МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ по лабораторной работе B: \mathcal{H}_2 И \mathcal{H}_∞

Вариант 17

по дисциплине «Теория автоматического управления»

Студент:

Группа № R3338

А.А. Нечаева

Предподаватель:

ассистент факультера СУиР, к. т. н.

А.В. Пашенко

СОДЕРЖАНИЕ

1	СИНТЕЗ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ОБЪЕКТА УПРАВЛЕНИЯ		
	1.2	Регулируемый выход	4
2	СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО СОСТОЯНИЮ		
	2.1	Синтез \mathcal{H}_2 -регулятора вида по состоянию	6
	2.2	Передаточная функция замкнутой системы	7
	2.3	Покомпонентные АЧХ	8
	2.4	Графики сингулярных чисел	9
	2.5	Нормы \mathcal{H}_2 и \mathcal{H}_∞	10
	2.6	Внешнее возмущение	10
	2.7	Компьютерное моделирование	11
3	СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО ВЫХОДУ		
	3.1	Регулятор \mathcal{H}_2 вида $u=K\hat{x}$ по выходу	14
	3.2	Синтез \mathcal{H}_2 -наблюдателя	15
	3.3	Передаточная функция	16
	3.4	Покомпонентные АЧХ	18
	3.5	Графики сингулярных чисел	19
	3.6	Нормы \mathcal{H}_2 и \mathcal{H}_∞	19
	3.7	Внешнее возмущение	20
	3.8	Компьютерное моделирование	21
4	СИН	НТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО СОСТОЯНИЮ	23
5	СИН	НТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО ВЫХОДУ	25
6	ВЫІ	ВОД	27

1 СИНТЕЗ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ОБЪЕКТА УПРАВЛЕНИЯ

Рисунок 1 — Тележка.

Рассмотрим объект управления «тележка», представленный на рисунке 1, и выполним следующие шаги:

- Синтезируем математическую модель «тележки»,

$$\begin{cases} \dot{x} = Ax + Bu + B_w w \\ y = Cx + D_w w, \end{cases} \tag{1}$$

приняв в качестве невозмущенной компоненты выхода линейную координату $y(t) = Cx(t) = x_1(t)$ и считая, что некоторое возмущение w(t) постредством матрицы B_w аддитивно с управлением действует на вектор состояния x(t) и посредством матрицы Dw влияет на выход. Матрицы B_w и D_w зададим самостоятельно.

- Зададимся не менее, чем двумя вариантами регулируемого выхода

$$z(t) = C_Z x + D_Z u, (2)$$

выбрав матрицы C_Z и D_Z самостоятельно.

1.1 Синтез математической модели

Синтезируем математическую модель «тележки» (1)

$$\begin{cases}
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} w \\
y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \end{bmatrix} w
\end{cases} \tag{3}$$

Запишем все значения матриц системы

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad B_w = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad D_w = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
 (4)

1.2 Регулируемый выход

Зададимся наборами матриц C_Z и D_Z для регулируемого выхода (2). Первый набор

$$C_{Z1} = \begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix}, \quad D_{Z1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (5)

Второй набор

$$C_{Z2} = \begin{bmatrix} 0 & 0 \\ -2 & 1 \end{bmatrix}, \quad D_{Z2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \tag{6}$$

2 СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО СОСТОЯНИЮ

Рассмотрим математическую модель объекта управления «тележка» (1), синтезированную в Задании 0, и для каждого из выбранного в Задании 0 наборов матриц (C_Z, D_Z) , определяющих регулируемый выход (2), выполним следующие шаги:

— Синтезируем соответствующий \mathcal{H}_2 -регулятор вида u=Kx по состоянию путем решения соответствующего матричного уравнения Риккати:

$$A^{T}Q + QA + C_{Z}^{T}C_{Z} - QB(D_{Z}^{T}D_{Z})^{-1}B^{T}Q = 0,$$

$$K = -(D_{Z}^{T}D_{Z})^{-1}B^{T}Q \quad (7)$$

- Найдем передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- Построим для $W_{w o z}(s)$ графики покомпонентных АЧХ.
- Построим для $W_{w\to z}(s)$ график сингулярных чисел.
- Найдем \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
- Зададимся не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
- Для каждого из выбранных вариантов внешнего возмущения w выполним компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построим графики компонент регулируемого выхода z(t).
- Сравним полученные результаты для различных вариантов внешнего возмущения и сделаем выводы.

