Foundations of Statistics

Homework 10

Parameter estimation (Chapter 3)

Exercise 1. (Based on Ch. 3.3-4.)

Let $X_1, ..., X_n$ be an i.i.d. random sample from a uniform distribution $\mathrm{Unif}(a,b)$ with unknown parameters $a,b \in \mathbb{R}$ (a < b).

- (a) Apply the method of moments using sample mean and sample standard deviation to find estimators \tilde{a}_n and \tilde{b}_n for a and b. (*Hint:* proceed as described on p. 10 in Ch. 3.3.)
- (b) Apply the method of the maximum likelihhod to show that

$$\hat{a}_n := \min\{X_1, ..., X_n\} \text{ and } \hat{b}_n := \max\{X_1, ..., X_n\}$$

are the maximum likelihhod estimators for a and b. (*Hint:* proceed analogously to Exp. 3 in Ch. 3.4.)

(c) Check that \hat{a}_n and \hat{b}_n are asymptotically unbiased, that is,

$$\mathbb{E}[\widehat{a}_n] \to a \text{ and } \mathbb{E}[\widehat{b}_n] \to b \text{ as } n \to \infty.$$

(*Hint:* In HW 6, Ex 3(c), we have already found the distribution of the smallest and largest order statistics of a uniformly distributed random sample. Here you need to compute the corresponding expectations.)

(d) Let $\tau := \int_{-\infty}^{\infty} x^2 f(x) dx$, where f(x) is the PDF of Unif(a, b). Find the MLE $\hat{\tau}_n$ of τ using the invariance property of MLE.

Exercise 2. (Based on Ch. 3.3-5.)

Let $X_1, ..., X_n$ be an i.i.d. random sample from a Gamma distribution $\Gamma(\alpha, \beta)$ with unknown parameters $\alpha, \beta > 0$ (see the Def. 10 in Ch. 1.6.)

(a) Find the method of moments estimator $\hat{\theta} = (\hat{\alpha}, \hat{\beta})$ of the parameter vector $\theta = (\alpha, \beta)$ (*Hint:* proceed as described on p. 10 in Ch. 3.3.)

- (b) Define the log-likelihood function $\ell(\alpha, \beta)$ and write down the system of equations to find its maximum. Could you solve it explicitly?
- (c) The following dataset with size n = 16 comes from a Gamma distribution:

```
0.8666 1.3620 1.4664 1.0032 2.0429 2.9602 0.7447 1.0066 1.4548 2.0756 1.0561 1.5033 1.8870 3.9882 1.3323 1.1682
```

Define the log-likelihood in R and use numerical optimization to find ML-estimators. (*Hint:* proceed analogously to p. 14 in Ch. 3.5.) Compare the results with MM-estimators found in (a). (Use R's command var() without changing its default denominator).

Exercise 3. (Based on Ch. 3.9.)

Consider a Bernoulli distribution $Ber(\pi)$ with parameter $\pi \in (0,1)$. Its PMF can be represented by the following formula

$$f_{\pi}(x) = \mathbb{P}(X = x) = \begin{cases} \pi^{x} (1 - \pi)^{1 - x}, & x \in \{0, 1\}, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Let $x_1, ..., x_n$ be a realization of a random sample $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \text{Ber}(\pi)$. Calculate the observed Fisher information for this dataset.
- (b) Calculate the expected Fisher information for $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \text{Ber}(\pi)$.
- (c) Show that the estimator $\hat{\pi}_n = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ attains the explicit Cramér–Rao bound.

Exercise 4. (Based on Ch. 3.9.) The goal of this exercise is to study the sampling distribution of ML-estimators for large n.

Let $X_1, ..., X_n$ be an i.i.d. random sample from the density

$$f_{\lambda}(x) = \frac{\lambda}{2\sqrt{x}}e^{-\lambda\sqrt{x}}, \quad \forall x > 0,$$

for some unknown $\lambda > 0$,

- (a) Compute the ML-estimator $\hat{\lambda}_n$.
- (b) Compute the observed Fisher information $J_n(\lambda; x_1, \dots x_n)$ and the (expected) Fisher information $\mathcal{I}_n(\lambda)$.

