

TSA04: Univariate Non-stationary Time Series Models Jakey BLUE

Time series is mostly non-stationary!

- AR, MA, ARMA are rigorous models for stationary processes. However, in real life, most processes are non-stationary, like these.
 - Homogeneous Nonstationary Time Series

$$\nabla^2 = (1 - B)^2$$

Transform the Time Series into a Stationary One

A Generalized Form for Time Series Models

ARIMA: AutoRegressive Integrated Moving Average

● Introducing the "differencing operator": $\nabla = 1 - B$

∇: del or nabla

S is usually called "infinite summation operator".

- Think about: given z_t , how do you come back to the series y_t , if $z_t = \nabla y_t$.
 - Moreover, if $z_t = \nabla^2 y_t$, what's y_t in terms of z_t

Properties/Limitations of ∇^d

- - $\sqrt{y_t}$ or $\ln(y_t)$ will work.
 - \bullet ∇ is in the sense of "slope". ∇^2 is similar to the "acceleration".
 - ullet ∇ shorten the length of series, $abla^d$ will shrink the length to be n-d
 - When d of ∇^d is too large (e.g., ≥ 3), the series will easily "get lost" and become meaningless.

How do we know d?

ARIMA (p, d, q) Process

- - where

$$a_t \sim^{iid} N(0, \sigma_a^2);$$

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p;$$

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q;$$

L is constant (and usually ignored as the original series is centered).

- The roots of $\phi(B)$ and $\theta(B)$ are all outside the unit circle \rightarrow stationarity and invertibility.
- ARIMA generalizes ARMA, ARI, IMA.

Three Explicit Forms of ARIMA

Difference Equation Form

$$y_t = \phi_1 y_{t-1} + \dots + \phi_{p+d} y_{t-p-d} + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

Random Shock Form

$$y_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \psi_3 a_{t-3} + \cdots$$

Inverted Form

$$y_t = \pi_1 y_{t-1} + \pi_2 y_{t-2} + \pi_3 y_{t-3} + \dots + a_t$$

ARIMA(1, 1, 1) in Difference Equation Form

$$(1 - \phi B)(1 - B)y_t = (1 - \theta B)a_t$$

$$[1 - (\phi + 1)B + \phi B^2]y_t = a_t - \theta a_{t-1}$$

$$y_t = (\phi + 1)y_{t-1} - \phi y_{t-2} + a_t - \theta a_{t-1}$$

- Something familiar? Recall ARMA(2, 1) \Rightarrow $y_t = \phi_1 y_{t-1} \phi_2 y_{t-2} + a_t \theta a_{t-1}$
 - $\phi_1 = (\phi + 1)$; $\phi_2 = -\phi \Rightarrow |\phi_1 + \phi_2| = 1 \Rightarrow \text{NON-STATIONARY!}$

ARIMA(1, 1, 1) in Random Shock Form

ARIMA(1, 1, 1) in Inverted Form

• The key requirement: $|\theta| < 1$, will, at the same time, ensure $\sum_{i=1}^{\infty} |\pi_i| < \infty$, and $\lim_{j \to \infty} |\pi_i| = 0$.

An Invertible but Non-stationary ARIMA(p, d, q) has

The special property: $\sum_{i=1}^{\infty} \pi_i = 1$.

Proof:

- $\phi_p(B)(1-B)^d y_t = \theta_q(B)a_t$ is invertible and non-stationary,
- $d \geq 1$ and the roots of $\theta_q(B)$ are outside the unit circle.

$$\Rightarrow a_t = \pi(B)y_t = (1 - \sum_{i=1}^{\infty} \pi_i B^i)y_t$$
 satisfies $\phi_p(B)(1 - B)^d = \theta_q(B)\pi(B)$

Let
$$B = 1 \Rightarrow \phi_p(1)(1 - 1)^d = \theta_q(1)\pi(1) = 0$$
.

However,
$$\theta_q(1) \neq 0 \Rightarrow \pi(1) = (1 - \sum_{i=1}^{\infty} \pi_i 1^i) = 0 \Rightarrow \sum_{i=1}^{\infty} \pi_i = 1$$
.

ACF of a Non-stationary Time Series

• Given a stationary ARMA(p,q),

$$\begin{split} \rho_k &= \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \dots + \phi_p \rho_{k-p}, \\ \forall k &> q \end{split}$$

As
$$\phi(B) = \prod_{i=1}^{r} (1 - G_i B)$$
,

- where G_i^{-1} , i = 1, ... p, are the roots to $\phi(B) = 0$.
- Box & Jenkins (1976) proved: $ρ_k = A_1G_1^k + A_2G_2^k + \cdots + A_pG_p^k$, A_i are constants. To make the series stationary, $|B_i| > 1 \Rightarrow |G_i| < 1$. If $|G_i|$ is far from 1⁻, $ρ_k$ will vanish quickly.
 - In the opposite, if one or more $|G_i| \to 1^-$, ACF doesn't change a lot with time.

