ANT 6973: DATA VISUALIZATION AND EXPLORATION

DATA MANIPULATION, PART 2

SINGLE TABLE VERBS

Extract variables with select()

Extract cases with filter()

Arrange cases with arrange()

Make new variables with mutate()

Make tables of summaries with summarize()

along with group_by()

summarize()

A NOTE ON SPELLING...

But both the British and American spellings work:
summarize() = summarise()
color() = colour()

Compute table of summaries.

Compute table of summaries.


```
summarize(.data, ...)
```

data frame to summarize

Name-value pairs of summary functions

Compute table of summaries.

summarize(babynames, max_prop = max(prop))

data frame to summarize

Name of new variable

Summary function

Column of data to summarize

Compute table of summaries.

summarize(babynames, max_prop = max(prop))

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

max_prop 0.0815

Compute table of summaries.

Multiple summaries separated by commas

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

max_n	min_n
99686	5

- Central tendency: mean(), median()
- **Spread:** sd(), var(), IQR(), mad()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

- Central tendency: mean(), median()
- Spread: sd(), var(), IQR(), mad()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

Base R functions

- Central tendency: mean(), median()
- **Spread:** sd(), var(), IQR(), mad()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

dplyr functions

ACTIVITY 1

- Use summarize() to compute three statistics about babynames:
 - The smallest (minimum) year in the dataset
 - The largest (maximum) year in the dataset
 - The total number of children represented in the data

```
babynames |>
 summarize(first_yr = min(year),
           last_yr = max(year),
           total_n = sum(n)
first_yr last_yr total_n
    <dbl> <dbl> <int>
  1880 2017 348120517
```

ACTIVITY 2

- Extract the rows where name is "Khaleesi". Then use summarize() to find:
 - The total number of children named Khaleesi
 - The first year Khaleesi appeared in the data

```
babynames |>
  filter(name == "Khaleesi") |>
  summarize(total = sum(n),
            first_year = min(year))
 total first_year
 <int> <dbl>
1 1964 2011
```


- Center: mean(), median()
- **Spread:** sd(), var(), IQR(), mad()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

dplyr functions

n ()

The number of rows in a dataset/group


```
babynames |>
summarize(n_rows = n())
```

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

n_rows 1924665

n_distinct()

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

n_names	n_rows
97310	1924665

group_by()

Grouping cases

GROUP_BY()

- group_by() changes the unit of analysis to groups in the data
- Any dplyr verbs used on a grouped tibble will be applied "by group"
- Especially useful when paired with summarize ()
- To remove the grouping, either use ungroup() or use the optional argument .groups in the summarize() function for finer control

GROUP_BY()

Groups cases by common values of one or more columns.

```
babynames |>
  group_by(sex)
```

```
Source: local data frame [1,825,433 x 5]

Groups: sex [2]

year sex name n prop

<dbl> <chr> <chr> <int> <chr> <int> 7065 0.07238359
```

GROUP_BY()

Groups cases by common values of one or more columns.

```
babynames |>
  group_by(sex) |>
  summarize(total = sum(n))
```

Grouping variable

sex	total
F	172371079
M	175749438

New summary variable

Note that all other columns in original data are not in summary

PRACTICE DATA

```
000
                           ~/OneDrive - University of Texas at San Antonio/Teaching/Data Visualization/activities/ant6973-activities - RStudio Source Editor
reshape.Rmd*
                 🥄 🏿 🌠 Knit 🕝 🌣 😽
                                                                 😷 Insert 🗸 | 🛊 | 📑 Run 🗸 🧠 🗸 | 🗏
  2 title: "Tidy Data"
  3 output: html_document
  4 editor_options:
       chunk_output_type: console
  8 * ```{r setup, include=FALSE}
                                                                                            # ▶
  9 knitr::opts_chunk$set(echo = TRUE)
 10
                                                                                                              From week 10
 11 library("gapminder")
 12 library("tidyverse")
     library("knitr")
 15
 16
 17 · ```{r}
                                                                                          ☆ 🎽 🕨
     cases ← tibble(country = c("FR", "DE", "US"),
                     2011 = c(7000, 5800, 15000),
 19
                     2012 = c(6900, 6000, 14000),
 20
                     2013 = c(7000, 6200, 13000)
 22
 23
                                                       pollution <- tibble(city = ...,</pre>
 24
 26 pollution ← tibble(city = c("New York", "New Yor
                                                                                                       size = ...,
                         size = c("large", "small", "]
 27
                         amount = c(23, 14, 22, 16, 12)
 28
 29 ...
                                                                                                        amount = ...)
 30
 18:1 C Chunk 2 $
```

