INTERNET SECURITY

TUTORATO

DAVIDE CARNEMOLLA

DIPARTIMENTO DI MATEMATICA E INFORMATICA UNIVERSITÀ DEGLI STUDI DI CATANIA

A.A. 2021/2022

PROPRIETÀ DI SICUREZZA

PROPRIETÀ DI 1° LIVELLO

Autenticazione

PROPRIETÀ DI 1° LIVELLO: CONFIDENZIALITÀ

Definizione

L'informazione non sia rilasciata ad entità non autorizzate a conoscerla

Garantita da

- **■** Crittografia
- **Steganografia**

PROPRIETÀ DI 1° LIVELLO: INTEGRITÀ

Definizione

L'informazione non sia modificata da entità non autorizzate

Garantita da

■ Firma elettronica

PROPRIETÀ DI 1° LIVELLO: AUTENTICAZIONE

Definizione

Le entità siano esattamente chi dichiarano di essere

Garantità da

- Conoscenza (password, PIN)
- Possesso (Smart card, Smart Token)
- Biometria (impronte, iride)

AUTENTICAZIONE BASATA SU CONOSCENZA

Come funziona

La conoscenza di un segreto (password, PIN) comprova l'identità dell'utente

Problemi

Sensibile ad attacchi di guessing, snooping, spoofing, sniffing

COME VIENE SALVATA UNA PASSWORD?

- Memorizzate **in chiaro** su un file di sistema (CTS, 1960)
- Uso di funzioni hash crittografiche
- GNU/Linux

PASSWORD: GNU/LINUX

cat /etc/shadow | grep root

root:\$1\$Etg2ExUZ\$F9NTP7omafhKIlqaBMqng1:15651:0:999999:7:::

Analisi dell'output

- \$1\$ indica l'utilizzo di una funzione hash MD5
- Etg2ExUZ è il sale
- **F9NTP7omafhKIlqaBMqng1** è il segreto
- 15651 è la data in cui è stata impostata la password
- o sono i giorni che devono trascorrere prima di poter modificare la password
- 99999 sono i giorni dopo cui bisogna modificare la password
- 7 sono i giorni dopo l'utente viene disabilitato

AUTENTICAZIONE BASATA SU POSSESSO

Come funziona

Il possesso di un dispositivo fisico (Smart Card, Smart Token, YubiKey) comprova l'identità dell'utente

Caratteristiche

- Interamente leggibile nel caso di carte magnetiche
- Estrazione dei segreti gestita da un'interfaccia funzionale nel caso di carte elettroniche

AUTENTICAZIONE BASATA SU BIOMETRIA

Come funziona

Il possesso di caratteristiche biometriche (impronte digitali, impronta della retina, viso etc.) comprova l'identità

Caratteristiche

- Meno accurato ma più affidabile
- Utilizzato in combinazione con autenticazione basata su conoscenza

PROPRIETÀ DI 2° LIVELLO

Non ripudio

Definizione

L'entità non possa negare la propria partecipazione ad una transazione con uno specifico ruolo

Garantita da

■ Protocolli di sicurezza appositi (ad esempio **PEC**)

DISPONIBILITÀ

Definizione

Il sistema sia operante e funzionante in ogni momento

Garantita da

- Autenticazione
- Accesso complicato impegnando il chiamante computazionalmente

CRITTOGRAFIA

CRITTOLOGIA

Crittologia

Il termine **Crittologia** deriva dal greco *kryptòs* (nascosto) e *logos* (discorso) ed è la scienza che si occupa delle scritture nascoste. Comprende la **Crittografia** e la **Crittoanalisi**.

CRITTOLOGIA: CRITTOGRAFIA

Crittografia

La **Crittografia** è la scienza che si occupa di costruire dei metodi per rendere un messaggio intelligibile.