Some Special Non-stationary Time Series Processes

2

Random Walk

- Given an AR(1) model: $y_t = \phi y_{t-1} + a_t$,
 - what if $\phi = 1$? $y_t = y_{t-1} + a_t \Rightarrow \nabla y_t = a_t \Rightarrow (1 B)y_t = a_t$
 - the random shock form: $y_t = \psi(B)a_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \cdots$

$$(1 - B)\psi(B)a_t = a_t \Rightarrow (1 - B)(1 + \psi_1 B + \psi_2 B^2 + \cdots) = 1$$

$$1 + (\psi_1 - 1)B + (\psi_2 - \psi_1)B^2 + \sum_{j=3} (\psi_j - \psi_{j-1})B^j = 1 \Rightarrow \psi_1 = 1 = \psi_2 = \psi_3 = \dots \psi_j$$

$$y_t = a_t + a_{t-1} + a_{t-2} + \dots + a_1$$

If the level L is not zero, i.e., the series is not centered,

$$y_t = tL + \sum_{i=1}^t a_i$$

Random Walk Example

$$\nabla y_t = L + a_t;$$

$$L = 0;$$

$$a_t \sim N(0, 1^2).$$

Random Walk Example

$$\nabla y_t = L + a_t;$$

$$L = 0.1;$$

$$a_t \sim N(0, 1^2).$$

IMA(1, 1)

• the random shock form: $y_t = \psi(B)a_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \cdots$

$$(1 - B)\psi(B)a_t = (1 - \theta B)a_t \Rightarrow (1 - B)\left(1 + \psi_1 B + \psi_2 B^2 + \cdots\right) = (1 - \theta B)$$

$$1 + (\psi_1 - 1)B + (\psi_2 - \psi_1)B^2 + \sum_{j=3}^{\infty} (\psi_j - \psi_{j-1})B^j = (1 - \theta B)$$

$$\psi_1 - 1 = -\theta \Rightarrow \psi_1 = 1 - \theta = \psi_2 = \psi_3 = \cdots = \psi_j$$

$$y_t = a_t + (1 - \theta)a_{t-1} + (1 - \theta)a_{t-2} + \dots + (1 - \theta)a_1$$

• $\sum_{i}^{\infty} \psi_{i}^{2} \rightarrow \infty \Rightarrow y_{t}$ is non-stationary.

IMA(1, 1) in Inverted Form

$$\begin{cases} \theta + \pi_1 = 1 \\ \pi_2 - \pi_1 \theta = 0 \\ \pi_j - \pi_{j-1} \theta = 0 \end{cases} \Rightarrow \begin{cases} \pi_1 = 1 - \theta \\ \pi_2 = \pi_1 \theta = \theta (1 - \theta) \\ \vdots \\ \pi_j = \pi_{j-1} \theta = \pi_{j-2} \theta^2 = \dots = \theta^{j-1} (1 - \theta) \end{cases}$$

$$y_t = (1 - \theta)y_{t-1} + \theta(1 - \theta)y_{t-2} + \dots + \theta^{j-1}(1 - \theta)y_{t-j} + \dots + a_t$$

Exponential Smoothing Model

IMA (1, 1) $y_t = y_{t-1} + a_t - 0.6a_{t-1}.$

IMA (1, 1) $\nabla y_t = a_t - 0.6a_{t-1}.$

IMA(2, 0)

$$\nabla^2 y_t = (1 - B)^2 y_t = a_t$$

• the random shock form: $y_t = \psi(B)a_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \cdots$

$$(1-B)^{2}(a_{t} + \psi_{1}a_{t-1} + \psi_{2}a_{t-2} + \cdots) = a_{t}$$

$$(1-2B+B^{2})(1+\psi_{1}B+\psi_{2}B^{2} + \cdots) = 1$$

$$1+(\psi_{1}-2)B+(\psi_{2}-2\psi_{1}+1)B^{2}+(\psi_{3}-2\psi_{2}+\psi_{1})B^{3}+\cdots+(\psi_{i}-2\psi_{i-1}+\psi_{i-2})B^{j} = 1$$

$$\begin{cases} \psi_1 = 2 \\ \psi_2 = 2\psi_1 - 1 = 3 \\ \psi_3 = 2\psi_2 - \psi_1 = 4 \\ \vdots \\ \psi_j = 2\psi_{j-1} - \psi_{j-2} = j + 1 \end{cases}$$

$$y_t = a_t + 2a_{t-1} + 3a_{t-2} + 4a_{t-3} + \dots = \sum_{j=1}^{\infty} (j+1)a_{t-j}$$

Let $z_t = y_t - y_{t-1}$, the series becomes $\nabla z_t = a_t$, a random walk.

Summary of Non-stationary Time Series

- Transformation is applied: $\nabla y_t = y_t y_{t-1}$; $\sqrt{y_t}$; $\ln(y_t)$; ...
- lacktriangle When d in ∇^d is too large, the series loses its meaning.
- Homogeneous Non-stationary model: ARIMA $(p, d, q) \Rightarrow \phi(B) \nabla^d y_t = \theta(B) a_t + L$.
- Three explicit forms
 - Differencing Equation Form

$$y_t = \phi_1 y_{t-1} + \dots + \phi_{p+d} y_{t-p-d} + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

Random Shock Form

$$y_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \psi_3 a_{t-3} + \cdots$$

Inverted Form

$$y_t = \pi_1 y_{t-1} + \pi_2 y_{t-2} + \pi_3 y_{t-3} + \dots + a_t$$

 \bullet ACF of ARIMA(p, d, q) is difficult to observe.