Homogeneous Equation_ Consider a function of (x,y) of two variables x and y, at f(x,y) = aox + 0, x y + a, x y = - + a x y + an xy + on y the degree of each term is n. Thus of (x,y)

is called a homogeneous function on xandy of acque n. f(x,y) = a,x"+ a, x"y + a, x"y2+---= 2 [90+ 9(4) + 02(4) 20 = Similarly. $f(x,y) = y \left[a_0 \left(\frac{x}{y} \right) + O_1 \left(\frac{x}{y} \right) + \dots \right]$ \$ f(x,y) = x F(x), where, F(x) = 90+4/(x)+

(Assignment Add) let $f(x_1, x_2 - x_n)$ be a function Hrw, + 2 m of $= \chi_1^{7} = \frac{f'(\chi_2, \chi_3, \dots, \chi_m)(-\chi_2)}{\chi_1 \chi_1} = \frac{\chi_1^{7}}{\chi_1^{2}}$ $+ \frac{\chi_1}{\chi_1} \frac{\chi_2}{\chi_1} \frac{\chi_3}{\chi_1} \frac{\chi_3}{\chi_1} \frac{\chi_m}{\chi_1}$

gri. Verify Eulasis theorem for the following. f(ary) = ax + 2hxy+ by2 (2) f(7,4,2) = ayz + bzz + cxy $42.4 \int u = sin^4 \left(\frac{x^2 + y^2}{x + y}\right)$, then show that - x du + y du = tenu. Solutions. 11 (2) Cilyon - f(x14) = 0x2+24x4+ by2 Squer, diegree of each term = 2 f(x,y) is homogeneous punction. Dow, $\frac{\partial f}{\partial x} = 2ax + 2hy$ 2 hz + 2 by and 76 OF + 4 OF 20x2+2 hay + 2 hay + 2 by 2 2 (ax2+ by2+ 26xy) 2 f(x,y) hence forored

of
$$u = x\phi(\frac{y}{y}) + \psi(\frac{y}{y})$$
 then show that,

 $x^{2}\partial^{2}u + 2xy\partial^{2}u + y^{2}\partial^{2}u = 0$

Sol" - given -> $u = x\phi(\frac{y}{x}) + \psi(\frac{y}{x})$

Let $v = x\phi(\frac{y}{x}) + \psi(\frac{y}{x})$

And, $w = \psi(\frac{y}{x})$,

 $\frac{degree}{degree}$

and, $w = \psi(\frac{y}{x})$,

 $\frac{degree}{degree}$

And, $w = \frac{degree}{degree}$
 $\frac{degree}{degree}$
 $\frac{degree}{degree}$

\$ (1-1) v + 0 (0-1) co = R.H.s. hence proved If $z = x^m \phi(y_n) + x^n \phi(y_n)$, then show that, $\frac{1}{32^2} + \frac{2xy^2z}{3x^2} + \frac{2xy^2z}{3x^2} + \frac{y^2\delta^2z}{3y^2} = mnz = (m+n-1).$ Sold let $V = 2^m \phi(\frac{y}{x})$ and $W = x^2 \psi(\frac{y}{x})$ here, $V x_1 o$ homogeneous function in x and $y \in \mathbb{R}$ and, wis a homogeneous function in x andy of Now, x2 g2 + 2xy g2 + y2g2 + mnz $= \frac{\chi^{2} \partial^{2}(v+w) + 2\chi y}{\partial x^{2} \partial y} + \frac{\partial^{2}(v+w) + \chi^{2} \partial^{2}(v+w) + mn(v+w)}{\partial x^{2} \partial y}$ $= \left(\frac{3x^2}{3x^2} + \frac{3x \cdot 3y}{2xy} + \frac{3x^2}{3x^2}\right) + \left(\frac{3x^2}{3x^2} + \frac{3x^2}{3x^2} + \frac{3x^2}{3x^2}\right) + \left(\frac{3x^2}{3x^2} + \frac{3x^2}{3x^2} + \frac{3x^2}{3x^2}$ + y2 32 /2 mn (v+w) z (m+)mv + (min)+ vm(v+w) (m+n-1) (mx +nw)