pollution |>
 summarize(mean = mean(amount), sum = sum(amount), n = n())

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

mean		sum		n	
	42		252		6

	particle size	amount (µg/m³)		mean	sum	n
	large	23		18.5		
New York	small	14		10.5	57	
London	large	22				
London	small	16		19.0	38	3
Beijing	large	121			4 77	
Beijing	small	56		88.5	177	2

group_by() + summarize()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

London	large	22
London	small	16

Beijing	large	121
Beijing	small	56

mean	sum	n
18.5	37	2
19.0	38	2
88.5	177	2

group_by() + summarize()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	mean	sum	n
New York	18.5	37	2
London	19.0	38	2
Beijing	88.5	177	2

```
pollution |>
  group_by(city) |>
  summarize(mean = mean(amount), sum = sum(amount), n = n())
```

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	k large	23
New York	k small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	mean	sum	n
New York	large	23	23	1
New York	small	14	14	1
London	large	22	22	1
London	small	16	16	1
Beijing	large	121	121	1
Beijing	small	56	56	1

```
pollution |>
  group_by(city, size) |>
  summarize(mean = mean(amount), sum = sum(amount), n = n())
```

ACTIVITY 3

• Use group_by() and summarize() to calculate the number of male and female babies born in each year.

```
babynames |>
  group_by(year, sex) |>
  summarize(n_babies = sum(n))
`summarize()` has grouped output by 'year'.
```

`summarize()` has grouped output by 'year'. You can override using the `.groups` argument.

```
# A tibble: 276 x 3
```

```
# Groups: year [138]
   year sex n_babies
  <dbl> <chr>
                <int>
   1880 F
               90993
 2 1880 M
               110491
  1881 F
                91953
 4 1881 M
               100743
 5 1882 F
               107847
  1882 M
               113686
   1883 F
               112319
  1883 M
               104627
 9 1884 F 129020
```

... with 267 more rows

Note that each call to summarize() typically removes a layer of grouping.

If output retains some grouping, dplyr notifies you

```
babynames |>
  group_by(year, sex) |>
  summarize(n_babies = sum(n), .groups = "drop")
# A tibble: 276 x 3
   year sex n_babies
  <dbl> <chr> <int>
1 1880 F
               90993
                                       Change this
2 1880 M
              110491
                                    behavior with the
3 1881 F
               91953
                                    optional .groups
4 1881 M
              100743
                                        argument.
5 1882 F
              107847
6 1882 M
              113686
  1883 F
              112319
  1883 M
              104627
9 1884 F
              129020
10 1884 M 114442
# ... with 266 more rows
```

```
babynames |>
  group_by(year, sex) >
  summarize(n_babies = sum(n), .groups = "keep")
# A tibble: 276 x 3
# Groups: year, sex [276]
   year sex n_babies
  <dbl> <chr> <int>
 1 1880 F
              90993
2 1880 M
              110491
 3 1881 F
               91953
              100743
 4 1881 M
 5 1882 F
              107847
 6 1882 M
              113686
   1883 F
              112319
 8 1883 M
         104627
 9 1884 F 129020
# ... with 267 more rows
```

Change this behavior with the optional .groups argument.

