PERANCANGAN SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PRIORITAS PENERIMA PINJAMAN DENGAN METODE FMADM-SAW PADA KOPERASI WANITA NUSA INDAH BEKASI

Anna Mukhayaroh

STMIK Nusa Mandiri Jalan Damai No.8, Pasar Minggu, Jakarta Selatan e-mail: anna.auh@nusamandiri.ac.id

Abstract - Nusa Indah Women Cooperative Bekasi is a cooperative that has lending service to their members. Currently many members of cooperatives are applying for loans. Surely the Nusa Indah Bekasi Women's Cooperative faces problems in deciding which members of the cooperative are eligible to receive the loan. The loan decision from Nusa Indah Bekasi Women's Cooperative is related to various criteria such as member's age, member's job, the remaining maximum loan and the reason for the loan application. The number of members applying for loans makes the Nusa Indah Bekasi Women's Cooperative need to use decision support system to know the priority of the loan recipient so that the loan can be right on target. The decision support system in the selection of borrowers using the Fuzzy Multiple Attribute Decision Making (FMADM) method uses Simple Additive Weighting (SAW). In the study in tested 30 data cooperative members. Weighting is done for each criteria and final ranking so that it is known that most members are eligible for a loan. In this study also made software applications using Netbeans IDE 7.1 to assist in determining the priority of lending to members of the Nusa Indah Women Cooperative Bekasi.

Key Word: SPK, FMADM, SAW

I. PENDAHULUAN

Menurut UU No.7/1992, koperasi diartikan sebagai badan usaha yang bertujuan untuk menghimpun dana dari masyarakat dalam bentuk simpanan dan menyalurkannya kepada masyarakat dalam rangka meningkatkan taraf hidup rakyat. Menghimpun dana dan menyalurkan dana membutuhkan kegiatan administrasi pengolahan yang baik. Kegiatan-kegiatan ini tentu saja begitu kompleks dan sangat sensitive, karena terkait dengan pengolahan keuangan masyarakat sehingga membutuhkan ketelitian ekstra, serta dituntut untuk memberikan pelayanan yang cepat. Sehingga koperasi dapat menjalankan fungsinya secara tepat guna, dibutuhkan sistem yang mampu menjawab tantangan-tantangan yang dihadapi.

Koperasi Wanita Nusa Indah Bekasi merupakan koperasi yang memiliki layanan pemberian pinjaman uang bagi anggotanya yang membutuhkan dengan mengajukan syarat fotokopi KTP dan mengisi formulir pinjaman. Ada beberapa kriteria yang harus dipenuhi oleh calon penerima pinjaman diantaranya usia, pekerjaan, sisa batas maksimal pinjaman, alasan pengajuan pinjaman dimana masing-masing kriteria ini juga memiliki atribut penilaian.

Koperasi Wanita Nusa Indah Bekasi dalam pemberian pinjaman membutuhkan sebuah sistem pendukung keputusan untuk menentukan prioritas penerima pinjaman. Sistem pendukung keputusan ini diharapkan dapat membantu dalam pengambilan keputusan pemberian pinjaman sehingga hasil penyeleksian calon peminjam menjadi lebih akurat, tepat sasaran, tepat jumlah dan tepat waktu. Dalam hal ini dapat digunakan sistem pendukung keputusan menggunakan model *Fuzzy Multiple Attribute Decision Making* (FMDAM) dengan metode *Simple Additive Weighting* (SAW).

Dalam penelitian ini penulis menerapkan indikator yang ada di Koperasi Wanita Nusa Indah Bekasi dengan mengimplementasikannya ke dalam metode Simple Additive Weighting, sehingga jelas dalam menentukan prioritas peneriman pinjaman, selain itu penulis mengimplementasikan metode ke dalam bentuk aplikasi program sehingga permasalahan dalam menentukan prioritas peneriman pinjaman pada Koperasi Wanita Nusa Indah Bekasi ini dapat di atasi dengan baik.

