Neutrino direction algorithm test using KLG4

- Test criteria:
 - Neutrino flavor: v_e
 - Targets: ¹H, ¹²C
 - Energy: 100 MeV ~ 5 GeV
 - Fully contained event condition: < 5 OD hits
 - No fiducial volume cut
 - No nhit cut

Angle deviation from true neutrino direction (v_e 100 MeV ~ 5 GeV

100 MeV ~ 1 GeV

Reconstructed T2K Event Direction

Cos(angle from J-PARC)

03/21/2014

Fiducial volume cut to improve direction fit

R < 650 cm

R < 600 cm

Can we use cosmic ray muon for high energy calibration?

Goal:

PE/cm for muon → PE/MeV

Data selection with KAT Muon Fitter criteria:

- Badness < 20
- Impact parameter < 50 cm
- Runs 5000 ~ 5010
- 204 muon events selected

Charge per muon event

Total Charge [pe]

PMT charge vs angle of PMT position wrt muon track mid-point

Overlayed all 204 events

PMT first hit time vs angle of PMT position wrt muon track mid-point 0.5004 Mean x 0.4971 Mean y 4.098e-06 2.257e-06 Mean v RMS x 0.2198 0.2173 RMS x 100 100 RMS 15.73 PMT first hit time 115 50 50 110 10 -50 -50 -100 -100 0.2 0.2 0.4 0.6 0.8 0.4 0.6 0.8 Angle/ π Angle/ π 100 | HMS X PMT first hit time **–**|8 50 50 16 110 -50 -50 2 -100 L -100 0.2 0.4 0.6 0.8 0.4 8.0 0.6

Angle/ π

Angle/π

PMT first hit time

PMT first hit time

Overlayed all 204 events

3σ cut wrt average of first hits of neighbor PMTs within 200cm

Time difference between entry/exit points: $\Delta t = 39.4$ ns Muon speed = 2*8.5m / $\Delta t = 4.3e8$ m/s Unfortunately, faster than light in vacuum by 43%!

KLG4 µ stopping power in KamLAND LS

Is it supposed to be this flat?