ACTIVITY 4

• On the storms data set, calculate the maximum wind speed and minimum pressure for each **hurricane** in each year, and arrange the summary in descending order of wind speed (hint: filter first).

name	year	month	day	hour	lat	long	status	category	wind	pressure	ts_diameter	hu_diameter
Amy	1975	6	27	0	27.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	6	28.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	12	29.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	18	30.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	28	0	31.5	-78.8	tropical depression	-1	25	1012	NA	NA
Amy	1975	6	28	6	32.4	-78.7	tropical depression	-1	25	1012	NA	NA

```
storms >
  filter(status == "hurricane") |>
  group_by(year, name) |>
  summarize(wind_max = max(wind),
             pressure_min = min(pressure)) |>
  arrange(desc(wind_max))
# Groups: year [47]
   year name wind_max pressure_min
  <dbl> <chr> <int> <int>
1 1980 Allen 165
                           899
2 1988 Gilbert 160
                           888
3 2005 Wilma
                           882
           160
4 2019 Dorian
            160
                           910
5 1998 Mitch
            155
                           905
  2005 Rita
                155
                           895
   2017 Irma
                           914
                 155
  1977 Anita
                 150
                           926
# i 302 more rows
```

ACTIVITY 5

• Building on the previous code, calculate the average hurricane wind_max for each year. Which year had the most intense hurricanes, on average?

```
storms >
 filter(status == "hurricane") |>
 group_by(year, name) |>
 summarize(wind_max = max(wind)) |>
 summarize(avg_wind_max = mean(wind_max)) |>
 arrange(desc(avg_wind_max))
   year avg_wind_max
               <dbl>
   <dbl>
 1 1999
               114.
               110.
2 2017
 3 1988
               109
               107.
4 2004
 5 2019
               106.
 6 2008
               106.
               104.
   1992
   2009 103.
# i 39 more rows
```

Second call to summarize() uses the year grouping only.

You might want to make the groupings explicit for readability.

```
storms |>
  filter(status == "hurricane") |>
  group_by(year, name) |>
  summarize(wind_max = max(wind), .groups = "drop_last") |>
  summarize(avg_wind_max = mean(wind_max)) |>
  arrange(desc(avg_wind_max))
   year avg_wind_max
   <dbl>
                <dbl>
   1999
                114.
 2 2017
               110.
 3 1988
                109
 4 2004
                107.
 5 2019
                106.
   2008
                106.
                104.
 7 1992
8 2009
               103.
```

```
storms >
 filter(status == "hurricane") |>
 group_by(year, name) |>
 summarize(wind_max = max(wind)) |>
 ungroup() >
 group_by(year) |>
 summarize(avg_wind_max = mean(wind_max)) |>
 arrange(desc(avg_wind_max))
    year avg_wind_max
               <dbl>
   <dbl>
              114.
1 1999
         110.
2 2017
               109
3 1988
4 2004
              107.
 5 2019
               106.
   2008
               106.
               104.
  1992
8 2009
               103.
```

THINGS TO WATCH OUT FOR

- Many summary functions will return NA if there are any missing values
- Fortunately, many summary functions have an na.rm = TRUE argument to avoid this problem.

THINGS TO WATCH OUT FOR

- Once grouped, the tibble will remain that way unless grouping layers are removed. Be careful carrying out futher operations and summaries!
- It's good practice to use ungroup() after finishing your grouped operations.

ACTIVITY 6

 What is the average diameter of the area experiencing hurricane strength winds (hurricane_force_diameter) for each category of hurricane (category)?

```
storms >
  group_by(category) |>
  summarize(mean_diameter = mean(hurricane_force_diameter))
  category mean_diameter
                                     Many of these values
     <dbl>
                    <dbl>
                                         are missing
                       NA
                       NA
                       NA
                                     This causes the means
                       NA
                                          to be NA
                       NA
```

```
storms |>
 group_by(category) |>
 summarize(mean_diameter = mean(hurricane_force_diameter,
                                 na.rm = TRUE)))
  category mean_diameter
     <dbl>
                  <dbl>
                                  Remove missing values
                   50.0
                                    before calculating
                  71.4
                                         means
                  75.6
                   80.6
                   90.9
                    1.56
        NA
```


- Often you may need to perform the same summary or other operation across multiple columns.
- This can be accomplished by writing each column operation, but a more efficient and less error-prone approach is provided by the across () function.

```
df |>
    group_by(g1, g2) |>
    summarize(a = mean(a), b = mean(b), c = mean(c), d = mean(d))
```