(c) Our goal now is to study the empirical distribution of the ML-estimator $\hat{\lambda}_n$ for large n. Remember that $\hat{\lambda}_n$ is a random variable. For this task, you will need to create three plots and <u>one table</u> as the final output.

Assume that we know the unknown parameter $\lambda=0.3$. Apply the inverse transform method (recall Ch.1.8) to simulate n random samples from the density f_{λ} and compute $\widehat{\lambda}_n$. Repeat this experiment $K=10^6$ times for $n\in\{8,64,128\}$. Make three histograms with xlim=c(0.1,0.5). To each plot, add the empirical density curve using density(), and a vertical line representing the sample mean of $\widehat{\lambda}_n$, both with col="blue",lty=2.

We will see in Ch. 3.10 that, for large n, the distribution of ML-estimators can be approximated by a normal distribution:

$$\hat{\lambda}_n \overset{\text{approx}}{\sim} \mathcal{N}(\lambda, \mathcal{I}_n(\lambda)^{-1})$$

To each plot, add the theoretical normal density, and a vertical line at the theoretical value λ , both with col="red",lty=1.

Finally make a table, comparing the sample variance of $\widehat{\lambda}_n$ using var() and the theoretical approximation $\mathcal{I}_n(\lambda)^{-1}$.

Exercise 5. (Based on Ch. 3.4 and 3.9.) The goal of this exercise is to study the change in Fisher information under reparametrization.

Let X_i , $i \in \{1, 2, \dots n\}$ be an i.i.d. random sample from a normal distribution $\mathcal{N}(0, \sigma^2)$ with mean 0 and unknown variance $\sigma^2 > 0$.

- (a) Find the Fisher information $\mathcal{I}(\sigma)$ for a single variable X_i considering the standard deviation $\sigma > 0$ as the parameter.
- (b) Find the Fisher information $\widetilde{\mathcal{I}}(\theta)$ for a single variable X_i considering the variance $\theta := \sigma^2$ as the parameter. Compare the result with (a).
- (c) Let σ be the unknown parameter. Find the ML-estimator $\hat{\sigma}_n$.
- (d) Let θ be the unknown parameter. Find the ML-estimator $\hat{\theta}_n$ directly and compare the result with the estimator obtained by the invariance principle.
- (e) Show that $\hat{\sigma}_n$ is biased, whereas $\hat{\theta}_n$ is unbiased.

- (f) For which of the estimators $\hat{\sigma}_n$, $\hat{\theta}_n$, CLT can be immediately applied to approximate its distribution for large n. Identify it, and apply CLT accordingly.
- (g) We will see in Ch. 3.10 that for large enough n, we can approximate

$$\hat{\sigma}_n \overset{\text{approx}}{\sim} \mathcal{N}(\sigma, \mathcal{I}_n(\sigma)^{-1})$$
$$\hat{\theta}_n \overset{\text{approx}}{\sim} \mathcal{N}(\theta, \widetilde{\mathcal{I}}_n(\theta)^{-1})$$

Compute $\mathcal{I}_n(\sigma)^{-1}$ and $\widetilde{\mathcal{I}}_n(\theta)^{-1}$. Compare the results with (f).

(h) Now let X be a random variable for which the PDF or the PMF is given by $f_{\phi}(x)$, depending on a parameter $\phi \in \mathbb{R}$. Let $\mathcal{I}(\phi)$ denote the Fisher information of f_{ϕ} . Suppose now that the parameter ϕ is replaced by a new parameter θ , where $\phi = g(\theta)$ for some differentiable function $g : \mathbb{R} \to \mathbb{R}$. Let $\widetilde{\mathcal{I}}(\theta)$ denote the new Fisher information with respect to the parameter θ . Show that

$$\widetilde{\mathcal{I}}(\theta) = \left[g'(\theta)\right]^2 \mathcal{I}\left[g(\theta)\right].$$

(i) Apply the general result above to (a) and compare it with (b).

Have a wonderful holiday season!