Euler's Theorem Problems

Q1. If
$$u = \log \left(\frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}} \right)$$
 then prove that

(a)
$$x \frac{\partial u}{\partial x} + y \frac{\partial 4}{\partial y} = \frac{3}{2}$$

(b)
$$x^2 \frac{\partial^2 y}{\partial x^2} + 2 \frac{\partial^2 y}{\partial x^2 y} + y^2 \frac{\partial^2 y}{\partial y^2} = -\frac{3}{2}$$

Soln: Given
$$u = \log \left(\frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}} \right)$$

$$\Rightarrow e^{u} = \frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}} = \frac{\lambda^2 \left(1 + \frac{y^2}{\lambda^2} \right)}{\sqrt{x} \left(1 + \frac{\sqrt{y}}{\sqrt{x}} \right)}$$

$$= \chi^{3/2} \left(\frac{1 + (\frac{y}{x})^2}{\sqrt{x} + (\frac{y}{x})^2} \right)$$

This is the Homogeneous eq-n of degree n=3.

Hence, veing Eyler's 1st order egn

$$\lambda \cdot \frac{\partial e^4}{\partial x} + y \frac{\partial e^4}{\partial y} = \frac{3}{2} \cdot e^4$$

$$\Rightarrow e^{4} \times \frac{\partial^{4}}{\partial x} + y, e^{4} \frac{\partial^{4}}{\partial y} = \frac{3}{2}, e^{4}$$

$$\Rightarrow \boxed{\chi \frac{24}{2\chi} + y \frac{24}{2y} = \frac{3}{2}}$$
 Proved

Partial derivative eq-n 1 m.r.t. 2

$$3\frac{2^{2}y}{3x^{2}} + \frac{2y}{3x} + y\frac{3^{2}y}{2x^{2}} = 0 =)$$
 $1\frac{2^{2}y}{2x^{2}} + x\frac{2y}{3x} + xy\frac{2^{2}y}{2xx^{2}} = 0$

Homogenous Function 4=2nf(2) Euler's 1st orde 7 24 + y 24 $= \chi^{3/2} \left(\frac{1 + \left(\frac{y}{x}\right)^2}{1 + \left(\frac{y}{x}\right)^{\frac{1}{2}}} \right)$ Euler's 2nd + y2 224 - 743 - n (h-1)4

Scanned with CamScanner

P.d. equ (1) w.r.1. y
$$y = \frac{2^{2}y}{3y^{2}x} + y = \frac{2^{2}y}{3y^{2}} + \frac{2y}{2y} = 0$$

$$\frac{3^{14}}{24^{3}n} + y^{2} + y^{2} + y^{24} + y^{24} + y^{24} + y^{24} = 0$$

$$x^{2} y_{xx} + 2yy y_{xy} + y^{2} y_{yy} + x y_{x} + y y_{y} = 0$$

$$x^{2} \frac{3y_{x}}{7x^{2}} + 2xy \frac{3y_{y}}{7xy_{y}} + y^{2} \frac{3y_{y}}{7y^{2}} = -\frac{3}{2}$$

$$\frac{Q_2}{4 + 4^2} \cdot \frac{1}{3} = (\chi^2 + 4^2)^{\frac{1}{3}} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{$$

$$\frac{1}{4} \frac{1}{4} \frac{1}$$

Soln: Given eqn is
$$y = (x^{2} + y^{2})^{3}$$
 $\Rightarrow x^{2} + 4xx + 2xy + 4xy + y^{2} + 4yy + y^{2} + yyy + y^{2} + yyy + y^{2} + yyy + y^{2} + yyy + yyyy = -(x^{2})^{3}(1+\frac{y^{2}}{x^{2}})^{3}$ $= (x^{2})^{3}(1+\frac{y^{2}}{x^{2}})^{3}$ $= (x^{2})^{3}(1+\frac{y^{2}$