Better

```
group_by(g1, g2) |>
summarize(across(a:d, mean))
```


- Often you may need to perform the same summary or other operation across *multiple columns*.
- This can be accomplished by writing each column operation, but a more efficient and less error-prone approach is provided by the across() function.

```
Limited

df |>
    group_by(g1, g2) |>
    summarize(a = mean(a), b = r

df |>
    group_by(g1, g2) |>
    group_by(g1, g2) |>
    summarize(across(a:d, mean))
Inside of across(), the first argument is a select()-style expression of columns to summarize.
```

- Often you may need to perform the same summary or other operation across multiple columns.
- This can be accomplished by writing each column operation, but a more efficient and less error-prone approach is provided by the across() function.

```
df |>
    group_by(g1, g2) |>
    summarize(a = mean(a), b = r

Second argument is the summary
function (or a list of multiple functions)

df |>
    group_by(g1, g2) |>
    summarize(across(a:d, mean))
```

- Often you may need to perform the same summary or other operation across multiple columns.
- This can be accomplished by writing each column operation, but a more efficient and less error-prone approach is provided by the across() function.

```
Better

df |>
    group_by(g1, g2) |>
    summarize(a = mean(a), b = r
    the summary function can be provided
    using a special "~ and .x" syntax.
    summarize(across(a:d, ~ mean(.x, na.rm = TRUE)))
```

msleep (lots of missing values)

name	genus	vore	order	conservation	sleep_total	sleep_rem	sleep_cycle	awake	brainwt	bodywt
Cheetah	Acinonyx	carni	Carnivora	lc	12.1	NA	NA	11.9	NA	50.000
Owl monkey	Aotus	omni	Primates	NA	17.0	1.8	NA	7.0	0.01550	0.480
Mountain beaver	Aplodontia	herbi	Rodentia	nt	14.4	2.4	NA	9.6	NA	1.350
Greater short-tailed shrew	Blarina	omni	Soricomorpha	lc	14.9	2.3	0.1333333	9.1	0.00029	0.019
Cow	Bos	herbi	Artiodactyla	domesticated	4.0	0.7	0.6666667	20.0	0.42300	600.000
Three-toed sloth	Bradypus	herbi	Pilosa	NA	14.4	2.2	0.7666667	9.6	NA	3.850
Northern fur seal	Callorhinus	carni	Carnivora	vu	8.7	1.4	0.3833333	15.3	NA	20.490
Vesper mouse	Calomys	NA	Rodentia	NA	7.0	NA	NA	17.0	NA	0.045
Dog	Canis	carni	Carnivora	domesticated	10.1	2.9	0.3333333	13.9	0.07000	14.000
Roe deer	Capreolus	herbi	Artiodactyla	lc	3.0	NA	NA	21.0	0.09820	14.800

ACTIVITY 7A

- For each vore, calculate the average of only the columns that start with "sleep" in the msleep data set.
 - Hint: use a select() helper (see Week 11 slides) inside across(), and use na.rm = TRUE

```
msleep |>
  group_by(vore) |>
  summarize(across(starts_with("sleep"),
                    \sim mean(.x, na.rm = TRUE)))
        sleep_total sleep_rem sleep_cycle
 vore
 <chr>
                       <dbl>
                                 <dbl>
              <dbl>
              10.4 2.29
1 carni
                               0.373
          9.51
2 herbi
                     1.37 0.418
3 insecti
             14.9
                       3.52
                                 0.161
4 omni
              10.9
                       1.96
                                 0.592
5 NA
              10.2
                       1.88
                                 0.183
```

Equivalent to...

```
msleep |>
 group_by(vore) |>
 summarize(sleep_total = mean(sleep_total, na.rm = TRUE),
          sleep_rem = mean(sleep_rem, na.rm = TRUE),
          sleep_cycle = mean(sleep_cycle, na.rm = TRUE))
 vore sleep_total sleep_rem sleep_cycle
 <chr>
           <dbl>
                   <dbl>
                           <dbl>
1 carni
           10.4 2.29 0.373
2 herbi 9.51 1.37 0.418
3 insecti
       14.9 3.52
                            0.161
4 omni
       10.9 1.96 0.592
           10.2 1.88 0.183
5 NA
```