Dalam penelitian Sistem Pendukung Keputusan Untuk Menentukan Penerima Beasiswa Bank BRI Menggunakan FMADM (Studi Kasus: Mahasiswa Fakultas Teknologi Industri Universitas Islam Indonesia). Penelitian ini dibahas mengenai alternative terbaik berdasarkan beberapa kriteria yang telah ditentukan mengggunakan metode SAW (Simple Additive Weighting) untuk melakukan perhitungan metode FMADM. Metode ini mampu menyeleksi alternatif terbaik dari sejumlah alternatif. Dalam studi kasus meneliti mahasiswa yang berhak menerima beasiswa berdasarkan kriteria-kriteria

yang telah ditentukan. Melakukan penilaian bobot untuk setiap atribut, lalu dilakukan perankingan yang pada akhirnya menentukan alternatif yang optimal, yaitu mahasiswa terbaik. (Henry, Wibowo, Riska Amalia, Andi Fadlun dan Kurnia Arivanty, 2009)

II. KAJIAN LITERATURE

1. Sistem Pendukung Keputusan (SPK)

Sistem pendukung keputusan merupakan sebuah sistem informasi yang menggunakan model keputusan, sebuah database dan sebuah wawasan dari pembuat keputusan dalam sebuah proses pemodelan yang *ad hoc* dan interaktif untuk mencapai sebuah keputusan yang spesifik oleh seorang pembuat keputusan yang spesifik (O'Brien dan George M. Marakas, 2014)

Tujuan dari sistem pendukung keputusan atau *decision support system* (DSS) adalah (Turban, et al, 2005):

- 1. Membantu dalam pengambilan keputusan atas masalah yang terstruktur.
- Memberikan dukungan atas pertimbangan manajer dan bukannya dimaksudkan untuk menggantikan fungsi manajer.
- 3. Meningkatkan efektivitas keputusan yang diambil lebih dari pada perbaikan efisiensinya.
- 4. Kecepatan komputasi. Komputer memungkinkan para pengambil keputusan untuk melakukan banyak komputasi secara cepat dengan biaya yang rendah.

Arsitektur dari Sistem Pendukung Keputusan ditunjukkan dalam Gambar 1

Sumber: Kusrini (2007)

Gambar 1. Arsitektur Sistem Pendukung Keputusan

2. Logika *Fuzzy*

Logika *fuzzy* adalah suatu cara yang tepat untuk memetakan suatu ruang *input* ke dalam suatu ruang *output* (Widodo, 2009). Logika *fuzzy* adalah

berbasis teknologi aturan yang dapat merpresentasikan ketidakpresisian seperti yang telah disebutkan, dengan menciptakan aturan yang menggunakan nilai subjektif atau nilai yang mendekati. Logika fuzzy dapat menjelaskan fenomena atau proses tertentu secara linguistik, kemudian merepresentasikannya dalam sejumlah kecil aturan yang fleksibel. Organisasi dapat menggunakan logika fuzzy untuk menciptakan sistem peranti lunak yang menangkap pengetahuan tersirat yang mengandung ambiguitas linguistik (Laudon, 2008).

III. METODOLOGI PENELITIAN

1. Fuzzy Multiple Attribute Decission Making (FMADM)

Fuzzy Multiple Attribute Decision Making (FMADM) adalah suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu (Widayanti Deni, Oka Sudana dan Arya Sasmita, 2013).