2.1 Синтез \mathcal{H}_2 -регулятора вида по состоянию

Синтезируем соответствующий \mathcal{H}_2 -регулятор вида u = Kx по состоянию путем решения соответствующего матричного уравнения Риккати:

$$\begin{cases} A^{T}Q + QA + C_{Z}^{T}C_{Z} - QB(D_{Z}^{T}D_{Z})^{-1}B^{T}Q = 0, \\ K = -(D_{Z}^{T}D_{Z})^{-1}B^{T}Q \end{cases}$$
(8)

Проверим условия существования решения $Q\succ 0$: $C_Z^TD_Z=0,\,D_Z^TD_Z$ – обратима, (A,B) – стабилизируема, (C_Z,A) – обнаруживаема

$$C_{Z1}^T D_{Z1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ C_{Z2}^T D_{Z2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \det[D_{Z1}^T D_{Z1}] = 1, \ \det[D_{Z2}^T D_{Z2}] = 1$$
 (9)

Составим матрицу управляемости для (A, B) и найдем ее ранг

$$U = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow rank(U) = 2$$
 (10)

Ранг матрицы управляемости равен размерности системы, следовательно, (A, B) – управляема, а значит и стабилизируема.

Составим матрицы наблюдаемости для (C_{Zi},A) найдем их ранги

$$V_{1} = \begin{bmatrix} C_{Z1} \\ C_{Z1}A \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} \Rightarrow rank(V_{1}) = 2$$
 (11)

$$V_{2} = \begin{bmatrix} C_{Z2} \\ C_{Z2}A \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -2 & 1 \\ 0 & 0 \\ 0 & -2 \end{bmatrix} \Rightarrow rank(V_{2}) = 2$$
 (12)

Ранги матриц наблюдаемости равны размерности системы, следовательно, (C_{Zi},A) – наблюдаема, а значит и обнаруживаема.

Решение уравнения Риккати (8) для первого набора (5)

$$Q = \begin{bmatrix} 4.4495 & 1\\ 1 & 2.4495 \end{bmatrix},\tag{13}$$

соответствующая матрица регулятора

$$K = \begin{bmatrix} -1 & -2.4495 \end{bmatrix} \tag{14}$$

Решение уравнения Риккати (8) для второго набора (6)

$$Q = \begin{bmatrix} 6.4721 & 2\\ 2 & 2.2361 \end{bmatrix},\tag{15}$$

соответствующая матрица регулятора

$$K = \begin{bmatrix} -2 & -2.2361 \end{bmatrix} \tag{16}$$

2.2 Передаточная функция замкнутой системы

Найдем передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.

Перепишем уравнение нашей системы и регулируемого выхода в общем виде и преобразуем

$$\begin{cases} \dot{x} = Ax + Bu + B_w w, \\ z = C_Z x + D_Z u \end{cases} \Rightarrow \begin{cases} \dot{x} = Ax + BKx + B_w w, \\ z = C_Z x + D_Z K x \end{cases} \Rightarrow \begin{cases} pX = AX + BKX + B_w W, \\ Z = C_Z X + D_Z K X \end{cases} \Rightarrow \begin{cases} B_w W = (p - A - BK)X, \\ Z = (C_Z + D_Z K)X \end{cases} \Rightarrow \begin{cases} X = (p - A - BK)^{-1} B_w W, \\ Z = (C_Z + D_Z K)(p - A - BK)^{-1} B_w W \end{cases} \Rightarrow W_{W \to Z} = (C_Z + D_Z K)(sI - A - BK)^{-1} B_w \quad (17)$$

