On the Design of Quantum Communication Systems with non-Gaussian States

Supervisor:

Chiar.mo Prof. Andrea Conti

Co-Supervisor:

Dott. Ing. Stefano Guerrini

Candidate:

Federico Forzano

Postulate 1: State Representation

The state of an isolated quantum system is represented by a complex unitary vector in an Hilbert space:

$$|\psi\rangle \in \mathcal{H}$$

Postulate 2: Observables

Every observables of the system is represented by an Hermitian operator acting on the state space:

$$\mathcal{M}:\mathcal{H}\to\mathcal{H}$$

Postulate 3: Born's Rule

The probability to get the measurement λ_i from the observable \mathcal{M} in the system in state $|\psi\rangle$ is:

$$\mathbb{P}(\lambda_i) = \langle \psi | \mathcal{P}_i | \psi \rangle$$

Postulate 4: Wavefunction Collapse

The state after measurement of λ_i is $\mathcal{P}_i | \psi \rangle$ (with the necessary normalization):

$$|\psi'\rangle = \frac{\mathcal{P}_i |\psi\rangle}{\langle \psi | \mathcal{P}_i |\psi\rangle}.$$

Postulates

Postulate 5: Time Evolution

The time evolution of an isolated quantum system is given by an unitary operator \mathcal{U} :

$$|\psi(t)\rangle = \mathcal{U}(t_0,t) |\psi(t_0)\rangle$$
.

Postulate 6: Composite System

The state space of a system composed of \mathcal{H}_1 and \mathcal{H}_2 is given by

$$\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2.$$

Quantum Mechanics Abstract

Quantized electromagnetic field

Classical

$$egin{aligned} oldsymbol{e}(oldsymbol{r},t) &= -\sum_n p_n(t) oldsymbol{u}_n(oldsymbol{r}) \ oldsymbol{h}(oldsymbol{r},t) &= \sum_n q_n(t)
abla imes oldsymbol{u}_n(oldsymbol{r}) \ \end{aligned}$$
 with $oldsymbol{u}_n(oldsymbol{r}) = oldsymbol{u}_{n0} \ e^{ioldsymbol{k}_n \cdot oldsymbol{r}}$

$$H_n = \hbar \omega_n |a_n(t)|^2$$

$$a_n(t) = \frac{\omega_n q_n(t) + i p_n(t)}{\sqrt{2\hbar \omega_n}}$$

Quantized

$$p_{n}(t) \Longrightarrow P_{n}(t) : \mathcal{H} \to \mathcal{H}$$

$$q_{n}(t) \Longrightarrow Q_{n}(t) : \mathcal{H} \to \mathcal{H}$$

$$[\mathbf{Q}_{n}, \mathbf{P}_{m}] = i\hbar \delta_{n,m} \mathbf{I}$$

$$[\mathbf{Q}_{n}, \mathbf{Q}_{m}] = 0$$

$$[\mathbf{P}_{n}, \mathbf{P}_{m}] = 0$$

$$H_n = \hbar \omega_n \mathbf{A}_n^{\dagger} \mathbf{A}_n$$
$$\mathbf{A}_n(t) = \frac{\omega_n \mathbf{Q}_n(t) - i \mathbf{P}_n(t)}{\sqrt{2\hbar \omega_n}}$$

Quantum Mechanics Abstract

Fock states

Fock State

The Fock state $|n\rangle$ represents the quantum state with exactly n photons. It is defined as:

$$\mathbf{N} | n \rangle = n | n \rangle$$
 with $\mathbf{N} = \mathbf{A}^{\dagger} \mathbf{A}$

Fock State

The Fock state $|n\rangle$ represents the quantum state with exactly n photons. It is defined as:

$$\mathbf{N} | n \rangle = n | n \rangle$$
 with $\mathbf{N} = \mathbf{A}^{\dagger} \mathbf{A}$

Fock Representation

Every quantum state Ξ can be expressed as

$$\Xi = \sum_{n,m} c_{n,m} |n\rangle \langle m|$$
 with $c_{n,m} = \langle n|\Xi|m\rangle$

Quantum Mechanics Abstract

Wigner Function

Quantum Modulation

Quantum Modulation

OOK	BPSK
$\Xi_0 = \Xi_{th}$	$\Xi_0 = \Xi_{th}(-\mu)$
$oldsymbol{\Xi}_1 = oldsymbol{\Xi}_{th}(\mu)$	$oldsymbol{\Xi}_1 = oldsymbol{\Xi}_{th}(\mu)$

Quantum Discriminator

Quantum Discriminator

Distribution error probability

$$P_e = 1 - (p_0 tr\{\Xi_0 \Pi_0\} + p_1 tr\{\Xi_1 \Pi_1\})$$

Quantum Discriminator

Helstrom Bound: Minium distribution error probability

$$\breve{P}_e = \frac{1}{2} \left(1 - \| p_1 \Xi_1 - p_0 \Xi_0 \|_1 \right)$$

Quantum Discriminator

Helstrom Bound: Minium distribution error probability

$$\breve{P}_e = \frac{1}{2} \left(1 - \| p_1 \Xi_1 - p_0 \Xi_0 \|_1 \right)$$

MDEP for pure states

$$reve{P}_{e}=rac{1}{2}\left(1-\sqrt{1-4
ho_{0}
ho_{1}|\langle\psi_{0}|\psi_{1}
angle|^{2}}
ight)$$

Discrimination of Photon Added States

PACS discrimination