Animal Detection API

Objectif

Etablir un plan de sécurité basé sur une étude de population

Pour effectuer cela, une API a été mise à dispostion permettant de :

Analyser les images de la circulation pour détecter les animaux et leur espèce

Retourner les informations suivantes

- Espèces présentes
- Nombre par espèce
- Position

Pour commencer, 2 espèces on été étudiées pour ce POC afin de montrer la faisabilité:

- 1 Le cerf
- 2 Le sanglier

Le projet a été réalisé en 5 grandes étapes:

- Construction du dataset
- Annotation des images
- Choix des modèles
- Evaluations
- Déploiement

Constitution du Dataset

Scrapping web:

- Liste d'urls :
 - O Une liste d'urls, extraits d'internet, d'images de ces deux espèces
 - O 2 espèces étudiés avec plus de 250 images per espèce

Cerf (280 images) Sanglier (252 images)

Example of training images

Annotation des images

L'objectif du modèle est de détecter les deux espèces

Ainsi pour l'entrainer, il faudra avoir des images déjà annotées

2 solutions possibles:

- **1** Manuelle
 - + Fiabilité élevée
 - Couts élevé
 Processus lent
- **2** Automatique
 - + Pas de cout + Très rapide
 - Moins fiable qu'un humain

Choix de l'annotation

Afin d'obtenir une version d'essai rapidement et à moindre cout.

Nous choisissons pour ce POC une annotation automatique.

Choix des modèles - Modèle maitre

Remarque

Modèle d'annotation automatique

Modèle de détection d'animaux

Question:

Pourquoi ne pas utiliser ce modèle directement pour notre projet?

Modèle utilisé:

Grounding Dino Zero-Shot Detection

- Modèle massif (~1Go)
- Exécution lente
- Dépend d'un prompt

- + Excellent enseignant pour un modèle plus spécialisé
- + Ne sera exécuté qu'une seule fois

Choix des modèles - Modèle élève

Nous allons donc partir sur une modélisation, appelé Maitre – élève. Où le modèle élève apprend du résultat de celui du maitre (qui est fixe)

Evaluation – modèle final

À la fin de l'entrainement du modèle élève, nous obtenons des résultats concluants. C'est-à-dire nous pouvons recenser au moins 80% de la population de cerfs et sangliers

Démonstration de l'API

Améliorations et prochaines étapes

- Enrichir les données d'entrainement avec plus d'images
- **Etablir des annotations semi manuelles** pour une meilleure fiabilité des données d'entrainement
- Avoir un modèle élève plus grand pour extraire plus d'informations des images
- Entrainer le modèle plus longtemps (machines plus performantes)
- Passer sur un modèle plus robuste et open source (type DERT) si on ne veut pas investir sur la License YOLO

• • • •