ACTIVITY 7B

- For each vore, calculate the average of *only the numeric columns* in the msleep data set.
 - Hint: use a select() helper (see Week 11 slides) inside across(), and use na.rm = TRUE

```
msleep |>
  group_by(vore) |>
  summarize(across(where(is.numeric),
                     \sim mean(.x, na.rm = TRUE)))
         sleep_total sleep_rem sleep_cycle awake brainwt
                                                       bodywt
 vore
                                                      <dbl>
  <chr>
               <dbl>
                        <dbl>
                                    <dbl> <dbl>
                                               <dbl>
                         2.29
                                   0.373 13.6 0.0793
1 carni
                                                       90.8
               10.4
2 herbi
              9.51
                         1.37
                                   0.418 14.5 0.622
                                                       367.
3 insecti
              14.9
                                   0.161 9.06 0.0216
                         3.52
                                                       12.9
4 omni
               10.9
                         1.96
                                   0.592 13.1 0.146 12.7
5 NA
               10.2
                         1.88
                                   0.183 13.8 0.00763 0.858
```

Grouping variable isn't numeric, but it still appears in the summary.

ACTIVITY 7C

- For each vore, calculate the average of all columns in the msleep data set.
 - Hint: use a select() helper (see Week 11 slides) inside across(), and use na.rm = TRUE

```
msleep
  group_by(vore) |>
  summarize(across(everything(),
                           \sim mean(.x, na.rm = TRUE)))
          name genus order conservation sleep_total sleep_rem sleep_cycle awake brainwt
 vore
         <dbl> <dbl> <dbl>
                               <dbl>
                                           <dbl>
                                                    <dbl>
                                                              <dbl> <dbl>
 <chr>
                                                                           <dbl>
1 carni
                 NA
                      NA
                                  NA
                                          10.4
                                                    2.29
                                                              0.373 13.6 0.0793
           NA
2 herbi
                                  NA
                                           9.51
                                                              0.418 14.5 0.622
           NA
                 NA
                      NA
                                                    1.37
3 insecti
                 NA
                      NA
                                  NA
                                          14.9
                                                    3.52
                                                              0.161 9.06 0.0216
           NA
4 omni
                 NA
                      NA
                                  NA
                                          10.9
                                                    1.96
                                                              0.592 13.1 0.146
           NA
                      NA
                 NA
                                  NA
                                          10.2
5 NA
           NA
                                                    1.88
                                                              0.183 13.8 0.00763
```

Note that mean() doesn't make sense for the text variables, hence the warnings.

OTHER GROUPED OPERATIONS

- group_by() can also be used with mutate() and filter() to do some interesting things.
- Reminder: mutate() creates a new variable of the same length as the original data.

ACTIVITY 8

- In babynames, try to recreate the prop column using a grouped mutate (call it "new_prop"). Specifically, divide each row's n by the total number of n for that sex and year.
- Why are the values slightly different?

```
babynames |>
                                    Current group's
  group_by(sex, year) |>
                                         total n
  mutate(grp_sum = sum(n),
                                            Current row's
          new_prop = n / grp_sum)
                                              new_prop
# Groups: sex, year [276]
   year sex
              name
                            n
                                prop grp_sum new_prop
   <dbl> <chr> <chr>
                    <int>
                               <dbl>
                                       <int>
                                               <dbl>
                                       90993
   1880 F
              Mary
                        7065 0.0724
                                              0.0776
                         2604 0.0267
   1880 F
              Anna
                                       90993
                                              0.0286
   1880 F
                         2003 0.0205
                                       90993
              Emma
                                               0.0220
   1880 F
              Elizabeth
                                       90993
                         1939 0.0199
                                               0.0213
   1880 F
              Minnie
                         1746 0.0179
                                       90993
                                               0.0192
              Margaret
   1880 F
                         1578 0.0162
                                       90993
                                               0.0173
   1880 F
              Ida
                                       90993
                                               0.0162
                         1472 0.0151
   1880 F
              Alice
                         1414 0.0145
                                       90993
                                               0.0155
 9 1880 F
              Bertha
                         1320 0.0135
                                       90993
                                               0.0145
                                              0.0142
           Sarah
                                       90993
   1880 F
                         1288 0.0132
10
# ... with 1,924,655 more rows
```