Передаточная матрица для первого набора (5)

$$W_{w\to z} = \begin{bmatrix} -\frac{\left(s^2+1\right)\left(3\,s+\sqrt{6}+1\right)-\sqrt{6}\,s\left(3\,s+\sqrt{6}+1\right)}{s^4-4\,s^2+1} & 0\\ -\frac{s-\sqrt{6}\,s^2-\sqrt{6}\,s^3+5\,s^2+s^3-1}{s^4-4\,s^2+1} & 0 \end{bmatrix}$$
(18)

Передаточная матрица для второго набора (6)

$$W_{w\to z} = \begin{bmatrix} \frac{(s^2+2)(\sqrt{5}s-2s+2)-\sqrt{5}s(\sqrt{5}s-2s+2)}{s^4-s^2+4} & 0\\ \frac{-3s^3+\sqrt{5}s^2+4s-4\sqrt{5}}{s^4-s^2+4} & 0 \end{bmatrix}$$
(19)

2.3 Покомпонентные АЧХ

Построим для $W_{w o z}(s)$ графики покомпонентных АЧХ.

Рисунок 2 — График покомпонентной АЧХ $W_{w o z}(s)$ для первого набора (C_Z, D_Z) .

Рисунок 3 — График покомпонентной АЧХ $W_{w o z}(s)$ для второго набора $(C_Z, D_Z).$

2.4 Графики сингулярных чисел

Построим для $W_{w o z}(s)$ график сингулярных чисел.

Рисунок 4 — График сингулярных чисел $W_{w o z}(s)$ для первого набора (C_Z, D_Z) .

Рисунок 5 — График сингулярных чисел $W_{w\to z}(s)$ для второго набора (C_Z, D_Z) .

2.5 Нормы \mathcal{H}_2 и \mathcal{H}_{∞}

Найдем \mathcal{H}_2 и \mathcal{H}_{∞} нормы $W_{w\to z}(s)$ для первого набора (5)

$$||W||_{\mathcal{H}_2} = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} tr\left(W^*(j\omega)W(j\omega)\right) d\omega} = \sqrt{tr(B_w^T Q B_w)} = 2.2134 \quad (20)$$

$$||W||_{\mathcal{H}_{\infty}} = \sup_{\omega} \sigma_{max}(W(j\omega)) = 3.5915$$
(21)

для второго набора (6)

$$||W||_{\mathcal{H}_2} = 2.1698 \tag{22}$$

$$||W||_{\mathcal{H}_{\infty}} = 2.4678 \tag{23}$$

2.6 Внешнее возмущение

Зададимся двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w \to z}(s)$.

Для первого варианта регулируемого выхода (5) случай, близкий к «наихудшему» (то есть частота близка к пиковой частоте для графиков АЧХ и сингулярных чисел)

$$w_1 = \begin{bmatrix} \sin(0.1t) \\ 0 \end{bmatrix} \tag{24}$$

и ощутимо отличающийся по частоте от первого случая

$$w_2 = \begin{bmatrix} \sin(15t) \\ 0 \end{bmatrix} \tag{25}$$

Для второго варианта регулируемого выхода (6) случай, близкий к «наихудшему» (то есть частота близка к пиковой частоте для графиков АЧХ и сингулярных чисел)

$$w_1 = \begin{bmatrix} \sin(0.6t) \\ 0 \end{bmatrix} \tag{26}$$

и ощутимо отличающийся по частоте от первого случая

$$w_2 = \begin{bmatrix} \sin(15t) \\ 0 \end{bmatrix} \tag{27}$$

2.7 Компьютерное моделирование

Для каждого из выбранных вариантов внешнего возмущения w выполним компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построим графики компонент регулируемого выхода z(t).