Algoritma FMADM adalah (Kusumadewi, 2007):

- 1) Memberikan nilai setiap alternatif (A_i) pada setiap kriteria (C_j) yang sudah ditentukan, dimana nilai tersebut di peroleh berdasarkan nilai crisp; i=1,2,...m dan j=1,2,...n.
- 2) Memberikan nilai bobot (W) yang juga didapatkan berdasarkan nilai crisp.
- Melakukan normalisasi matriks dengan cara menghitung nilai rating kinerja ternormalisasi (r_{ii}) dari alternatif Ai pada atribut C_i berdasarkan persamaan yang disesuaikan jenis atribut dengan (atribut keuntungan/benefit=MAKSIMUM atau atribut biaya/cost=MINIMUM). Apabila berupa artibut keuntungan maka nilai crisp (Xii) dari setiap kolom atribut dibagi dengan nilai crisp MAX (MAX X_{ii}) dari tiap kolom, sedangkan untuk atribut biaya, nilai crisp MIN (MIN Xii) dari tiap kolom atribut dibagi dengan nilai crisp (X_{ii}) setiap kolom.
- 4) Melakukan proses perankingan dengan cara mengalikan matriks ternormalisasi (R) dengan nilai bobot (W).
- 5) Menentukan nilai preferensi untuk setiapalternatif (V_i) dengan cara menjumlahkan hasil kali antara matriks ternormalisasi (R) dengan nilai bobot (W). Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih. (Kusumadewi, 2007).

Dalam penelitian ini menggunakan FMADM metode SAW. Adapun langkah-langkahnya adalah:

- Menentukan kriteria-kriteria yang akan dijadikan
- 2. acuan dalam pengambilan keputusan, yaitu C_i.
- 3. Menentukan rating kecocokan setiap alternatif
- 4. pada setiap kriteria.

- Membuat matriks keputusan berdasarkan kriteria (C_i), kemudian melakukan normalisasi matriks berdasarkan persamaan yang disesuaikan dengan jenis atribut (atribut keuntungan ataupun atribut biaya) sehingga diperoleh matriks ternormalisasi R.
- 6. Hasil akhir diperoleh dari proses perankingan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot sehingga diperoleh nilai terbesar yang dipilih sebagai alternatif terbaik (A_i) sebagai solusi. (Kusumadewi, 2006).

2. Simple Additive Weighting (SAW)

Konsep dasar metode Simple Additive Weighting (SAW) adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut. Metode SAW membutuhkan proses normalisasi matrik keputusan ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. Metode SAW sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut. Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

$$r_{ij} = \begin{cases} \frac{x_{ij}}{\textit{Max } x_{ij}} & \text{Jika j adalah atribut keuntungan} \\ \textit{Max } x_{ij} & \text{(benefit)} \\ & (2.1) \\ \frac{\textit{Min } x_{ij}}{x_{ij}} & \text{Jika j adalah atribut biaya (cost)} \end{cases}$$

dimana r_{ij} adalah rating kinerja ternormalisasi dari alternatif A_i pada atribut C_j ; i=1,2,...,m dan j=1,2,...,n.

Nilai preferensi untuk setiap alternatif (V_i) diberikan sebagai:

$$V_{i} = \sum_{j=1}^{n} w_{j} r_{ij}$$
 (2.2)

Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih.

III. HASIL DAN PEMBAHASAN

Dalam melakukan penelitian ini penulis menggunakan pendekatan Fuzzy Multi Attribute Decision Making (FMADM) dalam pengambilan keputusan, yaitu metode Simple Additive Weighting (SAW), sedangkan untuk menganalisis data menggunakan bantuan aplikasi yang dirancang sesuai dengan algoritma SAW. Dengan hasil perhitungan tersebut pihak pengambil keputusan dapat dengan mudah melakukan perhitungan dengan metode SAW berdasarkan ketentuan yang telah

ditetapkan. Variabel yang digunakan sesuai dengan ketetapan dari Koperasi Wanita Nusa Indah Bekasi.

3.1 Langkah-langkah Penelitian

Langkah-langkah penelitian perancangan FMADM, yaitu:

 Menentukan variabel yang digunakan untuk melakukan diagnosa permasalahan. Variabel penelitian yang digunakan dalam penelitian ini berdasarkan kebijakan koperasi Wanita Nusa Indah Bekasi.

