Cys Gly Gly Glu Leu Gly Asp

Phe Thr Gly Tyr Ile Glu Ser Pro Asn Tyr Pro Gly Asn Tyr Pro Ala

Asn Thr Glu Cys Thr Trp Thr Ile Asn Pro Pro Pro Lys Arg Arg Ile 230 235

Leu Ile Val Val Pro Glu Ile Phe Leu Pro Ile Glu Asp Asp Cys Gly

Asp Tyr Leu Val Met Arg Lys Thr Ser Ser Ser Asn Ser Val Thr Thr 265

Tyr Glu Thr Cys Gln Thr Tyr Glu Arg Pro Ile Ala Phe Thr Ser Arg

Ser Lys Lys Leu Trp Ile Gln Phe Lys Ser Asn Glu Gly Asn Ser Ala 300

Arg Gly Phe Gln Val Pro Tyr Val Thr Tyr Asp Glu Asp Tyr Gln Glu Leu Ile Glu Asp Ile Val Arg Asp Gly Arg Leu Tyr Ala Ser Glu Asn 325 His Gln Glu Ile Leu Lys Asp Lys Lys Leu Ile Lys Ala Leu Phe Asp Val Leu Ala His Pro Gln Asn Tyr Phe Lys Tyr Thr Ala Gln Glu Ser 355 360 Arg Glu Met Phe Pro Arg Ser Phe Ile Arg Leu Leu Arg Ser Lys Val 375 380 Ser Arg Phe Leu Arg Pro Tyr Lys 390 <210> 40 <211> 162 <212> PRT <213> Mouse <400> 40 Thr Ile Asn Pro Pro Pro Lys Arg Arg Ile Leu Ile Val Val Pro Glu Ile Phe Leu Pro Ile Glu Asp Asp Cys Gly Asp Tyr Leu Val Met Arg Lys Thr Ser Ser Ser Asn Ser Val Thr Thr Tyr Glu Thr Cys Gln Thr 35 Tyr Glu Arg Pro Ile Ala Phe Thr Ser Arg Ser Lys Lys Leu Trp Ile Gln Phe Lys Ser Asn Glu Gly Asn Ser Ala Arg Gly Phe Gln Val Pro Tyr Val Thr Tyr Asp Glu Asp Tyr Gln Glu Leu Ile Glu Asp Ile Val Arg Asp Gly Arg Leu Tyr Ala Ser Glu Asn His Gln Glu Ile Leu Lys Asp Lys Lys Leu Ile Lys Ala Leu Phe Asp Val Leu Ala His Pro Gln

Asn Tyr Phe Lys Tyr Thr Ala Gln Glu Ser Arg Glu Met Phe Pro Arg

Ser Phe Ile Arg Leu Leu Arg Ser Lys Val Ser Arg Phe Leu Arg Pro

135

150

Tyr Lys

145

155

```
<210> 41
<211> 2840
<212> DNA
<213> Homo sapiens
<400> 41
cagcggccgc tgaattctag ggcgggttcg cgccccgaag gctgagagct ggcgctgctc 60
gtgccctgtg tgccagacgg cggagctccg cggccggacc ccgcggcccc gctttqctqc 120
cgactggagt ttgggggaag aaactctcct gcgccccaga agatttcttc ctcggcgaag 180
ggacagegaa agatgagggt ggcaggaaga gaaggegett tetgtetgee ggggtegeag 240
cgcgagaggg cagtgccatg ttcctctcca tcctagtggc gctgtgcctg tggctgcacc 300
tggcgctggg cgtgcgcggc gcgccctgcg aggcggtgcg catccctatg tgccggcaca 360
tgccctggaa catcacgcgg atgcccaacc acctgcacca cagcacgcag gagaacgcca 420
tcctggccat cgagcagtac gaggagctgg tggacgtgaa ctgcagcgcc gtgctgcgct 480
tettettetg tgccatgtac gegeceattt geaccetgga gtteetgeac gaccetatea 540
agccgtgcaa gtcggtgtgc caacgcgcgc gcgacgactg cgagcccctc atgaagatgt 600
acaaccacag ctggcccgaa agcctggcct gcgacgagct gcctgtctat gaccgtggcg 660
tgtgcatttc gcctgaagcc atcgtcacgg acctcccgga ggatgttaag tggatagaca 720
tcacaccaga catgatggta caggaaaggc ctcttgatgt tgactgtaaa cgcctaagcc 780
ccgatcggtg caagtgtaaa aaggtgaagc caactttggc aacgtatctc agcaaaaact 840
acagctatgt tattcatgcc aaaataaaag ctgtgcagag gagtggctgc aatgaggtca 900
caacggtggt ggatgtaaaa gagatettea agteeteate acceateeet egaacteaag 960
tecegeteat tacaaattet tettgeeagt gteeacacat cetgeeceat caagatgtte 1020
tcatcatgtg ttacgagtgg cgttcaagga tgatgcttct tgaaaattgc ttagttgaaa 1080
aatggagaga tcagcttagt aaaagatcca tacagtggga agagaggctg caggaacagc 1140
ggagaacagt tcaggacaag aagaaaacag ccgggcgcac cagtcgtagt aatcccccca 1200
aaccaaaggg aaagcctcct gctcccaaac cagccagtcc caagaagaac attaaaacta 1260
ggagtgccca gaagagaaca aacccgaaaa gagtgtgagc taactagttt ccaaaqcqqa 1320
gacttccgac ttccttacag gatgaggctg ggcattgcct gggacagcct atgtaaggcc 1380
atgtgcccct tgccctaaca actcactgca gtgctcttca tagacacatc ttgcagcatt 1440
tttcttaagg ctatgcttca gtttttcttt gtaagccatc acaagccata gtggtaggtt 1500
tgccctttgg tacagaaggt gagttaaagc tggtggaaaa ggcttattgc attgcattca 1560
gagtaacctg tgtgcatact ctagaagagt agggaaaata atgcttgtta caattcgacc 1620
taatatgtgc attgtaaaat aaatgccata tttcaaacaa aacacgtaat ttttttacag 1680
tatgttttat taccttttga tatctgttgt tgcaatgtta gtgatgtttt aaaatgtgat 1740
gaaaatataa tgtttttaag aaggaacagt agtggaatga atgttaaaag atctttatgt 1800
gtttatggtc tgcagaagga tttttgtgat gaaaggggat tttttgaaaa attagagaag 1860
tagcatatgg aaaattataa tgtgtttttt taccaatgac ttcagtttct gtttttagct 1920
agaaacttaa aaacaaaaat aataataaag aaaaataaat aaaaaggaga ggcagacaat 1980
gtctggattc ctgttttttg gttacctgat ttccatgatc atgatgcttc ttgtcaacac 2040
cctcttaagc agcaccagaa acagtgagtt tgtctgtacc attaggagtt aggtactaat 2100
tagttggcta atgctcaagt attttatacc cacaagagag gtatgtcact catcttactt 2160
cccaggacat ccaccctgag aataatttga caagcttaaa aatggccttc atgtgagtgc 2220
caaattttgt ttttcttcat ttaaatattt tctttgccta aatacatgtg agaggagtta 2280
aatataaatg tacagagagg aaagttgagt tccacctctg aaatgagaat tacttgacag 2340
ttgggatact ttaatcagaa aaaaagaact tatttgcagc attttatcaa caaatttcat 2400
aattgtggac aattggaggc atttatttta aaaaacaatt ttattggcct tttgctaaca 2460
cagtaagcat gtattttata aggcattcaa taaatgcaca acgcccaaag gaaataaaat 2520
cctatctaat cctactctcc actacacaga ggtaatcact attagtattt tggcatatta 2580
ttctccaggt gtttgcttat gcacttataa aatgatttga acaaataaaa ctaggaacct 2640
gtatacatgt gtttcataac ctgcctcctt tgcttggccc tttattgaga taagttttcc 2700
tgtcaagaaa gcagaaacca tctcatttct aacagctgtg ttatattcca tagtatgcat 2760
tactcaacaa actgttgtgc tattggatac ttaggtggtt tcttcactga caatactgaa 2820
taaacatctc accggaattc
<210> 42
```