CRITTOLOGIA: CRITTOANALISI

Crittoanalisi

La **Crittoanalisi** è la scienza che si occupa di costruire metodi per "rompere" gli schemi crittografici

CRITTOGRAFIA SIMMETRICA

Alice

 $m = \mathcal{D}(c,k)$

PERFETTA SICUREZZA

Definizione

Sia $\mathcal{SE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ uno schema di cifratura simmetrico. Diremo che \mathcal{SE} è perfettamente sicuro se

$$\forall M_1, M_2 \in \mathcal{M} \text{ e } \forall c \in \mathcal{C} \quad \text{ Pr}[\mathcal{E}_{\mathcal{K}}(M_1) = c] = \text{Pr}[\mathcal{E}_{\mathcal{K}}(M_2) = c]$$

ONE-TIME PAD (OTP)

Specifiche¹

- 1. $\mathcal{M} = \{0,1\}^m, \ m \in \mathbb{N} : m > 0$
- 2. $\mathcal{K} \xleftarrow{\$} \{0,1\}^m$
- 3. $\mathcal{E}_{\mathcal{K}}(M) = \mathcal{K} \oplus M$
- 4. $\mathcal{D}_{\mathcal{K}}(C) = C \oplus \mathcal{K}$

Condizione per la perfetta sicurezza

OTP è perfettamente sicuro sotto l'ipotesi che la chiave venga utilizzata per cifrare un singolo messaggio.

ONE-TIME PAD: IMPLEMENTAZIONE (1)

import random

```
def generate key(m):
    return bytes(
        random.randrange(0,256) for i in range(m)
def xor bytes(key, message):
    m = min(len(key), len(message))
    return bytes(
        [key[i] ^ message[i] for i in range(m)]
```

ONE-TIME PAD: IMPLEMENTAZIONE (2)

```
message = "OTP is perfect for a single message"
message = message.encode()
key = generate_key(len(message))
cipher = xor_bytes(key, message)
print(key)
print(cipher)
print(xor_bytes(key, cipher))
```

ONE-TIME PAD: ATTACCO

```
message2 = "I don't need another key"
message2 = message.encode()
cipher2 = xor_bytes(key, message2)
print(cipher2)
```

Attacco

- $\blacksquare c_1 \oplus c_2 = m_1 \oplus k \oplus m_2 \oplus k = m_1 \oplus m_2$
- Se m_1 è noto posso ottenere m_2 = $c_1 \oplus c_2 \oplus m_1$

FUNZIONI HASH

Funzione Hash

Una *funzione hash* è una funzione matematica con le seguenti proprietà:

- prende in input una stringa (di bit) di qualsiasi dimensione
- restituisce in output una stringa (di bit) di dimensione fissata
- è efficiente dal punto di vista computazionale

FUNZIONI HASH

Funzione Hash Crittografica

Una funzione hash crittografica è una funzione hash con le seguenti proprietà:

- **■** Collision Resistance
- **■** Hiding
- **■** Puzzle friendliness

MESSAGE AUTHENTICATION CODE (MAC)

Alice

 $VF_k(m,T')$

CRYPTOHACK PARTY

https://cryptohack.org

COME POSSIAMO EFFETTUARE LO

SCAMBIO DI UNA CHIAVE?

CRITTOGRAFIA ASIMMETRICA

Alice

$$m=\mathcal{D}(c,sk)$$

FIRME DIGITALI

"La firma digitale è l'inverso della cifratura"

Anonimo

FIRME DIGITALI

"La firma digitale è l'inverso della cifratura"

Anonimo

FIRME DIGITALE

Alice

 $VF(pk,m,\sigma)$

STEGANOGRAFIA

STEGANOGRAFIA

Steganografia

La steganografia è una tecnica che si prefigge di nascondere la comunicazione tra due interlocutori.

LEAST SIGNIFICANT BIT (LSB)

Immagine

LEAST SIGNIFICANT BIT (LSB)

CLASSIFICAZIONE SOFTWARE NOCIVI

SOFTWARE NOCIVO

Definizione

Software scritto con l'esplicito scopo di violare alcune proprietà di sicurezza di un sistema.

Caratteristiche

- **■** Carico
- **■** Propagazione

TRAPDOOR

Definizione

Punto d'accesso segreto per bypassare l'autenticazione in un sistema.

Nota

Tipicamente le trapdoor vengono inserite dagli sviluppatori per testare il software.

BOMBA LOGICA

Definizione

Porzione di codice di un software nocivo apparentemente innocua fino al verificarsi di particolari condizioni.

CAVALLO DI TROIA

Definizione

Software utile che in fase di esecuzione compie violazioni di sicurezza.