Заметим, что при вариантах частоты близким к «наихудшим» для обоих наборов (C_Z, D_Z) (рисунки 6 и 8) наблюдается большее значение амплитуды, чем при частотах, которые находятся дальше от «наихудших» (рисунки 7 и 9). Чем дальше находится значение частоты от «наихудшего», тем меньшее влияние оказывает внешнее воздействие на систему.

Рисунок 6 — График компонент регулируемого выхода z(t) для первого набора (C_Z, D_Z) , первый вариант воздействия.

Рисунок 7 — График компонент регулируемого выхода z(t) для первого набора (C_Z,D_Z) , второй вариант воздействия.

Рисунок 8 — График компонент регулируемого выхода z(t) для второго набора (C_Z,D_Z) , первый вариант воздействия.

Рисунок 9 — График компонент регулируемого выхода z(t) для второго набора (C_Z,D_Z) , второй вариант воздействия.

3 СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО ВЫХОДУ

Рассмотрим математическую модель объекта управления «тележка» (1), синтезированную в Задании 0, и для каждого из выбранного в Задании 0 наборов матриц (C_Z, D_Z) , определяющих регулируемый выход (2) выполним следующие шаги:

- Синтезируем соответствующий \mathcal{H}_2 -регулятор вида $u=K\hat{x}$ по выходу путем решения соответствующего матричного уравнения Риккати (8).
- Синтезируем соответствующий \mathcal{H}_2 -наблюдатель путем решения соответствующего матричного уравнения Риккати:

$$\begin{cases}
AP + PA^{T} + B_{w}B_{w}^{T} - PC^{T}(D_{w}D_{w}^{T})^{-1}CP = 0, \\
L = -PC^{T}(D_{w}D_{w}^{T})^{-1}
\end{cases} (28)$$

- Найдем передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- Построим для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
- Построим для $W_{w o z}(s)$ график сингулярных чисел.
- Найдем \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
- Зададимся не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
- Для каждого из выбранных вариантов внешнего возмущения w выполним компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построим графики компонент регулируемого выхода z(t).
- Сравним полученные результаты для различных вариантов внешнего возмущения и сделаем выводы.

3.1 Регулятор \mathcal{H}_2 вида $u = K\hat{x}$ по выходу

Воспользуемся результатами, полученными в предыдущем задании.

Решение уравнения Риккати (8) для первого набора (5)

$$Q = \begin{bmatrix} 4.4495 & 1\\ 1 & 2.4495 \end{bmatrix},\tag{29}$$

соответствующая матрица регулятора

$$K = \begin{bmatrix} -1 & -2.4495 \end{bmatrix} \tag{30}$$

Решение уравнения Риккати (8) для второго набора (6)

$$Q = \begin{bmatrix} 6.4721 & 2\\ 2 & 2.2361 \end{bmatrix},\tag{31}$$

соответствующая матрица регулятора

$$K = \begin{bmatrix} -2 & -2.2361 \end{bmatrix} \tag{32}$$

3.2 Синтез \mathcal{H}_2 -наблюдателя

Синтезируем соответствующий \mathcal{H}_2 -наблюдатель путем решения соответствующего матричного уравнения Риккати:

$$\begin{cases}
AP + PA^{T} + B_{w}B_{w}^{T} - PC^{T}(D_{w}D_{w}^{T})^{-1}CP = 0, \\
L = -PC^{T}(D_{w}D_{w}^{T})^{-1}
\end{cases}$$
(33)

Проверим условия существования решения уравнения Риккати: $B_w D_w^T = 0$, $D_w D_w^T$ обратима, (C,A) обнаруживаема и (A,B_w) стабилизируема.

$$B_w^T D_w = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \det[D_w D_w^T] = 1 \tag{34}$$

Составим матрицу управляемости для (A, B_w) и найдем ее ранг

$$U = \begin{bmatrix} B_w & AB_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \Rightarrow rank(U) = 2$$
 (35)

Ранг матрицы управляемости равен размерности системы, следовательно, (A, B_w) – управляема, а значит и стабилизируема.