<210> 42 <211> 1041 <212> DNA <213> Homo sapiens

```
atgtteetet ceatectagt ggegetgtge etgtggetge acetggeget gggegtgege 60
ggcgcgccct gcgaggcggt gcgcatccct atgtgccggc acatgccctg gaacatcacg 120
cggatgccca accacctgca ccacagcacg caggagaacg ccatcctggc catcgagcag 180
tacgaggagc tggtggacgt gaactgcagc gccgtgctgc gcttcttctt ctgtgccatg 240
tacgcgccca tttgcaccct ggagttcctg cacgacccta tcaagccgtg caagtcggtg 300
tgccaacgcg cgcgcgacga ctgcgagccc ctcatgaaga tgtacaacca cagctggccc 360
gaaagcctgg cctgcgacga gctgcctgtc tatgaccgtg gcgtgtgcat ttcgcctgaa 420
gccatcgtca cggacctccc ggaggatgtt aagtggatag acatcacacc agacatgatg 480
gtacaggaaa ggcctcttga tgttgactgt aaacgcctaa gccccgatcg gtgcaagtgt 540
aaaaaggtga agccaacttt ggcaacgtat ctcagcaaaa actacagcta tgttattcat 600
gccaaaataa aagctgtgca gaggagtggc tgcaatgagg tcacaacggt ggtggatgta 660
aaagagatet teaagteete ateaceeate eetegaaete aagteeeget eattacaaat 720
tettettgee agtgteeaca cateetgeee cateaagatg tteteateat gtgttaegag 780
tggcgttcaa ggatgatgct tcttgaaaat tgcttagttg aaaaatggag agatcagctt 840
agtaaaagat ccatacagtg ggaagagagg ctgcaggaac agcggagaac agttcaggac 900
cctgctccca aaccagccag tcccaagaag aacattaaaa ctaggagtgc ccagaagaga 1020
acaaacccga aaagagtgtg a
<210> 43
<211> 346
<212> PRT
<213> Homo sapiens
<400> 43
Met Phe Leu Ser Ile Leu Val Ala Leu Cys Leu Trp Leu His Leu Ala
  1
Leu Gly Val Arg Gly Ala Pro Cys Glu Ala Val Arg Ile Pro Met Cys
Arg His Met Pro Trp Asn Ile Thr Arg Met Pro Asn His Leu His His
Ser Thr Gln Glu Asn Ala Ile Leu Ala Ile Glu Gln Tyr Glu Glu Leu
Val Asp Val Asn Cys Ser Ala Val Leu Arg Phe Phe Phe Cys Ala Met
 65
                    70
                                        75
Tyr Ala Pro Ile Cys Thr Leu Glu Phe Leu His Asp Pro Ile Lys Pro
Cys Lys Ser Val Cys Gln Arg Ala Arg Asp Asp Cys Glu Pro Leu Met
                               105
                                                   110
Lys Met Tyr Asn His Ser Trp Pro Glu Ser Leu Ala Cys Asp Glu Leu
                           120
Pro Val Tyr Asp Arg Gly Val Cys Ile Ser Pro Glu Ala Ile Val Thr
                                           140
Asp Leu Pro Glu Asp Val Lys Trp Ile Asp Ile Thr Pro Asp Met Met
145
                                       155
Val Gln Glu Arg Pro Leu Asp Val Asp Cys Lys Arg Leu Ser Pro Asp
               165
                                   170
```

<400> 42

```
Arg Cys Lys Cys Lys Lys Val Lys Pro Thr Leu Ala Thr Tyr Leu Ser
                                185
Lys Asn Tyr Ser Tyr Val Ile His Ala Lys Ile Lys Ala Val Gln Arg
        195
                            200
Ser Gly Cys Asn Glu Val Thr Thr Val Val Asp Val Lys Glu Ile Phe
                        215
Lys Ser Ser Ser Pro Ile Pro Arg Thr Gln Val Pro Leu Ile Thr Asn
225
                    230
                                         235
Ser Ser Cys Gln Cys Pro His Ile Leu Pro His Gln Asp Val Leu Ile
Met Cys Tyr Glu Trp Arg Ser Arg Met Met Leu Leu Glu Asn Cys Leu
            260
                                265
Val Glu Lys Trp Arg Asp Gln Leu Ser Lys Arg Ser Ile Gln Trp Glu
                            280
Glu Arg Leu Gln Glu Gln Arg Arg Thr Val Gln Asp Lys Lys Lys Thr
Ala Gly Arg Thr Ser Arg Ser Asn Pro Pro Lys Pro Lys Gly Lys Pro
Pro Ala Pro Lys Pro Ala Ser Pro Lys Lys Asn Ile Lys Thr Arg Ser
                                    330
Ala Gln Lys Arg Thr Asn Pro Lys Arg Val
            340
<210> 44
<211> 749
<212> DNA
<213> Homo sapiens
<400> 44
cggcaccaag agcactggcc aagtcagctt cttctgagag agtctctaga agacatgatg 60
ctacactcag ctttgggtct ctgcctctta ctcgtcacag tttcttccaa ccttqccatt 120
gcaataaaaa aggaaaagag gcctcctcag acactctcaa gaggatgggg agatgacatc 180
acttgggtac aaacttatga agaaggtctc ttttatgctc aaaaaagtaa gaagccatta 240
atggttattc atcacctgga ggattgtcaa tactctcaag cactaaagaa agtatttgcc 300
caaaatgaag aaatacaaga aatggctcag aataagttca tcatgctaaa ccttatgcat 360
gaaaccactg ataagaattt atcacctgat gggcaatatg tgcctagaat catgtttgta 420
gaccettett taacagttag agetgacata getggaagat actetaacag attgtacaca 480
tatgagcctc gggatttacc cctattgata gaaaacatga agaaagcatt aagacttatt 540
cagtcagagc tataagagat gatagaaaaa agccttcact tcaaagaagt caaatttcat 600
gaagaaaacc tctggcacat tgacaaatac taaatgtgca agtatataga ttttgtaata 660
ttactattta gtttttttaa tgtgtttgca atagtcttat taaaataaat gttttttaaa 720
tctgaaaaaa aaaaaaaaa aaaaaaaaa
                                                                   749
<210> 45
<211> 501
<212> DNA
```

<213> Homo sapiens

```
<400> 45
atgatgetac acteagettt gggtetetge etettaeteg teacagttte ttecaacett 60
gccattgcaa taaaaaagga aaagaggcct cctcagacac tctcaagagg atggggagat 120
qacatcactt gggtacaaac ttatgaagaa ggtctctttt atgctcaaaa aagtaagaag 180
ccattaatgg ttattcatca cctggaggat tgtcaatact ctcaagcact aaagaaagta 240
tttgcccaaa atgaagaaat acaagaaatg gctcagaata agttcatcat gctaaacctt 300
atgcatgaaa ccactgataa gaatttatca cctgatgggc aatatgtgcc tagaatcatg 360
tttgtagacc cttctttaac agttagagct gacatagctg gaagatactc taacagattg 420
tacacatatg agcctcggga tttaccccta ttgatagaaa acatgaagaa agcattaaga 480
cttattcagt cagagctata a
<210> 46
<211> 166
<212> PRT
<213> Homo sapiens
<400> 46
Met Met Leu His Ser Ala Leu Gly Leu Cys Leu Leu Leu Val Thr Val
Ser Ser Asn Leu Ala Ile Ala Ile Lys Lys Glu Lys Arg Pro Pro Gln
             20
                                  25
Thr Leu Ser Arg Gly Trp Gly Asp Asp Ile Thr Trp Val Gln Thr Tyr
Glu Glu Gly Leu Phe Tyr Ala Gln Lys Ser Lys Lys Pro Leu Met Val
     50
Ile His His Leu Glu Asp Cys Gln Tyr Ser Gln Ala Leu Lys Lys Val
Phe Ala Gln Asn Glu Glu Ile Gln Glu Met Ala Gln Asn Lys Phe Ile
Met Leu Asn Leu Met His Glu Thr Thr Asp Lys Asn Leu Ser Pro Asp
                                 105
Gly Gln Tyr Val Pro Arg Ile Met Phe Val Asp Pro Ser Leu Thr Val
        115
                            120
Arg Ala Asp Ile Ala Gly Arg Tyr Ser Asn Arg Leu Tyr Thr Tyr Glu
                        135
Pro Arg Asp Leu Pro Leu Leu Ile Glu Asn Met Lys Lys Ala Leu Arg
145
                    150
Leu Ile Gln Ser Glu Leu
                165
<210> 47
<211> 3493
<212> DNA
<213> Homo sapiens
<400> 47
agcggccggg gccacgatgg agcgcgacgg ctgcgcgggg ggcgggagcc gcggcggcga 60
```