Note that the result has as many rows as the original data (it's not a summary)

```
babynames |>
                                           More concisely...
  group_by(sex, year) >
 mutate(new_prop = n / sum(n))
                                          Group denominator
                                         calculated for each for
 Groups: sex, year [276]
                                               each row
   year sex
                              prop new_p
            name
                          n
  <dbl> <chr> <chr>
                                      <dbl>
                      <int> <dbl>
   1880 F
             Mary
                       7065 0.0724
                                     0.0776
   1880 F
                        2604 0.0267
             Anna
                                     0.0286
                        2003 0.0205
   1880 F
             Emma
                                     0.0220
             Elizabeth
                       1939 0.0199
   1880 F
                                     0.0213
   1880 F
             Minnie
                       1746 0.0179
                                     0.0192
   1880 F
             Margaret
                       1578 0.0162
                                     0.0173
   1880 F
             Ida
                       1472 0.0151
                                     0.0162
             Alice
                       1414 0.0145
   1880 F
                                     0.0155
          Bertha 1320 0.0135
  1880 F
                                   0.0145
   1880 F Sarah 1288 0.0132 0.0142
# ... with 1,924,655 more rows
```

MORE ON GROUPED MUTATES

• Grouped mutates are useful for calculating deviations, ranks, and other row-level values within groups.

ACTIVITY 9A

 Using msleep, determine how much each species' log body weight differs from the average log body weight for its order.

name	genus	vore	order	conservation	sleep_total	sleep_rem	sleep_cycle	awake	brainwt	bodywt
Cheetah	Acinonyx	carni	Carnivora	lc	12.1	NA	NA	11.9	NA	50.000
Owl monkey	Aotus	omni	Primates	NA	17.0	1.8	NA	7.0	0.01550	0.480
Mountain beaver	Aplodontia	herbi	Rodentia	nt	14.4	2.4	NA	9.6	NA	1.350
Greater short-tailed shrew	Blarina	omni	Soricomorpha	lc	14.9	2.3	0.1333333	9.1	0.00029	0.019
Cow	Bos	herbi	Artiodactyla	domesticated	4.0	0.7	0.6666667	20.0	0.42300	600.000
Three-toed sloth	Bradypus	herbi	Pilosa	NA	14.4	2.2	0.7666667	9.6	NA	3.850
Northern fur seal	Callorhinus	carni	Carnivora	vu	8.7	1.4	0.3833333	15.3	NA	20.490

```
Each row's log
msleep |>
                                                                                                      Current order's
                                                                             bodywt
   group_by(order) >
                                                                                                        mean bodywt
   mutate(log_bodywt = log(bodywt),
                order_mean = mean(log_bodywt, na.rm = TRUE),
                bodywt_dev = log_bodywt - order_mean)
# Groups: order [19]
                                                                                                           Current row's
                    vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt log_bodywt order_m
  name
                                                                                                   deviation from mean
                                                                <dbl> <dbl>
                                               <dbl>
                                                      <dbl>
                                                                            <dbl> <dbl>
                                                                                           <dbl>
  <chr>
                    <chr> <chr> <chr>
              Acinon... carni Carniv... lc
1 Cheetah
                                                                     11.9 NA
                                                                                           3.91
                                               12.1
                                                                                 50
                                                                                                         of current order
                                                       1.8
                                                                                          -0.734
2 Owl monkey
              Aotus omni Primat... NA
                                               17
                                                                      7 0.0155
                                                                                  0.48
3 Mountain beav... Aplodo... herbi Rodent... nt
                                                                                                   -1.98
                                               14.4
                                                        2.4
                                                                      9.6 NA
                                                                                  1.35
                                                                                          0.300
                                                                                                            2.28
4 Greater short... Blarina omni Sorico... lc
                                                                      9.1 0.00029
                                               14.9
                                                        2.3
                                                                                  0.019
                                                                                          -3.96
                                                                                                   -3.54
                                                                                                           -0.423
                    herbi Artiod... domesticated
 5 Cow
              Bos
                                                        0.7
                                                                                600
                                                                                           6.40
                                                                                                    4.65
                                                                                                            1.75
6 Three-toed sl... Bradyp... herbi Pilosa NA
                                                                                                            \odot
                                               14.4
                                                        2.2
                                                                0.767 9.6 NA
                                                                                  3.85
                                                                                          1.35
                                                                                                    1.35
7 Northern fur ... Callor... carni Carniv... vu
                                                                                                           -0.130
                                                8.7
                                                                                           3.02
                                                                                                    3.15
                                                        1.4
                                                                0.383 15.3 NA
                                                                                 20.5
8 Vesper mouse Calomys NA Rodent... NA
                                                7
                                                                                                           -1.12
                                                       NA
                                                                     17 NA
                                                                                  0.045
                                                                                          -3.10
                                                                                                   -1.98
              Canis carni Carniv... domesticated
                                                                                                           -0.511
                                                               0.333 13.9 0.07
9 Dog
                                               10.1
                                                       2.9
                                                                                 14
                                                                                           2.64
                                                                                                    3.15
              Capreo... herbi Artiod... lc
10 Roe deer
                                                       NA
                                                                                           2.69
                                                                                                           -1.95
                                                                          0.0982
                                                                                 14.8
                                                                                                    4.65
```

