			 	 -					\rightarrow	
									-	
			 	 		 	 		-	
		 	 	 		 	 		-	
			 	 		 	 		\rightarrow	
			 	 		 			-	
_			 	 		 	 			
	-	 	 	 		 	 -		-	
			 	 		 			$\overline{}$	
									$\overline{}$	
_			 	 		 			$\overline{}$	
		H + H + H + H							/ L	
-			 				 		\rightarrow	
-			 			 	 -		++++	
\perp										
\neg									-	
_			 	 		 			$\overline{}$	
\rightarrow	 	 	 	 		 	 		\rightarrow	
			 	 -		 	 		\rightarrow	
-	 	 	 	 		 	 			
		 	 	 	++++++	 	 		-	
\rightarrow	 	 	 	 		 	 		\rightarrow	
		 	 	 -		 	 -		-	
			 	 		 	 		$\overline{}$	
			 						$\overline{}$	
								-		
-										
-										
-										
-	 		 			 	 			
-	 		 			 	 			

LSTM

Long Short Term Memory networks son un tipo especial de RNNs capaces de aprender a preservar información a largo plazo, precisamente estan diseñadas para lidear con ese problema de retención por un largo período de tiempo.

Célula LSTM

Por medio de compuertas, gates (σ) esta célula es capaz de regular el flujo y retención de la información.

Aquí decide que tanta información se conserva del estado de la unidad anterior (t-1), así como la información que viene del *input* al tiempo t.

$$f^{(t)} = \sigma\left(W_f\cdot[o^{(t-1)},x^{(t)}] + b_f
ight)$$

Aquí la primera compuerta, *input gate layer*, decide que información se va actualizar. La segunda compuerta selecciona valores que son candidatos a estar en el estado de la célula.

$$egin{aligned} i^{(t)} &= \sigma\left(W_i\cdot[o^{(t-1)},x_t] + b_i
ight) \ & ilde{c}^{(t)} &= anh\left(W_c\cdot[o^{(t-1)},x_t] + b_c
ight) \end{aligned}$$

Aquí se actualiza el estado de la célula para el tiempo t. Se realiza una combinación entre el estado anterior (t-1) y el estado auxiliar de la célula al tiempo t.

$$c^{(t)} = f^{(t)} \cdot c^{(t-1)} + i^{(t)} \cdot ilde{c}^{(t)}$$

Finalmente se decide el *output* de la célula, que será una versión filtrada del estado de la célula al tiempo t. La primera compuerta decide que valores de la información actual y el estado anterior pasan a la siguiente unidad. La siguiente parte funciona como discriminador de la información del estado actual de la célula.

$$egin{split} f^{(t)} &= \sigma \left(W_f \cdot [o^{(t-1)}, x^{(t)}] + b_f
ight) \ i^{(t)} &= \sigma \left(W_i \cdot [o^{(t-1)}, x_t] + b_i
ight) \ c^{(t)} &= f^{(t)} \cdot c^{(t-1)} + i^{(t)} \cdot ilde{c}^{(t)} \end{split}$$

$$egin{align} ilde{c}^{(t)} &= anh \Big(W_c \cdot [o^{(t-1)}, x_t] + b_c \Big) \ a^{(t)} &= \sigma \left(W_a[o^{(t-1)}, x^{(t)} + b_a]
ight) \ o^{(t)} &= a^{(t)} anh \Big(c^{(t)} \Big) \ \end{align}$$

En resumen ...

LSTM representa una mejora con respecto a las arquitecturas *vanilla RNN*, pues lidia con el problema de retención sin que explote o desvanezca el gradiente.