Page 37

gggcgggcgc gctccccggg agggcccggc ggggaacggc cgcgatcggg gccgcagcca 120 egetgeegag gegeegggg accegeagge ggeegegtee ttgetggeee etatggaegt 180 gggggaggag ccgctggaga aggcggcgcg cgcccgcact gccaaggacc ccaacaccta 240 taaagtactc tcgctggtat tgtcagtatg tgtgttaaca acaatacttg gttgtatatt 300 tgggttgaaa ccaagctgtg ccaaagaagt taaaagttgc aaaggtcgct gtttcgagag 360 aacatttggg aactgtcgct gtgatgctgc ctgtgttgag cttggaaact gctgtttaga 420 ttaccaggag acgtgcatag aaccagaaca tatatggact tgcaacaaat tcaggtgtgg 480 tgagaaaagg ttgaccagaa gcctctgtgc ctgttcagat gactgcaagg acaagggcga 540 ctgctgcatc aactacagtt ctgtgtgtca aggtgagaaa agttgggtag aagaaccatg 600 tgagagcatt aatgagccac agtgcccagc agggtttgaa acgcctccta ccctcttatt 660 ttctttggat ggattcaggg cagaatattt acacacttgg ggtggacttc ttcctgttat 720 tagcaaacta aaaaaatgtg gaacatatac taaaaacatg agaccggtat atccaacaaa 780 aactttcccc aatcactaca gcattgtcac cggattgtat ccagaatctc atggcataat 840 cgacaataaa atgtatgatc ccaaaatgaa tgcttccttt tcacttaaaa gtaaagagaa 900 atttaatcct gagtggtaca aaggagaacc aatttgggtc acagctaagt atcaaggcct 960 caagtctggc acatttttct ggccaggatc agatgtggaa attaacggaa ttttcccaga 1020 catctataaa atgtataatg gttcagtacc atttgaagaa aggattttag ctgttcttca 1080 gtggctacag cttcctaaag atgaaagacc acacttttac actctgtatt tagaagaacc 1140 agattettea ggteatteat atggaceagt cageagtgaa gteateaaag eettgeagag 1200 ggttgatggt atggttggta tgctgatgga tggtctgaaa gagctgaact tgcacagatg 1260 cctgaacctc atccttattt cagatcatgg catggaacaa ggcagttgta agaaatacat 1320 atatotgaat aaatatttgg gggatgttaa aaatattaaa gttatotatg gacotgcago 1380 tegattgaga ecetetgatg teccagataa atactattea tttaactatg aaggeattge 1440 ecgaaatett tettgeeggg aaccaaacca geaetteaaa eettaeetga aacatttett 1500 acctaagcgt ttgcactttg ctaagagtga tagaattgag cccttgacat tctatttgga 1560 ccctcagtgg caacttgcat tgaatccctc agaaaggaaa tattgtggaa gtggatttca 1620 tggctctgac aatgtatttt caaatatgca agccctcttt gttggctatg gacctggatt 1680 caagcatggc attgaggctg acacetttga aaacattgaa gtetataaet taatgtgtga 1740 tttactgaat ttgacaccgg ctcctaataa cggaactcat ggaagtctta accaccttct 1800 aaagaatcct gtttatacgc caaagcatcc caaagaagtg cacccctgg tacagtgccc 1860 cttcacaaga aaccccagag ataaccttgg ctgctcatgt aacccttcga ttttgccgat 1920 tgaggatttt caaacacagt tcaatctgac tgtggcagaa gagaagatta ttaagcatga 1980 aactttaccc tatggaagac ctagagttct ccagaaggaa aacaccatct gtcttctttc 2040 ccagcaccag tttatgagtg gatacagcca agacatctta atgccccttt ggacatccta 2100 taccgtggac agaaatgaca gtttctctac ggaagacttc tccaactgtc tgtaccagga 2160 ctttagaatt cctcttagtc ctgtccataa atgttcattt tataaaaata acaccaaagt 2220 gagttacggg ttcctctccc caccacact aaataaaaat tcaagtggaa tatattctga 2280 agctttgctt actacaaata tagtgccaat gtaccagagt tttcaagtta tatggcgcta 2340 ctttcatgac accctactgc gaaagtatgc tgaagaaaga aatggtgtca atgtcgtcag 2400 tggtcctgtg tttgactttg attatgatgg acgttgtgat tccttagaga atctgaggca 2460 aaaaagaaga gtcatccgta accaagaaat tttgattcca actcacttct ttattgtgct 2520 aacaagctgt aaagatacat ctcagacgcc tttgcactgt gaaaacctag acaccttagc 2580 tttcattttg cctcacagga ctgataacag cgagagctgt gtgcatggga agcatgactc 2640 ctcatgggtt gaagaattgt taatgttaca cagagcacgg atcacagatg ttgagcacat 2700 cactggactc agettetate aacaaagaaa agageeagtt teagaeattt taaagttgaa 2760 aacacatttg ccaaccttta gccaagaaga ctgatatgtt ttttatcccc aaacaccatg 2820 aatctttttg agagaacctt atattttata tagtcctcta gctacactat tgcattgttc 2880 agaaactgtc gaccagagtt agaacggagc cctcggtgat gcggacatct cagggaaact 2940 tgcgtactca gcacagcagt ggagagtgtt cctgttgaat cttgcacata tttgaatgtg 3000 taagcattgt atacattgat caagttcggg ggaataaaga cagaccacac ctaaaactgc 3060 ctttctgctt ctcttaaagg agaagtagct gtgaacattg tctggatacc agatatttga 3120 atctttctta ctattggtaa taaaccttga tggcattggg caaacagtag acttatagta 3180 gggttggggt agcccatgtt atgtgactat ctttatgaga attttaaagt ggttctggat 3240 atcttttaac ttggagtttc atttcttttc attgtaatca aaaaaaaaat taacagaagc 3300 caaaatactt ctgagacctt gtttcaatct ttgctgtata tcccctcaaa atccaagtta 3360 ttaatcttat gtgttttctt tttaattttt tgattggatt tctttagatt taatggttca 3420 aatgagttca actttgaggg acgatctttg aatatactta cctattataa aatcttactt 3480 tgtatttgta ttt 3493

<210> 48 <211> 925 <212> PRT <213> Homo sapiens <400> 48 Met Glu Arg Asp Gly Cys Ala Gly Gly Gly Ser Arg Gly Gly Glu Gly Gly Arg Ala Pro Arg Glu Gly Pro Ala Gly Asn Gly Arg Asp Arg Gly Arg Ser His Ala Ala Glu Ala Pro Gly Asp Pro Gln Ala Ala Ala Ser Leu Leu Ala Pro Met Asp Val Gly Glu Glu Pro Leu Glu Lys Ala Ala Arg Ala Arg Thr Ala Lys Asp Pro Asn Thr Tyr Lys Val Leu Ser Leu Val Leu Ser Val Cys Val Leu Thr Thr Ile Leu Gly Cys Ile Phe Gly Leu Lys Pro Ser Cys Ala Lys Glu Val Lys Ser Cys Lys Gly Arg Cys 100 Phe Glu Arg Thr Phe Gly Asn Cys Arg Cys Asp Ala Ala Cys Val Glu Leu Gly Asn Cys Cys Leu Asp Tyr Gln Glu Thr Cys Ile Glu Pro Glu 130 135 His Ile Trp Thr Cys Asn Lys Phe Arg Cys Gly Glu Lys Arg Leu Thr 150 Arg Ser Leu Cys Ala Cys Ser Asp Asp Cys Lys Asp Lys Gly Asp Cys Cys Ile Asn Tyr Ser Ser Val Cys Gln Gly Glu Lys Ser Trp Val Glu 180 Glu Pro Cys Glu Ser Ile Asn Glu Pro Gln Cys Pro Ala Gly Phe Glu 195 Thr Pro Pro Thr Leu Leu Phe Ser Leu Asp Gly Phe Arg Ala Glu Tyr Leu His Thr Trp Gly Gly Leu Leu Pro Val Ile Ser Lys Leu Lys Lys 225 230 Cys Gly Thr Tyr Thr Lys Asn Met Arg Pro Val Tyr Pro Thr Lys Thr Phe Pro Asn His Tyr Ser Ile Val Thr Gly Leu Tyr Pro Glu Ser His Gly Ile Ile Asp Asn Lys Met Tyr Asp Pro Lys Met Asn Ala Ser Phe 275 280

Ser	Leu 290	Lys	Ser	Lys	Glu	Lys 295	Phe	Asn	Pro	Glu	Trp 300	Tyr	Lys	Gly	Glu
Pro 305	Ile	Trp	Val	Thr	Ala 310	Lys	Tyr	Gln	Gly	Leu 315	Lys	Ser	Gly	Thr	Phe 320
Phe	Trp	Pro	Gly	Ser 325	Asp	Val	Glu	Ile	Asn 330	Gly	Ile	Phe	Pro	Asp 335	Ile
Tyr	Lys	Met	Tyr 340	Asn	Gly	Ser	Val	Pro 345	Phe	Glu	Glu	Arg	Ile 350	Leu	Ala
Val	Leu	Gln 355	Trp	Leu	Gln	Leu	Pro 360	Lys	Asp	Glu	Arg	Pro 365	His	Phe	Tyr
Thr	Leu 370	Tyr	Leu	Glu	Glu	Pro 375	Asp	Ser	Ser	Gly	His 380	Ser	Tyr	Gly	Pro
Val 385	Ser	Ser	Glu	Val	Ile 390	Lys	Ala	Leu	Gln	Arg 395	Val	Asp	Gly	Met	Val 400
Gly	Met	Leu	Met	Asp 405	Gly	Leu	Lys	Glu	Leu 410	Asn	Leu	His	Arg	Cys 415	Leu
Asn	Leu	Ile	Leu 420	Ile	Ser	Asp	His	Gly 425	Met	Glu	Gln	Gly	Ser 430	Cys	Lys
Lys	Tyr	Ile 435	Tyr	Leu	Asn	Lys	Tyr 440	Leu	Gly	Asp	Val	Lys 445	Asn	Ile	Lys
Val	Ile 450	Tyr	Gly	Pro	Ala	Ala 455	Arg	Leu	Arg	Pro	Ser 460	Asp	Val	Pro	Asp
Lys 465	Tyr	Tyr	Ser	Phe	Asn 470	Tyr	Glu	Gly	Ile	Ala 475	Arg	Asn	Leu	Ser	Cys 480
Arg	Glu	Pro	Asn	Gln 485	His	Phe	Lys	Pro	Tyr 490	Leu	Lys	His	Phe	Leu 495	Pro
Lys	Arg	Leu	His 500	Phe	Ala	Lys	Ser	Asp 505	Arg	Ile	Glu	Pro	Leu 510	Thr	Phe
Tyr	Leu	Asp 515	Pro	Gln	Trp	Gln	Leu 520	Ala	Leu	Asn	Pro	Ser 525	Glu	Arg	Lys
Tyr	Cys 530	Gly	Ser	Gly	Phe	His 535	Gly	Ser	Asp	Asn	Val 540	Phe	Ser	Asn	Met
Gln 545	Ala	Leu	Phe	Val	Gly 550	Tyr	Gly	Pro	Gly	Phe 555	Lys	His	Ġly	Ile	Glu 560
Ala	Asp	Thr	Phe	Glu 565	Asn	Ile	Glu	Val	Tyr 570	Asn	Leu	Met	Cys	Asp 575	Leu
Leu	Asn	Leu	Thr 580	Pro	Ala	Pro	Asn	Asn 585	Gly	Thr	His	Gly	Ser 590	Leu	Asn
His	Leu	Leu 595	Lys	Asn	Pro	Val	Tyr 600	Thr	Pro	Lys	His	Pro 605	Lys	Glu	Val