ACTIVITY 9B

• Using baby names, add a rank column to each name for each year and sex. What were the top 1 and 2 ranked boys names for years 2012 to 2017 (which is the end of the data set)?

```
babynames |>
  group_by(year, sex) >
  mutate(rank = min_rank(desc(prop))) | >
  filter(year >= 2012 & year <= 2017 & sex == "M" & rank <= 2)
# Groups: year, sex [1]
   year sex name n prop rank
  <dbl> <chr> <int> <dbl> <int> <dbl> <int>
  2012 M Jacob 19069 0.00941
   2012 M Mason 18964 0.00936
   2013 M Noah 18241 0.00904
  2013 M Jacob 18148 0.00900
                                  2
   2014 M
            Noah 19286 0.00943
   2014 M
            Liam 18451 0.00903
   2015 M
            Noah 19613 0.00962
   2015 M
            Liam 18355 0.00900
             Noah 19082 0.00946
   2016 M
             Liam 18198 0.00902
   2016 M
             Liam 18728 0.00954
   2017 M
             Noah 18326 0.00933
   2017 M
```

Each row's rank within year and sex

> Get top 2 names for male babies for 2012 to 2017.

ACTIVITY 10A

- When building statistical models, it's often useful to standardize numeric variables by converting to z-scores:
 - z = (observed value mean) / standard deviation
- Using msleep, use mutate() to calculate the z-score for log(bodywt) for each row in the data set.
- Plot the data using a violin plot and stat_summary()

```
ggplot(msleep, aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```

```
msleep |>
  mutate(log_bodywt = log(bodywt),
         z_log_bodywt = (log_bodywt - mean(log_bodywt, na.rm = TRUE)) /
                        sd(log_bodywt, na.rm = TRUE)) |>
  ggplot(aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```


ACTIVITY 10B

 Now do the same, but standardize within groups by using group_by(vore).

```
ggplot(msleep, aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```

```
msleep |>
  mutate(log_bodywt = log(bodywt)) |>
  group_by(vore) |>
  mutate(z_log_bodywt = (log_bodywt - mean(log_bodywt, na.rm = TRUE)) /
                        sd(log_bodywt, na.rm = TRUE)) |>
  ggplot(aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```


SINGLE TABLE VERBS

Extract variables with select()

Extract cases with filter()

Arrange cases with arrange()

Make new variables with mutate()

Make tables of summaries with summarize()

along with group_by()