Составим матрицу наблюдаемости для (C,A) найдем ее ранг

$$V = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow rank(V) = 2 \tag{36}$$

Ранг матрицы наблюдаемости равен размерности системы, следовательно, (C,A) – наблюдаема, а значит и обнаруживаема.

Решение уравнения Риккати (33) для первого набора (5)

$$P = \begin{bmatrix} 1.7321 & 1\\ 1 & 2.7321 \end{bmatrix},\tag{37}$$

соответствующая матрица наблюдателя

$$L = \begin{bmatrix} -1.7321 \\ -1 \end{bmatrix} \tag{38}$$

Решение уравнения Риккати (33) для второго набора (6)

$$P = \begin{bmatrix} 1.7321 & 1\\ 1 & 2.7321 \end{bmatrix},\tag{39}$$

соответствующая матрица наблюдателя

$$L = \begin{bmatrix} -1.7321 \\ -1 \end{bmatrix} \tag{40}$$

3.3 Передаточная функция

Найдем передаточную функцию (матрицу) $W_{w \to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.

Запишем полностью систему с регулятором и наблюдателем

$$\begin{cases} \dot{x} = Ax + Bu + B_w w \\ y = Cx + D_w w, \\ z = C_Z x + D_Z u, \\ u = K \hat{x} \\ \dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y) \end{cases} \Rightarrow \begin{cases} \dot{x} = Ax + BK \hat{x} + B_w w \\ y = Cx + D_w w, \\ z = C_Z x + D_Z K \hat{x}, \\ \dot{\hat{x}} = A\hat{x} + BK \hat{x} + L(\hat{y} - y) \end{cases} \Rightarrow \begin{cases} \dot{x} = Ax + BK \hat{x} + B_w w \\ z = C_Z x + D_Z K \hat{x}, \\ \dot{x} = A\hat{x} + BK \hat{x} + L(C\hat{x} - Cx - D_w w) \end{cases} \Rightarrow \begin{cases} \dot{x} = Ax + BK \hat{x} + B_w w \\ z = C_Z x + D_Z K \hat{x}, \\ \dot{x} = Ax + BK \hat{x} + B_w w \end{cases} \Rightarrow \begin{cases} \dot{x} = Ax + BK \hat{x} + B_w w \\ z = C_Z x + D_Z K \hat{x}, \\ \dot{x} = (A + BK + LC)\hat{x} - LCx - LD_w w \end{cases} \Rightarrow \begin{cases} \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \\ \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \end{cases} \Rightarrow \begin{cases} \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \\ \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \end{cases} \Rightarrow \begin{cases} \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \\ \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \end{cases} \Rightarrow \begin{cases} \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \\ \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \end{cases} \end{cases} \Rightarrow \begin{cases} \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \\ \dot{x} = A + BK + LC \hat{x} - Cx - D_w w \end{cases} \end{cases} \Rightarrow \begin{cases} \dot{x} = A + BK + C + Cx - Cx - D_w w \\ \dot{x} = A + BK + CC \hat{x} - Cx - D_w w \end{cases} \end{cases} \end{cases}$$

Следовательно, передаточная матрица

$$W_{w\to z} = \begin{bmatrix} C_Z & D_Z K \end{bmatrix} \left(sI - \begin{bmatrix} A & BK \\ -LC & A + BK + LC \end{bmatrix} \right)^{-1} \begin{bmatrix} B_w \\ -LD_w \end{bmatrix}$$
(42)

Передаточная матрица для первого набора (5)

$$W_{w\to z} = \begin{bmatrix} \frac{-3s^3 - 11.54s^2 - 22.91s + 4.243}{s^4 + 4.182s^3 + 6.243s^2 + 4.182s + 1} & \frac{-8.363s^2 + 2.182s + 1}{s^4 + 4.182s^3 + 6.243s^2 + 4.182s + 1} \\ \frac{-4.182s^2 + 3.182s + 1}{s^4 + 4.182s^3 + 6.243s^2 + 4.182s + 1} & \frac{-4.182s^3 - s^2}{s^4 + 4.182s^3 + 6.243s^2 + 4.182s + 1} \end{bmatrix}$$
(43)