His	Pro 610	Leu	Val	Gln	Cys	Pro 615	Phe	Thr	Arg	Asn	Pro 620	Arg	Asp	Asn	Leu
Gly 625	Cys	Ser	Cys	Asn	Pro 630	Ser	Ile	Leu	Pro	Ile 635	Glu	Asp	Phe	Gln	Thr 640
Gln	Phe	Asn	Leu	Thr 645	Val	Ala	Glu	Glu	Lys 650	Ile	Ile	Lys	His	Glu 655	Thr
Leu	Pro	Tyr	Gly 660	Arg	Pro	Arg	Val	Leu 665	Gln	Lys	Glu	Asn	Thr 670	Ile	Cys
Leu	Leu	Ser 675	Gln	His	Gln	Phe	Met 680	Ser	Gly	Tyr	Ser	Gln 685	Asp	Ile	Leu
Met	Pro 690	Leu	Trp	Thr	Ser	Tyr 695	Thr	Val	Asp	Arg	Asn 700	Asp	Ser	Phe	Ser
Thr 705	Glu	Asp	Phe	Ser	Asn 710	Cys	Leu	Tyr	Gln	Asp 715	Phe	Arg	Ile	Pro	Leu 720
Ser	Pro	Val	His	Lys 725	Cys	Ser	Phe	Tyr	Lys 730	Asn	Asn	Thr	Lys	Val 735	Ser
Tyr	Gly	Phe	Leu 740	Ser	Pro	Pro	Gln	Leu 745	Asn	Lys	Asn	Ser	Ser 750	Gly	Ile
Tyr	Ser	Glu 755	Ala	Leu	Leu	Thr	Thr 760	Asn	Ile	Val	Pro	Met 765	Tyr	Gln	Ser
Phe	Gln 770	Val	Ile	Trp	Arg	Tyr 775	Phe	His	Asp	Thr	Leu 780	Leu	Arg	Lys	Tyr
Ála 785	Glu	Glu	Arg	Asn	Gly 790	Val	Asn	Val	Val	Ser 795	Gly	Pro	Val	Phe	Asp 800
Phe	Asp	Tyr	Asp	Gly 805	Arg	Cys	Asp	Ser	Leu 810	Glu	Asn	Leu	Arg	Gln 815	Lys
Arg	Arg	Val	Ile 820	Arg	Asn	Gln	Glu	Ile 825	Leu	Ile	Pro	Thr	His 830	Phe	Phe
Ile	Val	Leu 835	Thr	Ser	Cys	Lys	Asp 840	Thr	Ser	Gln	Thr	Pro 845	Leu	His	Cys
Glu	Asn 850	Leu	Asp	Thr	Leu	Ala 855	Phe	Ile	Leu	Pro	His 860	Arg	Thr	Asp	Asn
Ser 865	Glu	Ser	Cys	Val	His 870	Gly	Lys	His	Asp	Ser 875	Ser	Trp	Val	Glu	Glu 880
Leu	Leu	Met	Leu	His 885	Arg	Ala	Arg	Ile	Thr 890	Asp	Val	Glu	His	Ile 895	Thr
Gly	Leu	Ser	Phe 900	Tyr	Gln	Gln	Arg	Lys 905	Glu	Pro	Val	Ser	Asp 910	Ile	Leu
Lys	Leu	Lys 915	Thr	His	Leu	Pro	Thr 920	Phe	Ser	Gln	Glu	Asp 925			

```
<212> DNA
<213> Homo sapiens
<400> 49
ggttttcaaa tggaacattt tgatgcatca cttagtacct atttcaaggc attgctaggc 60
cctcgagata ctagagtaaa aggatggttt cttctggaca attatatacc cacatttatc 120
tgctctgtca tatatttact aattgtatgg ctgggaccaa aatacatgag gaataaacag 180
ccattetett geogggggat tttagtggtg tataacettg gaeteacact getgtetetg 240
tatatgttct gtgagttagt aacaggagta tgggaaggca aatacaactt cttctgtcag 300
ggcacacgca ccgcaggaga atcagatatq aaqattatcc gtqtcctctg qtqqtactac 360
ttctccaaac tcatagaatt tatggacact ttcttcttca tcctqcqcaa qaacaaccac 420
cagatcacgg teetgeacgt etaccaceat geetegatge tgaacatetg gtggtttgtg 480
atgaactggg tcccctgcgg ccactcttat tttggtgcca cacttaatag cttcatccac 540
gteeteatgt aetettaeta tggtttgteg teagteeett eeatgegtee ataeetetgg 600
tggaagaagt acatcactca ggggcagctg cttcagtttg tgctgacaat catccagacc 660
agctgcgggg tcatctggcc gtgcacattc cctcttggtt ggttgtattt ccagattgga 720
tacatgattt ccctgattgc tctcttcaca aacttctaca ttcagaccta caacaagaaa 780
ggggcctccc gaaggaaaga ccacctgaag gaccaccaga atgggtccat ggctgctqtq 840
aatggacaca ccaacagctt ttcacccctg gaaaacaatg tgaagccaag gaagctgcgg 900
aaggattgaa gtcaaagaat tgaaaccctc caaaccacgt catctgattg taagcacaat 960
atgagttgtg ccccaatgct cgttaacagc tgctgtaact agtctggcct acaatagtgt 1020
gattcatgta ggacttcttt catcaattca aaacccctag aaaacgtata cagattatat 1080
aagtagggat aagatttcta acatttctgg gctctctgac ccctgcgcta gactgtggaa 1140
agggagtatt attatagtat acaacactgc tgttgcctta ttagttataa catgataggt 1200
gctgaattgt gattcacaat ttaaaaacac tgtaatccaa acttttttt ttaactgtag 1260
atcatgcatg tgattgtaaa tgtaaatttg tacaatgttg ttatggtaga gaaacacaca 1320
tgccttaaaa tttaaaaagc agggcccaaa gcttattagt ttaaattagg gtatgtttca 1380
agtttgtatt aatttgtaat agctctgttt agaaaaaatc aaagaccatg atttatgaaa 1440
ctaatgtgac ataatttcca gtgacttgtt gatgtgaaat cagacacggc accttcagtt 1500
ttgtactatt ggctttgaat caagcaggct caaatctagt ggaacagtca gtttaacttt 1560
ttaacagatc ttatttttt attttgagtg ccactattaa tgtaaaaagg ggggggctct 1620
acagcagtcg tgatgaaact taaatatata ttctttgtcc tcgagatttt aggaagggtg 1680
tagggtgagt aggccatttt taatttctga agtgctaagt gtttttatac agcaaacaaa 1740
aagtcaattt tgctttccac cagtgcgaga gaggatgtat acttttcaag agagatgatt 1800
gcctatttac cgtttgacag agtcccgtag atgagcaatg gggaactggt tgccagggtc 1860
taaatttgga ttgatttatg cactgttatc tgttttgaca cagatttcct tgtaaaatgt 1920
gcctagttta ccaaaattaa caaagggggg gaaaggacct tagaactttt taaggtaaaa 1980
tcaaatatag ctacagcata agagaatcga gaaatttgat agaggtaact tgtttaatgt 2040
aaatctaata gtacttgtaa tttetttetg ettagaatet aaagatgtgt ttagaacete 2100
ttgtttaaaa ataatagact gcttatcata aaatcacatc tcacacattt gaggcagtgg 2160
tcaaacaggt aaagcctatg atgtgtgtca ttttaaagtg tcggaattta gcctctgaat 2220
acetteteca ttgggggaaa gatattettg gaaceaetea tgacatatet tagaaggtea 2280
ttgacaatgt ataaactaat tgttggtttg atatttatgt aaatatcagt ttaccatgct 2340
ttaattttgc acattcgtac tatagggagc ctattggttc tctattagtc ttgtgggttt 2400
tetgtttgaa aaggagteat ggeatetgtt tacatttace ttateaaace tagaatgtgt 2460
atatttataa atgtatgtct tcattgctag gtactaattt gcagatgtct ttacatattt 2520
caatacagaa actataacat tcaatagtgt gctgtcaaag tgtgcttagc tcacctggat 2580
atacctacat tgttaaatgt ctaaacagta atcattaaaa catttttgat taaaaaaaaa 2640
aaaaaaaa
                                                                 2709
<210> 50
<211> 299
<212> PRT
```

