Lecture13: MOSFET, small-signal model

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Large-signal model (1/2)

- Saturation region
 - Drain current is determined by gate voltage. (voltage-controlled current source)

Large-signal model (2/2)

- Triode region
 - Still, it can be described by a voltage-controlled current source.

Example 6.13 (Razavi)

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal current

- Using the transconductance (g_m) and the output resistance (r_O) ,
 - The small-signal drain current is given as $i_D = g_m v_G + \frac{v_D}{r_O}$.
 - When we build a small-signal model, two contributions must be separately considered.

Small-signal model

 For small-signal analysis, a small-signal model for the MOSFET is introduced.

Time-dependent one?

In general, capacitive components can be seen.

At low frequencies

- Capacitor current is $I = C \frac{dV}{dt}$.
 - When a sinusoidal dependence, for example $\sin \omega t$, is assumed, the capacitor current is proportional to ω .
 - At low frequencies, ω can be regarded as a small number.
 - In other words, the electric conduction between two nodes becomes rather weak.
 - Therefore, we often neglect the capacitive components in the small-signal model.
 - Of course, at higher frequencies, they become very important.

Small-signal MOSFET model

- Small-signal MOSFET model
 - Two branches are related with two partial derivatives.

Simple math

- Following relations are useful.
 - Sine and cosine functions can be expanded with $e^{+j\omega t}$ and $e^{-j\omega t}$.

$$\sin \omega t = -\frac{j}{2}e^{+j\omega t} + \frac{j}{2}e^{-j\omega t}$$
$$\cos \omega t = \frac{1}{2}e^{+j\omega t} + \frac{1}{2}e^{-j\omega t}$$

- Therefore, for a function of $f(t) = f_s \sin \omega t + f_c \cos \omega t$, the expansion is

$$f(t) = \left(-j\frac{f_s}{2} + \frac{f_c}{2}\right)e^{+j\omega t} + \left(+j\frac{f_s}{2} + \frac{f_c}{2}\right)e^{-j\omega t}$$

- A single complex number, $-j\frac{f_s}{2} + \frac{f_c}{2}$, is enough to represent f(t).

Linearized system

- Our circuit is nonlinear in general.
- However, we have <u>linearized</u> it.
 - When the input signal has an angluar frequency, ω , the output signal has the same one.
 - It is sufficient to consider the input-output relation at ω .

Impedance

- Resistance, V(t) = R I(t)
 - It is assumed that V(t) and I(t) are in the same phase.
- Impedance, $V(\omega) = Z(\omega)I(\omega)$
 - Consider $V(t) = V_0 \sin \omega t$ and $I(t) = I_0 \cos \omega t$. (Different phases)
 - We introduce a phasor voltage, $V(\omega)$, and a phasor current, $I(\omega)$.
 - The relation between V(t) and $V(\omega)$ is $V(t) = Re[V(\omega)e^{j\omega t}]$.
 - When $V(t) = V_0 \sin \omega t$, the phasor voltage is $V(\omega) = -jV_0$.
 - When $I(t) = I_0 \cos \omega t$, the phasor voltage is $I(\omega) = I_0$.
 - In this example, $Z(\omega) = -j\frac{V_0}{I_0}$. A purely imaginary number.

Multi-terminal devices

- When the number of terminals is 3,
 - We can define 9 (= 3 X 3) different impedances.
- Termination condition is important.
 - Depending on the termination condition, the impedance can be heavily changed.
 - In many cases, it is obvious from the problem.

Impedances of MOSFET

- "Looking into the <u>TERMINAL</u>," we see the impedance of the <u>TERMINAL</u>.
 - Example) Looking into the gate. The source and drain are acgrounded.

Similar for other terminals