Tabel 1. Tabel Variabel

Fungsi	Nama Variabel
	Usia
Input	Pekerjaan
	Sisa Maksimal
	Pinjaman
	Alasan
Output	Peringkat penentuan prioritas pinjaman

Sumber: Koperasi Wanita Nusa Indah Bekasi (2017)

Tabel 2. Tabel Pengukuran Parameter Usia

Score	Range Nilai
1.00	0-20 tahun
0.80	21-30 tahun
0.60	31-40 tahun
0.40	41-50 tahun
0.20	>50 tahun

Sumber: Data Olahan (2017)

Tabel 3. Tabel Pengukuran Parameter Pekerjaan

Score	Range Nilai
0.50	0
1.00	1
	0.50

Sumber: Data Olahan (2017)

Tabel 4. Tabel Pengukuran Parameter Sisa Maksimal Pinjaman

	J
Score	Range Nilai
0.20	<1000000
0.40	1000000-5000000
0.60	5000000-10000000
0.80	11000000-20000000
1.00	21000000-30000000
	12 2 2 2

Sumber: Data Olahan (2017)

Tabel 5. Tabel Pengukuran Parameter Alasan

Nama Himpunan Fuzzy	Score	Range Nilai
Tidak Penting	0.00	1
Kurang Penting	0.25	2
Cukup Penting	0.50	3
Penting	0.75	4
Sangat Penting	1.00	5

Sumber: Data Olahan (2017)

2. Membuat bobot kepentingan dari masingmasing kriteria.

Tabel 6. Tabel Rating Kepentingan

Nama Kepentingan	Score
Tidak Penting	0
Kurang Penting	0,25
Cukup Penting	0,5
Penting	0,75
Sangat Penting	1

Sumber: Data Olahan (2017)

Tabel 7. Tabel Bobot Kepentingan Variabel

Variabel	Nama Kepentingan	Score
Usia	Cukup Penting	1.00
Pekerjaan	Penting	1.00
Sisa Maksimal Pinjaman	Sangat Penting	0.75
Alasan	Sangat Penting	0.25

Sumber: Data Olahan (2017)

Langkah-langkah penelitian untuk perancangan Simple Additive Weighting (SAW):

- 1. Membentuk nominasi matriks berpasangan.
- 2. Melakukan *defuzzyfikasi* matriks dengan merubah nilai awal ke dalam bilangan *fuzzy*.
- 3. Melakukan normalisasi matriks. (Rumus 2.1)
- 4. Melakukan perkalian atas matriks yang telah dinormalisasi dengan bobot kepentingan yang telah ditetapkan. (Rumus 2.2)
- 5. Melakukan penjumlahan dari setiap kriteria dari masing-masing alternatif dan membuat ranking keputusan.

Dalam penelitian ini, digunakan sebanyak 30 data. Untuk mendapatkan nilai keanggotaan adalah dengan melalui pendekatan fungsi keanggotaan *crisp* yang akan memberikan nilai pasti untuk pemberian nilai pada variabel dan bobot kepentingan.

1. Membuat sebuah matriks nominasi berpasangan seperti tabel dibawah ini.

Tabel 8. Matriks Keputusan

				<u> </u>	
No	No Anggota	C1	C2	C3	C4
1	KWNI10006	45	1	5,000,000	5
2	KWNI08007	28	0	15,000,000	1
3	KWNI10008	30	1	2,000,000	1
4	KWNI15009	26	0	3,500,000	3
5	KWNI12010	46	1	4,000,000	4
6	KWNI11011	30	0	25,000,000	1
7	KWNI08012	50	1	19,000,000	5
8	KWNI16021	28	1	650,000	2
9	KWNI14014	42	0	8,000,000	2
10	KWNI08033	33	1	11,000,000	2
11	KWNI11016	37	0	17,000,000	3
12	KWNI09006	40	1	6,000,000	3
13	KWNI15032	38	1	500,000	4
14	KWNI13025	55	1	6,350,000	5
15	KWNI11018	34	1	7,000,000	4
16	KWNI09021	30	1	8,500,000	3
17	KWNI08021	51	1	2,500,000	4
18	KWNI16011	33	0	10,000,000	5
19	KWNI12030	27	1	20,000,000	2
20	KWNI14025	44	1	250,000	2
21	KWNI15026	43	0	1,400,000	3
22	KWNI09037	48	1	5,500,000	3
23	KWNI16019	50	1	8,000,000	4
24	KWNI09029	48	1	19,000,000	2
25	KWNI10027	46	1	25,000,000	5
26	KWNI11031	35	1	16,000,000	3
27	KWNI10017	52	0	750,000	3
28	KWNI12022	39	1	10,000,000	1
29	KWNI10034	34	0	17,000,000	2
30	KWNI12028	25	1	850,000	2
Sumb	er: Data Olahan ((2017)			