<210> 49 <211> 2709

<213> Homo sapiens

<400> 50

Met Glu His Phe Asp Ala Ser Leu Ser Thr Tyr Phe Lys Ala Leu Leu 1 5 10 15

Gly Pro Arg Asp Thr Arg Val Lys Gly Trp Phe Leu Leu Asp Asn Tyr 20 25 30

Ile Pro Thr Phe Ile Cys Ser Val Ile Tyr Leu Leu Ile Val Trp Leu 35 40 45

Gly Pro Lys Tyr Met Arg Asn Lys Gln Pro Phe Ser Cys Arg Gly Ile
50 55 60

Leu Val Val Tyr Asn Leu Gly Leu Thr Leu Leu Ser Leu Tyr Met Phe 65 ` 70 75 80

Cys Glu Leu Val Thr Gly Val Trp Glu Gly Lys Tyr Asn Phe Phe Cys 85 90 95

Gln Gly Thr Arg Thr Ala Gly Glu Ser Asp Met Lys Ile Ile Arg Val 100 105 110

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe 115 120 125

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Val Leu His Val 130 135 140

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp 145 150 155 160

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Thr Leu Asn Ser Phe Ile 165 170 175

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ser Val Pro Ser Met 180 185 190

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Gly Gln Leu Leu 195 200 205

Gln Phe Val Leu Thr Ile Ile Gln Thr Ser Cys Gly Val Ile Trp Pro 210 215 220

Cys Thr Phe Pro Leu Gly Trp Leu Tyr Phe Gln Ile Gly Tyr Met Ile 225 230 235 240

Ser Leu Ile Ala Leu Phe Thr Asn Phe Tyr Ile Gln Thr Tyr Asn Lys 245 250 255

Lys Gly Ala Ser Arg Arg Lys Asp His Leu Lys Asp His Gln Asn Gly 260 265 270

Ser Met Ala Ala Val Asn Gly His Thr Asn Ser Phe Ser Pro Leu Glu 275 280 285

Asn Asn Val Lys Pro Arg Lys Leu Arg Lys Asp 290 295

```
<211> 1019
<212> DNA
<213> Homo sapiens
<400> 51
ttttttttta aacaacaaa tqcqqqttta tttctcaqat qatqttcatc cqtqaatqqt 60
ccagggaagg acctttcacc ttgactatat ggcattatqt catcacaagc tctgaggctt 120
ctcctttcca tcctgcgtgg acagctaaga cctcagtttt caataqcatc tagaqcagtg 180
qqactcaqct ggggtqattt cqcccccat ctccggggga atgtctgaag acaattttgg 240
ttacctcaat gagggagtgg aggaggatac agtgctacta ccaactagtg gataaaggcc 300
agggatgctg ctcaacctcc taccatgtac aggacgtctc cccattacaa ctacccaatc 360
cgaagtgtca actgtgtcag gactaagaaa ccctggtttt gagtagaaaa gggcctggaa 420
agaggggagc caacaaatct gtctgcttcc tcacattagt cattggcaaa taagcattct 480
gtetetttgg etgetgeete ageacagaga geeagaacte tategggeae eaggataaca 540
teteteagtg aacagagttg acaaggeeta tgggaaatge etgatgggat tatetteage 600
ttgttgaget tetaagttte ttteeettea ttetaecetg caagecaagt tetgtaagag 660
aaatgootga gttotagoto aggttttott actotgaatt tagatotoca gaccottoot 720
ggccacaatt caaattaagg caacaaacat ataccttcca tgaagcacac acagactttt 780
gaaagcaagg acaatgactg cttgaattga ggccttgagg aatgaagctt tgaaqqaaaa 840
gaatactttg tttccagccc ccttcccaca ctcttcatgt gttaaccact gccttcctgg 900
accttggagc cacggtgact gtattacatg ttgttataga aaactgattt tagagttctg 960
atcgttcaag agaatgatta aatatacatt tcctacamaa aaaaaaaaaa aagtcgacg 1019
<210> 52
<211> 1332
<212> DNA
<213> Homo sapiens
<400> 52
agagatgggg gtctcactat gttgcccagg ctggtctcaa actcctgggc tcaagcgatc 60
ctttggcctc ggcctcccaa agtgcatgag ccaccatgcc tggcctgttt agttttgttt 120
caagttgaaa tacctttctt gtgttttcta attagaaaag taatatctac tcattgtaaa 180
aactcaaaca gtgcagaaat gtagaaagta gaaagtgtaa gtccctggtt gtcccttctg 240
cctgagcaca accactgctc acagtttgat gtatatcctt ccagagactc tcaaatttaa 300
gcaaataatt tttattacca tgtcttttta tttgaagacg tacatttgcc tccaaagttc 360
aacacaagtt caactgacca tatcetteca tgacetgaat agatgetate etttateaeg 420
atgttcaatt gcctttgaaa gagagtagtc caggtatatt cctgatcaaa atttggcatt 480
tttgatgata ctactctaca cagatcagac tcatgtgcag aatcgtgcct ggagagagag 540
gtttggttaa gacagagatt tctggaaaca ttcaaattgc aaatggaaac ttgaaaccca 600
caatctaatg aggaatgtac tggaaaaata atctgaagag ttgacaaatt gtgtactaga 660
tigaacacat ggaatgcaat gccaatgaga ctttctgcac taaaacttat cctcatatgt 720
acaacaatga tgtgtgtatt atataacagt gatgtgtaca tttctgacac cccatacata 780
atatacacag tttgtataaa tgcatacatt taaaaatata tatgtacaat acagctaaca 840
taaaactgta gtacgcctga aggatattac tagtgcctaa tattgagtat gagtcactgc 900
gtgttcgcat caacttggaa gtgcagtaat tgttataaaa ttaatcagtg cagccaacat 960
tatttatgaa tcacatcttt gaaactgtgc agtagcatat acatatatat ttttaaataa 1020
catttttcac agttttccag agttactgtt gaaatctgca tcaccaaaaa aaaaaaaag 1080
caagattttt ttaacaatgt agacactctt cagacccagt aatctgcgtg tgatttccta 1140
tttgtagatt cccaagagac tttagcagtc accagcctta atgcatgtac aggatattat 1200
tgtgacttaa tttatctgca gtttttaatc catqtqaaat tqqqaatttt taaccqaact 1260
tggattaacc atgcctgcct ttctaaggtt gcaaatgtta cattaaatga tttatgttgt 1320
aaaaaaaaa aa
<210> 53
<211> 5
<212> PRT
```

<213> Artificial Sequence

```
<220>
<221> UNSURE
<222> (3)
<223> "Xaa" at position 3 can be any amino acid
<220>
<223> Description of Artificial Sequence: Ctyokine
      receptor exctracellular motif found in many
<400> 53
Trp Ser Xaa Trp Ser
<210> 54
<211> 2744
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (138)..(2387)
<400> 54
ctcgtgccga attcggcacg agaccgcgtg ttcgcgcctg gtagagattt ctcgaagaca 60
ccagtgggcc cgtgtggaac caaacctgcg cgcgtggccg ggccgtggga caacgaggcc 120
geggagaega aggegea atg geg agg aag tta tet gta ate ttg ate etg
                                                                   170
                   Met Ala Arg Lys Leu Ser Val Ile Leu Ile Leu
                     1
acc ttt gcc ctc tct gtc aca aat ccc ctt cat gaa cta aaa gca gct
                                                                   218
Thr Phe Ala Leu Ser Val Thr Asn Pro Leu His Glu Leu Lys Ala Ala
             15
                                  20
gct ttc ccc cag acc act gag aaa att agt ccg aat tgg gaa tct ggc
                                                                   266
Ala Phe Pro Gln Thr Thr Glu Lys Ile Ser Pro Asn Trp Glu Ser Gly
         30
                                                  40
att aat gtt gac ttg gca att tcc aca cgg caa tat cat cta caa cag
Ile Asn Val Asp Leu Ala Ile Ser Thr Arg Gln Tyr His Leu Gln Gln
     45
                         50
ctt ttc tac cgc tat gga gaa aat aat tct ttg tca gtt gaa ggg ttc
Leu Phe Tyr Arg Tyr Gly Glu Asn Asn Ser Leu Ser Val Glu Gly Phe
 60
                     65
                                          70
aga aaa tta ctt caa aat ata ggc ata gat aag att aaa aga atc cat
Arg Lys Leu Leu Gln Asn Ile Gly Ile Asp Lys Ile Lys Arg Ile His
                 80
ata cac cat gac cac gac cat cac tca gac cac gag cat cac tca gac
Ile His His Asp His Asp His His Ser Asp His Glu His His Ser Asp
             95
                                 100
cat gag cgt cac tca gac cat gag cat cac tca gac cac gag cat cac
His Glu Arg His Ser Asp His Glu His His Ser Asp His Glu His His
        110
```