ren eqn is
$$4 = (x^{2} + y^{2})^{3} \Rightarrow x^{2} + 4xx + 2xy + 4xy + y^{2} + 4yy + y^{2} + yyy = -(x^{2})^{3} + (x^{2} + y^{2})^{3} = -(x^{2})^{3} = -(x^{2})^{3} + (x^{2} + y^{2})^{3} = -(x^{2} + y^{2})^{3} = -(x^{2})^{3} + (x^{2} + y^{2})^{3} = -(x^{2})^{3} = -(x^{2} + y^{2})^{3} = -(x^{2})^$$

This is Homogenous for with

dyne
$$n=\frac{2}{3}$$
.

Soh: Given eqn is
$$u = log (x^4 + x^2y^2 + y^4)$$
, then prove that $x^2 \frac{2^2y}{2x^2} + 2xy \frac{2^2y}{2x^2y} + y^2 \frac{2^2y}{2y^2} + 4 = 0$.

Soh: Given eqn is $u = log (x^4 + x^2y^2 + y^4)$
 $= e^4 = x^4 (1 + \frac{y^2}{2^2} + \frac{y^4}{x^4})$
 $= e^4 = x^4 f(\frac{y}{x}) = 0$

eqn 0 is homogeneously define $x = 4$.

By Eyler's 1^{st} other eqn.

 $= x \frac{3^2}{2x} + y \frac{2^2}{2y} = n^2$
 $= x \frac{3^2}{2x} + y \frac{2^2}{2y} = 4$
 $= x \frac{3^2}{2x} + y \frac{2^2}{2y} = 0$
 $= x \frac{3^2}{2x} + 2xy \frac{2^2y}{2x^2y} + y \frac{2^2y}{2xy} + y \frac{2y}{2xy} + y \frac{2y}{2xy} + y \frac{2y}{2x} + y \frac{2y}{2y} = 0$
 $= x \frac{3^2}{2x} + 2xy \frac{2^2y}{2x^2y} + y \frac{2^2y}{2xy} + y \frac{2y}{2xy} = 0$
 $= x \frac{3^2}{2x} + y \frac{2^2}{2x} + y \frac$

Part?

AA If
$$u = tahl\left(\frac{x^{1/2} + y^{1/2}}{x^{1/3} - y^{1/3}}\right)$$
 then prove that

a $\frac{3u}{x^{2}} + y \frac{yy}{yy} = \frac{1}{12} \sin 2u$.

b $\frac{3u}{2x^{2}} + 2xy \frac{3^{2}y}{2x^{2}y} + y^{2} \frac{3^{2}y}{2y^{2}} = \frac{1}{12} \sin 2u \left(\frac{1}{6} \cos 2y - 1\right)$

Soln: Given eq-n is $u = tahl\left(\frac{x^{1/2} + y^{1/2}}{x^{1/3} - y^{1/3}}\right)$
 $tah u = x^{1/2} \cdot \frac{x^{1/3}}{x^{1/3} - y^{1/3}}$
 $tah u = x^{1/2} \cdot \frac{1}{x^{1/3} - y^{1/3}}$
 $tah u = x^{1/2} \cdot \frac{$

If 4= tan (42), then find the value of 22 24 + 2my 24 + 42 24 . 96. then prove that 714x 224 4my + y2 viny = 1 + 4ny (+424_11) If 4= tan (13+4) Find the value of (5 Sin 24) @ 7 Un+ yuy b) x2 4nn+ 2ny 4ny+ y2 4yy. $\rightarrow \left(\frac{25}{16} \sin 4u - \frac{5}{4} \sin 2u\right)$ IF 4 = (03ec-1 (x/2+y/2)/2 then prome that X24nt 2 my Uyyt 42 Uyy $=\frac{\tan 4}{12}\left[\frac{13}{12}+\frac{14n^{2}4}{12}\right].$