Sumber: Data Olahan (2017)

2.Mengubah nilai nominasi matriks kedalam bilangan *fuzzy* yang disebut dengan *defuzzyfikasi* sesuai dengan tabel 2 sampai 5,sehingga di dapatkan hasil seperti tabel dibawah ini.

Tabel 9. *Defuzzyfikasi* Matriks

No	No Anggota	C1	C2	C3	C4
1	KWNI10006	0.20	1.00	1.00	1.00
2	KWNI08007	0.40	1.00	0.40	1.00
3	KWNI10008	0.80	0.50	0.80	0.00
4	KWNI15009	0.80	1.00	0.40	0.00
5	KWNI12010	0.80	0.50	0.40	0.50
6	KWNI11011	0.40	1.00	0.40	0.75
7	KWNI08012	0.80	0.50	1.00	0.00
8	KWNI16021	0.40	1.00	0.80	1.00
9	KWNI14014	0.80	1.00	0.20	0.25
10	KWNI08033	0.40	0.50	0.60	0.25
_11	KWNI11016	0.60	1.00	0.80	0.25
12	KWNI09006	0.60	0.50	0.80	0.50
13	KWNI15032	0.60	1.00	0.60	0.50
14	KWNI13025	0.60	1.00	0.20	0.75
15	KWNI11018	0.20	1.00	0.60	1.00
16	KWNI09021	0.60	1.00	0.60	0.75
_17	KWNI08021	0.80	1.00	0.60	0.50
18	KWNI16011	0.20	1.00	0.40	0.75
19	KWNI12030	0.60	0.50	0.60	1.00
20	KWNI14025	0.80	1.00	0.80	0.25
21	KWNI15026	0.40	1.00	0.20	0.25
22	KWNI09037	0.40	0.50	0.40	0.50
23	KWNI16019	0.40	1.00	0.60	0.50
24	KWNI09029	0.40	1.00	0.60	0.75
25	KWNI10027	0.40	1.00	0.80	0.25
26	KWNI11031	0.40	1.00	1.00	1.00
_27	KWNI10017	0.60	1.00	0.80	0.50
_28	KWNI12022	0.20	0.50	0.20	0.50
29	KWNI10034	0.60	1.00	0.60	0.00
30	KWNI12028	0.60	0.50	0.80	0.25

Sumber: Data Olahan (2017)

3. Membuat normalisasi matriks dengan asumsi apabila suatu variabel dianggap beban maka yang diambil adalah nilai terendahnya sedangkan jika variabel tersebut dianggap sebagai keuntungan maka diambil nilai tertingginya. Maka akan didapat tabel dibawah ini.

Tabel 10. Nilai Beban dan Keuntungan

Tabel 10. Milai bebali dali Kedildilgali					
Kode	Kriteria	Keterangan	Nilai Posisi		
C1	Usia	-	0.20		
C2	Pekerjaan	+	1		
C3	Sisa Maksimal Pinjaman	+	1		
C4	Alasan	+	1		

Sumber: Data Olahan (2017)

Selanjutnya melakukan proses normalisasi dengan rumus (2.1) pada tabel 9 dan tabel 10 maka akan didapat hasil seperti tabel dibawah ini.