tct Ser	gac Asp 125	cat His	aat Asn	cat His	gct Ala	gct Ala 130	tct Ser	ggt Gly	aaa Lys	aat Asn	aag Lys 135	cga Arg	aaa Lys	gct Ala	ctt Leu	554
tgc Cys 140	cċa Pro	gac Asp	cat His	gac Asp	tca Ser 145	gat Asp	agt Ser	tca Ser	ggt Gly	aaa Lys 150	gat Asp	cct Pro	aga Arg	aac Asn	agc Ser 155	602
cag Gln	ggg Gly	aaa Lys	gga Gly	gct Ala 160	cac His	cga Arg	cca Pro	gaa Glu	cat His 165	gcc Ala	agt Ser	ggt Gly	aga Arg	agg Arg 170	aat Asn	650
							agt Ser									698
							ttt Phe 195									746
							gat Asp									794
gtc Val 220	aca Thr	tca Ser	aag Lys	agc Ser	cgg Arg 225	gtg Val	agc Ser	cgg Arg	ctg Leu	gct Ala 230	ggt Gly	agg Arg	aaa Lys	aca Thr	aat Asn 235	842
gaa Glu	tct Ser	gtg Val	agt Ser	gag Glu 240	ccc Pro	cga Arg	aaa Lys	ggc Gly	ttt Phe 245	atg Met	tat Tyr	tcc Ser	aga Arg	aac Asn 250	aca Thr	890
aat Asn	gaa Glu	aat Asn	cct Pro 255	cag Gln	gag Glu	tgt Cys	ttc Phe	aat Asn 260	gca Ala	tca Ser	aag Lys	cta Leu	ctg Leu 265	aca Thr	tct Ser	938
cat His	ggc Gly	atg Met 270	ggc Gly	atc Ile	cag Gln	gtt Val	ccg Pro 275	ctg Leu	aat Asn	gca Ala	aca Thr	gag Glu 280	ttc Phe	aac Asn	tat Tyr	986
ctc Leu	tgt Cys 285	cca Pro	gcc Ala	atc Ile	atc Ile	aac Asn 290	caa Gln	att Ile	gat Asp	gct Ala	aga Arg 295	tct Ser	tgt Cys	ctg Leu	att Ile	1034
cat His 300	aca Thr	agt Ser	gaa Glu	aag Lys	aag Lys 305	gct Ala	gaa Glu	atc Ile	cct Pro	cca Pro 310	aag Lys	acc Thr	tat Tyr	tca Ser	tta Leu 315	1082
caa Gln	ata Ile	gcc Ala	tgg Trp	gtt Val 320	ggt Gly	ggt Gly	ttt Phe	ata Ile	gcc Ala 325	att Ile	tcc Ser	atc Ile	atc Ilė	agt Ser 330	ttc Phe	1130
ctg Leu	tct Ser	ctg Leu	ctg Leu 335	gly ggg	gtt Val	atc Ile	tta Leu	gtg Val 340	cct Pro	ctc Leu	atg Met	aat Asn	cgg Arg 345	gtg Val	ttt Phe	1178
ttc Phe	aaa Lys	ttt Phe 350	ctc Leu	ctg Leu	agt Ser	ttc Phe	ctt Leu 355	gtg Val	gca Ala	ctg Leu	gcc Ala	gtt Val 360	ggg Gly	act Thr	ttg Leu	1226

							ctt Leu									1274
cac His 380	cat His	agt Ser	cat His	agc Ser	cat His 385	gaa Glu	gaa Glu	cca Pro	gca Ala	atg Met 390	gaa Glu	atg Met	aaa Lys	aga Arg	gga Gly 395	1322
cca Pro	ctt Leu	ttc Phe	agt Ser	cat His 400	ctg Leu	tct Ser	tct Ser	caa Gln	aac Asn 405	ata Ile	gaa Glu	gaa Glu	agt Ser	gcc Ala 410	tat Tyr	1370
ttt Phe	gat Asp	tcc Ser	acg Thr 415	tgg Trp	aag Lys	ggt Gly	cta Leu	aca Thr 420	gct Ala	cta Leu	gga Gly	ggc Gly	ctg Leu 425	tat Tyr	ttc Phe	1418
atg Met	ttt Phe	ctt Leu 430	gtt Val	gaa Glu	cat His	gtc Val	ctc Leu 435	aca Thr	ttg Leu	atc Ile	aaa Lys	caa Gln 440	ttt Phe	aaa Lys	gat Asp	1466
aag Lys	aag Lys 445	aaa Lys	aag Lys	aat Asn	cag Gln	aag Lys 450	aaa Lys	cct Pro	gaa Glu	aat Asn	gat Asp 455	gat Asp	gat Asp	gtg Val	gag Glu	1514
att Ile 460	aag Lys	aag Lys	cag Gln	ttg Leu	tcc Ser 465	aag Lys	tat Tyr	gaa Glu	tct Ser	caa Gln 470	ctt Leu	tca Ser	aca Thr	aat Asn	gag Glu 475	1562
gag Glu	aaa Lys	gta Val	gat Asp	aca Thr 480	gat Asp	gat Asp	cga Arg	act Thr	gaa Glu 485	ggc Gly	tat Tyr	tta Leu	cga Arg	gca Ala 490	gac Asp	1610
tca Ser	caa Gln	gag Glu	ccc Pro 495	tcc Ser	cac His	ttt Phe	gat Asp	tct Ser 500	cag Gln	cag Gln	cct Pro	gca Ala	gtc Val 505	ttg Leu	gaa Glu	1658
gaa Glu	gaa Glu	gag Glu 510	gtc Val	atg Met	ata Ile	gct Ala	cat His 515	gct Ala	cat His	cca Pro	cag Gln	gaa Glu 520	gtc Val	tac Tyr	aat Asn	1706
gaa Glu	tat Tyr 525	gta Val	ccc Pro	aga Arg	ggg Gly	tgc Cys 530	aag Lys	aat Asn	aaa Lys	tgc Cys	cat His 535	tca Ser	cat His	ttc Phe	cac His	1754
gat Asp 540	aca Thr	ctc Leu	ggc Gly	cag Gln	tca Ser 545	gac Asp	gat Asp	ctc Leu	att Ile	cac His 550	cac His	cat His	cat His	gac Asp	tac Tyr 555	1802
cat His	cat His	att Ile	ctc Leu	cat His 560	cat His	cac His	cac His	cac His	caa Gln 565	aac Asn	cac His	cat His	cct Pro	cac His 570	agt Ser	1850
cac His	agc Ser	cag Gln	cgc Arg 575	tac Tyr	tct Ser	cgg Arg	gag Glu	gag Glu 580	ctg Leu	aaa Lys	gat Asp	gcc Ala	ggc Gly 585	gtc Val	gcc Ala	1898
act Thr	ttg Leu	gcc Ala 590	tgg Trp	atg Met	gtg Val	ata Ile	atg Met 595	ggt Gly	gat Asp	ggc Gly	ctg Leu	cac His 600	aat Asn	ttc Phe	agc Ser	1946

														agt Ser		1994
														gaa Glu		2042
														cag Gln 650		2090
														atg Met		2138
														tgg Trp		2186
														gat Asp		2234
														agc Ser		2282
														ttt Phe 730		2330
														cgt Arg		2378
aat Asn		tag	ttaa	aggtt	ta a	aatgo	ctaga	ag ta	agctt	caaaa	a agt	tgto	cata			2427
gttt	cagt	ag g	gtcat	agg	ga ga	atgaç	gtttg	g tat	gct	gtac	tato	gcago	gt 1	ttaaa	agttag	2487
tggg	jtttt	gt g	gattt	ttgt	a tt	gaat	atto	g cto	gtctq	gtta	caaa	gtca	agt 1	taaaq	ggtacg	2547
tttt	aata	att t	aagt	tatt	c ta	atctt	ggag	g ata	aaat	ctg	tato	gtgca	at 1	tcaco	ggtat	2607
tacc	agtt	ta t	tato	gtaaa	ac aa	agaga	atttç	g gca	atgad	catg	ttct	gtat	gt t	ttcaç	ggaaa	2667
aato	gtctt	ta a	atgct	tttt	c aa	agaad	ctaac	c aca	igtta	attc	ctat	acto	gga t	ttta	aggtct	2727
ctga	agaa	act g	gctg	gtg												2744

<210> 55 <211> 000 <212> 000 <213> 000

<400> 55

```
<210> 56
<211> 293
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (190)
<223> "n" at position 190 can be any base
<400> 56
ttttttttac tgtgaaattc taaaatcata tttattcacc aattcacaga aagtgtcata 60
acgaccacca acatgaatca gtttgtaggc atttacaagc cacagctgaa aataaaaatc 120
tgtctgtgtt gaataggcat ttaacaaatt acttgaaaac tgcaagaatc ataattatta 180
taaatttaan gtttgtgatt caaacatggg taagatcaca gtcatgggga gaagcccaac 240
agattcctgt gatgatcctt attttcttcc tatatcttta tatacatagg agg
<210> 57
<211> 2053
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (85)..(1347)
<400> 57
ceggetegeg cecteeggge ceagecteec gageettegg agegggegee qteceagece 60
ageteegggg aaaegegage egeg atg eet ggg ggg tge tee egg gge eee
                                                                111
                          Met Pro Gly Gly Cys Ser Arg Gly Pro
gcc gcc ggg gac ggg cgt ctg cgg ctg gcg cga cta qcq ctq qta ctc
                                                                159
Ala Ala Gly Asp Gly Arg Leu Arg Leu Ala Arg Leu Ala Leu Val Leu
 10
                    15
ctg ggc tgg gtc tcc tcg tct tct ccc acc tcc tcg gca tcc tcc ttc
                                                                207
Leu Gly Trp Val Ser Ser Ser Pro Thr Ser Ser Ala Ser Ser Phe
                30
                                    35
255
Ser Ser Ser Ala Pro Phe Leu Ala Ser Ala Val Ser Ala Gln Pro Pro
ctg ccg gac cag tgc ccc gcg ctg tgc gag tgc tcc gag gca gcg cgc
                                                                303
Leu Pro Asp Gln Cys Pro Ala Leu Cys Glu Cys Ser Glu Ala Ala Arg
        60
aca gtc aag tgc gtt aac cgc aat ctg acc gag gtg ccc acg gac ctg
                                                                351
Thr Val Lys Cys Val Asn Arg Asn Leu Thr Glu Val Pro Thr Asp Leu
     75
                        80
ecc gec tac gtg ege aac etc tte ett acc gge aac eag etg gee gtg
                                                                399
Pro Ala Tyr Val Arg Asn Leu Phe Leu Thr Gly Asn Gln Leu Ala Val
                                     Page 49
```