Передаточная матрица для второго набора (6)

$$W_{w\to z} = \begin{bmatrix} \frac{-5.7s^2 + 3.7s + 2}{s^4 + 3.968s^3 + 6.873s^2 + 5.7s + 2} & \frac{-5.7s^3 - 2s^2}{s^4 + 3.968s^3 + 6.873s^2 + 5.7s + 2} \\ \frac{-3s^3 - 9.904s^2 - 18.38s + 11.75}{s^4 + 3.968s^3 + 6.873s^2 + 5.7s + 2} & \frac{-5.7s^2 + 9.4s + 4}{s^4 + 3.968s^3 + 6.873s^2 + 5.7s + 2} \end{bmatrix}$$

$$(44)$$

3.4 Покомпонентные АЧХ

Построим для $W_{w o z}(s)$ графики покомпонентных АЧХ.

Рисунок 10 — График покомпонентной АЧХ $W_{w o z}(s)$ для первого набора (C_Z, D_Z) .

Рисунок 11 — График покомпонентной АЧХ $W_{w o z}(s)$ для второго набора (C_Z, D_Z) .

3.5 Графики сингулярных чисел

Построим для $W_{w\to z}(s)$ график сингулярных чисел.

Рисунок 12 — График сингулярных чисел $W_{w o z}(s)$ для первого набора (C_Z, D_Z) .

Рисунок 13 — График сингулярных чисел $W_{w o z}(s)$ для второго набора (C_Z, D_Z) .

3.6 Нормы \mathcal{H}_2 и \mathcal{H}_{∞}

Найдем \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w \to z}(s)$ для первого набора (5)

$$||W||_{\mathcal{H}_2} = 5.2842 \tag{45}$$

$$||W||_{\mathcal{H}_{\infty}} = 8.4411 \tag{46}$$

для второго набора (6)

$$||W||_{\mathcal{H}_2} = 5.8516 \tag{47}$$

$$||W||_{\mathcal{H}_{\infty}} = 8.1023 \tag{48}$$

3.7 Внешнее возмущение

Зададимся двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$.

Для первого варианта регулируемого выхода (5) случай, близкий к «наихудшему» (то есть частота близка к пиковой частоте для графиков АЧХ и сингулярных чисел)

$$w_1 = \begin{bmatrix} \sin(0.55t) \\ 0 \end{bmatrix} \tag{49}$$

и ощутимо отличающийся по частоте от первого случая

$$w_2 = \begin{bmatrix} \sin(15t) \\ 0 \end{bmatrix} \tag{50}$$

Для второго варианта регулируемого выхода (6) случай, близкий к «наихудшему» (то есть частота близка к пиковой частоте для графиков АЧХ и сингулярных чисел)

$$w_1 = \begin{bmatrix} \sin(0.7t) \\ 0 \end{bmatrix} \tag{51}$$

и ощутимо отличающийся по частоте от первого случая

$$w_2 = \begin{bmatrix} \sin(15t) \\ 0 \end{bmatrix} \tag{52}$$

3.8 Компьютерное моделирование

Для каждого из выбранных вариантов внешнего возмущения w выполним компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построим графики компонент регулируемого выхода z(t).

Рисунок 14 — График компонент регулируемого выхода z(t) для первого набора (C_Z, D_Z) , первый вариант воздействия.

Рисунок 15 — График компонент регулируемого выхода z(t) для первого набора (C_Z, D_Z) , второй вариант воздействия.

Рисунок 16 — График компонент регулируемого выхода z(t) для второго набора (C_Z, D_Z) , первый вариант воздействия.

Рисунок 17 — График компонент регулируемого выхода z(t) для второго набора (C_Z, D_Z) , второй вариант воздействия.