Tabel 11. Hasil Normalisasi SAW Alternatif No.1 Sampai Dengan No.5

	Bampar Dengan 110.5				
No	No Anggota	C1	C2	C3	C4
1	KWNI10006	0.50	1.00	0.40	1.00
2	KWNI08007	0.25	0.50	0.80	0.00
3	KWNI10008	0.25	1.00	0.40	0.00
4	KWNI15009	0.25	0.50	0.40	0.50
5	KWNI12010	0.50	1.00	0.40	0.75
6	KWNI11011	0.25	0.50	1.00	0.00
7	KWNI08012	0.50	1.00	0.80	1.00
8	KWNI16021	0.25	1.00	0.20	0.25
9	KWNI14014	0.50	0.50	0.60	0.25
10	KWNI08033	0.33	1.00	0.80	0.25
11	KWNI11016	0.33	0.50	0.80	0.50
12	KWNI09006	0.33	1.00	0.60	0.50
13	KWNI15032	0.33	1.00	0.20	0.75
14	KWNI13025	1.00	1.00	0.60	1.00
15	KWNI11018	0.33	1.00	0.60	0.75
16	KWNI09021	0.25	1.00	0.60	0.50
17	KWNI08021	1.00	1.00	0.40	0.75
18	KWNI16011	0.33	0.50	0.60	1.00
19	KWNI12030	0.25	1.00	0.80	0.25
20	KWNI14025	0.50	1.00	0.20	0.25
21	KWNI15026	0.50	0.50	0.40	0.50
22	KWNI09037	0.50	1.00	0.60	0.50
23	KWNI16019	0.50	1.00	0.60	0.75
24	KWNI09029	0.50	1.00	0.80	0.25
25	KWNI10027	0.50	1.00	1.00	1.00
26	KWNI11031	0.33	1.00	0.80	0.50
27	KWNI10017	1.00	0.50	0.20	0.50
28	KWNI12022	0.33	1.00	0.60	0.00
29	KWNI10034	0.33	0.50	0.80	0.25
30	KWNI12028	0.25	1.00	0.20	0.25
1 1	D (O1 1 (0)	217			

Sumber: Data Olahan (2017)

4. Pembobotan menggunakan rumus (2.2) pada tabel 11 dengan tabel 7 maka akan didapatkan hasil seperti tabel dibawah ini.

Tabel 12. Hasil Pembobotan SAW Alternatif

	doer 12. Hash I	Cincocota.		7 11101110	1111
No	No Anggota	C1	C2	C3	C4
1	KWNI10006	0.50	1.00	0.30	0.25
2	KWNI08007	0.25	0.50	0.60	0.00
3	KWNI10008	0.25	1.00	0.30	0.00
4	KWNI15009	0.25	0.50	0.30	0.13
5	KWNI12010	0.50	1.00	0.30	0.19
6	KWNI11011	0.25	0.50	0.75	0.00
7	KWNI08012	0.50	1.00	0.60	0.25
8	KWNI16021	0.25	1.00	0.15	0.06
9	KWNI14014	0.50	0.50	0.45	0.06
10	KWNI08033	0.33	1.00	0.60	0.06
11	KWNI11016	0.33	0.50	0.60	0.13
12	KWNI09006	0.33	1.00	0.45	0.13
13	KWNI15032	0.33	1.00	0.15	0.19
14	KWNI13025	1.00	1.00	0.45	0.25
15	KWNI11018	0.33	1.00	0.45	0.19
16	KWNI09021	0.25	1.00	0.45	0.13
17	KWNI08021	1.00	1.00	0.30	0.19
18	KWNI16011	0.33	0.50	0.45	0.25
19	KWNI12030	0.25	1.00	0.60	0.06
20	KWNI14025	0.50	1.00	0.15	0.06
21	KWNI15026	0.50	0.50	0.30	0.13
22	KWNI09037	0.50	1.00	0.45	0.13
23	KWNI16019	0.50	1.00	0.45	0.19
24	KWNI09029	0.50	1.00	0.60	0.06
25	KWNI10027	0.50	1.00	0.75	0.25
26	KWNI11031	0.33	1.00	0.60	0.13
27	KWNI10017	1.00	0.50	0.15	0.13
28	KWNI12022	0.33	1.00	0.45	0.00
29	KWNI10034	0.33	0.50	0.60	0.06
30	KWNI12028	0.25	1.00	0.15	0.06