90					95					100					105	
					ttc Phe											447
					ggc Gly											495
					agc Ser											543
					ccc Pro											591
tcg Ser 170	gcc Ala	ccc Pro	agt Ser	ccc Pro	ctt Leu 175	gtg Val	gaa Glu	ctg Leu	atc Ile	ctg Leu 180	aac Asn	cac His	atc Ile	gtg Val	ccc Pro 185	639
					cag Gln											687
					cgt Arg											735
gcc Ala	agc Ser	aac Asn 220	cac His	ttc Phe	ctt Leu	tac Tyr	ctg Leu 225	ccg Pro	cgg Arg	gat Asp	gtg Val	ctg Leu 230	gcc Ala	caa Gln	ctg Leu	783
					ctg Leu											831
acc Thr 250	tac Tyr	gtg Val	tcc Ser	ttc Phe	cgc Arg 255	aac Asn	ctg Leu	aca Thr	cat His	cta Leu 260	gaa Glu	agc Ser	ctc Leu	cac His	ctg Leu 265	879
gag Glu	gac Asp	aat Asn	gcc Ala	ctc Leu 270	aag Lys	gtc Val	ctt Leu	cac His	aat Asn 275	ggc Gly	acc Thr	ctg Leu	gct Ala	gag Glu 280	ttg Leu	927
caa Gln	ggt Gly	cta Leu	ccc Pro 285	cac His	att Ile	agg Arg	gtt Val	ttc Phe 290	ctg Leu	gac Asp	aac Asn	aat Asn	ccc Pro 295	tgg Trp	gtc Val	975 .
tgc Cys	gac Asp	tgc Cys 300	cac His	atg Met	gca Ala	gac Asp	atg Met 305	gtg Val	acc Thr	tgg Trp	ctc Leu	aag Lys 310	gaa Glu	aca Thr	gag Glu	1023.
gta Val	gtg Val 315	cag Gln	ggc Gly	aaa Lys	gac Asp	cgg Arg 320	ctc Leu	acc Thr	tgt Cys	gca Ala	tat Tyr 325	ccg Pro	gaa Glu	aaa Lys	atg Met	1071
agg Arg	aat Asn	cgg Arg	gtc Val	ctc Leu	ttg Leu	gaa Glu	ctc Leu	aac Asn	Ser	gct Ala age	Asp	ctg Leu	gac Asp	tgt Cys	gac Asp	1119

330					335					340					345	
														ggt Gly 360		1167
														ttg Leu		1215
														tgc Cys		1263
														gac Asp		1311
aga Arg 410	tta Leu	aca Thr	aac Asn	ctc Leu	agt Ser 415	tct Ser	aac Asn	tcg Ser	gat Asp	gtc Val 420	tga	gaaa	atat	tag		1357
agga	acaga	acc a	aagga	acaad	ct ct	gcat	gaga	a tgt	agad	ctta	agct	ttat	cc	ctact	aggct	1417
tgct	ccac	ctt t	cato	cctco	ca ct	atag	gatac	c aac	cggad	cttt	gact	caaaa	agc .	agtga	aagggg	1477
attt	gctt	cc.t	tgtt	atgt	a aa	agttt	ctc	g gto	gtgtt	ctg	ttaa	atgta	aag	acgat	gaaca	1537
gtto	gtgta	ata q	gtgtt	ttac	cc ct	ctto	ctttt	tct	tgga	aact	cct	caaca	acg	tatg	gaggga	1597
tttt	tcaç	ggt t	tcaç	gcato	ja ad	catgo	gctt	ctt	gct	gtct	gtct	ctct	ct	cagta	acagtt	1657
caaç	gtgt	ag o	caagt	gtad	cc ca	caca	agata	a gca	attca	aaca	aaaq	gctgo	cct	caact	ttttc	1717
gaga	aaaa	ıta d	ettta	attca	at aa	atat	cagt	ttt	atto	ctca	tgta	accta	aag '	ttgt	ggagaa	1777
aata	atto	jca t	ccta	taaa	ac to	gaata	gcaga	a cgt	tago	cagg	ctct	tcaa	aaa ·	taact	ccatg	1837
gtgo	acaç	gga g	gcaco	ctgca	at co	caaga	agcat	gct	taca	attt	tact	gtto	ctg (catat	tacaa	1897
aaaa	taac	ett <u>c</u>	gcaac	cttca	it aa	ctto	ctttc	g aca	aagt	aaa	ttac	ctttt	tt (gatto	gcagtt	1957
tata	tgaa	iaa t	gtac	ctgat	t tt	tttt	taat	: aaa	actgo	catc	gaga	atcca	aac (cgact	gaatt	2017
gtta	ıaaaa	ıaa a	aaaa	aaat	a aa	gatt	ctta	a aaa	igaa							2053
)> 58 .> 00															

<210> 58 <211> 000 <212> 000 <213> 000

<400> 58 000

<210> 59 <211> 232 <212> DNA

<213> Homo sapiens <400> 59 tttttaatta tactctttta ttgaaagaaa aaacaataca atggacttta aaaagctaca 60 tttgttatgg ttcataagga cagaggttta cacaggtttt atatatgtac acactgacaa 120 tactatatca caacatcaga ggcaccattt ttgccacaga attaggtaat gaataaaact 180 tctccaaatt aatctgttta aaaaatatct aaaatggtac agtatatttg ag <210> 60 <211> 281 <212> DNA <213> Homo sapiens <400> 60 taccaaaata tctgtattat ctataaaaat tgaactctaa tgagtcactg atacgggagg 60 cagcaatacc cgactgtgct gacatgcaga aggaagacag ctctgtccca ccaaccctat 120 agcagaacat ttgtattgag tggcacgtgg gctgagtcat ttgtaaggtc tcaaaaacct 180 ggacactttg gaacgtagca atcggatgaa cgatcttgga aacatctctc gggactcctg 240 ggctgtgtac ttgaaatagt tctggggatg ggccaggaca t <210> 61 <211> 3085 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (256)..(3012) <400> 61 gagcagccaa aaggcccgcg gagtcgcgct gggccgcccc ggcqcaqctg aaccgqqqqc 60 egegeetgee aggeegaegg gtetggeeca geetggegee aaggggtteg tgegetgtgg 120 agacgcggag ggtcgaggcg gcgcggcctg agtgaaaccc aatggaaaaa gcatgacatt 180 tagaagtaga agacttagct tcaaatccct actccttcac ttactaattt tgtgatttgg 240 aaatatccgc gcaag atg ttg acg ttg cag act tgg gta gtg caa gcc ttg Met Leu Thr Leu Gln Thr Trp Val Val Gln Ala Leu ttt att ttc ctc acc act gaa tct aca ggt gaa ctt cta gat cca tgt Phe Ile Phe Leu Thr Thr Glu Ser Thr Gly Glu Leu Leu Asp Pro Cys ggt tat atc agt cct gaa tct cca gtt gta caa ctt cat tct aat ttc 387 Gly Tyr Ile Ser Pro Glu Ser Pro Val Val Gln Leu His Ser Asn Phe act gca gtt tgt gtg cta aag gaa aaa tgt atg gat tat ttt cat gta 435 Thr Ala Val Cys Val Leu Lys Glu Lys Cys Met Asp Tyr Phe His Val 4.5 aat gct aat tac att gtc tgg aaa aca aac cat ttt act att cct aag Asn Ala Asn Tyr Ile Val Trp Lys Thr Asn His Phe Thr Ile Pro Lys 65 70