ZOMBIE

Definizione

Software che sfrutta una macchina remota già violata per lanciare nuovi attacchi.

Worm

Definizione

Software nocivo che infetta macchine remote, ciascuna delle quali a loro volta infetta altre macchine remote.

VIRUS

Definizione

Software nocivo che viola altri programmi non nocivi, sfruttandoli per propagarsi.

BREAK: HACK THE BOX

https://app.hackthebox.com

FIREWALL

FIREWALL

Definizione

Un firewall è un componente software o hardware di difesa perimetrale di una rete.

Funzionalità

- Protegge le risorse interne
- Monitora il traffico
- Filtra i dati

FIREWALL - ESEMPI

GNU/Linux

iptables shorewall FirewallD ufw

Windows

Windows Defender GlassWire Norton Comodo

Mac Os

Apple Firewall Total AV Avira Bitdefender

IPTABLES

Informazioni

Iptables è un firewall per i sistemi GNU/Linux implementato a livello kernel (Netfilter).

Catene

Nota

iptables è stato sostituito da nftables in Debian a partire dalla versione 11 (Buster).

IPTABLES: CATENE DI DEFAULT

OUTPUT

IPTABLES: TABELLE

filter
INPUT
OUTPUT
FORWARD

nat OUTPUT PREROUTING POSTROUTING

mangle

IPTABLES: COMANDI UTILI

Visualizzare le regole

■ iptables -t -L

Un po' di pulizia

```
■ iptables -F # elimina tutte le regole
```

■ iptables -X # elimina tutte le catene personalizzate

■ iptables -t nat -F # elimina tutte le regole di nat

₊₅

IPTABLES: STATI DELLE CONNESSIONI

Accettiamo le connessioni ESTABLISHED e RELATED

iptables -A INPUT -m state -state ESTABLISHED,RELATED -j

IPTABLES: SSH (1)

Accettiamo le connessioni SSH

iptables -A INPUT -p tcp -dport 22 -m state -state NEW -j ACCEPT

Analisi

- -A aggiunge la regola in coda
- INPUT la catena a cui la regola fa riferimento
- -p indica il protocollo
- -dport indica la porta di destinazione
- m state -state NEW indica di accettare le connessioni esterne in ingresso
- -j indica il target

IPTABLES: SSH (2)

Policy (default)

iptables -P INPUT DROP

Analisi

■ -P: Policy

■ INPUT: Chain

■ **DROP**: Target

IPTABLES: SSH (3)

Una regola più precisa (address source)

iptables -A INPUT -p tcp -s 192.168.1.2 -dport 22 -j ACCEPT

Una regola più precisa (interface)

iptables -A INPUT -p tcp -i etho -dport 22 -j ACCEPT

GET YOUR HANDS DIRTY!

Intrusion Detection System

INTRUSION DETECTION SYSTEM

Definizione

Un Intrusion Detection System (IDS) è un dispositivo software o hardware per identificare accessi non autorizzati alla rete locale o alle macchine host.

IDS: CLASSIFICAZIONE

HIDS

Hybrid IDS

IDS: TECNICHE DI RILEVAMENTO

Signature based

Statistical anomaly-based

Stateful protocol analysis

IDS: DA COSA È COMPOSTO?

Sensors/Agents

Management Server

Database Server

Console

IDS: ESEMPI

Suricata

SURICATA

Definizione

Suricata è un intrusion prevention/detection system sviluppato dalla Open Information Security Foundation sotto licenza open source.

SURICATA: CARATTERISTICHE

Multi-Threaded

Built in Hardware Acceleration

LuaJIT

File Extraction

Great Community

Multipurpose Engine

OAUTH 2.0

OAUTH 2.0

Oauth 2.0

OAuth 2.0 è un protocollo standard aperto per l'autorizzazione.