Заметим, что при вариантах частоты близким к «наихудшим» для обоих наборов (C_Z, D_Z) (рисунки 14 и 16) наблюдается большее значение амплитуды, чем при частотах, которые находятся дальше от «наихудших» (рисунки 15 и 17). Чем дальше находится значение частоты от «наихудшего», тем меньшее влияние оказывает внешнее воздействие на систему.

4 СИНТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО СОСТОЯНИЮ

Рассмотрим математическую модель объекта управления «тележка» (1) синтезированную в Задании 0. Выберем один из заданных в Задании 0 наборов матриц (C_Z, D_Z) , определяющих регулируемый выход (2) и выполним следующие шаги:

- Зададимся не менее, чем двумя значениями ограничивающего параметра $\gamma > 0$. Постараемся выбрать так, чтобы одно из этих значений было приближенным к минимальному, при котором задача еще будет иметь решение. Для каждого из выбранных γ :
 - Синтезируем соответствующий \mathcal{H}_{∞} -регулятор вида u=Kx по состоянию путем решения соответствующего матричного уравнения типа Риккати:

$$\begin{cases} A^{T}Q + QA + C_{Z}^{T}C_{Z} - QB(D_{Z}^{T}D_{Z})^{-1}B^{T}Q + \\ +\gamma^{-2}QB_{w}B_{w}^{T}Q = 0, \\ K = -(D_{Z}^{T}D_{Z})^{-1}B^{T}Q \end{cases}$$
(53)

- Найдем передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- Построим для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
- Построим для $W_{w o z}(s)$ график сингулярных чисел.
- Найдем \mathcal{H}_2 и \mathcal{H}_{∞} нормы $W_{w\to z}(s)$.
- Зададимся не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
- Для каждого из выбранных вариантов внешнего возмущения w выполним компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построим графики компонент регулируемого выхода z(t).

- Сравним полученные результаты для различных вариантов внешнего возмущения и сделаем выводы.
- Сравним полученные результаты для различных вариантов ограничивающего параметра γ и сделаем выводы.

5 СИНТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО ВЫХОДУ

Рассмотрим математическую модель объекта управления «тележка» (1) синтезированную в Задании 0. Зададимся набором матриц (C_Z, D_Z) , определяющих регулируемый выход (2) и выполним следующие шаги:

- Зададимся не менее, чем двумя значениями ограничивающего параметра $\gamma > 0$. Постараемся выбрать так, чтобы одно из этих значений было приближенным к минимальному, при котором задача еще будет иметь решение. Для каждого из выбранных γ :
 - Синтезируем соответствующий \mathcal{H}_{∞} -регулятор вида $u=K\hat{x}$ по выходу путем решения соответствующего матричного уравнения типа Риккати (53):
 - Синтезируем соответствующий \mathcal{H}_{∞} -наблюдатель путем решения соответствующего матричного уравнения типа Риккати:

$$\begin{cases}
AP + PA^{T} + B_{w}B_{w}^{T} - PC^{T}(D_{w}D_{w}^{T})^{-1}CP + \\
+\gamma^{-2}PC_{Z}^{T}C_{Z}P = 0, \\
L = -P(I - \gamma^{-2}QP)^{-1} \cdot \\
\cdot (C + \gamma^{-2}D_{w}B_{w}^{T}Q)^{T}(D_{w}D_{w}^{T})^{-1}
\end{cases} (54)$$

- Найдем передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- Построим для $W_{w o z}(s)$ графики покомпонентных АЧХ.
- Построим для $W_{w \to z}(s)$ график сингулярных чисел.
- Найдем \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
- Зададимся не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.

- Для каждого из выбранных вариантов внешнего возмущения w выполним компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построим графики компонент регулируемого выхода z(t).
- Сравним полученные результаты для различных вариантов внешнего возмущения и сделаем выводы.
- Сравним полученные результаты для различных вариантов ограничивающего параметра γ и сделаем выводы.

6 ВЫВОД

В ходе выполнения лабораторной работы были применены на практике знания о