					ata Ile											531
gat Asp	ata Ile	gct Ala 95	tca Ser	tta Leu	aat Asn	att Ile	cag Gln 100	ctc Leu	act Thr	tgc Cys	aac Asn	att Ile 105	ctt Leu	aca Thr	ttc Phe	579
					aat Asn											627
cct Pro 125	cca Pro	gaa Glu	aaa Lys	cct Pro	aaa Lys 130	aat Asn	ttg Leu	agt Ser	tgc Cys	att Ile 135	gtg Val	aac Asn	gag Glu	ggg Gly	aag Lys 140	675
aaa Lys	atg Met	agg Arg	tgt Cys	gag Glu 145	tgg Trp	gat Asp	ggt Gly	gga Gly	agg Arg 150	gaa Glu	aca Thr	cac His	ttg Leu	gag Glu 155	aca Thr	723
aac Asn	ttc Phe	act Thr	tta Leu 160	aaa Lys	tct Ser	gaa Glu	tgg Trp	gca Ala 165	aca Thr	cac His	aag Lys	ttt Phe	gct Ala 170	gat Asp	tgc Cys	771
aaa Lys	gca Ala	aaa Lys 175	cgt Arg	gac Asp	acc Thr	ccc Pro	acc Thr 180	tca Ser	tgc Cys	act Thr	gtt Val	gat Asp 185	tat Tyr	tct Ser	act Thr	819
gtg Val	tat Tyr 190	ttt Phe	gtc Val	aac Asn	att Ile	gaa Glu 195	gtc Val	tgg Trp	gta Val	gaa Glu	gca Ala 200	gag Glu	aat Asn	gcc Ala	ctt Leu	867
ggg Gly 205	aag Lys	gtt Val	aca Thr	tca Ser	gat Asp 210	cat His	atc Ile	aat Asn	ttt Phe	gat Asp 215	cct Pro	gta Val	tat Tyr	aaa Lys	gtg Val 220	915
aag Lys	ccc Pro	aat Asn	ccg Pro	cca Pro 225	cat His	aat Asn	tta Leu	tca Ser	gtg Val 230	atc Ile	aac Asn	tca Ser	gag Glu	gaa Glu 235	ctg Leu	963
tct Ser	agt Ser	atc Ile	tta Leu 240	aaa Lys	ttg Leu	aca Thr	tgg Trp	acc Thr 245	aac Asn	cca Pro	agt Ser	att Ile	aag Lys 250	agt Ser	gtt Val	1011
ata Ile	ata Ile	cta Leu 255	aaa Lys	tat Tyr	aac Asn	Ile	caa Gln 260	tat Tyr	agg Arg	acc Thr	aaa Lys	gat Asp 265	gcc Ala	tca Ser	act Thr	1059
tgg Trp	agc Ser 270	cag Gln	att Ile	cct Pro	cct Pro	gaa Glu 275	gac Asp	aca Thr	gca Ala	tcc Ser	acc Thr 280	cga Arg	tct Ser	tca Ser	ttc Phe	1107
act Thr 285	gtc Val	caa Gln	gac Asp	ctt Leu	aaa Lys 290	cct Pro	ttt Phe	aca Thr	gaa Glu	tat Tyr 295	gtg Val	ttt Phe	agg Arg	att Ile	cgc Arg 300	1155
tgt Cys	atg Met	aag Lys	gaa Glu	gat Asp 305	ggt Gly	aag Lys	gga Gly	tac Tyr	tgg Trp 310	agt Ser	gac Asp	tgg Trp	agt Ser	gaa Glu 315	gaa Glu	1203

					tat Tyr											1251
					cca Pro											1299
					ttg Leu											1347
					ctc Leu 370											1395
					aaa Lys											1443
					gta Val											1491
					gcc Ala											1539
					ccc Pro											1587
act Thr 445	cca Pro	agg Arg	gaa Glu	tct Ser	gta Val 450	aag Lys	aaa Lys	tat Tyr	ata Ile	ctt Leu 455	gag Glu	tgg Trp	tgt Cys	gtg Val	tta Leu 460	1635
tca Ser	gat Asp	aaa Lys	gca Ala	ccc Pro 465	tgt Cys	atc Ile	aca Thr	gac Asp	tgg Trp 470	caa Gln	caa Gln	gaa Glu	gat Asp	ggt Gly 475	acc Thr	1683
gtg Val	cat His	cgc Arg	acc Thr 480	tat Tyr	tta Leu	aga Arg	ggg Gly	aac Asn 485	tta Leu	gca Ala	gag Glu	agc Ser	aaa Lys 490	tgc Cys	tat Tyr	1731
ttg Leu	ata Ile	aca Thr 495	gtt Val	act Thr	cca Pro	gta Val	tat Tyr 500	gct Ala	gat Asp	gga Gly	cca Pro	gga Gly 505	agc Ser	cct Pro	gaa Glu	1779
					ctt Leu											1827
gtt Val 525	cgg Arg	aca Thr	aaa Lys	aaa Lys	gta Val 530	ggg Gly	aaa Lys	aac Asn	gaa Glu	gct Ala 535	gtc Val	tta Leu	gag Glu	tgg Trp	gac Asp 540	1875
					gtt Val											1923

								gaa Glu 565								1971
								tct Ser								2019
atg Met	gta Val 590	cga Arg	atg Met	gca Ala	gca Ala	tac Tyr 595	aca Thr	gat Asp	gaa Glu	ggt Gly	600 Gly 999	aag Lys	gat Asp	ggt Gly	cca Pro	2067
gaa Glu 605	ttc Phe	act Thr	ttt Phe	act Thr	acc Thr 610	cca Pro	aag Lys	ttt Phe	gct Ala	caa Gln 615	gga Gly	gaa Glu	att Ile	gaa Glú	gcc Ala 620	2115
ata Ile	gtc Val	gtg Val	cct Pro	gtt Val 625	tgc Cys	tta Leu	gca Ala	ttc Phe	cta Leu 630	ttg Leu	aca Thr	act Thr	ctt Leu	ctg Leu 635	gga Gly	2163
gtg Val	ctg Leu	ttc Phe	tgc Cys 640	ttt Phe	aat Asn	aag Lys	cga Arg	gac Asp 645	cta Leu	att Ile	aaa Lys	aaa Lys	cac His 650	atc Ile	tgg Trp	2211
cct Pro	aat Asn	gtt Val 655	cca Pro	gat Asp	cct Pro	tca Ser	aag Lys 660	agt Ser	cat His	att Ile	gcc Ala	cag Gln 665	Trp	tca Ser	cct Pro	2259
cac His	act Thr 670	cct Pro	cca Pro	agg Arg	cac His	aat Asn 675	ttt Phe	aat Asn	tca Ser	aaa Lys	gat Asp 680	caa Gln	atg Met	tat Tyr	tca Ser	2307
gat Asp 685	ggc Gly	aat Asn	ttc Phe	act Thr	gat Asp 690	gta Val	agt Ser	gtt Val	gtg Val	gaa Glu 695	ata Ile	gaa Glu	gca Ala	aat Asn	gac Asp 700	2355
aaa Lys	aag Lys	cct Pro	ttt Phe	cca Pro 705	gaa Glu	gat Asp	ctg Leu	aaa Lys	tca Ser 710	ttg Leu	gac Asp	ctg Leu	ttc Phe	aaa Lys 715	aag Lys	2403
gaa Glu	aaa Lys	att Ile	aat Asn 720	act Thr	gaa Glu	gga Gly	cac His	agc Ser 725	agt Ser	ggt Gly	att Ile	ggg Gly	ggg Gly 730	tct Ser	tca Ser	2451
tgc Cys	atg Met	tca Ser 735	tct Ser	tct Ser	agg Arg	cca Pro	agc Ser 740	att Ile	tct Ser	agc Ser	agt Ser	gat Asp 745	gaa Glu	aat Asn	gaa Glu	2499
tct Ser	tca Ser 750	caa Gln	aac Asn	act Thr	tcg Ser	agc Ser 755	act Thr	gtc Val	cag Gln	tat Tyr	tct Ser 760	acc Thr	gtg Val	gta Val	cac His	2547
agt Ser 765	ggc Gly	tac Tyr	aga Arg	cac His	caa Gln 770	gtt Val	ccg Pro	tca Ser	gtc Val	caa Gln 775	gtc Val	ttc Phe	tca Ser	aga Arg	tcc Ser 780	2595
gag Glu	tct Ser	acc Thr	Gln	ccc Pro 785	ttg Leu	tta Leu	gat Asp	tca Ser	gag Glu 790	gag Glu	cgg Arg	cca Pro	gaa Glu	gat Asp 795	cta Leu	2643

						gat Asp										2691
						tgc Cys										2739
						aag Lys 835									gat Asp	2787
ttt Phe 845	gtt Val	aga Arg	ctt Leu	aaa Lys	cag Gln 850	cag Gln	att Ile	tca Ser	gat Asp	cat His 855	att Ile	tca Ser	caa Gln	tcc Ser	tgt Cys 860	2835
gga Gly	tct Ser	ggg Gly	caa Gln	atg Met 865	aaa Lys	atg Met	ttt Phe	cag Gln	gaa Glu 870	gtt Val	tct Ser	gca Ala	gca Ala	gat Asp 875	gct Ala	2883
						gga Gly										2931
atg Met	gag Glu	gct Ala 895	gcg Ala	act Thr	gat Asp	gaa Glu	ggc Gly 900	atg Met	cct Pro	aaa Lys	agt Ser	tac Tyr 905	tta Leu	cca Pro	cag Gln	2979
act Thr	gta Val 910	cgg Arg	caa Gln	ggc Gly	ggc Gly	tac Tyr 915	atg Met	cct Pro	cag Gln	tga	agga	actaç	gta ç	gttco	ctgcta	3032
caac	cttca	agc a	gtac	cctat	a aa	agtaa	agct	aaa	atga	attt	tato	ctgtc	jaa t	tc		3085

<210> 62 <211> 000 <212> 000 <213> 000

<400> 62 000