Sumber: Data Olahan (2017)

5. Setelah semuanya selesai, maka terakhir dilakukan perankingan. Dari hasil perankingan ini akan terlihat siapakah anggota koperasi yang merupakan prioritas dalam penerimaan pinjaman dari koperasi Wanita Nusa Indah Bekasi, yaitu anggota yang memperoleh ranking tertinggi, sedangkan anggota dengan ranking terendah kurang layak untuk mendapatkan pinjaman dari koperasi Wanita Nusa Indah Bekasi.

Tabel 13. Hasil Perangkingan

	raber 13. Hasir	1 Crungki	iiguii
No	No Anggota		
1	KWNI10006	2.7000	1
2	KWNI08007	2.5000	2
3	KWNI10008	2.4875	3
4	KWNI15009	2.3500	4
5	KWNI12010	2.1625	5
6	KWNI11011	2.1375	6
7	KWNI08012	2.0750	7
8	KWNI16021	2.0583	8
9	KWNI14014	2.0500	9
10	KWNI08033	1.9958	10
11	KWNI11016	1.9875	11
12	KWNI09006	1.9708	12
13	KWNI15032	1.9125	13
14	KWNI13025	1.9083	14
15	KWNI11018	1.8250	15
16	KWNI09021	1.7833	16
17	KWNI08021	1.7750	17
18	KWNI16011	1.7125	18
19	KWNI12030	1.6708	19
20	KWNI14025	1.5583	20
21	KWNI15026	1.5500	21
22	KWNI09037	1.5333	22
23	KWNI16019	1.5125	23
24	KWNI09029	1.5000	24
25	KWNI10027	1.4958	25
26	KWNI11031	1.4625	26
27	KWNI10017	1.4625	26
28	KWNI12022	1.4250	27
29	KWNI10034	1.3500	28
30	KWNI12028	1.1750	29
er: Dat	a Olahan (2017)		

Sumber: Data Olahan (2017)

3.2 Perancangan Sistem Informasi

a. Desain Database

Gambar 1. Desain Database

b. Desain *Interface*

Program aplikasi untuk prioritas pemberian pinjaman ini dibuat dengan menggunakan s*oftware Netbeans IDE 7.1*. Berikut merupakan hasil rancangannya:

1). Desain interface User login

Gambar 2. Desain interface User login

2). Desain interface Input Data Anggota

Gambar 3. Desain interface Input Data Anggota

3). Desain interface Input Data Penilaian

Gambar 4. Desain interface Input Data Penilaian

4). Desain interface Output Hasil Penilaian

No	No Anggota	Usia	Pekerjaan	Sisa Max. Pinjaman	Alasan	Total	Ranking
1	KWNI10006	45	1	5,000,000	5	2.7000	1
2	KWNI08007	28	0	15,000,000	1	2.5000	2
3	KWNI10008	30	1	2,000,000	1	2.4875	3
4	KWNI15009	26	0	3,500,000	3	2.3500	4
5	KWNI12010	46	1	4,000,000	4	2.1625	:
6	KWNI11011	30	0	25,000,000	1	2.1375	(
7	KWNI08012	50	1	19,000,000	5	2.0750	,
8	KWNI16021	28	1	650,000	2	2.0583	
9	KWNI14014	42	0	8,000,000	2	2.0500	9
10	KWNI08033	33	1	11,000,000	2	1.9958	10
11	KWNI11016	37	0	17,000,000	3	1.9875	1
12	KWNI09006	40	1	6,000,000	3	1.9708	1
13	KWNI15032	38	1	500,000	4	1.9125	1
14	KWNI13025	55	1	6,350,000	5	1.9083	1
15	KWNI11018	34	1	7,000,000	4	1.8250	1
16	KWNI09021	30	1	8,500,000	3	1.7833	1
17	KWNI08021	51	1	2,500,000	4	1.7750	1
18	KWNI16011	33	0	10,000,000	5	1.7125	1
19	KWNI12030	27	1	20,000,000	2	1.6708	1
20	KWNI14025	44	1	250,000	2	1.5583	2
21	KWNI15026	43	0	1,400,000	3	1.5500	2
22	KWNI09037	48	1	5,500,000	3	1.5333	2
23	KWNI16019	50	1	8,000,000	4	1.5125	2
24	KWNI09029	48	1	19,000,000	2	1.5000	2
25	KWNI10027	46	1	25,000,000	5	1.4958	2
26	KWNI11031	35	1	16,000,000	3	1.4625	20
27	KWNI10017	52	0	750,000	3	1.4625	2
28	KWNI12022	39	1	10,000,000	1	1.4250	2
29	KWNI10034	34	0	17,000,000	2	1.3500	2
30	KWNI12028	25	1	850,000	2	1.1750	2

Gambar 4. Desain interface output Hasil Penilaian

IV. KESIMPULAN

Berdasarkan penelitian yang telah dilakukan dapat maka dapat diambil kesimpulan, sebagai berikut:

- a. Anggota yang memperoleh ranking tertinggi merupakan prioritas anggota penerima pinjaman, sedangkan anggota dengan ranking terendah kurang layak untuk mendapatkan pinjaman dari koperasi Wanita Nusa Indah Bekasi. Selain itu terdapat beberapa anggota dengan hasil rangking yang sama, sehingga memiliki prioritas yang sama untuk menerima pinjaman.
- b. Model FMADM metode Simple Additive Weighting dapat membantu dalam pengambilan keputusan untuk permasalahan penentuan prioritas penerima pinjaman yang dapat diimplementasikan dalam bentuk GUI menggunakan Netbeans IDE 7.1.

REFERENSI

Deni, Widayanti, Oka Sudana & Arya Sasmita. (2013). Analisys Adn Implementation Fuzzy Multi-Attribute Decision Making SAW Method For Selection Of High Achieving Student In Faculty Level. IJCSI International Journal of Computer Science Issues, 674-680.

Kusrini. (2007). Konsep dan Aplikasi Sistem Pendukung Keputusan. Yogyakarta : Andi Offset, 26.

Kusumadewi, Sri, Sri Hartati, Agus Harjoko & Retantyo Wardoyo. (2006). Fuzzy Multi-

- Attribute Decision Making (FUZZY MADM). Yogyakarta: Graha Ilmu, 74.
- Wibowo, Henry, Riska Amalia, Andi Fadlun & Kurnia Arivanty. (2009). Sistem Pendukung Keputusan Untuk Menentukan Penerima Beasiswa Bank BRI Menggunakan FMADM (Studi Kasus: Mahasiswa Fakultas Teknologi Industri Universitas Islam Indonesia). Seminar Nasional Aplikasi Teknologi Informasi 2009 (SNATI 2009). Yogyakarta, 62-67.
- Laudon, K. C. Dan J. P. Laudon. (2008). Sistem Informasi Manajemen, Jakarta: Salemba Empat, 125.
- O'Brien, James A. dan Marakas, George M. (2014). Sistem Informasi Manajemen (Terjemahan Liza Nurbani Puspitasari dan Hirson Kurnia), Edisi kesembilan. Penerbit Salemba Empat. Jakarta, 285.
- Turban E, Jaye Aronson, Peng-Liang Ting. (2005).

 Decision Support System and Intelegent
 System. Andi: Yogyakarta, 15-109
- Widodo, Prabowo Pudjo, Handayanto, Rahmadya Trias. (2009). Penerapan Soft Computing Dengan Matlab. Bandung: Rekayasa Sains, 2.