OAUTH 2.0: ROLES

Client

Resource Server Authorization Server

Resource Owner

OAUTH 2.0: PROTOCOL FLOW

OAUTH 2.0: CREATING AN APP

Redirect URIs

Secret

OAUTH 2.0: GRANT TYPE

Authorization Code

Password

Client Credential

Implicit

OAUTH 2.0: AUTHORIZATION CODE FLOW

OAUTH 2.0: AUTHORIZATION CODE FLOW EXAMPLE

Request to the authorization server's token endpoint

POST https://api.authorization-server.com/token grant_type=authorization_code& code=AUTH_CODE_HERE& redirect_uri=REDIRECT_URI& client_id=CLIENT_ID& client_secret=CLIENT_SECRET

Server's reply

{ "access_token": "RsT5OjbzRn43ozqMLgV3Ia", "expires_in": 3600 }

OAUTH 2.0: ACCESS TOKEN USAGE

curl Request

curl -X POST -H

"Authorization: Bearer ACCESS_TOKEN"

"https://api.app.com/v2/\$OBJECT"

IP SECURITY

IP SECURITY

Definizione

IP Security, è uno standard per reti a pacchetto che si prefigge di ottenere connessioni sicure su reti IP.

Proprietà

- Segretezza
- Autenticazione
- Integrità

IPSEC: SICUREZZA A LIVELLO DI RETE

PRO

- Le applicazioni "delegano" la sicurezza al livello sottostante
- Non vi è la necessità di insegnare agli utenti i meccanismi di sicurezza

CONTRO

- Comunicazione più pesante
- Necessità di supporto da parte del Sistema Operativo

IPSEC: PROTOCOLS

Authentication Header

Encapsulating Security Protocol

Internet Key Exchange

IPSEC: Modes (1)

Transport Mode

- Payload
- End-to-end

Tunnel Mode

- Entire IP Packet
- Multiple hosts

68

IPSEC: Modes (2)

IPSec: Transport Mode

AH

- Autentica payload
- Autentica porzioni dell'IP Header
- Autentica gli extension header di IPv6

ESP

- Cifra payload
- Cifra porzioni dell'IP Header
- Cifra gli extension header di IPv6

ESP (with auth)

- Cifra payload
- Cifra porzioni dell'IP Header
- Cifra gli extension header di IPv6
- Autentica il payload

70

IPSEC: TUNNEL MODE

AH

- Autentica l'intero pacchetto IP
- Autentica porzioni dell'IP Header
- Autentica gli extension header di IPv6

ESP

- Cifra l'intero pacchetto IP
- Cifra porzioni dell'IP Header
- Cifra gli extension header di IPv6

ESP (with auth)

- Cifra l'intero pacchetto IP
- Cifra porzioni dell'IP Header
- Cifra gli extension header di IPv6
- Autentica l'intero pacchetto IP

IP SECURITY POLICY

Security Associations Database

Security Policy Database

IPSEC: SECURITY ASSOCIATIONS

Definizione

Un'association è una connessione logica tra un mittente e un destinatario che offre servizi di sicurezza.

01 10

Security Parameters Index

IP Destination Address

Security Protocol Identifier

IPSec: Security Associations Database

01 **Security Parameter** Index

Sequence Number Counter

Overflow

Anti-Replay Window

AH Information

ESP Information

Lifetime

IPSec Protocol Mode

Path MTU

IPSec: Security Policy Database

Local IP Address

Next Layer Protocol

Name

Local and Remote Ports

IPSEC: HOST SPD EXAMPLE

Protocol	Local IP	Port	Remote IP	Port	Action
UDP	1.2.3.101	500	*	500	BYPASS
ICMP	1.2.3.101	*	*	*	BYPASS
*	1.2.3.101	*	1.2.3.0/24	*	PROTECT: ESP
TCP	1.2.3.101	*	1.2.4.10	80	PROTECT: ESP
TCP	1.2.3.101	*	1.2.4.10	443	BYPASS
*	1.2.3.101	*	1.2.4.0/24	*	DISCARD
*	1.2.3.101	*	*	*	BYPASS

IPSEC: ESP FORMAT

IPSEC: ANTI-REPLAY MECHANISM

IPSec: Internet Key Exchange

Definizione

IKE rappresenta il protocollo che si occupa della gestione e distribuzione delle chiavi.

- Oakley (Diffie-Hellman based)
- ISAKMP (session keys)

>\$ WHOAMI

- Davide Carnemolla
- Herbrant (Telegram, Github, Discord, ...)
- herbrant@protonmail.org